Quiz #3

Security and Privacy Sept. 27, 2018

Name:	Student Number:		
1. Using session keys to perform encryption/decryption of messages is to			
(A) better protect the interchange ke		32 (60%)	
(B) make encryption and decryption	n faster	13 (25%)	
(C) alternate the use of session and	interchange keys	1 (2%)	
(D) make key management easier		4 (8%)	
(E) none of the above		3 (5%)	
2. In secret key based key exchange protocols, the use of a random number in a			
message almost always serves	the purpose of	•	
(A) naming the message		2 (4%)	
(B) specifying the type of the messa	nge	0	
(C) relating messages to each other	so as to identify attacking messages	49 (92%)	
(D) counting the number of message	es during key exchange	2 (4%)	
(E) none of the above		0	
3. In public key based key exchange, the main challenge for establishing a session			
key is how to	•		
(A) protect the session key		10 (19%)	
(B) protect the privacy key		6 (11%)	
(C) generate the correct private-pub	lic key pair	6 (11%)	
(D) deliver the correct public key		31 (59%)	
(E) none of the above		0	
4. In public key based key exchange, key is used to encrypt the session key.			
(A) sender's private		0	
(B) sender's public		5 (9%)	
(C) receiver's private		19 (36%)	
(D) receiver's public		29 (55%)	
(E) none of the above		0	
5. A public key in a certificate is certified by a CA through encryption using			
(A) the public key of the CA		8 (15%)	
(B) the private key of the CA		44 (83%)	
(C) a shared secret key		0	
(D) the private key that corresponds	to the public key	0	
(E) none of the above		1 (2%)	
6. PKI (public key infrastructure) is a common mechanism for			
(A) distributing public keys in the fe	orm of certificates	52 (98%)	
(B) exchanging session keys		1 (2%)	
(C) encrypting and decrypting mess	ages	0	
(D) protecting private keys		0	
(E) none of the above		0	

7. The purpose of a standard, such as X.509 for PKI, is to	·		
(A) develop the best solution to solve a technical problem	1 (2%)		
(B) demonstrate that there exists a solution to a problem	1 (2%)		
(C) force developers to follow the same way of solving a problem	22 (41%)		
(D) ensure the interoperability of solutions to the same problem	28 (53%)		
(E) none of the above	1 (2%)		
8. A user may not be able to immediately accept a certificate signed by a CA that			
is different from his/her own CA mainly because			
(A) the two CAs would never communicate with each other	1 (2%)		
(B) the user may not yet know the public key of the CA that signs the certificate			
	41 (78%)		
(C) there is no way for the user to accept the certificate	1 (2%)		
(D) the user cannot possibly accept a certificate issued by another CA	10 (18%)		
(E) none of the above	0		
9. Secret key based cryptography CANNOT provide digital signature because			
(A) secret keys are only used for protecting the confidentiality of messages			
	6 (11%)		
(B) digital signature doesn't require encryption	0		
(C) digital signature doesn't involve any key	1 (2%)		
(D) every secret key is shared by nature and is thus not unique	41 (78%)		
(E) none of the above	5 (9%)		

Honor list (in alphabetical order): 3 (6%)

王亦凯 徐天元 于天宇

Absentees (in alphabetical order): 1 (2%)

吳瑀