Devoir à la maison n° 15

À rendre le 21 mars

Équivalent d'une suite définie implicitement.

Pour tout $n \in \mathbb{N}^*$, on définit : $f_n : \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto x^n \ln x \end{cases}$.

- 1) Soit $n \in \mathbb{N}^*$. Montrer que l'équation $f_n(x) = 1$ possède une et une seule solution sur \mathbb{R}_+^* , que l'on notera x_n .
- 2) Montrer que pour tout $n \in \mathbb{N}^*$, $x_n > 1$.
- 3) Soient $n, m \in \mathbb{N}^*$ tels que n < m. Montrer que $x_m < x_n$
- 4) Montrer que (x_n) est une suite convergente, dont on notera ℓ la limite. Montrer que $\ell \geqslant 1$.
- 5) Montrer que $\ell = 1$.
- **6)** Soient (u_n) et (v_n) deux suites de réels strictement positifs. On suppose que $u_n \xrightarrow[n \to +\infty]{} +\infty$ et que $u_n \underset{n \to +\infty}{\sim} v_n \ln v_n$.
 - a) Montrer que pour tout x > 1, $x \ln x < x^2$.
 - **b)** En déduire que $v_n \xrightarrow[n \to +\infty]{} +\infty$.
 - c) Montrer que $\ln\left(\frac{u_n}{v_n \ln v_n}\right) \xrightarrow[n \to +\infty]{} 0$ et en déduire que

$$\ln u_n = \ln v_n + \ln \ln v_n + o(1).$$

- **d)** En déduire que $\ln u_n \underset{n \to +\infty}{\sim} \ln v_n$.
- e) En conclusion, montrer que $v_n \sim \frac{u_n}{n \to +\infty} \frac{u_n}{\ln u_n}$.
- 7) Soit $n \in \mathbb{N}^*$. Montrer que $n \ln x_n + \ln \ln x_n = 0$, et en déduire que $n = \frac{1}{\ln x_n} \ln \left(\frac{1}{\ln x_n} \right)$.
- 8) En utilisant les résultats de la question 6), montrer que $\frac{1}{\ln x_n} \sim \frac{n}{n \to +\infty} \frac{n}{\ln n}$.
- 9) En déduire que $x_n 1 \underset{n \to +\infty}{\sim} \frac{\ln n}{n}$.

— FIN —