An Introduction to Adjunctions according to Steve Awodey Reading from Steve Awodey, Chapter 9.1

Masaru Okada

October 21, 2025

Abstract

This note summarizes the introduction to the definition of adjunctions, following Chapter 9, Section 1 of Steve Awodey's 2nd Edition [1].

Contents

1		Preparatory Definitions	1
	1.1	Kleene Closure constructing words	1
	1.2	Universal Property of the Free Monoid	2
	1.3	A Simple Example of a Free-Forgetful Adjunction	3
	1.4	A Simple Definition of Adjunction	3
2		Example: The Diagonal Functor	3
	2.1	The Right Adjoint to the Diagonal Functor is the Product Functor	3
	2.2	The Unit of the Adjunction	5

1 Preparatory Definitions

1.1 Kleene Closure constructing words

Here is an example of one method for 'constructing a free monoid from an arbitrary set'.

Consider the set of alphabetic characters $A = \{a, b, c, ..., y, z\}$.

A finite string of characters (regardless of whether the string is meaningful) is called a **word** on A. For example,

 $word, this word, categories are fun, as d fas daf, \dots$

The empty string will be denoted by a hyphen '-'.

The **Kleene Closure** is then the operator $(\cdot)^{\text{Kleene}}$ defined by,

 $A^{\rm Kleene} = \{-, word, this word, categories are fun, as dfas daf, \ldots\}$

We introduce a string concatenation operation ++ for the elements (words) in the set A^{Kleene} . This defines $++: A^{\text{Kleene}} \times A^{\text{Kleene}} \to A^{\text{Kleene}}$ such that:

$$word ++- = word$$
 $this ++ word\& = thisword$
 $categories ++ are ++ fun\& = categories are fun$

The empty string - serves as the identity element.

With this operation, $(A^{\text{Kleene}}, ++)$ becomes a monoid.

Furthermore, A^{Kleene} satisfies the following conditions, making it a **free monoid**:

- 1. **no junk** (All words can be expressed as a product of elements of A.)
- 2. **no noise** (For every word, the way it is written as a concatenation of elements from A is unique (apart from the monoid axioms). For example, if $a \neq b$, then $ab \neq ba$.)

1.2 Universal Property of the Free Monoid

The two conditions (no junk, no noise) that make a monoid free can be expressed very neatly using a categorical definition.

First, any monoids M, N have **underlying sets** U(M), U(N).

And any homomorphism $f: N \to M$ has an **underlying map** $U(f): U(N) \to U(M)$.

This U is a functor, known as the **forgetful functor**.

The free monoid M(A) constructed from a set A has the following universal property.

Universal Property of the Free Monoid M(A) –

There is a map $i: A \to U(M(A))$, such that for any monoid N and any map $f: A \to U(N)$, there exists a **unique** monoid homomorphism $g: M(A) \to N$ satisfying $U(g) \circ i = f$.

This can be summarized neatly in categories.

- Diagram for the Universal Property of M(A) ————

Diagram in **Mon**:

$$M(A) \xrightarrow{\exists ! g} N$$

Diagram in **Set**:

$$U(M(A)) \xrightarrow{U(g)} U(N)$$

1.3 A Simple Example of a Free-Forgetful Adjunction

Any monoid M has an underlying set U(M).

Also, as constructed in the previous section, every set X has a **free monoid** F(X).

Consider the map ϕ that sends g to $U(g) \circ i = f$.

$$\begin{array}{cccc} \phi: & \operatorname{Hom}_{\mathbf{Mon}}(F(X), M) & \to & \operatorname{Hom}_{\mathbf{Set}}(X, U(M)) \\ & & & & & \cup \\ g & & \mapsto & U(g) \circ i \end{array}$$

From the universal property of the free monoid, this map is an isomorphism.

$$\operatorname{Hom}_{\operatorname{\mathbf{Mon}}}(F(X), M) \cong \operatorname{Hom}_{\operatorname{\mathbf{Set}}}(X, U(M))$$

A mnemonic for this is: 'Free is left adjoint to Forgetful'.

1.4 A Simple Definition of Adjunction

We define an adjunction by generalizing this flow to categories \mathbf{C} and \mathbf{D} .

· Adjunction between Categories ${f C}$ and ${f D}$ -

An adjunction between categories C and D consists of functors F, G

$$F: \mathbf{C} \rightleftharpoons \mathbf{D}: G$$

and a natural transformation $\eta: 1_{\mathbf{C}} \to G \circ F$.

They have the following property.

For any $C \in \mathbf{C}$, $D \in \mathbf{D}$ and $f: C \to G(D)$, there exists a **unique** g such that $f = G(g) \circ \eta_C$ holds as follows.

$$F(C) \longrightarrow D$$

In this case, F is called the **left adjoint** to G, and G is the **right adjoint** to F, written $F \dashv G$. η is called the **unit** of the adjunction.

2 Example: The Diagonal Functor

2.1 The Right Adjoint to the Diagonal Functor is the Product Functor

As an example, consider the **diagonal functor** $\Delta : \mathbf{C} \to \mathbf{C} \times \mathbf{C}$.

Objects and morphisms are mapped respectively:

$$\begin{array}{rcl} \Delta(C) & = & (C,C) & \text{for } C \in \mathrm{Obj}(\mathbf{C}) \\ \Delta(f:C \to C') & = & (f,f):(C,C) \to (C',C') & \text{for } f \in \mathrm{Mor}(\mathbf{C}) \end{array}$$

Let's consider the right adjoint R to the diagonal functor.

Since it goes in the opposite direction of $\Delta : \mathbf{C} \to \mathbf{C} \times \mathbf{C}$, it will be a functor $R : \mathbf{C} \times \mathbf{C} \to \mathbf{C}$. Let's denote its action on objects as

$$R: \mathbf{C} \times \mathbf{C} \ni (X,Y) \mapsto R(X,Y) \in \mathbf{C}$$

Recall the construction of the adjunction.

Recalling the free-forgetful adjunction

$$\operatorname{Hom}_{\mathbf{Mon}}(F(X), M) \cong \operatorname{Hom}_{\mathbf{Set}}(X, U(M))$$

and substituting into this correspondence, we get:

$$\operatorname{Hom}_{\mathbf{C}\times\mathbf{C}}(\Delta(C),(X,Y)) \cong \operatorname{Hom}_{\mathbf{C}}(C,R(X,Y))$$

The left-hand side (LHS) of this is:

$$\begin{array}{rcl} \operatorname{Hom}_{\mathbf{C}\times\mathbf{C}}(\Delta(C),(X,Y)) & \cong & \operatorname{Hom}_{\mathbf{C}\times\mathbf{C}}((C,C),(X,Y)) \\ & \cong & \operatorname{Hom}_{\mathbf{C}}(C,X) \times \operatorname{Hom}_{\mathbf{C}}(C,Y) \\ & \cong & \operatorname{Hom}_{\mathbf{C}}(C,X \times Y) \end{array}$$

The first isomorphism uses the definition of $\Delta(C)$.

The second isomorphism uses the definition of morphisms in the product category $\mathbf{C} \times \mathbf{C}$.

The third isomorphism uses the universal property of the product $X \times Y$ in \mathbb{C} : $\mathrm{Hom}_{\mathbb{C}}(C, X \times Y) \cong \mathrm{Hom}_{\mathbb{C}}(C, X) \times \mathrm{Hom}_{\mathbb{C}}(C, Y)$.

Comparing the LHS and RHS when substituted into the adjunction definition:

$$\operatorname{Hom}_{\mathbf{C}}(C, R(X, Y)) \cong \operatorname{Hom}_{\mathbf{C}}(C, X \times Y)$$

We want to apply a corollary of the Yoneda Lemma here:

$$\operatorname{Hom}_{\mathbf{C}}(C, F) \cong \operatorname{Hom}_{\mathbf{C}}(C, G) \Rightarrow F \cong G$$

To use this corollary of the Yoneda Lemma, the isomorphism must be natural in C. In this case, by the definition of adjunction, there is a natural isomorphism between

$$\operatorname{Hom}(-, R(X, Y)) \cong \operatorname{Hom}(-, X \times Y)$$

From the above, we can conclude:

$$R(X,Y) \cong X \times Y$$

It has been shown that the right adjoint to the diagonal functor Δ is the product functor \times , i.e., $\Delta \dashv \times$.

2.2 The Unit of the Adjunction

Let's consider the unit of the adjunction. By the definition of the adjunction $\Delta \dashv \times$ (i.e., $L = \Delta, R = \times$), the **unit** η is a natural transformation $\eta: 1_{\mathbb{C}} \to R \circ L = \times \circ \Delta$.

Its component η_C , for each object C in \mathbb{C} , is a morphism to $(\times \circ \Delta)(C) = \times (\Delta(C)) = \times (C, C) = C \times C$, thus having the form $\eta_C : C \to C \times C$.

This η_C is defined as the morphism on the RHS corresponding to the identity morphism $1_{\Delta(C)}$: $\Delta(C) \to \Delta(C)$ on the LHS of the adjunction isomorphism

$$\operatorname{Hom}_{\mathbf{C}\times\mathbf{C}}(\Delta(C),(X,Y)) \cong \operatorname{Hom}_{\mathbf{C}}(C,\times(X,Y))$$

by specifically choosing $(X,Y) = \Delta(C) = (C,C)$.

Here, $1_{\Delta(C)}$ is, by the definition of the product category, the pair of morphisms $(1_C, 1_C)$.

$$1_{\Delta(C)} = (1_C, 1_C) : (C, C) \to (C, C)$$

On the other hand, by the universal property of the product $C \times C$

$$\operatorname{Hom}_{\mathbf{C}}(C, C \times C) \cong \operatorname{Hom}_{\mathbf{C}}(C, C) \times \operatorname{Hom}_{\mathbf{C}}(C, C)$$

the morphism in $\operatorname{Hom}_{\mathbf{C}}(C, C \times C)$ corresponding to the pair of morphisms $(1_C, 1_C)$ is the unique morphism $f: C \to C \times C$ satisfying

$$p_1 \circ f = 1_C$$
 and $p_2 \circ f = 1_C$

This is none other than the definition of the so-called **diagonal morphism** δ_C . Therefore, the unit of the adjunction is the diagonal morphism $\eta_C = \delta_C$.

Let's consider the universal property of the unit η .

The universal property of the unit η is expressed in this context as follows.

Any morphism $f: C \to X \times Y \ (\in \mathbb{C})$ can be factored through η_C and the unique morphism $g: \Delta(C) \to (X,Y) \ (\in \mathbb{C} \times \mathbb{C})$ that corresponds to f via the adjunction.

If we write the pair of morphisms $g_1: C \to X$ and $g_2: C \to Y$ as $g=(g_1,g_2)$, the action of the functor $R=\times$ on morphisms is

$$R(g) = g_1 \times g_2 : C \times C \to X \times Y$$

In this case, from the definition of the adjunction

$$f = R(g) \circ \eta_C$$

we have

$$f = (g_1 \times g_2) \circ \delta_C$$

Expressing this relationship as a commutative diagram gives the following.

$$(C,C) \xrightarrow{\exists ! (g_1,g_2)} (X,Y)$$

Here, $f: C \to X \times Y$ and $g = (g_1, g_2): (C, C) \to (X, Y)$ correspond one-to-one via the adjunction.

References

[1] Category Theory 2nd Edition - Steve Awodey