演習形式で学ぶ圏論の基礎の基礎(未完成版)

梅崎直也@unaoya (株式会社すうがくぶんか)

2021年9月5日

La mathématique est l'art de donner le même nom à des choses différentes.

Science et Méthode, Henri Poincaré

これはまだ未完成です。完成版は講座当日9/5の朝 8時に更新します。ご迷惑おかけしますがご了承くだ さい。

目次

1	はじめに	2
		3
2.1	グラフ	3
2.2	モノイド	7
2.3	圏の定義	11
2.4	グラフの圏	15
2.5	モノイドの圏	18
2.6	同型	20

1 はじめに

今回の講座の目標は、圏論の考え方を使って説明できる簡単な現象を紹介することです。具体的には「随伴 関手の極限余極限の保存」という事実について、この事実を通して説明できる具体例である「写像による部分 集合の像および逆像と和集合共通部分の関係」を紹介します。そのために、圏や関手の定義から始めて、随伴 関手とは何か、極限余極限とは何か、を簡単な例とともに紹介します。

圏論における非常に重要な概念として自然変換がありますが、今日の講座では自然変換については一切扱いません。ただし、随伴の定義の中でこっそり出てきます。

このテキストの構成について説明します。まずは初めに圏などの概念を記述するための基礎として集合と写像について簡単に説明します。また集合や写像に関して圏論の言葉で扱うことができる例についても紹介します。次に圏の定義を説明しますが、いきなり圏の定義を説明するのではなく、圏よりも単純な概念であるグラフとモノイドという概念を先に説明します。これらは、圏の定義を理解する助けとなると同時に、グラフたちの構成する圏やモノイドたちの構成する圏など、圏の具体例を提供するものです。圏の定義を説明した後は、一つの圏の中で説明することができる圏論の概念である極限と余極限を扱います。目標である事実に関連して、部分集合の和や共通部分などが極限や余極限として理解できることを説明します。次に二つの圏の関係を記述する概念である関手について説明します。最後に二つの関手の特別な関係である随伴について説明し、随伴の考え方を用いて理解できる現象の例をいくつか紹介します。

圏論を学ぶために web 上でご覧いただける資料を紹介します。名古屋大学情報学部・情報学研究科の木原 貴行先生による圏と論理へのいざない・レクチャーノートは今回の講座と同じようにグラフの話から始めていて少ない予備知識で読めることと、論理と圏論の関係について書かれています。壱大整域は圏論について基本的な部分から非常に豊富な解説がありますが、多少数学に慣れている人向けです。ゆる圏 YouTube ではベーシック圏論の内容を丁寧に解説されています。梅崎自作の資料として、圏論の基本的な内容から米田の補題を目標としたノートをこちらのページからご覧いただけます。こちらには自然変換も書いてあります。また、グラフの圏についての動画を YouTube のチャンネルに投稿する予定なのでご覧ください。

すうがくぶんかでは 10 月から後期集団講座を開講します。いずれも zoom を用いたオンライン講座で、アーカイブは 2 年間ご視聴いただけます。梅崎が担当する講座は『ベーシック圏論』を教科書にした講座と『線形代数の世界』を教科書にした講座で、この二講座については演習問題の添削を行います。質問対応、添削の対応も視聴期限と同じく 2 年間です。また、4 月から 8 月には『集合と位相』の講座を行いました。こちらは録画をご覧いただけます。もしご興味あれば各講座のページから詳細をご覧ください。

2 圏の定義

ここから圏の定義と基本的な例について説明していく。圏は、対象、射、合成、恒等射という4種類のデータから構成されるものである。この4つをいきなり扱うと難しいので、段階的に導入していくことにする。

まずはグラフという概念について説明しよう。これは上の4要素でいうと対象と射のみを考えて合成と恒等 射については考えないということになる。ここで言うグラフは前説にも出てきたような関数のグラフのことで はなく、グラフ理論などででてくるグラフのこと。ものの関係性などを頂点と辺の図で表現する。例えば電車 の路線図とか映画の登場人物の相関図とかを想像してほしい。(ただしこれらには辺に情報が乗ってる場合が あって、それはグラフにもう少し構造をつけたものである。)

次にモノイドという概念について説明する。モノイドは圏のうちで特別なもので、対象(頂点)が一つのものである。この概念を通して、合成や恒等射についての理解したい。

あとで説明するように頂点が一つのグラフは単なる集合だと思える。グラフの射は集合の写像である。これ と同じように対象が一つの圏は単なるモノイドだと思える。

一方でグラフやモノイドも集合と同じように数学的対象である。圏のためでなく、独立して重要な概念。そして、グラフたちやモノイドたちによってそれぞれ一つの圏を定めることができる。この講座ではグラフやモノイドが二重の役割を持つことに注意したい。

2.1 グラフ

圏の定義を紹介する前に、圏について直感的に理解するための補助となるグラフの概念について説明する。 グラフとは、頂点と向きのついた辺からなる図形のことである。辺に向きがついているため有向グラフと呼ばれることが多いが、今回は単にグラフという。

次のような図で表されるものがグラフである。

例 2.1.

これを集合の言葉を使って定式化する。

定義 2.2 (グラフ). グラフ *G* とは

1. 頂点の集合 V(G)

2. 各頂点 $x, y \in V(G)$ に対して辺の集合 G(x, y)

からなるもの。

これを明示的に $G = (V(G), (G(x,y))_{(x,y) \in V(G) \times V(G)})$ などと書いたりもする。

この $(G(x,y))_{(x,y)\in V(G)\times V(G)}$ という記法は添字づけられた集合族というもので、 $V(G)\times V(G)$ の各要素ごとに、つまり V(G) の要素の対ごとに集合 V(x,y) を与えるという意味の記法。数列 $(a_n)_{n\in\mathbb{N}}$ が \mathbb{N} の各要素つまり自然数に対して数 a_n を与えるというのと同じ。

例 2.3. 上の例は

$$\begin{split} &V(G)=\{0,1,2\},\\ &V(0,0)=\{7\},V(0,1)=\{3\},V(0,2)=\{4\},\\ &V(1,0)=\emptyset,V(1,1)=\{8\},V(1,2)=\{5,6\},\\ &V(2,0)=\emptyset,V(2,1)=\emptyset,V(2,2)=\{9\} \end{split}$$

として定まる。

今回の定義では二つの頂点の間に複数の辺が存在するグラフや、同じ頂点を始点と終点に持つ辺が存在するグラフも許していることに注意しよう。

問題 2.4. 次の図を集合を用いて記述せよ。

解答.

$$V(G) = \{0, 1\}, V(0, 0) = \{4\}, V(0, 1) = \{2, 3\}, V(1, 1) = \emptyset, V(1, 0) = \emptyset$$

$$V(G) = \{0\}, V(0, 0) = \{1\}$$

問題 2.5. 次のグラフを図示せよ。

$$\begin{split} V(G) &= \{0,1,2\}, \\ V(0,0) &= \emptyset, V(0,1) = \{3\}, V(0,2) = \{4\}, \\ V(1,0) &= \{5\}, V(1,1) = \{6,7\}, V(1,2) = \emptyset, \\ V(2,0) &= \{8\}, V(2,1) = \emptyset, V(2,2) = \{9\} \end{split}$$

解答.

数学的な現象を捉えるグラフの例としてハッセ図を紹介しよう。集合の包含関係や数の大小関係、整除関係など、ある集合の要素の間に順序が定まっているときに、次の方法でグラフを定める。一つ一つの要素を頂点として、二つの頂点 x,y に対して y が x の「すぐ上」、つまり $x \le y$ であってかつ $x \le z \le y$ となるような z が存在しないとき、またそのときに限り辺を書く。

例 2.6. $P(\{0,1\})$ の要素 \emptyset , $\{0\}$, $\{1\}$, $\{0,1\}$ には包含関係が定まる。この包含関係を大小関係だと思って、上のルールにしたがってグラフを定める。これを図示すると以下のようになる。

問題 2.7. $P(\{0,1,2\})$ から上と同じようにして、包含関係によるハッセ図をかけ。

解答.

例 2.8. 10 以下の自然数について、通常の大小関係でハッセ図をかく。

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7 \longrightarrow 8 \longrightarrow 9 \longrightarrow 10$$

例 2.9. 10 以下の自然数について、整除関係を大小だと思って以下のようにグラフに表す。

例 2.10 (空グラフ). 頂点も辺も持たないグラフを空グラフと呼ぶ。 $V(G)=\emptyset$ であり、辺集合は存在しない。 集合からグラフを作る方法を二つ紹介しよう。

例 2.11 (離散グラフ). 集合 X に対しグラフ G(X) を頂点集合 V(G(X)) = X とし、 $x,y \in V(G(X)) = X$ にたいして辺集合 $G(X)(x,y) = \emptyset$ とすることで定める。

これは辺を一つも持たず集合 X の要素に対応した頂点をもつグラフとなる。これを**離散グラフ**という。

辺を持たないグラフは集合と同じだと思える。集合が単に要素が所属しているという情報を持つのに対し、 グラフは集合の要素の間に何らかの関係があるよいう情報を持たせたものだと言える。

冪集合のように集合が要素であるような集合を考えることができた。冪集合の要素の間には包含関係がある。この包含関係の情報も取り出すには単に冪集合を集合と思うのではなくて、グラフとして表現するのがよい。

例えば $\{1,2,3,6\}$ の整除関係をグラフに表したものと $P(\{0,1\})$ の包含関係をグラフに表したものは同じ形になる。

例 2.12. 集合 X に対しグラフ M(X) を頂点集合 $\{0\}$ に M(X)(0,0) = X として定める。これは頂点が一つだけで集合 X の要素に対応した辺を持つグラフである。

これによって、頂点が一つのグラフを集合と同一視することができる。 逆にグラフに集合を対応させる方法を紹介しよう。

例 2.13. グラフ G にたいしてその頂点集合 V(G) を対応させる。

例 2.14. グラフGにたいしてその辺全体の集合 $\coprod_{(x,y)\in V(G)\times V(G)}V(x,y)$ を対応させる。

 $X = \{0,1\}$ にたいしてハッセ図

ではなく包含関係がある二つの集合の間全てに辺を持たせたグラフを考える。

例 2.15. さらにより一般に集合と写像を適当に集めることでグラフを定めることができる。 \emptyset , $\{0\}$, $\{1\}$, $\{0,1\}$ を頂点として、これらの間の写像に対応して辺を定める。

これらは互いに部分グラフの関係になっている。

2.2 モノイド

ここまではグラフの概念を見てきた。これは圏を構成する四つのデータのうち、合成と恒等射についてはと りあえず無視していた。次に圏の定義に近づけるために合成と恒等射についても考えることにする。ただいき なり一般にやらず、圏のうちで対象が一つという条件を満たす比較的単純な圏だけに限って話をする。これは モノイドという概念とみなすことができる。

モノイドの典型例として自然数の加法と自然数の乗法がある。自然数の加法つまり足し算は、二つの自然数に対して自然数を対応させる写像である。2+3=5 というのを写像っぽさを強調して +(2,3)=5 というように記述することにしよう。この + は写像 $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ を定める。

さらに、足し算は結合法則を満たす。つまり (1+2)+3 も 1+(2+3) もいずれも同じ。+(+(!,2),3)=+(1,+(2,3)) ということ。

問題 2.16. 以下を計算せよ。+(+(+(2,3),4),+(1,6))

以下の足し算を写像の記号を用いて表示しなおせ。(1+2)+(3+(4+5))

解答. +(+(+(2,3),4),+(1,6))=16 である。

(1+2)+(3+(4+5)) は +(+(1,2),+(3,+(4,5))) と表せる。

また、0という特別な要素があり、これは任意の $n \in \mathbb{N}$ に対して+(n,0) = n, +(0,n) = nを満たす。ここ

	0	1	2
0	0	1	2
1	1	2	3
2	2	3	4

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	4

ではひとまず足し算という一つの操作のみに注目し、 $(\mathbb{N},\mu,0)$ という三つ組を考えている。足し算は次のような表に書くことができる。(本当は無限のサイズを考えないといけないことに注意。)

同じく自然数のかけ算という一つの操作のみに注目しよう。かけ算も二つの自然数に対して自然数を対応させる写像である。 $2\times 3=6$ というのを $\times(2,3)$ と書くことにする。これも同じように表を書くことができる。掛け算は結合的である。つまり $\times(n,\times(m,l))=\times(\times(n,m),l)$ が成り立つ。また 1 という特別な要素があって、 $\times(n,1)=n,\times(1,n)=n$ が成り立つ。

もう少し別のモノイドの例を紹介しよう。

例 2.17 (集合の自己写像). 集合 X に対して、写像全体の集合 $\mathbf{Set}(X,X)$ と写像の合成 $c:\mathbf{Set}(X,X) \times \mathbf{Set}(X,X) \to \mathbf{Set}(X,X)$ を $\mathbf{c}(f,g) = f \circ g$ で定める。写像の合成は結合法則をみたし、恒等写像がある。これにより ($\mathbf{Set}(X,X), \circ, \mathrm{id}_X$) はモノイドになる。

例えば $X = \{0,1\}$ としよう。このとき、 $\mathbf{Set}(X,X)$ はどのようなモノイドか? 以前の例を思い出す。

これらの合成規則がどのようになるか、表にまとめよう。ここではaの行bの列に対して $b \circ a$ を書き込む

例 2.18. $\mathbf{Set}(X,X)$ 全体ではなくその一部分を考えることもできる。例えば $X=\mathbb{N}$ とし、 $s:\mathbb{N}\to\mathbb{N}$ を s(n)=n+1 と定めると $s\in\mathbf{Set}(\mathbb{N},\mathbb{N}))$ である。 $\{\mathrm{id}_{\mathbb{N}},s,s^2,s^3,\ldots\}$ を考えるとこれもモノイドとなる。

 $X=\{0,1\}$ で、 $n:X\to X$ を n(0)=1, n(1)=0 として定める。 $n^2=\mathrm{id}_X$ であり、 $\{\mathrm{id}_X,n\}$ はモノイドとなる。

モノイドは「数」の集まりというより「操作」の集まりようなものだと思うのがいいかもしれない。 以上の例を踏まえてモノイドの定義を与える。

定義 2.19 (モノイド). モノイド M とは

- 1. 集合 M₀
- 2. 写像 $\mu: M_0 \times M_0 \to M_0$
- 3. 要素 $1_M \in M_0$

というデータからなる $M=(M_0,\mu,1_M)$ であって、次の性質を満たすもの

- 1. 任意の $x, y, z \in M$ に対して $\mu(\mu(x, y), z) = \mu(x, \mu(y, z))$ が成り立つ。
- 2. 任意の $x \in M$ に対して $\mu(x,e) = x, \mu(e,x) = x$ が成り立つ。

単に M と省略する。 μ を演算、e を単位元と呼ぶ。場合によっては単位元は存在のみを定義にしていて、それを要素として指定しないこともある。実際には単位元は存在のみを仮定して一意であることが証明できるため、どちらの定義を採用しても差はない。

これを可換図式で書いてみよう。

冒頭に述べた例をもう一度整理する。

例 2.20. 自然数全体の集合 \mathbb{N} と写像 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ を普通の足し算 $+: (n,m) \mapsto n+m$ でさだめよう。このとき、 $(\mathbb{N},+,0)$ はモノイドになる。つまり、結合法則と単位法則をみたすことが確かめられる。

例 2.21. 自然数全体の集合 \mathbb{N} と写像 $\times : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ を普通の掛け算 $\times : (n,m) \mapsto nm$ でさだめよう。このとき、 $(\mathbb{N}, \times, 1)$ はモノイドになる。つまり、結合法則と単位法則をみたすことが確かめられる。

例 2.22. 集合 X に対して $M_0 = \mathbf{Set}(X,X)$ とし、 μ を写像の合成で定め、 1_M を恒等写像 id_X とすることでモノイドが定まる。

例 2.23. M の要素の個数が 2 であるようなモノイドにはどのようなものがあるか考えてみよう。 $M=\{a,b\}$ とおいてみる。 $a\neq b$ である。モノイドを定義するには、特別な要素 $1_M\in M$ と写像 $\mu_M:M\times M\to M$

	1_M	b
1_M	1_M	b
\overline{b}	b	

	1_M	a
1_M	1_M	a
\overline{a}	a	1_M

を決める必要がある。 $1_M=a$ とするか、 $1_M=b$ とするかのふた通りの場合があるがどっちでも同じなので $1_M=a$ としてみる。

 $\mu_M: M \times M \to M$ を決める必要がある。まず集合の写像として可能性は 16 通りある。そのうちで、 1_M の行き先は自動的に決まることから絞り込めて、までは決まる。 $\mu(b,b)$ の候補は $1_M,b$ の二つあるが、いずれにしてもモノイドになる。

集合 M_0 が同じでも、 $\mu,1_M$ の定め方で異なるモノイドが得られる。 特別なモノイドとして次を紹介する。

例 2.24 (一点モノイド). $S = \{0\}$ に $\mu(0,0) = 0, e = 0$ とするとモノイドになる。

これはつまらないもののように見えるが、モノイドの圏における始対象かつ終対象であるという役割を果たす。

一点集合 $X=\{x\}$ に対して $\mu(x,x)=x$ とすることで (X,μ,x) はモノイドとなる。一点集合はたくさんあるがどれでやっても本質的に同じ。この本質的に同じというのは、同型という概念で圏論的に述べることができる。直接示すこともできるし、終対象や始対象の性質として示すこともできる。一見違うものが同じだということを示すのに圏論の考え方を利用することもできる。

集合からモノイドを構成する方法を与えよう。

例 2.25 (自由モノイド). 集合 X に対して、X が生成する自由モノイド FX とは、長さが有限の X の要素の文字列全体の集合に演算は文字列の結合で定めたのこと。ここで単位元は空文字列「」で、これを 1 と表す。例えば $X=\{a\}$ のとき、 $FX=\{1,a,aa,aaa,aaaa,\ldots\}$ であり、 $\mu(aa,aaa)=aaaaa$ などとなる。 $X=\{a,b\}$ のとき、 $FX=\{1,a,b,ab,aa,bb,ba,aaa,\ldots\}$ であり、 $\mu(aba,bba)=ababba$ などとなる。

単に集合 X に μ , 1_X を適切に定めることで $(X,\mu,1_X)$ をモノイドであるようにするのとは違うことに注意しよう。全ての集合に一斉に同じやり方でモノイドを対応させることができる。しかも集合の写像があればそれを利用してモノイドを関係付けることができる。

例 2.26. 自然数と掛け算で定まるモノイドは自由モノイドではないが $\mathbb{N}\setminus\{0\}$ に掛け算を考えると自由モノイドになる。

自然数と足し算で定まるモノイドは自由モノイドだが $\mathbb{N}\setminus\{1\}$ に足し算をで考えると自由モノイドでなくなる。

自由モノイドに関係式を定めることでモノイドを作ることができる。例えば $F(\{a\})$ に aa=1 という関係式を定めたものは であり、aa=a という関係式を定めたものは である。

	1_M	a
1_M	1_M	a
\overline{a}	a	a

モノイド (M,μ,e) から集合 M を取り出す操作も関手的である。

例 2.27 (忘却関手). モノイド (M,μ,e) に対して、単に集合 M を対応させる。

2.3 圏の定義

ここまで、圏に近い概念として有向グラフとモノイドを紹介した。これらと圏の関係をもう一度整理する。 圏はある条件を満たす有向グラフに「射の合成」と「恒等射」というデータを付加したものである。モノイドは「対象が一つ」という条件を満たす圏である。

有向グラフと圏の違い。圏も対象(頂点)と射(向きのついた辺)からなるが、これについてさらに合成や 恒等射というデータ、それらについての制約がある。射が合成できるか。合成の情報は絵からは見えない。

頂点が一つのグラフは集合と同一視できる。対象が一つの圏はモノイドと同一視できる。

グラフの定義とモノイドの定義をまず復習しよう。

定義 2.28 (グラフ). グラフ G とは

- 1. 頂点の集合 V(G)
- 2. 各頂点 $x,y \in V(G)$ に対して辺の集合 G(x,y)

からなるもの。

これを明示的に $G = (V(G), \{G(x,y)\}_{x,y \in V(G) \times V(G)})$ などと書いたりもする。

定義 2.29 (モノイド). モノイド *M* とは

- 1. 集合 M₀
- 2. 写像 $\mu: M_0 \times M_0 \to M_0$
- 3. 要素 $1_M \in M_0$

というデータからなる $M=(M_0,\mu,1_M)$ であって、次の性質を満たすもの

- 1. 任意の $x, y, z \in M$ に対して $\mu(\mu(x, y), z) = \mu(x, \mu(y, z))$ が成り立つ。
- 2. 任意の $x \in M$ に対して $\mu(x,e) = x, \mu(e,x) = x$ が成り立つ。

これを踏まえて圏の定義を与える。

定義 2.30. 圏 C とは

- 1. 対象の集まり Ob(C)
- 2. 各対象 $x, y \in Ob(C)$ に対して射の集まり C(x, y)
- 3. 各対象 $x,y,z \in \mathrm{Ob}(C)$ に対して射の合成と呼ばれる写像 $c_{x,y,z}: C(y,z) \times C(x,y) \to C(x,z)$
- 4. 各対象 $x \in \mathrm{Ob}(C)$ に対して x 上の恒等射と呼ばれる射 $1_x \in C(x,x)$

からなり、以下の条件を満たすもの。

1. 結合法則任意の $w, x, y, z \in Ob(C)$ と

$$c_{w,x,z}(c_{x,y,z}(h,g),f) = c_{w,y,z}(h,c_{w,x,y}(g,f))$$

が成り立つ。

2. 恒等射の性質任意の $x, y \in Ob(C)$ と $f \in C(x, y)$ に対し

$$c_{x,x,y}(f,1_x) = f, c_{x,y,y}(1_y,f) = f$$

が成り立つ。

Ob(C) の要素を C の対象、C(x,y) の要素を C の射とよび $f: x \to y$ などと書く。

以前に与えた有向グラフ、モノイドの定義と改めて比較する。有向グラフは合成や恒等射というデータは持たない。有向グラフにこれらのデータを追加できるかは場合による。

与えられた集合にモノイドの構造を定めたの同様にして、与えられたグラフに圏の構造を定めたい。これが 一通りとは限らないし、できるとも限らない。

逆にいうと、圏をグラフで図に表したときに射の合成や恒等射の情報は失われる。

例 2.31. 有向グラフから圏を定めることができる例とできない例

0

 $0 \longrightarrow 1$

モノイド (M,μ,e) は対象が一つの圏であると言える。射の集まりを M、演算が射の合成 μ 、恒等射が単位元。条件を満たすのはモノイドの定義そのもの。

例 2.32. モノイドの例から圏の例を作る

圏はグラフと演算表のデータからなると思うことができる。

以下ではこのテキストで主役となる圏の例を与える。

例 2.33. 集合 X の冪集合 P(X) に包含を射とすることで圏を作ることができる。ハッセ図の話を思い出す。対象は X の部分集合、つまり P(X) の要素である。Ob(C)=P(X) である。射は一点集合または空集合で、 $C(A,B)=\begin{cases} \{i_{A,B}\} & A\subset B\\ \emptyset & A\not\subset B \end{cases}$ として定める。射の合成は A,B,C に対して $A\subset B$ かつ $B\subset C$ ならば $A\subset C$ であることから、一意的に定まる。これ以外の場合は空集合からの写像なので一意。恒等射は $i_{A,A}$ である。

空集合からの写像が一意であること、空集合や全体も部分集合としたことなどで定義がうまくいく。

例 2.34. $X = \{0,1\}$ に対して上のように圏を定める。これについてグラフとして図示するとどうなるか。

この場合には、射の合成はグラフから一意的に決まる。

問題 2.35. $X = \{0,1,2\}$ にたいしてその部分集合を対象とし、包含によって射を定める。これによってできる圏を図示せよ。

例 2.36. 対象の集まりが空集合である圏を空な圏という。

グラフとして絵に書いても合成の情報は完全には復元できないことに注意。

実際にはこの図は対象が一つなのでモノイドとして見ることもできる。要素が二つの集合にモノイドの構造を 二通りの方法で入れることができたのを思い出そう。

注意 2.37. 圏から定まるグラフと一般のグラフの違いに注意しよう。グラフの場合、二つの矢印を繋いだ矢 印があるとは限らない。

例 2.38. 有向グラフから圏を構成する(自由圏)どんどん矢印を繋いでいく。Ob(C)=V(G) とし、C(x,y) は $x\to x_1\to x_2\to\cdots\to x_n\to y$ 全体。(つなげることができるグラフの辺の列を射とする。文字列と同じ考え方。)さらに各頂点 x に対して id_x も付け加わる。

頂点が一つのグラフは集合と見ることができた。対象が一つの圏はモノイドと見ることができる。グラフが 頂点一つを持つ場合に自由圏を作ると自由モノイドに対応したものになる。

次のグラフ

から自由圏を作る。射は $V(0,0)=\{a^n\}, V(1,1)=\{c^n\}, V(0,1)=\{c^nba^m\}, V(1,0)=\emptyset$ になる。グラフを一部分だけ書くと次のようなになる。

問題 2.39. $\{0,1\}$ の部分集合と包含関係から定まるハッセ図をグラフと思ったとき、このグラフから上の方法で自由圏を作るとどのような圏になるか

上のように絵にかける圏だけではなく、とても大きな圏も重要である。

例 2.40. 集合の圏 **Set**

全てを絵に書くことは不可能なので、ごく一部だけ取り出す。 \emptyset , $\{0\}$, $\{1\}$, $\{0,1\}$ だけについて、対象と射を有向グラフとして書いてみよう。

この図だけでは圏の情報としては不完全で合成の様子も捉える必要がある。そのために演算表を書いてみる。

問題 2.41. 上の図にさらに {2} という集合も付け加えて全ての射を考えるとどのようになるか。

2.4 **グラフの圏**

集合の圏を作るのと同様に、グラフを集めて圏を作る。ここまでの説明では、一つのグラフが一つの圏と関連づけられていたが、ここではたくさんのグラフたちを集めて一つの圏を作る。

圏を作るために、グラフの射をまず定める必要がある。二つのグラフの関係を記述するものとしてグラフの 射を定義する。これはグラフ準同型などとも呼ばれる。またグラフの射を用いてグラフの特徴を記述すること ができる。

グラフの持っている情報は頂点と辺であり、辺はその始点と終点が定まっていた。グラフの射はこれらの情報を保つものである。つまりあるグラフの頂点をあるグラフの頂点に対応させ、辺を辺に対応させ、その始点と終点を保つものである。正確に定義を与えると次のようになる。

定義 2.42 (グラフの射). G, H をグラフとする。 グラフの射 $f: G \to H$ とは

1. 頂点集合の間の写像 $f_V:V(G)\to V(H)$

2. グラフGの各頂点 $x,y \in V(G)$ に対して辺集合の間の写像の族 $f_{x,y}: G(x,y) \to G(f(x),f(y))$ からなる写像の集まりのこと。x からy に向かう辺はf(x) からf(y) に向かう辺に対応づけられている。**例 2.43** (グラフの射の例). グラフGを

$$2 \overbrace{ \hspace{1cm} } 0 \xrightarrow{ 3} 1$$

とし、グラフ H を

$$3 \underbrace{\qquad \qquad }_{5} 1 \underbrace{\stackrel{7}{\overset{7}{\overset{6}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}}}_{6} 2$$

とする。

Gから H への射は全部で 4 個ある。

H から G への射は全部で 1 個ある。

複数の辺や頂点が同じ辺や頂点に対応してもよい。また、グラフの射が存在しないこともある。

問題 2.44. グラフGとHを以下の図で定義する。

グラフ G_1,G_2,G_3 とそれらの間の射 $f_1:G_1\to G_2,f_2:G_2\to G_3$ が与えられたとき、 f_1 と f_2 を合成してグラフの射 $f_2\circ f_1:G_1\to G_3$ を定めることができる。

定義 2.45 (射の合成)。 グラフ G_1,G_2,G_3 とそれらの間の射 $f_1:G_1\to G_2,f_2:G_2\to G_3$ に対し、グラフの射 $f_2\circ f_1:G_1\to G_3$ を

1. $(f_2 \circ f_1)_V : V(G_1) \to V(G_3)$ を $(f_2)_V \circ (f_1)_V$ により定める。

2. 頂点 $x,y \in G_1$ に対して $(f_2 \circ f_1)_{x,y} : G_1(x,y) \to G_3((f_2 \circ f_1)(x), (f_2 \circ f_1)(y))$ を $(f_2)_{f_1(x),f_1(y)} \circ (f_1)_{x,y}$ により定める。

グラフの射には恒等射と呼ばれる特別な射がある。

定義 2.46 (恒等射). グラフ G に対し恒等射 $1_G: G \to G$ とは以下のようにして定まるグラフの射。

- 1. $(\mathrm{id}_G)_V:V(G)\to V(G)$ を集合 V(G) の恒等写像 $\mathrm{id}_{V(G)}$ とし
- 2. 頂点 $x,y \in V(G)$ に対して $(\mathrm{id}_G)_V: V(x,y) \to V(x,y)$ を恒等写像 $\mathrm{id}_{V(x,y)}$ とする。

グラフの射を使ってグラフの情報を取り出すことができる。

例 2.47. 1. 頂点を一つ持つグラフ

- 2. 二つの頂点とそれを結ぶ一つの辺を持つグラフ
- 3. 一つの頂点とその頂点を結ぶ一つの辺を持つグラフ

を考える。 グラフGに対してこれらからの射はそれぞれ

- 1. 頂点集合
- 2. 辺全体の集合
- 3. ループになっている辺全体の集合

という集合と同一視できる。

これらは全てグラフに集合を対応させる操作で、しかも**関手的**である。このようにして、グラフに集合を対応させる操作が、あるグラフからの射の集合として**表現可能**な場合がある。

例 2.48. グラフの圏 **Graph** グラフ全体を対象の集まりとし、グラフの射を射の集まりとして圏が定まる。 射の合成が定まり、結合律を満たす。恒等射が定まる。

これも一部の対象だけ絵を描いてみる。それらの対象の間の射は全部描く。グラフ G_0 を

0

 G_1 &

 G_2 &

 $0 \longrightarrow 1$

で定める。

この各頂点がグラフを表している。

問題 2.49. グラフ G_3 を

 $0 \rightleftharpoons 1$

で定める。

これを追加して上の圏の図を書き直すとどうなるか。

グラフに対してその頂点集合を対応させる対応も、辺集合全体の直和を対応させる対応もいずれも**関手的**である。つまり、集合の写像 $f:X\to Y$ に対してグラフの射 $G(f):G(X)\to G(Y)$ が定まる。さらに、 $G(g\circ f)=G(g)\circ G(f),G(\operatorname{id}_X)=\operatorname{id}_{G(X)}$ である。

例 2.50. 集合からハッセ図を作る操作は関手的だろうか。つまり、写像 $f: X \to Y$ に対してグラフの射が定まるか? P(X) の要素と P(Y) の要素を対応させる方法として、逆像 f^{-1} と像 f を紹介した。例えば $X = \{0,1\}, Y = \{0\}$ とし、 $f: X \to Y$ を f(0) = f(1) = 0 により定める。もし像を使うならば、P(X) の要素に対して $f(\emptyset) = \emptyset, f(\{0\}) = f(\{1\}) = f(\{0,1\}) = \{0\}$ であるが、P(X) のハッセ図の $\{0\}$ から $\{1\}$ に向かう辺は P(Y) の辺に対応させることができない。逆像を使うならば、P(Y) の要素に対して $f^{-1}(\emptyset) = \emptyset, f^{-1}(\{0\}) = \{0,1\}$ だが、P(Y) のハッセ図の \emptyset から $\{0\}$ に向かう辺は P(X) の辺に対応させることができない。いずれもグラフの射とはならない。

これに対して、ハッセ図ではなくて包含関係全てに対応させて辺を定めることにより、いずれも関手的になる。つまり、P(X) に対応するグラフとして、頂点が P(X) の要素、辺が $A \subset B$ のとき A から B に向かう 辺、とすることによって、像をとる、逆像をとる、いずれについても関手的である。合成や恒等写像について の性質もみたされる。

2.5 **モノイドの圏**

二つのモノイドを結びつけるものとしてモノイドの射がある。集合の写像はモノイドは集合、写像、要素の 三つの組であった。この三つの組みをうまく保存して対応させるものがモノイドの射である。

定義 2.51 (モノイドの射). モノイド $(M,\mu,e),(N,\nu,f)$ について、M から N への射とは、集合の写像

	1_M	a	_
1_M	1_M	a	
a	a	1_M	
	1_N	b	
1_N	1_N	b	
1	,	_	
b	b	1_N	
<i>b</i>	b	1_N	
<i>b</i>	b 1_N	$\frac{1_N}{b}$	b^2
$\frac{b}{1_N}$			$\frac{b^2}{b^2}$
	1_N	b	

 $g:M\to N$ であって、以下を満たすもの

$$g(\mu(x,y)) = \nu(g(x),g(y))$$

$$g(e) = f$$

これを可換図式で書いてみよう。

$$\begin{array}{ccc} M\times M & \stackrel{\mu_M}{\longrightarrow} & M \\ f\times f \Big\downarrow & f \Big\downarrow \\ N\times N & \stackrel{\mu_N}{\longrightarrow} & N \\ \\ \{1_M\} & \stackrel{}{\longrightarrow} & M \\ f \Big\downarrow & f \Big\downarrow \\ \{1_N\} & \stackrel{}{\longrightarrow} & N \end{array}$$

例 2.52. 加法によるモノイド $\mathbb N$ からそれ自身へのモノイドの射は f(n) = n, f(n) = 2n などがある。

問題 2.53. $D=\{0,1\}$ に $\mu(1,1)=0$ によりモノイドの構造を定める。このとき、モノイドの射 $D\to D, D\to \mathbb{N}, \mathbb{N}\to D$ にはどのようなものがあるか。

モノイドの射について演算票を通して理解する。

例 2.54. M を $\{1_M,a\}$ で $b \neq 1_M$ で $a^2 = 1_M$ で定める。N を $\{1_M,b,b^2\}$ でこの三つは相異なり $b^3 = 1_M$ として定め、モノイドの射 $f:M\to N$ はどのようなものか?集合の写像 $f:M_0\to N_0$ を $f(1_M)=1_N,f(b)=a$ として定めたとする。

まず M の演算表を書くと である。この表に書かれているものは全て M_0 の要素である。これらを f で対応する N_0 の要素に書き換えると となる。N の演算表 と上の票を比較すると、 $\nu(b,b)$ のところが一致しない。このようなことが起こる場合には f はモノイドの射ではない。

問題 2.55. モノイドの射の合成と恒等射が定まる。それぞれ集合の写像の合成と恒等写像を用いればよい。 これを可換図式を書くことで確かめよう。 **例 2.56** (自由モノイドの関手性). 集合 X から自由モノイド F(X) を定めることができた。

これは関手性をもつ。つまり写像 $f:X\to Y$ があればモノイドの射 $F(f):F(X)\to F(Y)$ が定めることができる。X の要素の列をそのまま f で書き換えて Y の要素の列だと思えばよい。 $F(g\circ f)=F(g)\circ F(f),F(\mathrm{id}_X)=\mathrm{id}_{FX}$ が成り立つ。

例 2.57 (忘却の関手性). モノイド $(M_0,\mu,1_M)$ から M_0 を対応させる操作とモノイドの射 $f:(M_0,\mu,1_M) \to (N_0,\nu,1_N)$ に集合の写像 $f:M_0\to N_0$ を対応させる操作は関手的である。

自由モノイドからの射はどのようなものがあるかを考えよう。M をモノイドとして $F(\{a,b\}$ からのモノイドの射は a,b の行き先を定めるごとにただ一つ存在する。

例えば $F(X) \to \mathbf{Set}(Y)$ は写像 $Y \to Y$ をいくつか選び出すことだと思える。X が基本操作、F(X) が基本操作の列、End(Y) が実際に起こること。

例 2.58. モノイドの圏 **Mon** モノイド全体を対象の集まりとし、モノイドの射を射の集まりとして圏が定まる。射の合成が定まり、結合律を満たす。恒等射が定まる。

例えば M_0 を $\{0\}$ により定まる 1 点モノイド、 M_1 を $\{0,1\}$ に $\mu(1,1)=0$ により定まるモノイド、 M_2 を $\mu(1,1)=1$ により定まるモノイドとして、これらについてこれも一部の対象だけ絵を描いてみよう。これも 各頂点がモノイドを表している。

問題 2.59. さらにモノイド M_3 を $X = \{0,1\}$ として $\mathbf{Set}(X,X)$ に合成によって定まるモノイドとする。これを追加すると図はどうなるか。

2.6 同型

小学校の算数でりんごを 2 個とりんごを 3 個合わせるとりんごが 5 個になるというのと、みかんを 2 個と みかんを 3 個合わせるとみかんが 5 個になるというのと、いずれも 2+3=5 と抽象化でき、2,3,5 などがりんごの個数なのかみかんの個数なのかを気にすることがないという話をしたわけだけど、それと同じで集合の話なのかモノイドの話なのかグラフの話なのか気にせずそれらの関係性について一般に成り立つことを記述するのが圏論の考え方。

例えば二つの異なる集合とその間の二つの異なる写像、二つの異なるモノイドとその間の二つの異なる射、 二つのグラフとその間の二つの異なる射、いずれも次のようなグラフと合成などの情報として理解する。

圏の圏はどうか?グラフの射やモノイドの射を考えるのと同じように、圏の射を考える。これが関手と呼ばれる概念になる。

最後に圏の対象が同型であるという概念を定義する。

定義 2.60 (同型). 圏 C の対象 x,y が同型であるとは、射 $f:x\to y,g:y\to x$ で $c(f,g)=1_y,c(g,f)=1_x$ を満たすものが存在することをいう。このとき f,g を同型射という。