Steckschwein mit 512k

Wie wir die 64k-Grenze durchbrechen (wollen)

Warum?

- Warum nicht?
- Mehr RAM ist immer gut
- Vereinfachung Speichersteuerung
- Ein moderner 8bit-Rechner braucht mehr als 64k RAM

- Adressdekodierung in GAL22V10
- Wait-State-Generator in weiterem GAL16V8
- 2x 32kx8 SRAM
- Steuerregister diskret aus 8bit Latch und Buffer
 - Ansteuerung der RAM/ROM-Umschaltung
 - Adressierung der ROM-Bank
- Demultiplexer für weitere CS-Signale

512k - 4 "Slots" a 16k

Einteilung des 64k-Adressraums in 4 Blöcke a 16k

512k – 32 RAM-Pages a 16k

512k RAM

| 16k |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 16k |
| 16k |
| 16k |

16k 32k ROM

512k – 32 RAM-Pages a 16k

512k RAM 16k * 32

81 32k ROM

80

Aufbau der Paging-Register

Aufbau der Paging-Register

7	6	5	4	3	2	1	0		
0 - RAM 1 - ROM	"reserviert"		Bank 0-31						

Aufbau der Paging-Register

7	6	5	4	3	2	1	0
			A18	A17	A16	A15	A14

512k - Selektierung der Pages

- Gesamte Glue-Logik in CPLD Xilinx XC9572 PLCC84
 - Wait-State-Generator
 - 4 Steuerregister
- RAM/ROM-Umschaltung nicht mehr nötig
- 1x 512k x 8 SRAM
- Einsparung weiterer Logikbausteine
 - Generierung getrennter CSW/CSR-Signale im CPLD

Warum Xilinx XC9572?

Nachteile:

- Schon lange abgekündigt
- Schwer zu kriegen
- wenn, dann teuer

Aber:

- Nativ 5V
- Bereits ausreichend inkl. Programmer vorhanden

Vorteile:

- 512k RAM
- Behandlung von RAM und ROM-Pages identisch
- Mehrere Stacks/ZPs möglich
- Flexibel
- Erweiterung auf mehr RAM unkompliziert

Nachteile:

- Relativ "dumm" OS muss verwalten
- Keine richtige MMU, kein Supervisor-Mode o.ä.

512k – und jetzt?

Erstmal Spass haben / Möglichkeiten ausloten

- Hardware SPI
- 3.3V
- Größerer CPLD
- USB

Danke für Euer Interesse

Fragen? Fragen!