

#### **AMPLIACIÓN DE SISTEMAS OPERATIVOS Y REDES**

Grado en Ingeniería Informática / Doble Grado Universidad Complutense de Madrid

# TEMA 1.2. Conceptos Avanzados del Protocolo TCP

#### **PROFESORES:**

Rubén Santiago Montero Eduardo Huedo Cuesta Luis M. Costero

### El protocolo TCP: Características

- Servicios ofrecidos por TCP:
  - Comunicación lógica proceso-proceso, usando números de puerto
  - Transferencia como flujo de bytes (byte stream)
  - Transmisión orientada a conexión y fiable
  - Full-duplex y multiplexación
- Orientado a conexión, define las siguientes fases para la transmisión:
  - Establecimiento de conexión
  - Transferencia de datos
  - Cierre de conexión
- Unidad de transferencia: Segmento TCP
- Fiable, incluye mecanismos de control de errores de tipo ventana deslizante con:
  - Códigos de comprobación (checksum)
  - Numeración de segmentos
  - Confirmaciones selectivas y acumuladas, superpuestas del receptor
  - Retransmisión de segmentos perdidos o erróneos
  - Temporizadores
- Especificado por <u>RFC 9293</u> (2022), que reemplaza RFC 793 (1981) y otros

### Ventana Deslizante: La Ventana de Envío



Los byte del flujo de datos se numeran, y el **número de secuencia (SEQ)** es el número del primer byte del segmento

### Ventana Deslizante: La Ventana de Recepción

Ventana de recepción, número de bytes que se pueden recibir (control de flujo)



**Números de confirmación (ACK),** número del siguiente byte en el flujo de datos que se espera recibir.

- Confirman todos los bytes anteriores al de ACK (acumulativos)
- Se solapan con el envío de datos (*piggybacking*)

### **Ventana Deslizante: Funcionamiento**

**Ejemplo:** Transmisión sin errores.

Tamaño de la ventana = 100 bytes, Tamaño del segmento = 100 bytes.



**Ejemplo**: ¿Cuáles serían los números de secuencia y confirmación para un tamaño de segmento de 50 bytes? (Nota, las confirmaciones en TCP no tienen que realizarse de forma inmediata)

### Formato del Segmento TCP

**Puertos**, identifican los extremos de la conexión

Números de secuencia y confirmación, expresados en bytes en el flujo de datos



Longitud de la cabecera en palabras de 32 bits (20-60 bytes)

Tamaño de la ventana en bytes (control de flujo)

### Formato del Segmento TCP

#### Flags del campo de control (6 bits)

- SYN: Utilizado en el establecimiento de la conexión y sincronizar los números de secuencia iniciales
- FIN: Utilizado en la finalización de la conexión
- ACK: El segmento contiene un número de confirmación válido (ACK=1). Todos los segmentos de una conexión TCP, excepto el primero, llevan ACK=1
- RST: Utilizado para denegar o abortar una conexión
- PSH: Los datos deben ser entregados inmediatamente a la aplicación (PSH=1), o pueden almacenarse en el buffer (PSH=0)
- URG: El segmento transporta datos urgentes (URG=1) desde el primer byte hasta el nº de byte especificado en el campo Urgent pointer
  - TCP notifica a la aplicación de los datos urgentes (SIGURG)
  - El tratamiento de urgencia corresponde a la aplicación, no a TCP

# Fases de la Conexión: Establecimiento (3-way)



#### **Ataque TCP SYN Flooding**

- Se envía una gran cantidad de segmentos TCP con el flag SYN activado, que consumen recursos del servidor y puede llegar a no responder (DoS)
- Contramedidas: filtrar conexiones (limitar tasa o detectar IPs suplantadas),
   aumentar recursos o retrasar la asignación de recursos (usando SYN cookies)

### Fases de la Conexión: Transferencia



# Fases de la Conexión: Finalización (4-way)



# Fases de la Conexión: Finalización (3-way)



- Ambos extremos dejan de enviar información
- Los mensajes de FIN pueden contener datos. Siempre consume un número de secuencia como mínimo ya que deben ser confirmados
- El último ACK no lleva datos

# Fases de la Conexión: Máquina de Estados



### Fases de la Conexión: Máquina de Estados



### Fases de la Conexión: Máquina de Estados



**Ejemplos:** Describir la secuencia de estados para el cliente y servidor durante:

- El cierre de tres vías
- El cierre simultáneo

### Control de Errores: Confirmaciones

- El control de errores se realiza usando el mecanismo de ventana deslizante que permite gestionar:
  - La retransmisión de segmentos erróneos o perdidos
  - La recepción de segmentos duplicados o fuera de orden

#### Reglas para las confirmaciones

- 1. Los segmentos de datos deben incluir una confirmación (*piggyback*) indicando el siguiente número de secuencia esperado, que confirma todos los anteriores
- 2. Si no hay datos que enviar, las confirmaciones de segmentos recibidos en orden pueden retrasarse 500 ms para incluirlas en un segmento de datos
- 3. Solo puede retrasarse la confirmación de un segmento
- Los segmentos recibidos fuera de orden se confirman inmediatamente (esto provocará una retransmisión rápida, como veremos)
- 5. Los segmentos que completan huecos se confirman inmediatamente
- 6. Los segmentos duplicados se confirman para solucionar la pérdida de un ACK

#### **Opcional**

- Confirmaciones selectivas (SACK) de segmentos fuera de orden
  - No reemplazan los ACK, informativos para el emisor
  - Implementados como opción TCP

### Control de Errores: Transmisión sin Error



### Control de Errores: Recepción fuera de orden



### Control de Errores: Retransmisión

- La capacidad para volver a transmitir un segmento TCP cuando no se recibe o se recibe erróneamente es el núcleo del control de errores
- TCP dispone de dos mecanismos de retransmisión:
  - Temporizador de retransmisión
    - Se inicia cuando se envía un segmento y se para al recibir la confirmación
    - Si expira, se retransmite el primer segmento sin confirmar de la ventana
    - Existen diversos algoritmos para fijar el RTO (Retransmission Time-Out), que debe ser mayor que el RTT (Round-Trip Time)
    - Cada conexión debe usar un único temporizador (ver RFC 6298)
  - Retransmisión rápida
    - Se retransmite cuando se reciben 3 ACKs duplicados
    - No requiere que expire el temporizador de retransmisión

# Control de Errores: Pérdida de un Segmento



### Control de Errores: Pérdida de un ACK



### **Temporizadores TCP**

#### Retransmisión

- **Keepalive**, que evita mantener conexiones indefinidamente
  - Una conexión puede estar en silencio tcp\_keepalive\_time segundos
  - Después, se envía un máximo de tcp\_keepalive\_probes sondas cada tcp\_keepalive\_intvl segundos
  - Si no se recibe ningún ACK para las sondas, se cierra la conexión
  - Ej. 2 horas, 10 sondas cada 75 segundos
- TIME-WAIT, útil en dos situaciones:
  - Reenviar el último ACK durante el cierre activo si se retransmite FIN
  - Impide una nueva conexión con los mismos parámetros (direcciones y puertos origen y destino) y se puedan mezclar segmentos (p.ej. duplicados o retrasados)
  - 2\*MSL (Maximum Segment Lifetime). Ej. 60 segundos
- Temporizador de persistencia, asociado al anuncio de un tamaño de ventana 0
  - Recupera la pérdida de un ACK posterior con el nuevo tamaño
  - Se envía una sonda que fuerza el envío de un ACK
  - Ej. 60 segundos

- La elección del tiempo de vencimiento del temporizador de retransmisión (RTO) está basada en los retardos observados en la red (RTT)
- Los retardos en la red pueden variar dinámicamente, por tanto el temporizador debe adaptarse a esta situación
- Las principales técnicas utilizadas para fijar el temporizador de retransmisión son las siguientes:
  - Método de la media ponderada (algoritmo de Jacobson)
  - Método de la varianza (algoritmo de Jacobson/Karels)
  - Algoritmo de Karn

#### Tiempo de ida y vuelta medido (RTT<sub>M</sub>)

- Cuando se envía segmento, se mide el tiempo transcurrido desde que se envía el segmento hasta que se recibe el ACK, denominado RTT<sub>M</sub> (Measured Round-Trip Time)
- Sólo hay un temporizador RTT<sub>M</sub>
- El valor del RTT<sub>M</sub> puede experimentar grandes fluctuaciones

#### Tiempo de ida y vuelta suavizado (RTT<sub>s</sub>)

- Evitar las fluctuaciones del RTT
- RTT<sub>S</sub> (Smoothed Round-Trip Time) es la media ponderada entre el RTT<sub>M</sub> y el último RTT<sub>S</sub> calculado:

```
1^a \text{ medida}: RTT<sub>S</sub> = RTT<sub>M</sub>
```

Siguientes:  $RTT_S = (1 - \alpha) \times RTT_S + \alpha \times RTT_M$ , con  $\alpha < 1$  (ej.  $\alpha = \frac{1}{8}$ )

### Desviación del RTT (RTT<sub>D</sub>)

Para considerar la variación del tiempo de ida y vuelta

```
1^a \text{ medida}: RTT_D = RTT_M/2
```

Siguientes:  $RTT_D = (1 - \beta) \times RTT_D + \beta \times |RTT_S - RTT_M|$ , con  $\beta < 1$  (ej.  $\beta = 1/4$ )

#### Algoritmo de Jacobson

- Considera únicamente el RTT<sub>s</sub>
- El RTO se calcula después de cada medida del RTT como

RTO = 
$$\gamma \times RTT_S$$
 (ej.  $\gamma$ =2, el doble del RTT estimado)

#### Algoritmo de Jacobson/Karels

Combina RTT<sub>S</sub> y RTT<sub>D</sub>
 RTO = RTT<sub>S</sub> + 4×RTT<sub>D</sub>

#### Algoritmo de Karn

- Previene la ambigüedad en el cálculo del RTT<sub>M</sub> cuando hay retransmisiones
- En esos casos, no actualiza RTT<sub>S</sub> y RTT<sub>D</sub> y duplica el RTO (**exponential backoff**)



**Ejemplo:** Calcular los valores de los temporizadores:

•  $\alpha = 1/8$ ,  $\beta = 1/4$ 



**Ejemplo:** Calcular los valores de los temporizadores:

•  $\alpha = 1/8$ ,  $\beta = 1/4$ 



### Control de Flujo

- Controla la tasa de envío de datos para evitar la sobrecarga del receptor
- El control de flujo se realiza mediante la ventana de recepción, anunciada en cada ACK



### Control de Flujo: Síndrome de la ventana trivial

- El síndrome de la ventana trivial (silly window syndrome) se produce cuando:
  - La aplicación emisora genera datos a un ritmo muy lento (ej. byte a byte)
  - La aplicación receptora consume datos a un ritmo muy lento
- Ventana trivial en el emisor (ej. aplicaciones interactivas)
  - Cada carácter necesita 4 mensajes TCP/IP (40 bytes de cabeceras)
  - Un carácter (1 bytes) usa más de 160 bytes



### Control de Flujo: Síndrome de la ventana trivial

- Algoritmo de Nagle (RFC 1122, Sec. 4.2.3.4)
  - El emisor envía el primer mensaje (aunque sea un solo byte)
  - Los siguientes mensajes se retrasan hasta que:
    - se recibe un ACK del receptor
    - se acumula un segmento completo (MSS bytes) de la aplicación
    - expira el RTO



### Control de Flujo: Síndrome de la ventana trivial

#### Ventana trivial en el receptor

- La aplicación consume los datos a un ritmo lento
- Se anuncian ventanas de tamaño reducido, produciendo el efecto anterior

#### Algoritmo de Clark

- Anunciar un tamaño de ventana 0 hasta que:
  - Haya espacio para recibir un segmento completo (MSS)
  - Se haya liberado la mitad del buffer de recepción

#### Retrasar los ACKs

- Para evitar que el emisor desplace la ventana
- Reduce el tráfico (número de ACKs), pero puede provocar retransmisiones innecesarias de segmentos no confirmados
- TCP establece que no deben retrasarse más de 500 ms

- Cuando se pierden paquetes en Internet, la mayoría de las veces se debe a un problema de congestión en algún punto de la red:
  - El router no puede procesar y reexpedir paquetes al ritmo al que los recibe
  - Cuando el router se satura, empieza a descartar paquetes (incluidas las confirmaciones)
- El control de la congestión y el de flujo son dos mecanismos diferentes:



- El emisor utiliza el ritmo de llegada de confirmaciones para regular el ritmo de envío de segmentos de datos
- Esto se implementa mediante la ventana de congestión (CW)
  - La ventana de congestión es complementaria a la ventana de recepción (RW) usada para el control de flujo
  - En una situación de no congestión (sin pérdida o retraso de segmentos) la ventana de congestión alcanza el mismo tamaño que la ventana de recepción (CW=RW)
  - Cuando se produce una situación de congestión el tamaño de CW se va reduciendo progresivamente
  - Cuando la situación de congestión desaparece, el tamaño de CW se va aumentando progresivamente
  - El número máximo de bytes que puede enviar el emisor (AW, Allowed Window) es el mínimo de ambos tamaños de ventana:

- La red está sin congestión cuando no se pierden o retrasan segmentos
- La transmisión comienza con un tamaño de ventana de congestión CW = 1
  - El emisor envía un único segmento de tamaño máximo igual a MSS
- A continuación, la CW va aumentando, pasando por tres fases distintas:
  - Fase de arranque lento (slow start)
    - La CW se incrementa en uno por cada segmento enviado y confirmado
    - Esto provoca un crecimiento exponencial (CW = 1, 2, 4, 8, 16, 32...)
    - Esta fase termina cuando el tamaño de CW alcanza un cierto umbral, denominado umbral de arranque lento (SST, *Slow Start Threshold*)
    - Inicialmente, el valor del SST suele ser de 64 Kbytes
  - Fase de evitación de congestión (congestion avoidance)
    - A partir del SST, la CW se incrementa en uno cada vez que se envía y se confirma una ventana completa (es decir, CW segmentos)
    - Esto provoca un crecimiento lineal
    - Esta fase termina cuando la CW alcanza el tamaño de la ventana de recepción (RW)
  - Fase constante
    - En esta fase, la CW se mantiene a un valor constante (CW = RW)



- La situación de congestión en la red se detecta indirectamente
- Recepción de 3 ACKs duplicados
  - <u>Nivel de congestión leve</u>, sigue habiendo tráfico en la red (llegan las confirmaciones)
  - Se activa el método de recuperación rápida (fast recovery):
    - Se reduce el valor de CW y SST a la mitad del valor de CW
    - Se ejecuta el método de evitación de congestión
- Expiración del temporizador de retransmisión (RTO)
  - <u>Nivel de congestión elevado</u>, el tráfico en la red está interrumpido (no llegan confirmaciones)
  - En este caso se realizan las siguientes acciones:
    - Se reduce el valor de SST a la mitad del valor de CW
    - Se inicializa el tamaño de CW a 1
    - Se ejecuta el método de arranque lento

Recepción de 3 ACKs duplicados



• Expiración del temporizador de retransmisión



# **Ejercicios: Preguntas Teóricas**

| Cuando se recibe un segmento TCP con un número de secuencia que ya se ha recibido previamente                                                                                                                 | I |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>Se puede retrasar la confirmación del número de secuencia recibido.</li> <li>Se confirma inmediatamente el número de secuencia esperado.</li> <li>No es necesario confirmar nada</li> </ul>          |   |
|                                                                                                                                                                                                               |   |
| El estado TIME-WAIT del protocolo TCP sirve para                                                                                                                                                              |   |
| <ul> <li>Implementar el cierre ordenado de tres vías (3-way)</li> <li>Impedir una nueva conexión con los mismos parámetros</li> <li>Poder retransmitir los últimos datos enviados antes del cierre</li> </ul> |   |
|                                                                                                                                                                                                               |   |
| Cuando se recibe un segmento TCP con un número de secuencia mayor al esperado                                                                                                                                 |   |
| <ul> <li>Se puede retrasar la confirmación del número de secuencia recibido.</li> <li>No es necesario confirmar nada.</li> <li>Se confirma inmediatamente el número de secuencia esperado.</li> </ul>         |   |

# **Ejercicios: Preguntas Teóricas**

| ¿Qué se hace al recibir 3 ACKs duplicados?                                                                                                                                                                                                                                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Se envía el primer segmento sin confirmar de la ventana.</li> <li>Se ignoran al ser duplicados, es decir, no se hace nada.</li> <li>Se espera a que expire el temporizador de retransmisión y se envía el primer segmento sin confirmar de la ventana.</li> </ul> |  |