SICP: Exercise 1.13

Hamilton Hoxie Ackerman

26 June 2016

Problem) Prove that Fib(n) is the closest integer to $\phi^n/\sqrt{5}$, where $\phi = (1+\sqrt{5})/2$.

Hint: Let $\psi = (1 - \sqrt{(5)})/2$. Use induction and the definition of the Fibonacci numbers to prove that $Fib(n) = (\phi^n - \psi^n)/\sqrt{5}.$

For reference,

$$\operatorname{Fib}(n) = \begin{cases} 0, n = 0 \\ 1, n = 1 \\ \operatorname{Fib}(n-1) + \operatorname{Fib}(n-2), \text{else} \end{cases}$$

Also note that $\phi^2 = \phi + 1$ and $\psi^2 = \psi + 1$.

As the hint suggests, we begin by proving by mathematical induction that $Fib(n) = (\phi^n - \psi^n)/\sqrt{5}$.

Base case (n = 0):
$$(\phi^0 - \psi^0)/\sqrt{5} = (1-1)/\sqrt{5} = 0 \equiv \text{Fib}(0)$$
.
Base case (n = 1): $(\phi^1 - \psi^1)/\sqrt{5} = (\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2})/\sqrt{5} = \frac{2\sqrt{5}}{2\sqrt{5}} = 1 \equiv \text{Fib}(1)$.

Inductive Step: Assume this relationship holds up to some n value. We want to show that Fib(n+1) = $(\phi^{n+1} - \psi^{n+1})/\sqrt{5}$. By definition, Fib(n+1) = Fib(n) + Fib(n-1). By inductive assumption, therefore we have:

$$Fib(n+1) = Fib(n) + Fib(n-1)$$

$$= \frac{\phi^n - \psi^n}{\sqrt{5}} + \frac{\phi^{n-1} - \psi^{n-1}}{\sqrt{5}}$$

$$= \frac{\phi^n + \phi^{n-1} - (\psi^n + \psi^{n-1})}{\sqrt{5}} \stackrel{?}{=} \frac{\phi^{n+1} - \psi^{n+1}}{\sqrt{5}}$$

$$\Leftrightarrow \phi^n + \phi^{n-1} - (\psi^n + \psi^{n-1}) = \phi^{n+1} - \psi^{n+1}$$

To make this work, note that $\phi^{n+1} = \phi^2 \cdot \phi^{n-1} = (\phi+1) \cdot \phi^{n-1} = \phi^n + \phi^{n-1}$. Similarly, $\psi^{n+1} = \psi^n + \psi^{n-1}$. So indeed, our inductive step holds, establishing that $Fib(n) = (\phi^n - \psi^n)/\sqrt{5}$.

To show that this implies that Fib(n) is the closest integer to $\phi^n/\sqrt{5}$, we essentially need the ψ term in our expression for Fib(n) to be insignificant. And as luck would have it, $|\psi| \approx 0.618034 < 1$, so that $\lim_{n\to\infty}\psi^n=0.$

Of course, both ϕ and ψ are irrational numbers, and yet the difference of their powers must always be an integer (since Fibonacci numbers are integers). This limit demonstrates that ψ^n essentially accounts for the irrational component of ϕ^n without really changing the magnitude of ϕ^n . So indeed, the closest integer to ϕ^n is Fib(n).