Technical Budgeting

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

1-1

Technical budgeting

- At some time in our design process, we need to allocate our main requirements
 - How fast?
 - How long?
 - How much?
 - How accurate?
 - How precise?
- The allocation process should not be ad hoc!
- The allocation becomes the requirements for sub elements of our design.
- We can mechanize the process by means of technical budgets...
- ...and the easiest way to do this is to use Excel

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

1-2

LaBerge's Law #3

- Every engineering problem is a design problem.
- In fact designing solutions is what engineering do!

What's my solution?

- A large part in determining the solution is the process of allocation...
- ...that is, how much of a requirement is accomplished by individual elements of your design.
- For example
- A laptop manufacturer requires a battery life of 5 hours under full load...
- ...and the power supply engineers tell us that 85 W-Hr is the best energy storage possible in the allowed volume.
- What are the design requirements for the processor, memory board, peripherals, screen, disk drive and other components?

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

How to proceed?

- I (you) don't know!
- ...yes, this happens in the real world!
- LaBerge's Law #1: Ambiguity!
- Careful consideration of units can point the way

85W-Hr to last 5 hr

$$E = PT$$
 (actually $E = \int p(t) dt$, but that's later!)

$$P = \frac{E}{T} = \frac{85 \text{ W-Hr}}{5 \text{ Hr}} = 17 \text{ W}$$

- That has to be our "bottom line"...
- ...the power consumption has to be less than 17 W.

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

3

What is reasonable?

- Experience might tell us
 - Your experience on similar designs
 - Your co-workers' experience on similar designs
- Research might be needed
 - Look it up
 - •Search the web ... be careful of what you find!
 - Take a similar product and measure it
 - Reverse engineer something that works
- When you start out, you don't have experience, so you're forced to research!

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week

1-7

First draft DC power budget

DC Pov	ver Budget for Laptop			
Item	Description	Value	Units	Source/Comments
1	Battery Capacity	85	W-Hrs	Dell Latitude 830 battery specification
2	Desired battery life	5	Hrs	User requirement
3	Average power	17	W	Computation item 1/Item 2
4	Motherboard	20	W	engineering est
5	Disk drive	18	W	engineering est
6	DVD drive	14	W	Dell DVD+/-RW specification
7	SVGA LCD screen	15	W	engineering est
8	WiFi	10	W	engineering est
9	Total load	77	W	Sum(item4item8)
10	Design margin	-60	W	Computation item 3-item 9
11	Effective time	1.104	Hrs	Computation item 1/Item 9
12	Surplus(Shortfall)	(3.90)	Hrs	Computation item 2-item 11

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

1-8

So this doesn't look so good!

- What might be wrong?
 - There are a lot of "engineering estimates"
 - All of the values assume constant operation
- What else might we need to know
 - How about some duty cycles? $\tau = \frac{\text{on time}}{\text{total time}}$
 - For example
 - •Hard drive 5%?
 - •CDROM 10%?
 - Processor 20%
 - •LCD Screen 75%
 - •WiFi 15%

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week

1-9

DC Pov	ver Budget for Laptop				
Item	Description	Value	τ		Units
1	Battery Capacity	85		85	W-Hrs
2	Desired battery life	5		5	Hrs
3	Average power			17	W
4	CPU	20	20%	4	W
5	Disk drive	18	5%	0.9	W
6	DVD drive	14	10%	1.4	W
7	SVGA LCD screen	15	75%	11.25	W
8	WiFi	10	20%	2	W
9	Total load			19.55	W
10	Design margin			-2.55	W
11	Effective time		-	4.348	Hrs
12	Surplus(Shortfall)		_	(0.65)	Hrs

5

What have we learned?

- We're not far from the goal!
- ...and we might reach it for some users!
- Big draw is Display
 - Can it be reduced?
 - How much will THAT cost?
- 100 W Battery would solve the problem!
 - How much will THAT cost?
 - How big will it be?
- We (I) learned all of this for the investment of about 30 minutes!
- Suggesting that technical budgeting is very effective means of developing our design requirements

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

1-11

Technical budgeting gives system insight

- View of all quantitative parameters
- Technical budget is a plan and a tool
- Link budgets for all wireless communications links within the system
- Error budgets for all (sub)systems involving precision measurement
- Timing budgets for all time-critical applications
- Weight budgets for physical subsystems
- DC power or power dissipation budgets for all physical subsystems
- Mass or reaction budgets for chemical processes
- When done well it is self-documenting!

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved. Week 1

1-1

Random components in error budget

Must consider both bias (long term) and noise (short term) errors

Small bias, large noise

Large bias, Small noise

Accurate, but not precise

Precise, but not accurate

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

leek 1

1.15

PRM angle error budget

- Bias (mean) components ADD
- Noise components (standard deviations) combined in root sum square manner, i.e., by ADDING <u>VARIANCES</u>

$$\overline{x}_{TOTAL} = \sum_{k=1}^{K} \overline{x}_k$$

$$\sigma_{TOTAL} = \sqrt{\sum_{k=1}^{K} \sigma_k^2}$$

• For Gaussian assumption $x_{95} pprox x_{TOTAL} \pm 2\sigma_{TOTAL}$

		Bias	1 sigma Noise	Units
1	Physical antenna alignment	0.15	0.010	mrad
2	Beam steering error	0.20	0.050	mrad
3	Wind motion	0.00	0.100	mrad
4	Monopulse error	0.05	0.200	mrad
5	Monitor error limit	0.25	0.010	mrad
6	Output quantization	0.00	0.014	mrad
7	PRM System Error	0.65	0.230	mrad
8	95th percentile error (assume Gaussian)	1.11		

UMBC ENES101 Introduction to Engineering Science Course Notes © E F C LaBerge, all rights reserved.

Week 1

Complicated Iridium S/E link budget

- Iridium is a constellation of low-earth-orbit satellites for cell-phone-like communications
- From constellation orbital parameters, we know the following
 - The minimum elevation angle from the user to the satellite is 8 degrees
 - The maximum distance from the user to any satellite is 2.48 x 10⁶ meters
 - The channel data rate is 50,000 bps
 - The channel operates at 1610-1626.5 MHz

		Item	Value	Units
Example 1,	1	Transmitter power	13.0	W
cont'd	2	Transmitter Power	41.1	dBm
cont a	3	Transmitter Cable Loss	2.0	dB
	4	Transmitter Antenna Gain	24.0	dBi
	5	EIRP	63.1	dBm
	6	Operating Frequency	1626.5	MHz
	7	Receiver Range	1339.5	nmi
	8	Free Space Path Loss	164.6	dB
	9	Polarization Loss	0.0	dB
	10	Excess Propagation Loss	1.2	dB
	11	Power at Isotropic Antenna	-102.6	dBm
	12	Receive Antenna Gain	0.0	dBi
	13	Receive Cable Loss	0.0	dB
Г	14	Power at Receiver Input	-102.6	dBm
Г	15	Receiver Noise Figure	4.4	dB
Ī	16	Boltzmann's constant	-198.6	dBm/(K Hz)
Ī	17	Receiver T	24.6	dB-K
Г	18	Receiver N0	-169.6	dBm/Hz
Ī	19	Receiver IF Bandwidth	25000.0	Hz
Ī	20	IF Carrier-to-Noise Ratio	23.0	dB
Г	21	Symbol rate	25000.0	symbols per second
Ī	22	Es/N0	23.0	dB
Ī	23	Bits per symbol	2.0	
Г	24	Eb/N0	20.0	dB
Г	25	Interference Power Density	-158.0	dBm/Hz
Γ	26	N0+I0	-157.7	dBm/Hz
Ī	27	Es/(N0+I0)	11.1	dB
	28	Eb/(N0+I0)	8.1	dB

9