

Introduction

Course: Distributed Computing

Faculty: Dr. Rajendra Prasath

About this Course

This course covers essential aspects that every serious programmer needs to know about distributed algorithms, design principles and their analysis, with emphasis on real-time implementations and scalable applications development

What do we learn?

Distributed Computing (DC)

- **→** Core Theoretical Concepts
- → Design Principles of DC
- **→** Discrete Events Simulations
- **→** Experimental Evaluations
- → Designing Efficient Solution(s) ??
 - → To Solve Some Interesting Problems!!
- → An Overview of Distributed Computing
 - → → Simple to advanced?

An Overview

Consider Simple Problem-Solving:

- → What are the constraints in solving a specific problem?
- → How to do problem-solving in a sequential machine?
- → How do we parallelize the solution?
- → How to make the systems to co-ordinate to solve the specific problems given the specific constraints?

Distributed Computing

→ Study of Distributed Systems

A Distributed System?

- → A model in which components communicate among themselves by passing messages and coordinate (regulated by interaction or interdependence) to accomplish a specific task / problem given to them
- → Is it different from parallel processing?

Parallel vs Distributed

- → Parallel System?
 - → Having n processors with a common shared memory
- Distributed System?
 - → Having n processors but NO common shared memory

More Formally ...

Distributed System:

- → A collection of independent computers that appears to its users as a single coherent system
- → A system in which hardware and software components of networked computers communicate and coordinate their activity only by passing messages
- → A computing platform built with many computers that:
 - Operate concurrently
 - Are physically distributed (have their own failure modes)
 - → Are linked by a network
 - → Have independent clocks

Characteristics

- **→** Concurrent execution of processes:
 - → Non-determinism, race conditions, synchronisation, deadlocks, and so on
- → No global clock
 - → Coordination is done by message exchange
 - → No single global notion of the correct time
- → No global state
 - No process has a knowledge of the current global state of the system
- Units may fail independently
 - Network faults may isolate computers that are still running
 - System failures may not be immediately known 8

Need of Distributed Syst.

Why do we need distributed systems?

- → People are distributed but need to work together
- → Hardware needs to be physically close to people (who are distributed)
- → Information is distributed but needs to be shared (trustworthily)
- → Hardware can be shared (increases computing power by doing work in parallel; more efficient resource utilization)

Examples of DS

- → Intranets, Internet, World Wide Web
- Distributed supercomputers
- → Grid / Cloud computing AWS-EC2
- **→** Electronic banking
- **→** Airline reservation systems
- → Railway Reservation Systems
- → Peer-to-peer networks
- → Sensor networks IBM systems
- → Web Searching / Web Crawling

... and so on

Course Content

- Course is divided into several modules:
- Covers Basics to Advanced Components (at least one example problem with detailed analysis)
- Course is supposed to be an interactive course and class performance bonus would be given to students who solve the given set of problems efficiently
 - → Course Content follows ...

Course Content - Topics

- Introduction
- A model of distributed computations
- Logical time
- Global state and snapshot recording algorithms
- Topology abstraction and overlays
- Message ordering and group communication
- Termination detection
- Distributed mutual exclusion algorithms

Course Content - Topics (contd...)

- Deadlock detection in distributed systems
- Distributed shared memory
- Check Pointing and Rollback Recovery
- Consensus and agreement algorithms
- Self-stabilization
- Authentication in distributed systems
- Peer-to-peer computing and overlay graphs
 - → and Practice Problems

Case Studies

- Discrete Event Simulations
 - Distributed Sorting on a line network
 - Distributed Sorting on different interconnection networks
- Map Reduce and Big Data
 - How to process a huge volume of data
 - Specific focus would be on scalable data processing especially in text format
- Authentication & Security in DS
 - We will focus more on Decentralized Application development

Take Home Assignments

- Solve a set of problems every week
- Must be solved by individuals & must be finished before the deadline specified
- All Assignments are COMPULSARY
- Total Weightage: 20%;
- Solutions would be cross checked !!
- Solutions submitted after the deadline will not be considered for evaluation
- · Submission Procedure would be given.

Examinations

- Mid Semester 1: 10 Marks
- Mid Semester 2: 15 Marks
- End Semester : 25 Marks
- Total Weightage (100) = Take Home Assignments (20) + Exams (50) + Best Solutions (10) + Class Performance (20)
- Academic Code of Conduct
 - Explore PENALTIES

Penalties

- Every Student is expected to strictly follow a fair Academic Code of Conduct to avoid severe penalties
- Penalties would be heavy for those who involve in:
 - Copy and Pasting the code
 - Plagiarism (copied from your neighbor or friend –
 in this case, both will get "0" marks for that
 specific take home assignments)
 - If the candidate is unable to explain his own solution, it would be taken as a "copied case" !!
 - Any other unfair means of completing the assignments

Help among Yourselves?

- Perspective Students (having CGPA above 8.5 and above)
- Promising Students (having CGPA above 6.5 and less than 8.5)
- Needy Students (having CGPA less than 6.5)
 - Can the above group help these students? (Your work will also be rewarded)
- You may grow a culture of collaborative learning by helping the needy students

Assistance

- You may post your questions to me at any time
- You may meet me in person on available time or with an appointment
- TA s would assist you to clear your doubts.
- You may leave me an email any time (email is the best way to reach me faster)

Thanks ...

