## SIN 251 – Organização de Computadores (2023)



# Aula 02 – Códigos Binários

Prof. João Fernando Mari joaof.mari@ufv.br

### Roteiro



- Códigos Binários
- Código BCD 8421
  - Conversão binário para BCD
- Código ASCII
  - Conversão em ASCII

## Códigos Binários



- Conversão de um número decimal em seu equivalente binário
  - Codificação
- Sistema numérico binário como conhecemos
  - Aula anterior!!!
  - Código Binário PURO
    - Diferenciar dos outros códigos binários

## Códigos Binários



- Sistema numérico decimal
  - Conveniente para os seres humanos.
- Sistema numérico binário
  - Conveniente para computadores.
  - (BEM) menos conveniente para os seres humanos.
- Exemplo:
  - 1010011<sub>2</sub> em decimal ???
    - Processo de conversão simples, porém tedioso → consome muito tempo.
- BCD Forma especial de código binário MAIS compatível com o sistema decimal.

## Código BCD 8421



- BCD Binary Coded Decimal
  - Binário Codificado em Decimal.
  - Representa os dígitos decimais de 0 a 9 com um código binário de 4 dígitos.
  - Usa o sistema de pesos posicionais 8421 do código binário puro
    - $d_B \times 2^3 + d_B \times 2^2 + d_B \times 2^1 + d_B \times 2^0$
    - $d_B \times 8 + d_B \times 4 + d_B \times 2 + d_B \times 1$
  - Exemplo: Decimal → BCD
    - 834<sub>10</sub> em BCD= 1000 0011 0100
    - 0.764 em BCD = 0.0111 0110 0100
  - Exemplos: BCD → Decimal
    - 0110 0010 1000.1001 0101 0100 = 628.954



- Vantagens BCD
  - Simples manipulação e conversão
- Desvantagens
  - Menos eficiente que o código binário puro. Utiliza maior número de bits.
  - Maior complexidade dos circuitos, maior consumo de energia, ...
  - As operações aritméticas consomem mais tempo.

# Código BCD 8421



| <b>DECIMAL</b><br>0 | <b>BCD 8421</b> 0000 | <b>BINÁRIO</b><br>0000 |
|---------------------|----------------------|------------------------|
| 1                   | 0001                 | 0001                   |
| 2                   | 0010                 | 0010                   |
| 3                   | 0011                 | 0011                   |
| 4                   | 0100                 | 0100                   |
| 5                   | 0101                 | 0101                   |
| 6                   | 0110                 | 0110                   |
| 7                   | 0111                 | 0111                   |
| 8                   | 1000                 | 1000                   |
| 9                   | 1001                 | 1001                   |
| 10                  | 0001 0000            | 1010                   |
| 11                  | 0001 0001            | 1011                   |
| 12                  | 0001 0010            | 1100                   |
| 13                  | 0001 0011            | 1101                   |
| 14                  | 0001 0100            | 1110                   |
| 15                  | 0001 0101            | 1111                   |

#### Conversão BCD -> Binário



- Converte de BCD para Binário puro
  - 1) Converte BCD para decimal
  - 2) Decimal é convertido para binário
  - <u>Exemplo:</u>
    - 1001 0110.0110 0010 0101 = 96,625

| Inteiro               | Resto | Posição | Fração                         | Inteiro | Posição |  |
|-----------------------|-------|---------|--------------------------------|---------|---------|--|
| 96 ÷ 2 = 48           | 0     | -> LSB  | $0,625 \times 2 = 1,25 = 0,25$ | 1       | <- MSB  |  |
| 48 ÷ 2 = 24           | 0     |         | $0,250 \times 2 = 0,50 = 0,50$ | 0       |         |  |
| 24 ÷ 2 = 12           | 0     |         | $0,500 \times 2 = 1,00 = 0$    | 1       | <- LSB  |  |
| $12 \div 2 = 06$      | 0     |         |                                |         |         |  |
| $06 \div 2 = 03$      | 0     |         |                                |         |         |  |
| $03 \div 2 = 01$      | 1     |         |                                |         |         |  |
| $01 \div 2 = 00$      | 1     | <- MSB  |                                |         |         |  |
| $96_{10} = 1100000_2$ |       |         | $0.625_{10} = 0.101_2$         |         |         |  |

 $96,625_{10} = 96_{10} + 0,625_{10} = 1100000_2 + 0.101_2 = 1100000.101_2$ 

## Código ASCII



- "American Standart Code for Information Interchange" ASCII
  - Forma especial de código binário.
  - Largamente utilizado.
  - 7 bits pode-se representar um total de  $2^7$  = 128 caracteres diferentes.
    - Números decimais de 0 até 9
    - Letras maiúsculas e minúsculas do alfabeto
    - Outros caracteres especiais usados para pontuação e controle de dados.

# Tabela ASCII completo ou ASCII estendido



| KIL II. I | Note                  | DLE | Data Link Facana       |  |  |
|-----------|-----------------------|-----|------------------------|--|--|
| NULL      |                       |     | Data Link Escape       |  |  |
| SOH       | Start of Heading      | DC1 | Device Control 1       |  |  |
| STX       | Start of Text         | DC2 | Device Control 2       |  |  |
| ETX       | End of Text           | DC3 | Device Control 3       |  |  |
| EOT       | End of Transmission   | DC4 | Device Control 4       |  |  |
| ENQ       | Enquiry               | NAK | Negative Acknowledge   |  |  |
| ACK       | Acknowledge           | SYN | Synchronous Idle       |  |  |
| BEL       | Bell (audible signal) | ETB | End Transmission Block |  |  |
| BS        | Backspace             | CAN | Cancel                 |  |  |
| НТ        | Horizontal Tabulação  | EM  | End of Medium          |  |  |
| П         | (punched card skip)   | SUB | Substitute             |  |  |
| LF        | Line Feed             | ESC | Escape                 |  |  |
| VT        | Vertical Tabulation   | FS  | File Separator         |  |  |
| FF        | Form Feed             | GS  | Group Separato         |  |  |
| CR        | Carriage Return       | RS  | Record Separator       |  |  |
| SO        | Shift Out             | US  | Unit Separator         |  |  |
| SI        | Shift In              | DEL | Delete                 |  |  |
| SP        | Space (blank)         |     |                        |  |  |

|       | coluna         |     |     |     |     |     |     |     |     |
|-------|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|       | bits           | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
| linha | <b>7654321</b> | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
| 0     | 0000           | NUL | DLE | SP  | 0   | @   | P   | •   | p   |
| 1     | 0001           | SOH | DC1 | !   | 1   | Α   | Q   | a   | q   |
| 2     | 0010           | STX | DC2 | "   | 2   | В   | R   | b   | r   |
| 3     | 0011           | ETX | DC3 | #   | 3   | C   | S   | C   | S   |
| 4     | 0100           | EOT | DC4 | \$  | 4   | D   | T   | d   | t   |
| 5     | 0101           | ENQ | NAK | %   | 5   | E   | U   | e   | u   |
| 6     | 0110           | ACK | SYN | &   | 6   | F   | V   | f   | v   |
| 7     | 0111           | BEL | ETB | •   | 7   | G   | W   | g   | w   |
| 8     | 1000           | BS  | CAN | (   | 8   | Н   | X   | h   | x   |
| 9     | 1001           | HT  | EM  | )   | 9   | I   | Y   | i   | y   |
| 10    | 1010           | LF  | SUB | *   | :   | J   | Z   | j   | Z   |
| 11    | 1011           | VT  | ESC | +   | ;   | K   | [   | k   | {   |
| 12    | 1100           | FF  | FS  | ,   | <   | L   | \   | I   | I   |
| 13    | 1101           | CR  | GS  | -   | =   | М   | ]   | m   | }   |
| 14    | 1110           | SO  | RS  |     | >   | N   | ^   | n   | N   |
| 15    | 1111           | SI  | US  | /   | ?   | O   | _   | o   | DEL |

#### Conversão em ASCII



- Composto por 2 grupos:
  - Um de 4 bits e outro de 3 bits.
- O grupo de 4 bits está a direita e o bit 1 é o LSB.
  - LSB: Bit Menos Significativo. MSB: Bit Mais Significativo



- <u>Exemplo:</u> Código ASCII para a letra L é 1001100.
  - Localizado na coluna 4, linha 12.
  - O grupo de 3 bits é 100 e o grupo de 4 bits é 1100.
    - Código ASCII: 100 1100.

#### Conversão em ASCII



- No código ASCII de 7 bits,
- O oitavo bit é geralmente usado como um <u>bit de paridade.</u>
  - Para determinar se o dado (caractere) foi transmitido corretamente.
  - Determinado pelo tipo de paridade desejado.
    - Paridade par → a soma de todos os 1's, incluindo o bit de paridade, é um número par.

#### – EXEMPLO:

- Caractere G código ASCII é 1000111
  - 4 bits UM 0 bit de paridade é 0  $\rightarrow$  01000111
- Caractere I (i maiúsculo) código ASCII é 1001001
  - 3 bits UM 0 bit de paridade é 1  $\rightarrow$  11001001

#### Referências



- STALLINGS, W. Arquitetura e Organização de Computadores, 5. Ed., Pearson, 2010.
  - Apêndice A
- ICEA, Sistemas Numéricos e Códigos.
  - Disponível em:
    - http://www.icea.gov.br/ead/anexo/21401.htm
  - Acesso em: Mar/2011.





# FIM