Math 25 Final Exam

December 7, 2009

Instructions: You should show all of your work and reasons for your computations with the exception that you may solve simple congruences by inspection.

1. Show that 3 is a primitive root modulo 34; then use index arithmetic to find all solutions to $x^{12} \equiv 13 \pmod{34}$. **Note:** You do not need to simplify your final answer, and you may assume that $3^4 \equiv 13 \pmod{34}$.

2. Describe the congruences which characterize all the odd primes p for which 7 is a quadratic residue modulo p. **Note:** Your final answer should have the form $p \equiv a_1, \ldots, a_r \pmod{n}$ for appropriate a_i and n.

3. Show that no prime $p \equiv 7 \pmod 8$ can be written as the sum of three squares in \mathbb{Z} .

4.	Prove	directly	(don't	quote a	general	result)	that 7	is a Ga	ussian	prime.

- 5. Suppose that F and g are arithmetic functions, and that $F(n) = \sum_{d|n} g(d)$, and that g(1) = 1, g(3) = 4, F(2) = 3, F(4) = 5, F(6) = 7 and F(12) = 11.
 - (a) What is g(12)?

(b) Is F multiplicative? Completely multiplicative?

- 6. Suppose that f and g are multiplicative arithmetic functions.
 - (a) Show that the product (fg)(n) = f(n)g(n) is multiplicative.

(b) Suppose that f is multiplicative and μ is the Möbius function. If $n=p_1^{e_1}\cdots p_r^{e_r}$ with the $e_i\geq 1$, show that

$$\sum_{d|n} \mu(d)f(d) = (1 - f(p_1))(1 - f(p_2)) \cdots (1 - f(p_r)).$$

7. Define
$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k, \ p \text{ a prime, } k \geq 1 \\ 0 & \text{otherwise.} \end{cases}$$

You may assume without proof that $\sum_{d|n} \Lambda(d) = \log(n)$. Use Möbius inversion to show

that
$$\Lambda(n) = -\sum_{d|n} \mu(d) \log(d)$$

8. Define $\sigma_{-1}(n) = \sum_{d|n} d^{-1} = \sum_{d|n} \frac{1}{d}$. Suppose that n is a perfect number. Show that $\sigma_{-1}(n) = 2$. Hint: Expand $n\sigma_{-1}(n)$.

9. Let k and n be positive integers, and suppose that $\gcd(k,\phi(n))=1$, where ϕ is the Euler phi function. Show that the congruence $x^k\equiv a\pmod n$ is solvable for all $a\in U_n$. Hint: What would Bezout say? While you can solve this without further constraint, you may assume if you like that there is a primitive root modulo n.

10. Let p_1, \ldots, p_r be distinct odd primes, and let $\varepsilon_1, \ldots, \varepsilon_r \in \{\pm 1\}$ (i.e., for each i, fix $\varepsilon_i = 1$ or -1). Show that there exist infinitely many integers a so that $\left(\frac{a}{p_i}\right) = \varepsilon_i$ for all i (simultaneously).

- 11. Short answer/True-False. Answer the questions below with only a brief explanation.
 - (a) For an odd prime $p, \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) =$

(b) (True/False) If n is a positive integer, and for all integers a with gcd(a, n) = 1, we have $a^{n-1} \equiv 1 \pmod{n}$, then n is prime.

(c) How many primitive roots are there modulo the prime p=257.

(d) Suppose that g is a primitive root modulo the odd prime p. Can one determine the value of the Legendre symbol $\left(\frac{g}{p}\right)$? If so, what is it? If not, why not?

(e)	Compute	$\gcd(7469,$	2464	١.

(f) Compute
$$5^{2009}$$
 (mod 11).

(g) Can the integer 5^311^2 be expressed as the sum of two squares in \mathbb{Z} ?

(h) Are there infinitely many primes p such that $\left(\frac{p}{7}\right)=1$? You may quote any theorem you like to answer this one way or the other.

(i) Find all incongruent solutions modulo 168 (if any) to the system: $7x \equiv 3 \pmod{12}$ and $10x \equiv 6 \pmod{14}$.

(j) Compute the value of the Legendre symbol $(\frac{117}{1151})$, noting that 1151 is a prime.