Exersise §1, 9

- a. For any even integer n we can write it as the product n=2k for some $k \in \mathbb{Z}$. Therefore $n^2=(2k)^2=4k^2$ and therefore 4 divides n^2
- b. For any even integer n we can write it as the product n=4k for some $k \in \mathbb{Z}$. Therefore $n^3=(2k)^3=8k^3$ and therefore 8 divides n^3
- c. In the prime factorization of twice and odd cube, $2k^3$ where k odd, we know 2 does not divide k and therefore does not divide k^3 and so there is only 2^1 in the prime factorization of $2k^3$. Therefore 8 cannot divide $2k^3$ since $8=2^3$ does not divide the powers of 2 in the prime factorization of $2k^3$
- d. Suppose for contradiction $\sqrt[3]{2} = \frac{a}{b}$ where a,b are relatively prime. Then we have $2b^3 = a^3$

Exersise 10

Exersise 13

Exersise 1

Exersise 2