IoTSim-Osmosis User Manual

Table of Contents

1	Exp	olanation of IoTSim-Osmosis	2
	1.1	What is IoTSim-Osmosis?	2
	1.2	Unique Features of IoTSim-Osmosis	2
2	Get	ting Started	
	2.1	Lifecycle of IoTSim-Osmosis	
	2.2	System and Software Requirements	2
	2.3	Download IoTSim-Osmosis	
	2.4	Directory Structure of IoTSim-Osmosis	3
	2.5	Main Packages of IoTSim-Osmosis	3
	2.6	Setup IoTSim-Osmosis	4
3	Sim	ulation configuration	7
4	Sim	ulation examples	9
	4.1	Policies	10
	4.2	Output results of IoTSim-Osmosis	11
	4.3	Running an example (OsmesisExample_1)	11
5	Cor	ntact	13

1 Explanation of IoTSim-Osmosis

1.1 What is IoTSim-Osmosis?

Osmotic computing paradigm sets out the principles and algorithms for simplifying the deployment of Internet of Things (IoT) applications in integrated edge-cloud environments. Osmotic Computing focuses on strategies and mechanisms to extend the IoT capabilities by defining, designing, and implementing a modern computing model (IoT, edge, cloud, and SD-WAN).

IoTSim-Osmosis is a simulation framework that supports the testing and validation of osmotic computing applications. In particular, it enables a unified modelling and simulation of complex IoT applications over heterogeneous edge-cloud SDN-aware environments. IoTSim-Osmosis is capable of capturing the key functions, characteristics, and behaviors of osmotic paradigm. A wide range of osmosis applications can be simulated and evaluated in IoTSim-Osmosis.

For further details of IoTSim-Osmosis, please refer to our paper entitled "IoTSim-Osmosis: A Framework for Modelling & Simulating IoT Applications over an Edge-Cloud Continuum".

1.2 Unique Features of IoTSim-Osmosis

IoTSim-Osmosis is developed to allow such hybrid infrastructures to be simulated. The dynamic management and performance metrics of IoT-oriented services across edge and cloud datacentres that communicate via SDWAN are easily achieved. In particular, IoTSim-Osmosis is capable of modeling and simulating:

- Osmotic applications running between edge and cloud
- The behaviors and features of osmotic applications running in dynamic SDN and SD-WAN networks;
- Dynamic routing mechanisms based on graph theory to enable any type of network topology to be seamlessly simulated;
- Several policies for SDN, SD-WAN, and MEL, VM for multilevel optimization.

2 Getting Started

2.1 Lifecycle of IoTSim-Osmosis

The overall architecture of osmotic computing in IoTSim-Osmosis is divided into four main layers: input, management, osmotic orchestrator, and infrastructure. IoTSim-Osmosis requires two input files to start running. First, it requires end-to-end configuration file, which includes a detailed requirement of every infrastructure element. For example, it requires an attributes of IoT device (e.g., name, bandwidth, battery capacity). When IoTSim-Osmosis finishes building the required infrastructures, it would require an IoT-MEL graph workload file. The workload contains a journey description of every IoT transaction. The transaction represents a single unit of logic for each IoT generated data (refer to IoTSim-Osmosis paper for more information). The transaction also contains several MEL and network operations. Each transaction can have different performance, which can be used to evaluate the performance of a given osmotic application.

2.2 System and Software Requirements

- Operating System: Windows, Linux or Mac OS.
- CPU: 1-GHz processor or equivalent (Minimum).
- RAM: 2GB (Minimum).
- Java Platform: JDK version 11+ (recommended)
- Any IDE for Java programming language such as Eclipse or NetBeans

2.3 Download IoTSim-Osmosis

IoTSim-Osmosis can be downloaded from https://github.com/kalwasel/IoTSim-Osmosis

2.4 Directory Structure of IoTSim-Osmosis

The structure of IoTSim-Osmosis framework is defined as follows:

- IoTSim-Osmosis/
- examples/ -- Contains examples of osmotic applications
- sources/ -- Contains the source code of IoTSim-Osmosis
- inputFiles/ -- Contains the required files to be submitted to IoTSim-Osmosis
- outputFiles/ -- Contains all the output results of IoTSim-Osmosis

2.5 Main Packages of IoTSim-Osmosis

IoTSim-Osmosis is mainly developed using the following package list:

- 1. org.cloudbus.cloudsim.edge.core.edge
- 2. org.cloudbus.cloudsim.edge.iot
- 3. org.cloudbus.cloudsim.edge.iot.network
- 4. org.cloudbus.cloudsim.edge.iot.protocol
- 5. org.cloudbus.cloudsim.sdn
- 6. org.cloudbus.cloudsim.sdwan
- 7. org.cloudbus.osmosis.core
- 8. org.cloudbus.osmosis.core.polocies

Package 1, 2, 3, and 4 contains classes that models the behaviors and characteristics of IoT and edge datacenters. Package 5 and 6 contains classes that models the behaviors and characteristics of SDN and SD-WAN networks. Package 7 contains classes that models the behaviors and characteristics of osmotic applications. Package 8 contains classes that models a list of osmotic policies, such as SDN routing policy. Figure 2.1 shows the packages and their classes in detail.

Figure 2.1

2.6 Setup IoTSim-Osmosis

Prior to use IoTSim-Osmosis, you need to import and configure the project properly. Here, we use Eclipse to illustrate how to setup the IoTSim-Osmosis project. The project is based on Maven. The main steps are given as follows:

Step 1:

- Install Eclipse from https://www.eclipse.org/downloads/
- Install Maven on Eclipse, follow the steps given in https://www.eclipse.org/m2e/

Step 2: Import IoTSim-Osmosis as a Maven project by Opening Eclipse -> selecting File -> and selecting import (see Figure 2.2)

Figure 2.2

Step 3: Select Maven -> select Existing Maven Projects (see Figure 2.3)

Figure 2.3

Step 4: Select the folder corresponding to IoTSim-Osmosis project. Next, click on Finish (see Figure 2.4)

Figure 2.4

Step 5: Right click on IoTSim-Osmosis project and click on Update Project under Maven option (see Figure 2.5)

Figure 2.5

Step 6: Right click on IoTSim-Osmosis project and click on Maven install that found under Run As option (see Figure 2.6)

Figure 2.6

When Maven successfully builds IoTSim-Osmosis in your Eclipse, you will see "BUILD SUCCESS" as shown in Figure 2.7. At this point, you have successfully built and configured IoTSim-Osmosis.

Figure 2.7

Step 7: IoTSim-Osmosis uses Lombok library to configure its entities. Open Maven Dependencies directory, right click on Lombok*.jar file, Run As Java file and then follow the instructions (see Figure 8). Refer to YouTube Lombok tutorial if you encounter problems.

Figure 8

3 Simulation configuration

Before starting the actual simulation, you have to configure the infrastructure of every data center (cloud and edge) and SD-WAN network that connects distributed datacenters. The infrastructure of every data center can be easily configured using a configuration file named **Example1_configuration** in the *inputFiles* folder. The parameters of the configuration file is illustrated in Table 3.1, which is defined in a JSON format. These parameters are read during initialization, which configures the environment of IoTSim-Osmosis accordingly. A snapshot of the confirmation file is given in Figure 3.1.

Table 3.1 User-defined of physical configuration (IoT, edge, cloud, and SD-WAN)

	Entity	Parameter	Description			
		Name	Datacenter's name			
		Туре	Datacenter's type (e.g.			
	Information		edge, cloud)			
		vmAllocationPolicy	Policy to allocate MELs			
			among edge devices (hosts)			
		The parameters of datacenters' characteristics can be left				
Edge		with no change. Refer to a CloudSim project if you are				
	Characteristics	interested to tune the parameters (e.g. cost of network				
	Characteristics	bandwidth, etc.). For IoTSim-Osmosis, such parameters are				
		not important.				
	Hosts	name	Edge device's name			
	HOSES	pes	Number of CPUs			

		ramSize	Size of host's memory
		bwSize	Speed of NIC interface
		storage	Size of host's storage
		mips	Million Instructions Per Second (MIPS) represents the speed of host's CPU
		name	Name of MEL
		bw	Speed of MEL network
	MELEntities	mips	Million Instructions Per Second (MIPS) represents the speed of MEL's CPU
		ram	Size of MEL's memory
		pesNumber	Number of CPUs
		cloudletSchedulerClassName	Policy to execute tasks in MELs
		name	Name of SDN controller
	Controllers	trafficPolicy	Policy to control network
	(SDN)		traffic among applications
	(521)	routingPolicy	Policy to find routes from
			sources to destinations
		name	Name of switch
		type	Type of switch (gateway, core, etc.)
	switches	controller	A corresponding SDN controller to communicate with
		iops	Speed of I/O
		source	A source element (e.g. MEL)
	links	destination	A destination element (e.g. VM)
		bw	Speed of a link
		name	Name of an IoT device
		bw	Speed of IoT's NIC
		max_battery_capacity	Battery capacity
		battery_sensing_rate	Battery consumption for sensing
	ioTDevices	battery_sending_rate	Battery consumption for sending
		ioTClassName	Type of IoT device (e.g. temperature sensor)
		mobilityEntity	Mobility information
		communicationProtocol	IoT protocol (e.g. XMPP)
		ı	<u> </u>

		networkType	Type of network connection			
			(e.g. WiFi)			
	hosts					
	VMs	Cloud datacenters have similar parameters' definitions as edge datacenters (e.g. hosts, switches)				
Cloud	controllers					
	switches	cuge datacenters (e.g. nosts, switches)				
	links					
	controllers					
CIDATAN	switches	SDWAN network has similar parameters' definitions as				
SDWAN	links	datacenter networks (e.g. controllers, links)				

Figure 3.1

4 Simulation examples

Before starting the actual simulation, the processing and transmission logic of every osmotic application must be provided. The current version of IoTSim-Osmosis has one application example for illustration. The logic of any osmotic applications can be easily configured using a CSV file named **Example1_Worload** in the *inputFiles* folder. The description of every parameter is given in Table 4.1. A snapshot of the file is given in Figure 4.1.

7F 11 / 17F1	4	1	• •	1 / D	1	1' 4'
Table 4.1 The	narameter	descript	100 OT	Mank	മവാഗമ മൂ	mucations
1 auto 7.1 1 110	parameter	ucscript	ion or	Mapix	cuuce ai	Julicanons

Parameter	Description
OsmesisApp	App name (e.g. App_1)
ID	App ID
DataRate_Sec	Data generation rate (e.g. every one second)
StopDataGeneration_Sec	Time to stop generating data
IoTDevice	The name of IoT device (e.g. temperature_1). Note that IoT devices' name must be defined in the infrastructure file (Example1_configuration)

IoTDeviceOutputData_Mb	The data size in Mb an IoT device generates according to the data
	generation rate (e.g. sending 100 Mb every 2 seconds)
MELName	MEL destination that receives data from an IoT device
OsmesisEdgelet_MI	Size of a task in million instructions (MI), which is executed in a MEL
MELOutputData_Mb	Every MEL generates new data in Mb (e.g. filtering, sorting, calculating) and sends the data to a VM in cloud datacentre via SD-WAN network layer
VmName	VM's name that receives data from a MEL
OsmesisCloudlet_MI	Finally, VM processes received data in a form of MI

Α	В	С	D	E	F	G	Н	I	J	K
OsmesisApp	ID	DataRate_Sec	StopDataGeneration_Sec	IoTDevice	IoTDeviceOutputData_Mb	MELName	OsmesisEdgelet_MI	MELOutputData_Mb	VmName	OsmesisCloudlet_MI
App_1	:	1 1.2	300	temperature_1	90	MEL_1	250	70	VM_1	200

Figure 4.1 Example1_Worload

The example can be found in org.cloudbus.cloudsim.osmesis.examples package, as shown in Figure 4.2.

Figure 4.2

4.1 Policies

To run any osmotic application, you have to provide, select, or propose several policies. Figure 4.3 shows the list of policies already developed in IoTSim-Osmosis or used from different simulation tools (e.g. BigDataSDNSim). The policy selection can be configured either in the infrastructure file (Example1_configuration) or in the OsmesisExample_1.java. The following describes the purpose of every policy:

- 1. *VM and MEL placement:* It determines how VMs and MELs are placed on a given edge and cloud hosts (e.g. VmMELAllocationPolicyCombinedLeastFullFirst).
- 2. *VM-CPU scheduling:* It determines how tasks submitted to VMs or MELs are scheduled (e.g. CloudletSchedulerTimeSharedMutipleCPUs)
- 3. *Routing:* It is used to determine routes among MEL and/or VMs in edge, cloud and SD-WAN networks (e.g. SDNRoutingTraditionalShortestPath).
- 4. *Traffic:* It is used to control the sharing of resources among osmotic applications in given networks (e.g. edge, cloud, SD-WAN). An example is SDNTrafficPolicyFairShare.
- 5. *Moving:* It is used to determine the movement policy of given IoT devices. Current version of IoTSim-Osmosis does not require this policy as it considers IoT devices to be in a fixed location.

org.cloudbus.osmosis.core.polocies

□ CloudletSchedulerTimeSharedMutipleCPUs.java

□ MovingPolicy.java

□ SDNRoutingLoadBalancing.java

□ SDNRoutingPolicy.java

□ SDNRoutingTraditionalShortestPath.java

□ SDNTrafficPolicyFairShare.java

□ SDNTrafficSchedulingPolicy.java

□ SimpleMovingPolicy.java

□ VmMELAllocationPolicyCombinedLeastFullFirst.java

Figure 4.3

4.2 Output results of IoTSim-Osmosis

Once IoTSim-Osmosis finishes running, it would produce results, which are stored in a text file named result.txt located in outputFiles folder. The results contain a lot of information. At the end of the result file, the results are structured as follows:

- Results of each IoT transaction
- Results of every osmotic application
- Battery consumption of IoT devices
- Power consumption of edge, cloud, and SD-WAN infrastructures
- Total power consumption

4.3 Running an example (OsmesisExample_1)

Step 1: Select OsmesisExample_1.java -> click on the small down arrow next to the play button and select Run Configurations (see Figure 4.4).

Figure 4.4

Step 2: Double click on Java Application and Eclipse will create the first example automatically (see Figure 4.5).

Figure 4.5

Step 2: Click on Common -> check mark Output File -> click workspace -> select IoTSim-Osmosis folder -> select outFiles folder -> select result.txt -> click Ok -> click Run (see Figure 4.6). This step will run the first example and store all the outputs on the result.txt file.

Figure 4.6

Figure 4.7 and Figure 4.8 show a sample of the result obtained by running the example.

Result.txt 🖾							- 5
34							^
		Osmesis App R	esults				
36App ID	AppName	Transaction	StartTime	FinishTime	IoTDeviceName	MELName	DataSizeIoTDeviceToM
371	App 1	1	0.2	3.6000	temperature 1	MEL 1 (Edge 1)	90
381	App 1	2	1.4	4.8000	temperature 1	MEL 1 (Edge 1)	90
391	App 1		99999999996	6.0000	temperature 1	MEL 1 (Edge 1)	90
401	App 1	4	3.8	7.2000	temperature 1	MEL 1 (Edge 1)	90
411		5	5.0	8.4000	temperature 1	MEL 1 (Edge 1)	90
421	App_1	6	6.2	9.6000	temperature_1	MEL 1 (Edge_1)	90
431	App_1	7	7.4	10.8000			90
	App_1	/ 8			temperature_1	MEL_1 (Edge_1)	
441	App_1	9	8.6	12.0000	temperature_1	MEL_1 (Edge_1)	90
451	App_1		9999999999	13.2000	temperature_1	MEL_1 (Edge_1)	90
461	App_1		9999999998	14.4000	temperature_1	MEL_1 (Edge_1)	90
471	App_1		9999999998	15.6000	temperature_1	MEL_1 (Edge_1)	90
481	App_1		9999999997	16.8000	temperature_1	MEL_1 (Edge_1)	90
491	App_1		9999999996	18.0000	temperature_1	MEL_1 (Edge_1)	90
501	App_1		9999999995	19.2000	temperature_1	MEL_1 (Edge_1)	90
51 1	App_1	15 16.9999	9999999996	20.4000	temperature_1	MEL_1 (Edge_1)	90
52 1	App_1	16 18.1999	9999999996	21.6000	temperature 1	MEL 1 (Edge 1)	90
531	App_1	17 19.3999	9999999995	22.8000	temperature 1	MEL 1 (Edge 1)	90
541	App 1	18 20.5999	9999999994	24.0000	temperature 1	MEL 1 (Edge 1)	90
55 1	App 1	19 21.7999	9999999994	25.2000	temperature 1	MEL 1 (Edge 1)	90
561	App 1	20 22.9999	9999999993	26.4000	temperature 1	MEL 1 (Edge 1)	90
571	App 1	21 24.1999	99999999992	27.6000	temperature 1	MEL 1 (Edge 1)	90
581	App 1	22 25.399	9999999999	28.8000	temperature 1	MEL 1 (Edge 1)	90
591	App 1	23 26.599	9999999999	30.0000	temperature 1	MEL 1 (Edge 1)	90
601	App 1	24 27.799	9999999999	31.2000	temperature 1	MEL 1 (Edge 1)	90
611	App 1		99999999999	32.4000	temperature 1	MEL 1 (Edge 1)	90
621	App 1		99999999999	33,6000	temperature 1	MEL 1 (Edge 1)	90
631	App 1		99999999988	34.8000	temperature 1	MEL 1 (Edge 1)	90
641	App 1		99999999999	36.0000	temperature 1	MEL 1 (Edge 1)	90
651			99999999999	37.2000	temperature 1	MEL 1 (Edge_1)	90
661	App_1		99999999999	38.4000			90
671	App_1		99999999999		temperature_1		90
	App_1			39.6000	temperature_1	MEL_1 (Edge_1)	
68 1	App_1	32	37.4	40.8000	temperature_1	MEL_1 (Edge_1)	90
691	App_1	33	38.6	42.0000	temperature_1	MEL_1 (Edge_1)	90
701	App_1		00000000004	43.2000	temperature_1	MEL_1 (Edge_1)	90
71 1	App_1		00000000001	44.4000	temperature_1	MEL_1 (Edge_1)	90
721	App_1		00000000001	45.6000	temperature_1	MEL_1 (Edge_1)	90
731	App_1		00000000001	46.8000	temperature_1	MEL_1 (Edge_1)	90
741	App_1		00000000016	48.0000	temperature_1	MEL_1 (Edge_1)	90
751	App_1	39 45.800	00000000002	49.2000	temperature_1	MEL_1 (Edge_1)	90
761	App_1	40 47.000	00000000002	50.4000	temperature_1	MEL_1 (Edge_1)	90
771	App 1	41 48.2000	00000000024	51.6000	temperature 1	MEL 1 (Edge 1)	90
781	App 1	42 49.400	00000000003	52.8000	temperature 1	MEL 1 (Edge 1)	90
791	App 1	43 50.600	00000000003	54.0000	temperature 1	MEL 1 (Edge 1)	90
0.0.1	7 mm 1	44 51 000	00000000000	EE 2000	***************************************	MET 1 (Edge 1)	00

Figure 4.7

8 =======		smesis Overall Apps Resul	te =======					
9 App_Name 0 App_1 1	IoTDeviceDrained No	IoTDeviceBatteryCons 0.50	umption TotalI	oTGeneratedData 22500	TotalEdgeLetS 62500	izes	TotalMELGeneratedData 17500	То
		smesis Workflow Configrat						
3 App_Name 4 App_1 5	DataRate_Sec 1.2 = Host Power Consump	StopDataGeneration_Sec 300.0	IoTDevice temperature_1		ntputData_Mb 90	MELName MEL_1	OsmesisEdgelet_MI 250	
8 Cloud_1: 9 =	corea: 0.0 corea: 0.0 aggregate1: 3.339583 aggregate2: 0.0 aggregate3: 0.0 aggregate4: 0.0 aggregate5: 0.0 aggregate6: 0.0 aggregate6: 0.0 aggregate7: 0.0	99945 mption =========						
4 Total ene 5	ergy consumed: 13.35 rgy consumed: 36.105 = Host Power Consump	53333333333						
7 Edge_1: e 8 Edge_1: e 9 ======	dgeDevice_1: 10.1574 dgeDevice_2: 10.1574 = Switch Power Consu	89930555506 89930555506 mption =======						
	dge1_gateway: 3.3395 ore1: 3.339583333333 ore2: 0.0							

Figure 4.8

5 Contact

Please feel free to contact me if you need any further information at kalwasel@gmail.com This manual is written by Khaled Alwasel under the supervision of Prof. Rajiv Ranjan.