Assignment 2

Maximum points 100

Note: Solve all problems. I will only grade Problems 7, 8 and 9 and four other problems chosen at random. Your solutions should be precise to the point. You must have the answers typed using a word processor. Handwritten assignments will not be accepted. You are allowed to draw figures by hand if you really do not want to use a drawing utility. You are not allowed to collaborate or look up other sources such as Internet for answers.

- 1. Prove that synchronous communication could lead to deadlock. (15 points)
- 2. Exercise 3.10 (give one example for each, not two) from Pradeep Sinha's book (15 points)
- 3. Exercise 3.13 from Pradeep Sinha's book (15 points)
- 4. Exercise 3.14 from Pradeep Sinha's book (15 points)
- 5. Exercise 3.16 from Pradeep Sinha's book (15 points)
- 6. Exercise 3.18 from Pradeep Sinha's book (15 points)
- 7. For each of the following statements state whether it is true or false.

 Justify your answer. i.e., if it is true, prove it; otherwise, give a counter example.

 (15 points)
 - (a) Lamport's timestamp is not useful for determining the happened before relation (\rightarrow) between events of a distributed computation
 - (b) If channels are FIFO (i.e., messages sent between any pair of processes are received in the same order they were sent), then messages will be automatically causally ordered.
 - (c) If messages are causally ordered, then channels will be ensured to be FIFO.
 - (d) Vector timestamps are useful for determining happened before relation (\rightarrow) between events of a distributed computation.
- 8. Consider a distributed computation consisting of n processes P_1, P_2, \dots, P_n . Propose an algorithm for ensuring channels to be FIFO (i.e., messages sent from any process P_i to any other process P_j ($i \neq j$) are delivered to P_j in the same order in which they were sent by P_i) but does not ensure causal ordering of messages. (10 points)
- 9. If a and b are any two events in a distributed computation consisting of n processes and VT_a and VT_b are their respective vector timestamps, then prove the following. (15 points)
 - (a) $a \to b$ if and only if $VT_a < VT_b$,

- (b) a||b if and only if $(VT_a \not< VT_b \land VT_a \not> VT_b)$, and
- (c) $(VT_a \neq VT_b)$ if and only if $a \neq b$
- 10. Exercise 4.3 from Pradeep Sinha's book (15 points)
- 11. Exercise 4.5 from Pradeep Sinha's book (15 points)
- 12. Exercise 4.12 from Pradeep Sinha's book (15 points)
- 13. Exercise 4.14 from Pradeep Sinha's book (15 points)
- 14. Exercise 4.19 (do not worry about last-one semantics) from Pradeep Sinha's book (15 points)

Expected Learning outcome: Solve synchronization problems in a distributed system, learn tools and techniques for developing your own implementation of a distributed system or component of a distributed system.