2023.07.21 情報処理学会連続セミナー2023

対話AI最前線: ChatGPTとその先にある可能性

大規模言語モデルを用いた対話システム

光田航(rinna株式会社)

光田 航 Koh Mitsuda

rinna株式会社

[経歴]

- 2015年 東京工業大学大学院情報理工学研究科 修士課程修了
- 2015年~2023年 日本電信電話株式会社 研究員
- 2021年 筑波大学大学院システム情報工学研究群 博士(工学)
- 2023年 rinna株式会社 Applied Scientist

[専門]

- 自然言語処理
- 対話システム (チャットボット)

大規模言語モデルの基礎

大規模言語モデル

- 多量のテキストデータを用いて学習された,多数のパラメタを持つモデル
 - 例. GPT-3: 500 billionトークン(5000億単語)で学習(参考: Wikipediaの日本語記事は全部で約20億単語), パラメタ数は1750億個
- 入力テキストの続きの予測(次単語予測)に基づき多様なタスクを実施可能
 - パラメタ数のグラフはGPT-4のCode Interpreterを用いて作成(プログラム生成)

GPT-3の学習データ (https://arxiv.org/abs/2005.14165)

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Transformer

- Transformer-encoderとTransformer-decoderからなる深層学習モデル
- 機械翻訳の研究で提案され,自然言語 処理を中心に多様なタスクに適用
 - 翻訳: フランス語テキスト → 英語テキスト
 - 対話: 過去文脈 → システムの応答
- encoderやdecoderを多層に積み重ねることでモデルのスケールが可能になり、性能が大きく向上
 - BERT: encoderを多層に積んだもの
 - GPT-3: decoderを多層に積んだもの
 - 近年の対話が可能な大規模言語モデルは 基本的にdecoder-onlyのモデル
- 各encoderやdecoderの中でセルフアテンションという計算を実施

セルフアテンション

- 入力や出力に含まれる全てのトークン間の関係を考慮するための機構
- 各トークン間の類似度計算をベクトルで表現したQueryとKey(辞書引き)で実現

Self-Attention(トークン1) ----- トークン2, 3 (は,何) との関係を考慮したベクトル

大規模言語モデルの技術的なポイント

大規模言語モデルを用いた対話システムの実現

- 多量のテキストデータで学習(プレトレーニング)された大規模言語モデルは, そのままでは対話システムとしては使うことは難しい
 - 入力されたテキストの続きを出力するのみ
- 対話システムを実現させるために、対話できるようにしたり、 個性を持たせたり,知識を入れ込んだりしたい

- 機械学習や自然言語処理の技術を適用することで実現可能
 - ファインチューニング
 - プロンプト(コンテキスト内学習)
 - Reinforcement Learning from Human Feedback (RLHF)
 - 外部知識(組織内の文書や個性等の設定)の参照

対話システム

ファインチューニング

- 解きたいタスクに合わせて学習データを用意し、学習データ中のサンプルを 使ってプレトレーニングしたモデルのパラメタを更新(微調整)する手法
 - 英仏翻訳のペアと同様に、「文脈 => システムの応答」のペアを用意すれば対話が可能に

プロンプト (コンテキスト内学習)

- ・ プロンプト: 「大規模言語モデルに与える入力テキスト」
 - 例. "次の英語をフランス語に翻訳して: cheese =>"
- GPT-3にて、ファインチューニング(モデルのパラメタ 更新)を行わず、プロンプトのみで多様な言語処理タス クが高精度に解けることが発見
- ファインチューニング用のデータを用意せずとも,プロンプトを工夫するのみでも良い出力が得られるため注目
 - 入出力サンプルの指定: Zero-shot/One-shot/Few-shot
 - 思考仮定の出力: "Let's think step by step"
- 柔軟に出力を制御可能
 - 対話の方向性を指定: 「有用な応答を返して」「共感して」
 - 個性を指定: 「ポジティブに」「〇〇のキャラ風に」
 - 外部知識の参照: 組織内の文書やキャラクタの設定等

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Reinforcement Learning from Human Feedback (RLHF)

- ユーザにとって好ましい応答を返すよう,人手評価のデータを用いてモデルを調整
- 例. 情報検索を行いつつ対話を行うSparrow(Google DeepMind)におけるRLHF

外部知識(組織内の文書や個性等の設定)の参照

- 入力に関連の深いテキストを外部知識から検索し, プロンプトに挿入して生成(Retrieval Augmented Generation)
- 外部知識(例: Wikipediaの新しい記事,組織内の文書,キャラクタ設定)を考慮した生成が可能に

intelligent-natural-language-processing-models/

大規模言語モデルの技術的なポイントのまとめ

• 必要なリソースや難易度が異なるため、1番から順に試していくことをおすすめ

技術的なポイント	必要なリソース	調整の難易度	試す順番
ファインチューニング	モデルのパラメタデータファインチューニング用データファインチューニング用プログラムGPU	NORMAL 🕾	3番
プロンプト (コンテキスト内学習)	なし	VERY EASY ©	1番
RLHF	モデルのパラメタデータRLHF用データRLHF用プログラムGPU	VERY HARD ⊗	4番
外部知識の参照	外部知識のテキストデータ知識検索プログラム	EASY ©	2番

大規模言語モデルに関するツール

大規模言語モデルを用いた対話システム開発の流れ

4. 対話システム化

3. 大規模言語モデルの調整

2. ベースとする大規模言語モデルの選定

1. 実現したい対話内容の決定

ツール: 大規模言語モデルの選定

- 日本語を対象とした対話を行う場合,日本語が得意な大規模言語モデルの利用 を推奨
 - 英語を対象にしたモデルでは日本語の学習データ量が少なく、十分な性能が出づらい
- 日本語が得意な大規模言語モデル

ライセンス	モデルの例(生成型)	特徴(© / 8
非オープンソース	 OpenAIのChatGPT, GPT-4 GoogleのBard等 	利用ハードル低↓ (チャット画面やAPIを 利用)	カスタマイズ性低↓ (API経由のみ)コスト高↑ (API呼び出し数で課金)
オープンソース	 rinnaのjapanese- gpt-neox-3.6b CyberAgentの OpenCALM-7B 等 	カスタマイズ性高↑ (柔軟なモデル改善)コスト低↓ (GPU利用コストのみ)	利用ハードル高↑ (自然言語処理や機械 学習等の知識が必要)

ツール: 大規模言語モデルの調整と対話システム化

- 学習データ,外部知識
 - ウィキペディア
 - https://www.tensorflow.org/datasets/catalog/wiki40b
 - 前処理済みのものがおすすめ
 - 日本語対話コーパスのまとめ
 - https://individuality.jp/dialogue_corpus.html
 - オープンソースの日本語LLMまとめ
 - https://github.com/llm-jp/awesome-japanese-llm
 - 学習に利用されているデータを参照
 - クリーニング方法
 - https://arxiv.org/abs/2302.13971
- 学習や推論のフレームワーク
 - Hugging Face
 - https://huggingface.co
 - ・ 大規模言語モデル, データセット, 学習や推論を行うためのプログラムがまとまったもの
 - 大規模言語モデルを各種ツールと組み合わせるための選択肢
 - LangChain: https://langchain.com
 - LlamaIndex: https://www.llamaindex.ai
 - (Python等で自分で実装)

ツール: 大規模言語モデルの調整と対話システム化(つづき)

- 学習や推論を効率化/高速化するライブラリ
 - ファインチューニング
 - Parameter-Efficient Fine-Tuning (PEFT) : https://github.com/huggingface/peft
 - 推論
 - CPU (非GPU) 推論: https://github.com/ggerganov/llama.cpp
 - 効率化手法の一覧・比較の記事: https://zenn.dev/rinna/articles/5fd4f3cc12f7c5
 - モデルの軽量化
 - 量子化: https://huggingface.co/blog/4bit-transformers-bitsandbytes
- テキストからベクトルを作成するためのAPIやモデル
 - ベクトル化
 - OpenAI API (Embeddings) : https://platform.openai.com/docs/guides/embeddings
 - Sentence-Transformers: https://www.sbert.net
 - 高速ベクトル検索
 - FAISS: https://github.com/facebookresearch/faiss

実装デモ

大規模言語モデルの技術や,大規模言語モデルを用いて対話システムを実現する 方法について解説

- 大規模言語モデルの基礎
 - 次単語予測に基づいて多様なタスクを実施
 - Transformer, セルフアテンション
- 大規模言語モデルの技術的なポイント
 - ファインチューニング,プロンプト,RLHF, 外部知識の参照
- 大規模言語モデルに関するツール
 - 大規模言語モデルの選択肢
 - 大規模言語モデルを調整する手段
 - 対話システムとして実装する手段
- 実装デモ
 - 対話向けのファインチューニング

今後の課題: ChatGPTのリリース記事より

Limitations

- 一見妥当だが誤ったことや非常識な応答を 出力
- 入力の表現に敏感
- 応答が冗長であったり,特定のフレーズを 多用したり
- ユーザからの曖昧な入力に対して明確化せず 応答
- 有害な入力への反応や偏見を含む応答

https://openai.com/blog/chatgpt/

大規模言語モデルを用いた対話システムの性能はまだ100 点満点とは言えないかもしれないが,技術発達の速度は非 常に早く,今後課題の解決とともに,より多様な分野へと 応用されていくことが期待