		\bigcirc
ex	ceu a'ce 6 :	
4)	Supposous anbic.	
	Supposons qu'il existe 2, y EZ, ax+by=c.	
	Qua anbla et anblb	
	Due and laxiby	
	Pour anbje contradiction.	
2)	Supposon antic	
2)	a) on a d'agus le tréoceine de Bezoul, I(rcs) EZE,	
	ax + by = anb.	-
	Thus c = andc' où c'ET	
·¥	Dane cart cby = c'arb = c	
	Don 2 = 200 at 4 = cy extraction de (15)	
	si a = 0 el b = 0: by = 1 si ble n a = 0 el b = 0 a dessel	
2	B) Analyse sort x, y solde # : ax + by = c.	
	Pour antby = antby.	
	Due a (x-20) = b(4,-4)	
	En note: at= da' et b=db' où d= anb.	
	Ausi d'(2-20) = b'(y-y)	
	D'où a' ly-y con a'ab'=1	
	Douc y-y=ka' over kEZ	
	Amsi, d'a-a'zo = b'ka'	
	Douc x-ro = b/k.	
	\mathcal{D} où $x = x_0 + kb'$	
	Synthesi: (2+kb', y, -ka') est solution de + pour # k EZ	
	a (2+kb') + b(y-ka') = a2+ kab' + by-kba'	
	$\frac{a(x_0+kb)+b(y_0-ka)=ax_0+ka0+by_0}{=ax_0+by_0+by_0+ab'=adb'=a}$	16
	$= a x_0 + b y_0 + a x_0 = a a x_0 = a x_0$	~
	(1) C C Lb' 11 ba' b 67/2	
	Douc S = { (x0+kb', y0-ka') k EZ/}	
1		