TRIGONOMETRY

Including

Brief note on trig graphs p.2

Brief introduction to the unit circle

Pythogorus p.3

Special angles in 90 degree triangles p.3

Area rule p.4

Cos rule p.4

Sin rule p.4

Reduction formulae & co-ratios p5

Quadrants in degrees and radians

dentities - Quotient identity p6

- Pyth. Identity - Double angle formulae

- Compound angle formulae

General solution (trig equations) p7

TRIG. GRAPHS

A circle with radius = 1

OTHER USEFUL NOTES:

Pythagorus
$$q^2+b^2=c^2$$

SPECIAL TRIANGLES

ANGLES OF INCLINATION

ARGA RULE

In DABC

Cos rule

In triangle ABC

$$Q^2 = b^2 + c^2 - 2(a)(b)(os C)$$

Sin rule

n triangle ABC

the CAST diagram shows where each will be positive: degrees or radians

CO-RATIOS (for 90°)

$$Sin (90°+0) <=> COSO$$
 $Sin (90°-0) <=> COSO$
 $Sin (90°+0) <=> - SinO$
 $Sin (90°+0) <=> - SinO$
 $Sin (90°+0) <=> - SinO$
 $Sin (90°-0) <=> SinO$
 $Swith (0S) Sin$

in radians:

$$Sin\left(\frac{\pi}{2}+\theta\right) <=> cos\theta$$
 $Sin\left(\frac{\pi}{2}-\sigma\right) <=> cos\theta$
 $Cos\left(\frac{\pi}{2}+\theta\right) <=> - sin\theta$

TRIGIDENTITIES

Pyth I dentity

DOUBLE ANGLE FORMULAE

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

= $2\cos^2 \theta - 1$
= $|-2\sin^2 \theta|$

COMPOUND ANGLE FORMULAE

$$Sin(A+B) = SinAcosB + cosAsinB$$

 $Sin(A-B) = SinAcosB - cosAsinB$

$$Cos(A+B) = CosAcosB - sinAsinB$$

 $cos(A-B) = cosAcosB + sinAsinB$

Gives every possible answer considering that trig graphs are repeating.

STEPS: 1 Determine the positive reference

2 Apply the reference angle to the relevent quadrants 3 Simplify and don't forger NEZ

Example 1

given tanksinx + cosxtanx = 0

Determine the general solution.

Answer:

1 tanzsinx+ cosxtanx = 0 Eanx(sinx+ cosx)=0

 \therefore Ean z = 0 OR Sin z = 0SINX = - COSX $x = tan^{-1}(0)$ = 0

 $\frac{\sin x}{\cos x} = -1$ $tan \mathcal{K} = -1$ $x = tan^{-1}(-1)$

= (-) π (-) 45

$$x = 0$$
 or $x = 45$

2 tan period of 180

$$x = 180 - 0 + v 180$$

OR

$$x = 180 - 45 + n 180$$

OR

$$72 = 360 - 45 + n180$$