CAMs

- □ Roller
- □ Flat Faced

CAM Sizing Is Based On Radius Of Curvature and Pressure Angle

□ Prime Circle

- ROLLER or RADIUSED Followers
- Smallest circle which can be Follower Traveldrawn tangent to the locus of the centerline of the follower Major Circle
- Pitch Curve locus of the centerline of the follower
- CAMs with roller followers are defined with respect to the pitch curve
- Base Circle radius
 - FLAT FACED Followers
 - Smallest circle which can be drawn tangent to the physical CAM Surface

Roller Follower: PRESSURE ANGLE

PRESSURE ANGLE ¢: Angle between the direction of motion (velocity) of the follower and the direction of the Axis of Transmission (Common Normal)

- Only valid for single DoF systems
- Extremes
 - φ=90° no follower motion
 - φ=0° all transmission force goes into motion of the follower
- Rule of Thumb
 - Translating Followers 0°≤ ¢≤ 30°
 - Oscillating Followers 0°≤ ¢≤ 35°

Roller Follower: ECCENTRICITY

ECCENTRICITY &: Perpendicular distance between the follower's axis of motion and the center of the CAM

- Aligned Followers, ε=0
- For a positive ω
 - POSITIVE &, the PRESSURE ANGLE will be decreased on the RISE, but increase on the FALL
 - NEGATIVE ε, the opposite occurs

Roller Follower Instant Center

Roller Follower Instant Center Linkage Isomer

Roller Follower Instant Center Finding $d(R_p, \varepsilon)$

$$d = \sqrt{R_p^2 - \varepsilon^2}$$

Roller Follower Instant Center Determining •

$$\phi = \tan^{-1} \left(\frac{s' - \varepsilon}{s + \sqrt{R_p^2 - \varepsilon^2}} \right)$$

As R_p is increased, ϕ will be reduced

- For a positive ω
 - POSITIVE ε, the PRESSURE
 ANGLE φ will be decreased on
 the RISE, but increase on the
 FALL
 - NEGATIVE ε, the opposite occurs

Radius of Curvature Calculation

$$\rho_{pitch} = \frac{\left[\left(R_p + s \right)^2 + s'^2 \right]^{3/2}}{\left(R_p + s \right)^2 + 2 \cdot s'^2 - s'' \cdot \left(R_p + s \right)}$$

■ Radius of Curvature of the Pitch Curve

Rule of Thumb

$$|\rho_{\min}| \gg R_f$$

 ρ At Least 2 to 3 Times R_f

Too Large a Follower

Undercutting

X Y Coordinates

$$x = \cos \lambda \cdot \sqrt{\left(d+s\right)^2 + \varepsilon^2}$$

$$y = \sin \lambda \cdot \sqrt{\left(d+s\right)^2 + \varepsilon^2}$$

$$\lambda = (2\pi - \theta) - \tan^{-1} \left(\frac{\varepsilon}{d+s} \right)$$

Flat Faced Follower

Determining the Shape of the Cam

