Calcolo Numerico, I Esercitazione CdL Informatica

Esercizi svolti a lezione

1) Senza usare il calcolatore, si scriva il risultato dei seguenti comandi. Quindi si verifichi l'esattezza dei risultati usando MATLAB.

```
x=[pi pi/2]; y=[0 pi/2]; v=sin(x)+cos(y); t1=x.*y; t2=x*y; t3=x*y'; t4=x./y; A=[-1 2 ; 5 4]; B=A.\wedge 2; C=exp(A); D=sqtr(A); a=realmax*10; b=realmin/1.e5; c=1+eps/4; d=0/0; e=1/0;
```

- 2) Utilizzando sia i cicli for che la notazione vettoriale, assegnare i seguenti vettori:
 - $z \in \mathbb{R}^{20}$ tale che $z_k = k$, per k = 1, 2, ..., 20;
 - $v \in \mathbb{R}^{100}$ tale che $v_1 = 3$, $v_i = 10^{-3}$, $i = 2, 3, \dots, 100$;
 - $w \in \mathbb{R}^n$ tale che $w_k = a + (k-1) * h$, per k = 1, 2, ..., n, con n = 21, a = 0, h = 1/(n-1).
- 3) Scrivere una function MATLAB norma che, dato un vettore x in ingresso, ne calcola la norma euclidea (detta anche "norma due"). Si ricorda che la norma euclidea di un vettore è definita come

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

Scrivere uno script in cui si calcola la norma dei vettori $x=(5,-8,7)^T,\,y=(-3.2,5\cdot 10^{-4},2.8,3\cdot 10^2)^T$ e del vettore così definito:

$$w(1) = 1$$
, $w(i) = 3 * i/(i-1)$, $i = 2, ..., 30$,

usando la funzione norma2, e in cui si confrontano i risultati ottenuti con quelli forniti dalla funzione nativa norm di MATLAB.

4) Scrivere una function che, dato in ingresso un vettore $x \in \mathbb{R}^n$ ed uno scalare $p \geq 1$, restituisce

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \quad \text{se } p \neq \inf$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|, \quad \text{se } p = \inf.$$

Se il dato in ingresso p è minore di 1, la function stampa un messaggio di errore.

5) Scrivere una function MATLAB che, data in ingresso la matrice $A \in \mathbb{R}^{m \times n}$, restituisce il minimo elemento di A e la sua posizione, ovvero gli indici di riga e di colonna.

6) Scrivere una function che, assegnata una matrice $A \in \mathbb{R}^{n \times n}$, restituisce in uscita $||A||_{\infty}$. Si ricorda che la norma infinito di una matrice è così definita:

$$||A||_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^{n} |a_{ij}|.$$

Si utilizzi tale funzione per calcolare la norma infinito della matrice

$$A = \begin{pmatrix} 1.5 & 0 & 4e - 3 \\ 3 & 21 & 5 \\ 5 & 0.01 & -4e2 \end{pmatrix}$$

e si confronti il risultato ottenuto con quello fornito dalla funzione predefinita norm, calcolando l'errore relativo.

7) Scrivere una function che, dati in ingresso una matrice $A=(a_{ij})\in\mathbb{R}^{m\times n}$ ed un vettore $x=(x_1,\,x_2,\ldots,x_n)^T$, calcola y=Ax, ovvero il vettore colonna $y=(y_1,\,y_2,\ldots,y_m)^T$ la cui *i*-esima componente ha la forma

$$y_i = \sum_{j=1}^n a_{ij} x_j, \qquad i = 1, \dots, m.$$

Eseguire la function e confrontare il risultato con quello ottenuto usando l'istruzione y=A*x.

- 8) Consideriamo la successione $\{3k^2\}$, $k = 0, 1, 2, \dots$ Si utilizzi un ciclo while per determinare il numero minimo di termini N richiesti affinché la somma $\sum_{k=1}^{N} 3k^2$ sia maggiore di 2000. (Soluzione: 13 termini, la cui somma è 2457).
- 9) Si scriva una function per approssimare e^x mediante la somma dei primi n termini del suo sviluppo di Taylor. La function deve avere in ingresso il valore di x in cui approssimare l'esponenziale e il numero n di termini da utilizzare. In uscita deve fornire l'approssimazione calcolata y, ovvero

$$y = \sum_{k=0}^{n} \frac{x^k}{k!}.$$

Si utilizzi tale funzione per approssimare e^{30} e e^{-30} e si confronti il risultato ottenuto con quello fornito dalla funzione MATLAB exp. Per effettuare il confronto si calcoli l'errore relativo.

Esercizi suggeriti per casa

1) Scrivere una function che, preso in input un numero $0 \le n \le 10$ naturale, ne calcoli il fattoriale:

$$n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1.$$

2) Scrivere una function che, assegnata una matrice $A \in \mathbb{R}^{n \times n}$, restituisce in uscita $||A||_1$. Si ricorda che la norma uno di una matrice è così definita:

$$||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}|.$$

Si utilizzi tale funzione per calcolare la norma uno della matrice

$$A = \begin{pmatrix} 1.5 & 0 & 4e - 3 \\ 3 & 21 & 5 \\ 5 & 0.01 & -4e2 \end{pmatrix}$$

e si confronti il risultato ottenuto con quello fornito dalla funzione predefinita norm, calcolando l'errore relativo.

3) Scrivere una funzione MATLAB che, date due matrici $A, B \in \mathbb{R}^{n \times n}$ in ingresso, calcola la matrice C tale che C = A * B (senza usare l'operatore * di MATLAB). Si ricorda che il prodotto tra matrici è definito come:

$$C_{i,j} = \sum_{\ell=1}^{n} A_{i,\ell} B_{\ell,j}, \quad i = 1, \dots, n, \ j = 1, \dots, n.$$

Utilizzare tale funzione per calcolare il prodotto tra la matrice A definita nell'esercizio 1 e la matrice B tale che

$$B_{i,j} = A_{i,j}^2, \quad i, j = 1, 2, 3.$$

Confrontare il risultato ottenuto con quello fornito dal comando A*B.

- 4) Scrivere una function che, date in input le coordinate di un punto $x = (x_1, x_2) \in \mathbb{R}^2$ e un raggio R, controlli che tale punto sia all'interno o meno della circonferenza di raggio R, stampando un messaggio a video; la function dovr restituire anche la lunghezza di tale vettore.
- **5)** Data la matrice

$$A = \left(\begin{array}{ccc} 8 & 9 & 2 \\ 9 & 6 & 5 \\ 1 & 0 & 9 \end{array}\right)$$

e il vettore b = (19, 20, 10), scrivere una function che, preso in input un vettore y, controlli che esso sia soluzione del sistema Ax = b.

6) Dato un polinomio p, scrivere una function che, dati in input un punto x_0 e i coefficienti del polinomio, calcoli il valore del polinomio in x_0 . Confrontare il risultato ottenuto con il risultato

fornito dalla funzione nativa polyval.

Suggerimento: i coefficienti del polinomio possono essere memorizzati in un vettore. Per esempio, i coefficienti di

$$p(x) = 4x^3 + x^2 - 1$$

possono essere memorizzati nel vettore p = [4 1 0 -1].