Bitte beachten Sie die folgenden Hinweise:

- Bearbeitungszeit: 120 Minuten
- Erlaubte Hilfsmittel: Ein DIN A4 Ordner, keine losen Blattsammlungen, keine elektronischen Hilfsmittel wie Mobiltelephone oder Taschenrechner; alle Ergebnisse sind zu begründen.

Aufgabe 1 6 Punkte. a) Sei X ein normierter Raum, und es gelte $x_n \to x \in X$ und $y_n \to y \in X$. Gilt dann auch $||x_n - y_n|| \to ||x - y||$?

b) Sei H ein HR, M ein abgeschlossener Unterraum von H und $P: H \to M$ die orthogonale Projektion auf M. Man bestimme P^* .

Aufgabe 2 8 Punkte.

- a) Sei $X = Y = L^2((-1,1))$, $D = C^1((-1,1))$. Ist $T : D \subset X \to Y$ mit Tf = f' abgeschlossen?
- b) Sei $X = L^2((0,\pi))$ und $u_n(x) = e^{inx}$. Gilt $u_n \to 0$ schwach in X?
- c) Seien $(A_n),(B_n)$ zwei Folgen in L(X) mit $A_n\to A$ stark und $B_n\to B$ stark, sowie $(\|A_n\|)_{n\in\mathbb{N}}$ beschränkt. Gilt dann $A_nB_n\to AB$ stark?

Aufgabe 3 4 Punkte. Sei $A = \begin{pmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{pmatrix}$.

a) Man zeige, daß (Id -A)⁻¹ nur ganzzahlige Einträge hat. b) Man löse $Ax = x - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Hinweis: $A^2 = 0$.

Aufgabe 4 6 Punkte. Sei H ein Hilbertraum und $A \in L(H)$. Man beweise a) $A^{**} := (A^*)^* = A$. b) Wenn A invertierbar ist, dann auch A^* und es gilt $(A^*)^{-1} = (A^{-1})^*$.

Aufgabe 5 6 Punkte. Man beweise: Es gibt einen Hilbertraum X und einen kompakten Operator $K \in L(X)$ mit ||K|| = 1 sodaß alle folgenden Aussagen zutreffen:

- a) K hat unendlich viele Eigenwerte $\lambda_n \neq 0$, d.h. $\exists I \subset \mathbb{N}$, I nicht endlich und $\lambda_n \neq 0$ für alle $n \in I$;
- b) K hat einen unendlich-dimensionalen Kern $\ker K$;
- c) man kann die Eigenpaare $(\lambda_n, u_n)_{n \in I}$ und eine Basis von kerK explizit angeben.

Aufgabe 6 10 Punkte. Sei $\Omega = (0, 2\pi) \times (0, \pi)$. a) Man zeige die eindeutige Lösbarkeit von

$$-\Delta u = f \in L^2(\Omega) \text{ in } \Omega, \quad u|_{\partial\Omega} = 0,$$
 (*)

genauer: Es gibt ein C > 0 sodaß (*) für alle $f \in L^2(\Omega)$ genau eine schwache Lösung $u \in H^1_0(\Omega)$ hat, und es gilt $||u||_{H^1} \le C||f||_{L^2}$.

Hinweise. $\Delta u = \text{div}(\text{grad } u)$; Gauß; auf $H_0^1(\Omega)$ gilt Poincaré: $\exists \tilde{C} > 0 \text{ sodaß } ||u||_{L^2} \leq \tilde{C} \left(\int_{\Omega} ||\nabla u||^2 \, \mathrm{d}x \right)^{1/2}$ für alle $u \in H_0^1(\Omega)$.

- b) Man gebe für den Laplace Operator $-\Delta$ mit Dirichlet Randbedingungen $u|_{\partial\Omega}=0$ die 3 kleinsten Eigenwerte $\lambda_j,\ j=1,2,3,$ und die zugehörigen Eigenfunktionen ϕ_j an, und skizziere ϕ_2 .
- c) Für $f(x,y) = (\sin(x/2) + \sin(x))\sin(y)$ löse man (*) explizit.