LECTURE 9: FUNDAMENTALS OF OBSERVATIONAL COSMOLOGY (III)

GONG-BO ZHAO

1. PARAMETER ESTIMATION USING SN IA DATA

As we covered in last lecture, we can minimise the χ^2 in order to perform parameter estimations.

Suppose we want to constrain $\Omega_{\rm M}$ and Ω_{Λ} using SN Ia data (we fix H_0 for simplicity), then we can minimise the following χ^2 ,

(1)
$$\chi^2(\Omega_{\rm M}, \Omega_{\Lambda}) = \Delta^T C^{-1} \Delta$$

where the column vector Δ is,

(2)
$$\Delta \equiv \vec{\mu}_{\text{theo.}} - \vec{\mu}_{\text{obs.}}$$

The code we wrote together in class is attached in the Appendix.

2. The Fisher Information Matrix

The Fisher matrix technique is widely used in cosmology for performing forecasts on the uncertainty of cosmological parameters. It is essentially an error propagation process: it consistently propagates the uncertainty of the observables, to the errors on cosmological parameters.

The most relevant paper on Fisher matrix is [1], and in this lecture, we cover the key parts of it.

If C is the covariance matrix for a set of cosmological parameters θ , then,

(3)
$$(\mathbf{C}^{-1})_{ij} = \mathbf{F}_{ij} = \frac{\partial^2 \mathcal{L}}{\partial \theta_i \partial \theta_j}$$

where $\mathcal{L} \equiv \ln L$ and

(4)
$$L = \frac{\exp\left[-\frac{1}{2}(\boldsymbol{x} - \mu)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \mu)\right]}{\sqrt{(2\pi)^k |\boldsymbol{\Sigma}|}}$$

Dropping the 2π factors, we have,

(5)
$$2\mathcal{L} = \ln \det \mathbf{\Sigma} + (\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu)$$

Let

Experiment	Observable	$\frac{1}{2} \operatorname{Tr} \left(\mathbf{\Sigma}^{-1} \mathbf{D}_i \mathbf{\Sigma}^{-1} \mathbf{D}_j \right)$	$\frac{\partial \mu}{\partial \theta_i} \mathbf{\Sigma}^{-1} \frac{\partial \mu}{\partial \theta_j}$
SNe	Luminosity distance	0	√
BAO	$H(z), D_A(z)$	0	✓
RSD	$f\sigma_8(z)$	0	✓
CMB	C_{ℓ} ; Angular power spectra	\checkmark	0
Galaxy power spectra	P(k)	\checkmark	0
Weak lensing	$C_{\ell}^{\gamma\gamma}$; Shear power spectra	\checkmark	0

(6)
$$\Sigma = \langle (\boldsymbol{x} - \mu)^T (\boldsymbol{x} - \mu) \rangle; \quad \mathbf{D}_i = \frac{\partial \Sigma}{\partial \theta_i}; \quad \mu = \langle \boldsymbol{x} \rangle.$$

Finally,

(7)
$$\mathbf{F}_{ij} = \frac{1}{2} \text{Tr} \left(\mathbf{\Sigma}^{-1} \mathbf{D}_i \mathbf{\Sigma}^{-1} \mathbf{D}_j \right) + \frac{\partial \mu}{\partial \theta_i} \mathbf{\Sigma}^{-1} \frac{\partial \mu}{\partial \theta_j}$$

Note that there are two terms in the above general formula, but in practice, only one of these terms is nonzero, in many cases. Here's a list covering the observables we use in the data analysis.

References

- [1] M. Tegmark, A. Taylor and A. Heavens, "Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets?," Astrophys. J. **480**, 22 (1997) doi:10.1086/303939 [astro-ph/9603021].
- [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes in FORTRAN: The Art of Scientific Computing."

APPENDIX A. THE FORTRAN 90 CODE FOR SN IA FITTING

```
module precision
```

```
integer, parameter :: dl = kind(1.d0)
end module precision
```

module cosmo

use precision

```
real(dl) :: om, ol, ok, H0=70.d0
```

real(dl) :: c = 3.d5

real(dl) :: DH

real(dl), parameter :: om_min=0.d0, om_max=3.d0
real(dl), parameter :: ol_min=0.d0, ol_max=3.d0

integer, parameter :: Np=100

end module cosmo

```
program test
use precision
use cosmo
implicit none
integer i, iz, iom, iol
integer, parameter :: n=580
real(dl)
             :: z_dat(n), mu_dat(n), invcov(n,n)
real(dl)
             :: diff(n), chi2
character
             :: dummyc
real(dl)
             :: dummyr
real(dl)
          :: z
real (dl), external
                    :: E2, Einv, DC, DA, mu
logical :: flag = .false.
open(unit=50, file='sn_z_mu_dmu_plow_union2.1.txt')
do i=1, n
 \mathbf{read}(50,*) dummyc, z_{-}dat(i), mu_{-}dat(i), dummyr, dummyr
 ! write(*,*) z_- dat(i), mu(i)
end do
close(50)
open(unit=50, file='sn_wmat_nosys_union2.1.txt')
do i=1, n
  read(50,*) invcov(i,:)
  !write(*,*) invcov(i,i)
end do
\mathbf{close}(50)
open(unit=50, file='test_mu.dat')
do i=1, n
```

```
write (50,*) z_dat(i), mu_dat(i), 1.d0/sqrt(invcov(i,i))
end do
close(50)
DH=c/H0
open(unit=50, file='chi2.dat')
do iom=1, Np
om = om_min + (om_max-om_min)*dble(iom-1)/dble(Np-1)
do iol=1, Np
 ol = ol_min + (ol_max-ol_min)*dble(iol-1)/dble(Np-1)
 ok = 1.d0-om-ol
 call check (flag)
 if(flag) then
  do iz=1, n
   diff(iz) = mu(z_dat(iz)) - mu_dat(iz)
  end do ! loop for z
  chi2 = dot_product(diff, matmul(invcov, diff))
 else
  chi2 = 1.d10
 end if
 write(50,*) om, ol, chi2
 !om = om\_min * (om\_max/om\_min) * * (dble(i-1)/dble(Np-1))
end do ! loop for ol
end do ! loop for om
```

```
!z = 0.5d0
!write(*, '(5e15.6)') z, E2(z), Einv(z), DC(z), DA(z), mu(z)
close(50)
end program test
subroutine check (flag)
use precision
use cosmo
implicit none
real(dl), parameter :: z_min=0.d0, z_max=3.d0
integer :: iz
integer, parameter :: nz=500
real(dl) :: z
real(dl), external :: E2, DA
logical :: flag
do iz = 1, nz
 z = z_min + (z_max - z_min)*dble(iz-1)/dble(nz-1)
 if(E2(z)<0 .or. E2(z)==0 .or. DA(z)<0) then !! Thanks Yonghao
   flag = .false.
   return
 else
   flag = .true.
 end if
end do
end subroutine check
function E2(z)
```

use cosmo

```
use precision
use cosmo
implicit none
real(dl) :: z, E2
E2 = om * (1.d0+z) * *3.d0+ol+(1.d0-om-ol)*(1+z) * *2.d0
end function E2
function Einv(z)
use precision
use cosmo
implicit none
real(dl) :: z, Einv
real(dl), external :: E2
Einv = 1.d0/sqrt(E2(z))
end function Einv
function DC(z)
use precision
use cosmo
implicit none
real(dl), external :: rombint, Einv
real(dl), parameter :: tol=1.d-4
real(dl) :: DC, z
DC = rombint(Einv, 0.d0, z, tol)
DC = DC*DH
end function DC
function DA(z)
use precision
```

implicit none

real(dl), external :: DA

```
Ldis = DA(z)*(1.d0+z)**2
end function Ldis
function mu(z)
use precision
use cosmo
implicit none
real(dl) :: mu, z
real(dl), external :: Ldis
mu=5.d0*log10(Ldis(z))+25.d0
end function mu
       function rombint (f,a,b,tol)
        use Precision
  Rombint returns the integral from a to b of using Romberg integration.
   The method converges provided that f(x) is continuous in (a,b).
   f must be real(dl) and must be declared external in the calling
   routine. tol indicates the desired relative accuracy in the integral.
        implicit none
        integer, parameter :: MAXITER=20
        integer, parameter :: MAXJ=5
        dimension g(MAXJ+1)
        real(dl) f
        external f
        real(dl) :: rombint
        real(dl), intent(in) :: a,b,tol
        integer :: nint, i, k, jmax, j
        real(dl) :: h, gmax, error, g, g0, g1, fourj
!
        h=0.5d0*(b-a)
        gmax=h*(f(a)+f(b))
```

```
g(1) = gmax
        nint=1
         error = 1.0d20
         i = 0
10
           i=i+1
           if (i.gt.MAXITER.or.(i.gt.5.and.abs(error).lt.tol)) &
             go to 40
   Calculate next trapezoidal rule approximation to integral.
           g0 = 0._d1
             do 20 k=1, nint
             g0=g0+f(a+(k+k-1)*h)
20
           continue
           g0 = 0.5 d0 * g(1) + h * g0
           h = 0.5 d0 * h
           nint = nint + nint
           jmax=min(i,MAXJ)
           fourj = 1._dl
             do 30 j=1,jmax
! Use Richardson extrapolation.
             fourj = 4. -dl * fourj
             g1=g0+(g0-g(j))/(fourj-1._dl)
             g(j)=g0
             g0=g1
30
           continue
           if (abs(g0).gt.tol) then
             error = 1._dl - gmax/g0
           else
             error=gmax
           end if
           gmax=g0
           g(jmax+1)=g0
        go to 10
40
         rombint=g0
         if (i.gt.MAXITER.and.abs(error).gt.tol) then
           write (*,*) 'Warning: _Rombint_failed_to_converge; _'
           write (*,*) 'integral, _error, _tol: ', rombint, error, tol
        end if
```

end function rombint