Description of Scattering Object

A perfect electrically conducting (PEC) complex aircraft model with open inlet and exhaust ducts.

Length Scale and Frequency Range

The problems of interest cover a range of ~64x in physical length scale and 1024x in frequency; the ranges are logarithmically sampled to yield 99 scattering problems. Because the aircrafts are PEC, there are only 17 + 13 unique scattering problems in Problem Set IVC. In these problems, the model sizes are in the range $0.007 \le L/\lambda_0 \le 510$, where λ_0 is the free-space wavelength.

Interesting Features

- 1. The logarithmic sampling is distorted along the size axis for the smallest model: the smallest Open-Duct PRIME aircraft has L=9.0116'' (instead of $L\approx9.0843''$). The sampling is also distorted along the frequency axis: scattering from the smallest aircraft at frequencies $f \in \{10, 20, 40, 80, 160, 320, 640, 1280, 2560, 1280,$ 2580, 5120, 7000, 10240} MHz are included in the problem set. These distortions are because of publicly available measurement data [1] and add 13 unique scattering problems to the set.
- 2. The model cannot be described sufficiently with a few equations, drawings, or pictures [1]; it presents modeling, meshing, and reproducibility challenges.
- 3. This model is similar to that in problem set IV-A (PEC Closed-Duct PRIME aircraft model) [2], except that the engine intake and exhaust entrances are opened and curved ducts are introduced.

Quantities of Interest

Radar cross section (RCS) definition

$$\sigma_{vu}\left(\theta^{s},\phi^{s},\theta^{i},\phi^{i}\right) = \lim_{R \to \infty} 4\pi R^{2} \frac{\left|\hat{v}\left(\theta^{s},\phi^{s}\right) | \mathbf{E}^{\text{scat}}\left(\theta^{s},\phi^{s}\right)\right|^{2}}{\left|\hat{u}\left(\theta^{i},\phi^{i}\right) | \mathbf{E}^{\text{inc}}\left(\theta^{i},\phi^{i}\right)\right|^{2}} :$$

$$\sigma_{vu,dB}\left(\theta^{s},\phi^{s},\theta^{i},\phi^{i}\right)=10\log_{10}\sigma_{vu}$$

: RCS in dB (dBsm)

$$\sigma_{vu,dB}^{TH}\left(\theta^{s},\phi^{s},\theta^{i},\phi^{i}\right) = \max(\sigma_{vu,dB},TH_{vu,dB}) - TH_{vu,dB} \qquad : \text{Thresholded RCS}$$

2. Compute back-scattered $\sigma_{\theta\theta,\mathrm{dB}}$ and $\sigma_{\phi\phi,\mathrm{dB}}$ (the VV- and HH-RCS in dB) at $N_{\phi} = 361$ scattering directions.

Performance Measures

Error Measure: Simulation errors shall be quantified using

$$avg.err_{uu,dB}^{TH} = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sigma_{uu,dB}^{TH} \left(\phi^{s} \right) - \sigma_{uu,dB}^{\text{ref},TH} \left(\phi^{s} \right) \right| d\phi^{s} \approx \frac{1}{N_{\phi}} \sum_{n=1}^{N_{\phi}} \left| \sigma_{uu,dB}^{TH} \left(\phi^{s} \right) - \sigma_{uu,dB}^{\text{ref},TH} \left(\phi^{s} \right) \right|$$
 (dB) for $u \in \{\theta, \phi\}$

where $TH_{_{uu,\mathrm{dB}}} = \max_{_{a^{\mathrm{s}}}} \sigma_{_{uu,\mathrm{dB}}}^{\mathrm{ref}} - 80 \; \mathrm{(dB)}$. This error measure discounts errors in RCS values below TH .

Cost Measure: Simulation costs shall be quantified using observed wall-clock time and peak memory/core $t_{
m main}^{
m wall}$ (s) and $mem_{
m main}^{
m maxcore}$ (bytes)

as well as the "serialized" CPU time and total memory requirement

$$t_{
m main}^{
m total} = N_{
m proc} imes t_{
m main}^{
m wall}$$
 (s) and $mem_{
m main}^{
m max} = N_{
m proc} imes mem_{
m main}^{
m maxcore}$ (bytes)

Here, $N_{\rm proc}$ denotes the number of processes used in a parallel simulation. It is expected that results will be reported for at least 2 runs: "Efficient" (small $N_{\rm proc}$) and "Fast" (large $N_{\rm proc}$).

Study 1: Error vs. Cost Sweep

Fix frequency and fix aircraft dimensions. Simulate many error levels (proxy: mesh densities) for 4 cases:

Case 1: f=10 MHz, L=9.0116 in Case 2: f=7 GHz, L=9.0116 in

Case 3: f=10 MHz, $L\approx48.45 \text{ ft}$ (581.3927 in) Case 4: f=320 MHz, $L\approx48.45 \text{ ft}$ (581.3927 in)

It's recommended to simulate as many error levels (mesh densities) as possible. 3-5 error levels is typical. A typical error-vs.-cost study will consist of 4x3-5=12-20 simulations.

Study 2: Frequency Sweep

Fix aircraft dimensions and error level (proxy: mesh density). Simulate many frequencies for 4 cases:

Case 1: $L \approx 18.52$ in, error level 1 (coarsest mesh) Case 2: $L \approx 48.45$ ft, error level 1 (coarsest mesh)

Case 3: $L \approx 18.52$ in, error level 2 (finer mesh) Case 4: $L \approx 48.45$ ft, error level 2 (finer mesh)

Frequencies shall be chosen as $f \in \{10, 20, 40, ..., 5120, 10240\}$ MHz. It's recommended to simulate as many frequencies as possible. A full frequency-sweep study will consist of 4x11=44 simulations.

Study 3: Size Sweep

Fix frequency and error level (proxy: mesh density). Simulate many sizes for 4 cases:

Case 1: f=10 MHz, error level 1 (coarsest mesh) Case 2: f=320 MHz, error level 1 (coarsest mesh)

Case 3: f=10 MHz, error level 2 (finer mesh) Case 4: f=320 MHz, error level 2 (finer mesh)

Dimensions shall be chosen as $L \in \{9.0116, 18.1685, 36.3370, ..., 290.6963, 581.3927\}$ in. It's recommended to simulate as many sizes as possible. A full size-sweep study will consist of 4x7=28 simulations.

Reference Quantities of Interest

The following RCS data are made available in the benchmark to enable participants to calibrate their simulators:

7 RCS measurement results corresponding to the smallest aircraft (L=9.0116 in) at frequencies $f \in \{2560, 2580, 5120, 7000, 10240\}$ MHz. These measurements were made using three aircraft scale models [1]: one was of size L=9.0116 in and the other two were scaled up 2x and 4x in all dimensions. These data are provided for ϕ^i sampled every 0.25^o .

5 RCS simulation results for the smallest aircraft at the above 5 frequencies found by using the ARCHIE-AIM code, a frequency-domain FFT-accelerated integral-equation solver developed at UT Austin [3]-[5].

References

- [1] A. Maicke *et al.*, "A benchmark airplane model with ducts," in *Proc. USNC-URSI Radio Science Meeting*, July 2022.
- [2] J. T. Kelley, A. Maicke, D. A. Chamulak, C. C. Courtney, and A. E. Yılmaz, "Adding a reproducible airplane model to the Austin RCS Benchmark Suite," in *Proc. Applied Comp. Electromagnetics Society (ACES) Symp.*, July 2020.
- [3] M. F. Wu, G. Kaur, and A. E. Yılmaz, "A multiple-grid adaptive integral method for multi-region problems," *IEEE Trans. Antennas Propag.*, vol. 58, no. 5, pp. 1601-1613, May 2010.
- [4] F. Wei and A. E. Yılmaz, "A more scalable and efficient parallelization of the adaptive integral method part I: algorithm," *IEEE Trans. Antennas Propag.*, vol. 62, no.2, pp. 714-726, Feb. 2014.
- [5] J. W. Massey, V. Subramanian, C. Liu, and A. E. Yılmaz, "Analyzing UHF band antennas near humans with a fast integral-equation method," in *Proc. EUCAP*, Apr. 2016.