Élève 1*

Exercice. Soit G un sous-groupe de $\mathrm{GL}_n(\mathbb{C})$ borné. Montrer que les valeurs propres des matrices de G sont toutes de module 1. Si de plus G est supposé inclus dans $B(I_n,\sqrt{2})$ pour une certaine norme d'opérateur, montrer que G est trivial.

Éléments de réponse. Montrons que les valeurs propres des matrices de G sont toutes de module 1. En effet, si A est une matrice de G, alors la suite $(A^p)_p$ est bornée. Trigonaliser A et choisir pour norme la norme infinie permet de montrer que si λ est valeur propre, alors la suite $(\lambda^p)_p$ est encore bornée, ce qui montre que toutes les valeurs propres sont de module plus petit que 1. Ensuite, considérer $A^{-1} \in G$ permet de montrer que si λ est valeur propre de A, alors λ^{-1} est valeur propre de A^{-1} , ce qui montre que $|\lambda^{-1}| \leq 1$, donc toutes les valeurs propres de A sont de module plus grand que 1 (notons que comme A est inversible, vu $G \subset \mathrm{GL}_n(\mathbb{C})$, toutes ses valeurs propres sont non nulles, donc il est licite de considérer leurs inverses).

À présent, on suppose de plus que $G \subset B(I_n, \sqrt{2})$, pour une certaine norme d'opérateur $\|\cdot\|$ (norme subordonnée à une norme qu'on notera également $\|\cdot\|$). Soit $A \in G$. Soit λ une valeur propre et $x \neq 0$ un vecteur propre associé. Alors

$$\left|1-\lambda\right|\left\|x\right\|=\left\|(A-I_n)x\right\|\leq \left\|A-I_n\right\|\left\|x\right\|<\sqrt{2}\left\|x\right\|$$

Soit, comme $x \neq 0$ et par séparation de la norme

$$|1 - \lambda| < \sqrt{2} \tag{1}$$

La première partie de l'exercice donne $\lambda=e^{i\theta}$ avec un certain $\theta\in[0,2\pi[$. La relation (1) montre

$$|\sin(\theta/2)| < \frac{\sqrt{2}}{2}$$

On pose $\tau = \theta/2$ et on remarque que, comme ce qui vient d'être fait vaut pour toute valeur propre de toute matrice de G et que pour tout entier ≥ 0 , λ^p est valeur propre de A^p , alors on obtient également que

$$|\sin(p\tau)| < \frac{\sqrt{2}}{2} \tag{2}$$

Si θ est incomensurable à π , alors τ l'est aussi et on peut extraire de $(\sin(p\tau))$ une suite qui tend vers 1 (des rappels concernant cet argument sont déjà présents ici), ce qui n'est pas possible vu (2). Assurément, θ s'écrit comme un rationnel que multiplie π . En fait, un peu de trigonométrie nous permet de montrer que ce rationnel est forcément nul (on laisse ça en exercice au lecteur, ce n'est franchement pas très difficile). On montre ainsi que 1 est la seule valeur propre possible pour toutes les matrices de G.

Maintenant, place à l'étape finale. Soit $A \in G$, on sait que $\chi_A = (X-1)^n$ d'après ce qui précède, donc par Cayley Hamilton, $N := A - I_n$ est nilpotente, on a donc la décomposition suivante : $A = I_n + N$. Pour conclure, on a juste besoin de montrer que N = 0, autrement dit que son indice de nilpotence est nul. Si ce n'est pas le cas, alors il sera possible de trigonaliser N par blocs en mettant en haut à gauche la matrice compagnon de $X^m - 1$, que l'on notera C, où m désignera l'indice de nilpotence non nul de N (donc C est une matrice de taille non nulle...). Alors, il suffit d'écrire

$$\forall p \in \mathbb{N}, \ (I_m + C)^p = \sum_{k=0}^n \binom{p}{k} C^k$$

pour se rendre compte que la suite de matrices $((I_m+C)^p)$ n'est pas bornée, ce qui montre également, en utilisant l'équivalence des normes et la continuité de la multiplication par une matrice, que (A^p) n'est pas bornée, ce qui contredit évidemment nos hypothèses de départ. C'est donc gagné, N=0 et $A=I_n$. Le groupe G est trivial. \qed