

FEB 07, 2024

GWAS prioritization analysis

In 1 collection

Peter Kilfeather¹

¹University of Oxford

Peter Kilfeather

DOI:

dx.doi.org/10.17504/protocols.io. q26g7pe61gwz/v1

Protocol Citation: Peter Kilfeather 2024. GWAS prioritization analysis. protocols.io

https://dx.doi.org/10.17504/protoc ols.io.q26g7pe61gwz/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Feb 07, 2024

ABSTRACT

GWAS prioritization analysis from Kilfeather, Khoo et al., 2024

Last Modified: Feb 07, 2024

PROTOCOL integer ID: 94807

Funders Acknowledgement:

Aligning Science Across Parkinson's Grant ID: ASAP-020370 Monument Trust Discovery Award from Parkinson's UK Grant ID: J-1403

Protocol

A list of 303 genes (sourced from Nalls et al., 2019 supplementary materials), containing SNPs at an r² > 0.5 and located within ±1 Mb of 107 common risk variants for sporadic PD was used for prioritization analysis. To convert between human and mouse gene symbols, homologene (v1.4.68.19.3.27, RRID:SCR_002924) and biomaRt (v2.52.0, RRID:SCR_019214) were used. TRAP enrichment (measured as the product of the log₂ fold-change and FDR-adjusted *P* value) and specificity indices for DAT-TRAP samples were used for gene prioritization, per lead SNP.