

Cambridge Assessment International Education

Cambridge International Advanced Level

			CANDIDATE NUMBER		
3				9709/3	1
lathematics	3 (P3)		Od	ctober/November 201	9
				1 hour 45 minutes	s
wer on the	Question P	aper.			
rials: L	ist of Form	ulae (MF9)			
	wer on the	Mathematics 3 (P3) wer on the Question F	Mathematics 3 (P3) wer on the Question Paper.	NUMBER Number Number Number Number Number Number	NUMBER 9709/3 Mathematics 3 (P3) October/November 201 1 hour 45 minute wer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 19 printed pages and 1 blank page.

Cambridge Assessment International Education

[Turn over

BLANK PAGE

Given that $\ln(1 + e^{2y}) = x$, express y in terms of x.	[3]
	•••••
	•••••

•	
	• • • • • • •
•	•••••
	•••••
	•••••
	• • • • • • •
•	
•	••••••
•	•••••
•	••••••
•	 ,
	 · • • • • • •

	5
3	The parametric equations of a curve are
	$x = 2t + \sin 2t, y = \ln(1 - \cos 2t).$
	Show that $\frac{dy}{dx} = \csc 2t$. [5]

The number of insects in a population t weeks after the start of observations is denoted by N. The population is decreasing at a rate proportional to $Ne^{-0.02t}$. The variables N and t are treated as continuous, and it is given that when t = 0, N = 1000 and $\frac{dN}{dt} = -10$.

(1)	Show that <i>I</i> v and <i>t</i> satisfy the dif	$\frac{\mathrm{d}N}{\mathrm{d}t} = -0.01\mathrm{e}^{-0.02t}N.$	[1]
		$\mathrm{d}t$	
ii)	Solve the differential equation as	and find the value of t when $N = 800$.	[6]

(iii)	State what happens to the value of N as t becomes large. [1]

5

,	Show that p satisfies the equation $x = 1 + \exp\left(\frac{1}{2(x-1)}\right)$, where $\exp(x)$ denotes e^x .
•	
•	
•	
•	
•	

Verify by calc	culation that p				
•••••			 	•••••	
		ased on the equach iteration to		e p correct to	o 2 deci
				e p correct to	o 2 deci
				e p correct to	o 2 decir
				e p correct to	2 deci
				e p correct to	2 decii
				e p correct to	2 decii
				e p correct to	2 decii
				e p correct to	2 decii
				e p correct to	
				e p correct to	2 decii
				e p correct to	

		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
	$\mathbf{f}^{rac{1}{2}\pi}$	
(ii)	Show that $\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} x \csc^2 x dx = \frac{1}{4}(\pi + \ln 4).$	
(ii)	Show that $\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} x \csc^2 x dx = \frac{1}{4}(\pi + \ln 4).$	••••
(ii)	Show that $\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} x \csc^2 x dx = \frac{1}{4}(\pi + \ln 4).$	
(ii)		
(ii)		
(ii)		
(ii)		
(ii)		
(ii)		
(ii)		

Γ	Find the value of a .	
•		•••••
•		•••••
		•••••
•		
•		
•		•••••
•		•••••
		•••••
		•••••

When a has this value, find the equation of the plane containing l and m .	[5
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

8	Let $f(r)$ –	$x^2 + x + 6$
o	Let $f(x) =$	$\frac{1}{x^2(x+2)}$

(i)	Express $f(x)$ in partial fractions.	[5]

(ii)	Hence, showing full working, show that the exact value of	$\int_{1}^{4} f(x) dx \text{ is } \frac{9}{4}.$ [5]

	By first expanding $cos(2x + x)$, show that $cos 3x = 4 cos^3 x - 3 cos x$.
••	
••	
••	
••	
••	
••	
••	
H	Hence solve the equation $\cos 3x + 3\cos x + 1 = 0$, for $0 \le x \le \pi$.

(iii)	Find the exact value of $\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \cos^3 x dx.$ [4]

10	(a)	The complex number u is given by $u = -3 - (2\sqrt{10})i$. Showing all necessary working and without using a calculator, find the square roots of u . Give your answers in the form $a + ib$, where the numbers a and b are real and exact. [5]

(b) On a sketch of an Argand diagram shade the region whose points represent complex numbers z satisfying the inequalities $|z-3-i| \le 3$, $\arg z \ge \frac{1}{4}\pi$ and $\operatorname{Im} z \ge 2$, where $\operatorname{Im} z$ denotes the imaginary part of the complex number z. [5]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.