Benchmarks

Sur une matrice aléatoire de 10x10 de déterminant 11

- Coupe de moitié fonctionne comme attendu
- Coupe par mise à jour améliore agréablement
- L'approximation par LLL améliore drastiquement

 $\begin{bmatrix} 10 & 11 & 11 & 2 & 4 & 7 & 9 & 4 & 7 & 1 \\ 8 & 1 & 11 & 12 & 9 & 10 & 0 & 6 & 2 & 7 \end{bmatrix} \begin{bmatrix} 0 & 4 & 4 & -4 & -2 & -6 & -1 & 2 & 2 & -1 \\ -5 & 6 & 2 & -2 & 1 & 5 & 6 & 2 & 0 & -2 \end{bmatrix}$

 \boldsymbol{B}

Exact SVP

Bench	Temps moyen
Naive	1.7942 s
Half	1.0757 s
Cut	620.28 ms
Half+Cut	371.21 ms
LLL	12.885 ms
All	7.8795 ms

Benchmarks

Sur une matrice difficile 10x10 de déterminant 13

- Coupe de moitié fonctionne comme attendu
- Coupe par mise à jour inutile car on a déjà de petits vecteurs
- L'approximation LLL est une perte de temps pour la même raison

Exact SVP

Bench	Temps moyen
Naive	163.96 ms
Half	98.464 ms
Cut	164.50 ms
Half+Cut	97.741 ms
LLL	228.30 ms
All	136.83 ms