University of British Columbia

MECH 325 - Mechanical Design I

Assignment 1

Gear Train Design

GROUP C2

Team Member:	Student Number:
Kota Chang	12345678
Chuan Du	12345678
Donney Fan	12345678
Dvir Hilu	12345678
Michael Ko	12345678
Priyansh Malik	12345678
Darren Tong	12345678

September 28, 2018

Velocity = 12345 mm/sec Cost = \$1245 Performance Metric = 12345 mm/\$s

1 Summary

2 Appendix

2.1 Power Screw Analysis

The objective of this section is to find the minimum required torque and rotational speed needed to lift the 2500 kg load at 4 mm/sec.

The torque required to lift a load with gravitational force F is:

$$\tau = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - f l} \right) \tag{1}$$

Parameters			
Symbol	Value	Units	Description
\overline{F}	2500×9.81	N	Axial compressive force
d_m	57	mm	Mean diameter
1	6	mm	Pitch
f	0.08	N/A	Friction Coefficient

A torque of 79.5 Nm is required to lift the load where efficiency losses in the power screw is accounted for by the friction coefficient, f.

2.2 Worm Gear Efficiency Analysis

Worm gears are used in high torque applications but they are subject to efficiency losses during operation. Calculating this value allows us to find the gear train required to raise the load.

$$\eta = \frac{\cos\phi_n - f \tan\lambda}{\cos\phi_n + f \cot\lambda} \tag{2}$$

The helix angle component is as follows:

$$\tan \lambda = \frac{p_x}{\pi d_p} = 0.4074366 \tag{3}$$

Parameters				
Symbol	Value	Units	Description	
N_G	18	N/A	Number of teeth on worm drive gear	
N_w	2	N/A	2-thread worm	
ϕ_n	14.5	degrees	Pressure angle	
1	16	mm	pitch	
p_x	32	mm	Axial pitch	
d_p	25	mm	Worm pitch diameter	
d_s	20	mm	Worm shaft diameter	

2.3 Motor Torque Analysis

The motor provided has the following torque-speed curve. The maximum power output occurs when the motor operates at 2500 rmp with 2.5 Nm of torque.

