2. Υπολογισμοί σε οπτικές ίνες στα πλαίσια της βαθμωτής προσέγγισης

Οι οπτικές ίνες για μετάδοση σε μεγάλες αποστάσεις λειτουργούν σχεδόν στο σύνολο τους στο πλαίσιο της ασθενούς κυματοδήγησης, δηλαδή ο δείκτης διάθλασης πυρήνα (n_1) είναι πολύ κοντά στο δείκτη διάθλασης του περιβλήματος (n_2) , $n_1 \approx n_2$. Αυτό επιτρέπει τη μελέτη της οδήγησης με τη χρήση ενός βαθμωτού μεγέθους ψ , το οποίο εκφράζει κάποια εγκάρσια συνιστώσα του ηλεκτρικού ή μαγνητικού πεδίου. Οι ρυθμοί που υπολογίζονται στα πλαίσια της βαθμωτής αυτής προσέγγισης μπορεί να θεωρηθεί ότι έχουν γραμμική πόλωση κατά $\hat{\mathbf{x}}$ ή $\hat{\mathbf{y}}$ και αντιστοιχίζονται προς τους γραμμικά πολωμένους ρυθμούς LP_{nm} που έχουν εισαχθεί στη διανυσματική αντιμετώπιση.

(α) Ξεκινώντας από τη βαθμωτή εξίσωση κύματος

$$\nabla^2 \psi + k_0^2 n^2 \psi = 0 \,,$$

αποδείξτε ότι η χαρακτηριστική εξίσωση έχει τη μορφή:

$$\frac{UJ'_n(U)}{J_n(U)} = \frac{WK'_n(W)}{K_n(W)}, \ U = a\sqrt{k_0^2 n_1^2 - \beta^2}, W = a\sqrt{\beta^2 - k_0^2 n_2^2}$$

Η συνά
ρτηση K_n είναι τροποποιημένη συνά
ρτηση Bessel και συνδέεται άμεσα με σχέση αναλογίας με τη συνά
ρτηση Hankel 1° είδους, $K_n(x)=(\pi\ /\ 2)j^{n+1}H_n^{(1)}(jx)$.

(β) Γ ια την περίπτωση του βασικού φυθμού (n=0) και κάνοντας χρήση της κανονικοποιημένης σταθεράς διάδοσης

$$b = \frac{\beta^2 / k_0^2 - n_2^2}{n_1^2 - n_2^2}$$

και της παραμέτρου V της ίνας

$$V = k_0 a \sqrt{n_1^2 - n_2^2}$$

αποδείξτε ότι η χαρακτηριστική εξίσωση μπορεί να γραφεί στη μορφή

$$\frac{\sqrt{1-b}J_1(V\sqrt{1-b})}{J_0(V\sqrt{1-b})} = \frac{\sqrt{b}K_1(V\sqrt{b})}{K_0(V\sqrt{b})}\,.$$

- (γ) Επιλύστε την παραπάνω εξίσωση αριθμητικά (με τη συνάρτηση fsolve του MATLAB) και δώστε σε γραφική παράσταση τη σχέση διασποράς b=b(V) όταν $0.1 \le V \le 12$ για το βασικό ρυθμό LP_{01} . Η καμπύλη που θα βρείτε θα πρέπει να έχει μεγάλη ομοιότητα με την πρώτη καμπύλη του Σχήματος 2.17.
- (δ) Δώστε σε γραφική παράσταση τη μεταβολή της ενεργού επιφάνειας $A_{\rm eff}$ για το βασικό ρυθμό ${\rm LP}_{01}$ όταν η παράμετρος V λαμβάνει τιμές στο διάστημα [0.8,2.4]. Η ενεργός επιφάνεια δίνεται από τη σχέση

$$A_{\text{eff}} = \frac{\left(\iint\limits_{\infty} \left|\psi(x,y)\right|^2 dx dy\right)^2}{\iint\limits_{\infty} \left|\psi(x,y)\right|^4 dx dy},$$

όπου $\psi(x,y)$ είναι το εγκάρσιο προφίλ του ρυθμού και η ολοκλήρωση γίνεται σε όλο το εγκάρσιο xy -επίπεδο.

Σημείωση 1: Τα ολοκληρώματα μπορούν να υπολογιστούν αριθμητικά από δείγματα της συνάρτησης $\psi(x,y)$ σε ικανοποιητικά μεγάλη έκταση στο xy-επίπεδο ώστε να προσομοιώνεται η άπειρη διατομή στα ολοκληρώματα της ενεργού επιφανείας.

Σημείωση 2: Η καμπύλη $A_{
m eff} \left(V \right)$ να απεικονισθεί κανονικοποιημένη ως προς τη γεωμετρική επιφάνεια του πυρήνα της ίνας.