Polinomi simmetrici

§1.1 Definizione e prime proprietà

Sia \mathbb{K} un campo. Dati $\sigma \in S_n$ e un polinomio $f \in \mathbb{K}[x_1, \dots, x_n]$, si definisce il seguente polinomio:

$$(\sigma \cdot f)(x_1, \dots, x_n) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)}),$$

ossia il polinomio ottenuto permutando le variabili x_i secondo σ .

Definizione 1.1.1. Si definisce $\operatorname{Sym}[X_n]$ su K come il sottoanello di $\mathbb{K}[x_1,\ldots,x_n]$ dei **polinomi simmetrici**, ossia di quei polinomi tali che $\sigma \cdot f = f, \forall \sigma \in S_n$.

Definizione 1.1.2. Sia $d \in \mathbb{N}$ tale che $0 \le d \le n$. Si definisce **polinomio simmetrico** elementare su $\operatorname{Sym}[X_n]$ ogni polinomio della seguente forma:

$$e_d(x_1, \dots, x_n) = \sum_{1 \le i_1 < \dots < i_d \le n} \underbrace{x_{i_1} \cdots x_{i_n}}_{d \text{ volte}},$$

dove si pone $e_0(x_1,\ldots,x_n):=1$

Osservazione. Qualora siano noti al contesto le variabili su cui è definito $Sym[X_n]$ si può omettere la parentesi di e_d , scrivendo pertanto semplicemente e_d .

Osservazione. Sia $p(x) = a_n x^n + ... + a_0$ un polinomio in $\mathbb{K}[x]$. Siano $\lambda_1, ..., \lambda_n$ le sue radici nel suo campo di spezzamento. Allora vale che:

$$a_{n-i} = (-1)^i a_n e_i(\lambda_1, \dots, \lambda_n).$$

Definizione 1.1.3. Sia $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$, si definisce:

$$x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}, \quad |\alpha| = \sum_{i=1}^n \alpha_i.$$

Osservazione. Ogni monomio nelle variabili $x_1, ..., x_n$ può essere rappresentato nella forma x^{α} , ponendo α_i uguale al numero di volte in cui la variabile x_i compare nel monomio.

Definizione 1.1.4. Si definisce degree lexicographic order (deglex) la seguente relazione di ordine sui monomi monici di un polinomio:

$$x^{\alpha}>x^{\beta} \ \stackrel{\mathrm{def}}{\Longleftrightarrow} \ |\alpha|>|\beta| \ \mathrm{oppure} \ |\alpha|=|\beta| \ \mathrm{e} \ \alpha>\beta \ \mathrm{secondo} \ \mathrm{il} \ \mathrm{LO},$$

dove con LO si indica il lexicographic order.

Osservazione 1.1.5. Il deglex è una relazione di ordine totale.

Proposizione 1.1.6

Vale la seguente equivalenza:

$$x^{\alpha}x^{\gamma} > x^{\beta}x^{\gamma} \iff x^{\alpha} > x^{\beta}.$$

Dimostrazione. Si dimostrano le due implicazioni separamente.

 (\Longrightarrow) Se $|\alpha| + |\gamma| > |\beta| + |\gamma|$, allora anche $|\alpha| > |\beta|$, e dunque $x^{\alpha} > x^{\beta}$. Altrimenti, esiste un $i \in \mathbb{N}$ tale per cui $\alpha_i + \gamma_i > \beta_i + \gamma_i$ e $\alpha_j + \gamma_j = \beta_j + \gamma_j \ \forall j < i$. Allora anche $\alpha_j = \beta_j \ \forall j < i$ e $\alpha_i > \beta_i$. Dunque, per il LO, $\alpha > \beta$, e quindi $x^{\alpha} > x^{\beta}$.

(\iff) Se $|\alpha| > |\beta|$, allora anche $|\alpha| + |\gamma| > |\beta| + |\gamma|$, e dunque $x^{\alpha}x^{\gamma} > x^{\beta}x^{\gamma}$. Altrimenti, esiste un $i \in \mathbb{N}$ tale per cui $\alpha_i > \beta_i$ e $\alpha_j = \beta_j \ \forall \ j < i$. Allora anche $\alpha_j + \gamma_j = \beta_j + \gamma_j$ $\forall \ j < i$ e $\alpha_i + \gamma_i > \beta_i + \gamma_i$. Dunque, per il LO, $\alpha + \gamma > \beta + \gamma$, e quindi $x^{\alpha}x^{\gamma} > x^{\beta}x^{\gamma}$. \square

Proposizione 1.1.7

Sia $\alpha \in \mathbb{N}^n$. Allora esiste un numero finito di $\beta \in \mathbb{N}^n$ tale che $x^{\alpha} > x^{\beta}$.

Dimostrazione. Siano fissati gli α_i . Se $x^{\alpha} > x^{\beta}$, allora vale sicuramente l'equazione:

$$\alpha_1 + \ldots + \alpha_n > \beta_1 + \ldots + \beta_n$$

che ammette un numero finito di soluzioni.

Definizione 1.1.8. Si definisce **leading term** di un polinomio in $x_1, ..., x_n$ il termine cx^{α} tale che $x^{\alpha} > x^{\beta}$, per ogni altro monomio x^{β} del polinomio.

Proposizione 1.1.9

Siano $f \in g \in \mathbb{K}[x_1, \dots, x_n]$. Il leading term di fg è il prodotto dei leading term di f e di g.

Dimostrazione. Siano x^{α} e x^{β} i rispettivi leading term di f e di g. Sia inoltre x^{γ} il leading term di fg. Si assuma che $x^{\gamma} \neq x^{\alpha}x^{\beta}$.

Poiché ogni monomio del prodotto di fg è un prodotto di due monomi di f e di g, x^{γ} potrà scriversi come prodotto di $x^{\delta}x^{\zeta}$, dove x^{δ} è un monomio di f e x^{ζ} è un monomio di g.

Poiché x^{α} è il leading term di f, vale la seguente disuguaglianza:

$$x^{\alpha} > x^{\delta}$$
,

da cui, dalla *Proposizione 1.1.6*, si ricava che:

$$x^{\alpha}x^{\zeta} > x^{\delta}x^{\zeta}$$
.

Analogamente vale la seguente altra disuguaglianza:

$$x^{\beta} > x^{\zeta}$$
.

da cui si ottiene che:

$$x^{\alpha}x^{\beta} > x^{\alpha}x^{\zeta}$$
.

Combinando le due disuguaglianze si ottiene infine che:

$$x^{\alpha}x^{\beta} > x^{\delta}x^{\zeta}$$
.

che è assurdo, dal momento che $x^{\delta}x^{\zeta}=x^{\gamma}$ è il leading term di fg, f. Quindi $x^{\gamma}=x^{\alpha}x^{\beta}$.

Lemma 1.1.10

Sia cx^{α} il leading term di $f \in \text{Sym}[X_n]$, con $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$. Allora $\alpha_1 \geq \alpha_2 \geq \dots \geq \alpha_n$.

Dimostrazione. Si dimostra la tesi contronominalmente.

Sia cx^{β} un monomio di f con $\beta = (\beta_1, \dots, \beta_n)$ tale che esistano $i < j \mid \beta_i < \beta_j$. Si consideri $\gamma \in \mathbb{N}^n$ come la tupla riordinata in modo decrescente di β e sia $\sigma \in S_n$ tale che $\gamma = (\beta_{\sigma(1)}, \dots, \beta_{\sigma(n)})$.

Poiché f è un polinomio simmetrico, $\sigma \cdot f = f$. Quindi f ammette un monomio della forma cx^{γ} . Dal momento che $\gamma > \beta$ per il LO, $x^{\gamma} > x^{\beta}$. Quindi cx^{β} non è il leading term di f.

Teorema 1.1.11 (Teorema fondamentale dei polinomi simmetrici)

Sia \mathbb{K} un campo. Vale il seguente isomorfismo:

$$\operatorname{Sym}[X_n] \cong \mathbb{K}[e_1, \dots, e_n].$$

Dimostrazione. Sia cx^{α} il leading term di f, con $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$. Per il Lemma 1.1.10, $\alpha_i - \alpha_{i+1} \geq 0 \ \forall 1 \leq i < n$.

Si definisca dunque $\beta \in \mathbb{N}^n$ in modo tale che $\beta_i = \alpha_i - \alpha_{i+1} \ge 0 \ \forall 1 \le i < n \ e \ \beta_n = \alpha_n$.

Si consideri il monomio $e_1^{\beta_1}e_2^{\beta_2}\dots e_n^{\beta_n}$: il suo *leading term*, per la *Proposizione 1.1.9*, è il prodotto dei *leading term* dei suoi fattori, ossia $x_1^{\alpha_1}\cdots x_n^{\alpha_n}=x^{\alpha}$.

Si consideri adesso come polinomio $f-ce_1^{\beta_1}e_2^{\beta_2}\dots e_n^{\beta_n}$, e si reiteri l'algoritmo fino a quando il risultato non è zero. Che l'algoritmo termini è garantito dalla *Proposizione 1.1.7*, da cui si desume che vi è numero finito di *leading term* possibili una volta tolto ad ogni iterazione il termine $ce_1^{\beta_1}e_2^{\beta_2}\dots e_n^{\beta_n}$.

Infine si sarà ottenuto una rappresentazione di f come combinazione di $e_1, ..., e_n$. Questa rappresentazione è unica perché i termini $e_1^{\beta_1}e_2^{\beta_2}...e_n^{\beta_n}$ sono linearmente indipendenti, dal momento che i loro leading term sono distinti.

Si costruisca dunque l'omomorfismo $\Pi: \mathrm{Sym}[X_n] \to \mathbb{K}[e_1, \dots, e_n]$ che associa ad ogni polinomio simmetrico la sua rappresentazione in $\mathbb{K}[e_1, \dots, e_n]$.

Si verifica che Π è un omomorfismo. Poiché tale omomorfismo è iniettivo e surgettivo, è un isomorfismo, da cui la tesi.