

Trabajo Fin de Grado

Título

Subtítulo

Grado

Fecha 2024-25

Autor: Nombre

Tutor: Prof. Tutor

Índice general

			Pá	gin	a	
Gl	osario					5
1.	Intro	oducción				1
	1.1.	Tabla				2
	1.2.	Gráficos				2
	1.3.	Prueba códigos			•	3
Bi	bliogr	rafía				4

Índice de figuras

Índice de cuadros

1.1.	Comparativa de tipos de síntesis sonora		2
------	---	--	---

Códigos

1.1.	Condición en Sonic Pi	-
1.2.	Modulación de frecuencia usando gen() en Gibber	2

Glosario de términos

Coste El coste computacional es una medida de la eficiencia de un algoritmo, que indica cómo crece el número de operaciones necesarias o el espacio requerido conforme aumenta el tamaño de los datos de entrada. 1

Sintesis En el contexto del diseño de sonido, síntesis se refiere al proceso de generar sonido artificialmente mediante algoritmos o modelos matemáticos, en lugar de grabarlo desde una fuente acústica real. 1

Capítulo 1

Introducción

El diseño de sonido involucra técnicas como la síntesis, el muestreo o el procesamiento digital. Como dice Bovermann et al., 2014 Bovermann et al. (2014)

La Transformada Discreta de Fourier (DFT) descompone una señal discreta x[n] en una suma de componentes sinusoidales complejas.

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j\frac{2\pi}{N}kn}$$

La Fast Fourier Transform (FFT) es un algoritmo que permite calcular esta expresión de forma computacionalmente eficiente, reduciendo el coste de $\mathcal{O}(N^2)$ a $\mathcal{O}(N\log N)$.

Título institucion

1.1. Tabla

Tipo de síntesis	Descripción	Ejemplos
Sustractiva	Elimina frecuencias mediante fil-	Moog, Roland
	tros.	
Aditiva	Construye el sonido sumando múl-	Órganos electrónicos
	tiples ondas seno simples	
FM (frecuencia modulada)	Modula la frecuencia de una onda	Yamaha DX7
	con una moduladora	
Granular	Reorganiza y procesa sonidos como	Texturas, ambient
	conjuntos de pequeños fragmentos	
	(granos)	
Modelado físico	Simula matemáticamente el com-	Simuladores de instru-
	portamiento de un instrumento real	mentos acústicos
Síntesis espectral	Manipula directamente el conteni-	blabla
	do frecuencial de un sonido	

Cuadro 1.1: Comparativa de tipos de síntesis sonora

1.2. Gráficos

Título institucion

1.3. Prueba códigos

```
1 use_synth :piano
2 tiempo = 0
4 16. times do
    tiempo = tiempo + 1 #incremento del tiempo en una unidad
    if tiempo % 4 == 0 #cada 4 tiempos toca la nota g4
7
      play :g4
8
    else
9
      play :c4
10
    end
11
    sleep 1
12 end
```

Código 1.1: Condición en Sonic Pi

```
1 s = Synth({ gain:.1 }).connect()
2 mod = gen( cycle( beats(8)*20 )* 20 )
3 mod.connect( s.frequency )
4 s.note.seq( [0,2,4,5], 1/4 )
```

Código 1.2: Modulación de frecuencia usando gen() en Gibber

Bibliografía

Bovermann, T., Griffiths, D., Peters, J., & Rohrhuber, J. (2014). Computation in the Wild. En S. Wilson, D. Cottle & N. Collins (Eds.), *The SuperCollider Book* (pp. 519-542). MIT Press.