هوش مصنوعي

بهار ۱۴۰۲

استاد: محمدحسین رهبان

گردآورندگان: علی عباسی

دانشگاه صنعتی شریف دانشکدهی مهندسی کامپیوتر

کوییز دوم

سوالات (۱۰۰ نمره)

۱. (۵۰ نمره) با توجه به شبکه بیزی زیر، بگویید استقلال شرطی در کدام یک از موارد زیر برقرار است و در صورت برقرار نبودن، همهی مسیرهای فعال موجود در گراف را بیان کنید.

- $U \perp \!\!\! \perp X$ ($\overline{1}$)
- $U \perp \!\!\! \perp X \mid T \ ()$
- $V \bot\!\!\!\bot W \mid Y$ (ج)
- $V \perp \!\!\! \perp W \mid T$ (2)

حل.

- است. U-T-X فعال است. آ) تضمین نمی شود. مسیر
 - (ب) تضمین می شود.
- V-Y-W و V-T-W فعال هستند. (ج) تضمین نمی شود. مسیرهای
 - (د) تضمین می شود.

۲. (۵۰ نمره) مدل HMM زیر را در نظر بگیرید:

X_1	$P(X_1)$
0	0.3
1	0.7

X_t	X_{t+1}	P
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

O_t	$P(O_t X_t)$
A	0.9
В	0.1
A	0.5
В	0.5
	A B A

که O_t ها مقادیر مشاهده شده هستند. میخواهیم به صورت گام به گام، توزیع $P(X_{\mathsf{Y}}|O_{\mathsf{Y}}=A,O_{\mathsf{Y}}=B)$ را به دست بیاوریم.

- (آ) توزیع $P(X_1,O_1=A)$ را به دست بیاورید (یعنی به ازای مقادیر مختلف X_1 مقدار این احتمال را محاسبه کنید).
 - (ب) از قسمت قبل استفاده کنید و توزیع $P(X_{1},O_{1}=A)$ را به دست بیاورید.
 - (+) از نتیجه ی قسمت قبل استفاده کنید و توزیع $P(X_{1},O_{1}=A,O_{1}=B)$ را به دست بیاورید.
- (د) در نهایت به کمک قسمت قبل، توزیع مد نظر یعنی $P(X_Y|O_Y = A, O_Y = B)$ را محاسبه کنید (نیازی به ساده کردن پاسخ نهایی نیست).

حل.

 $(\tilde{1})$

$$P(X_1, O_1 = A) = P(X_1)P(O_1 = A|X_1)$$

$$P(X_1 = \cdot, O_1 = A) = (\cdot / \mathbf{Y})(\cdot / \mathbf{A}) = \cdot / \mathbf{Y} \mathbf{Y}$$

$$P(X_1 = 1, O_1 = A) = (\cdot / \mathbf{Y})(\cdot / \Delta) = \cdot / \mathbf{Y} \Delta$$

(ب)

$$P(X_{Y}, O_{Y} = A) = \sum_{x_{Y}} P(x_{Y}, O_{Y} = A) P(X_{Y}|x_{Y})$$

$$\begin{split} P(X_{\mathsf{Y}} = {\:\raisebox{3.5pt}{\text{\bullet}}}, O_{\mathsf{Y}} = A) &= ({\:\raisebox{3.5pt}{\text{\bullet}}}/{\mathsf{Y}})({\:\raisebox{3.5pt}{\text{\bullet}}}/{\mathsf{Y}}) + ({\:\raisebox{3.5pt}{\text{\bullet}}}/{\mathsf{Y}}\Delta)({\:\raisebox{3.5pt}{\text{\bullet}}}/{\mathsf{Y}}) = {\:\raisebox{3.5pt}{\text{\bullet}}}/{\mathsf{Y}}\Delta\Delta \\ P(X_{\mathsf{Y}} = {\:\raisebox{3.5pt}{\text{\bullet}}}, O_{\mathsf{Y}} = A) &= ({\:\raisebox{3.5pt}{\text{\bullet}}}/{\mathsf{Y}}{\mathsf{Y}})({\:\raisebox{3.5pt}{\text{\bullet}}}/{\mathsf{Y}}) + ({\:\raisebox{3.5pt}{\text{\bullet}}}/{\mathsf{Y}}\Delta)({\:\raisebox{3.5pt}{\text{\bullet}}}/{\mathsf{Y}}) = {\:\raisebox{3.5pt}{\text{\bullet}}}/{\mathsf{Y}}{\mathsf{Y}}{\mathsf{Y}}{\mathsf{Y}} \end{split}$$

(ج)

$$P(X_{\Upsilon}, O_{\Upsilon} = A, O_{\Upsilon} = B) = P(X_{\Upsilon}, O_{\Upsilon} = A)P(O_{\Upsilon} = B|X_{\Upsilon})$$

$$P(X_{\Upsilon} = {}^{\bullet}, O_{\Upsilon} = A, O_{\Upsilon} = B) = ({}^{\bullet}/{}^{\bullet}\Lambda\Lambda)({}^{\bullet}/{}^{\bullet}) = {}^{\bullet}/{}^{\bullet}\Lambda\Lambda$$

$$P(X_{\Upsilon} = {}^{\bullet}, O_{\Upsilon} = A, O_{\Upsilon} = B) = ({}^{\bullet}/{}^{\bullet}{}^{\bullet}\Upsilon)({}^{\bullet}/{}^{\bullet}) = {}^{\bullet}/{}^{\bullet}\Lambda$$

(د)

$$P(X_{\mathbf{Y}} = \cdot | O_{\mathbf{Y}} = A, O_{\mathbf{Y}} = B) = \cdot / \cdot \mathsf{YAA} / (\cdot / \cdot \mathsf{YAA} + \cdot / \mathsf{NP}) \approx \cdot / \mathsf{YA}$$

$$P(X_{\mathbf{Y}} = \mathsf{N} | O_{\mathbf{Y}} = A, O_{\mathbf{Y}} = B) = \cdot / \mathsf{NP} / (\cdot / \cdot \mathsf{YAA} + \cdot / \mathsf{NP}) \approx \cdot / \mathsf{VA}$$