SEMINAR 3

Problema 1. Fie $n \ge 1$ și notăm cu $\varphi(n)$ numărul întregilor pozitivi $\le n$ primi cu n (funcția φ se numește indicatorul lui Euler). Să se arate că

$$\varphi(n) = n(1 - \frac{1}{p_1})\dots(1 - \frac{1}{p_s})$$

unde $p_1, p_2, \dots p_s$ sunt factorii primi ai lui n.

Soluție: Un număr prim cu n este un număr k pentru care cel mai mare divizor comun (c. m. m. d. c.) al numerelor n și k este 1. Notația consacrată pentru c.m.m.d.c. $\{n,k\}$ este (n,k).

Considerăm descompunerea în factori primi ai lui $n = p_1^{r_1} p_2^{r_2} \dots p_s^{r_s}$.

Pentru fiecare $1 \leq j \leq s$ notăm cu $A_j = \{1 \leq k \leq n \mid p_j | k\}$ muțimea numerelor naturale cel mult egale cu n ce se divid cu p_i .

Dorim să calculăm numărul elementelor mulțimii $A_1 \cup A_2 \cup \ldots \cup A_n$. Numărul căutat este cardinalul complementarei acestei mulţimi, deci $\varphi(n) = n - |A_1 \cup A_2 \cup \dots A_n|$.

Pentru calculul $|A_1 \cup A_2 \cup \dots A_n|$ folosim principiul includerii-excluderii şi avem

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{L \subset [s]} (-1)^{|L|+1} |\cap_{i \in L} A_i|$$

Avem $A_j = \{p_j \cdot 1, p_j \cdot 2, p_j \cdot \frac{n}{p_j}\}$. Deci $|A_j| = \frac{n}{p_j}$.

$$A_{i_1} \cap A_{i_2} = \{1 \le k \le n \mid p_{i_1} \mid k \text{ si } p_{i_2} \mid k \} \text{ si } |A_{i_1} \cap A_{i_2}| = \frac{n}{p_{i_1} p_{i_2}}.$$

Similar pentru mulţimea de indici
$$L = \{i_1, i_2, \dots, i_l\}$$
, avem $A_{i_1} \cap \dots \cap A_{i_l} = \{1 \leq k \leq n \mid p_{i_1} | k , \dots , p_{i_l} | k \}$ ce are cardinalul $|A_{i_1} \cap \dots \cap A_{i_l}| = \frac{n}{p_{i_1} \dots p_{i_l}}$.

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{i=1}^s (-1)^2 |A_i| + \sum_{1 \le i_1 < i_2 \le s} (-1)^3 |A_{i_1} \cap A_{i_2}| + \ldots + \sum_{1 \le i_1 < \ldots < i_l \le s} (-1)^{l+1} |A_{i_1} \cap \ldots \cap A_{i_l}| + \cdots + (-1)^{s+1} |A_1 \cap A_2 \cap \ldots A_s| = 0$$

$$=\sum_{i=1}^{s}\frac{n}{p_{i}}-\sum_{1\leqslant i_{1}\leqslant i_{2}\leqslant s}\frac{n}{p_{i_{1}}p_{i_{2}}}+\ldots+(-1)^{l+1}\frac{n}{p_{i_{1}}\ldots p_{i_{l}}}+(-1)^{s+1}\frac{n}{p_{i_{1}}\ldots p_{i_{s}}}.$$

Deci $\varphi(n) = n - |A_1 \cup A_2 \cup \ldots \cup A_n|$. Dând factor comun pe n şi schimbând semnele în suma de mai sus obținem

$$\varphi(n) = n\left(1 - \sum_{i=1}^{s} \frac{1}{p_i} + \sum_{1 \leq i_1 < i_2 \leq s} \frac{1}{p_{i_1} p_{i_2}} + \ldots + (-1)^l \frac{1}{p_{i_1} \dots p_{i_l}} + (-1)^s \frac{1}{p_{i_1} \dots p_{i_s}}\right) = n\left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_s}\right)$$

Problema 2. Arătați că numărul permutărilor fără puncte fixe ale mulțimii [n] este

$$n!(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!})$$

2 SEMINAR 3

Soluție: Notăm cu $A_i = \{ \sigma \mid \sigma(i) = i \}$ mulțimea tuturor permutărilor lui [n] ce au pe i ca punct fix. Atunci $A_1 \cup A_2 \cup \ldots \cup A_n$ reprezintă toate permutările ce au puncte fixe. Trebuie să aflăm $|A_1 \cup A_2 \cup \ldots \cup A_n|$, iar numărul permutărilor fără puncte fixe este $n! - |A_1 \cup A_2 \cup \ldots \cup A_n|$, unde după cum bine se știe numărul permutărilor este n!.

Folosim din nou principiul includerii-excluderii

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{K \subset [n]} (-1)^{|K|+1} |\cap_{i \in K} A_i|$$

Pentru $K = \{i_1, i_2, \dots i_k\}$, avem $A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k} = \{\sigma \mid \sigma(i_j) = i_j, (\forall) 1 \leq j \leq k\} = \{\sigma : [n] \setminus K \longrightarrow [n] \setminus K \mid \sigma \text{ permutare} \}$. Deci $|A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}| = (n-k)!$. Vedem că acest număr este același pentru toate mulțimile $K \subset [n]$ cu |K| = k. Avem $C_n^k = \binom{n}{k}$ submulțimi de cardinal k ale mulțimii [n].

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \sum_{K \subset [n], |K| = k} |\cap_{i \in K} A_i| = \sum_{k=1}^n (-1)^{k+1} C_n^k \cdot (n-k)! = \sum_{k=1}^n (-1)^{k+1} C$$

$$= \sum_{k=1}^{n} (-1)^{k+1} \frac{n!}{k!(n-k)!} \cdot (n-k)! = \sum_{k=1}^{n} (-1)^{k+1} \frac{n!}{k!} = n! \sum_{k=1}^{n} (-1)^{k+1} \frac{1}{k!}$$

Numărul permutărilor fără puncte fixe este $n! - \sum_{k=1}^n (-1)^{k+1} \frac{1}{k!} = n! (1 + \sum_{k=1}^n (-1)^{k+2} \frac{1}{k!}) = n!$

$$= n!(1 + \sum_{k=1}^{n} (-1)^k \frac{1}{k!}) = n!(\sum_{k=0}^{n} (-1)^k \frac{1}{k!}).$$

Problema 3. Folosind definiția arătați că relația de congruență modulo n este relație de echivalență pe \mathbb{Z} .

Soluţie: Pentru un $n \in \mathbb{N}, n \ge 2$ definim $x \equiv y \pmod{n} \Leftrightarrow n \mid (x - y) \Leftrightarrow x - y = n \cdot k, k \in \mathbb{Z}$. Arătăm că relația definită mai sus este reflexivă simetrică și tranzitivă.

- Reflexivitatea: $x x = 0 = n \cdot 0 \Rightarrow x \equiv x \pmod{n}$.
- Simetria: Fie $x \equiv y \pmod{n} \Leftrightarrow x y = n \cdot k \Rightarrow y x = n \cdot (-k)$. Cum $k \in \mathbb{Z} \Rightarrow (-k) \in \mathbb{Z}$. Deci $y \equiv x \pmod{n}$
- Tranzitivitatea: Fie $x \equiv y \pmod{n}$ și Fie $y \equiv z \pmod{n}, x-y=n \cdot p, y-z=n \cdot q$ cu $p,q \in \mathbb{Z}$. Atunci $x-z=x-y+y-z=n \cdot (p+q)$ și $p+q \in \mathbb{Z}$.

Problema 4. Considerăm relațiile α și β pe \mathbb{R} .

 $x\alpha y$ dacă $x-y\in\mathbb{Z}$ dacă $x-y\in\mathbb{Z}$ și $x\beta y$ dacă |x-y|<2. Să se studieze care din aceste relații sunt relații de echivalență.

Solutie:

Relatia α :

- Reflexivitatea: $x x = 0 \in \mathbb{Z} \Rightarrow x\alpha x$
- Simetria: dacă $x y = k \in \mathbb{Z} \Rightarrow y x = -(x y) = -k \in \mathbb{Z}$. Deci $x\alpha y \Rightarrow y\alpha x$.
- Tranzitivitatea: dacă $x-y=p\in\mathbb{Z}$ și $y-z=q\in\mathbb{Z}$, atunci $x-z=x-y+y-z=p+q\in\mathbb{Z}$. Deci $x\alpha y$ și $y\alpha z\Rightarrow x\alpha z$.

Așadar α este relație de echivalență.

SEMINAR 3 3

Relația β :

• Reflexivitatea: $|x - x| = 0 < 2 \Rightarrow x\beta x$.

• Simetria: dacă $|x-y| < 2 \Rightarrow |-(y-x)| < 2 \Rightarrow |-1||(y-x)| < 2 \Rightarrow |y-x| < 2$, deci $x \ni y \Rightarrow y \ni x$.

• Tranzitivitatea: Relația β nu este tranzitivă: de exemplu |0-1,3|=1,3<2, |1,3-2,2|=0,9<2, dar |0-2,2|=2,2>2.

Deci relația β nu este o relație de echivalență pe \mathbb{R} .

Problema 5. Să se studieze injectivitatea și surjectivitatea funcției $f: \mathbb{R} \longrightarrow \mathbb{R}$ definită prin $f(x) = x^2 + 2x + 2$.

Soluţie: Vedem că $f(x) = (x+1)^2 + 1$.

- Injectivitatea: fie $x_1, x_2 \in \mathbb{R}$ a.î. $f(x_1) = f(x_2) \Leftrightarrow x_1^2 + 2x_1 = x_2^2 + 2x_2 \Leftrightarrow (x_1 x_2)(x_1 + x_2 + 2) = 0 \Rightarrow x_1 = x_2$ sau $x_1 = -x_2 2$. Deci f nu este injectivă pentru că f(-x 2) = f(x), şi $-x 2 \neq x$, $(\forall) x \in \mathbb{R} \setminus \{-1\}$.
- Surjectivitatea: trebuie să verificăm că pentru $(\forall)y \in \mathbb{R}, (\exists)x \in \mathbb{R}$ a.î. $f(x) = y \Leftrightarrow x^2 + 2x + 2 y = 0$. Soluțiile sunt $x_{1,2} = -1 \pm \sqrt{1 (2 y)} = -1 \pm \sqrt{y 1}$. Vedem că dacă y < 1 atunci soluțiile $x_{1,2} \notin \mathbb{R}$.

Funcția $f(x) = x^2 + 2x + 2 = (x+1)^2 + 1$ este bijectivă dacă considerăm $f: [-1, \infty) \longrightarrow [1, \infty)$, iar inversa este $f^{-1}: [1, \infty) \longrightarrow [-1, \infty), f^{-1}(x) = -1 + \sqrt{x-1}$. Verificați că $f \circ f^{-1} = \mathrm{id}_{[1,\infty)}$ și $f^{-1} \circ f = \mathrm{id}_{[-1,\infty)}$

Problema 6. Studiaţi dacă funţia $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = \frac{x^3 + 3x}{2}$ este bijectivă şi inversa este

$$g: \mathbb{R} \longrightarrow \mathbb{R}, g(x) = \sqrt[3]{x + \sqrt{x^2 + 1}} + \sqrt[3]{x - \sqrt{x^2 + 1}}$$

Solutie:

- Injectivitatea: fie $x_1, x_2 \in \mathbb{R}$ a.î. $f(x_1) = f(x_2) \Leftrightarrow x_1^3 + 3x_1 = x_2^3 + 3x_2 \Leftrightarrow (x_1 x_2)(x_1^2 + x_1x_2 + x_2^2 + 3) = 0$. $x_1^2 + x_1x_2 + x_2^2 \ge 0$ pentru $(\forall)x_1, x_2 \in \mathbb{R}$. (Pentru $x_1 = x_2 = 0 \Rightarrow x_1^2 + x_1x_2 + x_2^2 = 0$. Pentru $(x_1, x_2) \ne (0, 0)$, $x_1^2 + x_1x_2 + x_2^2 = x_2^2((\frac{x_1}{x_2})^2 + \frac{x_1}{x_2} + 1)$. Trinomul din ultima paranteză este strict pozitiv pentru toate valorile reale ale fracției $\frac{x_1}{x_2}$). Deci $(x_1^2 + x_1x_2 + x_2^2 + 3) > 0$ pentru $(\forall)x_1, x_2 \in \mathbb{R}$. Astfel, $(x_1 x_2)(x_1^2 + x_1x_2 + x_2^2 + 3) = 0 \Rightarrow x_1 = x_2$, deci funcția este injectivă.
- Surjectivitatea: Menționez soluția ecuației de gradul 3. Fiecare ecuație de grad 3 se poate reduce printr-o schimbare de variabile la o ecuație de forma $x^3 + qx + r = 0$. Se caută rădăcină de forma $u = \alpha + \beta$. Avem $\alpha\beta = -\frac{q}{3}$ iar $\alpha^3 = \frac{1}{2}\left(-r + \sqrt{r^2 + \frac{4q^3}{27}}\right)$.

Fie $y \in \mathbb{R}$, dorim să găsim $x \in \mathbb{R}$ a.î. $f(x) = y \Leftrightarrow x^3 + 3x - 2y = 0$.

Căutăm soluție de tipul $\alpha + \beta$, unde $\alpha^3 = \frac{1}{2} \left(2y + \sqrt{(4y)^2 + \frac{4 \cdot 27}{27}} \right) = y + \sqrt{y^2 + 1}$, de unde $\alpha = \sqrt[3]{y + \sqrt{y^2 + 1}}$. Cum $y^2 + 1 > 0$ pentru $(\forall)y \in \mathbb{R}$, avem $\alpha \in \mathbb{R}$.

$$\beta = -\frac{1}{\alpha} = -\sqrt[3]{\frac{1}{y + \sqrt{y^2 + 1}}} = -\sqrt[3]{\frac{y - \sqrt{y^2 + 1}}{y^2 - (y^2 + 1)}} = \sqrt[3]{y - \sqrt{y^2 + 1}}.$$

Deci soluția ecuației f(x) = y este $u = \sqrt[3]{y + \sqrt{y^2 + 1}} + \sqrt[3]{y - \sqrt{y^2 + 1}} \in \mathbb{R}$, de unde tragem concluzia că f este surjectivă.

Deci funcția f este bijectivă. Verificați faptul că funcția g(x) dată în enunț (care vedeți că provine din rezolvarea ecuației f(x) = y) este inversa funcției f.