	Anotações
LRU, Caches multinível e Coerência de Cache	
Wwi Kasaubawaki Lanas	
Yuri Kaszubowski Lopes	
UDESC	-
YKL (UDESC) LRU, Caches multinivel e Coerència de Cache 1/34	
Revisão: Exemplo 1	Anotações
 Considerando uma cache associativa ▶ 2 vias 	
 Blocos de 4 bytes Capacidade de 64 bytes Quantos blocos no total? 	
➤ Quantos blocos no total? * ⁶⁴ / ₄ = 16 blocos	
 ► Quantos conjuntos no total? ★ 16/2 = 8 conjuntos 	
Quantos bits para offset, endereço do conjunto e tag (considerando endereçamentos de 8 e 16 bits)?	
 /g 4 = 2 bits p/ offset /g 8 = 3 bits p/ endereço do conjunto 	
 8 - 2 - 3 = 3 bits p/ tag com endereçamentos de 8 bits 16 - 2 - 3 = 11 bits p/ tag com endereçamentos de 16 bits 	
YKL (UDESC) LRU, Caches multinivel e Coerència de Cache 2/84	
Revisão: Exemplo 2	Anatoaãos
Considerando uma cache associativa	Anotações
 4 vias Blocos de 4 bytes 	
 Capacidade de 64 bytes Quantos blocos no total? 	
* ⁶ ⁄ ₄ = 16 blocos ► Quantos conjuntos no total?	
 ★ 16/4 = 4 conjuntos ► Quantos bits para offset, endereço do conjunto e tag (considerando endereçamentos de 8 e 16 bits)? 	
★ Ig 4 = 2 bits p/ offset	
 /g 4 = 2 bits p/ endereço do conjunto * 8 - 2 - 2 = 4 bits p/ tag com endereçamentos de 8 bits * 16 - 2 - 2 = 12 bits p/ tag com endereçamentos de 16 bits 	

Revisão: Exemplo 3

- Considerando uma cache associativa

 - 2 viasBlocos de 4 bytes
 - Cache com capacidade para armazenar 8 blocos no total
 Qual a capacidade para dados?
 * 8 × 4 = 32 bytes de capacidade para dados
 - ► Onde o byte no endereço 0000 1001₂ pode ser mapeado?

Anotações	

Revisão: Exemplo 3

Onde o byte no endereço 0000 1001_2 pode ser mapeado?

Está no conjunto $\mathbf{10}_2$ ($\mathbf{2}_{10}$) Podemos mapear para qualquer um dos 2 blocos desse conjunto!

Cache				
Conjunto	Tag	Dado (Bloco)	Tag	Dado (Bloco)
002				
012				
102		,		•
11,				

	Principal	
Bloco	Endereço	Dado (1 byte)
	▲ 0000 0000	Dado 0
000000	0000 0001	Dado 1
0000002	0000 0010	Dado 2
	0000 0011	Dado 3
	0000 0100	Dado 4
000001,	0000 0101	Dado 5
2	0000 0110	Dado 6
	▼ 0000 0111	Dado 7
-	▲ 0000 1000	Dado 8
000010	0000 1001	Dado 9
0000102	0000 1010	Dado 10
	▼0000 1011	Dado 11
	▲ 0000 1100	Dado 12
000011,	0000 1101	Dado 13
0000112	0000 1110	Dado 14
	V 0000 1111	Dado 15
000100	▲ 0001 0000	Dado 16

Anotações

Qual bloco substituir?

		_

Qual bloco substituir? Anotações No caso de um miss Se todos os blocos do conjunto estão ocupados Precisamos substituir um bloco Qual bloco? Qual bloco substituir? Anotações Poderíamos selecionar aleatoriamente • Funciona, mas pode não ser uma boa ideia • Se dermos azar, podemos remover um bloco que está sendo usado o tempo todo na nossa cache Poderíamos pensar em lógicas sofisticadas para isso • Bloco mais distante dos seus vizinhos, menos acessado, mais distante da instrução sendo executada, uma junção de todas essas métricas, ... • Pode nos levar a decisões melhores. Problemas? Vai custar muito tempo e hardware para tomar essa decisão Qual bloco substituir? Anotações • Precisamos então de uma solução que tenha um bom custo x benefício • Que seja pelo menos melhor que uma seleção desinformada, e que custe pouco tempo e hardware

LRU: Least recently used

- LRU Least recently used (usado menos recentemente)

 - Remover o bloco que teve o acesso mais antigo
 Esquema comumente encontrado em nossas CPUs
- No esquema de uma cache associativa de 2 vias é relativamente simples de se implementar. Exemplo:
 - ▶ Podemos manter um "bit de uso" em cada bloco do conjunto da cache

Toda vez que umO bit de uso do ou	bloco do conjunto é acessado utro bloco é resetado	seu bit de uso é setado			
YKL (UDESC)	LRU, Caches multinível e Coerência de Cache		10/34		

Anotações

LRU: Least recently used

- Bits de uso em uma cache associativa de 2 vias com capacidade para 8 blocos
- Se precisarmos substituir um bloco do conjunto 1, uma escolha razoável é o segundo bloco do conjunto, pois foi acessado menos recentemente

Conjunto	٧	Uso	Tag	Bloco	٧	Uso	Tag	Bloco
0		0				1		
1		1				0		
2		1				0		
3		1				0		

Anotações		

LRU - Least recently used

- Obviamente, seja qual a estratégia implementarmos, não podemos garantir que efetuamos a melhor escolha
 - Não podemos prever o futuro
 - Mas técnicas mais informadas tendem a diminuir a chance de tomar uma decisão ruim

Anotações	
-	

 LRU - Least recently used Em uma cache associativa de 2 vias podemos manter um bit para cada bloco do conjunto 	Anotações
E como fazer para uma cache associativa de 4 vias?8 vias?	
• 12 vias? •	
YKL (UDESC) LRU, Caches multinivel e Coerência de Cache 13/34	
I DI La cat de cantila canti	
 LRU - Least recently used Para um número suficientemente grande de vias, as coisas se complicam 	Anotações
 Precisamos manter muitos bits, e técnicas de atualização mais complicadas para saber quem é o bloco acessado menos recentemente 	
no conjunto Por isso, mesmo caches simples com apenas 4 vias comumente	
implementam alguma aproximação do LRU	
YKL (UDESC) LRU, Caches multinivel e Coerència de Cache 14/34	
LRU - Least recently used	Anotações
• Aproximação simples para o LRU para uma cache associativa de n vias, onde $n>2$	Allotações
➤ Manter um bit de uso para cada bloco ➤ Quando um bloco é acessado: ★ O seu bit de uso é satado.	
 ★ O seu bit de uso é setado ★ Os bits de uso de todos os demais blocos é resetado ► Agora sabemos qual o bloco usado mais recentemente 	
 Mas não sabemos exatamente qual o bloco usado menos recentemente Sabemos apenas que os demais não são a pior escolha possível Nesse caso podemos escolher aleatoriamente entre esses blocos 	
 Técnicas mais sofisticadas (+ caras e +complexas) Manter uma estrutura de árvore para decidir qual o bloco mais antigo Utiliza mais bits, mas leva a uma aproximação melhor do LRU 	

LRU para associatividades "grandes"

	Associativity								
Size	Two-way			Four-way			Eight-way		
	LRU	Random	FIFO	LRU	Random	FIFO	LRU	Random	FIFO
16 KiB	114.1	117.3	115.5	111.7	115.1	113.3	109.0	111.8	110.4
64 KiB	103.4	104.3	103.9	102.4	102.3	103.1	99.7	100.5	100.3
256 KiB	92.2	92.1	92.5	92.1	92.1	92.5	92.1	92.1	92.5

Número de misses para cada 1000 instruções para cada técnica de substituição de bloco considerando diferentes tamanhos de cache (Henessy, Patterson; 2017).

- Quando o nível de associatividade e o tamanho da cache são grandes o suficiente, o desempenho do LRU se aproxima de uma escolha aleatória
- Nesses casos, muitas vezes n\u00e3o vale a pena o custo de complexidade de se implementar um LRU
- Uma escolha aleatória se torna um melhor custo x benefício

			_
YKL (UDESC)	LRU, Caches multinivel e Coerência de Cache	16/34	

Anotações

Caches Multinível

• Processadores atuais utilizam múltiplos níveis de cache

		835)	Intel 17-75000	intel Xeon Platinum 9282
	Exemplo de Uso	Seu Smartphone (ex.: Google Pixel 3 - 2018)	Seu Notebook (ex.: Dell Inspiron 7560 - 2017)	Servidores e clusters de alto desempenho (2019)
roximidade da CPU	Cache L1	32KiB dados + 32 KiB instruções por core	64 KiB dados + 64 KiB instruções por core (128 KiB)	32KiB dados + 32 KiB instruções por core (3,5 MiB)
Silling CP	Cache L2	1MiB	256 KiB por core (512 KiB)	1MiB por core (56MiB)
ğ 🖁	Cache L3	2MiB	4MiB	77 MiB

Anotações		

Caches Multinível

Níveis mais altos mais próximos da CPU

- Focam na redução do tempo de acesso e custo do miss

 - Geralmente de acesso exclusivo para cada núcleo Comumente segmentadas entre cache de instrução e cache de dados
 - Que tipo de arquitetura? Harvard
 - Caches menores

Níveis mais baixos

- Focam na redução da probabilidade de miss
 - Caches maiores
 - Comumente compartilhadas entre os núcleos

Anotações			

Caches Multinível

- Exemplo:

 - Em caso de miss na L1, faz a carga a partir da L2
 Em caso de miss na L2, faz a carga a partir da L3
- Sem pular níveis

Anotações			

Caches Multinível

Níveis mais altos mais próximos da CPU

- Focam na redução do tempo de acesso e redução do miss penalty
- Como?
 - Reduzir o custo do miss
 - Reduzir o tamanho do bloco
 - Reduzir o tempo de acesso

 - udit o tempo de acesso Reduzir associatividade Caches não bloqueantes: e.g., enquanto a cache de dados gera um miss, a cache de instruções pode continuar operando A cache fica fisicamente mais próxima do núcleo Caches individuais por núcleo ou compartilhadas entre poucos núcleos

Anotações			

Anotações

Caches Multinível

Níveis mais baixos mais distantes da CPU

- Focam na redução da probabilidade de miss
- - Maior associatividade (localidade temporal)
 - Tamanhos de bloco maiores (localidade espacial)

 - Caches maiores Cache compartilhadas entre múltiplos núcleos
 - Evitar dados duplicados entre núcleos para otimizar o uso do espaço na cache
 - Contar com o compilador e com o programador para organizarem as instruções corretamente

Exemplo

Core i7-4960X

(UDESC)	

Anotações		

Problemas de Coerência de Cache

- CPUs modernas geram problemas modernos
 - Considere uma CPU de dois núcleos (cores)
 - Uma cache L1 exclusiva para cada núcleo
 - Uma cache L2 compartilhada entre os núcleos
 Caches com write-back
 - - ★ Write-Through: Sempre propagar escritas para os níveis mais baixos de
 - memória

 * Write-back: O dado é atualizado nos níveis mais baixos apenas quando o dado na cache é substituído
 - ► Como essas CPUs podem ver versões diferentes de um mesmo dado?

Anota	ções			

Problemas de Coerência de Cache

- A CPU (Core) 1 solicita um dado da L1
- L1 (do Core 1) não têm o dado (miss) e solicita da L2
- O dado é copiado da L2 para a L1 da CPU 1
- A CPU 1 modifica esse dado

 - O dado é escrito em sua L1, mas não na L2
 Lembre! Write-back: o dado só vai ser atualizado no outro nível quando o bloco for substituído
- A CPU (Core) 2 solicita o mesmo dado da sua L1

 - L1 (do Core 2) não tem o dado
 O dado é copiado da L2 para a L1 da CPU 2
 - * O dado da L2 está desatualizado!
- Como resolver?

Anotações			
			_
			_
-			

Problemas de Coerência de Cache ■ Usar write-through ■ Não é eficiente	Anotações
Protocolo de Snooping	
YKL (UDESC) LRU, Caches multinivel e Coerència de Cache 25/34	
Protocolo de Snooping	Arabasãas
 Popular nos processadores atuais Quando uma CPU escreve em um bloco da sua cache, envia um sinal 	Anotações
para todas as demais CPUs via broadcast para "sujar a cache" As demais CPU's e níveis de cache desligam o bit de validade do bloco 	
 caso elas possuam esse mesmo bloco Se duas CPU's tentam escrever ao mesmo tempo, uma delas "ganha a corrida" e envia o broadcast antes que a outra 	
	-
YKL (UDESC) LRU, Caches multinivel e Coerència de Cache 26/34	
Protocolo de Snooping	
Quando as outras CPUs precisarem do dado, o bit de validade está	Anotações
desligado Efetivamente força que a CPU faça uma nova cópia desse dado	
 Agora a cópia é mais complexa Pode vir da cache do vizinho, ou podemos forçar que a CPU que possui a cópia mais recente escreva no nível de baixo para que a CPU vizinha possa 	-
enxergar esse dado Depende de como implementamos o hardware do processador 	
	-

Exercício • Considere que temos blocos de 4 palavras. Considere o bloco a seguir: Endereço na MP 0000 00002 0000 00012 0000 00102 0000 00112 Dado Dado 1 Dado 2 Dado 3 Dado 4 • Se fizermos um programa que executa em paralelo em duas CPUs com a seguinte lógica CPU 1 Carregue 0000 0000 para reg1 Carregue 0000 0010 para reg2 Carregue 0000 0010 para reg2 Carregue 0000 0011 para reg2 reg3 = reg1 + reg2 salve reg3 em 0000 0010 Sesses programas compartilham algum dado em algum momento?	Anotações
 Há risco de uma CPU invalidar os dados da outra? Esse programa "paralelo" executa 2x mais rápido do que se fizéssemos tudo sequencialmente em uma única CPU? 	
YKL (UDESC) LRU, Caches multinivel e Coerència de Cache 28/34	
 Exercício: Respostas Os programas não compartilham dados Enquanto a CPU 1 está trabalhando com os dados 1 e 2, a CPU 2 trabalha com os dados 3 e 4 No entanto, note que todos os dados estão no mesmo bloco 	Anotações
 Os programas n\(\tilde{a}\) compartilham dados Enquanto a CPU 1 est\(\tilde{a}\) trabalhando com os dados 1 e 2, a CPU 2 trabalha com os dados 3 e 4 	Anotações
 Os programas não compartilham dados Enquanto a CPU 1 está trabalhando com os dados 1 e 2, a CPU 2 trabalha com os dados 3 e 4 No entanto, note que todos os dados estão no mesmo bloco Quando invalidamos algo na cache, invalidamos o bloco inteiro, e não só um pedaço do bloco Esse problema é chamado de falso compartilhamento Esse programa provavelmente vai executar mais lento do que se fizéssemos uma versão que utiliza uma única CPU 	Anotações
 Os programas não compartilham dados Enquanto a CPU 1 está trabalhando com os dados 1 e 2, a CPU 2 trabalha com os dados 3 e 4 No entanto, note que todos os dados estão no mesmo bloco Quando invalidamos algo na cache, invalidamos o bloco inteiro, e não só um pedaço do bloco Esse problema é chamado de falso compartilhamento Esse programa provavelmente vai executar mais lento do que se fizéssemos uma versão que utiliza uma única CPU Na versão atual, uma CPU atrapalha a outra 	Anotações
 Os programas não compartilham dados Enquanto a CPU 1 está trabalhando com os dados 1 e 2, a CPU 2 trabalha com os dados 3 e 4 No entanto, note que todos os dados estão no mesmo bloco Quando invalidamos algo na cache, invalidamos o bloco inteiro, e não só um pedaço do bloco Esse problema é chamado de falso compartilhamento Esse programa provavelmente vai executar mais lento do que se fizéssemos uma versão que utiliza uma única CPU 	Anotações

Exercício

- Para reduzir a probabilidade de falso compartilhamento, o que podemos fazer com o tamanho de blocos na cache?
- Blocos menores reduzem a chance de compartilhamento de variáveis
- Quando você criar um programa, deve também levar em consideração o tamanho dos blocos para evitar essa situação

Anotações			

Custo Energético

J. Henessy; D. Patterson. 2019

Anotações

Custo Energético

LRU, Caches multinível e Coerência de Cache 32/3

Anotações		

Referências

- D. Patterson; J. Henessy. Organização e Projeto de Computadores: a Interface Hardware/Software. 5a Edição. Elsevier Brasil, 2017.
- J. Henessy; D. Patterson. Computer Architecture: A Quantitative Approach. 6a Edição. 2019.
- STALLINGS, William. Arquitetura e organização de computadores.
 10. ed. São Paulo: Pearson Education do Brasil, 2018.

Anotações			