Следствие 3.1. *Если существует конечный предел* $\lim_{x \to a} f(x) = A$, то $\forall c \in \mathbb{R}$ существует и предел $\lim_{x \to x} cf(x)$, причем

$$\lim_{x \to x_0} cf(x) = c \lim_{x \to x_0} f(x) = cA.$$

Отметим, что $\lim_{x\to x_0}c=c$. Действительно, возьмем произвольное $\varepsilon>0$. В качестве δ можно взять любое положительное число. Тогда $\forall x \in$ $X, \ 0 < |x - x_0| < \delta \rightarrow |c - c| = 0 < \varepsilon.$

Далее, из (3.4) получаем

$$\lim_{x \to x_0} cf(x) = \lim_{x \to x_0} c \cdot \lim_{x \to x_0} f(x) = cA.$$

Таким образом, постоянный множитель можно выносить за знак предела.

$\S 3.3$ Односторонние пределы

Определение 3.5. Действительное число A называется пределом функции $f:X \to \mathbb{R}$ слева при $x \to x_0,$ если $\forall \, \varepsilon > 0 \, \exists \, \delta = \delta(\varepsilon) > 0 :$ $\forall x \in X, \ x_0 - \delta < x < x_0 \to |f(x) - A| < \varepsilon.$ Записывают $\lim_{x \to x_0 - 0} f(x) = A$ или $f(x_0 - 0) = A.$ Определение 3.6. Действительное число A называется пределом

функции $f:X \to \mathbb{R}$ справа при $x \to x_0,$ если $\forall \varepsilon > 0 \; \exists \, \delta = \delta(\varepsilon) > 0 :$ $\forall x \in X, \ x_0 < x < x_0 + \delta \to |f(x) - A| < \varepsilon.$

Записывают $\lim_{x \to x_0 + 0} f(x) = A$ или $f(x_0 + 0) = A$.

Теорема 3.6. Для существования конечного предела $\lim_{x \to x_0} f(x)$ необходимо и достаточно, чтобы существовали и совпадали односторонние пределы $f(x_0+0)$ и $f(x_0-0)$.

Доказательство. Пусть $\lim_{x\to x_0} f(x) = A$, то есть

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in X, \ 0 < |x - x_0| < \delta \to |f(x) - A| < \varepsilon.$$

В частности, это будет справедливо $\forall x \in X, \ x \in (x_0 - \delta, x_0)$ и $\forall x \in X, \ x \in (x_0, x_0 + \delta)$. Таким образом, существуют оба односторонних предела и $f(x_0 - 0) = f(x_0 + 0) = A$.

Обратно, пусть существуют оба односторонних предела и

$$f(x_0 - 0) = f(x_0 + 0) = A.$$

Это значит, что

$$\forall \varepsilon > 0 \ \exists \ \delta_1 = \delta_1(\varepsilon) > 0 : \ \forall x \in X, \ x \in (x_0 - \delta_1, x_0) \to |f(x) - A| < \varepsilon$$

И

$$\exists \, \delta_2 = \delta_2(\varepsilon) > 0: \, \forall x \in X, \, x \in (x_0, x_0 + \delta_2) \to |f(x) - A| < \varepsilon.$$

Обозначим $\delta = \min\{\delta_1, \delta_2\}$. Тогда

$$\forall x \in X, \ 0 < |x - x_0| < \delta \rightarrow |f(x) - A| < \varepsilon.$$

Таким образом,
$$\lim_{x \to x_0} f(x) = f(x_0 + 0) = f(x_0 - 0) = A$$
.

§ 3.4 Замечательные пределы

Первый замечательный предел.

Лемма 3.1. Если $x \to 0$, то $\frac{\sin x}{x} \to 1$, то есть

$$\lim_{x \to 0} \frac{\sin x}{x} = 1. \tag{3.5}$$

Доказательство. Известно (см. [7], стр. 109), что

$$\sin x < x < \operatorname{tg} x, \qquad 0 < x < \frac{\pi}{2}.$$
 (3.6)

В данном случае $\sin x > 0$, поэтому неравенство (3.6) равносильно неравенству

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x},$$

откуда следует, что

$$\cos x < \frac{\sin x}{x} < 1.$$

Далее,

$$-1 < -\frac{\sin x}{x} < -\cos x,$$

$$0 < 1 - \frac{\sin x}{x} < 1 - \cos x = 2\sin^2 \frac{x}{2}.$$

Учитывая, что $0 < \sin \frac{x}{2} < 1$, $\sin^2 \frac{x}{2} < \sin \frac{x}{2}$, $0 < x < \frac{\pi}{2}$, получаем

$$0 < 1 - \frac{\sin x}{x} < 2\sin\frac{x}{2} < 2\frac{x}{2} = x.$$

Тогда

$$\left| \frac{\sin x}{x} - 1 \right| < x.$$

Следовательно, $\lim_{x \to +0} \frac{\sin x}{x} = 1$.

Отметим, что $\lim_{x\to -0} \frac{\sin x}{x} = \lim_{y\to +0} \frac{\sin(-y)}{-y} = \lim_{y\to +0} \frac{\sin y}{y} = 1$. Таким образом, получаем равенство (3.5).

Второй замечательный предел.

Пемма 3.2. Функция $\varphi(x)=(1+x)^{\frac{1}{x}}$ имеет при $x\to 0$ предел, равный е, то есть

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e. \tag{3.7}$$

Доказательство. Известно, что

$$a_n = \left(1 + \frac{1}{n}\right)^n \to e$$
 при $n \to \infty$. (3.8)

Покажем, что если $\{n_k\}$ – произвольная (не обязательно возрастающая) последовательность натуральных чисел такая, что

$$\lim_{k \to \infty} n_k = +\infty,\tag{3.9}$$

то

$$a_{n_k} = \left(1 + \frac{1}{n_k}\right)^{n_k} \to e$$
 при $k \to \infty$. (3.10)

По определению предела (3.8)

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \forall n > N \to |a_n - e| < \varepsilon,$$
 (3.11)

а условие (3.9) означает, что

$$\forall M > 0 \ \exists K = K(M) \in \mathbb{N} : \forall k > K \to n_k > M. \tag{3.12}$$

tim (1+1)=-e +>00 Tug gok-loa

Полагая в (3.12) $M=N(\varepsilon)$, получаем, что для $k>K(N(\varepsilon))$ выполняется неравенство $n_k>N(\varepsilon)$ и поэтому из условия (3.11) следует, что $|a_{n_k}-e|<\varepsilon$ для $k>K(N(\varepsilon))$, то есть справедливо (3.10).

Для доказательства утверждения (3.7) достаточно показать, что

$$\lim_{x \to +0} \varphi(x) = \lim_{x \to -0} \varphi(x) = e. \tag{3.13}$$

Если $\{x_k\}$ – любая последовательность такая, что $\lim_{k\to\infty} x_k = 0$ и $x_k > 0$ для $k\in\mathbb{N}$, то можно считать, что $0 < x_k < 1$ для $k\in\mathbb{N}$. Обозначим $n_k = [1/x_k]$, где [t] – целая часть числа t. Тогда

$$n_k \le \frac{1}{x_k} < n_k + 1,\tag{3.14}$$

откуда следует, что

$$1 + \frac{1}{n_k + 1} < 1 + x_k \le 1 + \frac{1}{n_k}. (3.15)$$

Так как все члены неравенства (3.15) больше 1, то в силу свойств степени из (3.14) и (3.15) следует, что

$$\left(1 + \frac{1}{n_k + 1}\right)^{n_k} < (1 + x_k)^{1/x_k} < \left(1 + \frac{1}{n_k}\right)^{n_k + 1}.$$
(3.16)

Из условия $x_k \to +0$ при $k \to \infty$ следует, что $n_k \to +\infty$. Поэтому, используя (3.10), получаем

$$\left(1 + \frac{1}{n_k + 1}\right)^{n_k} = \left(1 + \frac{1}{n_k + 1}\right)^{n_k + 1} \cdot \left(1 + \frac{1}{n_k + 1}\right)^{-1} \to e$$

и $\left(1+\frac{1}{n_k}\right)^{n_k+1}\to e$ при $k\to\infty$. По свойствам пределов из (3.16) следует, что $(1+x_k)^{1/x_k}\to e$ при $k\to\infty$. Согласно определению предела функции по Гейне,

$$\lim_{x \to +0} \varphi(x) = e.$$

Докажем, наконец, что $\lim_{x\to -0} \varphi(x)=e$. Пусть $\{x_k\}$ – любая последовательность такая, что $\lim_{k\to \infty} x_k=0$ и $x_k<0$ для $k\in \mathbb{N}$. Тогда, полагая, $y_k=-x_k$, получаем $y_k>0$ и $y_k\to 0$ при $k\to \infty$. Заметим, что

$$(1+x_k)^{1/x_k} = (1-y_k)^{-1/y_k} = \left(1+\frac{y_k}{1-y_k}\right)^{1/y_k}.$$

Обозначим $z_k = \frac{y_k}{1-y_k},$ тогда $z_k > 0$ и $z_k \to 0$ при $k \to \infty,$

$$(1+x_k)^{1/x_k} = (1+z_k)^{1+(1/z_k)} \to e$$
 при $k \to \infty$

по доказанному выше. Итак, доказано, что выполняются условия (3.13). Следовательно, справедливо утверждение (3.7).

§ 3.5 Пределы монотонных функций

Определение 3.8. Функция $f: X \to \mathbb{R}$ называется возрастающей на множестве X, если $\forall \, x_1, x_2 \in X: \, x_1 < x_2 \to f(x_1) < f(x_2).$

Определение 3.9. Функция $f: X \to \mathbb{R}$ называется невозрастающей на множестве X, если $\forall x_1, x_2 \in X: x_1 < x_2 \to f(x_1) \geq f(x_2)$.

Определение 3.10. Функция $f: X \to \mathbb{R}$ называется убывающей на множестве X, если $\forall x_1, x_2 \in X: x_1 < x_2 \to f(x_1) > f(x_2)$.

Возрастающие, убывающие, неубывающие и невозрастающие функции называются монотонными.

Определение 3.11. Функция $f: X \to \mathbb{R}$ называется ограниченной сверху, если существует такая постоянная M, что $f(x) \leq M \ \forall x \in X$, при этом M называют верхней гранью функции f на множестве X.

Наименьшая верхняя грань функции f называется точной верхней гранью функции и обозначается $\sup_{x \in X} f(x)$.

Определение 3.12. Функция $f: X \to \mathbb{R}$ называется ограниченной снизу, если существует такая постоянная m, что $f(x) \ge m \ \forall x \in X$, при этом m называют нижней гранью функции f на множестве X.

Наибольшая нижняя грань функции f называется точной нижней гранью функции и обозначается $\inf_{x \in X} f(x)$.

Определение 3.13. Функция f, ограниченная на множестве X как сверху, так и снизу, называется ограниченной на этом множестве.

Теорема 3.7. Если функция $f:(a,b)\to\mathbb{R}$ является неубывающей и ограниченной сверху, то существует конечный предел $\lim_{x\to b-0}f(x)$.

Доказательство. По условию теоремы множество значений, которые функция f принимает на интервале (a,b), ограничено сверху, поэтому по теореме о точной верхней грани существует $\sup_{x \in (a,b)} f(x) = A$.

41

6-6 B 6-6

отся усло-(3.17)

Согласно определению точной верхней грани, выполняются условия

$$f(x) \le A \quad \forall x \in (a, b), \tag{3.17}$$

$$\forall \varepsilon > 0 \ \exists x' \in (a, b): \ f(x') > A - \varepsilon.$$
 (3.18)

Обозначим $\delta = b - x',$ тогда $\delta > 0,$ так как x' < b. Если $x \in (x',b),$ то есть $x \in (b-\delta,b),$ то

$$f(x') \le f(x),\tag{3.19}$$

так как f – неубывающая функция. Из условий (3.17) – (3.19) следует что

 $\forall \, \varepsilon > 0 \,\, \exists \, \delta = \delta(\varepsilon) > 0: \,\, \forall x \in (b-\delta,b) \to A - \varepsilon < f(x) \leq A < A + \varepsilon.$

Согласно определению предела слева, это означает, что существует

$$\lim_{x \to b-0} f(x) = f(b-0) = A.$$

Итак,
$$f(b-0) = \sup_{x \in (a,b)} f(x)$$
.

Аналогично доказывается следующая теорема.

Теорема 3.8. Если функция $f:(a,b)\to\mathbb{R}$ является неубывающей и ограниченной снизу, то существует конечный предел $\lim_{x\to a+0}f(x)$.

Подобные утверждения справедливы для невозрастающих, убывающих и возрастающих функций.

§ 3.6 <u>Критерий</u> Коши существования предела функции

Теорема 3.9. Пусть $f: X \to \mathbb{R}$ и x_0 – предельная точка множества X. Для существования конечного предела $\lim_{x \to x_0} f(x)$ необходимо и достаточно, чтобы $\forall \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0: \ \forall \ x_1, x_2 \in X.$ $0 < |x_i - x_0| < \delta \ (i = 1, 2) \to |f(x_1) - f(x_2)| < \varepsilon.$

fk) fly

Доказательство. НЕОБХОДИМОСТЬ. Пусть $\lim_{x\to x_0} f(x) = A$ Это означает, что $\forall \varepsilon > 0 \; \exists \; \delta = \delta(\varepsilon) > 0 \; \colon \; \forall \; x \in X, \; 0 < |x-x_0| < \delta \to |f(x)-A| < \frac{\varepsilon}{2}$. Тогда

ет, что
$$\forall \varepsilon > 0 \; \exists \; \delta = \delta(\varepsilon) > 0 \; \colon \; \forall \; x \in X, \; 0 < |x - x_0| < \delta \rightarrow x) - A| < \frac{\varepsilon}{2}.$$
 Тогда
$$|f(x_1) - f(x_2)| = |(f(x_1) - A) + (A - f(x_2))| \leq |f(x_1) - A| + (A - f(x_2))| \leq |f(x_1) - A| + (A - f(x_2))| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall \; x_i \in X, \; 0 < |x_i - x_0| < \delta, \; i = 1, 2.$$
ОСТАТОЧНОСТЬ. Пусть функция $f: X \to \mathbb{R}$ такова, что

Достаточность. Пусть функция $f: X \to \mathbb{R}$ такова, что $\forall \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0: \ \forall x_1, x_2 \in X, \ 0 < |t_i - x_0| < \delta \ (i = 1, 2) \to |f(x_1) - f(x_2)| < \varepsilon$. Докажем, что существует предел функции f в точес x_0 . Воспользуемся определением предела функции по Гейне. Пусть $\{x_n\}$ - произвольная последовательность такая, что $\lim_{n \to \infty} x_n = x_0$ и $x_n \in X, x_n \neq x_0 \ \forall n \in \mathbb{N}$. Докажем, что соответствующая последовательность значений функции $\{f(x_n)\}$ имеет конечный предел, не зависящий от выбора последовательности $\{x_n\}$. По определению предела последовательности $\exists N \in \mathbb{N}: \forall n > N \to |x_n - x_0| < \delta$, поэтому в силу исходных предположений $|f(x_n) - f(x_m)| < \varepsilon$ для любого n > N и для любого m > N. Таким образом, последовательность $\{f(x_n)\}$ является фундаментальной и согласно критерию Коши для последовательности имеет конечный предел, т.е. $\lim_{n \to \infty} f(x_n) = A_x$

Пусть $\{x'_n\}$ другая последовательность, удовлетворяющая условиям $x'_n \in X$, $x'_n \neq x_0 \ \forall n \in \mathbb{N}$ и сходящаяся к x_0 . Тогда по доказанному последовательность $\{f(x'_n)\}$ имеет конечный предел, т.е. $\lim_{n \to \infty} f(x'_n) = A_{x'}$. Докажем, что $A_x = A_{x'}$.

Образуем последовательность

$$x_1, x_1', x_2, x_2', ..., x_n, x_n', ...$$

и обозначим k-й член этой последовательности через y_k . Так как $\lim_{k\to\infty}y_k=x_0$ и $\underline{y_k\in X},\ y_k\neq x_0\ \forall k\in\mathbb{N},$ то по доказанному существует конечный $\lim_{k\to\infty}f(y_k)=A'.$ Заметим, что $\{f(x_n)\}$ и $\{f(x_n')\}$ являются подпоследовательностями сходящейся последовательности $\{f(y_k)\}.$ Поэтому $A_x=A',\ A_{x'}=A',$ откуда получаем, что $A_x=A_{x'}.$

§ 3.7 Сравнение функций

Определение 3.14. Функция $f:X\to\mathbb{R}$ называется бесконечно малой при $x\to x_0,$ если $\lim_{x\to x_0}f(x)=0.$

10 X0 X0+ C

lim den xZ

lin dinx - lin smx (1) = C

Теорема 3.10. Произведение бесконечно малой при $x \to x_0$ функции на ограниченную в некоторой проколотой окрестности точки x_0 функцию есть бесконечно малая при $x \to x_0$ функция.

Доказательство. Пусть функция $g: X \to \mathbb{R}$ является ограниченной в некоторой проколотой окрестности точки x_0 , т.е.

 $\exists C \quad 0: \ |g(x)| \le C \ \forall x \in X, \ 0 < |x - x_0| < \delta_1$

Пусть $f:X\to\mathbb{R}$ является бесконечно малой при $x\to x_0$ функцией, т.е. $\forall \varepsilon>0$ $\delta_2=\delta_2(\varepsilon)>0: \ \forall x\in X,\ 0<|x-x_0|<\delta_2\to|f(x)|<\frac{\varepsilon}{C}.$ Обозначим $\delta=\min\{\delta_1,\delta_2\}.$ Тогда

 $\forall x \in X, \ 0 < |x - x_0| < \delta \to |f(x)g(x)| = |f(x)||g(x)| < \frac{\varepsilon}{C} \cdot \mathscr{E} = \varepsilon.$

Следовательно, $f \cdot g$ является бесконечно малой при $x \to x_0$ функцией.

Определение 3.15. Если для функций $f: X \to \mathbb{R}$ и $g: X \to \mathbb{R}$ $\exists c > 0, \ U(x_0): |f(x)| \le c|g(x)| \ \forall x \in X \cap U(x_0),$ то функцию f называют ограниченной по сравнению с функцией g в окрестности точки x_0 .

Записывают $f(x) = O(g(x)), x \to x_0.$

Лемма 3.3. Если $f(x)=\varphi(x)g(x),\ x\in X,\ u$ существует конечный предел $\lim_{x\to x_0}\varphi(x)=k,\ mo\ f(x)=O(g(x)),\ x\to x_0.$

Доказательство. Из существования конечного предела $\lim_{x\to x_0} \varphi(x) = k$ следует существование такой проколотой окрестности $\mathring{U}(x_0)$ точки x_0 , что функция φ ограничена на $X\cap\mathring{U}(x_0)$, то есть имеется такая постоянная C>0, что для всех $x\in X\cap\mathring{U}(x_0)$ выполняется неравенство $|\varphi(x)|\leq C$, следовательно, и неравенство

$$|f(x)| = |\varphi(x)||g(x)| \le C|g(x)|.$$

Это, согласно определению 3.15, и означает, что $f(x) = O(g(x)), x \to x_0$.

Определение 3.16. Функции $f: X \to \mathbb{R}$ и $g: X \to \mathbb{R}$ называются эквивалентными (асимптотически равными) при $x \to x_0$, если $\exists \ \varphi: X \to \mathbb{R}, \ U(x_0): \ f(x) = \varphi(x)g(x) \ \forall x \in X \cap \mathring{U}(x_0)$ и $\lim_{x \to x_0} \varphi(x) = 1$.

Записывают $f(x) \sim g(x)$ при $x \to x_0$.

1,2,3, 4,..., 1,2,5,...