Leçon: Phénomènes de transport

Gabriel Le Doudic

Préparation à l'agrégation de Rennes

14 mai 2023

Niveau : CPGE

Prérequis : thermopdynamique à l'équilibre

: hydrodynamique

- Systèmes hors équilibres
 - Évolution des grandeurs conservées
 - Nécessité de l'équilibre local
- Diffusion de particules
 - Loi de Fick
 - Équation de diffusion
 - Mise en évidence expérimentale : diffusion du glycerol dans l'eau
- Transport de l'énergie sous forme de transfert thermique
 - Modes de transports possibles
 - Loi de Fourier
 - Équation de la chaleur
 - Rayonnement

Nécessité de l'équilibre local

• Hypothèse d'équilibre local :

En tout point du système macroscopique, un sous système de taille mésoscopique est supposé constamment et instantanément à l'équilibre. Cela suppose que le temps typique d'évolution du système macroscopique τ_{ev} et le temps typique de mise à l'équilibre d'un sous système vérifient la condition :

$$\tau_{ev} \gg tau_{eq}$$

② Le système est suffisamment proche de l'équilibre pour que les lois de transport donnant les différents vecteurs densité de courant *j* soient linéaires par rapport à leur cause.

En prenant en compte ces deux hypothèses : Toutes les grandeurs intensives sont bien définies en tout point du système et à tout instant (T,P,μ) . Les milieux que nous considérons sont supposés homogènes et isotropes à l'équilibre, les courants sont donc faibles.

Équation de diffusion

	Ohm	Fick	Fourier	Newton
Grandeur conservée et transportée	Charge q	Particules N	Enthalpie H	Quantité de mouvement P_x
Densité volumique	ρ (C·m ⁻³)	n (m ⁻³)	<i>h</i> (J⋅m ⁻³)	$p_x = \mu v_x$ $(kg \cdot m^{-2} \cdot s^{-1})$
Vecteur densité de courant	\mathbf{j}_{q} $(\mathbf{A}\cdot\mathbf{m}^{-2})$	$\mathbf{j_N}$ $(\mathbf{m}^{-2} \cdot \mathbf{s}^{-1})$	\mathbf{j}_H $(\mathbf{W}\cdot\mathbf{m}^{-2})$	$\mathbf{j}_{P_{\mathbf{x}}} \\ (\mathbf{N} \cdot \mathbf{m}^{-2} = \mathbf{Pa})$
Équation locale de conservation	$\frac{\partial \rho}{\partial t} + \operatorname{div}(\mathbf{j}_{\mathbf{q}}) = 0$	$\frac{\partial n}{\partial t} + \operatorname{div} \langle \mathbf{j}_{\mathbf{N}} \rangle = 0$	$\frac{\partial h}{\partial t} + \operatorname{div}(\mathbf{j_H}) = 0$	$\frac{\partial p_x}{\partial t} + \operatorname{div}(\mathbf{j}_{p_x}) = 0$
Cause du transport	$\operatorname{\mathbf{grad}}(V)$ (en régime permanent)	grad (n)	grad (T)	$\mathbf{grad}\ (v_{_{\mathcal{X}}})$
Coefficient de transport	$\sigma (\Omega^{-1} \cdot m^{-1})$	$\frac{D}{(\mathrm{m}^2 \cdot \mathrm{s}^{-1})}$	$(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$	η (Pa·s)
Loi de transport linéaire	$\mathbf{j}_{\mathbf{q}}$ = $-\sigma$ grad (V) (en régime permanent)	$\mathbf{j_{N}} = -D \; \mathbf{grad} \; (n)$	$\mathbf{j}_H = -\lambda \ \mathbf{grad} \ (T)$	$\mathbf{j}_{P_s} = -\eta \operatorname{\mathbf{grad}}(\nu_s)$ (écoulement plan de Couette)

Loi de Fourier

	Ohm	Fick	Fourier	Newton
Grandeur conservée et transportée	Charge q	Particules N	Enthalpie H	Quantité de mouvement P_x
Densité volumique	ρ (C·m ⁻³)	<i>n</i> (m ⁻³)	<i>h</i> (J⋅m ⁻³)	$p_x = \mu v_x$ $(kg \cdot m^{-2} \cdot s^{-1})$
Vecteur densité de courant	\mathbf{j}_{q} $(\mathbf{A} \cdot \mathbf{m}^{-2})$	$\mathbf{j_N}$ $(\mathbf{m}^{-2} \cdot \mathbf{s}^{-1})$	\mathbf{j}_H $(\mathbf{W} \cdot \mathbf{m}^{-2})$	$\mathbf{j}_{P_{\mathbf{s}}}$ $(\mathbf{N} \cdot \mathbf{m}^{-2} = \mathbf{Pa})$
Équation locale de conservation	$\frac{\partial \rho}{\partial t} + \operatorname{div}(\mathbf{j}_q) = 0$	$\frac{\partial n}{\partial t} + \operatorname{div}(\mathbf{j}_{\mathbf{N}}) = 0$	$\frac{\partial h}{\partial t} + \operatorname{div}(\mathbf{j_H}) = 0$	$\frac{\partial p_x}{\partial t} + \operatorname{div}(\mathbf{j}_{p_x}) = 0$
Cause du transport	$\operatorname{\mathbf{grad}}(V)$ (en régime permanent)	grad (n)	grad (T)	$\mathbf{grad}\ (\boldsymbol{\nu}_{\boldsymbol{x}})$
Coefficient de transport	σ $(\Omega^{-1} \cdot m^{-1})$	$\frac{D}{(m^2 \cdot s^{-1})}$	$(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$	η (Pa·s)
Loi de transport linéaire	$\mathbf{j}_{\mathbf{q}} = -\sigma \operatorname{\mathbf{grad}}(V)$ (en régime permanent)	$\mathbf{j_{N}} = -D \; \mathbf{grad} \; (n)$	$\mathbf{j}_H = -\lambda \ \mathbf{grad} \ (T)$	$\mathbf{j}_{P_s} = -\eta \operatorname{\mathbf{grad}}(\nu_s)$ (écoulement plan de Couette)

Équation de la chaleur

On combine l'équation de conservation avec la loi de Fourier :

$$\frac{\partial T}{\partial t} = D_{th} \Delta T \quad D_{th} = \frac{\lambda}{\rho c_p} \tag{1}$$

Rayonnement

Loi de Stefan Boltzman:

$$\phi = \sigma T^4 \tag{2}$$

Loi de Wien:

$$\lambda_m T = 2900 \,\mu\text{mK} \tag{3}$$