

DEEP LYE // Your Personal Copilot

A Capstone Project By

Thayer Alshaabi & Sam Poquette

DrivingAssistant

Department of Computer Science | ITS Division

Abstract

DeepEye is a driving copiloting system which uses a combination of computer vision and Artificial Intelligence techniques to:

- Detect and classify the following objects in and around the road: vehicles, bikes, pedestrians, stop signs, and traffic lights;
- Detect lanes and determine if the driver is in them;
- Detect possible imminent forward collisions;

All of this information is displayed on an interface that could be on a drivers dashboard in order to notify them.

Research

Our research comprised several academic sources, including Google and Microsoft. Important insights we gathered:

- CNNs are best at object detection;
- TensorFlow provides pre-trained models and Feature Extractors;
- Photorealistic environments (like GTA) can be effective as well;

Methods

The DrivingAssistant class controls the program

- Manages frames analyzed by the program;
- Controls GUI which allows user interaction;

The ObjectClassifier is a Deep Convolutional Neural Network

- Analyzes frames for objects;
- Icons pop up in the interface when a corresponding object is identified through the threatClassifier;
- If object is within a certain small region at the bottom of the frame, collision warning is given;

The LaneDetector uses OpenCV filters to detect road lanes

- An icon will be displayed in the interface corresponding to the driver's position in the lane;

Results

We tested with two environments:

- Grand Theft Auto V, for a variety of environments, times of day, and weather conditions;
- Stock Dash Camera Footage, for more realistic driving;

We compared two data logs; One created by the program listing relevant objects on the screen, and one filled out going through each frame.

DEEPEYE // Your Personal CoPilot! Signs Lane DEEPEYE // Your Personal CoPilot!

Dash-Cam

		_		
Overall Performance			Overall Performance	
≅ 30 (minutes)			≅ 26 (minutes)	
count	422 frames		count	274 frames
mean	0.874596		mean	0.915537
std	0.114521		std	0.114775
min	0.428571		min	0.428571
25%	0.857143		25%	0.857143
50%	0.857143		50%	1.000000
75%	1.000000		75%	1.000000
max	1.000000		max	1.000000
	777	1		

