Laurea in Informatica A.A. 2023-2024

Corso "Base di Dati"

Normalizzazione

Forme normali e Normalizzazione

 Una forma normale è una proprietà di una base di dati relazionale che ne garantisce la "qualità", cioè l'assenza di determinati difetti

Normalizzazione

- Procedura che permette di trasformare schemi non normalizzati in schemi che soddisfano una forma normale
- Due scenari di applicazione:
 - Ristrutturazione di una base di dati «legacy» (cioè pre-esistente) per garantirne certe qualità
 - 2. Verifica dei risultati della progettazione di una base di dati

Normalizzazione

 Una forma normale è una proprietà di una base di dati relazionale che ne garantisce la "qualità", cioè l'assenza di determinati difetti

- Quando una relazione non è normalizzata:
 - presenta ridondanze;
 - si presta a comportamenti poco desiderabili durante gli aggiornamenti.

Una Relazione con Anomalie

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Anomalie / 1

- Lo stipendio di ciascun impiegato è ripetuto in tutte le ennuple relative
 - ridondanza
- Se lo stipendio di un impiegato varia, è necessario andarne a modificare il valore in diverse tuple
 - anomalia di aggiornamento

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Anomalie / 2

- Se un impiegato interrompe la partecipazione a tutti i progetti, dobbiamo cancellarlo
 - anomalia di cancellazione
- Un nuovo impiegato senza progetto non può essere inserito
 - anomalia di inserimento

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Perché questi fenomeni indesiderabili?

Unica relazione per rappresentare informazioni eterogenee:

- Impiegati con i relativi stipendi
- Progetti con i relativi bilanci
- Partecipazione degli impiegati ai progetti con le relative funzioni

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Per studiare in maniera sistematica questi aspetti, è necessario introdurre un vincolo di integrità:

la dipendenza funzionale

Proprietà

- Ogni impiegato ha un solo stipendio (anche se partecipa a più progetti)
- Ogni progetto ha un bilancio
- Ogni impiegato in ciascun progetto ha una sola funzione (anche se può avere funzioni diverse in progetti diversi)

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Dipendenza Funzionale

- Data una R(X) sugli attributi X
- Dati due insiemi di attributi Y, Z ⊂ X
- esiste in R una dipendenza funzionale (FD) da Y a Z se:
- Per ogni coppia di tuple t₁, t₂ ∈ R:
 se π_Y(t₁) = π_Y(t₂) allora π_Z(t₁) = π_Z(t₁)

Notazione

$$Y \rightarrow Z$$

Esempi:

Impiegato → Stipendio

Progetto → Bilancio

Impiegato Progetto → Funzione

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Impiegato → Stipendio Progetto → Bilancio Impiegato Progetto → Funzione

Dipendenze Funzionali Banali

Impiegato Progetto → Progetto

Si tratta però di una DF "banale":

• $Y \rightarrow A$ è banale se $A \subset Y$

Anomalie e Dipendenze Funzionali

Le anomalie sono legate ad alcune dipendenze funzionali:

Gli impiegati hanno un unico stipendio

I progetti hanno un unico bilancio

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Dipendenze Funzionali "Buone"

 Una dipendenza funzionale "buona" e tra una chiave e altri attributi. Per esempio:

Impiegato Progetto → Funzione

Una dipendenza funzionale "buona" non causa anomalie

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Forma Normale di Boyce e Codd (BCNF)

Una relazione R con chiavi K₁,..., K_n, è in forma normale di Boyce e Codd:
 se ogni dipendenza funzionale non banale X → Y è «buona» cioè ∃i. K_i ⊆ X (x è superchiave)

 La forma normale richiede che i concetti in una relazione siano omogenei (solo proprietà direttamente associate alla chiave)

Che facciamo se una relazione non soddisfa la BCNF?

 La rimpiazziamo con altre relazioni che soddisfano la BCNF

Come?

 Decomponendo sulla base delle dipendenze funzionali, al fine di separare i concetti

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Impiegato → Stipendio Progetto → Bilancio Impiegato Progetto → Funzione

<u>Impiegato</u>	Stipendio
Rossi	20
Verdi	35
Nort	00
Neri	55
Mori	48
Bianchi	48

Impiegato → Stipendio

Progetto	Bilancio
Marte	2
Giove	15
Venere	15
Giove	15
Morto	2
Iviai te	
- Voncero	4.5
0'	
Ciovo	45

Progetto → **Bilancio**

<u>Impiegato</u>	<u>Progetto</u>	Funzione
Rossi	Marte	tecnico
Verdi	Giove	progettista
Verdi	Venere	progettista
Neri	Venere	direttore
Neri	Giove	consulente
Neri	Marte	consulente
Mori	Marte	direttore
Mori	Venere	progettista
Bianchi	Venere	progettista
Bianchi	Giove	direttore

Impiegato Progetto → Funzione

Procedura intuitiva di normalizzazione

Per ogni dipendenza $X \to Y$ che viola la BCNF, definire una relazione su XY ed eliminare Y dalla relazione originaria

Data la seguente relazione:

Docente	Dipartimento	Facoltà	Preside	Corso
Verdi	Matematica	Ingegneria	Neri	Analisi
Verdi	Matematica	Ingegneria	Neri	Geometria
Rossi	Fisica	Ingegneria	Neri	Analisi
Rossi	Fisica	Scienze	Bruni	Analisi
Bruni	Fisica	Scienze	Bruni	Fisica

- 1. Individuare le proprietà della relazione:
 - Chiave/i della relazione
 - Dipendenze funzionali
- 2. Identificare ridondanze o anomalie
- 3. Decomporre in BCNF

Docente	Dipartimento	Facoltà	Preside	Corso
Verdi	Matematica	Ingegneria	Neri	Analisi
Verdi	Matematica	Ingegneria	Neri	Geometria
Rossi	Fisica	Ingegneria	Neri	Analisi
Rossi	Fisica	Scienze	Bruni	Analisi
Bruni	Fisica	Scienze	Bruni	Fisica

- 1. Individuare le proprietà della relazione:
 - Chiave/i della relazione: Dipart, Facoltà, Corso
 - Dipendenze funzionali: Facoltà → Preside
- 2. Identificare ridondanze o anomalie

Docente	Dipartimento	Facoltà	Preside	Corso
Verdi	Matematica	Ingegneria	Neri	Analisi
Verdi	Matematica	Ingegneria	Neri	Geometria
Rossi	Fisica	Ingegneria	Neri	Analisi
Rossi	Fisica	Scienze	Bruni	Analisi
Bruni	Fisica	Scienze	Bruni	Fisica

2. Identificare ridondanze o anomalie

Ridondanza: Preside ripetuto ogni volta la facoltà è la stessa

Anomalia Aggiornamento: Se il preside cambia, occorre assicurarsi che cambia in tutte le tuple

Anomalia Cancellazione: Se tutti i corsi di Science vengono rimossi, si perde l'informazione che il preside è Bruni

Docente	Dipartimento	Facoltà	Preside	Corso
Verdi	Matematica	Ingegneria	Neri	Analisi
Verdi	Matematica	Ingegneria	Neri	Geometria
Rossi	Fisica	Ingegneria	Neri	Analisi
Rossi	Fisica	Scienze	Bruni	Analisi
Bruni	Fisica	Scienze	Bruni	Fisica

- 1. Individuare le proprietà della relazione:
 - Chiave/i della relazione: Dipart, Facoltà, Corso
 - Dipendenze funzionali: Facoltà -> Preside
- 3. Decomporre in Forma Normale di Boyce Codd (BCNF)

		Docente	Dipartimento	Facoltà	Corso
Facoltà	Preside	Verdi	Matematica	Ingegneria	Analisi
		Verdi	Matematica	Ingegneria	Geometria
Ingegneria	Neri	Rossi	Fisica	Ingegneria	Analisi
Scienze	Bruni	Rossi	Fisica	Scienze	Analisi
		Bruni	Fisica	Scienze	Fisica

- È in forma normale di Boyce-Codd
 - → Decomposizione risolve le anomalie

Non sempre così facile

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Impiegato → Sede Progetto → Sede

Decomposizione basata su dipendenze

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Progetto Sede

Marte Roma
Giove Milano
Saturno Milano
Venere Milano

Impiegato → Sede

Proviamo a ricostruire

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Progetto	Sede
Marte	Roma
Giove	Milano
Saturno	Milano
Venere	Milano

Impiegato	Progetto	Sede	
Rossi	Marte	Roma	
Verdi	Giove	Milano	
Verdi	Venere	Milano	
Neri	Saturno	Milano	
Neri	Venere	Milano	
Verdi	Saturno	Milano	
Neri	Giove	Milano	

Diversa dalla relazione di partenza!

Decomposizione senza perdita

- Una relazione R(X) si decompone senza perdita su X₁,X₂ ⊂ X con X1 ∪ X2 = X se π_{X1}(X) ⋈ π_{X2}(X) = X
- La decomposizione senza perdita è garantita se gli attributi in X1 \cap X2 sono una chiave della relazione $\pi_{X1}(X)$ e/o di $\pi_{X2}(X)$

Decomposizione con Perdita

Questo caso c'è perdita: l'attributo comune
 X1 ∩ X2 = {Sede} non è chiave nè di R1 nè di R2 → Perdita

R1

<u>Impiegato</u>	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Impiegato → Sede

R2

Progetto	Sede
Marte	Roma
Giove	Milano
Saturno	Milano
Venere	Milano

Progetto → **Sede**

Decomposizione Senza Perdita

<u>Impiegato</u>	Stipendio
Rossi	20
Verdi	35
Verdi	35
Neri	55
Neri	55
Neri	55
Mori	48
Mori	48
Bianchi	48
Bianchi	48

Impiegato → Stipendio

<u>Impiegato</u>	Progetto	Funzione
Rossi	Marte	tecnico
Verdi	Giove	progettista
Verdi	Venere	progettista
Neri	Venere	direttore
Neri	Giove	consulente
Neri	Marte	consulente
Mori	Marte	direttore
Mori	Venere	progettista
Bianchi	Venere	progettista
Bianchi	Giove	direttore

Impiegato Progetto

→ Funzione

<u>Progetto</u>	Bilancio
Marte	2
Giove	15
Venere	15
Venere	15
Giove	15
Marte	2
Marte	2
Venere	15
Venere	15
Giove	15

Progetto → Bilancio

Attributi Comuni:

Attributi Comuni:

Impiegato (Chiave di Relazione di Sinistra)

Progetto (Chiave di Relazione di Sinistra)

Senza Perdità?

Docente		Dipartimento	Facoltà	Corso	
		_ Verdi	Matematica	Ingegneria	Analisi
Facoltà	Preside	Verdi	Matematica	Ingegneria	Geometria
Ingegneria	Neri	Rossi	Fisica	Ingegneria	Analisi
Scienze	Bruni	Rossi	Fisica	Scienze	Analisi
		Bruni	Fisica	Scienze	Fisica

Sì, il join naturale ricostruisce la "relazione di partenza":

Docente	Dipartimento	Facoltà	Preside	Corso
Verdi	Matematica	Ingegneria	Neri	Analisi
Verdi	Matematica	Ingegneria	Neri	Geometria
Rossi	Fisica	Ingegneria	Neri	Analisi
Rossi	Fisica	Scienze	Bruni	Analisi
Bruni	Fisica	Scienze	Bruni	Fisica

Proviamo a decomporre senza perdita sfruttando solo Impiegato → Sede

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

<u>Impiegato</u>	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

<u>Impiegato</u>	Progetto
Rossi	Marte
Verdi	Giove
Verdi	Venere
Neri	Saturno
Neri	Venere

Un problema: Conservazione Dipendenze /1

Aggiungiamo tupla in verde circa l'impiegato Neri, che opera a Milano, al progetto Marte:

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Impiegato	Progetto
Rossi	Marte
Verdi	Giove
Verdi	Venere
Neri	Saturno
Neri	Venere
Neri	Marte

Impiegato → Sede

Progetto → Sede

Un problema: Conservazione Dipendenze /2

Ricostruiamo la relazione di partenza con il join:

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano
Neri	Marte	Milano

Impiegato → Sede

Progetto → Sede

Conservazione delle Dipendenze

- Una decomposizione conserva le dipendenze se ciascuna delle dipendenze funzionali dello schema originario coinvolge attributi che compaiono tutti insieme in uno degli schemi decomposti
- Progetto → Sede non è conservata

Esercizio

Assumendo la tabella di cui sotto (con una chiave quella in rosso):

- Trovare le Dipendenze Funzionali che violano la forma normale di Boyce Codd e non sono banali
- 2. Decomporre in Forma Normale di Boyce-Codd

Prodotto	Componente	Tipo	Q	PC	Fornitore	PT
Libreria	Legno	Noce	50	10.000	Forrest	400.000
Libreria	Bulloni	B212	200	100	Bolt	400.000
Libreria	Vetro	Cristal	3	5.000	Clean	400.000
Scaffale	Legno	Mogano	5	15.000	Forrest	300.000
Scaffale	Bulloni	B212	250	100	Bolt	300.000
Scaffale	Bulloni	B412	150	300	Bolt	300.000
Scrivania	Legno	Noce	10	8.000	Wood	250.000
Scrivania	Maniglie	H621	10	20.000	Bolt	250.000
Tavolo	Legno	Noce	4	10.000	Forrest	200.000

Q = Quantità

PC = Prezzo Unitario (per tutte le quantità insieme e non per unità di quantità)

PT = Prezzo Totale

Soluzione: Dipendenze Funzionali

- Dipendenze Funzionali che violano BCNF:
 - Prodotto → PT
 - Componente, Prodotto → Fornitore

Soluzione: Decomposizione per Prodotto → PT

Prodotto	Componente	Tipo	Q	PC	Fornitore	PT
Libreria	Legno	Noce	50	10.000	Forrest	400.000
Libreria	Bulloni	B212	200	100	Bolt	400.000
Libreria	Vetro	Cristal	3	5.000	Clean	400.000
Scaffale	Legno	Mogano	5	15.000	Forrest	300.000
Scaffale	Bulloni	B212	250	100	Bolt	300.000
Scaffale	Bulloni	B412	150	300	Bolt	300.000
Scrivania	Legno	Noce	10	8.000	Wood	250.000
Scrivania	Maniglie	H621	10	20.000	Bolt	250.000
Tavolo	Legno	Noce	4	10.000	Forrest	200.000

	Prodotto	Componente	Tipo	Q	PC	Fornitore
	Libreria	Legno	Noce	50	10.000	Forrest
	Libreria	Bulloni	B212	200	100	Bolt
	Libreria	Vetro	Cristal	3	5.000	Clean
ı	Scaffale	Legno	Mogano	5	15.000	Forrest
ı	Scaffale	Bulloni	B212	250	100	Bolt
ı	Scaffale	Bulloni	B412	150	300	Bolt
ı	Scrivania	Legno	Noce	10	8.000	Wood
	Scrivania	Maniglie	H621	10	20.000	Bolt
	Tavolo	Legno	Noce	4	10.000	Forrest

<u>Prodotto</u>	PT
Libreria	400.000
Scaffale	300.000
Scrivania	250.000
Tavolo	200.000

Soluzione: Decomposizione per Componente, Prodotto → Fornitore

Prodotto	Componente	Tipo	Q	PC	Fornitore
Libreria	Legno	Noce	50	10.000	Forrest
Libreria	Bulloni	B212	200	100	Bolt
Libreria	Vetro	Cristal	3	5.000	Clean
Scaffale	Legno	Mogano	5	15.000	Forrest
Scaffale	Bulloni	B212	250	100	Bolt
Scaffale	Bulloni	B412	150	300	Bolt
Scrivania	Legno	Noce	10	8.000	Wood
Scrivania	Maniglie	H621	10	20.000	Bolt
Tavolo	Legno	Noce	4	10.000	Forrest

Prodotto	Componente	Tipo	Q	PC
Libreria	Legno	Noce	50	10.000
Libreria	Bulloni	B212	200	100
Libreria	Vetro	Cristal	3	5.000
Scaffale	Legno	Mogano	5	15.000
Scaffale	Bulloni	B212	250	100
Scaffale	Bulloni	B412	150	300
Scrivania	Legno	Noce	10	8.000
Scrivania	Maniglie	H621	10	20.000
Tavolo	Legno	Noce	4	10.000

Prodotto	Componente	Fornitore
Libreria	Legno	Forrest
Libreria	Bulloni	Bolt
Libreria	Vetro	Clean
Scaffale	Legno	Forrest
Scaffale	Bulloni	Bolt
Scrivania	Legno	Wood
Scrivania	Maniglie	Bolt
Tavolo	Legno	Forrest

Soluzione Finale

Prodotto	Componente	Tipo	Q	PC	Fornitore	PT
Libreria	Legno	Noce	50	10.000	Forrest	400.000
Libreria	Bulloni	B212	200	100	Bolt	400.000
Libreria	Vetro	Cristal	3	5.000	Clean	400.000
Scaffale	Legno	Mogano	5	15.000	Forrest	300.000
Scaffale	Bulloni	B212	250	100	Bolt	300.000
Scaffale	Bulloni	B412	150	300	Bolt	300.000
Scrivania	Legno	Noce	10	8.000	Wood	250.000
Scrivania	Maniglie	H621	10	20.000	Bolt	250.000
Tavolo	Legno	Noce	4	10.000	Forrest	200.000

Prodotto	Componente	Tipo	Q	PC
Libreria	Legno	Noce	50	10.000
Libreria	Bulloni	B212	200	100
Libreria	Vetro	Cristal	3	5.000
Scaffale	Legno	Mogano	5	15.000
Scaffale	Bulloni	B212	250	100
Scaffale	Bulloni	B412	150	300
Scrivania	Legno	Noce	10	8.000
Scrivania	Maniglie	H621	10	20.000
Tavolo	Legno	Noce	4	10.000

Prodotto	Componente	Fornitore
Libreria	Legno	Forrest
Libreria	Bulloni	Bolt
Libreria	Vetro	Clean
Scaffale	Legno	Forrest
Scaffale	Bulloni	Bolt
Scrivania	Legno	Wood
Scrivania	Maniglie	Bolt
Tavolo	Legno	Forrest

Prodotto	PT
Libreria	400.000
Scaffale	300.000
Scrivania	250.000
Tavolo	200.000

Qualità delle Decomposizioni

Una decomposizione dovrebbe sempre soddisfare:

- Decomposizione senza perdita:
 possibile ricreare informazioni originarie
 (attributi comuni nel join di A e B sono chiave di A e/o B)
- Conservazione delle dipendenze:
 vincoli di integrità originari sono mantenuti
 (per ogni dipendenza funzionale, esiste una relazione con
 tutti i suoi attributi)

Relazioni non normalizzabile in Forma Normale di Boyce-Codd

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Progetto Sede → Dirigente Dirigente → Sede

Progetto Sede → **Dirigente**

coinvolge tutti gli attributi e quindi nessuna decomposizione può preservare tale dipendenza

→ la BCNF non è sempre raggiungibile raggiungibile"

Una possibile riorganizzazione

Dirigente	Progetto	<u>Sede</u>	Reparto
Rossi	Marte	Roma	1
Verdi	Giove	Milano	1
Verdi	Marte	Milano	1
Neri	Saturno	Milano	2
Neri	Venere	Milano	2

Sede Reparto → Dirigente Dirigente → Sede Reparto Progetto Sede → Reparto

Decomposizione in BCNF

Chiavi:

- Dirigente
- Sede, Reparto

Dirigente	Sede	Reparto
Rossi	Roma	1
Verdi	Milano	1
Neri	Milano	2

Chiavi:

Sede, Progetto

Progetto	Sede	Reparto
Marte	Roma	1
Giove	Milano	1
Marte	Milano	1
Saturno	Milano	2
Venere	Milano	2

- Decomposizione senza perdita: gli attributi comuni {Sede, Reparto} sono una chiave della relazione sx
- Tutte le dipendenze sono rispettate

Terza Forma Normale

Una relazione R con chiavi $K_1,...,K_n$ è in Terza Forma Normale se:

Per ogni dipendenza funzionale non banale $X \rightarrow Y$, almeno una delle seguenti condizioni sono valide:

- X è superchiave (BCNF)
- ogni attributo in Y è contenuto in almeno una tra le chiavi K₁,..., K_n.

BCNF e Terza Forma Normale (3NF)

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Progetto Sede → Dirigente
Dirigente → Sede

- Pro: Sempre «raggiungibile»
- Contro: Meno restrittiva della BCNF

Alcune Dipendenze Escluse → Ammette alcune anomalie

Esempio:

- Ridondanza tra Dirigente e Sede
- Possibilità di un Dirigente di «apparire» in più sedi

Decomposizione in Terza Forma Normale

- Si crea una relazione per ogni gruppo di attributi coinvolti in una dipendenza funzionale
- Si verifica che alla fine una relazione contenga una chiave della relazione originaria

Una possibile strategia

- Se la relazione non è normalizzata si decompone in terza forma normale
- alla fine si verifica se lo schema ottenuto è anche in BCNF

Teoria della normalizzazione

Data una relazione R e un insieme di dipendenze funzionali definite su R, generare una decomposizione di R che:

- Senza perdita
- Conservi le dipendenze
- Contenga solo relazioni normalizzate (possibilmente in BCNF, sicuramente in 3NF)

Implicazione dipendenze funzionali

 Un insieme F di FD implica un'altra FD f se ogni relazione che soddisfa tutte le FD in F soddisfa anche f.

```
Esempio: R(Impiegato, Categoria, Stipendio)

Impiegato→Categoria

Categoria→Stipendio

implicano

Impiegato→Stipendio.
```

Chiusura di un insieme di attributi

- Dati uno schema di Relazione R(U),
- Un insieme F di Dip. Funz. definite su U
- Un insieme di attributi X ⊆ U
- La chiusura X⁺_F di X rispetto ad F, è l'insieme degli attributi che dipendono funzionalmente da X:

$$X_F^+ = \{ A \mid A \in U \in F \text{ implica } X \rightarrow A \}$$

- Si noti che se { X1, X2 } → A allora { X1, X2, ... } → A
- Se A appartiene a X⁺_F allora X → A è implicata da F
- Se X⁺_F = U, allora X → U. Quindi, X è candidata ad essere chiave

Calcolo di X+_F

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

X = { Impiegato, Progetto}

Impiegato →
Stipendio
Progetto →
Bilancio
Impiegato Progetto →
Funzione

```
Da Impiegato → Stipendio:

X<sub>P</sub> = { Impiegato, Progetto, Stipendio}

Da Progetto → Bilancio aggiungiamo Bilancio:

X<sub>P</sub> = {Impiegato, Progetto, Stipendio, Bilancio}

Da Impiegato Progetto → Funzione aggiungiamo Funzione:

X<sub>P</sub> = {Impiegato, Progetto, Stipendio, Bilancio, Funzione}
```

 $X_P = \{ Impiegato, Progetto \}$

Calcolo di X⁺_F

Input: un insieme X di attributi e un insieme F di dipendenze funzionali

Output: un insieme X_P di attributi.

- 1.Inizializziamo X_P con l'insieme di input X.
- 2.Se esiste una FD Y \rightarrow A in F con Y \subseteq X_P e A \notin X_P, allora aggiungiamo A a X_P.
- 3. Ripetiamo il passo (2) fino a quando non ci sono ulteriori attributi che possono essere aggiunti a X_P .

Coperture di dipendenze funzionali

 Due insiemi di dipendenze funzionali F₁ ed F2 sono equivalenti se F₁ implica ciascuna dipendenza in F₂ e viceversa.

Per es.
$$\{A \rightarrow B; AB \rightarrow C; A \rightarrow C\}$$
 e $\{A \rightarrow B; AB \rightarrow C\}$ sono equivalenti

- Se due insiemi sono equivalenti diciamo anche che ognuno è una copertura dell'altro.
- Tra due equivalenti, meglio una più semplice

Proprietà desiderabili delle Dip. Funzionali

- Un insieme di dipendenze F è:
 - non ridondante se non esiste dipendenza f ∈
 F tale che F {f} implica f;
 - ridotto se (i) è non ridondante e (ii) non esiste un insieme F' equivalente a F ottenuto eliminando attributi dai primi membri di una o più dipendenze di F.
- Esempio (parte in rosso rimovibile):
 - {A → B; AB → C; A → C} è ridondante;
 - {A → B; AB → C} non è ridondante né ridotto;
 - {A → B; A → C} è ridotto e non ridondante;

Calcolo copertura ridotta

F: $M \rightarrow RSDG$, $MS \rightarrow CD$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MPD \rightarrow AM$.

1. Sostituiamo l'insieme dato con quello equivalente dove i secondi membri sono singoli attributi;

$$M \rightarrow R$$
, $M \rightarrow S$, $M \rightarrow D$, $M \rightarrow G$, $MS \rightarrow C$, $MS \rightarrow D$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MPD \rightarrow A$, $MPD \rightarrow M$

2. Eliminiamo le dipendenze ridondanti (indicate il rosso e con doppia linea);

$$\frac{M \rightarrow R, M \rightarrow S}{MPD \rightarrow M}$$
, $M \rightarrow D$, $M \rightarrow G$, $MS \rightarrow C$, $\frac{MS \rightarrow D}{MS \rightarrow D}$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MPD \rightarrow M$

3. Per ogni dipendenza verifichiamo se esistono attributi eliminabili dal primo membro

$$M \rightarrow D$$
, $M \rightarrow G$, $M \xrightarrow{S} \rightarrow C$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MP \xrightarrow{D} \rightarrow A$

Dati uno schema R(U) e un insieme di dipendenze F su U, con chiavi $K_1, ..., K_n$.

R(MCGRDSPA)

F: $M \rightarrow RSDG$, $MS \rightarrow CD$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MPD \rightarrow AM$.

1. Viene calcolata una copertura ridotta G di F:

$$M \rightarrow D$$
, $M \rightarrow G$, $M \rightarrow C$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MP \rightarrow A$

Dati uno schema R(U) e un insieme di dipendenze F su U, con chiavi $K_1, ..., K_n$.

R(MCGRDSPA)

F: $M \rightarrow RSDG$, $MS \rightarrow CD$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MPD \rightarrow AM$.

1. Viene calcolata una copertura ridotta G di F:

$$M \rightarrow D$$
, $M \rightarrow G$, $M \rightarrow C$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MP \rightarrow A$

2. G viene partizionato in sottoinsiemi tali che due dip. funzion. $X \rightarrow A e Y \rightarrow B$ sono insieme se $X^+_G = Y^+_G$:

$$\{M \rightarrow D, M \rightarrow G, M \rightarrow C\}, \{G \rightarrow R\}, \{D \rightarrow S, S \rightarrow D\}, \{MP \rightarrow A\}$$

Dati uno schema R(U) e un insieme di dipendenze F su U, con chiavi $K_1, \, \ldots, \, K_n$.

R(MCGRDSPA)

F: $M \rightarrow RSDG$, $MS \rightarrow CD$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MPD \rightarrow AM$.

2. G viene partizionato in sottoinsiemi tali che due dip. funzion. $X \to A e Y \to B$ sono insieme se $X^+_G = Y^+_G$:

$$\begin{array}{l} \{M {\longrightarrow} D, \, M {\longrightarrow} G, \, M {\longrightarrow} C\}, \, \{G {\longrightarrow} R\}, \, \{D {\longrightarrow} S, \, S {\longrightarrow} D\}, \\ \{MP {\longrightarrow} A\} \end{array}$$

3. Viene costruita una relazione per ogni sotto-insieme:

$$R_1(M, D, C, G), R_2(G, R), R_3(D, S), R_4(M, P, A)$$

Dati uno schema R(U) e un insieme di dipendenze F su U, con chiavi $K_1, \, \ldots, \, K_n$.

R(MCGRDSPA)

F: $M \rightarrow RSDG$, $MS \rightarrow CD$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MPD \rightarrow AM$.

3. Viene costruita una relazione per ogni sotto-insieme :

$$R_1(M, D, C, G), R_2(G, R), R_3(D, S), R_4(M, P, A)$$

4. Se esistono due relazione S(X) and T(Y) con $X \subseteq Y$, S viene eliminata :

Non accede. Quindi stesse relazioni: R₁(M, D, C, G), R₂(G, R), R₃(D, S), R₄(M, P, A)

Dati uno schema R(U) e un insieme di dipendenze F su U, con chiavi $K_1, \, \ldots, \, K_n$.

R(MCGRDSPA)

F: $M \rightarrow RSDG$, $MS \rightarrow CD$, $G \rightarrow R$, $D \rightarrow S$, $S \rightarrow D$, $MPD \rightarrow AM$.

4. Se esistono due relazione S(X) and T(Y) con $X \subseteq Y$, S viene eliminata :

Non accede. Quindi stesse relazioni: $R_1(M, D, C, G)$, $R_2(G, R)$, $R_3(D, S)$, $R_4(M, P, A)$

5. Se, per qualche i, non esiste una relazione S(X) con K_i ⊆ X, viene aggiunta una relazione T(K_i) :

Non accede. Perché R_4 contiene M e P: $R_1(M, D, C, G)$, $R_2(G, R)$, $R_3(D, S)$, $R_4(M, P, A)$

Progettazione e normalizzazione

- la teoria della normalizzazione può essere usata nella progettazione logica per verificare lo schema relazionale finale
- si può usare anche durante la progettazione concettuale per verificare la qualità dello schema concettuale

PartitalVA → NomeFornitore Indirizzo

Analisi dell'entità

 L'entità viola la forma normale a causa della dipendenza:

PartitalVA → NomeFornitore Indirizzo

 Possiamo decomporre sulla base di questa dipendenza

Studente → Corso di laurea Studente → Professore Professore → Dipartimento

Analisi della relationship

 La relationship viola la terza forma normale a causa della dipendenza:

Professore → Dipartimento

 Possiamo decomporre sulla base di questa dipendenza

Ulteriore analisi sulla base delle dipendenze

 La relationship Tesi è in BCNF sulla base delle dipendenze

> Studente → CorsoDiLaurea Studente → Professore

- le due proprietà sono indipendenti
- questo suggerisce una ulteriore decomposizione

Riferimenti

Capitolo 9, escludendo:

 Dimostrazione della terminazione alle pagine 344-345