Goetz Simon Note: 2/20 (score total : 2/20)

+221/1/50+

QCM THLR 4

	Nom et prénom, lisibles : Identifiant (de haut en bas) :
_	
p si p	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases lutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir pluteurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la lus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est as possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les accorrectes pénalisent; les blanches et réponses multiples valent 0. I'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +221/1/xx+···+221/2/xx+.
	Le langage $\{ \triangle^n \triangle^n \mid \forall n \in \mathbb{N} \}$ est
	☐ fini 📵 non reconnaissable par automate ☐ vide 🔀 rationnel
Ç	Le langage $\{\mathfrak{S}^n \mid \forall n \in \mathbb{N}\}$ est
	🌑 non reconnaissable par automate fini 🔲 fini 🔃 rationnel 🔲 vide
	Un langage quelconque set toujours inclus (⊆) dans un langage rationnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle n'est pas nécessairement dénombrable peut avoir une intersection non vide avec son complémentaire Un automate fini qui a des transitions spontanées
	accepte ε \bowtie n'est pas déterministe \square n'accepte pas ε \square est déterministe
	2.6 Si un automate de n états accepte a^n , alors il accepte
	$\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^*$: $p+q \le n \qquad \square \qquad a^{n+1} \qquad \square \qquad a^n a^m$ avec $m \in \mathbb{N}^*$ $\square \qquad (a^n)^m$ avec $m \in \mathbb{N}^*$
	Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ lont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
	\square Il n'existe pas. \boxtimes 2^n \square $\frac{n(n+1)}{2}$ \square $n+1$
	Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression ration- lelle?
	 ☑ Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation. ☐ Thompson, déterminisation, Brzozowski-McCluskey. ☐ Thompson, déterminimisation, évaluation. ☐ Thompson, déterminisation, élimination des transitions spontanées, évaluation. a b
C	Q.9 Déterminiser cet automate. $a, b \xrightarrow{a} a$
	a

Q.10 Comment marche la minimisation de Brzozowski d'un automate \mathcal{A} ?

0/2

2/2

- \Box $T(Det(T(Det(\mathscr{A}))))$
- $\ \ \, \square \ \ \, Det(T(Det(T(Det(\mathcal{A})))))$

Fin de l'épreuve.