

Operating System Practice

Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information Engineering, Chang Gung University

Flash Memory and Phase Change Memory

Reference: Prof. Tei-Wei Kuo, NTU and Dr. Yuan-Hao Chang, Academia Sinica

Trends - Market and Technology

- Diversified Application Domains
 - Portable Storage Devices
 - Consumer Electronics
 - Industrial Applications
- Competitiveness in the Price
 - Dropping Rate and the Price Gap with HDDs
- Technology Trend over the Market
 - Improved density
 - Degraded performance
 - Degraded reliability

Trends - Storage Media

Source: Richard Lary, The New Storage Landscape: Forces shaping the storage economy, 2003.

NOR and NAND Flash

- NAND accesses each cell through adjacent cells, while NOR allows for individual access to each cell
- ▶ The cell size of NAND is almost half the size of a NOR cell

Single-Level Cell (SLC) vs Multi-Level Cell (MLC) Flash

System Architectures for Flash Management

Flash-Memory Characteristics

Write-Once

- No writing on the same page unless its residing block is erased
- Pages are classified into valid, invalid, and free pages
- Bulk-Erasing
 - Pages are erased in a block unit to recycle used but invalid pages

taobao.com

- Wear-Leveling
 - Each block has a limited lifetime in erasing counts

Page Write and Block Erase

Out-Place Update

Suppose that we want to update data A and B...

Garbage Collection (1/3)

Garbage Collection (2/3)

Garbage Collection (3/3)

The block is then erased

Overheads:

- live data copying
- block erasing
 - A live page
 - A dead page
 - □ A free page

Wear-Leveling

Wear-leveling might interfere with the decisions of the block-recycling policy

- A live page
- A dead page
- □ A free page

Flash Translation Layer

*FTL: Flash Translation Layer, MTD: Memory Technology Device

Policies - FTL

▶ FTL adopts a page-level address translation mechanism

Policies - NFTL (Type 1)

A logical address under NFTL is divided into a virtual block address and a block offset, e.g., LBA=1011 => virtual block address (VBA) = 1011 / 8 = 126 and block offset = 1011 % 8 = 3

Policies – NFTL (Type 2)

▶ A logical address under NFTL is divided into a virtual block address and a block offset, e.g., LBA=1011 => virtual block address (VBA) = 1011 / 8 = 126 and block offset = 1011 % 8 = 3

Challenges and Research Topics of Flash Memory Designs

Performance

- Reduce the overheads of Flash management
- Reduce the access time to data
- Reduce the garbage collection time

Reliability

- Error correcting codes
- Log systems

Endurance

- Dynamic wear-leveling
- Static wear-leveling

3D Flash Memory

- ▶ 3D flash memory provides a good chance to further scale down the feature size and to reduce the bit cost.
 - Deliver very large storage space
 - Worsen program disturbance

Deteriorated Disturb on 3D Flash

Phase Change Memory (PCM)

- PCM is a non-volatile memory (NVRAM)
- PCM employs a reversible phase change in materials to store information.
- PCM exploits differences in the electrical resistivity of a material in different phases

Reset - Power Limiter

Set - Performance Limiter

PCM Cell Array and Characteristics

- Pros of PCM
 - Non-volatility
 - Bit-addressability
 - High scalability
 - No dynamic power
- Cons of PCM (compared to DRAM)
 - Low performance on writes
 - High energy consumption on writes
 - Low endurance

The read and write (SET and RESET) operations of a PCM cell require different current and voltage levels on the bitline, and take different amount of time to complete.

PCM as Main Memory (1/2)

- ▶ Take advantage of its scalability and byte-addressability
- Challenges
 - Limited PCM endurance
 - Asymmetric read/write performance

memory: DRAM as cache

PCM as Main Memory (2/2)

► Take advantage of its non-volatility and byte-addressability

Challenges:

- What data should be in DRAM
- What data should be in PCM
- How to reuse data after power-off

PCM as Storage

- ► Take advantage of its non-volatility and high performance
- Challenges
 - Modern file systems have been built around the assumption that persistent storage is accessed via block-based interface
 - How to exploit its properties of persistent, byte-addressable memory

System with PCM

PCM as Storage Class Memory

- ▶ IBM first proposed the idea of Storage Class Memory (SCM)
- ▶ PCM is the candidate of SCM
- SCM blurs the distinction between
 - Memory (fast, expensive, volatile) and
 - Storage (slow, cheap, non-volatile)

Issues of Using PCM

- Write asymmetry
 - Reset
 - High instant power with short time

Types & Attributes

No

20 - 50 ns

50 ns

Non-volatility

Bit alterability

Retention time

Write endurance

Write latency

Read latency

Density

- Set
 - Low power with long time
- Write latency
- Endurance issue

150 ns

50 ns

Power	Λ	RE	RESET							
		1		SET	Γ					
						•		. 1	ime	
	0	1	2	3	4	5	6	7	8	

Write Reduction on PCM

- ▶ Big/massive data applications demand extremely large main memory space for better performance
- PCM with low leakage power and high density is a promising candidate to replace DRAM
- Write endurance and latency are critical for using PCM
- Exiting studies improve the write mechanism to handle given write patterns on PCM
- Why don't we improve fundamental data structures directly so as to generate more suitable write patterns for PCM

Four Types of AVL Tree Rotations

Relation among Nodes in an RR Rotation

Bestotrer RR Rotation

Relation Binding of Tree Nodes

Depth-First-Alternating Traversal (DFAT)

A systematic approach for indexing all nodes, where nodes having stronger relations will be assigned closer indexes

Leveraging Gray Code on DFAT

• Gray code: An ordering of the binary numeral system such that two successive values have the shortest distance (differ in only one bit)

An Example of Running DFAT with Gray Code

