

NEPLAN AG

Oberwachtstrasse 2 8700 Küsnacht ZH Switzerland

Phone: +41 44 914 36 66 Fax :+41 44 991 19 71

www.neplan.ch bcp@neplan.ch

NEPLAN V555

EXCITER MODELS

Standard Dynamic Excitation Systems in NEPLAN Power System Analysis Tool

Contents

General	13
Per Unit (p.u.) System:	13
Excitation system Diagram	14
Input Signals to the Excitation System:	15
Ouput Signals to the Excitation System:	15
Voltage Compensator Saturation in exciter controller	15 16
Rectifier Regulation Characteristic according to FMOD	17
Inputs < <enumeration>> of EXCITERS, STEREOTYPE <<enum>></enum></enumeration>	18
EXCITER Simple	19
Parameters	19
Equivalent model in CIM/CGMES:	19
- No CIM/CGMES model	19
EXCITER Simple with Limits	20
Parameters	20
Equivalent model in CIM/CGMES:	20
- No CIM/CGMES model	20
EXCITER AC1	21
Parameters	21
Equivalent model in CIM/CGMES:	22
- No CIM/CGMES model	22
EXCITER AC1A	23
Parameters	23
Equivalent model in CIM/CGMES:	24
- ExcIEEEAC1A	24
EXCITER AC1A CIM/CGMES	25
Parameters	25
Equivalent model in CIM/CGMES:	26
- EXAC1A	26
EXCITER AC2A	27
Parameters	27
Equivalent model in CIM/CGMES:	28
- ExcIEEEAC2A	28

EXCITER AC3A	29
Parameters	29
Equivalent model in CIM/CGMES:	30
- ExcIEEEAC ₃ A	30
EXCITER AC4A	31
Parameters	31
Equivalent model in CIM/CGMES:	31
- ExcIEEEAC4A	31
EXCITER AC5A	32
Parameters	32
Equivalent model in CIM/CGMES:	33
- ExcIEEEAC ₅ A	33
EXCITER AC6A	34
Parameters	34
Equivalent model in CIM/CGMES:	35
- ExcIEEEAC6A	35
EXCITER AC7B	36
Parameters	36
Equivalent model in CIM/CGMES:	37
- ExcIEEEAC ₇ B	37
EXCITER - AC8B	38
EXCITER - AC8B 2005	38
Parameters	38
Equivalent model in CIM/CGMES:	39
- ExcIEEEAC8B	39
EXCITER - BBC1	40
Parameters	40
Equivalent model in CIM/CGMES:	40
- No CIM/CGMES model	40
EXCITER - BBC1 Simple	40
EXCITER - BBSEX1	41
Parameters	41
Equivalent model in CIM/CGMES:	41
- ExcBBC	41

EXCITER - BUDCZT	42
Parameters Equivalent model in CIM/CGMES:	42 42
- ExcCZ	42
EXCITER - CELIN	43
Parameters Equivalent model in CIM/CGMES:	43 44
- No CIM/CGMES Model	44
EXCITER - DC1A	45
Parameters	45
Equivalent model in CIM/CGMES: - ExcDC1A	46 46
EXCITER - DC1A 2005	47
Parameters	47
Equivalent model in CIM/CGMES: - ExcIEEEDC1A	48 48
EXCITER - DC2A	49
Parameters Equivalent model in CIM/CGMES:	49
- No CIM/CGMES model	50 50
EXCITER - DC2A 2005	51
Parameters	51
Equivalent model in CIM/CGMES: - ExcIEEEDC2A	52
	52
EXCITER – DC3A	53
Parameters CIN/CCNEC	53
Equivalent model in CIM/CGMES: - No CIM/CGMES model	53 53
EXCITER – DC3A 2005	54
Parameters	54
Equivalent model in CIM/CGMES:	54
- ExcIEEEDC ₃ A	54
EXCITER - DC4B	55
Parameters CIN/CCNES	55 -C
Equivalent model in CIM/CGMES: - ExcIEEEDC4B	56 56
- 1	J.

EXCITER - EXACTA	57
Parameters Equivalent model in CIM/CGMES: - ExcAC1A	57 58 58
EXCITER - EXAC2	59
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	59 60 60
EXCITER – EXAC2A	61
Parameters Equivalent model in CIM/CGMES: - ExcAC2A	61 62 62
EXCITER - EXAC3	63
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	63 64 64
EXCITER - EXAC3A	65
Parameters Equivalent model in CIM/CGMES: - ExcAC ₃ A	65 66 66
EXCITER - EXAC4	67
Parameters Equivalent model in CIM/CGMES: - ExcAC4A	67 67 67
EXCITER – EXAC5A	68
Parameters Equivalent model in CIM/CGMES: - ExcAC5A	68 69 69
EXCITER - EXCAC6A	70
Parameters Equivalent model in CIM/CGMES: - ExcAC6A	70 71 71
EXCITER - EXAC8B	72
Parameters Equivalent model in CIM/CGMES: - ExcAC8B	72 73 73

EXCITER - EXBAS	/4
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	74 75 75
EXCITER - EXCANS	76
Parameters Equivalent model in CIM/CGMES: - ExcANS	76 76 76
EXCITER - EXCAVR1	77
Parameters Equivalent model in CIM/CGMES: - ExcAVR1	77 77 77
EXCITER – EXCAVR2	78
Parameters Equivalent model in CIM/CGMES: - ExcAVR2	78 78 78
EXCITER – EXCAVR3	79
Parameters Equivalent model in CIM/CGMES: - ExcAVR3	79 79 79
EXCITER – EXCAVR4	80
Parameters Equivalent model in CIM/CGMES: - ExcAVR4	80 80 80
EXCITER – EXCAVR5	81
Parameters Equivalent model in CIM/CGMES: - ExcAVR5	81 81 81
EXCITER - EXCAVR7	82
Parameters Equivalent model in CIM/CGMES: - ExcAVR7	82 82 82
EXCITER - ExcELIN2	83
Parameters Equivalent model in CIM/CGMES: - ExcELIN2	8 ₃ 8 ₄ 8 ₄

EXCITER - EXCHU	85
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	8 ₅ 8 ₅ 8 ₅
EXCITER - EXCOEX3T	86
Parameters Equivalent model in CIM/CGMES: - ExcOEX ₃ T	86 87 87
EXCITER - EXCSK	88
Parameters Equivalent model in CIM/CGMES: - ExcSK	88 89 89
EXCITER - EXCST1A	90
Parameters Equivalent model in CIM/CGMES: - ExcST1A	90 90
EXCITER – EXELI	91
Parameters Equivalent model in CIM/CGMES: - ExcELIN1	91 92 92
EXCITER - EXPIC1	93
Parameters Equivalent model in CIM/CGMES: - ExcPIC	93 94 94
EXCITER - EXST2A	95
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	95 96 96
EXCITER - FREADC	97
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	97 97 97
EXCITER - IEEET1	98
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	98 99 99

EXCITER - IEEET2	100
Parameters	100
Equivalent model in CIM/CGMES:	101
- No CIM/CGMES model	101
EXCITER - IEEET3	102
Parameters	102
Equivalent model in CIM/CGMES:	103
- ExcDC ₃ A ₁	103
EXCITER - IEEET4	104
Parameters	104
Equivalent model in CIM/CGMES:	105
- No CIM/CGMES model	105
EXCITER - IEEET5	106
Parameters	106
Equivalent model in CIM/CGMES:	107
- No CIM/CGMES model	107
EXCITER – IEEEX1	108
Parameters	108
Equivalent model in CIM/CGMES:	109
- No CIM/CGMES model	109
EXCITER – IEEEX2	110
Parameters	110
Equivalent model in CIM/CGMES:	111
- ExcDC ₂ A	111
EXCITER - IEEEX3	112
Parameters	112
Equivalent model in CIM/CGMES:	113
- No CIM/CGMES model	113
EXCITER - IEEEX4	114
Parameters	114
Equivalent model in CIM/CGMES:	115
- ExcDC₃A (only valid with kr = o in CIM/CGMES)	115
EXCITER - IEET1A	116
Parameters	116
Equivalent model in CIM/CGMES:	117
- No CIM/CGMES model	117

EXCITER - IEET1B	118
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	118 119 119
EXCITER – IEET5A	120
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	120 120 120
EXCITER – IEEX2A	121
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES Model	121 121 121
EXCITER - PSAT Type1	122
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	122 122 122
EXCITER - PSAT Type2	123
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	123 123 123
EXCITER - REXSYS	124
Parameters Equivalent model in CIM/CGMES: - ExcREXS	124 125 125
EXCITER - SCRX	126
Parameters Equivalent model in CIM/CGMES: - ExcSCRX	126 126 126
EXCITER - SEXS	127
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	127 127 127
EXCITER - SEXS 2005	128
Parameters Equivalent model in CIM/CGMES: - ExcSEXS	128 128 128

EXCITER - ST1A	129
Parameters Equivalent model in CIM/CGMES: - ExcIEEEST1A	129 130 130
EXCITER - ST2A	131
Parameters Equivalent model in CIM/CGMES: ExcIEEEST2A	131 132 132
EXCITER - ST2A 2005	133
Parameters Equivalent model in CIM/CGMES: - ExcST2A	133 134 134
EXCITER - ST3A	135
Parameters Equivalent model in CIM/CGMES: - ExcIEEEST3A	135 136 136
EXCITER - ST3	137
Parameters Equivalent model in CIM/CGMES: - ExcST ₃ A	137 138 138
EXCITER - ST4B	139
Parameters Equivalent model in CIM/CGMES: - ExcIEEEST4B	139 140 140
EXCITER - ST4B 2005	141
Parameters Equivalent model in CIM/CGMES: - ExcST4B	141 142 142
EXCITER - ST5B	143
Parameters Equivalent model in CIM/CGMES: - ExcIEEEST5B	143 144 144
EXCITER - ST6B	145
Parameters Equivalent model in CIM/CGMES: - ExcST6B	145 146 146

EXCITER - ST6B CIM/CGMES	147
Parameters Equivalent model in CIM/CGMES: - ExcIEEEST6B	147 147 147
EXCITER – ST7B	148
Parameters	148
Equivalent model in CIM/CGMES:	148
- ExcIEEEST ₇ B	148
EXCITER - URST5T	149
Parameters	149
Equivalent model in CIM/CGMES:	149
- No CIM/CGMES model	149
EXCITER - TYPE 1	150
Parameters	150
Equivalent model in CIM/CGMES:	151
- No CIM/CGMES model	151
EXCITER - TYPE 12	152
Parameters	152
Equivalent model in CIM/CGMES:	152
- No CIM/CGMES model	152
EXCITER - TYPE 15	153
Parameters	153
Equivalent model in CIM/CGMES:	153
- No CIM/CGMES model	153
EXCITER - TYPE 4	154
Parameters	154
Equivalent model in CIM/CGMES:	155
- No CIM/CGMES model	155
EXCITER – Type ST2	156
Parameters	156
Equivalent model in CIM/CGMES:	157
- No CIM/CGMES model	1 57
EXCITER - Type ST3 (SCRX MODIFIED)	158
Equivalent model in CIM/CGMES:	158
- No CIM/CGMES model	158

EXCITER - Type W	159
Parameters	159
Equivalent model in CIM/CGMES:	159
- No CIM/CGMES model	159
EXCITER- Type WA	160
Parameters	160
Equivalent model in CIM/CGMES:	161
- No CIM/CGMES model	161
EXCITER- Type WB	162
Parameters	162
Equivalent model in CIM/CGMES:	163
- No CIM/CGMES model	163
EXCITER- Type WC	164
Parameters	164
Equivalent model in CIM/CGMES:	165
- No CIM/CGMES model	165
EXCITER- Type WD	166
Parameters	166
Equivalent model in CIM/CGMES:	167
- No CIM/CGMES model	167
EXCITER- Type WE	168
Parameters	168
Equivalent model in CIM/CGMES:	169
- No CIM/CGMES model	169
EXCITER- Type WF	170
Parameters	170
Equivalent model in CIM/CGMES:	171
- No CIM/CGMES model	171
EXCITER- Type WFA	172
Parameters	172
Equivalent model in CIM/CGMES:	173
- No CIM/CGMES model	173
EXCITER- Type WG	174
Parameters	174
Equivalent model in CIM/CGMES:	174
- No CIM/CGMES model	174

EXCITER- Type WH	175
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	175 176 176
EXCITER- Type WHA	177
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	177 178 178
EXCITER- Type WI	179
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	179 180 180
EXCITER- Type WJ	181
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	181 181 181
EXCITER- Type WK	182
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	182 182 182
EXCITER- Type WKA	183
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	183 183 183
EXCITER- Type WP	184
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	184 184 184
EXCITER- Type WQ	185
Parameters Equivalent model in CIM/CGMES: - No CIM/CGMES model	185 185 185

EXCITER MODELS

General

The excitation system model provides the field voltage (Efd) for a synchronous machine model. It is linked to a specific generator (synchronous machine). The data parameters are different for each excitation system model; the same parameter name may have different meaning in different models.

ENTSO-E, an association of the European electricity transmission system operators, selected the Common Information Model (CIM) standards of the International Electrotechnical Commission (IEC) as a basis for its own CIM standards. These standards aim at ensuring the reliability of grid models and market information exchanges.

In 2013, ENTSO-E adopted a new standard for grid models exchange called the Common Grid Model Exchange Standard (CGMES). The CGMES is a superset of the IEC CIM standards (belonging to IEC CIM16). It was developed to meet necessary requirements for the transmission system operators, which exchange data in the areas of system operations, network planning and integrated electricity markets.

All the CIM/CGMES regulators models are included in NEPLAN Power System Analysis Tools.

Per Unit (p.u.) System:

One p.u. field current is the current required to produce rated voltage on the air-gap line of the open-circuit synchronous machine. Other machine p.u. values are based on the machine ratings.

Excitation system Diagram

Input Signals to the Excitation System:

VT	Bus voltage, positive sequence, p.u.	
IT	Stator output current, positive sequence, p.u.	
IFD	Field current, positive sequence, p.u.	
VPSS	Output signal from the power system stabilizers.	
VUEL	Output signal from the Under Excitation Limiter.	
VOEL	Output from Field Current Limiter	
VOEL	Output from Stator Current Limiter	

Ouput Signals to the Excitation System:

EFD	Field voltage (p.u.)
-----	----------------------

Voltage Compensator

When defining the real and imaginary parts of the bus voltage U and the stator output current I as:

$$VT = VD + jVQ$$

 $I = ID + jIQ$

the controlled voltage VC can be derived by the voltage transducer as:

$$VC = \sqrt{(VD - ID \cdot RC + IQ \cdot XC)^{2} + (UQ - IQ \cdot RC - ID \cdot XC)^{2}}$$

XC	Reactive compensation degree. A negative value means a droop is created in the bus voltage, proportional to the reactive current output at an over-excited machine. Analogously, a positive value means a voltage rise. Reactive current at an under-excited machine gives opposite signs. Parameter Range: 0 < XC < 1.0
RC	Active compensation degree. Analogously defined. Parameter Range: 0 < RC < 1.0

Saturation in exciter controller

Saturation is represented like a quadratic function:

$$SE(U) = 0$$

$$SE(U) = \frac{B(U-A)^2}{U}$$

Where:

$$A = \sqrt{E1 \cdot E2} \cdot \frac{\sqrt{E1} - \sqrt{E2 \cdot K}}{\sqrt{E2} - \sqrt{E1 \cdot K}}$$

$$B = SE2 \cdot \frac{\left(\sqrt{E2} - \sqrt{E1 \cdot K}\right)^2}{(E1 - E2)^2}$$

$$K = \frac{SE1}{SE2}$$

Saturation values:

 SE_{max} = Saturation SE at U_{max}

 $SE_{0.75}$ = Saturation SE at 0.75·U

Rectifier Regulation Characteristic according to FMOD

For the following systems, there are two modes for the function FEX = f(IN): TYPE ST2, ST3, WC, WF, WFA, WH, WHA.

If the Rectifier Regulation Characteristic according to FMOD=0.

If IN ≤ I0	FEX= F0A	
If I0 <in i1<="" td="" ≤=""><td colspan="2">EX= F1A-F1B · IN</td></in>	EX= F1A-F1B · IN	
If I1 <in i2<="" td="" ≤=""><td colspan="2">FEX=-F2A · (IN+F2B)²+F2C</td></in>	FEX=-F2A · (IN+F2B) ² +F2C	
If I2 <in i3<="" td="" ≤=""><td colspan="2">FEX= F3A-F3B · IN</td></in>	FEX= F3A-F3B · IN	
If IN > I3	FEX= F4A	

If the Rectifier Regulation Characteristic according to FMOD=1.

If IN ≤ I0	EX= F0A	
If I0 <in i1<="" td="" ≤=""><td>FEX= F1A-F1B · IN</td></in>	FEX= F1A-F1B · IN	
If I1 <in i2<="" td="" ≤=""><td>$FEX = \sqrt{F2A - F2B \cdot IN^2}$</td></in>	$FEX = \sqrt{F2A - F2B \cdot IN^2}$	
If I2 <in i3<="" td="" ≤=""><td>FEX= F3A · (F3B - IN)</td></in>	FEX= F3A · (F3B - IN)	
If IN > 13	FEX= F4A	

Default values for Rectifier Regulation Characteristic

	FMOD=0	FMOD=1
10	= 0	= 0
I 1	= 0.51	= 0.433
12	= 0.715	= 0.75
13	= 1.0	= 1.0
F0A	= 0	= 0
F1A	= 1	= 1
F1B	= 0.58	= 0.577
F2A	= 0.865	= 0.75
F2B	= 0.00826	= 1.0
F2C	= 0.9233	not applicable
F3A	= 1.68	= 1.732
F3B	= 1.714	= 1.
F4A	= 0	= 0

Inputs <<enumeration>> of EXCITERS, STEREOTYPE <<enum>>

Type of connection for the UEL input used in ExcIEEEST1A

0	I Ignore del dignar	< <enum>> ignoreUELsignal</enum>
1	UEL input added to error signal	< <enum>> inputAddedToErrorSignal</enum>
2	UEL input HV gate with error si gnal	< <enum>> inputHVgateErrorSignal</enum>
3	UEL input HV gate with voltage regulator output	< <enum>> inputHVgateVoltageOutput</enum>

Type of rate feedback signals used in REXSYS

0	The exciter field current is used	< <enum>> fieldCurrent</enum>
1	The voltage regulator output voltage is used. It is the same as exciter field voltage	< <enum>> filedVoltage</enum>
2	The output voltage of the exciter is used	< <enum>> outputVoltage</enum>

Type of connection for the OEL input used for static excitation systems type 6B

0	No OEL input is used	< <enum>> noOELinput</enum>
1	The connection is before UEL	< <enum>> beforeUEL</enum>
2	The connection is after UEL	< <enum>> afterUEL</enum>

Type of connection for the OEL input used for static excitation systems type 7B

0	No OEL input is used	< <enum>> noOELinput</enum>	
1	The signal is added to Vref	< <enum>> addVref</enum>	
2	The signal is connected in the input of the LV gate	< <enum>> inputLVgate</enum>	
111	The signal is connected in the output of the LV gate	< <enum>> outputLVgate</enum>	

Type of connection for the UEL input used for static excitation systems type 7B

		, , , , , , , , , , , , , , , , , , , ,
0	No UEL input is used < <enum>> noUELinput</enum>	
1	The signal is added to Vref	< <enum>> addVref</enum>
2	The signal is connected in the input of the HV gate	< <enum>> inputHVgate</enum>
	The signal is connected in the output of the HV gate	< <enum>> outputHVgate</enum>

EXCITER Simple

Simple AVR

Parameters

NAME	Type	Description
TR	Seconds	Filter time constant
TB	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	pu	Voltage regulator gain
TA	Seconds	Maximum voltage regulator output

Notes

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER Simple with Limits

Simple AVR with EFD limit

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
ТВ	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	pu	Voltage regulator gain
TA	Seconds	Maximum voltage regulator output
EFDMAX	pu	Minimum voltage regulator output
EFDMIN	pu	Minimum voltage regulator output

Notes

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER AC1

IEEE Type AC1 Excitation System model 1981

NAME	Туре	Description
TR	Seconds	Filter time constant
ТВ	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	pu	Voltage regulator gain
TA	Seconds	Maximum voltage regulator output
VRMAX	pu	Minimum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
KC	pu	Rectifier loading factor proportional to commutating reactance
KD	pu	Demagnetizing factor, a function of exciter alternator reactances
KE	pu	Exciter constant related to self-excited field
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

i alameters mange.	
0 < TR < 0.49	0.02 < TE < 2
0 < TB < 19.99	$0 < KF \le 0.3$
0 < TC < 19.99	0.02 < TF < 1.5
0 < KA < 999.99	0 ≤ KC ≤ 1
0 < TA < 9.99	0 ≤ KD ≤ 1
0 < VAMAX ≤ 15	0 < KE ≤ 1
0 ≤ E1	0 ≤ SE(E1) < 1
-15 ≤ VRMIN < -0.01	E1 < E2
0 < VRMAX ≤ 15.0	
SE(E1) < SE (E2)	

Notes

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER AC1A

IEEE Type AC1A Excitation System

NAME	Туре	Description
TR	Seconds	Filter time constant
TB	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	pu	Voltage regulator gain
TA	Seconds	Maximum voltage regulator output
VAMAX	pu	Minimum voltage regulator output
VAMIN	pu	Minimum voltage regulator output
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
KC	pu	Rectifier loading factor proportional to commutating reactance
KD	pu	Demagnetizing factor, a function of exciter alternator reactances
KE	pu	Exciter constant related to self-excited field
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance
VRMAX	pu	Maximum voltage regulator outputs
VRMIN	pu	Minimum voltage regulator outputs

i didiliciois range.	
0 < TR < 0.5	0.02 < TE < 2
0 < TB < 20	0< KF ≤ 0.3
0 < TC < 20	0.02 < TF < 1.5
0 < KA < 1000	0 ≤ KC ≤ 1
0 < TA < 10.0	0 ≤ KD ≤ 1
0 < VAMAX ≤ 15	0 < KE ≤ 1
-15 ≤ VAMIN < 0	0 ≤ E1
-10 ≤ VRMIN < 0	0 ≤ SE(E1) < 1
0 < VRMAX ≤ 10.0	E1 < E2
	SE(E1) < SE (E2)

Notes

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcIEEEAC1A

EXCITER AC1A CIM/CGMES

IEEE Type AC1A Excitation System

NAME	Туре	Description
TR	Seconds	Filter time constant
TB	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	pu	Voltage regulator gain
TA	Seconds	Maximum voltage regulator output
VAMAX	pu	Minimum voltage regulator output
VAMIN	pu	Minimum voltage regulator output
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
KC	pu	Rectifier loading factor proportional to commutating reactance
KD	pu	Demagnetizing factor, a function of exciter alternator reactances
KE	pu	Exciter constant related to self-excited field
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance
VRMAX	pu	Maximum voltage regulator outputs
VRMIN	pu	Minimum voltage regulator outputs
KF1	pu	Coefficient to allow different usage of the model. Typical Value = 0

KF2	pu	Coefficient to allow different usage of the model. Typical Value = 1
HVLVGATES		Indicates if both HV gate and LV gate are active (HVLVgates). true = gates are used false = gates are not used.Typical Value = true.

0 < TR < 0.5	0.02 < TE < 2
0 < TB < 20	$0 < KF \le 0.3$
0 < TC < 20	0.02 < TF < 1.5
0 < KA < 1000	0 ≤ KC ≤ 1
0 < TA < 10.0	0 ≤ KD ≤ 1
0 < VAMAX ≤ 15	0 < KE ≤ 1
-15 ≤ VAMIN < 0	0 ≤ E1
-10 ≤ VRMIN < 0	0 ≤ SE(E1) < 1
$0 < VRMAX \le 10.0$	E1 < E2
	SE(E1) < SE (E2)

Notes

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- EXAC1A

EXCITER AC2A

IEEE Type AC2A Excitation System

NAME	Туре	Description
TR	Seconds	Filter time constant
TB	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	pu	Voltage regulator gain
TA	Seconds	Maximum voltage regulator output
VAMAX	pu	Minimum voltage regulator output
VAMIN	pu	Minimum voltage regulator output
KB	pu	Second stage regulator gain
VRMAX	pu	Maximum voltage regulator outputs
VRMIN	pu	Minimum voltage regulator outputs
TE	Seconds	Exciter time constant, integration rate associated with exciter
		control
VFEMAX	pu	Exciter field current limit reference
KH	pu	Exciter field current feedback gain
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
KC	pu	Rectifier loading factor proportional to commutating reactance
KD	pu	Demagnetizing factor, a function of exciter alternator
		reactances
KE	pu	Exciter constant related to self-excited field
E1	pu	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter
		voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter
		voltage, E2, back of commutating reactance

. arametere rtanger	
0 < TR < 0.5	0.02 < TE < 2
0 < TB < 20	$0 < KF \le 0.3$
0 < TC < 20	0.02 < TF < 1.5
0 < KA < 1000	0 ≤ KC ≤ 1
0 < TA < 10.0	0 ≤ KD ≤ 1
0 < VAMAX ≤ 10	0 < KE ≤ 1
-10 ≤ VAMIN < 0	0 ≤ E1
-500 ≤ VRMIN < 0	0 ≤ SE(E1) < 1
0 < VRMAX ≤ 500	E1 < E2
0 < KB ≤ 500	SE(E1) < SE (E2)
0 ≤ KH ≤ 1.1	- 5 < VFEMAX ≤ 20

Notes

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcIEEEAC2A

EXCITER AC3A

IEEE Type AC3A Excitation System

NAME	Туре	Description
TR	Seconds	Filter time constant
ТВ	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	pu	Voltage regulator gain
TA	Seconds	Maximum voltage regulator output
VAMAX	pu	Minimum voltage regulator output
VAMIN	pu	Minimum voltage regulator output
TE	Seconds	Exciter time constant, integration rate associated with exciter
		control
VFEMIN	pu	Minimum exciter voltage output
KR	pu	Constant associated with regulator and alternator field power
		supply
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
KN	pu	Excitation control system stabilizer gain
EFDN	pu	Value of EFD at which feedback gain changes
KC	pu	Rectifier loading factor proportional to commutating reactance
KD	pu	Demagnetizing factor, a function of exciter alternator
		reactances
KE	pu	Exciter constant related to self-excited field
E1	pu	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter
		voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter
		voltage, E2, back of commutating reactance

i arametere i tanger	
0 < TR < 0.5	0.02 < TE < 4
0 < TB < 20	0 < KF ≤ 0.3
0 < TC < 20	0.02 < TF < 1.5
0 < KA < 1000	0 ≤ KC ≤ 1
0 < TA < 10.0	0 ≤ KD ≤ 1
0 < VAMAX ≤ 10	0 < KE ≤ 1
-10 ≤ VAMIN < 0	0 ≤ E1
-10 ≤ VRMIN < 0	0 ≤ SE(E1) < 1
0 < VRMAX ≤ 10	E1 < E2
0 ≤ KR < 75	SE(E1) < SE(E2)
$0 \le KN < 0.3$	- 5 < VFEMAX ≤ 20

Notes

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter.

Equivalent model in CIM/CGMES:

- ExcIEEEAC3A

EXCITER AC4A

IEEE Type AC4A Excitation System

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
VIMAX	pu	Maximum voltage regulator input limit
VIMIN	pu	Minimum voltage regulator input limit
TC	Seconds	Voltage regulator time constant
ТВ	Seconds	Voltage regulator time constant
KA	pu	Voltage regulator gain
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
KC	pu	Rectifier loading factor proportional to commutating reactance

Parameters Range:

0 < TR < 0.1 $50 < KA \le 1000$ $0 < VIMAX \le 0.2$ 0 < TA < 0.5

 $-0.2 < VIMIN \le 0$ $5 \le KA \times TC/TB \le 15$

 0 < TC < 10.0 $3 \le VAMAX \le 8$

 0.04 < TB < 20 $-8 < VAMIN \le -3$

Notes

Equivalent model in CIM/CGMES:

- ExcIEEEAC4A

EXCITER AC5A

IEEE Type AC5A Excitation System

VS = VPSS+VUEL+VOEL

Parameters

NAME	Туре	Description	
TR	Seconds	Filter time constant	
KA	pu	Voltage regulator gain	
TA	Seconds	Voltage regulator time constant	
VRMAX	pu	Maximum voltage regulator output	
VRMIN	pu	Minimum voltage regulator output	
KE	pu	Exciter constant related to self-excited field	
TE	Seconds	Exciter time constant, integration rate associated with exciter control	
KF	pu	Excitation control system stabilizer gains	
TF1	Seconds	Excitation control system stabilizer time constant	
TF2	Seconds	Excitation control system stabilizer time constant	
TF3	Seconds	Excitation control system stabilizer time constant	
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined	
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance	
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined	
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance	

Parameters Range:

 $\begin{array}{lll} 0 < TR < 0.5 & E1 < E2 \\ 10 < KA < 500 & 0 \le SE(E1) < 1.0 \\ 0 < TA < 1.0 & SE(E1) < SE(E2) \\ 0.5 < VRMAX < 10.0 & 5.0 \le TF/KF \le 15.0 \\ -10 < VRMIN < 0 & 0 < KF < 0.3 \\ 0.04 < TE < 1.0 & 0.04 < TF1 < 1.5 \\ \end{array}$

 $-1.0 \le KE \le 1.0$ 0 < TF2 $0 \le E1$ 0 < TF3

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcIEEEAC5A

EXCITER AC6A

IEEE Type AC6A Excitation System

VS = VPSS+VOEL+VUEL

NAME	Туре	Description	
TR	Seconds	Filter time constant	
KA	pu	Voltage regulator gain	
TA	Seconds	Voltage regulator time constant	
TK	Seconds	Voltage regulator time constant	
ТВ	Seconds	Voltage regulator time constant	
TC	Seconds	Voltage regulator time constant	
VAMAX	pu	Maximum voltage regulator output	
VAMIN	pu	Minimum voltage regulator output	
VRMAX	pu	Maximum voltage regulator output	
VRMIN	pu	Minimum voltage regulator output	
TE	Seconds	Exciter time constant, integration rate associated with exciter control	
VFELIM	pu	Exciter field current limit reference	
KH	pu	Exciter field current limiter gain	
VHMAX	pu	Maximum field current limiter signal reference	
TH	Seconds	Exciter field current limiter time constant	
TJ	Seconds	Exciter field current limiter time constant	
KC	pu	Rectifier loading factor proportional to commutating reactance	
KD	pu	Demagnetizing factor, a function of exciter alternator reactances	
KE	pu	Exciter constant related to self-excited field	
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined	
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance	
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined	
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance	

. arametere manger	
0 < TR < 0.5	0.02 < TE < 2
0 < TB < 20	$0 < KF \le 0.3$
0 < TC < 20	0.02 < TF < 1.5
0 < KA < 1000	0 ≤ KC ≤ 1
0 < TA < 10.0	0 ≤ KD ≤ 2
0 < VAMAX ≤ 10	0 < KE ≤ 2
-10 ≤ VAMIN < 0	0 ≤ E1
-100 ≤ VRMIN < 0	0 ≤ SE(E1) < 1
0 < VRMAX ≤ 100	E1 < E2
0 < TK < 10	SE(E1) < SE(E2)
0 < VFELIM ≤ 20	0 < TH ≤ 1
0 < KH ≤ 100	0 < TJ ≤ 1
0 < VHMAX ≤ 100	

Notes

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcIEEEAC6A

EXCITER AC7B

IEEE Type AC7B Excitation System

NAME	Туре	Description	
TR	Seconds	Filter time constant	
KPR	pu	Voltage regulator proportional gain	
KIR	pu	Voltage regulator integral gain	
KDR	pu	Voltage regulator derivative gain	
TDR	Seconds	Lag time constant	
VRMIN	pu	Maximum voltage regulator output	
VRMAX	pu	Minimum voltage regulator output	
KPA	pu	Voltage regulator proportional gain	
KIA	pu	Voltage regulator integral gain	
VAMIN	pu	Maximum voltage regulator output	
VAMAX	pu	Minimum voltage regulator output	
KP	pu	Potential circuit gain coefficient	
KL	pu	Exciter field voltage lower limit parameter	
TE	Seconds	Exciter time constant, integration rate associated with exciter	
		control	
KC	pu	Rectifier loading factor proportional to commutating reactance	
KD	pu	Demagnetizing factor, a function of exciter alternator	
		reactances	
KE	pu	Exciter constant related to self-excited field	
KF1	pu	Excitation control system stabilizer gain	
KF2	pu	Excitation control system stabilizer gain	
KF3	pu	Excitation control system stabilizer gain	
TF3	Seconds	Excitation control system stabilizer time constant	
VEMIN	pu	Minimum exciter voltage output	
VFEMAX	pu	Exciter field current limit reference	
E1	pu	Exciter alternator output voltages back of commutating	
		reactance at which saturation is defined	
SE1	pu	Exciter saturation function value at the corresponding exciter	

		voltage, E1, back of commutating reactance
E2		Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter
		voltage, E2, back of commutating reactance

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcIEEEAC7B

EXCITER - AC8B

For this exciter, please take in consideration the information about the below model ACB8 version 2005.

EXCITER - AC8B 2005

The class represents IEEE Std 421.5-2005 type AC8B model.

VS = VPSS+VUEL+VOEL

NAME	Туре	Description
TR	Seconds	Filter time constant
KPR	pu	Voltage regulator proportional gain
KIR	pu	Voltage regulator integral gain
KDR	pu	Voltage regulator derivative gain
TDR	pu	Lag time constant
KA	pu	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KC	pu	Rectifier loading factor proportional to commutating reactance
KD	pu	Demagnetizing factor, a function of exciter alternator reactances
KE	pu	Exciter constant related to self-excited field
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

VFEMAX	pu	Exciter field current limit reference
VEMIN	pu	Minimum exciter voltage output

Parameters Range:

 $\begin{array}{lll} 0 < TR < 0.5 & -1 < VRMIN < 1.5 \\ 10 < KP < 500 & 0 < TE \\ 10 < KI < 500 & -1 \le KE \le 1 \\ 10 < KD < 500 & 0 \le E1 \\ 0 < TD < 0.5 & 0 \le SE(E1) < 1.0 \\ 0 < KA \le 1 & E1 < E2 \\ 0 < TA \le 1 & SE(E1) < SE(E2) \\ 0 < VRMAX \le 10 & \end{array}$

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcIEEEAC8B

EXCITER - BBC1

Excitation system with potential source controlled rectifier exciter.

Parameters

NAME	Туре	Description
SWPS	Boolean	If the Switch control is false:
		UEMAX' = UEMAX * VT
		UEMIN' = UEMIN * VT
		else:
		UEMAX' = UEMAX
		UEMIN' = UEMIN
K	PU	Gain
T1	Seconds	Time constant
T2	Seconds	Time constant
T3	Seconds	Time constant
T4	Seconds	Time constant
UEMAX	PU	Maximum limit
UEMIN	PU	Minimum limit

Notes

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - BBC1 Simple

This excitation system is such as EXCITER – BBC1 but without potential source controlled rectifier exciter (SWPS).

EXCITER - BBSEX1

Brown Boveri Static Exciter

Parameters

NAME	Туре	Description
SW	Boolean	Supplementary signal routing switch –selector (see block
		diagram)
		0 = VS signal will be add to the output signal
		1 = VS signal will be add to the error signal
TF	PU	Filter time constant
T3	Seconds	Lead/lag time constant
T4	Seconds	Lead/lag time constant
K	PU	Steady state gain
T1	Seconds	Controller time constant
T2	Seconds	Controller time constant
VRMIN	PU	Minimum control element output
VRMAX	PU	Maximum control element output
EFDMIN	PU	Minimum open circuit exciter voltage
EFDMAX	PU	Maximum open circuit exciter voltage

Parameters Range:

0 < TF < 0.5 0 < T4

 $\begin{array}{lll} 10 < K < 500 & T4 = 0 \text{ and } T3 < 0 \\ 0.02 < T1 < 10 & 0.5 < VRMAX < 10 \\ 0.02 < T2 < 10 & -10 < VRMIN < 0 \\ 0 < T3 & 0.5 \le K \times T2/T1 \le 25 \end{array}$

Notes

Equivalent model in CIM/CGMES:

- ExcBBC

EXCITER - BUDCZT

Czech Proportion/Integral Exciter.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KP	PU	Regulator proportional gain
KE	PU	Exciter constant related to self-excited field
TI	Seconds	Regulator integral time constant
KA	PU	Regulator gain
TA	Seconds	Regulator time constant
TE	Seconds	Exciter time constant, integration rate associated with exciter
		control
URMIN	PU	Voltage regulator minimum limit
URMAX	PU	Voltage regulator maximum limit
EFDMIN	PU	Exciter output minimum limit
EFDMAX	PU	Exciter output maximum limit

Notes

Equivalent model in CIM/CGMES:

- ExcCZ

EXCITER - CELIN

Detailed Excitation System Model - ELIN (VATECH). This model represents an all-static excitation system. A PI voltage controller establishes a desired field current set point for a proportional current controller. The integrator of the PI controller has a follow-up input to match its signal to the present field current

NAME	Туре	Description
TR1	Seconds	Filter time constant
TR2	Seconds	Time constant
TR3	Seconds	Time constant
TR4	Seconds	Time constant
T1	Seconds	Time constant
T2	Seconds	Time constant
T3	Seconds	Time constant
T4	Seconds	Time constant
T5	Seconds	Time constant
T6	Seconds	Time constant

ALPHA	PU	Gain	
BETA	PU	Gain	
TE2	Seconds	Time Constant	
NLFEFD	PU	Gain	
KE2	PU	Gain	
K12	PU	Gain	
K2	PU	Gain	
PPSS	PU	Coeficient	
APSS	PU	Coeficient	
PSSLIM	PU	PSS limiter	
K1	PU	Voltage regulator input gain	
KIEC	PU	Voltage regulator input limit	
KD1	PU	Voltage controller derivative gain	
TB1	Seconds	Voltage controller derivative washout time constant	
T11	PU	Controller follow up dead band	
LIMPID1	PU	Controller follow up gain	
K22	PU	Gain	
UMAX	PU	Limiter	
UMIN	PU	Limiter	
KETB	PU	Gain	
TE	Seconds	Time constant	
XP	PU	Excitation transformer effective reactance	
IEFMAX2	PU	Limiter	
IEFMIN	PU	Limiter	
IEFMAX1	PU	Minimum open circuit excitation voltage	
T13	Seconds	Time constant	
T14	Seconds	Time constant	
K3	PU	Gain	
K4	PU	Gain	
E1	PU	Exciter alternator output voltages back of commutating	
		reactance at which saturation is defined	
SE1	PU	Exciter saturation function value at the corresponding exciter	
		voltage, E1, back of commutating reactance	
E2	PU	Exciter alternator output voltages back of commutating	
		reactance at which saturation is defined	
SE2	PU	Exciter saturation function value at the corresponding exciter	
		voltage, E2, back of commutating reactance	

Equivalent model in CIM/CGMES:

- No CIM/CGMES Model

EXCITER - DC1A

IEEE Type DC1A Excitation System

VS = VPSS+VOEL

Parameters

NAME	Туре	Description	
TR	Seconds	Filter time constant	
KA	pu	Voltage regulator gain	
TA	Seconds	Voltage regulator time constant	
TB	Seconds	Voltage regulator time constant	
TC	Seconds	Voltage regulator time constant	
VRMAX	pu	Maximum voltage regulator output	
VRMIN	pu	Minimum voltage regulator output	
KE	pu	Exciter constant related to self-excited field	
TE	Seconds	Exciter time constant, integration rate associated with exciter control	
KF	pu	Excitation control system stabilizer gain	
TF	Seconds	Excitation control system stabilizer time constant	
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined	
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance	
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined	
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance	

Parameters Range:

0 ≤ TR < 0.5	-1 ≤ KE ≤ 1
10 < KA < 500	0.04 < TE < 1
0 ≤ TA < 1	0 < KF < 0.3
0.5 < VRMAX < 10	0.04 < TF < 1.5
-10 < VRMIN < 0	5 ≤ TF/KF ≤ 15

- 1) If VRMAX is zero, the model will compute a new value of it.
 - If KE is zero or negative, VRMAX will just allow the exciter to reach an output voltage of E2 i.e.: VRMAX = SE(E2) x E2
 - If KE is positive, VRMAX will just allow the exciter to reach an output voltage of E2 with the specified value of KE,
 i.e.: VRMAX = (SE (E2) + KE) x E2 In either case above, VRMIN is then set to –VRMAX.
- 2) If KE is zero, the model will set a new value of KE. KE is set to the value that will require a voltage regulator output of (VRMAX /10) to maintain the present value of excitation voltage, UF, i.e.: KE = VRMAX/(10*EFD) – SE(EFD)

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcDC1A

EXCITER - DC1A 2005

IEEE Type DC1A Excitation System, version 2005

NAME	Туре	Description	
TR	Seconds	Filter time constant	
KA	pu	Voltage regulator gain	
TA	Seconds	Voltage regulator time constant	
ТВ	Seconds	Voltage regulator time constant	
TC	Seconds	Voltage regulator time constant	
VRMAX	pu	Maximum voltage regulator output	
VRMIN	pu	Minimum voltage regulator output	
KE	pu	Exciter constant related to self-excited field	
TE	Seconds	Exciter time constant, integration rate associated with exciter control	
KF	pu	Excitation control system stabilizer gain	
TF	Seconds	Excitation control system stabilizer time constant	
E1	pu	Exciter alternator output voltages back of commutating	
		reactance at which saturation is defined	
SE1	pu	Exciter saturation function value at the corresponding exciter	
		voltage, E1, back of commutating reactance	
E2	pu	Exciter alternator output voltages back of commutating	
		reactance at which saturation is defined	
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance	
UELIN	Boolean	UEL input	
		1 = VUEL input added to HV Gate.	
		2 = VUEL input added to error signal.	
EXCLIM	Boolean	IEEE standard is ambiguous about lower limit on exciter	
		output.	
		0 = no lower limit to the exciter output	
		Else = Aplly the lower limit of 0.0 to the exciter output	

Same remarks as the DC1A model

Equivalent model in CIM/CGMES:

- ExcIEEEDC1A

EXCITER - DC2A

IEEE Type DC2A Excitation System

VS = VPSS+VOEL

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KA	pu	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
TB	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
KE	pu	Exciter time constant, integration rate associated with exciter
		control
TE	Seconds	Excitation control system stabilizer gain
KF	pu	Excitation control system stabilizer gain
TF	Seconds	Excitation control system stabilizer time constant
E1	pu	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter
		voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter
		voltage, E2, back of commutating reactance

Parameters Range:

0 ≤ TR < 0.5	0 < KF < 0.3
10 < KA < 500	0.04 < TE < 2.0
0 ≤ TA < 1.0	-1.0 ≤ KE ≤ 1.0
0 ≤ TB	0 ≤ E1
0 ≤ TC	E1 < E2

0.5 < VRMAX < 10.0 $0 \le SE(E1) < 1.0$ -10 < VRMIN < 0 SE(E1) < SE(E2) $5.0 \le TF/KF \le 15.0$

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - DC2A 2005

IEEE Type DC2A Excitation System, version 2005

NAME	Туре	Description
TR	Seconds	Filter time constant
KA	pu	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
ТВ	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
KE	Pu	Exciter time constant, integration rate associated with exciter control
TE	Seconds	Excitation control system stabilizer gain
KF	pu	Excitation control system stabilizer gain
TF	Seconds	Excitation control system stabilizer time constant
E1	pu	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter
		voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance
UELIN	Boolean	UEL input
		1 = VUEL input added to HV Gate.
		2 = VUEL input added to error signal.
EXCLIM	Boolean	IEEE standard is ambiguous about lower limit on exciter
		output.
		0 = no lower limit to the exciter output
		Else = Aplly the lower limit of 0.0 to the exciter output

Same remarks as the DC2A model

Equivalent model in CIM/CGMES: - ExcIEEEDC2A

EXCITER - DC3A

IEEE Type DC3A Excitation System

Parameters

NAME	Туре	Description
KE	pu	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KV	pu	Fast raise/lower contact setting
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
TRH	Seconds	Rheostat travel time
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - DC3A 2005

IEEE Type DC3A Excitation System, version 2005

Parameters

NAME	Туре	Description
KE	pu	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
ΚV	pu	Fast raise/lower contact setting
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
TRH	Seconds	Rheostat travel time
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance
EXCLIM	Boolean	IEEE standard is ambiguous about lower limit on exciter output 0 = no lower limit to the exciter output Else = Aplly the lower limit of 0.0 to the exciter output

Notes

Same remarks as the DC3A model

Equivalent model in CIM/CGMES:

- ExcIEEEDC3A

EXCITER - DC4B

IEEE Type DC4B Excitation System.

Туре	Description
Seconds	Filter time constant
pu	Regulator proportional gain
pu	Regulator integral gain
pu	Regulator derivative gain
Seconds	Regulator derivative filter time constant
pu	Maximum voltage regulator output
pu	Minimum voltage regulator output
pu	Voltage regulator gain
Seconds	Voltage regulator time constant
pu	Exciter time constant, integration rate associated with exciter control
Seconds	Seconds
pu	Excitation control system stabilizer gain
Seconds	Seconds
pu	Minimum exciter voltage output
pu	Exciter alternator output voltages back of commutating
	reactance at which saturation is defined
pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
pu	Exciter alternator output voltages back of commutating
	reactance at which saturation is defined
pu	Exciter saturation function value at the corresponding exciter
	voltage, E2, back of commutating reactance
Boolean	OEL input,
	0 = VOEL input added to LV Gate.
	1 = VOEL input added to error signal.
Boolean	UEL input,
	0 = VUEL input added to HV Gate.
	1 = VUEL input added to error signal.
	Seconds pu pu pu Seconds pu pu pu Seconds

Equivalent model in CIM/CGMES: - ExcIEEEDC4B

EXCITER - EXAC1A

IEEE Modified Type AC1 Excitation System model.

NAME	Туре	Description
TR	Seconds	Filter time constant
ТВ	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	PU	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VRMAX	PU	Maximum voltage regulator outputs
VRMIN	PU	Minimum voltage regulator outputs
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	PU	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
KC	PU	Rectifier loading factor proportional to commutating reactance
KD	PU	Demagnetizing factor, a function of exciter alternator reactances
KE	PU	Exciter constant related to self-excited field
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

0 < TR < 0.5	0.02 < TE < 2
0 < TB < 20	$0 < KF \le 0.3$
0 < TC < 20	0.02 < TF < 1.5
0 < KA < 1000	0 ≤ KC ≤ 1
0 < TA < 10.0	0 ≤ KD ≤ 1
0 < VAMAX ≤ 15	0 < KE ≤ 1
-15 ≤ VAMIN < 0	0 ≤ E1
-10 ≤ VRMIN < 0	0 ≤ SE(E1) < 1
0 < VRMAX ≤ 10	

- 1) If VRMAX is zero, the model will compute a new value of it. If KE is zero or negative, VRMAX will just allow the exciter to reach an output voltage of E2 i.e.: VRMAX = SE(E2) × E2. If KE is positive, VRMAX will just allow the exciter to reach an output voltage of E2 with the specified value of KE, i.e.: VRMAX = (SE (E2) + KE) × E2 In either case above, VRMIN is then set to –VRMAX.
- 2) If KE is zero, the model will set a new value of KE. KE is set to the value that will require a voltage regulator output of (VRMAX / 10) to maintain the present value of excitation voltage, UF, i.e.: KE = VRMAX / (10*EFD) SE(EFD).

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcAC1A

EXCITER - EXAC2

IEEE Modified Type AC2A Excitation System model.

VS = VPSS+VUEL+VOEL

NAME	Туре	Description
TR	Seconds	Filter time constant
ТВ	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	PU	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VAMAX	PU	Maximum voltage regulator outputs
VAMIN	PU	Minimum voltage regulator outputs
KB	PU	Second stage regulator gain
VRMAX	PU	Maximum voltage regulator outputs
VRMIN	PU	Minimum voltage regulator outputs
TE	Seconds	Exciter time constant, integration rate associated with exciter control
VFEMAX	PU	Exciter field current limit reference
KH	PU	Exciter field current feedback gain
VLR	PU	Maximum exciter field current
KL	PU	Exciter field current limiter gain
KF	PU	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
KC	PU	Rectifier loading factor proportional to commutating reactance
KD	PU	Demagnetizing factor, a function of exciter alternator reactances
KE	PU	Exciter constant related to self-excited field
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - EXAC2A

IEEE Modified Type AC2A Excitation System model.

NAME	Туре	Description
TR	Seconds	Filter time constant
ТВ	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	PU	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VAMAX	PU	Maximum voltage regulator outputs
VAMIN	PU	Minimum voltage regulator outputs
KB	PU	Second stage regulator gain
VRMAX	PU	Maximum voltage regulator outputs
VRMIN	PU	Minimum voltage regulator outputs
TE	Seconds	Exciter time constant, integration rate associated with exciter control
VFEMAX	PU	Exciter field current limit reference
KH	PU	Exciter field current feedback gain
VLR	PU	Maximum exciter field current
KL	PU	Exciter field current limiter gain
KF	PU	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
KC	PU	Rectifier loading factor proportional to commutating reactance
KD	PU	Demagnetizing factor, a function of exciter alternator reactances
KE	PU	Exciter constant related to self-excited field
E1	PU	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter
		voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter
		voltage, E2, back of commutating reactance

KB1		Second stage regulator gain. It is exciter field current controller gain used as alternative to Kb to represent a variant of the model
KL1	PU	Coefficient to allow different usage of the model
KS		Coefficient to allow different usage of the model-speed coefficient
HVGATE	Boolena	Indicates if HV gate is active
LVGATE	Boolena	Indicates if LV gate is active (LVgate)

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcAC2A

EXCITER - EXAC3

VS = VPSS+VUEL+VOEL

NAME	Туре	Description
TR	Seconds	Filter time constant
ТВ	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	PU	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VAMAX	PU	Maximum voltage regulator outputs
VAMIN	PU	Minimum voltage regulator outputs
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KR	PU	Constant associated with regulator and alternator field power supply
VLV	PU	Field voltage used in the minimum field voltage limiter loop
KLV	PU	Gain used in the minimum field voltage limiter loop
KF	PU	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
KN	PU	Excitation control system stabilizer gain
EFDN	PU	Value of EFD at which feedback gain changes
KC	PU	Rectifier loading factor proportional to commutating reactance
KD	PU	Demagnetizing factor, a function of exciter alternator reactances
KE	PU	Exciter constant related to self-excited field
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined

SE1	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - EXAC3A

IEEE Modified Type AC3A alternator-supplied rectifier excitation system with different field current limit.

VS = VPSS+VUEL+VOEL

NAME	Туре	Description
TR	Seconds	Filter time constant
TB	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
KA	PU	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VAMAX	PU	Maximum voltage regulator outputs
VAMIN	PU	Minimum voltage regulator outputs
TE	Seconds	Exciter time constant, integration rate associated with exciter
		control
KR	PU	Constant associated with regulator and alternator field power
		supply
VLV	PU	Field voltage used in the minimum field voltage limiter loop
KLV	PU	Gain used in the minimum field voltage limiter loop
KF	PU	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
KN	PU	Excitation control system stabilizer gain
EFDN	PU	Value of EFD at which feedback gain changes
KC	PU	Rectifier loading factor proportional to commutating reactance
KD	PU	Demagnetizing factor, a function of exciter alternator
		reactances
KE	PU	Exciter constant related to self-excited field

VLV	PU	Field voltage used in the minimum field voltage limiter loop
KLV	PU	Gain used in the minimum field voltage limiter loop
VEMIN	PU	Minimum exciter voltage output
KF1	PU	Coefficient to allow different usage of the model
KF2	PU	Coefficient to allow different usage of the model
KS	PU	Coefficient to allow different usage of the model-speed coefficient
VFEMAX	PU	Exciter field current limit reference
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcAC3A

EXCITER - EXAC4

IEEE Modified Type AC4A Excitation System model.

VS = VPSS+VUEL+VOEL

Parameters

NAME	Туре	Description	
TR	Seconds	Filter time constant	
VIMAX	PU	Maximum voltage regulator outputs	
VIMIN	PU	Minimum voltage regulator outputs	
ТВ	Seconds	Voltage regulator time constant	
TC	Seconds	Voltage regulator time constant	
KA	PU	Voltage regulator gain	
TA	Seconds	Voltage regulator time constant	
VRMAX	PU	Maximum voltage regulator outputs	
VRMIN	PU	Minimum voltage regulator outputs	
KC	PU	Limit factor	

Notes

Equivalent model in CIM/CGMES:

- ExcAC4A

EXCITER - EXAC5A

Modified type AC5A Excitation System

NAME	Туре	Description
AA	pu	Coefficient to allow different usage of the model
KA	pu	Voltage regulator gain
KE	Seconds	Exciter constant related to self-excited field
KF	pu	Excitation control system stabilizer gains
SE1	pu	Exciter saturation function value at the corresponding exciter
		voltage
SE2	pu	Exciter saturation function value at the corresponding exciter
		voltage
E1	pu	Exciter voltage at which exciter saturation is defined
E2	pu	Exciter voltage at which exciter saturation is defined
TA	Seconds	Voltage regulator time constant
TB	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
TE	Seconds	Exciter time constant, integration rate associated with exciter
		control
TF1	Seconds	Excitation control system stabilizer time constant
TF2	Seconds	Excitation control system stabilizer time constant
TF3	Seconds	Excitation control system stabilizer time constant
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcAC5A

EXCITER - EXCAC6A

Modified IEEE AC6A alternator-supplied rectifier excitation system

NAME	Туре	Description
TR	seconds	Filter time constant
KA	pu	Voltage regulator gain
KC	pu	Rectifier loading factor proportional to commutating reactance
KD	pu	Demagnetizing factor, a function of exciter alternator reactances
KE	pu	Exciter constant related to self-excited field
KH	pu	Exciter field current limiter gain
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, back of commutating reactance
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, back of commutating reactance
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
TA	Seconds	Voltage regulator time constant
ТВ	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
TE	Seconds	Exciter time constant, integration rate associated with exciter control
TH	Seconds	Exciter field current limiter time constant
TJ	Seconds	Exciter field current limiter time constant
TK	Seconds	Voltage regulator time constant
VAMAX	pu	Maximum voltage regulator output
VAMIN	pu	Minimum voltage regulator output

VFELIM	pu	Exciter field current limit reference
VHMAX	pu	Maximum field current limiter signal reference
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcAC6A

EXCITER - EXAC8B

IEEE AC8B alternator-supplied rectifier excitation system with speed input and input limiter.

Parameters

NAME	Туре	Description
INLIM	Boolean	Input limiter indicator, true = input limiter Vimax and Vimin is considered, false = input limiter Vimax and Vimin is not considered
KA	pu	Voltage regulator gain
KC	pu	Rectifier loading factor proportional to commutating reactance
KD	pu	Demagnetizing factor, a function of exciter alternator reactances
KDR	pu	Voltage regulator derivative gain
KE	pu	Exciter constant related to self-excited field
KIR	pu	Voltage regulator integral gain
KPR	pu	Voltage regulator proportional gain
PIDLIM	Boolean	PID limiter indicator, true = input limiter VPIDIMAX and VPIDMIN are considered, false = input limiter VPIDIMAX and VPIDMIN are not considered
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, back of commutating reactance
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, back of commutating reactance
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
TA	Seconds	Voltage regulator time constant
TDR	Seconds	Lag time constant
TELIM	Boolean	Selector for the limiter on the block [1/sTe], See diagram (on the figure) for meaning of true and false
TE	Seconds	Exciter time constant, integration rate associated with exciter control
VIMAX	pu	Input signal maximum

VIMIN	pu	Input signal minimum
VEMIN	pu	Minimum exciter voltage output
VFEMAX	pu	Exciter field current limit reference
VPIDMAX	pu	PID maximum controller output
VPIDMIN	pu	PID minimum controller output
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
VTMULT	Boolean	Multiply by generator's terminal voltage indicator, true =the limits Vrmax and Vrmin are multiplied by the generator's terminal voltage to represent a thyristor power stage fed from the generator terminals, false = limits are not multiplied by generator's terminal voltage

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcAC8B

EXCITER - EXBAS

Basler Static Voltage Regulator Feeding dc or ac Rotating Exciter

VS = VPSS + VUEL +VOEL

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KP	pu	Voltage regulator proportional gain
KI	pu	Voltage regulator integral gain
KA	pu	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
ТВ	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
KF	Seconds	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
TF1	Seconds	Excitation control system stabilizer time constant 2
TF2	Seconds	Excitation control system stabilizer time constant 3
KE	Seconds	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KC	pu	Rectifier loading factor proportional to commutating reactance
KD	pu	Demagnetizing factor, a function of exciter alternator reactances
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

Parameters Range:

0 < TR < 0.50 < TF2 0 < KP < 5-1 ≤ KE ≤ 1 $0 \le KI < 1.1$ 0.04 < TE < 1010 < KA ≤ 4000 $5 \le TF/KF \le 15$ or $5 \le TF2/KF \le 15$ $0 < TA \le 10$ KC ≤ 1 KD ≤ 2 0 < TB < 200 < TC < 200 ≤ E1 0.5 < VRMAX < 20 $0 \le SE(E1) < 1.0$ -20 < VRMIN < 0 E1 < E2 0.04 < TF < 1.5SE(E1) < SE(E2)0 < TF1

Notes

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

EXCITER - EXCANS

Italian excitation system. It represents static field voltage or excitation current feedback excitation system.

Parameters

NAME	Туре	Description
ТВ	Seconds	Time constant
T1	Seconds	Time constant
T2	Seconds	Time constant
T3	Seconds	Time constant
K2	pu	Gain
K3	pu	Gain
KVFIF	Integer	Rate feedback signal flag 0 = output voltage of the exciter 1 = exciter field current
KRVECC	Integer	Feedback enabling 0 = Open loop control 1 = Closed loop control
KCE	pu	Ceiling factor
BLINT	Integer	Governor Control Flag 0 = lead-lag regulator 1 = proportional integral regulator
IFMN	pu	Not include in NEPLAN model, not clear in Entsoe- CIM/CGMES reference manual
IFMX	pu	Not include in NEPLAN model, not clear in Entsoe- CIM/CGMES reference manual
VRMN	pu	Minimum limit
VRMX	pu	Maximum limit

Notes

Equivalent model in CIM/CGMES:

- ExcANS

Italian excitation system corresponding to IEEE (1968) Type 1 Model. It represents exciter dynamo and electromechanical regulator.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
TE	Seconds	Time constant
TA	Seconds	Time constant
ТВ	Seconds	Time constant
TF	Seconds	Feedback time consant
VRMN	pu	Minimum limit
VRMX	pu	Maximum limit
KA	pu	Gain
KF	pu	Feedback gain
E1	pu	Saturation parameter
SE1	pu	Saturation parameter
E2	pu	Saturation parameter
SE2	pu	Saturation parameter

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

Italian excitation system corresponding to IEEE (1968) Type 2 Model. It represents alternator and rotating diodes and electromechanic voltage regulators.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
TE	Seconds	Time constant
ТВ	Seconds	Time constant
TF1	Seconds	Feedback time consant
TF2	Seconds	Feedback time consant
VRMN	pu	Minimum limit
VRMX	pu	Maximum limit
KA	pu	Gain
KF	pu	Feedback gain
E1	pu	Saturation parameter
SE1	pu	Saturation parameter
E2	pu	Saturation parameter
SE2	pu	Saturation parameter

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

Italian excitation system. It represents exciter dynamo and electric regulator.

Parameters

NAME	Type	Description
TR	Seconds	Filter time constant
TE	Seconds	Exciter time constant
T1	Seconds	Time constant
T2	Seconds	Time constant
T3	Seconds	Time constant
T4	Seconds	Time constant
VRMN	pu	Minimum limit
VRMX	pu	Maximum limit
KA	pu	Gain
E1	pu	Saturation parameter
SE1	pu	Saturation parameter
E2	pu	Saturation parameter
SE2	pu	Saturation parameter

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

Italian excitation system. It represents static exciter and electric voltage regulator.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
T1	Seconds	time constant
T2	Seconds	time constant
T3	Seconds	time constant
T4	Seconds	time constant
TIF	Seconds	Exciter current feedback time constant
T11F	Seconds	Exciter current feedback time constant
KA	pu	Gain
KE	pu	Exciter gain
KIF	pu	Exciter internal reactance
VRMN	pu	Minimum AVR output
VRMX	pu	Maximum AVR output
VFMIN	pu	Minimum exciter output
VFMAX	pu	Maximum exciter output
IMU1	Boolean	Output voltage dependency selector
		0 = selector is not connected
		1 = selector is connected

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

Manual excitation control with field circuit resistance. This model can be used as a very simple representation of manual voltage control.

Parameters

NAME	Туре	Description
KA	pu	Gain
TA	Seconds	Time constant
REX	pu	Effective Output Resistance

Notes

Equivalent model in CIM/CGMES:

IVO excitation system.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
T1	Seconds	Lead time constant
T2	Seconds	Lag time constant
T3	Seconds	Lead time constant
T4	Seconds	Lag time constant
T5	Seconds	Lead time constant
T6	Seconds	Lag time constant
VMIN1	pu	Lead-lag min. limit
VMAX1	pu	Lead-lag max. limit
VMIN3	pu	Lead-lag min. limit
VMAX3	pu	Lead-lag max. limit
VMIN5	pu	Lead-lag min. limit
VMAX5	pu	Lead-lag max. limit
K1	pu	Gain
K3	pu	Gain
K5	pu	Gain
A1	pu	Lead coefficient
A2	pu	Lag coefficient
A3	pu	Lead coefficient
A4	pu	Lag coefficient
A5	pu	Lead coefficient
A6	pu	Lag coefficient

Notes

Equivalent model in CIM/CGMES:

EXCITER - ExcELIN2

Detailed Excitation System Model - ELIN (VATECH). This model represents an all-static excitation system. A PI voltage controller establishes a desired field current set point for a proportional current controller. The integrator of the PI controller has a follow-up input to match its signal to the present field current. Power system stabilizer models used in conjunction with this excitation system model: PssELIN2, PssIEEE2B, Pss2B.

Parameters

NAME	Туре	Description
TR4	Seconds	Time constant
KE2	pu	Gain
TE2	Seconds	Time constant
EFDBAS	pu	Gain
K2	pu	Gain
K1	pu	Voltage regulator input gain
K1EC	pu	Voltage regulator input limit
KD1	pu	Voltage controller derivative gain
TB1	Seconds	Voltage controller derivative washout time constant
TI1	pu	Controller follow up dead band
LIMPID1	pu	Controller follow up gain
UMAX	pu	Limiter
UMIN	pu	Limiter
K3	pu	Gain
TI3	Seconds	Time constant
K4	pu	Gain
TI4	Seconds	Time constant
KETB	pu	Gain
TE	Seconds	Time constant
XP	pu	Excitation transformer effective reactance
IEFMAX1	pu	Limiter
IEFMAX2	pu	Minimum open circuit excitation voltage
IEFMIN	pu	Limiter
	pu	Exciter alternator output voltages back of commutating
E1		reactance at which saturation is defined

SE1	ľ	Exciter saturation function value at the corresponding exciter voltage
E2		Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	l*	Exciter saturation function value at the corresponding exciter voltage

Equivalent model in CIM/CGMES:

- ExcELIN2

EXCITER - EXCHU

Hungarian Excitation System Model.

Parameters

NAME	Type	Description
TR	Seconds	Filter time constant
TE	Seconds	Major loop PI tag integration time constant
IMIN	PU	Major loop PI tag output signal lower limit
IMAX	PU	Major loop PI tag output signal upper limit
AE	PU	Major loop PI tag gain factor
EMIN	PU	Field voltage control signal lower limit on AVR base
EMAX	PU	Field voltage control signal upper limit on AVR base
KI	PU	Current base conversion constant
Al	PU	Minor loop PI tag gain factor
TI	Seconds	Minor loop PI control tag integration time constant
ATR	PU	AVR constant
KE	PU	Voltage base conversion constant

Notes

Equivalent model in CIM/CGMES:

EXCITER - EXCOEX3T

Modified IEEE Type ST1 Excitation System with semi-continuous and acting terminal voltage limiter.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
TE	Seconds	Integer time constant
TF	Seconds	Feedback time constant
T1	Seconds	Time constant
T2	Seconds	Time constant
T3	Seconds	Time constant
T4	Seconds	Time constant
T5	Seconds	Time constant
T6	Seconds	Time constant
VRMIN	pu	Minimum limit
VRMAX	pu	Maximum limit
KE	pu	Saturation gain
KA	pu	Gain
KF	pu	Feedback gain
KD	pu	Field current gain
KC	pu	Statex gain
SE1	pu	Saturation parameter
E1	pu	Saturation parameter
SE2	pu	Saturation parameter
E2	pu	Saturation parameter

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcOEX3T

EXCITER - EXCSK

Slovakian Excitation System Model.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
K	PU	Gain
TE	Seconds	Time constant
EMIN	PU	Minimum field voltage output
EMAX	PU	Maximum field voltage output
KC	PU	PI controller gain
TC	Seconds	PI time constant
UIMIN	PU	Minimum error
UIMAX	PU	Maximum error
URMIN	PU	Minimum controller output
URMAX	PU	Maximum controller output
EFDMIN	PU	Field voltage clipping limit
EFDMAX	PU	Field voltage clipping limit
KCE	PU	Rectifier regulation factor
KD	PU	Exciter internal reactance
KP	PU	PI controller gain
TI	Seconds	PI controller phase lead time constant

K1	PU	Parameter of underexcitation limit
K2	PU	Parameter of underexcitation limit
ΥP	PU	Maximum output
VTMIN	PU	Minimum terminal voltage input
VTMAX	PU	Maximum terminal voltage input
KGOB	PU	P controller gain
KQOB	PU	Rate of rise of the reactive power
NQ	PU	Dead band of reactive power
KQP	PU	PI controller gain
KQI	PU	PI controller gain of integral component
QZ	PU	Desired value (setpoint) of reactive power
REMOTE	Boolean	Switch control
		1 = Automatic calculation in model secondary controller model
		0 = Manual set; desired value of reactive power QZ is required.
QC_ON_OFF	Boolean	Secondary voltage control state
		1 = secondary voltage control is ON
		0 = secondary voltage control is OFF.
TP	PU	Time constant

QMAX = K1*PMECH+K2

Equivalent model in CIM/CGMES:

- ExcSK

EXCITER - EXCST1A

Modification of an old IEEE ST1A static excitation system without overexcitation limiter (VOEL) and underexcitation limiter (VUEL).

Parameters

NAME	Туре	Description
VIMAX	pu	Maximum voltage regulator input limit
VIMIN	pu	Minimum voltage regulator input limit
TC	Seconds	Voltage regulator time constant
TB	Seconds	Voltage regulator time constant
TC1	Seconds	Voltage regulator time constant
TB1	Seconds	Voltage regulator time constant
KA	pu	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VAMAX	pu	Maximum voltage regulator output
VAMIN	pu	Minimum voltage regulator output
VRMAX	pu	Maximum voltage regulator outputs
VRMIN	pu	Minimum voltage regulator outputs
KC	pu	Rectifier loading factor proportional to commutating reactance
KLR	pu	Exciter output current limiter gain
ILR	pu	Exciter output current limit reference
XE	pu	Excitation xfmr effective reactance
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant

Notes

Equivalent model in CIM/CGMES:

- ExcST1A

EXCITER - EXELI

Static PI transformer fed excitation system: ELIN (VATECH) - simplified model. This model represents an all-static excitation system. A PI voltage controller establishes a desired field current set point for a proportional current controller. The integrator of the PI controller has a follow-up input to match its signal to the present field current.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
TFV	Seconds	Voltage transducer time constant
TFI	Seconds	Current transducer time constant
TNU	Seconds	Controller reset time constant
VPU	PU	Voltage controller proportional gain
VPI	PU	Current controller gain
VPNF	PU	Controller follow up gain
DPNF	PU	Controller follow up dead band
EFDMIN	PU	Minimum open circuit excitation voltage
EFDMAX	PU	Maximum open circuit excitation voltage
XE	PU	Excitation transformer effective reactance
TW	Seconds	Stabilizer parameters
KS1	PU	Stabilizer Gain 1
KS2	PU	Stabilizer Gain 2
TS1	Seconds	Stabilizer Phase Lag Time Constant
TS2	Seconds	Stabilizer Filter Time Constant
SMAX	PU	Stabilizer Limit Output

Equivalent model in CIM/CGMES: - ExcELIN1

EXCITER - EXPIC1

Proportional/integral excitation system model.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KA	PU	PI controller gain
TA	Seconds	PI controller time constant
VR1	PU	PI maximum limit
VR2	PU	PI minimum limit
TA2	Seconds	Voltage regulator time constant
TA3	Seconds	Voltage regulator time constant
TA4	Seconds	Voltage regulator time constant
VRMAX	PU	Voltage regulator maximum limit
VRMIN	PU	Voltage regulator minmum limit
KF	PU	Rate feedback gain
TF1	Seconds	Rate feedback time constant
TF2	Seconds	Rate feedback time constant
EFMAX	PU	Exciter maximum limit
EFMIN	PU	Exciter minmum limit
KE	PU	Exciter constant
TE	Seconds	Exciter time constant
KP	PU	Potential source gain
KI	PU	Current source gain
KC	PU	Exciter regulation factor
E1	PU	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter
		voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter
		voltage, E2, back of commutating reactance


```
Parameters Range:
0 < TR < 0.5
                                    0 \le KC < 2
1 < KA < 500
                                    0 \le KE \le 1
0 < TA1 < 10
                                     1 < EFDMAX < 10
0.5 < VR1 < 10.0
                                            -6 < EFDMIN ≤ -0,5
-6 < VR2 < -0.5
                                            1 \le VRMAX \le 15
0 < Te < 2
                                     -6 < VRMIN ≤ 0
                             0 < E1
0 \le KF < 0.3
0.04 < TF1 < 15
                                            0 \le SE(E1) < 1
5 \le TF1/KF \le 25
                                            SE(E1) < SE(E2)
0 \le KP < 5
                                     E1 < E2
0 \le KI \le 1.1
                                    0 \le TF2 < 5
```

The Rectifier Regulation Characteristic F(IN):

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcPIC

EXCITER - EXST2A

Modified IEEE Type ST2 Excitation System.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KA	pu	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VRMAX	pu	Maximum voltage regulator outputs
VRMIN	pu	Minimum voltage regulator outputs
KP	pu	Potential circuit gain coefficient
KI	pu	Potential circuit gain coefficient
KC	pu	Rectifier loading factor proportional to commutating reactance
KE	pu	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
EFDMAX	pu	Maximum field voltage

Parameters Range:

 $\begin{array}{lll} 0 < TR < 0.5 & 0 < KF < 0.3 \\ 10 < KA < 1000 & 0.04 < TF < 1.5 \\ 0 < TA < 1 & 5 \le TF/ \ KF \le 20 \\ 0.5 < VRMAX < 1.5 & KP = 1.19 \\ -1.5 < VRMIN < 0.5 & 0 < KI \le 8.0 \\ 0 < KE \le 1 & 0 < KC < 2 \\ 0.04 < TE < 2 & \end{array}$

The Rectifier Regulation Characteristic F(IN):

Equivalent model in CIM/CGMES:

EXCITER - FREADC

Thyristor controlled DC exciter from ASEA.

Parameters

NAME	Туре	Description
K	Seconds	Gain
TR	Seconds	Time constant
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
TE	Second	Time constant
EFDMAX	PU	Maximum field voltage output
KF	PU	Feedback gain
TF	Second	Feedback time constant

Notes

Equivalent model in CIM/CGMES:

EXCITER - IEEET1

IEEE Type 1 Excitation System

VS = VPSS + VUEL + VOEL

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KA	PU	Regulator gain
TA	Seconds	Regulator time constant
VRMIN	PU	Minimum voltage regulator outputs
VRMAX	PU	Maximum voltage regulator outputs
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter
		control
KF	PU	Feedback gain
TF	Seconds	Feedback time constant
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter
		voltage, E2, back of commutating reactance

Parameters Range:

0 ≤ TR < 0.5	-1 ≤ KE ≤ 1
10 < KA < 500	0.04 < TE < 1
0 ≤ TA < 1	0 < KF < 0.3
0.5 < VRMAX < 10	0.04 < TF < 1.5
-10 < VRMIN < 0	5 ≤ TF/KF ≤ 15

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

EXCITER - IEEET2

IEEE Type 2 Excitation System

VS = VPSS + VUEL + VOEL

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KA	PU	Regulator gain
TA	Seconds	Regulator time constant
VRMIN	PU	Minimum voltage regulator outputs
VRMAX	PU	Maximum voltage regulator outputs
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter
		control
KF	PU	Feedback gain
TF1	Seconds	Feedback time constant 1
TF2	Seconds	Feedback time constant 2
E1	PU	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter
		voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter
		voltage, E2, back of commutating reactance

Parameters Range:

 $\begin{array}{lll} 0 \leq TR < 0.5 & -1 \leq KE \leq 1 \\ 10 < KA < 500 & 0.04 < TE < 1 \\ 0 \leq TA < 1 & 0 < KF < 0.3 \\ 0.5 < VRMAX < 10 & 0.04 < TF1 < 1.5 \\ -10 < VRMIN < 0 & 5 \leq TF1/KF \leq 15 \\ 0.04 < TF2 < 1.5 & 0.04 < TF2 < 1.5 \\ \end{array}$

NEPLAN AG Oberwachtstrasse 2 CH 8700 Küsnacht ZH www.neplan.ch Phone +41 44 914 36 66 Fax +41 44 991 19 71

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

EXCITER - IEEET3

IEEE Type 3 Excitation System

VS = VPSS + VUEL + VOEL

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KA	PU	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VRMAX	PU	Maximum voltage regulator output
VRMIN	PU	Minimum voltage regulator output
VBAX	PU	Available exciter voltage limiter
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	PU	Excitation control system stabilizer gain
TF	Seconds	Excitation control system stabilizer time constant
KP	PU	Potential circuit gain coefficient
KI	PU	Potential circuit gain coefficient

Parameters Range:

0 ≤ TR < 0.5	0.04 < TF < 1.5
10 < KA < 200	5 ≤ TF/KF ! 15
0 ≤ TA < 1	KP = 1.19
0.5 < VRMAX < 1.5	0.9 < KI < 1.1
-1.5 < VRMIN < -0.5	1.0 < VBMAX < 4.0
0.04 < TE < 2	0 < KE ≤ 1.0
0 < KF < 0.3	

Equivalent model in CIM/CGMES: - ExcDC3A1

EXCITER - IEEET4

IEEE Type 4 Excitation System

Parameters

NAME	Type	Description
KR	PU	Fast raise/lower contact setting
TRH	Seconds	Rheostat travel time
ΚV	PU	Fast raise/lower contact setting
VRMIN	PU	Minimum voltage regulator outputs
VRMAX	PU	Maximum voltage regulator outputs
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

Parameters Range:

0.01 < KR < 0.05 0.04 < TE < 1.0 2.0 < TRH < 100 -1.0 < KE < 0.10 0.02 < KV < 0.10 $0 \le E1$ $0 \le SE(E1) < 1$ $0 \le VRMIN < 2.0$ $0 \le VRMIN < 2.0$ $0 \le SE(E1) < SE(E2)$

The signal V1 is calculated according to the value of ΔV , as follows:

If $-KR < \Delta V < KR$ then V1 = 0

If $\Delta V \le -KR$ then V1 = -1If $\Delta V \ge KR$ then V1 = 1

The signal V2 is calculated according to the value of ΔV , as follows:

Note:

- 1) If VRMAX is zero, the model will compute a new value of it.
 - a) If KE is zero or negative, VRMAX will just allow the exciter to reach an output voltage of E2 i.e.: VRMAX = SE(E2) × E2
 - b) If KE is positive, VRMAX will just allow the exciter to reach an output voltage of E2 with the specified value of KE,

i.e.: $VRMAX = (SE(E2) + KE) \times E2$

In either case above, VRMIN is then set to –VRMAX.

2) If KE is zero, the model will set a new value of KE. KE is set to the value that will require a voltage regulator output of (VRMAX /10) to maintain the present value of excitation voltage, UF, i.e.: KE =VRMAX/(10 UF) - SE (UF)

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

EXCITER - IEEET5

Modified IEEE Type 5 Excitation System

Parameters

NAME	Туре	Description
TRH	Seconds	Rheostat travel time
KV	PU	Fast raise/lower contact setting
VRMIN	PU	Minimum voltage regulator outputs
VRMAX	PU	Maximum voltage regulator outputs
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

Parameters Range:

 $\begin{array}{lll} 0.01 < \text{KR} < 0.05 & 0.04 < \text{TE} < 1.0 \\ 2.0 < \text{TRH} < 100 & -1.0 < \text{KE} < 0.10 \\ 0.02 < \text{KV} < 0.10 & 0 \leq \text{E1} \\ \text{KR} < \text{KV} & 0 \leq \text{SE(E1)} < 1 \\ 2.0 < \text{VRMAX} < 10.0 & \text{E1} < \text{E2} \\ 0 \leq \text{VRMIN} < 2.0 & \text{SE(E1)} < \text{SE(E2)} \end{array}$

The signal V2 is calculated according to the value of ΔV , as follows:

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

EXCITER - IEEEX1

IEEE Type 1 Excitation System

VS = VPSS+VOEL+VUEL

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
ТВ	Seconds	Time constant
TC	Seconds	Time constant
KA	Pu	Gain
TA	Seconds	Time constant
VRMAX	Pu	Limiter
VRMIN	Pu	Limiter
TE	Seconds	Time constant
KE	Pu	Gain
KF	Pu	Gain
TF	Seconds	Time constant
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

Parameters Range:

0 ≤ TR < 0.5	-1 ≤ KE ≤ 1
10 < KA < 500	0.04 < TE < 1
0 ≤ TA < 1	0 < KF < 0.3
0.5 < VRMAX < 10	0.04 < TF < 1.5
-10 < VRMIN < 0	5 ≤ TF/KF ≤ 15

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - IEEEX2

1979 IEEE Type 2 Excitation System Model. Also the IEEET2-exciter can be modeled with the IEEEX2-exciter. In that case the constants TB and TC are set to equal 0.0.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KA	PU	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
TB	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
VRMAX	PU	Maximum voltage regulator output
VRMIN	PU	Minimum voltage regulator output
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	PU	Excitation control system stabilizer gain
TF1	Seconds	Excitation control system stabilizer time constant
TF2	Seconds	Excitation control system stabilizer time constant
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

Parameters Range:

0 ≤ TR < 0.5	-1 ≤ KE ≤ 1
10 < KA < 500	0.04 < TE < 1
0 ≤ TA < 1	0 < KF < 0.3
0.5 < VRMAX < 10	0.04 < TF < 1.5
-10 < VRMIN < 0	5 ≤ TF/KF ≤ 15
0.04 < TF2 < 1.5	5 ≤ TFN/KF ≤ 15

Where:

TFN = TF if S2 \leq S TFN = TF2 if S \leq S2 S = |1 - TF/TE| S2 = |1 - TF2/TE|

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcDC2A

EXCITER - IEEEX3

IEEE Type 3 Excitation System Model.

VS = VPSS+VOEL+VUEL

Parameters

NAME	Type	Description
TR	Seconds	Filter time constant
KA	PU	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VRMAX	PU	Maximum voltage regulator output
VRMIN	PU	Minimum voltage regulator output
VBMAX	PU	Maximum value of siganl V4
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	PU	Excitation control system stabilizer gain
TF	Seconds	Excitation control system stabilizer time constant
KP	PU	Potential circuit gain coefficient
KI	PU	Courent circuit gain coefficient

Parameters Range:

0 ≤ TR < 0.5	0.04 < TF < 1.5
10 < KA < 200	5 ≤ TF/KF ! 15
0 ≤ TA < 1	KP = 1.19
0.5 < VRMAX < 1.5	0.9 < KI < 1.1
-1.5 < VRMIN < -0.5	1.0 < VBMAX < 4.0
0.04 < TE < 2	0 < KE ≤ 1.0
0 < KF < 0.3	

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - IEEEX4

IEEE Type 4 Excitation System

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
TRH	Pu	Rheostat travel time
KV	Pu	Fast raise/lower contact setting
VRMAX	Pu	Maximum voltage regulator output
VRMIN	Pu	Minimum voltage regulator output
TE	Seconds	Exciter time constant, integration rate associated with exciter
		control
KE	Pu	Exciter constant related to self-excited field
E1	pu	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter
		voltage, E1, back of commutating reactance
E2	pu	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	pu	Exciter saturation function value at the corresponding exciter
		voltage, E2, back of commutating reactance

Parameters Range:

 $\begin{array}{lll} 0.01 < \text{KR} < 0.05 & 0.04 < \text{TE} < 1.0 \\ 2.0 < \text{TRH} < 100 & -1.0 < \text{KE} < 0.10 \\ 0.02 < \text{KV} < 0.10 & 0 \leq \text{E1} \\ \text{KR} < \text{KV} & 0 \leq \text{SE(E1)} < 1 \\ 2.0 < \text{VRMAX} < 10.0 & \text{E1} < \text{E2} \\ 0 \leq \text{VRMIN} < 2.0 & \text{SE(E1)} < \text{SE(E2)} \end{array}$

Notes

If VRMAX is zero, the model will compute a new value of it.
 a) If KE is zero or negative, VRMAX will just allow the exciter to reach an output voltage of E2 i.e.: VRMAX = SE(E2) x E2
 b) If KE is positive, VRMAX will just allow the exciter to reach an output

voltage of E2 with the specified value of KE, i.e.: VRMAX = (SE (E2) + KE) × E2 In either case above, VRMIN is then set to –VRMAX.

2) If KE is zero, the model will set a new value of KE.
KE is set to the value that will require a voltage regulator output of
(VRMAX /10) to maintain the present value of excitation voltage, UF, i.e.:
KE =VRMAX/(10 UF) - SE (UF)

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcDC3A (only valid with kr = 0 in CIM/CGMES)

EXCITER - IEET1A

Modified IEEE Type 1 Excitation System

VS = VPSS+VUEL+VOEL

Parameters

NAME	Type	Description
KA	pu	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
KE	pu	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
FDMI	pu	Minimum field voltage
FDMA	pu	Maximum field voltage
E1	pu	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	pu	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
SEMAX	pu	Exciter saturation function value at the corresponding exciter voltage, FDMA, back of commutating reactance

Parameters Range:

-1 ≤ KE ≤ 1
0.04 < TE < 1
0 < KF < 0.3
0.04 < TF < 1.5
5 ≤ TF/KF ≤ 15

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES: - No CIM/CGMES model

EXCITER - IEET1B

Modified IEEE Type 1 Excitation System

VS = VPSS + VUEL + VOEL

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
XE	PU	Excitation transformer effective reactance
SW	Integer	Swtich control (see block diagram)
		0 = feedback from VREG
		1 = feedback from EFD
VSMAX		Maximum voltage regulator output
VSMIN		Minimum voltage regulator output
KA		Voltage regulator gain
TA1		Voltage regulator time constant
VRMAX		Maximum voltage regulator output
VRMIN		Minimum voltage regulator output
TA2		Lag time constant
KF1		Excitation control system stabilizer gains
TF1		Excitation control system stabilizer time constant
KE		Exciter constant related to self-excited field
TE		Exciter time constant, integration rate associated with exciter
		control
E1	PU	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter
		voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating
		reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter
		voltage, E2, back of commutating reactance

Notes

VR/KA is calculated during the initiating and is constant thereafter.

- If VRMAX is zero, the model will compute a new value of it.
 a) If KE is zero or negative, VRMAX will just allow the exciter to reach an output voltage of E2 i.e.: VRMAX = SE(E2) x E2
 b) If KE is positive, VRMAX will just allow the exciter to reach an output voltage of E2 with the specified value of KE, i.e.: VRMAX = (SE (E2) + KE) x E2
 In either case above, VRMIN is then set to –VRMAX.
- 2) If KE is zero, the model will set a new value of KE.

 KE is set to the value that will require a voltage regulator output of

 (VRMAX /10) to maintain the present value of excitation voltage, UF, i.e.:

 KE =VRMAX/(10 UF) SE (UF)

$$IMAG = \sqrt{ID^2 + IQ^2}$$

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - IEET5A

Parameters

NAME	Type	Description
KA	PU	Regulator gain
TRH	Seconds	Rheostat travel time
KV	PU	Fast raise/lower contact setting
VRMIN	PU	Minimum voltage regulator outputs
VRMAX	PU	Maximum voltage regulator outputs
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
EFDMIN	PU	Minimum field voltage
EFDMAX	PU	Maximum field voltage
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - IEEX2A

IEEE Type 2 Excitation System Model

VS = VPSS+VOEL+VUEL

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
TC	Seconds	Voltage regulator time constant
TB	Seconds	Voltage regulator time constant
VRMIN	PU	Minimum voltage regulator output
VRMAX	PU	Maximum voltage regulator output
KA	PU	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
KF	PU	Excitation control system stabilizer gain
TF1	Seconds	Excitation control system stabilizer time constant
TE	PU	Exciter time constant, integration rate associated with exciter control
KE	PU	Exciter constant related to self-excited field
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES Model

EXCITER - PSAT Type1

IEEE model 1 (PSAT)

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
K	PU	Gain
T1	Seconds	Time constant
T2	Seconds	Time constant
T3	Seconds	Time constant
T4	Seconds	Time constant
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
TE	Seconds	Time constant
AE	PU	Saturation parameter (see note)
BE	PU	Saturation parameter (see note)

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - PSAT Type2

IEEE model 2 (PSAT)

Parameters

NAME	Type	Description
TR	Seconds	Filter time constant
KA	PU	Gain
TA	Seconds	Time constant
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
TE	Seconds	Time constant
AE	PU	Saturation parameter (see note)
BE	PU	Saturation parameter (see note)
KF	PU	Feedback gain
TF	Seconds	Feedback time constant

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - REXSYS

General Purpose Rotating Excitation System Model.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KVP	PU	Voltage Regulator Proportional Gain
KVI	PU	Voltage Regulator Integral Gain
VIMAX	PU	Voltage Regulator Input Limit
TA	Seconds	Voltage Regulator time constant
TB1	Seconds	Time constant
TC1	Seconds	Time constant
TB2	Seconds	Time constant
TC2	Seconds	Time constant
VRMIN	PU	Minimum controller output
VRMAX	PU	Maximum controller output
KF	PU	Rate feedback gain
TF	Seconds	Rate feedback time constant
TF1	Seconds	Rate feedback time constant
TF2	Seconds	Rate feedback time constant
FBF*	enum	Rate feedback signal flag (Fbf). Typical Value =
		fieldCurrent
KIP	PU	Field Current Regulator Proportional Gain
KII	PU	Field Current Regulator Integral Gain
TP	Seconds	Field current Bridge time constant
VFMIN	PU	Minimum Exciter Field Current

VFMAX	PU	Maximum Exciter Field Current
KH	PU	Field voltage controller feedback
KE	PU	Exciter field proportional constant
TE	Seconds	Exciter field time constant
KC	PU	Rectifier regulation factor
KD	PU	Exciter regulation factor
E1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, E1, back of commutating reactance
E2	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE2	PU	Exciter saturation function value at the corresponding exciter voltage, E2, back of commutating reactance
F1IMF	PU	Limit type flag

^{*} Description pag. 17

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

- ExcREXS

EXCITER - SCRX

Simple excitation system model representing generic characteristics of many excitation systems.

Parameters

NAME	Type	Description
TATB	Float	Ta/Tb - gain reduction ratio of lead-lag element
TB	Seconds	Time constant
K	PU	Gain
TE	Seconds	Time constant
EMIN	PU	Minimum field voltage output
EMAX	PU	Maximum field voltage output
RCRFD	Float	Rc/Rfd - ratio of field discharge resistance to field winding resistance
CSWITCH	Boolean	Power source switch
		0 = input is set to 1
		1 = input is set as generator terminal voltage.

Notes

Equivalent model in CIM/CGMES:

- ExcSCRX

EXCITER - SEXS

Simplified Excitation system

VS = VPSS + VOEL +VUEL

Parameters

NAME	Туре	Description
TA	Seconds	Time Constant
ТВ	Seconds	Time Constant
K	PU	Gain
TE	Seconds	Time Constant
EMAX	PU	Limiter
EMIN	PU	Limiter

Parameters Range:

0.05 < TA/TB < 1 $5 \le K \times TA/TB \le 15$

5 < TB < 20 EMIN = 0 $3 \le EMAX \le 6$

 $0 \le TE < 0.5$

Notes

Equivalent model in CIM/CGMES:

- No CIM/CGMES model

EXCITER - SEXS 2005

Simplified Excitation system, version 2005

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
TATAB	Float	Ta/Tb - gain reduction ratio of lead-lag element
ТВ	Seconds	Time constant
KC	PU	PI controller gain
TC	Seconds	PI time constant
K	PU	Gain
TE	Seconds	Time constant
EMIN	PU	Minimum field voltage output
EMAX	PU	Maximum field voltage output
EFDMIN		Field voltage clipping minimum limit
EFDMAX	PU	Field voltage clipping maximum limit

Notes

Same remarks as the SEXS model

Equivalent model in CIM/CGMES:

- ExcSEXS

EXCITER - ST1A

IEEE Type ST1A Excitation System

Parameters

NAME	Туре	Description
VOS	Boolean	Selector of the Power System Stabilizer input. (see block
		diagram)
		1 = PSS input (VPSS) added to error signal
		0 = PSS input (VPSS) added to voltage regulator output.
UEL	enum	Selector of the connection of the UEL input. (see block diagram)
		0 = ignore VUEL signal
		1 = VUEL input added to error signal.
		2 = VUEL input HV gate with error signal
		3 = VUEL input HV gate with volt. reg. output
TR	Seconds	Filter time constant
VIMAX	pu	Maximum voltage regulator input limit
VIMIN	pu	Minimum voltage regulator input limit
TB	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
TC1	Seconds	Voltage regulator time constant
TB1	Seconds	Voltage regulator time constant
KA	pu	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VAMAX	pu	Maximum voltage regulator output limit
VAMIN	pu	Minimum voltage regulator output limit
KLR	pu	Exciter output current limiter gain
ILR	pu	Exciter output current limit reference
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
VRMAX	pu	Maximum voltage regulator output limit
VRMIN	pu	Minimum voltage regulator output limit

KC	pu	Rectifier loading factor proportional to commutating reactance
----	----	--

Parameters Range:

0 < TR < 0.1	$3 \le VAMAX \le 8$
$0 < VIMAX \le 0.2$	-8 < VAMIN ≤ -3
-0.3 < VIMIN ≤ 0	$3 \le VRMAX \le 8$
0 < TC < 10.0	-8 ≤ VRMIN ≤ -3
0.04 < TB < 20	$0 \le KC < 0.3$
0 ≤ TC1 < 10	$0 < KF \le 0.3$
0.04 < TB1 < 20	0.3 < TF ≤ 1.5
5 ≤ KA × TC/TB ≤ 15	0 < KLR ≤ 5.0
50 < KA ≤ 1000	$0 < ILR \le 5.0$
0.04 < TA < 0.5	

Notes

VOS

A switch that controls where the inputs signal VS is subtracted to the exciter. The parameter SWS sets which system stabilizer that calculates the value of VS.

VOS = 1 The input signal VS is subtracted to the sum with the output signal V2.

VOS = 2 The input signal VS is subtracted to the sum with the output signal V4.

If no system stabilizer is associated, i.e., SWS = 0, the parameter VOS is ignored. Default = 1

UEL

A switch that controls where the input signal VU is injected to the exciter. The parameter SWU sets which under excitation limiter that calculates the value of VU.

UEL = 1 The input signal VU is added to the sum with the output signal V2.

UEL = 2 The input signal VU is one of the input signals to the left HV-gate.

UEL = 3 The input signal VU is one of the input signals to the right HV-gate.

If no under excitation limiter is associated, i.e., SWU = 0, the parameter UEL is ignored. Default = 1

Equivalent model in CIM/CGMES:

- ExcIEEEST1A

EXCITER - ST2A

IEEE Type ST2A Excitation System

VS = VPSS + VOEL

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KA	pu	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VRMAX	pu	Maximum voltage regulator outputs
VRMIN	pu	Minimum voltage regulator outputs
KP	pu	Potential circuit gain coefficient
KI	pu	Potential circuit gain coefficient
KC	pu	Rectifier loading factor proportional to commutating reactance
KE	pu	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
UFMAX	pu	Maximum field voltage
UEL	Boolean	UEL input,
		1 = VUEL input added to HV Gate.
		0 = VUEL input added to error signal.

Parameters Range:

0 < TR < 0.5 0 < KF < 0.3 0.04 < TF < 1.5 0 < TA < 1 0.5 < VRMAX < 1.5 0 < TR < 1.5 0.5 < VRMAX < 1.5

- 1.5 < VRMIN < 0.5 0 < KE ≤ 1 0.04 < TE < 2 0 ≤ KI ≤ 8.0 0 < KC < 2 1 < EFDMAX < 10

Notes

VT and IT definition:

VT	The bus voltage, p.u. (= VD + jVQ)
IT	The stator current, p.u. (= ID + jIQ)

The Rectifier Regulation Characteristic F(IN):

Equivalent model in CIM/CGMES: ExcIEEEST2A

EXCITER - ST2A 2005

ST2A Excitation System, Entsoe-CIM/CGMES modified model

Parameters

NAME	Type	Description
TR	Seconds	Filter time constant
KA	pu	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
TC	Seconds	Voltage regulator time constant
ТВ	Seconds	Voltage regulator time constant
VRMAX	pu	Maximum voltage regulator outputs
VRMIN	pu	Minimum voltage regulator outputs
KP	pu	Potential circuit gain coefficient
KI	pu	Potential circuit gain coefficient
KC	pu	Rectifier loading factor proportional to commutating reactance
KE	pu	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
KF	pu	Excitation control system stabilizer gains
TF	Seconds	Excitation control system stabilizer time constant
UFMAX	pu	Maximum field voltage
UEL	Boolean	UEL input, 1 = VUEL input added to HV Gate.
		0 = VUEL input added to error signal.

Notes

Same remarks as the ESST2A model

Equivalent model in CIM/CGMES:

- ExcST2A

EXCITER - ST3A

IEEE Type ST3A Excitation System

VS = VPSS + VOEL

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
VIMAX	PU	Maximum voltage regulator input limit
VIMIN	PU	Minimum voltage regulator input limit
TC	Seconds	Voltage regulator time constant
TB	Seconds	Voltage regulator time constant
KA	PU	Voltage regulator gain
TA	Seconds	Voltage regulator time constant
VRMAX	PU	Maximum voltage regulator output
VRMIN	PU	Minimum voltage regulator output
KG	PU	Feedback gain constant of the inner loop field regulator
VGMAX	PU	Maximum inner loop feedback voltage
KM	PU	Forward gain constant of the inner loop field regulator
TM	Seconds	Forward time constant of inner loop field regulator
VMMAX	PU	Maximum inner loop output
VMMIN	PU	Minimum inner loop output
KP	PU	Potential circuit gain coefficient
KI	PU	Potential circuit gain coefficient
VBMAX	PU	Maximum excitation voltage
KC	PU	Rectifier loading factor proportional to commutating reactance
XL	PU	Reactance associated with potential source

Parameters Range:

 $\begin{array}{lll} 0.04 < TB < 20 & 0 \leq KI \leq 1.1 \\ 0 < KA \leq 200 & 0 \leq KC < 1 \\ 0 < TA < 1.0 & 0 < VBMAX < 20 \\ 0.5 < VRMAX \leq 10 & 0 < XL < 0.5 \\ -10 \leq VRMIN < 0.5 & -90 < TETA < 90 \\ 0 \leq TM < 1.0 & -1.5 < VMMIN < 0.5 \\ 0 < KM < 1000 & 0.5 < VMMAX \leq 1.5 \end{array}$

Notes

VT and IT definition:

VT	The bus voltage, p.u. (= VD + jVQ)
IT	The stator current, p.u. (= ID + jIQ)

The Rectifier Regulation Characteristic F(IN):

Equivalent model in CIM/CGMES:

- ExcIEEEST3A

EXCITER - ST3

Excitation system with DC commutator exciter.

Parameters

NAME	Туре	Description
FMOD	Integer	See the paragraph General/Rectifier Regulation Characteristic according to FMOD
TR	Seconds	Filter time constant
TC	Seconds	Regulator time constant
TB	Seconds	Regulator time constant
KJ		Regulator gain
KA	PU	Regulator gain
TA	Seconds	Regulator time constant
KP	PU	Potential circuit gain coefficient
KI	PU	Courent circuit gain coefficient
KC	PU	Rectifier loading factor proportional to commutating reactance
KG	PU	Exciter constant related to self-excited field
TP	degree	Only used in SIMPOW model, with dynamic simulator the angle value is automaticaly coupled with the machne.
XL	PU	Excitation control system stabilizer gains
UEMAX	PU	Maximum voltage regulator outputs
VGMAX	PU	Minimum voltage regulator outputs
V1MAX	PU	Maximum voltage regulator outputs
V1MIN	PU	Minimum voltage regulator outputs
VRMAX	PU	Maximum voltage regulator outputs
VRMIN	PU	Minimum voltage regulator outputs
VBMAX	PU	Maximum voltage regulator outputs

Parameters Range:

 $\begin{array}{lll} 0 < TC < 20 & 1 < KP < 10 \\ 0.04 < TB < 20 & 0 \leq KI \leq 1.1 \\ 0 < KA \leq 200 & 0 \leq KC < 1 \\ 0 < TA < 1.0 & 0 < VBMAX < 20 \\ 0.5 < VRMAX \leq 10 & 0 < XL < 0.5 \\ -10 \leq VRMIN < 0.5 & \end{array}$

Notes

VT and IT definition:

VT	The bus voltage, p.u. (= VD + jVQ)
IT	The stator current, p.u. (= ID + jIQ)

Equivalent model in CIM/CGMES:

- ExcST3A

EXCITER - ST4B

IEEE Type ST4B Potential or Compounded Source-Controlled Rectifier Exciter

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KPR	PU	Voltage regulator proportional gain
KIR	PU	Voltage regulator integral gain
VRMAX	PU	Maximum voltage regulator output
VRMIN	PU	Minimum voltage regulator output
TA	Seconds	Voltage regulator time constant
KPM	PU	Voltage regulator proportional gain output
KIM	PU	Voltage regulator integral gain output
VMMAX	PU	Maximum inner loop output
VMMIN	PU	Minimum inner loop output
KG	PU	Feedback gain constant of the inner loop field regulator
KP	PU	Potential circuit gain coefficient
KI	PU	Potential circuit gain coefficient
VBMAX	PU	Maximum excitation voltage
KC	PU	Rectifier loading factor proportional to commutating reactance
XL	PU	Reactance associated with potential source

Parameters Range:

0 < TR < 0.5	-118.8 ≤ VMMIN ≤ 0
0 ≤ KPR ≤ 75	0 ≤ KG < 1.1
0 ≤ KIR ≤ 75	1 ≤ KP < 10
0.8 ≤ VRMAX ≤ 10	0 ≤ KI ≤ 1.1
-6 ≤ VRMIN ≤ 0	1 < VBMAX < 20
0 < TA < 1	0 ≤ KC < 1
0 ≤ KPM ≤ 1.2	$0 \le XL < 0.5$

 $0 \le KIM \le 18$ $0.8 \le VMMAX \le 118$ -90 <THETA < 90

Notes

VT and IT definition:

VT	The bus voltage, p.u. (= VD + jVQ)
IT	The stator current, p.u. (= ID + jIQ)

The Rectifier Regulation Characteristic F(IN):

Equivalent model in CIM/CGMES:

- ExcIEEEST4B

EXCITER - ST4B 2005

ST4B Potential or Compounded Source-Controlled Rectifier, Entsoe-CIM/CGMES modified.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
KPR	PU	Voltage regulator proportional gain
KIR	PU	Voltage regulator integral gain
VRMAX	PU	Maximum voltage regulator output
VRMIN	PU	Minimum voltage regulator output
TA	Seconds	Voltage regulator time constant
KPM	PU	Voltage regulator proportional gain output
KIM	PU	Voltage regulator integral gain output
VMMAX	PU	Maximum inner loop output
VMMIN	PU	Minimum inner loop output
KG	PU	Feedback gain constant of the inner loop field regulator
VGMAX	PU	Maximum inner loop feedback voltage
KP	PU	Potential circuit gain coefficient
KI	PU	Potential circuit gain coefficient
VBMAX	PU	Maximum excitation voltage
KC	PU	Rectifier loading factor proportional to commutating reactance
XL	PU	Reactance associated with potential source

Parameters Range:

0 < TR < 0.5	-118.8 ≤ VMMIN ≤ 0
0 ≤ KPR ≤ 75	0 ≤ KG < 1.1
0 ≤ KIR ≤ 75	1 ≤ KP < 10
0.8 ≤ VRMAX ≤ 10	0 ≤ KI ≤ 1.1
-6 ≤ VRMIN ≤ 0	1 < VBMAX < 20
0 < TA < 1	0 ≤ KC < 1
0 ≤ KPM ≤ 1.2	$0 \le XL < 0.5$

 $0 \le KIM \le 18$ $0.8 \le VMMAX \le 118$ -90 <THETA < 90

Notes

Same remarks as the ESST4B model

Equivalent model in CIM/CGMES:

- ExcST4B

EXCITER - ST5B

IEEE Type ST₅B Excitation System

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
TC1	Seconds	Regulator time constant
TB1	Seconds	Regulator time constant
TC2	Seconds	Regulator time constant
TB2	Seconds	Regulator time constant
KR	PU	Regulator gain
VRMAX	PU	Maximum voltage regulator output
VRMIN	PU	Minimum voltage regulator output
T1	Seconds	Firing circuit time constant
KC	PU	Rectifier regulation factor
TUC1	Seconds	UEL time constant
TUB1	Seconds	UEL time constant
TUC2	Seconds	UEL time constant
TUB2	Seconds	UEL time constant
TOC1	Seconds	OEL time constant
TOB1	Seconds	OEL time constant
TOC2	Seconds	OEL time constant
TOB2	Seconds	OEL time constant

VOUT = V6 if VOEL < VERR VOUT = V10 if VUEL > VERR VOUT = V8 in other cases

Equivalent model in CIM/CGMES:

- ExcIEEEST5B

EXCITER - ST6B

Type ST6B Excitation System, Entsoe-CIM/CGMES modified.

NAME	Туре	Description	
TR	Seconds	Filter time constant	
KPA	PU	Voltage regulator proportional gain	
KIA	PU	Voltage regulator integral gain	
KDA	PU	Voltage regulator derivative gain	
TDA	Seconds	Voltage regulator derivative time constant	
VAMAX	PU	Maximum voltage regulator output	
VAMIN	PU	Minimum voltage regulator output	
KFF	PU	Pre-control gain constant of the inner loop field regulator	
KM	PU	Forward gain constant of the inner loop field regulator	
KCI	PU	Exciter output current limit adjustment	
KLR	PU	Exciter output current limiter gain	
ILR	PU	Exciter output current limit reference	
VRMAX	PU	Maximum voltage regulator output	
VRMIN	PU	Minimum voltage regulator output	
KG	PU	Feedback gain constant of the inner loop field regulator	
TG	Seconds	Feedback time constant of inner loop field voltage regulator	
VIMIN	PU	Maximum voltage regulator output	
VIMAX	PU	Minimum voltage regulator output	
XC	PU	Excitation source reactance	
TS	Seconds	Rectifier firing tme constant	
K1	Boolean	Feedback selector	
		0= EFD feedback	
		1= IFD feedback	
OEL*	enum	OEL input selector (OELin). Typical Value = noOELinput	
VMULT	Boolean	Output multiplication factor	
		0 = output signal multiplied by 1	
		1 = output signal multiplied by VT	

^{*} Description pag. 17

Equivalent model in CIM/CGMES:

- ExcST6B

EXCITER - ST6B CIM/CGMES

IEEE ST6B static excitation system with PID controller and optional inner feedbacks loop (Entsoe-CIM/CGMES model).

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
OEL	enum	* OEL input selector (OELin). Typical Value = noOELinpu
VIMAX	pu	Maximum voltage regulator output
VIMIN	pu	Minimum voltage regulator output
KPA	pu	Voltage regulator proportional gain
KIA	pu	Voltage regulator integral gain
VAMAX	pu	Maximum voltage regulator output
VAMIN	pu	Minimum voltage regulator output
KFF	pu	Pre-control gain constant of the inner loop field regulator
KM	pu	Forward gain constant of the inner loop field regulator
VRMAX	pu	Maximum voltage regulator output
VRMIN	pu	Minimum voltage regulator output
ILR	pu	Exciter output current limit reference
KCI	pu	Exciter output current limit adjustment
KLR	pu	Exciter output current limiter gain
KG	pu	Feedback gain constant of the inner loop field regulator
TAG	Seconds	Feedback time constant of inner loop field voltage regulator

Notes

Equivalent model in CIM/CGMES:

- ExcIEEEST6B

EXCITER - ST7B

IEEE Type ST7B Excitation System

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
TG	Seconds	Feedback time constant of inner loop field voltage regulator
TF	Seconds	Excitation control system stabilizer time constant
VMIN	PU	Minimum voltage regulator output
VMAX	PU	Maximum voltage regulator output
KPA	PU	Voltage regulator proportional gain
VRMIN	PU	Minimum voltage regulator output
VRMAX	PU	Maximum voltage regulator output
KH	PU	High-value gate feedback gain
KL	PU	Low-value gate feedback gain
TC	PU	Regulator lead time constant
TB	Seconds	Regulator lag time constant
KIA	PU	Voltage regulator integral gain
TIA	Seconds	Feedback time constant
OEL	enum	OEL input selector (OELin). Typical Value = noOELinput
UEL	enum	UEL input selector (UELin). Typical Value = noUELinput

Notes

Equivalent model in CIM/CGMES:

- ExcIEEEST7B

EXCITER - URST5T

IEEE Proposed/Modified Type ST5B Excitation System

Parameters

NAME	Type	Description
TR	Seconds	Filter time constant
TC1	Seconds	Regulator time constant
TB1	Seconds	Regulator time constant
TC2	Seconds	Regulator time constant
TB2	Seconds	Regulator time constant
KR	PU	Regulator constant gain
VRMAX	PU	Maximum voltage regulator output
VRMIN	PU	Minimum voltage regulator output
T1	Seconds	Regulator time constant
KC	PU	Rectifier regulation factor

Notes

Equivalent model in CIM/CGMES:

Excitation system with DC commutator exciter.

NAME	Туре	Description	
SW	Boolean	Switch Control: 0 = The regulator is of non-windup type (i.e. the internal signals in the regulator are also limited when the output signal EFD is at limit). 1 = The regulator is of windup type (i.e. the internal signals are not limited when the output signal UF is at limit).	
SW1	Boolean	Switch Control: 0 = VRMAX'=VRMAX / VRMIN' =VRMIN 1 = VRMAX'=VRMAX · VT / VRMIN' =VRMIN · VT	
SW2	Boolean	Switch Control (see block diagram): 0 = Switch B is closed 1 = Switch A is closed	
TR	Seconds	Filter time constant	
TC	Seconds	Time constant	
ТВ	Seconds	Time constant	
KA	PU	Gain	
TA	Seconds	Time constant	
VRR	PU	Initial value of VR. Signal. (see block diagram) -If VR is given, then in the initiation of the exciter parameter KE is calculated during the initializationIf VR is not given then parameter KE must be given.	
KE	PU	Exciter constant related to self-excited field	
TE	Seconds	Exciter time constant, integration rate associated with exciter control	
KF	PU	Rate feedback gain	
TF	Seconds	Rate feedback time constant	
UEMAX	PU	Maximum controller output	
UEMIN	PU	Minimum controller output	

VRMAX	PU	Maximum controller output	
VRMIN	PU	Minimum controller output	
SEMAX		Exciter saturation function value at the corresponding exciter voltage, UEMAX, back of commutating reactance	
SE75		Exciter saturation function value at the corresponding exciter voltage, 75% of UEMAX, back of commutating reactance	

If VRMAX and VRMIN equal 0:

- VRMAX = (KE + SEMAX) · UEMAX
- VRMIN = (KE + SEMIN) · UEMIN

If UEMAX equal 0:

- UEMAX = VRMAX / (KE+SEMAX)

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

Excitation system with alternator rectifier exciter.

Parameters

NAME	Туре	Description	
SWF	Integer	Schitch control:	
		1 = "Sef" Saturation function = 0	
		2 = "Sef" Saturation function = SE	
TR	Seconds	Filter time constant	
KA	PU	Gain	
TA	Seconds	Time constant	
TE	Seconds	Exciter time constant, integration rate associated with exciter control	
KF	PU	Rate feedback gain	
TF	Seconds	Rate feedback time constant	
KP	PU	Gain	
VPMAX	PU	Maximum controller output	
VPMIN	PU	Minimum controller output	
UEMAX	PU	Maximum field voltage	
VRMAX	PU	Maximum controller output	
VRMIN	PU	Minimum controller output	
SEMAX	PU	Exciter saturation function value at the corresponding exciter	
		voltage, UEMAX, back of commutating reactance	
SE75	PU	Exciter saturation function value at the corresponding exciter	
		voltage, 75% of UEMAX, back of commutating reactance	

Notes

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

The ASEA excitation system with potential source controlled rectifier exciter.

Parameters

NAME	Туре	Description
SWPS	Boolenr	Switch Control:
		0 = VRMAX'=VRMAX / VRMIN' =VRMIN
		1 = VRMAX'=VRMAX · VT / VRMIN' =VRMIN · VT
TR	Seconds	Filter time constant
KP	PU	Gain
VPMAX	PU	Maximum controller output
VPMIN	PU	Minimum controller output
UEB	PU	Only used in SIMPOW. (See Manual)
UID	PU	Only used in SIMPOW. (See Manual)
TI	Second	Intergral time constant
VIMAX	PU	Maximum controller output
VIMIN	PU	Minimum controller output
UEMAX	PU	Maximum controller output
UEMIN	PU	Minimum controller output

Notes

Equivalent model in CIM/CGMES:

Excitation system with DC generator commutator exciter and non-continuously acting regulators.

Parameters

NAME	Туре	Description
SW	Boolean	Switch Control:
		0 = The regulator is of non-windup type (i.e. the internal signals
		in the regulator are also limited when the output signal EFD is
		at limit).
		1 = The regulator is of windup type (i.e. the internal signals are
		not limited when the output signal UF is at limit).
TRH	Second	Rheostat travel time
KV	PU	Fast raise/lower contact setting
KE	PU	Exciter constant related to self-excited field
TE	Second	Exciter time constant, integration rate associated with exciter
		control
UEMAX	PU	Maximum voltage regulator output
UEMIN	PU	Minimum voltage regulator output
VRMAX	PU	Maximum voltage regulator output
VRMIN	PU	Minimum voltage regulator output
SEMAX	PU	Exciter saturation function value at the corresponding exciter
		voltage, UEMAX, back of commutating reactance
SE75	PU	Exciter saturation function value at the corresponding exciter
		voltage, 75% of UEMAX, back of commutating reactance

Notes

If VRMAX and VRMIN equal 0:

- VRMAX = (KE + SEMAX) · UEMAX
- VRMIN = (KE + SEMIN) · UEMIN

If UEMAX equal 0:

- UEMAX = VRMAX / (KE+SEMAX)

1) Actioneering circuit (see block diagram)

		 ,
If VR2 = 0	VR = VR1	
If VR2 ≠ 0	VR = VR2	

The signal VR2 is calculated according to the value of ΔV , as follows:

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

EXCITER - Type ST2

Excitation system with DC commutator exciter.

NAME	Туре	Description
SW	Boolean	Defaut value = 0
		0 = The regulator is of non-windup type (i.e. the internal signals
		in the regulator are also limited when the output signal VR1 is
		at limit).
		1 = The regulator is of windup type (i.e. the internal signals are
		not limited when the output signal VR1 is at limit).
SW1	Boolean	0 = Limit UEMAX/UEMIN is valid
		1= Limit VBMAX/VBMIN is valid
FMOD	Integer	See the paragraph General/Rectifier Regulation Characteristic
		according to FMOD
TR	Seconds	Filter time constant
TC	Seconds	Regulator time constant
ТВ	Seconds	Regulator time constant
KJ		Regulator gain
KA	PU	Regulator gain
TA	Seconds	Regulator time constant
KP	PU	Potential circuit gain coefficient
KI	PU	Potential circuit gain coefficient
KC	PU	Rectifier loading factor proportional to commutating reactance
KE	PU	Exciter constant related to self-excited field
TE	PU	Exciter time constant, integration rate associated with exciter
		control
KF	PU	Excitation control system stabilizer gains
TF	PU	Excitation control system stabilizer time constant
UEMAX	PU	Maximum voltage regulator outputs
UEMIN	PU	Minimum voltage regulator outputs
V1MAX	PU	Maximum voltage regulator outputs

V1MIN	PU	Minimum voltage regulator outputs
VRMAX	PU	Maximum voltage regulator outputs
VRMIN	PU	Minimum voltage regulator outputs
VBMAX	PU	Maximum voltage regulator outputs
VBMIN	PU	Minimum voltage regulator outputs

VT and IT definition:

VT	The bus voltage, p.u. (= VD + jVQ)
IT	The stator current, p.u. (= ID + jIQ)

Equivalent model in CIM/CGMES:

EXCITER - Type ST3 (SCRX MODIFIED)

For this exciter, please take in consideration the information about the model EXCITER ST3.

Notes

Equivalent model in CIM/CGMES:

EXCITER- Type W

A sinusoidal variation as a function of time with arbitrary amplitude and frequency is superimposed on the initial field voltage EFD_0 .

$$EFD = EFD_0 + \sum_{i=1}^{i=N} \left(A_i \cdot \sin \left(2 \cdot \pi \cdot F_i \cdot t + FI_i \right) \right)$$

Parameters

	NAME	Туре	Description
Ν		Integer	See above equation. (In Neplan Nmax = 10)
Α		PU	Amplitude. N values must be given
F		Hz	Frequency Hz. N values must be given.
FI		degrees	Angle. N values must be given.

Notes

Equivalent model in CIM/CGMES:

EXCITER- Type WA

Excitation system involving field controlled DC exciters, or field-controlled rotating alternator-rectifiers, with or without self-excitation.

NAME	Туре	Description
SW	Boolean	Switch Control: 0 = The regulator is of non-windup type (i.e. the internal signals in the regulator are also limited when the output signal EFD is at limit). 1 = The regulator is of windup type (i.e. the internal signals are not limited when the output signal UF is at limit).
SW1	Boolean	Switch Control: 0 = VRMAX'=VRMAX / VRMIN' =VRMIN 1 = VRMAX'=VRMAX · VT / VRMIN' =VRMIN · VT
SW2	Boolean	Switch Control (see block diagram): 0 = Switch B is closed 1 = Switch A is closed
TR	Seconds	Filter time constant
KA	PU	Gain
TA	Seconds	Time constant
ТВ	Seconds	Time constant
TC	Seconds	Time constant
VR	PU	Initial value of VR signal in p.u. See block diagramIF VR or KE is set to zero: KE will automatically be calculated, such that the initial conditions are fulfilled with given value for VROtherwise, if both values are different from zero, the initial value for VR will automatically be calculated, such that the initial conditions are fulfilled with given value for KE.
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control

UEMAX	PU	Maximum field voltage
UEMIN	PU	Minimum field voltage
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
SEMAX	PU	Exciter saturation function value at the corresponding exciter voltage, UEMAX, back of commutating reactance
SE75	PU	Exciter saturation function value at the corresponding exciter voltage, 75% of UEMAX, back of commutating reactance
KF	PU	Feedback gain
TF1	Seconds	Feedback Time constant
TF2	Seconds	Feedback Time constant
TF3	Seconds	Feedback Time constant

If VRMAX and VRMIN equal 0:

- VRMAX = (KE + SEMAX) · UEMAX
- VRMIN = (KE + SEMIN) · UEMIN

If UEMAX equal 0:

UEMAX = VRMAX / (KE+SEMAX)

Saturation:

See the paragraph Saturation in exciter controller.

Equivalent model in CIM/CGMES:

EXCITER- Type WB

Excitation system involving field controlled DC exciters with continuously acting regulators whose output limits may be chosen to be dependent on synchronous machine terminal voltage.

NAME	Туре	Description
SW	Boolean	Switch Control: 0 = The regulator is of non-windup type (i.e. the internal signals in the regulator are also limited when the output signal EFD is at limit). 1 = The regulator is of windup type (i.e. the internal signals are not limited when the output signal UF is at limit).
SW1	Boolean	Switch Control: 0 = VRMAX'=VRMAX / VRMIN' =VRMIN 1 = VRMAX'=VRMAX · VT / VRMIN' =VRMIN · VT
TR	Seconds	Filter time constant
KA	PU	Gain
TA	Seconds	Time constant
TB	Seconds	Time constant
TC	Seconds	Time constant
VB	PU	Initial value of VB signal in p.u. See block diagram. -IF VB or KE is set to zero: KE will automatically be calculated, such that the initial conditions are fulfilled with given value for VB. -Otherwise, if both values are different from zero, the initial value for VB will automatically be calculated, such that the initial conditions are fulfilled with given value for KE.
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
UEMAX	PU	Maximum field voltage
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output

SEMAX		Exciter saturation function value at the corresponding exciter voltage, UEMAX, back of commutating reactance
SE75		Exciter saturation function value at the corresponding exciter voltage, 75% of UEMAX, back of commutating reactance
KF	PU	Feedback gain
TF	Seconds	Feedback Time constant

Saturation:

See the paragraph Saturation in exciter controller

Equivalent model in CIM/CGMES: - No CIM/CGMES model

EXCITER- Type WC

Excitation system with alternator rectifier exciter.

NAME	Туре	Description
TR	Seconds	Filter time constant
TC	Seconds	Time constant
ТВ	Seconds	Time constant
KA	PU	Gain
TA	Seconds	Time constant
VR	PU	Initial value of the VR signal. p.u. If VR is given ,the parameter KE is calculated so that the initial conditions are fulfilled. If VRR is NOT given, then KE may be given.
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
VEMAX	PU	Maximum controller output
VEMIN	PU	Minimum controller output
KF	PU	Feedback gain
TF	Seconds	Feedback Time constant
KC	PU	Demagnetizing factor, a function of exciter alternator reactances
KD	PU	Exciter constant related to self-excited field
VE1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Exciter saturation function value at the corresponding exciter voltage, VE1, back of commutating reactance
SE2	PU	Exciter saturation function value at the corresponding exciter voltage, 75% of VE1, back of commutating reactance
FMOD	Integer	See the paragraph General/Rectifier Regulation Characteristic according to FMOD

FEX:

See the paragraph General/ Rectifier Regulation Characteristic according to FMOD.

Saturation:

See the paragraph Saturation in exciter controller

Equivalent model in CIM/CGMES:

EXCITER- Type WD

Excitation system involving DC-generator-commutator exciters, with or without self-excitation, and with a separate field incorporating a motor operated rheostat for slowly correcting small errors and field contacts which force more rapid response to large errors.

NAME	Туре	Description
SW	Boolean	Switch Control: 0 = The regulator is of non-windup type (i.e. the internal signals in the regulator are also limited when the output signal EFD is at limit). 1 = The regulator is of windup type (i.e. the internal signals are not limited when the output signal UF is at limit).
SW1	Boolean	Switch Control: 0 = VRMAX'=VRMAX / VRMIN' =VRMIN 1 = VRMAX'=VRMAX · VT / VRMIN' =VRMIN · VT
TR	Seconds	Filter time constant
TRH	Seconds	Rheostat travel time
KV	PU	Fast raise/lower contact setting
VR	PU	Initial value of VR signal in p.u. See block diagram. IF VR or KE is set to zero: KE will automatically be calculated, such that the initial conditions are fulfilled with given value for VR. Otherwise, if both values are different from zero, the initial value for VR will automatically be calculated, such that the initial conditions are fulfilled with given value for KE.
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
UEMAX	PU	Maximum field voltage
UEMIN	PU	Minimum field voltage
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output

SEMAX		Exciter saturation function value at the corresponding exciter voltage, UEMAX, back of commutating reactance
SE75		Exciter saturation function value at the corresponding exciter voltage, 75% of UEMAX, back of commutating reactance
KF	PU	Feedback gain
TF	Seconds	Feedback Time constant

1) Auctioneering circuit (See block diagram)

If VR2 = 0	/R = VR1
If VR2 ≠ 0	/R = VR2

The signal VR2 is calculated according to the value of ΔV , as follows:

Note:

If VRMAX and VRMIN equal 0:

- $VRMAX = (KE + SEMAX) \cdot UEMAX$
- VRMIN = (KE + SEMIN) · UEMIN

If UEMAX equal 0:

UEMAX = VRMAX / (KE+SEMAX)

Saturation:

See the paragraph Saturation in exciter controller

Equivalent model in CIM/CGMES:

EXCITER- Type WE

Excitation system involving compound source controlled rectifier exciters.

NAME	Туре	Description
SW	Boolean	Switch Control: 0 = The regulator is of non-windup type (i.e. the internal signals in the regulator are also limited when the output signal EFD is at limit). 1 = The regulator is of windup type (i.e. the internal signals are not limited when the output signal UF is at limit).
TR	Seconds	Filter time constant
KA	PU	Gain
TA	Seconds	Time constant
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
KV	PU	Voltage gain
KI	PU	Current gain
VBMAX	PU	Maximum controller output
VBMIN	PU	Minimum controller output
VB	PU	Initial value of VB signal in p.u. See block diagram. IF VB or KE is set to zero: KE will automatically be calculated, such that the initial conditions are fulfilled with given value for VB. Otherwise, if both values are different from zero, the initial value for VB will automatically be calculated, such that the initial conditions are fulfilled with given value for KE.
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
SEMAX	PU	Saturation Se at VE = VBMAX / (KE+SEMAX)
SE75	PU	Saturation Se at VE = 0.75 · VBMAX / (KE+SEMAX)

KF	PU	Feedback gain
TF1	Seconds	Feedback Time constant
TF2	Seconds	Feedback Time constant

Saturation:

See the paragraph Saturation in exciter controller

Equivalent model in CIM/CGMES:

EXCITER- Type WF

High initial response excitation system with non-controlled rectifier.

NAME	Туре	Description
TR	Seconds	Filter time constant
TC	Seconds	Time constant
ТВ	Seconds	Time constant
KA	PU	Gain
TA	Seconds	Time constant
VAMAX	PU	Maximum controller output
VAMIN	PU	Minimum controller output
VR	PU	Initial value of the VR signal. p.u. If VR is given ,the parameter KE is calculated so that the initial conditions are fulfilled. If VRR is NOT given, then KE may be given.
KH	PU	Gain
KX	PU	Limiter gain
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
VEMIN	PU	Minimum controller output
KL	PU	Factor for VEMAX calculation (see note)
KB	PU	Factor for VEMAX calculation (see note)
VLR	PU	Factor for VEMAX calculation (see note)
KF	PU	Feedback gain
TF	Seconds	Feedback Time constant
KC	PU	Demagnetizing factor, a function of exciter alternator reactances
KD	PU	Exciter constant related to self-excited field
VE1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Saturation Se at VE = VE1
SE2	PU	Saturation Se at VE = 0.75·VE1
FMOD	Integer	See the paragraph General/Rectifier Regulation Characteristic according to FMOD

VEMAX:
$$VEMAX = \frac{VLR \cdot KL \cdot KB}{(1 + KL \cdot KB)(KE + SE)} - \frac{KD \cdot IFD}{KE + SE}$$

FEX:

See the paragraph General/Rectifier Regulation Characteristic according to FMOD.

Saturation:

See the paragraph Saturation in exciter controller

Equivalent model in CIM/CGMES:

EXCITER- Type WFA

High initial response excitation system with non-controlled rectifier.

NAME	Туре	Description
TR	Seconds	Filter time constant
TC	Seconds	Time constant
ТВ	Seconds	Time constant
KA	PU	Gain
TA	Seconds	Time constant
VAMAX	PU	Maximum controller output
VAMIN	PU	Minimum controller output
VR	PU	Initial value of the VR signal. p.u. If VR is given ,the parameter KE is calculated so that the initial conditions are fulfilled. If VRR is NOT given, then KE may be given.
KH	PU	Feedback gain
KX	PU	Limiter gain
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
VEMAX	PU	Maximum controller output
VEMIN	PU	Minimum controller output
KL	PU	Feedback gain
KB	PU	Gain
VLR	PU	Voltage limiter
KF	PU	Feedback gain
TF	Seconds	Feedback Time constant
KC	PU	Demagnetizing factor, a function of exciter alternator reactances
KD	PU	Exciter constant related to self-excited field
VE1	PU	Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Saturation Se at VE = VE1
SE2	PU	Saturation Se at VE = 0.75·VE1

FMOD	Integer	See the paragraph General/Rectifier Regulation Characteristic
		according to FMOD

Saturation:

See the paragraph Saturation in exciter controller

FEX:

See the paragraph General/Rectifier Regulation Characteristic according to FMOD.

Equivalent model in CIM/CGMES:

EXCITER- Type WG

Excitation system with alternator supplied controlled rectifier exciter.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
VIMAX	PU	Maximum controller output
VIMIN	PU	Minimum controller output
TC	Seconds	Time constant
ТВ	Seconds	Time constant
KA	PU	Gain
TA	Seconds	Time constant
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
KC	PU	Limiter gain

Notes

Equivalent model in CIM/CGMES:

EXCITER- Type WH

Excitation system with alternator rectifier exciter.

NAME	Туре	Description
TR	Seconds	Filter time constant
TC	Seconds	Time constant
ТВ	Seconds	Time constant
KA	PU	Gain
TA	Seconds	Time constant
VAMAX	PU	Maximum controller output
VAMIN	PU	Minimum controller output
VR	PU	Initial value of the VR signal. p.u. If VR is given ,the parameter KE is calculated so that the initial conditions are fulfilled. If VRR is NOT given, then KE may be given.
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
VEMAX	PU	Maximum controller output
VLV	PU	Voltage limiter
KR	PU	Feedback gain
EFDN	PU	Field voltage limit for feedback change
KF	PU	Feedback gain 1
KN	PU	Feedback gain 2
TF	Seconds	Feedback Time constant
KLV	PU	Only used in SIMPOW. Simpow Manual is not clear about the use of this parameter
KC	PU	Demagnetizing factor, a function of exciter alternator reactances
KD	PU	Exciter constant related to self-excited field

VE1		Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Saturation Se at VE = VE1
SE2	PU	Saturation Se at VE = 0.75·VE1
FMOD		See the paragraph General/Rectifier Regulation Characteristic according to FMOD

Saturation:

See the paragraph Saturation in exciter controller

FEX:

See the paragraph General/Rectifier Regulation Characteristic according to FMOD.

Equivalent model in CIM/CGMES:

EXCITER- Type WHA

Excitation system with alternator rectifier exciter.

NAME	Typo	Description
	Туре	Description
TR	Seconds	Filter time constant
TC	Seconds	Time constant
TB	Seconds	Time constant
KA	PU	Gain
TA	Seconds	Time constant
VAMAX	PU	Maximum controller output
VAMIN	PU	Minimum controller output
VR	PU	Initial value of the VR signal. p.u. If VR is given ,the parameter
		KE is calculated so that the initial conditions are fulfilled. If VRR
		is NOT given, then KE may be given.
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter
		control
VEMAX	PU	Maximum controller output
VEMIN	PU	Minimum controller output
VLV	PU	Voltage limiter
KLV	PU	Feedback gain
KR	PU	Feedback gain
EFDN	PU	Field voltage limit for feedback change
KF	PU	Feedback gain 1
KN	PU	Feedback gain 2
TF	Seconds	Feedback Time constant
KC	PU	Demagnetizing factor, a function of exciter alternator reactances
KD	PU	Exciter constant related to self-excited field

VE1		Exciter alternator output voltages back of commutating reactance at which saturation is defined
SE1	PU	Saturation Se at VE = VE1
SE2	PU	Saturation Se at VE = 0.75·VE1
FMOD		See the paragraph General/Rectifier Regulation Characteristic according to FMOD

Saturation:

See the paragraph Saturation in exciter controller

FEX:

See the paragraph General/Rectifier Regulation Characteristic according to FMOD.

Equivalent model in CIM/CGMES:

EXCITER- Type WI

Excitation system involving DC-generator-commutator exciters, with or without self-excitation, and with a separate field incorporating a motor operated rheostat for slowly correcting small errors and field contacts which force more rapid response to large errors.

NAME	Туре	Description
SW	Boolean	Switch Control: 0 = The regulator is of non-windup type (i.e. the internal signals in the regulator are also limited when the output signal EFD is at limit). 1 = The regulator is of windup type (i.e. the internal signals are not limited when the output signal UF is at limit).
SW1	Boolean	Switch Control: 0 = VRMAX'=VRMAX / VRMIN' =VRMIN 1 = VRMAX'=VRMAX · VT / VRMIN' =VRMIN · VT
TR	Seconds	Filter time constant
TRH	Seconds	Rheostat travel time
KV	PU	Fast raise/lower contact setting
VR	PU	Initial value of VR signal in p.u. See block diagram. IF VR or KE is set to zero: KE will automatically be calculated, such that the initial conditions are fulfilled with given value for VR. Otherwise, if both values are different from zero, the initial value for VR will automatically be calculated, such that the initial conditions are fulfilled with given value for KE.
KE	PU	Exciter constant related to self-excited field
TE	Seconds	Exciter time constant, integration rate associated with exciter control
UEMAX	PU	Maximum voltage regulator output
UEMIN	PU	Minimum voltage regulator output
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
SEMAX	PU	Exciter saturation function value at the corresponding exciter voltage, UEMAX, back of commutating reactance

SE75	PU	Exciter saturation function value at the corresponding exciter
		voltage, 75% of UEMAX, back of commutating reactance

1) Auctioneering circuit (see block diagram)

If VR2 = 0	VR = VR1	,	
If VR2 ≠ 0	VR = VR2		

The signal VR2 is calculated according to the value of ΔV , as follows:

If VRMAX and VRMIN equal 0:

- VRMAX = (KE + SEMAX) · UEMAX
- VRMIN = (KE + SEMIN) · UEMIN

If UEMAX equal 0:

- UEMAX = VRMAX / (KE+SEMAX)

Saturation:

See the paragraph Saturation in exciter controller

Equivalent model in CIM/CGMES:

EXCITER- Type WJ

Excitation system with potential source controlled rectifier exciter.

Parameters

NAME	Type	Description
TR	Seconds	Filter time constant
TC	Seconds	Time constant
ТВ	Seconds	Time constant
KA	PU	Gain
TA	Seconds	Time constant
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
KF	PU	Feedback gain
TF	Seconds	Feedback time constant
UEMAX	PU	Maximum controller output
UEMIN	PU	Minimum controller output
KC	PU	Limiter gain

Notes

Equivalent model in CIM/CGMES:

EXCITER- Type WK

Excitation system with potential source controlled rectifier exciter.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
VIMAX	PU	Maximum controller output
VIMIN	PU	Minimum controller output
TC	Seconds	Time constant
ТВ	Seconds	Time constant
KA	PU	Gain
TA	Seconds	Time constant
KF	PU	Feedback gain
TF	Seconds	Feedback time constant
UEMAX	PU	Maximum controller output
UEMIN	PU	Minimum controller output
KC	PU	Limiter gain

Notes

Equivalent model in CIM/CGMES:

EXCITER- Type WKA

Excitation system with potential source controlled rectifier exciter.

Parameters

NAME	Туре	Description
TR	Seconds	Filter time constant
VIMAX	PU	Maximum controller output
VIMIN	PU	Minimum controller output
TC	Seconds	Time constant
TB	Seconds	Time constant
KA	PU	Gain
TA	Seconds	Time constant
KC	PU	Output gain
KF	PU	Feedback gain
TF	Seconds	Feedback time constant
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output

Notes

Equivalent model in CIM/CGMES:

EXCITER- Type WP

Excitation system involving controlled-rectifier exciters energized from a potential source only.

Parameters

NAME	Туре	Description
SW		Switch Control: 0 = The regulator is of non-windup type (i.e. the internal signals in the regulator are also limited when the output signal EFD is at limit). 1 = The regulator is of windup type (i.e. the internal signals are not limited when the output signal UF is at limit).
SW1	Boolean	Switch Control: 0 = VRMAX'=VRMAX / VRMIN' =VRMIN 1 = VRMAX'=VRMAX · VT / VRMIN' =VRMIN · VT
TR	Seconds	Filter time constant
KA	PU	Gain
TA	Seconds	Time constant
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output
KF	PU	Feedback gain
TF	Seconds	Feedback time constant

Notes

Equivalent model in CIM/CGMES:

EXCITER- Type WQ

Excitation system where stabilization is accomplished by means of a forward-path lead-lag transfer function rather than by a damping feedback loop.

Parameters

NAME	Туре	Description
SW	Boolean	Switch Control:
		0 = The regulator is of non-windup type (i.e. the internal signals
		in the regulator are also limited when the output signal EFD is
		at limit).
		1 = The regulator is of windup type (i.e. the internal signals are
		not limited when the output signal UF is at limit).
SW1	Boolean	Switch Control:
		0 = VRMAX'=VRMAX / VRMIN' =VRMIN
		1 = VRMAX'=VRMAX · VT / VRMIN' =VRMIN · VT
TR	Seconds	Filter time constant
VIMAX	PU	Maximum controller output
VIMIN	PU	Minimum controller output
TC	Seconds	Time constant
ТВ	Seconds	Time constant
KA	PU	Gain
TA	Seconds	Time constant
VRMAX	PU	Maximum controller output
VRMIN	PU	Minimum controller output

Notes

Equivalent model in CIM/CGMES: