7 L'ESPAI \mathbb{R}^n

(Resum teòric)

Índ	$\mathbf{e}\mathbf{x}$	
	L'espai \mathbb{R}^n	
	Topologia a \mathbb{R}^n	

7.1. L'espai \mathbb{R}^n

Els elements de \mathbb{R}^n (n > 1) es diuen vectors o punts, depenent del context en què es considerin.

Recordem que \mathbb{R}^n té estructura d'espai vectorial sobre el cos dels nombres reals amb les operacions habituals. En aquest context, els elements de \mathbb{R}^n s'anomenen vectors i els números reals, escalars. Si es volen remarcar aspectes més geomètrics, els elements de \mathbb{R}^n s'anomenen punts i les seves components se solen denominar coordenades.

Donats un punt $\mathbf{x} = (x_1, \dots, x_n)$ i un vector $\mathbf{v} = (v_1, \dots, v_n)$, existeix un únic punt $\mathbf{y} = (y_1, \dots, y_n)$ tal que $y_i - x_i = v_i$ per a tot $i = 1, \dots, n$, que és el punt de coordenades $y_i = x_i + v_i$ per a tot $i = 1, \dots, n$. En aquestes condicions, és natural utilitzar les notacions $\mathbf{y} = \mathbf{x} + \mathbf{v}$ i $\mathbf{v} = \mathbf{y} - \mathbf{x}$; el parell ordenat (\mathbf{x}, \mathbf{y}) s'anomena el representant de \mathbf{v} d'origen \mathbf{x} i d'extrem \mathbf{y} .

A l'espai \mathbb{R}^n (n > 1) no hi ha un ordre natural, com passa a \mathbb{R} , i per establir alguns resultats bàsics no serveixen els mètodes i tècniques basats en l'ordre que s'acostumen a utilitzar en la recta real. Per això cal acudir a mètodes generals de la topologia dels espais mètrics, és a dir, mètodes basats en distàncies.

7.2. Normes i distàncies a \mathbb{R}^n

Moltes de les distàncies que intervenen en el càlcul matemàtic en general i en la IA en particular procedeixen de normes. Les definicions de norma i de distància en l'espai vectorial \mathbb{R}^n són les següents.

Una *norma* a \mathbb{R}^n és una aplicació $||\cdot||: \mathbb{R}^n \to \mathbb{R}^+ \cup \{0\}$ que compleix les propietats següents per a qualssevol $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$: 1) $||\mathbf{x}|| \ge 0$; 2) $||\mathbf{x}|| = 0$ si, i només si, $\mathbf{x} = \mathbf{0}$; 3) $||\lambda \cdot \mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}||$; i 4) $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

Una distància a \mathbb{R}^n és una aplicació $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+ \cup \{0\}$ que compleix les propietats següents per a qualssevol $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$

- $d(\mathbf{x}, \mathbf{y}) \ge 0;$
- $d(\mathbf{x}, \mathbf{y}) = 0$ si, i només si, $\mathbf{x} = \mathbf{y}$ (separació);
- $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (simetria);
- $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ (designaltat triangular).

Donada una norma $|| \cdot ||$ a \mathbb{R}^n , es diu que un vector \mathbf{v} és unitari si $||\mathbf{v}|| = 1$, i tenim que l'aplicació definida per $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{y} - \mathbf{x}||$ és una distància a \mathbb{R}^n . Així és com es defineixen algunes de les distàncies a \mathbb{R}^n que més s'utilitzen en IA. Concretament, les normes i distàncies més utilitzades a \mathbb{R}^n en IA són casos particulars de les p-normes i les corresponents p-distàncies o distàncies de Minkovski:

Sigui p un número real $p \geq 1$, la p-norma o \mathcal{L}^p norma de $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, denotada per $||\mathbf{x}||_p$ és

$$||\mathbf{x}||_p = \sqrt[p]{|x_1|^p + \dots + |x_n|^p}.$$

La *p-distància* o *p-distància de Minkovski* entre dos punts $\mathbf{x}=(x_1,\ldots,x_n)$ i $\mathbf{y}=(y_1,\ldots,y_n)$ de \mathbb{R}^n , denotada per $d_p(\mathbf{x},\mathbf{y})$, és

$$d_p(\mathbf{x}, \mathbf{y}) = ||\mathbf{y} - \mathbf{x}||_p = \sqrt[p]{|y_1 - x_1|^p + \dots + |y_n - x_n|^p}.$$

D'entre aquestes, les distàncies que més s'utilitzen són la distàcia euclidiana, d_2 i la de Manhattan, d_1 . En el cas límit de p tendint a més infinit s'obté l'anomenada distància de Chebyshev, $d_{\infty} = \lim_{p \to +\infty} d_p$.

La distància euclidiana entre dos punts $\mathbf{x}=(x_1,\ldots,x_n)$ i $\mathbf{y}=(y_1,\ldots,y_n)$ de \mathbb{R}^n , denotada por $d_2(\mathbf{x},\mathbf{y})$, és

$$d_2(\mathbf{x}, \mathbf{y}) = ||\mathbf{y} - \mathbf{x}||_2 = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}.$$

La distància de Manhattan entre dos punts $\mathbf{x}=(x_1,\ldots,x_n)$ i $\mathbf{y}=(y_1,\ldots,y_n)$ de \mathbb{R}^n , denotada por $d_1(\mathbf{x},\mathbf{y})$, és

$$d_1(\mathbf{x}, \mathbf{y}) = ||\mathbf{y} - \mathbf{x}||_1 = |y_1 - x_1| + \dots + |y_n - x_n|.$$

La distància de Chebyshev entre dos punts $\mathbf{x}=(x_1,\ldots,x_n)$ i $\mathbf{y}=(y_1,\ldots,y_n)$ de \mathbb{R}^n , denotada por $d_1(\mathbf{x},\mathbf{y})$, és

$$d_{\infty}(\mathbf{x}, \mathbf{y}) = ||\mathbf{y} - \mathbf{x}||_{\infty} = \max(|y_1 - x_1|, \dots, |y_n - x_n|).$$

Les gràfiques de la "circumferència unitat" per a cada una d'aquestes tres distàncies són les següents:

Figura 7.1: "Circumferències unitat".

Cal remarcar que també és força usual considerar qualsevol d'aquestes distàncies però ponderades, utilizant pesos $w_1, w_2, ..., w_n$, amb $w_k > 0$, $\forall k \in \{1, 2, ..., n\}$ i $\sum_{k=1}^{n} w_k = 1$:

$$d_{2w}(\mathbf{x}, \mathbf{y}) = \sqrt{w_1(y_1 - x_1)^2 + \dots + w_n(y_n - x_n)^2}.$$

$$d_{1w}(\mathbf{x}, \mathbf{y}) = w_1|y_1 - x_1| + \dots + w_n|y_n - x_n|.$$

$$d_{\infty w}(\mathbf{x}, \mathbf{y}) = \max(w_1|y_1 - x_1|, \cdots, w_n|y_n - x_n|).$$

Us trobareu també d'altres distàncies, com la distància discreta:

$$d_d(\mathbf{x}, \mathbf{y}) = 0$$
, si $\mathbf{x} = \mathbf{y}$ i $d_d(\mathbf{x}, \mathbf{y}) = 1$, si $\mathbf{x} \neq \mathbf{y}$,

O la distància de Hamming, definida a partir de la distància discreta d_d a \mathbb{R} :

$$d_H(\mathbf{x}, \mathbf{y}) = d_d(x_1, y_1) + \dots + d_d(x_n, y_n).$$

7.3. Topologia a \mathbb{R}^n

En aquest apartat farem servir la distància euclidiana de \mathbb{R}^n , definida per $d_2(\mathbf{x}, \mathbf{y}) = \sqrt{(y_1 - x_1)^2 + \cdots + (y_n - x_n)^2}$.

Donats un punt \mathbf{a} i un número real r > 0, es defineix la *bola* de *centre* \mathbf{a} i *radi* r, denotada per $\mathcal{B}_r(\mathbf{a})$, com el conjunt de punts la distància dels quals a \mathbf{a} és menor que r:

$$\mathcal{B}_r(\mathbf{a}) = \{ \mathbf{x} \in \mathbb{R}^n : d(\mathbf{a}, \mathbf{x}) < r \}.$$

Per a n=1, aquest concepte coincideix amb el ja conegut d'entorn d'un punt, raó per la qual de vegades es fa servir la paraula *entorn* de ${\bf a}$ com a sinònim de bola de centre ${\bf a}$; per a n=2, la bola de centre ${\bf a}$ i radi r és un cercle de centre ${\bf a}$ i radi r, exclosa la circumferència.

Sigui A un subconjunt de \mathbb{R}^n . Un punt \mathbf{a} de \mathbb{R}^n és un punt frontera del conjunt A si tot entorn de \mathbf{a} conté punts del conjunt A i punts que no són del conjunt A. La frontera del conjunt A és el conjunt format por tots els punts frontera del conjunt A, i es denota per $\mathcal{F}(A)$. Notem que un punto frontera del conjunt A pot pertànyer o no al conjunt A, per tant, en general, $\mathcal{F}(A)$ pot contenir punts del conjunt A i punts que no són del conjunt A.

Un conjunt A és tancat si conté tots els punts de la seva frontera, és a dir, si $\mathcal{F}(A)\subseteq A$; i un conjunt és obert si no conté cap punt de la seva frontera, és dir, si $A\cap\mathcal{F}(A)=\emptyset$. (Subratllem l'obvietat que abunden els conjunts que no són ni oberts ni tancats.)

El conjunt $\overline{A}=A\cup \mathcal{F}(A)$ es denomina adherència del conjunt A; un conjunt A és tancat si, i només si, $A=\overline{A}$. El conjunt $\stackrel{\circ}{A}=A\setminus \mathcal{F}(A)$ es denomina interior del conjunt A; veiem que A és obert si, i només si, $A=\stackrel{\circ}{A}$. Els conjunts oberts poden també caracteritzar-se per la següent propietat: un conjunt A és obert si, i només si, tot punt del conjunt A té un entorn contingut a A.

Un conjunt A està fitat si està contingut en alguna bola; equivalentment, si està contingut en un producte de intervals.

Si un subconjunt de \mathbb{R}^n és tancat i fitat, es diu que és *compacte*. El concepte de compacitat és de gran importància en relació amb la continuïtat de funcions.

Un punt $\mathbf{a} \in \mathbb{R}^n$ és un *punt de acumulació* de un conjunt A si tota bola centrada en \mathbf{a} conté algun punt del conjunt A diferent de \mathbf{a} . Això és equivalent a dir que tota bola centrada en \mathbf{a} conté infinits punts del conjunt A.