Licence 1ere année Mathématiques et calcul 1er semestre

Lionel Moisan

Université Paris Descartes

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

1

8. Matrices

Matrices

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

3

Matrices

- Les matrices comme tableaux
- Matrices particulières
- Espace vectoriel des matrices $n \times p$
- Représentation des vecteurs et des applications linéaires
- Produit matriciel
- Les matrices comme applications linéaires
- Propriétés du produit matriciel
- Puissances d'une matrice carré
- Inverse d'une matrice
- La méthode du pivot de Gauss
- Systèmes linéaires

Les matrices comme tableaux

Définition. Soient n et p deux entiers strictement positifs. On appelle matrice à n lignes et p colonnes à coefficients réels (ou complexes) un tableau de np nombres réels (ou complexes) rangés en n lignes et p colonnes.

Exemple:
$$A = \begin{pmatrix} 2 & 0 & -1 & 3 \\ 0 & 1 & 4 & 2 \\ -3 & -1 & 1 & 5 \end{pmatrix}$$

On note $\mathcal{M}_{n,p}(\mathbb{R})$ l'ensemble des matrices à n lignes et p colonnes à coefficients réels (et $\mathcal{M}_{n,p}(\mathbb{C})$ pour des coefficients complexes).

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

5

Matrices

Les matrices comme tableaux

Exemples

$$\begin{pmatrix} 1 & 0 & \sqrt{2} \\ i & \pi & -3 \end{pmatrix} \quad \text{matrice } 2 \times 3$$

$$\begin{pmatrix} e & -6 & \frac{7}{2} & \sqrt{3} \\ -1 & \frac{\sqrt{2}}{2} & 0 & -8 \\ \sin(\frac{15\pi}{8}) & 0 & 0 & 18 \\ 1 & 250 & e^{19} & -2 & 0 \end{pmatrix}$$
 matrice 4×4

$$\begin{pmatrix} 1 & \sqrt{2} & 34 & \pi \end{pmatrix}$$
 $n=1$: matrice ligne (ou vecteur ligne)

$$\left(egin{array}{c} e \\ -1 \\ rac{\sqrt{2}}{2} \end{array}
ight) \quad p=1:$$
 matrice colonne (ou vecteur colonne)

Écriture indexée

Si $A \in \mathcal{M}_{n,p}(\mathbb{R})$, l'élément situé à l'intersection de la *i*-ème ligne et de la *j*-ème colonne, est noté a_{ij} (ou $a_{i,j}$ s'il y a une ambiguïté possible, par exemple $a_{12,43}$).

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{ip} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{np} \end{pmatrix} = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

7

Matrices

Matrices particulières

Matrice diagonale

Si A est une matrice carrée (n = p),

les coefficients a_{ii} , $1 \le i \le n$, s'appellent les coefficients diagonaux de la matrice.

Une matrice carrée telle que $a_{ij} = 0$, si $i \neq j$, s'appelle une matrice diagonale

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
0 & -\pi & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right)$$

Matrices triangulaires

Soit A une matrice carrée.

Si $a_{ij} = 0$ pour i > j, on dit que A est triangulaire supérieure

$$\left(\begin{array}{ccc}
\pi & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right)$$

Si $a_{ij} = 0$ pour i < j, on dit que A est triangulaire inférieure

$$\begin{pmatrix} -2 & 0 \\ 1 & 3 \end{pmatrix}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

g

Matrices

Espace vectoriel des matrices $n \times p$

Somme des matrices

Soit A et B deux matrices de $\mathcal{M}_{n,p}(\mathbb{R})$:

$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$
 et $B = (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$

On définit la somme des matrices A et B comme la matrice

$$A+B=(a_{ij}+b_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$$

$$\begin{pmatrix} 3 & -1 \\ 2 & 5 \\ 0 & \pi \end{pmatrix} + \begin{pmatrix} 4 & 0 \\ 1 & 2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 7 & -1 \\ 3 & 7 \\ -1 & \pi + 1 \end{pmatrix}$$

Multiplication des matrice par des scalaires

Soient $\alpha \in \mathbb{R}$ et $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ une matrice de $\mathcal{M}_{n,p}(\mathbb{R})$.

On définit la multiplication du scalaire α par la matrice A comme la matrice

$$\alpha.A = \alpha.(a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} = (\alpha a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

$$(-2).\left(\begin{array}{ccc} 1 & 2 & 0 \\ -1 & 3 & 7 \\ 0 & 4 & -5 \end{array}\right) = \left(\begin{array}{ccc} -2 & -4 & 0 \\ 2 & -6 & -14 \\ 0 & -8 & 10 \end{array}\right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

11

Matrices

Espace vectoriel des matrices $n \times p$

Théorème : Avec l'addition et la multiplication externe, l'ensemble $\mathcal{M}_{n,p}(\mathbb{R})$ des matrices à n lignes et p colonnes est un espace vectoriel de dimension np.

Le vecteur $\vec{0}$ de cet espace vectoriel est la matrice de $\mathcal{M}_{n,p}(\mathbb{R})$ dont tous les coefficient sont nuls.

La base canonique de $\mathcal{M}_{n,p}(\mathbb{R})$ est la famille de matrices $(E_{i,j})_{1 \leq i \leq n, 1 \leq j \leq p}$, où $E_{i,j}$ est la matrice $n \times p$ dont tous les coefficients sont nuls hormis le coefficient (i,j) qui vaut 1.

On a alors
$$(a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} = \sum_{i=1}^{n} \sum_{j=1}^{p} a_{ij} E_{i,j}$$
.

Représentation d'un vecteur de \mathbb{R}^n

A tout vecteur $\vec{x} = (x_1, x_2, \dots x_n)$ de \mathbb{R}^n on peut associer une matrice colonne (appelé souvent vecteur colonne) dont les coefficients sont les x_i , $1 \le i \le n$.

Remarque : l'application
$$\begin{cases} \mathbb{R}^n & \to \mathcal{M}_{n,1}(\mathbb{R}) \\ (x_1, x_2, \dots x_n) & \mapsto \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

est un isomorphisme (on dit que les espaces vectoriels \mathbb{R}^n et $\mathcal{M}_{n,1}(\mathbb{R})$ sont isomorphes, c'est-à-dire identifiables l'un à l'autre)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

13

Matrices

Représentation des vecteurs et des applications linéaires

Représentation d'un vecteur (suite)

Définition. Soit E un espace vectoriel de dimension finie (n), muni d'une base $\mathcal{B} = (\vec{e}_i)_{1 \leq i \leq n}$. Pour $\vec{x} \in E$, on appelle matrice de \vec{x} dans la base \mathcal{B} le vecteur colonne des coordonnées de \vec{x} dans \mathcal{B} . Autrement dit,

$$\begin{cases} \vec{x} = \sum_{i=1}^{n} x_i \vec{e}_i \\ \mathcal{B} = (\vec{e}_i)_{1 \le i \le n} \end{cases} \iff \mathsf{Mat}_{\mathcal{B}}(\vec{x}) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Exemple : Dans $\mathbb{R}_3[X]$ muni de sa base canonique $\mathcal{B} = (1, X, X^2, X^3)$, on a

$$\operatorname{Mat}_{\mathcal{B}}(X^3-2X+5)=\begin{pmatrix}5\\-2\\0\\1\end{pmatrix}.$$

Représentation d'une famille de vecteurs

Définition. Soit E un espace vectoriel de dimension finie (n), muni d'une base \mathcal{B} , et soit $(\vec{x}_j)_{1 \leq j \leq p}$ une famille de p vecteurs de E. Alors, la matrice de la famille $(\vec{x}_j)_{1 \leq j \leq p}$ dans la base \mathcal{B} est une matrice de taille $n \times p$ dont le terme général a_{ij} est égal à la i-ème coordonnée de \vec{x}_i . Autrement dit,

$$\mathsf{Mat}_{\mathcal{B}}(\vec{x}_1, \vec{x}_2, \dots \vec{x}_p) = \left(\begin{array}{cccc} | & | & | \\ X_1 & X_2 & \dots & X_p \\ | & | & | \end{array}\right)$$

avec, pour $1 \le j \le p$, $X_j = \operatorname{Mat}_{\mathcal{B}}(\vec{x}_j)$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

15

Matrices

Représentation des vecteurs et des applications linéaires

Exemple : Dans $\mathbb{R}_3[X]$ muni de sa base canonique $\mathcal{B} = (1, X, X^2, X^3)$, on a

$$\operatorname{Mat}_{\mathcal{B}}(1+X,1+2X^2,X-4X^3) = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{array} \right).$$

Représentation d'une application linéaire

Définition. Soient E et F deux espaces de dimension finie, munis des bases $\mathcal{B}_E = (\vec{e}_j)_{1 \leq j \leq p}$ et $\mathcal{B}_F = (\vec{f}_i)_{1 \leq i \leq n}$. Pour $u \in \mathcal{L}(E, F)$, on appelle matrice de l'application linéaire u dans les bases \mathcal{B}_{E} et \mathcal{B}_{F} la matrice

$$\mathsf{Mat}_{\mathcal{B}_F,\mathcal{B}_F}(u) = \mathsf{Mat}_{\mathcal{B}_F}(u(\vec{e}_1), u(\vec{e}_2), \dots u(\vec{e}_p)).$$

Remarque : Si E = F, on utilise souvent la même base \mathcal{B} pour E et F et l'on note $Mat_{\mathcal{B}}(u) = Mat_{\mathcal{B},\mathcal{B}}(u)$.

Exemple : Dans $\mathbb{R}_3[X]$ muni de sa base canonique $\mathcal{B} = (1, X, X^2, X^3)$, la matrice de l'endomorphisme $u : P \mapsto P'$ est

$$\mathsf{Mat}_{\mathcal{B}}(u) = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

Université Paris Descartes

Mathématiques et calcul 1

Matrices

Produit matriciel

Image d'un vecteur

La matrice $\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{F}}(u) = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}}$ caractérise complètement l'application u, car

$$u\left(\sum_{j=1}^{p} x_j \vec{\mathbf{e}}_j\right) = \sum_{j=1}^{p} x_j u(\vec{\mathbf{e}}_j) = \sum_{j=1}^{p} x_j \sum_{i=1}^{n} a_{ij} \vec{\mathbf{f}}_i = \sum_{i=1}^{n} \left(\sum_{j=1}^{p} a_{ij} x_j\right) \vec{\mathbf{f}}_i.$$

$$\longrightarrow \operatorname{si} X = \operatorname{Mat}_{\mathcal{B}_{E}}(\vec{x}) = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{p} \end{pmatrix} \operatorname{et} Y = \operatorname{Mat}_{\mathcal{B}_{F}}(u(\vec{x})) = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix}, \operatorname{alors}$$

$$\forall i \in \{1, 2, ... n\}, \quad \mathbf{y}_i = \sum_{j=1}^{p} \mathbf{a}_{ij} \mathbf{x}_j$$

Notation : Y = AX, où AX est le produit matriciel de A et X \bigcirc PARSE DESCARTES

Produit matriciel

Définition. Soient $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et $B \in \mathcal{M}_{p,q}(\mathbb{R})$ deux matrices définies par

$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$
 et $B = (b_{ij})_{\substack{1 \le i \le p \\ 1 \le j \le q}}$

On définit la matrice produit de A et B par

$$AB = (c_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq q}} \in \mathcal{M}_{n,q}(\mathbb{R}), \text{ avec } c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

Attention : Le produit matriciel *AB* n'existe que si le nombre de colonnes de *A* est égal au nombre de lignes de *B*.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

19

Matrices

Produit matriciel

Exemple

$$B = \begin{pmatrix} 3 & 1 \\ 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 0 & 3 \\ 2 & 0 & 1 & 5 \end{pmatrix} \qquad \begin{pmatrix} 4 & 3 \\ 6 & 3 \end{pmatrix}$$

$$c_{22} = \sum_{k=1}^{4} a_{2k} b_{k2} = 2 \times 1 + 0 \times 2 + 1 \times 1 + 5 \times 0 = 3$$

$$C = AB \in \mathcal{M}_{2,2}(\mathbb{R})$$

Matrices Produit matriciel

Représentation d'une composée

Proposition. Soient $u \in \mathcal{L}(E, F)$, $v \in \mathcal{L}(F, G)$, où E, F, G sont 3 espaces vectoriels de dimension finie munis respectivement des bases \mathcal{B}_E , \mathcal{B}_F , \mathcal{B}_G . Alors

$$\mathsf{Mat}_{\mathcal{B}_{\mathsf{F}},\mathcal{B}_{\mathsf{G}}}(v \circ u) = \mathsf{Mat}_{\mathcal{B}_{\mathsf{F}},\mathcal{B}_{\mathsf{G}}}(v) \ \mathsf{Mat}_{\mathcal{B}_{\mathsf{F}},\mathcal{B}_{\mathsf{F}}}(u).$$

Autrement dit, la composition d'application linéaires se traduit par la multiplication des matrices associées.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

22

Matrices

Les matrices comme applications linéaires

Les matrices comme applications linéaires

Une matrice $A \in \mathcal{M}_{n,p}(\mathbb{R})$ peut donc être considérée comme une application linéaire de \mathbb{R}^p dans \mathbb{R}^n (en toute rigueur, de $\mathcal{M}_{p,1}(\mathbb{R})$ dans $\mathcal{M}_{n,1}(\mathbb{R})$):

$$A: \left\{ \begin{array}{ccc} \mathbb{R}^p & \to & \mathbb{R}^n \\ X & \mapsto & AX \end{array} \right.$$

On a donc les définitions naturelles :

$$Ker A = \{X \in \mathbb{R}^p, \ AX = 0\}$$
$$Im A = \{AX, \ X \in \mathbb{R}^p\}$$

Rang d'une matrice

Proposition. Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. If y a égalité entre

- le rang de l'application linéaire A (et plus généralement de toute application linéaire u telle que $A = \operatorname{Mat}_{\mathcal{B}_F,\mathcal{B}_F}(u)$);
- le rang de la famille des vecteurs colonne de A (et plus généralement de toute famille de vecteurs $(\vec{v}_1, \vec{v}_2, \dots \vec{v}_p)$ telle que $A = \operatorname{Mat}_{\mathcal{B}}(\vec{v}_1, \vec{v}_2, \dots \vec{v}_p)$);
- ▶ le rang de la famille des vecteurs ligne de A.

Cette quantité est appelée rang de la matrice A, noté rg(A).

Exercice : Déterminer le rang des matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \quad B = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}; \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

24

Matrices

Les matrices comme applications linéaires

Récapitulatif

Soient E, F, G des espaces vectoriels de dimension finie munis respectivement des bases $\mathcal{B}_E, \mathcal{B}_F, \mathcal{B}_G$. On a les correspondances suivantes :

$\vec{x} \in E$	$X = Mat_{\mathcal{B}_{\mathcal{E}}}(\vec{x})$
$u \in \mathcal{L}(E, F)$	$U = Mat_{\mathcal{B}_{F},\mathcal{B}_{F}}(u)$
$v \in \mathcal{L}(F,G)$	$V = Mat_{\mathcal{B}_{F},\mathcal{B}_{G}}(v)$
$\vec{y} = u(\vec{x})$	Y = UX
V ∘ U	VU
u^{-1}	U^{-1} (sera vu plus tard)
Ker <i>u</i>	Ker <i>U</i>
Im <i>u</i>	Im <i>U</i>
rg(u)	rg(<i>U</i>)

Cas des matrices carrées

On note $\mathcal{M}_n(\mathbb{R})$ (au lieu de $\mathcal{M}_{n,n}(\mathbb{R})$) l'ensemble des matrices carrées d'ordre n (matrices de taille $n \times n$).

Le produit de 2 matrices carrées de même taille est toujours possible.

Attention: Le produit des matrices n'est pas commutatif : si $A, B \in \mathcal{M}_n(\mathbb{R})$, en général $AB \neq BA$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\neq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

26

Matrices

Propriétés du produit matriciel

Exercice: Calculer, lorsqu'il est bien défini, le produit AB.

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ -4 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 4 \\ 2 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 4 & 5 \\ 2 & 5 & -2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

Règles de calcul pour la multiplication

La multiplication de matrices est distributive par rapport à l'addition

Si $A, B \in \mathcal{M}_{n,p}$ et $C, D \in \mathcal{M}_{p,q}$

$$(A+B)(C+D) = AC + AD + BC + BD$$

Si $A, B \in \mathcal{M}_n(\mathbb{R})$,

$$(A + B)^2 = A^2 + AB + BA + B^2$$

D'une manière générale, la formule du binôme ne s'applique pas aux matrices

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

28

Matrices

Propriétés du produit matriciel

Règles de calcul pour la multiplication

Si
$$A \in \mathcal{M}_{n,p}$$
, $B \in \mathcal{M}_{p,q}$, $C \in \mathcal{M}_{q,r}$

$$A(BC) = (AB)C = ABC$$

Le produit matriciel n'est pas commutatif, mais il est associatif.

Exercice: Calculer le produit

$$\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} (1 2 \cdots n) \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

Matrice identité

Dans $\mathcal{M}_n(\mathbb{R})$ on appelle matrice identité la matrice diagonale dont tous les éléments diagonaux sont égaux à 1.

Notation : I_n

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ etc.

Proposition: Si $A \in \mathcal{M}_{n,p}(\mathbb{R})$,

$$I_n \times A = A \times I_p = A$$
.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

30

Matrices

Puissances d'une matrice carré

Puissances d'une matrice carré

Pour $A \in \mathcal{M}_n$, les puissances A^k ($k \in \mathbb{N}$) de A sont définies par

$$\rightarrow A^0 = I_n$$

$$A^{k+1} = A \times A^k = A^k \times A$$

Ainsi,
$$A^1 = A$$
, $A^2 = A \times A$, $A^3 = A \times A \times A$...

Question : pourrait-on ainsi définir les puissances d'une matrice non carrée?

Exercice: Montrer que $\forall \lambda \in \mathbb{R}, \forall k \in \mathbb{N}, (\lambda I_n)^k = \lambda^k I_n$

Exercice:

1. Pour
$$A = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$$
, calculer A^2 et A^3 .

2. Pour
$$B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, calculer B^2 et B^3 .

Application

On considère la suite de Fibonacci, définie par $u_0=0$, $u_1=1$ et la récurrence

$$\forall n \in \mathbb{N}$$
, $u_{n+2} = u_n + u_{n+1}$.

On souhaite calculer "à la main" u_{32} (ou u_{10}^{18} avec un ordinateur).

$$u_2 = 2$$
, $u_3 = 3$, $u_4 = 5$, $u_6 = 8$, $u_7 = 13$, ...

On remarque que
$$\forall n \in \mathbb{N}$$
, $\begin{pmatrix} u_{n+1} \\ u_{n+2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$.

Donc par récurrence,
$$\begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix} = A^n \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}$$
 avec $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

32

Matrices

Puissances d'une matrice carré

On a donc
$$\begin{pmatrix} u_{32} \\ u_{33} \end{pmatrix} = A^{32} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 avec $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

$$A^{2} = A \times A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$A^{4} = A^{2} \times A^{2} = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$$

$$A^{8} = A^{4} \times A^{4} = \begin{pmatrix} 13 & 21 \\ 21 & 34 \end{pmatrix}$$

$$A^{16} = A^{8} \times A^{8} = \begin{pmatrix} 610 & 987 \\ 987 & 1597 \end{pmatrix}$$

$$A^{32} = A^{16} \times A^{16} = \begin{pmatrix} 1346269 & 2178309 \\ 2178309 & 3524578 \end{pmatrix}$$

d'où
$$A^{32}\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2178309 \\ 3524578 \end{pmatrix}$$
 et donc $u_{32} = 2178309$.

Matrices inversibles

Définition. Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est inversible s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{R})$ telle que

$$AB = BA = I_n$$

Remarque : en fait, l'une des deux conditions ($AB = I_n$) ou $BA = I_n$) suffit, l'autre s'en déduit par le théorème du rang

Proposition : Si une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est inversible, alors :

- 1. Son inverse est unique (on le note A^{-1})
- 2. $(A^{-1})^{-1} = A$
- 3. Si $B \in \mathcal{M}_n(\mathbb{R})$ est aussi inversible, alors $(AB)^{-1} = B^{-1}A^{-1}$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

34

Matrices

Inverse d'une matrice

Preuve (Remarque) : Si $AB = I_n$, alors $Ker B = \{0\}$ donc par le théorème du rang, dim(Im B) = n donc $Im B = \mathbb{R}^n$.

On a alors
$$BAB = B \Rightarrow \forall x \in \mathbb{R}^n$$
, $BA(Bx) = Bx$
 $\Rightarrow \forall y \in \mathbb{R}^n$, $BAy = y$ (car Im $B = \mathbb{R}^n$)
 $\Rightarrow BA = I_n$.

On montre de même que $BA = I_n \implies AB = I_n$.

Preuve (Proposition) : Soit $A \in \mathcal{M}_n(\mathbb{R})$, inversible.

- 1. l'inverse de A est unique : Soit B et C deux inverses de A, alors $BAC = (BA)C = I_nC = C$ mais également $BAC = B(AC) = BI_n = B$ donc B = C
- 2. l'inverse de A^{-1} est A, car $AA^{-1} = A^{-1}A = I_n$
- 3. Si $B \in \mathcal{M}_n(\mathbb{R})$ est aussi inversible, alors : $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}I_nB = B^{-1}B = I_n$

La méthode du pivot de Gauss

Pour calculer l'inverse d'une matrice par la méthode du pivot de Gauss, on considère les opérations suivantes :

- Multiplier une ligne par un nombre non nul
- Ajouter à une ligne une combinaison linéaire des autres
- Permuter des lignes

On appelle ces règles les règles élémentaires

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

37

Matrices

La méthode du pivot de Gauss

Calcul de l'inverse

Soit à calculer l'inverse de la matrice : $\begin{pmatrix} 1 & -5 & 0 \\ 2 & 1 & 1 \\ 6 & 2 & 4 \end{pmatrix}$

On écrit:

$$\left(\begin{array}{ccc|ccc|c}
1 & -5 & 0 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 & 0 \\
6 & 2 & 4 & 0 & 0 & 1
\end{array}\right)$$

Règle du jeu : Transformer la matrice de gauche en la matrice de droite, en n'appliquant que des règles élémentaires.

$$\left(\begin{array}{ccc|cccc}
1 & -5 & 0 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 & 0 \\
6 & 2 & 4 & 0 & 0 & 1
\end{array}\right)$$

$$L_2 \rightsquigarrow L_2 - 2L_1$$

$$\left(\begin{array}{ccc|ccc|c}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 11 & 1 & -2 & 1 & 0 \\
6 & 2 & 4 & 0 & 0 & 1
\end{array}\right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

40

Matrices

La méthode du pivot de Gauss

$$\left(\begin{array}{ccc|cccc}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 11 & 1 & -2 & 1 & 0 \\
6 & 2 & 4 & 0 & 0 & 1
\end{array}\right)$$

$$L_3 \rightsquigarrow L_3 - 6L_1$$

$$\left(\begin{array}{ccc|cccc}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 11 & 1 & -2 & 1 & 0 \\
0 & 32 & 4 & -6 & 0 & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc|ccc|c}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 11 & 1 & -2 & 1 & 0 \\
0 & 32 & 4 & -6 & 0 & 1
\end{array}\right)$$

$$L_3 \leadsto L_3 - \frac{32}{11}L_2$$

$$\left(\begin{array}{ccc|cccc}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 11 & 1 & -2 & 1 & 0 \\
0 & 0 & \frac{12}{11} & -\frac{2}{11} & -\frac{32}{11} & 1
\end{array}\right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

42

Matrices

La méthode du pivot de Gauss

$$\left(\begin{array}{ccc|ccc|c}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 11 & 1 & -2 & 1 & 0 \\
0 & 0 & \frac{12}{11} & -\frac{2}{11} & -\frac{32}{11} & 1
\end{array}\right)$$

$$L_3 \rightsquigarrow \frac{11}{12}L_3$$

$$\left(\begin{array}{ccc|ccc|c}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 11 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -\frac{1}{6} & -\frac{8}{3} & \frac{11}{12}
\end{array}\right)$$

$$\left(\begin{array}{ccc|ccc|c}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 11 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -\frac{1}{6} & -\frac{8}{3} & \frac{11}{12}
\end{array}\right)$$

$$L_2 \rightsquigarrow L_2 - L_3$$

$$\left(\begin{array}{c|ccccc}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 11 & 0 & -\frac{11}{6} & \frac{11}{3} & -\frac{11}{12} \\
0 & 0 & 1 & -\frac{1}{6} & -\frac{8}{3} & \frac{11}{12}
\end{array}\right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

44

Matrices

La méthode du pivot de Gauss

$$\left(\begin{array}{c|ccccc}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 11 & 0 & -\frac{11}{6} & \frac{11}{3} & -\frac{11}{12} \\
0 & 0 & 1 & -\frac{1}{6} & -\frac{8}{3} & \frac{11}{12}
\end{array}\right)$$

$$L_2 \rightsquigarrow \frac{1}{11}L_2$$

$$\left(\begin{array}{ccc|ccc|c}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -\frac{1}{6} & \frac{1}{3} & -\frac{1}{12} \\
0 & 0 & 1 & -\frac{1}{6} & -\frac{8}{3} & \frac{11}{12}
\end{array}\right)$$

$$\left(\begin{array}{ccc|cccc}
1 & -5 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -\frac{1}{6} & \frac{1}{3} & -\frac{1}{12} \\
0 & 0 & 1 & -\frac{1}{6} & -\frac{8}{3} & \frac{11}{12}
\end{array}\right)$$

$$L_1 \leadsto L_1 + 5L_2$$

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & \frac{1}{6} & \frac{5}{3} & -\frac{5}{12} \\
0 & 1 & 0 & -\frac{1}{6} & \frac{1}{3} & -\frac{1}{12} \\
0 & 0 & 1 & -\frac{1}{6} & -\frac{8}{3} & \frac{11}{12}
\end{array}\right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

46

Matrices

La méthode du pivot de Gauss

Conclusion:
$$\begin{pmatrix} 1 & -5 & 0 \\ 2 & 1 & 1 \\ 6 & 2 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{6} & \frac{5}{3} & -\frac{5}{12} \\ -\frac{1}{6} & \frac{1}{3} & -\frac{1}{12} \\ -\frac{1}{6} & -\frac{8}{3} & \frac{11}{12} \end{pmatrix}$$
$$= \frac{1}{12} \begin{pmatrix} 2 & 20 & -5 \\ -2 & 4 & -1 \\ -2 & -32 & 11 \end{pmatrix}$$

vérification :
$$1 \times 2 + (-5) \times (-2) = 12$$
 etc.

Déterminant et inverse d'une matrice 2 x 2

Définition. Le déterminant d'une matrice $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ est le réel défini par $\det(A) = ad - bc$.

Proposition. Une matrice $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ est inversible si et seulement si $\det A \neq 0$. Si c'est le cas, alors

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$

Corollaire : Les deux vecteurs $\vec{u} = (a, b)$ et $\vec{v} = (c, d)$ forment une base de \mathbb{R}^2 si et seulement si $\det \begin{pmatrix} a & c \\ b & d \end{pmatrix} \neq 0$.

Remarque:
$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \det \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

48

Matrices

La méthode du pivot de Gauss

Exercice:

1) Les matrices suivantes sont-elles inversibles? Si oui, donner leurs inverses.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & -5 \\ -1 & -1 \end{pmatrix}$$

- 2) Inverser la matrice $D = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$
- 3) Inverser la matrice $E = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 2 \\ 2 & -2 & 1 \end{pmatrix}$

Systèmes linéaires

On appelle système linéaire de n équations à p inconnues, un système d'équations du type

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p &= b_2 \\ \vdots &\vdots &\vdots \\ a_{n1}x_1 + a_{n1}x_2 + \dots + a_{np}x_p &= b_n \end{cases}$$

La matrice $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 < i < p}}$ s'appelle la matrice du système.

Le *n*-uplet (b_1, b_2, \dots, b_n) est le second membre du système.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

50

Matrices

Systèmes linéaires

Écriture matricielle d'un système linéaire

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \text{et} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Le système
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p &= b_2 \\ \vdots & & \vdots \\ a_{n1}x_1 + a_{n1}x_2 + \dots + a_{np}x_p &= b_n \end{cases}$$

$$Ax = b$$

Si la matrice A du système est carrée inversible, le système a une solution unique :

$$Ax = b \Leftrightarrow x = A^{-1}b$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

52

Matrices

Systèmes linéaires

Résolution d'un système linéaire : cas d'une matrice carrée

Exemple

Soit à résoudre le système

$$\begin{cases} x - y + 2z &= 5 \\ 3x + 2y + z &= 10 \\ 2x - 3y - 2z &= -10 \end{cases}$$

Écriture matricielle :

$$\begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & 1 \\ 2 & -3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \\ -10 \end{pmatrix}$$

Exemple

$$\left(\begin{array}{ccc|c}
1 & -1 & 2 & 5 \\
3 & 2 & 1 & 10 \\
2 & -3 & -2 & -10
\end{array}\right)$$

$$L_2 \rightsquigarrow L_2 - 3L_1$$

 $L_3 \rightsquigarrow L_3 - 2L_1$

$$\left(\begin{array}{ccc|c}
1 & -1 & 2 & 5 \\
0 & 5 & -5 & -5 \\
0 & -1 & -6 & -20
\end{array}\right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

55

Matrices

Systèmes linéaires

Résolution d'un système linéaire : cas d'une matrice carrée

Exemple

$$\left(\begin{array}{ccc|c}
1 & -1 & 2 & 5 \\
0 & 5 & -5 & -5 \\
0 & -1 & -6 & -20
\end{array}\right)$$

$$L_2 \rightsquigarrow \frac{1}{5}L_2$$

$$\left(\begin{array}{ccc|c}
1 & -1 & 2 & 5 \\
0 & 1 & -1 & -1 \\
0 & -1 & -6 & -20
\end{array}\right)$$

Exemple

$$\left(\begin{array}{ccc|c}
1 & -1 & 2 & 5 \\
0 & 1 & -1 & -1 \\
0 & -1 & -6 & -20
\end{array}\right)$$

$$L_1 \rightsquigarrow L_1 + L_2$$

 $L_3 \rightsquigarrow L_3 + L_2$

$$\left(\begin{array}{ccc|c}
1 & 0 & 1 & 4 \\
0 & 1 & -1 & -1 \\
0 & 0 & -7 & -21
\end{array}\right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

57

Matrices

Systèmes linéaires

Résolution d'un système linéaire : cas d'une matrice carrée

Exemple

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & 1 & 4 \\
0 & 1 & -1 & -1 \\
0 & 0 & -7 & -21
\end{array}\right)$$

$$L_3 \leadsto -\frac{1}{7}L_3$$

$$\left(\begin{array}{ccc|c}
1 & 0 & 1 & 4 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & 3
\end{array}\right)$$

Exemple

$$\left(\begin{array}{ccc|c}
1 & 0 & 1 & 4 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & 3
\end{array}\right)$$

$$L_1 \rightsquigarrow L_1 - L_3$$

 $L_2 \rightsquigarrow L_2 + L_3$

$$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{array}\right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

59

Matrices

Systèmes linéaires

Résolution d'un système linéaire : cas d'une matrice carrée

Exemple

Conclusion: l'unique solution du système

$$\begin{cases} x - y + 2z &= 5 \\ 3x + 2y + z &= 10 \\ 2x - 3y - 2z &= -10 \end{cases}$$

est
$$(x, y, z) = (1, 2, 3)$$

Exercice: Résoudre

$$\begin{cases} x+y+z = 2 \\ x-y+2z = 1 \\ 3x+y+5z = -1 \end{cases}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

61

Matrices

Systèmes linéaires

Résolution d'un système linéaire : cas général

Soit le système linéaire (écrit matriciellement) Ax = b, avec $A \in \mathcal{M}_{n,p}(\mathbb{R})$, $x \in \mathbb{R}^p$, $b \in \mathbb{R}^n$

- Soit b ∉ ImA → aucune solution
- ▶ Soit $b \in Im A$

On peut alors écrire
$$Ax_0 = b$$
, d'où $Ax = b \Leftrightarrow Ax = Ax_0 \Leftrightarrow A(x - x_0) = 0 \Leftrightarrow x - x_0 \in \text{Ker } A$

L'ensemble des solutions est alors $\{x_0 + x, x \in \text{Ker} A\}$

Ceci comprend notamment le cas n = p et A inversible (système dit "de Cramer"), dans lequel la solution est unique (Ker $A = \{0\}$), donnée par $x = A^{-1}b$

Exercice: Résoudre les systèmes linéaires suivants:

$$(S_1): \left\{ \begin{array}{lcl} x & +2y & +z & = & 1 \\ x & -y & & = & 3 \\ & -3y & -z & = & -1 \end{array} \right.$$

$$(S_2)$$
:
$$\begin{cases} x + 2y + z = 1 \\ x - y = 3 \end{cases}$$

$$(S_1):$$

$$\begin{cases} x & +2y & +z & = 1 \\ x & -y & = -1 \\ 2x & -3y & -z & = -1 \end{cases}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

63

Matrices

Systèmes linéaires

Applications

Exercice: Trouver un polynôme P, de degré minimal, tel que la fonction $x \mapsto P(x)$ et la fonction sinus aient les mêmes valeurs en x=0, $x=\frac{\pi}{2}$ et $x=\pi$, et la même dérivée en $x=\frac{\pi}{2}$.

Exercice:

- 1. Trouver un polynôme P de degré 3 tel que P(0) = 0 et $P(n) P(n-1) = n^2$ pour $n \in \{0, 1, 2\}$.
- 2. Montrer que le polynôme $Q(X) = P(X) P(X 1) X^2$ est de degré au plus 2. En déduire, au vu des racines connues de Q, que Q = 0.
- 3. En déduire l'expression explicite de $\sum_{n=1}^{N} n^2$ en fonction de N

