UCC28740 DESIGN CALCULA

TI Literature Number: SLUC487B

Disclaimer

This product is designed as an aid for customers of Texas Instruments. No warranties, either e fitness for any particular purpose, are claimed by Texas Instruments or the author. The software to its quality and performance is with the customers.

UCC28740 CONSTANT-VOLTAGE, CONSTANT-CURRENT F

CLEAR ALL USER INPUT CELLS BEFORE START ALL GREEN CELLS ARE USER INI

WHERE APPLICABLE, A RECOMMENDED VALUE IS GIVEN THAT WILL BE THE BEST CHC
THE BEST INTEREST OF THE USER TO USE A VALUE AS CLOSE AS POSSIBLE TO TI
ACCURATE RESULTS, THE USER MUST ENTER THE ACTUAL VALUE U

DESIGN REQUIREMENTS

INPUT SPECIFICATIONS		
Input Voltage Type, AC or DC:	AC	
Minimum Input Voltage, V _{INPUTmin} =	85	VAC
Maximum Input Voltage, V _{INPUTmax} =	265	VAC
Nominal Input Voltage, V _{INPUTnom} =	230	VAC
Minimum Line Frequency, f _{LINEmin} =	47	Hz
Minimum Input Voltage for Start-Up, V _{INPUTrun} =	80	VAC

OUTPUT SPECIFICATIONS		
Regulated Output Voltage, Constant Voltage Mode, V _{OUT_CV} =	12.2	VDC
Full Load Rated Output Current, I _{OUT} =	0.55	А
Target Constant Current Mode Output Load Threshold, I _{occ} =	0.55	A
Target Minimum Output Voltage During Constant Current Regulation, V _{OUT_CC} =	12.1	VDC
Allowable Output Voltage Drop During Load-Step Transient in Constant Voltage Mode, V _{OUTA} =	0.2	V
Maximum Peak to Peak Output Voltage Ripple, V _{RIPPLE} =	30	mV

Maximum Desired Switching Frequency, User must input value not greater than 100 kHz, f_{max} =	100	kHz
Output Over Voltage Protection, V _{OUT_OVP} =	12.4	V
Required Positive Load Step Transient Current, I _{TRAN} =	0.6	A
Maximum Allowable Response Time to Load Step Transient, t _{RESP} =	20	ms
Target Maximum Stand By Power Dissipation, P _{SBtarget} =	50	mW

COMPONENT SELECTION USER INPL		
MPONENT PARAMETER		
Input Capacitor, C _{BULK}		
Desired Minimum Valley Voltage, V _{BULKvalley_desired} =	100	V
Recommended Input Bulk Capacitance, C _{BULK} =	30.68	μF
Actual Input Bulk Capacitance, C _{BULK} , Used =	46.00	μF
Output Rectifier, D _{ουτ}		
Forward Voltage Drop of Output Rectifier, V _F =	1.25	V
Output Inductor, L _{out}		
DCR of Output Inductor, DCR _{Lout} , if used =	0	mΩ
Flyback Transformer, Primary to Secondary Turns Ratio		
Ideal Primary to Secondary Turns Ratio, N _{PSideal} =	8.856	
Actual Primary to Secondary Turns Ratio Used, N _{PS} =	8.880	Enter Actual N _{PS} of Transformer Used
Current Sense Resistor, R _{cs}		
Recommended Current Sense Resistor, R _{cs} =	2.487	Ω
Actual Current Sense Resistor Used, R _{cs} =	2.650	Ω
Flyback Transformer, T		
Recommended Primary Inductance Value, L _P =	1933.517	μH

Actual Primary Inductance Used, L _P =	1900.000	μН
Recommended Primary to Auxillary Turns Ratio, N _{PA} =	12.611	Suggested N _P
Actual Primary to Auxiliary Turns Ratio, N _{PA} =	9.250	Enter Actual N _{PA} of Transformer Used
MOSFET Switch, Q		
Required Drain to Soure Voltage Rating , V _{DSrated} =	642.463	V
MOSFET Rated Drain to Source Voltage, V _{DS} =	800	V
Output Capacitance of Selected MOSFET, C _{oss} =	16	pF
Drain to Source On-Resistance of Selected MOSFET, R_{DSon} =	0.36	Ω
MOSFET Fall Time, t _f =	6	ns
MOSFET Turn Off Delay Time, t _{Doff} =	40	ns
MOSFET Total Gate Charge, Q _g =	30	nC
Output Capacitor, C _{out}		
Recommended Minimum Output Capacitance, C _{OUT} =	470.000	μF
Actual Minimum Output Capacitance, C _{OUT} =	540.000	μF
Recommended Maximum ESR, ESR _{Cout} =	11.582	mΩ
Actual ESR of C _{OUT} Used, ESR _{Cout} = Bridge Rectifier, D _{BRIDGE}	50.000	mΩ
Forward Voltage Drop, V _{F BRIDGE} =	1.1	V
Auxiliary Winding Rectifier, D _{AUX}	1.1	V
Auxiliary Rectifier Forward Voltage Drop, V _{FA} =	1.25	V
Input Line Voltage Turn On Resistor, R _{VS1}	1.20	V
Recommended Value for R_{VS1} , R_{VS1} =	44.200	kΩ
Actual Value for R _{VS1} , R _{VS1} =	44.200	kΩ
Output Over Voltage Resistor, R _{vs2}		
Recommended Value for R_{VS2} , R_{VS2} =	33.200	kΩ
Actual Value for R _{VS2} , R _{VS2} =	33.200	kΩ
Line Compensation Resistor, R _{LC}		
Recommended Value for R _{LC} , R _{LC} =	1.270	kΩ
Actual Value for R _{LC} , R _{LC} =	1.270	kΩ
Loop Compensation Components, R_{FB1} , R_{FB2} , R_{TL} , R_{OPT} , C_{FB} , C_{EXT}	$, R_{FB3}, R_{FB4}, C_{Z}$	
Reference Voltage of Shunt Regulator, i.e. TL431, V _{REF431} =	2.5	V
Maximum Reference Input Current of Shunt Regulator, I _{REF431} =	4	μΑ
Recommended Value for R_{FB2} , R_{FB2} =	44.2	kΩ

Actual Value for R_{FB2} , R_{FB2} =	44.2	kΩ
Recommended Value for R_{FB1} , R_{FB1} =	169	kΩ
Actual Value for R_{FB1} , R_{FB1} =	169	kΩ
Minimum Current Transfer Ratio of Selected Opto-Coupler, CTR _{min} =	50	%
Response Fall Time of Opto-Coupler, $t_{f_{opto}} =$	18	μS
R_L of Specified Opto-Coupler Fall Time, $R_{L opto}$ =	100	Ω
Cut-Off Frequency of Opto-Coupler, f _{c opto} =	2	kHz
Input Forward Voltage of Opto-Coupler, V _{F_opto} =	1.2	V
Recommended External Capacitor Across Opto-Coupler Output, C_{EXT} =	0	μF
Actual Value for C _{EXT} Used , C _{EXT} =	0.0015	μF
Recommended Capacitor on Opto_Coupler Emitter, C _{FB} =	0.047	μF
Actual Value for C_{FB} Used, C_{FB} =	0.047	μF
Recommended Value For R_{FB4} , R_{FB4} =	22	kΩ
Actual Value for R _{FB4} Used	22	kΩ
Recommended Value for Shunt Regulator Bias Resistor, R_{TL} =	1.5	kΩ
Actual Value of Shunt Regulator Bias Resistor Used, R_{TL} =	1.5	kΩ
Recommended Value for Compensation Capacitor, C_z =	1500	pF
Actual Value of Compensation Capacitor Used, C_z =	1500	pF

ATOR TOOL

xpressed or implied, with respect to this software or its is licensed solely on an "as is" basis. The entire risk as omer.

FLYBACK DESIGN CALCULATOR

ING A NEW DESIGN PUTS

DICE TO MEET THE GIVEN SPECIFICATION. IT IS IN HE SUGGESTED RECOMMENDED VALUE. FOR SED IN THE APPROPRIATE CELL.

Choose either AC or DC
For universal line enter 47 Hz
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout

JTS COMMENT
COMIMENT
Used to determine the required input bulk capacitor at minimum line, full load. For DC input, use $V_{INPUTrun}$
Using a value less than recommended will result in a minimum valley voltage less than desired, requiring a larger power stage to accommodate the higher currents due to the lower input rail. Using a value larger than recommended will result in a higher input rail and lower currents on the power stage but higher peak current in the input capacitor itself.
Enter actual input bulk capacitor used
Enter V _F at full load
Enter 0 if no secondary LC filter used
Recommended N _{PS}
Recommended R.
Recommended R _{CS} Enter Actual R _{CS} Used

iA
<u>A</u>
Recommended C _{out}
Recommended C _{OUT}
Recommended C _{OUT} Enter Actual C _{OUT} Used
Recommended C _{OUT} Enter Actual C _{OUT} Used Recommended ESR
Recommended ESR
Recommended ESR
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR Enter Actual ESR of C _{OUT} Used At I _{INPEAK} Not Applicable for DC input
Recommended ESR Enter Actual ESR of C _{OUT} Used At I _{INPEAK} Not Applicable for DC input
Recommended ESR Enter Actual ESR of C _{OUT} Used At I _{INPEAK} Not Applicable for DC input
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used Recommended R_{VS2} Enter Actual R_{VS2} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used Recommended R_{VS2} Enter Actual R_{VS2} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used Recommended R_{VS2} Enter Actual R_{VS2} Used Recommeded R_{VS2}
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used Recommended R_{VS2} Enter Actual R_{VS2} Used

Enter Nominal V_{REF} Used
Enter Reference Pin Input Current
Recommended R_{FB2}

Enter Actual R _{FB2} Used
Recommended R _{FB1}
Enter Actual R _{FB1} Used
Enter CTR _{min}
Enter Opto-Coupler t _f
Enter R _L from Opto-Coupler t _f spec
Enter Opto-Coupler Cut-Off Frequency
Enter Maximum V _F of Opto-Coupler
Recommended C _{EXT}
Enter Actual C _{EXT} Used
Recommended C _{FB}
Enter Actual C _{FB} Used
Recommended R _{FB4}
Enter Actual R _{FB4} Used
Recommended R_{TL}
Enter Actual R _{TL} Used
Recommended C _z
Enter Actual C ₇ Used

RECOMMENDED BILL OF MATERIALS			
Reference Designator	Description/Comments		
	Minimum DC Blocking Voltage:	400 V	
BRIDGE RECTIFIER	Minimum Current Rating:	0.148 A	
	Power Dissipation:	489.336 mW	
	Type:	Aluminum Electro	lytic
	Value:	-	
$\mathbf{C}_{\text{BULKtotal}} = \mathbf{C}_{\text{BULK1}} + \mathbf{C}_{\text{BULK2}}$	Minimum Voltage Rating:	400 V	Total Capacitance
	Minimum Ripple Current Rating:	222.425 mA	
	process and process and a second		
	Type:	Ceramic	
\mathbf{C}_{EXT}	Value:	0.0015 µF	±10%
 -	Minimum Voltage Rating:	50 V	
	Type:	Ceramic	
C_{FB}	Value:	0.047 µF	±10%
	Minimum Voltage Rating:	10 V	
	Type:	Aluminum Electro	•
	Minimum Value:	540 µF	Total Capacitance
$\mathbf{C}_{\text{OUTtotal}} = \mathbf{C}_{\text{OUT1}} + \mathbf{C}_{\text{OUT2}}$	Minimum Voltage Rating:	12.200 V	
	Minimum Ripple Current Rating:	0.830 A	
	Maximum ESR Rating:	11.582 mΩ	
	T	Canamaia	
C	Type: Value:	Ceramic	1400/
C _{SS431}	Minimum Voltage Rating:	1 μF 10 V	±10%
	Millinum Voltage Rating.	10 V	
	Type:	Ceramic	
\mathbf{C}_{VDD}	Minimum Value:	15 µF	±10%
VDD	Voltage Rating:	50 V	
	3 3		
	Type:	Ceramic	
\mathbf{C}_{z}	Value:	1500 pF	±10%
_	Voltage Rating:	10 V	
	Type:	Switching	
D _{AUX}	Minimum Required Blocking Voltage:	63.889 V	
	Minimum Rated Current:	250 mA	

	Type:	Transient Voltage	\$uppressor
D _{CLAMP}	Voltage:	265.797 V	1
CLAMP	Power Rating:	600.000 W	
	. The realing	000.000 11	
	Type:	Schottky	
_	Minimum Blocking Voltage Rating:	84.536 V	
D _{OUT}	Minimum Average Current Rating:	0.975 A	
	Power Dissipation:	0.688 W	
	i ower bissipation.	0.000 **	
	Type:	Ultra Fast	
$D_{\scriptscriptstyle{1}}$	Voltage Rating:	1000 V	
_1	Current Rating:	1 A	
	Odiront rading.	171	
	Туре:	Slov	w Blow
FUSE		265 VAC	W DIOW
1 002	Minimum Voltage Rating: Minimum Peak Current Rating:	0.536 A	
	Millimum Feak Current Rating.	0.330 A	
OPTO-COUPLER	CTR ·	50 %	
OPTO-COUPLER	CTR _{min} :	30 70	
	Minimum V Voltago Poting:	0001/	
	Minimum V _{DS} Voltage Rating:	800 V	
Q	Minimum Continuous Current Rating:	1.230 A	
	Minimum Repetitive Peak Current Rating:	3.087 A	
	Power Dissipation:	0.092 W	
	Value:	2.650 Ω	±1%
, p			±1%
R _{cs}	Power Dissipation:	35.799 mW	ductance
	Type:	LOW III	ductance
	Value:	169 kΩ	±1%
R_{FB1}	Power Rating:	1/10 W	<u> </u>
	Fower Rating.	1/10 VV	
	Value:	44.2 kΩ	±1%
R_{FB2}	Power Rating:	1/10 W	±170
	i ower raing.	1710 VV	
_	Value:	100 kΩ	±1%
R_{FB3}	Power Rating:	1/10 W	170
	i ower rading.	17 10 11	
_	Value:	22 kΩ	±1%
R_{FB4}	Power Rating:	1/10 W	
В	Value:	20 Ω	±1%
R _{INJ}	Power Rating:	1/10 W	
	_		
В	Value:	1.27 kΩ	±1%
R_{LC}	Power Rating:	1/10 W	
R _{OPT}	Value:	1 kΩ	±1%
'`ОРТ	Power Rating:	1/10 W	
$R_{_{TL}}$	Value:	1.5 kΩ	±1%
· TL	Power Rating:	1/10 W	
	i		
$R_{\scriptscriptstyle{VDD}}$	Value:	2 to 50 Ω	As Needed for Voltage
700	Power Rating:	1/10 to 1/2 W	Spike Smoothing
	h		10/
R _{vs1}	Value:	44.2 kΩ	±1%
v51	Power Rating:	1/10 W	
	N/-L	20.21.2	. 40/
R_{vs_2}	Value:	33.2 kΩ	±1%
	Power Rating:	1/10 W	
CHINT DECIL ATOD	Voltago Deference:	2.51/	
SHUNT REGULATOR	Voltage Reference:	2.5 V	
	Primary Industance	4000	
	Primary Inductance:	1900 µH	N
	Primary to Secondary Turns Ratio:	8.880	N _{PS}
	Primary to Auxiliary Turns Ratio:	9.250	N _{PA}
TRANSFORMER	Peak Primary Current:	0.292 A	
	Primary RMS Current:	0.116 A	
I	Peak Secondary Current:	2.590 A	

Secondary RMS Current:	0.975 A	
Maximum Switching Frequency:	91.588 kHz	

UCC28740 DESIGN CALCULATIONS

The Values Entered by the User on the DESIGN INPUT Page are Used in the Design Calculations

	INPUT			
Input Voltage Type	AC or DC:	AC		
Minimum Input Voltage	V _{INPUTmin} =	85	VAC	
Maximum Input Voltage	V _{INPUTmax} =	265	VAC	User Input Values From Design Input
Nominal Input Voltage	V _{INPUTnom} =	230	VAC	Page
Minimum Line Frequency	f _{LINEmin} =	47	Hz	
Minimum Input Voltage for Start-Up	V _{INPUTrun} =	80	VAC	
Minimum Peak Bulk Input Voltage	V _{BULKmin} =	120.208	V	
Maximum Peak Bulk Input Voltage	V _{BULKmax} =	374.767	٧	
Nominal Peak Bulk Input Voltage	V _{BULKnom} =	325.269	V	
Turn-On Peak Bulk Input Voltage	V _{BULKstartup} =	113.137	V	
Line Cycle Period	t _{LINE} =	21.277	ms	
	OUTPUT			
Regulated Output Voltage, Constant Voltage Mode	V _{OUT_CV} =	12.2	V	
Full Load Rated Output Current	I _{OUT} =	0.55	Α	
Target Constant Current Mode Output Load Threshold	I _{OCC_target} =	0.55	Α	
Target Minimum Output Voltage During Constant Current Regulation	V _{OUT_CC} =	12.1	V	
Allowable Output Voltage Drop During Load-Step Transient in Constant Voltage Mode	V _{OUTA} =	0.2	V	User Input Values From Design Input
Maximum Peak to Peak Output Voltage Ripple	V _{RIPPLE} =	30	mV	
Required Positive Load Step Transient Current	I _{TRAN} =	0.6	A	
Maximum Allowable Response Time to Load Step Transient	t _{resp} =	20	ms	
Output Over Voltage Protection	V _{OUT_OVP} =	12.4	V	
Maximum Stand By Power Dissipation	P _{SBtarget} =	50	mW	
Estimated Efficiency	η =	0.850		
Output Power	P _{out} =	6.710	W	
Estimated Input Power	P _{IN} =	7.894	W	

COMPONENT PARAMETER CALCULATIONS

INPUT CAPACITOR, C _{BULK}					
Recommended Input Bulk Capacitance	C _{BULKrecommended} =	30.68	μF		
Actual Input Bulk Capacitance	C _{BULKactual} =	46.000	μF	User Input	
Input Capacitor Value Used in Calculations	C _{BULK} =	46.000	μF		
Minimum Valley Voltage on Input Bulk Capacitors	V _{BULKvalley} =	106.572	V		
Minimum Input Capacitor Ripple Current Rating	I _{CINripple} =	222.425	mA		
Minimum Input Capacitor Voltage Rating	V _{Cin} =	400	V		

INPUT FUSE			
Voltage Rating	V _{FUSE} =	265	VAC
Peak Input Current	I _{INpeak} =	0.536	A

BRIDGE RECTIFIER			
Voltage Rating	V _{BRIDGE_minrating} =	400.000	V
Current Rating	BRIDGE_minrating =	0.148	A
Forward Voltage Drop	V _{F_BRIDGE} =	1.100	V User Input
Full Load Power Dissipation of Bridge Rectifier	P _{BRIDGE} =	489.336	mW

TRANSFORMER TURNS-RATIO, N _{PS}			
Demagnetizing Duty Cycle	D _{DEMAG_CC} =	0.425	Device Parameter
Amplitude Modulation Control Ratio	K _{AMnom} =	4	Device Parameter
Maximum Desired Switching Frequency	f _{max_target} =	100.000	kHz User Input
Desired Switching Period	t _{SW_target} =	10.000	μs
Resonant Frequency During DCM Dead Time	f _{RES} =	0.500	MHz
Time to First Resonant Valley	t _{res} =	1.000	μs
Estimated Maximum Duty Cycle	D _{max_target} =	0.475	

Ideal Primary to Secondary Turns Ratio	N _{PSideal} =	8.8557	Ideal N _{PS}
Actual Primary to Secondary Turns Ratio	N _{PSactual} =	8.880	User Input
Primary to Secondary Turns Ratio Used in Calculations	N _{PS} =	8.880	
Actual Flyback Voltage	V _{FLYBACK} =	119.436	V
Allowable Leakage Inductance Voltage Spike	V _{LEAKAGE} =	305.797	V
Estimated Maximum On-Time	t _{ONestimated} =	4.756	μs
Estimated Transformer Efficiency	η _{XFMR} =	0.9	

CURRENT SENSE RESISTOR, $R_{\rm cs}$, PEAK PRIMARY CURRENT	, I _{PP}			
Constant Current Regulation Factor, Minimum	V _{CCR_min} =	318	mV	Device Parameter
Constant Current Regulation Factor, Nominal	V _{CCR_nom} =	330	mV	Device Parameter
Constant Current Regulation Factor, Minimum	V _{CCR_min} =	343	mV	Device Parameter
Initial estimate for L _P	L _{P_estimate} =	1935.044	μΗ	
Recommended Current Sense Resistor Value	R _{CSrecommended} =	2.487	Ω	
Actual Current Sense Resistor Used	R _{CSactual} =	2.650	Ω	User Input
Current Sense Resistor Value Used in Calculation	R _{cs} =	2.650	Ω	
Power Dissipation of R _{cs}	P _{Rcs} =	35.799	mW	
Maximum Current Sense Threshold Voltage, Minimum	V _{CSTmax_min} =	738	mV	Device Parameter
Maximum Current Sense Threshold Voltage, Nominal	V _{CSTmax_nom} =	773	mV	Device Parameter
Maximum Current Sense Threshold Voltage, Maximum	V _{CSTmax_max} =	810	mV	Device Parameter
Peak Primary Current, Minimum, Full Load	I _{PPmin} =	0.278	Α	
Peak Primary Current, Nominal, Full Load	I _{PPnom} =	0.292	Α	
Peak Primary Current, Maximum, Full Load	I _{PPmax} =	0.306	Α	
Actual Output Current During Constant Current Mode	I _{OCC_actual} =	0.550	A	
Peak Primary Current During Light Load, FM Mode	I _{PP_FM} =	0.073	A	
Worst Case Peak Primary Current	I _{PP_WC} =	0.309	Α	Assumes -1%R $_{\rm CS}$ and V $_{\rm CSTmax_max}$
Maximum Output Current During Constant Current Mode	I _{OCCmax} =	0.583	A	Worst Case Estimate

TRANSFORMER PRIMARY INDUCTANCE, L _p			
Calculated L _p to meet f _{max target} with chosen R _{CS}	L _{Pcalc} =	1933.517	μH
Recommended Primary Inductance to meet $t_{\tt CSLEB}$ with chosen $R_{\tt CS}$	L _{Precommended} =	1933.517	μΗ Ideal L _P
Actual Primary Inductance	L _{Pactual} =	1900.000	μH User Input
Primary Inductance Used in Calculations	L _p =	1900.000	μН
Actual Maximum Nominal Switching Frequency	f _{max} =	91.588	kHz
Actual Switching Period	t _{SWactual} =	10.919	μs
Actual Maximum On-Time	t _{ONmax} =	5.201	μs
Maximum Duty Cycle	D _{MAX} =	0.476	
Demagnetization Time	t _{DEMAG} =	4.640	μs
Primary RMS Current	I _{PRI_RMS} =	0.116	A
Secondary Peak Current	I _{SPmax} =	2.590	A
Secondary RMS Current	I _{SEC_RMS} =	0.975	A
VDD Under Voltage Lock Out (UVLO) Voltage, Maximum	VDD _{OFF_max} =	8.150	V Device Parameter
VDD Under Voltage Lock Out (UVLO) Voltage, Minimum	VDD _{OFF_min} =	7.350	V Device Parameter
Recommended Auxiliary to Secondary Turns Ratio	N _{ASrecommended} =	0.704	
Recommended Primary to Auxilliary Turns Ratio	N _{PArecommended} =	12.611	
Actual Primary to Auxiliary Turns Ratio	N _{PAactual} =	9.250	User Input
Primary to Auxiliary Turns Ratio Used in Calculations	N _{PA} =	9.250	
Nominal VDD Voltage	VDD =	11.662	v
Actual Auxiliary to Secondary Turns Ratio	N _{AS} =	0.960	
Minimum On-Time, t _{CSLEB}	t _{ONmin(limit)} =	280.000	ns
Actual Minimum On-Time	t _{ONmin(actual)} =	369.714	ns
Minimum Demagnetizing Time	t _{DEMAGmin} =	1.160	μs
Minimum Output Voltage During Constant Current Mode	V _{OUT_CCmin} =	7.708	V

MOSFET, Q			
Required Drain to Soure Voltage Rating , V _{DSrated} =	V _{DSmin_rating} =	642.463 V	
MOSFET Rated Drain to Source Voltage	V _{DS} =	800.000 V	
Output Capacitance of Selected MOSFET	C _{oss} =	16 pF	
Drain to Source On-Resistance of Selected MOSFET	R _{DSon} =	0.360 Ω	User Input Values From Design Input

MOSFET Fall Time	t, =	6.000 ns	Page
MOSFET Turn Off Delay Time	t _{Doff} =	40 ns	
			_
MOSFET Total Gate Charge	Q _g =	30.000 nC	
Actual Resonant Frequency During DCM Dead Time	f _{RES_actual} =	0.645 MHz	
Actual Estimated Time to First Resonant Valley	t _{RES_actual} =	0.775 μs	
Valley Switching Achieved?	YES or NO	YES	
MOSFET V _{DS} Derating	V _{DSderated} =	0.803	
MOSFET Continuous Current Rating	I _{DRAIN} =	1.230 A	
MOSFET Pulsed Current Rating	I _{PULSED} =	3.087 A	
Estimated MOSFET Conduction Losses	P _{FETconduction} =	0.005W	
Estimated MOSFET Switching Losses	P _{FETswitching} =	0.087W	
Total Estimated MOSFET Power Loss	P _{FET} =	0.092W	
Recommended Clamping Voltage on Drain	V _{DRAINclamp} =	265.797 V	
resonantial deal Stamping Voltage on Brain	DRAINclamp	200.707	
OUTPUT DIODE, D _{OUT}			
Forward Voltage Drop of Output Rectifier, V _F =	V _F =	1.250 V	User Input
Minimum Required Blocking Voltage Rating	V _{DOUT_blocking} =	84.536 V	
Required Minimum Average Rectified Output Current	I _{Dout} = P _{Dout} =	0.975 A	
Power Dissipation of D _{OUT}	P _{Dout} =	0.688 W	
ALIVILLA DV. MINDING DIODE, D			
AUXILIARY WINDING DIODE, D _{AUX}			
Auxiliary Rectifier Forward Voltage Drop	V _{FA} =	1.250 V	User Input
Minimum Required Blocking Voltage Rating	V _{DBIAS_blocking} =	63.889 V	
OUTPUT INDUCTOR I			
OUTPUT INDUCTOR, L _{OUT}	DCR _{Lout} =	0 mΩ	Hear Input
DCR of Output Inductor	DOIN _{Lout} -	O IMIZ	User Input
OUTPUT CAPACITOR, C _{OUT}			
			The importance of using opto feedback
Minimum Required C _{оит} Without Opto-Coupled FeedBack	C _{OUT_no_opto} =	60000.000 µF	should be noted here!
December 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack	C _{OUTrecommended} =	470.000 µF	
	0 -		
Actual Output Capacitance Used	C _{OUTactual} =	540.000 μF	User Input
С _{оит} Used in Calculations	C _{OUT} =	540.000 μF	
Required Minimum Ripple Current Rating	I _{COUTrms} =	0.830 A	
Recommended Maximum ESR	ESR _{Coutrecommended} =	11.582 mΩ	Harrison to
Actual ESR of C _{OUT} Used	ESR _{Coutactual} = ESR _{Cout} =	50.000 mΩ	User Input
ESR Used in Calculations Resultant Output Voltage Peak to Peak Ripple	V _{OUTripple} =	50.000 mΩ 129.622 mV	
itesuitant output voitage Feak to Feak Ripple	■ OUTripple	125.022 1114	
VOLTAGE SENSE DIVIDER, R _{VS1} , R _{VS2}			
VS Line Sense Run Current, Minimum	I _{VSLrun min} =	190 µA	Device Parameter
VS Line Sense Run Current, Nominal	 VSLrun_nom =	225 µA	Device Parameter
VS Line Sense Run Current, Maximum	VSLrun_max =	275 μA	Device Parameter
VS Line Sense Stop Current, Minimum	I _{VSLstop_min} =	70 μA	Device Parameter
VS Line Sense Stop Current, Nominal	I _{VSLstop_nom} =	80 μA	Device Parameter
VS Line Sense Stop Current, Maximum	I _{VSLstop_max} =	100 μA	Device Parameter
Recommended Resistor Value for Minimum Start Up Line Voltage	R _{VS1recommended} =	44.200 kΩ	
Toolston Valido for Millimidin Otalit Op Line Voltage	* VS1recommended	17.200 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Actual Resistor Value Used for Minimum Start Up Line Voltage	R _{VS1actual} =	44.2 kΩ	User Input
R _{vs1} Value Used in Calculations	R _{vs1} =	44.2kΩ	
Resultant Turn On Voltage, Minimum	V _{TURNONmin} =	54.929 VAC	
Resultant Turn On Voltage, Minimum Resultant Turn On Voltage, Nominal	V _{TURNONmin} - V _{TURNONnom} =	65.048 VAC	
Resultant Turn On Voltage, Maximum	V _{TURNONnom} =	79.503 VAC	
Resultant Input Brown Out Voltage, Minimum	V _{BROWNOUTmin} =	29.879 VAC	
Resultant Input Brown Out Voltage, Nominal	V _{BROWNOUTnom} =	32.770 VAC	
Resultant Input Brown Out Voltage, Maximum	V _{BROWNOUTmax} =	38.552 VAC	
Internal VS Over Voltage Threshold, Minimum	V _{OVPmin} =	4.52 V	Device Parameter
Internal VS Over Voltage Threshold, Nominal	V _{OVPnom} =	4.600 V	Device Parameter
Internal VS Over Voltage Threshold, Maximum	V _{OVPmax} =	4.710 V	Device Parameter
-		33 300 10	
Recommended Resistor Value for Desired Output Over Voltage Limit	R _{VS2recommended} =	33.200 kΩ	
Actual Resistor Value Used for Desired Output Over Voltage Limit	R _{vs2actual} =	33.200 kΩ	User Input
			Son input
R _{vs2} Used in Calculations	R _{VS2} =	33.200 kΩ	
Resultant Output Over Voltage Threshold, Minimum	V _{OUT_OVPmin} =	12.227 V	
Resultant Output Over Voltage Threshold, Nominal	V _{OUT_OVPnom} =	12.421 V	Actual Output Over Voltage
Resultant Output Over Voltage Threshold, Maximum	V _{OUT_OVPmax} =	12.688 V	

LINE COMPENSATION, R _{LC}					
Line Compensation Current Ratio, Nominal	K _{LCnom} =	25	A/A	Device Parameter	
Total Estimated Current Sense Delay	t _{DELAY} =	90	ns		
Recommended Resistor Value for Line Compensation	R _{LCrecommended} =	1.270	kΩ		
Actual Resistor Value Used for Line Compensation	R _{LCactual} =	1.270	kΩ	User Input	
R _{LC} Used in Calculations	R _{LC} =	1.270	kΩ		
Result of R _{LC} selection	Output Constant Current will have minimal deviation over input line voltage range.				

VDD CAPACITOR, C _{VDD}			
Device Supply Current During Run Mode, Maximum	I _{RUNmax} =	2.65 mA	Device Parameter
VDD _{on} Voltage, Maximum	VDD _{ONmax} =	23 V	Device Parameter
VDD _{OFF} Voltage, Maximum	VDD _{OFFmax} =	8.15 V	Device Parameter
Estimated Minimum Switching Frequency at No-Load	f _{SWmin} =	7.918 kHz	<u> </u>
Estimated Over Voltage Charge Duration	t _{ov} =	20.000 ms	
Minimum VDD Capacitor for Start UP	C _{VDD1} =	4.700 μF	
Minimum VDD Capacitor for Load Transient	C _{VDD2} =	15.000 μF	
Minimum VDD Capacitor for Target Ripple on VDD	C _{VDD3} =	0.330 μF	
Recommended Capacitor on VDD	C _{VDDrecommended} =	15.000 μF	

OPTO-COUPLED FEEDBACK			
Reference Voltage of TL431 Shunt Regulator	VREF ₄₃₁ =	2.5 V	User Input
Shunt Regulator Reference Input Current, Maximum	I _{REF431} =	4 μA	User Input
Recommended Bottom Resistor Value for Output Voltage Set Point	R _{FB2recommended} =	44.2 kΩ	
Actual Bottom Resistor Value Used for Output Voltage Set Point	R _{FB2actual} =	44.2 kΩ	User Input
R _{FB2} Used in Calculations	R _{FB2} =	44.2 kΩ	1
Recommended Top Resistor Value for Output Voltage Set Point	R _{FB1recommended} =	169 kΩ	1
Actual Top Resistor Value Used for Output Voltage Set Point	R _{FB1actual} =	169 kΩ	***
R _{FB1} Used in Calculations	R _{FB1} = R _{INJ} =	169.02 kΩ	
Noise Injection Resistor For Loop Analysis	R _{INJ} =	20 Ω	May be changed by User here
Resultant Nominal Constant Voltage Output Voltage	V _{out_cv} =	12.060 V	
Minimum Current Transfer Ratio of Selected Opto-Coupler	CTR _{min} =	50 %	User Input
Response Fall Time of Opto-Coupler	t _{f_opto} =	3 μs	User Input
R _L of Specified Opto-Coupler Fall Time	R _{L_opto} =	100 Ω	User Input
Cut-Off Frequency of Opto-Coupler	f _{c_opto} =	80 kH	z User Input
Input Forward Voltage of Opto-Coupler	V _{F_opto} =	1.4 V	User Input
Equivalent Opto-Coupler Output Capacitance	C _{OPTO} =	4.775 nF	
Equivalent Internal UCC28740 Dynamic Reistance	R _{EQU} =	40 kΩ	1
Recommended Value for External Capacitor on Opto-Coupler	C _{EXTrecommended} =	0μF	
Actual Value of External Capacitor on Opto-Coupler Used	C _{EXTactual} =	0.0015 μF	User Input
C _{EXT} Used in Calculations	C _{EXT} =	0.0015 μF	
Recommended C _{FB}	C _{FBrecommended} =	0.047 μF	
Actual C _{FB} Used	C _{EBactual} =	0.047 μF	User Input
C _{FB} Used in Calculations	C _{FB} =	0.047	
Recommended Value For R _{FB4}	R _{FB4recommended} =	22 kΩ	
Actual Value for R _{FB4} Used	R _{FB4actual} = R _{FB4} =	22 kΩ	User Input
R _{FB4} Used in Calculations	R _{FB4} =	22 kΩ	!
Opto-Coupler Emitter Current to FB Pin Current Gain	G _{FB1} =	0.355	
FB Pin Current to Control Law Voltage Gain, Full Load	G _{FB2} =	-192 kΩ	
Control Law Voltage to Power Stage Modulation Gain, FM Mode	K _{FM4} =	50.4 kH	Iz/V
Power Stage Modulation (FM) to Average Current Gain	G _{P4} =	6.005 μC	}
Recommeded Value for Shunt Regulator Bias Resistor	R _{TLrecommended} =	1.5 kΩ	
Actual Value of Shunt Regulator Bias Resistor Used	R _{TLactual} =	1.5 kΩ	
R_{\scriptscriptstyleTL} Used in Calculations	R _{TL} =	1.5 kΩ	!
Recommended Value for Compensation Capacitor	C _{Zrecommended} =	1500 pF	
Actual Value Used C _z	C _{Zactual} =	1500 pF	User Input
C _z Used in Calculations	C _z =	1500 pF	

