SimCSE: Simple Contrastive Learning of Sentence Embeddings

Tianyu Gao, Xingcheng Yao, and Danqi Chen

UBC-DLNLP Reading Group, September 23, 2021 Presenter: Chiyu Zhang

Background

Contrastive learning aims to learn effective representation by pulling semantically close neighbors together and pushing apart non-neighbors.

$$\ell_i = -\log \frac{e^{\sin(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}}{\sum_{j=1}^N e^{\sin(\mathbf{h}_i, \mathbf{h}_j^+)/\tau}},$$

where τ is a temperature hyperparameter and $sim(\mathbf{h}_1, \mathbf{h}_2)$ is the cosine similarity $\frac{\mathbf{h}_1^{\mathsf{T}} \mathbf{h}_2}{\|\mathbf{h}_1\| \cdot \|\mathbf{h}_2\|}$. In this work, we encode input sentences using a pre-trained language model such as BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 2019): $\mathbf{h} = f_{\theta}(x)$, and then fine-tune all the parameters using the contrastive learning objective (Eq. 1).

https://arxiv.org/abs/2010.07835

Contrastive Learning

One critical question in contrastive learning is how to construct (x_i, x_i^+) pairs.

Vision: Two random transformations of the same image (e.g., cropping, flipping, distortion and rotation)

Language: Word deletion, reordering, and substitution.

This paper: Dropout noise as data augmentation.

Two key properties to measure the quality of representation:

Alignment: Given a distribution of positive pairs p_{pos}, alignment calculates expected distance between embeddings of the paired instances. **Positive** instances should stay **close**.

$$\ell_{\text{align}} \triangleq \mathbb{E}_{(x,x^+) \sim p_{\text{pos}}} ||f(x) - f(x^+)||^2.$$

Uniformity: Uniformity measures how well the embeddings are uniformly distributed. **Random** instances should **scatter** on the hypersphere.

$$\ell_{\text{uniform}} \triangleq \log \quad \underset{x,y}{\mathbb{E}} e^{-2\|f(x) - f(y)\|^2},$$

Unsupervised SimCSE

(a) Unsupervised SimCSE

in two forward passes Two dogs are running. A man surfing on the sea. The idea of unsupervised SimCSE is extremely simple: we take a collection of sentences $\{x_i\}_{i=1}^m$ A kid is on a skateboard. and use $x_i^+ = x_i$. The key ingredient to get this to work with identical positive pairs is through the use Encoder of independently sampled dropout masks for x_i and Positive instance x_i^+ . Negative instance

Different hidden dropout masks

Unsupervised SimCSE

(a) Unsupervised SimCSE

Encoder

Positive instance

Negative instance

Different hidden dropout masks in two forward passes

Feed the same input to the encoder twice and get two embeddings with different dropout masks z, z'.

Training objective:

$$\ell_i = -\log \frac{e^{\sin(\mathbf{h}_i^{z_i}, \mathbf{h}_i^{z_i'})/\tau}}{\sum_{j=1}^N e^{\sin(\mathbf{h}_i^{z_i}, \mathbf{h}_j^{z_i'})/\tau}},$$

Unsupervised SimCSE

Data augmentation			STS-B
None (unsup. SimCSE)			82.5
Crop	10% 77.8	20% 71.4	<i>30</i> % 63.6
Word deletion	10% 75.9	20% 72.2	30% 68.2
Delete one word w/o dropout Synonym replacement MLM 15%			75.9 74.2 77.4 62.2

p STS-B	0.0 71.1	0.01 72.6		0.1 82.5
p ama p		• • •	0.5	
STS-B	81.4	80.5	71.0	43.6

Supervised SimCSE

Use supervised natural language inference (NLI) datasets:

Given one premise, annotators are required to manually write one sentence that is absolutely true (entailment), one that might be true (neutral), and one that is definitely false (contradiction).

Supervised SimCSE

Use supervised natural language inference (NLI) datasets:

Given one premise, annotators are required to manually write one sentence that is absolutely true (entailment), one that might be true (neutral), and one that is definitely false (contradiction).

Formally, we extend (x_i, x_i^+) to (x_i, x_i^+, x_i^-) , where x_i is the premise, x_i^+ and x_i^- are entailment and contradiction hypotheses. The training objective ℓ_i is then defined by (N is mini-batch size):

$$\ell_i = -\log \frac{e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}}{\sum_{j=1}^{N} \left(e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_j^+)/\tau} + e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_j^-)/\tau} \right)}.$$
(5)

Supervised SimCSE

Dataset	sample	full
Unsup. SimCSE (1m)	T.	82.5
QQP (134k)	81.8	81.8
Flickr30k (318k) ParaNMT (5m)	81.5 79.7	81.4 78.7
SNLI+MNLI entailment (314k)	84.1	84.9
neutral (314k) ⁸	82.6	82.9
contradiction (314k) all (942k)	77.5 81.7	77.6 81.9
SNLI+MNLI	01.7	01.7
entailment + hard neg.	, - ,	86.2
+ ANLI (52k)	-	85.0

Comparisons of different supervised datasets as positive pairs.

Experiment

Evaluate on 7 semantic textual similarity tasks

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
		Unsup	ervised mo	odels				
GloVe embeddings (avg.)♣	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT _{base} (first-last avg.)	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
BERT _{base} -flow	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT _{base} -whitening	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
IS-BERT _{base} ♥	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
CT-BERT _{base}	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
* SimCSE-BERT _{base}	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
RoBERTa _{base} (first-last avg.)	40.88	58.74	49.07	65.63	61.48	58.55	61.63	56.5
RoBERTa _{base} -whitening	46.99	63.24	57.23	71.36	68.99	61.36	62.91	61.7
DeCLUTR-RoBERTa _{base}	52.41	75.19	65.52	77.12	78.63	72.41	68.62	69.9
* SimCSE-RoBERTabase	70.16	81.77	73.24	81.36	80.65	80.22	68.56	76.5
* SimCSE-RoBERTa _{large}	72.86	83.99	75.62	84.77	81.80	81.98	71.26	78.9
		Supe	rvised mod	lels				
InferSent-GloVe.	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.0
Universal Sentence Encoder*	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
SBERT _{base} •	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
SBERT _{base} -flow	69.78	77.27	74.35	82.01	77.46	79.12	76.21	76.60
SBERT _{base} -whitening	69.65	77.57	74.66	82.27	78.39	79.52	76.91	77.0
CT-SBERT _{base}	74.84	83.20	78.07	83.84	77.93	81.46	76.42	79.39
* SimCSE-BERT _{base}	75.30	84.67	80.19	85.40	80.82	84.25	80.39	81.5
SRoBERTa _{base} *	71.54	72.49	70.80	78.74	73.69	77.77	74.46	74.2
SRoBERTa _{base} -whitening	70.46	77.07	74.46	81.64	76.43	79.49	76.65	76.6
* SimCSE-RoBERTa _{base}	76.53	85.21	80.95	86.03	82.57	85.83	80.50	82.5
* SimCSE-RoBERTa _{large}	77.46	87.27	82.36	86.66	83.93	86.70	81.95	83.7

Experiment

Add MLM objective

Model	STS-B	Avg. transfer		
w/o MLM	86.2	85.8		
w/ MLM $\lambda = 0.01$	85.7	86.1		
$\lambda = 0.1$	85.7	86.2		
$\lambda = 1$	85.1	85.8		

Table D.2: Ablation studies of the MLM objective based on the development sets using BERT_{base}.

Experiment

Transfer Tasks

 sentence-level objective may not directly benefit transfer tasks.

Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	Avg.
		Unsup	ervised n	odels				
GloVe embeddings (avg.)♣	77.25	78.30	91.17	87.85	80.18	83.00	72.87	81.52
Skip-thought [♥]	76.50	80.10	93.60	87.10	82.00	92.20	73.00	83.50
Avg. BERT embeddings	78.66	86.25	94.37	88.66	84.40	92.80	69.54	84.94
BERT-[CLS] embedding*	78.68	84.85	94.21	88.23	84.13	91.40	71.13	84.66
IS-BERT _{base} ♥	81.09	87.18	94.96	88.75	85.96	88.64	74.24	85.83
* SimCSE-BERT _{base}	81.18	86.46	94.45	88.88	85.50	89.80	74.43	85.81
w/ MLM	82.92	87.23	95.71	88.73	86.81	87.01	78.07	86.64
* SimCSE-RoBERTabase	81.04	87.74	93.28	86.94	86.60	84.60	73.68	84.84
w/ MLM	83.37	87.76	95.05	87.16	89.02	90.80	75.13	86.90
* SimCSE-RoBERTalarge	82.74	87.87	93.66	88.22	88.58	92.00	69.68	86.11
w/ MLM	84.66	88.56	95.43	87.50	89.46	95.00	72.41	87.57
		Supe	rvised mo	dels				
InferSent-GloVe*	81.57	86.54	92.50	90.38	84.18	88.20	75.77	85.59
Universal Sentence Encoder ⁴	80.09	85.19	93.98	86.70	86.38	93.20	70.14	85.10
SBERT _{base} •	83.64	89.43	94.39	89.86	88.96	89.60	76.00	87.41
* SimCSE-BERT _{base}	82.69	89.25	94.81	89.59	87.31	88.40	73.51	86.51
w/ MLM	82.68	88.88	94.52	89.82	88.41	87.60	76.12	86.86
SRoBERTa _{base}	84.91	90.83	92.56	88.75	90.50	88.60	78.14	87.76
* SimCSE-RoBERTabase	84.92	92.00	94.11	89.82	91.27	88.80	75.65	88.08
w/ MLM	85.08	91.76	94.02	89.72	92.31	91.20	76.52	88.66
* SimCSE-RoBERTa _{large}	88.12	92.37	95.11	90.49	92,75	91.80	76.64	89.61
w/ MLM	88.45	92.53	95.19	90.58	93.30	93.80	77.74	90.23

Ablation Studies

Pooling methods

Pooler	Unsup.	Sup.
[CLS]		
w/ MLP	81.7	86.2
w/ MLP (train)	82.5	85.8
w/o MLP	80.9	86.2
First-last avg.	81.2	86.1

Hard negatives

$$-\log \frac{e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}}{\sum_{j=1}^{N} \left(e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_j^+)/\tau} + \alpha^{\mathbb{1}_i^j} e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_j^-)/\tau} \right)},$$

Hard neg	N/A	Co	ntradict	Contra.+ Neutral	
α	=	0.5	1.0	2.0	1.0
STS-B	84.9	86.1	86.2	86.2	85.3

Analysis: Anisotropy

The anisotropy problem is naturally connected to **uniformity**, both highlighting that embeddings should be **evenly distributed** in the space.

Take a singular spectrum perspective—which is a common practice in analyzing

word embeddings.

Singular value drops the fastest for vanilla BERT or SBERT embeddings, while SimCSE helps flatten the spectrum distribution.

Figure F.1: Singular value distributions of sentence embedding matrix from sentences in STS-B. We normalize the singular values so that the largest one is 1.

Analysis:

- Pre-trained embeddings: good alignment, poor uniformity (i.e., highly anisotropic);
- (2) Post-processing methods (BERT-flow and BERT-whitening): improve uniformity, a degeneration in alignment;
- (3) Unsupervised SimCSE: improves uniformity and keeping a good alignment
- (4) Supervised SimCSE further amends <u>alignment?</u>.

Figure 3: ℓ_{align} - ℓ_{uniform} plot of models based on BERT_{base}. Color of points and numbers in brackets represent average STS performance (Spearman's correlation). *Next3Sent*: "next 3 sentences" from Table 2.

Reference

- https://arxiv.org/pdf/2104.08821.pdf
- https://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Unsupervised
 Feature Learning CVPR_2018_paper.pdf
- https://github.com/princeton-nlp/SimCSE
- https://lilianweng.github.io/lil-log/2021/05/31/contrastive-representation-learning
 g.html#unsupervised-sentence-embedding-learning
- https://arxiv.org/abs/2010.07835