Introduction to Computer Graphics

Hierarchical transformations Scene graphs

Computer Graphics Pipeline

Scene contains list of objects

- Iterate over objects to render images
- Each object with its own transformation

3D Transformations

Expressed as 4x4 matrices

- Affine transformation in homogeneous coordinates
- 4th column: translation
- 4th row: perspective projection

Transformation can be combined

Matrix multiplication (from left)

Transform $\mathbf{p} = (x \ y \ z)^{\mathrm{T}}$ by \mathbf{M}

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \mathbf{M} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3D Transformations

Translation

$$\mathbf{T} = \begin{pmatrix} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_{y} = \begin{pmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{R}_{z} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotations around x, y, z axis

Scaling $\mathbf{S} = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$x+6$$
Transform $\mathbf{p} = (x \ y \ z)^{\mathrm{T}}$ by \mathbf{M}

Chapter 16.2.2

Euler Rotation

General rotation built from 3 subsequent rotations

- Rotation axes are orthogonal (XYZ)
- Euler angles describe the three rotation angles

12 possible rotation sequences

Often used definition of Euler angles: z-x-z

- Passive representation
 - 1. Rotation with ϕ around z
 - 2. Rotation with θ around ξ (current x axis)
 - 3. Rotation with ψ around ζ' (current z axis)
- As rotation matrix (4x4)

$$\mathbf{R} = \mathbf{R}_{z,\Psi} \mathbf{R}_{x,\theta} \mathbf{R}_{z,\phi}$$

Cannot distinguish ϕ and ψ for small rotations

z-x-z Euler rotation

Euler Rotation (cont.)

In animation & engineering (aircraft and satellite control)

• x-y-z convention (Tait-Bryan angles)

Active representation

- Rotation around 3 stationary axes
- Around x: roll
- Around y: pitch/altitude
- Around z: yaw/heading

Euler Rotation Problems (cont.)

Gimbal lock

- One rotation axis falls onto another
- Loss of one degree of freedom

z rotation θ_3 , identical to x rotation $-\theta_3$

→ Solution: Quaternions

Euler Rotation Problems (cont.)

Euler angles are ambiguous

Rotation Quaternions

Compact representation of rotations

Based on complex numbers q = s + xi + yj + zk $s, x, y, z \in \mathbb{R}$

$$q = s + xi + yj + zk$$
 $s, x, y, z \in \mathbb{R}$

Not a vector with 4 components!

Quaternion **q** for rotation around axis \boldsymbol{v} by angle θ

$$q = \left[\cos\frac{1}{2}\theta, \sin\frac{1}{2}\theta v\right]$$
 $\theta \in [0, \pi]$

Rotate point **p** with **q**

$$p' = qpq^{-1}$$

Normalized rotation axis $(x \ y \ z)$

Used for interpolation between points on a sphere

Spherical linear interpolation (SLERP)

Transforming the Normal Vector

Cannot use M to transform normals in general case due to shearing, non-uniform scaling, ...

$$\mathbf{p} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \text{ is on plane } E: \ ax + by + cz + d = 0$$

$$E: \ (a \quad b \quad c \quad d) \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = 0$$
Normal $\mathbf{n} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$

$$\mathbf{n}^{\mathrm{T}}$$

Normal
$$\mathbf{n} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

$$E: (a \quad b \quad c \quad d) \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = 0$$

With $\boldsymbol{n}^{\mathrm{T}} \cdot \boldsymbol{p} = 0$ and $\boldsymbol{p}' = \mathbf{M} \cdot \boldsymbol{p}$ follows

$$\boldsymbol{n}^{\mathrm{T}}(\mathbf{M}^{-1} \cdot \mathbf{M})\boldsymbol{p} = 0$$

 $(\boldsymbol{n}^{\mathrm{T}} \cdot \mathbf{M}^{-1}) \cdot (\mathbf{M} \cdot \boldsymbol{p}) = \boldsymbol{n}'^{\mathrm{T}} \cdot \boldsymbol{p}' = 0$

Also known as **Normal Matrix (3x3)**

$$n' = \left(\mathbf{M}^{-1}\right)^{\mathrm{T}} \cdot n$$

Order of Transformation Matters

How is a point transformed?

• Read transformations from **right** to **left**

Rotate -60° y

Example: Car

Each object with own transformation M

- Transforms everything from **local** to **global** coordinates
- How can we reuse parts? Spin the wheels?

Example: Car Components

Each object with own transformation M

- Transforms everything from **local** to **global** coordinates
- Editing requires updating many transformations (translating the car requires 3 updates, rotation even more)

Object Grouping

Hierarchical Transformations

Alternative graph 2

Need to visit all transformations

Depth first traversal

Need to visit all transformations

Depth first traversal

Need to visit all transformations

Depth first traversal

Need to visit all transformations

Depth first traversal

Need to visit all transformations

Depth first traversal

Accumulate transformations when going down Undo transformation on way up

20

Need to visit all transformations

• Depth first traversal

Generalization

Adding more and more objects is quite cumbersome

• Needs more than just hierarchical transformations

Generalization (cont.)

Scene | Car | Car

More general scene description?

What if the cars are identical?

• Is it possible to save some work?

Scene Graph

Graph structure representing a scene

Nodes connected by edges

Simplest form: **tree**

- One root node (scene)
- Each node has one parent

Transforms associated with edges or nodes

- Applies to geometry below
- Still hierarchical transformations!

Materials, lights, cameras can all be part of graph

Scene graph in 3ds max

Scene graph in blender

Scene Graph with Instances

Scene graph becomes a directed acyclic graph (DAG)

- No loops allowed!
- Groups cannot be part of themselves

Traversal more complicated

- Need to follow **all paths** from root node to leaves
- Transformations accumulated as before

Object Instances

Instancing useful for identical objects

- Creates "clones" of an object
- Each one has own transformation
- Editing the original changes all others

Change wheel

Summary

- Scene Graphs -

Scene objects can be organized in a (hierarchical) scene graph

- A scene graph is a directed acyclic graph (DAG)
- Defines dependencies and parent-child relationships

Most basic form contains objects + transformations

• Possibility to store camera, lights, materials, ...

Graph traversal possible using a transformation stack

Coming up next

Real time graphics and interaction

- Modern graphics hardware
- Rendering, shading
- Data structures for large scenes

