week7 exercise

Xiang Li

2023/11/16

```
library(faraway)
library(MASS)
```

Exercise 2

```
f = function(df) {
   num_col = sapply(df, is.numeric)
    char_col = sapply(df, is.character)
   fac_col = sapply(df, is.factor)
   type = num_col | char_col | fac_col
    if (length(type[type]) == 0) {
        return("This dataframe contains no numeric, character or factor values")
   } else {
       num_df = df[, num_col]
        if (ncol(num_df) > 0) {
            for (i in 1:ncol(num_df)) {
                i_name = colnames(num_df)[i]
                hist(num_df[, i], breaks = 100, xlab = i_name,
                  xlim = c(min(num_df[, i]), max(num_df[,
                    i])), col = "skyblue", main = paste0("Histogram of ",
                    i_name), probability = TRUE)
            }
        char_df = df[, char_col | fac_col]
        if (ncol(char_df) > 0) {
            for (i in 1:ncol(char_df)) {
                i_name = colnames(char_df)[i]
                count = aggregate(char_df[, 1, drop = FALSE],
                  by = list(name = char_df[, i]), FUN = length)
                colnames(count)[2] = "count"
                barplot(height = count$count, names.arg = count$name,
                  xlab = i_name, col = "lightgreen", ylim = c(0,
                    max(count$count)), main = paste0("Barplot of ",
                    i name))
            }
   }
```

Histogram of Species

Histogram of Endemics

Histogram of Area

Histogram of Elevation

Histogram of Nearest

Histogram of Scruz

Histogram of Adjacent

f(amlxray)

Histogram of disease

Histogram of age

Barplot of Sex

Barplot of downs

Barplot of Mray

Barplot of MupRay

Barplot of MlowRay

Barplot of Fray

Barplot of Cray

Barplot of CnRay

Exercise 3

1

```
median standard_deviation
                                                        skewness
                    mean
## Population 4246.4200
                          2838.500
                                         4.464491e+03 1.9222511
## Income
               4435.8000 4519.000
                                         6.144699e+02 0.2046903
                                         6.095331e-01 0.8185809
## Illiteracy
                  1.1700
                             0.950
## Life Exp
                 70.8786
                            70.675
                                         1.342394e+00 -0.1534995
## Murder
                  7.3780
                             6.850
                                         3.691540e+00 0.1293391
## HS Grad
                 53.1080
                            53.250
                                         8.076998e+00 -0.3192442
## Frost
                104.4600
                           114.500
                                         5.198085e+01 -0.3663767
## Area
              70735.8800 54277.000
                                         8.532730e+04 4.0983574
```

```
cns = colnames(state.x77)
for (i in 1:ncol(state.x77)) {
    i_name = cns[i]
    hist(state.x77[, i], breaks = 100, xlab = i_name, xlim = c(min(state.x77[,
        i]), max(state.x77[, i])), col = "skyblue", main = paste0("Histogram of ",
        i_name), probability = TRUE, plot = TRUE)
}
```

Histogram of Population

Histogram of Income

Histogram of Illiteracy

Histogram of Life Exp

Histogram of Murder

Histogram of HS Grad

Histogram of Frost

Histogram of Area

3

The Income, Life Exp and Murder are almost symmetric. Population, Illiteracy and Area are positive skewed. HS Grad and Frost are negative skewed.

4

```
plot(x = state.x77[, "Illiteracy"], y = state.x77[, "Life Exp"],
    type = "p", col = "orange", xlab = "Illiteracy", ylab = "Life Exp",
    main = "Illiteracy vs Life Exp")
```

Illiteracy vs Life Exp

With the increase of Illiteracy rate, the life expectancy decreases.

5

```
cor.test(x = state.x77[, "Illiteracy"], y = state.x77[,
    "Life Exp"], alternative = "two.sided", method = "pearson")

##

## Pearson's product-moment correlation

##

## data: state.x77[, "Illiteracy"] and state.x77[, "Life Exp"]

## t = -5.0427, df = 48, p-value = 6.969e-06

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## -0.7448226 -0.3708811

## sample estimates:

## cor

## -0.5884779
```

Lower Illiteracy rate means higher education level, which will improve people's life quality and increase life expectancy.

Exercise 4

```
c1 = c(0, 1)
c2 = expand.grid(c1, c1)
c2s = rowSums(c2)
```

1

```
hist(c2s, breaks = 3, main = "Histogram of c2s")
```

Histogram of c2s

dim(c2)

[1] 4 2

expand.grid() lists all combinations from given vectors. rowSums() lists the sum of each combination from given vectors.

 $\mathbf{2}$

```
c5 = expand.grid(c1, c1, c1, c1, c1)
c5s = rowSums(c5)
hist(c5s, breaks = 6, main = "Histogram of c5s")
```

Histogram of c5s

dim(c5)

[1] 32 5

The distribution of c5s gets a peak in center.

3

```
c15 = expand.grid(replicate(15, c1, simplify = F))
c15s = rowSums(c15)
hist(c15s, breaks = 16, main = "Histogram of c15s")
```

Histogram of c15s


```
dim(c15) == c(2^15, 15)

## [1] TRUE TRUE

4

sta_ls = list(range = range(c15s), mean = mean(c15s), std = sd(c15s))
sta_ls

## $range
## [1] 0 15
## $mean
## [1] 7.5
##
## $std
## [1] 1.936521
c(sta_ls$mean, 15 * 0.5)
```

[1] 7.5 7.5

```
c(sta_ls$std, (15 * 0.5 * 0.5)^0.5)
## [1] 1.936521 1.936492
```

5

```
rn_v = rnorm(1000, mean = sta_ls$mean, sd = sta_ls$std)
hist(rn_v, breaks = 16, xlim = c(min(rn_v), max(rn_v)),
    main = "Histogram of rn_v", probability = TRUE)
```

Histogram of rn_v

The distribution of 10^3 random numbers is similar to the distribution of c15s.

 $\mathbf{6}$

```
rn_v1 = rnorm(1000, mean = sta_ls$mean - 0.5, sd = sta_ls$std)
hist(rn_v1, breaks = 16, xlim = c(min(rn_v1), max(rn_v1)),
    main = "Histogram of rn_v1", probability = TRUE)
curve(expr = dnorm(x, sta_ls$mean - 0.5, sta_ls$std), add = TRUE)
```

Histogram of rn_v1

Exercise 5

```
fib = c(1, 1)
i = 2
fib_sum = sum(fib)
while (fib_sum < 22000) {
    i = i + 1
    fib[i] = fib[i - 2] + fib[i - 1]
    fib_sum = sum(fib)
}
length(fib)</pre>
```

[1] 21