

URBAN PLANT HEALTH DETECTION

GROUP MEMBERS-Tanya Singh Nakshatra Sawarkar Shaikh Tauhid Shaikh Javed Abhishek Wekhande

Learning Objectives

- Understand how Al can assist agriculture by identifying plant diseases early.
- Learn how to prepare and process large image datasets.
- Gain hands-on experience building CNN models from scratch.
- Learn how to:
 - Avoid overfitting with dropout and augmentation
 - Interpret performance through evaluation metrics
 - Improve results with proper tuning

Source: www.freepik.com/

Tools and Technology used

Platform: Google Colab

Language: Python

Libraries:

Pandas, Numpy
TensorFlow / Keras – for deep learning
OpenCV / PIL – for image processing
Matplotlib / Seaborn – for visualizations
scikit-learn – for evaluation metrics

Dataset Source: Kaggle

Methodology

Dataset:

- New Plant Diseases Dataset (Augmented) from Kaggle.
- Over 87,000+ images, labeled across 38 classes (diseased and healthy conditions for multiple plants).

Steps:

1. Preprocessing:

- Resize images to a uniform shape (128x128).
- Normalize pixel values.
- Apply data augmentation: rotation, flipping, zoom.

2. Model:

- Custom CNN architecture built using Keras.
- Layers: Conv2D → MaxPooling → Dropout → Dense layers.
- Trained using categorical_crossentropy and Adam optimizer.

Methodology

3. Training & Evaluation:

- Train/validation split: 80/20.
- Epochs: 10
- Final Validation Accuracy: 91.26%

Evaluated using:

- Confusion matrix
- Classification report (Precision, Recall, F1-Score)

Problem Statement:

- Plants are highly susceptible to diseases that can spread quickly and damage entire crops. Manual diagnosis is often slow, inaccurate, and requires expert intervention, making early detection challenging.
- There is a need for a fast, automated, and accurate solution to detect plant diseases from leaf images to prevent contamination and reduce crop loss.

Solution:

- Develop a deep learning-based image classification model that can detect whether a plant leaf is healthy or diseased.
- Use a large dataset of labeled images to train a model that generalizes well across multiple plant types and diseases.
- Provide early warnings so farmers can isolate diseased plants and take preventive measures.

Screenshot of Output:

```
Epoch 1/10
                                 594s 334ms/step - accuracy: 0.3157 - loss: 2.4554 - val_accuracy: 0.7506 - val_loss: 0.8253
1758/1758
Epoch 2/10
1758/1758
                                 348s 198ms/step - accuracy: 0.7098 - loss: 0.9317 - val_accuracy: 0.8506 - val_loss: 0.4846
Epoch 3/10
                                 347s 197ms/step - accuracy: 0.7921 - loss: 0.6593 - val accuracy: 0.8793 - val loss: 0.3715
1758/1758
Epoch 4/10
                                 348s 198ms/step - accuracy: 0.8282 - loss: 0.5361 - val accuracy: 0.8876 - val loss: 0.3524
1758/1758
Epoch 5/10
1758/1758
                                 339s 193ms/step - accuracy: 0.8551 - loss: 0.4541 - val accuracy: 0.8931 - val loss: 0.3371
Epoch 6/10
                                 355s 202ms/step - accuracy: 0.8761 - loss: 0.3863 - val_accuracy: 0.9252 - val_loss: 0.2300
1758/1758
Epoch 7/10
1758/1758
                                 343s 195ms/step - accuracy: 0.8907 - loss: 0.3422 - val_accuracy: 0.9122 - val_loss: 0.2705
Epoch 8/10
1758/1758
                                 343s 195ms/step - accuracy: 0.9010 - loss: 0.3035 - val_accuracy: 0.9386 - val_loss: 0.1911
Epoch 9/10
                                 334s 190ms/step - accuracy: 0.9069 - loss: 0.2888 - val accuracy: 0.9306 - val loss: 0.2185
1758/1758
Epoch 10/10
                                 333s 189ms/step - accuracy: 0.9126 - loss: 0.2683 - val accuracy: 0.9324 - val loss: 0.2093
1758/1758
WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file formatically are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`.
439/439
                               65s 148ms/step
```

This screenshot shows that after 10 epochs, the model achieved a training accuracy of 91.26% and a validation accuracy of 93.24%, with training loss reduced to 0.2683 and validation loss to 0.2093, indicating strong performance and effective learning without overfitting.

Screenshot of Output:

Classification Report:				
	precision	recall	f1-score	support
AppleApple_scab	0.93	0.92	0.92	403
AppleBlack_rot	0.97	0.97	0.97	397
AppleCedar_apple_rust	0.98	0.96	0.97	352
Applehealthy	0.94	0.83	0.88	401
Blueberryhealthy	0.97	0.86	0.91	363
Cherry_(including_sour)Powdery_mildew	0.99	0.95	0.97	336
Cherry_(including_sour)healthy	0.92	0.98	0.94	365
Corn_(maize)Cercospora_leaf_spot Gray_leaf_spot	0.88	0.91	0.90	328
Corn_(maize)Common_rust_	0.98	0.99	0.99	381
Corn_(maize)Northern_Leaf_Blight	0.95	0.89	0.92	381
Corn_(maize)healthy	0.99	1.00	1.00	371
GrapeBlack_rot	0.96	0.94	0.95	377
<pre>GrapeEsca_(Black_Measles)</pre>	0.96	0.98	0.97	384
<pre>GrapeLeaf_blight_(Isariopsis_Leaf_Spot)</pre>	0.99	0.98	0.98	344
Grapehealthy	0.97	0.99	0.98	338
OrangeHaunglongbing_(Citrus_greening)	0.99	0.98	0.99	402
PeachBacterial_spot	0.97	0.90	0.93	367
Peachhealthy	0.99	0.94	0.96	345
Pepper,_bellBacterial_spot	0.94	0.95	0.95	382
Pepper,_bellhealthy	0.92	0.92	0.92	397
PotatoEarly_blight	0.95	0.97	0.96	387
accuracy			0.93	14044
macro avg	0.93	0.93	0.93	14044
weighted avg	0.94	0.93	0.93	14044

This classification report shows a highperforming model with an overall accuracy of 93%, demonstrating strong precision, recall, and F1-scores across multiple plant disease categories.

Screenshot of Output:

The graphs show that the model's training and validation accuracy steadily increased, reaching over 91%, while the loss consistently decreased, indicating effective learning and good generalization.

Conclusion:

- Built a plant disease detection system using CNN with an accuracy of 91.26%.
- The model is capable of detecting multiple diseases across 38 different classes.
- Can help farmers intervene early and reduce crop loss.

Future Enhancements:

- Integration with drone imaging
- Expansion to more crops and real-field images

Github link- https://github.com/Abhishek220704/plant-disease-app