T₃-Parte B - Programação Lógica - 2015s2 Ciência da Computação - Universidade Federal de Santa Catarina

• Uma imagem qualquer (binária ou em níveis de cinza de qualquer dimensão) pode ser representada por 7 valores reais, denominados momentos de Hu (conforme implementação de hu.pl em materiais; para maiores detalhes, acesse https://en.wikipedia.org/wiki/Image_moment). Tais valores praticamente não se alteram quando a mesma imagem é rotacionada ou reduzida/ampliada.

Com base nesta simplificação, propõe-se uma *aprendizagem de máquina* sobre uma base de imagens binárias (disponibilizada em formato PGM, em texto plano, em pgm.zip, a partir de arquivos da base "MPEG-7 Core Experiment CE-Shape-1"), classificando cada amostra com o auxílio do usuário (por exemplo: imagens de peixe, de pássaro, ...).

A primeira imagem que surgir, o usuário deverá escrever a qual classe ela pertence (por exemplo, criando o rótulo peixe) e adicionar, ao banco de dados, seus 7 momentos + 1 rótulo. Para as demais imagens, o programa deve calcular os 7 momentos, verificar a imagem mais próxima no banco de dados (no qual cada imagem está representada apenas pelos 7 momentos e pelo rótulo/classe já atribuído pelo usuário), e sugerir uma classe automaticamente. Se acertar, o usuário dará um ok; se errar, o usuário escreverá o nome de sua classe. E esta nova imagem é inserida corretamente rotulada no banco de dados.

Com o tempo, espera-se que o programa se torne cada vez mais "inteligente" para o reconhecimento destas formas.

• Considerando as seis imagens a seguir, sendo as três primeiras da classe <u>borboleta</u> e as três últimas da classe <u>cervo</u>, e seus respectivos momentos de Hu, já registrados no banco de dados:

	Imagem	$\mathcal{H}^{(1)}$	$\mathcal{H}^{(2)}$	$\mathcal{H}^{(3)}$	$\mathcal{H}^{(4)}$	$\mathcal{H}^{(5)}$	$\mathcal{H}^{(6)}$	$\mathcal{H}^{(7)}$
i = 1	જ ફે	2.6772e-01	2.4537e-02	5.4498e-03	3.8543e-04	-4.6290e-07	-5.4904e-05	-3.1267e-07
i = 2	S W	2.6774e-01	2.4526e-02	5.4573e-03	3.8590e-04	-4.6358e-07	-5.4923e-05	-3.1418e-07
i = 3		2.8629e-01	3.4461e-02	5.7002e-03	4.7601e-04	-7.7518e-07	-8.7969e-05	1.1795e-07
i = 4		3.1365e-01	2.4364e-02	3.5620e-03	7.0848e-04	1.1103e-06	1.1017e-04	1.8420e-07
i = 5		2 2247- 01	0.074400	4 0502- 02	4 4975 - 04	F 9166- 07	2 0024- 05	2 1750- 07
$\iota = 5$		3.3347e-01	2.8744e-02	4.8593e-03	4.4875e-04	5.8166e-07	2.9824e-05	3.1750e-07
i = 6	1 15	3.3448e-01	2.9299e-02	4.7220e-03	4.2528e-04	5.2515e-07	2.7507e-05	2.9564e-07

A cada nova imagem new de entrada e seus 7 momentos de Hu, $\mathcal{H}_{new}^{(n)}$ $(n=1,2,\ldots,7)$, pode-se determinar a distância Euclidiana para cada uma das N entradas no banco de dados, $\mathcal{H}_{i}^{(n)}$ $(i=1,2,\ldots,N)$:

$$dist(new, i) = \sqrt{\sum_{n=1}^{7} \left(\mathcal{H}_{new}^{(n)} - \mathcal{H}_{i}^{(n)}\right)^{2}}$$

• Por exemplo, considerando a entrada de uma nova imagem da classe borboleta:

Imagem	$\mathcal{H}_{new}^{(1)}$	$\mathcal{H}_{new}^{(2)}$	$\mathcal{H}_{new}^{(3)}$	$\mathcal{H}_{new}^{(4)}$	$\mathcal{H}_{new}^{(5)}$	$\mathcal{H}_{new}^{(6)}$	$\mathcal{H}_{new}^{(7)}$
new L	2.4021e-01	1.5270e-02	3.8840e-03	3.8218e-04	-4.6539e-07	-4.7220e-05	1.5017e-08

A distância para i = 1 é 0.0291

A distância para i = 2 é 0.0291

A distância para i = 3 é 0.0499

A distância para i = 4 é 0.0740

A distância para i = 5 é 0.0942

A distância para i = 6 é 0.0953

A menor distância está para a imagem i=1 (ou i=2) da classe <u>borboleta</u>. O usuário deverá responder que o programa classificou corretamente e estes 7 valores de Hu + o rótulo <u>borboleta</u> devem ser adicionados ao banco de dados.

• Mais um exemplo, considerando a entrada de uma nova imagem da classe <u>cavalo</u>:

Imagem	$\mathcal{H}_{new}^{(1)}$	$\mathcal{H}_{new}^{(2)}$	$\mathcal{H}_{new}^{(3)}$	$\mathcal{H}_{new}^{(4)}$	$\mathcal{H}_{new}^{(5)}$	$\mathcal{H}_{new}^{(6)}$	$\mathcal{H}_{new}^{(7)}$
new T	3.4330e-01	6.1501e-02	7.6047e-03	1.5082e-03	5.0979e-06	3.4917e-04	3.1693e-07

A distância para i = 1 é 0.0842

A distância para i = 2 é 0.0842

A distância para i = 3 é 0.0631

A distância para i = 4 é 0.0477

A distância para i = 5 é 0.0343

A distância para i = 6 é 0.0335

Neste caso, a menor distância está para a imagem i=6 da classe <u>cervo</u>. Como o programa classificou incorretamente, o usuário deverá escrever a classe correta, ou seja <u>cavalo</u>, e estes 7 valores de Hu + o rótulo cavalo devem ser adicionados ao banco de dados.

• Pede-se:

- Implemente, em Prolog, um classificador de imagens assistido por usuários.
- A entrada da imagem pode ser simplesmente o caminho/nome do arquivo PGM (por exemplo: horse-1.pgm. Caso o programa tenha visualização de imagens, sugere-se (não é obrigatório) que haja uma integração com uma linguagem com suporte morderno à interface gráfica (veja as notas da última aula).

• Materiais:

- img.pl funcionalidades básicas para processamento de imagens: https://www.inf.ufsc.br/~alexandre.silva/courses/15s2/ine5416/exercicios/t3B/img.pl
- hu.pl determinação dos 7 momentos invariantes de Hu de uma imagem:
 https://www.inf.ufsc.br/~alexandre.silva/courses/15s2/ine5416/exercicios/t3B/hu.pl
- pgm.zip conjunto de imagens de teste em PGM (em texto plano que pode ser lido pelo readPGM do img.pl):

https://www.inf.ufsc.br/~alexandre.silva/courses/15s2/ine5416/exercicios/t3B/pgm.zip

• Entrega do *T*₃–parte *B*:

- Prazo: dia 03dez2015 até 23h55
- Forma: Individual ou em grupo de até três alunos
- Entrega pelo Moodle:
 - 1. Códigos fontes (Prolog)
 - 2. PDF com explicações e exemplos de aplicação de cada regra e as respostas obtidas