نهایات الدوال $x\mapsto \sqrt{x}$ و مقلوبانها: $(n\in\mathbb{N}^*)x\mapsto x^n$ نهایات الدوال

$\lim_{\substack{x \to 0 \\ >}} \sqrt{x} = 0$	$\lim_{x \to 0} x^n = 0$
$\lim_{x \to +\infty} \sqrt{x} = +\infty$ $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$	$\lim_{x \to -\infty} \frac{1}{x^n} = 0$ $\lim_{x \to +\infty} \frac{1}{x^n} = 0$

إذا كان n عددا فرديا فإن:	إذا كان n عددا زوجيا فإن:
$\lim_{x \to +\infty} x^n = +\infty$	$\lim_{x \to +\infty} x^n = +\infty$
$\lim_{x \to -\infty} x^n = -\infty$	$\lim_{x \to -\infty} x^n = +\infty$
$\lim_{x \to 0} \frac{1}{x^n} = +\infty$	1
$x \to 0 \ x^n$	$\lim_{\substack{x \to 0 \\ >}} \frac{1}{x^n} = +\infty$
$\lim_{n \to \infty} \frac{1}{n} = -\infty$	$\lim_{x \to 0} \frac{1}{x^n} = +\infty$
$\lim_{\substack{x \to 0 \\ <}} \frac{1}{x^n} = -\infty$	$x \to 0 \ x^{n}$

$-\infty$ نهايات الدوال الحدودية و الدوال الجنرية عند الدوال الحدودية و الدوال الجنرية عند $-\infty$

نهاية دالة جذرية عند ∞+ أو عند ∞-هي نهاية خارج حديها الأكبر درجة

<u>← نهایات الدوال اطثلثیة:</u>

$1 - \cos x$ 1	$\lim_{x \to 1} \tan x = 1$	$\sin x$
$\lim \frac{1}{1} = -$	$\lim \longrightarrow 1$	$\lim \longrightarrow = 1$
$x \rightarrow 0$ x^2 2	$x\rightarrow 0$ x	$x\rightarrow 0$ x

$x\mapsto \sqrt{u(x)}$ نهایات الدوال من النوع: \frown

$\lim_{x o x_0}\sqrt{u\left(x ight)}$	$\lim_{x o x_0} u(x)$
$\sqrt{\ell}$	$\ell \geq 0$
$+\infty$	$+\infty$

 $-\infty$ على اليسار أو عند $\infty+$ أو عند $\infty+$ على اليمين أو عند $\infty+$ أو عند $\infty+$

→ النهایات و النرنیب:

$$\left| \begin{array}{l} u\left(x \right) \leq f\left(x \right) \leq V\left(x \right) \\ \lim\limits_{x \to x_0} u\left(x \right) = \boldsymbol{\ell} \\ \lim\limits_{x \to x_0} V\left(x \right) = \boldsymbol{\ell} \end{array} \right| \Rightarrow \lim\limits_{x \to x_0} f\left(x \right) = \boldsymbol{\ell}$$

$$\left| \begin{array}{l} \left| f\left(x \right) - \boldsymbol{\ell} \right| \leq V\left(x \right) \\ \lim_{x \to x_0} V\left(x \right) = 0 \end{array} \right\} \Rightarrow \lim_{x \to x_0} f\left(x \right) = \boldsymbol{\ell}$$

$$\left| \begin{array}{l} u\left(x \right) \leq V\left(x \right) \\ \lim\limits_{x \to x_0} V\left(x \right) = -\infty \end{array} \right\} \Rightarrow \lim\limits_{x \to x_0} f\left(x \right) = -\infty$$

$$\left. \begin{array}{l} u(x) \leq f(x) \\ \lim_{x \to x_0} u(x) = +\infty \end{array} \right\} \Rightarrow \lim_{x \to x_0} f(x) = +\infty$$

 $-\infty$ على اليسار أو عند $\infty+$ على اليمين أو عند x_0 على اليسار أو عند $\infty+$ أو عند

→ العمليات على النهايات:

نهاية مجموع دالنين:

$\lim_{x \to x_0} f(x)$	e	e	e	-∞	+∞	+∞
$\lim_{x \to x_0} g(x)$	ℓ'	-∞	+∞	-∞	+∞	-∞
$\lim_{x \to x_0} \left[g(x) + f(x) \right]$	$\ell + \ell'$	-∞	+∞	-∞	+∞	شغ م

نهایهٔ جداء دالنین:

$\lim_{x \to x_0} f(x)$	l	<i>l</i> <	< 0	<i>l</i> >	o	-∞	-∞	+∞	0
$\lim_{x \to x_0} g(x)$	ℓ'	-∞	+∞	-∞	+∞	-8	+∞	+∞	<u>+</u> ∞
$\lim_{x \to x_0} [g(x) \times f(x)]$	$\ell \times \ell'$	+∞	-∞	-∞	+∞	+∞	-∞	+∞	شغ م

فهاية خارج دالنين:

$\lim_{x \to x_0} f(x)$	l	l	<i>l</i> <	< 0	<i>l</i> >	> 0	_	∞	+	∞	0	<u>+</u> ∞
$\lim_{x \to x_0} g(x)$	ℓ ' ≠ 0	<u>+</u> ∞	0-	0+	0-	0+	0-	0+	0-	0+	0	<u>+</u> ∞
$\lim_{x \to x_0} \frac{g(x)}{f(x)}$	$\frac{\ell}{\ell}$	0	+∞			+∞	+∞			+∞	ش غ م	ش غ م

ملاحظة عامة:

 $-\infty$ على اليسار أو عند $\infty+$ على اليمين أو عند x_0 على اليسار أو عند $\infty+$ أو عند

→ الانصال في نقطة:

$$x_0$$
 متصلة في $f \Leftrightarrow \lim_{x \to x_0} f(x) = f\left(x_0\right)$

<u>نعریف:</u>

◄ الانصال على اليمين – الانصال على اليسار:

- x_0 متصلة على اليمين في $f \Leftrightarrow \lim_{\substack{x \to x_0 \\ >}} f(x) = f\left(x_0\right)$
- x_0 متصلة على اليسار في $f \Leftrightarrow \lim_{\substack{x \to x_0 < <}} f(x) = f\left(x_0\right)$

 x_0 متصلة على اليمين و على اليسار في $f \Leftrightarrow x_0$ متصلة في متصلة في

→ الانصال على مجال:

]a,b[عنصر من المجال مفتوح]a,b[إذا كانت f متصلة في كل عنصر من المجال [a,b[تكون f دالة متصلة على مجال مغلق [a,b[إذا كانت f متصلة على المجال المفتوح [a,b[و متصلة على اليمين في [a,b[و متصلة على اليمار في [a,b[

العمليات على الدوال المنصلة:

لتكن fو g دالتين متصلتين على مجال I و g عدد حقيقي

- I الدوال g+g و f imes g الدوال الدوال •
- I المجال على المجال المناتين $\frac{f}{g}$ و $\frac{1}{g}$ متصلتين على المجال المجال وإذا كانت g
 - \mathbb{R} کل دالة حدودية متصلة على \bullet
 - كل دالة جذرية متصلة على مجموعة تعريفها
 - \mathbb{R}^+ الدالة $x\mapsto \sqrt{x}$ متصلة على •
 - \mathbb{R} الدالتان $x\mapsto \cos x$ و $x\mapsto \sin x$ الدالتان على
- $\mathbb{R}-\left\{rac{\pi}{2}+k\pi/k\in\mathbb{Z}
 ight\}$ الدالة $x\mapsto an x$ متصلة على مجموعة تعريفها

<u>← انصال مركب دالنين:</u>

 $f(I)\subset J$: يثيث f دالة متصلة على مجال I و g متصلة على مجال f دالة متصلة على المجال g متصلة على المجال المجال g

→ صورة مجال بدالة منصلة:

- صورة قطعة بدالة متصلة هي قطعة
- صورة مجال بدالة متصلة هي مجال
 - I دالة متصلة و رتيبة قطعا على مجال f دالة متصلة و رتيبة قطعا على المجال \bullet

f(I) الجدول التالي يوضح طبيعة المجال

f(I)	I الحجال	
I تناقصية قطعا على f	I تزايدية قطعا على f	انجال 1
[f(b);f(a)]	[f(a);f(b)]	[a,b]
$\lim_{x \to b^{-}} f(x); f(a)$	$\left[f(a); \lim_{x \to b^{-}} f(x)\right]$	[a,b[
$\left[f(b); \lim_{x \to a^{+}} f(x)\right]$	$\lim_{x \to a^{+}} f(x); f(b)$]a,b]
$\lim_{x \to b^{-}} f(x); \lim_{x \to a^{+}} f(x)$	$\lim_{x \to a^{+}} f(x); \lim_{x \to b^{-}} f(x)$]a,b[
$\lim_{x \to +\infty} f(x); f(a)$	$\left[f(a); \lim_{x \to +\infty} f(x) \right]$	$[a,+\infty[$
$\lim_{x \to +\infty} f(x); \lim_{x \to a^{+}} f(x)$	$\lim_{x \to a^{+}} f(x); \lim_{x \to +\infty} f(x)$	$]a,+\infty[$
$\left[f(a); \lim_{x \to -\infty} f(x) \right]$	$\left[\lim_{x\to-\infty}f(x);f(a)\right]$	$]-\infty,a]$
$\lim_{x \to a^{-}} f(x); \lim_{x \to -\infty} f(x)$	$\lim_{x \to -\infty} f(x); \lim_{x \to a^{-}} f(x)$	$]-\infty,a[$
$\lim_{x \to +\infty} f(x); \lim_{x \to -\infty} f(x)$	$\lim_{x \to -\infty} f(x); \lim_{x \to +\infty} f(x)$	\mathbb{R}

→ ميرهنة القيم الوسيطية:

f(b) و f(a) و العددين العددين β و إذا كانت f متصلة على مجال a,b فإنه لكل عدد حقيقي β عدد حقيقي α من المجال α عن المجال α عدد حقيقي α من المجال α عدد حقيقي α من المجال α

$$f(a) imes f(b) < 0$$
 و $[a,b]$ و $[a,b]$ متصلة على مجال $[a,b]$ و $[a,b]$ و $[a,b]$ فإن المعادلة $f(x)=0$ تقبل على الأقل حلا $[a,b]$ و $[a,b]$ ينتمي إلى المجال $[a,b]$ و $[a,b]$ دالة متصلة و رتيبة قطعا على مجال $[a,b]$ و $[a,b]$ قبل حلا وحيدا $[a,b]$ ينتمي إلى المجال $[a,b]$

→ طريقة الفرع الثنائي:

🏶 ننيجة:

 $f\left(a
ight) imes f\left(b
ight)<0$: كيث $\left[a,b
ight]$ كالكن $f\left(a,b
ight)$ دالة متصلة و رتيبة قطعا على مجال $f\left(a,b
ight)$ في المجال $\left[a,b
ight]$ في المجال الوحيد للمعادلة $\left(a,b
ight)$

$$f(b) imes f\Bigl(rac{a+b}{2}\Bigr) < 0$$
 إذا كان: $0>0$ و هذا التأطير سعته $rac{b-a}{2}< \alpha < b$ فإن: $0>0$ فإن: $0>0$ و هذا التأطير سعته على إعادة هذه الطريقة على المجال $\left[rac{a+b}{2};b
ight]$ للحصول على تأطير أدق للعدد $0>0$

$$f(a) imes f\Bigl(rac{a+b}{2}\Bigr) < 0$$
 إذا كان: $0 < 0$ و هذا التأطير سعته $a < lpha < rac{a+b}{2}$: فإن وهذا الطريقة على المجال $\left[a;rac{a+b}{2}
ight]$ للحصول على تأطير أدق للعدد $lpha$

ما حظة: وهكذا دواليك يمكن إعادة هذه الطريقة إلى أن يتم الحصول على تأطير للعدد α سعته مرغوب فيها