MATHEMATICS FORMULAE

Trigonometric functions

- 1. Length of an arc = $r\theta$
- 2. Area of sector = $\frac{1}{2}$ r² θ

Trigonometric functions of standard angle

Funct ion	00	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	8
cosec	8	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	8
cot	8	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Trigonometric functions of sum and difference

- 1. $\sin (A + B) = \sin A \cos B + \cos A \sin B$
- 2. $\sin (A B) = \sin A \cos B \cos A \sin B$
- $3.\cos(A + B) = \cos A \cos B \sin A \sin B$
- $4.\cos(A B) = \cos A \cos B + \sin A \sin B$
- 5. $\tan (A + B) = \frac{\tan A + \tan B}{1 \tan A \tan B}$ 6. $\tan (A B) = \frac{\tan A \tan B}{1 + \tan A \tan B}$

Trigonometric functions of 2θ

- 1. $\sin 2\theta = 2 \sin \theta \cos \theta$
- $2.\cos 2\theta = 2\cos^2 \theta 1$
- 3. $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$
- $4.\cos 2\theta = \frac{1-\tan^2\theta}{1+\tan^2\theta}$
- $5.\cos 2\theta = \cos^2 \theta \sin^2 \theta$
- $6.\cos 2\theta = 1-2\sin^2 \theta$
- $7.\sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta}$

Trigonometric functions of half angles

- 1. $\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$
- $2.\cos\theta = 2\cos^2\frac{\theta}{2} 1$
- 3. $\tan \theta = \frac{2\tan \frac{\theta}{2}}{1-\tan^2 \frac{\theta}{2}}$
- $4.\cos\theta = \frac{1-\tan^2\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}}$
- 5. $\cos \theta = \cos^2 \frac{\theta}{2} \sin^2 \frac{\theta}{2}$
- 6. $\cos \theta = 1 2\sin^2 \frac{\theta}{2}$
- 7. $1 + \cos \theta = 2\cos^2 \frac{\theta}{2}$
- 8. $\sin \theta = \frac{2\tan \frac{\theta}{2}}{1+\tan^2 \frac{\theta}{2}}$

Trigonometric functions of 30

- $1.\sin 3\theta = 3\sin \theta 4\sin^3 \theta$
- $2.\cos 3\theta = 4\cos^3 \theta 3\cos \theta$
- $3.\tan 3\theta = \frac{3\tan \theta \tan^3 \theta}{1 3\tan^2 \theta}$

Factorization Formulae

- 1.SinC + SinD
- $=2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$
- $= 2 \cos\left(\frac{C+D}{2}\right) \sin\left(\frac{C-D}{2}\right)$

$$3. \cos C + \cos D$$

$$= 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

$$4. \cos C - \cos D = -2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$

Defactorization Formulae

$$2 \operatorname{SinA} \operatorname{CosB} = \operatorname{Sin}(A+B) + \operatorname{Sin}(A-B)$$

$$2 \operatorname{CosA} \operatorname{SinB} = \operatorname{Sin}(A+B) - \operatorname{Sin}(A-B)$$

$$2 \cos A \cos B = \cos(A+B) + \cos(A-B)$$

$$2 \operatorname{SinA} \operatorname{SinB} = \operatorname{Cos}(A-B) - \operatorname{Cos}(A+B)$$

Trigonometric functions of Angles of Triangle

$$1. Sin (A + B) = Sin C$$

$$2.Sin\left(\frac{A+B}{2}\right) = Cos\left(\frac{C}{2}\right)$$

$$3. \cos{(\frac{A+B}{2})} = \sin{(\frac{C}{2})}$$

Determinants

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1)$$

Minor & Cofactor of 3×3 Determinants

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Minor

Cofactor

$$M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} \quad A_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

$$M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} \ A_{12} = (-) \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$M_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \quad A_{13} = \quad \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$M_{21} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} \quad A_{21} = (-) \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$$

$$M_{22} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} A_{22} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}$$

$$M_{23} = \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \quad A_{23} = (-) \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}$$

$$M_{31} = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \quad A_{31} = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$M_{32} = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} \quad A_{32} = (-) \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$$

$$M_{33} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} A_{33} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Matrices

Multiplication of Two Matrices A product AB exists if number of columns of A is equal to number of rows of B.

If
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \& B = \begin{pmatrix} b_{11} \\ b_{21} \end{pmatrix}$$

then product AB exists & is equal to

$$AB = \begin{pmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} \\ a_{21}b_{11} + a_{22}b_{21} \end{pmatrix}$$

Logarithms

Law of Logarithms:

Law of product:

$$log_{10}ab = log_{10}a + log_{10}b$$

Law of Exponent:

$$log_{10}a^m = mlog_{10}a$$

Change of Base Law:

$$log_b a = \frac{log_e a}{log_e b}$$

Complex numbers

Conjugate of Complex numbers:

If z = a+ib then $\bar{z} = a-ib$

Modulus of Complex numbers:

$$|z| = \sqrt{a^2 + b^2}$$

Argument of Complex numbers:

$$\theta = \tan^{-1}\left(\frac{b}{a}\right)$$
 where

$$0 \le \theta \le 2\pi$$

Division of Complex numbers:

If
$$z_1 = a_1 + i b_1 \& z_2 = a_2 + i b_2$$

Then, $\frac{z_1}{z_2} = \frac{a_1 + i b_1}{a_2 + i b_2}$
 $= \frac{a_1 + i b_1}{a_2 + i b_2} \times \frac{a_2 - i b_2}{a_2 - i b_2}$

Binomial Theorem

$$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$$

Mathematical Logic

Truth Table for 'And 'statement

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Truth Table for 'Or 'statement

p	q	$p \lor q$
Т	T	T
Т	F	Т
F	Т	Т
F	F	F

Conditional statement's truth table

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	Т
F	F	T

Truth Table for DOUBLE Implication statement

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Probability

Addition Theorem

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Conditional Probability

$$P(A/B) = \frac{n(A \cap B)}{n(B)}$$

$$P(B/A) = \frac{n(A \cap B)}{n(A)}$$

Statistics

Quartile Deviation

If given data is to be divided into four parts then that number is called as quartile.

If Q_1 = First Quartile

 Q_2 =Second Quartile

 Q_3 =Third Quartile

$$Q_r = L + \frac{h}{f} \left(\frac{rN}{4} - C.F. \right)$$

Q.D. =
$$\frac{Q_3 - Q_1}{2}$$

Variance & standard deviation

Variance
$$=\sigma^2 = \frac{1}{n}\sum_{i=1}^n (x_i - \bar{x})^2$$

Standard Deviation = σ =

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

Applications of Definite Integral Area bounded by the curve y = f(x), x = a & x = b is given by

$$A = \int_{a}^{b} y dx$$

Permutation

Arrangement of *r* objects among n objects: ${}^{n}P_{r} = \frac{n!}{(n-r)!}$

Circular Permutations: The no. of circular permutations of n objects is equal to (n-1)!

Combinations:
$${}^{\mathrm{n}}\mathrm{C}_{\mathrm{r}} = \frac{n!}{r!(n-r)!}$$

Property of combination:

$${}^{n}C_{r}\!=\!{}^{n}C_{n\text{-}r}$$

Vectors

1. Co linearity of points: Three points are said to be collinear if $\overline{AB} \times \overline{AC} = 0$ or $\overline{AB} = K.\overline{AC}$ (Where K is Scalar)

2. Section Formula

If \overline{r} divides $\overline{a} \& \overline{b}$ internally in the ratio m: n then

$$\overline{r} = \frac{m\overline{b} + n\overline{a}}{m+n}$$

If \overline{r} divides $\overline{a}\&\overline{b}$ externally in the ratio m:n then

$$\overline{r} = \frac{m\overline{b} - n\overline{a}}{m - n}$$

3. Mid Point formula: If \overline{r} is midpoint of $\overline{a}\&\overline{b}$ then

$$\overline{r} = \frac{\overline{a} + \overline{b}}{2}$$

4. Centroid

If \overline{g} is centroid of the triangle with vertices $\overline{a}, \overline{b}, \&\overline{c}$ then $\overline{g} = \frac{\overline{a} + \overline{b} + \overline{c}}{2}$

5. Condition of coplanerity \overline{a} , \overline{b} & \overline{c} Are coplanar if $[\overline{a}, \overline{b}, \overline{c}] = 0$ \overline{a} , \overline{b} , \overline{c} & \overline{d} are coplanar if \overline{AB} . $(\overline{AC} \times \overline{AD}) = 0$

6. Volume

Volume of parallelepiped = $[\overline{a}\overline{b}\overline{c}]$

Volume of tetrahedron = $\frac{1}{6} [\overline{a} \overline{b} \overline{c}]$

Three Dimensional Geometry

1. Direction Cosines: If a line makes an angle a, b, & c with positive directions of x, y & z axes then direction cosines are given as

$$l = cosa, m = cosb,$$

 $n = cosc & l^2 + m^2 + n^2 = 1$

2. Direction Ratio: a, b, c are direction ratios such that

$$\frac{l}{a} = \frac{m}{b} = \frac{n}{c}$$

$$l = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}} ,$$

$$m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}} , n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

3. Direction Ratios of Two Lines

Let a_1 , b_1 , c_1 & a_2 , b_2 , c_2 are direction ratios of two lines then

$$\cos\theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Where Θ is angle between two line.

Line

1. Vector Equation of Line:

Equation of line passing through $\overline{r} = a\hat{\imath} + b\hat{\jmath} + c\hat{k}$ parallel to vector is

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$

2. Length of perpendicular form

$$(\overline{a})$$
 :on $\overline{r} = \overline{c} + \lambda \overline{d}$ is

$$\left| |\overline{a} - \overline{c}|^2 - \left[\frac{(\overline{a} - \overline{c}).\overline{b}}{|\overline{d}|} \right]^2 \right|$$

3. Shortest distance between the lines (d) =

$$= \frac{\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}}{\sqrt{(a_1b_2 - a_2b_1)^2 + (a_1c_2 - a_2c_1)^2 + (b_1c_2 - b_2c_1)^2}}$$

$$d = \left| \frac{(\overline{a}_2 - \overline{a}_1) \times \overline{b}}{|\overline{b}|} \right| \text{(For parallel lines)}$$

Plane

1. Distance of the point(x_1 , y_1 , z_1) from the plane ax + by + cz + d = 0

$$D = \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}}$$

2. Angle between plane & line: Plane = ax + by + cz + d = 0

Line
$$=$$
 $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$
 $\sin \theta$ $=$ $\frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$

Continuity

Type of Discontinuity:

It is removable discontinuity if $\lim_{x \to a^{-1}} f(x) = \lim_{x \to a^{-1}} f(x) = f(a)$

It is Irremovable discontinuity if $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{-}} f(x) \neq f(a)$

Differentiation

1. Derivative of composite function: (chain rule)

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

- 2. Logarithmic Differentiation When $y = [f(x)]^{g(x)}$ then solve problem by taking log on both sides
- 3. Derivative of parametric function: If x = f(t) & y = g(t) then

$$\frac{dx}{dt} = f'(t) \& \frac{dy}{dt} = g'(t)$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$

4. Higher Order Derivatives:

If
$$y = f(x)$$
 then

$$\frac{dy}{dx} = f'(x) \& \frac{d^2y}{dx^2} = f''(x)$$
 Is called second order derivative.

Application of Derivatives

1. Equation of Tangent:

If y = f(x) is equation of curve then slope of tangent at point (x_1, y_1) is

Slope=
$$\left[\frac{dy}{dx}\right]_{(x_1,y_1)} = f'(x)_{at(x_1,y_1)}$$

2. Velocity & Acceleration:

If Displacement of particle = s = f

(t) where t is time then

$$\frac{ds}{dt}$$
 is velocity $\& \frac{d^2s}{dt^2}$ or $\frac{dv}{dt}$ is acceleration.

3. Approximation:

$$f(a+h) \cong h.f'(a) + f(a)$$

4. Maxima & Minima:

For any function f (x)

4.1Find f'(x) & put f'(x) = 0Find roots

$$x = a, x = b$$

4.2. Find f''(x), If f''(x) > 0 then function is minimum at x = a otherwise if f''(x) < 0 then function is maximum at x = a. Here a & b is called stationary pt. of f(x)

Integration

Integration by Parts:

$$1. \int uv \, dx = u \int v \, dx - (dudxvdx)dx$$

$$2.\int e^x [f(x) + f'(x)] dx = e^x \cdot f(x) + c$$

$$3. \int \frac{f'(x)}{f(x)} dx = \log[f(x)] + c$$

$$4. \int [f(x)]^n f'(x) dx$$

$$= \frac{[f(x)]^{n+1}}{(n+1)} + c$$

$$5. \int \sqrt{a^2 - x^2} \, dx$$

$$= \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c$$

$$6. \int \sqrt{x^2 - a^2} \, dx$$

$$= \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left[x + \sqrt{x^2 - a^2} \right] + c$$

$$7. \int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + c$$

$$8. \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$$

$$9. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$$

$$10. \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$$

$$11. \int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left[x + \sqrt{x^2 + a^2} \right] + c$$

$$12. \int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left[x + \sqrt{x^2 - a^2} \right] + c$$

$$13. \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + c$$
Definite Integral

Properties of Definite Integral:

$$1. \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x) dx$$

$$2. \int_{a}^{b} f(x)dx = \int_{a}^{b} f(t) dt$$
$$3. \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x) dx$$
$$+ \int_{c}^{b} f(x) dx,$$

where
$$a < c < b$$

$$4. \int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x) dx$$

$$5. \int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x) dx$$

$$6. \int_{0}^{2a} f(x)dx = \int_{0}^{a} f(x) dx$$

$$+ \int_{0}^{a} f(2a) dx$$

$$7. \int_{-a}^{a} f(x) dx =$$

20afxdx, for even function

= 0 for odd

function

Applications of Definite Integral

1. Area under the curve: Area bounded by curves $y = f(x)or \ x = f(y)$ are given as

$$A = \int_{a}^{b} y dx \text{ or } A = \int_{a}^{b} x dy$$

Distance Formula

If $P(x_1, x_2)$ and $Q(x_2, y_2)$ be two points, then Distance

$$PQ = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$$

Section Formula

1. Internal Division

If $A(x_1, y_1)$ and $B(x_2, y_2)$ be two points and P(x, y) divides line segment AB internally in the ratio m:n then,

$$x = \frac{mx_2 + nx_1}{m+n} \& y = \frac{my_2 + ny_1}{m+n}$$

2. External Division

If $A(x_1, y_1)$ and $B(x_2, y_2)$ be two points and P(x, y) divides line segment AB externally in the ratio m:n then,

$$x = \frac{mx_2 - nx_1}{m - n} & y = \frac{my_2 - ny_1}{m - n}$$

3. Mid Point Formula

If P(x,y) is mid point of $A(x_1,y_1)$ & $B(x_2,y_2)$ then,

$$x = \frac{x_1 + x_2}{2} \& y = \frac{y_1 + y_2}{2}$$

4. Centroid Formula

If P(x,y) is centroid of triangle with vertices $A(x_1,y_1)$, $B(x_2,y_2)$, $C(x_3,y_3)$ then,

$$x = \frac{x_1 + x_2 + x_3}{3} &$$

$$y = \frac{y_1 + y_2 + y_3}{3}$$

Slope Point form

Equation of the line having slope m and passing through (x_1,y_1) is given by,

$$y - y_1 = m(x - x_1)$$

Two Point Form

The Equation of a straight line passing through (x_1,y_1) and

$$(x_2,y_2)$$
 is,
 $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$

Slope intercept form

Y = mx + c where c is y-intercept.

Double intercept form

 $\frac{x}{a} + \frac{y}{b} = 1$ Where a is x- intercept and b is y- intercept.

Normal Form

$$x\cos\alpha + y\sin\alpha = OP$$

Where OP is a distance of origin from straight line AB and α is angle made by perpendicular with positive x-axis.

General equation of the line:

ax+bv+c=0

From this equation slope of $line = \frac{-a}{b}$

X-intercept= $\frac{-c}{a}$, Y-intercept= $\frac{-c}{b}$

Angle between two straight lines

Where $tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$, θ is

angle between two lines and $m_1\&$ m_2 are slopes of two intersecting lines.

Distance of a point from a line

Perpendicular distance of a point $P(x_1,y_1)$ from the line ax+by+c=0 is $=\left|\frac{ax_1+by_1+c}{\sqrt{a^2+b^2}}\right|$

Distance between two parallel lines

Distance between two parallel lines $ax+by+c_1=0 \& ax+by+c_2=0$ is given as

Perpendicular Distance

$$= \left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right|.$$

Circle

Centre radius form

Equation of a circle with centre (h,k) and radius r is given as $(x-h)^2 + (y-k)^2 = r^2$

Diameter form

If $A(x_1,y_1)$ & $B(x_2,y_2)$ are end point of diameter of a circle then equation of a circle is given as, $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$ General equation of a circle: $x^2+y^2+2gx+2fy+c=0$ where centre is (-g,-f) and radious $r=\sqrt{g^2+f^2-c}$

Vectors:

Unit Vector along $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$

Scalar product (dot product) if

$$\begin{split} \vec{a} &= a_1 \vec{\imath} + a_2 \vec{\jmath} + a_3 \vec{k} \,\& \vec{b} \\ &= b_1 \vec{\imath} + b_2 \vec{\jmath} + b_3 \vec{k} \\ then \end{split}$$

$$\vec{a} \bullet \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$$

Cross product

$$\vec{a} = a_1 \vec{\iota} + a_2 \vec{j} + a_3 \vec{k} \&
\vec{b} = b_1 \vec{\iota} + b_2 \vec{j} + b_3 \vec{k} \text{ then}
\vec{a} \bullet \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3
\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\iota} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Differential Equations:

Order & Degree of D.E.: Order is the highest order of derivatives and power of highest order derivative which is free of radicals & fraction is degree.

Formation of Differential Equation:

Order of D.E. depends on arbitrary constants present in the equation. If arbitrary constants are n in numbers then order of D.E. is n.

Probability Distribution:

Expected Value $E(X) = \mu = \sum x_i p_i$ Variance = var $(x) = \sum x_i^2 p_i - \mu^2$ Standard Deviation = $\sigma = \sqrt{var(x)}$

Binomial Distribution

The probability of x successes is $P(X = x) = {}^{n}C_{x} p^{x} q^{n-x}$

Geometric progression:

 t_1, t_1^2, t_1^3 t_1^n nth term is given as $t_n = t_1 r^{n-1}$

Sum of S_n terms for a G.P.

$$S_n = t_1 \left(\frac{1-r^n}{1-r}\right) \text{ for } r < 1$$
$$= t_1 \left(\frac{r^n-1}{r-1}\right) \text{ for } r > 1$$

Arithmetic Mean (A.M.)

If a,b,c are in arithmetic progression then, Arithmetic

Mean= b =
$$\frac{a+c}{2}$$

Geometric mean (G.M.):-

If a,b,c are in G.P. then,

G.M.=
$$b = \pm \sqrt{ac}$$

Harmonic mean (H.M.):-

If a,b,c are in G.P. then,

H.M.= b =
$$\frac{2ac}{a+c}$$

Relation between A.M., G.M. & H. M.

$$(G.M.)^2 = (A.M.) (H.M.)$$

Exponential Series

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$e^{-x} = 1 - \frac{x}{1!} + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \dots$$

Permutations and Combinations

It is a ratio of factorials.

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

Circular Permutation:

The number of circular permutations around a object = (n-1)!

Combinations

It is the selection of 'r' object from 'h'given objects.

$${}^{\mathrm{n}}\mathsf{C}_{\mathrm{r}} = \frac{n!}{r!(n-r)!}$$

Limits

$$\lim_{x \to a} f(x) = f(a)$$

$$\lim_{x \to 0} \left(\frac{a^x - 1}{x}\right) = \log a$$

$$\lim_{x \to 0} \left(\frac{e^x - 1}{x}\right) = \log e = 1$$

$$\lim_{x \to 0} \frac{\log (1 + x)}{x} = \log e = 1$$

$$\lim_{x \to 0} \left(\frac{x^n - a^n}{x - a}\right) = na^{n-1}$$

Limits of trigonometric functions

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \lim_{x \to 0} \frac{\sin kx}{x} = k$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1 \qquad \lim_{x \to 0} \frac{\tan kx}{x} = k$$

Limits of exponential functions

$$\lim_{x \to 0} (1 + mx)^{1/mx} = e$$

$$\lim_{x \to 0} \left(\frac{e^{mx} - 1}{x}\right) = m$$

$$\lim_{x \to 0} \left(\frac{a^{mx} - 1}{x}\right) = m \log a$$

Limits of logarithmic functions

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = loge = 1$$

$$\lim_{x \to 0} \frac{\log(1+mx)}{x} = mloge = m$$

Integration

Integration of some standard functions:-

$$1. \int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$2. \int \frac{dx}{x} = \log x + c$$

$$3. \int e^x dx = e^x + c$$

$$4. \int a^x dx = \frac{a^x}{\log a} + c$$

5.
$$\int \sin x \, dx = -\cos x + c$$

6. $\int \cos x \, dx$
= $\sin x + c$ 7. $\int \sec^2 x \, dx$
= $\tan x + c$
8. $\int \csc^2 x \, dx = -\cot x + c$
9. $\int \sec x \tan x \, dx = \sec x + c$
10. $\int \cot x \, dx = \log(\sin x) + c$
11. $\int \sec x \, dx = \log(\sec x + \tan x) + c$
12. $\int \csc x \, dx = \log(\csc x - \cot x) + c$
13. $\int \csc x \cot x \, dx = -\csc x + c$
Rules of Integration

I) If u and v are two functions of x then

$$\int (u \pm v) dx = \int u \, dx \pm \int v \, dx$$

Conics Different Types of Parabola

Term Type	y ² =4ax	y ² = - 4ax	x ² =4ay	x ² = - 4ay
Focus	S(a,0)	S(-a,0)	S(0,a)	S(0,-a)
Equation of Directrix	x+a=0	x-a=0	y+a=0	y-a=0
Length of latus rectum	4a	4a	4a	4a
End point of latus	(a,2a)	(-a,2a)	(2a,a)	(2a,-a)
rectum	(a,-2a)	(-a,-2a)	(-2a,a)	(-2a,-a)
Axis of symmetry	x-axis	x-axis	y-axis	y-axis
Equation of axis	y=0	y=0	x=0	x=0
Tangent of vertex	y-axis	y-axis	x-axis	x-axis

Different Types of Ellipse

71 1		
Term Type	$\begin{vmatrix} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\\ (a > b) \end{vmatrix}$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(b > a)$
Length of axis	Major axis=2a Minor axis=2b	Major axis=2b Minor axis=2a
Equation of axis	Major axis->y=0 Minor axis->x=0	Major axis->x=0 Minor axis->y=0
Focus	S(ae,0) S1(-ae,0)	S(0,be) S1(0,-be)
Endpoint of latus rectum	$L^{1}(ae, \frac{b^{2}}{a})$ $L^{1}(ae, \frac{-b^{2}}{a})$	$L^1(\frac{a^2}{b}, be)$, $L^1(\frac{a^2}{b}, -be)$
Relation between	b2=a2(1-e2)	a2=b2(1-e2)

a,b,e		
Eccentricity	$e = \sqrt{\frac{a^2 - b^2}{a^2}}$	$e = \sqrt{\frac{b^2 - a^2}{b^2}}$
Equation of matrix	$x = \pm \frac{a}{e}$	$y = \pm \frac{b}{e}$
Length of latus	2b ²	2a ²
rectum	a	b

Types of Hyperbola

	1	1	
Term Type	Standard	Congugate	
Term Type	Hyperbola	Hyperbola	
Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{h^2} - \frac{x^2}{a^2} = 1$	
		5	
Co-ordinates of Foci	S(ae,0)	S(0,be)	
co oramates or roci	S1(-ae,0)	S1(0,-be)	
Eccentricity	$\sqrt{a^2 + b^2}$	$\sqrt{a^2-b^2}$	
Lecentricity	e =	e = 	
Equation of directrices	$x = \pm ae$	$y = \pm be$	
Distance	2a	2b	
between directrices	e	e	
Length of	2b ²	2a ²	
latus-rectum	a	b	
Length of	2a	2b	
transverse axis	Zd	20	
Length of conjugate	2b	2a	
axis	20	2.0	