Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.

1. Ratkaise yhtälöt

a)
$$2(1-3x+3x^2) = 3(1+2x+2x^2)$$

b)
$$|x| = 1 + x$$

c)
$$1-x = \frac{1}{1-x}$$

2. Sievennä lausekkeet

$$\mathbf{a)} \left(x + \frac{1}{x} \right)^2 - \left(x - \frac{1}{x} \right)^2$$

b)
$$\frac{x^2-9}{x+3}$$

c)
$$\ln \frac{x}{2} + \ln \frac{e^x}{x} + \ln 2$$

3. a) Määritä funktion

$$f(x) = \frac{1}{2}e^x(\sin x + \cos x)$$

derivaatan arvo kohdassa x = 0.

b) Laske integraalin

$$\int_{0}^{\pi} \left(1 + \sin\frac{x}{3}\right) dx$$

tarkka arvo.

- **4. a)** Olkoon $\alpha \in \left[\pi, \frac{3\pi}{2}\right]$ sellainen kulma, että $\cos \alpha = -\frac{1}{3}$. Määritä lukujen $\sin \alpha$ ja $\tan \alpha$ tarkat arvot.
 - **b)** Laske oheisessa kuvassa olevan kolmion sivun pituuden a tarkka arvo ja kaksidesimaalinen likiarvo.

- **5.** Määritä polynomin $f(x) = x^3 6x^2 15x + 2$ suurin ja pienin arvo välillä [2,6].
- **6.** Laske paraabelin $y^2 = 4x$ ja suoran 4x 3y = 4 väliin jäävän rajoitetun alueen pinta-ala. Anna vastauksena tarkka arvo ja kaksidesimaalinen likiarvo. Piirrä kuvio.
- 7. Erään mallin (R. MacArthur & E. O. Wilson, 1967) mukaan saarella pesivien lintulajien lukumäärä n riippuu saaren pinta-alasta A likimain kaavan $n = kA^b$ mukaisesti, missä k ja b ovat saaresta riippumattomia positiivisia vakioita.
 - a) Havaintojen perusteella kahdella Kanariansaarella on saatu seuraavat arvot:

$$n_1=20,\ A_1=10,2\ {\rm km}^2$$
 (Alegranza),
 $n_2=6,\ A_2=0,0158\ {\rm km}^2$ (Roque del Oeste).

Määritä näiden tietojen perusteella vakiot k ja b kolmen merkitsevän numeron tarkkuudella.

b) Arvioi mallin avulla La Palman saarella ($A = 708 \text{ km}^2$) pesivien lintulajien lukumäärää.

Alegranza http://www.lanzarote.org/blog/?p=629.

Luettu 31.3.2011.

Roque del Oeste http://www.reptilesdecanariastjorge.com>. Luettu 31.3.2011.

http://mappery.com/map-of/La-Palma-Physical-Map.
Luettu 29.3.2011.

- **8.** Kiireisellä professorilla on yksi luento jokaisena viitenä arkipäivänä, mutta hän ehtii pitää päivittäisen luentonsa vain 80 prosentin todennäköisyydellä.
 - a) Millä todennäköisyydellä hän ehtii pitää viikon kaikki luennot?
 - b) Millä todennäköisyydellä vain yksi viidestä luennosta jää pitämättä?
 - c) Määritä viikossa pidettyjen luentojen lukumäärän odotusarvo.
- 9. Olkoot

$$\overline{a} = (\cos \varphi - 2\sin \varphi)\overline{i} + \overline{j} + (\sin \varphi + 2\cos \varphi)\overline{k},$$

$$\overline{b} = (\cos \varphi + \sin \varphi)\overline{i} + \overline{j} + (\sin \varphi - \cos \varphi)\overline{k}.$$

- a) Osoita, että vektorit \overline{a} ja \overline{b} ovat kohtisuorassa toisiaan vastaan kaikilla $\varphi \in \mathbf{R}$.
- **b)** Olkoon $\varphi = 0$. Onko olemassa sellaisia kertoimia $s, t \in \mathbb{R}$, että $\overline{i} \overline{j} = s\overline{a} + t\overline{b}$?
- **10.** Tutki, kuinka monta ratkaisua yhtälöllä $e^{x+a} = x$ on vakion $a \in \mathbb{R}$ eri arvoilla.
- **11. a)** Geometrisen jonon kaksi peräkkäistä termiä ovat rationaalilukuja. Osoita, että jonon kaikki termit ovat rationaalilukuja.
 - **b)** Geometrisessa jonossa on ainakin kaksi rationaalista termiä. Osoita, että rationaalisia termejä on äärettömän monta.
- **12.** Erään vuorokauden lämpötilaa f(t) tutkittiin ajan t funktiona mittaamalla lämpötila Celsiusasteina kolmen tunnin välein keskiyöstä alkaen. Tuloksena saatiin seuraava taulukko:

									24.00
f(t)	10,2	10,7	12,3	13,8	15,8	17,9	17,0	15,5	14,2

Arvioi vuorokauden keskilämpötilaa

$$\frac{1}{24}\int\limits_0^{24}f(t)\,dt$$

laskemalla siinä esiintyvä integraali puolisuunnikassäännön avulla.

13. Määritä raja-arvo $\lim_{x\to\infty} \left(\ln(4x+3) - \ln(3x+4)\right)$.

- *14. Sijoittaja käytti osakkeen kurssikehityksen arvioimiseen todennäköisyysjakaumaa, jonka tiheysfunktion maksimi saavutetaan markkina-arvolla 20,50 € ja joka on nolla yli viiden euron poikkeamilla markkina-arvosta 20,50 €. Tiheysfunktio on jatkuva, ja sen kuvaaja koostuu kahdesta lineaarisesta osasta välillä 15,50−25,50 €.
 - a) Määritä tiheysfunktion lauseke. (3 p.)
 - **b)** Millä todennäköisyydellä osakkeen markkina-arvo on alle 19 €? (2 p.)
 - c) Muiden kurssien nousu sai sijoittajan muuttamaan jakaumaa epäsymmetriseksi niin, että maksimi saavutettiin edelleen arvolla 20,50 €, mutta nollakohta 25,50 € siirtyi pisteeseen 30,50 €. Muilta ominaisuuksiltaan jakauma pysyi samantyyppisenä kuin aikaisemmin. Määritä tämän uuden jakauman odotusarvo. (4 p.)
- *15. Suora ympyrälieriö on pallon sisällä niin, että sen molempien pohjien reunat sivuavat pallon pintaa. Pallon pinta-alan suhdetta lieriön koko pinta-alaan merkitään symbolilla t. Lieriön koko pinta-alalla tarkoitetaan sen vaipan ja pohjien yhteenlaskettuja pinta-aloja.
 - a) Määritä lieriön korkeuden suhde lieriön pohjan säteeseen parametrin t avulla lausuttuna. (2 p.)

Millä parametrin t arvoilla

- b) tällaista lieriötä ei ole olemassa (2 p.)
- c) on täsmälleen yksi tällainen lieriö (3 p.)
- d) on kaksi tällaista lieriötä? (2 p.)