Predicting Emotional States Using Wearable Devices

Outline

- · Background
- · Data Description
- · Problem Definition
- · Modeling
- Analysis
- · Conclusion
- · Challenges & Next Steps

Background

- 1. 1 in 5 Americans wear a fitness tracker to monitor factors important for a healthy life₁
 - sleep
 - physical activity
 - cardiovascular health

- 2. Emotions also contribute to overall well-being
 - Chronic negative emotions can be detrimental to both mental and physical health₂

3. Emotion detection technology could help users understand and relieve negative mood states

Can affective states be reliably recognized

Data Description

Demographics

Age
Sex
Income
Marital Status
Children
BMI

Activity Tracker

Steps Heart Rate Sleep

Psychometric

Neuroticism
Extraversion
Ideal/Actual Emotion
Activation/Inhibition
Novelty Seeking
Life Satisfaction
Impulsiveness

Data Description

How calm, at rest, or serene, do you feel right now?

enthusiastic, excited, elated?
fearful, hostile, nervous
dull, sleepy, sluggish?
quiet, still, passive?
happy, satisfied, content?
sad, lonely, unhappy?
aroused, surprised, or astonished?

Problem Definition

`**Emotion**` is a psychological construct composed of several features or dimensions

We decided to reduce the target variable into a single dimension: **Valence**

Jaeger, S. R., Roigard, C. M., Jin, D., Vidal, L., & Ares, G. (2019)

Problem Definition

We would like to know two things:

1. Is this subject experiencing a positive or negative emotional state?

$$\text{Positive Negative Emotion} = \begin{cases} 1, & \max(la_n_{s,i}, n_{s,i}, ha_n_{s,i}) \geq \max(la_p_{s,i}, p_{s,i}, ha_p_{s,i}) \\ 0, & \text{otherwise} \end{cases}$$

2. Is this subject happier or unhappier than his/her baseline level?

$$\begin{aligned} & \text{Valence} = \frac{\text{High Arousal Positive}_{s,i} + \text{Low Arousal Positive}_{s,i} + \text{Positive}_{s,i}}{3} - \frac{\text{High Arousal Negative}_{s,i} + \text{Low Arousal Negative}_{s,i} + \text{Negative}_{s,i}}{3} \\ & \text{Normalized valence} = Valence_{s,i} - Median(Valence_{s}) \\ & \text{Normalized Valence} \text{ (binary)} = \begin{cases} 1, & \text{Normalized Valence}_{s,i} > Median(Valence_{s}) \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$

Demographic data Subject 1002 Psychometric Tests Subject 1002

Subject 1002

Q4

Heart Rate Subject 1002 Between Q3 to Q4 Steps
Subject 1002
Between Q3 to Q4

Subject 1002 Q4	Demographic data Subject 1002	Psychometric Tests Subject 1002	Heart Rate Subject 1002 Between Q3 to Q4	Steps Subject 1002 Between Q3 to Q4
Subject 1002 Q5	Demographic data Subject 1002	Psychometric Tests Subject 1002	Heart Rate Subject 1002 Between Q4 to Q5	Steps Subject 1002 Between Q4 to Q5

 \bigcirc

 \bigcirc

Modeling Outline

EDA - By subject analysis

The subject level statistics indicates there is huge variance across subjects.

p_score = mean(la_p, p, ha_p) n_score = mean(la_n, n, ha_n)

Distributions of subject-level statistics

Feature Engineering

Feature Engineering - Steps related features

- Statistics: max, min, mean, std
- Move Rate: The # of minutes with step > 0 / total minutes
- Active Rate: The # of minutes with step > 10 / total minutes
- Very Active Rate: The # of minutes with step > 20 / total minutes
- Running Rate: The # of minutes with step > 30 / total minutes

Feature Engineering - Heart Rate related features

- Statistics: max, min, mean, std
- Resting Rate: The # of minutes with HR < 30 percentile heart rate > 0 / total minutes
- Moderate Rate: The # of minutes with HR > 50 percentile heart rate > 0 / total minutes
- Very Active Rate: The # of minutes with HR > 80 percentile heart rate > 0 / total minutes
- SDNN: Standard deviation of heartbeat intervals
- pHR2: Percentage of the difference between adjacent HR greater than 2
- rMSSD: Root of mean squared HR change
- Highest HR
- Lowest HR
- I_h: Lowest HR / Highest HR
- CR: Highest HR / Highest HR so far

Type 1: Split by Subject Type 2: Stratified Split Subject 1 Subject 1 Subject 2 Subject 2 Subject 3 Subject 3 Subject 4 Subject 4 Predict for new user Predict for current user Training Set Test Set

Type 1: Only use Fitbit data

Fitbit Data

Type 2: Use all data we have

Modeling - Problem Setting - Sampling Techniques

- 1. Down Sample the Majority Class
- 2. Up Sampling the Minority Class
- **3. SMOTE** Synthetic Minority Over-sampling Technique
- **4.** Assign Class Weight to Loss Function

Evaluation - Positive/Negative Emotion Results

	Scenario	Data	Sampling Technique	Recall	Precision	F1
1	Current Users	Activity Tracking (Fitbit)	SMOTE	0.550	0.347	0.425
2	New Users	Activity Tracking (Fitbit)	Assign Class Weight to Loss Function	0.419	0.228	0.295
3	Current Users	All Data	Assign Class Weight to Loss Function	0.626	0.482	0.544
4	New Users	All Data	SMOTE	0.870	0.260	0.399

In comparison, random guess gives an precision of 0.273

Evaluation - Relative Valence Prediction Results

	Scenario	Data	Sampling Technique	Recall	Precision	F1
1	Current Users	Activity Tracking (Fitbit)	-	0.578	0.617	0.596
2	New Users	Activity Tracking (Fitbit)	-	0.699	0.558	0.617
3	Current Users	All Data	-	0.877	0.590	0.705
4	New Users	All Data	-	0.959	0.555	0.703

In comparison, random guess gives an precision of 0.564

Evaluation - Positive/Negative Emotion Results

	Scenario	Data	Sampling Technique	Recall	Precision	F1
1	Current Users	Activity Tracking (Fitbit)	SMOTE	0.550	0.347	0.425
2	New Users	Activity Tracking (Fitbit)	Assign Class Weight to Loss Function	0.419	0.228	0.295
3	Current Users	All Data	Assign Class Weight to Loss Function	0.626	0.482	0.544
4	New Users	All Data	SMOTE	0.870	0.260	0.399

Modeling - Results

Modeling - Relative Valence Prediction Results

	Scenario	Data	Sampling Technique	Recall	Precision	F1
1	Current Users	Activity Tracking (Fitbit)	-	0.578	0.617	0.596
2	New Users	Activity Tracking (Fitbit)	-	0.699	0.558	0.617
3	Current Users	All Data	-	0.877	0.590	0.705
4	New Users	All Data	-	0.959	0.555	0.703

Modeling - Results

Conclusions

1.In general, the data (wearable data, psychological data, health metrics and demographic data) would help the prediction of emotional states for current users.

- 2.Psychological features and age have a significant correlation on absolute level of valence. While wearable data reflects relative valence, especially heart rate related feature.
- 3.It is hard to predict emotional states for a new user. The pattern we have learnt from current users could actually harm the prediction for new users.

Challenges and Next Steps

Challenges:

- 1. Small data
- 2. Missing data
- 3. Complexity of emotion and variation between subjects

Next:

- 1. Keep Connecting with Stakeholder, ask for their needs
- 2. Incorporating neuroimaging features
- 3. Try Ensemble techniques

Thanks!

Q&A