

For u=0=> y=2x+0 u=1=> y=2x-4)=4 For u=[0,1]=7 y=2x-4u For v=0=> y=0 +2 v=1=> y=2 v=(0,1]=> y=2,v

To verify by computation ...

$$\frac{2(\frac{y+y}{2})}{\int \int 2y \, dx \, dy} = \frac{2}{\int 2xy} \frac{(y+y)/2}{y/2} \, dy$$

$$= \frac{2}{\int (x+y)/2} \frac{1}{\sqrt{2}} \, dy$$

$$= \frac{2}{\int (x+y)/2} \frac{1}{\sqrt{2}} \, dy$$

(Example) Compute
$$SS(x+y)(x-y-2)dA$$
 where

D is the triangle with verts $(4,2)(3,1)(2,2)$,

Visit

Always for unit townsle $= \int_{0}^{1} \left[4uv^{2} - 4v^{2} + 16uv - 16v \right] du$ $= \int_{0}^{1} 4u^{3} - 4u^{2} + 16u^{2} - 16u du$

$$= \int_{0}^{1} 4u^{3} - 4u^{2} + |bu^{2} - |bu| du$$

$$= \int_{0}^{1} 4u^{3} + |2u^{2} - |bu| du$$

$$= \left[u^{4} + 4u^{3} - 8u^{2} \right]_{0}^{1} = |+4 - 8| - 3|$$

(Example) Prove that for
$$T(y) = My + x_0$$
, then

No need to show that

 $M = DT = \begin{cases} \frac{\delta T_1}{\delta u} - \dots \frac{\delta T_1}{\delta u} \\ \frac{\delta T_1}{\delta u} - \dots \frac{\delta T_1}{\delta u} \end{cases}$

Consider the (i, j) coordinate of M : M :

Then $T_i(u) = M_i \cdot u + (x_0)$:

 $= m_i \cdot u_i + \dots + m_i \cdot u_n + (x_0)$:

 $\delta T_i \cdot x_0 = m_i \cdot y_0$

Since $M = DT$, we have that

 $det M = det DT = dT \cdot \delta u$.

- (Example) Use an affine transformation to prove that $\int_0^2 \int_{y/2}^{(y+4)/2} 2y \, dx \, dy = \int_0^1 \int_0^1 16v \, dv \, du$ and compute both integrals directly to verify.
- (Example) Compute $\iint_D (x+y)(x-y-2) dA$ where T is the triangle with vertices (4,2), (3,1), (2,2).
- For any 3D affine transformation **T** with matrix M transforming D^* to D, $\iint_D f(x,y,z) \, dV = \iint_{D^*} f(\mathbf{T}(u,v,w)) |\det M| \, dV.$

Jacobian

- The Jacobian $\frac{\partial \mathbf{T}}{\partial \mathbf{u}}$ of a transformation is defined to be the determinant of its partial derivative matrix: det(DT).
- (Example) Prove that for an affine transformation **T** with matrix M that $\mathbf{DT} = M$ and therefore $\frac{\partial \mathbf{T}}{\partial \mathbf{u}} = \det M$.
- For any 2D transformation **T** transforming D^* to D, $\iint_D f(\mathbf{x}) dA = \iint_{D^*} f(\mathbf{T}(\mathbf{u})) |\frac{\partial \mathbf{T}}{\partial \mathbf{u}}| dA$.
- For any 3D transformation **T** transforming D^* to D, $\iiint_D f(\mathbf{x}) dV = \iiint_{D^*} f(\mathbf{T}(\mathbf{u})) |\frac{\partial \mathbf{T}}{\partial \mathbf{u}}| dV$.
- (Example) Use a 2D transformation to compute $\iint_D e^x \cos(\pi e^x) dA$ where D is the region bounded by y = 0, $y = e^x 2$, $y = \frac{e^x 1}{2}$.
- Polar, cylindrical, spherical change of variables
 - Polar coordinates: $\iint_D f(x,y) dA = \iint_{D^*} f(r\cos\theta, r\sin\theta) r dA$
 - Cylindrical coordinates: $\iint_D f(x, y, z) dV = \iint_{D^*} f(r \cos \theta, r \sin \theta, z) r dV$
 - Spherical coordinates: $\iint_D f(x, y, z) dV = \iint_{D^*} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi dV$
 - (Example 4) Evaluate $\iint_D \log(x^2 + y^2) dA$ where D is the region in the first quadrant between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ for 0 < a < b.
 - (Example 6) Evaluate $\iiint_W \exp[(x^2+y^2+z^3)^{3/2}] dV$ where W is unit ball centered at the origin.
 - (Example) Prove that the formula for the volume of a cone with radius R and height H is $V = \frac{1}{3}\pi R^2 H$.
 - (Example 7) Prove that the formula for the volume of a sphere with radius R is $V = \frac{4}{3}\pi R^3$.
- HW: 1-6, 11, 13-14, 21, 26

7.1 The Path Integral

- Path Integral with respect to Arclength
 - Recall that for a curve C defined by $\mathbf{r}: \mathbb{R} \to \mathbb{R}^n$, the arclength function $s: \mathbb{R} \to \mathbb{R}$ defined by $s(t) = \int_0^t \|\mathbf{r}'(\tau)\| d\tau$ gives the length of the curve from 0 to t.

- (Example 5) Show that T(u,v) = (u,0) is neither one-to-one nor onto.
- (Example 7) Find a rectangle in the $r\theta$ plane which maps onto the region $\{(x,y): x,y \geq 0, a^2 \leq x^2 + y^2 \leq b^2\}$ in the Cartesian plane by the polar coordinate transformation.

• Linear transformations

- Transformations $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^n$ defined by $\mathbf{T}(\mathbf{u}) = A\mathbf{u}$ for an *n*-dimensional matrix A are called linear transformations.
- (Example 6) Find a region in the uv plane which maps onto the square with vertices (1,0),(0,1),(-1,0),(0,-1) in the xy plane by the linear transformation given in Example 2.
- Transformations $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^n$ defined by $\mathbf{T}(\mathbf{u}) = A\mathbf{u} + \mathbf{x}_0$ for an *n*-dimensional matrix A and n-dimensional vector \mathbf{x}_0 are called affine transformations. (Every linear transformation is affine.)
- (Example) Find an affine transformation which maps the unit square in the uv plane onto the square with vertices (1,0), (0,1), (-1,0), (0,-1) in the xy plane.
- An affine transformation is both one-to-one and onto exactly when det $A \neq 0$.
- (Example) Use this fact to reinvestigate examples 4 and 5.
- HW: 1-4, 8, 10

6.2 The Change of Variables Theorem

- Affine transformations of areas
 - An affine transformation with matrix M transforms hypervolumes by a factor of $|\det M|$.
 - (Example) Verify this fact for the parallelogram with vertices (2,0), (3,1), (1,3), (0,2) in the uv plane and its image in the xy plane under the transformation $\mathbf{T}(u,v) = (2u + v + 3, v u 2)$.
 - \blacksquare Put another way, $\iint_D 1\,dA = \iint_{D^*} |\det M|\,dA.$
- Affine transformations of single/double/triple integrals
 - (Example) Let $x = T(u) = mu + x_0$. Use substitution to prove that if the image of $[c_1, c_2]$ under T is $[b_1, b_2]$, then $\int_{b_1}^{b_2} f(x) dx = \int_{c_1}^{c_2} f(T(u)) |m| du$.
 - (Example) Use the previous fact to show that $\int_0^4 \sqrt{2x+1} \, dx = \int_1^9 \frac{1}{2} \sqrt{u} \, du$
 - For any 2D affine transformation **T** with matrix M transforming D^* to D, $\iint_D f(x,y) dA = \iint_{D^*} f(\mathbf{T}(u,v)) |\det M| dA.$