

CDM - Executive Board

page 1

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a baseline and monitoring methodology
- C. Duration of the <u>project activity</u> / <u>Crediting period</u>
- D. Environmental impacts
- E. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: <u>Baseline</u> information
- Annex 4: Monitoring plan

CDM - Executive Board

page 2

SECTION A. General description of project activity

A.1. Title of the project activity:

Sichuan Jialingjiang River Cangxi Hydropower Project

Document version: PDD, version 05

Completion date:21/09/2010

A.2. Description of the project activity:

Sichuan Jialingjiang River Cangxi Hydropower Project (hereafter referred to as the "Project") is developed by Sichuan Jialingjiang Cangxi Hydroelectric Power Development Co., Ltd. The project is located on the Jialingjiang River in the Cangxi County of Sichuan province, P.R.China.

♦ The scenario existing prior to the start of the implementation of the project activity Prior to the start of the implementation of the proposed project, electricity demand in the absence of the project is supplied by Sichuan provincial grid, which is one of sub-grids of the Central China Power Grid ("CCPG") dominated by thermal power.

♦ The project scenario

Within the project activity, a new reservoir will be built with a total surface area of 5.09 km² and power density of 12.97 W/m², and 3 sets of turbine and generating units, which are supplied by a domestic company, will be installed at the site with a total capacity of 66MW (3 units × 22MW). The project is expected to generate an annual average of 255,024MWh electricity and to supply 232,727MWh¹ to the CCPG via Sichuan Grid by utilizing water sources of Jialingjiang River.

♦ The baseline scenario

The baseline scenario, as identified in section B.4, is the same as the scenario prior to the start of implementation of the project activity.

The purpose of the project is to produce electricity with clean and renewable water sources and to displace part of the electricity from fossil fuel-fired plants connected to the CCPG. Thus, greenhouse gas ("GHG") emission reductions can be achieved. The estimated annual GHG emission reductions are 198,481 tCO₂ equivalents by the project activity.

The proposed project will contribute to sustainable development to the local society with the following aspects.

- Supply clean electricity to the grid and reduce GHG emissions.
- Create job opportunities during the project construction and operation period.
- Support underprivileged and the poverty-stricken region and increase local incomes.

¹ The electricity delivered to the Grid by the Project=Maximum theoretical electricity generation*Effective coefficient*(1-Internal Consumption)*(1-Transmission Line Loss)=255,024MWh*0.92*(1-0.3%)*(1-0.5%)=232,727MWh

CDM – Executive Board

page 3

- Reduce emissions of environmental pollutants, such as the CO₂, CO, SO₂ and dust derived from thermal power plants.

A.3. Project participants:

Name of Party involved ((host) indicates a host Party)	Private and/or public entity(ies) project participants (as applicable)	Kindly indicate if the Party involved wishes to be considered as project participant (Yes/No)
People's Republic of China (host)	Sichuan Jialingjiang Cangxi Hydroelectric Power Development Co., Ltd	No
Japan	Sumitomo Corporation	No

A.4.1. Location of the project activity:

A.4.1.1. Host Party(ies):

People's Republic of China

A.4.1.2. Region/State/Province etc.:

Sichuan Province

A.4.1.3. City/Town/Community etc:

Cangxi County

page 4

A.4.1.4. Detail of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

The project is located on Jialingjiang River in the Cangxi County, 3 km from Cangxi County. It is situated at 105°52'05"~ 105°56'53" east longitude, and 31°45'42"~31°48'45" north latitude. The geographical location of the project is shown in the following figure:

Map of Sichuan Province

Project Location

Figure 1. Location of Cangxi Hydropower Project

page 5

A.4.2. Category(ies) of project activity:

Sectoral scope 1: energy industries (renewable sources)

A.4.3. Technology to be employed by the project activity:

Prior to the start of implementation of the project activity, local electricity demand is supplied by the CCPG which is dominated by thermal power, which is also the baseline scenario to the project activity.

The project is a run-of-river hydropower station with a new built reservoir, the power density of the project is 12.97 W/m². Within this project, 3 sets of domestic tubular turbine and generating units, which are designed to operate 3864 hours annually, will be installed at the site with a total capacity of 66MW (3 units×22MW). The project consists of left-bank earth-rock dam, factory pivot, sluice flushing gate, right-bank lock and etc. The factory pivot mainly includes a powerhouse which is located at the left base and houses three turbine and generator units. Electricity generated by the project will be delivered to CCPG via transformer substations. Electricity metering systems will be installed both at the outlet of the project and the inlet of the transformer substation. The specific technical data of the project are listed in the table below.

Table A.4.3.-1 Technical data

Parameter	Unit	Data
Station type	Riverbed type	
Reservoir		
Normal water level	m	373
Power density	W/m^2	12.97
Turbine		
Units		3
Model		GZ-WP-720
Rated rotational speed	r/min	75
Rated head	m	6.1
Rated flow	m^3/s	412.57
Life	Year	40
Generator		
Units		3
Model		SFWG22-80/7260
Rated Power	MW	22
Rated Voltage	kV	10.5
Life	Year	40
Hydroturbine-generator aggregate		
Plant Load factor	%	44.1 ²
efficiency of the hydroturbine-generator aggregate	%	89.6

² The operator hours 3864h was chosen from the PDR prepared by the authorized design institute which is the third party contracted by the project owner and was provided to the government while applying the project activity for implementation approval, therefore the plant load factor of 44.1% (3864/8760*100%=44.1%) was defined according to method (a)-"or to the government while applying the project activity for implementation approval" and method (b)-"the plant load factor determined by a third party contracted by the project participants" in paragraph 3, Annex 11, EB 48.

CDM - Executive Board

page 6

A new reservoir with a total surface area of 5.09km² will be built within this project, so the power density of the project is 12.97W/m², according to the applicable methodology, there are no emission sources and the GHG involved in the project activity. The electricity generated by the project will be delivered to the CCPG except a small quantity will be utilized in-situ for equipment operation or maintenance, or during shut down period.

The project will use the advanced equipments manufactured and supplied by domestic manufacturers. There is no overseas technology introduced for the project.

A.4.4. Estimated amount of emission reductions over the chosen crediting period:

The project applies a renewable crediting period. The first 7-year renewable crediting period is expected to start on July 1st 2010 till June 30th 2017. But the starting date of the crediting period specified may be adjusted once the date of registration is determined.

Emission reductions to be achieved by the project during the first crediting period are shown in the table below.

Table A.4.4.-1 Project Emission Reductions

Years	Annual estimation of emission reductions in tonnes of CO ₂ e
2010 (01/07~31/12)	99,240.5
2011	198,481
2012	198,481
2013	198,481
2014	198,481
2015	198,481
2016	198,481
2017 (01/01~30/06)	99,240.5
Total estimated reductions (tonnes of CO ₂ e)	1,389,367
Total number of crediting years	7
Annual average over the crediting period of estimated reductions (tonnes of CO ₂ e)	198,481

A.4.5. Public funding of the project activity:

There is no public fund from parties included in Annex I of the UNFCCC involved in this project activity.

SECTION B. Application of a baseline and monitoring methodology:

Title and reference of the approved baseline and monitoring methodology applied to the project activity:

ACM0002 Consolidated baseline and monitoring methodology for grid-connected electricity generation from renewable sources (version 10)

CDM - Executive Board

page 7

- Tool for the demonstration and assessment of additionality (version 05.2)
- Tool to calculate the emission factor for an electricity system (version 02)
- Combined tool to identify the baseline scenario and demonstrate additionality (version 02.2)

Above methodologies and Tools are available at http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html

B.2. Justification of the choice of the methodology and why it is applicable to the <u>project activity:</u>

The project meets all the applicability criteria as set out in the methodologies.

- It is a 66MW grid-connected run-of-river hydropower plant;
- It results in a new reservoir and the power density of the project is 12.97 W/m², greater than 4 W/m².
- It is not an activity that involves switching from fossil fuels to renewable energy at the project site.
- The geographic and system boundaries for the CCPG can be clearly identified and information on the characteristics of the grid is available.

The project activity corresponds to the criteria described above and is therefore applicable to ACM0002.

B.3. Description of the sources and gases included in the project boundary:

The project plant will generate electricity with water source and will be connected with the CCPG which exports electricity to other regional grids and imports electricity from Northwest China Power Grid (NWCPG) in 2006 and 2007. As a result, the project boundary includes the project activity and all power plants connected to the CCPG, covering Henan, Hubei, Hunan, Jiangxi, Sichuan and Chongqing provincial grids. Furthermore, NWCPG as a connected electricity system is also included in the project boundary.

The project boundary is shown in the figure 2 and table B.3.-1 below.

Figure 2 Project boundary

CDM - Executive Board

page 8

Table B.3.-1: Sources and gases included in the project boundary

Source		Gas	Included?	Justification / Explanation
	CO ₂ emissions from	CO_2	Yes	Main emission sources
	electricity generation	CH_4	No	Not emission sources
Baseline	in fossil fuel fired	N_2O	No	Not emission sources
Dascinc	power plants that are			
	displaced due to the			
	project activity.			
	For hydropower	CO_2	No	Not emission sources
	plants, emissions of	CH_4	No	The power density of the
Project	CH ₄ from the			project is 12.97W/m ² , greater
Activity	reservoir.			than 10 W/m ² . Therefore,
				emissions of CH ₄ from the
				reservoir is zero.
		N_2O	No	Not emission sources

B.4. Description of how the <u>baseline scenario</u> is identified and description of the identified baseline scenario:

According to ACM0002 (version 10), the proposed project activity is the installation of a new grid-connected renewable power plant/unit, therefore the baseline scenario is the following:

Electricity delivered to the grid by the project activity would be otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources, as reflected in the combined margin (CM) calculations described in the *Tool to calculate the emission factor for an electricity system*.

The proposed project will be connected to the CCPG. In this case, the only realistic and reasonable baseline scenario is to provide the same amount of electricity by the CCPG.

B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM <u>project activity</u> (assessment and demonstration of additionality):

The following steps from the "Tools for the demonstration and assessment of additionality (version 05.2)" are taken to demonstrate additionality of the project.

Step 1. Identification of alternatives to the project activity consistent with current laws and regulations

Sub-step 1a. Define alternatives to the project activity:

Four possible alternatives are identified as follows:

- 1) Implementing the proposed project, but not as a CDM project;
- 2) Adding a new thermal plant providing the same annual electricity output;
- 3) Adding a new renewable power plant other than hydropower providing the same annual electricity output.

CDM - Executive Board

page 9

4) Providing the same amount of electricity by the CCPG

Where the project is located is lacking of other renewable sources except water source. According to the analysis on the wind power and solar sources in China, Sichuan province is one of the regions where available wind power and solar sources are limited. In Sichuan basin, the annual frequency of zero wind speed is more than $60\%^3$, and the annual average sunshine time is only 1152.5h, relative sunshine is $26\%^4$. According to the latest statistics, there is neither windmill nor solar facility constructed in Sichuan province by the end of 2006^5 . In the aspect of biomass power plant, China is still in the starting period and facing all kinds of difficulties, such as the difficulties of raw material collection, high investment and operation cost, immature technology and lack of correlative standards and regulations⁶. All these difficulties limit the development of biomass power plant in Sichuan. Furthermore, electricity generation from geothermal also faces the difficulties and barriers of technology and investment in China. Therefore, Alternative 3 is not the baseline scenario.

Sub-step 1b. Consistency with mandatory laws and regulations:

According to Chinese power regulations, thermal power plants of less than 135MW are prohibited for construction⁷. Therefore, Alternative 2 is not in compliance with Chinese regulations on construction of a thermal plant and is not the realistic alternative to the project.

Step 2. Investment analysis

Sub-step 2a. Determine appropriate analysis method

The proposed project will have proceeds from power sales as well as from emission reduction credits, so Option I-Simple Cost Analysis stated in *Tool for the Demonstration and Assessment of Additionality* is not applicable.

Furthermore, the alternative of providing the same amount of electricity by the CCPG is not a specific investment project. Therefore, Option II-Investment Comparison Analysis is not applicable.

As a result, Option III-Benchmark Analysis must be used, where the project IRR of total investment is compared with the benchmark IRR of total investment applicable to the power industry sector in China. Here, the benchmark analysis is selected.

Sub-step 2b. - Option III. Apply benchmark analysis

With reference to the *Interim Rules on Economic Assessment of Electrical Engineering Retrofit Project*⁸, the financial benchmark IRR of power industry is issued to be 8% (after tax) of the total investment. 8% as the benchmark for total investment FIRR has been the common practice and becomes the consensus in the field of electric power.

³ http://www.newenergy.org.cn/html/2003-9/2003991.html

⁴ http://www.scaqw.com/articles/?contentid=1866

⁵ China Electric Power Yearbook (2007)

⁶ http://www.bmlink.com/bst/14176/

⁷ http://www.gov.cn/gongbao/content/2002/content_61480.htm.

⁸ China Power Press, 2003.

CDM – Executive Board

page 10

Therefore, the benchmark IRR of total investment of 8% is selected for financial analysis of the project.

Sub-step 2c. Calculation and comparison of financial indicators:

The following parameters and values are applied for calculation and comparison of financial indicators, IRR.

Table B.5.-1 Parameters to determine the project IRR

Item	Value	Unit	Source
Capacity	66	MW	Preliminary Design Report
Total Static investment	668.99	million CNY	Revised Preliminary Design
			Report
Operational and maintenance	12.93	million CNY	Preliminary Design Report
costs per year			
Annual output	232,727	MWh	Preliminary Design Report
Tariff (without VAT)	0.32	CNY/kWh	Preliminary Design Report
Value Added Tax (VAT)	17	%	Preliminary Design Report
City construction and	8	%	Preliminary Design Report
maintenance tax, and			
Educational surcharge			
Income tax	25	%	Income tax policy
Project operational lifetime	30	year	Preliminary Design Report
Estimated CER price	9.0	Euro/CER	Assumption
Exchange Rate	10.80	(€/Y)	

The financial analysis for the proposed project is shown in the table below, with and without CERs taken into account. The calculated IRR value of the project without CERs would be 6.41%, which is below the financial benchmark 8%. Thus without CERs revenue, it is evident that this project will face substantial financial hurdles and cannot be implemented.

After taking CERs revenue into consideration, the project's IRR of total investment can reach 8.34%, greater than the benchmark 8%. Therefore, this project is feasible and can be implemented.

Table B.5.-2 Financial analysis results of the proposed project

	IRR (%)
Without CERs	6.41
With CERs	8.34

Sub-step 2d. Sensitivity analysis:

A sensitivity analysis is conducted by altering the parameters:

- ♦ Investment
- ♦ Operation & maintenance costs
- ♦ Electricity sales.

CDM - Executive Board

page 11

♦ Electricity tariff

The above parameters are selected as being most likely to fluctuate over time. Financial analysis is performed altering each of these parameters by 10%, and assessing the impact on the project IRR as shown in the Table B.5.-3 and Figure 3. below.

Table B.5.-3: Sensitivity analysis of the project

	-10%	+10%
Investment	7.33%	5.60%
Operation & maintenance costs	6.57%	6.25%
Electricity sales	5.51%	7.23%
Electricity tariff	5.51%	7.24%

Figure 3. Sensitivity analysis of the project

Table B.5.-3 and Figure 3. show that in the case of the decrease in investment by 10%, or the decrease in operation & maintenance costs by 10% or the increase in electricity sales or electricity tariff by 10%, the project IRR is still much lower than the 8% benchmark. In addition, even if the effective coefficient equals to 100%, that means 255,024MWh*(1-0.3%)*(1-0.5%)=252,988MWh electricity will be delivered to the Grid, the project IRR is 7.13% which is still lower than the benchmark.

Therefore this sensitivity analysis concludes that the proposed project activity is unlikely to be implemented due to the lacking of financial attractive if without CERs revenue taken into account.

From another point of view, when the project IRR is equal to the benchmark, the changes of critical parameters are shown in the table below.

CDM – Executive Board

page 12

Table B.5.-4: Parameter changes when project IRR is equal to the benchmark

Change of parameters	Investment	O&M costs	Elec. Sales	Elec. Tariff
Project IRR = Benchmark	-16.4%	below-100%	19.5%	19.4%

It shows that when the project IRR is equal to the benchmark, the investment decreased by 16.4%, or electricity sales or electricity tariff increased by 19.5% and 19.4% respectively, which are unlikely to occur. Furthermore, even the decrease in O&M costs by 100% which is unreasonable and impossible, the project IRR is still lower than the benchmark.

As for the decrease in investment by 16.4%, it is unlikely to occur due to the continuous increase in material and labor costs etc. in the host country of the proposed project. According to the National Bureau of Statistics of China, the procurement price index for material, fuel and power was increased by $8.3\%^9$, $6.0\%^{10}$, $4.4\%^{11}$ and $10.5\%^{12}$ nationwide, during 2005, 2006, 2007 and 2008 respectively. In Sichuan province these procurement price index rose to levels of $9.3\%^{13}$, $4.3\%^{14}$ and $5.7\%^{15}$.

As for the electricity sales, based on the water resource data collected during the past 46 years (1955~2000)¹⁶, the amount of electricity sales is most unlikely to be increased in the project activity. All water data which were used for the design of the project capacity came from the Tingzikou Hydrometrical Station, which is possessed by Water Reconnaissance Bureau of Sichuan¹⁷.

As for the electricity tariff, if it increases by 19.4% the project IRR would be equal to the benchmark 8%. In 2002, China implemented the policy "Separate Power Plants from Network and Compete in price to Enter Network", and power plants are encouraged to lower cost for electricity generation, and thus on-grid tariff. Since then, electricity tariff in China is determined mainly by market, and negotiated between the project owner and the grid company according to government instructive documents¹⁸. Once the electricity tariff is determined, little change will occur during the whole operating period. In addition, *Notice on Questions Relevant to Coal and Electricity Price Linkage in CCPG*¹⁹ was issued by NDRC on 30th April 2005, in which the guided tariff for newly built hydropower plant in Sichuan Province is 0.288 CNY/kWh (with VAT). Furthermore, the actual tariff approved by Sichuan Pricing Bureau for hydropower plants operated from 2005 ((2005) No.239²⁰, (2006) No.186²¹, (2007) No.308²², (2008) No.174²³) was also 0.288CNY/kWh (with VAT), which is lower than the estimated tariff 0.32CNY/kWh

⁹ http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20060227 402307796.htm

¹⁰ http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20070228_402387821.htm

¹¹ http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20080228 402464933.htm

¹² http://www.gov.cn/gzdt/2009-02/26/content_1243547.htm

¹³ http://www.stats.gov.cn/was40/gjtjj detail.jsp?channelid=4362&record=101

¹⁴ http://www.stats.gov.cn/was40/gitji detail.jsp?channelid=4362&record=72

¹⁵ http://www.stats.gov.cn/tjgb/ndtjgb/dfndtjgb/t20080219_402468477.htm

¹⁶ Preliminary Design Report

¹⁷ http://www.schwr.com

¹⁸ http://www.ndrc.gov.cn/xwfb/t20050708_28096.htm

¹⁹ http://scjc.scpi.gov.cn/flfg-content.asp?id=1205

²⁰ http://www.scpi.gov.cn/newzcfg/zcfg-content.asp?id=1443

²¹ http://www.scpi.gov.cn/newzcfg/zcfg-content.asp?id=2034

²² http://www.scpi.gov.cn/newzcfg/zcfg-content.asp?id=2870

²³ http://www.scpi.gov.cn/newzcfg/zcfg-content.asp?id=3158

CDM - Executive Board

page 13

(without VAT) of this project. Therefore, it is demonstrated that the increase in the project electricity tariff by 19.4% is unlikely to occur and the proposed project is firmly lacking of financial attractiveness within the reasonable range of tariff.

In sum, the above analysis by altering four critical parameters clearly demonstrates that without CDM support, the proposed project cannot be implemented.

Step 4. Common practice analysis

Sub-step 4a. Analyze other activities similar to the proposed project activity:

For common practice analysis, only the projects similar to the proposed project in terms of installed capacity, regulatory framework, similar investment climate, access to technology, access to financing etc. were evaluated. Basically, the hydropower projects with installed capacity in the range of 50MW~300MW and started construction after 2002 in Sichuan Province were selected for the following reasons.

- China Hydraulics Yearbook (2006): All data on hydropower stations are taken from the best available and authoritative China Hydraulics Yearbook (2006).
- Year 2002: This is one of the selection criteria we used because during 2002 a reform for electric power system in China, *Electric Power System Reform* was issued by China State Council dated 10 February 2002, which breaks the State-monopoly of the electric supply system, separates electric power generation and electric grid operation into sectors, and promotes market competition and other benefits. Therefore, the investment climate of the power plants was significantly changed in 2002.
- 50MW~300MW capacity: According to *Classification & design safety standard of hydropower projects* (DL5180-2003) issued by State Economic and Trade Commission of People's Republic of China in 2003, hydropower plant, with capacity less than 50MW, is defined as small scale hydropower projects; hydropower plant, with capacity less than 300MW and more than 50MW, is defined as middle scale hydropower projects; hydropower plant, with capacity more than 300MW, is defined as large scale hydropower projects. The proposed project is a middle scale hydropower station with a total installed capacity of 66MW.
- Sichuan Province: The common practice analysis is limited to provincial level as the investment environment, such as industrial development, technology development, availability of engineers and technical workers, availability of transportation and so forth, for each province differs

Three projects each with an installed capacity in the range of 50MW~300MW that started construction in Sichuan province after 2002, but not undertaken as CDM projects are identified in the table below.

CDM – Executive Board

page 14

Table B.5.-5 Hydropower projects with similar capacity

No.	Name of Hydro Station	Installed capacity	Start of construction	Location	Investment Per	Operation hours
		(MW)			kilowatt (CNY/kW)	(h)
1	Jiangsheba Hydropower Station	128	2006 (operation year)	Minjiang	5992	-
2	Huilongqiao Hydropower Station	50	2002	Mengdonghe	5000	-
3	Kehe Hydropower Station ²⁶	72	2003	Shenyuhe	4819	5200

Sub-step 4b. Discuss any similar options that are occurring:

There are major distinctions between the proposed project and the above already existing hydropower projects with similar installed capacity.

The investment per kilowatt of Jiangsheba Hydropower Station, Huilongqiao Hydropower Station and Kehe Hydropower Station are 5992 CNY/kW, 5000 CNY/kW and 4819 CNY/kW, respectively, far below than 10,149 CNY/kW of the proposed project. This is caused by a number of reasons, including the increased fee for the compensation for residential relocation of those affected by the project activity, and a higher land acquisition fee. The project site is a less advantageous location and requires a great deal more construction work, such as a long road for the transportation of construction material and equipments, a wider river requires a longer dam, more enforcement is required for the river banks. Also a less favourable hydrodynamic condition, which limits the amount of electricity generated by the project plant. Higher prices of hydroelectric turbine-generators and materials for construction and higher wages for engineers and workers are also important reasons.

Furthermore, the annual operation hour of Kehe Hydropower Station is 5200h, longer than 3864h of the proposed project. Consequently, significantly less electricity will be generated annually by the proposed project, which makes the project financially less attractive and more financially risky than the other projects.

There are obvious distinctions of investment condition and water resource between the proposed project and the above hydropower stations. The project is therefore not common practice.

It is therefore concluded that the proposed project is additional.

Considering of CDM

The Preliminary Design Report (PDR) of the project was completed on November 2004 by Chengdu Hydroelectric Investigation & Design Institute and approved by Sichuan Development & Reform Commission on December 13th 2004. In 2007, before preparing to start the

²⁴ http://www.abjc.gov.cn/ViewInfo.asp?id=1367

²⁵ http://www.chinarein.com/qkhc/detail.asp?id=3984

²⁶ http://www.chinapower.com.cn/article/1017/art1017274.asp

CDM – Executive Board

page 15

construction of the project, the project owner entrusted the design institute to revise the PDR of the project according to the latest situation of the project. The Revised PDR was prepared and approved by Sichuan Development & Reform Commission (FDRC) on December 27th 2007. It showed that the original estimate of 556.64 million CNY in the previous PDR had increased by112.35 million CNY. With the increased investment, the FIRR of the project cannot reach the benchmark. The project faced serious financial barrier to push through.

In order to overcome the financial barriers that the project faced, the project owner seriously

In order to overcome the financial barriers that the project faced, the project owner seriously considered the incentive of CDM and decided to proceed with the project with the support of CDM in the Board Meeting held on 12th February 2008. In April 2008, the project owner signed a CDM Development Agreement with Chengdu Jinhe Technology Co., Ltd.—a CDM consultant company. After taking CDM into consideration, the construction of the project started from May 2008.

A timeline of the main events involved in the implementation of the proposed project is described below.

Date	Milestone
December 13 th 2004	PDR has been approved.
December 2007	The revised PDR has been completed.
December 27 th 2007	According to the approved Revised PDR, the project IRR is lower
	than the benchmark 8%. The project face financial difficult to
	construction.
February 2008	In order to overcome the financial barrier the project faced, the
	project owner decided to look for help from CDM.
April 2008	The project owner signed CDM Development Agreement with
	Chengdu Jinhe Technology Co., Ltd.
May 30 th 2008	The project owner signed the main Equipment Procurement
	Contract. It is the starting date of the project.
June 3 rd 2008	The project owner signed the construction contract with the
	construction company.
October 2008	After a comprehensive and lengthy negotiation between the project
	owner and several potential CER buyer candidates, the project
	owner reached an agreement with Sumitomo Corporation to fund
	the CDM transaction costs.
April 2009	The CDM application was submitted to NDRC.
June 2009	LoA from NDRC for this project was issued.
October 2009	The on-site assessment done by JCI.

The details in the above timeline clearly demonstrate that the project owner took CDM into serious consideration before commencing with the construction of the project. And the project owner took successive actions to secure the CDM application in parallel with the construction works for the project.

B.6. Emission reductions:

B.6.1. Explanation of methodological choices:

According to the approved consolidated baseline methodology ACM0002 (version 10), the

.

CDM - Executive Board

page 16

emission reductions of the proposed project are determined as following steps:

1. Project Emissions PE_{HP,v}

According to ACM0002, the project emission is related to the value of the power density. For hydropower project activities that result in new reservoirs, the project emissions of the project activity are calculated as follows:

(a) If the power density (PD) of power plant is greater than 4 W/m^2 and less than or equal to 10 W/m^2 :

$$PE_{HP,y} = EF_{Res} \times TEG_{y}/1000 \tag{1}$$

Where:

PE_{HP.v} Project emissions from water reservoirs (tCO₂e/year)

EF_{Res} Default emission factor for emissions from reservoirs of hydro power plants in

year y (kg CO₂e/MWh), and the default value as per EB23 is 90kg CO₂e/MWh.

TEG_v Total electricity produced by the project activity, including the electricity

supplied to the grid and the electricity supplied to the internal loads, in year y

(MWh)

(b) If the power density (PD) of the power plant is greater than 10W/m²:

$$PE_{HP,y} = 0 \tag{2}$$

The power density of the project activity is calculated as follows:

$$PD = \frac{Cap_{PJ} - Cap_{BL}}{A_{PJ} - A_{BL}} \tag{3}$$

Where:

PD Power density of the project activity, in W/m^2 .

Cap_{PJ} Installed capacity of the hydro power plant after the implementation of the project

activity (W).

Cap_{BL} Installed capacity of the hydro power plant before the implementation of the project

activity (W). For new hydro power plants, this value is zero.

App. Area of the reservoir measured in the surface of the water, after the implementation

of the project activity, when the reservoir is full (m²).

A_{BL} Area of the reservoir measured in the surface of the water, before the

implementation of the project activity, when the reservoir is full (m²). For new

reservoirs, this value is zero.

2. Baseline Emissions BE_v

Baseline emissions include only CO₂ emissions from electricity generation in fossil fuel fired power plants that are displaced due to the project activity, calculated as follows:

$$BE_{v} = EG_{PJ,v} \times EF_{grid,CM,v}$$
 (4)

CDM – Executive Board

page 17

Where:

BE_y Baseline emissions in year y (tCO₂/year).

EG_{PJ,v} Quantity of net electricity generation that is produced and fed into the grid as a

result of the implementation of the CDM project activity in year y (MWh/yr).

EF_{grid,CM,y} Combined margin CO₂ emission factor for grid connected power generation in

year y. Calculated with the latest version of the *Tool to calculate the emission*

factor for an electricity system (tCO₂/ MWh).

Calculation of EG_{PLv}

If the project activity is the installation of a new grid-connected renewable power plant/unit at a site where no renewable power plant was operated prior to the implementation of the project activity, then:

 $EG_{PJ,y} = EG_{facility,y}$ (5)

EG PJ,y Quantity of net electricity generation that is produced and fed into the grid as a

result of the implementation of the CDM project activity in year y (MWh/yr).

EG_{facility.y} Quantity of net electricity generation supplied by the project plant/unit to the

grid in year y (MWh/yr).

X Calculation of $EF_{grid,CM,y}$ for CCPG based on the *Tool to calculated the emission factor* for an electricity system

The electricity generated by the project activity will be transferred to the CCPG. The generation capacity installed will be 66MW throughout the first crediting period. The project electricity system will be connected with the CCPG. Data from the *China Electric Power Yearbook* and *China Energy Statistical Yearbook* are publicly available to calculate the Emission Factor of the CCPG. The default values for the calculation of calorific values for fuel types came from the *China Energy Statistical Yearbook (2008)*, the potential emission factor and fuel oxidation came from the *2006 IPCC Guidelines for National Greenhouse Gas Inventories*. Moreover, the Chinese DNA published emission factor of CCPG on its website²⁷ which is also available.

> Step 1. Identify the relevant electricity system

The electricity generated by the project will be transferred to the CCPG, covering Hunan, Hubei, Jiangxi, Sichuan and Chongqing provincial grids. Therefore, the CCPG is identified as the relevant electricity system. In addition, the CCPG exports electricity to other regional grids and imports electricity from NWCPG. Therefore, the NWCPG is also identified as the relevant electricity system and will be taken into account for calculating OM emission factor of the CCPG. But, the other regional grids which imports electricity from the CCPG are not identified as the relevant electricity system and the electricity exports from the CCPG is not subtracted from electricity generation data used for calculating the emission factor.

> Step 2 Choose whether to include off-grid power plants in the project electricity system

Project participants may choose between the following two options to calculate the operating margin and build margin emission factor:

²⁷ http://qhs.ndrc.gov.cn/qjfzjz/t20090703 289357.htm

CDM - Executive Board

page 18

Option I : Only grid power plants are included in the calculation.

Option II: Both grid power plants and off-grid power plants are included in the calculation.

Option I is chosen for the project.

> Step 3. Select a method to determine the operating margin (OM)

For recent years (2003-2007) where data are available, the low-cost/must run resources constituted less than 50% of total power generation of the CCPG and the relevant ratios are respectively 34.4%, 38.5%, 38.6%, 35.1% and 35.5% for year 2003, 2004, 2005, 2006 and 2007²⁸. Therefore, the simple OM method is applicable and used for the project.

A 3-year generation-weighted average OM, based on the most recent data available at the time of submission of the CDM-PDD to the DOE for validation, without requirement to monitor and recalculate the emissions factor during the crediting period.

For this project, a 3-year generation-weighted average OM, based on the data from 2005 to 2007 is used.

> Step 4. Calculate the operating margin emission factor according to the selected method

The simple OM emission factor is calculated as the generation-weighted average CO₂ emissions per unit net electricity generation (tCO₂e/MWh) of all generating power plants serving the system, not including low-cost/must-run power plants/units.

The simple OM may be calculated:

Option A: Based on the net electricity generation and a CO₂ emission factor of each power unit;, or

Option B: Based on the total net electricity generation of all power plants serving the system and the fuel types and total fuel consumption of the project electricity system.

The project adopts Option B due to the following three reasons:

- a. The data required in Option A belong to commercial secret and not publicly available in China; and
- b. The power resources of the low-cost/must-run power plants/units serving the CCPG are nuclear and renewable resources, and the data of electricity sales of these resources are publicly available.
- c. Off-grid power plants are not included in the calculation.

According to Option B, it may be calculated using following equation:

_

²⁸ China Electric Power Yearbook (2004~2008)

CDM - Executive Board

page 19

$$EF_{grid,OMsimple,y} = \frac{\sum_{i} FC_{i,y} \times NCV_{i,y} \times EF_{CO2,i,y}}{EG_{y}}$$
(6)

Where:

EF_{grid,OMsimple,y} Simple operating margin CO₂ emission factor in year y (tCO₂e/MWh)

 $FC_{i,y}$ Amount of fossil fuel type i consumed in the project electricity system in year y

(mass or volume unit). Using country specific data from China Energy

Statistical Yearbook (2006-2008)

 $NCV_{i,v}$ Net calorific value (energy content) of fossil fuel type i in year y (GJ/mass or

volume unit). Using country specific data from China Energy Statistical

Yearbook (2008)

 $EF_{CO2,i,y}$ CO₂ emission factor of fossil fuel type *i* in year *y* (tCO₂/GJ). Using 2006 IPCC

Guidelines for default values

EG_v Net electricity generated and delivered to the grid by all power sources serving

the system, not including low-cost/must-run power plants/units, in year y (MWh)

i All fossil fuel types combusted in power sources in the project electricity

system in year y

y The relevant year as per the data vintage chosen is Step 3

Since CCPG imports electricity from NWCPG in 2006 and 2007, NWCPG is addressed as one of the power plant in OM calculation for CCPG.

According to the above steps and the emission factor of CCPG published by Chinese DNA on its website, a 3-year average Simple OM emission factor of the CCPG is:

 $EF_{grid,OM,y} = 1.1255 \text{ tCO}_2\text{e/MWh}$

The detailed calculation is in Annex 3.

> Step 5. Identify the group of power units to be included in the build margin

The sample group of power units *m* used to calculate the build margin consists of either:

- (1) The set of five power units that have been built most recently, or
- (2) The set of power capacity additions in the electricity system that comprise 20% of the system generation (in MWh) and that have been built most recently.

Project participants should use the set of power units that comprise the larger annual generation.

According to *Tool to calculate the emission factor for an electricity system*, in terms of vintage of data, two options can be used.

Option 1. For the first crediting period, calculate the build margin emission factor ex-ante based on the most recent information available on units already built for sample m at the time of CDM-PDD submission to the DOE for validation. For the second crediting period, the build margin emission factor should be updated based on the most recent information available on units already built at the time of submission of the request for renewal of the crediting period to the DOE. For the third crediting period, the build margin emission factor calculated for the

CDM - Executive Board

page 20

second crediting period should be used. This option does not require monitoring the emission factor during the crediting period.

Option 2. For the first crediting period, the build margin emission factor shall be updated annually, *ex-post*, including those units build up to the year of registration of the project activity or, if information up to the year of registration is not yet available, including those unite build up to the latest year for which information is available. For the second crediting period, the build margin emissions factors shall be calculated *ex-ante*, as described in option 1 above. For the third crediting period, the build margin emission factor calculated for the second crediting period should be used.

Because detailed data on grid and grid-connected power plants are difficult to be obtained in China, Option 1 is selected.

> Step 6. Calculate the build margin emission factor

The build margin emission factor is the generation-weighted average emission factor (tCO₂e/MWh) of all power units m during the most recent year y for which power generation data is available, calculated as follows:

$$EF_{grid,BM,y} = \frac{\sum_{m} EG_{m,y} \times EF_{EL,m,y}}{\sum_{m} EG_{m,y}}$$
(7)

Where:

EF_{grid,BM,y} Build margin CO₂ emission factor in year y (tCO₂e/MWh)

 $EG_{m,v}$ Net quantity of electricity generated and delivered to the grid by power unit m in

year y(MWh)

 $FE_{EL,m,y}$ CO_2 emission factor of power unit m in year y (tCO₂e/MWh)

m Power units included in the build margin

y Most recent historical year for which power generation data is available

In China, data on either the five power plants that have been built most recently or the power plants capacity additions in the electricity system that comprise 20% of the system generation are classified as business confidential and are not publicly available. Therefore, EB accepted the following deviations²⁹:

- Use of capacity additions during last 1~3 years for estimating the build margin emission factor for grid electricity.
- Use of weights estimated using installed capacity in place of annual electricity generation.

EB also suggests using the efficiency level of the best technology commercially available in the provincial/regional or national grid of China, as a conservative proxy, for each fuel type in estimating the fuel consumption to estimate the build margin (BM).

According to the data published by Chinese DNA³⁰, the subcritical generating system with a

-

³⁰ http://qhs.ndrc.gov.cn/qjfzjz/t20090703 289357.htm

UNFCCC

CDM - Executive Board

page 21

capacity of over 600MW share 54% of total installation capacity and represents the most advanced technology commercially used in domestic coal-fired plants. The combined cycle technology with a capacity of 200MW stands for the most advanced technology used in thermal plants fired by gas or oil in China. Therefore, the BM emission factor of the CCPG is calculated using the data from 2005~2007, based on the above best technology commercially available at the time of this PDD submission. The calculation procedures are shown below.

Step a Calculate the power generation emissions for solid, liquid and gas fuel and each share of total emissions based on the *Energy Balance Table* of the most recent year.

$$\lambda_{coal}, = \frac{\sum_{i \in COAL} F_{i,j,y} * COEF_{i,j}}{\sum_{i,j} F_{i,j,y} * COEF_{i,j}}$$

$$(8)$$

$$\lambda_{oil} = \frac{\sum_{i \in OIL, j} F_{i,j,y} * COEF_{i,j}}{\sum_{i,j} F_{i,j,y} * COEF_{i,j}}$$

$$(9)$$

$$\lambda_{gas} = \frac{\sum_{i \in GAS, j} F_{i,j,y} * COEF_{i,j}}{\sum_{i,j} F_{i,j,y} * COEF_{i,j}}$$

$$\tag{10}$$

Where:

 λ_{coal} , λ_{oil} and λ_{gas} represent the proportion of CO_2 emission of the solid, liquid and gas fuel in the total emission, respectively.

 $F_{i,j,y}$ Amount of fuel i consumed by relevant power sources j in year y (mass or volume).

COEF_{i,j,y} CO_2 emission coefficient of fuel i (tCO₂/mass or volume), taking into account the carbon content of the fuels used by relevant power sources j and the percent oxidation of the fuel in year y.

COAL, OIL and GAS are the mark aggregation of solid fuel, liquid fuel and gas fuel, respectively.

Step b. Calculate emission factor for thermal power of the grid based on the result of Step a and the efficiency level of the best technology commercially available in China.

$$EF_{thermal} = \lambda_{coal} * EF_{coal,Adv} + \lambda_{oil} * EF_{oil,Adv} + \lambda_{gas} * EF_{gas,Adv}$$
(11)

 $EF_{thermal}$ is the emission factor of thermal power plant. $EF_{coal,Adv}$, $EF_{oil,Adv}$ and $EF_{gas,Adv}$ represent the CO_2 emission factor of the most advanced technology commercially used in coal-, oil- and gas-fired plants in China, respectively.

Step c. Calculate BM of the grid based on the result of Step b. and the share of thermal power of recent 20% capacity additions.

CDM - Executive Board

page 22

$$EF_{BM,y} = \frac{CAP_{Thermal}}{CAP_{Total}} \times EF_{Thermal}$$
(12)

CAP_{Total} Total newly capacity addition on different power sources connected to the CCPG. Newly capacity addition on thermal power sources connected to the CCPG.

According to the above steps and the emission factor of CCPG published by Chinese DNA on its website, the BM emission factor of the CCPG is:

 $EF_{grid,BM,y} = 0.5802 \text{ tCO}_2\text{e/MWh}$ The detailed calculation is in Annex 3.

> Step 7. Calculate the combined margin emissions factor

 $EF_{grid,CM,y}$ is the weighted average of the Operating Margin emission factor ($EF_{grid,OM,y}$) and the Build Margin emission factor ($EF_{grid,BM,y}$) is expressed as:

$$EF_{grid,CM,y} = EF_{grid,OM,y} * w_{OM} + EF_{grid,BM,y} * w_{BM}$$
(13)

Where:

w_{OM} Weighting of operating margin emission factor (%) w_{BM} Weighting of build margin emission factor (%)

For hydropower project the weights w_{OM} and w_{BM} , by default, are 50% (i.e., $w_{OM} = w_{BM} = 0.5$).

3. Leakage Emissions L_v

According to ACM0002, no leakage emissions (L_v) are considered.

4. Emission Reductions ER_v

Therefore, the emission reductions of the project is

$$ER_{v} = BE_{v} - PE_{v} \tag{14}$$

B.6.2. Data and parameters that are available at validation:

Data / Parameter:	$FC_{i,y}$
Data unit:	Mass or volume
Description:	Amount of fossil fuel type i consumed by power plants
	connected to the CCPG in year y
Source of data used:	China Energy Statistical Yearbook (2006~2008)
Value applied:	See Annex 3
Justification of the choice of	China Energy Statistical Yearbook is an authoritative
data or description of	publication.
measurement methods and	
procedures actually applied:	
Any comment:	

CDM – Executive Board

page 23

Data / Parameter:	$NCV_{i,y}$			
Data unit:	TJ/volume or TJ/mass			
Description:	net calorific value (energy content) per mass or volume unit of			
	fuel i in year y			
Source of data used:	China Energy Statistical Yearbook 2008			
Value applied:	See Annex 3			
Justification of the choice of	China Energy Statistical Yearbook is an authoritative			
data or description of	publication.			
measurement methods and				
procedures actually applied:				
Any comment:				

Data / Parameter:	EF _{CO2,i}			
Data unit:	tCO ₂ /GJ			
Description:	CO ₂ emission factor per unit of energy of fuel i in year y			
Source of data used:	Default values from 2006 IPCC Guidelines for National			
	Greenhouse Gas Inventories, volume 2, page 1.23			
Value applied:	See Annex 3			
Justification of the choice of	No local specific value available, therefore using default values			
data or description of	from 2006 IPCC Guidelines for National Greenhouse Gas			
measurement methods and	Inventories.			
procedures actually applied:				
Any comment:				

Data / Parameter:	EG_v
Data unit:	MWh
Description:	Net electricity generated by power plant/unit j in year y
Source of data used:	China Electric Power Yearbook (2006~2008)
Value applied:	See Annex 3
Justification of the choice of	China Electric Power Yearbook is an authoritative publication.
data or description of	
measurement methods and	
procedures actually applied:	
Any comment:	

Data / Parameter:	EC _v : Electricity used on-site			
Data unit:	%			
Description:	Average on-site electricity usage by all power plants connected			
	to the CCPG			
Source of data used:	China Electric Power Yearbook (2006~2008)			
Value applied:	See Annex 3			
Justification of the choice of	China Electric Power Yearbook is an authoritative publication			
data or description of				
measurement methods and				
procedures actually applied:				
Any comment:				

Data / Parameter:	GENE _{best,coal}
-------------------	---------------------------

CDM – Executive Board

page 24

Data unit:	%				
Description:	Best power supply efficiency by the most advanced technology				
	commercially used in coal-fired plants in China				
Source of data used:	Bulletin on Baseline Emission Factors of the China's Regional				
	Grids- the calculation of baseline Build Margin emission factor				
	for the China's Regional Grids				
Value applied:	38.10%				
Justification of the choice of	Official data from Chinese DNA				
data or description of					
measurement methods and					
procedures actually applied:					
Any comment:					

Data / Parameter:	GENE _{best,oil,gas}			
Data unit:	%			
Description:	Best power supply efficiency by the most advanced technology			
	commercially used in oil- and gas-fired plants in China			
Source of data used:	Bulletin on Baseline Emission Factors of the China's Regional			
	Grids- the calculation of baseline Build Margin emission factor			
	for the China's Regional Grids			
Value applied:	49.99%			
Justification of the choice of	Official data from Chinese DNA			
data or description of				
measurement methods and				
procedures actually applied:				
Any comment:				

Data / Parameter:	CAP_y			
Data unit:	MW			
Description:	Installed generation capacity on different power sources			
	connected to the CCPG			
Source of data used:	China Electric Power Yearbook (2006~2008)			
Value applied:	See Annex 3			
Justification of the choice of	China Electric Power Yearbook is an authoritative publication.			
data or description of				
measurement methods and				
procedures actually applied:				
Any comment:				

Data / Parameter:	GWP _{CH4}			
Data unit:	tCO ₂ e/tCH ₄			
Description:	Global warming potential of methane valid for the relevant			
	commitment period			
Source of data used:	IPCC			
Value applied:	For the first commitment period/ 21 tCO ₂ e/tCH ₄			
Justification of the choice of	-			
data or description of				
measurement methods and				
procedures actually applied:				

CDM – Executive Board

page 25

Any comment:	-

B.6.3. Ex-ante calculation of emission reductions:

The parameters and their corresponding values used to calculate the baseline emissions and project emissions are shown in the table below.

Table B.6.3-1 Calculation Parameters

Parameters		Value
EG_{y} (MWh)	Electricity supplied by the project activity to	232,727
	the grid in year y	
EF _{grid,CM,y} (tCO ₂ e /MWh)	Baseline emissions factor of CCPG	0.85285

According to the equations listed in Section B.6.1 and the default values of parameters in Section B.6.2 and Table B.6.3.-1, the project emissions, baseline emissions and leakage are shown below.

(1) Baseline emissions

The baseline emission factor is:

$$EF_{grid,CM,y} = 0.5 \times EF_{grid,OM,y} + 0.5 \times EF_{grid,BM,y} = 1.1255 \times 0.5 + 0.5802 \times 0.5$$

= 0.85285 tCO₂e/MWh

Therefore, the baseline emissions of the project is:

$$BE_v = EG_{PJ,v} \times EF_{grid,CM,v} = 232,727 \times 0.85285 = 198,481 \text{ tCO}_2\text{e/year}$$

(2) Project emissions

According to the data in Preliminary Design Report, the power density of the proposed project is calculated as:

$$PD = \frac{Cap_{PJ}}{A_{PJ}} = 66,000,000 / 5,090,000 = 12.97 \text{ W/m}^2$$

The power density of the proposed project is 12.97W/m^2 , more than 10 W/m^2 . Therefore, $PE_v = 0$.

The methodology does not require to take into account the leakage from the proposed project activity. Therefore, $L_v=0$. So emission reductions are as follows:

$$ER_v = BE_v - PE_v - L_v = 198,481 - 0 - 0 = 198,481 \text{ tCO}_2\text{e/year}$$

CDM – Executive Board

page 26

B.6.4. Summary of the ex-ante estimation of emission reductions:

Year	Estimation of project activity emissions (tonnes of CO ₂ e)	Estimation of baseline emissions (tonnes of CO ₂ e)	Estimation of leakage (tonnes of CO ₂ e)	Estimation of overall emission reductions (tonnes of CO ₂ e)
2010 (01/07~31/12)	0	99,240.5	0	99,240.5
2011	0	198,481	0	198,481
2012	0	198,481	0	198,481
2013	0	198,481	0	198,481
2014	0	198,481	0	198,481
2015	0	198,481	0	198,481
2016	0	198,481	0	198,481
2017 (01/01~30/06)	0	99,240.5	0	99,240.5
Total (tonnes of CO ₂ e)	0	1,389,367	0	1,389,367

B.7. Application of the monitoring methodology and description of the monitoring plan:

B.7.1. Data and parameters monitored:

Based on the ACM0002, the following data and parameters will be monitored during the project crediting period.

Data / Parameter:	$\mathrm{EG}_{\mathrm{facility,y}}$	
Data unit:	MWh	
Description:	Quantity of net electricity generation supplied by the project	
	plant/unit to the CCPG in year y	
Source of data to be used:	Metering system readings	
Value of data applied for	232,727MWh/year	
the purpose of calculating		
expected emission		
reductions in		
section B.5		
Description of measurement	Directly measured by the metering devices with an accuracy	
methods and procedures to	level of 0.2S installed at the inlet of the connected substations.	
be applied:	The recording frequency will be continuously measured and	
	recorded on a monthly basis	
	The measurement will be carried out by the representatives of the	
	grid company and the project owner jointly.	
	Detailed monitoring procedures will be established later between	
	the project owner and the grid company in line with the Power	
	Purchase Agreement.	
QA/QC procedures to be	The metering equipments will be properly calibrated periodically	
applied:	according to Technical Administrative Code of Electric Energy	

CDM – Executive Board

page 27

	Metering (DL/T448-2000) by an accredited third party. Sales invoices to the grid. Furthermore, the electricity purchase settlement notice from the grid company will be available to double check this parameter.
Any comment:	

Data / Parameter:	Cap _{PJ}
Data unit:	W
Description:	Installed capacity of the hydro power plant after the
	implementation of the project activity.
Source of data to be used:	Project site.
Value of data applied for the	66,000,000
purpose of calculating	
expected emission	
reductions in section B.5	
Description of measurement	Yearly. Determine the installed capacity according to the
methods and procedures to	nameplate of each generator.
be applied:	
QA/QC procedures to be	
applied:	
Any comment:	

Data / Parameter:	$\mathbf{A}_{ extsf{PJ}}$
Data unit:	$ \begin{array}{c} \mathbf{A_{PJ}} \\ \mathbf{m}^2 \end{array} $
Description:	Area of the reservoir measured in the surface of the water, after
	the implementation of the project activity, when the reservoir is
	full.
Source of data to be used:	Project site.
Value of data applied for the	5,090,000
purpose of calculating	
expected emission	
reductions in section B.5	
Description of measurement	Yearly. Measured from topographical surveys, when the
methods and procedures to	reservoir is full.
be applied:	
QA/QC procedures to be	The measurement will be carried out by the design institute
applied:	yearly according to reservoir area-elevation curves.
Any comment:	

Data / Parameter:	TEG _y
Data unit:	MWh
Description:	Total quantity of electricity generated by the project in year y
Source of data to be used:	Metering system readings
Value of data applied for	-
the purpose of calculating	
expected emission	
reductions in	
section B.5	
Description of measurement	Directly measured by the metering devices with an accuracy

CDM - Executive Board

page 28

methods and procedures to be applied:	level of 0.5S installed at the outlet of the plant. The recording frequency will be continuously measured and recorded on a monthly basis. The measurement will be carried out by the representatives of the grid company.
QA/QC procedures to be applied:	The metering equipments will be properly calibrated periodically according to <i>Technical Administrative Code of Electric Energy Metering</i> (DL/T448-2000) by an accredited third party. Sales invoices to the grid and purchase receipt will be available to double check this parameter.
Any comment:	This parameter is only needed to be monitored if the Power Density less than 10W/m ² .

B.7.2. Description of the monitoring plan:

The objective of the monitoring plan is to assure the complete, consistent, clear, and accurate monitoring and calculation of the project emission reductions during the whole crediting period. The project owner is responsible for the implementation of the monitoring plan, and the grid company cooperates with the project owner.

1. Monitoring organization

This monitoring plan will be carried out by a CDM team, designated by the project owner, which consists of a team leader, an assistant and four operators who are responsible for recording the metering readings (Figure 4). This team leader has the overall responsibility for the monitoring and verification process, training and managing all CDM team members, and acting as the focal point for DOE, DNA and other organizations relating to CDM.

Figure 4 Monitoring organization

The team leader has the overall responsibility for the monitoring and verification process, training and managing all CDM team members, and acting as the focal contact for DOE, DNA and other organizations relating to CDM.

The assistant will help the team leader to supervise the operation of the project, including data monitoring, negotiations with the grid company, and to collect financial data such as receipts of electricity sales.

UNFCCC

CDM - Executive Board

page 29

The operators will be responsible for calibrating and maintaining the electricity meters, measuring and recording relevant readings, collecting, checking, archiving and managing data, and making summary according to the CDM project's requirements in a regular basis.

2. Training

Before the formal operation of the proposed project, CDM training for relevant people will be organized by the team leader of CDM team. Furthermore, during the crediting period, CDM training will be organized at regular intervals.

3. Data to be Monitored

1) Electricity delivered to/import from the CCPG

Electricity delivered to/imported from the CCPG will be monitored by main metering devices installed at transformer substations. The representatives of the grid company and the project owner will jointly read the main metering devices monthly. The electricity purchase settlement notice will be provided by the grid company for the project owner's double check of the amount of electricity delivered to and accepted by the CCPG.

Moreover, backup metering devices will be also installed at the outlet of the project to measure electricity output and usage supplied by the grid. The measurement of the backup metering devices will be carried out by the project owner. The recording frequency will be continuously measured and recorded on an hourly basis, and monthly aggregated.

Detailed monitoring procedures of measuring electricity supplied to the CCPG by the project will be established later between the project owner and the grid company in line with the Power Purchase Agreement.

2) Installed capacity of the hydropower

The installed capacity of the hydropower plant shall be monitored yearly according to the nameplate of each generator.

3) Surface area of the reservoir

The surface area of the reservoir will be measured yearly from topographical surveys.

Above monitored data will be provided to DOE by the project owner during the verification period.

4. Installation of Metering Devices

Three sets of metering systems will be equipped separately at transformer substations and at the project site. They are classified as main system and backup system, respectively. All systems are capable of metering the import and export of electricity by the project simultaneously.

Three sets of metering systems (A1,A2 and A3) will be equipped separately at outlet line of three generators for metering electricity generated by each generator.

CDM - Executive Board

page 30

Figure 5 Location of metering systems

The metering equipments will be properly calibrated periodically and checked annually for accuracy. The calibration will be done according to *Technical Administrative Code of Electric Energy Metering* (DL/T448-2000) by an accredited third party.

5. Data Reading

1) Electricity delivered to/import from the CCPG

The recording frequency at the project site will be hourly measured and recorded, and monthly aggregated.

Electricity sales invoices provided by the project owner and the electricity purchase settlement notice provided by Grid Company should be available to check the electricity export to/import from the CCPG monthly. The electricity sales invoices and the electricity purchase settlement notice will be provided to DOE during the verification period.

2) Installed capacity of the hydropower

Before verification, operators will read and record the data of nameplate of each generator. This record will be checked by the CDM group leader and provided to DOE during the verification period.

3) Surface area of the reservoir

The surface area of the reservoir will be measured by correlative design institute yearly.

6. Data Management System

Data will be archived in electronic spreadsheet at the end of each month. The electronic files will be stored on hard disk or other media. In addition, a hard copy printout will be archived.

Hard copy documentation such as paper maps, diagrams and environmental assessment will be

CDM - Executive Board

page 31

collated in a central place, together with this monitoring plan. In order to facilitate auditor's reference, monitoring results will be indexed. All hard copy information will be stored by the project owner with at least one copy.

All data records will be kept until 2 years after the end of the crediting period.

7. Disposing process of abnormity

If any previous months reading of the main metering system be inaccurate by more than the allowable error (±0.2%, which is in line with *Technical Administrative Code of Electric Energy Metering* (DL/T448-2000)), or otherwise functioned improperly, the grid-connected electricity generated by the project shall be determined by:

- Firstly, by reading the backup meter while considering transmission line loss to get the data on electricity delivered to the grid, unless a test by either party reveals it is not accurate.
- If the backup system is not within the acceptable limits of accuracy or it otherwise
 performing improperly the project owner and the power company shall jointly prepare
 an estimate of the correct reading, and
- If the project owner and the grid company fail to agree the estimate of the correct reading, then the matter will be referred for arbitration according to agreed procedures.

The electricity recorded by the main metering system alone will suffice for the purpose of billing and emission reduction verification as long as the error in the main system is within the permissible limits.

If the error of data, especially the error of electricity sales, is caused by accidents during the crediting period, the project owner and grid company will deal with it as contingency. Meanwhile, CDM team should be informed about the accidents occurred at power station in time. The CDM team leader and assistant will analyze the rationality of data according to conservative rules of CDM projects. The data should be recorded and archived.

8. Verification of monitoring results

The responsibilities for verification of the projects are as follows:

- The project owner will make the arrangements for the verification and will prepare for the audit and verification process to the best of its abilities.
- The project owner will facilitate the verification through providing the DOE with all required necessary information, before, during and in the event of queries, after the verification.
- The project owner will fully cooperate with the DOE and instruct its staff and management to be available for interviews and respond honestly to all questions from the DOE.

B.8. Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies)

Completion date: 08/07/2009

Name of entity/person determining the baseline and monitoring plan:

CDM – Executive Board

page 32

 $\begin{array}{cc} \text{Ms. Joney} & & \underline{\text{chncdm@gmail.com}} \\ \text{Mr. Zeno} & & \underline{\text{mrdoos@gmail.com}} \end{array}$

Shanghai Yiqing Environmental Technology Co., LTD

Address: Room 802, No. 25, Lane 1080, North Huting Road, Shanghai 201615, China

Tel: +86-21-37690215 Fax: +82-21-37690215

None of the responsible persons / entity mentioned above belongs to project participants.

SECTION C.	Duration of	the project activity / crediting period
C.1. Durat	tion of the pro	ject activity:
C.1.1.	Starting dat	e of the project activity:
30/05/2008(Th	ne date when th	ne main Equipment Procurement Contract was signed)
C.1.2	. Expected o	perational lifetime of the project activity:
30 years and 0	month.	
C.2. Choic	e of the <u>credit</u>	ing period and related information:
C.2.1.	Renewable	crediting period
	C.2.1.1.	Starting date of the first <u>crediting period</u> :
01/07/2010		
	C.2.1.2.	Length of the first <u>crediting period</u> :
7 years		
C.2.2.	Fixed crediting period:	
	C.2.2.1.	Starting date:
Not applicable)	

Not applicable

C.2.2.2.

Length:

CDM - Executive Board

page 33

SECTION D. Environmental impacts

D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

An Environmental Impact Assessment (EIA) was conducted to ensure that the project complies with national, regional and local environmental regulations during its construction and operation period. The EIA, prepared by Chengdu Investigation & Design Research Institute which is a certified organization, has already been approved by Sichuan Province Environmental Protection Bureau on October 18th 2004.

The following is the summary of the EIA.

Potential environmental impacts and the mitigation measures

In Construction Stage

Water

Wastewater and sewage generated by site construction activities will be treated in the sedimentation tank after collection and then discharged; wastewater with oil will be treated by oil separator before discharged; and wastewater generated by construction workers will be treated using wastewater treatment equipment and then discharged.

Air

The main air pollutant is particulates (dust) which is released from construction activities and transportation and the emission from vehicles and construction machinery. Measures will be taken to mitigate this pollutant, such as spraying water at construction sites and on dusty roads, transporting material in covered vehicles or in closed containers, installing and using a wheel washing system, controlling vehicle speeds and operating with proper maintenance and in compliance with relevant emission standards.

Noise

Vehicles, construction machinery and explosion of dynamite will generate noise. The mitigation measures include: installing in-site sound barriers, selecting suitable equipment, correct operation and maintenance; limiting the speed of vehicles, and the explosion activities will be carried out strictly in compliance with safety regulations for explosion issued by the nation.

Solid waste

The main solid waste from this project includes: refuse generated on construction site and waste generated by construction workers. These solid wastes will be collected and then transported out to landfill.

Ecology

Measures for water and soil conservation are prepared and complied by the project owner for minimize the adverse impact on the ecological environment during the project construction. Rehabilitation of vegetation will be conducted after the construction work.

Social

The project owner made Reservoir Inundation and Resettlement Plan and set special fund for compensation as per *The Land Administration Law of the*

CDM - Executive Board

page 34

People's Republic of China, Regulation on Land Requisition Compensation and Resettlement of Migrants for Large and Medium Water Conservation and Power Construction Projects, Specification for planning and design of reservoir submergence treatment of hydroelectric engineering (DL/T5064-1996), etc. to ensure that long-term livelihood of the project-affected people is protected. These reservoir resettlements will be resettled backward. Hence, the administrative region will not change and will not cause any pressure on education, medical and etc. The resettlements income will also be increased by exploiting land resources, reclaiming low-yield fields and so on.

In Operation Stage

Water Sewage water will be treated in the treatment plant and then discharged.

Air There is no air pollution caused by hydropower plant during operation stage.

Noise Noise is generated mainly by machine during operations. The mitigation measures are: selecting low noise machines, locating noisy equipment in close

workshop.

Solid waste The main solid waste during operation period is waste generated by construction

workers. These solid wastes will be collected and then transported out to landfill.

The project has no great adverse impact on the local people and environment.

D.2. If environmental impacts are considered significant by the project participants or the <u>host Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

The EIA of the Project has been approved by Sichuan Province Environmental Protection Bureau. Strict environmental monitoring and mitigation measures will be carried out during the construction and operation phase of the project. No significant environmental impacts are identified for the project.

SECTION E. Stakeholders' comments

E.1. Brief description how comments by local <u>stakeholders</u> have been invited and compiled:

The project owner carried out the public consultation for the social, economic and environmental effects of the project before its implementation in April 2008.

During the survey a total of 120 questionnaires were handed out and 110 copies were returned. 92% participation was noted.

The conditions of the participants are as follows:

page 35

Table E.1.-1 Survey participants

Item	Content	Vote	Proportion
	Zang	0	0%
Ethnic	Han	110	100%
	others	0	0%
Education	Elementary school	19	17%
	Junior high school	35	32%
	senior high school	33	30%
	University or above	23	21%
Occupation	Governmental staff	28	25%
	Worker	11	10%
	Farmer	66	60%
	Others	5	5%
Age	€30	39	35%
	30-40	49	45%
	40-50	9	8%
	≥50	13	12%

The main questions include:

- Whether can the project create more job opportunities and incomes for local people?
- What is the project impact on local ecological and social environment?
- What is the main impact caused by the construction of the project?
- What is the impact on local vegetation by the project?
- What do you think is the main negative impact caused by the project?
- What do you think is the main positive impact caused by the project?
- What is the general trend on local environment by the project?
- What is your attitude to the construction of the project?

E.2. Summary of the comments received:

The results of this survey are as follows:

- About 91.5% of the participants think the construction of the project will create more working opportunity and increase local incomes.
- About 85% of the participants think that the impact on local ecological and social environment would be positive.
- About 80% of the participants think that the main negative impact caused by the construction of the project the impact on local residences caused by reservoir, and 15% think it is water and soil loss caused by the construction activity.
- About 85% of the participants think that the main positive impact caused by the project is that the local economy would be notably promoted.
- ➤ 30% of the participants think that the construction of the project can improve the quality of local environment, 65% think that there would be some impact but the impact is controllable, 5% think that no impact would caused by the project.
- > 98% of the participants sustain the construction of the project.

E.3. Report on how due account was taken of any comments received:

CDM - Executive Board

page 36

The project owner takes the comments and feedback seriously and takes the prompt and proper action to the stakeholders' comments and suggestions, especially on the protection of ecological environment during the construction and operation period.

As per the stakeholder's comments on reservoir inundation and the loss of water and soil, the project owner made Reservoir Inundation and Resettlement Plan and set special fund for compensation to ensure that long-term livelihood of the project-affected people is protected. These reservoir resettlements will be resettled backward. Hence, the administrative region will not change and will not cause any pressure on education, medical and etc. The resettlements income will also be increased by exploiting land resources, reclaiming low-yield fields and so on. Furthermore, for conserving water, soil and protection of ecological environment, the project owner prepared Scheme of Water and Soil Conservation for Sichuan Jialingjiang River Cangxi Hydropower Project which was approved by Water Resources Bureau of Sichuan Province on August 31st 2004. Accordingly, the project owner will take proper and effective measures to prevent the loss of water and soil, and protect the environment. For instance, barricade and other protective facilities will be built during and after the construction works; the temporary occupied land during the construction will be rehabilitated by soil covering, trees planting and other greening measures.

The survey also showed that local residents were very supportive for the project, thinking that the implementation of the project would boost local economy and popularize rural electrification.

page 37

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE <u>PROJECT ACTIVITY</u>

Project Owner/Host

Organization:	Sichuan Jialingjiang Cangxi Hydroelectric Power Development Co., Ltd.
Street/P.O.Box:	Lingjiang Town, Cangxi County
	Linghang Town, Cangai County
Building:	
City:	Chengdu City
State/Region:	Sichuan Province
Postfix/ZIP:	
Country:	China
Telephone:	+86-28-87025713
FAX:	+86-28-87044888
E-Mail:	bwl0809@163.com
URL:	
Represented by:	Mr. He Xiaochun
Title:	Director
Salutation:	Mr.
Last Name:	Cheng
Middle Name:	
First Name:	Wei Min
Department:	CDM office
Mobile:	
Direct FAX:	+86-28-87044888
Direct tel:	+86-28-87025713
Personal E-Mail:	bwl0809@163.com

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03

CDM – Executive Board

page 38

Annex I Project Participant

Organization:	Sumitomo Corporation
Street/P.O.Box:	1-8-11 Harumi, Chuo-Ku
Building:	
City:	Tokyo
State/Region:	
Postfix/ZIP:	104-8610
Country:	Japan
Telephone:	+81-3-5166-4272
FAX:	+81-3-5166-8753
E-Mail:	
URL:	www.sumitomocorp.co.jp
Represented by:	
Title:	Team leader
Salutation:	Mr.
Last Name:	Ogata
Middle Name:	
First Name:	Tsuyoshi
Department:	Environmental Solution Business Task Force
Mobile:	
Direct FAX:	+81-3-5166-8753
Direct tel:	+81-3-5166-4272
Personal E-Mail:	cdm-project@sumitomocorp.co.jp

page 39

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

There is no public fund from parties included in Annex I of the UNFCCC involved in this project activity.

page 40

Annex 3

BASELINE INFORMATION

Emission Factor of Central China Power Grid^{31,32,33,34}

I. Operating Margin

Table 1. Fuel consumed by the CCPG in year 2005

	Unit	Jiangxi	Henan	Hubei	Hunan	Chongqing	Sichuan	Sub-total	Emission Factor (tc/TJ)	Oxid. Factor	Emission Factor (kgCO ₂ /TJ)	LCV (MJ/t,m3)	CO ₂ emission (tCO ₂ e) L=G×J×K/100000 (for mass)
Fuel type		A	В	С	D	E	F	G=A+B+C+ D+E+F	н	I	J	К	L=G×J×K/10000 (for volume)
Raw coal	10 ⁴ t	1869.29	7638.87	2732.15	1712.27	875.4	2999.77	17827.75	25.8	100	87,300	20,908	325,404,287
Cleaned coal	10 ⁴ t	0.02						0.02	25.8	100	87,300	26,344	460
Other washed coal	10 ⁴ t		138.12			89.99		228.11	25.8	100	87,300	8,363	1,665,408
Coke	10 ⁴ t		25.95		105			130.95	29.2	100	95,700	28,435	3,563,450
Coke oven gas	10^8m^3			1.15		0.36		1.51	12.1	100	37,300	16,726	94,206
Other gas	10^{8}m^{3}		10.2			3.12		13.32	12.1	100	37,300	5,227	259,696
Crude oil	10 ⁴ t		0.82	0.36				1.18	20	100	71,100	41,816	35,083
Gasoline	10 ⁴ t		0.02			0.02		0.04	18.9	100	67,500	43,070	1,163
Diesel oil	10 ⁴ t	1.3	3.03	2.39	1.39	1.38		9.49	20.2	100	72,600	42,652	293,861
Fuel oil	10 ⁴ t	0.64	0.29	3.15	1.68	0.89	2.22	8.87	21.1	100	75,500	41,816	280,035
LPG	10 ⁴ t							0	17.2	100	61,600	50,179	0
Refinery gas	10 ⁴ t	0.71	3.41	1.76	0.78			6.66	15.7	100	48,200	46,055	147,842
Natural gas	10 ⁸ m ³						3	3	15.3	100	54,300	38,931	634,186
Other petro product	10 ⁴ t							0	20	100	75,500	41,816	0
Other coking product	10 ⁴ t				1.5			1.5	25.8	100	95,700	28,435	40,818
Other energy	10 ⁴ tce		2.88		1.74	32.8		37.42	0	0	0	0	0
												Sub-total	332,420,496

China Energy Statistical Yearbook 2006~2008

China Electric Power Yearbook 2006~2008

2006 IPCC Guidelines for National Greenhouse Gas Inventories

http://qhs.ndrc.gov.cn/qjfzjz/t20090703_289357.htm

page 41

Table 2. Electricity generation and supply by the CCPG in year 2005

Province	Generation	On-site use	Supply
	(MWh)	(%)	(MWh)
Jiangxi	30,000,000	6.48	28,056,000
Henan	131,590,000	7.32	121,957,612
Hubei	47,700,000	2.51	46,502,730
Hunan	39,900,000	5	37,905,000
Chongqing	17,584,000	8.05	16,168,488
Sichuan	37,202,000	4.27	35,613,475
total			286,203,305

Table 3. Fuel consumed by the CCPG in year 2006

	Unit	Jiangxi	Henan	Hubei	Hunan	Chongqing	Sichuan	Sub-total	Emission Factor (tc/TJ)	Oxid. Factor	Emission Factor	LCV (MJ/t,m3)	CO ₂ emission (tCO ₂ e) L=G×J×K/100000 (for mass)
								C. A. D. C.	(10/13)	(%)	(kgCO ₂ /TJ)	(MJ/t,IIIS)	L=G×J×K/100000 (10f mass)
Fuel type		A	В	С	D	E	F	G=A+B+C+ D+E+F	н	I	J	К	L=G×J×K/10000 (for volume)
Raw coal	10 ⁴ t	1926.02	8098.01	3179.79	2454.48	1184.3	3285.22	20127.82	25.8	100	87,300	20,908	367,386,738
Cleaned coal	10 ⁴ t					5.79		5.79	25.8	100	87,300	26,344	133,160
Other washed coal	10 ⁴ t	4.51	104.12		8.59	79.21		196.43	25.8	100	87,300	8,363	1,434,116
Coal briquettes	10 ⁴ t						0.01	0.01	26.6	100	87,300	20,908	183
Coke	10 ⁴ t		17.23		0.32			17.55	29.2	100	95,700	28,435	477,576
Coke oven gas	10 ⁸ m ³		0.52	1.07	4.24	0.38	0.01	6.22	12.1	100	37,300	16,726	388,053
Other gas	10^8m^3	12.69	3.95		1.7	4.36	0.01	22.71	12.1	100	37,300	5,227	442,770
Crude oil	10 ⁴ t		0.49					0.49	20	100	71,100	41,816	14,568
Gasoline	10 ⁴ t		0.01					0.01	18.9	100	67,500	43,070	291
Diesel oil	10 ⁴ t	0.91	2.23	1.41	1.78	0.96		7.29	20.2	100	72,600	42,652	225,737
Fuel oil	10 ⁴ t	0.51	1.26	1.31	0.8	0.57	3.49	7.94	21.1	100	75,500	41,816	250,674
LPG	10 ⁴ t							0	17.2	100	61,600	50,179	0
Refinery gas	10 ⁴ t	0.86	8.1	1	0.97			10.93	15.7	100	48,200	46,055	242,630
Natural gas	10^8m^3			0.28		0.16	18.63	19.07	15.3	100	54,300	38,931	4,031,309
Other petro product	10 ⁴ t							0	20	100	75,500	41,816	0
Other coking product	10 ⁴ t						0.01	0.01	25.8	100	95,700	28,435	272
Other energy	10 ⁴ tce	17.45	37.36	31.55	18.29	29.35		134	0	0	0	0	0
												Sub-total	375,028,077

page 42

Table 4. Electricity generation and supply by the CCPG in year 2006

Province	Generation	On-site use	Supply
	(MWh)	(%)	(MWh)
Jiangxi	34,449,000	6.17	32,323,497
Henan	151,235,000	7.06	140,557,809
Hubei	54,841,000	2.75	53,332,873
Hunan	46,408,000	4.95	44,110,804
Chongqing	23,487,000	8.45	21,502,349
Sichuan	44,193,000	4.51	42,199,896
total			334,027,226

Table 5. Fuel consumed by the CCPG in year 2007

	Unit	Jiangxi	Henan	Hubei	Hunan	Chongqing	Sichuan	Sub-total	Emission Factor	Oxid. Factor	Emission Factor	LCV	CO ₂ emission (tCO ₂ e)
	Cint	Jiangxi	пенан	Hubei	Hunan	Chongqing	Siciluan	Sub-total	(tc/TJ)	(%)	(kgCO ₂ /TJ)	(MJ/t,m3)	L=G×J×K/100000 (for mass)
								G=A+B+C+			, , ,	-	
Fuel type		A	В	C	D	E	F	D+E+F	H	I	J	K	L=G×J×K/10000 (for volume)
Raw coal	10 ⁴ t	2200.57	9357	3479.81	2683.81	1547.7	3239	22507.89	25.8	100	87,300	20,908	410,829,404
Cleaned coal	10 ⁴ t		3.07			3.8		6.87	25.8	100	87,300	26,344	157,998
Other washed coal	10 ⁴ t	0.04	87.16		2.06	96.42		185.68	25.8	100	87,300	8,363	1,355,631
Coal briquettes	10 ⁴ t						0.01	0.01	26.6	100	87,300	20,908	183
Coke	10 ⁴ t							0	29.2	100	95,700	28,435	0
Coke oven gas	10^8m^3	0.08	2.61	0.25	0.31	0.91		4.16	12.1	100	37,300	16,726	259,534
Other gas	10^8m^3	29.17	25.79		24.69		23.98	103.63	12.1	100	37,300	5,227	2,020,444
Crude oil	10 ⁴ t		0.43					0.43	20	100	71,100	41,816	12,784
Gasoline	10 ⁴ t				0.04	0.01		0.05	18.9	100	67,500	43,070	1,454
Diesel oil	10 ⁴ t	0.98	3.21	2.51	2.83	1.93		11.46	20.2	100	72,600	42,652	354,863
Fuel oil	10 ⁴ t	0.42	1.25	1.33	0.63	0.64	1.74	6.01	21.1	100	75,500	41,816	189,742
LPG	10 ⁴ t							0	17.2	100	61,600	50,179	0
Refinery gas	10 ⁴ t	1.43	10.01	0.97	0.7			13.11	15.7	100	48,200	46,055	291,022
Natural gas	10^8m^3		0.12	0.18		0.2	1.87	2.37	15.3	100	54,300	38,931	501,007
Other petro product	10 ⁴ t							0	20	100	75,500	41,816	0
Other coking product	10 ⁴ t							0	25.8	100	95,700	28,435	0
Other energy	10 ⁴ tce	23.43	63.65	35.95	29.46	23.21		175.7	0	0	0	0	0
												Sub-total	415,974,066

page 43

Table 6. Electricity generation and supply by the CCPG in year 2007

Province	Generation	On-site use	Supply
	(MWh)	(%)	(MWh)
Jiangxi	42,100,000	7.72	38,849,880
Henan	177,300,000	7.55	163,913,850
Hubei	60,900,000	6.69	56,825,790
Hunan	54,200,000	7.18	50,308,440
Chongqing	28,800,000	9.2	26,150,400
Sichuan	45,100,000	8.68	41,185,320
total			377,233,680

Table 7. Net electricity imported from Northwest of China Power Grid (NWCPG) in year 2006 and 2007

	2006	2007
Net electricity imported from NWCPG (MWh)	3,028,950	3,005,400
Average Emission Factor of NWCPG	0.99148	1.01129

Therefore, OM emission factor of the CCPG is the weighted average value of 2005~2007.

 $EF_{OM} = \Sigma F_{i,m,y} * COEF_{i,m} / \Sigma GEN$

- = (332,420,496+375,028,077+3,028,950*0.99148+415,9746,066+3,005,400*1.01129) / (286,203,305+334,027,226+377,233,680+3,028,950+3,005,400)
- $= 1.1255 \text{ tCO}_2\text{e/MWh}$

page 44

II. Build Margin

According to the recent research³⁵ undertaken by National Development and Reform Commission ("NDRC", Chinese DNA), the generating systems with a capacity of over 600MW shares of 54% of total installed capacity and represents the most advanced technology commercially used in domestic coal-fired plants. The weighted value based on the coal consumption by 30 sets of 600MW generating units installed in 2007 is calculated as 322.5 gce/kWh, which also means the power supply efficiency of these plants is weighted as 38.10%.

The combined cycle technology with a capacity of 200MW stands for the most advanced technology used in thermal plants fired by gas or oil in China. Based on the statistics in 2007, the thermal plant with the maximum power supply efficiency 49.99% consumed the equivalent fuel of 246 gce/kWh.

Table 8. Emission factor of most advanced technology commercially used in China's domestic thermal power plants

	Parameters	Power supply efficiency	EF of fuel (kgCO ₂ /TJ)	Oxidation	Emission Factor (tCO ₂ e/MWh)
		A	В	С	D=3.6/A/1,000,000*B*C
Coal fire plant	$\mathrm{EF}_{\mathrm{Coal},\mathrm{Adv}}$	38.10%	87.300	1	0.8249
Gas fire plant	$\mathrm{EF}_{\mathrm{Gas,Adv}}$	49.99%	75.500	1	0.5437
Oil fire plant	EF _{Oil,Adv}	49.99%	54.300	1	0.3910

³⁵ http://qhs.ndrc.gov.cn/qjfzjz/t20090703_289357.htm

page 45

Table 9. Fuel consumption and emission on the CCPG in 2007

Fuel type		Jiangxi	Henan	Hubei	Hunan	Chongqing	Sichuan	Sub-total	LCV (MJ/t,m3)	Emission Factor (kgCO2/TJ)	Oxid. Factor (%)	CO2 emission (tCO2e)
	Unit	A	В	С	D	Е	F	G=A++F	Н	I	J	K=G×H×I×J/100,000
Raw coal	10 ⁴ t	2,200.57	9,357	3,479.81	2,683.81	1,547.7	3,239	22,507.89	20,908	87,300	1	410,829,404
Cleaned coal	10 ⁴ t	0	3.07	0	0	3.8	0	6.87	26,344	87,300	1	157,998
Other washed coal	10 ⁴ t	0.04	87.16	0	2.06	96.42	0	185.68	8,363	87,300	1	1,355,631
Coal briquettes	10 ⁴ t	0	0	0	0	0	0.01	0.01	20,908	87,300	1	183
Coke	10 ⁴ t	0	0	0	0	0	0	0	28,435	95,700	1	0
Other coking product	10 ⁴ t	0	0	0	0	0	0	0	28,435	95,700	1	0
Sub-total												412,343,216
Crude oil	10^4 t	0	0.43	0	0	0	0	0.43	41,816	71,100	1	12,784
Gasoline	10 ⁴ t	0	0	0	0.04	0.01	0	0.05	43,070	67,500	1	1,454
Diesel oil	10 ⁴ t	0.98	3.21	2.51	2.83	1.93	0	11.46	42,652	72,600	1	354,863
Fuel oil	10 ⁴ t	0.42	1.25	1.33	0.63	0.64	1.74	6.01	41,816	75,500	1	189,742
Other petro product	10 ⁴ t	0	0	0	0	0	0	0	41,816	75,500	1	0
Sub-total												558,843
Natural gas	10^7m^3	0	1.2	1.8	0	2	18.7	23.7	38,931	54,300	1	501,007
Coke oven gas	10^7m^3	0.8	26.1	2.5	3.1	9.1	0	41.6	16,726	37,300	1	259,534
Other gas	10^{7}m^{3}	291.7	257.9	0	246.9	0	239.8	1,036.3	5,227	37,300	1	2,020,444
LPG	10 ⁴ t	0	0	0	0	0	0	0	50,179	61,600	1	0
Refinery gas	10 ⁴ t	1.43	10.01	0.97	0.7	0	0	13.11	46,055	48,200	1	291,022
Sub-total												3,072,007
Total												415,974,066

page 46

$$\lambda_{coal} = \frac{\sum_{i \in COAL, j} F_{i.j,y} * COEF_{i.j}}{\sum_{i,j} F_{i.j.y} * COEF_{i,j}}$$

$$\lambda_{oil} = \frac{\sum_{i \in OIL, j} F_{i.j.y} * COEF_{i.j}}{\sum_{i,j} F_{i.j.y} * COEF_{i,j}}$$

$$\lambda_{oil} = \frac{\sum_{i \in OIL, j} F_{i,j,y} * COEF_{i,j}}{\sum_{i,j} F_{i,j,y} * COEF_{i,j}}$$

$$\lambda_{gas} = \frac{\sum_{i \in GAS, j} F_{i,j,y} * COEF_{i,j}}{\sum_{i,j} F_{i,j,y} * COEF_{i,j}}$$

$$\lambda_{coal} = {}_{412,343,216 / 415,974,066 = 0.9913}$$

$$\lambda_{oil} = 558,843 / 415,974,066 = 0.0013$$

$$\lambda_{gas} = \frac{1}{3,072,007} / 415,974,066 = 0.0074$$

$$\begin{split} EF_{thermal} &= \lambda_{coal} * EF_{coal,Adv} + \lambda_{oil} * EF_{oil,Adv} + \lambda_{gas} * EF_{gas,Adv} \\ &= 0.8249 * 0.9913 + 0.0013 * 0.5437 + 0.0074 * 0.3910 \\ &= 0.8213 \text{ (tCO}_2\text{e/MWh)} \end{split}$$

Capacity addition during the 2005~ 2007 on the CCPG

Table 10. Generation capacity of the CCPG installed in year 2005

Capacity	Unit	Jiangxi	Henan	Hubei	Hunan	Chongqing	Sichuan	Total
Thermal	MW	5,906	26,267.8	9,526.3	7,211.6	3,759.5	7,496	60,167.2
Hydro	MW	3,019	2,539.9	17,888.9	7,905.1	1,892.7	14,959.6	48,205.2
Nuclear	MW	0	0	0	0	0	0	0
Wind and other	MW	0	0	0	0	24	0	24
Total	MW	8,925	28,807.7	27,415.2	15,116.7	5,676.2	22,455.6	108,396.4

page 47

Table 11. Generation capacity of the CCPG installed in year 2006

Capacity	Unit	Jiangxi	Henan	Hubei	Hunan	Chongqing	Sichuan	Total
Thermal	MW	6,568	32,603	11,623	10,715	5,594	9,555	76,658
Hydro	MW	3,288	2,553	18,320	8,648	1,979	17,730	52,518
Nuclear	MW	0	0	0	0	0	0	0
Wind and other	MW	0	0	0	17	24	0	41
Total	MW	9,856	35,156	29,943	19,380	7,597	27,285	129,217

Table 12. Generation capacity of the CCPG installed in year 2007

Capacity	Unit	Jiangxi	Henan	Hubei	Hunan	Chongqing	Sichuan	Total
Thermal	MW	9,270	38,540	13,040	13,360	6,370	12,000	92,580
Hydro	MW	3,570	2,740	24,020	9,220	2,240	19,860	61,650
Nuclear	MW	0	0	0	0	0	0	0
Wind and other	MW	0	0	10	17	24	0	51
Total	MW	12,840	41,280	37,070	22,597	8,634	31,860	154,281

Therefore, the Build Margin of the CCPG is calculated as the table below:

Table 13. Capacity addition of the CCPG during 2005~2007

	2005	2006	2007	Capacity addition 2005-2007	Share in the capacity addition
	A	В	C	D=C-A	
Thermal	60,167.2	76,658	92,580	32,412.8	70.64%
Hydro	48,205.2	52,518	61,650	13,444.8	29.30%
Nuclear	0	0	0	0	0.00%
Wind	24	41	51	27	0.06%
Total	108,396.4	129,217	154,281	458,84.6	100.00%
Share in the capacity of 2007	70.26%	83.75%	100%		

page 48

$$EF_{BM} = 0.8213 * 70.64\% = 0.5802 tCO_2 e/MWh$$

Taking the default value of weights w_{OM} and w_{BM} , 50% respectively, the emission factor of the CCPG is calculated as follows:

$$EFy = 1.1255*50\% + 0.5802*50\% = 0.85285 tCO2e/MWh$$

page 49

The low-cost/must run resources ratios for 2003~2007.

Table 14 Electricity generation of the CCPG in year 2003

Province	Total	Hydro	Thermal	Nuclear	Wind	other
	A	В	C	D	Е	F
Henan	1009.75	54.57	955.18	0	0	0
Hubei	783.07	387.75	395.32	0	0	0
Hunan	539.02	244.01	295.01	0	0	0
Jiangxi	310.29	38.64	271.65	0	0	0
Sichuan	827.82	500	327.82	0	0	0
Chongqing	202.92	39.51	163.41	0	0	0
Electricity generation of the CCPG in year 2003 (10 ⁸ kWh)	3672.87	1264.48	2408.39	0	0	0
The low-cost/must run resources ratio in year 2003 (%)	(B+D+E+F)/A			34.4%		

China Electric Power Yearbook 2004

Table 15 Electricity generation of the CCPG in year 2004

Province	Total	Hydro	Thermal	Nuclear	Wind	other
	A	В	С	D	Е	F
Henan	1162.36	68.84	1093.52	0	0	0
Hubei	1125.46	695.12	430.34	0	0	0
Hunan	614.22	242.36	371.86	0	0	0
Jiangxi	340.17	38.9	301.27	0	0	0
Sichuan	935.29	589.02	346.27	0	0	0
Chongqing	229.15	56.7	165.2	0	0	7.25
Electricity generation of the CCPG in year 2004 (10 ⁸ kWh)	4406.65	1690.94	2708.46	0	0	7.25
The low-cost/must run resources ratio in year 2004 (%)	(B+D+E+F)/A			38.5%	_	

China Electric Power Yearbook 2005

page 50

Table 16 Electricity generation of the CCPG in year 2005

Province	Total	Hydro	Thermal	Nuclear	Wind	other
	A	В	С	D	Е	F
Henan	1381.84	70.54	1311.30	0	0	0
Hubei	1289.8	813.65	476.15	0	0	0
Hunan	646.64	243.56	403.08	0	0	0
Jiangxi	373.49	67.88	305.61	0	0	0
Sichuan	1018.76	653.34	365.42	0	0	0
Chongqing	253.77	66.51	186.69	0	0	0.57
Electricity generation of the CCPG in year 2005 (10 ⁸ kWh)	4964.30	1915.48	3048.25	0	0	0.57
The low-cost/must run resources ratio in year 2005 (%)	(B+D+E+F)/A			38.6%		

China Electric Power Yearbook 2006

Table 17 Electricity generation of the CCPG in year 2006

Province	Total	Hydro	Thermal	Nuclear	Wind	other
	A	В	С	D	Е	F
Henan	1572.53	70.27	1502.26	0	0	0
Hubei	1312.99	750.50	562.47	0	0	0
Hunan	748.31	276.40	471.82	0	0	0
Jiangxi	435.77	88.32	347.46	0	0	0
Sichuan	1120.38	684.45	435.93	0	0	0
Chongqing	288.62	53.00	234.60	0	0	1.02
Electricity generation of the CCPG in year 2006 (10 ⁸ kWh)	5478.59	1922.96	3554.53	0	0	1.02
The low-cost/must run resources ratio in year 2006 (%)	(B+D+E+F)/A			35.1%		

China Electric Power Yearbook 2007

page 51

Table 18 Electricity generation of the CCPG in year 2007

Province	Total	Hydro	Thermal	Nuclear	Wind	other
	A	В	С	D	Е	F
Henan	1854.83	86.00	1768.83	0	0	0
Hubei	1541.33	932.81	608.48	0	0.04	0
Hunan	839.73	297.21	541.41	0	0	1.11
Jiangxi	494.25	73.23	421.02	0	0	0
Sichuan	1226.31	775.39	450.92	0	0	0
Chongqing	368.20	75.72	291.38	0	1.10	0
Electricity generation of the CCPG in year 2006 (10 ⁸ kWh)	6324.65	2240.36	4082.04	0	1.14	1.11
The low-cost/must run resources ratio in year 2006 (%)	(B+D+E+F)/A			35.5%		

China Electric Power Yearbook 2008

page 52

Project IRR with and without CER

Table 19. Project IRR with CER

Table 20. Project IRR without CER

liens Year	Total		Ciedratio	preiod							-								Opera	birm gone														100
Iron Year	1000	1	- 2		-4		- 2	. 1	-4		6	37	- 1	- 9	10	: 11	12	13	14	13	16	17	18	19	. 20	.21		23-		. 23	. 36	-27	28	29
Cash inflow	226829		0	-0	0	7447	7447	7447	7447	7447	7447	7447	7487	7447	7467	7447	7447		7447	7447	7647	7447	7447	7447	7447	7447	7447	7447	7447	7447	7647	7447	7447	7447
Electricity recount	223418			6	. 0	7447	2442	7447	7447	2447	2442	7447	7447	2442	7447	3447	7447	3447	7447	7447	2447	240	3442	7447	7447	2447	7447	3443	7447	2447	7447	7447	2442	3447
CERtermon	0					0	0		0		0	0	0	0	0	0	0	0	0	0.	0	0	0	0	. 0	0		0	0	0	0	0	0	0
Recovered fixed morts	3345																																	
Recovered curstimon final	66																																	
Circle curffirm	131363	11179	25288	23028	7970	1412	1412	1412	1412	1417	1412	1412	1413	1705	1782	1847	1936	2090	2106	2104	2106	2106	2106	2106	2106	2900	2900	2990	2900	2996	2900	2900	2900	2990
Fixed assets	66839	11279	25288	23028	7304							7-11					-0.7							111111										
Carolisting final	66				166			7																										
O&M costs	38294				0	1000	1111	1311	1111	1311	1313	1311	1011	1311	1111	1264	1284	1284	1284	1284	1284	1284	1294	1294	1284	1294	1284	1284	1294	1284	1284	1284	1264	1254
VAT and other tex	3038				0	101	101	201	101	101	101	101	101	101	101	101	101	100	101	101	101	101	101	101	101	101	.101	100	101	101	101	101	101	101
Payable income ten.	22564					0	0	6	- 0	0	0	0	61	291	370	462	350	645	720	736	720	720	720	736	720	1313	1515	1515	1515	1515	1515	1513	2515	1515
Net ands flow (1-2)	95467	-31279	-25288	-23028	-7970	8035	663.5	4035	6033	6035	6035	6015	1974	5744	5665	5600	5511	5417	3941	5341	5341	5341	5341	5341	2341	4547	4547	4547	4547	4347	4347	4547	4547	4547
Accumulated per cash flow	431272	31779	36567	30505	46065	-60930	54895	48839	47974	34788	10753	-34717	18763	.17990	.7334	.1711	1779	8191	14337	19879	55330	10165	11901	41744	46585	31117	35679	80777	64774	69375	73868	78415	£7967	87509

page 53

Sensitivity analysis

Table 21. Investment -10%

o Irrier Year	Total		Country	Loring period						1110						-0.000	64.674.1			Operata	ing period			- Company		20.00			260					a line		
o Irrae Year	. 1999	-1		2 8	3	4	7.1	2	:3	4	- 3	- 6	7	1	9	10	- 11	-12	13	14	0.15	16	-17	18	- 19	28	-21	221	25	- 34	- 25	-26	27	28	29	- 30
Cod inflore	226494	.0		0	0	. 0	7447	7447	2447	7447	7447	7447	7447	7447	7447	7447	7447	7447	(7447	7447	7447	7947	7447	2447	7447	7447	7447	7447	7447	7447	7447	7447	7447	7447	7447	10524
Electricity revenue	223418					0	740	7847	7447	7647	7447	7447	7447	7847	7447	740	7847	7447	7447	7447	7447	7447	7447	7447	7447	7847	7447	7447	7447	7447	7847	7447	7447	7447	7447	7447
12 CER invesse	0						0	0	0	0	0	0	0	0	. 0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	- 00	0	0	0	0	0	
Excevered fixed assets	3000																																			3010
Recovered carendation fluid	66																																			66
2 Cod outlies	124757	10151	227	759	20725	6640	1328	1328	1328	1351	1405	1549	1618	1691	1768	1850	1917	2009	2197	2123	2123	2123	2121	2123	2123	2129	2838	2838	2836	2838	2638	2636	2838	2838	2836	2838
Fixed seem.	60210	10151	22	259	20723	6574																														
2.2 Circulating fleed	66	(0)				66																														
O&M com	36285					0	1222	1227	1227	1227	1227	1227	1227	1227	1227	1227	1291	1201	1201	1291	1296	1201	1201	1201	1201	1201	1201	1201	1299	1291	1201	1201	1201	1201	1201	1201
VAT and other tex	3038					0	101	101	101	101	101	101	101	101	101	101	101	101	101	100	101	101	101	101	tos	101	101	101	100	101	101	101	101	101	101	100
2.5 Psyshle account tes	25159					00	. 0	.0	6	22	.77	221	296	363	440	322	615	707	905	820	820	820	829	829	820	820	1535	1535	1535	1535	1535	1535	1535	1535	3555	1535
Net cash flow (1-2)	101737	-10151	-22	759	30125	-6640	6119	6119	6119	6097	6042	5896	1929	3756	5679	3597	5530	5400	5341	5325	5325	5325	5325	5325	5325	5325	4610	4610	4610	4610	4610	4620	4610	8610	4610	7686
Accumulated net rash flow	638957	-10155	-325	910	-53636	-60776	-54156	48017	-11918	-33872	-39700	-23881	-18052	17296	-6617	-1029	4511	9949	25290	20614	25999	11764	365930	41918	47218	12561	57172	41712	66393	71003	75611	80021	94831	29441	94050	301737

Table 22. O&M Costs -10%

Irran Year	Total		Constitution	ion period															Open	tim period															
Irran Year	3.000	1		3	- 4	-1	2	3	-4	- 3	- 6	-7	- 1	9	10	- 11	:12	13	34	15	36	17	18	19	20	-21	32	- 23	24	25	26	- 27	-28	29	
Cod inflore	226829		0		0	740	7447	140	7447	7447	7447	7447	7447	7447	7447	2447	7447	7447	7447	7447	7447	7447	7447	7447	7447	7447	7447	7447	7447	:7447	7447	7847	7447	7447	100
Electricity revenue	223418			0	0	3443	7447	740	7847	7447	7447	3447	7447	7847	7647	2447	7447	3443	2447	7447	7447	7847	7447	7847	7447	7447	7847	7447	7447	7447	7447	7447	7847	3447	36
CER sevenue	0					0	0	0	0	0	0		0	0		0	00	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Recovered fixed assets	3345																																		10
Broovered carrelation famil	66																																		
Cash outline	128435	11279	25288	23028	7970	1279	1275	1275	1275	1275	1275	1350	1139	1616	1699	1766	1861	1919	2005	2005	2001	3005	2005	2005	2005	2799	2799	2799	2799	2799	2799	2799	2799	2799	27
Fixed assets	66800	11279	25288	23026	7304																														
Circulating fired	66				- 66																														
OAM seek	14791				0	1179	3178	1179	1178	1175	1179	3173	1179	1178	1179	1110	1150	1110	1150	1150	1110	1150	1120	1150	1110	1110	1150	1150	1190	1150	1110	1150	1150	1110	11
VAT and other tex	3038				0	100	101	101	101	101	101	102	101	101	301	101	101	101	191	101	101	100	101	101	200	101	101	101	101	101	101	101	101	101	- 1
Payable income tax	21601						- 4	0		10	b	76	264	142	424	517	618	708	754	754	254	754	754	754	754	1548	1149	1548	1548	1546	1146	1548	1546	1548	157
Net coult flow (1-2)	98396	-11279	31288	-29028	-7370	6179	6173	0173	6173	6173	6173	6097	3908	5831	5749	3679	5587	5488	5443	5442	5442	5442	5443	5442	3443	4640	4648	4648	4648	4649	4618	4648	4648	4648	80
Acceptated net cash flow	477247	-11279	-36567	-59595	-66963	-60793	-54629	-49445	-42275	-36103	.29930	-71811	-17934	-12094	-6345	-446	4939	10409	15851	21294	26736	\$2179	57625	43063	41336	53154	57803	62489	67097	71745	76393	81041	\$5600	96117	987

DR 6.575

page 54

Table 23. Electricity sales +10%

Irran Year	Total		Construction	o period					- 100					ri donto					Opera	mas period			14 (14)			- Carlotte				and the last				-	
Irran Year	No.	1	2	3	4	- 1	2	13	- 4		6	2	8	9	:10	- 11	12	13	14	15	.16	17	18	19	30	21	- 22	23	34	-25	26	27	28	29	- 3
1 Cosh inflow	249170	.0	0	. 0	0	8192	8197	8192	8192	. 8192	8192	8192	8192	8192	3112	8192	8192	8192	8192	8192	\$192	8192	8190	8192	8192	\$192	8192	8192	8192	\$192	8192	8192	8192	\$192	1167
Electricity environme	245739					8192	8192	8192	8192	8193	8192	8193	8192	8192	8192	8192	8192	8392	8192	8192	B192	8192	8193	8192	8192	8192	8192	8192	8192	8192	8192	K192	8192	8192	837
2 CER revenue	0					0	0	0	0	0	0	0	0	0	0	0	0		0	00	0	0	0	0	0	0	0	0	0	0	0	0	. 0		
3 Recovered fixed assets	3345																																		33
4 Recovered circulation famil	66																																		1
Cosh cueffore	197790	11279	25288	23029	2970	1434	1424	1479	1506	1545	1744	1824	1910	2000	3097	2179	2287	2101	2301	2301	2301	2301	2366	2301	2301	3096	3096	3096	1096	3096	3096	3096	3096	3006	301
I Feed auen.	66899	11229	25288	23926	7304																														
2 Carrolating field	66				66																														
D&M com	38863					1313	1313	1313	.1313	1333	1333	1313	1315	1313	1313	1287	1287	1287	1287	1267	1287	1287	1287	1287	1287	1287	1287	1287	1287	1217	1287	1287	1287	1287	127
VAT and other tax	3342				0	111	(11)	111	111	111	111	111	.111	m	10	111	111	.111	111	111	111	.111	111	101	111	111	111	111	111	111	111	111	111	111	U
Payable incorpe yas	28579				0	0	0	45	83	120	319	400	456	517	673	791	100	903	903	905	903	903	908	903	903	1690	1406	1698	1698	1600	1406	1695	1698	3698	167
Net cosh flow (1-2)	111420	-11279	25268	-23926	-7370	6768	6768	6719	6684	6647	6448	6367	6282	4191	6093	6013	1903	5691	5891	5891	5891	5891	2991	5891	5891	50946	5096	5096	3096	5096	5096	5096	5096	5096	850
4 Accountlated net cash flow	679533	-11279	-36567	- 39595	-66963	-60199	-33430	-46713	-40022	.33380	.36911	-20564	44292	8001	1996	4017	9911	11017	21203	22194	11444	39375	41166	41114	97047	67143	47729	77116	77432	82126	37474	92229	97817	102913	11142

Table 24. Electricity Tariff +10%

Iren Yest	Vest	Total	Construction presid				Operana period															_														
	128		- 1	2	3	4	1.0	2	93	4	. 9	- 6	2	8.	- 9	10	. 11	12	13	14	15	16	37	1.8	19	- 30	: 21	22	23	- 34	. 25	26	27	28	29	
Crob suffere		249170	0		. 0	. 0	8192	8192	8192	8292	8192	8192	\$192	8192	8192	8192	\$192	8192	8292	8192	8193	£192	8193	8192	8192	\$192	8192	\$192	8192	8192	8192	8192	8192	8192	\$192	110
Electricity revenue		245759			0		8192	8192	8192	8392	8192	8192	E192	8192	8192	8192	8192	3192	8193	8192	8192	8192	8192	8192	8192	8192	3192	8192	8192	8192	8192	8192	8192	8192	E192	31
CER or rouse		0					0		0	0	0	0	- 0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0	
Recovered fixed mores		5545																																		33
A Recovered carolistson for	id.	66																																		
Cash outlier		137699	31279	25281	23028	7979	1402	1422	1471	1306	150	170	1829	1909	3000	2096	2176	2286	2300	2300	2300	2300	2300	2300	2300	2300	3094	3094	3094	3094	3094	3094	3094	1094	3094	30
Fixed auets		66839	11279	25288	23028	7504																														
Carolineg find		66	- 1/1/1		16.0	66																														
O&M com		18794					1311	1311	1311	1311	1511	1311	1311	1311	1311	1311	1284	1284	1284	1284	1294	1284	1284	1284	1294	1284	1284	1284	1294	1284	1284	1284	1284	1294	1284	12
VAT and other tex		3342					101	111	111	.10	100	311	311	111	111	111	101	111	m	100	311	.111	.111	(1)	111	111	111	. 111	10	- 101	.111	111	111	111	in	- 1
Payable increase tan		28397				0	0	0	40	34	121	120	601	487	578	674	782	890	904	904	904	904	904	904	904	904	1600	1496	1695	1698	1976	1698	1895	1698	1698	16
Net costs flow (1-2)		111472	-11279	-23788	23029	.7370	6770	6770	6721	6686	6649	6450	6369	6283	6192	6096	6014	3906	5992	5892	5892	5892	5892	5892	5892	5892	3098	5098	5096	3098	3098	3098	5096	5098	5098	83
4 Accomplised net cosh fi	ov.	680339	-11279	-16567	,19101	46965	-60199	51425	-86701	-40079	.11169	.26929	-20550	-54267	8075	1979	4036	9942	11814	21727	27619	13311	19404	41796	31189	97083	82179	67277	72375	77479	82978	\$7669	92367	97865	102969	11116

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1

CDM – Executive Board

page 55

Annex 4

MONITORING INFORMATION

Please refer to B.7 for the monitoring information of the project.

_ _ _ _ _