3、请针对下图,给出积分图的每一步计算式及计算结果,并给出由积分图计算中间黑色阴影区域像素之和的计算式及结果。 (15 分)

3	2	4	1	7
2	8	7	0	1
4	2	8	4	2
5	6	5	5	1
2	3	7	6	9

解: (1) (10 分, 分别按行内求和结果和积分图结果给出各像素处积分图的计算过程, 每错一个扣 0.5 分, 最多扣 10 分)

3, 3	5, 5	9, 9	10, 10	17, 17
2, 5	10, 15	17, 26	17, 27	18, 35
4, 9	6, 21	14, 40	18, 45	20, 55
5, 14	11, 32	16, 56	21, 66	22, 77
2, 16	5, 37	12, 68	18, 84	27, 104

(2) (5 分, 给出计算公式得 3 分, 给出正确结果得 2 分) 黑色阴影区域像素之和为 3+66-10-14=45

4、请针对如下的 6 个分属于两类的二维特征样本,分析采用哪一维特征进行分类,可以获得最大的信息增益。(15 分)

类别 1: (2, 1), (2, 2), (4, 3) 类别 2: (2, 3), (2, 4), (4, 2)

解: (3分) 原始信息量为: H(P)=6log₂6-3log₂3-3log₂3=6log₂2=6

(3分) 第一维特征只有 2、4 两个取值,因此分界点应在 2 与 4 之间,此时得到两种划分:

类别 1: (2, 1), (2, 2) 类别 2: (2, 3), (2, 4)

和