LaDeCIC - Software Dependability @CIC

Home Chamada para trabalhos

Chamada para trabalhos

Validação de robos de serviço em ambiente simulado

Público Avlo

Alunos de TG1 em Eng. Mecatrônica

Robôs de serviço (em inglês, Service Robots) são aplicações robóticas em que robôs executam tarefas úteis para humanos podendo substituí-los em tarefas perigosas ou entediantes. Exemplos de ambientes em que robôs de serviço podem operar são hospitais e restaurantes. Sistemas multirobos são normalmente aplicados nesses ambientes. Rizk et al. [1] descreve um *workflow* para sistemas multi-robôs com 4 atividades principais: (i) decomposição de tarefas, (ii) formação de coalisão, (iii) alocação de tarefas e (iv) planejamento e controle. Sendo que na maior parte de propostas da litaratura as atividades i, ii, iii são dirigidas por um operador humano. Uma aplicações com alto grau de autonomia, é definida por Rizk, como uma em que o software realize autonomamente as fases do workflow.

Desenvolver aplicações com auto-grau de autonomia é especialmente desafiador no domínio de robôs de serviço por conta da natureza não estruturada e aberta do ambiente (non-structured, open-ended environments) em que esses robôs devem operar. Parte desse desafio na pesquisa e desenvolvimento nesse ambiente é o teste e validação do software de controle dos robôs. Nesse sentido, o RoboMax [2] contribui com um repositório de descrição textual de aplicações multi-robôs em ambiente de serviço. No entanto o RoboMax não é uma solução completa pois (i) as descrições são em alto nível, não fornecendo detalhes sobre características do ambiente e dos robôs; (ii) a descrição dos cenários é textual, não havendo a infra-estrutura para execução do cenário. Por outro lado, simuladores tais quais Gazebo [3] são plataformas popularmente utilizadas que permitem o exercício do software controlador de robôs em ambiente simulado. O Gazebo inclui uma engine que simula a física e permite a inclusão de plugins para simular sensores e atuadores comumente presentes em robôs. No entanto simuladores tais quais o gazebo não são ambientes prontos para executar validação de uma aplicação robótica, sendo necessário um trabalho considerável para modelar o cenário, incluir os plugins adequados e preparar o ambiente para execução.

Nesse projeto pretendemos contribuir com a pesquisa em robôs de serviço com alto-grau de autonomia, através da implementação de ambientes simulados de missões descritas no RoboMax utilizando o simulador Gazebo. Esse esforço envolve (i) modelar ambientes simulados que espelhem ambientes de serviço presentes em missões do RoboMax; (ii) criar plugins que permitam simular interações com pessoas e outros robôs nesses ambientes; (iii) criar plugins que nos permita obter métricas dos cenários simulados, nos permitindo medir atributos de qualidade do software controlador; (iv) documentar esse ambiente de validação para ser utilizado por pesquisadores

terceiros.

Contato

Prof. Dr. Genaína N. Rodrigues 🛘 <genaina@unb.br>

Referências

- [1] Y. Rizk, M. Awad, and E. W. Tunstel, "Cooperative Heterogeneous Multi-Robot Systems: A Survey," *ACM Computing Surveys*, vol. 52, no. 2, pp. 1–31, May 2019, doi: 10.1145/3303848.
- [2] M. Askarpour et al., "RoboMAX: Robotic Mission Adaptation eXemplars," May 2021.
- [3] N. Koenig and A. Howard, "Design and use paradigms for gazebo, an open-source multi-robot simulator," in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154.