Title: Primary Trimethylaminuria *GeneReview* – Suggestive Findings

Authors: Phillips IR, Shephard EA

Updated: October 2015

Specific Methods of Detecting TMA and TMA N-Oxide in Urine

The methods of detecting TMA and TMA *N*-oxide in urine currently available involve sophisticated equipment and require skilled and experienced personnel:

- Head-space gas chromatography (GC) or GC-mass spectrometry [Mills et al 1999]. Disadvantages: GC techniques are time consuming, TMA *N*-oxide must be chemically reduced to TMA before analysis, and both TMA and TMA produced by reduction of TMA *N*-oxide must be extracted from urine.
- Mass spectroscopy (MS)* including fast atom bombardment MS (FAB-MS) [Mamer et al 1999], electrospray ionization tandem MS (ESI-MS/MS) [Johnson 2008], direct infusion electrospray quadruple time-of-flight MS [Mamer et al 2010], or matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOFMS) [Hsu et al 2007]
- Proton nuclear magnetic resonance (NMR) spectroscopy* [Maschke et al 1997, Murphy et al 2000, Podadera et al 2005, Lee et al 2006]
- * **MS** and **proton NMR** have the advantage of being able to detect TMA and TMA *N*-oxide simultaneously with great sensitivity. NMR has the further advantage of requiring no prior extraction or separation of metabolites and thus measurement can be done directly on urine samples.

References

Hsu WY, Lo WY, Lai CC, Tsai FJ, Tsai CH, Tsai Y, Lin WD, Chao MC. Rapid screening assay of trimethylaminuria in urine with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2007;21:1915-9.

Johnson DW. A flow injection electrospray ionization tandem mass spectrometric method for the simultaneous measurement of trimethylamine and trimethylamine *N*-oxide in urine. J Mass Spectrom 2008;43:495-9.

Lee MB, Storer MK, Blunt JW, Lever M. Validation of (1)H NMR spectroscopy as an analytical tool for methylamine metabolites in urine. Clin Chim Acta 2006;365:264-9.

Mamer OA, Choiniere L, Lesimple A. Measurement of urinary trimethylamine and trimethylamine oxide by direct infusion electrospray quadrupole time-of-flight spectrometry. Anal Biochem 2010;406:80-2.

Mamer OA, Choiniere L, Treacy EP. Measurement of trimethylamine and trimethylamine N-oxide independently in urine by fast atom bombardment mass spectrometry. Anal Biochem 1999;276:144-9.

Maschke S, Wahl A, Azaroual N, Boulet O, Crunelle V, Imbenotte M, Foulard M, Vermeersch G, Lhermitte M. 1H-NMR analysis of trimethylamine in urine for the diagnosis of fish-odour syndrome. Clin Chim Acta 1997;263:139-46.

Mills GA, Walker V, Mughal H. Quantitative determination of trimethylamine in urine by solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 1999;723:281-5.

Murphy HC, Dolphin CT, Janmohamed A, Holmes HC, Michelakakis H, Shephard EA, Chalmers RA, Phillips IR, Iles RA. A novel mutation in the flavin-containing monooxygenase 3 gene, FM03, that causes fish-odour syndrome: activity of the mutant enzyme assessed by proton NMR spectroscopy. Pharmacogenetics 2000;10:439-51.

Podadera P, Areas JAG, Lanfer-Marquez UM. Diagnosis of suspected trimethylaminuria by NMR spectroscopy. Clin Chim Acta 2005;351:149-54.