An Improved Synthesis of Tetraboron Tetrachloride, B₄C1₄

By J. KANE and A. G. MASSEY*

(Department of Chemistry, Queen Mary College, London, E.1)

Summary An improved synthesis of tetraboron tetrachloride by passing diboron tetrachloride through a mercury discharge cell is described.

Tetraboron tetrachloride occurs to the extent of 1 or 2 mg/day as a by-product in the discharge preparation of B₂Cl₄.1,2 We have found that tetraboron tetrachloride can be made at the rate of about 10 mg/hr. by passing diboron tetrachloride through a mercury discharge cell of the type described in ref. 2. This represents a convenient twostage synthesis from boron trichloride; the required B₂Cl₄ is prepared in the discharge apparatus and next day, after purification from boron trichloride, it is passed through the same discharge to yield B₄Cl₄ and considerable amounts of a yellow, involatile polymer. It seems probable that the B₄Cl₄ which is formed during the preparation of diboron

tetrachloride results from small amounts of B2Cl4 passing adventitiously through the discharge. A more obvious precursor of tetraboron tetrachloride is the diradical B₂Cl₂:

$$\mathrm{B_2Cl_4} \xrightarrow{\quad Hg \quad \quad dimerization \quad \quad } \mathrm{B_2Cl_4} \xrightarrow{\quad \quad } \mathrm{B_4Cl_4}$$

rather than BCl which appears to be the intermediate in the formation of B₂Cl₄ from boron trichloride.³

Tetraboron tetrachloride melts at 95° (vacuum-sealed tube) and only shows signs of thermal degradation at temperatures in the region of 200°. Although other subchlorides of the general formula $(BCl)_n$, n = 8-12, are formed^{3,4} during the decomposition of diboron tetrachloride we have been unable to isolate B₄Cl₄ from this source.

(Received, February 9th, 1970; Com. 191.)

¹ G. Urry, T. Wartik, and H. I. Schlesinger, J. Amer. Chem. Soc., 1952, 74, 5809.

² A. G. Massey, D. S. Urch, and A. K. Holliday, J. Inorg. Nuclear Chem., 1966, 28, 365. ³ A. G. Massey, Adv. Inorg. Chem. Radiochem., 1967, 10, 1.

⁴ G. F. Lanthier and A. G. Massey, J. Inorg. Nuclear Chem., in the press; G. F. Lanthier, J. Kane, and A. G. Massey, unpublished work.