Assignment-3_Apply-KNN

February 27, 2019

1 Assignment-3: Apply K-NN on Amazon Fine Food Reviews DataSet

2 1.0 Introduction

- (i). The k-nearest neighbors algorithm (k-NN) is a non-parametric method used for classification and regression predictive problem.
 - (ii).It is more widely used in classification problems in the industry.

3 2.0 Objective

To Predict the Polarity of Amazon Fine Food Review Using K-Nearst Neighbour Algorithm.

4 3.0 Importing All Required Library

```
In [1]: %matplotlib inline
        import sqlite3
        import pandas as pd
        import numpy as np
        import nltk
        import string
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.model_selection import GridSearchCV
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.metrics import accuracy_score
        from sklearn.metrics import classification_report
        from sklearn.feature_extraction.text import TfidfTransformer
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.metrics import confusion_matrix
        from sklearn import metrics
        from sklearn.metrics import roc_curve, auc
        from sklearn.model_selection import cross_val_score
```

```
from tqdm import tqdm
        import os
        import warnings
        warnings.filterwarnings("ignore")
C:\Users\User\Anaconda3\lib\site-packages\gensim\utils.py:1197: UserWarning: detected Windows;
  warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")
   4.0 Importing Amazon Fine Food Review Dataset
In [2]: if os.path.isfile("final.sqlite"):
            conn=sqlite3.connect("final.sqlite")
            Data=pd.read_sql_query("select * from Reviews where Score!=3",conn)
            conn.close()
        else :
           print("Error Importing the file")
In [3]: # Printing some data of DataFrame
       Data.head(2)
Out[3]:
            index
                      Ιd
                           ProductId
                                              UserId
                                                          ProfileName \
       0 138706 150524
                          0006641040
                                       ACITT7DI6IDDL
                                                      shari zychinski
        1 138688 150506 0006641040 A2IW4PEEKO2ROU
          HelpfulnessNumerator
                               HelpfulnessDenominator
                                                        Score
                                                                     Time
       0
                                                                939340800
        1
                             1
                                                            1
                                                              1194739200
                                             Summary \
       0
                           EVERY book is educational
        1 Love the book, miss the hard cover version
       0 this witty little book makes my son laugh at 1...
        1 I grew up reading these Sendak books, and watc...
```

from gensim.models import Word2Vec
from gensim.models import KeyedVectors

import pickle

0 witti littl book make son laugh loud recit car...
1 grew read sendak book watch realli rosi movi i...

CleanedText

6 5.0 Information About DataSet

```
In [4]: print("\nNumber of Reviews: ",Data["Text"].count())
        print("\nNumber of Users: ",len(Data["UserId"].unique())) # Unique returns 1-D array o
        print("\nNumber of Products: ",len(Data["ProductId"].unique()))
       print("\nShape of Data: ", Data.shape)
        print("\nColumn Name of DataSet : ",Data.columns)
        print("\n\nNumber of Attributes/Columns in data: 12")
        print("\nNumber of Positive Reviews : ", Data['Score'].value_counts()[1])
        print("\nNumber of Negative Reviews : ", Data['Score'].value_counts()[0])
Number of Reviews: 364171
Number of Users: 243414
Number of Products: 65442
Shape of Data: (364171, 12)
Column Name of DataSet : Index(['index', 'Id', 'ProductId', 'UserId', 'ProfileName',
       'HelpfulnessNumerator', 'HelpfulnessDenominator', 'Score', 'Time',
       'Summary', 'Text', 'CleanedText'],
      dtype='object')
Number of Attributes/Columns in data: 12
Number of Positive Reviews: 307061
Number of Negative Reviews : 57110
In [5]: print("\nNumber of Reviews: ",Data["Text"].count())
Number of Reviews: 364171
6.0.1 5.1 Attribute Information About DataSet
```

```
1.Id - A unique value starts from 1
```

- 2.ProductId A unique identifier for the product
- 3.UserId A unque identifier for the user
- 4.ProfileName Name of user profile
- 5.HelpfulnessNumerator Number of users who found the review helpful
- 6.HelpfulnessDenominator Number of users who indicated whether they found the review helpful or not

7. Score - Rating 0 or 1

```
8.Time - Timestamp for the review
9.Summary - Brief summary of the review
10.Text - Text of the review
11.Cleaned Text - Text that only alphabets
```

6.1 6.0 Due to Limited Hardware Resource we will limit our analysis on 20000 data points only.

```
In [6]: # To randomly sample 10k points from both class

    data_pos = Data[Data["Score"] == 1].sample(n = 10000)
    data_neg = Data[Data["Score"] == 0].sample(n = 10000)
    final_20k = pd.concat([data_pos, data_neg])
    final_20k.shape

Out[6]: (20000, 12)

In [7]: Y = final_20k['Score'].values
    X = final_20k['CleanedText'].values

6.1.1 7.0 Splitting DataSet into Train and Test Data

In [8]: from sklearn.model_selection import train_test_split
    # X train, X test, y train, y test = train test split(X, Y, test s)
```

```
In [8]: from sklearn.model_selection import train_test_split
    # X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, shuffle=Fl
    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33) # this is ra
    print("Shape of Train and Test Dataset")
    print(X_train.shape, y_train.shape)
    print(X_test.shape, y_test.shape)
```

```
Shape of Train and Test Dataset (13400,) (13400,) (6600,)
```

7 8.0 Defining Some Function

7.0.1 8.1 Train Data Confusion Matrix Plot

7.0.2 8.2 Test Data Confusion Matrix Plot

In [10]: def testconfusionmatrix(knn, X_test, y_test):

```
print("Confusion Matrix for Test set")
             cm=confusion_matrix(y_test, knn.predict(X_test))
             class_label = ["negative", "positive"]
             df_cm = pd.DataFrame(cm, index = class_label, columns = class_label)
             sns.heatmap(df_cm, annot = True, fmt = "d")
             plt.title("Test Confusiion Matrix")
             plt.xlabel("Predicted Label")
             plt.ylabel("True Label")
             plt.show()
7.0.3 8.3 ROC-AUC Curve Plot
In [11]: def plot_auc_roc(knn, X_train, X_test, y_train, y_test):
             train_fpr, train_tpr, thresholds = roc_curve(y_train, neigh.predict_proba(X_train
             test_fpr, test_tpr, thresholds = roc_curve(y_test, neigh.predict_proba(X_test)[:,
             plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr))
             plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr)))
             plt.legend()
             plt.xlabel("K: hyperparameter")
             plt.ylabel("AUC")
             plt.title("ROC CURVE PLOTS")
             plt.show()
7.0.4 8.4 Error Plot
In [12]: def error_plot(neighbours,mse):
             plt.title('Error Plot')
             plt.xlabel('K')
             plt.ylabel('misscalssifiaction error')
             plt.plot(neighbours,mse)
7.0.5 8.5 Cross Validation Using Kd Tree Algorithm
In [13]: def knn_cv_kd(X_train,y_train,neighbours):
             cv_scores=[]
             for k in neighbours:
                 knn = KNeighborsClassifier(n_neighbors=k,algorithm='kd_tree')
                 scores = cross_val_score(knn, X_train, y_train, cv=10, scoring='accuracy') #
                 cv_scores.append(scores.mean())
             mse = [1-x for x in cv_scores] # calculating misscalssification_error = 1 - accur
```

best_k = neighbours[mse.index(min(mse))] #returns k corresponding to minimum erro

```
return mse,best_k
```

7.0.6 8.6 Cross Validation Using Brute Algorithm

```
In [14]: def knn_cv_brute(X_train,y_train,neighbours):
             cv_scores=[]
             for k in neighbours:
                 knn = KNeighborsClassifier(n_neighbors=k,algorithm='brute')
                 scores = cross_val_score(knn, X_train, y_train, cv=10, scoring='accuracy') #
                 cv_scores.append(scores.mean())
             mse = [1-x for x in cv_scores] # calculating misscalssification_error = 1 - accur
             best_k = neighbours[mse.index(min(mse))] #returns k corresponding to minimum erro
             return mse, best_k
7.0.7 8.7 Accuracy
In [15]: def accuracy(model, X_train, Y_train, X_test, Y_test):
             prediction=model.predict(X_test)
             training_accuracy=model.score(X_train,Y_train) # accuracy_score(y_train ,neigh.p
             training_error=1-training_accuracy
             test_accuracy=accuracy_score(Y_test,prediction)
             test_error=1-test_accuracy
             return training_accuracy,training_error,test_accuracy,test_error
8 9.0 Bags of Words
In [16]: vectorizer = CountVectorizer()
```

```
In [16]: vectorizer = CountVectorizer()
    vectorizer.fit(X_train) # fit has to happen only on train data

# we use the fitted CountVectorizer to convert the text to vector
    X_train_bow = vectorizer.transform(X_train)
    X_test_bow = vectorizer.transform(X_test)

    print("Shape of Train , Test and Cross Validation Data After vectorizations")
    print(X_train_bow.shape, y_train.shape)
    print(X_test_bow.shape, y_test.shape)

Shape of Train , Test and Cross Validation Data After vectorizations
(13400, 15042) (13400,)
```

```
(6600, 15042) (6600,)
In [17]: type(X_train_bow)
Out[17]: scipy.sparse.csr.csr_matrix
```

8.0.1 9.1 Brute Force Algorithm

9.1.1 Finding Optimal Value of Hyperparameter(k)

Best value of K found for Brute Force Algorithm Implementaion is : 55

9.1.2 Training the model

9.1.3 Evaluting the performance of model

(A). Roc-Auc Plot

In [21]: plot_auc_roc(neigh,X_train_bow,X_test_bow,y_train,y_test)

(B). Confusion Matrix Plot on Train Data

In [22]: trainconfusionmatrix(neigh,X_train_bow,y_train)

Confusion Matrix for Train set

(C). Confusion Matrix on Test Data

In [23]: testconfusionmatrix(neigh,X_test_bow,y_test)

Confusion Matrix for Test set

(D). Accuracy and Error

Training Accuracy in %: 74.0

Train Error in %: 26.0

Test Accuracy in %: 71.0

Test Error in %: 28.9999999999996

(E). Classification Report

Classification Report:

		precision	recall	f1-score	support
	0	0.78	0.60	0.68	3333
	1	0.67	0.83	0.74	3267
micro	avg	0.71	0.71	0.71	6600
macro	avg	0.72	0.71	0.71	6600
weighted	avg	0.72	0.71	0.71	6600

8.0.2 9.2 KD-Tree Algorithm

9.2.1 Finding Optimal Value of Hyperparameter(k)

Best value of K found for KD Tree Algorithm Implementaion is : 55

9.2.2 Training the model

9.2.3 Evaluting the performance of model

(A). Roc-Auc Plot

In [29]: plot_auc_roc(neigh,X_train_bow,X_test_bow,y_train,y_test)

(B). Confusion Matrix Plot on Train Data

In [30]: trainconfusionmatrix(neigh,X_train_bow,y_train)

Confusion Matrix for Train set

(C). Confusion Matrix Plot on Test Data

In [31]: testconfusionmatrix(neigh,X_test_bow,y_test)

Confusion Matrix for Test set

(D). Accuracy and Error

Training Accuracy in %: 74.0

Train Error in %: 26.0

Test Accuracy in %: 71.0

Test Error in %: 28.9999999999996

(E). Classification Report

Classification Report:

		precision	recall	f1-score	support
	0	0.78	0.60	0.68	3333
	1	0.67	0.83	0.74	3267
micro	•	0.71	0.71	0.71	6600
macro		0.72	0.71	0.71	6600
weighted	avg	0.72	0.71	0.71	6600

9 10.0 TF-IDF

9.0.1 10.1 Brute Force Algorithm

10.1.1 Finding Optimal Value of Hyperparameter(k)

Best value of K found for Brute Force Algorithm Implementaion is : 97

10.1.2 Training the model

10.1.3 Evaluting the performance of model

(A). Roc-Auc Plot

In [39]: plot_auc_roc(neigh,X_train_TF,X_test_TF,y_train,y_test)

(B). Confusion Matrix Plot on Train Data

In [40]: trainconfusionmatrix(neigh,X_train_TF,y_train)

Confusion Matrix for Train set

(C). Confusion Matrix Plot on Test Data

In [41]: testconfusionmatrix(neigh,X_test_TF,y_test)

Confusion Matrix for Test set

(D). Accuracy and Error

Training Accuracy in %: 80.0

Train Error in %: 20.0

Test Accuracy in %: 80.0

Test Error in %: 20.0

(E). Classification Report

Classification Report:

		precision	recall	f1-score	support
	0	0.82	0.76	0.79	3333
	1	0.78	0.83	0.80	3267
micro	avg	0.80	0.80	0.80	6600
macro	avg	0.80	0.80	0.80	6600
weighted	avg	0.80	0.80	0.80	6600

9.0.2 10.2 KD Tree Algorithm

10.2.1 Finding Optimal Value of Hyperparameter(k)

Best value of K found for KD Tree Algorithm Implementaion is : 97

10.2.2 Training the model

10.2.3 Evaluting the performance of model

(A). Roc-Auc Plot

In [47]: plot_auc_roc(neigh,X_train_TF,X_test_TF,y_train,y_test)

(B). Confusion Matrix Plot on Train Data

In [48]: trainconfusionmatrix(neigh,X_train_TF,y_train)

Confusion Matrix for Train set

(C). Confusion Matrix Plot on Test Data

In [49]: testconfusionmatrix(neigh,X_test_TF,y_test)

Confusion Matrix for Test set

(D). Accuracy and Error

Training Accuracy in %: 80.0

Train Error in %: 20.0

Test Accuracy in %: 80.0

Test Error in %: 20.0

(E). Classification Report

Classification Report:

		precision	recall	f1-score	support
	0 1	0.82 0.78	0.76 0.83	0.79 0.80	3333 3267
micro	•	0.80	0.80	0.80	6600
macro weighted	0	0.80 0.80	0.80	0.80	6600 6600

10 11.0 Word To Vector

```
In [16]: list_of_Train_sent=[]
         list_of_Test_sent=[]
         for sent in X_train:
             list_of_Train_sent.append(sent.split())
         for sent in X_test:
             list_of_Test_sent.append(sent.split())
In [17]: len(list_of_Train_sent)
Out[17]: 13400
In [18]: Train_model=Word2Vec(list_of_Train_sent,min_count=5,size=50, workers=4)
         Test_model=Word2Vec(list_of_Test_sent,min_count=5,size=50, workers=4)
10.0.1 11.1 Avg Word2Vec
In [55]: import numpy as np
         Train_vectors = []
         for sent in list_of_Train_sent:
             sent_vec = np.zeros(50)
             cnt_words = 0
             for word in sent:
                 try:
                     vec = Train_model.wv[word]
                     sent_vec += vec
                     cnt_words += 1
                 except:
                     pass
             if cnt_words!=0:
                 sent_vec /= cnt_words
```

```
Train_vectors.append(sent_vec)
         Train_vectors = np.nan_to_num(Train_vectors)
In [56]: import numpy as np
         Test_vectors=[]
         for sent in list_of_Test_sent:
             sent_vec=np.zeros(50)
             cnt_words=0
             for word in sent:
                 try:
                     vec=Test_model.wv[word]
                     sent_vec+=vec
                     cnt_words+=1
                 except:
                     pass
             if cnt_words!=0:
                 sent_vec/=cnt_words
             Test_vectors.append(sent_vec)
         Test_vectors=np.nan_to_num(Test_vectors)
In [57]: print("Shape of Test Vectors : ",Test_vectors.shape)
Shape of Test Vectors: (6600, 50)
In [58]: X_train_AWV = Train_vectors
         X_test_AWV = Test_vectors
In [59]: print(X_train_AWV.shape, y_train.shape)
         print(X_test_AWV.shape, y_test.shape)
(13400, 50) (13400,)
(6600, 50) (6600,)
10.0.2 10.2 Brute Force Algorithm
10.2.1 Finding Optimal Value of Hyperparameter(k)
In [60]: import numpy as np
         neighbours=np.arange(1,100,2)
         mse,best_k = knn_cv_brute(X_train_AWV,y_train,neighbours)
In [61]: error_plot(neighbours,mse)
         print("Best value of K found for Brute Force Algorithm Implementaion is : ",best_k)
Best value of K found for Brute Force Algorithm Implementaion is : 37
```


10.2.2 Training the model

10.2.3 Evaluting the performance of model

(A). Roc-Auc Plot

```
In [63]: plot_auc_roc(neigh,X_train_AWV,X_test_AWV,y_train,y_test)
```


(B). Confusion Matrix Plot on Train Data

In [64]: trainconfusionmatrix(neigh,X_train_AWV,y_train)

Confusion Matrix for Train set

(C). Confusion Matrix Plot on Test Data

In [65]: testconfusionmatrix(neigh,X_test_AWV,y_test)

Confusion Matrix for Test set

(D). Accuracy and Error

Training Accuracy in %: 78.0

Train Error in %: 22.0

Test Error in %: 42.0

(E). Classification Report

Classification Report:

		precision	recall	f1-score	support
	0	0.68	0.33	0.44	3333
	1	0.55	0.84	0.66	3267
micro	•	0.58	0.58	0.58	6600
macro		0.61	0.58	0.55	6600
weighted	avg	0.61	0.58	0.55	6600

10.0.3 10.3 KD Tree Algorithm

10.3.1 Finding Optimal Value of Hyperparameter(k)

10.3.2 Training the model

10.3.3 Evaluting the performance of model

(A). Roc-Auc Plot

In [71]: plot_auc_roc(neigh,X_train_AWV,X_test_AWV,y_train,y_test)

(B). Confusion Matrix Plot on Train Data

In [72]: trainconfusionmatrix(neigh,X_train_AWV,y_train)

Confusion Matrix for Train set

(C). Confusion Matrix Plot on Test Data

In [73]: testconfusionmatrix(neigh,X_test_AWV,y_test)

Confusion Matrix for Test set

(D). Accuracy and Error

Training Accuracy in %: 78.0

Train Error in %: 22.0

Test Error in %: 42.0

(E). Classification Report

Classification Report:

		precision	recall	f1-score	support
	0	0.68	0.33	0.44	3333
	1	0.55	0.84	0.66	3267
micro	avg	0.58	0.58	0.58	6600
macro	avg	0.61	0.58	0.55	6600
weighted	avg	0.61	0.58	0.55	6600

11 11.0 TF-IDF Word To Vector

In [19]: model = TfidfVectorizer()

```
model.fit(X_train)
       X_Train_TF = model.transform(X_train)
       X_Test_TF = model.transform(X_test)
In [20]: print("Shape of Train Data After TFIDF : ",X_Train_TF.shape)
       print("Shape of Test Data After TFIDF : ",X_Test_TF.shape)
Shape of Train Data After TFIDF: (13400, 15367)
Shape of Test Data After TFIDF: (6600, 15367)
In [21]: TFIDF_Feature=model.get_feature_names()
       print(len(TFIDF_Feature))
       print(TFIDF_Feature[0:20])
15367
In [22]: from tqdm import tqdm
       Train_TFIDF_W2V_Vectors=[]
       row=0
       for sent in tqdm(list_of_Train_sent):
           sent_vec=np.zeros(50)
           weight=0
           for word in sent:
               try:
                  w2v_vec=Train_model.wv[word]
                  tfidf_vec=X_Train_TF[row,TFIDF_Feature.index(word)]
                  sent_vec+=(w2v_vec*tfidf_vec)
                  weight+=tfidf_vec
```

```
pass
             if weight!=0:
                 sent_vec/=weight
             Train_TFIDF_W2V_Vectors.append(sent_vec)
             row+=1
100%|| 13400/13400 [02:56<00:00, 75.98it/s]
In [23]: Test_TFIDF_W2V_Vectors=[]
         row=0
         for sent in tqdm(list_of_Test_sent):
             sent_vec=np.zeros(50)
             weight=0
             for word in sent:
                 try:
                     w2v_vec=Test_model.wv[word]
                     tfidf_vec=X_Test_TF(row,TFIDF_Feature.index(word))
                     sent_vec+=(w2v_vec*tfidf_vec)
                     weight+=tfidf
                 except :
                     pass
             if weight!=0:
                 sent_vec/=weight
             Test_TFIDF_W2V_Vectors.append(sent_vec)
             row+=1
100%|| 6600/6600 [01:03<00:00, 103.35it/s]
In [25]: Test_tfidfw2v_vectors=np.nan_to_num(Test_TFIDF_W2V_Vectors)
         Train_tfidfw2v_vectors=np.nan_to_num(Train_TFIDF_W2V_Vectors)
In [28]: X_train_TfIdfW2v=Train_tfidfw2v_vectors
         X_test_TfIdfW2v=Test_tfidfw2v_vectors
11.0.1 11.1 Brute Force Algorithm
11.1.1 Finding Optimal Value of Hyperparameter(k)
In [29]: import numpy as np
         neighbours=np.arange(1,100,2)
         mse,best_k = knn_cv_brute(X_train_TfIdfW2v,y_train,neighbours)
```

except :

Best value of K found for Brute Force Algorithm Implementaion is : 95

11.1.2 Training the model

11.1.3 Evaluting the performance of model

(A). Roc-Auc Plot

In [34]: plot_auc_roc(neigh,X_train_TfIdfW2v,X_test_TfIdfW2v,y_train,y_test)

(B). Confusion Matrix Plot on Train Data

In [35]: trainconfusionmatrix(neigh,X_train_TfIdfW2v,y_train)

Confusion Matrix for Train set

(C). Confusion Matrix Plot on Test Data

In [36]: $testconfusionmatrix(neigh,X_test_TfIdfW2v,y_test)$

Confusion Matrix for Test set

(D). Accuracy and Error

Training Accuracy in %: 75.0

Train Error in %: 25.0

Test Accuracy in %: 50.0

Test Error in %: 50.0

(E). Classification Report

Classification Report:

		precision	recall	f1-score	support
	0 1	0.50 0.00	1.00	0.66 0.00	3282 3318
micro macro weighted	avg	0.50 0.25 0.25	0.50 0.50 0.50	0.50 0.33 0.33	6600 6600 6600

11.0.2 11.2 KD Tree Algorithm

11.2.1 Finding Optimal Value of Hyperparameter(k)

11.2.2 Training the model

11.2.3 Evaluting the performance of model

(A). Roc-Auc Plot

In [42]: plot_auc_roc(neigh,X_train_TfIdfW2v,X_test_TfIdfW2v,y_train,y_test)

(B). Confusion Matrix Plot on Train Data

In [43]: trainconfusionmatrix(neigh,X_train_TfIdfW2v,y_train)

Confusion Matrix for Train set

(C). Confusion Matrix Plot on Test Data

In [44]: testconfusionmatrix(neigh,X_test_TfIdfW2v,y_test)

Confusion Matrix for Test set

(D). Accuracy and Error

Training Accuracy in %: 75.0

Train Error in %: 25.0

Test Accuracy in %: 50.0

Test Error in %: 50.0

(E). Classification Report

Classification Report:

		precision	recall	f1-score	support
	0	0.50	1.00	0.66	3282
	1	0.00	0.00	0.00	3318
micro	avg	0.50	0.50	0.50	6600
macro	avg	0.25	0.50	0.33	6600
weighted	avg	0.25	0.50	0.33	6600

12 12.0 Conclusion :

1. Report On Brute Force Algorithm

```
In [51]: from prettytable import PrettyTable

x = PrettyTable()

x.field_names = ["Vectorizer", "Hyperparameter", "AUC","Train Accuracy (%)","Test Accuracy

x.add_row(["BOW",55,0.79,74,71])

x.add_row(["TF-IDF", 97,0.88,80,80])

x.add_row(["W2V",37,0.64,78,57])

x.add_row(["TF-IDF W2V",95,0.50,75,50])

print(x)
```

	Hyperparameter		•		Test Accuracy (%)
I BOW		0.79		i	71
TF-IDF	97	0.88	80	1	80
W2V	37	0.64	78	1	57
TF-IDF W2V	J 95	0.5	75	1	50
1	1		1		

2. Report on KD Tree Algorithm

x.add_row(["TF-IDF W2V",95,0.50,75,50])
print(x)

+-	Vectorizer	+ Hyperparameter +	İ	AUC	l T	rain Accuracy	(%)	Test		+ %) +
İ	BOW	55	i	0.79	İ	74			71	İ
	TF-IDF	97		0.88		80			80	- 1
	W2V	37		0.64		78			57	- 1
	TF-IDF W2V	95		0.5		75			50	- 1
		1								

- 3. 71 % Of Accuracy is achieved by the model in case of Bag of Words.
- 4. 80 % Of Accuracy is achieved by the model in case of TF-IDF Vectorizer.
- 5. Model is overfit in case of Average Word to vector.
- 6. Very small subset of Data is taken but still it took more time due to large dimension and time complexity of KNN.
- 7. Model behaviour in TF-IDF W2V is lenint towards one class.