

CMT107 Visual Computing

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Xianfang Sun

School of Computer Science & Informatics
Cardiff University

Overview

- Surface representations
- Parametric surfaces
- Piecewise polynomial surfaces
 - Tensor product splines ject Exam Help
- Subdivision surfaces https://tutorcs.com
 - Loop subdivision
 - WeChat: cstutorcs
 Doo-Sabin subdivision

 - Catmull-Clark subdivision

Surfaces

- We require general surface shapes (something better than polygonal meshes)
 - Exact boundary representation for some objects
 - Create, edit and analyse shapes Assignment Project Exam Help

Explicit Surfaces

➤ A surface is a set of positions of a point moving with two degrees of freedom

- > Explicit and implicit representation similar to curve
 - Explicit: z = f(x, y) for $(x, y) \in \mathbb{R}^2$

Implicit Surfaces

> Surface defined as solution of an equation system:

$$f(x, y, z) = 0$$

- Usually one equation in 3D
- > Example: linear equation (plane)

Assignment Project Exam Help

• Using vectors: https://tutorcs.com $n^T x + d = 0$ — n: unit plane mental: cstutorcs
— d: distance from origin

Implicit Quadrics

Quadrics (quadratic surfaces)

$$ax^{2} + by^{2} + cz^{2} + 2dxy + 2eyz + 2fxz + gx + hy + jz + k = 0$$

• Matrix representation:

Assignment Project Exam Help

•Sphere / Ellipsoid:

https://tutercs.com
$$1 = 0$$
 r_x^2 r_y^2 r_z^2
WeChat: cstutorcs

• Cylinder (elliptic): $\frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} - 1 = 0$

• Cone (elliptic):
$$\frac{x^2}{r^2} + \frac{y^2}{r^2} - z^2 = 0$$

Properties of Implicit Surfaces

- Simple to test if point is on surface
 Hard to render
- Simple to intersect two surfaces
 Hard to describe complex shapes

Mathematical Functions / Sets

Blobby Models

Parametric Surfaces

> Describe points on surface by parametric functions

$$s(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$$

model space https://tutorcs.com

Example: ellipsoid

• $x(u, v) = r_x \cos u \cos v \cot c$ $y(u, v) = r_v \cos u \sin v$ $z(u, v) = r_z \sin u$ $(u, v) \in [-\pi/2, \pi/2] \times [0, 2\pi]$

H&B Figure 10.10

Properties of Parametric Surfaces

- Properties similar to parametric curves
 - Simple to render points
 - Hard to test if point is on surface, compute intersections, etc.
- Hard to represent whole surface by single polynomial function
 https://tutorcs.com
 - Use piecewise Work that introfaces
 - Surface is cut into patches
 - Smoothness / continuity problem when joining patches

Piecewise Polynomial Surface

> Spline surface: piecewise polynomial surface patches

- > Use spline curve approach with two degrees of freedom
 - Each patch is defined by a set of control points

Tensor Product

Intuitively, a surface is a curve which *moves* through space while it changes its shape

Mathematically this is the tensor product of two curves

Tensor Product Surfaces

- Surface patch as a curve moving through space
 - Assume this curve is at any time $v \in [0, 1]$ a Bézier curve

 $c^{\nu}(u) = \sum_{l}^{\infty} P_{l}(\nu) B_{l}^{\alpha}(u)$

Assignment Project Exam Help • The control points $P_l(v)$ lie on curves as well, assume these are also Bezier curves

WeChat: Estutores
$$P_{l}(\nu) = \sum_{k=0}^{\beta} P_{l,k} B_{k}^{\beta}(\nu)$$

> Combing both gives the formula for a Bézier surface patch

$$Q(u,v) = \sum_{l=0}^{\alpha} \sum_{k=0}^{\beta} P_{l,k} B_l^{\alpha}(u) B_k^{\beta}(v)$$

Bézier Surface Patches

Point Q(u, v) on the patch is the tensor product of Bézier curves defined by the *control points* $P_{l,k}$

• *Order* of surface is given by order of curves α , β (e.g. bicubic: $\alpha = \beta = 3$)

Properties of Bézier Patches

- > Interpolates four corner control points
- Lies inside *convex hull* of control points
- Changing control points has only local effect (local control)
 Assignment Project Exam Help

Smooth Bézier Surfaces

Continuity / smoothness constraints similar to Bézier splines

C⁰ and C¹ Bézier Surfaces

> C⁰ requires *aligning boundary curves*

> C1 requires align We Chundaty touckes and derivatives

Drawing Bézier Surfaces

> Simple approach:

loop through uniformly spaced increments of u and v

```
for (int l = 0; l < l_{max}; ++l) {
    double u = u_{min} + l * u_{stp};
Assignment Project Exam Help
for (int k = 0; k < k_{max}; ++k) {
     double v = v_{\min} + \frac{\text{https://tutorcs.com}}{\text{total}}
     DrawQuadrilaweChat: cstutorcs
```

• Note, Bézier surfaces always have quadrilateral structure

Drawing Bézier Surfaces

> Better approach:

```
use adaptive subdivision
```

```
DrawSurface (surface) {
  if flat(surface, epsilon) {
    Assignment Project Exam Help
    DrawQuadrilateral (surface);
                    https://tutorcs.com Uniform subdivision
  } else {
   SubdivideSurface (surface,...);
    DrawSurface (sWfeCehat: cstutorcs
    DrawSurface (surfaceLR);
    DrawSurface (surfaceRL);
    DrawSurface (surfaceRR);
                                           Adaptive subdivision
```

Drawing Bézier Surfaces

- > Problem of adaptive subdivision:
 - Cracks at boundaries between patches at different subdivision levels

 Avoid cracks by adding extra vertices and triangulating quadrilaterals with neighbours at finer level

Subdivision Surfaces

- ➤ Idea of *subdivision surfaces*
 - Define a smooth surface as the limit of a sequence of successive refinements of a mesh

Why Subdivision?

- > Level of Detail
- Compression
- > Smoothing

Assignment Project Exam Help

https://tutorcs.com

Cutting Corners – Curves

Center for Graphics and Geometric Computing, Technion

Surface Subdivision

- > Start with a control mesh
- > Per iteration construct *refined* mesh by inserting vertices
- Mesh sequence should converge to a limit surface
- Subdivision scheme defined by two elements Assignment Project Exam Help
 - Generate topology of the new mesh
 - Compute vertex locations in new mesh
 - Vertex point shew location of old vertex
 - Edge point: location of new vertex on old edge
 - Face point: location of new vertex on old face

Loop Subdivision

- > Loop subdivision scheme:
 - Refine each triangle into 4 triangles by splitting each edge and connecting new vertices

Loop Subdivision

- Computing locations of new vertices
 - Weighted average of original vertices in neighbourhood
 Edge point
 Vertex point

$$\beta = \frac{1}{n} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{2}{8} \cos\left(\frac{2\pi}{n}\right) \right)^2 \right)$$

No face points

- ➤ Mesh is the control mesh of a *B-Spline surface*
 - Refined mesh is also a control mesh of a B-Spline Surface
- Incremental construction ect Exam Help
 - Calculate face points

 https://tutorcs.com

 Calculate edge points using face points

 - Calculate vertex points using face and edge points
 - Connect vertices

Step 1

First, all the face points are calculated

Step 2

Then the edge points are calculated using the values of the face points and the original vertices

Step 3

Last, the vertex points are calculated using the values of the face and edge points and the original vertex

Center for Graphics and Geometric Computing, Technion

- > Connecting new vertices:
 - Connect each new face point to edge points of the edges defining the old face
 - Connect each new vertex point to new edge points of all old edges incluent on the old vertex point

Center for Graphics and Geometric Computing, Technion

Face Point

$$f = \frac{1}{m} \sum_{i=1}^{m} p_i$$

Edge Point

$$\ddot{e} = \frac{p_1 + p_2}{4} + \frac{\text{Assignment Project Exam H}}{4}$$
https://tutorcs.com

 $\overset{\bullet}{v} = \frac{Q}{n} + \frac{2R}{n} + \frac{p(n-3)}{n}$

$$\mathbf{v} = \frac{1}{n^2} \sum_{i=1}^{n} \mathbf{f}_i + \frac{1}{n^2} \sum_{i=1}^{n} \mathbf{p}_i + \frac{n-2}{n} \mathbf{p}$$

- Q Average of face points
- *R* Average of midpoints
- p old vertex

Doo-Sabin Subdivision

$$\stackrel{\bullet}{p} = \sum_{i=0}^{n-1} \alpha_i \stackrel{\bullet}{p_i}$$

Properties of Subdivision Surfaces

> Advantages

- Simple methods for describing complex surfaces
- Multi-resolution evaluation and manipulation
- Arbitrary topology of control mesh (not only quadrilate Ratignment Project Exam Help

• Limit surface is smooth https://tutorcs.com

Disadvantages

No obvious parametrisation

Hard to find intersections

Summary

- What are parametric surfaces? What are their advantages and disadvantages?
- What are spline surfaces? What are their advantages and disadvantages? What is the major problem when defining surfaces "pieceignerent Project Exam Help
- What is the principle of a tensor product surface? What are Bézier surfaces? What conditions do the control points of C⁰/C¹ completes better surfaces have to fulfil?
- ➤ What is the principle of subdivision surfaces? What are their advantages / disadvantages?
- ➤ How do Loop, Catmull-Clark, Doo-Sabin subdivision schemes work?