Présentation Projet and scream

William PENSEC

Maître de Conférences LIRMM – Université de Montpellier Montpellier

23 septembre 2025

Présentation brève

Cursus

- 2024 : Doctorat en Informatique Lab-STICC - Univ. Bretagne Sud - Lorient
- 2024 : Postdoctorat
 Laboratoire Hubert Curien Univ. Jean Monnet Saint-Étienne
- 2025 : Maître de Conférences Section 61 LIRMM et Polytech Montpellier - Univ. Montpellier - Montpellier

Domaines de recherche

- Sécurité matérielle sur RISC-V,
- Attaques physiques (Injection de fautes),
- Sécurité des réseaux de neurones.

Contexte et problématique de la thèse

Contexte

- Systèmes embarqués sont de plus en plus utilisés dans des domaines sensibles.
- Ils deviennent cibles des menaces logicielles (exploitation de vulnérabilités) et physiques (injection de fautes, observation).
- Mécanismes de sécurité logicielle insuffisants.

Contexte et problématique de la thèse

Problématique

Comment maintenir une protection maximale contre les attaques logicielles en présence d'attaques physiques?

Contexte et problématique de la thèse

Problématique

Comment maintenir une protection maximale contre les attaques logicielles en présence d'attaques physiques?

Méthode

- Sécurisation du mécanisme DIFT, utilisé pour contrer les attaques logicielles.
- Objectif de le rendre robuste face aux attaques par injection de fautes.
- Proposition de contremesures légères et adaptées.

Contributions et résultats

- ▶ Nous avons montré que le DIFT est vulnérable contre des attaques par injections de fautes en prenant en compte des modèles de fautes plus ou moins complexes.
- ▶ Proposition de 3 contremesures avec 5 stratégies

Contributions et résultats

- Nous avons montré que le DIFT est vulnérable contre des attaques
- ▶ Proposition de 3 contremesures avec 5 stratégies d'implémentations :
 - codes correcteurs d'erreurs.
 - surcoût d'aire inférieure à 8%.
 - aucun impact sur les performances,
 - bonne efficacité en termes de sécurité (99.99% de taux de détection/correction avec des modèles de fautes complexes).

Perspectives et publications

Perspectives

- Évaluation de contremesures plus robustes pouvant corriger plus d'erreurs (BCH).
- Comparaison de ces contremesures par rapport à celles proposées.

Publications

- Création d'un outil pour l'évaluation de la sécurité, disponible en open-source FISSA.
- 3 articles de conférences (dont un best paper award).

Post-doctorat

Contexte et enjeu du Postdoctorat

Contexte

- IA utilisé dans plein de domaines dont l'IoT (edge computing)
- Entraînement coûteux d'un réseau de neurones (GPT-4 $\approx 100M$ \$ / Gemini 1 $\approx 191M$ \$).

Objectif

▶ Cloner un réseau de neurones déjà entraîné (MNIST, Iris, ...) en utilisant des injections de fautes dans la mémoire flash.

■ Modèle original. On a accès aux entrées et aux valeurs de sorties.

- On injecte une faute sur le MSB du poids afin de fauter le signe. Le signe est forcé en négatif.
 - S'il y a un changement de sortie, alors le poids était positif.

- On injecte une faute sur le MSB du poids pour fauter le signe. Le signe est forcé en négatif :
 - S'il n'y a aucun changement, alors le poids était négatif.

• On obtient une cartographie complète des signes des poids.

Complete mapping of weight signs

• On construit un système d'équations comprenant les "chemins actifs".

• On construit un système d'équations comprenant les "chemins actifs".

■ Résolution du système grâce à un solveur python qui donnera une solution pour chacun des poids positifs et poids négatifs contenus dans les équations.

■ Calcul de chacune des valeurs des poids négatifs restants grâce à un deuxième solveur.

- Évaluation du modèle obtenu pour vérifier s'il est équivalent à l'original.
 - ► Modèle aléatoire : S'il est équivalent alors MSE == 0 ou proche.
 - Modèle entraîné : S'il est équivalent alors précision (accuracy) du modèle identique à celle du modèle original.

Résultats principaux

- Clonages réussis sur de petits modèles aléatoires et sur des modèles entraînés avec le dataset Iris (MSE à 0 ou précision du modèle obtenu égale à l'original).
- Plus le réseau est profond et plus c'est compliqué.
- Peu importe le nombre de neurones sur une couche.
- Objectif de poursuivre avec des expérimentations réelles en utilisant un laser multispots.

Situation actuelle

ANR SCREAM

- Sécurité matérielle
- RISC-V
- Implémentation et évaluation de contremesures
- Intégration dans l'ANR SCREAM co-encadrement d'Ali avec Pascal et Florent

Présentation Projet and scream

William PENSEC

Maître de Conférences LIRMM – Université de Montpellier Montpellier

Merci pour votre attention.

