Skew braces and solutions to the Yang-Baxter equation

Ilaria Colazzo

Contents

Lecture	21. 21/02/2024	2
§ 1.1.	The Yang–Baxter equation	2
§ 1.2.	The set-theoretic version	2
§ 1.3.	Set-theoretic solutions to the Yang–Baxter equation and III Reidemeister move	2
§ 1.4.	First examples	3
§ 1.5.	A characterisation	4
§ 1.6.	Shelfs and racks	4
§ 1.7.	An intriguing connection between group actions and solutions	5
Some solutions		6
References		8
Index		9
Index		9

The notes correspond to the series of lectures on *Skew braces and solutions to the Yang–Baxter equation* taught as part of the conference Introduction to Modern Advances in Algebra.

This version was compiled on Friday 16th February, 2024 at 14:13.

Ilaria Colazzo Exeter (UK)

University of Exeter – Exeter (UK)

E-mail address: ilariacolazzo@gmail.com.

Lecture 1. 21/02/2024

§ 1.1. The Yang-Baxter equation. The Yang-Baxter equation (YBE) is one important equation in mathematical physics. It first appeared in two independent papers of Yang [4] and Baxter [1].

Definition 1.1. A solution of the *Yang–Baxter eqution* is a bijective linear map $R: V \otimes V \to V \otimes V$, where V is a vector space such that

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$

where R_{ij} denotes the map $V \otimes V \otimes V \to V \otimes V \otimes V$ acting as R on the (i, j) factor and as the identity on the remaining factor.

Let $\tau: V \otimes V \to V \otimes V$ be the map $\tau(u \otimes v) = v \otimes u$ for $u, v \in V$. It's easy to check (try!) that $R: V \otimes V \to V \otimes V$ is a solution of the Yang–Baxter equation if and only if $\bar{R} := \tau R$ satisfies

$$\bar{R}_{12}\bar{R}_{23}\bar{R}_{12} = \bar{R}_{23}\bar{R}_{12}\bar{R}_{23}.$$

An interesting class of solutions of the Yang–Baxter equation arises when *V* has a *R*-invariant basis *X*. In such a case the solution is said to be set-theoretic.

§ 1.2. The set-theoretic version. Drinfeld in [2] observed it makes sense to consider the Yang–Baxter equation in the category of sets and stated that

it would be interesting to study set-theoretic solutions.

These lectures will focus on set-theoretic solutions to the Yang-Baxter equation and their connection with known and "new" algebraic structures.

DEFINITION 1.2. A *set-theoretic solution to the Yang–Baxter equation* is a pair (X, r) where X is a non-empty set and $r: X \times X \to X \times X$ is a bijective map such that

$$(1.1) (r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$$

Convention 1. If (X,r) is a set-theoretic solution to the Yang–Baxter equation, we write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

where $\lambda_x, \rho_x : X \to X$.

DEFINITION 1.3. Let (X, r) be a set-theoretic solution to the Yang–Baxter equation. We say that

- (X,r) is *finite* if X is finite.
- (X, r) is *non-degenerate* if λ_x, ρ_x are bijective for all $x \in X$.
- § 1.3. Set-theoretic solutions to the Yang–Baxter equation and III Reidemeister move. Let us represent the map $r: X \times X \to X \times X$ as a crossing and the identity on X as a straight line, see Figure 1.

FIGURE 1. The map r represented as a crossing and the identity as a straight line.

Then the Yang–Baxter equation can be pictured as in Figure 2.

Moreover, under the assumption of (X, r) being non-degenerate we have the following lemma.

FIGURE 2. The Yang–Baxter equation.

Lemma 1.4. Let (X,r) be a solution to the Yang–Baxter equation.

- 1) Given $x, u \in X$, there exist unique $y, v \in X$ such that r(x, y) = (u, v).
- **2)** Given $y, v \in X$, there exist unique $x, u \in X$ such that r(x, y) = (u, v).

PROOF. For the first claim take $y = \lambda_x^{-1}(u)$ and $v = \rho_y(x)$. For the second, $x = \rho_y^{-1}(v)$ and $u = \lambda_x(y)$.

So, the bijectivity of r means that any row in Figure 3 determines the whole square. By Lemma 1.4 we have that non-degeneracy means that any column in Figure 3 also determines the whole square.

FIGURE 3. Any row or column determines the whole square.

§ 1.4. First examples.

Examples 1.5. Let X be a non-empty set.

- 1) The pair $(X, \mathrm{id}_{X \times X})$ is a set-theoretic solution to the Yang–Baxter equation. Note that $(X, \mathrm{id}_{X \times X})$ is not non-degenerate, since $\lambda_x(y) = x$ and $\rho_y(x) = y$, for all $x, y \in X$.
- 2) Let $\tau: X \times X \to X \times X$ be the flip map, i.e. $\tau(x,y) = (y,x)$ for all $x,y \in X$. Then, the pair (X,τ) is a set-theoretic solution to the Yang-Baxter equation. Moreover, it is non-degenerate since $\lambda_x = \rho_x = \mathrm{id}_X$ for all $x \in X$.
- 3) Let λ, ρ be permutaions of X. Then $r(x,y) = (\lambda(y), \rho(x))$ is a non-degenerate set-theoretic solution to the Yang–Baxter equation if and only if $\lambda \rho = \rho \lambda$. Morever, (X,r) is involutive if and only if $\rho = \lambda^{-1}$. The solution (X,r) is called a *permutational solution* or a *Lyubashenko's solution*.

If on the set *X* we have a bit more structure we can define some more sophisticated solutions.

Example 1.6. Let G be a group and let

$$r_1(x,y) = (y,y^{-1}xy)$$

 $r_2(x,y) = (x^2y,y^{-1}x^{-1}y).$

Then (X, r_1) and (X, r_2) are bijective non-degenerate set-theoretic solutions to the Yang–Baxter equation.

§ 1.5. A characterisation.

PROPOSITION 1.7. Let X be a non-empty set and $r: X \times X \to X \times X$ be a map, written ase $r(x,y) = (\lambda_x(y), \rho_y(x))$. Then r satisfies equation 1.1 if and only if

1)
$$\lambda_x \lambda_y = \lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}$$

2)
$$\lambda_{\rho_{\lambda_y(z)}(x)}^{\gamma} \rho_z(y) = \rho_{\lambda_{\rho_y(x)}(z)} \lambda_x(y)$$

3)
$$\rho_z \rho_y = \rho_{\rho_z(y)} \rho_{\lambda_y(z)}$$

for all $x, y, z \in X$.

In particular, (X,r) is a solution to the Yang–Baxter equation when r is bijective.

PROOF. Let us write $r_1 = r \times id$ and $r_2 = id \times r$. Then

$$r_1 r_2 r_1(x, y, z) = r_1 r_2(\lambda_x(y), \rho_y(x), z)$$

$$= r_1(\lambda_x(y), \lambda_{\rho_y(x)}(z), \rho_z \rho_y(x))$$

$$= (\lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}(z), \rho_{\lambda_{\rho_y(x)}(z)} \lambda_x(y), \rho_z \rho_y(x)),$$

and

$$r_2 r_1 r_2(x, y, z) = r_2 r_1(x, \lambda_y(z), \rho_z(y))$$

$$= r_2(\lambda_x \lambda_y(z), \rho_{\lambda_y(z)}(x), \rho_z(y))$$

$$= (\lambda_x \lambda_y(z), \lambda_{\rho_{\lambda_y(z)}(x)} \rho_z(y), \rho_{\rho_z(y)} \rho_{\lambda_y(z)}(x)).$$

Therefore $r_1r_2r_1 = r_2r_1r_2$ if and only if 1),2) and 3) hold.

EXERCISE 1.8. Let (X,r) be a set-theoretic solution to the Yang–Baxter equation. Define for all $x, y \in X$

$$\bar{r}(x,y) = \tau r \tau(x,y) = (\rho_x(y), \lambda_y(x)).$$

Then (X, \bar{r}) is a set-theoretic solution to the Yang–Baxter equation.

§ 1.6. Shelfs and racks.

EXERCISE 1.9. Let X be a non-empty set. Let $\triangleleft: X \times X \to X$ be a binary operation and define $r: X \times X \to X \times X$ such that $r(x,y) = (y,x \triangleleft y)$. Then r satisfies equation 1.1 if and only if $(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$ holds for all $x,y,z \in X$. Moreover, r is bijective if and only if the maps $\rho_y: X \to X, x \mapsto x \triangleleft y$ are bijective.

DEFINITION 1.10. A *(right) shelf* is a pair (X, \triangleleft) where X is a non-empty set and \triangleleft is a binary operation such that

$$(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z).$$

If, in addition, the maps $\rho_y: X \to X, x \mapsto x \triangleleft y$ are bijective for all $y \in X$, then (X, \triangleleft) is called a *(right) rack*.

PROPOSITION 1.11. Let X be a non-empty set with a binary operation $\triangleleft : X \times X \to X$. Then $r(x,y) = (y,x \triangleleft y)$ is a set-theoretic solution to the Yang–Baxter equation if and only if (X,\triangleleft) is a rack.

Proof. Follows from exercise 1.9.

EXERCISE 1.12. Let G be a group. Then (G, r) where $r(x, y) = (y, y^{-1}xy)$ is a non-degenerate set-theoretic solution to the Yang–Baxter equation.

Convention 2. From now on, a *solution* will always mean a non-degenerate set-theoretic solution to the Yang–Baxter equation.

§ 1.7. An intriguing connection between group actions and solutions. The following theorem is the core result of the paper [3] by Lu, Yan Zhu.

Theorem 1.13. Let G be a group, let $\lambda: G \times G \to G, (x,y) \mapsto \lambda_x(y)$ a left group action of G on itself as a set and $\rho: G \times G \to G, (x,y) \mapsto \rho_y(x)$ a right group action of G on itself as a set. If the "compatibility" condition

$$(1.2) uv = \lambda_u(v)\rho_v(u)$$

holds, then (G,r), where

$$r: G \times G \to G \times G$$
, $(x,y) \mapsto (\lambda_x(y), \rho_y(x))$

is a solution.

Exercise 1.14. Prove Theorem 1.13

Some solutions

1.9. For every $x, y \in X$ let us write $\lambda_x = \mathrm{id}_X$ and $\rho_y(x) = x \triangleleft y$. We want to apply Proposition 1.7. First note that clearly $\lambda_x \lambda_y = \mathrm{id}_X = \lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}$, i.e. 1) is satisfied. Moreover, $\lambda_{\rho_{\lambda_y(z)}(x)} \rho_z(y) = \rho_{\lambda_{\rho_y(x)}(z)} \lambda_x(y)$ reduce to the trivial identity $\rho_z(y) = \rho_z(y)$. Finally, $\rho_z \rho_y(x) = \rho_{\rho_z(y)} \rho_{\lambda_y(z)}(x)$ is equivalent to $(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.

Now assume that r is bijective. If $x_1, x_2 \in X$ such that $\rho_y x_1 = \rho_y(x_2)$, then $r(x_1, y) = r(x_2, y)$ and so $x_1 = x_2$, i.e. ρ_y is injective. Now, let $z \in X$ and let $x \in X$ such that r(x, y) = (y, z). It follows that $\rho_y(x) = z$ and ρ_y is bijective. Similarly one obtains the converse.

1.14. Let us write $r_1 = r \times id$ and $r_2 = id \times r$,

$$r_1 r_2 r_1(x, y, z) = (\lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}(z), \rho_{\lambda_{\rho_y(x)}(z)} \lambda_x(y), \rho_z \rho_y(x))$$

= $(u_1, v_1, w_1),$

and

$$r_2r_1r_2(x,y,z) = (\lambda_x\lambda_y(z), \lambda_{\rho_{\lambda_y(z)}(x)}\rho_z(y), \rho_{\rho_z(y)}\rho_{\lambda_y(z)}(x))$$

= (u_2, v_2, w_2) .

Then we obtain

$$u_1v_1w_1 = \lambda_{\lambda_x(y)}\lambda_{\rho_y(x)}(z)\rho_{\lambda_{\rho_y(x)}(z)}\lambda_x(y)\rho_z\rho_y(x)$$

$$\stackrel{(1.2)}{=} \lambda_x(y)\lambda_{\rho_y(x)}(z)\rho_z\rho_y(x)$$

$$\stackrel{(1.2)}{=} \lambda_x(y)\rho_y(x)z$$

$$\stackrel{(1.2)}{=} xyz$$

and, similarly

$$u_{2}v_{2}w_{2} = \lambda_{x}\lambda_{y}(z)\lambda_{\rho_{\lambda_{y}(z)}(x)}\rho_{z}(y)\rho_{\rho_{z}(y)}\rho_{\lambda_{y}(z)}(x)$$

$$\stackrel{(1.2)}{=} \lambda_{x}\lambda_{y}(z)\rho_{\lambda_{y}(z)}(x)\rho_{z}(y)$$

$$\stackrel{(1.2)}{=} x\lambda_{y}(z)\rho_{z}(y)$$

$$\stackrel{(1.2)}{=} xv_{z}.$$

Hence

$$(1.3) u_1 v_1 w_1 = xyz = u_2 v_2 w_2.$$

Moreover, since λ is a left action of G on itself, we get

$$u_1 = \lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}(z) = \lambda_{\lambda_x(y)\rho_y(x)}(z) \stackrel{\text{(1.2)}}{=} \lambda_{xy}(z) = \lambda_x \lambda_y(z) = u_2.$$

Similarly, since ρ is a right action

$$w_2 = \rho_{\rho_z(y)}\rho_{\lambda_y(z)}(x) = \rho_{\lambda_y(z)\rho_z(y)}(x) \stackrel{\text{(1.2)}}{=} \rho_{yz}(x) = \rho_z\rho_y(x) = w_1.$$

From (1.3) and G being a group it follows that also $v_1 = v_2$. Moreover, λ_x and ρ_x are bijective maps by assumption. It is left to prove that r is bijective. First let us write r(u,v) = (x,y), hence

 $\lambda_u(v) = x$, $\rho_v(u) = y$, and uv = xy. Now, since λ is an action and in particular $\lambda_v^{-1} = \lambda_{v^{-1}}$, we get

$$\lambda_{y}(v^{-1})u = \lambda_{y}(v^{-1})\rho_{v}^{-1}(y) = \lambda_{y}(v^{-1})\rho_{v^{-1}}(y) \stackrel{\text{(1.2)}}{=} yv^{-1} = x^{-1}u = (\lambda_{u}(v))^{-1}u,$$

and so

$$(\lambda_u(v))^{-1} = \lambda_{\rho_v(u)}(v^{-1}).$$

Similarly, expanding $\nu \rho_x(u^{-1})$ one proves

$$(\rho_{\nu}(u))^{-1} = \rho_{\lambda_{u}(\nu)}(u^{-1}).$$

Define

$$r'(x,y) = ((\rho_{x^{-1}}(y^{-1}))^{-1}, (\lambda_{y^{-1}}(x^{-1}))^{-1}).$$

Then

$$\begin{split} rr'(x,y) &= (\lambda_{(\rho_{x^{-1}}(y^{-1}))^{-1}}((\lambda_{y^{-1}}(x^{-1}))^{-1}), \rho_{(\lambda_{y^{-1}}(x^{-1}))^{-1}}((\rho_{x^{-1}}(y^{-1}))^{-1})) \\ &\stackrel{(1.4)\&(1.5)}{=} (\lambda_{\rho_{x^{-1}}(y^{-1})}^{-1}\lambda_{\rho_{x^{-1}}(y^{-1})}(x), \rho_{\lambda_{y^{-1}}(x^{-1})}^{-1}\rho_{\lambda_{y^{-1}}(x^{-1})}(y)) \\ &= (x,y). \end{split}$$

And

$$\begin{split} r'r(x,y) &= ((\rho_{(\lambda_{x}(y))^{-1}}((\rho_{y}(x))^{-1}))^{-1}, (\lambda_{(\rho_{y}(x))^{-1}}((\lambda_{x}(y))^{-1}))^{-1}) \\ &\stackrel{(1.4)\&(1.5)}{=} ((\rho_{\lambda_{x}(y)}^{-1}\rho_{\lambda_{x}(y)}(x^{-1}))^{-1}, (\lambda_{\rho_{y}(x)}^{-1}\lambda_{\rho_{y}(x)}(y^{-1}))^{-1}) \\ &= ((x^{-1})^{-1}, (y^{-1})^{-1}) = (x,y). \end{split}$$

References

- [1] R. J. Baxter. Eight-vertex model in lattice statistics. Phys. Rev. Lett., 26:832–833, 1971.
- [2] V. G. Drinfeld. On some unsolved problems in quantum group theory. In *Quantum Groups* (*Leningrad 1990*), volume 1510 of *Lecture Notes in Math.*, pages 1–8. Springer, Berlin, 1992.
- [3] J.-H. Lu, M. Yan, and Y.-C. Zhu. On the set-theoretical Yang-Baxter equation. Duke Math. J., 104(1):1–18, 2000.
- [4] C. N. Yang. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. *Phys. Rev. Lett.*, 19:1312–1315, 1967.

Index

I	S
III Reidemeister move	Set-theoretic solution 2 Finite 2 Non-degenerate 2 Shelf 4
R	Y
Rack	Yang-Baxter equation