Batch	Agent1	Agent2
1	7.7	8.5
2	9.2	9.6
3	6.8	6.4
4	9.5	9.8
5	8.7	9.3
6	6.9	7.6
7	7.5	8.2
8	7.1	7.7
9	8.7	9.4
10	9.4	8.9
11	9.4	9.7
12	8.1	9.1

t-Test: Paired Two Sample for Means

	Agent1	Agent2
Mean	8.25	8.683333333
Variance	1.059090909	1.077878788
Observations	12	12
Pearson Correlation	0.901055812	
Hypothesized Mean Difference	0	
df	11	
t Stat	-3.263938591	
P(T<=t) one-tail	0.003772997	
t Critical one-tail	1.795884819	
P(T<=t) two-tail	0.007545995	
t Critical two-tail	2.20098516	

Difference in Mean

-0.433333333

The obtained related samples t = -3.264 with 11 degrees of freedom.

The associated two-tailed p-value is p = 0.008, so the observed t is significant at the 5% level (two-tailed).

The sample mean impurity of Agent1 and Agent2 were, respectively 8.25 and 8.68. The data therefore constitute significant evidence that the underlying mean number of impurity do not differ. The results suggest that the Null hypothesis will be accepted