Moving Towards a Sustainable Future with Scalable Organic Solar Cells

Thanmayee Mudigonda t,* , Timothy P. Bender $^{t,\downarrow,\S}$

[†]Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada, M5S3E5

[‡]Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6

§Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, Canada, M5S3E4

*Presenting Author. Email: thanmayee.mudigonda@mail.utoronto.ca

Introduction

Organic solar cells (OSCs) convert sunlight into electricity using organic molecules.

Advantages^[1]:

- Lightweight
- Flexible
- Inexpensive
- Ease of manufacture

How do slight changes in BsubPc structure affect device performance?

Can we move towards increasingly scalable OSC fabrication techniques?

Methods

Two OSC fabrication methods are explored.

1. Thermal Evaporation

R₂: Axial substitution

- Even and reproducible films with minimal impurities and defects
- Linear planar deposition of electron donor and acceptor films

and high property

2. Doctor Blade Coating

- Reduced material and energy consumption
- Mixed deposition of donor and acceptor film
- Will OSC efficiency or reproducibility suffer?

- Proportional change in voltage with peripheral substitution
- Higher currents for chlorinated BsubPcs than fluorinated BsubPcs

Doctor Blade Coating

Bulk Heterojunction (BHJ) Device Architecture

- Six Sigma analysis for process optimization
- Research in progress: chlorinated and fluorinated BsubPc acceptors

Conclusion and Future Work

- Small changes in BsubPc structure = large changes in OSC performance
- Proportional trends in voltage and current due to BsubPc axial and peripheral substitution
 - → We can customize BsubPcs to tune OSC performance

What's next?

Electron Donor Electron Acceptor

Doctor blade coated BHJ devices using chlorinated and fluorinated BsubPcs

Acknowledgements

I would like to thank Prof. Timothy Bender, and my colleagues in the Bender Lab for all of their support.

References

1] de la Torre, G.; Bottari, G.; Torres, T., Phthalocyanines and Subphthalocyanines: Perfect Partners for Fullerenes and Carbon Nanotubes in Molecular Photovoltaics. Adv. Energy Mater. 2017, 7 (10), n/a. 2] Cnops, K.; Rand, B. P.; Cheyns, D.; Verreet, B.; Empl, M. A.; Heremans, P., 8.4% Efficient Fullerene-Free Organic Solar Cells Exploiting Long-Range Exciton Energy Transfer. *Nat. Commun.* **2014,** *5*, 4406/1-4406/6.

[3] Dang, M. T.; Hirsch, L.; Wantz, G., P3HT:PCBM, Best Seller in Polymer Photovoltaic Research. Advanced Materials **2011,** 23 (31), 3597-3602.