### 11.2: Properties of Power Series

From the *geometric series*, we have

$$\sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots = \frac{1}{1-x}, \text{ provided } |x| < 1.$$

## Definition. (Power Series)

A power series has the general form

$$\sum_{k=0}^{\infty} c_k (x-a)^k,$$

where a and  $c_k$  are real numbers, and x is a variable. The  $c_k$ 's are the **coefficients** of the power series, and a is the **center** of the power series. The set of values of x for which the series converges is its **interval of convergence**. The **radius of convergence** of the power series, denoted R, is the distance from the center of the series to the boundary of the interval of convergence.

### Theorem 11.3: Convergence of Power Series

A power series  $\sum_{k=0}^{\infty} c_k (x-a)^k$  centered at a converges in one of three ways:

- 1. The series converges absolutely for all x. It follows, by Theorem 10.19, that the series converges for all x, in which the interval of convergence is  $(-\infty, \infty)$  and the radius of convergence is  $R = \infty$ .
- 2. There is a real number R > 0 such that the series converges absolutely (and therefore converges) for |x a| < R and diverges for |x a| > R, in which case the radius of converge is R.
- 3. The series converges only at a, in which case the radius of convergence is R=0.

Summary: Determining the Radius and Interval of Convergence of  $\sum c_k (x-a)^k$ 

- 1. Use the Ratio Test or the Root Test to find the interval (a R, a + R) on which the series converges absolutely; the radius of convergence for the series is R.
- 2. Use the radius of convergence to find the interval of convergence:
  - If  $R = \infty$ , the interval of convergence is  $(-\infty, \infty)$ .
  - If R=0, the interval of convergence is the single point x=a.
  - If  $0 < R < \infty$ , the interval of convergence consists of the interval (a-R, a+R) and possibly one or both of its endpoints. Determining whether the series  $\sum c_k(x-a)^k$  converges at the endpoints x=a-R and x=a+R amounts to analyzing the series  $\sum c_k(-R)^k$  and  $\sum c_k R^k$ .

**Example** (LC 28.1). Where is the power series  $\sum_{k=1}^{\infty} c_k (x-3)^k$  centered? Could it's interval of convergence be (-2,8)?

**Example** (LC 28.2). Where is the power series  $\sum_{k=0}^{\infty} \frac{(4x-1)^k}{k^2+3}$  centered?

**Example** (LC 28.3). Where is the power series  $\sum_{k=1}^{\infty} c_k (x-1)^k$  centered? Could it's interval of convergence be (-1,1)?

**Example** (LC 28.4-28.5). For the following, determine the radius and interval of convergence.

Power series only converges if  $|4x - 8| \le 40$ .

Power series only converges if |x-3| < 4.

**Example** (LC 28.6-28.9). Consider the power series  $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}(x-4)^k}{9^k \sqrt{k}}.$ 

Use the ratio test to compute the radius of convergence.

What is the interval of convergence?

**Example** (LC 28.10-28.13). Consider the power series  $\sum_{k=1}^{\infty} \frac{(x-2)^k}{k^k}$ .

Use the root test to compute the radius of convergence.

What is the interval of convergence?

### Theorem 11.4: Combining Power Series

Suppose the power series  $\sum c_k x^k$  and  $\sum d_k x^k$  converge to f(x) and g(x), respectively, on an interval I.

- 1. Sum and difference: The power series  $\sum (c_k \pm d_k) x^k$  converges to  $f(x) \pm g(x)$  on I
- 2. Multiplication by a power: Suppose m is an integer such that  $k + m \ge 0$ , for all terms of the power series  $x^m \sum c_k x^k = \sum c_k x^{k+m}$ . This series converges to  $x^m f(x)$ , for all  $x \ne 0$  in I. When x = 0, the series converges to  $\lim_{x \to 0} x^m f(x)$ .
- 3. **Composition:** If  $h(x) = bx^m$ , where m is a positive integer and b is a nonzero real number, the power series  $\sum c_k(h(x))^k$  converges to the composite function f(h(x)), for all x such that h(x) is in I.

**Example** (LC 29.1). Using the power series representation of

$$f(x) = \ln(1-x) = -\sum_{k=1}^{\infty} \frac{x^k}{k},$$

where  $-1 \le x < 1$ , find the power series centered at 0 for  $g(x) = x \ln(1 - x^3)$ .

Example (LC 29.2-29.3). Recall the geometric series:

$$\sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots = \frac{1}{1-x}, \text{ provided } |x| < 1.$$

Find the function represented by the power series  $\sum_{k=0}^{\infty} (\sqrt{x} - 2)^k$ .

What is the interval of convergence?

**Example.** Find the function represented by the power series  $\sum_{k=0}^{\infty} \left( \frac{x^2 + 3}{7} \right)^k$ . What is the interval of convergence?

# Theorem 11.5: Differentiating and Integrating Power Series

Suppose the power series  $\sum c_k(x-a)^k$  converges for |x-a| < R and defines a function f on that interval.

1. Then f is differentiable (which implies continuous) for |x - a| < R, and f' is found by differentiating the power series for f term by term; that is

$$f'(x) = \sum kc_k(x-a)^{k-1},$$

for |x - a| < R.

2. The indefinite integral of f is found by integrating the power series for f term by term; that is

$$\int f(x) \, dx = \sum c_k \frac{(x-a)^{k+1}}{k+1} + C,$$

for |x - a| < R, where C is an arbitrary constant.

*Note:* (LC 29.4) Differentiating or integrating a power series does not change the radius of convergence.

**Example** (LC 29.5). Evaluate  $\int xe^{-x^3} dx$  by integrating the power series representation:

$$f(x) = xe^{-x^3} = \sum_{k=0}^{\infty} \frac{(-1)^k x^{3k+1}}{k!}, \text{ for } -\infty < x < \infty.$$

**Example** (LC 29.6). Compute f'(x) given that

$$f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{4k+2}}{2k+1}$$
, for  $|x| \le 1$ .

**Example** (LC 29.7). Find the power series representation of  $g(x) = \frac{2}{(1-2x)^2}$  by using  $f(x) = \frac{1}{1-2x}$ .

**Example** (LC 29.8-29.10). Find the power series representation of  $g(x) = \ln(1 - 3x)$  by using  $f(x) = \frac{1}{1 - 3x}$ . What is the interval of convergence of this power series?