Banco de Dados I

08 - Normalização

Arthur Porto - IFNMG Campus Salinas arthur.porto@ifnmg.edu.br arthurporto.com.br

Sumário I

- 🚺 Introdução
- Diretrizes de projeto informais
 - Semântica dos atributos
 - Informação redundante nas tuplas
 - 1ª DIRETRIZ
 - Anomalia de inserção
 - Anomalia de exclusão
 - Anomalia de alteração
 - 2ª DIRETRIZ
 - Valores NULL nas tuplas
 - 3ª DIRETRIZ
 - Geração de tuplas falsas
 - 4ª DIRETRIZ
- Oependências funcionais DF
 - Exemplo

Sumário II

- Inferências de DF
- Normalização das relações
- 1FN
 - Exemplo
- 2FN
 - DF Total
 - Exercício
- 3FN
 - Dependência Transitiva
- § FNBC
- 4FN e 5FN
- 10 Conclusão
- Referências

Introdução

- Quais são as boas práticas para construção de um projeto de banco de dados?
- Como avaliar se um esquema realacional?
- Existem dois níveis a serem observados [1]
 - Nível lógico (ou conceitual): um bom projeto permite que os usuários entendam bem o esquema.
 - Nível de implementação (físico): como as tuplas são armazenadas e atualizadas.
- Metodologias
 - Bottom-up: os esquemas são construídos a partir dos relacionamentos básicos entre os atributos.
 - Não é muito popular. Como capturar todos os relacionamentos?
 - Top-down: agrupamentos de atributos são o ponto de partidas para construção das relações.

Introdução

- Objetivos
 - Preservação da informação (atributos, tipos, entidades, relacionamentos, etc).
 - Redundância mínima. Reduzindo o armazenamento e as atualizações.
- Dependência funcional: ferramenta para medir a adequação dos agrupamentos de atributos.

Diretrizes de projeto informais

- Medidas para determinar a qualidade de projeto do esquema.
- Objetivos
 - Garantir um semântica clara dos atributos.
 - Reduzir a redundância.
 - Reduzir os valores NULL.
 - Reprovação de tuplas falsas.

Diretrizes de projeto informais

Semântica dos atributos

- A semântica de uma relação refere-se a seu significado resultante da interpretação dos valores de atributo em uma tupla.
- A facilidade com que o significado dos atributos de uma relação pode ser explicado é uma medida informal de quão bem a relação está projetada.

08 - Normalização Banco de Dados I 7/41

Diretrizes de projeto informais Informação redundante nas tuplas

- O objetivo do projeto é minimizar o espaço de armazenamento usado pelas relações.
- Qual das duas opções de projeto possui redundância?

O armazenamento de junções naturais leva a anomalias atualização! [1]

Diretrizes de projeto informais 1ª DIRETRIZ

- Definição: Projete um esquema de relação de modo que seja fácil de explicar o seu significado, de modo que, não combine atributos de vários tipos de entidade em uma única relação. [1]
- Violação

- Qual é o erro semântico?
- Qual o erro com relação a Diretriz 1?

Diretrizes de projeto informais 1ª DIRETRIZ - Anomalia de inserção

- Não é possível armazenar certas informações a menos que outras informações não relacionadas sejam armazenadas também. [2]
- Exemplo

- Como incluir um funcionário que não está associado a um departamento?
- Como incluir um departamento que não possui funcionários?

Diretrizes de projeto informais

1ª DIRETRIZ - Anomalia de exclusão

- Talvez não seja possível excluir determinadas informações sem perder outras informações não relacionadas. [2]
- Exemplo

O que acontece ao excluir o último funcionário de um departamento?

Diretrizes de projeto informais 1ª DIRETRIZ - Anomalia de alteração

- Se uma cópia dos dados repetidos for atualizada, uma inconsistência será criada, a menos que todas as cópias sejam atualizadas de maneira semelhante. [2]
- Exemplo

• O que acontece ao alterar o nome de um departamento que possui vários funcionários?

Diretrizes de projeto informais 2ª DIRETRIZ

- Definição: Projete um esquema de relação de modo que não exista anomalias na inserção, exclusão ou alteração.
- Se houver, garanta que os programas atualizem os dados coerentemente.
- É uma reafirmação da 1ª Diretriz.
- A fim de melhorar o desempenho as diretrizes as vezes podem ser violadas.

Diretrizes de projeto informais Valores NULL nas tuplas

- Relações com muitos atributos, podem acarretar muitos valores NULLs.
 - Desperdício de armazenamento.
 - Problemas de significado.
 - Resultados imprevisíveis com o uso de operadores de agregação.

Diretrizes de projeto informais 3ª DIRETRIZ

- Definição: Evitar ao máximo atributos NULL nas relações. [1]
- Se os NULLs forem inevitáveis tente fazer com que eles se apliquem a apenas a casos excepcionais.
- Exemplo
 - Se apenas 15% dos funcionários possuem escritórios, não inclua o atributo na relação FUNCIONÁRIO.
 - Crie uma nova relação FUNC_ESCRITORIO(Fcpf, Num_escritorio).

Diretrizes de projeto informais

Geração de tuplas falsas

Exemplo

• A recuperação de quais funcionários trabalham em qual projeto geram tuplas falsas.

Diretrizes de projeto informais 4ª DIRETRIZ

- Definição: Projete um esquema de relação de modo que garanta que nenhuma tuplas falsa é gerada. [1]
- Use sempre as chaves primárias como chaves estrangeiras no relacionamento com outras relações.

Dependências funcionais - DF

- Definição [1]: Uma dependência funcional, indicada por X → Y, entre dois conjuntos de atributos X e X que são subconjuntos de R, especifica uma restrição sobre possíveis tuplas que podem forma um estado de relação r de R. A restrição é que, para quaisquer duas tuplas t₁ e t₂ em r que tenham t₁[X] = t₂[X], elas também devem ter t₁[Y] = t₂[Y].
- Definição [2]: Dependência funcional é uma restrição entre dois conjuntos de atributos do banco de dados.
 - A DF $X \to Y$ vale sobre a relação R se, para cada instância possível r de R:

$$t_1 \in r, t_2 \in r, \pi_x(t_1) = \pi_x(t_2) \text{ implica em } \pi_y(t_1) = \pi_y(t_2)$$
 (1)

- Dadas 2 tuplas em r, se os valores de X são iguais, então os valores em Y também devem ser.
- Diz-se então que *X* determina *Y* ou *Y* é funcionalmente dependente de *X*.

Dependências funcionais - DF Exemplo

Relação

TAXIS

<u>Placa</u>	Marca	Modleo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Relação

FUNCIONARIO PROJETO

Cpf Projnumero	Horas	Fnome	Projnome	Projlocal
----------------	-------	-------	----------	-----------

- Dependências funcional
 - Placa → {Modelo, AnoFab}
 - $\bullet \ \ \mathsf{Modelo} \to \mathsf{Marca}$

- Dependências funcional
 - $\bullet \ \, \mathsf{Cpf} \to \mathsf{Fnome}$
 - $\bullet \ \, \mathsf{Projnumero} \to \{\mathsf{Projnome}, \, \mathsf{Projlocal}\}$
 - $\qquad \qquad \textbf{ \{Cpf,Projnumero\}} \rightarrow \textbf{Horas}$

Dependências funcionais - DF Exemplo

- A DF é uma propriedade semântica.
 - É necessário conhecer o universo do discurso para definir as DF.
- Relação

ENSINA

Professor	Disciplina	Texto
Silva	Estrutura de Dados	Bartram
Silva	Gerenciamento de dados	Martin
Neto	Compiladores	Hoffman
Braga	Estrutura de Dados	Horowitz

- Dependências funcional
 - Texto → Disciplina ???
 - $\bullet \ \ \mathsf{Professor} \to \mathsf{Disciplina} \ \ref{eq:professor} ?\ref{eq:professor}$

Dependências funcionais - DF Inferências de DF

- Algumas regras podem ser aplicadas ao conjunto de dependências funcionais de uma relação.
- Axiomas [3]
 - Regra da refletividade
 - Se α é um conjunto de atributos e se $\beta \subseteq \alpha$, então, $\alpha \to \beta$.
 - Regra da expansão
 - Se $\alpha \to \beta$ e γ é um conjunto de atributos, então $\gamma \alpha \to \gamma \beta$.
 - Regra da transitividade
 - Se $\alpha \to \beta$ e $\beta \to \gamma$, então $\alpha \to \gamma$.
 - Regra da união
 - Se $\alpha \to \beta$ e $\alpha \to \gamma$, então, $\alpha \to \beta \gamma$.
 - Regra da decomposição
 - Se $\alpha \to \beta \gamma$, então $\alpha \to \beta$ e $\alpha \to \gamma$.
 - Regra da pseudotransitividade
 - Se $\alpha \to \beta$ e $\gamma\beta \to \delta$, então $\alpha\gamma \to \delta$.

Normalização das relações

- Proposto inicialmente por Codd (1972).
 - Realizando uma série de testes para certificar se o esquema de relação satisfaz a forma normal.
 - Inicialmente 1FN, 2FN, 3FN.
 - FNBC Forma Normal Boyce-Codd
 - 4FN e 5FN
- A normalização de dados é um processo de analisar os esquemas de relação com base nas DFs e chaves primárias para:
 - Minimizar a redundância e minimização das anomalias
- Caso as relações não "passem" nos testes de forma normal elas são decompostas em relações menores que atendam os testes.
 - Forma normal: À condição de forma normal mais alta que ela atende e, portanto, indica o grau ao qual ela foi normalizada.
- Desnormalização: É o processo de armazenar a junção de relações na forma normal mais alta como uma relação da base, que está em uma forma normal mais baixa.
 - Motivo: desempenho

Normalização das relações

Definições

- A superchave S de R é um conjunto de atributos $S \subseteq R$ onde em qualquer r de R $t_1[S] \neq t_2[S]$.
- Uma chave Ch é uma S mínima. Qualquer atributo retirado de Ch este deixa de ser uma S.
- ullet Caso o R tenha mais de uma Ch cada uma delas é chamada de **chave candidata**.
- A chave primária é eleita entre as chaves candidatas.
- Atributo principal são os atributos membros de chaves candidatas.

- O objetivo foi reprovar os atributos multivalorados e compostos.
- O domínio de um atributo deve incluir apenas valores atômicos.
- Ou seja, reprova relações dentro de relações.
- Cada ocorrência de chave primária deve corresponder a uma e somente uma informação de cada atributo.
- Técnicas para conseguir a 1FN
 - Remover o atributo e colocá-lo em uma relação separada.
 - Expandir a chave
 - Usar vários atributos atômicos

DEPARTAMENTO

DEPARTAMENTO

Dnome	<u>Dnumero</u>	Cpf_gerente	<u>Dlocal</u>
Pesquisa	5	33344555587	Santo André
Pesquisa	5	33344555587	ltu
Pesquisa	5	33344555587	São Paulo
Administração	4	98765432168	Mauá
Matriz	1	88866555576	São Paulo

- Remover Dlocal com Dnumero para uma outra relação, sendo os dois ChP na outra relação.
- Expandir a chave primária para {Dnumero, Dlocal}. Desvantagem de redundância.
- Se todos os locais forem conhecidos e forem mínimos, adicionar um atributo para cada local. Desvantagem são os valores NULL e dificulta a pesquisa.

08 - Normalização Banco de Dados I 25/41

1FN Exemplo Prazo de Entrega: 20 dias

Num. Ped.	Cliente	Endereço Cidade/UF	CGC	IE	Cód. Prod.	Unid.	Quant.	Descrição	Val. Unit.	Tot. Prod.	Tot. do Ped.
3445	TCA	R.Meira	11111111	1111111	45	L	20	álcool	5,00	100,00	1799,00
3445	TCA	R.Meira	11111111	1111111	130	М	2	tecido	20,00	40,00	1799,00
3445	TCA	R.Meira	11111111	1111111	35	Kg	30	farinha	1,00	30,00	1799,00
3445	TCA	R.Meira	11111111	1111111	78	Kg	50	cimento	30,00	1500,00	1799,00
3445	TCA	R.Meira	11111111	1111111	90	_	40	cola	3.00	120.00	1799.00
3445	TCA	R.Meira	11111111	1111111	39	Kg	3	chumbo	3,00	9,00	1799,00
2610	Lopes	R. 127	23232323	343434	45	L	50	álcool	5,00	250,00	2650,00
2610	Lopes	R. 127	23232323	343434	78	Kg	47	cimento	30,00	1410,00	2650,00
2610	Lopes	R. 127	23232323	343434	21	Kg	20	pregos	5,00	100,00	2650,00
2610	Lopes	R. 127	23232323	343434	98	_	15	tinta azul	25,00	375,00	2650,00
2610	Lopes	R. 127	23232323	343434	90	Ш	15	cola	3,00	45,00	2650,00
2610	Lopes	R. 127	23232323	343434	43	М	10	arame	3,00	30,00	2650,00
2610	Lopes	R. 127	23232323	343434	25	F	10	algodão	2,00	20,00	2650,00
2610	Lopes	R. 127	23232323	343434	65	٦	5	querosene	8,00	40,00	2650,00
2610	Lopes	R. 127	23232323	343434	51	М	20	fio elétrico	13,00	260,00	2650,00
2610	Lopes	R. 127	23232323	343434	74	М	30	linha 10	4,00	120,00	2650,00
5675	Mario	Av. Treze	78787878	595968	45		48	álcool	5,00	240,00	1710,00
5675	Mario	Av. Treze	78787878	595968	98	L	35	tinta azul	25,00	875,00	1710,00
5675	Mario	Av. Treze	78787878	595968	43	M	25	arame	3,00	75,00	1710.00
5675	Mario	Av. Treze	78787878	595968	51	М	40	fio elétrico	13.00	520.00	1710.00
9756	HTZ	Trv. Nev	45636352	484747	90		60	cola	3.00	180.00	814.00
9756	HTZ	Trv. Ney	45636352	484747	35	Kg	20	farinha	1,00	20,00	814,00
9756	HTZ	Irv. Ney	45636352	484747.	23	M	40	nylon	5,00	200,00	814,00
9756	HTZ	Trv. Ney	45636352	484747	456	Kg	46	arame farpado	9,00	414,00	814,00

Figura 1: Fonte: [4]

Exemplo

- Entidade não normalizada

Figura 2: Fonte: [4]

Exemplo

- Entidades normalizadas

Figura 3: Fonte: [4]

Figura 4: Fonte: [4]

Exemplo

EMP_PROJ

Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
L		2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
		2	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
		20	10.0
999887777	Zelaya, Alicia J.	30	30.0
		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S.	30	20.0
		20	15.0
888665555	Borg, James E.	20	NULL

- Essa relação está na 1FN?
- O que deve-se fazer para colocá-la na 1FN?

2FN DF Total

- A 2FN se baseia no conceito de **DF Total**.
 - $X \to Y$ é uma **DF Total** se a remoção de qualquer atributo de X acarreta na perda da dependência. Para qualquer $A \in X$, $(X \{A\})$ X não determina Y.
- Em uma **DF Parcial** a remoção de qualquer atributo de X não acarreta na perda da dependência. Para qualquer $A \in X$, $(X \{A\}) \to Y$.

EMP PROJ

- A DF $\{Ssn, Pnumber\} \rightarrow Hours$ é total.
- A DF $\{Ssn, Pnumber\} \rightarrow Ename$ é parcial.

- Está na 1FN!
- **Definição**: Um esquema de relação R está na **2FN** se cada atributo **não principal** A em R for **total** e **funcionalmente dependente** da chave primária de R.
- Essa relação está na 1FN? E também está na 2FN?
 - Atributo principal: membro de alguma chave candidata.
 - Atributo NÃO principal: não é membro de qualquer chave candidata.

- Teste se existe algum atributo que é parcialmente dependente da chave primária (quando esta é composta).
 - Se a chave é única então é totalmente dependente.

08 - Normalização Banco de Dados I 31/41

Exercício

- Existem dependências parciais na relação abaixo?
- Como normalizar na 2FN?
- Relação
 - MEMBRO (<u>IdMembro</u>, <u>IdTarefa</u>, Nome Papel, Descricao, DataInicio, HorasAlocadas)

IdMembro	IdTarefa	Nome	Papel	Descricao	DataInicio	HorasAlocadas
mel	1700	Melissa	Gerente	Planejamento e Orçamento	15/01/2012	80
mel	1701	Melissa	Gerente	Projeto do Sistema	15/02/2012	120
asd	1701	Asdrúbal	Analista	Projeto do Sistema	15/02/2012	180
asd	1705	Asdrúbal	Analista	Especificação da Arquitetura	01/03/2012	120
asd	1730	Asdrúbal	Analista	Detalhamento de Modelos	30/03/2012	200
dor	1730	Doriana	Programador	Detalhamento de Modelos	30/03/2012	120
dor	1850	Doriana	Programador	Implementação de componentes	15/04/2012	1200
qui	1850	Quincas	Programador	Implementação de componentes	15/04/2012	2400

Figura 5: Fonte: https://goo.gl/RzGgd7

- Uma relação na 1FN está na 2FN se:
 - Se a chave primária consiste de apenas um atributo; ou
 - Se nenhum atributo não-chave existe; ou
 - Se todo atributo não-chave é dependente funcional de toda a chave primária.

- 3FN é baseada no conceito de dependência transitiva.
- A DF $X \to Y$ em R é transitiva se, um conjunto Z de atributos que **não é chave** e também **não é chave candidata**, tal que $X \to Y$ e $Y \to Z$
- Simplificando, se $X \to Y$ e $Y \to Z$ a DF $X \to Z$ é transitiva.

- $Ssn \rightarrow Dmng_ssn$ é transitiva, pois
 - $Ssn \rightarrow Dnumber$
 - $\bullet \ Dnumber \to Dmng_ssn$
 - E Dnumber não é parte do subconjunto chave da relação
- Definição: R está na 3FN se está na 2FN e nenhum atributo não principal de R for transitivamente dependente da chave primária.
 - Existe uma atributo n\u00e3o chave, que depende de outro atributo n\u00e3o chave? N\u00e3o? Ent\u00e3o est\u00e1 na 3FN!

FN	Teste	Solução
1FN	Não deve ter atributos multivalorados ou relações aninhadas.	Novas relações para cada atributo multivalorado ou relação aninhada.
2FN	Nenhum atributo não chave deve ser funcionalmente dependente de uma parte da chave primária.	Uma nova relação para cada chave parcial com seus atributos dependentes.
3FN	Não deve ter um atributo não chave determinado por outro atributo não chave. Ou seja, não deve haver dependência transitiva de um atributo não chave na chave primária.	Uma nova relação que inclua os atributos não chave que determinam funcionalmente outros atributos não chave.

- Uma forma mais simples da 3FN (porém mais rigorosa).
- A FNBC está na 3FN.
- **Definição**: Um esquema de relção R está na FNBC se toda vez que uma DF **não trivial** $X \to A$ se mantiver em R, então X é superchave de R.
 - **DF trivial**: $A \rightarrow B$ é trivial se B é subconjunto de A
 - Os determinantes das DFs existentes são chaves candidatas.

TEACH

Student	Course	Instructor
Narayan	Database	Mark
Smith	Database	Navathe
Smith	Operating Systems	Ammar
Smith	Theory	Schulman
Wallace	Database	Mark
Wallace	Operating Systems	Ahamad
Wong	Database	Omiecinski
Zelaya	Database	Navathe
Narayan	Operating Systems	Ammar

- Existe alguma alguma DF transitiva de atributo n\u00e3o trivial?
- Existe alguma DF onde o determinante não é chave candidata da relação?

FORNECEDOR

NumForn	NomeForn	NumProd	QtdProd
F1	Acme	P1	600
F1	Acme	P2	300
F1	Acme	Р3	250
F1	Acme	P4	280
F2	Umbrella	P1	350

FORNECEDOR

PRODUTO

<u>NumForn</u>	NomeForn
F1	Acme
F2	Umbrella

PRODUTO		
<u>NumForn</u>	<u>NumProd</u>	QtdProd
F1	P1	600
F1	P2	300
F1	P3	250
F1	P4	280
F2	P1	350

- Quais são as chaves candidatas?
- Existe alguma alguma DF transitiva de atributo n\u00e3o trivial?
- Existe alguma DF onde o determinante não é chave candidata da relação?

- Uma Relação está na BCNF quando todos os determinantes são chave
- Não existem dependências entre os atributos não chave
- Não existem dependências entre sub-conjuntos dos atributos das chaves.
- A BCNF só se distingue da 3FN quando
 - Existe mais do que uma chave
 - As chaves são formadas por vários atributos

4FN e 5FN

- São aplicados a casos muito específicos.
- 4FN Conceitos de Dependência Multivalorada.
- 5FN Conceitos de Dependência de Junção.

Conclusão

- Para criar um bom esquema, defina todas as tabelas normalizadas (BCNF)
- Um modelo ER bem feito tipicamente gera um esquema normalizado.
- Para esquemas que não estão normalizados, utilize técnicas de decomposição.
- Sempre haverá uma decomposição que tornará um esquema normalizado.
- Quando decompor
 - Assegure que todos os A de R estejam representados.
 - A decomposição não deverá causar perdas de junção.
 - Preservar as DFs sempre que possível (se não uma junção deverá expressar a DF).

Referências

R. Elmasri and S.B. Navathe. Sistemas de banco de dados. PEARSON BRASIL, 2011.

J. Ramakrishnan, R. e Gehrke.

Sistemas de gerenciamento de banco de dados - 3.ed.:.

McGraw Hill Brasil, 2008.

A. Silberschatz, H.F. Korth, and S. Sudarshan. *Sistema de banco de dados*. CAMPUS - RJ, 2006.

M.P. Machado, F.N.R. e de Abreu. *Projeto de banco de dados: uma visão prática*. Érica. 2009.