National Institute of Technology, Rourkela Mid Semester Examination Session: 2009–10 Spring Semester Programme: B.Tech. IV Semester

Course Code: MA 202 Course Name: Complex Analysis and Partial Differential Equations

Full Marks: 30 Duration of Examination: 2 hours

Answer all questions
All questions are of equal value
All parts of a question should be answered at one place.

- (1) Solve the wave equation $u_{tt} = c^2 u_{xx}$ with initial conditions satisfying $u(x,0) = \phi(x), u_t(x,0) = \psi(x)$ by using D'Alembert's method.
- (2) Find u(x,t) of the string of length $L=\pi$ when $c^2=1$ and the initial velocity is zero and initial deflection is $k(\sin x 0.5\sin 2x)$.
- (3) Find solution of the equation $u_{xx} u_{yy} = 0$ by separation of variables.
- (4) Find the solution of $u_{xx} 2u_{xy} + u_{yy} = 0$ via normal form.
- (5) Find the temperature u(x,t) in a bar of silver, whose length 10 cm, constant cross section of area 1 cm², density 10.6 gm/cm³, thermal conductivity 1.04 cal/(cm sec °C), specific heat 0.056 cal /(gm °C), that is perfectly insulated laterally, whose ends are kept at 0°C and whose initial velocity is $\sin 0.1\pi x$ °C.
- (6) Find linear fractional transformation that maps i,0,1 onto 2+i, 2, 3. Find the fixed points of $f(z) = z^2$.
- (7) Evaluate $\int_C ze^{z^2}dz$, where C from 1 along axes to i.
- (8) If $f(z) = \frac{z^2}{z}$, $z \neq 0$ and f(0) = 0, check whether Cauchy-Riemann equations are satisfied at z = 0 and what do you conclude about the analyticity of f(z) at z = 0?
- (9) If f(z) = u + iv is differentiable in a domain D then the partial derivatives of u and v exists and satisfy the Cauchy-Riemann equations in a domain D.
- (10) State and prove the conformality of mapping by analytic functions.

1/

a 60 18

10