TopAL - Tópicos de Álgebra Linear Lista 2

- 1. Se $\dim(V) = n$, então todo subconjunto de V com mais de n vetores é L.D. e nenhum subconjunto de V com menos de n vetores pode ser base.
- 2. Seja $S \subset V$ um conjunto L.I. e $v \in V [S]$. Então $S \cup \{v\}$ é L.I..
- 3. Seja W subespaço de V. Se V tem dimensão finita, então W tem dimensão finita e $\dim(W) \leq \dim(V)$.
- 4. Se o conjunto $S = \{v_1, v_2, v_3\}$ é L.I. em V então $R = \{v_1 + v_2, v_2 + v_3, v_3 + v_1\}$ também é L.I. sobre V.
- 5. Seja $T:V\to W$ uma aplicação linear. Mostre que
 - (a) Mostre que Nu(T) é subespaço de V.
 - (b) Mostre que Im(T) é subespaço de W.
 - (c) Mostre que T é injetiva se, e somente se, $Nu(T) = \{0\}$.
 - (d) Seja $T: X \to Y$ uma aplicação linear bijetora (isomorfismo). Mosre que a inversa $T^{-1}: Y \to X$ é linear.
- 6. Mostre que todo espaço vetorial de dimensão n sobre um corpo \mathbb{K} é isomorfo a \mathbb{K}^n e conclua que dois espaços quaisquer sobre um mesmo corpo são sempre isomorfos.
- 7. Mostre que S é uma base de V se, e somente se, todo elemento de V pode ser escrito de maneira única como combinação linear de elementos de S.
- 8. Se dim(V) = n e $S = \{x_1, x_2, \dots, x_n\} \subset V$ for L.I., então S é base de V.
- 9. Se $\dim(V) = n$ e $S = \{x_1, x_2, \dots, x_n\} \subset V$ gera V, então S é base de V.
- 10. Seja \mathbb{K}^{∞} o conjunto de todas as sequências $(\xi_1, \xi_2, \dots, \xi_n, \dots)$, com $\xi_j \in \mathbb{K}$ e operações de adição e multiplicação por escalar usuais.
 - (a) Mostre que \mathbb{K}^{∞} é um espaço vetorial.
 - (b) Considere o conjunto $\mathbb{K}_0^{\infty} \subset \mathbb{K}^{\infty}$, constituido por todas as sequências $\xi = (\xi_j)_{j \in \mathbb{N}}$ tais que $\xi_j = 0$, para todo $j \in \mathbb{N}$, exceto para um número finito de índices. Mostre que \mathbb{K}_0^{∞} é subespaço de \mathbb{K}^{∞} .
 - (c) Mostre que \mathbb{K}_0^{∞} é isomorfo a $\mathbb{K}[t]$ (espaço vetorial dos polinômios com coeficiente em \mathbb{K}).
- 11. Sejam $T \in \mathcal{L}(V, W)$ e $S \in \mathcal{L}(W, U)$. Mostre que $S \circ T \in \mathcal{L}(V, U)$.
- 12. Seja $T \in \mathcal{L}(V, W)$ um isomorfismo. Mostre que a inversa $T^{-1} \in \mathcal{L}(W, V)$.
- 13. Mostre que todo espaço vetorial de dimensão n é isomorfo aa \mathbb{K}^n . Conclua que dois espaços de dimensão n sobre o mesmo corpo são sempre isomorfos.
- 14. \mathbb{R}^n e \mathbb{C}^n são isomorfos?
- 15. Seja $S = \{A \in M_{m \times m}(\mathbb{K}); A^t = A\}$ o conjunto das matrizes simétricas e $A = \{A \in M_{m \times m}(\mathbb{K}); A^t = -A\}$ o conjunto das matrizes antissimétricas.
 - (a) Mostre que A e S são subespaços de $M_{m \times m}(\mathbb{K})$.

- (b) Prove que $M_{m \times m}(\mathbb{K}) = S \oplus A$.
- 16. Considere os polinômios $p_1(t) = 2t^3 + 1$ e $p_2(t) = t^3 t$ em $\mathbb{K}_3[t]$.
 - (a) Descreva $[p_1, p_2]$.
 - (b) Mostre que $S = \{p_1, p_2\}$ é L.I..
 - (c) Obtenha uma base de $\mathbb{K}_3[t]$ completando o conjunto S.
 - (d) Encontre a representação de cada um dos vetores de S nessa base,
 - (e) Seja $q(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ um polinômio de $\mathbb{K}_3[t]$. Encontre a representação de q(t) na base encontrada.
- 17. Defina $T: \mathbb{K}[t] \to \mathbb{K}_3[t]$ como

$$T\left(a_0 + \sum_{j=1}^{m} a_j t^j\right) = a_0 + a_1 t + a_2 t^2 + a_3 t^3.$$

- (a) Mostre que T é linear.
- (b) Determine Nu(T) e Im(T).
- (c) Encontre uma base para o núcleo e imagem de T.
- (d) O Teorema do núcleo e da imagem pode ser aplicado nesse exemplo? Justifique.
- 18. Uma projeção é uma aplicação linear $\Pi:V\to V$ tal que $\Pi\circ\Pi=\Pi$. Seja $\Pi:V\to V$ uma projeção:
 - (a) Prove que $V = Nu(\Pi) \oplus Im(\Pi)$.
 - (b) Sejam $W_1, W_2 \subset V$ subespaços tais que $V = W_1 \oplus W_2$. Se $x = w_1 + w_2 \in W_1 \oplus W_2$, mostre que a aplicação $\Pi_1 : V \to W_1$ definida por $\Pi_1(x) = w_1$ é uma projeção.
- 19. Prove que as seguintes afirmações a respeito de $\Pi_1,\Pi_2:V\to V$ são equivalentes:
 - (a) $\Pi_1 + \Pi_2$ é projeção;
 - (b) $\Pi_1\Pi_2 + \Pi_2\Pi_1 = 0;$
 - (c) $\Pi_1 \Pi_2 = \Pi_2 \Pi_1 = 0$.
- 20. Sejam $S, T \in \mathcal{L}(V, W)$ e $R \in \mathcal{L}(W, U)$. Mostre que
 - (a) $posto(S + T) \le posto(S) + posto(T)$.
 - (b) $posto(RS) \le min\{posto(S), posto(T)\}.$