Présentation du Projet BABEBOT

Projet Personnel 2018-2021
Louis SCHNEIDER

Introduction

Lors de la quatrième année d'école d'ingénieur en spécialité systèmes embarqués à l'ESME SUDRIA, j'ai eu l'idée de développer un robot motorisé équipé d'une caméra qui puisse être commandé à distance à partir d'une interface web (smartphone ou PC), avec un système de mode veille permettant au robot de réduire considérablement sa consommation lorsqu'il n'est pas utilisé, et un dispositif de réveil à distance.

Ce projet, que j'ai mené à bien, m'a permis de mettre en pratique les enseignements théoriques et appliqués que j'ai pu suivre en quatrième et cinquième année, avec notamment :

- la conception et la réalisation de trois cartes électroniques embarquées (prototypage des cartes et conception des circuits imprimés),
- la gestion de l'alimentation du robot embarqué,
- la programmation de différents microcontrôleurs permettant de piloter les différentes fonctions du robot comme la commande des moteurs par exemple,
- le développement software d'une Raspberry Pi,
- la mise en place de protocoles de communication filaire (I2C, UART) et sans fils (BLE, WIFI),
- la réalisation d'un système basse consommation pour le mode veille du robot.

Ce document présente ce projet avec dans un premier temps le cahier des charges décrivant les objectifs et les contraintes, la démarche de développement et de conception, et le schéma synoptique du projet.

Dans une seconde partie seront présentés les choix techniques du projet, les différents composants du robot, et son architecture complète.

Sommaire

Table des matières

I. CAHIER DES CHARGES &	DEMARCHE DE DEVELOPPEMENT	5
1.1 Cahier des Charges .		5
1.1.1 Objectifs, exige	nces et contraintes du projet	5
1.1.2 Tableau des fon	nctions principales et des contraintes	6
1.2 Démarche de dévelo	oppement	7
1.2.1 Développement	t du système de mode veille	7
1.2.2 Solution choisie	pour le système de mode veille	8
1.3 Architecture hardwa	are du robot et démarche de conception	10
1.4 Schémas synoptique	e du projet	11
II. CHOIX TECHNIQUES		12
2.1 Matériel utilisé		12
2.1.1 Batterie D'alime	entation	12
2.1.2 Raspberry Pi 4		13
2.1.3 Caméra embaro	quée	13
2.1.4 Les moteurs DC		14
2.1.5 Les servos-mote	eurs	15
2.1.6 Fan de refroidis	ssement	15
2.1.7 Leds Flash		16
2.1.8 Buzzer		16
2.2 Module externe WII	FI+BLE	17
2.3 Développement des	s cartes électroniques	18
2.2.1 Module Driver	de Moteurs: C0	
2.2.1.1 Bill of Mate	erials	18
2.2.1.2 Fonctions d	du module driver de moteur	18
2.2.1.3 Choix du m	icrocontrôleur	18
2.2.1.4 Choix des p	oonts en H	19
2.2.1.5 Choix du LE	00	19
2.2.1.6 Schémas sy	noptique du module de veille C0	19
2.2.2 Module de Gest	tion de l'Alimentation: C1	20
2 2 2 1 Bill of Mate	prials	20

2.2.2.2 Fonctions du module de gestion d'alimentation	20
2.2.2.3 Choix du BUCK	21
2.2.2.3 Choix du BOOST	21
2.2.2.4 Choix des MOSFETs	22
2.2.2.5 Schémas synoptique du module de gestion de l'alimentation C1	22
2.2.3 Module de veille (C2)	23
2.2.3.1 Bill of Materials	23
2.2.3.2 Fonctions du module de veille	23
2.2.3.3 Choix du module BLE	24
2.2.3.4 Choix du microcontrôleur	24
2.2.3.5 Choix du circuit de surveillance	25
2.2.3.6 Choix du LDO	26
2.2.3.7 Choix des MOSFETs	26
2.2.3.8 Choix des bouton-poussoir	28
2.2.3.9 Schémas synoptique du module de veille C2	28
2.4 Schéma synoptique du robot Babebot	30
III. ANNEXES	31
3.1 Caractéristiques composants	31
3.1.1 Principales caractéristiques du dsPIC33EP512MC806	31
3.1.2 Caractéristiques du TB67H450FNG,EL	32
3.1.3 Caractéristiques électriques du LDL1117S33R	33
3.1.4 Caractéristiques du TPS54628DDAR	34
3.1.5 Principales caractéristiques du MOSFET DMN6075SQ-7	35
3.2 BOM des cartes électroniques :	35
3.2.1 BOM du module driver de moteur	35
3.2.2 BOM du module de gestion de l'alimentation	37
3.2.3 BOM du module de veille	39

I. CAHIER DES CHARGES & DEMARCHE DE DEVELOPPEMENT

Cette partie a pour objectif d'établir le cahier des charges du projet Babe Bot et de présenter la démarche de développement du projet.

Nous aborderons dans un premier temps les objectifs et les exigences du projet ainsi que l'ensemble de ses fonctions principales et contraintes.

Nous détaillerons ensuite la démarche de développement pour répondre aux exigences du cahier des charges.

Enfin, nous présenterons le schéma synoptique du projet.

1.1 Cahier des Charges

1.1.1 Objectifs, exigences et contraintes du projet

Le projet Babe Bot a pour objectif la réalisation d'un robot motorisé capable de renvoyer une image en temps réel et d'être contrôlé à distance partout dans le monde.

Le système sera basé sur une Raspberry pi équipée d'une caméra embarquée, quatre moteurs 12V qui permettront au robot de se déplacer ainsi que deux servos-moteurs qui permettront de faire pivoter la caméra sur deux axes.

Le robot doit également être équipé de flash 12V pour voir dans l'obscurité, d'un buzzer 5V pour interagir avec l'environnement, et d'un Fan 12V pour le refroidissement de la Raspberry Pi.

Le système devra piloter quatre moteurs 12V, pour cela il devra être capable de générer plusieurs signaux PWM d'une fréquence pouvant aller jusqu'à 20kHz minimum.

La Raspberry Pi doit pouvoir renvoyer l'image de la caméra en temps réel dans une interface de contrôle qui permettra également de déplacer le robot, de faire pivoter la caméra et de contrôler les flashs et le buzzer.

Cette interface sera hébergée sur la Raspberry Pi puis renvoyée sur un serveur Cloud afin de garantir un accès à distance.

L'alimentation du robot reposera sur une batterie lithium-polymère 2S d'une capacité pouvant varier de 1000mAh à 6500mAh.

Le robot doit pouvoir être mis en mode veille lors de sa non-utilisation et doit pouvoir être réveillé à distance, le robot doit aussi pouvoir être réveillé ou mis en mode veille à l'aide de deux bouton-poussoir situés sur le robot.

Le mode veille du système se doit d'être de très basse consommation, avec une batterie Lipo 2S de 5200mAh, le robot doit pouvoir tenir au minimum un mois en mode en veille et sans avoir à recharger la batterie.

Le système doit être capable de couper le courant lorsque la batterie atteint un seuil de tension trop bas (correspondant à 20% de sa charge compète) afin de ne pas dégrader celle-ci.

Les courants de fuite lorsque le courant est coupé doivent être minimisés afin de préserver la batterie.

Le système doit être capable de détecter le pourcentage de batterie restante.

L'entièreté des éléments du robot doivent être alimentés par la batterie, mais on pourra intégrer au système un module externe et indépendant du robot (alimenté sur prise secteur).

1.1.2 Tableau des fonctions principales et des contraintes

On retrouvera sur la Tableau 1 la liste des fonctions du cahier des charges.

	FONCTIONS	CRITERES	NIVEAUX	
	Permettre la commande du robot à distance	Moyen de communication	Wifi, Serveur Cloud	
FP1	via une interface de contrôle avec image en temps réel	Devellopement de l'interface de commande et de stream	Websocket, Node.js & bibliothèques npm	
		Tension de la batterie	De 6V (0%) à 8.4V (100%)	
		Tension de coupure du système	7.4V (20%)	
FC1	Protéger la batterie d'alimentation	Courant de fuite	Ordre du uA	
		Niveau de batterie	Indiquer le niveau de batterie restant	
		Source d'alimentation	De 7.4V (20%) à 8.4V (100%)	
		Moteurs DC	12V	
		Servos-moteurs	5V	
FC2	Gérer l'alimentation des différents composants	Raspberry Pi	5V	
	Composuites	Flash	12V	
		Buzzer	5V	
		Fan	12V	
		Tension	12V	
FC3	Permettre le Contrôle des moteurs	Moyen de commande moteur	Pwm Signal + H-Bridge	
		Fréquance du signal PWM	Jusqu'à 20 Khz minimum	
504	Dawe attende a servicila de a servici	Tension	5V	
FC4	Permettre le contrôle des servos-moteurs	Moyen de commande sevo-moteur	Signal PWM	
		Tension Buzzer	5V	
FC5	Permettre le contrôle du buzzer et des flash	Tension Flash	12V	
		Moyen de contrôle	Transistor Mosfet	
F05	Proposer un mode veille basse	Autonomie en mode veille	3 mois minimum (avec Lipo 2S 5200 mAh)	
FC6	consommation & réveillable à distance	Moyen de communication pour reveil ou mise en veille du robot	Wifi, BLE, serveur Cloud, Press bouton	

Tableau **1** : Fonctions contraintes et principale du projet Babebot

En considérant les objectifs et exigences du projet, nous pouvons en déduire le schéma bête à corne du robot Babe Bot (Figure 1).

Figure 1 : Schéma bête à corne du robot Babebot

1.2 Démarche de développement

Dans cette partie nous présenterons dans un premier temps les différentes solutions envisagées puis la méthode choisie pour mettre en place le système de veille.

Nous présenterons ensuite la démarche de conception de l'architecture hardware du robot et des différentes fonctions à intégrer.

1.2.1 Développement du système de mode veille

Afin de remplir les objectifs du cahier des charges nous avons réfléchi au moyen de réveiller la Raspberry Pi à distance (la Raspberry étant le cerveau central du robot).

La Raspberry Pi ne possédant pas de mode Sleep, nous avons dû réfléchir à un système pouvant communiquer avec un serveur en wifi afin de pouvoir laisser passer ou couper le courant au reste du robot (Raspberry Pi, caméra embarquée, moteurs, servos-moteurs, flash, buzzer, fan, etc..).

Une première solution envisagée a été d'intégrer un module wifi basse consommation au robot. Malheureusement les modules wifi consomment trop de courant pour répondre au cahier des charges.

Par exemple le module ESP32 qui se veut basse consommation, consomme tout de même plus de 100mA lors d'échange Wifi (voir figure 2).

Mode Min Typ Max Unit Transmit 802.11b, DSSS 1 Mbps, POUT = +19.5 dBm 240 mΑ Transmit 802.11g, OFDM 54 Mbps, POUT = +16 dBm 190 mΑ Transmit 802.11n, OFDM MCS7, POUT = +14 dBm 180 mΑ 95 ~ 100 Receive 802.11b/g/n mΑ Transmit BT/BLE, POUT = 0 dBm 130 mΑ Receive BT/BLE 95 ~ 100 mΑ

RF Power-Consumption Specifications

Figure 2 : Consommation Wifi & BLE de L'ESP32

De plus, après avoir fait des tests de temps de connexion de l'ESP32 à un serveur local, nous avons remarqué que le temps de connexion peut dépasser plusieurs secondes : un mode Deep Sleep de l'ESP32 est donc difficilement envisageable.

1.2.2 Solution choisie pour le système de mode veille

Nous avons décidé d'intégrer au projet un module BLE+WIFI externe au robot et alimenté sur prise secteur. Ce module ne sera donc pas sur le robot, mais devra se trouver dans un rayon de ~ 6m du robot. Le robot sera quant à lui équipé d'un module BLE ultra basse consommation. En effet équiper le robot d'une module BLE pour le mode veille nous permettra d'économiser beaucoup d'énergie car la technologie Bluetooth Low Energy consomme moins que le bluetooth classique ou le WIFI.

TABLE 2-5: CURRENT CONSUMPTION VS RF TX POWER

RN4020, VDD = 3.3V, 25°C					
TX Power (dBm) Id (mA)					
-19.1	14.0				
-15.1	14.4				
-10.9	15.0				
-6.9	15.9				
-2.5	17.6				
1.6	20.7				
5.8	26.9				
7.5	33.6				

Figure 3: Consommation BLE du RN4020

On retrouvera un exemple de consommation d'un module BLE (le RN4020) sur la figure 3. En comparant les consommations BLE du RN4020 (Figure 3) aux consommations WIFI de l'ESP32 (Figure 2), voit que le fait d'intégrer un module BLE plutôt qu'un module WIFI au robot nous permettra d'économiser grandement la batterie sur le long terme.

Le module externe WIFI+BLE aura pour fonction :

- de proposer un serveur HTTP (serveur http n°1) avec une page HTML simple dans laquelle l'utilisateur pourra demander de réveiller ou mettre en veille le robot (la page sera redirigée vers un serveur Cloud).
- de proposer un serveur BLE pour que le module de veille intégré au robot s'y connecte si l'utilisateur désire un réveil du robot ou sa mise en mode veille.

Le module BLE intégré au robot aura pour fonction de se connecter au serveur BLE du module externe WIFI+BLE en tant que client, de récupérer les informations relatives à la mise en veille ou au réveil désiré par l'utilisateur (état du robot désiré / desirated bot state), et d'envoyer au serveur BLE le pourcentage de batterie restante ainsi que l'état actuel du robot (s'il est actuellement en veille ou non).

Comme expliqué dans la figure 4, le module externe WIFI+BLE aura pour rôle de faire le pont entre le robot et le serveur cloud.

Figure **4** : Schémas synoptique de la solution choisie pour la mise en place du mode veille.

L'utilisateur se connecte au serveur cloud où il accèdera à la page HTML du module externe WIFI+BLE dans laquelle il pourra choisir de mettre en veille ou de réveiller le robot, et où il pourra lire le pourcentage de batterie restante.

Le Module WIFI+BLE héberge le server HTTP (serveur http n°1) avec la page HTML redirigée vers un serveur cloud. Il reçoit donc une notification lorsque l'utilisateur envoi un "POST" (pour réveiller ou mettre en veille le robot). Le module BLE+WIFI agira également en tant que serveur Bluetooth Low Energy dans lequel le robot pourra lire ou écrire dans des registres spécifiques dédiés au pourcentage de batterie restante et à l'état du robot souhaité par l'utilisateur.

Le robot se connecte au module BLE + WIFI, il demande l'état du robot désiré (desirated bot state), et il envoie le pourcentage de batterie restante ainsi que l'état du robot (robot state).

Le serveur HTTP (serveur http n°1) hébergé par le module externe WIFI+BLE sera redirigé vers le serveur cloud à l'aide de tunnel SSH.

La redirection de port via SSH (tunnel SSH/SSH tunneling) crée une connexion sécurisée entre un ordinateur local et une machine distante à partir de laquelle les services peuvent être relayés.

1.3 Architecture hardware du robot et démarche de conception

Au vu du cahier des charges et afin de répondre à l'ensemble des fonctions contraintes du projet, nous avons mis en place une architecture hardware de l'électronique du robot.

Le robot sera, en plus de la Raspberry pi, constitué de trois cartes électroniques pouvant fonctionner de manière indépendante.

Chacune de ces trois cartes électroniques aura un rôle spécifique :

La première carte électronique CO (ou Module driver de moteur / Motor driver module) aura pour rôle :

- de contrôler des quatre moteurs DC en vitesse afin de déplacer le robot,
- d'établir un moyen de communication avec la Raspberry Pi afin que celle-ci puisse lui envoyer des instructions de commande des moteurs.

La carte CO remplira donc la fonction contrainte FC3 : Permettre le Contrôle des moteurs.

<u>La deuxième carte électronique C1</u> (ou Module gestion de l'alimentation / Power management module) aura pour rôle de fournir :

- une source d'alimentation de 12V pour le module CO ainsi que les Leds Flash et le Fan à partir d'une LiPo 2S.
- une source d'alimentation de 5V pour la Raspberry Pi, le buzzer et les servo-moteurs à partir d'une LiPo 2S.
- deux transistors MOSFET qui permettrons de piloter le buzzer et les Leds Flash.

La carte C1 remplira donc les fonction contraintes FC2 : Gérer l'alimentation des différents composants, et FC5 : Permettre le Contrôle du buzzer et des flash.

La troisième carte électronique C2 (Module de veille / Standby module) aura pour rôle de :

- mettre en place le système de mode veille avec l'intégration du module BLE,
- protéger la batterie LiPo 2S afin qu'elle ne descende pas en dessous d'une certaine tension,
- mesurer le pourcentage de batterie restante.

La carte C2 remplira donc les fonction contraintes FC1 : Protéger la batterie d'alimentation et FC6 : Proposer un mode veille basse consommation & réveillable à distance.

La dernière fonction contrainte FC4 : Permettre le contrôle des servos-moteurs et la fonction principale FP1 : Permettre la commande du robot à distance via une interface de contrôle avec image en temps réel seront assurées par la Raspberry PI.

Pour la fonction FC4, la Raspberry commandera les servos moteurs avec un signal PWM.

Pour l'interface de contrôle du robot et la retransmission de l'image capturée par la caméra embarquée (la fonction principale **FP1**), nous développerons une interface interactive à l'aide de web socket, de Node.js et de ses bibliothèques npm.

Cette interface sera hébergée par la Raspberry Pi sur un serveur HTTP (serveur http n°2) puis redirigée vers le serveur cloud via un tunnel SSH, comme pour la page HTML du module externe WIFI+BLE.

1.4 Schémas synoptique du projet

Avec la prise en compte de tous les éléments précédant, nous pouvons présenter le schéma synoptique du projet (Figure 5) :

Figure 5 : Schémas synoptique du projet.

Le module de veille du robot **C2** communique en BLE avec le module externe WIFI+BLE qui sert de pont entre le module de veille et le serveur cloud.

Le module de gestion d'alimentation **C1** servira à alimenter l'ensemble du robot.

La Raspberry Pi communique avec le serveur afin de proposer une interface pour contrôler le robot.

Le module driver de moteur **CO** nous permettra le contrôler les moteurs.

Le serveur cloud quant à lui propose dans un premier temps la page HTML du module externe WIFI+BLE (serveur http n°1), lui permettant de dialoguer avec le module de veille du robot afin de le mettre en veille ou le réveiller.

Le serveur cloud propose également une interface Node.js (serveur http n°2) permettant d'avoir un retour caméra ainsi que des boutons de commande permettant de déplacer le robot et la caméra sur deux axes à l'aide des servos moteurs, et de contrôler les flash et buzzer. Cette interface node.js sera donc accessible uniquement lorsque le robot est réveillé.

II. CHOIX TECHNIQUES

Cette partie a pour objectif de présenter l'ensemble des composants de ce projet, et d'établir l'architecture hardware complète du robot à développer.

Nous présenterons dans un premier temps le matériel utilisé (moteurs, carte centrale, caméra etc..) puis la liste des différents composants qui serviront à la conception des trois cartes électroniques (**CO**, **C1**, **C2**).

Nous terminerons par un schéma synthétisant l'architecture hardware du robot.

2.1 Matériel utilisé

2.1.1 Batterie D'alimentation

Pour alimenter l'ensemble du robot nous utiliserons une batterie au lithium polymère à deux cellules (figure 6) aussi appelée LiPo 2S.

Figure 6 : Batterie LiPo 2S

Caractéristiques de la batterie :

■ Capacitée: 5200mAh

Tension : de 7.2V (10%) à 8.4V (100%)

■ Taux de décharge : 30C

Poids : 292g

Le taux de décharge correspond à la capacité maximum et sans danger de décharge continue de la batterie, \times 30C » signifie que l'on peut décharger la batterie à une puissance jusqu'à 30 fois la capacité de la batterie de façon continue soit 5200mAh et 30C = 5.2A x 30 = 156A. La batterie peut donc délivrer 156A en continue à une tension de \sim 7.4V, soit une puissance de 1155W.

2.1.2 Raspberry Pi 4

Pour ce projet nous utiliserons une Raspberry Pi 4 (Figure 7) comme cerveau central du robot.

Figure 7: Raspberry Pi 4

Voici une liste exhaustive des caractéristiques de la Raspberry Pi 4 :

- Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
- 2GB, 4GB or 8GB LPDDR4-3200 SDRAM (depending on model)
- 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE
- Gigabit Ethernet
- 2 USB 3.0 ports; 2 USB 2.0 ports.
- Raspberry Pi standard 40 pin GPIO header (UART, I2C, SPI, PWM)
- 2-lane MIPI DSI display port
- 2-lane MIPI CSI camera port

Source: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/

La Raspberry aura pour fonctions de récupérer les images capturées par la caméra embarquée grâce à son port caméra CSI. Elle devra également mettre en place l'interface de contrôle du robot dans laquelle l'utilisateur pourra avoir un retour image en temps réel et contrôler le robot.

Elle devra pouvoir communiquer avec le module driver de moteur **CO** afin que l'utilisateur puisse commander les moteurs via l'interface de contrôle. La Raspberry Pi devra enfin se charger de faire pivoter les deux servos moteurs avec un signal PWM.

La Raspberry Pi 4 consomment au maximum 3A à 5V, ils demandent donc au maximum une puissance de 15W.

Source: https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md

2.1.3 Caméra embarquée

Afin de récupérer une image en temps réelle, nous utiliserons la caméra Fisheye Lens de chez WavesShare (Figure 8).

Figure 8 : Camera Fisheye Lens de chez WavesShare

Voici une liste exhaustive des caractéristiques de la camera Fisheye Lens :

- Raspberry Pi Camera, supports all revisions of the Pi
- 5-megapixel OV5647 sensor
- 2592 × 1944 still picture resolution.
- Support 1080p30, 720p60 and 640x480p60/90 video record

Source: https://www.waveshare.com/rpi-camera-i.htm

La caméra sera reliée à la Raspberry Pi 4 via le port CSI.

2.1.4 Les moteurs DC

Afin que l'utilisateur puisse déplacer le robot dans son environnement, nous lui intégrerons quatre moteurs DC à engrenages électrique JGA25-370 (figure 9).

Figure 9 : Moteurs à engrenages électrique JGA25-37

Caractéristiques du moteur DC à engrenage :

Nominal voltage: 12 V

Free-run speed at 12 V: 399 RPM
 Free-run current at 12 V: 50 mA
 Stall current at 12V: 1200 mA
 Stall torque at 12V: 2.2 kg.cm

■ Weight: 84 g

Source: https://www.openimpulse.com/blog/products-page/25d-gearmotors/jga25-370-dc-gearmotor-399-rpm-12-v/

Les moteurs consomment au maximum **1.2A** à **12V**, ils demandent donc au maximum une puissance de **14.4W** chacun, les quatre moteurs consomment donc au maximum **57.6W**. Le couple maximum d'un moteur est de 2.2Kg.cm, avec quatre moteurs le robot devrait pouvoir se déplacer sans problème.

2.1.5 Les servos-moteurs

Afin que l'utilisateur puisse faire pivoter la caméra sur deux axes, le robot sera équipé de deux servos-moteurs MG995 (figure 10).

Figure 10: Servo-moteur MG995

Caractéristiques du servo-moteur MG995:

Weight: 55 g

Operating voltage range: 4.8 V to 7.2 V
 Stall torque: 9.4kg/cm (4.8v); 11kg/cm (6v)

Rotational degree: 180ºCurrent draw at idle: 10mA

Current at maximum load: 1200mA

Source: https://components101.com/motors/mg995-servo-motor

Les servos-moteurs consomment au maximum **1.2A** à **5V**, ils demandent donc au maximum une puissance de **6W** chacun, les deux servos-moteurs consomment donc au maximum **12W**. Les servos-moteurs seront pilotés par la Raspberry via un signal PWM.

2.1.6 Fan de refroidissement

Afin de refroidir la Raspberry Pi (dont la température peut monter assez haut lors d'une application demandant beaucoup de ressources) nous intégrerons un Fan Noctua NF-A4x20 FLX (figure 11).

Figure 12 : Fan Noctua NF-A4x20 FLX MG995

Caractéristiques du Fan Noctua NF-A4x20 FLX

Max. input power: 0,6 W
 Max. input current: 0,05 A
 Operating voltage: 12 V

Source: https://noctua.at/en/nf-a4x20-flx

Le Fan devra donc être alimenté à 12V, il comme 50 mA, soit 0,6W.

2.1.7 Leds Flash

Afin que l'utilisateur puisse observer l'environnement du robot même dans l'obscurité, nous intégrerons des Leds Flash (figure 13).

Figure 13: Leds Flash

Caractéristiques des Leds flash :

Consommation d'énergie (W / m): 3,84W / m

Tension: 12V

Source: https://fr.aliexpress.com/item/4000178363107.html?spm=a2g0s.9042311.0.0.27426c37m6KwJ7

Pour 1 mètre les Leds flash consomment **3,84W**, soit **320mA** à **12V**. Les Leds Flash seront pilotées à l'aide d'un transistor Mosfet sur la carte **C1** (Module de gestion d'alimentation).

2.1.8 Buzzer

Afin que l'utilisateur puisse interagir avec son environnement, nous intégrerons un buzzer (figure 14).

Figure 14: Buzzer

Caractéristiques du buzzer :

■ Courant Max: 30mA à 5VDC

■ Tension d'alimentation: de 4V à 8V

Source: https://fr.aliexpress.com/item/1594339397.html?spm=a2g0s.9042311.0.0.27426c37m6KwJ7

Le buzzer consomme au maximum **0.03A** à **5V**, il demandent donc au maximum une puissance de **0.15W**. Tout comme les Leds Flash, le buzzer sera piloté à l'aide d'un transistor MOSFET sur la carte **C1** (Module de gestion d'alimentation).

2.2 Module externe WIFI+BLE

Le module choisit pour assurer le serveur HTTP n°1 et le serveur BLE (vu précédemment) est ESP32-DevKitC-32D (Figure 15).

Figure 15: ESP32-DevKitC-32D

En effet comme vu précédemment nous aurons besoin d'un module BLE+WIFI alimenté sur prise secteur, qui hébergera le serveur HTTP n°1 (dans lequel l'utilisateur demandera un réveille ou une mise en veille du robot), et qui hébergera le serveur BLE afin que le robot sache dans quel état l'utilisateur veux qu'il soit.

On retrouvera les caractéristiques de l'ESP32 dans la figure 16.

Categories	Items	Specifications		
	RF Certification	FCC/CE-RED/IC/TELEC/KCC/SRRC/NCC		
Certification	Wi-Fi Certification	Wi-Fi Alliance		
Certification	Bluetooth certification	BQB		
	Green Certification	REACH/RoHS		
Test	Reliablity	HTOL/HTSL/uHAST/TCT/ESD		
		802.11 b/g/n (802.11n up to 150 Mbps)		
Wi-Fi	Protocols	A-MPDU and A-MSDU aggregation and 0.4 μ s guard		
VVI-FI		interval support		
	Frequency range	2.4 GHz ~ 2.5 GHz		
	Protocols	Bluetooth v4.2 BR/EDR and BLE specification		
		NZIF receiver with –97 dBm sensitivity		
Bluetooth	Radio	Class-1, class-2 and class-3 transmitter		
		AFH		
	Audio	CVSD and SBC		
Module interfaces		SD card, UART, SPI, SDIO, I2C, LED PWM, Motor		
		PWM, I2S, IR, pulse counter, GPIO, capacitive tout		
	Module interfaces	sensor, ADC, DAC, Two-Wire Automotive Interface		
		(TWAI®, compatible with ISO11898-1)		
	On-chip sensor	Hall sensor		
	Integrated crystal	40 MHz crystal		
Hardware	Integrated SPI flash 1	4 MB		
	Operating voltage/Power supply	3.0 V ~ 3.6 V		
	Operating current	Average: 80 mA		
	Minimum current delivered by power	500 mA		
	supply	300 IIIA		
Recommended operating temperature		e _40 °C ~ +85 °C		
	range ²	-40 0.4 400 0		
	Moisture sensitivity level (MSL)	Level 3		

Figure 16: ESP32-WROOM-32D Caractéristiques

Source:

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d esp32-wroom-32u datasheet en.pdf

2.3 Développement des cartes électroniques

Dans cette partie nous présenterons les trois cartes électroniques mentionnées dans le cahier des charges.

Parmi les trois cartes électroniques nous retrouvons le module driver de moteur **C0** driver (Motor driver module), le module de gestion de l'alimentation **C1** (Power Management module), et le module de veille **C2** (Standby module).

Nous détaillerons la BOM (Bill Of Materials) pour chacune des trois cartes électroniques, puis nous justifierons le choix des composants en fonction des applications.

2.2.1 Module Driver de Moteurs: CO

2.2.1.1 Bill of Materials

Voir annexes pour la listes des composants électroniques du module (Tableau 2: BOM du Module Driver de moteurs).

2.2.1.2 Fonctions du module driver de moteur

Le module doit être capable de recevoir des ordres de commande venant de la part de la Raspberry Pi via un Protocol de communication I2C

Le module doit être capable de piloter quatre moteurs DC de 12V via des signaux PWM pouvant aller jusqu'à 20 kHz.

Le module sera donc alimenté en 12V, même tension que celle des moteurs DC.

2.2.1.3 Choix du microcontrôleur

Pour générer les signaux PWM et établir un mode de communication entre la Raspberry Pi et le module driver de moteur nous utiliserons le microcontrôleur **dsPIC33EP512MC806**.

Nous avons choisi ce microcontrôleur pour sa technologie High-speed PWM (Figure 17) et ses interfaces de communication (Figure 18). On retrouvera ses principales caractéristiques à la figure 19 (voir annexes).

High-Speed PWM

- · Up to Seven PWM Pairs with Independent Timing
- · Dead Time for Rising and Falling Edges
- · 8.32 ns PWM Resolution
- · PWM Support for:
 - DC/DC, AC/DC, Inverters, PFC, Lighting
 - BLDC, PMSM, ACIM, SRM
- Programmable Fault Inputs
- · Flexible Trigger Configurations for ADC Conversions

Figure 17: dsPIC33EP512MC806 PWM Specifications

Communication Interfaces

- USB 2.0 OTG-Compliant Full-Speed Interface
- · Four UART modules (15 Mbps)
- Supports LIN/J2602 protocols and IrDA®
- Four 4-Wire SPI modules (15 Mbps)
 Two ECAN™ modules (1 Mbaud) CAN 2.0B Support
- Two ECAN™ modules (1 Mbaud) CAN 2.0B Support
 Two I²C modules (up to 1 Mbaud) with SMBus Support
- Two Inc modules (up to 1 Mbaud) with SMBus Support
 Data Converter Interface (DCI) module with Support for
- I²S and Audio Codecs
- · PPS to allow Function Remap
- Parallel Master Port (PMP)
- Programmable Cyclic Redundancy Check (CRC)

Figure 18: dsPIC33EP512MC806 Communication Interfaces Specifications

Le dsPIC33E propose un signal PWM avec une résolution pouvant aller jusqu'à 8.32ns, ce qui est largement suffisant pour générer des signaux PWM de 20 kHz, de plus il permet de piloter quatre moteurs en même temps.

Le dsPIC33E propose également une interface de communication I2C que nous utiliserons afin de faire communiquer la Raspberry avec le module driver de moteur.

2.2.1.4 Choix des ponts en H

Afin de pouvoir piloter les moteurs DC avec une tension de 12V nous auront recourt à quatre ponts en H, pour cela nous choisirons les Contrôleurs et pilotes de moteur **TB67H450FNG,EL** dont on retrouvera les caractéristiques à la figure 20 (voir annexes).

Le H-Bridge TB67H450FNG,EL répond à nos exigences dans la mesure où :

- il est capable de piloter des moteurs DC en 12V (Motor power supply voltage : 4.5V->44V),
- il est capable de piloter un signal de 400 kHz, ce qui est largement suffisant pour notre Cahier des Charges,
- il est capable de délivrer 1.5A (valeur type) en courant de sortie, ce qui est suffisant: les moteurs utilisés demandent au maximum 1.2A,
- la tension d'entrée logique (2V->5.5V) est adaptée à la tension de sortie des GPIO du microcontrôleur (3.3V).

2.2.1.5 Choix du LDO

Afin d'alimenter le microcontrôleur, et donner une tension de référence au pont en H, nous utiliserons le LDO **LDL1117S33R**, on retrouver ses caractéristiques électriques sur la figure 21 (Vout = 3.3V).

Le LDO LDL1117S33R répond à nos exigences dans la mesure où :

- il accepte une tension d'entrée de 12V,
- il est capable de retourner une tension de 3.3V en sortie,
- il est capable de délivrer 1.5A (valeur type) en courant de sortie, ce qui est suffisant pour notre microcontrôleur et nos pont en H.

2.2.1.6 Schémas synoptique du module de veille CO

Avec la prise en compte de tous les éléments précédant, nous pouvons présenter le schéma synoptique du module driver de moteur **CO** (Figure 22) :

Figure 22 : Schémas synoptique du module driver de moteur **C0**.

2.2.2 Module de Gestion de l'Alimentation: C1

2.2.2.1 Bill of Materials

Voir annexes pour la listes des composants électroniques du module (Tableau 3: BOM du Module de gestion de l'alimentation).

2.2.2.2 Fonctions du module de gestion d'alimentation

A partir d'une tension de batterie LiPo 2S, le module doit être capable de :

- fournir une source d'alimentation de 12V pour les quatre moteurs DC, le Fan de refroidissement et les Leds FLASH à partir d'une LiPo 2S
- fournir une source d'alimentation de 5V pour la Raspberry Pi, les deux servo-moteurs et le Buzzer à partir d'une LiPo 2S
- proposer deux transistors MOSFET qui permettrons de piloter le buzzer et les Leds Flash.

Les différents composants consomment chacun :

- 15W pour la Raspberry Pi 4 (3A à 5V)
- 57,6W pour les moteurs DC (1.2A à 12V)*4
- 12 W pour les servos-moteurs (1.2A à 5V)*2
- 0.6W pour le fan de refroidissement (0.05A à 12V)
- 3.84W pour les Leds Flash (0.32A à 12V) pour 1m
- 0.15W pour le Buzzer (0.03A à 5V)

Le système global consommera donc au maximum **89.19W**. De plus, comme vu précédemment, la batterie LiPo 2S est capable de délivrer **1155W**, ce qui est donc largement suffisant pour notre système.

2.2.2.3 Choix du BUCK

Afin de fournir une tension de 5V nous abaisserons la tension de la batterie à l'aide d'une alimentation à découpage step-down (BUCK).

Pour avoir une tension continue acceptable nous imposerons une fréquence de découpage de minimum 500kHz.

Avec notre modèle actuel nous aurons besoin d'un courant de sortie de 3A (Raspberry Pi) + 2.4A (2*servosmoteurs) + 0.03A (buzzer), soit **5.43A** au total.

Nous choisirons donc le BUCK **TPS54628DDAR** dont nous pouvons voir les principales caractéristiques sur la figure 23 (voir annexes).

Le BUCK TPS54628DDAR répond à nos exigences dans la mesure où :

- il accepte une tension d'entrée de 4.5V à 18V, ce qui englobe la plage de tension de la LiPo (de 7.2V à 8.4V)
- il est capable de retourner une tension entre 0 et 5.7V, ce qui comprend 5V
- il est capable de délivrer jusqu'à 6A en courant de sortie, ce qui est suffisant pour les composants alimentés en 5V

il est capable de délivrer une fréquence de découpage pouvant aller jusqu'à 650kHz

2.2.2.3 Choix du BOOST

Afin de fournir une tension de 12V nous relèverons la tension de la batterie à l'aide d'une alimentation à découpage step-up (BOOST).

Pour avoir une tension continue acceptable nous imposerons une fréquence de découpage de minimum 500kHz.

Avec notre modèle actuel nous auront besoin d'un courant de sortie de 4.8A (4*moteurs DC) + 0.05A (fan) + 0.32A (flash), soit **5.17A** au total.

Nous choisirons donc le BOOST **LM3478MA** dont nous pouvons voir les principales caractéristiques ci-dessous .

• Fréquence de commutation : 100 kHz to 1 MHz

• Tension d'entrée 2.97V to 40V

• Courant de sortie max : 10A

Courant d'alimentation de fonctionnement : 2.7mA

Le BOOST LM3478MA répond à nos exigences dans la mesure où :

- il accepte une tension d'entrée de 2.97V à 40V, ce qui englobe la plage de tension de la LiPo (de 7.2V à 8.4V)
- il est capable de retourner une tension de 12V,
- il est capable de délivrer jusqu'à 10A max en courant de sortie, ce qui est suffisant pour les composants alimentés en 12V (5.17A au total).
- il est capable de délivrer une fréquence de découpage pouvant aller jusqu'à 1MHz.

Pour la mise ne place du BOOST **LM3478MA**, nous auront recours au WEBENCH Power Designer de Texas Instrument.

2.2.2.4 Choix des MOSFETs

Afin de pouvoir contrôler les Leds Flash et le buzzer, nous aurons recours à deux transistors MOSFET Canal N. Nous choisirons le MOSFET **DMN6075SQ-7** dont nous retrouverons les principales caractéristiques sur le figure 24.

Le MOSFET DMN6075SQ-7 répond à nos exigences dans la mesure où :

- il accepte une tension d'entrée jusqu'à 60V, ce qui suffisant pour le buzzer (5V) et les Flash (12V)
- il est capable laisser passer un courant d'au moins 2A (à 25°C), ce qui est largement suffisant pour les Flash et le buzzer
- il est pilotable avec une tension entre 1V et 3V, ce qui correspond à la tension des GPIO de la Raspberry Pi

2.2.2.5 Schémas synoptique du module de gestion de l'alimentation C1

Avec la prise en compte de tous les éléments précédant, nous pouvons présenter le schémas synoptique du module de gestion de l'alimentation **C1** (Figure 25) :

Figure 25 : Schémas synoptique du module de gestion de l'alimentation.

2.2.3 Module de veille (C2)

2.2.3.1 Bill of Materials

Voir annexes pour la listes des composants électroniques du module (Tableau 4 : BOM du Module de veille (C2)).

2.2.3.2 Fonctions du module de veille

Le module de veille **C2** aura pour fonction de protéger la batterie afin qu'elle n'atteigne pas une tension inférieur à 7.4V (Tension de coupure du système).

Le module devra être Low Power design, il devra fonctionner en consommant le moins possible et devra limiter les courants de fuite au maximum.

Le module de veille devra également être capable de couper ou d'envoyer le courant au reste du robot selon le désir de l'utilisateur grâce au module BLE qui sera intégré au module de veille, ou à l'aide des deux bouton-poussoir (start et stop).

Le module devra également détecter la tension de la batterie pour en déduire le pourcentage de batterie restante.

2.2.3.3 Choix du module BLE

Afin de pouvoir communiquer avec le module externe ESP32, nous choisirons d'intégrer un RN4020.

Le RN4020 est un module Bluetooth Low Energy pouvant servir de client comme de serveur, il est facilement pilotable à l'aide d'un microcontrôleur et d'un protocole de communication UART.

On retrouvera une liste exhaustive des caractéristiques du RN4020 aux figures 26 et 27.

TABLE 2-4:	CURRENT CONSUMPTION
Mode	Typical Current at 3V
Dormant	<900 nA
Deep Sleep	<5.0 μA
Idle	<1.5 mA
TX/RX active	16 mA

TABLE 2-5: CURRENT CONSUMPTION VS

RN4020, VDD = 3.3V, 25°C					
TX Power (dBm)	Id (mA)				
-19.1	14.0				
-15.1	14.4				
-10.9	15.0				
-6.9	15.9				
-2.5	17.6				
1.6	20.7				
5.8	26.9				
7.5	33.6				

Figure 26: Consommation du RN4020

TABLE 2-1: GENERAL SPECIFICATIONS				
Specification	Description			
Standard	Bluetooth 4.1			
Frequency Band	2.4 ~ 2.48 GHz			
Modulation Method	GFSK			
Maximum Data Rate	1 Mbps			
Antenna	PCB			
Interface	UART, PIO, AIO, SPI			
Operation Range	100 meters ⁽¹⁾			
Sensitivity	-92.5 dBm at 0.1% BER			
RF TX Power	-19.0 dBm to +7.5 dBm			
Temperature (operating)	-30°C to +85°C			
Temperature (storage)	-40°C to +85°C			
Humidity	10% ~ 90%			
	non-condensing			

Note 1: Maximum range under ideal conditions such as RF matching, line of sight, maximum power. Actual results may vary depending on the customer's design.

Figure 27: Caractéristiques du RN4020

Le RN4020 répond à nos exigences dans la mesure où :

- il est facilement pilotable via un protocole de communication UART
- il présente un mode sleep
- il consomme relativement peu de courant, même lors de communication BLE
- il peut se comporter comme un client BLE, et venir écrire/lire dans les registres du serveur BLE de l'ESP32

2.2.3.4 Choix du microcontrôleur

Afin de piloter le RN4020 et les MOSFETs, de détecter la pressions des bouton-poussoir et de mesurer le pourcentage de batterie restante, nous choisirons le microcontrôleur 8 bit **PIC16F18444** dont nous retrouverons une liste exhaustive des caractéristiques au figure 28 et 29.

- Enhanced Mid-range Core with 48 Instruction, 16 Stack Level
- 12-bit ADC with Computation (ADC2)
- 5-bit Digital to Analog Converter (DAC)
- 2 x Comparators
- Memory Access Partition (MAP)
- Device Information Area (DIA)
- 2 x 10-bit PWMs
- 4 x Capture, Compare, PWM (CCP)
- Complementary Waveform Generator (CWG)
- Numerically Controlled Oscillator (NCO)
- Hardware Limit Timer (HLT)
- · Signal Measurement Timer (SMT)
- 4 x Configurable Logic Controller (CLC)
- Data Signal Modulator (DSM)
- · Zero Cross Detect (ZCD)
- Windowed Watchdog Timer (WWDT)
- eXtreme Low Power (XLP)
- IDLE and DOZE low power modes
- Peripheral Module Disable (PMD)
- Peripheral Pin Select (PPS)
- Enhanced Power-On/Off-Reset
- Low-Power Brown-Out Reset (LPBOR)
- Programmable Brown-Out Reset (BOR)
- In Circuit Serial Programming (ICSP)
- I2C/SPI
- EUSART

eXtreme Low-Power (XLP) Features

Sleep mode: 50 nA @ 1.8, typical

Watchdog Timer: 500 nA @ 1.8V, typical

Secondary Oscillator: 500 nA @ 32 kHz

· Operating Current:

- 8 uA @ 32 kHz, 1.8V, typical

32 uA/MHz @ 1.8V, typical

Figure 28: Caractéristiques principales du PIC16F18444

Figure 29: XLP caractéristiques du PIC16F18444

Le PIC16F18444 répond à nos exigences dans la mesure où :

- il présente des caractéristiques « eXtreme Low-Power » intéressantes avec un sleep mode à quelques μA/MHZ
- il permet une communication UART qui nous permettra de piloter le RN4020
- il possède un ADC 12 bit pour la mesure de pourcentage de batterie restante
- il ne coûte pas chère (~1\$)

2.2.3.5 Choix du circuit de surveillance

Afin que la batterie n'atteigne pas un voltage trop bas, nous aurons recours au circuit de surveillance MAX6457.

Le **MAX6457** est un contrôleur permettant la détection de sous-tension ou de surtension, dans notre cas de figure nous l'utiliserons pour détecter une sous-tension : la tension de coupure du système.

Nous choisirons le modèle MAX6457UKD3B+T car il nous propose une hystérésis de 5% (réf. figure 30), cette hystérésis évitera au système d'osciller entre on et off lorsque la tension de la batterie approchera la tension de coupure du système.

Table 1. Factory-Trimmed Internal Hysteresis and Timeout Period Options

PART	SUFFIX	TIMEOUT OPTION	HYSTERESIS OPTION (%)
	0A	50µs	0.5
MAX6457UKDT MAX6458UKDT	0B	50µs	5
	0C	50µs	8.3
	3A	150ms	0.5
	3B	150ms	5
	3C	150ms	8.3

Figure 30: Hystérésis et Timeout Period du MAX6457

2.2.3.6 Choix du LDO

Afin d'alimenter le microcontrôleur et le RN4020 nous choisirons le LDO **AP2205-33W5-7** dont nous retrouverons les principales caractéristiques à la figure 31.

- Wide Input Voltage Range: 2.3V to 24V
- Wide Output Voltage Range: 1.24V to 22V
- Excellent Ripple Rejection: 60dB@ f = 1kHz
- Low Dropout Voltage: V_{DROP} = 100mV@ I_{OUT} = 100μA
- Low Ground Current
- High Output Voltage Accuracy

Figure 31 : Principales caractéristiques du LDO AP2205-33W5-7

Le AP2205-33W5-7 répond à nos exigences dans la mesure où :

- il est facilement pilotable en branchant la sortie du LVD MAX6457 à la broche enable du LDO.
- il est capable de fournir un courant de sortie pouvant aller jusqu'à 250mA, ce qui est suffisant pour notre module
- lorsque sa broche enable n'est pas sous tension, il consomme un courant de veille assez faible (10nA type) ce qui nous permettra de limiter les courant de fuites lorsque la batterie est déchargée

2.2.3.7 Choix des MOSFETs

Dans la conception de ce module nous aurons recourt à quatre MOSFETs différents, deux MOSFETs à canal N, et deux MOSFETs à canal P.

Chacun des deux MOS-N (Q2 et Q4) serviront à piloter un des deux MOS-P (Q1 et Q3), Q2 pilote Q1 et Q4 pilote Q3.

Le premier MOS-P (Q1) aura pour fonction de délivrer le courant au reste du robot alors que le deuxième MOS-P (Q2) aura pour fonction de laisser passer le courant de la batterie vers une broche du microcontrôleur afin que celui puisse faire une conversion analogique-numérique et détecter le pourcentage de batterie restant.

L'utilité d'intégrer le deuxième MOS-P (Q3) et le deuxième MOS-N (Q4) est de limiter les courants de fuite en ne laissant pas la broche du microcontrôleur constamment sous tension (à contrario les MOSFET ont un courant de fuite de l'ordre du μ A).

Les MOSFET Q1 et Q2:

Pour Q1 nous choisiront le MOS-P **DMP34M4SPS-13** dont nous retrouverons les principales caractéristiques à la figure 32, et pour Q2 nous choisiront le MOS-P **RS1E240BNTB** dont nous retrouverons les principales caractéristiques à la figure 33.

Features	V _{DSS}	30V	
 100% Unclamped Inductive Switch (UIS) Test in Production Thermally Efficient Package-Cooler Running Applications 	R _{DS(on)} (Max.)	3.2mΩ	
High Conversion Efficiency Low Rescont – Minimizes On State Losses	I _D	±40A	
 Low R_{DS(ON)} – Minimizes On State Losses <1.1mm Package Profile – Ideal for Thin Applications Lead-Free Finish; RoHS Compliant (Notes 1 & 2) 	P _D	30W	
Halogen and Antimony Free. "Green" Device (Note 3)		_	
Figure 32: Caractéristiques du DMP34M4SPS-13	Figure 33: Caractéristique	es du RS1E240BNTB	

Les MOSFETs Q1 et Q2 répondent à nos exigences dans la mesure où :

- ils présentent tout les deux un Low Rds(on) très faible d'environ 3mΩ (type), ce qui limitera les perte notamment pour Q1 qui laisse passer le courant qui alimente tout le robot
- Q1 est capable laisser passer un courant pouvant aller jusqu'à 135A, ce qui est largement suffisant pour notre système : 135A à ~8V soit ~1000W (le système global consommera donc au maximum 89.19W)
- Q2 est pilotable avec une tension entre 1V et 2.5V, ce qui correspond à la tension du microcontrôleur.

Les MOSFET Q3 et Q4:

Pour Q3 nous choisiront le MOS-P **PMV65XPER** dont nous retrouverons les principales caractéristiques à la figure 34, et pour Q4 nous choisiront le MOS-P **NX7002AKVL** dont nous retrouverons les principales caractéristiques à la figure 35.

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j = 25 °C		-	-	-20	V
V _{GS}	gate-source voltage			-12	-	12	٧
I _D	drain current	V _{GS} = -4.5 V; T _{amb} = 25 °C; t ≤ 5 s	[1]	-	-	-3.3	Α
Static charact	Static characteristics						
R _{DSon}	drain-source on-state resistance	V_{GS} = -4.5 V; I_{D} = -2.8 A; T_{j} = 25 °C		-	67	78	mΩ

Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated, mounting pad for drain 6 cm².

Figure 34 : Principales caractéristiques du PMV65XPER

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j = 25 °C		-	-	60	V
V _{GS}	gate-source voltage			-20	-	20	V
I _D	drain current	V _{GS} = 10 V; T _{sp} = 25 °C		-	-	300	mA
		V _{GS} = 10 V; T _{amb} = 25 °C	[1]	-	-	190	mA
Static chara	acteristics						
R _{DSon}	drain-source on-state resistance	V _{GS} = 10 V; I _D = 100 mA; T _j = 25 °C		-	3	4.5	Ω

^[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for drain 1 cm².

Figure 35 : Principales caractéristiques du NX7002AKVL

Les MOSFETs Q3 et Q4 répondent à nos exigences dans la mesure où :

- ils présentent tous les deux un Low Rds(on) assez faible $3m\Omega$ (type) et $67m\Omega$ (type)
- Q4 est pilotable avec une tension entre 1.1V et 2.1V, ce qui correspond à la tension du microcontrôleur.

2.2.3.8 Choix des bouton-poussoir

Afin de pouvoir démarrer l'ensemble du robot physiquement (sans passer par le serveur http), nous aurons recours à deux bouton-poussoir **1241.1600.11** (illustration à la Figure 36).

Les bouton-poussoir 1241.1600.11 répondent à nos exigences dans car il laissent passer 50mA (ce qui est suffisant), et ils sont beaux.

Figure 36: Bouton-poussoir

2.2.3.9 Schémas synoptique du module de veille C2

Avec la prise en compte de tous les éléments précédant, nous pouvons présenter le schémas synoptique du module de veille **C2** (Figure 37) :

Le module de veille C2 est directement alimenté par la batterie LiPo 2S, lorsque le circuits de surveillance MAX6457 détecte une tension inférieur à la tension de coupure du système, il met le LDO et l'ensemble des composants du module de veille en standby.

Lorsque la tension est supérieure à la tension de coupure du système, le microcontrôleur central prend en charge la routine du module de veille :

- il récupère la tension de la batterie pour estimer le pourcentage de batterie restant
- il pilote le module BLE (RN4020) afin qu'il demande au module externe (ESP32) si le robot doit être allumé ou non
- il détecte la pression des bouton-poussoir
- il laisse passer/coupe le courant vers le module de gestion de l'alimentation (C1) en fonction de la réponse reçue par le RN4020 et les interruptions des bouton-poussoir

2.4 Schéma synoptique du robot Babebot

A l'aide des trois schémas synoptiques des modules C0, C1, C2 nous présenterons le schémas synoptique global du robot Babebot à la figure 38.

Le module de veille C2 qui :

- communique en BLE avec le module externe WIFI+BLE (ESP32) afin de récupérer les informations concernant l'état désiré du robot, et d'envoyer les information concernant l'état actuel du robot et concernant l'état de la batterie,
- s'assure de ne pas endommager la batterie avec un module de détection de sous-tension,
- récupère la tension de la batterie afin d'estimer le pourcentage de charge restante,
- détecte si l'utilisateur veux allumer ou éteindre le robot à l'aide des bouton-poussoir,
- laisse passer ou coupe le courant vers le reste du robot à l'aide des MOSFETs.

Le module de gestion de l'alimentation C1 qui :

- génère une tension de +5V et +12V à l'aide d'alimentation à découpage
- alimente la Raspberry Pi, les servos moteurs, les flash, le buzzer, le fan, ainsi que le module driver de moteur.
- permet à la Raspberry de piloter les servos moteurs et le fan via un signal PWM, et les buzzer et flash à l'aide d'un signal 3V3 et de MOSFETs intégré au module **C1**.

La Raspberry Pi qui:

- propose une interface permettant de piloter les moteurs, les servos moteurs, les flash et buzzer à distance, et permettant de proposer un retour caméra en temps réel,
- pilote le module driver de driver de moteur via un protocole I2C et en tant que maître.

Le module driver de moteur CO qui :

- pilote les quatre moteurs DC à l'aide d'un signal PWM de +12V,
- reçoit les informations via un protocole I2C (en tant qu'esclave) concernant la vitesse et le sens de rotation des moteurs de la part de la Raspberry Pi .

Figure 38 : Schémas synoptique du Robot BabeBot

III. ANNEXES

3.1 Caractéristiques composants

3.1.1 Principales caractéristiques du dsPIC33EP512MC806

dsPIC33E Core

- · Modified Harvard Architecture
- · C Compiler Optimized Instruction Set
- 16-bit Wide Data Path
- 24-bit Wide Instructions
- 16x16 Integer Multiply Operations
- 32/16 and 16/16 Integer Divide Operations
- 11 Additional Instructions
- Two 40-bit Accumulators with Rounding and Saturation Options
- Single-Cycle Multiply and Accumulate
- · Single-Cycle shifts for up to 40-bit Data
- 16x16 Fractional Multiply/Divide Operations

Motor Control PWM

- Two master time base modules can control dual 3-phase motors simultaneously
- Up to seven PWM generators
- Two PWM outputs per PWM generator
- 8.32 ns PWM resolution

Quadrature Encoder Interface (QEI)

- 32-bit position counter
- 32-bit Index pulse counter

Integrated Analog Features

- Two independent ADC modules
- One ADC configurable as 10-bit, 1.1 Msps with four S&H or 12-bit, 500 ksps with one S&H
- One 10-bit ADC, 1.1 Msps with four S&H

. Communication Interfaces

- Four UART modules (15 Mbps), supporting LIN/J2602 protocols and IrDA®
- Four 4-Wire SPI modules (15 Mbps)
- Two ECAN™ modules (1 Mbaud) CAN 2.0B Support
- Two I2C modules (up to 1 Mbaud) with SMBus Support
- Data Converter Interface (DCI) module with Support for I2S and Audio Codecs
- · PPS to allow Function Remap
- Parallel Master Port (PMP)

Figure 19 : Principales caractéristiques du dsPIC33EP512MC806

3.1.2 Caractéristiques du TB67H450FNG,EL

Operating Range (Ta=-40 to 85°C)

Characteristics	Symbol	Min	Тур.	Max	Unit	Remarks
Motor power supply voltage	VM	4.5	24	44	V	_
Motor output current	lout	_	1.5	3.0	Α	_
Logic innut veltoge	VIN(H)	2.0	_	5.5	V	H level of logic
Logic input voltage	VIN(L)	0	_	0.8	V	L level of logic
Input range of control logic frequency	fLOGIC	_	_	400	kHz	IN1, IN2
Input range of Vref voltage	Vref	0	2.0	4.0	V	Constant current drive

Electrical Characteristics 1 (Ta=25°C, VM=24 V unless otherwise specified)

Electrical Characteri	Stics 1	(1a=25°C	, VM=24 V unless otherw	rise sp	ecifiea)		
Characteristics		Symbol	Test conditions	Min	Тур.	Max	Unit
Logic input pin	Logic input pin HIGH		Logic input pins	2.0	-	5.5	V
Input voltage	LOW	VIN(L)	Logic input pins	0	_	8.0	V
Input hysteresis		VIN(HYS)	Logic input pins (Note 1)	100	_	300	mV
Logic input pin	HIGH	IIN(H)	Test logic input pins: 3.3 V	_	33	55	μA
Input current	LOW	IIN(L)	Test logic input pins: 0 V	_	_	1	μA
	•	IM1	Output: Open Standby mode (IN1/IN2=Low)	_	_	1	μА
Current consumption	n	IM2	Output: Open Brake mode (IN1/IN2=High)	_	3	4	mA
		IM3	Output: Open fPWM=30kHz	_	3.5	5	mA
Motor output	High	ЮН	VM=50 V, Vout=0 V Standby mode (IN1/IN2=Low)	_	_	1	μА
Leakage current	Low	IOL	VM=Vout=50 V Standby mode (IN1/IN2=Low)	-1	_	_	μA
Output setting current ac	curacy	Δlout	lout=1.5 A	-5	0	5	%
RS pin current		IRS	VRS=0V, VM=24 V Standby mode (IN1/IN2=Low)	0	_	1	μА
Output transistor On-resistance betwee drain and source (High side + low side		Ron(H+L)	Tj=25°C, Forward direction (High side + low side) lout=1.5 A	_	0.6	0.8	Ω

Figure 20: Caractéristiques du TB67H450FNG,EL

3.1.3 Caractéristiques électriques du LDL1117S33R

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage		2.6		18	٧
V	Turn-on threshold			2.3	2.4	٧
V _{UVLO}	Hysteresis			200		mV
V	V acquirect	I _{OUT} = 10 mA, T _J = 25 °C	-2		+2	%
V _{OUT}	V _{OUT} accuracy	I_{OUT} = 10 mA, -40 °C < $T_{\rm J}$ < 125 °C	-3		+3	%
ΔV _{OUT}	Line regulation	V_{OUT} + 1 V ⁽¹⁾ \leq V_{IN} \leq 18 V, I_{OUT} = 10 mA -40 °C < T _J < 125 °C		0.002	0.02	%/V
ΔV _{OUT}	Load regulation	I _{OUT} = 10 mA to 1.2 A, - 40 °C < T _J < 125 °C		5	15	mV
V _{DROP}	Dropout voltage (2)	I _{OUT} = 1.2 A, V _{OUT} > 2.5 V - 40°C < T _J < 125 °C		350	600	mV
eN	Output noise voltage	10 Hz to 100 kHz, I _{OUT} = 100 mA		60		μV _{RMS} V _{OUT}
		$V_{IN} = V_{OUT(NOM)} + 1 V \pm V_{RIPPLE}$ $V_{RIPPLE} = 0.5 V, f = 120 Hz$		87		
SVR	Supply voltage rejection	$V_{IN} = V_{OUT(NOM)} + 1 V \pm V_{RIPPLE}$ $V_{RIPPLE} = 0.5 V, f = 1 kHz$		80		dB
		$V_{IN} = V_{OUT(NOM)} + 1 V \pm V_{RIPPLE}$ $V_{RIPPLE} = 0.5 V, f = 100 kHz$		65		
IQ	Quiescent current	I_{OUT} = 0 mA to 1.2 A, -40 °C < $T_{\rm J}$ < 125 °C		250	500	μA
Isc	Output current		1.5	2		Α
т	Thermal shutdown			175		
T _{SHDN}	Hysteresis			25		°C

Figure 21: Caractéristiques électriques du LDL1117S33R

3.1.4 Caractéristiques du TPS54628DDAR

6.3 Recommended Operating Conditions

		MIN	MAX	UNIT
V_{IN}	Supply input voltage	4.5	18	٧
V _O	Output voltage (VREG5)	-0.1	5.7	٧
Io	Output current (I _{VREG5})	0	5	mA
TA	Operating free-air temperature	-40	85	°C
TJ	Operating junction temperature	-40	150	°C

6.5 Electrical Characteristics - DC

Over operating free-air temperature range and V_{IN} = 12 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CU	JRRENT	•			•	
I _{VIN}	Operating non-switching supply current	V _{IN} current, T _A = 25°C, EN = 5 V, V _{FB} = 0.8 V		950	1400	μА
I _{VINSDN}	Shutdown supply current	V _{IN} current, T _A = 25°C, EN = 0 V		3	10	μΑ
LOGIC THR	ESHOLD					
V	EN high-level input voltage	EN	1.6			v
V _{EN}	EN low-level input voltage	EN			0.6	٧
R _{EN}	EN pin resistance to GND	V _{EN} = 12 V	200	400	800	kΩ
V _{FB} VOLTA	GE AND DISCHARGE RESISTANCE					
		T _A = 25°C, V _O = 1.05 V, I _O = 10 mA, Eco-Mode operation		772		mV
V _{FBTH}	V _{FB} threshold voltage	T _A = 25°C, V _O = 1.05 V, continuous mode operation	757	765	773	mV
		$T_A = -40$ to 85°C, $V_O = 1.05$ V, continuous mode operation ⁽¹⁾	751	765	779	mV
I _{VFB}	V _{FB} input current	V _{FB} = 0.8 V, T _A = 25°C		0	±0.15	μА
V _{REG5} OUT	PUT	•				
V _{VREG5}	V _{REG5} output voltage	T _A = 25°C, 6 V < V _{IN} < 18 V, 0 < I _{VREG5} < 5 mA	5.2	5.5	5.7	٧
I _{VREG5}	Output current	V _{IN} = 6 V, V _{REG5} = 4 V, T _A = 25°C	20			mΑ
V _{OUT} DISCH	IARGE		•		•	
R _{DISCHG}	V _{OUT} discharge resistance	EN = 0 V, SW = 0.5 V, T _A = 25°C		500	800	Ω
MOSFET		•	•		•	
_	High-side switch resistance	25°C, V _{BST} – SW = 5.5 V		36		
R _{DS(on)}	Low-side switch resistance	25°C	28			mΩ
CURRENT I	LIMIT	•	•			
locL	Current limit	L out = 1.5 µH ⁽¹⁾	6.7	7.3	8.9	Α

Figure 23: Caractéristiques du TPS54628DDAR

3.1.5 Principales caractéristiques du MOSFET DMN6075SQ-7

Characteristic			Symbo	ol	V	alue	Unit	
Drain-Source Voltage		V _{DSS}		60		V		
Gate-Source Voltage		Vgss		±20		V		
Continuous Darin Coment (Note 5) V = 40V	Steady	T _A = +2	5°C				2.0	A
Continuous Drain Current (Note 5) V _{GS} = 10V	State	T _A = +7	0°C	ID	Ī		1.5	^
Continuous Basis Comment (Nats CVV) 40V	Steady	T _A = +2	5°C				2.5	
Continuous Drain Current (Note 6) V _{GS} = 10V	State	T _A = +7	0°C	ID		:	2.0	A
Characteristic		Symbol	Min	Тур	Max	Unit	Tes	st Condition
OFF CHARACTERISTICS (Note 7)								
Drain-Source Breakdown Voltage		BV _{DSS}	60	_	_	V	V _{GS} = 0V, I _I	o = 250μA
Zero Gate Voltage Drain Current T _J = +25°C		IDSS	_	_	1.0	μA	V _{DS} = 60V,	V _{GS} = 0V
Gate-Source Leakage		Igss	_	_	±100	nA	V _{GS} = ±16V	, V _{DS} = 0V
ON CHARACTERISTICS (Note 7)								
Gate Threshold Voltage		V _{GS(TH)}	1	_	3	V	V _{DS} = V _{GS} ,	I _D = 250μA
Static Drain-Source On-Resistance	0	_	69	85	m0	V _{GS} = 10V, I _D = 3.2A		
Static Drain-Source On-Resistance		R _{DS(ON)}	_	75	120	mΩ	V _{GS} = 4.5V,	I _D = 2.8A
Diode Forward Voltage		V _{SD}	_	0.8	1.2	V	V _{GS} = 0V, I _S	s = 2.5A

Figure 24 : Principales caractéristiques du MOSFET **DMN6075SQ-7**

3.2 BOM des cartes électroniques :

3.2.1 BOM du module driver de moteur

REF DESIG NATO R	PART NUMBER	QUANT ITE	DESCRPTION	CONSTRUC TEUR	FOURNISSE UR	REF FOURNISSEUR	PRIX (euro)	REF
U1	dsPIC33E P512MC8 06	1	Microcontrôleurs 16 bits - MCU 512KB FL 53248Bytes RAM GP	microship	Mouser	579- 24EP512GP806 IPT	6,60	https://www.mouser.fr/Prod uctDetail/Microchip- Technology/PIC24EP512GP80 6-I- PT?qs=%2Fha2pyFadujbVPSa 3qMXzQUnCNbDQZi1qezLfR VaJQzO2wYT4NL3S8bkKLP4q Xkc
U2, U3, U4, U5	TB67H45 0FNG,EL	4	Contrôleurs et pilotes de moteur / de mouvement / d'allumage MOTOR DRIVER IC 4.5 V to 44 V 3.5A	Toshiba	Mouser	757- TB67H450FNG EL	1,3	https://www.mouser.fr/Prod uctDetail/Toshiba/TB67H450 FNGEL?qs=h6V4JsTaLXeReNg 2bp0jug%3D%3D
U6	LDL1117S 33R	1	LDO: 3.3 V 1.2A, quiest curr: 250 uA, vin: 2.5-18V	STMicroele ctronics	Mouser	511- LDL1117S33R	0,407	https://www.mouser.fr/Prod uctDetail/STMicroelectronics /LDL1117S33R?qs=AQIKX63v 8Rt9Bf6AWSrbFg%3D%3D

D1	APTD201 2LSURCK	1	CMS 0805 Dome Lens LED Red- 630nm, 1,75V	Kingbright	Mouser	604- APTD2012LSU RCK	0,33	https://www.mouser.fr/Prod uctDetail/Kingbright/APTD20 12LSURCK?qs=AQIKX63v8Rvk MadNvwbkxw%3D%3D
D2	APTD201 2LCGCK	1	CMS 0805 Dome Lens LED Green- 570nm, 1,9V	Kingbright	Mouser	604- APTD2012LCG CK	0,347	https://www.mouser.fr/Prod uctDetail/Kingbright/APTD20 12LCGCK?qs=AQIKX63v8RvN HN%2F9EGvNTg%3D%3D
C1,C2, C3,C4, C5	CC0805KR X7R7BB1 04	5	MLCC - CMS 100nF 16V X7R 10%	Yaego	Mouser	603- CC805KRX7R7 BB104	0,085	https://www.mouser.fr/Prod uctDetail/603- CC805KRX7R7BB104
C6	EMK212A BJ106KG- T	1	MLCC - CMS 10uF 16V X5R +/-10% 0805 Gen Purp	Taiyo Yuden	Mouser	963- EMK212ABJ10 6KG-T	0,144	https://www.mouser.fr/Prod uctDetail/Taiyo- Yuden/EMK212ABJ106KG- T?qs=vF%252B8ahGVilfgbAjT %2FgKCVQ%3D%3D
C7,C8, C9,C10	C0805C10 1M3HACT U	4	MLCC - CMS 25V 100pF X8R 0805 20%	KEMET	Mouser	80- C0805C101M3 HACTU	0,085	https://www.mouser.fr/Prod uctDetail/KEMET/C0805C101 M3HACTU?qs=W0yvOO0ixfG VyTxo%2FRw90g%3D%3D
C11	C0805C10 5K4RACA UTO	1	MLCC - CMS 16V 1uF X7R 0805 10% AEC-Q200	KEMET	Mouser	80- C0805C105K4R AUTO	0,152	https://www.mouser.fr/Prod uctDetail/KEMET/C0805C105 K4RACAUTO?qs=OHu5RF0w3 QprP0D5VzlqaQ%3D%3D
C12	GRM21B R71C475 ME51K	1	MLCC - CMS 4.7UF 16V 20% 0805	Murata Electronics	Mouser	81- GRM21BR71C4 75ME1K	0,152	https://www.mouser.fr/Prod uctDetail/Murata- Electronics/GRM21BR71C475 ME51K?qs=QzBtWTOodeV0a a00JHX5rA%3D%3D
R1	SG73G2A TTD1002 D	1	CMS 0.5% 0.5W AEC-Q200, 10kOhm,	KOA Speer	Mouser	660- SG73G2ATTD1 002D	0,231	https://www.mouser.fr/Prod uctDetail/KOA- Speer/SG73G2ATTD1002D?q s=sGAEpiMZZMtlubZbdhIBIFC 33eDTuoa6V25eeInASp8%3D
R2	ERJ- 6ENF71R5 V	1	CMS 0805 71.5ohms 1% AEC- Q200	Panasonic	Mouser	667-ERJ- 6ENF71R5V	0,085	https://www.mouser.fr/Prod uctDetail/Panasonic/ERJ- 6ENF71R5V?qs=50QC8w71jA vDQTR5ftk9Ug%3D%3D
R3	ERJ- 6ENF78R7 V	1	CMS 0805 78.7ohms 1% AEC- Q200	Panasonic	Mouser	667-ERJ- 6ENF78R7V	0,085	https://www.mouser.fr/Prod uctDetail/Panasonic/ERJ- 6ENF78R7V?qs=8%252BGOTi N%2FgVougykeZbNYYg%3D% 3D

Tableau **2**: BOM du Module Driver de moteurs

3.2.2 BOM du module de gestion de l'alimentation

REF DESIG NATO R	PART NUMBER	QUA NTIT E	DESCRPTION	FOURNISSE UR	CONSTRU CTEUR	REF FOURNISSEUR	PRIX	LINK
U1	TPS54628D DAR	1		Mouser	Texas Instrumen ts	595- TPS54628DDA R	1,7	https://www.mouser.fr/ProductDetail/Texas- Instruments/TP554628DDAR?qs=sGAEpiMZZM titjHzVlkrqaNW%252B5L5alOfN0WI9Y5%2Fkb8 =
L1	SPM6530T- 3R3M-HZ	1	Inductance fixes 3.3uH 20% 27mOhms Pwr Indctr AEC-Q200	Mouser	TDK	810-SPM6530T- 3R3M-HZ	1.44	https://www.mouser.fr/ProductDetail/TDK/SP M6530T-3R3M- HZ/?qs=%2Fha2pyFaduicSDKIDwB%2F3ISBAYH c8CznNgBxwdxnB0U17DKemkJw9Q%3D%3D
C7, C8	JMK325BJ2 26MM-T	2	Capacitor, Ceramic, 6.3V, X5R, 20%, 22uF	Mouser	Taiyo Yuden	963- JMK325BJ226M M-T	0,513	https://www.mouser.fr/ProductDetail/Taiyo- Yuden/JMK325BJ226MM- T?qs=l6KAKw0tg2x8MdlsXzffTw%3D%3D
C1, C2	TMK325BJ 106MM-P	2	Capacitor, Ceramic, 25V, X5R, 20%, 10uF	Mouser	Taiyo Yuden	963- TMK325BJ106M M-P	0,378	https://www.mouser.fr/ProductDetail/Taiyo- Yuden/TMK325BJ106MM- P?qs=VWNNG7jHlrLL2%252BMilAHFrw%3D%3 D
C3, C6	GCJ188R71 H104KA12 D	2	Capacitor, Ceramic, 50V, X7R, 10%, 0,1uF	Mouser	Murata Electronic s	81- GCJ188R71H104 KA2D	0,225	https://www.mouser.fr/ProductDetail/Murata- Electronics/GCJ188R71H104KA12D?qs=zThidflJ DvYKuGhiQaflUg%3D%3D
C4	C0805C105 K4RACAUT O	1	MLCC - CMS 16V 1uF X7R 0805 10% AEC- Q200	Mouser	KEMET	80- C0805C105K4RA UTO	0,152	https://www.mouser.fr/ProductDetail/KEME T/C0805C105K4RACAUTO?qs=OHu5RF0w3Qp rP0D5VzlqaQ%3D%3D
C 5	0805YC822 KAT2A	1	MLCC - CMS 16V 8200pF X7R 0805 10% Tol	Mouser	AVX	581- 0805YC822KAT2 A	0,237	https://www.mouser.fr/ProductDetail/AVX/0 805YC822KAT2A?qs=6ozWKCQkT2X%252B2U WbUcyiSg%3D%3D
R1	CPF0603F1 24KC1	1	Resistor, Chip, 1/16W, 1%	Mouser	TE Connectivi ty / Neohm	279- CPF0603F124KC 1	0,135	https://www.mouser.fr/ProductDetail/TE- Connectivity- Neohm/CPF0603F124KC1?qs=5Dj%252BCDyFp 7ipizaqSu9clA==
R2	RN731JTTD 2212B25	1	Resistor, Chip, 1/16W, 1% 22,1KΩ	Mouser	KOA Speer	660- RN731JTTD2212 B25	0,463	https://www.mouser.fr/ProductDetail/KOA- Speer/RN731JTTD2212B25?qs=SZDmkwkWGm nyhKRSdRPb7g%3D%3D
R3	660- RN731JTTD 1002D25	1	Resistor, Chip, 1/16W, 1% 10KΩ	Mouser	KOA Speer	RN731JTTD1002 D25	0,151	https://www.mouser.fr/ProductDetail/KOA- Speer/RN731JTTD1002D25?qs=H%2FxPPQCHZ XuMGwcYON8Lkw%3D%3D
U2	LM3478MA /NOPB	1		Mouser	ΤI	926- LM3478MA/NO PB	2,31	https://www.mouser.fr/ProductDetail/?qs=8B DZloOR%252BZH9CVb1MduuNw%3D%3D
L2	SRP1270- 2R2M	1	Tolérance:20 %, Courant CC max.:22 A,Résistance CC max.:4.2 mOhms, 2,2uH	Mouser	Bourns	652-SRP1270- 2R2M	1,1	https://www.mouser.fr/ProductDetail/Bourns/ SRP1270- 2R2M?qs=%2Fha2pyFaduh%252BcDExOxFZtW KAwzk%2Fu5SsoGKT2ktF16FjXqWAvFDUwA%3 D%3D
D1	STPS20M1 00SG-TR	1	20 A, Vrrm 100 V	Mouser	STMicroel ectronics	511- STPS20M100SG- TR	2,42	https://www.mouser.fr/ProductDetail/STMicro electronics/STPS20M100SG- TR?qs=%2Fha2pyFadugA76ttzXntatuf5X%252B XZUN2567QwsVZ2TNOzKi8P8Q3Zg%3D%3D
Q1	CSD17310 Q5A	1	MOSFET 30V N ,30V 100A 5.1 mOhms	Mouser	TI	595- CSD17310Q5A	0,819	https://www.mouser.fr/ProductDetail/Texas- Instruments/CSD17310Q5A?qs=%2Fha2pyFadu gSLAmGeKqFReRD1niZHr5E%2FS1oDj4XRsCr4 %2F39uBbhpg%3D%3D

C11	12065A202 JAT2A	1	Ccomp2, 2nF, MLCC - CMS 50V COG 1206 5%	Mouser	AVX	581-12065A202J	0,441	https://www.mouser.fr/ProductDetail/AVX/12 065A202JAT2A?qs=pEPtdg%2FKdQrjLZ5CYLoxa g%3D%3D
C10	C0805C473 J3GACTU	1	Ccomp1 0.047uF, 25 VDC,	Mouser	KEMET	80- C0805C473J3G	0,72	https://www.mouser.fr/ProductDetail/KEMET/ C0805C473J3GACTU?qs=JsD2jqDDQCwhCZAPIT i%252BPg%3D%3D
R6	RC1206FR- 071K91L	1	Rcomp1 1.91K CMS OHM 1%	Mouser	Yageo	RC1206FR- 071K91L	0,09	https://www.mouser.fr/ProductDetail/Yageo/ RC1206FR- 071K91L?qs=%2Fha2pyFaduhRUg1%252BSfBET CcH3lD8Gjc%2F0hW0cUzaS2p%252BAzlz0GPyJ Q%3D%3D
R7	ERJ- 8ENF2672V	1	Rfadj1 26.7Kohm CMS 1206 1% AEC- Q200	Mouser	Panasonic	ERJ-8ENF2672V	0,09	https://www.mouser.fr/ProductDetail/Panaso nic/ERJ- 8ENF2672V?qs=%2Fha2pyFadugUc0484I4hLc WtajivuevFECZKQUIRZluxPJhWylO7%252Bg%3 D%3D
C12	C0805C100 M4GACTU	1	Cfilt1 10pF MLCC - CMS 16V COG 0805 20%	Mouser	KEMET	C0805C100M4G ACTU	0,099	https://www.mouser.fr/ProductDetail/KEMET/ C0805C100M4GACTU?qs=%2Fha2pyFadugbjD %2F0nhYM2782s7rRfMoqILHRmC9SETYKmh8I 1rsM8g%3D%3D
R8	RC1206FR- 07107RL	1	Rfilt1 107 ohm CMS 1%	Mouser	Yageo	603-RC1206FR- 07107RL	0,207	https://www.mouser.fr/ProductDetail/Yageo/ RC1206FR- 07107RL?qs=m6lXFsvg5e0q9ku1jkHDgw%3D% 3D
R9	ERJ- M1WSF4M OU	1	Rsense1 0.004 ohm CMS 2512 1% Curr Sense AEC-Q200	Mouser	Panasonic	667-ERJ- M1WSF4M0U	0,63	https://www.mouser.fr/ProductDetail/Panaso nic/ERJ- M1WSF4M0U?qs=%2Fha2pyFaduhOx12dbJfB0 JH13guvP2GFlAPfhluCaD5Pa1pmQiSbDQ%3D% 3D
R4	RC1206FR- 071KL	1	Rfb1 1Kohm CMS 1%	Mouser	Yageo	603-RC1206FR- 071KL	0,207	https://www.mouser.fr/ProductDetail/Yageo/ RC1206FR- 071KL?qs=HQvlwrFd5cVee6AAIEc2GA%3D%3D
R5	RC1206FR- 078K45L	1	Rfb2 8.45 Kohm CMS 1%	Mouser	Yageo	603-RC1206FR- 078K45L	0,207	https://www.mouser.fr/ProductDetail/Yageo/ RC1206FR- 078K45L?qs=bz%2FLPVPAsTJhMcgMYMLcTA% 3D%3D
Q2,Q3	DMN6075S Q-7	2	60 V, 2A, RDSon 85 mOhm	Mouser	Diodes Incorporat ed	621- DMN6075SQ-7	0,36	https://www.mouser.fr/ProductDetail/Diodes- Incorporated/DMN6075SQ- 7?qs=sGAEpiMZZMshyDBzk1%2FWi0w8OutPcg KpJss6F67sL%2FuIQMT%2Fd2Zo6Q==
C15, C16, C17, C18, C19	08053C101 MAT2A	5	MLCC - CMS 25V 100pF X7R 20% Tol	Mouser	AVX	581- 08053C101MAT2 A	0,234	https://www.mouser.fr/ProductDetail/AVX/08 053C101MAT2A?qs=pJKkPLTLvBjfD9LErl%252B yrw%3D%3D
C14	08053C104 MAT2A	1	CMS 25V .1uF X7R 0805 20% To	Mouser	AVX	581- 08053C104M	0,144	https://www.mouser.fr/ProductDetail/AVX/08 053C104MAT2A?qs=iAmswNBQWa3yww%252 Bhw1tBQA%3D%3D
C13	CL21B106K OQNNNE	1	10 μF, 16 V, 0805 [2012 Metric], ± 10%, X7R, CL Series	Mouser	samsung	3013485RL	0,313	https://fr.farnell.com/samsung-electro- mechanics/cl21b106kognnne/condensateur- 10uf-16v-mlcc-0805/dp/3013485RL
R10, R11	SG73G2AT TD1002D	2	CMS 0.5% 0.5W AEC- Q200	Mouser	KOA Speer	660- SG73G2ATTD100 2D	0,231	https://www.mouser.fr/ProductDetail/KOA- Speer/SG73G2ATTD1002D?qs=sGAEpiMZZMtlu bZbdhIBIFC33eDTuoa6V25eeInASp8%3D
C22, C23, C24	EEU- FR1E101	3	100uF, Low ESR	Mouser	Panasonic	667-EEU- FR1E101	0,306	https://www.mouser.fr/ProductDetail/Panaso nic/EEU- FR1E101?qs=Ao3mORb5HCDieoJwtkb8Dw%3D %3D

C20, C21	EEU- FR1E221B	2	220 uF, Low ESR	Mouser	Panasonic	667-EEU- FR1E221B	0,486	https://www.mouser.fr/Search/Refine?Keywor d=eeu-fr1e221b
-------------	------------------	---	-----------------	--------	-----------	----------------------	-------	--

Tableau **3**: BOM du Module de gestion de l'alimentation

3.2.3 BOM du module de veille

REF DESIGN ATOR	PART NUMBE R	DESCRPTION	FOURNI SSEUR	CONSTRUCTE UR	REF FOURNISSEUR	PRIX	LINK
U1			Mouser	microship	579- PIC16F18444I/ SO	1,04	https://www.mouser.fr/ProductDetail/579- PIC16F18444I-SO
U2	RN4020- V/RM12 3		Mouser	microship	579-RN4020- V/RM123	7,48	https://www.mouser.fr/ProductDetail/Microchip -Technology/RN4020-V- RM123/?qs=sGAEpiMZZMu3sxpa5v1qrpr%252BI U7ZCjVxU8Gjl%252BKCa7k%3D
U3	MAX645 7UKD3B +T	Circuits de surveillance High-Voltage, Low- Current Voltage Monitors in SOT Packages	Mouser	Maxim Integrated	700- MAX6457UKD 3BT	3,36	https://www.mouser.fr/ProductDetail/Maxim- Integrated/MAX6457UKD3B%2bT?qs=bB8bNThzf otKaP8yzEPd%252BQ%3D%3D
VR1	AP2205- 33W5-7	Régulateurs de tension LDO CMOS LowCurr	Mouser	Diodes Incorporated	621-AP2205- 33W5-7	0,373	https://www.mouser.fr/ProductDetail/Diodes- Incorporated/AP2205-33W5- 7?qs=%2Fha2pyFadugW6XW55GBLU2ziBtiQeCBk TSL6SOghddbRIY68LE8AmA%3D%3D
Q1	DMP34 M4SPS- 13	MOSFET MOSFET BVDSS: 25V-30V	Mouser	Diodes Incorporated	621- DMP34M4SPS -13	0,954	https://www.mouser.fr/ProductDetail/Diodes- Incorporated/DMP34M4SPS- 13?qs=W0yvOO0ixfEN%252BZNUBfocww%3D%3 D
Q2	RS1E240 BNTB		Mouser	ROHM Semiconducto r	755- RS1E240BNTB	0,423	https://www.mouser.fr/ProductDetail/ROHM- Semiconductor/RS1E240BNTB?qs=npTsUczJOtN4 zVwzi0krSQ%3D%3D
Q3	PMV65 XPER	Canal P, 20 V, 2.8 A, 0.067 ohm, TO-236AB, Montage en surface	Mouser	NEXPERIA	771- PMV65XPER	0,33	https://www.mouser.fr/ProductDetail/Nexperia/ PMV65XPER/?qs=%2Fha2pyFaduhPk0w01jUR9O amqyEwTvT0r8zdRxf7lcpxv%2FTPA%252BYmAg% 3D%3D
Q4	NX7002 AKVL	Canal N, 60 V, 190 mA, 3 ohm, TO-236AB,	Mouser	NEXPERIA	771- NX7002AKVL	0,11	https://www.mouser.fr/ProductDetail/Nexperia/ NX7002AKVL/?qs=1GAP6L74MtTHifGD7E%252BJ aw%3D%3D
Q5	DMN60 75SQ-7	60 V, 2A, RDSon 85 mOhm	Mouser	Diodes Incorporated	621- DMN6075SQ-7	0,36	https://www.mouser.fr/ProductDetail/Diodes- Incorporated/DMN6075SQ- 7?qs=sGAEpiMZZMshyDBzk1%2FWi0w8OutPcgK pJss6F67sL%2FuIQMT%2Fd2Zo6Q==
D2	APTD20 12LCGC K	CMS 0805 Dome Lens LED Green- 570nm, GREEN/1.9V/2mA	Mouser	Kingbright	604- APTD2012LCG CK	0,347	https://www.mouser.fr/ProductDetail/Kingbright /APTD2012LCGCK?qs=AQlKX63v8RvNHN%2F9EG vNTg%3D%3D
D1	APTD20 12LSUR CK	CMS 0805 Dome Lens LED Red- 630nm, RED/1.75V/2mA	Mouser	Kingbright	604- APTD2012LSU RCK	0,33	https://www.mouser.fr/ProductDetail/Kingbright /APTD2012LSURCK?qs=AQlKX63v8RvkMadNvwb kxw%3D%3D
D3	SD0805 S020S1R 0	Diodes et redresseurs Schottky 20V 1A SIZE 0805	Mouser	AVX	581- SD0805S020S1 R0	0,305	https://www.mouser.fr/ProductDetail/AVX/SD08 05S020S1R0/?qs=sGAEpiMZZMtbRapU8LIZD%2F e6n6Rl3x6ukk4z6DMRPLY%3D
R1	ERJ- PB6D53 63V	Anti-Surge Res. 0.5%> Vtrip=7,42V, Vtrip/2= 3.71V	Mouser	Panasonic	667-ERJ- PB6D5363V		https://www.mouser.fr/ProductDetail/panasonic /eri- pb6d5363v/?qs=eFOtW6xYNWHIaS37S6Evbg==& countrycode=DE¤cycode=EUR
R2	ERJ- PB6D10 03V	CMS 0805 Anti-Surge Res. 0.5%, 100Kohm	Mouser	Panasonic	667-ERJ- PB6D1003V	0,212	https://www.mouser.fr/ProductDetail/panasonic /eri- pb6d1003v/?qs=eFOtW6xYNWEPVUrInTQWDA= =&countrycode=DE¤cycode=EUR

R3	ERJ- PB6B20 01V	Résistances à couches épaisses - CMS 0805 Anti- Surge Res. 0.1%, 2Kohm	Mouser	Panasonic	667-ERJ- PB6B2001V	0,305	https://www.mouser.fr/ProductDetail/Panasonic/ERJ-PB6B2001V/?qs=eFOtW6xYNWES%2FVrKZETICA%3D%3D
R4	ERA- 6AEB10 2V	Résistances à couches minces - CMS 0805 1/8W 1Kohms	Mouser	Panasonic	667-ERA- 6AEB102V	0,305	https://www.mouser.fr/ProductDetail/Panasonic /ERA- 6AEB102V/?qs=1VWA5LkbEaodAYxyfKqGQw%3D %3D
R5	ERJ- 6GEYJ15 2V	Résistances à couches épaisses - CMS 0805 1.5Kohms 5% AEC-Q200	Mouser	Panasonic	667-ERJ- 6GEYJ152V	0,085	https://www.mouser.fr/ProductDetail/Panasonic/ERJ- 6GEYJ152V/?qs=DjdiYhHdu0uUT7hENu7OgA%3D %3D
R6	ERJ- 6GEYJ56 2V	Résistances à couches épaisses - CMS 0805 5.6Kohms 5% AEC-Q200	Mouser	Panasonic	667-ERJ- 6GEYJ562V	0,085	https://www.mouser.fr/ProductDetail/Panasonic/ERJ- 6GEYJ562V/?qs=YMBIwoNQYdWpsxeKVZReog%3 D%3D
R7, R8, R9, R10, R11, R12, R13, R14, R15	SG73G2 ATTD10 02D	CMS 0.5% 0.5W AEC- Q200	Mouser	KOA Speer	660- SG73G2ATTD1 002D	0,231	https://www.mouser.fr/ProductDetail/KOA- Speer/SG73G2ATTD1002D?qs=sGAEpiMZZMtlub ZbdhlBIFC33eDTuoa6V25eeInASp8%3D
C1	EMK212 B7224K G-T	Condensateurs céramique multicouches MLCC - CMS 0805 16VDC 0.22uF 10% X7R	Mouser	Taiyo Yuden	963- EMK212B7224 KG-T	0,144	https://www.mouser.fr/ProductDetail/Taiyo- Yuden/EMK212B7224KG- T/?qs=I6KAKw0tg2xmuGTM%2FarU4w%3D%3D
C2	C0805C 105K4R ACAUT O	MLCC - CMS 16V 1uF X7R 0805 10% AEC-Q200	Mouser	KEMET	80- C0805C105K4 RAUTO	0,152	https://www.mouser.fr/ProductDetail/KEMET/C0 805C105K4RACAUTO?qs=OHu5RF0w3QprP0D5V zlqaQ%3D%3D
C3	EMK212 BJ225K G-T	Condensateurs céramique multicouches MLCC - CMS 0805 16VDC 2.2uF 10% X5R	Mouser	Taiyo Yuden	963- EMK212BJ225 KG-T	0,127	https://www.mouser.fr/ProductDetail/Taiyo- Yuden/EMK212BJ225KG- T/?qs=I6KAKw0tg2wY60DI46zP7Q%3D%3D
C4, C5	CC0805 KRX7R7 BB104	MLCC - CMS 100nF 16V X7R 10%	Mouser	Yaego	603- CC805KRX7R7 BB104	0,085	https://www.mouser.fr/ProductDetail/603- CC805KRX7R7BB104
C6	GRM21 BR71C4 75ME51 K	MLCC - CMS 4.7UF 16V 20% 0805	Mouser	Murata Electronics	81- GRM21BR71C 475ME1K	0,152	https://www.mouser.fr/ProductDetail/Murata- Electronics/GRM21BR71C475ME51K?qs=QzBtWT OodeV0aa0oJHX5rA%3D%3D
С7	EMK212 ABJ106 KG-T	MLCC - CMS 10uF 16V X5R +/-10% 0805 Gen Purp	Mouser	Taiyo Yuden	963- EMK212ABJ10 6KG-T	0,144	https://www.mouser.fr/ProductDetail/Taiyo- Yuden/EMK212ABJ106KG- T?qs=vF%252B8ahGVilfgbAjT%2FgKCVQ%3D%3D
LS1	CMI- 9605IC- 0380T	Indicateurs audio et sonneries piézo- électriques buzzer, 9.6 mm x 5 mm deep, M, 3 VDC, 80 dB, Through Hole, Intergrated Circuit Audio Indicator	Mouser	CUI Devices	490-CMI- 9605IC-0380T	1,19	https://www.mouser.fr/ProductDetail/490-CMI- 9605IC-0380T
S1, S2	1241.16 00.11	Commutateurs à bouton-poussoir	Mouser	Schurter	693- 1241.1600.11	2,1	https://www.mouser.fr/ProductDetail/Schurter/ 1241160011/?qs=%2Fha2pyFaduiDEhge8r6YWiY Dng8YgcjDU8%252BD6d9lgSu83C7jRGK%2FYg%3 D%3D
J1, J2	MC0000 42	Borniers fil-à-carte : 5MM, 12-24 AWG	Mouser	multicomp	2008012	0,476	https://fr.farnell.com/multicomp/mc000042/bor nier-ci-noir-5mm-mod-45deg/dp/2008012
J3	35363- 0560	Embases et logements de câbles , HEADER ANGLE CLIPS 2A 5P	Mouser	AP2205-33W5- 7	538-35363- 0560	0,39	https://www.mouser.fr/ProductDetail/Molex/35 363- 0560?qs=%2Fha2pyFadui0y%2FMIVKpUU%2FVU VPQflvPIS%252BeUD1Idayg%3D

Tableau **4**: BOM du Module de veille (**C2**)