Задание №1

Быстрое дискретное комплексное преобразование Фурье

Постановка задачи

Необходимо использую библиотечные функции написать программу, способную выполнить быстрое дискретное комплексное преобразование Фурье. Исходные данные необходимо было выгрузить из файла. В последствие необходимо было провести анализ полученных результатов.

Используемые пакеты

Программа написана на языке **python** с использованием следующих библиотек:

numpy

Библиотека реализующая множество тензорных вычислений. В пакете присутствуют функции способные производить быстрое прямое и обратное комплексное преобразование Фурье

matplotlib

Библиотека для построения и отображения графиков

belashovplot

Небольшая надстройка над matplotlib, позволяющая строить «тайловые» графики, не беспокоясь о поехавшем тексте и форматировании.

Листинг программы

Программа реализована в виде одной единственной функции, которая принимает на вход путь к файлу с данными. Далее она выгружает данные, обрабатывает их, выводит таблицы в консоль, а в конце рисует графики и выводит их на экран.

```
: spectrum,
   graph_ranges = [
       numpy.arange(0, N),
numpy.linspace(-N / 2 + 1, N / 2, N),
       numpy.fft.fftshift(numpy.fft.fftfreq(N, 1)),
        numpy.arange(0, N),
       numpy.arange(0, N)
           : lambda x: numpy.abs(x),
        'y' : lambda x: numpy.angle(x),
        'r' : lambda x: numpy.real(x),
   graph_types = [
   plot = TiledPlot(MaxWidth=12*(21/9), MaxHeight=12)
   plot.FontLibrary.MultiplyFontSize(0.7)
   plot.description.top("Спектр, полученный быстрым дискретным преобразованием Фурье исходного
   plot.description.row.left ("Амплитуда",
   plot.description.row.left
   plot.description.row.left
   plot.description.row.left
   plot.description.column.top ("Сигнал",
   plot.description.column.top ("Спектр",
                                                         2)
   plot.description.column.top ("Восстановленный",
   plot.description.column.top ("Отклонения",
    for col, ((tittle, data), graph_range) in enumerate(zip(graphs_data.items(), graph_ranges)):
        for row, ((color, function), graph_type) in enumerate(zip(extract_functions.items(),
graph types)):
           axes.plot(graph_range, function(data), f'.--{color}')
           plot.graph.description(f'{tittle} : {graph_type}')
   plot.show()
```

Таблицы значений:

Сигнал

Номер	Координата	Вещ. часть	Мним. часть
1	0	0.211313	0.0
2	1	0.90473	0.0
3	2	1.051812	0.0
4	3	0.784871	0.0
5	4	-0.214828	0.0
6	5	-1.136924	0.0
7	6	-1.123443	0.0
8	7	-0.690541	0.0
9	8	0.220547	0.0
10	9	1.022713	0.0
11	10	1.169522	0.0
12	11	0.688723	0.0
13	12	-0.213614	0.0
14	13	-1.136187	0.0
15	14	-0.98588	0.0
16	15	-0.664737	0.0

Спектр с нумерацией из текста задания

Номер	Координата	Вещ. часть	Мним. часть
1	-7.0	0.3427810000000001	0.0
2	-6.0	0.052890198009562725	0.2148426367407888
3	-5.0	-0.10962364383152623	0.6398977924490294
4	-4.0	0.1015132536924411	0.009937194047247688
5	-3.0	-0.10859299999999983	-0.4639839999999999
6	-2.0	-0.14805763554623416	-0.3486453446604194
7	-1.0	1.8302276438315261	9.301211792449028
8	0.0	-0.043281816155769634	-0.14859590196687827
9	1.0	-0.11192300000000033	0.0
10	2.0	-0.043281816155769634	0.14859590196687827
11	3.0	1.8302276438315261	-9.301211792449028
12	4.0	-0.14805763554623416	0.3486453446604194
13	5.0	-0.10859299999999983	0.4639839999999995
14	6.0	0.1015132536924411	-0.009937194047247688
15	7.0	-0.10962364383152623	-0.6398977924490294
16	8.0	0.052890198009562725	-0.2148426367407888

Спектр с исправленной нумерацией (из numpy)

1	1	J 1 ' (10/
Номер	Координата	Вещ. часть	Мним. часть
1	-0.5	0.3427810000000001	0.0
2	-0.4375	0.052890198009562725	0.2148426367407888
3	-0.375	-0.10962364383152623	0.6398977924490294
4	-0.3125	0.1015132536924411	0.009937194047247688
5	-0.25	-0.10859299999999983	-0.4639839999999999
6	-0.1875	-0.14805763554623416	-0.3486453446604194
7	-0.125	1.8302276438315261	9.301211792449028
8	-0.0625	-0.043281816155769634	-0.14859590196687827
9	0.0	-0.11192300000000033	0.0
10	0.0625	-0.043281816155769634	0.14859590196687827
11	0.125	1.8302276438315261	-9.301211792449028
12	0.1875	-0.14805763554623416	0.3486453446604194
13	0.25	-0.10859299999999983	0.4639839999999995
14	0.3125	0.1015132536924411	-0.009937194047247688
15	0.375	-0.10962364383152623	-0.6398977924490294
16	0.4375	0.052890198009562725	-0.2148426367407888

Графики

