

Linear Circuits

BONNIE FERRI, PROFESSOR AND ASSOCIATE CHAIR School of Electrical and Computer Engineering

Module 2

Lesson 1: Overview and Kirchhoff's Voltage Law

Module Overview

 Analyze resistive circuits to determine currents and voltages

Learn about physical applications including resistive sensors

Kirchhoff's Voltage Law

Builds Upon:

- Loops

Georgia Tech

KVL Example with Parallel Components

Voltages across parallel elements are equal.

KVL Example (with Current Source)

Georgia Tech

KVL Example with Open Loop

Key Concepts

• KVL: $\sum V_{loop} = 0$

- Special Cases to Remember
 - o Parallel components have same voltage
 - Current source does not have zero voltage
 - o KVL holds around open loop

