### Contents

| I 集合与不等式      | 3  |
|---------------|----|
| 1 集合与逻辑       | 4  |
| 2 等式与不等式      | 5  |
| II 函数         | 9  |
| 3 函数的性质与应用    | 10 |
| <b>4</b> 导数   | 14 |
| 5 导数大题        | 15 |
| III 三角,复数与向量  | 16 |
| 6 三角          | 17 |
| 7 向量          | 18 |
| IV 几何体与空间几何   | 19 |
| 8 立体几何        | 20 |
| old V 概率与统计   | 21 |
| <b>9</b> 计数原理 | 22 |
| 10 概率初步       | 23 |
| 11 统计         | 24 |
| 12 分布         | 25 |
| VI 圆锥曲线       | 26 |
| 13 椭圆         | 27 |
| <b>14</b> 双曲线 | 28 |
| <b>15</b> 抛物线 | 29 |
| VII 数列        | 30 |

### Part I

集合与不等式

# 集合与逻辑

1.1 已知  $P = \{x | x = 4k, k \in \mathbb{Z}\}, Q = \{y | y = 2k + 1, k \in \mathbb{Z}\}, R = \{s | s = 6k + 1, k \in \mathbb{Z}\}, a \in P, b \in Q$  则以下肯定正确的是 ( )

A.  $a+b\in P$ 

B.  $a+b \in Q$ 

C.  $a + b \in R$ 

D.  $a + b \in P \cap Q \cap R$ 

这道题目用 Table.

### 等式与不等式

**2.1** 已知 a 是实数且  $a \neq 0$ , 证明:  $\sqrt{a^4 + \frac{1}{a^4}} - \sqrt{2} \ge a^2 + \frac{1}{a^2} - 2$ .

Proof. 欲证明

$$\sqrt{a^4 + \frac{1}{a^4}} - \sqrt{2} \ge a^2 + \frac{1}{a^2} - 2$$

即证明

$$\sqrt{a^4 + \frac{1}{a^4}} \ge a^2 + \frac{1}{a^2} + \sqrt{2} - 2$$

即证明

$$a^4 + \frac{1}{a^4} \ge (a^2 + \frac{1}{a^2})^2 + 2(\sqrt{2} - 2)(a^2 + \frac{1}{a^2}) + (\sqrt{2} - 2)^2$$

即证明

$$0 \ge 2 + 2(\sqrt{2} - 2)(a^2 + \frac{1}{a^2}) + (\sqrt{2} - 2)^2$$

即证明

$$0 \ge 2(\sqrt{2} - 2)(a^2 + \frac{1}{a^2}) + 8 - 4 \cdot \sqrt{2}$$

即证明

$$0 \le a^2 + \frac{1}{a^2} + \frac{8 - 4 \cdot \sqrt{2}}{2(\sqrt{2} - 2)}$$

即证明

$$0 \le a^2 + \frac{1}{a^2} - 2$$

因为

$$a \in \mathbb{R}, a \neq 0$$

显然

$$a^2 + \frac{1}{a^2} \ge 2$$



因为以上步骤均可逆,

得证.

**2.2** 已知 a, b, c 为实数,证明  $a^2 + b^2 + c^2 \ge bc + ca + ab$ .

证:

欲证明

$$a^2 + b^2 + c^2 \ge bc + ca + ab$$

即证明

$$a^{2} + b^{2} + c^{2} - bc - ca - ab \ge 0$$
(2.1)

:

$$a^{2} + b^{2} + c^{2} - bc - ca - ab = \frac{1}{2}(2a^{2} + 2b^{2} + 2c^{2} - 2bc - 2ca - 2ab)$$
$$= \frac{1}{2}((a - b)^{2} + (a - c)^{2} + (b - c)^{2})$$

显然

$$\frac{1}{2}((a-b)^2 + (a-c)^2 - (b-c)^2) \ge 0$$

- :. (1) 式得证.
- :: 以上步骤均可逆,

得证.

22, 23 题的证明都用到了分析法, 这是一种由结论推导至条件的方法. 除此之外证明不等式的常用方法还有综合法, 比较法 (做差或做商), 以及反证法.

**2.3** 已知实数 a,b,c 满足 a+b+c=0, 且 a>b>c. 求证: a>0 且 c<0.

证:



本题用到了不等式的加法性质, 值得注意.

已知  $x, y \in \mathbb{R}$ , 且 x > y, 比较  $x^3 - y^3$  与  $xy^2 - x^2y$  的大小.

证:

$$(x^{3} - y^{3}) - (xy^{2} - x^{2}y) = (x - y)(x^{2} + xy + y^{2}) - xy(y - x)$$

$$= (x - y)(x^{2} + xy + y^{2} + xy)$$

$$= (x - y)(x^{2} + 2xy + y^{2})$$

$$= (x - y)(x + y)^{2}$$

$$\therefore x > y$$

$$\therefore (x - y)(x + y)^{2} \ge 0$$

$$\therefore (x^{3} - y^{3}) - (xy^{2} - x^{2}y) \ge 0.$$

即  $x^3 - y^3$  大于  $xy^2 - x^2y$ .

已知  $a,b \in \mathbb{R}$ , a-3b-5=0, 则  $2^a+\frac{1}{8^b}$  的最小值是\_\_\_\_\_.

由条件可得 a-3b=5,而  $2^a+\frac{1}{8^b}$  可化为  $2^a+\frac{1}{2^{3b}}$ ,由基本不等式可得最小值为  $8\sqrt{2}$ .

- 已知  $a \in \mathbb{R}$ , 函数  $f(x) = \log_2(\frac{1}{x} + a)$ . 2.6
  - (1) 若 a = 5, 解  $f(x) \ge 0$ ;
  - (2) 若  $f(x) \log_2((a-4)x + 2a 5) = 0$  的解集中仅有一个元素, 求 a 的取值范围;
  - (3) 设 a>0, 若对任意  $t\in [\frac{1}{2},1]$ , 函数 f(x) 在 [t,t+1] 上的最大值与最小值的差不超过 1, 求 a 的 取值范围.
- (1) 因为  $\log 2(\frac{1}{x} + a) \ge 0$ , 所以  $x \in (-\infty, -\frac{1}{x})$ .
- $(2) \ \ \text{由} \ \ \log_2(\frac{1}{x}+a) = \log_2((a-4)x+2a-5), \ \ \text{ 変形得} \ \ (a-4)x^2+(a-5)x-1 = 0 (式 \ 1), \ \ \text{且} \ \frac{1}{x}+a \geq 0.$

若 a=4,则 x=-1,符合题意;

 $\Delta = a^2 - 6a + 9$  , 解得若  $\Delta = 0$  , 则 a = 3 ; 若  $\Delta > 0$  , 则  $a \neq 3$  ; 若  $\Delta < 0$  , 则  $a \in \emptyset$  ;

若 a=3,则 x=-1,符合题意;

若  $a \notin \{3,4\}$ , 由求根公式得  $x_1 = -1, x_2 = \frac{1}{a-4}$ 

若 
$$x = \frac{1}{a-4}$$
 是解,代入到式 1 中得 
$$\begin{cases} 2a-4>0 \\ -1+a \le 0 \end{cases}$$
,解得  $a \in \emptyset$ ;



综上,  $a \in (1,2] \cup \{3,4\}$ .

(3) 由复合函数单调性的性质可知 f(x) 在  $\mathbb D$  上单调减.

由 
$$f(t) - f(t+1) \le 1$$
 可得  $\log_2 \frac{\frac{1}{t} + a}{\frac{1}{t+1} + a} \le 1$ ;  
进一步化简可得  $\frac{1}{t} + a \le 2(\frac{1}{t+1} + a)$ ,得  $\frac{1-t}{t(t+1)} \le a$ ;  
令  $r = t-1$ ,则  $r \in [0,]$ ;原式化为  $\frac{r}{r^2 - 3r + 2} \le a$ ;

进一步化简可得 
$$\frac{1}{t} + a \le 2(\frac{1}{t+1} + a)$$
, 得  $\frac{1-t}{t(t+1)} \le a$ ;

令 
$$r = t - 1$$
, 则  $r \in [0,]$ ; 原式化为  $\frac{r}{r^2 - 3r+2} \le a$ ;

若 
$$r=0$$
,  $a \ge 0$ ;

若 
$$r \in (0, \frac{1}{2}]$$
, 原式继续化为  $\frac{1}{r + \frac{1}{r} - 3 \le a}$ , 由基本不等式解得  $a \ge \frac{2}{3}$ .

综上, 
$$a \in \left[\frac{2}{3}, +\infty\right]$$
.

Part II

函数

### 函数的性质与应用

- **3.1** 要得到  $y = \log(3 x)$  的图像, 只需要作  $y = \log x$  关于 y 轴对称的图像, 再向\_\_\_\_\_\_ 平移个单位 而得到.
- 3.2 如果 a > 0,设函数  $f(x) = \frac{2009^{x+1} + 2007}{2009^x + 1} + \sin x, x \in [-a, a]$  的最大值为 M,最小值为 N,那么 M + N =\_\_\_\_\_\_.

3.3 设 f(x) 是定义在  $\mathbb{R}$  上的偶函数,且 f(2+x) = f(2-x),当  $x \in [-2,0]$  时, $f(x) = \left(\frac{\sqrt{x}}{2}\right)^x - 1$ ,若在 区间 (-2,6) 内的关于 x 的方程  $f(x) - \log_a(x+2) = 0$  ( $a \ge 0$  且  $a \ne 1$ ) 恰有 4 个不同的实数根,则实数 a 的取值范围是 ( ).

D. (1,4)

A. 
$$(-\frac{1}{4}, 1)$$
 B.  $(8, +\infty)$  C.  $(1, 8)$ 



- 3.4 函数  $f(x) = \frac{\log_2(x-1)}{\sqrt{|x-2|-1}}$  的定义域为\_\_\_\_\_\_.
- **3.5** 设  $x \ge 0$ ,  $y \ge 0$ , x + 2y = 1, 则函数  $\omega = 3y^2 + 2x$  的值域为\_\_\_\_\_.
- 3.6 设函数  $f(x) = \log_{\frac{1}{2}}(kx^2 2x + 5)$  在 [-1,2] 上严格增, 则实数  $k \in$ \_\_\_\_\_.
- **3.7** 已知函数  $f(x) = \lg(2^x + x^{-x} + a 1)$  的值域为  $\mathbb{R}$ , 则实数 a 的取值范围是\_\_\_\_\_\_.
- **3.8** 设二次函数  $f(x) = ax^2 + bx + 1$ , 且 f(1) = 0, 若不等式  $f(x) \ge 0$  的解集为 ℝ, 则方程的实根个数 为\_\_\_\_\_\_.
- **3.9** 已知函数 y = f(x) 是定义在  $\mathbb{R}$  上的增函数,函数 y = f(x-1) 的图像关于点 (1,0) 对称. 若对任意的  $x,y \in \mathbb{R}$ ,不等式  $f(x^2-6x+21)+f(y^2-8y)<0$  恒成立,则当 x>3 时,  $x^2+y^2$  的取值范围是\_\_\_\_\_\_\_.

**3.10** 设函数  $f(x) = x|x - a|, a \in \mathbb{R}$ . 当  $x \in [\frac{1}{2}, 2]$  时, 不等式  $f(x) \le 2$  恒成立, 试求实数 a 的取值范围.



- **3.11** 已知定义在区间 [0,2] 上的两个函数 f(x) 和 g(x), 其中  $f(x) = x^2 2ax + 4$ ,  $a \ge 1$ ,  $g(x) = \frac{x^2}{x+1}$ .
  - (1) 求函数 y = f(x) 的最小值 m(a);
  - (2) 若  $\forall x_1, x_2 \in [0,2], f(x_2) > g(x_1)$  恒成立, 求 a 的取值范围.

- **3.12** 已知函数  $f(x) = 2x^3 3x^2 + 2$ , 求函数 f(x) 在区间 [-1,2] 上的最大值.
- **3.13** 已知 f(x) 是定义在 [-1,1] 上的减函数,且 f(x-1) < f(1-3x),则 x 的取值范围是\_\_\_\_\_\_\_. 这种题目得考虑自变量在定义域内,再求解.
- **3.14** 已知函数  $f(x) = 4 + log_a(2x 3), (a > 0 \land a \neq 1)$  的图像恒过定点 P, 且点 P 在函数  $g(x) = x^a$  的图像上,则 a =\_\_\_\_\_\_\_.

这边定点求错了.

- 3.16 已知奇函数 f(x) 是定义在 (-2,2) 上的减函数, 若 f(m-1)+f(2m-1)>0, 则实数 m 的取值范围 是\_\_\_\_\_\_.

这题跟 26 号套路一样一样的,只是增加了对奇函数性质的考察.

3.17 函数 g(x) 对  $\forall x \in \mathbb{R}$ , 有  $g(x) + g(-x) = x^2$ , 设函数  $f(x) = g(x) - \frac{x^2}{2}$ , 且 f(x) 在区间  $[0, +\infty)$  上增, 若  $f(a) + f(a^2 - 2) \le 0$ ,则实数 a 的取值范围是\_\_\_\_\_\_\_.

本题难点在对于  $g(x) + g(-x) = x^2$  的运用.

3.18 已知函数  $f(x) = \begin{cases} (a-0.5)(x-1), & x < 1 \\ -x^2 - ax + 2a + 1, & x \ge 1 \end{cases}$  在 R 上是减函数, 则 a 的取值范围是\_\_\_\_\_\_.

一通分析后得出不等式组 
$$\begin{cases} a-\frac{1}{2}<0\\ -\frac{a}{2}\leq 1 \end{cases}$$
 ,很多人会忽略最下面一个不等式. 
$$a\leq 0$$



3.19 已知函数 
$$f(x) = \begin{cases} |log_5(1-x)| & x < 1 \\ -(x-2)^2 + 2 & x \ge 1 \end{cases}$$
 ,则方程  $f(x + \frac{1}{x} - 2) = a, (a \in \mathbb{R})$  的实根个数不可能为 (

A. 5 个

B. 6 个

C. 7 个

D. 8 个

比较变态的一道题, 听说需要分很多类.

- **3.20** 已知函数 f(x) = 2x|x + a| 1 有三个不同的零点,则实数 a 的取值范围是\_\_\_\_\_.

  移项化成关于 a 的等式,画图,数个数.
- **3.21** 已知函数 f(x) 的定义域为  $\mathbb{R}$ , 且  $f(x) \cdot f(-x) = 1$  和  $f(1+x) \cdot f(1-x) = 4$  对  $\forall x \in \mathbb{R}$  恒成立. 若当  $x \in [0.1]$  时, f(x) 的值域为 [1,2], 则当  $x \in [-100,100]$  时, 函数 f(x) 的值域为\_\_\_\_\_\_.
  对于这题,要进行一个定义域的外延.
- A. *p* 是真命题,*q* 是真命题;
- B. *p* 是假命题,*q* 是假命题;
- C. p 是真命题,q 是假命题;
- D. p 是假命题,q 是真命题.

我们先判断命题 p, 可见 x=2.5 时有极大值,带入发现矛盾,故命题 p 为假. 然后判断命题 q, 先画出 f(x) 的图像,然后画出  $y=\ln(x-1)$  的图像. 用计算器求解得分别在 x=1.39, x=2, x=2.6 时有零点,故有 3 个零点,命题 q 成立.

3.23 已知函数 
$$f(x) = \begin{cases} x^2 + (4 - 3a)x + 3a, x < 0 \\ log_a(x+1) + 1, & x \ge 0 \end{cases}$$
  $(a > 0 \land a \ne 1)$  在  $\mathbb{R}$  上减,且关于  $x$  的方程

|J(x)| = 2 - x 信有两个个相等的头数件,则 a 的取值犯围定\_\_\_\_\_\_

要仔细考虑  $x^2 + (4-3a)x + 3a$  和 |f(x)| = 2-x 相切时的情况.

# 导数

**4.1** 若函数  $f(x) = x^3 - 3x$  在区间  $(a, 6 - a^2)$  上有最小值, 则实数 a 的取值范围是\_\_\_\_\_.

### 导数大题

- 5.1 已知函数  $f(x) = mx \frac{m}{x}, g(x) = 2 \ln x$ .
  - (a) 当 m=2 时, 求曲线 y=f(x) 在点 (1,f(1)) 处的切线方程;
  - (b) 当 m = 1 时, 判断方程 f(x) = g(x) 的实根个数;
  - (c) 若  $x \in (1,e]$  时, 不等式 f(x) g(x) < 2 恒成立, 求实数 m 的取值范围.

### Part III

三角,复数与向量

#### 三角

**6.1** 三角形 ABC 的外心为 O, 三个内角 A, B, C 所对的边分别为 a, b, c,  $\overrightarrow{AO} \cdot \overrightarrow{BC} = \frac{1}{2}a(a - \frac{8}{5}c)$ , b = 4, 则 三角形 ABC 面积的最大值为\_\_\_\_\_\_.

由外心的性质可知, $\overrightarrow{AO} \cdot \overrightarrow{BC} = \overrightarrow{AO}(\overrightarrow{AC} - \overrightarrow{AB}) = \overrightarrow{AO} \cdot \overrightarrow{AC} - \overrightarrow{AO} \cdot \overrightarrow{AB} = \frac{1}{2} |\overrightarrow{AC}|^2 - \frac{1}{2} |\overrightarrow{AB}|^2 = \frac{1}{2} b^2 - \frac{1}{2} c^2$ ,于是  $\frac{1}{2} b^2 - \frac{1}{2} c^2 = \frac{1}{2} a^2 - \frac{4}{5} ac$ 

- 6.2 水域养殖水产, AO, BO 为直线岸线, OA = 1000m, OB = 1500m,  $\angle AOB = \frac{\pi}{3}$  水域边界为某圆的一段 弧  $\widehat{AB}$ , 过  $\widehat{AB}$  上一点按线段 PA 和 PB 修养殖网箱, 知  $\angle APB = \frac{2\pi}{3}$ .
  - (1) 求岸线上 A 与 B 之间的距离;
  - (2) 若 PA 上每米 40 元利润,PB 上每米 30 元利润,记 ∠PAB = θ,则两段最大经济收益是?(精确到元).
- (1) 由余弦定理得  $|AB| = 500\sqrt{7}$ m.
- (2) 由正弦定理得  $\frac{PA}{\sin\theta} = \frac{PA}{\sin(\frac{\pi}{3} \theta)} = \frac{500\sqrt{7}}{\sin\frac{2\pi}{3}}$ , 设  $\frac{500\sqrt{7}}{\sin\frac{2\pi}{3}} = c$ , 则  $PA = c\sin(\frac{\pi}{3} \theta)$ ,  $PB = \sin\theta$ , 利润为  $40c\sin(\frac{\pi}{3} \theta) + 30c\sin\theta$ , 化简可得  $10c(2\sqrt{3}\cos\theta + \sin\theta)$ , 使用辅助角公式可得  $10\sqrt{13}c\sin(\theta + \arctan 2\sqrt{3})$ , 求得最大值为 16166 元.



向量

7.1 已知平面向量 a,b,c 满足  $|a|=|b|=a\cdot b=2,$  且  $(b-c)\cdot (3b-c),$  则 |c-a| 最小值为\_\_\_\_\_\_.

### Part IV

几何体与空间几何

# 立体几何

8.1 在如图的长方体中,  $AD = AA_1 = 1$ , AB = 2, 点 E 在棱 AB 上移动, 求异面直线  $AC_1$  与  $A_1D$  所成角的余弦值.

Part V

概率与统计

# 计数原理

9.1  $(2x+1)^{10}$  的二项展开式中第八项为\_\_\_\_\_

#### 概率初步

**10.1** 把一个骰子连续抛掷两次,记事件 M 为 "两次所得点数均为奇数",N 为 "至少有一次点数是 5",则 P(N|M=)\_\_\_\_\_\_.

我们知道 
$$P(N|M) = \frac{P(M)}{P(MN)} = \frac{\frac{3 \times 3}{36}}{\frac{1 + C_2^1 C_2^1}{36}} = \frac{5}{9}$$
.

10.2 某超市在节日期间进行有奖促销,凡在该超市购物满 400 元的顾客,将获得一次摸奖机会,规则如下: 奖盒中放有除颜色外完全相同的 1 个红球, 1 个黄球, 1 个白球和 1 个黑球,顾客不放回的每次摸出 1 个球,若摸到黑球则停止摸奖,否则就继续摸球,规定摸到红球奖励 20 元,摸到白球或黄球奖励 10 元,摸到黑球不奖励.求 1 名顾客摸球 2 次停止摸奖的概率.

**10.3** 在一次抽奖活动中,假设每 **10** 张奖券中有一等奖券 **1** 张,可获价值 **50** 元的奖品;有二等奖券 **3** 张,每张可获得价值 **10** 元的奖品;其余 **6** 张没有奖.某顾客从这 **10** 张奖券中任抽 **2** 张,求该顾客获奖的概率.

**10.4** 事件 A 与事件 B 互斥,它们都不发生的概率是  $\frac{3}{5}$ ,且 P(A) = 2P(B),则  $P(\overline{A})$  \_\_\_\_\_\_. 互斥意味着两件事不可能同时发生.则仅发生 A 或发生 B 的概率为  $1 - \frac{3}{5} = \frac{2}{3}$ .接下来就很方便了.

# 统计

11.1 已知一组数据点  $(x_1,y_2),(x_2,y_2),(x_3,y_3),\dots,(x_n,y_n),$  用最小二乘法得到其线性回归方程  $\hat{y}=-\sqrt{2}x+4,$  若数据  $x_1,x_2,x_3,\dots,x_n$  的均值为  $\sqrt{2}$ ,则可以估计数据  $y_1,y_2,y_3,\dots,y_n$  的均值为 \_\_\_\_\_\_.

## 分布

**12.1** 已知随机变量  $\xi, \eta$ , 满足  $\xi \sim B(2, p)$ , 且  $P_{(\xi \leq 1) = \frac{3}{4}}$ , 则 p =\_\_\_\_\_\_.

判断该分布为伯努利分布, $\xi \sim B(2,p)$  中的 2 代表实验次数,p 代表每一次实验的成功概率,故  $P_{(\xi \leq 1)} = P_{(\xi = 0)} + P_{(\xi = 1)}$ ,等于  $(1-p)^2 + 2P(1-p) = \frac{3}{4}$ ,解得  $p = \frac{1}{2}$ .

Part VI

圆锥曲线

#### 椭圆

已知圆  $C: x^2 + y^2 - 4x - 2y + 3 = 0$ , 若圆 C 的切线在 x 轴和 y 轴上的截距相等, 求此切线的方程. 我们知道,对于圆心为 (a,b),半径为 r 的圆,它的切线方程为 (x-1)a)  $\cos \theta + (y-b)\sin \theta = r$ , 则圆 C 的切线方程就是  $(x-2)\cos \theta + (y-1)\sin \theta = r$  $\sqrt{2}$ . 因为在 x 轴和 y 轴上的截距相等,那么易得要么切线过原点,要么 切线的法向量为 (1,1). 先来看法向量为 (1,1) 时的情况, 我们将直线方程 化为  $\cos \theta x + \sin \theta y - 2\cos \theta - \sin \theta - \sqrt{2} = 0$ , 求解  $\cos \theta = \sin \theta$  得出  $\theta = \frac{\pi}{4}$ 或  $\frac{3\pi}{4}$ . 化简得 x+y-5=0 或 x+y-1=0. 现在考虑过原点的情况,因 为沿用之前的切线方程较为不便,我们设方程为 kx-y=0. 由点到直线距 离公式得圆心 (2,1) 到直线距离为  $\frac{|2k-1|}{\sqrt{k^2+1}} = \sqrt{2}$ , 解得  $k = \frac{2 \pm \sqrt{6}}{2}$ , 对



应直线的方程为  $\frac{2 \pm \sqrt{6}}{2}x - y = 0$ . 所以综上可得答案.

已知 A, B 是由直线  $x = \pm a$ ,  $y = \pm b$  所围成矩形相邻的两个顶点, 点 P 是椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , (a > b > 0)13.2 上的任意一点,且存在实数 m,n 满足  $\overrightarrow{OP}=m\cdot\overrightarrow{OA}+n\cdot\overrightarrow{OB}$ ,则 m+n 的取值范围是\_\_\_\_\_

我们先进行一个仿射变换,令  $x' = \frac{x}{a}, y' = \frac{y}{b}$  得到圆 C' 方程  $x^2 + y^2 = 1$ ,  $\overrightarrow{OP} = (\cos\theta, \sin\theta), m \cdot \overrightarrow{OA} = (m, m), n \cdot \overrightarrow{OB} = (n, -n)$ 

由  $\overrightarrow{OP} = m \cdot \overrightarrow{OA} + n \cdot \overrightarrow{OB}$  可得  $m + n = \cos\theta$ .

这样,由于三角函数的值域,答案就呼之欲出了.

- 直线 l: y = kx + b 和椭圆  $C: \frac{x^2}{4} + \frac{y^2}{2} = 1$  相交于 A, B 两点, 按下列条件, 求直线 l 的方程:
  - (1)  $<math> b = 1, |AB| = \frac{4\sqrt{5}}{3};$
  - (2) 若 b=1, 且直线 l 和 y 轴交于点 P, 满足  $\overrightarrow{PA}=-\frac{1}{2}\overrightarrow{PB}$ ;
  - (3) 使线段 AB 被  $M(\frac{1}{2}, \frac{1}{2})$  平分;
  - (4) 若以 AB 为直径的圆过原点, 求 k,b 满足的等式.

#### 双曲线

- 14.1 已知  $l_1: y = x, l_2: y = -x$ , 动点 M(x, y), 且 |x| > |y|, 记 M 到  $l_1, l_2$  的距离分别为  $d_1, d_2$ , 满足  $d_1 \cdot d_2 = \frac{a^2}{2}(a > 0)$ .
  - (1) 动点 M 的轨迹  $\Gamma$  的方程;
  - (2) 若直线的方向向量为 (1,2), 过  $(\sqrt{2}a,0)$  的直线 l 与  $\Gamma$  交于 A,B 两点,那么以 AB 为直径的圆是否恰过原点 O? 若是,求 a 的值;若否,判断原点在圆内还是圆外,说明理由.
  - (3) 过原点 O 作斜率 k 为的直线交于 M,N 两点,设 P(0,1),求  $\triangle PMN$  的面积 S 关于 k 的函数解析式,并求 S 的取值范围.
- (1) 由点到直线距离公式可得  $d_1=\frac{|x-4|}{\sqrt{2}}, d_2=\frac{|x+4|}{\sqrt{2}}$ ,代入  $d_1\cdot d_2=\frac{a^2}{2}$  中得  $x^2+y^2=1$ .
- (2) 设 l 的方程为  $y=2(2-\sqrt{2}a)$ ,与  $\Gamma$  联立化简得  $-3x^2+8\sqrt{2}ax-9a^2=0$ ,由于 AB 是圆的直径,且 O 在圆上,所以设  $\overrightarrow{OA}=(x_1,y_1),\overrightarrow{OB}=(x_2,y_2)$ , $\overrightarrow{OA}\cdot\overrightarrow{OB}=0$ ,故  $x_1x_2+y_1y_2=0$ . 由韦达定理得  $x_1+x_2=\frac{8\sqrt{2}}{3}a$  , $x_1x_2=3a^2$ , $y_1y_2=4x_1x_2-\sqrt{2}a(x_1+x_2)+2a^2$ . 于是得到  $x_1x_2+y_1y_2=\frac{35}{3}a^2=0$ ,而 a=0与题意不符,故原点不在圆上.又  $\overrightarrow{OA}\cdot\overrightarrow{OB}>0$ ,故  $<\overrightarrow{OA},\overrightarrow{OB}><\frac{\pi}{2}$ . 原点在圆外.
- (3) 设  $M(x_m,y_m), N(x_n,y_n)$ ,则  $S_{\triangle PMN} = \frac{1}{2} \cdot 1 \cdot |x_m| + \frac{1}{2} \cdot 1 \cdot |x_n| = \frac{1}{2} |x_m x_n|$ . 设直 线 y = kx + b,与  $\Gamma$  联立得  $(1 k^2)x^2 a = 0$ ,又由韦达定理得  $\frac{1}{2} |x_m x_n| = \frac{1}{2} \sqrt{(x_m + x_n)^2 4x_m x_n} = \frac{a\sqrt{1 k^2}}{1 k^2}, k \in (-1, 1), S \in [a, +\infty]$ .





抛物线

Part VII

数列



- **15.1** 如果  $f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2^n} (n \in \mathbb{N}^*)$ , 那么 f(k+1) f(k) 共有\_\_\_\_\_\_ 项.
- **15.2** 首项不为 0 的等差数列  $a_n$  前 n 项和是  $S_n$ , 若不等式  $a_n^2 + \frac{S_n^2}{n^2} \ge \lambda a_1^2$  对任意  $a_n$  和正整数 n 恒成立,则实数  $\lambda$  的最大值为\_\_\_\_\_\_.