Análise de Redes Sociais - Página do Público no Facebook

Miguel Sandim e Paula Fortuna

Faculdade de Engenharia da Universidade do Porto, {miguel.sandim, paula.fortuna}@fe.up.pt

1 Introdução

Com o presente relatório pretende-se apresentar o trabalho desenvolvido sobre Análise de Redes Sociais. Este foi realizado no âmbito da unidade curricular de Extração de Conhecimento de Dados II, recorrendo ao software "Gephi" na sua versão 0.9.1 [1].

O objetivo deste trabalho é analisar uma rede social aplicando várias métricas. Desde logo é importante definir que uma rede social consiste num conjunto finito de atores e nas relações entre eles [2]. Já, por sua vez, a área de Análise de Redes Sociais foca-se nas relações estabelecidas entre os elementos da rede, em vez de na análise dos elementos propriamente ditos.

Mais em particular, neste trabalho foi escolhida para análise a página do Facebook do jornal Público e pretende-se verificar de que forma a Análise de Redes Sociais permite conhecer melhor os posts publicados na página, bem como as comunidades de utilizadores a interagirem com a mesma.

2 Representação da Rede e Avaliação

No presente relatório, optou-se pela representação de uma Rede Social como um grafo nãodirecionado G(V, A) constituído por um conjunto de nós (V) e arestas (A). Ao longo do processo de análise da rede foram tidos em conta vários conceitos teóricos (presentes nos slides da Unidade Curricular), tendo sido utilizados no trabalho os seguintes:

- Medidas a nível do ator (nó):
 - Degree num grafo não dirigido corresponde ao número de arestas do nó.
 - Betweeness medida que indica quanto é que um nó está entre outros nós da rede.
 - Closeness distância média de um nó a todos os outros.
 - Eigenvector Centrality esta métrica é baseada na ideia de que o poder e estatuto de um ator é definido recursivamente com base no estatuto e poder dos seus vizinhos.
- Medidas ao nível da rede:
 - Geodesic distance comprimento do caminho mais curto entre dois nós.
 - Eccentricity maior geodesic distance entre um nó e qualquer outro da rede.
 - Diâmetro o maior de todos os caminhos mais curtos entre todos os pares de nós na rede.
 - Raio eccentricity mínima de todos os nós da rede.
- Outros conceitos:
 - Bridge aresta que conecta dois nós, sem a qual não é possível encontrar um caminho que una os dois.
 - Gatekeepers nós que se ligam a uma bridge.
 - Community Detection Deteção de nós fortemente conectados entre si, e pouco conectados com os nós das restantes comunidades.

3 Recolha de dados

O conjunto de dados utilizado corresponde ao grafo da interação entre Utilizadores e Publicações da página do Público, recolhidos através da ferramenta "Netvizz". A recolha foi realizada no dia 9 de Maio de 2016 e inclui dados relativos às 50 últimas publicações da página, bem como de todos os comentários a estas. Esta plataforma fornece o grafo num ficheiro no formato de grafo".dgf" que a ferramenta "Gephi" permite importar.

Assim, no contexto desta rede, os nós correspondem a Utilizadores e a Publicações e as arestas a interações entre um Utilizador e uma Publicação (incluindo *likes* e comentários a esta). No caso das arestas, o peso destas corresponde ao número de interações entre o Utilizador e a Publicação em questão.

Com uma breve análise em R concluiu-se que o estudo foi realizado com nós referentes a 12393 Utilizadores diferentes e a 50 Publicações (48 partilhas de *links* e 2 partilhas de fotografias). A rede possui também 16436 arestas, com uma média de 1.33 interações por Utlizador (existem 2162 utilizadores com mais do que 1 interação) e um peso médio de 1.03 (existem 300 utilizadores com uma média de pesos das suas interações maior do que 1).

4 Análise da Rede

A análise da rede consistiu numa série de passos realizados no "Gephi", tais como Identificação de Layout, Extração de Comunidades e Extração de Métricas da Rede, que se apresentam nos próximos subcapítulos.

4.1 Identificação de Layout

Para identificação do *Layout* mais adequado à rede em estudo, foram utilizados vários algoritmos. Dada o número elevado de nós e arestas não foi encontrado de forma imediata um *layout* que permitisse ler de forma clara a rede. O melhor resultado foi obtido recorrendo ao algoritmo "Atlas Force 2".

Figura 1. Layout obtido utilizando-se o algoritmo "Atlas Force 2" – a azul encontram-se os nós de utilizadores e a vermelho os de publicações.

Tal como pode ser verificado na figura 1, dado o elevado número de nós e arestas tornase difícil identificar grupos nesta rede. Contudo, ao mesmo tempo verifica-se um padrão: para cada nó do tipo "publicação" (vermelho), existe um elevado número de utilizadores que se liga apenas a esse nó. Dado que esse número de utilizadores é tão elevado, a rede reflete sobretudo esse efeito, o que é reforçado na figura 2 ao se analisarem as comunidades extraídas (o processo de extração de comunidades será analisado numa secção posterior).

Figura 2. Layout obtido utilizando-se o algoritmo "Atlas Force 2" e Modularity para extração de comunidades. Cada cor representa uma comunidade, enquanto o cinzento representa as várias comunidades de menores dimensões.

 ${f Figura\,3.}$ Rede simplificada, sem nós com degree igual a um.

Tal como pode ser visto na figura 2, as comunidades obtidas resumem-se em grande parte a utilizadores que responderam a uma e só uma publicação. Neste caso verifica-se um grande número de arestas que funcionam como *bridges* e cada publicação como *gatekeeper*.

Contudo, seria também interessante explorar se, para além deste efeito principal, existem padrões na rede para os utilizadores que responderam a várias publicações. Neste sentido, foram eliminados da rede os nós com *degree* de um. Para isso foi aplicado um filtro *Degree Range* em que o limite inferior é dois. O resultado desta operação é apresentado na figura 3.

Com o novo número de nós encontrado, uma vez que a rede continua bastante densa, o algoritmo "Noverlap" permitiu encontrar o *layout* mais percetível. Apresenta-se na figura 4 o *layout*, com análise do *degree* de cada um dos nós.

Figura 4. Rede em que o gradiente de cor dos nós corresponde a diferentes degrees. Ao vermelho corresponde um maior degree, ao azul intermédio e ao amarelo menor.

Como é possível verificar na figura 4 a maior parte dos utilizadores tem um degree baixo (amarelo). Por sua vez, a maior parte das publicações apresenta um degree elevado (vermelho). Existe ainda uma terceira zona da rede onde tanto utilizadores como publicações têm um degree intermédio (azul).

4.2 Extração de Comunidades

Para além do que foi apresentado até aqui, procurou-se também extrair comunidades, recorrendo a uma medida "Modularity" disponibilizada no "Gephi" (Método de *Louvain*). Esta indica quão bem uma rede se decompõe em comunidades. Um valor mais elevado nesta métrica indica uma estrutura interna mais sofisticada. O resultado obtido apresenta-se na figura 5.

Figura 5. Rede em que cada cor dos nós corresponde a uma comunidade e em que o tamanho dos nós é proporcional à medida de *betweeness*.

Depois disso para melhor se compreenderem as comunidades presentes procedeu-se a nova organização de *layout* e analisou-se o conteúdo das publicações com maior *betweeness*, tendo-se obtido a rede presente na imagem 6.

 ${\bf Figura 6.} \ {\bf Comunidades} \ {\bf presentes} \ {\bf na} \ {\bf rede}, \ {\bf bem} \ {\bf como} \ {\bf o} \ {\bf tema} \ {\bf da} \ {\bf publicação} \ {\bf com} \ {\bf maior} \ {\it betweeness} \ {\bf nessa} \ {\bf comunidade}.$

Na figura 6 é apresentada o *layout* da rede quando se utiliza o algoritmo "Force Atlas 2". Foi escolhido este algoritmo porque é o que facilita a compreensão das várias comunidades encontradas.

Relativamente aos resultados obtidos, pode concluir-se que existe uma comunidade que se distingue das restantes – esta está representada a roxo na figura 6 . É de notar que todas as publicações nesta comunidade se referem a futebol (e.g. Benfica, Cristiano Ronaldo). Por sua vez, nas restantes comunidades nenhum dos algoritmos de *layouts* permitiu separar claramente as comunidades entre si. Assim, analisou-se o assunto da publicação com maior *betweeness* em cada comunidade e gerarou-se, para cada um deles, uma *label* (apresentadas na figura 6). Podemos concluir que as restantes comunidades podem ser aglomeradas em Internacional (e.g. Costa Rica, Barack Obama).

4.3 Outras Métricas

Tabela 1. Estatísticas sobre a rede.

Statistic Group	Value
Degree	
- Average Degree	5.61
Betweeness	
- Diameter	5
- Radius	3
- Avg Path Length	3.28
Modularity	
- Modularity	0.38
- Number of communities	10
Eigenvector Centrality	
- Sum Change	0.02

Ao longo do procedimento seguido no "Gephi" foram sendo obtidas diferentes métricas em diversos relatórios. Estas estão sumariadas na tabela 1.

5 Conclusão

Com o presente trabalho pretendia-se analisar uma rede social e para isso foram recolhidos dados sobre as publicações na página do Facebook do jornal Público.

Dado o número elevado de publicações e comentários às mesmas, a rede obtida apresentava uma grande densidade de nós e arestas, dificultando a sua análise visual, que é o ponto forte do Gephi. Desde logo, numa primeira análise salientava-se que cada publicação tinha uma comunidade de utilizadores que só respondera a essa publicação. Para tentar aprofundar outros efeitos que pudessem estar a ocorrer procurou-se simplificar a rede, retirando os nós ligados apenas a uma publicação. Depois de se proceder a este processamento foi possível concluir que existe uma comunidade de utilizadores ligada a publicações sobre fute-bol e também outra comunidade de utilizadores ligada a publicações de temas mais variados e internacionais. Contudo, ao mesmo tempo é de salientar que estas comunidades não são mutuamente exclusivas.

Para além disso, este trabalho permitiu ainda concluir que, através de extração de comunidades, é possível chegar a um resultado semelhante a técnicas de *clustering*. Contudo, salienta-se também que esta técnica não necessita de conhecer as características dos nós para o fazer, o que hoje em dia é vantajoso na análise de redes sociais, dado que as APIs de várias redes sociais (e.g. Facebook, Twitter) têm vindo a restringir cada vez mais as informações disponibilizadas. Por exemplo, no caso dos utilizadores, o Facebook fornece apenas o ID e o seu nome.

Em jeito de conclusão, foram cumpridos os objetivos do presente trabalho, uma vez que foi analisada visualmente uma rede social. Através desta análise foi possível chegar a várias informações e conclusões sobre a rede.

Referências

- 1. Mathieu Bastian, Sebastien Heymann e Mathieu Jacomy. Gephi: An Open Source Software for Exploring and Manipulating Networks. 2009. URL: http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.
- Stanley Wasserman e Katherine Faust. Social network analysis: Methods and applications. Vol. 8. Cambridge university press, 1994.