Algebra e matematica discreta, a.a. 2020/2021,

Scuola di Scienze - Corso di laurea:

Informatica

ESERCIZIO TIPO 9

Si trovi una base dello spazio nullo $N(\mathbf{A})$ della matrice $\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 3 & 1 \end{pmatrix}$.

Poichè $N(\mathbf{A}) = N(\mathbf{U})$ per ogni forma ridotta di Gauss \mathbf{U} di \mathbf{A} , troviamo una base dello spazio nullo di una forma ridotta di Gauss per \mathbf{A} .

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 3 & 1 \end{pmatrix} \quad \xrightarrow{E_{21}(-2)} \quad \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} = \mathbf{U}$$

U è una forma ridotta di Gauss per A. Per il teorema "nullità + rango" si ha

dim
$$N(\mathbf{U}) = \text{(numero delle colonne di } \mathbf{U} - \text{rk}(\mathbf{U})) = 4 - 2 = 2.$$

Poichè

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in N(\mathbf{U}) \Longleftrightarrow \begin{cases} x_1 + 2x_2 + x_3 = 0 \\ x_3 + x_4 = 0 \end{cases}$$

scegliendo come parametri le variabili corrispondenti alle colonne libere di U (la 2^a e la 4^a) con la sostituzione all'indietro si ottiene

$$\begin{cases} x_2 &= h \\ x_4 &= t \\ x_3 &= -x_4 &= -t \\ x_1 &= -2x_2 - x_3 &= -2h - (-t) = -2h + t \end{cases}$$

Quindi

$$N(\mathbf{A}) = N(\mathbf{U}) = \left\{ \begin{pmatrix} -2h + t \\ h \\ -t \\ t \end{pmatrix} | h, t \in \mathbb{C} \right\}$$

e chiamando \mathbf{v}_1 l'elemento di $N(\mathbf{A})$ che si ottiene ponendo h=1 e t=0 e \mathbf{v}_2 l'elemento di $N(\mathbf{A})$ che si ottiene ponendo h=0 e t=1, si ha che una base di $N(\mathbf{A})$ è

$$\left\{\mathbf{v}_1 = \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}; \mathbf{v}_2 = \begin{pmatrix} 1\\0\\-1\\1 \end{pmatrix}\right\}.$$