THE CYK ALGORITHM

PRESENTED BY -

AMITH A (4VV20CS008)
ARJUN ARUN (4VV20CS014)
ANIRUDHA D (4VV20CS011)

The CYK Algorithm

- The membership problem:
 - Problem:
 - Given a context-free grammar G and a string w
 - $-\mathbf{G} = (V, \Sigma, P, S)$ where
 - » V finite set of variables
 - » ∑ (the alphabet) finite set of terminal symbols
 - » P finite set of rules
 - » S start symbol (distinguished element of V)
 - » V and Σ are assumed to be disjoint
 - G is used to generate the string of a language
 - Question:
 - Is w in L(G)?

The CYK Algorithm

- J. Cocke
- D. Younger,
- T. Kasami

 Independently developed an algorithm to answer this question.

The CYK Algorithm Basics

 The Structure of the rules in a Chomsky Normal Form grammar

Uses a "dynamic programming" or "table-filling algorithm"

Chomsky Normal Form

- Normal Form is described by a set of conditions that each rule in the grammar must satisfy
- Context-free grammar is in CNF if each rule has one of the following forms:

```
-A \rightarrow BC at most 2 symbols on right side
```

- $-A \rightarrow a$, or terminal symbol
- $-S \rightarrow \lambda$ null string

where B, C \in V – {S}

- Each row corresponds to one length of substrings
 - Bottom Row Strings of length 1
 - Second from Bottom Row Strings of length 2

•

– Top Row – string 'w'

X_{i, i} is the set of variables A such that
 A → w_i is a production of G

 Compare at most n pairs of previously computed sets:

$$(X_{i,i}, X_{i+1,j}), (X_{i,i+1}, X_{i+2,j}) ... (X_{i,j-1}, X_{j,j})$$

X _{1,5}				
X _{1,4}	X _{2,5}			
X _{1,3}	X _{2, 4}	X _{3,5}		
X _{1, 2}	X _{2,3}	X _{3, 4}	X _{4,5}	
X _{1, 1}	X _{2, 2}	X _{3,3}	X _{4, 4}	X _{5,5}
w_1	w ₂	w ₃	w ₄	w ₅

Table for string 'w' that has length 5

Looking for pairs to compare

Example CYK Algorithm

- Show the CYK Algorithm with the following example:
 - CNF grammar G
 - $S \rightarrow AB \mid BC$
 - A → BA | a
 - B \rightarrow CC | b
 - C → AB | a
 - w is baaba
 - Question Is baaba in L(G)?

Calculating the Bottom ROW

- $X_{1,2} = (X_{i,i}, X_{i+1,j}) = (X_{1,1}, X_{2,2})$
- → {B}{A,C} = {BA, BC}
- Steps:
 - Look for production rules to generate BA or BC
 - There are two: S and A
 - $-X_{1,2} = \{S, A\}$

```
S \rightarrow AB \mid BC
A \rightarrow BA \mid a
B \rightarrow CC \mid b
C \rightarrow AB \mid a
```

		_		
			I	
{S, A}				
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	a

- $X_{2,3} = (X_{i,i}, X_{i+1,j}) = (X_{2,2}, X_{3,3})$
- → {A, C}{A,C} = {AA, AC, CA, CC} = Y
- Steps:
 - Look for production rules to generate Y
 - There is one: B

$$-X_{2,3} = \{B\}$$

$$S \rightarrow AB \mid BC$$

 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

		_		
				1
{S, A}	{B}			
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	а	b	а

•
$$X_{3,4} = (X_{i,i}, X_{i+1,j}) = (X_{3,3}, X_{4,4})$$

•
$$\rightarrow$$
 {A, C}{B} = {AB, CB} = Y

- Steps:
 - Look for production rules to generate Y
 - There are two: S and C

$$-X_{3,4} = \{S, C\}$$

$$S \rightarrow AB \mid BC$$

 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

		_		
				1
{S, A}	{B}	{S, C}		
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

•
$$X_{4,5} = (X_{i,i}, X_{i+1,j}) = (X_{4,4}, X_{5,5})$$

- → {B}{A, C} = {BA, BC} = Y
- Steps:
 - Look for production rules to generate Y
 - There are two: S and A

$$-X_{4,5} = \{S, A\}$$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

				_
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

•
$$X_{1,3} = (X_{i,i}, X_{i+1,j}) (X_{i,i+1}, X_{i+2,j})$$

= $(X_{1,1}, X_{2,3}), (X_{1,2}, X_{3,3})$

- → {B}{B} U {S, A}{A, C}= {BB, SA, SC, AA, AC} = Y
- Steps:
 - Look for production rules to generate Y
 - There are NONE: S and A $A \rightarrow BA \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$
 - no elements in this set (empty set)

Ø				
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	a	b	a

•
$$X_{2,4} = (X_{i,i}, X_{i+1,j}) (X_{i,i+1}, X_{i+2,j})$$

= $(X_{2,2}, X_{3,4}), (X_{2,3}, X_{4,4})$

- → {A, C}{S, C} U {B}{B}= {AS, AC, CS, CC, BB} = Y
- Steps:
 - Look for production rules to generate Y
 - There is one: B $X_{2,4} = \{B\}$ $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

-4]	
Ø	{B}			1
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	а	b	a

•
$$X_{3,5}$$
 = $(X_{i,i}, X_{i+1,j}) (X_{i,i+1}, X_{i+2,j})$
= $(X_{3,3}, X_{4,5}), (X_{3,4}, X_{5,5})$

- → {A,C}{S,A} U {S,C}{A,C}
 = {AS, AA, CS, CA, SA, SC, CA, CC} = Y
- Steps:
 - Look for production rules to generate Y
 - There is one: B

$$-X_{3,5} = \{B\}$$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

		1		
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	а	b	а

Final Triangular Table

{S, A, C}	← X _{1,5}			
Ø	{S, A, C}			
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

- Table for string 'w' that has length 5
- The algorithm populates the triangular table

Example (Result)

Is baaba in L(G)?

Yes

We can see the S in the set X_{1n} where 'n' = 5 We can see the table the cell X_{15} = (S, A, C) then if S $\in X_{15}$ then baaba $\in L(G)$