České vysoké učení technické v Praze Fakulta elektrotechnická Katedra počítačů

Diplomová práce

Software pro distribuované řízení a vyčítání dat ze sítě částiových pixelových detektorů Timepix3

Bc. Jakub Begera

Vedoucí práce: Ing. Štěpán Polanský

Studijní program: Otevřená informatika

Obor: Softwarové inženýrství

2. prosince 2018

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení: Begera Jméno: Jakub Osobní číslo: 420021

Fakulta/ústav: **Fakulta elektrotechnická**Zadávající katedra/ústav: **Katedra počítačů**Studijní program: **Otevřená informatika**Studiiní obor: **Softwarové inženýrství**

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Software pro distribuované řízení a vyčítání dat ze sítě částicových pixelových detektorů Timepix3

Název diplomové práce anglicky:

Software for distributed control and data readout for network of Timepix3 particle pixel detectors

Pokyny pro vypracování:

The objective of this diploma thesis is to design and develop software for distributed acquisition control and data readout from the network of Timepix3 particle pixel detectors. The software will provide settings of acquisition parameters for the detectors (e.g., acquisition time, detector mode, threshold, etc.) as well as data readout and data persistence. An adequate data structure and suitable storage type should be chosen. The system will be able to operate in a distributed mode for the possibility of horizontal scalability and manageability of a higher number of detectors. Another motivation for horizontal scalability is the fact that the Timepix3 detector is theoretically able to generate data flow up to 5.12 Gbps, which cannot be handled from multiple detectors by a single node. The software will also implement the Katherine communication protocol [3]? the Timepix3 Ethernet Embedded Readout.ATLAS-TPX, a network of 32 Timepix detectors installed within ATLAS experiment at LHC at CERN, is controlled from a single central server [1], i.e., without the possibility of horizontal scalability. The Second Long Shutdown of LHC is planned in between the years 2019 and 2020, in which the modernization of ATLAS-TPX network is proposed with the usage of Timepix3 detectors and software which will be designed and developed within this diploma thesis.

Seznam doporučené literatury:

- [1] Manek, P., Begera, J., Bergmann, B., Burian, P., Janecek, J., Polansky, S., ? Suk, M. (2017). Software system for data acquisition and analysis operating the ATLAS-TPX network. In 2017 International Conference on Applied Electronics (AE). IEEE. https://doi.org/10.23919/ae.2017.8053593
- [2] Poikela, T., Plosila, J., Westerlund, T., Campbell, M., Gaspari, M. D., Llopart, X., ? Kruth, A. (2014). Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. Journal of Instrumentation, 9(5), C05013?C05013. https://doi.org/10.1088/1748-0221/9/05/c05013
- [3] Burian, P., Broulím, P., Jára, M., Georgiev, V., & Bergmann, B. (2017). Katherine: Ethernet Embedded Readout Interface for Timepix3. Journal of Instrumentation, 12(11), C11001?C11001. https://doi.org/10.1088/1748-0221/12/11/c11001.
- [4] Z. Vykydal et al., The Medipix2?-based network for measurement of spectral characteristics and composition of radiation in ATLAS detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 607, Issue 1, 1 August 2009, Pages 35-?37, ISSN 0168-?9002, h ttp://dx.doi.org/10.1016/j.nima.2009.03.104.
- [5] D. Turecek et al., Remote control of ATLAS?-MPX Network and Data Visualization, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 633, Supplement 1, May 2011, Pages S45-?S47, ISSN 0168?-9002, http://dx.doi.org/10.1016/j.nima.2010.06.117.

ng. Stěpán Polanský, katedra	dozimetrie a aplikace ionizujícího zá	ření FJFI
néno a pracoviště druhé(ho) vedo	oucí(ho) nebo konzultanta(ky) diplomove	é práce:
Datum zadání diplomové práce: ′	17.01.2018 Termín odevzdání	diplomové práce:
Platnost zadání diplomové práce:	30.09.2019	
Ing. Štěpán Polanský podpis vedoucí(ho) práce	podpis vedoucí(ho) ústavu/katedry	prof. Ing. Pavel Ripka, CSc.
Ing. Štěpán Polanský		
Ing. Štěpán Polanský podpis vedoucí(ho) práce PŘEVZETÍ ZADÁNÍ Diplomant bere na vědomí, že je povinen vypra	podpis vedoucí(ho) ústavu/katedry acovat diplomovou práci samostatně, bez cizí pomoci, s	podpis děkana(ky)
Ing. Štěpán Polanský podpis vedoucí(ho) práce PŘEVZETÍ ZADÁNÍ Diplomant bere na vědomí, že je povinen vypra	podpis vedoucí(ho) ústavu/katedry	podpis děkana(ky)

Poděkování

TODO

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne 27. 5. 2016

Abstract

TODOabstrakt anglicky

Abstrakt

TODOabstrakt česky

Obsah

1	Úvo	vod		1
	1.1	Motivace		1
	1.2	Timepix3 detektor		1
	1.3	Struktura práce		2
2	Úvo	vod do hybridních částicových pixelových de	etektorů	3
	2.1	Hardwarová architektura		3
	2.2	Princip detekce		4
	2.3	Operační módy detektoru		5
	2.4	Vyčítání naměřených dat		6
	2.5	Kalibrace		7
		2.5.1 Treshold equalizace		8
		2.5.2 Energetická kalibrace		8
		2.5.3 Time-Walk korekce		9
A	Sez	znam použitých zkratek		13
В	Obs	osah přiloženého CD		17

xiv OBSAH

Seznam obrázků

2.1	Struktura hybridního polovodičového pixelového detektoru Timepix3, skláda-	
	jící se z vyčítacího čipu a polovodičového senzoru [7]	4
2.2	Princip detekce ionizujícího záření detektorem Timepix3 [7]	4
2.3	Zpracování signálu pixelem detektoru dle nastaveného módu (Medipix, ToT a	
	ToA) [7]	5
2.4	Doba vyčítání detektoru za použití Frame-based (non-sparse) a Data-driven	
	(sparse) módu [8]	7
2.5	Kalibrační funkce, udávající závislost mezi energií v keV a ToT [4], vzniklá	
	proložením získaných kalibračních bodů funkcí 2.2 a sestávající se ze dvou	
	částí - (i) nelineární částí pro oblast nižších energií (hyperbola) a (ii) lineární	
		8
2.6	Příklad energetického spektra jednoho pixelu Timepix detektoru s proloženou	
	funkcí 2.3 [2]	10
B.1	Obsah přiloženého CD	18

Seznam tabulek

Seznam zdrojových kódů

Kapitola 1

Úvod

TODO

1.1 Motivace

TODO

1.2 Timepix3 detektor

Hybridní částicový pixelový detektor Timepix[8] je nástupcem detektoru Timepix[5] a je vyvíjen v rámci Medipix 1 kolaborace v CERN, mezi jejíž členy patří od roku 1999 i ÚTEF ČVUT v Praze.

Detektor se skládá z matice 256×256 nezávislých pixelů, každý o hraně $55 \ \mu m$. Jednotlivé pixely se skládají z citlivého polovodičového senzoru (nejčastěji Si, nebo GaAs) a vyčítací CMOS elektroniky (čítače, komparátory apod.). Princip funkce detektoru lze přirovnat digitálnímu fotoaparátu. Podobně jako u digitálního fotoaparátu, začátek a konec akvizice dat je řízen uzávěrkou (tzv. shutter signál). Po tuto dobu pak citlivý polovodičový objem detektoru zaznamenává interakce s nabitými částicemi a dále je zpracovává dle nastaveného modu. V kapitole 2 bude na příklad popsán Time-Over-Threshold mód, kde hodnota čítače pixelu na konci akvizice odpovídá deponované energii interagovaných částic s daným pixelem (mezi energií a TOT je nelineární závislost, která je dána fyzikálními vlastnostmi každého pixelu a je předmětem energetické kalibrace detektoru [4]).

Timepix3 detektor přináší oproti svému předchůdci několik výhod. Je schopný operovat i v kontinuálním módu, ve kterém je každý pixel detektoru schopný detekovanou událost ihned zpracovat, nezávisle na ostatních pixelech. Tím se téměř odstraňuje mrtvá doba detektoru, zvyšuje detekční účinnost, ale i zvyšuje datový tok z detektoru, jehož maximální teoretická hodnota je až 5.12Gb/s.

^{1&}lt;http://medipix.web.cern.ch/>

1.3 Struktura práce

TODO

Kapitola 2

Úvod do hybridních částicových pixelových detektorů

Ionizující záření je lidskými smysli nedetekovatelné, avšak jeho studie nám umožňuje pochopit podstatu hmoty, její vlastnosti a interakce. To lidstvu umožnilo mnohé aplikace, jako je například protonová terapie [6], defektoskopie nebo zkoumání pravosti uměleckých děl. První pokusy o detekci ionizujícího záření sahají do počátku 20. století, kde pomocí mlžné komory se prvně podařilo zachytit trajektorii nabitých částic. Rozvoj polovodičové technologie dal vzniku novým detekčním technologiím až po v současné době nejpokrokovějším pixelovým detektorům.

Existuje celá řada částicových pixelových detektorů, ale v této kapitole budou popsány jen hybridní pixelové detektory, pro které je typické, že se skládají ze dvou nezávisle vyrobených částí - senzoru a vyčítacího čipu. To oproti monolitickým detektorů, kde vyčítací elektronika je součástí senzoru přináší řadu výhod, jako například snížení výrobních nákladů nebo možnost kombinace vyčítacího čipu se senzory různých materiálů (Si, GaAs, CaTe apod.) a tlouštěk (vetšinou $300\mu m$, nebo $500\mu m$).

Na tomto místě je třeba zmínit, že existuje více druhů těchto detektorů (AGH Fermilab, Pilatus, Philips Chromaix apod.)[1], v této práci budou použity použity pouze detektory z rodiny detektorů Medipix.

2.1 Hardwarová architektura

Většina hybridních částicových pixelových detektorů rodiny Medipix obsahuje matici 256×256 pixelů. Každý z nich má stanu o délce 55 μm , takže senzor čítající 65536 má plochu $1.4\times1.4cm^2$.

Na obrázku 2.1 je znázorněna struktura detektoru Timepix3. Vrchní část detektoru tvoří polovodičový senzor, který je nejčastěji vyroben z křemíku, ale výjimkou není také GaAs nebo CaTe. Jednotlivé pixely senzoru jsou spojeny s integrovaným $ASIC^1$ vyčítacím čipem pomocí technologie zvané Bump-Bounding. Vyčítací čip je pak propojen se základní deskou pomocí wire-bound, z které je ještě přivedeno měřící napětí na senzor detektoru (tzv. bias).

 $^{^1\}mathbf{z}$ angl. Application Specific Integrated Circuit

Obrázek 2.1: Struktura hybridního polovodičového pixelového detektoru Timepix3, skládající se z vyčítacího čipu a polovodičového senzoru [7].

2.2 Princip detekce

Obrázek 2.2: Princip detekce ionizujícího záření detektorem Timepix3 [7].

Princip detekce ionizujícího záření pixelovými detektory je založen na známém jevu detekce ionizujícího záření v polovodiči.

Jako náhradní schéma jednoho pixelu si lze představit diodu zapojenou v závěrném směru, kterou bez přítomnosti ionizujícího záření protéká minimální proud. Vnikne-li do senzoru ionizující částice a dojde k její interakci se senzorem, resp. část její energie je deponována do polovodičového objemu senzoru, dojde v senzoru ke vzniku elektron-děrových páru a díky lavinovému efektu i k následnému otevření PN přechodu (viz. na obr. 2.2, kde červená šipka

znázorňuje interagující částici, elektrony jsou znázorněny žlutě, modře díry).

Vzniklý proudový impulz je měřícím odporem převeden na napětí, které je komparátorem porovnáno s prahovým napětím (tzv. *threshold*). Výsledek této komparace je dále CMOS obvodem zpracován, dle použitého měřícího módu, jak bude ukázáno v kapitole 2.3.

Na rozdíl od CCD technologii, CMOS readout Timepix/Medipix detektorů negeneruje temný proud², díky odstínění signálu od šumu pomocí komparačního napětí. To znamená, že doba jedné akvizice je teoreticky neomezena, protože detektor je schopný detekovat jen ty částice, jejíchž deponovaná energie (resp. amplituda vzniklého napěťového pulzu) je větší, než threshold.

2.3 Operační módy detektoru

Obrázek 2.3: Zpracování signálu pixelem detektoru dle nastaveného módu (Medipix, ToT a ToA) [7].

V této podkapitole bude vysvětlena většina operačních módu, ve kterých detektory rodiny *Medipix* jsou schopny pracovat.

Jak už bylo popsáno v předchozí kapitole, interagovaná částice vyvolá napěťový impulz, jehož tvar koreluje s deponovanou energií. Pro účely analýzy se ale používá pouze binární

 $^{^2 {\}rm Term}$ ín charakterizující vyčítací šum u CCD snímačů. Obvykle je udáván v elektronech za sekundu při konstantní teplotě a ve tmě.

informace o překročení prahového napětí v čase. Výsledek této analýzy je po jejím dokončení uložen ve 14-bitovém registru pixelu.

Na obr. 2.3 je znázorněn příklad zpracování analýzy signálu následujícími módy:

- Medipix mód (Counting mód) V tomto módu je čítač inkrementován v každém cyklu měřící frekvence, pokud měřící napětí překročilo prahové napětí pixelu. Na konci akvizice pak hodnota čítače odpovídá počtu zaznamenaných částic.
- Time-Over-Threshold (ToT) Pracuje-li pixel v tomto módu, pak jeho čítač je inkrementování v každém cyklu měřící frekvence, pokud měřící napětí je vyšší, než prahové napětí pixelu. Hodnota uložená v čítači odpovídá deponované energii interagovaných částic. Mezi energií a ToT je nelineární závislost a její zkoumání je předmětem energetické kalibrace detektoru, jak bude ukázáno v kapitole 2.5.2. Tento mód má široké spektrum aplikací, například [9] nebo [6].
- **Time-of-Arrival (ToA)** Tímto módem disponují pouze detektory *Timepix* a *Timepix3*, avšak nesdílí stejný princip. Zatímco *Timepix* detektor začne inkrementovat čítač v každém cyklu měřící frekvence po první náběžné hraně z komparátoru, *Timepix3* na náběžnou hranu uloží do 14-bitového registru aktuální časové razítko z hodin detektoru. V obou případech ToA udává čas první interakce částice v dané akvizici.

2.4 Vyčítání naměřených dat

Jednotlivé detektory rodiny *Medipix* mají různou hardwarovou podporu pro vyčítání naměřených dat. Detektory vždy podporují alespoň jeden z těchto módů:

- **Frame-Based** Pracuje-li detektor v tomto módu, pak jsou všechny registry čítačů pixelů vyčítány najednou, po dokončení aktuálního snímku. Vždy je třeba vyčíst všechny pixely bez ohledu na naměřenou hodnotu.
- **Data-Driven** Tento mód, také označovaný jako *Event-Driven*, byl prvně použit v detektoru *Timepix3*. Pracuje-li detektor v tomto módu, pak v průběhu akvizice dat (resp. když shutter signál na nastaven na úroveň HIGH) každý pixel po zpracování události notifikuje readout interface o tom, že nová data jsou připravena k vyčtení a readout interface je pak bez prodlení vyčte a dále zpracuje.

Na obrázku 2.4 je vidět hlavní motivace pro zavedení podpory *Data-Driven* módu u detektoru *Timepix3*. Ukázalo se, že *Data-Driven* mód je efektivnější při takových měření, kde okupance snímků je menší než zhruba 50%. Po překročení této meze je efektivnější použití *Frame-Based* módů, protože není třeba přenášet souřadnice zasažených pixelů. Podle [8] vyčítací čas může být definován následovně:

$$T_{readout} = N_{pixels} * bits_{pixel} / BW (2.1)$$

kde:

 N_{pixels} je počet pixelů které je potřeba vyčíst (pro Frame-Based mód jsou to všechny pixely detektoru (256 × 256) a pro Data-Driven je to počet zasažených pixelů),

 $bits_{pixel}$ je počet bitů na pixel (28b v Frame-Based módu a 28b + 16b v Data-Driven módu kvůli nutnosti přenášení adresy pixelu) a

BW je počet bytů za vteřinu, které je možné vyčíst z detektoru (bandwidth).

Obrázek 2.4: Doba vyčítání detektoru za použití *Frame-based* (non-sparse) a *Data-driven* (sparse) módu [8].

2.5 Kalibrace

Každý detektor má své specifické vlastnosti, které jsou dány nejenom výrobním procesem, ale i závislostí na opotřebení a únavě materiálu v čase, okolní teplotě nebo na nastavených měřících parametrech (například bias). Hlavní motivací pro kalibraci detektorů je minimalizace systematické chyby měření. Z pohledu aplikace získaných kalibračních dat je možné kalibrační metody rozdělit do dvou kategorií:

- (i) Použití v průběhu akvizice dat jedná se o data, která jsou použita pro nastavení akvizice dat v detektoru a mají přímý vliv na naměřená data, která danou metodou není možné dodatečně kalibrovat. Do této kategorie spadá například treshold equalizace (viz 2.5.1).
- (ii) Transformace naměřených dat v tomto případě jsou kalibrační data aplikovaná dodatečně na naměřená data. Tento přístup má výhodu v možnosti dodatečné kalibrace

již naměřených dat. To této kategorie spadá například *Energetická kalibrace* (viz 2.5.2) nebo *Time-Walk korekce* (viz 2.5.3).

2.5.1 Treshold equalizace

V podkapitole 2.2 a 2.3 již bylo vysvětleno použití prahového napětí (treshold) v průběhu akvizice dat detektorem. Každý pixel detektoru má ale rozdílné fyzikální vlastnosti dané výrobním procesem, s čímž souvisí i citlivost (resp. oddělení užitečného signálu od šumu) jednotlivých pixelů. Kromě globální hodnoty tresholdu je možné pro každý pixel upravit citlivost pomocí lokální 4b hodnoty tresholdu (viz obr. **TODO**přidat ref na schéma).

Vlastní proces equalizace probíhá tak, že se udělá treshold scan přes všechny hodnoty, přičemž je třeba minimalizovat interakce detektoru z částicemi. V běžné praxi stačí detektor dostatečně odstínit. Výstupem tohoto procesu je pak globální treshold a jeho 4-bitové korekce pro jednotlivé pixely.

Jako vedlejší produkt tohoto procesu je rovněž maskovací matice detektoru, které obsahuje šumějící, nebo jinak poškozené pixely. To jsou například takové pixely, které bez přítomnosti interagujících částic hlásí překročení tresholdu.

2.5.2 Energetická kalibrace

Obrázek 2.5: Kalibrační funkce, udávající závislost mezi energií v keV a ToT [4], vzniklá proložením získaných kalibračních bodů funkcí 2.2 a sestávající se ze dvou částí - (i) nelineární částí pro oblast nižších energií (hyperbola) a (ii) lineární částí pro vyšší energie (přijímka).

V předchozí části práce byl již představen Time-Over-Treshold mód (viz 2.3), ve kterém je detektor schopný měřit deponovanou energii interagovaných v částic, která je udávána v ToT. Jak již bylo ukázáno, vztah mezi energií v keV a ToT je nelineární závislost a závisí na

fyzikální vlastnostech daného pixelu, což je předmětem energetické kalibrace, která bude v této podkapitole popsána.

Tato metoda [4] spočívá v provedení několika sad měření se zdroji ionizujícího záření, jejichž energie jsou předem známy, a v jejich analytickém zpracování a vytvoření kalibrační funkce 2.2 pro každý pixel detektoru. V předchozí (bakalářské) práci [2] byly tyto metody podrobně popsány a byl vytvořen software, který uživateli umožňuje vytvoření energetické kalibrace detektoru z naměřených dat.

$$f_{calib}(x) = ax + b - \frac{c}{x - t} \tag{2.2}$$

Pro měření kalibračních dat se jako efektivní řešení v praxi ukázalo použití rentgenové fluorescence³ [3]. Pro zajištění dobré kvality kalibrace je třeba naměřit takový počet událostí, aby spektra ve snímcích byla dobře rozeznatelná. Z naměřeních dat jsou vyfiltrovány pouze tzv. Single-hit události⁴, aby se minimalizovaly negativní vlastnosti Charge-sharing efektu (díky společné elektrodě senzoru jsou díky interagující částici vzniklé elektrony zpracovány více pixely najednou a část deponované energie nemusí být ASIC čipem zpracována, protože vzniklý signál může být nižší než treshold daného pixelu).

Z jednotlivých měření jsou pro každý pixel detektoru vytvořena spektra ToT hodnot. Na obrázku 2.6 je znázorněn příklad takového spektra, získaného z fluorescence mědi. Požadovaný kalibrační bod se získá střední hodnoty ToT a tabulkové hodnoty energie fluorescenčního záření mědi. Střední hodnota je získána proložením spektra funkcí 2.3 - jedná se o součet Gaussovy funkce a Gaussovy chybové funkce (kvůli levé nesymetrii vzniklé *Charge-sharing* efektem).

$$f_{GERF}(x) = \underbrace{Ae^{-\frac{(x-\mu)^2}{2\sigma^2}}}_{\text{Gaussova funkce}} + \underbrace{\frac{avg_{right} - avg_{left}}{\sigma\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{(t-\mu)^2}{2\sigma^2}} + avg_{left}}_{\text{Gaussova chybová funkce}}$$
(2.3)

kde:

- A je amplituda.
- μ je stření hodnota hledané energie.
- σ udává rozptyl střední hodnoty energie μ , kterou je možné ji vypočítat ze vzorce $\sigma = \frac{2\sqrt{2ln_2}}{FWHM}$, kde $FWHM^5$ udává šířku gausiánu v polovině jeho výšky.
- avg_{right} (resp. avg_{left}) je průměrná hodnota spektra na pravém (resp. levém) úpatí gausiánu.

2.5.3 Time-Walk korekce

³Děj ke kterému dochází při ozařování materiálu (nejčastěji *Cu*, *Fe*, In apod.) rentgenovým zářením, při kterém jsou z něj vyráženy excitované elektrony. Při vyražení elektronu na nižší energetické úrovni, elektron z vyšší energetické úrovně obsadí jeho místo a přebytečnou energii emituje formou vyzářeného fotonu - fluorescenčního záření, jehož charakteristické monoenergetické spektrum je pro většinu prvků dobře známé.

 $^{^4\}mathrm{Události},$ ve kterých částice interagovala pouze s jedním pixelem detektoru

⁵z angl. Full Width at Half Maximum

Obrázek 2.6: Příklad energetického spektra jednoho pixelu Timepix detektoru s proloženou funkcí 2.3 [2].

Literatura

- [1] BALLABRIGA, R. et al. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging. *Journal of Instrumentation*. 2016, 11, 01, s. P01007. Dostupné z: http://stacks.iop.org/1748-0221/11/i=01/a=P01007.
- [2] BEGERA, J. Calibration and control software for network of particle pixel detectors within the Atlas experiment at the LHC at CERN. Bachelor's thesis, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic, 2016. Dostupné z: http://hdl.handle.net/10467/64719.
- [3] JAKUBEK, J. Energy-sensitive X-ray radiography and charge sharing effect in pixelated detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009, 607, 1, s. 192 195. ISSN 0168-9002. doi: http://dx.doi.org/10.1016/j.nima.2009.03.148. Dostupné z: http://www.sciencedirect.com/science/article/pii/S0168900209006408. Radiation Imaging Detectors 2008Proceedings of the 10th International Workshop on Radiation Imaging Detectors.
- [4] JAKUBEK, J. Precise energy calibration of pixel detector working in time-over-threshold mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011, 633, Supplement 1, s. S262 S266. ISSN 0168-9002. doi: http://dx.doi.org/10.1016/j.nima.2010.06.183. Dostupné z: http://www.sciencedirect.com/science/article/pii/S0168900210013732. 11th International Workshop on Radiation Imaging Detectors (IWORID).
- [5] LLOPART, X. et al. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007, 581, 1-2, s. 485 494. ISSN 0168-9002. doi: http://dx.doi.org/10.1016/j.nima.2007.08.079. Dostupné z: http://www.sciencedirect.com/science/article/pii/S0168900207017020. {VCI} 2007Proceedings of the 11th International Vienna Conference on Instrumentation.
- [6] MARTISIKOVA, M. et al. Study of the capabilities of the Timepix detector for Ion Beam radiotherapy applications. *IEEE Nuclear Science Symposium Conference Record*. 10 2012, s. 4324–4328. doi: 10.1109/NSSMIC.2012.6551985.
- [7] PLATKEVIC, M. Signal Processing and Data Read-Out from Position Sensitive Pixel Detectors. PhD thesis, Czech Technical University in Prague, Czech Republic, 2014.

- [8] POIKELA, T. et al. Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. *Journal of Instrumentation*. 2014, 9, 05, s. C05013. Dostupné z: http://stacks.iop.org/1748-0221/9/i=05/a=C05013.
- [9] TREMSIN, A. et al. High Resolution Photon Counting With MCP-Timepix Quad Parallel Readout Operating at > 1 KHz Frame Rates. *IEEE Transactions on Nuclear Science*. 04 2013, 60, s. 578–585. doi: 10.1109/TNS.2012.2223714.

Příloha A

Seznam použitých zkratek

ADC Analogově digitální převodník

Al Aluminium

API Application Programming Interface

ASIC Application-specific Integrated Circuit

ATLAS A Toroidal LHC Apparatus

B byte

b bite

BPMN Business Process Model and Notation

CdTe Cadmium telluride

CERN Evropská organizace pro jaderný výzkum (Originální název: Conseil Européen pour la Recherche Nucléaire), se sídlem v Ženevě, ve Švýcarsku.

CMOS Complementary Metal Oxide Semiconductor

CSM Charge Summing Mode

DAC Digitálně analogový převodník

DCS Detector Control Systems

DPS Deska plošného spoje

eV elektronvolt

FITPix Fast Interface for Timepix Pixel Detectors

FPGA Field Programmable Gate Array

FSM Finite State Machine

PŘÍLOHA A. SEZNAM POUŽITÝCH ZKRATEK

FWHM Full width at half maximum

GaAs Arsenid gallitý

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HW Hardware

IP Internet Protocol

JSON JavaScript Object Notation

LED Light Emitting Diode

LHC Large Hadron Collider

LiF Lithium fluoride

LS Long Shutdown - dlouhodobá technologická přestávka LHC

LVDS Low-voltage differential signaling

MPX Medipix

PC Personal Computer

PCC Photon Counting Chip

PE Polyethylen

PN Přechod polovodiče typu P a polovodiče typu N

REST Representational State Transfer

RS232 Standart sériové linky

SMD Surface Mount Technology

SPI Serial Peripheral Interface

SPM Single Pixel Mode

SQL Structured Query Language

SSH Secure Shell

SW Software

TCP Transmission Control Protocol

TDAQ Trigger and Data Aquisition

TOA Time of Arrival - mód detektoru (viz ??)

TOT Time Over Treshold - mód detektoru (viz ??)

TPX Timepix

URL Uniform Resource Locator

USA15 Serverová místnost ATLAS experimentu

USB Universal Serial Bus

 ${\rm UX}15~$ Označení prostor s ATLAS detektorem (tzv. cavern)

ÚTEF Ústav technické a experimentální fyziky

Příloha B

Obsah přiloženého CD

```
CD/
 - atlas_tpx/
    dokumentace/ - adresář obsahující popis API
    - exe/
      - emulator/
        ├ readme.txt - README soubor
        └ AtlasPixEmulator-0.1.jar - spustitelný jar soubor emulátoru
     └ atlas_tpx_server/
         – readme.txt - README soubor
        ├ AtlasTPX.server-0.1.jar - spustitelný jar soubor serveru
        ├ server-configuration.yml - soubor s konfigurací serveru
        oxdot detectors.csv - tabulka s detektory

    src/ - adresář se zdrojovými kódy

  kalibrace/

    exe/ - spustitelné binární soubory

─ libs/ - jar knihovny

     test_data/ - vstupní data kalibrace (spektra)
     ├ readme.txt - README soubor
     X-rayTimepixCalibration.jar - spustitelný jar soubor
    src/ - adresář se zdrojovými kódy
  text/

    LaTeX/ - adresář se zdrojovými soubory tohoto dokumentu

    thesis-begerjak-2016.pdf - tato práce ve formátu PDF

    abstract_cz.txt - abstrakt česky

  abstract_en.txt - abstrakt anglicky
```

Obrázek B.1: Obsah přiloženého CD