Policy Learning for Fairness in Ranking

Ashudeep Singh, Thorsten Joachims (Cornell University)

NeurlPS 2019

Learning to Rank with Fairness constraints

Fair-PG-Rank: Learning-to-Rank with Fairness constraints

$$\pi_{\delta}^* = \operatorname{argmax}_{\pi} \mathbb{E}_{q \sim \mathcal{Q}} \left[U(\pi|q) \right] \text{ s.t. } \mathbb{E}_{q \sim \mathcal{Q}} \left[\mathcal{D}(\pi|q) \right] \leq \delta$$

Empirical Risk Minimization:

$$\hat{\pi}^*_{\lambda} = \operatorname{argmax}_{\pi} \frac{1}{N} \sum_{q=1}^{N} U(\pi|q) - \lambda \frac{1}{N} \sum_{q=1}^{N} \mathcal{D}(\pi|q)$$
 Utility Disparity

- 1. Ranking policy π
- 2. Utility of π
- 3. Disparity measure w.r.t. π

1. Ranking policy π

Sampling from π : Plackett-Luce Model

1. Ranking policy π

- Parameterized Model $h_{ heta}$
- Plackett-Luce (PL) Sampling

 s_1

 s_2

 S_3

 S_4

2. User Utility

$$U(\pi|q) = \mathbb{E}_{r \sim \pi(r|q)}[\Delta(r, \text{rel}_q)]$$

For example:

•
$$\Delta_{\mathrm{DCG}}(r, rel_q) = \sum_{j=1}^{n_q} \frac{u(r(j)|q)}{\log(1+j)}$$

• $\Delta_{\mathrm{NDCG}}(r, rel_q) = \frac{\Delta_{\mathrm{DCG}}(r, rel_q)}{\Delta_{\mathrm{DCG}}(r^*, rel_q)}$

•
$$\Delta_{NDCG}(r, rel_q) = \frac{\Delta_{DCG}(r, rel_q)}{\Delta_{DCG}(r^*, rel_q)}$$

3. Disparity Measures

- Exposure $(d_i) = v_{\pi}(d_i) = \mathbb{E}_{r \sim \pi}[\mathbf{v}_{r(d_i)}]$
- Exposure $(G) = v_{\pi}(G) = \sum_{d \in G} \text{Exposure}(d_i)$
- Merit of a group $M(G) = \sum_{d \in G} M(d_i)$

• Group fairness disparity:
$$\mathcal{D}_{\text{group}}(\pi|q) = \max\left(0, \frac{v_{\pi}(G_i)}{M_{G_i}} - \frac{v_{\pi}(G_j)}{M_{G_j}}\right) \text{, where } M_{G_i} \geq M_{G_j}$$

• Individual fairness disparity:

$$\mathcal{D}_{\text{individual}}(\pi|q) = \sum_{\substack{i,j \\ s.t. \ M_i \ge M_j}} \max \left(0, \frac{v_{\pi}(d_i)}{M_i} - \frac{v_{\pi}(d_j)}{M_j}\right)$$

Learning objective:
$$\hat{\pi}^*_{\lambda} = \operatorname{argmax}_{\pi} \frac{1}{N} \sum_{q=1}^N U(\pi|q) - \lambda \frac{1}{N} \sum_{q=1}^N \mathcal{D}(\pi|q)$$

Utility:
$$U(\pi|q) = \mathbb{E}_{r \sim \pi(r|q)} [\Delta(r, rel^q)] = \mathbb{E}_{r \sim \pi(r|q)} \left| \sum_{j=1}^{n_q} \frac{u(r(j)|q)}{\log(1+j)} \right|$$

Most previous methods optimize a smooth convex proxy of the utility.
(SVMRank, ListNet, RankNet, Softrank etc.)

How do we perform a gradient descent update on utility as well as disparity?

PG-Rank: REINFORCE update for $\pi_{ heta}$

$$\nabla_{\theta} U(\pi_{\theta}|q) = \nabla_{\theta} \mathbb{E}_{r \sim \pi_{\theta}(r|q)} \Delta(r, \text{rel}^{q})$$

Similarly for Disparity \mathcal{D}_{π}

Fair-PG-Rank: Summary

- Input: Queries w/ Candidate sets: features (+ relevances available during training)
- Ranking policy: A neural network scoring function + PL-sampling
- Loss function: Utility λ . Disparity
- Train: Stochastic gradient descent

Experiment 1

- Each document d_i represented by $(x_{i,1}, x_{i,2}) \in [0,3]^2$
- Two groups: G_0 , G_1 (Ratio 4:1)
- $rel_i = x_{i,1} + x_{i,2}$ (True Model)
- $x_{i,2}$ corrupted for G_1 documents
- $h(x_i) = \theta_1 x_{i,1} + \theta_2 x_{i,2}$
- Train the model (θ_1, θ_2) with different values of λ

A fair model only uses the x_1 feature

Experiment 2: Yahoo! Learning-to-Rank Challenge

