CS532100 Numerical Optimization Homework 2

Student ID name

Due Dec 10

1. Consider the linear least square problem:

$$min_{\vec{x} \in \mathbb{R}^2} ||A\vec{x} - \vec{b}||^2,$$

where

$$A = \begin{bmatrix} 4 & 8 \\ 2 & 4 \\ 1 & 2 \end{bmatrix}, \vec{b} = \begin{pmatrix} 21/4 \\ 0 \\ 0 \end{pmatrix}$$

(a) (10%) Write its normal equation.

Answers are put here.

- (b) (10%) Express $\vec{b} = \vec{b}_1 + \vec{b}_2$ such that \vec{b}_1 is in the subspace spanned by A's column vectors, and \vec{b}_2 is orthogonal to A's column vectors. Answers are put here.
- (c) (10%) Show that $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$ if and only if \vec{z} is part of a solution to the larger linear system:

$$\left[\begin{array}{cc} 0 & A^T \\ A & I \end{array}\right] \left[\begin{array}{c} \vec{z} \\ \vec{y} \end{array}\right] = \left[\begin{array}{c} 0 \\ \vec{b} \end{array}\right]$$

Answers are put here.

2. In Note05 (Page 16), memoryless BFGS iteration matrix H_{k+1} can be derived from considering the Hestenes–Stiefel form of the nonlinear conjugate gradient method. Recalling that $\vec{s}_k = \alpha_k \vec{p}_k$, we have that the search direction for this method is given by

$$\vec{p}_{k+1} = -\nabla f_{k+1} + \frac{\nabla f_{k+1}^T \vec{y}_k}{\vec{y}^T \vec{p}_k} \vec{p}_k$$

$$= -\nabla f_{k+1} + \frac{\nabla f_{k+1}^T \vec{y}_k}{\vec{y}^T \vec{s}_k} \vec{s}_k$$

$$= -(I - \frac{\vec{s}_k \vec{y}_k^T}{\vec{y}^T \vec{s}_k}) \nabla f_{k+1}$$

$$= -\hat{H}_{k+1} \nabla f_{k+1}$$

However, the matrix \hat{H}_{k+1} is neither symmetric nor positive definite.

(a) (10%) Please show that the matrix \hat{H}_{k+1} is singular. (You can only prove it for the case $\nabla f_k, \vec{p}_k, \vec{y}_k, \vec{s}_k \in \mathbb{R}^2$ for all $k \in \mathbb{N}$.)

Answers are put here.

(b) (0%) Please read the reference book (Page 180) to understand the derivation of the inverse hessian formula in Note05 (Page 16). (you don't need to write anything in this subproblem.)

$$H_{k+1} = (I - \frac{\vec{s}_k \vec{y}_k^T}{\vec{y}_k^T \vec{s}_k}) (I - \frac{\vec{y}_k \vec{s}_k^T}{\vec{y}_k^T \vec{s}_k}) + \frac{\vec{s}_k \vec{s}_k^T}{\vec{y}_k^T \vec{s}_k}$$

3.~(10%) The total least square problem is to solve the following problem

$$\min_{\vec{x}, ||\vec{x}|| = 1} \vec{x}^T A^T A \vec{x}$$

where A is an $m \times n$ matrix. Here we assume m > n. Let $A = U\Sigma V^T$ be the SVD of A, where U is the matrix of left singular vectors, V is the matrix of right singular vectors, and Σ is a diagonal matrix with diagonal elements $\sigma_1, \sigma_2, \ldots, \sigma_n$. Moreover, U and V are orthogonal matrices, and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$. Show the solution of the above problem is the σ_n^2 .

Answers are put here.

4. Consider the following linear programming problem:

$$\begin{array}{ll} \max_{x_1,x_2} & z = x_1 + x_2 \\ \text{s.t.} & x_1 + 2x_2 \leq 4 \\ & 4x_1 + 2x_2 \leq 12 \\ & -x_1 + x_2 \leq 1 \\ & x_1,x_2 \geq 0 \end{array}$$

- (a) (10%) Please refer Note08 (Page 2) to draw the figure of the constraints by any means, and use that to solve the problem.

 Answers are put here.
- (b) (10%) Derive its dual problem and solve the dual problem by any means. Compare the solutions of the primal and the dual problems. Answers are put here.
- (c) (10%) Verify the complementarity slackness condition. Answers are put here.
- (d) (10%) Transform the problem to the standard form. Answers are put here.
- (e) (10%) Solve it by the simplex method, as provided in Figure 1, using $\vec{x}_0 = (0,0)$. Indicate $B_k, N_k, \vec{s}_k, \vec{d}_k, p_k, q_k, \gamma_k$ in each step. Answers are put here.

```
(1)
                 Given a basic feasible point \vec{x}_0 and the corresponding index set
                 \mathcal{B}_0 and \mathcal{N}_0.
                 For k = 0, 1, ...
 (2)
                               Let B_k = A(:, \mathcal{B}_k), N_k = A(:, \mathcal{N}_k), \vec{x}_B = \vec{x}_k(\mathcal{B}_k), \vec{x}_N = \vec{x}_k(\mathcal{N}_k),
 (3)
                               and \vec{c}_B = \vec{c}_k(\mathcal{B}_k), \vec{c}_N = \vec{c}_k(\mathcal{N}_k).

Compute \vec{s}_k = \vec{c}_N - N_k^T(B_k^{-1})^T \vec{c}_B (pricing)

If \vec{s}_k \geq 0, return the solution \vec{x}_k. (found optimal solution)
 (4)
 (5)
                               Select q_k \in \mathcal{N}_k such that \vec{s}_k(i_q) < 0,
 (6)
                               where i_q is the index of q_k in \mathcal{N}_k
                               Compute \vec{d_k} = B_k^{-1} A_k(:, q_k). (search direction) If \vec{d_k} \leq 0, return unbounded. (unbounded case)
 (7)
 (8)
                               Compute [\gamma_k, i_p] = \min_{\substack{i, \vec{d_k}(i) > 0 \\ i \neq i}} \frac{\vec{x_B}(i)}{\vec{d_k}(i)} (ratio test)
 (9)
                                (The first return value is the minimum ratio;
                               the second return value is the index of the minimum ratio.)
                              x_{k+1} \begin{pmatrix} \mathcal{B} \\ \mathcal{N} \end{pmatrix} = \begin{pmatrix} \vec{x}_B \\ \vec{x}_N \end{pmatrix} + \gamma_k \begin{pmatrix} -\vec{d}_k \\ \vec{e}_{i_q} \end{pmatrix}
(\vec{e}_{i_q} = (0, \dots, 1, \dots, 0)^T \text{ is a unit vector with } i_q \text{th element 1.})
Let the i_pth element in \mathcal{B} be p_k. (pivoting)
\mathcal{B}_{k+1} = (\mathcal{B}_k - \{p_k\}) \cup \{q_k\}, \, \mathcal{N}_{k+1} = (\mathcal{N}_k - \{q_k\}) \cup \{p_k\}
(10)
(11)
```

Figure 1: The simplex method for solving (minimization) linear programming