EE2020 (Part 1) Tutorial 1 - Solutions

1. (a) Iteratively divide by two (remainder's division progressively gives digits)

$$.34 \times 2 = 0.68 \rightarrow .68 \times 2 = 1.36 \rightarrow .36 \times 2 = 0.72 \rightarrow .72 \times 2 = 1.44...$$

= $(10100110.0101...)_2$

(b)
$$16)1400 \leftarrow 16)87 \leftarrow 16)5$$

 $1392 \qquad 80 \qquad 0$
 $8 \qquad 7 \qquad 5$
 $.16 \times 16 = 2.56 \rightarrow .56 \times 16 = 8.96 \rightarrow .96 \times 16 = F.36 \rightarrow .36 \times 16 = 5.76....$
 $= (578.28F5....)_{16}$

(c) Group digits in 3-digit sets and convert digit by digit

$$\underbrace{101011100.000111}_{5\ 3} \underbrace{1}_{4\ 0} \underbrace{000111}_{7} = (534.07)_{8}$$

(d) Group digits in 4-digit sets and convert digit by digit

$$A59.FCE = 1010 \quad 0101 \quad 1001 \quad \bullet \quad 1111 \quad 1100 \quad 1110$$

$$= 4623$$

(e)
$$\begin{array}{r}
62-\\
\underline{26}\\
34
\end{array}
\qquad x + 2 - 6 = 4.$$

$$\therefore x = 8. \text{ The number system is octal.}$$

2. First look at the sign from the MSB, then convert the remaining bits (magnitude) as usually done in conversion from decimal to binary (iterative divisions)

Decimal	Sign Mag.
127	01111111
-0	10000000
-55	10110111

3. Look at the sign, just convert from decimal to binary if positive, or revers all bits of magnitude if negative

Decimal	1's Comp.
43	0000101011
-1	1111111110
-128	1101111111

- 4. Look at the MSB to know about the sign. Regarding the magnitude, just convert from decimal to binary if positive (MSB=0), or evaluate 2's complement if negative (MSB=1), and then convert to decimal
 - (a) $10000(2's) \xrightarrow{-1} 01111(1's) \xrightarrow{\text{complement}} 10000(\text{magnitude}) \rightarrow -16$
 - (b) $10000001(2's) \xrightarrow{-1} 10000000(1's) \xrightarrow{complement} 01111111(mag.) \rightarrow -127$