DSC 215 - PROBABILITY AND STATISTICS FOR DATA SCIENCE

DIFFERENCE OF MEANS

POWER CALCULATIONS

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

Definition of Statistical Power

- **Definition:** The statistical power of a hypothesis test is the probability that the test correctly rejects the null hypothesis when a **specific** alternative hypothesis is true.
- Roughly speaking, it is represents the chances of a "true positive" detection conditional on the actual existence of an effect.
- Mathematically:

$$power = \mathbb{P}(reject H_0 | H_1 is true)$$

• From the definition: power = $1 - \mathbb{P}(\text{Type II Error})$

Why Statistical Power is Important

• Recall:

$$power = \mathbb{P}(reject H_0 | H_1 is true)$$

- Consider the example of a blood-pressure drug trial, where
 - H_0 : the drug has no effect, i.e., $\mu_t \mu_c = 0$
 - $H_1: \mu_t \mu_c = -3mmHg$
- When designing the trial, you would like to know that
 - If the drug actually has an effect of some size (e.g., reduces blood pressure by 3mmHg),
 - then the probability of rejecting the null is high.
- How can we make sure of this? We make sure the power is high enough.

Statistical Power: an Example

- Suppose for the study we would like to run, $n_t = n_c = 100$, and we have a previous estimate from other studies of $s_t = s_c = 12$.
- Then we can estimate $SE_{\bar{x}_t \bar{x}_c} = \sqrt{12^2/100 + 12^2/100} = 1.7$
- Moreover, since df > 30

under the null, we can model $\bar{x}_t - \bar{x}_c$ as normal, with mean 0 and SE = 1.7

Calculating the Statistical Power

- How can we make sure the power is high enough?
- $\mathbb{P}(\operatorname{reject} H_0 \mid H_1 \text{ is true}) = \mathbb{P}(p\text{-value} < \alpha \mid H_1 \text{ is true})$
- p-value $< \alpha \iff \mathbb{P}$ (test statistic at least as extreme as observed $|H_0\rangle < \alpha$ $\iff \bar{x}_t - \bar{x}_c$ lies in the rejection region

Figure: Distribution of $\bar{x}_t - \bar{x}_c$

• For example, $\alpha=0.05$, means we would reject H_0 if $\bar{x}_t-\bar{x}_c$ is less than $-1.96\times SE=-3.332$ or greater than $1.96\times SE=3.332$

Calculating the Statistical Power

- But how do we use this to calculate the power?
- · What we calculated: the boundaries of the rejection region under the null
 - In our example: ± 3.332
- What we know: The alternate distribution is normal with mean -3mmHg (recall $H_1: \mu_t \mu_c = -3mmHg$)

• What remains: calculate the probability, under ${\cal H}_1$, of falling in the rejection region.

Calculating the Statistical Power

• What remains: calculate the probability, under H_1 , of falling in the rejection region.

• This is the probability under a normal distribution of mean -3, and SE 1.7, of drawing x < -3.332. (Here df > 30, so we can approx. with a normal distribution)

• Using software or Z-scores: $Z = \frac{-3.332 - 3}{1.7} = -0.2 \implies P(x < -3.332) \approx 0.42$

Ensuring the Statistical Power is High

- In the last example, we found power = $\mathbb{P}(\text{reject }H_0 \mid H_1 \text{ is true}) = 0.42.$
- So in this example, there is **only** a 42% chance of rejecting the null hypothesis when the alternate hypothesis holds!
- This is clearly not good.
- Question: What could we have done to ensure higher power?
- **Answer:** Pick larger *n*!
- Repeating the same example with $n_t=n_c=500$, gives rejection boundaries ± 1.49 , SE=0.76, Z-score under the alternate Z=1.99, and power = 0.977.

Working Our Way Backwards to Find a Good n

- We've calculated $n_t = n_c = 100 \implies \text{power} = 0.42$ $n_t = n_c = 500 \implies \text{power} = 0.977$
- Question: If we want power = 0.8, what should n be?
- Approach:
 - First, find Z-score associated with a lower tail of 80% $\Longrightarrow Z = 0.84$
 - Second, at $\alpha = 0.05$, rejection boundary is $-1.96 \times SE$
 - So the distance between the means under the null and the alternate is $1.96 \times SE + 0.84 \times SE = 2.8 \times SE$

Working Our Way Backwards to Find a Good n

So, now we know

$$2.8 \times SE = 0 - (-3) = 3$$

$$2.8 \times \sqrt{12^2/n + 12^2/n} = 3$$

$$\implies n = 250.88$$

• We should aim for 251 patients per group to achieve 80% power at lpha=0.05