ESTRUTURA DE DADOS I

Aula 07

Prof. Sérgio Luis Antonello

FHO - Fundação Hermínio Ometto 07/04/2025

Plano de Ensino

- Unidade I Métodos de ordenação em memória principal (objetivos d, e, f)
 - 1.1. Revisão de tipos de dados básicos em C, variáveis indexadas e recursividade
 - 1.2. Noções de complexidade computacional
 - 1.3. Conceitos e métodos de ordenação de dados
 - 1.4. Bubble sort, Insert sort e Select sort
 - 1.5. Quick sort e Merge sort
 - 1.6. Shell sort e Radix sort
- 2. Unidade II Métodos de pesquisa em memória principal (objetivos e, f)
 - 2.1. Pesquisa sequencial
 - 2.2. Pesquisa binária
 - 2.3. Hashing
- Unidade III Tipo abstrato de dados (TAD) (objetivo a)
 - 3.1. Revisão de registros, ponteiros e alocação dinâmica de memória
 - 3.2. Tipo abstrato de dados (TAD): conceitos e aplicações
- Unidade IV Estrutura de dados lineares (objetivos a, b, c)
 - 4.1. Lista Encadeada: conceitos e aplicações
 - 4.2. Pilha: conceitos e aplicações
 - 4.3. Fila: conceitos e aplicações

Cronograma do Plano de Ensino

- ➤ 17/02 Recursividade; Complexidade de tempo; Notação Big-Oh.
- 24/02 Métodos de ordenação: Bubble sort; Insert sort; Select sort.
- 10/03 Métodos de ordenação: Quick sort; Merge sort.
- > 17/03 Métodos de ordenação: Shell sort; Radix sort.
- 24/03 Métodos de pesquisa: Sequencial; Binária.
- > 31/03 Métodos de pesquisa: Hashing.
- 07/04 Desenvolvimento do trabalho A1.
- > 14/04 Prova 1

Sumário

- Primeiro momento (revisão)
 - Hashing
- Segundo momento
 - Apresentação dos requisitos do trabalho
 - Desenvolvimento do trabalho A1
- Terceiro momento (síntese)
 - Feedback sobre a atividade

hash table

- O elemento a ser armazenado, removido ou pesquisado é chamado de chave (key).
- A chave passa por uma função de espalhamento (hash function);
- A hash function gera um código de espalhamento (hash code);
- O hash code serve como endereço da chave na tabela de espelhamento (hash table).

hashcode = hashfunction(key)

Ch -> h(ch) -> endereço na tabela

Tabela hash

Exemplo	
ch = 51	
h(ch) -> 3	(agagga dinata)
	(acesso direto)

0	12	end(12)	
1	37	end(37)	
2	2	end(2)	
3	51	end(51)	
	:		
M-1	Х	end(x)	

 \triangleright Exemplo: chaves = {7, 11, 5, 20, 24, 9, 25} e M = 7

Algoritmo	Melhor Caso	Caso Médio	Pior Caso
Pesquisa Sequencial	O(1)	O(n)	O(n)
Pesquisa Binária	O(1)	O(log n)	O(log n)
Hashing (sem colisões)	O(1)	O(1)	O(1)

Hashing

Correção dos exercícios 1 e 2 da aula 06

Alunos.txt

ODS Estados.txt

2. Segundo momento

Desenvolvimento do Trabalho A1

Requisitos do Trabalho A1

- ✓ Formar grupos com 5 ou 6 alunos.
- ✓ Definir o *team leader*
- ✓ *Team leader* deve subir a tarefa que define a equipe https://classroom.google.com/c/Njg4NzQ0NzcyMjQw/a/Njk40DIzNjE3NDIz/details
- ✓ O trabalho consiste em resolver 3 problemas
- ✓ As entregas serão validadas na aba academic do Bee
- ✓ Agenda:
 - √ 19h20 Apresentação dos requisitos
 - √ 19h30 início
 - ✓ 22h10 término
 - ✓ 22h15 abertura da chamada