Next-Generation CGRA Architecture

Ankita Nayak, Alex Carsello, Nikhil Bhagdikar, Nate Chizgi, Stephen Richardson, Mark Horowitz

AGILE HW ARCHITECTURE GOAL

- Incremental high value additions to the complex HW system
- Two part process
 - Build CGRA Build base array, add key features, repeat
 - Build SoC Integrate CGRA with processor, IO devices etc.
- Next-Generation CGRA Effort
 - Fix the issues with last tapeout
 - New features to improve support for broader class of apps
 - Improve chip's PPA (Power-Performance-Area)
- Broader HW Development Effort: DL and modem processing apps

#1: FIX ISSUES WITH LAST TAPEOUT

- Avoid global wiring problem due to high fanout synthesis in backend
- Build a modular design to embed wires in the block itself
- Mesochronous clocking network:
 same frequency, unknown phases
- Column based global signal distribution through tiles

#2: ADD NEW FEATURES

- New PE operations and operand types (covered separately)
- CGRA HW virtualization: Enable re-use when app > HW resources
 - Fast reconfiguration techniques for rapid swapping of apps
 - Extend to enable FSM based design & multi-rate operations

#3: IMPROVE PPA

- Reduce power using clock and power domains: No performance impact
- Bring-up using agile approach
 - Power gate part of the chip not used Use only AON domain to map apps
 - Need support from P&R, but not mapper
- Special handling on the boundary tiles for inserting isolation cells on output signals
- Generator for supporting power domains

Multi-Island CGRA

