CS 70, Summer 2014 — Homework 1

Harsimran (Sammy) Sidhu, SID 23796591 July 3, 2014

Collaboraters: Chonyi Lama, Jenny Pushkarskaya

Sources: http://comet.lehman.cuny.edu/sormani/teaching/induction.html

Problem 1

Table 1: $P \wedge (Q \vee P) \equiv P \wedge Q$					
\overline{P}	Q	$Q \vee P$	$P \wedge (Q \vee P)$	$P \wedge Q$	
\overline{T}	Т	Τ	Τ	T	
Τ	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	
\mathbf{F}	${\rm T}$	${ m T}$	\mathbf{F}	\mathbf{F}	
\mathbf{F}	F	\mathbf{F}	F	F	

(a) Not Equivalent

Table 2: $(P \Rightarrow Q) \Rightarrow R \equiv P \Rightarrow (Q \Rightarrow R)$								
\overline{P}	\overline{Q}	R	$(P \Rightarrow Q)$	$(P \Rightarrow Q) \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$	$(Q \Rightarrow R)$		
$\overline{\mathrm{T}}$	Τ	Т	T	T	T	T		
${ m T}$	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	${ m F}$	\mathbf{F}		
\mathbf{T}	\mathbf{F}	Τ	${ m F}$	${ m T}$	${ m T}$	${ m T}$		
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$		
\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$		
\mathbf{F}	\mathbf{F}	${\rm T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$		
\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m F}$		
F	Τ	Τ	T	T	Τ	T		

(b) $Not\ Equivalent$

Table 3: $(P\Rightarrow Q)\Rightarrow (P\Rightarrow R)\equiv P\Rightarrow (Q\Rightarrow R)$

					• /		
P	Q	R	$(P \Rightarrow Q)$	$(P \Rightarrow R)$	$(P \Rightarrow Q) \Rightarrow (P \Rightarrow R)$	$(Q \Rightarrow R)$	$P \Rightarrow (Q \Rightarrow R)$
T	Τ	Τ	${ m T}$	Τ	${ m T}$	Τ	${ m T}$
${ m T}$	\mathbf{T}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
T	\mathbf{F}	${\rm T}$	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$
T	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m F}$	${ m T}$	${ m T}$	${ m T}$
F	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	\mathbf{T}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	${\rm T}$	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$
F	Τ	Τ	Τ	Τ	T	Τ	T

(c) Equivalent

Table 4: $(P \land \neg Q) \Leftrightarrow (\neg P \lor Q) \equiv (Q \land \neg P) \Leftrightarrow (\neg Q \lor P)$

		_			-) . / (4	,	
P	Q	$(P \land \neg Q)$	$(\neg P \lor Q)$	$(P \land \neg Q) \Leftrightarrow (\neg P \lor Q)$	$(Q \land \neg P)$	$(\neg Q \lor P)$	$(Q \land \neg P) \Leftrightarrow (\neg Q \lor P)$
Τ	${ m T}$	F	${ m T}$	F	\mathbf{F}	${ m T}$	\mathbf{F}
${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	${f F}$	\mathbf{F}	${ m T}$	${ m F}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$	${f F}$	${ m T}$	\mathbf{F}	${ m F}$
\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}

(d) Equivalent

- (a) (I) $\forall x (P(x) \Rightarrow B(x))$
 - (II) $\forall x(U(x) \Rightarrow \neg F(x))$
 - (III) $\forall x (O(x) \Rightarrow N(x))$
 - (IV) $\forall x (B(x) \Rightarrow F(x))$
 - (V) $\forall x(K(x) \Rightarrow P(x))$
 - (VI) $\forall x (N(x) \Rightarrow U(x))$
- (b) (I) $\forall x (\neg B(x) \Rightarrow \neg P(x))$
 - (II) $\forall x (F(x) \Rightarrow \neg U(x))$
 - (III) $\forall x (\neg N(x) \Rightarrow \neg O(x))$
 - (IV) $\forall x (\neg F(x) \Rightarrow \neg B(x))$
 - (V) $\forall x (\neg P(x) \Rightarrow \neg K(x))$
 - (VI) $\forall x (\neg U(x) \Rightarrow \neg N(x))$
- (c) If a person wears kid gloves, they go to a party, brush their hair, look fascinating, are tidy, have self control, and aren't opium-eaters.

$$\forall x (K(x) \Rightarrow P(x) \Rightarrow B(x) \Rightarrow F(x) \Rightarrow \neg U(x) \Rightarrow \neg N(x) \Rightarrow \neg O(x))$$

- (a) $\forall x \exists y \ (xy \ge x^2)$ True $Case \ 0: x = 0 \to 0 \ge 0$ $Case \ 1: \forall x \in \mathbb{R}^+ \ \exists y \ ((y \ge x) \Rightarrow (xy \ge x^2))$ $Case \ 2: \forall x \in \mathbb{R}^- \ \exists y \ ((y \le x) \Rightarrow (xy \ge x^2))$ (b) $\exists y \forall x \ (xy \ge x^2)$ False $\forall x \in \mathbb{R} \ (x^2 \ge 0)$ $Case \ 0: y = 0, \forall x \ne 0 \ (0 < x^2) \Rightarrow \neg (xy \ge x^2)$ $Case \ 1: \exists y \in \mathbb{R}^+ \ \forall x \ ((x < 0) \Rightarrow (xy < 0) \Rightarrow \neg (xy \ge x^2))$ $Case \ 2: \exists y \in \mathbb{R}^- \ \forall x \ ((x > 0) \Rightarrow (xy < 0) \Rightarrow \neg (xy \ge x^2))$
- (c) $\neg \forall x \exists y \ (xy > 0 \Rightarrow y > 0)$ False $\neg \forall x \exists y \ (\neg(xy > 0) \lor (y > 0))$ $\exists x \forall y \ \neg(\neg(xy > 0) \lor (y > 0))$ $\exists x \forall y \ ((xy > 0) \land \neg(y > 0))$ $\exists x \forall y \ ((xy > 0) \land (y \le 0))$

False whenever y is greater than 0 (y > 0) which disagrees with $\forall y$

(a)
$$\neg \forall x \ \exists y \ (P(x) \Rightarrow \neg Q(x,y)) \equiv \exists x \ \forall y \ (P(x) \land Q(x,y))$$

 $\exists x \ \forall y \ \neg (P(x) \Rightarrow \neg Q(x,y)) \equiv$
 $\exists x \ \forall y \ \neg (\neg P(x) \lor \neg Q(x,y)) \equiv$
 $\exists x \ \forall y (P(x) \land Q(x,y)) \equiv$

Original Statement factor in negation Implication to Or Demorgan's Law

Equivalent

(b)
$$\forall x \ \exists y \ (P(x) \Rightarrow Q(x,y)) \equiv \forall x \ (P(x) \Rightarrow (\exists y \ Q(x,y)))$$

 $\forall x \ \exists y \ (\neg P(x) \lor Q(x,y)) \equiv$
 $\forall x \ ((\exists y \ \neg P(x)) \lor (\exists y \ Q(x,y))) \equiv$
 $\forall x \ (\neg (\forall y \ P(x)) \lor (\exists y \ Q(x,y))) \equiv$
 $\forall x \ ((\forall y \ P(x)) \Rightarrow (\exists y \ Q(x,y))) \equiv$
 $\forall x \ (P(x) \Rightarrow (\exists y \ Q(x,y))) \equiv$

Original Statement
Implication to Or
Distribution of quantifier
Factor out negation
Or to Implication
Obvious

Equivalent

(c)
$$\forall x \ \exists y \ (Q(x,y) \Rightarrow P(x)) \equiv \forall x \ (\exists y \ Q(x,y) \Rightarrow P(x))$$

 $\forall x \ \exists y \ (\neg Q(x,y) \lor P(x)) \equiv$
 $\forall x \ ((\exists y \ \neg Q(x,y)) \lor (\exists y \ P(x))) \equiv$
 $\forall x \ (\neg (\forall y \ Q(x,y)) \lor (\exists y \ P(x))) \equiv$
 $\forall x \ ((\forall y \ Q(x,y)) \Rightarrow (\exists y \ P(x))) \equiv$
 $\forall x \ ((\forall y \ Q(x,y)) \Rightarrow P(x)) \equiv$
 $\forall x \ ((\forall y \ Q(x,y)) \Rightarrow P(x)) \not\equiv \forall x \ (\exists y \ Q(x,y) \Rightarrow P(x))$

Original Statement
Implication to Or
Distribution of quantifier
Factor out negation
Or to Implication
Obvious
Invalid

Not Equivalent

(a) $\forall n \in \mathbb{N} \ (n \ odd \Rightarrow n^2 + 2n \ odd)$

Original Statement

Assume n is odd

$$\forall n \in \mathbb{N} \ \exists k \in \mathbb{Z} \ (n \ odd \Rightarrow n = 2k + 1)$$

Definition of an odd number

 $\forall n \in \mathbb{N} \ \exists d \in \mathbb{Z} \ (n^2 + 2n = 2d + 1 \Rightarrow n^2 + 2n \ odd)$

 $n^2 + 2n$ is odd if d exists

Substitution

Substitution
$$(2k+1)^2 + 2(2k+1) = (4k^2 + 4k + 1) + 4k + 2 = (4k^2 + 8k + 2) + 1 = 2(2k^2 + 4k + 1) + 1$$

$$d = 2k^2 + 4k + 1$$

$$d \text{ Exists}$$

True, direct proof.

(b) $\forall n \in \mathbb{N} \ (n^2 + 7n + 1 \ odd)$

Original Statement

Case 1: n is odd

 $\forall n \in \mathbb{N} \ \exists k \in \mathbb{Z} \ (n \ odd \Rightarrow n = 2k + 1)$

Definition of an odd number

 $\forall n \in \mathbb{N} \ \exists k \in \mathbb{Z} \ (n \ odd \Rightarrow n = 2k + 1)$ Definition of an odd number $\forall n \in \mathbb{N} \ \exists d \in \mathbb{Z} \ (n^2 + 7n + 1 = 2d + 1 \Rightarrow n^2 + 7n + 1 \ odd)$ $n^2 + 7n + 1 \ \text{is odd if d exists}$

Substitution

$$(2k+1)^2 + 7(2k+1) + 1 = (4k^2 + 18k + 8) + 1 = 2(2k^2 + 9k + 4) + 1$$

$$d = (2k^2 + 9k + 4)$$

d Exists

Therefore $\forall n \in \mathbb{N} \ (n \ odd \Rightarrow n^2 + 7n + 1 \ odd)$ $(n^2 + 7n + 1)$ is odd whenever n is odd

Case 2: n is even

 $\forall n \in \mathbb{N} \ \exists k \in \mathbb{Z} \ (n \ even \Rightarrow n = 2k)$

Definition of an even number

 $\forall n \in \mathbb{N} \ \exists d \in \mathbb{Z} \ (n^2 + 7n + 1 = 2d + 1 \Rightarrow n^2 + 7n + 1 \ odd)$ $n^2 + 7n + 1 \ is \ odd \ if \ d \ exists$

Substitution

$$(2k)^2 + 7(2k) + 1 = (4k^2 + 14k) + 1 = 2(2k^2 + 7k) + 1$$

 $d = (2k^2 + 7k)$

d Exists

Therefore $\forall n \in \mathbb{N} \ (n \ even \Rightarrow n^2 + 7n + 1 \ odd)$ $(n^2 + 7n + 1)$ is odd whenever n is even

True, Proof by Cases

(c) $\forall a, b \in \mathbb{R} \ (a+b < 10 \Rightarrow (a < 7 \lor b < 3))$

 $\forall a, b \in \mathbb{R} \ (\neg(a \le 7 \lor b \le 3) \Rightarrow \neg(a + b \le 10))$

 $\forall \ a, b \in \mathbb{R} \ ((\neg(a \le 7) \land \neg(b \le 3)) \Rightarrow \neg(a + b \le 10))$

 $\forall a, b \in \mathbb{R} (((a > 7) \land (b > 3)) \Rightarrow (a + b > 10))$

Original Statement Contrapositive Demorgan's Law Applied Negation

True, Proof by Contrapositive

(d)
$$\forall r \in \mathbb{R} \ (r \ irrational \Rightarrow r+1 \ irrational)$$
 Original Statement $Assume \ \neg (r+1 \ irrational) \equiv (r+1 \ rational)$ $\forall r \in \mathbb{R} \ \exists \ a,b \in \mathbb{Z} \ (r+1 \ rational \Leftrightarrow r+1=\frac{a}{b})(b \neq 0)$ definition of a rational number $r=\frac{a}{b}-1=\frac{a}{b}-\frac{b}{b}=\frac{a-b}{b}$ Solving for r which gives a rational number

Assuming $\neg(r+1 \ rational) \ r$ is rational which is a proof by contrapositive

True, Proof by Contrapositive

(e)
$$\forall n \in \mathbb{N} \ (10n^2 > n!)$$
 Original Statement Case 1: $n=6$
$$10(6)^2 > 6!$$
 Invalid

False, Proof by Counterexample

(a)
$$\forall n \ge 1 \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

Original Statement

Proof: By induction on
$$n$$

Base case: $n = 1 \rightarrow \frac{1}{1(1+1)} = \frac{1}{1+1} = \frac{1}{2}$

True

Inductive Hypothesis: $\forall k \geq 1 \sum_{i=1}^{k} \frac{1}{i(i+1)} = \frac{k}{k+1}$

$$Let\ n=k+1$$

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \frac{k+1}{(k+1)+1}$$

Substitute

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \frac{(k+1)}{(k+2)}$$

Simplify

$$\sum_{i=1}^{k} \frac{1}{i(i+1)} + \frac{1}{(k+1)(k+2)} =$$

Expand series

$$\frac{k}{(k+1)} + \frac{1}{(k+1)(k+2)} =$$

Substitute inductive hypothesis

$$\frac{(k^2+2k)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} =$$

Cross multiply

$$\frac{(k^2+2k+1)}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} =$$

Simplify and factor

$$\frac{(k+1)}{(k+2)} = \frac{(k+1)}{(k+2)}$$

Valid

(b)
$$\forall n \in \mathbb{N} \ (5|(8^n - 3^n))$$

Original Statement

Proof: By induction on n

Base case: $(n=0) \to (5|(8^0-5^0)) = (5|0)$

True

Inductive hypothesis: $\forall k \in \mathbb{N} \ (5|(8^k - 3^k))$

let n = k + 1

$$(5|(8^{k+1} - 3^{k+1})) = (5|(8 \times 8^k - 3 \times 3^k))$$

Expand

$$(5|(8\times8^k - 3\times3^k)) = (5|((8\times8^k) - (8\times3^k) + (8\times3^k) - (3\times3^k)))$$

$$(5)(8 \times 8^k - 3 \times 3^k)) = (5)(8 \times (8^k - 3^k) + 5 \times 3^k)$$

Group factors

 $(5|(8 \times 8^k - 3 \times 3^k)) = (5|((8 \times 8^k) - (8 \times 3^k) + (8 \times 3^k) - (3 \times 3^k)))$ $(5|(8 \times 8^k - 3 \times 3^k)) = (5|(8 \times (8^k - 3^k) + 5 \times 3^k))$ Our hypothesis states that 5 divides $(8^k - 3^k)$ so $\exists d \in \mathbb{Z} \ ((8^k - 3^k) = 5d)$

$$(5|(8 \times 8^k - 3 \times 3^k)) = \exists d \in \mathbb{Z} \ (5|(8 \times 5d + 5 \times 3^k))$$
$$(5|(8 \times 8^k - 3 \times 3^k)) = \exists d \in \mathbb{Z} \ (5|5(8d + 3^k))$$

$$(5|(8 \times 8^k - 3 \times 3^k)) = \exists d \in \mathbb{Z} \ (5|5(8d + 3^k))$$

Valid

 $\forall r > 0 \ \forall k > 0 \ \exists m \ (\frac{1}{n_1} + ... + \frac{1}{n_k} = r)$ where m is the number of ways to make r with k and $n_1, ..., n_k$ are some positive integers

allow m = f(r, k) to be a function that takes in a r and k and returns m (amounts of ways to make r with k elements)

Base Case:
$$(k = 1)$$

 $f(r, 1) \rightarrow \frac{1}{\frac{1}{r}} = r$
 $f(r, 1) = 1$
 $n_1 = \frac{1}{r}$
 m exists

Proof: Induction on k

Inductive Hypothesis: $\exists m \ (\frac{1}{n_1} + ... + \frac{1}{n_k} = r)$ where m is the number of ways to make r with k and $n_1, ..., n_k$ are some positive integers

let k = k + 1

 $\left(\frac{1}{n_1} + \ldots + \frac{1}{n_k} + \frac{1}{n_{k+1}} = r\right)$ where $\frac{1}{n_{k+1}}$ is the largest term.

$$r \leq (k+1) \times \frac{1}{n_{k+1}}$$

$$\frac{r}{k+1} \leq \frac{1}{n_{k+1}}$$
 Divide both sides by $(k+1)$

$$\frac{k+1}{r} \ge n_{k+1}$$
 Inverse

This shows that n_{k+1} is bounded by $\frac{k+1}{r}$ and therefore finite. this implies $(\frac{1}{n_1} + \ldots + \frac{1}{n_k} = r - \frac{1}{n_{k+1}})$ where $\frac{1}{n_{k+1}}$ and r are finite which produce r' also finite.

$$(\frac{1}{n_1} + \dots + \frac{1}{n_k} = r')$$
 Valid

Postponed!!

- (a) Incorrect, another base case is needed If we add another base case where n=1 then Suppose n=1. If $\max(x,y)=1$ and $x,y\in\mathbb{N}$, then $x=1\vee y=1$ hence $(x\leq y)\vee(x>y)$ This shows that the claim is false due to the fact that $\max(x,y)=n$ is true even when x>y
- (b) Incorrect, The inductive step did not prove $n+1 < 2^{n+1}$.
- (c) Incorrect, Proof by contrapositive would lead you to assume that $n^2 + 1$ is not a multiple of 3 which would imply that 2n + 1 is not a multiply of three. This example however did a proof of converse which isn't enough to prove the claim.