CHAPTER01

MLE

Consider the following very simple model for stock pricing. The price at the end of each day is the price of the previous day multiplied by a fixed, but unknown, rate of return, α , with some noise, w. For a two-day period, we can observe the following sequence:

$$y_2 = \alpha y_1 + w_1$$

$$y_1 = \alpha y_0 + w_0$$

where the noises w_0 , w_1 are iid with the distribution $N(0, \sigma^2)$, $y_0 \sim N(0, \lambda)$ is independent of the noise sequence. σ^2 and λ are known, while α is unknown.

1. Find the MLE of the rate of return, a, given the observed price at the end of each day y_2 , y_1 , y_0 . In other words, compute for the value of a that maximizes $p(y_2, y_1, y_0 | a)$.

Hint: This is a Markov process, e.g. y_2 is independent of y_0 given y_1 . In general, a process is Markov if $p(y_n|y_{n-1}, y_{n-2}, ...) = p(y_n|y_{n-1})$.

$$\rho(y_{2}, y_{1}, y_{0} | \alpha) = \rho(y_{2} | y_{1}; \alpha) \times \rho(y_{1} | y_{0}; \alpha) \times \rho(y_{0})$$

$$\rho(y_{2}, y_{1}, y_{0} | \alpha) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\left(-\frac{(y_{1} - \alpha y_{1})^{2}}{2\sigma^{2}}\right)} \times \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\left(-\frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right)} \times \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\left(-\frac{y_{1} - \alpha y_{0}}{2\sigma^{2}}\right)^{2}} \times \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\left(-\frac{y_{1} - \alpha y_{0}}{2\sigma^{2}}\right)^{2}} + \ln\left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \ln\left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \ln\left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \ln\left(e^{\left(-\frac{y_{1} - \alpha y_{0}}{2\sigma^{2}}\right)^{2}}\right) + \ln\left(e^{\left(-\frac{y_{1} - \alpha y_{0}}{2\sigma^{2}}\right)^{2}}\right) + \left[\ln\left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) + \ln\left(e^{\left(-\frac{y_{1} - \alpha y_{0}}{2\sigma^{2}}\right)^{2}}\right) + \left[\ln\left(2\pi\sigma^{2}\right) + \ln\left(e^{\left(-\frac{y_{1} - \alpha y_{0}}{2\sigma^{2}}\right)^{2}}\right) + \left[\ln\left(2\pi\sigma^{2}\right) + \ln\left(e^{\left(-\frac{y_{1} - \alpha y_{0}}{2\sigma^{2}}\right)^{2}}\right) + \left[\ln\left(2\pi\sigma^{2}\right) + \ln\left(e^{\left(-\frac{y_{1} - \alpha y_{0}}{2\sigma^{2}}\right)^{2}}\right) + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right] + \frac{(y_{1} - y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right) - \frac{(y_{1} - \alpha y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right] + \frac{(y_{1} - y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right] + \frac{(y_{1} - y_{0})^{2}}{2\sigma^{2}}\right] + \left[-\frac{1}{2}\left(\ln\left(2\pi\right) + \ln\left(\sigma^{2}\right)\right] + \frac{(y_{1$$

$$= \begin{bmatrix} -\frac{1}{2}\ln(2\pi) - \frac{1}{2}\ln(\sigma^{2}) & -\frac{(y_{1} - \alpha y_{1})^{2}}{2\sigma^{2}} \end{bmatrix} + \begin{bmatrix} -\frac{1}{2}\ln(2\pi) - \frac{1}{2}\ln(\sigma^{2}) & -\frac{(y_{1} - \alpha y_{n})^{2}}{2\sigma^{2}} \end{bmatrix}$$

$$= \frac{1}{2}\ln(2\pi) - \ln(\sigma) - \frac{(y_{1} - \alpha y_{1})^{2}}{2\sigma^{2}} - \frac{1}{2}\ln(2\pi) - \ln(\sigma) - \frac{(y_{1} - \alpha y_{n})^{2}}{2\sigma^{2}} - \frac{1}{2}\ln(2\pi) - \ln(\sigma) - \frac{y_{0}}{2\sigma^{2}} - \frac{y_{0}}{2}\ln(2\pi) - \ln(\sigma) - \frac{y_{0}}{2\sigma^{2}} - \frac{y_{0}}{2}\ln(2\pi) - \ln(\sigma) - \frac{y_{0}}{2\sigma^{2}} - \frac{y_{0}}{2$$

 $= \frac{1}{\sigma^2} \left(y_2 y_1 + y_1 y_2 - a(y_1^2 + y_2^2) \right)$

$$0 = \frac{1}{\sigma^2} (y_2 y_1 + y_1 y_2 - a (y_1^2 + y_2^2))$$

$$0 = y_2 y_1 + y_1 y_2 - \alpha \left(y_1^2 + y_2^2 \right)$$

a =
$$\frac{y_2y_1 + y_1y_2}{y_1^2 + y_2^2}$$
 Ans