ДНФ

Содержание

- 1 ДНФ
- 2 СДНФ
- 3 Алгоритм построения СДНФ по таблице истинности
- 4 Пример построения СДНФ для медианы
 - 4.1 Построение СДНФ для медианы от трех аргументов
 - 4.2 Построение СДНФ для медианы от пяти аргументов
- 5 Примеры СДНФ для некоторых функций
- 6 См. также
- 7 Источники информации

ДНФ

Определение:

Простой конъюнкцией (англ. inclusive conjunction) или конъюнктом (англ. conjunct) называется конъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза.

Простая конъюнкция

- полная, если в неё каждая переменная (или её отрицание) входит ровно 1 раз;
- монотонная, если она не содержит отрицаний переменных.

Определение:

Дизьюнктивная нормальная форма, ДНФ (англ. *disjunctive normal form, DNF*) — нормальная форма, в которой булева функция имеет вид дизьюнкции нескольких простых коньюнктов.

Пример ДНФ: $f(x,y,z) = (x \wedge y) \vee (y \wedge \neg z)$.

СДНФ

Определение:

Совершенная дизьюнктивная нормальная форма, СДНФ (англ. perfect disjunctive normal form, PDNF) — ДНФ, удовлетворяющая условиям:

- в ней нет одинаковых простых конъюнкций
- каждая простая конъюнкция полная.

Пример СДНФ: $f(x, y, z) = (x \land \neg y \land z) \lor (x \land y \land \neg z)$.

Теорема:

Для любой булевой функции $f(\vec{x})$, не равной тождественному нулю, существует СДНФ, ее задающая.

Доказательство:

 \triangleright

Для любой булевой функции выполняется следующее соотношение, называемое разложением Шеннона:

$$f(ec{x}) =
eg x_i \wedge f(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n) \vee x_i \wedge f(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n).$$

Данное соотношение легко проверить подстановкой возможных значений $x_i \ (0 \ \mathrm{u} \ 1)$. Эта формула позволяет выносить x_i за знак функции.

Последовательно вынося $x_1, x_2,..., x_n$ за знак $f(ec{x})$, получаем следующую формулу:

$$f(ec{x}) =
eg x_1 \wedge
eg x_2 \wedge \ldots \wedge
eg x_{n-1} \wedge
eg x_n \wedge f(0,0,\ldots,0,0) \ \lor$$

$$eg x_1 \wedge
eg x_2 \wedge \ldots \wedge
eg x_{n-1} \wedge x_n \wedge f(0,0,\ldots,0,1) \ \lor$$

$$ee \ \ x_1 \wedge x_2 \wedge \ldots \wedge x_{n-1} \wedge
eg x_n \wedge f(1,1,\ldots,1,0) \ ee$$

$$x_1 \wedge x_2 \wedge \ldots \wedge x_{n-1} \wedge x_n \wedge f(1,1,\ldots,1)$$

Так как применение данного соотношения к каждой из переменных увеличивает количество конъюнктов в два раза, то для функции от n переменных мы имеем 2^n конъюнктов. Каждый из них соответствует значению функции на одном из 2^n возможных наборов значений n переменных. Если на некотором наборе $f(\vec{x})=0$, то весь соответствующий конъюнкт также равен нулю и из представления данной функции его можно исключить. Если же $f(\vec{x})=1$, то в соответствующем конъюнкте само значение функции можно опустить. В результате для произвольной функции была построена СДНФ.

Алгоритм построения СДНФ по таблице истинности

- $1.\,\mathrm{B}$ таблице истинности отмечаем те наборы переменных, на которых значение функции равно $1.\,\mathrm{C}$
- 2. Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу: если значение некоторой переменной есть 1, то в конъюнкцию включаем саму переменную, иначе ее отрицание.
- 3. Все полученные конъюнкции связываем операциями дизъюнкции.

Пример построения СДНФ для медианы

Построение СДНФ для медианы от трех аргументов

1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно 1.

x	y	z	$\langle x,y,z angle$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2. Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу: если значение некоторой переменной есть 1, то в конъюнкцию включаем саму переменную, иначе ее отрицание.

x	y	z	$\langle x,y,z angle$	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$(\neg x \wedge y \wedge z)$
1	0	0	0	
1	0	1	1	$(x \wedge \neg y \wedge z)$
1	1	0	1	$(x \wedge y \wedge \neg z)$
1	1	1	1	$(x \wedge y \wedge z)$

3. Все полученные конъюнкции связываем операциями дизъюнкции:

$$\langle x,y,z
angle = (x \wedge y \wedge z) \vee (\neg x \wedge y \wedge z) \vee (x \wedge \neg y \wedge z) \vee (x \wedge y \wedge \neg z).$$

Построение СДНФ для медианы от пяти аргументов

	ı		Ι	Ι		1
x_1	x_2	x_3	x_4	x_5	$\langle x_1, x_2, x_3, x_4, x_5 angle$	
0	0	0	0	0	0	
0	0	0	0	1	0	
0	0	0	1	0	0	
0	0	0	1	1	0	
0	0	1	0	0	0	
0	0	1	0	1	0	
0	0	1	1	0	0	
0	0	1	1	1	1	$(\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge x_4 \wedge x_5)$
0	1	0	0	0	0	
0	1	0	0	1	0	
0	1	0	1	0	0	
0	1	0	1	1	1	
0	1	1	0	0	0	
0	1	1	0	1	1	$(\neg x_1 \wedge x_2 \wedge x_3 \wedge \neg x_4 \wedge x_5)$
0	1	1	1	0	1	$(\neg x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge \neg x_5)$
0	1	1	1	1	1	$(\neg x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5)$
1	0	0	0	0	0	
1	0	0	0	1	0	
1	0	0	1	0	0	
1	0	0	1	1	1	$(x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge x_4 \wedge x_5)$
1	0	1	0	0	0	
1	0	1	0	1	1	$(x_1 \wedge eg x_2 \wedge x_3 \wedge eg x_4 \wedge x_5)$
1	0	1	1	0	1	$(x_1 \wedge \neg x_2 \wedge x_3 \wedge x_4 \wedge \neg x_5)$
1	0	1	1	1	1	$(x_1 \wedge \neg x_2 \wedge x_3 \wedge x_4 \wedge x_5)$
1	1	0	0	0	0	
1	1	0	0	1	1	$(x_1 \wedge x_2 \wedge \neg x_3 \wedge \neg x_4 \wedge x_5)$
1	1	0	1	0	1	$(x_1 \wedge x_2 \wedge \neg x_3 \wedge x_4 \wedge \neg x_5)$
1	1	0	1	1	1	$(x_1 \wedge x_2 \wedge \neg x_3 \wedge x_4 \wedge x_5)$
1	1	1	0	0	1	$(x_1 \wedge x_2 \wedge x_3 \wedge \neg x_4 \wedge \neg x_5)$
1	1	1	0	1	1	$(x_1 \wedge x_2 \wedge x_3 \wedge \neg x_4 \wedge x_5)$
1	1	1	1	0	1	$(x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge \neg x_5)$
1	1	1	1	1	1	$(x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5)$

 $\langle x_1, x_2, x_3, x_4, x_5 \rangle = (\overline{x_1} \wedge \overline{x_2} \wedge x_3 \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_3} \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_4 \wedge x_5) \vee (\overline{x_2} \wedge x_4 \wedge x_5) \vee (\overline{x_1} \wedge x_4 \wedge x_5) \vee (\overline{x_2} \wedge x_5 \wedge x_5) \vee (\overline{x_2} \wedge x_5 \wedge x_5 \wedge x_5) \vee (\overline{x_2} \wedge x_5 \wedge x_5 \wedge x_5 \wedge x_5) \vee (\overline{x_2} \wedge x_5 \wedge x_5 \wedge x_5 \wedge x_5 \wedge$

Примеры СДНФ для некоторых функций

Стрелка Пирса: $x\downarrow y=(\neg x\wedge \neg y).$

Исключающее или: $x\oplus y\oplus z=(\overline{x}\wedge \overline{y}\wedge z)\vee (\overline{x}\wedge y\wedge \overline{z})\vee (x\wedge \overline{y}\wedge \overline{z})\vee (x\wedge y\wedge z).$

См. также

- Сокращенная и минимальная ДНФ
- КНФ

Источники информации

- СДНФ Википедия (http://ru.wikipedia.org/wiki/%D0%A1%D0%94%D0%9D%D0%A4)
- Е.Л Рабкин, Ю.Б. Фарфоровская Дискретная математика (http://dvo.sut.ru/libr/himath/w163rabk/index.htm)

Источник — «http://neerc.ifmo.ru/wiki/index.php?title=ДН Φ &oldid=85541»

[•] Эта страница последний раз была отредактирована 4 сентября 2022 в 19:35.