

STM8L151C2/K2/G2/F2 STM8L151C3/K3/G3/F3

8-bit ultra-low-power MCU, up to 8 KB Flash, up to 256 bytes data EEPROM, RTC, timers, USART, I2C, SPI, ADC, comparators

Datasheet - production data

Features

- · Operating conditions
 - Operating power supply: 1.65 to 3.6 V (without BOR), 1.8 to 3.6 V (with BOR)
 - Temperature range: -40 to 85 or 125 °C
- Low power features
 - 5 low-power modes: Wait, Low power run, Low-power wait, Active-halt with RTC, Halt
 - Ultra-low leakage per I/0: 50 nA
 - Fast wakeup from Halt: 5 µs
- Advanced STM8 core
 - Harvard architecture and 3-stage pipeline
 - Max freq: 16 MHz, 16 CISC MIPS peak
 - Up to 40 external interrupt sources
- Reset and supply management
 - Low-power, ultra safe BOR reset with 5 selectable thresholds
 - Ultra-low power POR/PDR
 - Programmable voltage detector (PVD)
- · Clock management
 - 32 kHz and 1-16 MHz crystal oscillators
 - Internal 16 MHz factory-trimmed RC
 - Internal 38 kHz low consumption RC
 - Clock security system
- Low power RTC
 - BCD calendar with alarm interrupt
 - Digital calibration with +/- 0.5 ppm accuracy
 - LSE security system
 - Auto-wakeup from Halt w/ periodic interrupt
- Memories
 - Up to 8 Kbyte of Flash program memory plus 256 byte of data EEPROM with ECC
 - Flexible write/read protection modes
 - 1 Kbyte of RAM

- DMA
 - 4 channels supporting ADC, SPI, I²C, USART, timers
 - 1 channel for memory-to-memory
- 12-bit ADC up to 1 Msps/28 channels
 - Temp. sensor and internal ref. voltage
- 2 ultra-low-power comparators
 - 1 with fixed threshold and 1 rail to rail
 - Wakeup capability
- Timers
 - Two 16-bit timers with 2 channels (IC, OC, PWM), quadrature encoder (TIM2, TIM3)
 - One 8-bit timer with 7-bit prescaler (TIM4)
 - 1 Window and 1 independent watchdog
 - Beeper timer with 1, 2 or 4 kHz frequencies
- Communication interfaces
 - One synchronous serial interface (SPI)
 - Fast I²C 400 kHz
 - One USART
- Up to 41 I/Os, all mappable on interrupt vectors
- Up to 20 capacitive sensing channels supporting touchkey, proximity touch, linear touch, and rotary touch sensors
- Development support
 - Fast on-chip programming and nonintrusive debugging with SWIM
 - Bootloader using USART
- 96-bit unique ID

Contents

1	Intro	duction	9									
2	Desc	ription	11									
	2.1	Device overview	12									
	2.2	Ultra-low-power continuum	13									
3	Functional overview											
	3.1	Low-power modes	15									
	3.2	Central processing unit STM8	15									
		3.2.1 Advanced STM8 Core	15									
		3.2.2 Interrupt controller	16									
	3.3	Reset and supply management	17									
		3.3.1 Power supply scheme	17									
		3.3.2 Power supply supervisor	17									
		3.3.3 Voltage regulator	17									
	3.4	Clock management	18									
	3.5	Low power real-time clock	19									
	3.6	Memories	20									
	3.7	DMA	20									
	3.8	Analog-to-digital converter	20									
	3.9	Ultra-low-power comparators	20									
	3.10	System configuration controller and routing interface										
	3.11	Touch sensing										
	3.12	Timers										
	J	3.12.1 16-bit general purpose timers										
		3.12.2 8-bit basic timer										
	3.13	Watchdog timers	22									
		3.13.1 Window watchdog timer										
		3.13.2 Independent watchdog timer										
	3.14	Beeper	22									
	3.15	Communication interfaces	23									
		3.15.1 SPI										

		3.15.2	l ² C	23
		3.15.3	USART	23
	3.16	Infrared ((IR) interface	. 23
	3.17	Developr	ment support	. 24
4	Pino	ut and pir	n description	. 25
	4.1	System o	configuration options	. 31
5	Mem	ory and r	egister map	. 32
	5.1	Memory	mapping	. 32
	5.2	Register	map	. 33
6	Inter	rupt vecto	or mapping	. 48
7	Optio	on bytes		. 50
8	Uniq	ue ID		. 53
9	Elec	trical para	ameters	. 54
	9.1	Paramete	er conditions	. 54
		9.1.1	Minimum and maximum values	54
		9.1.2	Typical values	54
		9.1.3	Typical curves	54
		9.1.4	Loading capacitor	54
		9.1.5	Pin input voltage	55
	9.2	Absolute	maximum ratings	. 55
	9.3	Operating	g conditions	. 57
		9.3.1	General operating conditions	57
		9.3.2	Embedded reset and power control block characteristics	58
		9.3.3	Supply current characteristics	59
		9.3.4	Clock and timing characteristics	72
		9.3.5	Memory characteristics	78
		9.3.6	I/O current injection characteristics	79
		9.3.7	I/O port pin characteristics	79
		9.3.8	Communication interfaces	87
		9.3.9	Embedded reference voltage	92
			Temperature sensor	

		9.3.11	Comparator characteristics	
		9.3.12	12-bit ADC1 characteristics	
		9.3.13	EMC characteristics	
10	Pack	103		
	10.1	ECOPA	ACK	103
	10.2	LQFP4	8 package information	103
	10.3	UFQFF	PN32 package information	106
	10.4	UFQFF	PN28 package information	109
	10.5	UFQFF	PN20 package information	
	10.6	TSSOF	P20 package information	
	10.7	Therma	al characteristics	
11	Part	number	ring	
12	Revis	sion his	story	120

List of tables

Table 1.	Low-density STM8L151x2/3 low power device features and peripheral counts	. 12
Table 2.	Timer feature comparison	21
Table 3.	Legend/abbreviation for table 4	. 27
Table 4.	Low-density STM8L151x2/3 pin description	
Table 5.	Flash and RAM boundary addresses	. 33
Table 6.	Factory conversion registers	. 33
Table 7.	I/O port hardware register map	. 33
Table 8.	General hardware register map	. 34
Table 9.	CPU/SWIM/debug module/interrupt controller registers	46
Table 10.	Interrupt mapping	48
Table 11.	Option byte addresses	50
Table 12.	Option byte description	51
Table 13.	Unique ID registers (96 bits)	53
Table 14.	Voltage characteristics	. 55
Table 15.	Current characteristics	56
Table 16.	Thermal characteristics	56
Table 17.	General operating conditions	. 57
Table 18.	Embedded reset and power control block characteristics	. 58
Table 19.	Total current consumption in Run mode	60
Table 20.	Total current consumption in Wait mode	
Table 21.	Total current consumption and timing in Low power run mode	
	at VDD = 1.65 V to 3.6 V	
Table 22.	Total current consumption in Low power wait mode at VDD = 1.65 V to 3.6 V	67
Table 23.	Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V	69
Table 23.	Total current consumption and timing in Active-halt mode at VDD = 1.05 V to 5.0 V	
Table 23.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal	
		69
Table 24.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal	69 70
Table 24. Table 25.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V	. 69 . 70 . 71
Table 24. Table 25. Table 26.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V	69 70 71 72
Table 24. Table 25. Table 26. Table 27.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V	69 70 71 72 72
Table 24. Table 25. Table 26. Table 27. Table 28.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics	. 69 . 70 . 71 . 72 . 72
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics	. 69 . 70 . 71 . 72 . 72 . 72
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics	. 69 . 70 . 71 . 72 . 72 . 73 . 74
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics LSE oscillator characteristics LSE oscillator characteristics	. 69 . 70 . 71 . 72 . 72 . 73 . 74 . 75
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics HSI oscillator characteristics HSI oscillator characteristics	69 70 71 72 72 72 73 74 75
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics LSE oscillator characteristics HSI oscillator characteristics LSI oscillator characteristics	69 70 71 72 72 73 74 75 76
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics LSE oscillator characteristics HSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers	69 70 71 72 72 72 73 74 75 76 78
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics LSE oscillator characteristics HSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers Flash program and data EEPROM memory I/O current injection susceptibility	69 70 71 72 72 72 73 74 75 76 78 78
Table 24. Table 25. Table 26. Table 27. Table 28. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics LSE oscillator characteristics HSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers Flash program and data EEPROM memory I/O current injection susceptibility I/O static characteristics	69 70 71 72 72 72 73 74 75 76 78 78
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics LSE oscillator characteristics HSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers Flash program and data EEPROM memory I/O current injection susceptibility	69 70 71 72 72 73 74 75 76 78 78 80 83
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics LSE oscillator characteristics HSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers Flash program and data EEPROM memory I/O current injection susceptibility I/O static characteristics Output driving current (high sink ports) Output driving current (true open drain ports)	69 70 71 72 72 73 74 75 76 78 79 80 83 83
Table 24. Table 25. Table 26. Table 27. Table 28. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics LSE oscillator characteristics LSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers Flash program and data EEPROM memory I/O current injection susceptibility I/O static characteristics Output driving current (high sink ports) Output driving current (true open drain ports) Output driving current (PA0 with high sink LED driver capability)	69 70 71 72 72 73 74 75 76 78 79 80 83 83
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics LSE oscillator characteristics HSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers Flash program and data EEPROM memory I/O current injection susceptibility I/O static characteristics Output driving current (high sink ports) Output driving current (true open drain ports)	69 70 71 72 72 73 74 75 76 78 79 80 83 83 83 85
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics LSE oscillator characteristics HSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers Flash program and data EEPROM memory I/O current injection susceptibility I/O static characteristics Output driving current (high sink ports) Output driving current (true open drain ports) Output driving current (PA0 with high sink LED driver capability) NRST pin characteristics	69 70 71 72 72 73 74 75 76 78 80 83 83 83 85 87
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics HSI oscillator characteristics LSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers Flash program and data EEPROM memory I/O current injection susceptibility I/O static characteristics Output driving current (high sink ports) Output driving current (true open drain ports) Output driving current (PA0 with high sink LED driver capability) NRST pin characteristics SPI1 characteristics	69 70 71 72 72 73 74 75 76 78 80 83 83 85 87 90
Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics HSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers Flash program and data EEPROM memory I/O current injection susceptibility I/O static characteristics Output driving current (high sink ports) Output driving current (true open drain ports) Output driving current (PA0 with high sink LED driver capability) NRST pin characteristics SPI1 characteristics	69 70 71 72 72 73 74 75 76 78 80 83 83 85 87 90 92
Table 24. Table 25. Table 26. Table 27. Table 28. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 43.	Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Peripheral current consumption Current consumption under external reset HSE external clock characteristics LSE external clock characteristics HSE oscillator characteristics LSE oscillator characteristics LSI oscillator characteristics LSI oscillator characteristics RAM and hardware registers Flash program and data EEPROM memory I/O current injection susceptibility I/O static characteristics Output driving current (high sink ports) Output driving current (true open drain ports) Output driving current (PA0 with high sink LED driver capability) NRST pin characteristics SPI1 characteristics Reference voltage characteristics	69 70 71 72 72 73 74 75 76 78 80 83 83 83 85 90 92

Table 48.	ADC1 characteristics	95
Table 49.	ADC1 accuracy with VDDA = 3.3 V to 2.5 V	
Table 50.	ADC1 accuracy with VDDA = 2.4 V to 3.6 V	
Table 51.	ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V	
Table 52.	R_{AIN} max for f_{ADC} = 16 MHz	
Table 53.	EMS data	
Table 54.	EMI data	
Table 55.	ESD absolute maximum ratings	
Table 56.	Electrical sensitivities	
Table 57.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	
	mechanical data	104
Table 58.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package mechanical data	107
Table 59.	UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
	package mechanical data	109
Table 60.	UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
	package mechanical data	113
Table 61.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,	
	package mechanical data	115
Table 62.	Thermal characteristics	118
Table 63.	Low-density STM8L151x2/3 ordering information scheme	
Table 64.	Document revision history	

List of figures

Figure 1.	Low-density STM8L151x2/3 device block diagram	14
Figure 2.	Low-density STM8L151x2/3 clock tree diagram	
Figure 3.	STM8L151Cx LQFP48 package pinout	
Figure 4.	STM8L151Kx UFQFPN32 package pinout	
Figure 5.	STM8L151Gx UFQFPN28 package pinout	
Figure 6.	STM8L151Fx UFQFPN20 package pinout	
Figure 7.	STM8L151Fx TSSOP20 package pinout	
Figure 8.	Memory map	
Figure 9.	Pin loading conditions	
Figure 10.	Pin input voltage	
Figure 11.	POR/BOR thresholds	
Figure 12.	Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz	61
Figure 13.	Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1)	
Figure 14.	Typ. IDD(LPR) vs. VDD (LSI clock source)	
Figure 15.	Typ. IDD(LPW) vs. VDD (LSI clock source)	
Figure 16.	HSE oscillator circuit diagram	
Figure 17.	LSE oscillator circuit diagram	
Figure 18.	Typical HSI frequency vs V _{DD}	
Figure 19.	Typical LSI frequency vs. VDD	
Figure 20.	Typical VIL and VIH vs VDD (high sink I/Os)	
Figure 21.	Typical VIL and VIH vs VDD (true open drain I/Os)	
Figure 22.	Typical pull-up resistance R _{PU} vs V _{DD} with VIN=VSS	
Figure 23.	Typical pull-up current I _{pu} vs V _{DD} with VIN=VSS	
Figure 24.	Typ. VOL @ VDD = 3.0 V (high sink ports)	
Figure 25.	Typ. VOL @ VDD = 1.8 V (high sink ports)	
Figure 26.	Typ. VOL @ VDD = 3.0 V (true open drain ports)	
Figure 27.	Typ. VOL @ VDD = 1.8 V (true open drain ports)	
Figure 28.	Typ. VDD - VOH @ VDD = 3.0 V (high sink ports)	
Figure 29.	Typ. VDD - VOH @ VDD = 1.8 V (high sink ports)	84
Figure 30.	Typical NRST pull-up resistance R _{PU} vs V _{DD}	
Figure 31.	Typical NRST pull-up current I _{pu} vs V _{DD}	
Figure 32.	Recommended NRST pin configuration	
Figure 33.	SPI1 timing diagram - slave mode and CPHA=0	88
Figure 34.	SPI1 timing diagram - slave mode and CPHA=1 ⁽¹⁾	88
Figure 35.	SPI1 timing diagram - master mode ⁽¹⁾	89
Figure 36.	Typical application with I2C bus and timing diagram 1)	91
Figure 37.	ADC1 accuracy characteristics	
Figure 38.	Typical connection diagram using the ADC1	98
Figure 39.	Power supply and reference decoupling (V _{RFF+} not connected to V _{DDA})	
Figure 40.	Power supply and reference decoupling (VREF+ connected to VDDA)	99
Figure 41.	Max. dynamic current consumption on V _{RFF+} supply pin during ADC	
	conversion	
Figure 42.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	103
Figure 43.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	
	recommended footprint	
Figure 44.	LQFP48 marking example (package top view)	
Figure 45.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package outline	106

Figure 46.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package recommended footprint	107
Figure 47.	UFQFPN32 marking example (package top view)	
Figure 48.	UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
_	package outline	109
Figure 49.	UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
_	package recommended footprint	110
Figure 50.	UFQFPN28 marking example (package top view)	111
Figure 51.	UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
_	package outline	112
Figure 52.	UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
_	package recommended footprint	113
Figure 53.	UFQFPN20 marking example (package top view)	
Figure 54.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,	
J	package outline	115
Figure 55.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,	
J	package footprint	116
Figure 56.	TSSOP20 marking example (package top view)	

1 Introduction

This document describes the features, pinout, mechanical data and ordering information for the low-density STM8L151x2/3 devices: STM8L151x2 and STM8L151x3 microcontrollers with a Flash memory density of up to 8 Kbyte.

For further details on the STMicroelectronics ultra-low-power family please refer to Section 2.2: Ultra-low-power continuum on page 13.

For detailed information on device operation and registers, refer to the reference manual (RM0031).

For information on to the Flash program memory and data EEPROM, refer to the programming manual (PM0054).

For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).

For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).

Low-density devices provide the following benefits:

- Integrated system
 - Up to 8 Kbyte of low-density embedded Flash program memory
 - 256 byte of data EEPROM
 - 1 Kbyte of RAM
 - Internal high-speed and low-power low speed RC.
 - Embedded reset
- Ultra-low-power consumption
 - 1 μA in Active-halt mode
 - Clock gated system and optimized power management
 - Capability to execute from RAM for Low power wait mode and Low power run mode
- Advanced features
 - Up to 16 MIPS at 16 MHz CPU clock frequency
 - Direct memory access (DMA) for memory-to-memory or peripheral-to-memory access.
- Short development cycles
 - Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals.
 - Wide choice of development tools

STM8L ultra-low-power microcontrollers can operate either from 1.8 to 3.6 V (down to 1.65 V at power-down) or from 1.65 to 3.6 V. They are available in the -40 to +85 $^{\circ}$ C and -40 to +125 $^{\circ}$ C temperature ranges.

These features make the STM8L ultra-low-power microcontroller families suitable for a wide range of applications:

- Medical and hand-held equipment
- Application control and user interface
- · PC peripherals, gaming, GPS and sport equipment
- Alarm systems, wired and wireless sensors
- Metering

The devices are offered in five different packages from 20 to 48 pins. Different sets of peripherals are included depending on the device. Refer to Section 3 for an overview of the complete range of peripherals proposed in this family.

All STM8L ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout.

Figure 1 shows the block diagram of the STM8L low-density family.

2 Description

The low-density STM8L151x2/3 ultra-low-power devices feature an enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive in-application debugging and ultrafast Flash programming.

All low-density STM8L151x2/3 microcontrollers feature embedded data EEPROM and low-power low-voltage single-supply program Flash memory.

The devices incorporate an extensive range of enhanced I/Os and peripherals, a 12-bit ADC, two comparators, a real-time clock, two 16-bit timers, one 8-bit timer, as well as standard communication interfaces such as an SPI, an I²C interface, and one USART. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

DS7204 Rev 10 11/123

2.1 Device overview

Table 1. Low-density STM8L151x2/3 low power device features and peripheral counts

Feat	ures	STM8L151F3	STM8L151G3	STM8L151K3/ STM8L151C3	STM8L151F2	STM8L151G2	STM8L151K2/ STM8L151C2					
Flash (Kby	/te)		8	4								
Data EEPI (byte)	ROM			25	56							
RAM (Kby	te)			,	1							
Time a va	Basic	1 (8-bit)										
Timers	General purpose	2 (16-bit)										
Commun	SPI	1										
-ication	I2C	1										
interfaces	USART			,	1							
GPIOs		18 ⁽¹⁾	26 ⁽¹⁾	30 ⁽²⁾ /41 ⁽¹⁾⁽²⁾	18 ⁽¹⁾	26 ⁽¹⁾	30 ⁽²⁾ /41 ⁽¹⁾⁽²⁾					
12-bit sync ADC (num channels)		1 (10)	1 (18)	1 (18)	1 (23/28) ⁽³⁾							
Comparate (COMP1/0		2										
Others		RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator										
CPU frequ	iency	16 MHz										
Operating	voltage	1.8 to 3.6 V (down to 1.65 V at power-down) with BOR 1.65 to 3.6 V without BOR										
Operating temperatu	re	-40 to +85 °C / -40 to +125 °C										
Packages		TSSOP20 UFQFPN20	UFQFPN28	UFQFPN32 LQFP48	TSSOP20 UFQFPN20	UFQFPN32 LQFP48						

The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1).

^{2. 26} GPIOs in the STM8L151K3 and 40 GPIOs in the STM8L151C3.

^{3. 22} channels in the STM8L151K3 and 28 channels in the STM8L151C3.

2.2 Ultra-low-power continuum

The ultra-low-power low-density STM8L151x2/3 devices are fully pin-to-pin, software and feature compatible. Besides the full compatibility within the family, the devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes STM8L101xx and STM8L15xxx. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture, and features.

They are all based on STMicroelectronics 0.13 µm ultra-low leakage process.

Note: 1 The STM8L151xx and STM8L152xx are pin-to-pin compatible with STM8L101xx devices.

Performance

All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM[®] Cortex[®]-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.

Shared peripherals

STM8L151xx/152xx and STM8L15xxx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC1 and comparators COMP1/COMP2
- Digital peripherals: RTC and some communication interfaces

Common system strategy

To offer flexibility and optimize performance, the STM8L151xx/152xx and STM8L15xxx devices use a common architecture:

- Same power supply range from 1.8 to 3.6 V, down to 1.65 V at power down
- Architecture optimized to reach ultra-low consumption both in low power modes and Run mode
- Fast startup strategy from low power modes
- Flexible system clock
- Ultra-safe reset: same reset strategy for both STM8L15x and STM32L15xxx including power-on reset, power-down reset, brownout reset and programmable voltage detector.

Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm
- Memory density ranging from 4 to 128 Kbyte

3 **Functional overview**

OSC_IN, @V_{DD} 1-16 MHz oscillato OSC_OUT ا 1.65 V V SS to 3.6 V V_{DD}=1.65 V V_{DD18}◀ Power Clock 16 MHz internal RC controller VOLT. REG OSC32_IN, and CSS 32 kHz oscillator Clocks OSC32_OUT to core and 38 kHz internal RC peripherals NRST RESET Interrupt controller POR/PDR STM8 Core BOR Debug module SWIM (SWIM) - PVD IN PVD 2 channels 16-bit Timer 2 (2) up to 8-Kbyte 2 channels 16-bit Timer 3 (2) Program memory 8-bit Timer 4⁽²⁾ and databuses 256-byte Data EEPROM Infrared interface IR_TIM 1-Kbyte RAM DMA1 (4 channels) PA[7:0] control Port A I²C1 Port B PB[7:0] SPI1_MOSI, SPI1_MISO, SPI1 SPI1 SCK, SPI1 NSS PC[7:0] Address Port C PD[7:0] Port D USART1_RX, USART1_TX, USART1 USART1_CK PE[7:0] Port E PF0 V_{DDA,} V_{SSA} Port F @V_{DDA}V_{SSA} ADC1_INx 12-bit ADC1 V_{DDREF} BEEP Beepe VSSREF Temp sensor RTC ALARM, CALIB, **IWDG** VREFINT out voltage (38 kHz clock) COMP1_INP COMP2_INP COMP2_INM WWDG COMP 1 COMP MS18275V2

Figure 1. Low-density STM8L151x2/3 device block diagram

Legend:

ADC: Analog-to-digital converter BOR: Brownout reset

DMA: Direct memory access I²C: Inter-integrated circuit multi master interface

IWDG: Independent watchdog
POR/PDR: Power on reset / power down reset
RTC: Real-time clock
SPI: Serial peripheral interface

SWIM: Single wire interface module

USART: Universal synchronous asynchronous receiver transmitter

WWDG: Window watchdog

2. There is no TIM1 on STM8L151x2, STM8L151x3 devices.

3.1 Low-power modes

The low-density STM8L151x2/3 devices support five low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- **Wait mode**: The CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode). Wait consumption: refer to *Table 20*.
- Low power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset.
 - All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power run mode consumption: refer to *Table 21*.
- Low power wait mode: This mode is entered when executing a Wait for event in Low power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode.

 All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power wait mode consumption: refer to *Table 22*.
- **Active-halt mode**: CPU and peripheral clocks are stopped, except RTC. The wakeup can be triggered by RTC interrupts, external interrupts or reset. Active-halt consumption: refer to *Table 23* and *Table 24*.
- Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 μs. Halt consumption: refer to *Table 25*.

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

15/123

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16 Mbyte linear memory space
- 16-bit stack pointer access to a 64 Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The low-density STM8L151x2/3 feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

57

3.3 Reset and supply management

3.3.1 Power supply scheme

The device requires a 1.65 V to 3.6 V operating supply voltage (V_{DD}). The external power supply pins must be connected as follows:

- V_{SS1}; V_{DD1} = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for I/Os and for the internal regulator. Provided externally through V_{DD1} pins, the corresponding ground pin is V_{SS1}.
- V_{SSA}; V_{DDA} = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for analog peripherals (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC1 is used). V_{DDA} and V_{SSA} must be connected to V_{DD1} and V_{SS1}, respectively.
- V_{SS2}; V_{DD2} = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for I/Os. V_{DD2} and V_{SS2} must be connected to V_{DD1} and V_{SS1}, respectively.
- V_{REF+}; V_{REF-} (for ADC1): external reference voltage for ADC1. Must be provided externally through V_{REF+} and V_{REF-} pin.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the V_{DD} min value at power down is 1.65 V).

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The low-density STM8L151x2/3 embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals.

This regulator has two different modes:

- Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes.
- Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low power wait modes.

When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption.

3.4 Clock management

The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.

Features

- Clock prescaler: to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- Safe clock switching: Clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- System clock sources: 4 different clock sources can be used to drive the system clock:
 - 1-16 MHz High speed external crystal (HSE)
 - 16 MHz High speed internal RC oscillator (HSI)
 - 32.768 kHz Low speed external crystal (LSE)
 - 38 kHz Low speed internal RC (LSI)
- RTC clock sources: the above four sources can be chosen to clock the RTC whatever the system clock.
- **Startup clock:** After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): This feature can be enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI.
- Configurable main clock output (CCO): This outputs an external clock for use by the application.

577

Figure 2. Low-density STM8L151x2/3 clock tree diagram

3.5 Low power real-time clock

The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.

Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day months are made automatically.

It provides a programmable alarm and programmable periodic interrupts with wakeup from Halt capability.

- Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 μs) is from min. 122 μs to max. 3.9 s. With a different resolution, the wakeup time can reach 36 hours
- Periodic alarms based on the calendar can also be generated from every second to every year

3.6 Memories

The low-density STM8L151x2/3 devices have the following main features:

- Up to 1 Kbyte of RAM
- The non-volatile memory is divided into three arrays:
 - Up to 8 Kbyte of low-density embedded Flash program memory
 - 256 byte of data EEPROM
 - Option bytes.

The EEPROM embeds the error correction code (ECC) feature.

The option byte protects part of the Flash program memory from write and readout piracy.

3.7 DMA

A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, I2C1, SPI1, USART1, the three Timers.

3.8 Analog-to-digital converter

- 12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel), temperature sensor and internal reference voltage
- Conversion time down to 1 μs with f_{SYSCLK}= 16 MHz
- Programmable resolution
- Programmable sampling time
- Single and continuous mode of conversion
- Scan capability: automatic conversion performed on a selected group of analog inputs
- Analog watchdog
- Triggered by timer

Note: ADC1 can be served by DMA1.

3.9 Ultra-low-power comparators

The low-density STM8L151x2/3 embed two comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference can be internal or external (coming from an I/O).

- One comparator with fixed threshold (COMP1).
- One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one
 of the following:
 - External I/O
 - Internal reference voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4)

The two comparators can be used together to offer a window function. They can wake up from Halt mode.

3.10 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.

The highly flexible routing interface controls the routing of internal analog signals to ADC1, COMP1, COMP2, and the internal reference voltage V_{REFINT}. It also provides a set of registers for efficiently managing the charge transfer acquisition sequence (*Section 3.11: Touch sensing*).

3.11 Touch sensing

Low-density STM8L151x2/3 devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (example, glass, plastic). The capacitive variation introduced by a finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. In low-density STM8L15xxx devices, the acquisition sequence is managed either by software or by hardware and it involves analog I/O groups, the routing interface, and timers.Reliable touch sensing solutions can be quickly and easily implemented using the free STM8 Touch Sensing Library.

3.12 Timers

Low-density STM8L151x2/3devices contain two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).

All the timers can be served by DMA1.

Table 2 compares the features of the advanced control, general-purpose and basic timers.

DMA₁ Counter Counter Capture/compare Complementary Prescaler factor Timer request resolution channels type outputs generation TIM2 Any power of 2 16-bit up/down 2 from 1 to 128 TIM3 Yes None Any power of 2 TIM4 8-bit 0 up from 1 to 32768

Table 2. Timer feature comparison

21/123

3.12.1 16-bit general purpose timers

- 16-bit autoreload (AR) up/down-counter
- 7-bit prescaler adjustable to fixed power of 2 ratios (1...128)
- 2 individually configurable capture/compare channels
- PWM mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)
- Synchronization with other timers or external signals (external clock, reset, trigger and enable)

3.12.2 8-bit basic timer

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow.

3.13 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

3.13.1 Window watchdog timer

The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

3.13.2 Independent watchdog timer

The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.

3.14 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

3.15 Communication interfaces

3.15.1 SPI

The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial communication with external devices.

- Maximum speed: 8 Mbit/s (f_{SYSCLK}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on 2 lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- Hardware CRC calculation
- Slave/master selection input pin

Note: SPI1 can be served by the DMA1 Controller.

3.15.2 I²C

The I²C bus interface (I²C1) provides multi-master capability, and controls all I²C bus-specific sequencing, protocol, arbitration and timing.

- Master, slave and multi-master capability
- Standard mode up to 100 kHz and fast speed modes up to 400 kHz.
- 7-bit and 10-bit addressing modes.
- SMBus 2.0 and PMBus support
- Hardware CRC calculation

Note: I^2C1 can be served by the DMA1 Controller.

3.15.3 USART

The USART interface (USART1) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates.

- 1 Mbit/s full duplex SCI
- SPI1 emulation
- High precision baud rate generator
- SmartCard emulation
- IrDA SIR encoder decoder
- Single wire half duplex mode

Note: USART1 can be served by the DMA1 Controller.

3.16 Infrared (IR) interface

The low-density STM8L151x2/3 devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.

3.17 Development support

Development tools

Development tools for the STM8 microcontrollers include:

- The STice emulation system offering tracing and code profiling
- The STVD high-level language debugger including C compiler, assembler and integrated development environment
- The STVP Flash programming software

The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

Single wire data interface (SWIM) and debug module

The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming.

The single-wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes.

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation can also be monitored in real-time by means of shadow registers.

Bootloader

The low-density STM8L151x2/3 ultra-low-power devices feature a built-in bootloader (see *UM0560: STM8 bootloader user manual*).

The bootloader is used to download application software into the device memories, including RAM, program and data memory, using standard serial interfaces. It is a complementary solution to programming via the SWIM debugging interface.

4 Pinout and pin description

Figure 3. STM8L151Cx LQFP48 package pinout

Figure 4. STM8L151Kx UFQFPN32 package pinout

PA0 PC6 PC5 PC4 PC2 PC2 NRST/PA1 21 C PC0 PA2 20 C PD4 19 (: PB7 PA3 18 (**:** PB6 PA5 ⇒ 5 17 (: PB5 V_{SS1}/V_{SSA}/V_{REF-}:: 36 ¹⁶ (PB4 V_{DD1}/V_{DDA}/V_{REF+} ;;7 15 (:: PB3

Figure 5. STM8L151Gx UFQFPN28 package pinout

Figure 7. STM8L151Fx TSSOP20 package pinout

Table 3. Legend/abbreviation for table 4

Туре	I= input, O = output, S = power supply									
Level	Output	HS = high sink/source (20 mA)								
Level	FT	Five-volt tolerant								
Port and control	Input	float = floating, wpu = weak pull-up								
configuration	Output	T = true open drain, OD = open drain, PP = push pull								
Reset state	Bold X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase (i.e. "under reset") and after internal reset release (i.e. at reset state).									

Table 4. Low-density STM8L151x2/3 pin description

	Pin	num	ber						Inpu	t	0	utpu	ıt		
LQFP48	UFQFPN32	UFQFPN28	UFQFPN20	TSSOP20	Pin name	Type	level O/I	floating	ndw	Ext. interrupt	High sink/source	ао	dd	Main function (after reset)	Default alternate function
2	1	1	1	4	NRST/PA1 ⁽¹⁾	I/O			Х		HS		Χ	Reset	PA1
3	2	2	2	5	PA2/OSC_IN/ [USART_TX] ⁽²⁾ / [SPI_MISO] ⁽²⁾	I/O		x	х	Х	HS	х	Х	Port A2	HSE oscillator input / [USART transmit] / [SPI master in- slave out] /
4	3	3	3	6	PA3/OSC_OUT/[USA RT_RX] ⁽²⁾ /[SPI_MOSI J ⁽²⁾	I/O		x	х	Х	HS	х	Х	Port A3	HSE oscillator output / [USART receive]/ [SPI master out/slave in]/
5	4	4	1	-	PA4/TIM2_BKIN/ [TIM2_ETR] ⁽²⁾ ADC1_IN2/ COMP1_INP	I/O		x	х	X	HS	х	X	Port A4	Timer 2 - break input / [Timer 2 - external trigger] /ADC1 input 2/ Comparator1 positive input
6	5	5	1	-	PA5/TIM3_BKIN/ [TIM3_ETR] ⁽²⁾ / ADC1_IN1/ COMP1_INP	I/O		x	х	X	HS	х	X	Port A5	Timer 3 - break input / [Timer 3 - external trigger] /ADC1input 1/ Comparator1 positive input
7	6	1	ı	ı	PA6/ADC1_TRIG/ ADC1_IN0/ COMP1_INP	1/0		X	X	X	HS	X	X	Port A6	ADC1- trigger /ADC1input 0/ Comparator1 positive input
8	-	-	-	-	PA7	I/O		X	Х	Х	HS	X	Χ	Port A7	-
24	13	12	7	10	PB0 ⁽³⁾ /TIM2_CH1/ ADC1_IN18/ COMP1_INP	I/O		X	Х	Х	HS	Х	X	Port B0	Timer 2 - channel 1 / ADC1_IN18/ Comparator1 positive input

Table 4. Low-density STM8L151x2/3 pin description (continued)

	Pin	num	ber						Inpu	t	О	utpu	ıt	`	
LQFP48	UFQFPN32	UFQFPN28	UFQFPN20	TSSOP20	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	ОО	ЬР	Main function (after reset)	Default alternate function
25	14	13	8	11	PB1/TIM3_CH1/ ADC1_IN17/ COMP1_INP	I/O	1	X	Х	Х	HS	Х	X	Port B1	Timer 3 - channel1/ ADC1_IN17/ Comparator1 positive input
26	15	14	9	12	PB2/ TIM2_CH2/ ADC1_IN16/ COMP1_INP	I/O	1	X	X	Х	HS	X	X	Port B2	Timer 2 - channel2 ADC1_IN16/ Comparator1 positive input
27	16	15	10	13	PB3/TIM2_ETR/ ADC1_IN15/RTC_AL ARM ⁽⁴⁾ / COMP1_INP	I/O	1	x	X	Х	HS	X	X	Port B3	Timer 2 - external trigger / ADC1_IN15 / RTC_ALARM (4)/Comparator1 positive input
28	17	16	11	14	PB4 ⁽³⁾ /SPI1_NSS/ ADC1_IN14/ COMP1_INP	I/O	1	x	х	х	HS	х	X	Port B4	SPI master/slave select / ADC1_IN14/ Comparator1 positive input
29	18	17	12	15	PB5/SPI_SCK/ /ADC1_IN13/ COMP1_INP	I/O	1	x	Х	Х	HS	Х	Х	Port B5	[SPI clock] / ADC1_IN13/ Comparator 1 positive input
30	19	18	13	16	PB6/SPI1_MOSI/ ADC1_IN12/ COMP1_INP	I/O	ı	X	X	Х	HS	Х	X	Port B6	SPI master out/ slave in / ADC1_IN12/ Comparator1 positive input
31	20	19	14		PB7/SPI1_MISO/ ADC1_IN11/ COMP1_INP	I/O	ı	X	X	X	HS		X	Port B7	SPI1 master in-slave out/ ADC1_IN11/ Comparator1 positive input
37	25	21	15	18	PC0/I2C_SDA	1/0	FT	X		Χ		T ⁽⁵⁾		Port C0	I2C data
38	26	22	16	19	PC1/I2C_SCL	I/O	FT	X		Х		T ⁽⁵⁾		Port C1	I2C clock
41	27	23	-	-	PC2/USART_RX/ADC 1_IN6/ COMP1_INP	I/O	-	х	Х	Х	HS	Х	Х	Port C2	USART receive / ADC1_IN6/ Comparator1 positive input
42	28	24	-	-	PC3/USART_TX/ ADC1_IN5/ COMP1_INP/ COMP2_INM	I/O	-	x	х	х	HS	х	Х	Port C3	USART transmit / ADC1_IN5/ Comparator1 positive input/Comparator 2 negative input

Table 4. Low-density STM8L151x2/3 pin description (continued)

	Pin	num	ber						Inpu	t	0	utpu	ıt		
LQFP48	UFQFPN32	UFQFPN28	UFQFPN20	TSSOP20	Pin name	Туре	I/O level	floating	mbm	Ext. interrupt	High sink/source	ОО	ЬР	Main function (after reset)	Default alternate function
43	29	25	17	20	PC4/USART_CK]/ I2C_SMB/CCO/ ADC1_IN4/ COMP1_INP/ COMP2_INM	I/O	1	x	х	х	HS	х	X	Port C4	USART synchronous clock / I2C1_SMB / Configurable clock output / ADC1_IN4/ Comparator1 positive input/Comparator 2 negative input
44	30	26	18	1	PC5/OSC32_IN /[SPI1_NSS] ⁽²⁾ / [USART_TX] ⁽²⁾ / TIM2_CH1 ⁽⁶⁾	I/O	1	X	X	X	HS	X	X	Port C5	LSE oscillator input / [SPI master/slave select] / [USART transmit]/ Timer 2 -channel 1 ⁽⁶⁾
45	31	27	19	2	PC6/OSC32_OUT/ [SPI_SCK] ⁽²⁾ / [USART_RX] ⁽²⁾ / TIM2_CH2 ⁽⁶⁾	I/O	1	x	Х	Х	HS	Х	Х	Port C6	LSE oscillator output / [SPI clock] / [USART receive]/ Timer 2 -channel 2 ⁽⁶⁾
46	-	1	-	1	PC7/ADC1_IN3/ COMP1_INP/ COMP2_INM	I/O	1	x	Х	Х	HS	Х	Х	Port C7	ADC1_IN3/ Comparator1 positive input/Comparator 2 negative input
20	9	8	6	9	PD0/TIM3_CH2/ [ADC1_TRIG] ⁽²⁾ / ADC1_IN22/ COMP1_INP/ COMP2_INP	I/O	1	X	X	X	HS	X	X	Port D0	Timer 3 - channel 2 / [ADC1_Trigger] / ADC1_IN22/ Comparator1 positive input/Comparator 2 positive input
21	10	9	1	1	PD1/TIM3_ETR/ ADC1_IN21/ COMP1_INP/ COMP2_INP	I/O	1	x	х	х	HS	X	X	Port D1	Timer 3 - external trigger / ADC1_IN21/ Comparator1 positive input/Comparator 2 positive input
22	11	10	-	-	PD2/ADC1_IN20/ COMP1_INP	I/O	1	x	х	Х	HS	х	Х	Port D2	ADC1_IN20/ Comparator1 positive input
23	12	11	-	-	PD3/ADC1_IN19/ RTC_CALIB ⁽⁷⁾ / COMP1_INP	I/O	ı	X	Х	Х	HS	Х	Х	Port D3	ADC1_IN19/ RTC calibration ⁽⁷⁾ / Comparator1 positive input
33	21	20	-	-	PD4/ADC1_IN10/ COMP1_INP	I/O	-	x	Х	Х	HS	Х	Х	Port D4	ADC1_IN10/ Comparator1 positive input

29/123

Table 4. Low-density STM8L151x2/3 pin description (continued)

	Pin	num	ber		Table 4. Low-defisity				Inpu			utpu		,	,
LQFP48	UFQFPN32	UFQFPN28	UFQFPN20	TSSOP20	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	ОО	ЬР	Main function (after reset)	Default alternate function
34	22	1	-	ı	PD5/ ADC1_IN9/ COMP1_INP	I/O	ı	x	Х	Х	HS	X	Х	Port D5	ADC1_IN9/ Comparator1 positive input
35	23	1	-	1	PD6/ADC1_IN8/ RTC_CALIB/ COMP1_INP	I/O	1	X	Х	Х	HS	х	Х	Port D6	ADC1_IN8 / RTC calibration/ Comparator1 positive input
36	24	1	ı	1	PD7 /ADC1_IN7/ RTC_ALARM/ COMP1_INP	I/O	ı	x	Х	Х	HS	X	Х	Port D7	ADC1_IN7/RTC alarm/ Comparator1 positive input
14	1	1	-	-	PE0	I/O	1	X	Х	Х	HS	Х	Χ	Port E0	-
15	-	-	-	-	PE1	I/O	-	X	Х	Х	HS	Х	Χ	Port E1 -	
16	1	-	-	-	PE2	I/O	1	X	Х	Χ	HS	Х	Χ	Port E2	-
17	1	1	1	1	PE3/ADC1_IN26	I/O	ı	X	Х	Χ	HS	Х	Χ	Port E3	ADC1_IN26
18	1	1	-	-	PE4/ADC1_IN27	I/O	1	X	Х	Х	HS	Х	Х	Port E4	ADC1_IN27
19	1	-	-	-	PE5/ADC1_IN23/ COMP1_INP/ COMP2_INP	I/O	-	x	Х	Х	HS	х	Х	Port E5	ADC1_IN23/ Comparator 1 positive input/Comparator 2 positive input
47	-	-	-	-	PE6/PVD_IN	I/O	-	X	Х	Х	HS	Х	Χ	Port E6	PVD_IN
48	1	-	ı	-	PE7/ADC1_IN25	I/O	ı	X	Х	Х	HS	Х	Χ	Port E7	ADC1_IN25
32	1	-	1	-	PF0/ADC1_IN24	I/O	-	X	Х	Х	HS	Х	Χ	Port F0	ADC1_IN24
10	-	-	-	-	V_{DD}	S	-	-	-	-	-	-	-	Digital sur	oply voltage
-	8	7	5	8	V _{DD} /V _{DDA} / V _{REF+}	S	1	-	-	-	-	-	-		oply voltage / sitive voltage reference
9	7	6	4	7	V _{SS} / V _{REF-} / V _{SSA}	S	ı	1	1	ı	1	1	1	Ground voltage / ADC1 negative voltage reference / Analog ground voltage	
11	-	-	-	-	V_{DDA}	S	-	-	-	-	-	-	-	Analog supply voltage	
12	-	-	1	-	V _{REF+}	S	-	-	-	-	-	-	-	ADC1 positive voltage reference	
1	32	28	20	3	PA0 ⁽⁸⁾ /[USART_CK] ⁽²⁾ / SWIM/BEEP/IR_TIM (9)	I/O		х	x	X	HS (9)	х	x	Port A0	[USART1 synchronous clock] ⁽²⁾ / SWIM input and output / Beep output / Infrared Timer output

Pin number Input **Output** Main function High sink/source (after reset) I/O level Ext. interrupt JFQFPN32 JFQFPN28 JFQFPN20 Type **Default alternate ISSOP20** floating LQFP48 Pin name mdw function 0 40 V_{SSIO} I/O ground voltage 39 I/O supply voltage V_{DDIO}

Table 4. Low-density STM8L151x2/3 pin description (continued)

- At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in the STM8L15xxx and STM8L16xxx reference manual (RM0031).
- 2. [] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).
- 3. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
- 4. 20-pin and 28-pin packages only.
- 5. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer and protection diode to V_{DD} are not implemented).
- 6. 20-pin packages only.
- 7. 28-pin packages only

Note:

- 8. The PAO pin is in input pull-up during the reset phase and after reset release.
- 9. High Sink LED driver capability available on PA0.

default, the slope control is limited to 2 MHz.

4.1 System configuration options

As shown in *Table 4: Low-density STM8L151x2/3 pin description*, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the "Routing interface (RI) and system configuration controller" section in the STM8L15xxx and STM8L16xxx reference manual (RM0031).

The slope control of all GPIO pins, except true open drain pins, can be programmed. By

31/123

5 Memory and register map

5.1 Memory mapping

The memory map is shown in Figure 8.

Figure 8. Memory map 0x00 5000 0x000000 GPIO ports 0x00 501E RAM (Up to 1 Kbyte) 0x00 5050 including 0x00 505 Stack (512 bytes) 0x00 03FF 0x00 5070 0x00 0400 DMA1 Reserved 0x00 509E 0x00 1FFF SYSCFG 0x00 1000 0x00 50A ITC-EXT1 Data EEPROM 0x00 50A (256 Bytes) 0x00 10FF 0x00 50A ITC-EXT1 0x001100 Reserved 0x00 50B RST 0x00 47FF 0x00 50B2 0x004800 0x00 50B4 Option bytes 0x00 487F 0x00 50C0 CLK 0x004880 0x00 50D1 Reserved Reserved 0x00.50D3 0x00 4909 0x00 4910 WWDG VREFINT_Factory_CONV 0x00 50D5 TS Factory CONV V90 0x004912 0x00 50E3 0x00 4925 0x00 4926 Reserved 0x00 50F0 BEEP Unique ID 0x00 50F4 0x004931 0x00 5040 0x004932 Reserved 0x00 4FFF 0x00 5000 0x00 5191 0x00 5200 SPI1 GPIO and peripheral registers 0x00 5208 0x00 5457 Reserved 0x00 5210 0x005458 12C1 Reserved 0x00 5230 0x00 5FFF USART1 0x006000 Boot ROM (2 Kbytes) TIM2 0x00 67FF 0x00 5267 Reserved 0x006800 0x00.5280 TIM3 Reserved 0x00 7EFF 0x00 52E0 0x00 7F00 TIM4 CPU/SWIM/Debug/ITC 0x00 52EA 0x00 52FF Registers IRTIM 0x00 7FFF 0x00 5317 Reserved 0x008000 0x00 5340 Reset and interrupt vectors ADC1 0x00 80FF 0x008100 0x00 5430 Low density 0x00 5440 COMP1/COMP2 Flash program memory 0x00 5445 (up to 8Kbytes) 0x00 5450 0x00 9FFF 0x00 5457 MS18274V2

57

Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address

^{2.} The VREFINT_Factory_CONV byte represents the LSB of the V_{REFINT} 12-bit ADC1 conversion result. The

- MSB have a fixed value: 0x6.
- 3. The TS_Factory_CONV_V90 byte represents the LSB of the V_{90} 12-bit ADC1 conversion result. The MSB have a fixed value: 0x3.
- 4. Refer to *Table 8* for an overview of hardware register mapping, to *Table 7* for details on I/O port hardware registers, and to *Table 9* for information on CPU/SWIM/debug module controller registers.

Table 5. Flash and RAM boundary addresses

Memory area	Size	Start address	End address	
RAM	1 Kbyte	0x00 0000	0x00 03FF	
Flash program memory	8 Kbyte	0x00 8000	0x00 9FFF	
riasii program memory	4 Kbyte	0x00 8000	0x00 8FFF	

5.2 Register map

Table 6. Factory conversion registers

Address	Block	Register label	Register name	Reset status
0x00 4910	-	VREFINT_Factory_ CONV	Value of the internal reference voltage measured during the factory phase	0xXX
0x00 4911	-	TS_Factory_CONV_ V90	Value of the temperature sensor output voltage measured during the factory phase	0xXX

Table 7. I/O port hardware register map

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x01
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008]	PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00

Table 7. I/O port hardware register map (continued)

Table 7. 1/0 port flatuware register map (continued)							
Address	Block	Register label	Register name	Reset status			
0x00 500A		PC_ODR	Port C data output latch register	0x00			
0x00 500B		PC_IDR	Port C input pin value register	0xXX			
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00			
0x00 500D		PC_CR1	Port C control register 1	0x00			
0x00 500E	4	PC_CR2	Port C control register 2	0x00			
0x00 500F		PD_ODR	Port D data output latch register	0x00			
0x00 5010		PD_IDR	Port D input pin value register	0xXX			
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00			
0x00 5012		PD_CR1	Port D control register 1	0x00			
0x00 5013		PD_CR2	Port D control register 2	0x00			
0x00 5014		PE_ODR	Port E data output latch register	0x00			
0x00 5015		PE_IDR	Port E input pin value register	0xXX			
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00			
0x00 5017		PE_CR1	Port E control register 1	0x00			
0x00 5018		PE_CR2	Port E control register 2	0x00			
0x00 5019		PF_ODR	Port F data output latch register	0x00			
0x00 501A		PF_IDR	Port F input pin value register	0xXX			
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00			
0x00 501C		PF_CR1	Port F control register 1	0x00			
0x00 501D		PF_CR2	Port F control register 2	0x00			

Table 8. General hardware register map

Address	Block	Register label	Register name	Reset status		
0x00 502E to 0x00 5049			Reserved area (44 byte)			
0x00 5050		FLASH_CR1	Flash control register 1	0x00		
0x00 5051		FLASH_CR2	Flash control register 2	0x00		
0x00 5052	Flash	FLASH_PUKR	Flash program memory unprotection key register	0x00		
0x00 5053		FLASH _DUKR	Flash data EEPROM unprotection key register	0x00		
0x00 5054		FLASH_IAPSR	Flash in-application programming status register	0x00		

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status			
0x00 5055 to 0x00 506F			Reserved area (27 byte)				
0x00 5070		DMA1_GCSR	DMA1 global configuration & status register	0xFC			
0x00 5071	1	DMA1_GIR1	DMA1 global interrupt register 1	0x00			
0x00 5072 to 0x00 5074			Reserved area (3 byte)				
0x00 5075		DMA1_C0CR	DMA1 channel 0 configuration register	0x00			
0x00 5076		DMA1_C0SPR	DMA1 channel 0 status & priority register	0x00			
0x00 5077	-	DMA1_C0NDTR	DMA1 number of data to transfer register (channel 0)	0x00			
0x00 5078		DMA1_C0PARH	DMA1 peripheral address high register (channel 0)	0x52			
0x00 5079		DMA1_C0PARL	DMA1 peripheral address low register (channel 0)	0x00			
0x00 507A			Reserved area (1 byte)				
0x00 507B	DMA1	DMA1_C0M0ARH	DMA1 memory 0 address high register (channel 0)	0x00			
0x00 507C		DMA1_C0M0ARL	DMA1 memory 0 address low register (channel 0)	0x00			
0x00 507D to 0x00 507E			Reserved area (2 byte)				
0x00 507F		DMA1_C1CR	DMA1 channel 1 configuration register	0x00			
0x00 5080		DMA1_C1SPR	DMA1 channel 1 status & priority register	0x00			
0x00 5081		DMA1_C1NDTR	DMA1 number of data to transfer register (channel 1)	0x00			
0x00 5082		DMA1_C1PARH	DMA1 peripheral address high register (channel 1)	0x52			
0x00 5083		DMA1_C1PARL	DMA1 peripheral address low register (channel 1)	0x00			

35/123

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 5084			Reserved area (1 byte)	1
0x00 5085		DMA1_C1M0ARH	DMA1 memory 0 address high register (channel 1)	0x00
0x00 5086		DMA1_C1M0ARL	DMA1 memory 0 address low register (channel 1)	0x00
0x00 5087 0x00 5088			Reserved area (2 byte)	
0x00 5089		DMA1_C2CR	DMA1 channel 2 configuration register	0x00
0x00 508A		DMA1_C2SPR	DMA1 channel 2 status & priority register	0x00
0x00 508B		DMA1_C2NDTR	DMA1 number of data to transfer register (channel 2)	0x00
0x00 508C		DMA1_C2PARH	DMA1 peripheral address high register (channel 2)	0x52
0x00 508D		DMA1_C2PARL	DMA1 peripheral address low register (channel 2)	0x00
0x00 508E]		Reserved area (1 byte)	
0x00 508F		DMA1_C2M0ARH	DMA1 memory 0 address high register (channel 2)	0x00
0x00 5090	DMA1	DMA1_C2M0ARL	DMA1 memory 0 address low register (channel 2)	0x00
0x00 5091 0x00 5092			Reserved area (2 byte)	
0x00 5093	1	DMA1_C3CR	DMA1 channel 3 configuration register	0x00
0x00 5094]	DMA1_C3SPR	DMA1 channel 3 status & priority register	0x00
0x00 5095		DMA1_C3NDTR	DMA1 number of data to transfer register (channel 3)	0x00
0x00 5096		DMA1_C3PARH_ C3M1ARH	DMA1 peripheral address high register (channel 3)	0x40
0x00 5097		DMA1_C3PARL_ C3M1ARL	DMA1 peripheral address low register (channel 3)	0x00
0x00 5098		DMA_C3M0EAR	DMA channel 3 memory 0 extended address register	0x00
0x00 5099		DMA1_C3M0ARH	DMA1 memory 0 address high register (channel 3)	0x00
0x00 509A		DMA1_C3M0ARL	DMA1 memory 0 address low register (channel 3)	0x00
0x00 509B to 0x00 509C			Reserved area (3 byte)	•

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 509D		SYSCFG_RMPCR3	Remapping register 3	0x00
0x00 509E	SYSCFG	SYSCFG RMPCR1	Remapping register 1	0x0C
0x00 509E	3130FG	STSCFG_RIVIFCRT	Remapping register 1	0x2C ⁽¹⁾
0x00 509F		SYSCFG_RMPCR2	Remapping register 2	0x00
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00
0x00 50A2	ITC - EXTI	EXTI_CR3	External interrupt control register 3	0x00
0x00 50A3	1110-EXII	EXTI_SR1	External interrupt status register 1	0x00
0x00 50A4		EXTI_SR2	External interrupt status register 2	0x00
0x00 50A5		EXTI_CONF1	External interrupt port select register 1	0x00
0x00 50A6		WFE_CR1	WFE control register 1	0x00
0x00 50A7	- WFE	WFE_CR2	WFE control register 2	0x00
0x00 50A8		WFE_CR3	WFE control register 3	0x00
0x00 50A9		WFE_CR4	WFE control register 4	0x00
0x00 50AA	ITC - EXTI	EXTI_CR4	External interrupt control register 4	0x00
0x00 50AB	1110-EXII	EXTI_CONF2	External interrupt port select register 2	0x00
0x00 50A9 to			Reserved area (7 byte)	
0x00 50AF			recorred area (r. 23te)	
0x00 50B0	DOT	RST_CR	Reset control register	0x00
0x00 50B1	RST	RST_SR	Reset status register	0x01
0x00 50B2	PWR	PWR_CSR1	Power control and status register 1	0x00
0x00 50B3	PVVK	PWR_CSR2	Power control and status register 2	0x00
0x00 50B4 to 0x00 50BF	Reserved area (12 byte)			

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status	
0x00 50C0		CLK_CKDIVR	CLK clock master divider register	0x03	
0x00 50C1		CLK_CRTCR	CLK clock RTC register	0x00 ⁽²⁾	
0x00 50C2		CLK_ICKCR	CLK internal clock control register	0x11	
0x00 50C3		CLK_PCKENR1	CLK peripheral clock gating register 1	0x00	
0x00 50C4		CLK_PCKENR2	CLK peripheral clock gating register 2	0x00	
0x00 50C5		CLK_CCOR	CLK configurable clock control register	0x00	
0x00 50C6		CLK_ECKCR	CLK external clock control register	0x00	
0x00 50C7		CLK_SCSR	CLK system clock status register	0x01	
0x00 50C8	CLK	CLK_SWR	CLK system clock switch register	0x01	
0x00 50C9		CLK_SWCR	CLK clock switch control register	0xX0	
0x00 50CA		CLK_CSSR	CLK clock security system register	0x00	
0x00 50CB		CLK_CBEEPR	CLK clock BEEP register	0x00	
0x00 50CC		CLK_HSICALR	CLK HSI calibration register	0xXX	
0x00 50CD		CLK_HSITRIMR	CLK HSI clock calibration trimming register	0x00	
0x00 50CE		CLK_HSIUNLCKR CLK HSI unlock register		0x00	
0x00 50CF		CLK_REGCSR	CLK main regulator control status register	0bxx11 100X	
0x00 50D0		CLK_PCKENR3	CLK peripheral clock gating register 3	0x00	
0x00 50D1 to 0x00 50D2		Reserved area (2 byte)			
0x00 50D3	14/14/75 0	WWDG_CR	WWDG control register	0x7F	
0x00 50D4	WWDG	WWDG_WR	WWDR window register	0x7F	
0x00 50D5 to 00 50DF			Reserved area (11 byte)		
0x00 50E0		IWDG_KR	IWDG key register	0x01	
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00	
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF	
0x00 50E3 to 0x00 50EF		Reserved area (13 byte)			
0x00 50F0		BEEP_CSR1 BEEP control/status register 1		0x00	
0x00 50F1 0x00 50F2	BEEP		l		
0x00 50F3		BEEP_CSR2	BEEP control/status register 2	0x1F	
0x00 50F4 to 0x00 513F		,	Reserved area (76 byte)		

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status		
0x00 5140		RTC_TR1	RTC time register 1	0x00		
0x00 5141		RTC_TR2	RTC time register 2	0x00		
0x00 5142		RTC_TR3	RTC time register 3	0x00		
0x00 5143			Reserved area (1 byte)			
0x00 5144		RTC_DR1	RTC date register 1	0x01		
0x00 5145		RTC_DR2	RTC date register 2	0x21		
0x00 5146		RTC_DR3	RTC date register 3	0x00		
0x00 5147	1		Reserved area (1 byte)	1		
0x00 5148	1	RTC_CR1	RTC control register 1	0x00 ⁽²⁾		
0x00 5149	1	RTC_CR2	RTC control register 2	0x00 ⁽²⁾		
0x00 514A	1	RTC_CR3	RTC control register 3	0x00 ⁽²⁾		
0x00 514B	1		Reserved area (1 byte)	ı		
0x00 514C	1	RTC_ISR1	RTC initialization and status register 1	0x01		
0x00 514D	1	RTC_ISR2	RTC initialization and Status register 2	0x00		
0x00 514E 0x00 514F	-		Reserved area (2 byte)			
0x00 5150	1	RTC_SPRERH	RTC synchronous prescaler register high	0x00 ⁽²⁾		
0x00 5151	RTC	RTC_SPRERL	RTC synchronous prescaler register low	0xFF ⁽²⁾		
0x00 5152		RTC_APRER	RTC asynchronous prescaler register	0x7F ⁽²⁾		
0x00 5153			Reserved area (1 byte)			
0x00 5154		RTC_WUTRH	RTC wakeup timer register high	0xFF ⁽²⁾		
0x00 5155		RTC_WUTRL	RTC wakeup timer register low	0xFF ⁽²⁾		
0x00 5156			Reserved area (1 byte)	1		
0x00 5157		RTC_SSRL	RTC subsecond register low	0x00		
0x00 5158		RTC_SSRH	RTC subsecond register high	0x00		
0x00 5159	1	RTC_WPR	RTC write protection register	0x00		
0x00 5158	1	RTC_SSRH	RTC subsecond register high	0x00		
0x00 5159	1	RTC_WPR	RTC write protection register	0x00		
0x00 515A	1	RTC_SHIFTRH	RTC shift register high	0x00		
0x00 515B	-	RTC_SHIFTRL	RTC shift register low	0x00		
0x00 515C		RTC_ALRMAR1	RTC alarm A register 1	0x00 ⁽²⁾		
0x00 515D		RTC_ALRMAR2	RTC alarm A register 2	0x00 ⁽²⁾		
0x00 515E	1	RTC_ALRMAR3	RTC alarm A register 3	0x00 ⁽²⁾		
0x00 515F	1	RTC_ALRMAR4	RTC alarm A register 4	0x00 ⁽²⁾		

Table 8. General hardware register map (continued)

Address	Block	Register label Register name		Reset status		
0x00 5160 to 0x00 5163			Reserved area (4 byte)			
0x00 5164		RTC_ALRMASSRH RTC alarm A subsecond register high		0x00 ⁽²⁾		
0x00 5165	1	RTC_ALRMASSRL	RTC alarm A subsecond register low	0x00 ⁽²⁾		
0x00 5166		RTC_ALRMASSMS KR	RTC alarm A masking register	0x00 ⁽²⁾		
0x00 5167 to 0x00 5169	RTC		Reserved area (3 byte)			
0x00 516A		RTC_CALRH	RTC calibration register high	0x00 ⁽²⁾		
0x00 516B	1	RTC_CALRL	RTC calibration register low	0x00 ⁽²⁾		
0x00 516C to 0x00 518F		Reserved area (36 byte)				
0x00 5190		CSSLSE_CSR	RTC CSS on LSE control and status register	0x00 ⁽²⁾		
0x00 5191 to 0x00 51FF			Reserved area (111 byte)			
0x00 5200		SPI1_CR1	SPI1 control register 1	0x00		
0x00 5201		SPI1_CR2	SPI1 control register 2	0x00		
0x00 5202		SPI1_ICR	SPI1 interrupt control register	0x00		
0x00 5203	SPI1	SPI1_SR	SPI1 status register	0x02		
0x00 5204	SPII	SPI1_DR	SPI1 data register	0x00		
0x00 5205	1	SPI1_CRCPR	SPI1 CRC polynomial register	0x07		
0x00 5206]	SPI1_RXCRCR	SPI1 Rx CRC register	0x00		
0x00 5207		SPI1_TXCRCR	SPI1 Tx CRC register	0x00		
0x00 5208 to 0x00 520F			Reserved area (8 byte)			

Table 8. General hardware register map (continued)

Address	Block	Register label	Register label Register name		
0x00 5210		I2C1_CR1	I2C1 control register 1	0x00	
0x00 5211		I2C1_CR2	2C1_CR2 I2C1 control register 2		
0x00 5212		I2C1_FREQR	I2C1 frequency register	0x00	
0x00 5213	_	I2C1_OARL	I2C1 own address register low	0x00	
0x00 5214		I2C1_OARH	I2C1 own address register high	0x00	
0x00 5215		I2C1_OAR2	I2C1 own address register for dual mode	0x00	
0x00 5216		I2C1_DR	I2C1 data register	0x00	
0x00 5217	I2C1	I2C1_SR1	I2C1 status register 1	0x00	
0x00 5218		I2C1_SR2	I2C1 status register 2	0x00	
0x00 5219		I2C1_SR3	I2C1 status register 3	0x0X	
0x00 521A		I2C1_ITR	I2C1 interrupt control register	0x00	
0x00 521B		I2C1_CCRL	I2C1 clock control register low	0x00	
0x00 521C		I2C1_CCRH	I2C1 clock control register high	0x00	
0x00 521D	-	I2C1_TRISER	C1_TRISER I2C1 TRISE register		
0x00 521E		I2C1_PECR	I2C1 packet error checking register	0x00	
0x00 521F to 0x00 522F			Reserved area (17 byte)		
0x00 5230		USART1_SR	USART1 status register	0xC0	
0x00 5231	1	USART1_DR	USART1 data register	0xXX	
0x00 5232		USART1_BRR1	USART1 baud rate register 1	0x00	
0x00 5233		USART1_BRR2	USART1 baud rate register 2	0x00	
0x00 5234		USART1_CR1	USART1 control register 1	0x00	
0x00 5235	USART1	USART1_CR2	USART1 control register 2	0x00	
0x00 5236		USART1_CR3	USART1 control register 3	0x00	
0x00 5237	1	USART1_CR4	USART1 control register 4	0x00	
0x00 5238	1	USART1_CR5	USART1 control register 5	0x00	
0x00 5239	1	USART1_GTR	USART1 guard time register	0x00	
0x00 523A	1	USART1_PSCR	USART1 prescaler register	0x00	
0x00 523B to 0x00 524F	Reserved area (21 byte)				

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 5250		TIM2_CR1	TIM2 control register 1	0x00
0x00 5251	-	TIM2_CR2	TIM2 control register 2	0x00
0x00 5252		TIM2_SMCR	TIM2 Slave mode control register	0x00
0x00 5253		TIM2_ETR	TIM2 external trigger register	0x00
0x00 5254	1	TIM2_DER	TIM2 DMA1 request enable register	0x00
0x00 5255	1	TIM2_IER	TIM2 interrupt enable register	0x00
0x00 5256	1	TIM2_SR1	TIM2 status register 1	0x00
0x00 5257	1	TIM2_SR2	TIM2 status register 2	0x00
0x00 5258	1	TIM2_EGR	TIM2 event generation register	0x00
0x00 5259	1	TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00
0x00 525A	P5A TIM2_CCMR2		TIM2 capture/compare mode register 2	0x00
0x00 525B	TIM2	TIM2 TIM2_CCER1 TIM2 capture/compare enable re		0x00
0x00 525C	1	TIM2_CNTRH	TIM2 counter high	0x00
0x00 525D	1	TIM2_CNTRL	TIM2 counter low	0x00
0x00 525E	1	TIM2_PSCR	TIM2 prescaler register	0x00
0x00 525F	1	TIM2_ARRH	TIM2 auto-reload register high	0xFF
0x00 5260	1	TIM2_ARRL	TIM2 auto-reload register low	0xFF
0x00 5261	1	TIM2_CCR1H	TIM2 capture/compare register 1 high	0x00
0x00 5262	1	TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00
0x00 5263	1	TIM2_CCR2H	TIM2 capture/compare register 2 high	0x00
0x00 5264		TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00
0x00 5265		TIM2_BKR	TIM2 break register	0x00
0x00 5266		TIM2_OISR	TIM2 output idle state register	0x00
0x00 5267 to 0x00 527F	Reserved area (25 byte)			

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 5280		TIM3_CR1	TIM3 control register 1	0x00
0x00 5281		TIM3_CR2	TIM3 control register 2	0x00
0x00 5282		TIM3_SMCR	TIM3 Slave mode control register	0x00
0x00 5283		TIM3_ETR	TIM3 external trigger register	0x00
0x00 5284		TIM3_DER	TIM3 DMA1 request enable register	0x00
0x00 5285		TIM3_IER	TIM3 interrupt enable register	0x00
0x00 5286		TIM3_SR1	TIM3 status register 1	0x00
0x00 5287		TIM3_SR2	TIM3 status register 2	0x00
0x00 5288		TIM3_EGR	TIM3 event generation register	0x00
0x00 5289		TIM3_CCMR1	TIM3 Capture/Compare mode register 1	0x00
0x00 528A		TIM3_CCMR2	TIM3 Capture/Compare mode register 2	0x00
0x00 528B	TIM3	TIM3_CCER1	TIM3 Capture/Compare enable register 1	0x00
0x00 528C		TIM3_CNTRH	TIM3 counter high	0x00
0x00 528D		TIM3_CNTRL	TIM3 counter low	0x00
0x00 528E		TIM3_PSCR	TIM3 prescaler register	0x00
0x00 528F		TIM3_ARRH	TIM3 Auto-reload register high	0xFF
0x00 5290		TIM3_ARRL	TIM3 Auto-reload register low	0xFF
0x00 5291		TIM3_CCR1H	TIM3 Capture/Compare register 1 high	0x00
0x00 5292		TIM3_CCR1L	TIM3 Capture/Compare register 1 low	0x00
0x00 5293		TIM3_CCR2H	TIM3 Capture/Compare register 2 high	0x00
0x00 5294		TIM3_CCR2L	TIM3 Capture/Compare register 2 low	0x00
0x00 5295		TIM3_BKR	TIM3 break register	0x00
0x00 5296		TIM3_OISR	TIM3 output idle state register	0x00
0x00 5297 to 0x00 52DF	Reserved area (72 byte)			

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status	
0x00 52E0		TIM4_CR1	TIM4 control register 1	0x00	
0x00 52E1		TIM4_CR2	TIM4 control register 2	0x00	
0x00 52E2		TIM4_SMCR	TIM4 Slave mode control register	0x00	
0x00 52E3	-	TIM4_DER	TIM4 DMA1 request enable register	0x00	
0x00 52E4	TINAA	TIM4_IER	TIM4 Interrupt enable register	0x00	
0x00 52E5	- TIM4	TIM4_SR1	TIM4 status register 1	0x00	
0x00 52E6		TIM4_EGR	TIM4 Event generation register	0x00	
0x00 52E7		TIM4_CNTR	TIM4 counter	0x00	
0x00 52E8		TIM4_PSCR	TIM4 prescaler register	0x00	
0x00 52E9		TIM4_ARR	TIM4 Auto-reload register	0x00	
0x00 52EA to 0x00 52FE	Reserved area (21 byte)				
0x00 52FF	IRTIM	IR_CR	Infrared control register	0x00	
0x00 5317 to 0x00 533F	Reserved area (41 byte)				
0x00 5340		ADC1_CR1	ADC1 configuration register 1	0x00	
0x00 5341		ADC1_CR2	ADC1 configuration register 2	0x00	
0x00 5342		ADC1_CR3	ADC1 configuration register 3	0x1F	
0x00 5343		ADC1_SR	ADC1 status register	0x00	
0x00 5344		ADC1_DRH	ADC1 data register high	0x00	
0x00 5345		ADC1_DRL	ADC1 data register low	0x00	
0x00 5346		ADC1_HTRH	ADC1 high threshold register high	0x0F	
0x00 5347		ADC1_HTRL	ADC1 high threshold register low	0xFF	
0x00 5348	ADC1	ADC1_LTRH	ADC1 low threshold register high	0x00	
0x00 5349	ADCI	ADC1_LTRL	ADC1 low threshold register low	0x00	
0x00 534A		ADC1_SQR1	ADC1 channel sequence 1 register	0x00	
0x00 534B		ADC1_SQR2	ADC1 channel sequence 2 register	0x00	
0x00 534C		ADC1_SQR3	ADC1 channel sequence 3 register	0x00	
0x00 534D		ADC1_SQR4	ADC1 channel sequence 4 register	0x00	
0x00 534E		ADC1_TRIGR1	ADC1 trigger disable 1	0x00	
0x00 534F		ADC1_TRIGR2	ADC1 trigger disable 2	0x00	
0x00 5350		ADC1_TRIGR3	ADC1 trigger disable 3	0x00	
0x00 5351	1	ADC1_TRIGR4	ADC1 trigger disable 4	0x00	

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 53C8 to			Reserved area (104 byte)	
0x00 542F				1
0x00 5430			Reserved area (1 byte)	0x00
0x00 5431		RI_ICR1	RI timer input capture routing register 1	0x00
0x00 5432		RI_ICR2	RI timer input capture routing register 2	0x00
0x00 5433		RI_IOIR1	RI I/O input register 1	0xXX
0x00 5434		RI_IOIR2	RI I/O input register 2	0xXX
0x00 5435		RI_IOIR3	RI I/O input register 3	0xXX
0x00 5436		RI_IOCMR1	RI I/O control mode register 1	0x00
0x00 5437	D.	RI_IOCMR2	RI I/O control mode register 2	0x00
0x00 5438	- RI	RI_IOCMR3	RI I/O control mode register 3	0x00
0x00 5439		RI_IOSR1	RI I/O switch register 1	0x00
0x00 543A	=	RI_IOSR2	RI I/O switch register 2	0x00
0x00 543B	RI_IOSR3 RI I/O switch register 3		RI I/O switch register 3	0x00
0x00 543C		RI_IOGCR	RI I/O group control register	0xFF
0x00 543D		RI_ASCR1	RI analog switch register 1	0x00
0x00 543E		RI_ASCR2	RI analog switch register 2	0x00
0x00 543F	=	RI_RCR	RI resistor control register	0x00
0x00 5440		COMP_CSR1	Comparator control and status register 1	0x00
0x00 5441		COMP_CSR2	Comparator control and status register 2	0x00
0x00 5442	COMP1/ COMP2	COMP_CSR3	Comparator control and status register 3	0x00
0x00 5443	_ COIVII 2	COMP_CSR4	Comparator control and status register 4	0x00
0x00 5444	-	COMP_CSR5	Comparator control and status register 5	0x00
0x00 5445 to 0x00 544F			Reserved area (11 byte)	
0x00 5450		RI_CR	RI I/O control register	0x00
0x00 5451		RI_MASKR1	RI I/O mask register 1	0x00
0x00 5452	1	RI_MASKR2	RI I/O mask register 2	0x00
0x00 5453	RI	RI_MASKR3	RI I/O mask register 3	0x00
0x00 5454		RI_MASKR4	RI I/O mask register 4	0x00
0x00 5455	1	RI_IOIR4	RI I/O input register 4	0xXX
0x00 5456	1	RI_IOCMR4	RI I/O control mode register 4	0x00
0x00 5457	=	RI_IOSR4	RI I/O switch register 4	0x00

^{1.} For device in 20-pin packages

^{2.} These registers are not impacted by a system reset. They are reset at power-on.

DS7204 Rev 10 45/123

Table 9. CPU/SWIM/debug module/interrupt controller registers

Address	Block	Register Label	Reset Status			
0x00 7F00		А	Accumulator	0x00		
0x00 7F01		PCE	Program counter extended	0x00		
0x00 7F02		PCH	Program counter high	0x00		
0x00 7F03		PCL	Program counter low	0x00		
0x00 7F04		XH	X index register high	0x00		
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00		
0x00 7F06		YH	Y index register high	0x00		
0x00 7F07		YL	Y index register low	0x00		
0x00 7F08		SPH	Stack pointer high	0x03		
0x00 7F09		SPL	Stack pointer low	0xFF		
0x00 7F0A		CCR	Condition code register	0x28		
0x00 7F0B to 0x00 7F5F	CPU	Reserved area (85 byte)				
0x00 7F60		CFG_GCR	Global configuration register	0x00		
0x00 7F70		ITC_SPR1	Interrupt Software priority register 1	0xFF		
0x00 7F71		ITC_SPR2	Interrupt Software priority register 2	0xFF		
0x00 7F72		ITC_SPR3	Interrupt Software priority register 3	0xFF		
0x00 7F73	ITC-SPR	ITC_SPR4	Interrupt Software priority register 4	0xFF		
0x00 7F74	IIC-SPR	ITC_SPR5	Interrupt Software priority register 5	0xFF		
0x00 7F75		ITC_SPR6	Interrupt Software priority register 6	0xFF		
0x00 7F76		ITC_SPR7	Interrupt Software priority register 7	0xFF		
0x00 7F77		ITC_SPR8	Interrupt Software priority register 8	0xFF		
0x00 7F78 to 0x00 7F79		Reserved area (2 byte)				
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00		
0x00 7F81 to 0x00 7F8F	Reserved area (15 byte)					

Table 9. CPU/SWIM/debug module/interrupt controller registers (continued)

Address	Block	Register Label	Register Name	Reset Status	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF	
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF	
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF	
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF	
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF	
0x00 7F95	DM	DM DM_BK2RL DM breakpoint 2 register low byte		0xFF	
0x00 7F96	DM_CR1		DM Debug module control register 1	0x00	
0x00 7F97		DM_CR2	DM Debug module control register 2	0x00	
0x00 7F98		DM_CSR1	DM Debug module control/status register 1	0x10	
0x00 7F99		DM_CSR2	DM Debug module control/status register 2	0x00	
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF	
0x00 7F9B to 0x00 7F9F	Reserved area (5 byte)				

^{1.} Accessible by debug module only

6 Interrupt vector mapping

Table 10. Interrupt mapping

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address
-	RESET	Reset	Yes	Yes	Yes	Yes	0x00 8000
-	TRAP	Software interrupt	-	-	-	-	0x00 8004
0	TLI ⁽²⁾	External top level interrupt	-	-	-	-	0x00 8008
1	FLASH	FLASH end of programing/ write attempted to protected page interrupt	-	-	Yes	Yes	0x00 800C
2	DMA1 0/1	DMA1 channels 0/1 half transaction/transaction complete interrupt	-	-	Yes	Yes	0x00 8010
3	DMA1 2/3	DMA1 channels 2/3 half transaction/transaction complete interrupt	-	-	Yes	Yes	0x00 8014
4	RTC	RTC alarm A/ wakeup/tamper 1/ tamper 2/tamper 3	Yes	Yes	Yes	Yes	0x00 8018
5	EXTIE/ PVD	External interrupt port E PVD interrupt	Yes	Yes	Yes	Yes	0x00 801C
6	EXTIB	External interrupt port B	Yes	Yes	Yes	Yes	0x00 8020
7	EXTID	External interrupt port D	Yes	Yes	Yes	Yes	0x00 8024
8	EXTI0	External interrupt 0	Yes	Yes	Yes	Yes	0x00 8028
9	EXTI1	External interrupt 1	Yes	Yes	Yes	Yes	0x00 802C
10	EXTI2	External interrupt 2	Yes	Yes	Yes	Yes	0x00 8030
11	EXTI3	External interrupt 3	Yes	Yes	Yes	Yes	0x00 8034
12	EXTI4	External interrupt 4	Yes	Yes	Yes	Yes	0x00 8038
13	EXTI5	External interrupt 5	Yes	Yes	Yes	Yes	0x00 803C
14	EXTI6	External interrupt 6	Yes	Yes	Yes	Yes	0x00 8040
15	EXTI7	External interrupt 7	Yes	Yes	Yes	Yes	0x00 8044
16			Reserved				0x00 8048
17	CLK	CLK system clock switch/ CSS interrupt	-	-	Yes	Yes	0x00 804C
18	COMP1/ COMP2/ ADC1	COMP1 interrupt COMP2 interrupt ACD1 end of conversion/ analog watchdog/ overrun interrupt	Yes	Yes	Yes	Yes	0x00 8050

Table 10. Interrupt mapping (continued)

	tante ter mortape mapping (commutat)									
IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address			
19	TIM2	TIM2 update/overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 8054			
20	TIM2	TIM2 capture/ compare interrupt	-	-	Yes	Yes	0x00 8058			
21	TIM3	TIM3 update/overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 805C			
22	TIM3	TIM3 capture/ compare interrupt	-	-	Yes	Yes	0x00 8060			
23	RI	RI trigger interrupt	-	-	Yes	-	0x00 8064			
24		,	<u> </u>	ı	<u> </u>	0x00 8068				
25	TIM4	TIM4 update/overflow/ trigger interrupt	-	-	Yes	Yes	0x00 806C			
26	SPI1	SPI1 TX buffer empty/ RX buffer not empty/ error/wakeup interrupt	Yes	Yes	Yes	Yes	0x00 8070			
27	USART1	USART1 transmit data register empty/ transmission complete interrupt	-	-	Yes	Yes	0x00 8074			
28	USART1	USART1 received data ready/overrun error/ idle line detected/parity error/global error interrupt	-	-	Yes	Yes	0x00 8078			
29	I ² C1	I ² C1 interrupt ⁽³⁾	Yes	Yes	Yes	Yes	0x00 807C			

^{1.} The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.

^{2.} The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts.

^{3.} The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.

0x00 480C

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block.

All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 11* for details on option byte addresses.

The option bytes can also be modified 'on the fly' by the application in IAP mode, except for the ROP and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM).

Refer to the STM8L15x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

Option bits Option **Factory** Addr. **Option name** byte default 7 6 5 2 1 0 4 3 setting No. Read-out 0x00 4800 OPT0 protection ROP[7:0] 0xAA (ROP) UBC (User 0x00 4802 OPT1 UBC[7:0] 0x00 Boot code size) 0x00 4807 Reserved 0x00 Independent OPT3 WWDG WWDG **IWDG IWDG** 0x00 4808 watchdog Reserved 0x00 _HW _HW [3:0] HALT HALT option Number of stabilization 0x00 4809 clock cycles for OPT4 Reserved LSECNT[1:0] HSECNT[1:0] 0x00 HSE and LSE oscillators Brownout reset OPT5 BOR 0x00 480A BOR TH 0x01 Reserved (BOR) [3:0] ON 0x00 480B Bootloader 0x00 **OPTBL** OPTBL[15:0] option bytes

Table 11. Option byte addresses

0x00

50/123 DS7204 Rev 10

[15:0]

(OPTBL)

Table 12. Option byte description

Option byte No.	Option description
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT1	UBC[7:0] Size of the user boot code area 0x00: UBC is not protected. 0x01: Page 0 is write protected. 0x02: Page 0 and 1 reserved for the UBC and write protected. It covers only the interrupt vectors. 0x03: Page 0 to 2 reserved for UBC and write protected. 0x7F to 0xFF - All 128 pages reserved for UBC and write protected. The protection of the memory area not protected by the UBC is enabled through the MASS keys. Refer to User boot code section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT2	Reserved
	IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware
OPT3	IWDG_HALT: Independent window watchdog off on Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode
OP13	WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware
	WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode
	HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles
OPT4	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to Table 31: LSE oscillator characteristics on page 74.

Table 12. Option byte description (continued)

Option byte No.	Option description
	BOR_ON:
	0: Brownout reset off
OPT5	1: Brownout reset on
	BOR_TH[3:1] : Brownout reset thresholds. Refer to <i>Table 22</i> for details on the thresholds according to the value of BOR_TH bits.
	OPTBL[15:0]:
	This option is checked by the boot ROM code after reset. Depending on
OPTBL	content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the
	CPU jumps to the bootloader or to the reset vector.
	Refer to the UM0560 bootloader user manual for more details.

8 Unique ID

STM8 devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while
 using and combining this unique ID with software cryptographic primitives and
 protocols before programming the internal memory.
- To activate secure boot processes

Table 13. Unique ID registers (96 bits)

Adduses	Content		Unique ID bits								
Address	description	7	6	5	4	3	2	1	0		
0x4926	X co-ordinate on			U_ID[7:0]							
0x4927	the wafer		U_ID[15:8]								
0x4928	Y co-ordinate on				U_II	D[23:16]					
0x4929	the wafer				U_II	D[31:24]					
0x492A	Wafer number	U_ID[39:32]									
0x492B		U_ID[47:40]									
0x492C			U_ID[55:48]								
0x492D		U_ID[63:56]									
0x492E	Lot number				U_II	D[71:64]					
0x492F					U_II	D[79:72]					
0x4930					U_II	D[87:80]					
0x4931		U_ID[95:88]									

9 Electrical parameters

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_A = 25 °C and T_A = T_A max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics is indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

9.1.2 Typical values

Unless otherwise specified, typical data is based on $T_A = 25$ °C, $V_{DD} = 3$ V. It is given only as design guidelines and is not tested.

Typical ADC1 accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 9.

Figure 9. Pin loading conditions

9.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.

Figure 10. Pin input voltage

9.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14: Voltage characteristics*, *Table 15: Current characteristics*, and *Table 16: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit	
V _{DD} - V _{SS}	External supply voltage (including V_{DD} , V_{DDA} , and V_{DDIO}) ⁽¹⁾	- 0.3	4.0	٧	
V _{IN} ⁽²⁾	Input voltage on true open-drain pins (PC0 and PC1)	V _{SS} - 0.3 V _{DD} + 4.0		V	
	Input voltage on any other pin	V _{ss} - 0.3	4.0		
V _{ESD}	Electrostatic discharge voltage	see Absolute maximum ratings (electrical sensitivity) on page 102		-	

Table 14. Voltage characteristics

2. V_{IN} maximum must always be respected. Refer to *Table 15*. for maximum allowed injected current values.

^{1.} All power (V_{DD} , V_{DDA} , V_{DDIO}) and ground (V_{SS} , V_{SSA} , V_{SSIO}) pins must always be connected to the external power supply.

Table 15. Current characteristics

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power line (source)	80	
I _{VSS}	Total current out of V _{SS} ground line (sink)	80	
	Output current sunk by IR_TIM pin (with high sink LED driver capability)	80	mA
l _{IO}	Output current sunk by any other I/O and control pin	25	
	Output current sourced by any I/Os and control pin	- 25	
	Injected current on true open-drain pins (PC0 and PC1) ⁽¹⁾	- 5 / +0	
I _{INJ(PIN)}	Injected current on 3.6 V tolerant pins (1)	- 5 / +0	mA
	Injected current on any other pin (1)	- 5 / +5	
ΣI _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) (2)	± 25	mA

^{1.} A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 14*. for maximum allowed input voltage values.

Table 16. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	C

^{2.} When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

9.3 Operating conditions

Subject to general operating conditions for V_{DD} and T_{A} .

9.3.1 General operating conditions

Table 17. General operating conditions

Symbol	Parameter	Conditions		Min.	Max.	Unit	
f _{SYSCLK} ⁽¹⁾	System clock frequency	1.65 V	′ ≤V _{DD} < 3.6 V	0	16	MHz	
V _{DD}	Standard operating voltage		1	1.65 ⁽²⁾	3.6	V	
V_{DDA}	Analog operating	ADC1 not used	Must be at the same	1.65 ⁽²⁾	3.6	V	
	voltage	ADC1 used	potential as V _{DD}	1.8	3.6	MHz V	
		ı	_QFP48	-	288		
	Power dissipation at	UI	-	288			
	T _A = 85 °C for suffix 3 and suffix 6	UI	-	250			
	devices	UFQFPN20		-		196	
P _D ⁽³⁾		TSSOP20		-	181	1	
PD		I	_QFP48	-	77	mW	
	Power dissipation at	UI	FQFPN32	-	185		
	T _A = 125 °C for suffix 3	UI	FQFPN28	-	62		
	devices	UI	-QFPN20	-	49		
		Т	SSOP20	-	45		
т	Tomporatura rango	1.65 V ≤V _{DD} <	3.6 V (6 suffix version)	-40	85		
T_A	Temperature range	1.65 V ≤V _{DD} <	3.6 V (3 suffix version)	-40	125		
т	Junction temperature		C ≤T _A < 85 °C uffix version)	-40	105 ⁽⁴⁾	°C	
T_J	range		≤ T _A < 125 °C uffix version)	-40	130 ⁽⁴⁾		

^{1.} f_{SYSCLK} = f_{CPU}

^{2. 1.8} V at power-up, 1.65 V at power-down if BOR is disabled

^{3.} To calculate $P_{Dmax}(T_A)$, use the formula $P_{Dmax}=(T_{Jmax}-T_A)/\Theta_{JA}$ with T_{Jmax} in this table and Θ_{JA} in "Thermal characteristics" table.

^{4.} T_J max is given by the test limit. Above this value, the product behavior is not guaranteed.

9.3.2 Embedded reset and power control block characteristics

Table 18. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
4	V _{DD} rise time rate	BOR detector enabled	0 ⁽¹⁾	-	_∞ (1)	
t _{VDD}	V _{DD} fall time rate	BOR detector enabled	20 ⁽¹⁾	-	_∞ (1)	μs/V
t _{TEMP}	Reset release delay	V _{DD} rising	-	3 ⁽¹⁾	-	ms
V _{PDR}	Power-down reset threshold	Falling edge	1.30 ⁽²⁾	1.50	1.65	V
V	Brown-out reset threshold 0	Falling edge	1.66	1.70	1.74	
V _{BOR0}	(BOR_TH[2:0]=000)	Rising edge	1.69	1.75	1.81	
V	Brown-out reset threshold 1	Falling edge	1.89	1.93	1.97	
V _{BOR1}	(BOR_TH[2:0]=001)	Rising edge	1.98	2.03	2.07	
V	Brown-out reset threshold 2	Falling edge	2.25	2.30	2.35	V
V _{BOR2}	(BOR_TH[2:0]=010)	Rising edge	2.35	2.40	2.44	V
V	Brown-out reset threshold 3	Falling edge	2.50	2.55	2.60	
V_{BOR3}	(BOR_TH[2:0]=011)	Rising edge	2.59	2.65	2.70	
V	Brown-out reset threshold 4	Falling edge	2.74	2.79	2.85	
V _{BOR4}	(BOR_TH[2:0]=100)	Rising edge	2.83	2.89	2.95	
V	PVD threshold 0	Falling edge	1.82	1.85	1.88	
V _{PVD0}	F VD tillesiloid 0	Rising edge	1.89	1.94	1.97	
W	PVD threshold 1	Falling edge	2.04	2.05	2.08	
V _{PVD1}	F VD tilleshold i	Rising edge	2.12	2.14	2.17	
\/	PVD threshold 2	Falling edge	2.21	2.24	2.28	
V _{PVD2}	T VD tilleshold 2	Rising edge	2.31	2.33	2.37	
W	PVD threshold 3	Falling edge	2.41	2.44	2.48	V
V _{PVD3}	F VD tillesiloid 3	Rising edge	2.51	2.53	2.57	V
V	PVD threshold 4	Falling edge	2.61	2.64	2.69	
V _{PVD4}	T VD tilleshold 4	Rising edge	2.71	2.74	2.79	
V	PVD threshold 5	Falling edge	2.79	2.83	2.88	
V _{PVD5}	า งบ แแรงแบน ว	Rising edge	2.90	2.94	2.99	
\/	PVD threshold 6	Falling edge	3.01	3.04	3.09	
V _{PVD6}	า งอ แแรงแงเน ง	Rising edge	3.12	3.15	3.20	

^{1.} Guaranteed by design.

^{2.} Guaranteed by characterization results.

Figure 11. POR/BOR thresholds

9.3.3 Supply current characteristics

Total current consumption

The MCU is placed under the following conditions:

- I All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if explicitly mentioned.

In the following table, data is based on characterization results, unless otherwise specified. Subject to general operating conditions for V_{DD} and T_{A} .

Table 19. Total current consumption in Run mode

	Para			A)				Max		
Symbol	meter		Conditions ⁽	1)	Тур	55 °C	85 °C	105°C ⁽²⁾	125 °C ⁽²⁾	Unit
				f _{CPU} = 125 kHz	0.39	0.47	0.49	0.52	0.55	
				f _{CPU} = 1 MHz	0.48	0.56	0.58	0.61	0.65	
			HSI RC osc. (16 MHz) ⁽⁴⁾	f _{CPU} = 4 MHz	0.75	0.84	0.86	0.91	0.99	
			(10 1411 12)	f _{CPU} = 8 MHz	1.10	1.20	1.25	1.31	1.40	
		All		f _{CPU} = 16 MHz	1.85	1.93	2.12 ⁽⁶⁾	2.29 ⁽⁶⁾	2.36 ⁽⁶⁾	
IDD(RUN)	Supply	peripherals OFF,		f _{CPU} = 125 kHz	0.05	0.06	0.09	0.11	0.12	
	current	code executed	HSE external	f _{CPU} = 1 MHz	0.18	0.19	0.20	0.22	0.23	mA
	in run mode ⁽³⁾	from RAM, V _{DD} from	clock	f _{CPU} = 4 MHz	0.55	0.62	0.64	0.71	0.77	
		1.65 V to	(f _{CPU} =f _{HSE}) ⁽⁵⁾	f _{CPU} = 8 MHz	0.99	1.20	1.21	1.22	1.24	
		3.6 V		f _{CPU} = 16 MHz	1.90	2.22	2.23 ⁽⁶⁾	2.24 ⁽⁶⁾	2.28 ⁽⁶⁾	
			LSI RC osc. (typ. 38 kHz)	f _{CPU} = f _{LSI}	0.040	0.045	0.046	0.048	0.050	
			LSE external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.035	0.040	0.048 ⁽⁶⁾	0.050	0.062	
				f _{CPU} = 125 kHz	0.43	0.55	0.56	0.58	0.62	
				f _{CPU} = 1 MHz	0.60	0.77	0.80	0.82	0.87	
			HSI RC osc. ⁽⁷⁾	f _{CPU} = 4 MHz	1.11	1.34	1.37	1.39	1.43	
				f _{CPU} = 8 MHz	1.90	2.20	2.23	2.31	2.40	
		All		f _{CPU} = 16 MHz	3.8	4.60	4.75	4.87	0.65 0.99 1.40 2.36 ⁽⁶⁾ 0.12 0.23 0.77 1.24 2.28 ⁽⁶⁾ 0.050 0.062 0.62 0.87 1.43 2.40 4.88 0.47 0.56	
	Supply	peripherals OFF, code		f _{CPU} = 125 kHz	0.30	0.36	0.39	0.44		
I _{DD(RUN)}	current	executed		f _{CPU} = 1 MHz	0.40	0.50	0.52	0.55	0.56	mA
DD(RON)	in Run mode	from Flash, V _{DD} from	clock (f _{CPU} =f _{HSE})	f _{CPU} = 4 MHz	1.15	1.31	1.40	1.45	1.48	
		1.65 V to 3.6 V	(5)	f _{CPU} = 8 MHz	2.17	2.33	2.44	2.56	2.77	
		3.0 V		f _{CPU} = 16 MHz	4.0	4.46	4.52	4.59	4.77	
			LSI RC osc.	$f_{CPU} = f_{LSI}$	0.110	0.123	0.130	0.140	0.150	
			LSE ext. clock (32.768 kHz) ⁽⁸⁾	f _{CPU} = f _{LSE}	0.100	0.101	0.104	0.119	0.122	

^{1.} All peripherals OFF, $\rm V_{DD}$ from 1.65 V to 3.6 V, HSI internal RC osc., $\rm f_{CPU} = f_{SYSCLK}$

^{2.} For devices with suffix 3

^{3.} CPU executing typical data processing

- 4. The run from RAM consumption can be approximated with the linear formula: $I_{DD}(run_from_RAM)$ = Freq * 90 $\mu A/MHz$ + 380 μA
- Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I_{DD HSE}) must be added. Refer to Table 30.
- 6. Tested in production.
- 7. The run from Flash consumption can be approximated with the linear formula: $I_{DD}(run_from_Flash)$ = Freq * 195 $\mu A/MHz$ + 440 μA
- 8. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to *Table 31*.

1. Typical current consumption measured with code executed from RAM

Table 20. Total current consumption in Wait mode

							N	l ax		
Symbol	Parameter		Conditions ⁽¹⁾		Тур	55°C	85 °C	105 °C (2)	125 °C (2)	Unit
				f _{CPU} = 125 kHz	0.33	0.39	0.41	0.43	0.45	
				f _{CPU} = 1 MHz	0.35	0.41	0.44	0.45	0.48	
			HSI	f _{CPU} = 4 MHz	0.42	0.51	0.52	0.54	0.58	
				f _{CPU} = 8 MHz	0.52	0.57	0.58	0.59	0.62	
		CPU not clocked.		f _{CPU} = 16 MHz	0.68	0.76	0.79	0.82 (5)	0.85 (5)	
		all peripherals	HSE external clock	f _{CPU} = 125 kHz	0.032	0.056	0.068	0.072	0.093	
	Supply	OFF, code executed		f _{CPU} = 1 MHz	0.078	0.121	0.144	0.163	0.197	
I _{DD(Wait)}	current in Wait mode	from RAM with Flash in			f _{CPU} = 4 MHz	0.218	0.26	0.30	0.36	0.40
		I _{DDQ} mode ⁽³⁾ ,	(f _{CPU} =f _{HSE}) (4)	f _{CPU} = 8 MHz	0.40	0.52	0.57	0.62	0.66	
		V _{DD} from 1.65 V to 3.6 V		f _{CPU} = 16 MHz	0.760	1.01	1.05	1.09	1.16 (5)	
			LSI	f _{CPU} = f _{LSI}	0.035	0.044	0.046	0.049	0.054	
			LSE ⁽⁶⁾ external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.032	0.036	0.038	0.044	0.051	

Table 20. Total current consumption in Wait mode (continued)

				· ·			N	/ //ax		
Symbol	Parameter		Conditions ⁽¹⁾		Тур	55°C	85 °C	105 °C	125 °C (2)	Unit
				f _{CPU} = 125 kHz	0.38	0.48	0.49	0.50	0.56	
				f _{CPU} = 1 MHz	0.41	0.49	0.51	0.53	0.59	
			HSI	f _{CPU} = 4 MHz	0.50	0.57	0.58	0.62	0.66	
				f _{CPU} = 8 MHz	0.60	0.66	0.68	0.72	0.74	
		CPU not		f _{CPU} = 16 MHz	0.79	0.84	0.86	0.87	0.90	
	Supply	clocked, all peripherals		f _{CPU} = 125 kHz	0.06	0.08	0.09	0.10	0.12	mA
loo au ::	current in	OFF,	HSE ⁽⁴⁾ external	f _{CPU} = 1 MHz	0.10	0.17	0.18	0.19	0.22	
I _{DD(Wait)}	Wait mode	code executed from Flash,	clock	f _{CPU} = 4 MHz	0.24	0.36	0.39	0.41	0.44	1117
	mode	V _{DD} from	(f _{CPU} =HSE)	f _{CPU} = 8 MHz	0.50	0.58	0.61	0.62	0.64	
		1.65 V to 3.6 V		f _{CPU} = 16 MHz	1.00	1.08	1.14	1.16	1.18	
			LSI	f _{CPU} = f _{LSI}	0.055	0.058	0.065	0.073	0.080	
			LSE ⁽⁶⁾ external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.051	0.056	0.060	0.065	0.073	

^{1.} All peripherals OFF, V_{DD} from 1.65 V to 3.6 V, HSI internal RC osc., f_{CPU} = f_{SYSCLK}

^{2.} For temperature range 3.

^{3.} Flash is configured in I_{DDQ} mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.

^{4.} Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I_{DD HSE}) must be added. Refer to *Table 30*.

^{5.} Tested in production.

^{6.} Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption ($I_{DD\ HSE}$) must be added. Refer to Table 31.

Figure 13. Typ. $I_{DD(Wait)}$ vs. V_{DD} , f_{CPU} = 16 MHz $^{1)}$

1. Typical current consumption measured with code executed from Flash memory.

Table 21. Total current consumption and timing in Low power run mode at V_{DD} = 1.65 V to 3.6 V

Symbol	Parameter	at V _{DD} -	Conditions ⁽¹⁾⁽²⁾			Max	Unit
				T _A = -40 °C to 25 °C	5.1	5.4	
				T _A = 55 °C	5.7	6	
			all peripherals OFF	T _A = 85 °C	6.8	7.5	
				T _A = 105 °C	9.2	10.4	
		LSI RC osc.		T _A = 125 °C	13.4	16.6	
		(at 38 kHz)	with TIM2 active ⁽³⁾	T _A = -40 °C to 25 °C	5.4	5.7	
				T _A = 55 °C	6.0	6.3	
				T _A = 85 °C	7.2	7.8	
Supply current in Low			T _A = 105 °C	9.4	10.7		
				T _A = 125 °C	13.8	17	μΑ
I _{DD(LPR)}	power run mode		all peripherals OFF	T _A = -40 °C to 25 °C	5.25	5.6	μυν
				T _A = 55 °C	5.67	6.1	
				T _A = 85 °C	5.85	6.3	
				T _A = 105 °C	7.11	7.6	
		LSE ⁽⁴⁾ external clock		T _A = 125 °C	9.84	12	
	(32.768 kHz)		T _A = -40 °C to 25 °C	5.59	6		
			(2)	T _A = 55 °C	6.10	6.4	
			with TIM2 active (3)	T _A = 85 °C	6.30	7	
				T _A = 105 °C	7.55	8.4	
				T _A = 125 °C	10.1	15	

^{1.} No floating I/Os

^{2.} $T_A > 85$ °C is valid only for devices with suffix 3 temperature range.

^{3.} Timer 2 clock enabled and counter running

^{4.} Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to *Table 31*

Figure 14. Typ. $I_{DD(LPR)}$ vs. V_{DD} (LSI clock source)

47/

Table 22. Total current consumption in Low power wait mode at V_{DD} = 1.65 V to 3.6 V

Symbol	Parameter		Conditions ⁽¹⁾⁽²⁾				
				$T_A = -40 ^{\circ}\text{C} \text{ to } 25 ^{\circ}\text{C}$	3	3.3	
				T _A = 55 °C	3.3	3.6	
			all peripherals OFF	T _A = 85 °C	4.4	5	
				T _A = 105 °C	6.7	8	
		LSI RC osc.		T _A = 125 °C	11	14	
		(at 38 kHz)	with TIM2 active ⁽³⁾	$T_A = -40 ^{\circ}\text{C} \text{ to } 25 ^{\circ}\text{C}$	3.4	3.7	
	Supply current in Low power wait mode			T _A = 55 °C	3.7	4	
				T _A = 85 °C	4.8	5.4	
				T _A = 105 °C	7	8.3	
IDD// DIA/)				T _A = 125 °C	11.3	14.5	μA
I _{DD(LPW)}			all peripherals OFF	T_A = -40 °C to 25 °C	2.35	2.7	μΑ
				T _A = 55 °C	2.42	2.82	
				T _A = 85 °C	3.10	3.71	
				T _A = 105 °C	4.36	5.7	
		LSE external clock ⁽⁴⁾		T _A = 125 °C	7.20	11	
		(32.768 kHz)		$T_A = -40 ^{\circ}\text{C} \text{ to } 25 ^{\circ}\text{C}$	2.46	2.75	
		,		T _A = 55 °C	2.50	2.81	
			with TIM2 active (3)	T _A = 85 °C	3.16	3.82	
				T _A = 105 °C	4.51	5.9	
				T _A = 125 °C	7.28	11	

^{1.} No floating I/Os.

^{2.} $T_A > 85$ °C is valid only for devices with suffix 3 temperature range.

^{3.} Timer 2 clock enabled and counter is running.

^{4.} Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to *Table 31*.

Figure 15. Typ. $I_{DD(LPW)}$ vs. V_{DD} (LSI clock source)

Table 23. Total current consumption and timing in Active-halt mode at V_{DD} = 1.65 V to 3.6 V

Table 201 Total carrott concern prior and thining in Your o hait mode at TDD							
Symbol	Parameter	Conditions	s ⁽¹⁾⁽²⁾	Тур	Max	Unit	
			T_A = -40 °C to 25 °C	0.9	2.1		
			T _A = 55 °C		1.2	3	
		LSI RC (at 38 kHz)	T _A = 85 °C	1.5	3.4		
			T _A = 105 °C	2.6	6.6		
lpp/AUS	Supply current in		T _A = 125 °C	5.1	12		
I _{DD(AH)}	Active-halt mode		$T_A = -40 ^{\circ}\text{C} \text{ to } 25 ^{\circ}\text{C}$	0.5 1.2 0.62 1.4		μΑ	
		LSE external clock (32.768 kHz) ⁽³⁾	T _A = 55 °C				
			T _A = 85 °C	0.88	2.1	j.	
			T _A = 105 °C	2.1	4.85		
			T _A = 125 °C	4.8	11		
I _{DD(WUFAH)}	Supply current during wakeup time from Active-halt mode (using HSI)	-	-	2.4	-	mA	
t _{WU_HSI(AH)} (4)(5)	Wakeup time from Active-halt mode to Run mode (using HSI)	-	-	4.7	7	μs	
t _{WU_LSI(AH)} ⁽⁴⁾ (5)	Wakeup time from Active-halt mode to Run mode (using LSI)	-	-	150	-	μs	

- 1. No floating I/O, unless otherwise specified.
- 2. $T_A > 85$ °C is valid only for devices with suffix 3 temperature range.
- 3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to *Table 31*
- 4. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t_{WU} .
- 5. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.

Table 24. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal

onto the contract of the contr							
Symbol	Parameter	Condition ⁽¹⁾		Тур	Unit		
		\/ -19\/	LSE	1.15			
		V _{DD} = 1.8 V	LSE/32 ⁽³⁾	1.05			
I _{DD(AH)} (2)	Supply current in Active-halt mode	V _{DD} = 3 V	LSE	1.30	μA		
			LSE/32 ⁽³⁾	1.20			
		V -26V	LSE	1.45			
		V _{DD} = 3.6 V	LSE/32 ⁽³⁾	1.35			

- 1. No floating I/O, unless otherwise specified.
- 2. Based on measurements on bench with 32.768 kHz external crystal oscillator.
- 3. RTC clock is LSE divided by 32.

Table 25. Total current consumption and timing in Halt mode at V_{DD} = 1.65 to 3.6 V

Symbol	Parameter	Condition ⁽¹⁾⁽²⁾	Тур	Max	Unit
		T _A = -40 °C to 25 °C	350	1400 ⁽³⁾	
	Supply current in Halt mode	T _A = 55 °C	580	2000	
I _{DD(Halt)}	(Ultra-low-power ULP bit =1 in the PWR_CSR2 register)	T _A = 85 °C	1160	2800 ⁽³⁾	nA
		T _A = 105 °C	2560	6700 ⁽³⁾	
		T _A = 125 °C	4.4	13 ⁽³⁾	μA
I _{DD(WUHalt)}	Supply current during wakeup time from Halt mode (using HSI)	-	2.4	-	mA
t _{WU_HSI(Halt)} ⁽⁴⁾⁽⁵⁾	Wakeup time from Halt to Run mode (using HSI)	-	4.7	7	μs
t _{WU_LSI(Halt)} (4)(5)	Wakeup time from Halt mode to Run mode (using LSI)	-	150	-	μs

^{1.} T_A = -40 to 125 °C, no floating I/O, unless otherwise specified.

^{2.} $T_A > 85$ °C is valid only for devices with suffix 3 temperature range.

^{3.} Tested in production.

^{4.} ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.

^{5.} Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t_{WU} .

Current consumption of on-chip peripherals

Table 26. Peripheral current consumption

Symbol	Parameter		Typ. V _{DD} = 3.0 V	Unit
I _{DD(TIM2)}	TIM2 supply current (1)		8	
I _{DD(TIM3)}	TIM3 supply current (1)		8	
I _{DD(TIM4)}	TIM4 timer supply current (1)	3		
I _{DD(USART1)}	USART1 supply current (2)		6	0 /0.41.1=
I _{DD(SPI1)}	SPI1 supply current (2)		3	μΑ/MHz
I _{DD(I2C1)}	I ² C1 supply current ⁽²⁾	I ² C1 supply current ⁽²⁾		
I _{DD(DMA1)}	DMA1 supply current ⁽²⁾	3		
I _{DD(WWDG)}	WWDG supply current ⁽²⁾	2		
I _{DD(ALL)}	Peripherals ON ⁽³⁾	38	µA/MHz	
I _{DD(ADC1)}	ADC1 supply current ⁽⁴⁾	1500	μΑ	
I _{DD(COMP1)}	Comparator 1 supply current ⁽⁵⁾		0.160	
I _{DD(COMP2)}	Comparator 2 supply current ⁽⁵⁾	Slow mode	2	
IDD(COMP2)	Comparator 2 supply current	Fast mode	5	
I _{DD(PVD/BOR)}	Power voltage detector and brownout Reset unit supply current ⁽⁶⁾		2.6	μΑ
I _{DD(BOR)}	Brownout Reset unit supply current (6)		2.4	,
lan was see	Independent watchdog supply current	including LSI supply current	0.45	
I _{DD(IDWDG)}	independent watchdog supply current	excluding LSI supply current	0.05	

Data based on a differential I_{DD} measurement between all peripherals OFF and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.

6. Including supply current of internal reference voltage.

Data based on a differential I_{DD} measurement between the on-chip peripheral in reset configuration and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production.

 $^{3. \}quad \text{Peripherals listed above the I}_{\text{DD(ALL)}} \text{ parameter ON: TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG. } \\$

^{4.} Data based on a differential I_{DD} measurement between ADC1 in reset configuration and continuous ADC1 conversion.

Data based on a differential I_{DD} measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2 enabled with static inputs. Supply current of internal reference voltage excluded.

Table 27. Current consumption under external reset

Symbol	Parameter	Condition	Тур	Unit	
	O	All circumstances	V _{DD} = 1.8 V	48	
$I_{DD(RST)}$	Supply current under external reset ⁽¹⁾	All pins are externally tied to V _{DD}	V _{DD} = 3 V	76	μΑ
	CALCITICAT TO COL		V _{DD} = 3.6 V	91	

^{1.} All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.

9.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A.

Table 28. HSE external clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External clock source frequency ⁽¹⁾		1	-	16	MHz
V _{HSEH}	OSC_IN input pin high level voltage	-	0.7 x V _{DD}	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	ı	0.3 x V _{DD}	V
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	2.6	-	pF
I _{LEAK_HSE}	OSC_IN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-	-	±1	μΑ

^{1.} Guaranteed by design.

LSE external clock (LSEBYP=1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A.

Table 29. LSE external clock characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSE_ext}	External clock source frequency ⁽¹⁾	-	32.768	-	kHz
V _{LSEH} ⁽²⁾	OSC32_IN input pin high level voltage	0.7 x V _{DD}	-	V_{DD}	V
V _{LSEL} ⁽²⁾	OSC32_IN input pin low level voltage	V_{SS}	-	0.3 x V _{DD}	V
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	0.6	-	pF
I _{LEAK_LSE}	OSC32_IN input leakage current	-	-	±1	μA

^{1.} Guaranteed by design.

^{2.} Guaranteed by characterization results.

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
f _{HSE}	High speed external oscillator frequency	-	1	-	16	MHz			
R _F	Feedback resistor	-	-	200	-	kΩ			
C ⁽¹⁾	Recommended load capacitance (2)	-	-	20	-	pF			
1	HSE oscillator power consumption	C = 20 pF, f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized) ⁽³⁾	mA			
IDD(HSE)		C = 10 pF, f _{OSC} =16 MHz	-	-	2.5 (startup) 0.46 (stabilized) ⁽³⁾	ША			
9 _m	Oscillator transconductance	-	3.5 ⁽³⁾	-	-	mA/V			
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	ms			

Table 30. HSE oscillator characteristics

t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This
value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 16. HSE oscillator circuit diagram

^{1.} C=C_{L1}=C_{L2} is approximately equivalent to 2 x crystal C_{LOAD}.

The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

^{3.} Guaranteed by design.

HSE oscillator critical g_m formula

$$g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$$

 R_m : Motional resistance (see crystal specification), L_m : Motional inductance (see crystal specification), C_m : Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification), $C_{L1} = C_{L2} = C$: Grounded external capacitance $C_{L2} = C_{L2} = C$: Grounded external capacitance

LSE crystal/ceramic resonator oscillator

The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz
R _F	Feedback resistor	ΔV = 200 mV	-	1.2	-	МΩ
C ⁽¹⁾	Recommended load capacitance (2)	-	-	8	-	pF
	LCC assillator power consumption	-	-	-	1.4 ⁽³⁾	μA
 		V _{DD} = 1.8 V	-	450	-	
I _{DD(LSE)}	LSE oscillator power consumption	V _{DD} = 3 V	-	600	-	nA
		V _{DD} = 3.6 V	-	750	-	
9 _m	Oscillator transconductance	-	3 ⁽³⁾	-	-	μA/V
t _{SU(LSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	S

Table 31. LSE oscillator characteristics

^{1.} C=C_{L1}=C_{L2} is approximately equivalent to 2 x crystal C_{LOAD}.

The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small R_m value. Refer to crystal manufacturer for more details.

^{3.} Guaranteed by design.

t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 17. LSE oscillator circuit diagram

Internal clock sources

Subject to general operating conditions for V_{DD} , and T_{A} .

High speed internal RC oscillator (HSI)

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter	Conditions ⁽¹⁾⁽²⁾	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
		V _{DD} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of HSI oscillator (factory calibrated)	V _{DD} = 3.0 V, 0 °C ≤T _A ≤ 55 °C	-1.5	-	1.5	%
ACC _{HSI}		$V_{DD} = 3.0 \text{ V, -10 } ^{\circ}\text{C} \le T_{A} \le 70 ^{\circ}\text{C}$	-2	-	2	%
		V _{DD} = 3.0 V, -10 °C ≤T _A ≤ 85 °C	-2.5	-	2	%
		V _{DD} = 3.0 V, -10 °C ≤T _A ≤ 125 °C	-4.5	-	2	%
		1.65 V ≤V _{DD} ≤ 3.6 V, -40 °C ≤T _A ≤ 125 °C	-4.5	-	3	%
TRIM	HSI user trimming	Trimming code ≠ multiple of 16	-	0.4	0.7	%
I KIIVI	step ⁽⁴⁾	Trimming code = multiple of 16	-		± 1.5	%
t _{su(HSI)}	HSI oscillator setup time (wakeup time)	-	-	3.7	6 ⁽⁵⁾	μs
I _{DD(HSI)}	HSI oscillator power consumption	-	-	100	140 ⁽⁵⁾	μА

Table 32. HSI oscillator characteristics

- 1. V_{DD} = 3.0 V, T_A = -40 to 125 °C unless otherwise specified.
- 2. $T_A > 85$ °C is valid only for devices with suffix 3 temperature range.
- 3. Tested in production.
- The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 "STM8L15x internal RC oscillator calibration" application note for more details.
- 5. Guaranteed by design.

Figure 18. Typical HSI frequency vs V_{DD}

Low speed internal RC oscillator (LSI)

In the following table, data is based on characterization results, not tested in production.

Parameter (1) **Symbol** Conditions⁽¹⁾ Min Тур Max Unit Frequency f_{LSI} 26 38 56 kHz $200^{(2)}$ LSI oscillator wakeup time μs t_{su(LSI)} LSI oscillator frequency $0~^{\circ}C \leq T_{A} \leq 85~^{\circ}C$ -12 11 % $I_{DD(LSI)}$ drift⁽³⁾

Table 33. LSI oscillator characteristics

^{1.} V_{DD} = 1.65 V to 3.6 V, T_A = -40 to 125 °C unless otherwise specified.

^{2.} Guaranteed by design.

^{3.} This is a deviation for an individual part, once the initial frequency has been measured.

Figure 19. Typical LSI frequency vs. $V_{\rm DD}$

9.3.5 Memory characteristics

 T_A = -40 to 125 °C unless otherwise specified.

Table 34. RAM and hardware registers

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{RM}	Data retention mode (1)	Halt mode (or Reset)	1.65	-	-	V

Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization results.

Flash memory

Table 35. Flash program and data EEPROM memory

Symbol	Parameter	Conditions	Min	Тур	Max (1)	Unit
V_{DD}	Operating voltage (all modes, read/write/erase)	f _{SYSCLK} = 16 MHz	1.65	-	3.6	V
4	Programming time for 1 or 64 bytes (block) erase/write cycles (on programmed byte)	-	-	6	-	ms
t _{prog}	Programming time for 1 to 64 bytes (block) write cycles (on erased byte)	-	-	3	-	ms
1	Programming/ erasing consumption	$T_A = +25 ^{\circ}C, V_{DD} = 3.0 V$	-	0.7	-	mA
^I prog	1 Togramming/ erasing consumption	T _A =+25 °C, V _{DD} = 1.8 V	-	0.7	-	Ш
	Data retention (program memory) after 10000 erase/write cycles at T_A = -40 to +85 °C (3 and 6 suffix)	T _{RET} = +85 °C	30 ⁽¹⁾	-	-	
. (2)	Data retention (program memory) after 10000 erase/write cycles at T_A = -40 to +125 °C (3 suffix)	T _{RET} = +125 °C	5 ⁽¹⁾	-	-	Vooro
t _{RET} ⁽²⁾	Data retention (data memory) after 300000 erase/write cycles at T _A = -40 to +85 °C (3 and 6 suffix)	T _{RET} = +85 °C	30 ⁽¹⁾	-	-	years
	Data retention (data memory) after 300000 erase/write cycles at T _A = -40 to +125 °C (3 suffix)	T _{RET} = +125 °C	5 ⁽¹⁾	-	-	
	Erase/write cycles (program memory)	$T_A = -40 \text{ to } +85 ^{\circ}\text{C}$	10 ⁽¹⁾	-	-	
N _{RW} ⁽³⁾	Erase/write cycles (data memory)	(3 and 6 suffix), T _A = -40 to +105 °C (3 suffix) or T _A = -40 to +125 °C (3 suffix)	300 ⁽¹⁾	-	-	kcycles

^{1.} Guaranteed by characterization results.

^{2.} Conforming to JEDEC JESD22a117

^{3.} The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte.

^{4.} Data based on characterization performed on the whole data memory.

9.3.6 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC1 error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, etc.).

The test results are given in the following table.

Functional susceptibility Symbol Unit Description **Negative Positive** injection injection Injected current on true open-drain pins (PC0 and -5 +0 Injected current on all five-volt tolerant pins -5 +0 mΑ I_{INJ} Injected current on all 3.6 V tolerant pins -5 +0 Injected current on any other pin -5 +5

Table 36. I/O current injection susceptibility

9.3.7 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Table 37. I/O static characteristics

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
V _{IL}	Input low level voltage ⁽²⁾	Input voltage on true open-drain pins (PC0 and PC1)	V _{SS} -0.3	-	0.3 x V _{DD}	V
		Input voltage on any other pin	V _{SS} -0.3	-	0.3 x V _{DD}	
V _{IH}	Input high level voltage (2)	Input voltage on true open-drain pins (PC0 and PC1) with V _{DD} < 2 V	0.70 x V _{DD}	-	5.2	
		Input voltage on true open-drain pins (PC0 and PC1) with $V_{DD} \ge 2 \text{ V}$	0.70 X VDD	-	5.5	V
		Input voltage on any oth	Input voltage on any other pin	0.70 x V _{DD}	-	V _{DD} +0.3
1/1	Schmitt trigger voltage	I/Os	-	200	-	mV
v hys	hysteresis ⁽³⁾	True open drain I/Os	-	200	-	1110
		V _{SS} ≤V _{IN} ≤V _{DD} High sink I/Os	-	-	50 ⁽⁵⁾	
I _{lkg}	Input leakage current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD} True open drain I/Os	-	-	200 ⁽⁵⁾	nA
v		$V_{SS} \le V_{IN} \le V_{DD}$ PA0 with high sink LED driver capability	-	-	200 ⁽⁵⁾	
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾⁽⁶⁾	V _{IN} =V _{SS}	30	45	60	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

^{1.} V_{DD} = 3.0 V, T_A = -40 to 125 °C unless otherwise specified.

^{2.} Guaranteed by characterization results.

^{3.} Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

^{4.} The max. value may be exceeded if negative current is injected on adjacent pins.

^{5.} Not tested in production.

R_{PU} pull-up equivalent resistor based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 23).

Figure 20. Typical $\rm V_{IL}$ and $\rm V_{IH}$ vs $\rm V_{DD}$ (high sink I/Os)

Output driving current

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified.

Table 38. Output driving current (high sink ports)

I/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
sink	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I_{IO} = +2 mA, V_{DD} = 3.0 V	-	0.45	V
			I _{IO} = +2 mA, V _{DD} = 1.8 V	-	0.45	>
			I _{IO} = +10 mA, V _{DD} = 3.0 V	-	0.7	٧
High sink	V _{OH} ⁽²⁾	Output high level voltage for an I/O pin	I _{IO} = -2 mA, V _{DD} = 3.0 V	V _{DD} -0.45	-	\
			I _{IO} = -1 mA, V _{DD} = 1.8 V	V _{DD} -0.45	ı	>
			I _{IO} = -10 mA, V _{DD} = 3.0 V	V _{DD} -0.7	-	V

The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 15* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

Table 39. Output driving current (true open drain ports)

I/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
drain	drain	V _{OI} (1) Output low level voltage for an I/O pin	I_{IO} = +3 mA, V_{DD} = 3.0 V	-	0.45	V
Open drain	VOL'		I _{IO} = +1 mA, V _{DD} = 1.8 V	-	0.45	V

The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 15* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

Table 40. Output driving current (PA0 with high sink LED driver capability)

I/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
꼰	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA, V _{DD} = 2.0 V	-	0.45	٧

^{1.} The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 15* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS} .

^{2.} The I_{IO} current sourced must always respect the absolute maximum rating specified in *Table 15* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD} .

Figure 25. Typ. V_{OL} @ V_{DD} = 1.8 V (high sink ports)

Figure 26. Typ. V_{OL} @ V_{DD} = 3.0 V (true open drain ports)

NRST pin

Subject to general operating conditions for $V_{\mbox{\scriptsize DD}}$ and $T_{\mbox{\scriptsize A}}$ unless otherwise specified.

Table 41. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage (1)	-	V_{SS}	-	0.8	
V _{IH(NRST)}	NRST input high level voltage (1)	-	1.4	-	V_{DD}	
V _{OL(NRST)}	NRST output low level voltage (1)	I_{OL} = 2 mA for 2.7 V \leq V _{DD} \leq 3.6 V	-	-	0.4	٧
		I _{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-	0.4	
V _{HYST}	NRST input hysteresis ⁽³⁾	-	10%V _{DD} (2)	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor	-	30	45	60	kΩ
V _{F(NRST)}	NRST input filtered pulse (3)	-	-	-	50	ne
V _{NF(NRST)}	NRST input not filtered pulse (3)	-	300	-	-	ns

- 1. Guaranteed by characterization results.
- 2. 200 mV min.
- 3. Guaranteed by design.

Figure 30. Typical NRST pull-up resistance R_{PU} vs V_{DD} 60 -40°C 55 **-**25°C Pull-up resistance [kΩ] -85°C 50 45 40 35 30 1.8 2 2.6 2.8 3 3.2 2.2 2.4 3.4 3.6 $V_{DD}[V]$ ai18224b

Figure 31. Typical NRST pull-up current I_{pu} vs V_{DD}

The reset network shown in *Figure 32* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max. level specified in *Table 41*. Otherwise the reset is not taken into account internally.

For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, attention must be paid to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. The minimum recommended capacity is 10 nF.

Figure 32. Recommended NRST pin configuration

57

9.3.8 Communication interfaces

SPI1 - Serial peripheral interface

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under ambient temperature, f_{SYSCLK} frequency and V_{DD} supply voltage conditions summarized in *Section 9.3.1*. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Table 42. SPI1 characteristics

Symbol	Parameter	Conditions ⁽¹⁾	Min	Max	Unit
f _{SCK}	SPI1 clock frequency	Master mode	0	8	
1/t _{c(SCK)}	SPTI Clock frequency	Slave mode	0	8	MHz
t _{r(SCK)}	SPI1 clock rise and fall time	Capacitive load: C = 30 pF	-	30	
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 x 1/f _{SYSCLK}	-	
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	80	-	
t _{w(SCKL)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f _{SCK} = 4 MHz	105	145	
t _{su(MI)} (2) t _{su(SI)} (2)	Data input setup time	Master mode	30	-	
t _{su(SI)} (2)		Slave mode	3	-	
t _{h(MI)} (2)	Data input hold time	Master mode	15	-	no
t _{h(MI)} (2) t _{h(SI)} (2)		Slave mode	0	-	ns
t _{a(SO)} (2)(3)	Data output access time	Slave mode	-	3x 1/f _{SYSCLK}	
t _{dis(SO)} (2)(4)	Data output disable time	Slave mode	30	-	
t _{v(SO)} (2)	Data output valid time	Slave mode (after enable edge)	-	60	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	20	
t _{h(SO)} ⁽²⁾		Slave mode (after enable edge)	15	-	
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode (after enable edge)	1	-	

^{1.} Parameters are given by selecting 10 MHz I/O output frequency.

^{2.} Values based on design simulation and/or characterization results.

^{3.} Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

^{4.} Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.

Figure 33. SPI1 timing diagram - slave mode and CPHA=0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Figure 35. SPI1 timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

I²C - Inter IC control interface

Subject to general operating conditions for V_{DD} , f_{SYSCLK} , and T_A unless otherwise specified.

The STM8L I^2C interface (I2C1) meets the requirements of the Standard I^2C communication protocol described in the following table with the restriction mentioned below:

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Table 43, I2C characteristics

Symbol	Parameter	Standard mode I ² C		Fast mo	de I ² C ⁽¹⁾	Unit
		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0	-	0	900	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	START condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	μs
C _b	Capacitive load for each bus line	-	400	-	400	pF

^{1.} f_{SYSCLK} must be at least equal to 8 MHz to achieve max fast I^2C speed (400 kHz).

Note:

For speeds around 200 kHz, the achieved speed can have a \pm 5% tolerance For other speed ranges, the achieved speed can have a \pm 2% tolerance The above variations depend on the accuracy of the external components used.

^{2.} Data based on standard I²C protocol requirement, not tested in production.

Figure 36. Typical application with I²C bus and timing diagram ¹⁾

1. Measurement points are done at CMOS levels: 0.3 x $\rm V_{DD}$ and 0.7 x $\rm V_{DD}$

9.3.9 Embedded reference voltage

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

Table 44. Reference voltage characteristics

Symbol	Parameter	Conditions	Min	Тур	Max.	Unit
I _{REFINT}	Internal reference voltage consumption	-	-	1.4	-	μΑ
T _{S_VREFINT} ⁽¹⁾⁽²⁾	ADC1 sampling time when reading the internal reference voltage	-	-	5	10	μs
I _{BUF} ⁽²⁾	Internal reference voltage buffer consumption (used for ADC1)	-	-	13.5	25	μΑ
V _{REFINT out}	Reference voltage output	-	1.202 ⁽³⁾	1.224	1.242 ⁽³⁾	V
I _{LPBUF} ⁽²⁾	Internal reference voltage low power buffer consumption (used for comparators or output)	-	1	730	1200	nA
I _{REFOUT} ⁽²⁾	Buffer output current ⁽⁴⁾	-	-	-	1	μΑ
C _{REFOUT}	Reference voltage output load	-	-	-	50	pF
t _{VREFINT}	Internal reference voltage startup time	-	-	2	3	ms
t _{BUFEN} (2)	Internal reference voltage buffer startup time once enabled (1)	-	-	-	10	μs
ACC _{VREFINT}	Accuracy of V _{REFINT} stored in the VREFINT_Factory_CONV byte ⁽⁵⁾	-	-	-	± 5	mV
STAR	Stability of V _{REFINT} over temperature	-40 °C ≤T _A ≤ 125 °C	-	20	50	ppm/°C
STAB _{VREFINT}	Stability of V _{REFINT} over temperature	0 °C ≤T _A ≤ 50 °C	-	-	20	ppm/°C
STAB _{VREFINT}	Stability of V _{REFINT} after 1000 hours	-	-	-	TBD	ppm

^{1.} Defined when ADC1 output reaches its final value ±1/2LSB

^{2.} Guaranteed by design.

^{3.} Tested in production at V_{DD} = 3 V ±10 mV.

^{4.} To guaranty less than 1% $\ensuremath{V_{REFOUT}}$ deviation.

^{5.} Measured at V_{DD} = 3 V ±10 mV. This value takes into account V_{DD} accuracy and ADC1 conversion accuracy.

9.3.10 Temperature sensor

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter	Min	Тур	Max.	Unit
V ₉₀ ⁽¹⁾	Sensor reference voltage at 90°C ±5 °C,	0.580	0.597	0.614	V
T _L	V _{SENSOR} linearity with temperature	-	±1	±2	°C
Avg_slope (2)	Average slope	1.59	1.62	1.65	mV/°C
I _{DD(TEMP)} ⁽²⁾	Consumption	-	3.4	6	μA
T _{START} (2)(3)			-	10	μs
T _{S_TEMP} ⁽²⁾	ADC1 sampling time when reading the temperature sensor	10	-	-	μs

Table 45. TS characteristics

9.3.11 Comparator characteristics

In the following table, data is guaranteed by design, not tested in production, unless otherwise specified.

Symbol	Parameter		Тур	Max ⁽¹⁾	Unit	
V_{DDA}	Analog supply voltage	1.65	-	3.6	V	
T _A	Temperature range	-40	-	125	°C	
R _{400K}	R _{400K} value	300	400	500		
R _{10K}	R _{10K} value	7.5	10	12.5	12.5 kΩ	
V _{IN}	Comparator 1 input voltage range	0.6	-	V _{DDA} V		
V _{REFINT}	Internal reference voltage ⁽²⁾	1.202	1.224	1.242	V	
t _{START}	Comparator startup time	-	7	10	110	
t _d Propagation delay ⁽³⁾		-	3	10	μs	
V _{offset}	Comparator offset error	-	±3	±10	mV	
I _{COMP1}	Current consumption ⁽⁴⁾	-	160	260	nA	

Table 46. Comparator 1 characteristics

93/123

^{1.} Tested in production at V_{DD} = 3 V ±10 mV. The 8 LSB of the V_{90} ADC1 conversion result are stored in the TS_Factory_CONV_V90 byte.

^{2.} Guaranteed by design.

^{3.} Defined for ADC1 output reaching its final value $\pm 1/2$ LSB.

^{1.} Guaranteed by characterization results.

^{2.} Tested in production at V_{DD} = 3 V ±10 mV.

^{3.} The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

^{4.} Comparator consumption only. Internal reference voltage not included.

In the following table, data is guaranteed by design, not tested in production.

Table 47. Comparator 2 characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V_{DDA}	Analog supply voltage	-	1.65	-	3.6	٧
T _A	Temperature range	-	-40	-	125	°C
V_{IN}	Comparator 2 input voltage range	-	0	-	V_{DDA}	V
to===	Comparator startup time	Fast mode	-	15	20	
^t START	Comparator Startup time	Slow mode	-	20	25	
t	Propagation delay in slow	1.65 V ≤V _{DDA} ≤2.7 V	ı	1.8	3.5	116
t _{d slow}	mode ⁽²⁾	2.7 V ≤V _{DDA} ≤3.6 V	ı	2.5	6	μs
t	Propagation delay in fast mode ⁽²⁾	1.65 V ≤V _{DDA} ≤2.7 V	ı	8.0	2	
t _{d fast}	Propagation delay in last mode.	2.7 V ≤V _{DDA} ≤3.6 V	ı	1.2	4	
V _{offset}	Comparator offset error	-	ı	±4	±20	mV
lactors	Current consumption ⁽³⁾	Fast mode	ı	3.5	5	μA
ICOMP2	Current consumption:	Slow mode	-	0.5	2	μΛ

^{1.} Guaranteed by characterization results.

The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

^{3.} Comparator consumption only. Internal reference voltage not included.

9.3.12 12-bit ADC1 characteristics

In the following table, data is guaranteed by design, not tested in production.

Table 48. ADC1 characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage	-	1.8	-	3.6	V
V	Reference supply	2.4 V ≤V _{DDA} ≤ 3.6 V	2.4	-	V_{DDA}	V
V _{REF+}	voltage	1.8 V ≤V _{DDA} ≤ 2.4 V		V_{DDA}	•	V
V _{REF-}	Lower reference voltage	-		V _{SSA}		V
I _{VDDA}	Current on the VDDA input pin	-	-	1000	1450	μΑ
l	Current on the VREF+	-	-	400	700 (peak) ⁽¹⁾	μA
I _{VREF+}	input pin	-	-	400	450 (average) ⁽¹⁾	μА
V _{AIN}	Conversion voltage range	-	0 ⁽²⁾	-	V _{REF+}	V
T _A	Temperature range	-	-40	-	125	°C
R _{AIN}	External resistance on	on PF0 fast channel	-	-	50 ⁽³⁾	kΩ
· AIN	V _{AIN}	on all other channels	ı	-	30	KS2
C _{ADC1}	Internal sample and hold	on PF0 fast channel	-	16	-	pF
○ADC1	capacitor	on all other channels	i	10	-	ρı
f _{ADC1}	ADC1 sampling clock	2.4 V≤V _{DDA} ≤3.6 V without zooming	0.320	-	16	MHz
'ADC1	frequency	1.8 V≤V _{DDA} ≤2.4 V with zooming	0.320	-	8	MHz
facen	12-bit conversion rate	V _{AIN} on PF0 fast channel	-	-	1 ⁽⁴⁾⁽⁵⁾	MHz
f _{CONV}	12-bit Conversion rate	V _{AIN} on all other channels	-	-	760 ⁽⁴⁾⁽⁵⁾	kHz
f _{TRIG}	External trigger frequency	-	-	-	t _{conv}	1/f _{ADC1}
t _{LAT}	External trigger latency	-	-	-	3.5	1/f _{SYSCLK}

Table 48. ADC1 characteristics (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V _{AIN} on PF0 fast channel V _{DDA} < 2.4 V	0.43 ⁽⁴⁾⁽⁵⁾	-	-	μs
t _S	Sampling time	V_{AIN} on PF0 fast channel 2.4 V \leq V $_{DDA}$ \leq 3.6 V	0.22 ⁽⁴⁾⁽⁵⁾	1	ı	μs
		V _{AIN} on slow channels V _{DDA} < 2.4 V	0.86 ⁽⁴⁾⁽⁵⁾	-	-	μs
		V_{AIN} on slow channels 2.4 V \leq V _{DDA} \leq 3.6 V	0.41 ⁽⁴⁾⁽⁵⁾	-	-	μs
+	12-bit conversion time	-	12 + t _S		1/f _{ADC1}	
t _{conv}	12-bit conversion time	16 MHz	1 ⁽⁴⁾			μs
t _{WKUP}	Wakeup time from OFF state	-	-	-	3	μs
		T _A = +25 °C	-	-	1 ⁽⁷⁾	S
t _{IDLE} ⁽⁶⁾	Time before a new conversion	T _A = +70 °C	-	-	20 ⁽⁷⁾	ms
		T _A = +125 °C	-	-	2 ⁽⁷⁾	ms
t _{VREFINT}	Internal reference voltage startup time	-	-	-	refer to Table 44	ms

- 2. V_{REF-} or V_{DDA} must be tied to ground.
- 3. Guaranteed by design.
- 4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 k Ω
- Value obtained for continuous conversion on fast channel.
- 6. The time between 2 conversions, or between ADC1 ON and the first conversion must be lower than t_{IDLE}.
- 7. The t_{IDLE} maximum value is ∞on the "Z" revision code of the device.

The current consumption through V_{REF} is composed of two parameters:

 one constant (max 300 μA)
 one variable (max 400 μA), only during sampling time + 2 first conversion pulses.

 So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

In the following three tables, data is guaranteed by characterization result, not tested in production.

Table 49. ADC1 accuracy with V_{DDA} = 3.3 V to 2.5 V

Symbol	Parameter	Conditions	Тур	Max	Unit
		f _{ADC1} = 16 MHz	1	1.6	
DNL	Differential non linearity	f _{ADC1} = 8 MHz	1	1.6	
		f _{ADC1} = 4 MHz	1	1.5	
		f _{ADC1} = 16 MHz	1.2	2	
INL	Integral non linearity	f _{ADC1} = 8 MHz	1.2	1.8	LSB
		f _{ADC1} = 4 MHz	1.2	1.7	
	Total unadjusted error	f _{ADC1} = 16 MHz	2.2	3.0	
TUE		f _{ADC1} = 8 MHz	1.8	2.5	
		f _{ADC1} = 4 MHz	1.8	2.3	
		f _{ADC1} = 16 MHz	1.5	2	
Offset	Offset error	f _{ADC1} = 8 MHz	1	1.5	
		f _{ADC1} = 4 MHz	0.7	1.2	LCD
		f _{ADC1} = 16 MHz			LSB
Gain	Gain error	f _{ADC1} = 8 MHz	1	1.5	
		f _{ADC1} = 4 MHz			

Table 50. ADC1 accuracy with V_{DDA} = 2.4 V to 3.6 V

Symbol	Parameter	Тур	Max	Unit
DNL	Differential non linearity	1	2	LSB
INL	Integral non linearity	1.7	3	LSB
TUE	Total unadjusted error	2	4	LSB
Offset	Offset error	1	2	LSB
Gain	Gain error	1.5	3	LSB

Table 51. ADC1 accuracy with $V_{DDA} = V_{REF}^{+} = 1.8 \text{ V}$ to 2.4 V

Symbol	Parameter	Тур	Max	Unit
DNL	Differential non linearity	1	2	LSB
INL	Integral non linearity	2	3	LSB
TUE	Total unadjusted error	3	5	LSB
Offset	Offset error	2	3	LSB
Gain	Gain error	2	3	LSB

Figure 37. ADC1 accuracy characteristics

Figure 38. Typical connection diagram using the ADC1

- Refer to Table 48 for the values of R_{AIN} and C_{ADC1}.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC1} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 39* or *Figure 40*, depending on whether V_{REF+} is connected to V_{DDA} or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip.

External reference

1 µF // 10 nF

Supply

1 µF // 10 nF

Figure 39. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

Figure 41. Max. dynamic current consumption on V_{REF+} supply pin during ADC conversion

Table 52. R_{AIN} max for f_{ADC} = 16 MHz

	R _{AIN} max (kohm)				
t _S (cycles)	t _S (µs)	Slow cl	nannels	Fast ch	nannels
	,	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.3 V	1.8 V < V _{DDA} < 2.4 V
4	0.25	Not allowed	Not allowed	0.7	Not allowed
9	0.5625	0.8	Not allowed	2.0	1.0
16	1	2.0	0.8	4.0	3.0
24	1.5	3.0	1.8	6.0	4.5
48	3	6.8	4.0	15.0	10.0
96	6	15.0	10.0	30.0	20.0
192	12	32.0	25.0	50.0	40.0
384	24	50.0	50.0	50.0	50.0

9.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and pregualification tests in relation with the EMC level requested for his application.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

		Table 55. LING data		
Symbol	Parameter	Conditions		Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_{A} = +25 °C, f_{CPU} = 16 MHz, conforms to IEC 61000		2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on	V _{DD} = 3.3 V, T _A = +25 °C, f _{CPU} = 16 MHz,	Using HSI	4A
	V _{DD} and V _{SS} pins to induce a functional disturbance	conforms to IEC 61000	Using HSE	2B

Table 53. EMS data

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.

Max vs. Monitored **Symbol Parameter Conditions** Unit frequency band 16 MHz 0.1 MHz to 30 MHz -3 $V_{DD} = 3.6 \text{ V},$ $T_A = +25 \,^{\circ}C$ 30 MHz to 130 MHz 9 $dB\mu V$ Peak level LQFP48 S_{EMI} 130 MHz to 1 GHz 4 conforming to IEC61967-2 SAE EMI Level 2

Table 54. EMI data (1)

Not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the JESD22-A114A/A115A standard.

Maximum **Symbol Ratings Conditions** Unit value (1) Electrostatic discharge voltage 2000 V_{ESD(HBM)} (human body model) $T_A = +25 \, ^{\circ}C$ ٧ Electrostatic discharge voltage V_{ESD(CDM)} 500 (charge device model)

Table 55. ESD absolute maximum ratings

Static latch-up

LU: 3 complementary static tests are required on 6 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Table 56. Electrical sensitivities

Symbol	Parameter	Class
LU	Static latch-up class	II

^{1.} Guaranteed by characterization results.

10 Package information

10.1 ECOPACK

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

10.2 LQFP48 package information

Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 57. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

47/

Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 44. LQFP48 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet

qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.3 UFQFPN32 package information

Figure 45. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.

Table 58. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.152	-	-	0.0060	-
b	0.180	0.230	0.280	0.0071	0.0091	0.0110
D	4.900	5.000	5.100	0.1929	0.1969	0.2008
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417
E	4.900	5.000	5.100	0.1929	0.1969	0.2008
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 46. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 47. UFQFPN32 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.4 UFQFPN28 package information

Figure 48. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.

Table 59. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data⁽¹⁾

Symbol	millimeters			inches		
	Min	Тур	Max	Min	Тур	Max
Α	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	-	0.000	0.050	-	0.0000	0.0020
D	3.900	4.000	4.100	0.1535	0.1575	0.1614
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220
E	3.900	4.000	4.100	0.1535	0.1575	0.1614
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 49. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

47/

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 50. UFQFPN28 marking example (package top view)

^{1.} Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.5 UFQFPN20 package information

Figure 51. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.

7/

Table 60. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
A	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.152	-	-	0.060	-
D	2.900	3.000	3.100	0.1142	0.1181	0.1220
D1	-	2.000	-	-	0.0790	-
E	2.900	3.000	3.100	0.1142	0.1181	0.1220
E1	-	2.000	-	-	0.0790	-
L1	0.500	0.550	0.600	0.0197	0.0217	0.0236
L2	0.300	0.350	0.400	0.0118	0.0138	0.0157
L3	-	0.200	-	-	0.0079	-
L5	-	0.150	-	-	0.0059	-
b	0.180	0.250	0.300	0.0071	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd		-	0.050	-	-	0.0020

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 52. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 53. UFQFPN20 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.6 TSSOP20 package information

Figure 54. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package outline

1. Drawing is not to scale.

Table 61. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data

(J		1		
Symbol	millimeters			inches ⁽¹⁾		
Зушьог	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	1.200	-	-	0.0472
A1	0.050	-	0.150	0.0020	-	0.0059
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413
b	0.190	-	0.300	0.0075	-	0.0118
С	0.090	-	0.200	0.0035	-	0.0079
D	6.400	6.500	6.600	0.2520	0.2559	0.2598
E	6.200	6.400	6.600	0.2441	0.2520	0.2598
E1	4.300	4.400	4.500	0.1693	0.1732	0.1772
е	-	0.650	-	-	0.0256	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-

Table 61. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data (continued)

Cumbal	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
k	0°	-	8°	0°	-	8°
aaa	-	-	0.100	-	-	0.0039

^{1.} Values in inches are converted from mm and rounded to four decimal digits.

Figure 55. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint

1. Dimensions are expressed in millimeters.

116/123 DS7204 Rev 10

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 56. TSSOP20 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.7 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in Table 17: General operating conditions on page 57.

The maximum chip-junction temperature, T_{Jmax}, in degree Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{IA} is the package junction-to-ambient thermal resistance in $^{\circ}$ C/W
- P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax}$ ($P_{Dmax} = P_{INTmax} + P_{I/Omax}$)
- P_{INTmax} is the product of I_{DD} and $V_{\text{DD}},$ expressed in Watts. This is the maximum chip internal power.
- $P_{\text{I/Omax}}$ represents the maximum power dissipation on output pins Where:

$$P_{I/Omax} = \Sigma \ (V_{OL} * I_{OL}) + \Sigma ((V_{DD} - V_{OH}) * I_{OH}),$$
 taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Table 62. Thermal characteristics⁽¹⁾

Symbol	Parameter	Value	Unit
$\Theta_{\sf JA}$	Thermal resistance junction-ambient LQFP 48- 7 x 7 mm	65	°C/W
$\Theta_{\sf JA}$	Thermal resistance junction-ambient UFQFPN 32 - 5 x 5 mm	38	°C/W
$\Theta_{\sf JA}$	Thermal resistance junction-ambient UFQFPN28 - 4 x 4 mm	80	°C/W
$\Theta_{\sf JA}$	Thermal resistance junction-ambient UFQFPN20 - 3 x 3 mm	102	°C/W
$\Theta_{\sf JA}$	Thermal resistance junction-ambient TSSOP20	110	°C/W

^{1.} Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

118/123 DS7204 Rev 10

11 Part numbering

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 63. Low-density STM8L151x2/3 ordering information scheme Example: STM8 151 3 TR **Device family** STM8 = 8-bit microcontroller **Product type** L = Low power **Sub-family** 151 = ultra-low power Pin count C = 48 pins K = 32 pins G = 28 pinsF = 20 pins**Program memory size** 3 = 8 Kbyte of Flash memory 2 = 4 Kbyte of Flash memory **Package** U = UFQFPN T = LQFP P = TSSOP Temperature range $3 = -40 \text{ to } 125 \,^{\circ}\text{C}$ $6 = -40 \text{ to } 85 \,^{\circ}\text{C}$ **Packing**

No character = tray or tube TR = tape and reel

12 Revision history

Table 64. Document revision history

Date	Revision	Changes
08-Jun-2011	1	Initial release
02-Sep-2011	2	Modified Figure: Memory map. Modified OPT1 description in Table: Option byte addresses. Modified t _{prog} in Table: Flash program and data EEPROM memory. Modified Figure: Recommended NRST pin configuration. Modified L2 in Figure: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package
		outline. Replaced PM0051 with PM0054 and UM0320 with UM0470.
09-Feb-2012	3	Added part number STM8L151C2. Updated the captions of Figure 3 and Figure 4. Table: Low-density STM8L151x2/3 pin description: updated OD column of NRST/PA1 pin. Figure: UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline: removed the line over A1. Figure Recommended UFQFPN28 footprint (dimensions in mm): updated title. Table: TSSOP20 - 20-pin thin shrink small outline package mechanical data: updated title.
06-Jul-2012	4	Added "I/O level" in Table: Legend/abbreviation for table 4 and Table: Low-density STM8L151x2/3 pin description. Updated Figure: UFQFPN20 - 20-lead ultra thin fine pitch quad flat package outline (3x3). Updated Figure: SPI1 timing diagram - master mode. Updated Table: Voltage characteristics and Table: I/O static characteristics.
11-Apr-2014	5	Updated Table: UFQFPN20 - 20-lead ultra thin fine pitch quad flat package (3x3) package mechanical data, added notes on Table: TSSOP20 - 20-pin thin shrink small outline package mechanical data. Changed reset value of SYSCFG_RMPCR1 register on Table: General hardware register map. Updated Table: Low-density STM8L151x2/3 pin description and Table: Embedded reset and power control block characteristics.

Table 64. Document revision history (continued)

Date	Revision	Changes
18-Dec-2014	6	Updated Section: UFQFPN20 package information. Replaced "ultralow power" occurrences with "ultra-low-power", and "Low density" with "low-density" where applicable.
08-Apr-2015	7	Added: - Figure 44: LQFP48 marking example (package top view), - Figure 47: UFQFPN32 marking example (package top view), - Figure 50: UFQFPN28 marking example (package top view), - Figure 53: UFQFPN20 marking example (package top view), - Figure 56: TSSOP20 marking example (package top view). Updated: - Table 63: Low-density STM8L151x2/3 ordering information scheme. Moved Section 10.7: Thermal characteristics to Section 10: Package information.
01-Oct-2016	8	In Table 4: Low-density STM8L151x2/3 pin description row corresponding to pin names PD6/ADC1_IN8 / RTC_CALIB/COMP1_INP, inserted pin number 35 in LQFP48 column.

Table 64. Document revision history (continued)

Date	Revision	Changes
12-May-2017	9	Updated: - Figure 51: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline - Table 60: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data - Table 45: TS characteristics - Section 9.2: Absolute maximum ratings - Updated all document's footnotes from "Data guaranteed by design, not tested in production" (or similar) to "Guaranteed by design" and "Data based on characterization results, not tested in production." (or similar) to "Guaranteed by design." - Section: Device marking on page 105 - Section: Device marking on page 111 - Section: Device marking on page 111 - Section: Device marking on page 111
19-Mar-2018	10	Updated - Table 18: Embedded reset and power control block characteristics - Figure 16: HSE oscillator circuit diagram - Figure 40: Power supply and reference decoupling (VREF+ connected to VDDA)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS7204 Rev 10 123/123