Санкт-Петербургский государственный политехнический университет Институт компьютерных наук и технологий **Кафедра «Компьютерные системы и программные технологии»**

КУРСОВАЯ РАБОТА

По теме: разработка программы для вычисления параметра жесткости маятника переменной длины

По дисциплине: Вычислительная математика

Выполнил студент гр.3530901\90003		А.К. Руднев
Руководитель доцент, к.т.н.		_В.Н. Цыган
	<u> </u>	 2021 г.

ЗАДАНИЕ НА ВЫПОЛНЕНИЕ КУРСОВОЙ РАБОТЫ

студенту группы <u>3530901/90003</u> <u>Рудневу Александру Константиновичу</u> (фамилия, имя, отчество)

- **1. Тема работы:** Разработка программы для вычисления параметра жесткости маятника переменной длины.
- 2. Срок сдачи законченного проекта (работы) 30 апреля 2021 г.
- 3. Исходные данные к проекту (работе): Общий вид дифференциальных уравнений, описывающих движение маятника переменной длины; положение маятника начала системы координат; масса маятника; начальные условия для решения дифференциальных уравнений; рекомендованный временной интервал исследования численного решения системы дифференциальных уравнений; перечень заданных преподавателем параметров уравнения с указанием уравнений или соотношений для их нахождения (вариант К-3-15)
- 4. Содержание пояснительной записки (перечень подлежащих разработке вопросов): введение, основная часть (анализ задания; вычисление значений заданных преподавателем параметров дифференциальных уравнений; разработка программы для вычисления параметра жесткости маятника переменной длины; анализрезультатов численного решения уравнений; оценка погрешности результата; исследование влияния на точность решения уравнений погрешности задания исходных данных), заключение, список использованных источников, приложение.

Дата получения задания: «01» марта 2021 г.			
Руководитель	В.Н. Цыган		
(подпись)	(инициалы, фамилия)		
Задание принял к исполнению		,	
(дата)	(подпись студента) (инициалы, фамили	'Я)	

Содержание

Кафедра «Компьютерные системы и программные технологии»	1
Введение	4
1. Выполнение задания	6 6
1.2 Решение системы дифференциальных уравнений:	6
1.3 Нахождение минимального значения функции:	7
2. Результаты работы	
2.2 Оценка погрешности результата:	8
2.3 Влияние погрешности на результат измерений:	9
2.4 Графики	11
3. Заключение	14
Список использованных источников	15
Приложение 1	16

Введение

На практике решения дифференциального уравнения или системы уравнений описывают динамику разнообразных явлений и процессов (например, движение совокупности взаимодействующих материальных точек, химическую кинетику, процессы в электрических цепях и т.п.). Следовательно умение решать уравнения или системы уравнений может пригодиться каждому инженеру. Задачей данной работы является закрепление знаний об изученных подпрограммах, позволяющих вычислять значение интеграла, находить корни уравнения, а также решение заданных дифференциальных уравнений. Цель работы: разработка программы, которая вычисляет параметр жесткости маятника переменной длины по экспериментальным значениям.

Рассматривается движение маятника переменной длины (рис. 1).

Рисунок 1 – Маятник переменной длины

На рисунке: M — масса маятника, θ — угол, L - расстояние маятника от оси, x — удлинение маятника, K — искомый параметр жесткости.

Значение L – 0.5836896 * $\int_0^1 e^x dx$ (задано преподавателем)

Дифференциальные уравнения, описывающие движения маятника

переменной длины имеют общий вид:

$$\begin{cases} \ddot{x} + \frac{K}{M}x + g(1 - \cos\theta) - (L + x)(\dot{\theta})^2 = 0\\ \ddot{\theta} + \frac{g}{L + x}\sin\theta + \frac{2}{L + x}\dot{x}\dot{\theta} = 0 \end{cases}$$

 Γ де g = 9.81, M = 1.

Также даны начальные условия для дифференциальных уравнений:

$$x(0) = \dot{x}(0) = \theta(0) = 0, \quad \dot{\theta}(0) = 4$$

Исходя из экспериментальных наблюдений за изменением координаты x, следует оценить параметр жесткости K. (Экспериментальные наблюдения за изменением x приведены в таблице 1.)

Таблица 1 – Экспериментальные значения х

t	X
0	0
0.4	0.303
0.8	-0.465
1.2	0.592
1.6	-0.409
2.0	0.164
2.4	0.180

1. Выполнение задания

1.1 Вычисление параметров дифференциальных уравнений:

Для нахождения значения L необходимо вычислить интеграл:

$$L = 0.5836896 * \int_{0}^{1} e^{x} dx$$

Для этого воспользуюсь подпрограммой QUANC8():

Рисунок 1.1 – Код для нахождения параметра L

1.2 Решение системы дифференциальных уравнений:

$$\begin{cases} \ddot{x} + \frac{K}{M}x + g(1 - \cos\theta) - (L + x)(\dot{\theta})^2 = 0\\ \ddot{\theta} + \frac{g}{L + x}\sin\theta + \frac{2}{L + x}\dot{x}\dot{\theta} = 0 \end{cases}$$

Проведу следующую замену переменных:

$$x = z_1, x' = z_2, x'' = z_3, \theta = z_4, \theta' = z_5, \theta'' = z_6$$

После получу систему дифференциальных уравнений:

$$\begin{cases} z'_5 = \frac{-g}{L + z_1} \sin(z_4) - \frac{2}{L + z_1} z_2 z_5 \\ z'_4 = z_5 \\ z'_2 = -\left(\frac{K}{M}\right) z_1 - g(1 - \cos(z_4)) + (L + z_1) z_5^2 \\ z'_1 = z_2 \end{cases}$$

1.3 Нахождение минимального значения функции:

С помощью подпрограммы Fmin буду подставлять в функцию, решающую систему дифференциальных уравнений значения в интервале [36, 46], чтобы найти минимальное отклонение от экспериментальных данных (экспериментальные данные приведены в таблице 1). Минимальное значение функции буду вычислять при помощи среднеквадратичного критерия близости F(p):

$$F(p) = \left| \sum_{i=0}^{S} [x_{\text{эксп}}^{(i)}(t_k) - x^{(i)}(t_k)]^2 \right| \to min$$

 Γ де $x^{(i)}(t_k)$ – решение системы, полученное с помощью подпрограммы RKF45.

```
//Поиск минимума функции

typedef double(*Func)(double x);

double Minimum(double Start, double End, Func f, double Step) {
    double xMin = Start;
    double fMin = f(Start);

while(Start < End) {
    if(f(Start) < fMin) {
        xMin = Start;
        fMin = f(Start);
    }
    Start +=Step;

}

return xMin;
```

Рисунок 1.3 – Код метода нахождения минимального F(p)

С помощью подпрограммы RKF45 на промежутке [0.0, 2.4] с шагом 0.4 и подаваемым параметром К на промежутке [36, 46] с шагом 0.01 будет решена система дифференциальных уравнений, а также будет найдено минимальное значение F(p):

```
//RKF45 для нахождения минимального значения К
idouble RKF(double Parameter) {
    T = 0.0;
    Tout = 2.4;
    double sum = 0.0;
    K = Parameter;
    double X[] = {0, 0, 0, 4};
    double rightBorder = Tout;
    Tout = T;
    for (int i = 0; Tout <= rightBorder; i++) {
        RKF45(equations, n, X, &T, &Tout, &RELERR, &ABSERR, &IFLAG, WORK, IWORK);
        Tout += h;
        sum += (X[0] - actualX[i]) * (X[0] - actualX[i]);
    }
    IWORK[60];
    IFLAG = 1;
    WORK[20];
    return sum;
}
```

Рисунок 1.4 – Код решение системы дифференциальных уравнений

2. Результаты работы

2.1 Результаты работы программы:

В ходе выполнения данного курсового проекта была реализована программа на языке Си, решающая задачу, описанную во Введении. Код данной программы представлен в Приложении 1.

При решении данной задачи использовались:

Для quanc8: глобальная и локальная погрешности = 1e-14

Для rkf45: глобальная и локальная погрешности = 1e-9

Для Fmin: погрешность = 1e-3

Результаты работы программы представлены на рисунке 2.1

Tout – координата параметра х.

Calculated – вычисленные значения х при данной координате

Real – значения х, заданные условием

EPS – разность между вычисленным значением и экспериментальным.

			-		
Calcula	Calculated parameter: L = 1.0029				
Calcula	ated parameter	K = 39.482			
Tout	Calculated	Real	EPS		
0.0	0.000000	0.000	0.000000		
0.4	0.302849	0.303	-0.000151		
0.8	-0.466920	-0.465	-0.001920		
1.2	0.593651	0.592	0.001651		
1.6	-0.414142	-0.409	-0.005142		
2.0	0.161142	0.164	-0.002858		
2.4	0.187485	0.180	0.007485		

Рисунок 2.1 – Результаты работы программы

2.2 Оценка погрешности результата:

Погрешность L хранится в переменной errest после окончания работы подпрограммы quanc8():

$$\varepsilon_C = 0.00000000000000011113$$

Верхняя граница погрешности F задается пользователем:

$$\varepsilon_f = 0.00000000000001$$

2.3 Влияние погрешности на результат измерений:

Сначала исследую устойчивость системы, путем изменения начального условия L на 1%:

Calculated parameter: L * 1.01 = 1.0130				
Calcula	Calculated parameter K = 40.562			
Tout	Calculated	Real	EPS	
0.0	0.000000	0.000	0.000000	
0.4	0.299211	0.303	-0.003789	
0.8	-0.473260	-0.465	-0.008260	
1.2	0.598900	0.592	0.006900	
1.6	-0.436973	-0.409	-0.027973	
2.0	0.158847	0.164	-0.005153	
2.4	0.200218	0.180	0.020218	

Рисунок 2.2 – Результаты работы при L * 1.01

Calculated parameter: L * 0.99 = 0.9929					
Calcula	Calculated parameter K = 38.840				
Tout	Calculated	Real	EPS		
0.0	0.000000	0.000	0.000000		
0.4	0.303163	0.303	0.000163		
0.8	-0.459035	-0.465	0.005965		
1.2	0.587846	0.592	-0.004154		
1.6	-0.400492	-0.409	0.008508		
2.0	0.172105	0.164	0.008105		
2.4	0.161236	0.180	-0.018764		

Рисунок 2.3 – Результаты работы при L * 0.99

Из полученных результатов можно сделать вывод, что система является устойчивой для изменения параметра L, ведь EPS = вычисленное значение — экспериментальное — мало для серьезного изменения данных. График, описывающий отсутствие значительных изменения приведен на рисунке 2.10 в разделе 2.4 — Графики.

Также была исследована зависимость от задания погрешности в подпрограмму rkf45:

Calculated parameter: L = 1.0029				
Calculated parameter K = 39.688				
Tout	Calculated	Real	EPS	
0.0	0.000000	0.000	0.000000	
0.4	0.301237	0.303	-0.001763	
0.8	-0.465984	-0.465	-0.000984	
1.2	0.592270	0.592	0.000270	
1.6	-0.417729	-0.409	-0.008729	
2.0	0.160395	0.164	-0.003605	
2.4	0.186388	0.180	0.006388	

Рис. 2.4 – Уменьшение локальной погрешности до 0.01

Calculated parameter: L = 1.0029				
Calculated parameter K = 39.635				
Tout	Calculated	Real	EPS	
0.0	0.000000	0.000	0.000000	
0.4	0.303391	0.303	0.000391	
0.8	-0.468470	-0.465	-0.003470	
1.2	0.595412	0.592	0.003412	
1.6	-0.417788	-0.409	-0.008788	
2.0	0.160383	0.164	-0.003617	
2.4	0.192184	0.180	0.012184	

Рис. 2.4 — Уменьшение локальной погрешности до 0.01

Графики, отражающие незначительное изменение параметров из-за изменения локальной и глобальной погрешности представлены на рисунке 2.11.

Также было исследовано вычисление параметра К в интервале [36, 46] с шагом 1, 0.1, 0.01, 0.001, чтобы убедиться, что параметр К можно найти с более высокой точностью, а также исходя из полученных данных можно сделать вывод, что при уменьшении шага будет и уменьшаться EPS:

Calculated parameter: L = 1.0029					
Calcula	Calculated parameter K = 39.000				
Tout	Calculated	Real	EPS		
0.0	0.000000	0.000	0.000000		
0.4	0.306456	0.303	0.003456		
0.8	-0.467749	-0.465	-0.002749		
1.2	0.592923	0.592	0.000923		
1.6	-0.400349	-0.409	0.008651		
2.0	0.152679	0.164	-0.011321		
2.4	0.191859	0.180	0.011859		

Рис. 2.5 - K = 1

Calculated parameter: L = 1.0029					
Calcula	Calculated parameter K = 39.500				
Tout	Calculated	Real	EPS		
0.0	0.000000	0.000	0.000000		
0.4	0.302714	0.303	-0.000286		
0.8	-0.466885	-0.465	-0.001885		
1.2	0.593672	0.592	0.001672		
1.6	-0.414642	-0.409	-0.005642		
2.0	0.161475	0.164	-0.002525		
2.4	0.187268	0.180	0.007268		

Рис. 2.6 - K = 0.1

	Calculated parameter: L = 1.0029 Calculated parameter K = 39.480				
Tout	Calculated	Real	EPS		
0.0	0.000000	0.000	0.000000		
0.4	0.302864	0.303	-0.000136		
0.8	-0.466924	-0.465	-0.001924		
1.2	0.593649	0.592	0.001649		
1.6	-0.414086	-0.409	-0.005086		
2.0	0.161106	0.164	-0.002894		
2.4	0.187509	0.180	0.007509		

|--|

Calculated parameter: L = 1.0029				
Calculated parameter K = 39.482				
Tout	Calculated	Real	EPS	
0.0	0.000000	0.000	0.000000	
0.4	0.302849	0.303	-0.000151	
0.8	-0.466920	-0.465	-0.001920	
1.2	0.593651	0.592	0.001651	
1.6	-0.414142	-0.409	-0.005142	
2.0	0.161142	0.164	-0.002858	
2.4	0.187485	0.180	0.007485	

Рис. 2.8 - K = 0.001

2.4 Графики

На рисунке 2.9 приведен график полученных значений, при погрешности описанной в пункте 2.1, а также экспериментальных значений. Исходя из графика можно сказать, что полученные данные практически равны начальным экспериментальным данным.

Рисунок 2.9 – График колебаний, полученный вычислением программы

На рисунке 2.10 отражена устойчивость системы от изменения начального условия на 1%. По графику можно сделать вывод, что изменение параметра L незначительно, но влияет на изменение параметра, что можно наблюдать при L * 1.01 в точке 1.6.

Рисунок 2.10 – График колебаний при изменении L на 1%

На рисунке 2.11 представлен график зависимости колебаний от изменения локальной и глобальной погрешности при решении подпрограммой rkf45.

Рисунок 2.11 — Зависимость от погрешности при решении дифференциальных уравнений

Заключительным шагом является моделирование движения маятника переменной длины с разным шагом поиска F(p). Результаты приведены на рисунке 2.12:

Рисунок 2.12 – Графики колебаний в зависимости от разных К

По рисунку 2.12 можно сделать вывод, что при уменьшении шага поиска минимального значения, будет и увеличиваться точность вычисления параметра жесткости и параметров х.

3. Заключение

В ходе выполнения данного курсового проекта была решена оценки значения жесткости пружины К у маятника переменной длины. Ответом является значение К = 39.482. Причем погрешность полученных значений Х при сравнении с экспериментальными составляет порядка 0.001. Для проверки истинности данного результата были проведены исследования устойчивости системы дифференциальных уравнений. При изменении значения К на 1% вычисленные значения Х имели погрешность 0.01. А при изменении значения L на 1% полученное значение К отличалось примерно на 2.1% от истинного. Также было произведено исследование на зависимость от глобальной и локальной погрешности подпрограммы rkf45, а также получены результаты для различных шагов поиска ссреднеквадратичного критерия близости.

В процессе выполнения работы были закреплены навыки взаимодействия с подпрограммой quanc8(), rkf45() и Fmin.

Список использованных источников

- 1. Устинов С.М., Зимницкий В.А. Вычислительная математика. СПб.: БХВ-Петербург, 2009. 126 с.: ил. (Учебное пособие).
- 2. Эккель Б., Эллисон Ч. Философия С++. Практическое программирование. СПб.: Питер, 2004.-442 с.
- 3. Лафоре Р. Объектно-ориентированное программирование в С++. СПб.: Питер, 2004. 98 с.

Приложение 1

```
#include <iostream?
int IFLAG = 1;
double RKF(double Parameter) {
   K = Parameter;
```

```
IWORK);
    IFLAG = 1;
    double fMin = f(Start);
```

Рисунок 1 – Код программы