Patrícia de Siqueira Ramos

UNIFAL-MG, campus Varginha

15 de Março de 2018

Conteúdo programático

- Introdução à análise multivariada
- Álgebra matricial
- Análise de componentes principais
- Análise de agrupamento (cluster analysis)
- Análise fatorial*
- Análise discriminante*

Bibliografia

FERREIRA, D. F. **Estatística multivariada**. Lavras, MG: Ed. UFLA, 2008.

HAIR, J. F. et al. **Análise multivariada de dados**, 6.ed. Bookman, 2009.

MINGOTI, S. A. **Análise de dados através de métodos de estatística multivariada**: uma abordagem aplicada. Belo Horizonte: UFMG, 2007.

PYTHON. **The Python programming language**. Disponível em: github.com/python/cpython Acesso em: 26 fev. 2018.

Avaliação

- Prova 1: 10/05/2018 peso 30%
- Prova 2: 05/07/2018 peso 30%
- Trabalho final peso 30%
- Exercícios práticos peso 10%
- Prova especial: 19/07/2018

Dados multivariados e análise multivariada

Introdução

- Dados multivariados: pesquisador armazena os valores de várias v.a.s de várias unidades (sujeitos, indivíduos, objetos).
 Cada unidade é uma observação multidimensional
- A representação dos dados se dá como em planilhas
- p variáveis (colunas) medidas em n elementos (linhas)

Introdução

- Dados multivariados: pesquisador armazena os valores de várias v.a.s de várias unidades (sujeitos, indivíduos, objetos).
 Cada unidade é uma observação multidimensional
- A representação dos dados se dá como em planilhas
- p variáveis (colunas) medidas em n elementos (linhas)

unidade	variável 1	variável 2		variável <i>p</i>
1	<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1p}
2	<i>x</i> ₂₁	X ₂₂		x_{2p}
:	:	:	÷	:
n	x_{n1}	x_{n2}		x_{np}

Exemplos de dados multivariados

Ex.1: Notas de provas de alunos em diferentes disciplinas

aluno	matemática	inglês	história	geografia	química	física
1	60	70	75	58	53	42
2	80	65	66	75	70	76
3	53	60	50	48	45	43
4	85	79	71	77	68	79
5	45	80	80	84	44	46

Ex.1: Notas de provas de alunos em diferentes disciplinas

aluno	matemática	inglês	história	geografia	química	física
1	60	70	75	58	53	42
2	80	65	66	75	70	76
3	53	60	50	48	45	43
4	85	79	71	77	68	79
5	45	80	80	84	44	46

• Neste caso, n = 5 e p = 6

Ex.2: Variáveis armazenadas por psicólogos sobre seus pacientes

indivíduo	sexo	idade	QI	depressão	saúde
1	М	21	120	S	MB
2	М	60	92	S	В
3	M	22	135	N	М
4	Μ	86	150	N	MR
5	F	16	130	S	В
6	F	22	84	N	М
7	F	80	70	N	В

Ex.2: Variáveis armazenadas por psicólogos sobre seus pacientes

indivíduo	sexo	idade	QI	depressão	saúde
1	М	21	120	S	MB
2	М	60	92	S	В
3	М	22	135	N	M
4	М	86	150	N	MR
5	F	16	130	S	В
6	F	22	84	N	M
7	F	80	70	N	В

• Neste caso, n = 7 e p = 5

Ex.3: Medidas de tórax, cintura e quadril (pol)

tórax	cintura	quadril	gênero	tó	rax	cintura	qua	dril	gênero	
34	30	32	М	3	36	24	3	5	F	
37	32	37	M	3	34	24	3	7	F	
38	30	36	M	3	34	24	3	7	F	
36	33	39	М	3	33	22	3	4	F	
38	29	33	М	3	36	26	3	8	F	
43	32	38	М	3	37	26	3	7	F	
40	33	42	М	3	34	25	3	8	F	
38	30	40	М	3	36	26	3	7	F	
40	30	37	M	3	38	28	4	0	F	
41	32	39	М	3	35	23	3	5	F	

Ex.3: Medidas de tórax, cintura e quadril (pol)

tórax	cintura	quadril	gênero	tórax	cintura	quadril	gênero
34	30	32	М	36	24	35	F
37	32	37	M	34	24	37	F
38	30	36	M	34	24	37	F
36	33	39	M	33	22	34	F
38	29	33	M	36	26	38	F
43	32	38	M	37	26	37	F
40	33	42	M	34	25	38	F
38	30	40	M	36	26	37	F
40	30	37	M	38	28	40	F
41	32	39	M	35	23	35	F

- ullet Obs.: 1 polegada = 2,54 cm
- Neste caso, n = 20 e p = 4

Análise simultânea de um conjunto de variáveis

- Análise simultânea de um conjunto de variáveis
- As variáveis são, geralmente, correlacionadas entre si
 - temos todas as medidas em cada unidade, indivíduo

- Análise simultânea de um conjunto de variáveis
- As variáveis são, geralmente, correlacionadas entre si
 - temos todas as medidas em cada unidade, indivíduo
- Se cada variável for analisada isoladamente, a estrutura dos dados pode não ser percebida
 - padrões podem não aparecer

Tipos de técnicas multivariadas

Exploratórias (foco aqui)	Inferência
- apelo prático	- estimação de parâmetros
- independe do conhecimento da	- testes de hipóteses
distribuição de probabilidade	- foco: além dos dados,
dos dados	usar a amostra para realizar
- detecção de padrões	inferência sobre a população
nos dados	- distribuição normal
- uso de gráficos para	multivariada
visualização	

Tipos de técnicas multivariadas

Exploratórias (foco aqui)	Inferência
- apelo prático	- estimação de parâmetros
- independe do conhecimento da	- testes de hipóteses
distribuição de probabilidade	- foco: além dos dados,
dos dados	usar a amostra para realizar
- detecção de padrões	inferência sobre a população
nos dados	- distribuição normal
- uso de gráficos para	multivariada
visualização	
Ex.: An. de componentes	Ex.: regressão multivariada,
principais, an. fatorial	testes de hipóteses sobre
exploratória, an. de	médias e correlação,
correlação canônica etc.	MANAVA etc.

Níveis de mensuração

Níveis de mensuração (tipos de variáveis)

- Qualitativo (não métrico):
 - nominal
 - ordinal
- Quantitativo (métrico):
 - intervalar
 - razão

Níveis de mensuração (qualitativos)

Nominal: variáveis categóricas não numeradas.
 Ex.: sexo, cor do cabelo, S/N.

Níveis de mensuração (qualitativos)

- Nominal: variáveis categóricas não numeradas.
 Ex.: sexo, cor do cabelo, S/N.
- Ordinal: há ordem mas não implica igual distância entre pontos na escala. Ex.: classe social, nível de saúde (péssimo a ótimo), nível educacional (não escolarizado, fundamental, médio, superior).

Níveis de mensuração (quantitativos)

 Intervalar: há diferenças iguais entre pontos na escala, mas a posição do 0 é arbitrária. Ex.: temperatura medida em °C ou F, QI.

Níveis de mensuração (quantitativos)

- Intervalar: há diferenças iguais entre pontos na escala, mas a posição do 0 é arbitrária. Ex.: temperatura medida em °C ou F, QI.
- Razão: mais alto nível, em que é possível investigar as magnitudes relativas e as diferenças entre os pontos. O 0 é fixo. Ex.: temperatura em K, idade (ou qualquer outra contagem de tempo), peso, altura, dinheiro.

Técnicas e exemplos de aplicação

1 - Análise de componentes principais (ACP) e análise fatorial (AF)

- Analisam inter-relações entre um grande número de variáveis
- Objetivam encontrar um meio de condensar a informação contida em várias variáveis em um conjunto menor delas com perda mínima de informação

1 - Análise de componentes principais (ACP) e análise fatorial (AF)

- Analisam inter-relações entre um grande número de variáveis
- Objetivam encontrar um meio de condensar a informação contida em várias variáveis em um conjunto menor delas com perda mínima de informação

Ex.: Entender relações entre avaliações de clientes de um restaurante.

- Clientes fazem avaliação sobre 6 variáveis: sabor da comida, temperatura da comida, se a comida é fresca, tempo de espera, limpeza do estabelecimento, atendimento
- O analista quer combinar as variáveis em um conjunto menor
- Descobre-se que as 3 primeiras formam fator de qualidade da comida e as 3 últimas formam fator de qualidade do serviço

2 - Análise de agrupamento - cluster analysis - AA

- Técnica analítica para obter grupos de indivíduos ou objetos
- Objetiva classificar uma amostra de indivíduos/objetos em um número menor de grupos com base em suas similaridades
- Grupos não são pré-definidos, usa-se AA para identificar grupos

Ex.: Pioneer Petroleum - identificação dos clientes

Tabela: Agrupamento dos clientes de posto de gasolina.

Grupo	Características
1	Homens de meia idade, alta renda, compram na loja de
(16%)	conveniências, lavam o carro no posto, usam gasolina premium
П	Homens e mulheres, renda média-alta,
(16%)	leais a marca e posto, usam gasolina premium
III	Homens e mulheres em ascensão, metade com menos de
(27%)	25 anos, dirigem muito e comem na loja do posto
IV	Donas de casa que transportam seus filhos,
(21%)	usam qualquer posto
V	Não são leais a marca ou posto e raramente compram
(20%)	gasolina premium, orçamento apertado

3 - Análise discriminante (AD)

- Variável dependente é dicotômica (M/F, por ex.) ou policotômica (B/M/A) e não métrica
- Variáveis independentes métricas
- Amostra total pode ser dividida em grupos (baseados na v.d.)
- Objetiva prever a probabilidade que um indivíduo/objeto pertencerá a um grupo baseando-se em variáveis independentes

3 - Análise discriminante (AD)

- Variável dependente é dicotômica (M/F, por ex.) ou policotômica (B/M/A) e não métrica
- Variáveis independentes métricas
- Amostra total pode ser dividida em grupos (baseados na v.d.)
- Objetiva prever a probabilidade que um indivíduo/objeto pertencerá a um grupo baseando-se em variáveis independentes

Ex. (Inadimplência):

- Banco deseja saber se um candidato a empréstimo tem chances de vir a ser inadimplente
- Dados históricos de clientes são usados para diferenciar o perfil dos que foram inadimplentes e dos que não foram
- Verifica-se se o perfil de um novo cliente se encaixa no grupo dos inadimplentes ou não

Agrupamento \times discriminante

- Análise de agrupamento (cluster analysis): métodos exploratórios usados para dividir a população que não é conhecida a priori
- Análise discriminante: os grupos em que um elemento amostral pode vir a ser classificado devem ser conhecidos antes em relação às características

Artigos

```
Componentes principais:

• variáveis socioeconômicas e dengue
• padrão locacional de bancos

Fatorial:

• índice de desenvolvimento rural
• fatores de risco cardiovasculares

Agrupamento (cluster analysis):

• municípios baianos
• gestão de riscos - previdência
• serviços de saúde - espacial

Discriminante:

• situação financeira - estados brasileiros
• capital humano no Ceará
```