AMENDMENTS TO THE CLAIMS:

Complete Listing of Claims

1	Claim 1. (previously presented) A microcontroller integrated circuit (IC)
2	comprising:
3	a program memory <u>f</u> or storing a program to be executed;
4	a program counter coupled to the program memory for selecting address
5	locations in said memory;
6	a program counter copy register for storing a program memory address
7	pointed to by said program counter as a return address from a debug monitor
8	routine;
9	instruction execution circuitry coupled to the program memory for
10	executing instructions received from said memory;
11	a breakpoint address register for storing a breakpoint address;
12	address compare circuitry for comparing a value in said program counter
13	to a value in said breakpoint address register, said compare circuitry providing a
14	breakpoint signal upon detection of a valid breakpoint address comparison; and
15	a multiplexer interposed between said program memory and said program
16	execution circuitry, said multiplexer comprising circuitry for inserting a debug
17	instruction into the instruction execution circuitry upon receipt of said breakpoint
18	signal, wherein said debug instruction is substituted for an instruction in a
19	program memory address pointed to by said program counter.

- 1 Claim 2. (original) The microcontroller IC of claim 1, further comprising:
- 2 a stack pointer register;
- 3 a stack breakpoint register for storing a stack trap address;
- 4 stack pointer compare circuitry for comparing a value in said stack pointer
- 5 register to a value in said stack breakpoint register, said stack pointer compare
- 6 circuitry providing a stack trap signal upon detection of a valid stack pointer
- 7 address comparison; and
- 8 wherein said multiplexer inserts said debug instruction into the instruction
- 9 execution circuitry upon receipt of said stack trap signal.
- 1 Claim 3. (original) The microcontroller IC of claim 2, wherein said valid stack
- 2 pointer address comparison is selected from the group consisting of: said value
- 3 in said stack pointer register being equal to said value in said stack breakpoint
- 4 register, said value in said stack pointer register being greater than said value in
- 5 said stack breakpoint register, said value in said stack pointer register being less
- 6 than said value in said stack breakpoint register, and combinations thereof.
- 1 Claim 4. (original) The microcontroller IC of claim 1, further comprising single
- 2 step circuitry directing said multiplexer circuitry to insert said debug instruction
- 3 into the instruction execution circuitry after the execution of each instruction of an
- 4 application program.
- 1 Claim 5. (original) The microcontroller IC of claim 1, wherein said debug
- 2 instruction is a long jump instruction to a debug monitor routine.

Claim 6 (canceled)

- 1 Claim 7. (original) The microcontroller IC of claim 1, wherein said address
- 2 comparison circuitry further comprises memory bank comparison circuitry for
- 3 detecting a specific bank access in addition to said breakpoint address.
- 1 Claim 8. (previously presented) An embedded microcontroller apparatus 2 comprising:
- 3 a circuit board embedded in the apparatus;
- 4 a microcontroller integrated circuit disposed on said circuit board,
- 5 including
- 6 a program memory for storing a program to be executed,
- 7 a program counter coupled to the program memory for selecting address 8 locations in said memory,
- 9 a program counter copy register for storing a program memory address 10 pointed to by said program counter as a return address from a debug monitor 11 routine, and
- 12 debug circuitry disposed on said microcontroller integrated circuit, said 13 debug circuitry comprising
- 14 compare circuitry for comparing a breakpoint address to instruction 15 fetch addresses in said program memory, said compare circuitry 16 generating a breakpoint signal indicating a valid address compare; and 17 multiplexer circuitry coupled to said compare circuitry, said 18 multiplexer circuitry, upon receiving said breakpoint signal, substituting a
- 19 debug program instruction for execution by the microcontroller in place of 20
- 1 Claim 9. (original) The embedded microcontroller apparatus of claim 8.

a standard instruction fetched from program memory.

2 wherein said apparatus is a universal serial bus controller.

- 1 Claim 10. (original) The embedded microcontroller apparatus of claim 8,
- wherein said microcontroller further comprises a stack pointer register, and said
- 3 debug circuitry further comprises:
- 4 a stack breakpoint register for storing a stack trap address; and
- 5 stack pointer compare circuitry for comparing a value in said stack pointer
- 6 register to a value in said stack breakpoint register, said stack pointer compare
- 7 circuitry providing a stack trap signal upon detection of a valid stack pointer
- 8 address comparison; wherein said multiplexer substitutes said debug program
 - instruction for execution by said microcontroller upon receiving said stack trap
- 10 signal.

9

- 1 Claim 11. (original) The embedded microcontroller apparatus of claim 10,
- 2 wherein said valid stack pointer address comparison is selected from the group
- 3 consisting of: said value in said stack pointer register being equal to said value in
- 4 said stack breakpoint register, said value in said stack pointer register being
- 5 greater than said value in said stack breakpoint register, said value in said stack
- 6 pointer register being less than said value in said stack breakpoint register, and
- 7 combinations thereof.
- 1 Claim 12. (original) The embedded microcontroller apparatus of claim 8, said
- 2 debug circuitry further comprising single step circuitry directing said multiplexer
- 3 circuitry to substitute said debug program instruction for execution by said
- 4 microcontroller after the execution of each standard instruction fetched from
- 5 program memory.
- 1 Claim 13. (original) The embedded microcontroller apparatus of claim 8,
- 2 wherein said debug program instruction is a long jump instruction to a debug
- 3 monitor routine.

Claim 14 (canceled)

1	Claim 15. (previously presented) A method of debugging a microcontroller
2	integrated circuit, said method comprising:
3	storing a breakpoint address in a hardware register on said microcontrolle
4	integrated circuit;
5	executing an application program from program memory by said
6	microcontroller;
7	comparing application program instruction addresses to said breakpoint
8	address;
9	halting execution of said application program upon detection of an
10	instruction fetch from a memory address equal to said breakpoint address;
11	storing said memory address in a program counter copy register, wherein
12	said address is reloaded into said program counter after execution of said debug
13	routine;
14	substituting a jump instruction to a debug program for said instruction
15	fetched from said memory address; and
16	executing said debug program.
1	Claim 16. (original) The method of claim 15, further comprising:
2	storing a stack trap address in a stack breakpoint hardware register on
3	said microcontroller;
4	comparing stack pointer addresses to said stack breakpoint address; and
5	upon detection of a valid stack pointer address comparison, performing
6	said halting execution, said substituting said jump instruction, and said executing
7	said debug program steps

- 1 Claim 17. (original) The method of claim 16, wherein said valid stack pointer
- 2 address comparison is selected from the group consisting of: said stack pointer
- 3 address being equal to said stack breakpoint address, said stack pointer address
- 4 being greater than said stack breakpoint address, said stack pointer address
- 5 being less than said stack breakpoint address, and combinations thereof.
- 1 Claim 18. (original) The method of claim 15, said executing said debug program
- 2 comprising:
- 3 providing status information to external circuitry; and
- 4 receiving new breakpoint address information.

Claim 19 (canceled)

- 1 Claim 20. (previously presented) The method of claim 15, further comprising
- 2 pushing the address stored in the program counter copy register onto a stack
- 3 and executing a return to said application program at a location pointed to by
- 4 said memory address.