Part	In [1]:	<pre>import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import sklearn</pre>
Service Controller Con	In [2]:	path="C:\S1_Dataset" all_files=glob.glob(path+'/*') print(all_files) ['C:\\S1_Dataset\\d1p01M', 'C:\\S1_Dataset\\d1p02M', 'C:\\S1_Dataset\\d1p03M', 'C:\\S1_Dataset\\d1p04M', 'C:\\S1_Dataset\\d1p05M', 'C:\\S1_Dataset\\d1p06M', 'C:\\S1_Dataset\\d1p07M', 'C:\\S1_Dataset\\d1p08F', 'C:\\S1_Dataset\\d1p09F', 'C:\\S1_Dataset\\d1p1F', 'C:\\S1_Dataset\\d1p1F', 'C:\\S1_Dataset\\d1p1F', 'C:\\S1_Dataset\\d1p1F', 'C:\\S1_Dataset\\d1p1F', 'C:\\S1_Dataset\\d1p1F', 'C:\\S1_Dataset\\d1p1F', 'C:\\S1_Dataset\\d1p1F', 'C:\\S1_Dataset\\d1p1F', 'C:\\S1_Dataset\\d1p2F', 'C:\\S1_Dataset\\d1p2F', 'C:\\S1_Dataset\\d1p2F', 'C:\\S1_Dataset\\d1p2F', 'C:\\S1_Dataset\\d1p2F', 'C:\\S1_Dataset\\d1p2F', 'C:\\S1_Dataset\\d1p3F', 'C:\\S1_Dataset\\d1p4M', 'C:\\S1_Dataset\
For any of the control of the contro	In [3]:	<pre>'C:\\S1_Dataset\\d1p59F', 'C:\\S1_Dataset\\d1p50F', 'C:\\S1_Dataset\\d1p53F', 'C:\\S1_Dataset\\d1p53F', 'C:\\S1_Dataset\\d1p53F', 'C:\\S1_Dataset\\d1p53F', 'C:\\S1_Dataset\\d1p59F', 'C:\\S1_Datas</pre>
	In [4]:	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 52482 entries, 0 to 52481 Data columns (total 9 columns): # Column Non-Null Count Dtype</class></pre>
1 1	Out[5]:	Time Acc.Front Acc.Lat id RSSI Phase Freq Activity_Label 0 0.00 0.27203 1.00820 -0.082102 1 -63.5 2.4252 924.25 1 2 0.50 0.27203 1.00820 -0.082102 1 -63.0 4.7369 921.75 1 2 1.50 0.44791 0.91636 -0.013684 1 -63.5 3.0311 923.75 1
Compared by Comp		4 2.50 0.34238 0.96229 -0.059296 1 -63.5 5.8920 920.25 1 healthy_op.isnull().values.any()
Process Proc	In [7]:	healthy_op1=healthy_op.values X=healthy_op1[:, :8]
Principle Prin	In [8]:	<pre>from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.metrics import accuracy_score</pre>
	In [9]:	<pre>X=normalize.fit_transform(X) print(X) [[0.00000000e+00 2.93631563e-04 1.08825991e-036.85424559e-02</pre>
10 10 10 10 10 10 10 10	In [10]:	[5.41175984e-04
10.31, b. 10.31, c. 10.3		<pre>train, test = train_test_split(healthy_op, test_size = 0.25) print(train.shape)</pre>
Color	In [12]:	<pre>X_train = train[['Time', 'Acc.Front', 'Acc.vert', 'Acc.Lat', 'id', 'RSSI', 'Phase', 'Freq']] Y_train = train.Activity_Label X_test = test[['Time', 'Acc.Front', 'Acc.vert', 'Acc.Lat', 'id', 'RSSI', 'Phase', 'Freq']]</pre>
### 100 1000 00000 00000 00000 00000 00000 00000 000000		<pre>X_train.head()</pre>
Continued Cont		40747 343.45 0.40101 0.962290 -0.013684 1 -58.0 0.65348 924.25 502 82.25 1.10450 -0.266410 -0.150520 3 -58.5 1.07840 922.75 5953 348.00 1.24520 0.146980 0.054735 4 -58.0 4.88730 923.25 10519 451.75 1.26870 -0.151580 0.088944 3 -50.5 4.13560 922.75
In Table Processing Section		24690 3 40747 1 502 3 5953 3 10519 3
The NAME	In [15]:	<pre>#standardization from sklearn.preprocessing import StandardScaler X_train_stand = X_train.copy() X_test_stand = X_test.copy() num_cols = ['Time', 'Acc.Front', 'Acc.vert', 'Acc.Lat', 'id', 'RSSI', 'Phase', 'Freq'] for i in num_cols: scale = StandardScaler().fit(X_train_stand[[i]]) X_train_stand[i] = scale.transform(X_train_stand[[i]])</pre>
International Content of the Conte	In [16]:	<pre># KNN knn=KNeighborsClassifier(n_neighbors=3) knn.fit(X_train_stand,Y_train) y_pred_knn=knn.predict(X_test_stand) print("accuracy KNN= ",accuracy_score(Y_test,y_pred_knn))</pre>
4 in a future worsen. Sportly a dispe captically to silence this worsing. Ont[17] Company	In [17]:	<pre>a_index=list(range(1,11)) a=pd.Series() x=[1,2,3,4,5,6,7,8,9] for i in list(range(1,11)): model=KNeighborsClassifier(n_neighbors=i) model.fit(X_train_stand,Y_train) prediction=model.predict(X_test_stand) a=a.append(pd.Series(accuracy_score(prediction,Y_test))) plt.plot(a_index, a)</pre>
In [18]: In [18]: In=LogisticRegression()		4' in a future version. Specify a dtype explicitly to silence this warning.
<pre>stimator=('solver':('newton-cg','liblinear','lbfgs','sag')) gsc=6ridSearchCV(Ir, estimator) gsc.fit(X_train_stand,Y_train) y_gsc_pred=gsc.predict(X_test_stand) print("accuracy_gsc=",accuracy_score(Y_test,y_gsc_pred)) print(gsc.best_estimator_) C:\Users\Ganesh\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check.optimize_result(C:\Users\Ganesh\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check.optimize_result(C:\Users\Ganesh\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1): C:\Users\Ganesh\anaconda3\linear_model\sklea</pre>		0.986 - 0.984 - 0.982 - 0.980 - 0.978 - 0.976 -
Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(C:\Users\Ganesh\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(C:\Users\Ganesh\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):		<pre>estimator={'solver':('newton-cg','liblinear','lbfgs','sag')} gsc=GridSearchCV(lr,estimator) gsc.fit(X_train_stand,Y_train) y_gsc_pred=gsc.predict(X_test_stand) print("accuracy gsc= ",accuracy_score(Y_test,y_gsc_pred)) print(gsc.best_estimator_)</pre>
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.		STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(C:\Users\Ganesh\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(C:\Users\Ganesh\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
<pre>Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(accuracy gsc= 0.9019891776541422 LogisticRegression(solver='newton-cg')</pre>		<pre>Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(accuracy gsc= 0.9019891776541422</pre>
In [19]: from sklearn.ensemble import RandomForestClassifier from sklearn import svm In [20]: model = svm.SVC() #select the algorithm model.fit(X_train_stand,Y_train) # we train the algorithm with the training data and the training output prediction=model.predict(X_test_stand) #now we pass the testing data to the trained algorithm		model = svm.SVC() #select the algorithm model.fit(X_train_stand,Y_train) # we train the algorithm with the training data and the training output prediction=model.predict(X_test_stand) #now we pass the testing data to the trained algorithm
print('The accuracy of the SVM is:', accuracy_score(prediction, Y_test))#now we check the accuracy of the algorithm. #we pass the predicted output by the model and the actual output The accuracy of the SVM is: 0.9777455986586389 In [21]: rforest=RandomForestClassifier() rforest.fit(X_train_stand, Y_train) y_pred_rforest=rforest.predict(X_test_stand)	In [21]:	print('The accuracy of the SVM is:', accuracy_score(prediction, Y_test))#now we check the accuracy of the algorithm. #we pass the predicted output by the model and the actual output The accuracy of the SVM is: 0.9777455986586389 rforest=RandomForestClassifier() rforest.fit(X_train_stand, Y_train)
<pre>y_pred_rforest=rforest.predict(X_test_stand) print("accuracy Random Forest= ",accuracy_score(Y_test,y_pred_rforest)) accuracy Random Forest= 0.991921347458273 In []:</pre>	In []:	<pre>print("accuracy Random Forest= ",accuracy_score(Y_test,y_pred_rforest))</pre>