WO 2005/061503

PCT/EP2004/014592

TRIAZOLOPYRIMIDINE MIT FUNGIZIDEN EIGENSCHAFTEN

Die Erfindung betrifft Triazolopyrimidine, ein Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.

Es ist bereits bekannt geworden, dass bestimmte Triazolopyrimidine fungizide Eigenschaften besitzen (vgl. EP 0 550 113-A, WO 94-20 501, EP 0 613 900-A, US 5 612 345-A, EP 0 834 513-A, WO 98-46 607 und WO 98-46 608). Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

Da sich aber die ökologischen und ökonomischen Anforderungen an moderne Fungizide laufend erhöhen, beispielsweise was Wirkspektrum, Toxizität, Selektivität, Aufwandmenge, Rückstandsbildung und günstige Herstellbarkeit angeht, und außerdem z.B. Probleme mit Resistenzen auftreten können, besteht die ständige Aufgabe, neue Fungizide zu entwickeln, die zumindest in Teilbereichen Vorteile gegenüber den bekannten aufweisen.

Es wurden nun neue Triazolopyrimidine der Formel

15

5

10

in welcher

- R¹ für H, R², gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Cyloalkyl oder für gegebenenfalls substituiertes Heterocyclyl steht;
- 20 R² für einen organischen Rest steht, der 3 bis 13 Kohlenstoffatome und ein oder mehrere Siliziumatome enthält, sowie gegebenenfalls 1 bis 3 gleiche oder verschiedene Heteroatome aus der Gruppe Sauerstoff, Stickstoff und Schwefel, und unsubstituiert ist oder substituiert durch 1 bis 4 gleiche oder verschiedene Halogene; oder
- R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Ring stehen, der ein oder mehrere Siliziumatome enthält und/oder durch einen oder mehrere Reste R² substituiert ist;

5

10

- für gegebenenfalls substituiertes Aryl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Cycloalkyl gegebenenfalls substituiertes Aralkyl, oder gegebenenfalls substituierte Arminogruppe, gegebenenfalls substituiertes (C1-C8)-Alkoxy, gegebenenfalls substituiertes (C1-C8)-Alkylthio, gegebenenfalls substituiertes (C6-C10)-Aryloxy, gegebenenfalls substituiertes (C6-C10)-Arylthio, gegebenenfalls substituiertes Heterocyclyloxy, gegebenenfalls substituiertes Heterocyclyloxy, gegebenenfalls substituiertes Heterocyclyloxy, gegebenenfalls substituiertes Heterocyclyloxy, gegebenenfalls substituiertes Heterocyclyl-(C1-C4)-alkoxy, oder gegebenenfalls substituiertes Heterocyclyl-(C1-C4)-alkylthio;
- R⁴ für H, Halogen, gegebenenfalls durch Halogen substituiertes Alkyl oder gegebenenfalls durch Halogen substituiertes Cycloalkyl steht und
- X für Halogen, Cyano, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkylthio, gegebenenfalls substituiertes Alkylsulfonyl oder gegebenenfalls substituiertes Alkylsulfonyl oder gegebenenfalls substituiertes Phenyl steht,

sowie deren Salze, gefunden.

Weiterhin wurde gefunden, dass sich Triazolopyrimidine der Formel (I) herstellen lassen, indem man

20 (a) Halogentriazolopyrimidine der Formel

in welcher

R³, R⁴ und X die oben angegebenen Bedeutungen haben und

Yl für Halogen steht,

25 mit Aminen der Formel

$$R^1$$
 R^2
 H
(III)

in welcher

R¹ und R² die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines

Säureakzeptors und gegebenenfalls in Gegenwart eines Katalysators umsetzt.

Schließlich wurde gefunden, dass sich die Triazolopyrimidine der Formel (I) sehr gut zur Bekämpfung von unerwünschten Mikroorganismen eignen. Sie zeigen vor allem eine starke fungizide Wirksamkeit und lassen sich sowohl im Pflanzenschutz als auch im Materialschutz verwenden.

Die erfindungsgemäßen Verbindungen der Formel (I) können gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie E- und Z-, threo- und erythro-, sowie optischen Isomeren, wie R- und S-Isomeren oder Atropisomeren, gegebenenfalls aber auch von Tautomeren vorliegen.

Die erfindungsgemäßen Triazolopyrimidine sind durch die Formel (I) allgemein definiert.

Bevorzugt sind Verbindungen der Formel (I), in denen

15 a¹) R³ für gegebenenfalls substituiertes Aryl, oder

a²) R³ für gegebenenfalls substituiertes Heterocyclyl, oder

a³) R³ für gegebenenfalls substituiertes Alkyl, oder

a⁴) R³ für gegebenenfalls substituiertes Alkenyl, oder

a⁵) R³ für gegebenenfalls substituiertes Alkinyl, oder

20 a⁶) R³ für gegebenenfalls substituiertes Cycloalkyl, oder

a⁷) R³ für gegebenenfalls substituiertes Aralkyl, oder

a⁸) R³ für eine gegebenenfalls substituierte Aminogruppe steht.

Ebenso bevorzugt sind Verbindungen der Formel (I), in denen R³ eine der folgenden Bedeutungen hat:

$$b^1$$
: a^1 , a^2 , a^3 , a^4 , a^5 , a^6 , a^7 ,

$$b^3$$
: a^1 , a^2 , a^3 , a^4 , a^5 , a^7 , a^8

$$b^8$$
: a^2 , a^3 , a^4 , a^5 , a^6 , a^7 , a^8 .

Weiterhin bevorzugt sind diejenigen Stoffe der Formel (I), in denen ein oder mehrere Symbole eine der im folgenden angegebenen bevorzugten Bedeutungen haben, d.h., in denen

R¹ für H steht, oder

15

- R¹ für einen Rest R² steht, oder
- R¹ für Alkyl mit 1 bis 6 Kohlenstoffatomen steht, das einfach bis fünffach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen und/oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, oder
 - R¹ für Alkenyl mit 2 bis 6 Kohlenstoffatomen steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen und/oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, oder
- für Alkinyl mit 3 bis 6 Kohlenstoffatomen steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Alkoxy mit 1 bis 4 Kohlenstoffatomen und/oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, oder
 - R1 für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen und/oder Alkyl mit 1 bis 4 Kohlenstoffatomen, oder
- 25 R¹ für gesättigtes oder ungesättigtes Heterocyclyl mit 3 bis 8 Ringgliedern und 1 bis 3 Heteroatomen, wie Stickstoff, Sauerstoff und/oder Schwefel, steht, wobei das Heterocyclyl

.5

30

einfach oder zweifach substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Cyano und/oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen,

- R² für eine aliphatische, gesättigte oder ungesättigte Gruppe mit 1 bis 13 Kohlenstoffatomen und einem oder mehreren Siliziumatomen, die gegebenenfalls 1 bis 3 gleiche oder verschiedene Heteroatome aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthält und die unsubstituiert oder durch 1 bis 4 gleiche oder verschiedene Halogenatome substituiert ist, oder
- R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gesättigten oder ungesättigten heterocyclischen Ring mit 3 bis 8 Ringgliedern stehen, der ein oder mehrere Siliziumatome enthält und/oder durch einen oder mehrere Reste R² substituiert ist, wobei der Heterocyclus ein weiteres Stickstoff-, Sauerstoff- oder Schwefelatom als Ringglied enthalten kann und wobei der Heterocyclus weiterhin bis zu dreifach substituiert sein kann durch Fluor, Chlor, Brom, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 Fluor- und/oder Chloratomen,
- \mathbb{R}^3 15 für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₃-C₈-Cycloalkyl, Phenyl-C₁-C₁₀alkyl stehen, wobei R³ unsubstituiert oder teilweise oder vollständig halogeniert ist und/oder gegebenenfalls ein bis drei Reste aus der Gruppe RX trägt, oder C1-C10-Halogenalkyl, das gegebenenfalls ein bis drei Reste aus der Gruppe Rx trägt, und RX Cyano, Nitro, Hydroxy, C1-C6-Alkyl, C1-C6-Haloalkyl, C3-C6-Cycloalkyl, 20 C₁-C₆-Haloalkoxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C_1 - C_6 -Alkoxy, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl, C1-C6-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, C₂-C₆-Alkenyl, C2-C6-Alkenyloxy, C2-C6-Alkinyl, C3-C6-Alkinyloxy und gegebenenfalls halogeniertes Oxy-C₁-C₄-alkenyl-C₁-C₄-alkoxy, Oxy- C_1 - C_4 -alkyl- C_1 - C_4 -alkenoxy, Оху-25 C₁-C₄-alkyl-C₁-C₄-alkyloxy bedeutet,
 - R³ für Phenyl steht, das einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch

Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl;

jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen; jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 11 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyl, Alkylsulfonyloxy, Hydroximinoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;

Cycloalkyl mit 3 bis 8 Kohlenstoffatomen:

in 2,3-Position verknüpftes 1,3-Propandiyl, 1,4-Butandiyl, Methylendioxy (-O-CH₂-O-) oder 1,2-Ethylendioxy (-O-CH₂-O-), wobei diese Reste einfach oder mehrfach, gleichartig oder verschieden substituiert sein können durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen;

15 oder.

20

25

5

R³ für gesättigtes oder ungesättigtes Heterocyclyl mit 3 bis 8 Ringgliedern und 1 bis 3 Heteroatomen aus der Gruppe Stickstoff, Sauerstoff und Schwefel steht, wobei das Heterocyclyl einfach oder zweifach substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Haloalkoxy mit 1 bis 4 Kohlenstoffatomen, Haloalkoxy mit 1 bis 4 Kohlenstoffatomen, Cyano, Nitro und/oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen;

oder

- für C₁-C₈-Alkylamino, C₂-C₈-Alkenylamino, C₂-C₈-Alkinylamino, Di-C₁-C₈-alkylamino, Di-C₂-C₈-alkenylamino, Di-C₂-C₈-alkinylamino, C₂-C₈-Alkenyl-(C₂-C₈)-alkinylamino, C₂-C₆-Alkinyl-(C₁-C₈)-alkylamino, C₂-C₈-Alkenyl-(C₁-C₈)-alkylamino, C₆-C₁₀-Arylamino, C₆-C₁₀-Aryl-(C₁-C₈)-alkylamino, C₆-C₁₀-Aryl-(C₁-C₄)-alkylamino, Heterocyclyl-(C₁-C₈)-alkylamino oder Heterocyclyl-(C₁-C₄)-alkyl-(C₁-C₈)-alkylamino steht;
- für H, Halogen, unsubstituiertes oder durch ein oder mehrere Halogenatome substituiertes

 (C₁-C₄)-Alkyl, unsubstituiertes oder durch ein oder mehrere Halogenatome substituiertes

 Cyclopropyl steht, und

- X für Fluor, Chlor, Brom, CN, unsubstituiertes oder durch ein oder mehrere Fluor- oder Chloratome substituiertes (C₁-C₄)-Alkyl, unsubstituiertes oder durch ein oder mehrere Fluor- oder Chloratome substituiertes (C₁-C₄)-Alkoxy oder unsubstituiertes oder durch ein oder mehrere Fluor- oder Chloratome substituiertes (C₁-C₄)-Alkylthio steht.
- Besonders bevorzugt sind diejenigen Triazolopyrimidine der Formel (I), in denen ein oder mehrere der Symbole eine der im folgenden aufgeführten besonders bevorzugten Bedeutungen haben, d.h., in denen
 - R¹ für Wasserstoff, Methyl oder Ethyl steht, oder
 - R^2 für eine Gruppe Y^2 -Si(O_mCH₃)(O_nCH₃)(O_pY³) steht,
- 10 wobei m, n und p unabhängig voneinander 0 oder 1;

Y² eine Bindung oder Alkandiyl, Alkendiyl oder Alkindiyl, die jeweils geradkettig oder verzweigt sind, 1 bis 6, bzw. 2 bis 6 Kohlenstoffatome aufweisen, gegebenenfalls durch ein oder zwei nicht benachbarte Sauerstoffatome unterbrochen und unsubstituiert oder durch ein bis drei gleiche oder verschiedene Halogenatome substituiert sind;

- 15 Y³ geradkettiges oder verzweigtes Alkyl oder Alkenyl mit 1 bis 5 bzw. 2 bis 5 Kohlenstoffatomen, gegebenenfalls durch ein Sauerstoff-Stickstoff- oder Schwefelatom unterbrochen und unsubstituiert oder durch 1 bis 3 gleiche oder verschiedene Halogenatome substituiert, bedeuten;
 - R³ für (C₁-C₈)-Alkyl, (C₁-C₈)-Cycloalkyl, Benzyl steht oder

25

30

20 R³ für Phenyl steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch

Fluor, Chlor, Brom, Cyano, Nitro, Formyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Allyl, Propargyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl, Allyloxy, Propargyloxy, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Trichlorethinyloxy, Trifluorethinyloxy, Trifluormethylsulfonyl, Trifluormethylsulfonyl, Trichlorethinyloxy, Trifluormethylsulfonyl, Methylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximino-

methyl, Methoximinoethyl, Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl,

in 2,3-Position verknüpftes 1,3-Propandiyl, 1,4-Butandiyl, Methylendioxy (-O-CH₂-O-) oder 1,2-Ethylendioxy (-O-CH₂-CH₂-O-), wobei diese Reste einfach oder mehrfach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, i-Propyl und/oder Trifluormethyl.

- R³ für Pyridyl steht, das in 2- oder 4-Stellung verknüpft ist und einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinomethyl, Methoximinomethyl, Methoximinomethyl und/oder Trifluormethyl, oder
- R³ für Pyrimidyl steht, das in 2- oder 4-Stellung verknüpft ist und einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Methoximinoethyl und/oder Trifluormethyl, oder
- 15 R³ für Thienyl steht, das in 2- oder 3-Stellung verknüpft ist und einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Methoximinoethyl und/oder Trifluormethyl, oder
 - R³ für C₁-C₈-Alkylamino oder Di-C₁-C₈-alkylamino steht, oder

5

10

- 20 R³ für Thiazolyl steht, das in 2-, 4- oder 5-Stellung verknüpft ist und einfach bis zweifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Methoximinoethyl und/oder Trifluormethyl, oder
- für N-Piperidinyl, N-Tetrazolyl, N-Pyrazolyl, N-Imidazolyl, N-1,2,4-Triazolyl, N-Pyrrolyl,
 oder N-Morpholinyl steht, die jeweils unsubstituiert oder ein- oder falls möglich mehrfach gleich oder verschieden durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl,
 Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinoethyl und/oder Trifluormethyl substituiert sind,
 - R⁴ für H, Cl, F, CH₃, -CH(CH₃)₂ oder Cyclopropyl steht; und
- 30 X für F, Cl, CN, unsubstituiertes oder durch ein oder mehrere Fluor- oder Chloratome substituiertes (C₁-C₄)-Alkyl, OCH₃ oder SCH₃ steht.

steht.

Ganz besonders bevorzugt sind Verbindungen der Formel (I), worin ein oder mehrere der Symbole eine der im folgenden aufgeführten ganz besonders bevorzugten Bedeutungen haben, in denen

R¹ für H:

- R^2 5 für SiMe3, SiMe₂Et, SiMe₂CHMe₂, SiMe2CH2CHMe2, SiMe2CH2CMe3, SiMe2OCHMe2, SiMe2OCH2CHMe2, CH2SiMe3, CH2SiMe2Et, CH2SiMe2CHMe2, CH2SiMe2CH2CHMe, CH2SiMe2OMe, CH2SiMe2OCHMe2, CH2SiMe2OCH2CHMe2, CHMeSiMe₃, CHMeSiMe₂OMe, (CH₂)₂SiMe₃, (CH₂)₂SiMe₂Et, (CH₂)₂SiMe₂CHMe₂, (CH₂)₂SiMe₂CMe₃, (CH2)2SiMe2CH2CHMe2, (CH2)2SiMe2CH2CH2Me, 10 (CH₂)₂SiMe₂CH₂CMe₃, (CH₂)₂SiMe₂OCHMe₂, (CH₂)₂SiMe₂OCH₂CHMe₂, CHMeCH2SiMe3, CHMeCH2SiMe2Et, CHMeCH2SiMe2CH2CH2Me, CHMeCH2SiMe2CHMe2. CHMeCH2SiMe2CMe3, CHMeCH2SiMe2CH2CHMe2, CFMeCH2SiMe3, CHMeCH2CH2SiMe2OMe, CHMeCH2SiMe2OCHMe2, CHMeCH2SiMe2OCH2CHMe2, CH2CHMeSiMe3, CH2CHMeSiMe2Et, CH₂CHMeSiMe₂CHMe₂, 15 CHMeCHMeSiMe3, CMe2CH2SiMe3, (CH2)3SiMe3, (CH₂)₃SiMe₂Et, (CH₂)₃SiMe₂CHMe₂, (CH₂)₃SiMe₂CH₂CHMe₂, (CH₂)₃SiMe₂OMe, (CH₂)₃SiMe₂OCHMe₂, (CH₂)₃SiMe₂OCH₂CHMe₂, CHMeCH2CH2SiMe3, CHMeCH2CH2SiMe2Et, CHMeCH2CH2SiMe2CHMe2, CHMeCH2CH2CH2SiMe2OMe, CHMeCH2CH2SiMe2OCHMe2, CMe=CHSiMe3, 20 CH₂CH₂SiMe₂OMe, -C≡C-SiMe₃, -CH₂-C≡C-SiMe₃ oder -CHMe-C≡C-SiMe₃;
 - R³ für (C₁-C₆)-Alkyl, (C₃-6)-Alkenyl, (C₃-C₆)-Alkinyl, (C₃-C₈)-Cycloalkyl, wobei R³ unsubstituiert oder durch ein oder mehrere Fluor- oder Chloratome substituiert ist,

oder.

- R³ für 2,4- oder 2,6-disubstituiertes Phenyl, oder für 2-substituiertes Phenyl oder für 2,4,6trisubstituiertes Phenyl,
 - für Pyridyl, das in 2- oder 4-Stellung verknüpft ist und einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinoethyl und/oder Trifluormethyl, oder
 - 30 R³ für Pyrimidyl, das in 4-Stellung verknüpft ist und einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Methyl, Ethyl,

Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinoethyl und/oder Trifluormethyl;

R⁴ für H, -CH₃, -CH(CH₃)₂, Cl oder Cyclopropyl,

und

5 X für Fluor, Chlor, CN, (C₁-C₃)-Alkyl, insbesondere CH₃ oder (C₁-C₃)-Haloalkyl, insbesondere CF₃, OCH₃, oder SCH₃ steht.

Die zuvor genannten Reste-Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können einzelne Definitionen entfallen.

Verwendet man beispielsweise 5,7-Dichlor-6-(5-chlorpyrimidin-4-yl)-[1,2,4]triazolo[1,5-a]pyrimidin als Ausgangsstoff, so kann der Verlauf des erfindungsgemäßen Verfahrens (a) durch das folgende Formelschema veranschaulicht werden.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Dihalogen-triazolo-pyrimidine sind durch die Formel (II) allgemein definiert. In dieser Formel (II) haben \mathbb{R}^3 und X vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden. Y¹ steht vorzugsweise für Fluor, Chlor oder Brom, besonders bevorzugt für Fluor oder Chlor.

Dihalogen-triazolopyrimidine lassen sich herstellen, indem man beispielsweise

20 (b) Dihydroxy-triazolo-pyrimidine der Formel

$$R^3$$
 N
 R^4
 (IV)

in welcher

15

R³ die oben angegebene Bedeutung hat,

mit Halogenierungsmitteln, gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.

Verwendet man beispielsweise 6-(5-Chlorpyrimidin-4-yl)-[1,2,4]triazolo[1,5-a]-pyrimidin-5,7-diol als Ausgangsstoff und Phosphoroxychlorid im Gemisch mit Phosphorpentachlorid als Halogenierungsmittel, so kann der Verlauf des erfindungsgemäßen Verfahrens (b) durch das folgende Formelschema veranschaulicht werden.

Die bei der Durchführung des Verfahrens (b) als Ausgangsstoffe benötigten Dihydroxy-triazolopyrimidine sind durch die Formel (IV) allgemein definiert. In dieser Formel hat R³ vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden.

Dihydroxy-triazolopyrimidine der Formel (IV) lassen sich herstellen, indem man beispielsweise

(c) Heteroarylmalonester der Formel

$$R^3$$
 (V)

15 in welcher

10

- R³ die oben angegebene Bedeutung hat und
- R⁵ für Alkyl mit 1 bis 4 Kohlenstoffatomen steht,

mit einem Aminotriazol der Formel

$$\begin{array}{c} A_2 N \\ N \\ N \\ R^4 \end{array}$$
 (VI)

10

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

Verwendet man beispielsweise 2-(5-Chlorpyrimidin-4-yl)-malonsäuredimethylester und ein 3-Aminotriazol als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (c) durch das folgende Formelschema veranschaulicht werden.

Die zur Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe benötigten Heteroarylmalonester sind durch die Formel (V) allgemein definiert. In dieser Formel hat R³ vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden. R⁵ steht für Methyl oder Ethyl.

Die Heteroarylmalonester der Formel (V) sind bekannt (vgl. DE 38 20 538-A, WO 01-11 965 und DE-A 103 25 133).

Verwendet man beispielsweise 2-Chlor-3-trifluormethylpyridin und Malonsäuredimethylester als

Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (d) durch das folgende
Formelschema veranschaulicht werden.

Die zur Durchführung des erfindungsgemäßen Verfahrens (d) als Ausgangsstoffe benötigten Halogenpyridine sind bekannte Synthesechemikalien.

20 Die zur Durchführung des erfindungsgemäßen Verfahrens (d) weiterhin als Ausgangsstoffe benötigten Malonsäureester sind ebenfalls bekannte Synthesechemikalien.

Verwendet man beispielsweise 4,5-Dichlorpyrimidin und Malonsäuredimethylester als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (e) durch das folgende Formelschema veranschaulicht werden.

Die zur Durchführung des erfindungsgemäßen Verfahrens (e) als Ausgangsstoffe benötigten Halogenpyrimidine sind bekannt und können nach bekannten Methoden hergestellt werden (vgl. J. Chem. Soc. 1955, 3478, 3481).

Die zur Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoff weiterhin benötigten Aminotriazole der Formel (VI) sind handelsübliche Chemikalien.

Als Halogenierungsmittel kommen bei der Durchführung des Verfahrens (b) alle für den Ersatz von Hydroxygruppen durch Halogen üblichen Komponenten in Betracht. Vorzugsweise verwendbar sind Phosphortrichlorid, Phosphortribromid, Phosphorpentachlorid, Phosphoroxychlorid, Thionylchlorid, Thionylbromid, Phosphortribromid, Phosphorpentachlorid, Phosphoroxychlorid, Triphosgen oder deren Gemische, insbesondere eine Mischung aus Phosphoroxychlorid, Phosphortrichlorid und Chlor (siehe z.B.
 EP-A 1 077 210). Die entsprechenden Fluor-Verbindungen der Formel (II) lassen sich aus den Chlor- oder Brom-Verbindungen durch Umsetzung mit Kaliumfluorid herstellen.

Die genannten Halogenierungsmittel sind bekannt.

20

Die weiterhin zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Amine sind durch die Formel (III) allgemein definiert. In dieser Formel haben R¹ und R² vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für R¹ und R² als bevorzugt angegeben wurden.

Die Synthese von Verbindungen der Formel (II), in denen R³ eine Alkyl-, Alkenyl-, Alkinyl- oder Cycloalkylgruppe ist, ist in der WO-A 03/009687 beschrieben.

Die Synthese von Verbindungen der Formel (II), in denen R³ eine Amino-, Alkohol- oder Thio funktion trägt, ist in der WO-A 03/039 259 beschrieben.

Die Arnine der Formel (III) sind bekannt. Sie sind teilweise käuflich erhältlich oder lassen sich nach bekannten, dem Fachmann geläufigen Methoden herstellen.

So sind silylierte Amine der Formel (IIIa)

5 worin

n eine natürliche Zahl von 0 bis 10 und

Ra, Rb, Rc, Rd gleich oder verschieden H, CH3 oder C2H5 bedeutet (wobei die Gesamtzahl der C-Atome in Ra-d≤12 ist),

allgemein zugänglich, indem man beispielsweise Phthalimid in Gegenwart einer Base, wie 10 K₂CO₃, mit einem Halogenalkylsilan umsetzt und das entstandene N-substituierte Phthalimid mit Hydrazin spaltet:

$$CI + \begin{pmatrix} R^a & R^c \\ \Gamma & N \\ R^b & R^c \end{pmatrix} \xrightarrow{R^a & R^c \\ K_2CO_3} \qquad \begin{pmatrix} N & R^a & R^c \\ \Gamma & N & R^b \\ R^b & R^c \end{pmatrix} \xrightarrow{R^a & R^c \\ R^b & R^c \\ R^b & R^c \end{pmatrix}} H_2N + \begin{pmatrix} R^a & R^c \\ \Gamma & N \\ \Gamma & N \\ R^b & R^c \end{pmatrix}$$

Solche Synthesen sind beispielsweise beschrieben in J. Am. Chem. Soc. 1951, 73, 5130 oder J. Organomet. Chem. 1978, 174, C18.

Haloalkylsilane sind käuflich oder können nach bekannten, dem Fachmann geläufigen Methoden hergestellt werden (siehe z.B. Houben-Weyl, Band 13/5, S. 65 ff. oder Science of Synthesis, Vol. 4, S. 247 ff.).

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (a) alle üblichen inerten organischen Solventien in Betracht. Vorzugsweise verwendbar sind halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Me-

thylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ester wie Essigsäuremethylester oder Essigsäureethylester; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan.

Als Säureakzeptoren kommen bei der Durchführung des erfindungsgemäßen Verfahren (a) alle für derartige Umsetzungen üblichen anorganischen oder organischen Basen in Frage. Vorzugsweise verwendbar sind Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Lithium-diisopropylamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat und Natriumhydrogencarbonat, und außerdem Ammonium-Verbindungen wie Ammoniumhydroxid, Ammoniumacetat und Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

· 10

20

. 25

Als Katalysatoren kommen bei der Durchführung des erfindungsgemäßen Verfahrens (a) alle für derartige Umsetzungen üblichen Reaktionsbeschleuniger in Betracht. Vorzugsweise verwendbar sind Fluoride wie Natriumfluorid, Kaliumfluorid oder Ammoniumfluorid.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (a) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise bei Temperaturen zwischen 0°C und 80°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (a) setzt man auf 1 mol an Dihalogentriazolo-pyrimidin der Formel (II) im Allgemeinen 0,5 bis 10 mol, vorzugsweise 0,8 bis 2 mol an Amin der Formel (III) ein. Die Aufarbeitung erfolgt nach üblichen Methoden.

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (b) alle für derartige Halogenierungen üblichen Solventien in Frage. Vorzugsweise verwendbar sind halogenierte aliphatische oder aromatische Kohlenwasserstoffe, wie Chlorbenzol. Als Verdünnungsmittel kann aber auch das Halogenierungsmittel selbst, z.B. Phosphoroxychlorid oder ein Gemisch von Halogenierungsmitteln fungieren.

Die Temperaturen können auch bei der Durchführung des Verfahrens (b) in einem größeren 30 Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise zwischen 10°C und 120°C.

WO 2005/061503 PCT/EP2004/014592

Bei der Durchführung des Verfahrens (b) setzt man Dihydroxy-triazolpyrimidin der Formel (IV) im Allgemeinen mit einem Überschuss an Halogenierungsmittel um. Die Aufarbeitung erfolgt nach üblichen Methoden,

Als Verdünnungsmittel kommen bei der Durchführung des Verfahrens (c) alle für derartige Umsetzungen üblichen, inerten organischen Solventien in Frage. Vorzugsweise verwendbar sind Alkohole, wie Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol und tert.-Butanol.

5

10

15

20

25

Als Säurebindemittel kommen bei der Durchführung des Verfahrens (c) alle für derartige Umsetzungen üblichen anorganischen und organischen Basen in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Tributylamin oder Pyridin. Im Überschuss eingesetztes Amin kann auch als Verdünnungsmittel fungieren.

Die Temperaturen können bei der Durchführung des Verfahrens (c) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 20°C und 200°C, vorzugsweise zwischen 50°C und 180°C.

Bei der Durchführung des Verfahrens (c) setzt man Heteroarylmalonester der Formel (V) und Aminotriazol der Formel (VI) im Allgemeinen in äquivalenten Mengen um. Es ist aber auch möglich, die eine oder andere Komponente in einem Überschuss zu verwenden. Die Aufarbeitung erfolgt nach üblichen Methoden.

Als Verdünnungsmittel kommen bei der Durchführung der erfindungsgemäßen Verfahren (d) und (e) jeweils alle üblichen, inerten organischen Solventien in Frage. Vorzugsweise verwendbar sind halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan; Alkohole, wie Methanol, Ethanol, n- oder i-Propanol, n-, i-, sek- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether, deren Gemische mit Wasser oder auch reines Wasser.

30 Als Kupfersalze kommen bei der Durchführung der erfindungsgemäßen Verfahren (d) und (e) jeweils übliche Kupfersalze in Betracht. Vorzugsweise verwendbar sind Kupfer(I)chlorid oder Kupfer(I)bromid.

Als Säureakzeptoren kommen bei der Durchführung der erfindungsgemäßen Verfahren (d) und (e) jeweils alle üblichen anorganischen oder organischen Basen in Frage. Vorzugsweise verwendbar sind Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Lithiumdiisopropylamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat und Natriumhydrogencarbonat und außerdem AmmoniumVerbindungen wie Ammoniumhydroxid, Ammoniumacetat und Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

10

20

25

Die Reaktionstemperaturen können auch bei der Durchführung der erfindungsgemäßen Verfahren (d) und (e) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise bei Temperaturen zwischen 0°C und 80°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (d) setzt man auf 1 Mol an Halogenpyridin im Allgemeinen 1 bis 15 Mol, vorzugsweise 1,3 bis 8 Mol an Malonester ein. Die Aufarbeitung erfolgt nach üblichen Methoden.

Bei der Durchführung des erfindungsgemäßen Verfahrens (e) setzt man auf 1 Mol an Halogenpyrimidin im Allgemeinen 1 bis 15 Mol, vorzugsweise 1,3 bis 8 Mol an Malonester ein. Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

Die erfindungsgemäßen Verfahren werden im Allgemeinen unter Atmosphärendruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.

Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt: Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;

Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;

Erwinia-Arten, wie beispielsweise Erwinia amylovora;

Pythium-Arten, wie beispielsweise Pythium ultimum;

5 Phytophthora-Arten, wie beispielsweise Phytophthora infestans;

Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder

Pseudoperonospora cubensis;

Plasmopara-Arten, wie beispielsweise Plasmopara viticola;

Bremia-Arten, wie beispielsweise Bremia lactucae;

10 Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;

Erysiphe-Arten, wie beispielsweise Erysiphe graminis;

Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;

Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;

Venturia-Arten, wie beispielsweise Venturia inaequalis;

15 Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea

(Konidienform: Drechslera, Syn: Helminthosporium);

Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus

(Konidienform: Drechslera, Syn: Helminthosporium);

Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;

20 Puccinia-Arten, wie beispielsweise Puccinia recondita;

Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum;

Tilletia-Arten, wie beispielsweise Tilletia caries;

Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;

15

20

25

Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;

Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;

Fusarium-Arten, wie beispielsweise Fusarium culmorum;

Botrytis-Arten, wie beispielsweise Botrytis cinerea;

5 Septoria-Arten, wie beispielsweise Septoria nodorum;

Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;

Cercospora-Arten, wie beispielsweise Cercospora canescens;

Alternaria-Arten, wie beispielsweise Alternaria brassicae;

Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die erfindungsgemäßen Wirkstoffe weisen auch eine sehr gute stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.

Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten.

Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie beispielsweise gegen Erysiphe-Arten, von Krankheiten im Wein-,

Obst- und Gemüseanbau, wie beispielsweise gegen Botrytis-, Venturia-, Sphaerotheca- und Podosphaera-Arten, einsetzen.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

10

15

20

25

30

Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach der üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder,

5

10

Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

Alternaria, wie Alternaria tenuis,

15 Aspergillus, wie Aspergillus niger,

Chaetomium, wie Chaetomium globosum,

Coniophora, wie Coniophora puetana,

Lentinus, wie Lentinus tigrinus,

Penicillium, wie Penicillium glaucum,

20 Polyporus, wie Polyporus versicolor,

Aureobasidium, wie Aureobasidium pullulans,

Sclerophoma, wie Sclerophoma pityophila,

Trichoderma, wie Trichoderma viride,

Escherichia, wie Escherichia coli,

25 Pseudomonas, wie Pseudomonas aeruginosa,

Staphylococcus, wie Staphylococcus aureus.

WO 2005/061503 PCT/EP2004/014592

5

10

15

20

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/ oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Bims, Marmor, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel. Als Emulgier und/oder schaumerzeugende Mittel kommen infrage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen infrage:

Fungizide:

2-Phenylphenol; 8-Hydroxyquinoline sulfate; Acibenzolar-S-methyl; Aldimorph; Amidoflumet; Ampro-15 pylfos; Ampropylfos-potassium; Andoprim; Anilazine; Azaconazole; Azoxystrobin; Benalaxyl; Benalaxyl-M; Benodanil; Benomyl; Benthiavalicarb-isopropyl; Benzamacril; Benzamacril-isobutyl; Bilanafos; Binapacryl; Biphenyl; Bitertanol; Blasticidin-S; Boscalid; Bromuconazole; Bupirimate; Buthiobate; Butylamine; Calcium polysulfide; Capsimycin; Captafol; Captan; Carbendazim; Carboxin; Carproparnid; Carvone; Chinomethionat; Chlobenthiazone; Chlorfenazole; Chloroneb; Chlorothalonil; 20 Chlozolinate; Clozylacon; Cyazofamid; Cyflufenamid; Cymoxanil; Cyproconazole; Cyprodinil; Cyprofuram; Dagger G; Debacarb; Dichlofluanid; Dichlone; Dichlorophen; Diclocymet; Diclomezine; Dicloran; Diethofencarb; Difenoconazole; Diflumetorim; Dimethirimol; Dimethomorph; Dimoxystrobin; Diniconazole; Diniconazole-M; Dinocap; Diphenylamine; Dipyrithione; Ditalimfos; Dithianon; Dodine; Drazoxolon; Edifenphos; Epoxiconazole; Ethaboxam; Ethirimol; Etridiazole; Famoxadone; 25 Fenamidone; Fenapanil; Fenarimol; Fenbuconazole; Fenfuram; Fenhexamid; Fenitropan; Fenoxanil; Fenpiclonil; Fenpropidin; Fenpropimorph; Ferbam; Fluazinam; Flubenzimine; Fludioxonil; Flumetover; Flumorph; Fluoromide; Fluoxastrobin; Fluquinconazole; Flurprimidol; Flusulfamide; Flutolanil; Flutriafol; Folpet; Fosetyl-Al; Fosetyl-sodium; Fuberidazole; Furalaxyl; Furametpyr; Furcarbanil; Furmecyclox; Guazatine; Hexachlorobenzene; Hexaconazole; Hymexazol; Imazalil; Imibenconazole; 30 Iminoctadine triacetate; Iminoctadine tris(albesilate); Iodocarb; Ipconazole; Iprobenfos; Iprodione; Iprovalicarb; Irumamycin; Isoprothiolane; Isovaledione; Kasugamycin; Kresoxim-methyl; Mancozeb; Maneb; Meferimzone; Mepanipyrim; Mepronil; Metalaxyl; Metalaxyl-M; Metconazole; Methasulfocarb; Methfuroxam; Metiram; Metominostrobin; Metsulfovax; Mildiomycin; Myclobutanil;

Myclozolin; Natamycin; Nicobifen; Nitrothal-isopropyl; Noviflumuron; Nuarimol; Ofurace; Orysastrobin; Oxadixyl; Oxolinic acid; Oxpoconazole; Oxycarboxin; Oxyfenthiin; Paclobutrazol; Pefurazoate; Penconazole; Pencycuron; Phosdiphen; Phthalide; Picoxystrobin; Piperalin; Polyoxins; Polyoxorim; Probenazole; Prochloraz; Procymidone; Propamocarb; Propanosine-sodium; Propiconazole; Propineb; Proquinazid; Prothioconazole; Pyraclostrobin; Pyrazophos; Pyrifenox; Pyrimethanil; Pyroquilon; Pyroxyfur; Pyrrolnitrine; Quinconazole; Quinoxyfen; Quintozene; Simeconazole; Spiroxamine; Sulfur, Tebuconazole; Tecloftalam; Tecnazene; Tetcyclacis; Tetraconazole; Thiabendazole; Thicyofen; Thifluzamide; Thiophanate-methyl; Thiram; Tioxymid; Tolclofos-methyl; Tolylfluanid; Triadimefon; Triadimenol, Triazbutil; Triazoxide; Tricyclamide; Tricyclazole; Tridemorph; Trifloxystrobin; Triflumizole; Triforine; Triticonazole; Uniconazole; Validamycin A; Vinclozolin; Zineb; Ziram; Zoxamide; 10 (2S)-N-[2-[4-[[3-(4-Chlorphenyl)-2-propnyl]oxy]-3-methoxyphenyl]ethyl]-3-methyl-2-[(methylsulfonyl)amino]-butanamid; 1-(1-Naphthalinyl)-1H-pyrrol-2,5-dion; 2,3,5,6-Tetrachlor-4-(methylsulfonyl)pyridin; 2-Amino-4-methyl-N-phenyl-5-thiazolcarboxamid; 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1Hinden-4-yl)-3-pyridincarboxamid; 3,4,5-Trichlor-2,6-pyridindicarbonitril; Actinovate; cis-1-(4-Chlor-15 phenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol; Methyl 1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat; Monokaliumcarbonat; N-(6-Methoxy-3-pyridinyl)-cyclopropancarboxamid; N-Butyl-8-(1,1-dimethylethyl)-1-oxaspiro[4.5]decan-3-amin; Natriumtetracarbonat;

sowie Kupfersalze und -zubereitungen, wie Bordeaux Mischung; Kupferhydroxid, Kupfernaphthenat; Kupferoxychlorid; Kupfersulfat; Cufraneb; Kupferoxid; Mancopper; Kupferoxin.

Bakterizide:

20

30

Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

25 Insektizide / Akarizide / Nematizide:

1. Acetylcholinesterase (AChE) Inhibitoren

1.1 Carbamate (z.B. Alanycarb, Aldicarb, Aldoxycarb, Allyxycarb, Aminocarb, Azamethiphos, Bendiocarb, Benfuracarb, Bufencarb, Butacarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Chloethocarb, Coumaphos, Cyanofenphos, Cyanophos, Dimetilan, Ethiofencarb, Fenobucarb, Fenothiocarb, Formetanate, Furathiocarb, Isoprocarb, Metam-sodium, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Promecarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC, Xylylcarb)

- 1.2 Organophosphate (z.B. Acephate, Azamethiphos, Azinphos (-methyl, -ethyl), Bromophosethyl, Bromfenvinfos (-methyl), Butathiofos, Cadusafos, Carbophenothion, Chlorethoxyfos, Chlorfenvinphos, Chlormephos, Chlorpyrifos (-methyl/-ethyl), Coumaphos, Cyanofenphos, Cyanophos, Chlorfenvinphos, Demeton-S-methyl, Demeton-S-methylsulphon, Dialifos, Diazinon, Dichlofenthion, Dichlorvos/DDVP, Dicrotophos, Dimethoate, Dimethylvinphos, Dioxabenzofos, Disulfoton, EPN, Ethion, Ethoprophos, Etrimfos, Famphur, Fenamiphos, Fenitrothion, Fensulfothion, Fenthion, Flupyrazofos, Fonofos, Formothion, Fosmethilan, Fosthiazate, Heptenophos, Iodofenphos, Iprobenfos, Isazofos, Isofenphos, Isopropyl O-salicylate, Isoxathion, Malathion, Mecarbam, Methacrifos, Methamidophos, Methidathion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion (-methyl/-ethyl), Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phosphocarb, Phoxim, Pirimiphos (-methyl/-ethyl), Profenofos, Propaphos, Propetamphos, Prothiofos, Prothoate, Pyraclofos, Pyridaphenthion, Pyridathion, Quinalphos, Sebufos, Sulfotep, Sulprofos, Tebupirimfos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Triclorfon, Vamidothion)
- 15 2. Natrium-Kanal-Modulatoren / Spannungsabhängige Natrium-Kanal-Blocker
- 2.1 Pyrethroide (z.B. Acrinathrin, Allethrin (d-cis-trans, d-trans), Beta-Cyfluthrin, Bifenthrin, Bio-allethrin, Bioallethrin-S-cyclopentyl-isomer, Bioethanomethrin, Biopermethrin, Bioresmethrin, Chlovaporthrin, Cis-Cypermethrin, Cis-Resmethrin, Cis-Permethrin, Clocythrin, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cypermethrin (alpha-, beta-, theta-, zeta-), Cyphenothrin, DDT,
 20 Deltamethrin, Empenthrin (1R-isomer), Esfenvalerate, Etofenprox, Fenfluthrin, Fenpropathrin, Fenpyrithrin, Fenvalerate, Flubrocythrinate, Flucythrinate, Flufenprox, Flumethrin, Fluvalinate, Fubfenprox, Gamma-Cyhalothrin, Imiprothrin, Kadethrin, Lambda-Cyhalothrin, Metofluthrin, Permethrin (cis-, trans-), Phenothrin (1R-trans isomer), Prallethrin, Profluthrin, Protrifenbute, Pyresmethrin, Resmethrin, RU 15525, Silafluofen, Tau-Fluvalinate, Tefluthrin, Terallethrin, Tetramethrin (1R-isomer), Tralomethrin, Transfluthrin, ZXI 8901, Pyrethrins (pyrethrum))
 - 2.2 Oxadiazine (z.B. Indoxacarb)

10

- 3. Acetylcholin-Rezeptor-Agonisten/-Antagonisten
- 3.1 Chloronicotinyle/Neonicotinoide (z.B. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Nithiazine, Thiacloprid, Thiamethoxam)
- 30 3.2 Nicotine, Bensultap, Cartap
 - 4. Acetylcholin-Rezeptor-Modulatoren

- 4.1 Spinosyne (z.B. Spinosad)
- 5. GABA-gesteuerte Chlorid-Kanal-Antagonisten
- 5.1 Cyclodiene Organochlorine (z.B. Camphechlor, Chlordane, Endosulfan, Gamma-HCH, HCH, Heptachlor, Lindane, Methoxychlor
- 5 5.2 Fiprole (z.B. Acetoprole, Ethiprole, Fipronil, Vaniliprole)
 - 6. Chlorid-Kanal-Aktivatoren
 - 6.1 Mectine (z.B. Abamectin, Avermectin, Emamectin, Emamectin-benzoate, Ivermectin, Milbemectin, Milbemycin)
 - 7. Juvenilhormon-Mimetika
- (z.B. Diofenolan, Epofenonane, Fenoxycarb, Hydroprene, Kinoprene, Methoprene, Pyriproxifen,Triprene)
 - 8. Ecdysonagonisten/disruptoren
 - 8.1 Diacylhydrazine (z.B. Chromafenozide, Halofenozide, Methoxyfenozide, Tebufenozide)
 - 9. Inhibitoren der Chitinbiosynthese
- 9.1 Benzoylhamstoffe (z.B. Bistrifluron, Chlofluazuron, Diflubenzuron, Fluazuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Penfluron, Teflubenzuron, Triflumuron)
 - 9.2 Buprofezin
 - 9.3 Cyromazine
- 20 10. Inhibitoren der oxidativen Phosphorylierung, ATP-Disruptoren
 - 10.1 Diafenthiuron
 - 10.2 Organotine (z.B. Azocyclotin, Cyhexatin, Fenbutatin-oxide)
 - 11. Entkoppler der oxidativen Phoshorylierung durch Unterbrechung des H-Protongradienten
 - 11.1 Pyrrole (z.B. Chlorfenapyr)

- 11.2 Dinitrophenole (z.B. Binapacyrl, Dinobuton, Dinocap, DNOC)
- 12. Site-I-Elektronentransportinhibitoren
- 12.1 METI's (z.B. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad, Tolfenpyrad)
- 5 12.2 Hydramethylnone
 - 12.3 Dicofol
 - 13. Site-II-Elektronentransportinhibitoren
 - 13.1 Rotenone
 - 14. Site-III-Elektronentransportinhibitoren
- 10 14.1 Acequinocyl, Fluacrypyrim
 - 15. Mikrobielle Disruptoren der Insektendarmmembran

Bacillus thuringiensis-Stämme

- 16. Inhibitoren der Fettsynthese
- 16.1 Tetronsäuren (z.B. Spirodiclofen, Spiromesifen)
- 15 16.2 Tetramsäuren [z.B. 3-(2,5-Dimethylphenyl)-8-methoxy-2-oxo-1-azaspiro[4.5]dec-3-en-4-yl ethyl carbonate (alias: Carbonic acid, 3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-1-azaspiro[4.5]dec-3-en-4-yl ethyl ester, CAS-Reg.-No.: 382608-10-8) and Carbonic acid, cis-3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-1-azaspiro[4.5]dec-3-en-4-yl ethyl ester (CAS-Reg.-No.: 203313-25-1)]
- 20 17. Carboxamide
 - (z.B. Flonicamid)
 - 18. Oktopaminerge Agonisten
 - (z.B. Amitraz)
 - 19. Inhibitoren der Magnesium-stimulierten ATPase

- (z.B. Propargite)
- 20. Phthalamide
- (z.B. N²-[1,1-Dimethyl-2-(methylsulfonyl)ethyl]-3-iod-N¹-[2-methyl-4-[1,2,2,2-tetrafluor-1-(trifluormethyl)ethyl]phenyl]-1,2-benzenedicarboxamide (CAS-Reg.-No.: 272451-65-7), Flubendiamide)
 - 21. Nereistoxin-Analoge
 - (z.B. Thiocyclam hydrogen oxalate, Thiosultap-sodium)
 - 22. Biologika, Hormone oder Pheromone
- (z.B. Azadirachtin, Bacillus spec., Beauveria spec., Codlemone, Metarrhizium spec., Paecilomyces spec., Thuringiensin, Verticillium spec.)
 - 23. Wirkstoffe mit unbekannten oder nicht spezifischen Wirkmechanismen
 - 23.1 Begasungsmittel (z.B. Aluminium phosphide, Methyl bromide, Sulfuryl fluoride)
 - 23.2 Selektive Fraßhemmer (z.B. Cryolite, Flonicamid, Pymetrozine)
 - 23.3 Milbenwachstumsinhibitoren (z.B. Clofentezine, Etoxazole, Hexythiazox)
- 23.4 Amidoflumet, Benclothiaz, Benzoximate, Bifenazate, Bromopropylate, Buprofezin, Chinomethionat, Chlordimeform, Chlorobenzilate, Chloropicrin, Clothiazoben, Cycloprene, Cyflumetofen, Dicyclanil, Fenoxacrim, Fentrifanil, Flubenzirnine, Flufenerim, Flutenzin, Gossyplure, Hydramethylnone, Japonilure, Metoxadiazone, Petroleum, Piperonyl butoxide, Potassium oleate, Pyrafluprole, Pyridalyl, Pyriprole, Sulfluramid, Tetradifon, Tetrasul, Triarathene, Verbutin,
- ferner die Verbindung 3-Methyl-phenyl-propylcarbamat (Tsumacide Z), die Verbindung 3-(5-Chlor-3-pyridinyl)-8-(2,2,2-trifluorethyl)-8-azabicyclo[3.2.1]octan-3-carbonitril (CAS-Reg.-Nr. 185982-80-3) und das entsprechende 3-endo-Isomere (CAS-Reg.-Nr. 185984-60-5) (vgl. WO 96/37494, WO 98/25923), sowie Präparate, welche insektizid wirksame Pflanzenextrakte, Nematoden, Pilze oder Viren enthalten.
- Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren, Safenern bzw. Semiochemicals ist möglich.
 - Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum,

5

10

15

.20

25

insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert.

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.

WO 2005/061503 PCT/EP2004/014592 - 30 -

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

5

10

15

20

25

30

35

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B.

- 31 -

"PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").

10

- Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
- Weiterhin eignen sich die erfindungsgemäßen Verbindungen der Formel (I) zur Unterdrückung des Wachstums von Tumorzellen in Menschen und Säugetieren. Dies basiert auf einer Wechselwirkung der erfindungsgemäßen Verbindungen mit Tubulin und Mikrotubuli und durch Förderung der Mikrotubuli-Polymerisation.

Zu diesem Zweck kann man eine wirksame Menge an einer oder mehreren Verbindungen der Formel (I) oder pharmazeutisch verträglicher Salze davon verabreichen.

Weiterhin eignen sich die erfindungsgemäßen Verbindungen der Formel (I) zur Unterdrückung des Wachstums von Tumorzellen in Menschen und Säugetieren. Dies basiert auf einer Wechselwirkung der erfindungsgemäßen Verbindungen mit Tubulin und Mikrotubuli und durch Förderung der Mikrotubuli-Polymerisation.

Zu diesem Zweck kann man eine wirksame Menge an einer oder mehreren Verbindungen der Formel (I) oder pharmazeutisch verträglicher Salze davon verabreichen. Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den folgenden Beispielen hervor.

Beispiel 1

Zu einer Lösung von 0,400 g (1,260 mmol) 5,7-Dichlor-6-(2-chlor-4-fluorphenyl)-[1,2,4]triazolo-[1,5-a]pyrimidin in 10 ml Acetonitril gab man bei Raumtemperatur 0,143 g (1,386 mmol) Trimethylsilylmethylamin und 0,216 g (1,890 mmol) K₂CO₃ und rührte dann über Nacht. Anschließend wurde in Salzsäure eingerührt, das ausgefallene Produkt mit Wasser gewaschen und getrocknet. Man erhielt 0,31 g (58 % d.Th.) Produkt.

HPLC: logP = 3,61

Beispiel 2

5

20

10 a) Herstellung von (1-Iodethyl)trimethylsilan

2,4 g (17,557 mmol) (1-Chlorethyl)trimethylsilan wurde in 15 ml Aceton verrührt, mit 6,579 g (43,893 mmol) Natriumiodid versetzt und 1 Tag am Rückfluss gekocht. Es wurde in Wasser und Ether aufgenommen und die wässrige Phase zweimal mit Ether extrahiert. Die organische Phase wurde getrocknet und das Lösungsmittel abgezogen.

15 Man erhielt 3,8 g (95 % d.Th.) Produkt.

b) (1-Aminoethyl)trimethylsilan

3,8 g (16,656 mmol) (1-Iodmethyl)trimethylsilan wurden im Autoklaven mit 47,670 g (2799,014 mmol) Ammoniak einkondensiert und 2,5 Stunden bei 135°C und einem Druck von 91 bar gerührt. Das Reaktionsgemisch wurde in CH₂Cl₂ verrührt, das Lösungsmittel abgezogen mit 6n Natronlauge versetzt und mit Ether extrahiert. Nach Abzug des Esters erhielt man 1,4 g (70 % d.Th.) Produkt

Zu einer Lösung von 0,500 g (1,567 mmol) 5,7-Dichlor-6-(2,4,6-trifluorphenyl)-[1,2,4]triazolo-[1,5-a]pyrimidin in 10 ml Acetonitril und 0,202 g (1,724 mmol) 1-(Trimethylsilyl)ethylamin gab man bei Raumtemperatur 0,217 g (1,567 mmol) K₂CO₃, rührte über Nacht bei Raumtemperatur und anschließend noch 6 Stunden bei 60°C. Man zog das Lösungsmittel im Vakuum ab, nahm in CH₂Cl₃ und 1N Salzsäure auf. Nach Trocknen und Einengen der organischen Phase wurde der verbleibende Rückstand chromatographisch (Petrolether/Methylisobutylketon 3:1) gereinigt. Man erhielt 0,35 g (51 % d.Th.) Produkt.

HPLC: logP = 3,71

10 Beispiel 25

a)

15

2,6 g (0,012 Mol) sec-Butylmalonsäuediethylester wurden in 9,5 g Dimethylformamid vorgelegt. Bei Raumtemperatur wurden 1g (0,012 Mol) 3-Amino-1,2,4-Triazol und 1,8 g (0,013 Mol) 1,8-Diazabicyclo(5.4.0)undec-7-en zugegeben. Die Mischung wurde 6 Stunden bei 100°C gerührt. Dann wurde sie auf Wasser gegossen und mit Chloroform extrahiert. Die wässrige Phase wurde eingeengt und der verbleibende Rückstand mit konz. Salzsäure verrührt, abgesaugt und getrocknet.

Man erhielt 0,5 g 6-sec-Butyl-7-hydroxy[1,2,4]triazolo[1,5-a]pyrimidin-5(4H)-on (log p = 0,70; HPCL-Gehalt: 96,2 %).

b)

2,6 g (0,093 Mol) sec-Butylmalonsäuediethylester wurden mit 7,8 g (0,093 Mol) 3-Amino-1,2,4-Triazol und 19 g (0,102 Mol) Tri-n-butylamin vermischt und 6 Stunden bei 180°C unter Abdestillieren des bei der Reaktion entstehenden Ethanols gerührt. Danach wurden bei 10 Torr flüchtige Komponenten abdestilliert. Der Rückstand wurde ohne Reinigung weiter umgesetzt.

Das rohe 6-sec-Butyl-7-hydroxy[1,2,4]triazolo[1,5-a]pyrimidin-5(4H)-on wurde in 8,9 g (0,827 Mol) Phosphorylchlorid gelöst und es wurden 11 g (0,053 Mol) Phosphorpentachlorid bei Raumtemperatur zugegeben. Man erhitzte das Reaktionsgemisch 3 Stunden auf 110°C. Dann entfernte man bei 10 Torr flüchtige Komponenten, nahm den Rückstand in Dichlormethan auf und wusch die Lösung mit Eiswasser. Nach Trocknen und Abdestillieren des Lösungsmittels wurde der Rückstand in einer Mischung von Petrolether: tert.-Butylmethylether = 2:1 auf Kieselgel chromatographiert. Man erhielt 3,5 g 5,7-Dichlor-6-sec-Butyl[1,2,4]triazolo[1,5-a]pyrimidin (log p = 2,40; HPLC-Gehalt: 96,4 %).

15 c)

20

10

0,5 g (0,002 Mol) 5,7-Dichlor-6-sec-butyl[1,2,4]triazolo[1,5-a]pyrimidin wurden in 7,8 g Acetonitril vorgelegt. Man gab 0,7 g (0,005 Mol) Kaliumcarbonat und 0,31 g (0,002 Mol) 2-Trimethylsilyl-1-aminoethan zu. Das Reaktionsgemisch wurde 16 Stunden bei Raumtemperatur gerührt. Dann wurde es mit Salzsäure sauer gestellt und mit Diethylether extrahiert. Die organische Phase wurde getrocknet und eingeengt. Der Rückstand wurde mit Diethylether verrührt und dann in einem Gemisch von Cychlohexan: Essigsäureethylester = 8: 2 auf Kieselgel chromatographiert.

Man erhielt 0,3 g 5-Chlor-6-sec-butyl-7-(1-trimethylsilylethylamino)[1,2,4]triazolo-[1,5-a]pyrimidin (log p = 3,87; HPLC-Gehalt: 93 %).

Beispiel 26

10

0,5 g (0,002 Mol) 5,7-Dichlor-6-sec-butyl[1,2,4]triazolo[1,5-a]pyrimidin wurden in 7,8 g Acetonitril vorgelegt. Man gab 0,42 g (0,003 Mol) Kaliumcarbonat und 0,21 g (0,002 Mol)
5 Trimethylsilylmethylamin zu. Das Reaktionsgemisch wurde 16 Stunden bei Raumtemperatur gerührt. Dann wurde es mit Salzsäure sauer gestellt und mit Diethylether extrahiert. Die organische Phase wurde getrocknet und eingeengt. Der Rückstand wurde mit Diethylether verrührt und dann abgesaugt. Man erhielt 0,24 g 5-Chlor-6-sec-butyl-7-trimethylsilylmethylamino[1,2,4]triazolo[1,5-a]pyrimidin (log p = 3,34; HPLC-Gehalt: 100 %).

Analog zu den zuvor angegebenen Methoden werden bzw. wurden auch die in den nachstehenden Tabellen 1 bis 5 aufgeführten Verbindungen der Formel (I) erhalten.

Tabelle 1

. 5

Bsp.	Ra	R ³	R ⁴	logP
Nr.				·
1	H	2-Cl-4-F-Phenyl	Н	3,61
2	CH ₃	2,4,6-Trifluorphenyl	H ·	3,71
3	H	2-Cl-6-F-Phenyl	Н	3,43
4	H	2,4,6-Trifluorphenyl	Н	3,39
5	CH ₃	2-Cl-6-F-Phenyl	Н	3,79
6	CH ₃	2-Cl-4-F-Phenyl	Н	3,95
7	CH ₃	2-Cl-Phenyl	Н	3,83
8	H	3-Cl-5-(CF ₃)-Pyridin-2-yl	i-Propyl	4,51
9	CH ₃	5-F-Pyrimidin-4-yl	i-Propyl	3,61
.10	CH ₃	3-(CF ₃)-Pyridin-2-yl	H	3,06
11 .	CH ₃	2-Cl-6-F-Phenyl	Cyclopropyl	4,65
12	H	2-Cl-6-F-Phenyl	Cyclopropyl	4,22
13	H	2,5-Difluorphenyl	Cyclopropyl	3,99
14	CH ₃	2,5-Difluorphenyl	Cyclopropyl	4,35
15	CH ₃	2,5-Difluorphenyl	i-Propyl	4,58
16	H	2,5-Difluorphenyl	i-Propyl	4,21
17	CH ₃	2,5-Difluorphenyl	Methyl	3,73
18	Н	2,5-Difluorphenyl	Methyl	3,40
19	CH ₃	5-F-Pyrimidin-4-yl	Cyclopropyl	2,99
20	Н	2-Cl-Phenyl	Cyclopropyl	4,23
21	CH ₃	2-Cl-Phenyl	Cyclopropyl	4,66

Bsp.	Ra	R ³	R ⁴	logP
Nr.				
22	H	5-F-Pyrimidin-4-yl	Cyclopropyl	3,02
23	CH ₃	5-Cl-Pyrimidin-4-yl	H.	2,70
24	Н	5-Cl-Pyrimidin-4-yl	Н	2,44
25	CH ₃	sec-Butyl	Н	3,87
26	H	sec-Butyl .	Н	3,34
27	Н	5-F-Pyrimidin-4-yl	Methyl	2,43
28	CH ₃	5-F-Pyrimidjn-4-yl	Methyl	2,73
29	Н	N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	H ·	
30	CH ₃	N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
31	Н	N(-CHCH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
32	H	N(-CHCH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	H	
33	Н	N(-CHCH ₃ -CH ₂ -O-CH ₂ -CH ₂ -)	Н	
34	CH ₃	N(-CHCH ₃ -CH ₂ -O-CH ₂ -CH ₂ -)	Н	
35	H	3,5-Dimethylpyrazol-1-yl	Н	
36	CH ₃	3,5-Dimethylpyrazol-1-yl	Н	
37	Н	N(CH ₃)(C ₂ H ₅)	H	
38	CH ₃	N(CH ₃)(C ₂ H ₅)	Н	
39	Н	2,5-Difluorphenyl	Н	3,26
40	CH ₃	2,5-Difluorphenyl	Н	3,57
41	Н	5-F-Pyrimidin-4-yl	Н	2,28
42	CH ₃	5-F-Pyrimidn-4-yl	H.	2,57

Tabelle 2

Bsp.	Ra	R ³	R ⁴	logP
Nr.		•		
43	H	2-Cl-4-F-Phenyl	H	
44	CH ₃	2,4,6-Trifluorphenyl	Н	
45 .	H	2-Cl-6-F-Phenyl	Н	
46	H	2,4,6-Trifluorphenyl	H	
47	CH ₃	2-Cl-6-F-Phenyl	Н	1
48	CH ₃	2-Cl-4-F-Phenyl	H .	
49	CH ₃	2-Cl-Phenyl	Н	
50	H .	3-Cl-5-(CF ₃)-Pyridin-2-yl	i-Propyl	
51	CH ₃	5-F-Pyrimidin-4-yl	i-Propyl	
52	CH ₃	3-(CF ₃)-Pyridin-2-yl	H	
53	CH ₃	2-Cl-6-F-Phenyl	Cyclopropyl	
54	H	2-Cl-6-F-Phenyl	Cyclopropyl	†
55	H	2,5-Difluorphenyl	Cyclopropyl	· ·
56	CH ₃	2,5-Difluorphenyl	Cyclopropyl	
57	CH ₃	2,5-Difluorphenyl	i-Propyl	
58	H	2,5-Difluorphenyl	· i-Propyl	
59	CH ₃ .	2,5-Difluorphenyl	Methyl	1
60	Н	2,5-Difluorphenyl	Methyl	
61	CH ₃	5-F-Pyrimidin-4-yl	Cyclopropyl	<u> </u>
62	H	2-Cl-Phenyl	Cyclopropyl	†
63	CH ₃	2-Cl-Phenyl	Cyclopropyl	
64	Н	5-F-Pyrimidin-4-yl	Cyclopropyl	†
65	CH ₃	5-Cl-Pyrimidin-4-yl	Н	

Bsp.	Ra	R ³	R ⁴	logP
Nr.		·		
66	H	5-Cl-Pyrimidin-4-yl	H	
67	CH ₃	sec-Butyl	Н	
68	Н	sec-Butyl	Н	
69	Н	5-F-Pyrimidin-4-yl	Methyl	
70	CH ₃	5-F-Pyrimidjn-4-yl	Methyl	
71	Н	N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
72	CH ₃	N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
73	Н	N(-CHCH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	H	
74	Н	N(-CHCH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
75	H	N(-CHCH ₃ -CH ₂ -O-CH ₂ -CH ₂ -)	н	
76	CH ₃	N(-CHCH ₃ -CH ₂ -O-CH ₂ -CH ₂ -)	Н	
77	H	3,5-Dimethylpyrazol-1-yl	Н	
78	СН3	3,5-Dimethylpyrazol-1-yl	H	
79	H	N(CH ₃)(C ₂ H ₅)	Н	
80	СН3	N(CH ₃)(C ₂ H ₅)	H	
81	H	2,5-Difluorphenyl	Н	
82	CH ₃	2,5-Difluorphenyl	H	1 .
83.	H	5-F-Pyrimidin-4-yl	Н	
84	CH ₃	5-F-Pyrimidn-4-yl	Н	

5 Tabelle 3

Bsp.	Ra	R ³	R ⁴	logP
Nr.				
85	Н	2-Cl-4-F-Phenyl	Н	
86	CH ₃	2,4,6-Trifluorphenyl	Н	1
87	Н	2-Cl-6-F-Phenyl	Н	
88	Н	2,4,6-Trifluorphenyl	Н	1
89	CH ₃	2-Cl-6-F-Phenyl	Н	
90	CH ₃	2-Cl-4-F-Phenyl	Н	1
91	CH ₃	2-Cl-Phenyl	H	
92	H	3-Cl-5-(CF ₃)-Pyridin-2-yl	i-Propyl	
93	CH ₃	5-F-Pyrimidin-4-yl	i-Propyl	1
94	CH ₃	3-(CF ₃)-Pyridin-2-yl	Н	<u> </u>
95	CH ₃	2-Cl-6-F-Phenyl	Cyclopropyl	1
96	H	2-Cl-6-F-Phenyl	Cyclopropyl	
97	Н	2,5-Difluorphenyl	Cyclopropyl	
98	CH ₃	2,5-Difluorphenyl	Cyclopropyl	1
99	CH ₃	2,5-Difluorphenyl	i-Propyl	1
100	Н	2,5-Difluorphenyl	i-Propyl	
101	CH ₃	2,5-Difluorphenyl	Methyl	
102	Н	2,5-Difluorphenyl	Methyl	
103	CH ₃	5-F-Pyrimidin-4-yl	Cyclopropyl	·
104	Н	2-Cl-Phenyl	Cyclopropyl	
105	CH ₃	2-Cl-Phenyl	Cyclopropyl	
106	Н	5-F-Pyrimidin-4-yl	Cyclopropyl	
107	CH ₃	5-Cl-Pyrimidin-4-yl	H	
108	H	5-Cl-Pyrimidin-4-yl	H	
109	CH ₃	sec-Butyl	H	
110	H	sec-Butyl	Н	
111	H	5-F-Pyrimidin-4-yl	Methyl	
112	CH ₃	5-F-Pyrimidjn-4-yl	Methyl	
113	H	N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	H	
114	CH ₃	N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
115	H	N(-CHCH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
116	Н	N(-CHCH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	H	
117	H	N(-CHCH ₃ -CH ₂ -O-CH ₂ -CH ₂ -)	Н	

Bsp.	Ra	R ³	R ⁴	logP
Nr.		,		
118	CH ₃	N(-CHCH ₃ -CH ₂ -O-CH ₂ -CH ₂ -)	Н	
119	Н	3,5-Dimethylpyrazol-1-yl	Н	
120	CH ₃	3,5-Dimethylpyrazol-1-yl	H	
121	H	N(CH ₃)(C ₂ H ₅)	H	
122 .	CH ₃	N(CH ₃)(C ₂ H ₅)	Н	- ,
123	H	2,5-Difluorphenyl	Н	
124	CH ₃	2,5-Difluorphenyl	H	
125	H .	5-F-Pyrimidin-4-yl	H	
126	CH ₃	5-F-Pyrimidn-4-yl	Н	

5 Tabelle 4

Bsp.	Ra	R ³	R ⁴	logP
Nr.				
127	H ·	2-Cl-4-F-Phenyl	Н	
128	CH ₃	2,4,6-Trifluorphenyl	Н	
129	Н	2-Cl-6-F-Phenyl	Н	
130	Н	2,4,6-Trifluorphenyl	Н	
131	CH ₃	2-Cl-6-F-Phenyl	H	
132	CH ₃	2-Cl-4-F-Phenyl	Н	
133	CH ₃	2-Cl-Phenyl	Н	

Bsp.	Ra	R ³	R ⁴	logP
Nr.				
134	Н	3-Cl-5-(CF ₃)-Pyridin-2-yl	i-Propyl	
135	СН3	5-F-Pyrimidin-4-yl	i-Propyl	†
136	CH ₃	3-(CF ₃)-Pyridin-2-yl	H	†
137	CH ₃	2-Cl-6-F-Phenyl	Cyclopropyl	†
138	Н	2-Cl-6-F-Phenyl	Cyclopropyl	†
139	Н	2,5-Difluorphenyl	Cyclopropyl	
140	CH ₃	2,5-Difluorphenyl	Cyclopropyl	
141	CH ₃	2,5-Difluorphenyl	i-Propyl	
142	Н	2,5-Difluorphenyl	i-Propyl	
143	CH ₃	2,5-Difluorphenyl	Methyl	
144	Н	2,5-Difluorphenyl	Methyl	
145	CH ₃	5-F-Pyrimidin-4-yl	Cyclopropyl	
146	H	2-Cl-Phenyl	Cyclopropyl	
147	CH ₃	2-Cl-Phenyl	Cyclopropyl	
148	H	5-F-Pyrimidin-4-yl	Cyclopropyl	
149	CH ₃	5-Cl-Pyrimidin-4-yl	Н	
150	H	5-Cl-Pyrimidin-4-yl	H	<u> </u>
151	CH ₃	sec-Butyl	Н	
152	Η .	sec-Butyl	Н	
153	H	5-F-Pyrimidin-4-yl	Methyl	
154	CH ₃	5-F-Pyrimidjn-4-yl	Methyl	
155	Н	N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	1
156	CH ₃	N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	H	
157	Н	N(-CHCH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
158	H.	N(-CHCH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
159	H	N(-CHCH ₃ -CH ₂ -O-CH ₂ -CH ₂ -)	H	
160	СН3	N(-CHCH ₃ -CH ₂ -O-CH ₂ -CH ₂ -)	Н	
161	H	3,5-Dimethylpyrazol-1-yl	H	
162	CH ₃	3,5-Dimethylpyrazol-1-yl	Н	
163	Н	N(CH ₃)(C ₂ H ₅)	Н	
164	CH ₃	N(CH ₃)(C ₂ H ₅)	Н	1
165	Н	2,5-Difluorphenyl	Н	
166	CH ₃	2,5-Difluorphenyl	Н	

Bsp.	Ra	R ³	R ⁴	logP
Nr.				
167	Н	5-F-Pyrimidin-4-yl	Н	
168	CH ₃	5-F-Pyrimidn-4-yl	-H	

5 <u>Tabelle 5</u>

Bsp.	Ra	R ³	R ⁴	logP
Nr.		·	•	
169	H	2-Cl-4-F-Phenyl	Н	
170	CH ₃	2,4,6-Trifluorphenyl	H	
171	Н	2-Cl-6-F-Phenyl	H	
172 .	Н	2,4,6-Trifluorphenyl	Н	1
173	СН3	2-Cl-6-F-Phenyl	Н	1
174	CH ₃	2-Cl-4-F-Phenyl	Н	+
175	CH ₃	2-Cl-Phenyl	Н	
176	Н	3-Cl-5-(CF ₃)-Pyridin-2-yl	i-Propyl	
177	CH ₃	5-F-Pyrimidin-4-yl	i-Propyl	
178	CH ₃	3-(CF ₃)-Pyridin-2-yl	Н	
179	CH ₃	2-Cl-6-F-Phenyl	Cyclopropyl	
180	Н	2-Cl-6-F-Phenyl	Cyclopropyl	1
181	Н	2,5-Difluorphenyl	Cyclopropyl	
182	CH ₃	2,5-Difluorphenyl	Cyclopropyl	†

Bsp.	Ra	R ³	R ⁴ .	logP
Nr.				
183	CH ₃	2,5-Difluorphenyl	i-Propyl	
184	H	2,5-Difluorphenyl	i-Propyl	
185	CH ₃	2,5-Difluorphenyl	Methyl	
186	Н	2,5-Difluorphenyl	Methyl	
187	CH ₃	5-F-Pyrimidin-4-yl	Сусіоргоруі	
188	H	2-Cl-Phenyl	Cyclopropyl	-
189	CH ₃	2-Cl-Phenyl	Cyclopropyl	
190	H	5-F-Pyrimidin-4-yl	Cyclopropyl	
191	CH ₃	5-Cl-Pyrimidin-4-yl	H	
192	H	5-Cl-Pyrimidin-4-yl	Н	
193	CH ₃	sec-Butyl	Н	
194	H	sec-Butyl	H	
195	H	5-F-Pyrimidin-4-yl	Methyl	
196	CH ₃	5-F-Pyrimidjn-4-yl	Methyl .	
197	H	N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
198	CH ₃	N(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
199	H	N(-CHCH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	Н	
200	H	N(-CHCH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)	H ·	
201	H	N(-CHCH ₃ -CH ₂ -O-CH ₂ -CH ₂ -)	H	
202	CH ₃	N(-CHCH ₃ -CH ₂ -O-CH ₂ -CH ₂ -)	Н	
203	Н	3,5-Dimethylpyrazol-1-yl	H	
204	CH ₃	3,5-Dimethylpyrazol-1-yl	H ·	·
205	H	N(CH ₃)(C ₂ H ₅)	Н	
206	CH ₃	N(CH ₃)(C ₂ H ₅)	H	
207	H	2,5-Difluorphenyl	Н	
208	CH ₃	2,5-Difluorphenyl	Н	
209	H	5-F-Pyrimidin-4-yl	H .	
210	СН3	5-F-Pyrimidn-4-yl	Н	

WO 2005/061503

PCT/EP2004/014592

- 46 -

Verwendungsbeispiele

Beispiel A

Podosphaera-Test (Apfel) / protektiv

Lösungsmittel:

24,5 Gewichtsteile Aceton

5

24,5 Gewichtsteile Dimethylacetamid

Emulgator:

1 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension des Apfelmehltauerregers Podosphaera leucotricha inokuliert. Die Pflanzen werden dann im Gewächshaus bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70% aufgestellt.

15 10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.

In diesem Test zeigten die erfindungsgemäßen Stoffe der Beispiele 1, 2, 3, 4, 5 und 6 bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von über 90 %.

WO 2005/061503

PCT/EP2004/014592

- 47 -

Beispiel B

Venturia - Test (Apfel) / protektiv

Lösungsmittel:

24,5 Gewichtsteile Aceton

24,5 Gewichtsteile Dimethylacetamid

5 Emulgator:

15

l Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100% relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90% aufgestellt.

10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.

In diesem Test zeigten die erfindungsgemäßen Stoffe der Beispiele 1, 2, 3, 4, 5 und 6 bei einer 20 Aufwandmenge von 100 g/ha einen Wirkungsgrad von über 90 %.

Beispiel C

Botrytis - Test (Bohne) / protektiv

Lösungsmittel:

24,5 Gewichtsteile Aceton

24,5 Gewichtsteile Dimethylacetamid

5 Emulgator:

1 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit Botrytis einerea bewachsene Agarstückehen aufgelegt. Die inokulierten Pflanzen werden in einer abgedunkelten Kammer bei ca. 20°C und 100% relativer Luftfeuchtigkeit aufgestellt.

2 Tage nach der Inokulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei
5 bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.

In diesem Test zeigten die erfindungsgemäßen Stoffe der Beispiele 1, 2, 4 und 6 bei einer Aufwandmenge von 500 g/ha einen Wirkungsgrad von über 90 %.

Beispiel D

Sphaerotheca-Test (Gurke) / protektiv

. Lösungsmittel:

49 Gewichtsteile

N, N - Dimethylformamid

Emulgator:

. 15

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Gurkenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Sphaerotheca fuliginea inokuliert. Anschließend werden die Pflanzen in einem Gewächshaus bei 70 % relativer Luftfeuchtigkeit und einer Temperatur von 23 C aufgestellt.

7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Bei diesem Test zeigten die erfindungsgemäßen Stoffe der Beispiele 4, 15, 17 und 24 bei einer Aufwandmenge von 750 g/ha einen Wirkungsgrad von über 90 %.

Patentansprüche

1. Triazolopyrimidine der Formel

in welcher

5

10

15

20

25

R¹ für H, R², gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Cyloalkyl oder für gegebenenfalls substituiertes Heterocyclyl steht,

R² für einen organischen Rest steht, der 3 bis 13 Kohlenstoffatome und ein oder mehrere Siliziumatome enthält, sowie gegebenenfalls 1 bis 3 gleiche oder verschiedene Heteroatome aus der Gruppe Sauerstoff, Stickstoff und Schwefel, und unsubstituiert ist oder substituiert durch 1 bis 4 gleiche oder verschiedene Halogene, oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Ring stehen, der ein oder mehrere Siliziumatome enthält und/oder durch einen oder mehrere Reste R² substituiert ist,

für gegebenenfalls substituiertes Aryl, gegebenenfalls substituiertes Heterocyclyl, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Cycloalkyl gegebenenfalls substituiertes Aralkyl, oder gegebenenfalls substituierte Aminogruppe, gegebenenfalls substituiertes (C1-C8)-Alkoxy, gegebenenfalls substituiertes (C1-C8)-Alkylthio, gegebenenfalls substituiertes (C6-C10)-Aryloxy, gegebenenfalls substituiertes (C6-C10)-Aryloxy, gegebenenfalls substituiertes Heterocyclyloxy, gegebenenfalls substituiertes Heterocyclyloxy, gegebenenfalls substituiertes C6-C10)-Aryl-(C1-C4)-alkoxy, gegebenenfalls substituiertes Heterocyclyl-(C1-C4)-alkylthio, gegebenenfalls substituiertes Heterocyclyl-(C1-C4)-alkylthio;

15

20

25

- R⁴ für H, Halogen, gegebenenfalls durch Halogen substituiertes Alkyl oder gegebenenfalls durch Halogen substituiertes Cycloalkyl steht und
- X für Halogen, Cyano, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkoxy oder gegebenenfalls substituiertes Phenyl steht.
- 5 2. Triazolopyrimidine der Formel (I), gemäß anspruch 1 wobei
 - R¹ für H steht, oder
 - R¹ für einen Rest R² steht, oder
 - R¹ für Alkyl mit 1 bis 6 Kohlenstoffatomen steht, das einfach bis fünffach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen und/oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, oder
 - R¹ für Alkenyl mit 2 bis 6 Kohlenstoffatomen steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen und/oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, oder
 - R¹ für Alkinyl mit 3 bis 6 Kohlenstoffatomen steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Alkoxy mit 1 bis 4 Kohlenstoffatomen und/oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, oder
 - R¹ für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen und/oder Alkyl mit 1 bis 4 Kohlenstoffatomen, oder
 - R¹ für gesättigtes oder ungesättigtes Heterocyclyl mit 3 bis 8 Ringgliedern und 1 bis 3 Heteroatomen, wie Stickstoff, Sauerstoff und/oder Schwefel, steht, wobei das Heterocyclyl einfach oder zweifach substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Cyano und/oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen,
 - R² für eine aliphatische, gesättigte oder ungesättigte Gruppe mit 1 bis 13 Kohlenstoffatomen und einem oder mehreren Siliziumatomen, die gegebenenfalls 1 bis 3 gleiche oder verschiedene Heteroatome aus der Gruppe Sauerstoff,

10

15

20

25

30

Schwefel und Stickstoff enthält und die unsubstituiert oder durch 1 bis 4 gleiche oder verschiedene Halogenatome substituiert ist, oder

- R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gesättigten oder ungesättigten heterocyclischen Ring mit 3 bis 8 Ringgliedern stehen, der ein oder mehrere Siliziumatome enthält und/oder durch einen oder mehrere Reste R² substituiert ist, wobei der Heterocyclus ein weiteres Stickstoff-, Sauerstoff- oder Schwefelatom als Ringglied enthalten kann und wobei der Heterocyclus weiterhin bis zu dreifach substituiert sein kann durch Fluor, Chlor, Brom, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 Fluor- und/oder Chloratomen,
- R^3 für C1-C10-Alkyl, C2-C10-Alkenyl, C2-C10-Alkinyl, C3-C8-Cycloalkyl, Phenyl-C₁-C₁₀-alkyl stehen, wobei R³ unsubstituiert oder teilweise oder vollständig halogeniert ist und/oder gegebenenfalls ein bis drei Reste aus der Gruppe RX trägt, oder C1-C10-Halogenalkyl, das gegebenenfalls ein bis drei Reste aus der Gruppe RX trägt, und RX Cyano, Nitro, Hydroxy, C1-C6-Alkyl, C1-C6-Haloalkyl, C3-C6-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Haloalkoxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, C2-C6-Alkenyl, C2-C6-Alkinyl, C2-C6-Alkinyl, C₃-C₆-Alkinyloxy und gegebenenfalls halogeniertes Oxy-C1-C4-alkyl- $Oxy-C_1-C_4$ -alkenyl- C_1-C_4 -alkoxy, C₁-C₄-alkenoxy, Oxy-C1-C4-alkyl-C1-C4-alkyloxy bedeutet,
- R³ für Phenyl steht, das einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch
 - Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl;

jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen;

10

. 15

20

jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 11 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Alkylsulfonyloxy, Hydroximinoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;

Cycloalkyl mit 3 bis 8 Kohlenstoffatomen;

in 2,3-Position verknüpftes 1,3-Propandiyl, 1,4-Butandiyl, Methylendioxy (-O-CH₂-O-) oder 1,2-Ethylendioxy (-O-CH₂-CH₂-O-), wobei diese Reste einfach oder mehrfach, gleichartig oder verschieden substituiert sein können durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen;

oder

R³ für gesättigtes oder ungesättigtes Heterocyclyl mit 3 bis 8 Ringgliedern und 1 bis 3 Heteroatomen aus der Gruppe Stickstoff, Sauerstoff und Schwefel steht, wobei das Heterocyclyl einfach oder zweifach substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Alkylthio mit 1 bis 4 Kohlenstoffatomen, Haloalkoxy mit 1 bis 4 Kohlenstoffatomen, Haloalkylthio mit 1 bis 4 Kohlenstoffatomen, Cyano, Nitro und/oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen;

oder

25 R³ für C¹-C²-C²-Alkylamino, C²-C²-C²-Alkenylamino, C²-C²-C²-Alkinylamino, Di-C²-C²-C²-Alkinylamino, Di-C²-C²-C²-Alkinylamino, C²-C²-C²-Alkinyl-(C²-C²-C²-Alkinyl-(C²-C²-C²-Alkinyl-(C²-C²-C²-Alkinyl-(C²-C²-C²-Alkinyl-(C²-C²-C²-Alkylamino, C²-C²-C²-Alkylamino, C²-C²-C²-C²-Alkylamino, C²-C²-C²-C²-Alkylamino, C²-C²-C²-C²-C²-C²-C²-Alkylamino, C²-C²-C²-C²-C²-C²-C²-C²-

10

15

20

- R⁴ für H, Halogen, unsubstituiertes oder durch ein oder mehrere Halogenatome substituiertes (C₁-C₄)-Alkyl, unsubstituiertes oder durch ein oder mehrere Halogenatome substituiertes Cyclopropyl steht, und
- für Fluor, Chlor, Brom, CN, unsubstituiertes oder durch ein oder mehrere Fluoroder Chloratome substituiertes (C₁-C₄)-Alkyl, unsubstituiertes oder durch ein oder
 mehrere Fluor- oder Chloratome substituiertes (C₁-C₄)-Alkoxy oder
 unsubstituiertes oder durch ein oder mehrere Fluor- oder Chloratome substituiertes
 (C₁-C₄)-Alkylthio steht.
- 3. Triazolopyrimidine der Formel (I), gemäß Anspruch 1 oder 2, wobei
- R¹ für Wasserstoff, Methyl oder Ethyl steht, oder
 - R^2 für eine Gruppe Y^2 -Si(O_m CH₃)(O_n CH₃)(O_p Y³) steht,

wobei m, n und p unabhängig voneinander 0 oder 1;

Y² eine Bindung oder Alkandiyl, Alkendiyl oder Alkindiyl, die jeweils geradkettig oder verzweigt sind, 1 bis 6, bzw. 2 bis 6 Kohlenstoffatome aufweisen, gegebenenfalls durch ein oder zwei nicht benachbarte Sauerstoffatome unterbrochen und unsubstituiert oder durch ein bis drei gleiche oder verschiedene Halogenatome substituiert sind;

Y³ geradkettiges oder verzweigtes Alkyl oder Alkenyl mit 1 bis 5 bzw. 2 bis 5 Kohlenstoffatomen, gegebenenfalls durch ein Sauerstoff-Stickstoff- oder Schwefelatom unterbrochen und unsubstituiert oder durch 1 bis 3 gleiche oder verschiedene Halogenatome substituiert, bedeuten;

- R^3 für (C_1-C_8) -Alkyl, (C_1-C_8) -Cycloalkyl oder Benzyl steht oder
- R³ für Phenyl steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch

Fluor, Chlor, Brom, Cyano, Nitro, Formyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, soder t-Butyl, Allyl, Propargyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio,
Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl, Allyloxy, Propargyloxy, Trifluormethyl, Trifluorethyl, Difluormethoxy,
Trifluormethoxy, Difluorchlormethoxy, Trifluormethylthio, Difluordhlormethylthio, Trifluormethylthio, Trifluormethylsulfonyl,
Trifluormethylthio, Trifluormethylsulfonyl,

30

Trichlorethinyloxy, Trifluorethinyloxy, Chlorallyloxy, Iodpropargyloxy, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinomethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinomethyl, Ethoximinomethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl,

in 2,3-Position verknüpftes 1,3-Propandiyl, 1,4-Butandiyl, Methylendioxy (-O-CH₂-O-) oder 1,2-Ethylendioxy (-O-CH₂-CH₂-O-), wobei diese Reste einfach oder mehrfach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, i-Propyl und/oder Trifluormethyl.

- für Pyridyl steht, das in 2- oder 4-Stellung verknüpft ist und einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Methoximinoethyl und/oder Trifluormethyl, oder
- für Pyrimidyl steht, das in 2- oder 4-Stellung verknüpft ist und einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Methoximinoethyl und/oder Trifluormethyl, oder
- 20 R³ für Thienyl steht, das in 2- oder 3-Stellung verknüpft ist und einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Methoximinoethyl, und/oder Trifluormethyl, oder
- 25 R³ für C₁-C₈-Alkylamino oder Di-C₁-C₈-alkylamino steht, oder
 - R³ für Thiazolyl steht, das in 2-, 4- oder 5-Stellung verknüpft ist und einfach bis zweifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Methoximinoethyl und/oder Trifluormethyl, oder
 - R³ für N-Piperidinyl, N-Tetrazolyl, N-Pyrazolyl, N-Imidazolyl, N-1,2,4-Triazolyl, N-Pyrrolyl, oder N-Morpholinyl steht, die jeweils unsubstituiert oder ein- oder -

falls möglich - mehrfach gleich oder verschieden durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Methoximinoethyl und/oder Trifluormethyl substituiert sind,

- 5 R⁴ für H, Cl, F, CH₃, -CH(CH₃)₂ oder Cyclopropyl steht; und
 - X für F, Cl, CN, unsubstituiertes oder durch ein oder mehrere Fluor- oder Chloratome substituiertes (C₁-C₄)-Alkyl, OCH₃ oder SCH₃ steht.

steht.

- 4. Triazolopyrimidine der Formel (I) gemäß einem oder mehreren der Ansprüche 1 bis 3, wobei
- 10 \mathbb{R}^1 für H;
- \mathbb{R}^2 für SiMe3, SiMe2Et, SiMe2CHMe2, SiMe2CH2CHMe2, SiMe2CH2CMe3, SiMe2OCHMe2, SiMe2OCH2CHMe2, CH2SiMe3, CH2SiMe2Et, CH2SiMe2CHMe2, CH2SiMe2CH2CHMe, CH2SiMe2OMe, CH2SiMe2OCHMe2, CH2SiMe2OCH2CHMe2, CHMeSiMe3, 15 CHMeSiMe2OMe, (CH2)2SiMe3, (CH2)2SiMe2Et, (CH2)2SiMe2CHMe2, (CH₂)₂SiMe₂CMe₃, (CH₂)₂SiMe₂CH₂CHMe₂, (CH₂)₂SiMe₂CH₂CH₂Me, (CH₂)₂SiMe₂CH₂CMe₃, (CH₂)₂SiMe₂OCHMe₂, (CH₂)₂SiMe₂OCH₂CHMe₂, CHMeCH2SiMe3, CHMeCH2SiMe2Et, CHMeCH2SiMe2CH2CH2Me, CHMeCH2SiMe2CHMe2, CHMeCH2SiMe2CMe3, CHMeCH2SiMe2CH2CHMe2, CFMeCH2SiMe3, CHMeCH2CH2SiMe2OMe, 20 CHMeCH2SiMe2OCHMe2, CHMeCH2SiMe2OCH2CHMe2, CH2CHMeSiMe3, CH2CHMeSiMe2Et, CH2CHMeSiMe2CHMe2, CHMeCHMeSiMe3, CMe₂CH₂SiMe₃, (CH₂)₃SiMe₃, (CH₂)₃SiMe₂Et, (CH₂)₃SiMe₂CHMe₂, (CH₂)₃SiMe₂CH₂CHMe₂, (CH2)3SiMe2OMe, (CH₂)₃SiMe₂OCHMe₂, 25. (CH₂)₃SiMe₂OCH₂CHMe₂, CHMeCH₂CH₂SiMe₃, CHMeCH₂CH₂SiMe₂Et, CHMeCH2CH2SiMe2CHMe2, CHMeCH2CH2CH2SiMe2OMe, CHMeCH2CH2SiMe2OCHMe2, CMe=CHSiMe3, CH2CH2SiMe2OMe, C≡C-SiMe3, -CH2-C≡C-SiMe3 oder -CHMe-C≡C-SiMe3;
- für (C₁-C₆)-Alkyl, (C₃-6)-Alkenyl, (C₃-C₆)-Alkinyl, (C₃-C₈)-Cycloalkyl, wobei R³ unsubstituiert oder durch ein oder mehrere Fluor- oder Chloratome substituiert ist,

10 .

oder

- R³ für 2,4- oder 2,6-disubstituiertes Phenyl, oder für 2-substituiertes Phenyl oder für 2,4,6-trisubstituiertes Phenyl,
- R³ für Pyridyl, das in 2- oder 4-Stellung verknüpft ist und einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Methoximinoethyl und/oder Trifluormethyl, oder
- für Pyrimidyl, das in 4-Stellung verknüpft ist und einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, Methoxy, Methylthio, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Methoximinoethyl und/oder Trifluormethyl;
 - R⁴ für H, -CH₃, -CH(CH₃)₂, Cl oder Cyclopropyl,

und

- 15 X für Fluor, Chlor, CN, (C₁-C₃)-Alkyl, insbesondere CH₃ oder (C₁-C₃)-Haloalkyl, insbesondere CF₃, OCH₃, oder SCH₃ steht.
 - 5. Verfahren zur Herstellung von Triazolopyrimidinen der Formel (I) gemäß einem oder mehreren der Ansprüche 1 bis 4, wobei
- 20 (a) Halogentriazolopyrimidine der Formel

in welcher

 R^3 und X die oben angegebenen Bedeutungen haben und

Y¹ für Halogen steht,

mit Aminen der Formel

$$R^{1}$$
 N
 H
 (III)

in welcher

R¹ und R² die oben angegebenen Bedeutungen haben,

- gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines Säureakzeptors und gegebenenfalls in Gegenwart eines Katalysators umsetzt.
 - 6. Mittel zur Bekämpfung von unerwünschten Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem Triazolopyrimidin der Formel (I) gemäß einem oder mehreren der Ansprüche 1 bis 4 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
- Mittel gemäß Anspruch 6, enthaltend mindestens einen weiteren fungiziden oder insektiziden Wirkstoff.
 - Verwendung von Triazolopyrimidinen der Formel (I) gemäß einem oder mehreren der Ansprüche 1 bis 4 zur Bekämpfung von unerwünschten Mikroorganismen.
- Verfahren zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekenn zeichnet, dass man Triazolopyrimidine der Formel (I) gemäß einem oder mehreren der Ansprüche 1 bis 4 auf die unerwünschten Mikroorganismen und/oder deren Lebensraum ausbringt.
- Verfahren zur Herstellung von Mitteln zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Triazolopyrimidine der Formel (I) gemäß
 einem oder mehreren der Ansprüche 1 bis 4 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.

INTERNATIONAL SEARCH REPORT

Interior nal Application No PCT/EP2004/014592

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D487/04 A01N43/90 //(C07D487/04,239:00,231:00) According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with Indication, where appropriate, of the relevant passages Relevant to dalm No. X US 6 297 251 B1 (PEES, KLAUS-JUERGEN ET 1 - 10AL) 2 October 2001 (2001-10-02) column 2, line 1 - line 32 column 3, line 46 - line 53 examples 35,40 X WO 98/46608 A1 (AMERICAN CYANAMID CO., 1-10 USA) 22 October 1998 (1998-10-22) page 4 - page 6, column 18; example 46 χ WO 02/088125 A (BAYER AKTIENGESELLSCHAFT; 1 - 10GEBAUER, OLAF; GREUL, JOERG, NICO; HEINEMANN) 7 November 2002 (2002-11-07) the whole document P,X WO 2004/108136 A1 (VERNALIS CAMBRIDGE 1 LIMITED, UK) 16 December 2004 (2004-12-16) example 61 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance invention 'E' earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another cliation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. 'O' document referring to an oral disclosure, use, exhibition or document published prior to the international filling date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 12 April 2005 20/04/2005 Name and mailing address of the ISA **Authorized officer** European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni. Fax: (+31-70) 340-3016 Goss, I

INTERNATIONAL SEARCH REPORT

International application No. PCT/EP2004/014592

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: - because they relate to subject matter not required to be searched by this Authority, namely:
	Although claims 8 and 9 relate to a method for treatment of the human or
	animal body, the search was carried out on the basis of the alleged effects of
	the compound.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	·
•	
_	
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Řemark	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

information on patent family members

Intermenal Application No PCT/EP2004/014592

			101/2:2001/014052			
Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 6297251	B1	02-10-2001	NONE			
WO 9846608	A1	22-10-1998	AT	239727	T	15-05-2003
-			AU	735730		12-07-2001
			AU	6867198		11-11-1998
			BG	64197		30-04-2004
			BG	103805		30-06-2000
			BR	9808531		23-05-2000
			CA	2287470	A1	22-10-1998
			CN	1104433	_	02-04-2003
			CZ	9903596		17-05-2000
		•	DE	69814375		12-06-2003
			DE	69814375		24-12-2003
			DK	975635		02-06-2003
			EA	2906	B1	31-10-2002
			EE	9900486		15-06-2000
			EP	0975635		02-02-2000
			ES	2199436		16-02-2004
			HU	0001993		28-10-2000
			ID	24182		13-07-2000
			IL	132238		29-05-2003
			JP	2001520650		30-10-2001
			NO	994973		13-10-1999
			NZ	500143		29-06-2001
		•	OA	11203		21-05-2003
			PL	336164	A1	05-06-2000
			PT		T	30-09-2003
			SI	975635	_	31-10-2003
			SK	141499		11-09-2001
			TR	9902552		22-05-2000
			TW	460476		21-10-2001
		· · · · · · · · · · · · · · · · · · ·	ZA	9803054	A 	11-10-1999
WO 02088125	Α	07-11-2002	DE	10121101		31-10-2002
			WO	02088125		07-11-2002
			EP	1397362		17-03-2004
			JP	2004533436		04-11-2004
			US -	2004176398	A1	09-09-2004
WO 2004108136	A1	16-12-2004	NONE			

INTERNATIONAL RECHERCHENBERICHT

Internity lales Aktenzeichen
PCT/EP2004/014592

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D487/04 A01N43/90 //(C07D487/04,239:00,231:00) Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) C07D A01N Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internalionalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, CHEM ABS Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. X US 6 297 251 B1 (PEES, KLAUS-JUERGEN ET 1-10 AL) 2. Oktober 2001 (2001-10-02) Spalte 2, Zeile 1 - Zeile 32 Spalte 3, Zeile 46 - Zeile 53 Beispiele 35,40 X WO 98/46608 A1 (AMERICAN CYANAMID CO., 1-10 USA) 22. Oktober 1998 (1998-10-22) Seite 4 - Seite 6, Spalte 18; Beispiel 46 WO 02/088125 A (BAYER AKTIENGESELLSCHAFT; 1-10 GEBAUER, OLAF; GREUL, JOERG, NICO; HEINEMANN) 7. November 2002 (2002-11-07) das ganze Dokument P,X WO 2004/108136 A1 (VERNALIS CAMBRIDGE LIMITED, UK) 16. Dezember 2004 (2004-12-16) Beispiel 61 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen Siehe Anhang Patentfamilie *T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist Besondere Kategorien von angegebenen Veröffentlichungen 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist *E* ålteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden **L' Veröffentlichung, die geelgnet ist, einen Prioritätsanspruch zweitelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung betegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindertscher Tätigkeit beruhend betrachtel werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausgeführt) ausgerunn)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 12. April 2005 20/04/2005 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016 Goss, I

Feld II Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. X Ansprüche Nr weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Obwohl die Ansprüche 8 und 9 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung.
Ansprüche Nr. weil sie sich auf Telle der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr. well es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese Internationale Anmeldung mehrere Erfindungen enthält:
1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser Internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

INTERNATIONAL RECHERCHENBERICHT

Angabea zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP2004/014592

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentiamilie		Datum der Veröffentlichung	
US 6297251	B1	02-10-2001	KEIN			
WO 9846608\	A1	22-10-1998		239727	T	15-05-2003
`,			AU .	735730	B2	12-07-2001
· V		•	AU	6867198	Α	11-11-1998
			BG	64197	B1	30-04-2004
			BG	103805		30-06-2000
			BR	9808531	A	23-05-2000
			CA	2287470	A1	22-10-1998
		·	CN	1104433	C	02-04-2003
			CZ	9903596	A3	17-05-2000
			DE	69814375	D1	12-06-2003
			DE	69814375	T2	24-12-2003
			DK	975635	T3	02-06-2003
			EA	2906	B1	31-10-2002
			EE	9900486	Α	15-06-2000
		•	EΡ	0975635	A1	02-02-2000
•			ES	2199436	T3	16-02-2004
			HU	0001993	A2	28-10-2000
			ID	24182		13-07-2000
			ĪĹ	132238		29-05-2003
			ĴΡ	2001520650	Ť	30-10-2001
			NO	994973	Α	13-10-1999
			NZ	500143	Α	29-06-2001
			OA	11203		21-05-2003
			PL	336164		05-06-2000
			PT		T	30-09-2003
			SI		T1	31-10-2003
			SK	141499		11-09-2001
			TR	9902552		22-05-2000
			TW	460476		21-10-2001
			ZA	9803054		11-10-1999
WO 02088125	A	07-11-2002	DE	10121101	A1	31-10-2002
			WO	02088125	A2	07-11-2002
			EΡ	1397362		17-03-2004
			JP	2004533436		04-11-2004
			US	2004176398		09-09-2004
WO 2004108136	A1	16-12-2004	KEIN	 F		