

IIC2223 — Teoría de autómatas y lenguajes formales — 2'2020

CONTROL 2

Indicaciones

- La duración del control es 1 hora y 30 minutos.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Debe entregar una copia digital de cada pregunta por el buzón del curso, antes de las 23:59 horas del día del control.
- Debe preocuparse que la copia digital y su calidad sea legible. En caso de hacerla con papel y lápiz, se recomienda usar hojas blancas y un lápiz oscuro que sea visible en la versión digital. En caso de no ser legible, no podrá ser evaluada su solución.
- En caso de hacer el control fuera del horario, se recomienda tomar el tiempo (1 hora y 30 minutos) y entregarlo justo después de concluido el tiempo.
- Durante la evaluación puede hacer uso de sus apuntes o slides del curso.
- Esta es una evaluación estrictamente individual y, por lo tanto, no puede compartir información con sus compañeros o usar material fuera de sus apuntes o slides del curso. En caso de hacerlo, el control no reflejará su progreso en el curso, viéndose perjudicada su formación personal y profesional.
- Al comienzo de cada pregunta debe escribir la siguiente oración y firmarla:

"Doy mi palabra que la siguiente solución de la pregunta X fue desarrollada y escrita individualmente por mi persona según el código de honor de la Universidad."

En caso de no escribir la oración o no firmarla, su solución no será evaluada.

Pregunta 1

Sea $\Sigma = \{a, b\}$. Recuerde que $w \in \Sigma^*$ es un palíndromo si $w = w^R$ donde w^R es la palabra reverso de w. Un palíndromo se dice no trivial si es de largo mayor o igual a dos. Sea $\operatorname{Pal}_{\Sigma}$ el conjunto de todas las palabras $w \in \Sigma^*$ tal que w es un palíndromo no trivial y $(\operatorname{Pal}_{\Sigma})^*$ la clausura de Kleene de $\operatorname{Pal}_{\Sigma}$.

- 1. Demuestre que el lenguaje $(Pal_{\Sigma})^*$ es libre de contexto.
- 2. Demuestre que el lenguaje $(Pal_{\Sigma})^*$ es no regular.

Pregunta 2

Para una gramática $\mathcal{G} = (V, \Sigma, P, S)$ y $X \in V$, se define el lenguaje de X como $\mathcal{L}(X) = \{w \in \Sigma^* \mid X \Rightarrow_{\mathcal{G}}^* w\}$.

- 1. Demuestre que, si $\mathcal{L}(\mathcal{G})$ es un lenguaje finito, entonces existe una gramática $\mathcal{G}' = (V', \Sigma, P', S')$ tal que $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$ y \mathcal{G}' tiene una sola variable, esto es, $V' = \{S'\}$.
- 2. Demuestre que, si $\mathcal{L}(\mathcal{G})$ es un lenguaje infinito, entonces existe una gramática $\mathcal{G}' = (V', \Sigma, P', S')$ tal que $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$ y todas sus variables generan un lenguaje infinito, esto es, para todo $X \in V'$ se tiene que $\mathcal{L}(X)$ es infinito.