INTPLABASIC

Mickaël Gastineau

December 11, 2018

1 Version séquentielle

- Compilation: make clean make
- Execution en interactif: intplabasic.x ???.par
- Soumission sur bessel qsubserial -fastsse4 intplabasic.x ???.par

2 Fichiers d'entree

2.1 Fichier de paramètres intplabasic.par

Contrôles de l'intégration

Nom du champ	Descriptif				
chemin	dossier où seront stockés les fichiers				
nf rad	radical de tous les fichiers générés				
nf initext	fichier de conditions initiales des planètes				
ref gmsun	Valeur du GM du soleil de référence				
101_8msun	0: valeur issue de la Table 1 de "NOMINAL VALUES FOR SE-				
	LECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015				
	RESOLUTION B3"				
	1: valeur calculée à partir de la constante de Gauss				
	(k=0.01720209895e0)				
int_type	schéma de l'intégrateur (e.g., 'ABA4' ou 'ABAH4' (liste 2.2))				
type_pas	type du pas de l'intégrateur (fixe ou variable)				
	0: pas fixe				
	1 : pas variable avec une sortie à pas fixe				
	2 : pas variable avec une sortie à pas variable				
tinit	temps initial (en géneral 0)				
dt	pas de temps de l'intégration en année				
n_iter	nombre de pas d'intégrations à calculer. A la fin de l'intégration, le				
	temps final sera n_iter*dt ans.				
n_out	fréquence d'écriture des intégrales premières, coordonnées cartési-				
	ennes et éléments elliptiques. Il est exprimé en nombre de pas				
. 11	d'intégrations. Les données seront écrites tous les n_out*dt années.				
out_ell	format des éléments elliptiques écrites dans les fichiers xxx.ell				
	1: elliptiques héliocentriques canoniques CI(1:6) = (a.c.I.M. emerg. Omerg.)				
	CI(1:6) = (a,e,I,M,omega,Omega)				
	2: elliptiques héliocentriques non canoniques				
	CI(1:6) = (a,e,I,M,omega,Omega)				
	3: elliptiques héliocentriques canoniques				
	CI(1:6) = (a,la,k,h,q,p) 4: elliptiques héliocentriques non canoniques				
	$\mathrm{CI}(1:6) = (\mathrm{a,la,k,h,q,p})$				
if invar	=0, l'intégration se fait dans le repère actuel.				
	=1, l'intégration se fait dans le plan invariant et les données générées				
	sont dans ce plan invariant				
if int	=0, les intégrales premières ne sont pas écrites.				
11-1110	=0, les intégrales premières ne sont pas etrites. =1, les intégrales premières sont écrites dans les fichiers xxx.int. Un				
	fichier par système				
if ell	=0, les éléments elliptiques ne sont pas écrits.				
	=1, les éléments elliptiques sont écrits dans les fichiers xxx.ell. Un				
	fichier par système				
if car	=0, les éléments cartésièns (positions/vitesses) ne sont pas écrits.				
_	=1, les éléments cartésiens positions/vitesses) sont écrits dans les				
	fichiers xxx.car. Un fichier par système				

Pour type_pas=1 ou 2, l'intégration à pas variable est basé sur \dots .

2.2 Schéma d'intégration disponibles

	Variables héliocentriques
ABAH1	leapfrog
ABAH4	
ABAH5	
ABAH6	
ABAH7	
ABAH8	
ABAH9	
ABAH10	
ABA82	Laskar $SABA_4$ and McLahan (8,2)
ABA82	McLahan (8,4)
ABA844	Blanes (8,4,4)
ABAH864	Blanes (8,6,4)
ABAH1064	Blanes (10,6,4)
BABH1	leapfrog
BABH2	(B 1/6 A 1/2 B 2/3 A 1/2 B 1/6)
BABH4	
BABH5	
BABH6	
BABH7	
BABH8	
BABH9	
BABH10	
BABH82	Laskar $SBAB_4$ and McLahan (8,2)
BABH84	McLahan (8,4)
BABH844	Blanes (8,4,4)
BABH864	Blanes $(8,6,4)$
BABH1064	Blanes (10,6,4)

[&]quot;High order symplectic integrators for perturbed Hamiltonian systems". J. Laskar, P. Robutel, 2010

[&]quot;New families of symplectic splitting methods for numerical integration in dynamical astronomy". Blanes, Casas, Farres, Laskar, Makazaga, Murua, 2013

	Variables de Jacobi
ABA1	leapfrog
ABA4	
ABA5	
ABA6	
ABA7	
ABA8	
ABA9	
ABA10	
ABA82	Laskar $SABA_4$ and McLahan $(8,2)$
ABA864	Blanes (8,6,4)
ABA1064	Blanes (10,6,4)
ABA104	Blanes (10,4)
BAB1	leapfrog
BAB2	(B 1/6 A 1/2 B 2/3 A 1/2 B 1/6)
BAB4	
BAB5	
BAB6	
BAB7	
BAB8	
BAB9	
BAB10	
BAB82	Laskar $SBAB_4$ and McLahan $(8,2)$
BAB84	McLahan (8,4)
BAB864	Blanes (8,6,4)

"High order symplectic integrators for perturbed Hamiltonian systems". J. Laskar, P. Robutel, 2010

"New families of symplectic splitting methods for numerical integration in dynamical astronomy". Blanes, Casas, Farres, Laskar, Makazaga, Murua, 2013

2.3 Format du fichier nf initext

Ce fichier contient les conditions initiales (masses et coordonnées) des systèmes planétaires. Ce fichier stocke un système planétaire par ligne.

Les masses sont exprimées en masse solaire. La masse solaire de référence dépend du flag ref_gmsun. Les unités des coordonnées des planètes doivent être en UA, an et radians.

Sur chaque ligne, on a:

- \bullet colonne 1 : chaine sans espace donnant le nom du système. Par exemple P0001 ou N0002,
- colonne 2 : nombre de planètes (sans l'étoile) , nommé nbplan.

- colonne 3 : Masse de l'étoile exprimée en masse solaire (=1 pour le système solaire)
- colonne 4 à 4+nbplan-1 : Masse des planètes exprimée en masse solaire
- colonne 4+nbplan : type de coordonnées initiales des planètes
 - 1: elliptiques héliocentriques canoniques CI(1:6) = (a,e,I,M,omega,Omega)
 - 2: elliptiques héliocentriques non canoniques CI(1:6) = (a,e,I,M,omega,Omega)
 - -3: elliptiques héliocentriques canoniques CI(1:6) = (a,la,k,h,q,p)
 - 4: elliptiques héliocentriques non canoniques CI(1:6) = (a,la,k,h,q,p)
 - 5: positions vitesses héliocentriques CI(1:6) = (x,y,z,vx,vy,vz)
- \bullet colonne 4+nbplan+1 à 4+nbplan+6 : coordonnées initiales (6 composantes) de la planète 1
- colonnes suivantes : coordonnées initiales (6 composantes) pour les planètes suivantes

Par exemple, si on a 3 planètes avec des positions/vitesses héliocentriques, on a dans les colonnes :

1	2	3	4	5	6	7	8-13	14-19	20-25
P0001	3	M_{star}	M_1	M_2	M_3	5	$CI_1(1:6)$	$CI_2(1:6)$	$CI_3(1:6)$

3 Fichiers de sortie

3.1 Format du fichier ???.int

Chaque fichier contient un seul système planétaire. Ce fichier contient 5 colonnes et stocke la valeur des intégrales premières : énergie et moment cinétique.

Sur chaque ligne, on a:

colonne 1	colonne 2	colonne 3-5
temps	énergie	moment cinétique (x,y,z)

La première ligne contient la valeur initiale des intégrales premières. Les lignes suivantes contient la différence (absolue) des intégrales par rapport à la valeur initiale.

3.2 Format du fichier ???.car

Ce fichier contient les positions héliocentriques et vitesses héliocentriques cartésiennes des planètes. Les unités sont en AU et AU/an . Chaque fichier contient un seul système planétaire.

Sur chaque ligne, on a:

colonne 1	colonne 2-7	colonne 8-13	
temps	(x,y,z,vx,vy,vz) de la planète 1	(x,y,z,vx,vy,vz) de la planète 2	

3.3 Format du fichier ???.ell

Ce fichier contient les éléments elliptiques des planètes. le type délément dépend du paramètres **out_ell**. Les unités sont en AU, an et radians. Chaque fichier contient un seul système planétaire.

Sur chaque ligne, on a:

	0 ,		
colonne 1	colonne 2-7	colonne 8-13	
$_{ m temps}$	ell(1:6) de la planète 1	ell(1:6) de la planète 2	

3.4 Format du fichier ???.sch

Ce fichier est généré uniquement si un intégrateur à pas variable est utilisé (type_pas!=0).

Sur chaque ligne, on a:

colonne 1	colonne 2	colonne 3	colonne 4
temps	temps	E0	E1
du pas variable	du pas fixe	énergie du système au temps 0	thresold de renormalisation