Chapitre 4

Géométrie et nombres complexes

Dans tout ce chapitre, z = x + iy est un nombre complexe, x étant sa partie réelle et ysa partie imaginaire.

Géométrie et nombres complexes

L'ensemble C des nombres complexes est

$$\mathbb{C} = \left\{ z = x + iy, (x, y) \in \mathbb{R}^2 \right\}.$$

Il peut être vu comme un plan affine (le nombre complexe z est le point d'abscisse x et d'ordonnée y) euclidien (il y a une notion d'orthogonalité) orienté de façon naturelle (le sens trigonométrique) : c'est le plan de Cauchy.

La différence de deux nombres complexes peut être vue comme un vecteur : la différence $z_2 - z_1$ est le vecteur d'origine z_1 et d'extrémité z_2 . Un nombre complexe z = z - 0 peut également être vu comme un vecteur : le vecteur d'origine 0 et d'extrémité z.

La distance euclidienne entre un nombre complexe z et un nombre complexe z' est donnée par le module de z-z'. En effet, si z=x+iy et z'=x'+iy' alors

$$|z - z'| = |(x - x') + i(y - y')|$$

= $\sqrt{(x - x')^2 + (y - y')^2}$.

Proposition 1

1) Soit (a,b,c) dans \mathbb{R}^3 avec $(a,b) \neq (0,0)$. L'équation complexe de la droite ax + by = c est donnée par $\bar{\omega}z + \omega\bar{z} = k$

$$\bar{\omega}z + \omega\bar{z} = k$$

où
$$\omega = a + ib \in \mathbb{C}^*$$
 et $k = 2c \in \mathbb{R}$.

2) L'équation complexe du cercle de centre $\omega \in \mathbb{C}$ et de rayon $r \in \mathbb{R}_+$ est donnée par

$$|z - \omega| = r$$
.

Preuve. Déterminons l'équation complexe de la droite d'équation ax + by = c où a, bet c sont des nombres réels vérifiant $(a, b) \neq (0, 0)$. Soit (x, y) un point de cette droite auquel est associé le nombre complexe z = x + iy. L'équation ax + by = c s'écrit donc $a(z + \bar{z}) + b(z - \bar{z}) = 2c$ c'est-à-dire

$$\bar{\omega}z + \omega \bar{z} = k$$

où $\omega = a + ib \in \mathbb{C}^*$ et $k = 2c \in \mathbb{R}$.

L'équation complexe du cercle de centre $\omega \in \mathbb{C}$ et de rayon $r \in \mathbb{R}_+$, c'est-à-dire l'ensemble des nombres complexes se trouvant à la distance r de ω est donnée par

$$|z - \omega| = r$$
.

Exemple. Déterminons l'ensemble des nombres complexes vérifiant |iz-1|=2. Cette équation peut s'écrire 2 = |i(z+i)| = |i||z+i| = |z-(-i)|. Il s'agit du cercle de centre -i et de rayon 2.

Racines de l'unité 2

Un exemple : les racines cubiques de l'unité

L'ensemble R₃ des racines cubiques de l'unité est

$$R_3 = \left\{ z \in \mathbb{C}, z^3 = 1 \right\}.$$

Soit z dans R_3 . Une telle racine cubique de l'unité est automatiquement un nombre complexe non-nul que l'on peut écrire sous forme polaire

$$z = re^{i\theta}$$

où $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$. L'équation $z^3 = 1$ devient

$$r^3 e^{3i\theta} = 1e^{0i}$$

ce qui signifie que $r^3 = 1$ et 3θ est congru à 0 modulo 2π .

De façon équivalente, r = 1 car r est positif et il existe un entier relatif k tel que $\theta = (2k\pi)/3$ d'où

$$z = e^{(2ik\pi)/3} = j^k$$

où
$$j = e^{2i\pi/3} = -1/2 + i\sqrt{3}/2$$
. Ainsi,

$$R_3 = \left\{ j^k, k \in \mathbb{Z} \right\}.$$

Le fait que

$$j^{k+3} = j^k j^3 = j^k$$

implique que

$$R_3 = \{j^k, 0 \le k \le 2\} = \{1, j, j^2\}$$

est de cardinal 3.

2.2 Généralisation

Soit *n* un entier naturel non-nul. Déterminons l'ensemble

$$R_n = \{ z \in \mathbb{C}, z^n = 1 \}$$

des racines n^{ièmes} de l'unité.

Proposition 2

Soit $\omega_n = e^{2i\pi/n}$

$$R_n = \left\{ \omega_n^k, k \in \mathbb{Z} \right\}.$$

En particulier, R_n est un ensemble fini de cardinal n.

Preuve. Soit z dans R_n . Une telle racine cubique de l'unité est automatiquement un nombre complexe non-nul que l'on peut écrire sous forme polaire

$$z = re^{i\theta}$$

où $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.

L'équation $z^n = 1$ devient

$$r^n e^{in\theta} = 1e^{0i}$$

ce qui signifie que $r^n=1$ et $n\theta$ est congru à 0 modulo 2π .

De façon équivalente, r=1 car r est positif et il existe un entier relatif k tel que $\theta=(2k\pi)/n$ d'où

$$z = e^{(2ik\pi)/n} = \omega_n^k.$$

Ainsi,

$$R_n = \left\{ \omega_n^k, k \in \mathbb{Z} \right\}.$$

Le fait que

$$\omega_n^{k+n} = \omega_n^k \omega_n^n = \omega_n^k$$

implique que

$$R_n = \left\{ \omega_n^k, 0 \leqslant k \leqslant n_1 \right\}$$

est de cardinal n.

Cet ensemble R_n est muni de la multiplication \times qui vérifie les propriétés suivantes.

1) La multiplication \times est une *loi interne*:

$$\forall (z_1, z_2) \in R_n^2$$
, $z_1 \times z_2 \in R_n$

.

2) La multiplication \times est *associative*:

$$\forall (z_1, z_2, z_3) \in R_n^3$$
, $z_1 \times (z_2 \times z_3) = (z_1 \times z_2) \times z_3$

.

3) 1 est un *élément neutre* pour la multiplication \times :

$$\forall z \in R_n$$
, $1 \times z = z \times 1 = z$

.

4) *Tout élément admet un symétrique* pour la multiplication \times :

$$\forall z \in R_n$$
 , $z \times z^{-1} = z^{-1} \times z = 1$

.

On résume les propriétés 1) à 4) en disant que (R_n, \times) est un *groupe*.

Qui plus est :

5) La multiplication \times est *commutative*:

$$\forall (z_1,z_2) \in \mathbb{R}^2_n$$
 , $z_1 imes z_2 = z_2 imes z_1$

En résumé, on dit que (R_n, \times) est un groupe *commutatif* (ou *abélien*).

2.3 Lien avec $\mathbb{Z}/n\mathbb{Z}$

Soit n un entier naturel non-nul. Considérons l'application φ de $\mathbb{Z}/n\mathbb{Z}$ dans R_n construite de la façon suivante. Soit X une classe de congruence modulo n. Choisissons un représentant $k \in \mathbb{Z}$ de cette classe d'équivalence. Autrement dit, $X = \bar{k}$. L'image de X par l'application φ est définie par

$$\varphi(X) = \omega_n^k$$
.

- **Théorème 1**1) L'application φ est bien définie.
 2) L'application φ est bijective.
 3) Si X et Y sont deux classes de congruence modulo n alors $\varphi(XY) = \varphi(X) \times \varphi(Y)$.

$$\varphi(XY) = \varphi(X) \times \varphi(Y)$$

Preuve. Montrons que l'application φ est bien définie. Il s'agit de vérifier que si Xest une classe de congruence modulo n alors $\varphi(X)$ ne dépend pas du choix du représentant de X. Supposons que $X = \bar{k} = \bar{\ell}$ pour deux entiers relatifs k et ℓ . Montrons que

$$\omega_n^k = \omega_n^\ell$$
.

L'équation $\bar{k} = \bar{\ell}$ signifie que les entiers k et ℓ sont congrus modulo n. Autrement dit, il existe un entier m tels que $\ell = k + mn$. Ainsi,

$$\omega_n^\ell = \omega_n^{k+mn} = \omega_n^k \times (\omega_n^n)^m = \omega_n^k \times 1^m = \omega_n^k$$

d'où le résultat.

Montrons que l'application φ est surjective. Soit z dans R_n . Montrons que l'équation $\varphi(X)=z$ d'inconnue X dans $\mathbb{Z}/n\mathbb{Z}$ admet au moins une solution. La description de R_n implique qu'il existe un entier k tel que $z = \omega_n^k$ donc $X = \bar{k}$ est une solution de cette équation.

Montrons que l'application φ est injective. Soient X et Y dans $\mathbb{Z}/n\mathbb{Z}$ tels que $\varphi(X) =$ $\varphi(Y)$. Montrons que X=Y. Soient k un représentant de X et ℓ un représentant de Y. Il s'agit de vérifier que k est congru à ℓ modulo n pour garantir que X=Y. L'égalité $\varphi(X) = \varphi(Y)$ signifie que $\omega_n^k = \omega_n^\ell$ c'est-à-dire que

$$e^{2i\pi(k-\ell)/n} = 1.$$

Ainsi, $2\pi(k-\ell)/n$ est congru à 0 modulo 2π . Il existe donc un entier relatif m tel que $2\pi(k-\ell)/n = 2m\pi$ d'où $k-\ell = mn$ ce qui assure le résultat.

Montrons la dernière assertion. Soient X et Y sont deux classes de congruence modulo n. Soient k un représentant de X et ℓ un représentant de Y. Souvenons-nous que $XY = \bar{k}\bar{\ell} = k\bar{\ell}$ donc $k\ell$ est un représentant de XY. Ainsi,

$$\varphi(XY) = \omega_n^{k\ell} = \omega_n^k \times \omega_n^\ell = \varphi(X) \times \varphi(Y).$$

Remarque : On dit que l'application $\varphi : \mathbb{Z}/n\mathbb{Z} \to R_n$ est un morphisme de groupes bijectif (un isomorphisme) entre les groupes commutatifs ($\mathbb{Z}/n\mathbb{Z}$, +) et (R_n , ×).

Interprétation géométrique des opérations algébriques dans C

Nous avons vu dans le chapitre précédent que $(\sigma_{\mathbb{C}}, \circ)$, l'ensemble des bijections de \mathbb{C} dans C muni de la loi de composition, est un groupe. L'objectif de cette section est de mettre en valeur certains sous-groupes de $(\sigma_{\mathbb{C}}, \circ)$ en réinterprétant géométriquement les opérations algébriques dans C.

Ajouter un nombre complexe c'est translater

Pour tout nombre complexe a, notons t_a l'application de $\mathbb C$ dans $\mathbb C$ définie par

$$t_a(z) = z + a$$

pour tout nombre complexe z. Cette application t_a est la translation de vecteur apuisque l'on retrouve la règle du parallélogramme. Notons

$$\mathcal{T}_{\mathbb{C}} = \{t_a, a \in \mathbb{C}\}$$

l'ensemble des translations.

- Soient a et b dans \mathbb{C} .

 1) $t_a \circ t_b = t_b \circ t_a = t_{a+b}$.

 2) t_a est une application bijective de bijection réciproque t_{-a} .

Preuve. Vérifions la première assertion. Pour z dans \mathbb{C} ,

$$(t_a \circ t_b)(z) = t_a(t_b(z)) = t_a(z+b) = z+b+a = t_{a+b}(z) = t_{b+a}(z) = t_b(t_a(z)).$$

La deuxième assertion en découle puisque $t_a \circ t_{-a} = t_{a-a} = t_0 = id_{\mathbb{C}}$.

Remarque: L'ensemble $\mathcal{T}_{\mathbb{C}}$ est donc un sous-ensemble de $\sigma_{\mathbb{C}}$ qui contient le neutre de $(\sigma_{\mathbb{C}}, \circ)$ puisque $id_{\mathbb{C}} = t_0$. Il est stable par la composition par la proposition précédente et stable par passage à la bijection réciproque puisque $t_a^{-1} = t_{-a}$ pour tout nombre complexe a. Il est également commutatif puisque $t_a \circ t_b = t_b \circ t_a$ pour tous nombres complexes a et b. En résumé, on dit que $(\mathcal{T}_{\mathbb{C}}, \circ)$ est un sous-groupe commutatif de

Considérons l'application T de \mathbb{C} dans $\mathcal{T}_{\mathbb{C}}$ définie par

$$T(a) = t_a$$

pour tout nombre complexe a.

- Proposition

 1) T est une application bijective.

 2) Si a et b sont deux nombres complexes alors $T(a+b) = T(a) \circ T(b)$.

$$T(a+b) = T(a) \circ T(b)$$

Preuve. La seconde assertion est une conséquence de la proposition précédente. L'application *T* est clairement surjective.

Montrons que T est injective. Soient a et b dans C tels que T(a) = T(b). Montrons que a = b. Nous avons $t_a(z) = t_b(z)$ pour tout nombre compexe z donc $a = t_a(0) = t_b(0) = b.$

Remarque: On dit que l'application T est un morphisme de groupes bijectifs (un isomorphisme de groupes) entre les groupes abéliens $(\mathbb{C}, +)$ et $(\mathcal{T}_{\mathbb{C}}, \circ)$. On peut donc considérer que ces deux objets structurés sont les mêmes aux notations près. Un nombre complexe a peut donc être vu comme une translation t_a qui agit ou opère sur \mathbb{C} par translation.

Multiplier par un nombre réel non-nul c'est effectuer une ho-3.2 mothétie

Pour tout nombre réel non-nul λ , notons h_{λ} l'application de $\mathbb C$ dans $\mathbb C$ définie par

$$h_{\lambda}(z) = \lambda z$$

pour tout nombre complexe z. Cette application h_{λ} est l'homthétie de centre 0 et de rapport λ . Notons

$$\mathcal{H}_{\mathbb{C}} = \{h_{\lambda}, \lambda \in \mathbb{R}^*\}$$

l'ensemble des homothéties de centre 0.

- Proposition 5
 Soient λ et μ dans R*.
 1) h_λ ∘ h_μ = h_μ ∘ h_λ = h_{λμ}.
 2) h_λ est une application bijective de bijection réciproque h_{λ-1}.

Preuve. Vérifions la première assertion. Pour z dans \mathbb{C} ,

$$(h_{\lambda} \circ h_{\mu})(z) = h_{\lambda}(h_{\mu}(z)) = h_{\lambda}(\mu z) = \lambda \mu z = h_{\lambda \mu}(z) = h_{\mu \lambda}(z) = h_{\mu}(h_{\lambda}(z)).$$

La deuxième assertion en découle puisque $h_{\lambda} \circ h_{\lambda^{-1}} = h_{\lambda\lambda^{-1}} = h_1 = id_{\mathbb{C}}$.

Remarque : L'ensemble $\mathcal{H}_{\mathbb{C}}$ est donc un sous-ensemble de $\sigma_{\mathbb{C}}$ qui contient le neutre de $(\sigma_{\mathbb{C}}, \circ)$ puisque $id_{\mathbb{C}} = h_1$. Il est stable par la composition par la proposition précédente et stable par passage à la bijection réciproque puisque $h_{\lambda}^{-1}=h_{\lambda^{-1}}$ pour tout nombre réel non-nul λ . Il est également commutatif puisque $h_{\lambda} \circ h_{\mu} = h_{\mu} \circ h_{\lambda}$ pour tous nombres réels non-nuls λ et μ . En résumé, on dit que $(\mathcal{H}_{\mathbb{C}}, \circ)$ est un sous-groupe commutatif de $(\sigma_{\mathbb{C}}, \circ)$.

Considérons l'application H de \mathbb{R}^* dans $\mathcal{H}_{\mathbb{C}}$ définie par

$$H(\lambda) = h_{\lambda}$$

pour tout nombre réel non-nul λ .

- Proposition 6

 1) H est une application bijective.

 2) $Si \ \lambda$ et μ sont deux nombres réels non-nuls alors $H(\lambda \mu) = H(\lambda) \circ H(\mu).$

$$H(\lambda \mu) = H(\lambda) \circ H(\mu)$$

Preuve. La seconde assertion est une conséquence de la proposition précédente. L'application *H* est clairement surjective.

Montrons que H est injective. Soient λ et μ dans \mathbb{R}^* tels que $H(\lambda) = H(\mu)$. Montrons que $\lambda = \mu$. Nous avons $h_{\lambda}(z) = h_{\mu}(z)$ pour tout nombre compexe z donc $\lambda = h_{\lambda}(1) = h_{\mu}(1) = \mu.$

Remarque: On dit que l'application H est un morphisme de groupes bijectifs (un isomorphisme de groupes) entre les groupes commutatifs (\mathbb{R}^* , \times) et ($\mathcal{H}_{\mathbb{C}}$, \circ). On peut donc considérer que ces deux objets structurés sont les mêmes aux notations près. Un nombre réel non-nul λ peut donc être vu comme une homothétie h_{λ} qui agit ou opère sur C par dilatation.

Multiplier par un nombre complexe de module 1 c'est effectuer 3.3 une rotation

Pour tout nombre réel θ , notons r_{θ} l'application de $\mathbb C$ dans $\mathbb C$ définie par

$$r_{\theta}(z) = e^{i\theta}z$$

pour tout nombre complexe z. Cette application r_{θ} est la rotation de centre 0 et d'angle θ . Notons

$$\mathcal{R}_{\mathbb{C}} = \{r_{\theta}, \theta \in \mathbb{R}\}$$

l'ensemble des rotations de centre 0.

- Proposition 7
 Soient θ et θ' dans \mathbb{R} .

 1) $r_{\theta} \circ r'_{\theta} = r'_{\theta} \circ r_{\theta} = r_{\theta+\theta'}$.

 2) r_{θ} est une application bijective de bijection réciproque $r_{-\theta}$.

Preuve. Vérifions la première assertion. Pour z dans \mathbb{C} ,

$$(r_{\theta} \circ r'_{\theta})(z) = r_{\theta}(r'_{\theta}(z)) = r_{\theta}(e^{i\theta'}z) = e^{i\theta}e^{i\theta'}z = r_{\theta+\theta'}(z) = r_{\theta'+\theta}(z) = r'_{\theta}(r_{\theta}(z)).$$
 La deuxième assertion en découle puisque $r_{\theta} \circ r_{-\theta} = r_{\theta-\theta} = r_0 = id_{\mathbb{C}}.$

Remarque : L'ensemble $\mathcal{R}_{\mathbb{C}}$ est donc un sous-ensemble de $\sigma_{\mathbb{C}}$ qui contient le neutre de $(\sigma_{\mathbb{C}}, \circ)$ puisque $id_{\mathbb{C}} = r_0$. Il est stable par la composition par la proposition précédente et stable par passage à la bijection réciproque puisque $r_{\theta}^{-1}=r_{-\theta}$ pour tout nombre réel θ . Il est également commutatif puisque $r_{\theta} \circ r'_{\theta} = r'_{\theta} \circ r_{\theta}$ pour tous nombres réels θ et θ' . En résumé, on dit que $(\mathcal{R}_{\mathbb{C}}, \circ)$ est un sous-groupe commutatif de $(\sigma_{\mathbb{C}}, \circ)$. Considérons l'application R de \mathbb{R}^* dans $\mathcal{R}_{\mathbb{C}}$ définie par

$$R(\theta) = r_{\theta}$$

pour tout nombre réel θ .

Proposition 8

- 1) R est une application surjective mais n'est pas injective. 2) $Si \theta$ et θ' sont deux nombres réels non-nuls alors $R(\theta + \theta') = R(\theta) \circ R(\theta').$

$$R(\theta + \theta') = R(\theta) \circ R(\theta').$$

Preuve. La seconde assertion est une conséquence de la proposition précédente. L'application *R* est clairement surjective. L'application *H* n'est pas injective puisque

$$R(\theta + 2\pi) = R(\theta).$$

pour tout nombre réel θ .

Remarque: On dit que l'application R est un morphisme de groupes surjectif (un épimorphisme de groupes) entre les groupes abéliens $(\mathbb{R}, +)$ et $(\mathcal{R}_{\mathbb{C}}, \circ)$. Il est possible de vérifier que le défaut d'injectivité de cet épimorphisme (mesuré par un sous-groupe de R appelé le noyau de R) est $2\pi\mathbb{Z}$ et d'en déduire un isomorphisme de groupes entre les groupes commutatifs $(\mathbb{R}/2\pi\mathbb{Z},+)$ (les nombres réels modulo la congruence mosulo 2π) et $(\mathcal{R}_{\mathbb{C}}, \circ)$. On peut donc considérer que ces deux objets structurés sont les mêmes aux notations près. Un nombre réel modulo 2π peut donc être vu comme une rotation qui agit ou opère sur C.