CSP-J 模拟赛 机器人吃东西 (eat)

机器人吃东西(eat)

【题目描述】

dottle 喜欢吃东西。

他有 n 个食物,每个食物都有属性 a_i 。

每一天,dottle 必须选择一个非空区间 [l,r],满足 $a_l \sim a_r$ 所有数的按位与为 0,然后吃掉这个区间的所有食物。吃掉之后左边和右边合并起来。

比如,假设初始序列为 $\{3,5,4,1,4,7\}$,dottle 可以选择[2,4]这个区间吃掉,因为5&4&1=0,在这之后,这个序列变成 $\{3,4,7\}$ 。

现在 dottle 想知道,他最多能进行多少次吃操作?

【输入格式】

从文件 eat.in 中读入数据。

第一行一个正整数 n。

之后一行 n 个非负整数, 第 i 个为 a_i 。

【输出格式】

输出到文件 eat.out 中。 输出一行一个整数,表示答案。

【样例输入1】

5

1 5 7 2 6

【样例输出 1】

2

【样例解释 1】

第一次吃掉[2,4]这个区间,序列变为[1,6]

第二次吃掉 [1,2] 这个区间,序列变为空。

最终次数为 2。

注意你不需要让最终的序列为空。

【样例 2】

见下发文件中的 eat2.in/out。 该样例满足测试点 4~8 的限制。 CSP-J 模拟赛 机器人吃东西(eat)

【样例 3】

见下发文件中的 eat3.in/out。 该样例满足测试点 $9 \sim 11$ 的限制。

【样例 4】

见下发文件中的 eat4.in/out。 该样例满足测试点 $14 \sim 17$ 的限制。

【数据范围与提示】

对于所有数据,满足 $1 \le n \le 63, 0 \le a_i \le 63$ 。 每个测试点的具体限制见下表:

测试点编号	n	a_i	特殊性质		
$1 \sim 3$	≤ 5	≤ 15	无		
$4 \sim 8$	≤ 15	≤ 63			
$9 \sim 11$	≤ 31	≤ 31			
$12 \sim 13$		≤ 1			
$14 \sim 17$	≤ 63	< 63	保证所有 a_i 可以表示为 2^k 的形式,其中 $k \ge$		
$18 \sim 20$	\(\sigma \)		无		

CSP-S 模拟 机器人的积木 (block)

机器人的积木(block)

【题目描述】

dottle 在搭积木。

有 n 堆积木,第 i 堆积木的高度为 h_i ,dottle 想让积木堆尽量平均,所以他定义一个状态的不优美度为 $\sum_{i=1}^{n-1}|h_i-h_{i+1}|+h_1+h_n$ 。

dottle 只能执行一种操作: 将一堆积木的其中一块拿走, 也就是选定某个 $h_x>0$ 的 x, 令 $h_x=h_x-1$ 。

q次询问,每次给出一个 X,求使用不超过 X 次操作后不优美度的最小值。

【输入格式】

从文件 block.in 中读入数据。

第一行两个正整数 n,q。

接下来一行 n 个非负整数,表示初始的 h 序列。

之后 q 行,每行一个非负整数,表示询问的 X。

【输出格式】

输出到文件 block.out 中。

对于每组询问、输出一行一个数表示最终答案。

【样例输入1】

6 10

3 5 4 3 5 2

1

2

3

4

5

6

7

8

9

10

【样例输出 1】

12

10

CSP-S 模拟 机器人的积木(block)

8

8

6

6

6

6

6

4

【样例 2】

见下发文件中的 block2.in/out 该样例满足测试点 $4 \sim 9$ 的限制。

【样例 3】

见下发文件中的 block3.in/out 该样例满足测试点 $10 \sim 13$ 的限制。

【样例 4】

见下发文件中的 block4.in/out 该样例满足测试点 $19 \sim 21$ 的限制。

【数据范围与提示】

对于所有测试点: $2 \le n, q \le 5 \times 10^5, 0 \le a_i \le 10^{12}, 0 \le X \le 10^{18}$ 。 每个测试点的具体限制见下表:

测试点编号	n	q	a_i	X
$1 \sim 3$	≤ 5	≤ 5	≤ 5	≤ 5
$4 \sim 9$	≤ 500	≤ 10	≤ 50	$\leq 5 \times 10^3$
$10 \sim 13$	$\leq 10^{3}$	∠ 5 ∨ 105	$\leq 10^{12}$	$\leq 10^{15}$
$14 \sim 15$		$\leq 5 \times 10^5$	≤ 1	
$16 \sim 18$	$\leq 10^5$	≤ 1	< 100	$\leq 10^{6}$
$19 \sim 21$		∠ 5 ∨ 105	≤ 100	
$22 \sim 25$	$\leq 5 \times 10^5$	$\leq 5 \times 10^5$	$\leq 10^{12}$	$\leq 10^{18}$

CSP-S 模拟 机器人填数(tree)

机器人填数(tree)

【题目描述】

dottle 得到了一棵 n 个点的以 1 为根的有根树,他想在树上每一个点中填一个 $1 \sim m$ 的颜色。 同时给定序列 f,其中 f_i 表示限制以 i 为根的子树中恰好有 f_i 种不同的颜色,若 $f_i = -1$,则表示没有任何限制。

求填颜色的方案数,对 109+7 取模,保证答案在取模之前不为 0。

【输入格式】

从文件 tree.in 中读入数据。

第一行两个正整数 n, m。

接下来 n-1 行, 每行两个数 x,y, 表示树中的一条边。

接下来一行 n 个数,表示 $f_1 \sim f_n$ 。

【输出格式】

输出到文件 tree.out 中。

输出一行一个数,表示你的答案,对 109+7 取模。

【样例输入 1】

5 5

1 1 3 4

4 1 2 2 1

【样例输出 1】

48

【样例 2】

见下发文件中的 tree2.in/out。 该样例满足测试点 $3 \sim 5$ 的限制。

【样例 3】

见下发文件中的 tree3.in/out。 该样例满足测试点 $10 \sim 11$ 的限制。

CSP-S 模拟 机器人填数(tree)

【样例 4】

见选手目录下的 tree4.in/out。 该样例满足测试点 $15\sim18$ 的限制。

【数据范围与提示】

对于所有测试点: $2 \le n \le 10^5, 1 \le m \le 10^5, -1 \le f_i \le m$,保证答案在取模之前不为 0。每个测试点的具体限制见下表:

测试点编号	n	m	特殊性质
$1 \sim 2$	≤ 5	≤ 5	无
$3 \sim 5$	≤ 15	≤ 15	
$6 \sim 7$	≤ 50	≤ 50	A
$8 \sim 9$	$< 2 \times 10^{3}$	≤ 100	
$10 \sim 11$			无
$12 \sim 13$		< 10	A
14		<u> </u>	无
$15 \sim 18$	$< 10^5$	≤ 100	A
19	≥ 10		无
$20 \sim 24$		$\leq 10^{5}$	A
25		<u> </u>	无

CSP-S 模拟 操作(operation)

操作(operation)

【题目描述】

给定一个长度为 n 的序列 a。

您有 m+n 种可执行的操作。

前 m 种的第 i 种形如 X_i, L_i, R_i, W_i 表示您可以把 a_{X_i} 减 1,再把 $a_{L_i} \sim a_{R_i}$ 加 1,这个操作会有 W_i 的代价。

后 n 种的第 i 种仅含一个数 b_i ,表示直接令 a_i-1 ,花费 b_i 的代价,特别的,若 $b_i == -1$,代表这个操作是不可执行的。

求最小的代价, 让所有的 a_i 变为 0, 保证若存在合法的操作方案, 代价最小的操作方案花费不超过 2×10^{18} 。

【输入格式】

从文件 operation.in 中读入数据。

第一行两个整数 n, m。

之后一行 n 个整数, 第 i 个数为 a_i 。

之后 m 行每行四个整数 X_i, L_i, R_i, W_i 。

之后一行 n 个整数, 第 i 个数为 b_i 。

【输出格式】

输出到文件 operation.out 中。

若可以让所有 a_i 变为 0,输出最小的代价。

否则输出 -1。

【样例输入 1】

4 2

0 1 0 0

2 3 4 5

2 1 1 0

10 -1 2 2

【样例输出 1】

9

【样例 2】

见下发文件中的 operation 2. in/out。该样例满足测试点 $1 \sim 2$ 的限制。

CSP-S 模拟 操作(operation)

【样例 3】

见下发文件中的 operation3.in/out。 该样例满足测试点 $3 \sim 7$ 的限制。

【样例 4】

见下发文件中的 operation 4. in/out。 该样例满足测试点 $8 \sim 11$ 的限制。

【数据范围与提示】

对于所有数据,满足 $1 \le n, m \le 4 \times 10^5$, $0 \le W_i \le 10^9$, $0 \le a_i \le 10^3$, $-1 \le b_i \le 10^9$, $L_i \le R_i$ 。

每个测试点的具体限制见下表:

测试点编号	n	m	特殊性质
$1 \sim 2$	≤ 2	≤ 514	无
$3 \sim 7$	$\leq 10^{3}$	$\leq 10^{3}$	
8 ~ 11			$L_i = R_i$
$12 \sim 14$	$\leq 10^5$	$\leq 10^{5}$	$W_i = 0, b_i \le 0$
$15 \sim 18$			无
$19 \sim 20$	$\leq 4 \times 10^5$	$\leq 4 \times 10^5$	