TT	v Tr	U	
Национальный исследовате.	пьскии Гомскии	государственный	VHURENCUTET
пациональный песледовате.	indentiff I dividentiff	тосударственным	Jiiiibepeniei

Отчёт по лабораторной работе «Полносвязные нейронные сети прямого распространения» Вариант нечётный.

Выполнил студент гр. 932001 Андрюшина М. А. Преподаватель Аксёнов С. В.

Бинарный классификатор.

Набор данных:

Для работы с бинарными классификаторами использовался набор данных Diabetes Health Indicators Dataset. Оценка вероятности диагностики диабета у человека.

Значение признаков:

- 1. Diabetes_012 целевой признак. Класс отрицательный 0 (no diabetes нет диабета), класс положительный 1 & 2 (prediabetes преддиабетическое состояние & diabetes диабет)
- 2. HighBP высокое артериальное давление. 0 невысокое, 1 высокое.
- 3. HighChol высокий уровень холестерина. 0 невысокий, 1 высокий.
- 4. CholCheck была ли проверка холестерина в течение 5 лет. 0 была, 1 не было.
- 5. ВМІ индекс массы тела
- 6. Smoker человек курил не менее 100 сигарет за всю жизнь
- 7. Stroke был ли у человека инсульт
- 8. HeartDiseaseorAttack наличие ишемической болезни сердца или инфаркта миокарда
- 9. PhysActivity наличие физической активности за последние 30 дней
- 10. Fruits употребление фруктов 1 и более раз в день
- 11. Veggies употребление овощей 1 и более раз в день
- 12. HvyAlcoholConsump употребление более 14 алкогольных напитков в неделю для мужчин или более 7 для женщин
- 13. AnyHealthcare наличие любого медицинского страхования
- 14. NoDocbcCost была ли необходимость обратиться к врачу за последние 12 месяцев, но человек отказался из-за стоимости
- 15. GenHlth оценка здоровья по шкале 1-5
- 16. MentHlth в течение скольких дней за последний месяц психическое здоровье человека было не очень хорошим. Шкала 1 30 дней.
- 17. PhysHlth в течение скольких дней за последний месяц физическое здоровье человека было не очень хорошим. Шкала 1-30 дней.

- 18. DiffWalk есть ли серьезные трудности с ходьбой или подъемом по лестнице
- 19. Sex пол. 0 женщина, 1 мужчина.
- 20. Age возраст. 13 категорий. 1 от 18 до 24, 9 от 60 до 64, 13 от 80 и более
- 21. Education образование. Шкала 1-6. 1- никогда не посещал школу или только детский сад, 2 классы с 1 по 8, 3 классы с 9 по 11, 4-12 класс или сдал экзамен GED, 5 колледж от 1 года до 3 лет, 6 колледж 4 года и более.
- 22. Іпсоте доход. Шкала 1-8. 1- менее \$10,000, 2- менее \$15,000, 3- менее \$20,000, 4- менее \$25,000, 5- менее \$35,000, 6- менее \$50,000, 7- менее \$75,000, 8-\$75,000 и более.

Набор данных не содержал пропущенных значений, но в нем присутствовало несколько дубликатов, которые были удалены. Значения 2 в целевом столбце были преобразованы в 1, так как этого требовало условие задания.

Для анализа и обучения бинарного классификатора были использованы все признаки из набора данных, кроме целевого.

Датасет был разделен на 3 части: тренировочную (70%), тестовую (20%) и валидационную (10%).

Нейронные сети:

Всего было создано 4 бинарных классификатора, которые отличались своими параметрами:

1. Base Model:

Слои:

- 1. 4 нейрона, функция активации ReLU
- 2. 1 нейрон, функция активации Sigmoid

Функция потерь: Binary Crossentropy

Процедура оптимизации: Adam

Метрика: Accuracy

Число объектов в батче: 10

Количество эпох: 100

Модель закончила обучение на 17-ой эпохе, достигнув лучшего значение ассuracy на валидационной выборке на 7-ой эпохе.

2. Second Model:

- 1. 4 нейрона, функция активации ReLU
- 2. 4 нейрона, функция активации Sigmoid
- 3. 4 нейрона, функция активации ReLU
- 4. 4 нейрона, функция активации Sigmoid
- 5. 2 нейрона, функция активации ReLU
- 6. 1 нейрон, функция активации Sigmoid

Функция потерь: Binary Crossentropy

Процедура оптимизации: Adam

Метрика: Accuracy

Число объектов в батче: 10

Количество эпох: 100

Модель закончила обучение на 15-ой эпохе, достигнув лучшего значение ассuracy на валидационной выборке на 5-ой эпохе.

3. Third Model:

Слои:

- 1. 64 нейрона, функция активации ReLU
- 2. 64 нейрона, функция активации Sigmoid
- 3. 32 нейрона, функция активации ReLU
- 4. 16 нейронов, функция активации Sigmoid
- 5. 8 нейронов, функция активации ReLU
- 6. 1 нейрон, функция активации Sigmoid

Функция потерь: Binary Crossentropy

Процедура оптимизации: Adam

Метрика: Accuracy

Число объектов в батче: 100

Количество эпох: 50

Модель закончила обучение на 22-ой эпохе, достигнув лучшего значение ассuracy на валидационной выборке на 12-ой эпохе.

4. Fourth Model:

- 1. 64 нейрона, функция активации ReLU
- 2. Dropout(0.1)
- 3. 64 нейрона, функция активации Sigmoid
- 4. Dropout(0.1)
- 5. 32 нейрона, функция активации ReLU

6. Dropout(0.1)

7. 16 нейронов, функция активации – Sigmoid

8. 8 нейронов, функция активации – ReLU

9. 1 нейрон, функция активации - Sigmoid

Функция потерь: Binary Crossentropy

Процедура оптимизации: SGD

Метрика: Accuracy

Число объектов в батче: 100

Количество эпох: 50

Модель закончила обучение на 40-ой эпохе, достигнув лучшего значение ассигасу на валидационной выборке на 30-ой эпохе.

Метрики качества:

Ниже представлена таблица с метриками качества каждой модели. Оценка качества бинарных классификаторов происходила по следующим метрикам: Recall, Precision, Weighted Accuracy и AUC.

	model	recall	precision	weighted_accuracy	auc
0	base_model	0.1277	0.6110	0.5556	0.8023
1	second_model	0.1958	0.5608	0.5823	0.8032
2	third_model	0.1830	0.5674	0.5774	0.8030
3	fourth_model	0.1476	0.5904	0.5634	0.7990

Метрики качества у Second Model в среднем выше, чем у остальных моделей.

Графики обучения для лучшего бинарного классификатора:

ROC-кривая для лучшего бинарного классификатора:

Многоклассовый классификатор.

Набор данных:

Для работы с многоклассовыми классификаторами использовался набор данных Body Performance Data. Оценка уровня физического развития людей разного возраста.

Значение признаков:

- 1. age возраст
- 2. gender пол
- 3. height_cm рост в сантиметрах
- 4. weight_kg вес в килограммах
- 5. body fat_% процент жира
- 6. diastolic нижнее артериальное давление
- 7. systolic верхнее артериальное давление
- 8. gripForce сила захвата
- 9. sit and bend forward_cm наклон в сантиметрах
- 10. sit-ups counts количество приседаний
- 11. broad jump_cm длина прыжка в сантиметрах
- 12. class целевой признак. A, B, C, D

Набор данных не содержал пропущенных значений, но в нем присутствовал дубликат, который был удален. Значения в столбцах gender и class были закодированы.

Для анализа и обучения многоклассового классификатора были использованы все признаки из набора данных, кроме целевого.

Датасет был разделен на 3 части: тренировочную (70%), тестовую (20%) и валидационную (10%).

Нейронные сети:

Всего было создано 4 многоклассовых классификатора, которые отличались своими параметрами:

1. Base Model:

- 1. 8 нейронов, функция активации ReLU
- 2. 4 нейрона, функция активации Softmax

Функция потерь: Categorical Crossentropy

Процедура оптимизации: Adam

Метрика: Accuracy

Число объектов в батче: 10

Количество эпох: 100

Модель закончила обучение на 58-ой эпохе, достигнув лучшего значение ассuracy на валидационной выборке на 48-ой эпохе.

2. Second Model:

Слои:

- 1. 8 нейронов, функция активации ReLU
- 2. 8 нейронов, функция активации Sigmoid
- 3. 8 нейронов, функция активации ReLU
- 4. 8 нейронов, функция активации Sigmoid
- 5. 8 нейронов, функция активации ReLU
- 6. 4 нейрона, функция активации Softmax

Функция потерь: Categorical Crossentropy

Процедура оптимизации: Adam

Метрика: Accuracy

Число объектов в батче: 10

Количество эпох: 100

Модель закончила обучение на 29-ой эпохе, достигнув лучшего значение ассигасу на валидационной выборке на 19-ой эпохе.

3. Third Model:

Слои:

- 1. 64 нейрона, функция активации ReLU
- 2. 64 нейрона, функция активации Sigmoid
- 3. 32 нейрона, функция активации ReLU
- 4. 16 нейронов, функция активации Sigmoid
- 5. 8 нейронов, функция активации ReLU
- 6. 1 нейрон, функция активации Softmax

Функция потерь: Categorical Crossentropy

Процедура оптимизации: Adam

Метрика: Accuracy

Число объектов в батче: 100

Количество эпох: 50

Модель закончила обучение на 45-ой эпохе, достигнув лучшего значение ассuracy на валидационной выборке на 35-ой эпохе.

4. Fourth Model:

Слои:

- 1. 128 нейронов, функция активации ReLU
- 2. Dropout(0.1)
- 3. 64 нейрона, функция активации Sigmoid
- 4. Dropout(0.1)
- 5. 32 нейрона, функция активации ReLU
- 6. 16 нейронов, функция активации Sigmoid
- 7. 8 нейронов, функция активации ReLU
- 8. 1 нейрон, функция активации Softmax

Функция потерь: Categorical Crossentropy

Процедура оптимизации: RMSprop

Метрика: Accuracy

Число объектов в батче: 100

Количество эпох: 100

Модель закончила обучение на 100-ой эпохе, достигнув лучшего значение ассигасу на валидационной выборке на 100-ой эпохе.

Метрики качества:

Ниже представлена таблица с метриками качества каждой модели. Оценка качества многоклассовых классификаторов происходила по следующим метрикам: Recall, Precision, Weighted Accuracy и AUC.

	model	recall	precision	weighted_accuracy	auc
0	base_model	0.6025	0.5948	0.6025	0.8500
1	second_model	0.6354	0.6503	0.6354	0.8594
2	third_model	0.6826	0.6988	0.6826	0.8872
3	fourth_model	0.7032	0.7200	0.7032	0.8967

Метрики качества у Fourth Model выше, чем у остальных моделей.

Графики обучения для лучшего многоклассового классификатора:

ROC-кривая классов для лучшего многоклассового классификатора:

Графики ROC-кривой отдельного для каждого класса:

ROC-кривые для каждого класса на одном графике:

Регрессор.

Набор данных:

Для работы с регрессорами использовался набор данных DS_2019_public. Оценка расходов домохозяйства на один из видов потребляемых ресурсов.

Датасет состоит из 10875 записей и 121 столбцов. Набор данных изначально не содержал пропущенных значений. Столбцы типа object состояли из числовых значений, поэтому мы перевели данные в них в тип float, а при невозможности такого преобразования удаляли строки с выбросами. В некоторых столбцах были выбросы в виде отрицательных значений. После удаления этих значений появились столбцы с NaN. Столбцы с процентом NaN больше 5% мы удалили, а в остальных столбцах удалили строки с пропущенными значениям. Дубликатов нет. После преобразований в наборе данных осталось 10785 записей и 113 столбцов.

Для анализа и обучения бинарного классификатора были использованы все признаки из набора данных, кроме целевого (TOTALDOL) и тех, в которых процент пропущенных значений был больше 5% (CELLAR, NUMTHERM, CONCRETE, COOLTYPE, STORIES, LGT1EE, ROOFTYPE, DRYRFUEL).

Датасет был разделен на 3 части: тренировочную (70%), тестовую (20%) и валидационную (10%).

Нейронные сети:

Всего было создано 4 регрессора, которые отличались своими параметрами:

1. Base Model:

Слои:

1. 16 нейронов, функция активации - ReLU

2. 1 нейрон

Функция потерь: Mean Squared Error

Процедура оптимизации: Adam

Метрика: –

Число объектов в батче: 10

Количество эпох: 200

Модель закончила обучение на 200-ой эпохе, достигнув лучшего значение ассигасу на валидационной выборке на 200-ой эпохе.

2. Second Model:

Слои:

1. 16 нейронов, функция активации - ReLU

- 2. 16 нейронов, функция активации Sigmoid
- 3. 16 нейронов, функция активации SeLU
- 4. 16 нейронов, функция активации Sigmoid
- 5. 16 нейронов, функция активации ReLU
- 6. 1 нейрон

Функция потерь: Mean Squared Error

Процедура оптимизации: Adam

Метрика: -

Число объектов в батче: 10

Количество эпох: 200

Модель закончила обучение на 74-ой эпохе, достигнув лучшего значение ассигасу на валидационной выборке на 64-ой эпохе.

3. Third Model:

Слои:

- 1. 64 нейрона, функция активации ReLU
- 2. 64 нейрона, функция активации Sigmoid
- 3. 32 нейрона, функция активации SeLU
- 4. 32 нейронов, функция активации Sigmoid
- 5. 16 нейронов, функция активации ReLU
- 6. 1 нейрон

Функция потерь: Mean Squared Error

Процедура оптимизации: Adam

Метрика: –

Число объектов в батче: 100

Количество эпох: 160

Модель закончила обучение на 160-ой эпохе, достигнув лучшего значение ассигасу на валидационной выборке на 160-ой эпохе.

4. Fourth Model:

- 1. 128 нейронов, функция активации ReLU
- 2. Dropout(0.1)
- 3. 64 нейрона, функция активации Sigmoid
- 4. Dropout(0.1)
- 5. 32 нейрона, функция активации SeLU
- 6. 32 нейрона, функция активации Sigmoid
- 7. 16 нейронов, функция активации ReLU

8. 1 нейрон

Функция потерь: Mean Squared Error

Процедура оптимизации: Adam

Метрика: –

Число объектов в батче: 100

Количество эпох: 200

Модель закончила обучение на 184-ой эпохе, достигнув лучшего значение ассигасу на валидационной выборке на 174-ой эпохе.

Метрики качества:

Ниже представлена таблица с метриками качества каждой модели. Оценка качества регрессоров происходила по следующим метрикам: MSE, MAE и R2.

	model	mse	mae	r2
0	base_model	6439.512	51.051	0.99453
1	second_model	1658.268	28.584	0.99859
2	third_model	1169.393	6.070	0.99900
3	fourth_model	2050.751	30.916	0.99823

Метрики качества у Third Model выше, чем у остальных моделей.

Графики обучения для лучшего регрессора:

Программный код.

Программный код доступен по ссылке:

 $\underline{https://github.com/AnMari24/NeuralNetworks/tree/main/Lab1}$