Synthetic turbulence generation using statistical methods

Samy Braik

Supervisor: Aurélien Larcher¹, Jonathan Viquerat¹, Fabien Duval² and Aubin Brunel²

¹CEMEF, Mines Paris–PSL ²ASNR

September 16, 2025

What is turbulence?

- Turbulence: complex, aperiodic fluid motion with strong vortical structures.
- We study *Homogeneous and Isotropic Turbulence (HIT)*: statistics invariant under space translations and rotations.

Figure: Slice through scalar dissipation (CNRS UMR 6614 CORIA and JSC).

Random Fourier model

- Build a synthetic velocity field by summing random Fourier modes.
- Frozen-turbulence assumption (no time dependence):

$$u^{s}(x) = 2\sum_{n=1}^{N} \hat{u}_{n} \cos(\kappa^{n} \cdot x + \psi_{n}) \sigma^{n}$$
 (1)

 κ^n wave vector (random on a half-sphere to preserve isotropy)

 σ^n direction (divergence-free: $\kappa^n \cdot \sigma^n = 0$)

 ψ_n random phase (uniform $\mathcal{U}[0,2\pi]$)

 \hat{u}_n amplitude linked to prescribed energy spectrum $E(\kappa_n)$

Coefficient sampling

Wave vector components (spherical coordinates):

$$\kappa_1 = \sin(\theta)\cos(\varphi) \tag{2}$$

$$\kappa_2 = \sin(\theta)\sin(\varphi) \tag{3}$$

$$\kappa_2 = \cos(\theta) \tag{4}$$

- Sampling densities: $f_{\theta}(\theta) = \frac{\sin \theta}{2}$, $f_{\varphi}(\varphi) = \frac{1}{2\pi}$.
- Direction vector σ obtained by fixing an angle $\alpha \sim \mathcal{U}[0, 2\pi]$ and ensuring $\kappa \cdot \sigma = 0$.

$$\sigma_1 = \cos(\varphi)\cos(\theta)\cos(\alpha) - \sin(\varphi)\sin(\alpha) \tag{5}$$

$$\sigma_2 = \sin(\varphi)\cos(\theta)\cos(\alpha) + \cos(\theta)\sin(\alpha) \tag{6}$$

$$\sigma_3 = -\sin(\theta)\cos(\alpha) \tag{7}$$

Figure: Wave vector geometry

Energy spectrum

• von Kármán–Pao (VKP) energy spectrum:

$$E_{\text{VKP}}(\kappa) = \frac{2}{3} \alpha_e \kappa L_e \frac{(\kappa L_e)^4}{[(\kappa L_e)^2 + 1]^{17/6}} \exp\left(-2(\kappa L_\eta)^2\right)$$

Losses

Flatness (excess kurtosis) objective

• Use flatness (= kurtosis - 3) of velocity increments as a loss term to encourage heavy tails.

$$\mathcal{L}_F = \frac{1}{n} \sum_{i=1}^{n} (kurt - 3 - F_{\text{target}})$$
 (8)

Energy-spectrum objective

• MSE between reconstructed and target spectrum, optionally with a smoothness regulariser (penalize high-frequency oscillations in $E(\kappa)$).

$$L_{ES} = \frac{1}{n} \sum_{i=1}^{n} (E_{\text{rec},i} - E_{\text{theory},i})^{2}$$
 (9)

Combined loss: $\mathcal{L} = \mathcal{L}_F + 10^3 \mathcal{L}_{ES}$

Angles

- Shift the focus solely on the angles $(\varphi, \theta, \alpha)$.
- Ensure the condition $\kappa \cdot \sigma = 0$.

Figure: Velocity increments after learning on $(\varphi, \theta, \alpha)$

Figure: Energy spectrum reconstructed with the learned $(\varphi, \theta, \alpha)$

Direction	Mean	_	Direction	RMS (expected: 0.222)
X	0.002564		X	0.12904
у	-0.00652		у	0.31651
Z	-0.00093		Z	0.11406

Table: Velocity mean and RMS

Distribution shift

Figure: Learned angles distributions

Conclusion

- The Random Fourier model can be steered (via angles) to modify increment statistics while preserving spectral fidelity.
- Trade-offs observed: stronger heavy tails sometimes perturb RMS.

Future work:

- Incorporate time dependence (non-frozen turbulence).
- Change the turbulence hypothesis.