МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Алгоритмы и структуры данных»

Тема: Метод Шеннона-Фано

Студент гр. 9304	 Краев Д.В.
Преподаватель	 Филатов А.Ю.

Санкт-Петербург

2020

Цель работы.

Изучить методы кодирования. Реализовать алгоритмы кодирования и декодирования Шеннона-Фано.

Задание.

Вариант 2

Метод Шеннона-Фано

Выполнение работы.

1) Функции

Для реализации алгоритма цикличной сортировки были написаны несколько функций.

1.1) void comp(const std::shared_ptr<Node> &a, const std::shared_ptr<Node> &b)

Данная функция является компоратором для сортировки функцией std::sort. Функция принимает две ссылки на умные указатели на Node и возвращает 1, если а больше b, 0 в ином случае.

1.2) count0letters(const std::string text)

Функция принимает на вход текст и считает количество каждого символа в тексте. Возвращает вектор, состоящий из структур Code, содержащую имя символа и его количество в тексте.

1.3) createTree(std::vector<std::shared_ptr<Node>> &elems)

Функция создает бинарное дерево из символов текста по методу Шеннона-Фано. Возвращает умный указатель на корень дерева.

1.4) setCodes(const std::shared_ptr<Node> &nde, std::vector<Code>& codes, std::string code = "")

Функция принимает умный указатель на корень бинарного дерева, полученного предыдущей функцией и ссылку на вектор, в который будут

записаны символы и их коды. Функция рекурсивно высчитывает коды символов по методу Шеннона-Фано.

1.5) writeCodes(std::vector<Code> codes, std::string f)

Функция принимает на вход вектор кодов символов и название файла и выводит коды символов в данный файл.

1.6) encode(const std::string text, std::vector<Code> codes, std::string f)

Функция принимает на вход текст, который нужно закодировать, коды символов, и файл, в который нужно вывести закодированный текст. Функция производит кодирование текста по заданным кодам символов.

1.7) decode(std::string encodedText, std::string decoded, std::vector<Code> codes)

Функция принимает на вход текст, состоящий из 0 и 1, который нужно раскодировать, название файла, в который нужно записать раскодированный текст и коды символов. Функция производит раскодировку текста и записывает ее в заданный файл.

1.8) readText(std::string file)

Функция принимает название файла, считывает текст из этого файла и возвращает его.

1.9) readCodes(std::string file)

Функция принимает на вход название файла, в котором записаны коды символов, считывает их и возвращает вектор из структур Code.

2) Структуры

2.1) Code

Структура содержит 2 поля типа std::string: первое поле хранит сам название символа, второе поле хранит его код.

2.2) Node

Структура является узлом бинарного дерева, поэтому содержит указатели 2 поля, которые указывает на левого и правого потомка. Структура

так же содержит название символа и его количество повторений в заданном тексте.

2.3) args

Структура была создана для реализации СІІ. Поэтому содержит информацию об аргументах, подаваемых программе. Структура содержит 5 полей. Первые два поля типа bool обозначают какой режим программы включен, так как должен быть включен только 1 режим, при равенстве этих 2 полей будет выведено сообщение об ошибке «ERROR: you must enable 1 of 2 modes». Следующие 3 поля типа std::string содержат названия рахличный файлов. Поле iFile содержит название файла ввода, поле оFile содержит название файла вывода, поле codes содержит название файла, содержащего кодировку символов. В поле оFile всегда должно быть определено, в ином случае будет выведено сообщение об ошибке «ERROR: you must set output file». Есди поле iFile не было определено начнется считывание текста с терминала.

3) Command line interface

Для реализации программы был создан CLI. С помощью него можно совершить 4 команды:

- d (--decode) «файл, содержащий коды символов» установить режим декодирования
- e (--encode) «файл, содержащий коды символов» установить режим кодирования
- f (--file) «название файла» установить файл ввода
- o (--out) «название файла» установить файл вывода

Тестирование

Тестирование проводится с помощью скрипта, написанном на языке Python. Скрипт использует библиотеки unittest и subprocess. Скрипт проводит 3 теста. В первом тесте производится кодировка и декодировка текста,

декодированный текст сравнивается с изначальным. В тестах 2, 3 производится проверка обработки ошибок. Библиотека subprocess нужна для запуска программы с нужными входными данными, а библиотека unittest для проведения тестирования.

Скрипт можно запустить при помощи команды «make run_tests».

Таблица 1 — Результаты тестирования

№ п/п	Входные данные	Выходные данные
1.	./labencode Tests/codes.txtfile	Around 1948, both Claude E. Shannon
	Tests/test.txtout Tests/encoded_text.txt\	(1948) and Robert M. Fano (1949)
	n")	independently proposed two different
		source coding algorithms for an efficient
	./labdecode Tests/codes.txtfile Tests/	description of a discrete memoryless
	encoded_text.txtout	source. Unfortunately, in spite of being
	Tests/decoded_text.txt\n")	different, both schemes became known
		under the same name Shannon-Fano
		coding. There are several reasons for this
		mixup. For one thing, in the discussion of
		his coding scheme, Shannon mentions
		Fano's scheme and calls it "substantially the
		same" (Shannon, 1948, p. 17). For another,
		both Shannon's and Fano's coding schemes
		are similar in the sense that they both are
		efficient, but suboptimal prefix-free coding
		schemes with a similar performance.
		Around 1948, both Claude E. Shannon
		(1948) and Robert M. Fano (1949)
		independently proposed two different
		source coding algorithms for an efficient
		description of a discrete memoryless
		source. Unfortunately, in spite of being
		different, both schemes became known

		under the same name Shannon-Fano	
		coding. There are several reasons for this	
		mixup. For one thing, in the discussion of	
		his coding scheme, Shannon mentions	
		Fano's scheme and calls it "substantially the	
		same" (Shannon, 1948, p. 17). For another,	
		both Shannon's and Fano's coding schemes	
		are similar in the sense that they both are	
		efficient, but suboptimal prefix-free coding	
		schemes with a similar performance.	
2.	./lab	ERROR: you must enable 1 of 2	
		modes	
3.	./labencode Tests/codes.txt	ERROR: you must set output file	

Вывод.

Изучили алгоритм Шеннона-Фано. Написали программу, реализующую данный алгорит кодирования и декодирования. Провели тестирование данной программы.