Introduction to Unsupervised Learning

Unsupervised Learning

Unsupervised Learning

- Contrast to Supervised Learning only input is provided
- Agent should find patterns & divide the data into clusters

Individual Data Points

Train an algorithm to find clusters and associations in unlabelled dataset

Introduction to Unsupervised Learning

Types of Unsupervised Learning

Clustering

Association

Dimension Reduction

1

2

3

Types of Unsupervised Learning

Introduction to Unsupervised Learning

Application of Unsupervised Learning

Applications of Unsupervised Learning

- Item categorization
- **Clustering customers**
- **Anomaly Detection**
- Recommendation Engines

I	Mat	rix _{Feature Type}	Feature Color	Feature Weight (Ounces)
	1	Banana	Yellow	5.78
	2	Big Orange	Orange	4.32
	3	Kiwi	Brownish	5.54
	4	Baby Orange	Orange	3.65
	5	Grapes	Green	1.15
	6	Apple	Red	4.32

Unsupervised learning "Clustering"

Introduction to Clustering

Why Clustering?

- Determines intrinsic grouping among unlabelled data
- No criteria
- Reducing dimensions

- Organizing the objects
- Creating groups
- Collection of Objects

Introduction

40

Clustering

Challenges in Clustering

- Computational Complexity
- Risk of Inaccurate results
- Human intervention for validating outputs

Unsupervised learning "Clustering"

Types of Clustering Algorithms

Algorithm Types Clustering

Unsupervised learning – "Clustering"

What is K-Means Clustering?

What is K-Means Clustering?

- The organization of unlabelled data into groups with similarities
- Partitional Clustering
- Partitions the data into k clusters
- A part of Vector Quantization

K-Means Clustering in Image Segmentation

K Means Clustering

Z²

 \mathbf{Z}^{3}

 \mathbf{Z}_{μ}

2,

- Number of clusters K
- Randomly assigning data point to cluster
- Compute cluster centroids

- Re-compute cluster centroids
- Repeat step 4 & 5 till global optima is reached

Source: By Chire - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=59409335

K-Means Clustering

Convergence

Point where the algorithm stop it's process

No or very minimum reassignments of data points to clusters

No change in centroids

Distance of datapoints from centroid is minimum

Silhouette score

Properties of Clusters

Euclidean Distance

$$d(x,y) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Property 1

All data points in a cluster should be similar to each other

Property 2

The data points from different clusters should be as different as possible

K Mean - Example

DATA POINTS

Step 1: Select the number of clusters k (For Ex K=2)

Step 2: Select k random points from the data as centroids

Steps 3: Assign all the points to the closest cluster centroid

Steps 4: Re-assign each point to closest cluster centroid

Steps 5: Re-compute cluster centroids

Step 6: Repeat step 4 & 5 till global optima is reached

There are essentially three stopping criteria that can be adopted to stop the K-means algorithm:

Centroids of newly formed clusters do not change Points remain in the same cluster Maximum number of iterations is reached

Recommender Systems

What is Recommender Systems?

- Recommender systems, also known as recommendation systems
- It is a machine learning algorithms that use data to recommend items or content to users
- based on their preferences, past behavior, or their combination.

Read by user Similar articles Recommended to user

How does a recommendation engine work?

We can recommend items to a user which are most popular among all the users

 We can divide the users into multiple segments based on their preferences (user features) and recommend items to them based on the segment they belong to

How does a recommendation engine work?

- Making recommendations involves two main stages:
 - Candidate generation—creating a subset of products the user might be interested in.
 - Scoring—reducing and sorting a candidate list.

How To Work Recommendation System?

- Data collection
- Data storage
- Analyzing the data
- Filtering and recommending

Types of Recommendation System

- Collaborative filtering
- Content-based filtering
- Hybrid recommendation systems.

Collaborative filtering

Collaborative Filtering

Content-based filtering

Content-Based Filtering

Hybrid systems

Hybrid Systems

Algorithms for Recommender systems

- Clustering models,
- User-based k-nearest neighbors,
- Matrix factorization, and
- Bayesian networks

Benefits of Recommender Systems

Applications of Recommender systems

- E-Commerce
- Retail
- Media
- Banking
- Telecom
- Utilities

Examples from companies that use a recommendation engine

- Amazon.com
- Netflix
- Spotify
- Linkedin

THANK YOU