Decision Support Systems Team 3

Repport
Aarhus University, Science and Technology
Lector: Christian Fischer Pedersen

March 1, 2018

Name	Study number	Signature
David Jensen	11229	
Henrik Bagger Jensen	201304157	
Ólafur Dagur Skúlason	IY11249	
Titas Urbonas	201700321	
Christian M. Lillelund	201408354	

Contents

Co	ontents		ii
1	Introduc	tion	1
2	Regressi 2.1 Mul 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6	Theory Results Conclusion Logistic Regression Theory	3 3 3 3 4 4 4
3		Conclusion	5
5	Cross Va	election	9
6 7 8		ge Methods ng Methods	11 13 15
9	Conclusi		17
	Perspect		19 21

Chapter 1: Introduction

Chapter 2: Regression

This chapter details the work of LAB exercise 3.6.2, 3.6.3, 4.6.1 and 4.6.2 from "An Introduction to Statistical Learning". It starts by recapitulating the theory behind linear regressions, both simple and multiple, then proceeds to describe the accompanied LAB exercises and conclude on their findings.

2.1 Multiple Linear Regression

2.1.1 Theory

Basic theory for simple and multiple lin regs here. From the slides or book¹.

Simple Linear Regression is used to make linear models of data. It has a response Y on the basis of a single predictor variable X. We can write it as:

$$Y = \beta_0 + \beta_1 X_1 + \epsilon_i \tag{2.1}$$

 $\beta_0 + \beta_1$ are unknown and to get a response, we must use data to estimate the coefficients. (x_1, y_1) , $(x_2, y_2), \ldots, (x_n, y_n)$ represent n observation pairs, each of which consists of a measurement of X and a measurement of Y. The drawback of this method is that only a single predictor variable is used and often have more. In cases where we want examined the relationship between multiple predictor variables we use Multiple Linear Regression. The model takes the following form:

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_n X_n + \epsilon_i \tag{2.2}$$

To obtain the estimated Coefficients in the model we use the least squares method to minimize the sum of squared residuals. We pick $\beta_0, \beta_1, ... \beta_p$ to to minimize the sum of squared residuals.

$$RSS = \sum (y - \hat{y})^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_i p)^2$$
 (2.3)

To evaluated the model we can use RSE (residual standard error). This is done by meaning and rooting the result of the RSS. The outcome of the formula is the average amount that the response will deviate from the regression line. This is also known as an estimate of the ϵ in the Standard Linear Regression formula (2.1) stated earlier in this chapter:

$$RSE = \sqrt{\frac{1}{n-2} \cdot RSS} \tag{2.4}$$

¹ [James et al.(2013) James, Witten, Hastie, and Tibshirani

2.1.2 Results

LAB 3.6.2

LAB 3.6.3

2.1.3 Conclusion

2.1.4 Logistic Regression

2.1.5 Theory

Basic theory for logistic lin regs here. From the slides or book.

2.1.6 Results

 ${\rm LAB}\ 4.6.1\ +\ 4.6.2$

2.1.7 Conclusion

4

Chapter 3: Linear Discriminant Analysis

Chapter 4: Cross Validation

Chapter 5: Subset Selection

Chapter 6: Shrinkage Methods

Chapter 7: Clustering Methods

Chapter 8: Discussion

Chapter 9: Conclusion

Chapter 10: Perspectives

Bibliography

[James et al.(2013)James, Witten, Hastie, and Tibshirani] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning, volume 103 of Springer Texts in Statistics. Springer New York, New York, NY, 2013. ISBN 9781461471387. doi: 10.1007/978-1-4614-7138-7. URL http://www-bcf.usc.edu/{~}gareth/ISL/.