Équilibres chimiques et thermochimie; résultats ou solutions

4. On considère que l'air comporte 4 fois plus de N₂ que de O₂. Compte tenu du fait que l'énoncé ne donne pas la valeur du volume (grandeur extensive), on peut choisir arbitrairement la quantité de matière totale introduite. Prenons 5 moles de HCl ce qui correspondra à 20 moles d'air (dont 4 de O₂ et 16 de N₂).

$$4 \text{ HCl} + O_2 = 2 \text{ H,O} + 2 \text{ Cl,}$$

	HCl	O ₂	H ₂ O	Cl ₂	N ₂	Total
Initial	5	4	0	0	16	25
Final	5-4x	4-x	2x	2x	16	25 - x

On suppose l'eau à l'état de vapeur.

La condition d'équilibre est alors $K^{\circ} = \frac{(2x)^2 (2x)^2 (25-x)}{(5-4x)^4 (4-x)} \frac{P^{\circ}}{P}$.

Puisque $P_{\text{O}_2} = 2P_{\text{Cl}_2}$ on a le même rapport entre quantités de matière et $4 - x = 2 \times (2x)$ donc x = 4 / 5. Il ne reste plus qu'à remplacer numériquement pour obtenir $K^{\circ} = 4,72$.

Remarque : attention à la présence du composant inerte de l'air N_2 qui, bien que n'intervenant pas dans le bilan réactionnel, joue sur les fractions molaires des constituants actifs.

7. Résultats: $K^{\circ} \approx 1370$; nouveau rendement: 0,956 > 0,893 car on a mis plus de O_2 . Cela a entraîné un déplacement de l'équilibre dans le sens de la consommation de O_2 et donc aussi de SO_2 . Il y a donc une plus grande fraction de SO_2 ayant réagi.

Cette réaction est la réaction clé de la synthèse de SO_3 qui permet d'obtenir par hydratation l'acide sulfurique, un des produits chimiques de synthèse les plus importants. On s'est écarté ici des proportions stœchiométriques donc la pression partielle finale de SO_3 n'est pas optimale (voir le cours). Par contre on a mieux consommé le réactif coûteux SO_2 alors que O_2 est gratuit (dioxygène de l'air). Cela peut être bénéfique.

8. Résultats:

a.
$$K^{\circ} = \frac{\alpha_0^3}{(1 - \alpha_0)^2 (2 + \alpha_0)} \Rightarrow \alpha_0 = 0{,}236$$

b. Le volume et la température sont fixés donc, d'après la loi des gaz parfaits, la pression est directement proportionnelle à la quantité de matière. Par exemple, si le taux de dissociation est α_1 , la quantité de matière de NOBr est multipliée par

 $1-\alpha_1$ et sa pression l'est aussi : $P_{\mathrm{NOBr}}=\left(1-\alpha_1\right)P^{\mathrm{o}}$. On trouve alors l'équation (condition d'équilibre)

 $K^{\circ} = \frac{\alpha_1^3}{2(1-\alpha_1)^2} \Rightarrow \alpha_1 = 0{,}228$. α_1 est plus petit que α_0 car la réaction augmente la quantité de matière de gaz.

Effectuée à volume fixé, la réaction va donc faire augmenter la pression qui va devenir plus grande que la pression initiale. La pression finale est donc plus grande au b qu'au a. Or (loi de Le Chatelier) une pression élevée favorise la réaction dans le sens indirect (diminution de $n_{\rm rag}$).

13. La réaction étudiée est la réaction de formation de Cu_2O donc $\Delta_r H_{208}^{\circ} = \Delta_f H^{\circ}(Cu_2O) = -169 \text{ kJ} \cdot \text{mol}^{-1}$.

À 750°C:
$$\Delta_r S^{\circ} = 151 - 2 \times 56 - 0, 5 \times 232 = -77 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

Au-delà de $T^\circ=1083$ °C il faut considérer le cuivre à l'état liquide. L'entropie de fusion du cuivre est $\frac{L}{T^\circ}=\frac{13000}{1083+273}=9,6 \text{ J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1}. \text{ Pour la réaction étudiée, il y a donc un saut de } \left(-2\right)\times L \text{ pour } \Delta_r H^\circ \text{ et de } \left(-2\right)\times L / T^\circ \text{ pour } \Delta_r S^\circ \text{ c'est-à-dire que (au-delà de } T^\circ \text{)}:$

$$\Delta_r H^\circ = -169 - 26 = -195 \text{ kJ} \cdot \text{mol}^{-1} \qquad \text{et} \qquad \Delta_r S^\circ = -77 - 2 \times 9, \\ 6 = -96, \\ 2 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = -169 - 26 = -195 \text{ kJ} \cdot \text{mol}^{-1} = -169 - 26 = -195 \text{ kJ} \cdot \text{mol}^{-1} = -169 - 26 = -195 \text{ kJ} \cdot \text{mol}^{-1} = -169 - 26 = -195 \text{ kJ} \cdot \text{mol}^{-1} = -169 - 26 = -196, \\ 2 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = -169 - 26 = -196, \\ 3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = -169 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -196, \\ 4 \text{ J} \cdot \text{mol}^{-1} = -160 - 26 = -1$$

Finalement, pour T>1083 °C , en unité SI, $~\Delta_{\rm r}G^{\circ}=-195000+96, 2\times T$.

À 1200°C = 1473 K
$$\Delta_r G^{\circ} = -53300 \text{ J} \cdot \text{mol}^{-1}$$
 et $K^{\circ} = 78$