Emulation of an individual-based model simulation of microbial communities

Oluwole Oyebamiji

School of Mathematics & Statistics, Newcastle University, UK

Supervisor: Darren Wilkinson

This project was funded by the Newcastle University Frontiers in Engineering Biology (NUFEB) http://research.ncl.ac.uk/nufeb

Introduction

- Wastewater treatment plants are open systems that depend on many species of bacteria
- Methods that require many simulator runs become impractical if a single simulator run at one input value takes a long time
- The influence of hydrodynamic shear force on biofilm deformation
- Outputs: number of shear events, volume of detached cluster Inputs: biofilm height, surface roughness, mass and EPS composition
- Bayesian Poisson regression and dynamic linear models (DLMs)

The problem

Biofilm simulation under flow fields

Number of shearing event per 10000s

Summary

- Evaluate the strategy for emulating high-level summary from the individual-based simulation of microbial communities using the NUFEB 1.1
- Measure aggregated characteristics on the microscale simulation
- Apply a dynamic Bayesian surrogate model (GP emulator) for modelling the interesting morphological characteristics that are essential for the design and performance of wastewater reactor.
- Perform Bayesian sensitivity analysis to identify the most influential input parameters.
- Quantify and model detachment patterns of a biofilm in response to hydrodynamic shear stress.

Future plans

We have made considerable progress on the parameter calibration using the recently released **NUFEB 2.0** version of the model

- Continue with the NUFEB 2.0 parameter calibration using IdynoMICS and experimental data.
- Plan to properly investigate the use of emulators as an upscaling strategy to build mesoscale models.