ЛАБОРАТОРНАЯ РАБОТА № 3.

Решение задач математической физики методом Фурье в Махіта

Цель работы – получить навыки решения задач математической физики методом Фурье в Maxima.

3.1.Задание на лабораторную работу

Задания:

- 1. Разложить функцию одной переменной в ряд Фурье.
- 2. Исследовать точность аппроксимации функции в зависимости от числа слагаемых в разложении ряда Фурье. Представить графически результаты сравнения.
- 3. Решить задачу одномерную математической физики методом Фурье.
- 4. Провести исследование точности решения одномерной задачи математической физики в зависимости от числа слагаемых в разложении ряда Фурье. Построить графики решения в различные моменты времени.

3.2.Варианты заданий

1. Разложить функцию f(x)в ряд Фурье на отрезке [a,b] [1, стр. 132-145]. , Варианты заданий представлены в таблице 1.

Таблица 3.1. Варианты заданий задачи разложения функции в ряд Фурье

No	f(x)	[a,b]
1.	f(x) = x	$[-\pi,\pi]$
2.	$f(x) = x^2$	$[-\pi,\pi]$
3.	f(x) = x	$[-\pi,\pi]$
4.	$f(x) = \begin{cases} x - 1, & x \le 0 \\ x + 1, & x > 0 \end{cases}$	$[-\pi,\pi]$
5.	f(x) = 1 - x	[-1,1]
6.	$f(x) = \cos(x)$	[-1,1]
7.	$f(x) = \sin(x)$	$[0,\pi]$

2. Решить методом Фурье одномерную задачу теплопроводности [2, стр. 209-228]

$$u_t = au_{xx}, t \in [0, 10],$$

на отрезке [0, l] с начальными

$$u(x,0) = \varphi(x)$$

и граничными условиями:

$$\begin{cases} u(0,t) = \mu_1(t), \\ u(l,t) = \mu_2(t). \end{cases}$$

Варианты заданий представлены в таблице 2.

Таблица 3.2. Варианты заданий для одномерной задачи теплопроводности

No	а	[0, l]	Начальные условия	Граничные условия
1.	0,5	[0, 1]	$\varphi(x) = x$	$\mu_1(t)=t, \mu_2(t)=1$
2.	0,5	[0, 1]	$\varphi(x) = x^2$	$\mu_1(t) = 0, \mu_2(t) = 1$
3.	1,0	[0, 10]	$\varphi(x)=0$	$\mu_1(t) = 0, \mu_2(t) = 1$
4.	1,0	$[0,\pi]$	$\varphi(x) = 1$	$\mu_1(t) = 0, \mu_2(t) = t$
5.	2,0	[0, 1]	$\varphi(x) = 1 - x$	$\mu_1(t) = 1, \mu_2(t) = 0$
6.	2,0	[0, 3]	$\varphi(x) = 1$	$\mu_1(t) = \sin(t), \mu_2(t) = 0$
7.	2,5	$[0,\pi]$	$\varphi(x)=0$	$\mu_1(t) = 0, \mu_2(t) = t$

Литература

- 1. *Чичкарев Е.А.* Компьютерная математика с Maxima: руководство для школьников и студентов. М.: ALT Linux, 2012. 384 с. Режим доступа: https://www.altlinux.org/Images/0/0b/MaximaBook.pdf
- 2. *Тихонов А.Н.*, *Самарский А.А.* Уравнения математической физики. М.: Изд-во МГУ, 1999. 800 с.
- 3. Ревина С.В., Сазонов Л.И., Цывенкова О.А Уравнения математической физики. Задачи и решения. Ростов на Дону: Изд-во Южного федерального университета, 169 с. Режим доступа: http://www.mmcs.sfedu.ru/jdownload/finish/16-kafedra-vychislitelnoj-matematiki-i-matematicheskoj-fiziki/1419-uravneniya-matematicheskoj-fiziki-zadachi-i-resheniya-s-v-revina-l-i-sazonov-o-a-tsyvenkova