

AD-A100 012

MITRE CORP MCLEAN VA
A LOS ANGELES BASIN 1100 AIRCRAFT TRAFFIC MODEL, (U)
JAN 81 A D MUNDRA

DTFA01-81-C-10001

F/6 1/2

UNCLASSIFIED

L 01
AD-A100012

MTR-80W329

FAA-RD-81-39

NL

END
DATE
FIMED
7-88
DTIC

(12) LEVEL 3!

AD A100012

A LOS ANGELES BASIN 1100 AIRCRAFT TRAFFIC MODEL

Dr. Anand D. Mundra

The MITRE CORPORATION
1820 Dolley Madison Boulevard
McLean, Virginia 22102

January 1981

DTIC
ELECTED
JUN 10 1981
S D
B

Document is available to the U.S. public through
the National Technical Information Service,
Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590

TMIC FILE COPY

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

Technical Report Documentation Page

1. Report No. FAA-RD-B1-39	2. Government Accession No. AD-H14V012	3. Recipient's Catalog No.	
4. Title and Subtitle A Los Angeles Basin 1100 Aircraft Traffic Model		5. Report Date January 1981	
6. Performing Organization Name Dr. Anand D. Mundra		6. Performing Organization Code	
7. Author(s)		8. Performing Organization Report No. MTR-80W329 ✓	
9. Performing Organization Name and Address The MITRE Corporation 1820 Dolley Madison Boulevard McLean, Virginia 22102		10. Work Unit No. (TRAIS)	
11. Contract or Grant No. DTFA01-81-C-10001		12. Sponsoring Agency Name and Address Federal Aviation Administration Systems Research and Development Service 400 7th Street, S.W. Washington, D.C. 20590	
13. Type of Report and Period Covered		14. Sponsoring Agency Code ARD-200	
15. Supplementary Notes			
16. Abstract This document describes a static model of air traffic in the Los Angeles basin in the 1995 time frame. The model is a "snapshot" of a "peak" instant in 1995, i.e., an instant when the greatest number of aircraft are predicted to be seen at any time in 1995 in the Los Angeles basin. Derived from an earlier model, it contains 1105 instantaneously airborne aircraft. Position, velocity, and other relevant descriptors of each aircraft are provided. The model reflects realistic constraints such as topography, expected airspace restrictions, and aircraft performance characteristics. The total number of aircraft predicted in the model is obtained on the basis of historical data and air traffic projections by the Federal Aviation Administration for the Los Angeles basin.			
17. Key Words air traffic model; air traffic projections; Discrete Address Beacon system; aircraft collision avoidance systems		18. Distribution Statement Document is available to the public through the National Technical Information Service, Springfield, VA 22161.	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 43	22. Price

Metric Conversion Factors

Approximate Conversions to Metric Measures

Symbol	When You Know	Multiply by	To Find	Symbol	When You Know	Multiply by	To Find	Symbol	When You Know	Multiply by	To Find
LENGTH											
inches feet yards miles											
6.35 0.3048 0.9144 1.60934											
AREA											
square inches square feet square yards square miles acres											
6.5 0.09 0.9 2.6 0.4											
MASS (weight)											
ounces pounds short tons (2000 lb)											
70 0.45 0.9 101											
VOLUME											
teaspoons tablespoons fluid ounces cups pints quarts gallons cu ft yd ³											
5 15 30 0.24 0.47 0.95 3.8 0.03 0.76											
TEMPERATURE (°F)											
°F											
5/9 lesser temperature subtracting 32											
°C											
9/5 than add 32											
TEMPERATURE (°C)											
°C											
Temperature in degrees Celsius Temperature in degrees Fahrenheit											
40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000											

NOTE: 1 ft = 0.3048 m; 1 in = 2.54 cm; 1 lb = 0.4536 kg; 1 mi = 1.60934 km; 1 acre = 4047 m²; 1 cu ft = 0.0283 m³; 1 cu in = 16.387 cm³; 1 gal = 3.785 liters.

LIST OF ILLUSTRATIONS

<u>FIGURES</u>		<u>Page</u>
FIGURE 2-1	GENERATION OF LAX-1100	2-5
FIGURE 3-1	LAX-1100 TAPE FORMAT	3-2
FIGURE 3-2	HUB OCTAL CODES	3-6

<u>TABLES</u>		
TABLE 2-1	1978 AVIATION FORECASTS FOR THE L.A. HUB	2-3
TABLE 2-2	COMPARISON OF FORECASTS	2-4
TABLE 3-1	AIRPORT CODE LIST	3-5
TABLE 4-1	THE LAX-1100 DATA SET	4-2

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution/	
Availability Codes	
Avail and/or	
Dist	Special
A	

TABLE OF CONTENTS

	<u>Page</u>
1. INTRODUCTION	1-1
2. THE LAX-1100 MODEL	2-1
2.1 Review of LAX-1840 Methodology	2-1
2.2 New Forecast	2-2
2.3 Derivation of LAX-1100	2-2
3. DATA FORMATS	3-1
3.1 Tape Format	3-1
3.2 Formats For Each Card Image	3-1
4. THE SNAPSHOT	4-1
APPENDIX A: REFERENCES	A-1

LIST OF ILLUSTRATIONS

<u>FIGURES</u>		<u>Page</u>
FIGURE 2-1	GENERATION OF LAX-1100	2-5
FIGURE 3-1	LAX-1100 TAPE FORMAT	3-2
FIGURE 3-2	HUB OCTAL CODES	3-6

<u>TABLES</u>		
TABLE 2-1	1978 AVIATION FORECASTS FOR THE L.A. HUB	2-3
TABLE 2-2	COMPARISON OF FORECASTS	2-4
TABLE 3-1	AIRPORT CODE LIST	3-5
TABLE 4-1	THE LAX-1100 DATA SET	4-2

1. INTRODUCTION

This document describes an air traffic model of the Los Angeles basin projected into the 1995 time frame. The Los Angeles basin is known to be the area of the densest air traffic in the United States at this time. It is expected to continue to be the densest area of air traffic activity in the 1990s. This model is a "snapshot" of air traffic in the Los Angeles basin, and represents air traffic at a "peak" instant in 1995, i.e., an instant which contains the greatest number of aircraft expected to be airborne in that area at any time during 1995. It contains complete position and velocity information on each aircraft in the basin at this peak instant. The model contains 1105 aircraft and is referred to as the LAX-1100 model.

LAX-1100 is derived from an earlier air traffic model of the Los Angeles basin for the same year, described in Reference 1. LAX-1100 revises that model by using current air traffic forecasts, but maintains all the realism inherent in that model such as topographical and airspace constraints, and aircraft performance.

This document briefly describes the methodology for deriving LAX-1100 and its data formats. It also lists each aircraft in the model.

The model is stored on tape number 1218 at the MITRE/Washington Computing Center at 1820 Dolley Madison Boulevard, McLean, Virginia 22102.

2. THE LAX-1100 MODEL

LAX-1100 is derived from an existing and previously widely used traffic model of the 1995 Los Angeles hub described in Reference 1, here referred to as LAX-1840. LAX-1840 makes extensive use of real life information about the Los Angeles basin, such as airport locations, terrain, likely airspace and route restrictions, traffic flows and patterns, aircraft altitude and speed profiles appropriate to their performance categories and flight types. The model was hand made; all this renders the model highly realistic. However, the traffic levels used for building the model were based on the forecasts available in 1972. Air traffic statistics have since experienced a significantly slower rate of growth as a result of the energy crisis. The LAX-1100 model incorporates the latest FAA forecasts. It is based on the LAX-1840 model and maintains all the realism otherwise inherent in that model. Section 2.1 briefly summarizes the relevant methodology of the original LAX-1840 model. Section 2.2 summarizes the new forecasts used for revising LAX-1840. Section 2.3 describes the method used for obtaining LAX-1100.

2.1 Review of LAX-1840 Methodology

Reference 1 uses the growth in the total annual operations in the Los Angeles hub to estimate the growth in the peak instantaneous airborne count (IAC) in the basin. Let N71 and N95 be the peak IACs for the Los Angeles hub in 1971 and 1995, respectively. Let A71 and A95 be the total annual operations in the Los Angeles hub for 1971 and 1995, respectively. Then, Reference 1 assumes that

$$\frac{N95}{N71} \approx \frac{A95}{A71}$$

Reference 2 provides a peak IAC of 495 for the base year (actually 1972). Reference 3 shows that this IAC is based on about 82% of the air traffic activity in the basin. Thus, the total basin IAC, N71, was estimated by Reference 1 to be 600. The 1971 annual operations count A71 = 6,357,000 operations was available from FAA sources. The 1995 operations count, A95, was obtained by the following method:

$$A95 = (1+R)^{24} * A71, \text{ where } R \text{ is given by } (1+R)^{10} = A83/A73$$

A83 and A73 were obtained from FAA Terminal Area forecasts (see Reference 1 for details). This gives $A95 = 19,477,000$. Therefore $N95 = (19477/6357) * 600 = 1840$. This total IAC count of 1840 was then subdivided into various subgroups in proportion to component operation numbers.

2.2 New Forecast

Reference 4, published in 1985, provides the FAA forecast of air traffic in the Los Angeles basin for the year 1990. (This forecast was published in a few years before the airline deregulation act was passed.) However, a better forecast is not yet available. Deregulation may be expected to affect air traffic fleet projections slightly. Table 2-1 lists the forecasts from Reference 4 for the years 1985 and 1990 for three types of operations: air carriers, general aviation itinerant, and general aviation local. This is the finest subdivision of operations available in Reference 4. For this study, the operations within each category were projected another five years, to the year 1995, assuming a constant yearly percent growth between 1985 and 1990. These resulting new forecasts for 1995 are also listed in Table 2-1.

Table 2-2 compares these new forecasts to the original 1990 forecasts used in deriving LAX-1840. Military operations are assumed to remain constant at the levels of Reference 4. Table 2-2 shows the ratio of the new forecasts to the old forecasts for each flight category. The new forecast yields a total annual operations count which is about 60% of the old forecast. Thus, maintaining the methodology used in Reference 4, the total number of aircraft in the 1995 Los Angeles basin peak snapshot would be expected to be about 60% of the number in LAX-1840.

2.3 Derivation of LAX-1100

Since Reference 4 assumes a proportionality of the growth in annual operations to peak IAC at all levels, the new forecasts should be reflected in smaller total IACs for the basin in each of the three flight categories of Table 2-2 in the proportions listed there. A random number generator is used to delete aircraft from the LAX-1840 model, as shown in Figure 2-1. The final set of aircraft in the output file LAX-NEW is thus a proper subset of the aircraft in LAX-1840. Each aircraft that is retained in LAX-NEW has all its original coordinate values.

Three different runs were made, with three different starting random number seeds providing three different LAX-NEW models. The three versions had 1074, 1096 and 1105 aircraft respectively. The 1105 aircraft model was chosen as the revised Los Angeles basin model and was named LAX-1100.

TABLE 2-1
1973 AVIATION FORECASTS FOR THE L.A. HUB

Type of projection	Forecast for year	air carriers	General Aviation	
			Itinerant	Local
FAA (Reference 4)	1985	14,400	4,317	36,761
	1990	16,114	4,320	40,661
Geometric projection	1995	19,224	5,113	44,871

TABLE 2-2
COMPARISON OF FORECASTS
(Annual Operations in thousands)

Air Carriers	General Aviation		Military	Total
	Airline	Private		
Net 1993 Forecast (from Table 2-1)	124.1	535.7	10.2	670.0
1994 1995 Forecast (from Tables 3-2 and 3-4 of Reference 1)	134.4	888.2	35.9	1058.5
Scaling Factor	0.911	0.607	0.507	1

**FIGURE 2-1
GENERATION OF LAX-1100**

3. DATA FORMATS

The LAX-1100 model consists of 1105 aircraft. The model exists as a series of 1105 card images, each card image consisting of data on one aircraft, and is stored on a 9-track tape.

Section 3.1 describes the format information for reading the tape, and section 3.2 describes the formats for interpreting each card image.

3.1 Tape Format

Tape number 1218 is a 9-track tape and contains the LAX-1100 model. It has been created on an IBM/370 (Model 148) computer running VM/370. The data density is 800 bits per inch. The data set consists of 1105 logical records as shown in Figure 3-1 (see Reference 5 for IBM/370 nomenclature). Each logical record corresponds to a physical record 80 bytes long. Each byte represents an EBCDIC coded alphanumeric character. Each logical record is thus an 80 column card image. A tape mark indicates the end of the data set on the tape.

3.2 Formats For Each Card Image

This section describes the data formats for each card image. Each card image contains complete data on one aircraft. These formats are identical with those necessary to interpret the LAX-1840 model of Reference 1. Reference 1 also contains a description of these formats; however, Reference 1, as published in March 1974, contained an error affecting the interpretation of columns 41 through 53. This error was later corrected by a correction sheet dated September 11, 1974. The formats described in this section incorporate these corrections. The following formats are thus the correct formats:

<u>Item No.</u>	<u>Card Columns</u>	
1	1-4	Aircraft sequence number
2	6-13	Aircraft description code
3	15-17	Departure airport code
4	19-21	Arrival airport code
5	23-39	Aircraft position (x, y, z)
6	41-59	Aircraft velocity ($\dot{x}, \dot{y}, \dot{z}$)
7	61-64	Aircraft heading
8	66-69	Aircraft ground speed
9	71-74	Aircraft turn rate
10	76	Flight plan code
11	78	Flight phase code

FIGURE 1
LAX-1100 TAPE FORMAT

The interpretation of the data codes and the arithmetic precision and units of measure are included in the following detailed description of each data item:

1. Aircraft sequence number
Cols: 1-4 nnnn
Data: a four digit integer ranging from 1 to 1105

2. Aircraft description code
Cols: 6-13 a₁ a₂ a₃ a₄ nnnn

Data: Descriptor Category a₁ a₂ a₃ a₄

Sequence number nnnn within a category

where

Air carrier a₁ a₂ = AC

a ₃ =	T	SST
	L	Long haul
	M	Medium haul
	S	Short haul
	U	Ultra-short haul

a ₄ =	H	Heavy aircraft
	L	Light aircraft

General Aviation or Military

a ₁ =	V	for VFR
	I	for IFR

a ₂ =	I	for itinerant
	L	for local
	O	for over

a ₃ =	G	for general aviation
	M	for military

a ₄ =	A	Single engine 1-3 places
	B	Single engine 4 or more places
	C	Multi-engine under 12,500 pounds
	D	Multi-engine over 12,500 pounds
	E	Turboprop
	F	Turbojet

3. Departure airport code

Cols: 15-17 aaa

Data: One of 48 airport codes (see Table 3-1) or one of eight hub boundary octals (see Figure 3-2) for flights departing from airports outside of the hub.

4. Arrival airport code

Cols: 19-21 aaa

Data: Same as (3). (Hub codes for flights destined for airports outside the hub.)

5. Aircraft positions (x, y, z)

Cols: 23-28, 30-35, 37-39

± xxx.x, ± xxx.x xxx

Data: x coordinate in nautical miles

y coordinate in nautical miles

z coordinate in hundreds of feet

The coordinate system is centered at the LAX VORTAC. The VORTAC is at 33° 55' 59" North Latitude and 118° 25' 52" West Longitude. The x-axis points (true) east and the y-axis points (true) north. Altitudes are referenced to mean sea level.

6. Aircraft velocities (y, x, z)

Cols: 41-46, 48-53, 55-59

± xxx.x ± xxx.x ± xxxx

Data: y is velocity in knots

x is velocity in knots

z is climb or descent rate in feet per minute

7. Aircraft heading

Cols: 61-64 xxxx

Data: Aircraft heading from 0 to 359 degrees
(0 = true north, angles increasing clockwise)

8. Aircraft ground speed

Cols: 66-69 xxxx

Data: Ground speed in knots

TABLE 3-1
AIRPORT CODE LIST

<u>Airport Code</u>	<u>Airport Name</u>	<u>Airport Code</u>	<u>Airport Name</u>
1. LGB	Long Beach	25.	Rialto
2. VNY	Van Nuys	26..	Apple Valley
3. SNA	Santa Ana	27..	Norton AFB
4. LAX	Los Angeles International	28..	Corona
5. TOA	Torrance	29..	Redlands
6. SMO	Santa Monica	30..	MCAS El Toro
7. HHR	Hawthorne	31..	HeMet Ryan
8. BUR	Burbank	32..	San Fernando
9. POC	La Verne Brackett	33..	Fla Bob (Riverside)
10. CNO	Chino	34..	Whiteman (L.A.)
11. EMT	El Monte	35..	Agua Dulce
12. FUL	Fullerton	36..	Skylark
13. CPM	Compton	37..	Santa Paula
14. XI4	George AFB	38..	Quartz Hill
15. EDW	Edwards AFB	39..	Rosamond
16. OXR	Oxnard	40..	Capistrano
17. ONT	Ontario	41..	Tri City
18. RAL	Riverside	42..	Morrow
19. L16	Meadowlark	43..	Hawkins
20. WJF	Fox	44..	Perris Valley
21. PMD	Palmdale	45..	Rancho California
22. L02	Santa Susana	46..	Hesperia Airlodge
23. CCB	Cable	47..	Sun Hill Ranch
24. RIV	March AFB	48..	Sterks Ranch

NOTE: The Hub Is Divided Into Eight Equiangular Octals For Arrivals And Departures Across Its Boundaries.

**FIGURE 3-2
HUB OCTAL CODES**

9. Aircraft turn rate

Cols: 71-74 + x.x

Data: Turn rate in degrees per second
+ = clockwise
- = counter clockwise

10. Flight plan code

Col: 76 n

Data: n = 1 flight plan filed
n = 0 no flight plan

11. Flight phase code

Col: 78 n

Data: n = 0 Cruise phase
n = 1 Climb phase
n = 2 Descent phase

A complete listing of this data set is provided in Chapter 4.

4. THE SNAPSHOT

Table 4-1 lists the LAX-1100 model.

TABLE 1

AIRCRAFT POSITION AND VELOCITY

SECN ID#	AIRCRAFT DESCRIP	AIRPORT	AIRCRAFT POSITION		AIRCRAFT VELOCITY		GRND RATE	TURN	C G	
			N	M	E	M	FT/MN	FT/MN	RRNG	SPD
1	ACL0001	LAX H65	-41.3	-8.2	187	-55.2	-13.1	28.0	260	518 0.0 1 1
2	ACL0002	HBT LAX	-14.7	17.2	133	-258.6	124.9	-1400	158	279 0.0 1 2
3	ACL0003	LAX HBT	-21.0	34.3	222	-270.7	-67.4	2350	346	279 0.0 1 1
4	ACL0004	HBT LAX	-15.1	56.2	210	-250.2	144.5	-1450	150	289 0.0 1 2
5	ACL0005	LAX HBT	65.9	48.2	370	155.0	264.4	0	60	310 0.0 1 0
6	ACL0006	HBT LAX	55.1	51.0	262	-263.1	95.7	0	160	280 0.0 1 0
7	ACL0007	LAX HBT	14.3	34.4	150	-256.2	136.0	2450	23	279 0.0 1 1
8	ACL0008	HBT LAX	15.8	27.7	35	-24.9	-237.6	-1200	264	239 0.0 1 2
9	ACL0009	LAX HBT	10.0	16.9	105	134.5	232.9	2250	50	269 0.0 1 1
10	ACM0010	HBT LAX	51.7	12.4	150	-228.6	-121.5	-1400	208	259 0.0 1 2
11	ACM0011	HBT LAX	21.0	-13.1	51	-147.1	-175.4	-1150	230	229 0.0 1 2
12	ACM0012	HBT LAX	10.0	7.0	27	-27.4	-217.8	-750	264	214 0.0 1 2
13	ACM0013	HBT LAX	1.0	4.8	74	-161.9	161.9	-1150	135	229 -2.0 1 2
14	ACM0014	HBT LAX	-14.4	6.2	44	-153.6	133.0	-1200	130	239 -1.5 1 2
15	ACM0015	HBT LAX	7.0	33.0	141	-248.6	13.1	-1250	177	249 0.0 1 2
16	ACM0016	HBT LAX	14.6	42.4	145	-64.6	-24.6	2100	255	24 0.0 1 1
17	ACM0017	HBT LAX	50.3	5.1	136	-24.9	-237.6	-1200	264	234 0.0 1 2
18	ACM0018	HBT LAX	68.9	14.4	175	-137.2	-219.6	-1300	238	259 0.0 1 2
19	ACM0019	HBT LAX	64.1	36.2	231	-237.5	-136.2	-1375	208	259 0.0 1 2
20	ACM0020	LAX HBT	-3.4	-6.3	15	-17.3	-193.2	700	265	199 0.0 1 1
21	ACM0021	LAX HBT	-7.0	-6.8	35	-167.7	-141.7	1850	220	219 0.0 1 1
22	ACM0022	LAX HBT	-4.3	-5.6	53	-3.8	214.9	300	71	219 0.0 1 1
23	ACM0023	LAX HBT	13.7	6.8	50	33.6	237.6	0	82	240 0.0 1 2
24	ACM0024	LAX HBT	17.2	21.1	152	129.5	224.3	1775	61	259 0.0 1 1
25	ACM0025	LAX HBT	10.3	24.1	60	238.4	101.1	2150	23	259 0.0 1 1
26	ACM0026	LAX HBT	-1.3	-31.0	175	-249.6	101.7	2210	154	263 -1.5 1 1
27	ACM0027	LAX HBT	55.1	-34.4	351	-5.4	319.9	0	91	310 0.0 1 0
28	ACM0028	LAX HBT	44.5	36.5	376	144.5	250.2	2425	60	229 0.0 1 1
29	ACM0029	LAX HBT	-15.5	17.2	105	270.7	-67.4	2350	346	279 0.0 1 1
30	ACM0030	LAX HBT	51.7	45.9	341	71.7	310.8	900	77	319 0.0 1 1
31	ACM0031	LAX HBT	55.1	33.0	265	190.2	204.0	2375	47	273 0.0 1 1
32	ACM0032	LAX HBT	50.6	-12.4	321	-20.8	299.2	1000	94	299 0.0 1 1
33	ACSL0001	HBT LAX	4.8	3.7	43	-64.5	198.7	-900	108	209 0.0 1 2
34	ACSL0002	HBT LAX	7.4	0.6	20	-22.8	-217.8	-1100	264	219 0.0 1 2
35	ACSL0003	HBT LAX	16.9	-6.2	43	147.1	-175.4	-1150	310	229 0.0 1 2
36	ACSL0004	HBT LAX	37.9	3.7	96	-23.9	-227.7	-1150	264	229 0.0 1 2
37	ACSL0005	HBT LAX	-10.0	47.2	185	-24.3	129.5	-1300	150	259 0.0 1 2
38	ACSL0006	HBT LAX	-48.2	42.7	250	-144.9	214.7	-1250	124	259 0.0 1 2
39	ACSL0007	HBT LAX	-13.1	6.8	70	252.2	-52.3	0	146	260 0.0 1 1
40	ACSL0008	LAX HBT	-4.3	8.6	54	114.5	198.3	1900	60	229 0.0 1 1
41	ACSL0009	LAX HBT	5.9	13.4	60	220.0	73.3	2000	23	239 0.0 1 1
42	ACSL0010	LAX HBT	32.7	2.3	120	119.5	206.9	2000	60	239 -2.5 1 1
43	ACSL0011	LAX HBT	19.6	-10.6	227	-14.7	268.3	2250	94	269 0.0 1 1
44	ACUL0001	LAX LGB	5.5	-8.6	79	-3.9	228.9	1900	91	229 0.0 1 1
45	ACUL0002	LAX SNA	8.2	-9.9	37	-4.0	233.9	1950	91	234 0.0 1 1
46	ACUL0003	LAX SNA	3.0	-5.5	30	-140.7	157.7	1200	130	219 0.0 1 1
47	ACUL0004	LAX SNA	28.6	-10.3	175	-17.3	248.3	2050	94	249 0.0 1 1
48	ACUL0005	LAX SNA	19.3	-8.9	120	-8.3	238.8	2000	97	239 0.0 1 1
49	ACUL0006	LAX ONT	-1.0	-0.6	11	-102.2	-121.8	1300	230	159 0.0 1 1
50	ACUL0007	LAX ONT	3.4	5.5	50	29.2	207.9	0	82	210 0.0 1 1

TABLE 4-1
(Continued)

TABLE 4-1
(Continued)

AIRCRAFT	AIRCRAFT POSITION	AIRCRAFT VELOCITY	GND TURN	TIME
SE-2N DESIRED AIRPORT	N 41° 4' 46" E 71° 40' 0" KMGTY KNIVES FT/MN BRNG SPD RATE	0 0 0 0		
102 ACMD-037 H37 H08	-32.0 -32.0 -32.0 -32.0 -32.0	145 274 0.0 1 2		
103 ACMD-038 H38 H08	32.0 -32.0 32.0 -32.0 32.0	145 274 0.0 1 2		
104 ACMD-039 H39 H07	32.0 15.5 25 -17.3 -19.2	230 264 0.0 1 2		
105 ACMD-040 H40 H07	-18.2 28.6 17.2 257.2 -54.3	2200 347 254 0.0 1 2		
106 ACSE-036 H37 H08	-1.7 25.8 115 -243.6 12.7	-1200 177 244 0.0 1 2		
107 ACSE-037 H37 H01	56.0 43.0 13.0 116.2 24.2	2 65 275 0.0 1 2		
108 ACSE-038 H38 H07	-16.2 23.1 13.0 238.6 -46.5	2100 347 254 0.0 1 2		
109 ACUL-033 H38 L08	17.7 -12.0 11 -39.9 226.5	0 100 230 0.0 1 2		
110 ACUL-031 H38 L08	-2.0 7.2 31 -295.7 74.9	1600 160 214 0.0 1 2		
111 ACUL-032 H38 RAL	50.1 3.1 10 -127.6 195.5	-1000 125 240 265 0.0 1 2		
112 ACUL-039 H38 L09	23.3 -15.1 32 143.6 -165.2	-1100 311 219 0.0 1 2		
113 ACUL-033 H33 LAX	12.7 -5.5 10 115.0 -137.1	1000 310 179 0.0 1 2		
114 ACUL-034 H34 L08	13.4 17.6 42 107.0 142.3	-540 60 214 -200 0.0 1 2		
115 ACUL-035 H35 L08	-24.4 16.5 60 1.0 -204.0	-1000 270 204 0.0 1 2		
116 ACUL-036 L08 NT	57.3 5.5 40 0.0 -234.0	-250 0 230 -300 0.0 1 2		
117 ACUL-037 PAL LAX	-4.4 2.7 60 41.4 -246.2	1 280 250 1.0 1 0		
118 ACUL-034 PAL H09	22.1 11.3 0 160.0 -192.7	-1000 310 249 0.0 1 2		
119 ACUL-033 H39 L09	-10.3 11.3 0 -105.6 226.5	0 115 250 0.0 1 2		
120 TIGR-001 L08 L08	-5.1 18.2 49 -42.7 117.4	0 110 125 0.0 1 2		
121 TIGR-002 RIC LAX	20.3 2.4 43 -15.0 -143.2	1 264 144 0.0 1 2		
122 TIGR-003 NT LAX	32.0 4.2 40 -69.9 -121.2	0 240 160 0.0 1 2		
123 TIGR-005 INT H07	5.8 41.3 78 198.0 -22.5	0 10 130 0.0 1 2		
124 TIGR-006 INT SMC	23.4 5.0 50 -9.0 -121.6	0 266 130 0.0 1 2		
125 TIGR-007 L08 H08	8.4 7.2 41 100.6 -65.3	0 327 120 0.0 1 2		
126 TIGR-008 LAX PJC	14.4 3.4 52 61.0 137.0	0 66 150 0.0 1 2		
127 TIGR-009 INT H07	39.3 2.0 54 113.7 -63.0	0 331 130 0.0 1 2		
128 TIGR-010 LAX INT	28.2 4.8 51 17.0 134.9	0 83 140 0.0 1 2		
129 TIGR-011 L08 INT	22.4 17.0 50 20.1 143.5	0 82 145 0.0 1 2		
130 TIGR-012 SNA L08	43.1 -3.7 25 47.5 122.5	-600 54 149 -300 0.0 1 2		
131 TIGR-013 SAD L08	22.7 2.0 67 24.2 153.0	0 81 155 0.0 1 2		
132 TIGR-014 R01 L08	55.3 0.6 57 -20.1 -127.4	-750 261 129 0.0 1 2		
133 TIGR-015 PAL L08	33.4 -1.3 42 -55.3 -160.7	0 251 170 0.0 1 2		
134 TIGR-003 L04 H03	41.3 21.7 89 -102.1 220.4	0 117 225 0.0 1 0		
135 TIGR-004 LAX SNA	16.2 -13.1 33 -49.1 167.7	0 118 190 0.0 1 0		
136 TIGR-005 PAL SNA	46.9 -5.4 41 -95.3 -147.1	0 243 210 0.0 1 0		
137 TIGR-008 SVA LAX	18.6 -13.4 41 141.7 -118.9	0 320 185 0.0 1 0		
138 TIGR-009 R01 LAX	12.4 6.6 51 -124.7 63.5	0 153 140 0.0 1 0		
139 TIGR-011 PAL LAX	34.4 1.7 63 -17.8 -204.2	0 265 205 0.0 1 0		
140 TIGR-012 R01 LAX	5.3 25.5 60 -128.3 -21.3	0 189 150 0.0 1 0		
141 TIGR-015 LAX H07	-27.2 42.0 63 168.8 -97.5	0 330 145 0.0 1 0		
142 TIGR-017 L08 H08	24.8 -1.3 60 3.6 -164.7	0 273 165 0.0 1 0		
143 TIGR-018 R01 PJC	14.3 12.0 53 39.5 -145.8	0 282 190 0.0 1 0		
144 TIGR-019 L06 AUR	14.4 -9.6 52 31.0 -166.2	0 296 185 0.0 1 0		
145 TIGR-021 R01 PJC	65.5 25.8 79 -47.8 -173.6	0 255 145 0.0 1 0		
146 TIGR-023 L08 INT	24.8 -4.8 32 148.5 212.1	1200 55 259 0.0 1 1		
147 TIGR-024 LAX INT	42.4 3.1 25 49.2 135.3	-1200 70 144 -100 0.0 1 2		
148 TIGR-025 R01 INT	7.4 33.1 99 -130.0 -117.0	0 222 175 0.0 1 0		
149 TIGR-026 R01 H07	-7.4 55.1 70 199.0 -151.0	0 320 235 0.0 1 0		
150 TIGR-020 R01 L08	14.2 20.6 68 -127.9 119.3	0 137 175 0.0 1 0		

TABLE 2

JULY 1968

AI-5-AFT	AI-5-AFT AIRPORT	AI-5-AFT DIST.	AI-5-AFT DIR.	AI-5-AFT DIST.	AI-5-AFT DIR.	AI-5-AFT POSITION	AIRCRAFT ID	AIRCRAFT VELOCITY	AI-5-AFT	AI-5-AFT
151	AI-5-AFT	131	133	136	137	-25.9	77	175.5	-135.4	0
152	AI-5-AFT	133	135	136	137	-27.5	73	-79.4	131.8	0
153	AI-5-AFT	131	133	136	137	-26.5	21	-93.4	69.3	-700
154	AI-5-AFT	132	134	135	136	45.4	8.9	73	233.5	62.6
155	AI-5-AFT	133	135	136	137	5.4	19	-2.9	-153.9	-1000
156	AI-5-AFT	133	135	136	137	17.5	40	111.0	-165.5	0
157	AI-5-AFT	133	135	136	137	27.5	20.0	32	42.0	203
158	AI-5-AFT	133	135	136	137	58.2	5.8	73	30.4	191.2
159	AI-5-AFT	132	134	135	136	26.0	3.1	38	-63.4	-137.4
160	AI-5-AFT	131	133	134	135	62.2	14.3	61	-73.4	-191.3
161	AI-5-AFT	131	133	134	135	26.1	-15.5	23	-140.7	-1000
162	AI-5-AFT	134	136	138	139	12.5	-1.0	56	0.0	-234.0
163	AI-5-AFT	135	136	137	138	12.0	1.0	69	133.0	-113.0
164	VI-5-AFT	131	133	135	137	11.7	12.4	49	-14.7	93.7
165	VI-5-AFT	132	134	136	138	12.5	11.3	65	-63.1	99.0
166	VI-5-AFT	133	135	137	139	-10.1	22.7	45	7.4	84.6
167	VI-5-AFT	130	VNY	132	VNY	1.7	2.4	43	-11.5	-33.0
168	VI-5-AFT	130	VNY	132	VNY	8.1	33.1	43	-56.0	-67.1
169	VI-5-AFT	130	VNY	132	VNY	8.3	35.8	66	-88.4	-14.0
170	VI-5-AFT	130	VNY	132	VNY	-13.1	40.3	74	-70.3	37.2
171	VI-5-AFT	131	VNY	SNA	SNA	26.0	-11.7	13	-60.5	-23.7
172	VI-5-AFT	131	SNA	SNA	SNA	28.2	-22.4	39	57.8	-64.9
173	VI-5-AFT	116	483	SNA	SNA	46.2	-27.2	81	69.2	-11.8
174	VI-5-AFT	115	TDA	TDA	TDA	11.7	-11.0	21	35.1	-92.8
175	VI-5-AFT	115	TDA	TDA	TDA	31.7	15.5	65	-69.0	-48.7
176	VI-5-AFT	122	TDA	H83	H83	39.2	-27.9	73	-64.7	64.4
177	VI-5-AFT	124	H83	SNA	SNA	3.4	1.0	44	68.7	-49.9
178	VI-5-AFT	125	PMD	PMD	PMD	13.7	2.1	47	-95.2	-54.9
179	VI-5-AFT	127	PMD	PMD	PMD	7.0	21.7	35	-90.5	29.8
180	VI-5-AFT	124	H83	H83	H83	-5.1	10.0	42	57.2	-63.1
181	VI-5-AFT	124	H83	H83	H83	4.2	9.6	27	-54.6	-65.1
182	VI-5-AFT	121	H83	H83	H83	4.2	-3.6	10	0.0	-70.0
183	VI-5-AFT	121	H84	H84	H84	31.3	-2.7	42	0.0	-32.0
184	VI-5-AFT	134	H84	H84	H84	56.2	16.2	62	0.0	95.0
185	VI-5-AFT	135	H84	H84	H84	4.1	11.7	12	7.7	84.6
186	VI-5-AFT	136	H84	H84	H84	24.1	13.7	53	10.7	-104.4
187	VI-5-AFT	137	H84	H84	H84	3.0	2.6	27	-73.3	-5.1
188	VI-5-AFT	138	H84	H84	H84	19.3	34.8	88	-6.1	-54.6
189	VI-5-AFT	134	VNY	PMD	PMD	25.5	-2.3	33	0.0	-34.0
190	VI-5-AFT	131	SZP	PMD	PMD	-2.5	27.2	58	13.9	97.0
191	VI-5-AFT	132	PMD	PMD	PMD	20.6	20.6	75	-68.9	57.8
192	VI-5-AFT	133	PMD	H83	H83	18.5	31.0	96	86.0	-63.2
193	VI-5-AFT	134	VNY	CND	CND	23.9	17.2	55	46.9	-53.6
194	VI-5-AFT	135	CND	CND	CND	31.7	-12.4	17	72.9	91.3
195	VI-5-AFT	112	CND	CND	CND	51.4	5.8	21	-20.7	-77.2
196	VI-5-AFT	111	H81	H81	H81	68.6	4.4	55	6.2	4.7
197	VI-5-AFT	111	H82	H82	H82	59.3	-14.2	92	-60.1	50.1
198	VI-5-AFT	151	H82	H82	H82	23.5	32.3	63	-78.4	39.5
199	VI-5-AFT	152	H81	H81	H81	43.1	20.6	94	72.7	61.0
200	VI-5-AFT	154	H81	H81	H81	-22.0	15.8	27	-15.6	83.6

ANSWER

TABLE 4
Flight time

AIRCRAFT SERIAL NUMBER	AIRCRAFT TYPE	POSITION	VELOCITY	RAD TURN	
				MILES	MI FT
251 VIGA0130 HSI SBT	79.4	13.7	-43 -39.9	-63.4	0 240 60 0.0 1 0
252 VIGA0132 TJA X25	46.1	1.3	35 54.6	65.1	0 50 45 0.0 0 0
253 VIGA0133 TJA X25	46.5	1.7	20 30.0	79.0	600 90 79 0.0 1 1
254 VIGA0135 TAT X15	20.6	32.6	34 69.2	37.9	0 30 80 0.0 0 0
255 VIGA0137 SNA X33	44.9	-23.3	33 -9.1	104.6	0 95 105 0.0 0 0
256 VIGA0139 VNY X12	43.7	19.3	34 61.2	-51.4	0 320 80 0.0 0 0
257 VIGA0139 VNY X44	26.2	34.1	55 42.5	73.6	0 60 45 0.0 0 0
258 VIGA0141 X43 HB7	56.5	56.9	48 72.5	-33.8	0 335 40 0.0 1 0
259 VIGB0001 VNY LGR	16.5	10.3	35 -59.9	103.9	0 120 120 0.0 0 0
260 VIGB0002 VUP LGR	20.3	6.5	33 -119.5	10.4	0 175 120 0.0 0 0
261 VIGB0004 VNT LGR	20.3	-3.4	27 -64.2	-76.6	0 230 100 0.0 0 0
262 VIGH0005 WJF LGR	10.3	32.7	65 -154.4	13.5	0 175 155 0.0 1 0
263 VIGH0007 L36 LGR	52.0	-2.4	23 -112.7	-41.0	0 200 120 0.0 0 0
264 VIGH0008 L55 LGR	33.8	-2.4	25 -15.6	-84.6	0 260 90 0.0 0 0
265 VIGH0012 X31 LGR	55.1	-21.0	40 0.0	-115.0	0 270 115 0.0 1 0
266 VIGH0013 H33 LGR	38.9	-31.0	47 136.9	-63.3	0 335 150 0.0 0 0
267 VIGH0015 HB2 LGR	64.5	-16.9	27 12.6	-144.4	0 275 145 0.0 0 0
268 VIGH0016 LGR HR2	6.8	-6.5	16 110.3	-92.5	800 320 144 1.0 1 1
269 VIGH0016 TJA VNY	26.8	11.0	24 0.0	-115.0	0 270 115 0.0 0 0
270 VIGH0019 P1C VNY	16.9	-4.1	25 -19.9	113.2	0 100 115 0.0 0 0
271 VIGH0020 P1M VNY	17.5	0.6	23 118.1	-70.8	0 350 120 0.0 0 0
272 VIGH0021 OXR VNY	-27.5	16.2	36 0.0	115.0	0 90 115 0.0 0 0
273 VIGH0022 HAL VNY	31.3	13.1	44 40.1	-149.7	0 285 155 0.0 0 0
274 VIGH0026 L12 VNY	34.4	15.1	43 -122.1	-44.4	0 290 130 0.0 0 0
275 VIGH0027 TIR VNY	54.5	14.1	26 76.4	-91.1	100 310 119 0.0 1 0
276 VIGH0028 X01 VNY	3.1	31.0	35 -103.0	-59.4	500 210 119 0.0 0 1
277 VIGH0031 SBT VNY	29.5	15.5	47 28.6	-152.4	0 280 165 0.0 1 0
278 VIGH0032 X15 VNY	18.9	51.4	44 -20.8	-118.1	0 260 120 0.0 0 0
279 VIGH0033 Y33 VNY	44.8	-11.7	44 138.5	-80.0	0 330 160 0.0 1 0
280 VIGH0035 H07 VNY	-12.0	34.8	35 -86.6	50.0	0 150 100 0.0 0 0
281 VIGH0036 VNY HB7	-13.7	62.0	85 126.8	-46.1	0 340 135 0.0 0 0
282 VIGH0038 VNY HBJ	-2.7	39.3	53 70.7	70.7	0 45 100 0.0 1 0
283 VIGH0039 H91 VNY	33.9	37.2	55 -39.3	-108.0	0 250 115 0.0 0 0
284 VIGH0040 VNY SNA	2.7	-5.1	35 -88.0	73.9	0 140 115 0.0 0 0
285 VIGH0041 SMD SNA	29.3	-0.3	37 -113.2	19.9	0 170 115 0.0 0 0
286 VIGH0044 SFR SNA	14.8	-10.3	55 -88.9	126.9	0 125 155 0.0 0 0
287 VIGH0047 X25 SNA	51.4	-5.9	24 -86.6	-44.9	0 210 100 0.0 0 0
288 VIGH0048 X14 SNA	46.9	16.4	46 -105.0	0.0	0 180 105 0.0 0 0
289 VIGH0049 X43 SNA	40.0	30.7	73 -102.8	122.5	0 130 160 0.0 0 0
290 VIGH0050 SNA HB3	44.8	-34.1	56 -80.4	67.4	0 140 105 0.0 0 0
291 VIGH0051 HB3 SNA	36.9	-36.5	67 118.7	-99.6	0 320 155 0.0 1 0
292 VIGH0052 SNA HB2	33.8	20.6	53 0.0	154.0	600 90 154 0.0 0 1
293 VIGH0054 VNY TOA	-1.3	5.8	35 -114.5	17.0	0 175 115 0.0 0 0
294 VIGH0057 CND TOA	34.4	2.3	25 -106.0	-136.0	0 225 150 0.0 0 0
295 VIGH0059 JNT TOA	20.0	-5.8	26 -67.4	-116.9	0 240 135 0.0 0 0
296 VIGH0060 L16 TOA	17.5	-14.8	6 0.0	-119.0	600 270 119 1.5 0 1
297 VIGH0061 P47 TOA	15.1	14.8	43 -80.3	95.7	0 130 125 0.0 1 0
298 VIGH0062 CCB TOA	34.8	5.9	27 -108.2	-62.4	0 210 125 0.0 1 0
299 VIGH0064 L12 TOA	63.8	0.0	44 -129.9	-74.9	0 210 150 0.0 1 0
300 VIGH0065 SFR TOA	1.3	-0.3	16 -110.4	65.8	0 157 120 0.0 0 0

TABLE 4
(Continued)

S/N	AIRCRAFT DESCRIP.	AIRPORT	AIRCRAFT POSITION IN AIRCRAFT VELOCITY						GRAD. TURB. C. C.		
			N	M	E	FT-100	KNOTS	KNOTS	FEET/MIN	BRNG	SPD RATE
301	V1580067	X42 TCA	47.6	-18.6	45	30.0	-33.0	0	270	80	0.0 1 0
302	V1580069	L15 TCA	8.6	-12.7	24	104.2	-44.6	0	335	115	0.0 0 0
303	V1580070	K25 TCA	35.5	-34.7	46	47.4	-40.4	0	230	105	0.0 0 0
304	V1580071	X15 TCA	30.3	16.9	45	-93.6	3.1	200	175	94	0.0 0 0
305	V1580072	X33 TCA	49.6	-25.5	46	47.8	-131.5	0	290	140	0.0 0 0
306	V1580073	X43 TCA	6.8	39.6	64	-86.7	-103.4	0	210	135	0.0 1 0
307	V1580074	T25 HBR	24.2	-21.3	74	-90.1	63.0	0	145	110	0.0 0 0
308	V1580075	H02 TCA	44.4	-12.7	36	0.0	-125.0	0	270	125	0.0 0 0
309	V1580076	T24 HBR	35.4	-6.5	54	54.9	117.8	0	65	130	0.0 0 0
310	V1580078	LMT SMU	12.6	14.1	45	28.2	-129.2	700	285	109	-3.0 0 1
311	V1580079	L12 SMU	2.4	8.6	16	-81.0	-56.7	-400	215	99	0.0 0 0
312	V15800795	L04 SMU	12.3	8.9	27	-21.7	-123.1	0	260	125	0.0 0 0
313	V15800796	APV SMU	59.3	25.1	43	-63.0	-40.1	0	235	110	0.0 1 0
314	V15800797	L66 SMU	25.4	6.8	25	68.9	-57.8	0	320	90	0.0 0 0
315	V15800798	X37 SMU	1.0	50.7	44	-62.4	-108.2	0	240	125	0.0 0 0
316	V15800791	A33 SMU	46.2	-9.3	67	84.9	-147.2	0	300	170	0.0 0 0
317	V15800793	S40 HBR	-19.2	44.8	87	96.5	-25.8	0	345	100	0.0 0 0
318	V15800794	P40 SMU	26.2	63.4	25	-98.6	-35.4	0	200	105	0.0 0 0
319	V15800795	W43 HBR	13.7	23.9	76	37.6	193.3	0	70	110	0.0 0 0
320	V15800796	V44 HBR	-0.6	4.1	36	-123.1	21.7	0	170	125	0.0 0 0
321	V15800797	SNA HBR	26.5	-6.8	25	44.4	-122.1	0	290	130	0.0 0 0
322	V15800798	Z48 HBR	11.3	-1.3	20	23.2	-131.4	400	280	134	0.0 0 1
323	V15800799	C41 HBR	34.5	-1.3	26	-19.1	-108.3	0	260	110	0.0 0 0
324	V1580100	H47 HBR	31.3	5.1	23	-42.7	-117.4	0	250	125	0.0 0 0
325	V1580101	L16 HBR	17.9	-5.8	26	52.4	-90.4	0	300	105	0.0 0 0
326	V1580103	L36 HBR	61.4	2.7	39	-67.4	-116.9	0	240	135	0.0 0 0
327	V1580106	W48 HBR	12.0	17.9	33	-103.4	36.7	0	140	135	0.0 0 0
328	V1580107	X31 HBR	18.9	11.0	34	-99.7	-6.9	0	134	100	0.0 0 0
329	V1580108	S79 HBR	-5.4	30.0	56	-22.5	128.0	0	100	130	0.0 1 0
330	V1580110	*15 HBR	19.2	19.6	57	-19.1	138.3	0	100	110	0.0 0 0
331	V1580111	H46 HBR	-31.0	31.7	55	-14.1	108.3	0	100	110	0.0 1 0
332	V1580113	H40 HBR	31.7	32.3	65	-95.2	-54.9	0	210	110	0.0 0 0
333	V1580115	H42 HBR	34.1	-8.9	33	86.7	-103.4	0	310	135	0.0 0 0
334	V1580119	L16 BUR	26.5	3.1	46	93.2	111.0	0	50	145	0.0 0 0
335	V1580120	P40 BUR	8.6	12.0	46	-53.7	-14.7	0	190	85	0.0 0 0
336	V1580122	X17 BUR	34.8	3.4	24	57.0	-122.3	0	295	135	0.0 1 0
337	V1580123	X42 BUR	43.1	-15.1	25	88.0	-73.4	0	320	115	0.0 0 0
338	V1580124	X32 BUR	1.3	27.4	45	-169.3	14.8	0	175	170	0.0 0 0
339	V1580127	X43 BUR	2.5	38.9	56	-134.0	0.0	500	180	184	0.0 0 0
340	V1580130	H41 BUR	17.9	15.8	47	2.3	-134.9	0	271	135	0.0 1 0
341	V1580131	L58 PDC	24.1	1.0	34	130.2	109.2	0	40	170	0.0 0 0
342	V1580132	V44 PDC	5.2	23.4	37	-41.0	112.7	0	110	120	0.0 0 0
343	V1580133	SNA PDC	31.3	-5.5	33	135.2	36.2	0	15	140	0.0 0 0
344	V1580135	A46 PDC	38.2	33.4	57	-71.6	102.3	0	125	125	0.0 0 0
345	V1580138	X17 PDC	62.7	-7.2	25	92.5	-110.3	600	310	144	-1.0 1 1
346	V1580140	X31 PDC	6.8	27.2	55	-80.3	45.7	0	130	125	0.0 0 0
347	V1580141	X42 PDC	52.4	-12.0	25	99.6	-118.7	0	310	155	0.0 0 0
348	V1580142	X37 PDC	30.3	48.9	54	-113.2	-19.9	0	190	115	0.0 1 0
349	V1580143	L33 PDC	41.3	-12.0	41	66.6	-50.0	0	330	100	0.0 0 0
350	V1580144	S47 PDC	53.8	4.1	25	-99.5	-57.4	0	210	115	1.0 0 0

TABLE 1
(Continued)

TABLE 4-1
(Continued)

SEQN NO.	DESCRIP T	AIRCRAFT TYPE	AIRCRAFT POSITION			AIRCRAFT VELOCITY			GRN	TURN	C C
			DEP APT	N MI	N FT-00	KNOTS	KT/MN	BRNG	SPD RATE	D D	
401	VIGB0231	RAL RXR	-0.7	5.5	43	0.0	-115.0	0	270	115	-1.0 0 0
402	VIGB0232	WJF LXF	-1.7	43.1	44	-58.7	-125.9	290	245	139	0.0 0 0
403	VIGB0233	XIR DXR	45.2	31.3	85	59.3	-164.4	0	290	175	0.0 0 0
404	VIGB0234	WHP DXR	-32.0	17.2	23	-23.2	-131.9	800	260	134	0.0 0 1
405	VIGB0237	XJR HB7	-32.7	55.1	85	118.1	20.8	0	10	120	0.0 0 0
406	VIGB0238	HB7 DXP	-23.6	34.4	65	-125.1	-55.5	0	202	135	0.0 0 0
407	VIGB0240	VNY INT	3.4	20.6	56	0.0	155.0	0	90	155	0.0 0 0
408	VIGB0242	SMA INT	41.3	-7.5	55	74.2	74.2	0	45	105	0.0 0 0
409	VIGB0244	SMI INT	40.0	30.3	53	-21.7	123.1	0	100	125	0.0 1 0
410	VIGB0249	CPM INT	13.3	-1.4	36	50.3	80.5	0	58	95	0.0 0 0
411	VIGB0250	CPM INT	45.5	5.4	31	89.2	62.5	-300	35	109	-1.5 0 2
412	VIGB0253	WJF INT	44.2	27.5	90	-172.3	-30.3	0	170	175	0.0 0 0
413	VIGB0254	WHP INT	13.7	16.5	36	-29.0	79.8	0	110	85	0.0 0 0
414	VIGB0257	INT HBO	29.3	36.2	65	70.7	-84.2	0	310	110	0.0 1 0
415	VIGB0258	H3L INT	47.2	10.0	30	-29.5	-110.1	-800	255	114	0.0 1 2
416	VIGB1260	H3Z INT	51.4	7.2	23	8.5	-243.8	-1000	272	244	0.0 0 2
417	VIGB0262	HRD INT	47.7	10.6	20	-35.5	91.7	-800	110	104	3.0 1 2
418	VIGB0264	VNY RAL	3.4	23.4	56	-58.1	159.7	0	110	170	0.0 0 0
419	VIGB0265	SMA RAL	55.1	-6.5	36	84.8	84.8	0	45	120	0.0 0 0
420	VIGB0266	TJA RAL	20.6	-17.4	37	-80.3	114.6	0	125	140	0.0 0 0
421	VIGB0267	SMO RAL	40.3	-19.9	54	106.0	136.0	0	45	150	0.0 1 0
422	VIGB0268	HHK RAL	14.8	-6.4	35	-74.2	74.2	0	135	105	0.0 0 0
423	VIGB0269	BUR RAL	7.5	8.9	35	-77.7	77.7	0	135	110	-2.0 0 0
424	VIGB0270	FMT RAL	47.9	-0.3	20	94.3	54.4	-1000	30	109	0.0 0 2
425	VIGB0271	FUL RAL	31.3	-4.1	35	0.0	150.0	0	90	150	0.0 0 0
426	VIGB0274	UNT RAL	40.3	5.5	10	-47.4	17.1	800	170	99	0.0 0 1
427	VIGB0277	RAL HBO	40.3	35.1	85	90.4	-52.5	0	330	105	0.0 0 0
428	VIGB0279	RAL HB2	59.6	-15.5	43	-64.9	112.5	0	120	130	0.0 0 0
429	VIGB0280	HB3 RAL	53.8	-25.1	44	118.1	-20.8	0	350	120	0.0 1 0
430	VIGB0282	PIR L16	63.1	2.7	43	-102.8	122.5	0	130	160	3.0 0 0
431	VIGB0283	SZP L16	-2.7	29.3	53	-37.6	103.3	0	110	110	0.0 0 0
432	VIGB0284	X37 L16	4.4	25.8	77	-99.5	57.5	0	150	115	0.0 1 0
433	VIGB0286	LGB WJF	27.9	12.4	64	144.4	12.6	0	5	145	0.0 1 0
434	VIGB0287	VNY WJF	-2.7	22.7	38	99.8	9.2	0	3	100	0.0 0 0
435	VIGB0289	304 WJF	3.7	44.1	45	99.5	57.4	0	30	115	0.0 0 0
436	VIGB0290	CPM WJF	18.2	-1.7	26	67.5	116.9	0	60	135	0.0 0 0
437	VIGB0292	L65 WJF	56.9	20.6	66	117.8	-54.9	0	335	130	0.0 1 0
438	VIGB0293	WHP WJF	-5.8	32.7	35	131.5	-47.8	0	340	140	2.0 0 0
439	VIGB0294	WHT WJF	-3.4	49.2	55	-4.5	129.9	0	92	130	0.0 0 0
440	VIGB0299	VNY PMD	1.3	31.0	33	192.3	71.6	0	35	125	0.0 0 0
441	VIGB0298	L59 PMD	14.4	31.0	73	136.8	-24.1	-1000	350	139	0.0 0 2
442	VIGB0300	SFR PMD	1.3	23.4	15	123.9	2.1	800	1	124	0.0 0 1
443	VIGB0302	WHP PMD	17.5	44.1	39	0.0	119.0	-900	90	119	2.5 0 2
444	VIGB0303	HR7 PMD	7.9	62.0	55	-123.6	40.1	0	162	130	0.0 0 0
445	VIGB0305	TJA L02	-7.4	15.8	24	99.6	-114.7	0	310	155	0.0 0 0
446	VIGB0307	DXR L02	-23.3	18.6	35	46.1	126.8	0	70	135	0.0 0 0
447	VIGB0309	RIK L02	20.6	15.8	63	149.4	-113.2	0	280	115	0.0 0 0
448	VIGB0311	X25 L02	13.1	18.2	64	47.8	-131.5	0	290	140	0.0 0 0
449	VIGB0312	HRT L02	-13.7	44.8	55	-108.0	39.3	0	160	115	0.0 0 0
450	VIGB0313	L02 HBO	-37.9	48.2	86	86.0	-60.2	0	325	105	0.0 0 1

TABLE 5-1
(Continued)

TABLE 4-1
(Continued)

AIRCRAFT SERIAL DESCRIPT	AIRCRAFT AIRPORT	POSITION	AIRCRAFT VELOCITY	GRND TURN C C								
				N MI	N MI	FT-00	KNOTS	KNUTS FT/MN	BRNG	SPD RATE	D	
501 VIGR0388 DNT WHP	33.4	14.1	45	39.3	-178.0	0	290	115	0.0	0.0	0	
502 VIGR0389 RAL WHP	48.2	13.7	45	22.5	-128.0	0	280	130	0.0	0.0	0	
503 VIGR0390 HR7 WHP	-24.1	65.5	45	-88.3	84.3	0	135	125	0.0	0.0	0	
504 VIGR0392 HR3 WHP	45.9	-16.2	64	88.0	-73.9	0	320	115	0.0	0.0	0	
505 VIGR0393 WHP HB2	-0.3	24.1	25	116.5	42.4	600	20	124	0.0	0.0	1	
506 VIGR0394 HRL WHP	35.1	22.7	84	-38.9	-107.1	-200	250	114	0.0	0.0	0	
507 VIGR0396 TJA X01	3.3	30.7	34	106.4	74.5	0	35	130	0.0	0.0	0	
508 VIGR0398 HHR X01	21.7	14.1	44	113.2	-19.9	0	350	115	0.0	0.0	0	
509 VIGR0401 CP4 X01	-3.4	31.3	35	147.7	26.0	0	10	150	2.5	0.0	0	
510 VIGR0402 DNT X01	43.2	21.3	65	115.0	0.0	0	0	115	0.0	0.0	0	
511 VIGR0404 HAO X01	-7.5	91.7	66	-99.5	57.5	0	150	115	0.0	0.0	0	
512 VIGR0405 VNY X42	37.7	-6.8	56	-74.9	129.9	0	120	150	0.0	0.0	0	
513 VIGR0407 HHR X42	31.7	-23.8	35	9.1	104.6	0	85	105	0.0	0.0	0	
514 VIGR0408 PJC X42	34.0	-8.9	35	-103.9	69.0	0	150	120	0.0	0.0	0	
515 VIGR0410 DNT X42	53.8	-4.8	25	-103.3	37.6	0	160	110	0.0	0.0	0	
516 VIGR0411 HR3 X42	66.5	-25.1	46	111.0	-93.2	0	320	145	0.0	0.0	0	
517 VIGR0413 VNY SZP	-24.1	25.5	26	23.4	-132.9	0	280	135	0.0	0.0	0	
518 VIGR0414 TOA SZP	-9.6	18.9	47	83.5	-99.5	0	310	130	0.0	0.0	0	
519 VIGR0415 SMO SZP	-13.3	8.2	45	83.5	-99.5	0	310	130	0.0	0.0	0	
520 VIGR0416 HHR SZP	-8.2	13.1	30	49.9	-86.6	0	300	100	0.0	0.0	0	
521 VIGR0419 FUL SZP	-15.9	28.6	33	-22.4	-127.0	-400	260	129	0.0	0.0	2	
522 VIGR0421 HRT SZP	-37.9	55.1	87	-119.0	50.7	0	157	130	0.0	0.0	1	
523 VIGR0423 PJC X32	17.9	24.8	84	84.2	-70.7	0	320	110	0.0	0.0	0	
524 VIGR0425 RAL X32	44.8	25.8	64	65.1	-54.6	0	320	85	0.0	0.0	0	
525 VIGR0426 SFR X32	7.9	45.1	37	-134.2	-35.9	-600	195	139	-2.5	0	2	
526 VIGR0427 H30 X32	-1.0	63.8	65	-115.0	0.0	0	0	180	115	0.0	0.0	0
527 VIGR0429 TOA X37	-16.2	34.8	35	117.9	-32.5	150	325	144	0.0	0.0	0	
528 VIGR0430 SMO X37	-10.6	17.2	36	116.9	-67.5	0	330	135	0.0	0.0	0	
529 VIGR0431 HHR X37	-3.1	8.6	24	118.7	-99.6	0	320	155	0.0	0.0	0	
530 VIGR0432 PJC X37	13.7	36.9	64	95.2	-55.0	0	330	110	0.0	0.0	0	
531 VIGR0434 RIR X37	51.0	16.9	46	108.8	5.7	200	3	109	-1.3	1	0	
532 VIGR0435 X37 HR7	6.8	57.6	34	80.6	-80.6	700	315	114	0.0	0.0	1	
533 VIGR0436 CND L38	46.9	-22.4	27	-95.4	-95.4	0	225	135	0.0	0.0	0	
534 VIGR0439 RAL L38	53.1	-15.8	27	-122.1	-44.4	0	200	130	0.0	0.0	0	
535 VIGR0445 SMO SBT	36.5	13.1	36	18.2	103.4	0	80	105	0.0	0.0	0	
536 VIGR0448 L02 SBT	14.6	33.1	53	-9.5	109.5	0	95	110	0.0	0.0	0	
537 VIGR0450 SZP SBT	-4.8	35.5	55	52.8	113.2	0	65	125	0.0	0.0	0	
538 VIGR0454 TJA Y25	25.5	-6.5	37	46.0	98.7	-200	65	109	0.0	0.0	0	
539 VIGR0455 SMO X25	13.1	13.4	34	35.5	97.7	200	70	104	0.0	0.0	0	
540 VIGR0458 SFR X25	-3.1	26.5	36	114.4	71.5	0	32	135	0.0	0.0	0	
541 VIGR0461 X25 HRL	56.2	9.6	35	52.6	144.7	900	70	154	0.0	0.0	1	
542 VIGR0462 HRL X25	73.7	8.6	64	-3.4	-99.9	0	268	100	0.0	0.0	0	
543 VIGR0464 TOA X15	-9.6	41.7	55	49.5	136.2	0	70	145	0.0	0.0	0	
544 VIGR0465 FUL X15	22.7	34.1	45	81.9	57.3	0	35	100	0.0	0.0	0	
545 VIGR0468 TJA X31	47.9	-19.6	33	46.6	104.2	0	65	115	0.0	0.0	0	
546 VIGR0470 PJC X21	51.0	-11.3	37	-74.2	74.2	0	135	105	0.0	0.0	0	
547 VIGR0474 SFR X33	36.9	-24.1	54	2.0	153.0	0	90	150	0.0	0.0	1	
548 VIGR0475 RIR X33	60.3	-7.9	35	-114.9	36.4	0	140	150	0.0	0.0	0	
549 VIGR0476 SBT X33	55.6	2.4	36	-115.0	0.0	0	0	180	115	0.0	0	
550 VIGR0478 PMO X44	32.6	46.5	56	41.0	112.7	0	70	120	0.0	0.0	0	

TABLE 4-1
(Continued)

SEQN	AIRCRAFT NO.	DESCRIPT	AIRPORT	AIRCRAFT POSITION			AIRCRAFT VELOCITY			GRNT TORN C			
				N	MI	N MI	FT-00	KNOTS	KNOTS	FT/MN	BRNG	SPD RATE	D
551	VIGC0480	CGR X43	47.4	30.7	45	109.6	-109.6	0	315	155	0.0	0	0
552	VIGB0481	L36 X43	58.6	16.9	64	142.0	-12.0	500	330	164	0.0	0	0
553	VIGC0482	X17 X43	51.7	18.4	75	67.4	-116.9	0	300	135	0.0	0	0
554	VIGB0486	H81 X43	53.4	27.5	45	52.4	-90.9	0	300	105	0.0	0	0
555	VIGC0301	OXR LG8	-7.2	4.6	78	-106.0	125.3	0	130	165	0.0	1	0
556	VIGC0003	H32 LG8	50.3	-17.2	84	24.3	-137.8	0	280	140	0.0	0	0
557	VIGC0004	SMJ VNY	1.7	12.0	20	59.4	-103.0	1000	300	119	0.0	0	1
558	VIGC0005	OXR VNY	-25.1	12.0	73	70.1	-12.6	0	70	205	0.0	0	0
559	VIGC0008	VNY H80	-1.7	16.5	45	119.5	10.4	0	5	120	0.0	0	0
560	VIGC0010	PDC SNA	30.3	5.5	35	-162.4	-28.6	0	190	165	0.0	0	0
561	VIGC0013	X01 TGA	-6.8	10.6	56	-182.1	32.1	0	170	185	0.0	0	0
562	VIGC0014	H81 TOA	37.2	-7.9	86	-35.3	-166.2	0	258	170	0.0	1	0
563	VIGC0015	TDA H81	40.7	2.7	75	95.0	164.5	0	60	190	0.0	1	0
564	VIGC0016	H92 TOA	55.8	-15.5	64	59.8	-164.4	0	290	175	0.0	0	0
565	VIGC0017	CND SMU	20.0	8.6	63	16.5	-189.2	0	275	190	0.0	0	0
566	VIGC0018	SMJ H87	-3.4	16.5	63	183.2	-66.6	0	340	195	0.0	0	0
567	VIGC0019	H86 SMU	-7.2	39.6	96	-187.1	32.9	0	170	190	0.0	0	0
568	VIGC0020	SMJ H81	13.1	-7.5	93	57.0	122.3	0	65	135	0.0	0	0
569	VIGC0022	H91 HHR	12.7	-14.8	85	53.0	-145.6	0	290	155	0.0	0	0
570	VIGC0025	CCB BUR	11.0	13.7	42	57.8	-158.8	-1200	290	169	0.0	0	2
571	VIGC0026	H37 BUR	-2.0	13.1	75	-150.6	87.0	-1200	150	174	0.0	0	2
572	VIGC0027	3UR H81	30.3	21.7	77	0.0	159.0	200	90	159	0.0	0	0
573	VIGC0028	TOA PDC	4.1	0.0	43	118.7	83.1	0	35	145	0.0	0	0
574	VIGC0029	L16 PDC	23.1	-7.9	18	108.8	108.8	900	45	154	0.0	0	0
575	VIGC0031	TOA CND	33.4	7.5	53	85.0	147.2	0	60	170	0.0	0	0
576	VIGC0032	HHR CND	22.7	-4.1	54	56.4	155.0	0	70	165	0.0	0	0
577	VIGC0040	H81 EMT	35.5	19.6	66	-108.9	-155.6	0	235	190	0.0	0	0
578	VIGC0041	EMT H80	18.6	23.8	75	129.9	-75.0	0	330	150	0.0	0	0
579	VIGC0044	H82 FUL	62.0	-10.0	88	41.0	-112.7	0	290	120	0.0	1	0
580	VIGC0045	WHP CPM	-5.5	15.8	57	-150.3	54.7	0	160	160	0.0	0	0
581	VIGC0046	X01 CPM	23.4	28.2	76	-169.3	14.8	0	175	170	0.0	0	0
582	VIGC0048	HHR OXR	-9.6	16.2	62	0.0	-100.0	0	270	190	0.0	0	0
583	VIGC0049	FUL OXR	23.8	23.4	93	140.9	-51.3	0	340	150	0.0	0	0
584	VIGC0051	H81 OXR	-27.5	48.2	105	-192.0	-33.8	0	190	195	0.0	0	0
585	VIGC0052	CP4 UNT	48.6	4.8	38	77.1	91.9	0	50	120	-3.0	0	0
586	VIGL0053	L02 UNT	4.6	25.1	74	0.0	175.0	0	90	175	0.0	1	0
587	VIGC0054	WHP UNT	25.8	29.3	77	13.9	159.3	0	85	160	0.0	0	0
588	VIGC0055	X01 UNT	40.3	26.9	74	-56.6	121.4	-500	115	134	0.0	0	0
589	VIGC0057	H80 UNT	56.9	16.5	66	-86.7	103.4	0	130	135	0.0	0	0
590	VIGC0059	SFR KAL	50.0	29.2	93	-173.8	63.2	0	160	185	0.0	0	0
591	VIGC0060	L38 PAL	41.3	41.3	51	-130.2	109.2	0	140	170	0.0	0	0
592	VIGC0061	X25 L16	39.3	-7.5	41	-121.2	-69.9	0	210	140	0.0	1	0
593	VIGC0062	VNY WUF	3.4	33.1	52	155.8	89.4	0	30	180	0.0	0	0
594	VIGC0064	PMO H87	10.3	41.3	36	24.1	-136.8	800	280	139	1.5	0	1
595	VIGC0065	HB6 L02	-16.5	22.4	70	0.0	149.0	-800	90	149	0.0	0	2
596	VIGC0066	SNA L02	26.9	9.6	54	140.9	-51.3	0	340	150	0.0	1	0
597	VIGC0067	RAL L02	17.5	25.8	92	230.2	-83.7	0	340	245	0.0	0	0
598	VIGC0068	CCB H81	63.8	14.4	55	0.0	135.0	0	90	135	0.0	0	0
599	VIGC0069	SMO CCR	18.2	15.8	76	33.8	192.0	0	80	195	-0.5	0	0
600	VIGC0071	SZP APV	24.1	27.9	94	66.6	183.2	0	70	195	0.0	0	0

TABLE 4-1
(cont'd.)

TABLE 4-1
(Continued)

SE	IN	DESCRIPT	AIRPORT	AIRCRAFT POSITION			AIRCRAFT VELOCITY			GRND TURN C C			
				N	M	N MI FT-0)	KNOTS	KNOTS FT/MN	BRNG	SPO RATE	D	U	I
651	ILGA0002	CPO CPM	15.1	-15.1	47	0.0	80.0	0	90	80	-1.0	1	0
652	ILGA0004	CCB CCB	33.1	4.8	27	-95.7	-90.3	0	220	125	0.0	1	0
653	ILGA0005	APV APV	58.6	30.3	33	-140.4	-65.5	0	205	155	0.0	1	0
654	ILGA0006	L66 L66	61.0	1.0	39	-28.2	105.2	-600	105	109	0.0	1	2
655	ILGA0009	L12 L12	73.8	21.7	81	122.8	86.0	0	35	150	0.0	1	0
656	ILGB0001	LGB LGB	7.5	-1.3	41	-22.5	-128.0	0	260	130	-1.5	1	0
657	ILGB0002	LGB LGB	1.0	-10.3	49	-142.7	25.1	0	170	145	0.0	1	0
658	ILGB0004	LGB LGB	32.0	-25.5	49	-90.6	42.7	0	155	100	0.0	1	0
659	ILGB0003	LGB LGB	12.7	-11.3	42	23.0	85.9	-700	75	89	0.0	1	2
660	ILGB0005	LGB LGB	41.0	-9.3	35	8.7	-94.6	0	275	100	0.0	1	0
661	ILGB0006	LGB LGB	19.6	-7.2	21	1.0	-154.0	-1000	270	154	0.0	1	2
662	ILGB0011	SNA SNA	26.2	-20.8	41	-134.8	7.3	0	177	140	0.0	1	0
663	ILGB0012	SNA SNA	10.3	-5.1	38	-90.0	-54.0	0	211	105	0.0	1	0
664	ILGB0013	SNA SNA	34.1	-18.2	22	-60.1	-60.1	0	225	85	1.0	1	0
665	ILGB0017	BUR BUR	5.1	0.8	44	17.3	-98.6	0	290	100	0.0	1	0
666	ILGB0020	FUL FUL	21.0	-7.4	23	-3.3	94.9	0	92	95	0.0	1	0
667	ILGB0023	RAL RAL	56.2	5.8	25	-57.5	55.5	0	136	80	0.0	1	0
668	ILGB0024	L16 L16	25.2	-13.7	26	-93.3	-32.8	0	201	103	0.0	1	0
669	ILGC0001	LGB LGB	25.1	-4.9	57	86.8	89.9	0	46	125	0.0	1	0
670	ILSC0004	SNA SNA	37.7	-13.4	22	-16.9	-193.2	-400	265	194	0.0	1	2
671	ILGC0006	HMP HMP	4.8	-7.5	33	-114.9	96.4	0	140	150	0.0	1	0
672	ILGE0002	PDC PDC	16.5	14.4	62	23.2	131.9	1000	80	134	-2.0	1	1
673	ILGE0013	JXR UXR	-54.1	38.6	69	153.2	128.5	0	40	200	0.0	1	0
674	ILGE0004	DNT JNT	41.3	6.8	62	44.4	122.1	0	70	130	0.0	1	0
675	VLGA0001	L36 L36	50.7	11.7	24	-35.5	-58.5	500	238	68	0.0	0	1
676	VLGA0005	L36 L36	48.6	10.6	22	-126.8	-59.1	0	205	140	-3.0	0	0
677	VLGA0006	L36 L36	53.8	14.8	31	-103.9	-59.9	0	210	120	0.0	0	0
678	VLGA0010	APV APV	58.6	48.2	41	82.2	-47.5	0	330	95	0.0	0	0
679	VLGA0011	APV APV	58.6	44.8	49	89.9	-107.2	0	310	140	0.0	0	0
680	VLGA0014	APV APV	51.7	55.1	51	0.0	-120.0	0	270	120	0.0	0	0
681	VLGA0016	APV APV	51.4	56.2	49	-64.9	-112.5	0	240	130	0.0	0	0
682	VLGA0018	APV APV	58.6	55.1	50	98.6	-35.4	0	340	105	0.0	0	0
683	VLGA0021	L66 L66	47.3	-2.0	8	-1.1	-63.9	500	260	54	1.1	0	1
684	VLGA0022	L66 L66	40.7	-2.7	11	-67.0	43.5	0	147	80	-1.0	0	0
685	VLGA0025	L66 L66	47.2	-9.3	32	148.8	18.2	0	7	150	0.0	0	0
686	VLGA0026	L12 L12	62.7	9.6	17	2.7	-79.9	0	272	80	0.0	0	0
687	VLGA0027	L12 L12	64.1	8.9	20	0.0	74.0	500	90	74	0.0	0	1
688	VLGA0028	L12 L12	66.2	10.3	29	67.9	2.3	0	2	68	-1.0	0	0
689	VLGA0029	L12 L12	63.9	17.2	71	27.3	-75.1	0	290	80	0.0	0	0
690	VLGA0033	L12 L12	68.9	10.3	46	114.3	12.0	0	6	115	0.0	0	0
691	VLGA0034	L12 L12	69.6	22.4	81	125.5	72.4	0	30	145	0.0	0	0
692	VLGA0035	L12 L12	71.0	22.7	88	-27.0	127.1	0	102	130	0.0	0	0
693	VLGA0036	L12 L12	66.9	25.5	70	-109.9	-1.9	0	181	110	0.0	0	0
694	VLGA0040	L12 L12	65.8	12.4	58	53.9	-64.3	100	310	84	0.0	0	1
695	VLGA0039	L12 L12	65.5	31.0	65	98.7	56.9	200	30	114	0.0	0	1
696	VLGA0041	L12 L12	62.0	27.5	45	-8.7	-99.6	0	265	100	0.0	0	0
697	VLGA0042	L12 L12	68.9	34.4	53	147.7	-26.0	0	350	150	0.0	0	0
698	VLGA0043	X17 X17	71.4	-17.2	20	114.9	96.4	0	40	150	-1.5	0	0
699	VLGA0045	X17 X17	73.4	-14.4	43	79.9	2.7	0	2	80	-2.0	0	0
700	VLGA0048	X17 X17	67.6	-3.4	35	143.5	-20.1	0	352	145	0.0	0	0

10 of 10

DATUM 1000
CONTINUED

SEQU NCE	AIRCRAFT DESCRIP	AIRPORT	AIRCRAFT POSITION			AIRCRAFT VELOCITY		GROUND TURN				
			DEP	ARR	LONG	LAT	DIR	SPD	DESS	CTS	DD/SC	RTN
12345574			-X-	-Y-	-Z-	-Y-	-X-	-Z-	-DESS	CTS	DD/SC	RTN
12345678												
851	VLGB0121	CPR CPR	10.3	-19.6	29	148.5	-20.8	0	352	150	0.0	0 0
852	VLGB0123	CPR CPR	16.2	-4.8	37	69.1	-60.1	0	315	85	0.0	0 0
853	VLGB0124	CPR CPR	13.1	-10.0	37	21.5	153.4	0	82	155	0.0	0 0
854	VLGB0125	CPR CPR	23.4	-17.5	40	129.4	-75.0	0	330	150	0.0	0 0
855	VLGB0129	CPR CPR	32.0	-6.5	38	-3.1	89.9	0	92	90	0.0	0 0
856	VLGB0131	DXR DXR	-50.3	21.3	25	24.3	137.8	0	40	140	0.0	0 0
857	VLGB0132	DXR DXR	-45.8	13.7	30	10.4	119.5	0	85	120	0.0	0 0
858	VLGB0133	DXR DXR	-37.9	28.6	33	-69.2	40.0	0	150	80	0.0	0 0
859	VLGB0139	DXR DXR	-34.1	21.7	42	-85.6	82.6	-800	136	119	0.0	1 1
860	VLGB0142	DXR DXR	-45.5	21.0	34	92.3	-118.2	0	308	150	0.0	0 0
861	VLGB0143	DXR DXR	-38.9	18.6	32	0.0	140.0	0	90	140	0.0	1 0
862	VLGB0146	DXR DXR	-34.1	9.6	37	-75.0	39.4	0	152	85	0.0	0 0
863	VLGB0148	DXR DXR	-38.6	16.2	5	0.0	100.0	0	90	100	0.0	0 0
864	VLGB0149	DXR DXR	-21.3	14.8	23	-62.9	77.7	0	129	100	0.0	0 0
865	VLGB0150	DXR DXR	-36.9	22.0	47	39.9	75.0	0	62	85	0.0	0 0
866	VLGB0153	RAL PAL	47.2	1.0	27	-134.9	-4.7	0	182	135	0.0	0 0
867	VLGB0157	FAL RAL	47.6	-7.2	49	-76.5	23.3	0	163	80	0.0	0 0
868	VLGB0160	RAL PAL	49.3	-2.0	22	131.5	47.8	0	20	140	0.0	0 0
869	VLGB0166	L16 L16	49.6	-5.1	35	0.0	-90.0	0	270	90	1.0	0 0
870	VLGB0168	L16 L16	46.9	-5.5	45	-56.6	-60.9	0	231	90	0.0	0 0
871	VLGB0171	L16 L16	45.5	-6.2	23	-57.8	-74.0	150	232	94	0.0	0 0
872	VLGB0176	L16 L16	29.3	-5.5	33	-1.3	-79.9	0	269	80	0.0	0 0
873	VLGB0179	L16 L16	20.3	-11.0	37	-152.6	26.9	0	170	155	0.0	0 0
874	VLGB0180	L16 L16	21.7	-4.9	24	-79.7	-49.8	-100	212	94	2.0	0 0
875	VLGB0185	L16 L16	19.6	-17.5	29	73.6	42.4	0	30	95	0.0	0 0
876	VLGB0186	L16 L16	18.2	-18.9	46	80.1	40.8	0	27	40	0.0	0 0
877	VLGB0187	L16 L16	22.7	-17.9	32	143.2	-22.6	0	351	145	0.0	0 0
878	VLGB0188	L16 L16	23.8	-21.0	36	-128.0	22.5	0	170	130	0.0	0 0
879	VLGB0192	L16 L16	22.4	-9.6	43	80.4	75.0	0	43	110	0.0	0 0
880	VLGB0193	L16 L16	25.1	-7.9	22	76.2	117.4	0	57	140	1.0	0 0
881	VLGB0194	L16 L16	28.2	-7.9	27	43.2	133.1	0	72	140	0.0	0 0
882	VLGB0200	L16 L16	46.5	-8.6	37	-19.0	98.1	0	101	100	0.0	0 0
883	VLGB0212	L16 L16	50.3	-9.3	20	10.2	83.3	100	63	86	-2.0	0 0
884	VLGB0203	L16 L16	51.7	-8.6	34	135.2	36.2	0	15	140	0.0	0 0
885	VLGB0205	L16 L16	53.1	-6.2	47	107.9	20.9	0	11	110	-2.0	0 0
886	VLGB0209	WJF WJF	3.4	51.7	49	22.5	-128.0	0	280	130	0.0	0 0
887	VLGB0210	WJF WJF	0.0	51.7	46	51.3	-140.9	0	290	150	0.0	0 0
888	VLGB0213	WJF WJF	3.4	48.2	43	-61.2	51.4	0	140	80	0.0	0 0
889	VLGB0214	WJF WJF	11.0	50.7	48	-7.4	84.6	0	95	85	0.0	0 0
890	VLGB0215	WJF WJF	6.5	49.3	54	52.4	-90.9	0	300	105	0.0	0 0
891	VLGB0216	WJF WJF	-2.0	55.1	46	-34.2	-93.9	0	250	100	0.0	0 0
892	VLGB0218	WJF WJF	9.6	43.6	44	63.3	-135.9	0	295	150	0.0	0 0
893	VLGB0219	WJF WJF	12.4	51.0	45	-112.7	41.0	0	160	120	0.0	0 0
894	VLGB0221	WJF WJF	12.0	47.9	35	-39.4	-68.4	-500	240	79	0.0	0 2
895	VLGB0224	WJF WJF	-13.7	58.9	41	0.0	103.0	0	90	100	-2.0	0 0
896	VLGB0228	WJF WJF	-8.6	49.6	49	0.0	-110.0	0	270	110	0.0	0 0
897	VLGB0230	WJF WJF	0.1	56.5	22	-103.9	60.0	0	150	120	0.0	0 0
898	VLGB0231	WJF WJF	3.7	63.4	51	44.4	122.1	0	70	130	0.0	0 0
899	VLGB0234	PMD PMD	15.1	39.6	39	-27.3	-75.1	0	250	80	0.0	1 0
900	VLGB0236	L02 L02	-13.7	13.4	32	48.8	109.6	0	66	120	0.0	0 0

1920-1921
1921-1922
1922-1923
1923-1924
1924-1925
1925-1926
1926-1927
1927-1928
1928-1929
1929-1930
1930-1931
1931-1932
1932-1933
1933-1934
1934-1935
1935-1936
1936-1937
1937-1938
1938-1939
1939-1940
1940-1941
1941-1942
1942-1943
1943-1944
1944-1945
1945-1946
1946-1947
1947-1948
1948-1949
1949-1950
1950-1951
1951-1952
1952-1953
1953-1954
1954-1955
1955-1956
1956-1957
1957-1958
1958-1959
1959-1960
1960-1961
1961-1962
1962-1963
1963-1964
1964-1965
1965-1966
1966-1967
1967-1968
1968-1969
1969-1970
1970-1971
1971-1972
1972-1973
1973-1974
1974-1975
1975-1976
1976-1977
1977-1978
1978-1979
1979-1980
1980-1981
1981-1982
1982-1983
1983-1984
1984-1985
1985-1986
1986-1987
1987-1988
1988-1989
1989-1990
1990-1991
1991-1992
1992-1993
1993-1994
1994-1995
1995-1996
1996-1997
1997-1998
1998-1999
1999-2000
2000-2001
2001-2002
2002-2003
2003-2004
2004-2005
2005-2006
2006-2007
2007-2008
2008-2009
2009-2010
2010-2011
2011-2012
2012-2013
2013-2014
2014-2015
2015-2016
2016-2017
2017-2018
2018-2019
2019-2020
2020-2021
2021-2022
2022-2023
2023-2024
2024-2025
2025-2026
2026-2027
2027-2028
2028-2029
2029-2030
2030-2031
2031-2032
2032-2033
2033-2034
2034-2035
2035-2036
2036-2037
2037-2038
2038-2039
2039-2040
2040-2041
2041-2042
2042-2043
2043-2044
2044-2045
2045-2046
2046-2047
2047-2048
2048-2049
2049-2050
2050-2051
2051-2052
2052-2053
2053-2054
2054-2055
2055-2056
2056-2057
2057-2058
2058-2059
2059-2060
2060-2061
2061-2062
2062-2063
2063-2064
2064-2065
2065-2066
2066-2067
2067-2068
2068-2069
2069-2070
2070-2071
2071-2072
2072-2073
2073-2074
2074-2075
2075-2076
2076-2077
2077-2078
2078-2079
2079-2080
2080-2081
2081-2082
2082-2083
2083-2084
2084-2085
2085-2086
2086-2087
2087-2088
2088-2089
2089-2090
2090-2091
2091-2092
2092-2093
2093-2094
2094-2095
2095-2096
2096-2097
2097-2098
2098-2099
2099-20100

TABLE I

Copper Oxide

A 44

TABLE 1

CONTINUATION

TABLE 5-1
(Continued)

APPENDIX A

REFERENCES

1. "Advanced Air Traffic Management System B: 1995 Los Angeles Basin Traffic Model," MTR-6419, Series 4, Volumes I and II, The MITRE Corporation/Metrek Division, McLean, Virginia, March 1974.
2. "The 1972 Los Angeles Basin Standard Air Traffic Model," FAA-RD-73-90, Federal Aviation Administration Technical Center, Atlantic City, New Jersey, September 1973.
3. "Statistical Summary of the 1982 Los Angeles Basin Standard Traffic Model, Vol. I," MTR-6387, The MITRE Corporation/Metrek Division, McLean, Virginia, April 1973.
4. "FAA Aviation Forecast: Los Angeles," Department of Transportation/Federal Aviation Administration, Washington, D.C., June 1978.
5. "Data Processing Glossary," Order number GC20-1699-5, The IBM Corporation, White Plains, New York, October 1977.

