IMPORT LIBRARIES

DATA IMPORTING

:	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30
									••
1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.28
1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.18
1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.70
1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.77
1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.40
1030	rows × 9	columns							

CORRELATING HIGHLY DEPENDENT FEATURES

ANALYSING LABEL

In [5]: ► data.hist('Strength')
 pyp.show()

DISTRIBUTION OF LABEL

RELATION OF DATA POINTS WITH NORMAL DISTRIBUTION

```
In [7]:  pyp.figure(figsize=(14,4))
    pyp.subplot(121)
    stats.probplot(data['Strength'],dist='norm',plot=pyp)
    pyp.title('Strength QQ Plot')
    pyp.show()
```


ANALYSING ON DEPENDENT FEATURES


```
In [11]: N pyp.figure(figsize=(16,9))
    pyp.subplot(121)
    sns.distplot(data['Superplasticizer'])
    pyp.title('Superplasticizer Probability Density Function')

    pyp.subplot(122)
    stats.probplot(data['Superplasticizer'],dist='norm',plot=pyp)
    pyp.title('Superplasticizer QQ Plot')

    pyp.show()
```


In [12]:	data									
Out[12]:		Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Strength
	0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
	1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
	2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
	3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
	4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30
	1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.28
	1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.18
	1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.70
	1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.77
	1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.40
	1020	rows × 9	oolumno							
	10301	10W5 ^ 9 I	COIUITIIIS	_	_				_	—)
- 5407 N										
			ue_count	s()						
Out[13]:	28 3	425 134								
	7	126								
	56	91								
	14	62								
	90	54								
	100 180	52 26								
	91	22								
	365	14								
	270	13								
	360	6								
	120	3								
	1 Name:	2 Δσε d:	type: in	+64						
	wanic.	Age, u	сурс. тп							
In [14]:	hold	= data[data['Ag	e']>9	9]['Ag	e'].index				
In [15]:	len(h	old)								

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Cement	1030 non-null	float64
1	Blast Furnace Slag	1030 non-null	float64
2	Fly Ash	1030 non-null	float64
3	Water	1030 non-null	float64
4	Superplasticizer	1030 non-null	float64
5	Coarse Aggregate	1030 non-null	float64
6	Fine Aggregate	1030 non-null	float64
7	Age	1030 non-null	int64
8	Strength	1030 non-null	float64
		- / - \	

dtypes: float64(8), int64(1)

memory usage: 72.5 KB

In [18]: ▶ data

0	ut	[18]	:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	27	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	36	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	36	44.30
1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.28
1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.18
1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.70
1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.77
1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.40

1030 rows × 9 columns

4

```
In [19]:

    data.Age.value counts()

    Out[19]: 28
                      425
                      134
               3
               7
                      126
               56
                       91
               14
                       62
               90
                       54
               10
                       52
               18
                       26
               91
                       22
               36
                       20
               27
                       13
               12
                        3
                        2
               1
               Name: Age, dtype: int64
           M data[data['Age']<=10]</pre>
In [20]:
    Out[20]:
                                Blast
                                       Fly
                                                                     Coarse
                                                                                  Fine
                     Cement Furnace
                                           Water Superplasticizer
                                                                                        Age Strength
                                      Ash
                                                                  Aggregate Aggregate
                                Slag
                 22
                       139.6
                                209.4
                                       0.0
                                            192.0
                                                              0.0
                                                                      1047.0
                                                                                  806.9
                                                                                          3
                                                                                                 8.06
                 29
                       475.0
                                  0.0
                                       0.0
                                            228.0
                                                              0.0
                                                                       932.0
                                                                                  594.0
                                                                                          7
                                                                                                38.60
                 45
                       427.5
                                 47.5
                                            228.0
                                                              0.0
                                                                       932.0
                                                                                  594.0
                                                                                          7
                                                                                                35.08
                                       0.0
                 46
                       349.0
                                  0.0
                                       0.0
                                            192.0
                                                              0.0
                                                                      1047.0
                                                                                  806.9
                                                                                          3
                                                                                                15.05
                 48
                                237.5
                                                                                  594.0
                       237.5
                                       0.0
                                            228.0
                                                              0.0
                                                                       932.0
                                                                                          7
                                                                                                26.26
                810
                       310.0
                                  0.0
                                       0.0
                                            192.0
                                                              0.0
                                                                       970.0
                                                                                  850.0
                                                                                          7
                                                                                                14.99
                815
                       525.0
                                  0.0
                                       0.0
                                            189.0
                                                              0.0
                                                                                  613.0
                                                                                                33.80
                                                                      1125.0
                                                                                          3
                816
                       525.0
                                  0.0
                                       0.0
                                            189.0
                                                              0.0
                                                                      1125.0
                                                                                 613.0
                                                                                                42.42
                                                                                          7
                826
                       480.0
                                  0.0
                                       0.0
                                            192.0
                                                              0.0
                                                                       936.0
                                                                                  721.0
                                                                                          3
                                                                                                24.39
                                           146.0
                                                              0.0
                                                                                  896.0
                827
                       522.0
                                  0.0
                                       0.0
                                                                       896.0
                                                                                          7
                                                                                                50.51
               314 rows × 9 columns
            ▶ len(data)
In [21]:
    Out[21]: 1030

    data[data['Age']<=10]['Superplasticizer'].unique()
</pre>
In [22]:
    Out[22]: array([ 0. , 10.1, 8.6, 16.5, 18.6, 23.4, 8.9, 32.2, 12.1, 28.2, 14.3,
                       11.4, 11.6, 10.3, 15.9, 11.2, 11.1, 22., 9.5, 4.5, 4.6, 7.5,
                               5.7, 9.9, 6.9, 6.7, 6.1, 7., 5.5, 8.7, 10.4,
                        6.4, 7.6, 8.2, 10.8, 9.4, 11.8, 12.4, 12.8, 14.2, 12., 10.2,
```

11.7, 11.9, 9.6, 11.3, 8.1, 3.6, 4.1, 6.5, 7.9, 9.7, 5.3,

13.9, 3.9, 8.5, 1.7, 10.9])

```
In [23]:
    Out[23]: (-0.0332, 10.733]
                                      793
               (10.733, 21.467]
                                      215
               (21.467, 32.2]
                                       22
               Name: Superplasticizer, dtype: int64
              data.loc[data['Age'] <= 10, 'Age'] = data[data['Age'] <= 10]['Age'] + 10</pre>
In [24]:
In [25]:
           ▶ | data['Age'].value_counts()
    Out[25]: 28
                     425
               13
                     134
              17
                     126
               56
                      91
              14
                      62
               90
                      54
               20
                      52
              18
                       26
               91
                       22
               36
                       20
              27
                      13
              12
                       3
               11
                        2
              Name: Age, dtype: int64
In [26]:
              data
    Out[26]:
                                Blast
                                        Fly
                                                                     Coarse
                                                                                  Fine
                     Cement Furnace
                                            Water Superplasticizer
                                                                                       Age Strength
                                                                  Aggregate Aggregate
                                       Ash
                                 Slag
                  0
                       540.0
                                  0.0
                                        0.0
                                            162.0
                                                              2.5
                                                                     1040.0
                                                                                 676.0
                                                                                        28
                                                                                               79.99
                  1
                       540.0
                                                                     1055.0
                                  0.0
                                        0.0
                                            162.0
                                                              2.5
                                                                                 676.0
                                                                                        28
                                                                                               61.89
                  2
                                                                                        27
                       332.5
                                142.5
                                        0.0
                                            228.0
                                                              0.0
                                                                      932.0
                                                                                 594.0
                                                                                               40.27
                  3
                                142.5
                                                                                        36
                                                                                               41.05
                       332.5
                                        0.0
                                            228.0
                                                              0.0
                                                                      932.0
                                                                                 594.0
                  4
                       198.6
                                132.4
                                        0.0
                                            192.0
                                                              0.0
                                                                      978.4
                                                                                 825.5
                                                                                        36
                                                                                               44.30
                                        ...
                                                              ...
                                                                                   ...
                  ...
                                  ...
                                                                                        ...
                       276.4
                                                                      870.1
                                                                                 768.3
                1025
                                116.0
                                       90.3
                                            179.6
                                                              8.9
                                                                                        28
                                                                                               44.28
                1026
                       322.2
                                  0.0
                                     115.6
                                            196.0
                                                             10.4
                                                                      817.9
                                                                                 813.4
                                                                                        28
                                                                                               31.18
```

1030 rows × 9 columns

148.5

159.1

260.9

139.4

186.7

100.5

108.6

0.0

78.3

192.7

175.6

200.6

892.4

989.6

864.5

6.1

11.3

8.6

780.0

788.9

761.5

28

28

28

23.70

32.77

32.40

4

1027

1028

1029

In [28]: ► data.head()

Out[28]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	27	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	36	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	36	44.30

```
x = data[['Cement', 'Superplasticizer', 'Age']]
In [29]:
    Out[29]:
                     Cement Superplasticizer Age
                       540.0
                                         2.5
                                              28
                  1
                       540.0
                                        2.5
                                              28
                  2
                       332.5
                                        0.0
                                              27
                  3
                       332.5
                                         0.0
                                              36
                  4
                       198.6
                                              36
                                         0.0
                        ...
                                         ...
                1025
                       276.4
                                         8.9
                                              28
               1026
                       322.2
                                        10.4
                                              28
                1027
                       148.5
                                        6.1
                                              28
                1028
                       159.1
                                        11.3
                                              28
                1029
                       260.9
                                              28
                                         8.6
               1030 rows × 3 columns
In [30]:  y = data['Strength']
    Out[30]: 0
                        79.99
               1
                        61.89
               2
                        40.27
               3
                        41.05
               4
                        44.30
                        . . .
               1025
                        44.28
               1026
                        31.18
               1027
                        23.70
               1028
                        32.77
               1029
                        32.40
               Name: Strength, Length: 1030, dtype: float64
```

TRAINING MODEL

EFFICIENCY OF TRAINED MODEL

STANDARDISING FEATURES AND LABEL TO GET MORE EFFICIENCY


```
In [61]: | data['log_age'] = np.log2(data['Age'])
```


- (۱ı	15	-	-	_			
·	ľ	ш	u	ľ	U	J	, ,	
				ь.			- 4	

	log_cement	log_superplasticizer	log_age
0	9.076816	1.321928	4.807355
1	9.076816	1.321928	4.807355
70	8.546894	3.336283	3.700440
71	8.291401	3.104337	3.700440
72	8.731319	4.044394	3.700440
1025	8.110614	3.153805	4.807355
1026	8.331813	3.378512	4.807355
1027	7.214319	2.608809	4.807355
1028	7.313790	3.498251	4.807355
1029	8.027353	3.104337	4.807355

651 rows × 3 columns

```
    | y = data['Strength']

In [64]:
   Out[64]: 0
                     79.99
                     61.89
             1
             70
                     34.40
             71
                     28.80
             72
                     33.40
             1025
                     44.28
             1026
                     31.18
             1027
                     23.70
                     32.77
             1028
             1029
                     32.40
             Name: Strength, Length: 651, dtype: float64
          xtrain, xtest, ytrain, ytest = train_test_split(x,y,test_size=0.2, random_state
In [65]:

    insurance_model = LinearRegression()

In [66]:
In [67]:

    insurance_model.fit(xtrain, ytrain)

   Out[67]: LinearRegression()
          ypred = insurance_model.predict(xtrain)
In [73]:
In [74]:
          mean_squared_error(ytrain, ypred)
   Out[74]: 119.04129998306546
In [75]:
          mse = mean_squared_error(ytrain,ypred)
             mean_y = y.mean()
             r_{squared} = 1 - (mse / (mean_y ** 2))
             print("Efficiency:", str(round(r_squared*100,2))+'%')
             Efficiency: 92.36%
```