ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 4: Probability

William Marsh

Outline

- Aim: Informal understanding of the rules of probability
- Boolean (binary) variables
- Probability
- Conditional probability
- Bayes theorem

Background

- We have already encountered probability concepts
- Probability underlies statistics, but connection often not obvious
- Probability can be hard paradoxes and puzzles – not relevant for us

Basic Probability

A probability is a number between 0 and 1

An Event

- An event that does or does not occur
 - Does Arsenal score more goals than Man City?
- Can be represented as a Boolean (logical) variable
 - Arsenal = True (Arsenal has more)
 - Arsenal = False (Arsenal does NOT have more)
- Which is more probable? Will Arsenal win?

Probability Values

- We write P(A) to mean P(A is True)
- Probability P(A) or Pr(A)
- Value range of P(A)
 - 0 (or 0%) impossible
 - 1 (or 100%) certain

Statement (Belief)	Probability	
Arsenal cannot win	0	0 %
Arsenal is sure to win	1	100%
Arsenal is twice as likely to win	2/3	66%

Interpretation of Probability

- Objectivist (or frequentist)
 - Run repeated trials (e.g. flipping a coin)
 - Relative frequency of outcomes
 - Limitation: play the match multiple times?
- Subjectivist (or Bayesian)
 - Degree of belief (ensuring consistency)
 - Issue: different people will have different beliefs

Rules of Probability

Rules of Probability I

- We write
 - P(A) to mean p(A is True)
 - P(not A) to mean P(A is False)

 - 1. $0 \le P(A) \le 1$ 2. P(A) + P(not A) = 1

- Rule 1: a probability is between 'impossible' and 'certain'
- Rule 2: something must happen
 - Implies P(not A) = 1 P(A)

Results and Events

- What is the result of a football match (from Arsenal's point of view)?
 - Distinguish 2 results: Win, Not win
 - Distinguish 3 results: : Win, Draw, Lose
 - Distinguish 5 results: Win by 2+, win by 1, draw, lose by 1, lose by 2+
- We can define a probably using any set of mutually exclusive results
 - Rule 1': all probabilities are between 0 and 1
 - Rule 2': total of all probabilities is 100%

Probability Distribution

- Assign a probability to each outcome
 - Outcomes are mutually exclusive
 - Outcomes are exhaustive one must happen

Vertical axis with count or frequency can be converted to a probability

Rules: Multiple Independent Events

- Let A and B be independent (binary) events
 - E.g. A is coin shows heads
 - E.g. B is dice throw gets six
 - Result of A tells us nothing about B
- P(A and B) (often written P(A,B)) probability of heads and a six
- P(A or B) probability of heads or six

Rules: Multiple Independent Events

- Let A and B be independent (binary) events
 - E.g. A is coin shows heads
 - E.g. B is dice throw gets six
 - Result of A tells us nothing about B
- P(A and B) (often written P(A,B)) probability of heads and a six
- P(A or B) probability of heads or six

Rule 3(Independent): P(A and B) = P(A).P(B)

Rule 4: P(A or B) = P(A) + P(B) - P(A and B)

Example

- Flip a coin and roll a dice
 - P(Heads and '1') = $1/2 \times 1/6 = 1/12$
 - P(Heads or '3') = 1/2 + 1/6 1/12 = 7/12
 - P(Heads or '>3') = 1/2 + 1/2 1/4 = 3/4

Quiz 1

Expected Value

We previously learnt about averages for continuous distribution. What about categorical distributions?

Summarising Categorical Distribution

- Categorical distribution
 - Has a mode
 - No median: categories not ordered
 - No mean: category values cannot be added
- Two exceptions
 - 1. If the category is associated with a value
 - Expected value
 - 2. Ordinal categories
 - Median

Expected Value: Example

- Manager of a fleet of cars wants to estimate the annual cost of repairs
 - All cars have an annual service (fixed cost)
 - Some cars require a further repair
- Annual estimates
 - 20% cars disposed of
 - Other 80%
 - P(T) = 40%, P(B) = 25%
 - Repairs can be combined – independent
- Similar to a mean
 - Also 'weighted average'

Expected Value: Example

- Manager of a fleet of cars wants to estimate the annual cost of repairs
 - All cars have an annual service (fixed cost)
 - Some cars require a further repair
- Annual estimates
 - 20% cars disposed of
 - Other 80%
 - P(T) = 40%, P(B) = 25%
 - Repairs can be combined – independent
- Similar to a mean
 - Also 'weighted average'

Expected Value: Example II

Expected value is:

sum (probability x cost)

Repair Type	Cost (incl labour)
Tyres	£400
Brakes	£200
Disposal	£7,000

Expected Value: Example II

Expected value is:

sum (probability x cost)

Repair Type	Cost (incl labour)
Tyres	£400
Brakes	£200
Disposal	£7,000

Repair	Probability	Total Cost	Expected Cost
Disposal	0.2	7000	1400
None	0.36	0	0
Tyres only	0.24	400	96
Brakes only	0.12	200	24
Both	0.08	600	48
		Total	1568

- If X is a numeric variable
 - Values are x_1 , x_2 and x_3
 - Probabilities $p(x_1)$, $p(x_2)$, and $p(x_3)$
- Expected value E[X]
 - $E[X] = x_1.p(x_1) + x_2.p(x_2) + x_3.p(x_3)$

- If X is a numeric variable
 - Values are x_1 , x_2 and x_3
 - Probabilities $p(x_1)$, $p(x_2)$, and $p(x_3)$
- Expected value E[X]

$$- E[X] = x_1.p(x_1) + x_2.p(x_2) + x_3.p(x_3)$$

- Dice example:
 - Values {1, 2, 3, 4, 5, 6}

E[dice] =
$$\left(\frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6}\right) = 3.5$$

- If X is a numeric variable
 - Values are x_1 , x_2 and x_3
 - Probabilities $p(x_1)$, $p(x_2)$, and $p(x_3)$
- Expected value E[X]
 - $E[X] = x_1.p(x_1) + x_2.p(x_2) + x_3.p(x_3)$

- Dice example:
 - Values {1, 2, 3, 4, 5, 6}

$$E[X] = \sum_{i=0}^{N} x_i \cdot p(x_i)$$

E[dice] =
$$\left(\frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6}\right) = 3.5$$

- If C is a categorical variable
 - Values are c₁, c₂ and c₃
- Cannot add value of C
 - Function f(C) give a (numeric) value to each category
 - 'Repair cost' example
- Expected value

$$E[f(C)] = \sum_{i=0}^{N} f(c_i).p(c_i)$$

sum (cost x probability)

Ordinal Example: Median

London ages again

Quiz 2, 3

Every lecture will have a 'learning reflection' slide

Metacognition

Thinking about your thinking.

Remember: you are expert thinkers!

Metacognition

Metacognition is thinking about one's thinking. More precisely, it refers to the processes used to plan, monitor, and assess one's understanding and performance. Metacognition includes a critical awareness of a) one's thinking and learning and b) oneself as a thinker and learner.

https://cft.vanderbilt.edu/guides-sub-pages/metacognition/

Metacognition

Metacognition is thinking about one's thinking. More precisely, it refers to the processes used to plan, monitor, and assess one's understanding and performance. Metacognition includes a critical awareness of a) one's thinking and learning and b) oneself as a thinker and learner.

https://cft.vanderbilt.edu/guides-sub-pages/metacognition/

- What do I find difficult?
- What are the barriers to my understanding?
- Do I have bad learning habits?
- What strategies work for me?
- What do I need to change?

Conditional Probability

and Bayes' Theorem

Conditional Probability: P(A | B)

- Two events are <u>not independent</u> if the result of one changes the probability of the other
- P(A | B)
 - Probability of 'A' given 'B'
 - Probability of 'A' is conditional on the outcome of 'B'

Conditional Probability: P(A | B)

- Two events are <u>not independent</u> if the result of one changes the probability of the other
- P(A | B)
 - Probability of 'A' given 'B'
 - Probability of 'A' is conditional on the outcome of 'B'
- P(Statistics passed | Programming passed)

Conditional probability distribution

Statistics	Programming Result		
Result	Passed	Failed	
True (i.e. pass)	90%	60%	
False (i.e. fail)	10%	40%	
Total	100%	100%	

Rules: Non-Independent Events

Probability of A and B uses conditional probability

Rule 3:
$$P(A \text{ and } B) = P(A).P(B \mid A)$$

Rule 4: $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$ No change

· As before, 'something must happen' in all cases

```
Rule 2":
P(A | B) + P(not A | B) = 1
P(A | not B) + P(not A | not B) = 1
```

Conditional Probability Example

- Suppose I have a test for a virus
 - Let T stand for 'test positive' and V for 'virus present'
 - The idea of the test is that T depends on V
 - However, it is not perfect

There are four cases

Case	Known As	Probability	Value
Test positive and virus present	True positive	P(T V)	99%
Test negative, but virus present	False negative	P(not T V)	1%
Test positive but virus absent	False positive	P(T not V)	3%
Test negative and virus absent	True negative	P(not T not V)	97%

Characteristics of test

Testing the Population

Altogether 305 test positive, but only 5 really have the virus

- 'Testing the Population' is an example of Bayes Theorem
 - We know P(Test result | Virus), what is P (V | T)?
- Follows from Rule 3:

$$P(V \text{ and } T) = P(V).P(T \mid V) = P(T).P(V \mid T)$$

- 'Testing the Population' is an example of Bayes Theorem
 - We know P(Test result | Virus), what is P (V | T)?
- Follows from Rule 3:

$$P(V \text{ and } T) = P(V).P(T \mid V) = P(T).P(V \mid T)$$

Bayes Theorem

- 'Testing the Population' is an example of Bayes Theorem
 - We know P(Test result | Virus), what is P (V | T)?
- Follows from Rule 3:

$$P(V \text{ and } T) = P(V).P(T | V) = P(T).P(V | T)$$

Bayes Theorem

P(V | T) is proportional to P(V).P(T | V)

- 'Testing the Population' is an example of Bayes Theorem
 - We know P(Test result | Virus), what is P (V | T)?
- Follows from Rule 3:

$$P(V \text{ and } T) = P(V).P(T | V) = P(T).P(V | T)$$

Bayes Theorem

P(V | T) is proportional to P(V).P(T | V)

Test accuracy

- 'Testing the Population' is an example of Bayes Theorem
 - We know P(Test result | Virus), what is P (V | T)?
- Follows from Rule 3:

$$P(V \text{ and } T) = P(V).P(T \mid V) = P(T).P(V \mid T)$$

Bayes Theorem

P(V | T) is proportional to P(V).P(T | V)

Prevalence of virus

Test accuracy

- 'Testing the Population' is an example of Bayes Theorem
 - We know P(Test result | Virus), what is P (V | T)?
- Follows from Rule 3:

$$P(V \text{ and } T) = P(V).P(T | V) = P(T).P(V | T)$$

Bayes Theorem

P(V | T) is proportional to P(V).P(T | V)

Virus status after test

Prevalence of virus

Test accuracy

Quiz

Summary

- Probability: between 0 and 1
- Probability rules
 - Mostly common sense!
 - Think about meaning
- Brief introduction to Bayes' theorem
 - Increasing important in statistics
- Binomial distribution
 - First example of a parametric distribution
 - Result of trials