

Systèmes et Réseaux (S5) / L3 Miage Cours Réseaux / 2020-2021

CM 1: Introduction aux Réseaux de Données

D'après le cours de Bruno Martin et les slides du livre "Computer Networking: A Top Down Approach, 6th edition, Jim Kurose, Keith Ross, Addison-Wesley, March 2012"

Ramon APARICIO-PARDO

Ramon.Aparicio-Pardo@unice.fr

Organisation de la matière Systèmes et Réseaux (S5)

- Deux parties:
 - 1. Systèmes (Gilles MENEZ)
 - 2. Réseaux (Ramon APARICIO)
 - Remplacé cette année par Michel SYSKA
 - Supports (Ramon APARICIO-PARDO) :

https://github.com/uns-iut-info/doc-miage-network-2020

Bibliographie

PLAN CM 1

- 1. COMMUTATION DE PAQUETS
- 2. PERFORMANCES DES RÉSEAUX DE DONNÉES

- 3. FILES D'ATTENTES (partie non traitée cette année volume d'heures de cours réduit)
- 4. PROTOCOLES DES RÉSEAUX

Réseaux de données : réseaux à commutation de paquets

- Réseaux de données formés par des dispositifs de commutation de paquets (les nœuds) interconnectés par des liens
- ❖ Commutation de paquets: les hôtes découpent les messages de données de la couche applicative en morceaux plus petits (paquets) :
 - Les paquets sont réexpédiés d'un dispositif à l'autre à travers les liens sur le chemin qui lie la source du paquet à sa destination
 - Chaque paquet est transmis à pleine capacité du lien

Commutation de paquets : *store-and-forward*

- ❖ Il faut *L / R* secondes pour transmettre un paquet de taille *L* bits sur un lien avec une capacité de *R* bps
- ❖ Store-and-forward: Le paquet entier doit arriver au dispositif de commutation avant qu'il puisse être transmis sur le lien suivant
- ❖ Délai de bout en bout: nombre liens x (L / R)
 - (en supposant zéro délai de propagation)
 - P.ex. L = 7.5 Mb, R = 1.5 Mbps, 2 sauts

$$\rightarrow$$
 délai = 2 x (7.5/1.5) = 2 x 5 s = 10 s

Commutation de paquets : délai d'attente, perte

Files d'attente et pertes:

- Si le taux d'arrivée (en bits/s) au lien de sortie de dispositif dépasse le taux de transmission du lien pendant une période de temps :
 - Les paquets seront mis en attente dans la file, avant d'être transmis sur le lien
 - Les paquets peuvent être supprimés (perdus) si la file (tampon) se remplit

Commutation de paquets : routage et réexpédition

***** Routage (routing):

- Il détermine la route sourcedestination prise par les paquets :
- Algorithmes de routage (CM3)

Réexpédition (forwarding):

 Il déplace (commute) les paquets de une entrée du dispositif vers la sortie appropriée du même

Commutation de paquets vs Commutation de circuits

Commutation de circuits :

- Ressources affectées de bout en bout:
- Réservées pour «l'appel» entre source et destination
- Dans le diagramme, chaque lien a quatre circuits
 - Appel obtient 2^e circuit sur le lien A et 1 ^{er} circuit sur le lien B.
- * Ressources dédiées: *pas de partage*
 - Performances garanties
- Circuit inactif, si non utilisé par appel (pas de partage)
- Paradigme généralement utilisé dans les réseaux téléphoniques classiques

Commutation de paquets vs Commutation de circuits

- ❖ La commutation de paquets, est-elle un gagnante à coup sûr
 - ✓ Idéal pour les données en rafale (salves des données)
 - Partage de ressources
 - Plus simple, pas d'établissement d'appel
 - X Congestion excessive possible: retard de paquet et perte
 - Protocoles nécessaires pour un transfert fiable des données, contrôle de congestion
- Q: Comment fournir un comportement de type circuit?
 - Garantie de bande passante nécessaire pour les applications audio / vidéo
 - Toujours un problème non résolu
- ❖ Analogie :
 - Ressources réservées (commutation de circuit) par rapport à l'allocation à la demande (commutation par paquets)

Internet: réseau des réseaux

- Systèmes d'extrémité se connectent à Internet via FAI (Fournisseurs d'Accès Internet)
 - Les FAI peuvent être privés (ex. Orange), d'entreprise et universitaires (ex. UCA)
- Les FAI doivent à leur tour être interconnectés.
 - Pour que deux hôtes puissent envoyer des paquets les uns vers les autres
 - Par le moyen de une hiérarchie d'autres types des réseaux
- Ce réseau des réseaux résultant est très complexe
 - Evolution a été guidée par l'économie et les politiques nationales

Internet: réseau des réseaux

- ❖ Au centre: petit nombre de grands réseaux bien connectés
 - FSIs (Fournisseur de Service Internet) de niveau 1 (*Tier 1 ISP*) commerciaux (ex.: Niveau 3, Sprint, AT&T, Orange),
 - couverture nationale et internationale
 - Réseaux des fournisseurs des contenus (Content Providers, CP) (ex.: Akamai, YouTube, Google):
 - réseaux privés qui relient leurs centres de données à Internet, en contournant souvent tier-1, les FAI régionaux.

Performances des réseaux de données : latences, pertes, débits

- Comment se produisent les pertes et les latences?
 - Les paquets attendent dans les tampons (buffers) du dispositif de commutation
 - Le débit (ou taux) d'arrivée de paquets (temporairement) dépasse la capacité du lien de sortie
 - Les paquets attendent leur tour pour accéder au lien de sortie

Tampons libres: paquets arrivant Si aucun des tampons libres, paquet rejeté (**perte**)

Latences

- ❖ Latence: temps nécessaire à un paquet de données pour passer de la source à la destination à travers un réseau, c.-à-d., temps écoulé entre émission du 1^{er} bit du paquet à la source et la réception du dernier bit à la destination
 - delay, latency
 - Eventuellement le temps d'aller-retour (RTT: round-trip time)
- Composantes de la latence d'un paquet: (1) durée transmission, (2) attente dans le buffer, (3) propagation et (4) délai de traitement dans le nœud

$$latence = d_{trait} + d_{buffer} + d_{trans} + d_{prop}$$

Latences

- Délai de traitement dans le nœud (d_{trait}):
 - Vérifier les erreurs binaires (checksum)
 - Traitement (lecture) des en-têtes
 - Déterminer le lien de sortie (forwarding)
 - Magnitude: typiquement < msec</p>

- Temps d'attente dans le buffer (d_{buffer})
 - Temps d'attente dans le tampon sur le lien de sortie pour la transmission
 - Magnitude: Dépendant du niveau de congestion du lien de sortie (cf. théorie de files d'attente)

$$latence = d_{trait} + d_{buffer} + d_{trans} + d_{prop}$$

Latences

Durée de transmission (d_{trans}):

- s: longueur de paquet (bits)
- r: bande passante de liaison (bps)
- Magnitude: $d_{trans} = s / r$

❖ Retard de propagation (d_{prop})

- I: longueur (distance) du lien physique (m)
- v: vitesse de propagation dans le milieu (~ 2x10⁸ m/s)
- *Magnitude:* d_{prop} = I / v

$$latence = d_{trait} + d_{buffer} + d_{trans} + d_{prop}$$

Latences

- Parmi les quatre composantes, seule la durée de transmission dépend de la taille du paquet (du montant de bits à transmettre).
- Les trois autres constituent la *latence de base* c.-à-d., le temps écoulé avant de recevoir le 1er bit du paquet.
- **Exemple:** Message bref (ping) transocéanique
 - Envoi de 56 octets (ping) à une distance de 10 000 km
 - Délai des traitements et d'attentes négligeables (d_{trait} , $d_{\text{buffer}} \sim 0$)
 - Débit de l'accès Internet : 10 Mbps (ADSL) / 100 Mbps (Fibre)

```
Propagation: d_{prop} = I / v = 10^7 (m) / 2x10^8 (m/s) = 0.05 s = 50 ms

Transmission (ADSL): d_{trans} = s / r = 56x8 (bits) / 10x10^6 (bps) ~ 5x10^{-5} s = 0.05 ms

Transmission (Fibre): d_{trans} = s / r = 56x8 (bits) / 100x10^6 (bps) ~ 5x10^{-6} s = 0.005 ms
```

Latence de base (propagation) domine, débit accès Internet à peu influence

Latences

- Parmi les quatre composantes, seule la durée de transmission dépend de la taille du paquet (du montant de bits à transmettre).
- Les trois autres constituent la *latence de base* c.-à-d., le temps écoulé avant de recevoir le 1er bit du paquet.
- **Exemple:** Vidéo HD de 5 min (YouTube) transocéanique
 - Envoi de 300 Mo à une distance de 10 000 km
 - Délai des traitements et d'attentes négligeables $(d_{\text{trait}}, d_{\text{buffer}} \sim 0)$
 - Débit de l'accès Internet : 10 Mbps (ADSL) / 100 Mbps (Fibre)

```
Propagation : d_{prop} = l / v = 10^7 (m) / 2x10^8 (m/s) = 0.05 s = 50 ms

Transmission (ADSL) : d_{trans} = s / r = 300x8x10^6 (bits) / 10x10^6 (bps) = 240 s

Transmission (Fibre) : d_{trans} = s / r = 300x8x10^6 (bits) / 100x10^6 (bps) = 24 s
```

Débit domine, latence de base a peu d'influence

Perte de paquets

- ❖ La file d'attente (ou tampon) du lien de sortie a une taille finie
- Un paquet qui arrive sur une file d'attente pleine est rejeté (c.-à-d. pas admis, perdu)
- Le paquet perdu peut être retransmis par le nœud précédent, par la source ou pas du tout.

Débit

- ❖ Débit (ou bande passante): taux (bits par unité de temps) auquel les bits sont transférés entre l'émetteur et le récepteur
 - bandwidth, throughput, bit rate
 - instantané: taux au point donné dans le temps
 - moyen: taux sur une plus longue période de temps
- Analogie avec le débit d'un tuyau

Débit

- Quel est le débit moyen de bout en bout ?
 - Le débit du lien qui fait de goulot d'étranglement (bottleneck link)
- ❖ Bottleneck link : lien avec la capacité la plus petite
 - Dans l'exemple : le lien A $(R_A < R_B)$
 - Dans la pratique, le bottleneck link se trouve dans le dernier saut (lien d'accès a Internet)

Analogie: deux philosophes qui ne parlent pas la même langue

- Suite d'étapes (tâches) regroupées en une structure de couches
- **Chaque couche** met en œuvre un service :
 - Via ses propres fonctions internes de couche
 - En s'appuyant sur les services (fonctions) fournis par la couche inférieure

Protocoles des réseaux

- Couches, niveaux, strates..., pourquoi?
 - gage de modularité
 - facilite la maintenance
- Stratégie
 - matériel et logiciel considérés de la même façon
 - forte structuration des logiciels réseau
- Mécanisme virtuel où chaque couche
 - fournit un service à la couche immédiatement supérieure
 - dissimule les détails d'implémentation
- Protocole et interface implémentent ce fonctionnement en couches; le service offert correspond à la sémantique de la couche

Protocoles des réseaux

- Communication: entre couches de même niveau
- Interface : ensemble des fonctions (logicielles et matérielles) et des règles d'accès au service de la couche inferieure.
- ❖ **Protocole** : ensemble des conventions nécessaires pour faire coopérer des entités distantes, en particulier pour établir et entretenir des échanges d'informations entre ces entités.
- La conception protocole utilise souvent le protocole de niveau inférieur (plus élémentaire), au moyen de son interface
- ❖ Protocol Data Unit ou *Unité de données de protocole* (PDU) : est *l'unité minimale* des informations échangées *entre deux entités* au niveau de la même couche

Communication virtuelle vs physique

- La communication entre couches du même niveau est virtuelle (passage de PDUs)
- Pas de communication physique entre couches du même niveau
 - aucune donnée transmise physiquement d'une couche i à une autre couche i

Encapsulation

- Service Data Unit ou Unité de données de service (SDU) : est l'unité minimale des informations échangées entre deux couches dans la même entité. Ce sont les messages M proprement dits, la donnée effective ou payload (charge utile)
- Protocol-Control information (PCI): En-têtes (headers H) avec une information de contrôle dépendant du protocole.
- Dans une couche N, on encapsule un SDU de la couche N+1 en l'ajoutent le PCI de N. Le résultat est le PDU de la couche N.

Spécification

- format et ordonnancement messages échangés entre ≥ 2 entités de comm.
- actions à réaliser lors de l'émission/réception msg

Ensemble de règles

- de comm. (langue commune)
- de bon fonctionnement (partage ressource)

pour

- utiliser le support physique
- transporter/utiliser l'info

Pile de protocoles OSI

Open Systems Interconnection

- Proposition d'architecture réseaux différente selon le constructeur
- Interconnexion difficile due au caractère propriétaire
- Intervention ISO
 - but: normalisation protocoles
- Principes:
 - une couche par niveau d'abstraction
 - fonctions bien définies par couche
 - nombre de couches raisonnable
- Résultat: pile de protocoles OSI
 - Sept couches

application présentation 5 session 4 transport 3 réseau lien physique

Pile de protocoles OSI

! Physique (1):

- concerne la transmission et la réception du flux de bits non structurés sur le support physique
- définit les moyens de transmettre des bits
- définit caractéristiques optiques, électriques ou mécaniques

Liaison de données ou de lien (2):

- permet un transfert sans erreur des trames de données d'un nœud à un autre sur la couche physique
- définit les procédures d'exploitation du lien de comm
- permet l'envoi de trames en séquence
- détecte et corrige les erreurs du support physique
- contrôle l'accès au canal partagé (sous-couche MAC)

Pile de protocoles OSI

*** Réseau** (3):

- contrôle les opérations du sous-réseau décidant quel chemin physique prend les données
- détermine comment les données traversent le sous-réseau
- route les paquets en fonction d'adresses réseau uniques
- gère les passages entre différents réseaux

❖ Transport (4):

- assure que les messages sont délivrés sans erreur, dans l'ordre, et sans pertes ni duplications
- assure un transfert fiable et en séquence des messages
- permet le découpage / réassemblage des données
- permet un contrôle de congestion

application présentation session transport 3 réseau 2 lien physique

Pile de protocoles OSI

- **Session** (5):
 - permet l'établissement de session entre des processus s'exécutant sur différentes stations
 - assure la gestion du dialogue et du jeton
 - gère la synchronisation
- **Présentation** (6):
 - formats les données à présenter à la couche application.
 - peut être considéré comme le « traducteur » du réseau
 - définit la syntaxe et la sémantique des données
 - gère conversion, reformate, comprime, chiffre
- **Applications** (7):
 - sert de fenêtre pour les utilisateurs et le processus d'application pour accéder aux services réseau
 - assure les services de base: (Telnet, http, smtp,....)

Pile de protocoles OSI

OSI (Open Source Interconnection) 7 Layer Model

Layer	Application/Example Central Dev			e/	DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	User Applications SMTP		GATEWAY Can be used on all layers	Process
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/ASCII EBDIC/TIFF/GIF PICT			
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	Logical Ports RPC/SQL/NFS NetBIOS names			
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing	TCP/SPX/UDP			Host to Host
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting	Routers IP/IPX/ICMP			Internet
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP			Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub	Layers		Network

Modèle TCP/IP vs OSI

- Modèle OSI tout à fait valable, reconnu et étudié, mais incapable de s'imposer:
 - mauvaise chronologie/technologie/implémentation
- Reste une référence, pas une technologie. D'où le modèle TCP/IP

OSI

TCP/IP

offre les fonctions et services des couches supérieures

- fournit transmission fiable avec connexion TCP
- fournit transmission fiable sans connexion UDP
- •assure contrôle de flux
- •interconnecte rx distants sans connexion
- •route paquets IP sur tout le rx
- cherche à éviter congestions
- pas vraiment spécifiée
- •assure envoi paquets IP
- •implémentation liée techno du LAN

Protocoles Principaux

Application :

• FTP: transfert fichiers

SMTP : messagerie électronique

■ TELNET : présentation d'écran

DNS : résolution IP - nom de domaine

Transport :

- TCP: assure service fiable avec connexion
- UDP : service pas fiable sans connexion

* Réseaux:

- IP : assure service sans connexion
- ICMP : envoi de messages entre couches IP de ≠ nœuds
- IGMP: gestion appartenance à un groupe Xcast

Liens:

- ARP : résolution IP MAC
- Interface matériel : Ethernet

PDU selon couche

- **❖** Application :
 - Message
- Transport :
 - TCP : Segment
 - UDP : Datagramme
- * Réseaux:
 - Paquet
- Liens:
 - Trame (*frame*)
- Physique (média)
 - Bit

OSI

TCP/IP

Noeud (dispositif) selon couche

* Réseaux:

Routeur (router)

Router

- Liens:
 - Commutateur (switch)

- Physique (média)
 - Hub

OSI

TCP/IP

