Variational Inference for Bayesian Mixture of Factor Analysers

Angermueller Christof

20 January 2014

1 Model

1.1 Notations

- P Number of variables
- Q Number of components
- S Number of factor analysers
- N Number of samples
- G Number of genes

Table 1: Indices

$oldsymbol{y}^{n,g}$	P	Counts sample n gene g
$oldsymbol{x}^{n,g}$	Q	Components sample n gene g
$oldsymbol{z}^{n,g}$	Q	Indicators factor analysers sample n gene g
π	S	Mixture coefficients
Λ^s	$P \times Q$	Loading matrix factor analyser s
$oldsymbol{ u}^s$	Q	Precisions components factor analyser s

Table 2: Random vectors

a	1	Shape gamma distribution
b	1	Rate gamma distribution
α	1	Dirichlet parameter
Ψ	$Q \times Q$	Noise matrix

 ${\bf Table~3:~Hyperparameters}$

1.2 Conditional probability distributions

Figure 1: Graphical model

$$P(\boldsymbol{y}^{n,g}|\boldsymbol{x}^{n,g},\boldsymbol{z}^{n,g},\boldsymbol{\pi},\Lambda) = \sum_{s=1}^{S} \mathcal{N}(\boldsymbol{y}^{n,g}|\Lambda^{s}\boldsymbol{x}^{n,g},\Lambda^{s}\Lambda^{sT} + \Psi)P(z_{s}^{n,g}|\boldsymbol{\pi})$$
(1)

$$P(\boldsymbol{x}^{n,g}) = N(\boldsymbol{x}^{n,g}|0, I_Q) \tag{2}$$

$$P(\boldsymbol{z}^{n,g}|\boldsymbol{\pi}) = Mult(\boldsymbol{z}^{n,g}|\boldsymbol{\pi})$$
(3)

$$P(\boldsymbol{\pi}|\alpha) = Dir(\boldsymbol{\pi}|\alpha) \tag{4}$$

$$P(\Lambda^{k}) = \prod_{q=1}^{Q} N(\Lambda^{s}_{:q}|0, I_{P} \frac{1}{\nu_{q}^{s}})$$
 (5)

$$P(\boldsymbol{\nu}^s) = \prod_{q=1}^{Q} \Gamma(\nu_q^s | a, b)$$
 (6)