Stat 260 Lecture Notes Set 22 - Confidence Intervals

Recall: A **point estimate** is a single valued statistic used to estimate a population parameter. \overline{x} is a point estimate for μ .

The downside of using a point estimate such as \overline{x} is that we don't know how accurate our estimate is. Another method of estimation is to give a range of possible values - an **interval estimate**.

A confidence interval (CI) for μ is an interval [L, U] which gives an estimate for the population mean μ with some degree of certainty.

A 95% confidence interval for μ has $P(L \le \mu \le U) = 0.95$ A 99% confidence interval for μ has $P(L \le \mu \le U) = 0.99$.

We find the numerical values for L and U by sampling. From each round of sampling we get an estimated range of values that μ might be contained in.

Interpretation: For a 95% CI, in the long run 95% of the CIs we create by sampling will actually contain μ .

How do we find L and U?

A $(1-\alpha)\%$ CI for μ is

$$[L, U] = \left[\overline{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right].$$

Sometimes we write this as

$$\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$
 or $\overline{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$.

When can we use this formula?

Whenever $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ or $\frac{\overline{X} - \mu}{s/\sqrt{n}}$ is normally distributed:

- X_1, X_2, \ldots, X_n from a normal distribution and we know σ
- X_1, X_2, \ldots, X_n from any distribution and n is big $(n \geq 30)$ and we know σ
- X_1, X_2, \ldots, X_n from any distribution and n is big $(n \geq 30)$ and we don't know σ (so we use the estimate s instead)

Example 1: X_1, X_2, \ldots, X_{15} from a normal distribution with $\overline{x} = 147.33$ and $\sigma = 40$. Find a 95% confidence interval for μ and find a 99% confidence interval for μ .

Example 2: How does changing σ , n, and the confidence level $(1 - \alpha)\%$ affect the CI?

\overline{x}	σ	n	confidence level	$\alpha/2$	$z_{lpha/2}$	[L,U]
147.33	40	15	95%	.025	1.96	[127.09, 167.57]
147.33	40	50	95%	.025	1.96	[136.25, 158.42]
147.33	40	15	99 %	.005	2.575	[120.74, 173.92]
147.33	80	15	95%	.025	1.96	[106.85, 187.82]

Example 3: How did we get the formula

$$[L, U] = \left[\overline{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right] ?$$

Look at the 95% confidence interval, where we have $z_{\alpha/2} = z_{0.025} = 1.96$. We can say

$$P(\overline{x} - 1.96 \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}) = 0.95$$

but once we fill in values for \overline{x} , σ , and \sqrt{n} we can no longer use this probability.

So for example we can't say $P(127.09 \le \mu \le 167.57) = 0.95$ with our confidence interval [127.09, 167.58] because either μ is in this interval, or it isn't. (There are no variables here so there is no chance on where the value of μ sits. The probability is 1 if the value is in the interval, or 0 if it isn't.)