Dynamic Programming

謝仁偉 副教授 jenwei@mail.ntust.edu.tw 國立台灣科技大學 資訊工程系 2017 Spring

1

Dynamic Programming: 4 Steps

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.

Introduction

- "Programming" in this context refers to a tabular method, not to writing computer code.
- Divide-and-conquer:
 - Partition the problem into disjoint subproblems.
 - Solve the subproblems recursively.
 - Combine their solutions to solve the original problem.
- Dynamic programming:
 - Apply when the subproblems overlap.
 - Solve each subsubproblem just once and then saves its answer in a table.
 - Typically apply dynamic programming to optimization problems.

2

Outine

- Rod Cutting
- Matrix-Chain Multiplication
- Elements of Dynamic Programming
- Longest Common Subsequence
- Optimal Binary Search Trees

Rod-Cutting Problem (1/7)

• Given a rod of length n inches and a table of prices p_i for i = 1, 2, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

• Suppose n = 4, what is the maximum revenue r_n ?

Rod-Cutting Problem (2/7)

6

Rod-Cutting Problem (3/7)

- How many ways can we cut up a rod of length *n*?
 - $\rightarrow 2^{n-1}$
 - $\Rightarrow e^{\pi\sqrt{2n/3}}/4n\sqrt{3}$

(in order of non-decreasing size)

 We denote a decomposition into pieces using ordinary additive notation, e.g., 7 = 2 + 2 + 3.

Rod-Cutting Problem (4/7)

• If an optimal solution cuts the rod into k pieces, for some $1 \le k \le n$, then an optimal decomposition $n = i_1 + i_2 + \cdots + i_k$

of the rod into pieces of lengths i_1, i_2, \ldots, i_k provides maximum corresponding revenue

$$r_n = p_{i_1} + p_{i_2} + \cdots + p_{i_k}$$
.

5

Rod-Cutting Problem (5/7)

• We can determine the optimal revenue figures r_i , for i = 1, 2, ..., 10, by inspection, with the corresponding optimal decompositions

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30
r_1	=	1	fron	ı sol	ution	1 =	1 (r	no cut	ts),	
r_2	=	5	fron	ı sol	ution	2 =	2 (r	no cut	ts),	
r_3	=									
r_4	=									
r_5	=									
r_6	=									

Rod-Cutting Problem (6/7)

```
length i
                                                 10
price p_i
                                                 30
          from solution 1 = 1 (no cuts),
r_2 = 5 from solution 2 = 2 (no cuts),
   = 8 from solution 3 = 3 (no cuts),
r_4 = 10 from solution 4 = 2 + 2,
   = 13 from solution 5 = 2 + 3,
      17 from solution 6 = 6 (no cuts),
19
r_{10} =
```

Rod-Cutting Problem (7/7)

• We can frame the values r_n for $n \ge 1$ in terms of optimal revenues from shorter rods:

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$
.

• We can also view a decomposition as consisting of a first piece of length i cut off the left-hand end, and then a right-hand remainder of length n-i. Only the remainder may be further divided.

$$r_n = \max_{1 \le i \le n} \left(p_i + r_{n-i} \right) .$$

→In this formulation, an optimal solution embodies the solution to only 1 related subproblem (rather than 2).

Recursive Top-Down Implementation

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

CUT-ROD (p, n) Is this a good solution?

1 if $n == 0$

2 return 0

3 $q = -\infty$

4 for $i = 1$ to n

5 $q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$

6 return q

• Once the input size becomes moderately large, your program would take a long time to run!

What Happen for n = 4?

- CUT-ROD(p, n) calls CUT-ROD(p, n i) for $i = 1, 2, \dots, n$.
- → CUT-ROD(p, n) calls CUT-ROD(p, j) for j = 0, 1, 2, ...,

Running Time Analysis

• Let T(n) denote the total number of calls made to CUT-ROD when called with its second parameter equal to n.

$$T(0) = 1$$
 and $T(n) = 1 + \sum_{j=0}^{n-1} T(j)$

→ $T(n) = 2^n$ (the running time of CUT-ROD is exponential in n)

Using Dynamic Programming

- A naive recursive solution is inefficient because it solves the same subproblems repeatedly.
- Dynamic programming uses additional memory to save computation time:
 - We arrange for each subproblem to be solved only once, saving its solution.
 - If we need to refer to this subproblem's solution again later, we can just look it up, rather than recompute it.
 - There are usually two equivalent ways to implement a dynamic-programming approach: top-down with memoization and bottom-up method.

Top-Down with Memoization

```
MEMOIZED-CUT-ROD(p, n)

1 let r[0..n] be a new array

2 for i = 0 to n

3 r[i] = -\infty

4 return MEMOIZED-CUT-ROD-AUX(p, n, r)
```

MEMOIZED-CUT-ROD-AUX(p, n, r)

```
1 if r[n] \ge 0

2 return r[n]

3 if n == 0

4 q = 0

5 else q = -\infty

6 for i = 1 to n

7 q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))

8 r[n] = q

9 return q
```

13