这些年踩过的"坑"

- 一、邮储银行简介
- 二、数据库使用情况
- 三、核心系统整体架构
- 四、问题及分析解决

一、邮储银行简介

中国邮政储蓄银行 POSTAL SAVINGS BANK OF CHINA

1、邮储银行历程

- 前身可以追溯到1919年, 邮政储金汇业总局成立;
- 建国初期,1953年邮政储蓄业务停办;
- 1986年, 邮政储蓄正式恢复开办;
- 2007年3月20日,中国邮政储蓄银行正式挂牌成立。

2、现状

- 邮储银行已成为全国网点规模最大、覆盖面最广、服务客户数量最多的商业银行。
- 截至2016年3月31日,邮储银行共有40057个营业网点,覆盖中国所有的城市和98.9%的县域地区。
- 进入2016年,日均交易笔数接近9千万,遇到类似代发养老金的业务高峰日,交易笔数可突破1亿,2016年春节期间,日交易笔数突破1.3亿。

BETTER

二、数据库使用情况

- 1、2004之前(Oracle 7 OPS/Oracle 8i/Informix....)
- 此阶段为省中心模式,有数据中心和交换中心之分,各省中心使用的数据库 种类不一。

2, 2004-2007 (Oracle 9i)

- 因为各省的绿卡中心软件版本不一,数据格式转换困难,达不到以后数据大集中的需求,邮政公司决定推进绿卡统版建设。2004年绿卡统版工程正式上线,自此之后,重要生产系统中0racle数据库基本一统天下。
- 2005-2007年实施邮政金融灾备中心建设,最终确定的使用standby db技术而不是完整的DG体系结构,采用第三方软件传输归档日志。

二、数据库使用情况

3, 2007-2011 (Oracle 10g RAC + ASM)

- 自2007年汇兑集中上线,新上线的生产系统基本使用Oracle 10g RAC + ASM 的模式。
- 2009.08-2010.02实施物理集中工程,将31省的数据库及应用主机迁至北京
- 2010年验证能否在开放式平台上实施邮政储蓄银行逻辑大集中项目,测试结果 TPS值突破1万。

4、2012至今 (Oracle 11g RAC + ASM/mysql....)

- 2012年开始,新系统逐步过渡到11g R2 RAC + ASM。
- 面对越来越强的去IOE呼声,也开始使用mysql、postgresql等其它数据库。

BETTER

三、核心系统整体架构

- 上线之初为11套RAC库,目前已扩展至15套
- 特殊设计1: redo映射到存储的Cache LUN中
- 特殊设计2: OS层面上专门指定两颗CPU给1gwr进程专用

三、核心系统整体架构

手中国邮政储蓄银行 POSTAL SAVINGS BANK OF CHINA

北京亦庄灾备中心 存储级TC同步复制 北京丰台生产中心 李锋级TC异类 意制 合肥灾备中心

1、核心系统数据库特殊设计的由来

- 为何需要如此多的存储
 - 高端存储用于存放数据库,指定一个存储一个故障组是为了防止单个存储失效导致系统不可用;
 - 引入低端存储存放表决盘是为了避免单存储故障导致集群无法启动(启动集群需要>50%的表决盘可用);
 - 联机日志映射至存储的Cache LUN是为了消除log file sync等待事件中的IO瓶颈;
 - log file sync等待事件的罪魁祸首是等待CPU调度,为提高效率才为lgwr指定专用CPU; (压测环节中由HP实验室的ken给出建议)

BETTER

2、好心办坏事的11g新特性

- 如果用户登录错误3次之后,开始锁定这个用户3秒钟,才允许下一次登录。 这个锁定时间将从3秒逐渐延长,不断增加,此新特性本意是是为了防止暴力 破解密码;
- 然而持续错误登录,早期是错误登录的用户即使使用正确密码也登录缓慢,如果频次很高,可能整个库表现都和挂起类似;
- 解决方案参见Mos Doc ID: 1309738.1(Library Cache Locks Due to Invalid Login Attempts)
 - 设置EVENT="28401 TRACE NAME CONTEXT FOREVER, LEVEL 1"
 - 然而在生产环境中发现错误登录频次较高的情况下,应对措施无效
- 如果发现数据库某用户登录缓慢,且user\$中相关用户的1count值持续增加则 表明已经中招了;

2、好心办坏事的11g新特性

找出持续错误登录的终端(相关输出在alert日志中) create or replace trigger ncgxq_logerr after servererror on database begin if (is_servererror(1017)) then

```
sys. dbms system. ksdwrt (2,
                           = '||to char(sysdate, 'yyyy-mm-dd hh24:mi:ss')||chr(10)||
      by ncgxq: DATE
     by_ncgxq: HOST
                           = '||sys context('userenv', 'host')||chr(10)||
     'by ncgxq: IP
'||sys context('userenv', 'network_protocol')||'/'||nvl(sys_context('userenv', 'ip_addr
ess'), 'localhost') | chr(10) |
     'by ncgxq: OS USER = '||sys context('userenv', 'os user')||chr(10)|
     'by_ncgxq: TERMINAL = '||sys_context('userenv', 'terminal')||chr(10)||
                           = '||sys_context('userenv', 'module')||chr(10)||
     by_ncgxq: MODULE
     'by ncgxq: ACTION
                           = '||sys context('userenv', 'action')||chr(10)||
     'by ncgxq: CLIENT INFO = '||sys context('userenv', 'client info'));
                        TOGETHER WEMAKE II
 end if:
end;
```


3、索引跳跃扫描惹的祸

- 2012年某系统上线后即报交易缓慢,查看v\$session发现大量的索引跳跃扫描事件,查看v\$session_longops发现同样的语句最长执行47s
- 相关对象在两个字段建有本地分区复合索引,前导列为开户机构号,是range 分区的partition key,另一字段为内部机构号;故障语句以内部机构号为条件查询,
- 解决方案:在内部机构号上建立全局索引;索引建立后本以为问题解决,但 发现在新建索引上有大量的并行操作,将索引并行度改为1之后问题解决;

4、接入系统上午交易堵塞问题

• 监控反馈接入系统数据库1号机堵塞,大致时间段在8:22-8:24左右,使用 ashrpt采集08:20-08:26的ASH报告,及7:40-08:40的3个采样片的AWR报告, 结合ASH报告及08:20-08:40的AWR报告,发现在故障时间段集中等待US和TA锁

08:22:00 (1.0 min)	96,419	enq: TA - contention	52,458	25.13
		latch: shared pool	25,737	12.33
		enq: SQ - contention	4,626	2.22
08:23:00 (1.0 min)	94,703	enq: US - contention	45,063	21.59
		latch: row cache objects	39,225	18.79

Top 5 Timed Foreground Events

Event	Waits	Time(s)	Avg wait (ms)	% DB time	Wait Class
enq: US - contention	1,457,940	60,862	42	26.33	Other
enq: TA - contention	3,434	57,081	16622	24.69	Other

4、接入系统上午交易堵塞问题

•TA主要保护回滚段的DDL串行操作,据此认为应该是业务高峰导致大量回滚段从offline切换到online,从而导致交易堵塞。查看3个时间段的AWR报告中undo的统计数据,也可发现从7:40-8:40这3个采样时间段内,最大事务并发量10->123->388

Undo Segment Stats

Most recent 35 Undostat rows, ordered by Time desc

End Time	Num Undo Blocks	Number of Transactions	Max Qry Len (s)	Max Tx Concy	Tun Ret (mins)
24-Jul 07:53	14,624	227,073	1,048	10	997
24-Jul 07:43	10,765	161,502	741	10	995

End Time	Num Undo Blocks	Number of Transactions	Max Qry Len (s)	Max Tx Concy	Tun Ret (mins)
24-Jul 08:13	36,266	592,405	1,877	16	1,007
24-Jul 08:03	25,216	408,390	1,651	123	1,004

End Time	Num Undo Blocks	Number of Transactions	Max Qry Len (s)	Max Tx Concy	Tun Ret (mins)
24-Jul 08:33	51,110	777,044	1,935	26	1,004
24-Jul 08:23	41,074	651,016	1,331	388	1,008

BELIER

4、接入系统上午交易堵塞问题

- •当时查出的问题还有两节点事务分布不均,节点1上的联机回滚段3600左右,节点2在380左右,相差巨大,而逻辑集中11个库的不同节点间相差基本在100以下。
- •问题定位后,在Oracle工程师的建议下,采取以下措施(需重启数据库):
 - 修改初始化参数_rollback_segment_count=50000(初始回滚段数量)
 - events='10511 trace name context forever, level1'(保持回滚段永久联机)
- •第二天又因undo表空间不够(初始回滚段过多)、高水位等待事件堵塞,在将 undo表空间扩展并通知厂商部署预分配空间脚本后最终解决问题

5、接入系统轧账堵塞问题

- 接入系统在下午轧账时必堵,生成堵塞时的ASH报告,发现解析占70%的DB TIME,其中硬解析占19%;
- 查看问题时段的AWR报告,在memory resize部分发现有时有缩小db cache, 扩展共享池的操作,这进一步加剧了堵塞;
- 数据库配置方面,未使用AMM,但指定了SGA_MAX_SIZE和SGA_TARGET,也指定了DB CACHE的最小值,但共享池大小指定为0;
- 对数据库做如下调整并重启后(预留10G的机动内存以应急), 轧账问题解决, 但这只是治标, 关键还是需要厂商修改应用;
 - SGA MAX SIZE=180G
 - SGA_TARGET=170G
 - DB_CACHE_SIZE=110G
 - SHARED POOL SIZE=36G

- 6、grant造成的"血案"
- 监控系统在某天早9:20左右告警,接入系统交易堵塞,持续时间约7分钟左右;
- 查看问题时段的AWR/ASH报告,发现又是解析占据了大量的DB TIME,但当时不可能做维护操作,厂商也予以否认;
- 当下即怀疑是否做了赋权类操作,初期厂商否认,后威胁使用logminer挖出 黑手,厂商维护人员始承认当时为了部署监控系统做了相关操作;

7、早期灾备为何不直接使用DataGuard

- •为了主备库之间解耦,灾备方案测试发现DG存在如下问题
 - Oracle DG的WAN中单进程只能利用10Mbps带宽,无法充分利用155Mbps的带宽,因此将日志传输工作交由第三方软件进行;
 - 因9i的bug,主备库间log相差个数过多时,易使ARCH进程全部用于远程 归档而无法归档本地日志(使用文档中的workaround设置隐含参数无 效);这样在业务繁忙(如业务高峰、批处理特别是结息)或DB维护操 作时,极易造成Oracle主库挂起;
 - Oracle使用checksum检查归档日志的完整性,但无法保证内容的正确性; 因此如果归档损坏,在备库注册归档可能:
 - 无法注册;

WEMAKE IT BETTER

- 注册成功但应用失败;
- 注册成功且应用成功,但后果无法预料;

手中国邮政储蓄银行 POSTAL SAVINGS BANK OF CHINA

