Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Date:29/1/21

		• •	
Name: k	Kartik Soni	SRN:	Section
		PES1UG19CS212	D
Week#2Program Number:5			
Based on the value of the number in RO, Write an ALP to			
store 1 in R1 if R0 is zero, Store 2 in R1 if R0 is positive, Store			
3 in R1 if R0 is negative.			
		•	
l.	I. ARM Assembly Code		
	mov r0, #0		
	cmp r0,#0		
	beq L1		
	bmi L2		
	mov r1,#2		

II. Output Screen Shot

L1: mov r1,#1

L2: mov r1,#3

Case1

Week#____2___Program Number: ____6___

Write an ALP to compare the value of R0 and R1, add if R0 = R1, else subtract

I. ARM Assembly Code mov r0, #3 mov r1, #2 cmp r0,r1 beq L1 sub r2,r0,r1

L1: add r2,r0,r1

II. Output Screen Shot

Week#____2__Program Number: ____7__

Write an ALP to find the factorial of a number stored in R0.

Store the value in R1 (without using LDR and STR instructions). Use only registers.

I. ARM Assembly Code mov r0, #5 mov r1, #1 mov r2, #1 L1: mul r3 , r1 , r2 add r2,r2,#1 mov r1,r3 cmp r2,#6 bne L1 swi 0x011

Week#____2__Program Number: ____8a___

Write an ALP to add two 32 bit numbers loaded from memory and store the result in memory.

I. ARM Assembly Code

.Data

A: .WORD 12345678

B: .WORD 01342110

C: .WORD 0

.Text

LDR r0,=A

LDR r1,=B

LDR r2,=C

LDR r4,[r0]

LDR r5,[r1]

add r3,r4,r5

STR r3,[r2]

Week#____2__Program Number: ____8b___

Write an ALP to add two 16 bit numbers loaded from memory and store the result in memory.

I. ARM Assembly Code

.Data

A: .HWORD 1234

B: .HWORD 5678

C: .HWORD 0

.Text

LDR r0,=A

LDR r1,=B

LDR r2,=C

LDRH r4,[r0]

LDRH r5,[r1]

add r3,r4,r5

STRH r3,[r2]

Week#_____2____Program Number: _____9a____

Write an ALP to find GCD of two numbers (without using LDR and STR instructions). Both numbers are in registers.

Use only registers.

I. ARM Assembly Code

mov r0,#200

mov r1,#40

mov r2,r0

mov r3,r1

L1: cmp r3,r2

beq L2

bmi L3

sub r3,r3,r2

b L1

L3: sub r2,r2,r3

b L1

L2: swi 0x011

Output

Week#____2__Program Number: ____9b___

Write an ALP to find the GCD of given numbers (both numbers in memory). Store result in memory.

I. ARM Assembly Code

.Data

A: .WORD 100

B: .WORD 400

C: .WORD 0

.Text

LDR r0,=A

LDR r1,=B

LDR r4,=C

LDR r2,[r0]

LDR r3,[r1]

L1: cmp r3,r2

beq L2

bmi L3

sub r3,r3,r2

b L1

L3: sub r2,r2,r3

b L1

L2: STR r3,[r4]

swi 0x011

II.Output

A<B

A>B

Week#____2___Program Number: ____10a___ Write an ALP to add an array of ten 32 bit numbers from memory 1. Assembly Code .Data A:.word 10,20,30,40,50,60,70,80,90,11 .Text LDR RO,=A mov R1,#10 mov R3,#0 L1: LDR R2,[R0] ADD R0,R0,#4 ADD R3,R3,R2 SUB R1,R1,#1 cmp R1,#0 bne L1 swi 0x011

2.Output

Week#____2__Program Number: ____10b___

Write an ALP to add an array of five 16 bit numbers from memory

I. ARM Assembly Code

.Data

A:.hword 10,20,30,40,50

.Text

LDR RO,=A

mov R1,#5

mov R3,#0

L1: LDRH R2,[R0]

ADD R0,R0,#2

ADD R3,R3,R2

SUB R1,R1,#1

cmp R1,#0

bne L1

swi 0x011

II. Output Screen Shot

Week#____2___Program Number: ____10c___

Write an ALP to add an array of five 8 bit numbers from memory

I. ARM Assembly Code

.Data

A:.byte 1,2,3,4,5

.Text

LDR RO,=A

mov R1,#5

mov R3,#0

L1: LDRB R2,[R0]

ADD R0,R0,#1

ADD R3,R3,R2

SUB R1,R1,#1

cmp R1,#0

bne L1

swi 0x011

