Chapter 28

Rate Laws

28.1 Definitions and Methods of Determination

4/8: • Consider a general chemical equation

$$\nu_A A + \nu_B B \longrightarrow \nu_Y Y + \nu_Z Z$$

• The extent of the reaction via the progress variable ξ is

$$n_A(t) = n_A(0) - \nu_A \xi(t)$$
 $n_Y(t) = n_Y(0) + \nu_Y \xi(t)$

• The rate of change (moles/second) is

$$\frac{\mathrm{d}n_A}{\mathrm{d}t} = -\nu_A \frac{\mathrm{d}\xi}{\mathrm{d}t} \qquad \qquad \frac{\mathrm{d}n_Y}{\mathrm{d}t} = \nu_Y \frac{\mathrm{d}\xi}{\mathrm{d}t}$$

- Deriving the rate of reaction for a gas-based chemical reaction.
 - Time-dependent concentration changes

$$\frac{1}{V}\frac{\mathrm{d}n_A}{\mathrm{d}t} = \frac{\mathrm{d}[A]}{\mathrm{d}t} = -\frac{\nu_A}{V}\frac{\mathrm{d}\xi}{\mathrm{d}t} \qquad \qquad \frac{1}{V}\frac{\mathrm{d}n_Y}{\mathrm{d}t} = \frac{\mathrm{d}[Y]}{\mathrm{d}t} = -\frac{\nu_Y}{V}\frac{\mathrm{d}\xi}{\mathrm{d}t}$$

- The rate (or speed) of reaction, also known as the differential rate law, is

$$v(t) = -\frac{1}{\nu_A} \frac{\mathrm{d}[A]}{\mathrm{d}t} = -\frac{1}{\nu_B} \frac{\mathrm{d}[B]}{\mathrm{d}t} = \frac{1}{\nu_Y} \frac{\mathrm{d}[Y]}{\mathrm{d}t} = \frac{1}{\nu_Z} \frac{\mathrm{d}[Z]}{\mathrm{d}t} = \frac{1}{V} \frac{\mathrm{d}\xi}{\mathrm{d}t}$$

- All terms are positive.
- Rate laws with a constant k are of the form

$$v(t) = k[A]^{m_A}[B]^{m_B}$$

- The exponents are known as **orders**.
- The overall order reaction is $\sum m_i$.
- The orders and overall order of the reaction depends on the fundamental reaction steps and the reaction mechanism.

 $\bullet\,$ For example, for the reaction $2\,\mathrm{NO}_{(\mathrm{g})} + \mathrm{O}_{2(\mathrm{g})} \longrightarrow 2\,\mathrm{NO}_{2(\mathrm{g})},$ we have

$$v(t) = -\frac{1}{2}\frac{\mathrm{d[NO]}}{\mathrm{d}t} = -\frac{\mathrm{d[O_2]}}{\mathrm{d}t} = -\frac{1}{2}\frac{\mathrm{d[NO_2]}}{\mathrm{d}t}$$

- It follows that $v(t) = k[NO]^2[O_2]$.
- This is a rare elementary reaction that proceeds with the kinetics illustrated by the equation.
- Rate laws must be determined by experiment.
 - Multi-step reactions may have more complex rate law expressions.
 - Oftentimes, 1/2 exponents indicate more complicated mechanisms.
 - For example, even an equation as simple looking as $H_2 + Br_2 \longrightarrow 2 HBr$ has rate law

$$v(t) = \frac{k'[\mathrm{H}_2][\mathrm{Br}_2]^{1/2}}{1 + k''[\mathrm{HBr}][\mathrm{Br}_2]^{-1}}$$

- Determining rate laws.
 - Method of isolation.
 - Put in a large initial excess of A so that it's concentration doesn't change that much; essentially incorporates $[A]^{m_A}$ into k for determination of the order of B.
 - We can then do the same thing the other way around.
 - Method of initial rates.
 - We approximate

$$v = -\frac{\mathrm{d}[A]}{\nu_A \, \mathrm{d}t} \approx -\frac{\Delta[A]}{\nu_A \Delta t} = k[A]^{m_A} [B]^{m_B}$$

 \blacksquare Consider two different initial values of [B], which we'll call $[B_1]$, $[B_2]$. Then

$$v_1 = -\frac{1}{\nu_A} \left(\frac{\Delta[A]}{\Delta t} \right)_1 = k[A]_0^{m_A} [B]_1^{m_B} \qquad v_2 = -\frac{1}{\nu_A} \left(\frac{\Delta[A]}{\Delta t} \right)_2 = k[A]_0^{m_A} [B]_2^{m_B}$$

■ Take the logarithm and solve for m_B .

$$m_B = \frac{\ln(v_1/v_2)}{\ln([B]_1/[B]_2)}$$

• Does an example problem.

28.2 Integrated Rate Laws

- First order reactions have exponential integrated rate laws.
 - Suppose $A + B \longrightarrow products$.
 - Suppose the reaction is first order in A.
 - If the concentration of A is $[A]_0$ at t=0 and [A] at time t, then

$$v(t) = -\frac{\mathrm{d}[\mathbf{A}]}{\mathrm{d}t} = k[\mathbf{A}]$$
$$\int_{[\mathbf{A}]_0}^{[\mathbf{A}]} \frac{\mathrm{d}[\mathbf{A}]}{[\mathbf{A}]} = -\int_0^t k \, \mathrm{d}t$$
$$\ln \frac{[\mathbf{A}]}{[\mathbf{A}]_0} = -kt$$
$$[\mathbf{A}] = [\mathbf{A}]_0 e^{-kt}$$

is the integrated rate law.

- Goes over both the concentration plot and the linear logarithmic plot.

- The half-life of a first-order reaction is independent of the initial amount of reactant.
 - The half-life is found from the point

$$[A(t_{1/2})] = \frac{[A(0)]}{2} = \frac{[A]_0}{2}$$

- We have

$$\ln \frac{1}{2} = -kt_{1/2}$$

$$t_{1/2} = \frac{\ln 2}{k} \approx \frac{0.693}{k}$$

- Notice that the above equation does not depend on [A] or [B]!
- Second order reactions have inverse concentration integrated rate laws.
 - Suppose $A + B \longrightarrow \text{products}$, as before, and that the reaction is second order in A.
 - Then

$$-\frac{d[A]}{dt} = k[A]^2$$

$$\int_{[A]_0}^{[A]} -\frac{d[A]}{[A]^2} = \int_0^t k \, dt$$

$$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$$

is the integrated rate law.

- The half-life of a second-order reaction is dependent on the initial amount of reaction.
 - We have that

$$\frac{1}{[A]_0/2} = \frac{1}{[A]_0} + kt_{1/2}$$
$$\frac{1}{[A]_0} = kt_{1/2}$$
$$t_{1/2} = \frac{1}{k[A]_0}$$

• If a reaction is n^{th} -order in a reactant for $n \geq 2$, then the integrated rate law is given by

$$-\frac{d[A]}{dt} = k[A]^n$$

$$\int_{[A]_0}^{[A]} -\frac{d[A]}{[A]^n} = \int_0^t k \, dt$$

$$\frac{1}{n-1} \left(\frac{1}{[A]^{n-1}} - \frac{1}{[A]_0^{n-1}}\right) = kt$$

- The associated half life is

$$\frac{1}{n-1} \left(\frac{1}{([\mathbf{A}]_0/2)^{n-1}} - \frac{1}{[\mathbf{A}]_0^{n-1}} \right) = kt_{1/2}$$

$$\frac{1}{n-1} \cdot \frac{2^{n-1} - 1}{[\mathbf{A}]_0^{n-1}} = kt_{1/2}$$

$$t_{1/2} = \frac{2^{n-1} - 1}{k(n-1)[\mathbf{A}]_0^{n-1}}$$

- Second order reactions that are first order in each reactant.
 - We have that

$$\begin{split} -\frac{\mathrm{d}[\mathbf{A}]}{\mathrm{d}t} &= -\frac{\mathrm{d}[\mathbf{B}]}{\mathrm{d}t} = k[\mathbf{A}][\mathbf{B}] \\ kt &= \frac{1}{[\mathbf{A}]_0 - [\mathbf{B}]_0} \ln \frac{[\mathbf{A}][\mathbf{B}]_0}{[\mathbf{B}][\mathbf{A}]_0} \end{split}$$

- The actual determination is more complicated (there is a textbook problem that walks us through the derivation, though).
- When $[A]_0 = [B]_0$, the integrated rate law simplifies to the second-order integrated rate laws in [A] and [B].
 - In this limited case, the half-life is that of the second-order integrated rate law, too, i.e., $t_{1/2} = 1/k[A]_0$.
- The reaction paths and mechanism for parallel reactions.
 - Suppose A can become both B and C with respective rate constants k_B and k_C .
 - Then

$$\frac{d[A]}{dt} = -k_B[A] - k_C[A] = -(k_B + k_C)[A] \qquad \frac{d[B]}{dt} = k_B[A] \qquad \frac{d[C]}{dt} = k_C[A]$$

- The integrated rate laws here are

$$[A] = [A]_0 e^{-(k_B + k_C)t} \quad [B] = \frac{k_B}{k_B + k_C} [A]_0 \left(1 - e^{-(k_B + k_C)t} \right) \quad [C] = \frac{k_C}{k_B + k_C} [A]_0 \left(1 - e^{-(k_B + k_C)t} \right)$$

- The ratio of product concentrations is

$$\frac{[\mathbf{B}]}{[\mathbf{C}]} = \frac{k_B}{k_C}$$

- The yield Φ_i is the probability that a given product i will be formed from the decay of the reactant

$$\Phi_i = \frac{k_i}{\sum_n k_n} \qquad \sum_i \Phi_i = 1$$

• Example: If we have parallel reactions satisfying $k_B = 2k_C$, then

$$\Phi_C = \frac{k_C}{k_B + k_C} = \frac{k_C}{2k_C + k_C} = \frac{1}{3}$$