WHAT IS CLAIMED IS:

5

10

15

20

30

1.	An apparatus for correlating a first data sequence with a local code sequence,
	comprising:

a first sub-chip delay circuit for generating a second data sequence that is offset by a fraction of a chip relative to the first data sequence;

a first despreader circuit for despreading the first data sequence with the local code sequence to produce a first despread result;

a second despreader circuit for despreading the second data sequence with the local code sequence to produce a second despread result; and

a first sum-and-accumulate circuit for adding the first despread result with the second despread result to produce a first summed result.

2. The apparatus of claim 1, further comprising:

a second sub-chip delay circuit for generating a third data sequence that is offset by two fractions of a chip relative to the first data sequence;

a third despreader circuit for despreading the third data sequence with the local code sequence to produce a third despread result;

a second sum-and-accumulate circuit for adding the second despread result with the third despread result to produce a second summed result.

- 3. The apparatus of claim 2, wherein the second data sequence is offset by one-half of a chip relative to the first data sequence.
- 25 4. The apparatus of claim 3, wherein the third data sequence is offset by one-half of a chip with respect to the second data sequence and by one chip with respect to the first sequence.
 - 5. The apparatus of claim 1, further comprising a code generator for generating the local code sequence.
 - 6. The apparatus of claim 6, wherein the local code sequence comprises a pseudorandom noise sequence.
- 7. In a spread-spectrum communication device, a method of determining a subchip offset of a signal in relation to a local code sequence, comprising:

5

10

15

20

25

30

generating a first data sequence, a second data sequence and a third data sequence from the signal, wherein the first data sequence and the second data sequence are offset by a fraction of a chip and wherein the first data sequence and the third data sequence are offset by two fractions of a chip;

despreading the first data sequence, the second data sequence and the third data sequence with the local code sequence in parallel to respectively produce a first despread result, a second despread result and a third despread result;

summing the first despread result and the second despread result to produce a summed result.

- 8. The method of claim 7, further comprising accumulating the summed result over a pre-determined period of time to produce a summed-and-accumulated despread result.
- 9. The method of claim 8, further comprising analyzing the summed-and-accumulated despread result to determine the sub-chip offset of the signal.
- 10. The method of claim 7, wherein the first data sequence and the second data sequence are offset by one half of a chip and wherein the first data sequence and the third data sequence are offset by one chip.
 - 11. A communication device, comprising:

a receiver circuit for receiving a signal that is spread with a first code sequence;

a base-band processor having a code generator for generating a local code sequence and

a searcher, wherein the searcher comprises:

- (a) a circuit for generating a first data sequence from the signal,
- (b) a first sub-chip delay circuit for generating a second data sequence from the signal, wherein the first data sequence and the second data sequence are offset by a fraction of a chip,
- (b) a first despreader for spreading the first data sequence with the local code sequence to produce a first despread result,

35

		with the local code sequence to produce a second despread result, and		
		(d) a first sum-and-accumulate circuit for adding the first		
5		despread result and the second despread result to produce a		
		first summed result and for accumulating the first summed		
		result over a pre-determined period of time to generate a first		
		accumulated result;		
		wherein the base-band processor is configured for analyzing the first		
10	accumulated result to determine whether the first code sequence matches			
		local code sequence.		
	12.	The communication device of claim 11, wherein the searcher further		
		comprises:		
15		a second sub-chip delay circuit for generating a third data sequence		
		from the signal, wherein the third data sequence and the first data sequence		
		are offset by two fractions of a chip,		
		a third despreader for spreading the third data sequence with the local		
		code sequence to produce a third despread result, and		
20		a second sum-and-accumulate circuit for adding the second despread		
		result and the third despread result to produce a second summed result and		
		for accumulating the second summed result over the pre-determined period		
		of time to produce a second accumulated result.		
25	13.	The communication device of claim 12, wherein the base-band processor		
		analyzes the first accumulated result and the second accumulated result to		
		determine the sub-chip offset of the first code sequence.		
	14.	The communication device of claim 11, wherein the first data sequence and		
30		the second data sequence are offset by one half of a chip.		
	15.	The communication device of claim 14, wherein the first data sequence and		
		the third data sequence are offset by one chip.		

a second despreader for spreading the second data sequence

(c)

An apparatus for performing code correlation, comprising:

16.

35

		that is offset by one half of a chip relative to the first data sequence;				
		a second sub-chip delay circuit for generating a third data sequence				
		that is offset by one half of a chip relative to the second data sequence and by				
5		one chip relative to the first data sequence;				
		a code generator for generating a local code sequence;				
		a first despreader circuit for despreading the first data sequence with				
		the local code sequence to produce a first despread result;				
		a second despreader circuit for despreading the second data sequence				
10		with the local code sequence to produce a second despread result; and				
		a third despreader circuit for despreading the second offset data				
		sequence with the local code sequence to produce a third despread result;				
		a first sum-and-accumulate circuit for adding the first despread result				
		with the second despread result to produce a first summed result, and for				
15		accumulating the first summed result over a pre-determined period of time to				
	generate a first accumulated result; and					
		a second sum-and-accumulate circuit for adding the second despread				
		result with the third despread result to produce a second summed result and				
		for accumulating the second summed result over the pre-determined period				
20		of time to generate a second accumulated result.				
	17.	A communication device, comprising:				
		a receiver circuit for receiving a signal that is spread with a first code				
		sequence;				
25		a base-band processor having a code generator for generating a local				
		code sequence and				
		a searcher comprising:				
		(a) a circuit for generating a first data sequence from the signal,				
		(b) a first sub-chip delay circuit for generating a second data				
30		sequence from the signal, wherein the first data sequence and				
		the second data sequence are offset by one half of a chip,				
		(c) a second sub-chip delay circuit for generating a third data				
		sequence from the signal, wherein the third data sequence and				
		the first data sequence are offset by one chip,				
35		(d) a first despreader for spreading the first data sequence with				
		the local code sequence to produce a first despread result,				

a first sub-chip delay circuit for generating a second data sequence

35

		with the local code sequence to produce a second despread
		result,
	(f)	a third despreader for spreading the third data sequence with
5		the local code sequence to produce a third despread result,
	(g)	a first sum-and-accumulate circuit for adding the first
		despread result and the second despread result to produce a
		first summed result and for accumulating the first summed
		result over a pre-determined period of time to generate a first
10		accumulated result, and
	(h)	a second sum-and-accumulate circuit for adding the second
		despread result and the third despread result to produce a
		second summed result and for accumulating the second
		summed result over the pre-determined period of time to
15		produce a second accumulated result;
	wherei	in the base-band processor is configured for analyzing the first
	accumulated r	result to determine whether the local code sequence matches the
	first code sequ	ience.
20		
25		
30		

a second despreader for spreading the second data sequence

(e)