

Alternative Splicing Events

Dr. Giorgio Giurato, PhD ggiurato@unisa.it

Laboratory of Molecular Medicine and Genomics

Genomix4Life Srl

Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana'

University of Salerno

Training Course on Best practise for RNA-Seq data analysis

Sept 27-29 2017 – Salerno

What is Alternative Splicing?

- Alternative Splicing (AS) is a process by which exons or portions of exons or non-coding region within a pre-mRNA transcript are differentially joined or skipped, resulting in multiple protein isoforms.
- This mechanism increases the informational diversity and functional capability of a gene during post-transcriptional processing and provides an opportunity for gene regulation.

The Splicing Machinery

- ■During AS, cis-acting regulatory elements in the mRNA sequence determine which exons are retained and which one ones are spliced out.
- These cis-acting regulatory elements alter splicing by binding different trans-acting protein factors.
- The final decision to include or splice an alternative exon is determined by combinatorial effect and cellular abundance.

Different types of Alternative Splicing

■ There are several different types of Alternative Splicing events, which can be classified into four main subgroups.

Different types of Alternative Splicing

- ■The first type is exon skipping, in which a type of exon known as cassette exon is spliced out of the transcript together with its flanking introns.
- Exon skipping accounts for nearly 40% of AS events in higher eukaryotes.

- ■The second and third types are alternative 3' splice site (3' SS) and 5' splice site (5' SS).
- These types of AS events occur when two or more splice sites are recognized at one end of an exon.
- Alternative 3' SS and 5' SS selection account for 18.4% and 7.9% of all AS events in higher eukaryotes, respectively.

Different types of Alternative Splicing

- ■The fourth type is intron retention, in which an intron remains in the mature mRNA transcript.
- This is the rarest AS event in vertebrates and invertebrates, accounting for less 5% of known events.

- Less frequent, complex events that give rise to alternative transcripts variant include:
 - ☐ Mutually Exclusive Exons
 - ☐ Alternative Promoter usage
 - ☐ Alternative polyadenylation

Computational Approaches

- Most available methods for analysis of transcripts variant from RNA-Seq data fall into categories:
 - ☐ Methods for quantification of defined splice events.
 - ☐ Methods for the reconstruction and quantification of full-length transcripts.
 - ☐ The splice events of a gene can be described by a directed acyclic splice graph, where:
 - √ nodes correspond to transcript starts , end and splice sites
 - ✓ edges correspond to exonic regions and splice junctions.

Computational Approaches

■ Recent advances in high-thoroughput technologies have facilitated studies of AS.
■ RNA-Seq has become a powerful tool for quantitative profiling of AS.
■ Several tools have been implemented:
☐ MISO
□ SpliceTrap
☐ AlexaSeq
☐ rSeqDiff
■ These tools are designed for two samples comparison, but do not handle replicates
■ Other tools are:
☐ Cufflink
☐ FDM
☐ DiffSplice
□ DEXSeq
□ rMATS

Cufflink - Alternative Splicing through assembly of aligned reads

MATS (Multivariate Analysis of Transcript Splicing)

- Uses a Bayesian approaches to model between-sample correlation in splicing.
- Uses a simulation-based approach to generate p-values and FDR.

Gene Fusion

Dr. Giorgio Giurato, PhD ggiurato@unisa.it

Laboratory of Molecular Medicine and Genomics

Genomix4Life Srl

Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana'

University of Salerno

Training Course on Best practise for RNA-Seq data analysis
Sept 27-29 2017 – Salerno

Fusion Genes

- Fusion genes are a prototypical example of pathogenomic mutation.
- A fusion gene is a hybrid gene formed from two previously separate genes.
- It can occurs as a result of traslocation, deletion or chromosomal inversion.
- Detection and characterization of fusion genes has been of great importance for clinical purpose, as well as, for understanding tumorogenesis.

- The abnormal genetic rearrangement contributes to the growth and spread of tumor cells.
- This because the abnormal proteins made by fusion genes appear to be much more active than the normal versions.

Next-Generation Sequencing

- High-throughput sequencing enables systematic discovery of fusion genes with high sensitivity and precision.
- High-throughput sequencing identifies multiple fusion genes in individual samples, presenting a challenge to distinguish oncogenic "driver" from unimportant "passenger" aberrations.
- The bioinformatic approaches used to identify fusion genes fall into two conceptual classes:
 - ☐ mapping-first approaches: the reads are mapped to genome and gene to identify discordantly mapping reads.
 - assembly-first approaches: the reads are assembled into longer transcript sequences followed by identifying chimeric transcripts consistent with chromosomal rearrangements.
- Evidence supporting predicted fusions is typically measured by the number of RNA-Seq fragments found as split reads that directly overlap the fusion transcript chimeric junction.

Implementation of several bioinformatic approaches vary in:☐ Read alignment tools.
☐ Genome database and gene set resources.
☐ Criteria for reporting candidate fusion transcripts and excluding false positive.
■ Depending on the fusion prediction tool chosen, a process can taker several days worth computing and result with a list of hundred of thousands of fusion genes candidates.
 Several tools have been implemented based on different strategies for fusion detections: Tophat-Fusion
☐ ChimeraScan
☐ FusionCatcher
☐ STAR-Fusion

Tophat-fusion

Bowtie: align reads located entirely in exons

IUM: Initially unmapped reads split into 25bp

- Each read must overlap
 13bp on both sides of fusion
- Fusion: on different chromosomes or 100,000bp distance
- Penalties for alignments that span:
 - introns (-2)
 - o indels (-4)
 - fusions (-4)

(a) mapping segments on chr i and chr j

- +
- Support of single-end reads
- Many options

- Slow
- Many false positives

FusionCatcher

Bowtie maps to genome:

- Unmapped reads are kept
- Candidate fusions: read-pairs mapping to two different genes

Preliminary fusions filtered for:

- Paralogs
- pseudogenes
- micro/transfer/small-nucleola r RNA
- ConjoinG database
- Previous found in healthy person (Body Map 2.0)

Unmapped reads aligned with BLAT/STAR/Bowtie2

- Easy to install/run
- High specificity

Medium sensitivity

- Chimera
- ChimeraScan
- CompleteGenomics
- DeFuse
- EricScript
- FusionCatcher
- FusionMap
- GMAP
- JAFFA
- STAR
- STAR Fusion
- TopHat-Fusion

FuMa: reporting overlap in RNA-seq detected fusion genes

Youri Hoogstrate^{1,2}, René Böttcher¹, Saskia Hiltemann^{1,2}, Peter J. van der Spek², Guido Jenster¹ and Andrew P. Stubbs^{2,*}

¹Department of Urology and ²Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands

Left Genes	Right Genes	STAR	TopHat Fusion
FOO1	BAR1	UID_A=chr1:12-34	
F002	BAR2		TID_A=chr4:66-77
DOX1	BOX5	UID_B=chr5:85-95	TID_B=chr5:88-99

STAR-Fusion

- STAR-Fusion is a largely used tool for fusion genes detection.
- It performs a fast mapping of fusion evidence to reference transcript structure annotation and filters likely artefacts to report accurtate fusion prediction.
- STAR-fusion workflow:
 - ☐ Illumina RNA-Seq reads are aligned to the genome.
 - ☐ Discordant and split-reads are identified and mapped to reference transcript annotation.
 - ☐ Those reads corresponding to artifacts are filtered.
 - ☐ Fusion candidates containing sequence-similar gene pairs or promiscuous fusion patterns are excluded as likely false positive.

Gene black list included:

☐ Mitocondrial and ribosomal genes.

☐ Pseudogenes according to the three annotation: Ensembl, ENTREZ Gene Db and HUGO.

■ A true fusion junction is likely to present a canonical splice pattern:

- ☐ GT-AG (~ 98.71%)
- ☐ GC-AG (~ 0.56%)
- ☐ AT-AC (~ 0.05%)

Fusion Validation

- Validation with Sanger Sequencing
- FISH/IHC to identify other cases

Conclusion

- ■Many different tools/strategies for fusion detection:
 - ☐ Discordant reads are analyzed.
 - ☐ Different filter criteria.
 - ☐ Different strategies for fusion boundary detection.
- Combine different tools.

rMATS command line

- First of all it is necessary to index the genome with STAR:
 - Create on "Scrivania" a folder where save the results.
 - mkdir rMATS out
 - Inside the folder create another sub-folder: STAR Index
- Move inside rMATS_out folder (cd rMATS_out)
 - Here type the command to create the index of the genome. The command to type following:

```
✓ STAR --runMode genomeGenerate --genomeDir STAR_Index --genomeFastaFiles
/home/studente/Scrivania/Dataset_Corso/Danio_Rerio.cdna.fa --sjdbGTFfile
/home/studente/Scrivania/Dataset_Corso/Danio_Rerio.gtf -sjdbOverhang 75
```

 Move rMATS folder (Inside Elixir-RNA-Seq-Tools/rMATS.3.2.5 on desktop) and type the following command line:

```
python RNASeq-MATS.py -s1
/home/studente/Scrivania/Dataset_Corso/6h1.fastq:/home/studente/Scrivania/Da
taset Corso/6h2.fastq -s2
/home/studente/Scrivania/Dataset_Corso/2cells_1.fastq:
/home/studente/Scrivania/Dataset_Corso/2cells_2.fastq -gtf
/home/studente/Scrivania/Datase_Corso/Danio_rerio.gtf -bi
/home/studente/Scrivania/rMATS_out/STAR_Index -o
/home/studente/Scrivania/rMATS_out/Output_Folder -t paired -len 76
```

rMATS output

Output:

All output files are in outputFolder

- . MATS_output: A folder that contains rMATS output of AS events. Each output file is sorted by P-values in ascending order.
 - o AS Event.MATS.JunctionCountOnly.txt evaluates splicing with only reads that span splicing junctions
 - IJC_SAMPLE_1: inclusion junction counts for SAMPLE_1, replicates are separated by comma
 - SJC_SAMPLE_1: skipping junction counts for SAMPLE_1, replicates are separated by comma
 - IJC_SAMPLE_2: inclusion junction counts for SAMPLE_2, replicates are separated by comma
 - SJC SAMPLE 2: skipping junction counts for SAMPLE 2, replicates are separated by comma
- o AS Event.MATS.ReadsOnTargetAndJunctionCounts.txt evaluates splicing with reads that span splicing junctions and reads on target (
 - IC_SAMPLE_1: inclusion counts for SAMPLE_1, replicates are separated by comma
 - SC_SAMPLE_1: skipping counts for SAMPLE_1, replicates are separated by comma
 - IC SAMPLE 2: inclusion counts for SAMPLE 2, replicates are separated by comma
 - SC_SAMPLE_2: skipping counts for SAMPLE_2, replicates are separated by comma

rMATS output

- summary.txt: A file that contains summary of statistically significant AS events and the identity of each replicate
- . ASEvents: A folder that contains all possible alternative splicing (AS) events derived from GTF and RNA
- SAMPLE_1/REP_N: A folder that contains mapping results of sample_1, replicate N
 - o accepted_hits.bam is the original tophat output containing both multi-mapped and uniquely mappable reads.
 - o unique.S1.sam contains uniquely mappable reads only. rMATS uses uniquely mappable reads.
- SAMPLE_2/REP_N: A folder that contains mapping results of sample_2, replicate N
 - o accepted_hits.bam is the original tophat output containing both multi-mapped and uniquely mappable reads.
 - o unique.S2.sam contains uniquely mappable reads only. rMATS uses uniquely mappable reads.
- · commands.txt: A list of key commands executed
- log.RNASeq-MATS: Log file for running rMATS pipeline

С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W
geneSyml	chr	strand	exonStart	exonEnd	upstream ^t	upstream [/]	downstre	downstre	D	IJC_SAMPLE_1	SJC_SAM	IJC_SAMP	SJC_SAM	1F IncFormLe	SkipForm	PValue	FDR	IncLevel1	1 IncLevel2	IncLevelDifference
ARHGAP4	17	7 +	12877405	12877627	7 12862033	12862214	12883374	12883550	62650	0,4,1	0,1,2	2,2,1	2,6,0	172	86	9.06E-06	0.0001	NA,0.667,	,(0.333,0.143,1.0	-0.059
BRD8		5 -	1.38E+08	1.38E+08	3 1.38E+08	1.38E+08	1.38E+08	1.38E+08	17025	89,74,86	0,0,0	68,66,86	1,0,1	172	86	9.08E-06	0.000101	1.0,1.0,1.0	0 0.971,1.0,0.977	0.017
wwox	16	6 +	78142319	78142384	4 78133630	78133782	78143674	78143732	31848	184,175,172	. 4,3,1	***************************************	4,0,0	81	51	9.08E-06	0.000101	0.967,0.97	7 0.983,1.0,1.0	-0.017
SOD2	•	6 -	1.6E+08	1.6E+08	3 1.6E+08	1.6E+08	1.6E+08	1.6E+08	36120	254,260,325	7,8,21	***************************************	4,3,8	172	86	9.12E-06	0.000101	0.948,0.9/	4 0.956,0.963,0.915	-0.019
																4				

STAR-Fusion

- The data for our Practical course are inside the folder Dataset_Corse/Gene_Fusion on "Scrivania".
- ■Here we found twol folders:
 - FASTQ
 - Genome
- Move inside Gene_Fusion folder. Here we will index the genome typing the following command line:
 - perl /usr/bin/FusionFilter/prep_genome_lib.pl -genome_fa
 /home/studente/Scrivania/Dataset_Corso/Gene_Fusion/Genome/Dati
 /Chr17.fa -gtf
 /home/studente/Scrivania/Dataset_Corso/Gene_Fusion/Genome/Dati
 /ref_anno_chr17.gtf --blast_pairs
 /home/studente/Scrivania/Dataset_Corso/Gene_Fusion/Genome/Dati
 /blast_pairs.gene_syms.outfmt6.gz -fusion_annot_lib
 /home/studente/Scrivania/Dataset_Corso/Gene_Fusion/Genome/Dati
 /fusion_lib.dat.gz
 - perl /usr/bin/FusionFilter/util/index_pfam_domain_info.pl pfam_domains
 - /home/studenti/Scrivania/Dataset_Corso/Gene_Fusion/Genome/Dati /PFAM.domtblout.dat.gz -genome_lib_dir
 - /home/studente/Scrivania/GeneFusion/ctat_genome_lib_build_dir

STAR-Fusion

- ■Now we can run STAR-Fusion with standard parameter:
- STAR-Fusion --genome_lib_dir ctat_genome_lib_build_dir --left_fq
- /home/studente/Scrivania/Dataset_Corso/Gene_Fusion/Fastq/BT474-Fisubset.Left.fq --right_fq
- /home/studente/Scrivania/Dataset_Corso/Gene_Fusion/Fastq/BT474-Fisubset.Rigth.fq --output_dir Out

Output_file

A	В	С	D	Е	F	G		i i	J	K	L	M	N
#FusionName Ju	nctionReadCount	SpanningFragCount	SpliceType	LeftGene	LeftBreakpoint	RightGene	htBreakpo	LargeAnchorSupport	LeftBreakDinuc	:BreakEntr	htBreakD	itBreakEnti	FFPM
THRATHRA1/BTR	27	93	ONLY_REF_SPLICE	THRA^ENSG00000126351.12	chr17:40086853:+	THRA1/BTR^ENSG00000235300.4	17:4829434	YES_LDAS	GT	1.8892	AG	1.9656	23875.85
THRATHRA1/BTR	5	93	ONLY_REF_SPLICE	THRA^ENSG00000126351.12	chr17:40086853:+	THRA1/BTR^ENSG00000235300.4	17:4830733	YES_LDAS	GT	1.8892	AG	1.4295	19498.61
ACACASTAC2	12	52	ONLY_REF_SPLICE	ACACA^ENSG00000278540.4	chr17:37122531:-	STAC2^ENSG00000141750.6	17:392181	YES_LDAS	GT	1.9656	AG	1.9656	12733.78
RPS6KB1SNF8	10	43	ONLY_REF_SPLICE	RPS6KB1^ENSG00000108443.13	chr17:59893325:+	SNF8^ENSG00000159210.9	17:489439	YES_LDAS	GT	1.3753	AG	1.8323	10545.17
TOB1SYNRG	8	30	ONLY_REF_SPLICE	TOB1^ENSG00000141232.4	chr17:50866058:-	SYNRG^ENSG00000275066.4	17:3752064	YES_LDAS	GT	1.4566	AG	1.8892	7560.684
VAPBIKZF3	4	46	ONLY_REF_SPLICE	VAPB^ENSG00000124164.15	chr20:58389517:+	IKZF3^ENSG00000161405.16	17:3977776	YES_LDAS	GT	1.9656	AG	1.7819	9948.269
ZMYND8CEP250	2	44	ONLY_REF_SPLICE	ZMYND8^ENSG00000101040.19	chr20:47224317:-	CEP250^ENSG00000126001.15	20:3549063	NO_LDAS	GT	1.8295	AG	1.8062	9152.408
	-												

- LargeAnchorSupport: indicates whether there are split reads that provide 'long' alignments on both sides of the putative breakpoint.
- ■FFPM: Normalized measures of the split reads and spanning fragments