Agricultura Vertical Resumo de Avaliação de Testes

Versão <1.0>

Histórico da Revisão

Data	Versão	Descrição	Autor
27/05/2025	1.0	Documento inicial	André Ricarts

Índice

1.Introdução		4
1.1 Objetivo	4	
1.2 Escopo	4	
1.3Definições, Acrônimos e Abreviações	4	
1.4Referências	4	
1.5Visão Geral	4	
2.Resumo de Resultados de Testes		4
3.Cobertura de Teste baseada nos Requisitos		4
4.Cobertura de Teste baseada em Código		
5.Ações Sugeridas		
6.Diagramas		

Resumo de Avaliação de Testes

1. Introdução

1.1 Objetivo

Este documento tem como objetivo apresentar o resumo da avaliação dos testes realizados no projeto Agricultura Vertical, seguindo o modelo do Rational Unified Process (RUP), detalhando resultados, cobertura e ações recomendadas.

1.2 Escopo

Abrange os testes de integração, validação de sensores, comunicação IoT, automação de irrigação e interface de monitoramento do sistema de hidroponia caseira.

1.3 Definições, Acrônimos e Abreviações

• **IoT:** Internet das Coisas

TDS: Total Dissolved Solids

• **pH:** Potencial Hidrogeniônico

• ESP32: Microcontrolador utilizado

• LoRa: Comunicação de rádio de longo alcance

1.4 Referências

- Especificação do Projeto Agricultura Vertical
- Código-fonte dos testes (GitHub)
- Documentação dos sensores e módulos utilizados

1.5 Visão Geral

O documento está organizado para apresentar, de forma objetiva, os resultados dos testes do sistema, a cobertura em relação aos requisitos e ao código, ações sugeridas para melhorias e diagramas ilustrativos.

2. Resumo de Resultados de Testes

- Todos os sensores (temperatura, umidade, pH, TDS) foram validados e apresentam leituras estáveis.
- A comunicação LoRa entre módulos foi bem-sucedida em ambiente controlado.
- O controle automático de irrigação e iluminação respondeu corretamente aos parâmetros definidos.
- O display OLED apresentou informações em tempo real sem atrasos perceptíveis.
- O envio de dados para a plataforma IoT foi realizado sem perdas.

3. Cobertura de Teste baseada nos Requisitos

- Requisito 1: Monitoramento de parâmetros críticos 100% coberto
- Requisito 2: Automação de irrigação 100% coberto
- **Requisito 3:** Visualização local e remota dos dados 90% coberto (interface mobile em desenvolvimento)
- Requisito 4: Comunicação sem fio confiável 100% coberto em ambiente de teste

4. Cobertura de Teste baseada em Código

- 95% das funções implementadas foram testadas com sucesso.
- Testes automatizados cobrem as principais rotinas de leitura de sensores e controle de atuadores.
- Pontos de melhoria identificados em rotinas de exceção e tratamento de falhas de comunicação.

5. Ações Sugeridas

- Finalizar e validar a interface mobile/web para monitoramento remoto.
- Implementar testes de estresse em ambiente real (campo).
- Melhorar tratamento de exceções em falhas de sensores/comunicação.
- Documentar procedimentos de calibração dos sensores para o usuário final.

6. Diagramas

- Diagrama de arquitetura do sistema (hardware e software)
- Fluxo de dados entre sensores, controlador e plataforma IoT
- Diagrama de casos de uso para operação do sistema

