KOMPOSIT DEGRADABEL POLIETILENA TEREFTALAT DENGAN SELULOSA MENGGUNAKAN REAGEN FENTON (H₂O₂/Fe²⁺)

I M. Trimastiya*, I M. S. Negara, O. Ratnayani, I N. Simpen

Program Studi Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Udayana Jalan Kampus Unud-Jimbaran, Jimbaran-Bali, Indonesia *e-mail: gunt09116@gmail.com

ABSTRAK

PET termasuk jenis plastik yang non-degradabel sehingga dapat menimbulkan permasalahan lingkungan. Penelitian ini bertujuan untuk membentuk komposit dengan *cross-linking* PET dengan selulosa menggunakan inisiator reagen fenton, mengetahui pengaruh penambahan H_2O_2 pada reagen fenton yang digunakan sebagai inisiator dalam campuran komposit PET-selulosa terhadap daya serapan air serta laju degradasi pada media tanah basah dan tanah kering. Tahap-tahap yang dilakukan dalam membuat komposit PET-selulosa adalah pemurnian PET menggunakan teknik *swelling*, dilanjutkan dengan pembentukan komposit PET-selulosa dengan teknik *cross-linking* melalui reaksi radikal bebas menggunakan fenton (H_2O_2/Fe^{2+}) sebagai inisiator dengan variasi jumlah H_2O_2 (30 gram, 60 gram, 90 gram). Komposit yang dihasilkan diuji daya serap air dan sifat degradasinya pada media tanah basah dan tanah kering dengan kontrol PET tanpa perlakuan. Karakterisasi dilakukan dengan analisa gugus fungsi menggunakan FTIR serta morfologinya dengan SEM. Hasil penelitian menunjukan pembuatan komposit dengan teknik *cross-linking* antara polietilen tereftalat dengan selulosa menggunakan reagen fenton sudah berhasil dilakukan dimana laju degradasi komposit PET-selulosa melambat seiring meningkatnya jumlah hidrogen peroksida yang digunakan. Kemudian komposit yang dikubur pada kondisi tanah basah memiliki laju degradasi yang lebih tinggi daripada tanah kering. Pada komposit PET-selulosa dengan meningkatnya jumlah H_2O_2 yang digunakan maka daya serap air komposit semakin melemah.

Kata kunci: degradable, fenton (H₂O₂/Fe²⁺), komposit, PET (Polietilen Tereftalat), selulosa, komposit.

ABSTRACT

PET is a non-degradable type of plastic that can cause environmental problems. This study aimed to form composites by cross-linking PET with cellulose using Fenton reagent initiator, finding out the effect of the addition of H_2O_2 on the fenton reagent used as an initiator in the mixture of PET-cellulose composites to water absorption and the rate of degradation in wet and dry soil media. The steps carried out in making PET-cellulose composites was refining PET using swelling techniques, followed by the formation of PET-cellulose composites by cross-linking through free radical reaction using fenton (H_2O_2/Fe^{2+}) as the initiator with the variation of H_2O_2 amount (30 grams, 60 grams, 90 grams). The resulting composites were tested for water absorption and degradation properties in wet soil media and dry soil with untreated PET control. Characterization was carried out by functional group analysis using FTIR and its morphology with SEM. The results of the study showed that the composite making using the technique of cross-linking between polyethylene terephthalate and cellulose using fenton reagents was successfully carried out where the degradation rate of PET-cellulose composites slowed as the amount of hydrogen peroxide was used. In PET-cellulose composites, the more amount of H_2O_2 used, the weaker the absorption of the composite to water was.

Keywords; degradable, fenton (H₂O₂/Fe²⁺), PET (Polyethylene Tephthalate), cellulose, composite.

PENDAHULUAN

Plastik banyak digunakan dalam berbagai industri pembuatan berbagai material seperti meja, kursi, pot, pintu, lemari, botol, kemasan dan lain- lain. Plastik unggul dalam hal bentuknya yang fleksibel, berbobot ringan, tidak mudah pecah, bersifat transparan/tembus pandang, mudah diberi label dan dibuat dalam aneka warna, dapat diproduksi secara massal,

harga relatif murah dan terdapat berbagai jenis pilihan bahan dasar plastik (Siddique, 2008).

Sampah plastik bekas yang dihasilkan oleh masyarakat menimbulkan masalah terhadap lingkungan karena ketidakmampuan mikroorganisme yang terdapat di lingkungan untuk merombak dan menguraikan plastik.

PET (Polietilen Tereftalat) merupakan salah satu jenis plastik yang sering digunakan, khususnya untuk kemasan minuman. Meningkatnya jumlah penggunaan PET menyebabkan jumlah sampah PET dengan cepat meningkat pula. Meskipun PET bukan termasuk bahan yang tidak berbahaya, namun PET termasuk jenis plastik yang non-degradable sehingga dapat menimbulkan permasalahan lingkungan. (Siddique, 2008).

Plastik degradabel merupakan alternatif yang perlu dikembangkan untuk memecahkan masalah penanganan sampah plastik. Produksi bahan plastik degradabel mengalami peningkatan seiring dengan meningkatnya kesadaran akan pentingnya kelestarian lingkungan (Pranamuda, 2011).

Dewasa ini, pengunaan material komposit mulai banyak dikembangkan dalam dunia industri. Pada dasarnya material komposit merupakan gabungan dari dua atau lebih material yang berbeda menjadi suatu bentuk unit mikroskopik, yang terbuat dari bermacammacam kombinasi sifat atau gabungan antara serat dan matrik (Jones, 1975).

Telah dilakukan berbagai penelitian yang bertujuan untuk menghasilkan suatu material komposit yang bersifat degradabel seperti yang dilakukan oleh (Simpen, 2013) yang membuat suatu material komposit dengan menggabungkan material plastik polipropilena dengan selulosa yang dicampurkan untuk menghasilkan suatu komposit degradabel.

Selain itu, telah dilakukan pula penelitian oleh (Nurwendi, 2015) yaitu dengan mencampurkan selulosa dari serbuk kayu kamper dengan polietilen menggunakan reagen Fenton sebagai inisiator. Hasil penelitian menunjukan seiring dengan meningkatnya konsentrasi hydrogen peroksida yang digunakan laju degradasi melambat.

Reagen Fenton merupakan inisiator redoks yang terdiri dari reaksi hidrogen peroksida dengan ion besi (Fe²⁺). Besi (II) dioksidasi oleh hidrogen peroksida menjadi besi membentuk radikal (III), hidroksida dalam hidroksil dan ion tersebut. Dimana radikal yang terbentuk dalam proses reaksi Fenton berperan sebagai inisiator. Dengan adanya inisiator maka inisiasi, yang merupakan tahap awal polimerisasi, akan berlangsung (Stevens, 2007).

Berdasarkan uraian-uraian diatas maka peneliti tertarik untuk melakukan penelitian tentang pembuatan komposit degradabel dari jenis plastik polietilena tereftalat (PET) dengan selulosa menggunakan reagen fenton (H_2O_2/Fe^{2+}) sebagai inisiator dengan metode

cross-linking. Hasil komposit yang diperoleh diuji kemampuannya terurai di alam dengan uji degradable serta, dianalisa gugus fungsinya dengan Fourier Transform Infrared Spectroscopy (FTIR), analisa sifat morfologi dengan uji Spectra Electro Magnetic (SEM), serta dianalisa ketahanan terhadap airnya dengan uji daya serap air.

MATERI DAN METODE

Bahan

Bahan-bahan yang digunakan dalam penelitian ini antara lain : botol plastik berlogo PET, deterjen, selulosa, fenol (C_6H_6O), metanol (CH_3OH), H_2O_2 50%, FeSO₄.7H₂O, aquades , gas nitrogen.

Peralatan

Alat-alat yang digunakan dalam penelitian ini diantaranya: gelas ukur, pipet ukur, pipet volume, gelas beaker, erlenmeyer bertutup, batang pengaduk, neraca analitik, ball filler, hotplate, blender, thermometer, glasswool, aluminium foil, gunting, magnetic stirrer, stopwatch, kapi, shop press, alat pencetak komposit (hot press), Fourier Transform Infrared (FT-IR) dan Scanning Electron Microscope (SEM).

Cara Kerja

Preparasi sampel limbah PET

Limbah PET yang diperoleh dari botol plastik berlogo PET pertama-tama dicuci terlebih dahulu dengan detergen. Kemudian botol dikeringkan dan dipotong dengan ukuran 2x2 mm hingga 4x4 mm. Setelah kering, potongan botol di cuci kembali hingga bersih, kemudian dikeringkan dalam oven selama 3 jam pada suhu 60 °C.

Sampel PET dimasukan kedalam gelas beaker sebanyak 10 gram dan dilarutkan dengan 100 mL fenol pada suhu 90 °C sampai larut. Setelah larut, PET diendapkan dengan menambahkan metanol, kemudian difiltrasi dan dikeringkan selama 48 jam pada suhu 40 °C dan selama 3 jam lagi pada suhu 160°C.

Pembuatan komposit degradable

Variasi dilakukan dengan menvariasikan dan H_2O_2 pada fenton, sementara itu parameter yang dibuat tetap adalah komposisi

polietilena tereftalat (PET), selulosa, FeSO₄.7H₂O dan waktu reaksi dibuat konstan.

Tabel 1. Komposisi Perbandingan Selulosa : PET : H₂O₂ 50% : FeSO₄.7H₂O

PET (gram)	Selulosa (gram)	H ₂ O ₂ 50% (gram)	FeSO ₄ .7 H ₂ O (gram)
100,00	30,00	30,00	0.10
100,00	30,00	60,00	0.10
100,00	30,00	90,00	0.10

Mula-mula selulosa dari hasil ektraksi dan polietilena tereftalat (PET) dimasukan kedalam erlenmeyer kemudian ditambahkan reagen fenton sesuai perbandingan pada Tabel 1. Ke dalam erlenmeyer dialiri gas nitrogen selama 1 jam kemudian ditutup, kemudian dikocok homogen selama 20 menit dan didiamkan selama 24 jam. Setelah 24 jam diaduk kembali dengan blender selama 10 menit.

Pencetakan komposit dilakukan dengan cetakan berukuran 15 x 18 cm dengan alat hot press. Mula-mula cetakan disusun kemudian dasar dan tutup cetakan dilapisi dengan aluminium foil kemudian dimasukan 100 gram PET di lapisan paling bawah, campuran pada Tabel 1. dan di lapisan paling atas ditambahkan 100 gram PET cetakan ditutup. Sela-sela atau rongga-rongga yang terlihat pada cetakan ditutup menggunakan glasswool kemudian cetakan dipasang pada alat hot press. Suhu disetting 260°C serta tekanan dibuat 100 MPa. Setelah suhu tercapai proses pemanasan dibiarkan selama 3 jam. Setelah proses pemanasan selesai alat dimatikan dan cetakan didinginkan selama 24 jam. Setelah selesai komposit dikeluarkan dari cetakan menggunakan shop press.

Hasil komposit degradabel yang diperoleh dianalisa ketahanan terhadap airnya dengan uji daya serap air, diuji kemampuannya terurai di alam dengan uji degradable, dikarakterisasi dengan analisa gugus fungsi dengan uji FT-IR dan analisa sifat morfologi dengan uji SEM.

Pengujian kemampuan menyerap air

Komposit diuji kemampuan serapan airnya dengan cara mengukur persentase dari berat komposit setelah dilakukan perendaman selama 24 jam. (ASTM D 1037 pada Abdi,M. 2010)

Serapan air dihitung dengan : $Water\ absorption\ (\%) = [(W_w-W_i)/W_i] \times 100$

Dimana : W_w = berat setelah direndam; W_i = berat sebelum direndam

Pengujian sifat degradasi

Analisa degradasi komposit dilakukan dalam dua kondisi lingkungan, lingkungan tanah biasa dan lingkungan tanah berair. Mula-mula komposit selulosa-PET dipotong dengan ukuran panjang lebar sebesar 1,5 x 1,5 cm dan tebal 0,7 cm kemudian ditimbang, kemudian dilakukan penguburan dalam tanah biasa dan dalam tanah berair sedalam 30 cm selama setiap 10 hari dalam 1 bulan. Setiap 10 hari selama 1 bulan, komposit diambil, dicuci sampai bersih, dikeringkan, lalu ditimbangkan. (Pimpan, et al. 2001).

HASIL DAN PEMBAHASAN

Daya Serap Air Komposit

Hasil pengujian daya serap air dari komposit dengan variasi H_2O_2 sesuai Tabel 1 dapat dilihat pada Tabel 2.

Tabel 2. Daya Serap Air Komposit

Waktu Pencelupan	Jenis Sampel	Persentase Serapan Air (%)
24 Jam	PET	0,00
24 Jam	PET-Selulosa H ₂ O ₂ 30 gram	2,93
24 Jam	PET-Selulosa H ₂ O ₂ 60 gram	2,34
24 Jam	PET-Selulosa H ₂ O ₂ 90 gram	1,97

Hasil tersebut menunjukan bahwa semakin iumlah banyak H_2O_2 maka kemampuan komposit menyerap air akan semakin rendah. Pada komposit dengan penambahan H₂O₂ paling banyak diperoleh presentase paling kecil. Hal ini kemungkinan karena kerapatan dari material meningkat akibat banyaknya ikatan yang terjadi antara polimer selulosa dengan PET pada komposit seiring dengan penambahan jumlah H₂O₂ yang digunakan sehingga menyebabkan air jadi lebih susah masuk kedalam material kemudian menyebabkan daya serap air menjadi rendah.

Analisa Komposit dengan SEM (Scanning Electro Microscopy)

Hasil analisa SEM pada komposit PET-Selulosa dapat dilihat pada Gambar 1.

Gambar 1. Hasil Uji SEM komposit PET-Selulosa perbesaran 1000x

Gambar 1 menunjukkan permukaan dari komposit PET-Selulosa yang kasar karena kehadiran selulosa. Sedangkan Gambar 2 terlihat permukaan dari PET tanpa selulosa yang rata. Dari kedua gambar tersebut dapat dilihat bahwa *cross-linking* antara selulosa dengan PET telah terjadi. Hal ini ditegaskan

dengan munculnya gundukan yang menempel pada permukaan PET.

Gambar 2. Hasil Uji SEM PET perbesaran 1000x

Analisa Komposit dengan FTIR (Fourier Transform Infrared Spectroscopy)

Analisa menggunakan FTIR dilakukan untuk menentukan perubahan gugus fungsi yang dialami oleh polietilen tereftalat (PET) sebelum dan setelah membentuk komposit dengan selulosa, yang ditunjukkan pada Gambar 3.

Gambar 3. Spektra IR Komposit

Tabel 3. Analisa IR Komposit

Gugus - fungsi	Bilangan gelombang (cm ⁻¹)			
	PET	PET-Selulosa H ₂ O ₂ 90 gr		
О-Н	3429.43	3429.43		
$C-H sp^2$	2966.52	2966.52		
$C-H sp^3$	2900.94	2900.94		
C=O	1735.93	1737.86		
C=C	1575.84	1577.77		
C-C	1138.00	1138.00		
C-O	1022.27	1022.27		

Berdasarkan Tabel diatas, spektra IR PET sebelum pencangkokan menunjukkan serapan dengan puncak yang kuat. Pita serapan pada film ini terlihat pada daerah 3429.43 cm⁻¹ yang merupakan vibrasi gugus O-H dan pada daerah 2966.52 cm⁻¹ yang merupakan vibrasi gugus C-H sp², sedangkan pada bilangan gelombang 2900.94 cm⁻¹ merupakan vibrasi gugus C-H sp³, kemudian pada bilangan gelombang 1735.93 cm⁻¹ merupakan vibrasi gugus C=O, untuk bilangan gelombang 1575.84 cm⁻¹ merupakan vibrasi gugus C=C. Selaniutnya pada bilangan gelombang 1138.00 cm⁻¹ merupakan gugus C-C kemudian pada bilangan gelombang 1022.27 vibrasi gugus C-O. Pitapita serapan ini merupakan serapan khas untuk pada bilangan gelombang disebutkan di atas. Pada PET muncul bilangan gelombang O-H kemungkinan karena pengotor vang ikut terbawa saat proses pencetakkan. Jika spektrum pada PET kontrol dibandingkan dengan hasil komposit hasil cross-linking, maka dapat dilihat tidak terlalu banyak perbedaan pada spektrum serapannya, hal ini karena kesamaan gugus yang terdapat pada selulosa dan PET.

Spektrum PET dan PET-Selulosa dengan berbagai variasi H₂O₂ memiliki beberapa serapan yang sama. Hal ini menunjukkan bahwa modifikasi film PET akan tetap memberikan spektrum inframerah yang sama dan proses *cross-linking* sehingga tidak akan mempengaruhi puncak serapan pada film PET murni. Hal ini menunjukkan proses reaksi radikal bebas pada pembentukan komposit tidak akan mengubah struktur asli dari PET.

Laju Degradasi Pada Uji Degradasi

Penguburan spesimen komposit degradabel pada dua jenis tanah (tanah kering dan tanah basah) bertujuan untuk melihat tingkat degradasinya oleh alam karena salah satu tempat akhir kemasan plastik adalah kembali ke tanah. Data penurunan berat hasil pengomposan spesimen uji dapat dilihat pada Tabel 4.

Tabel 4 Data Laju Degradasi (%) Spesimen Komposit Degradable Penguburan Dalam Tanah

Jenis Sampel	Tanah Kering (Hari)		Tanah Basah (Hari)			
	10	20	30	10	20	30
PET PET-	0,00	0,00	0,00	0,00	0,00	0,00
Selulosa H ₂ O ₂ 30g	0,17	0,17	0,17	0,52	0,52	0,52
PET- Selulosa H ₂ O ₂ 60g	0,14	0,15	0,15	0,47	0,49	0,49
PET- Selulosa H ₂ O ₂ 90g	0,12	0,11	0,11	0,43	0,44	0,42

Penguburan spesiman dilakukan pada 2 jenis kondisi tanah selama 30 hari dengan pengamatan setiap 10 hari. Berdasarkan Tabel 4. di atas memperlihatkan laju degradasi yang tidak begitu besar. Suatu penelitian yang telah dilakukan oleh Northrop DM, Rowe WF (1987) dalam jurnal Juergen Puls (2010) yang mempelajari efek lingkungan tanah terhadap degradasi selulosa menyatakan bahwa selulosa akan menunjukkan hasil yang signifikan selama 2 bulan dalam tanah yang basah (lembab) dan akan hancur seluruhnya dalam waktu 4 – 9 bulan. Namun demikian, besarnya penurunan massa spesimen matriks polimer komposit sejalan dengan lamanya waktu penguburan. Harga penurunan massa komposit degradabel vang terbesar adalah pada penguburan dalam tanah basah kemudian tanah kering. Hal ini mungkin disebabkan karena jumlah nutrisi dalam tanah basah lebih banyak dari tanah kering. Oleh karena itu, terjadi kinerja yang sinergis antara kegiatan beberapa mikroba (Basuki Wirjosentono, 1998).

KESIMPULAN

Berdasarkan penelitian yang telah dilakukan, didapatkan kesimpulan bahwa : Laju degradasi komposit PET-selulosa melambat seiring meningkatnya jumlah hidrogen peroksida yang digunakan. Komposit

yang dikubur pada kondisi tanah basah memiliki laju degradasi yang lebih tinggi daripada tanah kering. Pada komposit PET-selulosa meningkatnya jumlah H_2O_2 yang digunakan maka daya serap air komposit semakin melemah.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada semua pihak yang telah membantu dalam menyelesaikan penelitian ini.

DAFTAR PUSTAKA

- Abdi, Muhamad. 2010. Pengaruh Variasi Penambahan *Additive CaCl*₂ Terhadap Karakteristik Fisik dan Kekuatan Lentur Komposit Semen Serbuk Aren (*Arenga Pinnata*) [Skripsi]. Surakarta (ID): Universitas Sebelas Maret.
- Wirjosentono B., Lela, I. D.1998. *Struktur dan Sifat Mekanis Polimer*. Medan: USU Press.
- Jones, R. M. 1975. *Mechanics of Composite Materials*. *Washington* DC: Scripta Book Company.
- Juergen P., Steven A. W. dan Dirk H. 2010. Degradation of Cellulose Acetate-Based Materials: A Review. *J Polym Environ* 11(19):152–165.
- Nurwendi, H., Simpen I N. dan Sutha Negara I M. 2015. Sintesis Komposit Selulosa

- Serbuk Gergaji Kayu Kamper-Limbah Plastik LDPE (Low Density Poliethylene) Dengan Reagen Fenton Sebagai Agen Pengkopling. Jurnal Kimia 10 (1): 89-95.
- Pimpan, V., Ratanarat, K., Pongchawanakul, M. 2001. Preliminary Study on Preparation of Biodegradable Plastic from Modified Cassava Starch. *Journal Science Res. Chulalongkorn University*, 26 (2): 117-126.
- Pranamuda, H. 2011. Pengembangan Bahan Plastik Biodegradabel Berbahan Baku Pati Tropis. Jakarta: Badan Pengkajian dan Penerapan Teknologi.
- Siddique, Raffat, 2008. Waste Material and By-Product in Concrete: Recycled/Waste Plastic. Berlin: Springer Verlog Berlin Heidberg. 93-120.
- Silverstein, R.M. 1984. Penyidikan Spektrometrik Senyawa Organik. Terjemahan A.J. Hatomo dan Any Viktor Purba. Edisi Keempat. Jakarta: Pernerbit Erlangga.
- Simpen, I N. dan Sutha Negara, I M. 2013. Sintesis Komposit Selulosa-Polipropilena Dengan Reagen Fenton Sebagai Agent Pengkopling, *Jurnal Kimia* 7 (1):1907-9850.
- Stevens, M. 2007. *Kimia Polimer*, Diterjemahan oleh Iis Sopya,. Jakarta: Pradnya Paramita.