### CS 225: Switching Theory

S. Tripathy IIT Patna

#### **Previous Class**

- Number Systems and Codes
  - Different Number systems (positional)
  - Conversion
  - Representation (complement)
  - Binary Arithmetic

#### This Class

Number Systems and Codes

- Codes
  - BCD, cyclic code etc.
  - Gray code
  - Parity and Error correcting code
- Switching Algebra

# Binary Coded Decimal (BCD)

To code a number with n decimal digits, we need 4n bits in BCD e.g.  $(365)_{10}$  =  $(0011\ 0110\ 0101)_{BCD}$ 

This is different to converting to binary, which is  $(365)_{10} = (101101101)_2$ 

- Use 4-bit binary to represent one decimal digit
- Easy conversion
- Wasting bits (4-bits can represent 16 different values, but only 10 values are used). Clearly, BCD requires more bits. BUT, it is easier to understand/interpret



#### **BCD** Addition

- When 2 BCD codes are added:
  - If the sum is less than 1010 (10 in decimal), the corresponding BCD sum digit is correct
  - If the sum is equal or more than 1010 (10), must add 0110 (6 in decimal) to the corresponding BCD sum digit in order to produce the correct carry into the digit to the left
- Example: Add 448 and 489 in BCD.
  0100 0100 1000 (448 in BCD)
  0100 1000 1001 (489 in BCD)

Q1. Do BCD addition  $(365)_{BCD} + (738)_{BCD}$ 

#### **Decimal Codes**

Self-complementing

complement of N

obtained by



**BCD** 

Self-complementing Codes

### Non-weighted Codes

| Decimal Digit | Excess-3 | Cyclic |
|---------------|----------|--------|
| 0             | 0011     | 0000   |
| 1             | 0100     | 0001   |
| 2             | 0101     | 0011   |
| 3             | 0110     | 0010   |
| 4             | 0111     | 0110   |
| 5             | 1000     | 1110   |
| 6             | 1001     | 1010   |
| 7             | 1010     | 1000   |
| 8             | 1011     | 1100   |
| 9             | 1100     | 0100   |

Add 3 to BCD

Successive code words Differ in only one digit

## Gray Code

| Decimal number | Gray        | Binary      |  |  |  |
|----------------|-------------|-------------|--|--|--|
|                | g3 g2 g1 g0 | b3 b2 b1 b0 |  |  |  |
| 0              | 0 0 0 0     | 0 0 0 0     |  |  |  |
| 1              | 0 0 0 1     | 0 0 0 1     |  |  |  |
| 2              | 0 0 1 1     | 0 0 1 0     |  |  |  |
| 3              | 0 0 1 0     | 0 0 1 1     |  |  |  |
| 4              | 0 1 1 0     | 0 1 0 0     |  |  |  |
| 5              | 0 1 1 1     | 0 1 0 1     |  |  |  |
| 6              | 0 1 0 1     | 0 1 1 0     |  |  |  |
| 7              | 0 1 0 0     | 0 1 1 1     |  |  |  |

| Decimal number | Gray |    |    | Binary |    |    |    |    |
|----------------|------|----|----|--------|----|----|----|----|
|                | g3   | g2 | g1 | g0     | b3 | b2 | b1 | b0 |
| 8              | 1    | 1  | 0  | 0      | 1  | 0  | 0  | 0  |
| 9              | 1    | 1  | 0  | 1      | 1  | 0  | 0  | 1  |
| 10             | 1    | 1  | 1  | 1      | 1  | 0  | 1  | 0  |
| 11             | 1    | 1  | 1  | 0      | 1  | 0  | 1  | 1  |
| 12             | 1    | 0  | 1  | 0      | 1  | 1  | 0  | 0  |
| 13             | 1    | 0  | 1  | 1      | 1  | 1  | 0  | 1  |
| 14             | 1    | 0  | 0  | 1      | 1  | 1  | 1  | 0  |
| 15             | 1    | 0  | 0  | 0      | 1  | 1  | 1  | 1  |

### Binary GrayConversion

Binary to Gray:

Start from right side LSB as:  $g_i = b_i XOR b_{i+1}$ ,  $g_n = b_n$ 

Gray to Binary:

Start from left side MSB as:  $b_n = g_n$  and  $b_{i-1} = b_i$  XOR  $g_{i-1}$ 

Example: Binary:

b5 1 b4 0 b3 1 b2 1 b1 0 b0 1

Gray:



#### Convert

```
 Q2.: Binary (1001) to gray
 1 1 0 1
```

Q3.: Gray (1 1 0 0) to binary
 1 0 0 0

### Reflection of Gray Codes



### **Error-detecting Codes**

p: parity bit;

Even parity used in codes.

**Distance between codewords**: no. of bits they differ in

Minimum distance of a code: smallest no. of bits in which any two code words differ

Minimum distance of above single errordetecting codes = 2

| Decimal Digit | Even-parity BCD |   |   | 2-out-of-5 |   |   | <b>;</b> |   |   |   |
|---------------|-----------------|---|---|------------|---|---|----------|---|---|---|
|               | 8               | 4 | 2 | 1          | р | 0 | 1        | 2 | 4 | 7 |
| 0             | 0               | 0 | 0 | 0          | 0 | 0 | 0        | 0 | 1 | 1 |
| 1             | 0               | 0 | 0 | 1          | 1 | 1 | 1        | 0 | 0 | 0 |
| 2             | 0               | 0 | 1 | 0          | 1 | 0 | 1        | 1 | 0 | 0 |
| 3             | 0               | 0 | 1 | 1          | 0 | 0 | 1        | 1 | 0 | 0 |
| 4             | 0               | 1 | 0 | 0          | 1 | 1 | 0        | 0 | 1 | 0 |
| 5             | 0               | 1 | 0 | 1          | 0 | 0 | 1        | 0 | 1 | 0 |
| 6             | 0               | 1 | 1 | 0          | 0 | 0 | 0        | 1 | 1 | 0 |
| 7             | 0               | 1 | 1 | 1          | 1 | 1 | 0        | 0 | 0 | 1 |
| 8             | 1               | 0 | 0 | 0          | 1 | 0 | 1        | 0 | 0 | 1 |
| 9             | 1               | 0 | 0 | 1          | 0 | 0 | 0        | 1 | 0 | 1 |

### Hamming Codes: Single Error-correcting

Minimum distance for SEC or double-error detecting (DED) codes = 3 Example: {000,111} Minimum distance for SEC and DED codes = 4

No. of information bits = m

No. of parity check bits, p1, p2, ..., pk = k No. of bits in the code word = m+k

Assign a decimal value to each of the m+k bits: from 1 to MSB to m+k to LSB

Perform k parity checks on selected bits of each code word: record results as 0 or 1

Form a binary number (called position number), c1c2...ck, with the k parity checks

### Hamming Codes (Contd.)

No. of parity check bits, k, must satisfy:  $2^k \ge m+k+1$ 

Example: if m = 4 then k = 3

Place check bits at the following locations: 1, 2, 4, ..., 2k-1

Example code word: 1100110

- Check bits: p1= 1, p2 = 1, p3 = 0
- Information bits: 0, 1, 1, 0

### Hamming Code Construction

Select  $p_1$  to establish even parity in positions: 1, 3, 5, 7

Select  $p_2$  to establish even parity in positions: 2, 3, 6, 7

Select  $p_3$  to establish even parity in positions: 4, 5, 6, 7

| Error position | Position number |    |    |  |  |  |
|----------------|-----------------|----|----|--|--|--|
|                | c1              | c2 | c3 |  |  |  |
| 0 (no error)   | 0               | 0  | 0  |  |  |  |
| 1              | 0               | 0  | 1  |  |  |  |
| 2              | 0               | 1  | 0  |  |  |  |
| 3              | 0               | 1  | 1  |  |  |  |
| 4              | 1               | 0  | 0  |  |  |  |
| 5              | 1               | 0  | 1  |  |  |  |
| 6              | 1               | 1  | 0  |  |  |  |
| 7              | 1               | 1  | 1  |  |  |  |

### Hamming Code Construction (Contd.)

| Position:                                                    | 1<br>p <sub>1</sub> | 2<br>p <sub>2</sub> | 3<br>m <sub>1</sub> | 4<br>p <sub>3</sub> | 5<br>m <sub>2</sub> | 6<br>m <sub>3</sub> | 7<br>m <sub>4</sub> |
|--------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Original BCD message:                                        |                     |                     | 0                   |                     | 1                   | 0                   | 0                   |
| Parity Check in positions $1,3,5,7$ requires $p_1=1$         | 1                   |                     | 0                   |                     | 1                   | 0                   | 0                   |
| Parity Check in positions 2,3,6,7 requires p <sub>2</sub> =0 |                     |                     |                     |                     |                     |                     |                     |
|                                                              | 1                   | 0                   | 0                   |                     | 1                   | 0                   | 0                   |
| _                                                            |                     |                     |                     |                     |                     |                     |                     |
| Parity Check in positions 4,5,6,7 requires p <sub>3</sub> =1 | 1                   | 0                   | 0                   | 1                   | 1                   | 0                   | 0                   |
|                                                              |                     |                     |                     |                     |                     |                     |                     |
| Coded message                                                | 1                   | 0                   | 0                   | 1                   | 1                   | 0                   | 0                   |

# . Thanks