ITM426, Final Exam, 2021 Fall

Solution and Grading

 \bullet ITM 426 Engineering Mathematics 2021 F

• Justification is necessary unless stated otherwise.

out proper sanity check and 2) correct your mistake by doing so.

• Dec 17, 2021		
• Duration: 90 minutes		
• Weights: 30% depending on other quiz scores		
• 5 Questions		
• Name:		
• Student ID:		
• E-mail:	.@seoultech.ac.kr	
• Write legibly.		
• In on-line exam, start every	problem in a new page.	

• Partial points are given only sparingly for the most problems because you are expected to 1) carry

1	15
2	15
3	20
4	25
5	25
Total	100

#1. Compute the orthogonal projection of $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ onto the line through $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ and the origin.[15pt]

Difficulty: Easy

Amount of work: 15% Suggested answer:

Let $\mathbf{y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$. The orthogonal projection of \mathbf{y} onto the line through \mathbf{u} and the origin is

the orthogonal projection of \mathbf{y} onto \mathbf{u} , and this vector is $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = -\frac{2}{5} \mathbf{u} = \begin{bmatrix} 2/5 \\ -6/5 \end{bmatrix}$.

#2. The given set is a basis for a subspace W. Use the Gram–Schmidt process to produce an orthogonal basis for W.[15pt]

$$\left[\begin{array}{c}2\\-5\\1\end{array}\right], \left[\begin{array}{c}4\\-1\\2\end{array}\right]$$

Difficulty: Medium Amount of work: 15% Suggested answer:

Set
$$\mathbf{v}_1 = \mathbf{x}_1$$
 and compute that $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - \frac{1}{2} \mathbf{v}_1 = \begin{bmatrix} 5 \\ 4 \\ -8 \end{bmatrix}$. Thus an orthogonal basis for W

is
$$\left\{ \begin{bmatrix} 0\\4\\2 \end{bmatrix}, \begin{bmatrix} 5\\4\\-8 \end{bmatrix} \right\}$$
.

#3. Construct the normal equations for $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}$$

and find the solution $\hat{\mathbf{x}}$. [20pt]

Difficulty: Medium Amount of work: 20% Suggested answer:

To find the normal equations and to find $\hat{\mathbf{x}}$, compute

$$A^{T}A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 12 & 8 \\ 8 & 10 \end{bmatrix}; A^{T}\mathbf{b} = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} -24 \\ -2 \end{bmatrix}.$$

- **a**. The normal equations are $(A^T A)\mathbf{x} = A^T \mathbf{b} : \begin{bmatrix} 12 & 8 \\ 8 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -24 \\ -2 \end{bmatrix}$.
- **b**. Compute $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} = \begin{bmatrix} 12 & 8 \\ 8 & 10 \end{bmatrix}^{-1} \begin{bmatrix} -24 \\ -2 \end{bmatrix} = \frac{1}{56} \begin{bmatrix} 10 & -8 \\ -8 & 12 \end{bmatrix} \begin{bmatrix} -24 \\ -2 \end{bmatrix} = \frac{1}{56} \begin{bmatrix} -224 \\ 168 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}.$

#4. We have the following matrix. $A = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$.

- (a) Show that A is positive definite. [10pt]
- (b) Perform an orthogonal diagonalization.[15pt]

Difficulty: Easy-Medium Amount of work: 25% Suggested answer:

For (a), the eigenvalues are 5 and 10, thus positive definite. For (b),

Let $A = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$. Then the characteristic polynomial of A is $(6 - \lambda)(9 - \lambda) - 4 = \lambda^2 - 15\lambda + 50$ $= (\lambda - 5)(\lambda - 10)$, so the eigenvalues of A are 5 and 10. For $\lambda = 5$, one computes that a basis for the eigenspace is $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, which can be normalized to get $\mathbf{u}_1 = \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}$. For $\lambda = 10$, one computes that a basis for the eigenspace is $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$, which can be normalized to get $\mathbf{u}_2 = \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$. Let $P = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 0 \\ 0 & 10 \end{bmatrix}$. Then P orthogonally diagonalizes A, and $A = PDP^{-1}$.

(blank)

#5. From an experiment, three observations of two variables are collected: (1,6),(2,5), and (3,4), answer the following.

(a) Construct a sample covariance matrix.[15pt]

Using the sample covariance matrix above, perform a principal component analysis. In case you are unsure of your answer to the problem (a), then you may propose a legit 2×2 covariance matrix and proceed with it.

(b) Find the two principal components. [10pt]

Difficulty: Medium-Hard Amount of work: 25% Suggested answer:

(a)
$$X = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \end{bmatrix}, M = \begin{bmatrix} 2 & 2 & 2 \\ 5 & 5 & 5 \end{bmatrix}, S = (X - M)(X - M)^t/(3 - 1) = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}.$$

(b) eigenvalues: 2,0; eigenvectors: $(1 - 1)$ and $(1 1)$; principal components: $\frac{1}{\sqrt{2}}(1 - 1)$ and $\frac{1}{\sqrt{2}}(1 1)$.

(blank)

(blank)

Write your name before detaching this page. Your Name:	
--	--