* Knellsack Problem using Dynamic Programming.

terble [i-1, j] it j< w;

Ex. FOR the given instance of Problem obtain the optimal solution box the knapsack.

item	Weight	Yalue
1	2	2
2	3	4
3	4	5
4	5	6

The capacity of knapsack is w=5.

Soln: Initially, table [i, 0] = 0 a table [0, j] = 0.

	0	1	2	3	. 4	5
0	0	0	O	0	0	0
1	0					
2_	0					
3	0					
ţ	0					
)					

```
table [i,j] = { max {table [i-1,j], vi + table [i-1,j-wi]} it j > wi } table [i,j] = { table [i-1,j] it j < wi
```

table [1,1] with i=1, j=1, Wi = 2 and Vi = 3 As j< wi, we will obtain table [1,1] as. table [1,1] = table [i-1,j] = table [0,1]

: . [+4ble[1,1] = 0

table [1,2] with i=1, j=2, Wi=2 and Vi=3 As j > wi, we will obtain table [1,2] as table [1,2] = table max {table [i-1,j], vit table [i-1, j-wi]} = max & table[0,2], 3+ table (0,0]} z max {0, 3+0}

= max {0,3} :. table [1,2] = 3

table [1,3] with i=1, (1=3, wi=2 and vi=3 As Jani: we will obtain table [1,3] as table [1,3] = max {table [i-1,j], vi +table [i-1,j-wi]} = mux {table [0,3], 3+ tuble [0, 1)} = max {0;3+0} teuble [1,3] = 3

3

: [table [1,4] = 3]

62.1

The table with these values can be

	0	1	2	3	4	_ 5	_
0	0	0	0	0	0	0	
1	0	0	3	3	3	3	
2	0						•
3	0						
4	0						
					-	.0	

Now, let's fill MP mext sow of the table.

table [2,1] with i=2, j=1, Wi=3 and Vi=4

As j<Wi, we will obtain table [2,1] as

table [2,1] = table [1-1,j]

= table [1,1]

4

table [2,2] with i=2, j=2, wi=3 and vi=4. As j < wi, we will obtain table [2,2] as: table [2,2] = table [i-1,j]= table [1,2]

:- table [2,2] = 3

table [2,3] with i=2, j=3, wi=3 and vi=4.

As j>wi, we will obtain table [2,3] as

table [2,3] = max{table [i-1,j], vi+table [i-1,j-wij}

= max {table [1,3], i+table [1,0]}

= max {3, i+0}

= 4 -: +uble [2,3] = 4

table [2,4] with i=2, j=4, wi=3 and vi=4.

As j=wi, we will obtain table [2,4] as

table [2,4] = max {table [i-1,j], vi+table [i-1,j-wi]}

= max {table [1,4], 4+table [1,1]}

= max {3,4+0}

= 4 -. [table [2,4] = 4

table [2,5] with i=2, j=5, wi=3 and vi=4

As i>wi, we will obtain table [2,5] as

table [2,5] = max {table [i-1,j], vi + table [i-1,j-wi]}

= max {table [1,5], 4 + table [1,2]}

= max {3, 4+3}

= 7 [+able [2,5] = 7] The table with there computed values will be

	0	1.	2	3	4	5
0	0	0	0	0	0	O
1	0	Ø	3	3	3	3
2	0	0	3	4	4	7
3	0	ed Pale	m (D)			
4.	0	ung Ng	Anupla	ALMIT	minhie	uppe pur

How, let's till up next sow of the table table [3,1] with i=3,j=1, wi=4 and vi=5

As j(wi); we will obtain table [3,1] as table [3,1] = table [i-1,j]

= table [2,1]

table [3,2] with j=3, j=2, wi=4 and vi=5As j < wi, we will obtain table [3,2] as
table [3,2] = table [i-1,j]

= tuble [2,2]

: . table [3,2] =3

table [3,3] with i=3, j=3, wi=4 and vi=5.

As j<wi, we will obtain table [3,3] as

table [3,3] = table [i-1,j]

= table [2,3]

=4 :. [table [3,3] = 4

table [3,4] with i=3,j=4, Wi=4 and Vi=5

As j≥ Wi; we will obtain table [3,4] as

table [3,4] = table [i-1,j], Vi+table [i-1,j-wi]}

= max {table [2,4], 5+ table [2,0]}

table [3,5] with j=3, j=5, wi=4 and vi=5As $j \ge wi$, we will obtain table [3,5] as

table [3,5] = max {table [i-1,j], vi+4able [i-1,j-wi]}

= max {table [2,5], 5+ table [2,1]}

= max {7,5+0}

The table with these computed values will be

						4
•	0		2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0					
	0	0	3	4	5	7

Now, let's till up next 2000 of the table.

table [4,1] with i=4, j=1, wi=5 and vi=6.

As j<wi, we will obtain table [4,1] as

table [4,1] = table [i-1,j]

= table [3,1]

table [4,2] with i=4,j=2, Wi=5 and Vi=6

As i < Wi, we will obtain table [4,2] as
table [4,7] = table [1-1,j]

= table [3,2]

table [4,3] with i=4, j=3, wi=5 and vi=6

As & j(wi, we will obtain table [4,3] as

table [4,3] = table [1-1,j]

= table [3,3]

: [table [4,3] = 4]

table [4,4] with i=4, j=4, wi=5 and vi=6As j < wi, we will obtain table [4,4] as table [4,4] = table [1-1,j]

= table [3,4]

=5 : table [4,4] =5

table [4,5] with i=4, j=5, wi=5 and vi=6As $j \ge wi$, we will obtain table [4,5] as table [4,5] = max [table [i-1,j], vi; t table [i-1,j-wi]; t = max {table [3,5], t table [3,6]} t = max {7,6+0}

=7 :-[table [4,5] =7]

Thus the table can be timenly as given below.

	0		2	3	on by	5	
0	0	0	O	0	0	0	
ŀ	0	0	3	3	3	3	
2	0	0	3	4	4	7	
3	O	0	3	4	5	7	
4	0	0	3	4	5	1	
						1	

> This is the total Yulve of selected items.

How to find actual Knapsack items &

-) Following steps are used seventedly to select actual knapsack item.

Let us cipply these steps to the above given psoblem. As we have obtained the final table eus.

						7	
	0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	0	3	3	3	3	
2	0	0	3	4	4	7	
3	0	0	3	4	5	7	
4	0	0	3	4	5	7	> stast trom here
$\langle \cdot \rangle$					(6)		11676

Hese, i=4 and K=5 i.e, table [4,5] = table [3,5] ... Do not select i'th item. i.e.4th item,

	0	1	2	3	4	5
0	0	O	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	O	0	3	4	5	7

Now, set j=j-1 j=3

0	1	2	3	4	5
O	O	U	O	0	O
0	Ø	3	3	3	3
0	0	3	4	4	7
0	0	3	4	5	7
0	۵	3	4	5	1
	0	0 0	0 0 3	0 0 3 3 4 0 0 3 4	0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

As table [i, k] = table [i-1, k] i.e. table [3,5] = table [2,5] :. Do not select it item. i.e. 3 item.

	0	1	2	3	4	5
0	0	σ	0	0	0	0
1	0	O	3	3	3	3
اب <u>ک</u>	0	Ø	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Now set i=i-1=2As table [i,K] \neq table [i-1,K] i.e. table [2,5] \neq table [1,5] i.e. i=1 and K=5-3=2.

	0	1	. 2	3	4	5
0	0	0	0	0	0	0
<u>!-!</u>	0	0	3	3	3	3
₩2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	O	3	4	5	7

As table [i,K] + table [i-1,K]
i.e table [1,2] + table [0,2]

i.e. i= 0 and K=2-2=0.

Thus we have selected item 1 and item 2 box the Knapsack. This solution can also be sepsesented by solution vector (1,1,0,0).

Hese, Total Psotit = value of items + value of items = 3 + 4
=7,

```
Algorithm of Dynamic Knapsuck Problem
Algosithm · Dynamic_Knapsack (n, W, WEJ, VCJ)
tos (it o to m) do
2
    tos (jto to W) do
          table [1,0] =0
          table to, jj =0
tox (if o tom) do
2
   1
        it (j < wil) the
            table [i,i] & table [i-1,i]
        else it ()>=wis) then
           table [i,j] ~ max (table [i-1,j], (vii) + table[i-1,j-wai)
```

3 etusn fuble [n, W].