Bailouts and Regulation

Scott Condie Richard W. Evans

May 2010 QSPS Workshop

Bailouts were important this recession

Biggest bailout disbursements since 2008

	Amount Disbursed		
Recipient	(\$ billions)		
Fannie Mae	\$75.2		
GM	\$50.7		
Freddie Mac	\$50.7		
AIG	\$47.5		
Bank of America	\$45		
Citigroup	\$45		
JP Morgan Chase	\$25		
Wells Fargo	\$25		

ource: Pro Publica, "Eye on the Ballout"

Bailouts were important this recession

Biggest bailout disbursements since 2008

	Amount Disbursed		
Recipient	(\$ billions)		
Fannie Mae	\$75.2		
GM	\$50.7		
Freddie Mac	\$50.7		
AIG	\$47.5		
Bank of America	\$45		
Citigroup	\$45		
JP Morgan Chase	\$25		
Wells Fargo	\$25		

Recipients	Committed	Disbursed	Returned
833	\$589 B	\$513 B	\$174 B

Source: Pro Publica, "Eye on the Bailout".

Ex post regulation has been important

- SEC regulatory oversight has increased
- Federal Reserve oversight has increased

April 29, 2010, NYT on financial regulation bill

"The bill, developed in months of talks between senators in both parties, would touch virtually every aspect of the financial system."

- Gov't can shut down risky financial institutions
- Consumer lending protection bureau
- Hedge fund oversight
- Derivatives market oversigh

Ex post regulation has been important

- SEC regulatory oversight has increased
- Federal Reserve oversight has increased

April 29, 2010, NYT on financial regulation bill

"The bill, developed in months of talks between senators in both parties, would touch virtually every aspect of the financial system."

- Gov't can shut down risky financial institutions
- Consumer lending protection bureau
- Hedge fund oversight
- Derivatives market oversight

Ex post regulation has been important

- SEC regulatory oversight has increased
- Federal Reserve oversight has increased

April 29, 2010, NYT on financial regulation bill

"The bill, developed in months of talks between senators in both parties, would touch virtually every aspect of the financial system."

- Gov't can shut down risky financial institutions
- Consumer lending protection bureau
- Hedge fund oversight

Introduction

Derivatives market oversight

Our question

• When can regulation and/or bailouts be welfare improving?

We will look at ex ante (commitment) policy

We will look at revenue neutral bailout policy.

Our question

• When can regulation and/or bailouts be welfare improving?

We will look at ex ante (commitment) policy.

We will look at revenue neutral bailout policy.

Our question

• When can regulation and/or bailouts be welfare improving?

We will look at ex ante (commitment) policy.

We will look at revenue neutral bailout policy.

Literature

- Optimal policy with incomplete markets
 - Aiyagari (1994,1995), Diamond (2003), and more
- Investor and manager incentive misalignment
 - Furlong and Keeley (1989, JB&F), Crawford and Sobel (1992), Benabou and Laroque (1992), Womack (1996), Chevalier and Ellison (1997, JPE), Morgan and Stocken (2003), Malmendier and Shanthikumar (2003)
- Schneider and Tornell (REStud, 2004) International effects of bailout guarantees
- Faccio, Masulis, and McConnell (JoF, 2010) estimates probability of bailout (implicit guarantees) using cross country data

Literature

- Moral hazard cost of bailouts
 - Jeanne and Zettlemeyer (2001), Yeyati (2003), Panageas (2009)

- Portfolio regulation
 - Peltzman (*JPE*, 1970), Koehn and Santomero (*JoF*, 1980),
 Milne (*JoBF*, 2002)

Literature

- Moral hazard cost of bailouts
 - Jeanne and Zettlemeyer (2001), Yeyati (2003), Panageas (2009)

- Portfolio regulation
 - Peltzman (JPE, 1970), Koehn and Santomero (JoF, 1980), Milne (JoBF, 2002)

What we're doing

Bailouts

- Benefits
 - Add an asset to an incomplete marke
- Costs
- Induces moral hazard emoral firms
- Regulation

What we're doing

- Bailouts
 - Benefits:
 - Add an asset to an incomplete market
 - Reduce variance in income
 - Costs

Regulation

What we're doing

- Bailouts
 - Benefits:
 - Add an asset to an incomplete market
 - Reduce variance in income
 - Costs

Regulation

What we're doing

- Bailouts
 - Benefits:
 - Add an asset to an incomplete market
 - Reduce variance in income
 - Costs

Regulation

- Bailouts
 - Benefits:
 - Add an asset to an incomplete market
 - Reduce variance in income
 - Costs:
 - Revenue neutrality implies future taxes
 - Induces moral hazard among firms
- Regulation

- Bailouts
 - Benefits:
 - Add an asset to an incomplete market
 - Reduce variance in income
 - Costs:
 - Revenue neutrality implies future taxes
 - Induces moral hazard among firms (not here)
- Regulation

- Bailouts
 - Benefits:
 - Add an asset to an incomplete market
 - Reduce variance in income
 - Costs:
 - Revenue neutrality implies future taxes
 - Induces moral hazard among firms (not here)
- Regulation

- Bailouts
 - Benefits:
 - Add an asset to an incomplete market
 - Reduce variance in income
 - Costs:
 - Revenue neutrality implies future taxes
 - Induces moral hazard among firms (not here)
- Regulation

- Bailouts
 - Benefits:
 - Add an asset to an incomplete market
 - Reduce variance in income
 - Costs:
 - Revenue neutrality implies future taxes
 - Induces moral hazard among firms (not here)
- Regulation
 - Benefits
 - Costs

- Bailouts
 - Benefits:
 - Add an asset to an incomplete market
 - Reduce variance in income
 - Costs:
 - Revenue neutrality implies future taxes
 - Induces moral hazard among firms (not here)
- Regulation
 - Benefits
 - Aligns firm's incentive with households
 - Costs

- Bailouts
 - Benefits:
 - Add an asset to an incomplete market
 - Reduce variance in income
 - Costs:
 - Revenue neutrality implies future taxes
 - Induces moral hazard among firms (not here)
- Regulation
 - Benefits
 - Aligns firm's incentive with households
 - Costs
 - Reduces expected profits of firms

Competitive model (no gov't)

Unit measure of identical risk averse households.

$$\max_{c_t, s_{t+1}} E\left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\gamma} - 1}{1 - \gamma}\right]$$

s.t.
$$c_t \leq s_t R_t - s_{t+1}$$

- inelastic labor supply
- households' only asset is firm capital investment

Household optimal savings/investment

Regulation

Household intertemporal Euler equation

$$(c_t)^{-\gamma} = \beta E \left[R_{t+1} \left(c_{t+1} \right)^{-\gamma} \right]$$

$$s_{t+1} = \phi_t s_t R_t$$
$$c_t = (1 - \phi_t) s_t R_t$$

$$\phi = \left(\beta E \left[R_{t+1}^{1-\gamma} \right] \right)^{\frac{1}{\gamma}} \quad \forall t$$

Household optimal savings/investment

Household intertemporal Euler equation

$$(c_t)^{-\gamma} = \beta E \left[R_{t+1} \left(c_{t+1} \right)^{-\gamma} \right]$$

ullet Analytical solution: conjecture savings rate ϕ

$$egin{aligned} s_{t+1} &= \phi_t s_t R_t \ c_t &= (1 - \phi_t) s_t R_t \end{aligned}$$

Solution for savings rate is:

$$\phi = \left(\beta E \left[R_{t+1}^{1-\gamma} \right] \right)^{\frac{1}{\gamma}} \quad \forall t$$

Household optimal savings/investment

Household intertemporal Euler equation

$$(c_t)^{-\gamma} = \beta E \left[R_{t+1} \left(c_{t+1} \right)^{-\gamma} \right]$$

Analytical solution: conjecture savings rate φ

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Solution for savings rate is:

$$\phi = \left(\beta E \left[R_{t+1}^{1-\gamma} \right] \right)^{\frac{1}{\gamma}} \quad \forall t$$

Household optimal savings/investment

Transversality condition must hold

$$\lim_{t\to\infty}\beta^t E\left[s_t R_t(c_t)^{-\gamma}\right]=0$$

- Discounted expected marginal value of savings far in the future goes to zero
- Ensures that $\phi < 1$

- Unit measure, identical, risk-neutral, perfectly competitive
- Receive household capital investment si
- Allocate st ex ante between riskless and risky asset
- α_t is percent of portfolio in risky asset
- Riskless (gross) return is $\theta > 1$ for all t
- Risky return is $X_t \sim \text{LN}(\mu, \sigma^2)$
- $E[X_t] > \theta$

- Unit measure, identical, risk-neutral, perfectly competitive
- Receive household capital investment s_t
- Allocate s_t ex ante between riskless and risky asset
- ullet α_t is percent of portfolio in risky asset
- Riskless (gross) return is $\theta > 1$ for all t
- Risky return is $X_t \sim \mathsf{LN}(\mu, \sigma^2)$
- $E[X_t] > \theta$

- Unit measure, identical, risk-neutral, perfectly competitive
- Receive household capital investment s_t
- Allocate s_t ex ante between riskless and risky asset
- α_t is percent of portfolio in risky asset
- Riskless (gross) return is $\theta > 1$ for all t
- Risky return is $X_t \sim \mathsf{LN}(\mu, \sigma^2)$
- $E[X_t] > \theta$

Firms optimal portfolio choice

- Unit measure, identical, risk-neutral, perfectly competitive
- Receive household capital investment s_t
- Allocate s_t ex ante between riskless and risky asset
- α_t is percent of portfolio in risky asset
- Riskless (gross) return is $\theta > 1$ for all t
- Risky return is $X_t \sim \mathsf{LN}(\mu, \sigma^2)$
- $E[X_t] > \theta$

Introduction

- Unit measure, identical, risk-neutral, perfectly competitive
- Receive household capital investment s_t
- Allocate s_t ex ante between riskless and risky asset
- α_t is percent of portfolio in risky asset
- Riskless (gross) return is $\theta > 1$ for all t
- Risky return is $X_t \sim \mathsf{LN}(\mu, \sigma^2)$
- $E[X_t] > \theta$

- Unit measure, identical, risk-neutral, perfectly competitive
- Receive household capital investment s_t
- Allocate s_t ex ante between riskless and risky asset
- α_t is percent of portfolio in risky asset
- Riskless (gross) return is $\theta > 1$ for all t
- Risky return is $X_t \sim \text{LN}(\mu, \sigma^2)$
- $E[X_t] > \theta$

- Unit measure, identical, risk-neutral, perfectly competitive
- Receive household capital investment s_t
- Allocate s_t ex ante between riskless and risky asset
- α_t is percent of portfolio in risky asset
- Riskless (gross) return is $\theta > 1$ for all t
- Risky return is $X_t \sim \text{LN}(\mu, \sigma^2)$
- $E[X_t] > \theta$

Data

Firms optimal portfolio choice

Firms' production function is linear in capital

$$y_t = K_t$$

- where K_t is ex post capital

$$K_t = \mathbf{s}_t \left[\alpha_t X_t + (1 - \alpha_t) \theta \right]$$

$$K_t = s_t \left[\alpha_t X_t^{\frac{\rho-1}{\rho}} + (1-\alpha_t) \theta^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}, \quad \rho > 0$$

Data

Firms optimal portfolio choice

Firms' production function is linear in capital

$$y_t = K_t$$

- where K_t is ex post capital
- capital K_t is some aggregator of risky and riskless portion of the portfolio

$$K_t = s_t \left[\alpha_t X_t + (1 - \alpha_t) \theta \right]$$

$$K_t = s_t \left[\alpha_t X_t^{\frac{\rho-1}{\rho}} + (1 - \alpha_t) \theta^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}, \quad \rho > 0$$

Firms' production function is linear in capital

$$y_t = K_t$$

- where K_t is ex post capital
- capital K_t is some aggregator of risky and riskless portion of the portfolio

$$K_t = s_t \left[\alpha_t X_t + (1 - \alpha_t) \theta \right]$$

CES function is more general

$$K_t = s_t \left[\alpha_t X_t^{\frac{\rho-1}{\rho}} + (1-\alpha_t) \theta^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}, \quad \rho > 0$$

• Assume Cobb-Douglas $\rho = 1$ production function

$$y_t = s_t X_t^{\alpha_t} \theta^{1-\alpha_t}$$

- two assets are still substitutes
- but have a degree of complementarity
- provides some analytical tractability
- Firm's problem is choose α_t to max expected profits

$$\max_{\alpha_t} E\left[s_t X_t^{\alpha_t} \theta^{1-\alpha_t} - s_t R_t\right]$$

$$\alpha_t = 1 \quad \forall t$$

• Assume Cobb-Douglas $\rho = 1$ production function

$$y_t = s_t X_t^{\alpha_t} \theta^{1-\alpha_t}$$

- two assets are still substitutes
- but have a degree of complementarity
- provides some analytical tractability
- Firm's problem is choose α_t to max expected profits

$$\max_{\alpha_t} E\left[s_t X_t^{\alpha_t} \theta^{1-\alpha_t} - s_t R_t\right]$$

$$\alpha_t = 1 \quad \forall t$$

• Assume Cobb-Douglas $\rho = 1$ production function

$$y_t = s_t X_t^{\alpha_t} \theta^{1-\alpha_t}$$

- two assets are still substitutes
- but have a degree of complementarity
- provides some analytical tractability
- Firm's problem is choose α_t to max expected profits

$$\max_{\alpha_t} E\left[s_t X_t^{\alpha_t} \theta^{1-\alpha_t} - s_t R_t\right]$$

$$\alpha_t = 1, \quad \forall t$$

Data

Firms optimal portfolio choice

• Assume Cobb-Douglas $\rho = 1$ production function

$$y_t = s_t X_t^{\alpha_t} \theta^{1-\alpha_t}$$

- two assets are still substitutes
- but have a degree of complementarity
- provides some analytical tractability
- Firm's problem is choose α_t to max expected profits

$$\max_{\alpha_t} E\left[s_t X_t^{\alpha_t} \theta^{1-\alpha_t} - s_t R_t\right]$$

$$\alpha_t = 1, \forall t$$

Competitive equilibrium

- Zero profit condition requires that $R_t = X_t^{\alpha_t} \theta^{1-\alpha_t}$
- The goods market clears: $y_t = c_t + s_{t+1}$

Definition 1: Competitive Equilibrium

- Households optimize: $\phi = \left(\beta E\left[R_{t+1}^{1-\gamma}\right]\right)^{\frac{1}{\gamma}} \quad \forall i$
- 2 Firms optimize: α_1
- 3 Zero profits: $R_t = X_t^{\alpha_t} \theta^{1-\alpha_t}$
- 4 Goods market clears $y_t = c_t + s_{t+1}$

Competitive equilibrium

- Zero profit condition requires that $R_t = X_t^{\alpha_t} \theta^{1-\alpha_t}$
- The goods market clears: $y_t = c_t + s_{t+1}$

Definition 1: Competitive Equilibrium

- **1** Households optimize: $\phi = \left(\beta E\left[R_{t+1}^{1-\gamma}\right]\right)^{\frac{1}{\gamma}} \quad \forall t$
- 2 Firms optimize: α_t
- 3 Zero profits: $R_t = X_t^{\alpha_t} \theta^{1-\alpha_t}$
- Goods market clears $y_t = c_t + s_{t+1}$

Competitive equilibrium

- Zero profit condition requires that $R_t = X_t^{\alpha_t} \theta^{1-\alpha_t}$
- The goods market clears: $y_t = c_t + s_{t+1}$

Definition 1: Competitive Equilibrium

- Households optimize: $\phi = \left(\beta E\left[R_{t+1}^{1-\gamma}\right]\right)^{\frac{1}{\gamma}} \quad \forall t$
- ② Firms optimize: α_t
- 3 Zero profits: $R_t = X_t^{\alpha_t} \theta^{1-\alpha_t}$
- O Goods market clears $y_t = c_t + s_{t+1}$

Data

Competitive equilibrium

- $\alpha_t = 1$ implies $R_t = X_t$
- Competitive equilibrium savings rate becomes

$$\phi_c = \left(\beta E\left[X_{t+1}^{1-\gamma}\right]\right)^{\frac{1}{\gamma}} = \left[\beta e^{(1-\gamma)\mu + \frac{(1-\gamma)^2\sigma^2}{2}}\right]^{\frac{1}{\gamma}}$$

Discounted expected lifetime utility is

$$V^{c}(s_{0}R_{0}) = \begin{cases} \frac{1}{1-\gamma} \left[(1-\phi_{c})^{-\gamma} (s_{0}R_{0})^{1-\gamma} - \frac{1}{1-\beta} \right] & \text{if } \gamma > 1\\ \frac{1}{1-\beta} \left[\log([1-\phi_{c}]s_{0}R_{0}) + \frac{\beta}{1-\beta} (\log(\phi_{c}) + \mu) \right] & \text{if } \gamma = 1 \end{cases}$$

Competitive equilibrium

- $\alpha_t = 1$ implies $R_t = X_t$
- Competitive equilibrium savings rate becomes

$$\phi_{c} = \left(\beta E\left[X_{t+1}^{1-\gamma}\right]\right)^{\frac{1}{\gamma}} = \left[\beta e^{(1-\gamma)\mu + \frac{(1-\gamma)^{2}\sigma^{2}}{2}}\right]^{\frac{1}{\gamma}}$$

Discounted expected lifetime utility is

$$V^{c}(s_{0}R_{0}) = \begin{cases} \frac{1}{1-\gamma} \left[(1-\phi_{c})^{-\gamma} (s_{0}R_{0})^{1-\gamma} - \frac{1}{1-\beta} \right] & \text{if } \gamma > 1\\ \frac{1}{1-\beta} \left[\log([1-\phi_{c}]s_{0}R_{0}) + \frac{\beta}{1-\beta} (\log(\phi_{c}) + \mu) \right] & \text{if } \gamma = 1 \end{cases}$$

Competitive equilibrium

- $\alpha_t = 1$ implies $R_t = X_t$
- Competitive equilibrium savings rate becomes

$$\phi_{c} = \left(\beta E\left[X_{t+1}^{1-\gamma}\right]\right)^{\frac{1}{\gamma}} = \left[\beta e^{(1-\gamma)\mu + \frac{(1-\gamma)^{2}\sigma^{2}}{2}}\right]^{\frac{1}{\gamma}}$$

Discounted expected lifetime utility is

$$V^{c}(s_{0}R_{0}) = \begin{cases} \frac{1}{1-\gamma} \left[(1-\phi_{c})^{-\gamma} (s_{0}R_{0})^{1-\gamma} - \frac{1}{1-\beta} \right] & \text{if } \gamma > 1\\ \frac{1}{1-\beta} \left[\log([1-\phi_{c}]s_{0}R_{0}) + \frac{\beta}{1-\beta} (\log(\phi_{c}) + \mu) \right] & \text{if } \gamma = 1 \end{cases}$$

Planner's regulation problem

• Planner chooses s_{t+1} and α_{t+1} to max household welfare

• $\hat{\alpha}$ is an upper bound on firms' choice $\alpha \leq \hat{\alpha}$

$$\max_{s_{t+1},\alpha_{t+1}} E\left[\sum_{t=0}^{\infty} \beta^{t} \frac{\left(s_{t} X_{t}^{\alpha_{t}} \theta^{1-\alpha_{t}} - s_{t+1}\right)^{1-\gamma} - 1}{1-\gamma}\right]$$

$$s_{t+1} \geq 0, \quad \alpha_{t+1} \in [0, 1] \quad \forall t \in [0, 1]$$

Planner's regulation problem

• Planner chooses s_{t+1} and α_{t+1} to max household welfare

• $\hat{\alpha}$ is an upper bound on firms' choice $\alpha \leq \hat{\alpha}$

$$\max_{s_{t+1},\alpha_{t+1}} E\left[\sum_{t=0}^{\infty} \beta^t \frac{\left(s_t X_t^{\alpha_t} \theta^{1-\alpha_t} - s_{t+1}\right)^{1-\gamma} - 1}{1-\gamma}\right]$$

$$s_{t+1} \ge 0, \quad \alpha_{t+1} \in [0,1] \quad \forall t$$

Planner's regulation equilibrium

Definition 2: Planner's Regulation Equilibrium

- Households optimize: $\phi_r = \left(\beta E \left[R_{t+1}^{1-\gamma} \right] \right)^{\frac{1}{\gamma}} \quad \forall t$
- **2** Firms optimize: $\alpha_t \leq \hat{\alpha}_r \quad \forall t$
- **3** Zero profits: $R_t = X_t^{\alpha_t} \theta^{1-\alpha_t}$
- **1** Planner chooses $\hat{\alpha}$ to maximize household welfare
- **o** Goods market clears $y_t = c_t + s_{t+1}$

Bailouts

Planner's regulation equilibrium

- Firms choose $\alpha_t = \hat{\alpha}$
- ullet Equilibrium savings rate as a function of α

$$\phi_r(\alpha) = \left[\beta \theta^{(1-\alpha)(1-\gamma)} e^{\alpha(1-\gamma)\mu + \frac{\alpha^2(1-\gamma)^2\sigma^2}{2}}\right]^{\frac{1}{\gamma}}$$

ullet Lifetime discounted expected utility as function of lpha

$$V^{r}(s_{0}R_{0},\alpha) = \begin{cases} \frac{1}{1-\gamma} \left[\left(1-\phi_{r}(\alpha)\right)^{-\gamma} \left(s_{0}R_{0}\right)^{1-\gamma} - \frac{1}{1-\beta} \right] & \text{if} \quad \gamma > 1 \\ \\ \frac{1}{1-\beta} \left[\log\left(\left[1-\phi_{r}(\alpha)\right]s_{0}R_{0}\right) + \frac{\beta}{1-\beta} \left(\log\left(\phi_{r}(\alpha)\right) + \dots \right. \\ \\ \left. \left(1-\alpha\right)\log(\theta) + \alpha\mu\right) \right] & \text{if} \quad \gamma = 1 \end{cases}$$

Planner's regulation equilibrium

- Firms choose $\alpha_t = \hat{\alpha}$
- ullet Equilibrium savings rate as a function of lpha

$$\phi_r(\alpha) = \left[\beta \theta^{(1-\alpha)(1-\gamma)} e^{\alpha(1-\gamma)\mu + \frac{\alpha^2(1-\gamma)^2\sigma^2}{2}}\right]^{\frac{1}{\gamma}}$$

ullet Lifetime discounted expected utility as function of lpha

$$V^{r}(s_{0}R_{0},\alpha) = \begin{cases} \frac{1}{1-\gamma} \left[\left(1 - \phi_{r}(\alpha)\right)^{-\gamma} \left(s_{0}R_{0}\right)^{1-\gamma} - \frac{1}{1-\beta} \right] & \text{if} \quad \gamma > 1\\ \frac{1}{1-\beta} \left[\log\left(\left[1 - \phi_{r}(\alpha)\right]s_{0}R_{0}\right) + \frac{\beta}{1-\beta} \left(\log\left(\phi_{r}(\alpha)\right) + \dots + \left(1 - \alpha\right)\log(\theta) + \alpha\mu\right) \right] & \text{if} \quad \gamma = 1 \end{cases}$$

Planner's regulation equilibrium

- Firms choose $\alpha_t = \hat{\alpha}$
- ullet Equilibrium savings rate as a function of lpha

$$\phi_r(\alpha) = \left[\beta \theta^{(1-\alpha)(1-\gamma)} e^{\alpha(1-\gamma)\mu + \frac{\alpha^2(1-\gamma)^2\sigma^2}{2}}\right]^{\frac{1}{\gamma}}$$

ullet Lifetime discounted expected utility as function of lpha

$$V^{r}(s_{0}R_{0},\alpha) = \begin{cases} \frac{1}{1-\gamma} \left[\left(1-\phi_{r}(\alpha)\right)^{-\gamma} \left(s_{0}R_{0}\right)^{1-\gamma} - \frac{1}{1-\beta} \right] & \text{if} \quad \gamma > 1\\ \frac{1}{1-\beta} \left[\log\left(\left[1-\phi_{r}(\alpha)\right]s_{0}R_{0}\right) + \frac{\beta}{1-\beta} \left(\log\left(\phi_{r}(\alpha)\right) + \dots \right. \\ \left. \left(1-\alpha\right)\log(\theta) + \alpha\mu\right) \right] & \text{if} \quad \gamma = 1 \end{cases}$$

Planner's regulation equilibrium

$$\hat{\alpha} = \begin{cases} \frac{\mu - \log(\theta)}{(\gamma - 1)\sigma^2}, & \hat{\alpha} \in [0, 1] & \text{if} \quad \gamma > 1\\ 1 & \text{if} \quad \gamma = 1 \end{cases}$$

- $\hat{\alpha}$ is a function of risk adjusted equity premium
- $\hat{\alpha}$ aligns household and firm incentives
- Welfare under â dominates competitive solution for some parameters

Planner's regulation equilibrium

$$\hat{\alpha} = \begin{cases} \frac{\mu - \log(\theta)}{(\gamma - 1)\sigma^2}, & \hat{\alpha} \in [0, 1] & \text{if} \quad \gamma > 1\\ 1 & \text{if} \quad \gamma = 1 \end{cases}$$

- $\hat{\alpha}$ is a function of risk adjusted equity premium
- $\hat{\alpha}$ aligns household and firm incentives
- Welfare under â dominates competitive solution for some parameters
 - Calibration: $\mu = 0.069$, $\sigma = 0.157$, $\theta = 1.04$, $\theta = 0.96$, $\gamma = 3$

Data

Planner's regulation equilibrium

$$\hat{\alpha} = \begin{cases} \frac{\mu - \log(\theta)}{(\gamma - 1)\sigma^2}, & \hat{\alpha} \in [0, 1] & \text{if} \quad \gamma > 1\\ 1 & \text{if} \quad \gamma = 1 \end{cases}$$

- $\hat{\alpha}$ is a function of risk adjusted equity premium
- $\hat{\alpha}$ aligns household and firm incentives
- Welfare under $\hat{\alpha}$ dominates competitive solution for some parameters
 - Calibration: $\mu = 0.069$, $\sigma = 0.157$, $\theta = 1.04$, $\theta = 0.96$, $\gamma = 3$

Planner's regulation equilibrium

$$\hat{\alpha} = \begin{cases} \frac{\mu - \log(\theta)}{(\gamma - 1)\sigma^2}, & \hat{\alpha} \in [0, 1] & \text{if} \quad \gamma > 1\\ 1 & \text{if} \quad \gamma = 1 \end{cases}$$

- $\hat{\alpha}$ is a function of risk adjusted equity premium
- $\hat{\alpha}$ aligns household and firm incentives
- Welfare under $\hat{\alpha}$ dominates competitive solution for some parameters
 - Calibration: $\mu = 0.069, \sigma = 0.157, \theta = 1.04, \beta = 0.96, \gamma = 3$

Regulation vs. competitive equilibria

Data

Planner's bailout problem

Bailout policy is minimum guaranteed return a

Regulation

$$\tilde{R}_t = \max\left\{X_t^{\alpha_t}\theta^{1-\alpha_t}, a\right\}$$

$$\max_{\alpha_t} E\left[s_t(1-\tau) \max\left\{X_t^{\alpha_t} \theta^{1-\alpha_t}, a\right\} - s_t R_t\right]$$

$$\int_0^a (a - X_t) f(X_t) dX_t = \tau \left[F(a) a + \left(1 - F(a) \right) \int_a^\infty X_t f(X_t) dX_t \right]$$

Planner's bailout problem

Bailout policy is minimum guaranteed return a

$$\tilde{R}_t = \max\left\{X_t^{\alpha_t}\theta^{1-\alpha_t}, a\right\}$$

• Policy a only reinforces firm's optimal decision $\alpha = 1$

$$\max_{\alpha_t} E\left[s_t(1-\tau) \max\left\{X_t^{\alpha_t} \theta^{1-\alpha_t}, a\right\} - s_t R_t\right]$$

• Revenue neutrality: a associated with capital gains tax $\tau(a)$

$$\int_0^a (a - X_t) f(X_t) dX_t = \tau \left[F(a) a + \left(1 - F(a) \right) \int_a^\infty X_t f(X_t) dX_t \right]$$

Planner's bailout problem

Bailout policy is minimum guaranteed return a

Regulation

$$\tilde{R}_t = \max\left\{X_t^{\alpha_t}\theta^{1-\alpha_t}, a\right\}$$

Policy a only reinforces firm's optimal decision $\alpha = 1$

$$\max_{\alpha_t} E\left[s_t(1-\tau) \max\left\{X_t^{\alpha_t} \theta^{1-\alpha_t}, a\right\} - s_t R_t\right]$$

• Revenue neutrality: a associated with capital gains tax $\tau(a)$

$$\int_0^a (a-X_t) f(X_t) dX_t = \tau \left[F(a)a + \left(1 - F(a)\right) \int_a^\infty X_t f(X_t) dX_t \right]$$

Data

Planner's bailout problem

Zero profit condition pins down R_t

Regulation

$$R_t = (1 - \tau) \max \left\{ X_t^{\alpha_t} \theta^{1 - \alpha_t}, a \right\} \quad \forall t$$

 Planner chooses s_{t+1} and a to maximize household welfare

$$\max_{s_{t+1},a} E\left[\sum_{t=0}^{\infty} \beta^{t} \frac{(s_{t}R_{t} - s_{t+1})^{1-\gamma} - 1}{1-\gamma}\right], \quad s_{t+1}, a \ge 0, \quad \forall t$$

Planner's bailout problem

Zero profit condition pins down R_t

$$R_t = (1 - \tau) \max \left\{ X_t^{\alpha_t} \theta^{1 - \alpha_t}, a \right\} \quad \forall t$$

 Planner chooses s_{t+1} and a to maximize household welfare

$$\max_{s_{t+1},a} E\left[\sum_{t=0}^{\infty} \beta^t \frac{(s_t R_t - s_{t+1})^{1-\gamma} - 1}{1-\gamma}\right], \quad s_{t+1}, a \ge 0, \quad \forall t$$

Planner's bailout equilibrium

Definition 3: Planner's Bailout Equilibrium

- Households optimize: $\phi_b = \left(\beta E \left[R_{t+1}^{1-\gamma} \right] \right)^{\frac{1}{\gamma}} \quad \forall t$
- **2** Firms optimize: $\alpha_t = 1 \quad \forall t$
- **3** Zero profits: $R_t = (1 \tau) \max \{X_t^{\alpha_t} \theta^{1 \alpha_t}, a\} \quad \forall t$
- Planner chooses revenue neutral â to maximize household welfare
- **o** Goods market clears $y_t = c_t + s_{t+1}$

Planner's bailout equilibrium

• Equilibrium interest gross return R_t is

$$R_t = (1 - \tau) \max \{X_t, a\} \quad \forall t$$

Equilibrium savings rate as a function of a

$$\phi_b(a) = \left(\beta \left[1 - \tau(a)\right]^{1 - \gamma} E\left[\max\left\{X_t, a\right\}^{1 - \gamma}\right]\right)^{\frac{1}{\gamma}}$$

Lifetime discounted expected utility as function of a

$$V^{b}(s_{0}R_{0}, a) = \begin{cases} \frac{1}{1-\gamma} \left[\left(1 - \phi_{b}(a)\right)^{-\gamma} (s_{0}R_{0})^{1-\gamma} - \frac{1}{1-\beta} \right] \\ \frac{1}{1-\beta} \left[\log\left(\left[1 - \phi_{b}(a)\right]s_{0}R_{0}\right) + \frac{\beta}{1-\beta} \left(\log\left(\phi_{b}(a)\right) + \mu\right) \right] \end{cases}$$

Planner's bailout equilibrium

• Equilibrium interest gross return R_t is

$$R_t = (1 - \tau) \max \{X_t, a\} \quad \forall t$$

Equilibrium savings rate as a function of a

$$\phi_b(a) = \left(\beta \left[1 - \tau(a)\right]^{1 - \gamma} E\left[\max\left\{X_t, a\right\}^{1 - \gamma}\right]\right)^{\frac{1}{\gamma}}$$

Lifetime discounted expected utility as function of a

$$V^{b}(s_{0}R_{0}, a) = \begin{cases} \frac{1}{1-\gamma} \left[\left(1 - \phi_{b}(a)\right)^{-\gamma} (s_{0}R_{0})^{1-\gamma} - \frac{1}{1-\beta} \right] \\ \frac{1}{1-\beta} \left[\log\left(\left[1 - \phi_{b}(a)\right]s_{0}R_{0}\right) + \frac{\beta}{1-\beta} \left(\log\left(\phi_{b}(a)\right) + \mu\right) \right] \end{cases}$$

Planner's bailout equilibrium

Equilibrium interest gross return R_t is

$$R_t = (1 - \tau) \max \{X_t, a\} \quad \forall t$$

Equilibrium savings rate as a function of a

$$\phi_b(a) = \left(\beta \left[1 - \tau(a)\right]^{1 - \gamma} E\left[\max\left\{X_t, a\right\}^{1 - \gamma}\right]\right)^{\frac{1}{\gamma}}$$

Lifetime discounted expected utility as function of a

$$V^{b}(s_0R_0,a) = \begin{cases} \frac{1}{1-\gamma} \left[\left(1-\phi_b(a)\right)^{-\gamma} \left(s_0R_0\right)^{1-\gamma} - \frac{1}{1-\beta} \right] \\ \frac{1}{1-\beta} \left[\log\left(\left[1-\phi_b(a)\right]s_0R_0\right) + \frac{\beta}{1-\beta} \left(\log\left(\phi_b(a)\right) + \mu\right) \right] \end{cases}$$

Bailout vs. regulation equilibria

- Regulation aligns household and firm incentives
- Bailouts increase market completeness
- Sometimes market incompleteness wedge dominates misaligned incentives wedge
- Bailout and regulation policy would be optimal
- Can we test this model with data?

- Regulation aligns household and firm incentives
- Bailouts increase market completeness
- Sometimes market incompleteness wedge dominates misaligned incentives wedge
- Bailout and regulation policy would be optimal
- Can we test this model with data?

- Regulation aligns household and firm incentives
- Bailouts increase market completeness
- Sometimes market incompleteness wedge dominates misaligned incentives wedge
- Bailout and regulation policy would be optimal
- Can we test this model with data?

- Regulation aligns household and firm incentives
- Bailouts increase market completeness
- Sometimes market incompleteness wedge dominates misaligned incentives wedge
- Bailout and regulation policy would be optimal
- Can we test this model with data?

- Regulation aligns household and firm incentives
- Bailouts increase market completeness
- Sometimes market incompleteness wedge dominates misaligned incentives wedge
- Bailout and regulation policy would be optimal
- Can we test this model with data?

What do the data say?

- The following are functions of average returns μ and variance of returns σ^2
 - Regulation $\hat{\alpha}$
 - Tax rates τ
 - Savings rates ϕ
 - Consumption c
 - Estimate probability of bailout (implicit guarantees)

Summary of findings

Regulation can align household and firm incentives

Bailouts can increase market completeness

Must know relative size of market incompleteness and incentive misalignment

Some combination of regulation and bailouts can be optimal

Where we are going

- Take model to the data
- General CES production function $\rho \ge 1$
- Persistent X_t
 - Firms sometimes choose $\alpha_t = 0$, quantify moral hazard
 - Government revenue neutrality depends on X_t and β
- Allow firms to use leverage, quantify moral hazard
- What is optimal nonlinear tax rate τ ?

