

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Boolean Functions

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Boolean Functions

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION Course Outline

- Digital Design
 - Combinational logic design
 - * Boolean Functions
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

What is a Boolean Function?

- You have learnt logic gates and truth tables in your first year
 - What are they? Where do they come form?

What is a Boolean Function?

- You have learnt logic gates and truth tables in your first year
 - What are they? Where do they come form?
- What is a (mathematical) function?

What is a Boolean Function?

- You have learnt logic gates and truth tables in your first year
 - What are they? Where do they come form?
- What is a (mathematical) function?
 - Example: Parabola

What is a Boolean Function?

- You have learnt logic gates and truth tables in your first year
 - ▶ What are they? Where do they come form?
- What is a (mathematical) function?
 - ► Example: Parabola
 - Domain and range are set of real numbers

What is a Boolean Function?

- You have learnt logic gates and truth tables in your first year
 - What are they? Where do they come form?
- What is a (mathematical) function?
 - ► Example: Parabola
 - Domain and range are set of real numbers
 - Specified on Cartesian Plane

What is a Boolean Function?

- You have learnt logic gates and truth tables in your first year
 - ▶ What are they? Where do they come form?
- What is a (mathematical) function?
 - ► Example: Parabola
 - Domain and range are set of real numbers
 - Specified on Cartesian Plane
 - Specified as a box:

$$\xrightarrow{X} f(x) = x^2 \xrightarrow{X^2}$$

What is a Boolean Function?

PES UNIVERSITY ONLINE

- You have learnt logic gates and truth tables in your first year
 - What are they? Where do they come form?
- What is a (mathematical) function?
 - ► Example: Parabola
 - Domain and range are set of real numbers
 - Specified on Cartesian Plane
 - Specified as a box:

$$\xrightarrow{X} f(x) = x^2 \xrightarrow{X^2}$$

• What is a Boolean function?

What is a Boolean Function?

- You have learnt logic gates and truth tables in your first year
 - What are they? Where do they come form?
- What is a (mathematical) function?
 - Example: Parabola
 - Domain and range are set of real numbers
 - Specified on Cartesian Plane
 - Specified as a box:

$$\xrightarrow{X} f(x) = x^2 \xrightarrow{X^2}$$

- What is a Boolean function?
 - Example: AND function/gate

What is a Boolean Function?

- You have learnt logic gates and truth tables in your first year
 - What are they? Where do they come form?
- What is a (mathematical) function?
 - Example: Parabola
 - Domain and range are set of real numbers
 - Specified on Cartesian Plane
 - Specified as a box:

$$\xrightarrow{X} f(x) = x^2 \xrightarrow{X^2}$$

- What is a Boolean function?
 - Example: AND function/gate
 - A functions whose domain and range are the set {0,1}

What is a Boolean Function?

- You have learnt logic gates and truth tables in your first year
 - What are they? Where do they come form?
- What is a (mathematical) function?
 - Example: Parabola
 - Domain and range are set of real numbers
 - Specified on Cartesian Plane
 - Specified as a box:

$$\xrightarrow{X} f(x) = x^2 \xrightarrow{X^2}$$

- What is a Boolean function?
 - Example: AND function/gate
 - A functions whose domain and range are the set $\{0,1\}$
 - Specified as a truth table:

а	Ь	У
0	0	0
0	1	0
1	0	0
1	1	1

What is a Boolean Function?

- You have learnt logic gates and truth tables in your first year
 - ▶ What are they? Where do they come form?
- What is a (mathematical) function?
 - Example: Parabola
 - Domain and range are set of real numbers
 - Specified on Cartesian Plane
 - Specified as a box:

$$\xrightarrow{x} f(x) = x^2 \xrightarrow{x^2}$$

- What is a Boolean function?
 - Example: AND function/gate
 - A functions whose domain and range are the set {0,1}
 - Specified as a truth table:

а	Ь	У
0	0	0
0	1	0
1	0	0
1	1	1

Specified as a logic gate:

What is a Boolean function?

PES UNIVERSITY

Boolean Constants and Variables

- Inputs and outputs of Boolean function are from the set {0, 1}
 - ▶ 0 and 1 are called **Boolean constants**
- In general, inputs and outputs of mathematical functions are represented by variables (like $y = x^2$)
 - ► Inputs and outputs of Boolean functions are called **Boolean variables**^a (like a, b and y)

^aAlso called **binary variables** in your textbook.

What is a Boolean function?

Boolean Constants and Variables

- Inputs and outputs of Boolean function are from the set {0, 1}
 - ▶ 0 and 1 are called **Boolean constants**
- In general, inputs and outputs of mathematical functions are represented by variables (like $y=x^2$)
 - Inputs and outputs of Boolean functions are called Boolean variables^a (like a, b and y)

а	b	У
0	0	0
0	1	0
1	0	0
1	1	1

^aAlso called **binary variables** in your textbook.

What is a Boolean function?

Boolean Constants and Variables

- Inputs and outputs of Boolean function are from the set {0, 1}
 - 0 and 1 are called Boolean constants
- In general, inputs and outputs of mathematical functions are represented by variables (like $y=x^2$)
 - Inputs and outputs of Boolean functions are called Boolean variables^a (like a, b and y)

а	b	у
0	0	0
0	1	0
1	0	0
1	1	1

^aAlso called **binary variables** in your textbook.

What is a Boolean function?

Boolean Constants and Variables

- Inputs and outputs of Boolean function are from the set {0, 1}
 - 0 and 1 are called Boolean constants
- In general, inputs and outputs of mathematical functions are represented by variables (like $y = x^2$)
 - Inputs and outputs of Boolean functions are called Boolean variables^a (like a, b and y)

а	Ь	У
0	0	0
0	1	0
1	0	0
1	1	1

$$a \stackrel{0}{=} 0$$

^aAlso called **binary variables** in your textbook.

What is a Boolean function?

Boolean Constants and Variables

- Inputs and outputs of Boolean function are from the set {0, 1}
 - 0 and 1 are called Boolean constants
- In general, inputs and outputs of mathematical functions are represented by variables (like $y=x^2$)
 - Inputs and outputs of Boolean functions are called Boolean variables^a (like a, b and y)

а	Ь	y
0	0	0
0	1	0
1	0	0
1	1	1

$$0 \frac{0}{1}$$

^aAlso called **binary variables** in your textbook.

What is a Boolean function?

Boolean Constants and Variables

- Inputs and outputs of Boolean function are from the set {0, 1}
 - 0 and 1 are called Boolean constants
- In general, inputs and outputs of mathematical functions are represented by variables (like $y=x^2$)
 - Inputs and outputs of Boolean functions are called Boolean variables^a (like a, b and y)

а	Ь	y
0	0	0
0	1	0
1	0	0
1	1	1

$$a \frac{1}{0}$$

^aAlso called **binary variables** in your textbook.

What is a Boolean function?

Boolean Constants and Variables

- Inputs and outputs of Boolean function are from the set {0, 1}
 - 0 and 1 are called Boolean constants
- In general, inputs and outputs of mathematical functions are represented by variables (like $y=x^2$)
 - Inputs and outputs of Boolean functions are called Boolean variables^a (like a, b and y)

а	Ь	У
0	0	0
0	1	0
1	0	0
1	1	1

$$\frac{1}{2}$$
 $\frac{1}{1}$ $\frac{1}{2}$.

^aAlso called **binary variables** in your textbook.

What is a Boolean function?

Boolean Constants and Variables

- Inputs and outputs of Boolean function are from the set {0, 1}
 - 0 and 1 are called Boolean constants
- In general, inputs and outputs of mathematical functions are represented by variables (like $y = x^2$)
 - Inputs and outputs of Boolean functions are called Boolean variables^a (like a, b and y)

What does the Truth Table Mean?

а	Ь	y
0	0	0
0	1	0
1	0	0
1	1	1

The truth table for and n input function contains 2^n rows

^aAlso called **binary variables** in your textbook.

BOOLEAN FUNCTIONS Basic Functions / Gates

- Boolean function / gate name:BUFFER
- Truth table:

a	y
0	0
1	1

• Symbol:

- Boolean function / gate name:NOT
- Truth table:

Symbol:

BOOLEAN FUNCTIONS Basic Functions / Gates

PES UNIVERSITY

- Boolean function / gate name:AND
- Truth table:

а	Ь	У
0	0	0
0	1	0
1	0	0
1	1	1

• Symbol:

- Boolean function / gate name:
- Truth table:

а	Ь	У
0	0	0
0	1	1
1	0	1
1	1	1

Symbol:

- Boolean function / gate name:
- Truth table:

а	Ь	У
0	0	1
0	1	1
1	0	1
1	1	0

Symbol:

- Boolean function / gate name:
 - NOR
- Truth table:

а	Ь	У
0	0	1
0	1	0
1	0	0
1	1	0

Symbol:

BOOLEAN FUNCTIONS Basic Functions / Gates

- Boolean function / gate name:XOR
- Truth table:

a	Ь	y
0	0	0
0	1	1
1	0	1
1	1	0

• Symbol:

$$\stackrel{a}{b} \Longrightarrow \longrightarrow y$$

- Boolean function / gate name:XNOR
- Truth table:

a	b	У
0	0	1
0	1	0
1	0	0
1	1	1

• Symbol:

Abstract mathematical level

а	b	y
0	0	1
0	1	1
1	0	1
1	1	0

- A two input NAND gate can denote a Boolean function which can be specified as a truth table
- ▶ Logic minimization is a task during which gates are typically thought of as Boolean functions

Logic design level

- ► A two input NAND gate can denote a component in a logic circuit (may be optionally associated with a value that specifies the gate delay)
- Such a view of a logic gate is useful during design and analysis of digital circuits

VLSI design level (standard CMOS implementation)

- A two input NAND gate can be represented by a transistor level circuit diagram
- ► The circuit functions in a digital manner with the transistors acting as switches which are typically in on or off state

VLSI layout level

► A VLSI designer ("silicon programmer") specifies layout of various layers (silicon, metal etc.) that compose the required logic

PES UNIVERSITY

VLSI fabrication level

Source: Wikimedia

A "chip" (integrated circuit) such as an Intel microprocessor is fabricated in a VLSI fab and may have more than a billion gates on it

To summarize:

- Depending on the context (level of abstraction) the term "logic gate" could refer to any of the above interpretations
- The Boolean function and gate levels, and aspects of VLSI design and layout levels, are in the domain of computer science and engineering
- This course will primarily focus on the Boolean function and gate levels

Is a logic gate...

- a Boolean function?
- a digital electronic circuit?

Is a logic gate...

- a Boolean function?
- a digital electronic circuit?
- It is both
 - ► This wonderful fact enables us to create the machines that perform mathematics, which we call computers