Skript Mathe 2

23. April 2018

Beweis: Es ist |x| = 1 + t für t > 0.

Für n > k:

$$\begin{aligned} |x|^n &= (1+t)^n = \sum_{j=0}^n \underbrace{\binom{n}{j} 1^{n-j} t^j}_{\geq 0} \\ & \underset{j=k+1}{\geq} \binom{n}{k+1} t^{k+1} = \frac{n(n-1) \cdot \dots \cdot (n-k)}{(k+1)!} \\ &= n^{k+1} \cdot \frac{t^{k+1}}{(k+1)!} \pm \dots \\ & \Rightarrow \left| \frac{n^k}{x^n} \right| = \frac{n^k}{(1+t)^n} \leq \underbrace{\cancel{\varkappa}^k (k+1)!}_{n \nmid 1 + t \nmid k+1 + t \mid 1} \xrightarrow[n \to \infty]{} 0 \end{aligned}$$

d) Sei $x\in\mathbb{R}_+$. $\left(\frac{x^n}{n!}\right)$ ist Nullfolge, d.h. Fakultät wächst schneller als exponentiell: Sei $m\in\mathbb{N}$ und n>m+1>x

$$\Rightarrow \frac{x^n}{n!} = \frac{x^{n-m}}{n(n-1) \cdot \dots \cdot (m+1)} \cdot \left[\frac{x^m}{m!} \right] = c > 0$$

$$\leq c \cdot \frac{x^{n-m}}{(m+1)^{n-m}} = c \cdot \underbrace{\left(\frac{x}{m+1} \right)}_{\text{geom. Folge, } < 1} \xrightarrow{\text{1.13/6, } \atop 1.13/7} 0$$

0.1 Satz: Einschließungsregel

Seien $(a_n), (b_n), (c_n)$ reelle Folgen mit

1. $\exists k \in \mathbb{N} : a_n \le b_n \le c_n \quad \forall n \ge k$

2. $(a_n), (c_n)$ konvergent und $\lim_{n \to \infty} (a_n) = \lim_{n \to \infty} (c_n)$

Dann ist auch (b_n) konvergent und $\lim_{n\to\infty}(b_n)=\lim_{n\to\infty}(a_n)$

Beweis: Sei $a := \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$ und $\epsilon > 0$.

$$\underset{2.}{\Longrightarrow} N_a, N_c : \bullet |a_n - a| < \frac{\epsilon}{3} \quad \forall n \ge N_a$$
$$\bullet |c_n - a| < \frac{\epsilon}{3} \quad \forall n \ge N_c$$

us 1.:

$$\begin{aligned} |b_n - a_n| &= b_n - a_n \leq c_n - a_n = |c_n - a_n| \\ \forall n \geq k & & \downarrow \\ \Rightarrow |b_n - a| & \leq \sum_{\Delta - Ungleichung} |b_n - a_n| + |a_n - a| \leq |c_n - a_n| + |a_n - a| \\ \leq \underbrace{|c_n - a|}_{\leq \frac{\epsilon}{3}} + \underbrace{|a - a_n|}_{\leq \frac{\epsilon}{3}} + \underbrace{|a_n - a|}_{\leq \frac{\epsilon}{3}} < \epsilon \quad \forall \max\{k, N_a, N - c\} \quad \Box \end{aligned}$$

0.2 Beispiele

a) $\sqrt[n]{n} \xrightarrow[n \to \infty]{} 1$, denn:

Sei
$$\epsilon > 0$$
. Da $\frac{n}{(1+\epsilon)^n} \to 0$ (1.14/c),

gibt es $N \in \mathbb{N}$ mit $\frac{n}{(1+\epsilon)^n} < 1 \quad \forall n \ge N$.

$$\Rightarrow (1+\epsilon)^n > n \quad \forall n \ge N$$
$$\Rightarrow 1+\epsilon > \sqrt[n]{n}$$

Da einerseits $\sqrt[n]{n} \ge 1 > 1 - \epsilon \ \forall n \in \mathbb{N}$, ist

$$1 + \epsilon > \sqrt[n]{n} > 1 - \epsilon \Leftrightarrow \left| \sqrt[n]{n} - 1 \right| < \epsilon \quad \forall n \ge N$$

b) $\sqrt[n]{x} \to 1 \quad \forall x > 0$

Sei
$$x > 0 \Rightarrow \exists N \in \mathbb{N} : \boxed{\frac{1}{n} \le x \le n} \quad \forall n \ge N$$

$$\Rightarrow \frac{1}{\sqrt[n]{n}} \le \sqrt[n]{x} \le \sqrt[n]{n} \quad \forall n \ge N$$

$$\Rightarrow \frac{1}{\sqrt[n]{n}} \to 1 \text{ und } \sqrt[n]{n} \to 1 \Rightarrow \sqrt[n]{x} \to 1$$

0.3 Satz

Sei (a_n) eine Folge nicht negativeer reeller Zahlen mit $a_n \to a$. Dann:

1.
$$\lim_{n \to \infty} \sqrt[m]{a_n} = \sqrt[m]{a_n} \quad \forall m \in \mathbb{N}$$

2.
$$\lim_{n\to\infty} a_n^q = a^q \ \forall q\in\mathbb{Q} \ \mathrm{mit} \ q>0$$
 (ohne Beweis)

0.4 Definition: Landau Symbole, \mathcal{O} -Notation

Sei (a_n) eine reelle Folge mit $a_n > 0 \quad \forall n \in \mathbb{N}$. Dann ist

a)
$$\mathcal{O}(A_n) = \left\{ (b_n) \mid \left(\frac{b_n}{a_n}\right) \text{beschränkt} \right\}$$

b)
$$o(A_n) = \left\{ (b_n) \mid \left(\frac{b_n}{a_n}\right) \text{Nullfolge} \right\}$$

 $[a_n$ wächst schneller als $b_n]$

c)
$$a_n \sim b_n$$
, falls $\frac{a_n}{b_n} \to 1$

 \mathcal{O}, o heißen Landau-Symbole

0.5 Beispiele

- $\bullet \ (2n^2 + 3n + 1) \in O(n^2)$
- $(2n^2 + 3n + 1) \in o(n^3)$
- $(n_3) \in o(2^n)$
- $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ (Stirlingsche Formel)
- $\mathcal{O}(1)$ Menge aller beschränkten Folgen
- o(1) Menge aller Nullfolgen

0.6 Definition: Monotonie

Eine Folge reeller Zahlen (a_n) heißt

a) (streng) monoton steigend/wachsend, falls

$$a_{n+1} \ge (>) \ a_n \quad \forall n \in \mathbb{N}$$

Schreibweise: $(a_n) \nearrow (\text{monoton wachsend})$

b) (streng) monoton fallend, falls

$$a_{n+1} \le (<) \ a_n \quad \forall n \in \mathbb{N}$$

Schreibweise: $(a_n) \searrow (\text{monoton fallend})$

0.7 Beispiele

- (a_n) mit $a_n = \frac{1}{n}$ streng monoton fallend
- (a_n) mit $a_n = 1$ monoton steigend und fallend
- (a_n) mit $a_n = (-1)^n$ nicht monoton

0.8 Definition

Eine reelle Folge (a_n) heißt nach oben (unten) beschränkt, falls $\{a_n|n\in\mathbb{N}\}$ von oben (unten) beschränkt ist.

0.9 Satz: Monotone Konvergenz

Sei (a_n) reelle Folge:

- Falls $(a_n) \nearrow$ und nach oben beschränkt, so konvergiert (a_n) gegen $\sup\{a_n|n\in\mathbb{N}\}$
- Falls $(a_n) \searrow$ und nach unten beschränkt, so konvergiert (a_n) gegen $\inf\{a_n|n\in\mathbb{N}\}$