Spherical armonics

SphericalHarmonicY $[l, m, \theta, \phi]$ gives the spherical harmonic $Y_l^m(\theta, \phi)$

Mathematical function, suitable for both symbolic and numerical manipulation.

The spherical harmonics are orthonormal with respect to integration over the surface of the unit sphere.

For
$$l \ge 0$$
, $Y_l^m(\Theta, \phi) = \sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(\cos(\Theta)) e^{im\phi}$ where P_l^m is the associated Legendre function.

For
$$l \leq -1$$
, $Y_l^m(\Theta, \phi) = Y_{-(l+1)}^m(\Theta, \phi)$

Examples

SphericalHarmonicY[0, 0,
$$\theta$$
, ϕ]
SphericalHarmonicY[3, 1, θ , ϕ]
SphericalHarmonicY[1, 1, θ , ϕ]
SphericalHarmonicY[$\{0, 1, 2\}$, $\{0, \theta\}$, $\{0, 0, \theta\}$]
SphericalHarmonicY[$\{0, 1, 2\}$, $\{0, \theta\}$, $\{0, \theta\}$]
SphericalHarmonicY[$\{0, 1, 2\}$, $\{0, \theta\}$, $\{0, \theta\}$]
Out[18]= $\frac{1}{2\sqrt{\pi}}$
Out[19]= $-\frac{1}{8}e^{i\phi}\sqrt{\frac{21}{\pi}}\left(-1+5\cos[\theta]^2\right)\sin[\theta]$
Out[20]= $-\frac{1}{2}e^{i\phi}\sqrt{\frac{3}{2\pi}}\sin[\theta]$
Out[21]= $\left\{\frac{1}{2\sqrt{\pi}}, \frac{1}{2}\sqrt{\frac{3}{\pi}}\cos[\theta], \frac{1}{4}\sqrt{\frac{5}{\pi}}\left(-1+3\cos[\theta]^2\right)\right\}$
Out[22]= $\{0.0210562-0.215173i$

Traditional form

In[23]:= SphericalHarmonicY[l, m, heta, ϕ] // TraditionalForm Out[23]/TraditionalForm= $Y_l^m(heta, \phi)$

Eigenfunctions

SphericalHarmonicY[I, m, θ , ϕ] is an eigenfunction of the spherical part of the Laplace operator

In[24]:= Simplify
$$\left(\left(\frac{1}{\text{Sin}\left[\theta\right]} \, D\left[\text{Sin}\left[\theta\right] \, D\left[\#,\,\theta\right],\,\theta\right] + \frac{1}{\text{Sin}\left[\theta\right]^2} \, D\left[\#,\,\phi,\,\phi\right] \right) \middle/ \, \# \right) \, \& @ \, \text{Spherical Harmonic Y} \left[3,\,1,\,\theta,\,\phi\right] \right]$$

$$Out[24] = -12$$