### Autômatos Finitos

Prof<sup>a</sup>. Dr<sup>a</sup>. Jerusa Marchi Otto Menegasso Pires

Departamento de Informática e Estatística Universidade Federal de Santa Catarina





### Máquina de Estados Finitos

- Uma Máquina de Estados Finitos (FSM) é uma maneira de descrever o comportamento de um circuito sequencial.
- Possui estados e transições entre estados



#### Autômatos Finitos

- Um Autômato Finito é um modelo computacional com memória limitada
- Possui estados e transições entre estados



## Aplicações

- Implementação de sistemas de controle simples baseados em estados (máquinas de venda automática, elevadores, portas automáticas, etc).
- Análise léxica (compiladores)
- Busca em texto

### Descrição

- Fita de entrada
- Cabeçote de leitura
- Unidade central de processamento
- Memória limitada (estados)



## Tipos de Autômatos Finitos

- Transdutores de linguagens: possuem duas fitas, entrada e saída, e podem escrever qualquer tipo de saída
- Reconhecedores de linguagens: possuem uma fita, entrada, e apenas duas saídas possíveis
  - Aceitação
  - Rejeição

## Tipos de Autômatos Finitos

- **Determinísticos:** Ao processarem a entrada, a computação possui apenas um caminho possível.
- Não-determinísticos: Podem possuir mais de uma possibilidade de caminho para cada entrada. Sua computação se abre em ramos (branches).

## Autômato Finito Determinístico - Definição Formal

Um Autômato Finito Determinístico M é definido pela quíntupla:

$$M = (K, \Sigma, \delta, q_0, F)$$

#### Onde:

- K = conjunto finito de estados
- $\Sigma$  = conjunto finito de símbolos de entrada
- $\delta : K \times \Sigma \rightarrow K = \text{função de transição}$
- $q_0 =$ estado inicial  $(q_0 \in K)$
- $F = \text{conjunto de estados finais } (F \subseteq K)$

## Autômato Finito Determinístico - Definição Formal

O autômato é dito determinístico pois pela definição da função de transição  $\delta$ , cada par (estado, símbolo) mapeia para exatamente um estado. Ou seja:

$$\delta(q, a) = p$$

sendo  $q, p \in K$  e  $a \in \Sigma$ 

## Representação de um Autômato Finito

- Definição Formal
- Tabela de Transição
- Diagrama de Transição

## Tabela de Transição

Exemplo: 
$$L_1 = \{w \mid w \in \{0,1\}^* \text{ e } |w| \text{ \'e par}\}$$

| δ                 | 0              | 1              |
|-------------------|----------------|----------------|
| $	o *q_{\sf par}$ | $q_{ m impar}$ | $q_{ m impar}$ |
| <b>q</b> ímpar    | $q_{\sf par}$  | $q_{\sf par}$  |

## Diagrama de transição

Exemplo: 
$$L_1 = \{w \mid w \in \{0,1\}^* \text{ e } |w| \text{ é par}\}$$



- $L_1 = \{ w \mid w \in \{a, b\}^* \text{ e o número de b's é par} \}$
- $L_2 = \{w \mid w \in \{0,1\}^* \text{ e w possui a subsequência } 001\}$
- $L_3 = \{w \mid w \in \{0,1\}^* \text{ e w \'e um n\'umero bin\'ario m\'ultiplo de 3}\}$

$$\mathit{L}_1 = \{\textit{w} \mid \textit{w} \in \{\textit{a},\textit{b}\}^* \text{ e o número de b's \'e par}\}$$

 $L_1 = \{w \mid w \in \{a, b\}^* \text{ e o número de b's é par}\}$ 



$$L_2 = \{w \mid w \in \{0,1\}^* \text{ e w possui a subsequência } 001\}$$

 $L_2 = \{ w \mid w \in \{0,1\}^* \text{ e w possui a subsequência } 001 \}$ 



$$\mathit{L}_{3} = \{\textit{w} \mid \textit{w} \in \{0,1\}^{*} \text{ e w \'e um n\'umero bin\'ario m\'ultiplo de 3}\}$$

 $L_3 = \{ w \mid w \in \{0,1\}^* \text{ e w \'e um n\'umero bin\'ario m\'ultiplo de 3} \}$ 



 Configuração: uma configuração é determinada pelo estado corrente e pela parte ainda não processada da palavra. Por exemplo,

$$[q_0, abab]$$

representa a configuração inicial de um autômato finito com a entrada w=abab

 Computação: é uma sequência de configurações. Usa-se a relação ⊢ (resulta em) para indicar que a máquina passa de uma configuração à outra. Por exemplo, a relação

$$[q_1, aw] \vdash [q_2, w]$$

existe se e somente se existe uma transição de  $q_1$  para  $q_2$  sob a, onde  $a \in \Sigma$  e  $w \in \Sigma^*$ 

#### Exemplo:



#### Exemplo:



#### Computação:

$$[q_0,0101] \vdash [q_0,101] \vdash [q_1,01] \vdash [q_2,1] \vdash [q_1,\epsilon]$$

• Uma sentença w é aceita por um autômato finito  $M=(K,\Sigma,\delta,q_0,F)$  sse  $\hat{\delta}(q_0,w) \to q$  e  $q \in F$ , ou seja, há uma computação

$$[q_0, w] \vdash_M^* [q, \epsilon]$$

onde  $\epsilon$  representa a palavra vazia

 A linguagem reconhecida por um autômato M é aquela cujo conjunto de sentenças é aceito por M

$$L(M) = \{ w \mid w \in \Sigma^*, \ \hat{\delta}(q_0, w) \rightarrow q \ \mathsf{e} \ q \in F \}$$

- Dois autômatos finitos  $M_1$  e  $M_2$  são ditos equivalentes sse  $L(M_1) = L(M_2)$
- Uma linguagem é regular sse ela for reconhecida por um autômato finito

### Não-determinismo



#### Não Determinismo

- Mais transições para um mesmo símbolo
- ε-transição: Uma ε-transição é uma transição que não consome nenhum elemento da entrada.

### Não-determinismo

Para que uma computação não-determinística *aceite* uma palavra, pelo menos um ramo da computação tem que terminar em um estado de aceitação

Para que uma computação não-determinística rejeite uma palavra, todos os ramos da computação têm que terminar em um estado de rejeição.

# Computação Determinística



#### Entrada:

# Computação Não-determinística



### Entrada:

## Computação - Análise

#### Computação Determinística

A profundidade da árvore de computação cresce linearmente com relação ao tamanho da entrada.

### Computação Não-determinística

A profundidade da árvore de computação cresce linearmente com relação ao tamanho da entrada, porém a largura pode crescer de maneira exponencial em relação ao tamanho da entrada.

## Autômato Finito Não-determinístico - Definição Formal

Um Autômato Finito Não-determinístico (AFND) M é definido pela quíntupla:

$$M = (K, \Sigma, \delta, q_0, F)$$

#### Onde:

- *K* = conjunto finito de estados
- $\Sigma$  = conjunto finito de símbolos de entrada
- $\delta : K \times (\Sigma \cup \epsilon) \rightarrow 2^K = \text{função de transição}$
- $q_0 =$ estado inicial  $(q_0 \in K)$
- $F = \text{conjunto de estados finais } (F \subseteq K)$

#### Autômatos Finitos Não-determinísticos

O autômato é dito não-determinístico se há pelo menos uma transição  $\delta$ , para um par (estado, símbolo) que mapeia para um subconjunto de estados. Ou seja:

$$\delta(q,a) = \{p,r\}$$

sendo  $q, p, r \in K$  e  $a \in \Sigma$ 

## Exemplos - AFND

$$L_1 = \{w \mid w \in \{0,1\}^* \text{ e w possui } 1 \text{ na antepenúltima posição}\}$$

### Exemplos - AFND

 $L_1 = \{ w \mid w \in \{0,1\}^* \text{ e w possui 1 na antepenúltima posição} \}$ 



### Exemplos - AFND- $\epsilon$

•  $L_2 = \{ w \mid w \in \{0,1\}^* \text{ e } |w| \text{ é par ou w termina em } 1 \}$ 

### Exemplos - AFND- $\epsilon$

•  $L_2 = \{ w \mid w \in \{0,1\}^* \text{ e } |w| \text{ é par ou w termina em } 1 \}$ 



### Equivalência AFD e AFND

#### Teorema

Todo Autômato Finito Não-determinístico possui um Autômato Finito Determinístico equivalente.

**Lembrando que:** dois autômatos finitos  $M_1$  e  $M_2$  são ditos equivalentes sse  $L(M_1) = L(M_2)$ 

Faça um AFD que aceite a linguagem  $L = \{w \mid w \in \{0,1\}^* \text{ e w possui 1 na antepenúltima posição}\}$ 



Faça um AFD que aceite a linguagem  $L=\{w\mid w\in\{0,1\}^*\ \text{e w possui 1 na antepenúltima posição}\}$ 

| δ                 | 0     | 1             |
|-------------------|-------|---------------|
| $\rightarrow q_0$ | $q_0$ | $\{q_0,q_1\}$ |
| $q_1$             | $q_2$ | $q_2$         |
| $q_2$             | $q_3$ | <b>q</b> 3    |
| * <b>q</b> 3      | _     | _             |

Faça um AFD que aceite a linguagem  $L=\{w\mid w\in\{0,1\}^*\ \text{e w possui 1 na antepenúltima posição}\}$ 

| δ                         | 0                 | 1                        |
|---------------------------|-------------------|--------------------------|
| $ ightarrow q_0$          | $q_0$             | $\{q_0,q_1\}$            |
| $q_1$                     | $q_2$             | $q_2$                    |
| $q_2$                     | <b>q</b> 3        | $q_3$                    |
| * <b>q</b> 3              | _                 | _                        |
| $\{q_0,q_1\}$             | $\{q_0,q_2\}$     | $\{q_0,q_1,q_2\}$        |
| $\{q_0,q_2\}$             | $\{q_0,q_3\}$     | $\{q_0,q_1,q_3\}$        |
| $\{q_0,q_1,q_2\}$         | $\{q_0,q_2,q_3\}$ | $\{q_0, q_1, q_2, q_3\}$ |
| $*\{q_0, q_3\}$           | <i>9</i> 0        | $\{q_0,q_1\}$            |
| $*\{q_0, q_1, q_3\}$      | $\{q_0,q_2\}$     | $\{q_0,q_1,q_2\}$        |
| $*\{q_0, q_2, q_3\}$      | $\{q_0,q_2\}$     | $\{q_0,q_1,q_3\}$        |
| $*\{q_0, q_1, q_2, q_3\}$ | $\{q_0,q_2,q_3\}$ | $\{q_0, q_1, q_2, q_3\}$ |

Faça um AFD que aceite a linguagem  $L=\{w\mid w\in\{0,1\}^*\ \text{e w possui 1 na antepenúltima posição}\}$ 

| δ                         | 0                 | 1                        |
|---------------------------|-------------------|--------------------------|
| $ ightarrow q_0$          | $q_0$             | $\{q_0,q_1\}$            |
| $\{q_0,q_1\}$             | $\{q_0,q_2\}$     | $\{q_0,q_1,q_2\}$        |
| $\{q_0,q_2\}$             | $\{q_0,q_3\}$     | $\{q_0,q_1,q_3\}$        |
| $\{q_0,q_1,q_2\}$         | $\{q_0,q_2,q_3\}$ | $\{q_0, q_1, q_2, q_3\}$ |
| $*\{q_0, q_3\}$           | $q_0$             | $\{q_0,q_1\}$            |
| $*\{q_0, q_1, q_3\}$      | $\{q_0,q_2\}$     | $\{q_0,q_1,q_2\}$        |
| $*\{q_0, q_2, q_3\}$      | $\{q_0,q_2\}$     | $\{q_0,q_1,q_3\}$        |
| $*\{q_0, q_1, q_2, q_3\}$ | $\{q_0,q_2,q_3\}$ | $\{q_0, q_1, q_2, q_3\}$ |

 $L = \{w \mid w \in \{0,1\}^* \text{ e w possui } 1 \text{ na antepenúltima posição}\}$ 



### Importante

Um AFND com n estados pode gerar um AFD de até  $2^n$  estados após ser determinizado.

## Equivalência AFD e AFND- $\epsilon$

Igual a equivalência anterior, é preciso construir um AFD capaz de reconhecer a mesma linguagem.

É preciso considerar o  $\epsilon$ -fecho dos estados, isto é, todos os estados alcançáveis por esse estado a partir de  $\epsilon$  transições.



| δ                 | а     | b          | $\epsilon$ |
|-------------------|-------|------------|------------|
| $\rightarrow q_0$ | $q_1$ | -          | $q_1$      |
| $q_1$             | $q_2$ | $q_2$      | $q_2$      |
| * <b>q</b> 2      | _     | $q_3$      | _          |
| <b>q</b> 3        | $q_1$ | <b>q</b> 0 | _          |

| δ                 | а     | b     | $\epsilon$ | $\epsilon$ -fecho |
|-------------------|-------|-------|------------|-------------------|
| $\rightarrow q_0$ | $q_1$ | -     | $q_1$      | $\{q_0,q_1,q_2\}$ |
| $q_1$             | $q_2$ | $q_2$ | $q_2$      | $\{q_1,q_2\}$     |
| * <b>q</b> 2      | _     | $q_3$ | _          | $q_2$             |
| <b>q</b> 3        | $q_1$ | $q_0$ | _          | <b>q</b> 3        |
|                   |       |       |            |                   |

| δ                              | a             | b                        |
|--------------------------------|---------------|--------------------------|
| $\rightarrow *\{q_0,q_1,q_2\}$ | $\{q_1,q_2\}$ | $\{q_2,q_3\}$            |
| $*\{q_1,q_2\}$                 | $q_2$         | $\{q_2,q_3\}$            |
| $*\{q_2, q_3\}$                | $\{q_1,q_2\}$ | $\{q_0, q_1, q_2, q_3\}$ |
| $*\{q_0, q_1, q_2, q_3\}$      | $\{q_1,q_2\}$ | $\{q_0, q_1, q_2, q_3\}$ |
| * <b>q</b> 2                   | _             | <b>9</b> 3               |
| <b>q</b> <sub>3</sub>          | $\{q_1,q_2\}$ | $\{q_0,q_1,q_2\}$        |



| δ          | a             | b     | $\epsilon$ |
|------------|---------------|-------|------------|
| $* 	o q_0$ | _             | $q_1$ | $q_2$      |
| $q_1$      | $\{q_1,q_2\}$ | $q_2$ | _          |
| $q_2$      | $q_0$         | _     | _          |

| δ         | а             | b     | $\epsilon$ | $\epsilon$ -fecho |
|-----------|---------------|-------|------------|-------------------|
| $*	o q_0$ | _             | $q_1$ | $q_2$      | $\{q_0,q_2\}$     |
| $q_1$     | $\{q_1,q_2\}$ | $q_2$ | _          | $q_1$             |
| $q_2$     | $q_0$         | _     | _          | $q_2$             |

| δ                            | а                 | b             |
|------------------------------|-------------------|---------------|
| $* \rightarrow \{q_0, q_2\}$ | $\{q_0,q_2\}$     | $q_1$         |
| $\{q_1,q_2\}$                | $\{q_0,q_1,q_2\}$ | $q_2$         |
| $*\{q_0, q_1, q_2\}$         | $\{q_0,q_1,q_2\}$ | $\{q_1,q_2\}$ |
| $q_1$                        | $\{q_1,q_2\}$     | $q_2$         |
| $q_2$                        | $\{q_0,q_2\}$     | _             |

### Operações Regulares

#### Teorema

A classe das linguagens regulares é fechada nas operações de:

- União
- Concatenação
- Estrela

Isso quer dizer que ao aplicarmos essas operações em linguagens regulares, o resultado também é uma linguagem regular.

### União

#### Teorema

A classe das linguagens regulares é fechada na operação de união.

Isso quer dizer que dadas duas linguagens regulares,  $L_1$  e  $L_2$ , então  $L_1 \cup L_2$  também é uma linguagem regular.

### União

#### Teorema

A classe das linguagens regulares é fechada na operação de união.

Para se provar isso é preciso demonstrar um autômato finito M capaz de reconhecer  $L_1 \cup L_2$ .

## União - Prova por Produto Cartesiano

Dado um autômato finito  $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$  que reconheça  $L_1$ , e um autômato finito  $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$  que reconheça  $L_2$ , construa M capaz de reconhecer  $L_1\cup L_2$  onde  $M=(Q,\Sigma,\delta,q_0,F)$ .

- 3  $\delta$ , para cada  $(r_1, r_2) \in Q$  e cada  $a \in \Sigma$ ,

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)).$$

- **4**  $q_0$  é o par  $(q_1, q_2)$ .
- **5**  $F = \{(r_1, r_2) | r_1 \in F_1 \text{ ou } r_2 \in F_2\}.$

# União - Prova por Não-determinismo





# União - Prova por Não-determinismo



### Concatenação

#### Teorema

A classe das linguagens regulares é fechada na operação de concatenação.

Para provar o teorema é preciso projetar um autômato finito M capaz de reconhecer  $L_1 \circ L_2$ .

# Concatenação - Prova por Não-determinismo



# Concatenação - Prova por Não-determinismo



### Estrela

#### Teorema

A classe das linguagens regulares é fechada na operação de Estrela.

Para provar o teorema é preciso projetar um autômato finito M capaz de reconhecer  $L^*$ .

# Estrela - Prova por Não-Determinismo



# Estrela - Prova por Não-Determinismo



### Autômatos Finitos

Prof<sup>a</sup>. Dr<sup>a</sup>. Jerusa Marchi Otto Menegasso Pires

Departamento de Informática e Estatística Universidade Federal de Santa Catarina



