Ben Lirio

I plege my honor that I have abided by the Stevens Honor System.

5 Homework

5.1 Excercise

x	$(2^x)\%29$
0	1
1	2
2	4
3	8
4	16
5	3
6	6
7	12
8	24
9	19
10	9
11	18
12	7
13	14
14	28
15	27
16	25
17	21
18	13
19	26
20	23
21	17
22	5
23	10
24	20
25	11
26	22
27	15

 $log_2(21) = 17$

5.2 Excercise

In CDH the following equations are true

$$a^a \equiv A \pmod{n}$$

$$q^b \equiv B \pmod{n}$$

$$A^b \equiv B^a \equiv q^{ab} \pmod{n}$$

In order the following equations are true $g^a \equiv A \pmod{n}$ $g^b \equiv B \pmod{n}$ $A^b \equiv B^a \equiv g^{ab} \pmod{n}$ Therefore when n=29, A=18, B=14, the following must be true. $K \equiv 18^b \equiv 18^$

 $14^a \equiv 2^{log_2(18)log_2(14)} \pmod{n}$. According to the previous table $log_2(18) = 11$ and $log_2(14) = 13 \mod 29$. Consequently $2^{(11)(13)} \equiv 2^{143} \mod 29$. Using Fermat's little theorem, I notice $2^{28} \equiv 1 \mod 29$. Which simplifies the equation to $2^3 \equiv 8 \mod 29$. Leading to K = 8.

5.3 Excercise

Given n=29, g=2, A=17, $c_1=6$, $c_2=10$, one way for Eve to compute the message is for her find the ephemeral key, I'll call k. This key was used to generate both c_1 , and c_2 as follows, $c_1 \equiv g^k \mod 29$ and $c_2 \equiv mA^k \mod 29$. Therefore $k = log_2(c_1) \equiv log_2(6) \equiv 6 \mod 29$. Using k=6. Next I would like to find $(A^k)^{-1}$ in order to calculate $(A^k)^{-1}c_2 \equiv mA^k(A^k)^{-1} \equiv m \mod 29$

5.4 Excercise

I will first create two generating functions using the given values, one I will call babystep, and the other I will call giant step. Babystep is $(e)g^i$ where e is the multiplicative identity, g is the generator and i is the current generation step. The giant step function will be h^{-in} where h is the value I am taking the log of and $n = floor(\sqrt{N}) + 1$ where N is the order.

N = 36 g = 2 h = 3 e = 1 n = 7

Note: one helpful precomputation is $u = q^{-n} = 24$

i,j	baby-step $(e)g^i$	giant-step $(h)g^{-jn}$
0	1	3
1	2	35
2	4	26
3	8	32
4	16	28
5	32	6

Match found on i = 5 and j = 3. $(1)2^5 \equiv (3)2^{(-3)(7)} \equiv \mod 37$

Now if I multiply both sides by the g^{-jn} the right side will simplify to just h=3 and the left side will be a power of g. $2^{26} \equiv 3 \pmod{37}$. So m=3

5.5 Excercise

First I notice that $\phi(37) = 36 = 2^2 3^2$. So I will solve two concruencies, one mod 2^2 and the other mod 3^2 . Using the the formula. For simplicity, let $c_i = p_i^{e_i}$ where p_i is a prime factor and e_i is the exponent of that factor.

 $19^{\frac{\phi(37)}{c_i}} \equiv 2^{\frac{\phi(37)r}{c_i}} \pmod{37}$ Where r is bound by $0 \le r < c_i$

```
19^9 \equiv 2^{9(r)} \pmod{37} is valid for r = 3 therefore x \equiv 3 \pmod{4} 19^4 \equiv 2^{4(r)} \pmod{37} is valid for r = 8 therefore x \equiv 8 \pmod{9}
```

Using the Chinese Remainder Theorem I can calculate x as follows: Using the first congrunce I get x=3+4y. Now I can plug this into the second formula to obtain $3+4y\equiv 8 \pmod 9$. Which can be simplified down to, $4y\equiv 5 \pmod 9$. Using Extended Euclidean algorithm, I find the multiplicative inverse of $4 \pmod 9$ is 7. So $y\equiv 35\equiv 8 \pmod 9$. Now using the equivalence y=8, I can plug it back into the relation and get x=3+4(8)=35. Therefore $\log_2 19=35\pmod {37}$

5.6 Excercise

I wasted too much time making tables in LaTeX and ran out of time.

5.7 Excercise

- $(\mathbb{Z}, +, \cdot)$
 - (R1) Associativity (a + b) + c = a + (b + c), Identity a + 0 = a, Invertability a a = 0, Commutativity, a + b = b + a. Since all of these are valid for $(\mathbb{Z}, +)$, (R1) passes.
 - (R2) Multiplication is associative, meaning (a*b)*c = a*(b*c) which is trivialy true, and the identify $1 \in \mathbb{Z}$ is also true. (R2) passes.
 - (R3) Although not a complete proof, I will give an example of (a + b)c = ac + bc given $a, b, c \in \mathbb{Z}a = 2, b = 4, c = 3$. I can compute (2 + 4)3 = (2)(3) + (4)(3). Both simplify to 18. From here it is trivialy true to see that c(a + b) = ca + cb. (R3) passes.

Therefore $(\mathbb{Z}, +, \cdot)$ is a ring.

- $(\mathbb{Z}_{\ltimes}, +, \cdot)$ Comparing this example with the previos one I can show $[a]_n + [b]_n = [a+b]_n$, and that $[a]_n \cdot [b]_n = [a \cdot b]_n$. Because I have this one to one map, it is valid to say that $(\mathbb{Z}_{\ltimes}, +, \cdot)$ is a ring as long as $(\mathbb{Z}, +, \cdot)$ is a ring, which has already been proved.
- $(\mathbb{U}_{\kappa}, +, \cdot)$ Proof by counter example, in attempting to satisfy (R1) I found $2, 3 \in U_{10}$, but $2+3=5 \notin U_{10}$ since $gcd(5,10) \neq 1$.
- $(\mathbb{N}, +, \cdot)$ Proof by counter example, in attempting to satisfy (R1) I found that $(\mathbb{N}, +)$ does not contain any addative inverses. Specifically, $42 \in \mathbb{N}$, but $-42 \notin \mathbb{N}$.
- $\{a + b\sqrt{5} | a, b \in \mathbb{Z}\}$ This case is also proved in a similar fassion to the (1), but there are a couple special cases. $\sqrt{5} + \sqrt{5} = 2\sqrt{5}$ which stays in the group. Also $\sqrt{5} \cdot \sqrt{5} = 5$ stays in the ring as well. Therefore, (5) is a ring.
- Intuitively this relation may seem like a ring, but the definition says nothing about it satisfying distributivity. So I have to go with No, it is not a ring.