

Ryad Benadjila
Olivier Billet
Henri Gilbert
Gilles Macario-Rat
Thomas Peyrin*
Matt Robshaw
Yannick Seurin

design principles

- simple to describe: echoing the AES design
- simple to analyze: exceptionally strong security proofs
- lessons from recent cryptanalytic advances
 - domain extension: HAIFA + double-pipe
 - compression function: input neutral

domain extension: double pipe

$$\text{message} + \text{padding}: \quad M_{_{1}} | M_{_{2}} | \cdot \cdot \cdot | M_{L}$$

- double size chaining variable (avoid multicollisions)
- we also use HAIFA features:
 - pad the message with message length and hash length
 - use a bit counter as a compression function input
 - ▶ integrate the salt as an optional compression function input

compression function up to 256 bits

compression function up to 512 bits

► ROUND = BIG.SubWords + BIG.ShiftRows + BIG.MixColumns

BIG.SubWords

K is an internal counter incremented each time it is used

apply the usual ShiftRows transformation on 128-bit words

BIG.MixColumns

apply the MixColumns of AES to 4-tuples of bytes throughout the state

design philosophy

- avoid related key attacks
 - the keys used for the 2-round AES are fixed
 - no message expansion: attacker can only control the beginning of the computation
- input neutral
 - message and chaining inputs are handled similarly
- leveraging AES security
 - by using AES rounds as a component
 - by using AES structure: ECHO is a BIG AES

differential proofs

- probability of differential characteristics
 - ► ECHO 256: $p \le 2^{-1500}$ (at least 250 active AES S-boxes)
 - ► ECHO 512: $p \le 2^{-1650}$ (at least 275 active AES S-boxes)
 - proof sketch
 - at least 25 active S-boxes for 4 rounds of AES
 - ⇒ at least 25 active "ECHO S-boxes" for 4 rounds of ECHO
 - an "ECHO S-box" is 2 rounds of AES
 - ⇒ at least 5 active AES S-boxes
 - · therefore, at least 125 active AES S-boxes for 4 rounds of ECHO
 - even attackers who entirely control 4 rounds of ECHO have a success probability lower than 2^{-750}
- probability of differentials
 - for 4 rounds of ECHO: $p \leqslant 2^{-452}$
 - we can reuse AES proofs to get differentials bounds for ECHO

other attacks

- truncated differentials (e.g. Grindahl cryptanalysis)
 - do not endanger ECHO because of the strong diffusion
 - achieved through many MixColumns transformations
- related salt/counter attacks
 - prevented by strong lower bounds on the number of active S-boxes
 - even when salt/counters are under full control of the attacker
- structural cryptanalysis
 - very well studied for the AES (square, partial sum, bottleneck)
 - far from being a threat for ECHO with the current state-of-the-art
- algebraic cryptanalysis
 - much larger algebraic system than in the case of the AES

security claims

attack	MD single pipe	HAIFA single pipe	ECHO	
collision	✓	√	✓	
preimage	✓	1	✓	
2 nd preimage	X	1	✓	
multicollision	X	X	✓	

ECHO is (multi-)collision and (2nd-)preimage resistant

implementation

- flexible design gives the same implementation for all variants
- hardware parallelism
- take full advantage of Intel AES instructions set
 - implementation for Intel emulator available on web site
 - no dependency between AES instructions calls
- leverage existing AES implementations
 - benefit from AES countermeasures against side-channel attacks
 - benefit from speed improvements of AES implementations
- good performances on legacy CPUs
 - low cache overhead (four AES lookup tables)

comparisons

		AES rounds per 128 bits (256 / 512)	256 bits speed (c/B)			512 bits speed (c/B)		
			64 bits	32 bits	intel AES	64 bits	32 bits	intel AES
multicollision resistant	ECHO	21 / 40	28.5	32.5	≪ 6 *	53.5	61.0	≤ 12 *
	FUGUE	N/A	33.3	38.0	X	75.5	78.2	X
	Grøstl	N/A	22.4	22.9	X	30.1	37.5	X
single pipe	ECHO-SP	18 / 27	24.4	27.8	≤ 5 *	35.7	40.7	≤ 8 *
	LANE	21 / 28	25.7	40.5	5	145.3	152.2	?
	SHAvite-3	13 / 21	26.7	35.3	§8	38.2	55.0	€ 12

^{*} code for Intel emulator available from ECHO web page

- a simple and clean design
- strong security arguments
- full flexibility in a single primitive
- support of the Intel AES instructions set