	have the math knowledge required to complete this proje ems. You must get at least 4 out of 5 questions correct to	
Which of the following gives the volume obtained	by rotating the region bounded by $y = x^2$ and $y = 4$ about	ut the y-axis?
\int_0^2 \pi * x^2 dx	\int_0^4 \pi * y dy	•
\int_0^2 \pi * x^4 dx	\int_0^4 \pi * y^2 dy	
Correct!		
$E_1 = 3$ and define $E_n = 3^E_{n-1}$. What is the	e unit digit on E_1001?	
1	3	
5	7	
9		
Correct!		
walk \pi/5 radians around a circular lake with r veen A and B. What is the measure of angle AC	adius 1 from point A to point B. Let C be any point on the CB?	he circle not along the path walked
	\pi/5	
Depends on the position of C		

that no two can attack each other and their placement is sy R_n?	ymmetric about	the diagonal from lower left to upper right. Which	is a correct formula for
R_n = n!/2		R_n = n(n-1)/2	
R_n = R_{n-1} + (n-1)*R_{n-2}		R_n = n*R_{n-1} + (n-1)*R_{n-2}	
○ Correct!			
Consider the vector space V of all polynomials over the co Which of the following are true:	omplex numbers	with degree at most n. Let T:V \to V be a surjective	e linear transformation
T has a zero eigenvalue		T has a nonzero eigenvalue	✓
Det T = 0		Det T != 0	✓
• Correct!			
Consider the subset of the real line A = (-inf, 0]. Which of	the following are	e open sets (there may be more than 1 correct answ	wer)?
A \cap [0,1]		A \cap (-inf,-1)	✓
A \cup {½}		A \cup (-1,1)	✓
A \cup (0.1,1)			
Correct!			

Recall that a rook in chess attacks along rows and columns. Define R_n to be the number of ways of arranging n rooks on an $n \times n$ chess board so