Groupe :

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours : QCM (6 points – pas de point négatif)

Entourez la ou les bonnes réponses.

- 1. Qu'est-ce qu'un déplacement quelconque de charges électriques ?
 - a- Une résistance

c- Un courant

b- Une tension

d- Rien de tout cela

- 2. Selon le type de dipôle, le courant qui sort de ce dipôle peut être supérieur ou inférieur à celui qui y rentre.
 - a- VRAI

b- FAUX

3. On considère le schéma suivant :

- a- Le dipôle est un dipôle récepteur si I_{AB} et U_{AB} sont de signes opposés
- b- Le dipôle est un dipôle générateur si I_{AB} et U_{AB} sont de même signe
- c- Le dipôle est un dipôle récepteur si I_{AB} et U_{AB} sont de même signe
- d- Le fléchage courant/tension correspond à la convention générateur.
- 4. Soit le circuit suivant : Ce circuit comprend

- a. 5 nœuds, 4 mailles
- b. 5 nœuds, 8 branches
- c. 8 nœuds, 8 branches
- d. Aucune de ces réponses

- 5. A quelle unité correspondent des Volts sur des Ampères
 - a- Des Ohms

Des Joules

Des Siemens

Rien de tout cela

- 6. Une résistance court-circuitée a :
 - a- un courant infini qui la traverse
 - b- une tension infinie à ses bornes
- c- une tension nulle à ses bornes
- d- Aucune de ces réponses
- 7. Quelle est la résistance vue entre A et B?

b
$$\frac{5}{2}R$$

c.
$$\frac{3}{5}R$$

d.
$$\frac{5}{3}R$$

8. Soit le circuit ci-contre. Que vaut U?

c- 4 V

d- -8 V

9. Quelle est la bonne formule ?

a-
$$I_1 = \frac{3}{5} \cdot I$$
 c- $I_1 = \frac{3}{4} \cdot I$

$$c-l_1 = \frac{3}{4} \cdot I$$

b-
$$I_1 = \frac{I}{4}$$

d-
$$I_1 = \frac{3R}{4}I$$

10. Quelle est l'expression de la tension U?

a-
$$U = \frac{E_1 + E_2}{3}$$

b-
$$U = \frac{E_1 - E_2}{2}$$

On considère les 2 circuits suivants :

 $E
\downarrow R'$

Ces 2 circuits sont équivalents si et seulement si :

11.
$$E =$$

a- *I*

b- R.1

$$C- \frac{R'.R}{R+R'}.I$$

d- Aucune de ces réponses

12.
$$R' =$$

a- R

 $b-\frac{R.R'}{R+R'}$

$$C \frac{R}{R+R}$$

d- Aucune de ces réponses

Exercice 2. Théorème de Thévenin (6 points)

Soit le circuit ci-contre, dans lequel $R_1 = R_2 = R_3 = R_4 = R$.

1. Déterminer le générateur de Thévenin vu par R_4 . Vous utiliserez la méthode de votre choix (Equivalences ou application du théorème), et vous exprimerez votre résultat en fonction de I_0 , E_3 et R.

EPITA / InfoS1	Janvier 2019
2. En déduire la tension aux bornes de R_4 .	

Exercice 3. Théorèmes (8 points)

Soit le montage ci-contre :

En utilisant la méthode de votre choix, déterminer l'expression de la tension aux bornes de la résistance R_1 en fonction de E, I, R et R_1 .

*	

BONUS : Théorème de Millman

Soit le circuit ci-contre. E_1, E_2, I et R sont supposés connus, et les générateurs sont indépendants.

En utilisant la théorème de Millman, déterminer l'expression de la tension \boldsymbol{U}

