F08 Geometry Qualifying Exam

Name
Name

- 1. Let $\psi_t: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $\psi_t(x,y) = (e^t x, e^{-t} y)$ and let $\omega = x^2 dx \wedge dy$. Compute
 - (a) the vector field $\dot{\psi}_0$.
 - (b) $\psi_t^*\omega$.
 - (c) $\frac{d}{dt}(\psi_t^*\omega)|_{t=0}$.
 - (d) $L_{\dot{\psi}_0}\omega$.
- 2. Let $\omega \in \Omega^r(M)$ satisfy $\int_{\Sigma} \omega = 0$ for every smooth submanifold $\Sigma \subseteq M$ that is diffeomorphic to S^r . Prove that $d\omega = 0$.
- 3. (a) State the covering homotopy theorem for covering spaces.
 - (b) Let $p: \tilde{X} \to X$ be a universal cover and prove that the induced map $p_*: \pi_2(\tilde{X}) \to \pi_2(X)$ is an isomorphism.
 - (c) Compute $\pi_2(S^2 \vee \mathbb{R}P^2)$.
- 4. Let $f: \mathbb{R}^4 \to \mathbb{R}^2$ be $f(w, x, y, z) = (w, x^3 3xw + y^2 z^2)$. Compute the critical values of f.
- 5. (a) State the Eilenberg-Steenrod axioms for a homology theory.
 - (b) Let $A_* := A_{-2} \to A_{-1} \to A_0 \to A_1 \to A_2$ and B_* be five-term exact sequences indexed by the same set and let $f_* : A_* \to B_*$ be a morphism of sequences. Assuming that f_k is an isomorphism for k = -2, -1, 1, 2, prove that it is injective for k = 0.
 - (c) Using the Eilenberg-Steenrod axioms and the homology groups of spheres prove that \mathbb{R}^3 and \mathbb{R}^4 are not homeomorphic.
- 6. (a) A presentation of the symmetric group \mathfrak{G}_3 is given by $\langle \sigma, \tau | \sigma^3, \tau^2, (\sigma \tau)^2 \rangle$. Construct a space X having $\pi_1(X) = \mathfrak{G}_3$.
 - (b) Compute the homology of the space X from the first part of this problem.
 - (c) Classify up to homeomorphism every connected topological space that covers the space X from the first part of this problem.

- 7. Using the Mayer Vietoris sequence, homotopy axiom and cohomology of S^1 compute the cohomology groups of $\mathbb{R}^2 \{p, q\}$ for $p \neq q$ and for T^2 .
- 8. (a) Define what a smooth map between manifolds is.
 - (b) Define the differential of a smooth map.
 - (c) Let M denote the $n \times n$ real-valued matrices and let S denote the subspace of symmetric matrices. Using the map $f: M \to S$ given by $f(A) = A^t A$ prove that $O_n := \{A \in M | A^t A = I\}$ admits the structure of a smooth manifold in a natural way.