zad. 1

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math

from google.colab import drive
drive.mount('/content/drive',force_remount=True)
import os
os.chdir('/content/drive/My_Drive/DM')

Mounted at /content/drive

data = pd.read_csv('Boston.csv')
data

	Unnamed:	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptrati
0	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.
1	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.
2	3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.
3	4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.
4	5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.
												••
501	502	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	21.0
502	503	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21.0
503	504	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	21.0
504	505	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0
505	506	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	21.0

- a. Jak liczny jest zbiór danych? 506 elementów
- b. Iloma atrybutami jest opisany? 15-ma
- c. Jakiego typu są wartości poszczególnych atrybutów?

```
df = pd.DataFrame(data)
datatypes = df.dtypes
datatypes
```

```
Unnamed: 0 int64
crim float64
          float64
float64
zn
indus
             int64
chas
         float64
float64
nox
rm
          float64
age
          float64
dis
rad
            int64
             int64
tax
ptratio float64
          float64
black
lstat
           float64
medv
            float64
```

dtype: object

d. Czy w zbiorze są brakujące dane (pola NULL)?

df.info(verbose=True)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 15 columns):
```

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	506 non-null	int64
1	crim	506 non-null	float64
2	zn	506 non-null	float64
3	indus	506 non-null	float64
4	chas	506 non-null	int64
5	nox	506 non-null	float64
6	rm	506 non-null	float64
7	age	506 non-null	float64
8	dis	506 non-null	float64
9	rad	506 non-null	int64
10	tax	506 non-null	int64
11	ptratio	506 non-null	float64
12	black	506 non-null	float64
13	lstat	506 non-null	float64
14	medv	506 non-null	float64

dtypes: float64(11), int64(4)

memory usage: 59.4 KB

df.info(verbose=False)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505

Columns: 15 entries, Unnamed: 0 to medv

dtypes: float64(11), int64(4)

memory usage: 59.4 KB

zad. 2

```
print(data.min())
print("-----\n")
print('Maximum:')
print(data.max())
print("-----\n")
print('Wartość średnia:')
print(data.mean())
    Minimum:
    Unnamed: 0
                    1.00000
    crim
                    0.00632
                    0.00000
    zn
    indus
                    0.46000
    chas
                    0.00000
    nox
                    0.38500
                    3.56100
    rm
    age
                    2.90000
    dis
                    1.12960
    rad
                    1.00000
    tax
                  187.00000
    ptratio
                  12.60000
    black
                    0.32000
    lstat
                    1.73000
    medv
                    5.00000
    dtype: float64
    Maximum:
    Unnamed: 0
                506.0000
    crim
                  88.9762
    zn
                  100.0000
     indus
                   27.7400
    chas
                    1.0000
    nox
                    0.8710
    rm
                    8.7800
                  100.0000
    age
    dis
                  12.1265
    rad
                   24.0000
    tax
                  711.0000
    ptratio
                   22.0000
    black
                  396.9000
                   37.9700
    lstat
    medv
                   50.0000
    dtype: float64
    Wartość średnia:
    Unnamed: 0
                  253.500000
    crim
                    3.613524
     zn
                   11.363636
     indus
                   11.136779
     chas
                   0.069170
                    0.554695
    nox
    rm
                    6.284634
                   68.574901
    age
                    3.795043
    dis
                    9.549407
    rad
                  408.237154
    tax
```

```
18.455534
     ptratio
     black
                   356.674032
     lstat
                   12.653063
                    22.532806
     medv
     dtype: float64
# Odchylenie standardowe:
data_col = data['crim']
# 1) liczymy średnią arytmetyczną:
sa = data['crim'].sum() / data['crim'].count()
# 2) wariancja
sum_roz = 0
for i in data_col:
  sum_{roz} += (i - sa) ** 2
war = sum_roz / data['crim'].count()
# 3) odchylenie standardowe
odch_st = math.sqrt(war)
odch_st
     8.59304135129577
print("Odchylenie standardowe:\n")
# z (axis=1) da dla wartości w kolumnie
print(np.std(data, axis=0))
     Odchylenie standardowe:
     Unnamed: 0 146.069333
     crim
                   8.593041
                   23.299396
     zn
     indus
                   6.853571
     chas
                   0.253743
                   0.115763
     nox
                   0.701923
     rm
                  28.121033
     age
     dis
                    2.103628
     rad
                   8.698651
     tax
                 168.370495
     ptratio
                    2.162805
     black
                   91.204607
     1stat
                    7.134002
     medv
                     9.188012
     dtype: float64
```

zad. 3

```
data_col_1 = data['rm']
data_col_2 = data['medv']
X = data_col_1.sum() / data_col_1.count()
Y = data_col_2.sum() / data_col_2.count()
```

```
·····
count = data_col_1.count()
licznik = 0
mian1 = 0
mian2 = 0
for i in range(0, count):
 licznik += (data_col_1[i] - X) * (data_col_2[i] - Y)
 mian1 += ((data_col_1[i] - X) ** 2)
 mian2 += ((data_col_2[i] - Y) ** 2)
# Kowariancja:
kw = licznik / (count - 1)
# Korelacja
kr = licznik / ((mian1*mian2) ** 0.5)
print("Kowariancja: ", kw)
print("Korelacja: ", kr)
    Kowariancja: 4.493445879544476
    Korelacja: 0.6953599470715388
```

macierz korelacji dla całego zbioru danych
data.cov()

	Unnamed: 0	crim	zn	indus	chas	nox	
Unnamed: 0	21378.500000	512.381872	-352.578218	400.668663	-0.139604	6.755757	
crim	512.381872	73.986578	-40.215956	23.992339	-0.122109	0.419594	
zn	-352.578218	-40.215956	543.936814	-85.412648	-0.252925	-1.396148	
indus	400.668663	23.992339	-85.412648	47.064442	0.109669	0.607074	
chas	-0.139604	-0.122109	-0.252925	0.109669	0.064513	0.002684	
nox	6.755757	0.419594	-1.396148	0.607074	0.002684	0.013428	
rm	-8.215627	-1.325038	5.112513	-1.887957	0.016285	-0.024603	
age	838.722871	85.405322	-373.901548	124.513903	0.618571	2.385927	
dis	-93.045936	-6.876722	32.629304	-10.228097	-0.053043	-0.187696	
rad	873.364356	46.847761	-63.348695	35.549971	-0.016296	0.616929	
tax	16427.306931	844.821538	-1236.453735	833.360290	-1.523367	13.046286	-3
ptratio	92.138119	5.399331	-19.776571	5.692104	-0.066819	0.047397	
black	-3938.380535	-302.381816	373.721402	-223.579756	1.131325	-4.020570	
Istat	269.868842	27.986168	-68.783037	29.580270	-0.097816	0.488946	
medv	-304.723960	-30.718508	77.315176	-30.520823	0.409409	-0.455412	

zad. 4

```
plt.scatter(data_col_1, data_col_2, c = "blue")
plt.show()
```



```
mx = np.array(((np.sum(data_col_1*data_col_1), np.sum(data_col_1)), (np.sum(data_col_1),
mod = np.linalg.inv(mx)
mx2 = np.array((np.sum(data_col_1*data_col_2), np.sum(data_col_2)))
mx2.shape = (2, 1)
m = mod.dot(mx2)
a = m[0][0]
b = m[1][0]

plt.plot(data_col_1, a*data_col_1 + b, color = "red")
plt.scatter(data_col_1, data_col_2, c = "blue")
plt.show()
```


zad. 5

data.corr()

	Unnamed:	crim		indus	chas	nev	pricedo		
	0	Crim	zn	indus	chas	nox	rm		
Unnamed: 0	1.000000	0.407407	-0.103393	0.399439	-0.003759	0.398736	-0.079971	0	
crim	0.407407	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0	
zn	-0.103393	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0	
indus	0.399439	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0	
chas	-0.003759	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0	
nox	0.398736	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0	
rm	-0.079971	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0	
age	0.203784	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1	
dis	-0.302211	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0	
rad	0.686002	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0	
tax	0.666626	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0	
col_1 = data['nox']									
col_2 = data['dis']									
ata_col_1.sum() / data_col_1.count() ata_col_2.sum() / data_col_2.count()									
= data_col_1.count()									
ik - 0									

```
data_c
data_c
X = da
Y = da
count
licznik = 0
mian1 = 0
mian2 = 0
for i in range(0, count):
  licznik += (data_col_1[i] - X) * (data_col_2[i] - Y)
  mian1 += ((data_col_1[i] - X) ** 2)
 mian2 += ((data_col_2[i] - Y) ** 2)
# Korelacja
kr = licznik / ((mian1*mian2) ** 0.5)
print("Korelacja: ", kr)
mx = np.array(((np.sum(data_col_1*data_col_1), np.sum(data_col_1)), (np.sum(data_col_1),
mod = np.linalg.inv(mx)
mx2 = np.array((np.sum(data_col_1*data_col_2), np.sum(data_col_2)))
mx2.shape = (2, 1)
m = mod.dot(mx2)
a = m[0][0]
b = m[1][0]
plt.plot(data_col_1, a*data_col_1 + b, color = "yellow")
plt.scatter(data_col_1, data_col_2, c = "blue")
plt.show()
```

Korelacja: -0.7692301132258254

