باقة تمارين رقم 04لوحدة 03

التمرين رقم: **01** بكالوريا 2016 (تر+ر)

بحصة للأعمال التطبيقية في الفيزياء اقترح الأستاذ انجاز تجربة للتحقق من المعلومات التي كتبها المصنع على مكثفة مكتوب عليها $C=10\,\mu F$ وذلك باستعمال التجهيزات التالية:

ناقل أومي مقاومته $R=10k\,\Omega$ ، أسلاك توصيل ،قاطعة ،مولد للتوتر الثابت E وتجهيز التجريب المدعم بالحاسوب باستخدام لاقط التوتر.

بعد تركيب الدارة المناسبة وتشغيل تجهيز التجريب المدعم بالحاسوب وغلق القاطعة لدارة الشحن تحصل التلاميذ من خلال مجدول Excel على القيم التالية:

$u_R(V)$	9,000	5,458	3,330	2,008	1,218	0,738	0,448	0,271	0,164	0,060
t(s)	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,50

1- ارسم الدارة الكهربائية التي ركبها التلاميذ.

2. باستعمال قانون جمع التوترات جد المعادلة التفاضلية للتوتر u_R بين طرفي المقاومة.

E و C ، R بدلالة T و A المعادلة التفاضلية من الشكل: $u_R(t) = A \, e^{-t/ au}$ ، جد عبارتي الثابتين A

للدارة. E ارسم المنحنى البياني للدالة $u_R=f\left(t
ight)$ ثم استنتج كل من قيمتي E وثابت الزمن au للدارة.

 $1cm \rightarrow 0,05s$ و $1cm \rightarrow 1,000V$ نستعمل السلم:

5_ احسب قيمة السعة C للمكثفة.

بكالوريا2016 (تر+ر)

0,5

التمرين رقم: 02

تتميز المكثفات بخاصية تخزين الطاقة الكهربائية وإمكانية استغلالها عند الحاجة. لدراسة هذه الخاصية نربط مكثفة غير مشحونة سعتها C على التسلسل مع العناصر الكهربائية التالية:

- مولد كهربائي للتوتر الثابت E.

. $R_2 = 4k\,\Omega$ و $R_1 = 1k\,\Omega$ د ناقلین أومیین مقاومتیهما

قاطعة K. انظر (الشكل-1).

نغلق القاطعة في اللحظة 0 = 1:

1- أ- أعط تفسيرا مجهريا للظاهرة التي تحدث في المكثفة.

i(t) بعادلة التفاضلية لشدة i(t) بعادلة التفاضلية لشدة للتيار الكهربائي المار في الدارة.

 $i\left(t\right)$ = $\alpha e^{-\beta t}$: المعادلة التفاضلية السابقة حلا من الشكل E ، C ، R_2 ، R_1 بدلالة θ و θ بدلالة بنارتي الثابتين θ

2 بواسطة لاقط شدة التيار الكهربائي موصول بالدارة وبواجهة

دخول لجهاز إعلام آلي نحصل على منحنى تطور الشدة

. (2_للتيار الكهربائي (الشكل الشكل) . i(t)

. E النومن τ للدارة ،سعة المكثفة ،سعة المكثفة ،التوتر الكهربائي

3. اعط العبارة اللحظية للطاقة المخزنة في المكثفة ($E_{C}(t)$ واحسب قيمتها العظمي.

 $\rightarrow t(s)$

التمرين رقم: **02**

نركب الدارة الكهربائية الموضحة بالشكل. 3، والمؤلفة من:

- مولد كهربائي للتوتر الثابت E.
- ـ مكثفة غير مشحونة سعتها .C
- ـ ناقلين أوميين مقاومتيهما $R_1 = 1k \Omega$ غير معلومة.
 - .K قاطعة كهربائية.

نوصل الدارة الكهربائية براسم اهتزاز مهبطي ذي ذاكرة كما هو موضح على الشكل a ، ثم نغلق القاطعة في اللحظة a و نشاهد على الشاشة المنحنيين البيانيين a و a اللحظة a و نشاهد على الشاشة المنحنيين البيانيين a و a

- 1- ارفق كل منحنى بالمدخل الموافق مع التعليل.
- $i\left(t\right)$ للتيار الكهربائي في الدارة. $i\left(t\right)$ الماد التعادلة التفاضلية التي تحققها الشدة $i\left(t\right)$
 - I_0 للتيار الأعظمي المار في الدارة.
- R_{2} عبارة التوتربين طرفي الناقل الأومي R_{2} بدلالت t=0 عبارة التوتربين طرفي الناقل الأومي و R_{1}
 - C اعتمادا على البيانين ،استنتج قيمة كل من E و R_2 و E

التمرين رقم: **03**

لغرض دراسة تطور التوتر الكهربائي بين طرفي مكثفة نركب الدارة الكهربائية الموضحة بالشكل ـ5. وتتكون هذه الدارة من مولد للتوتر الثابت E ،ناقل أومي مقاومته $R=10k\,\Omega$ ،مكثفة سعتها E وبادلة E وبادلة E نضع البادلة في الوضع E إلى غاية بلوغ النظام الدائم ،ثم نغير البادلة إلى الوضع E في اللحظة E :

1 ما هي إشارة التيار الكهربائي المبين في الدارة؟ علل.

2 بين أن المعادلة التفاضلية التي يحققها التوتر الكهربائي $u_{C}\left(t
ight)$ بين طرفي المكثفة في هذه الدارة تعطى

 $u_C + \frac{1}{\alpha} \times \frac{du_C}{dt} = 0$ بالشكل:

C، R بدلالت α و α بدلالت بارتي الثابتين α و α بدلالت α بدلالت α ، جد عبارتي الثابتين α بدلالت α بدل

t يمثل الشكل -6 تغيرات $\ln u_C$ بدلالة الزمن -4

 $lnu_C = f(t)$ أ استنتج بيانيا عبارة الدالة

C ، α ، و C ، α ، و C ، α ، و C

حل باقة تمارين رقم 04لوحدة 03

حل التمرين رقم: **01**

1. رسم الدارة الكهربائية التي ركبها التلاميذ: انظر الشكل المقابل. u_R المعادلة التفاضلية للتوتر u_R بين طرفي المقاومة:

$$u_{C}\left(t\right)+u_{R}\left(t\right)=E$$
 بتطبيق قانون جمع التوترات نجد:
$$\frac{du_{C}\left(t\right)}{dt}+\frac{du_{R}\left(t\right)}{dt}=0$$
 وباشتقاق العلاقة نجد: 0

$$\frac{d\,u_{C}\left(t\right)}{dt}=\frac{i\left(t\right)}{C}: \underline{d}\,i\left(t\right)=C\times\frac{d\,u_{C}\left(t\right)}{dt}: \underline{d}\,u_{C}\left(t\right)=C\,u_{C}\left(t\right): \underline{d}\,u_{C}\left(t\right)=\frac{dq\left(t\right)}{dt}: \underline{d}\,u_{C}\left(t\right)=0$$
ونعلم أن: $\underline{d}\,u_{R}\left(t\right)=0: \underline{d}\,u_{C}\left(t\right)=C\,u_{C}\left(t\right): \underline{d}\,u_{C}\left(t\right)=0: \underline{d}\,u_{C}$

E و C ، R يارتا الثابتين A و au بدلالة T و U_R . U_R و U_R . U_R و T بدلالة T و T

$$\frac{du_{R}\left(t\right)}{dt}=-\frac{A}{\tau}e^{-t/\tau}$$
 باشتقاق عبارة الحل بالنسبة للزمن نجد:

$$-rac{A}{ au}e^{-t/ au}+rac{A\,e^{-t/ au}}{RC}=0$$
 بتعويض عبارة الحل وعبارة المشتقة في المعادلة التفاضلية نجد $au=RC$: ومنه $au=RC$: إذن $A\,e^{-t/ au}=0$ عيث $A\,e^{-t/ au}=0$ عيث $A\,e^{-t/ au}=0$ ومنه $A\,e^{-t/ au}=0$

 $u_R(0) = A = E$:ونعوض t = 0 في عبارة الحل

$$.\, au=RC$$
 عيث $u_{R}\left(t\;
ight) =E\;e^{-t/ au}$ عبارة الحل:

1cm
ightarrow 0,05s و 1cm
ightarrow 1,000V . سلم الرسم : $u_R = f\left(t
ight)$ و $u_R = f\left(t
ight)$

استنتاج كل من قيمتي E: من البيان ولـما t = 0 نقرأ:

$$.E = u_R(0) = 9V$$

استنتاج ثُابِتُ الْزَمِنِ au للدارة:

$$u_R(t) = E e^{-t/\tau}$$
 لدينا: $u_R(\tau) = 0.37E$ نجد: $t = \tau$ ولما

 $u_R(\tau) = 0.37 \times 9 = 3.33V$ أي:

$$\tau = 0.37 \times 9 = 3.33 \times 10^{-3}$$
 ومن البيان نقرأ: $\tau = 0.1s$

5 حساب قيمة السعة C للمكثفة:

$$C = \frac{ au}{R}$$
نعلم أن: $au = RC$ أي:

$$C = \frac{0.1}{10 \times 10^3} = 10^{-5} F$$
 : تـع

إذن: $C=10\mu F$ وهي توافق القيمة

المدونة على المكثفة.

1- أ - التفسير المجهري للظاهرة التي تحدث في المكثفة:

تكون المكثفة غير مشحونة وعند غلق القاطعة ، يحدث المولد إختلالا في التوازن الكهربائي للمكثفة ، و ذلك بإخضاع الإلك ترونات الحرة للبوس ذو الكمون المرتفع بالتحرك من هذا اللبوس إلى اللبوس الآخر، ويساهم في هذه الحركة وجود شحنات كهربائية مختلفة الإشارة على مستوى كل لبوس.

 $i\left(t\right)$ بـ بتطبيق قانون جمع التوترات جد المعادلة التفاضلية لشدة ا $i\left(t\right)$ للتيار الكهربائي المار في الدارة:

$$u_{C}\left(t\right)+\left(R_{1}+R_{2}\right)i\left(t\right)=E$$
 ومنه: $u_{C}\left(t\right)+u_{R_{1}}\left(t\right)+u_{R_{2}}\left(t\right)=E$ بتطبیق قانون جمع التوترات نجد: $du_{C}\left(t\right)$

$$\frac{du_{C}\left(t\right)}{dt}+\left(R_{1}+R_{2}\right)\frac{di\left(t\right)}{dt}=0$$
 وباشتقاق العلاقة نجد:

$$\frac{d\,u_C\left(t\right)}{dt} = \frac{i\left(t\right)}{C}: \dot{u}\left(t\right) = C \times \frac{d\,u_C\left(t\right)}{dt}: \text{ oth } q\left(t\right) = C\,u_C\left(t\right): \dot{u}\left(t\right) = \frac{dq\left(t\right)}{dt}: \dot{u}\left(t\right) = C\,u_C\left(t\right)$$
 ومنه:
$$\dot{d}\left(t\right) + \frac{i\left(t\right)}{dt} + \frac{i\left(t\right)}{(R_1 + R_2)C} = 0 \text{ eals } i\left(t\right) = \frac{i\left(t\right)}{C} + \left(R_1 + R_2\right)\frac{di\left(t\right)}{dt} = 0$$
 إذن:
$$0 = \frac{i\left(t\right)}{C} + \left(R_1 + R_2\right)\frac{di\left(t\right)}{dt} = 0$$

 R_2 ، R_1 بدلالة التفاضلية السابقة حلا من الشكل: $i\left(t\right)=lpha e^{-eta t}$ بدلالة عبارتي الثابتين eta و eta بدلالة E بدلالة E بدلالة المعادلة التفاضلية السابقة حلا من الشكل:

$$\frac{di(t)}{dt} = -\beta \alpha e^{-\beta t}$$
 باشتقاق عبارة الحل بالنسبة للزمن نجد:

 $-etalpha e^{\,-eta t} + rac{lpha e^{\,-eta t}}{(R_1+R_2)C} = 0$ بتعويض عبارة الحل وعبارة المشتقة في المعادلة التفاضلية نجد:

$$-\beta + \frac{1}{\left(R_1 + R_2\right)C} = 0 : 20 \quad \text{i.s.} \quad \alpha e^{-\beta t} \neq 0$$
ومنه: $\alpha e^{-\beta t} \left(-\beta + \frac{1}{\left(R_1 + R_2\right)C}\right) = 0$

$$i\left(0
ight)=lpha=I_{0}:$$
اذن: $a=0$ نجد: $a=1$ في العبارة $a=1$ في العبارة $a=1$ نجد: $a=1$ إذن:

$$I_0 = \frac{E}{\left(R_1 + R_2\right)}$$
 ومن العلاقة $\left(R_1 + R_2\right)i\left(t\right) = E$ نجد: $t = 0$ ومن العلاقة $u_C\left(t\right) + \left(R_1 + R_2\right)i\left(t\right) = E$

$$I_0=rac{E}{\left(R_1+R_2
ight)}$$
 و $au=\left(R_1+R_2
ight)C$ و اذن عبارة الحل: $i\left(t
ight)=I_0e^{-rac{t}{ au}}$

2 اعتمادا على البيان بدقيمة كل من:

$$i\left(au
ight)$$
 ولـما $t= au$ نجد: $t=0.37 imes I_0$ ولـما نجد: $t=0.37 imes I_0$ ولـما عنجد: $t=0.37 imes I_0$

au=0.5s : وبقراءة بيانية نجد ، $i\left(au
ight)=0.74$ أي: $I_{0}=2$ أي: $I_{0}=2$

$$C = \frac{\tau}{\left(R_1 + R_2\right)} = \frac{0.5}{\left(1 + 4\right) \times 10^3} = 10^{-4} F = 100 \mu F$$
 إذن: $\tau = \left(R_1 + R_2\right) C$ يعة المكثفة C : نعلم أن:

$$E = I_0 \left(R_1 + R_2 \right) = 2 \times 10^{-3} \times 5 \times 10^3 = 10V$$
 إذن: $I_0 = \frac{E}{\left(R_1 + R_2 \right)}$ ينعلم نعلم التوتر الكهربائي $E = I_0 \left(R_1 + R_2 \right)$

 $E_{C}\left(t
ight)$ العظية للطاقة المخزنة في المكثفة $E_{C}\left(t
ight)$ وحساب قيمتها العظمى:

$$E_C(t) = \frac{1}{2}Cu_C^2(t)$$
 نعلم أن:

$$u_{C}\left(t\,
ight)=E-\left(R_{1}+R_{2}
ight)i\left(t\,
ight)$$
 نجد: $u_{C}\left(t\,
ight)+\left(R_{1}+R_{2}
ight)i\left(t\,
ight)=E$ و $i\left(t\,
ight)=I_{0}e^{-\frac{t}{\tau}}$ و $i\left(t\,
ight)=E-\left(R_{1}+R_{2}
ight) imes\frac{E}{\left(R_{1}+R_{2}
ight)}e^{-\frac{t}{\tau}}=E\left(1-e^{-\frac{t}{\tau}}
ight)$ و التعويض في عبارة $E_{C}\left(t\,
ight)$ نجد: $E_{C}\left(t\,
ight)=E$ ت E_{C} عنجد: $E_{C}\left(t\,
ight)=E$

حل التمرين رقم: **03**

1_ ارفاق كل منحني بالمدخل الموافق مع التعليل:

. $u_{R_1}(\infty) = R_1 i(\infty) = 0$ المنحنى $i(\infty) = 0$ أي: $x_1 i(\infty) = 0$ المنحنى y_1 أي: y_2 المنحنى y_2 خاص بالمدخل y_2 . y_2 خاص بالمدخل وعليه: المنحنى (x_2

المادلة التفاضلية التي تحققها الشدة $i\left(t\right)$ للتيار الكهربائي في الدارة: 2

 $u_{C}\left(t\right)+\left(R_{1}+R_{2}\right)i\left(t\right)=E$ ومنه: $u_{C}\left(t\right)+u_{R_{1}}\left(t\right)+u_{R_{2}}\left(t\right)=E$ بتطبيق قانون جمع التوترات نجد: $\frac{du_{C}\left(t\right)}{dt}+\left(R_{1}+R_{2}\right)\frac{di\left(t\right)}{dt}=0$ وبالاشتقاق بالنسبة للزمن نجد: $u_{C}\left(t\right)=u_{R_{1}}\left(t\right)$

 $\frac{d\,u_C\left(t\right)}{dt} = \frac{i\left(t\right)}{C} : \dot{u}\left(t\right) = C \times \frac{d\,u_C\left(t\right)}{dt} : \text{ ومنه: } q\left(t\right) = C\,u_C\left(t\right) : \dot{u}\left(t\right) = \frac{dq\left(t\right)}{dt} : \dot{u}\left(t\right) : \dot{u}\left(t\right) = \frac{dq\left(t\right)}{dt} : \dot{u}\left(t\right) : \dot{u}\left(t\right) = \frac{dq\left(t\right)}{dt} : \dot{u}\left(t\right) :$

 I_0 عبارة الشدة و I_0 للتيار الأعظمي المار في الدارة:

 $\left(R_1+R_2
ight)I_0=E$: من قانون جمع التوترات نجد : $u_C\left(t\right)+\left(R_1+R_2
ight)i\left(t\right)=E$ وفي النظام الدائم نجد : $u_C\left(\infty\right)=0$ وفي النظام الدائم نجد : $u_C\left(\infty\right)=0$ وفي النظام الدائم نجد : $u_C\left(\infty\right)=0$

 R_{2} و R_{1} ، E بدلالة عند اللحظة R_{2} عبارة التوتر بين طرفي الناقل الأومي و R_{1} بدلالة و R_{2} و و R_{2}

 $.u_{R_{1}}\left(0
ight)=R_{1}I_{0}=R_{1}rac{E}{\left(R_{1}+R_{2}
ight)}$ نعلم أن: $u_{R_{1}}\left(t
ight)=R_{1}i\left(t
ight)$ ولما $u_{R_{1}}\left(t
ight)=R_{1}i\left(t
ight)$

البيانين: R_2 من R_3 من R_4 وذلك بالاعتماد على البيانين: 1-

نجد: وفي النظام الدائم نجد: $u_{2}(t)=u_{C}(t)+u_{R_{2}}(t)$ وفي النظام الدائم نجد: E

 $u_2(\infty)=u_C(\infty)=6,3V$: في النظام الدائم نقرأ $u_{R_2}(\infty)=0$ حيث: $u_{R_2}(\infty)=0$ ومن البيان $u_{R_2}(\infty)=0$

E=6,3V وفي النظام الدائم نجد: $u_{C}\left(\infty\right)=E$ إذن: $u_{C}\left(t\right)+\left(R_{1}+R_{2}\right)i\left(t\right)=E$ ومن العلاقة

$$I_0 = \frac{u_{R_1}(0)}{R_1}$$
 : نعلم أن: $R_1 = u_{R_1}(0) = R_1$ أي: $I_0 = u_{R_1}(0)$

 $I_0 = \frac{4}{1 \times 10^3} = 4 \times 10^{-3} A = 4 \text{mA}$ إذن: $u_{R_1}(0) = 4V$ نقرأ: t = 0 نقرأ: t = 0

$$R_2 = \frac{u_{R_2}\left(0\right)}{I_0} : \text{d} u_{R_2}\left(0\right) = R_2I_0 : \text{d} u_{R_2}\left(0\right) = 2.3V : \text{d} u_{$$

حل التمرين رقم: 04

. إشارة التيار الكهربائي المبين في الدارة: سالبت i < 0 لأن: جهته عكس الجهت الاصطلاحيت.

ين طرفي المكثفة في هذه الدارة تعطى بالشكل: $u_{C}\left(t
ight)$ بين طرفي المكثفة في هذه الدارة تعطى بالشكل:

$$: u_C + \frac{1}{\alpha} \times \frac{du_C}{dt} = 0$$

 $u_{C}\left(t\right)+Ri\left(t\right)=0$ بتطبيق قانون جمع التوترات نجد: 0=0 بتطبيق قانون جمع التوترات نجد: $u_{C}\left(t\right)+u_{R}\left(t\right)=0$ ومنه: $i\left(t\right)=C\times\frac{du_{C}\left(t\right)}{dt}$ اذن: $q\left(t\right)=Cu_{C}\left(t\right)$ وكذلك: $i\left(t\right)=\frac{dq\left(t\right)}{dt}$ بازن نجد: $a=\frac{1}{RC}=\frac{1}{\tau}$ وعليه نجد: $a=\frac{1}{RC}=\frac{1}{\tau}$ وعليه نجد: $a=\frac{1}{RC}=\frac{1}{\tau}$ وعليه نجد: $a=\frac{1}{RC}=\frac{1}{\tau}$

Eو C ، R بدلالة lpha و A النجد عبارتي الثابتين lpha و من الشكل: lpha و A بدلالة lpha و A و A عبارتي الثابتين lpha بدلالة lpha

$$\frac{du_{C}\left(t\right)}{dt}$$
 = $-\alpha Ae^{-\alpha t}$:باشتقاق عبارة الحل بالنسبة للزمن نجد

 $-\alpha A e^{-\alpha t} + \frac{A e^{-\alpha t}}{RC} = 0$: بتعويض عبارة المشتقة في المعادلة التفاضلية نجد:

$$\alpha = \frac{1}{RC} = \frac{1}{\tau}$$
 افن: $-\alpha + \frac{1}{RC} = 0$ افن: $Ae^{-\alpha t} \neq 0$ حيث: $Ae^{-\alpha t} = 0$ حيث: $Ae^{-\alpha t} = 0$

au=RC :وبتعويض t=0 في عبارة الحل نجد: $u_{C}\left(t
ight)=A=E$ ،وعليه عبارة الحل: $u_{C}\left(t
ight)=Ee^{-rac{t}{ au}}$.وعليه عبارة الحالة $\ln u_{C}=f\left(t
ight)$:

 $lnu_C = at + b....(1)$ البيان خط مستقيم لايمر من المبدأ معادلته:

$$a = \frac{\Delta \ln u_C}{\Delta t} = \frac{0 - 1.8}{0.036 - 0} = -50s^{-1}$$
 حيث a معامل توجيه البيان نجد:

b=1.8 : في نقطة تقاطع البيان مع محور التراتيب نجد b=1.8

:E و C ، lpha و C ، و بـ استنتاج قيم كل من

 $lnu_C=lnE-lpha t$: العلاقة النظرية: لدينا: $u_C=Ee^{-lpha t}$ وبإدخال $u_C=Ln(-lpha t)$ وبإدخال . $lnu_C=-lpha t+lnE....(2)$

وبالمطابقة بين العلاقة البيانية (1) والعلاقة النظرية (2) طرفا لطرف:

$$C = \frac{1}{R\alpha}$$
 : نجد: $\alpha = \frac{1}{\tau} = \frac{1}{RC}$: ولدينا $\alpha = 50s^{-1}$ أي: $\alpha = 60s^{-1}$ أي:

$$E=e^{1,8}=6V$$
 : قنع $lnE=b=1,8$ إذن: $C=\frac{1}{10\times 10^3\times 50}=2\times 10^{-6}F=2\mu F$ تنع $C=\frac{1}{10\times 10^3\times 50}=2\times 10^{-6}$

t=2.5 au عند اللحظة المحولة إلى الناقل الأومي عند اللحظة

عبارة الطاقة المخزنة في المكثفة عند اللحظة t:

$$E_{C}(t) = \frac{1}{2}CE^{2}e^{-\frac{2t}{\tau}}$$
 الي: $u_{C}(t) = Ee^{-\frac{t}{\tau}}$ ولدينا: $E_{C}(t) = \frac{1}{2}Cu_{C}^{2}(t)$

$$E_{C}(0) = \frac{1}{2}CE^{2}: t = 0$$
إذن نجد عبارة الطاقة المخزنة في المكثفة في اللحظة

$$E(t) = E_C(0) - E_C(t) = \frac{1}{2}CE^2 - \frac{1}{2}CE^2e^{-\frac{2t}{\tau}}$$
 : عبارة الطاقة المحولة إلى الناقل الأومي عند اللحظة t :

$$E(t) = \frac{1}{2}CE^{2}\left(1 - e^{-\frac{2t}{\tau}}\right)$$
 : فنجد:

$$E\left(2,5 au
ight)=rac{1}{2}CE^{2}\left(1-e^{-5}
ight);\;rac{1}{2}CE^{2}\;;\;E_{C}\left(0
ight)$$
 وعند اللحظة $t=2,5 au$ نجد:

$$E(2.5\tau) = \frac{2 \times 10^{-6} \times 6^2}{2} = 36 \times 10^{-6} J = 36 \mu J$$
 حيث:

تستنتج أن: الطاقة المخزنة في المكثفة حولت تقريبا كليا.