ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ

Ústav mechaniky tekutin a termodynamiky

DIPLOMOVÁ PRÁCE

Zlepšení termodynamických vlastností vysokorychlostní DRTA sondy pomocí numerických simulací

MASTER THESIS

Improvement of thermodynamic properties of a high-speed DRTA probe by numerical simulations

Autor práce: Bc. Josef Krubner

Vedoucí práce: Ing. Michal Schmirler, Ph.D.

Konzultant: doc. Ing. Jan Halama, Ph.D.

Akademický rok 2021/2022

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení: Krubner Jméno: Josef Osc	obní číslo:	473541
------------------------------------	-------------	--------

Fakulta/ústav: Fakulta strojní

Zadávající katedra/ústav: Ústav mechaniky tekutin a termodynamiky

Studijní program: Aplikované vědy ve strojním inženýrství

Specializace: Matematické modelování v technice

II. ÚDAJE K DIPLOMOVÉ PRÁCI

NIÁTOV	امنه	lomové	nráco.
INAZEV	uibi	IOIIIOVE	DIACE.

Zlepšení termodynamických vlastností vysokorychlostní DRTA sondy pomocí numerických simulací

Název diplomové práce anglicky:

Improvement of thermodynamic properties of a high-speed DRTA probe by numerical simulations

Pokyny pro vypracování:

- 1) Popište problematiku měření teplot plynů proudících při vysokých podzvukových rychlostech, tedy s uvažováním jejich stlačitelnosti.
- 2) Popište princip fungování v názvu zmiňované DRTA sondy. Představte geometrii sondy, která bude výchozí pro další kroky v rámci návrhu zlepšení jejích termodynamických vlastností.
- 3) Popište CFD model, který budete pro simulaci termodynamických vlastností sondy používat (fyzikální model, okrajové podmínky, numerické schéma, způsoby diskretizace atd.).
- 4) Proveďte simulace vlivu jednotlivých vybraných konstrukčních úprav na termodynamické parametry sondy (hodnoty restitučních faktorů v závislosti na rychlosti nabíhajícího proudu, směrová citlivost, rozložení proudového a teplotního pole atd.)
- 5) Na základě výsledků provedených numerických simulací vyberte nejvhodnější geometrii sondy a vyhodnoťte její termodynamické vlastnosti.

C	4	. X ~ ~ 4	literatury:
Seznam	aonon	icene	meraniry

Dle pokynů vedoucího práce či konzultanta.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Michal Schmirler, Ph.D. ústav mechaniky tekutin a termodynamiky FS

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

doc. Ing. Jan Halama, Ph.D. ústav technické matematiky FS

Datum zadání diplomové práce: 25.04.2022 Termín odevzdání diplomové práce: 29.07.2022

Platnost zadání diplomové práce:

Ing. Michal Schmirler, Ph.D.

podpis vedoucí(ho) práce

Ing. Michal Schmirler, Ph.D.

podpis vedoucí(ho) ústavu/katedry

doc. Ing. Miroslav Španiel, CSc.

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Datum převzetí zadání Podpis studenta

Prohlášení	
Prohlašuji, že jsem bakalářskou práci na ností vysokorychlostní DRTA sondy pomoc statně. Veškerá použitá literatura a podkla seznamu literatury.	
V Praze, dne	Josef Krubner

Poděkování Tímto bych chtěl poděkovat Ing. Michalu Schmirlerovi, Ph.D. a doc. Ing. Janu Halamovi, Ph.D. za cenné rady a připomínky, které mi byly nápomocny při vypracování této diplomové práce. Dále bych rád poděkoval své rodině a své přítelkyni za podporu při studiu.

Anotační list

Název práce:	Zlepšení termodynamických vlastností vysokorychlostní DRTA sondy pomocí numerických simulací
Title:	Improvement of thermodynamic properties of a high-speed DRTA probe by numerical simulations
Autor:	Bc. Josef Krubner
Studijní program:	Aplikované vědy ve strojním inženýrství
Druh práce:	Diplomová
Vedoucí práce	Ing. Michal Schmirler, Ph.D.
Konzultant	doc. Ing. Jan Halama, Ph.D.
Abstrakt:	TODO
Abstract:	TODO
Klíčová slova:	návrh sondy pro měření rychlosti, měření rychlosti plynů, podzvukové proudění, restituční faktor, rovnovážná teplota, CFD simulace
Keywords:	velocimetry probe design, gas velocimetry, subsonic flow, recovery factor, recovery temperature, CFD simulation

Obsah

Se	eznar	n použitých symbolů	7
	Sezr	nam symbolů a indexů	7
	Sezr	nam použitých indexů	7
Se	eznar	n obrázků	8
Ú	vod		9
1	Mě	ření teplot při vysokých podzvukových rychlostech	10
	1.1	Dynamický ohřev	10
	1.2	Restituční faktor	11
	1.3	Měření stagnační teploty	12
		1.3.1 Rovnovážná teplota	12
		1.3.2 Měřicí sondy	13
	1.4	Měření statické teploty	13

Seznam použitých symbolů

Seznam symbolů

a	$\frac{m}{s}$	Rychlost zvuku
c_p	$\frac{J}{kgK}$	Měrná tepelná kapacita za konstantního tlaku
f	1	Restituční faktor
h	$\frac{J}{kg}$	Měrná entalpie
k	$\frac{m^2}{s^2}$	Turbulentní kinetická energie
Ma	1	Machovo číslo
p	Pa	Tlak
\Pr	1	Prandtlovo číslo
r	$\frac{J}{kgK}$	Měrná plynová konstanta
Re	1	Reynoldsovo číslo
T	K	Termodynamická teplota
T_r	K	Rovnovážná teplota
u	$\frac{m}{s}$	Rychlost proudění
ε	1	Chyba
κ	1	Poissonova konstanta
μ	Pas	Dynamická viskozita
ν	$\frac{m^2}{s}$	Kinematická viskozita
ho	$\frac{kg}{m^3}$	Hustota
ω	$\frac{1}{s}$	Specifická rychlost disipace

Seznam indexů

A	Čidlo A
B	Čidlo B
0	Stagnační

Seznam obrázků

$1.1.1$ Závislost dynamické teploty a poměru $\frac{T}{T_0}$ na Machově čísle proudění pro	
statickou teplotu 300 K	11
$1.3.1$ Závislost rovnovážné teploty a chyby ε_{T0} na restitučním faktoru pro	
různé rychlosti proudění při statické teplotě 300 K	12
1.3.2 Vybrané geometrie sond pro měření stagnačních teplot	13

$\mathbf{\acute{U}vod}$

Problematika měření rychlosti proudění tekutin je velice rozsáhlým vědním oborem a můžeme zde nalézt mnoho postupů a metodik, které se postupně vyvíjejí.

1 Měření teplot při vysokých podzvukových rychlostech

Teplota, jako stavová veličina, je jedním z důležitých parametrů proudění, které jsou sledovány během průmyslových procesů, nebo během provozu strojírenských zařízení, či výzkumných tratí. Její měření je obvykle bezproblémové, hovoříme-li o nízkých rychlostech proudění, nebo případně o kapalinách. Při přechodu do vyšších podzvukových rychlostí plynů (na které je zaměřena tato práce) dochází k nárůstu vlivu jejich stlačitelnosti a určení statické, potažmo stagnační, teploty proudění začíná být problematické. Hranice stlačitelnosti se obvykle uvažuje okolo Ma=0.3.

1.1 Dynamický ohřev

Dobrým ukazatelem míry vlivu stlačitelnosti proudění na měření teploty je poměr statické a stagnační teploty, který lze odvodit z energetické rovnice při uvažování adiabatického výtoku z nádoby o klidových parametrech h_0 , T_0 a $u_0 = 0 \frac{m}{s}$ do obecného místa s parametry h, T a u:

$$h_0 = h + \frac{u^2}{2} \tag{1.1.1}$$

$$h = c_p T (1.1.2)$$

$$c_p T_0 = c_p T + \frac{u^2}{2} (1.1.3)$$

$$T_0 = T + \frac{u^2}{2c_p} = T + \frac{u^2}{2c_p} \frac{a^2}{a^2}$$
 (1.1.4)

$$a = \sqrt{\kappa r T} \tag{1.1.5}$$

$$c_p = \frac{\kappa r}{\kappa - 1} \tag{1.1.6}$$

$$T_0 = T \left(1 + \frac{\kappa - 1}{2} \frac{u^2}{a^2} \right) \tag{1.1.7}$$

$$Ma = \frac{u}{a} \tag{1.1.8}$$

$$\frac{T}{T_0} = \frac{1}{1 + \frac{\kappa - 1}{2} \text{Ma}^2}$$
 (1.1.9)

kde $h\left[\frac{J}{kg}\right]$ je měrná entalpie, $u\left[\frac{m}{s}\right]$ je rychlost proudění, $T\left[K\right]$ je termodynamická teplota, $c_p\left[\frac{J}{kgK}\right]$ je měrná tepelná kapacita za konstantního tlaku, $a\left[\frac{m}{s}\right]$ je rychlost zvuku, κ [1] je Poissonova konstanta, $r\left[\frac{J}{kgK}\right]$ je měrná plynová konstanta a Ma [1] je Machovo číslo. Dolní index 0 označuje stagnační parametry.

Ze Vztahu 1.1.9 je patrné, že při nulové rychlosti proudění (Ma = 0) bude statická teplota rovna teplotě stagnační, neboli klidové. Dosažením rychlosti zvuku (Ma = 1) klesne poměr na hodnotu $\frac{1}{1+\frac{\kappa-1}{2}}$, což pro vzduch odpovídá 0.83 při uvažování $\kappa=1.4$. Při Ma = 0.3 (zmiňovaná mez stlačitelnosti) tvoří v statická teplota 98.2% stagnační teploty, zanedbáním rozdílu těchto teplot bychom se tak dopustili v tomto případě 1.8% chyby. Chybě 2.5% pak odpovídá Machovo číslo 0.358.

Člen $\frac{u^2}{2c_p}$ v Rovnici 1.1.4 se formálně nazývá dynamická teplota (ačkoliv se o teplotu nejedná) a je projevem stlačitelnosti proudění. Jeho průběh v závislosti na Machově čísle je společně s poměrem $\frac{T}{T0}$ vyznačen na Obrázku 1.1.1.

Obrázek 1.1.1: Závislost dynamické teploty a poměru $\frac{T}{T_0}$ na Machově čísle proudění pro statickou teplotu $300\,K$.

1.2 Restituční faktor

Umístěním tělesa do proudu vzduchu dojde k jeho zahřívání vlivem zbrzdění proudění v mezní vrstvě. Budeme-li o tomto tělesu dále hovořit jako o teplotním snímači, tak bude klíčové, jakou teplotu naměříme. Ve stagnačním bodě snímače bude plyn dosahovat klidové teploty, mimo něj však bude teplota nižší. Měřená teplota, značená obvykle jako rovnovážná T_r , se tak bude pohybovat mezi teplotou statickou a stagnační $(T < T_r < T_0)$. Vztah mezi těmito teplotami popisuje takzvaný restituční faktor f:

$$f = \frac{T_r - T}{T_0 - T} \tag{1.2.1}$$

Restituční faktor je především funkcí Prandtlova čísla, závisí však i na geometrii snímače a na Machově a Reynoldsově čísle [Leontiev2017a]. Jeho hodnota je tedy proměnlivá, nicméně v řadě aplikací jej lze pro definované podmínky považovat za konstantu: pro válcová tělesa umístěná rovnoběžně v proudu vzduchu byl při lokálním $\text{Re} < 5 \cdot 10^5$ restituční faktor roven $\sqrt{\text{Pr}}$, pro vzduch byla tato hodnota při Pr = 0.72 rovna 0.85 [Shapiro1954]. Obdobná hodnota restitučního faktoru (v tomto případě pro Pr = 0.71) byla použita s dostatečnou přesností při měřeních pomocí termočlánku [Ishibashi2012].

1.3 Měření stagnační teploty

1.3.1 Rovnovážná teplota

Kombinací Vztahů 1.2.1 a 1.1.4 lze získat vztahy pro výpočet rovnovážné teploty:

$$f = \frac{T_r - T}{T + \frac{u^2}{2c_p} - T} \tag{1.3.1}$$

$$T_r = T + f \frac{u^2}{2c_p} (1.3.2)$$

$$T_r = T\left(1 + f\frac{\kappa - 1}{2}\text{Ma}^2\right) \tag{1.3.3}$$

Budeme-li hovořit o měření stagnační teploty při vysokých podzvukových rychlostech, nabízí se otázka, zda by nebylo možné použít sondu s dostatečně vysokým restitučním faktorem $(f \to 1)$ a jaké bychom se dopustili chyby, pokud bychom naměřenou rovnovážnou teplotu považovali za stagnační. Chyba ε_{T0} by v takovém případě byla pro dané proudění (vybraná rychlost u a statická teplota T) funkcí právě restitučního faktoru:

$$\varepsilon_{T0} = 1 - \frac{T_r}{T_0} = 1 - \frac{T + f \frac{u^2}{2c_p}}{T + \frac{u^2}{2c_p}}$$
 (1.3.4)

Závislosti velikosti chyby a rovnovážné teploty na restitučním faktoru jsou patrné z Obrázku 1.3.1. S narůstající rychlostí proudění dochází i ke zvětšování chyby ε_{T0} , která pro restituční faktor ≥ 0.94 však nepřekračuje v rámci podzvukových rychlostí 1% nezávisle na statické teplotě proudění (viz odvození v Příloze ??).

Obrázek 1.3.1: Závislost rovnovážné teploty a chyby ε_{T0} na restitučním faktoru pro různé rychlosti proudění při statické teplotě 300 K.

1.3.2 Měřicí sondy

Konstrukce sond pro měření stagnačních teplot typicky obsahují tepelně citlivý prvek (obvykle termočlánek nebo odporový teplotní snímač) umístěný v trubici s odvětráním, která slouží ke zpomalení proudění okolo čidla obvykle pod hodnotu Ma = 0.15 [Bonham2013]. Snížením rychlosti plynu dojde k nárůstu jeho měrné entalpie, což se projeví i vyšší naměřenou teplotou, která se tak bude blížit stagnační teplotě volného proudu. Příklady konstrukcí používaných pro měření stagnačních teplot jsou uvedeny na Obrázku 1.3.2. U všech uvedených geometrií byl restituční faktor vyšší, než 0.97, v případě 1.3.2b a .

(a) Trubice s termočlánkem. Převzato z [Bonham2013] a upraveno.

(b) Trubice s termočlánkem. Převzato z [Shapiro1954] a upraveno.

(c) Trubice s platinovou destičkou. Převzato z $[\mathbf{Bonham2013}]$ a upraveno.

(d) Trubice s Pt100. Převzato z [**Sedlak2018**] a upraveno.

Obrázek 1.3.2: Vybrané geometrie sond pro měření stagnačních teplot.

1.4 Měření statické teploty

Při vysokých podzvukových rychlostech je přímé měření statické teploty proudění problematické. Jsou-li však známy další parametry proudění, lze potom statickou teplotu stanovit nepřímo. Příkladem může být využití Prandtlovy sondy, která měří celkový p_0 a statický tlak p. Ty jsou obvykle zpracovány pomocí diferenčního tlakového snímače, jelikož se tato sonda typicky používá k určování rychlosti proudění, k čemuž slouží dynamický tlak, tedy rozdíl $(p_0 - p)$ [Houghton2013]. Ze znalosti absolutních hodnot tlaků a stagnační teploty lze nicméně při uvažování isoentropického proudění určit teplota statická:

$$T = T_0 \left(\frac{p}{p_0}\right)^{\frac{\kappa - 1}{\kappa}} \tag{1.4.1}$$