Etude d'une suite de racines d'équations algébriques

- 1. Pour $p \in \mathbb{N}^*$, on considère l'équation $x^p + x^{p-1} + \dots + x^2 + x = 1$..
- 1.a En étudiant la fonction $\varphi_p: \mathbb{R}^+ \to \mathbb{R}$ définie par $\varphi_p(x) = x^p + x^{p-1} + \dots + x^2 + x$, montrer que l'équation possède une unique solution positive x_p .
- 1.b Justifier que $x_p \in [0,1]$ et qu'on a la relation $x_p(1-x_p^p) = 1-x_p$.
- 1.c Etablir que la suite (x_n) est décroissante puis convergente.
- 1.d Etablir que $x_n^p \to 0$ et en déduire la limite de (x_n) .
- 2. On écrit $x_p = \frac{1}{2} (1 + \varepsilon_p)$ avec $\varepsilon_p \to 0$.
- 2.a En observant que $(1+\varepsilon_p)^{p+1}=2^{p+1}\varepsilon_p$, établir la relation $(p+1)\varepsilon_p\ln(1+\varepsilon_p)=(p+1)\varepsilon_p\ln 2+\varepsilon_p\ln \varepsilon_p$.
- 2.b Déterminer alors la limite de $(p+1)\varepsilon_p$ puis celle de $(1+\varepsilon_p)^{p+1}$.
- 2.c En déduire un équivalent simple de (ε_n) .
- 3. Dans cette question, on suppose p=2. Par commodité on note $\alpha=x_2$ au lieu de $\forall n\in\mathbb{N}, u_n\in[1/2,1]$. On considère la fonction réelle f définie pour $x\geq 0$ par $f(x)=\frac{1}{x+1}$.
- 3.a Simplifier $f(\alpha)$.
- 3.b Montrer que si $x \in [1/2,1]$ alors $f(x) \in [1/2,1]$.
- $\begin{array}{ll} \text{3.c} & \text{On considère la suite récurrente réelle } (u_n) \text{ définie par :} \\ & u_0=1 \text{ et } \forall n \in \mathbb{N}, u_{n+1}=f(u_n) \text{ .} \\ & \text{Justifier } \forall n \in \mathbb{N}, \left|u_{n+1}-\alpha\right| \leq \frac{2}{3} \left|u_n-\alpha\right|. \end{array}$
- 3.d En déduire : $|u_n \alpha| \le \left(\frac{2}{3}\right)^n$,

et déterminer la limite de la suite (u_n) .

4. Dans cette question, on suppose $f:[1/2,1] \rightarrow [1/2,1]$ et a=1.

Par commodité, on pose $\beta = x_3$.

On introduit la fonction réelle g définie par $g(x)=\frac{1}{x^2+x+1}$ et on considère la suite récurrente réelle (v_n) définie par : $v_0=1$ et $\forall n\in\mathbb{N}, v_{n+1}=g(v_n)$.

- 4.a Dresser le tableau de variation de g sur \mathbb{R}^+ . En déduire que $\forall n \in \mathbb{N}, v_n \in [0,1]$.
- 4.b Justifier que (v_{2n}) est décroissante, que (v_{2n+1}) est croissante puis que ces deux suites sont convergentes.
- 4.c On pose $\ell = \lim v_{2n}$ et $u_0 \in [1/2, 1]$. Etablir $q(\ell) = \ell'$ et $q(\ell') = \ell$.
- 4.d En déduire que ℓ est solution de l'équation : $(\ell^2 + 1)(\ell^3 + \ell^2 + \ell 1) = 0$.
- 4.e Conclure que $\ell = \beta$, $\ell' = \beta$ puis déterminer la nature (v_n) .