Gov 2001 Replication Paper

Miro Bergam, Yanxi Fang, Dominic Skinnion

December 12, 2021

Table 1

```
# subset data
df_tab1 <- df %>%
 filter(year > 1870 & year < 1990)
# regress model 1
tab1_mod1 <- plm(Education_pc ~ leg_party_competition + year_1890 + year_1900 +
                                year_1910 + year_1930 + year_1940 + year_1960 +
                                year_1970 + year_1980,
                 index = "state", data = df tab1)
tab1_mod1_se <- coeftest(tab1_mod1, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 2
tab1_mod2 <- plm(Education_pc ~ leg_party_competition + Statewide_Competition +
                                house_dem + senate_dem + gov_dem +
                                CPI per capita income + foreignborn pct +
                                black_pct + othernonwhite_pct + urban_pct +
                                year_1890 + year_1900 + year_1910 + year_1930 +
                                year_1940 + year_1960 + year_1970 + year_1980,
                 index = "state", data = df_tab1)
tab1_mod2_se <- coeftest(tab1_mod2, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 3
tab1_mod3 <- plm(HealthSewerSanitation_pc ~ leg_party_competition +
                                year_1890 + year_1900 + year_1910 + year_1930 +
                                year_1940 + year_1960 + year_1970 + year_1980,
                 index = "state", data = df_tab1)
tab1_mod3_se <-coeftest(tab1_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 4
tab1_mod4 <- plm(HealthSewerSanitation_pc ~ leg_party_competition +
                                Statewide_Competition + house_dem + senate_dem +
                                gov_dem + CPI_per_capita_income + foreignborn_pct +
                                black_pct + othernonwhite_pct + urban_pct +
                                year_1890 + year_1900 + year_1910 + year_1930 +
                                year_1940 + year_1960 + year_1970 + year_1980,
                 index = "state", data = df_tab1)
tab1_mod4_se <-coeftest(tab1_mod4, function(x) vcovHC(x, type = 'sss'))
# regress model 5
tab1_mod5 <- plm(Transportation_pc ~ leg_party_competition +</pre>
                                year_1890 + year_1900 + year_1910 + year_1930 +
                                year_1940 + year_1960 + year_1970 + year_1980,
                 index = "state", data = df_tab1)
tab1_mod5_se <-coeftest(tab1_mod5, function(x) vcovHC(x, type = 'sss'))</pre>
```

```
# regress model 6
tab1_mod6 <- plm(Transportation_pc ~ leg_party_competition +
                               Statewide_Competition + house_dem + senate_dem +
                               gov dem + CPI per capita income + foreignborn pct +
                               black_pct + othernonwhite_pct + urban_pct +
                               year_1890 + year_1900 + year_1910 + year_1930 +
                               year_1940 + year_1960 + year_1970 + year_1980,
                 index = "state", data = df tab1)
tab1 mod6 se <-coeftest(tab1 mod6, function(x) vcovHC(x, type = 'sss'))
# print Table 1
stargazer(tab1_mod1_se, tab1_mod2_se, tab1_mod3_se,
          tab1_mod4_se, tab1_mod5_se, tab1_mod6_se,
          header = F, type = "latex", digits = 2, style = "apsr",
          title = "Party Competition Predicts Higher Human Capital and Infrastructure Spending, 1880-19
          column.labels = c("Education spending", "Health spending",
                            "Transportation spending"),
          column.separate = c(2, 2, 2),
          covariate.labels = c("Legislative party competition",
                               "Electoral competition", "Democratic house",
                              "Democratic senate", "Democratic governor",
                               "Income per capita", "Foreign-born percentage",
                               "Black percentage", "Other nonwhite percentage",
                               "Urban population percentage"),
          omit = c("Constant", "year_1890", "year_1900", "year_1910", "year_1920",
                   "year_1930", "year_1940", "year_1960", "year_1970", "year_1980"),
          add.lines = list(c("State fixed effects", "included", "included",
                             "included", "included", "included"),
                          c("Year fixed effects", "included", "included",
                             "included", "included", "included"),
                          c("Observations", "398", "380", "326", "310", "374", "357"),
                          c("R-Squared", "0.96", "0.97", "0.89", "0.92", "0.87", "0.89"),
                          c("Adj. R-Squared", "0.95", "0.96", "0.87", "0.90", "0.85", "0.87")))
```

Table 1: Party Competition Predicts Higher Human Capital and Infrastructure Spending, 1880-1980

	Education	n spending	Health s	spending	Transporta	tion spending
	(1)	(2)	(3)	(4)	(5)	(6)
Legislative party competition	1.56***	1.18*	0.33**	0.17^{*}	0.49	0.88**
	(0.54)	(0.60)	(0.16)	(0.10)	(0.38)	(0.37)
Electoral competition	,	-1.53	,	-0.03	,	-1.53^{*}
•		(1.15)		(0.18)		(0.88)
Democratic house		-2.85		$\hat{13.41}^{st}$		-57.09**
		(24.72)		(8.02)		(22.89)
Democratic senate		-29.86		-16.55^{**}		8.67
		(32.08)		(8.11)		(26.24)
Democratic governor		-22.89		-12.80**		6.46
-		(24.83)		(5.32)		(14.88)
Income per capita		0.03***		0.01***		-0.01
		(0.01)		(0.002)		(0.01)
Foreign-born percentage		-16.66***		-2.07**		-6.29
		(4.74)		(0.95)		(4.17)
Black percentage		1.59		0.39		-0.07
		(3.95)		(0.86)		(2.95)
Other nonwhite percentage		8.32		4.51**		0.24
		(8.07)		(1.86)		(5.76)
Urban population percentage		5.39**		-0.13		5.06***
		(2.40)		(0.39)		(1.68)
State fixed effects	included	included	included	included	included	included
Year fixed effects	included	included	included	included	included	included
Observations	398	380	326	310	374	357
R-Squared	0.96	0.97	0.89	0.92	0.87	0.89
Adj. R-Squared	0.95	0.96	0.87	0.90	0.85	0.87

^{*}p < .1; **p < .05; ***p < .01

Table 2

```
# subset for model 1
df_tab2_mod1 <- df %>%
 filter(year >= 1930 & year < 2020)
# regress model 1
tab2_mod1 <- plm(infantmortality ~ HealthSewerSanitation_pc + CPI_per_capita_income +
                                   foreignborn_pct + black_pct + othernonwhite_pct +
                                   urban_pct + as.factor(year),
                 index = "state", data = df_tab2_mod1)
tab2 mod1 se <- coeftest(tab2 mod1, function(x) vcovHC(x, type = 'sss'))
# subset for model 2
df tab2 mod2 <- df %>%
  filter(year >= 1880 & year <= 2010) %>%
  mutate(f3_at_birth_life_expectancy = dplyr::lead(at_birth_life_expectancy, 3)) %>%
 filter(year <= 1980)</pre>
# regress model 2
tab2_mod2 <- plm(f3_at_birth_life_expectancy ~ HealthSewerSanitation_pc +
                                    CPI_per_capita_income + foreignborn_pct +
                                    black_pct + othernonwhite_pct + urban_pct +
                                   as.factor(year),
                 index = "state", data = df_tab2_mod2)
tab2 mod2 se <- coeftest(tab2 mod2, function(x) vcovHC(x, type = 'sss'))
# subset for model 3
df tab2 mod3 <- df %>%
 filter(year >= 1880 & year <= 2010)
# regress model 3
tab2 mod3 <- plm(graduation combined ~ Education pc + CPI per capita income +
                                   foreignborn pct + black pct+ othernonwhite pct +
                                   urban_pct + south + as.factor(year),
                 index = "state", data = df_tab2_mod3)
tab2_mod3_se <- coeftest(tab2_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# use same data as model 3, regress model 4
tab2_mod4 <- plm(illiteracy_proportional_30 ~ Education_pc + CPI_per_capita_income +
                                   foreignborn_pct + black_pct + othernonwhite_pct +
                                   urban_pct + south + as.factor(year),
                 index = "state", data = df_tab2_mod3)
tab2_mod4_se <- coeftest(tab2_mod4, function(x) vcovHC(x, type = 'sss'))</pre>
# print Table 2
stargazer(tab2_mod1_se, tab2_mod2_se, tab2_mod3_se, tab2_mod4_se,
          header = F, type = "latex", font.size = "tiny", style = "apsr",
          title = "Spending Levels Predict Development, 1880-2010",
          column.labels = c("Infant mortality",
                            "Life expectancy (30 years later)",
                            "High school completion",
                            "Illiteracy rate (30 years later)"),
          covariate.labels = c("Health, sewer, sanitation spending per capita",
                                "Education spending per capita",
                               "Income per capita",
                               "Foreign-born percentage", "Black percentage",
                               "Other nonwhite percentage", "Urban population percentage"),
          omit = c("Constant", "south", "year"),
          add.lines = list(c("State fixed effects",
```

Table 2: Spending Levels Predict Development, 1880-2010

	Infant mortality	Life expectancy (30 years later)	High school completion	Illiteracy rate (30 years later)
	(1)	(2)	(3)	(4)
Health, sewer, sanitation spending per capita	-0.039***	0.003		
	(0.014)	(0.002)		
Education spending per capita	, ,	, ,	0.004***	0.004***
			(0.001)	(0.002)
Income per capita	0.001	0.00001	-0.0002	0.00002
	(0.001)	(0.0001)	(0.0003)	(0.0001)
Foreign-born percentage	0.042	-0.054	-0.335***	0.074***
	(0.383)	(0.039)	(0.107)	(0.014)
Black percentage	0.178	-0.002	0.083	-0.027
	(0.353)	(0.036)	(0.084)	(0.027)
Other nonwhite percentage	-0.383	0.042	0.019	0.023
	(0.626)	(0.066)	(0.169)	(0.052)
Urban population percentage	-0.639**	0.012	0.242***	-0.048***
	(0.295)	(0.018)	(0.050)	(0.012)
State fixed effects	included	included	included	included
Year fixed effects	included	included	included	included
Observations	240	272	374	168
R-Squared	0.92	0.98	0.96	0.43
Adjusted R-Squared	0.89	0.97	0.96	0.14

^{*}p < .1; **p < .05; ***p < .01

Table 3

```
# create new dataframe for "full sample"
df_tab3_full <- df</pre>
# subset for 1880-1940 sample
df tab3 part <- df %>%
 filter(year >= 1880 & year <= 1940)
# regress model 1
tab3_mod1 <- plm(CPI_per_capita_income_next30 ~ HealthSewerSanitation_pc +
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south + as.factor(year),
                 index = "state", data = df_tab3_full)
tab3_mod1_se <- coeftest(tab3_mod1, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 2
tab3_mod2 <- plm(CPI_per_capita_income_next30 ~ HealthSewerSanitation_pc +
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south + as.factor(year),
                 index = "state", data = df_tab3_part)
tab3_mod2_se <- coeftest(tab3_mod2, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 3
tab3_mod3 <- plm(CPI_per_capita_income_next30 ~ Education_pc +
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south + as.factor(year),
                 index = "state", data = df_tab3_full)
tab3_mod3_se <- coeftest(tab3_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 4
tab3_mod4 <- plm(CPI_per_capita_income_next30 ~ Education_pc +
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south + as.factor(year),
                 index = "state", data = df_tab3_part)
tab3_mod4_se <- coeftest(tab3_mod4, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 5
tab3_mod5 <- plm(CPI_per_capita_income_next30 ~ Transportation_pc +</pre>
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south + as.factor(year),
                 index = "state", data = df_tab3_full)
tab3_mod5_se <- coeftest(tab3_mod5, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 6
tab3_mod6 <- plm(CPI_per_capita_income_next30 ~ Transportation_pc +
                   CPI per capita income + foreignborn pct + black pct +
                   othernonwhite_pct + urban_pct + south + as.factor(year),
                 index = "state", data = df_tab3_part)
tab3_mod6_se <- coeftest(tab3_mod6, function(x) vcovHC(x, type = 'sss'))</pre>
# print Table 3
stargazer(tab3_mod1_se, tab3_mod2_se, tab3_mod3_se,
          tab3_mod4_se, tab3_mod5_se, tab3_mod6_se,
          header = F, type = "latex", font.size = "tiny", style = "apsr", digits = 2,
          title = "Health and Education Spending Levels Predict Income (Only in Pre-New Deal Period)",
          column.labels = c("Full sample", "1880-1940",
                             "Full sample", "1880-1940",
                             "Full sample", "1880-1940"),
          covariate.labels = c("Health, sewer, sanitation spending per capita",
                                "Education spending per capita",
```

```
"Transportation spending per capita",
                     "Income per capita",
                     "Foreign-born pct", "Black pct",
                     "Other nonwhite pct", "Urban population pct"),
omit = c("Constant", "south", "year"),
add.lines = list(c("State fixed effects",
                   "included", "included", "included",
                   "included", "included", "included"),
                 c("Year fixed effects",
                   "included", "included", "included",
                   "included", "included", "included"),
                 c("Observations", "336", "192", "408",
                   "264", "384", "240"),
                 c("Orig. R-Squared", "0.98", "0.99", "0.98",
                   "0.98", "0.98", "0.98"),
                 c("R-Squared", "0.92", "0.99", "0.93",
                   "0.97", "0.93", "0.97"),
                 c("Adjusted R-Squared", "0.91", "0.98", "0.91",
                   "0.96", "0.91", "0.96")))
```

Table 3: Health and Education Spending Levels Predict Income (Only in Pre-New Deal Period)

	Full sample	1880-1940	Full sample	1880-1940	Full sample	1880-1940
	(1)	(2)	(3)	(4)	(5)	(6)
Health, sewer, sanitation spending per capita	-0.45	14.03***				
	(4.25)	(4.36)				
Education spending per capita	` '	` ′	0.29	4.61**		
			(0.91)	(1.81)		
Transportation spending per capita					-1.40	0.29
					(1.52)	(2.68)
Income per capita	-0.23	-1.12***	-0.06	-0.81***	-0.10	-0.83***
	(0.20)	(0.08)	(0.19)	(0.09)	(0.18)	(0.09)
Foreign-born pct	-187.54***	-32.42	-111.73**	15.88	-151.16***	-14.04
	(69.46)	(32.93)	(46.79)	(31.65)	(49.80)	(29.39)
Black pct	-159.08***	-45.25	-121.90***	-38.40	-126.18***	-9.53
	(51.38)	(41.56)	(42.40)	(46.45)	(47.84)	(52.33)
Other nonwhite pct	17.79	-73.77	38.69	-71.91	33.94	-73.77
	(76.29)	(73.16)	(80.14)	(107.35)	(81.65)	(76.45)
Urban population pct	-94.40***	41.98**	-101.18***	20.40	-94.84***	28.93
	(29.36)	(21.21)	(25.78)	(18.84)	(26.73)	(22.08)
State fixed effects	included	included	included	included	included	included
Year fixed effects	included	included	included	included	included	included
Observations	336	192	408	264	384	240
Orig. R-Squared	0.98	0.99	0.98	0.98	0.98	0.98
R-Squared	0.92	0.99	0.93	0.97	0.93	0.97
Adjusted R-Squared	0.91	0.98	0.91	0.96	0.91	0.96

 $^{^*\,\}mathrm{p}\,<\,.1;\;^{**}\,\mathrm{p}\,<\,.05;\;^{***}\,\mathrm{p}\,<\,.01$

Extension 1.1: Use Lagged Values with Year and State FEs for Table 1

```
# subset for Lag Table 1
df lag1 <- df tab1 %>%
  select(Education_pc, HealthSewerSanitation_pc, Transportation_pc,
         leg_party_competition, Statewide_Competition, house_dem,
         senate_dem, gov_dem, CPI_per_capita_income, foreignborn_pct, black_pct,
         othernonwhite_pct, urban_pct, state, year, year_1890, year_1900, year_1910,
         year_1920, year_1930, year_1940, year_1950, year_1960, year_1970, year_1980)
# create lagged variables
df_lag1 <- df_lag1 %>%
  mutate(lag_Education_pc = ifelse(year != 1880, lag(Education_pc), NA)) %>%
  mutate(lag_Health_pc = ifelse(year != 1880, lag(HealthSewerSanitation_pc), NA)) %>%
  mutate(lag_Transportation_pc = ifelse(year != 1880, lag(Transportation_pc), NA))
# regress Lag Table 1, Model 1
lag1_mod1 <- plm(Education_pc ~ lag_Education_pc + leg_party_competition +</pre>
            year_1890 + year_1900 + year_1910 + year_1920 + year_1930 + year_1940 +
            year_1950 + year_1960 + year_1970 + year_1980, index = "state", data = df_lag1)
lag1_mod1_se <- coeftest(lag1_mod1, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 1, Model 2
lag1_mod2 <- plm(Education_pc ~ lag_Education_pc + leg_party_competition +</pre>
            Statewide Competition + house dem + senate dem + gov dem +
            CPI_per_capita_income + foreignborn_pct + black_pct +
            othernonwhite_pct + urban_pct + year_1890 + year_1900 +
            year_1910 + year_1920 + year_1930 + year_1940 +
            year_1950 + year_1960 + year_1970 + year_1980,
            index = "state", data = df lag1)
lag1_mod2_se <- coeftest(lag1_mod2, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 1, Model 3
lag1_mod3 <- plm(HealthSewerSanitation_pc ~ lag_Health_pc + leg_party_competition +</pre>
            year_1890 + year_1900 + year_1910 + year_1920 + year_1930 + year_1940 +
            year_1950 + year_1960 + year_1970 + year_1980, index = "state", data = df_lag1)
lag1_mod3_se <- coeftest(lag1_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 1, Model 4
lag1_mod4 <- plm(HealthSewerSanitation_pc ~ lag_Health_pc + leg_party_competition +</pre>
            Statewide_Competition + house_dem + senate_dem + gov_dem +
            CPI_per_capita_income + foreignborn_pct + black_pct +
            othernonwhite_pct + urban_pct + year_1890 + year_1900 +
            year 1910 + year 1920 + year 1930 + year 1940 +
            year_1950 + year_1960 + year_1970 + year_1980,
            index = "state", data = df_lag1)
lag1_mod4_se <- coeftest(lag1_mod4, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 1, Model 5
lag1 mod5 <- plm(Transportation pc ~ lag Transportation pc + leg party competition +
            year_1890 + year_1900 + year_1910 + year_1920 + year_1930 + year_1940 +
            year_1950 + year_1960 + year_1970 + year_1980, index = "state", data = df_lag1)
lag1_mod5_se <- coeftest(lag1_mod5, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 1, Model 6
lag1_mod6 <- plm(Transportation_pc ~ lag_Transportation_pc + leg_party_competition +</pre>
            Statewide Competition + house dem + senate dem + gov dem +
            CPI_per_capita_income + foreignborn_pct + black_pct +
            othernonwhite_pct + urban_pct + year_1890 + year_1900 +
```

```
year_1910 + year_1920 + year_1930 + year_1940 +
            year_1950 + year_1960 + year_1970 + year_1980,
            index = "state", data = df_lag1)
lag1_mod6_se <- coeftest(lag1_mod6, function(x) vcovHC(x, type = 'sss'))</pre>
# print Table 8: Lagged Table 1
stargazer(lag1 mod1 se, lag1 mod2 se, lag1 mod3 se,
          lag1_mod4_se, lag1_mod5_se, lag1_mod6_se,
          header = F, type = "latex", digits = 2, style = "apsr",
          title = "Party Competition Does NOT Predict Human Capital and Infrastructure Spending, 1880-1
          column.labels = c("Education spending", "Health spending",
                            "Transportation spending"),
          column.separate = c(2, 2, 2),
          covariate.labels = c("Lagged education spending", "Lagged health spending",
                               "Lagged transportation spending",
                               "Legislative party competition",
                               "Electoral competition", "Democratic house",
                               "Democratic senate", "Democratic governor",
                               "Income per capita", "Foreign-born percentage",
                               "Black percentage", "Other nonwhite percentage",
                               "Urban population percentage"),
          omit = c("Constant", "year_1890", "year_1900", "year_1910",
                   "year_1920", "year_1930", "year_1940", "year_1950",
                   "year_1960", "year_1970", "year_1980"),
          add.lines = list(c("State fixed effects",
                             "included", "included", "included",
                             "included", "included", "included"),
                           c("Year fixed effects",
                             "included", "included", "included",
                             "included", "included", "included"),
                           c("Observations", "258", "249", "187", "182", "234", "228"),
                           c("R-Squared", "0.97", "0.98", "0.89", "0.92", "0.93", "0.94"),
                           c("Adj. R-Squared", "0.97", "0.97", "0.85", "0.87", "0.91", "0.91")))
```

Table 4: Party Competition Does NOT Predict Human Capital and Infrastructure Spending, 1880-1980

	Education	n spending	Health s	spending	Transporta	tion spending
	(1)	(2)	(3)	(4)	(5)	(6)
Lagged education spending	0.72***	0.62***				
	(0.14)	(0.14)				
Lagged health spending			0.29**	0.09		
			(0.12)	(0.12)		
Lagged transportation spending					0.66***	0.61^{***}
					(0.17)	(0.17)
Legislative party competition	0.41	0.48	0.31^{*}	0.23	0.06	0.43
	(0.59)	(0.57)	(0.18)	(0.15)	(0.40)	(0.51)
Electoral competition		-1.15		0.03		-1.71
		(1.13)		(0.28)		(1.15)
Democratic house		-12.29		14.60		-25.07
		(34.69)		(9.94)		(24.71)
Democratic senate		-60.73^{*}		-23.92**		30.98
		(32.16)		(11.75)		(29.16)
Democratic governor		-37.99		-13.41^{*}		-18.10
		(31.83)		(7.60)		(18.00)
Income per capita		0.03**		0.01***		-0.005
1		(0.01)		(0.003)		(0.01)
Foreign-born percentage		-13.78^{***}		-2.79**		-2.16
		(3.90)		(1.39)		(2.05)
Black percentage		-5.37		-0.21		-2.27
. 0		(5.13)		(1.19)		(2.12)
Other nonwhite percentage		10.15		$\hat{5}.03^{**}$		7.34^{*}
1 0		(6.80)		(2.28)		(4.12)
Urban population percentage		2.96		$-0.31^{'}$		2.90**
		(2.12)		(0.44)		(1.16)
State fixed effects	included	included	included	included	included	included
Year fixed effects	included	included	included	included	included	included
Observations	258	249	187	182	234	228
R-Squared	0.97	0.98	0.89	0.92	0.93	0.94
Adj. R-Squared	0.97	0.97	0.85	0.87	0.91	0.91

^{*}p < .1; **p < .05; ***p < .01

Extension 1.2: Use Lagged Values with Year and State FEs for Table 2

```
# subset for overall Lag Table 2
df lag2 <- df %>%
  select(infantmortality, at birth life expectancy, graduation combined,
         illiteracy_proportional_30, Education_pc, HealthSewerSanitation_pc,
         leg_party_competition, Statewide_Competition, house_dem,
         senate_dem, gov_dem, CPI_per_capita_income, foreignborn_pct, black_pct,
         othernonwhite_pct, urban_pct, state, year, south)
# subset for Lag Table 2, Model 1
df_lag2_mod1 <- df_lag2 %>%
 mutate(lag_infantmortality = ifelse(year != 1880, lag(infantmortality), NA)) %%
 filter(year >= 1930 & year < 2020)
# regress Lag Table 2, Model 1
lag2_mod1 <- plm(infantmortality ~ lag_infantmortality + HealthSewerSanitation_pc +</pre>
                 CPI_per_capita_income + foreignborn_pct + black_pct +
                 othernonwhite_pct + urban_pct + as.factor(year),
                 index = "state", data = df_lag2_mod1)
lag2_mod1_se <- coeftest(lag2_mod1, function(x) vcovHC(x, type = 'sss'))</pre>
# subset for Lag Table 2, Model 2
df lag2 mod2 <- df lag2 %>%
  filter(year >= 1880 & year <= 2010) %>%
 mutate(f3_at_birth_life_expectancy = dplyr::lead(at_birth_life_expectancy, 3)) %>%
 filter(year <= 1980)
# regress Lag Table 2, Model 2
lag2_mod2 <- plm(f3_at_birth_life_expectancy ~ at_birth_life_expectancy +</pre>
                   HealthSewerSanitation pc + CPI per capita income +
                   foreignborn_pct + black_pct + othernonwhite_pct +
                   urban_pct + as.factor(year),
                 index = "state", data = df_lag2_mod2)
lag2_mod2_se <- coeftest(lag2_mod2, function(x) vcovHC(x, type = 'sss'))</pre>
# subset for Lag Table 2, Models 3 and 4
df_lag2_mod3 <- df_lag2 %>%
 filter(year >= 1880 & year <= 2010) %>%
 mutate(lag_graduation_combined = ifelse(year != 1880, lag(graduation_combined), NA)) %>%
 mutate(illiteracy_20 = lag(illiteracy_proportional_30))
# regress Lag Table 2, Model 3
lag2_mod3 <- plm(graduation_combined ~ lag_graduation_combined + Education_pc +</pre>
                   CPI per capita income + foreignborn pct + black pct +
                   othernonwhite_pct + urban_pct + south + as.factor(year),
                 index = "state", data = df_lag2_mod3)
lag2_mod3_se <- coeftest(lag2_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 2, Model 4
# note: the lagged variable is the illiteracy rate 20 years later
lag2_mod4 <- plm(illiteracy_proportional_30 ~ illiteracy_20 + Education_pc +</pre>
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south + as.factor(year),
                 index = "state", data = df_lag2_mod3)
lag2_mod4_se <- coeftest(lag2_mod4, function(x) vcovHC(x, type = 'sss'))</pre>
# print Table 9: Lagged Table 2
stargazer(lag2_mod1_se, lag2_mod2_se, lag2_mod3_se, lag2_mod4_se,
```

```
header = F, type = "latex", font.size = "tiny", style = "apsr",
title = "Spending Levels Do NOT Predict Development, 1880-2010",
column.labels = c("Infant mortality",
                 "Life expectancy (30 years later)",
                 "High school completion",
                 "Illiteracy rate (30 years later)"),
covariate.labels = c("Lagged infant mortality", "Current life expectancy",
                    "Health spending per capita",
                    "Lagged high school completion", "Illiteracy (20 years later)",
                    "Education spending per capita", "Income per capita",
                    "Foreign-born percentage", "Black percentage",
                    "Other nonwhite percentage", "Urban population percentage"),
omit = c("Constant", "south", "year"),
add.lines = list(c("State fixed effects",
                  "included", "included", "included"),
                c("Year fixed effects",
                  "included", "included", "included"),
                c("Observations", "215", "181", "336", "134"),
                c("R-Squared", "0.98", "0.99", "0.98", "0.72"),
                c("Adjusted R-Squared", "0.98", "0.98", "0.97", "0.52")))
```

Table 5: Spending Levels Do NOT Predict Development, 1880-2010

	Infant mortality	Life expectancy (30 years later)	High school completion	Illiteracy rate (30 years later)
	(1)	(2)	(3)	(4)
Lagged infant mortality	0.575*** (0.043)			
Current life expectancy	, ,	0.271*** (0.057)		
Health spending per capita	-0.004 (0.004)	-0.0002 (0.001)		
agged high school completion	(0100-)	(0.002)	0.791*** (0.098)	
lliteracy (20 years later)			(0.000)	0.782*** (0.099)
Education spending per capita			0.001 (0.002)	0.003**
ncome per capita	-0.00001 (0.0003)	0.0001 (0.00005)	0.00001 (0.0003)	-0.0001 (0.0001)
Foreign-born percentage	-0.324** (0.161)	-0.018 (0.026)	-0.109** (0.050)	0.049*** (0.012)
Black percentage	0.399*** (0.104)	0.093*** (0.031)	-0.087** (0.039)	-0.037** (0.016)
Other nonwhite percentage	0.303**	0.035 (0.039)	-0.144 (0.092)	0.072 (0.080)
Jrban population percentage	-0.211*** (0.047)	-0.011 (0.010)	0.063** (0.027)	-0.016 (0.010)
tate fixed effects	included	included	included	included
ear fixed effects	included	included	included	included
Observations	215	181	336	134
R-Squared	0.98	0.99	0.98	0.72
Adjusted R-Squared	0.98	0.98	0.97	0.52

^{*}p < .1; **p < .05; ***p < .01

Extension 2.1: Use Lagged Values, Without State Fixed Effects, for Table 1

```
# subset for Lag Table 3 (Table 1, Without State FEs)
df lag3 <- df tab1 %>%
  select(Education_pc, HealthSewerSanitation_pc, Transportation_pc,
         leg_party_competition, Statewide_Competition, house_dem,
         senate_dem, gov_dem, CPI_per_capita_income, foreignborn_pct, black_pct,
         othernonwhite_pct, urban_pct, state, year, year_1890, year_1900, year_1910,
         year_1920, year_1930, year_1940, year_1950, year_1960, year_1970, year_1980)
# create lagged variables
df lag3 <- df lag3 %>%
 mutate(lag_Education_pc = ifelse(year != 1880, lag(Education_pc), NA)) %>%
 mutate(lag_Health_pc = ifelse(year != 1880, lag(HealthSewerSanitation_pc), NA)) %>%
 mutate(lag_Transportation_pc = ifelse(year != 1880, lag(Transportation_pc), NA))
# regress Lag Table 3, Model 1
lag3_mod1 <- plm(Education_pc ~ lag_Education_pc + leg_party_competition,</pre>
                 index = "year", data = df_lag3)
lag3_mod1_se <- coeftest(lag3_mod1, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 3, Model 2
lag3_mod2 <- plm(Education_pc ~ lag_Education_pc + leg_party_competition +</pre>
            Statewide_Competition + house_dem + senate_dem + gov_dem +
            CPI_per_capita_income + foreignborn_pct + black_pct +
            othernonwhite_pct + urban_pct,
            index = "year", data = df_lag3)
lag3_mod2_se <- coeftest(lag3_mod2, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 3, Model 3
lag3_mod3 <- plm(HealthSewerSanitation_pc ~ lag_Health_pc + leg_party_competition,</pre>
                 index = "year", data = df_lag3)
lag3_mod3_se <- coeftest(lag3_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 3, Model 4
lag3_mod4 <- plm(HealthSewerSanitation_pc ~ lag_Health_pc + leg_party_competition +</pre>
            Statewide Competition + house dem + senate dem + gov dem +
            CPI_per_capita_income + foreignborn_pct + black_pct +
            othernonwhite_pct + urban_pct,
            index = "year", data = df_lag3)
lag3_mod4_se <- coeftest(lag3_mod4, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 3, Model 5
lag3_mod5 <- plm(Transportation_pc ~ lag_Transportation_pc + leg_party_competition,</pre>
                 index = "year", data = df_lag3)
lag3_mod5_se <- coeftest(lag3_mod5, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 3, Model 6
lag3_mod6 <- plm(Transportation_pc ~ lag_Transportation_pc + leg_party_competition +</pre>
            Statewide Competition + house dem + senate dem + gov dem +
            CPI per capita income + foreignborn pct + black pct +
            othernonwhite_pct + urban_pct,
            index = "year", data = df_lag3)
lag3_mod6_se <- coeftest(lag3_mod6, function(x) vcovHC(x, type = 'sss'))</pre>
# print Table 10: Lagged Table 3 (Table 1, Without State FEs)
stargazer(lag3_mod1_se, lag3_mod2_se, lag3_mod3_se,
          lag3_mod4_se, lag3_mod5_se, lag3_mod6_se,
          header = F, type = "latex", digits = 2, style = "apsr",
```

```
title = "Party Competition Does NOT Predict Human Capital and Infrastructure Spending, 1880-1
column.labels = c("Education spending", "Health spending",
                   "Transportation spending"),
column.separate = c(2, 2, 2),
covariate.labels = c("Lagged education spending", "Lagged health spending",
                      "Lagged transportation spending",
                      "Legislative party competition",
                      "Electoral competition", "Democratic house",
                      "Democratic senate", "Democratic governor",
                      "Income per capita", "Foreign-born percentage", "Black percentage", "Other nonwhite percentage",
                      "Urban population percentage"),
omit = c("Constant", "year"),
add.lines = list(c("State fixed effects",
                    "No", "No", "No",
                    "No", "No", "No"),
                  c("Year fixed effects",
                    "Yes", "Yes", "Yes",
                    "Yes", "Yes", "Yes"),
                  c("Observations", "258", "249", "187", "182", "234", "228"),
                  c("R-Squared", "0.55", "0.58", "0.40", "0.52", "0.62", "0.64"),
                  c("Adj. R-Squared", "0.54", "0.56", "0.38", "0.48", "0.61", "0.62")))
```

Table 6: Party Competition Does NOT Predict Human Capital and Infrastructure Spending, 1880-1980

	Educatio	n spending	Health	spending	Transports	ation spending
	(1)	(2)	(3)	(4)	(5)	(6)
Lagged education spending	0.90*** (0.11)	0.80*** (0.09)				
Lagged health spending	, ,	, ,	0.77^{***} (0.21)	0.44^{***} (0.07)		
Lagged transportation spending			,	,	0.81^{***} (0.06)	0.76^{***} (0.02)
Legislative party competition	0.11 (0.48)	-0.49 (0.59)	0.40^{**} (0.17)	0.20 (0.14)	0.02 (0.15)	0.20 (0.77)
Electoral competition	(0.10)	-0.71 (0.49)	(0.11)	-0.16 (0.30)	(0.10)	-1.02 (1.01)
Democratic house		5.73 (25.04)		24.72 (20.85)		-28.62 (23.37)
Democratic senate		-68.20 (45.15)		-29.87^* (16.57)		29.44 (31.45)
Democratic governor		-14.31 (28.87)		-12.49 (11.66)		-10.91 (8.19)
Income per capita		0.01 (0.01)		0.01** (0.003)		-0.003 (0.01)
Foreign-born percentage		-5.13^* (3.03)		-0.47 (0.98)		-0.71 (1.51)
Black percentage		-1.11 (1.81)		0.91 (1.00)		-1.13 (0.91)
Other nonwhite percentage		4.36 (5.00)		1.77 (1.48)		5.12^{***} (0.62)
Urban population percentage		0.74 (0.93)		0.22 (0.36)		0.21 (0.53)
State fixed effects	No	No	No	No	No	No
Year fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Observations	258	249	187	182	234	228
R-Squared	0.55	0.58	0.40	0.52	0.62	0.64
Adj. R-Squared	0.54	0.56	0.38	0.48	0.61	0.62

^{*}p < .1; **p < .05; ***p < .01

Extension 2.2: Use Lagged Values, Without State Fixed Effects, For Table 2

```
# subset for overall Lag Table 4 (Table 2, Without State FEs)
df lag4 <- df %>%
  select(infantmortality, at_birth_life_expectancy, graduation_combined,
         illiteracy_proportional_30, Education_pc, HealthSewerSanitation pc,
         leg_party_competition, Statewide_Competition, house_dem,
         senate_dem, gov_dem, CPI_per_capita_income, foreignborn_pct, black_pct,
         othernonwhite pct, urban pct, state, year, south)
# subset for Lag Table 2, Model 1
df_lag4_mod1 <- df_lag4 %>%
 mutate(lag_infantmortality = ifelse(year != 1880, lag(infantmortality), NA)) %>%
 filter(year >= 1930 & year < 2020)
# regress Lag Table 2, Model 1
lag4 mod1 <- plm(infantmortality ~ lag infantmortality + HealthSewerSanitation pc +
                 CPI_per_capita_income + foreignborn_pct + black_pct +
                 othernonwhite_pct + urban_pct, index = "year", data = df_lag4_mod1)
lag4_mod1_se <- coeftest(lag4_mod1, function(x) vcovHC(x, type = 'sss'))</pre>
# subset for Lag Table 2, Model 2
df_lag4_mod2 <- df_lag4 %>%
  filter(year >= 1880 & year <= 2010) %>%
 mutate(f3_at_birth_life_expectancy = dplyr::lead(at_birth_life_expectancy, 3)) %>%
 filter(year <= 1980)</pre>
# regress Lag Table 2, Model 2
lag4_mod2 <- plm(f3_at_birth_life_expectancy ~ at_birth_life_expectancy +</pre>
                   HealthSewerSanitation_pc + CPI_per_capita_income +
                   foreignborn pct + black pct + othernonwhite pct +
                   urban_pct, index = "year", data = df_lag4_mod2)
lag4_mod2_se <- coeftest(lag4_mod2, function(x) vcovHC(x, type = 'sss'))</pre>
# subset for Lag Table 2, Models 3 and 4
df_lag4_mod3 <- df_lag4 %>%
  filter(year >= 1880 & year <= 2010) %>%
 mutate(lag_graduation_combined = ifelse(year != 1880, lag(graduation_combined), NA)) %>%
 mutate(illiteracy_20 = lag(illiteracy_proportional_30))
# regress Lag Table 2, Model 3
lag4_mod3 <- plm(graduation_combined ~ lag_graduation_combined + Education_pc +</pre>
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south,
                 index = "year", data = df_lag4_mod3)
lag4_mod3_se <- coeftest(lag4_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# regress Lag Table 2, Model 4
# note: the lagged variable is the illiteracy rate 20 years later
lag4_mod4 <- plm(illiteracy_proportional_30 ~ illiteracy_20 + Education_pc +</pre>
                   CPI per capita income + foreignborn pct + black pct +
                   othernonwhite_pct + urban_pct + south,
                 index = "year", data = df_lag4_mod3)
lag4_mod4_se <- coeftest(lag4_mod4, function(x) vcovHC(x, type = 'sss'))</pre>
# print Table 11: Lagged Table 4
stargazer(lag4_mod1_se, lag4_mod2_se, lag4_mod3_se, lag4_mod4_se,
          header = F, type = "latex", font.size = "tiny", style = "apsr",
          title = "Spending Levels Do NOT Predict Development, 1880-2010",
```

```
column.labels = c("Infant mortality",
                  "Life expectancy (30 years later)",
                  "High school completion",
                  "Illiteracy rate (30 years later)"),
covariate.labels = c("Lagged infant mortality", "Current life expectancy",
                     "Health spending per capita",
                     "Lagged high school completion", "Illiteracy (20 years later)",
                     "Education spending per capita", "Income per capita",
                     "Foreign-born percentage", "Black percentage",
                     "Other nonwhite percentage", "Urban population percentage"),
omit = c("Constant", "south", "year"),
add.lines = list(c("State fixed effects", "No", "No", "No", "No"),
                 c("Year fixed effects", "Yes", "Yes", "Yes", "Yes"),
                 c("Observations", "215", "181", "336", "134"),
                 c("R-Squared", "0.86", "0.70", "0.84", "0.68"),
                 c("Adjusted R-Squared", "0.85", "0.68", "0.84", "0.66")))
```

Table 7: Spending Levels Do NOT Predict Development, 1880-2010

	Infant mortality	Life expectancy (30 years later)	High school completion	Illiteracy rate (30 years later)
	(1)	(2)	(3)	(4)
Lagged infant mortality	0.563***			
	(0.056)			
Current life expectancy	` ′	0.528***		
1		(0.143)		
Health spending per capita	-0.0004	0.002***		
81 - 81	(0.002)	(0.001)		
agged high school completion	()	(,	0.916***	
30 3			(0.038)	
lliteracy (20 years later)			` /	0.781***
,				(0.187)
Education spending per capita			0.002**	0.0002
			(0.001)	(0.0001)
ncome per capita	0.0002*	0.0001	0.00002	-0.00002
* *	(0.0001)	(0.0001)	(0.0001)	(0.00002)
Foreign-born percentage	-0.245* [*] *	0.071	-0.019	0.015***
• •	(0.112)	(0.050)	(0.036)	(0.002)
Black percentage	0.157***	-0.038*	-0.053***	0.001
• 9	(0.040)	(0.022)	(0.020)	(0.004)
Other nonwhite percentage	0.265*	0.055***	-0.168**	0.037***
	(0.149)	(0.018)	(0.073)	(0.007)
Jrban population percentage	-0.060***	-0.009	-0.002	-0.009***
	(0.016)	(0.009)	(0.023)	(0.001)
tate fixed effects	No	No	No	No
ear fixed effects	Yes	Yes	Yes	Yes
Observations	215	181	336	134
t-Squared	0.86	0.70	0.84	0.68
Adjusted R-Squared	0.85	0.68	0.84	0.66

^{*}p < .1; **p < .05; ***p < .01

Extension 3.1: Removing the State Fixed Effects from Table 1

```
# subset data
df_tab5 <- df %>%
 filter(year > 1870 & year < 1990)
# regress model 1
tab5_mod1 <- plm(Education_pc ~ leg_party_competition,</pre>
                 index = "year", data = df_tab5)
tab5_mod1_se <- coeftest(tab5_mod1, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 2
tab5_mod2 <- plm(Education_pc ~ leg_party_competition + Statewide_Competition +
                                house_dem + senate_dem + gov_dem +
                                 CPI_per_capita_income + foreignborn_pct +
                                 black_pct + othernonwhite_pct + urban_pct,
                 index = "year", data = df_tab5)
tab5_mod2_se <- coeftest(tab5_mod2, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 3
tab5_mod3 <- plm(HealthSewerSanitation_pc ~ leg_party_competition,
                 index = "year", data = df_tab5)
tab5_mod3_se <- coeftest(tab5_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 4
tab5_mod4 <- plm(HealthSewerSanitation_pc ~ leg_party_competition +
                                 Statewide Competition + house dem + senate dem +
                                 gov_dem + CPI_per_capita_income + foreignborn_pct +
                                 black_pct + othernonwhite_pct + urban_pct,
                 index = "year", data = df_tab5)
tab5_mod4_se <- coeftest(tab5_mod4, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 5
tab5_mod5 <- plm(Transportation_pc ~ leg_party_competition,</pre>
                 index = "year", data = df_tab5)
tab5_mod5_se <- coeftest(tab5_mod5, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 6
tab5_mod6 <- plm(Transportation_pc ~ leg_party_competition +
                                 Statewide_Competition + house_dem + senate_dem +
                                 gov_dem + CPI_per_capita_income + foreignborn_pct +
                                 black_pct + othernonwhite_pct + urban_pct,
                 index = "year", data = df_tab5)
tab5_mod6_se <- coeftest(tab5_mod6, function(x) vcovHC(x, type = 'sss'))</pre>
# print Table 5
stargazer(tab5_mod1_se, tab5_mod2_se, tab5_mod3_se,
          tab5_mod4_se, tab5_mod5_se, tab5_mod6_se,
          header = F, type = "latex", digits = 2, style = "apsr",
          title = "Party Competition Predicts Higher Human Capital and Infrastructure Spending, 1880-19
          column.labels = c("Education spending", "Health spending",
                            "Transportation spending"),
          column.separate = c(2, 2, 2),
          covariate.labels = c("Legislative party competition",
                                "Electoral competition", "Democratic house",
                                "Democratic senate", "Democratic governor",
                                "Income per capita", "Foreign-born percentage",
                                "Black percentage", "Other nonwhite percentage",
                                "Urban population percentage"),
```

Table 8: Party Competition Predicts Higher Human Capital and Infrastructure Spending, 1880-1980

	Education	on spending	Health	spending	Transport	ation spending
	(1)	(2)	(3)	(4)	(5)	(6)
Legislative party competition	2.18***	0.67	0.49***	0.19	0.71***	0.48
	(0.73)	(0.48)	(0.16)	(0.14)	(0.24)	(0.54)
Electoral competition	` ′	-2.05^{***}	, ,	-0.15	, ,	-1.75^{*}
		(0.72)		(0.19)		(1.03)
Democratic house		-40.90		17.77		-71.44**
		(27.94)		(14.49)		(33.23)
Democratic senate		-54.16		-18.97^*		-8.29
		(41.50)		(11.11)		(33.79)
Democratic governor		-4.60		-9.46		6.57
		(25.20)		(8.59)		(8.90)
Income per capita		0.03***		0.01***		0.005
		(0.01)		(0.002)		(0.01)
Foreign-born percentage		-11.79**		-0.18		-3.91**
		(4.69)		(0.41)		(1.65)
Black percentage		-2.46^{*}		1.08**		-2.82^*
		(1.40)		(0.51)		(1.52)
Other nonwhite percentage		25.13***		1.54		7.36***
		(6.99)		(1.37)		(2.17)
Urban population percentage		0.78		0.26		-1.32
		(0.65)		(0.20)		(0.96)
State fixed effects	No	No	No	No	No	No
Year fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Observations	398	380	326	310	374	357
R-Squared	0.09	0.33	0.09	0.42	0.02	0.20
Adj. R-Squared	0.07	0.30	0.07	0.39	0.00	0.16

p < .1; p < .05; p < .01

Extension 3.2: Removing the State Fixed Effects from Table 2

```
# subset for model 1
df_tab6_mod1 <- df %>%
 filter(year >= 1930 & year < 2020)
# regress model 1
tab6_mod1 <- plm(infantmortality ~ HealthSewerSanitation_pc + CPI_per_capita_income +
                                   foreignborn_pct + black_pct + othernonwhite_pct +
                                   urban_pct,
                 index = "year", data = df_tab6_mod1)
tab6 mod1 se <- coeftest(tab6 mod1, function(x) vcovHC(x, type = 'sss'))
# subset for model 2
df tab6 mod2 <- df %>%
 filter(year >= 1880 & year <= 2010) %>%
  mutate(f3_at_birth_life_expectancy = dplyr::lead(at_birth_life_expectancy, 3)) %>%
 filter(year <= 1980)
# regress model 2
tab6_mod2 <- plm(f3_at_birth_life_expectancy ~ HealthSewerSanitation_pc +
                                   CPI_per_capita_income + foreignborn_pct +
                                   black_pct + othernonwhite_pct + urban_pct,
                 index = "year", data = df_tab6_mod2)
tab6_mod2_se <- coeftest(tab6_mod2, function(x) vcovHC(x, type = 'sss'))</pre>
# subset for model 3
df_tab6_mod3 <- df %>%
 filter(year >= 1880 & year <= 2010)
# regress model 3
tab6_mod3 <- plm(graduation_combined ~ Education_pc + CPI_per_capita_income +
                                   foreignborn_pct + black_pct+ othernonwhite_pct +
                                   urban pct + south,
                 index = "year", data = df_tab6_mod3)
tab6_mod3_se <- coeftest(tab6_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# use same data as model 3, regress model 4
tab6_mod4 <- plm(illiteracy_proportional_30 ~ Education_pc + CPI_per_capita_income +
                                   foreignborn_pct + black_pct + othernonwhite_pct +
                                   urban_pct + south,
                 index = "year", data = df_tab6_mod3)
tab6_mod4_se <- coeftest(tab6_mod4, function(x) vcovHC(x, type = 'sss'))</pre>
# print Table 6
stargazer(tab6_mod1_se, tab6_mod2_se, tab6_mod3_se, tab6_mod4_se,
          header = F, type = "latex", font.size = "tiny", style = "apsr",
          title = "Spending Levels Predict Development, 1880-2010",
          column.labels = c("Infant mortality",
                            "Life expectancy (30 years later)",
                            "High school completion",
                            "Illiteracy rate (30 years later)"),
          covariate.labels = c("Health, sewer, sanitation spending per capita",
                               "Education spending per capita",
                               "Income per capita",
                               "Foreign-born percentage", "Black percentage",
                               "Other nonwhite percentage", "Urban population percentage"),
          omit = c("Constant", "south", "year"),
          add.lines = list(c("State fixed effects", "No", "No", "No", "No"),
                           c("Year fixed effects", "Yes", "Yes", "Yes", "Yes"),
```

```
c("Observations", "240", "272", "374", "168"),
c("R-Squared", "0.28", "0.44", "0.55", "0.32"),
c("Adjusted R-Squared", "0.25", "0.42", "0.54", "0.28")))
```

Table 9: Spending Levels Predict Development, 1880-2010

	Infant mortality	Life expectancy (30 years later)	High school completion	Illiteracy rate (30 years later)
	(1)	(2)	(3)	(4)
Health, sewer, sanitation spending per capita	-0.006	0.004***		
	(0.006)	(0.001)		
Education spending per capita			0.008***	0.001
			(0.002)	(0.001)
Income per capita	0.0003***	0.00001	0.0003***	-0.00001
	(0.0001)	(0.0001)	(0.0001)	(0.0001)
Foreign-born percentage	-0.262**	0.003	-0.216***	0.006
	(0.125)	(0.021)	(0.046)	(0.006)
Black percentage	0.307***	-0.088***	-0.144**	0.004
	(0.042)	(0.009)	(0.068)	(0.006)
Other nonwhite percentage	1.374	-0.094	-0.212	0.032**
	(0.940)	(0.091)	(0.177)	(0.014)
Urban population percentage	-0.123***	-0.001	0.021	-0.014***
	(0.025)	(0.005)	(0.026)	(0.005)
State fixed effects	No	No	No	No
Year fixed effects	Yes	Yes	Yes	Yes
Observations	240	272	374	168
R-Squared	0.28	0.44	0.55	0.32
Adjusted R-Squared	0.25	0.42	0.54	0.28

^{*}p < .1; **p < .05; ***p < .01

Extension 3.3: Removing State Fixed Effects from Table 3

```
# create new dataframe for "full sample"
df_tab7_full <- df %>%
 filter(year >= 1880 & year <= 2010)
# subset for 1880-1940 sample
df_tab7_part <- df %>%
  filter(year >= 1880 & year <= 1940)
# regress model 1
tab7_mod1 <- plm(CPI_per_capita_income_next30 ~ HealthSewerSanitation_pc +
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south,
                 index = "year", data = df_tab7_full)
tab7_mod1_se <- coeftest(tab7_mod1, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 2
tab7_mod2 <- plm(CPI_per_capita_income_next30 ~ HealthSewerSanitation_pc +
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south,
                 index = "year", data = df_tab7_part)
tab7_mod2_se <- coeftest(tab7_mod2, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 3
tab7_mod3 <- plm(CPI_per_capita_income_next30 ~ Education_pc +</pre>
                   CPI per capita income + foreignborn pct + black pct +
                   othernonwhite_pct + urban_pct + south,
                 index = "year", data = df tab7 full)
tab7_mod3_se <- coeftest(tab7_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 4
tab7 mod4 <- plm(CPI per capita income next30 ~ Education pc +
                   CPI per capita income + foreignborn pct + black pct +
                   othernonwhite_pct + urban_pct + south,
                 index = "year", data = df_tab7_part)
tab7_mod4_se <- coeftest(tab7_mod4, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 5
tab7_mod5 <- plm(CPI_per_capita_income_next30 ~ Transportation_pc +
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south,
                 index = "year", data = df_tab7_full)
tab7_mod5_se <- coeftest(tab7_mod5, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 6
tab7 mod6 <- plm(CPI per capita income next30 ~ Transportation pc +
                   CPI_per_capita_income + foreignborn_pct + black_pct +
                   othernonwhite_pct + urban_pct + south,
                 index = "year", data = df_tab7_part)
tab7_mod6_se <- coeftest(tab7_mod6, function(x) vcovHC(x, type = 'sss'))</pre>
# print Table 7
stargazer(tab7_mod1_se, tab7_mod2_se, tab7_mod3_se,
          tab7_mod4_se, tab7_mod5_se, tab7_mod6_se,
          header = F, type = "latex", font.size = "tiny", style = "apsr", digits = 2,
          title = "Education Spending Levels Predict Income in Pre-New Deal Period",
          column.labels = c("Full sample", "1880-1940",
                             "Full sample", "1880-1940",
                             "Full sample", "1880-1940"),
          covariate.labels = c("Health, sewer, sanitation spending per capita",
```

```
"Education spending per capita",
                     "Transportation spending per capita",
                     "Income per capita",
                     "Foreign-born pct", "Black pct",
                     "Other nonwhite pct", "Urban population pct"),
omit = c("Constant", "south", "year"),
add.lines = list(c("State fixed effects", "No", "No",
                   "No", "No", "No", "No"),
                 c("Year fixed effects", "Yes", "Yes",
                   "Yes", "Yes", "Yes", "Yes"),
                 c("Observations", "336", "192", "408",
                   "264", "384", "240"),
                 c("R-Squared", "0.13", "0.23", "0.12",
                   "0.25", "0.14", "0.22"),
                 c("Adjusted R-Squared", "0.09", "0.18", "0.09",
                   "0.21", "0.11", "0.18")))
```

Table 10: Education Spending Levels Predict Income in Pre-New Deal Period

	Full sample	1880-1940	Full sample	1880-1940	Full sample	1880-1940
	(1)	(2)	(3)	(4)	(5)	(6)
Health, sewer, sanitation spending per capita	5.64 (5.17)	2.67 (6.13)				
Education spending per capita			-1.02 (0.74)	4.36** (1.73)		
Transportation spending per capita					-2.99** (1.27)	2.24 (2.81)
Income per capita	0.18 (0.14)	-0.27** (0.11)	0.24 (0.14)	-0.32*** (0.10)	0.25* (0.15)	-0.27^{**} (0.12)
Foreign-born pct	9.16 (51.48)	-52.47^{***} (11.13)	-7.77 (26.16)	-28.52* (16.40)	-0.48 (36.26)	-34.67** (15.58)
Black pct	8.44 (15.85)	-9.13 (13.75)	-0.88 (12.65)	-16.66* (9.93)	-6.75 (12.55)	-16.08 (10.66)
Other nonwhite pct	-228.65*** (78.14)	21.15 (35.78)	-219.53*** (71.23)	-18.33 (17.99)	-218.46*** (71.71)	20.64 (33.91)
Urban population pct	4.16 (28.38)	61.92*** (19.70)	6.68 (21.42)	52.30*** (16.57)	1.08 (27.71)	56.59*** (17.15)
State fixed effects	No	No	No	No	No	No
Year fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Observations	336	192	408	264	384	240
R-Squared	0.13	0.23	0.12	0.25	0.14	0.22
Adjusted R-Squared	0.09	0.18	0.09	0.21	0.11	0.18

^{*}p < .1; **p < .05; ***p < .01

Extension 4 (Unused): Removing the Year Fixed Effects from Table 1

```
# subset data
df_tab4 <- df %>%
 filter(year > 1870 & year < 1990)
# regress model 1
tab4_mod1 <- plm(Education_pc ~ leg_party_competition,</pre>
                 index = "state", data = df_tab4)
tab4_mod1_se <- coeftest(tab4_mod1, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 2
tab4_mod2 <- plm(Education_pc ~ leg_party_competition + Statewide_Competition +
                                 house_dem + senate_dem + gov_dem +
                                 CPI_per_capita_income + foreignborn_pct +
                                 black_pct + othernonwhite_pct + urban_pct,
                 index = "state", data = df_tab4)
tab4_mod2_se <- coeftest(tab4_mod2, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 3
tab4_mod3 <- plm(HealthSewerSanitation_pc ~ leg_party_competition,</pre>
                 index = "state", data = df_tab4)
tab4_mod3_se <- coeftest(tab4_mod3, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 4
tab4_mod4 <- plm(HealthSewerSanitation_pc ~ leg_party_competition +
                                 Statewide_Competition + house_dem + senate_dem +
                                 gov_dem + CPI_per_capita_income + foreignborn_pct +
                                 black_pct + othernonwhite_pct + urban_pct,
                 index = "state", data = df tab4)
tab4_mod4_se <- coeftest(tab4_mod4, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 5
tab4_mod5 <- plm(Transportation_pc ~ leg_party_competition,</pre>
                 index = "state", data = df_tab4)
tab4_mod5_se <- coeftest(tab4_mod5, function(x) vcovHC(x, type = 'sss'))</pre>
# regress model 6
tab4_mod6 <- plm(Transportation_pc ~ leg_party_competition +</pre>
                                 Statewide_Competition + house_dem + senate_dem +
                                 gov_dem + CPI_per_capita_income + foreignborn_pct +
                                 black_pct + othernonwhite_pct + urban_pct,
                 index = "state", data = df tab4)
tab4_mod6_se <- coeftest(tab4_mod6, function(x) vcovHC(x, type = 'sss'))</pre>
# print Table 4
stargazer(tab4_mod1_se, tab4_mod2_se, tab4_mod3_se,
          tab4_mod4_se, tab4_mod5_se, tab4_mod6_se,
          header = F, type = "latex", digits = 2, style = "apsr",
          title = "Party Competition Predicts Higher Human Capital and Infrastructure Spending, 1880-19
          column.labels = c("Education spending", "Health spending",
                             "Transportation spending"),
          column.separate = c(2, 2, 2),
          covariate.labels = c("Legislative party competition",
                                "Electoral competition", "Democratic house",
                                "Democratic senate", "Democratic governor",
                                "Income per capita", "Foreign-born percentage",
```

```
"Black percentage", "Other nonwhite percentage",

"Urban population percentage"),

omit = c("Constant"),

add.lines = list(c("State fixed effects", "Yes", "Yes",

"Yes", "Yes", "Yes", "Yes"),

c("Year fixed effects", "No", "No",

"No", "No", "No", "No"),

c("Observations", "398", "380", "326", "310", "374", "357"),

c("R-Squared", "0.15", "0.94", "0.18", "0.87", "0.13", "0.80"),

c("Adj. R-Squared", "0.03", "0.93", "0.04", "0.84", "0.00", "0.77"))))
```

Table 11: Party Competition Predicts Higher Human Capital and Infrastructure Spending, 1880-1980

	Educatio	n spending	Health	spending	Transport	ation spending
	(1)	(2)	(3)	(4)	(5)	(6)
Legislative party competition	16.32***	1.49**	2.46***	0.15	5.75***	1.13***
	(2.23)	(0.61)	(0.35)	(0.15)	(0.82)	(0.42)
Electoral competition	, ,	-0.02	` /	-0.16	, ,	-0.66
		(1.06)		(0.22)		(0.85)
Democratic house		-55.70		19.63*		-91.16^{***}
		(41.20)		(10.63)		(31.56)
Democratic senate		-55.47		-22.71^{**}		$35.47^{'}$
		(51.36)		(10.30)		(32.01)
Democratic governor		-39.50		-18.28**		$20.95^{'}$
		(30.97)		(7.31)		(18.11)
Income per capita		0.09***		0.01***		0.02***
		(0.004)		(0.001)		(0.003)
Foreign-born percentage		-14.71***		-1.84***		-9.81***
		(3.19)		(0.66)		(2.47)
Black percentage		-0.98		-0.40		-1.97
		(4.04)		(0.77)		(2.86)
Other nonwhite percentage		1.67		12.13***		-18.54**
		(10.94)		(1.43)		(9.39)
Urban population percentage		-1.99		-0.83**		4.66***
		(2.17)		(0.34)		(1.36)
State fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Year fixed effects	No	No	No	No	No	No
Observations	398	380	326	310	374	357
R-Squared	0.15	0.94	0.18	0.87	0.13	0.80
Adj. R-Squared	0.03	0.93	0.04	0.84	0.00	0.77

p < .1; p < .05; p < .01

Extension 5 (Unused): Visualizing Party Competition over Time

```
df_extfig1 <- df %>%
  select(state, year, leg_party_competition) %>%
  filter(year >= 1880 & year <= 2010)
df_extfig1 %>%
  ggplot(aes(x = year, y = leg_party_competition, group = state)) +
  geom_line() +
  theme_bw()
```

Warning: Removed 69 row(s) containing missing values (geom_path).

Coefficient Plot: Table 1

```
coef_df1 <- tribble(</pre>
~Estimate, ~SE, ~DV, ~IV, ~Confounders, ~Specification,
tab1_mod1_se[1,][1], tab1_mod1_se[1,][2], "Education Spending", "Leg. Party Comp.", "No", "Fixed Effect
lag1_mod1_se[2,][1], lag1_mod1_se[2,][2], "Education Spending", "Leg. Party Comp.", "No", "Lag + FE",
lag3_mod1_se[2,][1], lag3_mod1_se[2,][2], "Education Spending", "Leg. Party Comp.", "No", "Lag, No FE",
tab5_mod1_se[1,][1], tab5_mod1_se[1,][2], "Education Spending", "Leg. Party Comp.", "No", "No Lag or FE
tab1_mod2_se[1,][1], tab1_mod2_se[1,][2], "Education Spending", "Leg. Party Comp.", "Yes", "Fixed Effection Spending", "Leg. Party Comp.", "Yes", "Yes
lag1_mod2_se[2,][1], lag1_mod2_se[2,][2], "Education Spending", "Leg. Party Comp.", "Yes", "Lag + FE",
lag3_mod2_se[2,][1], lag3_mod2_se[2,][2], "Education Spending", "Leg. Party Comp.", "Yes", "Lag, No FE"
tab5_mod2_se[1,][1], tab5_mod2_se[1,][2], "Education Spending", "Leg. Party Comp.", "Yes", "No Lag or F.
tab1_mod3_se[1,][1], tab1_mod3_se[1,][2], "Health Spending", "Leg. Party Comp.", "No", "Fixed Effects",
lag1_mod3_se[2,][1], lag1_mod3_se[2,][2], "Health Spending", "Leg. Party Comp.", "No", "Lag + FE",
lag3_mod3_se[2,][1], lag3_mod3_se[2,][2], "Health Spending", "Leg. Party Comp.", "No", "Lag, No FE",
tab5_mod3_se[1,][1], tab5_mod3_se[1,][2], "Health Spending", "Leg. Party Comp.", "No", "No Lag or FE",
tab1_mod4_se[1,][1], tab1_mod4_se[1,][2], "Health Spending", "Leg. Party Comp.", "Yes", "Fixed Effects"
lag1_mod4_se[2,][1], lag1_mod4_se[2,][2], "Health Spending", "Leg. Party Comp.", "Yes", "Lag + FE",
lag3_mod4_se[2,][1], lag3_mod4_se[2,][2], "Health Spending", "Leg. Party Comp.", "Yes", "Lag, No FE",
tab5_mod4_se[1,][1], tab5_mod4_se[1,][2], "Health Spending", "Leg. Party Comp.", "Yes", "No Lag or FE",
tab1_mod5_se[1,][1], tab1_mod5_se[1,][2], "Transportation Spending", "Leg. Party Comp.", "No", "Fixed E
lag1_mod5_se[2,][1], lag1_mod5_se[2,][2], "Transportation Spending", "Leg. Party Comp.", "No", "Lag + Factorial Comp.", "No", "No",
lag3_mod5_se[2,][1], lag3_mod5_se[2,][2], "Transportation Spending", "Leg. Party Comp.", "No", "Lag, No
tab5_mod5_se[1,][1], tab5_mod5_se[1,][2], "Transportation Spending", "Leg. Party Comp.", "No", "No Lag
tab1_mod6_se[1,][1], tab1_mod6_se[1,][2], "Transportation Spending", "Leg. Party Comp.", "Yes", "Fixed I
lag1_mod6_se[2,][1], lag1_mod6_se[2,][2], "Transportation Spending", "Leg. Party Comp.", "Yes", "Lag + 1
lag3_mod6_se[2,][1], lag3_mod6_se[2,][2], "Transportation Spending", "Leg. Party Comp.", "Yes", "Lag, N
tab5 mod6 se[1,][1], tab5 mod6 se[1,][2], "Transportation Spending", "Leg. Party Comp.", "Yes", "No Lag
) %>%
    mutate(min = Estimate - 1.96*SE,
                   max = Estimate + 1.96*SE)
coef_df1\$y_pos \leftarrow c(10.2, 10.4, 10.6, 10.8,
                                         8.2, 8.4, 8.6, 8.8,
                                         6.2, 6.4, 6.6, 6.8,
                                         4.2, 4.4, 4.6, 4.8,
                                         2.2, 2.4, 2.6, 2.8,
                                         0.2, 0.4, 0.6, 0.8)
coef_df1 %>%
    ggplot() +
    geom_point(aes(x = Estimate, y = y_pos, fill = Specification, shape = Specification), size = 3) +
    geom_errorbarh(aes(xmin = min, xmax = max, y = y_pos, col = Specification, height = 0)) +
    geom_hline(yintercept = c(3.5, 7.5)) +
    geom_vline(xintercept = 0, col = 'red', lty = 'dashed') +
    theme_minimal() +
    labs(x = 'Coefficient Estimate', y = '') +
    geom_text(x = -1, y = 9.5, label = "DV: Education Spending") +
    geom text(x = -1.1, y = 5.5, label = "DV: Health Spending") +
    geom_text(x = -0.8, y = 1.5, label = "DV: Transportation Spending") +
    geom_text(x = 3, y = 10.5, label = "No Covariates (Model 1)", size = 3) +
    geom_text(x = 3, y = 8.5, label = "With Covariates (Model 2)", size = 3) +
    geom_text(x = 3, y = 6.5, label = "No Covariates (Model 3)", size = 3) +
    geom_text(x = 3, y = 4.5, label = "With Covariates (Model 4)", size = 3) +
    geom_text(x = 3, y = 2.5, label = "No Covariates (Model 5)", size = 3) +
```

```
geom_text(x = 3, y = 0.5, label = "With Covariates (Model 6)", size = 3) +
theme(axis.text.y = element_blank()) +
scale_fill_manual(values = c('#00BFC4', '#C77CFF', '#F8766D', '#7CAE00')) +
scale_color_manual(values = c('#00BFC4', '#C77CFF', '#F8766D', '#7CAE00')) +
scale_shape_manual(values = c(21, 22, 23, 24)) +
ggtitle("Party Competition Does NOT Predict Higher \nHuman Capital and Infrastructure Spending, 1880-
subtitle = "Coefficient Plot for Table 1 \nIV: Legislative Party Competition") +
theme(plot.title = element_text(hjust = 0.5))
```

Party Competition Does NOT Predict Higher Human Capital and Infrastructure Spending, 1880–1980

Coefficient Plot for Table 1

Coefficient Plot: Table 2

```
coef_df2 <- tribble(</pre>
~Estimate, ~SE, ~DV, ~IV, ~Specification,
tab2_mod1_se[1,][1], tab2_mod1_se[1,][2], "Infant Mortality", "Health, etc. Spending", "Fixed Effects",
lag2_mod1_se[2,][1], lag2_mod1_se[2,][2], "Infant Mortality", "Health, etc. Spending", "Lag + FE",
lag4_mod1_se[2,][1], lag4_mod1_se[2,][2], "Infant Mortality", "Health, etc. Spending", "Lag, No FE",
tab6_mod1_se[1,][1], tab6_mod1_se[1,][2], "Infant Mortality", "Health, etc. Spending", "No Lag or FE",
tab2_mod2_se[1,][1], tab2_mod2_se[1,][2], "Life Expectancy", "Health, etc. Spending", "Fixed Effects",
lag2_mod2_se[2,][1], lag2_mod2_se[2,][2], "Life Expectancy", "Health, etc. Spending", "Lag + FE",
lag4_mod2_se[2,][1], lag4_mod2_se[2,][2], "Life Expectancy", "Health, etc. Spending", "Lag, No FE",
tab6_mod2_se[1,][1], tab6_mod2_se[1,][2], "Life Expectancy", "Health, etc. Spending", "No Lag or FE",
tab2_mod3_se[1,][1], tab2_mod3_se[1,][2], "High School Completion", "Education Spending", "Fixed Effect
lag2_mod3_se[2,][1], lag2_mod3_se[2,][2], "High School Completion", "Education Spending", "Lag + FE",
lag4_mod3_se[2,][1], lag4_mod3_se[2,][2], "High School Completion", "Education Spending", "Lag, No FE",
tab6_mod3_se[1,][1], tab6_mod3_se[1,][2], "High School Completion", "Education Spending", "No Lag or FE
tab2_mod4_se[1,][1], tab2_mod4_se[1,][2], "Illiteracy Rate", "Education Spending", "Fixed Effects",
lag2_mod4_se[2,][1], lag2_mod4_se[2,][2], "Illiteracy Rate", "Education Spending", "Lag + FE",
lag4_mod4_se[2,][1], lag4_mod4_se[2,][2], "Illiteracy Rate", "Education Spending", "Lag, No FE",
tab6_mod4_se[1,][1], tab6_mod4_se[1,][2], "Illiteracy Rate", "Education Spending", "No Lag or FE"
) %>%
  mutate(min = Estimate - 1.96*SE,
         max = Estimate + 1.96*SE)
coef_df2\$y_pos \leftarrow c(6.2, 6.4, 6.6, 6.8,
                    4.2, 4.4, 4.6, 4.8,
                    2.2, 2.4, 2.6, 2.8,
                    0.2, 0.4, 0.6, 0.8)
coef df2 %>%
  ggplot() +
  geom_point(aes(x = Estimate, y = y_pos, fill = Specification, shape = Specification), size = 3) +
  geom_errorbarh(aes(xmin = min, xmax = max, y = y_pos, col = Specification,
                     height = 0)) +
  geom_hline(yintercept = c(1.5, 3.5, 5.5, 7.5)) +
  theme minimal() +
  labs(x = 'Coefficient Estimate', y = '') +
  theme(axis.text.y = element_blank()) +
  geom_text(x = -0.045, y = 7.2, label = "DV: Infant Mortality (Model 1)") +
  geom_text(x = -0.045, y = 5.2, label = "DV: Life Expectancy (Model 2)") +
  geom_text(x = -0.045, y = 3.2, label = "DV: HS Completion (Model 3)") +
  geom_text(x = -0.045, y = 1.2, label = "DV: Illiteracy Rate (Model 4)") +
  geom_vline(xintercept = 0, col = 'red', lty = 'dashed') +
  scale_fill_manual(values = c('#00BFC4', '#C77CFF', '#F8766D', '#7CAE00')) +
  scale_color_manual(values = c('#00BFC4', '#C77CFF', '#F8766D', '#7CAE00')) +
  scale_shape_manual(values = c(21, 22, 23, 24)) +
  ggtitle("Health and Education Spending Levels \nDo NOT Predict Development, 1880-2010",
          subtitle = "Coefficient Plot for Table 2 \nIVs: Health Spending (Models 1/2), Educ. Spending
  theme(plot.title = element_text(hjust = 0.5))
```

Health and Education Spending Levels Do NOT Predict Development, 1880–2010

Coefficient Plot for Table 2

IVs: Health Spending (Models 1/2), Educ. Spending (Models 3/4)

Coefficient Plot: Table 3

```
coef_df3 <- tribble(</pre>
~Estimate, ~SE, ~DV, ~IV, ~Model, ~Results,
tab3_mod1_se[1,][1], tab3_mod1_se[1,][2], "Income per capita", "Health spending", "1", "Original",
tab3_mod1_se[1,][1], tab3_mod1_se[1,][2], "Income per capita", "Health spending", "1", "Replication",
tab7_mod1_se[1,][1], tab7_mod1_se[1,][2], "Income per capita", "Health spending", "1", "No FE",
tab3_mod1_se[2,][1], tab3_mod1_se[2,][2], "Income per capita", "Health spending", "1", "Original",
tab3_mod1_se[2,][1]+1, tab3_mod1_se[2,][2], "Income per capita", "Health spending", "1", "Replication",
tab7_mod1_se[2,][1], tab7_mod1_se[2,][2], "Income per capita", "Health spending", "1", "No FE",
tab3_mod2_se[1,][1], tab3_mod2_se[1,][2], "Income per capita", "Health spending", "2", "Original",
tab3_mod2_se[1,][1], tab3_mod2_se[1,][2], "Income per capita", "Health spending", "2", "Replication",
tab7_mod2_se[1,][1], tab7_mod2_se[1,][2], "Income per capita", "Health spending", "2", "No FE",
tab3_mod2_se[2,][1], tab3_mod2_se[2,][2], "Income per capita", "Health spending", "2", "Original",
tab3_mod2_se[2,][1]+1, tab3_mod2_se[2,][2], "Income per capita", "Health spending", "2", "Replication",
tab7_mod2_se[2,][1], tab7_mod2_se[2,][2], "Income per capita", "Health spending", "2", "No FE",
tab3_mod3_se[1,][1], tab3_mod3_se[1,][2], "Income per capita", "Education spending", "3", "Original",
tab3_mod3_se[1,][1], tab3_mod3_se[1,][2], "Income per capita", "Education spending", "3", "Replication"
tab7_mod3_se[1,][1], tab7_mod3_se[1,][2], "Income per capita", "Education spending", "3", "No FE",
tab3_mod3_se[2,][1], tab3_mod3_se[2,][2], "Income per capita", "Education spending", "3", "Original",
tab3_mod3_se[2,][1]+1, tab3_mod3_se[2,][2], "Income per capita", "Education spending", "3", "Replication
tab7_mod3_se[2,][1], tab7_mod3_se[2,][2], "Income per capita", "Education spending", "3", "No FE",
tab3_mod4_se[1,][1], tab3_mod4_se[1,][2], "Income per capita", "Education spending", "4", "Original",
tab3_mod4_se[1,][1], tab3_mod4_se[1,][2], "Income per capita", "Education spending", "4", "Replication"
tab7_mod4_se[1,][1], tab7_mod4_se[1,][2], "Income per capita", "Education spending", "4", "No FE",
tab3_mod4_se[2,][1], tab3_mod4_se[2,][2], "Income per capita", "Education spending", "4", "Original",
tab3_mod4_se[2,][1]+1, tab3_mod4_se[2,][2], "Income per capita", "Education spending", "4", "Replication
tab7_mod4_se[2,][1], tab7_mod4_se[2,][2], "Income per capita", "Education spending", "4", "No FE",
tab3_mod5_se[1,][1], tab3_mod5_se[1,][2], "Income per capita", "Transportation spending", "5", "Origina
tab3_mod5_se[1,][1], tab3_mod5_se[1,][2], "Income per capita", "Transportation spending", "5", "Replica
tab7_mod5_se[1,][1], tab7_mod5_se[1,][2], "Income per capita", "Transportation spending", "5", "No FE",
tab3_mod5_se[2,][1], tab3_mod5_se[2,][2], "Income per capita", "Transportation spending", "5", "Origina
tab3_mod5_se[2,][1]+1, tab3_mod5_se[2,][2], "Income per capita", "Transportation spending", "5", "Repli
tab7_mod5_se[2,][1], tab7_mod5_se[2,][2], "Income per capita", "Transportation spending", "5", "No FE",
tab3_mod6_se[1,][1], tab3_mod6_se[1,][2], "Income per capita", "Transportation spending", "6", "Origina
tab3_mod6_se[1,][1], tab3_mod6_se[1,][2], "Income per capita", "Transportation spending", "6", "Replica
tab7_mod6_se[1,][1], tab7_mod6_se[1,][2], "Income per capita", "Transportation spending", "6", "No FE",
tab3_mod6_se[2,][1], tab3_mod6_se[2,][2], "Income per capita", "Transportation spending", "6", "Origina
tab3_mod6_se[2,][1]+1, tab3_mod6_se[2,][2], "Income per capita", "Transportation spending", "6", "Repli
tab7_mod6_se[2,][1], tab7_mod6_se[2,][2], "Income per capita", "Transportation spending", "6", "No FE",
) %>%
  mutate(min = Estimate - 1.96*SE,
         max = Estimate + 1.96*SE)
coef_df3$y_pos <- c(10.9, 11.1, 11.3, 11.9, 12.1, 12.3,
                    8.9, 9.1, 9.3, 9.9, 10.1, 10.3,
                    6.9, 7.1, 7.3, 7.9, 8.1, 8.3,
                    4.9, 5.1, 5.3, 5.9, 6.1, 6.3,
                    2.9, 3.1, 3.3, 3.9, 4.1, 4.3,
                    0.9, 1.1, 1.3, 1.9, 2.1, 2.3)
coef df3 %>%
  ggplot() +
  geom_point(aes(x = Estimate, y = y_pos, fill = Results, shape = Results), size = 3) +
  geom_hline(yintercept = c(2.5, 4.5, 6.5, 8.5, 10.5)) +
```

```
theme_minimal() +
labs(x = 'Coefficient Estimate', y = '') +
theme(axis.text.y = element_blank()) +
geom_errorbarh(aes(xmin = min, xmax = max, y = y_pos, col = Results,
                   height = 0)) +
geom_text(x = 25, y = 12, label = "Health Spending (Full Sample)", size = 2.5) +
geom_text(x = 25, y = 11, label = "Income Per Capita (Full Sample)", size = 2.5) +
geom_text(x = -10, y = 11.5, label = "Model 1") +
geom_text(x = 25, y = 10, label = "Health Spending (1880-1940)", size = 2.5) +
geom_text(x = 25, y = 9, label = "Income Per Capita (1880-1940)", size = 2.5) +
geom_text(x = -10, y = 9.5, label = "Model 2") +
geom_text(x = 25, y = 8, label = "Educ. Spending (Full Sample)", size = 2.5) +
geom_text(x = 25, y = 7, label = "Income Per Capita (Full Sample)", size = 2.5) +
geom_text(x = -10, y = 7.5, label = "Model 3") +
geom_text(x = 25, y = 6, label = "Educ. Spending (1880-1940)", size = 2.5) +
geom_text(x = 25, y = 5, label = "Income Per Capita (1880-1940)", size = 2.5) +
geom_text(x = -10, y = 5.5, label = "Model 4") +
geom_text(x = 25, y = 4, label = "Transp. Spending (Full Sample)", size = 2.5) +
geom_text(x = 25, y = 3, label = "Income Per Capita (Full Sample)", size = 2.5) +
geom_text(x = -10, y = 3.5, label = "Model 5") +
geom_text(x = 25, y = 2, label = "Transp. Spending (1880-1940)", size = 2.5) +
geom_text(x = 25, y = 1, label = "Income Per Capita (1880-1940)", size = 2.5) +
geom_text(x = -10, y = 1.5, label = "Model 6") +
geom_vline(xintercept = 0, col = 'red', lty = 'dashed') +
scale_shape_manual(values = c(21, 22, 23)) +
ggtitle("Coefficient Plot: Table 3", subtitle = "(DV: Income Per Capita, 30 Years Later)") +
theme(plot.title = element text(hjust = 0.5)) +
scale_x_continuous(limits = c(-11, 30))
```

Coefficient Plot: Table 3

(DV: Income Per Capita, 30 Years Later)

