B. Wróblewski

Metoda Fouriera – rozdzielanie zmiennych

Zadanie 1. Rozważmy równanie różniczkowe zwyczajne z warunkami brzegowymi:

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}y + y = 0, \quad y(0) = 0, \quad y(l) = 0.$$

Zbadaj liczbę rozwiązań zagadnienia w zależności od *l*.

Zadanie 2. Dla jakich wartości λ zagadnienie

$$y'' + \lambda y = 0$$
, $y(0) = y(2\pi)$, $y'(0) = y'(2\pi)$

ma nietrywialne rozwiązanie?

Zadanie 3. Skonstruuj rozwiązanie następujących zagadnień metodą rozdzielania zmiennych:

a)
$$u_x = u_y \text{ dla } x, y \in \mathbb{R}, u(0, y) = e^y + e^{-2y};$$

b)
$$u_t = u_{xx} + u \text{ dla } x \in (0,1), t > 0 \text{ oraz } u(x,0) = \sin \pi x, u(0,t) = u(1,t) = 0.$$

Zadanie 4. Znajdź szereg Fouriera funkcji

a)
$$f(x) = x \text{ na } (-\pi, \pi)$$

a)
$$f(x) = x \text{ na } (-\pi, \pi)$$
, b) $f(x) = |x| \text{ na } (-1, 1)$, c) $f(x) = e^x \text{ na } (0, 2\pi)$.

c)
$$f(x) = e^x$$
 na $(0, 2\pi)$.

Zadanie 5. Rozwiąż zagadnienie początkowo-brzegowe dla równania ciepła $u_{tt} = u_{xx}$ w prostokącie $(0,1)\times(0,T)$ z warunkami początkowymi u(x,0)=f(x) i $u_t(x,0)=g(x)$ oraz warunkami brzegowymi u(0,t) = u(1,t) = 0. Podaj postać rozwiązania dla

a)
$$f(x) = \begin{cases} 2x & 0 \le x < \frac{1}{2}, \\ 2(1-x) & \frac{1}{2} \le x \le 1, \end{cases}$$
 $g(x) \equiv 0$ b) $f(x) \equiv 0, \quad g(x) = \begin{cases} 0 & 0 \le x < \frac{1}{4}, \\ 1 & \frac{1}{4} \le x \le \frac{3}{4}, \\ 0 & \frac{3}{4} < x \le 1. \end{cases}$

Czy otrzymane rozwiązania w postaci szeregów można dwukrotnie różniczkować? Zaproponuj warunki na funkcje f i g dla których uzyskane rozwiązania są rozwiązaniami klasycznymi.

Zadanie 6. Rozwiąż zagadnienie początkowo-brzegowe dla równania ciepła $u_t=u_{xx}$ w prostokącie $(0,1)\times(0,T)$ z warunkiem początkowym u(x,0)=f(x) oraz warunkami brzegowymi u(0,t) = u(1,t) = 0. Podaj postać rozwiązania dla f(x) = 4x(1-x).

Wykaż, że rozwiązanie jest dwukrotnie różniczkowalne dla t>0, wykorzystując zbieżność jednostajną odpowiednich szeregów pochodnych.

Zadanie 7. Rozwiąż zagadnienie początkowo-brzegowe $tu_t = u_{xx} + 2u$ z warunkiem początkowym u(x,0)=f(x) oraz warunkami brzegowymi $u(0,t)=u(\pi,t)=0$. Udowodnij, że równanie to ma nieskończenie wiele rozwiązań spełniających warunek początkowy u(x,0)=0. WNIOSEK: brak jednoznaczności rozwiązań.