3. 曲线
$$y = \frac{1}{x+1}e^{-x^2}$$
 的铅直渐近线为 _____x = -1 _____.

4. 设
$$f'(1) = -1$$
, 则 $\lim_{h \to 0} \frac{f(1-2h)-f(1)}{h} = \underline{\qquad}$ 2 ______.

5. 设
$$y = \int_0^{x^2} \frac{\sin t}{t} dt$$
,则 $dy = \underline{\qquad} \frac{2\sin x^2}{x} dx \underline{\qquad}$.

6. 曲线
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$$
 过对应于 $t = \frac{\pi}{6}$ 的点 P 的法线方程为______ $y = \sqrt{3}x - 1$ ______.

7. 设
$$y = f(x)$$
 由方程 $x^3 + y^3 - \sin x + 6y = 0$ 确定,则 $\frac{dy}{dx}\Big|_{x=0} = \underline{\qquad} \frac{1}{6} \underline{\qquad}$

9.
$$\int_{-1}^{1} \frac{1+x^3}{1+x^2} dx = \frac{\pi}{2}$$

10.
$$\int_{1}^{+\infty} \frac{\ln x}{x^2} \, \mathrm{d}x = \underline{\qquad} 1 \underline{\qquad} .$$

11. 设
$$f(x) = \frac{3x+1}{e^x}$$
, 求 (1) $f'(x)$, $f''(x)$; (2) $f(x)$ 带皮亚诺余项的 3 阶麦克劳林公式; (3) $f^{(2021)}(0)$.

解: (1)
$$f'(x) = 3e^{-x} - (3x+1)e^{-x}$$
,

$$f''(x) = -6e^{-x} + (3x+1)e^{-x}.$$

(2)
$$f(x) = 1 + 2x - \frac{5}{2}x^2 + \frac{4}{3}x^3 + o(x^3)$$
,

(3)
$$f^{(2021)}(0) = 6062$$
.

12. 计算不定积分 $\int x \arctan \sqrt{x} dx$.

解:
$$\int x \arctan \sqrt{x} dx = \frac{1}{2}x^2 \arctan \sqrt{x} - \frac{1}{6}x^{\frac{3}{2}} + \frac{1}{2}\sqrt{x} - \frac{1}{2}\arctan \sqrt{x} + C$$

13. 计算
$$\int_0^2 \frac{1}{\sqrt{x+1} + \sqrt{(x+1)^3}} dx$$
.

解:
$$\int_0^2 \frac{1}{\sqrt{x+1} + \sqrt{(x+1)^3}} dx = \frac{\pi}{6}$$

14. 求函数 $f(x) = x^2 \ln x$ 的极值.

解:
$$Ex = \frac{1}{\sqrt{e}}$$
取得极小值,极小值 $f\left(\frac{1}{\sqrt{e}}\right) = -\frac{1}{2e}$.

15.记曲线段 $x^2 + y^2 = 4(y \ge 0, 0 \le x \le 1)$ 与直线 x = 0, x = 1 及 x 轴所围的图形为 D,

(1) 求平面图形D的面积; (2) 求图形D绕y轴旋转一周所得旋转体的体积.

解: (1) *D*的面积
$$S = \frac{\pi}{3} + \frac{\sqrt{3}}{2}$$
.

(2) 图形 D 绕 y 轴旋转一周所得旋转体的体积 $V = \frac{16}{3}\pi - 2\sqrt{3}\pi$.

16.
$$\frac{e^{x}}{2}, x \le 0$$

$$0, 0 < x \le e$$

$$\frac{A}{x(2\ln x + \ln^{2} x)}, x > e$$

(1) 求函数 $\int_{-\infty}^{x} f(t) dt$ 在 $(-\infty, +\infty)$ 内的表达式;

(2) 设
$$\int_{-\infty}^{+\infty} f(t) dt = A$$
, 试确定 A 的值.

解: (1)
$$x \le 0$$
 时, $\int_{-\infty}^{x} f(t) dt = \frac{e^{x}}{2}$,

$$0 < x \le e$$
 \mathbb{H} , $\int_{-\infty}^{x} f(t) dt = \frac{1}{2}$,

$$x > e \text{ Iff}, \quad \int_{-\infty}^{x} f(t) dt = \frac{1}{2} + \frac{A}{2} \ln \left(\frac{\ln x}{2 + \ln x} \right) - \frac{A}{2} \ln \frac{1}{3}.$$

(2)
$$A = \int_{-\infty}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{-\infty}^{x} f(t) dt = \frac{1}{2} - \frac{A}{2} \ln \frac{1}{3}, \quad A = \frac{1}{2 - \ln 3}.$$

17. 当 x > 4 时,证明: $2^x > x^2$.

证明: 设 $f(x) = 2^x - x^2$, 用单调性即可

18. 设 f(x) 在[0,1]上连续,在(0,1)内可导,且 f(0) = -f(1) = 1,

证明: 至少存在一点 $\xi \in (0,1)$, 使得 $\xi f'(\xi) + 3f(\xi) = 0$.

证明: 令 $F(x) = x^3 f(x)$,则F(x)在[0,1]上连续,在(0,1)内可导,

因为f(x)在[0,1]上连续,在(0,1)内可导,且f(0) = -f(1) = 1,

由零点定理, $\exists \eta \in (0,1)$,使得 $f(\eta) = 0$,

所以 $F(0) = F(\eta) = 0$,

由罗尔定理 $\exists \xi \in (0,1)$,使得 $f'(\xi) = 0$,即 $\xi f'(\xi) + 3f(\xi) = 0$.