ASOCIACIÓN EDUCATIVA SACO OLIVEROS

CHEMISTRY

Chapter 5

ENLACE COVALENTE

CHEMESTRY

indice

01. MotivatingStrategy 🕥

02. HelicoTheory

03. HelicoPractice

04. HelicoWorkshop

 \bigcirc

MOTIVATING STRATEGY

Enlace Covalente

https://youtu.be/9sjC6K6TAH8

HELICO THEORY

ENLACE COVALENTE

Es la fuerza que mantiene unidos a los átomos que comparten uno o varios pares de electrones de valencia; generalmente se da entre los No Metales.

Átomos de hidrógeno con 1eº de valencia

$$H-H$$

CLASIFICACIÓN DE LOS ENLACES COVALENTES

A. POR LA POLARIDAD DEL ENLACE

1. ENLACE COVALENTE NO POLAR (APOLAR)

Se forma entre átomos iguales, donde la diferencia de electronegatividades es igual a cero (Δ E.N.=0). Ejm: Cl₂

2. ENLACE COVALENTE POLAR

Se forma entre átomos diferentes, donde la ΔE.N. ≤ 1,7 . Ejm: HCl

C. SEGÚN EL TIPO DE TRASLAPE

Cionale	Covalente normal	A [♥] B
Simple	Covalente dativo	A⊸B
	Enlace doble	A = B
Múltiple	Enlace triple	A ≡σ B

$$\begin{array}{cccc}
A & \frac{\sigma}{-} & E \\
A & \frac{\sigma}{\pi} & E \\
A & \frac{\pi}{\sigma} & E
\end{array}$$

JB Ediciones

B. POR EL ORIGEN DE LOS ELECTRONES COMPARTIDOS

a. Enlace covalente normal:

Se forma cuando cada átomo aporta un electrón.

b. Enlace covalente dativo o coordinado:

Se forma cuando un mismo átomo aporta el par completo de electrones y lo comparte con otro átomo.

B. POR EL ORIGEN DE LOS ELECTRONES COMPARTIDOS

a. Enlace covalente normal:

Se forma cuando cada átomo aporta un electrón.

b. Enlace covalente dativo o coordinado:

Se forma cuando un mismo átomo aporta el par completo de electrones y lo comparte con otro átomo.

PROPIEDADES DE LOS COMPUESTOS COVALENTES

- 1. Presentan bajo punto de fusión y ebullición, se encuentran en los tres estados.
- 2. Generalmente son insolubles en solventes polares como el agua, pero solubles en solventes apolares como en el Benceno $_{\rm C6H6}$.
- 3. Generalmente son malos conductores de la corriente eléctrica.
- 4. Forman moléculas.

Resolución de Problemas

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

Con respecto al enlace covalente, escriba verdadero (V) o falso (F) según corresponda, luego marque la alternativa correcta.

- Los enlaces covalentes se producen por compartición de electrones.
- La diferencia de electronegatividades es menor que 1,7. ()
- Son malos conductores de la electricidad.()
- A) VFV

B) FVF

C) VFF

E) FVV

Respuesta

D

Con la ayuda del siguiente cuadro, indique los compuestos que presentan enlace covalente.

Elemento	Н	Cl	Ca	0	P
EN	2,1	3,0	1,0	3,5	2,1

I. HCl

B) | y | l

A) II y III

II. CaO

CHT Y III

III. H₂O

D) Solo II

E) Solo III

HCl : \triangle EN=3,0-2,1=0,9 < 1,7(covalente)

CaO: △ EN=3,5-1,0=2,5 > 1,7(iónico)

 $H_2O: \triangle EN=3,5-2,1=1,4 < 1,7(covalente)$

Respuesta

C

Indique el número de enlaces simples en la molécula de metano (CH₄).

A) 5

D) 1

_, -

E) 3

C) 2

En la molécula de metano (CH₄) hay 4 enlaces simples

Respuesta

В

¿Cual de los siguientes enlaces es de esperar que sea menor polar?

(E.N: H=2,1; B=2; N=3; O=3,5; P=2,1)

B) B-O

C) N-O

E) N-H

P-H $\Delta E.N. = 2,1 - 2.1 = 0$

B-O $\Delta E.N. = 3.5 - 2 = 1.5$

N-O $\Delta E.N. = 3.5 - 3 = 0.5$

P-O $\Delta E.N. = 3.5 - 2.1 = 1.4$

N-H $\Delta E.N. = 3 - 2.1 = 0.9$

MENOR ΔE.N. ES MENOS POLAR

Respuesta

A

El enlace covalente apolar consiste en la comparación equitativa de los electrones enlazantes entre dos átomos idénticos o de igual electronegatividad. ¿Qué compuesto presenta enlace covalente apolar?

A) N₂

B) H₂

C) O₂

D) CI₂

E) todas

¿Qué es un enlace apolar? Un enlace covalente apolar significa que los electrones enlazantes que se comparten entre dos átomos idénticos están a la misma distancia, esto quiere decir que presentan diferencia de electronegatividad igual a cero.

Respuesta

Ε

Problemas Propuestos

Problema 06

 \bigcirc

Problema 07

Problema 08

Problema 09

Problema 10

HELICO WORKSHOP

RESOLUCIÓN

Calcule el número de enlaces sigma (σ) en el propano (C_3H_8)

CH₃-CH₂-CH₃

A) 4

- B) 8
- D) 7

C) 6

Respuesta

E

RESOLUCIÓN

M

Indique el número de enlaces dativos en el ozono (O_3) , si el oxígeno pertenece al grupo VIA.

A) *1

B) 2

C) 3

D) 4

E) 0

N

Indique el número de enlaces dativos para el SO₂ (S=VIA; O=VIA)

B) 2

C) 3

D) 4

E) 5

¿Cuántos enlaces covalentes coordinados hay en el NH₄⁺¹ ?

A) 0

3) 1

C) 2

D) 3

E) 5

Respuesta

RESOLUCIÓN

El tipo de enlace químico del CO2 es un enlace covalente polar.Realice la estructura de Lewis del CO₂, e indique el número de electrones libres. (C=IVA; O=VIA).

A) 2

D) 8

B) 4

E) 10

C) 6

Respuesta

D