MLL 100

Introduction to Materials Science and Engineering

TWF 10:00-11:00

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)

Dr. Divya Nayar (<u>divya.nayar@mse.iitd.ac.in</u>)

Lecture 1: Introduction

Course Policy

- Evaluation scheme (Grading)
- Attendance Policy

Suggested Readings

Introductory lecture

COURSE POLICY

Evaluation scheme

Laboratory session (Demonstration/Take-home assignment Total experiments: 8)	25%
Quiz (Moodle Total: 4)	25%
Minor Exam (Moodle)	25%
Major Exam	25%

Laboratory session (Demonstration/Take-home assignment	25%
Total experiments: 8)	

- Total lab experiments: 8
- Each take-home lab experiment will be uploaded on Moodle on Friday at 5:00 p.m. and will be due by 5:00 p.m. on Friday the week after.
- NO LATE SUBMISSIONS WILL BE ENTERTAINED. Zero marks will be given for late submissions.
- All the take home assignments and lab sheets should be submitted in Moodle. Clear instructions will be given. If you violate instructions, marks will be deducted accordingly.
- Any query related to grading of lab experiments and take home assignments should be asked to the corresponding TAs.
- Any kind of cheating or unfair means during the exams (Quiz, minor, major) may lead to strong disciplinary action which may result **FAILING** in the entire course.

Quiz (Moodle	25%
Total: 4)	

- On Moodle, with minimum 1 day notice.
- Each quiz will be of 20 minutes duration, held during regular class slots and multiple choice questions/one word answers only. No long answer type questions will be asked.
- Negative marking will be implemented: -0.25 for every incorrect answer.
- Once you see a question, you will *NOT be allowed to go back and attempt* the question again, or correct your answers.
- No make up quizzes will be given. All quizzes will contribute to your 25% score.

Minor Exam (Moodle)	25%
Major Exam (Moodle)	25%

- Minor and Major examinations will be conducted on the specified dates as per the institute calendar.
- Both these exams will also be conducted *via Moodle*. The questions will be of mostly of *Numerical Type*. However, it will be notified, if there is any change in plan.
- No negative marking will be implemented. There will be no answer options given either.
- You will be allowed to go back and attempt the question again, or correct your answers.
- No make up for Minor or Major exams will be taken. Such requests will not be considered.

Attendance Policy

No attendance policy

BUT

Recommended studying from the suggested textbooks!

Reference Textbooks

- Materials Science and Engineering: A First Course; V. Raghavan
- ☐ Materials Science and Engineering: An Introduction by W.D. Callister, Jr., 7th edition, John Wiley and Sons.

- Virtual Material Science supplement https://wileyassets.s3.amazonaws.com/VMSE/index.html
- Lecture slides (pdf): Moodle

Why should I *enrol* myself for the course 'Materials Science and Engineering'?

Why should I *learn* Materials Science and Engineering?

Bicycle frames

Fun watch

Evolution of jet engine turbine blades

Screen Printing Sheet Ceramic Ceramic Tape Casting Cutting Powder Slurry Binder Burnout Lamination Stacking & Sintering Termination Shipping Characterization Firing

Cleanroom

Semiconductor industry

Microscope

Which type of cup will you go for to enjoy your sip of tea?

Steel

Ceramic

Polymer

Cardboard

https://fast-poll.com/poll/1d2fa40c

https://fast-poll.com/poll/results/1d2fa40c

Which type of cup will you go for to enjoy your sip of tea?

Steel

Polymer

Cardboard

Metallic bonding

Van der waals' bonding

Does every material with metallic bonding exhibit similar properties?

Structure

Structure of materials

What do you mean by 'Structure'?

Quantitative description of arrangement of internal constituents in a material at different length scales

Micro-structure (μm)

Macro-structure (> cm)

Atomic structure (pm)

Crystal structure (Å)

Can a single material exhibit different properties?

----- YES!

By carrying out different processing.

Structure of materials across different length scales to assess their **performance** and to control materials **properties** through **processing**.

What are the factors which allow us to study crystal structure?

Symmetricity

Periodicity

Brick patterns in wall

Honeycomb

- Inversion
- Rotation
- Mirror
- Translation
- Glide

Symmetry

Rotational

$$n - fold = \frac{360^{\circ}}{n}$$

$$1 - fold = \frac{360^{\circ}}{1}$$

$$2 - fold = \frac{360^{\circ}}{2}$$

$$1 - fold = \frac{360^{\circ}}{1} \qquad \qquad 2 - fold = \frac{360^{\circ}}{2} \qquad \qquad 3 - fold = \frac{360^{\circ}}{3} \qquad \qquad 4 - fold = \frac{360^{\circ}}{4}$$

3-fold

$$4 - fold = \frac{360^{\circ}}{4}$$

$$6 - fold = \frac{360^{\circ}}{6}$$

6-fold

1-fold

2-fold

4-fold

Why no mention of 5-fold rotational symmetry?

