Answer the following:

- 1. [3 pts] Given the diagram on the right for an RNN, what are the recursive equations for h(t) and y(t) in terms of $\{x(t), x(t-1), h(t), h(t-1), y(t), y(t-1)\}$ assuming that we are using this model for regression? Make sure to include any weights and biases. Use $g(\cdot)$ as the activation function.
- 2. [1 pts] Which has a longer memory capacity a standard RNN or an LSTM?
- 3. [2 pts] In a sentence, What is the role of the forget gate in an LSTM cell?
- 4. [1 pts] What type of activation function is used for the forget gate?
- 5. [2 pts] In a sentence, What is the role of the input gate in an LSTM cell?
- 6. [1 pts] What type of activation function is used for the input gate?

Answer

- 1. $h^{(t)} = g(W_h h^{t-1} + W_x x^t + b)$ $y^{(t)} = V h^t + c$
- 2. LSTM
- 3. The forget gate generates a vector using the previous local state $(h^{(t-1)})$ and current data input (x^t) . The vector is used in an element-wise product with the long-term state (c^{t-1}) to retain some features and forget other features.
- 4. Sigmoid
- 5. The input gate generates a vector using the previous local state $(h^{(t-1)})$ and current data input (x^t) . The vector contains features which are to be added to the long-term state (c^{t-1}) .
- 6. Sigmoid