Network Security

Project 2: Log Analysis

0858612 魏嘉豪

Implementation:

(1) Data Preprocessing

Step 1

Parse the Json files, including the winlogbeat.json and packetbeat.json.

Step 2

Observe the logs to see what may contain the information related to the user behavior and benefits distinguishing between users.

Step 3

After extracting datum, I found that each user has a different distribution of "event ID" s. So I decided to train our model according to the "event ID". For every users, I extract the event IDs from the winlogbeat.json and calculate the probability of each event's occurrence.

There are 35 types of event IDs as follow.

```
User 1's event distribution:
[(4624, 11), (4656, 4569), (4658, 2167), (4663, 919), (4672, 11), (4688, 79), (4689, 78), (4690, 1061), (4702, 1), (4703, 22), (4798, 1), (4799, 4), (5379, 26), (7040, 4), (10016, 1)]

User 2's event distribution:
[(4624, 4), (4656, 5859), (4658, 4533), (4663, 2135), (4672, 4), (4688, 58), (4689, 56), (4690, 2244), (4703, 15)]

User 3's event distribution:
[(26, 1), (4624, 4), (4656, 943), (4658, 1855), (4660, 2), (4663, 731), (4670, 8), (4672, 4), (4688, 79), (4689, 75), (4690, 919), (4698, 1), (4703, 28), (4798, 5), (5156, 357), (5158, 167), (7045, 1)]

User 4's event distribution:
[(15, 2), (4624, 19), (4625, 1), (4634, 8), (4648, 2), (4656, 3571), (4658, 7193), (4660, 4), (4663, 2632), (4672, 21), (4688, 106), (4689, 101), (4690, 3625), (4702, 1), (4703, 26), (4719, 6), (4798, 25), (5058, 1), (5061, 1), (5156, 790), (5158, 146), (5370, 1), (5381, 2), (5382, 5), (5416, 17), (10016, 1), (16384, 1), (16394, 1)]

User 5's event distribution:
[(150, 1), (4624, 8), (4656, 4958), (4658, 2640), (4663, 1114), (4672, 8), (4688, 74), (4689, 81), (4690, 1299), (4703, 22), (4799, 2), (5379, 13), (5382, 3)]
```

(2) Model

I apply a simple classifier model based on pytorch framework, consisting of two fully-connected layers and a ReLU activation function. I use Adam with default settings except the learning rate setup as 0.01 as the optimizer and apply Cross Entropy as the loss function. The input of our model is a set of normalized event distributions of the following shape (batch_size, num_events) where variable

num_events represents how much event types the total training set contains. The output of our model is the likelihood estimation of shape (batch_size, 5). Then the prediction of test case i is determined by finding the index of the biggest value upon output[i].

Problems or interesting things found in process:

(1) Problems:

In the testing data, there are 37 types of event IDs but there are only 35 types of event IDs in training data which cause dimension cannot match. So I decided to write another function to count testing data event ID depend on the event IDs which have appeared in training data and the dimension can match finally.

(2) Interesting things:

I found that the logs contains a large proportion of useless information. According to the method I implemented, only about 20% of logs are somehow meaningful which the other 80% aren't required. It is out of my expectation. In the past, I learned to gather as much information as I could while logging which causes a lot of problem for saving the big data in limited storage.