A solar flux of 700 W/m² is incident on a flat-plate solar collector used to heat water. The area of the collector is 3 m², and 90% of the solar radiation passes through the cover glass and is absorbed by the absorber plate. The remaining 10% is reflected away from the collector. Water flows through the tube passages on the back side of the absorber plate and is heated from an inlet temperature T_i to an outlet temperature T_o . The cover glass, operating at a temperature of 30°C, has an emissivity of 0.94 and experiences radiation exchange with the sky at -10°C. The convection coefficient between the cover glass and the ambient air at 25°C is 10 W/m².K.

- a) Perform an overall energy balance on the collector to obtain an expression for the rate at which useful heat is collected per unit area of the collector, q''_u . Determine the value of q''_u .
- (b) Calculate the temperature rise of the water, $T_{\rm o}$ $T_{\rm i}$, if the flow rate is 0.01 kg/s. Assume the specific heat of the water to be 4179 J/kg.K.
- (c) The collector efficiency η is defined as the ratio of the useful heat collected to the rate at which solar energy is incident on the collector. What is the value of η ?

Q2

A spherical, stainless steel (AISI 302) canister is used to store reacting chemicals that provide for a uniform heat flux q''_i to its inner surface. The canister is suddenly submerged in a liquid bath of temperature $T_\infty < T_i$, where T_i is the initial temperature of the canister wall.

- (a) Assuming negligible temperature gradients in the canister wall and a constant heat flux q''_{i} , develop an equation that governs the variation of the wall temperature with time during the transient process. What is the initial rate of change of the wall temperature if $q''_{i} = 10^5 \text{ W/m}^2$?
- (b) What is the steady-state temperature of the wall?