ĐẠI SỐ TUYỂN TÍNH MA TRẬN KHẢ NGHỊCH

Phiên bản đã chỉnh sửa

PGS TS My Vinh Quang

Ngày 6 tháng 12 năm 2004

1 Ma trận khả nghịch

1.1 Các khái niệm cơ bản

Cho A là ma trận vuông cấp n, ma trận A gọi là ma trận khả nghịch nếu tồn tại ma trận B vuông cấp n sao cho

$$AB = BA = E_n \tag{1}$$

 $(E_n \text{ là ma trận đơn vị cấp } n)$

Nếu A là ma trận khả nghịch thì ma trận B thỏa điều kiện (1) là duy nhất, và B gọi là ma trận nghịch đảo (ma trận ngược) của ma trận A, ký hiệu là A^{-1} .

Vậy ta luôn có: $A.A^{-1} = A^{-1}.A = E_n$

1.2 Các tính chất

- 1. A khả nghịch \iff A không suy biến (det $A \neq 0$)
- 2. Nếu $A,\,B$ khả nghịch thì AB cũng khả nghịch và $(AB)^{-1}=B^{-1}A^{-1}$
- 3. $(A^t)^{-1} = (A^{-1})^t$

1.3 Các phương pháp tìm ma trận nghịch đảo

1.3.1 Phương pháp tìm ma trận nghịch đảo nhờ định thức

Trước hết, ta nhớ lại phần bù đại số của một phần tử. Cho A là ma trận vuông cấp n, nếu ta bỏ đi dòng i, cột j của A, ta được ma trận con cấp n-1 của A, ký hiệu M_{ij} . Khi đó $A_{ij}=(-1)^{i+j}\det M_{ij}$ gọi là phần bù đại số của phần tử nằm ở dòng i, cột j của ma trận A. Ma trân

$$P_{A} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}^{t}$$

gọi là ma trận phụ hợp của ma trận A.

Ta có công thức sau đây để tìm ma trận nghịch đảo của A.

Cho A là ma trận vuông cấp n.

 $N\acute{e}u \det A = 0$ thì A không khả nghịch (tức là A không có ma trận nghịch đảo). $N\acute{e}u \det A \neq 0$ thì A khả nghịch và

$$A^{-1} = \frac{1}{\det A} P_A$$

Ví dụ. Tìm ma trận nghịch đảo của ma trận

$$A = \left(\begin{array}{ccc} 1 & 2 & 1\\ 0 & 1 & 1\\ 1 & 2 & 3 \end{array}\right)$$

Giải

Ta có

$$\det A = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 2 \neq 0$$

Vây A khả nghịch.

Tìm ma trận phụ hợp P_A của A. Ta có:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 1$$

$$A_{12} = (-1)^{1+2} \begin{vmatrix} 0 & 1 \\ 1 & 3 \end{vmatrix} = 1$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} = -1$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} = -4$$

$$A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = 2$$

$$A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = 0$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1$$

$$A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = -1$$

$$A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1$$

Vây

$$P_A = \left(\begin{array}{rrr} 1 & -4 & 1 \\ 1 & 2 & -1 \\ -1 & 0 & 1 \end{array}\right)$$

và do đó

$$A^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -4 & 1 \\ 1 & 2 & -1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -2 & \frac{1}{2} \\ \frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

Nhận xét. Nếu sử dụng định thức để tìm ma trận nghịch đảo của một ma trận vuông cấp n, ta phải tính một định thức cấp n và n^2 định thức cấp n-1. Việc tính toán như vậy khá phức tạp khi n>3.

Bởi vậy, ta thường áp dụng phương pháp này khi $n \leq 3$. Khi $n \geq 3$, ta thường sử dụng các phương pháp dưới đây.

1.3.2 Phương pháp tìm ma trận nghịch đảo bằng cách dựa vào các phép biến đổi sơ cấp (phương pháp Gauss)

Để tìm ma trận nghịch đảo của ma trận A vuông cấp n, ta lập ma trận cấp $n \times 2n$

$$[A \mid E_n]$$

 $(E_n \text{ là ma trận đơn vị cấp } n)$

$$[A \mid E_n] = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Sau đó, dùng các phép biến đổi sơ cấp trên dòng đưa ma trận $[A \mid E_n]$ về dạng $[E_n \mid B]$. Khi đó, B chính là ma trận nghịch đảo của A, $B = A^{-1}$.

Chú ý. Nếu trong quá trình biến đổi, nếu khối bên trái xuất hiện dòng gồm toàn số 0 thì ma trận A không khả nghịch.

Ví dụ. Tìm ma trận nghịch đảo của ma trận

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right)$$

Giải

$$[A \mid E_4] = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{d_1 \to d_1 + d_2 + d_3 + d_4} \begin{pmatrix} 3 & 3 & 3 & 3 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$d_{1} \rightarrow d_{1} + d_{2} + d_{3} + d_{4} \begin{pmatrix} 1 & 0 & 0 & 0 & -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & -1 & 0 & 0 & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & -1 & 0 & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & -1 & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

$$d_{2} \rightarrow -d_{2} \qquad \qquad d_{2} \rightarrow -d_{2} \qquad d_{4} \rightarrow -d_{4} \qquad d_{3} \rightarrow -d_{3} \qquad 0 \qquad 0 \qquad 1 \qquad \frac{1}{3} \qquad \frac{1$$

Vậy

$$A^{-1} = \begin{pmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$

1.3.3 Phương pháp tìm ma trận nghịch đảo bằng cách giải hệ phương trình

Cho ma trận vuông cấp n

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Để tìm ma trận nghịch đảo A^{-1} , ta lập hệ

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = y_2 \\
 \vdots \\
 a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = y_n
\end{cases}$$
(2)

trong đó x_1, x_2, \ldots, x_n là ẩn, y_1, y_2, \ldots, y_n là các tham số.

* Nếu với mọi tham số y_1, y_2, \ldots, y_n , hệ phương trình tuyến tính (2) luôn có nghiệm duy nhất:

$$\begin{cases} x_1 = b_{11}y_1 + b_{12}y_2 + \dots + b_{1n}y_n \\ x_2 = b_{21}y_1 + b_{22}y_2 + \dots + b_{2n}y_n \\ \vdots \\ x_n = b_{n1}y_1 + b_{n2}y_2 + \dots + b_{nn}y_n \end{cases}$$

thì

$$A^{-1} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$

^{*} Nếu tồn tại y_1, y_2, \ldots, y_n để hệ phương trình tuyến tính (2) vô nghiệm hoặc vô số nghiệm thì ma trận A không khả nghịch.

Ví dụ. Tìm ma trận nghịch đảo của ma trận

$$A = \left(\begin{array}{cccc} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{array}\right)$$

Giải

Lập hệ

$$\begin{cases} ax_1 + x_2 + x_3 + x_4 = y_1 & (1) \\ x_1 + ax_2 + x_3 + x_4 = y_2 & (2) \\ x_1 + x_2 + ax_3 + x_4 = y_3 & (3) \\ x_1 + x_2 + x_3 + ax_4 = y_4 & (4) \end{cases}$$

Ta giải hệ trên, cộng 2 vế ta có

$$(a+3)(x_1+x_2+x_3+x_4) = y_1+y_2+y_3+y_4 \qquad (*)$$

- 1. Nếu a=-3, chọn các tham số y_1, y_2, y_3, y_4 sao cho $y_1+y_2+y_3+y_4\neq 0$. Khi đó (*) vô nghiệm, do đó hệ vô nghiệm, bởi vậy A không khả nghịch.
- 2. $a \neq -3$, từ (*) ta có

$$x_1 + x_2 + x_3 + x_4 = \frac{1}{a+3}(y_1 + y_2 + y_3 + y_4)$$
 (**)

 $L\hat{a}y(1), (2), (3), (4) \text{ trừ cho (**), ta có}$

$$(a-1)x_1 = \frac{1}{a+3}((a+2)y_1 - y_2 - y_3 - y_4)$$

$$(a-1)x_2 = \frac{1}{a+3}(-y_1 + (a+2)y_2 - y_3 - y_4)$$

$$(a-1)x_3 = \frac{1}{a+3}(-y_1 - y_2 + (a+2)y_3 - y_4)$$

$$(a-1)x_4 = \frac{1}{a+3}(-y_1 - y_2 - y_3 + (a+2)y_4)$$

- (a) Nếu a=1, ta có thể chọn tham số y_1 , y_2 , y_3 , y_4 để $(a+2)y_1-y_2-y_3-y_4$ khác 0. Khi đó hệ và nghiệm và do đó A không khả nghịch.
- (b) Nếu $a \neq 1$, ta có

$$x_1 = \frac{1}{(a-1)(a+3)}((a+2)y_1 - y_2 - y_3 - y_4)$$

$$x_2 = \frac{1}{(a-1)(a+3)}(-y_1 + (a+2)y_2 - y_3 - y_4)$$

$$x_3 = \frac{1}{(a-1)(a+3)}(-y_1 - y_2 + (a+2)y_3 - y_4)$$

$$x_4 = \frac{1}{(a-1)(a+3)}(-y_1 - y_2 - y_3 + (a+2)y_4)$$

Do đó

$$A^{-1} = \frac{1}{(a-1)(a+3)} \begin{pmatrix} a+2 & -1 & -1 & -1 \\ -1 & a+2 & -1 & -1 \\ -1 & -1 & a+2 & -1 \\ -1 & -1 & -1 & a+2 \end{pmatrix}$$

Tóm lại:

Nếu $a=-3,\,a=1$ thì ma trận A không khả nghịch.

Nếu $a \neq -3$, $a \neq 1$, ma trận nghịch đảo A^{-1} được xác định bởi công thức trên.

BÀI TẬP

Tìm ma trận nghịch đảo của các ma trận sau

$$22. \left(\begin{array}{rrr} 1 & 0 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 2 \end{array}\right)$$

$$23. \left(\begin{array}{rrr} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{array}\right)$$

$$24. \left(\begin{array}{rrrr} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{array} \right)$$

$$25. \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{array}\right)$$

Tìm ma trận nghịch đảo của các ma trận vuông cấp n

$$26. \left(\begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{array}\right)$$

$$27. \begin{pmatrix} 1+a & 1 & 1 & \cdots & 1 \\ 1 & 1+a & 1 & \cdots & 1 \\ 1 & 1 & 1+a & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1+a \end{pmatrix}$$