Análise Preditiva da Receita de Jogos na Plataforma Steam

Gabriel de França Marques (RA: 10395270)¹, Henrique Magno dos Santos(RA: 10335286)¹, Pedro Machado Gomes Caixeta (RA: 10314309)¹

¹Ciência da Computação (CC) – Faculdade de Ciência e Informação (FCI) – Universidade Presbiteriana Mackenzie (UPM)

103952700, 103352860, 10314309@mackenzista.com.br

Resumo. Este trabalho apresenta uma análise preditiva da receita de jogos na plataforma Steam. Utilizando um conjunto de dados de 1500 jogos e o algoritmo Random Forest Regressor, o objetivo é prever a receita com base em características como preço, cópias vendidas, tempo médio de jogo, avaliação dos usuários, classe da publicadora e ano de lançamento. Os resultados são avaliados pelas métricas RMSE e R². O modelo apresentou um alto R² (0,997), indicando um bom ajuste aos dados de treinamento, porém um RMSE relativamente alto (1.177.379,51), sugerindo a possibilidade de overfitting e a necessidade de ajustes para melhorar a generalização.

1. Introdução

1.1. Contextualização

O mercado de jogos digitais tem se mostrado um campo fértil para a aplicação de técnicas de análise de dados e inteligência artificial. A capacidade de prever métricas-chave, como receita, avaliações e preço de jogos, pode trazer insights valiosos para desenvolvedores e publishers, auxiliando-os na tomada de decisões estratégicas. A Inteligência Artificial (IA) abrange um vasto campo de estudo dedicado a criar máquinas capazes de simular a inteligência humana. Uma das suas principais áreas é o Aprendizado de Máquina (AM), que se concentra no desenvolvimento de algoritmos que permitem aos computadores aprender com dados sem serem explicitamente programados. O AM busca identificar padrões, fazer previsões e tomar decisões com base na experiência adquirida a partir dos dados. Diferentes formas de aprendizado, como aprendizado supervisionado, não supervisionado e por reforço, são empregadas para atingir esses objetivos, cada uma com suas particularidades e aplicações. [Lorena et al. 2021]

No aprendizado supervisionado, o algoritmo é treinado com um conjunto de dados rotulado, onde cada exemplo possui uma saída desejada. O objetivo é aprender uma função que mapeie as entradas para as saídas corretas, permitindo generalizar para novos dados não vistos durante o treinamento. Já no aprendizado não supervisionado, o algoritmo lida com dados não rotulados, buscando identificar estruturas e padrões inerentes aos dados, como agrupamentos ou anomalias. Por fim, o aprendizado por reforço se baseia na interação do algoritmo com um ambiente, onde ele recebe recompensas ou penalidades por suas ações, aprendendo a maximizar as recompensas ao longo do tempo. [Lorena et al. 2021]

Neste projeto, o objetivo é realizar uma análise preditiva utilizando um dataset de 1500 jogos da plataforma Steam. A escolha desse dataset se justifica pela relevância

e disponibilidade de informações detalhadas sobre o mercado de jogos digitais. O estudo e previsão dessas métricas relevantes para o sucesso de um jogo podem contribuir significativamente para o setor.

1.2. Justificativa

O estudo e a previsão de métricas relevantes para o sucesso de um jogo, como receita, avaliações e preço, podem trazer insights valiosos para o setor.

1.3. Objetivo

O objetivo deste projeto é realizar uma análise preditiva utilizando um dataset de jogos da plataforma Steam, buscando encontrar padrões e prever informações importantes para o sucesso de um jogo.

1.4. Opção do projeto

A escolha deste dataset de jogos da Steam se justifica pela relevância e disponibilidade de informações detalhadas sobre o mercado de jogos digitais.

2. Descrição do Problema

O principal problema a ser abordado neste projeto é a identificação de fatores-chave que influenciam a receita, as avaliações e o preço dos jogos na plataforma Steam. Além disso, pretende-se desenvolver modelos preditivos capazes de estimar essas métricas com base nas características dos jogos.

3. Dataset

O conjunto de dados utilizado neste projeto contém informações sobre 1500 jogos da Steam, coletadas do Kaggle [Topcu 2024]. As variáveis incluídas na análise são:

- name (Nome): Nome do jogo.
- revenue (Receita): Receita total gerada pelo jogo (variável alvo).
- price (Preço): Preço do jogo em dólares.
- copiesSold (Cópias Vendidas): Número de cópias vendidas.
- avgPlaytime (Tempo Médio de Jogo): Tempo médio de jogo em minutos.
- reviewScore (Avaliação): Pontuação média das avaliações dos usuários.
- publisherClass (Classe da Editora): Classificação da editora (AAA, AA, Indie, etc.).
- Release Year (Ano de Lançamento): Ano de lançamento do jogo.

3.1. Pré-processamento dos Dados

Antes do treinamento do modelo, os dados foram pré-processados para lidar com valores faltantes e garantir a compatibilidade com o algoritmo. As seguintes etapas foram realizadas:

- Tratamento de valores faltantes: Valores faltantes em variáveis numéricas foram imputados usando a mediana, enquanto valores faltantes em 'publisherClass' foram imputados usando a moda.
- Conversão de data: A data de lançamento ('releaseDate') foi convertida para o ano de lançamento ('Release Year').

- One-Hot Encoding: A variável categórica 'publisherClass' foi convertida para uma representação numérica usando one-hot encoding.
- Padronização: As variáveis numéricas foram padronizadas usando o 'StandardS-caler' para que tivessem média zero e desvio padrão igual a um.

4. Metodologia

Para a previsão da receita dos jogos, foi utilizado o algoritmo Random Forest Regressor, um método de aprendizado de máquina ensemble que combina múltiplas árvores de decisão. A escolha deste algoritmo se justifica por sua capacidade de lidar com dados não lineares e pela sua robustez a outliers.

O conjunto de dados foi dividido em conjuntos de treinamento (80%) e teste (20%) usando o train_test_split do scikit-learn, com random_state=42 para garantir a reprodutibilidade dos experimentos.

Um pipeline foi utilizado para encadear as etapas de pré-processamento e o treinamento do modelo, facilitando a aplicação das transformações aos dados de forma consistente.

5. Resultados

Após o treinamento e avaliação do modelo no conjunto de teste, os seguintes resultados foram obtidos:

• R (coeficiente de correlação): 0.97

• R² (coeficiente de determinação): 0.88

O R² de 0.88 indica que o modelo explica 88% da variância na receita dos jogos no conjunto de teste. O coeficiente de correlação (R) de 0.97 demonstra uma forte correlação positiva entre os valores reais e previstos da receita. Embora esses resultados sejam promissores, é importante considerar que um modelo pode apresentar um bom desempenho em dados de treinamento, mas não generalizar bem para dados novos. A possibilidade de overfitting deve ser investigada, e a utilização de técnicas como validação cruzada pode auxiliar nessa análise. Um R² mais baixo no conjunto de teste em comparação com o conjunto de treinamento, por exemplo, pode ser um indicativo de overfitting. Nesse caso, estratégias como regularização, aumento do conjunto de dados ou a escolha de um modelo mais simples podem ser consideradas para melhorar a generalização.

5.1. Exemplos de Previsões

As tabelas a seguir mostram exemplos de previsões do modelo para os conjuntos de treinamento e teste. A coluna "Real" representa a receita real do jogo, enquanto a coluna "Previsto" representa a receita prevista pelo modelo.

5.2. Gráficos de Dispersão

Os gráficos de dispersão abaixo comparam os valores reais e previstos da receita para os conjuntos de treinamento e teste. A linha tracejada representa a situação ideal onde as previsões são perfeitas.

Tabela 1. Exemplos de Previsões - Treino

Nome do Jogo	Receita Real	Receita Prevista
Starstruck Vagabond	162429.0	160572.52
Shipwrecked 64	202048.0	185827.81
hololive Treasure Mountain	291300.0	275343.24
Magical Delicacy	66573.0	61196.47
The Casting of Frank Stone TM	1967699.0	2054725.86
Yaoling: Mythical Journey	1047362.0	1033506.56
Beneath the Mountain	102217.0	104950.20
Taora: Survival	78871.0	78892.21
GUNDAM BREAKER 4	8440898.0	7754458.83
Balatro	20479210.0	20689501.51

Tabela 2. Exemplos de Previsões - Teste

Nome do Jogo	Receita Real	Receita Prevista
Time to Morp	47790.0	4.745999e+04
Real Dive World	36294.0	3.823038e+04
Immortal Family	327846.0	3.817441e+05
The Settlers: New Allies	498522.0	9.245065e+05
KinitoPET	1166563.0	1.392249e+06
Hospital 666	596521.0	6.436494e+05
Moonbreaker	1367965.0	1.533254e+06
Fate/stay night REMASTERED	764069.0	7.475598e+05
Stigma-ARIA	22306.0	2.340739e+04
Terra Randoma	46626.0	4.956908e+04

Figura 1. Gráfico de Dispersão - Treino

Figura 2. Gráfico de Dispersão - Teste

6. Conclusão

Este projeto demonstrou a aplicação de técnicas de aprendizado de máquina para prever a receita de jogos na Steam. O modelo Random Forest obteve um alto R-squared no conjunto de treinamento, mas o RMSE e a análise dos gráficos de dispersão sugerem a possibilidade de overfitting. Futuros trabalhos podem explorar técnicas para mitigar o overfitting, como regularização, aumento do conjunto de dados ou a utilização de modelos mais robustos à generalização. A exploração de outras variáveis e a engenharia de novas features também podem contribuir para a melhoria do desempenho preditivo.

7. Link Youtube

https://www.youtube.com/watch?v=5xEPwh5dej0

8. Bibliografia

O dataset foi obtido em [Topcu 2024]. Os slides de "Preparação e Pré-processamento dos dados" utilizados como base de estudo foram ministrados pelo Prof. Dr. Ivan Carlos Alcântara de Oliveira, sendo disponibilizados nas seguintes partes: [de Oliveira 2024a], [de Oliveira 2024b] e [de Oliveira 2024c].

Referências

- de Oliveira, P. D. I. C. A. (2024a). Preparação e pré-processamento dos dados parte i. Slide de aula. Acesso em: 2024-09-21.
- de Oliveira, P. D. I. C. A. (2024b). Preparação e pré-processamento dos dados parte ii. Slide de aula. Acesso em: 2024-09-21.
- de Oliveira, P. D. I. C. A. (2024c). Preparação e pré-processamento dos dados parte iii. Slide de aula. Acesso em: 2024-09-21.
- Lorena, A., Faceli, K., Almeida, T., de Carvalho, A., and Gama, J. (2021). *Inteligência Artificial: uma abordagem de Aprendizado de Máquina (2a edição)*.
- Topcu, A. C. (2024). Top 1500 games on steam by revenue 09-09-2024. https://www.kaggle.com/datasets/alicemtopcu/top-1500-games-on-steam-by-revenue-09-09-2024. Acesso em: 2024-09-21.