Categorical data and regression

Frank Edwards

Categorical data

Categorical data falls into a fixed set of categories. It may be *unordered*, meaning that there is no inherent ranking of categories, or it may be *ordered*. Ordered categorical data has an explicit hierarchical ranking of values.

Are these variables ordered or unordered?

 \cdot Candidate choice in a primary election

- · Candidate choice in a primary election
- · Zip code for people choosing a place to move

- · Candidate choice in a primary election
- · Zip code for people choosing a place to move
- · Cause of death

- · Candidate choice in a primary election
- Zip code for people choosing a place to move
- · Cause of death
- Opinions on a political issue on a thermometer / Likert scale
 (e.g. Strongly oppose, oppose, neutral, support, strongly support)

- · Candidate choice in a primary election
- Zip code for people choosing a place to move
- · Cause of death
- Opinions on a political issue on a thermometer / Likert scale
 (e.g. Strongly oppose, oppose, neutral, support, strongly support)
- Ranking of academic progrms

Categorical data

```
library(foreign)
dat <- read.dta("https://stats.idre.ucla.edu/stat/data/hsbdemo.dta")
head(dat)</pre>
```

```
id female
               ses schtyp
                               prog read write math science socst
                                                                     honors
##
## 1 45 female
               low public vocation
                                     34
                                           35
                                                41
                                                             26 not enrolled
                                                        29
## 2 108
         male middle public general
                                     34
                                           33
                                                       36
                                                           36 not enrolled
                                                41
         male
                high public vocation
## 3 15
                                      39
                                          39
                                                44
                                                       26
                                                           42 not enrolled
## 4 67
         male
                low public vocation
                                    37
                                                           32 not enrolled
                                           37
                                                42
                                                       33
## 5 153
         male middle public vocation
                                      39
                                           31
                                                40
                                                       39
                                                           51 not enrolled
## 6 51 female
                high public general
                                      42
                                           36
                                                42
                                                       31
                                                             39 not enrolled
##
    awards cid
## 1
         0
           1
## 2
         0
           1
## 3
         0 1
## 4
       Θ
           1
## 5
         0 1
## 6
```

Visualizing categorical data

Crosstabs are often the best

table(dat\$prog)

```
##
## general academic vocation
## 45 105 50
```

Visualzing categorical data (cont.)

```
dat %>%
   group by(prog, ses) %>%
   summarize(n = n()) %>%
   mutate(prop = n/sum(n))
## # A tibble: 9 x 4
## # Groups: prog [3]
    prog ses
                      n prop
##
    cfct> cfct> cint> cdhl>
##
## 1 general low
                     16 0.356
## 2 general middle 20 0.444
## 3 general high
                    9 0.2
## 4 academic low
                    19 0.181
## 5 academic middle 44 0.419
## 6 academic high 42 0.4
## 7 vocation low
                 12 0.24
## 8 vocation middle
                   31 0.62
## 9 vocation high 7 0.14
```

Visualizing categorical data - frequency barplots

Visualizing categorical data - frequency barplots

Visualizing categorical data, facets

Multinomial logistic regression

Multinomial logistic regression is a GLM that models the log odds of a categorical outcome as a function of a linear combination of a set of predictors.

Multinomial logistic regression

Multinomial logistic regression is a GLM that models the log odds of a categorical outcome as a function of a linear combination of a set of predictors.

Multinomial logistic regression: basics

For a categorical outcome with K categories, estimate K-1 models where 1,2,3 stand in for membership in group 1, 2, 3, ... K:

$$\log \frac{Pr(y_i = 1)}{Pr(y_i = K)} = \beta_{k=1} X_i$$

$$\log \frac{Pr(y_i = 2)}{Pr(y_i = K)} = \beta_{k=2} X_i$$

$$\dots$$

$$\log \frac{Pr(y_i = K - 1)}{Pr(y_i = K)} = \beta_{k=3} X_i$$

Key assumtion: Independence of irrelevant alternatives. Odds of choice do not depend on the presence or absence of other alternatives (i.e. car vs bus or car vs red bus vs blue bus)

Implementation

- Choose a reference category. This is arbitrary, but changes the interpretation. Remember that we're modeling the log odds of membership in one group relative to another.
- 2. Estimate a model
- 3. Interpret results

Implementation

Multinomial logistic regression is easy to estimate using brms, an package for estimating Bayesian models using Stan, very similar to rstanarm.

Simply use family = categorical with a call to brm.

Estimation

Let's predict high school program choice as a function of socio-economic status and math standardized test score

```
library(brms)
m0 <- brm(prog ~ ses + math, data = dat, family = categorical, refresh = θ)
```

Interpretation

Remember how to interpret logit coefficients? It just got harder!

```
mΘ
    Family: categorical
     Links: muacademic = logit; muvocation = logit
##
## Formula: prog ~ ses + math
##
      Data: dat (Number of observations: 200)
     Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
##
            total post-warmup draws = 4000
##
## Regression Coefficients:
##
                        Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS
## muacademic Intercept
                           -4.10
                                      1.26
                                              -6.59
                                                       -1.76 1.00
                                                                      4103
## muvocation Intercept
                            3.03
                                      1.44
                                               0.28
                                                        5.93 1.00
                                                                      3205
## muacademic sesmiddle
                            0.33
                                      0.47
                                              -0.61 1.27 1.00
                                                                      2754
## muacademic seshigh
                            0.95
                                      0.55
                                              -0.10
                                                        2.05 1.00
                                                                      2682
## muacademic_math
                            0.09
                                      0.02
                                             0.04
                                                        0.13 1.00
                                                                      3600
## muvocation sesmiddle
                            0.97
                                      0.51
                                              -0.04
                                                       1.98 1.00
                                                                      2484
## muvocation seshigh
                                              -0.98
                            0.37
                                      0.68
                                                        1.70 1.00
                                                                      2490
## muvocation math
                           -0.07
                                      0.03
                                              -0.13
                                                       -0.02 1.00
                                                                      2720
##
                        Tail ESS
## muacademic Intercept
                            3204
## muvocation Intercept
                            3322
## muacademic_sesmiddle
                            3285
## muacademic seshigh
                            2760
## muacademic math
                            3152
## muvocation sesmiddle
                            2646
## muvocation seshigh
                            2684
```

Options

Change in log odds of option k versus the reference category for a one unit change in \boldsymbol{x}

```
fixef(m0)[, 1]
## muacademic Intercept muvocation Intercept muacademic sesmiddle
                                  3.02505861
##
            -4.10053988
                                                        0.32783552
##
     muacademic seshigh
                             muacademic math muvocation sesmiddle
##
             0.94943179
                                  0.08536433
                                                        0.96640678
     muvocation seshigh
                             muvocation math
##
##
             0.36564876
                                 -0.07272188
```

Change in odds ratio of option *k* versus the reference category for a one unit change in *x*

```
exp(fixef(m0)[, 1])
## muacademic Intercept muvocation Intercept muacademic sesmiddle
             0.01656373
                                 20.59521171
                                                        1.38796066
##
     muacademic seshigh
                             muacademic_math muvocation_sesmiddle
##
##
             2.58424085
                                  1.08911379
                                                        2.62848276
     muvocation seshigh
                             muvocation math
##
##
             1.44144886
                                  0.92985941
```

Or - we could simulate!

```
plot_dat <- expand_grid(ses = unique(dat$ses), math = mean(dat$math)) %>%
    add epred draws(m0)
head(plot_dat)
## # A tibble: 6 x 8
## # Groups: ses, math, .row, .category [1]
           math .row .chain .iteration .draw .category .epred
##
    <fct> <dbl> <int> <int>
                               <int> <int> <fct>
                                                       <db1>
          52.6
## 1 low
                 1
                         NA
                                    NA
                                          1 general
                                                       0.201
## 2 low
         52.6 1
                         NA
                                    NA
                                          2 general
                                                       0.284
## 3 low
         52.6
                                          3 general
                                                       0.297
                  1
                         NA
                                    NA
         52.6
## 4 low
                  1
                         NA
                                    NA
                                          4 general
                                                       0.317
          52.6
## 5 low
                         NA
                                    NA
                                           5 general
                                                       0.317
## 6 low
          52.6
                   1
                         NA
                                    NA
                                          6 general
                                                       0.366
```

Visualize

Ordinal regression

The data

```
dat <- read.dta("https://stats.idre.ucla.edu/stat/data/ologit.dta")
head(dat)</pre>
```

```
##
            apply pared public gpa
## 1
       very likely
                     0
                           0 3.26
## 2 somewhat likely
                         0 3.21
## 3
          unlikely
                        1 3.94
## 4 somewhat likely
                        0 2.81
## 5 somewhat likely
                       0 2.53
## 6
          unlikely 0 1 2.59
```

Ordinal logistic regression

Ordinal logistic regression is a GLM that models the log odds of a rank-ordered categorical outcome as a function of a linear combination of a set of predictors.

Ordinal logistic regression

Ordinal logistic regression is a GLM that models the log odds of a rank-ordered categorical outcome as a function of a linear combination of a set of predictors.

Multinomial logistic regression: basics

For an ordinal outcome with K categories, estimate K-1 models where 1,2,3 stand in for membership in group 1, 2, 3, ... K:

$$\log \frac{Pr(y_i > 1)}{Pr(y_i = K)} = \beta X_i$$

$$\log \frac{Pr(y_i > 2)}{Pr(y_i = K)} = \beta X_i - c_2$$

$$\dots$$

$$\log \frac{Pr(y_i = K - 1)}{Pr(y_i = K)} = \beta X_i - c_{k-1}$$

Estimation

We can use **rstanarm** for this with a new function

```
m_ord <- stan_polr(apply ~ pared + gpa, data = dat, prior = NULL, refresh = θ)</pre>
```

Model output

```
m_ord
```

```
## stan polr
## family:
             ordered [logistic]
## formula:
               apply ~ pared + gpa
## observations: 400
## ----
##
        Median MAD_SD
## pared 1.0 0.3
## gpa 0.6 0.2
##
## Cutpoints:
##
                             Median MAD SD
## unlikelv|somewhat likelv
                           2.1 0.7
## somewhat likely|very likely 4.2 0.7
##
## -----
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior summary.stanreg
```

Interpretation

Log odds again!

```
coef(m_ord)

## pared gpa

## 1.0286727 0.5773669
```

Or odds ratios

```
exp(coef(m_ord))
```

```
## pared gpa
## 2.797350 1.781342
```

But why not just simulate!

```
expand_grid(gpa = unique(dat$gpa), pared = unique(dat$pared)) %>%
   add_epred_draws(m_ord, ndraws = 500) %>%
   ggplot(aes(x = gpa, y = .epred)) + stat_lineribbon(.width = c(0.5, 0.8, 0.9)) +
   facet_wrap(~pared) + scale_fill_brewer()
```

