Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 9. 6. maja i później

Zadania

- 1. Zmienna losowa (X,Y) ma gęstość określoną wzorem f(x,y)=xy na $[0,1]\times[0,2]$. Wyznaczyć dystrybuantę F(s,t) tej zmiennej.
- 2. Niezależne zmienne losowe X_1, \ldots, X_{10} podlegają rozkładowi Poissona z parametrem $\lambda = 2$. Znaleźć oszacowanie dla P $(\sum X_i \geqslant 40)$. Proszę użyć nierówności Markova i Chebysheva. Porównać z wynikiem dokładnym.
 - [**Z. 3–5**] Zakładamy, że $X \sim \text{Poisson}(\lambda)$, $a \ge 3$.
- 3. (Markov) Podać oszacowanie dla $P(X \geqslant a\lambda)$. (Chebyshev) Wykazać, że zachodzi nierówność $P(X \geqslant a\lambda) \leqslant \frac{1}{\lambda(a-1)^2}$.
- 4. (Chernoff) Wykazać, że $P(X \geqslant a\lambda) \leqslant \left(\frac{1}{a}\right)^{a\lambda} \exp\left[\lambda(a-1)\right]$.
- 5. **(2p).** Niech $\lambda = 10$, $a \in \{2, 4, 6\}$. Podać wartość dokładną $P(X \ge a\lambda)$ oraz oszacowania Markova, Chebysheva i Chernoffa.
- 6. **(2p).** Znaleźć oszacowanie Chernoffa dla $X \sim N(\mu, \sigma^2)$. Jak w poprzednich zadaniach, pytamy o $P(X \ge a\mu)$.
- 7. Zmienna losowa (X,Y) ma gęstość określoną wzorem $f(x,y) = 3/2 \cdot xy$ na obszarze ograniczonym przez osie współrzędnych i prostą y = 2 x. Wyznaczyć dystrybuantę F(s,t) tej zmiennej.
 - [Do zadań 8–9] W pliku z89.csv zawarte są wyniki niezależnych obserwacji zmiennej losowej o rozkładzie $N(\mu, \sigma^2)$. Zwrot "wartość dystrybuanty $F_S(s)$ " oznacza, że obliczyliśmy wartość s statystyki S i wiemy jaki jest rozkład statystyki S.
- 8. Zakładamy, że $\sigma=3.5$. Sprawdzamy czy można uważać, że $\mu=2$. Obliczyć wartość statystyki $Z=\frac{\bar{X}-\mu}{\sigma}\cdot\sqrt{n}$ oraz wartość dystrybuanty $F_Z(z)$.
- 9. Nie znamy wartości σ , sprawdzamy czy można przyjąć, że $\mu=2$. Obliczyć wartość statystyki $T=\frac{\bar{X}-\mu}{S}\cdot\sqrt{n-1}$ oraz wartość dystrybuanty $F_T(t)$.

Witold Karczewski