CS 2022: DATA STRUCTURES & ALGORITHMS

Lecture 8: Graphs (Introduction & Searching)

Malaka Walpola

OUTLINE

- * Terminology
- Graph Representations
 - * Adjacency List
 - * Adjacency Matrix
- Searching in Graphs
 - * Breath First search (BFS)
 - * Depth First search (DFS)

LEARNING OUTCOMES

- * After successfully studying contents covered in this lecture, students should be able to,
 - * explain the terminology used in the graphs
 - * explain the different graph representation mechanisms and their characteristics
 - explain graph search strategies and their characteristics

TERMINOLOGY

- * Graph G = (V, E)
 - * V = set of vertices
 - $*E = set of edges \subseteq (V \times V)$
 - * |E| Number of Edges
 - $*|E| \leq |V|^2$
 - * $(u, v) \in E$: vertex v is adjacent to vertex u

Types of Graphs

- Undirected
 - * Edges are undirected
- Directed
 - * Edges are directed
- Weighted
 - * Edges have weights

TERMINOLOGY CONT...

- Directed Graphs
 - * In-degree of a vertex
 - * Out- degree of a vertex
- * Undirected/Directed Graphs
 - * Degree of a vertex
- Path Between Two Vertices
 - * Path is simple if no vertex is repeated (no circle)

TERMINOLOGY CONT...

- Path Cost of a Weighted Graph
- Vertex v is Reachable from Vertex u
 - * There is a path from u to v
- Length of a Path
 - * Number of edges in path
- Subgraph

TERMINOLOGY CONT...

- Dense
 - * Edges dense ($|E| \approx |V|^2$)
- Sparse
 - * Edges sparse ($|E| \ll |V|^2$)
- Connected/Strongly Connected
 - * There is a path between every pair of vertices
 - * $|E| \ge |V| 1$.
 - * If |E| = |V| 1, then G is a tree

GRAPH REPRESENTATION

* Adjacency Lists

- One List Per Vertex
- For u ∈ V, Adj[u] Consists of all Vertices Adjacent to u

ADJACENCY LISTS

- Space Requirement Θ(V+E)
 - * Space-efficient, when a graph is sparse
- Determining If an Edge (u,v) ∈ G Is Not Efficient.
 - * Have to search in u's adjacency list
 - ⋆ Θ(degree(u)) time
 - $*\Theta(V)$ in the worst case

GRAPH REPRESENTATION

- * Adjacency Matrices
 - * A $|V| \times |V|$ Matrix

*
$$A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

	1	2	3	4
1	0		1	
2	1	0	1	0
3	1	1	0	1
4	0 1 1 1	0	1	0

ADJACENCY MATRIX

- * Space: $\Theta(V^2)$
 - * Not memory efficient for sparse graphs
- * Time:
 - * To list all vertices adjacent to u: $\Theta(V)$
 - * To determine if $(u, v) \in E: \Theta(1)$
- Can Store Weights Instead of Bits for Weighted Graphs

SEARCHING IN GRAPHS

- Searching a Graph
 - * Systematically follow the edges of a graph to visit the vertices of the graph
 - * Used to discover the structure of a graph
- Standard Graph-Searching Algorithms
 - * Breadth-first Search (BFS)
 - * Depth-first Search (DFS)

- Expands the Frontier Between the Discovered and Undiscovered Vertices Uniformly Across the Breadth of the Frontier
 - * A vertex is "discovered" the first time it is encountered during the search
 - * A vertex is "finished" if all vertices adjacent to it have been discovered

- Colors the vertices to keep track of progress
 - * White Undiscovered
 - * Gray Discovered but not finished
 - * Black Finished

- Input: Graph G = (V, E) and source vertex s
- Output:
 - * d[v] = distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$
 - * $d[v] = \infty$ if v is not reachable from s
 - * $\pi[v]$ = u such that (u, v) is last edge on shortest path s v.
 - * u is v's predecessor
 - * Builds breadth-first tree with root s that contains all reachable vertices

```
BFS(G,s)
1. for each vertex u in V[G] - {s}
    do color[u] \leftarrow white
   d[u] \leftarrow \infty
4 \qquad \pi[u] \leftarrow \text{nil}
5 \text{ color}[s] \leftarrow \text{gray}
6 d[s] \leftarrow 0
7 \quad \pi[s] \leftarrow \text{nil}
\theta \rightarrow 0 \theta
9 enqueue (Q, s)
10 while Q \neq \Phi
11 do u \leftarrow dequeue (Q)
12
         for each v in Adj[u]
            do if color[v] = white
13
14
               then color[v] \leftarrow gray
15
                d[v] \leftarrow d[u] + 1
16
                 \pi[v] \leftarrow u
17
             enqueue (Q, v)
18
         color[u] \leftarrow black
```

white: undiscovered gray: discovered

black: finished

Q: a queue of discovered vertices

color[v]: color of v

d[v]: distance from s

to v

 $\pi[v]$: predecessor of v

Q: s 0

Q: w r 1 1

Q: t x v 2 2 2

Q: x v u 2 2 3

Q: v u y 2 3 3

Q: u y 3 3

Q: y 3

Q: Ø

ANALYSIS OF BFS

- Initialization takes O(V)
- Traversal Loop
 - * After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1)
 - ★ So, total time for queuing is O(V)
 - * The adjacency list of each vertex is scanned at most once
 - * The sum of lengths of all adjacency lists is $\Theta(E)$
- Summing up over all vertices => total running time of BFS is O(V+E), linear in the size of the adjacency list representation of graph

BREADTH-FIRST TREE

- For a graph G = (V, E) with source s, the **predecessor** subgraph of G is $G_{\pi} = (V_{\pi}, E_{\pi})$ where
 - * $V_{\pi} = \{v \in V : \pi[v] \neq \text{NIL}\} \cup \{s\}$
 - * $E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} \{s\} \}$
- * The predecessor subgraph G_{π} is a **breadth-first tree** if:
 - * V_{π} consists of the vertices reachable from s and
 - * For all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called **tree edges** $|E_{\pi}| = |V_{\pi}| 1$

BF TREE EXAMPLE

BF Tree

DEPTH-FIRST SEARCH

- * Idea
 - * Search as deep as possible first
- Mechanism
 - * Explore edges out of the most recently discovered vertex **v**
 - * When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor)

DEPTH-FIRST SEARCH

- Mechanism Cont...
 - Continue until all vertices reachable from the original source are discovered
 - * If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source

DEPTH-FIRST SEARCH

- Input: G = (V, E), No source vertex given!
- Output:
 - * 2 **timestamps** on each vertex. Integers between 1 and 2|V|.
 - * d[v] =**discovery time** (v turns from white to gray)
 - * f [v] = **finishing time** (v tuns from gray to black)
 - * $\pi[v]$: predecessor of v = u, such that v was discovered during the scan of u's adjacency list
- Uses the Same Coloring Scheme for Vertices as BFS

DEPTH-FIRST SEARCH

DFS (G)

- 1. for each vertex $u \in V[G]$
- 2. do $color[u] \leftarrow white$
- 3. $\pi[u] \leftarrow NIL$
- 4. time \leftarrow 0
- 5. for each vertex $u \in V[G]$
- 6. do if color[u] =
 white
- 7. then DFS-Visit(u)

Uses a global timestamp *time*.

DFS-Visit(u)

- 1. $color[u] \leftarrow GRAY \nabla$ White vertex u has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. for each $v \in Adj[u]$
- 5. do if color[v] = WHITE
- 6. then $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK \quad \nabla$ Blacken u; it is finished.
- 9. $time \leftarrow time + 1$
- $10.f[u] \leftarrow time$

ANALYSIS OF DFS

- * Loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit
- DFS-Visit is called once for each white vertex v∈V when it's painted gray the first time.
- Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is $\sum_{v \in V} |Adj[v]| = \Theta(E)$
- * Total running time of DFS is $\Theta(V+E)$

PARENTHESIS THEOREM

Theorem 22.7

For all *u*, *v*, exactly one of the following holds:

- 1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither u nor v is a descendant of the other.
- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.

So d[u] < d[v] < f[u] < f[v] cannot happen.

- Like parentheses:
 - OK: ()[]([])[()]
 - Not OK: ([)][(])

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f[v] < f[u]

PARENTHESIS THEOREM EXAMPLE

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

DEPTH-FIRST FOREST (TREES)

- * The Predecessor Subgraph of DFS is $G_{\pi} = (V, E_{\pi})$ where $E_{\pi} = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq NIL\}$
 - * How does it differ from that of BFS?
 - * Depth-first forest composed of several depth-first trees
 - * The edges in E_{π} are called *tree edges*
 - * Forest
 - * An acyclic graph G that may be disconnected

WHITE-PATH THEOREM

Theorem 22.9

v is a descendant of u if and only if at time d[u], there is a path $u \sim v$ consisting of only white vertices. (Except for u, which was just colored gray.)

SELF STUDYING

Reading Assignment

- * Chapter 22
 - * 22.1: Representation of Graphs
 - * 22.2: Breadth First Search
 - * 22.3: Depth First Search

REFERENCES

- [1] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 3rd Ed. Cambridge, MA, MIT Press, 2009.
- [2] Lecture slides available at http://www.cs.unc.edu/~plaisted/comp550/19-graph1.ppt

Note: Slides a modified version of [2]