

Lecture 9

- 4.5 ODEs with Discontinuous Forcing Functions
- 4.6 The Convolution Integral
- 5.1 Introduction
- 5.2 Basic Theory of Systems of First
 Order Linear Equations

Example

Solve

$$\begin{cases} y'' + 4y = f(t) = \begin{cases} 0 & 0 \le t < 5\\ \frac{1}{5}(t - 5) & 5 \le t < 10\\ 1 & 10 \le t \end{cases} \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

Example

Solve

$$\begin{cases} y'' + 4y = f(t) = \begin{cases} 0 & 0 \le t < 5\\ \frac{1}{5}(t - 5) & 5 \le t < 10\\ 1 & 10 \le t \end{cases} \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

Note that

$$f(t) = 0 + \left(\frac{1}{5}(t-5) - 0\right)u_5(t) + \left(1 - \frac{1}{5}(t-5)\right)u_{10}(t)$$

Example

Solve

$$\begin{cases} y'' + 4y = f(t) = \begin{cases} 0 & 0 \le t < 5\\ \frac{1}{5}(t - 5) & 5 \le t < 10\\ 1 & 10 \le t \end{cases} \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

Note that

$$f(t) = 0 + \left(\frac{1}{5}(t-5) - 0\right)u_5(t) + \left(1 - \frac{1}{5}(t-5)\right)u_{10}(t)$$

= $\frac{1}{5}\left(u_5(t)(t-5) - u_{10}(t)(t-10)\right)$.

$$\mathcal{L}\left[u_c(t)f(t-c)\right](s) = e^{-cs}F(s) \qquad \qquad \mathcal{L}\left[t\right] = \frac{1}{s^2}$$

So our IVP is

IVP is
$$\begin{cases}
y'' + 4y = \frac{1}{5} \left(u_5(t)(t-5) - u_{10}(t)(t-10) \right) \\
y(0) = 0 \\
y'(0) = 0.
\end{cases}$$

$$\mathcal{L}\left[u_c(t)f(t-c)\right](s) = e^{-cs}F(s) \qquad \qquad \mathcal{L}\left[t\right] = \frac{1}{s^2}$$

So our IVP is

$$\begin{cases} y'' + 4y = \frac{1}{5} \left(u_5(t)(t-5) - u_{10}(t)(t-10) \right) \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

Taking the Laplace transform of the ODE gives

$$(s^2+4)Y = \frac{1}{5}\frac{e^{-5s} - e^{-10s}}{s^2}$$

$$\mathcal{L}\left[u_c(t)f(t-c)\right](s) = e^{-cs}F(s) \qquad \qquad \mathcal{L}\left[t\right] = \frac{1}{s^2}$$

So our IVP is

$$\begin{cases} y'' + 4y = \frac{1}{5} \left(u_5(t)(t-5) - u_{10}(t)(t-10) \right) \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

Taking the Laplace transform of the ODE gives

$$(s^2+4)Y = \frac{1}{5}\frac{e^{-5s} - e^{-10s}}{s^2}$$

and

$$Y = \frac{1}{5} \frac{e^{-5s} - e^{-10s}}{s^2(s^2 + 4)}.$$

$$Y = \frac{1}{5} \frac{e^{-5s} - e^{-10s}}{s^2(s^2 + 4)}$$

Let

$$H(s) = \frac{1}{s^2(s^2+4)}.$$

Then

$$Y(s) = \frac{1}{5}e^{-5s}H(s) - \frac{1}{5}e^{-10s}H(s).$$

$$Y(s) = \frac{1}{5}e^{-5s}H(s) - \frac{1}{5}e^{-10s}H(s)$$

Since

$$\mathcal{L}\left[u_c(t)h(t-c)\right](s) = e^{-cs}H(s)$$

$$Y(s) = \frac{1}{5}e^{-5s}H(s) - \frac{1}{5}e^{-10s}H(s)$$

Since

$$\mathcal{L}\left[u_c(t)h(t-c)\right](s) = e^{-cs}H(s)$$

we have that

$$u_c(t)h(t-c) = \mathcal{L}^{-1}\left[e^{-cs}H(s)\right](t).$$

$$Y(s) = \frac{1}{5}e^{-5s}H(s) - \frac{1}{5}e^{-10s}H(s)$$

Since

$$\mathcal{L}\left[u_c(t)h(t-c)\right](s) = e^{-cs}H(s)$$

we have that

$$u_c(t)h(t-c) = \mathcal{L}^{-1}\left[e^{-cs}H(s)\right](t).$$

If we can find h(t), then we can find y(t).

Using partial fractions, we calculate (please check!) that

$$H(s) = \frac{1}{s^2(s^2+4)} = \frac{As+B}{s^2} + \frac{Cs+D}{s^2+4}$$
$$= \frac{As^3 + Bs^2 + 4As + 4B + Cs^3 + Ds^2}{s^2(s^2+4)}$$
$$= \frac{0s+\frac{1}{4}}{s^2} + \frac{0s-\frac{1}{4}}{s^2+4} = \frac{\frac{1}{4}}{s^2} - \frac{\frac{1}{4}}{s^2+4}.$$

Using partial fractions, we calculate (please check!) that

$$H(s) = \frac{1}{s^2(s^2+4)} = \frac{As+B}{s^2} + \frac{Cs+D}{s^2+4}$$
$$= \frac{As^3 + Bs^2 + 4As + 4B + Cs^3 + Ds^2}{s^2(s^2+4)}$$
$$= \frac{0s+\frac{1}{4}}{s^2} + \frac{0s-\frac{1}{4}}{s^2+4} = \frac{\frac{1}{4}}{s^2} - \frac{\frac{1}{4}}{s^2+4}.$$

Hence

$$h(t) = \frac{1}{4}\mathcal{L}^{-1}\left[\frac{1}{s^2}\right] - \frac{1}{8}\mathcal{L}^{-1}\left[\frac{2}{s^2 + 4}\right] =$$

Using partial fractions, we calculate (please check!) that

$$H(s) = \frac{1}{s^2(s^2+4)} = \frac{As+B}{s^2} + \frac{Cs+D}{s^2+4}$$
$$= \frac{As^3 + Bs^2 + 4As + 4B + Cs^3 + Ds^2}{s^2(s^2+4)}$$
$$= \frac{0s+\frac{1}{4}}{s^2} + \frac{0s-\frac{1}{4}}{s^2+4} = \frac{\frac{1}{4}}{s^2} - \frac{\frac{1}{4}}{s^2+4}.$$

Hence

$$h(t) = \frac{1}{4}\mathcal{L}^{-1} \left[\frac{1}{s^2} \right] - \frac{1}{8}\mathcal{L}^{-1} \left[\frac{2}{s^2 + 4} \right] = \frac{t}{4} - \frac{1}{8}\sin 2t.$$

$$u_c(t)h(t-c)(s) = \mathcal{L}^{-1}\left[e^{-cs}H(s)\right]$$

Therefore

$$y(t) = \mathcal{L}^{-1} \left[\frac{1}{5} e^{-5s} H(s) - \frac{1}{5} e^{-10s} H(s) \right]$$
=

$$u_c(t)h(t-c)(s) = \mathcal{L}^{-1}\left[e^{-cs}H(s)\right]$$

Therefore

$$y(t) = \mathcal{L}^{-1} \left[\frac{1}{5} e^{-5s} H(s) - \frac{1}{5} e^{-10s} H(s) \right]$$
$$= \frac{1}{5} u_5(t) h(t-5) - \frac{1}{5} u_{10}(t) h(t-10)$$
$$=$$

$$u_c(t)h(t-c)(s) = \mathcal{L}^{-1}\left[e^{-cs}H(s)\right]$$

Therefore

$$y(t) = \mathcal{L}^{-1} \left[\frac{1}{5} e^{-5s} H(s) - \frac{1}{5} e^{-10s} H(s) \right]$$

$$= \frac{1}{5} u_5(t) h(t-5) - \frac{1}{5} u_{10}(t) h(t-10)$$

$$= u_5(t) \left(\frac{t-5}{20} - \frac{1}{40} \sin(2t-10) \right)$$

$$- u_{10}(t) \left(\frac{t-10}{20} - \frac{1}{40} \sin(2t-20) \right).$$

Example

Solve

$$\begin{cases} y'' + 3y' + 2y = f(t) = \begin{cases} 1 & 0 \le t < 10 \\ 0 & 10 \le t \end{cases} \\ y(0) = 1 \\ y'(0) = 0. \end{cases}$$

Example

Solve

$$\begin{cases} y'' + 3y' + 2y = f(t) = \begin{cases} 1 & 0 \le t < 10 \\ 0 & 10 \le t \end{cases} \\ y(0) = 1 \\ y'(0) = 0. \end{cases}$$

Since $f(t) = 1 - u_{10}(t)$, the Laplace Transform of the ODE is

$$(s^2 + 3s + 2)Y - (s + 3) = \frac{1 - e^{-10s}}{s}.$$

Thus

$$Y(s) = \frac{1 - e^{-10s}}{s(s^2 + 3s + 2)} + \frac{s + 3}{s^2 + 3s + 2}$$
$$= \frac{(s^2 + 3s + 1) - e^{-10s}}{s(s^2 + 3s + 2)}.$$

Thus

$$Y(s) = \frac{1 - e^{-10s}}{s(s^2 + 3s + 2)} + \frac{s + 3}{s^2 + 3s + 2}$$
$$= \frac{(s^2 + 3s + 1) - e^{-10s}}{s(s^2 + 3s + 2)}.$$

Let

$$G(s) = \frac{s^2 + 3s + 1}{s(s^2 + 3s + 2)}$$
 and $H(s) = \frac{1}{s(s^2 + 3s + 2)}$.

Thus

$$Y(s) = \frac{1 - e^{-10s}}{s(s^2 + 3s + 2)} + \frac{s + 3}{s^2 + 3s + 2}$$
$$= \frac{(s^2 + 3s + 1) - e^{-10s}}{s(s^2 + 3s + 2)}.$$

Let

$$G(s) = \frac{s^2 + 3s + 1}{s(s^2 + 3s + 2)}$$
 and $H(s) = \frac{1}{s(s^2 + 3s + 2)}$.

Then
$$Y = G(s) - e^{-10s}H(s)$$
.

Thus

$$Y(s) = \frac{1 - e^{-10s}}{s(s^2 + 3s + 2)} + \frac{s + 3}{s^2 + 3s + 2}$$
$$= \frac{(s^2 + 3s + 1) - e^{-10s}}{s(s^2 + 3s + 2)}.$$

Let

$$G(s) = \frac{s^2 + 3s + 1}{s(s^2 + 3s + 2)}$$
 and $H(s) = \frac{1}{s(s^2 + 3s + 2)}$.

Then $Y = G(s) - e^{-10s}H(s)$. If we can find g(t) and h(t), then we can find y(t).

Using partial fractions we get

$$G(s) = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+2} = \frac{\frac{1}{2}}{s} + \frac{1}{s+1} - \frac{\frac{1}{2}}{s+2}$$

and

$$H(s) = \frac{D}{s} + \frac{E}{s+1} + \frac{F}{s+2} = \frac{\frac{1}{2}}{s} - \frac{1}{s+1} + \frac{\frac{1}{2}}{s+2}$$

(please check!).

Using partial fractions we get

$$G(s) = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+2} = \frac{\frac{1}{2}}{s} + \frac{1}{s+1} - \frac{\frac{1}{2}}{s+2}$$

and

$$H(s) = \frac{D}{s} + \frac{E}{s+1} + \frac{F}{s+2} = \frac{\frac{1}{2}}{s} - \frac{1}{s+1} + \frac{\frac{1}{2}}{s+2}$$

(please check!). It follows that

$$g(t) = \frac{1}{2} (1 + 2e^{-t} - e^{-2t})$$
 and $h(t) = \frac{1}{2} (1 - 2e^{-t} + e^{-2t})$.

$$g(t) = \frac{1}{2} \left(1 + 2e^{-t} - e^{-2t} \right)$$

$$h(t) = \frac{1}{2} \left(1 - 2e^{-t} + e^{-2t} \right)$$

Therefore

$$y(t) = \mathcal{L}^{-1} [Y]$$

$$=$$

$$=$$

$$g(t) = \frac{1}{2} \left(1 + 2e^{-t} - e^{-2t} \right)$$

$$h(t) = \frac{1}{2} \left(1 - 2e^{-t} + e^{-2t} \right)$$

Therefore

$$y(t) = \mathcal{L}^{-1} [Y]$$

$$= \mathcal{L}^{-1} [G(s) - e^{-10s}H(s)]$$

$$=$$

$$=$$

$$g(t) = \frac{1}{2} \left(1 + 2e^{-t} - e^{-2t} \right) \qquad \qquad h(t) = \frac{1}{2} \left(1 - 2e^{-t} + e^{-2t} \right)$$

Therefore

$$y(t) = \mathcal{L}^{-1} [Y]$$

$$= \mathcal{L}^{-1} [G(s) - e^{-10s}H(s)]$$

$$= g(t) - u_{10}(t)h(t - 10)$$

$$=$$

$$g(t) = \frac{1}{2} \left(1 + 2e^{-t} - e^{-2t} \right) \qquad \qquad h(t) = \frac{1}{2} \left(1 - 2e^{-t} + e^{-2t} \right)$$

Therefore

$$y(t) = \mathcal{L}^{-1} [Y]$$

$$= \mathcal{L}^{-1} [G(s) - e^{-10s}H(s)]$$

$$= g(t) - u_{10}(t)h(t - 10)$$

$$= \frac{1}{2} (1 + 2e^{-t} - e^{-2t}) - \frac{1}{2}u_{10}(t)(1 - 2e^{-(t-10)} + e^{-2(t-10)}).$$

Example

Solve

$$\begin{cases} y'' + 4y = u_{\pi}(t) - u_{3\pi}(t) \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

Example

Solve

$$\begin{cases} y'' + 4y = u_{\pi}(t) - u_{3\pi}(t) \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

Taking the Laplace Transform of the ODE gives

$$(s^{2}+4)Y(s) = \frac{e^{-\pi s} - e^{-3\pi s}}{s}.$$

Example

Solve

$$\begin{cases} y'' + 4y = u_{\pi}(t) - u_{3\pi}(t) \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

Taking the Laplace Transform of the ODE gives

$$(s^2+4)Y(s) = \frac{e^{-\pi s} - e^{-3\pi s}}{s}.$$

Thus

$$Y(s) = \frac{e^{-\pi s} - e^{-3\pi s}}{s(s^2 + 4)}.$$

Example

Solve

$$\begin{cases} y'' + 4y = u_{\pi}(t) - u_{3\pi}(t) \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

Taking the Laplace Transform of the ODE gives

$$(s^2+4)Y(s) = \frac{e^{-\pi s} - e^{-3\pi s}}{s}.$$

Thus

$$Y(s) = \frac{e^{-\pi s} - e^{-3\pi s}}{s(s^2 + 4)}.$$

Let

$$H(s) = \frac{1}{s(s^2 + 4)}.$$

Using partial fractions, we calculate that

$$H(s) = \frac{1}{s(s^2 + 4)} = \frac{A}{s} + \frac{Bs + C}{s^2 + 4} = \frac{\frac{1}{4}}{s} + \frac{-\frac{1}{4}s + 0}{s^2 + 4}$$
$$= \frac{1}{4} \left(\frac{1}{s}\right) - \frac{1}{4} \left(\frac{s}{s^2 + 4}\right) = \frac{1}{4} \mathcal{L}\left[1\right] - \frac{1}{4} \mathcal{L}\left[\cos 2t\right].$$

Using partial fractions, we calculate that

$$H(s) = \frac{1}{s(s^2 + 4)} = \frac{A}{s} + \frac{Bs + C}{s^2 + 4} = \frac{\frac{1}{4}}{s} + \frac{-\frac{1}{4}s + 0}{s^2 + 4}$$
$$= \frac{1}{4} \left(\frac{1}{s}\right) - \frac{1}{4} \left(\frac{s}{s^2 + 4}\right) = \frac{1}{4} \mathcal{L}\left[1\right] - \frac{1}{4} \mathcal{L}\left[\cos 2t\right].$$

It follows that

$$h(t) = \frac{1}{4} - \frac{1}{4}\cos 2t$$

Using partial fractions, we calculate that

$$H(s) = \frac{1}{s(s^2 + 4)} = \frac{A}{s} + \frac{Bs + C}{s^2 + 4} = \frac{\frac{1}{4}}{s} + \frac{-\frac{1}{4}s + 0}{s^2 + 4}$$
$$= \frac{1}{4} \left(\frac{1}{s}\right) - \frac{1}{4} \left(\frac{s}{s^2 + 4}\right) = \frac{1}{4} \mathcal{L}\left[1\right] - \frac{1}{4} \mathcal{L}\left[\cos 2t\right].$$

It follows that

$$h(t) = \frac{1}{4} - \frac{1}{4}\cos 2t$$

and the solution to the IVP is

$$y(t) = \mathcal{L}^{-1} \left[e^{-\pi s} H(s) \right] - \mathcal{L}^{-1} \left[e^{-3\pi s} H(s) \right]$$
=

Using partial fractions, we calculate that

$$H(s) = \frac{1}{s(s^2 + 4)} = \frac{A}{s} + \frac{Bs + C}{s^2 + 4} = \frac{\frac{1}{4}}{s} + \frac{-\frac{1}{4}s + 0}{s^2 + 4}$$
$$= \frac{1}{4} \left(\frac{1}{s}\right) - \frac{1}{4} \left(\frac{s}{s^2 + 4}\right) = \frac{1}{4} \mathcal{L}\left[1\right] - \frac{1}{4} \mathcal{L}\left[\cos 2t\right].$$

It follows that

$$h(t) = \frac{1}{4} - \frac{1}{4}\cos 2t$$

and the solution to the IVP is

$$y(t) = \mathcal{L}^{-1} \left[e^{-\pi s} H(s) \right] - \mathcal{L}^{-1} \left[e^{-3\pi s} H(s) \right]$$

= $u_{\pi}(t) h(t - \pi) - u_{3\pi}(t) h(t - 3\pi)$

Using partial fractions, we calculate that

$$H(s) = \frac{1}{s(s^2 + 4)} = \frac{A}{s} + \frac{Bs + C}{s^2 + 4} = \frac{\frac{1}{4}}{s} + \frac{-\frac{1}{4}s + 0}{s^2 + 4}$$
$$= \frac{1}{4} \left(\frac{1}{s}\right) - \frac{1}{4} \left(\frac{s}{s^2 + 4}\right) = \frac{1}{4} \mathcal{L}\left[1\right] - \frac{1}{4} \mathcal{L}\left[\cos 2t\right].$$

It follows that

$$h(t) = \frac{1}{4} - \frac{1}{4}\cos 2t$$

and the solution to the IVP is

$$y(t) = \mathcal{L}^{-1} \left[e^{-\pi s} H(s) \right] - \mathcal{L}^{-1} \left[e^{-3\pi s} H(s) \right]$$

= $u_{\pi}(t) h(t - \pi) - u_{3\pi}(t) h(t - 3\pi)$
= $\frac{1}{4} u_{\pi}(t) \left(1 - \cos(2t - 2\pi) \right) - \frac{1}{4} u_{3\pi}(t) \left(1 - \cos(2t - 6\pi) \right).$

The Convolution Integral

4.6 The Convolution Integral

Let $f:[0,\infty)\to\mathbb{R}$ and $g:[0,\infty)\to\mathbb{R}$ be piecewise continuous functions.

Definition

The convolution of f and g is

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau.$$

4.6
$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$f*(g+h) = (f*g) + (f*h)$$
 $f*0 = 0 = 0*f$

$$f * (g * h) = (f * g) * h$$

$$f * 0 = 0 = 0 * f$$

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$f*(g+h) = (f*g)+(f*h)$$
 $f*0 = 0 = 0*f$

$$f * 0 = 0 = 0 * f$$

$$(\cos *1)(t) = \int_0^t \cos \tau \cdot 1 \, d\tau = [\sin \tau]_0^t = \sin t - \sin 0 = \sin t$$
$$(1 * \cos)(t) =$$

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$f * g = g * f$$

$$f*(g+h) = (f*g) + (f*h)$$
 $f*0 = 0 = 0*f$

$$f * 0 = 0 = 0 * f$$

$$(\cos *1)(t) = \int_0^t \cos \tau \cdot 1 \, d\tau = [\sin \tau]_0^t = \sin t - \sin 0 = \sin t$$
$$(1 * \cos)(t) = \int_0^t 1 \cdot \cos(t - \tau) \, d\tau = [-\sin(t - \tau)]_0^t$$
$$= -\sin 0 + \sin t = \sin t$$

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$f * g = g * f$$

$$f * (g * h) = (f * g) * h$$

$$\bullet f * (g+h) = (f*g) + (f*h) \qquad \bullet f * 0 = 0 = 0 * f$$

$$f * 0 = 0 = 0 * f$$

Example

$$(\cos *1)(t) = \int_0^t \cos \tau \cdot 1 \, d\tau = [\sin \tau]_0^t = \sin t - \sin 0 = \sin t$$
$$(1 * \cos)(t) = \int_0^t 1 \cdot \cos(t - \tau) \, d\tau = [-\sin(t - \tau)]_0^t$$
$$= -\sin 0 + \sin t = \sin t$$

Note that $f * 1 \neq f$ in general.

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$(\sin * \sin)(t) = \int_0^t \sin \tau \sin(t - \tau) d\tau$$
=

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$(\sin * \sin)(t) = \int_0^t \sin \tau \sin(t - \tau) d\tau$$

$$= \int_0^t \sin \tau (\sin t \cos \tau - \cos t \sin \tau) d\tau$$

$$=$$

$$=$$

$$=$$

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$(\sin * \sin)(t) = \int_0^t \sin \tau \sin(t - \tau) d\tau$$

$$= \int_0^t \sin \tau (\sin t \cos \tau - \cos t \sin \tau) d\tau$$

$$= \sin t \int_0^t \sin \tau \cos \tau d\tau - \cos t \int_0^t \sin^2 \tau d\tau$$

$$=$$

$$=$$

4.6
$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$(\sin * \sin)(t) = \int_0^t \sin \tau \sin(t - \tau) d\tau$$

$$= \int_0^t \sin \tau (\sin t \cos \tau - \cos t \sin \tau) d\tau$$

$$= \sin t \int_0^t \sin \tau \cos \tau d\tau - \cos t \int_0^t \sin^2 \tau d\tau$$

$$= \sin t \left[-\frac{1}{2} \cos^2 \tau \right]_0^t - \cos t \left[\frac{1}{2} (\tau - \sin \tau \cos \tau) \right]_0^t$$

$$=$$

$$=$$

$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$

$$(\sin * \sin)(t) = \int_0^t \sin \tau \sin(t - \tau) d\tau$$

$$= \int_0^t \sin \tau (\sin t \cos \tau - \cos t \sin \tau) d\tau$$

$$= \sin t \int_0^t \sin \tau \cos \tau d\tau - \cos t \int_0^t \sin^2 \tau d\tau$$

$$= \sin t \left[-\frac{1}{2} \cos^2 \tau \right]_0^t - \cos t \left[\frac{1}{2} (\tau - \sin \tau \cos \tau) \right]_0^t$$

$$= \frac{1}{2} \sin t (1 - \cos^2 t) - \frac{1}{2} \cos t (t - \sin t \cos t)$$

$$=$$

$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$

$$(\sin * \sin)(t) = \int_0^t \sin \tau \sin(t - \tau) d\tau$$

$$= \int_0^t \sin \tau (\sin t \cos \tau - \cos t \sin \tau) d\tau$$

$$= \sin t \int_0^t \sin \tau \cos \tau d\tau - \cos t \int_0^t \sin^2 \tau d\tau$$

$$= \sin t \left[-\frac{1}{2} \cos^2 \tau \right]_0^t - \cos t \left[\frac{1}{2} (\tau - \sin \tau \cos \tau) \right]_0^t$$

$$= \frac{1}{2} \sin t (1 - \cos^2 t) - \frac{1}{2} \cos t (t - \sin t \cos t)$$

$$= \frac{1}{2} \sin t - \frac{t}{2} \cos t.$$

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$(\sin * \sin)(t) = \int_0^t \sin \tau \sin(t - \tau) d\tau$$

$$= \int_0^t \sin \tau (\sin t \cos \tau - \cos t \sin \tau) d\tau$$

$$= \sin t \int_0^t \sin \tau \cos \tau d\tau - \cos t \int_0^t \sin^2 \tau d\tau$$

$$= \sin t \left[-\frac{1}{2} \cos^2 \tau \right]_0^t - \cos t \left[\frac{1}{2} (\tau - \sin \tau \cos \tau) \right]_0^t$$

$$= \frac{1}{2} \sin t (1 - \cos^2 t) - \frac{1}{2} \cos t (t - \sin t \cos t)$$

$$= \frac{1}{2} \sin t - \frac{t}{2} \cos t.$$

Note that $f * f \ge 0$ is <u>not</u> true in general.

Theorem

$$\mathcal{L}\left[f*g\right](s) = F(s)G(s)$$

4.6

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$T_{ m heorem}$

$$\mathcal{L}\left[f*g\right](s) = F(s)G(s)$$

This means that $\mathcal{L}^{-1}[FG] = f * g$.

4.6 $(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$

Example

4.6

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

Example

Note that
$$H(s) = \left(\frac{1}{s^2}\right) \left(\frac{a}{s^2 + a^2}\right)$$
.

$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$

Example

Note that
$$H(s) = \left(\frac{1}{s^2}\right) \left(\frac{a}{s^2 + a^2}\right)$$
. We know that $\mathcal{L}\left[t\right] = \frac{1}{s^2}$ and $\mathcal{L}\left[\sin at\right] = \frac{a}{s^2 + a^2}$.

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

Find the inverse Laplace Transform of $H(s) = \frac{a}{s^2(s^2 + a^2)}$.

Note that
$$H(s) = \left(\frac{1}{s^2}\right) \left(\frac{a}{s^2 + a^2}\right)$$
. We know that $\mathcal{L}\left[t\right] = \frac{1}{s^2}$ and $\mathcal{L}\left[\sin at\right] = \frac{a}{s^2 + a^2}$. So

$$h(t) = \mathcal{L}^{-1} \left[\left(\frac{1}{s^2} \right) \left(\frac{a}{s^2 + a^2} \right) \right] =$$

=

_

4.6

$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$

Example

Find the inverse Laplace Transform of $H(s) = \frac{a}{s^2(s^2 + a^2)}$.

Note that
$$H(s) = \left(\frac{1}{s^2}\right) \left(\frac{a}{s^2 + a^2}\right)$$
. We know that $\mathcal{L}\left[t\right] = \frac{1}{s^2}$ and $\mathcal{L}\left[\sin at\right] = \frac{a}{s^2 + a^2}$. So

$$h(t) = \mathcal{L}^{-1} \left[\left(\frac{1}{s^2} \right) \left(\frac{a}{s^2 + a^2} \right) \right] = \mathcal{L}^{-1} \left[\frac{1}{s^2} \right] * \mathcal{L}^{-1} \left[\frac{a}{s^2 + a^2} \right]$$

=

_

4.6

$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$

Example

Note that
$$H(s) = \left(\frac{1}{s^2}\right) \left(\frac{a}{s^2 + a^2}\right)$$
. We know that $\mathcal{L}\left[t\right] = \frac{1}{s^2}$ and $\mathcal{L}\left[\sin at\right] = \frac{a}{s^2 + a^2}$. So

$$h(t) = \mathcal{L}^{-1} \left[\left(\frac{1}{s^2} \right) \left(\frac{a}{s^2 + a^2} \right) \right] = \mathcal{L}^{-1} \left[\frac{1}{s^2} \right] * \mathcal{L}^{-1} \left[\frac{a}{s^2 + a^2} \right]$$
$$= t * \sin at = \int_0^t \tau \sin a(t - \tau) d\tau$$

$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$

Example

Note that
$$H(s) = \left(\frac{1}{s^2}\right) \left(\frac{a}{s^2 + a^2}\right)$$
. We know that $\mathcal{L}\left[t\right] = \frac{1}{s^2}$ and $\mathcal{L}\left[\sin at\right] = \frac{a}{s^2 + a^2}$. So

$$h(t) = \mathcal{L}^{-1} \left[\left(\frac{1}{s^2} \right) \left(\frac{a}{s^2 + a^2} \right) \right] = \mathcal{L}^{-1} \left[\frac{1}{s^2} \right] * \mathcal{L}^{-1} \left[\frac{a}{s^2 + a^2} \right]$$
$$= t * \sin at = \int_0^t \tau \sin a(t - \tau) d\tau$$
$$= \frac{at - \sin at}{a^2}.$$

Solve

$$\begin{cases} y'' + 4y = g(t) \\ y(0) = 3 \\ y'(0) = -1. \end{cases}$$

$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$

Example

Solve

$$\begin{cases} y'' + 4y = g(t) \\ y(0) = 3 \\ y'(0) = -1. \end{cases}$$

Taking the Laplace Transform of the ODE gives

$$(s^2Y - 3s + 1) + 4Y = G(s)$$

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

Solve

$$\begin{cases} y'' + 4y = g(t) \\ y(0) = 3 \\ y'(0) = -1. \end{cases}$$

Taking the Laplace Transform of the ODE gives

$$(s^2Y - 3s + 1) + 4Y = G(s)$$

which rearranges to

$$Y(s) = \frac{3s - 1}{s^2 + 4} + \frac{G(s)}{s^2 + 4}$$
$$= 3\left(\frac{s}{s^2 + 4}\right) - \frac{1}{2}\left(\frac{2}{s^2 + 4}\right) + \frac{1}{2}\left(\frac{2}{s^2 + 4}\right)G(s).$$

$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$

$$Y(s) = 3\left(\frac{s}{s^2+4}\right) - \frac{1}{2}\left(\frac{2}{s^2+4}\right) + \frac{1}{2}\left(\frac{2}{s^2+4}\right)G(s)$$

Hence the solution to the IVP is

$$y(t) = 3\mathcal{L}^{-1} \left[\frac{s}{s^2 + 4} \right] - \frac{1}{2} \mathcal{L}^{-1} \left[\frac{2}{s^2 + 4} \right] + \frac{1}{2} \mathcal{L}^{-1} \left[\left(\frac{2}{s^2 + 4} \right) G(s) \right]$$
=
=

$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$

$$Y(s) = 3\left(\frac{s}{s^2+4}\right) - \frac{1}{2}\left(\frac{2}{s^2+4}\right) + \frac{1}{2}\left(\frac{2}{s^2+4}\right)G(s)$$

Hence the solution to the IVP is

$$y(t) = 3\mathcal{L}^{-1} \left[\frac{s}{s^2 + 4} \right] - \frac{1}{2} \mathcal{L}^{-1} \left[\frac{2}{s^2 + 4} \right] + \frac{1}{2} \mathcal{L}^{-1} \left[\left(\frac{2}{s^2 + 4} \right) G(s) \right]$$
$$= 3\cos 2t - \frac{1}{2}\sin 2t + \frac{1}{2}\sin 2t * g(t)$$

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$Y(s) = 3\left(\frac{s}{s^2+4}\right) - \frac{1}{2}\left(\frac{2}{s^2+4}\right) + \frac{1}{2}\left(\frac{2}{s^2+4}\right)G(s)$$

Hence the solution to the IVP is

$$y(t) = 3\mathcal{L}^{-1} \left[\frac{s}{s^2 + 4} \right] - \frac{1}{2} \mathcal{L}^{-1} \left[\frac{2}{s^2 + 4} \right] + \frac{1}{2} \mathcal{L}^{-1} \left[\left(\frac{2}{s^2 + 4} \right) G(s) \right]$$

$$= 3\cos 2t - \frac{1}{2}\sin 2t + \frac{1}{2}\sin 2t * g(t)$$

$$= 3\cos 2t - \frac{1}{2}\sin 2t + \frac{1}{2} \int_0^t \sin 2(t - \tau)g(\tau) d\tau.$$

Example

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$\mathcal{L}^{-1}\left[\frac{2}{(s-1)(s^2+4)}\right] = \mathcal{L}^{-1}\left[\left(\frac{2}{s^2+4}\right)\left(\frac{1}{s-1}\right)\right]$$

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$\mathcal{L}^{-1} \left[\frac{2}{(s-1)(s^2+4)} \right] = \mathcal{L}^{-1} \left[\left(\frac{2}{s^2+4} \right) \left(\frac{1}{s-1} \right) \right] = \sin 2t * e^t$$

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$\mathcal{L}^{-1} \left[\frac{2}{(s-1)(s^2+4)} \right] = \mathcal{L}^{-1} \left[\left(\frac{2}{s^2+4} \right) \left(\frac{1}{s-1} \right) \right] = \sin 2t * e^t$$
$$= \int_0^t e^{t-\tau} \sin 2\tau \, d\tau$$

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$\mathcal{L}^{-1} \left[\frac{2}{(s-1)(s^2+4)} \right] = \mathcal{L}^{-1} \left[\left(\frac{2}{s^2+4} \right) \left(\frac{1}{s-1} \right) \right] = \sin 2t * e^t$$
$$= \int_0^t e^{t-\tau} \sin 2\tau \, d\tau = e^t \int_0^t e^{-\tau} \sin 2\tau \, d\tau$$

Example

$$\mathcal{L}^{-1} \left[\frac{2}{(s-1)(s^2+4)} \right] = \mathcal{L}^{-1} \left[\left(\frac{2}{s^2+4} \right) \left(\frac{1}{s-1} \right) \right] = \sin 2t * e^t$$

$$= \int_0^t e^{t-\tau} \sin 2\tau \, d\tau = e^t \int_0^t e^{-\tau} \sin 2\tau \, d\tau$$

$$= e^t \left[\frac{e^{-\tau}}{5} \left(-\sin 2\tau - 2\cos 2\tau \right) \right]_0^t$$

Example

$$\mathcal{L}^{-1} \left[\frac{2}{(s-1)(s^2+4)} \right] = \mathcal{L}^{-1} \left[\left(\frac{2}{s^2+4} \right) \left(\frac{1}{s-1} \right) \right] = \sin 2t * e^t$$

$$= \int_0^t e^{t-\tau} \sin 2\tau \, d\tau = e^t \int_0^t e^{-\tau} \sin 2\tau \, d\tau$$

$$= e^t \left[\frac{e^{-\tau}}{5} \left(-\sin 2\tau - 2\cos 2\tau \right) \right]_0^t$$

$$= \frac{2}{5} e^t - \frac{1}{5} \sin 2t - \frac{2}{5} \cos 2t.$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$4y'' + y = g(t)$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$\mathcal{L}\left[4y'' + y\right] = \mathcal{L}\left[g(t)\right]$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$\mathcal{L}\left[4y'' + y\right] = \mathcal{L}\left[g(t)\right]$$

$$4(s^2Y - sy(0) - y'(0)) + Y = G(s)$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$\mathcal{L}\left[4y'' + y\right] = \mathcal{L}\left[g(t)\right]$$

$$4(s^2Y - 3s + 7) + Y = G(s)$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$\mathcal{L}\left[4y'' + y\right] = \mathcal{L}\left[g(t)\right]$$

$$(4s^2 + 1)Y - 12s + 28 = G(s)$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$\mathcal{L}\left[4y'' + y\right] = \mathcal{L}\left[g(t)\right]$$

$$(4s^2 + 1)Y = 12s - 28 + G(s)$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$\mathcal{L}\left[4y'' + y\right] = \mathcal{L}\left[g(t)\right]$$

$$4\left(s^2 + \frac{1}{4}\right)Y = 12s - 28 + G(s)$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$\mathcal{L}[4y'' + y] = \mathcal{L}[g(t)]$$

$$Y = \frac{12s}{4(s^2 + \frac{1}{2})} - \frac{28}{4(s^2 + \frac{1}{2})} + \frac{G(s)}{4(s^2 + \frac{1}{2})}$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$Y = \frac{3s}{s^2 + \frac{1}{4}} - \frac{7}{s^2 + \frac{1}{4}} + G(s)\frac{\frac{1}{4}}{s^2 + \frac{1}{4}}$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$Y = 3\left(\frac{s}{s^2 + \frac{1}{4}}\right) - 14\left(\frac{\frac{1}{2}}{s^2 + \frac{1}{4}}\right) + \frac{1}{2}G(s)\left(\frac{\frac{1}{2}}{s^2 + \frac{1}{4}}\right)$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$Y = 3\mathcal{L}\left[\cos\frac{t}{2}\right] - 14\left(\frac{\frac{1}{2}}{s^2 + \frac{1}{4}}\right) + \frac{1}{2}G(s)\left(\frac{\frac{1}{2}}{s^2 + \frac{1}{4}}\right)$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$Y = 3\mathcal{L} \left[\cos \frac{t}{2} \right] - 14\mathcal{L} \left[\sin \frac{t}{2} \right] + \frac{1}{2} G(s) \mathcal{L} \left[\sin \frac{t}{2} \right]$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$Y = 3\mathcal{L}\left[\cos\frac{t}{2}\right] - 14\mathcal{L}\left[\sin\frac{t}{2}\right] + \frac{1}{2}G(s)\mathcal{L}\left[\sin\frac{t}{2}\right]$$
$$y(t) =$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$Y = 3\mathcal{L}\left[\cos\frac{t}{2}\right] - 14\mathcal{L}\left[\sin\frac{t}{2}\right] + \frac{1}{2}G(s)\mathcal{L}\left[\sin\frac{t}{2}\right]$$
$$y(t) = 3\cos\frac{t}{2}$$

Example

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$Y = 3\mathcal{L}\left[\cos\frac{t}{2}\right] - 14\mathcal{L}\left[\sin\frac{t}{2}\right] + \frac{1}{2}G(s)\mathcal{L}\left[\sin\frac{t}{2}\right]$$
$$y(t) = 3\cos\frac{t}{2} - 14\sin\frac{t}{2}$$

$$\begin{cases} 4y'' + y = g(t) \\ y(0) = 3 \\ y'(0) = -7. \end{cases}$$

$$Y = 3\mathcal{L}\left[\cos\frac{t}{2}\right] - 14\mathcal{L}\left[\sin\frac{t}{2}\right] + \frac{1}{2}G(s)\mathcal{L}\left[\sin\frac{t}{2}\right]$$
$$y(t) = 3\cos\frac{t}{2} - 14\sin\frac{t}{2} + \frac{1}{2}g(t) * \sin\frac{t}{2}.$$

Systems of First Order Linear Equations

Introduction

Consider the dynamical system shown above. There are two blocks and three springs. Forces F_1 and F_2 act on the blocks as shown.

See https://tinyurl.com/wm2ogdh

We expect that the acceleration of the blocks will depend on

- the displacements x_1 and x_2 ;
- the forces F_1 and F_2 ; and
- \blacksquare the masses of the blocks.

We expect that the acceleration of the blocks will depend on

- the displacements x_1 and x_2 ;
- the forces F_1 and F_2 ; and
- the masses of the blocks.

So we expect that:

$$\begin{cases} \frac{d^2x_1}{dt^2} = f_1(x_1, x_2, F_1, m_1) \\ \frac{d^2x_2}{dt^2} = f_2(x_1, x_2, F_2, m_2). \end{cases}$$

We expect that the acceleration of the blocks will depend on

- the displacements x_1 and x_2 ;
- the forces F_1 and F_2 ; and
- the masses of the blocks.

So we expect that:

$$\begin{cases} \frac{d^2x_1}{dt^2} = f_1(x_1, x_2, F_1, m_1) \\ \frac{d^2x_2}{dt^2} = f_2(x_1, x_2, F_2, m_2). \end{cases}$$

This is a system of two ODEs. To find $x_1(t)$ and $x_2(t)$, we would need to solve these equations at the same time.

The most famous system of ODEs is the system of *Predator-Prey* equations:

$$\begin{cases} \frac{dx}{dt} = \alpha x - \beta xy \\ \frac{dy}{dt} = \delta xy - \gamma y \end{cases}$$

where

$$x(t) = \text{number of prey (e.g. mice)}$$

 $y(t) = \text{number of predators (e.g. owls)},$

which originate circa 1925.

It is possible to convert an nth order linear ODE into a system of n first order linear ODEs. Or vice versa.

$$a_{n}y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_{1}y' + a_{0}y = g(t)$$

$$\begin{cases}
x'_{1} = b_{11}x_{1} + \dots + b_{1n}x_{n} + h_{1}(t)
x'_{2} = b_{21}x_{1} + \dots + b_{2n}x_{n} + h_{2}(t)
\vdots
x'_{n} = b_{n1}x_{1} + \dots + b_{nn}x_{n} + h_{n}(t)
\end{cases}$$

Example

Write

$$u'' + 0.25u' + u = 0$$

as a system of two first order ODEs.

Example

Write

$$u'' + 0.25u' + u = 0$$

as a system of two first order ODEs.

Let
$$x_1 = u$$
 and $x_2 = u'$.

Example

Write

$$u'' + 0.25u' + u = 0$$

as a system of two first order ODEs.

Let $x_1 = u$ and $x_2 = u'$. Then clearly $x'_1 = u' = x_2$

5.1 Introduction

Example

Write

$$u'' + 0.25u' + u = 0$$

as a system of two first order ODEs.

Let $x_1 = u$ and $x_2 = u'$. Then clearly $x'_1 = u' = x_2$ and

$$x_2' = u'' = -0.25u' - u = -0.25x_2 - x_1.$$

5.1 Introduction

Example

Write

$$u'' + 0.25u' + u = 0$$

as a system of two first order ODEs.

Let $x_1 = u$ and $x_2 = u'$. Then clearly $x'_1 = u' = x_2$ and

$$x_2' = u'' = -0.25u' - u = -0.25x_2 - x_1.$$

Therefore

$$\begin{cases} x_1' = x_2 \\ x_2' = -x_1 - 0.25x_2. \end{cases}$$

5.1 Introduction

Remark

We will need

- matrices,
- eigenvalues,
- eigenvectors,
- the Wronskian,
- linear independence,
- and more

from MATH215 – please either revise your Linear Algebra lecture notes or read your Linear Algebra book or read $\S7.2-7.3$ in the textbook by Boyce and DiPrima.

$$\begin{cases} x'_1 = p_{11}(t)x_1 + p_{12}(t)x_2 + \dots + p_{1n}(t)x_n + g_1(t) \\ x'_2 = p_{21}(t)x_1 + p_{22}(t)x_2 + \dots + p_{2n}(t)x_n + g_2(t) \\ \vdots \\ x'_n = p_{n1}(t)x_1 + p_{n2}(t)x_2 + \dots + p_{nn}(t)x_n + g_n(t) \end{cases}$$

is a system of n linear ODEs and n variables: x_1, x_2, \ldots, x_n .

If we write

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ \mathbf{x}' = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix}, \ P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & \vdots & & \vdots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}, \text{ and } \mathbf{g} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix}$$

then we can write this system as

$$\mathbf{x}' = P(t)\mathbf{x} + \mathbf{g}(t).$$

First we will consider the homogeneous system

$$\mathbf{x}' = P(t)\mathbf{x}.$$

In Chapters 3 and 4 when we had multiple solutions, we wrote them as $y_1(t)$, $y_2(t)$, But we are already using $x_1, x_2, ...$ to denote coordinates. So we need a new type of notation.

In Chapters 3 and 4 when we had multiple solutions, we wrote them as $y_1(t)$, $y_2(t)$, But we are already using $x_1, x_2, ...$ to denote coordinates. So we need a new type of notation.

Notation

We use $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$, ... to denote different vector solutions.

Recall from Chapter 3 that if $y_1(t)$ and $y_2(t)$ are both solutions to

$$ay'' + by' + cy = 0,$$

then

$$c_1y_1 + c_2y_2$$

is also a solution.

Theorem

If
$$\mathbf{x}^{(1)}(t)$$
 and $\mathbf{x}^{(2)}(t)$ are solutions to $\mathbf{x}' = P(t)\mathbf{x}$, then
$$c_1\mathbf{x}^{(1)} + c_2\mathbf{x}^{(2)}$$

is also a solution for any $c_1, c_2 \in \mathbb{R}$.

Example

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t}$$
 and $\mathbf{x}^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}$ are both solutions to $\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}$ (we will see this later).

Example

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t}$$
 and $\mathbf{x}^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}$ are both solutions to $\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}$ (we will see this later). Therefore

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}$$

is also a solution to this system.

(Suppose that P(t) is an $n \times n$ matrix.)

Theorem

If $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$, ..., $\mathbf{x}^{(n)}(t)$ are linearly independent solutions to $\mathbf{x}' = P(t)\mathbf{x}$, then every solution to this system can be written as

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + \ldots + c_n \mathbf{x}^{(n)}$$

in exactly one way.

Definition

In this case, we say that $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$, ..., $\mathbf{x}^{(n)}(t)$ form a fundamental set of solutions to $\mathbf{x}' = P(t)\mathbf{x}$.

Definition

In this case, we say that $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$, ..., $\mathbf{x}^{(n)}(t)$ form a fundamental set of solutions to $\mathbf{x}' = P(t)\mathbf{x}$.

<u>De</u>finition

In this case,

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + \dots + c_n \mathbf{x}^{(n)}$$

is called the general solution to $\mathbf{x}' = P(t)\mathbf{x}$.

Next Time

- 5.3 Homogeneous Linear Systems with Constant Coefficients
- 5.4 Complex Eigenvalues
- 5.5 Fundamental Matrices