

Bisimulación y procesos concurrentes Tema 3: Procesos secuenciales y bisimulación

Carmen Alonso Montes carmen@dc.fi.udc.es

Noelia Barreira Rodríguez noelia@dc.fi.udc.es

19 de febrero de 2004

Sistemas de transición etiquetados

Sistema de transición etiquetado Un sistema de transición etiquetado (LTS) sobre Act es un par (Q, T) consistente en

- lacksquare un conjunto $\mathcal Q$ de estados
- una relación ternaria $\mathcal{T} \subseteq (\mathcal{Q} \times Act \times \mathcal{Q})$, conocida como una relación de transición

 $(q,\alpha,q')\in\mathcal{T}$ se representará como $q\xrightarrow{\alpha}q'$, y llamaremos a q fuente y a q' destino de la transición.

Si $q \xrightarrow{\alpha_1} q_1 \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_n} q_n$, entonces llamaremos a q_n derivado de q bajo $\alpha_1 \alpha_2 \dots \alpha_n$

Un LTS puede ser visto como un autómata sin estados inicial y final

Simulación fuerte Sea (Q, T) un LTS, y sea S una relación binaria sobre Q. Entonces S se denonima una simulación fuerte sobre (Q, T), si, para cualquier pSq,

• si $p \xrightarrow{\alpha} p'$ entonces existe $q' \in \mathcal{Q}$ tal que $q \xrightarrow{\alpha} q'$ y p'Sq'.

Decimos que q simula fuertemente p si existe una simulación fuerte S tal que pSq.

Gráficamente:

Ejemplo:

$$\mathcal{S} = \{(q_0, p_0), (q_1, p_1), (q'_1, p_1), (q_2, p_2), (q_3, p_3)\}$$

Ejemplo:

$$\mathcal{S} = \{(q_0, p_0), (q_1, p_1), (q_1', p_1), (q_2, p_2), (q_3, p_3)\}$$

- Comprobación:
 - $(q_0,p_0)\in\mathcal{S}$ y $q_0\xrightarrow{a}q_1$, además $p_0\xrightarrow{a}p_1$ y $(q_1,p_1)\in\mathcal{S}$

Ejemplo:

$$\mathcal{S} = \{(q_0, p_0), (q_1, p_1), (q_1', p_1), (q_2, p_2), (q_3, p_3)\}$$

- Comprobación:
 - $(q_0,p_0)\in\mathcal{S}$ y $q_0\xrightarrow{a}q_1$, además $p_0\xrightarrow{a}p_1$ y $(q_1,p_1)\in\mathcal{S}$
 - $(q_0,p_0)\in\mathcal{S}$ y $q_0\xrightarrow{a}q_1'$, además $p_0\xrightarrow{a}p_1$ y $(q_1',p_1)\in\mathcal{S}$

Ejemplo:

$$\mathcal{S} = \{(q_0, p_0), (q_1, p_1), (q_1', p_1), (q_2, p_2), (q_3, p_3)\}$$

- Comprobación:
 - $(q_0,p_0)\in\mathcal{S}$ y $q_0\xrightarrow{a}q_1$, además $p_0\xrightarrow{a}p_1$ y $(q_1,p_1)\in\mathcal{S}$
 - $(q_0,p_0)\in\mathcal{S}$ y $q_0\xrightarrow{a}q_1'$, además $p_0\xrightarrow{a}p_1$ y $(q_1',p_1)\in\mathcal{S}$
 - $(q_1, p_1) \in \mathcal{S}$ y $q_1 \xrightarrow{b} q_2$, además $p_1 \xrightarrow{b} p_2$ y $(q_2, p_2) \in \mathcal{S}$

Ejemplo:

$$\mathcal{S} = \{(q_0, p_0), (q_1, p_1), (q_1', p_1), (q_2, p_2), (q_3, p_3)\}$$

- Comprobación:
 - $(q_0,p_0)\in\mathcal{S}$ y $q_0\xrightarrow{a}q_1$, además $p_0\xrightarrow{a}p_1$ y $(q_1,p_1)\in\mathcal{S}$
 - $(q_0,p_0)\in\mathcal{S}$ y $q_0\xrightarrow{a}q_1'$, además $p_0\xrightarrow{a}p_1$ y $(q_1',p_1)\in\mathcal{S}$
 - $(q_1, p_1) \in \mathcal{S}$ y $q_1 \xrightarrow{b} q_2$, además $p_1 \xrightarrow{b} p_2$ y $(q_2, p_2) \in \mathcal{S}$
 - $(q_1',p_1)\in\mathcal{S}$ y $q_1'\xrightarrow{c}q_3$, además $p_1\xrightarrow{c}p_3$ y $(q_3,p_3)\in\mathcal{S}$

- Simulación fuerte inversa \mathcal{R} :
 - $\mathcal{R}_{temp} = \{(p_0, q_0)\}$

- Simulación fuerte inversa R:
 - $\bullet \quad \mathcal{R}_{temp} = \{(p_0, q_0)\}$
 - (p_0, q_0) y $p_0 \xrightarrow{a} p_1$, además $q_0 \xrightarrow{a} q_1$ $\mathcal{R}_{temp} = \{(p_0, q_0), (p_1, q_1)\}$

- Simulación fuerte inversa \mathcal{R} :
 - $\mathcal{R}_{temp} = \{(p_0, q_0)\}$
 - (p_0, q_0) y $p_0 \xrightarrow{a} p_1$, además $q_0 \xrightarrow{a} q_1$ $\mathcal{R}_{temp} = \{(p_0, q_0), (p_1, q_1)\}$
 - (p_1,q_1) y $p_1 \xrightarrow{b} p_2$, además $q_1 \xrightarrow{b} q_2$ $\mathcal{R}_{temp} = \{(p_0,q_0),(p_1,q_1),(p_2,q_2)\}$

- Simulación fuerte inversa R:
 - $\bullet \quad \mathcal{R}_{temp} = \{(p_0, q_0)\}$
 - (p_0, q_0) y $p_0 \xrightarrow{a} p_1$, además $q_0 \xrightarrow{a} q_1$ $\mathcal{R}_{temp} = \{(p_0, q_0), (p_1, q_1)\}$
 - (p_1,q_1) y $p_1 \xrightarrow{b} p_2$, además $q_1 \xrightarrow{b} q_2$ $\mathcal{R}_{temp} = \{(p_0,q_0),(p_1,q_1),(p_2,q_2)\}$
 - (p_1, q_1) y $p_1 \xrightarrow{c} p_3$, pero $q_1 \xrightarrow{c} ????$

- Simulación fuerte inversa R:
 - $\mathcal{R}_{temp} = \{(p_0, q_0)\}$
 - (p_0, q_0) y $p_0 \xrightarrow{a} p_1$, además $q_0 \xrightarrow{a} q_1$ $\mathcal{R}_{temp} = \{(p_0, q_0), (p_1, q_1)\}$
 - (p_1,q_1) y $p_1 \xrightarrow{b} p_2$, además $q_1 \xrightarrow{b} q_2$ $\mathcal{R}_{temp} = \{(p_0,q_0),(p_1,q_1),(p_2,q_2)\}$
 - $\bullet \quad (p_1,q_1) \text{ y } p_1 \xrightarrow{c} p_3 \text{, pero } q_1 \xrightarrow{c} ???$
- No existe una simulación fuerte que contenga (p_1,q_1)
 - ullet Una transición de p_1 nunca puede ser simulada por q1

Bisimulación Fuerte (I)

Definiciones

- La Inversa, R^{-1} , de cualquier relación binaria R, está formado por el conjunto de pares (y,x) tales que $(x,y) \in R$
- **Bisimulación fuerte**: Una relación binaria S sobre \mathcal{Q} se dice que es una bisimulación fuerte sobre el $LTS(\mathcal{Q},\mathcal{T})$ si S y su inversa S^{-1} , son ambas simulaciones
- Equivalencia fuerte: Se dice que p y q tienen equivalencia fuerte, $p \sim q$, si existe una bisimulación fuerte S tal que se cumpla pSq

- Dado $S = \{(p_0, q_0), (p_0, q_2), (p_1, q_1), (p_2, q_1)\}$
- S es una **bisimulación** ya que p_0Sq_0 .

Propiedades de la bisimulación

- La relación \sim es una relación de *equivalencia* lo que implica que se cumplen las propiedades de:
 - Reflexiva: $p \sim p$
 - Simetría: $p \sim q \Rightarrow q \sim p$
 - Transitividad: $p \sim q \ \land \ q \sim r \Rightarrow p \sim r$
- ullet La relación \sim es en si misma una $bisimulación \ fuerte$

Propiedades de la bisimulación: Demostración

- ullet \sim es una relación de *equivalencia*, y se demuestra mediante:
 - **Reflexiva**: se parte de la condición $Id_{\mathcal{Q}} = \{(p,p)|p \in \mathcal{Q}\}$
 - ullet Simetría: Si S es una bisimulación entonces lo es su inversa S^{-1}
 - Transitividad: Siendo S_1 y S_2 bisimulaciones, sería suficiente demostrar que $S_1S_2=\{(p,r)|\exists q,\ pS_1q\wedge qS_2r\}$ es una simulación
- ullet \sim es por si misma una $bisimulaci\'{o}n\ fuerte$

Interbloqueo

En este ejemplo se muestra el hecho de que $p\not\sim q$, donde p puede quedar en un interbloqueo.

$$S_{A_1} = \{(p_0, q_0), (p_1, q_1), (p'_1, q_1), (p_2, q_2)\}$$
 $S_{A_2} = \{(q_0, p_0), (q_1, p'_1), (q_2, p_2)\}$

 $p \not\sim q$ ya que se tiene que en S^{-1} , el par $(q_1, p_1) \not\in S$