- This model is appropriate when the ac input is applied to base
- When the ac input is applied to the emitter, then need to draw this circuit in a slightly different way

Frequency Specifications of BJTs

- Four important characteristic frequencies:
 - \triangleright Beta Cutoff Frequency (f_{β})
 - > Unity Gain Cutoff Frequency (f_T)
 - \triangleright Alpha Cutoff Frequency (f_{α})
 - > Maximum Operable Frequency (f_{max})

- $i_0 \approx g_m v_1$ (neglecting reverse transmission through C_μ)
- $v_1 = i_i Z_{eq}$

$$Z_{eq} = \frac{r_{\pi}}{1 + sr_{\pi} \left(C_{\pi} + C_{\mu}\right)} \qquad (s = j\omega)$$

• Thus:

$$\beta(j\omega) = \frac{i_0(j\omega)}{i_i(j\omega)} = \frac{\beta_0}{1 + j\omega/\omega_{\beta}}$$

 β_0 (= $g_m r_{\pi}$): Low-frequency short-circuit common-emitter current gain

$$\omega_{\beta} = \frac{g_{m}}{\beta_{0} \left(C_{\pi} + C_{\mu} \right)}$$

- $f_{\beta} [= \omega_{\beta}/(2\pi)]$: **Beta Cutoff Frequency**
- At $f = f_{\beta}$, $\beta = \beta_0 / \sqrt{2}$

• For $f >> f_{\beta}$:

$$\beta(j\omega) \simeq \frac{g_{\rm m}}{j\omega(C_{\pi} + C_{\mu})}$$

- At $\omega = \omega_{\rm T} = g_{\rm m}/(C_{\pi} + C_{\mu}), |\beta| = 1$
- $f_T = \omega_T/(2\pi)$: *Unity Gain Cutoff Frequency* (also known as *Unity Gain Bandwidth*)
- Note: $f_T = \beta_0 f_\beta$
- $f_T > f_{\beta}$, and their spacing depends on β_0

