A Finite Abstraction of Real Valued Functions for Complete Reasoning about Influence

Florian Bruse Martin Lange Sören Möller

¹Theoretical Computer Science / Formal Methods, University of Kassel, Germany ²TUM School of Computation, Information and Technology Technical University of Munich, Germany

15th Int. Symp. on Frontiers of Combining Systems, FroCoS'25 29/09 - 01/10/2025

Background and Goals

Background: digitalisation in secondary education

> natural science experiments

Goals:

- learning tool that allows reasoning about influences
- allows discussing dangerous/time-consuming experiments in class
- tool should provide feedback and run efficiently

Background and Goals

Background: digitalisation in secondary education

> natural science experiments

Goals:

- learning tool that allows reasoning about influences
- allows discussing dangerous/time-consuming experiments in class
- tool should provide feedback and run efficiently

[Bruse/Lange/Möller CADE'23]: The Calculus of Influence

- allows abstractly describing sets of variable influence (e.g. time onto growth)
- provides polynomial reasoning via a set of calculus rules
- is not complete in the general case

Solution: develop a more sophisticated approach

Influences and Experiments

What are we trying to achieve?...

- (abstractly) model influences and experiments using simple mathematical terms
- For all described experiments, decide a hypothesis like:

"When in between 7km and 8km of altitude, does oxygenation decrease in between 60% and 70%?"'

Influences and Experiments

What are we trying to achieve?...

- (abstractly) model influences and experiments using simple mathematical terms
- For all described experiments, decide a hypothesis like:

"When in between 7km and 8km of altitude, does oxygenation decrease in between 60% and 70%?"

What are experiments?...

Def.: An influence experiment is a mapping $\mathcal{F}: \mathcal{V} \times \mathcal{V} \to (\mathbb{R} \to \mathbb{R})$ such that:

- V is a finite signature of ordered variables
- each $\mathcal{F}(a,b) := \mathcal{F}_{a,b}$ is continuous over a closed domain,
- for each $\mathcal{F}_{a,b}$ we have that a < b,
- coherence property: for each a < b < c and each $x \in \mathbb{R}$ we have $\mathcal{F}_{a,c}(x) = (\mathcal{F}_{b,c} \circ \mathcal{F}_{a,b})(x)$

Influences and Experiments

A small example of an experiment containing the following influences:

Altitude ⇒ Air Pressure ⇒ Oxygen Saturation

Influence Statements

Def.: influence statement $S := a \stackrel{|q|'}{\longrightarrow} b$, where

- $a, b \in \mathcal{V}$ are variables,
- $I, I' \subseteq \mathbb{R}$ are closed intervals over reals,
- $q \in \{\nearrow, \searrow, \leadsto, \rightarrow\}$ is the behaviour

We write $\mathcal{F}_{a,b} \models S$, if:

 On the domain I, the (a, b)-influence takes values in I' and behaves like q.

Influence Statements

Def.: influence statement $S := a \stackrel{f \circ f'}{\longrightarrow} b$, where

- $a, b \in \mathcal{V}$ are variables,
- $I, I' \subseteq \mathbb{R}$ are closed intervals over reals,
- $q \in \{ \nearrow, \searrow, \leadsto, \rightarrow \}$ is the behaviour

We write $\mathcal{F}_{a,b} \models S$, if:

 On the domain I, the (a, b)-influence takes values in I' and behaves like q.

Def.: An influence scheme C is a finite set of influence statements

We write $\mathcal{F}_{a,b} \models \mathcal{C}$ if $\mathcal{F}_{a,b} \models S$ for all $S \in \mathcal{C}_{a,b}$

- \$\mathcal{C}_{a,b}\$ is the collection of \$(a,b)\$-statements in \$\mathcal{C}\$
- statements in \mathcal{C} are not allowed to include

~

Def.: An influence scheme C is a finite set of influence statements

We write $\mathcal{F}_{a,b} \models \mathcal{C}$ if $\mathcal{F}_{a,b} \models S$ for all $S \in \mathcal{C}_{a,b}$

- \$\mathcal{C}_{a,b}\$ is the collection of \$(a,b)\$-statements in \$\mathcal{C}\$
- statements in $\mathcal C$ are not allowed to include

 $\sim \rightarrow$

Def.: An influence scheme \mathcal{C} is a finite set of influence statements

We write $\mathcal{F}_{a,b} \models \mathcal{C}$ if $\mathcal{F}_{a,b} \models S$ for all $S \in \mathcal{C}_{a,b}$

- $C_{a,b}$ is the collection of (a,b)-statements in C
- statements in ${\cal C}$ are not allowed to include
- each experiment can be described by infinitely many schemes

~

Def.: An influence scheme \mathcal{C} is a finite set of influence statements

- $C_{a,b}$ is the collection of (a,b)-statements in C
- statements in C are not allowed to include
- each experiment can be described by infinitely many schemes

Def.: An influence scheme \mathcal{C} is a finite set of influence statements

- $C_{a,b}$ is the collection of (a,b)-statements in C
- statements in C are not allowed to include
- each experiment can be described by infinitely many schemes

Def.: An influence scheme \mathcal{C} is a finite set of influence statements

- \$\mathcal{C}_{a,b}\$ is the collection of \$(a,b)\$-statements in \$\mathcal{C}\$
- statements in C are not allowed to include
- each experiment can be described by infinitely many schemes

Def.: An influence scheme C is a finite set of influence statements

- \$\mathcal{C}_{a,b}\$ is the collection of \$(a,b)\$-statements in \$\mathcal{C}\$
- statements in C are not allowed to include
- each experiment can be described by infinitely many schemes
- each scheme has infinitely experiments satisfying it

Def.: An influence scheme C is a finite set of influence statements

- $C_{a,b}$ is the collection of (a,b)-statements in C
- statements in C are not allowed to include
- each experiment can be described by infinitely many schemes
- each scheme has infinitely experiments satisfying it

Def.: An influence scheme C is a finite set of influence statements

- \$\mathcal{C}_{a,b}\$ is the collection of \$(a,b)\$-statements in \$\mathcal{C}\$
- statements in C are not allowed to include
 →
- each experiment can be described by infinitely many schemes
- each scheme has infinitely experiments satisfying it

Hypothesis Validation

Recall the hypothesis from earlier...

"When in between 7km and 8km of altitude, does oxygenation decrease in between 60% and 70%?"'

This directly translates into a (hypothesis)-statement:

$$H := Alt \stackrel{[7000,8000]}{\searrow} \stackrel{[60,70]}{\longrightarrow} Oxy$$

Hypothesis Validation

Recall the hypothesis from earlier...

"When in between 7km and 8km of altitude, does oxygenation decrease in between 60% and 70%?"'

This directly translates into a (hypothesis)-statement:

$$H := Alt [7000,8000] \setminus [60,70] Oxy$$

Decision Problem:

scheme \mathcal{C} and hypothesis Hgiven: problem:

for all experiments \mathcal{F} s.t. $\mathcal{F} \models \mathcal{C}$, does $\mathcal{F} \models H$ hold?

Hypothesis Validation

Recall the hypothesis from earlier...

"When in between 7km and 8km of altitude, does oxygenation decrease in between 60% and 70%?"

This directly translates into a (hypothesis)-statement:

$$H := Alt [7000,8000] \setminus [60,70] Oxy$$

Decision Problem:

given: scheme \mathcal{C} and hypothesis \mathcal{H} problem: for all experiments \mathcal{F} s.t. $\mathcal{F} \models \mathcal{C}$,

does $\mathcal{F} \models H$ hold?

Problems with Completeness

Problems:

- diamonds in the variable order
- statements over non-elementary variable pairs

Consider the composition of statements...

Problems with Completeness

Problems:

- diamonds in the variable order
- statements over non-elementary variable pairs

Consider the composition of statements...

Introduces non-determinism and intermediate constraints

Problems with Completeness

Problems:

- diamonds in the variable order
- statements over non-elementary variable pairs

Consider the composition of statements...

Introduces non-determinism and intermediate constraints

Alternative Solution

Instead of:

• for all experiments \mathcal{F} s.t. $\mathcal{F} \models \mathcal{C}$ does $\mathcal{F} \models \mathcal{H}$ hold?

Do this:

• for all classes of experiments s.t. $\mathcal{F} \models \mathcal{C}$ for all \mathcal{F} in that class, does $\mathcal{F} \models \mathcal{H}$ hold for all those \mathcal{F} ?

This is feasible under the following conditions:

- we have finitely many classes
- for all $S \in \mathcal{C} \cup \{H\}$, we have $\mathcal{F} \models S$ or $\mathcal{F} \not\models S$ for all experiments \mathcal{F} of that class

We will introduce an equivalence relation on influences and naturally extend them to experiments. $\Rightarrow \mathcal{F} \equiv \mathcal{G}$ if $\mathcal{F}_{a,b} \equiv \mathcal{G}_{a,b}$ for all $a,b \in \mathcal{V}$ s.t. a < b

An Idea of Categorisation

Initial idea:

Use a grid of boundary points to categorise.

Influences should not be equivalent, if they behave differently on that grid

- different ranges,
- different behaviours,
- different domains

Simplification: Assume all influences are total and assume some integer grid

The Problem with Composition

This does not fix our problem with composition...

There are two parts to this problem...

- arbitrary behaviour
- ambiguous ranges

Arbitrary Behaviour

Composing influences over domains exhibiting arbitrary behaviour produces unpredictable behaviour in the composition.

However: Composing non-arbitrary behaviour might introduce arbitrary behavior.

Arbitrary Behaviour: Solution

Solution: Decompose the influence into parts where the behaviour might change ⇒ Turning Points

For each $a \in \mathcal{V}$, in a top-down fashion, collect the turning points

Arbitrary Behaviour: Solution

Solution: Decompose the influence into parts where the behaviour might change ⇒ Turning Points

For each $a \in \mathcal{V}$, in a top-down fashion, collect the turning points

Arbitrary Behaviour: Solution

Solution: Decompose the influence into parts where the behaviour might change ⇒ Turning Points

For each $a \in \mathcal{V}$, in a top-down fashion, collect the turning points

This does not allow us to compose influence-classes unambigously Solution: Decompose the influences even further

This does not allow us to compose influence-classes unambigously Solution: Decompose the influences even further

This does not allow us to compose influence-classes unambigously Solution: Decompose the influences even further

This does not allow us to compose influence-classes unambigously Solution: Decompose the influences even further

Caution: We assumed some experiment and then considered its points of interest ⇒ Consider all possible amounts and orderings of points of interest for all variables

Note: This solves any problems with non-elementary statements and diamonds

Thm 1. given scheme \mathcal{C} and hypothesis H, deciding $\mathcal{C} \models H$ is in coNP

- for all variables, collect all classes of points of interest
- there are only polynomial many points of interest w.r.t. C
 (but exponentially many w.r.t. V)
- filter out classes where the influences do not compose correctly
- ullet for each remaining class, check whether the experiments satisfy ${\mathcal C}$ but not ${\mathcal H}$

Future Work

Biggest Problem: Runtime Efficiency

- Implement a coNP-procedure using SMT-Solvers over different background theories
- Benchmark different solvers
- Fix the overshoot
- Develop a hyposesis-driven (polynomial?) approach

Additionally...

- Extend the results to multi-dimensional experiments
- Enhance the practicality by user-friendly infra-structure