Opening a New Restaurant in the Capital City of India-Delhi

Ayush Rawat

July 15, 2020

1. Introduction

1.1 Background

New Delhi is the capital city of India. A population of more than 11 million is complemented by its market for venues ranging from basic necessity providers to restaurants and hotels. Delhi is a city known for the quality and taste of food available throughout the country. People often go out for food walks through the city hitting multiple food spots throughout the day. The variety of quality food cuisines available in New Delhi is appealing to the population of the country and many choose to visit the capital city for its rich historic sites and for the food. It is also an attractive city for people looking to invest in the food market due to the demand of quality food. Therefore, it will be advantageous to have a system in place that can help the stakeholders narrow down the possible locations to invest in.

1.2 Problem

Data of the existing venues in and around the various neighbourhoods of the city can help in narrowing down the possible locations. This project aims to recommend a location on basis of the demand of a particular type of venue and its distance from popular places in the city to maximize the chances of a successful business.

1.3 Interest

Stakeholders who are looking to invest and open a new restaurant in the city are facing a new challenge: finding a location where the restaurant market is not saturated in order to boost the chances of being a go-to restaurant for people passing by or those who live in the surrounding areas. Being a hit rests on the experience the restaurant provides.

2. Data Acquisition and Cleaning

2.1 Data Sources

The data required to perform analysis and make accurate recommendations can be found online. Delhi's Neighbourhood and Borough's data can be found in Wikipedia on this <u>link</u>. The details of locations of these Neighbourhoods can be found using Geopy API. Data containing information on the venues in and around those Neighbourhoods can be found using Foursquare API.

2.2 Data Cleaning

Data downloaded or scraped from multiple sources were combined into one table. The data of strings needs to be cleaned off by removing spaces and special characters to avoid confusion during the advanced steps of the project. Since the information is compiled from multiple sources it needs to be joined in a way that doesn't corrupt the data. Joins can be performed over the different sets of data obtained from different sources on their common features like Neighbourhoods found in the Neighbourhood data need to be joined with the dataframe containing location details of those Neighbourhoods. Additionally, data obtained from Foursquare API needs to be joined to the resulting dataframe on basis of the Neighbourhood details. It is clear that the Neighbourhood details are a pivot for us across all dataframes as we have to make a Neighbourhood recommendation of a potential location to open a new venue.

2.3 Feature Selection

After Data Cleaning, the data compiled will still contain information that is not relevant to the purpose of this project like additional details of the venue received by Foursquare API. The location data and the type of venue details are the only features which are relevant to serve the purpose of this project. The data being scrapped from Wikipedia is already selection and doesn't need to be trimmed. Geopy API will be used to just extract the latitude and longitude details of each of the Neighbourhoods.

Table 1. Final form of data compiled from different sources before analysis Neighbourhood Neighbourhood Latitude Neighbourhood Longitude Venue Venue Latitude Venue Longitude Venue Category 28.714401 28.714594 0 Adarsh Nagar 77.167288 Pahalwan Dhaba 77.172155 Indian Restaurant 28.699453 Ashok Vihar 77.184826 Nat Khat Caterers 28.699630 77.187832 Indian Restaurant 2 Ashok Vihar 28.699453 77.184826 Bakers Stop 28.700495 77.188716 Bakery Ashok Vihar 28.699453 77.184826 Invitation Banquet 28.696018 77.185953 Diner Ashok Vihar 28.699453 77.184826 Gola Northend 77.189288 28.701242 Indian Restaurant 28.636548 Bikanerwala 77.097492 Fast Food Restaurant 526 Tilak Nagar 77.096496 28.633524 527 Vikaspuri 28.638419 77.070836 Domino's Pizza 28.638000 77.075000 528 Vikaspuri 28.638419 77.070836 McDonald's 28.639752 77.075190 Fast Food Restaurant 529 Vikaspuri 28.638419 77.070836 Asian Garden 28.639661 77.074482 Indian Restaurant 28.638419 77.070836 77.067237 Indian Restaurant 530 Vikaspuri 28.635672

3. Exploratory Data Analysis

3.1 Analysing the Location of Neighbourhoods on Map

Folium is used to analyse the location of each Neighbourhood spread over Delhi. Each Neighbourhood is marked with a pin and reveals the name of the neighbourhood when clicked.

3.1 Analysing the Location of Venues across Neighbourhoods on a Map

Another map leaflet is generated to visualize the different types of venues and their locations using pins as markers. The number of venues that can be visualized is limited by the number of markers a leaflet can render successfully which is somewhere around 200. So 200 venue locations are visualized on the map.

Image 2. Locations of various venues of Delhi spread across Neighbourhoods visualized using Folium

4. Classification Modelling

To solve the problem introduced in the project, a Classification model that can cluster the Neighbourhoods based on the types of most common venues will be needed. K Means algorithm will be used in this project to form the clusters of Neighbourhoods with similar types of venues.

4.1 Transforming the Data to a Suitable format for KMeans Clustering Algorithm

To apply KMeans Clustering algorithm, there is a fixed number of clusters that needs to be determined in order to get the results which best suit the problem at hand. Generally this can be done using some performance metrics which return a numerical error value in order to better evaluate the result and the solution can be selected as the one with least error value. In this case however, there are no numerical values involved, this problem revolved around recommending a Neighbourhood to a stakeholder to maximize the chances of success in terms of location. A fixed value of 5 clusters is chosen as a starting point to apply the KMeans Clustering Algorithm over the dataset.

The Data is used in a way that a table of the top 10(abundant) types of venues is displayed for each of the Neighbourhoods in Delhi.

			U			/ 1	1 \				
10th Most Common Venue	9th Most Common Venue	8th Most Common Venue	7th Most Common Venue	6th Most Common Venue	5th Most Common Venue	4th Most Common Venue	3rd Most Common Venue	2nd Most Common Venue	1st Most Common Venue	Neighbourhood	
Fast Food Restaurant	Fish & Chips Shop	Food	Food Court	Food Truck	French Restaurant	Fried Chicken Joint	Dim Sum Restaurant	Wings Joint	Indian Restaurant	Adarsh Nagar	0
Doner Restaurant	Diner	Dumpling Restaurant	Restaurant	Middle Eastern Restaurant	Steakhouse	Pizza Place	New American Restaurant	Indian Restaurant	BBQ Joint	Alaknanda	1
Food	Food Court	Food Truck	French Restaurant	Fried Chicken Joint	Dim Sum Restaurant	Wings Joint	Pizza Place	Fast Food Restaurant	Indian Restaurant	Anand Vihar	2
Fast Food Restaurant	Fish & Chips Shop	Food	French Restaurant	Fried Chicken Joint	Dim Sum Restaurant	Wings Joint	Food Court	Food Truck	Indian Restaurant	Ashok Nagar	3
Food	Food Court	Food Truck	French Restaurant	Fried Chicken Joint	Dim Sum Restaurant	Wings Joint	Diner	Bakery	Indian Restaurant	Ashok Vihar	4
•••											
Food	Food Court	Food Truck	French Restaurant	Fried Chicken Joint	Dim Sum Restaurant	Wings Joint	Pizza Place	Fast Food Restaurant	Indian Restaurant	Vikaspuri	86
Fish & Chips Shop	Food	Food Court	Food Truck	French Restaurant	Fried Chicken Joint	Dim Sum Restaurant	Wings Joint	Café	Indian Restaurant	Vishwas Nagar	87
Fish & Chips Shop	Food	Food Court	Food Truck	French Restaurant	Fried Chicken Joint	Hot Dog Joint	Wings Joint	Japanese Restaurant	Indian Restaurant	Vivek Vihar	88
Fast Food Restaurant	Fish & Chips Shop	Food	Food Court	Food Truck	French Restaurant	Fried Chicken Joint	Dhaba	Wings Joint	Snack Place	Wazirabad	89
Fish & Chips Shop	Food	Food Court	Food Truck	French Restaurant	Fried Chicken Joint	Dim Sum Restaurant	Wings Joint	North Indian Restaurant	Dumpling Restaurant	Yamuna Vihar	90

Table 2. Top 10(abundant) types of Venues for each Neighbourhoods

4.2 Applying the KMeans Clustering Algorithm

Once the data is transformed to a suitable format, KMeans Clustering Algorithm can be applied to the data and clusters can be formed. 5 clusters were created and each Neighbourhood was allotted a Cluster Label according to the kind of most abundant types of venues in each Neighbourhood.

The column of Cluster Label was added to the Table 2 to match each of the Neighbourhoods with the allotted Cluster as per results from KMeans Algorithm.

Table 3. Data Table with Cluster Labels allotted by KMeans Algorithm

	Borough	Neighbourhood	latitude	longitude	Cluster Labels	1st Most Common Venue	Common Venue	Common Venue	4th Most Common Venue	Common Venue	Common Venue	7th Most Common Venue	oth Most Common Venue	Oor V
0	North West Delhi	Adarsh Nagar	28.714401	77.167288	0.0	Indian Restaurant	Wings Joint	Dim Sum Restaurant	Fried Chicken Joint	French Restaurant	Food Truck	Food Court	Food	
1	North West Delhi	Ashok Vihar	28.699453	77.184826	0.0	Indian Restaurant	Bakery	Diner	Wings Joint	Dim Sum Restaurant	Fried Chicken Joint	French Restaurant	Food Truck	
3	North West Delhi	Model Town	28.613895	77.209006	3.0	Indian Restaurant	Food Truck	Food Court	Wings Joint	Dim Sum Restaurant	Fried Chicken Joint	French Restaurant	Food	
5	North West Delhi	Pitam Pura	28.703268	77.132250	0.0	Indian Restaurant	Fried Chicken Joint	Café	Wings Joint	Dim Sum Restaurant	French Restaurant	Food Truck	Food Court	
7	North Delhi	Civil Lines	28.676851	77.225030	2.0	Burger Joint	Café	Asian Restaurant	Indian Restaurant	Italian Restaurant	Chinese Restaurant	Dumpling Restaurant	Falafel Restaurant	Fast Rest
97	West Delhi	Patel Nagar	28.659809	77.156957	2.0	Café	Wings Joint	Dim Sum Restaurant	Gastropub	Fried Chicken Joint	French Restaurant	Food Truck	Food Court	
98	West Delhi	Punjabi Bagh	28.668945	77.132461	1.0	Fast Food Restaurant	Bakery	Pizza Place	Breakfast Spot	Sandwich Place	Wings Joint	Doner Restaurant	Donut Shop	Dur Resti
99	West Delhi	Rajouri Garden	28.642152	77.116060	0.0	Indian Restaurant	BBQ Joint	Bakery	Food Truck	Wings Joint	Diner	Fried Chicken Joint	French Restaurant	
100	West Delhi	Tilak Nagar	28.636548	77.096496	1.0	Fast Food Restaurant	Café	Wings Joint	Dim Sum Restaurant	Gastropub	Fried Chicken Joint	French Restaurant	Food Truck	
101	West Delhi	Vikaspuri	28.638419	77.070836	0.0	Indian Restaurant	Fast Food Restaurant	Pizza Place	Wings Joint	Dim Sum Restaurant	Fried Chicken Joint	French Restaurant	Food Truck	

4.3 Visualizing the Clusters

The clusters formed by using the KMeans Algorithm are then displayed on a map using Folium. Each of the Neighbourhood Clusters will be shown in a different colour to differentiate it from other clusters.

Image 3. Locations of all Neighbourhoods across different Clusters visualized using Folium

4.4 Analysing the Clusters

The clusters formed by the KMeans algorithm are then analysed. On plotting the number of venues against their types found in each cluster on a bar graph, it is clear that the demand for Indian Restaurants is high among the Clusters 0 and 2. Heat Maps are plotted to show the Indian Restaurants in the clusters 0 and 2. The last constraint is added to the data where neighbourhoods of higher than 30 percentile in terms of number of Indian Restaurants and 60 percentile in terms of number of venues are removed. This removed the neighbourhoods with high density of Indian Restaurants. Since the restaurant stakeholders intend to open their restaurant near a popular neighbourhood, we recommend locations based on their distance from the popular neighbourhoods.

4.5 Making the Recommendation

Once the distances of the Neighbourhoods with higher demand but lower densities from popular neighbourhoods are calculated, the neighbourhoods can be ranked based on the distance. The Neighbourhoods are ranked with minimum distance from popular neighbourhood being ranked the highest and the most distant neighbourhoods will be lower down the ranks. A list can be returned in the ranked order for the Stakeholder to make the decision as per their personal preferences. The recommended locations are then displayed on a map with markers.

Table 4. Recommended Neighbourhoods based on lower density and higher demand for Indian Restaurants

	Neighbourhood	latitude	longitude
0	Barakhamba Road	28.626952	77.229950
1	Jhandewalan	28.644319	77.199917
2	Daryaganj	28.646090	77.243048
3	Karol Bagh	28.652998	77.189023
4	Tis Hazari	28.667163	77.216631
5	Hauz Khas	28.544256	77.206707
6	Gulmohar Park	28.557101	77.213005
7	Sarvodaya Enclave	28.537478	77.202089
8	Neeti Bagh	28.559251	77.216166
9	Munirka	28.554886	77.171084
10	East of Kailash	28.557032	77.244614
11	Siri Fort	28.552146	77.224698
12	Nizamuddin West	28.588365	77.244955
13	Lodi Colony	28.590702	77.220921

5. Conclusion

In this project, I analysed the data of venues in and around the Neighbourhoods of Delhi to create a recommendation system. The venue location data used was taken from Foursquare API. I used KMeans Algorithm to form clusters of neighbourhoods and then used them to filter places with higher demand for Indian Restaurant and lower existing densities of the same. These recommendations were made by calculating the distance of potential recommendations from the popular neighbourhoods.

6. Future Directions

In the future we can create a system which uses the ratings of the restaurants in Neighbourhoods and the income statistics of Neighbourhoods to better target a specific audience. Similarly, we can potentially analyse the communities living in these Neighbourhoods and their preferences of cuisines and types of restaurants before making a decision.