1 Mesures, probabilités

Tribus

Soit Ω un ensemble quelconque. Un ensemble de parties $\mathcal{A}\subseteq \mathcal{P}(\Omega)$ est appelé tribu sur Ω ou σ -algèbre si :

- (i) $\Omega \in \mathcal{A}$;
- (ii) \mathcal{A} est stable par passage au complémentaire : si $A \in \mathcal{A}$, alors $A^{c} \in \mathcal{A}$;
- (iii) \mathcal{A} est stable par union dénombrable : si $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$, alors $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$. On dit que (Ω,\mathcal{A}) est un espace mesurable ou probabilisable. Les éléments de \mathcal{A} sont appelés ensembles mesurables ou événements.

(Rapprocher cela de la définition d'une topologie)

Conséquences immédiates

Soit (Ω, \mathcal{A}) un espace probabilisable. On a :

- (i) $\varnothing \in \mathcal{A}$;
- (ii) A est stable par union finie;
- (iii) \mathcal{A} est stable par intersection finie ou dénombrable.

Intersection de tribus

Une intersection quelconque de tribus sur un même ensemble est une tribu sur cet ensemble.

Tribu engendrée

Soient un ensemble Ω et une famille de parties $(A_i)_{i\in I}\subseteq \Omega^I$. On appelle tribu engendrée par (A_i) la plus petite tribu contenant tous les A_i , c'est-à-dire l'intersection de toutes les tribus contenant les A_i .

On la note $\sigma((A_i)_{i\in I})$.

Tribu engendrée par une partie

Si $A \subseteq \Omega$, alors $\sigma(A) = \{\emptyset, A, A^{c}, \Omega\}$.

Tribu borélienne

On appelle tribu borélienne de \mathbb{R} la tribu engendrée par les ouverts de \mathbb{R} , ou encore par les $]-\infty$, a] pour $a\in\mathbb{Q}$. On la note $\mathfrak{B}(\mathbb{R})$. On remarque que :

- (i) tous les ouverts et les fermés sont dans $\mathfrak{B}(\mathbb{R})$;
- (ii) tous les intervalles sont dans $\mathfrak{B}(\mathbb{R})$.

Mais $\mathfrak{B}(\mathbb{R}) \subsetneq \mathfrak{P}(\mathbb{R})$.

Mesure

Soit (Ω, \mathcal{A}) un espace mesurable. On appelle mesure sur Ω toute application $\mu: \Omega \to [0, \infty]$ telle que :

- (i) $\mu(\emptyset) = 0$;
- (ii) pour toute famille dénombrable $(A_n)_{n\in\mathbb{N}}$ de parties mesurables deux à deux disjointes,

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)=\sum_{n\in\mathbb{N}}\mu(A_n)$$

dans $[0, \infty]$.

On dit que $(\Omega, \mathcal{A}, \mu)$ est un espace mesuré.

Mesures σ -finies, finies et probabilités

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré.

- (i) on dit que μ est σ -finie si Ω peut être recouvert par un nombre dénombrable de parties de mesure finie.;
- (ii) on dit que μ est finie si $\mu(\Omega) < \infty$;
- (iii) on dit que μ est une probabilité si $\mu(\Omega) = 1$.

Exemples de mesures

Quel que soit Ω , on peut définir :

- (i) la mesure de comptage sur $(\Omega, \mathcal{P}(\Omega))$ par $\mu(A) = \operatorname{Card} A$;
- (ii) la mesure de Dirac sur (Ω, \mathcal{A}) , où \mathcal{A} est n'importe quelle tribu, par

$$\delta_{\omega_0}: A \in \mathcal{A} \mapsto \begin{cases} 1 & \text{si } \omega_0 \in A \\ 0 & \text{sinon} \end{cases}.$$

Propriétés des mesures σ -finies (1)

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré avec μ σ -finie. Dans ce qui suit, les ensembles considérés sont implicitement dans \mathcal{A} :

- (i) si $A \subseteq B$, alors $\mu(A) \leqslant \mu(B)$ dans $[0, \infty]$;
- (ii) $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$;
- (iii) dans $[0, \infty]$ on a

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)\leqslant \sum_{n\in\mathbb{N}}\mu(A_n).$$

Propriétés des mesures σ -finies (2)

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré avec μ σ -finie. Soit $(A_n) \in \mathcal{A}^{\mathbb{N}}$:

(i) si pour tout $n, A_n \subseteq A_{n+1}$, alors

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)=\lim_{n\to\infty} \mu(A_n);$$

(ii) si pour tout $n, A_{n+1} \subseteq A_n$ et que $\mu(A_n) < \infty$ à partir d'un certain rang, alors

$$\mu\Big(\bigcap_{n\in\mathbb{N}}A_n\Big)=\lim_{n\to\infty}\backslash\mu(A_n);$$

(iii) si $\left(\sum \mu(A_n)\right)_{n\in\mathbb{N}}$ converge, alors $\mu(\limsup_{n\to\infty} A_n) = 0$.

Lemme de Borel-Cantelli

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré. Soit $(A_n) \in \mathcal{A}^{\mathbb{N}}$:

- (i) si $(\sum \mu(A_n))_{n\in\mathbb{N}}$ converge, alors $\mu(\limsup A_n) = 0$;
- (ii) si les A_n sont indépendants deux à deux et que $\left(\sum \mu(A_n)\right)_{n\in\mathbb{N}}$ diverge, alors $\mu(\limsup A_n)=1$.

Mesure de Lebesgue

- (i) il n'existe pas de probabilité $\mathbb P$ sur ([0, 1], $\mathcal P$ ([0, 1])) telle que pour tous $0\leqslant a\leqslant b\leqslant 1,\, \mathbb P([a,\,b])=b-a$;
- (ii) il existe une unique probabilité $\mathbb P$ sur $([0,1], \mathfrak{B}([0,1]))$ telle que pour tous $0\leqslant a\leqslant b\leqslant 1,\, \mathbb P([a,\,b])=b-a\,;$
- (iii) il existe une unique mesure λ sur $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$ telle que pour tous $a \leq b, \lambda([a, b]) = b a$.

On appelle λ la mesure de Lebesgue sur \mathbb{R} .

Propriétés de la mesure de Lebesgue

(i) pour tous $a \leq b$,

$$\lambda([a, b]) = \lambda([a, b[) = \lambda(]a, b]) = \lambda(]a, b[)$$
$$= b - a;$$

- (ii) pour tout $x \in \mathbb{R}$, $\lambda(\{x\}) = 0$;
- (iii) λ est σ -finie;
- (iv) λ est invariante par translation;
- (v) si μ est une mesure sur $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ finie sur les parties bornées et invariante par translation, alors il existe $c \ge 0$ telle que $\mu = c\lambda$.

2 Variables aléatoires, lois

Espace de probabilité

Un espace mesuré $(\Omega, \mathcal{A}, \mathbb{P})$ dont la mesure \mathbb{P} est une probabilité est appelé espace de probabilité.

Dans ce qui suit, on fixe un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$.

Variable aléatoire

Une fonction $X: \Omega \to \mathbb{R}$ telle que pour tout $B \in \mathfrak{B}(\mathbb{R}), X^{-1}(B) \stackrel{\text{not.}}{=} (X \in B) \in \mathcal{A}$ est appelée variable aléatoire (ou fonction mesurable).

Un critère un peu plus simple

Une fonction $X: \Omega \to \mathbb{R}$ est une variable aléatoire si et seulement si $(X \leqslant x) \in \mathcal{A}$ pour tout $x \in \mathbb{Q}$.

Propriétés des variables aléatoires

- (i) si X et Y sont deux v.a., alors X+Y, XY et $\inf(X,Y)$ sont des variables aléatoires;
- (ii) plus généralement, si $f: \mathbb{R} \to \mathbb{R}$ est une application mesurable (au sens des boréliens), alors f(X) est une variable aléatoire;
- (iii) si (X_n) est une suite de v.a., alors inf X_n , sup X_n , lim inf X_n , lim sup X_n sont des v.a.;
- (iv) si (X_n) converge simplement, alors $\lim X_n$ est une v.a.

Exemples de variables aléatoires

- (i) si $A \subseteq \Omega$, alors $\mathbf{1}_A$ est une v.a. si et seulement si A est mesurable;
- (ii) une fonction continue $\mathbb{R} \to \mathbb{R}$ est une variable aléatoire sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Loi de X

Soit X une v.a. réelle. La $loi\ de\ X$ est l'application

$$\mathbb{P}_X: \begin{cases} \mathfrak{B}(\mathbb{R}) & \to & [0, 1] \\ B & \mapsto & \mathbb{P}_X(B) = \mathbb{P}(X \in B) \end{cases}.$$

Il s'agit d'une probabilité

Soit X une v.a. réelle. La loi de X, \mathbb{P}_X , est une probabilité sur $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$.

(À partir d'une probabilité sur Ω , on en a construit une sur \mathbb{R})

3 Fonction de répartition

Fonction de répartition

Soit X une variable aléatoire de loi $\mathbb{P}_X.$ On appelle fonction de répartition de X la fonction

 $F_X: \begin{cases} \mathbb{R} & \to & [0, 1] \\ x & \mapsto & \mathbb{P}_X(]-\infty, x]) = \mathbb{P}(X \leqslant x) \end{cases}$

Propriétés de F_X

Quelle que soit la v.a. X, on a :

- (i) F_X est croissante;
- (ii) F_X est continue à droite, c'est-à-dire que

$$(\forall x_0 \in \mathbb{R}) \quad F_X(x) \xrightarrow[x \geqslant x_0]{x \to x_0} F_X(x_0);$$

(iii) $F_X \xrightarrow{-\infty} 0$ et $F_X \xrightarrow{+\infty} 1$.

La fonction de répartition caractérise la loi

Si deux v.a. ont même fonction de répartition, alors elles ont même loi.

<u>Une propriété d'existence</u>

Toute fonction $\mathbb{R} \to \mathbb{R}$ qui vérifie les propriétés (i), (ii) et (iii) ci-dessus est la fonction de répartition d'une loi de probabilité sur $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$.

Exemples d'utilisation de F_X

- (i) $\mathbb{P}(X \leqslant x) = \mathbb{P}_X(]-\infty, x]) = F_X(x);$
- (ii) $\mathbb{P}(X < x) = \mathbb{P}_X(]-\infty, x[) = F_X(x^-);$
- (iii) $\mathbb{P}(a < X < b) = \mathbb{P}_X([a, b]) = F_X(b^-) F_X(a)$.

Probabilité d'un singleton

(i) si $x \in \mathbb{R}$, alors

$$\mathbb{P}(X = x) = \mathbb{P}_X(\{x\}) = F_X(x) - F_X(x^-);$$

(ii) F_X est continue en $x \in \mathbb{R}$ si et seulement si (X = x) est négligeable.

Fonction de répartition d'une variable discrète

 $\operatorname{Si} X(\Omega) = \{x_n : n \in \mathbb{N}\}\ \text{est dénombrable, alors}$

$$F_X(X) = \sum_{\substack{n \in \mathbb{N} \\ x_n \leqslant x}} \mathbb{P}(X = x_n).$$

4 Intégrale et espérance

Intégrale

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré. Soit f une fonction intégrable positive. On pose $f_n(x) = \min(n, \lfloor 2^n f(x) \rfloor / 2^n)$. f_n est une suite croissante de fonctions étagées. L'intégrale de f_n est

$$\int_{\Omega} f_n \, d\mu = \sum_{k=0}^{n2^n} \frac{k}{2^n} \cdot \mu \left(f_n = \frac{k}{2^n} \right) + n\mu (f_n = n).$$

Comme il s'agit d'une suite croissante de réels, on définit

$$\int_{\Omega} f \, \mathrm{d}\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu \in [0, \infty].$$

Espérance

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Soit X une v.a. positive. On pose $X_n(\omega) = \min(n, \lfloor 2^n X(\omega) \rfloor / 2^n)$. X_n est une suite croissante de v.a. étagées. L'espérance de X_n est

$$\mathbb{E}[X_n] = \sum_{k=0}^{n2^n} \frac{k}{2^n} \cdot \mathbb{P}\left(X_n = \frac{k}{2^n}\right) + n\mathbb{P}(X_n = n).$$

Comme il s'agit d'une suite croissante de réels, on définit

$$\mathbb{E}[X] = \lim_{n \to \infty} \mathbb{E}[X_n] \in [0, \infty].$$

Espérance d'une v.a. de signe quelconque

On décompose $X = X^+ - X^-$. Alors $|X| = X^+ + X^-$.

On dit que X est intégrable si X^+ et X^- le sont, ou équivalemment si |X| l'est. On pose dans ce cas

$$\mathbb{E}[X] = \mathbb{E}[X^+] - \mathbb{E}[X^-]$$

qu'on note aussi

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) \, \mathbb{P}(\mathrm{d}\omega) = \int_{\Omega} X \, \mathrm{d}\mathbb{P}.$$

Propriétés de l'espérance

- (i) l'espérance est linéaire (L^1 est un espace vectoriel);
- (ii) si X est constante égale à a, $\mathbb{E}[X] = a$;
- (iii) si X est presque sûrement égale à a, $\mathbb{E}[X] = a$;
- (iv) l'espérance est croissante;
- (v) si $A \in \mathcal{A}$, alors $\mathbb{E}[\mathbf{1}_A] = \mathbb{P}(A)$;

Variance

On appelle L^2 l'espace vectoriel des v.a. réelles de carré intégrable. On a $L^2 \subseteq L^1$. Si $X \in L^2$, alors sa variance est définie comme

$$V[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Meilleure approximation

Si $X \in L^2$, alors:

$$\mathbb{E}[X] = \operatorname*{arg\,min}_{b \in \mathbb{R}} \mathbb{E}[(X - b)^2]$$
$$\mathbb{V}[X] = \operatorname*{min}_{b \in \mathbb{R}} \mathbb{E}[(X - b)^2]$$

Propriété de transport

Soient $X: \Omega \to \mathbb{R}$ une v.a. et $g: \mathbb{R} \to \mathbb{R}$ mesurable avec $g \geqslant 0$ ou g(X) intégrable. Alors

$$\mathbb{E}[g(X)] = \int_{\Omega} g(X(\omega)) \, \mathbb{P}(\mathrm{d}\omega) = \int_{\mathbb{R}} g(x) \, \mathbb{P}_X(\mathrm{d}x).$$

À quoi ça sert

On se ramène donc à une intégrale sur \mathbb{R} , par rapport à la mesure \mathbb{P}_X . En particulier, on a

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x \, \mathrm{d}\mathbb{P}_X.$$

Markov et Bienaymé-Tchebychev

(i) si X est une v.a. intégrable et a > 0, alors

$$\mathbb{P}(|X| \geqslant a) \leqslant \frac{\mathbb{E}[X]}{a} ;$$

(ii) si X est une v.a. de carré intégrable et a>0, alors

$$\mathbb{P}(|X - \mathbb{E}[X]| \geqslant a) \leqslant \frac{\mathbb{V}[X]}{a^2}.$$

<u>Jensen</u>

Soient X intégrable et g mesurable telle que g(X) intégrable. Si g est convexe, alors

$$g(\mathbb{E}[X]) \leqslant \mathbb{E}[g(X)].$$

Covariance

Soit X et Y deux v.a. de carré intégrable. On appelle covariance de X et Y la quantité

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Variance et covariance

La covariance est bilinéaire et $Cov(X, X) = \mathbb{V}[X]$.

5 Variables particulières : les v.a. à densité

Densité de probabilité

Une fonction $f: \mathbb{R} \to \mathbb{R}$ est appelée densité de probabilité si :

- (i) elle est positive;
- (ii) elle est intégrable et $\int_{\mathbb{R}} f = 1$.

Loi à densité

(i) soit $f\,:\,\mathbb{R}\to\mathbb{R}$ une densité de probabilité. La fonction

$$\mathbb{P}^f = \lambda \cdot f : B \in \mathfrak{B}(\mathbb{R}) \mapsto \int_B f$$

est une probabilité sur $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$.

(ii) soit μ une probabilité sur $(\Omega, \mathcal{B}(\mathbb{R}))$. On dit que μ est une loi à densité s'il existe une densité de probabilité $f: \mathbb{R} \to \mathbb{R}$ telle que $\mu = \mathbb{P}^f$. Il suffit pour cela que pour tout x,

$$\mu(]-\infty, x]) = \int_{]-\infty, x]} f.$$

Variable aléatoire à densité

Soit $X:\Omega\to\mathbb{R}$ une v.a. réelle. On dit que X est à $densit\acute{e}$ si \mathbb{P}_X est une loi à densité, c'est-à-dire s'il existe $f:\mathbb{R}\to\mathbb{R}$ telle que $\mathbb{P}_X=\mathbb{P}^f$.

Fonction de répartition d'une v.a. à densité

Soit X une v.a. à densité f. On a :

$$F_X(x) = \int_{-\infty}^x f(y) \, \mathrm{d}y.$$

Dérivabilité de F_X

- (i) si X est à densité f, alors F_X est continue : $\mathbb{P}(X = x) = 0$;
- (ii) si X est à densité f, alors F_X est dérivable partout où f est continue et en un tel point x, on a $F'_X(x) = f(x)$;
- (iii) réciproquement, si F_X est continue, et dérivable par morceau, alors X admet la densité F_X' .

Interprétation de la densité

Soit X une variable à densité f. On suppose f continue en x. Alors

$$\begin{split} f(x) &= F_X'(x) = \lim_{\Delta x \to 0} \frac{F_X(x + \Delta x) - F_X(x)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{\mathbb{P}_X([x, x + \Delta x])}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{\mathbb{P}(x \leqslant X \leqslant x + \Delta x)}{\Delta x}. \end{split}$$

Moments d'une variable à densité

Soit X une v.a. à densité f.

(i) X admet une espérance finie si et seulement si $x \mapsto xf(x)$ est intégrable, et on a dans ce cas

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x;$$

(ii) X admet une variance finie si et seulement si $x\mapsto x^2f(x)$ est intégrable, et on a dans ce cas

$$\mathbb{V}[X] = \int_{-\infty}^{+\infty} (x - \mathbb{E}[X])^2 f(x) \, \mathrm{d}x;$$

(iii) plus généralement, X admet un moment d'ordre k si et seulement si $x \mapsto x^k f(x)$ est intégrable, et on a dans ce cas

$$\mathbb{E}[X^k] = \int_{-\infty}^{+\infty} x^k f(x) \, \mathrm{d}x.$$

<u>Généralisation</u>: transport

Soit X une v.a. à densité f. Soit $g: \mathbb{R} \to \mathbb{R}$ telle que gf soit intégrable. Alors g(X) admet une espérance finie et dans ce cas

$$\mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x) \, \mathrm{d}x.$$

Méthode de la fonction muette

Soit X une v.a. réelle.

(i) s'il existe une probabilité μ sur \mathbb{R} telle que pour toute fonction h continue bornée,

$$\mathbb{E}[h(X)] = \int_{-\infty}^{+\infty} h(x)\mu(\mathrm{d}x)$$

alors la loi de X est égale à μ (c'est-à-dire $\mathbb{P}_X = \mu$).

(ii) par conséquent, s'il existe une densité f telle que pour toute fonction h continue bornée,

$$\mathbb{E}[h(X)] = \int_{-\infty}^{+\infty} h(x)f(x) \, \mathrm{d}x$$

alors X admet comme densité f.

<u>Une remarque</u>

Si X a pour densité f et $a \neq 0$, alors aX a pour densité $x \mapsto f(x/a)/a$.

6 Vecteurs aléatoires

Vecteur aléatoire

 $\vec{Z}: (\Omega, \mathcal{A}) \to \mathbb{R}^n$ est un vecteur aléatoire si pour tout borélien $B \in \mathfrak{B}(\mathbb{R}^n), Z^{-1}(B) \in \mathcal{A}$.

C'est simple en fait

 $\vec{Z} = (Z_1, \dots, Z_n)$ est un vecteur aléatoire si et seulement Z_1, \dots, Z_n sont des variables aléatoires.

Fonction de répartition

La fonction de répartition de \vec{Z} est $F_{\vec{Z}}$ définie par

$$(z_1,\ldots,z_n)\mapsto \mathbb{P}(\vec{Z}\in]-\infty,\,z_1]\times\cdots\times]-\infty,\,z_n]$$
).

Densité

 \vec{Z} admet une densité f si f est positive, intégrable sur \mathbb{R}^n et d'intégrale 1, et si pour tout $(z_1, \dots, z_n) \in \mathbb{R}^n$,

$$F_{\vec{Z}}(z_1,\ldots,z_n) = \int_{-\infty}^{z_1} \cdots \int_{-\infty}^{z_n} f(y_1,\ldots,y_n) \,\mathrm{d}y_n \cdots \,\mathrm{d}y_1.$$

Formule des marginales

Soit \vec{Z} un \vec{v} .a. à densité f. Z_1 admet une densité donnée par

$$f_{Z_1}(z) = \int_{\mathbb{R}^{n-1}} f(z, y_2, \dots, y_n) \, \mathrm{d}y_2 \cdots \mathrm{d}y_n.$$

Fonction muette

Soit \vec{X} un \vec{v} .a. et f une densité. Si pour toute fonction continue bornée h,

$$\mathbb{E}[h(X)] = \int_{\mathbb{R}^n} h(\vec{v}) f(\vec{v}) \, d\vec{v}$$

alors X admet f comme densité.

7 Indépendance

Vecteurs aléatoires indépendants

Deux $\vec{\mathbf{v}}$.a. \vec{Y} (à valeurs dans \mathbb{R}^m) et \vec{Z} (à valeurs dans \mathbb{R}^n) sont indépendants si pour tous boréliens $B \subset \mathbb{R}^m$ et $C \subset \mathbb{R}^n$

$$\mathbb{P}(\vec{Y} \in B, \vec{Z} \in C) = \mathbb{P}(\vec{Y} \in B)\mathbb{P}(\vec{Z} \in C)$$

Indépendance et densité

Soient deux \vec{v} .a. \vec{Y} (à valeurs dans \mathbb{R}^m) et \vec{Z} (à valeurs dans \mathbb{R}^n), de densités respectives $f_{\vec{V}}$ et $f_{\vec{Z}}$.

On a équivalence entre :

- (i) \vec{Y} et \vec{Z} sont indépendants;
- (ii) (\vec{Y},\vec{Z}) admet une densité $f_{(\vec{Y},\vec{Z})}$ et

$$(\text{p.p.t. } \vec{y} \in \mathbb{R}^m) \quad (\text{p.p.t. } \vec{z} \in \mathbb{R}^n) f_{(\vec{Y}, \vec{Z})}(\vec{y}, \vec{z}) = f_{\vec{Y}}(\vec{y}) f_{\vec{Z}}(\vec{z}).$$

Indépendance et espérance

Soient \vec{Y} et \vec{Z} des \vec{v} .a. indépendants. Soient $g:\mathbb{R}^m\to\mathbb{R}$ et $h:\mathbb{R}^n\to\mathbb{R}$ deux fonctions mesurables positives ou bornées. On a

$$\mathbb{E}[g(\vec{Y})h(\vec{Z})] = \mathbb{E}[g(\vec{Y})]\mathbb{E}[h(\vec{Z})].$$

Indépendance et covariance

Soit X et Y deux v.a. indépendantes. On a Cov(X, Y) = 0.

<u>Indépendance et variance</u>

Soit X et Y deux v.a. indépendantes. On $\mathbb{V}[X+Y]=\mathbb{V}[X]+\mathbb{V}[Y].$

Indépendance et convolution

Soient X et Y deux v.a. indépendantes de densités respectives f_X et f_Y . Alors X+Y admet une densité f_{X+Y} donnée par

$$f_{X+Y}(x) = (f_X * f_Y)(x) = \int_{\mathbb{R}} f_X(x-y) f_Y(y) \, dy.$$

8 Fonction caractéristique

Fonction caractéristique

Soit \vec{X} un \vec{v} .a. de dimension d. La fonction caractéristique de \vec{X} est

$$\phi_{\vec{X}}: \vec{u} \in \mathbb{R}^d \mapsto \mathbb{E}[e^{i\vec{u}\cdot\vec{X}}] = \mathbb{E}[\cos(\vec{u}\cdot\vec{X})] + i\,\mathbb{E}[\sin(\vec{u}\cdot\vec{X})]$$

<u>Variable à densité</u>

Si \vec{X} est à densité f, alors $\phi_{\vec{X}}$ est la transformée de Fourier \hat{f} de f.

Fonction caractéristique et continuité

Soit \vec{X} un v.a. $\phi_{\vec{X}}$ est continue, de module inférieur à 1 et $\phi_{\vec{X}}(\vec{0}) = 1$.

Fonction caractéristique et moments

Soit X une v.a. réelle. Si $|X|^m$ est intégrable pour un entier m, alors ϕ_X est de classe \mathscr{C}^m et

$$\phi_X^{(m)}(u) = i^m \mathbb{E}[e^{iuX} X^m].$$

En particulier, $\mathbb{E}[X] = -i\phi_X'(0)$ et $\mathbb{E}[X^2] = -\phi_X''(0)$.

Propriété fondamentale

Si deux v.a. ont mêmes fonctions caractéristiques, alors ils ont la même loi.

Fonction caractéristique et indépendance

X et Y sont indépendantes si et seulement si $\phi_{(X,Y)} = \phi_X \phi_Y$.

9 Types de convergence

$\underline{\text{Convergence p.s.}}$

Une suite $(\vec{X}_n)_{n\in\mathbb{N}}$ de \vec{v} .a. converge presque sûrement vers \vec{X} si

$$\mathbb{P}(\|\vec{X}_n - \vec{X}\| \to 0) = 1.$$

On note $\vec{X}_n \xrightarrow{\text{p.s.}} \vec{X}$.

Propriétés de la convergence p.s.

 $\overline{\text{Soit}}(\vec{X_n}) \text{ et } (\vec{Y_n}) \text{ telles que } \overrightarrow{X_n} \xrightarrow{\text{p.s.}} \vec{X} \text{ et } \vec{Y_n} \xrightarrow{\text{p.s.}} \vec{Y} :$

- (i) pour toute fonction continue f, $f(\vec{X}_n) \xrightarrow{\text{p.s.}} f(\vec{X})$;
- (ii) $(\vec{X}_n, \vec{Y}_n) \xrightarrow{\text{p.s.}} (\vec{X}, \vec{Y})$;
- (iii) $\vec{X}_n + \vec{Y}_n \xrightarrow{\text{p.s.}} \vec{X} + \vec{Y}, \ \vec{X}_n \cdot \vec{Y}_n \xrightarrow{\text{p.s.}} \vec{X} \cdot \vec{Y} \text{ etc.}$

Convergence monotone

Soit (X_n) une suite de v.a. positives, croissante et convergeant p.s. vers X. On a $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

Lemme de Fatou

Soit (X_n) une suite de v.a. positives. On a $\mathbb{E}[\liminf X_n] \leq \liminf \mathbb{E}[X_n]$.

Convergence dominée

Soit (X_n) une suite de v.a. quelconques, convergeant p.s. vers X. On suppose que $|X_n| \leq Z$ pour tout n, avec Z v.a. intégrable.

On a alors que X_n et X sont intégrables et que $\mathbb{E}[|X_n - X|] \to 0$.

Convergence en moyenne

La suite (X_n) converge en moyenne vers X si X_n et X sont intégrables et que $\mathbb{E}[|X_n - X|] \to 0$.

On note $X_n \xrightarrow{L^1} X$.

Convergence dominée

Si X_n est dominée par une v.a. intégrable, alors

$$[X_n \xrightarrow{\text{p.s.}} X] \implies [X_n \xrightarrow{L^1} X].$$

Convergence en probabilité

 (X_n) converge en probabilité vers X si

$$(\forall \epsilon > 0) \quad \mathbb{P}(|X_n - X| \geqslant \epsilon) \to 0.$$

On note $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$.

Inégalité de Markov et convergence

L'inégalité de Markov permet de prouver que si X_n et X sont intégrables alors

$$[X_n \xrightarrow{L^1} X] \implies [X_n \xrightarrow{\mathbb{P}} X].$$

Cas bornée presque sûrement

S'il existe une constante a > 0 telle que $\mathbb{P}(|X_n| \leq a) = 1$, alors

$$[X_n \xrightarrow{\mathbb{P}} X] \implies [X_n \xrightarrow{L^1} X].$$

Convergences p.s. et en probabilité

On a

$$[X_n \xrightarrow{\text{p.s.}} X] \implies [X_n \xrightarrow{\mathbb{P}} X].$$

Réciproque partielle

On a

$$[X_n \xrightarrow{\mathbb{P}} X] \implies [(\exists \phi) \quad X_{\phi(n)} \xrightarrow{\text{p.s.}} X].$$

Convergence en loi

La suite (X_n) converge en loi vers X si pour toute fonction continue bornée f,

$$\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)].$$

On note $X_n \xrightarrow{\mathcal{L}} X$.

La convergence en loi est très faible

On a

$$[X_n \xrightarrow{\text{p.s.}} X] \implies [X_n \xrightarrow{\mathcal{L}} X].$$

Difficile de remonter

On a

$$(\forall c \in \mathbb{R}) \quad [X_n \xrightarrow{\mathcal{L}} c] \implies [X_n \xrightarrow{\mathbb{P}} c].$$

Unicité des limites?

- (i) si $X_n \xrightarrow{\mathbb{P}} X$ et $X_n \xrightarrow{\mathbb{P}} Y$, alors X = Y p.s.;
- (ii) si $X_n \xrightarrow{\mathcal{L}} X$ et $X_n \xrightarrow{\mathcal{L}} Y$, alors X et Y ont même loi.

Lien avec la fonction de répartition

Soit (X_n) et X des v.a. de fonctions de répartition F_n et F. On a

$$[X_n \xrightarrow{\mathcal{L}} X] \iff [F_n(t) \longrightarrow F(t) \text{ partout où } F \text{ continue}].$$

<u>Lien avec la densité</u>

Si $X_n \xrightarrow{\mathcal{L}} X$ avec X à densité, alors pour tous a < b,

$$\mathbb{P}(X_n \in [a, b[) \longrightarrow \mathbb{P}(X \in [a, b[).$$

Lien avec la fonction caractéristique

Soit (\vec{X}_n) des \vec{v} .a. à valeurs dans \mathbb{R}^d :

- (i) si $\vec{X}_n \xrightarrow{\mathcal{L}} \vec{X}$, alors $\phi_{\vec{X}_n} \longrightarrow \phi_{\vec{X}}$ simplement;
- (ii) si $\phi_{\vec{X}_n}$ converge simplement vers ϕ continue en $\vec{0}$, alors ϕ est la fonction caractéristique d'un \vec{v} .a. \vec{X} et $\vec{X}_n \xrightarrow{\mathcal{L}} \vec{X}$.

10 Lois classiques

Loi	Densité	\mathbb{E}	\mathbb{V}
Uniforme $\mathcal{U}[a,b]$	$rac{1_{[a,b]}(x)}{b-a}$	$\frac{b-a}{2}$	$\frac{(b-a)^2}{12}$ $\frac{1}{\lambda^2}$
Exponentielle $\mathscr{E}(\lambda)$	$\lambda e^{-\lambda x} 1_{\mathbb{D}} (x)$	$\frac{b-a}{2}$ $\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normale $\mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$	μ	σ^2
Gamma $\Gamma(\alpha, \theta)$	$\frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$ $\frac{1}{\sqrt{2\pi}} e^{\alpha x^{\alpha-1}} e^{-\theta x} 1_{\mathbb{R}_+}(x)$ $\frac{x^{n/2-1}}{2^{n/2}\Gamma(n/2)} e^{-x/2} 1_{\mathbb{R}_+}(x)$	$\frac{\alpha}{\theta}$	$\frac{\alpha}{\theta^2}$
Chi-deux $\chi^2(n)$	$\frac{x^{n/2-1}}{2^{n/2}\Gamma(n/2)} e^{-x/2} 1_{\mathbb{R}_+}(x)$	n	2n
Cauchy	$\frac{1}{\pi} \frac{1}{1+x^2}$	Ø	Ø
Poisson $\mathcal{P}(\lambda)$	$\mathbb{P}(X=n) = e^{-\lambda} \frac{\lambda^n}{n!}$	λ	λ

11 Lois des grands nombres et théorème centrale limite

Loi faible des grands nombres

Soit (X_n) une suite de v.a. i.i.d. de carré intégrable. Si m est leur espérance, alors

$$M_n = \frac{X_1 + \dots + X_n}{n} \left\{ \begin{array}{c} \stackrel{\mathbb{P}}{\longrightarrow} m \\ \stackrel{L^1}{\longrightarrow} m \end{array} \right.$$

Loi forte des grands nombres

Soit (X_n) une suite de v.a. i.i.d. intégrables. Si m est leur espérance, alors

$$M_n = \frac{X_1 + \dots + X_n}{n} \begin{cases} \xrightarrow{\text{p.s.}} m \\ \xrightarrow{L^1} m \end{cases}$$

<u>Histogramme</u>

Soit (X_n) une suite de v.a. indépendantes et de même fonction de répartition F. Pour tous a < b, on a

$$\frac{1}{n}\operatorname{Card}\{1 \leqslant i \leqslant n : a < X_i \leqslant b\} \xrightarrow{\text{p.s.}} F(b) - F(a).$$

Méthode de Monte-Carlo

Soit (\vec{X}_n) suite de \vec{v} .a. i.i.d. à valeurs dans $A \subseteq \mathbb{R}^d$. On suppose qu'ils admettent f comme densité. Soit $g: A \to \mathbb{R}$ telle que $g(\vec{X}_1)$ soit intégrable. On a

$$\frac{g(\vec{X}_1) + \dots + g(\vec{X}_n)}{n} \xrightarrow{\text{p.s.}} \mathbb{E}[g(\vec{X}_1)] = \int_A g(\vec{x}) f(\vec{x}) \, d\vec{x}.$$

Théorème central limite

Soit (X_n) une suite de v.a. i.i.d. de carré intégrable, d'espérance m et de variance σ^2 Si

$$M_n = \frac{X_1 + \dots + X_n}{n},$$

alors

$$\sqrt{n}(M_n-m) \xrightarrow{\mathcal{L}} \mathcal{N}(0,\sigma^2).$$

Ce que cela signifie

En gros, pour n assez grand, on a

$$M_n \approx m + \mathcal{N}(0, \frac{\sigma^2}{n}) = \mathcal{N}(m, \frac{\sigma^2}{n}).$$

Méthode delta

Soit (X_n) une suite de v.a. i.i.d. de carré intégrable, d'espérance m et de variance σ^2 . On note $\overline{X}_n = (X_1 + \dots + X_n)/n$. En appliquant le théorème centrale limite, éventuellement après avoir écrit une formule de Taylor, on montre que :

- (i) si g continue, alors $g(\overline{X}_n) \xrightarrow{\text{p.s.}} m$;
- (ii) si g est \mathscr{C}^1 , alors

$$\sqrt{n}(g(\overline{X}_n) - m) \xrightarrow{\mathcal{L}} \mathcal{N}(0, g'(m)^2 \sigma^2);$$

(iii) si g'(m) = 0 et g est \mathscr{C}^2 , alors

$$n(g(\overline{X}_n) - m) \xrightarrow{\mathcal{L}} \frac{1}{2}\sigma^2 g''(m)\chi_1^2$$

12 Vecteurs gaussiens

Vecteur gaussien

Un v.a. \vec{X} : $\Omega \to \mathbb{R}^n$ est dit gaussien si sa fonction caractéristique est de la forme

$$\phi_{\vec{\mathbf{v}}}: \vec{\mathbf{u}} \mapsto e^{\mathrm{i}\langle \vec{\mathbf{u}}, \vec{m} \rangle - \frac{1}{2}\langle \vec{\mathbf{u}}, C\vec{\mathbf{u}} \rangle}$$

où $\vec{m} \in \mathbb{R}^n$ et C est une matrice symétrique positive. On note $\vec{X} \sim \mathcal{N}(\vec{m}, C)$.

Espérance et variance d'un vecteur gaussien

Avec les notations précédentes, on a $\mathbb{E}[\vec{X}] = \vec{m}$ et $C = (\text{Cov}(X_i, X_j))$.

Caractérisation d'un vecteur gaussien

 \overrightarrow{X} est un vecteur gaussien si et seulement si pour tout $\overrightarrow{a} \in \mathbb{R}^n$, $\langle \overrightarrow{a}, \overrightarrow{X} \rangle = \overrightarrow{a}^\top \overrightarrow{X}$ suit une loi normale.

Autrement dit, il faut et il suffit que toute combinaison linéaire des coordonnées de \vec{X} suive une loi normale.

Vecteur gaussien non dégénéré

Un vecteur gaussien est dit non dégénéré si C est inversible (c'est-à-dire si C est définie positive).

Densité d'un vecteur gaussien

Un vecteur gaussien est non dégénéré si et seulement si il est à densité. Dans ce cas, sa densité est

$$f_{\vec{X}}: \vec{x} \mapsto \frac{1}{(2\pi)^{N/2}\sqrt{\det C}} \times \exp\left[-\frac{1}{2}\langle \vec{u} - \vec{m}, C(\vec{u} - \vec{m})\rangle\right].$$

Lois des coordonnées

Soit \vec{X} un \vec{v} . gaussien non dégénéré suivant $\mathcal{N}(\vec{m}, C)$. Alors $X_i \sim \mathcal{N}(m_i, C_{ii})$.

Réciproque dans le cas standard

 $\vec{X} \sim \mathcal{N}(\vec{0}, I)$ si et seulement si $X_i \sim \mathcal{N}(0, 1)$.

Normalisation d'un vecteur gaussien

Soit $\vec{Z} \sim \mathcal{N}(\vec{m}, C)$ un vecteur gaussien non dégénéré. On a :

(i) si $\vec{a} \in \mathbb{R}^n$ et A inversible, alors

$$A\vec{X} + \vec{a} \sim \mathcal{N}(A\vec{m} + \vec{a}, ACA^{\top});$$

(ii) C admet une racine carrée inversible et

$$C^{-1/2}(\vec{X} - \vec{m}) \sim \mathcal{N}(\vec{0}, I).$$

Lien avec la covariance

Soit \vec{X} un \vec{v} . gaussien non dégénéré. Les v.a. X_i et X_j sont indépendantes si et seulement si $\text{Cov}(X_i, X_j) = 0$.

Somme de lois normales indépendantes

Si $X \sim \mathcal{N}(\mu, \sigma^2)$ et $Y \sim \mathcal{N}(\nu, \tau^2)$ sont indépendantes, alors $X + Y \sim \mathcal{N}(\mu + \nu, \sigma^2 + \tau^2)$.

13 Estimateurs

Modèle statistique

Un modèle statistique est un triplet $(\mathfrak{X}, \mathcal{A}, \mathcal{P})$ où \mathcal{A} est une tribu sur \mathfrak{X} et $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$ est une famille de probabilités sur $(\mathfrak{X}, \mathcal{A})$.

Sur une paire d'éléments

On peut définir un modèle statistique sur $\{0,1\}$ en le paramétrant par la probabilité d'obtenir $1: \mathbb{P}_{\theta}(\{1\}) = 1 - \mathbb{P}_{\theta}(\{0\}) = \theta$. Ici on a donc $\Theta = [0, 1]$.

Échantillon

Un n-échantillon est un $\vec{\mathbf{v}}$.a. \vec{X} de n v.a. i.i.d. appartenant au modèle statistique.

Estimateur

On appelle estimateur une fonction $\mathfrak{X}^n \to \Theta$. On la note souvent $\hat{\theta}_n$. On confond souvent $\hat{\theta}_n$ avec $\hat{\theta}_n(\vec{X})$ où \vec{X} est un n-échantillon fixé.

Biais

Un estimateur $\hat{\theta}_n$ est non biaisé si $\mathbb{E}_{\theta}[\hat{\theta}_n] = \theta$ pour tout $\theta \in \Theta$, où \mathbb{E}_{θ} est l'espérance relativement à la probabilité \mathbb{P}_{θ} . (c'est-à-dire $\mathbb{E}_{\theta}[\hat{\theta}_n(\vec{X})] = \theta$)

<u>Écart quadratique moyen</u>

Si $g: \Theta \to \mathbb{R}$, alors l'écart quadratique moyen d'un estimateur \hat{g}_n de $g(\theta)$ est

$$RQM_{\theta}(\hat{g}_n) = \mathbb{E}_{\theta}[\hat{g}_n - g(\theta)^2]$$
$$= \mathbb{V}_{\theta}[\hat{g}_n] + (\mathbb{E}_{\theta}(\hat{g}_n) - g(\theta))^2$$

où $\theta \in \Theta$ est fixé.

Estimateur convergent

(i) on dit qu'un estimateur $\hat{\theta}_n$ est convergent si, pour tout $\theta \in \Theta$ et tout $\epsilon > 0$,

$$\mathbb{P}_{\theta}(|\hat{\theta}_n - \theta| > \epsilon) \to 0 \quad \text{quand} \quad n \to +\infty,$$

autrement dit, si pour tout $\theta \in \Theta$, $\hat{\theta}_n(\vec{X})$ converge en probabilité vers θ .

(ii) on dit que $\hat{\theta}_n$ est fortement convergent si, pour tout $\theta \in \Theta$,

$$\mathbb{P}_{\theta}(\hat{\theta}_n \to \theta) = 1,$$

autrement dit, si pour tout $\theta \in \Theta$, $\hat{\theta}_n(\vec{X})$ converge p.s. vers θ .

Estimateur asymptotiquement normal

Soit $g:\Theta\to\mathbb{R}$. Un estimateur \hat{g}_n de $g(\theta)$ est dit asymptotiquement normal s'il existe deux fonctions $m_n,\sigma_n:\Theta\to\mathbb{R}$ telles que

$$(\forall \theta \in \Theta) \quad \frac{\hat{g}_n - m_n(\theta)}{\sigma_n(\theta)} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1) \quad \text{sous } \mathbb{P}_{\theta}.$$

14 Estimateurs empiriques

Dans la suite on se place dans un modèle statistique de la forme $(\mathbb{R}, \mathcal{P}(\mathbb{R}), \mathcal{P})$.

Estimateur de la moyenne

Soit \vec{X} un *n*-échantillon, dont les lois sont intégrables. On note μ_{θ} la moyenne d'une v.a. suivant \mathbb{P}_{θ} .

La moyenne empirique est l'estimateur défini par $\overline{X}_n: \vec{x} \mapsto (x_1 + \dots + x_n)/n$.

Propriétés de l'estimateur de la moyenne

Avec les notations précédentes :

- (i) \overline{X}_n est non biaisé;
- (ii) \overline{X}_n est fortement convergent;
- (iii) si de plus les lois sont de carré intégrables, qu'on note σ_{θ}^2 la variance d'une loi \mathbb{P}_{θ} , alors

$$RQM_{\theta}(\overline{X}_n) = \frac{\sigma_{\theta}^2}{n};$$

(iv) \overline{X}_n est asymptotiquement normal pour $(\mu_{\theta}, \sigma_{\theta}/\sqrt{n})$, c'est-à-dire que

$$\sqrt{n} \frac{\overline{X}_n - \mu_\theta}{\sigma_\theta} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

ou encore

$$\sqrt{n}(\overline{X}_n - \mu_\theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma_\theta^2).$$

Estimateur de la variance

Avec les mêmes notations, on définit

$$\overline{V}_n: \vec{x} \mapsto \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X}_n(\vec{x}))^2$$

c'est-à-dire (abusivement)

$$\overline{V}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Propriétés de l'estimateur de la variance

- (i) \overline{V}_n est biaisé : $\mathbb{E}_{\theta}[\overline{V}_n] = \frac{n-1}{n}\sigma_{\theta}^2$;
- (ii) il est fortement convergent;
- (iii) si les lois sont de quatrième moment fini, alors

$$RQM_{\theta}(\overline{V}_n) = \frac{\mu_{\theta}^{(4)} - \sigma_{\theta}^4}{n} + O(\frac{1}{n}),$$

où
$$\mu_{\theta}^{(4)} = \mathbb{E}_{\theta}[(X_1 - \mathbb{E}_{\theta}[X_1])^4];$$

(iv) si les lois sont de quatrième moment fini, alors \overline{V}_n est asymptotiquement normal et

$$\sqrt{n}(\overline{V}_n - \sigma_\theta^2) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \mu_\theta^{(4)} - \sigma_\theta^4).$$

Estimateur de la variance non biaisé

On peut débiaiser l'estimateur de la variance en posant

$$V_n = \frac{n}{n-1}\overline{V}_n = \frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Il vérifie exactement propriétés (ii), (iii) et (iv) ci-dessus, et est non biaisé.