Dados do Plano de Trabalho									
	Desenvolvimento de um programa computacional para calibração de parâmetros hidrodinâmicos em aquíferos.								
Modalidade de bolsa solicitada:	PIBIC								
	Modelagem do escoamento de água subterrânea empregando o Método Iterativo do Gradiente Hidráulico com aplicação na Região do Cariri cearense.								

1. OBJETIVOS

1.1 Objetivos Gerais

Tem-se como objetivo geral, desenvolver e aprimorar o procedimento de calibração de parâmetros hidrodinâmicos através da modificação do Método Iterativo do Gradiente Hidráulico (MIGH), em um programa computacional aplicado à modelagem de aqüíferos.

1.2 Objetivos Específicos

- (a) Aprimorar o desenvolvimento de um programa computacional, implementado em linguagem computacional Java, ampliando as rotinas de composição das informações de entrada requeridas pelos modelos de fluxo subterrâneo;
- (b) Implementar a calibração da condutividade hidráulica horizontal em modelos de uma camada e multicamadas, através do Método Iterativo do Gradiente Hidráulico;
- (c) Implementar técnicas estatísticas baseadas em regressão linear para estimativa inicial da matriz de cargas observadas, incorporadas ao Método Iterativo do Gradiente Hidráulico;
- (d) Desenvolver a interface gráfica para entrada de dados no programa de calibração;
- (e) Desenvolver a interface gráfica para a saída de dados do programa de calibração, com a apresentação dos resultados na forma de mapas temáticos, gráficos e tabelas;
- (f) Aplicar o programa computacional a exemplos hipotéticos;
- (g) Elaborar um manual de utilização do programa computacional desenvolvido.

2. METODOLOGIA

Seguido ao entendimento teórico e equacionamento dos fenômenos envolvidos na modelagem e calibração do escoamento subterrâneo vem o desenvolvimento do programa computacional com capacidade de automatizar os cálculos e sistematizar o processo de entrada e saída de dados, utilizando a linguagem computacional Java. A descrição dos métodos empregados e da linguagem de programação, estão apresentados a seguir:

2.1 Calibração de parâmetros hidrodinâmicos: MIGH e Técnicas de Regressão

2.1.1 Método Iterativo do Gradiente Hidráulico – MIGH

No Método Iterativo do Gradiente Hidráulico (MIGH), conforme Guo e Zhang (2000) e Schuster e Araújo (2004) a função objetivo a ser minimizada é:

$$F_{OBJ} = \int_{R} (\nabla h^{calc} - \nabla h^{obs}) \cdot (\nabla h^{calc} - \nabla h^{obs}) dxdy$$
 (2)

Em que:

 ∇h^{obs} : gradiente hidráulico observado [L/L] ∇h^{calc} : gradiente hidráulico calculado [L/L]

R: domínio do fluxo.

Na execução do método, utiliza-se, em lugar do mapa potenciométrico observado gerado por interpolação matemática, um mapa potenciométrico calculado (simulado) a partir das próprias cargas observadas. O procedimento consiste em obter o mapa potenciométrico observado a partir da modelagem do fluxo subterrâneo, tornando invariáveis as cargas observadas em campo.

2.1.2 Utilização de técnicas estatísticas através de regressão para estimativa inicial da matriz de cargas observadas

Adicionalmente, no Método Iterativo do Gradiente Hidráulico, a estimativa inicial da matriz de cargas observadas se apresenta como ponto fundamental para obtenção da convergência eficiente do parâmetro calibrado. Em geral, devido a extensão das áreas simuladas, a quantidade de observações aferidas em campo é insuficiente para determinar uma estimação correta dos parâmetros hidrodinâmicos.

As técnicas de regressão serão aplicadas ao processo de calibração após os ciclos de iterações, baseando-se na relação entre cargas reais observadas e cargas calculadas, portanto, serão inseridas no momento em que os ciclos de iterações atingem o valor ótimo de solução, ampliando a estimativa inicial das cargas consideradas observadas.

2.2 Implementação computacional

O Java oferece uma independência de sistema operacional e de plataforma em geral. Ele utiliza o conceito em que uma camada extra, denominada máquina virtual (*Java Virtual Machine* – JVM), é responsável por traduzir os intuitos de sua aplicação para o sistema operacional utilizado, além de gerenciar memória, *threads*, pilha de execução, etc. (CAELUM, 2015).

Nessa linguagem, os programas são escritos em arquivos-texto com a extensão java. Após a compilação, arquivos .class são gerados. Esses arquivos constituem-se de *bytecodes*, interpretados pela JVM (ASCENIO; CAMPOS, 2007). Assim, um código não necessita ser recompilado se tiver sido compilado por uma JVM. Os *bytecodes* representam um código binário pré-compilado que é interpretado pela JVM para cada plataforma (LIMA, 2007).

Para o desenvolvimento da interface gráfica do programa, deve-se utilizar a linguagem computacional Java, por meio de um ambiente de desenvolvimento (IDE -

Integrated Development Environment) denominada "Netbeans" na versão 8.0.2. A plataforma Netbeans consiste num aplicativo que fornece os serviços como gerenciamento de janelas, menus, configurações e armazenamento.

O desenvolvimento do programa será realizado em etapas, caracterizadas por meio de Módulos, a medida em que se avancem os estudos teóricos dos métodos.

3. CRONOGRAMA DE ATIVIDADES

Para execução do projeto, são requeridos 02 (DOIS) bolsistas. O Bolsista 01 trabalhará no aprimoramento metodológico do processo de calibração e o Bolsista 02 terá suas atividades concentradas na implementação computacional dos métodos. Importante destacar que a equipe deve apresentar integração entre os trabalhos, com complementaridade das atividades.

N°		2019					2020						
		09	10	11	12	01	02	03	04	05	06	07	
AT1: Estudo da linguagem de programação.		X	X	X									
AT2: Implementação do Módulo_FLUXO: fluxo em meio poroso.					X	X							
AT3: Implementação do Módulo_MIGH: calibração de parâmetros hidrodinâmicos.							X	X					
AT4: Implementação, no Módulo_MIGH, das técnicas estatísticas de regressão.									X	X			
AT5: Aplicação em exemplos hipotéticos para aplicação da calibração.										X	X		
AT6: Produção de artigos a serem publicados em eventos e periódicos e elaboração do relatório final da pesquisa												X	

REFERÊNCIAS

ASCENIO, A.F.G.; CAMPOS, E.A.V. **Fundamentos da Programação de Computadores**. 2 ed. São Paulo: CRC Press, 2007.

CAELUM, Java e Orientação a Objetos. Disponível em: <

https://www.caelum.com.br/apostilas>. Acesso em: 27 de maio de 2018.

GUO, X; ZHANG, C.-M.. Hydraulic gradient comparison method to estimate aquifer hydraulic parameters under steady-state conditions. **Ground Water**. v. 38, n. 6, p. 815-826, 2000.

LIMA, G. de A. F. **Análise de desempenho de sistemas distribuídos de grande porte na plataforma Java.** 2007. 91 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal do Rio Grande do Norte, Natal. 2007.

SCHUSTER, H. M. D.; ARAÚJO, H. D. B. Uma formulação alternativa do método iterativo de gradiente hidráulico no procedimento de calibração dos parâmetros hidrodinâmicos do sistema aquífero. **Revista Brasileira de Recursos Hídricos**, v. 9, n. 2, p. 31-37, 2004.