The "Short" Truth-Table Method: Three Examples

Philosophy 1115 March 1, 2016

1 Example #1 — Page 66 #3

Answer. $A \rightarrow (C \vee E), B \rightarrow D \not\models (A \vee B) \rightarrow (C \rightarrow (D \vee E))$

Explanation. Assume that ' $A \to (C \lor E)$ ' is \top , ' $B \to D$ ' is \top , and ' $(A \lor B) \to (C \to (D \lor E))$ ' is \bot . In order for ' $(A \lor B) \to (C \to (D \lor E))$ ' to be \bot , both ' $A \lor B$ ' and 'C' must be \top , and both 'D' and 'E' must be \bot . This *guarantees* that the first premise is \top (since ' $A \to (C \lor E)$ ' *must*, at this point, have a \top consequent). We can also make the second premise \top , simply by making 'B' \bot . Finally, by making 'A' \top , we can ensure that the conclusion is \bot , which yields the following interpretation on which ' $A \to (C \lor E)$ ' and ' $B \to D$ ' are \top , but ' $(A \lor B) \to (C \to (D \lor E))$ ' is \bot (*i.e.*, the following *counterexample* to validity).

Therefore, by the definition of \vDash , $A \to (C \lor E)$, $B \to D \not \vDash (A \lor B) \to (C \to (D \lor E))$.

2 Example #2 (not in the text)

Answer. $A \leftrightarrow (B \lor C), B \rightarrow D, D \leftrightarrow C \vDash A \leftrightarrow D$

Explanation. Assume ' $A \leftrightarrow (B \lor C)$ ' is true, ' $B \rightarrow D$ ' is true, ' $D \leftrightarrow C$ ' is true, and ' $A \leftrightarrow D$ ' is false. There are *exactly two* ways in which ' $A \leftrightarrow D$ ' can be false, and they are as follows:

- 1. 'A' is true, and 'D' is false. In this case, in order for 'D \leftrightarrow C' to be true, 'C' must be false. And, in order for 'B \rightarrow D' to be true, 'B' must be false. This means that the *disjunction* 'B \lor C' must be false. So, in order for the biconditional 'A \leftrightarrow (B \lor C)' to be true, we must have 'A' *false* as well, which contradicts our assumption. So, in this first case, we have been forced into a *contradiction*.²
- 2. 'A' is false, and 'D' is true. In this case, in order for 'D \leftrightarrow C' to be true, 'C' must be true. But, if 'C' is true, then so is 'B \vee C'. Hence, if 'A \leftrightarrow (B \vee C)' is going to be true, then 'A' must be true, which contradicts our assumption. So, in this second (and *last*) case, we have been forced into a *contradiction*.

Therefore, it is *impossible* to make ' $A \leftrightarrow (B \lor C)$ ', ' $B \rightarrow D$ ', and ' $D \leftrightarrow C$ ' all true, but ' $A \leftrightarrow D$ ' false (at the same time). So, by the definition of \vDash , $A \leftrightarrow (B \lor C)$, $B \rightarrow D$, $D \leftrightarrow C \vDash A \leftrightarrow D$.

3 Example #3 (not in the text)

Answer. $A \rightarrow (B \& C) \models (A \rightarrow B) \& (A \rightarrow C)$

Explanation. Assume ' $A \rightarrow (B \& C)$ ' is true, and ' $(A \rightarrow B) \& (A \rightarrow C)$ ' is false. There are *exactly three* ways in which ' $(A \rightarrow B) \& (A \rightarrow C)$ ' can be false, and they are as follows:

- 1. ' $A \rightarrow B$ ' is true, and ' $A \rightarrow C$ ' is false. If ' $A \rightarrow C$ ' is false, then 'A' is true and 'C' is false. But, if 'C' is false, then so is 'B & C'. Thus, since 'A' is true and 'B & C' is false, ' $A \rightarrow (B \& C)$ ' is false *contradiction*.
- 2. ' $A \rightarrow B$ ' is false, and ' $A \rightarrow C$ ' is true. If ' $A \rightarrow B$ ' is false, then 'A' is true and 'B' is false. But, if 'B' is false, then so is 'B & C'. Thus, since 'A' is true and 'B & C' is false, ' $A \rightarrow (B \& C)$ ' is false *contradiction*.
- 3. ' $A \rightarrow B$ ' is false, and ' $A \rightarrow C$ ' is false. If ' $A \rightarrow B$ ' is false, then 'A' is true and 'B' is false. But, if 'B' is false, then so is 'B & C'. Thus, since 'A' is true and 'B & C' is false, ' $A \rightarrow (B \& C)$ ' is false *contradiction*.

Therefore, it is *impossible* to make ' $A \rightarrow (B \& C)$ ' true and ' $(A \rightarrow B) \& (A \rightarrow C)$ ' false (at the same time). So, by the definition of \models , $A \rightarrow (B \& C) \models (A \rightarrow B) \& (A \rightarrow C)$.

¹You do *not* have to show *all* of your reasoning in cases like this one, where the argument is *in*valid (*i.e.*, where \neq). I am just showing you *all* of *my* reasoning to give you more information about how these kinds of problems are solved. All you *need* to do here is report an interpretation (*i.e.*, a single-row) which invalidates the inference. But, I do recommend filling-in all of the quasi-columns to make explicit all of the calculations required.

 $^{^2}$ We *cannot*, at this point in our reasoning, infer that $A \leftrightarrow (B \lor C)$, $B \rightarrow D$, $D \leftrightarrow C \models A \leftrightarrow D$ (and, obviously, we cannot infer at this point that $A \leftrightarrow (B \lor C)$, $B \rightarrow D$, $D \leftrightarrow C \not\models A \leftrightarrow D$ either). We *must* examine *all possible cases* before we infer that an argument is *valid*.