Engineering Mathematics

Real Analysis Sequences Part 7

Sequence is a function which is defined on the set of positive integers.

$$f: Z^+ \to R$$
 , $f(n) = a_n$

So the set, $\{a_1, a_2, a_3, ...\}$ is called a sequence.

• Definition 1

Let $\{a_n\}$ be a sequence. A number L is said to be the limit of $\{a_n\}$ if $\forall \ \varepsilon > 0$, $\exists \ n_0 \in Z_+$ Such that $n > n_0 \Rightarrow |a_n - L| < \varepsilon$. When this happens, we write $\lim_{n \to \infty} a_n = L$

• Definition 2

A sequence $\{a_n\}$ said to be convergent if $\exists L \in R$ such that $\lim_{n \to \infty} a_n = L$. When a sequence is not convergent, it is said to be divergent.

• Definition 3

Let $\{a_n\}$ be a sequence,

- i) If $a_n \le a_{n+1}$: $\forall n$, then the sequence is said to be increasing.
- ii) If $a_n \ge a_{n+1}$: $\forall n$, then the sequence is said to be decreasing.
- iii) If a sequence is either increasing or decreasing, then it is said to be a monotonic sequence.

• <u>Definition 4</u>

Let $\{a_n\}$ be a sequence,

- i) If $\exists A \in R$ such that $a_n \leq A \ \forall n$, then $\{a_n\}$ is said to be bounded above.
- ii) If $\exists B \in R$ such that $a_n \ge B \ \forall n$, then $\{a_n\}$ is said to be bounded below.
- iii) If there are $A, B \in R$ such that $B \le a_n \le A \ \forall n$, then $\{a_n\}$ is said to be bounded.

> Theorem 1

A convergent sequence has a unique limit.

> Theorem 2

Let $\{a_n\}$, $\{b_n\}$ be two sequences such that $\lim_{n \to \infty} a_n = L \ \& \ \lim_{n \to \infty} b_n = M$ then,

- $\lim_{n\to\infty} a_n + b_n = L + M$
- ii) $\lim_{n\to\infty} ra_n = rL \quad \forall r \in R$
- iii) $\lim_{n\to\infty} a_n b_n = LM$
- iv) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M} ; when M \neq 0$

> Theorem 3

Every convergent sequence is bounded.

> Theorem 4

If $\{a_n\}$ is increasing and bounded above, then $\lim_{n\to\infty}a_n=L$ where $L=\sup\{a_n|\ n\in Z^+\}$

> Theorem 5

If $\{a_n\}$ is decreasing and bounded below, then $\lim_{n\to\infty}a_n=M$ where $M=\inf\{a_n|n\in Z^+\}$

Cauchy Sequence

• Definition 5

A sequence $\{a_n\}$ is said to be a Cauchy sequence if and only if $\forall \varepsilon>0$, $\exists n_0\in Z_+$ such that $m, n > n_0 \Rightarrow |a_m - a_n| < \varepsilon$

➤ Theorem 6

Every Cauchy sequence is bounded.

> Theorem 7

Let $\{a_n\}$ be a sequence. Then $\{a_n\}$ is convergent if and only if $\{a_n\}$ is a Cauchy sequence.

Archimedean Property

 $\forall a \in R$, $\exists n \in Z^+$ s.t. n > a

Exercise

- 1) Prove that following sequences are convergent using definition

 - $a_n = \frac{1}{n}$ $a_n = \frac{n}{n+1}$ $a_n = \frac{n^2}{n^2+1}$ $a_n = \frac{n+4}{n+3}$
 - iv)
- 2) Prove that $\{(-1)^n\}$ is not convergent.
- 3) Prove that $\{n\}$ is not convergent.
- 4) A sequence $\{a_n\}$ defined by the recurrence relation $a_{n+1} = \frac{(a_n)^2 + 3}{4}$ and the initial term $a_1 = 0$. Show that this sequence is
 - Bounded above by 1 i)
 - ii) Increasing
 - iii) Convergent

And what is the limit of this sequence?

Dasun Madushan

B.Sc. Eng. (Hons)

Electronic & Telecommunication Engineering

University of Moratuwa