Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Förster, Scherfner, Tröltzsch SS 03 21. Juli 2003

Juli – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	V	orname	:					
MatrNr.:	Studiengang:							
Ich habe erfolgreich Hausaufgabenpunkt bei TutorIn			m SS /	WS				•
Neben einem handbeschriebenen A4 Bla	itt mit	Notizen	sind k	eine Hil	lfsmitte	l zugela	assen.	
Die Lösungen sind in Reinschrift auf Klausuren können nicht gewertet werde		ittern a	abzugeb	oen. Mi	t Bleist	tift geso	chrieber	ıe
Dieser Teil der Klausur umfasst die Rec Rechenweg an.	chenauf	gaben.	Geben	Sie imn	ner den	vollst	ändige	n
Die Bearbeitungszeit beträgt eine Stur	ıde.							
Die Gesamtklausur ist mit 32 von 80 Pur Klausur mindestens 10 von 40 Punkten				n in jed	em der	beiden	Teile d	∍r
Korrektur								
	1	2	3	4	5	6	Σ	
								ĺ

1. Aufgabe 6 Punkte

Berechnen Sie die Funktionalmatrix der folgenden Abbildung:

$$\vec{v}(x, y, z) = \begin{pmatrix} (xyz)^x \\ \sin(\frac{e^y + e^z}{xz}) \end{pmatrix}.$$

2. Aufgabe 7 Punkte

Bestimmen Sie das Taylorpolynom 2. Grades der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \sin(x) \cdot \cos(y)$$

im Entwicklungspunkt $(x_0, y_0) = (\frac{\pi}{2}, 0)$. Vereinfachen Sie das Polynom so weit wie möglich.

3. Aufgabe 5 Punkte

Zerlegen Sie mit Hilfe der Theorie der Extremwertaufgaben mit Nebenbedingung die Zahl 135 in drei positive Summanden x, y und z so, dass deren Produkt maximal wird.

4. Aufgabe 5 Punkte

Berechnen Sie das Kurvenintegral $\int_{\vec{c}} \vec{v} \cdot d\vec{s}$ für das Vektorfeld $\vec{v} : \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$\vec{v}(x,y) = \left(\begin{array}{c} x + y^2 \\ \cos x \end{array}\right)$$

längs der Kurve \vec{c} , die der Graph der Funktion $f(x) = \sin x$, $x \in [0, 2\pi]$ ist.

5. Aufgabe 9 Punkte

B sei die Fläche, die durch $y=x+1,\ y=x,\ y=3-x$ und y=3-2x berandet wird. Berechnen Sie das Integral $\int \int_B \frac{1}{x} \, dF$, indem Sie den Bereich B geeignet transformieren.

Hinweis: Verwenden Sie einmal die Steigung und einmal den y-Achsenabschnitt als Parameter.

6. Aufgabe 8 Punkte

Gegeben sei die Fläche S im \mathbb{R}^3 , die durch $z=\sin(y),\ y\in[0,\pi],\ x\in[0,1]$ gebildet wird, und eine Ladungsdichte $\omega(x,y,z)=\frac{xz}{\sqrt{1+\cos^2y}}$. Berechnen Sie die Gesamtladung Ω dieser gebogenen Fläche.