

Lesson 2: Space Mission Geometry

Dr. Andrew Ketsdever MAE 5595

Space Mission Geometry

- Must specify an appropriate coordinate system
 - Earth fixed
 - Spacecraft fixed
 - Other
- Coordinate system must have a specified
 - Origin
 - Fixed point

TABLE 5-1. Common Coordinate Systems Used in Space Applications. Also see Fig. 5-1.

Coordinate Name	Fixed with Respect to	Center	Z-axis or Pole	X-axis or Ref. Point	Applications
Celestial (Inertial)	Inertial space*	Earth [†] or spacecraft	Celestial pole	Vernal equinox	Orbit analysis, astronomy, inertial motion
Earth-fixed	Earth	Earth	Earth pole = celestial pole	Greenwich meridian	Geolocation, apparent satellite motion
Spacecraft- fixed	Spacecraft	Defined by engineering drawings	Spacecraft axis toward nadir	Spacecraft axis in direction of velocity vector	Position and orientation of spacecraft instruments
Local Horizontal [‡]	Orbit	Spacecraft	Nadir	Perpendicular to nadir toward velocity vector	Earth observations, attitude maneuvers
Ecliptic	Inertial space	Sun	Ecliptic pole	Vernal equinox	Solar system orbits, lunar/solar ephemerides

Actually rotating slowly with respect to inertial space. See text for discussion.

[†] Earth-centered inertial coordinates are frequently called GCI (Geocentric Inertial).

[‡] Also called LVLH (Local Vertical/Local Horizontal), RPY (Roll, Pitch, Yaw), or Local Tangent Coordinates.

A. Spacecraft-fixed Coordinates

B. Earth-fixed Coordinates

C. Roll, Pitch, and Yaw (RPY) Coordinates

D. Celestial Coordinates

5-1. Coordinate Systems in Common Use. See Table 5-1 for characteristics.

Earth Geometry Viewed from Space

$$\sin \rho = \cos \lambda_0 = \frac{R_E}{R_E + H}$$

$$\rho + \lambda_0 = 90 \deg$$

$$D_{max} = [(R_E + H)^2 - R_E^2]^{1/2} = R_E \tan \lambda_0$$

Mission Viewing Geometry

 R_E = radius of earth

H = altitude of satellite

D =slant range to target

 η = angle from nadir

 λ = earth central angle (Lat, Long, or any combination)

 ρ = angular earth radius (defines boundary of footprint)

 λ_0 = maximum earth angle seen by satellite

 ε = satellite elevation angle or grazing angle.

$$\sin \rho = \cos \lambda_0 = \frac{R_{\oplus}}{R_{\oplus} + H}$$

$$\tan \eta = \frac{\sin \rho \sin \lambda}{1 - \sin \rho \cos \lambda}$$

$$\cos \varepsilon = \frac{\sin \eta}{\sin \rho}$$

$$\eta + \lambda + \varepsilon = \frac{\pi}{2}$$

$$R_E \sin \lambda = D \sin \eta$$

$$D_{\text{max}} = \sqrt{\left(R_{\oplus} + H\right)^2 - R_{\oplus}^2}$$

$$D = \sqrt{R_{\oplus}^2 + (R_{\oplus} + H)^2 - 2R_{\oplus}(R_{\oplus} + H)\cos\lambda}$$

Special Cases

Note,

- If point of interest is SSP:

$$\eta = 0, \varepsilon = 90^{\circ}, \lambda = 0$$

- If point of interest is true outer horizon:

$$\eta = \rho, \varepsilon = 0, \lambda = 90^{\circ} - \rho$$

Satellite Motion for an Earth Observer

 $\sin \eta_{max} = \sin \rho \cos \epsilon_{min}$ $\lambda_{max} = 90 \deg - \epsilon_{min} - \eta_{max}$

$$D_{max} = R_E \frac{\sin \lambda_{max}}{\sin \eta_{max}}$$

Circular, LEO

Total Time in View

For a LEO satellite, assume brief pass (ignore Earth's rotation). The time in view, *T*, for the satellite is given by:

$$T = \left(\frac{Period}{180^{\circ}}\right) \cos^{-1}\left(\frac{\cos \lambda_{\text{max}}}{\cos \lambda_{\text{min}}}\right)$$

$$T_{\text{max}} = Period(\lambda_{\text{max}}/180)$$

$$\lambda_{\text{max}} = 90^{\circ} - \varepsilon_{\text{min}} - \eta_{\text{max}}$$

$$\sin \eta_{\text{max}} = \sin \rho \cos \varepsilon_{\text{min}}$$

$$\sin \lambda_{\min} = \sin(lat_{pole})\sin(lat_{GS}) + \cos(lat_{pole})\cos(lat_{GS})\cos(\Delta long)$$

where:

$$lat_{pole} = 90^{\circ} - i$$

 lat_{GS} = latitude of ground station

 $\Delta long =$ difference in longitude between orbit pole and ground station

$$long_{pole} = L_{node} - 90^{\circ}$$

 L_{node} = longitude of Earth (geographic, not inertial) where orbit ascending node at time of pass

Satellite Slew Rate

 Maximum Slew Rate for a Satellite

$$\dot{\theta}_{\text{max}} = \frac{V_{sat}}{D_{\text{min}}} = \frac{2\pi(R_E + H)}{PeriodD_{\text{min}}}$$

$$D_{\min} = R_E \left(\frac{\sin \lambda_{\min}}{\sin \eta_{\min}} \right)$$

Satellite Motion for an Earth Observer

Dominant factor:

- (a) Inclination
- (b) Eccentricity

GEO Ground Track

Sirius Radio Satellite Constellation

- Mission:
 - Continuous radio broadcasts over North America
 - Radio reception to remote areas
- What mission geometry would you

choose?

- Geosynchronous
- 60 deg inclination
- Highly eccentric
- Apogee over N. Hemisphere

Sirius Constellation

How Did XM Do It?

- Named "Rock" and "Roll,"
 XM Radio's two Boeing HS
 702 satellites were placed in
 parallel geostationary orbit
 (GEO), 35,764 km above
 Earth.
- The first XM satellite, "Rock," was launched on March 18, 2001, with "Roll" following on May 8th.

Sirius and XM Constellations

Swath Width

Eclipse

 Knowing the mission geometry leads to a simple calculation for the eclipse time for a satellite (SMAD has a more complicated analysis)

$$\rho = \sin^{-1} \left(\frac{R_E}{R_E + H} \right)$$

$$TE = \frac{2\rho}{360^{\circ}} x Period$$

