CPUE

Alex J. Benecke

February 22, 2018

${\bf Contents}$

Hypothesis
Explaining Analysis
Problems and Questions About What I Did
Part 1 aov()
1) H_0 : There is no difference in cpe (catch/hour) among years 2013 - 2016
Load and Prepare Data
Test Hypothesis 1
Results H_0 1
2) H_0 : There is no differenct in cpe for quality length (300mm) and larger largemouth bass among
years 2013 - 2016
Load and Prepare Data
Test Hypothesis 2
Results H_0 2
3) H_0 : There is no difference in cpe for largemouth bass smaller than quality length (300mm) among
years 2013 - 2016
Load and Prepare Data
Test Hypothesis 3
Results H_0 3
Part 2 - Repeated Measures Anova with Mixed effects lme()
1) H_0 : There is no difference in cpe (catch/hour) among years 2013 - 2016
Load and Prepare Data
Fit lme() to Test Hypothesis 1
Results H_0 1
2) H_0 : There is no differenct in cpe for quality length (300mm) and larger largemouth bass among
years 2013 - 2016
Load and Prepare Data
Fit lme() to Test Hypothesis 2
Results H_0 2
3) H_0 : There is no difference in cpe for largemouth bass smaller than quality length (300mm) among
years 2013 - 2016
Load and Prepare Data
Fit lme() to Test Hypothesis 3
Results H_0 3
Part 3 - Repeated Measures ANOVA lme(cpe.hr ~ Year + GcatQ + Year*GcatQ)
Load and Prepare Data
Fit lme() to Test All Three Hypothesis
Results Part 3 All Hypothesis

Hypothesis

- 1) H_0 : There is no difference in cpe (catch/hour) among years 2013 2016.
- 2) H_0 : There is no differenct in cpe for quality length (300mm) and larger largemouth bass among years 2013 2016.
- 3) H_0 : There is no difference in cpe for largemouth bass smaller than quality length (300mm) among years 2013 2016.

Explaining Analysis

Analysis is divided into three sections. Part 1 uses aov() to test the three hypothesis. Part 2 uses lme() to test the three hypothesis. part 3 uses lme() with year and gcatQ to test the three hypothesis.

I start out simply using aov() to test differences in CPE (Catch/Hour) between years. I sum cpe by site and year and then take the average for each year regardless of size for H_0 1. I run the anova on the yearly average to avoid artificially inflating my sample size (4 years of data instead of 8 to 12 of sites in each year [Unbalanced number of sites]). For H_0 2 and 3 I divide largemouth bass into two categories quality + (greater than or equal to 300mm) and quality - (< 300 mm). Since sites were no largemouth bass were caught cannot influence size structure I removed zeroes from the data. I used aov() as described earlier and tested for differences between years first for Q+ (H_0 2) and then for Q- (H_0 3) largemouth bass.

I also tried to use a lme() model to test the above hypothesis (Part 2) following the above procedure for preparing my data. The only exception is instead of taking a yearly average I sum by site and used sites as a random effect. I log cpe.hr to try and normalize residuals which seems to mostly work (Especially if I remove zeroes [including zeroes and log(cpe.hr +1) skews residuals terribly]).

In part 3 I ran one lme() model with both a year and a gcatQ variable (Factor, 2 levels Q+ and Q-) to test all three hypothesis at once.

Problems and Questions About What I Did

- 1) Use aov() or lme()?
 - I'm unsure if I did the lme() correctly or if it is necessary. The aov() seems overly simple. Am I doing it right?
- 2) correlation structure for lme()?
 - When fitting the lme() in parts 2 and 3 I cannot specify a correlation structure (don't know how or which one to choose). I don't know if this is necessary?
- 3) pairwise comparison with lme()?
 - The pairwise comparison (Year to Year & Q+ Year to Q- Year) doesn't seem to work?

Note: I am going to remove sites where largemouth bass were not captured because if no larg emouth bass were caught that site can not affect the size structure. I will only do this when comparing gabelhouse length categories.

Part 1 aov()

1) H_0 : There is no difference in cpe (catch/hour) among years 2013 - 2016.

Load and Prepare Data

Load Data

Sum cpe by Site and Year and Display Data

Year	Site	cpe.hr
2014	1	45.378151
2013	2	86.746988
2014	2	87.032967
2015	2	19.169329
2016	2	59.602649
2013	4	58.009479
2014	4	19.933555
2015	4	31.259045
2016	4	48.949320
2015	5	4.225352
2013	6	4.712042
2014	6	21.021898
2015	6	17.716535
2016	6	44.628099
2013	8	38.709677
2014	8	47.787611
2015	8	117.249698
2016	8	166.591422
2013	10	20.571429
2014	10	27.799228
2016	10	5.872757

	**	Q+.	
	Year	Site	cpe.hr
22	2014	11	117.009751
23	2015	11	33.162743
24	2016	11	26.438188
25	2014	12	36.468886
26	2015	12	12.514484
27	2016	12	10.404624
28	2016	13	0.000000
29	2016	14	8.135593
30	2013	15	81.818182
31	2014	15	40.346409
32	2015	15	25.079164
33	2016	15	16.618581
34	2014	16	45.120859
35	2013	18	97.472924
36	2014	18	16.775396
37	2015	18	64.197531
38	2016	18	148.064516
39	2013	19	0.000000
40	2014	19	0.000000
41	2015	19	0.000000
42	2016	19	0.000000

Average cpe by Year

```
(cpeMean <- aggregate(cpe.hr ~ Year, data = cpeSum, FUN = mean))</pre>
```

Test Hypothesis 1

```
aov1 <- aov(cpe.hr ~ Year, data = cpeMean)
summary(aov1)</pre>
```

```
## Year Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 22.66 22.66 0.386 0.598
## Residuals 2 117.49 58.75
```

Mean Catch Per Hour

Results H_0 1

There is no significant difference in CPUE between years $(F_{1,2} = 0.386, p = 0.598)$.

2) H_0 : There is no differenct in cpe for quality length (300mm) and larger largemouth bass among years 2013 - 2016.

Load and Prepare Data

Load Data with Gcat and make Q+ and Q-

```
xtabs(caught ~ gcat + Year, data = gcat)
##
              Year
## gcat
               2013 2014 2015 2016
##
     memorable
                  0
                       0
                            0
                                 0
##
     preferred
                 14
                      18
                           15
                                10
##
                 39
                      57
                           38
                                47
     quality
##
                 38
                      65
                           14
                                53
     stock
##
     substock
                 16
                       3
                           13
                                34
##
     trophy
                  0
                       0
                            0
                                 0
Make Qcat Variable and Data Frame
Qcat <- gcat %>% mutate(gcatQ = mapvalues(gcat, from = c("substock", "stock",
    "quality", "preferred", "memorable", "trophy"), to = c("quality-", "quality-",
    "quality+", "quality+", "quality+", "quality+"))) %>% dplyr::select(Year,
    Site, gcatQ, cpe.hr)
Remove Zeroes
xtabs(cpe.hr ~ Site + Year, data = Qcat)
##
       Year
## Site
              2013
                         2014
                                    2015
                                               2016
##
          0.000000 45.378151
                                0.000000
                                           0.000000
##
         86.746988 87.032967 19.169329
                                          59.602649
     2
##
         58.009479 19.933555 31.259045
                                          48.949320
##
     5
         0.000000
                    0.000000
                               4.225352
                                           0.000000
##
         4.712042 21.021898 17.716535 44.628099
     6
         38.709677 47.787611 117.249698 166.591422
##
     8
##
     10 20.571429 27.799228
                                0.000000
                                           5.872757
##
        0.000000 117.009751 33.162743 26.438188
     11
##
     12 0.000000 36.468886 12.514484 10.404624
##
     13 0.000000
                    0.000000 0.000000
                                           0.000000
         0.000000
                    0.000000
                               0.000000
##
     14
                                           8.135593
##
     15 81.818182 40.346409 25.079164 16.618580
##
     16
        0.000000 45.120859
                                0.000000
                                           0.000000
##
     18 97.472924 16.775396 64.197531 148.064516
                     0.000000
     19
         0.000000
                                0.000000
                                           0.000000
for(i in 1:length(Qcat$cpe.hr)){
  if(Qcat\$cpe.hr[i]==0){
    Qcat$cpe.hr[i] = NA
  } else{
    Qcat$cpe.hr[i] = Qcat$cpe.hr[i]
  }
}
Qcat <- Qcat[!is.na(Qcat$cpe.hr),] ### remove NAs</pre>
Create Data Frame With Only Quality + Fish
Qpls <- Qcat[Qcat$gcatQ == "quality+", ]</pre>
Qpls$gcatQ <- droplevels(Qpls$gcatQ)</pre>
str(Qpls)
```

Site	Year	cpe.hr
1	2014	11.344538
2	2013	23.658269
2	2014	35.604396
2	2016	23.841060
4	2013	23.886256
4	2014	11.960133
4	2015	26.049204
4	2016	17.799753
5	2015	4.225352
6	2014	15.766423
6	2015	3.543307
6	2016	14.876033
8	2013	8.602151
8	2014	23.893805
8	2015	52.110977
8	2016	24.379233
10	2013	8.228571

	Site	Year	cpe.hr
18	10	2014	22.239382
19	10	2016	5.872757
20	11	2014	39.003250
21	11	2015	29.477994
22	11	2016	17.625459
23	12	2014	31.259045
24	12	2015	12.514484
25	12	2016	10.404624
26	15	2013	53.359684
27	15	2014	22.007132
28	15	2015	25.079164
29	15	2016	4.154645
30	16	2014	38.675022
31	18	2013	68.231047
32	18	2014	10.065238
33	18	2015	59.259259
34	18	2016	84.193548

Average cpe for Q+ by Year

```
Qpls.mean <- aggregate(cpe.hr ~ Year, data = Qpls.sum, FUN = mean)
xtabs(cpe.hr ~ Year, data = Qpls.mean)</pre>
```

```
## Year
## 2013 2014 2015 2016
## 30.99433 23.80167 26.53247 22.57190
```

Test Hypothesis 2

```
aov.Qpls <- aov(cpe.hr ~ Year, data = Qpls.mean)
summary(aov.Qpls)</pre>
```

```
## Periduals Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 25.39 25.395 3.094 0.221
## Residuals 2 16.41 8.207
```

Mean Catch Per Hour Quality +

Results H_0 2

There is no significant difference in CPUE for fish > Quality length (300mm) among years 2013 - 2016 ($F_{1,2} = 3.09$, p = 0.221).

3) H_0 : There is no difference in cpe for largemouth bass smaller than quality length (300mm) among years 2013 - 2016.

Load and Prepare Data

Create Q- Data Frame

Year	Site	cpe.hr
2014	1	34.033613
2013	2	63.088718
2014	2	51.428571
2015	2	19.169329
2016	2	35.761589
2013	4	34.123223
2014	4	7.973422
2015	4	5.209841
2016	4	31.149567
2013	6	4.712042
2014	6	5.255475
2015	6	14.173228
2016	6	29.752066
2013	8	30.107527
2014	8	23.893805
2015	8	65.138721

			_
	Year	Site	cpe.hr
17	2016	8	142.212190
18	2013	10	12.342857
19	2014	10	5.559846
20	2014	11	78.006501
21	2015	11	3.684749
22	2016	11	8.812729
23	2014	12	5.209841
24	2016	14	8.135593
25	2013	15	28.458498
26	2014	15	18.339277
27	2016	15	12.463935
28	2014	16	6.445837
29	2013	18	29.241877
30	2014	18	6.710158
31	2015	18	4.938272
32	2016	18	63.870968

Average cpe by Year for Q- fish

```
Qless.mean <- aggregate(cpe.hr ~ Year, data = Qless.sum, FUN = mean)
xtabs(cpe.hr ~ Year, data = Qless.mean)</pre>
```

```
## Year
## 2013 2014 2015 2016
## 28.86782 22.07785 18.71902 41.51983
```

Test Hypothesis 3

```
aov.Qless <- aov(cpe.hr ~ Year, data = Qless.mean)
summary(aov.Qless)</pre>
```

```
## Year 1 59.85 Mean Sq F value Pr(>F)
## Residuals 2 244.73 122.37
```

Mean Catch Per Hour Quality-

Results H_0 3

There is no significat difference in CPUE for fish < Quality length among years 2013 - 2016 ($F_{1,2} = 0.489$, p = 0.557).

End of Part 1

Part 2 - Repeated Measures Anova with Mixed effects lme()

Source for following analysis: $https://rcompanion.org/handbook/I_09.html$

1) H_0 : There is no difference in cpe (catch/hour) among years 2013 - 2016.

Load and Prepare Data

Sum CPE by Site and Year without any gabelhouse length categories.

Site	Year	cpe.hr
1	2014	45.378151
2	2013	86.746988
2	2014	87.032967
2	2015	19.169329
2	2016	59.602649
4	2013	58.009479
4	2014	19.933555
4	2015	31.259045
4	2016	48.949320
5	2015	4.225352
6	2013	4.712042
6	2014	21.021898
6	2015	17.716535
6	2016	44.628099
8	2013	38.709677
8	2014	47.787611
8	2015	117.249698
8	2016	166.591422
10	2013	20.571429
10	2014	27.799228
10	2016	5.872757

	Site	Year	cpe.hr
22	11	2014	117.009751
23	11	2015	33.162743
24	11	2016	26.438188
25	12	2014	36.468886
26	12	2015	12.514484
27	12	2016	10.404624
28	13	2016	0.000000
29	14	2016	8.135593
30	15	2013	81.818182
31	15	2014	40.346409
32	15	2015	25.079164
33	15	2016	16.618581
34	16	2014	45.120859
35	18	2013	97.472924
36	18	2014	16.775396
37	18	2015	64.197531
38	18	2016	148.064516
39	19	2013	0.000000
40	19	2014	0.000000
41	19	2015	0.000000
42	19	2016	0.000000

```
cpeSum2$Site <- factor(cpeSum2$Site)
cpeSum2$Year <- factor(cpeSum2$Year)
str(cpeSum2)</pre>
```

```
## 'data.frame': 42 obs. of 3 variables:
## $ Site : Factor w/ 15 levels "1","2","4","5",..: 1 2 2 2 2 3 3 3 3 4 ...
## $ Year : Factor w/ 4 levels "2013","2014",..: 2 1 2 3 4 1 2 3 4 3 ...
## $ cpe.hr: num 45.4 86.7 87 19.2 59.6 ...
```

Find an initial value for correlation structure.

Note:

I left the code but did not specify a correlation structure in the model.

```
Fit lme() to Test Hypothesis 1
# ?corClasses
cpe.mod <- lme(log(cpe.hr + 1) ~ Year, random = ~1 | Site, data = cpeSum2, method = "REML")
Anova(cpe.mod)
## Analysis of Deviance Table (Type II tests)
##
## Response: log(cpe.hr + 1)
         Chisq Df Pr(>Chisq)
## Year 1.1335 3
                        0.769
cpe.fixed <- gls(log(cpe.hr + 1) ~ Year, data = cpeSum2, method = "REML")</pre>
Anova(cpe.fixed)
## Analysis of Deviance Table (Type II tests)
##
## Response: log(cpe.hr + 1)
##
        Df Chisq Pr(>Chisq)
## Year 3 0.8743
anova(cpe.mod, cpe.fixed)
##
             Model df
                             AIC
                                      BIC
                                              logLik
                                                        Test L.Ratio p-value
                     6 133.9685 143.7940 -60.98426
## cpe.mod
                  1
                  2 5 156.2353 164.4232 -73.11763 1 vs 2 24.26674 <.0001
## cpe.fixed
Looks like the cpe model with random effects of site is better than the model without random effects (AIC =
133.97, 156.24 respectively). There is no significant difference in cpe.hr between years (Analysis of Deviance
Table, X_2 = 1.13, df = 3, pr(>Chisq) = 0.769).
p-value and pseudo R-squared for model
The nagelkerke function can be used to calculate a p-value and pseudo R-squared value for the model.
nagelkerke(cpe.mod, null.mod)
```

```
null.mod <- lme(log(cpe.hr + 1) ~ 1, random = ~1 | Site, data = cpeSum2)</pre>
```

```
## $Models
##
## Model: "lme.formula, log(cpe.hr + 1) ~ Year, cpeSum2, ~1 | Site, REML"
## Null: "lme.formula, log(cpe.hr + 1) ~ 1, cpeSum2, ~1 | Site"
## $Pseudo.R.squared.for.model.vs.null
##
                                Pseudo.R.squared
## McFadden
                                        0.0103350
## Cox and Snell (ML)
                                        0.0293455
## Nagelkerke (Cragg and Uhler)
                                        0.0310872
## $Likelihood.ratio.test
   Df.diff LogLik.diff Chisq p.value
##
         -3
               -0.62548 1.251 0.74081
## $Number.of.observations
##
## Model: 42
```

```
## Null: 42
##
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
##
## $Warnings
## [1] "None"
null.mod2 <- gls(log(cpe.hr + 1) ~ 1, data = cpeSum2)
nagelkerke(cpe.mod, null.mod2)</pre>
```

Very poor R^2 . Also, not sure which pseudo R^2 to use?

Post-hoc Analysis

```
leastsquare = lsmeans(cpe.mod,
                     pairwise ~ Year,
                     adjust="tukey")
                                             ### Tukey-adjusted comparisons
cld(leastsquare,
   alpha
          = 0.05,
   Letters = letters,
                          ### Use lower-case letters for .group
   adjust = "tukey")
                          ### Tukey-adjusted comparisons
## Year
                        SE df lower.CL upper.CL .group
          lsmean
## 2015 2.759999 0.4124325 14 1.582794 3.937204 a
## 2016 2.918502 0.3966558 14 1.786328 4.050676 a
## 2013 3.056283 0.4330887 14 1.820119 4.292447
## 2014 3.078693 0.3966558 14 1.946519 4.210867
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 4 estimates
## P value adjustment: tukey method for comparing a family of 4 estimates
## significance level used: alpha = 0.05
```

Interaction plot

For this plot, we will use the groupwise Mean function to calculate the natural mean of each Instruction x Month combination, along with the confidence interval of each mean with the percentile method.

```
Year n Mean Conf.level Percentile.lower Percentile.upper
## 1 2013 8 48.5
                        0.95
                                          23.8
                                                           73.7
## 2 2014 12 42.1
                        0.95
                                          26.5
                                                           60.1
## 3 2015 10 32.5
                        0.95
                                          14.7
                                                           55.8
## 4 2016 12 44.6
                        0.95
                                          17.2
                                                           78.9
```


Histogram of Residuals

Residuals from a mixed model fit with nlme should be normally distributed. Plotting residuals vs. fitted values, to check for homoscedasticity and independence, is probably also advisable.

Results H_0 1

Comming soon...

2) H_0 : There is no differenct in cpe for quality length (300mm) and larger largemouth bass among years 2013 - 2016.

Load and Prepare Data

Create Q+ Data Frame and Show Data

Qpls.sum %>% arrange(Site, Year)

Site	Year	cpe.hr
1	2014	11.344538
2	2013	23.658269
2	2014	35.604396
2	2016	23.841060
4	2013	23.886256
4	2014	11.960133
4	2015	26.049204
4	2016	17.799753
5	2015	4.225352
6	2014	15.766423
6	2015	3.543307
6	2016	14.876033
8	2013	8.602151
8	2014	23.893805
8	2015	52.110977
8	2016	24.379233
10	2013	8.228571

	Site	Year	cpe.hr
18	10	2014	22.239382
19	10	2016	5.872757
20	11	2014	39.003250
21	11	2015	29.477994
22	11	2016	17.625459
23	12	2014	31.259045
24	12	2015	12.514484
25	12	2016	10.404624
26	15	2013	53.359684
27	15	2014	22.007132
28	15	2015	25.079164
29	15	2016	4.154645
30	16	2014	38.675022
31	18	2013	68.231047
32	18	2014	10.065238
33	18	2015	59.259259
34	18	2016	84.193548

```
Qpls.sum$Site <- factor(Qpls.sum$Site)</pre>
Qpls.sum$Year <- factor(Qpls.sum$Year)</pre>
str(Qpls.sum)
## 'data.frame': 34 obs. of 3 variables:
## \$ Site : Factor  w/ 12  levels "1","2","4","5",..: 1 2 2 2 3 3 3 3 4 5 ...
## $ Year : Factor w/ 4 levels "2013", "2014", ...: 2 1 2 4 1 2 3 4 3 2 ....
## $ cpe.hr: num 11.3 23.7 35.6 23.8 23.9 ...
Value for Correlation Structure (Not Used)
mod.a.Qpls = gls(log(cpe.hr) ~ Year, data = Qpls.sum)
ACF(mod.a.Qpls)
mod.b.Qpls = lme(log(cpe.hr) ~ Year, random = ~1 | Site, data = Qpls.sum)
ACF(mod.b.Qpls)
Fit lme() to Test Hypothesis 2
Qpls.mod <- lme(log(cpe.hr) ~ Year, random = ~1 | Site, data = Qpls.sum, method = "REML")
Anova(Qpls.mod)
## Analysis of Deviance Table (Type II tests)
##
## Response: log(cpe.hr)
        Chisq Df Pr(>Chisq)
## Year 1.0627 3
Qpls.fixed <- gls(log(cpe.hr) ~ Year, data = Qpls.sum, method = "REML")
Anova(Qpls.fixed)
## Analysis of Deviance Table (Type II tests)
## Response: log(cpe.hr)
       Df Chisq Pr(>Chisq)
## Year 3 1.0414
                      0.7912
anova(Qpls.mod, Qpls.fixed)
              Model df
                            AIC
                                      BIC
                                             logLik
                                                      Test
                                                             L.Ratio p-value
              1 6 93.95703 102.36421 -40.97851
## Qpls.mod
                  2 5 92.15914 99.16513 -41.07957 1 vs 2 0.2021133 0.653
## Qpls.fixed
```

Pseudo R-squared

```
null.Qpls.mod <- lme(log(cpe.hr) ~ 1, random = ~1 | Site, data = Qpls.sum)</pre>
nagelkerke(Qpls.mod, null.Qpls.mod)
## $Models
##
## Model: "lme.formula, log(cpe.hr) ~ Year, Qpls.sum, ~1 | Site, REML"
## Null: "lme.formula, log(cpe.hr) ~ 1, Qpls.sum, ~1 | Site"
## $Pseudo.R.squared.for.model.vs.null
##
                                Pseudo.R.squared
## McFadden
                                        0.0152657
## Cox and Snell (ML)
                                        0.0353903
## Nagelkerke (Cragg and Uhler)
                                        0.0390790
##
## $Likelihood.ratio.test
## Df.diff LogLik.diff Chisq p.value
               -0.61254 1.2251 0.747
##
##
## $Number.of.observations
##
## Model: 34
## Null: 34
##
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## $Warnings
## [1] "None"
null.Qpls.fixed <- gls(log(cpe.hr) ~ 1, data = Qpls.sum)</pre>
nagelkerke(Qpls.mod, null.Qpls.fixed)
## $Models
##
## Model: "lme.formula, log(cpe.hr) ~ Year, Qpls.sum, ~1 | Site, REML"
## Null: "gls, log(cpe.hr) ~ 1, Qpls.sum"
## $Pseudo.R.squared.for.model.vs.null
##
                                 Pseudo.R.squared
## McFadden
                                        0.0173817
## Cox and Snell (ML)
                                        0.0402807
## Nagelkerke (Cragg and Uhler)
                                        0.0444557
##
## $Likelihood.ratio.test
## Df.diff LogLik.diff Chisq p.value
         -4
               -0.69895 1.3979 0.84456
##
## $Number.of.observations
##
## Model: 34
## Null: 34
##
```

```
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
##
## $Warnings
## [1] "None"
Post-hoc analysis
```

```
## Year lsmean SE df lower.CL upper.CL .group
## 2016 2.739642 0.2753030 11 1.921945 3.557339 a
## 2015 2.883354 0.2916444 11 2.017120 3.749587 a
## 2014 3.050238 0.2492053 11 2.310056 3.790421 a
## 2013 3.098501 0.3362694 11 2.099723 4.097278 a
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 4 estimates
## P value adjustment: tukey method for comparing a family of 4 estimates
## significance level used: alpha = 0.05
```

This isn't working right ^

Interaction plot

##		Year	n	Mean	Conf.level	Percentile.lower	Percentile.upper
##	1	2013	6	31.0	0.95	13.5	48.5
##	2	2014	11	23.8	0.95	17.8	29.9
##	3	2015	8	26.5	0.95	13.8	40.5
##	4	2016	9	22.6	0.95	11.4	39.2

Pretty normal.

Results H_0 2

Comming soon...

3) H_0 : There is no difference in cpe for largemouth bass smaller than quality length (300mm) among years 2013 - 2016.

Load and Prepare Data

Create Q- data Frame and View

Qless.sum %>% arrange(Site, Year)

Year	Site	cpe.hr
2014	1	34.033613
2013	2	63.088718
2014	2	51.428571
2015	2	19.169329
2016	2	35.761589
2013	4	34.123223
2014	4	7.973422
2015	4	5.209841
2016	4	31.149567
2013	6	4.712042
2014	6	5.255475
2015	6	14.173228
2016	6	29.752066
2013	8	30.107527
2014	8	23.893805
2015	8	65.138721

ACF(mod.b.Qlss)

	Year	Site	cpe.hr
17	2016	8	142.212190
18	2013	10	12.342857
19	2014	10	5.559846
20	2014	11	78.006501
21	2015	11	3.684749
22	2016	11	8.812729
23	2014	12	5.209841
24	2016	14	8.135593
25	2013	15	28.458498
26	2014	15	18.339277
27	2016	15	12.463935
28	2014	16	6.445837
29	2013	18	29.241877
30	2014	18	6.710158
31	2015	18	4.938272
32	2016	18	63.870968

```
Qless.sum$Site <- factor(Qless.sum$Site)
Qless.sum$Year <- factor(Qless.sum$Year)
str(Qless.sum)

## 'data.frame': 32 obs. of 3 variables:
## $ Year : Factor w/ 4 levels "2013","2014",..: 2 1 2 3 4 1 2 3 4 1 ...
## $ Site : Factor w/ 12 levels "1","2","4","6",..: 1 2 2 2 2 3 3 3 3 4 ...
## $ cpe.hr: num 34 63.1 51.4 19.2 35.8 ...

Value for Correlation Structure (Not Used)
mod.a.Qlss = gls(log(cpe.hr) ~ Year, data = Qless.sum)
ACF(mod.a.Qlss)</pre>
```

mod.b.Qlss = lme(log(cpe.hr) ~ Year, random = ~1 | Site, data = Qless.sum)

Fit lme() to Test Hypothesis 3

```
# ?corClasses
Qlss.mod <- lme(log(cpe.hr) ~ Year, random = ~1 | Site, data = Qless.sum, method = "REML")
Anova(Qlss.mod)
## Analysis of Deviance Table (Type II tests)
##
## Response: log(cpe.hr)
       Chisq Df Pr(>Chisq)
## Year 5.179 3
                     0.1591
Qlss.fixed <- gls(log(cpe.hr) ~ Year, data = Qless.sum, method = "REML")
Anova(Qlss.fixed)
## Analysis of Deviance Table (Type II tests)
## Response: log(cpe.hr)
       Df Chisq Pr(>Chisq)
## Year 3 4.0789
                      0.2531
anova(Qlss.mod, Qlss.fixed)
##
              Model df
                            AIC
                                     BIC
                                            logLik
                                                     Test L.Ratio p-value
## Qlss.mod
                  1 6 97.62422 105.6175 -42.81211
                  2 5 96.77762 103.4386 -43.38881 1 vs 2 1.153399 0.2828
## Qlss.fixed
Pseudo R-Squared
null.Qlss.mod <- lme(log(cpe.hr) ~ 1, random = ~1 | Site, data = Qless.sum)
nagelkerke(Qlss.mod, null.Qlss.mod)
## $Models
##
## Model: "lme.formula, log(cpe.hr) ~ Year, Qless.sum, ~1 | Site, REML"
## Null: "lme.formula, log(cpe.hr) ~ 1, Qless.sum, ~1 | Site"
## $Pseudo.R.squared.for.model.vs.null
##
                                Pseudo.R.squared
## McFadden
                                       0.0588341
## Cox and Snell (ML)
                                       0.1515870
## Nagelkerke (Cragg and Uhler)
                                       0.1614640
## $Likelihood.ratio.test
## Df.diff LogLik.diff Chisq p.value
##
         -3
               -2.6302 5.2604 0.15369
##
## $Number.of.observations
##
## Model: 32
## Null: 32
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## $Warnings
```

```
## [1] "None"
null.Qlss.fixed <- gls(log(cpe.hr) ~ 1, data = Qless.sum)</pre>
nagelkerke(Qlss.mod, null.Qlss.fixed)
## $Models
##
## Model: "lme.formula, log(cpe.hr) ~ Year, Qless.sum, ~1 | Site, REML"
## Null: "gls, log(cpe.hr) ~ 1, Qless.sum"
## $Pseudo.R.squared.for.model.vs.null
##
                                Pseudo.R.squared
## McFadden
                                        0.063585
## Cox and Snell (ML)
                                        0.163529
                                        0.174025
## Nagelkerke (Cragg and Uhler)
##
## $Likelihood.ratio.test
## Df.diff LogLik.diff Chisq p.value
         -4
                -2.857 5.714 0.22155
##
##
## $Number.of.observations
## Model: 32
## Null: 32
##
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
##
## $Warnings
## [1] "None"
Post-hoc analysis
leastsquare.Qlss.mod = lsmeans(Qlss.mod,
                      pairwise ~ Year,
                      adjust="tukey")
                                              ### Tukey-adjusted comparisons
cld(leastsquare.Qlss.mod,
   alpha
          = 0.05,
                           ### Use lower-case letters for .group
   Letters = letters,
   adjust = "tukey")
                           ### Tukey-adjusted comparisons
## Year
                         SE df lower.CL upper.CL .group
          lsmean
## 2015 2.283130 0.3948605 11 1.110327 3.455933 a
## 2014 2.595112 0.2957715 11 1.716621 3.473604 a
## 2013 3.063977 0.3669811 11 1.973981 4.153974 a
## 2016 3.241295 0.3446474 11 2.217633 4.264957 a
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 4 estimates
## P value adjustment: tukey method for comparing a family of 4 estimates
## significance level used: alpha = 0.05
```

Interaction plot

Almost normal

Results H_0 3

Comming soon...

End of Part 2

Part 3 - Repeated Measures ANOVA lme(cpe.hr \sim Year + GcatQ + Year*GcatQ)

Load and Prepare Data

Create QcatSum Object and View Data Find the sum of largemouth bass by gcatQ (Q+ and Q-) by site for each Year.

QcatSum <- aggregate(cpe.hr ~ Year + Site + gcatQ, data = Qcat, FUN = sum)</pre>

Year	Site	gcatQ	cpe.hr	-		Year	Site	gcatQ	cpe.hr
$\frac{10a1}{2014}$	1	quality+	11.344538	-	34	2016	18	quality+	84.193548
$\frac{2014}{2013}$	2	quality+	23.658269	-	35	2010	1	quality-	34.033613
$\frac{2013}{2014}$	2	quality+	35.604396	-	36	2014	2	quality-	63.088718
$\frac{2014}{2016}$	2	quality+	23.841060	-	37	2013	2	quality-	51.428571
	4	- "	23.886256	-	38	2014	$\frac{2}{2}$	- "	19.169329
2013		quality+		_			$\frac{2}{2}$	quality-	
2014	4	quality+	11.960133	_	39	2016		quality-	35.761589
2015	4	quality+	26.049204	_	40	2013	4	quality-	34.123223
2016	4	quality+	17.799753	_	41	2014	4	quality-	7.973422
2015	5	quality+	4.225352	_	42	2015	4	quality-	5.209841
2014	6	quality+	15.766423	_	43	2016	4	quality-	31.149567
2015	6	quality+	3.543307	_	44	2013	6	quality-	4.712042
2016	6	quality+	14.876033	_	45	2014	6	quality-	5.255475
2013	8	quality+	8.602151	_	46	2015	6	quality-	14.173228
2014	8	quality+	23.893805	_	47	2016	6	quality-	29.752066
2015	8	quality+	52.110977		48	2013	8	quality-	30.107527
2016	8	quality+	24.379233		49	2014	8	quality-	23.893805
2013	10	quality+	8.228571	_	50	2015	8	quality-	65.138721
2014	10	quality+	22.239382	_	51	2016	8	quality-	142.212190
2016	10	quality+	5.872757	_	52	2013	10	quality-	12.342857
2014	11	quality+	39.003250	_	53	2014	10	quality-	5.559846
2015	11	quality+	29.477994	_	54	2014	11	quality-	78.006501
2016	11	quality+	17.625459	_	55	2015	11	quality-	3.684749
2014	12	quality+	31.259045	_	56	2016	11	quality-	8.812729
2015	12	quality+	12.514484	_	57	2014	12	quality-	5.209841
2016	12	quality+	10.404624	_	58	2016	14	quality-	8.135593
2013	15	quality+	53.359684	_	59	2013	15	quality-	28.458498
2014	15	quality+	22.007132	_	60	2014	15	quality-	18.339277
2015	15	quality+	25.079164	-	61	2016	15	quality-	12.463935
2016	15	quality+	4.154645	-	62	2014	16	quality-	6.445837
2014	16	quality+	38.675022	-	63	2013	18	quality-	29.241877
2013	18	quality+	68.231047	-	64	2014	18	quality-	6.710158
2014	18	quality+	10.065238	_	65	2015	18	quality-	4.938272
$\frac{2011}{2015}$	18	quality+	59.259259	-	66	2016	18	quality-	63.870968
	10	quarrey	00.200200	_	50	2010	1 10	1 danie	

```
QcatSum$Year <- factor(QcatSum$Year)
str(QcatSum)</pre>
```

```
## 'data.frame': 66 obs. of 4 variables:
## $ Year : Factor w/ 4 levels "2013","2014",...: 2 1 2 4 1 2 3 4 3 2 ...
## $ Site : Factor w/ 15 levels "1","2","4","5",...: 1 2 2 2 3 3 3 3 4 5 ...
## $ gcatQ : Factor w/ 2 levels "quality+","quality-": 1 1 1 1 1 1 1 1 1 1 1 1 ...
## $ cpe.hr: num 11.3 23.7 35.6 23.8 23.9 ...
Value for Correlation Structure (Not Used)
mod.a.Q = gls(log(cpe.hr) ~ Year, data = QcatSum)
ACF(mod.a.Q)

mod.b.Q = lme(log(cpe.hr) ~ Year, random = ~1 | Site, data = QcatSum)
ACF(mod.b.Q)
```

```
Fit lme() to Test All Three Hypothesis
```

```
Q.mod <- lme(log(cpe.hr) ~ gcatQ + Year + gcatQ/Year, random = ~1 | Site, data = QcatSum,
   method = "REML")
Anova(Q.mod)
## Analysis of Deviance Table (Type II tests)
##
## Response: log(cpe.hr)
               Chisq Df Pr(>Chisq)
##
## gcatQ
              0.4791 1
                            0.4888
## Year
              2.1943 3
                            0.5331
## gcatQ:Year 4.5106 3
                            0.2113
Q.fixed <- gls(log(cpe.hr) ~ gcatQ + Year + gcatQ * Year, data = QcatSum, method = "REML")
Anova(Q.fixed)
## Analysis of Deviance Table (Type II tests)
## Response: log(cpe.hr)
##
              Df Chisq Pr(>Chisq)
## gcatQ
               1 0.2780
                            0.5980
## Year
               3 2.0867
                            0.5546
## gcatQ:Year 3 3.5927
                            0.3089
anova(Q.mod, Q.fixed)
##
           Model df
                         AIC
                                  BIC
                                         logLik
                                                  Test L.Ratio p-value
## Q.mod
               1 10 187.2468 207.8512 -83.62339
## Q.fixed
               2 9 187.8197 206.3637 -84.90988 1 vs 2 2.572966 0.1087
Pseudo R-Squared
null.Q.mod <- lme(log(cpe.hr) ~ 1, random = ~1 | Site, data = QcatSum)</pre>
nagelkerke(Q.mod, null.Q.mod)
## $Models
##
## Model: "lme.formula, log(cpe.hr) ~ gcatQ + Year + gcatQ/Year, QcatSum, ~1 | Site, REML"
## Null: "lme.formula, log(cpe.hr) ~ 1, QcatSum, ~1 | Site"
## $Pseudo.R.squared.for.model.vs.null
                                Pseudo.R.squared
##
## McFadden
                                       0.0441903
## Cox and Snell (ML)
                                       0.1077340
## Nagelkerke (Cragg and Uhler)
                                       0.1165710
##
## $Likelihood.ratio.test
  Df.diff LogLik.diff Chisq p.value
               -3.7617 7.5234 0.37649
##
         -7
##
## $Number.of.observations
##
## Model: 66
## Null: 66
##
## $Messages
```

```
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
##
## $Warnings
## [1] "None"
null.Q.fixed <- gls(log(cpe.hr) ~ 1, data = QcatSum)</pre>
nagelkerke(Q.mod, null.Q.fixed)
## $Models
## Model: "lme.formula, log(cpe.hr) ~ gcatQ + Year + gcatQ/Year, QcatSum, ~1 | Site, REML"
## Null: "gls, log(cpe.hr) ~ 1, QcatSum"
## $Pseudo.R.squared.for.model.vs.null
##
                                Pseudo.R.squared
## McFadden
                                       0.0544962
## Cox and Snell (ML)
                                       0.1324720
## Nagelkerke (Cragg and Uhler)
                                       0.1430130
##
## $Likelihood.ratio.test
## Df.diff LogLik.diff Chisq p.value
##
         -8
                -4.6895 9.3791 0.31133
##
## $Number.of.observations
##
## Model: 66
## Null: 66
##
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
##
## $Warnings
## [1] "None"
Post-hoc analysis
leastsquare.Q.mod = lsmeans(Q.mod,
                      pairwise ~ gcatQ:Year,
                      adjust="tukey")
                                              ### Tukey-adjusted comparisons
cld(leastsquare.Q.mod,
    alpha
          = 0.05,
    Letters = letters,
                          ### Use lower-case letters for .group
   adjust = "tukey")
                           ### Tukey-adjusted comparisons
                                  SE df lower.CL upper.CL .group
## gcatQ
            Year
                   lsmean
   quality- 2015 2.254721 0.3635786 12 1.056466 3.452977
## quality- 2014 2.579502 0.2727896 12 1.680462 3.478542 a
## quality+ 2016 2.713143 0.3003457 12 1.723286 3.703001 a
## quality+ 2015 2.882990 0.3168335 12 1.838793 3.927187 a
   quality+ 2013 3.015239 0.3636609 12 1.816712 4.213765 a
## quality+ 2014 3.025156 0.2727896 12 2.126116 3.924196 a
## quality- 2013 3.066420 0.3381391 12 1.952006 4.180834 a
   quality- 2016 3.211019 0.3171042 12 2.165931 4.256108 a
##
```

```
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 8 estimates
## P value adjustment: tukey method for comparing a family of 8 estimates
## significance level used: alpha = 0.05
```

Interaction plot

##		gcatQ	Year	n	Mean	${\tt Conf.level}$	Percentile.lower	Percentile.upper
##	1	quality+	2013	6	31.0	0.95	13.6	50.8
##	2	quality+	2014	11	23.8	0.95	17.9	30.1
##	3	quality+	2015	8	26.5	0.95	14.0	40.2
##	4	quality+	2016	9	22.6	0.95	11.1	39.8
##	5	quality-	2013	7	28.9	0.95	17.2	41.9
##	6	quality-	2014	11	22.1	0.95	10.1	36.7
##	7	quality-	2015	6	18.7	0.95	6.1	38.2
##	8	quality-	2016	8	41.5	0.95	18.2	74.4

Residuals Plot

sorta normal

Results Part 3 All Hypothesis