一、已知 $R^{2\times 2}$ 的两组基:

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix};$$

$$F_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad F_{12} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad F_{21} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad F_{22} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

求由基 E_{11} , E_{12} , E_{21} , E_{22} 到 F_{11} , F_{12} , F_{21} , F_{22} 的过渡矩阵,并求矩阵 $A = \begin{bmatrix} -3 & 5 \\ 4 & 2 \end{bmatrix}$ 在基 F_{11} , F_{12} ,

 F_{21} , F_{22} 下的坐标。

二、设 x_1 , x_2 是线性空间 V^2 的基, T_1 与 T_2 是 V^2 的线性变换, $T_1x_1=y_1$, $T_1x_2=y_2$,且

$$T_2(x_1+x_2) = y_1 + y_2$$
, $T_2(x_1-x_2) = y_1 - y_2$, 试证明 $T_1 = T_2$ 。

三、求矩阵
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 的 $\|\mathbf{g}\|_{1}$, $\|\mathbf{g}\|_{2}$, $\|\mathbf{g}\|_{\infty}$, $\|\mathbf{g}\|_{m_{1}}$, $\|\mathbf{g}\|_{m_{2}}$, $\|\mathbf{g}\|_{m_{\infty}}$ 范数。

四、设 $A = (a_{ij})_{m \times n} \in C^{m \times n}$, $x = (x_1, ..., x_n)^T$,证明 $||A|| = n \cdot \max_{i,j} |a_{ij}|$ 是矩阵范数,且与 $||x||_{\infty}$ 相容。

五、
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, $f(z) = \sqrt{z}$, $g(z) = \frac{1}{z}$, 求 $f(A)$, $g(A)$.

六、设
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, $b(t) = \begin{bmatrix} e^{2t} \\ e^{2t} \\ 0 \end{bmatrix}$, $x(0) = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$,求微分方程组 $x(t) = Ax(t) + b(t)$ 满足初始条

件x(0)的解。

七、试用 Schmidt 正交化方法求矩阵
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
 的 QR 分解。

八、设 $A \in C^{m \times n}$,且 $U \in C^{m \times n}$ 和 $V \in C^{m \times n}$ 均为酉矩阵,证明 $\left(UAV\right)^+ = V^HA^+U^H$

九、已知函数矩阵
$$A(x) = \begin{bmatrix} 1, & 1-x, & 0 \\ x, & x+1, & 0 \\ 0, & 0, & x^2 \end{bmatrix}$$
, 试计算

$$\frac{d}{dx}A(x)$$
, $\frac{d^2}{dx^2}A(x)$, $\frac{d^3}{dx^3}A(x)$; $\frac{d}{dx}|A(x)|$; $\frac{d}{dx}A^{-1}(x)$

十、(a)设P是投影矩阵,证明P的特征值为1或0;

(b)设 P 是正交投影矩阵,证明 P 是半正定矩阵。