Facultad de Ciencias de la Administración Universidad Nacional de Entre Ríos

PROYECTO EN PROLOG

EVALUACIÓN DE VIDA INTELIGENTE EN VARIOS PLANETAS

1. Descripción del Proyecto

El presente proyecto tiene como objetivo desarrollar un sistema experto en Prolog que permita evaluar la existencia de vida en distintos planetas, a partir de un conjunto de hechos científicos y reglas lógicas. El programa debe ser capaz de inferir distintos niveles de vida (básica, compleja, inteligente) y condiciones de habitabilidad, en base a la información disponible para cada planeta.

2. Objetivos

Los principales objetivos del proyecto son:

- Comprender el uso de reglas y hechos en Prolog para construir un sistema experto.
- Aplicar el razonamiento lógico para inferir conocimiento a partir de información base.
- Integrar datos externos (archivo CSV) al motor lógico de Prolog.
- Diseñar un modelo de inferencia que permita distinguir entre distintos tipos de vida y condiciones de habitabilidad.
- Analizar cómo pequeñas variaciones en los hechos afectan las inferencias finales.

3. Consigna General

Se deberá construir un programa en Prolog denominado 'vida_inteligente.pl' que lea desde un archivo CSV la información de distintos planetas y sus características (hechos). En base a ello, el sistema deberá inferir si el planeta es habitable, si posee vida básica, compleja o inteligente, y si se puede considerar que existe una civilización avanzada.

4. Detalles de Implementación

El programa deberá cumplir con las siguientes características:

Los hechos deberán ser leídos desde un archivo CSV con las columnas 'planeta' y 'hecho'.

- Cada hecho representará una condición observada en el planeta (por ejemplo, tiene_atmosfera, tiene_agua_liquida, etc.).
- Las reglas deberán definir las condiciones necesarias para los distintos tipos de vida:
 - Vida básica: requiere atmósfera, agua líquida y elementos biogénicos.
 - Vida compleja: requiere vida básica, evolución biológica y superficie sólida.
 - Vida inteligente: requiere vida compleja y tecnología.
 - Habitable: requiere atmósfera, magnetosfera, gravedad estable y ciclo día-noche.
 - Civilización avanzada: combina vida inteligente, habitabilidad y fotosíntesis posible.

5. Demostraciones y Consultas

Se deberán realizar consultas en la consola de Prolog que demuestren la capacidad de inferencia del sistema. Estas pueden ser:

• Preguntas de inferencia: son las que pregunten por condiciones. Por ejemplo:

```
?-inferir(vida_inteligente, Planeta).
?-inferir(habitable, tierra).
?-inferir(Condiciones, marte).
```

En estos casos, solo indicaría como se instancias las variables o TREUE o FALSE en caso de que no tenga variables.

Preguntas de explicación: Explicar cómo llegó a esta deducción, por ejemplo:

```
?-por_que(vida_inteligente, Planeta, Explicacion).
?-por que(habitable, kepler452b, Explicacion).
```

El resultado deberá indicar porqué un planeta tiene determinada condición. Cada condición se da si tiene una lista de hechos o condiciones (esto lo hace recursivo).

6. Requerimientos adicionales

Se pide reglas que permitan:

- La lectura y la carga de los hechos.
- Impresión de los hechos (por consola).
- Realizar un menú que indique las tareas a realizar: cargar datos, imprimir hechos, realizar consultas, etc.

7. Materiales provistos por la cátedra

Para realizar el trabajo, la catedra provee:

- Un archivo CSV con los hechos de cinco planetas.
- Un archivo **planetas.pl**, con ejemplos de:
 - Lectura de archivos CSV.
 - Uso de los predicados assertz/1, retractall/1, maplist/2.
 - Uso de los predicados de entrada salida: write/1, writeln/1, read/1.
 - Uso de los predicados de segundo orden: **forall/2**, **setof/3**, etc.
 - Ejemplo de pruebas o mecanismo de justificación que explique cómo se llegó a cada inferencia.

8. Forma de Presentación

El trabajo deberá presentarse en formato digital e incluir los siguientes elementos:

- Archivo del programa en Prolog (.pl).
- Capturas de pantalla mostrando la ejecución y resultados de las consultas.
- Documento explicativo (en Word o PDF) con la descripción del razonamiento implementado.
- Conclusión breve sobre los resultados obtenidos y observaciones sobre la inferencia.

9. Evaluación

La evaluación considerará los siguientes criterios:

- Correcta implementación de los hechos y reglas.
- Funcionamiento del motor de inferencia.
- Integración correcta de los datos del archivo CSV.
- Claridad en la explicación y justificación de los resultados.
- Calidad de la documentación y presentación final.

10. Modalidad

El presente trabajo debe realizarse de manera grupal con grupos ya conformados. Luego de la entrega, se debe realizar la defensa del trabajo realizado.

11. Fecha de entrega

4 de noviembre de 2025.