## main-doc-1

Jiangyi Huang

August 2022

## Abstract

Insert abstract

## 1 Introduction

First paragraph is not indent by default.

**Definition 1.** [1] is an in-text citation.

Text following theorem denotation are italic by default.

Normal text with default indent.

Normal text without indent. Hyperlink is available.

**Theorem 1.1.** Let K be a compact set in a metric space (X,d). Suppose  $\mathfrak{F} = \{U_{\alpha}\}_{{\alpha}\in A}$  is an open cover of K, then there exists a positive number  $\lambda$  so that for every  $p\in K$  the open ball  $B(p,\lambda)$  is contained in one of the open sets of  $\mathfrak{F}$ .

*Proof.* Since  $K \subset \bigcup_{\alpha \in A} U_{\alpha}$ , for each point p in K there is a positive number  $2\varepsilon(p)$  so that the ball  $B(p, 2\varepsilon(p))$  is contained in one of the open sets of  $\mathcal{F}$ . Clearly  $\{B(p, 2\varepsilon(p))\}_{p \in K}$  forms an open cover of K, and so by compactness this admits a finite refinement.

## References

[1] Albert Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]. Annalen der Physik, 322(10):891–921, 1905.