Задача 1. Доказать что следующие формы эквивалентны:

1.
$$A \wedge B$$
 и $\neg (\bar{A} \vee \bar{B})$

2.
$$(A \lor B) \land C$$
 и $(A \land C) \lor (B \land C)$

Задача 2. Выразить через

3. ↓ связки
$$\land$$
, \rightarrow , \neg

4. | связки
$$\land, \rightarrow, \neg$$

Задача 3. Построить КН Φ , ДН Φ , СКН Φ и СДН Φ :

5.
$$X \to (Y \to Z)$$

6.
$$(X \to Y) \to Z$$

Задача 4. Доказать эквивалентность:

7.
$$(X \cup Y) \setminus Z$$
 и $(X \setminus Z) \cup (Y \setminus Z)$

8.
$$A\cap (B\setminus C)$$
и $(A\cap B)\setminus (A\cap C)$ и $(A\cap B)\setminus C$

Задача 5. Построить бинарные отношения «>», «<» и «=» заданные на:

9. на множестве
$$X = \{5, 6, 7, 8\}$$

10. на декартовом произведении
$$X \times Y,$$
 где $X = \{1, 2, 3, 4\},$ а $Y = \{5, 6, 7\}$

11. на декартовом произведении
$$X \times Y$$
, где $X = \{b, a, c\}$, а $Y = \{c, y, z\}$

Задача 6. Построить произведение отношений заданных на множестве $X = \{1, 2, 3, 4\}$:

Задача 7. Доказать следующие утверждения $(\alpha, \beta, \gamma$ – отношения):

14.
$$\alpha(\beta \cup \gamma) = \alpha\beta \cup \alpha\gamma$$

15.
$$(\beta \cup \gamma)\alpha = \beta\alpha \cup \gamma\alpha$$

Задача 8. Построить отношение $<^{100}$ на множестве $A = \{1, 2, ... 103\}$

Задача 9. Построить фактор множество множества A по отношению α

16.
$$A = \{4, 7, 23, 56, 31, 45\}, \alpha \sim mod3$$

17.
$$A = \{0, \frac{\pi}{2}, \frac{3\pi}{2}, \pi, \frac{5\pi}{2}\}, a\alpha b \leftrightarrow sin(a) = sin(b)$$

Задача 10. Привести к предваренное нормальной форме методом упрощенной индукции, если A не содержит свободных вхождений переменной x

18.
$$\forall x B(x) \lor A$$

19.
$$\exists x B(x) \land A$$

20.
$$A \rightarrow \exists x B(x)$$

21.
$$\forall x B(x) \to A$$

Задача 11. Привести к предваренное нормальной форме

22.
$$\forall x Q(x,y) \lor (\exists x Q(x,x) \to \forall z (R(t,z) \to \exists x Q(x,x))$$

23.
$$(P(y) \land Q(x)) \rightarrow \neg \forall y R(y,z)$$

24.
$$\forall x (A(x) \rightarrow \forall y (A(x,y) \rightarrow \neg \forall z A(y,z)))$$

Задача 12. Используя формулы исчисления предикатов построить следующие высказывания

- 25. Существует ровно один элемент x такой что P(x)
- 26. Существует не более одного элемента x такого что P(x)
- 27. Существует не более двух элементов х таких что P(x)

Задача 13. Построить вывод

28.
$$\vdash B \to (B \to (A \to B))$$

29.
$$\vdash (A \to A) \to (A \to A)$$

$$30. \vdash F \rightarrow ((G \rightarrow G) \rightarrow (H \rightarrow F))$$

31.
$$A \rightarrow (B \rightarrow C), A \rightarrow B, A \vdash C$$

32.
$$\neg B \rightarrow \neg A, A \vdash B$$

33.
$$A, \neg A \vdash B$$

34.
$$(\neg B \rightarrow \neg A) \vdash (A \rightarrow B)$$

35.
$$(\neg B \to A) \vdash (\neg A \to B)$$

36.
$$(B \to \neg A) \vdash (A \to \neg B)$$

37.
$$(B \to A) \vdash (\neg A \to \neg B)$$

38.
$$A \rightarrow B, \neg A \rightarrow B \vdash B$$

39.
$$E \to D, E \to \neg D \vdash E$$

Задача 14. Построить машины тьюринга:

- 40. Удаление единицы слева
- 41. Вычитание единицы из целого числа
- 42. Вычитание единиц
- 43. Удвоение единиц

Задача 15. Построить конечный автомат

- 44. Распознающий числа, заданные в двоичной системе счисления, делящиеся на 16
- 45. Распознающий ір-адреса

Задача 16. Построить МНР машину

- 46. Вычитание положительных чисел
- 47. Целочисленное деление