Zadatak 9

Aleksandar Stevanović

December 2024

1 Karakterizacija stabla

Za graf koji ne sadrži nijednu konturu, kažemo da je acikličan.

Definicija 1: Za prost graf G = (V, E) kažemo da je stablo ako važi:

- 1. G je povezan graf i
- 2. G je cikličan graf

Na sljedećoj slici su prikazana tri stabla.

Slika 1:

U nastavku će biti dato nekoliko ekvivalentnih tvrđenja koja karakterišu stablo,

Teorema 1: Neka je G = (V, E) i $|V| = n \ge 2$. Tada je G stablo ako i samo ako za svaka dva čvora $u, v \in V$ postoji jedinstven uv-put.

Dokaz.

Za n=2 tvrđenje slijedi direktno. Pretpostavićemo da je $n\geq 3$ (\Rightarrow)

Pretpostavimo suprotno, da u stablu G postoje čvorovi u i v sa osobinom da između njih postoje različita uv-puta. Neka su to putevi U_1 i U_2 , sa osobinom da $\{u_i, u_{i+1}\} \in U_1, \{u_i, u_{i+1}\} \notin U_2$:

$$U_1 = uu_1 \dots u_i u_{i+1} \dots u_m v$$
$$U_2 = uv_1 \dots v_n v$$

(ako su različiti putevi, onda postoji grana koja pripada jednom, a ne pripada drugom).

Ovdje ćemo prikazati slučaj kada je $u, v \notin \{u_i, u_{i+1}\}$, ostali slučajevi se izvode slično. Sada je

$$u_i \dots u_1 u v_1 \dots v_n v u_m \dots u_{i+1}$$

 u_iu_{i+1} -šetnja. Ako u grafu $G - \{u_i, u_{i+1}\}$ postoji u_i, u_{i+1} -šetnja, onda postoji i $u_iu_{i+1} - put$. Dodavanjem grane u_iu_{i+1} dobijamo konturu u grafu G što je u suprotnosti sa pretpostavkom da je G stablo.

 (\Leftarrow) Ako za svaka dva čvora $u,v\in V$ postoji uv-put, onda je G po definiciji povezan graf. Treba još pokazati da je G acikličan. Pretpostavimo suprotno, da u grafu G postoji kontura oblika

$$\omega_1\omega_2\omega_3\ldots\omega_l\omega_1$$

Tada postoje bar dva puta od ω_1 do ω_l :

$$\omega_1\omega_l$$
 $\omega_1\omega_2\omega_3\ldots\omega_l$

Što je u kontradikciji sa pretpostavkom da za svaka dva čvora postoji jedinstven put od jednog do drugog. To znači da je naša pretpostavka netačna i da je G acikličan graf.

Slika 2: Teorema 1

Lema 1: Neka je G=(V,E) stablo i neka je $|V|=n\geq 2$. Tada postoje bar dva čvora stepena 1.

Dokaz.

Kako je G stablo, G je povezan graf. Pretpostavimo da je

$$u_1 u_2 \dots u_l$$
 (3.1)

najduži put u grafu G (može biti i više takvih puteva iste dužine). Pokazaćemo da je tada $d_G(u_1)=d_G(u_l)=1$. Pretpostavimo da je $d_G(u_1)\geq 2$ (slično za $d_G(u_l)\geq 2$). Tada postoji čvor ω ($\neq u_2$) sa osobinom $u_1\omega\in E$

Ako $\omega \in \{u_3, \dots, u_l\}$ onda G ima konturu, što je u kontradikciji sa pretpostavkom da je G stablo.

Ako $\omega \notin \{u_3, \ldots, u_l\}$, onda je put $\omega u_1 u_2 \ldots u_l$ duži od (3.1), što dovodi do kontradikcije.

Lema 2: Neka je $G=(V,E), |V|=n\geq 2$, i neka je $d_G(u)=1$ za neki čvor $u\in V$. Tada je G stablo ako i samo ako je G-u stablo.

Slika 3: Lema 1

Slika 4: Lema 1

Dokaz. (\Rightarrow) Pretpostavio da je G stablo. Da bismo pokazali da je G-u stablo, treba pokazati sledeće: 1. G-u je povezan i 2. G-u je cikličan.

- 1. Posmatrajmo dva proizvoljna čvora $v, \omega \in V(G-u)$. Kako je G povezan, postoji $v\omega$ -put u G. Ovaj put ne sadrži čvor stepena 1 koji je različit od v i ω , što znači da ne sadrži u. Znači, taj put je ujedno i put u G-u, što pokazuje da je G-u povezan.
- 2. Kako je G acikličan, to je i G-u acikličan, zato što brisanjem grane iz acikličnog grafa ne možemo dobiti konturu.
- (⇐) Neka je G-u stablo. Od acikličnog grafa, dodavanjem nazad lista u ne možemo dobiti ciklus u tom grafu. Svaki čvor konture ima stepen bar dva, a čvor u je stepena 1. Svaka dva čvora koja su povezana u G-u ostaju povezana i u G. Ostaje još da pokažemo da za postoji uω-put za svaki čvor ω ∈ V(G-u). Kako je $d_G(u) = 1$ postoji v ∈ V(G-u) sa osobinom $\{u, v\} ∈ E(G)$. Iz pretpostavke da je G-u stablo, slijedi da je G-u povezan graf, odakle za svako ω ∈ V(G-u) postoji ωv-put u G-u. Dodavanjem grane $\{u, v\}$ tom putu, dobijamo put u G.

Teorema 2: Neka je G=(V,E) i $|V|=n\geq 2$. Tada je G stablo ako i samo ako je G povezan graf i |E|=n-1

Dokaz.

 (\Rightarrow) Prema definiciji stabla, G je povezan graf. Indukcijom ponćemo pokazati da je |E|=n-1

Baza n=2: Stablo sa dva čvora ima tačno jednu granu.

Induktivni korak $T_{n-1} \Rightarrow T_n$: Ako je G stablo onda postoji čvor u sa osobinom $d_G(u) = 1$. Graf G' = G - u ima osobinu

|V(G')| = |V(G)| - 1 = n - 1 i |E(G')| = |E(G)| - 1

Ako je G stablo, onda je prema Lemi 2 G' stablo. Prema induktivnoj pretpostavci je |E(G')| = n - 1, a odatle je |E(G)| = |E(G')| + 1 = n

 (\Leftarrow) Indukcijom po n.

Baza n=2: Povezan graf sa dva čvora i jednom granom je stablo.

Induktivni korak $T_{n-1} \Rightarrow T_n$: Ako je E(G) = V(G) - 1, onda prema posljedici

Neka je G=(V,E) prost graf, u kojem je |V|=n i |E|< n. Tada postoji čvor $v\in V$ sa osobinom $deg_G(v)\leq 1$.

postoji čvor u sa osobinom $d_G(u) \leq 1$. Kako je G povezan, mora važiti $d_G(u) = 1$ i graf G' - u je povezan graf sa osobinom |V(G')| = |V(G)| - 1 = n i |E(G')| = |E(G)| - 1 = n - 1. Prema induktivnoj pretpostavci je G' - u stablo. Prema Lemi 2, G je stablo.

Lema 3: Neka je G=(V,E), gdje je $|V|=n\geq 2$ i $|E|\geq n$. Neka su $V(G_1),\ldots V(G_l)$ komponente povezanosti grafa G sa k_1,\ldots,k_l čvorova, respektivno. Tada postoji $i\in\{1,\ldots,l\}$ sa osobinom $|E(G_i)|\geq k_i$.

Dokaz.

Pretpostavimo suprotno, da za svako $i \in \{1, \dots, l\}$ važi $|E(G_i) < k_i$. Tada je

$$n \le |E(G)| = |E(G_1)| + \ldots + |E(G_l)| < k_1 + \ldots k_l = n \iff n < n$$

što dovodi do kontradikcije.

Teorema 3: Neka je G=(V,E) gdje je $|V|=n\geq 2$ i $|E|\geq n$. Tada G sadrži konturu.

Dokaz.

Razmatramo dva slučaja.

- 1. G je povezan: ako G nema konturu, onda je stablo \Rightarrow G ima n-1 grana.
- 2. G nije povezan: neka su $G_1 \ldots G_l$ komponente povezanosti grafa G:

$$|V(G_1)| = k_1, \dots, |V(G_l)| = k_l \quad k_1 + \dots + k_l = n$$

Prema Lemi 3, postoji $i \in \{1, \ldots, l\}$ sa osobinom $|E(G_i)| \geq k_i$. Ako G_i nema konturu, onda je G_i stablo i ima $k_i - 1$ granu, što dovodi do kontradikcije. Znači, G_i ima konturu, a samim tim i G.

Teorema 4: Neka je G = (V, E) i $|V| = n \ge 2$. Tada je G stablo akko je G povezan i brisanjem proizvoljne grane se dobija nepovezan graf.

Dokaz.

- (\Rightarrow) Ako je G stablo, onda je G po definiciji povezan graf. Neka je $\{u,v\} \in E$ proizvoljna grana. Ako pretpostavimo da je $G \{u,v\}$ povezan, onda postoji uv-put i dodavanjem grane uv bismo dobili konturu u G, što je u suprotnosti sa pretpostavkom da je G acikličan.
- (\Leftarrow) ako je G povezan i brisanjem proizvoljne grane se dobija nepovezan graf, onda treba pokazati da je G acikličan. Pretpostavimo da je G povezan i sadrži konturu C. Tada za svaku granu $uv \in C$ slijedi da je $G \{u, v\}$ povezan, što je u suprotnosti sa pretpostavkom.

Teorema 5: Neka je G=(V,E) i $|V|=n\geq 2$. Tada je G stablo akko je G acikličan i dodavanjem grane se dobija graf koji sadrži konturu.

Dokaz.

- (\Rightarrow) Ako je G stablo, onda je G acikličan graf po definiciji. Posmatraćemo proizvoljna dva čvora u, v sa osobinom $uv \notin E(G)$. Kako je G povezan, postoji uv-put u G. Dodavanjem grane uv dobijamo konturu u G + uv.
- (\Leftarrow) Treba pokazati da jeG povezan. Neka su u i v proizvoljni čvorovi iz V. Imamo dva slučaja:
 - (1) Ako je $uv \in E$, onda je to uv-put.
- (2) Ako $uv \notin E$, onda G + uv sadrži konturu koja sadrži uv. Oduzimanjem sa konture grane uv dobijamo uv-put u G

Teorema 6 (Karakterizacija stabla): Neka je G=(V,E) prost graf. Sljedeća tvrđenja su ekvivalentna:

- (1) G je stablo
- (2) Za svaka dva čvora $u, v \in V(G)$ postoji jedinstven put od u do v
- (3) *G* je povezan i |E(G)| = |V(G)| 1
- (4) G je povezan i brisanjem proizvoljne grane dobija se nepovezan graf (tj. G je minimalan povezan graf).
- (5) G je acikličan i dodavanjem grane se dobija graf koji sadrži konturu (tj. G je maksimalan acikličan graf).

Dokaz.

Dokazali smo sljedeći niz ekvivalencija:

$$(1) \iff (2) \quad (1) \iff (3) \quad (1) \iff (4) \quad (1) \iff (5)$$

Odatle možemo izvesti i sve ostale parove ekvivalencija.