Calculus III Review

Simon Xiang

July 5, 2020

1 Vectors

Vectors are elements of something called a *vector space*, which in essence are subsets of \mathbb{R}^n . A typical vector can be notated several ways:

$$\langle a, b, c \rangle = a\hat{\boldsymbol{i}} + b\hat{\boldsymbol{j}} + c\hat{\boldsymbol{k}}$$
 (1)

are the two most typical examples of how they're notated. \hat{i}, \hat{j} , and \hat{k} are called the *unit vectors* of \mathbb{R}^3 . This is because every vector is just the unit vectors multiplied by some scalar quantity, hence the notation. In fact, the entirety of \mathbb{R}^3 can be expressed through adding and multiplying the unit vectors, something known as a *linear combination* of \hat{i}, \hat{j} , and \hat{k} .

The vector \overrightarrow{PQ} representing the distance between two points $P,Q \in \mathbb{R}^3$ where $P = (p_1, p_2, p_3)$ and $Q = (q_1, q_2, q_3)$ is equal to

$$\langle q_1 - p_1, q_2 - p_2, q_3 - p_3 \rangle,$$
 (2)

where P is the base of the vector and Q is the tip of the vector. A vector in the form $\langle a, b, c \rangle$ is the same as the vector between (0, 0, 0) and (a, b, c).

Where the vector is placed in \mathbb{R}^3 is irrelevant. Let P=(1,2,3) and Q=(4,6,5), (a,b,c)=(3,4,2). Then \overrightarrow{PQ} is equivalent to $\langle a,b,c\rangle$, even though they lie in different "parts" of the plane.

The length or magnitude of a vector is defined by

$$|\vec{PQ}| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + (q_3 - p_3)^2}.$$
 (3)

This formula can be thought of as the distance between two far corners of a cube, where one of the edges of a right triangle is $\sqrt{a^2 + b^2}$ and the other is c. This intuition is helpful when we eventually talk about the arc length of curves.

A vector divided by its length will give a vector pointing in the same direction as the original vector, but having a length of one. This is called the *directional unit vector* of a vector \vec{v} , and is given by

$$\frac{\vec{v}}{|v|}. (4)$$