ΘΕΜΑ 2

2.1. Πάνω σε λείο οριζόντιο μονωτικό επίπεδο βρίσκεται ένα σώμα Σ_1 μάζας m_1 και θετικού φορτίου q_1 . Στο ίδιο οριζόντιο μονωτικό επίπεδο και σε απόσταση r από το σώμα Σ_1 βρίσκεται σώμα Σ_2 μάζας $m_2=$ $2m_1$ και αρνητικού φορτίου q_2 . Τα σώματα Σ_1 και Σ_2 αφήνονται ταυτόχρονα ελεύθερα τη χρονική στιγμή $t_0=0$. Κάποια επόμενη χρονική στιγμή t_1 οι κινητικές ενέργειες των σωμάτων Σ_1 και Σ_2 είναι K_1 και K_2 αντίστοιχα.

Ο λόγος $\frac{K_1}{K_2}$ ισούται με: (α) $\frac{K_1}{K_2} = 1$

$$(\alpha) \ \frac{K_1}{K_2} = 1$$

(
$$\beta$$
) $\frac{K_1}{K_2} = \frac{1}{2}$

$$(\gamma) \frac{K_1}{K_2} = 2$$

2.1.Α. Να επιλέξετε την ορθή απάντηση.

Μονάδες 4

2.1.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 8

2.2. Ένα σώμα εκτοξεύεται από σημείο Ο που βρίσκεται σε ύψος Η με αρχική ταχύτητα \vec{v}_0 και εκτελεί οριζόντια βολή με βεληνεκές S. Αν εκτοξεύσουμε οριζόντια το ίδιο σώμα από το ίδιο σημείο με ταχύτητα $2\vec{v}_0$, το βεληνεκές:

α) παραμένει ίδιο

β) διπλασιάζεται

γ) τετραπλασιάζεται

2.2.Α. Να επιλέξετε την ορθή απάντηση.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9