Math 623, Fall 2013: Problem set 9

1. Exercise 2, p. 312.

2. Exercise 3, p. 312.

3. Exercise 5, p. 313.

4. Exercise 8, p. 313

5. Exercise 10, p. 314

6. Consider the function

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ x^2 + 1 & \text{if } 0 \le x \le 2 \\ 9 - x & \text{if } 2 \le x < 4 \\ 10 & \text{if } 4 \le x \end{cases}$$

and consider the (signed) Borel measure $\mu = \mu_F$.

- (a) Compute the total variation $|\mu|$ and the positive and negative variations μ_+ and μ_- .
- (b) Compute $\int_{\mathbf{R}} x^2 d\mu$.
- (c) Let m denote the Lebesgue measure on \mathbf{R} . Compute the Lebesgue decomposition $\mu = \mu_a + \mu_s$ of μ with respect to m.
- 7. Exercise 14, p.315
- 8. Let [0,1] equipped with \mathcal{M} , the σ -algebra of Lebesgue measurable subsets of [0,1]. Let m denote the Lebesgue measure on [0,1] and let μ denote the counting measure on [0,1], i.e., for $E \subset [0,1]$, $\mu(E)$ is the number of elements in E. Let $D = \{(x,x), x \in [0,1]\}$ denote the diagonal in $[0,1] \times [0,1]$. Show that $\int \int \chi_D dm d\mu$, $\int \int \chi_D d\mu dm$, and $\int \chi_D d(m \times \mu)$ are all unequal. Why does this not contradict Fubini Theorem?

Hint: To compute $\int \chi_D d(m \times \mu)$ go back to the definition of $m \times \mu$.

- 9. Suppose ν is a σ -finite signed measure and μ and λ are σ -finite (positive) measures on (X, \mathcal{M}) .
 - (a) Suppose that $\nu \ll \mu$. Show that if $g \in L^1(\nu)$, then $g \frac{d\nu}{d\mu} \in L^1(\mu)$ and

$$\int g \, d\nu \, = \, \int g \frac{d\nu}{d\mu} d\mu$$

(b) Suppose that $\nu \ll \mu$ and $\mu \ll \lambda$. Show that $\nu \ll \lambda$ and

$$\frac{d\nu}{d\lambda} \,=\, \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda} \,.$$

Hint: Use (a). This equality is called the chain rule (why?).

(c) Suppose $\mu \ll \lambda$ and $\lambda \ll \mu$. Show that

$$\frac{d\lambda}{d\mu}\frac{d\mu}{d\lambda} = 1$$

for μ or λ a.e. x. *Hint:* Use (b).

10. Let [0,1] equipped with \mathcal{M} , the σ -algebra of Lebesgue measurable subsets of [0,1]. Let m denote the Lebesgue measure on [0,1] and let μ denote the counting measure on [0,1]. Show that $m \ll \mu$ but that there exists no f such that $dm = f d\mu$.