# EECS 270: Intro to Logic Design Midterm Exam 2

Prof. Karem A Sakallah

Wednesday November 17, 2021 6:00-8:00 p.m.

A - L: 1013 DOW || M - RL: 1017 DOW || S - T: 1006 DOW || U - Z: 1018 DOW

| Name:                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------|
| UMID:                                                                                                                     |
| Honor Pledge: "I have neither given nor received aid on this exam, nor have I concealed any violation of the Honor Code." |
| Signature:                                                                                                                |
|                                                                                                                           |

#### **Instructions:**

- The exam is closed book except for **two** 8.5"x11" sheets of notes No electronics of any kind may be used.
- Print your name and student ID number and sign the honor pledge.
- Make sure your answers and meaningful work are on the pages with numbers at the bottom. We will be scanning and looking at only these pages: all work on the backs of pages will **not** be checked for determining partial credit.
- The exam consists of 12 problems with the point distribution indicated here. Please keep this in mind as you work through the exam. Use your time wisely.
- There are 13 pages in this exam. Make sure that you have all 13 pages and notify an instructor if you do not.

|        | / 0                                            |
|--------|------------------------------------------------|
| 2.     |                                                |
| 3.     | /10                                            |
| 4.     | /10                                            |
| 5.     | /5                                             |
| 6.     |                                                |
| 7.     | $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ |
| 8.     | /10                                            |
| 9.     | /10                                            |
| 10.    | /12                                            |
| 11.    | /5                                             |
| 12.    |                                                |
| Total: | /100                                           |
|        |                                                |

/6

1.

# 1 [Latch and and Flip-Flop Timing-6 points]

a. [1 points] If the propagation delay of the NOR gates in an SR latch is 5 ns, what is the minimum allowable pulse width on the S and R inputs to guarantee proper operation?

Answer: 5ns + 5ns = 10ns

#### b. [1 points]

Consider the back-to-back negative edge-triggered flip-flop and positive level-sensitive latch shown here as a *single flip-flop*. Let  $C \uparrow$  and  $C \downarrow$  denote, respectively, the rising and falling edges of the clock input C, and let S and H denote the setup and hold times. Circle the correct answers below.



Q changes shortly after:



c. [4 points] The following circuit has two D flip-flops with asynchronous active-low "CLR" inputs. Complete the timing diagram for  $Q_1$  and  $Q_2$  assuming zero combinational delays. You do not need to show causality arrows.



Page 2

## 2 [Weird Latch-8 points]

a. [4 points] The XOR/NAND/INV circuit shown below is proposed as a new type of latch. Derive its transition table, indicating the function it performs (Set, Reset, Hold, Invalid). For invalid input combinations, state the reasons for their invalidity (e.g., Q and QB are not complements, Q and QB oscillate, etc.)



b. [4 points] The invalid input combination(s) in this latch can be eliminated by "merging" them with one of the valid combinations (Set, Reset, or Hold). This can be accomplished by adding a "Bad Combo Eliminator" circuit as shown below. Design a minimal 2-input/2-output gate-level circuit (using the usual gates) that accepts all possible combinations on its  $X^*Y^*$  inputs, while producing only valid combinations on its XY outputs. Write the corresponding logic expressions for X and Y in terms of  $X^*$  and  $Y^*$ .



## 3 [Sequential Circuit Analysis–10 points]

Let  $X = x_2x_1x_0$  denote a two's complement number that has been loaded into the 3-bit register shown below. (The logic for loading the register is not shown.)



a. [3 points] Write the symbolic expressions of the next-state for each bit of X using the usual logic operators (AND, OR, XOR, etc.) You do not need to simplify the expressions.

$$x_0^+ = \begin{array}{c} X_0 \\ x_1^+ = \end{array}$$

$$x_2^+ = \begin{array}{c} X_1 + X_0 \\ X_2 + X_3 + X_4 + X_4 + X_4 + X_4 + X_5 \\ \end{array}$$

b. **[6 points]** Write the simplest possible symbolic expressions for each bit of X after exactly two clock ticks. Hint:  $a + b = a \oplus b \oplus (ab)$ .

$$x_{0}^{++} = X_{0}$$

$$x_{1}^{++} = (X_{1} \oplus X_{0}) \oplus X_{0} = X_{1} \oplus (X_{0} \oplus X_{0}) = X_{1}$$

$$x_{2}^{++} = X_{2}^{+} \oplus (X_{1}^{+} + X_{0}^{+}) = [X_{2} \oplus (X_{1} + X_{0})] \oplus [X_{1} \oplus X_{0} + X_{0}] = X_{2}$$

$$-\lambda_{10} \qquad 1 \qquad 0 \qquad 1$$

$$X_{2} \oplus (X_{1} + X_{0}) = X_{2} \oplus (X_{1} \oplus X_{0} \oplus X_{1} X_{0})$$

c. [1 points] Assuming the register is initialized to  $X = -3_{10}$ , what is its value, in decimal notation, after two clock ticks?

Answer: 
$$X = \begin{bmatrix} X_1 \oplus X_0 & X_1 \oplus X_2 & X_2 \oplus X_3 & X_1 \oplus X_2 & X_2 \oplus X_3 & X_3 \oplus X_2 & X_3 \oplus X_3 & X_4 \oplus X_3 & X_4 \oplus X_4 & X_5 & X_5 \end{bmatrix}$$

$$X_1 \oplus \begin{bmatrix} X_1 \oplus X_2 & X_3 \oplus X_3 & X_4 & X_4 & X_4 & X_5 & X_5 \end{bmatrix}$$

$$X_1 \oplus \begin{bmatrix} X_1 & X_2 & X_3 & X_4 & X_5 & X_5 \end{bmatrix}$$

$$X_2 \oplus \begin{bmatrix} X_1 & X_2 & X_3 & X_4 & X_5 & X_$$

# 4 [Sequential Circuit Analysis–10 points]

This sequential circuit sets its output Z to 1 when the appropriate secret code is entered on its input X. Assuming that the circuit is reset to state  $Q_1Q_2 = 00$  before application of any input, your job is to figure out what the secret code is. *Hint: Note that Z is a Mealy output!* 



a. [3 points] Derive the next-state and output equations:

 $Q_1^+ =$ \_\_\_\_\_\_\_

 $Q_2^+ =$ \_\_\_\_\_\_

Z =

b. [4 points] Complete the following transition/output table. Note that each table entry should be formatted as "Next State/Output".

| $Q_1Q_2$ | X = 0 | X = 1 |
|----------|-------|-------|
| 0 0      |       |       |
| 0 1      |       |       |
| 1 0      |       |       |
| 1 1      |       |       |

 $Q_1^+Q_2^+/Z$ 

c. [3 points] What is the secret code?

Secret Code:

# 5 [Sequential Circuit Analysis–5 points]

Consider the following synchronous sequential circuit and corresponding state assignment. Which of the following choices is its correct state table?



State Assignment\*

| $Q_1Q_2$ | State Label |
|----------|-------------|
| 0.0      | A           |
| 0.1      | В           |
| 1 0      | С           |
| 1 1      | D           |
|          |             |

\*Note that  $Q_1$  is the most significant bit.

| A. | PS                      | X = 0 | X = 1 |
|----|-------------------------|-------|-------|
|    | A                       | A     | В     |
|    | В                       | В     | С     |
|    | $\overline{\mathbb{C}}$ | A     | D     |
|    | $\overline{D}$          | В     | C     |
|    |                         | N     | 'S    |

B. 
$$\begin{array}{|c|c|c|c|c|} \hline PS & X = 0 & X = 1 \\ \hline A & B & C \\ \hline B & C & D \\ \hline C & B & A \\ \hline D & C & D \\ \hline NS \\ \hline \end{array}$$

D. 
$$| PS | X = 0 | X = 1$$
 $| A | D | A$ 
 $| B | A | B$ 
 $| C | D | C$ 
 $| D | A | B$ 
 $| NS$ 

# 6 [Sequential Circuit Design-10 points]

Design a sequential two's complement circuit. The circuit has a single input x and a single output z. The input is assumed to be an arbitrarily long two's complement number  $\cdots x_3x_2x_1x_0$  fed to the circuit serially starting with its least significant bit. The output z should be the two's complement negation of x.

Hint:  $z_0 = x_0$ , and for  $i \ge 1$   $z_i = \begin{cases} x_i & \text{if } x_j = 0 \text{ for all } j < i \\ x'_i & \text{if } x_j = 1 \text{ for any } j < i \end{cases}$ 

a. [2 points] Write a symbolic expression for  $z_i, i \geq 1$  in terms of  $x_0, x_1, \dots, x_{i-1}, x_i$  using the least number of n-input logic operators from the set {AND, NAND, OR, NOR, XOR, XNOR} where  $n \geq 2$  (i.e., you are not restricted to just 2-input operators).

 $z_i = \underline{\hspace{1cm}}$ 

b. [4 points] Derive suitable state/output and transition/output tables that implement your design.

c. [4 points] Draw the circuit that implements your design

# 7 [Sequential Circuit Design-4 points]

A partially-completed state diagram for a sequence recognizer with input x and output z is shown below. The output should be 1 whenever the pattern 1101, including overlaps, appears on the input; otherwise it should be 0. Each arrow in the diagram is labeled with the value of x and corresponding value of z for that transition (e.g., the transition from A to B occurs when x = 1 and sets z to 0). Assume that A is the initial state.



Identify the two missing transitions in this diagram.

First missing transition:

# 8 [Two-Level Minimization-10 points]

Consider the following K-Map for the 4-variable function f(w, x, y, z):

|    |    | yz |    |    |    |
|----|----|----|----|----|----|
|    |    | 00 | 01 | 11 | 10 |
|    | 00 | 1  | 0  | 1  | 1  |
|    | 01 | d  | d  | d  | 0  |
| WX | 11 | 0  | d  | d  | 0  |
|    | 10 | d  | 1  | 0  | 1  |

For each of the product terms in the following table, indicate if the product term is an implicant of f, and whether it is prime and/or essential. Indicate your answer by writing "Yes", "No", or "N/A" (for not applicable). N/A means that the product term a) is not an implicant of f, b) is an implicant that is not prime, or c) is a prime implicant that is not essential.

Hint: It helps if you first find all the prime implicants before filling the table!

| Product Term     | w'x | xz | x'z' | x'y'z' | w'yz | wx'y' | wx'y'z | w'xyz | w'y'z' | w'x'y |
|------------------|-----|----|------|--------|------|-------|--------|-------|--------|-------|
| Implicant?       |     |    |      |        |      |       |        |       |        |       |
| Prime Implicant? |     |    |      |        |      |       |        |       |        |       |
| Essential PI?    |     |    |      |        |      |       |        |       |        |       |

# 9 [Sequential Blocks-10 points]

#### a. [3 points]

This circuit uses a binary counter that has synchronous load and clear controls. What is its modulus?

Answer:

#### b. [3 points]

A 4-bit binary up-counter is connected to an 8-to-1 MUX. As the counter cycles through its 16 states (from 0 to 15), the output Y will be repeatedly asserted (becomes 1) at a subset of these states. Determine this subset as an increasing sequence of decimal values.



Answer:

#### c. [4 points]

An 8-bit Johnson counter is constructed from a left-shift register  $Q_7Q_6\cdots Q_0$ . The next-state equations for each of the register's 8 flip-flops are:

# 10 [Sequential Timing Analysis–12 points]

The following tables show the minimum and maximum combinational delays, as well as the timing parameters of the flip-flops, in a sequential circuit with three positive edge-triggered D flip-flops. All delays and timing parameters are in nanoseconds.

Minimum Delays

| William Delays |          |       |          |  |  |
|----------------|----------|-------|----------|--|--|
| $\delta_{ij}$  | $D_0$    | $D_1$ | $D_2$    |  |  |
| $Q_0$          | 1        | 2     | 3        |  |  |
| $Q_1$          | 2        | 1     | $\infty$ |  |  |
| $Q_2$          | $\infty$ | 0     | 2        |  |  |

Maximum Delays

| $\Delta_{ij}$ | $D_0$     | $D_1$ | $D_2$     |
|---------------|-----------|-------|-----------|
| $Q_0$         | 5         | 3     | 7         |
| $Q_1$         | 3         | 4     | $-\infty$ |
| $Q_2$         | $-\infty$ | 4     | 5         |

FF Timing Parameters

| Clock to Q delay: | 2 |
|-------------------|---|
| Setup time:       | 2 |
| Hold time:        | 1 |
|                   |   |

The timing specification for this circuit requires it to operate at a frequency of 100MHz.

a. [6 points] Compute the early and late arrival times for the three flip-flops.

$$a_1 = \underline{\hspace{1cm}} A_1 = \underline{\hspace{1cm}}$$

b. [3 points] Determine if there are any setup or hold violations:

| Hold violation at FF0  | True | False |
|------------------------|------|-------|
| Hold violation at FF1  | True | False |
| Hold violation at FF2  | True | False |
| Setup violation at FF0 | True | False |
| Setup violation at FF1 | True | False |
| Setup violation at FF2 | True | False |

c. [3 points] If there are setup or hold violations that prevent the circuit from operating at 100MHz, what is the minimum clock period  $P_{\min}$  in nanoseconds and corresponding clock frequency  $f_{\max}$  in MHz that allow the circuit to function without timing errors? Note: Truncate  $f_{\max}$  to one digit after the decimal point.

$$P_{\min} =$$

$$f_{\text{max}} =$$

# 11 [Potpourri–5 points]

A selection of multiple-choice and True/False questions on various topics!

#### a. [1 points]

The main difference between Moore and Mealy outputs is:

- A. Moore outputs are synchronous with the clock whereas Mealy outputs are asynchronous with the clock
- B. Moore outputs are functions of the inputs only whereas Mealy outputs are functions of both the inputs and the state variables
- C. Moore outputs are functions of the state variables only whereas Mealy outputs are functions of both the state variables and the inputs
- D. Moore outputs are functions of primary inputs and state variables whereas Mealy outputs are functions of state variables only.
- E. None of the above

#### b. [1 points]

An example of an asynchronous counter is:

- A. A decade counter
- B. A Johnson counter
- C. A ring counter
- D. A ripple binary counter
- E. None; All are synchronous

#### c. [1 points]

A minimal SOP solution for a Boolean function must include at least one essential prime implicant.

- A. TRUE
- B. FALSE

#### d. [1 points]

The counting sequence, in decimal, of a 2-bit Johnson counter is:  $0 \rightarrow$ \_\_\_\_\_\_

#### e. [1 points]

The number of prime implicants of an n-input OR function is \_\_\_\_\_\_

### 12 [Lab Experience–10 points]

BLANK5:

Complete the following Verilog that implements a counter that counts 0,1,2,3,2,1 and repeats. module counter(input reset, clk, output reg [1:0] state);

```
BLANK1 NS1, NSO;
                // next state
 BLANK2 S1, S0;
                 // current state
                 // direction: 1 is up, 0 is down
 reg D;
 assign NS1 = ~D & S1 & S0 | BLANK3 | D & S1 & ~S0;
 assign NSO = |BLANK4|;
 BLANK5
 begin
   if ( reset ) begin S1 <= 0; S0 <= 0; D <= 1; end
   else begin BLANK6; end
   if (BLANK7) D <= 0; else BLANK8;
 end
 BLANK9
 begin
   state [1] = S1;
   state [0] = S0;
 end
BLANK10
 BLANK1: _____
                             BLANK6: _____
 BLANK2: _____
                             BLANK7: _____
 BLANK3: _____
                             BLANK8 : _____
 BLANK4: _____
                             BLANK9 : _____
```

BLANK10: \_\_\_\_\_