Importing Libraries.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly as py
import plotly.graph_objs as go
from sklearn.cluster import KMeans
import warnings
import os
warnings.filterwarnings("ignore")
```

Data Exploration

```
df = pd.read_csv('Mall_Customers.csv')
df.head()
```

₹		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	Male	19	15	39	11
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	

Next steps: Generate code with df View recommended plots

df.shape

→ (200, 5)

df.describe()

$\overline{\Rightarrow}$		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
	count	200.000000	200.000000	200.000000	200.000000
	mean	100.500000	38.850000	60.560000	50.200000
	std	57.879185	13.969007	26.264721	25.823522
	min	1.000000	18.000000	15.000000	1.000000
	25%	50.750000	28.750000	41.500000	34.750000
	50%	100.500000	36.000000	61.500000	50.000000
	75%	150.250000	49.000000	78.000000	73.000000
	max	200.000000	70.000000	137.000000	99.000000

df.dtypes

\rightarrow	CustomerID	int64
	Gender	object
	Age	int64
	Annual Income (k\$)	int64
	Spending Score (1-100)	int64
	dtype: object	

df.isnull().sum()

```
CustomerID 0
Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64
```

Data Visualization

```
plt.style.use('fivethirtyeight')
```

Histograms

```
plt.figure(1 , figsize = (15 , 6))
n = 0
for x in ['Age' , 'Annual Income (k$)' , 'Spending Score (1-100)']:
    n += 1
    plt.subplot(1 , 3 , n)
    plt.subplots_adjust(hspace =0.5 , wspace = 0.5)
    sns.distplot(df[x] , bins = 20)
    plt.title('Distplot of {}'.format(x))
plt.show()
```


Count Plot of Gender

```
plt.figure(1 , figsize = (15 , 5))
sns.countplot(y = 'Gender' , data = df)
plt.show()
```


Ploting the Relation between Age , Annual Income and Spending Score

```
plt.figure(1 , figsize = (15 , 7))
n = 0
for x in ['Age' , 'Annual Income (k$)' , 'Spending Score (1-100)']:
    for y in ['Age' , 'Annual Income (k$)' , 'Spending Score (1-100)']:
        n += 1
        plt.subplot(3 , 3 , n)
        plt.subplots_adjust(hspace = 0.5 , wspace = 0.5)
        sns.regplot(x = x , y = y , data = df)
        plt.ylabel(y.split()[0]+' '+y.split()[1] if len(y.split()) > 1 else y )
plt.show()
```


Distribution of values in Age , Annual Income and Spending Score according to Gender

```
plt.figure(1 , figsize = (15 , 7))
n = 0
for cols in ['Age' , 'Annual Income (k$)' , 'Spending Score (1-100)']:
    n += 1
    plt.subplot(1 , 3 , n)
    plt.subplots_adjust(hspace = 0.5 , wspace = 0.5)
    sns.violinplot(x = cols , y = 'Gender' , data = df , palette = 'vlag')
    sns.swarmplot(x = cols , y = 'Gender' , data = df)
    plt.ylabel('Gender' if n == 1 else '')
    plt.title('Boxplots & Swarmplots' if n == 2 else '')
plt.show()
```


Clustering using K- means

1. Segmentation using Age and Spending Score

Selecting N Clusters based in Inertia (Squared Distance between Centroids and data points, should be less)

```
plt.figure(1 , figsize = (15 ,6))
plt.plot(np.arange(1 , 11) , inertia , 'o')
plt.plot(np.arange(1 , 11) , inertia , '-' , alpha = 0.5)
plt.xlabel('Number of Clusters') , plt.ylabel('Inertia')
plt.show()
```


2. Segmentation using Annual Income and Spending Score

3.Segmentation using Age , Annual Income and Spending Score


```
trace1 = go.Scatter3d(
     x= df['Age'],
y= df['Spending Score (1-100)'],
z= df['Annual Income (k$)'],
     mode='markers',
      marker=dict(
          color = df['label3'],
          size= 20,
          line=dict(
               color= df['label3'],
               width= 12
          opacity=0.8
data = [trace1]
layout = go.Layout(
       margin=dict(
             1=0,
             r=0,
             b=0,
             t=0
     title= 'Clusters',
     scene = dict(
               xaxis = dict(title = 'Age'),
yaxis = dict(title = 'Spending Score'),
zaxis = dict(title = 'Annual Income')
fig = go.Figure(data=data, layout=layout)
py.offline.iplot(fig)
\overline{\Rightarrow}
```

Clusters

Feature Selection For The Model

• Annual income and Spending Score

df.head(10)

$\overline{\Rightarrow}$		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	label3	
	0	1	Male	19	15	39	4	
	1	2	Male	21	15	81	5	ш
	2	3	Female	20	16	6	4	
	3		Female	23	16	77	5	
	4		Female	31	17	40	4	
	5		Female	22	17	76	5	
	6		Female	35	18	6	4	
	7		Female	23	18	94	5	
	8	9	Male	64	19	3	4	
	9	10	Female	30	19	72	5	

Next steps: Generate code with df View recommended plots

X= df.iloc[:, [3,4]].values

Building the Model

KMeans Algorithm to decide the optimum cluster number, KMeans++ using Elbow Mmethod

```
from sklearn.cluster import KMeans
wcss=[]

for i in range(1,11):
    kmeans = KMeans(n_clusters= i, init='k-means++', random_state=0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)

#Visualizing the ELBOW method to get the optimal value of K
plt.plot(range(1,11), wcss)
plt.title('The Elbow Method')
plt.xlabel('no of clusters')
plt.ylabel('wcss')
plt.show()
```



```
\#If you zoom out this curve then you will see that last elbow comes at k=5
#no matter what range we select ex- (1,21) also i will see the same behaviour but if we chose higher range it is little difficult to visual
#that is why we usually prefer range (1,11)
##Finally we got that k=5
kmeansmodel = KMeans(n_clusters= 5, init='k-means++', random_state=0)
y_kmeans= kmeansmodel.fit_predict(X)
#For unsupervised learning we use "fit_predict()" wherein for supervised learning we use "fit_tranform()"
#y_kmeans is the final model . Now how and where we will deploy this model in production is depends on what tool we are using.
#This use case is very common and it is used in BFS industry(credit card) and retail for customer segmenattion.
#Visualizing all the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```

