

Mathématiques 2

MP

2020

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Espaces à noyau reproduisant

Les espaces à noyau reproduisant ont des applications dans divers domaines comme l'apprentissage statistique ou la résolution d'équations aux dérivées partielles.

Ce problème présente en partie III quelques exemples d'espaces à noyau reproduisant, l'un de ces exemples étant obtenu à partir de l'étude préalable dans la partie II d'un opérateur intégral. La partie IV propose quelques résultats sur les espaces à noyau reproduisant.

L'attention du candidat est attirée sur le fait que l'espace préhilbertien étudié n'est pas le même dans les différentes parties du problème.

Définitions

Soit I un intervalle de $\mathbb R$ et soit $(E,\langle\cdot,\cdot\rangle)$ un espace préhilbertien réel muni de la norme $\|\cdot\|$ associée au produit scalaire. On dit que E est un espace à noyau reproduisant sur I lorsqu'il vérifie les trois propriétés suivantes :

- 1. l'espace E est un sous-espace vectoriel de l'espace $\mathcal{F}(I,\mathbb{R})$ des fonctions définies sur I et à valeurs dans \mathbb{R} ;
- 2. pour tout $x \in I$, l'application $V_x : (E, \|\cdot\|) \to \mathbb{R}$ définie par $V_x(f) = f(x)$ est continue ;
- 3. pour tout $x \in I$, il existe une application $k_x \in E$ vérifiant,

$$\forall f \in E, \qquad f(x) = \langle k_x, f \rangle.$$

On appelle alors noyau reproduisant l'application K définie par

$$\forall (x,t) \in I^2, \qquad K(x,t) = k_x(t).$$

Soit [a,b] un segment de \mathbb{R} . On dit qu'une fonction $f:[a,b]\to\mathbb{R}$ est de classe \mathcal{C}^1 par morceaux s'il existe une subdivision $(x_i)_{0\leqslant i\leqslant p}$ de [a,b] telle que, pour tout $i\in [\![1,p]\!]$, la restriction de f à $]x_{i-1},x_i[$ se prolonge en une fonction de classe \mathcal{C}^1 sur $[x_{i-1},x_i]$.

I Préliminaires

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien réel, de norme associée $\|\cdot\|$. Soit u un endomorphisme de E vérifiant,

$$\forall (x, y) \in E^2, \qquad \langle u(x), y \rangle = \langle x, u(y) \rangle.$$

Q 1. Soit F un sous-espace vectoriel de E stable par u. Montrer que l'orthogonal F^{\perp} de F est stable par u. On suppose qu'il existe un vecteur unitaire $x_0 \in F$ vérifiant

$$\langle u(x_0), x_0 \rangle = \sup_{x \in F, \|x\| = 1} \langle u(x), x \rangle.$$

Pour tout vecteur unitaire $y \in F$ orthogonal à x_0 , on pose, pour tout réel t,

$$\gamma(t) = x_0 \cos t + y \sin t,$$

$$\varphi(t) = \langle u \circ \gamma(t), \gamma(t) \rangle.$$

- **Q 2.** Montrer que φ est de classe \mathcal{C}^1 .
- **Q 3.** Calculer $\|\gamma(t)\|$ puis justifier que $\varphi'(0) = 0$.
- **Q 4.** En déduire que $u(x_0)$ est orthogonal à y.
- **Q 5.** Montrer que x_0 est vecteur propre de u.

II Étude d'un opérateur

Dans cette partie, E désigne l'espace vectoriel des fonctions $f:[0,1]\to\mathbb{R}$ continues, muni du produit scalaire défini par,

$$\forall (f,g) \in E^2, \qquad \langle f,g \rangle = \int\limits_0^1 f(t)g(t)\,\mathrm{d}t.$$

On note $\|\cdot\|$ la norme associée au produit scalaire.

Pour tout $s \in [0,1]$, on définit la fonction k_s par,

$$\forall t \in [0,1], \qquad k_s(t) = \begin{cases} t(1-s) & \text{si } t < s, \\ s(1-t) & \text{si } t \geqslant s. \end{cases}$$

On note également, pour tout $(s,t) \in [0,1]^2$, $K(s,t) = k_s(t)$.

Q 6. Soit $s \in]0,1[$. Tracer la courbe représentative de k_s sur [0,1].

Q 7. Montrer que K est continue sur $[0,1] \times [0,1]$.

Pour tout $f \in E$, on pose,

$$\forall s \in [0,1], \qquad T(f)(s) = \int\limits_0^1 k_s(t) f(t) \, \mathrm{d}t.$$

Q 8. Montrer que T est un endomorphisme continu de E.

Soit F le sous-espace vectoriel de E formé des fonctions polynomiales. Pour $k \in \mathbb{N}$, on note p_k la fonction définie par $p_k(x) = x^k$.

Q 9. Pour tout $k \in \mathbb{N}$, calculer $T(p_k)$. En déduire que F est stable par T.

Q 10. En déduire (T(p))'' pour tout $p \in F$.

Q 11. Soit $f \in E$. Calculer T(f)(0) et T(f)(1).

Q 12. Pour tout $f \in E$, montrer que T(f) est de classe \mathcal{C}^2 puis que T(f)'' = -f.

Q 13. Montrer que T est injectif.

 \mathbf{Q} 14. Déterminer l'image de T.

Q 15. Soit $\lambda \in \mathbb{R}$ une valeur propre non nulle de T et f un vecteur propre associé. Montrer que f est solution de l'équation différentielle $\lambda f'' = -f$.

Q 16. Déterminer les valeurs propres de T et montrer que les sous-espaces propres associés sont de dimension 1.

Pour tout $k \in \mathbb{N}^*$, on pose $g_k(x) = \sqrt{2}\sin(k\pi x)$. On note $G = \text{Vect}((g_k)_{k \in \mathbb{N}^*})$ et $H = G^{\perp}$.

Q 17. Justifier que, pour tout $(f,g) \in E^2$, on a

$$\langle T(f),g\rangle = \langle f,T(g)\rangle$$

On pourra utiliser la question 12.

On admet que,

$$H \neq \{0\} \implies \exists f \in H \text{ telle que } \left\{ \begin{aligned} \|f\| &= 1, \\ \langle T(f), f \rangle &= \sup_{h \in H, \|h\| = 1} \langle T(h), h \rangle. \end{aligned} \right.$$

Q 18. En déduire que $H = \{0\}$.

Q 19. Montrer que la famille de vecteurs $(g_k)_{k \in \mathbb{N}^*}$ est orthonormale.

On admet pour la suite que $(g_k)_{k\in\mathbb{N}^*}$ est une suite totale.

Pour tout $f \in E$, on pose,

$$\forall x \in [0,1], \qquad \Phi(x) = \sum_{r=1}^{+\infty} \frac{1}{k^2 \pi^2} \langle f, g_k \rangle g_k(x).$$

Q 20. Montrer que Φ est continue.

Pour tout $N \in \mathbb{N}$, on pose $f_N = \sum_{k=1}^{N} \langle f, g_k \rangle g_k$.

Q 21. Montrer que

$$\lim_{N\to +\infty} \lVert T(f_N) - \Phi\rVert = 0.$$

Q 22. En déduire $T(f) = \Phi$.

III Exemples d'espaces à noyau reproduisant

Dans cette partie, E_1 désigne l'espace vectoriel des fonctions $f:[0,1]\to\mathbb{R}$ continues, de classe \mathcal{C}^1 par morceaux, et vérifiant f(0)=f(1)=0.

III.A - Un exemple

 ${f Q}$ 23. Montrer que l'on définit un produit scalaire sur E_1 en posant

$$\forall (f,g) \in (E_1)^2, \qquad (f \mid g) = \int_0^1 f'(t)g'(t) dt.$$

Dans la suite de cette partie, on désigne par N la norme associée à ce produit scalaire.

Q 24. Montrer que, pour toute fonction $f:[0,1]\to\mathbb{R}$ de classe \mathcal{C}^1 telle que f(0)=0, on a

$$\forall x \in [0,1] \quad |f(x)| \leqslant \sqrt{x \int_{0}^{x} (f'(t))^{2} dt}.$$

On pose, pour tout $f \in E_1$,

$$U(f)(s) = \int_{0}^{1} k_s'(t)f'(t) dt,$$

où k_s a été défini dans la partie précédente.

Q 25. Soit $f \in E_1$ de classe \mathcal{C}^2 . Montrer que U(f) = -T(f''). En déduire que U(f) = f.

Q 26. Montrer que U est l'application identité de E_1 .

Q 27. Démontrer que l'espace préhilbertien $(E_1, (\cdot \mid \cdot))$ est un espace à noyau reproduisant et que son noyau reproduisant est l'application K définie dans la partie précédente.

III.B - Un contre-exemple

On considère à nouveau l'espace E des fonctions continues de [0,1] dans \mathbb{R} , muni du produit scalaire défini par

$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t) dt.$$

Q 28. Montrer que $(E, \langle \cdot, \cdot \rangle)$ n'est pas un espace à noyau reproduisant.

III.C - Fonctions développables en série entière

Q 29. Soit $(a_n)_n \in \mathbb{R}^{\mathbb{N}}$ une suite de réels telle que la série $\sum (a_n)^2$ soit convergente.

Montrer que le rayon de convergence de la série entière $\sum a_n t^n$ est supérieur ou égal à 1.

Dans la suite de cette sous-partie, on considère l'ensemble E_2 des fonctions de]-1,1[dans $\mathbb R$ de la forme

$$t\mapsto \sum_{n=0}^{+\infty}a_nt^n$$

où $(a_n)_n \in \mathbb{R}^{\mathbb{N}}$ et $\sum (a_n)^2$ convergente. Pour $f,\,g \in E_2,$ on pose

$$\langle f,g\rangle = \sum_{n=0}^{+\infty} a_n b_n \qquad \text{où } f:t\mapsto \sum_{n=0}^{+\infty} a_n t^n \text{ et } g:t\mapsto \sum_{n=0}^{+\infty} b_n t^n.$$

Q 30. Montrer que E_2 muni de $\langle \cdot, \cdot \rangle$ est un espace préhilbertien réel.

Q 31. Soit $x \in]-1,1[$. Déterminer $g_x \in E_2$ tel que, pour tout $f \in E_2$,

$$f(x) = \langle g_x, f \rangle$$

 ${f Q}$ 32. En déduire que E_2 est un espace à noyau reproduisant et préciser son noyau.

III.D – Autre exemple parmi les fonctions de classe C^1 par morceaux

On se donne dans cette sous-partie un réel a > 0.

On considère l'espace E_3 des fonctions $f:[0,a]\to\mathbb{R}$, continues et de classe \mathcal{C}^1 par morceaux sur [0,a], et vérifiant f(0)=0. On munit E_3 du produit scalaire défini, pour $f,g\in E_3$, par

$$(f \mid g) = \int_{0}^{a} f'(t)g'(t) dt.$$

Q 33. Montrer que la fonction $(x,y) \mapsto \min(x,y)$ est un noyau reproduisant sur $(E_3,(\cdot \mid \cdot))$.

Soit E_4 l'espace des fonctions continues sur [0,a], à valeurs dans \mathbb{R} , de classe \mathcal{C}^1 par morceaux et vérifiant de plus f(a) = 0. Soit $\varphi : [0,a] \to \mathbb{R}$ de classe \mathcal{C}^1 vérifiant $\varphi(a) = 0$ et, pour tout $x \in [0,a]$, $\varphi'(x) < 0$.

Q 34. Déterminer un produit scalaire sur E_4 tel que la fonction $(x,y) \mapsto \min(\varphi(x), \varphi(y))$ soit un noyau reproduisant sur l'espace préhilbertien E_4 .

IV Quelques résultats sur les espaces à noyau reproduisant

IV.A - Continuité

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace à noyau reproduisant sur un intervalle I, de noyau reproduisant K. Pour tout $(x, y) \in I^2$, on pose $k_x(y) = K(x, y)$.

Soit $x \in I$ et V_x définie sur E par $V_x(f) = f(x).$ On pose

$$N(V_x) = \sup_{\|f\|=1} |f(x)|.$$

Q 35. Démontrer que

$$N(V_x) = \sqrt{\langle k_x, k_x \rangle}.$$

On suppose que K est continue sur $I \times I$.

 \mathbf{Q} 36. Démontrer que toutes les fonctions de E sont continues.

IV.B - Construction d'un espace à noyau reproduisant

On note ici E l'espace vectoriel des fonctions continues définies sur [0,1] et à valeurs dans \mathbb{R} muni du produit scalaire défini par

$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t) dt.$$

On considère une fonction $A:[0,1]\times[0,1]\to\mathbb{R}$ continue. On s'intéresse à l'application $T:E\to E$ définie par

$$T(f)(x) = \int_{0}^{1} A(x,t)f(t) dt.$$

On suppose que $\ker T$ est de dimension finie.

Q 37. Justifier que T induit un isomorphisme de $(\ker T)^{\perp}$ sur Im T.

On note désormais S la bijection réciproque de cet isomorphisme.

On définit le produit scalaire φ sur Im T en posant, pour tout $(f,g) \in (\operatorname{Im} T)^2$,

$$\varphi(f,g) = \langle S(f), S(g) \rangle$$

On considère l'application K définie sur $[0,1]^2$ par

$$K(x,y) = \int_{0}^{1} A(x,t)A(y,t) dt$$

Q 38. Montrer que (Im T, φ) est un espace à noyau reproduisant, de noyau K.

 \bullet \bullet FIN \bullet \bullet