USN						
	ļ.				 	

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester B.E. (Credit System) Degree Examinations
Make up Examinations - July - August 2021

20PH102 - ENGINEERING PHYSICS

	ion.	3 Hours		Max	. Mark	s: 10	00
TO THE RESIDENCE OF THE PARTY O		enstants: Velocity of light, c = $3 \times 10^8 \text{ms}^{-1}$, Planck's constant, h = $6.63 \times 10^{-19} \text{C}$ Electron mass, m= $9.11 \times 10^{-31} \text{kg}$, Electron charge, e= $1.6 \times 10^{-19} \text{C}$ Permittivity of vacuum, $\varepsilon_o = 8.85 \times 10^{-12} \text{F/m}$, Boltzmann constant, Avogadro number, N _A = $6.023 \times 10^{26} \text{/} \text{kgmole}$, Neutron mass mass mass mass mass mass mass mas	/, k=1.38>	(10 ⁻²³ 10 ⁻²⁷	J/K, kg		
		Note: Answer Five full questions choosing One full question from	om eac	h Un	it.		
1.	a) b)	What are matter waves? Mention their properties. Obtain the time independent Schrodinger wave equation for a	Marks 6	BT* L*2	CO'		0* 1,2
1	c)	particle in one dimensional potential well of infinite height and discuss about energy eigen values. An electron is bound in a one dimensional potential well of width	10	L2	1	1 1	1,2
4		1Å, but of infinite wall height. Find its energy values in the ground state and also in the first two excited states.	4	L3	•	1	1,2
4	a) b) c)	Derive an expression for group velocity on the basis of superposition of two travelling waves. Derive the time independent Schrodinger wave equation. Compare the momentum, and the kinetic energy of an electron with	6 10	L2 L2			1,2 1,2
4		de Broglie wavelength of 1Å, with that of a photon with same wavelength.	4	L	3	1	1,2
7	a)	Unit – II Explain the seven crystal systems with neat diagrams.	6	L	1	2	1,2
4	b)	planes. Derive an expression for inter - planar spacing of a crystal. Coloulete the glancing angle of incidence of x-rays of wavelength of	10	L	2	2	1,2
		0.58Å on the plane (1 3 2) of NaCl, which results in second order diffraction maxima taking the lattice spacing as 3.81Å.	2	l L	.3	2	1,2
5	a)	The late the origin of continuous and characteristic x-ray spectrum.		5 L	_2	2	1,2
5	b)	Define packing factor and coordination number. Calculate the coordination number and packing factor for bcc and fcc structures.	•	0 1	_2	4	1,2
5	c)	10		4	L3	2	1,2
5	a)	Unit – III Mention the assumptions and limitation of free electron theory. What are relaxation time and collision time? On the basis of free what are relaxation time and collision time?	Э	6	L2	3	1,2
5	b) c)	What are relaxation time and collision time. Shows the electric electron theory of metals, obtain an expression for the electric conductivity of the metal. Estimate the relaxation time of conduction electrons in silver from	•	10	L2	3	1,2
5		following data: Resistivity = 1.6×10^{-8} ohm. m Density = 10.5×10^{-3} kg/m³, Atom weight = 107.88 .	ic	4	L3	3	3 1,2

					TY THE	
		20PH102 Make up – July – August 2021	6	L2	4 ,	
6.	a) b)	Distinguish between Type I and Type II superconductivity. Explain any Discuss briefly the BCS theory of superconductivity.	10	L2	3 .	
	c)	two applications of superconductions. The hand a critical magnetic field of 217 gauss at	4	L3	3 .	
		Unit – IV				
7.	a)		6	L2	4	
	b)	Define Fermi energy. Sketch the Fermi level in (i) intrinsic semiconductor (ii) n-type semiconductor and (iii) p-type semiconductor. Discurr the effect of temperature on Fermi level in intrinsic and n-type Semiconductor. The Hell as afficient of a specimen of a doped silicon is found to be	10	L3	4	ratio
	c)	3.66 x 10 ⁻⁴ m³/Coulomb. The resistivity of the specimen is 8.93 x10 ⁻³ ohm. m. Find the mobility and density of the charge carrier, assuming single carrier conduction.	4	L3	4	a)
8.	a) b)	Explain the construction and working of a LED with neat diagrams. Describe the formation of p-n junction. Explain its voltage current	6	L2	4	b)
	·	Intrinsic semiconductors?	10	L1	4	c)
	c)	silicon with an acceptor concentration of 10^{23} m ⁻³ and n-type silicon with a donor concentration of 10^{20} m ⁻³ if the intrinsic concentration at 300k is 1.4×10^{16} m ⁻³ .	4	L3	4	a) b)
		Unit – V	6	L2	5	C)
9.	a) b)	Describe the construction and working of a He-Ne laser. Describe the attenuation in the optical fiber. What are the advantages of optical communications over other conventional			1	
		f and and and and	10	L3	5	
	c)	types of communication? The ratio of the population of two energy levels is 1,059x10 ⁻³⁰ . Find the wavelength of light emitted at 300K.	4	L1	5	a)
0.	a)	Explain the terms with neat energy level diagram. i) population	(3 L2	· ·	b)
	b)	Describe the types of optical fibers and modes of transmission that	1	0 L	4	5
	c)	suitable diagrams. A step index optical fiber 63.5 µm in core-diameter has a core of refractive index 1.53 and a cladding of index 1.39. Determine (i) the numerical aperture of the fiber and (ii) the critical angle for core-cladding interface.		4 l	.1	(c)
т•	Bloc	om's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outc	come			
		array 1 man and a same and a same and a same a				

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

First / Second Semester B.E. (Credit System) Degree Examinations

Make up/Supplementary Examinations – September 2021

20PH102 - ENGINEERING PHYSICS

uration: 3 Hours

5

Max. Marks: 100

st of constants:

Velocity of light, $c = 3x10^3 \text{ ms}^{-1}$. Planck's constant, $h = 6.63x10^{-34} \text{ Js}$, Electron mass, $m = 9.11x10^{-31} \text{kg}$. Electron charge, $e = 1.602x10^{-19} \text{C}$,

Boltzmann constant, k=1.38x10⁻²³J/K.

Avogadro number, $N_A = 6.023 \times 10^{26} l$ kg mole.

Note: Answer any Five full questions.

E.	11	·k c	DT+	CO*	DO*	3
a)	What are matter waves? Derive an expression for de Broglie wavelength of an electron of mass m, accelerated by a potential of V volts.		L*2	CO*	1, 2	
p)	Derive Schrodinger's time independent one-dimensional wave equation for a particle of mass m with energy E. An electron is trapped in a one-dimensional region of length 1.2Å.	10	L3		1, 2	
	Calculate the energy required to excite the electron from the ground state to the first excited state?	4	L3	1	1, 2	
a) b)	Explain: (i) Heisenberg's uncertainty principle, (ii) Probability density and (iii) Normalization of a wave function. What are Eigen values and Eigen functions? Discuss the wave function, probability density and energy Eigen values for a particle function, probability density and energy Eigen values for a particle	6	L1	1	1, 2	
c)	in an infinite potential well by considering its ground state and the first two excited states. Calculate the momentum and de Broglie wavelength associated with an electron subjected to a potential difference of 1.5 kV.	10) L:		1 1, 2 1 1, 3	
	What are Miller Indices? Explain how the axial intercepts in a crystal plane are converted to Miller indices. Define Coordination number and Atomic packing factor. Calculate Define Coordination number are centered cubic (BCC) and face		6 l	_2	2 1,	2
b)	the atomic packing factor for base centered number of atoms/unit centered cubic (FCC) lattices by calculating number of atoms/unit cell and the relation between atomic radius and lattice constant.			_2, L3	2 1	, 2
	0.58 A on the plane (102) of the first of the plane (102) of the diffraction maxima taking the lattice constant as 3.81 A.		4	L3	2	1, 2
a)	What are X-rays? With the neat diagram of an X-ray tube explain		6	L2	2	1, 2
b)	the production of X-rays. Derive Bragg's law for the X-ray diffraction by crystal planes. Explain in detail the construction and working of Bragg's X-ray		10	L3	2	1, 2
c)	spectrometer. Iron crystallizes in BCC structure. Calculate the lattice constant. Given that, the atomic weight of iron is 55.85 and density of iron is 7860 kg/m ³ .		4	1.3	2	1, 2

						NEW T
5.	a)	Mention the assumptions and limitation of classical free electron	6	L1	3	
	b)	Obtain an expression for the electrical conductivity of a metal based on classical free electron theory.	10	L3	3	
	c)	Superconducting tin has a critical magnetic field of a superconducting transition for tin is K. If the critical temperature for superconducting transition for tin is 3.7 K. Find the critical magnetic field at 3 K.	4	L3	3	uration
6.	a)	Define Matthiessen's rule and explain the effect of temperature on electrical resistivity of metals. Discuss critical magnetic field and Meissner effect in	6	L2	3	
	b)	superconductors. Distinguish between Type-I and Type-II	10	L3	3	
	c)	superconductors. Find the temperature at which there is 2% probability that an energy level 0.3 eV above Fermi energy level is occupied.	4	L3	3	. a) b)
7.	a)	What are direct and indirect band-gap semiconductors? Explain.	6	L2	4	
	b)	What are intrinsic semiconductors? Obtain an expression for the conductivity of an intrinsic semiconductor. Explain the effect of temperature on the resistivity of an intrinsic semiconductor.	10	L3	4	(C)
	c)	and its resistivity is found to be 2.12 ohm-m. Calculate charge carrier concentration and electron mobility at room temperature.	4	L3	4	a)
8.	a)	Distinguish between avalanche diode and Zener diode.	6	L2	4	b) c)
	and ca	Explain Hall Effect. Obtain an expression for the Hall coefficient and carrier concentration of an n-type semiconductor. Mention any our applications of Hall effect. Mobilities of electrons and holes in a sample of intrinsic germanium and holes in a sample of intrinsic germanium of the holes in a sample of the h	10	L3	4	
	c)	at 300K are 0.36 m 2 V $^{-1}$ s $^{-1}$ and 0.17 m 2 V $^{-1}$ s $^{-1}$ respectively. If the resistivity of the specimen is 2.12 Ω m, compute the intrinsic carrier density.	4	L3		a) b) t (
9.	. a)	Derive an expression for numerical aperture of an optical fiber in	ε	5 L2		5 a)
	b)	w and a porqui lovel diadram	1(L3		5 b)
	c)	- refractive index of the obligation is 1.40, its island		4 L3	3	c) 5
10.	. a)	4 0 0		6 L	2	a) 5b)
	b)	principle. Explain in brief different attenuation mechanisms in an		10 I	_3	50)
	c)	e: Little retio of population of the two energy states, the transition		4	L3	5
DT:	⁺ Rlo	om's Taxonomy, L* Level; CO* Course Outcome; PO* Program Out	come	9		

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome