# **Chapitre 2**

## Normes sur $\mathbb{R}^n$ et limites

## 2.1 Normes et distances

Le but de se chapitre est de formaliser et de donner un sens précis à l'assertion "x est proche de y" quand  $x, y \in \mathbb{R}^n$ . On sait déjà mesurer les distances dans  $\mathbb{R}^n$ . Si  $A = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$  et  $B = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$  sont deux points de  $\mathbb{R}^n$ . La distance est différente suivant que l'on mesure la trajectoire

- "à vol d'oiseau" : c'est la distance  $\ell^2$  ou euclidienne.
- "taxi cab" : distance  $\ell^1$  ou "city norm".

### **2.1.1** Normes

**Définition 2.1.1.** Soit un  $\mathbb{R}$  espace vectoriel E. Une **norme** est une application  $N: E \to \mathbb{R}^+ = [0, \infty[$  qui vérifie les propriétés suivantes :

- 1. Séparation :  $\forall u \in E, N(u) \ge 0$  et  $N(u) = 0 \Leftrightarrow u = 0$ ,
- 2. Homogénéité :  $\forall u \in E, \forall \lambda \in \mathbb{R}, N(\lambda u) = |\lambda| N(u),$
- 3. Inégalité triangulaire :  $\forall (u, v) \in E^2, N(u+v) \leq N(u) + N(v)$ .

Dans la suite, on notera le plus souvent  $N(\cdot) = \|\cdot\|$ . L'espace E muni d'une norme  $\|\cdot\|$  est appelé un espace normé et est noté  $(E, \|\cdot\|)$ .

**Exemple 2.1.1.** Si  $E = \mathbb{R}^n$  et si  $u = (x_1, \dots, x_n) \in E$ , on définit les normes usuelles suivantes :

- 1. La norme 1 est  $||u||_1 = |x_1| + \cdots + |x_n|$
- 2. La norme 2 est  $||u||_2 = \sqrt{x_1^2 + \cdots + x_n^2}$  dispose de propriétés particulières (norme euclidienne).
- 3. La norme infinie est  $||u||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$



**Proposition 2.1.1.** Soit  $(E, \|\cdot\|)$  un espace normé. On a pour tout  $u, v \in E$ 

$$||u|| - ||v|| | \le ||u - v||.$$

Démonstration.



### 2.1.2 Distances

**Définition 2.1.2.** Soit E un ensemble, une **distance** est une application  $d: E \times E \to [0, +\infty[$  telle que

- 1. Symétrie :  $\forall u, v \in E$  on a d(u, v) = d(v, u)
- 2. Séparabilité : d(u, v) = 0 si et seulement si u = v
- 3. Inégalité triangulaire :  $\forall u, v, w \in E$  on a  $d(u, w) \leq d(u, v) + d(v, w)$

Un espace E muni d'une distance d est appelé espace métrique. On note (E,d). Un espace normé est un espace métrique :

**Proposition 2.1.2.** Si  $(E, \|\cdot\|)$  est un espace normé. L'application  $d: E \times E \to [0, +\infty[$  définie par  $d(u, v) = \|u - v\|$  est une distance sur E.

Démonstration.

| <b>Remarque 7.</b> Toutes les distances ne sont pas issues de normes : dans $E = \mathbb{R}$ on définit $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ par $d(x,y) = \operatorname{atan}( x-y )$ . |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                      |
|                                                                                                                                                                                                      |
|                                                                                                                                                                                                      |
|                                                                                                                                                                                                      |

#### 2.1.3 Boules ouvertes et fermées

La notion de norme généralise la notion de valeur absolue dans  $\mathbb R$  aux espaces vectoriels. La définition suivante généralise la notion d'intervalle ouvert et fermé dans  $\mathbb R$  aux espaces vectoriels :

**Définition 2.1.3.** Soit  $(E, \|\cdot\|)$  un  $\mathbb{R}$  espace vectoriel normé,  $a \in E$  et un nombre réel r > 0 fixé. L'ensemble

$$B_r(a) = \{ u \in E, ||u - a|| < r \}$$

est appelé **boule ouverte** de centre a et de rayon r. L'ensemble

$$\overline{B_r}(a) = \{ u \in E, ||u - a|| \le r \}$$

est appelé **boule fermée** de centre a et de rayon r.

**Exemple 2.1.2.** Voici les boules unités fermées dans  $E = \mathbb{R}^2$  pour :



**Exemple 2.1.3.** Existe-t-il une norme dont la boule est l'un des ensembles suivants :



## 2.1.4 Normes équivalentes

**Définition 2.1.4 (Normes équivalentes).** On dit que deux normes  $\|\cdot\|$  et  $\|\cdot\|'$ :  $E \to \mathbb{R}$  sont équivalentes (et on note  $\|\cdot\| \sim \|\cdot\|'$ ) s'il existe  $\alpha > 0$  et  $\beta > 0$  tels que,  $\forall u \in E$ 

$$\alpha \|u\| \le \|u\|' \le \beta \|u\|$$

**Proposition 2.1.3.** La relation  $\sim$  définit une relation d'équivalence sur les normes.

 $D\'{e}monstration.$ 





On a l'interprétation géométrique suivante en termes de boules :



**Théorème 2.1.1.** Dans un  $\mathbb{R}$  espace vectoriel de dimension finie, toute les normes sont équivalentes.

Démonstration. Admis dans ce cours.

Remarque 8. Ce n'est pas vrai en dimension infinie.

## 2.2 Limites de suites

**Définition 2.2.1 (Limite d'une suite).** Soit  $u = (u_k)_{k \in \mathbb{N}}$  une suite de points dans  $(E, \|\cdot\|)$  et  $\ell \in E$ . On dit que la suite u converge vers  $\ell$  (ou la suite u admet  $\ell$  pour limite, ou u tend vers  $\ell$ ) au sens de la norme  $\|\cdot\|$  si les conditions équivalentes suivantes sont satisfaites :

- 1. la suite de réels  $||u_k \ell||$  tend vers 0 (i.e.  $\lim_{k \to \infty} ||u_k \ell|| = 0$ )
- 2.  $\forall \varepsilon > 0, \exists N \in \mathbb{N}, k \ge N \Rightarrow ||u_k \ell|| < \varepsilon$

Deux normes équivalentes ont les mêmes suites convergentes :

**Proposition 2.2.1.** Soit E un  $\mathbb{R}$  espace vectoriel et  $\|\cdot\|$ ,  $\|\cdot\|'$ :  $E \to [0, +\infty[$  deux normes équivalentes sur E. Pour toutes suites  $(u_k)_{k\in\mathbb{N}}$  et  $\ell\in E$  les propriétés suivantes sont équivalentes :

- 1.  $\lim_{k\to+\infty} u_k = \ell \text{ pour } \|\cdot\|,$
- 2.  $\lim_{k\to+\infty} u_k = \ell$  pour  $\|\cdot\|'$ .

Démonstration.

Dans  $\mathbb{R}^n$  une suite converge si toutes les suites de ses coordonnées convergent :

**Proposition 2.2.2.** Soit  $u=(u_k)_{k\in\mathbb{N}}=\begin{pmatrix}u_{k,1}\\\vdots\\u_{k,n}\end{pmatrix}_{k\in\mathbb{N}}$  une suite de  $\mathbb{R}^n$  et  $\ell=\begin{pmatrix}\ell_1\\\vdots\\\ell_n\end{pmatrix}\in\mathbb{R}^n$ . Alors les conditions suivantes sont équivalentes :

- 1.  $\lim_{k\to+\infty} u_k = \ell$  dans  $\mathbb{R}^n$
- 2. Pour tout  $i = 1, \dots, n$  on a  $\lim_{k \to +\infty} u_{k,i} = \ell_i$  dans  $\mathbb{R}$

Démonstration.



Remarque 9. La limite est donc, si elle existe, unique.

## 2.3 Notions élémentaires de topologie

### 2.3.1 Ensembles ouverts et ensembles fermés

**Définition 2.3.1.** Soit  $(E,\|\cdot\|)$  un  $\mathbb R$  espace vectoriel normé. On dit que

1. une partie  $\mathcal{U}$  de E est un **ouvert** pour la norme  $\|\cdot\|$  si pour tout  $a \in \mathcal{U}$ , on peut trouver un réel r > 0 tel que la boule  $B_r(a) \subset \mathcal{U}$ .

| 2. une partie $\mathcal{F}$ de $E$ est un <b>fermé</b> pour la norme $\ \cdot\ $ si le complémentaire $E \setminus \mathcal{F} = \mathcal{F}^c = \{u \in E   u \notin \mathcal{F}\}$ est une partie ouverte.                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exemple 2.3.1.                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                            |
| <b>Proposition 2.3.1.</b> Dans un $\mathbb{R}$ espace vectoriel normé de dimension finie, une boule ouverte est un ouvert et une boule fermée est un fermé.                                                                                                                                |
| Démonstration. Soit $B_r(a)$ une boule ouverte de $\mathbb{R}^n$ et $x \in B_r(a)$ . La boule $B_\rho(x)$ où $\rho = \frac{r-\ a-x\ }{2}$ est incluse dans $B_r(a)$ .                                                                                                                      |
| Si deux normes sont équivalentes, alors les parties ouvertes (et fermées) sont les mêmes :                                                                                                                                                                                                 |
| <b>Proposition 2.3.2.</b> Soit $\mathcal{U}$ une partie d'un $\mathbb{R}$ espace vectoriel $E$ et $\ \cdot\ $ et $\ \cdot\ '$ deux normes équivalentes sur $E$ . La partie $\mathcal{U}$ est un ouvert pour $\ \cdot\ $ si et seulement si $\mathcal{U}$ est un ouvert pour $\ \cdot\ '$ . |
| $D\'{e}monstration.$                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                            |

| 28                                                                                                                                                                                                                  | CHAPITRE 2. NORMES                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
| <ul> <li>Proposition 2.3.3 (Caractérisation séquenties d'un ℝ espace vectoriel normé (E,   ·  ). Les con 1. La partie F est fermée.</li> <li>2. Pour toute suite convergente de points de Démonstration.</li> </ul> | nditions suivantes sont équivalentes : |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |
|                                                                                                                                                                                                                     |                                        |

## 2.3.2 Position d'un point

**Définition 2.3.2.** Soit A une partie de  $(E, \|\cdot\|)$  et  $a \in E$ . On dit que a est un point

1. Intérieur à A si on peut trouver un ouvert  $\mathcal{U} \subset E$  tel que  $a \in \mathcal{U}$  et  $\mathcal{U} \subset A$ . L'ensemble

des points intérieurs à A est noté  $\mathring{A}$ .

2. Adhérent à A si tout ouvert  $\mathcal{U} \subset E$  qui contient a satisfait  $\mathcal{U} \cap A \neq \emptyset$ . L'ensemble des points adhérents à A est noté  $\bar{A}$ .



| Le point $a$ est adherent à $A$ et $b$ est intérieur à $A$ .                         |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Remarque 10. La partie $\mathring{A}$ est ouverte et la partie $\bar{A}$ est fermée. |  |  |  |  |  |  |  |
| Exemple 2.3.2.                                                                       |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
| 2.3.3 Ensembles compacts                                                             |  |  |  |  |  |  |  |
| Rappel sur les suites extraites                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |

| CHAPITRE 2. NORMES                                                                                                                                                                                                                                              |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| <b>Définition 2.3.3.</b> Une partie $\mathcal{K}$ d'un $\mathbb{R}$ espace vectoriel $(E, \ \cdot\ )$ est dite <b>compacte</b> si de toute suite de points de $\mathcal{K}$ on peut extraire une sous suite convergente dont la limite est dans $\mathcal{K}$ . |  |  |  |  |  |
| Autrement dit, toute suite de $\mathcal{K}$ admet une valeur d'adhérence dans $\mathcal{K}$ .                                                                                                                                                                   |  |  |  |  |  |
| <b>Théorème 2.3.1 (Bolzano-Weierstrass).</b> Dans un $\mathbb{R}$ espace vectoriel normé de dimension finie, les parties compactes sont les parties fermées bornées.                                                                                            |  |  |  |  |  |
| $D\acute{e}monstration$ . Admise dans ce cours mais identique à la preuve dans le cas réel. $\Box$                                                                                                                                                              |  |  |  |  |  |
| Exemple 2.3.3.                                                                                                                                                                                                                                                  |  |  |  |  |  |