WELCOME TO THE

Molecular Team Lecture Series

In this lecture series, MAI LAB Molecular Team will introduce various molecular generation tasks

TODAY'S LECTURE

Multi-Objective Molecule Generation using Interpretable Substructures

Researchers

Wengong Jin
Postdoctoral at
Broad Institute of
MIT and Harvard

Regina Barzilay
MIT EECS
Professor

Tommi Jaakkola MIT CSAIL Professor

Background

- ✓ Drug discovery: finding molecules with desired chemical properties
- ✓ Drug needs to satisfy multiple objectives

Goal

- Learn to generate sample molecules in the intersection of multiple property constraints
- Multi-property optimization is challenging
- In this paper, composing molecules from a vocabulary of substructures

Molecular rationales are identified from molecules as substructures

$$P(\mathcal{G}) = \sum_{\mathcal{S}} P(\mathcal{G}|\mathcal{S})P(\mathcal{S})$$

Prior Works

- Generation Methods for Molecule Design
 - > JT-VAE (Jin et al., ICML 2018)
 - Generate molecular graphs in two phases
 - 1) generating a tree-structured scaffold over chemical substructures
 - 2) combining them into a molecule with a graph MPNN
 - This model contains auxiliary property predictors over the VAE latent space
 - > REINVENT (Olivecrona et al., *JChem* 2017)
 - from AstraZeneca R&D center
 - RL model generating molecules based on their SMILES strings
 - Model is pre-trained over one million molecules and then fine-tuned under property reward
 - > GCPN (You et al., NIPS 2018)
 - from Stanford University (Jure Leskovec)
 - GCN based model for goal-directed graph generation through RL
 - RL model is trained to optimize domain-specific rewards and adversarial loss
 - They use GAN to help generate realistic molecules

Overview

This Paper

- Construct/extract rationales for each individual property by using MCTS
- Combine each individual property rationales as multi-property rationales
- Learns a graph completion model P(G|S) and rationale distribution P(S)
- Completes a full molecule G given a rationale S

Algorithm Process (1-1)

- ✓ This model generates molecules by first sampling a rationale
 S from the vocabulary.
- √ Rationale extraction process

Find subgraph $\mathcal{S}^i \subset \mathcal{G}_i^{pos}$ Subject to $r_i(\mathcal{S}^i) \geq \delta_i$, $|\mathcal{S}^i| \leq N_s$ and \mathcal{S}^i is connected

- 1. The size of S^i should be small (less than 20 atoms).
- 2. Its predicted property score $r_i(S^i) \geq \delta_i$.

Algorithm Process (1-2)

- Rationale search problem can be solved by MCTS
 - ✓ Root: positive molecules
 - ✓ State: subgraph
 - ✓ Action: bond deletions (one peripheral non-aromatic bond or one peripheral ring from each state)

Intramolecular

Synergistic effect of intra- & intermolecular H-bonds

b)

3-TerPyB

4-TerPyB

① 방향족성 (aromaticity)의 기준

- ② 조건 1 : 고리형 화합물이어야 함.
- ④ 조건 2 : 분자의 3차원 모양이 평면이어야 함.
- ② 조건 3 : 고리를 구성하는 각 원자는 최소 하나의 p 오비탈을 가져야 하며 완전히 conjugation 되어야 함.
- 📵 조건 4 : π 전자의 수가 4n+2개를 만족시켜야 함. (H**ü**ckel 규칙)
 - ③ 방향족성의 판단
 - ② 방향족 (aromatic) 화합물
 - 4가지 조건을 모두 만족시키는 화합물
 - benzene
 - ⊕ 반방향족 (antiaromatic) 화합물
 - 조건 1-3은 만족시키지만 조건 4 (Hückel 규칙)를 만족시키지 못하는 화합물
 - cyclobutadiene
 - @ 비방향족 (nonaromatic) 화합물
 - 4가지 조건 중 2가지 이상을 만족시키는 못하는 화합물
 - cvclooctatetraene

Algorithm Process (1-3)

- MCTS for molecules
 - ✓ MCTS = RL + Search
 - ✓ peripheral bonds and rings are highlighted in red
 - ✓ In forward pass, the model deletes a peripheral bond
 - ✓ In backward pass, the model updates the statistics

Figure 1: Outline of a Monte-Carlo Tree Search.

Let's Dig Deeper

- Rationales are "partial" molecules
- We need to complete them into a full molecule
- Learn a molecule completion model P(G|S) to connect the rationales
- We model P(G|S) as an autoregressive process
- We use a simple atom-by-atom molecule completion model
- In each step, we add an atom to the current molecule, and predict its associated bonds

Algorithm Process (1-4)

- Multi-property rationale construction
 - ✓ Given two single-property rationales, find their maximum common substructure
 - ✓ Then, superposing two rationales so that their MCS coinicdes

$$\forall i: r_i(\mathcal{S}^{[M]}) \geq \delta_i, i = 1, \cdots, M$$

$$C_{\mathcal{S}}^{M} = \bigcup_{(\mathcal{S}^{1}, \dots, \mathcal{S}^{M})} \text{MERGE}(\mathcal{S}^{1}, \dots, \mathcal{S}^{M})$$

$$V_{\mathcal{S}}^{[M]} = \{ \mathcal{S} \in C_{\mathcal{S}}^{M} \mid r_i(\mathcal{S}^{[M]}) \ge \delta_i, \forall i \}$$

Algorithm Process (2)

Graph Completion

- ✓ VAE, which completes a full molecule G given a rationale S
- ✓ Encoder: message passing network for atom representation
- ✓ Decoder: generates molecule G by BFS, must include subgraph

$$P(G|S) = \int_{z} P(G|S, z) P(z) dz$$

$$\{\boldsymbol{h}_v\} = \mathrm{MPN}_e\left(\mathcal{G}, \{\boldsymbol{e}(a_u)\}, \{\boldsymbol{e}(b_{uv})\}\right)$$

1. Predict whether there will be a new atom attached to v_t :

$$p_t = \operatorname{sigmoid}(\operatorname{MLP}(\boldsymbol{h}_{v_t}^{(t)}, \boldsymbol{h}_{\mathcal{G}_t}, \boldsymbol{z}_{\mathcal{G}}))$$
 (13)

where $MLP(\cdot, \cdot, \cdot)$ is a ReLU network whose input is a concatenation of multiple vectors.

2. If $p_t < 0.5$, discard v_t and move on to the next node in Q. Stop generation if Q is empty. Otherwise, create a new atom u_t and predict its atom type:

$$\boldsymbol{p}_{u_t} = \operatorname{softmax}(\operatorname{MLP}(\boldsymbol{h}_{v_t}^{(t)}, \boldsymbol{h}_{\mathcal{G}_t}, \boldsymbol{z}_{\mathcal{G}}))$$
 (14)

3. Predict the bond type between u_t and other frontier nodes in $\mathcal{Q} = \{q_1, \dots, q_n\}$ $(q_1 = v_t)$. Since atoms are generated in breadth-first order, there are no bonds between u_t and atoms not in \mathcal{Q} .

Algorithm Process (3)

- Pre-training Molecule Completion
 - ✓ Molecule completion model can be trained w/o "property" predictors
 - ✓ Pre-train molecule completion on a large dataset (ChEMBL)

Molecule from ChEMBL

Putting Everything Together

Maximize expected reward:
$$R = \sum_{G} R(G)P(G) + \lambda \mathbb{H}[P(S)]$$

Entropy regularization (explore diverse set of rationales)

Evaluation Metric

1) Success rate:

- ✓ How often do generated molecules satisfy all the property constraints?
- ✓ Following REINVENT, we use property predictors to compute this metric

2) Diversity:

✓ Average pairwise molecule distance

Diversity =
$$1 - \frac{2}{n(n-1)} \sum_{X,Y} \sin(X,Y)$$

3) Novelty:

✓ We don't want to rediscover existing drugs known to satisfy all the constraints

Novelty =
$$\frac{1}{n} \sum_{\mathcal{G}} \mathbf{1} \left[\sin(\mathcal{G}, \mathcal{G}_{SNN}) < 0.4 \right]$$

Result Table

Table 1. Results on molecule design with one or two property constraints.

Method	$GSK3\beta$			JNK3			$GSK3\beta + JNK3$		
	Success	Novelty	Diversity	Success	Novelty	Diversity	Success	Novelty	Diversity
JT-VAE	32.2%	11.8%	0.901	23.5%	2.9%	0.882	3.3%	7.9%	0.883
GCPN	42.4%	11.6%	0.904	32.3%	4.4%	0.884	3.5%	8.0%	0.874
GVAE-RL	33.2%	76.4%	0.874	57.7%	62.6%	0.832	40.7%	80.3%	0.783
REINVENT	99.3%	61.0%	0.733	98.5%	31.6%	0.729	97.4%	39.7%	0.595
RationaleRL	100%	53.4%	0.888	100%	46.2%	0.862	100%	97.3%	0.824

Table 2. Molecule design with four property constraints. The novelty and diversity of JT-VAE, GVAE-RL and GCPN are not reported due to their low success rate.

Method	$GSK3\beta + JNK3 + QED + SA$					
Wichiod	Success	Novelty	Diversity			
JT-VAE	1.3%	-	-			
GVAE-RL	2.1%	-	-			
GCPN	4.0%	-	-			
REINVENT	47.9%	56.1%	0.621			
RationaleRL	74.8%	56.8%	0.701			

Examples

Figure 6. Sample rationales of GSK3 β (top) and JNK3 (bottom).

Ground truth rationale of a toxic compound

$$\begin{array}{c|c} \mathbf{H_2N} & & \mathbf{O} \\ & \mathbf{N} & & \mathbf{S} - \mathbf{NH_2} \\ & & \mathbf{O} \end{array}$$

Learned rationale (92.8% match)

$$\begin{array}{c|c} H_2N & & O \\ \hline & N & & O \\ \hline & N & & O \\ \hline & & & O \\ \hline & & & O \\ \end{array}$$

Summary

- Molecular graph generation is particularly challenging due to multiple constraints
- In this paper, authors propose hierarchical RL based on rationales
- Rationales are extracted by MCTS and then combined to be formed full molecules by graph VAE
- Limitation: instead of atom-by-atom generation, once can use motif substructures mechanisms.
 (Hierarchical Generation of Molecular Graph using Structural Motif Jin et al., ICML 2020)

Thank you

