問題1. 一般問題 (問題数30, 配点は1問当たり2点)

【注】本問題の計算で $\sqrt{2}$, $\sqrt{3}$ 及び円周率 π を使用する場合の数値は次によること。 $\sqrt{2}$ = 1.41 , $\sqrt{3}$ = 1.73 , π = 3.14 次の各問いには4通りの答え($\mathbf{1}$, $\mathbf{1}$, $\mathbf{1}$, $\mathbf{1}$ が書いてある。それぞれの問いに対して答えを $\mathbf{1}$ つ選びなさい。

なお、選択肢が数値の場合は最も近い値を選びなさい。

まね、選択収が数値の場合は取り近く値を選びなると		答え			
1	図のような回路で、端子 \mathbf{a} - \mathbf{b} 間の合成抵抗 $[\Omega]$ は。 \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{c}	. 1	□. 2	л. 3	=. 4
2	A, B 2 本の同材質の銅線がある。A は直径 1.6 mm, 長さ 20 m, B は直径 3.2 mm, 長さ 40 m である。A の抵抗は B の抵抗の何倍か。	. 2	□. 3	/\. 4	= . 5
3	電線の接続不良により、接続点の接触抵抗が 0.5 Ωとなった。この電線に 20 A の電流が流れると、接続点から 1 時間に発生する熱量 [kJ] は。 ただし、接触抵抗の値は変化しないものとする。	. 72	□. 144	/\. 720	= . 1440
4	図のような正弦波交流回路の電源電圧 v に対する電流 i の波形として, 正しいものは 。 $i \longrightarrow c$		v 360°	=. 0	v 360°
5	定格電圧 V [V] ,定格電流 I [A]の三相誘導電動機を定格状態で時間 t [h] の間,連続運転したところ,消費電力量が W [kW・h] であった。この電動機の力率 [%] を表す式は。	$\frac{W}{3VIt} \times 10^5$	$\Box. \ \frac{\sqrt{3}VI}{Wt} \times 10$	$\frac{3VI}{W} \times 10^5$	$= . \frac{W}{\sqrt{3}VIt} \times 10^5$