ΛΥΣΗ

- α) Ζητάμε τον αριθμό $T(2) = 2^3 10 \cdot 2^2 + 31 \cdot 2 30 = 8 40 + 62 30 = 0$.
- β) Από το α) ερώτημα προκύπτει ότι το πολυώνυμο T(x) έχει παράγοντα το x-2, άρα η διαίρεση T(x): (x-2) είναι τέλεια. Βρίσκουμε το πηλίκο αυτής της διαίρεσης με τη βοήθεια του σχήματος Horner.

1	- 10	31	- 30	2
	2	- 16	30	
1	- 8	15	0	

'Ωστε $T(x) = (x - 2)(x^2 - 8x + 15).$

Το τριώνυμο $x^2-8x+15$ έχει διακρίνουσα $\Delta=(-8)^2-4\cdot 1\cdot 15=4$ και ρίζες $x=\frac{8\pm 2}{2}$, δηλαδή τους αριθμούς 3 και 5. Τελικά T(x)=(x-2)(x-3)(x-5). Έτσι $\alpha=2$, $\beta=3$, $\gamma=5$.

γ) Θέλουμε να βρούμε τα διαστήματα για τις τιμές x των οποίων θα είναι T(x) < 0. Κατασκευάζουμε τον πίνακα προσήμου των τιμών T(x) για θετικές τιμές του x.

x	0	2 :	3 5	; +∞
x-2	_	+	+	+
$x^2 - 8x + 15$	+	+	_	+
T(x)	_	+	_	+

Διαπιστώνουμε ότι παγετώνες θα υπάρχουν στον πλανήτη τα δύο πρώτα εκατομμύρια χρόνια και την χρονική περίοδο από τρία έως πέντε εκατομμύρια χρόνια.