TD 4 – Endomorphismes des espaces euclidiens

1. À TRAVAILLER EN CLASSE

Exercice 1. On considère \mathbb{R}^3 muni de sa base canonique et de sa structure euclidienne usuelle. Donner la matrice dans la base canonique de la projection orthogonale sur le plan $P = \{(x, y, z) \in \mathbb{R}^3 \mid x = z\}$, et de la réflexion par rapport à P.

Exercice 2. Soit $n \in \mathbb{N}^*$. On considère l'espace euclidien $M_n(\mathbb{R})$ muni du produit scalaire :

$$\varphi(A,B) = \operatorname{tr}({}^{t}AB)$$

Pour $\Omega \in M_n(\mathbb{R})$, on considère l'application $\psi_{\Omega} : A \in M_n(\mathbb{R}) \mapsto \Omega A \in M_n(\mathbb{R})$. Donner une condition nécessaire et suffisante sur Ω pour que ψ_{Ω} soit une isométrie de $M_n(\mathbb{R})$.

Exercice 3. Soit F un sev d'un espace vectoriel euclidien E. Soit $f \in \mathcal{O}(E)$ tels que $f(F) \subset F$. Montrer que :

$$f(F) = F \text{ et } f\left(F^{\perp}\right) = F^{\perp}$$

Exercice 4 (Adjoint). Soit E un espace euclidien, soit u un endomorphisme de E et soit u^* son adjoint.

- 1. Montrer que $u^* \circ u$ est diagonalisable dans une base orthonormée.
- 2. Montrer qu'il existe une base orthonormée (e_1, \ldots, e_n) de E telle que la famille $(u(e_1), \ldots, u(e_n))$ soit orthogonale.

Exercice 5. Soit u un endomorphisme autoadjoint d'un espace euclidien E de dimension n. On note $\lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$ les valeurs propres de u, comptées avec leur multiplicité. Démontrer que, pour tout $x \in E$, on a

$$\lambda_1 ||x||^2 \le \langle u(x), x \rangle \le \lambda_n ||x||^2.$$

Exercice 6 (Caractérisation des projecteurs orthogonaux).

Soient E un espace euclidien et f un endomorphisme de E tel que $f \circ f = f$.

- 1. Montrer que les propositions suivantes sont équivalentes :
 - (a) $Ker(f) = (Im(f))^{\perp}$.
 - (b) f est le projecteur orthogonal sur Im(f).
 - (c) f est auto-adjoint.
 - (d) $\forall x \in E, ||f(x)|| \le ||x||$.
 - (e) $\forall x \in E, \langle f(x), x \rangle \geq 0.$
- 2. Montrer qu'un endomorphisme de E est un projecteur orthogonal si et seulement si sa matrice A dans une base orthonormée vérifie $A^2 = A$ et $^tA = A$.

Exercice 7. Soit E un espace euclidien et $f \in \mathcal{L}(E)$ tel que

$$\forall x, y \in E, x \perp y \Rightarrow f(x) \perp f(y)$$

Montrer qu'il existe $\lambda \in \mathbb{R}^+$ tel que

$$\forall x \in E, ||f(x)|| = \lambda ||x||$$

Indication: considérer une base orthonormée $(e_1, e_2, \dots e_n)$, poser $\lambda_i = ||f(e_i)||$, et calculer $\langle f(e_i + e_j), f(e_i - e_j) \rangle$

Exercice 8 (Partiel - Mars 2022).

Soit E un espace euclidien. On note $\|\cdot\|$ la norme associée au produit scalaire. On considère un endomorphisme $f \in \mathcal{L}(E)$ vérifiant

$$\forall x \in E \quad ||f(x)|| \leqslant ||x||.$$

- 1. Montrer que pour tout $x \in E$, on a $||x|| = \sup_{y \in E, ||y|| = 1} \langle x, y \rangle$.
- 2. En déduire que pour tout $x \in E$, $||f^*(x)|| \le ||x||$.
- 3. Montrer que si $x \in E$ vérifie f(x) = x, alors $f^*(x) = x$. Indication : calculer $||f^*(x) - x||^2$.
- 4. En déduire que $Ker(f Id) = Ker(f^* Id)$.
- 5. Question bonus:
 - (a) Soit $g \in \mathcal{L}(E)$, montrer que $\operatorname{Ker}(g^*) \perp \operatorname{Im} g$, que $\operatorname{rg}(g^*) = \operatorname{rg}(g)$ et en déduire que $\operatorname{Ker}(g^*) = (\operatorname{Im} g)^{\perp}$.
 - (b) A l'aide des questions précédentes montrer que $\operatorname{Ker}(f-\operatorname{Id}) \oplus^{\perp} \operatorname{Im}(f-\operatorname{Id}) = E$.

Exercice 9 (diagonalisation). Diagonaliser dans des bases orthonormées les matrices symétriques réelles suivantes, où a est un paramètre réel :

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} a & -1 & 1 \\ -1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Exercice 10. Soit f un endomorphisme autoadjoint d'un espace euclidien E vérifiant $\langle f(u), u \rangle = 0$ pour tout u dans E. Que peut-on dire de f?

Exercice 11. On munit \mathbb{R}^3 du produit scalaire usuel. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \frac{1}{3} \left(\begin{array}{ccc} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{array} \right)$$

- 1. Trouver une base orthonormée de \mathbb{R}^3 formée de vecteurs propres de f.
- 2. Montrer que pour tout vecteur non nul u, on a $\langle f(u), u \rangle > 0$.
- 3. Soit $N: \mathbb{R}^3 \to \mathbb{R}$ l'application définie par $N(u) = \sqrt{\langle f(u), u \rangle}$. Montrer que N est une norme et que pour tout vecteur $u \in \mathbb{R}^3$, on a $||u|| \leq N(u) \leq \sqrt{2}||u||$.

Exercice 12. Soit E un espace euclidien et soit $f \in O(E)$ diagonalisable (dans E). Montrer que f est une symétrie orthogonale.

Exercice 13. Soit E un espace euclidien tel que $\dim(E) \geq 2$. Soit a un vecteur unitaire de E et k un réel avec $k \neq -1$.

1. Montrer que

$$f(x) = x + k(x \mid a)a$$

définit un endomorphisme symétrique de E

- 2. Montrer que f est bijectif
- 3. Étudier les valeurs propres et les sous-espaces propres de f

2. À TRAVAILLER CHEZ SOI : APPLICATIONS DIRECTES DES DÉFINITIONS

Exercice 14. Soit $f: E \to E$, une application linéaire, montrer que l'on a les equivalences suivantes

$$\forall (x,y) \in E^2, \ \langle f(x)|f(y)\rangle = \langle x|y\rangle \iff f \in \mathcal{O}(E) \iff \forall x \in E, \ \|f(x)\| = \|x\|$$

Exercice 15. Soient E un espace euclidien et f un endomorphisme de E tel que

$$\forall x, y \in E, (f(x) \mid y) = (x \mid f(y))$$

- 1. Montrer que la matrice de f dans une base orthonormée $\mathcal{B} = (e_1, \dots, e_n)$ est symétrique.
- 2. Montrer que Ker(f) et Im(f) sont supplémentaires et orthogonaux.

Exercice 16. Soit E un espace euclidien et $a, b \in E$ tels que ||a|| = ||b|| et $a \neq b$. Montrer qu'il existe une unique reflexion qui échange a et b.

Exercice 17. On considère \mathbb{R}^3 muni de sa base canonique et de sa structure euclidienne usuelle. Donner la matrice dans la base canonique de la projection orthogonale sur le plan $P = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$, et de la réflexion par rapport à P.

Exercice 18. On se donne f et g deux endomorphismes auto-adjoints d'un espace vectoriel euclidien E. Montrer que $f \circ g$ est auto-adjoint $\iff f \circ g = g \circ f$.

3. À TRAVAILLER CHEZ SOI : EXERCICES D'ENTRAÎNEMENT

Exercice 19. Soit a, b, c, d quatre réels tous non nuls et notons

$$A = \begin{pmatrix} a^2 & ab & ac & ad \\ ab & b^2 & bc & bd \\ ac & bc & c^2 & cd \\ ad & bd & cd & d^2 \end{pmatrix}$$

- 1. Montrer que la matrice A est diagonalisable.
- 2. Montrer que la dimension du sous-espace propre associé à 0 est égale à 3.
- 3. Donner la valeur de l'unique valeur propre non nulle de A. Indication : on pourra calculer la trace de A.
- 4. Diagonaliser A dans une base orthonormée pour le produit scalaire canonique de \mathbb{R}^4 . Donner explicitement la base trouvée.

Exercice 20. Soit E un espace euclidien de dimension 4 et f une isométrie de E ayant un vecteur propre u.

- 1. Montrer qu'il existe un vecteur v orthogonal à u et qui est aussi vecteur propre de f.
- 2. Montrer qu'il existe un plan P de E tel que P et P^{\perp} sont stables par f et tel que la restriction de l'endomorphisme f à P est diagonalisable.
- 3. Montrer qu'il existe une base de E dans laquelle la matrice de f est de la forme

$$\begin{pmatrix} \varepsilon_{1} & 0 & 0 & 0 \\ 0 & \varepsilon_{2} & 0 & 0 \\ 0 & 0 & \varepsilon_{3} & 0 \\ 0 & 0 & 0 & \varepsilon_{4} \end{pmatrix} \text{ ou bien } \begin{pmatrix} \varepsilon_{1} & 0 & 0 & 0 \\ 0 & \varepsilon_{2} & 0 & 0 \\ 0 & 0 & \cos \theta & -\sin \theta \\ 0 & 0 & \sin \theta & \cos \theta \end{pmatrix}$$

avec $\varepsilon_i = \pm 1$ et $\theta \in]0, 2\pi[-\{\pi\}]$.

Exercice 21. Soit $n \geq 3$ un entier. On considère la matrice de taille $n \times n$ définie par :

$$A = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 0 & \dots & 0 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 0 & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 1 \end{pmatrix}$$

Autrement dit, A a tous ses coefficients nuls sauf ceux placés sur la première et la dernière ligne et sur la première et la dernière colonne, qui valent 1.

- 1. A est-elle diagonalisable ? Rappeler la caractérisation d'une matrice diagonalisable en terme d'ordre de multiplicité des valeurs propres dans le polynôme caractéristique.
- 2. Quel est le rang de A?
- 3. En déduire que 0 est valeur propre de A. Quel est son ordre de multiplicité?
- 4. Soit f l'endomorphisme de \mathbb{R}^n associé à A.
 - (a) Donner une base de l'image de f.
 - (b) Montrer qu'en général, si $g: E \to E$ est un endomorphisme d'un espace vectoriel E, alors Img est stable par g, et sa restriction $g|_{\operatorname{Im} g}$ définit donc un endomorphisme de Img.
 - (c) En appliqant le point précédent à l'endomorphisme f, on considère $h=f\big|_{\mathrm{Im}\, f}$, endomorphisme de $\mathrm{Im}\, f$:

$$h: \left\{ \begin{array}{c} \operatorname{Im} f \to \operatorname{Im} f \\ x \mapsto f(x) \end{array} \right.$$

Écrire la matrice B de h dans la base de $\operatorname{Im} f$ trouvée précédemment et vérifier que h est un endomorphisme bijectif. $\operatorname{Indication}$: se demander d'abord quelle doit être la taille de la matrice B.

- (d) Trouver les valeurs propres de h.
- 5. En déduire toutes les valeurs propres de A.

4. À TRAVAILLER CHEZ SOI : EXERCICES D'APPROFONDISSEMENT

Exercice 22. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et $u \in \mathcal{L}(E)$ tel que $\operatorname{tr}(u) = 0$.

- 1. Montrer qu'il existe $x \in E \setminus \{0\}$ tel que $\langle u(x), x \rangle = 0$.
- 2. Montrer qu'il existe une base orthonormée de E dans laquelle la matrice de u est à diagonale nulle.

Exercice 23. Soit E un espace vectoriel euclidien. On se donne H et H' deux hyperplans de E et on note s (resp. s') la reflexion par rapport à H (resp. H'). A quelle condition s et s' commutent-elles et donner alors $s \circ s'$.

Exercice 24. Soit $E = \mathcal{C}([-1,1],\mathbb{R})$. Soient $f,g \in E$, on définit φ par :

$$\varphi(f,g) = \int_{-1}^{1} f(t)g(t)dt$$

- 1. Montrer que φ définit un produit scalaire sur E
- 2. Soit \mathcal{P} (resp. \mathcal{I}) le sous-ensemble de E composé des functions paires (resp. impaires). Montrer que $\mathcal{I} = \mathcal{P}^{\perp}$.
- 3. Soit $\psi: f \to \hat{f}$ avec $\hat{f}(x) \to f(-x)$. Montrer que ψ est la symétrie orthogonale par rapport à \mathcal{P} .

Exercice 25. Soit E, un espace euclidien et soient $x, y \in E$, non nul. Donner une condition sur x et y, pour que le projeté orthogonal du vecteur x sur la droite Vect (y) soit égal au projeté orthogonal de y sur la droite Vect(x)?

Exercice 26. Soit E un espace euclidien et soit $f \in \mathcal{L}(E)$. Montrer que deux des trois propriétés suivantes entrainent la troisième :

- (i) f est une isométrie vectorielle;
- (ii) $f^2 = -\text{Id}$;
- (iii) f(x) est orthogonal à x pour tout x.