À rendre le lundi 26/02/2024

Problème. (Analyse) Rappel : On rappelle que la fonction cosinus est définie, continue, 2π -périodique, dérivable sur \mathbb{R} , de dérivée $x \mapsto -\sin(x)$ et paire. La fonction sinus est définie, continue, 2π -périodique, dérivable sur \mathbb{R} , de dérivée $x \mapsto \cos(x)$ et impaire. De plus,

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b),$$

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a).$$

Dans cet exercice, on considère $\mathscr{C}_{2\pi}$ l'ensemble des fonctions continues sur \mathbb{R} et 2π -périodiques. On rappelle qu'une fonction $f:\mathbb{R}\to\mathbb{R}$ est 2π -périodique si pour tout $x\in\mathbb{R}$, $f(x+2\pi)=f(x)$. On note aussi pour $m\in\mathbb{Z}$ lest fonctions c_m et s_m définies sur \mathbb{R} comme suit : $c_m:x\mapsto\cos(mx)$ et $s_m:x\mapsto\sin(mx)$. Pour $f,g\in\mathscr{C}_{2\pi}$, on définit :

$$\langle f, g \rangle := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) \, dx, \, ||f||^2 := \langle f, f \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 \, dx.$$

1. Montrer que :

$$\cos(a)\cos(b) = \frac{\cos(a+b) + \cos(a-b)}{2}$$
 et $\cos(a)\sin(b) = \frac{\sin(a+b) - \sin(a-b)}{2}$.

2. Soit $m, n \in \mathbb{N}$. Montrer que :

$$\langle c_n, c_m \rangle = \begin{cases} 0 & \text{si } m \neq n \\ 1 & \text{si } m = n \neq 0 \ \langle s_n, s_m \rangle = \begin{cases} 0 & \text{si } m \neq n \\ 1 & \text{si } m = n \neq 0 \ \langle c_n, s_m \rangle = 0. \\ 0 & \text{si } m = n = 0 \end{cases}$$

Dans toute la suite, pour $f \in \mathscr{C}_{2\pi}$ et $m \in \mathbb{N}$, $m \neq 0$, on définit les coefficients réels :

$$a_{m,f} := \langle f, c_m \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(mx) \, \mathrm{d}x, \, b_{m,f} := \langle f, s_m \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(mx) \, \mathrm{d}x,$$

et
$$a_{0,f} := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
, $b_{0,f} := 0$.

- **3.** Montrer que si f est paire, $b_{m,f} = 0$ et si f est impaire, $a_{m,f} = 0$, pour tout $m \in \mathbb{N}$.
- **4.** Soit $n \in \mathbb{N}$. Soit $a_m, b_m \in \mathbb{R}$ pour $m \in \{0, \dots, n\}$. On pose

$$g(x) = a_0 + \sum_{m=1}^{n} (a_m \cos(mx) + b_m \sin(mx)).$$

- a) Montrer que $g \in \mathscr{C}_{2\pi}$.
- **b)** Montrer que $a_{m,g} = a_m$ et $b_{m,g} = b_m$ pour $m \in \{1, \ldots, n\}$ et $a_{0,g} = a_0$.
- **5.** Soit $f \in \mathscr{C}_{2\pi}$. Pour $n \in \mathbb{N}$, on définit la fonction $S_n(f) \in \mathscr{C}_{2\pi}$ comme suit :

$$\forall x \in \mathbb{R}, S_n(f) := a_{0,f} + \sum_{m=1}^n (a_{m,f} \cos(mx) + b_{m,f} \sin(mx)).$$

- **a)** Montrer que $||S_n(f)||^2 = 2a_{0,f}^2 + \sum_{m=1}^n \left(a_{m,f}^2 + b_{m,f}^2\right)$.
- **b)** Montrer que $\langle f S_n(f), S_n(f) \rangle = 0$, puis que $||f||^2 = ||S_n(f)||^2 + ||f S_n(f)||^2$.
- **c**) En déduire que $a_{0,f}^2 + \frac{1}{2} \sum_{m=1}^n \left(a_{m,f}^2 + b_{m,f}^2 \right) \leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)^2 dx$.
- **d)** En déduire que la suite $\left(\sum\limits_{m=1}^n\left(a_{m,f}^2+b_{m,f}^2\right)\right)_{n\in\mathbb{N}^*}$ converge. On note $\sum\limits_{m=1}^{+\infty}\left(a_{m,f}^2+b_{m,f}^2\right)$ cette limite. En déduire l'inégalité de Bessel :

$$a_{0,f}^2 + \frac{1}{2} \sum_{m=1}^{+\infty} (a_{m,f}^2 + b_{m,f}^2) \leqslant \int_{-\pi}^{\pi} f(x)^2 dx.$$