CFGs and PCFGs

(Probabilistic)
Context-Free
Grammars

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

people fish tanks
people fish with rods

Phrase structure grammars = context-free grammars (CFGs)

- G = (T, N, S, R)
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \subseteq N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - $X \subseteq N$ and $\gamma \subseteq (N \cup T)^*$
- A grammar G generates a language L.

Phrase structure grammars in NLP

- G = (T, C, N, S, L, R)
 - T is a set of terminal symbols
 - C is a set of preterminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol (S ∈ N)
 - L is the lexicon, a set of items of the form $X \rightarrow x$
 - $X \subseteq P$ and $x \subseteq T$
 - R is the grammar, a set of items of the form $X \rightarrow \gamma$
 - $X \subseteq N$ and $\gamma \subseteq (N \cup C)^*$
- By usual convention, S is the start symbol, but in statistical NLP, we usually have an extra node at the top (ROOT, TOP)
- We usually write e for an empty sequence, rather than nothing

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

people fish tanks
people fish with rods

Christopher Manning

Probabilistic – or stochastic – context-free grammars (PCFGs)

- G = (T, N, S, R, P)
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \subseteq N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - P is a probability function
 - P: $R \to [0,1]$
 - $\forall X \in \mathbb{N}, \sum_{X \to \gamma \in \mathbb{R}} P(X \to \gamma) = 1$
- A grammar G generates a language model L.

$$\sum_{\gamma \in T^*} P(\gamma) = 1$$

Christopher Manning

A PCFG

$S \rightarrow NP VP$	1.0	N → people	0.5
$VP \rightarrow V NP$	0.6	$N \rightarrow fish$	0.2
$VP \rightarrow V NP PP$	0.4	N → tanks	0.2
$NP \rightarrow NP NP$	0.1	$N \rightarrow rods$	0.1
$NP \rightarrow NP PP$	0.2	$V \rightarrow people$	0.1
$NP \rightarrow N$	0.7	$V \rightarrow fish$	0.6
$PP \rightarrow P NP$	1.0	V → tanks	0.3
		$P \rightarrow with$	1.0

[With empty NP removed so less ambiguous]

The probability of trees and strings

- P(t) The probability of a tree t is the product of the probabilities of the rules used to generate it.
- P(s) The probability of the string s is the sum of the probabilities of the trees which have that string as their yield

$$P(s) = \Sigma_j P(s, t)$$
 where t is a parse of s
= $\Sigma_j P(t)$

Tree and String Probabilities

- s = people fish tanks with rods
- $P(t_1) = 1.0 \times 0.7 \times 0.4 \times 0.5 \times 0.6 \times 0.7$ $\times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1$
 - = 0.0008232
- $P(t_2) = 1.0 \times 0.7 \times 0.6 \times 0.5 \times 0.6 \times 0.2$ $\times 0.7 \times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1$
 - = 0.00024696
- $P(s) = P(t_1) + P(t_2)$ = 0.0008232 + 0.00024696 = 0.00107016

Verb attach

Noun attach

CFGs and PCFGs

(Probabilistic)
Context-Free
Grammars