Jayden Li

January 9, 2025

Problem 1

For all $k \geq 1$:

$$a_k > a_{k+1} \iff \frac{k+1}{k} > \frac{k+2}{k+1}$$

$$\iff k^2 + 2k + 1 > k^2 + 2k \qquad \text{(multiplying positive } k(k+1)\text{)}$$

$$\iff k^2 + 1 > k^2$$

Clearly, the above must be true. Thus, $\{a_n\}$ is an decreasing sequence.

Problem 2

- (a) Done in class
- (b) Done in class (yes because sine function is between -1 and 1)
- (c) $a_n = \left\{ \sqrt{2a_{n-1}} \right\}, a_1 = \sqrt{2}.$

Proof increasing

Base case. When n=1, $a_n=\sqrt{2}$ and $a_{n+1}=\sqrt{2\sqrt{2}}$. Because square function is increasing for positive values, $a_1 < a_2 \iff \sqrt{2} < \sqrt{2\sqrt{2}} \iff 2 < 2\sqrt{2}$. Clearly true because $\sqrt{2} > 1$.

<u>Hypothesis.</u> Suppose $a_k < a_{k+1} \iff a_k < \sqrt{2a_k}$ when $k \ge 1$.

Inductive Step. Want to show the statement holds for k+1, that is, $a_{k+1} < a_{k+2}$.

$$a_{k+1} < a_{k+2} \iff \sqrt{2a_k} < \sqrt{2\sqrt{2a_k}}$$
 $\iff 2a_k < 2\sqrt{2a_k}$ (square function increasing for positive values)
 $\iff a_k < \sqrt{2a_k}$

By the principle of mathematical induction, the statement $a_k < a_{k+1}$ is true for all $k \ge 1$.

Because the sequence is increasing, it is clearly bounded at the lowest possible value, which is $a_1 = \sqrt{2}$. So $\{a_n\}$ is bounded below.

Proof bounded above

I claim that the sequence is bounded above at 2. That is, $a_k < 2$ for all $k \ge 1$.

Base case. When n = 1, $a_n = \sqrt{2} < 2$.

Hypothesis. Suppose $a_k < 2$ when $k \ge 1$.

Inductive Step. Want to show the statement holds for k+1, that is, $a_{k+1} < 2$. $a_{k+1} < 2 \iff \sqrt{2a_k} < 2 \iff 2a_k < 4 \iff a_k < 2$

True from hypothesis.

By the principle of mathematical induction, the statement $a_k < \sqrt{2}$ is true for all $k \ge 1$.

Thus, because $\{a_n\}$ is bounded above and below, it is bounded.

Problem 3

- (a) Done in class
- (b) Alternating sequence, so not monotonic. Clearly not bounded as a_{∞} tends to infinity.
- (c) Let $f(x) = \frac{x}{x^2 + 1}$. Then $f(n) = a_n$ for all $n \in \mathbb{N}$. $f'(x) < 0 \iff \frac{(x^2+1)-x(2x)}{(x^2+1)^2} < 0$

$$(x^2+1)^2$$
 $\iff x^2+1-2x^2<0$ (denominator always positive) $\iff x^2>1 \iff x\in (-\infty,-1)\cup (1,\infty)$ For all $x>1$, $f'(x)<0$, so f is decreasing for all $x>1$. So $\{a_n\}$ is decreasing for all $n>1$. But $a_1=1/2>2/5=a_2$, so it is decreasing for all $n\geq 1$. Therefore $\{a_n\}$ is decreasing and monotonic.

Clearly it is also bounded because the range of f on the positive real numbers is $(0, \infty)$ (too lazy).

Problem 4

(a) Done in class

- (b) Same proof as 2c, but with 6 instead of 2. Or:
- $a_n = \left\{ \sqrt{6a_{n-1}} \right\}, a_1 = \sqrt{6}.$

Base case. When
$$n=1$$
, $a_n=\sqrt{6}$ and $a_{n+1}=\sqrt{6\sqrt{6}}$. Because square function is increasing for positive values, $a_1 < a_6 \iff \sqrt{6} < \sqrt{6\sqrt{6}} \iff 6 < 6\sqrt{6}$. Clearly true because $\sqrt{6} > 1$.

Proof increasing

Hypothesis. Suppose $a_k < a_{k+1} \iff a_k < \sqrt{6a_k}$ when $k \ge 1$. Inductive Step. Want to show the statement holds for k+1, that is, $a_{k+1} < a_{k+2}$.

 $a_{k+1} < a_{k+2} \iff \sqrt{6a_k} < \sqrt{6\sqrt{6a_k}}$ $\iff 6a_k < 6\sqrt{6a_k}$ (square function increasing for positive values)

 $\iff a_k < \sqrt{6a_k}$ By the principle of mathematical induction, the statement $a_k < a_{k+1}$ is true for all $k \ge 1$. Because the sequence is increasing, it is clearly bounded at the lowest possible value, which is $a_1 = \sqrt{6}$. So $\{a_n\}$ is bounded below.

Base case. When n = 1, $a_n = \sqrt{6} < 6$.

True from hypothesis.

Proof bounded above

Hypothesis. Suppose $a_k < 6$ when $k \ge 1$.

Inductive Step. Want to show the statement holds for k+1, that is, $a_{k+1} < 6$.

I claim that the sequence is bounded above at 6. That is, $a_k < 6$ for all $k \ge 1$.

By the principle of mathematical induction, the statement
$$a_k < \sqrt{6}$$
 is true for all $k \ge 1$.

Thus, because $\{a_n\}$ is bounded above and below, it is bounded.

Done in class

 $a_{k+1} < 6 \iff \sqrt{6a_k} < 6 \iff 6a_k < 36 \iff a_k < 6$

Problem 6

Problem 5

(a) At the start, there is one pair. That pair takes 2 months to produce another pair, so $f_1 = f_2 = 1$. At any time $n \in \mathbb{N}$, n > 2, no rabbits die, so every rabbit at the previous time of n - 1 are also at time n. There are f_{n-1} such rabbits. Rabbits born two months ago at time n-2 now become productive and produce new pairs; there are f_{n-2} of these. So the number of rabbits at time n is

(b)

 $f_n = f_{n-1} + f_{n-2}.$

$$a_{n-1} = 1 + \frac{1}{a_{n-2}} \iff \frac{f_n}{f_{n-1}} = 1 + \left(\frac{f_{n-1}}{f_{n-2}}\right)^{-1} \iff \frac{f_n}{f_{n-1}} = \frac{f_{n-1}}{f_{n-1}} + \frac{f_{n-2}}{f_{n-1}} \iff \frac{f_n}{f_{n-1}} = \frac{f_n}{f_{n-1}}$$

$$\iff a_n = 1 + \frac{1}{a_{n-1}}$$

Let $L = \lim_{n \to \infty} a_n$, then $L = \lim_{n \to \infty} a_{n-1}$. From above, we have:

$$a_n = 1 + \frac{1}{a_{n-1}} \implies \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left[1 + \frac{1}{a_{n-1}} \right] \implies L = 1 + \frac{1}{L} \implies L^2 - L - 1 = 0$$

$$\implies \left(L - \frac{1}{2} \right)^2 - \frac{1}{4} - \frac{4}{4} = 0 \implies L - \frac{1}{2} = \pm \sqrt{\frac{5}{4}} \implies L = \frac{1 \pm \sqrt{5}}{2}$$

The golden ratio φ is defined as the positive case.