Tres aproximaciones para explorar relaciones no lineales entre variables

¿Estamos desacoplados con Argentina y Brasil?

Silvia Rodríguez-Collazo

Proyecto de investigación aplicada Fondo María Viñas FMV 1 2017 1 136688 ANII

Instituto de Estadística (IESTA)

Departamento de Métodos Cuantitativos

Facultad de Ciencias Económicas y Administración

Motivación

En los últimos tiempos se ha incrementado la preocupación sobre el alcance de los vínculos entre nuestra economía y la de Argentina y Brasil.

Pasada la profunda crisis de 2002, Uruguay ha emprendido una senda de crecimiento que no se ha quebrado ante las crisis que han vivido sus vecinos. La hipótesis de "desacoplamiento" se ha manejado pública y académicamente.

En ese marco es que surgen la pregunta sobre si ese desacople se manifiesta mediante un quiebre del vínculo lineal de largo plazo como que se estimó en el pasado.

Evolución de los IVF de los PIBs de Argentina, Brasil y Uruguay 1980.01-2018.01

Evolución de los IVF de los PIBs de Argentina, Brasil y Uruguay 1996.01-2018.01

Se recorren tres alternativas metodológicas

- Se estudia la posible existencia de quiebres estructurales mediante la aplicación del test de Bai-Perron (1998),como posible fuente de no linealidad.
- ¿Existe una relación de largo plazo entre la dinámica de los niveles de actividad de Argentina, Brasil y Uruguay de tipo no lineal ? Se aplica el test de Breitung (2001) (este test no requiere especificar un modelo).
- Otra posibilidad es que el vínculo no lineal entre las variables pudiera darse a partir de un ajuste al equilibrio de largo plazo <u>no simétrico</u>. Se aplica la metodología de Enders *et al* (2001) en la que se contrasta la existencia de cointegración y se especifica un MCE con posible ajuste asimétrico.

I) Test de Bai-Perron (1998): El modelo y los estimadores

• Se realiza la regresión lineal múltiple con m quiebres y m+1 regímenes:

$$y_t = x_t^{'} \beta + z_t^{'} \delta_j + \mu_t$$
 con t= T_{j-1} +1,.... T_j para j= 1,m+1

Donde $x_t(px1)$, $z_t(qx1)$ son vectores de covariables β y δ_i son los vectores de coeficientes, μ_t las perturbaciones.

Los regresores se dividen en dos grupos:

- las variables cuyos parámetros no varían entre regímenes (xt) y
- las que tienen coeficientes diferentes entre regímenes (z_t). Los puntos de quiebre se tratan como desconocidos.

El objetivo es estimar los coeficientes junto con los puntos de quiebre cuando hay T observaciones. Se enfocan en cambios discretos.

- La varianza de μ_t no tiene porqué ser constante, se permiten quiebres en la varianza pero si ocurren deben darse en el mismo momento que los quiebres en los otros parámetros de la regresión.
- El método de estimación está basado en el principio de MCO.

Test de Bai-Perron

- Para cada m-ésima partición $(T_1,....T_m)$ denotada como $\{T_j\}$ la estimación de β y δ_j se obtiene minimizando la suma de cuadrados de los residuos. Por lo que se obtiene un conjunto de parámetros para cada partición.
- Sea S_T (T₁,....T_m) la suma de los residuos al cuadrado.
- La minimización se realiza sobre todas las particiones tal que $(T_i T_{i-j}) = \operatorname{argmin} S_T(T_1, \dots, T_m)$, es el mínimo de entre todas las particiones tal que $(T_i T_{i-i}) \ge q$.
- El punto de quiebre estimado es el mínimo global de la función objetivo.
- Los parámetros estimados son los asociados a la correspondiente partición.
- Bai y Perron (2003) presentan un algoritmo basado en el principio de programación dinámica para estimar los puntos de quiebre como minimizadores globales de la suma de cuadrados de los residuos.

Método para calcular el mínimo global

En una muestra de T observaciones, el máximo número de segmentos posibles es T(T+1)/2 Calculando el modelo para cada segmentos posible, la cantidad de minimizaciones es T².

La estimación del modelo para cada uno de estos segmentos tiene asociado un resultado de suma de residuos al cuadrado (SRC).

La SCR global es una combinación lineal del resultado obtenido para diferentes segmentos que completan toda la muestra.

<u>Segmentos relevantes</u>:

- Al exigir un número h de observaciones entre cada quiebre, todos los segmentos con una menor cantidad de observaciones dejan de ser relevantes. También dejan de ser relevantes todos los segmentos que comiencen entre la segunda observación y la observación h, independientemente de su dimensión, puesto que no permiten la existencia de un segmento adicional del tamaño mínimo requerido (h) anterior a ellos, y por lo tanto no sería posible lograr una combinación de segmentos que ocupe toda la muestra.
- En la búsqueda de *m* de quiebres (*m*+1 segmentos), dejan de ser relevantes los segmentos muy largos (aquellos que las observaciones de la muestra no incluidas en él, no alcancen para contener los restantes *m* segmentos de tamaño menor o igual a *h*).

Una vez que se obtienen la SCR para cada segmento relevante, se busca la combinación lineal de ellos, que ocupando toda la muestra, de lugar a la menor SCR, el **mínimo global**.

Quiebre estructural puro

La regresión estaría dada por:

- $y_t = z_t^{'} \delta_j + \mu_t$ con t= T_{j-1} +1,.... T_j para j= 1,m+1 Con z_t (qx1) y δ_i vector de coeficientes y μ_t las perturbaciones.
- En este caso, se estima $\hat{\delta}$ y $\hat{\mu}$ y la suma de cuadrados $S_T(T_1,....,T_m)$ mediante MCO segmento por segmento. Toda la información relevante está contenida en los valores de las S_T calculados recursivamente, SSR(i,j).
- Una vez calculados SSR(i,j) en los segmentos relevantes, mediante programación dinámica se evalúa cuál partición es la que hace mínima la SCR.
- El procedimiento comienza evaluando un quiebre por sobre todas las submuestras, luego dos quiebres y así sucesivamente hasta llegar al máximo de quiebres especificado.

Quiebre estructural parcial

- El método para obtener un mínimo global no puede ser aplicado directamente como en el caso de quiebre estructural puro pues no se puede estimar β hasta no conocer cuál es la partición adecuada.
- Se utiliza en este caso un procedimiento iterativo: se calcula la SCR para cada parámetro $\hat{\delta}$ de cada sub-muestra, con β fijo, luego con los $\hat{\delta}$ fijos se calcula el mínimo para obtener los β .
- La eficiencia del método depende de que se seleccionen los valores iniciales adecuados para los betas en cada iteración.

Contraste de un número fijo de quiebres

 H_0) no hay quiebres estructurales (m=0)

 H_a) m=k quiebres.

El insumo es la estimación del modelo de partición óptima con *m* quiebres.

Se toman las $(T_1,...,T_k)$ particiones con $T_i = [T\lambda_i]$ con (i=1,...,k) y $\lambda = T_i/T$.

Sea R la matriz de restricciones tal que $(R\delta)' = (\delta_1' - \delta_2', \delta_k' - \delta_{k+1}')$

Se define
$$F_T(\lambda_1,....\lambda_k; q) = \frac{1}{T} \left(\frac{T - (k+1)q - p}{kq} \right) \delta' R' (RV \widehat{(\hat{\delta})}R')^{-1} R \hat{\delta}$$

 $\widehat{V(\delta)}$ es la matriz de varianzas y covarianzas estimada de $\widehat{\delta}$ (robusta a la correlación serial y heteroscedasticidad)

Maximizar $F_T(k;q) = F_T(\lambda_1, \lambda_k; q)$, es equivalente a minimizar la SCR, donde $\widehat{\lambda_1} \widehat{\lambda_k}$ minimizan globalmente la SCR.

La distribución asintótica depende del tamaño mínimo de las h particiones, $\varepsilon = h / T$.

Se Rechaza H₀ (inexistencia de quiebres), cuando la SCR obtenida de la estimación del modelo con quiebres estructurales es significativamente menor que la obtenida para el período completo.

Test de Bai-Perron, test de doble máximo

Test de quiebres global

 H_0) $\delta_0 = \delta_1 = \dots \delta_{l+1}$ (no existencia de quiebre estructural, m=0)

H₁) Número desconocido de quiebres (con un límite superior m=M)

Sea DmaxF_T(M, q, a_1, \dots, a_M) = max a_m sup F_T($\lambda_1, \dots, \lambda_m; q$)

pesos fijos (a₁,.....a_M), un candidato : pesos iguales a la unidad

UDmaxFT(M, q, a1,.....aM) = max am sup FT(λ 1,.... λ m; q)

Donde $F_T(\lambda_1,....,\lambda_m;q)$ es la suma de m variables aleatorias chi cuadrado con q grados de libertad.

Para q fijos los vc de los test individuales decrecen cuando m aumenta, (p-valores caen) lo que puede llevar a una pérdida de potencia del test cuando el n° de quiebres aumenta.

Alternativamente: Pesos distintos a la unidad

Sea $c(q,\alpha,m)$ el valor crítico asintótico del test a un nivel de significación α .

Los pesos se definen como $a_m = c(q, \alpha, 1)/c(q, \alpha, m)$, $a_1 = 1$.

WDmaxF_T(M, q) = max= $c(q,\alpha,1)/c(q,\alpha,m)$ x sup F_T($\lambda_1,...,\lambda_m;q$)

Test ℓ quiebres versus $\ell+1$ quiebres, sup $F_T(\ell+1/\ell)$.

H₀) ℓ quiebres

 H_1) $\ell + 1$ quiebres

El método consiste en la aplicación de $\ell + 1$ test donde H_0 es la inexistencia de quiebres contra H_1 un cambio simple.

El test es aplicado a cada segmento que contiene T_{i-1} observaciones con $i=1,....\ell+1$ y las particiones se calculan a partir del algoritmo de minimización global de suma de cuadrados.

Se rechaza H_0 a favor del modelo con ($\ell+1$) quiebres, si el mínimo valor de la SCR es más pequeño que SCR del modelo con ℓ quiebres.

• Los autores recomiendan aplicar de forma combinada los test anteriores. Realizando primeramente el test de doble máximo para determinar la existencia de quiebres y luego aplicar el test secuencial supF(l/l+1) para estimar el número de quiebres.

Modelo estimado

- Se estiman cada una de las ecuaciones del VAR en diferencias separadamente y se aplica el test a cada una de ellas separadamente.
- Se parte de un VAR en primeras diferencias que incluye el IVF de los PIB de Uruguay, Argentina y Brasil. Se incluyen *dummies* estacionales, una indicatriz de para Pascua y cuatro rezagos en cada ecuación.
- Se permite que los errores tengan diferente distribución entre los períodos de quiebre
- Se estima la ecuación incluyendo la corrección por heteroscedasticidad de la matriz de varianzas y covarianzas (HAC)
- Se realiza el test considerando que los coeficientes que pueden modificarse entre los quiebres puedan ser todos o solamente la constante y los coeficientes de las *dummies* estacionales (modelo de quiebres parcial). Hip: cambio metodológico en el PIB de Argentina
- Los resultados a los que se llega <u>son</u> diferentes en un caso y en otro.

Resultados preliminares

<u>Primer especificación</u>: los coeficientes que pueden modificarse entre los quiebres son la constante y los coeficientes de las *dummies* estacionales.

Test global

Se encuentran quiebres para Argentina y Brasil y no para Uruguay.

URUGUAY

Bai-Perron tests of 1 to M globally determined breaks Sample: 1996Q1 2018Q1 Included observations: 88 Breaking variables: DS1 DS2 DS3 C Break test options: Trimming 0.20, Max. breaks 3, Sig. level 0.05 Sequential F-statistic determined breaks: Significant F-statistic largest breaks: UDmax determined breaks: 0 Scaled Weighted Critical Breaks F-statistic F-statistic F-statistic Value 1 3.325950 13.30380 13.30380 15.67 2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	Multiple breakpoint tests						
Included observations: 88 Breaking variables: DS1 DS2 DS3 C Break test options: Trimming 0.20, Max. breaks 3, Sig. level 0.05 Sequential F-statistic determined breaks: Significant F-statistic largest breaks: UDmax determined breaks: O WDmax determined breaks: Scaled Weighted Critical Breaks F-statistic F-statistic F-statistic Value 1 3.325950 13.30380 13.30380 15.67 2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	Bai-Perron tests of 1 to M globally determined breaks						
Breaking variables: DS1 DS2 DS3 C Break test options: Trimming 0.20, Max. breaks 3, Sig. level 0.05 Sequential F-statistic determined breaks: 0 Significant F-statistic largest breaks: 0 UDmax determined breaks: 0 WDmax determined breaks: 0 WDmax determined breaks: 0 Scaled Weighted Critical Breaks F-statistic F-statistic Value 1 3.325950 13.30380 13.30380 15.67 2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 ** Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	Sample: 1996Q1 2018Q	Sample: 1996Q1 2018Q1					
Sequential F-statistic determined breaks: 0 Significant F-statistic largest breaks: 0 O O O O O O O O O	Included observations: 8	88					
Sequential F-statistic determined breaks: 0 Significant F-statistic largest breaks: 0 UDmax determined breaks: 0 WDmax determined breaks: 0 Breaks F-statistic F-statistic Value 1 3.325950 13.30380 13.30380 15.67 2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. *** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	Breaking variables: DS1	DS2 DS3 C					
Significant F-statistic largest breaks: 0 UDmax determined breaks: 0 WDmax determined breaks: 0 WDmax determined breaks: 0 Scaled Weighted Critical Breaks F-statistic F-statistic Value 1 3.325950 13.30380 13.30380 15.67 2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. *** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	Break test options: Trim	ming 0.20, N	/lax. breaks 3, Sig. le	vel 0.05			
UDmax determined breaks: Scaled Weighted Critical	Sequential F-statistic de	termined bro	eaks:		0		
Scaled Weighted Critical	Significant F-statistic larg	gest breaks:			0		
Breaks F-statistic F-statistic F-statistic Value 1 3.325950 13.30380 13.30380 15.67 2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	UDmax determined brea	aks:			0		
Breaks F-statistic F-statistic Value 1 3.325950 13.30380 13.30380 15.67 2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	WDmax determined bre	eaks:			0		
Breaks F-statistic F-statistic Value 1 3.325950 13.30380 13.30380 15.67 2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4							
1 3.325950 13.30380 13.30380 15.67 2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4			Scaled	Weighted	Critical		
2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	Breaks F-s	statistic	F-statistic	F-statistic	Value		
2 2.854180 11.41672 13.82535 12.94 3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4							
3 2.438983 9.755932 14.18140 10.78 UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	1	3.325950	13.30380	13.30380	15.67		
UDMax statistic 13.30380 UDMax critical value** 15.79 WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	2	2.854180	11.41672	13.82535	12.94		
WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	3	2.438983	9.755932	14.18140	10.78		
WDMax statistic 14.18140 WDMax critical value** 17.04 * Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4							
* Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	UDMax statistic					15.79	
** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4	WDMax statistic	WDMax statistic 14.18140			e**	17.04	
** Bai-Perron (Econometric Journal, 2003) critical values. Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4							
Estimated break dates: 1: 2008Q3 2: 2004Q4, 2010Q4							
1: 2008Q3 2: 2004Q4, 2010Q4	** Bai-Perron (Econometric Journal, 2003) critical values.						
1: 2008Q3 2: 2004Q4, 2010Q4	Estimated break dates:						
2: 2004Q4, 2010Q4							
·	·						
3: 2000Q3, 2004Q4, 2010Q4							

ARGENTINA

Multiple breakpoint tests							
Bai-Perron tests of 1 to M globally determined breaks							
Sample: 1996Q1 2018Q1							
Included observ	ations: 88						
Breaking variabl	es: DS1 DS2 DS3 C						
Break test optio	ns: Trimming 0.20,	Max. breaks 3, Sig.	level 0.05				
Sequential F-sta	tistic determined b	reaks:		3			
Significant F-sta	tistic largest breaks	•		3			
UDmax determi	ned breaks:			1			
WDmax determ	ined breaks:			1			
		Scaled	Weighted	Critical			
Breaks	F-statistic	F-statistic	F-statistic	Value			
1 *	8.484858	33.93943	33.93943	15.67			
2 *	6.213826	24.85531	30.09912	12.94			
3 *	5.310641 21.24256 30.87857 10.7						
UDMax statistic	*	33.93943	UDMax critical valu	e**	15.79		
WDMax statistic	*	33.93943	WDMax critical valu	ıe**	17.04		
* Significant at the 0.05 level.							
** Bai-Perron (Econometric Journal, 2003) critical values.							
Estimated break dates:							
1: 2004Q3							
2: 2000Q4, 200	2: 2000Q4, 2005Q1						
3: 2000Q4, 2005Q1, 2009Q2							

BRASIL

Multiple breakpoint tests							
Bai-Perron tests of 1 to M globally determined breaks							
Sample: 19960	Sample: 1996Q1 2018Q1						
Included obser	rvations: 88						
Breaking varia	bles: DS1 DS2 DS3	С					
Break test opti	ions: Trimming 0.2	.0, Max. breaks 3,	Sig. level 0.05				
Sequential F-st	tatistic determined	d breaks:		3			
Significant F-st	atistic largest brea	aks:		3			
UDmax detern	nined breaks:			1			
WDmax deteri	mined breaks:			2			
		Scaled	Weighted	Critical			
Breaks	F-statistic	F-statistic	F-statistic	Value			
1 *	7.563999	30.25600	30.25600	15.67			
2 *	6.534178	26.13671	31.65087	12.94			
3 *	4.493296	17.97318	26.12614	10.78			
UDMax statisti	UDMax statistic* 30.2560			lue**	15.79		
WDMax statistic*		31.65087	WDMax critical value**		17.04		
* Significant at the 0.05 level.							
** Bai-Perron (Econometric Journal, 2003) critical values.							
Estimated break dates:							
1: 2013Q3							
2: 2000Q4, 20	013Q3						
3: 2000Q4, 20	005Q3, 2014Q1						

URUGUAY

Multiplebreak point tests					
Bai-Perrontests of L+1 vs. L s					
Sample: 1996Q1 2018Q1					
Includedobservations: 88					
Breaking variables: C DLOG(I	PIB_UY(-1)) DLOG(PIB_U	IY(-2))			
DLOG(PIB_UY(-3)) DLOG	G(PIB_UY(-4)) DLOG(PIB_	_AR(
-1)) DLOG(PIB_AR(-2)) D	LOG(PIB_AR(-3))				
DLOG(PIB_AR(-4)) DLOG	G(PIB_BR(-1)) DLOG(PIB_	BR(
-2)) DLOG(PIB_BR(-3)) D	LOG(PIB_BR(-4)) DS1 DS	52 DS3			
Non-breaking variables: D(PS	SC)				
Break test options: Trimming	g 0.20, Max. breaks 3, Sig	g. level 0.05			
Test statisticsemploy HAC co	variances (Bartlett kerne	el,			
Newey-West fixedband	width)				
Sequential F-statistic determ	nined breaks:		3		
		Scaled	Critical		
Break Test	F-statistic	F-statistic	Value**		
0 vs. 1 *	13.61714	217.8742	26.38		
1 vs. 2 *	5.296706	84.74729	28.56		
2 vs. 3 *	10.59372	169.4995	29.62		
* Significant at the 0.05 level.					
** Bai-Perron (EconometricJournal, 2003) criticalvalues.					
Break dates:					
	Sequential	Repartition			
1	2003Q2	2001Q3			
2	2009Q2	2007Q3			
3					

ARGENTINA

Multiplebreak point to					
Bai-Perron tests of L+					
Sample: 1996Q1 2018Q1					
Includedobservations	: 88				
Breaking variables: C	DLOG(PIB_UY(-1)) DI	-OG(PIB_UY(-2))			
DLOG(PIB_UY(-3)) DLOG(PIB_UY(-4))	DLOG(PIB_AR(
-1)) DLOG(PIB_AF	R(-2)) DLOG(PIB_AR(-	-3))			
DLOG(PIB_AR(-4)) DLOG(PIB_BR(-1)) I	DLOG(PIB_BR(
-2)) DLOG(PIB_BF	R(-3)) DLOG(PIB_BR(-	4)) DS1 DS2			
DS3					
Non-breaking variable	es: D(PSC)				
Break test options: Tr	mming 0.20, Max. b	reaks 3, Sig. level 0	,05		
Test statisticsemploy	HAC covariances (Ba	rtlett kernel,			
Newey-West fixe	dbandwidth)				
Sequential F-statistico	leterminedbreaks:		3		
·		Scaled	Critical		
Break Test	F-statistic	F-statistic	Value**		
Break Test	F-statistic	F-statistic	Value**		
Break Test 0 vs. 1 *	F-statistic 12.18571	F-statistic 194.9713	Value** 26.38		
0 vs. 1 *	12.18571	194.9713	26.38		
0 vs. 1 * 1 vs. 2 *	12.18571 6.097280	194.9713 97.55648	26.38 28.56		
0 vs. 1 * 1 vs. 2 *	12.18571 6.097280 25.89327	194.9713 97.55648	26.38 28.56		
0 vs. 1 * 1 vs. 2 * 2 vs. 3 *	12.18571 6.097280 25.89327 05 level.	194.9713 97.55648 414.2924	26.38 28.56		
0 vs. 1 * 1 vs. 2 * 2 vs. 3 * * Significant at the 0.0	12.18571 6.097280 25.89327 05 level.	194.9713 97.55648 414.2924	26.38 28.56		
0 vs. 1 * 1 vs. 2 * 2 vs. 3 * * Significant at the 0.0	12.18571 6.097280 25.89327 05 level.	194.9713 97.55648 414.2924	26.38 28.56		
0 vs. 1 * 1 vs. 2 * 2 vs. 3 * * Significant at the 0.0 ** Bai-Perron (Econor)	12.18571 6.097280 25.89327 05 level.	194.9713 97.55648 414.2924	26.38 28.56		
0 vs. 1 * 1 vs. 2 * 2 vs. 3 * * Significant at the 0.0 ** Bai-Perron (Econor)	12.18571 6.097280 25.89327 05 level. metricJournal, 2003)	194.9713 97.55648 414.2924 criticalvalues.	26.38 28.56		
0 vs. 1 * 1 vs. 2 * 2 vs. 3 * * Significant at the 0.0 ** Bai-Perron (Econor	12.18571 6.097280 25.89327 05 level. metricJournal, 2003) Sequential	194.9713 97.55648 414.2924 criticalvalues.	26.38 28.56		
0 vs. 1 * 1 vs. 2 * 2 vs. 3 * * Significant at the 0.0 ** Bai-Perron (Econor Break dates:	12.18571 6.097280 25.89327 05 level. metricJournal, 2003) Sequential 2003Q4	194.9713 97.55648 414.2924 criticalvalues.	26.38 28.56		

BRASIL

Multiplebreak point tests							
Bai-Perrontests of L+1 vs. L sequentially determined breaks							
Sample: 1996Q1 2018Q1							
Includedobservations: 88							
Breaking variables: C DLOG(I	PIB UY(-1)) DLOG(PIB U	JY(-2))					
DLOG(PIB_UY(-3)) DLOG	G(PIB_UY(-4)) DLOG(PIB	_AR(
-1)) DLOG(PIB_AR(-2)) D	DLOG(PIB_AR(-3))						
DLOG(PIB_AR(-4)) DLOG	G(PIB_BR(-1)) DLOG(PIB_	_BR(
-2)) DLOG(PIB_BR(-3)) D	DLOG(PIB_BR(-4)) DS1 D	S2					
DS3							
Non-breaking variables: D(P	SC)						
Break test options: Trimming	g 0.20, Max. breaks 3, Si	g. level 0.05					
Test statisticsemploy HAC co	•	el,					
Newey-West fixedband	width)						
Sequential F-statisticdeterm	inedbreaks:		3				
		Scaled	Critical				
Break Test	F-statistic	F-statistic	Value**	26.20			
0 vs. 1 *	15.02827	240.4524		26.38			
1 vs. 2 * 2 vs. 3 *	24.98780	399.8048 29.84713		28.56			
2 VS. 3 "	1.865446	29.84713		29.62			
* Significant at the O.O.F. love	* Cinnificant at the OOF land						
* Significant at the 0.05 level.							
** Bai-Perron (EconometricJournal, 2003) criticalvalues.							
Break dates:							
Break dates.	Sequential	Repartition					
1	2014Q1	2001Q1					
2	2001Q1	2008Q1					
3							

Resultados preliminares

<u>Segunda especificación</u>: los coeficientes que pueden modificarse entre los quiebres son todos excepto Pascua.

Test global

Se encuentran quiebres para Argentina y Brasil y Uruguay.

Test secuencial

Uruguay: 3 quiebres: 2003.02, 2009.02, 2014.01

Argentina: 3 quiebres: 2003.04, 2008.01, 2012.02

Brasil: 3 quiebres: 2014.01,2001.01, 2008.01

Conclusión del test

- Se pueden detectar hasta 3 quiebres estructurales en las relaciones lineales uniecuacionales que recogen la dinámica de corto plazo.
- Una limitación de este resultado es que al aplicar el test sobre una especificación uniecuacional, no se está modelizando la retroalimentación entre las variables, para ello se requeriría la aplicación de un test de quiebres aplicado a una especificación tipo VEC o VAR.
- El test se aplica sobre las variables en su transformación estacionaria, por lo que estos resultados no son concluyentes sobre el quiebre en el vínculo de largo plazo entre las variables.

Comentarios finales

- Test de quiebres estructurales propuesto por Bai-Perron (1998): no se descarta la existencia de 3 quiebres estructurales. Esta evidencia presenta limitaciones dado que se aplica el test sobre una especificación uniecuacional, con lo que no se está modelizando la retroalimentación entre las variables
- Por otro lado el test se aplica sobre las variables en su transformación estacionaria, por lo que estos resultados no son concluyentes sobre el quiebre en el vínculo de largo plazo entre las variables.
- Test de cointegración no lineal propuesto por Breitung (2001):no se descarta la existencia de una relación de largo plazo no lineal.
- Enders et al (2001): no se descarta la existencia de una relación de cointegración con un ajuste al desequilibrio de largo plazo de carácter simétrico.