Solution to Dummy Homework

Author: Pedro Pereira

Date: 2016-10-05

Description: Solutions to Exercise 1.1 of Nonlinear Control EL2620. This is a dummy homework, just to

illustrate the expected reporting style

Useful material for creating live scripts in matlab

Read info at Create Live Scripts

Description of the problem

The nonlinear dynamic equation for a pendulum is given by

$$ml\dot{\theta} = -mg\sin(\theta) - kl\dot{\theta}$$

No Units?

where l is the length of the pendulum, m is the mass of the bob, and θ is the angle subtended by the rod and the vertical axis through the pivot point.

Constants

```
% mass of the bob
m = 1;
% length of pendulum
l = 1;
% acceleration due to gravity
g = 10;
% friction coefficient (we will play with different values)
```

Exercise 1.1 a)

Choose appropriate state variables and write down the state equations.

We can choose θ (standing for the angular position) and ω (standing for the angular velocity) as state variables, with the state equations given by

$$\begin{pmatrix} \dot{\theta} \\ \dot{\omega} \end{pmatrix} = f(\theta, \omega) := \begin{pmatrix} \omega \\ -\frac{g}{l}\sin(\theta) - kl\omega \end{pmatrix}.$$

We can give different names: x_1 (standing for the angular position) and x_2 (standing for the angular velocity) as state variables, with the state equations given by

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = f(x_1, x_2) := \begin{pmatrix} x_2 \\ -\frac{g}{l}\sin(x_1) - klx_2 \end{pmatrix}.$$

Another option:

We can choose ξ_1 (standing for the angular position + angular velocity) and ξ_2 (standing for the angular position - angular velocity) as state variables, with the state equations given by

$$\begin{pmatrix} \dot{\xi}_1 \\ \dot{\xi}_2 \end{pmatrix} = g(\xi_1, \xi_2) := \begin{pmatrix} \frac{1}{2} (\xi_1 - \xi_2) - \frac{g}{l} \sin \left(\frac{1}{2} (\xi_1 + \xi_2) \right) - kl \frac{1}{2} (\xi_1 - \xi_2) \\ \frac{1}{2} (\xi_1 - \xi_2) + \frac{g}{l} \sin \left(\frac{1}{2} (\xi_1 + \xi_2) \right) + kl \frac{1}{2} (\xi_1 - \xi_2) \end{pmatrix}.$$

A good choice of state yields "simpler" state equations.

Maybe you should provide more details in this derivation

In defining the vector field in matlab, we introduce the dummy names:

- . z_1 stands for the angular position (or θ)
- . z_2 stands for the angular velocity (or $\dot{\theta}$, or ω)

$$f = @(z1, z2, k) [z2; - g/l*sin(z1) - k*l*z2];$$

Just for the purpose of display of the vector field (aka, state equations) we introduce symbolic variables

ans =

$$\begin{pmatrix} x_2 \\ -10\sin(x_1) - k x_2 \end{pmatrix}$$

Exercise 1.1 b)

Find all equilibria of the system

Definition: Given state equations f, x^{\cdot} is equilibrium if $f(x^{\cdot}) = 0$.

Since
$$f(x_1, x_2) = \left(x_2, -\frac{g}{l}\sin(x_1) - klx_2\right)$$
, then $f(x_1, x_2) = 0$ implies that

1) $\vec{x_2} = 0$ (from first component of vector field)

2)
$$-\frac{g}{l}\sin(x_1) - klx_2 = 0 \Rightarrow \sin(x_1) = 0 \Leftrightarrow x_1 = p\pi \forall p \in \mathbb{Z}$$
 (recall 1))

We thus have infinite many equilibria.

Exercise 1.1 c)

Description: Linearize the system around the equilibrium points, and determine whether the system equilibria are stable or not (consider k = 1 in the case numerical calculations are required)

It suffices to check for equilibria $(x_1, x_2) \in \{(0, 0), (\pi, 0)\}$ (explain why!).

Exercise 1.1 c) Alternatice 1 (preferred solution)

You would need to explain why

Do everything analytically

$$A(x) = \frac{df(x)}{dx} = \begin{pmatrix} \frac{\partial f_1(x_1, x_2)}{\partial x_1} & \frac{\partial f_1(x_1, x_2)}{\partial x_2} \\ \frac{\partial f_2(x_1, x_2)}{\partial x_1} & \frac{\partial f_2(x_1, x_2)}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l}\cos(x_1) & -kl \end{pmatrix}$$

Thus, for $x^* = (x_1, x_2) = (0, 0)$

You must detail you derivation steps

$$A(x^{\cdot}) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l} & -kl \end{pmatrix} \Rightarrow \cdots \Rightarrow eigenavalues(A(x^{\cdot})) \in \left\{ -\frac{kl}{2} + \sqrt{\left(\frac{kl}{2}\right)^{2} - \frac{g}{l}}, -\frac{kl}{2} - \sqrt{\left(\frac{kl}{2}\right)^{2} - \frac{g}{l}} \right\}$$

which means that $\vec{x} = (\vec{x_1}, \vec{x_2}) = (0, 0)$ is stable, since the eigenvalues are on LHP (you would need to argue a bit more on why the eigenvalues are on the LHP).

On the other hand, for $\vec{x} = (\vec{x_1}, \vec{x_2}) = (\pi, 0)$

$$A(x^{\cdot}) = \begin{pmatrix} 0 & 1 \\ \frac{g}{l} & -kl \end{pmatrix} \Rightarrow \cdots \Rightarrow eigenavalues(A(x^{\cdot})) \in \left\{ -\frac{kl}{2} + \sqrt{\left(\frac{kl}{2}\right)^2 + \frac{g}{l}}, -\frac{kl}{2} - \sqrt{\left(\frac{kl}{2}\right)^2 + \frac{g}{l}} \right\}$$

which means that $\vec{x} = (\vec{x_1}, \vec{x_2}) = (\pi, 0)$ is ubstable, since one of the eigenvalues is on the RHP (you would need to argue a bit more on why one of the eigenvalues is on the RHP).

Exercise 1.1 c) Alternatice 2

Do symbolic calculations with the help of matlab

```
% create symbolic variables x1, x2 and k (you could let g and l be symbolic variables as well) syms x1 \times 2 \times A = jacobian((f(x1,x2,k)), [x1, x2])
```

 $\begin{pmatrix} 0 & 1 \\ -10\cos(x_1) & -k \end{pmatrix}$

 $(x_1, x_2) = (0, 0)$ is stable because eigenvalues are on LHP

```
% one may check the eigenvales for arbitrary k
A1 = subs(A, {x1, x2}, {0, 0});
eig(A1)
```

ans =

$$\begin{pmatrix} -\frac{k}{2} - \frac{\sqrt{k^2 - 40}}{2} \\ \frac{\sqrt{k^2 - 40}}{2} - \frac{k}{2} \end{pmatrix}$$

```
% or one may check the eigenvales for k = 1, for example A1 = subs(A, {x1, x2, k}, {0, 0 1}); eig(A1)
```

ans =

$$\begin{pmatrix} -\frac{1}{2} - \frac{\sqrt{39} \text{ i}}{2} \\ -\frac{1}{2} + \frac{\sqrt{39} \text{ i}}{2} \end{pmatrix}$$

```
% print eigenvalues in ''easier'' to read format
double(eig(A1))
```

ans = -0.5000 - 3.1225i -0.5000 + 3.1225i

 $(x_1, x_2) = (\pi, 0)$ is unstable because eigenvalues are not on LHP:

% one may check the eigenvales for arbitrary k A2 = subs(A, $\{x1, x2\}$, $\{pi, 0\}$); eig(A2)

ans =

$$\begin{pmatrix} -\frac{k}{2} - \frac{\sqrt{k^2 + 40}}{2} \\ \frac{\sqrt{k^2 + 40}}{2} - \frac{k}{2} \end{pmatrix}$$

% or one may check the eigenvales for k = 1, for example A2 = subs(A, {x1, x2, k}, {pi, 0, 1}); eig(A2)

ans =

$$\left(-\frac{\sqrt{41}}{2} - \frac{1}{2} \right) \\
\frac{\sqrt{41}}{2} - \frac{1}{2} \right)$$

% print eigenvalues in ''easier'' to read format double(eig(A2))

ans =

- -3.7016
- 2.7016

Exercise 1.1 d) (this is not in the Exercise: it is just to further illustrate how to report)

Simulate system with k=1 and k=2 and with initial condition $x(0)=(x_1(0),x_2(0))=(0.5\pi,0.1)$. Discuss the results.

Exercise 1.1 d) ALTERNATIVE 1

```
% initial time instant
t0 = 0;
% final time instant
tF = 10;
% initial condition
x0 = [0.5*pi;0.1];
hold on
for friction = [1,2]
    % check documentation for ode45
    % remark: in general a vector field is a function of time and state, aka (t,x)
    [time vector, state vector] = ode45(@(t,x) f(x(1),x(2), friction),[t0 tF],x0);
    % angular position from radians to degrees
    plot(time vector, state vector(:,1)*180/pi)
end
% label axis
xlabel('Time')
ylabel('Angular position in degrees ($^\circ$)','interpreter','latex')
% legend for the plot
h = legend('$k=1$','$k=2$');
set(h,'interpreter','latex')
% title with the DISCUSSION
title('More friction leads to faster convergence to (0,0)')
```


Exercise 1.1 d) ALTERNATIVE 2

Using simulink

```
% close previous figure
close all
for friction = [1,2]
    k = friction;
    % simulate model described in PendulumSimulation.slx
    % in this model, k is a parameter, which as been set to the same value
    % as friction
    % if you wish, change step size, so that plot is not so cluncky
    sim('PendulumSimulation.slx');
    % vector with time instants (sec)
    time vector = State.Time;
    % vector with state
    state vector = State.Data;
    hold on
    plot(time vector, state vector(:,1)*180/pi)
end
```

Warning: Model 'PendulumSimulation' is using a default value of 0.2 for maximum step size. You can disable this diagnostic by setting Automatic solver parameter selection to 'none' Warning: Model 'PendulumSimulation' is using a default value of 0.2 for maximum step size. You can disable this diagnostic by setting Automatic solver parameter selection to 'none'

```
% label axis
xlabel('Time')
ylabel('Angular position in degrees ($^\circ$)','interpreter','latex')
% legend for the plot
h = legend('$k=1$','$k=2$');
set(h,'interpreter','latex')
% title with the DISCUSSION
title('More friction leads to faster convergence to (0,0)')
```


WARNINGS: Always check documentation of functions

Example: select ode45 with cursor and press F1

WARNINGS: Latex

For quick typesetting, write "\$", then write in latex, and when you close with "\$", the latex expression is rendered.

WARNINGS: Other problems

Google is your friend