KaplanMeier_HeartFailure

Antonio Pano 11/4/2022

https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+record (https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+record

• All 299 patients had left ventricular systolic dysfunction

Initial Variables:

- · age: age of the patient (years)
- anaemia: decrease of red blood cells or hemoglobin since last measure (boolean)
- high blood pressure: if the patient has hypertension (boolean)
- creatinine phosphokinase (CPK): level of the CPK enzyme in the blood (mcg/L)
- diabetes: if the patient has diabetes (boolean)
- · ejection fraction: percentage of blood leaving the heart at each contraction (percentage)
- platelets: platelets in the blood (kiloplatelets/mL)
- sex: woman or man (binary)
- serum creatinine: level of serum creatinine in the blood (mg/dL)
- serum sodium: level of serum sodium in the blood (mEq/L)
- smoking: if the patient smokes or not (boolean)
- · time: follow-up period (days)
- [target] death event: if the patient deceased during the follow-up period (boolean)

```
library(skimr)
## Warning: package 'skimr' was built under R version 4.2.2
library(ggplot2)
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(tidyr)
library(survival)
library(survminer)
## Warning: package 'survminer' was built under R version 4.2.2
## Loading required package: ggpubr
## Warning: package 'ggpubr' was built under R version 4.2.2
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
##
##
      myeloma
```

```
library(partykit)

## Warning: package 'partykit' was built under R version 4.2.2

## Loading required package: grid

## Warning: package 'libcoin'

## Warning: package 'libcoin' was built under R version 4.2.2

## Loading required package: mvtnorm

library(coin)

## Warning: package 'coin' was built under R version 4.2.2

library(survminer)
library(flexsurv)

## Warning: package 'flexsurv' was built under R version 4.2.2
```

Loading in the data

Creating Left Ventricular Ejection Fraction Groups set by Cardiology Experts (https://www.ncbi.nlm.nih.gov/books/NBK459131/). Rounding for averages instead of only using data for men and women.

Data summary

Name	HF
Number of rows	299
Number of columns	14
Column type frequency:	
factor	7
numeric	7
Group variables	None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
anaemia	0	1	FALSE	2	0: 170, 1: 129
diabetes	0	1	FALSE	2	Abs: 174, Pre: 125
sex	0	1	FALSE	2	Mal: 194, Fem: 105
smoking	0	1	FALSE	2	0: 203, 1: 96
DEATH_EVENT	0	1	FALSE	2	0: 203, 1: 96
hypertension	0	1	FALSE	2	Abs: 194, Pre: 105
EF_Condition	0	1	FALSE	4	Mod: 126, Sev: 93, Mil: 41, Nor: 39

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
age	0	1	60.83	11.89	40.0	51.0	60.0	70.0	95.0	
creatinine_phosphokinase	0	1	581.84	970.29	23.0	116.5	250.0	582.0	7861.0	-
ejection_fraction	0	1	38.08	11.83	14.0	30.0	38.0	45.0	80.0	_=
platelets	0	1	263358.03	97804.24	25100.0	212500.0	262000.0	303500.0	850000.0	
serum_creatinine	0	1	1.39	1.03	0.5	0.9	1.1	1.4	9.4	■
serum_sodium	0	1	136.63	4.41	113.0	134.0	137.0	140.0	148.0	
time	0	1	130.26	77.61	4.0	73.0	115.0	203.0	285.0	

Correlation

Time and Serum Creatinine have a correlation to Serum Sodium of 0.15 & 0.19, respectively.

```
cormat <- HF %>% select(where(is.numeric)) %>% cor() %>% round(2)
melted_cormat <- reshape2::melt(cormat)

ggplot(data = melted_cormat, aes(x=Var1, y=Var2, fill=value)) +
    geom_tile() +
    geom_text(aes(Var2, Var1, label = value), color = "white", size = 4) +
    theme(axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.x = element_text(angle = 15, vjust = 0.8)
    )</pre>
```


Choosing to grab distributions based on having hypertension— what's traditionally seen as a good indicator of heart failure.

Doing so to look at, specifically, Ejection Fraction right after to see if there is correlation.

```
HF %>% filter(DEATH_EVENT==0) %>%
purrr::keep(is.numeric) %>%
gather() %>%
ggplot(aes(value)) +
facet_wrap(~ key, scales = "free") +
geom_density()
```



```
HF %>% filter(DEATH_EVENT==0) %>%
purrr::keep(is.numeric) %>%
gather() %>%
ggplot(aes(value)) +
facet_wrap(~ key, scales = "free") +
geom_density()
```


 $Comparing \ \ creatinine_phosphokinase \ \ to \ Men \ \& \ Women-those \ \ who \ smoke \ and \ those \ \ who \ do \ not.$

• Noticing that the average creatinine_phosphokinase is higher for non-smokers.

```
ggplot(HF, aes(x=sex, y=platelets, fill=sex)) +
geom_bar(position = "dodge", stat="summary", fun="mean") +
scale_y_continuous(labels = scales::label_number(suffix = "k", scale = 1e-3)) +
ggtitle("Mean Platelets for Sexes")
```

Mean Platelets for Sexes


```
HF %>% group_by(sex, DEATH_EVENT) %>%
summarize(count = n(), .groups="drop")
```

```
## # A tibble: 4 x 3

## sex DEATH_EVENT count

## <fct> <fct> <int>
## 1 Female 0 71

## 2 Female 1 34

## 3 Male 0 132

## 4 Male 1 62
```

```
ggplot(HF, aes(x=smoking, y=creatinine_phosphokinase, fill=sex)) +
geom_bar(position = "dodge", stat="summary", fun="mean") +
ggtitle("Creatinine Phosphokinase Avg on Smokers & Non-Smokers")
```

Creatinine Phosphokinase Avg on Smokers & Non-Smokers

- Finding out that for those diabetic, plateletes are ensured to reduce as you age.
- For those who aren't diabetic, plateletes generally stay the same and potentially, increase by a marginal amount.

Plateletes are incredibly important. Having too few plateletes can lead to internal bleeding in intestines or stroke.

```
ggplot(HF, aes(x=age, y=platelets,color=diabetes)) + geom_point() +
geom_smooth(method='lm', se = FALSE)
```

`geom_smooth()` using formula 'y ~ x'

ggplot(HF, aes(x=sex, y=platelets)) + geom_col()

Kaplan - Maeier Curve

• We can see we have remaining cases in which the person did was not declared deceased due to the ending of the curve not dropping down to 0%.

```
# Won't directly go from factor to numeric.
HF$DEATH_EVENT = as.numeric(as.character(HF$DEATH_EVENT))
# Predicting Survival without using any other variables besides Time.
fit <- survfit(Surv(time, DEATH_EVENT)~1, data=HF)</pre>
# Calling model itself returns:
# n:num of individuals
# nevent: number of decease events
# rmean*: no idea!
fit
## Call: survfit(formula = Surv(time, DEATH_EVENT) ~ 1, data = HF)
##
##
          n events median 0.95LCL 0.95UCL
## [1,] 299
                96
                      NA
# Calling the summary returns the hand calculations used to graph the curve.
# P((s0)): returns probabilty of surviving after `time`.
# P(1): No idea!
summary(fit)
```

	Call:	survfit	(formula	a = Surv(1	time, DEA	ATH_EVENT) ~ :	1, data	a = HF)
##	time	n.risk	n.event	survival	std.err	lower 95% CI	upper	95% CI
##	4	299	1		0.00334	0.990	~PPC1	1.000
##	6	298	1	0.993	0.00471	0.984		1.000
##	7	297	2		0.00664	0.974		1.000
##	8 10	295 293	2		0.00811	0.964 a 938		0.996 a 982
##	10 11	293 287	6 2		0.01135 0.01222	0.938 0.930		0.982 0.977
##	13	284	1		0.01263	0.925		0.975
##	14	283	2		0.01340	0.917		0.970
##	15	281	2	0.936	0.01412	0.909		0.964
##	20	278	2		0.01480	0.901		0.959
##	23	275	2		0.01545	0.893		0.954
##	24 26	273 272	1		0.01575 0.01663	0.889 0.877		0.951 0.943
##	27	269	1		0.01691	0.873		0.940
##	28	268	2		0.01745	0.866		0.934
##	29	266	1		0.01771	0.862		0.931
##	30	264	4	0.882	0.01869	0.846		0.920
##	31	259	1		0.01893	0.843		0.917
##	32	258	1		0.01916	0.839		0.914
##	33 35	257 254	2		0.01961	0.831 0.837		0.908 a 905
##	38	254 253	1		0.01983 0.02004	0.827 0.823		0.905 0.902
##	40	252	1		0.02025	0.823		0.899
##	41	251	1		0.02046	0.816		0.896
##	42	250	1		0.02066	0.812		0.893
##	43	249	3	0.841	0.02124	0.801		0.884
##	44	246	1		0.02143	0.797		0.881
##	45	245	1		0.02161	0.793		0.878
##	50	244	1		0.02179	0.789		0.875
##	55 59	241 240	1 1		0.02197 0.02215	0.786 0.782		0.872 0.869
##	60	239	2		0.02250	0.782		0.863
##	61	236	1		0.02267	0.771		0.859
##	64	234	1		0.02283	0.767		0.856
##	65	233	2	0.803	0.02316	0.759		0.850
##	66	231	1		0.02332	0.755		0.847
##	67	230	1		0.02348	0.752		0.844
##	72	227	1		0.02364	0.748		0.841
##	73 77	225 217	2 1		0.02394	0.740 0.736		0.834 0.831
##	77	217	1		0.02411 0.02427	0.735		0.831
##	82	207	1		0.02444	0.732		0.824
##	88	194	1		0.02464	0.724		0.821
##	90	189	2		0.02504	0.715		0.813
##	95	180	1		0.02526	0.711		0.810
##	96	175	1		0.02548	0.706		0.806
##	100	173	1		0.02571			0.802
##	109	159 155	1		0.02597	0.696 0.691		0.798 0.794
##	111 113	155 152	1 1		0.02625 0.02652	0.691 0.685		0.794
##	115	152	1		0.02679	0.680		0.785
##	126	136	1		0.02713			0.780
##	129	135	1		0.02746	0.668		0.776
##	130	134	1		0.02777	0.662		0.771
##	135	132	1		0.02808	0.656		0.766
##	150	118	1		0.02848	0.649		0.761
##	154	117	1		0.02886	0.643		0.756
##	162	116	1		0.02923			0.751
##	170 171	115 114	1 1		0.02959 0.02993	0.629 0.623		0.745 0.740
##	171	114	2		0.03059	0.610		0.740
##	180	106	2		0.03128	0.596		0.719
##	193	86	1		0.03183	0.587		0.712
##	196	83	1		0.03238			0.706
##	198	79	1		0.03297	0.569		0.699
##	207	71	1	0.622	0.03368	0.559		0.692
##	214	53	1		0.03503	0.545		0.683
##	235	37	1		0.03776	0.524		0.673
##	241	33	1	0.576	0.04068	0.501		0.661

plot(fit, xlab= "Time", ylab="%Alive = S(t)", main = "KM-Model")

NEXT KM

plot(stree)

The ~ 1 is our way of Letting R know that we aren't using any x variables. Just time and whether event occured which are both y variabes. fit2 <- survfit(Surv(time, DEATH_EVENT) ~ 1 , data=HF)

plot(fit2, xlab= "Time", ylab="%Alive = S(t)", main = "KM-Model $_2$ ")

KM-Model _ 2

stree <- ctree(Surv(time, DEATH_EVENT) ~ ., data = HF)</pre>

Dropping categorial Ejection Fraction.

HF <- HF %>% select(-EF_Condition)

yea <- ctree(Surv(time, DEATH_EVENT) ~ ., data = HF)

plot(yea)</pre>


```
K <- HF %>%
    filter(serum_creatinine <= 1.8, ejection_fraction > 25, age > 79)

# This one is best.
pred_k_surv <- survfit(Surv(time, DEATH_EVENT) ~ 1, data = K)

# The reason this still works is bc it's running KM at the end.
# the 'tree' part of it all isn't executing bc it doesn't find any variable that is # worth of being split on!
pred_k_tree <- ctree(Surv(time, DEATH_EVENT) ~ ., data = K)</pre>
pred_k_surv
```

```
## Call: survfit(formula = Surv(time, DEATH_EVENT) ~ 1, data = K)
##
## n events median 0.95LCL 0.95UCL
## [1,] 14 10 81 30 NA
```

```
summary(pred_k_surv)
```

```
## Call: survfit(formula = Surv(time, DEATH_EVENT) ~ 1, data = K)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
   13
        14 1 0.929 0.0688 0.8030
##
         13 1 0.857 0.0935 0.6921
   14
                                             1.000
##
   24
         12 1 0.786 0.1097
                                   0.5977
                                              1.000
            1 0.714 0.1207
##
    26
         11
                                   0.5129
                                              0.995
##
    30
         10
                2
                    0.571 0.1323
                                   0.3630
                                              0.899
                   0.500 0.1336
               1
##
    72
          8
                                   0.2961
                                              0.844
               1 0.429 0.1323
         7
##
   90
                                   0.2341
                                             0.785
##
   109
       5 1 0.343 0.1307
                                   0.1624
                                             0.724
   130
       3 1 0.229 0.1277
                                   0.0765
                                             0.683
```

```
summary(pred_k_surv, times=c(20, 45, 60, 80, 100, 10*(11:15)))
```

```
## Call: survfit(formula = Surv(time, DEATH_EVENT) ~ 1, data = K)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
                                         1.000
##
   20
       12 2 0.857 0.0935 0.6921
##
   45
               4 0.571 0.1323
                                 0.3630
                                            0.899
         8
##
    60
         8
               0
                   0.571 0.1323
                                 0.3630
                                            0.899
                  0.500 0.1336
         7
##
   80
               1
                                  0.2961
                                            0.844
        6 1 0.429 0.1323
                               0.2341
   100
##
                                           0.785
##
   110
        4 1 0.343 0.1307 0.1624
                                           0.724
##
   120
        4 0 0.343 0.1307 0.1624
                                           0.724
##
   130
       3 1 0.229 0.1277 0.0765
                                          0.683
       2 0 0.229 0.1277
                               0.0765
##
   140
                                           0.683
              0 0.229 0.1277
                                  0.0765
##
   150
                                            0.683
```

```
plot(pred_k_surv)
```


pred_k_tree

```
##
## Model formula:
## Surv(time, DEATH_EVENT) ~ age + anaemia + creatinine_phosphokinase +
## diabetes + ejection_fraction + platelets + serum_creatinine +
## serum_sodium + sex + smoking + hypertension
##
## Fitted party:
## [1] root: 90.000 (n = 14)
##
## Number of inner nodes: 0
## Number of terminal nodes: 1
```

summary(pred_k_tree)

```
## Length Class Mode
## 1 1 constparty list
```

plot(pred_k_tree)

Cox Regression

• KM will make the curve based on event & time but that's all. We need to include the rest of the variables.

```
cox <- coxph(Surv(time, DEATH_EVENT) ~ ., data=K)

## Warning in coxph.fit(X, Y, istrat, offset, init, control, weights = weights, :
## Ran out of iterations and did not converge</pre>
```

сох

```
## Call:
## coxph(formula = Surv(time, DEATH_EVENT) ~ ., data = K)
##
## coef exp(coef) se(coef) z p
## age -9.732e+01 5.439e-43 1.768e-01 -550.516 <2e-16
## anaemia1 9.8857e+02 Inf 4.931e+02 1.999 0.0456
## creatinine_phosphokinase -8.907e-02 9.148e-01 1.779e-03 -550.75 <2e-16
## diabetesPresent -2.878e+02 1.005e-125 5.834e+02 -0.493 0.6218
## ejection_fraction -5.116e-01 5.996e-01 2.256e+01 -0.023 0.9819
## platelets -1.795e-04 9.998e-01 1.489e-05 -12.059 <2e-16
## serum_creatinine -2.513e+03 0.000e+00 1.474e+03 -1.705 0.0882
## serum_sodium -1.302e+02 2.878e-57 1.286e-01 -1012.645 <2e-16
## sexMale -5.871e+02 1.012e-255 1.414e+00 -415.178 <2e-16
## smoking1 4.498e+02 2.147e+195 4.784e+02 0.940 0.3472
## hypertensionPresent 1.543e+02 9.996e+66 1.414e+00 109.088 <2e-16
##
## Likelihood ratio test=41.25 on 11 df, p=2.179e-05
## n= 14, number of events= 10
```

```
summary(cox)
```

```
## coxph(formula = Surv(time, DEATH_EVENT) ~ ., data = K)
##
     n= 14, number of events= 10
##
##
                                   coef exp(coef) se(coef) z Pr(>|z|)
                             -9.732e+01 5.439e-43 1.768e-01 -550.516 <2e-16
## age
                            9.857e+02 Inf 4.931e+02 1.999 0.0456
## anaemia1
## creatinine phosphokinase -8.907e-02 9.148e-01 1.779e-03 -50.075 <2e-16
## diabetesPresent -2.878e+02 1.005e-125 5.834e+02 -0.493 0.6218
## hypertensionPresent
                            1.543e+02 9.996e+66 1.414e+00 109.088 <2e-16
## age
                            ***
## anaemia1
## creatinine_phosphokinase ***
## diabetesPresent
## ejection_fraction
## platelets
## serum_creatinine
## serum sodium
## sexMale
## smoking1
## hypertensionPresent
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
                             exp(coef) exp(-coef) lower .95 upper .95
## age
                             5.439e-43 1.839e+42 3.846e-43 7.691e-43
                                 Inf 0.000e+00 2.537e+08 Inf
## anaemia1
## creatinine_phosphokinase 9.148e-01 1.093e+00 9.116e-01 9.180e-01
## diabetesPresent 1.005e-125 9.946e+124 0.000e+00 Inf
                          5.996e-01 1.668e+00 3.761e-20 9.557e+18
## ejection_fraction
## platelets 9.998e-01 1.000e+00 9.998e-01 9.998e-01 ## serum_creatinine 0.000e+00 Inf 0.000e+00 2.216e+163 ## serum_sodium 2.878e-57 3.475e+56 2.237e-57 3.702e-57 ## sexMale 1.012e-255 9.883e+254 6.329e-257 1.618e-254 ## smoking1 2.147e+195 4.658e-196 1.203e-212 Inf ## hypertensionPresent 9.996e+66 1.000e-67 6.253e+65 1.598e+68
## Concordance= 1 (se = 0)
## Likelihood ratio test= 41.25 on 11 df, p=2e-05
## Wald test = 1512798 on 11 df, p=<2e-16
## Score (logrank) test = 21.08 on 11 df, p=0.03
```

NEXT STEPS: RELAXING RESTRICTIONS FOR THE TREE AND STARTING WITH OTHER PREDICTORS OVER SERUM_CREATININE