Umordnung von Reihen, Cauchy-Produkt

Def Sei $\pi \colon \mathbb{N} \to \mathbb{N}$ eine bijektive Abbildung. Die Reihe $\sum_{k=1}^{\infty} a_{\pi(k)}$ heißt Umordnung der Reihe $\sum_{k=1}^{\infty} a_k$.

Satz Eine Reihe konvergiert absolut genau dann, wenn alle Umordnungen dieser Reihe gegen die gleiche Summe konvergieren.

Riemannscher Umordnungssatz Falls die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert, jedoch nicht absolut, existiert für jedes $c \in \overline{\mathbb{R}}$ eine Umordnung mit $\sum_{k=1}^{\infty} a_{\pi(k)} = c$.

Satz (Cauchy-Produkt) Es seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei absolut konvergente Reihen. Wir definieren

$$c_n := \sum_{k=0}^n a_k b_{n-k}.$$

Dann ist die Reihe $\sum_{n=0}^{\infty} c_n$ absolut konvergent und es gilt:

$$\left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$