Frederick Robinson

13 May 2011

Question

Prove that Spec $(A_1 \times A_2) = \text{Spec } A_1 \coprod \text{Spec } A_2$, and if Spec $A = X \coprod Y$, then $A = B \times C$ with X = Spec B, Y = Spec C.

Answer

Proof. If $\mathfrak{p} \in A_1 \times A_2$ is a prime ideal, it is of the form $a_1 \times a_2$ for $a_i \in \operatorname{Spec} A_i$ or A_i , as $\pi_i(\mathfrak{p}) \subset A_i$ must be prime or A_i . In fact, precisely one of the a_i must be A_i , as for $(a,b) \in \mathfrak{p}$ we have (a,b) = (a,1)(1,b). If $(a,1) \in \mathfrak{p}$, then $a_2 = A_2$, otherwise, $a_1 = A_1$. Finally, observe that $\mathfrak{p} \times A_2$ is a prime ideal for all prime $\mathfrak{p} \in A_1$, as if $(a_1,a_2)(a_3,a_4) \in \mathfrak{p} \times A_2$ either a_1 or a_3 is in \mathfrak{p} by primeness of \mathfrak{p} . As both a_2 , and a_4 are in A_2 , this is sufficient for on of $(a_1,a_2),(a_3,a_4)$ to be in $\mathfrak{p} \times A_2$.

The set $X=\{(\mathfrak{p},A_2)\mid \mathfrak{p}\in \operatorname{Spec} A_1\}$ is both closed and open, since $V((0,A_2))=X=D((A_1,0)).$ Similarly, for $Y=\{(A_1,\mathfrak{p}\mid \mathfrak{p}\in \operatorname{Spec} A_2\}$ we have $V((A_a,0))=X=D((0,A_2)).$ Thus, $\operatorname{Spec} (A_1\times A_2)=X\coprod Y.$

Finally, we verify that $A_1 \cong X$ via $\mathfrak{p} \mapsto (\mathfrak{p}, A_2)$. This is a bijection by our identification of the prime ideals of $A_1 \times A_2$ above. Furthermore, it is continuous, with continuous inverse, since a closed set $V(\mathfrak{p}) \in A_1$ corresponds to the closed set $V(\mathfrak{p}, A_2) \in A_1 \times A_2$. Similarly, $A_2 \cong Y$ via $\mathfrak{p} \mapsto (A_1, \mathfrak{p})$. \square

Proof. For the opposite direction, assume Spec $A = X \coprod Y$. Thus, there exist I, J such that V(I) = X, V(J) = Y. Now observe that I + J is the entire ring. Were it not, it would be contained in some maximal (and therefore prime) ideal, but $V(I) \cap V(J) = \emptyset$. Therefore, the Chinese Remainder Theorem applies, so $IJ = I \cap J$, and $f : A/IJ \to A/I \times A/J$ defined by f(x + IJ) = (x + I, x + J) is an isomorphism.

Since $IJ = I \cap J \subseteq \mathfrak{p}$ for all \mathfrak{p} prime $IJ \in \operatorname{nil} A$, and every $x \in IJ$ is nilpotent. Hence, Spec $A \cong \operatorname{Spec} A/IJ \cong \operatorname{Spec} (A/I \times A/J)$.

Question

Prove that the Zariski topology is a topology on Spec A.

Answer

We must verify (i) that sets of the form V(X) cover Spec A, (ii) 0, Spec A = V(X) for some X (iii) $\{V(X) \mid X \in A\}$ is closed under finite union, arbitrary intersection.

Each prime ideal \mathfrak{p} is contained in at least the set $V(\mathfrak{p})$ by definition. 0 = V(A), Spec A = V(0).

 $V(\mathfrak{p}) \cup V(\mathfrak{q}) = \{a \in \operatorname{Spec} A \mid \mathfrak{p} \subseteq a\} \cup \{a \in \operatorname{Spec} A \mid \mathfrak{q} \subseteq a\} = \{a \in \operatorname{Spec} A \mid \mathfrak{p} + \mathfrak{q} \subseteq a\} = V(\mathfrak{p} + \mathfrak{q}).$ But the set of ideals is closed under this addition operation.

Furthermore, $\bigcap_{i \in I} V(J_i) = \bigcup_{i \in I} \{ \mathfrak{p} \in \text{Spec } A \mid J_i \subseteq \mathfrak{p} \} = \{ \mathfrak{p} \in \text{Spec } A \mid \bigcap_{i \in I} J_i \subseteq \mathfrak{p} \} = V(\bigcap_{i \in I} J_i).$