

Computer Course Linear Programming Introduction to Gurobipy

Stefan Kober 28-29 October 2020

Technical University of Munich

Organizational Things

What to expect

What this course offers:

- praxis-oriented introduction to python and gurobipy
- lots of examples
- preparation for further lectures, case studies and theses

What this course does not offer:

- detailed installation instructions
- ► the time needed to become an expert in python and gurobipy

Schedule

- ► Wednesday:
 - ► Introduction to Python
 - Introduction to Gurobi
- ► Thursday:
 - ► Features Python (advanced input and output methods)
 - ► Features Gurobi (advanced variable types and output interpretation)

Schedule

10:15 first slot

11:45 lunch break

13:15 second slot

14:45 coffee break

15:15 third slot

Work in teams!

Outlook

Structure of Gurobi

Basics

Linear Programming

Modelling

Output Interpretation

Advanced Input Methods

Advanced Gurobi Datatypes

Visualization

Structure of Gurobi

Solver for LP, QP, MIP

Gurobi

Algorithms

Simplex, Barrier, Branch-and-Cut,
Heuristics,...

Solver for LP, QP, MIP

Gurobi

Algorithms

Simplex, Barrier, Branch-and-Cut,
Heuristics,...

Features

Parameters, Datatypes, . . .

Solver for LP, QP, MIP

Gurobi Java, matlab, ...

Algorithms

Simplex, Barrier, Branch-and-Cut,
Heuristics,...

Features

Interfaces

Python, c++,

Parameters, Datatypes, . . .

process data create model

Credits

The materials used in this course have been developed and improved by

- ► Melanie Herzog
- Anja Kirschbaum
- ► Fabian Klemm
- ► Michael Ritter
- Matthias Silbernagel
- Paul Stursberg
- Stefan Kober

Basics

Python

- open source
- most popular programming language
- object-oriented, procedural, functional
- **▶** interactive
- easy to learn

Advantages

- high-level
 - direct interpretation of objects
 - readable and accessible
- many useful libraries (graphs, visualization, computations, data management,...)

Limits

- slow running times
- somewhat restricted
- possibly not best choice for large object oriented project

Basic Knowledge

- Datatypes
 - integer, float, string
 - ► list, tuple, dict, set
- ► Indentation
- Output
 - print
 - formatted print
- ► Imports

Linear Programming

$$\min c^{\top} x$$
 s.t. $Ax < b$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 1 \\ -2 & -2 & 0 \\ -2 & 0 & -3 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ 7 \\ 1 \\ -1 \end{pmatrix}, \quad c = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

$$\min c^{\top} x$$
 s.t. $Ax \le b$

- \triangleright set of variables x
- ightharpoonup set of linear constraints $Ax \leq b$
- ► linear objective function min $c^{\top}x$

$$\min c^{\top}x$$
 s.t.

$$Ax \leq b$$

$$\min c^{\top}x$$
 s.t.

$$Ax \leq b$$

- ▶ Find a feasible solution
- Travel along improving edges
- ► Terminate at optimal solution

- ► Find a feasible solution
- Travel along improving edges
- ► Terminate at optimal solution

- ► Find a feasible solution
- ► Travel along improving edges
- ► Terminate at optimal solution

- ► Find a feasible solution
- ► Travel along improving edges
- ► Terminate at optimal solution

- ► Find a feasible solution
- ► Travel along improving edges
- ► Terminate at optimal solution

The Simplex Algorithm

- ► Find a feasible solution
- Travel along improving edges
- ► Terminate at optimal solution

Good News: Gurobi does that for us

Modelling

Modelling

10l crude oil

demand: 31 heavy oil, 51 med. heavy oil, 41 light oil

demand: 31 heavy oil, 51 med. heavy oil, 41 light oil

objective: minimize cost

min $3x_1 + 5x_2$

$$2x_1 + 1x_2 > 3$$

$$2x_1 + 2x_2 \ge 5$$

$$1x_1 + 4x_2 \ge 4$$

$$x_1, x_2 \geq 0$$

$$\min 3x_1 + 5x_2$$

$$2x_1 + 1x_2 > 3$$

$$2x_1 + 2x_2 \ge 5$$

$$1x_1 + 4x_2 \ge 4$$

$$x_1, x_2 > 0$$

$$min 3x_1 + 5x_2$$

$$2x_1+1x_2\geq 3$$

$$2x_1 + 2x_2 \ge 5$$

$$1x_1 + 4x_2 \ge 4$$

$$x_1, x_2 \ge 0$$

$$min 3x_1 + 5x_2$$

$$2x_1+1x_2\geq 3$$

$$2x_1 + 2x_2 \ge 5$$

$$1x_1 + 4x_2 \ge 4$$

$$x_1, x_2 \ge 0$$

$$min 3x_1 + 5x_2$$

$$2x_1 + 1x_2 \ge 3$$

$$2x_1 + 2x_2 \ge 5$$

$$1x_1+4x_2\geq 4$$

$$x_1, x_2 \ge 0$$

$$min 3x_1 + 5x_2$$

$$2x_1 + 1x_2 \ge 3$$

 $2x_1 + 2x_2 \ge 5$
 $1x_1 + 4x_2 \ge 4$
 $x_1, x_2 \ge 0$

Initialize gurobipy and create set of variables x

```
from gurobipy import *

# Create a new model

m = Model()

# Create variables

x = m.addVar(vtype=GRB.CONTINUOUS)

y = m.addVar(vtype=GRB.CONTINUOUS)
```


Initialize gurobipy and create set of variables x

```
from gurobipy import *

# Create a new model

m = Model()

# Create variables

x = m. addVar(vtype=GRB.CONTINUOUS)

y = m. addVar(vtype=GRB.CONTINUOUS)
```


- ► GRB.CONTINUOUS
- ► GRB.BINARY
- ► GRB.INTEGER
- ► GRB.SEMICONT
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY
- ► GRB.INTEGER
- ► GRB.SEMICONT
- ► GRB.SEMIINT (0) (a, b) ∩ Z

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0, 1}
- ► GRB.INTEGER
- ► GRB.SEMICONT
- ► GRB.SEMIINT (0) (a, b) ∩ Z

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0, 1}
- ► GRB.INTEGER {0, 1, 2, ...}
- ► GRB.SEMICONT
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0, 1}
- ► GRB.INTEGER {0, 1, 2, ...}
- ▶ GRB.SEMICONT $\{0\} \cup (a, b)$
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0, 1}
- ► GRB.INTEGER {0, 1, 2, ...}
- ▶ GRB.SEMICONT $\{0\} \cup (a, b)$
- ▶ GRB.SEMIINT $\{0\} \cup (a, b) \cap \mathbb{Z}$

Initialize gurobipy and create set of variables x

```
from gurobipy import *

# Create a new model
m = Model()

# Create variables
x = m.addVar(vtype=GRB.CONTINUOUS)
y = m.addVar(vtype=GRB.CONTINUOUS)
```


Add Variables

```
addVar(lb=0, ub=GRB. INFINITY, obj=0.0, vtype=GRB. CONTINUOUS, name="""
```

- ► *Ib*, *ub*: variable lower and upper bound
- obj: coefficient of the linear objective function
- vtype: variable type
- name: name for further referencing

Add Variables

```
addVars(indices, Ib=0, ub=GRB.INFINITY\ ,\ obj=0.0\ ,\\ vtype=GRB.CONTINUOUS\ ,\ name="""\ )
```

- ► *Ib*, *ub*: variable lower and upper bound
- obj: coefficient of the linear objective function
- vtype: variable type
- name: name for further referencing
- indices: integer, range, list or dictionary used to generate set of variables

Create set of linear constraints $Ax \ge b$

```
# Add constraints
c1 = m.addConstr(2*x+y>=3)
c2 = m.addConstr(2*x+2*y>=5)
c3 = m.addConstr(x+4*y>=4)
c4 = m.addConstr(x>=0)
c5 = m.addConstr(y>=0)
```


Create set of linear constraints $Ax \ge b$

```
# Add constraints
c1 = m.addConstr(2*x+y>=3)
c2 = m.addConstr(2*x+2*y>=5)
c3 = m.addConstr(x+4*y>=4)
c4 = m.addConstr(x>=0)
c5 = m.addConstr(y>=0)
```


Add Constraints

Basic form:

m. addConstr(LinExpr>=a)

Add Constraints

Basic form:

m.addConstr(LinExpr>=a)

Linear expressions can be created by:

- ightharpoonup le = 2 * x + 3 * y
- ightharpoonup le = x.prod([2, 3])
- ightharpoonup le = x.sum()
- le = quicksum([2 * x, 3 * y])

Set linear objective function min $c^{\top}x$ and optimize the model

```
# Set objective function

m. setObjective (3*x+5*y, GRB. MINIMIZE)

# Optimize model

m. optimize ()
```