Project

Marco Brianti

Vito Cormun

November 2018

Boston College

Objective of the Project

Estimating responses of key macroeconomic variables to a sentiment shock.

Preview of the results:

- Most of the variables display a boom-bust response with peaks respectively at 2 and 10 quarters.
- Effects on inflation are robustly nonsignificant or negative.

Econometric Procedure - Overview

We use a 2-step procedure

- Estimate series of sentiment shocks using forecast revisions
- Estimate IRFs via local projection à la Jorda (2005)

Step 1 - Overview

We estimate sentiment shocks as SPF forecast revisions of real GDP growth rate which are orthogonal to

- Ocontemporaneous structural shocks
- lagged principal components from a large dataset
- past and future TFP

Step 1 - Estimation of Z_t

Data

- X_t is log of Real GDP at time t
- $X_{t+k|t} = E[X_{t+k}|I_t]$ provided by SPF

Procedure

$$Z_t = (X_{t+4|t} - X_{t|t}) - (X_{t+4|t-1} - X_{t|t-1})$$

where

- $(X_{t+4|t} X_{t|t})$ is expected growth rate of Real GDP conditional on information set up to time t
- $(X_{t+4|t-1} X_{t|t-1})$ is expected growth rate of Real GDP conditional on information set up to time t-1
- \bullet Z_t is an innovation to the expectations of output growth rate

Step 1 - Estimation of $ilde{Z}_t^{-1}$

Problem. Z_t is correlated with current and future fundamentals such as fiscal policy, monetary policy, current and future TFP.

Solution. Estimate \tilde{Z}_t as the residual of the following regression,

$$Z_{t} = C + \sum_{j=-J}^{H} \delta_{j} \Delta TFP_{t+j} + \gamma SS_{t} + \mu PC_{t-1} + \tilde{Z}_{t}$$

where

- C is a constant parameter
- ullet Δ TFP_t is first difference of utility-adjusted total factor productivity at time t
- SS_t is a vector of structural shocks at time t possibly estimated via narrative approach
- PC_{t-1} is a vector of principal component at time t-1

Noise Shocks \tilde{Z}_t

NBER recessions - Noise Shocks

Step 2 - Estimation of IRFs to \tilde{Z}_t

Define Y_t to be the BP-filtered log-transformation of an endogenous aggregate macroeconomic variable.

Using standard OLS techniques we estimate H regressions

$$Y_{t+h} = \Theta_h^Y \tilde{Z}_t + \epsilon_{t+h}$$

where h = 1, 2, ..., H represent the forecast horizon.

 $\Theta_1^Y,\ \Theta_2^Y,\ \dots,\ \Theta_H^Y$ represent the path of the impulse response function of Y_t to a unit deviation of \tilde{Z}_t .

Bootstrapping Techniques

- **①** Consider the tuple $\Gamma_h^Y = \{Y_{t+h}, T_t, \tilde{Z}_t, X_{t-1}\}.$
- ② Divide Γ_h^Y over time t in smaller blocks and randomly reorder these blocks in order to form a new tuple $\Gamma_{h,Boot1}^Y$ of the same size of the previous one.
- **3** Estimate $\Theta_{h,Boot1}$ from $\Gamma_{h,Boot1}^{Y}$ using standards OLS techniques.
- Redo (1)-(3) 2000 times and select confidence intervals.

Local Projection - Confidence Interval 68% and 90%

Local Projection - Confidence Interval 68% and 90%

Local Projection - Confidence Interval 68% and 90%

Theoretical Interpretations

- First Avenue
- Second Avenue