☐ AHMET16 / house_price_phase2 Public

<> Code	Issues	11 Pull requests	Actions	Projects	W Wiki	! Security
ဗှီ main ▼						• • •
house_pric	ce_phase2 / H	lousing_Price_Pro	ject.ipynb			
♣ AHME	T16 Add files v	ia upload				History
& 1 contrib	outor					
3.77 MB						

Housing Price Project

Overview

The goal of this project is to predict the housing sale prices in King County through a regression model. This prediction can give the seller and buyer an estimate of the housing price in King County and how specific features can affect the sale price. Based on this estimation, the buyers can find a house according to their budget, and the homeowners can get an evaluation of their house value, maybe renovate it before selling.

Business Problem

The king county real estate agency will use this prediction model to give their clients an estimate of the housing price when purchasing or selling houses. The agency will estimate the price based on certain features like the location of the house, the number of bedrooms, and the size of the house.

Data Understanding

The king county dataset was provided to me as part of this project by Flatiron School. The dataset consists of 21597 rows, 21 columns with different house features (continuous and categorical). These features will help to understand which factor will affect the selling price. Below is the description of each variable in the data frame:

- price Price of the house sold, prediction target
- id unique identified for a house
- date the date when the house was sold
- bedrooms number of bedrooms
- bathrooms number of bathrooms
- sqft_living square footage of the house's interior living space
- sqft_lots square footage of the land
- floors number of floors
- waterfront House which has a view to a waterfront
- view Has been viewed by potential buyers
- condition condition of the house coded from 1 to 5 where 1: Poor Worn out, and
 5:Very Good
- grade index from 1 to 13, where 1–3 falls short of building construction and design,
 7 has an average level of construction and design, and 11–13 have a high quality
 level of construction and design

- sqft_above square footage of house apart from basement
- sqft_basement square footage of the basement
- yr_built the year where the house was built
- yr_renovated Year when house was renovated, and if not 0
- zipcode zip code
- · lat Latitude coordinate
- long Longitude coordinate
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors

```
In [1]:
         # Imports the necessary libraries
         import pandas as pd
         import numpy as np
         # Setting random seed for reproducibility
         np.random.seed(1000)
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.model selection import train test split
         from sklearn.preprocessing import StandardScaler, MinMaxScaler
         from sklearn.linear model import LinearRegression
         from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_er
         # model tools
         import statsmodels.api as sm
         from statsmodels.formula.api import ols
         pd.options.display.max rows=300
         import utils as ut
         import warnings
         warnings.filterwarnings('ignore')
```

/Users/karaoglan/opt/anaconda3/lib/python3.8/site-packages/statsmodels/ts a/base/tsa_model.py:7: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.

from pandas import (to_datetime, Int64Index, DatetimeIndex, Period, /Users/karaoglan/opt/anaconda3/lib/python3.8/site-packages/statsmodels/ts a/base/tsa_model.py:7: FutureWarning: pandas.Float64Index is deprecated an d will be removed from pandas in a future version. Use pandas.Index with t he appropriate dtype instead.

from pandas import (to_datetime, Int64Index, DatetimeIndex, Period,

Obtain the data

```
In [2]:
# read in the data
df = pd.read_csv("data/kc_house_data.csv")
df.info()
df.head()
```

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 21597 entries, 0 to 21596
        Data columns (total 21 columns):
         #
             Column
                             Non-Null Count
                                              Dtype
              _____
                              _____
         0
             id
                             21597 non-null
                                              int64
         1
             date
                             21597 non-null object
         2
             price
                             21597 non-null
                                             float64
         3
             bedrooms
                             21597 non-null
                                              int64
                             21597 non-null float64
         4
             bathrooms
             sqft living
                             21597 non-null int64
         5
         6
             sqft_lot
                             21597 non-null int64
         7
             floors
                             21597 non-null float64
         8
             waterfront
                             19221 non-null object
         9
                             21534 non-null object
             view
                             21597 non-null object
         10
             condition
         11
             grade
                             21597 non-null
                                              object
                             21597 non-null
                                              int64
         12
             sqft_above
         13
             sqft basement 21597 non-null object
                             21597 non-null int64
             yr built
         15
             yr_renovated
                             17755 non-null float64
         16
             zipcode
                             21597 non-null int64
         17
             lat
                             21597 non-null float64
             long
                             21597 non-null float64
         18
         19
             sqft_living15
                             21597 non-null int64
         20 sqft_lot15
                             21597 non-null int64
        dtypes: float64(6), int64(9), object(6)
        memory usage: 3.5+ MB
Out[2]:
                            date
                                    price bedrooms bathrooms sqft_living sqft_lot floors
           7129300520 10/13/2014 221900.0
                                                 3
                                                          1.00
                                                                    1180
                                                                           5650
                                                                                   1.0
            6414100192
                       12/9/2014
                                 538000.0
                                                         2.25
                                                                   2570
                                                                           7242
                                                                                   2.0
           5631500400
                       2/25/2015
                                 180000.0
                                                          1.00
                                                                    770
                                                                          10000
                                                                                   1.0
           2487200875
                       12/9/2014 604000.0
                                                         3.00
                                                                   1960
                                                                           5000
                                                                                   1.0
           1954400510
                        2/18/2015 510000.0
                                                 3
                                                         2.00
                                                                   1680
                                                                           8080
                                                                                   1.0
        5 rows × 21 columns
In [3]:
         #### - from the above data information, I noticed that the following:
         #### - date in not in datetime format
         #### - sqft basement is an object need to see why and turn it to numerical
In [4]:
         df.describe().T
                                                                             25%
Out [4]:
                      count
                                    mean
                                                   std
                                                                min
                     21597.0
                             4.580474e+09 2.876736e+09
                                                        1.000102e+06
                                                                     2.123049e+09 3.904
```

nrice 215070 5/02066e±05 3/673681e±05 7/800000e±0/

3 22000000+05 / 500

price	house_p	rice_phase2/Housing_F	Price_Project.ipynb at n	nain · AHMET16/house	e_price_phase2	4.500
prioc	21007.0	0.1020000.00	0.0700010100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.2200000100	
bedrooms	21597.0	3.373200e+00	9.262989e-01	1.000000e+00	3.000000e+00	3.000
bathrooms	21597.0	2.115826e+00	7.689843e-01	5.000000e-01	1.750000e+00	2.250
sqft_living	21597.0	2.080322e+03	9.181061e+02	3.700000e+02	1.430000e+03	1.910
sqft_lot	21597.0	1.509941e+04	4.141264e+04	5.200000e+02	5.040000e+03	7.618
floors	21597.0	1.494096e+00	5.396828e-01	1.000000e+00	1.000000e+00	1.500
sqft_above	21597.0	1.788597e+03	8.277598e+02	3.700000e+02	1.190000e+03	1.560
yr_built	21597.0	1.971000e+03	2.937523e+01	1.900000e+03	1.951000e+03	1.975
yr_renovated	17755.0	8.363678e+01	3.999464e+02	0.000000e+00	0.000000e+00	0.000
zipcode	21597.0	9.807795e+04	5.351307e+01	9.800100e+04	9.803300e+04	9.806
lat	21597.0	4.756009e+01	1.385518e-01	4.715590e+01	4.747110e+01	4.757
long	21597.0	-1.222140e+02	1.407235e-01	-1.225190e+02	-1.223280e+02	-1.222
sqft_living15	21597.0	1.986620e+03	6.852305e+02	3.990000e+02	1.490000e+03	1.840
sqft_lot15	21597.0	1.275828e+04	2.727444e+04	6.510000e+02	5.100000e+03	7.620

Scrub the data

```
In [5]:
         # check if we have duplicate house
         df[['id']].duplicated().sum() # check if we have duplicate houses
        177
Out[5]:
In [6]:
         df["id"].drop_duplicates(inplace=True)
In [7]:
         df.drop_duplicates(subset=['id'], inplace=True)
In [8]:
         df["id"].duplicated().any() #sanity check
        False
Out[8]:
In [9]:
         # check for null alues n the data
         df.isnull().sum() # check for null values in the data
        id
                             0
Out[9]:
        date
                             0
        price
        bedrooms
        bathrooms
        sqft living
        sqft lot
                             0
        floors
                             0
        waterfront
                          2353
```

view	63
condition	0
grade	0
sqft_above	0
sqft_basement	0
yr_built	0
yr_renovated	3804
zipcode	0
lat	0
long	0
sqft_living15	0
sqft_lot15	0
dtype: int64	

In [10]:

I'll check the null in waterfront and yr_renovated, and drop the view fi #because it is not important if the house was viewed or not

In [11]:

df.head()

Out[11]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0

5 rows × 21 columns

In [12]:

df

Out[12]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	flc
	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	
	•••	•••		•••	•••		•••		
2159	2	263000018	5/21/2014	360000.0	3	2.50	1530	1131	

Out[14]:

21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076

21420 rows × 21 columns

```
In [13]:
    def waterfront11(x):
        if x == "NO":
            return 0
        if x == "YES":
            return 1
```

```
In [14]:
    df["waterfront1"] = df["waterfront"].apply(waterfront11)
    df
```

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	flc
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	
•••							•••	
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	

```
In [17]: df.drop("waterfront", axis=1,inplace=True)
    df
```

Out[17]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	flc
	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	
	•••								
	21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	
	21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	
	21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	
	21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	
	21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	

```
In [18]:
    df['condition1'] = df['condition'].map(lambda x: len(x.split()))
    df.head(50)
```

Out[18]:	ic		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floo
	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1
	5	7237550310	5/12/2014	1230000.0	4	4.50	5420	101930	1
	6	1321400060	6/27/2014	257500.0	3	2.25	1715	6819	2
	7	2008000270	1/15/2015	291850.0	3	1.50	1060	9711	1
	8	2414600126	4/15/2015	229500.0	3	1.00	1780	7470	1
	9	3793500160	3/12/2015	323000.0	3	2.50	1890	6560	2
	10	1736800520	4/3/2015	662500.0	3	2.50	3560	9796	1
	11	9212900260	5/27/2014	468000.0	2	1.00	1160	6000	1
	12	114101516	5/28/2014	310000.0	3	1.00	1430	19901	1
ithub.com/AHMET1	42 6/hou	se price phase2/blo	401712044 b/main/Housing I	Price Project.ipvr	ab	175	1970	0600	1

13	հ ՄՆԱՐԵԹԵՐՈ	nouse_price_phase	e2/Housing_Price_Pr 400000.0	roject.ipynb at main ·	AHMET16/hou	use_price_phase	2 900U	ı
14	1175000570	3/12/2015	530000.0	5	2.00	1810	4850	1
15	9297300055	1/24/2015	650000.0	4	3.00	2950	5000	2
16	1875500060	7/31/2014	395000.0	3	2.00	1890	14040	2
17	6865200140	5/29/2014	485000.0	4	1.00	1600	4300	1
18	16000397	12/5/2014	189000.0	2	1.00	1200	9850	1
19	7983200060	4/24/2015	230000.0	3	1.00	1250	9774	1
20	6300500875	5/14/2014	385000.0	4	1.75	1620	4980	1
21	2524049179	8/26/2014	2000000.0	3	2.75	3050	44867	1
22	7137970340	7/3/2014	285000.0	5	2.50	2270	6300	2
23	8091400200	5/16/2014	252700.0	2	1.50	1070	9643	1
24	3814700200	11/20/2014	329000.0	3	2.25	2450	6500	2
25	1202000200	11/3/2014	233000.0	3	2.00	1710	4697	1
26	1794500383	6/26/2014	937000.0	3	1.75	2450	2691	2
27	3303700376	12/1/2014	667000.0	3	1.00	1400	1581	1
28	5101402488	6/24/2014	438000.0	3	1.75	1520	6380	1
29	1873100390	3/2/2015	719000.0	4	2.50	2570	7173	2
30	8562750320	11/10/2014	580500.0	3	2.50	2320	3980	2
31	2426039314	12/1/2014	280000.0	2	1.50	1190	1265	3
32	461000390	6/24/2014	687500.0	4	1.75	2330	5000	1
33	7589200193	11/10/2014	535000.0	3	1.00	1090	3000	1
34	7955080270	12/3/2014	322500.0	4	2.75	2060	6659	1
35	9547205180	6/13/2014	696000.0	3	2.50	2300	3060	1
36	9435300030	5/28/2014	550000.0	4	1.00	1660	34848	1
37	2768000400	12/30/2014	640000.0	4	2.00	2360	6000	2
38	7895500070	2/13/2015	240000.0	4	1.00	1220	8075	1
39	2078500320	6/20/2014	605000.0	4	2.50	2620	7553	2
40	5547700270	7/15/2014	625000.0	4	2.50	2570	5520	2
41	7766200013	8/11/2014	775000.0	4	2.25	4220	24186	1
42	7203220400	7/7/2014	861990.0	5	2.75	3595	5639	2
43	9270200160	10/28/2014	685000.0	3	1.00	1570	2280	2
44	1432701230	7/29/2014	309000.0	3	1.00	1280	9656	1
45	8035350320	7/18/2014	488000.0	3	2.50	3160	13603	2
46	8945200830	3/25/2015	210490.0	3	1.00	990	8528	1
47	4178300310	7/16/2014	785000.0	4	2.50	2290	13416	2
48	9215400105	4/28/2015	450000.0	3	1.75	1250	5963	1

49 822039084 3/11/2015 1350000.0 3 2.50 2753 65005 50 rows × 22 columns In [19]: df.drop("condition", axis=1,inplace=True) id date price bedrooms bathrooms sqft_living sqft_lot flo Out[19]: **0** 7129300520 10/13/2014 221900.0 3 1.00 1180 5650 6414100192 12/9/2014 538000.0 2.25 2570 7242 **2** 5631500400 2/25/2015 180000.0 2 1.00 770 10000 2487200875 12/9/2014 604000.0 3.00 1960 5000 1954400510 2/18/2015 510000.0 3 2.00 1680 8080 • • • • • • ••• 21592 263000018 5/21/2014 360000.0 3 2.50 1530 1131 **21593** 6600060120 2/23/2015 400000.0 2.50 2310 5813 21594 1523300141 6/23/2014 402101.0 0.75 1020 1350 21595 2388 291310100 1/16/2015 400000.0 2.50 1600 **21596** 1523300157 10/15/2014 325000.0 2 0.75 1020 1076 21420 rows × 21 columns In [20]: df.fillna(0) Out[20]: id date price bedrooms bathrooms sqft_living sqft_lot flo **0** 7129300520 10/13/2014 221900.0 3 1.00 1180 5650 6414100192 12/9/2014 538000.0 3 2.25 2570 7242 **2** 5631500400 2/25/2015 180000.0 2 770 10000 1.00 2487200875 12/9/2014 604000.0 3.00 1960 5000

1954400510

2/18/2015 510000.0

3

2.00

1680

8080

•••		•••	•••	•••	•••	•••	•••
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076

```
In [21]:
          df["view"].value_counts(dropna=False)
         NONE
                       19253
Out[21]:
         AVERAGE
                         956
                         505
         GOOD
         FAIR
                         329
         EXCELLENT
                         314
         NaN
                          63
         Name: view, dtype: int64
In [22]:
          def view(x):
               if x == "NONE":
                   return 0
               if x == "AVERAGE":
                   return 2
               if x == "GOOD":
                   return 3
               if x == "FAIR":
                   return 1
               if x == "EXCELLENT":
                   return 4
In [23]:
          df["view"] = df["view"].apply(view)
0u
                                                                                       lc
```

ut[23]: _		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	flo
	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	
	•••		•••			•••		•••	

21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076

In [24]: df head(200)

111 [24]:	df.l	head(200)							
Out[24]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	flo
	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	
	5	7237550310	5/12/2014	1230000.0	4	4.50	5420	101930	
	6	1321400060	6/27/2014	257500.0	3	2.25	1715	6819	
	7	2008000270	1/15/2015	291850.0	3	1.50	1060	9711	
	8	2414600126	4/15/2015	229500.0	3	1.00	1780	7470	
	9	3793500160	3/12/2015	323000.0	3	2.50	1890	6560	
	10	1736800520	4/3/2015	662500.0	3	2.50	3560	9796	
	11	9212900260	5/27/2014	468000.0	2	1.00	1160	6000	
	12	114101516	5/28/2014	310000.0	3	1.00	1430	19901	
	13	6054650070	10/7/2014	400000.0	3	1.75	1370	9680	
	14	1175000570	3/12/2015	530000.0	5	2.00	1810	4850	
	15	9297300055	1/24/2015	650000.0	4	3.00	2950	5000	
	16	1075500060	7/21/2014	2050000	2	2.00	1000	14040	

טו	ho UQUUUCC\QI	use_price_phase2 //ろけといけ	/Housing_Price_P ろりつしし.U	roject.ipynb at m っ	ain · AHMET16/h ∠.∪∪	ouse_price_phase ≀ठ⊎∪	2 14040
17	6865200140	5/29/2014	485000.0	4	1.00	1600	4300
18	16000397	12/5/2014	189000.0	2	1.00	1200	9850
19	7983200060	4/24/2015	230000.0	3	1.00	1250	9774
20	6300500875	5/14/2014	385000.0	4	1.75	1620	4980
21	2524049179	8/26/2014	2000000.0	3	2.75	3050	44867
22	7137970340	7/3/2014	285000.0	5	2.50	2270	6300
23	8091400200	5/16/2014	252700.0	2	1.50	1070	9643
24	3814700200	11/20/2014	329000.0	3	2.25	2450	6500
25	1202000200	11/3/2014	233000.0	3	2.00	1710	4697
26	1794500383	6/26/2014	937000.0	3	1.75	2450	2691
27	3303700376	12/1/2014	667000.0	3	1.00	1400	1581
28	5101402488	6/24/2014	438000.0	3	1.75	1520	6380
29	1873100390	3/2/2015	719000.0	4	2.50	2570	7173
30	8562750320	11/10/2014	580500.0	3	2.50	2320	3980
31	2426039314	12/1/2014	280000.0	2	1.50	1190	1265
32	461000390	6/24/2014	687500.0	4	1.75	2330	5000
33	7589200193	11/10/2014	535000.0	3	1.00	1090	3000
34	7955080270	12/3/2014	322500.0	4	2.75	2060	6659
35	9547205180	6/13/2014	696000.0	3	2.50	2300	3060
36	9435300030	5/28/2014	550000.0	4	1.00	1660	34848
37	2768000400	12/30/2014	640000.0	4	2.00	2360	6000
38	7895500070	2/13/2015	240000.0	4	1.00	1220	8075
39	2078500320	6/20/2014	605000.0	4	2.50	2620	7553
40	5547700270	7/15/2014	625000.0	4	2.50	2570	5520
41	7766200013	8/11/2014	775000.0	4	2.25	4220	24186
42	7203220400	7/7/2014	861990.0	5	2.75	3595	5639
43	9270200160	10/28/2014	685000.0	3	1.00	1570	2280
44	1432701230	7/29/2014	309000.0	3	1.00	1280	9656

45	8035350320	use_price_phase2i 7/18/2014	Housing_Price_P 488000.0	roject.ipynb at main	2.50	se_price_phase2	13603
45	8033330320	7/10/2014	488000.0	3	2.50	3100	13003
46	8945200830	3/25/2015	210490.0	3	1.00	990	8528
47	4178300310	7/16/2014	785000.0	4	2.50	2290	13416
48	9215400105	4/28/2015	450000.0	3	1.75	1250	5963
49	822039084	3/11/2015	1350000.0	3	2.50	2753	65005
50	5245600105	9/16/2014	228000.0	3	1.00	1190	9199
51	7231300125	2/17/2015	345000.0	5	2.50	3150	9134
52	7518505990	12/31/2014	600000.0	3	1.75	1410	4080
53	3626039271	2/5/2015	585000.0	2	1.75	1980	8550
54	4217401195	3/3/2015	920000.0	5	2.25	2730	6000
55	9822700295	5/12/2014	885000.0	4	2.50	2830	5000
55	3022700233	0/12/2014	000000.0	7	2.00	2000	3000
56	9478500640	8/19/2014	292500.0	4	2.50	2250	4495
57	2799800710	4/7/2015	301000.0	3	2.50	2420	4750
58	7922800400	8/27/2014	951000.0	5	3.25	3250	14342
59	8079040320	2/23/2015	430000.0	4	3.00	1850	9976
60	1516000055	12/10/2014	650000.0	3	2.25	2150	21235
61	9558200045	8/28/2014	289000.0	3	1.75	1260	8400
62	5072410070	10/21/2014	505000.0	3	1.75	2519	8690
63	9528102996	12/7/2014	549000.0	3	1.75	1540	1044
64	1189001180	6/3/2014	425000.0	3	2.25	1660	6000
65	3253500160	11/20/2014	317625.0	3	2.75	2770	3809
66	3394100030	9/9/2014	975000.0	4	2.50	2720	11049
67	3717000160	10/9/2014	287000.0	4	2.50	2240	4648
68	1274500060	8/25/2014	204000.0	3	1.00	1000	12070
69	1802000060	6/12/2014	1330000.0	5	2.25	3200	20158
70	1525059190	9/12/2014	1040000.0	5	3.25	4770	50094
71	1049000060	1/5/2015	325000.0	3	2.00	1260	5612
70	0000001075	014010044	E74000 0	A	2.22	0750	7007
72	8820901275	6/10/2014	571000.0	4	2.00	2750	7807

			_	roject.ipynb at mai			
73	5416510140	7/10/2014	360000.0	4	2.50	2380	5000
74	3444100400	3/16/2015	349000.0	3	1.75	1790	50529
75	3276920270	11/5/2014	832500.0	4	4.00	3430	35102
76	4036801170	10/13/2014	380000.0	4	1.75	1760	7300
77	2391600320	4/20/2015	480000.0	3	1.00	1040	5060
78	6300000287	6/9/2014	410000.0	3	1.00	1410	5060
79	1531000030	3/23/2015	720000.0	4	2.50	3450	39683
80	5104520400	12/2/2014	390000.0	3	2.50	2350	5100
81	7437100340	12/22/2014	360000.0	4	2.50	1900	5889
82	9418400240	10/28/2014	355000.0	2	1.00	2020	6720
83	1523059105	1/28/2015	356000.0	3	1.50	1680	8712
84	1133000671	6/2/2014	315000.0	3	1.00	960	6634
85	4232902595	11/14/2014	940000.0	3	1.50	2140	3600
86	2599001200	11/3/2014	305000.0	5	2.25	2660	8400
87	3342103156	6/18/2014	461000.0	3	3.25	2770	6278
88	1332700270	5/19/2014	215000.0	2	2.25	1610	2040
89	3869900162	9/4/2014	335000.0	2	1.75	1030	1066
90	2791500270	5/22/2014	243500.0	4	2.50	1980	7403
91	5036300431	3/11/2015	1100000.0	5	2.75	3520	6353
92	4168000060	2/26/2015	153000.0	3	1.00	1200	10500
93	6021501535	7/25/2014	430000.0	3	1.50	1580	5000
95	1483300570	9/8/2014	905000.0	4	2.50	3300	10250
96	3422049190	3/30/2015	247500.0	3	1.75	1960	15681
97	1099611230	9/12/2014	199000.0	4	1.50	1160	6400
98	722079104	7/11/2014	314000.0	3	1.75	1810	41800
99	7338200240	5/16/2014	437500.0	3	2.50	2320	36847

	110	use_price_priase2	riousing_riicc_r	roject.ipyno at mam	7 HTHAIL I TO/HOUS	c_pricc_priasc2	•
100	1952200240	6/11/2014	850830.0	3	2.50	2070	13241
101	5200100125	10/27/2014	555000.0	3	2.00	1980	3478
102	7214720075	12/12/2014	699950.0	3	2.25	2190	107593
103	2450000295	10/7/2014	1090000.0	3	2.50	2920	8113
104	6197800045	9/24/2014	290000.0	3	1.00	1210	33919
105	1328310370	4/2/2015	375000.0	3	2.50	2340	10005
106	546000875	5/23/2014	460000.0	3	1.00	1670	4005
107	3530510041	7/23/2014	188500.0	2	1.75	1240	2493
108	1853000400	3/5/2015	680000.0	4	2.50	3140	28037
109	3134100116	8/27/2014	470000.0	5	1.75	2030	12342
110	9545230140	7/25/2014	597750.0	4	2.50	2310	9624
111	3362400511	3/4/2015	570000.0	3	1.75	1260	3328
112	2525310310	9/16/2014	272500.0	3	1.75	1540	12600
113	6126500060	11/24/2014	329950.0	3	1.75	2080	5969
114	8961960160	10/28/2014	480000.0	4	2.50	3230	16171
115	3626039325	11/21/2014	740500.0	3	3.50	4380	6350
116	3362400431	6/26/2014	518500.0	3	3.50	1590	1102
117	4060000240	6/23/2014	205425.0	2	1.00	880	6780
118	3454800060	1/8/2015	171800.0	4	2.00	1570	9600
119	1695900060	5/11/2015	535000.0	4	1.00	1610	2982
120	7278700070	1/2/2015	660000.0	3	2.50	2400	6474
121	6675500070	11/19/2014	391500.0	3	2.00	1450	9132
122	3626039187	4/6/2015	395000.0	2	1.00	770	6000
123	3524049083	11/4/2014	445000.0	4	1.75	2100	4400
124	3275860240	6/18/2014	770000.0	3	2.25	2910	10204
125	4389200955	3/2/2015	1450000.0	4	2.75	2750	17789
126	4058801670	7/17/2014	445000.0	3	2.25	2100	8201
127	8732020310	7/17/2014	260000.0	4	2.25	2160	8811
				_			

128	ho 2331300505	ouse_price_phase2 6/13/2014	/Housing_Price_F 822500.0	Project.ipynb at main 5	· AHMET16/ho	ouse_price_phase 2320	2 4960
129	7853210060	4/6/2015	430000.0	4	2.50	2070	4310
130	3668000070	1/5/2015	212000.0	3	1.75	1060	7875
131	9545240070	4/28/2015	660500.0	4	2.25	2010	9603
132	1243100136	6/12/2014	784000.0	3	3.50	3950	111078
133	8929000270	5/12/2014	453246.0	3	2.50	2010	2287
134	2767602356	1/26/2015	675000.0	4	3.50	2140	2278
135	921049315	8/13/2014	199000.0	3	1.75	1320	17390
136	3655000070	8/5/2014	220000.0	4	1.75	2020	7840
137	4027700812	5/29/2014	452000.0	4	2.25	2590	10002
138	3992700335	7/7/2014	382500.0	2	1.00	1190	4440
139	2767603505	5/7/2014	519950.0	3	2.25	1170	1249
140	4232901525	6/27/2014	665000.0	2	1.00	1110	3200
141	1777500060	7/8/2014	527700.0	5	2.50	2820	9375
142	1432900240	5/8/2015	205000.0	3	1.00	1610	8579
143	6140100875	4/15/2015	420000.0	3	1.00	1060	8097
144	6071600370	2/27/2015	500000.0	4	2.25	2030	8517
145	1526069017	12/3/2014	921500.0	4	2.50	3670	315374
146	809001525	6/25/2014	890000.0	4	1.00	2550	4000
147	3224079105	8/6/2014	430000.0	2	2.50	2420	60984
148	8075400570	10/30/2014	258000.0	5	2.00	2260	12500
149	1994200024	11/4/2014	511000.0	3	1.00	1430	3455
150	3362900810	8/20/2014	532170.0	3	2.00	1360	3090
151	1324300398	4/9/2015	560000.0	3	1.00	1110	5000
152	537000445	3/31/2015	282950.0	3	1.00	1250	8200
153	7855801670	4/1/2015	2250000.0	4	3.25	5180	19850
154	7920100045	5/16/2014	350000.0	1	1.00	700	5100
155	8960000030	7/28/2014	215000.0	3	1.00	1180	7669

		-1 -1	<i>o</i>	J 1 J		-1 -1	
156	6388930390	11/20/2014	650000.0	5	3.50	3960	25245
157	8731900200	8/7/2014	320000.0	4	2.75	2640	7500
158	8029200135	11/13/2014	247000.0	3	2.00	1270	7198
159	1081200350	10/3/2014	320000.0	4	1.75	1760	11180
160	84000105	5/7/2014	255000.0	5	2.25	2060	8632
161	3756500060	3/9/2015	438000.0	3	1.75	1780	9660
162	7215720160	3/4/2015	900000.0	3	2.50	3400	16603
163	3574800520	6/20/2014	441000.0	3	2.75	1910	7280
164	2617300160	8/12/2014	420000.0	3	2.00	2020	38332
165	2558660270	12/8/2014	370000.0	3	1.75	1580	7000
166	2009000370	2/19/2015	269950.0	2	1.75	1340	7250
167	1836980160	3/24/2015	807100.0	4	2.50	2680	4499
168	3261020370	6/5/2014	653000.0	3	2.50	2680	9750
169	1755700060	6/11/2014	371500.0	3	2.00	1370	8336
170	4330600435	3/16/2015	284000.0	3	1.75	1560	21000
171	9542800700	1/2/2015	272000.0	3	1.75	2160	7140
172	1999700045	5/2/2014	313000.0	3	1.50	1340	7912
173	1762600070	1/16/2015	917500.0	4	2.50	3880	35003
174	1687900520	9/29/2014	673000.0	4	2.25	2590	8190
175	7234600798	2/10/2015	425000.0	3	2.50	1120	1100
176	3881900445	7/9/2014	399950.0	5	2.75	1970	5400
177	2254502445	5/30/2014	385000.0	3	1.00	1220	4800
178	5437810320	11/17/2014	269950.0	3	1.50	1950	7560
179	9158100075	1/7/2015	330000.0	2	1.00	1350	8220
180	3830630310	7/25/2014	260000.0	3	2.50	1670	5797
181	8123100045	4/14/2015	470000.0	4	3.00	2380	5125

	no	use_price_pnase2/	Housing_Price_P	roject.ipynb at m	iain · AHME i 16/n	iouse_price_pnase	:2
182	3127200041	6/13/2014	589000.0	4	3.00	2440	9600
183	6661200320	7/23/2014	163500.0	2	1.50	1050	3419
184	11510310	9/5/2014	835000.0	4	2.75	3130	13412
185	825059270	11/21/2014	1100000.0	5	3.00	4090	12850
186	8731951370	4/15/2015	269000.0	4	1.75	1490	10000
187	1954440060	5/5/2014	560000.0	3	2.50	1900	8744
188	2264500350	4/18/2015	615000.0	4	1.00	1330	2400
189	1115810060	12/5/2014	585188.0	3	2.25	2230	10026
190	9477200200	8/18/2014	305000.0	3	1.75	1650	9480
191	1432600560	11/5/2014	166950.0	3	1.00	1190	8820
192	2287000060	9/12/2014	799000.0	3	2.50	2140	9897
193	3663500060	6/25/2014	400000.0	3	2.50	2180	7508
194	3996900125	12/1/2014	230000.0	3	1.00	1060	10228
195	7796450200	5/15/2014	256883.0	3	2.50	1690	5025
196	7549802535	11/11/2014	423000.0	4	2.00	1970	6480
197	3278600320	7/23/2014	465000.0	3	2.50	2150	4084
198	2824079053	1/13/2015	440000.0	3	2.50	1910	66211
199	1222069094	10/14/2014	385000.0	3	1.75	1350	155073
200	3542300060	3/11/2015	210000.0	3	1.00	860	11725

```
5
                  234
          12
                   88
          4
                   27
          13
                   13
          3
                    1
          Name: grade, dtype: int64
In [27]:
           df['grade'] = df['grade'].astype(float)
In [28]:
           df
Out[28]:
                          id
                                   date
                                            price bedrooms bathrooms sqft_living sqft_lot flo
               0 7129300520 10/13/2014 221900.0
                                                                                     5650
                                                          3
                                                                   1.00
                                                                             1180
                 6414100192
                               12/9/2014 538000.0
                                                          3
                                                                  2.25
                                                                             2570
                                                                                     7242
               2 5631500400
                              2/25/2015 180000.0
                                                          2
                                                                              770
                                                                                    10000
                                                                  1.00
               3 2487200875
                                                                             1960
                                                                                     5000
                              12/9/2014 604000.0
                                                                  3.00
                  1954400510
                               2/18/2015 510000.0
                                                          3
                                                                  2.00
                                                                             1680
                                                                                     8080
                                                         ...
          21592
                   263000018
                               5/21/2014 360000.0
                                                          3
                                                                  2.50
                                                                             1530
                                                                                      1131
          21593 6600060120
                              2/23/2015 400000.0
                                                          4
                                                                  2.50
                                                                             2310
                                                                                     5813
          21594
                 1523300141 6/23/2014 402101.0
                                                          2
                                                                  0.75
                                                                             1020
                                                                                     1350
          21595
                   291310100
                               1/16/2015 400000.0
                                                          3
                                                                  2.50
                                                                             1600
                                                                                     2388
          21596 1523300157 10/15/2014 325000.0
                                                          2
                                                                  0.75
                                                                             1020
                                                                                     1076
         21420 rows × 21 columns
In [29]:
           #df['grade'] = df['grade'].map(lambda x: len(x.split()))
In [30]:
           df["grade"].value counts(dropna=False)
          7.0
                   8889
Out[30]:
          8.0
                   6041
          9.0
                   2606
          6.0
                   1995
          10.0
                   1130
          11.0
                    396
          5.0
                    234
          12.0
                     88
                     27
          4.0
          13.0
                     13
          Name: grade, dtype: int64
In [31]:
           df
```

Out[31]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	f
	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	
	•••	•••							
	21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	
	21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	
	21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	
	21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	
	21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	
	21420 %	ows × 21 colu	mno						
	2142011	ows x z i colu	111115						
					ا 1. المحادة ا	no/****	. 0)		
In [32]:	# I f	r_renovated illed the n r_renovated	ull with (because	=			renovate	d
<pre>In [32]: Out[32]:</pre>	# I f	illed the nr_renovated	ull with ("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique("].unique(").unique("].unique(").unique("].unique(").uni	, 2010., , 2014., , 2000., , 2006., , 1948., , 1962., , 1946.,	1 think n 1992., 201 2011., 198 1999., 199 1985., 200 2009., 201 1953., 199 1975., 196	13., 1994., 33., 1945., 98., 1970., 1980., 1974., 193., 1996., 54., 1973.,	, 1978., 20 , 1990., 19 , 1989., 20 , 1971., 19 , 2008., 19 , 1955., 19	005., 988., 004., 979., 968.,	d
	# I f df["y array([0., 199 2003., 198 1977., 198 1986., 200 1997., 195 2012., 196 1956., 194	ull with ("].unique(").unique("].unique(").uni	, 2010., , 2014., , 2000., , 2006., , 1948., , 1962., , 1934.,	1 think n 1992., 201 2011., 198 1999., 199 1985., 200 2009., 201 1953., 199 1975., 196	13., 1994., 33., 1945., 98., 1970., 91., 1980., 1974., 93., 1996., 94., 1973., 1958.	, 1978., 20 , 1990., 19 , 1989., 20 , 1971., 19 , 2008., 19 , 1955., 19	005., 988., 004., 979., 968.,	d
Out[32]:	# I f df["y array([0., 199 2003., 198 1977., 198 1986., 200 1997., 195 2012., 196 1956., 194 1960., 196 qft_basemen king what i	ull with ("].unique(").unique("].unique(").uni	, 2010., , 2014., , 2000., , 2006., , 1948., , 1962., , 1934.,	1 think n 1992., 201 2011., 198 1999., 199 1985., 200 2009., 201 1953., 199 1975., 196	13., 1994., 33., 1945., 98., 1970., 91., 1980., 1974., 93., 1996., 94., 1973., 1958.	, 1978., 20 , 1990., 19 , 1989., 20 , 1971., 19 , 2008., 19 , 1955., 19	005., 988., 004., 979., 968.,	d

```
df["sqft_basement"].value_counts()
          0.0
                     13169
Out[34]:
          600.0
                       216
          500.0
                       206
          700.0
                       205
          800.0
                       201
          1920.0
                         1
          3480.0
                         1
          2730.0
                         1
          2720.0
                         1
          248.0
                         1
          Name: sqft_basement, Length: 303, dtype: int64
In [35]:
           df.isnull().sum()
           #sanity check
                              0
          id
Out[35]:
          date
                              0
          price
                              0
          bedrooms
                              0
          bathrooms
          sqft_living
                              0
          sqft_lot
          floors
                              0
                             63
          view
          grade
                              0
          sqft above
                              0
          sqft_basement
                              0
          yr built
                              0
          yr renovated
          zipcode
                              0
                              0
          lat
          long
                              0
          sqft living15
          sqft lot15
                              0
          waterfront1
          condition1
          dtype: int64
In [36]:
           df = df.drop(["id","date","view"], axis = 1)
           # drop unwanted columns. id: there is no use of the id in the model,
           #same as the selling date, and I don't need view if the house has been vi
In [37]:
           df.describe().T
                                                                                25%
Out[37]:
                                                         std
                          count
                                         mean
                                                                     min
                   price 21420.0 540739.303922 367931.109953 78000.0000
                                                                         322500.0000 450000
              bedrooms 21420.0
                                      3.373950
                                                    0.925405
                                                                  1.0000
                                                                               3.0000
              bathrooms 21420.0
                                       2.118429
                                                     0.768720
                                                                  0.5000
                                                                               1.7500
              sqft_living 21420.0
                                   2083.132633
                                                   918.808412
                                                                370.0000
                                                                                         1920
                                                                            1430.0000
                sqft_lot 21420.0
                                  15128.038002
                                                41530.796838
                                                                520.0000
                                                                            5040.0000
                                                                                         7614
```

floors	21420.0	1.495985	0.540081	1.0000	1.0000	
grade	21420.0	7.662792	1.171971	3.0000	7.0000	· ·
sqft_above	21420.0	1791.170215	828.692965	370.0000	1200.0000	1560
sqft_basement	21420.0	285.904342	440.008202	0.0000	0.0000	(
yr_built	21420.0	1971.092997	29.387141	1900.0000	1952.0000	197!
yr_renovated	21420.0	68.956723	364.552298	0.0000	0.0000	(
zipcode	21420.0	98077.874370	53.477480	98001.0000	98033.0000	9806!
lat	21420.0	47.560197	0.138589	47.1559	47.4712	4
long	21420.0	-122.213784	0.140791	-122.5190	-122.3280	-12:
sqft_living15	21420.0	1988.384080	685.537057	399.0000	1490.0000	1840
sqft_lot15	21420.0	12775.718161	27345.621867	651.0000	5100.0000	7620
waterfront1	21420.0	0.006816	0.082280	0.0000	0.0000	(
condition1	21420.0	1.078758	0.269367	1.0000	1.0000	

In [38]:

df

Out[38]:		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	grade	sqft_above
	0	221900.0	3	1.00	1180	5650	1.0	7.0	1180
	1	538000.0	3	2.25	2570	7242	2.0	7.0	2170
	2	180000.0	2	1.00	770	10000	1.0	6.0	770
	3	604000.0	4	3.00	1960	5000	1.0	7.0	1050
	4	510000.0	3	2.00	1680	8080	1.0	8.0	1680
	•••								
	21592	360000.0	3	2.50	1530	1131	3.0	8.0	1530
	21593	400000.0	4	2.50	2310	5813	2.0	8.0	2310
	21594	402101.0	2	0.75	1020	1350	2.0	7.0	1020
	21595	400000.0	3	2.50	1600	2388	2.0	8.0	1600
	21596	325000.0	2	0.75	1020	1076	2.0	7.0	1020

In [39]:

I will set a range for each feature and get rid of outliers, I will look # from .describe

In [40]:

ut.plot(df,["price"])

In [41]:
 df=df[(df['price'] < 12000000) & (df['price'] >100000)] # limiting my pric
 df

Out[41]:	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	grade	sqft_above
0	221900.0	3	1.00	1180	5650	1.0	7.0	1180
1	538000.0	3	2.25	2570	7242	2.0	7.0	2170
2	180000.0	2	1.00	770	10000	1.0	6.0	770
3	604000.0	4	3.00	1960	5000	1.0	7.0	1050
4	510000.0	3	2.00	1680	8080	1.0	8.0	1680
		•••						
21592	360000.0	3	2.50	1530	1131	3.0	8.0	1530
21593	400000.0	4	2.50	2310	5813	2.0	8.0	2310
21594	402101.0	2	0.75	1020	1350	2.0	7.0	1020
21595	400000.0	3	2.50	1600	2388	2.0	8.0	1600
21596	325000.0	2	0.75	1020	1076	2.0	7.0	1020

21390 rows × 18 columns

```
In [42]: ut.plot(df,["bedrooms"])
```

Out[42]: <AxesSubplot:ylabel='Density'>


```
0.4 - 0.2 - 0.0 5 10 15 20 25 30 35
```

```
In [43]:
    df=df[(df['bedrooms']<6)]
    # remove the outliner</pre>
```

```
In [44]: ut.plot(df,['bedrooms'])
```

Out[44]: <AxesSubplot:ylabel='Density'>


```
In [45]: ut.plot(df,['bathrooms'])
```

Out[45]: <AxesSubplot:ylabel='Density'>


```
In [46]:
    df=df[(df['bathrooms']<4.5)]
    #remove the outliner</pre>
```

```
In [47]:
           ut.plot(df,['bathrooms'])
           <AxesSubplot:ylabel='Density'>
Out[47]:
             3.5
             3.0
             2.5
          2.0
2.5
2.5
             1.0
             0.5
             0.0
In [48]:
           ut.plot(df,['sqft_living'])
           <AxesSubplot:ylabel='Density'>
Out[48]:
             0.0005
             0.0004
             0.0003
             0.0002
             0.0001
             0.0000
                     Ò
                         1000
                               2000
                                    3000
                                         4000
                                                5000
                                                     6000
                                                          7000
                                                                8000
In [49]:
           df=df[(df["sqft_living"]<3500)]</pre>
In [50]:
           ut.plot(df,["sqft_living"])
           <AxesSubplot:ylabel='Density'>
Out[50]:
             0.0006
             0.0005
             0.0004
          0.0003
             0.0002
```

```
In [51]:
    ut.plot(df,["sqft_lot"])
```

Out[51]: <AxesSubplot:ylabel='Density'>


```
In [52]: df=df[(df["sqft_lot"]<20000)]
```

```
In [53]: ut.plot(df,["sqft_lot"])
```

Out[53]: <AxesSubplot:ylabel='Density'>


```
In [54]:
ut.plot(df,['floors'])
```

Out[54]: <AxesSubplot:ylabel='Density'>


```
In [55]:
           df=df[(df["floors"]<3.5)]</pre>
In [56]:
           ut.plot(df,["floors"])
          <AxesSubplot:ylabel='Density'>
Out[56]:
             7
             6
            5
            2
            1
                                               2.5
                                                        3.0
In [57]:
           df["condition1"].unique()
          array([1, 2])
Out[57]:
         list = [] for i in list:
         df["grade"].unique()
In [58]:
           ut.plot(df,["sqft_above"])
          <AxesSubplot:ylabel='Density'>
Out[58]:
            0.0008
```

0.0006

Density 0.0004

```
0.0000 0 500 1000 1500 2000 2500 3000 3500
```

```
In [59]:
           df["sqft_above"].value_counts().sort_values(ascending=True)
          1425
                     1
Out[59]:
          3087
                     1
          2198
          1333
          2531
          1140
                   169
          1220
                   173
          1200
                   190
          1010
                   194
          1300
                   195
          Name: sqft_above, Length: 658, dtype: int64
In [60]:
           df=df[(df['sqft_above'] <2900)]</pre>
In [61]:
           ut.plot(df,["sqft_above"])
          <AxesSubplot:ylabel='Density'>
Out[61]:
            0.0008
            0.0006
          0.0004
            0.0002
            0.0000
                        500
                               1000
                                      1500
                                              2000
                                                     2500
                                                             3000
In [62]:
           ut.plot(df,["sqft_basement"])
          <AxesSubplot:ylabel='Density'>
Out[62]:
            0.014
            0.012
            0.010
```

0.008

```
0.006

0.004

0.002

0.000

0 500 1000 1500 2000
```

```
2000
In [63]:
           df["sqft_basement"].value_counts().sort_values(ascending=True)
                          1
          248.0
Out[63]:
          207.0
                          1
                          1
          283.0
          556.0
                          1
          266.0
                          1
          143.0
                          1
          65.0
          508.0
                          1
          10.0
                          1
          516.0
          862.0
                          1
          602.0
          20.0
          274.0
          276.0
          176.0
                          1
          295.0
                          1
          225.0
          172.0
                          1
          1730.0
          792.0
          1620.0
                          1
          1630.0
                          1
          652.0
                          1
          415.0
                          1
          1525.0
          518.0
                          1
          861.0
                          1
          906.0
                          1
          784.0
                          1
          1750.0
                          1
          1135.0
                          1
          1710.0
                          1
                          1
          704.0
          875.0
                          1
          506.0
                          1
          243.0
                          1
          235.0
                          2
          435.0
                          2
                          2
          1520.0
          515.0
                          2
          1660.0
                          2
          1690.0
                          2
                          2
          414.0
                          2
          1530.0
          1560.0
                          2
                          2
          1680.0
                          2
          1570.0
          1700.0
                          2
```

2

1720.0

±, = 0 • 0		 -	
	2		
265.0	3		
1610.0	3		
1490.0	3		
1600.0	4		
1550.0	4		
1480.0	4		
40.0	4		
1540.0	5		
1650.0	5		
145.0	5		
1430.0	5		
1510.0	5		
1470.0	5		
1590.0	5		
1310.0	5		
1410.0	6		
1460.0	6		
70.0	6		
1360.0	6		
1350.0	7		
1580.0	7		
1440.0	7		
	/		
1420.0	8		
1320.0	9		
1450.0	9		
1290.0	9		
60.0	10		
1380.0	10		
1390.0	10		
50.0	11		
230.0	11		
1500.0	11		
1260.0	11		
1340.0	12		
1280.0	12		
1330.0	13		
1240.0	13		
1210.0	13		
1370.0	14		
1150.0	16		
1190.0	16		
1270.0	17		
1140.0	17		
110.0	18		
1160.0	18		
1400.0	18		
1170.0			
	19		
90.0	20		
1230.0	20		
80.0	20		
1220.0	21		
1130.0	21		
1110.0	22		
410.0	24		
160.0	24		
210.0	24		
1180.0	25		
130.0	25		
170.0	26		
100 0	26		

26

490.0

	hou
1300.0	27
1080.0	27
1090.0	29
1120.0	30
190.0	32
1050.0	32
930.0	33
710.0	33
1250.0	35
970.0	35
320.0	35
260.0	36
180.0	36
590.0	36
370.0	37
870.0	37
610.0	38
1070.0	38
1030.0	38
1020.0	38
690.0	39
990.0	39
100.0	39
270.0	41
150.0	41
660.0	42
1200.0	42
220.0	42
980.0	43
390.0	43
1040.0	43
1060.0	44
330.0	44
810.0	45
1010.0	46
830.0	46
470.0	46
540.0	46
510.0	47
890.0	47
250.0	49
950.0	50
120.0	50
140.0	50
790.0	51
820.0	51
1100.0	52
760.0	52
920.0	52
310.0	52
570.0	53
560.0	54
460.0	54
	54
640.0	
340.0	54
730.0	55
880.0	55
940.0	55
740.0	55
960.0	56
010 0	E 6

```
910.0
                         Dο
           630.0
                         58
          850.0
                         59
          280.0
                         60
          350.0
                         60
           430.0
                         62
          860.0
                          63
           440.0
                         64
           520.0
                         64
           680.0
                         64
          290.0
                         64
           770.0
                          64
           360.0
                         65
           380.0
                         66
                          67
           650.0
           780.0
                         67
           670.0
                         68
          550.0
                         70
           240.0
                         71
          840.0
                         72
                         73
          420.0
          580.0
                         74
           620.0
                         82
          530.0
                         90
                         90
           720.0
           480.0
                         92
           450.0
                         92
                         94
          750.0
          200.0
                         97
           1000.0
                        105
          900.0
                        112
          300.0
                        133
           400.0
                        167
          800.0
                        172
          700.0
                        183
          600.0
                        186
          500.0
                        191
          0.0
                      10267
          Name: sqft basement, dtype: int64
In [64]:
           df=df[(df["sqft_basement"]<1200)]</pre>
In [65]:
           ut.plot(df,["sqft_basement"])
          <AxesSubplot:ylabel='Density'>
Out[65]:
             0.016
             0.014
             0.012
          0.010
0.008
             0.006
             0.004
             0.002
```


1991	129
1011	132
1944	132
2012	133
1992	136
1940	137
1993	139
2013	140
1965	141
1925	146
1941	147
1975	149
1980	149
1943	150
1981	151
1998	153
1983	155
1985	156
2002	156
1986	157
1984	159
1957	
	163
1958	164
1949	164
1926	167
1956	172
1976	175
1988	179
1994	180
1999	181
1953	181
2001	185
1989	185
1961	186
1952	188
1966	195
1948	196
1960	197
1951	201
1963	201
1942	201
2009	203
1950	208
1987	209
1990	211
1947	224
1969	225
1955	230
1979	245
1962	249
1954	264
1978	
	277
1959	280
2008	280
1967	287
2004	291
1977	295
2006	298
2007	300
2003	305
1968	309
2005	314

```
2005
          2014
                   364
          Name: yr_built, dtype: int64
In [67]:
           ut.plot(df,["yr_built"])
          <AxesSubplot:ylabel='Density'>
Out[67]:
             0.016
             0.014
             0.012
          0.010
0.008
             0.006
             0.004
             0.002
             0.000
                      1900
                                   1940
                                                1980
                                                      2000
                                                             2020
                             1920
                                         1960
In [68]:
           df["yr_renovated"].value_counts().sort_values(ascending=True)
                          1
          1957.0
Out[68]:
          1934.0
                          1
          1959.0
                          1
          1944.0
                          1
          1948.0
                          1
          1946.0
                          1
          1950.0
                          1
          1953.0
          1962.0
                          1
          1951.0
                          1
          1971.0
                          1
          1976.0
                          1
          1955.0
                          2
                          2
          1960.0
          1940.0
                          2
                          2
          1967.0
          1981.0
                          2
          1972.0
                          2
          1974.0
                          2
          1956.0
                          2
          1965.0
                          3
                          3
          1963.0
          1978.0
                          3
                          3
          1958.0
          1945.0
                          3
          1964.0
                          3
          1975.0
                          3
          1969.0
                          3
          1973.0
          1982.0
          1977.0
          1968.0
                          5
          1980.0
```

```
19/9.0
                         6
          1995.0
          2015.0
                         7
                         7
          1970.0
                         7
          2012.0
                         7
          1992.0
          1998.0
                         8
          1996.0
                         8
          1987.0
                         8
          1999.0
                         8
          2011.0
          1985.0
                         9
                         9
          1994.0
                         9
          1986.0
                         9
          2010.0
          1988.0
                        10
          2001.0
                        10
          1993.0
                        10
          1997.0
                        10
                        10
          1990.0
          2008.0
                        11
          2002.0
                        11
          1984.0
                        11
                        12
          1991.0
          1989.0
                        13
          1983.0
                        13
          2006.0
                        15
          2007.0
                        16
          2009.0
                        16
          2004.0
                        17
          2000.0
                        20
          2003.0
                        20
          2005.0
                        22
                        25
          2013.0
          2014.0
                        60
          0.0
                     16011
          Name: yr renovated, dtype: int64
In [69]:
          df["renovated"]= df["yr_renovated"].apply(lambda x:1 if x!=0 else 0)
           # assign the value in the "yr_renovated" columns to binary value if it is
In [70]:
           df["renovated"].value_counts()
               16011
Out[70]:
                 520
          Name: renovated, dtype: int64
In [71]:
          df =df.drop(["yr_renovated"],axis=1)
           #drop "yr renovated"
In [72]:
           ut.plot(df,['zipcode'])
          <AxesSubplot:ylabel='Density'>
Out[72]:
            0.0175 -
```



```
In [73]:
           df['zipcode'].value_counts()
          98103
                     571
Out[73]:
          98115
                     535
          98117
                     519
          98034
                     463
          98133
                     458
          98118
                     457
          98038
                     448
          98023
                     419
          98052
                     411
          98042
                     406
          98155
                     388
          98125
                     366
          98058
                     354
          98126
                     339
          98056
                     333
          98106
                     311
          98144
                     305
          98116
                     304
                     299
          98059
          98033
                     297
          98001
                     290
          98122
                     271
          98006
                     266
          98074
                     261
          98029
                     258
          98146
                     256
          98199
                     254
          98107
                     251
          98003
                     244
          98136
                     242
          98031
                     240
          98198
                     239
          98178
                     236
          98092
                     236
          98168
                     228
          98055
                     227
          98008
                     227
          98028
                     226
                     225
          98030
          98027
                     210
          98112
                     207
                     197
          98065
          98053
                     192
```

```
98166
                     191
           98105
                     188
           98002
                     185
           98177
                     183
                     172
           98108
           98119
                     168
           98004
                     167
           98011
                     157
           98022
                     145
                     139
           98072
           98045
                     135
           98040
                     134
           98019
                     128
           98188
                     117
           98075
                     110
           98032
                     104
           98007
                     104
           98005
                      99
           98109
                      99
                      90
           98102
           98148
                      53
           98014
                      50
           98010
                      50
           98077
                      29
                      28
           98070
                      25
           98024
           98039
                      15
           Name: zipcode, dtype: int64
In [74]:
           df['zipcode'].nunique()
           70
Out[74]:
In [75]:
            ut.plot(df,['lat'])
           <AxesSubplot:ylabel='Density'>
Out[75]:
             4.0
             3.5
             3.0
          Density
2.0
             1.5
             1.0
             0.5
             0.0
                 47.1
                        47.2
                              47.3
                                    47.4
                                          47.5
                                                47.6
                                                       47.7
                                                             47.8
In [76]:
            ut.plot(df,['long'])
           <AxesSubplot:ylabel='Density'>
Out[76]:
```



```
In [77]:
    ut.plot(df,['sqft_living15'])
```

Out[77]: <AxesSubplot:ylabel='Density'>


```
In [78]: df=df[(df['sqft_living15']<3400)]</pre>
```

In [79]: ut.plot(df,['sqft_living15'])

Out[79]: <AxesSubplot:ylabel='Density'>


```
In [80]:
            ut.plot(df,["sqft_lot15"])
           <AxesSubplot:ylabel='Density'>
Out[80]:
              0.00014
              0.00012
              0.00010
              0.00008
              0.00006
              0.00004
              0.00002
              0.00000
                           25000 50000 75000 100000 125000 150000 175000 200000
In [81]:
            df=df[(df["sqft_lot15"]<8000)]</pre>
In [82]:
            ut.plot(df,["sqft_lot15"])
           <AxesSubplot:ylabel='Density'>
Out[82]:
              0.00030
              0.00025
              0.00020
           Den 0.00012
              0.00010
              0.00005
              0.00000
                                 2000
                                            4000
                                                      6000
                                                                8000
```

Explore the data

df.describe().T

In [83]:

Out[83]:		count	mean	std	min	25%	
	price	10529.0	466858.469655	217031.551785	102500.0000	315000.0000	42500
	bedrooms	10529.0	3.124513	0.811660	1.0000	3.0000	
	bathrooms	10529.0	1.979224	0.686776	0.5000	1.5000	
	sqft_living	10529.0	1733.007978	578.861277	370.0000	1290.0000	167

0.023866

0.278334

0.179769

0.0000

1.0000

0.0000

0.0000

1.0000

0.0000

```
In [84]:
           df.shape
```

0.000570

1.084623

0.033431

(10529, 18)Out[84]:

In [85]: df.info()

> <class 'pandas.core.frame.DataFrame'> Int64Index: 10529 entries, 0 to 21596 Data columns (total 18 columns):

10529.0

10529.0

waterfront1

condition1

renovated 10529.0

Data	corumns (cocar	TO COTUMINS).	
#	Column	Non-Null Count	Dtype
0	price	10529 non-null	float64
1	bedrooms	10529 non-null	int64
2	bathrooms	10529 non-null	float64
3	sqft_living	10529 non-null	int64
4	sqft_lot	10529 non-null	int64
5	floors	10529 non-null	float64
6	grade	10529 non-null	float64
7	sqft_above	10529 non-null	int64
8	sqft_basement	10529 non-null	float64
9	<pre>yr_built</pre>	10529 non-null	int64
10	zipcode	10529 non-null	int64
11	lat	10529 non-null	float64
12	long	10529 non-null	float64
13	sqft_living15	10529 non-null	int64
14	sqft_lot15	10529 non-null	int64
15	waterfront1	10529 non-null	float64
16	condition1	10529 non-null	int64
17	renovated	10529 non-null	int64
dtype	es: float64(8),	int64(10)	
	1 - 207	_	

memory usage: 1.5 MB

```
In [86]: # plotting houses to the mean of price
    df.groupby("waterfront1")["price"].mean().plot(kind="bar",figsize=(10,8));
    plt.title("waterfront1 effect in the price ", fontsize=17)
    plt.ylabel("Average Houses Price",fontsize=15)
    plt.xlabel("Waterfront1",fontsize=15)
    plt.xticks(rotation=0)
    plt.show()
    #the houses with waterfront selling price are higher than one without water
```



```
In [87]:
# plotting houses to the mean of price
df.groupby("renovated")["price"].mean().plot(kind="bar",figsize=(8,8));
plt.title("Renovation effect in the price")
plt.ylabel("Average Houses Price")
plt.xlabel("Renoated VS Non-Renovated")
plt.xticks(rotation=0)

#the renovated houses selling price is higher than non-renovated one
```

Out[87]: (array([0, 1]), [Text(0, 0, '0'), Text(1, 0, '1')])

Renovation effect in the price 600000 -


```
In [88]: #Visualizing Longitude to Latitude to check how the price vary by location

plt.figure(figsize=(30,15))
 plt.scatter(x=df['long'], y=df['lat'], c =df["price"], cmap='tab20',marker
 plt.title("House price range based on Location", fontsize=30)
 plt.xlabel('Longitude', fontsize=25)
 plt.ylabel("Latitude", fontsize=25)
 plt.colorbar()
 plt.show()
 # #visualize relationships between numeric columns
 #sns.pairplot(df)
```


https://github.com/AHMET16/house_price_phase2/blob/main/Housing_Price_Project.ipynb

sns.scatterplot(data=df, x="long", y="lat", hue="price", palette="magma_r
plt.savefig("images/HousepricebasedonLocation1.png")

In [90]: #check for multicollinearity between other variables
df.corr()

Out[90]:		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	ç
	price	1.000000	0.217635	0.316676	0.524187	-0.119704	0.199558	0.54
	bedrooms	0.217635	1.000000	0.459647	0.620960	0.199903	0.160663	0.27
	bathrooms	0.316676	0.459647	1.000000	0.674282	-0.133333	0.544056	0.5
	sqft_living	0.524187	0.620960	0.674282	1.000000	0.147021	0.315873	0.59
	sqft_lot	-0.119704	0.199903	-0.133333	0.147021	1.000000	-0.460309	-0.16
	floors	0.199558	0.160663	0.544056	0.315873	-0.460309	1.000000	0.49
	grade	0.545287	0.274848	0.577811	0.596588	-0.161140	0.499053	1.00
	sqft_above	0.367255	0.514048	0.611275	0.822041	0.120000	0.509824	0.59
!	saft basement	0.307694	0.240133	0.178605	0.397831	0.060177	-0.268194	0.07

-0.149486	0.122484	0.546071	0.249853	-0.167701	0.540712	0.43
0.183199	-0.158983	-0.240784	-0.174464	-0.175007	-0.117675	-0.10
0.448126	-0.126717	-0.092086	-0.059186	-0.215156	0.006946	0.07
-0.147717	0.150683	0.267263	0.235449	0.165764	0.144362	0.11
0.390720	0.376324	0.472416	0.671648	0.150245	0.240301	0.51
-0.148172	0.189503	-0.146611	0.123844	0.824939	-0.485599	-0.16
0.092035	-0.013470	0.013761	0.020846	-0.008139	0.014905	0.01
0.116600	0.048797	-0.034529	0.021195	0.043614	-0.137415	-0.09
0.136677	0.019641	0.036016	0.054588	-0.001758	-0.015177	0.02
	0.183199 0.448126 -0.147717 0.390720 -0.148172 0.092035 0.116600	0.183199 -0.158983 0.448126 -0.126717 -0.147717 0.150683 0.390720 0.376324 -0.148172 0.189503 0.092035 -0.013470 0.116600 0.048797	0.183199-0.158983-0.2407840.448126-0.126717-0.092086-0.1477170.1506830.2672630.3907200.3763240.472416-0.1481720.189503-0.1466110.092035-0.0134700.0137610.1166000.048797-0.034529	0.183199 -0.158983 -0.240784 -0.174464 0.448126 -0.126717 -0.092086 -0.059186 -0.147717 0.150683 0.267263 0.235449 0.390720 0.376324 0.472416 0.671648 -0.148172 0.189503 -0.146611 0.123844 0.092035 -0.013470 0.013761 0.020846 0.116600 0.048797 -0.034529 0.021195	0.183199 -0.158983 -0.240784 -0.174464 -0.175007 0.448126 -0.126717 -0.092086 -0.059186 -0.215156 -0.147717 0.150683 0.267263 0.235449 0.165764 0.390720 0.376324 0.472416 0.671648 0.150245 -0.148172 0.189503 -0.146611 0.123844 0.824939 0.092035 -0.013470 0.013761 0.020846 -0.008139 0.116600 0.048797 -0.034529 0.021195 0.043614	0.183199 -0.158983 -0.240784 -0.174464 -0.175007 -0.117675 0.448126 -0.126717 -0.092086 -0.059186 -0.215156 0.006946 -0.147717 0.150683 0.267263 0.235449 0.165764 0.144362 0.390720 0.376324 0.472416 0.671648 0.150245 0.240301 -0.148172 0.189503 -0.146611 0.123844 0.824939 -0.485599 0.092035 -0.013470 0.013761 0.020846 -0.008139 0.014905 0.116600 0.048797 -0.034529 0.021195 0.043614 -0.137415

In [91]:

#set 0.75 high correlaion as a cut-off
abs(df.corr()) >0.75

Out[91]:	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	grade	sqft_abo
price	True	False	False	False	False	False	False	Fa
bedrooms	False	True	False	False	False	False	False	Fa
bathrooms	False	False	True	False	False	False	False	Fa
sqft_living	False	False	False	True	False	False	False	Т
sqft_lot	False	False	False	False	True	False	False	Fa
floors	False	False	False	False	False	True	False	Fa
grade	False	False	False	False	False	False	True	Fa
sqft_above	False	False	False	True	False	False	False	Т
sqft_basement	False	False	False	False	False	False	False	Fa
yr_built	False	False	False	False	False	False	False	Fa
zipcode	False	False	False	False	False	False	False	Fa
lat	False	False	False	False	False	False	False	Fa
long	False	False	False	False	False	False	False	Fa
sqft_living15	False	False	False	False	False	False	False	Fa
sqft_lot15	False	False	False	False	True	False	False	Fa
waterfront1	False	False	False	False	False	False	False	Fa
condition1	False	False	False	False	False	False	False	Fa
renovated	False	False	False	False	False	False	False	Fa

In [92]:

visualize correlations between numeric columns to check if there is any
plt.figure(figsize=(15,12))

```
ax = sns.heatmap(df.corr(),annot=True)
plt.xticks(rotation=30)
plt.show()
```

```
- 1.0
                                                   0.55 0.37 0.31 -0.15 0.18 0.45
                                                                                       -0.15
                                                                                                   -0.15 0.092 0.12 0.14
                                             0.16 0.27 0.51
                                                               0.24 0.12 -0.16 -0.13 0.15 0.38 0.19 -0.013 0.049 0.02
    bedrooms -
                                                                                                                                        - 0.8
                                                                           -0.24 -0.092 0.27 0.47
                                 0.67
                                                                                                   -0.15 0.014 -0.035 0.036
   bathrooms -
                                                                     0.25 -0.17 -0.059 0.24 0.67
                                                                                                    0.12 0.021 0.021 0.055
                          0.67
                                 1
                                                         0.82
   sqft_living
                                                                                                                                        - 0.6
                                                   -0.16 0.12 0.06 -0.17 -0.18 -0.22 0.17 0.15 0.82 -0.0081 0.044 -0.0018
                                       1
                                             -0.46
      sqft_lot -
                                      -0.46
                                                                           -0.12 0.0069 0.14 0.24
                                                                                                   -0.49 0.015 -0.14 -0.015
       floors
                                                              0.073 0.44
                                                                            -0.1 0.077 0.12
                                                                                             0.52
                                                                                                   -0.17 0.018 -0.097 0.029
       grade
                                                                                                                                        - 0.4
                                0.82
                                                          1
                                                                           -0.33 -0.15 0.41 0.67
                                                                                                   0.098 0.018 -0.087 0.0098
   sqft above
sqft_basement - 0.31 0.24
                                      0.06 -0.27 0.073 -0.18
                                                               1
                                                                     -0.23 0.22 0.14 -0.25 0.079 0.056 0.0082 0.17 0.077
                                                                                                                                        - 0.2
                                 0.25 -0.17
                                             0.54 0.44 0.41 -0.23
                                                                            -0.39 -0.24
                                                                                        0.44 0.27 -0.16 -0.00042 -0.27 -0.2
     yr built
              0.18 -0.16 -0.24 -0.17 -0.18 -0.12 -0.1 -0.33 0.22
                                                                     -0.39
     zipcode ·
                                                                                                                                         - 0.0
                    -0.13 -0.092 -0.059 -0.22 0.0069 0.077 -0.15 0.14 -0.24
                                                                                  1
                                                                                       -0.29 -0.095 -0.23 0.0051 0.049 0.043
              -0.15 0.15 0.27 0.24 0.17 0.14 0.12 0.41 -0.25 0.44 -0.64 -0.29
                                                                                        1 0.35 0.16 0.022 -0.098 -0.08
                                                                                                                                        - -0.2
              0.39 0.38 0.47 0.67
                                      0.15 0.24 0.52 0.67 0.079 0.27 -0.26 -0.095 0.35
                                                                                                    0.18 0.033 -0.064 -0.023
   sqft lot15 - -0.15 0.19 -0.15 0.12 0.82
                                             -0.49 -0.17 0.098 0.056 -0.16 -0.17 -0.23 0.16 0.18 1
                                                                                                         -0.0021 0.048 0.0034
                                                                                                                                        - -0.4
  waterfront1 - 0.092 -0.013 0.014 0.021 -0.0081 0.015 0.018 0.018 0.0082-0.000420.000930.0051 0.022 0.033 -0.0021 1
                                                                                                                0.007 -0.0044
   condition1 - 0.12 0.049 -0.035 0.021 0.044 -0.14 -0.097 -0.087 0.17 -0.27 0.074 0.049 -0.098 -0.064 0.048 0.007
   renovated - 0.14 0.02 0.036 0.055 -0.0018 -0.015 0.029 0.0098 0.077 -0.2 0.09 0.043 -0.08 -0.023 0.0034 -0.0044 -0.028
```

```
In [93]:
          # save absolute value of correlation matrix as a data frame
          # converts all values to absolute value
          # stacks the row:column pairs into a multindex
          # reset the index to set the multindex to seperate columns
          # sort values. 0 is the column automatically generated by the stacking
          df3=df.corr().abs().stack().reset index().sort values(0, ascending=False)
          # zip the variable name columns (Which were only named level_0 and level_1
          df3['pairs'] = list(zip(df3.level 0, df3.level 1))
          # set index to pairs
          df3.set index(['pairs'], inplace = True)
          #d rop level columns
          df3.drop(columns=['level 1', 'level 0'], inplace = True)
          # rename correlation column as cc rather than 0
          df3.columns = ['cc']
          # drop duplicates.
          df3.drop duplicates(inplace=True)
          df3.head()
```

```
Out [93]:
                                           CC
                               pairs
                       (price, price)
                                     1.000000
                (sqft_lot, sqft_lot15)
                                     0.824939
             (sqft_above, sqft_living)
                                     0.822041
             (sqft_living, bathrooms)
                                     0.674282
           (sqft_living15, sqft_above)
                                     0.672670
In [94]:
           df3[(df3.cc>.75) & (df3.cc <1)]
           #assingning the range for unwanted correlation
Out [94]:
                                         CC
                             pairs
              (sqft_lot, sqft_lot15) 0.824939
           (sqft_above, sqft_living)
                                   0.822041
In [95]:
           df = df.drop(["sqft lot15", "sqft above"], axis =1)
           # drop columns that cause high correlation so won't mess up my model
           # for sqft lot, sqft lot15: i dropped sqft lot15 because it makes more ser
           #land lots of the nearest 15 neighbors
           # for sqft above, sqft living: i dropped the sqft above because the square
           #living space is more important than the qft above basement
In [96]:
           df.corr()
Out [96]:
                              price bedrooms bathrooms sqft_living
                                                                         sqft_lot
                                                                                      floors
                                                                                                Ç
                           1.000000
                                      0.217635
                                                             0.524187
                                                                                   0.199558
                    price
                                                  0.316676
                                                                        -0.119704
                                                                                             0.54
               bedrooms
                           0.217635
                                      1.000000
                                                 0.459647
                                                             0.620960
                                                                        0.199903
                                                                                   0.160663
                                                                                             0.27
               bathrooms
                           0.316676
                                      0.459647
                                                 1.000000
                                                             0.674282
                                                                       -0.133333
                                                                                   0.544056
                                                                                              0.5
                                                 0.674282
                                                             1.000000
                                                                        0.147021
                                                                                   0.315873
                                                                                             0.59
               sqft_living
                           0.524187
                                      0.620960
                                                -0.133333
                 sqft_lot
                          -0.119704
                                      0.199903
                                                             0.147021
                                                                        1.000000 -0.460309
                                                                                             -0.16
                           0.199558
                                      0.160663
                                                 0.544056
                                                             0.315873 -0.460309
                   floors
                                                                                   1.000000
                                                                                             0.49
                   grade
                           0.545287
                                      0.274848
                                                  0.577811
                                                             0.596588
                                                                        -0.161140
                                                                                   0.499053
                                                                                             1.00
           sqft_basement
                           0.307694
                                      0.240133
                                                  0.178605
                                                             0.397831
                                                                        0.060177
                                                                                  -0.268194
                                                                                             0.07
                 yr_built -0.149486
                                      0.122484
                                                  0.546071
                                                             0.249853
                                                                       -0.167701
                                                                                   0.540712
                                                                                             0.43
                 zipcode
                           0.183199
                                     -0.158983
                                                -0.240784
                                                            -0.174464
                                                                       -0.175007
                                                                                   -0.117675 -0.10
                                                                                             0.07
                      lat
                           0.448126
                                     -0.126717
                                                -0.092086
                                                            -0.059186
                                                                       -0.215156
                                                                                   0.006946
                    long
                           -0.147717
                                      0.150683
                                                 0.267263
                                                             0.235449
                                                                        0.165764
                                                                                   0.144362
                                                                                              0.11
            sqft_living15
                           0.390720
                                      0.376324
                                                  0.472416
                                                             0.671648
                                                                        0.150245
                                                                                   0.240301
                                                                                              0.51
```

```
0.014905
                                                                                       0.01
waterfront1
              0.092035
                         -0.013470
                                       0.013761
                                                   0.020846
                                                              -0.008139
 condition1
              0.116600
                          0.048797
                                     -0.034529
                                                    0.021195
                                                               0.043614
                                                                           -0.137415
                                                                                      -0.09
 renovated
              0.136677
                          0.019641
                                       0.036016
                                                   0.054588
                                                              -0.001758
                                                                           -0.015177
                                                                                      0.02
```


Model

Baseline Model

```
# Instantiate a scaler
          scaler = StandardScaler()
          # train on train data
          scaler.fit(X train)
          # transform both train and test data
          X_train_scaled = scaler.transform(X_train)
          X_test_scaled = scaler.transform(X_test)
In [101...
          # Instantiate a linear regression model
          lr = LinearRegression()
          # Fit our model on our scaled data
          lr.fit(X_train_scaled, y_train)
         LinearRegression()
Out[101...
In [102...
          y_train_pred = lr.predict(X_train_scaled)
          y test pred = lr.predict(X test scaled)
In [103...
          # Evaluate
          ut.evaluate_model(y_train, y_test, y_train_pred, y_test_pred)
          Train R2: 0.672
          Test R2: 0.687
          Train MAE: 88905.328
          Test MAE: 89051.591
          Train RMSE: 123298.817
          Test RMSE: 125355.358
In [104...
          #the baseline model can predict 67 % variance in the price and approximate
          #and for root square error we have about $125000 off because root square
In [105...
          # visualizing our residuals
          # https://www.scikit-yb.org/en/latest/api/regressor/residuals.html
          from yellowbrick.regressor import ResidualsPlot
          visualizer = ResidualsPlot(lr)
          visualizer.fit(X train scaled, y train)
          #fit the traning data to the visualizer
          visualizer.score(X test scaled, y test)
          #Evaluate the model on the test data
          visualizer.show()
                          Residuals for LinearRegression Model
                                                                         1e6
                    Train R^2 = 0.672
                                                                            0.5
                    Test R^2 = 0.687
```


Out[105... AxesSubplot:title={'center':'Residuals for LinearRegression Model'}, xlab
el='Predicted Value', ylabel='Residuals'>

```
In [106...
    visualizer = ResidualsPlot(lr, hist=False, qqplot=True)
    visualizer.fit(X_train_scaled, y_train)
    visualizer.score(X_test_scaled, y_test)
    visualizer.show()
```


Out[106... <AxesSubplot:title={'center':'Residuals for LinearRegression Model'}, xlab
el='Predicted Value', ylabel='Residuals'>

```
In [107... # Import statsmodels.api as sm
from statsmodels.formula.api import ols

In [108... # The predicted values of the baseline model are not equally scattered, has
```

In [109... important_features = ["bedrooms", "bathrooms", "sqft_living", "sqft_lot", "flo

```
In [110...
```

```
# set the features recommended by our feature selector

X_train_perm = X_train[important_features]

predictors_int = sm.add_constant(X_train_perm)
modelols = sm.OLS(y_train, predictors_int).fit()
modelols.summary()
```

Out [110... OLS Regression Results

Dep. Variable: price **R-squared:** 0.672

Model: OLS Adj. R-squared: 0.671

Method: Least Squares F-statistic: 1147.

Date: Fri, 01 Apr 2022 Prob (F-statistic): 0.00

Time: 10:56:57 **Log-Likelihood:** -1.1069e+05

No. Observations: 8423 **AIC:** 2.214e+05

Df Residuals: 8407 **BIC:** 2.215e+05

Df Model: 15

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-3.295e+07	3.21e+06	-10.277	0.000	-3.92e+07	-2.67e+07
bedrooms	-1.711e+04	2208.763	-7.748	0.000	-2.14e+04	-1.28e+04
bathrooms	2.175e+04	3394.399	6.407	0.000	1.51e+04	2.84e+04
sqft_living	126.0804	5.171	24.380	0.000	115.943	136.218
sqft_lot	-6.7681	0.749	-9.040	0.000	-8.236	-5.301
floors	9122.9712	3940.404	2.315	0.021	1398.809	1.68e+04
grade	9.653e+04	2329.897	41.433	0.000	9.2e+04	1.01e+05
sqft_basement	-4.1516	5.860	-0.708	0.479	-15.639	7.336
yr_built	-2352.5732	61.695	-38.132	0.000	-2473.511	-2231.635
zipcode	29.8071	37.840	0.788	0.431	-44.369	103.984
lat	5.393e+05	1.18e+04	45.715	0.000	5.16e+05	5.62e+05
long	-6.917e+04	1.52e+04	-4.553	0.000	-9.9e+04	-3.94e+04
sqft_living15	48.1926	4.293	11.227	0.000	39.778	56.607
waterfront1	5.768e+05	6.18e+04	9.337	0.000	4.56e+05	6.98e+05
condition1	3.398e+04	5114.392	6.643	0.000	2.4e+04	4.4e+04
renovated	1.588e+04	7893.579	2.011	0.044	401.996	3.13e+04

Omnibus: 2971.832 **Durbin-Watson:** 2.037

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 29515.252

Skew: 1.403 **Prob(JB):** 0.00

Kurtosis: 11.731 **Cond. No.** 2.34e+08

Notes:

In [112...

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.34e+08. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [111... # examine the relationship of each of the following feature against the pr
```

```
fig, axs = plt.subplots(ncols = 3, nrows = 3, figsize = (20, 20))
sns.regplot(y = df['price'], x = X['bathrooms'], ax = axs[0, 0])
sns.regplot(y = df['price'], x = X['bedrooms'], ax = axs[0, 1])
sns.regplot(y = df['price'], x = X['sqft_living'], ax = axs[0, 2])
sns.regplot(y = df['price'], x = X['sqft_lot'], ax = axs[1, 0])
sns.regplot(y = df['price'], x = X['floors'], ax = axs[1, 1])
sns.regplot(y = df['price'], x = X['yr_built'], ax = axs[1, 2])
sns.regplot(y = df['price'], x = X['waterfront1'], ax = axs[2, 0])
sns.regplot(y = df['price'], x = X['grade'], ax = axs[2, 1])
sns.regplot(y = df['price'], x = X['sqft_living15'], ax = axs[2, 2])
plt.tight_layout()
```



```
In [113... # the best fit line is not clear in year built # floors and sqft_lot are not linearly related to the price
```

Second Model

```
In [114...
          from sklearn.preprocessing import PolynomialFeatures
In [115...
          # copy of the original dataframe
          df5 = df.copy()
          X5 = df.drop("price", axis=1)
          y5 = df["price"]
          # train test split
          X_train5, X_test5, y_train5, y_test5 = train_test_split(X5, y5, test_size=
In [116...
          # Instantiate PolynomialFeatures
          poly = PolynomialFeatures(degree=2, interaction only=False)
In [117...
          # Fit and transform X train
          poly.fit(X train5)
          X_train_poly = poly.transform(X train5)
          X test poly = poly.transform(X test5)
In [118...
          # Instantiate MinMaxScaler
          scaler = MinMaxScaler()
          # Fit and transform X train poly
          scaler.fit(X train poly)
          X train poly sc = scaler.transform(X train poly)
          X test poly sc = scaler.transform(X test poly)
In [119...
          # Instantiate and fit a linear regression model to the polynomial transform
          lr = LinearRegression()
          lr.fit(X_train_poly_sc, y_train5)
          # grab predictions for train and test set
          y train poly preds = lr.predict(X train poly sc)
          y_test_poly_preds = lr.predict(X_test_poly_sc)
In [120...
          # Evaluate
          ut.evaluate model(y train5,y test5,y train poly preds, y test poly preds)
         Train R2: 0.760
         Test R2: 0.770
```

Train MAE: 74780.242 Test MAE: 75661.596

Train RMSE: 105485.365 Test RMSE: 107607.811

In [121...

visualizer = ResidualsPlot(lr, hist=False, qqplot=True)
visualizer.fit(X_train_poly_sc, y_train5) # Fit the training data to the
visualizer.score(X_test_poly_sc, y_test5) # Evaluate the model on the test
visualizer.show()

Out[121... <AxesSubplot:title={'center':'Residuals for LinearRegression Model'}, xlab el='Predicted Value', ylabel='Residuals'>

In [122...

Instantiate MinMaxScaler
scaler = MinMaxScaler()
Fit and transform X_train_poly
scaler.fit(X_train_poly)

X_train_poly_sc = scaler.transform(X_train_poly)
X_test_poly_sc = scaler.transform(X_test_poly)

In [123...

Instantiate and fit a linear regression model to the polynomial transfor lr = LinearRegression() lr.fit(X_train_poly_sc, y_train5) # grab predictions for train and test set y_train_poly_preds = lr.predict(X_train_poly_sc) y_test_poly_preds = lr.predict(X_test_poly_sc)

In [124...

Evaluate
ut.evaluate_model(y_train5, y_test5, y_train_poly_preds, y_test_poly_preds

Train R2: 0.760 Test R2: 0.770

Train MAE: 74780.242 Test MAE: 75661.596

Train RMSE: 105485.365 Test RMSE: 107607.811

In [125...

the second model can predecit 75 % variance in the price and approximati

In [126...

visualizer = ResidualsPlot(lr, hist=False, qqplot=True)
visualizer.fit(X_train_poly_sc, y_train5) # Fit the training data to the
visualizer.score(X_test_poly_sc, y_test5) # Evaluate the model on the test
visualizer.show()

Out[126... <AxesSubplot:title={'center':'Residuals for LinearRegression Model'}, xlab
el='Predicted Value', ylabel='Residuals'>

Third Model

In [127...

check all variables shape of distribution by using histogram
fig = plt.figure(figsize = (18,15))
ax = fig.gca()
df.hist(ax = ax, bins='auto');

In [128...

price, sqft_living, sqft_living15, are all continuous and almost normall
sqft_lot, lat, long are all continuous but not normally distributed
the not renovated percentage is way higher than the renovated, same appl
bedrooms, bathrooms, floors, condition, grade, yr_built are all had ording

In [129...

```
# Try log transform with every feature, but it only worked with the price
# now price and 'sqft_living15' distribution are way better
df4 = df.copy()
df4['price'] = np.log1p(df4['price'])
df4['sqft_living15'] = np.log1p(df4['sqft_living15'])
df4.hist(figsize = [15, 15]);
```



```
500
                                                        500
                                                                              500
                                                                               -122.50-122.25-122.00-121.75-121.50
             1900
                    1950
                          2000
                                   98000 98050 98100 98150 98200
                                                          47.2
                   sqft_living15
                                                                condition1
                                         waterfront1
                                                      10000
                                                                             10000
                                10000
           2500
                                                       8000
                                                                             8000
          2000
                                 8000
                                                       6000
                                 6000
                                                                             6000
           1500
                                                       4000
                                                                             4000
           1000
                                 4000
                                                       2000
                                                                             2000
           500
                                 2000
              6.5
                                                                                           0.75
                                       0.25
                                           0.50
                                               0.75
                                                             1.25
                                                                 1.50
                                                                     1.75
                                                                                    0.25
                                                                                        0.50
                                   0.00
                                                   1.00
                                                          1.00
                                                                                0.00
In [130...
            #one hot encode Zip code
In [131...
            #df4["zipcode"] = pd.get_dummies(df4["zipcode"], columns="zipcode", drop_i
In [132...
            #min max scale binary data
           df4["waterfront1"]=(df4["waterfront1"] - min(df4["waterfront1"])) /(max(df
            df4["renovated"] = (df4["renovated"] - min(df4["renovated"])) / (max(df4["
In [133...
           X2 = df4.drop('price', axis=1)
           y2 = df4['price']
           X train2, X test2, y train2, y test2 = train test split(X2, y2, test size=
            # Instantiate a linear regression model
            lr2 = LinearRegression()
            # Fit our model on our normalized data
           lr2.fit(X train2, y train2)
           y train pred2 = lr2.predict(X train2)
           y test pred2 = lr2.predict(X test2)
In [134...
            # Evaluate
           ut.evaluate model(y train2, y test2, y train pred2, y test pred2)
           Train R2: 0.722
           Test R2: 0.733
           Train MAE: 0.176
           Test MAE: 0.176
           Train RMSE: 0.227
           Test RMSE: 0.228
In [135...
           # after log transformation, the model can predict 72 % variance in the pri
            # and $0.22(RMSE)
In [136...
           visualizer = ResidualsPlot(lr2)
           visualizer.fit(X_train2, y_train2) # Fit the training data to the visualizer.
           visualizer.score(X_test2, y_test2) # Evaluate the model on the test data
            visualizer.show()
```


Out[136... <AxesSubplot:title={'center':'Residuals for LinearRegression Model'}, xlab
el='Predicted Value', ylabel='Residuals'>

visualizer = ResidualsPlot(lr2, hist=False, qqplot=True)
visualizer.fit(X_train2, y_train2) # Fit the training data to the visualizer.score(X_test2, y_test2) # Evaluate the model on the test data
visualizer.show()

Out[137... <AxesSubplot:title={'center':'Residuals for LinearRegression Model'}, xlab
el='Predicted Value', ylabel='Residuals'>

In [138... | #The predicted values of the this model are equally scattered which achiev

Final Model

```
In [139...
          X6 = df4.drop('price', axis=1)
          y6 = df4['price']
          X_train6, X_test6, y_train6, y_test6 = train_test_split(X6, y6, test_size=
In [140...
          from sklearn.preprocessing import PolynomialFeatures
          # Instantiate PolynomialFeatures
          poly = PolynomialFeatures(degree=2, interaction_only=False)
          # Fit and transform X train
          X_poly_train = poly.fit_transform(X_train6)
          \# Instantiate and fit a linear regression model and normalize it to the po
          reg poly = LinearRegression(normalize=True).fit(X poly train, y train6)
          # Transform the test data into polynomial features
          X_poly_test = poly.transform(X_test6)
          # Get predicted values for transformed polynomial test data
          y_pred = reg_poly.predict(X_poly_test)
          # Transform the full data
          X_poly = poly.transform(X_train6)
          # Now, we want to see what the model predicts for the entire data
          y poly = reg poly.predict(X poly)
In [141...
          ut.evaluate model(y train6, y test6, y poly, y pred)
         Train R2: 0.771
         Test R2: 0.771
         Train MAE: 0.157
         Test MAE: 0.160
         Train RMSE: 0.206
         Test RMSE: 0.211
In [142...
          #this model can predict 77 % variance in the price and approximately $0.16
          #not all the data have perfect linaer realthion with the price
In [143...
          #The predicted values of the this model are equally scattered which achieve
In [144...
          #from yellowbrick.regressor import PredictionError
          #visualizer = PredictionError(reg poly, bestfit= True, is fitted='auto')
          #visualizer.fit(X_poly_train, y_train6)
          #visualizer.score(X poly test, y test6)
          #visualizer.show()
```

```
In [145...
          # "The prediction error visualizer plots the actual (measured) vs. expected
          #The dotted black line is the less than 45 degree line that indicates erro
          # https://buildmedia.readthedocs.org/media/pdf/yellowbrick/develop/yellowb
In [146...
          # look at the coefficients with the names of each col
          pd.DataFrame.from_dict(dict(zip(X6, reg_poly.coef_)), orient='index')[0].s
         sqft_living15
                           6.674927e+02
Out [146...
         long
                           1.947252e+02
         bathrooms
                           4.611453e+01
         sqft_living
                           1.726830e+01
         zipcode
                           6.024535e-01
                           6.219759e-02
         condition1
         floors
                           1.296813e-02
         bedrooms
                          -9.912057e-11
         yr built
                          -3.687360e-02
                          -1.022184e-01
         sqft lot
         lat
                          -2.565942e-01
                          -3.868146e+00
         renovated
         grade
                          -4.417890e+00
         sqft basement
                          -1.254884e+01
         waterfront1
                          -1.595438e+01
         Name: 0, dtype: float64
In [147...
          #check for multicollinearity
          # save absolute value of correlation matrix as a data frame
          # converts all values to absolute value
          # stacks the row:column pairs into a multindex
          # reset the index to set the multindex to seperate columns
          # sort values. 0 is the column automatically generated by the stacking
          df8=df4.corr().abs().stack().reset index().sort values(0, ascending=False)
          # zip the variable name columns (Which were only named level 0 and level 1
          df8['pairs'] = list(zip(df8.level 0, df8.level 1))
          # set index to pairs
          df8.set_index(['pairs'], inplace = True)
          #d rop level columns
          df8.drop(columns=['level 1', 'level 0'], inplace = True)
          # rename correlation column as cc rather than 0
          df8.columns = ['cc']
          # drop duplicates.
          df8.drop duplicates(inplace=True)
          df8.head()
Out [147...
                                      CC
                           pairs
                     (price, price)
                                1.000000
           (sqft_living, bathrooms) 0.674282
```

```
(sqft_living15, sqft_living) 0.665396
                   (zipcode, long) 0.643643
            (bedrooms, sqft_living) 0.620960
In [148...
          from sklearn.preprocessing import PolynomialFeatures
          # Instantiate PolynomialFeatures
          poly = PolynomialFeatures(degree=2, interaction_only=False)
          # Fit and transform X train
          X_poly_train = poly.fit_transform(X_train6)
          # Instantiate and fit a linear regression model to the polynomial transfor
          reg poly1 = LinearRegression().fit(X poly train, y train6)
          # Transform the test data into polynomial features
          X_poly_test = poly.transform(X_test6)
          # Get predicted values for transformed polynomial test data
          y_pred = reg_poly.predict(X_poly_test)
          # Transform the full data
          X_poly = poly.transform(X_train6)
          # Now, we want to see what the model predicts for the entire data
          y poly = reg poly.predict(X poly)
In [149...
          # look at unscaled coefficients with the names of each col
          pd.DataFrame.from dict(dict(zip(X6, reg poly1.coef )), orient='index')[0].
Out[149... sqft_living15
                          667.492651
         long
                           194.725151
         bathrooms
                           46.114552
         sqft_living
                           17.268315
                             0.602454
         zipcode
         floors
                            0.012968
         bedrooms
                            0.002208
         condition1
                            0.001108
         yr built
                           -0.036874
         sqft lot
                           -0.102218
         lat
                            -0.256594
         renovated
                           -0.769890
                            -4.417896
         grade
         sqft basement
                           -12.548843
         waterfront1
                          -15.954365
```

Interpret:

Feature Importances

Name: 0, dtype: float64

Each positive coefficient of the model give the anticipated change in the sale, so for a one-unit increase in the independent variable A positive coefficient show a positive

correlation relationship. As the feauture increases, the price increases. While the negative coffient indicate that the price decreases as the independent variable decreases

- From the above features' coefficient, we can see that the most strongest feature is longitude in the first place, and the latitude in the third place, which means that the price is highly correlated with the location of the house
- The square footage of interior housing living space for the nearest 15 neighbors come in the second place, and the square footage of living space in the 4th place, which means the living space of a house and the nearest 15 neighbors are also highly correlated with the price

Interpretation of Regression Coefficients

Example A: No transformations

DV = Intercept + B1 * IV + Error "One unit increase in IV is associated with a (B1) unit increase in DV."

Example B: Outcome transformed

log(DV) = Intercept + B1 IV + Error "One unit increase in IV is associated with a (B1 100) percent increase in DV."

Example C: Exposure transformed

DV = Intercept + B1 * log(IV) + Error "One percent increase in IV is associated with a (B1 / 100) unit increase in DV."

Example D: Outcome transformed and exposure transformed

log(DV) = Intercept + B1 * log(IV) + Error "One percent increase in IV is associated with a (B1) percent increase in DV."

1. Is there any relationship between the house's location and its sale price?

The predicted price will increase with the increase in latitude and decrease in longitude and as the location move to the lower northwest with few scattered houses in the middle to east. These will help the buyer to get an estimate of the housing price range based on the location, and their allocated budget.

```
# Visualizing Longitude to Latitude to check how the price vary by location plt.figure(figsize= (30, 15))
plt.scatter(x=df4['long'], y=df['lat'], c=df['price'], cmap='hsv', marker= plt.title('House price range based on Location', fontsize=30)
plt.xlabel('Longitude', fontsize=25)
plt.ylabel('Latitude', fontsize=25)
```

```
plt.grader( latitude , lonesize=23)
plt.colorbar()
plt.savefig("images/HousepricebasedonLocation.png")
plt.show;
```


2. What are the top ten zip codes that have the highest selling houses in King County?

After looking up the corresponding cities to each zip code, the top ten selling cities in terms of the price mean are Bellevue, Seattle, Mercer Island, Cottage Lake, Maltby, Union Hill-Novelty Hill, Sammamish.

```
In [151...
          # group by zipcode and get the mean of prices in a zipcode
          top ten= df.groupby('zipcode')['price'].mean().sort values(ascending=False
          top ten.head(20)
         zipcode
Out [151...
         98004
                   876144.950000
         98112
                   852622.015385
         98109
                  790953.826531
                  770200.748503
         98119
         98040
                  765300.000000
         98102
                  738225.533333
         98105
                  730829.549451
                  705000.000000
         98077
         98075
                   678133.288462
         98199
                   675472.112450
         Name: price, dtype: float64
In [152...
          # plot top 10 highest house price as reported by zipcode
          fig = top ten.plot(kind = 'bar',color='green', figsize=(15,10))
          plt.title('The highest price Zip codes',fontsize=20)
          plt.xlabel('zipcode',fontsize=18)
          plt.ylabel('Price mean',fontsize=18)
          plt.xticks(rotation=0);
```


3. What are the top ten affordable zip codes in King County?

After looking up the corresponding cities to each zip code, the most affordable cities in terms of the price mean are Tukwila, Auburn, Numclaw, Wabash, Birch, Krain, Cumberland, Bayne, Osceola, Maywood, Upper Mill, Bayne Junction, Boise, Veazie, Naco, Stampede, Kent, Lakeland North, Black Diamond, Franklin, and more

```
In [153...
          # group by zipcode and get the mean of prices in a zipcode
          top ten= df.groupby('zipcode')['price'].mean().sort values(ascending=True)
          top_ten.head(20)
         zipcode
Out [153...
         98168
                   226001.785714
         98002
                   230308.966942
         98022
                   238203.108696
         98032
                   241882.044444
                   244655.000000
         98010
         98023
                   259351.428571
                   261387.270270
         98198
         98001
                   270265.829630
         98014
                   270400.000000
         98003
                   272020.265957
         Name: price, dtype: float64
In [154...
          # plot top 10 lowest house price as reported by zipcode
          fig = top_ten.plot(kind = 'bar',color='orange', figsize=(15,10))
          plt.title('The top ten affordable Zip codes',fontsize=20)
          plt.xlabel('zipcode',fontsize=18)
```

```
pit.yiaDei( Price mean ,iontsize=18)
plt.xticks(rotation=0);
plt.savefig("images/The top ten affordable zipcode.png")
plt.show()
```


4. Which features are important to predict the price of the house?

```
plt.figure(figsize = (20,20));
sqf=sns.lmplot(x="sqft_living15", y="price",aspect=1.8,data=df4)
plt.title("Price vs Sqft Living15",fontsize=25)
sqf.set_xlabels("Sqft Living15",fontsize=20)
sqf.set_ylabels("Price",fontsize=20)
plt.show();
```

<Figure size 1440x1440 with 0 Axes>


```
11.5 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 Sqft Living15
```

```
In [156...
    plt.figure(figsize = (20,20));
    sqf=sns.lmplot(x="sqft_living", y="price",aspect=1.8,data=df4)
    plt.title("Price vs Sqft living",fontsize=25)
    sqf.set_xlabels("Sqft living",fontsize=20)
    sqf.set_ylabels("Price",fontsize=20)
    plt.show();
```

<Figure size 1440x1440 with 0 Axes>


```
plt.figure(figsize = (20,20));
sqf=sns.lmplot(x="sqft_basement", y="price",aspect=1.8,data=df4)
plt.title("Price vs sqft basement",fontsize=25)
sqf.set_xlabels("sqft basement",fontsize=20)
sqf.set_ylabels("Price",fontsize=20)
plt.show();
```

<Figure size 1440x1440 with 0 Axes>


```
In [158...
    plt.figure(figsize = (20,20));
    sqf=sns.lmplot(x="bathrooms", y="price",aspect=1.8,data=df4)
    plt.title("Price vs Bathrooms",fontsize=25)
    sqf.set_xlabels("Bathrooms",fontsize=20)
    sqf.set_ylabels("Price",fontsize=20)
    plt.show();
```

<Figure size 1440x1440 with 0 Axes>


```
In [159...
# plotting houses to the mean of price
    df.groupby("renovated")["price"].mean().plot(kind="bar",figsize=(8,8));
    plt.title("Renovation effect in the price ")
    plt.ylabel("Average Houses Price")
    plt.xlabel("Renovated VS Non-Renovated")
    plt.xticks(rotation=0)
    #the renovated houses selling price is higher than non-renovated one
```

Out[159... (array([0, 1]), [Text(0, 0, '0'), Text(1, 0, '1')])

In [160...

```
# plotting houses to the mean of price
df.groupby("waterfront1")["price"].mean().plot(kind="bar",figsize=(10,8));
plt.title("waterfront effect in the price ", fontsize=17)
plt.ylabel("Average Houses Price",fontsize=15)
plt.xlabel("Waterfront1",fontsize=15)
plt.xticks(rotation=0)
plt.show()
#the houses with waterfront selling price are higher than one without water
```



```
plt.figure(figsize = (20,20));
sqf=sns.lmplot(x="grade", y="price",aspect=1.8,data=df4)
plt.title("Price vs Grade",fontsize=25)
sqf.set_xlabels("Grade",fontsize=20)
sqf.set_ylabels("Price",fontsize=20)
plt.show();
```

<Figure size 1440x1440 with 0 Axes>


```
# plotting houses to the mean of price
df.groupby("grade")["price"].mean().plot(kind="bar",figsize=(10,8));
plt.title("Grade effect in the price ", fontsize=17)
plt.ylabel("Average Houses Price",fontsize=15)
plt.xlabel("Grade",fontsize=15)
plt.xticks(rotation=0)
plt.show()
#the houses with waterfront selling price are higher than one without water
```


Conclusions

- I organized my notebook by using OSMEN data science method to deal with the king county dataset.
- I cleaned the data, removed the null values, limit each feature of the data to get rid of the outlier as much as possible, and checked for Multicollinearity.
- For the baseline model, I train test split the data using scikit-learn and scaled it using the standardized scaler, and got a R2 score of 0.67, for the Normality assumption the residuals were heteroscedastic.
- For the second model, I train test split the data using scikit-learn, Polynomial Regression, MinMaxScaler, and got a R2 score of 0.76, for Normality assumption the residuals were still heteroscedastic, I also used step forward feature selection to check if dropped any feature will make the R2 better, but it didn't.
- For the third model, I logged transform price and 'sqft_living15, one hot encode zip code, min-max scale binary data (waterfront and renovated). Train test split the data using sci-kit-learn, and got a R2 score of 0.73. For the normality assumption, the residuals were homoscedastic and the QQ plot looks good.
- For the Final mode, I copied the same data from the third model before test split, then train test split the data using scikit-learn, use polynomial regression, scaled it to be able to interpret the coefficients, and got a R2 score of 0.76, for the normality assumption the residuals were homoscedastic and the QQ plot looks good, checked for multicollinearity. after that unscaled it to be able to see how each unit of each features impacts the price.
- 15 features were included in the final model to get the best prediction, The following findings are from the features with the highest coefficients:
- The price of the house is highly affected by its location.
- Houses with larger living space, bigger basement, and more bathrooms have higher predicted price.
- The renovated houses selling price is higher than non-renovated one

- The houses with waterfront have higher selling prices than the ones without one.
- Each increase of the grade will increase the price, with grade 11 in the top

Limitaion

• The size of the dataset, a lot of features don't have a linear relationship with the target. Maybe a different non-linear model would work better.

Future work

Use APIs to get King county school district data and link it with the zip codes.

In []:	
In []:	

4/1/22, 12:54 PM	$house_price_phase2/Housing_Price_Project.ipynb\ at\ main\cdot AHMET16/house_price_phase2$	

/1/22, 12:54 PM	house_price_phase2/Housing_Price_Project.ipynb at main · AHMET16/house_price_phase2