

www.vishay.com

Vishay Siliconix

N-Channel 20 V (D-S) 175 °C MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the - 55 °C to + 125 °C temperature ranges under the pulsed 0 V to 5 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS
- · Apply for both Linear and Switching Application
- Accurate over the 55 °C to + 125 °C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Note

This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer
to the appropriate datasheet of the same number for guaranteed specification limits.

SPICE Device Model SQ2310ES

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT
Static					
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	0.40	-	V
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 5 \text{ A}$	0.024	0.024	Ω
		$V_{GS} = 2.5 \text{ V}, I_D = 4 \text{ A}$	0.030	0.027	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = 15 \text{ V}, I_D = 5 \text{ A}$	21	27	S
Body Diode Voltage	V _{SD}	I _S = 5 A	0.72	0.75	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	392	387	pF
Output Capacitance	C _{oss}		90	80	
Reverse Transfer Capacitance	C _{rss}		36	37	
Total Gate Charge	Q_g		4	4.5	
Gate-Source Charge	Q _{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 5 \text{ A}$	0.4	0.4	nC
Gate-Drain Charge	Q _{gd}		0.7	0.7	

Notes

- a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

www.vishay.com

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA ($T_J = 25 \, ^{\circ}\text{C}$, unless otherwise noted)

Note

· Dots and squares represent measured data.