K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Darlington Amplifier

Numerical 1:

A two stage circuit is shown in figure 1. Calculate the Q point, input impedance, output impedance, overall voltage gain and overall current gain. Given $\beta_D = 8000$, $V_{BE} = 1.6V$

Figure 1: Circuit 1

Solution:

DC Analysis:

For DC Analysis, we open circuit all the capacitors as the frequency is 0Hz,

Figure 2: DC Equivalent Circuit

$$B_D = \beta_1 \beta_2$$

Considering $\beta_1 = \beta_2$

 $\beta = 89.44 = \beta_1 = \beta_2$

$$\beta_D = \beta^2$$

[where
$$\beta = \beta_1 = \beta_2$$
]

Applying KVL to Base Emitter loop,

$$V_{CC} - I_{B_1Q}R_B - V_{BE} - I_{E_2Q}R_E = 0$$

$$V_{CC} - I_{B_1Q}R_B - V_{BE} - \beta_D I_{B_1Q}R_E = 0$$

[For Darlington pair, $I_{E_2} = \beta_D I_{B_1}$]

$$\begin{split} I_{B_1Q} &= \frac{V_{CC} - V_{BE}}{R_B + \beta_D R_E} \\ &= \frac{18V - 1.6V}{3.3M\Omega + (8000 \times 390\Omega)} \\ &= \mathbf{2.55}\mu\mathbf{A} \end{split}$$

$$I_{C_1} = \beta_1 I_{B_1}$$

= $(89.44) \times (2.55 \mu A)$
= $\mathbf{0.228mA}$

$$I_{E_1} = I_{C_1} + I_{B_1}$$

= $0.228mA + 2.55\mu A$
= $0.23mA$

$$I_{E_1} = I_{B_1} = \mathbf{0.23mA}$$

$$I_{C_2} = \beta_2 I_{B_2}$$

= $(89.44) \times (0.23 \mu A)$
= $\mathbf{20.57mA}$

$$I_{E_2} = I_{C_2} + I_{B_2}$$

= 20.57mA + 0.23mA
= 20.8mA

$$V_{E_2} = I_{E_2} R_E$$

= $(20.8 mA) \times (390)$
= $8.112 V$

$$V_{C_2}=V_{C_1}=\mathbf{18V}$$

$$V_{CE_2} = I_{C_2} - V_{E_2}$$

= 18 - 8.112
= 9.888V

Small Signal Parameters:

$$r_{\pi_1} = rac{eta_1 V_T}{I_{C_1}} = rac{89.44 \times 0.026 V}{0.228 mA} = \mathbf{10.199 k} \Omega$$

$$r_{\pi_2} = rac{eta_2 V_T}{I_{C_2}} = rac{89.44 \times 0.026 V}{20.578 mA} = \mathbf{113.05} \Omega$$

AC (Mid Frequency) Equivalent Circuit:

Figure 3: Small Signal Equivalent Circuit

$$Z_{i_2} = r_{\pi_2} + (1 + \beta_2)R_E$$

= 113.05\Omega + (1 + 89.44)390\Omega
= 35.384k\Omega

$$\begin{split} Z_{i_1} &= Z_{i_2}(1+\beta_1) + r_{\pi_1} \\ &= (35.384k\Omega)(1+89.44) + 10.199k\Omega \\ &= \mathbf{3.21M\Omega} \end{split}$$
 [Input Impedance of Darlington pair is very high]

Input Impedance of 1^{st} stage: $\mathbf{Z_i}$

$$Z_i = R_B \parallel Z_{i_1}$$

$$= 3.3M\Omega \parallel 3.21M\Omega$$

$$= 1.627M\Omega$$

 $[R_B ext{ decreases the input impedance of amplifier}]$

$$Z_{o_1} = \frac{R_B + r_{\pi_1}}{1 + \beta_2}$$

= $\frac{3.3M\Omega + 10.199k\Omega}{1 + 89.44} = 36.6k\Omega$

$$Z_{o_2} = \frac{Z_{o_1} + r_{\pi_2}}{1 + \beta_2}$$

$$= \frac{36.6k\Omega + 113.05\Omega}{1 + 89.44}$$

$$= 405.938\Omega$$

Output Impedance of 2^{nd} stage: \mathbb{Z}_{0}

$$Z_o = Z_{o_2} \parallel R_E$$

= 405.938 \| 390
= **198.9**\Omega

Current gain of 1st stage:Ai₁

$$Ai_1 = \frac{I_{E_1}}{I_{B_1}} = 1 + \beta_1 = 1 + 89.44 = 90.44$$

Current gain of 2nd stage:Ai₂

$$Ai_2 = \frac{I_{E_2}}{I_{B_2}} = 1 + \beta_2 = 1 + 89.44 = 90.44$$

Overall current gain: Ai_T

$$Ai_T = Ai_1 \times Ai_2$$

= **8179.3936**

[Current gain of Darlington pair is very high]

$$Ai_T \text{ in dB} = 20 \log_{10} (Ai_T) = 78.254 \text{dB}$$

Voltage Gain of 1st stage: Av_1

$$Av_{1} = \frac{V_{1}}{V_{i}} = \frac{I_{E_{1}}}{I_{B_{1}}} \times \frac{Z_{i_{2}}}{Z_{i_{1}}} = Ai_{1} \times \frac{Z_{i_{2}}}{Z_{i_{1}}}$$

$$= 90.44 \times \frac{35.384k\Omega}{3.21M\Omega}$$

$$= 0.996$$

Voltage Gain of 2^{nd} stage : Av_2

$$Av_{2} = \frac{V_{o}}{V_{1}} = \frac{I_{E_{2}}}{I_{B_{2}}} \times \frac{R_{E}}{Z_{i_{2}}} = Ai_{2} \times \frac{R_{E}}{Z_{i_{2}}}$$
$$= 90.44 \times \frac{390\Omega}{35.384k\Omega}$$
$$= 0.996$$

Overall Voltage Gain (A_{V_T}) :

$$A_{V_T} = Av_1 \times Av_2$$
$$= 0.996 \times 0.996$$
$$= \mathbf{0.992}$$

Output Voltage
$$(V_o)$$
:

$$A_{V_T} = \frac{V_o}{V_i} \implies V_o = A_{V_T} \times V_i$$

$$\therefore V_o = 0.992 \times 10 mV$$

$$= 9.92 V$$

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

Figure 4: Circuit Schematic

Figure 5: Voltage gain of 1^{st} stage

Figure 6: Voltage gain of 2^{nd} stage

Figure 7: Current gain of 1^{st} stage

Figure 8: Current gain of 2^{nd} stage

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ results:}$

Parameters	Theoretical	Simulated
I_{B_1}, I_{B_2}	$2.55\mu A, 0.23mA$	$2.547\mu A, \ 0.23mA$
I_{C_1}, I_{C_2}	0.228mA, 20.57mA	0.2278mA, 20.6mA
I_{E_1}, I_{E_2}	0.23mA, 20.8mA	0.23mA, 20.83mA
V_{E_2}	8.112V	8.1252V
V_{C_2}	18V	18V
Voltage gain of 1^{st} stage: Av_1	0.996	0.9945
Voltage gain of 2^{nd} stage: Av_2	0.996	0.996
Overall Voltage gain: A_{V_T}	0.992	0.9905
Current gain of 1^{st} stage: Ai_1	90.44	90.377
Current gain of 2^{nd} stage: Ai_2	90.44	90.396
Overall Current gain: Ai_T in dB	78.254dB	78.244dB
Input Impedance of 1^{st} stage: Z_i	$1.627M\Omega$	
Output Impedance of 2^{nd} stage: Z_o	198.9Ω	
Output Voltage: V_o	9.92mV	9.9139mV

Table 1: Numerical 1

