Ditigal Transmitters and Recievers

February 20, 2018

Contents

1	Lecture 1 - History of Communication	2
2	Lecture 2 - A cont. of lecture 1	2
3	Lecture 3	2
4	Lecture ?	2
5	Lecture ?	3
	5.1 Transmitter	3
	5.2 Reciever	3
6	Lecture ?	3
	6.1 Fourier Transfrom	3
	6.1.1 TODO Properties: verify that 6.1.1 is correct	3
	6.2 TODO Graham-Schmidt: check matrix algebra book on this	
	topic	4
	6.2.1 1st signal	4
	6.2.2 2nd – Nth signal	4
	6.3 Distortionless System	4
	6.3.1 Acceptable	5
	6.4 Freq representation	5
	6.5 Bode rep	5
	6.6 Filters	5
7	LEcture ? -	6
	7.1 TODO Project	6
	7.2 Fourier Series - Fourier Transform Relationship	6

	7.2.1 Fourier Series	6
8	TODO get units for	6
9	TODO insert lecture from previous week in here.	6
10	TODO Lecture? - HW2 review: Hw4; due 2/21; 3.4-2; 3.6-1; 3.7-3 - see next page; 3.7-4 10.1 Freq shift	6 7 7 7
11	Lecture? - Bell 103 modems specs? 11.1 A history of Modem Sounds:	7 7 8 8 8 8 8

1 Lecture 1 - History of Communication

This is mt, I have not a copy of these notes. Mainly discussed how in the last 120 years we/society has gone from using semophores to using modern fast as light coms.

2 Lecture 2 - A cont. of lecture 1

More info I don't have a copy of. . . .

3 Lecture 3

4 Lecture?

:DATE: <2018-02-05 Mon>

Use correlators to match input to possible transmitted waveforms

5 Lecture?

5.1 Transmitter

5.2 Reciever

two bits per symbol - four possible wave forms

6 Lecture?

6.1 Fourier Transfrom

- **F** $\{g(t)\} = G(f) = \int_{-\inf}^{\inf} g(t)e^{-j2\pi ft}$
- $\mathbf{F}^{-1} \{G(f)\} = g(t) = \int_{-\inf}^{\inf} G(f)e^{j2\pi ft}$

6.1.1 TODO Properties: verify that 6.1.1 is correct

• Linearity

$$- \mathbf{F} a_1 x_1(t) + a_2 x_2(t) = \mathbf{a_1} \mathbf{F} x_1(t) + \mathbf{a_2} \mathbf{F} x_2(t)$$

• Time Shift

$$- \mathbf{F} x(t - T_0) = \int_{-\inf}^{\inf} x(t - t_0) e^{-j2\pi f t}$$

$$\lambda = \text{t-t}_0$$

$$= e^{-j2\pi f} \int_{-\inf}^{\inf} x(\lambda + t_0)$$

$$= e^{-j2_0} \int_{-\inf}^{\inf} x(\lambda) e^{-2\pi f \lambda} d\lambda \text{ (EQ1)}$$

$$= e^{-2j_0} X(f)$$

• Frequency Property

$$-\mathbf{F}^{-1}X(f-f_0)=e^{j2\pi f_0 t}\int_{-\inf}^{\inf}x(t)$$

6.2 TODO Graham-Schmidt: check matrix algebra book on this topic.

:DEADLINE: <2018-02-05 Mon>

- Signals $S_1(t), \dots, S_m(t)$
- basis functions $\phi_n(t), \dots, \phi_n(t), N \neq M$
- $S_i(t) = \sum n = 1NS_{in}\phi_n(t)$
- $\mathbf{S_i} = [S_{i1} \ S_{i2} \ \dots \ S_{in}]$

6.2.1 1st signal

$$\begin{aligned} \mathbf{E_{s1}} &= ||S_1||^2 \\ \phi_1 &= \frac{S_1(t)}{\sqrt{E_{s1}}} \\ S_{11} &= \sqrt{E_{s1}} \end{aligned}$$

6.2.2 2nd - Nth signal

Creating a new basis function

$$S_{21} = < S_2(t), \phi_1(t) >$$

$$r_2(t) = S_2(t)$$
 - S_{21} $\phi_1(t)$ <- orthogonal to $\phi_1(t)$

If remainted $r_i(t) = 0$ skip the steps below

• The part of signal 2 that can't be represented by $\phi_1(t)$.

$$E_{r2} = ||r_2(t)||^2$$

$$\phi_2(\mathrm{t}) = \frac{r_2(t)}{\sqrt{E_{r2}}}$$

$$S_{22} = \sqrt{E_{r2}}$$

• others

$$S_{ni} = <\!\!S_n(t)$$
 , $\phi_i(t)\!\!>$ for $\phi_i(t)$ which are defined.

$$r_i(t) = S_i(t)$$
 - $\sum \{S_{in}\} \ \phi_n(t)$

:DATE: <2018-02-09 Fri>

6.3 Distortionless System

$$x(t) -> -> y(t)$$

6.3.1 Acceptable

• Amplification//

$$y(t) = K x(t) /$$

• Delay

 $y(t) = x(t - t_0)$, \$t_0: positive integer, positive required for causality\$//

• Overall//

$$y(t) = Kx(t - t_0)$$

6.4 Freq representation

$$Y(f)=Ke^{-j2\pi ft_0}X(f)=H(f)X(f)$$
 Linear time invariant. where $H(f)=Ke^{-j2\pi ft_0}$ $h(t)=K\delta(t-t_0)$

6.5 Bode rep

$$\begin{split} H(f) &= Ke^{-j2\pi ft_0} \\ H(f) &= K < -constantMag(gain) \\ \angle H(f) &= -2\pi ft_0 < -linear, slope = -2\pi f \\ \textbf{Group Delay:} \ t_g(f) &= \frac{-1}{2\pi} \frac{d}{df} (\angle H(f)) \end{split}$$

6.6 Filters

- \bullet ideal
- realistic
 - Lowpass
 - Highpass
 - Bandpass
 - Bandstop

filter type ideal realistic lowpass sharp rect around center hill flat top highpass bandpass bandstop

7 LEcture? -

:DATE: <2018-02-12 Mon>

7.1 TODO Project

7.2 Fourier Series - Fourier Transform Relationship

7.2.1 Fourier Series

F.S.
$$g(t) = \sum_{-\inf}^{\inf} G_n e^{jn2\beta f_0 t}$$

F.T. $G(g) = *F * g(t) \&= \sum_{-\inf}^{\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \$ = \sum_{-\inf} G_n \delta(f - f_0) - \inf_{->\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \$ = \sum_{-\inf} G_n \delta(f - f_0) - \inf_{->\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \$ = \sum_{-\inf} G_n \delta(f - f_0) - \inf_{->\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \$ = \sum_{-\inf} G_n \delta(f - f_0) - \inf_{->\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \$ = \sum_{-\inf} G_n \delta(f - f_0) - \inf_{->\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \$ = \sum_{-\inf} G_n \delta(f - f_0) - \inf_{->\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \$ = \sum_{-\inf} G_n \delta(f - f_0) - \inf_{->\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \$ = \sum_{-\inf} G_n \delta(f - f_0) - \inf_{->\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \$ = \sum_{-\inf} G_n \delta(f - f_0) - \inf_{->\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \}$

7.3 Energy spectral density??????????

$$\begin{split} E_g &= \int_{-\inf}^{\inf} |G(f)|^2 df \\ x(t) -> h(t) -> y(t) \\ X(f) -> H(f) -> Y(f) \\ E_y &= \int_{-\inf}^{\inf} |X(f)H(f)|^2 df = \int_{f_0 - \delta f}^{f_0 + |deltaf|} \text{ Energy Spectral Density} \\ \Psi_x(f_0) &= \lim_{\Delta f -> 0} \frac{1}{\Delta f} \int_{f_0 - \frac{\Delta f}{2}}^{f_0 + \frac{\Delta f}{2}} |X(f)|^2 df = |X(f_0)|^2 \\ &\text{Energy } E_x = \int \Psi_x(f) df \\ &\text{Energy int bandwith *B centered at } \mathbf{F}_1 \int_{-f_1 - \frac{sBs}{2}}^{-f_1 + \frac{sBs}{2}} \Psi_x(f) df = \int_{f_1 - \frac{sBs}{2}}^{f_1 + \frac{sBs}{2}} \Psi_x(f) df \end{split}$$

8 TODO get units for

let:
$$g(t) = \Pi(t_{\overline{Whatbanwidthcapacitydoweneedtopassexactly}})90$$

 $E_g = \int |g(t)|^2 dt = g(t) -> \text{"Ideal LPF bandwidth B" -> y(t) } 90\%E_g = 0.9T \text{ energy}$

- 9 TODO insert lecture from previous week in here.
- 10 TODO Lecture ? HW2 review: Hw4; due 2/21; 3.4-2; 3.6-1; 3.7-3 see next page; 3.7-4

DATE: <2018-02-14 Wed>

10.1 Freq shift

$$g(t)cos(2\pi f_0 t) \le = > \frac{1}{2}[G(f - f_0) + G(f + f_0)]$$

10.2 Project specs

10.2.1 Important params

- $\mathbf{F_s} = \text{sample Rate}; 8000$
- bit rate R_b 214
- $\frac{F_s}{R_b} = Samplesperbit; 37.3$

$$\begin{split} \$ g(t) &= \Pi(t_{\overline{tau\$\$E}} g = \tau \$ \\ \$ y(t) &= g(t)*h(t)\$ \\ \$ Y(f) &= G(f)H(f)\$ \end{split}$$

H(f)ideal LPF bandwidth B What is B to obtain: $E_y = 0.9 \; E_g \$ $E_y \&= \int_{-\inf}^{\inf} |Y(f)|^2 \; df \; \&= \int_{-\inf}^{\inf} |G(f)H(f)|^2 \; df \; \&= \inf_{-B}^B |G(f)|^2 \; \&= 2\inf_0^B \tau \; \sin c^2(\pi \; f \; \tau) \; df = -.0\tau \$

11 Lecture? - Bell 103 modems specs?

:DATE: <2018-02-19 Mon>

11.1 A history of Modem Sounds:

200 Baud to 56K

- Early modems sounds tonal, and later, higherspeed modems sounds noisy.
- Connection sequence occurs
- YT: ckc6XSSh52w
- oona.windytan.com/posters/dialup-final.png
 - Short time fourier transform

11.2 DONE Choices: Get clarification of stopbits; Use two '1' bits as stop signal.

- Answering and originating tones, we will use higher tones.
 - High tones are answer tones
 - Data rate 100 bps
 - USE 2 stop bits. Not the same as the 0start and 1 stop bit.
 - Use continuous phase, no discontinuity. [[img]

11.3 TODO HW 5 due 2/26; 3.8-4, 4.2-1, 4,2-7

11.4 Power Spectral Density PSD

Almost a perfect parallel to ESD Watts/Hz

- Computed differently
 - Autocorrelation $R_g(\tau) = \lim t \inf \frac{1}{T} \int -TT/2g * (t)G(t+\tau)$
 - Power Spectral Density $S_g(f) = F \{R_g(\tau)\}$
- ESD
 - autocorrelation

$$-\psi_g(\tau) = \int_{-\inf}^{\inf} g * (t)g(t+\tau)dt$$
ESD SIL (f) - F (d) (7)

- $\text{ ESD } \$\Psi_g(f) = \mathbf{F} \ \{\psi_g(\tau)\}$
- Where would we use PSD?
- A set of data [[img]
- Can't take the FT of binary data.

11.5 LTI Systems

$$x(t) - >> y(t)$$

$$ESD \Psi_y(f) = \Psi_x(f)|H(f)|^2$$

$$ESP S_y(f) = S_x(f)|H(f)|^2$$

11.6 Noise - AWGN Additive White Gaussian Noise

Figure 1: internals of Ditigal reciever with two-bit decode