Front matter

title: "Лабораторная работа 8" author: "Попова Юлия Дмтриевна, НФИбд-03-19"

Generic otions

lang: ru-RU toc-title: "Содержание"

Bibliography

bibliography: bib/cite.bib csl: pandoc/csl/gost-r-7-0-5-2008-numeric.csl

Pdf output format

toc: true # Table of contents toc_depth: 2 lof: true # List of figures lot: true # List of tables fontsize: 12pt linestretch: 1.5 papersize: a4 documentclass: scrreprt

118n

polyglossia-lang: name: russian options: - spelling=modern - babelshorthands=true polyglossia-otherlangs: name: english

Fonts

mainfont: PT Serif romanfont: PT Serif sansfont: PT Sans monofont: PT Mono mainfontoptions: Ligatures=TeX romanfontoptions: Ligatures=TeX, Scale=MatchLowercase monofontoptions: Scale=MatchLowercase, Scale=0.9

Biblatex

biblatex: true biblio-style: "gost-numeric" biblatexoptions:

- parentracker=true
- backend=biber
- hyperref=auto
- language=auto
- autolang=other*
- citestyle=gost-numeric

Misc options

indent: true header-includes:

• \linepenalty=10 # the penalty added to the badness of each line within a paragraph (no associated penalty node) Increasing the value makes tex try to have fewer lines in the paragraph.

- \interlinepenalty=0 # value of the penalty (node) added after each line of a paragraph.
- \hyphenpenalty=50 # the penalty for line breaking at an automatically inserted hyphen
- \exhyphenpenalty=50 # the penalty for line breaking at an explicit hyphen
- \binoppenalty=700 # the penalty for breaking a line at a binary operator
- \relpenalty=500 # the penalty for breaking a line at a relation
- \clubpenalty=150 # extra penalty for breaking after first line of a paragraph
- \widowpenalty=150 # extra penalty for breaking before last line of a paragraph
- \displaywidowpenalty=50 # extra penalty for breaking before last line before a display math
- \brokenpenalty=100 # extra penalty for page breaking after a hyphenated line
- \predisplaypenalty=10000 # penalty for breaking before a display
- \postdisplaypenalty=0 # penalty for breaking after a display
- \floatingpenalty = 20000 # penalty for splitting an insertion (can only be split footnote in standard LaTeX)
- \raggedbottom # or \flushbottom
- \usepackage{float} # keep figures where there are in the text marp: false
- \floatplacement{figure}{H} # keep figures where there are in the text

РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №8

дисциплина: Математическое моделирование

Преподователь: Кулябов Дмитрий Сергеевич

Студент: Попова Юлия Дмитриевна

Группа: НФИбд-03-19

MOCKBA

2022 г.

Цель работы

Построение модели конкуренции двух фирм.

Теоретичсекое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим: N – число потребителей производимого продукта. S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. М – оборотные средства предприятия τ – длительность производственного цикла p – рыночная цена товара p – себестоимость продукта, то есть переменные издержки на производство единицы продукции. p – доля оборотных средств, идущая на покрытие переменных издержек. p – постоянные издержки, которые не зависят от количества выпускаемой продукции.

\$Q(S/p)\$ – функция спроса, зависящая от отношения дохода \$S\$ к цене \$p\$. Она равна количеству продукта, потребляемого одним потребителем в единицу времени. Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{p}{S} = q \left(1 - \frac{p}{p_{cr}} \right)$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при p = pcr (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина pcr = qc Параметр pc – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, qc – 0\$ при pc – pcr и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)p - \kappa$$

После некоторых преобразований получаем два состояния стационарных значений \$М\$:

$$\tilde{M}_{+} = Nq \frac{\tau}{\delta} \left(1 - \frac{\tilde{p}}{p_{cr}} \right) \tilde{p}, \ \tilde{M}_{-} = \kappa \tilde{p} \frac{\tau}{\delta \left(p_{cr} - \tilde{p} \right)}$$

Первое состояние \$M+\$ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \$M-\$ неустойчиво, так, что при \$M < M-\$ оборотные средства падают (\$dM/dt < 0\$), то есть, фирма идет к банкротству. По смыслу M- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр \$δ\$ всюду входит в сочетании с \$τ\$. Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла.

Условия задачи

Вариант 37

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\qquad \qquad \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split},$$
 где
$$a_1 &= \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, \ a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, \ b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, \ c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \, \tilde{p}_1}, \ c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \, \tilde{p}_2}. \end{split}$$

Также введена нормировка $t = c_1 \theta$.

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед \$M1M2\$ будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \left(\frac{b}{c_1} + 0,00073\right) M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$M_0^1=3.8,\ M_0^2=2.8,$$
 параметрами: $p_{cr}=28, N=38, q=1$ $au_1=28, au_2=18,$ $ilde p_1=8.8, ilde p_2=11.8$

Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.

Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2. Выполнение лабораторной работы Построение модели конкуренции двух фирм

Выполнение лабораторной работы

Чтобы построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1, написали следующий код:

Полученный график:

```
model Lab8 1
       parameter Real M0_1 = 3.8; // Начальное x1 parameter Real M0_2 = 2.8; // Начальное x2
        parameter Real p_cr = 28; // Критическая стоимость продукта
        parameter Real N = 38; // Число потребителей производимого продукта
       parameter Real q = 1; // максимальная потребность одного человека в продукте в единицу времени
       parameter Real tau1 = 28; // Длительность производственного цикла 1 фирмы parameter Real tau2 = 18; // Длительность производственного цикла 2 фирмы parameter Real p1= 8.8; // Себестоимость продукта фирмы 1
        parameter Real p2 = 11.8; // Себестоимость продукта фирмы 2
        Real x1(start = M0_1);
11
        Real x2 (start = M0_2);
       parameter Real a1 = p_cr / (tau1 * tau1 * p1 * p1 * N * q);
parameter Real a2 = p_cr / (tau2 * tau2 * p2 * p2 * N * q);
parameter Real b = p_cr / (tau1 * tau1 * tau2 * tau2 * p2 * p2 * N * q);
14
16
       parameter Real c1 = (p_cr - p1) / (tau1 * p1);
parameter Real c2 = (p_cr - p2) / (tau1 * p2);
18
19
    equation
        der(x1) = (c1/c1) * x1 - (b/c1) * x1 * x2 - (a1/c1) * x1 * x1;
      der(x2) = (c2/c1) * x2 - (b/c1) * x1 * x2 - (a2/c1) * x2 * x2;
22
24 end Lab8 1;
```

Чтобы построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2, я написал следующий код:

```
1 model Lab8_1
      parameter Real M0_1 = 3.8; // Начальное x1
       parameter Real MO_2 = 2.8; // Начальное x2
      parameter Real p_cr = 28; // Критическая стоимость продукта
      parameter Real N = 38; // Число потребителей производимого продукта
       parameter Real q = 1; // максимальная потребность одного человека в продукте в единицу времени
      parameter Real tau1 = 28; // Длительность производственного цикла 1 фирмы parameter Real tau2 = 18; // Длительность производственного цикла 2 фирмы
      parameter Real p1= 8.8; // Себестоимость продукта фирмы 1
 9
      parameter Real p2 = 11.8; // Себестоимость продукта фирмы 2
       Real x1(start = M0_1);
       Real x2 (start = M0_2);
13
      parameter Real a1 = p_cr / (tau1 * tau1 * p1 * p1 * N * q);
parameter Real a2 = p_cr / (tau2 * tau2 * p2 * p2 * N * q);
parameter Real b = p_cr / (tau1 * tau1 * tau2 * tau2 * p2 * p2 * N * q);
14
16
      parameter Real c1 = (p_cr - p1) / (tau1 * p1);
parameter Real c2 = (p_cr - p2) / (tau1 * p2);
18
19
20 equation
       der(x1) = (c1/c1) * x1 - (b/c1 + 0.00073) * x1 * x2 - (a1/c1) * x1 * x1;
       der(x2) = (c2/c1) * x2 - (b/c1) * x1 * x2 - (a2/c1) * x2 * x2;
24
25 end Lab8 1;
```

Полученный график:

Выводы

Научилися выполнять построение модели конкуренции двух фирм без учета постоянных издержек и с веденной нормировкой в OpenModelica.

Список литературы

Кулябов, Д.С. - Модель конкуренции двух фирм https://esystem.rudn.ru/pluginfile.php/1343905/mod_resource/content/2/Лабораторная%20работа%20№ %207.pdf