```
import numpy as np
import pandas as pd
data = pd.read_csv('/content/HousingData.csv')
data.head()
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.9
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.0
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.9
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	Na

Next steps:

Generate code with data

View recommended plots

data.columns

```
Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
       'PTRATIO', 'B', 'LSTAT', 'MEDV'],
      dtype='object')
```

data.shape

(506, 14)

data.isnull().sum()

CRIM 20 ΖN 20 **INDUS** 20 **CHAS** 20 NOX 0 RM0 20 AGE DIS 0 RAD 0 TAX **PTRATIO** 0 В 0 **LSTAT** 20 **MEDV** dtype: int64

data.dropna(inplace=True)

data.isnull().sum()

0 CRIM ΖN 0 **INDUS** CHAS 0 NOX 0 RM0 AGE DIS 0 RAD TAX 0 PTRATIO 0 LSTAT MEDV 0 dtype: int64

data.describe()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AG
count	394.000000	394.000000	394.000000	394.000000	394.000000	394.000000	394.00000
mean	3.690136	11.460660	11.000863	0.068528	0.553215	6.280015	68.93274
std	9.202423	23.954082	6.908364	0.252971	0.113112	0.697985	27.88870
min	0.006320	0.000000	0.460000	0.000000	0.389000	3.561000	2.90000
25%	0.081955	0.000000	5.130000	0.000000	0.453000	5.879250	45.47500
50%	0.268880	0.000000	8.560000	0.000000	0.538000	6.201500	77.70000
75%	3.435973	12.500000	18.100000	0.000000	0.624000	6.605500	94.25000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.00000

data.info()

<class 'pandas.core.frame.DataFrame'>

Index: 394 entries, 0 to 504
Data columns (total 14 columns):

	00-0	(-, -
#	Column	Non-Null Count	Dtype
0	CRIM	394 non-null	float64
1	ZN	394 non-null	float64
2	INDUS	394 non-null	float64
3	CHAS	394 non-null	float64
4	NOX	394 non-null	float64
5	RM	394 non-null	float64
6	AGE	394 non-null	float64
7	DIS	394 non-null	float64
8	RAD	394 non-null	int64
9	TAX	394 non-null	int64
10	PTRATIO	394 non-null	float64

11 B

394 non-null

float64

```
394 non-null
                                 float64
     12 LSTAT
     13 MEDV
                  394 non-null
                                  float64
     dtypes: float64(12), int64(2)
    memory usage: 46.2 KB
from sklearn.preprocessing import StandardScaler
# Split the data into input and output variables
X = data.drop('MEDV', axis=1)
y =data['MEDV']
# Scale the input features
scaler =StandardScaler()
X =scaler.fit_transform(X)
from sklearn.model_selection import train_test_split
# Splitthe data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
print('Training set shape:', X_train.shape, y_train.shape)
print('Testing set shape:', X_test.shape, y_test.shape)
    Training set shape: (275, 13) (275,)
    Testing set shape: (119, 13) (119,)
import tensorflow.keras as keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
# Define the model architecture
model = Sequential()
# Input layer
model.add(Dense(1, input dim=13, activation='linear'))
# Display the model summary
print(model.summary())
    Model: "sequential 4"
     Layer (type)
                                 Output Shape
                                                          Param #
     ______
     dense 12 (Dense)
                                 (None, 1)
     Total params: 14 (56.00 Byte)
     Trainable params: 14 (56.00 Byte)
    Non-trainable params: 0 (0.00 Byte)
```

None

```
# Compile the model
model.compile(optimizer = 'adam',loss = 'mean_squared_error',metrics=['mae'])
x_val=X_train
y_val=y_train
```

history = model.fit(X_train,y_train,epochs=20,batch_size=512,validation_data=(x_val

```
Epoch 1/20
Epoch 2/20
1/1 [============ ] - 0s 25ms/step - loss: 541.0932 - mae: 21.8704 -
Epoch 3/20
Epoch 4/20
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
Epoch 12/20
Epoch 13/20
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
```

```
results = model.evaluate(X test, y test)
```

Start coding or generate with AI.