Algorithms

2.3 PARTITIONING DEMOS

- Sedgewick 2-way partitioning
- Dijkstra 3-way partitioning
- Bentley-McIlroy 3-way partitioning
- dual-pivot partitioning

Alcorithms

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.3 PARTITIONING DEMOS

- Sedgewick 2-way partitioning
- Dijkstra 3-way partitioning
- Bentley-Mcllroy 3-way partitioning
- dual-pivot partitioning

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

When pointers cross.

Exchange a[lo] with a[j].

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

When pointers cross.

Exchange a[lo] with a[j].

2.3 PARTITIONING DEMOS

- Sedgewick-2-way partitioning
- Dijkstra 3-way partitioning
- Bentley-Mcllroy 3-way partitioning
- dual-pivot partitioning

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.3 PARTITIONING DEMOS

- Sedgewick-2-way partitioning
- Dijkstra 3-way partitioning
- Bentley-McIlroy 3-way partitioning
- dual-pivot partitioning

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].
- If (a[i] == a[lo]), exchange a[i] with a[p] and increment p.
- If (a[j] == a[lo]), exchange a[j] with a[q] and decrement q.

- Scan j and p from right to left and exchange a[j] with a[p].
- Scan i and q from left to right and exchange a[i] with a[q].

- Scan j and p from right to left and exchange a[j] with a[p].
- Scan i and q from left to right and exchange a[i] with a[q].

- Scan j and p from right to left and exchange a[j] with a[p].
- Scan i and q from left to right and exchange a[i] with a[q].

- Scan j and p from right to left and exchange a[j] with a[p].
- Scan i and q from left to right and exchange a[i] with a[q].

- Scan j and p from right to left and exchange a[j] with a[p].
- Scan i and q from left to right and exchange a[i] with a[q].

- Scan j and p from right to left and exchange a[j] with a[p].
- Scan i and q from left to right and exchange a[i] with a[q].

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.3 PARTITIONING DEMOS

- Sedgewick-2-way partitioning
- Dijkstra 3-way partitioning
- Bentley-Mctlroy 3-way partitioning
- dual-pivot partitioning

Dual-pivot partitioning demo

Initialization.

- Choose a[1o] and a[hi] as partitioning items.
- Exchange if necessary to ensure a[lo] ≤ a[hi].

Dual-pivot partitioning demo

Initialization.

- Choose a[1o] and a[hi] as partitioning items.
- Exchange if necessary to ensure a[lo] ≤ a[hi].

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \leq and \leq p_2$?	> p ₂	p ₂
↑		↑	↑	↑		†
lo		lt	İ	gt		hi

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \leq and \leq p_2$?	> p ₂	p ₂
↑		↑	↑	↑		†
lo		lt	İ	gt		hi

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \leq and \leq p_2$?	> p ₂	p ₂
↑		↑	↑	↑		†
lo		lt	İ	gt		hi

increment i

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \leq and \leq p_2$?	> p ₂	p ₂
↑		†	↑	↑		↑
lo		lt	i	gt		hi

increment i

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \leq and \leq p_2$?	> p ₂	p ₂
↑		†	↑	↑		↑
lo		lt	i	gt		hi

increment i

Main loop. Repeat until i and gt pointers cross.

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \leq and \leq p_2$?	> p ₂	p ₂
↑ lo		↑ It	↑ i	↑ gt		↑ hi

exchange a[i] and a[lt]; increment lt and i

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \le and \le p_2$?	> p ₂	p ₂
↑ lo		↑ It	↑ i	↑ gt		↑ hi

Main loop. Repeat until i and gt pointers cross.

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \leq and \leq p_2$?	> p ₂	p ₂
↑		↑	↑	↑		†
lo		lt	İ	gt		hi

exchange a[i] and a[lt]; increment lt and i

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \le and \le p_2$?	> p ₂	p ₂
↑ lo		↑ It	↑ i	↑ gt		↑ hi

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \leq and \leq p_2$?	> p ₂	p ₂
↑		↑	↑	↑		†
lo		lt	İ	gt		hi

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \leq and \leq p_2$?	> p ₂	p ₂
↑		†	↑	↑		↑
lo		lt	i	gt		hi

increment i

- If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.
- Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
- Else, increment i.

p ₁	< p ₁	$p_1 \leq and \leq p_2$?	> p ₂	p ₂
↑		↑	↑	↑		†
lo		It	İ	gt		hi

Finalize.

- Exchange a[10] with a[--1t].
- Exchange a[hi] with a[++gt].

p ₁	< p ₁	p ₁ ≤ 3	and ≤ p ₂	> p ₂	p ₂
↑ lo		↑ It	↑ gt		↑ hi

Finalize.

- Exchange a[1o] with a[--1t].
- Exchange a[hi] with a[++gt].

