## Examen del bloc 2 de SIN: Test (1,75 punts)

ETSINF, Universitat Politècnica de València, 13 de gener de 2022

## Grup, cognoms i nom: 2,

Marca cada requadre amb una única opció. Puntuació:  $\max(0, (\text{encerts} - \text{errors}/3) \cdot 1, 75/9)$ .

- 1 A La probabilitat d'error d'un classificador s'estima que és del 2%. Determina quin és el nombre mínim de mostres de test necessari, M, per aconseguir que l'interval de confiança al 95% del dit error no supere el  $\pm 1\%$ ; açò es, I=[1%,3%]: M=753
  - A) M < 2000.
  - B)  $2000 \le M < 3500$ .
  - C)  $3500 \le M < 5000$ .
  - D)  $M \ge 5000$ .
- 2 B Es té una partició d'un conjunt de dades 3-dimensionals en un nombre de clústers donat,  $C \geq 2$ . Considereu la transferència de la dada  $\mathbf{x} = (6,1,10)^t$  d'un clúster i a altre  $j,\ j \neq i$ . Se sap que el clúster i conté 4 dades (comptant  $\mathbf{x}$ ) i el j 2. Així mateix, se sap que la mitjana del clúster i és  $\mathbf{m}_i = (2,3,3)^t$  i la del j  $\mathbf{m}_j = (7,10,9)^t$ . Si es realitza la dita transferència, es produirà un increment de la suma d'errors quadràtics,  $\Delta J$ , tal que:  $\Delta J = -36.7$ 
  - A)  $\Delta J < -70$
  - B)  $-70 \le \Delta J < -30$
  - C)  $-30 \le \Delta J < 0$
  - D)  $\Delta J > 0$
- 3 A Siga el següent conjunt de dades utilitzat per a entrenar un arbre de classificació amb 5 mostres bidimensionals que pertanyen a 2 classes:

| n        | 1 | 2 | 3 | 4 | 5 |
|----------|---|---|---|---|---|
| $x_{n1}$ | 4 | 2 | 1 | 2 | 2 |
| $x_{n2}$ | 1 | 2 | 2 | 5 | 4 |
| $c_n$    | 2 | 2 | 1 | 2 | 2 |

Quantes particions diferents es podrien generar en el node arrel? No consideres les particions en les quals totes les dades s'assignen al mateix node fill.

- A) 5
- B) 3
- C) 7
- D) 4

4 B Siga M un model de Markov de conjunt d'estats  $Q=\{1,2,F\}$  i alfabet  $\Sigma=\{a,b\}$ . Durant l'aplicació d'una iteració de l'algorisme de reestimació per Viterbi, s'ha obtés un parell "(cadena, camí més probable)" per cada cadena d'entrenament. Seguidament, a partir de tots els parells obtinguts, s'han obtingut els comptes (freqüències absolutes) de transició entre estats mostrats en la taula a la dreta. La normalització correcta d'aquests comptes resultarà en la taula de probabilitats de transició enntre estats:

| A | 1 | 2 | F |
|---|---|---|---|
| 1 | 1 | 3 | 4 |
| 2 | 4 | 1 | 1 |

- A)  $\begin{array}{|c|c|c|c|c|c|c|}
  \hline
  A & 1 & 2 & F \\
  \hline
  1 & \frac{1}{14} & \frac{3}{14} & \frac{4}{14} \\
  2 & \frac{4}{14} & \frac{1}{14} & \frac{1}{14}
  \end{array}$
- B)  $\begin{array}{|c|c|c|c|c|c|}
  \hline
  A & 1 & 2 & F \\
  \hline
  1 & \frac{1}{8} & \frac{3}{8} & \frac{4}{8} \\
  2 & \frac{4}{6} & \frac{1}{6} & \frac{1}{6}
  \end{array}$

- 5 A Siguen els següents 3 nodes d'un arbre de classificació amb mostres pertanyents a 3 classes:

| c | $n_1$ | $n_2$ | $n_3$ |
|---|-------|-------|-------|
| 1 | 2     | 5     | 3     |
| 2 | 2     | 4     | 1     |
| 3 | 1     | 5     | 3     |

on cada fila indica el nombre de mostres de cada classe en el node. Quina de les següents desigualtats és certa?

- A)  $\mathcal{I}(n_3) < \mathcal{I}(n_1) < \mathcal{I}(n_2)$
- B)  $\mathcal{I}(n_3) < \mathcal{I}(n_2) < \mathcal{I}(n_1)$
- C)  $\mathcal{I}(n_1) < \mathcal{I}(n_3) < \mathcal{I}(n_2)$
- D)  $\mathcal{I}(n_2) < \mathcal{I}(n_3) < \mathcal{I}(n_1)$
- 6 A Suposeu que estem aplicant l'algorisme Perceptró, amb factor d'aprenentatge  $\alpha=1$  i marge b=0.1, a un conjunt de 3 mostres bidimensionals d'aprenentatge per a un problema de 2 classes. Se sap que, després de processar les primeres 2 mostres, s'han obtés els vectors de pesos  $\mathbf{w}_1=(0,-1,-2)^t$ ,  $\mathbf{w}_2=(0,1,2)^t$ . Així mateix, se sap que, després de processar l'última mostra,  $(\mathbf{x}_3,c_3)$ , s'obtenen els vectors de pesos  $\mathbf{w}_1=(1,4,0)^t$ ,  $\mathbf{w}_2=(-1,-4,0)^t$ . Quina de les següents mostres és eixa última mostra?
  - A)  $((5,2)^t,1)$
  - B)  $((4,1)^t,2)$
  - C)  $((1,2)^t,2)$
  - D)  $((4,3)^t,2)$

7 D En un problema de raonament probabilístic corresponent a desplaçaments per carretera, amb les variables aleatòries d'interés: Climatologia (C):{clar(CLA), ennuvolat (NUV), pluja (PLU)}; Lluminositat (L):{dia (DIA), nit (NIT)}; Seguretat (S):{segur (SEG), accident (ACC)}. La probabilitat conjunta de les tres variables ve donada en la taula:

|          |      | DIA  |      |      | NIT  |      |
|----------|------|------|------|------|------|------|
| P(s,l,c) | CLA  | NUV  | PLU  | _    | NUV  | PLU  |
| SEG      | 0.33 | 0.23 | 0.04 | 0.10 | 0.07 | 0.09 |
| ACC      | 0.03 | 0.02 | 0.01 | 0.01 | 0.02 | 0.05 |

La probabilitat condicional  $P(S = ACC \mid L = DIA, C = CLA)$  és:

- A) 0.140
- B) 0.360
- C) 0.030
- D) 0.083
- 8 B Donat el classificador en 2 classes definit pels seus vectors de pesos  $\mathbf{w}_1 = (-1,0,2)^t$ ,  $\mathbf{w}_2 = (-1,3,-1)^t$  en notació homogènia, quin dels següents conjunts de vectors **no** definix un classificador equivalent al donat?
  - A)  $\mathbf{w}_1 = (1, 0, 2)^t$ ,  $\mathbf{w}_2 = (1, 3, -1)^t$
  - B)  $\mathbf{w}_1 = (2, 0, -4)^t, \, \mathbf{w}_2 = (2, -6, 2)^t$
  - C)  $\mathbf{w}_1 = (-3, 0, 6)^t, \, \mathbf{w}_2 = (-3, 9, -3)^t$
  - D)  $\mathbf{w}_1 = (-1, 0, 6)^t$ ,  $\mathbf{w}_2 = (-1, 9, -3)^t$
- 9 C Siga M el model de Markov representat a la dreta, on t,  $0 < t < \frac{1}{4}$ , denota la probabilitat de transició de l'estat 1 al 2. Donada la cadena  $x = \mathtt{abb}$ , la probabilitat de generar x mitjançant el camí 122F,  $P(\mathtt{abb}, 122F)$ , depén de t. Anàlogament, la probabilitat de generar x mitjançant el camí 111F,  $P(\mathtt{abb}, 111F)$ , també depén de t (a través de la probabilitat de transició de l'estat 1 al F). Indica en quin cas  $P(\mathtt{abb}, 111F) > P(\mathtt{abb}, 122F)$ :
  - A) Mai.
  - B) Si i només si  $0 < t < \frac{1}{20}$ .
  - C) Si i només si  $0 < t < \frac{1}{10}$ .
  - D) Sempre, és a dir,  $0 < t < \frac{1}{4}$ .



$$\begin{split} P(\texttt{abb}, 122F) &= 1\frac{3}{4}t\frac{1}{2}\frac{1}{2}\frac{1}{2} \\ P(\texttt{abb}, 111F) &> P(\texttt{abb}, 122F) \rightarrow t < \frac{1}{10} \end{split}$$

## Examen del bloc 2 de SIN: Problemes (2 punts)

ETSINF, Universitat Politècnica de València, 13 de gener de 2022

Grup, cognoms i nom: 2,

## Problema sobre Forward i Viterbi

Siga M un model de Markov de conjunt d'estats  $Q=\{1,2,F\}$ ; alfabet  $\Sigma=\{a,b\}$ ; probabilitats inicials  $\pi_1=\frac{1}{2},\pi_2=\frac{1}{2}$ ; i probabilitats de transició entre estats i d'emissió de símbols:

| A | 1             | 2             | F             |
|---|---------------|---------------|---------------|
| 1 | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ |
| 2 | $\frac{1}{7}$ | $\frac{3}{7}$ | $\frac{3}{7}$ |

| B | a             | b             |
|---|---------------|---------------|
| 1 | 3<br>6        | <u>3</u>      |
| 2 | $\frac{1}{3}$ | $\frac{2}{3}$ |

Siga x=ab. Es demana:

- 1. (0,75 punts) Realitzeu una traça de l'algorisme Forward per a obtindre la probabilitat amb la qual M genera la cadena x,  $P_M(x)$ .
- 2. (0,75 punts) Realitzeu una traça de l'algorisme de Viterbi per a obtindre l'aproximació de Viterbi a la probabilitat amb la qual M genera la cadena x,  $\tilde{P}_M(x)$ .
- 3. (0, 25 punts) A partir de la traça realitzada en l'apartat anterior, determineu un camí més probable amb el qual M genera x.
- 4. (0, 25 punts) Determineu la probabilitat amb la qual M genera x seguint un camí distint al més probable determinat en l'apartat anterior.

Solució:

1. Forward:  $P_M(x) = 73/1176 = 0.06207$ 

2. Viterbi:  $\tilde{P}_M(x) = 1/42 = 0.02381$ 

3. Camí més probable: 12F

4.  $P_M(x) - \tilde{P}_M(x) = 15/392 = 0.03827.$