# EE 330 Lecture 39

### **Digital Circuits**

Other MOS Logic Families
Propagation Delay – basic characterization
Device Sizing (Inverter and multiple-input gates)

Review from last lecture
Inverter Transfer Characteristics of Inverter Pair for THIS Logic Family





$$V_H = V_{DD}$$
 and  $V_L = 0$ 

Note this is independent of device sizing for THIS logic family !!



#### Review from last lecture

#### Transfer characteristics of the static CMOS inverter

(Neglect λ effects)



From Case 3 analysis:

$$V_{_{IN}} = \frac{\left(V_{_{Tn}}\right) + \left(V_{_{DD}} + V_{_{Tp}}\right) \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}}} \frac{W_{_{2}}}{W_{_{1}}} \frac{L_{_{1}}}{L_{_{2}}}}{1 + \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}} \frac{W_{_{2}}}{W_{_{1}}} \frac{L_{_{1}}}{L_{_{2}}}}}$$

#### Review from last lecture







#### Review from last lecture



- High and low swings are reduced
- Response time is slow on LH output transitions
- Static Power Dissipation Large when V<sub>OUT</sub> is low (will show)



- Termed "ratio logic" (because logic values dependent on device W/L ratios USE UP DOF!)
- May not work for some device sizes
- Compact layout (no wells!)







 Multiple-input gates require single transistor for each additional input



Still useful if many inputs are required
 (will be shown that static power does not increase with k)





k-input NAND



- High and low swings are reduced
- Response time is slow on LH output transitions
- Static Power Dissipation Large when V<sub>OUT</sub> is low
- Multiple-input gates require single transistor for each additional input
- Termed "ratio" logic
- Available to use in standard CMOS process





Depletion Load NMOS

- Low swing is reduced
- Static Power Dissipation Large when V<sub>OUT</sub> is low
- Very economical process
- **Better than Enhancement Load NMOS**
- Termed "ratio" logic
- Compact layout (no wells!)
- Response time slow on L-H output transitions
- **Dominant MOS logic until about 1985**
- Depletion device not available in most processes today





- Device sizing critical for even basic operation
- Shallow slope at V<sub>TRIP</sub>



- basic operation (DOF)
- Shallow slope at V<sub>TRIP</sub>



# Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
- Aatio Logic
- Propagation Delay
  - Simple analytical models
  - Elmore Delay
  - Sizing of Gates

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators



### Static Power Dissipation in Static CMOS Family



When  $V_{IN}$  is Low and  $V_{OUT}$  is High, M1 is off and  $I_{D1}=0$ 

When  $V_{IN}$  is High and  $V_{OUT}$  is Low, M2 is off and  $I_{D2}=0$ 

Thus, P<sub>STATIC</sub>=0





It can be shown that this zero static power dissipation property can be preserved if the PUN is comprised of p-channel devices, the PDN is comprised of n-channel devices and they are never both driven into the conducting states at the same time

# Static Power Dissipation in Ratio Logic Families

#### **Example:**



Assume  $V_{DD}=5V$  $V_{T}=1V$ ,  $\mu C_{OX}=10^{-4}A/V^{2}$ ,  $W_{1}/L_{1}=1$  and  $M_{2}$  sized so that  $V_{L}$  is close to  $V_{Tn}$ 

#### **Observe:**

$$V_H = V_{DD} - V_{Tn}$$

If 
$$V_{IN}=V_H$$
,  $V_{OUT}=V_L$  so

$${\bm I}_{\text{D1}} = \frac{\mu \bm C_{\text{OX}} \bm W_{\text{1}}}{\bm L_{\text{1}}} \! \left( \bm V_{\text{GS1}} - \bm V_{\text{T}} - \frac{\bm V_{\text{DS1}}}{\bm 2} \right) \! \bm V_{\text{DS1}}$$

$$I_{D1} = 10^{-4} \left( 5 - 1 - 1 - \frac{1}{2} \right) \cdot 1 = 0.25 \text{mA}$$

$$P_1 = (5V)(0.25mA) = 1.25mW$$

# Static Power Dissipation in Ratio Logic Families

#### **Example:**



Assume  $V_{DD}$ =5V  $V_{T}$ =1V,  $\mu C_{OX}$  =10<sup>-4</sup>A/V<sup>2</sup>,  $W_{1}/L_{1}$ =1 and  $M_{2}$  sized so that  $V_{L}$  is close to  $V_{Tn}$ 

 $P_L = (5V)(0.25mA) = 1.25mW$ 

If a circuit has 100,000 gates and half of them are in the  $V_{OUT}=V_L$  state, the static power dissipation will be

# Static Power Dissipation in Ratio Logic Families

#### **Example:**



Assume  $V_{DD}=5V$  $V_{T}=1V$ ,  $\mu C_{OX}=10^{-4}A/V^{2}$ ,  $W_{1}/L_{1}=1$  and  $M_{2}$  sized so that  $V_{L}$  is close to  $V_{Tn}$ 

$$P_L = (5V)(0.25mA) = 1.25mW$$

If a circuit has 100,000 gates and half of them are in the  $V_{OUT}=V_L$  state, the static power dissipation will be

$$P_{STATIC} = \frac{1}{2}10^5 \bullet 1.25 mW = 62.5W$$

This power dissipation is way too high and would be even larger in circuits with 100 million or more gates – the level of integration common in SoC circuits today

# Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
  - Ratio Logic
- Propagation Delay
- Simple analytical models
  - Elmore Delay
  - Sizing of Gates

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

done partial

(Review from earlier discussions)



Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)

(Review from earlier discussions)



Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)

(Review from earlier discussions)



Since operating in triode through most of transition:

$$\begin{split} & I_{D} \cong \frac{\mu C_{OX} W}{L} \bigg( V_{GS} - V_{T} - \frac{V_{DS}}{2} \bigg) V_{DS} \cong \frac{\mu C_{OX} W}{L} \big( V_{GS} - V_{T} \big) V_{DS} \\ & R_{PD} = \frac{V_{DS}}{I_{D}} = \frac{L_{1}}{\mu_{n} C_{OX} W_{1} \big( V_{DD} - V_{Tn} \big)} \\ & I_{D} = \frac{\mu C_{OX} W}{L} \bigg( V_{GS} - V_{T} - \frac{V_{DS}}{2} \bigg) V_{DS} \cong \frac{\mu C_{OX} W}{L} \big( V_{GS} - V_{T} \big) V_{DS} \\ & R_{PU} = \frac{V_{DS}}{I_{D}} = \frac{L_{2}}{\mu_{p} C_{OX} W_{2} \big( V_{DD} + V_{Tp} \big)} \\ & C_{IN} = C_{OX} \Big( W_{1} L_{1} + W_{2} L_{2} \Big) \end{split}$$



(Review from earlier discussions)



$$\boldsymbol{R}_{PD} = \frac{\boldsymbol{L}_{1}}{\boldsymbol{\mu}_{n}\boldsymbol{C}_{o\boldsymbol{X}}\boldsymbol{W}_{1}\!\left(\boldsymbol{V}_{\!DD} - \boldsymbol{V}_{\!Tn}\right)}$$

$$\boldsymbol{R}_{PU} = \frac{\boldsymbol{L}_{2}}{\boldsymbol{\mu}_{p}\boldsymbol{C}_{OX}\boldsymbol{W}_{2}\!\left(\boldsymbol{V}_{DD} + \boldsymbol{V}_{Tp}\right)}$$

$$\mathbf{C}_{\mathsf{IN}} = \mathbf{C}_{\mathsf{OX}} \big( \mathbf{W}_{\mathsf{1}} \mathbf{L}_{\mathsf{1}} + \mathbf{W}_{\mathsf{2}} \mathbf{L}_{\mathsf{2}} \big)$$

#### Example: Minimum-sized M<sub>1</sub> and M<sub>2</sub>

If  $u_n C_{OX}$ =100 $\mu$ AV<sup>-2</sup>,  $C_{OX}$ =4 fF $\mu$ <sup>-2</sup>,  $V_{Tn}$ = $V_{DD}$ /5,  $V_{TP}$ =- $V_{DD}$ /5,  $\mu_n/\mu_p$ =3,  $L_1$ = $W_1$ = $L_{MIN}$ ,  $L_2$ = $W_2$ = $L_{MIN}$ ,  $L_{MIN}$ =0.5 $\mu$  and  $V_{DD}$ =5V (Note: This  $C_{OX}$  is somewhat larger than that in the 0.5 $\mu$  ON process)

$$R_{PD} = \frac{1}{10^{-4} \cdot 0.8 V_{DD}} = 2.5 K\Omega$$

$$R_{PU} = \frac{1}{10^{-4} \cdot \frac{1}{2} \cdot 0.8 V_{DD}} = 7.5 K\Omega$$

$$C_{IN} = 4 \cdot 10^{-15} \cdot 2L_{MIN}^2 = 2fF$$

(Review from earlier discussions)





In typical process with Minimum-sized M<sub>1</sub> and M<sub>2</sub>:

$$R_{PD} \cong 2.5 K\Omega$$

$$R_{PU} \cong 3R_{PD} = 7.5K\Omega$$
  
 $C_{IN} \cong 2fF$ 

$$C_{IN} \cong 2fF$$

(Review from earlier discussions)



In typical process with Minimum-sized M<sub>1</sub> and M<sub>2</sub>:



How long does it take for a signal to propagate from x to y?

(Review from earlier discussions)

**Consider:** For HL output transition, C<sub>L</sub> charged to V<sub>DD</sub> **Ideally:**  $V_{\text{DD}}$ t=0  $V_{OUT}$  $V_{\text{DD}}$ t=0

(Review from earlier discussions)

For HL output transition, C<sub>L</sub> charged to V<sub>DD</sub>



What is the transition time  $t_{HL}$ ?

(Review from earlier discussions)



(Review from earlier discussions)







$$\boldsymbol{t}_1 = \boldsymbol{R}_{PD}\boldsymbol{C}_L$$

If  $V_{TRIP}$  is close to  $V_{DD}/2$ ,  $t_{HL}$  is close to  $t_1$ 

(Review from earlier discussions)



For  $V_{TRIP}$  close to  $V_{DD}/2$ 

(Review from earlier discussions)



In typical process with Minimum-sized  $M_1$  and  $M_2$ :

$$t_{HL} \cong R_{PD}C_L \cong 2.5 \text{K-}2 \text{fF=}5 \text{ps}$$

$$t_{LH} \cong R_{PU}C_L \cong 7.5 \text{K-}2 \text{fF=}15 \text{ps}$$

(Note: This C<sub>OX</sub> is somewhat larger than that in the 0.5u ON

process)

Note: LH transition is much slower than HL transition

Defn: The Propagation Delay of a gate is defined to be the sum of  $t_{HL}$  and  $t_{LH}$ , that is,  $t_{PROP} = t_{HL} + t_{LH}$ 

$$t_{PROP} = t_{HL} + t_{LH} \cong C_L (R_{PU} + R_{PD})$$

Propagation delay represents a fundamental limit on the speed a gate can be clocked

For basic two-inverter cascade in static 0.5um CMOS logic

X 
$$t_{PROP} = t_{HL} + t_{LH} \cong 20p \text{ sec}$$

$$t_{PROP} = t_{HL} + t_{LH} \cong C_L (R_{PU} + R_{PD})$$

$$R_{PD} = \frac{L_1}{\mu_n C_{ox} W_1 (V_{DD} - V_{Tn})} \qquad R_{PU} = \frac{L_2}{\mu_p C_{ox} W_2 (V_{DD} + V_{Tp})} \qquad \qquad C_{IN} = C_{ox} \big( W_1 L_1 + W_2 L_2 \big)$$

If 
$$V_{Tn} = -V_{Tp} = V_T$$

$$t_{PROP} = C_{OX}(W_1L_1 + W_2L_2) \left( \frac{L_1}{m_1 C_{OX} W_1(V_{DD} - V_T)} + \frac{L_2}{m_p C_{OX} W_2(V_{DD} - V_T)} \right)$$

If 
$$L_{2} = L_{1} = L_{\min}$$
,  $m_{n} = 3m_{n}$ ,

$$t_{PROP} = \frac{L_{\min}^2}{m_n (V_{DD} - V_T)} (W_1 + W_2) \left( \frac{1}{W_1} + \frac{3}{W_2} \right) = \frac{L_{\min}^2}{m_n (V_{DD} - V_T)} (4 + \frac{W_2}{W_1} + 3 \frac{W_1}{W_2})$$

For min size: For equal rise/fall:

For min delay:

$$W_{2} = W_{1} = W_{\min} \qquad W_{2} = 3W_{1} \qquad W_{2} = \sqrt{3}W_{1} \qquad (4+2\sqrt{3}) \approx 7.5$$

$$t_{PROP} = \frac{8L_{\min}^{2}}{m_{n}(V_{DD} - V_{T})} \qquad t_{PROP} = \frac{8L_{\min}^{2}}{m_{n}(V_{DD} - V_{T})} \qquad t_{PROP} = \frac{(4+2\sqrt{3})L_{\min}^{2}}{m_{n}(V_{DD} - V_{T})}$$

# Approximate BSIM values

| process | Lmin | u  | VT   | VDD | Wmin |
|---------|------|----|------|-----|------|
| 500     | 600  | 34 | 0.7  | 5   | 900  |
| 180     | 180  | 35 | 0.4  | 1.8 | 180  |
| 130     | 130  | 59 | 0.33 | 1.3 | 130  |
| 90      | 100  | 55 | 0.26 | 1.1 | 100  |
| 65      | 65   | 49 | 0.22 | 1   | 65   |
| 45      | 45   | 44 | 0.22 | 0.9 | 45   |

For min L transistors, mobility will saturate as field strength reaches a certain level.



The propagation delay through k levels of logic is approximately the sum of the individual delays in the same path

#### **Example:**



$$t_{HL} = t_{HL4} + t_{LH3} + t_{HL2} + t_{LH1}$$

$$t_{LH} = t_{LH4} + t_{HL3} + t_{LH2} + t_{HL1}$$

$$t_{PROP} = t_{LH} + t_{HL} = (t_{LH4} + t_{HL3} + t_{LH2} + t_{HL1}) + (t_{HL4} + t_{LH3} + t_{HL2} + t_{LH1})$$

$$t_{PROP} = t_{LH} + t_{HL} = (t_{LH4} + t_{HL4}) + (t_{LH3} + t_{HL3}) + (t_{LH2} + t_{HL2}) + (t_{LH1} + t_{HL1})$$

$$t_{PROP} = t_{PROP4} + t_{PROP3} + t_{PROP2} + t_{PROP1}$$



#### Propagation through k levels of logic

$$t_{HL} \cong t_{HLk} + t_{LH(k-1)} + t_{HL(k-2)} + \cdots + t_{XY1}$$

$$t_{LH} \cong t_{LHk} + t_{HL(k-1)} + t_{LH(k-2)} + \cdots + t_{YX1}$$

where x=H and Y=L if k odd and X=L and Y=h if k even

$$t_{PROP} = \sum_{i=1}^{k} t_{PROPk}$$

Will return to propagation delay after we discuss device sizing

# Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
  - Ratio Logic
- Propagation Delay
  - Simple analytical models
  - Elmore Delay
- Sizing of Gates

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

done partial

### Question:



Why is |V<sub>Tp</sub>| ≈V<sub>Tn</sub>≈V<sub>DD</sub>/5 in many processes?



# Device Sizing







Strategies?

**Degrees of Freedom?** 

Will consider the inverter first

# Device Sizing



**Degrees of Freedom?** 

**Strategies?** 

# Device Sizing

- Since not ratio logic, V<sub>H</sub> and V<sub>L</sub> are independent of device sizes for this inverter
- With  $L_1=L_2=L_{min}$ , there are 2 degrees of freedom ( $W_1$  and  $W_2$ )

#### **Sizing Strategies**

- Minimum Size
- Fixed V<sub>TRIP</sub>
- Equal rise-fall times (equal worst-case rise and fall times)
- Minimum power dissipation
- Minimum time required to drive a given load
- Minimum input capacitance



# End of Lecture 39