باسمه تعالى

سارا بردران (شماره دانشجویی: ۹۶۲۴۱۹۳) تکلیف سری چهارم هوش مصنوعی

سوال ١)

الف) نماد های اتمیک Q, C, P استنتاج نمی شوند.

ب) با افزودن تنها نماد اتمیک F به fact های فوق تمام نماد های اتمیک دیگر قابل استنتاج خواهند بود. زیرا در صورت افزودن P آنگاه $P \to Q$ و به افزودن P $A \land C \to P$ و به علاوه $P \to Q$ میپس در نتیجه استنتاج P در گام بعدی خواهیم داشت $P \to Q$ و به این ترتیب تمام نماد های P P که در قسمت الف قابل استنتاج نبودند استنتاج خواهد شد.

سوال ٢)

می بایست اثبات کنیم عبارت زیر ارضا ناپذیر است

 $P \bigwedge (V \bigvee T) \bigwedge (^{\sim}P \bigvee U) \bigwedge (R \bigvee ^{\sim}Q) \bigwedge (^{\sim}V \bigvee W) \bigwedge (^{\sim}P \bigvee Q) \bigwedge (^{\sim}S \bigvee U \bigvee T) \bigwedge (^{\sim}P \bigvee ^{\sim}R \bigvee S) \bigwedge ^{\sim}S$

1) P

10) ~P \/ ~R

8,9

2) V \/ T

11) ~P \/ ~Q

4,10

3) ~P \/ U

12) ~P

6,11

4) R \/ ~Q

40) = 40= 40

13) EMPTY CLUSE 1,12

5) V → W = ~V \/ W

نتيجتا استدلال فوق معتبر است.

6) $P \rightarrow Q = P \setminus Q$

7) $S \rightarrow (U \lor T) = {}^{\sim}S \lor U \lor T$

8) $(P / R) \rightarrow S = P / R / S$

9) ~S

سوال ٣)

الف) با استفاده از رزولوشن خواهیم داشت:

2)
$$E \rightarrow R \lor P \lor L = {}^{\sim}E \lor R \lor P \lor L$$

3)
$$K \rightarrow B = ^K \setminus / B$$

5)
$$P \rightarrow {}^{\sim}K = {}^{\sim}P \bigvee {}^{\sim}K$$

7)
$$^{\kappa}$$
 $^{\kappa}$ $^{\kappa}$

8)
$$^{\sim}$$
K \bigvee $^{\sim}$ E \bigvee R resolution 6,7 = $^{\sim}$ (K \bigwedge E) \bigvee R = K \bigwedge E \rightarrow R

9)
$$^{\rm K}$$
 \vee $^{\rm K}$ \vee B resolution 1,8

10)
$$^{\sim}L \bigvee ^{\sim}E \bigvee ^{\sim}K$$
 resolution 4,9 = $^{\sim}L \bigvee ^{\sim}(K \bigwedge E) = L \rightarrow ^{\sim}(K \bigwedge E)$

مورد ۳ نیز مطابق زیر قابل استنتاج است.

1) E /\ R
$$\rightarrow$$
 B

2)
$$E \rightarrow R \lor P \lor L$$

3)
$$K \rightarrow B$$

4)
$$^{\sim}(L / \backslash B) = B \rightarrow ^{\sim}L$$

6) K
$$\rightarrow$$
 ~L USING 3,4 (hypothetical syllogism)

7) L
$$\rightarrow$$
 ~K USING 6 (K \rightarrow ~L = L \rightarrow ~K)

8) L \bigvee P \rightarrow ~K USING 5,7 (rule for proof by cases)

و مورد ۴ با مثال نقض زیر قابل استنتاج نمی باشد.

ب) موارد ۱و ۳ مطابق زیر قابل استنتاج است.

1) A
$$\rightarrow$$
 B \land C

2) C
$$\rightarrow$$
 D \vee E \vee F

3) B
$$\rightarrow$$
 D \land E

4) A

8) D
$$\bigvee$$
 E \bigvee F USING 2,7 (modus ponens)

11) C \bigvee E USING 10 (addition)

و مورد ۲ با مثال نقض زیر قابل استنتاج نمی باشد.

D = TRUE, E = TRUE, A = TRUE, B = TRUE, C = TRUE, F = FALSE

پ)

موارد ۲و ۳ مطابق زیر قابل استنتاج است.

- 1) ~C → ~K
- 2) $C \rightarrow A \setminus B$
- 3) B \rightarrow R \backslash C
- 4) K /\ ~M
- 5) $K \rightarrow C$ USING 1 ($^{\sim}C \rightarrow ^{\sim}K = K \rightarrow C$)
- 6) K → A \/ B USING2,5 (hypothetical syllogism)
- 7) K USING 4 (simplification)
- 8) A \/ B USING 6,7 (modus ponens)
- 9) A \/ K USING 7 (addition)

و مورد 1 با مثال نقض زير قابل استنتاج نمي باشد.

K = TRUE, M = FLASE, C = TRUE, A = FALSE, R = FALSE, B = TRUE

 $A \bigvee R = FALSE$

به علاوه مورد ۴ نیز قابل استنتاج می باشد زیرا اگر نقیض true را به فرضیات اضافه کنیم عبارت حاصل باید ارضا ناپذیر باشد و مطابق زیر واضح است که عبارت ارضا ناپذیر خواهد بود پس True نیز قابل استنتاج است.

 $(^{\sim}C \rightarrow ^{\sim}K) \land (C \rightarrow A \lor B) \land (B \rightarrow R \lor C) \land (K \land ^{\sim}M) \land FALSE$

سوال ۴)

الف) عبارت همواره صحیح است پس هم توتولوژی و هم ارضا پذیر است.

Smok → smok = ~smok \/ smok = True

ب) عبارت ارضاینیر است اما توتولوژی نیست.

Smok	Fire	Smok → Fire
0	0	1
0	1	1
1	0	0
1	1	1

سطری در جدول موجود است که حاصل smok → Fire
برای آن true باشد پس گزاره ارضا پذیر است اما سطری
در جدول موجود است که حاصل smok > Fire به از ای
آن false است پس گزاره یک توتولوژی نیست

ب) عبارت ارضاینیر است اما توتولوژی نیست.

 $(Smok \rightarrow Fire) \rightarrow (\sim Smok \rightarrow \sim Fire) = \sim (\sim Smok \lor fire) \lor (Smok \lor \sim fire)$

= $(\text{smok} \land \text{~fire}) \lor (\text{smok} \lor \text{~fire}) = (((\text{smok} \land \text{~fire}) \lor \text{smok}) \lor ((\text{smok} \land \text{~fire}) \lor \text{~fire})) =$

Smok $\bigvee \sim$ fire = fire \rightarrow smok

fire	smok	fire → smok	
0	0	1	
0	1	1	
1	0	0	
1	1	1	

سطری در جدول موجود است که حاصل smok \rightarrow true برای آن true باشد پس گزاره ارضا پذیر است اما سطری در جدول موجود است که حاصل smok \rightarrow fire \rightarrow true آن false است پس گزاره یک توتولوژی نیست

```
Smok \bigvee fire \bigvee ~fire = smok \bigvee (fire \bigvee ~fire) = smok \bigvee True = True
                                                                                                                                   ث) عبارت همواره صحیح است پس هم توتولوژی و هم ارضا پذیر است.
((Smok \land Heat) \rightarrow Fire) \leftarrow \rightarrow ((Smok \rightarrow Fire) \lor (Heat \rightarrow Fire)) =
((Smok \land Heat) \rightarrow Fire) \rightarrow ((Smok \rightarrow Fire) \lor (Heat \rightarrow Fire)))
\land ( (Smok\rightarrowFire) \land (Heat\rightarrow Fire) ) \rightarrow (Smok\land Heat)\rightarrow Fire))
( \sim ( \sim \text{smok} \lor \sim \text{heat} \lor \text{fire} ) \lor ( \sim \text{smok} \lor \text{fire} \lor \sim \text{heat} \lor \text{fire} ) ) \land 
( \sim ( \sim \text{smok} \lor \text{fire} \lor \sim \text{heat} \lor \text{fire} ) \lor ( \sim \text{smok} \lor \sim \text{heat} \lor \text{fire} ) ) = ( \text{If} \sim \text{smok} \lor \sim \text{heat} \lor \text{fire} = p )
(^p \lor p) \land (^p \lor p) = True \land True = True
                                                                                                                                   ث) عبارت همواره صحیح است پس هم توتولوژی و هم ارضا پذیر است.
(Smok \rightarrow fire) \rightarrow ((smok / heat) \rightarrow fire)
\sim(\simsmok \vee fire) \vee (\sim(smok \wedge heat) \vee fire) = (smok \wedge \simfire) \vee (\simsmok \vee \simheat \vee fire)
= (If \simsmok \vee fire = p) then \simp \vee (p \vee \simheat) = (\simp \veep) \vee \simheat = True \vee \simheat = True

    ج) عبارت همواره صحیح است پس هم توتولوژی و هم ارضا پذیر است.

Big √ dump √ (big → dump) = big √ dump √ (~big √ dump) = (big √ ~big) √ dump = True √ dump = True
                                                                                                                                    چ) عبارت همواره صحیح است پس هم توتولوژی و هم ارضا پذیر است.
(A \land B) \lor (^{\sim}C) \lor (^{\sim}A \land C) \rightarrow ^{\sim}A \lor B \lor ^{\sim}C = ^{\sim}((A \land B) \lor (^{\sim}C) \lor (^{\sim}A \land C)) \lor (^{\sim}A \lor B \lor ^{\sim}C)
((^{A} \lor ^{B}) \land C \land (A \lor ^{C})) \lor (^{A} \lor B \lor ^{C})=((^{A} \lor ^{B}) \land ((C \land A) \lor (C \land ^{C}))) \lor (^{A} \lor B \lor ^{C})
= ((^A \lor ^B) \land ((C \land A) \lor (True))) \lor (^A \lor B \lor ^C) =
((^A \lor ^B) \land (True)) \lor (^A \lor B \lor ^C) = (^A \lor ^B) \lor (^A \lor B \lor ^C) = (B \lor ^B) \lor (^A \lor ^A \lor ^C) = (^A \lor ^B) \lor (^A \lor
True \bigvee (^{\sim}A \bigvee ^{\sim}C) = True
                                                                                                                                                                                                                                                                                                  سوال۵)
1) P /\ Q
                                                                       5) P
                                                                                                        USING 1 (simplification)
2) P \rightarrow (R / Q)
                                                                       6) R /\ Q USING 2,5 (modus ponens)
3) R \rightarrow (S \/ T)
                                                                       7) R
                                                                                                         USING 6 (simplification)
4) ~S
                                                                       8) S \/ T USING 3,7 (modus ponens)
                                                                       9) T
                                                                                                         USING 4,8 (disjunctive syllogism)
Т
1) P \rightarrow (Q \rightarrow R)
                                                                     5) \simS \rightarrow P USING 2 ((P \lorS) \leftarrow \rightarrow (\simS \rightarrowP) )
2) P\/S
                                                                     6) \simS \rightarrow (Q \rightarrow R) USING 1,5 (hypothetical syllogism)
3) T \rightarrow Q
                                                                     7) Q \rightarrow R USING 4,6 (modus ponens)
4) ~S
                                                                     8) T \rightarrow R USING 3,7 (hypothetical syllogism)
                                                                     9) \sim R \rightarrow \sim T USING 8 ( (T \rightarrow R) \leftarrow \rightarrow (\sim R \rightarrow \sim T) )
```

~R → ~T

ت) عبارت همواره صحیح است پس هم توتولوژی و هم ارضا پذیر است.

1) P \/ Q	4) ~P USING 2,3 (disjunctive syllogism)
2) ~P \/ R	5) Q USING 1,4 (disjunctive syllogism)
3) ~R	با توجه به اینکه ${\sf Q}$ از داده ها استنتاج می گردد پس هرگز ${\sf Q}^{\sim}$ نمی تواند استنتاج شود.
	مثال نقض زیر نیز این موضوع را تایید می کند.
~Q	Q = TRUE , R = FALSE , P = FALSE
	~Q = FALSE

1) $P \leftarrow \rightarrow Q$	يس <u>ت.</u>	مثال نقض زیر نشان می دهد که استدلال معتبر نمی باشد و S قابل استنتاج ن
2) Q → R	P = TRUE	
3) R ∨ ~S	Q = TRUE	
4) ~S → Q	R = TRUE	
	S = FALSE	
S		
1) P	5) R	USING 1,2 (modus ponens)

2) P → R
 6) Q V ~R USING 1,3 (modus ponens)
 3) P → (Q V ~R)
 7) Q USING 5,6 (disjunctive syllogism)
 4) ~Q V ~S
 8) ~S USING 4,7 (disjunctive syllogism)
 ... # You will be a subject of the policy of the polic

مثال نقض زیر نیز این موضوع را تایید می کند.

P = TRUE, R = TRUE, Q = TRUE, S = FALSE

S

Р

$$P \rightarrow ((q \lor r) \land \neg (q \land r)) = \neg p \lor ((q \lor r) \land (\neg q \lor \neg r)) = (\neg p \lor (q \lor r)) \land (\neg P \lor (\neg q \lor \neg r))$$

$$P \rightarrow ((s \lor t) \land \neg(s \land t)) = \neg p \lor ((s \lor t) \land \neg(s \land t)) = \neg p \lor ((s \lor t) \land (\neg s \lor \neg t))$$

 $= (^p \lor (s \lor t)) \land (^p \lor (^s \lor ^t))$

 $S \rightarrow q = ^s \bigvee q$

 $r \rightarrow t = r \lor t$

 $t \rightarrow s = ^t \bigvee s$

1) P

9) q \bigvee r resolution 1,2

2) ~p ∨ q ∨ r

10) ~q √ ~r resolution 1,3

3) ~P ∨ ~q ∨ ~r

11) empty cluse resolution 9,10

4) ~p ∨ s ∨ t

ارضا ناپذیر بوده و استدلال معتبر است.

5) ~P ∨ ~s ∨ ~t

6) ~s \/ q

7) r \/ t

8) ~t \/ s

سوال ۷) عبارت ها در صورتی صحیح اند که یک توتولوژی باشند.

۱) عبارت صحیح است.

 $[A \land B \rightarrow Y] \rightarrow [A \rightarrow Y] \lor [B \rightarrow Y] = \sim[\sim(A \land B) \lor Y] \lor ([\sim A \lor Y] \lor [\sim B \lor Y])$ $= [A \land B \land \sim Y] \lor [\sim A \lor Y \lor \sim B] = (IF [A \land B \land \sim Y] = P) THEN P \lor \sim P = T$

۲) عبارت صحیح است.

 $[A \rightarrow Y] \lor [B \rightarrow Y] \rightarrow [A \land B \rightarrow Y] = \sim [[\sim A \lor Y] \lor [\sim B \lor Y]] \lor [\sim [A \land B] \lor Y]$ $= [[A \land \sim Y] \land [B \land \sim Y]] \lor [\sim A \lor \sim B \lor Y] = [A \land B \land \sim Y] \lor [\sim A \lor \sim B \lor Y] = (IF [A \land B \land \sim Y] = P)$ $THEN P \lor \sim P = T$

۳) عبارت ناصحیح است.

 $[A \land B \rightarrow Y] \rightarrow [A \rightarrow Y] \land [B \rightarrow Y]$

مثال نقض زیر نشان می دهد که عبارت همواره TRUE نبوده و توتولوژی نیست پس عبارت ناصحیح است.

IF (A = FALSE, B = TRUE, Y = FALSE) THEN $[A \land B \rightarrow Y] \rightarrow [A \rightarrow Y] \land [B \rightarrow Y]$ = false

۴) عبارت ناصحیح است.

 $[A \rightarrow Y] \lor [B \rightarrow Y] \rightarrow [A \lor B \rightarrow Y]$

مثال نقض زیر نشان می دهد که عبارت همواره TRUE نبوده و توتولوژی نیست پس عبارت ناصحیح است.

IF (A = TRUE, B = FALSE, Y = FALSE) THEN $[A \rightarrow Y] \lor [B \rightarrow Y] \rightarrow [A \lor B \rightarrow Y]$ = false

```
سوال ۸)
```

الف)

متغير F با احتمال 1/2 صحيح و با احتمال 1/2 ناصحيح است.

اگر F صحیح باشد:

آنگاه عبارت D) \lor E (((A \rightarrow B) \land C) (\leftarrow D) \lor E آنگاه عبارت

اگر E مقدار TRUE داشته باشد آن گاه متغیر های A, B, C, D می توانند هر مقدار دلخواه TRUE یا FALSE اخذ کنند لذا تعداد مدل ها در این حالت بر ابر ۱۶ خواهد بود.

اگر E مقدار FALSE داشته باشد آن گاه D \leftrightarrow D مقدار FALSE مقدار اشته باشد.

اگر متغیر D مقدار TRUE اخذ کند آنگاه عبارت (A → B) / (C) نیز می بایست صحیح باشد.

لذا متغیر C می بایست مقدار TRUE داشته باشد و A → B نیز باید صحیح باشد یعنی A, B می توانند مقادیر زیر را داشته باشند

A = TRUE, B = TRUE

A = FALSE, B = TRUE

A = FALSE, B = FALSE

پس در این حالت نیز تعداد ۳ مدل خواهیم داشت.

اگر متغیر D مقدار FALSE اخذ کند آنگاه عبارت (A → B) / C) نیز می بایست ناصحیح باشد.

اگر C مقدار FALSE بگیرد A, B می توانند هر مقدار دلخواه TRUE یا FALSE را اخذ کنند پس در این حالت ۴ مدل داریم.

اگر C مقدار TRUE بگیرد آنگاه عبارت $A \rightarrow B$ می بایست FALSE شود به این معنی که A = TRUE و B = FALSE باشد <u>پس ۱</u> مدل در این حالت خواهیم داشت.

اگر F ناصحیح باشد:

آنگاه عبارت $(((A \rightarrow B) \land C) \leftarrow \rightarrow D) \lor E$ نیز می بایست ناصحیح باشد.

FALSE در این حالت متغیر $A \to B \ / C \to D$ داشته باشد به علاوه عبارت FALSE در این حالت متغیر ایست $A \to B / C \to D$ در این حالت متغیر ایست باشد.

اگر D مقدار TRUE بگیرد عبارت (A \rightarrow B) \bigwedge C باید FALSE شود

اگر FALSE C شود A, B هر مقدار دلخواهی می توانند اخذ کنند و لذا ۴ مدل خواهیم داشت.

اگر TRUE C شود A→B باید FALSE شود و لذا تنها ۱ مدل خواهیم داشت (A = TRUE, B = FALSE)

اگر D مقدار FALSE بگیرد عبارت $(A \rightarrow B) / (C)$ باید TRUE شود

در این حالت متغیر C می بایست TRUE باشد و عبارت A→B نیز باید TRUE باشد یعنی A, B مقادیر زیر را می توانند داشته باشند.

A = TRUE. B = TRUE

A = FALSE. B = TRUE

A = FALSE, B = FALSE

پس در این حالت نیز تعداد ۳ مدل خواهیم داشت.

m = m + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 3 + 1 + 3 + 1 + 3 تعداد کل مدل ها برابر است با

ب) سه مدل وجود دارد.

یا همزمان می بایست A, B صحیح باشند یا همزمان B, C صحیح باشند.

- A = TRUE, B = TRUE, C = TRUE (1
- A = TRUE, B = TRUE, C = FALSE (Y
- B = TRUE, C = TRUE, A = FALSE ($^{\circ}$

پ)

اگر متغیر C مقدار FALSE اخذ کند عبارت $A \leftarrow A$ نیز می بایست مقدار FALSE اخذ کند. پس در این حالت A, B مقادیر زیر را می توانند اخذ کنند.

A = TRUE, B = FALSE

A = FALSE, B = TRUE

در این حالت ۲ مدل خواهیم داشت.

اگر متغیر C مقدار TRUE اخذ کند عبارت $A \leftarrow A$ نیز می بایست مقدار TRUE اخذ کند. پس در این حالت A, B مقادیر زیر را می توانند اخذ کنند.

A = TRUE, B = TRUE

A = FALSE, B = FALSE

در این حالت ۲ مدل خواهیم داشت<u>.</u>

تعداد كل مدل ها برابر است با : ۲ + ۲ = ۴