# COMP3721Assignment1

Jerry Xing

A01354731

## Q1

(i)  $s(t) = -3\sin(12t)$ 

a.

a. 
$$A:A=-3V, \ f:\ 2\pi f=12 \ f=rac{12}{2\pi} \ fpprox 1.91Hz \ T:\ T=rac{1}{f}=rac{\pi}{6}pprox 0.52s$$

b.





(ii) s(t)=4sin(3 $\pi t$ )

а

$$A:A=4V,$$
  $f:~~2\pi f=3\pi$   $f=rac{3}{2}=1.5\,Hz$   $T:~~T=rac{1}{f}=rac{2}{3}pprox 0.67s$   $\therefore A=4V,f=1.5Hz,Tpprox 0.67s$ 







#### Q2

$$1\mu m imes 1000 = 1mm$$

## Q3

a.

```
1200 	imes 1000 = 1200000px \ log_2 1024 = 10bits/px \ 1200000 	imes 10 = 12000000bits = 12Mb
```

b.

$$rac{12Mb}{1Mbps} imes 14 = 168s$$

#### Q4

A composite periodic signal can be decomposed into harmonic components using the Fourier series. Every composite periodic signal can be represented as a series of sine and cosine functions. The frequencies of these sine and cosine components are integer multiples of the fundamental frequency, and they are called harmonics.

## Q5

Yes, because the frequency of a periodic signal is fixed, which means its frequency-domain plot has only a single peak line. In contrast, the frequency of a non-periodic function is not fixed.