Содержание

1	Час	Часть А.				
	1.1	Функции алгебры логики. Полиномы Жегалкина. Быстрый алгоритм построе-	3			
		ния полинома Жегалкина функции алгебры логики (с обоснованием)	3			
	1.2	Функции алгебры логики. Двойственность. Самодвойственные функции. За-				
		мкнутость класса самодвойственных функций	6			
	1.3	Функции алгебры логики. Монотонные функции. Замкнутость класса монотон-	_			
	1 4	ных функций.	7			
	1.4 1.5	Функции алгебры логики. Линейные функции. Лемма о нелинейной функции Функции алгебры логики. Полнота. Теорема Поста о полноте системы функций	7			
		алгебры логики.	8			
	1.6	Функции алгебры логики. Предполные классы. Теорема о предполных классах.	9			
	1.7	Деревья. Теорема о равносильных определениях дерева	10			
	1.8	Остовные деревья. Алгоритм построения кратчайшего остовного дерева в связ-				
	1.0	ном графе (с обоснованием)	11			
	1.9	Раскраски вершин графов. Теорема о раскраске вершин планарных графов в 5	10			
	1 10	цветов.	12			
	1.10	Алфавитные коды. Однозначность (разделимость) алфавитного кода. Алго-	1.4			
	1 11		14			
		Алфавитные коды. Теорема Маркова об алфавитных кодах	17			
		Алфавитные коды. Неравенство Макмиллана	18			
	1.13	Алфавитные коды. Префиксные коды. Существование префиксного кода с за-	19			
	1 11	данными длинами кодовых слов	20			
		Коды, обнаруживающие и исправляющие ошибки. Критерии кодов, обнаружи-	20			
		вающих и исправляющих t ошибок замещения. Функция $M_t(n)$, ее оценки	21			
	1.16	Коды, исправляющие одну ошибку. Коды Хэмминга. Оценка функции $M_1(n)$	23			
	1.17	Схемы из функциональных элементов и элементов задержки (СФЭЗ). Авто-				
		матность осуществляемых ими отображений	25			
	1.18	Схемы из функциональных элементов и элементов задержки (СФЭЗ). Модели-				
		рование автоматной функции схемой из функциональных элементов и элемен-				
		тов задержки.	26			
	1.19	Конечные автоматы. Отличимость состояний конечного автомата. Теорема Му-				
		ра. Достижимость оценки теоремы Мура.	27			
		Схемы из функциональных элементов. Сумматор, верхняя оценка его сложности.	29			
	1.21	Схемы из функциональных элементов. Вычитатель, верхняя оценка его слож-	0.1			
	1 00	ности.	31			
	1.22	Схемы из функциональных элементов (СФЭ). Умножитель. Метод Карацубы	20			
		построения умножителя, верхняя оценка его сложности	32			
2	Час	ть Б.	35			
	2.1	Функции алгебры логики. Существенность переменных. Формулы. Тождества	35			

2.2	Функции алгебры логики. Теорема о разложении функции алгебры логики по переменным. Теорема о совершенной дизъюнктивной нормальной форме	9.6
2.3	$(ДН\Phi)$. Теорема о совершенной конъюнктивной нормальной форме $(KH\Phi)$ Φ ункции алгебры логики. Полные системы. Примеры полных систем (с дока-	36
	зательством полноты).	38
2.4	Функции алгебры логики. Теорема Жегалкина о выразимости функции алгеб-	
2.5	ры логики полиномом Жегалкина	38
2.6	Функции алгебры логики. Самодвойственные функции. Лемма о несамодвой-	00
2.0	ственной функции	41
2.7	Функции алгебры логики. Монотонные функции. Лемма о немонотонной функ-	11
	ции	41
2.8	Функции алгебры логики. Базис. Теорема о числе функций в базисе в алгебре	
2.0	логики.	42
2.9	Графы. Изоморфизм графов. Связность. Формула Эйлера для степеней вершин. Теорема о соотношении между числом вершин, ребер и компонент связности в графе.	43
2 10	Деревья. Корневые деревья, упорядоченные корневые деревья. Верхняя оценка	10
2.10	числа деревьев с заданным числом ребер	44
2.11	Геометрическое представление графов. Теорема о геометрическом представле-	
	нии графов в трехмерном пространстве	45
2.12	Планарные графы. Формула Эйлера для планарных графов. Верхняя оценка числа ребер в планарном графе	45
9 12	Графы K5 и K3,3. Непланарность графов K5 и K3,3. Теорема Понтрягина-	40
2.13	Куратовского (доказательство в одну сторону)	46
2.14	Раскраски вершин графов. Теорема о раскраске вершин графа в 2 цвета (тео-	
0.15	рема Кенига)	47
2.13	Коды с минимальной избыточностью (оптимальные коды). Три леммы о свой-	45
0 16	ствах кодов с минимальной избыточностью	47
2.10	Коды с минимальной избыточностью (оптимальные коды). Алгоритм Хаффме-	4.0
0.17	на построения кода с минимальной избыточностью	49
2.17	Коды, исправляющие одну ошибку. Алгоритмы кодирования, исправления ошиб-	4.0
0 10	ки и декодирования в коде Хэмминга	49
	Линейные двоичные коды. Теорема о кодовом расстоянии линейных кодов	50
2.19	Конечные автоматы. Функционирование конечного автомата. Автоматные функ-	
	ции. Канонические уравнения и диаграмма Мура конечного автомата. Единич-	E C
9 90	ная задержка, ее автоматность	52
2.20	Схемы из функциональных элементов. Выразимость функции алгебры логики	
	схемой из функциональных элементов в базисе из конъюнкции, дизъюнкции и	۲۰
	отрицания	53

1 Часть А.

1.1 Функции алгебры логики. Полиномы Жегалкина. Быстрый алгоритм построения полинома Жегалкина функции алгебры логики (с обоснованием).

Опр. Пусть $E_2 = \{0,1\}$. Функцией алгебры логики называется произвольное отображение из E_2^n в E_2 , $n \geq 1$. Множество всех функций алгебры логики, зависящих от n переменных, обозначит $P_2^{(n)}$, а множество всех функций алгебры логики $-P_2 = \bigcup_{n \geq 1} P_2^{(n)}$.

Опр. Элементарная контюнкция, не содержащая отрицаний переменных, называется монотонной 9K, или мономом, или одночленом.

Опр. Полиномом Жегалкина длины $l, l \ge 1$, назовем сумму по модулю два l различных монотонных ЭК. Полиномом Жегалкина длины 0 назовем константу 0.

Теорема. Каждая функция $f(x_1, ..., x_n) \in P_2$ может быть единственным образом представлена в виде полинома Жегалкина P_f .

 \mathcal{A} -во. Существование. Применим полиномиальное разложение функции $f(x_1, \dots, x_n)$ по всем n переменным:

$$f(x_1,\ldots,x_n) = \bigoplus_{\sigma \in E_2^n} x_1^{\sigma_1} \cdot \cdots \cdot x_n^{\sigma_n} \cdot f(\sigma).$$

Затем пользуясь тождеством $x^{\sigma} = x \oplus \sigma \oplus 1$ везде в правой части заменим выражение $x_i^{\sigma_i}$ на выражение $x_i \oplus \sigma_i \oplus 1$. Далее по правилам коммутативности и ассоциативности & и \oplus и дистрибутивности вида $x \cdot (y \oplus z) = x \cdot y \oplus z \cdot z$ перемножим все скобки. После этого приведем подобные слагаемые по правилам $x \oplus x = x$, $x \oplus 0 = x$. В итоге получим полином Жигалкина, который представляет исходную функцию f.

Единственность. Покажем, что число полиномов Жегалкина над переменными x_1, \ldots, x_n совпадает с числом функций из $P_2^{(n)}$. Монотонных элементарных конъюнкций над переменными $x_1, \ldots x_n$ всего найдется 2^n , т.к. каждая переменная x_i , $i = \overline{1,n}$, может либо входить, либо не входить в такую монотонную ЭК. Далее, полиномов Жегалкина над переменными x_1, \ldots, x_n всего найдется 2^{2^n} , т.к. каждая из 2^n монотонных ЭК может либо входить, либо не входить в такой полином Жегалкина. Значит, учитывая то, что каждая функция f из $P_2^{(n)}$ может быть представлена в виде полинома Жегалкина, это представление единственно.

Набору $\alpha \in E_2^n$, ≥ 2 , взаимно однозначно сопоставим монотонную ЭК над переменными x_1, \ldots, x_n :

$$x^{\alpha} = \begin{cases} 1 &, \alpha = (0, \dots, 0) \\ \prod_{\alpha_i = 1} x_i &, \alpha \neq (0, \dots, 0) \end{cases}.$$

Если α пробегает по всем возможным наборам из E_2^n , то x^{α} перечисляет все возможные монотонные ЭК над x_1, \ldots, x_n .

Пусть $c_f(\alpha)$ обозначает коэффициент при мономе $x^\alpha,\ \alpha\in E_2^n,$ в полиноме Жегалкина функции $f\in P_2^{(n)}.$ Тогда

$$f(x_1,\ldots,x_n) = \bigoplus_{\alpha \in E_2^n} c_f(\alpha) \cdot x^{\alpha}.$$

Для нахождения полинома Жегалкина функции f нужно найти коэффициенты $c_f(\alpha)$ для всех $\alpha \in E_2^n$.

Вычисление коэффициентов при n = 1.

Если $f(x) \in P_2^{(1)}$, то

$$f(x) = \overline{x} \cdot f(0) \oplus x \cdot f(1) = (x \oplus 1) \cdot f(0) \oplus x \cdot f(1) =$$
$$= x \cdot f(0) \oplus f(0) \oplus x \cdot f(1) = (f(0) \oplus f(1)) \cdot x \oplus f(0).$$

Поэтому $c_f(0) = f(0), c_f(1) = f(0) \oplus f(1).$

Теорема. Если $n \ge 1$, $f(y, x_1, ..., x_n) \in P_2^{(n+1)}$, $f_a(x_1, ..., x_n) = f(a, x_1, ..., x_n)$, где $a \in E_2$, то для кажедого $\alpha \in E_2^n$ верны равенства:

$$c_f(0,\alpha_1,\ldots,\alpha_n) = c_{f_0}(\alpha),$$

$$c_f(1,\alpha_1,\ldots,\alpha_n) = c_{f_0}(\alpha) \oplus c_{f_1}(\alpha).$$

 \mathcal{A} -во. Применим полиномиальное разложение функции $f(y, x_1, \dots, x_n)$ по переменной y:

$$f(y, x_1, \dots, x_n) = \overline{y} \cdot f(0, x_1, \dots, x_n) \oplus y \cdot f(1, x_1, \dots, x_n) =$$

$$= \overline{y} \cdot f_0 \oplus y \cdot f_1 = (y \oplus 1) \cdot f_0 \oplus y \cdot f_1 =$$

$$= y \cdot f_0 \oplus f_0 \oplus y \cdot f_1 = y(f_0 \oplus f_1) \oplus f_0.$$

Но

$$f_0 = \bigoplus_{\alpha \in E_2^n} c_{f_0}(\alpha) \cdot x^{\alpha},$$

$$f_1 = \bigoplus_{\alpha \in E_2^n} c_{f_1}(\alpha) \cdot x^{\alpha}.$$

Поэтому:

$$f = y \cdot \left(\bigoplus_{\alpha \in E_2^n} c_{f_0}(\alpha) \cdot x^{\alpha} \oplus \bigoplus_{\alpha \in E_2^n} c_{f_1}(\alpha) \cdot x^{\alpha} \right) \oplus \bigoplus_{\alpha \in E_2^n} c_{f_0}(\alpha) \cdot x^{\alpha}.$$

Значит,

$$f = \bigoplus_{\alpha \in E_7^n} (c_{f_0}(\alpha) \oplus c_{f_1}(\alpha)) \cdot y \cdot x^{\alpha} \oplus \bigoplus_{\alpha \in E_7^n} c_{f_0}(\alpha) \cdot x^{\alpha}.$$

Перепишем следующим образом:

$$f = \bigoplus_{(1,\alpha)\in E_2^{n+1}} (c_{f_0}(\alpha) \oplus c_{f_1}(\alpha)) \cdot (y^1 \cdot x^\alpha) \oplus \bigoplus_{(0,\alpha)\in E_2^{n+1}} c_{f_0}(\alpha) \cdot (y^0 \cdot x^\alpha).$$

Из полученного находим:

$$c_f(0,\alpha_1,\ldots,\alpha_n) = c_{f_0}(\alpha),$$

$$c_f(1,\alpha_1,\ldots,\alpha_n) = c_{f_0}(\alpha) \oplus c_{f_1}(\alpha).$$

Пользуясь формулами предыдущей теоремы, найдем Жегалкина функции $f(x_1, x_2, x_3)$:

x_1	x_2	x_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

На шаге 1 вычисляем коэффициенты полиномов Жегалкина всех подфункций $f_{\sigma}(x_3), \ \sigma \in E_2^2,$ функции $f(x_1, x_2, x_3)$ по переменным x_1, x_2 .

x_1	x_2	x_3	f	1
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

На шаге 2, пользуясь полученными значениями на шаге 1, вычисляем коэффициенты полиномов Жегалкина всех подфункций $f_{\delta}(x_2,x_3), \ \delta \in E_2^1$, функции $f(x_1,x_2,x_3)$ по переменной x_1 :

x_1	x_2	x_3	f	1	2
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	0	1

Наконец, на шаге 3, пользуясь полученными значениями на шаге 2, вычисляем коэффициенты полиномов Жегалкина функции $f(x_1, x_2, x_3)$:

x_1	x_2	x_3	$\int f$	1	2	3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	1	0

Получаем:

$$f(x_1, x_2, x_3) = x_2 x_3 \oplus x_1 x_3 \oplus x_1 x_2.$$

1.2 Функции алгебры логики. Двойственность. Самодвойственные функции. Замкнутость класса самодвойственных функций.

Опр. Функция $f^*(x_1, \ldots, x_n) \in P_2$ называется двойственной к функции $f(x_1, \ldots, x_n) \in P_2$, если

$$f^*(x_1,\ldots,x_n) = \overline{f(\overline{x}_1,\ldots,\overline{x}_n)}.$$

Отметим, что для любой функции $f \in P_2$ верно $(f^*)^* = f$.

Опр. Функция $f(x_1, ..., x_n) \in P_2$ называется самодвойственной, если $f^*(x_1, ..., x_n) = f(x_1, ..., x_n)$. Заметим, что данное определение эквивалентно тому, что функция f на всех парах противоположных наборов принимает противоположные значения, т.е. $\forall \alpha \in E_2^n : f(\overline{\alpha}) = \overline{f(\alpha)}$. Множество всех самодвойственных функций обозначим S.

Лемма. Пусть $A \subseteq P_2$ и $I \subseteq A$. Если для любых функций $f_0(y_1, \ldots, y_m) \in A$, $f_i(x_1, \ldots, x_n) \in A$, $i = \overline{1, m}$, причем функции f_i могут зависеть несущественно от некоторых своих переменных, верно

$$f_0(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n))\in A,$$

то множество A является замкнутым классом.

 \mathcal{A} -60. Рассмотрим произвольную функцию $f \in [A]$. Она выражается некоторой формулой F над множеством A. Докажем индукцией по числу d вхождений в формулу F обозначений функций из $A \setminus I$, что $f \in A$.

- 1. *Базис индукции*: d=0. Если $F=x_i$, то $f\in A$ по условию утверждения.
- 2. Индуктивный переход: пусть любая функция, которая может быть вырождена формулой не более чем с d_0 вхождениями обозначений функции из $A \setminus I$, содержится в A. Рассмотрим функцию $f(x_1, \ldots, x_n) \in [A]$, которая выражается формулой F с $d_0 + 1$ вхождениями обозначений функций из $A \setminus I$. Тогда $f = f_0(F_1, \ldots, F_m)$, где $f_0 \in A \setminus I$, F_i формулы не более чем с d_0 вхождениями функций из $A \setminus I$. По предположению индукции $f_{F_i} \in A \Longrightarrow$

$$f(x_1,\ldots,x_n)=f_0(f_{F_1}(x_1,\ldots,x_n),\ldots,f_{F_m}(x_1,\ldots,x_n))..$$

Далее, по условию утверждения $f \in A$.

Теорема. *Множество* S *является замкнутым классом*.

<u>Д</u>-во. Применим лемму о замкнутом классе. Пусть $f_0(y_1, \ldots, y_m) \in S, \ f_i(x_1, \ldots, x_n) \in S, \ i = \overline{1, m}$. Рассмотрим функцию

$$f(x_1, \ldots, x_n) = f_0(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)).$$

Получаем:

$$\overline{f(\overline{x}_1, \dots, \overline{x}_n)} = \overline{f_0(f_1(\overline{x}_1, \dots, \overline{x}_n), \dots, f_m(\overline{x}_1, \dots, \overline{x}_n))} =$$

$$= \overline{f_0(\overline{f_1(x_1, \dots, x_n)}, \dots, \overline{f_m(x_1, \dots, x_n)})} =$$

$$= f_0(f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n)) =$$

$$= f(x_1, \dots, x_n).$$

Значит, $f \in S$.

1.3 Функции алгебры логики. Монотонные функции. Замкнутость класса монотонных функций.

Пусть $\alpha, \beta \in E_2^n$. Будем говорить, что $\alpha \leq \beta$, если $\alpha_i \leq \beta_i, \ i = \overline{1, n}$.

Опр. Функция $f(x_1, ..., x_n) \in P_2$ называется монотонной, если для любых наборов $\alpha, \beta \in E_2^n$ из $\alpha \leq \beta$ следует $f(\alpha) \leq f(\beta)$. Множество всех монотонных функций обозначим M.

Теорема. Mножество M является замкнутым классом.

<u>Д</u>-во. Применим лемму о замкнутом классе. Пусть $f_0(y_1, \ldots, y_m) \in M, \ f_i(x_1, \ldots, x_n) \in M, \ i = 1, m$. Рассмотрим функцию

$$f(x_1, \ldots, x_n) = f_0(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))...$$

Пусть $\alpha, \beta \in E_2^n$ и $\alpha \leq \beta$. Тогда:

$$f(\alpha) = f_0(f_1(\alpha), \dots, f_m(\alpha)) = f_0(\gamma).$$

$$f(\beta) = f_0(f_1(\beta), \dots, f_m(\beta)) = f_0(\delta).$$

Заметим, что $\gamma \leq \delta \implies f(\alpha) \leq f(\beta) \implies f \in M$.

1.4 Функции алгебры логики. Линейные функции. Лемма о нелинейной функции.

Опр. Функция $f(x_1, ..., x_n) \in P_2$ называется линейной, если она может быть представлена в виде:

$$f(x_1,\ldots,x_n)=c_0\oplus c_1x_1\oplus\cdots\oplus c_nx_n,$$

где коэффициенты $c_0, c_1, \dots, c_n \in E_2$. Множество всех линейных функций обозначим L.

Лемма. Если $f \notin L$, то, подставляя вместо ее переменных функции $0, 1, x, \overline{x}, y, \overline{y}$ можно получить функцию $x \cdot y$ или функцию $\overline{x \cdot y}$.

 \mathcal{A} -60. Если $f(x_1,\ldots,x_n)\not\in L$, то в ее полиноме Жегалкина найдется слагаемое ранга, не меньше двух. Не ограничивая общности, пусть в полиноме Жегалкина функции f содержится слагаемое $x_1\cdot\cdots\cdot x_k$, где $k\geq 2$. Представим полином Жегалкина функции f в виде:

$$f(x_1, \dots, x_n) = x_1 x_2 \cdot g_1(x_3, \dots, x_n) \oplus x_1 \cdot g_2(x_3, \dots, x_n) \oplus$$
$$= \bigoplus x_2 \cdot g_3(x_3, \dots, x_n) \oplus g_4(x_3, \dots, x_n),$$

где $g_1, \ldots, g_4 \in P_2$, причем $g_1 \neq 0$. Значит, найдется такой набор $\alpha \in E_2^{n-2}$, что $g_1(\alpha) = 1$. Пусть $g_2(\alpha) = a, \ g_3(\alpha) = b, \ g_4(\alpha) = c$, где $a, b, c \in E_2$. Тогда

$$f(x_1, x_2, \alpha_1, \dots, \alpha_{n-2}) = x_1 x_2 \oplus a x_1 \oplus b x_2 \oplus c.$$

Положим:

$$\varphi(x,y) = f(x \oplus b, y \oplus a, \alpha_1, \dots, \alpha_{n-2})...$$

Получаем:

$$\varphi(x,y) = (x \oplus b)(y \oplus a) \oplus a(x \oplus b) \oplus b(y \oplus a) \oplus c =$$

$$= (xy \oplus ax \oplus by \oplus ab) \oplus (ax \oplus ab) \oplus (by \oplus ab) \oplus c =$$

$$= xy \oplus (ab \oplus c).$$

1.5 Функции алгебры логики. Полнота. Теорема Поста о полноте системы функций алгебры логики.

Теорема (Поста). Пусть $A \subseteq P_2$. Множество A является полной системой тогда и только тогда, когда A не содержится ни в одном из классов T_0 , T_1 , L, S, M.

 \mathcal{A} -60. (\Longrightarrow) От противного. Пусть A является полной системой, но содержится в одном из классов $T_0,\ T_1,\ L,\ S,\ M,$ пусть, например, $A\subseteq T_0$. Тогда $[A]\subseteq [T_0]=T_0\neq P_2$. Противоречие. Значит A не содержится ни в одном из классов $T_0,\ T_1,\ L,\ S,\ M$.

 (\Leftarrow) Пусть A не содержится ни в одном из классов T_0, T_1, L, S, M . Докажем, что в этом случае A — полная система.

A не содержится в классах T_0 , T_1 , L, S, $M \Longrightarrow$ в A найдутся такие функции f_0 , f_1 , f_l , f_s , f_m , что $f_0 \not\in T_0$, $f_1 \not\in T_1$, $f_l \not\in L$, $f_s \not\in S$, $f_m \not\in M$. Отметим что функции f_0 , f_1 , f_l , f_s , f_m не обязательно различны. Покажем, что функциями над A можно выразить все функции из полной системы $\{0, 1, \overline{x}, x, x \cdot y\}$.

1. Построение констант 0 и 1.

Рассмотрим функции f_0 и f_1 . Положим $\varphi_0(x) = f_0(x, \dots, x), \ \varphi_1(x) = f_1(x, \dots, x)$. Тогда:

x	φ_0	φ_1
0	1	b
1	a	0

Теперь, если a = 1 и b = 0, то $\varphi_0(x) = 1$, $\varphi_1(x) = 0$.

Если же a=0 или b=1, то получена функция \overline{x} . Тогда по лемме о несамодвойственной функции из $f_s \in S$, подставляя вместо ее переменных функции x, \overline{x} , получаем некоторую константу $c \in E_2$, а затем $\overline{c} \in E_2$.

2. Построение отрицания \overline{x} .

По лемме о немонотонной функции из f_m , подставляя вместо ее переменных функции 0, 1, x, получаем отрицание \overline{x} .

3. Построение конъюнкции.

По лемме о нелинейной функции из f_l подставляя вместо ее переменных функции $0, 1, x, \overline{x}, y, \overline{y}$ и, возможно навешивая отрицание над функцией, получаем конъюнкцию $x \cdot y$.

1.6 Функции алгебры логики. Предполные классы. Теорема о предполных классах.

Опр. Пусть $A \subseteq P_2$. Множество A называется предполным классом, если

- 1. $[A] \neq P_2$;
- 2. $\forall f \in P_2 \setminus A : [A \cup \{f\}] = P_2$.

Утверждение. Любой предполный класс является замкнутым классом.

 \mathcal{A} -во. От противного. Пусть $A \subseteq P_2$ — предполный класс, но $[A] \neq A$. Тогда $\exists f \in [A] \setminus A$. Получаем: $[A] = [A \cup \{f\}] = P_2$. Противоречие. Значит [A] = A.

Теорема. В P_2 найдется всего пять предполных классов: T_0 , T_1 , L, S, M.

 \mathcal{A} -60. Сначала покажем, что каждый из классов T_0 , T_1 , L, S, M не содержится ни в каком из этих классов. Для этого построим таблицу, в которой строки и столбцы соответствуют этим классам, а на пересечении строки и столбца указана функция, принадлежащая классу, которым обозначена эта строка, и не принадлежащая классу, которым обозначен этот столбец:

			_	~	
	T_0	T_1	L	S	M
T_0	_	0	$x \cdot y$	0	$x \oplus y$
T_1	1	_	$x \cdot y$	1	$x \sim y$
L	\overline{x}	\overline{x}	_	0	\overline{x}
S	\overline{x}	\overline{x}	m(x, y, z)		\overline{x}
M	1	0	$x \cdot y$	0	_

где $m(x, y, z) = xy \oplus xz \oplus yz$.

Теперь докажем, что каждый из классов T_0 , T_1 , L, S, M является предполным. Например, рассмотрим класс T_0 . Тогда:

- 1. $[T_0] = T_0 \neq P_2$;
- 2. если $f \not\in T_0$, то по теореме Поста: $[T_0 \cup \{f\}] = P_2$.

Значит T_0 — предполный класс. Аналогично проводятся рассуждения для остальных классов. Наконец, докажем от противного, что других предполных классов нет. Пусть $A \subseteq P_2$ — пердполный класс, причем $A \neq T_0, T_1, L, S, M$. Значит либо A не содержится ни в одном из этих классов, либо строго содержится в каком-то из них.

Если A не содержится ни в одном из этих классов, то по теореме Поста $[A] = P_2$. Получаем противоречие с п.1 определения предполного класса.

Пусть A строго содержится в каком-то из этих классов, например, пусть $A \subseteq T_0$, $A \neq T_0$. Тогда $\exists f \in T_0 \setminus A$, откуда $[A \cup \{f\}] \subseteq T_0 \neq P_2$. Получаем противоречие с п.2 определения предполного класса.

Значит других предполных классов нет.

1.7 Деревья. Теорема о равносильных определениях дерева.

Опр. Деревом называется связный граф без циклов.

Теорема. Пусть G = (V, E) — граф с р вершинами и q ребрами. Тогда следующие утверждения равносильны:

- 1. $G \partial epeso;$
- 2. G cвязный граф $u \ q = p 1;$
- 3. G граф без циклов $u \ q = p 1$;
- 4. G граф без циклов, но при соединении любой пары несмежных вершин ребром появляется цикл;
- 5. G- связный граф, но при удалении любого ребра остается несвязный граф.
- \mathcal{A} -во. $(1 \implies 2)$ G без циклов, поэтому по соотношению для G между числом вершин p, числом ребер q и числом компонент связности s=1 получаем: 1=s=p-q. Значит, q=p-1.
- $(2\implies 3)$ Если в связном графе G найдется цикл, то удалим из G некоторое ребро e из цикла. Останется связный граф G'. По соотношению для G' между числом вершин p, числом ребер q-1 и числом компонент связности s'=1 получаем: $s'\geq p-(q-1)=(p-q)+1=2$ противоречие. Значит, G без циклов.
- $(3 \implies 4)$ По соотношению для G между числом вершин p, числом ребер q и числом компонент связности s получаем: s = p q = 1, т. е. G связный. Значит, при соединении в G любой пары несмежных вершин ребром появится цикл.
- $(4 \implies 5)$ Если G не связный, то при соединении двух вершин из разных компонент связности цикл не появится. Значит, G связный. Пусть при удалении из G некоторого ребра е остался связный граф G'. Тогда G получается из связного графа G' добавлением нового ребра e. Поэтому в G найдется цикл противоречие. Значит, при удалении из G любого ребра останется несвязный граф.
- $(5\implies 1)$ Если в G найдется цикл, то удалим из G любое ребро из цикла. Останется связный граф противоречие. Значит, G без циклов. \square

1.8 Остовные деревья. Алгоритм построения кратчайшего остовного дерева в связном графе (с обоснованием).

Опр. Остовным деревом графа называется его остовный подграф, являющийся деревом.

Значит, D — остовное дерево графа G, если выполняются три свойства:

- 1) D остовный подграф, т.е. содержит все вершины графа G;
- 2) D связный граф;
- 3) D граф без циклов.

Опр. Граф G = (V, E) называется взвешенным, если задана функция весов $w : E \to \mathbb{R}_+$, которая ставит в соответствие каждому ребру $e \in E$ неотрицательное действительное число w(e), называемое весом этого ребра e.

Опр. Пусть G = (V, E) — взвешенный связный граф с функцией весов w и D = (V, E') — его остовное дерево, $E' \subseteq E$. Тогда весом w(D) дерева D называется сумма весов всех его ребер, m.e. $w(D) = \sum_{e \in E'} w(e)$.

Опр. Остовное дерево D^* связного графа G называется кратчайшим, если его вес $w(D^*)$ является наименьшим среди весов всех остовных деревьев графа G.

Алгоритм построения кратчайшего остовного дерева.

- **1.** Положить $H_1 = (V_1, E_1)$, где $V_1 = \{v\}$, $v \in V$ произвольная вершина, $E_1 = \emptyset$.
- **2.** Для всех i = 1, ..., p-1 повторить: выбрать произвольное ребро $e_i \in E$ наименьшего веса в множестве $\{e = (v, w) \in E : v \in V_i, w \in V \setminus V_i\}$, и положить $H_{i+1} = (V_i \cup \{w_i\}, E_i \cup \{e_i\})$.
- **3.** Положить $D^* = H_p$.

Теорема. Предложенный выше алгоритм для заданного графа и для заданной функции весов w находит какое-то кратчайшее дерево D^* графа G.

 \mathcal{A} -во. Пусть алгоритм строит граф $D^* = (V, E^*), E^* \subseteq E$.

- **1.** Сначала покажем, что граф D^* остовное дерево графа G. Действительно, начинаем с дерева H_1 , состоящего из одной вершины. На каждом шаге добавляем одну вершину и одно ребро, получая дерево H_{i+1} , $i=1,\ldots,p-1$. Дерево $H_p=D^*$ содержит p вершин, поэтому является остовным.
- **2.** Теперь покажем, что граф D^* кратчайшее остовное дерево графа G. Пусть $D' = (V, E'), E' \subseteq E$ какое-то кратчайшее остовное дерево графа G. Пусть при построении дерева D^* ребра добавлялись в следующем порядке: $e_1, e_2, \ldots, e_{p-1}$.

Пусть k — такое число, $1 \le k \le p$, что ребра e_1, \ldots, e_{k-1} принадлежит дереву D', а ребро e_k не принадлежит дереву D'. Если k = p, то $D^* = D'$ и все доказано.

Пусть k < p. Рассмотрим дерево $H_k = (V_k, E_k)$, $E_k = \{e_1, \dots, e_{k-1}\} \subseteq E$, полученное при применении алгоритма. Пусть $e_k = (v_k, w_k)$, где $v_k \in V_k$, $w_k \in V \setminus V_k$. Заметим, что H_k является поддеревом дерева D'. В дереве D' найдется простая (v_k, w_k) -цепь P. Пусть $e' = (v', w') \in E'$ — первое такое ребро этой цепи при движении от вершины v_k к вершине w_k , что $v' \in V_k$, $w' \in V \setminus V_k$. При этом $e' \neq e_k$. Отметим, что $w(e_k) \leq w(e')$, т.к. иначе при применении алгоритма к дереву H_k было бы добавлено ребро e', а не ребро e_k .

Рассмотрим подграф $G' = D' + e_k$. Граф G' содержит ровно один цикл $C = v_k P_1 v' e' w' P_2 w_k e_k v_k$,

где P_1 и P_2 — части, на которых ребро e' разбивает цепь P, причем $v_k P_1 v'$ — проста цепь в дереве H_k . Значит, подграф H = G' - e' является связным и не содержит циклов.

Итак, H — остовный связный подграф без циклов. Значит, H — остовное дерево графа G. Кроме того, $w(H) = w(D') - w(e') + w(e_k) \le w(D')$. Но D' — кратчайшее дерево, поэтому w(H) = w(D').

Таким образом, построили кратчайшее остовное дерево H, у которого с остовным деревом D^* совпадает уже не менее k первых добавляемых по алгоритму ребер. Повторим рассуждения, положив D' = H. Через конечное число повторов получим, что D^* — кратчайшее остовное дерево графа G.

1.9 Раскраски вершин графов. Теорема о раскраске вершин планарных графов в 5 цветов.

Опр. Раскраска вершин графа G = (V, E) в k цветов — отображение $\rho : V \to \{1, 2, \dots, k\}$, в котором из $(v, w) \in E$ следует $\rho(v) \neq \rho(w)$. Т.е. любые смежные вершины обязаны получить разные цвета.

Опр. Хроматическое число $\chi(G)$ графа G — наименьшее число цветов, в которое можно раскрасить его вершины. Для любого графа G = (V, E) верно соотношение $\chi(G) \leq |V|$.

Теорема. Вершины любого планарного графа G можно раскрасить не более чем в пять цветов.

 \mathcal{A} -во. Проведем индукцию по числу p вершин в графе G.

Базис индукции. При p = 1 утверждение верно.

Индуктивный переход. Пусть вершины любого планарного графа менее чем с p вершинами можно раскрасить в 5 цветов. Рассмотрим планарный граф G = (V, E), где |V| = p. Пусть задана его укладка на плоскости $\Phi(G)$. По доказанному свойству в графе G найдется вершина $v_0 \in V$, что $d_G(v_0) < 5$.

Пусть $v_1, \ldots, v_m \in V$ — все смежные с v_0 вершины в графе $G, m \leq 5$, и пусть в укладке $\Phi(G)$ ребра $(v_0, v_1), \ldots, (v_0, v_m)$ расположены по часовой стрелке в этом порядке.

Рассмотрим планарный граф $G' = G - v_0$. Для него верно предположение индукции, поэтому найдется раскраска ρ его вершин в 5 цветов. Перенесем эту раскраску ρ на вершины графа G, при этом вершина v_0 останется неокрашенной. Покажем, что вершину v_0 можно покрасить,

не добавляя новый.

- **1.** Если $m \leq 4$ или m = 5, но среди цветов вершин v_1, \ldots, v_m не встречается какой-то цвет, то припишем вершине v_0 цвет, отсутствующий в вершинах v_1, \ldots, v_m цвет.
- **2.** Пусть теперь m=5 и среди цветов вершин v_1, \ldots, v_m встречаются все 5 цветов, причем вершина v_i окрашена в цвет $i, i=\overline{1,5}$.

Пусть $A_{1,3}(v_1)$ — множество всех тех вершин графа G, в которые найдутся пути из вершины v_1 по вершинам только цветов 1 и 3.

2.1 Если $v_3 \notin A_{1,3}(v_1)$, то все вершины из $A_{1,3}$ перекрасим: если вершина окрашена в цвет 1, то ее покрасим в цвет 3; если вершина окрашена в цвет 3, то ее покрасим в цвет 1.

Тогда вершина v_1 приобретет цвет 3. А значит, вершине v_0 можно приписать цвет 1.

2.2 Пусть $v_3 \in A_{1,3}$. Это означает, что в графе G найдется цикл C, содержащий вершину v_0 , и все другие вершины цикла C окрашены только в цвета 1 или 3, причем вершины v_2 и v_4 лежат по разные стороны от этого цикла.

Пусть $A_{2,4}(v_2)$ — множество всех тех вершин графа G, в которые найдутся пути из вершины v_2 по вершинам только цветов 2 и 4. Теперь $v_4 \notin A_{2,4}(v_2)$, и все вершины из $A_{2,4}(v_2)$ перекрасим: если вершина окрашена в цвет 2, то ее покрасим в цвет 4; если вершина окрашена в цвет 4, то ее покрасим в цвет 2. Тогда вершина v_2 приобретет цвет 4. А значит, вершине v_0 можно приписать цвет 2.

1.10 Алфавитные коды. Однозначность (разделимость) алфавитного кода. Алгоритм Маркова распознавания однозначности алфавитного кода (с обоснованием).

Опр. Пусть заданы два алфавита A и B. Алфавит A назовем исходным, алфавит B — кодирующим. Кодированием (из A в B) называется произвольное отображение $\varphi: A^* \to B^*$. При кодировании φ любое слово $\alpha \in A^*$ называется сообщением, а слово $\beta = \varphi(\alpha) \in B^*$ — его кодом.

Опр. Кодирование $\varphi : A^* \to B^*$ называется однозначным (или разделимым), если для любых слов $\alpha_1, \alpha_2 \in A^*$ из $\alpha_1 \neq \alpha_2$ следует $\varphi(\alpha_1) \neq \varphi(\alpha_2)$.

Опр. Если $\varphi: A^* \to B^* - \kappa o \partial u posahue$, то множество кодов всех слов из A^* назовем кодом C_{φ} , т.е. $C_{\varphi} = \{\varphi(\alpha) : \alpha \in A^*\} \subseteq B^*$.

Опр. Пусть $A = \{a_1, \ldots, a_r\}$ — исходный алфавит, $B = \{b_1, \ldots, b_q\}$ — кодирующий алфавит. Кодирование $\varphi : A^* \to B^*$ называется алфавитным, если оно описывается следующей схемой:

1. заданы различные непустые коды букв алфавита A:

$$\varphi(a_1) = B_1 \in B^*,$$

$$\dots$$

$$\varphi(a_r) = B_r \in B^*.$$

2. слова в алфавите A кодируются побуквенно, т.е. если $\alpha \in A$, $\alpha = a_{i_1}a_{i_2}\dots a_{i_m}$, где $m \geq 2$, то

$$\varphi(\alpha) = \varphi(a_{i_1})\varphi(a_{i_2})\dots\varphi(a_{i_m}) = B_{i_1}B_{i_2}\dots B_{i_m}.$$

Алфавитный код C_{φ} назовем однозначны (или разделимым), если кодирование φ — разделимо.

Пусть $C_{\varphi}=\{B_1,\ldots,B_r\}\subseteq B^*$ — алфавитный код. Построим орграф $G_{\varphi}=(V_{\varphi},E_{\varphi})$ для кода $C_{\varphi}.$

1. Множество вершин $V_{\varphi} \subseteq B^*$ состоит из пустого слова Λ и всех тех слов в алфавите B, котопый являются собственным префиксом некоторого кодоваого слова и одновременно собственным суффиксом некоторого кодового слова и не являются никаким кодовым словом, т.е.

$$V_{\varphi} = \{\lambda\} \cup \{\beta \in B^* : 1\} \exists B_i \in C_{\varphi} : B_i = \beta\beta', \ \beta' \neq \Lambda;$$

2)
$$\exists B_j \in C_{\varphi} : B_j = \beta''\beta, \ \beta'' \neq \Lambda;$$

3)
$$\beta \neq B_k, \ k = \overline{1, r} \}.$$

2. Опишем множество дуг E_{φ} : если $\beta', \beta'' \in V_{\varphi}$, то $(\beta', \beta'') \in E_{\varphi}$, если найдется такое кодовое слово B_i и такая последовательность D кодовых слов B_{i_1}, \ldots, B_{i_k} , что

$$B_i = \beta' B_{i_1} \dots B_{i_k} \beta'',$$

причем если $\beta' = \beta'' = \Lambda$, то $k \ge 2$; если $\beta' \ne \Lambda$ или $\beta'' \ne \Lambda$, то $k \ge 1$; если $\beta'\beta'' \ne \Lambda$, то $k \ge 0$. При этом дуге $(\beta', \beta'') \in E_{\varphi}$ приписываем пометку $D = B_{i_1} \dots B_{i_k}$.

Теорема. Алфавитный код C_{φ} является разделимым тогда и только тогда, когда в графе G_{φ} отсутствуют ориентированные циклы (в том числе, и петли), проходящие через вершину Λ .

 \mathcal{A} -во. Пусть $C_{\varphi}=\{B_1,\ldots,B_r\}\subseteq B^*$ — алфавитный код и G_{φ} — граф для кода C_{φ} .

1. Пусть код C_{φ} не является разделимым. Значит, найдется слово $\beta \in B^*$ наименьшей длины, которое допускает не менее двух декодирований. Пусть $\beta = B_1'B_2'\dots B_{t_1}'$ — разбиение кода β на кодовые слова в 1-м декодировании и $\beta = B_1''B_2''\dots B_{t_2}''$ — разбиение слова β на кодовые слова во 2-м декодировании.

Обозначим: $l_i' = |B_i'|, i = \overline{1, t_1}$ и $l_i'' = |B_i''|, i = \overline{1, t_2}$. Пусть, для определенности, $l_1'' > l_1'$.

Найдем такое число k_1 , что

$$\sum_{i=1}^{k_1-1} l_i' < l_1'', \quad \sum_{i=1}^{k_1} l_i' > l_1''.$$

Заметим, что равенства здесь быть не может, т.к. в этом случае слово β можно было бы уменьшить, что не так. Тогда $B_1'' = B_1' \dots B_{k_1-1}' \beta_1$ для некоторого слова $\beta_1 \in B^*$, $\beta_1 \neq \Lambda$. Отметим, что слово β_1 является собственным префиксом кодового слова B_{k_1}' и собственным суффиксом кодового слова B_1'' , а также не является никаким кодовым словом.

Значит, в графе G_{φ} присутствует дуга $e_1 = (\Lambda, \beta_1) \in E_{\varphi}$, которой приписана пометка $D_1 = B'_1 \dots B'_{k_1-1}$.

Теперь найдем такое число k_2 , что

$$|\beta_1| + \sum_{i=2}^{k_2-1} l_i'' < l_{k_1}', \quad |\beta_1| + \sum_{i=1}^{k_2} l_i'' > l_{k_1}'.$$

Снова равенства быть не может, т.к. в этом случае слово β можно было бы уменьшить, что не так. Тогда $B'_{k_1} = \beta_1 B''_2 \dots B_{k_2-1} \beta_2$ для некоторого слова $\beta_2 \in B^*$, $\beta_2 \neq \lambda$. Слово β_2 является собственным префиксом кодового слова B''_{k_2} и собственным суффиксом кодового слова B'_{k_1} , а также не является никаким кодовым словом.

Значит, в графе G_{φ} присутствует дуга $e_2=(\beta_1,\beta_2)\in E_{\varphi}$, которой приписана пометка $D_2=B_2''\dots B_{k_2-1}''$.

Далее найдем такое число k_3 , что

$$|\beta_2| + \sum_{i=k_1+1}^{k_3-1} l'_i < l''_{k_2}, \quad |\beta_2| + \sum_{i=k_1+1}^{k_3} l'_i > l''_{k_2}.$$

Равенства быть не может, т.к. в этом случае слово β можно было бы уменьшить, что не так. Тогда $B_{k_3}'' = \beta_2 B_{k_1+1}' \dots B_{k_3-1}' \beta_3$ для некоторого слова $\beta_3 \in B^*$, $\beta_3 \neq \Lambda$.

Значит, в графе G_{φ} присутствует дуга $e_3=(\beta_2,\beta_3)\in E_{\varphi}$, которой приписана пометка $D_3=B'_{k_1+1}\dots B'_{k_3-1}$. И т.д.

Через конечное число число таких шагов достигнем окончания слова β . Значит в графе G_{φ} присутствует дуга $e_{m+1}=(\beta_m,\Lambda)\in E_{\varphi}$ для некоторого слова $\beta_m\in B^*,\ \beta_m\neq \Lambda$. Этой дуге приписана пометка $B_{m+1}=B^o_{k_{m-1}+1}\dots B^o_{k_m-1}$, где $o=\{',''\}$ в зависимости от четности числа m.

Таким образом, в графе G_{φ} найдется ориентированный замкнутый путь:

$$P = \Lambda, e_1, \beta_1, e_2, \beta_2, \dots, \beta_m, e_{m+1}, \Lambda,$$

в котором вершина Λ не встречается среди вершин β_1, \ldots, β_m .

Из этого пути P можно выделить ориентированный цикл (в частности, петлю), проходящий через вершину Λ .

2. пусть теперь в графе G_{φ} найдется ориентированные цикл (в частности, петля)

$$P = \Lambda, e_1, \beta_1, e_2, \beta_2, \dots, \beta_m, e_{m+1}, \Lambda,$$

проходящий через вершину Λ . Пусть дуге e_i приписана пометка $D_i = B_{i_1}, \ldots, B_{i_{k_i}}, i = \overline{1, m+1}$. Покажем, что слово

$$\beta = D_1 \beta_1 D_2 \beta_2 \dots \beta_m D_{m+1} \in B^*$$

допускает не менее двух декодирований. Пусть, для определенности, m — четное. Первое декодирование:

$$D_1\beta_1D_2\beta_2D_3\beta_3D_4\dots D_m\beta_mD_{m+1}.$$

Второе декодирование:

$$D_1\beta_1D_2\beta_2D_3\beta_3D_4\beta_4\ldots\beta_{m-1}D_m\beta_mD_{m+1}$$
.

Случай нечетного m разбирается аналогично. Значит, код C_{φ} не является разделимым.

1.11 Алфавитные коды. Теорема Маркова об алфавитных кодах.

Теорема. Пусть A-uсходный алфавит, $C_{\varphi}=\{B_1,\ldots,B_r\}\subseteq B^*-a$ лфавитный код, где $|B_i|=l_i,\ i=\overline{1,r}.$ Пусть $L=\sum\limits_{i=1}^r l_i$ и w обозначает наибольшее число кодовых слов (возможно, с повторами), соединение которых является подслово какого-то кодового слова. Тогда если код C_{φ} не является разделимым, то найдутся такие слова $\alpha_1,\alpha_2\in A^*,\ \alpha_1\neq\alpha_2,\ \varphi(\alpha_1)\neq\varphi(\alpha_2),\ что$

$$|\alpha_1|, |\alpha_2| \le \left| \frac{(L-r+2)(w+1)}{2} \right|,$$

 $r\partial e \ [a]$ обозначает целую часть числа a.

 \mathcal{A} -60. Код C_{φ} не является разделимым, значит, в графе G_{φ} найдется ориентированный цикл (в частности, петля)

$$P = \Lambda, e_1, \beta_1, e_2, \beta_3, \dots, \beta_m, e_{m+1}, \Lambda,$$

проходящий через вершину Λ . Пусть дуге e_i приписана пометка $D_i = B_{i_1} \dots B_{i_{k_i}}, \ i = \overline{1,m+1}$. Можно считать, что P — петля или простой цикл, поэтому слова β_1, \dots, β_m — различны. Каждое слово β_i является, в частности, собственным префиксом какого-то кодового слова, поэтому

$$m \le \sum_{i=1}^{r} (l_i - 1) = L - r.$$

Рассмотрим слово

$$\beta = D_1 \beta_1 D_2 \beta_2 \dots \beta_m D_{m+1} \in B^*,$$

которое допускает не менее двух декодирований. Пусть $\alpha_1, \alpha_2 \in A^*, \ \alpha_1 \neq \alpha_2$ — два декодирования слова β , т.е. $\beta = \varphi(\alpha_1) = \varphi(\alpha_2)$. Слова β_1, \ldots, β_m разбивают слово β на m+1 частей: D_1, \ldots, D_{m+1} . Рассмотрим k пар частей:

$$(D_1, D_2), (D_3, D_4), \ldots, (D_{2k-1}, D_{\kappa}),$$

где $k = \left\lfloor \frac{m+1}{2} \right\rfloor$. Для каждого $i = 1, \dots, k$ слова

$$\beta_{i}' = \overbrace{\beta_{2i-2}D_{2i-1}\beta_{2i-1}}^{1} \overbrace{D_{2i}}^{\leq w},$$

$$\beta_{i}'' = \underbrace{D_{2i-1}}_{\leq w} \underbrace{\beta_{2i-1}D_{2i}\beta_{2i}}_{1},$$

разбиваются не более, чем на w+1, кодовых слов. Значит, каждая пара (D_{2i-1}, D_{2i}) вносит не более чем w+1 кодовых слов в каждое из декодирований слова β .

Если m+1 — нечетно, то останется еще последовательность D_{m+1} , которая также вносит не более w+1 кодовых слов в каждое из декодирований слова β . Значит

$$|\alpha_1|, |\alpha_2| \le \frac{m+2}{2}(w+1) \le \frac{(L-r+2)(w+1)}{2}.$$

Из того, что $|\alpha_1|, |\alpha_2|$ — целые числа, получаем утверждение теоремы.

1.12 Алфавитные коды. Неравенство Макмиллана.

Теорема (Неравенство Макимллана). Пусть $C_{\varphi} = \{B_1, \ldots, B_r\}$ — алфавитный код в кодирующем алфавите $B, |B| = q, u |B_i| = l_i, i = \overline{1,r}$. Если код C_{φ} — разделим, то верно неравенство:

$$\sum_{i=1}^{r} \frac{1}{q^{l_i}} \le 1.$$

Д-60. Пусть n ≥ 1. Рассмотрим выражение:

$$\left(\sum_{i=1}^r \frac{1}{q^{l_i}}\right)^n.$$

Получаем:

$$\left(\sum_{i=1}^{r} \frac{1}{q^{l_i}}\right)^n = \left(\sum_{i_1=1}^{r} \frac{1}{q^{l_{i_1}}}\right) \cdot \left(\sum_{i_2=1}^{r} \frac{1}{q^{l_{i_2}}}\right) \cdot \dots \cdot \left(\sum_{i_n=1}^{r} \frac{1}{q^{l_{i_n}}}\right) =$$

$$= \sum_{i_1=1}^{r} \sum_{i_2=1}^{r} \dots \sum_{i_n=1}^{r} \frac{1}{q^{l_{i_1}+l_{i_2}+\dots+l_{i_n}}} = \sum_{k=1}^{n \cdot l_{\max}} \frac{c_k}{q^k},$$

где $l_{\max} = \max_{1 \le i \le r} l_i$ и c_k равно числу таких наборов (i_1, \ldots, i_n) , что $l_{i_1} + \cdots + l_{i_k} = k$.

Лемма. Если C_{φ} — разделимый алфавитный код, то $c_k \leq q^k$.

Д-во. Каждому набору (i_1,\ldots,i_n) соответствует слово $\alpha=a_{i_1}\ldots a_{i_n}\in A^*$. Далее:

$$\varphi(\alpha) = \varphi(a_{i_1} \dots a_{i_n}) = B_{i_1} \dots B_{i_n} = \beta,$$

причем $|\beta| = l_{i_1} + \dots + l_{i_n} = k$. Но код C_{φ} — разделим, поэтому если $\beta \in B^*$, то найдется не более одного такого слова $\alpha \in A^*$, что $\varphi(\alpha) = \beta$, Поэтому любому слову $\beta \in B^*$, $|\beta| = k$, соответствует не более одного такого слова $\alpha = a_{i_1} \dots a_{i_n} \in A^*$, что $\beta = \varphi(\alpha)$. А значит, число таких наборов (i_1, \dots, i_n) , что $l_{i_1} + \dots + l_{i_n} = k$, не превосходит числа слов длины k в алфавите B, т.е. $c_k \leq q^k$.

Итак,

$$\left(\sum_{i=1}^r \frac{1}{q^{l_i}}\right)^n = \sum_{k=1}^{n \cdot l_{\text{max}}} \frac{c_k}{q_k} \le \sum_{k=1}^{n \cdot l_{\text{max}}} 1 \le n \cdot l_{\text{max}},$$

или

$$\sum_{i=1}^{r} \frac{1}{q_{l_i}} \le \sqrt[n]{n \cdot l_{\max}}.$$

Данное неравенство выполняется для любого $n \ge 1$. Переходя к пределу при $n \to \infty$, получаем:

$$\sum_{i=1}^{r} \frac{1}{q^{l_i}} \le 1.$$

1.13 Алфавитные коды. Префиксные коды. Существование префиксного кода с заданными длинами кодовых слов.

Опр. Алфавитный код $C = \{B_1, \dots, B_r\} \subseteq B^*$ называется префиксным, если никакое его кодовое слово не является префиксом никакого другого его кодового слова.

Утверждение. Любой префиксный алфавитный код разделим.

 \mathcal{A} -во. Пусть $C = \{B_1, \dots, B_r\} \subseteq B^*$ — префиксный алфавитный код. Рассмотрим произвольное слово $\beta \in B^*$.

Пусть $\beta = B_{i_1}\beta_1$ для некоторого кодового слова $B_{i_1} \in C$ и некоторого слова $\beta_1 \in B^*$. Отметим, что кодовое слово B_{i_1} (если оно существует) находится однозначно. Далее повторим рассуждения слова $\beta_1 \in B^*$. В итоге либо однозначно декодируем слово β , либо на каком-то шаге не найдем подходящее кодовое слово, а значит, слово β не допускает декодирования. \square

Теорема. Пусть q, l_1, \ldots, l_r — такие натуральные числа, что выполняется неравенство:

$$\sum_{i=1}^{r} \frac{1}{q^{l_i}} \le 1.$$

Тогда существует такое префиксный код $C = \{B_1, \ldots, B_r\}$ в любом кодирующем алфавите из q букв, что $|B_i| = l_i$, $i = \overline{1, r}$.

 \mathcal{A} -60. Пусть m_1, \ldots, m_k — все различные числа среди чисел l_1, \ldots, l_r , причем чисел m_i среди l_1, \ldots, l_r ровно r_i . Отметим, что $r_1 + \cdots + r_k = r$. Значит

$$\sum_{i=1}^{k} \frac{r_j}{q^{m_j}} \le 1.$$

Пусть для определенности $m_1 < m_2 < \dots < m_k$. Тогда выполняется система неравенств:

$$\begin{cases} \frac{r_1}{q^{m_1}} \leq 1, \\ \frac{r_1}{q^{m_1}} + \frac{r_2}{q^{m_2}} \leq 1, \\ \frac{r_1}{q^{m_1}} + \frac{r_2}{q^{m_2}} + \frac{r_3}{q^{m_3}} \leq 1, \\ \dots \\ \frac{r_1}{q^{m_1}} + \frac{r_2}{q^{m_2}} + \dots + \frac{r_k}{q^{m_k}} \leq 1, \end{cases}$$

откуда

$$\begin{cases} r_1 \leq q^{m_1}, \\ r_2 \leq q^{m_2} - r_1 q^{m_2 - m_1}, \\ r_3 \leq q^{m_3} - r_2 q^{m_3 - m_2} - r_1 q^{m_3 - m_1}, \\ \dots \\ r_k \leq q^{m_k} - r_{k-1} q^{m_k - m_{k-1}} - \dots - r_1 q^{m_k - m_1}. \end{cases}$$

Итак, $r_1 \leq q^{m_1}$. Выберем r_1 различных слов B_1, \ldots, B_{r_1} длины m_1 в алфавите B. Всего различных слов длины m_1 в алфавите B найдется q^{m_1} . Из $r_1 \leq q^{m_1}$ следует, что r_1 различных

слов длины m_1 в алфавите B можно найти. Из дальнейшего рассмотрения исключим все слова в алфавите B с префиксами B_1, \ldots, B_{r_1} .

Теперь, $r_2 \leq q^{m_2} - r_1 q^{m_2 - m_1}$. Выберем r_2 различных слов $B_{r_1 + 1}, \ldots, B_{r_1 + r_2}$ длины m_2 в алфавите B, не начинающихся с B_1, \ldots, B_{r_1} . Всего различных слов длины m_2 в алфавите B найдется q^{m_2} . Из них содержат одно из слов B_1, \ldots, B_{r_1} как префикс в точности $r_1 q^{m_2 - m_1}$ слов. Но $r_2 \leq q^{m_2} - r_1 q^{m_2 - m_1}$, поэтому r_2 различных слов длины m_2 с таким условием можно найти. Из дальнейшего рассмотрения исключим все слова в алфавите B с префиксами $B_1, \ldots, B_{r_1}, B_{r_1 + 1}, \ldots, B_{r_1 + r_2}$.

Повторив эти рассуждения k раз, получим слова:

$$B_1, \ldots, B_{r_1}, B_{r_1+1}, \ldots, B_{r_1+r_2}, \ldots, B_{r_1+r_2+\cdots+r_k}.$$

По построению ни одно из этих слов не является префиксом никакого другого их этих слов. Поэтому эти слова образуют искомый префиксный (а значит, и разделимый) алфавитный код.

1.14 Коды с минимальной избыточностью (оптимальные коды). Теорема редукции.

Опр. Пусть $A = \{a_1, \ldots, a_r\}$ — исходный алфавит и B — кодирующий алфавит. Пусть $P = (p_1, \ldots, p_r)$ — набор частот появления букв исходного алфавита, где

1. $p_i \in \mathbb{R}_+$;

$$2. \sum_{i=1}^{r} = 1.$$

Пусть $C_{\varphi} = \{B_1, \dots, B_r\}$ — алфавитный код, $|B_i| = l_i$. Стоимостью (или избыточностью) кода C_{φ} назовем величину

$$c(\varphi) = \sum_{i=1}^{r} p_i l_i.$$

Опр. Однозначный код C_{φ^*} назовем оптимальным (или кодом с минимальной избыточностью) (при заданных A, B, B), если

$$c(\varphi^*) = \inf_{\varphi} c(\varphi),$$

где инфинум берется по всем однозначным алфавитным кодам.

Лемма. Пусть $B = \{0,1\}$ — кодирующий алфавит, заданы два исходных алфавита A, A' и соответствующие наборы частот P, P' и алфавитные коды C_{φ} , $C_{\varphi'}$:

$$A = \{a_1, \dots, a_{r-1}, a_r\}, \qquad A' = \{a_1, \dots, a_{r-1}, a', a''\},$$

$$P = (p_1, \dots, p_{r-1}, p_r), \qquad P' = (p_1, \dots, p_{r-1}, p', p''),$$

$$C_{\varphi} = \{B_1, \dots, B_{r-1}, B_r\}, \qquad C_{\varphi'} = \{B_1, \dots, B_{r-1}, B_r0, B_r1\},$$

где $r \geq 2$. Тогда если один из этих кодом префиксный, то и другой префиксный, причем $c(\varphi') = c(\varphi) + p_r$.

Теорема. Пусть $B = \{0,1\}$ — кодирующий алфавит, заданы два исходных алфавита A, A' и соответствующие наборы частот P, P' и алфавитные коды C_{φ} , $C_{\varphi'}$:

$$A = \{a_1, \dots, a_{r-1}, a_r\}, \qquad A' = \{a_1, \dots, a_{r-1}, a', a''\},$$

$$P = (p_1, \dots, p_{r-1}, p_r), \qquad P' = (p_1, \dots, p_{r-1}, p', p''),$$

$$C_{\varphi} = \{B_1, \dots, B_{r-1}, B_r\}, \qquad C_{\varphi'} = \{B_1, \dots, B_{r-1}, B_r0, B_r1\},$$

 $r\partial e \ r \geq 2$. Тогда:

- 1. если $C_{\varphi'}$ оптимальный префиксный код, то и C_{φ} оптимальный префиксный код;
- 2. Если C_{φ} оптимальный префиксный код u

$$p_1 \ge p_2 \cdots \ge p_{r-1} \ge p' \ge p'',$$

то и $C_{\varphi'}$ — оптимальный префиксный код.

 \mathcal{A} -60. **1.** Пусть $C_{\varphi'}$ — оптимальный префиксный код. Предположим, что код C_{φ} не является оптимальным. Значит, найдется оптимальный префиксный код $C_{\varphi_1} = \{D_1, \dots, D_{r-1}, D_r\}$. Отметим, что $c(\varphi_1) < c(\varphi)$. Рассмотрим префиксный код $C_{\varphi'_1} = \{D_1, \dots, D_{r-1}, D_r0, D_r1\}$. Получаем:

$$c(\varphi_1') - c(\varphi') = (c(\varphi_1) + p_r) - (c(\varphi) + p_r) = c(\varphi_1) - c(\varphi) < 0.$$

Значит, $c(\varphi_1') < c(\varphi')$, чего не может быть, т.к. $C_{\varphi'}$ — оптимальный код. Следовательно, код C_{φ} — оптимальный.

2. Пусть теперь C_{φ} — оптимальный префиксный код и $p_1 \geq p_2 \geq \cdots \geq p_{r-1} \geq p' \geq p''$. Предположим, что код $C_{\varphi'}$ — не является оптимальным.

Значит, найдется оптимальный префиксный код $C_{\varphi_1''}$, имеющий вид $\{D_1,\ldots,D_{r-1},D_r0,D_r1\}$. Отметим, что $c(\varphi_1') < c(\varphi)$. Рассмотрим префиксный код $C_{\varphi_1} = \{D_1,\ldots,D_{r-1},D_r\}$. Получаем:

$$c(\varphi_1) - c(\varphi) = (C(\varphi'_1) - p_r) - (c(\varphi') - p_r) = c(\varphi'_1) - c(\varphi') < 0.$$

Значит, $c(\varphi_1) < c(\varphi)$, чего не может быть, т.к. C_{φ} — оптимальный код. Следовательно, код $C_{\varphi'}$ — оптимальный.

1.15 Коды, обнаруживающие и исправляющие ошибки. Критерии кодов, обнаруживающих и исправляющих t ошибок замещения. Функция $M_t(n)$, ее оценки.

Опр. Код $C_{\varphi} \subseteq B^*$ назовем обнаруживающим t ошибок, если для любого слова $\beta \in C_{\varphi}$ выполняется следующие условие: если в слове β произойдет не более чем t ошибок замещения u при этом оно перейдет в слово β' , то по неправильному слову β' можно установить, что ошибки были.

Опр. Код $C_{\varphi} \subseteq B^*$ назовем исправляющем t ошибок, если для любого слова $\beta \in C_{\varphi}$ выполняется следующие условие: если в слове β произойдет не более t ошибок замещения и при этом оно перейдет в слово β' , то по неправильному слову β' можно:

- 1. установить, что ошибки были;
- 2. в случае, когда ошибки были, восстановить правильное слово β .

Теорема. Пусть $B = \{0,1\}$ и $C \subseteq B^n$ — равномерный код, $n \ge 1$. Код C обнаруживает t ошибок замещения тогда и только тогда, когда $d_C \ge t+1$.

Д-60. Пусть $\beta \in C$, в слове β произошло не более t ошибок замещения, и оно перешло в слово $\beta' \in B^n$. Значит $\beta' \in S_t(\beta)$. Тогда можно установить, что ошибки были, в том и только в том случае, когда β' не совпадает ни с каким кодовым словом из C, не равных слову β . Другими словами, когда никакому шару радиуса t с центром в кодовом слове из C не принадлежит никакое другое кодовое слово из C. Т.е. когда $d_C \geq t+1$.

Теорема. Пусть $B = \{0,1\}$ и $C \subseteq B^n$ — равномерный код, $n \ge 1$. Код C исправляет t ошибок замещения тогда и только тогда, когда $d_C \ge 2t + 1$.

 \mathcal{A} -60. Пусть $\beta \in C$, в слове β произошло не более t ошибок замещения, и оно перешло в слово $\beta' \in B^n$. Значит, $\beta' \in S_t(\beta)$. Тогда можно установить, что ошибки были и, кроме того, их исправить, в том и только в том случае, когда β' не совпадает ни с каким словом из B^n , в которое может перейти некоторое кодовое слово из C, не равное слову β , при условии, что в нем произойдет не более t ошибок замещения. Другими словами, когда никакие два шара радиуса t с центрами в различных кодовых словах из C не пересекаются. Т.е. когда $d_C \geq 2t+1$.

Опр. Пусть $M_t(n)$ обозначает наибольшее число кодовых слов в коде $C \subseteq B^n$, исправляющем t ошибок замещения.

Теорема. При $t \ge 1$, $n \ge 1$ справедливы следующие неравенства:

$$\frac{2^n}{S_{2t}(n)} \le M_t(n) \le \frac{2^n}{S_t(n)},$$

где $S_r(n)$ обозначает число наборов в шаре радиуса r из B^n .

 \mathcal{A} -во. Верхняя оценка. Пусть $C\subseteq B^n$ — код, исправляющий t ошибок. Тогда никакие два шара радиуса t с центрами в различных кодовых словах из C не пересекаются. Поэтому

$$|C| \le \frac{|B^n|}{S_t(n)} = \frac{2^n}{S_t(n)}.$$

Hижсняя оценка. По индукции построим код $C\subseteq B^n$, исправляющий t ошибок, в котором не менее $\frac{2^n}{S_{2t}(n)}$ слов.

Базис индукции. Пусть $C_1 = \{\beta_1\}$, где β_1 — произвольное слово из B^n . Заметим, что код C_1 исправляет t ошибок.

Индуктивный переход. Пусть уже построен код $C_k = \{\beta_1, \ldots, \beta_k\} \subseteq B^n$, исправляющий t ошибок. Попытаемся к нему так добавить еще одно слово из B^n , чтобы получился код, исправляющий t ошибок.

Каждое слово β_i запрещает добавлять все слова из шара $S_{2t}(\beta_i), i = \overline{1,k}$, т.е. Каждое слово из C_k запрещает $S_{2t}(n)$ слов из B^n . Поэтому все слова из C_k запрещают не более $k \cdot S_{2t}(n)$ слов

из B^n . Значит, если $k \cdot S_{2t}(n) < |B^n| = 2^n$, то еще хотя бы одно новое слово можно добавить к коду C_k , чтобы получить код C_{k+1} исправляющий t ошибок.

Пусть построен код $C_m = \{\beta_1, \dots, \beta_m\} \subseteq B^n$, исправляющий t ошибок, $m \ge 1$, для которого выполняется неравенство $m \cdot S_{2t}(n) \ge |B^n| = 2^n$. Тогда положим $C = C_m$, |C| = m. Тогда выполняется условие: $m \cdot S_{2t}(n) \ge 2^n$, а значит

$$|C| = m \ge \frac{2^n}{S_{2t}(n)}.$$

1.16 Коды, исправляющие одну ошибку. Коды Хэмминга. Оценка функции $M_1(n)$.

Рассмотрим один вид кодов, исправляющих одну ошибку. Они основаны на свойствах представления натуральных чисел в позиционной системе счисления. Такие коды называются кодами Хэмминга.

Пусть $n \geq 3$, $2^{k-1} < n < 2^k$, где $k \in \mathbb{N}$, и $N_n = \{1, 2, \dots, n\}$. Любое число $s \in N_n$ можно представить в двоичной системе счисления с k разрядами: $s_{k-1} \dots s_1 s_0$, где $s_{k-1}, \dots, s_1, s_0 \in B$ и $s = \sum\limits_{i=0}^{k-1} s_i \cdot 2^i$. Для каждого $i = \overline{1, k-1}$ положим:

$$D_i = \{ s \in N_n : s_i = 1 \}.$$

Другими словами, в D_i содержатся все натуральные числа, не превосходящие n, в двоичном представлении которых i-й разряд равен 1.

Утверждение. Пусть D_0, D_1, \dots, D_{k-1} — введенные выше множества. Тогда:

- 1. $2^i \in D_i \ u \ 2^j \notin D_i \ npu \ j \neq i;$
- $2. \min_{s \in D_i} s = 2^i.$

Опр. Пусть $n \geq 3$ и $2^{k-1} < n < 2^k$, где $k \in \mathbb{N}$. Множество $H \subseteq B^n$ называется кодом Хэмминга порядка n, если для любого набора $\beta \in H$ верна система уравнений:

$$\begin{cases} \bigoplus_{j \in D_0} \beta_j = 0, \\ \bigoplus_{j \in D_1} \beta_j = 0, \\ \dots \\ \bigoplus_{j \in D_{k-1}} \beta_j = 0, \end{cases}$$

и, кроме того, H содержит все наборы из B^n , для которых эта система верна.

Теорема. Пусть $n \geq 3$ и $2^{k-1} < n < 2^k$. Код Хэмминга порядка n содержит 2^{n-k} кодов и исправляет одну ошибку.

 \mathcal{A} -во. Пусть $H\subseteq B^n$ — код Хэмминга.

1. Сначала найдем число слов в коде H. Перепишем систему из определения кода Хэмминга в виде:

$$\begin{cases} \beta_{2^0} = \bigoplus_{j \in D_0, j \neq 2^0} \beta_j, \\ \beta_{2^1} = \bigoplus_{j \in D_1, j \neq 2^1} \beta_j, \\ \dots \\ \beta_{2^{k-1}} = \bigoplus_{j \in D_{k-1}, j \neq 2^{k-1}} \beta_j. \end{cases}$$

Отметим, что $\beta_{2^0},\beta_{2^1},\ldots,\beta_{2^{k-1}}$ в правых частях не встречаются. Поэтому если заданы $\beta_j\in B$ при $j\in N_n\setminus\{2^0,2^1,\ldots,2^{k-1}\}$, то $\beta_{2^0},\beta_{2^1},\ldots,\beta_{2^{k-1}}$ однозначно определяются этой системой. Число возможностей задать $\beta_j\in B$ при $j\in N_n\setminus\{2^0,2^1,\ldots,2^{k-1}\}$ равно 2^{n-k} . Каждая из них определяет одно слово из H, а все они — слова из H. Значит, $|H|=2^{n-k}$.

2. Теперь покажем, что код H исправляет одну ошибку замещения. Пусть $\beta \in H$, в слове β произошла ошибка в s-м разряде и оно перешло в слово $\beta' \in B^n$. Отметим, что $\beta'_i = \begin{cases} \beta_i, i \neq s, \\ \overline{\beta}_i, i = s. \end{cases}$

Пусть в двоичной системе счисления число $s,\ 1 \le s \le n,$ записывается как $s_{k-1} \dots s_1 s_0,$ где $s_{k-1}, \dots, s_1, s_0 \in B$ и $s = \sum_{i=1}^{k-1} s_i \cdot 2^i.$ Для каждого $i = \overline{0, k-1}$ рассмотрим проверочную сумму: $\bigoplus_{j \in D_i} \beta_j'.$ Возможны два случая.

1) Если $s_i=0$, то $s \notin D_i$. Поэтому $\beta_j'=\beta_j$ для всех $j\in D_i$. Получем:

$$\bigoplus_{j \in D_i} \beta_j' = \bigoplus_{j \in D_i} \beta_j = 0.$$

Значит, в этом случае верно:

$$\bigoplus_{j \in D_i} \beta_j' = s_i.$$

2) Если $s_i=1$, то $s\in D_i$. Поэтому $\beta_j'=\beta_j$ для всех $j\in D_i,\ j\neq s,\ \beta_s'=\overline{\beta}_s=\beta_s\oplus 1.$

$$\bigoplus_{j \in D_i} \beta'_j = \left(\bigoplus_{j \in D_i, j \neq s} \beta_j\right) \oplus \beta'_s = \left(\bigoplus_{j \in D_i, i \neq s} \beta_j\right) \oplus (\beta_s \oplus 1) =$$

$$= \bigoplus_{j \in D_i} \beta_j \oplus 1 = 1.$$

Значит, и в этом случае верно:

$$\bigoplus_{j \in D_i} \beta_j' = s_i.$$

Значит, по неправильному слову β' можно найти все $s_0, s_1, \ldots, s_{k-1}$ и разряд $s = \sum_{i=0}^{k-1} s_i \cdot 2^i$, в котором произошла ошибка в слове β . Теперь если s = 0, то ошибки не было, а если $s \neq 0$, то можно восстановить правильное слово β .

Теорема. При $n \ge 1$ справедливы следующие неравенства:

$$\frac{2^n}{2n} \le M_1(n) \le \frac{2^n}{n+1}.$$

Д-во. 1. Верхняя оценка. Известно, что

$$M_1(n) \le \frac{2^n}{S_1(n)}.$$

Заметим, что $S_1(n) = n + 1$. Поэтому

$$M_1(n) \le \frac{2^n}{n+1}.$$

2. *Нижняя оценка*. Если $n \le 2$, то оценка верна. Поэтому пусть $n \ge 3$. Сначала пусть $2^{k-1} < n < 2^k$, тогда $k = \lceil \log_2 n \rceil$.

Рассмотрим код Хэмминга порядка H порядка n. Он содержит 2^{n-k} слов и исправляет одну ошибку. Значит,

$$M_1(n) \ge |H| = 2^{n-k}$$
.

Получаем:

$$M_1(n) \ge 2^{n-k} = \frac{2^n}{2^{\lceil \log_2 n \rceil}} \ge \frac{2^n}{2^{\log_2 n + 1}} = \frac{2^n}{2n}.$$

Теперь пусть $n=2^k$, тогда $k=\log_2 n$. Рассмотрим код Хэмминга H порядка (n-1) и построим по нему код $C\subseteq B^n$, добавив к каждому кодовому слову из H в конце 0. Код C содержит 2^{n-1-k} слов и исправляет одну ошибку. Значит,

$$M_1(n) \ge |C| = 2^{n-1-k} = \frac{2^n}{2^{1+\log_2 n}} = \frac{2^n}{2n}.$$

1.17 Схемы из функциональных элементов и элементов задержки (СФЭЗ). Автоматность осуществляемых ими отображений.

Схемой из функциональных элементов с задержками (СФЭЗ) $S(x_1(t), \dots, x_n(t); y_1(t), \dots, y_m(t))$ в базисе $B = \{x \& y, \ x \lor y, \ \overline{x}\} \cup \{z\}$ называется

- 1. ориентированный граф G=(V,E) с возможными ориентированными циклами, причем в графе G полустепень захода любой его вершины не превосходит двух;
- 2. любая вершина графа G с полустепенью захода, равной нулю, называется входной (или входом) и ей приписывается какая-то входная переменная $x_i(t)$;
- 3. любой вершине графа G с полустепенью захода, равной единице, приписывается либо единичная задржка z, либо отрицание \overline{x} ;
- 4. в любом ориентированном цикле графа G должна быть хотя бы одна вершина с приписанной ей единичной задержкой;

- 5. любой вершине графа G с полустепенью захода, равной двум, приписывается либо конъюнкция &, либо дизъюнкция \lor ;
- 6. некоторый (в том числе и входные) вершины графа G называются выходными (или выходами) и им приписываются (различные) выходные переменный $y_1(t), \ldots, y_m(t)$.

Теорема. Каждая СФЭЗ $S(x_1(t), ..., x_n(t); y_1(t), ..., y_m(t))$ осуществляет автоматное отображение входов $x_1(t), ..., x_n(t)$ в выходы $y_1(t), ..., y_m(t)$.

 \mathcal{A} -во. Рассмотрим граф G=(V,E) СФЭЗ S. Пусть $v_1,\ldots,v_k\in V$ — все вершины, которым приписана единичная задержка z. Рассмотрим вершину v_i . В графе G в нее ведет одна луга из вершины, которую обозначим w_i . Удалим эту дугу (w_i,v_i) из графа G. Вершине w_i припишем новую выходную вершину $q_i(t)$. Вершина v_i станет входной, ей припишем новую входную переменную $p_i(t)$. Заметим, что т.к. в любом ориентированном цикле графа G хотя бы одной вершине была приписана z, выполнив такое преобразование для вершин v_1,\ldots,v_k , мы разорвем все ориентированные циклы.

В итоге получаем СФЭ (без задержек) S'. На ее выходах $y_j(t)$, $q_i(t)$ соответственно вычисляются некоторые функции алгебры логики F_j , $G_i \in P_2$:

$$y_j(t) = F_j(x_1(t), \dots, x_n(t), p_1(t), \dots, p_k(t)), \quad 1 \le j \le m,$$

 $q_i(t) = G_i(x_1(t), \dots, x_n(y), p_1(t), \dots, p_k(t)), \quad 1 \le i \le k.$

По определению функции единичной задержки верно $p_i(t) = q_i(t-1), \ q_i(0) = 0.$ Поэтому

$$\begin{cases} y_j(t) = F_j(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_k(t-1)), & 1 \le j \le m, \\ q_i(t) = G_i(x_1(t), \dots, x_n(y), q_1(t-1), \dots, q_k(t-1)), & \\ q_i(0) = 0, & 1 \le i \le k. \end{cases}$$

Получили каноническое уравнение, а значит, отображение — автоматное.

1.18 Схемы из функциональных элементов и элементов задержки (СФЭЗ). Моделирование автоматной функции схемой из функциональных элементов и элементов задержки.

Теорема. Каждый конечный автомат $\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$ (а значит и автоматная функция $f_{\mathcal{A}}$) может быть представлен $C\Phi \ni 3$ в базисе $B = \{x \& y, \ x \lor y, \ \overline{x}\} \cup \{z\}$ при некотором кодировании элементов из множеств $A, \ B, \ Q$ наборами из нулей и единии.

Д-60. Пусть |A| = s, |B| = t, |Q| = r. Закодируем взаимно однозначно:

- 1) элементы множества A наборами $(x_1, x_2, ..., x_n) \in \{0, 1\}^n$, где $n = \lceil \log_2 s \rceil$;
- 2) элементы множества B наборами $(y_1,\ldots,y_m)\in\{0,1\}^m$, где $m=\lceil\log_2t\rceil$;
- 3) элементы множества Q наборами $(q_1, \ldots, q_k) \in \{0, 1\}^k$, где $k = \lceil \log_2 r \rceil$, причем начальное состояние q_* закодируем нулевым набором $(0, \ldots, 0)$.

Автомат \mathcal{A} можно задать каноническими уравнениями:

$$\begin{cases} y(t) = \varphi(x(t), q(t-1)), \\ q(t) = \psi(x(t), q(t-1)), \\ q(0) = q_*. \end{cases}$$

Перепишем эти уравнения для кодов элементов из множеств A, B, Q. При этом функции φ и ψ преобразуют в наборы функций алгебры логики (F_1, \ldots, F_m) и (G_1, \ldots, G_k) :

$$\begin{cases} y_j(t) = F_j(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_k(t-1)), & 1 \le j \le m, \\ q_i(t) = G_i(x_1(t), \dots, x_n(y), q_1(t-1), \dots, q_k(t-1)), & 1 \le i \le k. \end{cases}$$

$$(1)$$

$$q_i(0) = 0,$$

$$1 \le i \le k.$$

Теперь построим СФЭ (без задержек) S' в базисе $B_0 = \{x \& y, \ x \lor y, \ \overline{x}\}$, вычисляющую на выходах $y_i(t), \ q_i(t)$ соответственно функции алгебры логики $F_j, \ G_i$:

$$\begin{cases} y_j(t) = F_j(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_k(t-1)), & 1 \le j \le m, \\ q_i(t) = G_i(x_1(t), \dots, x_n(y), q_1(t-1), \dots, q_k(t-1)), & 1 \le i \le k. \end{cases}$$

Затем соединим в схеме S' выход $q_i(t)$ с входом $q_i(t-1)$ через единичную задержку z для всех $i=\overline{1,k}$. Получим СФЭЗ S, осуществляющую автоматное отображение в соответствии с каноническими уравнениями (1).

1.19 Конечные автоматы. Отличимость состояний конечного автомата. Теорема Мура. Достижимость оценки теоремы Мура.

Опр. Конечным автоматом A называется набор $(A, B, W, \varphi, \psi, q_*)$, в котором:

- 1. A входной алфавит (являющийся конечным непустым множеством);
- 2. B выходной алфавит (являющийся конечным непустым множеством);
- 3. Q множество состояний (являющийся конечным непустым множеством);
- 4. $\alpha: A \times Q \to B$ функция выходов;
- 5. $\psi: A \times Q \to Q$ функция переходов;
- 6. $q_* \in Q$ начальное состояние.

Пусть $\mathcal{A}=(A,B,Q,\varphi,\psi)$ — конечный автомат (без начального состояния). По функциям φ и ψ определим функции

$$\overline{\varphi}: A^* \times Q \to B^*$$
 и $\overline{\psi}: A^* \times Q \to Q$.

Для всех $a\in A,\ \alpha\in A^*,$ где $|\alpha|=m\geq 2,$ и $q\in Q$ положим:

$$\overline{\varphi}(\Lambda, q) = \Lambda,
\overline{\varphi}(a, q) = \varphi(a, q),
\overline{\varphi}(\alpha, q) = \varphi(\alpha(1), q)\overline{\varphi}(\alpha(2) \dots \varphi(m), \psi(\alpha(1), q));$$

$$\overline{\psi}(\Lambda, q) = q,$$

$$\overline{\psi}(a, q) = \psi(a, q),$$

$$\overline{\psi}(\alpha, q) = \overline{\psi}(\alpha(2) \dots \alpha(m), \psi(\alpha(1), q)).$$

Если $\mathcal{A} = (A, B, Q, \varphi, \psi)$, то

- 1) $\overline{\varphi}(\alpha, q)$ слово $\beta \in B^*$, в которое автомат \mathcal{A} преобразует слово $\alpha \in A^*$ из состояния $q \in Q$; 2) $\overline{\psi}(\alpha, q)$ состояние $q' \in Q$, в которое автомат A переходит при преобразовании слова $\alpha \in A^*$ из состояния $q \in Q$.
- Опр. Слово $\alpha \in A^*$ отличает состояния $q' \in Q$ и $q'' \in Q$, если

$$\overline{\varphi}(\alpha, q') \neq \overline{\varphi}(\alpha, q'').$$

Опр. Два состояния $q' \in Q$ и $q'' \in Q$ называются отличимыми, если найдется слово $\alpha \in A^*$, которое их отличает. В обратном случае состояния $q' \in Q$ и $q'' \in Q$ называются неотличимыми, или эквивалентными.

Лемма. Пусть $\mathcal{A} = (A, B, Q, \varphi, \psi)$ — конечный автомат без начального состояния и состояния $q' \in Q$ и $q'' \in Q$ отличимы каким-то словом длины m и не отличимы никаким словом меньшей длины. Тогда для кажедого $k = \overline{1,m}$ найдутся состояния $q'_k \in Q$ и $q''_k \in Q$, который отличимы каким-то словом длины k и не отличимы никаким словом меньшей длины.

Д-во. Пусть $\mathcal{A} = (A, B, Q, \varphi, \psi)$ — конечный автомат и состояния $q' \in Q$ и $q'' \in Q$ отличимы словом $\alpha \in A^*$ длины и не отличимы никаким словом меньшей длины. Для каждого $k = \overline{1, m}$ определим состояния $q'_k, \ q''_k$:

$$q'_k = \overline{\psi}(\alpha(1) \dots \alpha(m-k), q') \in Q,$$

$$q''_k = \overline{\psi}(\alpha(1) \dots \alpha(m-k), q'') \in Q.$$

- 1. Состояния q_k' и q_k'' отличимы словом $\alpha_k = \alpha(m-k+1)\dots\alpha(m)$ длины k.
- **2.** Докажем от обратного, что состояния q'_k и q''_k не отличимы никаким словом меньшей длины. Пусть найдется слово $\alpha_0 \in A^*$ длины $k_0 < k$, отличающие состояния q'_k и q''_k . Но тогда состояния q' и q'' отличимы словом

$$\alpha_1 = \alpha(1) \dots \alpha(m-k)\alpha_0$$

длины $(m-k)+k_0 < m$, что противоречит условию. Следовательно, состояния q_k' и q_k'' не отличимы никаким словом длины, меньшей k.

Теорема (Мура). Пусть $\mathcal{A} = (A, B, Q, \varphi, \psi)$ — конечный автомат с r состояниями (|Q| = r). Если состояния q' и q'' отличимы, то они отличимы некоторым словом длины, не большей (r-1).

 \mathcal{A} -во. Пусть $Q=\{q_1,\ldots,q_r\}$. Для каждого $k=0,1,\ldots$ рассмотрим следующее отношение R_k на множестве Q: для $q_i,q_j\in Q$ верно $q_iR_kq_j$, если состояния q_i и q_j не отличимы никаким словом длины, меньшей или равной k. Полагаем, что $q_iR_0q_j$ для всех $q_i,q_j\in Q$.

Докажем, что для каждого $k=0,1,\ldots\,R_k$ — отношение эквивалентности на Q.

- **1.** Рефлексивность: qR_kq для каждого $q \in Q$.
- **2.** Симметричность: если $q_i R_k q_j$, то $q_j R_k q_s$.
- **3.** *Транзитивность*: пусть $q_i R_k q_j$ и $q_j R_k q_s$, т.е. для каждого такого $\alpha \in A^*$, что $|\alpha| \le k$, верно

$$\overline{\varphi}(\alpha, q_i) = \overline{\varphi}(\alpha, q_j),$$

 $\overline{\varphi}(\alpha, q_j) = \overline{\varphi}(\alpha, q_s).$

Тогда для каждого такого $a \in A^*$, что $|\alpha| \le k$, верно и $\overline{\varphi}(\alpha, q_i) = \overline{\varphi}(\alpha, q_s)$, т.е. $q_i R_k q_s$. Следовательно, R_k — отношение эквивалентности на Q.

Пусть $r_k = |Q/R_k|$ — число классов эквивалентности по отношению R_k на множестве Q. Заметим, что $r_0 = 1$.

По условию состояния $q' \in Q$ и $q'' \in Q$ — отличимы. Пусть $\alpha \in A^*$ — слово наименьшей длины, отличающее состояния q' и q''. Пусть $|\alpha| = m$. По лемме для каждого $k = \overline{1,m}$, найдутся состояния $q'_k \in Q$ и $q''_k \in Q$, который отличимы каким-то словом длины k и не отличимы никаким словом меньшей длины.

Посмотрим, как устроены фактор-множества Q/R_{k-1} и Q/R_k и как соотносятся между собой числа r_{k-1} и r_k при $1 \le k \le m$. Заметим, что если $q_i \overline{R}_{k-1} q_j$, то $q_i \overline{R}_k q_j$. Т.е. если состояния q_i и q_j отличимы каким-то словом длины, не большей (k-1), то состояния q_i и q_j отличимы и каким-то словом длины, не большей k. Поэтому $r_{k-1} \le r_k$.

Рассмотрим состояния q'_k и q''_k . Они не отличимы никаким словом длины, меньшей k. Значит, по отношению R_{k-1} они находятся в одном классе эквивалентности. Но они отличимы каким-то словом длины k. Значит, по отношению R_k они находятся в разных классах эквивалентности. Следовательно, при переходе от фактор-множества Q/R_{k-1} к фактор-множеству Q/R_k хотя бы один класс эквивалентности по отношению R_{k-1} разбивается хотя бы на два класса эквивалентности по отношению R_k . Поэтому $r_{k-1} < r_k$.

Отметим, что т.к. |Q| = r, для всех k верно $r_k \le r$. Получаем возрастающую последовательность чисел:

$$1 = r_0 < r_1 < r_2 < \dots < r_m \le r.$$

Следовательно, m < r - 1.

Достижимость оценки теоремы Мура. Для каждого $r \ge 2$ приведем пример конечного автомата $\mathcal{A} = (A, B, Q, \varphi, \psi)$ с r состояниями (|Q| = r), в котором найдутся два состояния, отличимые словом длины r-1, но не отличимые никаким словом меньшей длины.

Рассмотрим автомат, который дает на выход последовательность $\underbrace{0\dots0}_{r-1}10\dots01\dots$ Понятно,

что для этого автомата нужно r различных состояний, где для $i=\overline{1,r-1}$ в состоянии q_i независимо от x(t) записывается 0 и совершается переход в состояние q_{i+1} , а в состоянии q_r записывается r и совершается переход в q_r .

Тогда состояния q_1 и q_2 неотличимы никаким словом длины, не превосходящей r-2, т.к. на выходе будет $\underbrace{0\ldots 0}_{r-2}$. А вот на слове α длины r-2: $\overline{\varphi}(\alpha,q_1)=0\ldots 00,\ \overline{\varphi}(\alpha,q_2)=0\ldots 01$.

1.20 Схемы из функциональных элементов. Сумматор, верхняя оценка его сложности.

Опр. Схемой из функциональных элементов $(C\Phi\Theta)$ $S(x_1, ..., x_n; y_1, ..., y_m)$ в базисе $B_0 = \{x \& y, \ x \lor y, \ \overline{x}\}$ называется

- 1. ориентированный граф G = (V, E) без ориентированных циклов, причем в графе G полустепень захода любой его вершины не превосходит двух;
- 2. любая вершина графа G с полустепенью захода, равной нулю, называется входной (или входом) и ей приписывается какая-то входная переменная x_i ;

- 3. любая вершина графа G с полустепенью захода, не равной нулю, называется внутренней;
- 4. любой вершине графа G с полустепенью захода, равной единице, приписывается отрицание \overline{x} ;
- 5. любой вершине графа G с полустепенью захода, равной двум, приписывается либо контюнкция &, либо дизтюнкция \lor ;
- 6. некоторый (входные или внутренние) вершины графа G называются выходными (или выходами) и им приписываются (различные) входные переменные y_1, \ldots, y_m .

Опр. Сложностью L(S) СФЭ S называется число ее внутренних вершин.

Если $(x_1,\ldots,x_n)\in E_2^n$, где $E_2=\{0,1\}$, то положим

$$(x_1, \dots, x_n)_2 = \sum_{i=1}^n x_i \cdot 2^{n-i}.$$

Опр. Сумматором S_n порядка $n \ge 1$, называется такая СФЭ с 2n входами $x_1, \ldots, x_n, y_1, \ldots, y_n$ $u \ n+1$ выходами z_0, z_1, \ldots, z_n , что

$$(z_0, z_1, \dots, z_n)_2 = (x_1, \dots, x_n)_2 + (y_1, \dots, y_n)_2.$$

Cумматор S_n также называется n-разрядным сумматором.

Построим одноразрядный сумматор $S_1(x, y; z_0, z_1)$. Найдем функции $z_0(x, y)$ и $z_1(x, y)$:

x	y	z_0	z_1
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$z_0 = x \cdot y, \quad z_1 = (x \vee y) \cdot (\overline{x} \vee \overline{y}) = (x \vee y) \cdot (\overline{x \cdot y}).$$

Значит, в базисе B_0 можно построить сумматор S_1 со сложностью 4.

С какой сложностью можно построить сумматор S_n , $n \ge 1$? Вспомним алгоритм сложения n-разрядных чисел "в столбик". При сложении каждого разряда i (кроме младшего) складывают x_i, y_i и разряд переноса p_i . При этом получается двухразрядное число $q_i z_i$, где q_i старший, а z_i — младший разряды. Теперь z_i является разрядом i суммы этих i-разрядных чисел, а i-разрядом переноса в следующем, более старшем разряде.

Назовем ячейкой сумматора S СФЭ с тремя входами x, y, p и двуся выходами q, z, которая вычисляет описанное выше преобразование входов в выходы, а именно,

$$q = x \cdot y \lor x \cdot p \lor y \cdot p, \quad z = x \oplus y \oplus p.$$

Отметим, что

$$q = x \cdot y \lor p \cdot (x \oplus y), \quad z = (x \oplus y) \oplus p.$$

Значит, что в базисе B_0 можно построить ячейку сумматора S со сложностью 9.

Теорема. В базисе $B_0 = \{x \cdot y, x \vee y, \overline{x}\}$ можно построить сумматор S_n со сложностью 9n-5.

Д-во. Применим алгоритм сложения n-разрядных чисел $(x_1,\ldots,x_n)_2$ и $(y_1,\ldots,y_n)_2$ "в столбик".

Сначала возьмем одноразрядный сумматор S_1 и припишем его входам x_n и y_n . Младший разряд выхода этого одноразрядного сумматора S_1 назовем выходом z_n , а старший разряд его выхода обозначим p_{n-1} .

Далее для каждого $i = \overline{n-1,1}$ повторим следующие рассуждения. Возьмем новую ячейку сумматора S, придадим ей номер i и двум ее входам припишем x_i, y_i , а на третий вход направим p_i . Младший разряд выхода этой ячейки сумматора S с номером i назовем выходном z_i , а старший разряд ее выхода обозначим p_{i-1} при $i \geq 2$ и назовем выходом z_0 при i = 1.

Полученная в итоге СФЭ является n-разрядным сумматором S_n . оценим его сложность:

$$L(S_n) \le (n-1)L(S) + L(S_1) \le 9(n-1).$$

1.21 Схемы из функциональных элементов. Вычитатель, верхняя оценка его сложности.

Опр. Вычитателем W_n порядка $n \ge 1$ называется такая СФЭ с 2n входами $x_1, \ldots, x_n, y_1, \ldots, y_n$ и n выходами u_1, \ldots, u_n , что

$$(u_1,\ldots,u_n)_2=(x_1,\ldots,x_n)_2-(y_1,\ldots,y_n)_2,$$

если $(x_1, \ldots, x_n)_2 \ge (y_1, \ldots, y_n)_2$. Если первое из этих чисел меньше второго, то входы неправильные, и не важно, что вычисляется на выходах.

Построим одноразрядный вычитатель $W_1(x,y;u)$. Найдем функцию u(x,y):

x	y	u
0	0	0
0	1	_
1	0	1
1	1	0
	0 0	0 0 0 0 1

Например:

$$u = x \cdot \overline{y}$$
.

Значит, в базисе B_0 можно построить вычитатель W_1 со сложностью 2.

Лемма. $Ecnu x_1, \ldots, x_n \in E_2, mo$

$$(x_1,\ldots,x_n)_2+(\overline{x}_1,\ldots,\overline{x}_n)=2^n-1.$$

Теорема. В базисе $B_0 = \{x \cdot y, \ x \lor y, \ \overline{x}\}$ можно построить вычитатель W_n со сложностью 11n - 5.

 \mathcal{A} -60. Построим вычитатель W_n в соответствии с тождеством:

$$(u_1, \ldots, u_n)_2 = 2^n - 1 - ((y_1, \ldots, y_n)_2 + (2^n - 1 - (x_1, \ldots, x_n)_2)).$$

При построении применим вспомогательную лемму.

Оценим сложность полученного вычитателя W_n :

$$L(W_n) \le 2n + L(S_n) \le 2n + 9n - 5 = 11n - 5.$$

1.22 Схемы из функциональных элементов (СФЭ). Умножитель. Метод Карацубы построения умножителя, верхняя оценка его сложности.

Заметим, что

$$0 \leq (x_1, \ldots, x_n)_2 < 2^n,$$

$$0 \le (y_1, \dots, y_n)_2 < 2^n,$$

поэтому

$$0 \le (x_1, \dots, x_n)_2 \cdot (y_1, \dots, y_n)_2 < 2^{2n}$$
.

Опр. Умножителем M_n порядка $n \ge 1$ называется такая $C\Phi \ni c \ 2n$ входами $x_1, \ldots, x_n, \ y_1, \ldots, y_n$ и 2n выходами $z_1, \ldots, x_n, \ umo$

$$(z_1,\ldots,z_{2n})_2=(x_1,\ldots,x_n)_2\cdot(y_1,\ldots,y_n)_2.$$

Умножитель Мп также называется п-разрядным умножителем.

Построим одноразрядный умножитель $M_1(x,y;z)$. Найдем функцию z(x,y):

x	y	z
0	0	0
0	1	0
1	0	0
1	1	1

$$z = x \cdot y$$
.

Значит, в базисе B_0 можно построить умножитель M_1 со сложностью 1.

Пусть M'_n обозначает СФЭ с n+1 входами x_1, \ldots, x_n, y и n выходами z_1, \ldots, z_n , которая вычисляет умножение n-разрадного числа $(x_1, \ldots, x_n)_2$ на разряд y, т.е.

$$(z_1,\ldots,z_n)_2=(x_1,\ldots,x_n)\cdot y.$$

Лемма. В базисе $B_0 = \{x \cdot y, \ x \vee y, \ \overline{x}\}$ модно построить схему M'_n со сложностью n.

 \mathcal{A} -во. Действительно, достаточно заметить, что $z_i=x_i\cdot y$ для всех $i=\overline{1,n}$.

Пусть $M''_{n,m}$ обозначает СФЭ с n входами x_1, \ldots, x_n и n+m выходами z_1, \ldots, z_{n+m} , которая вычисляет умножение n-разрядного числа (x_1, \ldots, x_n) на число 2^m , т.е.

$$(z_1,\ldots,z_{n+m})_2=(x_1,\ldots,x_n)_2\cdot 2^m.$$

Лемма. В базисе $B_0 = \{x \cdot y, \ x \lor y, \ \overline{x}\}$ можно построить схему $M''_{n,m}$ с константой сложностью.

 \mathcal{A} -60. Действительно, достаточно заметиь, что $z_i = x_i$ для всех $i = \overline{1,n}$, а $z_{n+1} = \cdots = z_{n+m} = 0$. Поэтому сложность схемы можно оценить сложностью вычисления константы 0, а эта сложность — константна.

Лемма. В базисе $B_0 = \{x \cdot y, \ x \lor y, \ \overline{x}\}$ для каждого $n \ge 1$ и любого умножителя M_n можно построить такой умножитель M_{n+1} , что

$$L(M_{n+1}) \le L(M_n) + C_1 n,$$

где $C_1 \geq 0$ — некоторое действительное число, не зависящее от n.

 \mathcal{A} -60. Пусть $n \geq 1$. Рассмотрим произвольный умножитель M_n . Пусть на входы умножителя M_{n+1} подают числа:

$$x = (x_0, x_1, \dots, x_n)_2, \quad y = (y_0, y_1, \dots, y_n)_2.$$

Введем обозначения:

$$x' = (x_1, \dots, x_n)_2, \quad y' = (y_1, \dots, y_n)_2.$$

Тогда:

$$x = (x_0, x_1, \dots, x_n)_2 = x_0 \cdot 2^n + (x_1, \dots, x_n)_2 = x_0 \cdot 2^n + x',$$

$$y = (y_0, y_1, \dots, y_n)_2 = y_0 \cdot 2^n + (y_1, \dots, y_n)_2 = y_0 \cdot 2^n + y'.$$

Получаем:

$$x \cdot y = (x_0 \cdot 2^n + x')(y_0 \cdot 2^n + y') =$$

= $x_0 \cdot y_0 \cdot 2^{2n} + (x_0 \cdot y' + x' \cdot y_0) \cdot 2^n + x' \cdot y'.$

Значит, для умножения (n+1)-разрядных чисел можно умножить n-разрядные числа и выполнить дополнительные вычисления. При этом сложность этих дополнительных вычислений не превосходит $C_1 \cdot n$, где $C_1 > 0$ — действительное число, не зависящее от n.

Лемма (Основная). В базисе $B_0 = \{x \cdot y, \ x \lor y, \ \overline{x}\}\$ для каждого $n \ge 1$ и любого умножителя M_n можно построить такой умножитель M_{2n} , что

$$L(M_{2n}) \le 3L(M_n) + C_2 n,$$

где $C_2 < 0$ — некоторое действительно число, не зависящее от n.

 \mathcal{A} -60. Пусть $n \geq 1$. Рассмотрим произвольный умножитель M_n . Пусть на вход умножителя M_{2n} подаются числа:

$$x = (x_1, \dots, x_n, x_{n+1}, \dots, x_{2n})_2, \quad y = (y_1, \dots, y_n, y_{n+1}, \dots, y_{2n})_2.$$

Введем обозначения:

$$x' = (x_1, \dots, x_n)_2,$$
 $x'' = (x_{n+1}, \dots, x_{2n})_2,$ $y' = (y_1, \dots, y_n)_2,$ $y'' = (y_{n+1}, \dots, y_{2n})_2.$

Тогда:

$$x = x' \cdot 2^n + x'',$$

$$y = y' \cdot 2^n + y''.$$

Получаем:

$$x \cdot y = (x' \cdot 2^n + x'')(y' \cdot 2^n + y'') =$$

= $x' \cdot y' \cdot 2^{2n} + (x' \cdot y'' + x'' \cdot y') \cdot 2^n + x'' \cdot y''.$

Рассмотрим тождество:

$$x' \cdot y'' + x'' \cdot y' = (x' + x'') \cdot (y' + y'') - x' \cdot y' - x'' \cdot y''.$$

Значит

$$x \cdot y = x' \cdot y' \cdot 2^{2n} +$$

$$+ ((x' + x'') \cdot (y' + y'') - x' \cdot y' - x'' \cdot y'') \cdot 2^{n} +$$

$$+ x'' \cdot y''$$

Значит, для умножения 2n-разрядных чисел можно трижды умножить n-разрядные числа и выполнить дополнительные вычисления. При этом сложность этих дополнительных вычислений не превосходит $C_2 \cdot n$, где $C_2 > 0$ — действительное число, не зависящее от n.

Теорема (Карацубы). В базисе $B_0 = \{x \cdot y, \ x \vee y, \ \overline{x}\}$ можно построить умножитель M_n со сложностью $O(n^{\log_2 3})$.

Д-во. 1. Сначала рассмотрим случай n=2k, где $k \in \mathbb{N}$. Получаем:

$$L(M_{2^k}) \le 3L(M_{2^{k-1}}) + C_2 \cdot 2^{k-1} \le$$

$$\le 3(3L(M_{2^{k-2}}) + C_2 \cdot 2^{k-1}) + C_2 \cdot 2^{k-1} =$$

$$= 3^2L(M_{2^{k-2}}) + C_2(3 \cdot 2^{k-2} + 2^{k-1}) \le \dots \le$$

$$\le 3^kL(M_{2^0}) + C_2(3^{k-1} + \dots + 3 \cdot 2^{k-2} + 2^{k-1}).$$

Заметим, что $L(M_1) = 1$. Кроме того,

$$3^{k-1} + \dots + 3 \cdot 2^{k-2} + 2^{k-1} = 3^{k-1} \cdot \left(1 + \dots + \left(\frac{2}{3}\right)^{k-1}\right) \le$$

$$\le 3^{k-1} \frac{1}{1 - \frac{2}{3}} = 3^k.$$

Поэтому:

$$L(M_{2^k}) \le 3^k + C_2 3^k \le C_3 \cdot 3^k,$$

где $C_3 = C_2 + 1 > 0$ — некоторое действительное число. Но $n = 2^k$, значит,

$$L(M_n) \le C_3 \cdot 3^k = C_3 \cdot 2^{k \log_2 3} = C_3 \cdot n^{\log_2 3} = O(n^{\log_2 3}).$$

2. Теперь рассмотрим случай $2^{k-1} < n < 2^k$, где $k \in \mathbb{N}$. Добавим к n-разрядным числам нули слева, чтобы получились 2^k -разрядные числа. Тогда:

$$L(M_n) \le L(M_{2^k}) \le C_3 \cdot 2^{k \log_2 3} = (C_3 \cdot 2^{\log_2 3}) \cdot 2^{(k-1)\log_2 3} \le C \cdot n^{\log_2 3},$$

где $C = C_3 \cdot 2^{\log_2 3} > 0$ — некоторое действительное число. Значит

$$L(M_n) \le C \cdot n^{\log_2 3} = O(n^{\log_2 3}).$$

Известен алгоритм Шенхаге-Штрассена, который n-разрядные числа позволяет умножать со сложностью $O(n \cdot \log n \cdot \log \log n)$.

2 Часть Б.

2.1 Функции алгебры логики. Существенность переменных. Формулы. Тождества.

Опр. Пусть $E_2 = \{0,1\}$. Функцией алгебры логики называется произвольное отображение из E_2^n в E_2 , $n \ge 1$. Множество всех функций алгебры логики, зависящих от n переменных, обозначит $P_2^{(n)}$, а множество всех функций алгебры логики $-P_2 = \bigcup_{n \ge 1} P_2^{(n)}$.

Опр. Переменная x_i называется существенной для функции $f(x_1, \ldots, x_n) \in P_2$, если найдутся такие элементы $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in E_2$, что

$$f(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_n) \neq f(a_1,\ldots,a_{i-1},1,a_{i+1},\ldots,a_n).$$

Переменная, не являющаяся существенной, называется несущественной, или фиктивной. Как правило, мы будем рассматривать функции с точностью до несущественных переменных. Т.е. будем считать, что несущественные переменные можно добавлять и убирать. Опр. Формула над множеством А определяется по индукции.

Базис индукции. Если f — обозначение m-местной функции из A и x_1, \ldots, x_m — переменные (из X), причем не обязательно различные, то выражение $f(x_1, \ldots, x_m)$ — формула. Индуктивный переход. Если f — обозначение m-местной функции из A и F_1, \ldots, F_m — уже построенные формулы или переменные (не обязательно различные), то выражение $f(F_1, \ldots, F_m)$ — формула.

Опр. Формулы F_1 и F_2 называются эквивалентными, если они определяют равные функции, т.е. функции f_{F_1} и f_{F_2} равны. Обозначение эквивалентных формул: $F_1 = F_2$; при этом равенство $F_1 = F_2$ называется тождеством.

Верны следующие тождества:

- коммутативность связок $\cdot, \vee, \oplus, \sim, /, \downarrow;$
- ассоциативность связок \cdot , \vee , \oplus ;
- дистрибутивность видов

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z;$$

$$(x \cdot y) \lor z = (x \lor z) \cdot (y \lor z);$$

$$(x \oplus y) \cdot z = x \cdot z \oplus y \cdot z.$$

2.2 Функции алгебры логики. Теорема о разложении функции алгебры логики по переменным. Теорема о совершенной дизъюнктивной нормальной форме (ДН Φ). Теорема о совершенной конъюнктивной нормальной форме (КН Φ).

Опр. Если $f(x_1,...,x_n) \in P_2^{(n)}$ и $\sigma \in E_2^k$, $1 \le k \le n$, то положим

$$f_{\sigma}(x_{k+1},\ldots,x_n)=f(\sigma_1,\ldots,\sigma_k,x_{k+1},\ldots,x_n).$$

 Φ ункция f_{σ} называется σ -подфункцией функции f по k первым переменным.

Если $\sigma \in E_2$, то введем обозначение: $x^{\sigma} = \begin{cases} x, & \sigma = 1 \\ \overline{x}, & \sigma = 0 \end{cases}$. Отметим, что $x^{\sigma} = 1$ в том и только в том случае, когда $x = \sigma$.

Теорема. При $1 \le k \le n$ каждая функция $f(x_1, ..., x_n) \in P_2$ может быъ представлена в виде:

$$f(x_1,\ldots,x_n) = \bigvee_{\sigma \in E_2^k} x_1^{\sigma_1} \cdot \cdots \cdot x_k^{\sigma_k} \cdot f(\sigma_1,\ldots,\sigma_k,x_{k+1},\ldots,x_n).$$

 \mathcal{A} -60. Рассмотрим произвольный набор $\alpha \in E_2^n$ и подставим его в левую часть равенства из утверждения. Получаем:

$$f(\alpha) = \bigvee_{\sigma \in E_2^k} \alpha_1^{\sigma_1} \cdot \dots \cdot \alpha_k^{\sigma_k} f(\sigma_1, \dots, \sigma_k, \alpha_{k+1}, \dots, \alpha_n).$$

Рассмотрим набор $\beta \in E_2^k$, где $\beta_i = \alpha_i$, $i = \overline{1,k}$. Набор σ пробегает все наборы множества E_2^k , а набор β — какой-то набор из E_2^k .

1. Если $\sigma \neq \beta$, то найдется такое $i,\ 1 \leq i \leq k,$ что $\sigma_i \neq \alpha_i.$ Значит, $\alpha_i^{\sigma_i} = 0,$ откуда в этом случае

$$\alpha_1^{\sigma_1} \cdot \dots \cdot \alpha_{i-1}^{\sigma_{i-1}} \cdot 0 \cdot \alpha_{i+1}^{\sigma_{i+1}} \cdot \dots \cdot \alpha_k^{\sigma_k} \cdot f(\sigma_1, \dots, \sigma_k, \alpha_{k+1}, \dots, \alpha_n) = 0.$$

2. Если $\sigma=\beta,$ то для всех $i,\ i=\overline{1,k},$ верно $\sigma_i=\alpha_i,$ а значит, $\alpha_i^{\sigma_i}=1.$ Поэтому в этом случае

$$\alpha_1^{\sigma_1} \cdot \dots \cdot \alpha_k^{\sigma_k} f(\sigma_1, \dots, \sigma_k, \alpha_{k+1}, \dots, \alpha_n) = f(\alpha).$$

Следовательно,

$$f(\alpha) = 0 \lor \cdots \lor 0 \lor f(\alpha) \lor 0 \lor \cdots \lor 0 = f(\alpha).$$

Опр. Выражение (формула) вида

$$x_{i_1}^{\sigma_1}\cdot\cdots\cdot x_{i_k}^{\sigma_k},$$

где x_{i_1}, \ldots, x_{i_k} — различные переменные и $\sigma_1, \ldots, \sigma_k \in E_n$, называется элементарной конъюнкцией (ЭК) ранга $k, k \ge 1$.

Опр. Дизъюнктивной нормальной формой (ДНФ) длины $l, l \geq 1$, назовем дизъюнкцию l различных ЭК. ДНФ длины 0 назовем константу 0. Если каждая переменная содержит все переменные этой ДНФ, то такая ДНФ называется совершенной.

Теорема. Каждая функция $f(x_1, ..., x_n) \in P_2$, $F \neq 0$, может быть представлена в виде совершенной ДНФ D_f , а именно:

$$f(x_1, \dots, x_n) = \bigvee_{\sigma \in E_2^n : f(\sigma) = 1} x_1^{\sigma_1} \cdot \dots \cdot x_n^{\sigma_n}.$$

Д-60. Прямое следствие теоремы о дизъюнктивном разложении.

Теорема. При $1 \le k \le n$ каждая функция $f(x_1, ..., x_n) \in P_2$ может быть представлена в виде:

$$f(x_1,\ldots,x_n) = \bigwedge_{\sigma \in E_2^k} (x_1^{\overline{\sigma}_1} \vee \cdots \vee x_k^{\overline{\sigma}_k} \vee f(\sigma_1,\ldots,\sigma_k,x_{k+1},\ldots,x_n)).$$

Д-во. Аналогично доказательству теоремы о дизъюнктивном разложении.

Опр. Выражение (формула) вида

$$x_{i_1}^{\sigma_1} \vee \cdots \vee x_{i_k}^{\sigma_k},$$

где x_{i_1}, \ldots, x_{i_k} — различные переменные и $\sigma_1, \ldots, \sigma_k \in E_2$ называется элементарной дизъюнкцией (ЭД) ранга $k, \ k \geq 1$.

Опр. Конъюнктивной нормальной формой $(KH\Phi)$ длины $l,\ l\geq 1$, назовем конъюнкцию l различных $\partial \mathcal{A}$. $KH\Phi$ длины 0 назовем константу 1. Если каждая $\partial \mathcal{A}$ в $KH\Phi$ содержит все переменные этой $KH\Phi$, то такая $KH\Phi$ называется совершенной.

Теорема. Каждая функция $f(x_1, ..., x_n) \in P_2$, $f \neq 0$, может быть представлена в виде совершенной КНФ K_f , а именно:

$$f(x_1,\ldots,x_n) = \bigwedge_{\sigma \in E_2^n: f(\sigma) = 0} (x_1^{\overline{\sigma}_1} \vee \cdots \vee x_n^{\overline{\sigma}_n}).$$

Д-60. Прямое следствие из теоремы о конъюнктивном разложении.

2.3 Функции алгебры логики. Полные системы. Примеры полных систем (с доказательством полноты).

Опр. Пусть $A \subseteq P_2$. Множество A называется полной системой, если формулами над A можно выразить любую функцию алгебры логики.

Утверждение. Система $A = \{x \cdot y, \ x \vee y, \ \overline{x}\}$ является полной.

Д-60. Рассмотрим произвольную функцию $f \in P_2$.

- **1.** Если f = 0, то $f = \overline{x} \cdot x$.
- **2.** Если $f \neq 0$, то представим f ее совершенной ДНФ.

Утверждение. Следующие множества являются полными системами:

- 1. $A = \{\overline{x}, x \cdot y\};$
- 2. $A = {\overline{x}, x \vee y};$
- 3. $A = \{x/y\};$
- 4. $A = \{x \downarrow y\}$.

Д-60. Система $B = \{x \cdot y, \ x \vee y, \ \overline{x}\}$ полная. Выразим все ее функции через функции систем их условия.

- 1. $x \vee y = \overline{\overline{x} \cdot \overline{y}}$.
- $2. \ x \cdot y = \overline{\overline{x} \vee \overline{y}}.$
- 3. $\overline{x} = x/x$, $x \cdot y = \overline{x/y}$.
- 4. $\overline{x} = x \downarrow x, \ x \lor y = \overline{x \downarrow y}.$

2.4 Функции алгебры логики. Теорема Жегалкина о выразимости функции алгебры логики полиномом Жегалкина.

Опр. Элементарная контюнкция, не содержащая отрицаний переменных, называется монотонной $(\Im K)$, или мономом, или одночленом.

Опр. Полиномом Жегалкина длины $l, l \ge 1$, назовем сумму по модулю два l различных монотонных $\Im K$. Полиномом Жегалкина длины 0 назовем константу 0.

Теорема. Каждая функция $f(x_1, ..., x_n) \in P_2$ может быть единственным образом представлена в виде полинома Жегалкина P_f .

 \mathcal{A} -во. Существование. Применим полиномиальное разложение функции $f(x_1, \dots, x_n)$ по всем n переменным:

$$f(x_1,\ldots,x_n) = \bigoplus_{\sigma \in E_n^n} x_1^{\sigma_1} \cdot \cdots \cdot x_n^{\sigma_n} \cdot f(\sigma).$$

Затем пользуясь тождеством $x^{\sigma}=x\oplus \sigma\oplus 1$ везде в правой части заменим выражение $x_i^{\sigma_i}$ на выражение $x_i\oplus \sigma_i\oplus 1$. Далее по правилам коммутативности и ассоциативности & и \oplus и дистрибутивности вида $x\cdot (y\oplus z)=x\cdot y\oplus z\cdot z$ перемножим все скобки. После этого приведем подобные слагаемые по правилам $x\oplus x=x,\ x\oplus 0=x$. В итоге получим полином Жигалкина, который представляет исходную функцию f.

Единственность. Покажем, что число полиномов Жегалкина над переменными x_1, \ldots, x_n совпадает с числом функций из $P_2^{(n)}$. Монотонных элементарных конъюнкций над переменными $x_1, \ldots x_n$ всего найдется 2^n , т.к. каждая переменная x_i , $i = \overline{1,n}$, может либо входить, либо не входить в такую монотонную ЭК. Далее, полиномов Жегалкина над переменными x_1, \ldots, x_n всего найдется 2^{2^n} , т.к. каждая из 2^n монотонных ЭК может либо входить, либо не входить в такой полином Жегалкина. Значит, учитывая то, что каждая функция f из $P_2^{(n)}$ может быть представлена в виде полинома Жегалкина, это представление единственно.

2.5 Функции алгебры логики. Замыкание, замкнутый класс. Функции, сохраняющие константу, и линейные функции. Замкнутость классов функций, сохраняющих константу, и линейных функций.

Опр. Пусть $A \subseteq P_2$. Замыканием [A] множества A называется множество всех функций, который могут быть выражены формулами над A.

Опр. Замыкание множества A можно определить по-другому. Замыкание [A] называется множество всех функций из P_2 , которые можно получить из функций множества A приминением слудующих операций:

- 1. добавлением или удалением несущественных переменных;
- $2.\ nodcmahoвкой в функции из <math>A$ вместо переменных других переменных (не обязательно различных);
- $3.\ nodcmahoвкой в функции из <math>A$ вместо переменных функций из A или функций, который уже получены.

Операции 1-3 называем операциями суперпозиции.

Утверждение. Два приведенных определения замыкания $A, A \subseteq P_2$, равносильны.

Для произвольных множеств $A, B \subseteq P_2$ верны следующие утверждений:

- 1. $[P_2] = P_2$;
- $2. A \subseteq [A];$
- 3. если $A \subseteq B$, то $[A] \subseteq [B]$;

4.
$$[[A]] = [A]$$
.

Опр. Пусть $A \subseteq P_2$. Множество A называется замкнутым классом, если [A] = A.

Утверждение. Пусть $A \subseteq P_2$, $A - замкнутый класс и <math>A \neq P_2$. Тогда для любого множества $B, B \subseteq P_2$, верно: если $B \subseteq A$, то B -не полная система.

 \mathcal{A} -60. Итак, $B\subseteq A$. По свойствам замыкания и из условия получаем: $[B]\subseteq [A]=A\neq P_2$. Значит $[B]\neq P_2$, т.е. B — не полная система.

Опр. Функция $f(x_1, ..., x_n) \in P_2$ сохраняет 0, если f(0, ..., 0) = 0. Множество всех функций, сохраняющих 0, обозначим T_0 .

Опр. Пусть $e_i^n \subseteq P_2^{(n)}$ и $e_i^n(x_1, ..., x_n) = x_i$, $i = \overline{1, n}$, $n \ge 1$. Положим $I = \{e_i^n : i = \overline{1, n}, n \ge 1\}$, т.е. I — множество всех функций конгруэнтных тождественной функции.

Лемма. Пусть $A \subseteq P_2$ и $I \subseteq A$. Если для любых функций $f_0(y_1, \ldots, y_m) \in A$, $f_i(x_1, \ldots, x_n) \in A$, $i = \overline{1, m}$, причем функции f_i могут зависеть несущественно от некоторых своих переменных, верно

$$f_0(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)) \in A,$$

то множество A является замкнутым классом.

 \mathcal{A} -60. Рассмотрим произвольную функцию $f \in [A]$. Она выражается некоторой формулой F над множеством A. Докажем индукцией по числу d вхождений в формулу F обозначений функций из $A \setminus I$, что $f \in A$.

- 1. Базис индукции: d = 0. Если $F = x_i$, то $f \in A$ по условию утверждения.
- 2. Индуктивный переход. Пусть любая функция, которая может быть вырождена формулой не более чем с d_0 вхождениями обозначений функции из $A\setminus I$, содержится в A. Рассмотрим функцию $f(x_1,\ldots,x_n)\in [A]$, которая выражается формулой F с d_0+1 вхождениями обозначений функций из $A\setminus I$. Тогда $F=F_0(F_1,\ldots,F_m)$, где $f_0\in A\setminus I$, F_i формулы не более чем с d_0 вхождениями функций из $A\setminus I$. По предположению индукции $f_{F_i}\in A$

$$f(x_1,\ldots,x_n)=f_0(f_{F_1}(x_1,\ldots,x_n),\ldots,f_{F_m}(x_1,\ldots,x_n))..$$

Далее, по условию утверждения $f \in A$.

Теорема. *Множеество* T_0 *является замкнутым классом*.

<u>Д</u>-во. Применим лемму о замкнутом классе. Пусть $f_0(y_1, ..., y_m) \in T_0, \ f_i(x_1, ..., x_n) \in T_0, \ i = 1, m$. Рассмотрим функцию

$$f(x_1,\ldots,x_n) = f_0(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)).$$

Получаем:

$$f(0,\ldots,0) = f_0(f_1(0,\ldots,0),\ldots,f_m(0,\ldots,0)) = f_0(0,\ldots,0) = 0.$$

Значит, $f \in T_0$.

Опр. Функция $f(x_1, ..., x_n) \in P_2$ сохраняет 1, если f(1, ..., 1) = 1. Множество всех функций, сохраняющих 1, обозначим T_1 .

Теорема. *Множество* T_1 *является замкнутым классом.*

Д-60. Полностью аналогично доказательству предыдущего утверждения.

Опр. Функция $f(x_1, ..., x_n) \in P_2$ называется линейной, если она может быть представлена в виде:

$$f(x_1,\ldots,x_n)=c_0\oplus c_1x_1\oplus\cdots\oplus c_nx_n,$$

где коэффициенты $c_0, c_1, \ldots, c_n \in E_2$. Множество всех линейных функций обозначим L.

Теорема. *Множество* L *является замкнутым классом*.

 \mathcal{A} -60. Достаточно заметить, что при подстановке вместо переменных линейной функции какихто других линейных функций не могут появиться конъюнкции переменных в слагаемых. \square

2.6 Функции алгебры логики. Самодвойственные функции. Лемма о несамодвойственной функции.

Опр. Функция $f(x_1, ..., x_n) \in P_2$ называется самодвойственной, если $f^*(x_1, ..., x_n) = f(x_1, ..., x_n)$. Заметим, что данное определение эквивалентно тому, что функция f на всех парах противоположных наборов принимает противоположные значения, т.е. $\forall \alpha \in E_2^n : f(\overline{\alpha}) = \overline{f(\alpha)}$. Множество всех самодвойственных функций обозначим S.

Лемма. Если $f \notin S$, то, подставляя вместо ее переменных функции x, \overline{x} , можно получить функцию, равную константе.

 \mathcal{A} -во. Если $f(x_1,\ldots,x_n) \notin S$, то найдется такая пара противоположных наборов $\alpha, \overline{\alpha} \in E_2^n$, что $f(\alpha) = f(\overline{\alpha}) = c \in E_2$. Положим:

$$\varphi(x) = f(x \oplus \alpha_1, \dots, x \oplus \alpha_n).$$

Получаем:

$$\varphi(0) = f(\alpha) = c,$$

 $\varphi(1) = f(\overline{\alpha}) = c.$

Значит, $\varphi(x) = c$.

2.7 Функции алгебры логики. Монотонные функции. Лемма о немонотонной функции.

Пусть $\alpha, \beta \in E_2^n$. Будем говорить, что $\alpha \leq \beta$, если $\alpha_i \leq \beta_i, \ i = \overline{1, n}$.

Опр. Функция $f(x_1, ..., x_n) \in P_2$ называется монотонной, если для любых наборов $\alpha, \beta \in E_2^n$ из $\alpha \leq \beta$ следует $f(\alpha) \leq f(\beta)$. Множество всех монотонных функций обозначим M.

Лемма. Если $f \notin M$, то, подставляя вместо ее переменных функции 0, 1, x можно получить функцию \overline{x} .

 \mathcal{A} -во. Если $f(x_1, \ldots, x_n) \notin M$, то найдется такая пара наборов $\alpha, \beta \in E_2^n$, что $\alpha \leq \beta$, но $f(\alpha) > f(\beta)$. Значит, $f(\alpha) = 1$ и $f(\beta) = 0$. Не ограничивая общности, пусть $\alpha_i = 0$, $\beta_i = 1$, $i = \overline{1, k}$ и $\alpha_i = \beta_i$, $i = \overline{k+1, n}$. Положим:

$$\varphi(x) = f(\underbrace{x, \dots, x}_{k}, \alpha_{k+1}, \dots, \alpha_{n})..$$

Получаем:

$$\varphi(0) = f(\underbrace{0, \dots, 0}_{k}, \alpha_{k+1}, \dots, \alpha_{n}) = f(\alpha) = 1,$$

$$\varphi(1) = f(\underbrace{1, \dots, 1}_{k}, \alpha_{k+1}, \dots, \alpha_{n}) = f(\beta) = 0.$$

Значит, $\varphi(x) = \overline{x}$.

2.8 Функции алгебры логики. Базис. Теорема о числе функций в базисе в алгебре логики.

Опр. Пусть $B \subseteq P_2$. Множество B называется базисом P_2 , если

- 1. $[B] = P_2;$
- 2. $\forall f \in B : [B \setminus \{f\}] \neq P_2$.

Теорема.

- 1. Любой базис P_2 содержит не больше четырех функций.
- 2. Для любого числа $k,\ 1 \le k \le 4$, в P_2 найдется базис, содержащий ровно k функций.

 \mathcal{A} -60. **1.** Пусть $B\subseteq P_2$ — базис P_2 . Тогда B — полная система. Значит, по теореме Поста в B найдутся следующие (не обязательно различные) функции: $f_0\not\in T_0,\ f_1\not\in T_1,\ f_l\not\in L,\ f_s\not\in S,\ f_m\not\in M$. Система $\{f_0,f_1,f_l,f_s,f_m\}$ — полна, а B — неизбыточна, поэтому $B=\{f_0,f_1,f_l,f_s,f_m\}$. Значит, $|B|\leq 5$.

Рассмотрим функцию $f_0 \in B, f_0 \notin T_0$:

 x_n	f_0
 0	1
 1	a
	$ \begin{array}{ccc} & x_n \\ & 0 \\ & \vdots \\ & 1 \end{array} $

Теперь

- 1) если a=0, то $f_0\not\in T_1, M,$ а значит, $f_1=f_m=f_0$ и $|B|\leq 3;$
- 2) если a=1, то $f_0 \not\in S$, а значит, $f_s=f_0$, и $|B| \leq 4$.

Следовательно, $|B| \le 4$.

- **2.** Для каждого числа $k,\ 1 \le k \le 4$, приведем примеры базисов B из k функций:
 - 1. если k = 1, то, например, $B = \{x/y\}$ или $B = \{x \downarrow y\}$;

- 2. если k=2, то, например, $B=\{\overline{x},\ x\cdot y\}$ или $B=\{\overline{x},\ x\vee y\}$;
- 3. если k = 3, то, например, $B = \{1, x \oplus y, x \cdot y\}$;
- 4. если k = 4, то, например, $B = \{0, 1, x \oplus y \oplus z, x \cdot y\}.$

2.9 Графы. Изоморфизм графов. Связность. Формула Эйлера для степеней вершин. Теорема о соотношении между числом вершин, ребер и компонент связности в графе.

Опр. (Неориентированным) графом G называется пара (V, E), где V — непустое множество вершин; E — конечное множество ребер, примем каждому ребру $e \in E$ сопоставлена неупорядоченная пара вершин, $m.e.\ e = (v, w)$, где $v, w \in V$.

Ребро e = (v, v), где $v \in V$, называется петлей. Ребра $e_1 = (v, w)$ и $e_2 = (v, w)$, где $v, w \in V$ и $e_1 \neq e_2$, называются кратными ребрами. Граф, в котором допускаются и петли, и кратные ребра иногда называется псевдографом. Граф без петель, но, возможно, с кратными ребрами называется мультиграфом. Граф без петель и кратных ребер называется простым, или обыкновенным графом.

Опр. Два графа без петель и кратных ребер $G_1 = (V_1, E_1)$ и $G_2 = (V_2, E_2)$ называются изоморфными, если найдется взаимно однозначное отображение $\varphi: V_1 \to V_2$, сохраняющее ребра, т.е. для любых вершин $v, w \in V_1$ выполняется соотношение:

$$(v, w) \in E_1 \Leftrightarrow (\varphi(v), \varphi(w)) \in E_2.$$

Опр. Степенью $d_G(v)$ вершины $v \in V$ в графе G = (V, E) называется число исходящих из нее ребер (причем петля вносит двойной вклад в степень вершины).

Утверждение. Пусть $G = (V, E) - \mathit{гра} \phi$ без петель и кратных ребер. Тогда

- 1. $\sum_{v \in V} d_G(v) = 2 \cdot |E|;$
- 2. в графе G число вершин, имеющих нечетную степень четно.

Д-60. **1.** Рассмотрим сумму в левой части равенства. Т.к. любое ребро графа имеет ровно два конца, каждое ребро в этой сумме будет подсчитано ровно два раза. Получаем выражение в правой части равенства.

2. Свойство непосредственно следует из равенства п.1.

Опр. Граф G = (V, E) называется связным, если для каждой пары вершин графа G найдется путь, соединяющий эти вершины (а значит, и простая цепь, соединяющая эти вершины). Максимальный (по включению) связный подграф графа G называется его компонентой связности.

Теорема. Пусть G = (V, E) — граф без петель и кратных ребер c p вершинами, q ребер u s компонентами связности. Тогда

- 1. $s \ge p q$;
- 2. если в графе G отсутствуют циклы, то s=p-q.
- \mathcal{A} -во. **1.** Рассмотрим переход от графа $G_i = (V, E_i)$ к графу $G_{i+1} + e$, где $E_i \subseteq E$, $e \in E \setminus E_i$. Пусть в графах G_i, G_{i+1} соответственно s_i, s_{i+1} компонент связности. Тогда если ребро e соединяет вершины из одной компоненты связности графа G_i , то $s_{i+1} = s_i$; и если ребро e соединяет вершины из разных компонент связности графа G_i , то $s_{i+1} = s_i 1$. Поэтому $s_{i+1} \geq s_i 1$. Граф G можно получить из графа $G_0 = (V, \emptyset)$ с p компонентами связности добавлением всех ребер множества E. Поэтому $s \geq p q$.
- **2.** Если же в графе G нет циклов, то в предыдущих рассуждениях верно $s_{i+1} = s_i 1$. Поэтому s = p q.

2.10 Деревья. Корневые деревья, упорядоченные корневые деревья. Верхняя оценка числа деревьев с заданным числом ребер.

Опр. Деревом называется связный граф без циклов.

Опр. Корневым деревом называется пара $(D; v_0)$, где D = (V, E) — дерево, $v_0 \in V$ — выделенная вершина, называемая корнем. При изоморфизме корневых деревьев корень обязан переходить в корень. Висячая вершина корневого дерева, не являющаяся корнем, называется листом.

Опр. Пусть $(D; v_0)$ — корневое дерево и D_1, \ldots, D_m — все его поддеревья. Корневое дерево D называется упорядоченным, если задан порядок его поддеревьев, а каждое его поддерево $D_i, i = \overline{1,m}$, также является упорядоченным корневым деревом.

Теорема. Для числа $\delta''(q)$ неизоморфных упорядоченных корневых деревьев c q ребрами справедлива оценка: $\delta''(q) \leq 4^q$.

 \mathcal{A} -во. Пусть (D, v_0) — упорядоченное корневое дерево с q ребрами. Обойдем дерево D в глубину из вершины $v_0 \in V$ по порядку его поддеревьев. При таком обходе по каждому ребру пройдем два раза: первый раз при обходе в соответствующее поддерево, второй раз при возвращении из него.

По этому обходу построим код дерева D — набор k(D) из нулей и единиц длины 2q. Сначала этот код не заполнен. При проходе по очередному ребру заполняем в коде k(D) первый незаполненный разряд по следующим правилам:

- 1) если по ребру переходим в поддерево, то в код k(D) пишем ноль;
- 2) если по ребру возвращаемся из поддерева, то в код k(D) пишем единицу.

Тогда различным упорядоченным корневым деревьям соответствуют разные коды. Поэтому $\delta''(q)$ не превосходит числа наборов из нулей и единиц длины 2q, т.е.

$$\delta''(q) \le 2^{2q} = 4^q.$$

2.11 Геометрическое представление графов. Теорема о геометрическом представлении графов в трехмерном пространстве.

Опр. Геометрическим представлением графа G = (V, E) в пространстве \mathbb{R}^n называется такое его отображение в \mathbb{R}^n , при котором:

- 1. каждой вершине $v \in V$ сопоставлена точка в \mathbb{R}^n , причем разным вершинам разные точки;
- 2. каждому ребру $(v, w) \in E$ сопоставлена непрерывная кривая, соединяющая точки, соответствующие вершинам v u w, u не проходящая через точки, соответствующие другим вершинам;
- 3. кроме того, кривые, соответствующие различным ребрам, не пересекаются за исключением своих концов.

Теорема. Любой граф G допускает геометрическое представление в \mathbb{R}^3 .

 \mathcal{A} -60. Пусть G = (V, E), где $V = \{v_1, \ldots, v_p\}$, $E = \{e_1, \ldots, e_q\}$. Возьмем в \mathbb{R}^3 произвольную прямую l и отметим на ней p различных точек, которые обозначим v_1, \ldots, v_p . Сопоставим их вершинам графа G. Возьмем q различных плоскостей π_1, \ldots, π_q , содержащих прямую l. Ребру $e_i = (v_{i_1}, v_{i_2})$ графа G сопоставим кривую, соединяющую точки v_{i_1} и v_{i_2} , которую проведем в плоскости π_i , $i = 1, \ldots, q$. По построению кривые, сопоставленные ребрам, могут пересекаться только в концевых точках. Значит, получили геометрическое представление G в \mathbb{R}^3 .

2.12 Планарные графы. Формула Эйлера для планарных графов. Верхняя оценка числа ребер в планарном графе.

Опр. Граф G называется планарным, если найдется его геометрическое представление на плоскости (т.е. в \mathbb{R}^2). В обратном случае граф G называется непланарным. Геометрическое представление планарного графа в R^2 назовем его укладкой на плоскости. Связные области плоскости, ограниченные ребрами планарного графа при его укладке на плоскости, называются гранями, неограниченная область называется также внешней гранью.

Теорема (формула Эйлера для планарных графов). Если G = (V, E) - cвязный планарный граф с p вершинами и q ребрами, то для кажсдой его укладки на плоскости верно равенство: p - q + r = 2, где r — число граней в этой укладке.

 \mathcal{A} -во. Проведем индукцию по q при заданном p.

 $\it Easuc\ undykuuu$. Если q=p-1, то $\it G-$ дерево. Каждое дерево — планарный граф с одной гранью. Поэтому формула верна.

 $\mathit{Индуктивный переход}.$ Рассмотрим связный планарный граф G с p вершинами и $q \geq p$ ребрами. Пусть задана его укладка на плоскости, в которой r граней.

В графе G найдется хотя бы один цикл, и пусть e — любое ребро какого-то его цикла. Тогда граф G' = G - e — связный и планарный с p вершинами и q-1 ребрами, и его укдладка на плоскости содержит r-1 грань, т.к. при удалении ребра e из укладки графа G две грани соединяются в одну. Для графа G' верно предположение индукции, т.е. $p-(q-1)+(r-1)=2 \implies p-q+r=2$.

Теорема. Наибольшее число ребер в планарном графе (без петель и кратных ребер) с $p \ge 3$ вершинами равно 3p-6.

Д-во. Можно рассматривать связные графы.

- 1. Верхняя граница. Пусть G = (V, E) связный планарный граф с p вершинами и q ребрами. Рассмотрим укладку графа G на плоскость, и пусть q_i число ребер, встречающихся при обходе границы i-й грани в этой кладке, $i = \overline{1,r}$. Тогда $\sum_{i=1}^r q_i = 2q$, т.к. каждое ребро:
- 1) либо разделяет две грани, а значит, считается при обходе границ этих двух граней;
- 2) либо лежит в одной грани, а значит, при обходе ее границы считается два раза. Из связности графа и $p\geq 3$ получаем $q_i\geq 3$, откуда $3r\leq 2q$, или $r\leq \frac{2}{3}q$. По формуле Эйлера r=q-p+2, поэтому $q-p+2\leq \frac{2}{3}q$, а значит

$$q \leq 3p - 6$$
.

2. Достичесимость верхней оценки. Построим графы, на которых достигается эта оценка. Это связные планарные графы, в которых любая грань (включая внешнюю) ограничена циклом длины три. Такие графы называются триангуляциями.

Если p=3, то $G_p=K_3$. Пусть уже построен связный планарный граф G_p с p вершинами и 3p-6 ребрами, каждая грань которого ограничена треугольником. Тогда граф G_{p+1} получается из G_p добавлением новой вершины внутри какой-то грани и ребер, соединяющих эту вершину с тремя вершинами границы этой грани.

2.13 Графы K5 и K3,3. Непланарность графов K5 и K3,3. Теорема Понтрягина-Куратовского (доказательство в одну сторону).

Теорема. Граф K_5 не является планарным.

 \mathcal{A} -60. От противного. Пусть граф K_5 планарен. Тогда для произвольной укладки на плоскость верно равенство: p-q+r=2, где p=5 — число вершин и q=10 число ребер в графе, а r — число граней в этой укладке. Поэтому r=7.

Пусть q_i — число ребер, встречающихся при обходе границы i-й грани в этой укладке. Тогда $\sum_{i=1}^r q_i = 2q$. Но $q_i \geq 3$, поэтому $3r \leq 2q$, или $r \leq \frac{2}{3}q$. Получаем: $7 \leq \frac{2}{3} \cdot 10$ — противоречие. Значит, граф K_5 не является планарным.

Теорема. Граф $K_{3,3}$ не является планарным.

 \mathcal{A} -во. От противного. Пусть граф $K_{3,3}$ планарен. Тогда для произвольной его укладки на плоскости верно равенство: p-q+r=2, где p=6 — число вершин и q=9 число ребер в графе, а r — число граней в этой укладке. Поэтому r=5. Пусть q_i — число ребер, встречающихся при обходе границы i-й грани в этой укладке. Тогда $\sum_{i=1}^r q_i = 2q$. Но $q_i \geq 4$, поэтому $4r \leq 2q$, или $r \leq \frac{1}{2}q$. Получаем: $5 \leq \frac{9}{2}$ — противоречие. Значит, граф $K_{3,3}$ не является планарным. \square Опр. Говорят, что граф G'=(V',E') получен из графа G=(V,E) подразбиением ребра $e=(v,w)\in E$, если

$$V' = V \cup \{u\}, \ \textit{rde } u \not\in V;$$

 $E' = E \setminus \{(v, w)\} \cup \{(v, u), (u, w)\}.$

 Γ раф G' называется подразбиением графа G, если G' может быть получен из G конечным числом подразбиений ребер.

Опр. Графы $G_1 = (V_1, E_1)$ и $G_2 = (V_2, E_2)$ называются гомеоморфными, если найдутся их изоморфные подразбиения G_1' и G_2' соответственно.

Теорема. Граф G = (V, E) планарен тогда и только тогда, когда в нем не найдется ни одного подграфа, гомеоморфного либо графу K_5 , либо графу $K_{3,3}$.

 \mathcal{A} -во. (\Longrightarrow) От противного. Пусть граф G планарен, но в нем есть подграф, гомеоморфный, например, K_5 . Тогда этот подграф не планарен, а значит не планарен и сам граф. Противоречие. Значит в G нет подргафа гомеоморфного K_5 .

2.14 Раскраски вершин графов. Теорема о раскраске вершин графа в 2 цвета (теорема Кенига).

Теорема (Кенига). Вершины графа G можно раскрасить в два цвета тогда и только тогда, когда в нем не найдется ни одного простого цикла нечетной длины.

 \mathcal{A} -60. **1.** Если в графе G найдется простой цикл нечетной длины, то вершины этого цикла в два цвета не раскрасить.

2. Пусть теперь в графе G отсутствуют простые циклы нечетной длины. Можно считать, что G — связный граф, иначе проведем рассуждения для каждой его компоненты связности.

Построим в графе G его остовное дерево D. Выберем произвольную вершину $v_0 \in V$. В дереве D для пары вершин v_0, w , где $w \in V$, существует ровно одна простая (v_0, w) -цепь P_w . Рассмотрим отображение $\rho: V \to \{1,2\}$: $\rho(w) = 1$, если длина цепи P_w нечетна; $\rho(w) = 2$, если длина цепи P_w четна. Покажем, что ρ является раскраской вершин, т.е. в графе G нет ребер, оба конца которых окрашены в один и тот же цвет.

Предположим обратное: пусть $(u,w) \in E$ и $\rho(u) = \rho(w)$. Рассмотрит в графе G замкнутый путь $P = v_0 P_u u(u,w) w P_w v_0$. Длина цепи P нечетна, т.к. у длин цепей P_u , P_w в дереве D одинаковая четность. Но из указанного замкнутого пути P можно выделить простой цикл нечетной длины — противоречие. Значит, ρ — раскраска вершин графа G в два цвета. \square

2.15 Коды с минимальной избыточностью (оптимальные коды). Три леммы о свойствах кодов с минимальной избыточностью.

Лемма. Пусть заданы $A, |A| = r, B u P = (p_1, \ldots, p_r),$ причем $p_i > p_j$. Если $C_{\varphi} = \{B_1, \ldots, B_r\}$ — оптимальный код, то $|B_i| \leq |B_j|$.

Д-60. Пусть l_1,\dots,l_r — длины кодовых слов B_1,\dots,B_r и, для определенности, i< j. Докажем от обратного: предположим, что $l_i>l_j$. Рассмотрим код $C_{\varphi'}$, где

$$C_{\varphi'} = \{B_1, \dots, B_{i-1}, B_j, B_{i+1}, \dots, B_{j-1}, B_i, B_{j+1}, \dots, B_r\}.$$

Код $C_{\varphi'}$ получен из однозначного кода C_{φ} перестановкой кодовых слов B_i и B_j . Значит, код $C_{\varphi'}$ — также однозначен. Получаем:

$$c(\varphi') - c(\varphi) = p_i(l_j - l_i) + p_j(l_i - l_j) = (p_i - p_j)(l_j - l_i) < 0,$$

Значит, $c(\varphi') < c(\varphi)$, чего не может быть, т.к. C_{φ} — оптимальный код. Следовательно, $l_i < l_j$.

Лемма. Пусть заданы $A, |A| = r \ge 2, B = \{0,1\}$ и $P = (p_1, \dots, p_r)$. Если $C_{\varphi} = \{B_1, \dots, B_r\}$ — оптимальный префиксный код и B_i — кодовое слово с наибольшей длиной, причем $B_i = B_i'b$, где $B_i' \in B^*, b \in B$, то в коде C_{φ} найдется кодовое слово $B_j = B_i'\bar{b}$.

 \mathcal{A} -60. Если r=2, то лемма верна. Пусть $r\geq 3$ и l_1,\ldots,l_r — длины кодовых слов B_1,\ldots,B_r . Отметим, что $l_i\geq 2$. Докажем от противного: предположим, что слово $B_i'\bar{b}$ в коде C_{φ} не встречается.

Рассмотрим код $C_{\varphi'}$, где

$$C_{\varphi'} = \{B_1, \dots, B_{i-1}, B'_i, B_{i+1}, \dots, B_r\}.$$

Код $C_{\varphi'}$ получен из префиксного кода $C_{\varphi'}$ удалением последней буквы из самого длинного кодового слова B_i . Значит, код $C_{\varphi'}$ также является префиксным. Получаем:

$$c(\varphi') - c(\varphi) = p_i(l_i - 1) - p_i l_i = -p_i < 0.$$

Значит, $c(\varphi') < c(\varphi)$, чего не может быть, т.к. C_{φ} — оптимальный код. Следовательно, в коде C_{φ} найдется кодовое слово $B'_i \bar{b}$.

Лемма. Пусть заданы A, |A| = r, $r \ge 2$, $B = \{0,1\}$ и $P = (p_1, \ldots, p_r)$, причем $p_1 \ge p_2 \ge \cdots \ge p_{r-1} \ge p_r$. Тогда найдется такой оптимальный префиксный код, что кодовые слова, сопоставленные буквам с частотами p_{r-1} и p_r являются самыми длинными и отличаются только последней буквой.

 \mathcal{A} -60. Пусть $C_{\varphi} = \{B_1, \ldots, B_r\}$ — какой-то оптимальный префиксный код и l_1, \ldots, l_r — длины кодовых слов B_1, \ldots, B_r . Пусть B_i — кодовое слово с наибольшей длиной в коде C_{φ} , $B_i = B_i'b$, где $B_i' \in B^*$, $b \in B$. Тогда в коде C_{φ} найдется кодовое слово $B_j = B_i'\bar{b}$. Пусть для определенности i < j.

Рассмотрим код $C_{\varphi'}$, где

$$C_{\varphi'} = \{B_1, \dots, B_{i-1}, B_{r-1}, B_{i+1}, \dots, B_r, B_{j+1}, \dots, B_{r-2}, B_i, B_j\}.$$

Код $C_{\varphi'}$ получен из префиксного кода C_{φ} перестановкой кодовых слов. Значит, код $C_{\varphi'}$ также является префиксным. Получаем:

$$c(\varphi') - c(\varphi) = p_i(l_{r-1} - l_i) + p_j(l_r - l_j) + p_{r-1}(l_i - l_{r-1}) + p_r(l_j - l_r) =$$

$$= (p_i - p_{r-1})(l_{r-1} - l_i) + (p_j - p_r)(l_r - l_j).$$

Теперь если $p_i = p_{r-1}$, то $(p_i - p_{r-1})(l_{r-1} - l_i) = 0$.

Если же $p_i > p_{r-1}$, то верно $l_i \leq l_{r-1}$. Но l_i — наибольшая длина среди всех кодовых слов, поэтому $l_i = l_{r-1}$, откуда $(p_i - p_{r-1})(l_{r-1} - l_i) = 0$.

Аналогично устанавливаем, что $(p_j - p_r)(l_r - l_j) = 0$. Значит $c(\varphi') = c(\varphi)$. Но C_{φ} — оптимальный код, поэтому $C_{\varphi'}$ — также оптимальный код. Код $C_{\varphi'}$ — искомый.

2.16 Коды с минимальной избыточностью (оптимальные коды). Алгоритм Хаффмена построения кода с минимальной избыточностью.

По теореме редукции задачу поиска оптимального кода можно свести к такой же задаче, но с исходным алфавитом с числом букв, меньшим на единицу, и с набором частот, получающимся из первоначального сложением двух наименьших частот. Так можно уменьшать число букв в исходных алфавитах до тех пор, пока не получим алфавит из двух букв. А для исходного алфавита из двух букв при любом наборе частот в кодирующем алфавите $B = \{0,1\}$ оптимальным является код $C_{\varphi} = \{0,1\}$.

Алгоритм построения оптимального кода в кодирующем алфавите $B = \{0, 1\}$.

 $Bxo\partial$: набор частот $P = (p_1, \dots, p_r), \ p_i \in \mathbb{R}_+, \ \sum_{i=1}^r p_i = 1, \ r \geq 2.$

Bыход: дерево D_{φ^*} какого-то оптимального префиксного кода $C_{\varphi^*} = \{B_1, \dots, B_r\}$ для набора частот P.

Описание алгоритма.

- **1.** Положить: $H_1=(V_1,E_1)$, где $V_1=\{u_1,\ldots,u_r\},\ E_1=\emptyset,\$ и $p(u_i)=p_i$ для всех $i=1,\ldots,r,\ W_1=V_1.$
- **2.** Для всех $k=1,\ldots,r-1$: выбрать в множестве W_k две такие вершины w' и w'', что

$$p(w') \le p(w), \ p(w'') \le p(w)$$

для любой вершины $w \in W_k$, $w \neq w'$, $w \neq w''$, положить: $H_{k+1} = (V_{k+1}, E_{k+1})$, где $V_{k+1} = V_k \cup \{v_k\}, E_{k+1} = E_k \cup \{(v_k, w'), (v_k, w'')\}$, и

$$p(v_k) = p(w') + p(w''), \quad W_{k+1} = (W_k \cup \{v_k\}) \setminus \{w', w''\},$$

ребру (v_k, w') приписать 0, ребру (v_k, w'') приписать 1.

3. Положить: $D_{\varphi^*} = H_r$ с корнем v_{r-1} .

2.17 Коды, исправляющие одну ошибку. Алгоритмы кодирования, исправления ошибки и декодирования в коде Хэмминга.

При рассмотрении кодов Хэмминга обычно в словах разряды с номерами, являющимися степенями двойки, называют проверочными, а остальные разряды — информационными. Пусть $n \geq 3, \ 2^{k-1} < n < 2^k$ и m=n-k. Если H — код Хэмминга порядка n, то H содержит 2^m слов и исправляет одну ошибку. Поэтому найдется такое разделимое кодирование $\varphi_H: A^m \to B^n$, что $C_{\varphi_H} = H$.

Опишем алгоритм кодирование в коде Хэмминга.

 $Bxo\partial$: слово $\alpha \in A^m$, где $m=n-k, \ n\geq 3, \ 2^{k-1}< n< 2^k.$

Bыход: слово $\beta = \varphi_H(\alpha) \in H$, где $\beta \in B^n$.

Описание алгоритма.

1. Заполнение информационных разрядов. Для всех $j \in N_n \setminus \{2^0, 2^1, \dots, 2^{k-1}\}$ положить:

$$\beta_j = \alpha_{j - \lceil \log_2 j \rceil}.$$

2. Заполнение проверочных разрядов. Для всех $i = \overline{0, k-1}$ положить:

$$\beta_{2^i} = \bigoplus_{j \in D_i, j \neq 2^i} \beta_j.$$

Опишем алгоритм исправления ошибки к коде Хэмминга.

 $Bxo\partial$: слово $\beta' \in B^n$, полученное из некоторого слова $\beta \in H$, в котором могла произойти одна ошибка замещения, где $n \geq 3, \ 2^{k-1} < n < 2^k$.

 $Bыхо\partial$: слово $\beta \in H$, где $\beta \in B^n$.

Описание алгоритма.

1. Вычисление проверочных сумм. Для всех $i = \overline{0, k-1}$ найти:

$$s_i = \bigoplus_{j \in D_i} \beta_j',$$

затем положить: $s = \sum_{i=0}^{k-1} s_i \cdot 2^i$.

2. Исправление ошибки. Если s=0, то ошибки нет, положить: $\beta=\beta'$.

Если $s \neq 0$, то ошибка в s-м разряде, положить:

$$\beta_j = \beta'_j$$
 при $j = \overline{1, n}, j \neq s$ и $\beta_s = \overline{\beta}'_s$.

Опишем алгоритм декодирования в коде Хэмминга.

 $Bxo\partial$: слово $\beta \in H$, где $\beta \in B^n$, $n \ge 3$, $2^{k-1} < n < 2^k$.

Выход: слово $\alpha \in A^m$, где $\beta = \varphi_H(\alpha), \ m = n - k$.

Описание алгоритма.

Вычеркивание проверочных рядов. Вычеркнуть в слове β разряды β_j для всех $j=2^0,2^1,\ldots,2^{k-1},$ затем оставшееся слово обозначить α .

2.18 Линейные двоичные коды. Теорема о кодовом расстоянии линейных кодов.

Пусть $n \geq 1$. Определим для наборов из B^n операции сложения и умножения на число из B. Если $\beta, \gamma \in B^n$, то

$$\beta \oplus \gamma = (\beta_1 \oplus \gamma_1, \dots, \beta_n \oplus \gamma_n) \in B^n.$$

Если $\beta \in B^n$ и $c \in B$, то

$$c\beta = (c \cdot \beta_1, \dots, c \cdot \beta_n) \in B^n.$$

Наборы $\beta_1,\dots,\beta_k\in B^n$ называются линейно независимыми, если из равенства

$$c_1\beta_1\oplus\cdots\oplus c_k\beta_k=(0,\ldots,0)$$

следует

$$c_1 = \dots = c_k = 0.$$

В обратном случае наборы $\beta_1, \dots, \beta_k \in B^n$ называются линейно зависимыми.

Множество $V \subseteq B^n$ называется линейным пространством если из $\beta, \gamma \in V$ следует $\beta \oplus \gamma \in V$. Отметим, что если $V \subseteq B^n$ — линейное пространство, то для любого $k \ge 1$ для любых наборов $\beta_1, \ldots, \beta_k \in V$ и для любых $c_1, \ldots, c_k \in B$ верно

$$c_1\beta_1 \oplus \cdots \oplus c_k\beta_k \in V$$
.

Если $V \subseteq B^n$ — линейное пространство, то наибольшее множество линейно независимых наборов из V называется его базисом. Известно, что любой базис V содержит одно и то же число наборов, называемое размерностью пространства V. Если β_1, \ldots, β_k — базис V, то $|V| = 2^k$ и для любого набора $\beta \in V$ найдется однозначно определенное представление:

$$\beta = c_1 \beta_1 \oplus \cdots \oplus c_k \beta_k,$$

где $c_1, \ldots, c_k \in B$.

Опр. Пусть $n \ge 1$ и $C \subseteq B^n$ — равномерный код. Код C называется линейным, если множество C является линейным пространством.

Весом $|\beta|$ набора $\beta \in B^n$ называется число его разрядов, равных единице.

Теорема. Если $C \subseteq B^n$ — линейный код, $n \ge 1$, то для его кодового расстояния верно равенство:

$$d_C = \min_{\beta \in C, \beta \neq (0, \dots, 0)} |\beta|.$$

 \mathcal{A} -во. 1. Сначала установим, что в C найдется набор, вес которого совпадает с d_C . По определению

$$d_C = \min_{\beta_1, \beta_2 \in C, \beta_1 \neq \beta_2} \rho(\beta_1, \beta_2).$$

Пусть кодовое расстояние достигается на паре наборов $\gamma_1, \gamma_2 \in C$, т.е. $\gamma_1 \neq \gamma_2$ и $d_C = \rho(\gamma_1, \gamma_2)$. Но C — линейный код, поэтому набор $\gamma = \gamma_1 \oplus \gamma_2$ также принадлежит коду C. Кроме того, вес $|\gamma|$ набора γ равен числу разрядов, в которых набор γ_1 и γ_2 различаются. Значит,

$$|\gamma| = \rho(\gamma_1, \gamma_2) = d_C.$$

2. Теперь покажем от обратного, что в C не найдутся ненулевые наборы, вес которых меньше d_C . Предположим, что для некоторого набора $\gamma' \in C$ верно $|\gamma'| < d_C$. Но C — линейный код, поэтому нулевой набор $(0, \ldots, 0) \in B^n$ также принадлежит коду C. Получаем противоречие:

$$d_C \le \rho(\gamma', (0, \dots, 0)) = |\gamma'| < d_C.$$

Значит, ненулевой набор с весом, меньшим d_C , в линейном коде C не найдется.

2.19 Конечные автоматы. Функционирование конечного автомата. Автоматные функции. Канонические уравнения и диаграмма Мура конечного автомата. Единичная задержка, ее автоматность.

Опр. Функционирование конечного автомата $\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$ на входном слове $x = x(1)x(2)\dots x(m) \in A^*$ описывается системой канонических уравнений:

$$\begin{cases} y(t) = \varphi(x(t), q(t-1)), 1 \le t \le m, \\ q(t) = \psi(x(t), q(t-1)), 1 \le t \le m, \\ q(0) = q_*. \end{cases}$$

При этом говорят, что конечный автомат \mathcal{A} входное слово $x = x(1)x(2)...x(m) \in A^*$ преобразует в выходное слово $y = y(1)y(2)...y(m) \in B^*$.

Пусть A — конечный алфавит. Бесконечным словом (или сверхсловом) в алфавите A назовем бесконечную последовательность букв этого алфавита. Множество всех сверхслов в алфавите A обозначим A^{∞} .

Опр. Конечный автомат \mathcal{A} каждое сверхслово $x \in A^{\infty}$ преобразует в однозначно определенное сверхслово $y \in B^{\infty}$. Значит, конечный автомат \mathcal{A} определяет некоторую функцию

$$f_{\mathcal{A}}: A^{\infty} \to B^{\infty},$$

которую назовем отображением, осуществляемое автоматом \mathcal{A} .

Опр. Пусть A и B — конечный алфавиты и $f: A^{\infty} \to B^{\infty}$. Функция f называется автоматной, если найдется такой конечный автомат $\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$, что $f_{\mathcal{A}} = f$.

Рассмотрим способы представления конечных автоматов и соответствующих автоматных функций.

1. Канонические уравнения.

Конечный автомат $\mathcal{A}=(A,B,Q,\varphi,\psi,q_*)$ (и автоматную функицю $f_{\mathcal{A}}$) можно задавать каноническим уравнениями:

$$\begin{cases} y(t) = \varphi(x(t), q(t-1)), \\ q(t) = \psi(x(t), q(t-1)), \\ q(0) = q_*. \end{cases}$$

При этом часто удобно, чтобы в правых частях находились функции алгебры логики. Для этого элементы множеств A,B,Q кодируют однозначным алфавитным равномерным кодом в алфавите $\{0,1\}$. А затем переписывают функции $\varphi(t),\ \psi(t)$ в соответствии с этим кодированием.

2. Диаграмма мура.

Диаграммой Мура (или диаграммой переходов) конечного автомата $\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$ (и автоматной функции $f_{\mathcal{A}}$) называется ориентированный граф с пометками $D_{\mathcal{A}} = (V_{\mathcal{A}}, E_{\mathcal{A}})$, в котором: $V_{\mathcal{A}} = Q$; $E_{\mathcal{A}} = \{(q, \psi(a, q)) : a \in A, q \in Q\}$, причем дуге $(q, \psi(a, q)) \in E_{\mathcal{A}}$ приписана пометка $a(\varphi(a, q))$; вершина $q_* \in V_{\mathcal{A}}$ помечена звездочкой *.

Опр. Пусть
$$A = B = \{0,1\}$$
 и $z : A^{\infty} \to B^{\infty}$, где

$$z(x(1)x(2)...x(t)...) = 0x(1)x(2)...x(t-1)...$$

Она называется функцией единичной задержки.

Утверждение. Функция единичной задержки является автоматной.

 \mathcal{A} -во. Отображение z осуществляется конечным автоматом $\mathcal{A}=(A,B,Q=\{0,1\},\varphi,\psi,q_*=0)$, где состояние q=0 означает "в предыдущий момент времени на входе был 0"; состояние q=1 означает "в предыдущий момент времени на входе был 1". Найдем таблицы функций φ , ψ и канонические уравнения:

$q \in Q$	$a \in A$	φ	ψ
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

$$\begin{cases} y(t) = q(t-1), \\ q(t) = x(t), \\ q(0) = 0. \end{cases}$$

2.20 Схемы из функциональных элементов. Выразимость функции алгебры логики схемой из функциональных элементов в базисе из конъюнкции, дизъюнкции и отрицания.

Рассмотрим СФЭ $S(x_1, ..., x_n; y_1, ..., y_m)$ в базисе $B_0 = \{x \cdot y, x \vee y, \overline{x}\}$. Пусть она построена по орграфу G = (V, E). Тогда в любой ее вершине $v \in V$ вычисляется некоторая функция $f_v(x_1, ..., x_n) \in P_2$, по индукции однозначно определяемая по СФЭ.

 $\mathit{Базис}\ undykuuu$. Если v — входная вершина СФЭ и ей приписана входная переменная x_i , то

$$f_{i} = x_{i}$$

т.е. в вершине v вычисляется функция, тождественно равная переменной x_i .

 $\mathit{Индуктивный переход.}\ \mathbf{1.}\ \mathit{Если}\ v$ —внутренняя вершина СФЭ и ей приписано отрицание \overline{x} , причем $(w,v)\in E$, то

$$f_v = \overline{f}_w,$$

т.е. в вершине v вычисляется функция, равная отрицанию той функции, которая вычисляется в вершине w, из которой ведет дуга в вершину v.

2. Если v — внутренняя вершина СФЭ и ей приписана конъюнкция & (дизъюнкция \vee), причем $(w_1, v) \in E$, $(w_2, v) \in E$, где $w_1 \neq w_2$, то

$$f_v = f_{w_1} \cdot f_{w_2} \quad (f_v = f_{w_1} \vee f_{w_2}),$$

т.е. в вершине v вычисляется функция, равная конъюнкции (дизъюнкции) тех функций, которые вычисляются в вершинах w_1 и w_2 , из которых ведут дуги в вершину v.

Любую ли функцию $f \in P_2$ можно вычислить некоторой СФЭ в базисе $B_0 = \{x \cdot y, \ x \lor y, \ \overline{x}\}$? Да, т.к. множество

$$B_0 = \{x \cdot y, \ x \vee y, \ \overline{x}\} \subseteq P_2$$

является полной системой.

Значит, функцию f можно записать некоторой формулой над множеством B_0 . А затем по этой формуле построить соответствующую СФЭ, вычисляющую функцию f.