Live presentation

VISUAL DATA EXPLORATION

Dataset: Korea Center for Disease and Control data on Covid-19

Detect import variables

confirmed

released

deceased

test

negative

Time dataset

Are there correlations we should be trying to understand?

Though need to be careful not to engage in p-hacking

Detect import variables

Weather + Time + SearchTrend

Avg_temp not very helpful unless we have data throughout seasons

Get insights

Time Gender									
	date	time	sex	confirmed	deceased				
0	2020-03-02	0	male	1591	13				
1	2020-03-02	0	female	2621	9				
2	2020-03-03	0	male	1810	16				

Time Age

	date	time	age	confirmed	deceased
0	2020-03-02	0	0s	32	0
1	2020-03-02	0	10s	169	0
2	2020-03-02	0	20s	1235	0

Time Age

	date	time	age	confirmed	deceased
0	2020-03-02	0	0s	32	0
1	2020-03-02	0	10s	169	0
2	2020-03-02	0	20s	1235	0

1. Basic visualization

Test underlying assumptions

Time Age								
	date	time	age	confirmed	deceased			
0	2020-03-02	0	0s	32	0			
1	2020-03-02	0	10s	169	0			
2	2020-03-02	0	20s	1235	0			

Time_age.groupby('age').sum()

Time period: [2020-03-02, 2020-06-30]

Time Age

Confirmed cases compared to decesead cases

chart.resolve_scale(y='independent')

Time_age.groupby('age').sum()

Time period: [2020-03-02, 2020-06-30]

Time Age


```
norm = alt.Chart(time_bar).mark_bar(color=blue_
).transform_fold(
    ['confirmed', 'deceased'],
    as_=['situation', 'cases']
).encode(
    alt.Y('cases:Q', stack='normalize'),
    alt.X('age'),
    alt.Color('situation:N',
    scale=alt.Scale(range=[blue_, maize_]))
dec_text = norm.mark_text(
    align='center', dy=-7, color=maize_
).encode(alt.Text('deceased'))
(norm+dec_text).configure_axis(grid=False
).configure_view(strokeWidth=0
).properties(width=500, height = 400
).configure_axis(titleFontWeight=100)
```

Time_age.groupby('age').sum()

Time period: [2020-03-02, 2020-06-30]

2. Advanced visualization choropleth

Case									
	case_id	province	city	group	infection_case	confirmed	latitude	longitude	
0	1000001	Seoul	Yongsan-gu	True	Itaewon Clubs	139	37.538621	126.992652	
1	1000002	Seoul	Gwanak-gu	True	Richway	119	37.48208	126.901384	
2	1000003	Seoul	Guro-gu	True	Guro-gu Call Center	95	37.508163	126.884387	

Visualize confirmed cases across districts

Detecting outliers

- Source a shapefile of districts of South Korea;
- Use geopandas to create choropleth

COVID-19 confirmed cases density per district

In this viz, we encode the number of confirmed cases as color saturation.

The darker the color, the more confirmed cases in a district.

Source a shapefile of districts of South Korea;

6000

- 5000

4000

- 3000

- 2000

- 1000

Use geopandas to create choropleth

COVID-19 confirmed cases density per district

In this viz, we encode the number of confirmed cases as color saturation.

The darker the color, the more confirmed cases in a district.

```
fp = '/datasets/capstone/591CE/Choropleth/data/KOR_adm1.shp'
map_df = qpd.GeoDataFrame.from_file(fp)
case_4merge = case.groupby('province')[['confirmed']].sum()
map_df = map_df.set_index('NAME_1').join(case_4merge).reset_index()
map_df.rename(columns={'index': 'province'}, inplace=True)
fig, ax=plt.subplots(1, figsize=(20,9))
ax.axis('off')
ax.annotate('Dataset: Case.csv',
            xy=(0.6, 0.05),
            xycoords='figure fraction',
            fontsize=12.
            color='#555555')
map_df['coords'] = (map_df['geometry']
                    .apply(lambda x: x.representative_point().coords[:]))
map_df['coords'] = [coords[0] for coords in map_df.coords]
for idx, row in map_df.iterrows():
    plt.annotate(text=row['NAME_1'], xy=row['coords'], fontsize=9,
                 color='darkslategrey', horizontalalignment='center')
map_df.plot(column = 'confirmed', cmap='Blues', ax=ax,
            linewidth=1, edgecolor=blue_, legend=True);
plt.title('COVID-19 confirmed cases density per district',
             fontdict={'fontsize':'15','fontweight':'3', 'color': blue_});
```

Expressiveness problem

Range in number of confirmed cases is too large and resulting choropleth doesn't communicate much aside from the highest affected district.

COVID-19 confirmed cases density per district

Detect outliers and anomalies

A simple bar chart expresses the proportion of cases across districts.

It also shows the disparity in number of confirmed cases, explaining why a choropleth is not helpful in this situation.

COVID-19 confirmed cases density per district

2b. Advanced visualization time series

Time									
	date	time	test	negative	confirmed	released	deceased		
0	2020-01-20	16	1	0	1	0	0		
1	2020-01-21	16	1	0	1	0	0		
2	2020-01-22	16	4	3	1	0	0		

```
time_new = (
    time
    .set_index('date')
    .diff()
    .dropna()
    .reset_index()
)
```

```
alt.Chart(time_new).mark_line(
    color=blue_
).encode(
    y='confirmed',
    x='date'
).properties(height=350, width=450)
).configure_axis(grid=False)
```


Time

Time

3 day rolling average for confirmed cases and released patients

Thank you!