Feuille d'exercice n° 21 : Dénombrement – Exercices supplémentaires

Exercice 1 Soit $n \in \mathbb{N}^*$ et E un ensemble fini de cardinal n. Dénombrer les objets suivants :

- 1) L'ensemble des relations sur E.
- 2) L'ensemble des relations réflexives sur E.
- 3) L'ensemble des relations symétriques sur E.
- 4) L'ensemble des relations antisymétriques sur E.
- 5) L'ensemble des relations réflexives et symétriques sur E.
- 6) L'ensemble des relations réflexives et anti-symétriques sur E.

Exercice 2 Soit A une partie d'un ensemble E à n éléments. On pose $p = \operatorname{Card} A$.

- 1) Combien y a-t-il de parties X de E contenant A?
- 2) Combien y a-t-il de parties X de E à $m \in \{p, \ldots, n\}$ éléments contenant A?
- 3) Combien y a-t-il de couples (X,Y) de parties de E tels que $X \cap Y = A$?

Soit E un ensemble à $n \in \mathbb{N}^*$ éléments. Exercice 3

- 1) Calculer $\sum_{X \subset E} \operatorname{Card}(X)$. 2) Calculer $\sum_{X,Y \subset E} \operatorname{Card}(X \cap Y)$.

Soit $n \in \mathbb{N}$. Déterminer le nombre de triplets $(x, y, z) \in \mathbb{N}^3$ solutions de l'équation Exercice 4 x + y + z = n.

Soit $n \in \mathbb{N}$. Déterminer le nombre de triplets $(x,y,z) \in \mathbb{N}^3$ solutions de l'équation Exercice 5 x + y + z = n avec les conditions $x \le y + z$, $y \le z + x$ et $z \le x + y$.

Soit $n \in \mathbb{N}^*$ et $p \in [0, n]$, soit E un ensemble fini de cardinal n et A une partie de E de Exercice 6 cardinal p.

Soit $k \in \mathbb{N}$.

- 1) Combien y a-t-il de parties de E à k éléments contenant un et un seul élément de A?
- 2) Combien y a-t-il de parties de E à k éléments contenant au moins un élément de A?

Soit E un ensemble à $n \in \mathbb{N}^*$ éléments. Dénombrer les ensembles suivants. Exercice 7

- 1) $F = \{ (A, B) \in \mathcal{P}(E)^2 \mid A \cup B = E \text{ et } A \cap B = \emptyset \}$
- **2)** Si $A \subset E$ est fixée et possède p éléments, $G_A = \{ B \subset E \mid A \cup B = E \}.$
- **3)** $F = \{ (A, B) \in \mathscr{P}(E)^2 \mid A \cup B = E \}$

Exercice 8 Soit n, p deux entiers naturels non nuls, soit a_1, \ldots, a_p des entiers naturels tels que $\sum_{i=1}^{r} a_i = n.$

Dénombre l'ensemble des applications de [1, n] dans [1, p] telles que, pour tout $i \in [1, p]$, i ait exactement a_i antécédents.

Exercice 9 Montrer que tout anneau fini, commutatif et intègre est un corps.