Chapitre 7 : Équations et systèmes différentiels

Plan du chapitre

1	Équations différentielles linéaires scalaires d'ordre 1	1
	1.A Recherche d'une solution particulière	1
	1.B Recollement des solutions	4
	Équations différentielles linéaires scalaires d'ordre 2 2. A Équation du second ordre à coefficients constants	

1 Équations différentielles linéaires scalaires d'ordre 1

On appelle équation différentielle linéaire scalaire d'ordre 1, une équation dont l'inconnue est une fonction y dérivable sur un intervalle $I \subset \mathbb{R}$, du type :

$$a(t)y' + b(t)y = c(t)$$
 (\mathscr{E})
 $a(t)y' + b(t)y = 0$ (\mathscr{H}).

où $a, b, c: I \to \mathbb{C}$ sont des fonctions continues sur I.

On appelle (\mathcal{H}) l'équation différentielle homogène (sans second membre) associée à (\mathcal{E}) .

Une équation différentielle est dite résolue si elle est sous la forme : y' + b(t)y = c(t) (i.e. a = 1).

Théorème 1: Problème de Cauchy

Si la fonction a ne s'annule pas sur I, le problème de Cauchy :

$$\begin{cases} a(t)y' + b(t)y = c(t) \\ y(t_0) = y_0 \end{cases}$$

où $(t_0, y_0) \in I \times \mathbb{K}$, admet une unique solution sur I.

Remarques

Comme dans le théorème précédent on suppose que a ne s'annule pas sur I.

La seule solution y d'une équation homogène a(t)y' + by = 0 s'annulant au moins une fois sur I (i.e. telle que $\exists t_0 \in I, y(t_0) = 0$) est donc la fonction identiquement nulle (puisqu'elle est solution).

Théorème 2: Équation différentielle homogène et solution générale

- On considère l'équation homogène résolue $y' + \alpha(t)y = 0$ (\mathcal{H}) . Toute solution de (\mathcal{H}) est de la forme $y(t) = Ke^{-A(t)}, K \in \mathbb{R}$ où A est une primitive sur I de la fonction α .
- L'équation $y' + \alpha(t)y = \beta(t)$ (\mathscr{E}) admet pour solution générale $y(t) = y_p(t) + Ke^{-A(t)}$ où y_p est une solution particulière de l'équation (\mathscr{E}).

Corollaire 3: Structure de l'ensemble des solutions

Lorsque $a: I \to \mathbb{C}$ ne s'annule pas sur l'intervalle I, l'ensemble $S_{\mathscr{H}}$ des solutions de (\mathscr{H}) est une droite vectorielle $S_{\mathscr{H}} = Vect(t \mapsto e^{-A(t)})$.

On a alors $S_{\mathscr{E}} = y_p + S_{\mathscr{H}}$: toute solution de \mathscr{E} est la somme d'une solution particulière de \mathscr{E} et d'une solution de l'équation homogène.

1.A Recherche d'une solution particulière

Pour déterminer une solution particulière, plusieurs possibilités sont envisageables :

• Il y a une solution constante évidente :

Exercice 4

Résoudre sur \mathbb{R}_{+}^{*} l'équation différentielle ty' + y = 1.

Solution. On résout (\mathcal{E}) : ty' + y = 1 sur \mathbb{R}_+^* .

Sur \mathbb{R}_+^* , l'équation (\mathscr{E}) est équivalent à $y'(t) + \frac{1}{t}y(y) = \frac{1}{t}$.

Équation homogène : $(\mathcal{H}): y'(t) = -\frac{1}{t}y(t).$

Toute solution de (\mathcal{H}) s'écrit sur $\mathbb{R}_+^*: y(t) = Ke^{-\ln(t)} = \frac{K}{t}: K \in \mathbb{R}$.

Solution particulière: la solution $y_p(t) = 1$ constante est solution de (\mathscr{E}) sur \mathbb{R}_+^* .

La solution générale de (\mathscr{E}) sur \mathbb{R}_+^* est donc $y:t\mapsto 1+\frac{K_+}{t}:K_+\in\mathbb{R}.$

2 On recherche une solution du même type que le second membre :

* Si $\alpha \in \mathbb{R}$ et (\mathscr{E}) : $y' + \alpha y = P$ avec $P \in \mathbb{R}[X]$ on cherche y sous la forme $Q \in \mathbb{R}[X]$ $(\deg(Q) = \deg(P) \text{ si } \alpha \neq 0, \deg(Q) = \deg(P) + 1 \text{ si } \alpha = 0).$

Exercice 5

Résoudre l'équation différentielle $y'(t) - y(t) = t^2 - 3t + 1$.

Solution. Toute solution de l'équation homogène s'écrit $y(t) = Ke^t : K \in \mathbb{R}$.

On cherche une solution $y_p(t) = at^2 + bt + c$ polynomiale de $2 = \deg(t^2 - 3t + 1)$ car $\alpha = -1 \neq 0$.

On injecte dans (\mathcal{E}) on trouve :

$$(2at + b) - (at^2 + bt + c) = t^2 - 3t + 1 \iff a = -1, b = 1, c = 0$$

Ainsi, $t \mapsto y_p(t) = -t^2 + t$, est solution particulière de (\mathscr{E}) et la solution générale de (\mathscr{E}) est

$$y: t \mapsto y(t) = -t^2 + t + Ke^t.$$

* Si $\alpha \in \mathbb{R}$ et $(\mathscr{E}): y' + \alpha y = \lambda e^{\mu t}$, on cherche y sous la forme

$$y(t) = \begin{cases} \nu e^{\mu t} & \text{si} \quad \mu \neq -\alpha \\ \nu t e^{\mu t} & \text{si} \quad \mu = -\alpha \end{cases}$$

Exercice 6

Résoudre l'équation différentielle $y'(t) + 7y(t) = 3e^{4t}$

Solution. Toute solution de l'équation homogène y'+7y=0 s'écrit $y(t)=Ke^{-7t}:K\in\mathbb{R}$.

On cherche une solution particulière sous la forme $y_p(t) = \nu e^{4t}$.

Alors y_p est solution de l'équation initiale (\mathscr{E}) si et seulement si $4\nu e^{4t} + 7\nu e^{4t} = 3e^{4t}$. Une solution particulière de (\mathscr{E}) est donc $y_p(t) = \frac{3}{11}e^{4t}$ et la solution générale :

$$y: t \mapsto \frac{3}{11}e^{4t} + Ke^{-7t}: K \in \mathbb{R}.$$

* Si $\alpha \in \mathbb{R}$ et $(\mathscr{E}): y' + \alpha y = P(t)e^{mt}$ où $P \in \mathbb{R}[X], m \in \mathbb{C}$ on cherche y sous la forme $y(t) = Q(t)e^{mt}$ avec $Q \in \mathbb{R}[X]$.

Exercice 7

Résoudre l'équation différentielle $y'(t) + y(t) = te^{-t}$.

Solution. $y'(t) + y(t) = te^{-t}$.

Équation homogène:

Toute solution de l'équation homogène y'(t)+y(t)=0 s'écrit sur $\mathbb{R}_+^*:y(t)=Ke^{-t}:K\in\mathbb{R}.$

Solution particulière:

On cherche une solution sous la forme $y_p(t) = Q(t)e^{-t}$ avec $Q \in \mathbb{R}[X]$.

On injecte dans (\mathscr{E}) et on obtient que y_p est solution si et seulement si pour tout t > 0 (on simplifie par $e^{-t} \neq 0$):

$$(Q'(t) - Q(t)) + Q(t) = t \iff Q'(t) = t \iff Q(t) = \frac{t^2}{2} + C : C \in \mathbb{R}.$$

Une solution particulière est donc $y_p(t) = \frac{t^2}{2}$ et on en déduit la solution générale de (\mathscr{E}) sur \mathbb{R}_+^* :

$$y: t \mapsto \frac{t^2}{2} + Ke^{-t}: K \in \mathbb{R}.$$

* Si $\alpha \in \mathbb{R}$ et $(\mathscr{E}): y' + \alpha y = A\cos(\omega t) + B\sin(\omega t)$, on cherche y sous la forme

$$y(t) = C\cos(\omega t) + D\sin(\omega t).$$

Exercice 8

Résoudre l'équation différentielle $y'(t) - 3y(t) = -7\sin(4t)$.

Solution. Toute solution de l'équation homogène $(\mathcal{H}): y'(t)-3y(t)=0$ s'écrit $y(t)=Ke^{3t}, K\in\mathbb{R}.$

On cherche une solution particulière sous la forme $y_p(t) = \lambda \cos(4t) + \mu \sin(4t)$. y_p est solution de (\mathscr{E}) si et seulement si pour tout $t \in \mathbb{R}$:

$$-4\lambda \sin(4t) + 4\mu \cos(4t) - 3\lambda \cos(4t) - 3\mu \sin(4t) = -7\sin(4t)$$

\$\iff \cos(4t)(4\mu - 3\lambda) - (4\lambda + 3\mu)\sin(4t) = -7\sin(4t).\$

Avec t = 0, on trouve $4\mu = 3\lambda$ et si $t = \frac{\pi}{8}$, on trouve $-(4\lambda + 3\mu) = -7 \Leftrightarrow 4\lambda + 3\mu = 7$. On obtient $\lambda = 28/25$ et $\mu = 21/25$.

La solution générale de (&) est donc

$$y: t \mapsto Ke^{3t} + \frac{28}{25}\cos(4t) + \frac{21}{25}\sin(4t): K \in \mathbb{R}.$$

3 Méthode de la variation de la constante.

Si l'on ne trouve pas de solution particulière simple, on utilise la méthode de la variation de la constante : on cherche y sous la forme $y(t) = \lambda(t)e^{-A(t)}$ où A est une primitive de α sur I. On écrit que y est solution de $(\mathscr{E}): y' + \alpha(t)y = \beta(t)$, on obtient :

$$\left(\lambda'(t)e^{-A(t)} - \alpha(t)\lambda(t)e^{-A(t)}\right) + \alpha(t)\left(\lambda(t)e^{-A(t)}\right) = \beta(t) \Longleftrightarrow \lambda'(t) = e^{A(t)}\beta(t).$$

On trouve $\lambda(t)$ par la recherche d'une primitive puis on en déduit $y(t) = \lambda(t)e^{-A(t)}$.

Exercice 9

Résoudre sur \mathbb{R}_+^* l'équation différentielle $ty' + y = \ln t$.

Solution. Sur \mathbb{R}_+^* , l'équation (\mathscr{E}) est équivalente à $y' + \frac{1}{t}y = \frac{\ln(t)}{t}$

Toute solution de l'équation homogène $y' + \frac{1}{t}y = 0$ s'écrit $y(t) = \frac{K}{t}$.

On cherche une solution particulière : $y_p(t) = \frac{K(t)}{t}$.

On injecte dans (\mathscr{E}) et on obtient que y_p est solution si et seulement si pour tout t>0:

$$-\frac{K(t)}{t^2} + \frac{K'(t)}{t} + \frac{1}{t}\frac{K(t)}{t} = \frac{\ln(t)}{t} \iff K'(t) = \ln(t) \iff K(t) = t\ln(t) - t + C : C \in \mathbb{R}.$$

Une solution particulière de (\mathscr{E}) sur \mathbb{R}_+^* : est donc $y_p(t) = \ln(t) - 1$. La solution général de (\mathscr{E}) sur \mathbb{R}_+^* est donc

$$y: t \longmapsto \ln(t) - 1 + \frac{K}{t}: K \in \mathbb{R}.$$

1.B Recollement des solutions

On considère l'équation a(t)y' + b(t)y = c(t) sur un intervalle I où la fonction a ne s'annule pas.

Si $I=\mathbb{R}$ on applique les méthodes exposées ci-dessus.

Sinon, on découpe \mathbb{R} en plusieurs intervalles I sur lesquelles la fonction a ne s'annule pas.

Si $a(t_0) = 0$, on tente alors de recoller les solutions déterminées pour $t < t_0$ et $t > t_0$ en une solution y valable en t_0 également, en utilisant :

- la continuité de la solution y en t_0 : $\lim_{t \to t_0^-} y(t) = \ell = \lim_{t \to t_0^+} y(t)$.
- la dérivabilité de la solution y en t_0 :

$$\lim_{t \to t_0^-} \frac{y(t) - \ell}{t - t_0} = \lim_{t \to t_0^+} \frac{y(t) - \ell}{t - t_0}.$$

Exercice 10

- 1. Résoudre ty' + y = 1 et montrer qu'il existe une unique solution valable sur \mathbb{R} .
- 2. Résoudre $ty'(t) y(t) = t^2$ et déterminer les solutions valables sur \mathbb{R} .
- 3. Résoudre $ty' + |t|y = t^2 e^{-|t|}$ et montrer qu'il existe une unique solution valable sur \mathbb{R} .

Solution. 1. — On résout (\mathscr{E}) : ty' + y = 1 sur \mathbb{R}_+^* .

Sur \mathbb{R}_+^* , l'équation (\mathscr{E}) est équivalent à $y'(t) + \frac{1}{t}y(y) = \frac{1}{t}$.

Équation homogène : $(\mathcal{H}): y'(t) = -\frac{1}{t}y(t).$

Toute solution de (\mathcal{H}) s'écrit sur $\mathbb{R}_+^*: y(t) = Ke^{-\ln(t)} = \frac{K}{t}: K \in \mathbb{R}$.

Solution particulière: la solution $y_p(t) = 1$ constante est solution de (\mathscr{E}) sur \mathbb{R}_+^* .

La solution générale de (\mathscr{E}) sur \mathbb{R}_+^* est donc $y: t \mapsto 1 + \frac{K_+}{t}: K_+ \in \mathbb{R}$.

— Sur \mathbb{R}_{-}^{*} la solution générale de (\mathscr{E}) est $y:t\mapsto 1-\frac{K_{-}}{t}:K_{-}\in\mathbb{R}$.

Si y est une solution sur $\mathbb R$ alors il existe des réels K_+ et K_- tels que

- Pour tout t > 0, $y(t) = 1 + \frac{K_+}{t}$.
- Pour tout t < 0, $y(t) = 1 \frac{K_-}{t}$.

La fonction y est continue en 0 donc

$$\lim_{t \to 0^+} y(t) = \lim_{t \to 0^-} y(t).$$

Puisque $\lim_{t\to 0^+}\frac{1}{t}=+\infty$ et $\lim_{t\to 0^-}\frac{1}{t}=-\infty$ on obtient nécessairement $K_+=K_-=0$.

Par conséquent, l'unique solution valable sur \mathbb{R} est la fonction constante $t \mapsto y(t) = 1$.

2. — On résout l'équation $(\mathscr{E}): ty'(t) - y(t) = t^2$ sur \mathbb{R}_+^* .

Sur \mathbb{R}_+^* , l'équation (\mathscr{E}) est équivalente à $y'(t) - \frac{1}{t}y(t) = t$.

Équation homogène : Toute solution de l'équation homogène $(\mathcal{H}): y'(t) - \frac{1}{t}y(t) = 0$ s'écrit $Kt, K \in \mathbb{R}$.

Solution particulière : la fonction $t \mapsto y_p(t) = t^2$ est solution particulière sur \mathbb{R}_+^* de (\mathscr{E}) .

La solution générale de (\mathscr{E}) sur \mathbb{R}_+^* est donc $t \mapsto y(t) = t^2 + K_+ t : K_+ \in \mathbb{R}$.

— Sur \mathbb{R}_{-}^* la solution générale est $t \mapsto y(t) = t^2 - K_{-}t : K_{-} \in \mathbb{R}$.

Si y est une solution valable sur $\mathbb R$ alors il existe des réels K_+,K_- tels que

- Pour tout t > 0, $y(t) = t^2 + K_+ t$
- Pour tout t < 0, $y(t) = t^2 K_- t$
- \bullet La fonction y est continue en 0, donc

$$\lim_{t \to 0^-} y(t) = 0 = \lim_{t \to 0^+} y(t).$$

On en déduit que y(0) = 0.

 \bullet La fonction y est dérivable en 0, donc

$$\lim_{t\to 0^-}\frac{y(t)-y(0)}{t-0}=\lim_{t\to 0^-}\frac{y(t)}{t}=\lim_{t\to 0^-}(t-K_-)=-K_-=K_+=\lim_{t\to 0^+}\frac{y(t)-y(0)}{t-0}.$$

On obtient donc $K_{+} = -K_{-}$.

On en déduit que les solutions valables sur $\mathbb R$ sont de la forme

$$y(t) = \left\{ \begin{array}{ll} t^2 + Kt & \text{si} & t > 0 \\ 0 & \text{si} & t = 0 \\ t^2 + Kt & \text{si} & t < 0 \end{array} \right\} = t^2 + Kt : K \in \mathbb{R}.$$

3. — On résout l'équation $(\mathscr{E}): ty'(t) + |t|y(t) = t^2e^{-|t|}$ sur \mathbb{R}_+^* . Sur \mathbb{R}_+^* l'équation (\mathscr{E}) est équivalente à $y'(t) + y(t) = te^{-t}$.

Équation homogène:

Toute solution de l'équation homogène y'(t)+y(t)=0 s'écrit sur $\mathbb{R}_+^*:y(t)=Ke^{-t}:K\in\mathbb{R}.$

Solution particulière:

On cherche une solution sous la forme $y_p(t) = Q(t)e^{-t}$ avec $Q \in \mathbb{R}[X]$.

On injecte dans (\mathscr{E}) et on obtient que y_p est solution si et seulement si pour tout t > 0 (on simplifie par $e^{-t} \neq 0$):

$$(Q'(t) - Q(t)) + Q(t) = t \iff Q'(t) = t \iff Q(t) = \frac{t^2}{2} + C : C \in \mathbb{R}.$$

Une solution particulière est donc $y_p(t) = \frac{t^2}{2}$ et on en déduit la solution générale de (\mathscr{E}) sur \mathbb{R}_+^* :

$$y: t \mapsto \frac{t^2}{2} + K_+ e^{-t} : K_+ \in \mathbb{R}.$$

— Sur \mathbb{R}_{-}^{*} l'équation (\mathscr{E}) est équivalente à $y'(t) - y(t) = te^{t}$.

Équation homogène:

Toute solution de l'équation homogène y'(t) - y(t) = 0 s'écrit $y(t) = Ke^t, K \in \mathbb{R}$.

Solution particulière :

On cherche une solution de (\mathscr{E}) sous la forme $y_p(t) = Q(t)e^t$ avec $Q \in \mathbb{R}[X]$.

On injecte dans (\mathscr{E}) et on obtient que y_p est solution si et seulement si pour tout t > 0, (on simplifie par e^t):

$$(Q'(t) + Q(t)) - Q(t) = t \Longleftrightarrow Q'(t) = t \Longleftrightarrow Q(t) = \frac{t^2}{2} + C$$

Une solution particulière est $y_p(t) = \frac{t^2}{2}$ et la solution générale de (\mathscr{E}) sur \mathbb{R}_-^* est

$$y: t \mapsto \frac{t^2}{2} + K_- e^t : K_- \in \mathbb{R}.$$

Soit y une solution valable sur \mathbb{R} .

Alors y est continue en 0 donc

$$\lim_{t \to 0^{-}} y(t) = K_{-} = K_{+} = \lim_{t \to 0^{+}} y(t).$$

On note $K = K_+ = K_-$.

La fonction y est dérivable en 0 donc

$$y'(0) = \lim_{t \to 0^{-}} \frac{y(t) - K}{t - 0} = \lim_{t \to 0^{-}} \frac{K(e^{t} - 1)}{t} = K$$

et

$$y'(0) = \lim_{t \to 0^+} \frac{y(t) - K}{t - 0} = \lim_{t \to 0^-} \frac{K(e^{-t} - 1)}{t} = -K$$

On obtient $K = -K \iff K = 0$.

Au final, il existe une unique solution sur \mathbb{R} à l'équation $(\mathscr{E}): t \in \mathbb{R} \longmapsto y(t) = \frac{t^2}{2}$.

2 Équations différentielles linéaires scalaires d'ordre 2

On appelle équation différentielle linéaire scalaire d'ordre 2, une équation dont l'inconnue est une fonction y deux fois dérivable sur un intervalle $I \subset \mathbb{R}$, du type :

$$a(t)y'' + b(t)y' + c(t)y = d(t) \quad (\mathscr{E})$$

$$a(t)y'' + b(t)y' + c(t)y = 0 \quad (\mathscr{H}).$$

où $a, b, c, d: I \to \mathbb{C}$ sont des fonctions continues sur I.

On appelle (\mathcal{H}) l'équation différentielle homogène (sans second membre) associée à (\mathcal{E}) .

Elle est dite résolue si elle est sous la forme : y'' + b(t)y + c(t)y = d(t) (i.e. a = 1).

Théorème 11: Problème de Cauchy

Si a ne s'annule pas sur l'intervalle I, le problème de Cauchy

$$\begin{cases} a(t)y'' + b(t)y' + c(t)y = d(t) \\ y(t_0) = y_0 \quad ; \quad y'(t_0) = y'_0 \end{cases}$$

où $(t_0, y_0, y_0') \in I \times \mathbb{K} \times \mathbb{K}$ admet une unique solution.

2.A Équation du second ordre à coefficients constants

On considère une équation différentielle

 $(\mathscr{E}): ay'' + by' + c = d(t)$ avec $(a, b, c) \in \mathbb{R}^3$ des constantes et $d: I \to \mathbb{K}$ une fonction continue sur I. L'équation homogène associée possède une structure d'espace vectoriel :

Théorème 12: Équation homogène à coefficients constants

On considère l'équation $(\mathcal{H}): ay'' + by' + cy = 0$ avec $(a, b, c) \in \mathbb{R}^3$.

On note Δ le discriminant de l'équation caractéristiques $aX^2 + bX + c = 0$.

- Si $\Delta > 0$, on note r_1, r_2 les deux racines réelles distinctes de l'équation caractéristique Il existe alors $(A, B) \in \mathbb{R}^2$ tel que $y(t) = Ae^{r_1t} + Be^{r_2t}$ pour tout $t \in \mathbb{R}$.
- Si $\Delta = 0$, on note r la racine réelle double de l'équation caractéristique. Il existe alors $(A, B) \in \mathbb{R}^2$ tel que $y(t) = (A + Bt)e^{rt}$ pour tout $t \in \mathbb{R}$.
- Si $\Delta < 0$, on note $\alpha \pm i\beta$ les racines complexes conjuguées de l'équation caractéristique. Il existe alors $(A, B) \in \mathbb{R}^2$ tel que $y(t) = e^{\alpha t}(A\cos(\beta t) + B\sin(\beta t))$ pour tout $t \in \mathbb{R}$.

Exercice 13

Résoudre les équations différentielles :

$$y'' - 3y' + 2y = 0$$
 ; $y'' + 2y' + y = 0$; $y'' + y' + y = 0$.

Théorème 14: Structure de l'ensemble des solutions

L'ensemble $S_{\mathcal{H}}$ des solutions de l'équation homogène (\mathcal{H}) est un plan vectoriel.

On a alors $S_{\mathscr{E}} = y_p + S_{\mathscr{H}}$: les solutions de \mathscr{E} sont somme d'une solution particulière de \mathscr{E} et de la solution générale de l'équation homogène.

Recherche d'une solution particulière dans le cas d'un second membre simple

- Si $t \mapsto d(t) = d$ est constante, on cherche une solution particulière $y_p = k$ constante.
- Si $t \mapsto d(t) = p(t)$ est polynomiale, on cherche une solution polynomiale $y_p(t) = q(t)$ avec :
 - $* \deg(q) = \deg(p)$ si 0 n'est pas racine de l'équation caractéristique.
 - $* \deg(q) = \deg(p) + 1$ si 0 est racine simple de l'équation caractéristique.
 - * deg(q) = deg(p) + 2 si 0 est racine double de l'équation caractéristique.
- Si $t \mapsto p(t)e^{mt}$, on cherche une solution particulière $y_p = q(t)e^{mt}$ avec :
 - * deg(q) = deg(p) si m n'est pas racine de l'équation caractéristique.
 - $* \deg(q) = \deg(p) + 1$ si m est racine simple de l'équation caractéristique.
 - $* \deg(q) = \deg(p) + 2$ si m est racine double de l'équation caractéristique.

Proposition 15: Principe de superposition

Si y_1 est solution de l'équation $ay'' + by' + cy = d_1(t)$ et y_2 de l'équation $ay'' + by' + cy = d_2(t)$ alors $y_1 + y_2$ est solution de l'équation $ay'' + by' + cy = d_1(t) + d_2(t)$.

Exercice 16

- 1. Résoudre l'équation différentielle $y'' + 2y' + y = t \operatorname{ch}(t)$.
- 2. Résoudre l'équation différentielle $y'' 3y' + 2y = 2t + 3 + (6t + 1)e^{-t} + e^t$.
- 3. Résoudre l'équation différentielle $y'' + y = \sin(t)$.

Solution.

1. L'équation homogène associée $(\mathcal{H}): y'' + 2y' + y = 0$ a pour équation caractéristique $X^2 + 2X + 1 = (X+1)^2 = 0$ qui possède une unique solution réelle double r = -1.

Toute solution de (\mathcal{H}) s'écrit donc $y(t) = (A + Bt)e^{-t}$ avec $(A, B) \in \mathbb{R}^2$.

On détermine alors une solution particulière de (\mathscr{E}) en utilisant le principe de superposition : $(\mathscr{E}): y'' + 2y' + y = \frac{1}{2}te^t + \frac{1}{2}te^{-t}$.

— On cherche une solution y_1 de $(\mathscr{E}_1): y'' + 2y' + y = \frac{1}{2}te^t = p(t)e^t$ où $p(t) = \frac{t}{2}$.

Puisque m=1 n'est pas solution de l'équation caractéristique, on cherche une solution sous la forme $y_1(t)=q(t)e^t$ avec q fonction polynomiale de degré $\deg(q)=\deg(p)=\deg(\frac{t}{2})=1$.

On note q(t) = (at + b) et $y_1(t) = (at + b)e^t$.

Pour tout $t \in \mathbb{R}$, $y_1'(t) = ae^t + (at+b)e^t = (at+a+b)e^t$

et $y_1''(t) = ae^t + (at + a + b)e^t = (at + 2a + b)e^t$.

On injecte dans (\mathcal{E}_1) , et on obtient que y_1 est solution de (\mathcal{E}_1) si et seulement si pour tout $t \in \mathbb{R}$ (on simplifie par $e^t \neq 0$):

$$(at + 2a + b) + 2(at + a + b) + (at + b) = \frac{1}{2}t \iff 4at + (4a + 4b) = 0$$

 $\iff a = \frac{1}{8}, b = -\frac{1}{8}.$

Une solution de (\mathcal{E}_1) est donc $t \mapsto y_1(t) = \frac{t-1}{8}e^t$.

- On cherche une solution y_2 de $(\mathscr{E}_2): y'' + 2y' + y = \frac{1}{2}te^{-t} = p(t)e^{-t}$ où $p(t) = \frac{t}{2}$.
 - Puisque m=-1 est racine double de l'équation caractéristique, on cherche une solution sous la forme $y_2(t)=q(t)e^{-t}$ avec q polynôme de degré $\deg(q)=\deg(p)+2=\deg(\frac{t}{2})+2=3$. On note $q(t)=(at^3+bt^2+ct+d)$ et $y_1(t)=q(t)e^{-t}$.

Pour tout $t \in \mathbb{R}$, $y_2'(t) = q'(t)e^{-t} - q(t)e^{-t} = (q'(t) - q(t))e^{-t}$.

et $y_2''(t) = (q''(t) - q'(t))e^{-t} - (q'(t) - q(t))e^{-t} = (q''(t) - 2q'(t) + q(t))e^{-t}$.

On injecte dans (\mathcal{E}_1) , et on obtient que y_1 est solution de (\mathcal{E}_1) si et seulement si pour tout $t \in \mathbb{R}$ (on simplifie par $e^{-t} \neq 0$):

$$q''(t) = \frac{t}{2} \iff 6at + 2b = \frac{t}{2}$$
$$\iff a = \frac{1}{12}, b = 0.$$

Une solution de (\mathscr{E}_2) est donc $t \mapsto y_2(t) = \frac{t^3}{12}e^{-t}$.

Une solution de (\mathscr{E}) est donc $y_p: t \longmapsto \frac{t^3}{12}e^{-t} + \frac{(t-1)}{8}e^{-t}$ et on en déduit la solution générale de (\mathscr{E}) :

$$y: t \mapsto (A+Bt)e^{-t} + \frac{t^3}{12}e^{-t} + \frac{(t-1)}{8}e^{-t}: (A,B) \in \mathbb{R}^2.$$

2. L'équation homogène $(\mathcal{H}): y''-3y'+2y=0$ admet pour équation caractéristique $X^2-3X+2=0 \iff (X-1)(X-2)=0$ qui possède deux racines réelles distinctes $r_1=1, r_2=2$.

Toute solution de (\mathcal{H}) s'écrit donc $y(t) = Ae^t + Be^{2t}, (A, B) \in \mathbb{R}^2$.

— On cherche une solution particulière de (\mathcal{E}_1) : y'' - 3y' + 2y = 2t + 3 sous la forme $y_1(t) = q(t)$ avec q une fonction polynomiale de degré $\deg(q) = \deg(p) = 1$ car m = 0 n'est pas racine de l'équation caractéristique.

On injecte dans (\mathscr{E}_1) et on obtient que y_1 est solution de (\mathscr{E}_1) sur \mathbb{R} si et seulement si pour tout $t \in \mathbb{R}$

$$-3a + 2(at + b) = 2t + 3 \iff a = 1, b = 3.$$

Une solution de (\mathscr{E}_1) est $y_1: t \mapsto t+3$.

— On cherche une solution particulière y_2 de (\mathscr{E}_2) : $y'' - 3y' + 2y = (6t + 1)e^{-t}$ sous la forme $y_2(t) = q(t)e^{-t}$ avec q une fonction polynomiale de degré $\deg(q) = \deg(6t + 1) = 1$ car m = -1 n'est pas racine de l'équation caractéristique.

On note q(t) = at + b.

On a pour tout $t \in \mathbb{R}$, $y_2'(t) = (q'(t) - q(t))e^{-t}$ et $y''(t) = (q''(t) - 2q'(t) + q(t))e^{-t}$.

On injecte dans (\mathscr{E}_2) et on obtient que y_2 est solution de (\mathscr{E}_2) sur \mathbb{R} si et seulement si pour tout $t \in \mathbb{R}$ (on simplifie par $e^{-t} \neq 0$):

$$q''(t) - 5q'(t) + 6q(t) = 6t + 1 \iff -5a + 6(at + b) = 6t + 1$$

 $\iff a = 1, b = 1.$

Une solution de (\mathcal{E}_2) est $y_2: t \mapsto (t+1)e^{-t}$.

— On cherche une solution particulière y_3 de (\mathcal{E}_3) : $y'' - 3y' + 2y = e^t$ sous la forme $y_3 = q(t)e^t$ avec q une fonction polynomiale de degré $\deg(q) = \deg(1) + 1 = 1$ car m = 1 est racine de l'équation caractéristique.

On écrit q(t) = at + b et $y_3(t) = q(t)e^t$.

On a pour tout $t \in \mathbb{R}$, $y_3'(t) = (q'(t) + q(t))e^t$ et $y_3''(t) = (q''(t) + 2q'(t) + q(t))e^t$.

On injecte dans (\mathscr{E}_3) et y_3 est alors solution de (\mathscr{E}_3) sur \mathbb{R} si et seulement si pour tout $t \in \mathbb{R}$ (on simplifie par $e^t \neq 0$):

$$q''(t) - q'(t) = 1 \iff -a = 1, b \in \mathbb{R} \iff a = -1, b \in \mathbb{R}.$$

On en déduit qu'une solution de (\mathcal{E}_3) est $y_3(t) = -te^t$ (on a choisi b = 0).

Une solution particulière de (\mathscr{E}) est donc $y_p: t \mapsto y_1(t) + y_2(t) + y_3(t)$ et la solution générale de (\mathscr{E}) :

$$y: t \mapsto (t+3) + (t+1)e^{-t} - te^{t} + Ae^{t} + Be^{2t}: (A, B) \in \mathbb{R}^{2}.$$

3. L'équation homogène $(\mathcal{H}): y'' + y = 0$ admet pour équation caractéristique $X^2 + 1 = 0$ et possède deux racines complexes conjuguées $\pm i$.

Toute solution de (\mathcal{H}) s'écrit donc $y(t) = A\cos(t) + B\sin(t) : (A, B) \in \mathbb{R}^2$.

On résout l'équation $\mathscr{E}_{\mathbb{C}}: y''+y=e^{it}$ et la solution générale de l'équation initiale $\mathscr{E}: y''+y=\sin(t)$ sera la partie imaginaire de la solution générale de $\mathscr{E}_{\mathbb{C}}$.

On cherche une solution particulière de $\mathscr{E}_{\mathbb{C}}$ sous la forme $y_p(t) = q(t)e^{it}$ avec $\deg(q) = \deg(1) + 1$ car i est racine simple de l'équation caractéristique.

On note q(t) = at + b avec $(a, b) \in \mathbb{R}^2$.

$$y'_{p}(t) = (q'(t) + iq(t))e^{it}$$
 et $y''_{p}(t) = (q''(t) + 2iq'(t) - q(t))e^{it}$.

On injecte dans $(\mathscr{E}_{\mathbb{C}})$ et alors y_p est solution de $(\mathscr{E}_{\mathbb{C}})$ si et seulement si (on simplifie par $e^{it} \neq 0$):

$$q''(t) + 2iq'(t) = 1 \iff 2ia = 1, b \in \mathbb{R} \iff a = -\frac{i}{2}, b \in \mathbb{R}.$$

Une solution particulière de $(\mathscr{E}_{\mathbb{C}})$ est donc $y_p(t) = -\frac{it}{2}e^{it}$.

La solution générale de $(\mathscr{E}_{\mathbb{C}})$ sur \mathbb{R} est donc

$$t \mapsto y_{\mathbb{C}}(t) = -\frac{it}{2}e^{it} + (A\cos(t) + B\sin(t)) : (A, B) \in \mathbb{R}^2.$$

La solution générale de (\mathcal{E}) sur $\mathbb R$ est donc

$$t \mapsto y(t) = -\frac{t}{2}\cos(t) + (A\cos(t) + B\sin(t)) : (A, B) \in \mathbb{R}^2.$$

Variation de la constante

On commence par déterminer une solution φ de (\mathcal{H}) : ay'' + by' + c = 0 qui ne s'annule pas sur I. On cherche alors une solution $y_p(t) = \lambda(t)\varphi(t)$.

En reportant y_p dans (\mathcal{E}) , on obtient une équation différentielle du premier ordre en $\lambda'(t)$.

On déduit alors $\lambda(t)$ par recherche d'une primitive, puis on trouve $y_p(t) = \lambda(t)\varphi(t)$.

Remarques

Si l'on donne toutes les primitives de λ' , on obtient alors la solution générale de (\mathscr{E}) .

Exercice 17

Résoudre l'équation différentielle $y'' - 2y' + y = \frac{2te^t}{t^2 + 1}$.

Solution. On résout l'équation
$$(\mathscr{E}): y''-2y'+y=\frac{2te^t}{t^2+1}$$
 sur $I=\mathbb{R}$.

L'équation caractéristique $X^2 - 2X + 1 = 0$ de l'équation homogène $(\mathcal{H}): y'' - 2y' + y = 0$ possède une racine double r = 1 donc toute solution de (\mathcal{H}) s'écrit $(A + Bt)e^t: (A, B) \in \mathbb{R}^2$.

Avec A=1 et B=0, on obtient une solution $\varphi(t)=e^t$ qui ne s'annule pas sur \mathbb{R} .

On cherche maintenant la solution générale de (\mathscr{E}) sous la forme $y(t) = \lambda(t)\varphi(t) = \lambda(t)e^t$.

$$- y'(t) = \lambda'(t)e^t + \lambda(t)e^t$$

$$-y''(t) = \lambda''(t)e^t + 2\lambda'(t)e^t + \lambda(t)e^t.$$

Ainsi, y est solution de (\mathcal{E}) sur \mathbb{R} si et seulement si pour tout $t \in \mathbb{R}$:

$$(\lambda''(t) + 2\lambda'(t) + \lambda(t))e^t - 2(\lambda'(t) + \lambda(t))e^t + \lambda(t)e^t = \frac{2te^t}{t^2 + 1}$$

$$\iff \lambda''(t) = \frac{2t}{t^2 + 1}$$

$$\iff \lambda'(t) = \ln(t^2 + 1) + C, C \in \mathbb{R}$$

On intègre par parties pour obtenir une primitive de $t\mapsto \ln(1+t^2)$:

$$\int_{a}^{t} \ln(1+u^{2}) du = \left[u \ln(1+u^{2}) \right]_{a}^{t} - \int_{a}^{t} \frac{2u^{2}}{1+u^{2}} du$$

$$= (t \ln(1+t^{2}) - a \ln(1+a^{2})) - 2 \int_{a}^{t} \left(1 - \frac{1}{1+u^{2}} \right) du$$

$$= (t \ln(1+t^{2}) - a \ln(1+a^{2})) - 2(t-a) + 2(\arctan(t) - \arctan(a))$$

On obtient pour tout $t \in \mathbb{R}$, $\lambda(t) = t \ln(1+t^2) - 2t + 2 \arctan(t) + Ct + D(C, D) \in \mathbb{R}^2$. Enfin la solution générale de (\mathscr{E}) est donnée par $y(t) = \lambda(t)e^t$:

$$y: t \mapsto \underbrace{t \ln(1+t^2)e^t - 2te^t + 2\arctan(t)e^t}_{y_p(t)} + \underbrace{(Ct+D)e^t}_{\in S_{\mathscr{H}}}, (C,D) \in \mathbb{R}^2.$$

2.B Cas général

Il n'y a pas de méthode systématique de résolution d'une équation différentielle dans le cas général : $(\mathscr{E}): a(t)y'' + b(t)y' + c(t)y = d(t)$ avec $a,b,c,d:I \to \mathbb{K}$ fonctions continues.

En revanche, le théorème de Cauchy linéaire reste valable, ainsi que la structure des ensembles solutions.

Théorème 18: Problème de Cauchy

Si $a:I\to\mathbb{K}$ ne s'annule pas sur I, le problème de Cauchy

$$\begin{cases} a(t)y'' + b(t)y' + c(t)y = d(t) \\ y(t_0) = y_0; y'(t_0) = y'_0 \end{cases}$$

où $(t_0, y_0, y_0') \in I \times \mathbb{K} \times \mathbb{K}$, admet une unique solution sur I.

Théorème 19

Si $a:I\to\mathbb{K}$ ne s'annule pas sur I alors l'ensemble solution de l'équation homogène $(\mathcal{H}):a(t)y''+b(t)y'+c(t)=0$ est un plan vectoriel.

Toute solution de (\mathscr{E}) : a(t)y'' + b(t)y' + c(t) = d(t) est la somme d'une solution particulière de (\mathscr{E}) et de la solution générale de (\mathscr{H}) .

En revanche, il existe plusieurs technique pouvant s'appliquer suivant la situation.

Méthode 1 : Recherche de solutions de type polynomiales

Exemple

On considère l'équation différentielle t(t+1)y'' + (t+2)y' - y = 0.

On pose $P = \sum_{i=0}^{n} a_i X^i$ avec $n = \deg(P)$: on a donc $a_n \neq 0$.

On injecte dans l'équation et on trouve, si $n \neq 0$, que le coefficient dominant (celui de t^n) est $\lfloor n(n-1) + n - 1 \rfloor a_n = (n^2 - 1)a_n$. Il doit être nul pour P soit solution, ainsi n = 1.

(notons que si n = 0 on trouve $a_0 = 0$ ce qui contredit l'hypothèse $a_n \neq 0$; d'où l'hypothèse $n \neq 0$) On écrit donc P(t) = at + b que l'on injecte dans l'équation.

Il vient $(t+2)a - (at+b) = 0 \iff b = 2a$.

On vérifie que $y_p(t) = a(t+2), a \in \mathbb{R}$ est solution.

Méthode 2 : Recherche d'une solution développable en série entière

Exemple

On considère l'équation différentielle (\mathcal{E}) : $(t^2+t)y''+(3t+1)y'+y=0$.

On cherche une solution $y(t) = \sum_{n=0}^{+\infty} a_n t^n$ développable en série entière au voisinage de 0.

Analyse

On suppose qu'il existe une solution $y(t) = \sum_{n=0}^{+\infty} a_n t^n$ développable en série entière au voisinage de 0.

On note R le rayon de convergence de cette série entière.

Pour tout $t \in]-R; R[$ en dérivant terme à terme

$$(t^{2}+t)\sum_{n=2}^{+\infty}n(n-1)a_{n}t^{n-2} + (3t+1)\sum_{n=1}^{+\infty}na_{n}t^{n-1} + \sum_{n=0}^{+\infty}a_{n}t^{n} = 0$$

$$\iff \sum_{n=2}^{+\infty}n(n-1)a_{n}t^{n} + \sum_{n=2}^{+\infty}n(n-1)a_{n}t^{n-1} + 3\sum_{n=1}^{+\infty}na_{n}t^{n} + \sum_{n=1}^{+\infty}na_{n}t^{n-1} + \sum_{n=0}^{+\infty}a_{n}t^{n} = 0$$

$$\iff \sum_{n=2}^{+\infty}n(n-1)a_{n}t^{n} + \sum_{n=1}^{+\infty}(n+1)na_{n+1}t^{n} + 3\sum_{n=1}^{+\infty}na_{n}t^{n} + \sum_{n=0}^{+\infty}(n+1)a_{n+1}t^{n} + \sum_{n=0}^{+\infty}a_{n}t^{n} = 0$$

$$\iff \sum_{n=0}^{+\infty}n(n-1)a_{n}t^{n} + \sum_{n=0}^{+\infty}(n+1)na_{n+1}t^{n} + 3\sum_{n=0}^{+\infty}na_{n}t^{n} + \sum_{n=0}^{+\infty}(n+1)a_{n+1}t^{n} + \sum_{n=0}^{+\infty}a_{n}t^{n} = 0.$$

Par unicité du développement en série entière, on obtient pour tout $n \in \mathbb{N}$,

$$n(n-1)a_n + (n+1)na_{n+1} + 3na_n + (n+1)a_{n+1} + a_n = 0$$

$$\iff a_n(n^2 - n + 3n + 1) + a_{n+1}(n^2 + n + n + 1) = 0$$

$$\iff a_n(n+1)^2 + a_{n+1}(n+1)^2 = 0$$

On obtient $\forall n \in \mathbb{N}, a_{n+1} = -a_n = (-1)^n a_0.$

Synthèse

On pose
$$y(t) = \sum_{n=0}^{+\infty} a_0(-1)^n t^n$$
.

Cette série entière a pour rayon de convergence R=1.

De plus, y vérifie bien sur] -1; 1[l'équation (\mathscr{E}) d'après les équivalences écrites dans la partie analyse.

Conclusion:

On obtient ici une fonction usuelle : $\forall t \in]-1; 1[, y_p(t) = \frac{a_0}{1-(-t)} = \frac{a_0}{1+t}$ solution particulière de (\mathscr{E}) .

Les deux techniques ci-dessous permettent, dans certains cas, de déterminer la solution générale.

Méthode 3 : Variation de la constante, factorisation par une solution de l'équation homogène

On considère l'équation différentielle $(\mathscr{E}): a(t)y''+b(t)y'+c(t)=d(t)$ et l'équation homogène associée $(\mathscr{H}): a(t)y''+b(t)y'+c(t)=0$

On suppose que l'on connait une solution φ de l'équation homogène qui ne s'annule pas sur I.

On cherche une solution sous la forme $y(t) = \lambda(t)\varphi(t)$.

En reportant dans (\mathcal{E}) on obtient une équation différentielle du premier ordre en λ' .

On en déduit alors $\lambda(t)$ par recherche d'une primitive, puis on trouve $y(t) = \lambda(t)\varphi(t)$.

Exercice 20

Résoudre sur l'intervalle $I =]0; +\infty[$ l'équation différentielle $(\mathscr{E}): t^2y'' - 2y = 3t^2.$ (chercher une solution polynomiale de l'équation homogène).

Solution. Sur $I =]0; +\infty[$ l'équation différentielle homogène $t^2y'' - 2y = 0$ admet pour solution la fonction polynomiale $\varphi(t) = t^2$. (φ est nécessairement de degré 2 en identifiant le coefficient dominant d'un polynôme solution). On pose $y(t) = \lambda(t)\varphi(t) = \lambda(t)t^2$.

$$-y'(t) = \lambda'(t)t^2 + 2t\lambda(t).$$

$$-y''(t) = \lambda''(t)t^{2} + 2t\lambda'(t) + 2\lambda(t) + 2t\lambda'(t) = \lambda''(t)t^{2} + 4t\lambda'(t) + 2\lambda(t)$$

En injectant dans (\mathscr{E}), il vient que y est solution de (\mathscr{E}) si et seulement si pour tout $t \in]0; +\infty[$:

$$t^{2} \left(\lambda''(t)t^{2} + 4t\lambda'(t) + 2\lambda(t) \right) - 2\lambda(t)t^{2} = 3t^{2} \iff t^{4}\lambda''(t) + 4t^{3}\lambda'(t) = 3t^{2}$$
$$\iff t^{2}\lambda''(t) + 4t\lambda'(t) = 3 \quad (\mathcal{E}')$$

On pose $x = \lambda' : \lambda'$ est solution sur I de (\mathcal{E}') si et seulement si x est solution sur I de

$$t^2x' + 4tx = 3 \quad (\mathscr{E}'').$$

Équation homogène : $t^2x' + 4tx = 0 \iff x' = -\frac{4}{t}x \iff \exists K \in \mathbb{R}, x(t) = \frac{K}{t^4}.$

Solution particulière: On la cherche sous la forme : $x_p(t) = \frac{K(t)}{t^4}$. On obtient

$$t^2\left(-\frac{4}{t^5}\right)K(t)+t^2\frac{K'(t)}{t^4}+\frac{4tK(t)}{t^4}=3\Longleftrightarrow K'(t)=3t^2\Longleftrightarrow K(t)=t^3+C,C\in\mathbb{R}.$$

Ainsi, $x_p(t) = \frac{1}{t}$ est une solution particulière de (\mathcal{E}'') .

Par conséquent, $\lambda'(t) = \frac{K}{t^4} + \frac{1}{t}, K \in \mathbb{R} \text{ donc } \lambda(t) = -\frac{K}{3t^3} + \ln t + D, D \in \mathbb{R}.$

Enfin, $y(t) = \lambda(t)t^2$ est la solution générale de l'équation différentielle initiale (\mathscr{E}) . La solution général de (\mathscr{E}) sur $I =]0; +\infty[$ est donc

$$y: t \mapsto \frac{\alpha}{t} + \beta t^2 + t^2 \ln t, (\alpha, \beta) \in \mathbb{R}^2.$$

Méthode 4 : Changement de variable

On considère l'équation différentielle (\mathscr{E}) : a(t)y'' + b(t)y'(t) + c(t)y = d(t) sur I.

On suppose qu'il existe un changement de variable $\varphi: J \to I, x \longmapsto \varphi(x) = t$ de classe \mathscr{C}^2 sur J. et tel que φ^{-1} est de classe \mathscr{C}^2 sur I.

On pose $z(x) = y(\varphi(x)) = y(t)$. On dérive deux fois la fonction z par rapport à x.

On remplace t par $\varphi(x)$ dans \mathscr{E} .

On obtient une équation d'inconnue z et on retrouve la solution générale $y(t) = z \circ \varphi^{-1}(t)$.

Exercice 21

Résoudre sur]-1;1[l'équation différentielle $(\mathscr{E}):(1-t^2)y''-ty'+y=0.$ Poser $t=\cos(x).$

Solution. La fonction $\varphi: x \mapsto \cos(x)$ est continue strictement décroissante sur $[0; \pi]$ donc réalise une bijection de $[0; \pi]$ sur [-1; 1]. φ est de classe \mathscr{C}^2 sur $[0; \pi]$.

La bijection réciproque $\varphi^{-1}: t \mapsto \arccos(t) = x$ est de classe \mathscr{C}^2 sur]-1;1[.

On pose pour $x \in]0; \pi[: z(x) = y(\varphi(x)) = y(\cos(x)) = y(t).$

Pour tout $x \in]-1;1[:$

$$--z'(x) = -\sin(x)y'(\cos x)$$

$$-z''(x) = \sin^2(x)y''(\cos x) - \cos(x)y'(\cos x)$$

La fonction $t \mapsto y(t)$ est solution sur]-1;1[de (\mathscr{E}) si et seulement si pour tout $x \in]0;\pi[$:

$$\underbrace{(1 - \cos^2(x))y''(\cos(x)) - \cos(x)y'(\cos(x))}_{=z''(x)} + \underbrace{y(\cos x)}_{=z(x)} = 0.$$

Ainsi, z est solution sur $]0;\pi[$ de l'équation z'' + z = 0.

L'équation caractéristique $X^2 + 1 = 0$ a pour racine $X = \pm i = 0 \pm 1 \times i$.

Il existe donc $(A, B) \in \mathbb{R}^2$ tel que $z(x) = e^{0x} (A\cos(1 \times x) + B\sin(1 \times x))$.

La solution générale de (\mathcal{E}) sur]-1;1[est alors

$$y(t) = z \circ \varphi^{-1}(t) = A\cos(\arccos(t)) + B\sin(\underbrace{\arccos(t)}_{\in]0;\pi[}) = At + B\sqrt{1-t^2} : (A,B) \in \mathbb{R}^2.$$