

Accede a apuntes, guías, libros y más de tu carrera

FORMULARIO QUÍMICA (actualizado)

8 pag.

QUÍMICA COMÚN

Colaboración de Ayudapsuquímica y Apuntes.con jaz

Eje 1 "Estructura atómica"

La siguiente tabla periódica es la que estará presente en la PTU de ciencias. Es importante conocer:

- o Metales
- o No metales
- o Gases nobles

Grupos: Identifican la cantidad de electrones de valencia, de un elemento.

1	Número atómico					2	
. H	Mana atémina						He
1,0		Masa atómica ————					4.0
3	4	5	6	7	8	9	10
Li	Be	В	С	N	0	F	Ne
6,9	9.0	10,8	12,0	14,0	16,0	19,0	20,2
11	12	13	14	15	16	17	18
Na	Mg	ΑI	Si	Р	s	CI	Ar
23.0	24,3	27,0	28,1	31,0	32,0	35,5	39,9
19 K	20 Ca	IIIA	IVA	VA	VIA	VIIA	VIIIA

Ejemplo: El carbono (C), se encuentra en el grupo IVA, por lo que presenta 4 electrones de valencia (4 electrones en el nivel más alto de energía).

Tipos de enlace:

o Enlace covalente: No metal + No metal.

o Enlace iónico: No metal + metal

o Enlace metálico: Metal + metal

Ejemplo: NaCl, sus elementos se encuentran unidos mediante enlace iónico, ya que el Sodio es un No metal y el Cloro es un metal.

Geometría molecular:

AX_2	2	0	Lineal	180°
AX_3	3	0	Trigonal plana	120°
AX ₂ E	2	1	Angular	< 120°
AX_4	4	0	Tetraédrica	109,5°
AX_3E	3	1	Piramidal	< 109, 5°
AX_2E_2	2	2	Angular	< 109, 5°

39,1 40,0

IJΑ

ĬΑ

Forma Enlaces

Pares NO

Geometría

Ángulo

Descargado por Alexis (nomalex833@gmail.com)

Alcanos

- o Terminación —ano
- o Enlaces simples
- \circ C_nH_{2n+2}

Cicloalcanos

- o Terminación —ano
- o Prefijo: Ciclo

Alquenos

- o Terminación eno
- o Enlaces dobles
- \circ C_nH_{2n}

<u>Cicloalq.uenos</u>

- o Terminación —eno
- o Prefijo: Ciclo

Alquinos

- o Terminación —ino
- o Enlaces triples
- \circ C_nH_{2n-2}

Cicloalquinos

- o Terminación -ino
- o Prefijo: Ciclo

NIO de essere	n., - n: ::-
Nº de carbonos	Prefijo griego
1	Met
2	Εt
3	Prop
4	But
5	Pent
6	Hex
7	Hept
8	Oct
9	Non
10	Dec

EJEMPLOS

- 1. Propano (C_3H_8)
 - o Presencia de SOLO Enlaces simples
 - o 3 carbonos
- 2. Hexeno (C_6H_{12})
 - o Presencia de enlaces dobles
 - o 6 carbonos
- 3. Pentino (C_5H_8)
 - o Presencia de enlaces triples
 - o 5 carbonos

Descargado por Alexis (nomalex833@gmail.com)

Encuentra más documentos en www.udocz.com

Grupos funcionales (en orden de prioridad).

	Grupo funcional	Sufijo	Nombre del grupo como sustituyente	Fórmula general
1	Ácido carboxílico	-ico	carboxi	R-COOH
2	Ésteres	-ato	carbonil-alcoxi	R1-000-R2
3	Amidas	-amida	carbamoil-	R-GO-NH2
4	Nitrilos	-nitrilo	ciano-	R-GN
5	Aldehídos	-al	formil-	R-CHO
6	Cetonas	-ona	OXO-	R1-00-R2
7	Alcoholes	-0	hidroxi-	R-OH
8	Tioles	-tiol	mercapto-	R-SH
9	Aminas	-amina	amino-	R-NH2
10	Éteres	-éter	alcoxi-	R1-O-R2
11	Tioester	-sulfuro	alquiltio-	R1-S-R2
12	Alquenos	-eno	alquenil	R=R
13	Alquinos	-ino	alquinil	R≣R
14	Halogenuros		halógeno	-
15	Alcanos	-ano	alquil	R-R

Estructura tridimensional de compuestos orgánicos

Cuñas y líneas

Se usan líneas en forma de cuñas para denotar las uniones (enlaces) entre los átomos.

Caballete

La molécula se dispone en perspectiva y los enlaces se representan con trazos delgados y continuos.

Newman

El punto del centro representa el carbono de adelante y el círculo representa el carbono de atrás.

Las líneas son enlaces que los unen a los sustituyentes.

Fischer

El enlace carbono — carbono queda en el plano del papel, mientras que la visión del observador se da por encima o debajo de la molécula.

Encuentra más documentos en www.udocz.com

Eje 3 ''Estequiometria''

Relación mol – masa – masa molar

$$Mol = \frac{Mol(g)}{Masa\ molar \frac{(g)}{(mol)}}$$

Ejemplo: ¿Cuántos mol de sustancia hay en 150g de HCI (masa molar: 36,5g/mol)?

$$Mol = \frac{Mol(g)}{Masa\ molar \frac{(g)}{(mol)}} \quad Mol = \frac{150(g)}{36.5 \frac{(g)}{(mol)}} = \frac{4.1\ mol}{100}$$

$$\frac{1 \ mol}{x \ mol} = \frac{22,4 \ L}{x \ L} \ imes$$
 o Y son tus incógnitas, dependiendo de los datos que tengas.

Ejemplo: ¿Cuántos mol de sustancia hay en 6L de NaCl (masa molar: 58,4 g/mol)?

$$\frac{1 \, mol}{x \, mol} = \frac{22,4 \, L}{6 \, L} = \frac{6L*1 \, mol}{22,4 \, L} = 0,27 \, mol$$

Relación mol – nº de entidades elementales

$$\frac{1 \, mol}{x \, mol} = \frac{\text{N}^{\circ} \, \text{Avogadro}}{\text{Y entidades elementales}}$$

Entidades elementales: Átomos, iones y moléculas.

N° Avogadro: $6,022 * 10^{-23}$

X o Y son tus incógnitas, dependiendo de los

datos que tengas.

Ejemplo: ¿Cuántos átomos de NaOH hay en 0,5 mol de la misma sustancia?

$$\frac{1 \, mol}{0.5 \, mol} = \frac{6.022 * 10^{-23}}{\text{Y átomos}}$$
$$= \frac{0.5 \, mol * 6.022 * 10^{-23}}{1 \, mol} =$$

 $3,011*10^{23}$ átomos

Relación masa y volumen

$$Densidad = \frac{masa (g)}{Volumen (ml)}$$

Ejemplo: ¿Cuál es la densidad de X sustancia química, sabiendo que tiene un volumen de 35mL y una masa de 17g?

Densidad =
$$\frac{\text{masa (g)}}{\text{Volumen (ml)}} = \frac{17 \text{ g}}{35 \text{ ml}} = \frac{0.49 \text{ g/ml}}{10.49 \text{ g/ml}}$$

% en masa (también llamado %m/m o %p/p)

% en masa =
$$\frac{\text{masa (g)soluto}}{\text{masa (g)solución}} * 100$$

Ejemplo: Calcule los gramos de soluto contenidos en una disolución con concentración 35% m/m y con una masa de solución de 135g.

$$35\% = \frac{x}{135 g} * 100 = \frac{135 g * 35\%}{100} = 47,25 g de$$

soluto.

% en volumen (también llamado %v/v)

% en volumen =
$$\frac{\text{volumen (ml)soluto}}{\text{volumen (ml)solución}} * 100$$

Ejemplo: Calcule el volumen de una disolución 10%v/v con una cantidad de disuelta de 8mL de soluto.

$$10\% = \frac{8 \text{ ml}}{x \text{ ml}} * 100 \to 10\% = \frac{800 \text{ ml}}{x} \to x = \frac{800 \text{ ml}}{10\%} = \frac{80 \text{ ml de disolución.}}{}$$

% en masa /volumen

% en m/v =
$$\frac{\text{masa (g)soluto}}{\text{volumen (ml)solución}} * 100$$

Ejemplo: Calcule el %m/v de una disolución de 8g de NaOH disuelta en 90mL de disolución.

$$\% \frac{m}{v} = \frac{8 g}{90 ml} * 100 = \frac{800 g}{90 ml} = 8,89\% m/v$$

Molaridad (mol/L o M)

$$M = \frac{mol \ soluto}{volumen \ (L)$$
olución

(Si la relacionamos con masa y masa molar)

$$M = \frac{g \ soluto}{M. \ molar \ soluto * L \ de \ solución}$$

Ejemplo: Calcule la molaridad de una disolución de 8g de HCI (masa molar 36,5g/mol) disueltas en 3L de disolución.

$$M = \frac{8g}{35,5g/mol * 3L} = \frac{8g}{106,5 g/(mol * L)} = \frac{0,075 \text{ mol/L}}{0,075 \text{ mol/L}}$$

Molalidad (mol/kg o m)

$$m = \frac{mol\ soluto}{Kg\ solvente}$$

(Si la relacionamos con masa y masa molar)

$$M = \frac{g \ soluto}{M. \ molar \ soluto * Kg \ solvente}$$

E jemplo: Calcule la molalidad de una disolución de 5 mol de KF (masa molar 58,1g/mol) disueltos en 800mL de Agua (densidad 1g/mol).

$$m = \frac{mol \ soluto}{Kg \ solvente} = \frac{5 \ mol}{800 \ g} = \frac{0,00625}{molal}$$

Fracción molar (x)

1.
$$x_{soluto} = \frac{mol \ soluto}{mol \ totales}$$
2. $x_{solvente} = \frac{mol \ solvente}{mol \ totales}$

2.
$$x_{solvente} = \frac{mol\ solvento}{mol\ totales}$$

3.
$$x_{soluto} + x_{solvente} = 1$$

 \sqcup *Mol totales* = *Mol soluto* + mol solvente

E, jemplo: Calcule la fracción molar del solvente de una disolución compuesta de 3 mol de KOH (masa molar 56,1g/mol) disueltos en 300mL de agua (densidad 1g/mol, masa molar 18g/mol).

$$x_{solvente} = \frac{mol\ solvente}{mol\ totales}$$

Mol totales = Mol soluto + Mol solvente

= 3 mol KOH + (300g / 18g/mol) mol Agua

= 3 mol KOH + 16,67 mol Agua = 19,67 mol totales

$$X_{\text{solvente}} = \frac{\text{Mol solvente}}{\text{Mol totales}} = \frac{16,67 \, mol \, Agua}{19,67 \, mol \, totales} = \frac{0,85 \, \text{X}}{19,67 \, mol \, totales}$$

solvente

Propiedades coligativas

Disminución de la presión de vapor: P = P° * X_{solvente} P° = presión del solvente puro

Aumento ebulloscópico: $\Delta T = Ke * m Ke = Constante ebulloscópica m = molalidad$

Descenso crioscópico: $\Delta T = Kc * mKc = Constante crioscópica m = molalidad$

Presión osmótica: $\Pi = MRI$

M = molaridad

T = Temperatura (en Kelvin)

R = constante de los gases ideales [0,082 (atm * L) / (mol * K)]

Ejemplo nº 1: Calcula la presión de vapor final de la disolución, sabiendo qué la Pº del agua a 20°C es 17,54mmHg y la molalidad de la disolución de glucosa es de 0,85m.

 $P = P^{\circ} * X_{solvente}$ P = 17,54 mmHg * 0,85 m P = 14,91 mmHg

Ejemplo nº 2: Diez gramos de una sustancia, de masa molar 266 g/mol, fueron disueltos en 500 g de tetracloruro de carbono. ¿Cuál es la variación de T° de ebullición? (Datos relativos al tetracloruro de carbono: Constante ebulloscópica Ke = 5,32; Temperatura de ebullición = 77 °C bajo presión normal).

$$\Delta T = \text{Ke * m}$$
 $\Delta T = 5,32 * \left(\frac{10 \text{ g}}{266 \frac{g}{mol} * 0,5 \text{ kg}} \right)$

$$\Delta T = 5,32 * 0,075\text{m}$$

$$\Delta T = 0,4^{\circ}$$

Ejemplo nº 3: ¿Cuál es la variación de temperatura de congelación de una disolución conteniendo 17 g de antraceno (C14H10) en 256 g de benceno? (temperatura congelación del benceno puro = 5,42 °C; Kc benceno = 5,12; masa molar antraceno = 178 g/mol).

$$\Delta T = \text{Kc * m}$$
 $\Delta T = 5,42 * (178 \frac{g}{mol} * 0,256 \text{ Kg})$

$$\Delta T = 5,32 * 0,22\text{m}$$

$$\Delta T = 1,17^{\circ}$$

E, jemplo nº 4: Determine la presión osmótica a 300K de una disolución 0,27M.

$$\Pi = MRT$$

 $\Pi = 0.27 \text{mol/L} * 0.082 \text{ (atm * L / mol * K) * 300L}$

 $\Pi = 6,642 \text{ atm}$

