

High-throughput sequencing as a tool for exploring the microbiome

C3BI

"Metagenomics is like a disaster in a jigsaw shop" Iddo Friedberg

Who is there?

- Taxonomical annotation
- Co-Abundance Gene groups (CAG)
- Binning
- Assembly

What are they able to do?

- Gene/protein prediction
- Functional annotation
- Metabolic network reconstruction

What are they doing?

RNA/Protein quantification

What is the difference between these environments?

- Comparative metagenomics
- Quantitative metagenomics

Mapping ChIP-seq RNA-seq DNA-seq Metagenomics HiC

ITS: located between 18S and 5.8S rRNA genes

Image: Alberts Molecular Biology of the Cell 5th

16S rRNA

- Weakly affected by horizontal gene transfer*
- 9 variable regions surrounded by conserved regions
- Universal primers**, 25 PCR cycle***
- Most well represented gene in Genbank
- Sequencing kits: V1-V3, V3-V4, V3-V5, V5-V6...

*Daubin et al. 2003 (Science) **Weisburg et al. 1991 (J Bacteriol.) *** Illumina protocol

C3BI Mapping ChIP-seq RNA-seq DNA-seq Metagenomics HiC

Operational Taxonomic Unit (OTU)

Définition: "Group of DNA sequences that share a defined level of similarity"*

Kunin et al. 2010

- 454 sequencing of V1-V2 & V8 E. coli
 MG1655
- Theoretical number
 - 5 phylotypes for V1-V2 at 100% id
 - 1 phylotype for V8
- Results
 - 0.1-0.2% error probability
 - 97% similarity threshold

^{*}Vetrovsky and Baldrian 2013 (Plos One)

Targeted metagenomics strategies

CLOSED REFERENCE CLUSTERING

- > Clustering in a OTU the sequence that are similar to a reference
- > Classification

C3BI

> Distance between the sequence is used to cluster sequence into OTUs

OPEN REFERENCE CLUSTERING

> Closed-reference clustering followed by de novo clustering for sequence that are not similar to the reference

CLUSTERING ALGORITHMS

Algorithm:

- **♦** Initial n groups
- **&** Each step:
 - ➤ Merge of two group considering linkage

Algorithm:

C3BI

- **♦** Initial n groups
- **&** Each step:
 - ➤ Merge of two group considering linkage

Distances:

- Single linkage
 - > the distance between two clusters is defined as the *shortest* distance between two points in each cluster
- Complete linkage
 - the distance between two clusters is defined as the *longest* distance between two points in each cluster
- **♦** Average linkage
 - the distance between two clusters is defined as the average distance to every point in the other cluster

Let's play at clustering

Criteria: "A group is composed of cities with less than 800 km of distance"

C3BI Mapping ChIP-seq RNA-seq DNA-seq Metagenomics HiC

Distance

Distance between US cities	Atlanta	Chicago	Denver	Houston	Los Angeles	Miami	New York	San Francisco	Seattle
Atlanta									
Chicago	587								
Denver	1212	920							
Houston	701	940	879						
Los Angeles	1936	1745	831	1374					
Miami	604	1188	1726	968	2339				
New York	748	713	1631	1420	2451	1092			
San Francisco	2139	1858	949	1645	347	2594	2571		
Seattle	2182	1737	1021	1891	959	2734	2408	678	
Washington DC	543	597	1494	1220	2300	923	205	2442	2329

C3BI Mapping ChIP-seq RNA-seq DNA-seq Metagenomics HiC

Distance

Distance between US cities	Atlanta	Chicago	Denver	Houston	Los Angeles	Miami	New York	San Francisco	Seattle
Atlanta									
Chicago	587								
Denver	1212	920							
Houston	701	940	879						
Los Angeles	1936	1745	831	1374					
Miami	604	1188	1726	968	2339				
New York	748	713	1631	1420	2451	1092			
San Francisco	2139	1858	949	1645	347	2594	2571		
Seattle	2182	1737	1021	1891	959	2734	2408	678	
Washington DC	543	597	1494	1220	2300	923	205	2442	2329

Hierarchical clustering - single linkage

Next in single-linkage?

Distance between US cities	Atlanta	Chicago	Denver	Houston	Los Angeles	Miami	New York	San Francisco	Seattle
Atlanta									
Chicago	587								
Denver	1212	920							
Houston	701	940	879						
Los Angeles	1936	1745	831	1374					
Miami	604	1188	1726	968	2339				
New York	748	713	1631	1420	2451	1092			
San Francisco	2139	1858	949	1645	347	2594	2571		
Seattle	2182	1737	1021	1891	959	2734	2408	678	
Washington DC	543	597	1494	1220	2300	923	205	2442	2329

Hierarchical clustering - single linkage

HiC

C3BI

Now in average-linkage

Distance between US cities	Atlanta	Chicago	Denver	Houston	Los Angeles	Miami	New York	San Francisco	Seattle
Atlanta									
Chicago	587								
Denver	1212	920							
Houston	701	940	879						
Los Angeles	1936	1745	831	1374					
Miami	604	1188	1726	968	2339				
New York	748	713	1631	1420	2451	1092			
San Francisco	2139	1858	949	1645	347	2594	2571		
Seattle	2182	1737	1021	1891	959	2734	2408	678	
Washington DC	543	597	1494	1220	2300	923	205	2442	2329

Hierarchical clustering - average linkage

AVERAGE linkage

Outcome:

- **♦** Hierarchical clustering depends on the linkage policy
- **♦** All distances need to be known
- **♦** Hierarchical clustering is expensive, in general agglomerative strategies cost O(n³)...

Example:

n=200 sequences

Cost agglomerative = 8e+06 operations

Greedy clustering

Algorithm:

- **♦** Initial n groups <u>ordered</u> in particular way
- **Each step:**
 - > Pick a group and compare to the reference
 - ➤ If close to the reference:
 - Add in reference cluster
 - > Otherwise:
 - Add it as a reference
- ***** Ordering:
 - ➤ Length-based Greedy Clustering (CD-HIT, Uclust)
 - ➤ Abundance-based Greedy Clustering (AGC): "Most-Abundant-centroid"

Abundance-based Greedy Clustering methods

City	Population
New York	8550405
Los Angeles	3958125
Chicago	2722389
Houston	2099451
San Francisco	852469
Washington DC	646449
Seattle	634535
Denver	634265
Atlanta	443775
Miami	430332

New York - Los Angeles = 2451 km > 800 km

Abundance-based Greedy Clustering methods

Abundance-based Clustering methods

City	Population
New York	8550405
Los Angeles	3958125
Chicago	2722389
Houston	2099451
San Francisco	852469
Washington DC	646449
Seattle	634535
Denver	634265
Atlanta	443775
Miami	430332

New york - Los Angeles = 2451 km > 700 km

New york - Chicago = 713 km

Abundance-based Greedy Clustering methods

Abundance greedy clustering

Outcome:

- **♦** AGC depend on the sorting strategy (length, abundance...)
- **♦** The distance to the reference is guarantee...
- ...not the distance between sequences in the OTU
- **♦** AGC cost is in the worst case O(n²)...

Example:

n=200 sequences

Cost = 40000 operations <<< 8e+06 operations in hierarchical clustering

C3BI

What is the best approach?

Not a simple question, how to evaluate the different approach?

- **♦ Number of OTU?**
- **♦ Stability of OTU?**
- **Quality of OTU?**
- Diversity?
- Computational time?
- *Sequence quality filtering (trimming, filtering) has huge impact too.

Answer is maybe all [Westcott, Schloss, 2016 PeerJ; Rideout 2014; Schmidt et al. 2015]
Vsearch seems to stand out in de novo approach

AGC-Targeted metagenomics pipeline

TP

Terminal (in your home folder):

- \$ cd masque/tp/
- \$./cahier_handOnmetagenomics.sh

Mock communities

	Even	Mixture	Staggered Mixture		
	165		165		
Organism and Repository Number	copies	gDNA mass	copies	gDNA mass	
Acinetobacter baumannii ATCC 17978	100000	1.60E-10	10000	1.60E-11	
Actinomyces odontolyticus ATCC 17982	100000	7.82E-11	1000	7.82E-13	
Bacillus cereus ATCC 10987	100000	3.73E-11	100000	3.73E-11	
Bacteroides vulgatus ATCC 8482	100000	1.52E-10	1000	1.52E-12	
Candida albicans ATCC MY-2876	1120°	3.27E-11	1000°	2.92E-11	
Clostridium beijerinckii ATCC 51743	100000	3.81E-11	100000	3.81E-11	
Deinococcus radiodurans DSM 20539	100000	1.76E-09	1000	1.76E-11	
Enterococcus faecalis ATCC 47077	100000	2.22E-11	1000	2.22E-13	
Escherichia coli ATCC 700926	100000	2.71E-11	1000000	2.71E-10	
Helicobacter pylori ATCC 700392	100000	4.50E-11	10000	4.50E-12	
Lactobacillus gasseri DSM 20243	100000	1.53E-11	10000	1.53E-12	
Listeria monocytogenes ATCC BAA-679	100000	3.98E-11	10000	3.98E-12	
Methanobrevibacter smithii ATCC 35061	100000	9.50E-11	1000000	9.50E-10	
Neisseria meningitidis ATCC BAA-335	100000	6.87E-11	10000	6.87E-12	
Propionibacterium acnes DSM16379	100000	1.39E-10	10000	1.39E-11	
Pseudomonas aeruginosa ATCC 47085	100000	1.80E-10	100000	1.80E-10	
Rhodobacter sphaeroides ATCC 17023	100000	1.30E-10	1000000	1.30E-09	
Staphylococcus aureus ATCC BAA-1718	100000	6.97E-11	100000	6.97E-11	
Staphylococcus epidermidis ATCC 12228	100000	1.31E-10	1000000	1.31E-09	
Streptococcus agalactiae ATCC BAA-611	100000	1.83E-11	100000	1.83E-11	
Streptococcus mutans ATCC 700610	100000	4.70E-11	1000000	4.70E-10	
Streptococcus pneumoniae ATCC BAA-334	100000	8.11E-11	1000	8.11E-13	

Trimming

vsearch --fastq_filter sample --fastqout sample_filt --fastq_truncqual 16 --fastq_trunclen 250

I do not recommend Vsearch trimming, tp only!

Dereplication and Singleton removal

Chimera filtering

Biological sequence X

Biological sequence Y

Chimera formed from X and Y

vsearch --uchime_denovo sample_nosing --chimeras sample_chim --nonchimeras sample_nochim

http://drive5.com/uparse/, https://github.com/torognes/vsearch

Mapping

vsearch -usearch_global sample -db OTU --id 0.97 -uc map uc2otutab.py map > otu_table

Taxonomical annotation

SILVA [Pruesse, et al. 2007]:

- 597,607 sequences (last update 04/2016)
- Small (16S/18S, SSU) and large subunit (23S/28S, LSU)
- Bacteria, Archaea and Eukarya
- Non redundant (Uclust 99% id)
- Based on EMBL-bank

C3BI

Ribosomal Database Project [Maidak et al. 1994]:

- 3,224,600 + 108,901 sequences (last update 05/2015)
- Small subunit (16S/18S, SSU) and Fungal 28S
- Bacteria, Archaea and Fungi

Greengenes [DeSantis et al. 2006]:

- 1,262,986 sequences (last update 05/2013)
- Small subunit (16S/18S, SSU)
- Bacteria and Archaea
- Non redundant (Uclust 99% id)
- Based on Genbank

C3BI Mapping ChIP-seq RNA-seq DNA-seq Metagenomics HiC

Taxonomical annotation

vsearch --usearch_global OTU --db database --id 0.9 --blast6out annotation --alnout alignment

get_taxonomy.py -i annotation -u OTU -d database -o annotation_table -ob annotation_biom

C3BI Mapping ChIP-seq RNA-seq DNA-seq Metagenomics HiC

BIOM format

Motivation:

- Encapsulation of the whole project (count table, annotation, metadata...)
- Efficient storage
- Compatibility between softwares

BIOM format version 1.0

```
"id":null,
"format": "Biological Observation Matrix 0.9.1-dev",
"format url": "http://biom-format.org/documentation/format versions/biom-1.0.html",
"type": "OTU table",
"generated_by": "QIIME revision 1.4.0-dev",
"date": "2011-12-19T19:00:00",
   {"id":"GG OTU 1", "metadata":{"taxonomy":["k Bacteria", "p Proteobacteria", "c Gammaproteobacteria", "o Enterobacteriales", "f Enterobacteriaceae", "g Escherichia", "s "]}},
   {"id":"GG OTU 2", "metadata":{"taxonomy":["k Bacteria", "p Cyanobacteria", "c Nostocophycideae", "o Nostocales", "f Nostocaceae", "g Dolichospermum", "s "]}},
   {"id":"GG_OTU_3", "metadata":{"taxonomy":["k__Archaea", "p__Euryarchaeota", "c__Methanomicrobia", "o__Methanosarcinales", "f__Methanosarcinaceae", "g__Methanosarcinales", "s__"]}},
   {"id":"GG_OTU_4", "metadata":{"taxonomy":["k_Bacteria", "p_Firmicutes", "c_Clostridia", "o_Halanaerobiales", "f_Halanaerobiaceae", "g_Halanaerobium", "s_Halanaerobiumsacchar
   {"id":"GG_OTU_5", "metadata":{"taxonomy":["k_Bacteria", "p_Proteobacteria", "c_Gammaproteobacteria", "o_Enterobacteriales", "f_Enterobacteriaceae", "g_Escherichia", "s__"]}}
"columns":[
  {"id": "Samplel", "metadata":{
                            "BarcodeSequence": "CGCTTATCGAGA",
                            "LinkerPrimerSequence": "CATGCTGCCTCCCGTAGGAGT",
                            "BODY SITE": "gut",
                            "Description": "human gut"}},
   {"id": "Sample2", "metadata":{
                            "BarcodeSequence": "CATACCAGTAGC",
                            "LinkerPrimerSequence": "CATGCTGCCTCCCGTAGGAGT",
                            "BODY SITE": "gut",
                            "Description": "human gut"}},
   {"id": "Sample3", "metadata":{
                            "BarcodeSequence": "CTCTCTACCTGT",
                            "LinkerPrimerSequence": "CATGCTGCCTCCCGTAGGAGT",
                            "BODY SITE": "gut",
                            "Description": "human gut"}},
   {"id": "Sample4", "metadata":{
                            "BarcodeSequence": "CTCTCGGCCTGT",
                            "LinkerPrimerSequence": "CATGCTGCCTCCCGTAGGAGT",
                            "BODY SITE": "skin",
                            "Description": "human skin"}},
   {"id": "Sample5", "metadata":{
                            "BarcodeSequence": "CTCTCTACCAAT",
                            "LinkerPrimerSequence": "CATGCTGCCTCCCGTAGGAGT",
                            "BODY SITE": "skin",
                            "Description": "human skin"}},
   {"id": "Sample6", "metadata":{
                            "BarcodeSequence": "CTAACTACCAAT",
                            "LinkerPrimerSequence": "CATGCTGCCTCCCGTAGGAGT",
                            "BODY SITE": "skin",
                            "Description": "human skin"}}
"matrix_type": "dense",
"matrix_element_type": "int",
"shape": [5,6],
"data": [[0,0,1,0,0,0],
         [5,1,0,2,3,1],
         [0,0,1,4,2,0],
          [2,1,1,0,0,1],
          [0,1,1,0,0,0]]
```

Annotation

Metadata

Count

BIOM format

Motivation:

C3BI

- Efficient storage
- Encapsulation of the whole project (count table, annotation, metadata...)
- Compatibility between softwares

Cons:

- Not human readable
- 3 different versions of BIOM format (1.0, 2.0, 2.1)
- Not strict enough in the version 1.0
- BIOM library does not provide good support of every version

C3BI

Differential analysis: SHAMAN

¹Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.

Diversity

- N: Total count of individual
- Rarefaction: a type of normalisation: Rarefy to the same number of individual

Diversity

- N: Total count of individual
- Rarefaction: a type of normalisation: Rarefy to the same number of individual
- **♦** S = number of species = richness = number of object > 0

Alpha diversity

- **♦** S = number of species = richness = number of object > 0
- Alpha diversity:
 - \rightarrow Condition 1: $\alpha_1 = \text{mean}(S_A, S_B) = 3.5$
 - \rightarrow Condition 2: $\alpha_2 = \text{mean}(S_C, S_D) = 5$

Gamma diversity

- **♦** S = number of species = richness = number of object > 0
- **♦** Gamma diversity:
 - \triangleright Condition 1: $\gamma_1 = S_1 = 5$
 - \rightarrow Condition 2: $\gamma_2 = S_2 = 8$

Beta diversity

- S = number of species = richness = number of object > 0
- **Beta diversity:**
 - > Condition 1 : $\beta_1 = \frac{\gamma_1}{1} 1 = 0.43$
 - \rightarrow Condition 2: $\beta_2 = 0.6$

Other diversity measures

$$H = -\sum_{i=1}^{S} p_i \log_b p_i$$
 Shannon–Weaver $D_1 = 1 - \sum_{i=1}^{S} p_i^2$ Simpson $D_2 = \frac{1}{\sum_{i=1}^{S} p_i^2}$ inverse Simpson,

P_i proportion of species i and S number of species

16S rRNA limits

Motivation:

C3BI

- Copy number varies in the genomes (from 1 to 15)*
- 16S sequence variants in the same specie and even genome** -> impact diversity

^{*}Vetrovsky and Baldrian 2013 (Plos One), Klappenbach et al. 2001 (Nuc Acid Res), **Acinas et al. 2004 (J Bacteriol), ***Stoddard et al. 2015 (Nucl Acid Res)

16S rRNA limits

Motivation:

C3BI

- Copy number varies in the genomes (from 1 to 15)*
- 16S sequence variants in the same specie and even genome** -> impact diversity

Solutions:

- rrnDB: ribosomal RNA operon copy number database***
- Good clustering and differential analysis
- Whole Genome Sequencing

16S analysis at Pasteur

Available:

C3BI

- MASQUE pipeline on bic and on tars
 - module use /pasteur/projets/Matrix/modules
 - module add masque/0.1 -> bic
 - module add masque/0.2 -> tars
- SHAMAN
- Galaxy: FROGS