USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

III Semester B.E. Fast-track Examinations January-2023

Computer Science and Engineering LOGIC DESIGN

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	and are Universal gates	02
	1.2	A 3 variable K-map hascells.	01
	1.3	The minterm designator for the term : $\bar{A} B \bar{C} D$ is	01
	1.4	0011 is a valid BCD member. Justify	01
	1.5	16:1 Multiplexer circuit will haveselect lines	01
	1.6	The filpflop that follows the input is aflip flop	01
	1.7	Draw the logical diagram of a 1 bit magnitude comparator	02
	1.8	Draw the timing diagram of a 2 bit down counter with negative edge	02
		triggered flip flops.	
	1.9	A counter with 4 flip flops will haveunique states	01
	1.10	Write the truth table and block diagram of 2:4 line decoder.	02
	1.11	is an IC with programmable gates divided into an AND array	01
		and an OR array to provide an AND –OR- SOP implementation	
	1.12	What are state diagrams? Given an example	02
	1.13	What is the supply voltage level of TTL IC's	01
	1.14	Define a register.	01
	1.15	A n-stage Johnson counter hasstates	01

PART-B

		OR	
	IJ	multiplexer F (A, B, C, D) = $\sum m$ (0, 1, 2, 4, 6, 9, 12, 14)	08
	b	Implement the Boolean function using 8: 1 and also using 4:1	08
3		With a neat diagram explain a decimal adder	0.0
		method.	08
		$f(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}) = \Sigma(0, 2, 5, 7, 10, 13, 14, 15)$ using Quine-McClukey tabular	
	b	Simplify the following Boolean function,	
		ii. $F(A, B, C, D) = \Sigma m(1, 3, 4, 6, 8, 9, 11, 13, 15) + \Sigma d(0, 2, 14)$	08
		i. $F(A, B, C, D) = \Sigma m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$	
2	a	Minimize the following Boolean expressions using K map.	

		T	_		
4	a	Explain 2 bit magnitude comparator	08		
	b	Design a full adder and subtractor using 3 to 8 line decoder	08		
5	а	What is race condition? How this can be avoided? Illustrate how Master-Slave JK flip flop overcomes this problem.	10		
	b	With relevant function table and symbols explain positive triggered D flip flop.			
		OR			
6	a	What are shift registers? Explain with diagram SISO and SIPO			
	b	unidirectional shift registers. With a neat diagram explain universal shift register.	08		
			08		
7	а	Design a synchronous counter to count the following sequence 7,4,3,1,5,0,7,4,3, Implement the circuit using T-flip-flops.	08		
	b	Design a Mod 4 synchronous up-counter using JK flip flop	08		
8	а	Differentiate between Mealy model and Moore models synchronous sequential networks	08		
	b	Construct the excitation table, transition table, state table and state diagram for the following sequential circuit.			
		T A y			
		c_R			
		T B			
		c_R			
		CLK Reset	08		
		CLA Reser			