Recitation 8

Seung-hun Lee

Columbia University

Motivation

- y now takes either 0 or 1.
- Can be used to study how independent variable(s) X_i is(are) correlated to yes/no questions in the survey.
- Assume

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• We look at $E[Y_i|X_i]$, which can be broken into

$$E[Y_i|X_i] = 0 \times \Pr(Y_i = 0|X_i) + 1 \times \Pr(Y_i = 1|X_i)$$

• Or in the regression equation context,

$$E[Y_i|X_i] = E[\beta_0 + \beta_1 X_i + u_i|X_i]$$

$$= \beta_0 + \beta_1 X_i + E[u_i|X_i]$$

$$(\because E[u_i|X_i] = 0) = \beta_0 + \beta_1 X_i$$

or the probability of $Y_i = 1$ given X_i

Interpretation

• Notice that $\beta_1 = \frac{\Delta Y_i}{\Delta X_i}$ and $\Delta Y_i =$ Change in $\Pr(Y_i = 1 | X_i)$ with respect to change in X_i , or

$$\Delta Y_i = \Pr(Y_i = 1 | X_i = x + \Delta X_i) - \Pr(Y_i = 1 | X_i = x)$$

• Since $\Pr(Y_i = 1 | X_i = x + \Delta X_i) - \Pr(Y_i = 1 | X_i = x) = E[Y_i | X_i = x + \Delta X_i] - E[Y_i | X_i = x]$, we get

$$\beta_0 + \beta_1(x + \Delta X_i) - \beta_0 + \beta_1(x) = \beta_1 \Delta X_i$$

• So we get $\Delta Y_i = \beta_1 \Delta X_i \iff \beta_1 = \frac{\Delta Y_i}{\Delta X_i}$. Therefore, β_1 now measures how much the predicted probability of $Y_i = 1$ changes with respect to X_i

Seung-hun Lee Recitation 8 3/9

Linear probability models

- Linear probability model is the estimation in which you run an OLS on the type of regression equation where Y_i is a binary dependent variable.
- The advantage is that it is simple there is no difference in terms of methods between this and the OLS methods we have learned so far.
- However, there are some critical disadvantages to this model.
 - By setting the regression model as above, we are assuming that the change of predicted probability of $Y_i = 1$ is constant for all values of X_i .
 - More critically, it is possible that the predicted probability \hat{y} may be greater than 1 or strictly less than 0.
 - The distribution of the error term is no longer normal distribution, potentially affecting the asymptotic properties of the OLS estimators.

Logit regression

- Logit regression: Let $Z_i = \beta_0 + \beta_1 X_i$.
- Logit regression assumes that the cumulative probability of Z_i , which is $Pr(Y_i = 1|X_i)$ is distributed as

$$Pr(Y_i = 1|X_i) = F(Z_i) = \frac{1}{1 + e^{-Z_i}}$$

• Changes in X_i affect the probability $F(Z_i)$ in this manner

$$\frac{\partial F}{\partial X_i} = \frac{\partial F}{\partial Z_i} \frac{\partial Z_i}{\partial X_i}$$

where $\frac{\partial Z_i}{\partial X_i} = \beta_1$

• Value of β_1 does not mean that much in. Its sign does, since

$$\frac{\partial F}{\partial Z_i} = \frac{e^{-\beta_0 - \beta_1 X_i}}{(1 + e^{-\beta_0 - \beta_1 X_i})^2}$$

and its sign depends on that of β_1

5/9

Probit regression

- Probit regression: Let $Z_i = \beta_0 + \beta_1 X_i$.
- Logit regression assumes that the cumulative probability of Z_i is a standard normal distribution

$$Pr(Y_i = 1|X_i) = F(Z_i) = \Phi(Z_i) = \Phi(\beta_0 + \beta_1 X_i)$$

where $\Phi(v)$ means the cumulative normal function $\Pr(Z \leq v)$

• Again, taking the similar approach as before,

$$\frac{\partial F}{\partial X_i} = \frac{\partial F}{\partial Z_i} \frac{\partial Z_i}{\partial X_i}$$

and $\frac{\partial F}{\partial Z_i}$ is the pdf of a standard normal distribution.

• Again, its sign depends on that of β_1

Maximum likelihood estimators

Motivation

- Both probit and logit are nonlinear: β_0 , β_1 parameters are no longer in linear relationship with the $X_i's$ and subsequently Y_i 's
- A **likelihood function** is the conditional density of $Y_1, ..., Y_n$ given $X_1, ..., X_n$ that is treated as the function of the unknown parameters $(\beta_0, \beta_1 \text{ in our case})$
- What we are trying to do here is to find the values of β_i 's that best matches the values of X_i 's and Y_i 's
- Maximum likelihood estimators is the value of β_i 's that best describes the data and maximizes the value of the likelihood function

Practice

- Assume Y_i 's are IID normal with mean μ and standard error σ (both are unknown)
- The joint probability of Y_i 's are (our likelihood function)

$$Pr(Y_{1} = y_{1}, ..., Y_{n} = y_{n} | \mu, \sigma) = Pr(Y_{1} = y_{1} | \mu, \sigma) \times ... \times Pr(Y_{n} = y_{n} | \mu, \sigma)$$

$$= \prod_{i=1}^{n} f(y_{i} | \mu, \sigma)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(Y_{i} - \mu)^{2}}{2\sigma^{2}}}$$

$$= (2\pi)^{-\frac{n}{2}} (\sigma^{2})^{-\frac{n}{2}} e^{-\sum_{i=1}^{n} \frac{(Y_{i} - \mu)^{2}}{2\sigma^{2}}}$$

Seung-hun Lee Recitation 8 8 / 9

Maximum likelihood estimators

Practice

 Calculation is made easier by using log-likelihood functions (take logs to likelihood functions)

$$-\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\sigma^2 - \sum_{i=1}^{n} \frac{(Y_i - \mu)^2}{2\sigma^2}$$

- We differentiate the above with respect to μ and σ to find the MLE of these parameters.
- This gets us

$$\mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$\sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu_{MLE})^2$$