Klasy zrandomizowane

Spis Treści

- Probabilistyczna Maszyna Turinga
- Czym są klasy zrandomizowane?
- RP, coRP
- ZPP
- BPP
- BPP a inne klasy

Probabilistyczna Maszyna Turinga

Taką maszynę można zdefiniować jako $M=(Q,\Sigma,\Gamma,q_0,A,\delta_1,\delta_2)$ gdzie:

- Q to skończona ilość stanów
- ullet Σ to alfabet na wejściu
- Γ to alfabet taśmy, w tym blank #
- $ullet q_0 \in Q$ to stan początkowy
- $ullet A \subseteq Q$ to zbiór stanów akceptujących
- $\delta_1:Q imes\Gamma o Q imes\Gamma imes \{L,R\}$ to pierwsza probabilistyczna $\delta_1:Q imes\Gamma o Q imes \Gamma imes \{L,R\}$ ewo na taśmie, a R w prawo
- $\delta_2:Q imes\Gamma o Q imes\Gamma imes\{L,R\}$ to druga probabilistyczna

Probabilistic TMs

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Pr[branch b] = 2^{-k} where b has k coin flips

$$\Pr[M \text{ accepts } w] = \sum_{b \text{ accepts}} \Pr[\text{ branch } b]$$

for M on w

Pr[M rejects w] = 1 - Pr[M accepts w]

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M \text{ gives the wrong answer about } w \in A] \leq \epsilon$ i.e., $w \in A \to \Pr[M \text{ rejects } w] \leq \epsilon$ $w \notin A \to \Pr[M \text{ accepts } w] \leq \epsilon$.

For a PTM M, and input x, we define the random variable $T_{M,x}$ to be the running time of M on input x. That is, $Pr[T_{M,x} = T] = p$ if with probability p over the random choices of M on input x, it will halt within T steps.

We say that M has an *expected running time* T(n) if the expectation $E[T_{M,x}]$ is at most T(|x|) for every $x \in \{0,1\}^*$.

PTM CD.

NIE MUSIMY OGRANICZAĆ SIĘ TYLKO DO DWÓCH ROZGAŁĘZIEŃ, ORAZ DO PRAWDOPODOBIEŃSTWA "PRZEJŚCIA" = 1/2 ALE DO ANALIZY ZE WZGLĘDU NA PROSTOTĘ KORZYSTA SIĘ Z TAKIEGO MODELE. POZOSTAŁE MOŻNA W PROSTY SPOSÓB DO NIEGO SPROWADZIĆ.

Przykład działania (7.2.1)

We sketch an algorithm showing that PRIMES is in **BPP** (and in fact in **coRP**). For every number N, and $A \in [N-1]$, define

$$QR_N(A) = \begin{cases} 0 & \gcd(A, N) \neq 1 \\ +1 & A \text{ is a } quadratic \ residue \ modulo } N \\ +1 & \text{That is, } A = B^2 \pmod{N} \text{ for some } B \text{ with } \gcd(B, N) = 1 \\ -1 & \text{otherwise} \end{cases}$$

We use the following facts that can be proven using elementary number theory:

- For every odd prime N and $A \in [N-1]$, $QR_N(A) = A^{(N-1)/2} \pmod{N}$.
- For every odd N, A define the Jacobi symbol $(\frac{N}{A})$ as $\prod_{i=1}^k QR_{P_i}(A)$ where P_1, \ldots, P_k are all the (not necessarily distinct) prime factors of N (i.e., $N = \prod_{i=1}^k P_i$). Then, the Jacobi symbol is computable in time $O(\log A \cdot \log N)$.
- For every odd composite N, $|\{A \in [N-1] : gcd(N,A) = 1 \text{ and } (\frac{N}{A}) = A^{(N-1)/2}\}| \le \frac{1}{2} |\{A \in [N-1] : gcd(N,A) = 1\}|$

Together these facts imply a simple algorithm for testing primality of N (which we can assume without loss of generality is odd): choose a random $1 \le A < N$, if gcd(N, A) > 1 or $(\frac{N}{A}) \ne A^{(N-1)/2}$ (mod N) then output "composite", otherwise output "prime". This algorithm will always output "prime" is N is prime, but if N is composite will output "composite" with probability at least 1/2. (Of course this probability can be amplified by repeating the test a constant number of times.)

$$\left(rac{a}{p}
ight) := \left\{egin{array}{ll} 0 & ext{if } a \equiv 0 \pmod p, \ 1 & ext{if } a
ot\equiv 0 \pmod p ext{ and for some integer } x : \ a \equiv x^2 \pmod p, \ -1 & ext{if } a
ot\equiv 0 \pmod p ext{ and there is no such } x. \end{array}
ight.$$

PRIME(A, N):

IF (gcd(A, N) > 1) or $((N/A) \neq A^{(N-1)/2} \mod N)$ output COMPOSITE ELSE output PRIME

Theorem

$PRIMES \in BPP$

- Jeśli N jest złożona, to $A^{(N-1)/2} \mod N$ różni się od $\left(\frac{A}{N}\right)$ dla co najmniej połowy liczb A.
- Dowodzi się tego, analizując strukturę reszt modulo N i faktoryzację N, co prowadzi do ograniczenia oszukujących wartości A.

Algorytm losowy

Algorytm losowy to algorytm, w którym dozwolony jest dostęp do niezależnych, niezaburzonych i losowych bitów. taki algorytm wtedy może wykorzystać te zrandomizowane bity do wpłynięcia na przebieg obliczeń.

Klasy RP, coRP

Algorytmy RP i coRP mają jednostronne prawdopodobieństwo błędu i są często nazywane algorytmami Monte Carlo

Definiujemy klase RTIME(t(n)), która zawiera w sobie każdy język L, dla którego istnieje PTM M, działająca w czasie t(n), taka że:

$$x \in L \Rightarrow \mathbf{Pr}[M \text{ accepts } x] \ge \frac{2}{3}$$

 $x \not\in L \Rightarrow \mathbf{Pr}[M \text{ accepts } x] = 0$

RP i coRP definiujemy jako:

$$\mathbf{RP} = \cup_{c>0} \mathbf{RTIME}(n^c)$$

$$\mathbf{coRP} = \{ L \mid \overline{L} \in \mathbf{RP} \}$$

$$PRIMES \in coRP$$

$$P \stackrel{?}{=} RP$$

Algorytmy ZPP mają zerowe prawdopodobieństwo błędu i są często nazywane algorytmami Las Vegas

Algorytm Las Vegas dla L można również postrzegać jako taki, który zapewnia trzy możliwe odpowiedzi: "akceptuj", "odrzuć" i "nie wiem". Nigdy nie akceptuje ciągu spoza L i nigdy nie odrzuca ciągu wewnątrz L. Wynik "nie wiem" ma prawdopodobieństwo 1/2.

Klasa ZPP

Klasa ZTIME(T(n)), zawiera w sobie każdy język L, dla którego istnieje maszyna z oczekiwanym czasem O(T(n)), która nigdy nie popełnia błędu, tj.:

```
x \in L \Rightarrow \mathbf{Pr}[M \text{ accepts } x] = 1
x \notin L \Rightarrow \mathbf{Pr}[M \text{ halts without accepting on } x] = 1
```

ZPP definiujemy jako:

$$\mathbf{ZPP} = \cup_{c>0} \mathbf{ZTIME}(n^c)$$

 $ZPP = RP \cap coRP$

Klasa BPP

Defn: BPP = $\{A \mid \text{ some poly-time PTM decides } A \text{ with error } \epsilon = \frac{1}{3} \}$

Amplification lemma: If M_1 is a poly-time PTM with error $\epsilon_1 < {}^1/_2$ then, for any $0 < \epsilon_2 < {}^1/_2$, there is an equivalent poly-time PTM M_2 with error ϵ_2 . Can strengthen to make $\epsilon_2 < 2^{\text{poly}(n)}$.

Proof idea: $M_2 =$ "On input w

1. Run M_1 on w for k times and output the majority response."

Details: Calculation to obtain k and the improved error probability.

Significance: Can make the error probability so small it is negligible.

The choice of the constant 2/3 seemed pretty arbitrary. We now show that we can replace 2/3 with any constant larger than 1/2 and in fact even with $1/2 + n^{-c}$ for a constant c > 0.

DOWÓD COMPUTATIONAL COMPLEXITY: A MODERN APPROACH - ARORA, BARAK ROZDZIAŁ 7.4.1

BPP algorithm (1 run)			
Correct	Answer produced	Yes	No
	Yes	≥ 2/3	≤ 1/3
	No	≤ 1/3	≥ 2/3
BPP algorithm (<i>k</i> runs)			
Correct answer	Answer produced	Yes	No
	Yes	> 1 - 2 ^{-ck}	< 2 ^{-ck}
	No	< 2 ^{-ck}	> 1 - 2 ^{-ck}
for some constant $c > 0$			

X

BPP a inne klasy

- Klasa BPP jest najbardziej ogólna spośród tych trzech klas, ponieważ:
 - Pozwala na błędy dwustronne,
 - Ma wyraźnie określone ograniczenie na margines błędu ($\leq \frac{1}{3}$).
- Klasy RP i ZPP są bardziej restrykcyjne:
 - RP ogranicza błędy do jednostronnych,
 - ZPP nie dopuszcza żadnych błędów, ale może potrzebować więcej czasu (w oczekiwaniu).

Theorem

 $P \subseteq BPP \subseteq EXP$.

Proof.

- Since a deterministic TM is a special case of a PTM (where both transition functions are equal) BPP clearly contains P.
- Given a polynomial-time PTM M and input $x \in \{0, 1\}^n$ in time $2^{poly(n)}$ it is possible to enumerate all possible random choices and compute precisely the probability that M(x) = 1.

(NA TABLICY)

- $2 BPP \subseteq EXP$
- $3 RP \subseteq BPP$
- 4 $coRP \subseteq BPP$
- $\mathbf{ZPP} = \mathbf{RP} \cap \mathbf{coRP}$
- \mathbf{C} ZPP \subseteq BPP

- Computational Complexity: A Modern Approach Arora, Barak
- https://www.slideshare.net/slideshow/randomizedcomputation/23217936#5
- Wikipedia
- https://cse.iitkgp.ac.in/~abhij/course/theory/CC/Spring04/ chap5.pdf

Dziękujemy za uwage!