

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

Mechanical Design 444 System Simulation Notes

Fan Calculations

Danie Els

Dept of Mech & Mechatron Eng University of Stellenbosch

2017

List of symbols

Variables		subscript	ts
а	polynomial coefficient	0	initial/base value
D	fan diameter [m]	a, b, i	, m, n counter
H	power [W]	f	fan
\dot{m}	air mass flow rate [kg/s]	min	minimum
$n_{ m f}$	number of fans	max	maximum
N	fan speed [rpm]	sys	system
P	air pressure [Pa]		
Q	total air volume flow rate $[m^3/s]$	subscript	ts
T	air temperature [K]	*	Reference value
ho	air density [kg/m³]	,	Values for one fan

1. Fan laws

The following relationships are valid for dimensional equivalent fans:

volume flow:
$$Q \propto ND^3$$
 mass flow: $\dot{m} \propto \rho ND^3$ pressure increase: $\Delta P \propto \rho N^2D^3$ power: $H \propto \rho N^3D^5$

2. Fan calculations

The pressure increase ΔP across the fan can be calculated for any system volume flow Q and air density ρ with the aid of the fan laws in equation (1).

Consider a single fan, then D=const. From the fan characteristic curves, e.g. Appendix A, select a reference curve ΔP^* with reference fan speed N^* and reference air density ρ^* . Fit a polynomial or any other appropriate curve through it, for example

$$\Delta P^*(Q^*) = a_n Q^{*n} + a_{n-1} Q^{*n-1} + \dots + a_1 Q^* + a_0 \quad [Pa]$$
 (2)

Calculate the reference volume flow Q^* and the reference pressure increase ΔP^* with equation (2)

$$Q' = Q/n_{\rm f} \tag{3}$$

$$Q^* = Q' \frac{N^*}{N} \qquad \text{with} \quad N_{\min} \le N \le N_{\max}$$
 (4)

$$\Delta P^* = \Delta P^*(Q^*) \qquad \text{with} \quad Q^*_{\min} \le Q^* \le Q^*_{\max}$$
 (5)

With ΔP^* known, calculate the pressure increase from the fan laws

$$\Delta P = \Delta P^* \frac{\rho}{\rho^*} \left(\frac{N}{N^*}\right)^2 \tag{6}$$

The calculation procedure is shown in figure 1.

Figure 1: Calculation of ΔP

3. Example calculation

As an example use the Donken BCC-2 fan in Appendix A with reference speed $N^* = 900$ rpm. The digitization of the characteristic curve is given in figure 2. A polynomial curve fit of the points gives

$$\Delta P^*(Q^*) = -13.649 \, Q^{*2} + 73.946 \, Q^* + 1055.2 \quad \text{[Pa]}$$
and $N^* = 900 \, \text{rpm}$ $Q^*_{\min} = 2.6 \, \text{m}^3/\text{s}$ $N_{\min} = 350 \, \text{rpm}$
 $\rho^* = 1.2 \, \text{kg/m}^3$ $Q^*_{\max} = 11.0 \, \text{m}^3/\text{s}$ $N_{\max} = 1337 \, \text{rpm}$

The second curve at 350 rpm in figure 2 is a check to verify the calculation procedure.

Figure 2: Digitization of Donken BCC-2 fan characteristic curve at 900 rpm

4. Calculations

4.1. Fan work point

Figure 3: Work point calculations

The work point of a fan running at a selected speed N is the flow rate $Q=Q_W$ with balanced temperature $T=T_W$ where the pressure increase through the fan $\Delta P_{\rm f}=f(N,Q_W,T_W)$ is in equilibrium with the pressure loss through the system, $\Delta P_{\rm sys}=f(Q_W,T_W)$.

A simple method to obtain the work point numerically is the method of *interval halv-ing* 1 :

```
function WORKPOINT(N)
     Q_a \leftarrow n_f Q_{\min}^* N/N^*
                                                                        // Search bracket lower limit
     Q_b \leftarrow n_f Q_{\max}^* N/N^*
                                                                        // Search bracket upper limit
     Q_m \leftarrow (Q_a + Q_b)/2
                                                                        // Midpoint
     Balance system temperatures at Q_m to get T_m
                                                                        // Required for calculation of correct pressures
                                                                        // Incrementor
     while |(Q_b - Q_a)/Q_m| > \varepsilon and i \le i_{\max} do
         \Delta P_{\rm f} \leftarrow \Delta P_{\rm f}(N, Q_m, T_m)
          \Delta P_{\rm sys} \leftarrow \Delta P_{\rm sys}(Q_m, T_m)
         if |\Delta P_{\rm f}| > |\Delta P_{\rm SVS}| then
              Q_a \leftarrow Q_m
                                                                        // Halve the search interval
          else
              Q_b \leftarrow Q_m
          end if
          Q_m \leftarrow (Q_a + Q_b)/2
          Balance system temperatures at Q_m to get T_m
          i
               \leftarrow i + 1
     end while
                                                                        //Q_w
     return Q \leftarrow Q_m
end function
```

¹Please note that there are more efficient algorithms for zero finding such as *Ridder's* method.

Appendix A Donken BCC-2 fan curve

