# Measurement of the Gravitational Constant via the Cavendish Method

## Purpose

■ To measure the Universal Gravitational Constant (G) utilizing a torsional oscillator, two large and two small masses, and finding a change in torque by measuring the gravitational force between the large and small masses.





## Physics Background

- The Cavendish experiment (1797-1798)
- Apparatus based on the torsion balance first created by geologist John Mitchell.
- Reconstructed by Henry Cavendish to measure the mass of the Earth.
- No notion of gravitational constant.





## Physics Background

$$\tau_{net} = \sum \tau_n$$

$$\tau_{net} = F_1 \cdot d_1 + F_2 \cdot d_2$$

$$au_{net} = d_2 = L/2$$
  $au_{net} = (F_1 + F_2) rac{L}{2} = \kappa heta$ 

$$(G\frac{M_1m_1}{r_1^2} + G\frac{M_2m_2}{r_2^2})\frac{L}{2} = \kappa\theta$$

$$G = \frac{2\kappa\theta}{(\frac{M_1m_1}{r_1^2} + \frac{M_2m_2}{r_2^2})L}$$

$$G = \frac{2\kappa\theta}{\left(\frac{M_1(m_1 + l_1\mu_{rod})}{r_1^2} + \frac{M_2(m_2 + l_2\mu_{rod})}{r_2^2}\right)L}$$

# Apparatus





#### Procedure

- Before the experiment can begin, an inventory of measurements describing the physical characteristics of the system are taken.
  - Length and mass of the rod connecting two small spherical masses.
  - Diameter of the two small and two large spherical masses.
  - Mass of the two small and two large spherical masses (Metrology Lab).
- To begin the experiment, we calibrated angle monitor voltage proportional to the angle of rotation.
  - Record zero-angle and corresponding voltage monitored by Fluke voltmeter.
  - Apply voltage using BK precision power supply, inducing a rotation of a predecided angle.
  - Interpolate the data, applied voltage vs. angle of rotation.

#### Procedure

- Determine the torsional constant of the steel torsion wire.
  - Systematically increase the moment of inertia of the system and the measure corresponding periods.
- Prepare the apparatus for measurement of the universal gravitational constant.
  - Center rod, attach small masses, hang needle from thread, and situate grounded PVC stands.
- Measurement of the universal gravitational constant
  - Place large masses on stands, record the two center-to-center radii, and measure the voltage due to the force of mutual attraction between small and large masses.
  - Convert the voltage to a change in angle.

- Plug-n-chug 
$$G = \frac{2\kappa\theta}{\left(\frac{M_1(m_1 + l_1\mu_{rod})}{r_1^2} + \frac{M_2(m_2 + l_2\mu_{rod})}{r_2^2}\right)I}$$

#### Data & Calculations

| Small Mass A $(m_A)$                         | $164.5211 \pm 0.0011 \ g$ | Small Mass B $(m_B)$                           | $167.1469 \pm 0.0011 \ g$ |
|----------------------------------------------|---------------------------|------------------------------------------------|---------------------------|
| Depth of Hole Mass A $(l_A)$                 | $2.91 \pm 0.01 \ cm$      | Depth of Holes Mass B $(l_B)$                  | $2.90 \pm 0.01 \ cm$      |
| Large Mass D $(M_D)$                         | $4281.787 \pm 0.030 \ g$  | Large Mass C $(M_C)$                           | $4279.259 \pm 0.030 \ g$  |
| Length of Rod $(L)$                          | $91.7 \pm 0.1 \ cm$       | Mass of Rod $(m_{rod})$                        | $241.3 \pm 0.1 \ g$       |
| Mass/Length of Rod $(\mu_{rod})$             | $2.631 \pm 0.003 \ g/cm$  | Mass of Brass Quadrant $(m_{brass})$           | $214.5 \pm 0.5 \ g$       |
| Inner Radius of Brass Quadrant $(r_{inner})$ | 0.86~in                   | Outter Radius of Brass Quadrant $(r_{outter})$ | 1.86~in                   |
| Distance Masses A - D $(r_{AD})$             | $69.1 \pm 0.1 \ mm$       | Distance Masses B - C $(r_{BC})$               | $71.5 \pm 0.1 \ mm$       |
|                                              |                           |                                                |                           |

$$G = \frac{2\kappa\theta}{\left(\frac{M_1(m_1+l_1\mu_{rod})}{r_1^2} + \frac{M_2(m_2+l_2\mu_{rod})}{r_2^2}\right)L}$$

#### Data &

| Angle $(\Delta \theta)$ | Voltage $(V \pm \Delta V)$ $[\mu V]$ |       |
|-------------------------|--------------------------------------|-------|
| 0.02                    | $44.22759 \pm 0.07881$               |       |
|                         | $35.46271 \pm 0.16265$               | Right |
|                         | $35.65744 \pm 0.07063$               |       |
| 0.02                    | $36.87462 \pm 0.05519$               |       |
|                         | $31.12234 \pm 0.18475$               | Left  |
|                         | $35.40876 \pm 0.05493$               |       |
|                         | $129.0290 \pm 72.2142$               |       |
| 0.1                     | $181.5122 \pm 0.0755$                | Right |
|                         | $170.9361 \pm 0.1016$                |       |
| 0.1                     | $171.4923 \pm 0.0751$                |       |
|                         | $166.1184 \pm 0.0247$                | Left  |
|                         | $176.3709 \pm 0.0617$                |       |
|                         | $887.7279 \pm 87.4721$               |       |
| 0.5                     | $875.4954 \pm 0.0565$                | Right |
|                         | $875.4954 \pm 0.1897$                |       |
|                         | $865.5919 \pm 0.0376$                |       |
|                         | $865.3777 \pm 0.0375$                | Left  |
|                         | $870.7073 \pm 0.0741$                |       |

#### Voltage - Angle Relationship



Data & Calculations

| b            | $0.57086 \pm 0.00463$ |
|--------------|-----------------------|
| a            | $0.00196 \pm 0.00239$ |
| $\chi^2/\nu$ | 11875.46              |

$$\theta = 0.57086V + 0.00196$$

$$\Delta\theta = \sqrt{(0.00463)^2 V^2 + (0.00239)^2}$$

#### Voltage - Angle Relationship



#### Data &

| Carcaracions      |                               |
|-------------------|-------------------------------|
| # Brass Quadrants | Period $(T \pm \Delta T)$ [s] |
| 0                 | $1.15 \pm 0.05$               |
| 2                 | $1.3 \pm 0.05$                |
| 4                 | $1.5 \pm 0.05$                |
| 6                 | $1.55 \pm 0.05$               |
| 8                 | $1.7 \pm 0.05$                |

Linear Least Squares

$$T = bn + a$$

Fit: 
$$T = bn + a$$
 
$$T = \frac{4\pi^2 \Delta I}{\kappa} n + \frac{4\pi^2 I_0}{\kappa}$$



#### Data &

| b $0.192 \pm 0.0$ | )16 |
|-------------------|-----|
| a $1.341 \pm 0.0$ | )77 |
| $\chi^2/\nu$ 0.44 |     |

$$\Delta I = \frac{1}{2} m_{brass} (r_{outer}^2 + r_{inner}^2)$$

$$b = \frac{4\pi^2 \Delta I}{\kappa} \quad \Rightarrow \quad \kappa = \frac{4\pi^2 \Delta I}{b}$$

| $\Delta I$ | $2905.6 \pm 6.8 \ g \cdot cm^2$             |
|------------|---------------------------------------------|
| $\kappa$   | $0.16994 \pm 0.00040 \frac{N \cdot m}{rad}$ |

#### **Torsion Coefficient and Moment of Inertia**



# Data & Calculations

|   | No Balls                      | Balls                         |
|---|-------------------------------|-------------------------------|
| 1 | $4.648660 \pm 0.0182331 \ mV$ | $6.436821 \pm 0.0176908 \ mV$ |
| 2 | $4.349725 \pm 0.0167990 \ mV$ | $5.253742 \pm 0.0188325 \ mV$ |
| 3 | $4.535125 \pm 0.0158124 \ mV$ | $5.737554 \pm 0.0196152 \ mV$ |
| 4 | $4.884205 \pm 0.0135203 \ mV$ | $5.868733 \pm 0.0159878 \ mV$ |
| 5 | $4.820535 \pm 0.0195627 \ mV$ | $5.466052 \pm 0.0168731 \ mV$ |

$$\theta = 0.57086(V_{Balls} - V_{NoBalls})$$

$$G = \frac{2\kappa\theta}{\left(\frac{M_1(m_1 + l_1\mu_{rod})}{r_1^2} + \frac{M_2(m_2 + l_2\mu_{rod})}{r_2^2}\right)L}$$

Really long uncertainty...

Let Python handle it!

#### **Evaluation of Uncertainties**

- Systematic Errors:
  - Many of the length measurements were not measured more than once
    - Best guess of uncertainty is due to instrumental limitations
  - Periods of oscillation were not measured across various peaks
- Random Errors:
  - Possible ferromagnetic force dominating measurement
  - Noise in Voltmeter
    - Actually prevented us from being able to even measure G in the first place!

$$G = \frac{2\kappa\theta}{\left(\frac{M_1(m_1 + l_1\mu_{rod})}{r_1^2} + \frac{M_2(m_2 + l_2\mu_{rod})}{r_2^2}\right)L}$$

#### Results

|         | $G_{calc} \left[ \frac{m^3}{k \cdot s^2} \right]$ |
|---------|---------------------------------------------------|
| 1       | $1.2581 \pm 0.0182 \times 10^{-6}$                |
| 2       | $6.3605 \pm 0.1783 \times 10^{-7}$                |
| 3       | $8.4601 \pm 0.1786 \times 10^{-7}$                |
| 4       | $6.9270 \pm 0.1484 \times 10^{-7}$                |
| 5       | $4.5418 \pm 0.1821 \times 10^{-7}$                |
| Nominal | $6.676 \times 10^{-11}$                           |

$$Precision \equiv 1 - \frac{\Delta G_{exp}}{G_{exp}}$$

Trial 5: 95.90 %

Trial 1: 98.55 %

$$Accuracy \equiv 1 - \frac{G_{exp}}{G}$$

Trial 5: 680,213 %

Trial 1: 1,884,451 %

#### **Measured Gravitational Constant**



### Results

- Change from steel to brass materials
  - Paramagnetic
- Thinner wire => Smaller torsion coefficient

$$\kappa \propto D^4$$

#### Conclusion

- Precise, but not accurate
- Really got to know the experiment and methodology behind measuring G
- Even attempted to improve experiment with modifications

# GRACIAS