Lógica Computacional

Tabela Verdade

Prof^a. Ms. Adriane Ap. Loper

- Unidade de Ensino:4
- Competência da Unidade: Desenvolver do raciocínio lógico e estruturado, possibilitando a análise, avaliação e criação de demonstrações matemáticas, fazendo uso de linguagem simbólica, tabela-verdade e técnicas dedutivas.
- Resumo: Nessa aula abordaremos uma introdução à lógica matemática, analisando as proposições, tabelasverdade e argumentações.
- Palavras-chave :Tabela-verdade; Argumentação.
- Título da Teleaula: Tabela-Verdade
- Teleaula nº: 4

2

1

Contextualização

A tabela-verdade das proposições foram criadas para chegarmos aos nossos resultados lógicos.

Elas foram construídas para traduzir o raciocínio humano e interpretá-lo.

Vamos aprender tabela-verdade?

Definição de tabela-verdade

3 4

Tabela-verdade

Recurso empregado na avaliação do valor lógico de uma proposição a partir dos valores lógicos das

Construção de Tabela -verdade

Segundo Jacob Daghlian (2006), para se construir a tabela-verdade de uma proposição composta dada, procede-se da seguinte maneira:

- a) Determina-se o número de linhas da tabelaverdade que se quer construir;
- b) Observa-se a precedência entres os conectivos, isto é, determina-se a forma das proposições que ocorrem no problema;
- c)Aplicam-se as definições das operações lógicas que o problema exigir.

6

5

Tabelas-verdade

Tabela-verdade da negação:

р	~p
V	F
F	V

p: Montevidéu é a capital da Espanha. (F)

~p

q: As baleias são peixes. (F)

~~

r: A metade de 12 é 6. (V)

r

Conjunção

Tabela-verdade da conjunção:

p	q	$p \wedge q$
F	F	F
F	V	F
V	F	F
V	V	V

p: José é músico. (V) q: Larissa estuda poesia. (V)

. p ∧ a

r: Picasso foi um grande artista. (V) s: Van Gogh foi

piloto de moto. (F) r \wedge ~s

7

8

Condicional

Tabela-verdade da condicional:

p	q	$p \rightarrow q$
F	F	V
F	V	V
V	F	F
V	V	V

p: Hoje é quarta-feira.(V)

q: Hoje tem futebol na televisão.(V)

p v q

Valores lógicos

9

10

Considerando os conectivos lógicos e as regras de precedência, analise as seguintes afirmações, classificando-as como verdadeiras (V) ou falsas (F):

a) () A proposição $(\sim\!p \land r) \to r \lor q$ pode ser classificada como uma disjunção.

b) () A proposição $(p \to r)$ V $(\sim q \land r)$ pode ser classificada como uma condicional.

classificada como uma condicional. c) () A proposição $\sim p \leftrightarrow (q \lor \sim r)$ pode ser classificada como uma bicondicional.

d) () A proposição $p \to (q \vee \sim r) \vee s$ pode ser classificada como uma condicional.

Assinale a alternativa que indica a sequência correta das classificações, considerando a ordem na qual as afirmações foram apresentadas:

a) V – V – F – F.

b) V - F - V - F.

c) V - F - F - V. d) F - V - F - V.

e) F – F – V – V.

11 12

- Pelas regras de precedência, primeiro avaliamos a negação, depois a conjunção e disjunção, em seguida a condicional e, por fim, a bicondicional. No entanto, quando temos parênteses existem as alterações nas regras de precedência.
- A proposição $(\sim p \land r) \rightarrow r \lor q$ pode ser classificada como uma condicional, porque, pelas regras de precedência, primeiro avaliamos os termos $(\sim p \land r)$ e $r \lor q$, e por fim, $(\sim p \land r) \rightarrow$ $r \vee q$. Logo, a primeira afirmação é falsa (F).

- A proposição $(p \rightarrow r) \vee (\sim q \wedge r)$ pode ser classificada como uma disjunção. Devido às regras de precedência e presença de parênteses, primeiro avaliamos os termos $(p \to r)$ e $(\sim q \land r)$ para, por fim, analisar a proposição completa $(p \rightarrow r)$ V $(\sim q \land r)$. Assim, a segunda afirmação é falsa (F).
- A proposição $\sim p \leftrightarrow (q \lor \sim r)$ pode ser classificada como uma bicondicional. Pelas regras de precedência primeiro consideramos os termos $\sim p \ \mathrm{e} \ (q \ \mathrm{V} \sim r)$, por fim, avaliamos $\sim p \ \leftrightarrow \ (q \ \mathrm{V} \sim r)$. Dessa forma, a terceira afirmação é verdadeira (V).
- A proposição $p o (q \lor \sim r) \lor s$ pode ser classificada como uma condicional. Pelas regras de

13 14

Resolução:

Dessa forma, a terceira afirmação é verdadeira

A proposição $p \rightarrow (q \lor \sim r) \lor s$ pode ser classificada como uma condicional. Pelas regras de precedência e presença de parênteses, consideramos inicialmente $(q \lor \sim r)$, em seguida os termos $p \in (q \lor \sim r) \lor s$, por fim, $p \to (q \lor q)$ $\sim r$) V s. Sendo assim, a quarta afirmação é verdadeira (V).

Construção de tabela-verdade

15 16

Construção de tabela-verdade

- \checkmark Determinar número de linhas na tabela-verdade em função das proposições simples presentes na proposição composta;
- ✓ Preencher as colunas com os valores lógicos V ou F;
- \checkmark Identificar a precedência dos conectivos para a inserção de colunas adicionais;
- ✓ Identificação dos valores lógicos das proposições intermediárias;
- ✓ Cálculo do valor lógico da proposição composta final.

Exemplificando

Exemplo: $(p \to q) \to (\sim q \to \sim p)$

L	p	q	~p	~q	$p \rightarrow q$	$\sim p \rightarrow \sim q$	$(p \to q) \to (\sim q \to \sim p)$
Г	V	V	F	F	V	V	V
Γ	V	F	F	V	F	F	V
Γ	F	V	V	F	V	V	V
Γ	F	F	V	V	V	V	V
Ĺ							
	Proposições Proposições						

simples

compostas

17 18

Construção com duas proposições simples

T(p,q): $(p \land ^{\sim}q)V (q \land ^{\sim}p)$ É necessário determinar o numero de linhas da tabela-verdade, sabendo que para duas proposições são 2² = 4 linhas, pois temos a proposição p e q. Montando a tabela com 4 linhas:

	р	a
V	-	
v		F
F		v
F		F

Construção com duas proposições simples

A precedência na tabela verdade deve observar:

- . 1.Negações duplas ou simples sobre proposições simples;
- 2. Considere os conectivos dentro dos parênteses, efetuando primeiro as expressões dentro dos parênteses mais internos;
- 3.Conjunções e Disjunções; 4.Condicional;
- 5.Bicondicional

19 20

Inserindo valores lógicos

T(p,q): $(p \land \sim q)V (q \land \sim p)$ e Resolvendo:

р	q	~p	~q	(p ∧~q)	(q A~p)	(p ^ ~q)V
						(q / ~p)
٧	v	F	F	F	F	F
V	F	F	V	V	F	V
F	V	V	F	F	V	V
F	F	V	V	F	F	F

Tabela -verdade

21 22

1) Se a expressão lógica envolvendo R e T for (RAT) V (~R), a tabela-verdade correspondente será a seguinte:

R	Т	(R∧T) V (~R)
V	V	V
V	F	F
F	V	V
F	F	V

Verdadeiro

Resultados na Tabela Verdade

Resultados das validações

Quando trabalhamos com proposições compostas, é comum realizarmos a validação entre as suas proposições, mesmo que cada proposição seja composta por outras proposições combinadas por conectivos.

Os resultados das validações recebem nomes especiais; tautologia, contradição e contingência.

Tautologia

Proposições compostas que sempre assumem valor lógico verdadeiro.

Proposição composta cuja última coluna de sua tabela-verdade assume o valor lógico verdadeiro, independentemente dos valores lógicos das proposições simples que a constituam.

Exemplo:

$$(p \rightarrow q) \rightarrow (\sim q \rightarrow \sim p)$$

25 26

Contradição

Proposições compostas que sempre assumem valor lógico falso.

Proposição composta cuja última coluna de sua tabela-verdade assume o valor lógico falso, independentemente dos valores lógicos das proposições simples que a constituam.

Exemplo:

 $p \leftrightarrow \sim \! p$

Contingência

Proposição que não é tautologia e nem uma contradição.

Proposição composta que pode assumir tanto valores lógicos verdadeiros quanto falsos, em função dos valores das proposições simples que a constituam.

Exemplo:

 $\sim p \rightarrow q$

27 28

Equivalências lógicas

Proposições p e q são equivalências lógicas quando a proposição $p\leftrightarrow q$ for uma tautologia.

Notação: $p \Leftrightarrow q$

Exemplo:

$$(p \to q) \leftrightarrow (\sim\! q \to \sim\! p)$$

Observação: Se duas proposições são equivalentes do ponto de vista lógico, então suas tabelas-verdade são iguais.

Proposições compostas:

Se houver chuva e as plantas forem adubadas, então estas produzirão.

p: ocorrência de chuvas

q: plantas adubadas

r: existência de produção

Pensando na resolução : 2³ = 8 linhas

 $p \wedge q \to r$

Tabela-Verdade

p	q	r	$p \wedge q$	$p \wedge q \rightarrow r$
V	V	V	V	V
V	V	F	V	F
V	F	V	F	V
V	F	F	F	V
F	V	V	F	V
F	V	F	F	V
F	F	V	F	V
F	F	F	F	V

Validações

31 32

Argumentos
Dedutivos, indutivos,
consistentes e
inconsistentes

Tipos de argumentos

Dedutivos, indutivos, consistentes e inconsistentes

Afirmações: "É lógico que a água é molhada"; "É lógico que o gelo é frio"; "É lógico que o carvão é escuro". "É lógico que todo animal que vive no oceano é peixe".

Será que constituem argumentos do ponto de vista da lógica? São logicamente válidas?

33

Raciocínio 1:

Todas as aves tem penas. Todos os animais com penas voam. Existem mamíferos que voam.

Conclusão: existem mamíferos que são aves. Como fazer para decidir se estes argumentos são validos ou inválidos, do ponto de vista da lógica

Poderíamos chamá-los de argumentos bons ou ruins?

É possível identificar padrões para argumentos válidos e inválidos?

Argumento

- ✓ Conjunto de proposições utilizadas para justificar um enunciado (conclusão).
- ✓ Contém, no mínimo, uma premissa.
- ✓ Premissa é o enunciado, no argumento, que apoia, justifica e dá o porquê do que é afirmado ou negado pelo enunciado-conclusão.
- ✓ Podem ter uma única conclusão.

35 36

Argumento válido e inválido

Uma coleção de enunciados pode ou não constituir um argumento.

Argumento válido: a conclusão é verdadeira e todas as suas premissas são verdadeiras.

Observação: no estudo da validade de um argumento, avaliamos o relacionamento lógico entre as premissas e a conclusão, e não o valor de verdade, material ou factual, das premissas.

Argumento inválido: a conclusão é falsa, ainda que todas as premissas sejam verdadeiras.

Diagramas das proposições

Representação de proposições por meio de diagramas:

Existe x que é y:

x y

Não existe x que é y:

37 38

Diagramas das proposições

Existe x que não é y:

Todo x é y:

Argumentos

Indução: argumentar a partir de situações particulares para obter conclusões mais gerais.

Argumento indutivo: conclusão apresenta uma probabilidade de ser verdadeira.

Dedução: argumentar a partir de situações gerais para situações particulares.

Argumento dedutivo: conclusão é certamente verdadeira se as premissas forem verdadeiras.

39 40

Consistentes e Inconsistentes

Proposições p e q consistentes:

Há ao menos uma linha nas tabelas-verdade onde os valores lógicos são ambos verdadeiros. Existe ao menos uma situação na qual ambas as

proposições são verdadeiras. Proposições p e q inconsistentes:

Não há nem mesmo uma linha nas tabelasverdade onde os valores lógicos são ambos verdadeiros.

Não pode ocorrer que ambas as proposições sejam verdadeiras simultaneamente.

Exemplificando

O gelo é frio.

Não é argumento lógico.

O enunciado não apresenta outro enunciado que o justifique ou apoie de forma articulada com evidências.

Resolvendo...

Raciocínio 1:

Todas as aves tem penas. (premissa)

Todos os animais com penas voam. (premissa)

Existem mamíferos que voam. (premissa)

Conclusão: existem mamíferos que são aves.

Logo, não é possível concluir se existem mamíferos que são aves

43 44

45 46

Argumentos

1) Analise as premissas e diga se o argumento é válido:

Todas as aves tem penas. (premissa)

Todos os animais com penas voam. (premissa)

Existem mamíferos que possuem penas. (premissa)

Conclusão: existem mamíferos que voam.

47 48

49 50

Viram como a lógica é importante e as diversas situações surgem diferente do que imaginamos?

51 52

Recapitulando

- ✓ Definição de tabela-verdade;
- ✓ Construção de tabela-verdade;
- ✓ Validação entre as suas proposições;
- ✓ Argumentos Dedutivos, indutivos, consistentes e inconsistentes.

53 54

