Set⁺

Cat_{∞} and Marked Simplicial Sets

Ramkumar Ramachandra

Université de Paris

16th April 2021

Cat ~

Table of Contents

- 1 Cat_∞
- 2 Set $^+_{\Delta}$
- 3 Marked anodyne morphisms
- 4 Cartesian model structure
- 5 Comparison of model structure

The definition of Cat_{∞}

The simplicial category $\mathsf{Cat}_\infty^\Delta$ is defined as follows:

- The objects are small ∞ -categories.
- Given two ∞ -categories $\mathscr C$ and $\mathscr D$, we define $\operatorname{Map}_{\operatorname{Cat}_\infty}(\mathscr C,\mathscr D)$ to be the largest Kan complex contained in the ∞ -cateogry $\operatorname{Fun}(\mathscr C,\mathscr D)$.

 $\mathsf{Cat}_\infty \mathsf{denotes}$ the simplicial nerve $\mathsf{N}(\mathsf{Cat}_\infty^\Delta)$, and is referred to as the ∞ -category of small ∞ -categories whose mapping spaces are Kan complexes, and composition is strictly associative.

- 1 Cato
- 2 $\operatorname{\mathsf{Set}}^+_{\mathbf{\Delta}}$
- 3 Marked anodyne morphisms
- 4 Cartesian model structure
- 5 Comparison of model structure

Motivation

The Joyal model structure on $\operatorname{Set}_{\Delta}$ is not compatible with the usual simplicial structure. We will introduce marked simplicial sets $\operatorname{Set}_{\Delta}^+$ as a remedy to the problem, so that we obtain an equivalence of simplicial categories $\operatorname{Cat}_{\Delta}^{\Delta} \simeq (\operatorname{Set}_{\Delta}^+)^{\circ}$.

Definition

A marked simplicial set is a pair (X, \mathcal{E}) , where X is a simplicial set and \mathcal{E} is a set of edges of X, which contains every degenerate edge. We will say that X is marked if it belongs to \mathcal{E} . A morphism $(X, \mathcal{E}) \to (X', \mathcal{E}')$ is a map $f: X \to X'$ having the property that $f(\mathcal{E}) \subset \mathcal{E}'$.

The two extreme cases of marked simplicial sets are:

- $S^{\sharp} = (S, S_1)$ denotes the marked simplicial set in which every edge of S is marked.
- $S^{\flat} = (S, s_0(S_0))$ denotes the marked simplicial set in which only the degerate edges of S are marked

We let $(\operatorname{Set}_{\Delta}^+)_{/S}$ denote the category which might otherwise be denoted as $(\operatorname{Set}_{\Delta}^+)_{/S^{\sharp}}$.

We will soon introduce the cartesian model structure on $(\operatorname{Set}_{\Delta}^+)_{/S}$ and in particular see that each $(\operatorname{Set}_{\Delta}^+)_{/S}$ is a simplicial model category whose fibrant objects are the cartesian fibrations $X \to S$.

The two extreme cases of marked simplicial sets are:

- $S^{\sharp} = (S, S_1)$ denotes the marked simplicial set in which every edge of S is marked.
- $S^{\flat} = (S, s_0(S_0))$ denotes the marked simplicial set in which only the degerate edges of S are marked

We let $(\operatorname{Set}_{\Delta}^+)_{/S}$ denote the category which might otherwise be denoted as $(\operatorname{Set}_{\Delta}^+)_{/S^{\sharp}}$.

We will soon introduce the cartesian model structure on $(\operatorname{Set}_{\Delta}^+)_{/S}$ and in particular see that each $(\operatorname{Set}_{\Delta}^+)_{/S}$ is a simplicial model category whose fibrant objects are the cartesian fibrations $X \to S$.

The two extreme cases of marked simplicial sets are:

- $S^{\sharp} = (S, S_1)$ denotes the marked simplicial set in which every edge of S is marked.
- $S^{\flat} = (S, s_0(S_0))$ denotes the marked simplicial set in which only the degerate edges of S are marked

We let $(\operatorname{Set}_{\Delta}^+)_{/S}$ denote the category which might otherwise be denoted as $(\operatorname{Set}_{\Delta}^+)_{/S^{\sharp}}$.

We will soon introduce the cartesian model structure on $(\operatorname{Set}_{\Delta}^+)_{/S}$ and in particular see that each $(\operatorname{Set}_{\Delta}^+)_{/S}$ is a simplicial model category whose fibrant objects are the cartesian fibrations $X \to S$.

The two extreme cases of marked simplicial sets are:

- $S^{\sharp} = (S, S_1)$ denotes the marked simplicial set in which every edge of S is marked.
- $S^{\flat} = (S, s_0(S_0))$ denotes the marked simplicial set in which only the degerate edges of S are marked

We let $(\operatorname{Set}_{\Delta}^+)_{/S}$ denote the category which might otherwise be denoted as $(\operatorname{Set}_{\Delta}^+)_{/S^{\sharp}}$.

We will soon introduce the cartesian model structure on $(\operatorname{Set}_{\Delta}^+)_{/S}$, and in particular see that each $(\operatorname{Set}_{\Delta}^+)_{/S}$ is a simplicial model category whose fibrant objects are the cartesian fibrations $X \to S$.

Table of Contents

- 1 Cato
- 2 Set $^+_{\Delta}$
- 3 Marked anodyne morphisms
- 4 Cartesian model structure
- 5 Comparison of model structure

Definition

Set⁺

The class of marked anodyne morphisms in Set^+_{Δ} is the smallest weakly saturated class of morphisms with the following properties:

- (1) For each 0 < i < n, the inclusion $(\Lambda_i^n)^{\flat} \subseteq (\Delta^n)^{\flat}$ is marked anodyne.
- (2) For every n > 0 the inclusion

$$(\Lambda_n^n, \mathcal{E} \cap (\Lambda_n^n)_1) \subseteq (\Delta^n, \mathcal{E})$$

is marked anodyne, where \mathcal{E} denotes the set of all degenerate deges of $\mathbf{\Delta}^n$, together with the final edge $\mathbf{\Delta}^{\{n-1,n\}}$.

Definition

The class of marked anodyne morphisms in $\mathsf{Set}^+_{\pmb{\Delta}}$ is the smallest weakly saturated class of morphisms with the following properties:

- (1) For each 0 < i < n, the inclusion $(\Lambda_i^n)^{\flat} \subseteq (\mathbf{\Delta}^n)^{\flat}$ is marked anodyne.
- (2) For every n > 0 the inclusion

$$(\Lambda_n^n, \mathcal{E} \cap (\Lambda_n^n)_1) \subseteq (\Delta^n, \mathcal{E})$$

is marked anodyne, where \mathcal{E} denotes the set of all degenerate deges of Δ^n , together with the final edge $\Delta^{\{n-1,n\}}$.

Cat~

Marked anodyne morphisms

Comparison of model structures

(3) The inclusion

$$(\Lambda_1^2)^\sharp igsqcup_{(\Lambda_1^2)^\flat} ({f \Delta}^2)^\flat o ({f \Delta}^2)^\sharp$$

is marked anodyne.

Marked anodyne morphisms

$$(\Lambda_1^2)^\sharp \bigsqcup_{(\Lambda_1^2)^\flat} ({\bf \Delta}^2)^\flat \to ({\bf \Delta}^2)^\sharp$$

is marked anodyne.

(4) For every Kan complex K, the map $K^{\flat} \to K^{\sharp}$ is marked anodyne.

Table of Contents

- 1 Cat_{∞}
- 2 $\operatorname{Set}_{\Delta}^+$
- 3 Marked anodyne morphisms
- 4 Cartesian model structure
- 5 Comparison of model structure

Groundwork

Let S be a simplicial set. In this section, the goal is to define the cartesian model structure on the category $(\operatorname{Set}_{\Delta}^+)_{/S}$ of marked simplicial sets over S. The ultimate goal is to prove that the fibrant objects of $(\operatorname{Set}_{\Delta}^+)_{/S}$ correspond precisely to cartesian fibrations $X \to S$ and that they encode contravariant functors from S into the ∞ -category $\operatorname{Cat}_{\Delta}^{\Delta}$.

First of all, the category Set^+_{Δ} is cartesian-closed. This means that for any two objects $X,Y\in\mathsf{Set}^+_{\Delta}$, there exists an internal mapping object Y^X equipped with an evaluation map $Y^X\times X\to Y$ which induces bijections

$$\mathsf{Hom}_{\mathsf{Set}^+_{\pmb{\Delta}}}(Z,Y^X) \to \mathsf{Hom}_{\mathsf{Set}^+_{\pmb{\Delta}}}(Z \times X,Y)$$

for every $Z \in \operatorname{Set}_{\Delta}^+$.

Let $\operatorname{\mathsf{Map}}^\flat(X,Y)$ denote the underlying simplicial set of Y^X and $\operatorname{\mathsf{Map}}^\sharp(X,Y)$ the simplicial subset of $\operatorname{\mathsf{Map}}^\flat(X,Y)$ consisting of all simplices $\sigma \subset \operatorname{\mathsf{Map}}^\flat(X,Y)$ such that every edge of σ is a marked edge of Y^X .

First of all, the category Set^+_{Δ} is cartesian-closed. This means that for any two objects $X, Y \in \mathsf{Set}^+_{\Delta}$, there exists an internal mapping object Y^X equipped with an evaluation map $Y^X \times X \to Y$ which induces bijections

$$\mathsf{Hom}_{\mathsf{Set}^+_{\pmb{\Delta}}}(Z,Y^X) o \mathsf{Hom}_{\mathsf{Set}^+_{\pmb{\Delta}}}(Z imes X,Y)$$

for every $Z \in \operatorname{\mathsf{Set}}^+_{\mathbf{\Delta}}$.

Let $\operatorname{\mathsf{Map}}^{\flat}(X,Y)$ denote the underlying simplicial set of Y^X and $\operatorname{\mathsf{Map}}^{\sharp}(X,Y)$ the simplicial subset of $\operatorname{\mathsf{Map}}^{\flat}(X,Y)$ consisting of all simplices $\sigma \subset \operatorname{\mathsf{Map}}^{\flat}(X,Y)$ such that every edge of σ is a marked edge of Y^X .

These simplicial sets can also be described by the properties:

$$\mathsf{Hom}_{\mathsf{Set}_{\Delta}}(K,\mathsf{Map}^{\flat}(X,Y)) \simeq \mathsf{Hom}_{\mathsf{Set}_{\Delta}^{+}}(K^{\flat} \times X,Y)$$
 $\mathsf{Hom}_{\mathsf{Set}_{\Delta}}(K,\mathsf{Map}^{\sharp}(X,Y)) \simeq \mathsf{Hom}_{\mathsf{Set}_{\Delta}^{+}}(K^{\sharp} \times X,Y)$

$$\operatorname{\mathsf{Map}}^\sharp_{\mathsf{S}}(X,Y) \subset \operatorname{\mathsf{Map}}^\sharp(X,Y)$$

 $\operatorname{\mathsf{Map}}^\sharp_{\mathsf{S}}(X,Y) \subset \operatorname{\mathsf{Map}}^\flat(X,Y)$

4 D > 4 A > 4 B > 4 B >

Cat~

These simplicial sets can also be described by the properties:

$$\mathsf{Hom}_{\mathsf{Set}_{\Delta}}(K,\mathsf{Map}^{\flat}(X,Y)) \simeq \mathsf{Hom}_{\mathsf{Set}_{\Delta}^{+}}(K^{\flat} \times X,Y)$$

 $\mathsf{Hom}_{\mathsf{Set}_{\Delta}}(K,\mathsf{Map}^{\sharp}(X,Y)) \simeq \mathsf{Hom}_{\mathsf{Set}_{\Delta}^{+}}(K^{\sharp} \times X,Y)$

If X and Y are objects of $(\operatorname{Set}_{\Delta})_{/S}^+$, then we let

$$\mathsf{Map}^\sharp_S(X,Y)\subset \mathsf{Map}^\sharp(X,Y)$$

 $\mathsf{Map}^\flat_S(X,Y)\subset \mathsf{Map}^\flat(X,Y)$

denote the simplicial subsets classifying those maps compatible with the projections to S. For instance, in the case where $X \in (\operatorname{Set}^+_{\Delta})_{/S}$ and $P: Y \to S$ is a cartesian fibration, then $\operatorname{Map}_S^{\flat}(X,Y^{\natural})$ is an ∞ -category and $\operatorname{Map}_S^{\sharp}(X,Y^{\natural})$ is the largest Kan complex contained in $\operatorname{Map}_S^{\flat}(X,Y^{\natural})$.

Cartesian equivalences

Let S be a simplicial set. And let $p: X \to Y$ be a morphism in $(\operatorname{Set}_{\Delta}^+)_{/S}$. p is a cartesian equivalence if it satisfies either of the following equivalent conditions:

(1) For every cartesian fibration $Z \rightarrow S$, the induced map

$$\mathsf{Map}^{\flat}_{\mathcal{S}}(Y, \mathcal{Z}^{\natural}) o \mathsf{Map}^{\flat}_{\mathcal{S}}(X, \mathcal{Z}^{\natural})$$

is an equivalence of ∞ -categories.

(2) For every cartesian fibration $Z \rightarrow S$, the induced map

$$\mathsf{Map}^\sharp_S(Y,Z^
atural) o \mathsf{Map}^\sharp_S(X,Z^
atural)$$

00000000000

is a homotopy equivalence of Kan complexes.

Let's take $f:X\to Y$ to be a morphism in $(\operatorname{Set}^+_{\Delta})_{/S}$ which is marked anodyne when regarded as a map of marked simplicial sets. Since the smash product of f with any inclusion $A^{\flat}\subset B^{\flat}$ is also marked anodyne, we deduce that the map

$$\phi: \mathsf{Map}^{\flat}_{\mathcal{S}}(Y, \mathcal{Z}^{
atural}) o \mathsf{Map}^{\flat}_{\mathcal{S}}(X, \mathcal{Z}^{
atural})$$

is a trivial fibration for every cartesian fibration $Z \to S$, which makes f a cartesian equivalence.

Strong homotopy in $(\operatorname{\mathsf{Set}}^+_{\mathbf{\Delta}})_{/S}$

 $X,Y\in (\operatorname{Set}^+_{\mathbf{\Delta}})_{/S}$ for S a simplicial set. We say that a pair of morphisms $f,g:X\to Y$ are strongly homotopic if there exists a contractible Kan complex K and a map $K\to\operatorname{Map}_S^\flat(X,Y)$ whose image contains both of the vertices f and g. If $Y=Z^\natural$, where $Z\to S$ is a cartesian fibration, then this just means that f and g are equivalent when viewed as objects of the ∞ -category $\operatorname{Map}_S^\flat(X,Y)$.

Let $X \xrightarrow{p} Y \xrightarrow{q} S$ be a diagram of simplicial sets, where both q and $q \circ p$ are cartesian fibrations. The following assertions are equivalent:

- (1) The map p induces a cartesian equivalence $X^{\natural} \to Y^{\natural}$ in $(\mathsf{Set}^+_{\mathbf{\Delta}})_{/S}.$
- (2) There exists a map r: Y → X which is a strong homotopy inverse to p, in the sense that p ∘ r and r ∘ p are both strongly homotopic to the identity.
- (3) The map p induces a categorical quivalence $X_s \to Y_s$ for each vertex s of S.

Let $X \xrightarrow{p} Y \xrightarrow{q} S$ be a diagram of simplicial sets, where both q and $q \circ p$ are cartesian fibrations. The following assertions are equivalent:

- (1) The map p induces a cartesian equivalence $X^{\natural} \to Y^{\natural}$ in $(\mathsf{Set}^+_{\mathbf{\Delta}})_{/S}.$
- (2) There exists a map $r: Y \to X$ which is a strong homotopy inverse to p, in the sense that $p \circ r$ and $r \circ p$ are both strongly homotopic to the identity.
- (3) The map p induces a categorical quivalence $X_s \to Y_s$ for each vertex s of S.

Let $X \xrightarrow{p} Y \xrightarrow{q} S$ be a diagram of simplicial sets, where both q and $q \circ p$ are cartesian fibrations. The following assertions are equivalent:

- (1) The map p induces a cartesian equivalence $X^{\natural} \to Y^{\natural}$ in $(\mathsf{Set}^+_{\mathbf{\Delta}})_{/S}.$
- (2) There exists a map $r: Y \to X$ which is a strong homotopy inverse to p, in the sense that $p \circ r$ and $r \circ p$ are both strongly homotopic to the identity.
- (3) The map p induces a categorical quivalence $X_s \to Y_s$ for each vertex s of S.

Set⁺

Model structure on $(Set^+_{\mathbf{\Delta}})_{/S}$

Let us now define the model structure we want on $(\operatorname{Set}^+_{\Delta})_{/S}$: There exists a left proper combinatorial model structure on $(\operatorname{Set}^+_{\Delta})_{/S}$ which can be described as follows:

- (C) The cofibrations in $(\operatorname{Set}^+_{\Delta})_{/S}$ are the morphisms $p:X\to Y$ in $(\operatorname{Set}^+_{\Delta})_{/S}$ which are cofibrations when regarded as morphisms of simplicial sets.
- (W) The weak equivalences in $(\mathsf{Set}^+_{\Delta})_{/S}$ are the cartesian equivalences.
- (F) The fibrations in $(\operatorname{Set}_{\Delta}^+)_{/S}$ are the maps which have the right lifting property with respect to every map which is simultaneously a cofibration and a weak equivalence.

Set⁺

Model structure on $(\operatorname{Set}^+_{\mathbf{\Delta}})_{/S}$

Let us now define the model structure we want on $(\operatorname{Set}^+_{\Delta})_{/S}$: There exists a left proper combinatorial model structure on $(\operatorname{Set}^+_{\Delta})_{/S}$ which can be described as follows:

- (C) The cofibrations in $(\operatorname{Set}^+_{\Delta})_{/S}$ are the morphisms $p:X\to Y$ in $(\operatorname{Set}^+_{\Delta})_{/S}$ which are cofibrations when regarded as morphisms of simplicial sets.
- (W) The weak equivalences in $(\operatorname{Set}^+_{\mathbf{\Delta}})_{/S}$ are the cartesian equivalences.
 - (F) The fibrations in $(\operatorname{Set}^+_{\Delta})_{/S}$ are the maps which have the right lifting property with respect to every map which is simultaneously a cofibration and a weak equivalence.

Model structure on $(\operatorname{Set}^+_{\mathbf{\Delta}})_{/S}$

Let us now define the model structure we want on $(\operatorname{Set}^+_{\Delta})_{/S}$: There exists a left proper combinatorial model structure on $(\operatorname{Set}^+_{\Delta})_{/S}$ which can be described as follows:

- (C) The cofibrations in $(\operatorname{Set}^+_{\Delta})_{/S}$ are the morphisms $p:X\to Y$ in $(\operatorname{Set}^+_{\Delta})_{/S}$ which are cofibrations when regarded as morphisms of simplicial sets.
- (W) The weak equivalences in $(\operatorname{Set}^+_{\mathbf{\Delta}})_{/S}$ are the cartesian equivalences.
 - (F) The fibrations in $(\operatorname{Set}^+_{\Delta})_{/S}$ are the maps which have the right lifting property with respect to every map which is simultaneously a cofibration and a weak equivalence.

Set⁺

Let S be a simplicial set. Let's regard $(\operatorname{Set}_{\Delta}^+)_{/S}$ as a simplicial category with mapping objects given by $\operatorname{Map}_S^\sharp(X,Y)$. Then $(\operatorname{Set}_{\Delta}^+)_{/S}$ is a simplicial model category.

Set⁺

Let S be a simplicial set. Let's regard $(\operatorname{Set}_{\Delta}^+)_{/S}$ as a simplicial category with mapping objects given by $\operatorname{Map}_S^\sharp(X,Y)$. Then $(\operatorname{Set}_{\Delta}^+)_{/S}$ is a simplicial model category.

Of course, we can define a second simplicial structure on $(\operatorname{Set}_{\Delta}^+)_{/S}$, where the simplicial mapping spaces are given by $\operatorname{Map}_S^{\flat}(X,Y)$. This simplicial structure is not compatible with the cartesian model structure: for fixed $X \in (\operatorname{Set}_{\Delta}^+)_{/S}$ the functor $A \mapsto A^{\flat} \times X$ does not carry weak homotopy equivalences to cartesian equivalences.

It does, however, carry categorical equivalences to cartesian equivalences, and consequently $(\operatorname{Set}_{\Delta}^+)_{/S}$ is endowed with the structure of a $\operatorname{Set}_{\Delta}$ -enriched model category, where we regard $\operatorname{Set}_{\Delta}$ as equipped with the Joyal model structure. It's actually closer to the truth to say that $(\operatorname{Set}_{\Delta}^+)_{/S}$ is a model for an ∞ -bicategory.

Let S be a simplicial set. Let's regard $(\operatorname{Set}^+_{\mathbf{\Lambda}})_{/S}$ as a simplicial category with mapping objects given by $Map_S^{\sharp}(X, Y)$. Then $(\operatorname{Set}_{\mathbf{\Lambda}}^+)_{/S}$ is a simplicial model category. Of course, we can define a second simplicial structure on $(\operatorname{Set}^+_{\Lambda})_{/S}$, where the simplicial mapping spaces are given by $Map_{S}^{\flat}(X,Y)$. This simplicial structure is not compatible with the cartesian model structure: for fixed $X \in (\operatorname{Set}^+_{\Lambda})_{/S}$ the functor $A \mapsto A^{\flat} \times X$ does not carry weak homotopy equivalences to cartesian equivalences. It does, however, carry categorical equivalences to cartesian equivalences, and consequently $(\operatorname{Set}_{\mathbf{A}}^+)_{/S}$ is endowed with the structure of a Set_{Δ} -enriched model category, where we regard Set_△ as equipped with the Joyal model structure. It's actually

closer to the truth to say that $(\operatorname{Set}^+_{\Lambda})_{/S}$ is a model for an

 ∞ -bicategory.

Table of Contents

- 1 Cato
- 2 $\operatorname{Set}_{\Delta}^+$
- 3 Marked anodyne morphisms
- 4 Cartesian model structure
- 5 Comparison of model structures

The different model structures

We have a plethora of model structures on categories of simplicial sets over the simplicial set S:

- (0) Let \mathscr{C}_0 denote $(\mathsf{Set}_{\Delta})_{/S}$ endowed with the Joyal model structure. Cofibrations are monomorphisms of simplicial sets, and weak equivalences are categorical equivalences.
- (1) Let \mathscr{C}_1 denote $(\operatorname{Set}^+_{\Delta})_{/S}$ endowed with the marked model structure. Cofibrations are maps $(X, \mathcal{E}_X) \to (Y, \mathcal{E}_Y)$ which induce monomorphisms $X \to Y$, and the weak equivalences are cartesian equivalences.

The different model structures

We have a plethora of model structures on categories of simplicial sets over the simplicial set S:

- (0) Let \mathscr{C}_0 denote $(\mathsf{Set}_{\Delta})_{/S}$ endowed with the Joyal model structure. Cofibrations are monomorphisms of simplicial sets, and weak equivalences are categorical equivalences.
- (1) Let \mathscr{C}_1 denote $(\operatorname{Set}^+_{\Delta})_{/S}$ endowed with the marked model structure. Cofibrations are maps $(X, \mathcal{E}_X) \to (Y, \mathcal{E}_Y)$ which induce monomorphisms $X \to Y$, and the weak equivalences are cartesian equivalences.

Set⁺

- (3) Let \mathscr{C}_3 denote $(\operatorname{Set}_{\Delta})_{/S}$ endowed with the covariant model structure. The cofibrations are monomorphisms and the weak equivalences are contravariant equivalences.
- (4) Let \mathcal{C}_4 denote $(\operatorname{Set}_{\Delta})_{/S}$ endowed with the usual homotopic-theoretic model structure. The cofibrations are monomorphisms of simplicial sets, and the weak equivalences are weak homotopy equivalences of simplicial sets.

Set +

- (2) Let \mathscr{C}_2 denote $(\operatorname{Set}^+_{\mathbf{\Delta}})_{/S}$ endowed with the following localization of the cartesian model structure: $f:(X,\mathcal{E}_X)\to (Y,\mathcal{E}_Y)$ is a cofibration if $X\to Y$ is a monomorphism, and a weak equivalence if $f:X^\sharp\to Y^\sharp$ is a marked equivalence in $(\operatorname{Set}^+_{\mathbf{\Delta}})_{/S}$.
- (3) Let \mathscr{C}_3 denote $(\operatorname{Set}_{\Delta})_{/S}$ endowed with the covariant model structure. The cofibrations are monomorphisms and the weak equivalences are contravariant equivalences.
- (4) Let \mathcal{C}_4 denote $(\operatorname{Set}_{\Delta})_{/S}$ endowed with the usual homotopic-theoretic model structure. The cofibrations are monomorphisms of simplicial sets, and the weak equivalences are weak homotopy equivalences of simplicial sets.

Set +

- (2) Let \mathscr{C}_2 denote $(\operatorname{Set}^+_{\Delta})_{/S}$ endowed with the following localization of the cartesian model structure: $f:(X,\mathcal{E}_X) \to (Y,\mathcal{E}_Y)$ is a cofibration if $X \to Y$ is a monomorphism, and a weak equivalence if $f:X^\sharp \to Y^\sharp$ is a marked equivalence in $(\operatorname{Set}^+_{\Delta})_{/S}$.
- (3) Let \mathscr{C}_3 denote $(\operatorname{Set}_{\Delta})_{/S}$ endowed with the covariant model structure. The cofibrations are monomorphisms and the weak equivalences are contravariant equivalences.
- (4) Let \mathcal{C}_4 denote $(\operatorname{Set}_{\Delta})_{/S}$ endowed with the usual homotopic-theoretic model structure. The cofibrations are monomorphisms of simplicial sets, and the weak equivalences are weak homotopy equivalences of simplicial sets.

The Quillen adjunctions

There exists a sequence of Quillen adjunctions:

$$\mathscr{C}_0 \overset{F_0}{\underset{G_0}{\rightleftarrows}} \mathscr{C}_1 \overset{F_1}{\underset{G_1}{\rightleftarrows}} \mathscr{C}_2 \overset{F_2}{\underset{G_2}{\rightleftarrows}} \mathscr{C}_3 \overset{F_3}{\underset{G_3}{\rightleftarrows}} \mathscr{C}_4$$

- (A0) G_0 is the forgetful functor from $(\operatorname{Set}_{\Delta}^+)_{/S}$ to $(\operatorname{Set}_{\Delta})_{/S}$, which ignores the collection of marked edges. F_0 is left adjoint to G_0 , given by $X \mapsto X^{\flat}$. The Quillen adjunction (F_0, G_0) is a Quillen equivalence if S is a Kan complex.
- (A1) F_1 and G_1 are identity functors on $(\mathsf{Set}^+_{\mathbf{\Delta}})_{/S}$.
- (A2) F_2 is the forgetful functor from $(\operatorname{Set}^+_{\Delta})_{/S}$ to $(\operatorname{Set}_{\Delta})_{/S}$ which ignores the collection of marked edges. G_2 is right adjoint to F_2 given by $X \mapsto X^{\sharp}$. The Quillen adjunction (F_2, G_2) is a Quillen equivalence for every simplicial set S.
- (A3) F_3 and G_3 are identity functors on $(\operatorname{Set}_{\Delta})_{/S}$. The Quillen adjunction (F_3, G_3) is Quillen equivalence whenever S is a Kan complex.

- (A0) G_0 is the forgetful functor from $(\operatorname{Set}_{\Delta}^+)_{/S}$ to $(\operatorname{Set}_{\Delta})_{/S}$, which ignores the collection of marked edges. F_0 is left adjoint to G_0 , given by $X \mapsto X^{\flat}$. The Quillen adjunction (F_0, G_0) is a Quillen equivalence if S is a Kan complex.
- (A1) F_1 and G_1 are identity functors on $(\mathsf{Set}^+_{\mathbf{\Delta}})_{/S}$.
- (A2) F_2 is the forgetful functor from $(\operatorname{Set}^+_{\Delta})_{/S}$ to $(\operatorname{Set}_{\Delta})_{/S}$ which ignores the collection of marked edges. G_2 is right adjoint to F_2 given by $X \mapsto X^{\sharp}$. The Quillen adjunction (F_2, G_2) is a Quillen equivalence for every simplicial set S.
- (A3) F_3 and G_3 are identity functors on $(\operatorname{Set}_{\Delta})_{/S}$. The Quillen adjunction (F_3, G_3) is Quillen equivalence whenever S is a Kan complex.

- (A0) G_0 is the forgetful functor from $(\operatorname{Set}_{\Delta}^+)_{/S}$ to $(\operatorname{Set}_{\Delta})_{/S}$, which ignores the collection of marked edges. F_0 is left adjoint to G_0 , given by $X \mapsto X^{\flat}$. The Quillen adjunction (F_0, G_0) is a Quillen equivalence if S is a Kan complex.
- (A1) F_1 and G_1 are identity functors on $(\mathsf{Set}^+_{\mathbf{\Delta}})_{/S}$.
- (A2) F_2 is the forgetful functor from $(\operatorname{Set}^+_{\Delta})_{/S}$ to $(\operatorname{Set}_{\Delta})_{/S}$ which ignores the collection of marked edges. G_2 is right adjoint to F_2 given by $X \mapsto X^{\sharp}$. The Quillen adjunction (F_2, G_2) is a Quillen equivalence for every simplicial set S.
- (A3) F_3 and G_3 are identity functors on $(\operatorname{Set}_{\Delta})_{/S}$. The Quillen adjunction (F_3, G_3) is Quillen equivalence whenever S is a Kan complex.

- (A0) G_0 is the forgetful functor from $(\operatorname{Set}_{\Delta}^+)_{/S}$ to $(\operatorname{Set}_{\Delta})_{/S}$, which ignores the collection of marked edges. F_0 is left adjoint to G_0 , given by $X \mapsto X^{\flat}$. The Quillen adjunction (F_0, G_0) is a Quillen equivalence if S is a Kan complex.
- (A1) F_1 and G_1 are identity functors on $(\mathsf{Set}^+_{\mathbf{\Delta}})_{/S}$.
- (A2) F_2 is the forgetful functor from $(\operatorname{Set}^+_{\Delta})_{/S}$ to $(\operatorname{Set}_{\Delta})_{/S}$ which ignores the collection of marked edges. G_2 is right adjoint to F_2 given by $X \mapsto X^{\sharp}$. The Quillen adjunction (F_2, G_2) is a Quillen equivalence for every simplicial set S.
- (A3) F_3 and G_3 are identity functors on $(\operatorname{Set}_{\Delta})_{/S}$. The Quillen adjunction (F_3, G_3) is Quillen equivalence whenever S is a Kan complex.

