Two possible goals:

1) Estimate class membership probabilities functions (Iperclas) $f_1(x_i) = \text{probability that a person with age } x_i \text{ is a 'Dem''} f_2(x_i) = '' \text{Ind''} f_3(x_i) = '' \text{Rep'} f_3(x_i) = ''$

Note probabilities have to add up to 1 for each x: $f_1(x) + f_2(x) + f_3(x) = 1$

2) Estimate the dass membership for a proon with most likely avarate x: G: G

Example: Suppose we estimate $f_1(4.50) = 0.47$, $f_2(50) = 0.7$, $f_3(50) = 0.46$ $\hat{y}_1 = 1$, i.e. we guess that a 50 year old is a "Dem". Ties are usually broken at random.

How Good Are Our Predictions?	0
Many ways to measure. One way 15:	
Classification Error Rate: The proportion of test set observations for which our predicted class is wrong;	
observations for which our predicted class is wrong!	
# incorrect predictions = I [II(y; #y:) # obs. in test set sumover test set	
The indicator function:	
Where II(.) is the indicator function:	
$II(G; *Y;) = {0 if G; =Y;}$	
Basically 君王I(ý; ‡y;) is a count of how many	t
predictions were wrong.	
Cross-validation All that changes is evaluation by classification error rest instead of MSE.	e
instead of MSE.	
2. Allo cate space to store ballocator ac.	
a. Create validation set using total	
on the Create validation set using fold i, train set using the other folds put together	
b. fit made to train set	

c. get predictions for validation set

d. Calculate validation set error rate in space from step 2.

KNN for Classification

3

For dass j,

 $\hat{f}_{j}(x_{0}) = \text{proportion of the neighbors of } x_{0} \text{ that are in class } j$.

sum over observations from training set in neighborhood them of xo.

Example: Suppose we have n=8 observations:

C You libra		
age (xi)	party (y:)	Using KNN with K=3, what are:
10	Ind	What are
20	Ind	$\hat{f}_{1}(47) = \frac{1}{3}(1)+1+1) = \frac{2}{3}$
30	Dem	$f_{2}(47) = \frac{1}{3}(0+0+0) = 0$
40	Rep	$\hat{f}_3(47) = \frac{1}{3}(1+0+0) = \frac{1}{3}$
50	Dem	f3(47) = 3(17)
CO	Dem	Q: = 1 ("Dem")
70	Rep	2,
80	Rep	0 15

The full class membership probability functions:

