

Universidade do Minho

Escola de Engenharia

Catarina Pereira Inês Neves Denis Antonescu Leonardo Martins

Catarina da Cunha Malheiro da Silva Pereira Denis-Alexandru Antonescu Inês Cabral Neves Leonardo Dias Martins

IoT Cloud

Universidade do Minho

Escola de Engenharia

Catarina da Cunha Malheiro da Silva Pereira Denis-Alexandru Antonescu Inês Cabral Neves Leonardo Dias Martins

IoT Cloud

Relatório de Especificação da Fase A Emulação e Simulação de Redes de Telecomunicações Mestrado em Engenharia Telecomunicações e Informática

Trabalho efetuado sob a orientação de:

Professor Doutor Fábio Raul Costa Gonçalves Professor Doutor Bruno Daniel Mestre Viana Ribeiro e de

Professor Doutor José Augusto Afonso

Identificação do Grupo

O Grupo 01 é composto pelos seguintes membros, todos pertencentes ao 1° ano do *Mestrado em Engenharia de Telecomunicações e Informática* (METI):

Imagem

Nome / Número Mecanográfico / E-mail institucional

Catarina da Cunha Malheiro da Silva Pereira PG53733 pg537336@alunos.uminho.pt

Denis-Alexandru Antonescu EE11021 e11021@alunos.uminho.pt

Inês Cabral Neves PG53864 pg53864@alunos.uminho.pt

Leonardo Dias Martins PG53996 pg53996@alunos.uminho.pt

Índice

Ide	entificação do Grupo	İ
ĺno	dice de Figuras	iv
ĺno	dice de Tabelas	V
Lis	sta de Acrónimos	vi
Αc	crónimos	vi
1	Introdução	1
2	Revisão da Literatura	2
3	Recursos e Instrumentos Utilizados	3
4	Metodologia4.1Lista de Tarefas do Sistema4.2Arquitetura do Sistema4.3Rotas Manuais	4 4 5 5
5	Requisitos Funcionais e Não Funcionais	8
6	Plano de Atividades6.1 Atividades6.2 Lista de Riscos	9 9
7	Conclusão	11
Re	eferências Bibliográficas	12
Ar	nexo I - Diagrama de Gantt	12

Índice de Figuras

1	Arquitetura da fase A.																														5
_	Aiquitetura da lase A.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		J

Índice de Tabelas

Tabela 1:	Rotas do router 1.																5
Tabela 2:	Rotas do router 2.																6
Tabela 3:	Rotas do router 3.																6
Tabela 4:	Rotas do router 4.																6
Tabela 5:	Rotas do router 5.																7
Tabela 6:	Requisitos Funciona	is do p	orojeto)													8
Tabela 7:	Requisitos Não Fund	cionais	do pi	ojeto)												8
Tabela 8:	Plano de Atividades.																9
Tabela 9:	Riscos inerentes ao	desen	volvim	ento	do	pro	oiet	o							 	_	10

Acrónimos

BIND Berkeley Internet Name Domain

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

GNS3 Graphical Network Simulator-3

IoT Internet of Things
IP Internet Protocol

LSAs Link State Advertisements

METI Mestrado em Engenharia de Telecomunicações e

Informática

OSI Open Systems Interconnection
OSPF Open Shortest Path First Protocol

RF Requisitos Funcionais

RIP Routing Information Protocol RNF Requisitos Não Funcionais

UC Unidade Curricular

1 Introdução

Este relatório faz parte da *Unidade Curricular* (UC) Emulação e Simulação de Redes de Telecomunicações, do 1° semestre do 1° ano do Mestrado em Engenharia de Telecomunicações e Informática. Este projeto foi desenvolvido como resposta a um problema apresentado pelos docentes.

O projeto descrito é uma iniciativa que visa criar um sistema completo de *Internet of Things* (IoT) com o objetivo de interconectar o mundo físico ao mundo digital. Esta interconexão é possibilitada por meio de sensores, que recolhem informações do ambiente e podem executar ações com base nessas informações. O projeto é dividido em várias fases, cada uma com seus próprios objetivos e tarefas específicas.

A estrutura de rede é modelada com base no conceito *Open Systems Interconnection* (OSI), no qual se irá abordar principalmente três das sete camadas que compõem este modelo: a camada física, a camada de ligação de dados e a camada de aplicação.

O desenvolvimento do projeto foi repartido em três fases distintas:

• Fase A - Infraestrutura de Rede:

Nesta fase, o foco está na criação da infraestrutura de rede que suportará a comunicação entre os dispositivos loT e a plataforma na nuvem. O software *Graphical Network Simulator-3* (GNS3) é usado para simular a rede, permitindo a configuração de *routers*, *switches* e servidores *Domain Name System* (DNS). O objetivo principal é garantir a conectividade dos dispositivos com a plataforma na nuvem e a Internet.

• Fase B - Rede de Sensores:

Aqui, o projeto concentra-se na implementação da rede de sensores IoT. Os sensores são dispositivos capazes de recolher dados do ambiente, como temperatura, humidade, pressão, entre outros. O CupCarbon é usado para simular essa rede, ajudando a definir a área de aplicação, a escolha dos sensores, a tecnologia de comunicação sem fios e o protocolo de comunicação. Além disso, os dispositivos devem ser capazes de se autenticar e, opcionalmente, receber comandos de configuração e atuação.

• Fase C - Plataforma IoT:

Esta fase é central para o projeto, pois envolve a criação da plataforma de IoT na nuvem. A plataforma é responsável por receber, armazenar e processar os dados dos sensores, bem como pela gestão de utilizadores, autenticação e visualização dos dados. É aqui que ocorre a replicação da plataforma para garantir redundância e escalabilidade.

Em resumo, o projeto aborda uma ampla gama de conceitos e tecnologias, desde redes de computadores e simulação de redes até sensores IoT, bancos de dados, segurança e serviços em nuvem. Este projeto oferece a oportunidade de adquirir conhecimentos e habilidades em várias áreas da tecnologia da informação e comunicação, preparando-os para lidar com desafios do mundo real relacionados à IoT e à gestão de sistemas distribuídos.

2 Revisão da Literatura

A evolução da Internet é um tema de extrema relevância, intrinsecamente ligado ao contexto deste projeto. Ao longo das décadas, a Internet passou por transformações profundas, evoluindo desde seus primórdios como uma rede militar restrita até se tornar uma infraestrutura global que conecta bilhões de pessoas em todo o mundo. Compreender essa evolução é fundamental para contextualizar as tecnologias e sistemas, como o *Domain Name System* (DNS) e o *Berkeley Internet Name Domain* (BIND), que desempenham um papel vital na operação e no funcionamento da Internet contemporânea.

O DNS, ou Sistema de Nomes de Domínio, é um conceito central neste projeto. Trata-se de um sistema de nomenclatura hierárquico que desempenha um papel fundamental em redes de computadores e na Internet [1]. A principal função é traduzir nomes de domínio legíveis por humanos em endereços *Internet Protocol* (IP) numéricos, tornando a navegação na web mais acessível e conveniente para os utilizadores. Esta introdução à literatura estabelece a base para a compreensão do DNS e a importância no contexto deste projeto.

O BIND, por sua vez, é um software amplamente utilizado para serviços DNS na Internet e em redes privadas [2]. As principais finalidades englobam:

- Resolução de nomes de domínio: traduz nomes de domínio legíveis por humanos em endereços IP e vice-versa.
- **Servidor DNS autoritativo:** o BIND pode hospedar registos DNS para domínios específicos, permitindo que as organizações gerenciem suas informações DNS.
- Cache do servidor DNS: armazena registos DNS acessados com frequência para melhorar os tempos de resposta das consultas.
- **Suporte Domain Name System Security Extensions (DNSSEC):** O BIND aprimora a segurança do DNS por meio do DNSSEC, protegendo contra ataques relacionados ao DNS.
- **Atualizações dinâmicas:** suporta atualizações dinâmicas para registos DNS que mudam com frequência.
- **Balanceamento de carga:** o BIND pode distribuir consultas DNS em vários servidores para balanceamento de carga.
- Registo e monitoramento: fornece recursos de registo e monitoramento para atividades de DNS.
- **Personalização:** o BIND é altamente configurável para atender a requisitos e políticas específicas.

Em essência, o BIND é essencial para traduzir nomes de domínio em endereços IP, hospedar registos DNS, aumentar a segurança e dar suporte a diversas tarefas relacionadas ao DNS na Internet e nas redes.

O *Routing Information Protocol* (RIP) baseia-se no algoritmo de "vetor de distância" e faz uso de contagem de saltos como a métrica, foi projetado para redes de pequena dimensão e topologia simples [3]. É amplamente utilizado como protocolo de encaminhamento interno.

O *Open Shortest Path First Protocol* (OSPF) é um protocolo de router usado para redes maiores além de usar RIP [3]. Este protocolo é baseado no algoritmo de "estado de ligação", em que cada router divulga informações sobre o estado de suas próprias conexões. Isto é feito por meio de *Link State Advertisements* (LSAs).

3 Recursos e Instrumentos Utilizados

Neste capítulo explora-se em detalhe os elementos que desempenham um papel fundamental na condução deste projeto, com um foco predominante em ferramentas de software. O conjunto de ferramentas e recursos utilizados abrange uma ampla variedade de aplicações, cada uma desempenhando um papel específico e vital no desenvolvimento do projeto.

As ferramentas e recursos utilizados são:

- **Smartsheet**: Emprega-se o programa Smartsheet para o planeamento temporal das tarefas do grupo, garantindo uma gestão eficaz do cronograma de trabalho.
- **Miro**: Utiliza-se a plataforma Miro para criar diagramas de blocos e fluxogramas, facilitando a visualização e a comunicação de conceitos complexos.
- **GNS3**: O software GNS3 desempenha um papel crucial na simulação de redes, permitindo testar cenários e configurações antes da implementação prática.
- **Plataformas de Comunicação**: Para facilitar a comunicação, colaboração e organização do código desenvolvido pelo grupo, utiliza-se as plataformas Discord e Whatsapp.
- **OverLeaf**: Para a elaboração de relatórios em formato MEX, utiliza-se a plataforma OverLeaf, que simplifica a formatação e a colaboração em documentos técnicos.

Estas ferramentas e recursos desempenham um papel essencial na pesquisa, contribuindo para a eficiência na recolha e análise de dados, bem como na comunicação e documentação dos resultados.

4 Metodologia

Nesta secção vai ser dividida em três subsecções: na primeira apresenta-se lista de tarefas a realizar nesta fase, na segunda, a Arquietura Geral da Fase A e na terceira, a configuração das rotas manuais.

4.1 Lista de Tarefas do Sistema

A lista de tarefas a executar na fase A é:

- Instalação do GNS3: Configuração da plataforma GNS3 para permitir simulações de rede;
- **Criação de uma Rede de Interligação:** Desenvolvimento de uma rede conforme ilustrado na arquitetura do sistema da Fase A;
- **Configuração de endereços IP estáticos:** Definição de endereços IP estáticos para os dispositivos na rede;
- Configuração de rotas manuais: Estabelecimento de rotas de comunicação manualmente;
- Comunicação com a Rede Exterior: Garantia de conectividade dos nós da rede com a rede exterior;
- Criação de um Servidor DNS: Configuração de um servidor DNS para resolução de nome.;
- **Configuração do Servidor DNS:** Ajuste das configurações do servidor DNS para indicar corretamente o endereço da plataforma.

A fase A apresenta também a seguinte lista de tarefas extra:

- **Rotas automáticas:** Implementação do cálculo das rotas pelos routers utilizando um algoritmo de encaminhamento automático e, assim, conseguir recuperar se algum dos caminhosfalhar;
 - Para a implementar esta funcionalidade, podemos implementar o Protolo OSPF ou o protocolo RIP.
- Load balancing através do DNS: Utilização do DNS para efetuar load balancing;
- Load balancing ao nível da rede por round robin: A rede deverá ser capaz de encaminhar os pacotes para os servidores utilizando o mecanismo de *round robin*, ou seja, uma vez por cada caminho diferente;
- Load balancing com base em QoS (quality of service): Encaminhamento dos pacotes pelo caminho menos ocupado de forma a otimizar a qualidade de serviço.

Estas tarefas representam os elementos-chave da arquitetura da Fase A e são fundamentais para o bom funcionamento desta fase do projeto.

4.2 Arquitetura do Sistema

Aa arquitetura da Fase A, apresenta-se uma visão geral esquemática na Figura 1, que ilustra a estrutura fundamental desta fase, bem como a configuração dos endereços IP estáticos.

Figura 1: Arquitetura da fase A.

4.3 Rotas Manuais

Para a resolução desta secção, é construído uma rede que permita interligar várias redes locais, utilizando *routers* com uma topologia da rede descrita na Figura 1. Os *routers* permitem que dispositivos de uma rede possam comunicar com dispositivos de outras redes.

Para o router 1, as suas rotas demonstram-se na Tabela 1.

Endereço	Próximo Salto	Interface de Saída
10.0.0/30	10.0.0.2	10.0.0.1
10.0.0.4/27	10.0.0.6	10.0.0.5
10.0.0.12/30	10.0.0.2	10.0.0.1
10.0.0.24/28	10.0.0.2	10.0.0.5
10.0.0.40/30	10.0.0.6	10.0.0.1
0.0.0.0/0	×	X

Tabela 1: Rotas do router 1.

Para o router 2, as suas rotas demonstram-se na Tabela 2.

4.3. ROTAS MANUAIS

Endereço	Próximo Salto	Interface de Saída
0.0.0.0/0	10.0.0.5	10.0.0.6
10.0.0.0/27	10.0.0.5	10.0.0.6
10.0.0.8/30	10.0.0.10	10.0.0.9
10.0.0.16/28	10.0.0.18	10.0.0.17
10.0.0.24/30	10.0.0.10	10.0.0.9
10.0.0.40/30	10.0.0.10	10.0.0.9

Tabela 2: Rotas do router 2.

Para o router 3, as suas rotas demonstram-se na Tabela 3.

Endereço	Próximo Salto	Interface de Saída
0.0.0.0/0	10.0.0.1	10.0.0.2
10.0.0.0/29	10.0.0.1	10.0.0.2
10.0.0.8/30	10.0.0.9	10.0.0.10
10.0.0.12/30	10.0.0.14	10.0.0.13
10.0.0.16/30	10.0.0.9	10.0.0.10
10.0.0.20/30	10.0.0.14	10.0.0.13
10.0.0.24/29	10.0.0.26	10.0.0.25
10.0.0.28/28	10.0.0.14	10.0.0.13

Tabela 3: Rotas do router 3.

Para o router 4, as suas rotas demonstram-se na Tabela 4.

Endereço	Próximo Salto	Interface de Saída
0.0.0.0/0	10.0.0.17	10.0.0.18
10.0.0.0/28	10.0.0.17	10.0.0.18
10.0.0.12/30	10.0.0.22	10.0.0.21
10.0.0.16/30	10.0.0.17	10.0.0.18
10.0.0.20/28	10.0.0.22	10.0.0.21
10.0.0.40/30	10.0.0.42	10.0.0.41

Tabela 4: Rotas do router 4.

Para o router 5, as suas rotas demonstram-se na Tabela 5.

4.3. ROTAS MANUAIS

Endereço	Próximo Salto	Interface de Saída
0.0.0.0/0	10.0.0.13	10.0.0.14
10.0.0.0/28	10.0.0.14	10.0.0.13
10.0.0.16/29	10.0.0.21	10.0.0.22
10.0.0.24/30	10.0.0.25	10.0.0.26
10.0.0.28/30	10.0.0.30	10.0.0.29
10.0.0.28/28	10.0.0.34	10.0.0.33

Tabela 5: Rotas do router 5.

5 Requisitos Funcionais e Não Funcionais

Neste capítulo, são apresentados os *Requisitos Funcionais* (RF), Tabela 6, e *Requisitos Não Funcionais* (RNF), Tabela 7, duas categorias essenciais de especificações que direcionam o desenvolvimento do sistema de software e hardware em questão. Estes requisitos delineiam o que o sistema deve realizar (RF) e as condições nas quais deve operar (RNF).

ID	Requisitos Funcionais	Justificação
RF1	Replicação da Plataforma	O sistema deve ser capaz de replicar a plataforma em diferentes locais da rede para garantir disponibilidade e redundância
RF2	Comunicação entre Dispositivos	Deve ser possível enviar comandos dos utilizadores para os dispositivos sensores, como alterar a taxa de amostragem dos sensores
RF3	Otimização das Rotas	Deve ser possível que haja uma rota otimizada e eficiente para que não haja grande custo, como por exemplo o tempo de espera

Tabela 6: Requisitos Funcionais do projeto.

ID	Requisitos Não Funcionais	Justificação
RNF1	Desempenho	O sistema deve ser capaz de lidar com um grande volume de dados gerados pelos sensores e garantir baixa latência na entrega dos dados
RFN2	Escalabilidade	O sistema deve ser escalável para acomodar um aumento no número de dispositivos sensores
RNF3	Tolerância a Falhas	O sistema deve ser tolerante a falhas, com capacidade de recuperação automática em caso de problemas
RNF4	Integração com Tecnologias de Rede	O sistema deve ser compatível e integrável com várias tecnologias de rede, como Wi-Fi, Zigbee, Bluetooth, entre outros
RNF5	Documentação	Deve haver documentação completa do sistema, incluindo manuais de utilizador, guias de configuração e documentação técnica

Tabela 7: Requisitos Não Funcionais do projeto.

6 Plano de Atividades

Neste capítulo, detalha-se as atividades planeadas, definimos prazos e recursos necessários. Além disso, abordamos a sequência lógica das tarefas e como elas se relacionam umas com as outras, garantindo uma execução eficiente e coordenada.

A compreensão deste Plano de Atividades é fundamental para a gestão eficaz do projeto, permitindo que todas as partes interessadas tenham uma visão clara das etapas a serem seguidas e dos marcos a serem alcançados. Isso assegura que o projeto seja concluído dentro do prazo e com sucesso.

6.1 Atividades

Na Tabela 8, são apresentadas as atividades planeadas, juntamente com datas de início e conclusão. Além disso, no Anexo I, encontra-se o Diagrama de Gantt que fornece uma representação visual do plano de trabalho.

ID	Atividade	Início	Conclusão
1	Fase A - Infraestrutura de Rede	16/09/2023	17/10/2023
1.1	Plano de Trabalhos	16/09/2023	22/09/2023
1.1.1	Definir objetivos e resultados esperados	16/09/2023	19/09/2023
1.1.2	Elaborar plano de trabalhos	19/09/2023	19/09/2023
1.1.3	Entregar Relatório de Especificação da Fase A	22/09/2023	22/09/2023
1.2	Projeto Fase A	16/09/2023	17/10/2023
1.2.1	Contextualização do problema	16/09/2023	17/09/2023
1.2.2	Adoção da estratégia de investigação	16/09/2023	17/09/2023
1.2.3	Adotar abordagens metodológicas	16/09/2023	17/09/2023
1.2.4	Instalação do GNS3	19/09/2023	19/09/2023
1.2.5	Configuração inicial do ambiente GNS3	19/09/2023	19/09/2023
1.2.6	Criação da topologia da rede com os quatro <i>routers</i> e um switch	22/09/2023	29/09/2023
1.2.7	Configuração dos endereços IP estáticos nos dispositivos de rede	22/09/2023	29/09/2023
1.2.8	Configuração das rotas manuais nos routers	28/09/2023	05/10/2023
1.2.9	Implementação do servidor DNS usando BIND	06/10/2023	12/10/2023
1.2.10	Configuração do servidor DNS para responder a solicitações de resolução de nomes	06/10/2023	12/10/2023
1.2.11	Testes de comunicação entre os nós da rede interna	11/10/2023	17/10/2023
1.2.12	Implementação do load balancer para distribuir o tráfego entre os servidores	11/10/2023	17/10/2023
1.2.13	Entrega da Fase A	17/10/2023	17/10/2023

Tabela 3: Plano de Atividades.

6.2 Lista de Riscos

Nesta secção identifica-se e descreve-se os riscos potenciais associados ao projeto, Tabela 9. Cada risco é avaliado quanto à probabilidade de ocorrência, impacto, seriedade e os seus impactos/efeitos. Também são

6.2. LISTA DE RISCOS

fornecidas ações de mitigação para lidar com estes riscos e minimizar os seus impactos. A cada um dos itens, para a probabilidade e o impacto, é atribuída uma pontuação numa escala de 1 a 5, em que o 1 corresponde a baixo e 5 corresponde a alto. A seriedade de cada risco obtém-se multiplicando a probabilidade pelo impacto, permitindo enaltecer os riscos que mais impacto poderão causar no projeto caso ocorram, de forma a estar mais atentos a eles.

A gestão dos riscos é uma parte essencial do planeamento do projeto, pois ajuda a prevenir problemas e a manter o projeto no caminho certo. Portanto, a identificação e avaliação destes riscos são cruciais para o sucesso do projeto.

ID	Risco	Mitigação	P	I	S
R1	Incumprimento dos prazos do Plano de Atividades	Esforço suplementar para o cumprimento e melhoria do planeamento	2	5	10
R2	Impossibilidade de atingir os resultados esperados	Rever o problema com o grupo e possivelmente com os professores e adequar os objetivos	2	4	8
R3	Falhas técnicas que comprometam o projeto	Utilização de repositórios para controlo de versões e realização de backups	2	4	8
R4	Especificação incorreta dos requisitos e objetivos do projeto	Esclarecer e discutir os requisitos com o grupo	2	4	8
R5	Impossibilidade de obtenção de meios para a implementação do protótipo	Procurar meios passíveis de serem implementados sem tanto custo	2	3	6
R6	Incumprimento do plano de trabalhos	Revisão semanal do plano e realização de ajustes caso necessário	2	3	6
R7	Falta de informação relativa ao tema do projeto	Manter reuniões periódicas com o grupo	1	3	3
R8	Falta de disponibilidade entre os membros grupo no projeto, fora das horas de aula	Agendar reuniões com antecedência, preparar bem as mesmas e manter contacto entre os membros do grupo	1	3	3
R9	Falta de documentos em inglês para todos os alunos entenderem	Fornecimento dos documentos em inglês	1	3	3

Tabela 9: Riscos inerentes ao desenvolvimento do projeto.

7 Conclusão

Nesta fase, foram definidas uma série de tarefas a serem realizadas, desde a instalação do GNS3 até a configuração das rotas manuais, passando pela criação de uma rede de interligação e a configuração de um servidor DNS.

Além disso, foram destacadas tarefas adicionais, como a implementação de rotas automáticas e outras estratégias de otimização da rede. Estas tarefas adicionais visam melhorar o desempenho, a escalabilidade e a tolerância a falhas da infraestrutura de rede.

Os requisitos funcionais e não funcionais do projeto foram detalhados, definidos de forma a que o sistema deve realizar e as condições nas quais deve operar.

Em resumo, o projeto envolve a configuração de uma infraestrutura de rede complexa e requer uma abordagem cuidadosa para atender aos requisitos estabelecidos e minimizar os riscos associados. A conclusão bemsucedida desta fase é essencial para o progresso do projeto como um todo.

Referências Bibliográficas

- [1] What is a DNS server? https://www.cloudflare.com/learning/dns/what-is-a-dns-server/. Acedido em 19 de setembro de 2023.
- [2] Gábor Lencse. "Benchmarking Authoritative DNS Servers". Em: *IEEE Access* 8 (2020), pp. 130224–130238. DOI: 10.1109/ACCESS.2020.3009141.
- [3] Megha Jayakumar, N Ramya Shanthi Rekha e B. Bharathi. "A comparative study on RIP and OSPF protocols". Em: 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). 2015, pp. 1–5. DOI: 10.1109/ICIIECS.2015.7193275.

Anexo I - Diagrama de Gantt

