	Математический анал	мз IIII
Конспе	ект основан на лекциях Константина	Петровича Коха

Оглавление

1	Инт	Интеграл			
	1.1	Определение интеграла	2		
	1.2	Предельный переход под знаком интеграла	5		
	1.3	Произведение мер	6		

Глава 1

Интеграл

1.1 Определение интеграла

Общий контекст: $\langle X, \mathcal{A}, \mu \rangle$ — пространство с мерой

Определение. Введем обозначение

$$\mathcal{L}^0(X) = \{ f : X \to \overline{\mathbb{R}} \mid f \text{ измерима и п.в. конечна} \}.$$

Определение. Пусть $0 \le f: X \to \overline{\mathbb{R}}$ — ступенчатая функция, то есть

$$f = \sum_{fin} \lambda_k \chi_{E_k}.$$

Причем все E_k измеримы. Интеграл такой функции определим следующим образом:

$$\int_X f \, \mathrm{d}\mu \stackrel{def}{=} \sum_k \lambda_k \mu E_k.$$

Определение. Аналогично определим интеграл по измеримому множеству:

$$\int_{E} f \stackrel{def}{=} \sum_{k} \lambda_{k} \mu E \cap E_{k}.$$

Теорема 1.1.1. (Свойства интеграла ступенчатой функции)

- Интеграл не зависит от допустимого разбиения.
- $f \leq g \Longrightarrow \int f \leq \int g$.

Определение. Пусть $0 \leq f: X \to \overline{\mathbb{R}}$ измерима. Интеграл такой функции определим так:

$$\int_X f \, \mathrm{d}\mu \stackrel{def}{=} \sup_{\substack{0 \le g \le f \\ g \text{ ctvinehy.}}} \int_X g \, \mathrm{d}\mu.$$

Определение. Аналогично определим интеграл по измеримому множеству:

$$\int_{E} f d\mu \stackrel{def}{=} \sup_{\substack{0 \le g \le f \\ g \text{ crynehy.}}} \int_{E} g d\mu.$$

Теорема 1.1.2. (Свойства интеграла измеримой функции)

- Если функция ступенчатая, то интеграл совпадает с интегралом, определенным для ступенчатых функций.
- $0 \le \int f \le +\infty$.
- $0 \le g \le f$, g ступенчатая, f измеримая, тогда $\int g \le \int f$.
- $0 \le g \le f$, f, g измеримы, тогда $\int g \le \int f$.

Определение. Пусть f — измеримая функция X, причем хотя бы один из интегралов срезок конечен. Для такой функции определим интеграл:

$$\int_X f \, \mathrm{d}\mu \stackrel{def}{=} \int_X f_+ \mathrm{d}\mu - \int_X f_- \mathrm{d}\mu.$$

Определение. Определим интеграл по измеримому множеству:

$$\int_{E} f \, \mathrm{d}\mu \stackrel{def}{=} \int_{X} f \cdot \chi_{E} \, \mathrm{d}\mu.$$

Определение. Назовем функцию *суммируемой*, если интегралы её срезок конечны.

Теорема 1.1.3. (Свойства интеграла)

- Измеримая $f \geqslant 0$ \Longrightarrow интеграл совпадает с предыдущим определением.
- f суммируема $\iff \int |f| < +\infty$.
- Интеграл монотонен по функции, то есть для измеримых f, g верно:

$$f \leq g \Longrightarrow \int_{F} f \, \mathrm{d}\mu \leq \int_{F} g \, \mathrm{d}\mu.$$

- $\int_E 1 d\mu = \mu(E), \int_E 0 d\mu = 0.$
- Пусть $\mu(E) = 0$, f измерима. Тогда

$$\int_E f = 0.$$

•
$$\int -f = -\int f$$
, $\forall c > 0$ $\int c \cdot f = c \cdot \int f$.

• Пусть
$$\exists \int_{E} f$$
, Тогда

$$\left| \int_{E} f \right| \leq \int_{E} |f|.$$

• Пусть f измерима на E, $\mu(E) < +\infty$, $\forall x \in E \ A \leq f(x) \leq B$, тогда

$$A \cdot \mu(E) \le \int_E f \, \mathrm{d}\mu \le B \cdot \mu(E).$$

Лемма 1.1.4. Пусть $A=\bigsqcup_i A_i,\,A,A_i\in\mathcal{A},\,g:X\to\overline{\mathbb{R}},\,g\geqslant 0,$ ступенчата. Тогда

$$\int_{A} g d\mu = \sum_{i} \int_{A_{i}} g d\mu.$$

Теорема 1.1.5. Пусть $A=\bigsqcup_i A_i,\,A,A_i\in\mathcal{A},\,f:X\to\overline{\mathbb{R}},\,f\geqslant 0,$ измерима на A. Тогда

$$\int_{A} f \, \mathrm{d}\mu = \sum_{i} \int_{A_{i}} f \, \mathrm{d}\mu.$$

Следствие 1.1.6. Пусть $f: X \to \overline{\mathbb{R}}, \, f \geqslant 0$, измерима. Зададим отображение:

$$\nu \colon \mathcal{A} \to \overline{\mathbb{R}}_{\geq 0}$$
$$E \mapsto \int_{E} f \, \mathrm{d}\mu$$

Тогда ν – мера.

Лемма 1.1.7. Пусть f суммируема, g измерима, причем f=g при почти всех x. Тогда $\int f = \int g$.

1.2 Предельный переход под знаком интеграла

Теорема 1.2.1. (Леви)

Пусть $f_n: X \to \overline{\mathbb{R}}$, измеримы, $\forall n \ 0 \le f_n \le f_{n+1}$ при почти всех $x \in X$. Пусть $f(x) = \lim_{n \to +\infty} f_n(x)$ при почти всех x. Тогда

$$\int_X f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu.$$

Теорема 1.2.2. Пусть $f, g \ge 0$, измеримы на E. Тогда

$$\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu.$$

Следствие 1.2.3. Пусть f, g суммируемы на E. Тогда f+g суммируема, причем

$$\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu.$$

Определение. $\mathcal{L}(X) = \{ f \mid f : X \to \overline{\mathbb{R}}, \int |f| < +\infty \}$

Лемма 1.2.4. $\mathcal{L}(X)$ – линейное пространство.

Теорема 1.2.5. Пусть $u_n: X \to \mathbb{R}, u_n \ge 0$ почти везде, u_n измеримы на E. Тогда

$$\int_{E} \left(\sum_{n=1}^{+\infty} u_n \right) d\mu = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu.$$

Следствие 1.2.6. Пусть u_n измеримы, причем $\sum_{n=1}^{+\infty} \int_E |u_n| \mathrm{d}\mu < +\infty$, тогда ряд $\sum_{n=1}^{+\infty} u_n$ сходится абсолютно почти везде на E.

Теорема 1.2.7. (Абсолютная непрерывность интеграла) Пусть f — суммируемая функция. Тогда

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall E \in \mathcal{A} : \ \mu(E) < \delta \ \left| \int_{E} f \, \mathrm{d}\mu \right| < \varepsilon.$$

Следствие 1.2.8. Пусть $e_n \in \mathcal{A}$, $\mu(e_n) \xrightarrow[n \to +\infty]{} 0$, f – суммируемая функция, тогда

$$\int_{e_n} |f| \mathrm{d}\mu \xrightarrow[n \to +\infty]{} 0.$$

1.3 Произведение мер

В этом разделе мы начинаем с того, что по двум пространствам $\langle X, \mathcal{A}, \mu \rangle$, $\langle Y, \mathcal{B}, \nu \rangle$ строим пространство $\langle X \times Y, \mathcal{A} \times \mathcal{B}, \mu \times \nu \rangle$.

Лемма 1.3.1. A, B – полукольца, тогда $A \times B$ – полукольцо.

Определение. \mathcal{A} , \mathcal{B} – полукольца, назовем тогда $\mathcal{A} \times \mathcal{B}$ полукольцом измеримых прямоугольников. Заведем отображение:

$$m_0: \mathcal{A} \times \mathcal{B} \to \overline{\mathbb{R}}$$

 $A \times B \mapsto \mu(A) \cdot \nu(B)$

Теорема 1.3.2.

- m_0 мера на полукольце $\mathcal{A} \times \mathcal{B}$.
- Если μ , ν σ -конечны, тогда m_0 тоже σ -конечна.

Определение. Мы получили $\langle X \times Y, \mathcal{A} \times \mathcal{B}, m_0 \rangle$ – пространство с мерой на полукольце. Продолжим её, пользуясь теоремой о продолжении, до σ -алгебры, которую будем обозначать . Результирующее пространство назовем *произведением пространств с мерой*, а полученную меру – *произведением мер*.

Теорема 1.3.3. Произведение мер ассоциативно.

Теорема 1.3.4. $\lambda_{m+n} = \lambda_m \times \lambda_n$.

Определение. Пусть $C \subseteq X \times Y$. Тогда *сечением* для произвольного $x \in X$ назовем множество

$$C_x \stackrel{def}{=} \{ y \in Y \mid (x, y) \in C \}.$$

Замечание. Для сечений верны формулы, связанные с операциями над множествами, подобные этой:

$$\left(\bigcup_{\alpha} C_{\alpha}\right)_{x} = \bigcup_{\alpha} (C_{\alpha})_{x}.$$