6.3 为什么

2024年7月1日

1.0 < x < 1,那么序列 $(x^n)_{n=1}^{\infty}$ 是单调递减的。 需要证明 $x^n \ge x^{n+1}$:

$$x^n - x^{n+1}$$
$$= x^n(1-x) < 0$$

所以 $x^n > x^{n+1}$

2. 定义 5.2.6 中定义的等价序列,如果有极限,则极限是相同的。

设序列 $(a_n)_{n=0}^{\infty}$ 和序列 $(b_n)_{n=0}^{\infty}$ 是等价序列,并且 $(a_n)_{n=0}^{\infty}$ 收敛于 x,现在需要证明: $(b_n)_{n=0}^{\infty}$ 也收敛与 x。

任意实数 $\epsilon > 0$, $\epsilon/2 > 0$, 所以存在 $N \ge 0$ 对任意 $n \ge N$ 有

$$|a_n - x| \le \epsilon/2$$

 $d(a_n, x) \le \epsilon/2$

又因为序列 $(a_n)_{n=0}^{\infty}$ 和序列 $(b_n)_{n=0}^{\infty}$ 是等价序列,所以是最终 $\epsilon/2-$ 接近的,即存在 $N'\geq n$ 使得,

$$|b_n - a_n| \le \epsilon/2$$

$$d(b_n, a_n) \le \epsilon/2$$

由命题 4.3.3 (g) 【准确的说是实数版本,并把 y 看做 a_n 】所以,

$$d(b_n - x) \le d(a_n, x) + d(b_n, a_n)$$

 $\le \epsilon$

所以序列 $(b_n)_{n=0}^\infty$ 最终 ϵ — 接近于 x。由 ϵ 的任意性可知,序列 $(b_n)_{n=0}^\infty$ 收敛于 x。