Semester 2 (Units 3 and 4) Examination, 2016

Question/Answer Booklet

MATHEMATICS METHODS

before reading any further.

Special items:

Standard items:

Important note to candidates

To be provided by the c	andidate:	
Materials required. To be provided by the s		ded for this section This Question/Answer Booklet Formula Sheet
Time allowed for the Reading time before com Working time for this sect	mencing work:	sətunim əvit fifty minutes
Теасћег Иате:		
Student Name/Number:		
Section One:	Calculato)r-free

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor

correction fluid/tape, eraser, ruler, highlighters

pens (blue/black preferred), pencils (including coloured), sharpener,

MATHEMATICS METHODS

2 CALCULATOR-FREE SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

Section One: Calculator-free (54 Marks) Weighting 35%

This section has **10 (ten)** questions. Answer **all** questions. Write your answers in the spaces provided.

Suggested working time: 50 minutes.

Question 1 (6 marks)

Determine the exact value of m, m > 0, for each of the following equations.

(a) $2 \ln m = 3$ (2 marks)

(b) $\log(m+3) + \log m - 1 = 0$ (4 marks)

MATHEMATICS METHODS

End of Questions

(9 marks) 2 noiteau9

(a) Differentiate each of the following with respect to X. Do **not** simplify your answers.

(3)
$$\lambda = \frac{\theta x^4 - x^3 + \theta}{4e^x}$$

$$\sqrt{\frac{1}{5x^3+3}} \ln \left(\frac{5x^3+3}{5x^3+3} \right) = \sqrt{\frac{5x^3+3}{5x^3+3}}$$

(b) Show how to use the chain rule to determine
$$\frac{dy}{dx}$$
 when $y = \frac{e^{x^2 - \cos(x)}}{2}$

SEMESTER 2 (UNITS 3 AND 4) EXAMINATION MATHEMATICS METHODS Describe each of the following as either a discrete random variable, a continuous random variable or a non-random variable.

- (a) the number of dots showing on a die after being thrown. (1 mark)
- (b) the distance between Sydney and Melbourne. (1 mark)
- (c) the thickness of wire coming off a production line. (1 mark)

Question 4 (4 marks)

Determine the value of k if f(x) represents a probability density function.

$$f(x) = \begin{cases} kx \left(1 - \frac{x^2}{3}\right), & 0 \le x \le 1\\ 0, & \text{elsewhere} \end{cases}$$

MATHEMATICS METHODS

CALCULATOR-FREE SEMESTER 2 (UNITS 3 AND 4) EXAMINATION (5 marks)

Question 10

The graph of y = f(x) is shown below. It consists of two straight lines followed by a curve. The area between the function and the *x*-axis is equal to 50 square units.

(a)
$$\int_{0}^{5} f(x)dx$$
 (2 marks)

$$\int_{7}^{10} f(x)dx$$
 (3 marks)

© MAWA 2016 See next page

© MAWA 2016

See next page

S CALCULATOR-FREE SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

MATHEMATICS METHODS

Question 5 (4 marks)

The probability density function for a Bernoulli distribution is:

$$0 = x \text{ rot }, q - 1$$

$$1 = x \text{ rot }, q$$

$$= (x = X)q$$

Given that the standard deviation for a particular Bernoulli distribution is $\frac{}{4}$, determine the value(s) of p.

Question 6 (4 marks)

Consider the graph of $g(x) = \ln(2x + 6) - 4$

(a) For what values of x is the function valid? (1 mark)

(b) Determine the $^{\chi}$ -coordinate of the point on $^{g(\chi)}$ where the slope of the tangent is 4. (3 marks)

MATHEMATICS METHODS 8 CALCULATOR-FREE SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

(c) A new sample of size n_2 was taken and the proportion of people who had watched a game of AFL in the last year was again m . When an 87% confidence interval was determined it was found to be the same as the interval determined in part (b).

(i) Is n_2 larger or smaller than n_1 ? Explain (i)

(ii) What is the relationship between $n_{\rm L}$ and $n_{\rm L}$?

© MAWA 2016 See next page See next page

MATHEMATICS METHODS

6 CALCULATOR-FREE SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

Question 7 (4 marks)

The probability density function of a discrete random variable *Y* is given by

$$P(Y = y) = ky^2$$
, for $y = 0, 1, 2, 3, 4$.

(a) Complete the probability distribution for *Y*

(2 marks)

	у	0	1	2	3	4
P	(Y = y)			4 <i>k</i>		

(b) Determine the value of k. (2 marks)

Question 8 (3 marks)

Given $\int e^{f(x)} f'(x) dx = e^{f(x)}$. If $f'(x) = 2xe^{3x^2-1}$ and f(0) = 0 determine f(x).

© MAWA 2016 See next page

MATHEMATICS METHODS

CALCULATOR-FREE SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

Question 9

When calculating a confidence interval for a population proportion from a sample an associated z score is used. Use the table below to answer the following questions:

Confidence Interval	z score (rounded to 1 decimal	
	place)	
95%	2.0	
87%	1.5	
68%	1.0	

- (a) In a random sample of 100 people, 20 said they had watched an AFL game in the last year.
 - Determine the proportion of those in the sample who had watched an AFL game in the last year (1 mark)
 - (ii) Determine a 95% confidence interval for the proportion of the population who had watched an AFL game in the last year. (4 marks)

A random sample of size n_1 was taken and the proportion of people who had watched a game of AFL in the last year was m .

(b) Determine a 68% confidence interval for the proportion of the population who had watched an AFL game in the last year in terms of n_1 and m. (2 marks)

© MAWA 2016 See next page