RANDOM FOREST AND NEURAL NETWORK COMPARISON — MUSHROOM CLASSIFICATION

Progress Report

Caroline Smith

Computer Science Senior

Seminar

INTRODUCTION/ LITERATURE REVIEW

- Mushrooms can serve a wide range of purposes — anti-inflammatory, nutritional, etc.
- Different factors of varying importance help determine whether a mushroom is poisonous or edible — important to determine whether they can be used for the above-mentioned purposes in medicine and food
- The data set used is neither large nor complex, so this project was suitable for a beginner machine learning project
- In similar studies, Random Forest and other algorithms were more commonly used than Neural Network algorithms, which contributed to my decision on which two algorithms to implement

Language/ Libraries

- Python 3.10
- PyCharm IDE
- Pandas
- Scikit-Learn
- Random Forest Model Artificial Neural Network Model
- ReLU (Rectified Linear Unit) as activation for NN
- Adam –
 optimization
 algorithm

Evaluation

Metrics

- F1 Score average of precision and recall
- Precision true positives to false positives
- Recall true positives to false negatives
- Accuracy correct predictions to total predictions
- Confusion Matrix true positives, true negatives, false positives, false negatives

Dataset

- Source Kaggle
- 8124 rows
- 22 mushroom characteristics to help with determination
- First column of Y-axis determination of edible vs. poisonous — this is the column we are predicting on
- "Unknown" is placed in "Poisonous" category
- "p" (poisonous) or "e" (edible) edible is represented by 0, poisonous is represented by 1
- Distribution 52% edible, 48% poisonous relatively even distribution

4	Α	В	С	D	Е		G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U
1	class	cap-shape	cap-surface	cap-color	bruises	odor	gill-attachment gill	l-spacing gi	ill-size	gill-color	stalk-shape	stalk-root	stalk-surface-above-ring	stalk-surface-below-ring	stalk-color-above-ring	stalk-color-below-ring	veil-type	veil-color	ring-number	ring-type	spore-print-color
2	p l	x	s	n	t	р	f c	n		k	е	е	s	s	w	w	р	w	0	р	k :
3	e	х	S	у	t	а	f c	b	•	k	е	С	S	s	w	w	р	w	0	р	n
4	е	b	S	w	t	I	f c	b	•	n	е	С	S	s	w	w	р	w	0	р	n
5	p :	х	у	w	t	р	f c	n		n	е	е	S	s	w	w	р	w	0	р	k :
6	e :	х	s	g	f	n	f w	b	•	k	t	е	S	s	w	w	р	w	0	е	n i
7	e	х	у	у	t	а	f c	b	•	n	е	С	S	s	w	w	р	w	0	р	k
8	е	b	S	w	t	а	f c	b		g	е	С	S	s	w	w	р	w	0	р	k
9	е	b	у	w	t	I	f c	b		n	е	С	S	s	w	w	р	w	0	р	n :
10	р	х	у	w	t	р	f c	n		р	е	е	s	S	w	w	р	w	o	р	k
11	е	b	S	У	t	а	f c	b		g	е	С	S	S	w	w	р	w	o	р	k
12	е	х	у	У	t	I	f c	b		g	е	С	s	S	w	w	р	w	0	р	n
13	е	х	у	У	t	а	f c	b		n	е	С	S	S	w	w	р	w	0	р	k :
14	е	b	s	У	t	а	f c	b		w	е	С	S	s	w	w	р	w	0	р	n :
15	p	х	у	w	t	р	f c	n		k	е	е	s	S	w	w	р	w	0	p	n
16	e	x	f	n	f	n	f w	b	'	n	t	е	s	f	w	w	p	w	0	е	k
17	е	s	f	g	f	n	f c	n		k	е	е	s	S	w	w	р	w	0	р	n
18	е	f	f	w	f	n	f w	b	•	k	t	е	s	S	w	w	р	w	0	е	n :
19	p :	x	s	n	t	р	f c	n		n	е	е	s	s	w	w	р	w	0	р	k
20	p	x	у	w	t	р	f c	n		n	е	е	s	s	w	w	р	w	0	р	n :
21	p	x	s	n	t	р	f c	n		k	е	е	s	s	w	w	р	w	0	р	n :
22	е	b	s	у	t	а	f c	b	'	k	е	С	s	S	w	w	р	w	0	р	n :
23	р	х	У	n	t	р	f c	n		n	е	е	s	s	w	w	р	w	0	р	n
24	е	b	у	у	t	I	f c	b		k	е	С	S	s	w	w	р	w	0	р	n
25	е	b	у	w	t	а	f c	b		w	е	С	S	s	w	w	р	w	0	р	n
26	е	b	s	w	t	I	f c	b		g	е	С	s	s	w	w	р	w	0	р	k
27	р	f	s	w	t	р	f c	n		n	е	е	s	s	w	w	р	w	0	р	n
28	e	x	у	У	t	а	f c	b		n	е	С	s	s	w	w	р	w	0	р	n
29	е	x	У	w	t	I	f c	b		w	е	С	s	s	w	w	р	w	0	р	n
30	е	f	f	n	f	n	f c	n		k	е	е	s	s	w	w	р	w	0	р	k
31	е	х	s	у	t	а	f w	n		n	t	b	s	s	w	w	р	w	0	р	n

RANDOM FOREST ALGORITHM

- Supervised learning using decision trees
- Bagging method combination of multiple learning models
- All decision trees are merged to create one large, comprehensive decision tree that increases accuracy
- More straightforward/simple process than Neural Network algorithm

NEURAL NETWORK ALGORITHM

- Large collection of units (neuronodes)
 connected in a pattern to allow
 communication between nodes
- Processing elements → Other processing elements
- Arranged in a layer or vector
- Input values are weight-adjusted to produce single input values to each neuronode
- Activation function used ReLU (Rectified Linear Unit)
- Adam Solver Optimization Algorithm

- Optimization Algorithm and Activation Function taken in as parameters for MLP Classifier from SKLearn
- 3 layers, sizes 8, 10, 16 used for implementation improved performance from original layers of 8, 8, 8

- Total score 1.0
- F1 Score 1.00
- Precision − 1.00
- Recall 1.00
- Accuracy 1.00
- Weighted/Macro Average –
 1.00
- Confusion Matrix &
 Predictions Demo

- Total score 1.0
- F1 Score 1.00
- Precision − 1.00
- Recall 1.00
- Accuracy 1.00
- Weighted/Macro Average –
 1.00
- Confusion Matrix &
 Predictions Demo

- Random Forest performed better before changes made to Neural Network
- Neural Network had a small number of false positives originally
 - improved when layer sizes were changed
- According to evaluation metrics, both algorithms performed the same after changes were made

- According to my research, if the data set had been smaller, Random Forest would have performed better — if the data set had been larger, Neural Network would have performed better
 - Good project to gain experience with ML

 not overly complex, training time
 minimal

...DEMO...

- 4 reasons why deep learning and neural networks aren't always the right choice. Built In. (n.d.). Retrieved October 19, 2022, from https://builtin.com/data-science/disadvantages-neural-networks
- Al-Masri, A. (2019, January 29). How does back-propagation in Artificial Neural Networks Work? Medium. Retrieved October 19, 2022, from https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7
- Biau, G., & Scornet, E. (2016, April 19). A Random Forest Guided Tour Test. SpringerLink. Retrieved September 11, 2022, from https://link.springer.com/article/10.1007/s11749-016-0481-7
- Diagram of multivariate random forest algorithm. researchgate. (n.d.). Retrieved September 12, 2022, from https://www.researchgate.net/figure/Diagram-of-multivariate-random-forest-algorithm_fig1_340063319
- Do, T. (2022, February 8). Types of neural network algorithms in machine learning (+ real-world examples). Omdena. Retrieved September 11, 2022, from https://omdena.com/blog/types-of-neural-network-algorithms-in-machine-learning/
- Google. (n.d.). Python machine learning. Google Books. Retrieved September 11, 2022, from
 https://books.google.com/books?hl=en&lr=&id=GOVOCwAAQBAJ&oi=fnd&pg=PP1&dq=python%2Bin%2Bmachine%2Blearning&ots=NddyGcXOXJ&sig=D2pqliKSTwzDCWi67y7d8XX-alE#v=onepage&q=python%20in%20machine%20learning&f=false
- Korstanje, J. (2021, August 31). The F1 score. Medium. Retrieved October 19, 2022, from https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
- Machine learning random forest algorithm javatpoint. www.javatpoint.com. (n.d.). Retrieved October 19, 2022, from https://www.javatpoint.com/machine-learning-random-forest-algorithm
- Mushroom Classification. Kaggle. (2016, December 1). Retrieved September 11, 2022, from https://www.kaggle.com/datasets/uciml/mushroom-classification/code?resource=download
- Pankajray. (2020, June 4). Artificial Neural Network (ANN). Medium. Retrieved October 19, 2022, from https://medium.com/ai-knowledge/artificial-neural-network-ann-ed6fa5b9c1b0
- Peering into the black box of artificial intelligence: Evaluation metrics of machine learning methods: American Journal of roentgenology: Vol. 212, no. 1 (AJR). American Journal of Roentgenology. (n.d.). Retrieved September 11, 2022, from https://www.ajronline.org/doi/full/10.2214/AJR.18.20224
- Simplilearn. (2022, September 14). *Understanding the machine learning process: Key steps*. Simplilearn.com. Retrieved October 19, 2022, from https://www.simplilearn.com/what-is-machine-learning-process-article
- Supervised learning algorithms. Section. (n.d.). Retrieved October 19, 2022, from https://www.section.io/engineering-education/supervised-learning-algorithms/
- Suresh, A. (2021, June 22). What is a confusion matrix? Medium. Retrieved October 19, 2022, from https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5
- Tank, K. (2020, September 30). Mushroom classification using different classifiers. Medium. Retrieved September 14, 2022, from https://medium.com/analytics-vidhya/mushroom-classification-using-different-classifiers-aa338c1cd0ff
- Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Xplore. (n.d.). Retrieved September 11, 2022, from https://ieeexplore.ieee.org/abstract/document/1176129
- Underground networking: The amazing connections beneath your feet. National Forest Foundation. (n.d.). Retrieved October 19, 2022, from https://www.nationalforests.org/blog/underground-mycorrhizal-network
- Verma, U. (2019, November 22). Data Cleaning and preprocessing. Medium. Retrieved October 19, 2022, from https://medium.com/analytics-vidhya/data-cleaning-and-preprocessing-a4b751f4066f
- What are the disadvantages of Random Forest? Rebellion Research. (2022, April 7). Retrieved October 19, 2022, from https://www.rebellionresearch.com/what-are-the-disadvantages-of-random-forest