Automated Place Detection Based on Coherent Segments

Mahmut Demir and H. Isil Bozma

Intelligent Systems Laboratory
Electrical and Electronics Engineering, Boğaziçi University, Istanbul, Turkey

January 28, 2018

Problem definition Related work

General approach

Method

Region Adjacency Graphs Temporal RAG Tracking Coherency score Place Detection Segments Summary Graphs

Experiments

Conclusion

- ► Goal: Automated appearance-based place detection
- Place is a specific spatial unit or area
- Place detection is a prior step to
 - Place recognition
 - Topological mapping
 - Semantic scene understanding

- ▶ Why appearance-based approach?
 - Geometric or odometric data may not be available
 - Suitable for scene content analysis
- Challenges
 - Appearance variability
 - Perceptual aliasing
 - Indiscriminate boundaries

- Related work
 - Partioning of incoming sensory data
 - Clustering
 - ► Feature types:
 - ▶ Global: Intensity, Histograms, Optical Flow, GIST 🗡 Sensitive
 - ▶ Local: SIFT, SURF X Low level, Matching
 - ► Hybrid: BoW, Bubble Space X Low level
 - Identifying transition regions (i.e. doors, passages, corridors)
 Fails if transitions are not obvious
- Contribution:
 - Content based place detection
 - Segments Summary Graphs representation

General Approach

Region Adjacency Graphs

- Graph based segmentation method [Felzenszwalb, Huttenlocher, 2004]
- ▶ Segmentation \Rightarrow Segments \Rightarrow Nodes
- ▶ Neighboring segments ⇒ Edges

- Nodes
 - Color
 - Position
 - Size
- Edges
 - Mean color difference

[150,50] [0,0,1]

[10]

[40,100] [1,0,0]

Temporal RAG Tracking

- Matching consecutive RAGs:
 - ► Cost matrix C^{kl} with $c_{ij} = \delta(s(\mathcal{N}_i^k), s(\mathcal{N}_i^l))$
 - Optimal match by Hungarian method
 - Remove nodes with matching $cost > \tau_m$
- Nonmatched nodes -Matching via backtrack

250.601 10.1.01

> [x,y] [r,g,b] [area]

[120,170]

[260,70]

[0,1,0]

[x,y]

[r,g,b] [area]

[1,1,0]

Coherency score calculation

- Coherency over temporal window
- ► Parameters:
 - $ightharpoonup au_w$ window size
 - # appearing nodes
 - # disappearing nodes
 - node weights ρ_i^I

$$\varphi^{k} = 1 - \sum_{l=k-\tau_{m}}^{k} \sum_{i=1}^{|n'|} \rho_{i}^{l} (a_{i}^{l} + b_{i}^{l})$$
 (1)

where

$$a'_{i} = \begin{cases} 1 & \text{if } M_{li} > 0, \ M_{l-1,i} = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

$$b_i^I = \begin{cases} 1 & \text{if } M_{li} = 0, M_{l-1,i} > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (3)

$$\rho_i^I \propto s_3(N_i^I) \times \sum_{k=I-\tau_w}^I M_{ki} > 0$$
 (4)

Place Detection

Segments Summary Graphs

- Contains apparent segments only
- Encodes spatial relations

Experiments

- Outdoor [New College Dataset]
- Indoor [COLD Dataset]
- ► Comparative study [VPC2009]

Outdoor experiments

- New College dataset
- 1800 basepoints 550 m
- Contains gradual changes

New College Map

Indoor experiments

► Freiburg (Fr), Saarbrucken (Sa) and Ljubljana sites of COLD Dataset

Freiburg site

Comparison of Detected Places: SSG vs BD¹ (Bubble Descriptors)

SSG approach

BD approach

VPC2009 Dataset

- ▶ 21019 images from three different homes
- Challenging dateset:
 - Unclear place boundaries
 - Visual content varies greatly with respect to the viewpoint due to small FOV
- Comparison based on 43 manually annotated transition regions
- Criteria: Minimum %30 overlap

Approach	SSG	BuS
Correct detection (%)	88.3	84.9

Conclusion

Segments based Place Detection

- Stable under wide range of view-points and dynamical changes compared to low-level descriptors
- Reliable place detection
- SSG enables semantic content analysis

Future work

- ▶ Use semantic segmentation
- Use SSG for place recognition and hierarchical place representation

