DM Chapter 6 Notes

January 18, 2020

1 Partially Ordered Sets

- 1. Partial order: Reflexive, anti-symmetric, transitive relation set.
 - (a) Partial order cause elements inside are "partially" comparable (ordered). Basically, not all are comparable.
- 2. Poset: Partially ordered set.
 - (a) A poset denoted as (A, R) means that it is a partially ordered set derived from set A after applying the relation R, where,
 - i. A : set
 - ii. R: partial order R relation
 - (b) **Example**: (A, \subseteq) means it is a partially ordered set (poset) derived from set A after applying the relation \subseteq onto set A.
 - (c) However,
 - i. the usual relations with equality (\leq, \geq) are posets on Z^+
 - ii. Non-equality ones (<,>) are not because they are NOT reflexive.

1.1 Duality

- 1. **Dual poset**: (A, R^{-1}) , if we have a poset (A, R).
- 2. Example: (A, \leq) and (A, \geq) on \mathbb{Z} or \mathbb{R} .
 - (a) Note: Unless otherwise specified (like above example), \leq and \geq symbols are used for relations in poset terms.

3.	Poset	Dual Poset
	(A, \leq)	(A, \geq)
	(A, \leq_1)	(A, \geq_1)
	(B, \leq')	(B, \geq')

1.2 Comparability

- 1. If (A, \leq) is a poset, elements a, b in set A are comparable if
 - (a) $a \leq b$, (a is related to b, note we use \leq to replace R, this is NOT "less than or equal" in poset terms) OR,
 - (b) $b \le a$ (b is related to a)
- 2. **Example**: $(A, \leq) = (Z^+, ||)$. The "|" sign represents divides.
 - (a) Comparable example: 2 and 6
 - i. $2 \le 6$ (2 is related to 6) or 2|6 (2 divides 6)
 - (b) Not comparable example: 2 and 7 since $2 \nmid 7$ and $7 \nmid 2$.

1.3 Linear order

- 1. **Linearly ordered set:** A set where every pair of elements are comparable, also known as **chain.**
- 2. Linear order: Linearly ordered partial order
- 3. **Example**: (Z^+, \leq) . Every element pair (remember this time its Z^+) is comparable (less than or equal) to another element.

1.4 Theorem 1: Cartesian product of posets

- 1. If (A, \leq) and (B, \leq) are posets, then $(A \times B, \leq)$ is a poset, with partial order defined \leq defined by:
 - (a) $(a,b) \le (a',b')$ if $a \le a'$ in A and $b \le b'$ in B . (Huge if, if it does not satisfy, then it is not the valid)
 - (b) The above reads as: One of the elements in (a,b) is related to one of the elements in (a',b'), if a is related to a' and b is related to b'. That is, if each element is related independently, then they must also be (still) related by a certain relation even if we mash them together.
 - (c) The ' \leq ' sign is used to denote 3 distinct partial order (you can see 3 ' \leq ' there).
 - (d) Product partial order: $(A \times B, \leq)$
 - (e) Let $A = \{1,3,5\}$, $B = \{2,4,8\}$, and \leq_A means "less than or equal to", | means "divides", then (A, \leq_A) and (B, |) are posets.
 - i. $(A \times B, \leq)$ is also a poset, as example
 - A. $1 \le_A 3, 2 \mid 4$, $(1, 2) \le (3, 4)$
 - B. $3 \le_A 5, 4 \mid 8, (3, 4) \le (5, 8)$
 - ii. Then, we also have
 - A. $(1,2) \le (5,8)$ because $1 \le_A 5,2 \mid 8$

1.5 Lexicographic order

- 1. Lexicographic order: Dictionary order of tuples in posets
 - (a) Use first element of each tuples as ordering, if "tie", then use second elements in each tuples.
- 2. **Definition**: $(A \times B, \prec) = (a, b) \prec (a', b')$ if a < a' or if a = a' and $b \le b'$
 - (a) Note: suppose (A, \leq) and (B, \leq) are posets. They can have different relations, \leq_1 and \leq_2 , or same.
 - (b) Note 2: Notice that for partial order, w use $a \le a'$, or the related sign. but for lexicographic order, we have a < a'. In lexicographic, NO 2 elements (or tuples) can be exactly the same.
 - i. Another reason why we use the ' \prec ' precedes sign.
 - (c) Note 3: Lexicographic ordering can be extended to more cartesian products, e.g. $A_1 \times A_2 \times A_3$. In this case, we can extend our first coordinate to $a_1 = a_1'$, $a_2 = a_2'$, and $a_3 < a_3'$ or ... (b part)
 - (d) Note 4: We can also use words, for example $park \prec part$
 - i. k precedes t
- 3. Extending lexicographic order to S^* .
 - (a) If we have $x = a_1 a_2 a_3 ... a_n$, $y = b_1 b_2 b_3 ... b_k$, and $n \le k$ in S^* , we can "extend" (extending influence, not characters) n to k.
 - i. We can say that $x \prec y$ if $(a_1a_2...a_n) \prec (b_1b_2...b_n)$, even if y has k elements which is more than n.
 - ii. That's because if the front dominates, the back doesn't matter.
 - iii. Example:

$$park \prec part \implies park \prec partition$$

1.6 Theorem 2: Partial order digraph cycles

- 1. Digraph of partial order has no cycle of length greater than 1.
- 2. This should make sense, because a partial order is **antisymmetric**.

2 Hasse Diagram

- 1. Simplification of digraph
- 2. Steps:
 - (a) Omitting all cycles of length 1 (or loops) (imply reflexivity)
 - (b) Omitting all edges implying transitivity

- (c) Drawing all edges slanting upwards to eliminate arrows, or 'stretch into lines moving upwards'
- (d) Represent vertices by dots
- 3. Always good to break them into separate levels, for example:

- 4. Duality in Hasse Diagram
 - (a) If (A, \leq) is a poset and (A, \geq) is the dual poset, then the Hasse diagram of (A, \geq) is just the Hasse diagram of (A, \leq) turned **upside down**.
- 5. Geometry in Hasse Diagram
 - (a) Some Hasse Diagram can be drawn in a cube, cuboid and so on. If you can see it, then draw it as so, cause its easier to see.

2.1 Topological Sorting

- 1. **Topological sorting:** Process of constructing a linear order (such as \prec)
- 2. For partial orders: Usually involves extending partial orders to "linearize" them so that if $a \le b$, then $a \prec b$.
- 3. **Problems with poset:** When entering into computer, we must enter in order, but we want the poset to be preserved at the same time (recall that not all elements in posets are comparable)
 - (a) If $a \leq b$, then a is entered **before** b
 - (b) Topological sorting gives order of entry that meets this condition.
- 4. To topological sort posets, we go from botton up

(a) Hasse Diagram example

i.

A. Before layering

ii.

A. After layering

- (b) After topological sorting, it can appear as either one of these:
 - i. Layer-by-layer, bottom to up, smallest element first

A.

ii. Chain-by-chain (until the point where both chain join), left-chain-to-right-chain, smallest element first.

A.

iii. Chain-by-chain (until the point where both chain join), right-chain-to-left-chain, smallest element first.

2.2 Isomorphism

A.

- 1. **Isomorphism**: a function, that maps one poset to another poset.
 - (a) In math: $a \leq b$ iff $f(a) \leq' f(b)$, assuming:
 - i. (A, \leq) and (A', \leq') are posets
 - ii. a and b are elements in A.
 - iii. $f:A\to A'$ is a one-to-one corresponding function.
 - A. **one-to-one corresponding:** one-to-one, onto, everywhere defined
 - (b) This reads as a is related to b in A if and only if the mapping of a in A' is related to the mapping of b in A'.
- 2. **Isomorphic posets:** Posets that form an isomorphism.
 - (a) In this case, (A, \leq) and (A', \leq')
- 3. Example:
 - (a) Information
 - i. A: the set of positive integers
 - ii. A': the set of positive even integers
 - iii. \leq : partial order on A
 - A. The poset of A is (A, \leq)
 - B. Note: we're on applications, so this ' \leq ' sign reads as 'less than or equal'
 - iv. \leq' : partial order on A'

- A. The poset of A is (A, \leq')
- B. **Note**: we're on applications, so this '≤' sign reads as 'less than or equal'
- v. $f: A \rightarrow A'$: f(a) = 2a
- (b) **Question**: Show that f is an isomorphism
- (c) Answer:
 - i. First, check if the function is one-to-one corresponding. If fail, then conclude f is NOT an isomorphism.
 - A. Since f is one-to-one, onto, everywhere defined, f is **one-to-one corresponding**
 - ii. Second, check relations. Check if they satisfy: $a \leq b \iff f(a) \leq' f(b)$
 - A. f(a) = 2a, f(b) = 2b. Both of them are even integers.
 - B. If $a \le b$ then $2a \le 2b$, if $2a \le 2b$, then $a \le b$. Therefore, $a \le b \iff f(a) \le' f(b)$
 - C. Thus, f is an **isomorphism**.

2.3 Theorem 1: Principle of Correspondence (Check with teacher about B' sign)

1. Conditions:

- (a) Elements of set B has a property related to elements in set A.
 - i. So (B, \leq) is a poset, and,
 - ii. (A, \leq') is another poset
- (b) The property, can be defined ENTIRELY in terms of a relation, \leq
 - i. note: we're on definitions again, so this sign, \leq reads as 'relation'

2. Result:

- (a) Elements of B' must possess same property defined in terms of \leq'
 - i. This reads as: the elements of B when mapped to set A (essentially, f(b), where b is an element of B) must possess the same property define in terms of \leq' .
 - ii. The reason is because the elements in B behave similarly to elements in A.
 - iii. So, when they map to A, since they behave similarly, they must also satisfy the relation R'.
- (b) **Hasse Diagram:** In this case, two finite isomorphic posets must have the same Hasse diagram. Or in other words, they got 'relabeled'.
 - i. Let $A = \{1, 3, 4, 6\}$, let \leq be the relation | (divides)
 - A. The poset is (A, |)

B. Hasse diagram:

- ii. Let $A'=\wp\left(\left\{a,b\right\}\right)=\left\{\varnothing,\left\{a\right\},\left\{b\right\},\left\{a,b\right\}\right\},$ let \leq' be set containment (or subset), \subseteq
- iii. If $f:A\to A'$ is defined by $f\left(1\right)=\varnothing,f\left(2\right)=\left\{a\right\},f\left(3\right)=\left\{b\right\},f\left(6\right)=\left\{a,b\right\}$
 - A. Then, f is one-to-one corresponding.
 - B. f is **order preserving**: $x|y \iff f(x) \subseteq f(y)$
- iv. Therefore, the 'relabeled' hasse diagram of (A', \leq') would be

v. Therefore, the function f is isomorphism.

3 Extremal Elements of Partial Ordered Sets

- 1. Let's say we have a random poset (A, \leq)
 - (a) Maximal element: The maximum element in A
 - i. An element $a \in A$ where no element $c \in A$ is > a.
 - (b) Minimal element: The minimal element in A
 - i. An element $b \in A$ where no element $c \in A$ such that c < b.

(c) There can be multiple max/minimal element if they are not "connected" in a Hasse diagram. For example, in this diagram, a_1, a_2, a_3

lowest le minimal

are maximals, and b_1, b_2, b_3 are minimals \blacksquare .

(d) A poset can also have no max/min elements, e.g. the \mathbb{Z}

3.1 Finding Topological Sorting of a Finite Poset (A, \leq)

- 1. **Theorem:** A finite, nonempty poset with partial order \leq has at least 1 max & 1 min element.
- 2. We can use algorithm to find topological sorting of finite poset (A, \leq)
 - (a) If $a \in A$ and $B = A \{a\}$, then B is also a poset under the restriction of \leq to $B \times B$ (tuple of values of B).
 - (b) We can produce a linear array SORT by order of increasing index, such that SORT [1] $\prec SORT$ [2] $\prec ...$, AKA topological sorting of (A, \leq)
 - (c) Algorithm:
 - i. Step 1: Choose a minimal element of A.
 - ii. Step 2: Make a next entry of SORT and replace A with $A-\{a\}$.
 - iii. Step 3: Repeat steps 1 and 2 until $A = \emptyset$.
 - iv. End

3.2 Greatest & Least Element

- 1. Greatest element: Largest element in A
 - (a) If $x \leq a$ for all $x \in A$
 - (b) Denoted by 1, unit element
- 2. Least element: Smallest element in A
 - (a) If $a \leq x$ for all $x \in A$
 - (b) Denoted by 0, zero element
- 3. **Theorem 2:** Can at most have one greatest & one least for each poset,
 - (a) Note: in a power set, the \varnothing set is the least element.

3.3 Upper Bound & Lower Bound

- 1. Consider a poset A and B, a subset of A
 - (a) **Upper bound**: The values bounding the top of subset B.
 - i. An element $a \in A$ in B such that $b \leq a$ for all $b \in B$.
 - (b) Lower bound: The values bounding the bottom of the subset B
 - i. An element $a \in A$ in B such that $b \ge a$ for all $b \in B$.
 - (c) Subset B may not have upper/lower bounds in A, and may not belong to part of the subset.

4 Least Upper Bound and Greatest Lower Bound

- 1. **Least upper bound:** The upper bound element closest to the subset.
 - (a) AKA LUB(B): An element $a \in A$, such that if a is an upper bound of B and $a \le a'$, whenever a' is an upper bound of B.
 - (b) Hasse Diagram: First vertex reachable upwards from B elements
- 2. Greatest lower bound: The lower bound element closest to the subet.
 - (a) AKA GLB(B): An element $a \in A$, such that if a is an lower bound of B and $a \ge a'$, whenever a' is an upper bound of B.
 - (b) **Hasse Diagram:** First vertex reachable downward from B elements.
- 3. Duality:
 - (a) **Upper bounds** in (A, \leq) = lower bounds in (A, \geq) .
 - (b) Lower bounds in (A, \leq) = upper bounds in (A, \geq) .
 - (c) Same for GLB and LUB
- 4. Theorem 3: Uniqueness of LUB & GLB
 - (a) A subset B of A (where A is a poset) has at most 1 LUB and 1 GLB.