CLIQUE is NP-complete

$$\phi = (x_1 \lor x_1 \lor x_2) \land (x_1 \lor x_2 \lor x_2) \land (x_1 \lor x_2 \lor x_2)$$

The formula is satisfiable iff the constructed graph has a k-clique.

Vertex-cover problem

If G is an undirected graph, a *vertex cover* of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size:

 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover} \}.$

VERTEX-COVER is NP-complete

$$\phi = (x_1 \lor x_1 \lor x_2) \land (x_1 \lor x_2 \lor x_2) \land (x_1 \lor x_2 \lor x_2)$$

Hamiltonian Path Problem

HAMPATH is NP-complete

- □ HAMPATH={<G,s,t>: G is a directed graph containing a path from s to t that goes through every node exactly once}
- □ Proof idea: The variable gadgets are diamond structures that can be traversed in either of 2 ways and the clause gadgets are simple nodes.

Polynomial time reduction

Connecting diamonds to nodes

FIGURE 7.51

The additional edges when clause c_j contains x_i

UHAMPATH is NP-complete

Proof idea: The reduction takes a directed graph G with nodes s and t, and construct a undirected graph G' with nodes s' and t'. A Hamiltonian path P in G

$$s \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow t$$

has a corresponding Hamiltonian path P' in G'.

Traveling salesman problem (TSP)

- Input: A graph with integer weights on the edges and a weight limit W.
- Question: does the graph have a Hamilton circuit of total wieght at most W.

Traveling salesman problem (TSP)

- ☐ TSP is NP-complete.
- Proof idea: Given a graph, construct a weighted graph G' whose nodes and edges are the same as the nodes and edges of G, with a weight of 1 on each edge, and a limit k that is equal to the number of nodes n of G.
- A Hamiltonian circuit of weight n exists in G' iff there is a Hamilton circuit in G.
 - A Hamilton circuit is a set of edges that connect the nodes into a single cycle, with each node appearing exactly once.

Subset-sum problem

- Input: given a collection of numbers togther with a target number t
- Ask: does the collection contain a subcollection that adds up to t.

	1	2	3	4		l	$ c_1 $	c_2		c_k
y_1	1	О	0	0		0	1	0		0
z_1	1	O	0	0	0.000	0	0	0		0
y_2		1	0	0		0	0	1		0
z_2		1	0	0	19 299 340	0	1	0		O
y_3			1	0		0	1	1		O
z_3			1	0		0	0	0	1000/2014	1
:					•	•	:		•	:
y_l						1	0	0		0
z_l						1	0	0		0
g_1			33.4	5657		8	1	0		0
h_1							1	0	19694036	0
g_2								1		0
h_2								1		0
:									٠	
g_k										1
h_k		360		0					-285-48-	1
t	1	1	1	1		1	3	3		3

The Problem of Independent sets

For an undirected graph, a subset I of the nodes of G is an independent set if no two nodes are connected by an edge of G

- Input: A graph G and a lower bound k
- Ask: does G have an independent set of size k.

An example

Web of reductions between NP-complete problems

Where are we now?

Location of NP-completeness

coNP

☐ A language L is in coNP if its complement is in NP.

Example:

TAUT = {: p is a tautology which is Boolean formula satisfied by every assignment}