关联规则挖掘

Machine Learning Engineer 机器学习工程师

讲师: Ivan

- 01 无监督学习:关联规则挖掘
- 02 购物篮分析与频繁集挖掘
- 03 Apriori 算法
- 04 FP-Growth 算法

01 无监督学习: 关联规则挖掘

1.1 什么是关联规则?

1.2 基本概念以及算法

什么是关联规则?

什么是关联规则(Association Rule) 挖掘?

1. 数据挖掘的一个子领域

- If/then 语句
- X -> Y
- Support, Confidence, Lift

2. 典型应用:

- 分析以及预测网络用户行为
- 银行投资分析
- 生物信息
- 信用卡分析
- ____

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$	2/5	2/4	5/6
$A \Rightarrow C$	2/5	2/3	5/6
$B\&C\Rightarrow D$	1/5	1/3	5/9

什么是关联规则?

形式化定义:

- $I = \{i_1, i_2, ..., i_n\}$ 包含n个二元变量,其中每一个代表一件物品
- $D = \{t_1, t_2, ..., t_m\}$ 包含m个交易,称D为一个数据库
- 每一个交易 t_i 包含物品集合I的一个子集
- 一个关联规则(association rule)定义为 $X \Rightarrow Y$, 其中 $X, Y \subseteq I$

例子:

- I={牛奶,面包,黄油,啤酒,尿布}
- Rule: {黄油,面包}→{牛奶} (买黄油和面包的同时更有可能买牛奶)

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

1.1 什么是关联规则?

形式化定义:

- $I = \{i_1, i_2, ..., i_n\}$ 包含n个二元变量,其中每一个代表一件物品
- $D = \{t_1, t_2, ..., t_m\}$ 包含m个交易,称D为一个数据库
- 每一个交易 t_i 包含物品集合I的一个子集
- 一个关联规则(association rule)定义为 $X \Rightarrow Y$, 其中 $X, Y \subseteq I$

问题:

总共可能有多少个不同的关联规则?

基本概念:

给定 $X \subseteq I, X \Rightarrow Y$,令T为相对应的交易数据

• Support (物品集X在T中出现的频率):

$$supp(X) = \frac{|\{t \in T: X \subseteq t\}|}{|T|}$$

• Confidence (关联规则在T中出现的频率):

$$conf(X \Rightarrow Y) = \frac{supp(X \cup Y)}{supp(X)}$$
 条件概率

Lift:

$$lift(X \Rightarrow Y) = \frac{supp(X \cup Y)}{supp(X) \times supp(Y)}$$

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

基本概念:

给定 $X \subseteq I, X \Rightarrow Y$,令T为相对应的交易数据

• Lift:

$$lift(X \Rightarrow Y) = \frac{supp(X \cup Y)}{supp(X) \times supp(Y)}$$

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

- 如果 $lift(X \Rightarrow Y) = 1$,那么表示X和Y相互独立
- 如果 $lift(X \Rightarrow Y) > 1$,那么X和Y相互促进
- 如果 $lift(X \Rightarrow Y) < 1$,那么X和Y相互抑制

基本概念:

给定X = {beer, diapers}

$$supp(X) = \frac{1}{5} = 0.2$$

给定X={butter, bread}, Y = {milk}

$$conf(X \Rightarrow Y) = \frac{1}{1} = 1.0$$

$$lift(X \Rightarrow Y) = \frac{1/5}{1/5 \times 2/5} = 2.5 > 1$$

Example database with 5 transactions and 5 items

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

{butter, bread} => {milk} 是该数据库中一条有用的关联规则

关联数据挖掘

- supp(X)以及conf(X->Y)都大于一个 基本阈值
- 所有算法大致分成两阶段:
 - 1. 定义supp(X)的阈值用来挖掘频繁集 -> 重点
 - 2. 定义conf(X->Y)的阈值用来挖掘关联规则 -> 简单统计

典型算法:

- Apriori
- Eclat
- FP-Growth

01 无监督学习:关联数据挖掘

要点总结

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

(1.1)	什么是关联规则

- 1.2 关联规则挖掘算法的两个步骤
- 1.3 理解support,confidence以及lift的概念
- 1.4 关联数据挖掘的典型应用场景

频繁集: $I = \{i_1, i_2, ..., i_n\}$ 为物品集合,找出 $X \subseteq I$,其中supp(X) > p,0 < p < 1.

频繁集挖掘: 给定数据库 $D = \{t_j\}_{j=1}^m$,包含 $I = \{i_1, i_2, ..., i_n\}$ 共n个物品,如果找出出现次数 > mp 的集合?

Example database with 5 transactions and 5 items

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

• I = {milk, bread, butter, beer, diapers}, p = 0.3

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

- I = {milk, bread, butter, beer, diapers}, p = 0.3
- 共有2^5-1=31个不同的非空子集
- 想法: 列表法,表格共有2^5-1=31行,每行对应一个子集的出现次数

列表法: m=5, n = 5, p = 0.3, mp > 1.5次

物品子集	出现次数
{milk}	2
{bread}	3
{butter}	2
{beer}	1
{diapers}	1
{milk, bread}	2
{milk, butter}	1
{milk, beer}	0
{milk, diapers}	0
{bread, butter}	1
{bread, bear}	0

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

列表法: m=5, n = 5, p = 0.3, mp > 1.5次

- 如果有n个物品,列表法复杂度 $O(m \cdot 2^n)$
- 如何提高算法效率?

回顾supp(X)的定义:

$$supp(X) = \frac{|\{t \in T: X \subseteq t\}|}{|T|}$$

Example database with 5 transactions and 5 items

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

我们可以得出:如果 $X \subseteq Y$,那么 $supp(X) \ge supp(Y)$,即supp是一个单调递减的函数

如果 $X \subseteq Y$,那么 $supp(X) \ge supp(Y)$

例子:

- supp({beer}) = supp({diapers}) = 0.2
- {beer}⊆{milk, beer}
- {diapers}⊆{milk, diapers}
- supp({milk, beer}) = 0
- supp({milk, diapers}) = 0

Example database with 5 transactions and 5 items

transaction ID	milk	bread	butter	beer	diapers		
1	1	1	0	0	0		
2	0	0	1	0	0		
3	0	0	0	1	1		
4	1	1	1	0	0		
5	0	1	0	0	0		

我们可以利用这个观察来对搜索进行剪枝,减小实际的搜索范围

问题:是否改变频繁集挖掘的最坏情况算法复杂度?

物品子集	出现次数
{milk}	2
{bread}	3
{butter}	2
{beer}	1
{diapers}	1
{milk, bread}	2
{milk, butter}	1
{milk, beer}	0
{milk, diapers}	0
{bread, butter}	1
{bread, bear}	0

要点总结

- 2.1 频繁集的定义
- 2.2 频繁集挖掘的时间复杂度
- 2.3 Supp函数的单调递减性质

如果 $X \subseteq Y$,那么 $supp(X) \ge supp(Y)$

重要推论:

- 1. 如果X是一个频繁集,且 $Y \subseteq X$,那么Y也是一个频繁集
- 2. 如果X不是一个频繁集,且 $X \subseteq Y$,那么Y也不是一个频繁集

例子:

- p = 0.3, 且supp({beer}) = supp({diapers}) = 0.2
- 由推论2,任何包含beer或者diapers的集合X,supp(X)≤ 0.2
- 因为p = 0.3, 就没有必要统计任何包含beer和diapers的子集了

实际中可以大大减少搜索量!

重要推论:

- 1. 如果X是一个频繁集,且 $Y \subseteq X$,那么Y也是一个频繁集
- 2. 如果X不是一个频繁集,且 $X \subseteq Y$,那么Y也不是一个频繁集

Apriori 算法 (BFS):

- 1. 从只包含一个物品的集合开始,确定每个物品的supp,保留supp大于p的物品,删除supp小于等于p的物品
- 2. 从step 1保留下来的物品中,构建所有可能的组合
- 3. 重复step 1& step 2,知道没有新的集合被加入搜索队列

算法示例: p = 0.3

第一轮:

supp({milk}) = 0.4 > 0.3 supp({bread}) = 0.6 > 0.3 supp({butter}) = 0.4 > 0.3 supp({beer}) = 0.2 < 0.3 supp({diapers}) = 0.2 < 0.3

保留: milk, bread, butter

删除: beer, diapers

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

算法示例: p = 0.3

第二轮:

生成大小为2的集合{milk, bread},{milk, butter}, {bread, butter}

supp({milk, bread}) = 0.4 > 0.3 supp({milk, butter}) = 0.2 < 0.3 supp({bread, butter}) = 0.2 < 0.3

删除: {milk, butter}, {bread, butter}

保留: {milk, bread}

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

算法示例: p = 0.3

第三轮:

• 无法生成大小为3的集合,算法停止

所有的频繁集合为: {milk, bread}, {butter}

思考:为什么不分别加入{milk}, {bread}?

重要推论:

1. 如果X是一个频繁集,且 $Y \subseteq X$,那么Y也是一个频繁集

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

算法示例: p = 0.3

第三轮:

• 无法生成大小为3的集合,算法停止

所有的频繁集合为: {milk, bread}, {butter}

Example database with 5 transactions and 5 items

transaction ID	milk	bread	butter	beer	diapers	
1	1	1	0	0	0	
2	0	0	1	0	0	
3	0	0	0	1	1	
4	1	1	1	0	0	
5	0	1	0	0	0	

得到关联规则: {milk, bread} -> {butter} conf($\{\text{milk, bread}\}\->\{\text{butter}\}\) = \frac{1}{2} = 0.5$ lift($\{milk, bread\} - \{butter\}\} = 0.2 / 0.4 / 0.4 = 1.25 > 1$

买了牛奶和面包的人更有可能买黄油

BFS 搜索剪枝算法

BFS 搜索剪枝算法

要点总结

Apriori 算法用于挖掘频繁集

Apriori是基于BFS的剪枝算法

04

FP-Growth 算法

4.1 FP-Tree 构造

4.2 基于FP-Tree 的频繁集挖掘

Apriori 算法的缺点:

- 对于每个生成的候选集合,需要扫描一遍数据库
- 候选集合很多时,需要不断重复扫描数据库
- 10^4个长度为1的频繁集->10^7个长度为2的候选集
- 一个包含100个物品的频繁集包含2^100个频繁子集,每个需要一遍扫描

Frequent Pattern Growth algorithm (FP-Growth):

- 构建FP-Tree,一个用来发现频繁集的数据结构
- 构建FP-Tree只需要扫描两遍数据库
- 从FP-Tree中可以直接挖掘频繁集

FP-Growth 算法:

第一次遍历数据库:

根据supp,对每个物品进行从大到小排序:
bread > milk = butter > beer = diapers

第二次遍历数据库:

- 构造一个null为根节点的树
- 对每一条记录(表格中每一行),按照supp的顺序插入树中,并且每个树节点维护一个count

•						
transaction ID	milk	bread	butter	beer	diapers	
1	1	1	0	0	0	
2	0	0	1	0	0	
3	0	0	0	1	1	
4	1	1	1	0	0	
5	0	1	0	0	0	

bread > milk = butter > beer = diapers

第0条记录:构造根节点为null的空树

bread > milk = butter > beer = diapers 第2条记录: {butter} bread butte r:1

bread > milk = butter > beer = diapers 第3条记录: {beer, diapers} bread beer: butte diape rs:1

bread > milk = butter > beer = diapers 第4条记录: {milk, bread, butter} bread beer: butte r:1 milk:2 diape rs:1 butte

bread > milk = butter > beer = diapers 第5条记录: {bread} bread beer: butte milk:2 diape rs:1 butte

4.2 基于FP-Tree 的频繁集挖掘

构造好FP-Tree 之后,如何挖掘频繁集? bread > milk = butter > beer = diapers

FP-Tree的性质:

- 每条路径上的计数单调递减
- FP-Tree高度≤最长的交易集合
- FP-Tree大小≤所有交易包含的物品总数
- FP-Tree是前缀树prefix-tree的一个特例

FP-Growth:

- Bottom-up,自底向上的算法
- 先找出以diapers结尾的频繁集,然后找出以{beer, diapers}结尾的频繁集…

基于FP-Tree 的频繁集挖掘

构造好FP-Tree 之后,如何挖掘频繁集? bread > milk = butter > beer = diapers

例子:

- 找出以butter结尾的频繁集
- 对应于原FP-Tree的一颗子树
- 由定义,该子树本身也是一颗FP-Tree
- 递归地对这颗子树进行处理…

基于FP-Tree 的频繁集挖掘

构造好FP-Tree 之后,如何挖掘频繁集? bread > milk = butter > beer = diapers

例子:

- 找出以butter结尾的频繁集
- 对应于原FP-Tree的一颗子树
- 由定义,该子树本身也是一颗FP-Tree
- 递归地对这颗子树进行处理…

假设我们需要supp≥2,由butter的头指针链表,我们知道supp({butter}) = 2,符合要求

基于FP-Tree 的频繁集挖掘

构造好FP-Tree 之后,如何挖掘频繁集? bread > milk = butter > beer = diapers

例子: 找出以butter结尾的频繁集

- 将问题分解为找出以{bread, butter}, {milk, butter}, {beer, butter}, {diapers, butter}
 结尾的频繁集
- 得到子问题的结果后将所有返回的集合进行合并

FP-Growth 是一个divide-and-conquer (分治) 算法

FP-Growth的优点:

- 只需要遍历2遍数据库
- · 之后的处理只依赖于FP-Tree,压缩了等效数据集
- 不需要生成候选集
- 实际中往往比Apriori快非常多

FP-Growth的缺点:

- 最坏情况下FP-Tree的大小和实际数据库大小相当(思考: 什么情况下会发生)
- FP-Growth是一个offline(离线算法),只有当FP-Tree被构造完毕之后才能生 成频繁集
- Apriori是一个可以在任意时刻停止的算法(Anytime Algorithm)

04 FP-Growth 算法

THANK YOU!

Machine Learning Engineer 机器学习工程师微专业

