Математическая статистика

Михайлов Максим

10 сентября 2021 г.

Оглавление

Лекці	ия 1 6 сентября	2
1	Организационные вопросы	2
2	Введение	2
	2.1 Выборочная функция распределения	3
3	Первоначальная обработка статданных	4

Лекция 1

6 сентября

1 Организационные вопросы

Большая часть баллов зарабатывается индивидуальными заданиями, выполняемыми в Excel-30 баллов. Тест с большим числом вопросов -20 или 25 баллов.

2 Введение

Теория вероятности состоит в следующем: исследуется случайная величина с заданным распределением. Математическая статистика занимается обратным — даны данные, нужно приближенно найти числовые характеристики случайной величины и с некоторой уверенностью найти вид распределения. Матстатистика также исследует связанность случайных величин, их корреляцию. В идеале есть цель построить модель, которая по значениям одних случайных величин предсказывает другие.

Пусть проводится некоторое количество экспериментов, в ходе которых появились некоторые данные.

Определение. **Генеральная совокупность** — набор всех исходов проведенных экспериментов.

В реальности наблюдается некоторая выборка генеральной совокупности, ибо рассматривать всю совокупность нецелесообразно.

Определение. Выборочная совокупность — исходы наблюдаемых экспериментов.

Определение. Выборка называется **репрезентативной**, если её распределение совпадает с распределением генеральной совокупности.

Выборка может быть нерепрезентативной, как в примере с ошибкой выжившего. Мы считаем, что таких ошибок у нас нет и все выборки репрезентативны, ибо исправление

этих ошибок — задача конкретной области, в которой используется матстатистика.

Определение (после опыта). Пусть проведено n наблюдаемых независимых экспериментов, в которых случайная величина приняла значение $X_1, X_2 \dots X_n$. Набор¹ этих данных называется выборкой объема n.

Определение (до опыта). **Выборкой объема** n называется набор из n независимых одинаково распределенных случайных величин.

Пусть имеется выборка в смысле "после опыта" объема n. Её можно интерпретировать как следующую дискретную случайную величину:

Средневыборочное:

$$\overline{X} := \sum_{i=1}^{n} \frac{1}{n} X_i = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Выборочная дисперсия:

$$S^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \cdot \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

2.1 Выборочная функция распределения

$$F_n^*(z) \coloneqq \frac{1}{n} \sum_{i=1}^n I(X_i < z) = \frac{$$
число $X_i \in (-\infty, z)}{n}$

Примечание. I — индикатор:

$$I(X_i < z) = \begin{cases} 1, & X_i < z \\ 0, & X_i \ge z \end{cases}$$

Теорема 1.

$$\forall x \in \mathbb{R} \quad F_n^*(z) \xrightarrow[n \to \infty]{P} F(z)$$

Доказательство. Заметим, что

$$\mathbb{E}I(X_1 < z) = 1 \cdot P(X_1 < z) + 0 \cdot P(X_1 \ge z) = P(X_1 < z) = F(z)$$

¹ Или вектор.

, где F(z) — функция распределения X_1 . Заметим, что $F(z) \leq 1 < \infty$, следовательно применим ЗБЧ Хинчина:

$$F_n^*(z) = \frac{\sum_{i=1}^n I(X_i < z)}{n} \xrightarrow{P} \mathbb{E}I(X_1 < z) = F(z)$$

Примечание. На самом деле имеется даже равномерная сходимость по вероятности — это теорема Гливенко-Кантелли:

$$\sup_{z \in \mathbb{R}} |F_n^*(z) - F(z)| \xrightarrow[n \to \infty]{P} 0$$

3 Первоначальная обработка статданных

Если отсортировать данные, то получим вариационный ряд: $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$. Если учесть повторяющиеся экземпляры, то получим частотный вариационный ряд:

Определение. $h\coloneqq X_{\max}-X_{\min}$ — размах выборки

Допустим, что разбили интервал (X_{\min}, X_{\max}) на k интервалов, чаще всего одинаковой длины. 2 Тогда $l_i = \frac{h}{k}$ — длина каждого интервала и интервальный ряд можно заменить интервальным вариационным рядом.

 m_i — число попавших в i-тый интервал данных.

По такой таблице можно построить гистограмму. На координатной плоскости построим прямоугольники с основаниями l_i и высотами $\frac{m_i}{nl_i}$. В результате получаем ступенчатую фигуру площади 1, которая и называется гистограммой.

Теорема 2. При $n\to\infty, k(n)\to\infty$, причем $\frac{k(n)}{n}\to 0$, гистограмма будет стремиться к плотности распределения:

$$\frac{m_i}{n} \xrightarrow{P} P(X_i \in l_i) = \int_{l_i} f(x) dx$$

 $^{^{2}}$ Применяются и другие разбиения, например равнонаполненное.

Чаще всего число интервалов берется по формуле Стёрджесса: $k\approx 1+\log_2 n$. Иногда $k\approx \sqrt[3]{n}$.

Примечание. Иногда выборка изображается в виде **полигона**: отображаются точки, соответствующие серединам интервалов и ставим точки на высоте $\frac{m_i}{n}$.