

Chaîne de Markov à trois états À rendre le 18 mars

Exercice 1

Une élection comporte trois candidats et n votants, où n est un entier naturel supérieur ou égal à 3. Chaque votant donne sa voix à l'un ou à l'autre des trois candidats. Il n'y a pas de vote blanc ni nul. Tout candidat qui a obtenu une voix est élu.

On suppose que chaque vote se porte au hasard, de façon équiprobable, sur l'un de ces candidats et que les votes sont mutuellement indépendants.

Le vote se faisant par correspondance, le dépouillement se fait au fur et à mesure de la réception des bulletins de vote et, pour tout entier naturel k au plus égal à n, on note u_k la probabilité qu'après réception du k-ème bulletin, un et un seul candidat ait obtenu des voix, v_k la probabilité qu'après réception du k-ème bulletin, exactement deux candidats aient obtenu au moins une voix chacun, et w_k la probabilité qu'après réception du k-ème bulletin, les trois candidats aient obtenu au moins une voix chacun. On pose pour tout entier naturel k non nul : $U_k = \begin{pmatrix} u_k & v_k & w_k \end{pmatrix}^T \in \mathcal{M}_{3,1}(\mathbf{R})$ (U_k est une colonne).

- **1.** Donner l'univers Ω_n de cette épreuve. Calculer Card Ω_n .
- **2. a)** Calculer U_1 . Exprimer chacun des nombres u_{k+1} , v_{k+1} , w_{k+1} comme combinaison linéaire des nombres u_k , v_k , w_k .
 - **b)** En déduire une relation matricielle de la forme $U_{k+1} = MU_k$ où M est une matrice de $\mathcal{M}_3(\mathbf{R})$ indépendante de k.
 - **c)** En déduire U_k en fonction de M, k et U_1 pour tout entier $k \ge 1$.
- **3.** Soit $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 1 & 3 \end{pmatrix}$.
 - **a)** Donner une relation simple entre M et A.
 - **b)** Montrer que pour tout entier naturel k, il existe des nombres réels a_k,b_k,c_k tels que :

$$A^{k} = \begin{pmatrix} 1 & 0 & 0 \\ a_{k} & 2^{k} & 0 \\ b_{k} & c_{k} & 3^{k} \end{pmatrix}, \text{ et } \begin{cases} a_{k+1} & = a_{k} + 2^{k+1} \\ b_{k+1} & = b_{k} + 2c_{k} \\ c_{k+1} & = 2c_{k} + 3^{k}. \end{cases}$$

- **c)** En déduire a_k en fonction de k, puis c_k et enfin b_k pour tout entier k (indication : pour c_k , on étudiera $q_k = \frac{c_{k+1}}{2^{k+1}} \frac{c_k}{2^k}$.).
- **4. a)** Déduire de ce qui précède les égalités valables pour $n \ge 1$: $u_n = \frac{1}{3^{n-1}}$ $v_n = \frac{2^n 2}{3^{n-1}}$ $w_n = 1 \frac{2^n 1}{3^{n-1}}$.
 - **b)** Montrer que les suites $(u_n)_{n\geq 3}$, $(v_n)_{n\geq 3}$, $(w_n)_{n\geq 3}$ sont convergentes et calculer leurs limites. Interpréter les résultats.
 - **c)** À partir de quel nombre *n* de votants la probabilité qu'au moins deux candidats soient élus est au moins égale à 99% ?