2 ベクトルの回転と複素数の積

平面ベクトル $m{x}=\left(egin{array}{c}x\\y\end{array}\right)$ を別の平面ベクトル $m{x}'=\left(egin{array}{c}x'\\y'\end{array}\right)$ に移す変換があったとするとき, x' と y' が x,y の 1 次式

$$\begin{cases} x' = ax + by \\ y' = cx + dy \end{cases}$$

で表されるならば、この変換を 1 次変換という。また、行列 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ をこの 1 次変換の表現行列と呼ぶ。

演習 2.1 平面ベクトルを角 θ だけ回転する変換を考える.

- (1) 基本ベクトル $e_1=\begin{pmatrix}1\\0\end{pmatrix},\,e_2=\begin{pmatrix}0\\1\end{pmatrix}$ を角 θ だけ回転したベクトルを $e_1',\,e_2'$ とするとき, これらを θ を用いて表せ.
- (2) 平面ベクトル $m{x}=\left(egin{array}{c} x \\ y \end{array}
 ight)$ を角 heta だけ回転したベクトルを $m{x}'=\left(egin{array}{c} x' \\ y' \end{array}
 ight)$ とするとき、

$$\boldsymbol{x}' = x\boldsymbol{e}_1' + y\boldsymbol{e}_2'$$

となることを図示せよ.

- (3) 上記により、角 θ の回転が 1 次変換であることが分かるので、その表現行列を求めよ.
- (4) 角 θ_1 回転の後に角 θ_2 回転を行うことと,角 $\theta_1+\theta_2$ 回転を行うことが同じであることを用いて、三角関数の加法定理を証明せよ.

複素数 z の偏角を θ とすると, z は

$$z = |z|(\cos\theta + \sqrt{-1}\sin\theta) \ (= |z|e^{\sqrt{-1}\theta})$$

と書ける(最後はオイラーの公式による). このような複素数の書き方を極形式と呼ぶ.

演習 2.2 (1) $z_1 = |z_1|(\cos\theta_1 + \sqrt{-1}\sin\theta_1), z_2 = |z_2|(\cos\theta_2 + \sqrt{-1}\sin\theta_2)$ とするとき、 三角関数の加法定理を用いて

$$z_1 z_2 = |z_1||z_2|\{\cos(\theta_1 + \theta_2) + \sqrt{-1}\sin(\theta_1 + \theta_2)\} \quad (= |z_1||z_2|e^{\sqrt{-1}(\theta_1 + \theta_2)})$$

が成り立つことを示せ.

(2)
$$\frac{1+\sqrt{-1}}{\sqrt{2}}$$
, $\frac{-1+\sqrt{-3}}{2}$, $\sqrt{3}-\sqrt{-1}$ を極形式で表して,

$$\left(\frac{1+\sqrt{-1}}{\sqrt{2}}\right)^{100}$$
, $\left(\frac{-1+\sqrt{-3}}{2}\right)^{100}$, $(\sqrt{3}-\sqrt{-1})^4$

を求めよ.

(3) 3 乗して -1 になる複素数をすべて求めよ.

演習 2.3~c を一つの複素数とする.平面ベクトル $x=\begin{pmatrix}x\\y\end{pmatrix}$ に対し,これに対応する複素数 $z=x+y\sqrt{-1}$ と c との積 cz をとり,この cz に対応する平面ベクトルを x' とする.

- (1) x を x' に移す変換が 1 次変換であることを示せ.
- (2) $c=\cos\theta+\sqrt{-1}\sin\theta$ とするとき, (1) の変換が演習 2.1 の角 θ 回転と一致することを確かめよ.