

Page 1 of 45

TEST REPORT

Product : Scalextric ARC Powerbase

Trade mark : Scalextric®

Model/Type reference : SSA-00185

Serial Number : N/A

Report Number : EED32H001228-1 FCC ID : 2ACUF-SSA00185

Date of Issue : Sep. 23, 2015

Test Standards : 47 CFR Part 15 Subpart C (2014)

Test result : PASS

Prepared for:

Hornby Hobbies Ltd.
Enterprise Road, Westwood Industrial Estate, CT9 4JX,
United Kingdom

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Report Seal

Ware Xm

Reviewed by:

knon-Li

Sheek, Luo

Date:

Sep. 23, 2015

Sheek Luo

Lab supervisor

Check No.: 1022503909

Page 2 of 45

2 Version

Version No.	Date	Description)
00	Sep. 23, 2015	Original		
		(3)		
			(67)	(6,1)

3 Test Summary

Test Item	Test Requirement	Test method	Result PASS	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013		
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS PASS PASS	
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013		
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013		
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013		
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

The tested sample(s) and the sample information are provided by the client. Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Page 4 of 45

4 Content

1 COVER PAGE				•••••	1
2 VERSION			•••••		2
3 TEST SUMMARY	•••••		••••		3
4 CONTENT					4
5 TEST REQUIREMENT		<u>/</u> /	•••••	•••••	5
5.1 TEST SETUP 5.1.1 For Conducted test se 5.1.2 For Radiated Emission 5.1.3 For Conducted Emiss 5.2 TEST ENVIRONMENT	etup ns test setup ions test setup				5 6
6 GENERAL INFORMATION		•••••	•••••	•••••	7
6.1 CLIENT INFORMATION	EUT JBJECTIVE TO THIS STAN UNITS DS JDARD CONDITIONS ESTED BY THE CUSTOMI NTY(95% CONFIDENCE L	NDARDEVELS, K=2)			78899
7 EQUIPMENT LIST					
Appendix A) 6dB Occupied Appendix B) Conducted Per Appendix C) Band-edge for Appendix D) RF Conducted Appendix E) Power Spectra Appendix F)Antenna Requir Appendix G) AC Power Line Appendix H) Restricted ban	Bandwidth ak Output Power RF Conducted Emissi Spurious Emissions Il Density rement	ions			
PHOTOGRAPHS OF TEST SET	UP	•••••	•••••		31
PHOTOGRAPHS OF EUT CONS	STRUCTIONAL DETA	.ILS		•••••	33

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

Page 5 of 45

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Tower

Antenna Tower

Antenna Tower

Ground Reference Plane

Test Receiver

Test Receiver

Test Receiver

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup **Conducted Emissions setup**

5.2 Test Environment

Operating Environment:					
Temperature:	25.0 °C				
Humidity:	53 % RH				
Atmospheric Pressure:	995mbar				

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest Mode	TX/KX	Low(L)	Middle(M)	High(H)	
OFOK	04000411 0400 0411	Channel 1	Channel 30	Channel40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).				

Report No. : EED32H001228-1 Page 7 of 45

6 General Information

6.1 Client Information

Applicant:	Hornby Hobbies Ltd.
Address of Applicant:	Enterprise Road Westwood Industrial Estate CT9 4JX United Kingdom
Manufacturer:	The Refined Industry Co., Ltd.
Address of Manufacturer:	7/F., Sun King Factory Building, 1-7, shing chuen Road, Shatin, N.T. Hong Kong.

6.2 General Description of EUT

Product Name:	Scalextric ARC Powerbase			
Model No.(EUT):	SSA-00185		(41)	
Trade Mark:	Scalextric®		(0)	
EUT Supports Radios application:	Bluetooth V4.0 BLE			
Power Supply:	Model: P9603W Input: 120V AC 60Hz 0.5A Output: 15V DC 1.2A	(cri)		(4)
Sample Received Date:	Sep. 01, 2015			
Sample tested Date:	Sep. 01, 2015 to Sep. 23, 2015			

6.3 Product Specification subjective to this standard

Carrier Frequency:	2402MHz-2480MHz		
Carrier Frequency.	2402IVII 12-2400IVII 12		
Modulation Type:	GFSK		
Number of Channel:	40	-11	~ 0
Test Software of EUT:	NORDIC(manufacturer declare)		
Antenna Gain:	0dBi		6
Test Voltage:	AC 120V/60Hz		

Operation Frequency each of channel

Operation	requeries cae	ii oi onamio	1	and Eliteration			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Report No.: EED32H001228-1 Page 8 of 45

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

Report No.: EED32H001228-1 Page 9 of 45

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE novuer conducted	0.31dB (30MHz-1GHz)
	RF power, conducted	0.57dB(1GHz-18GHz)
2	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
1	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32H001228-1 Page 10 of 45

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(4)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

		Conducted dis	turbance Test		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016
Temperature/ Humidity Indicator	Belida	TT-512	101	01-14-2015	01-13-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017

Report No.: EED32H001228-1 Page 11 of 45

3M Semi/full-anechoic Chamber												
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)							
3M Chamber	TDK	SAC-3		06-02-2013	06-01-2016							
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-31-2015	07-29-2016							
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016							
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018							
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017							
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016							
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016							
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016							
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016							
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016							
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016							
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016							
Temperature/Humi dity Indicator	TAYLOR	1451	5190	07-09-2015	07-08-2016							
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016							
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016							
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016							
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016							
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016							
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016							
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002		01-13-2015	01-12-2016							
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016							
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016							
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016							
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016							
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001	(4)	01-13-2015	01-12-2016							

Report No.: EED32H001228-1 Page 12 of 45

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

Page 13 of 45 Report No.: EED32H001228-1

Appendix A) 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6621	1.0561	PASS
BLE	МСН	0.6788	1.0452	PASS
BLE	HCH	0.6777	1.1064	PASS

Remark: Peak detector.

Test Graphs

Page 15 of 45 Report No.: EED32H001228-1

Appendix B) Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-3.395	PASS
BLE	MCH	-2.731	PASS
BLE	HCH	-2.223	PASS

Test Graphs

Page 16 of 45

Page 17 of 45 Report No.: EED32H001228-1

Appendix C) Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-3.272	-55.702	-23.27	PASS
BLE	HCH	-2.131	-40.580	-22.13	PASS

Test Graphs

Report No. : EED32H001228-1 Page 18 of 45

Appendix D) RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.480	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-2.807	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-2.314	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Page 20 of 45

Report No.: EED32H001228-1 Page 21 of 45

Appendix E) Power Spectral Density

Cit)

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-16.477	PASS
BLE	MCH	-16.132	PASS
BLE	НСН	-16.279	PASS

Test Graphs

Report No.: EED32H001228-1 Page 23 of 45

Appendix F)Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: EED32H001228-1 Page 24 of 45

Appen

exceeded.

endix G) AC	Power Line Conducted Emission	
Test Procedure:	Test frequency range :150KHz-30MHz	6

- 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:	Eroguanov rango (MHz)	Limit (d	dΒμV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com

NOTE: The lower limit is applicable at the transition frequency

Page 25 of 45

Site site #1

Limit: FCC Class B CE(QP)

EUT: ARC AIR ACCESSORY PACK

M/N: C8384 Mode: RUNNING

Note:

No.	Freq.		ding_Le dBu∀)	vel	Correct Factor	N	Measurement (dBu∨)		Limit (dBu∨)			Margin (dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1980	41.48	36.47	19.24	9.80	51.28	46.27	29.04	63.69	53.69	-17.42	-24.65	Р	
2	0.5220	39.53	37.14	25.60	9.90	49.43	47.04	35.50	56.00	46.00	-8.96	-10.50	Р	
3	1.4900	31.31	24.68	10.50	10.00	41.31	34.68	20.50	56.00	46.00	-21.32	-25.50	Р	
4	5.6420	41.38	35.21	22.84	10.00	51.38	45.21	32.84	60.00	50.00	-14.79	-17.16	Р	
5	18.2099	40.84	34.51	25.76	10.36	51.20	44.87	36.12	60.00	50.00	-15.13	-13.88	Р	

Power:

AC 120 V/60Hz

Humidity:

Page 26 of 45

Neutral line:

AC 120 V/60Hz

Limit: FCC Class B CE(QP)

EUT: ARC AIR ACCESSORY PACK

M/N: C8384 Mode: RUNNING

Note:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	М	Measurement (dBuV)		Limit (dBuV)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1980	39.75	34.40	13.53	9.80	49.55	44.20	23.33	63.69	53.69	-19.49	-30.36	Р	
2	0.5180	34.54	31.13	19.68	9.90	44.44	41.03	29.58	56.00	46.00	-14.97	-16.42	Р	
3	0.9780	28.14	19.47	7.40	10.00	38.14	29.47	17.40	56.00	46.00	-26.53	-28.60	Р	
4	3.1500	31.52	19.25	7.04	10.00	41.52	29.25	17.04	56.00	46.00	-26.75	-28.96	Ρ	
5	6.2260	40.52	31.58	17.70	10.00	50.52	41.58	27.70	60.00	50.00	-18.42	-22.30	Р	
6	18.6780	38.41	30.94	21.41	10.39	48.80	41.33	31.80	60.00	50.00	-18.67	-18.20	Р	

Power:

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Humidity:

55 %

Report No.: EED32H001228-1 Page 27 of 45

Appendix H) Restricted bands around fundamental frequency (Radiated)/Radiated Spurious Emissions

Receiver	Setup:
----------	--------

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. Repeat above procedures until all frequencies measured was complete.

-	•		_	_
1	3.	_	34	٠.
L	Ш	т	ш	10

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
1	0.490MHz-1.705MHz	24000/F(kHz)	-	(4-)	30
١	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 28 of 45

Report No.: EED32H001228-1

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
49.400000 55.220000 251.160000 256.980000 551.860000 870.020000	22.30 21.00 28.60 28.40 27.40 33.70	16.5 15.8 14.8 14.9 21.8 26.3	40.0 40.0 46.0 46.0 46.0	17.7 19.0 17.4 17.6 18.6 12.3		100.0 200.0 200.0 200.0 200.0 200.0	106.00 359.00 141.00 141.00 98.00 203.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Page 29 of 45

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
51.340000 55.220000 107.600000 245.340000 551.860000 831.220000	22.80 21.80 20.50 25.70 27.90 32.50	16.3 15.8 14.1 14.7 21.8 25.8	40.0 40.0 43.5 46.0 46.0	17.2 18.2 23.0 20.3 18.1 13.5		200.0 200.0 200.0 100.0 100.0	299.00 322.00 89.00 221.00 10.00 232.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Report No.: EED32H001228-1 Page 30 of 45

Transmitter Emission above 1GHz

		Test	Frequency: 24	02MHz		
Frequency (MHz)	Measurement (dBµV/m)	Limit (dBµV/m)	Margin(dB)	Туре	Antenna (H/V)	Result (P/F)
2390	45.2	74	28.8	PK	Н	Pass
4804	59.0	74	25.6	PK	Н	Pass
4804	40.7	54	13.3	AV	Н	Pass
7206	51.0	74	23.0	PK	Н	Pass
2390	44.7	74	29.3	PK	V	Pass
4804	54.1	74	19.9	PK	V	Pass
4804	42.7	54	11.3	AV	V	Pass
7206	52.5	74	21.5	PK	V	Pass

		Test	Frequency: 244	0MHz		
Frequency (MHz)	Measurement (dBµV/m)	Limit (dBµV/m)	Margin(dB)	Type	Antenna (H/V)	Result (P/F)
4880	55.6	74	18.4	PK	Н	Pass
4880	39	54	15.0	AV	Н	Pass
7320	51.9	74	22.1	PK	Н	Pass
9760	60.4	74	13.6	PK	Н	Pass
9760	44.2	54	9.8	AV	Н	Pass
4880	48.8	74	25.2	PK	V	Pass
7320	53.6	74	20.4	PK	V	Pass
9760	55.8	74	18.3	PK	V	Pass
9760	42.3	54	11.7	AV	V	Pass

		Test	Frequency: 248	0MHz		
Frequency (MHz)	Measurement (dBµV/m)	Limit (dBµV/m)	Margin(dB)	Туре	Antenna (H/V)	Result (P/F)
2483.5	49.1	74	24.6	PK	Н	Pass
4960	55.1	74	18.9	PK	Н	Pass
4960	40.2	54	13.8	AV	• Н	Pass
7440	53.5	74	20.5	PK	Н	Pass
2483.5	49.4	74	24.6	PK	V	Pass
4960	53.5	74	20.5	PK	V	Pass
7440	54.1	74	19.9	PK	V	Pass
7440	40	54	14.0	AV	V	Pass

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor

PHOTOGRAPHS OF TEST SETUP

Test mode No.: SSA-00185

Page 31 of 45

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 33 of 45

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: SSA-00185

View of Product-1

View of Product-2

View of Product-3

View of Product-4

View of Product-5

View of Product-6

Page 36 of 45

View of Product-7

View of Product-9

View of Product-15

View of Product-16

View of Product-17

View of Product-18

位:cm

View of Product-20

View of Product-21

View of Product-23

View of Product-24

View of Product-25

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

