Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1-75. (Canceled)

1	76. (Currently amended): The receiver of claim 74 further including In a
2	system for providing multiple access over a single communication channel, a receiver
3	comprising:
4 .	a digital signal representing a received data burst;
5	a data bus, the digital signal being fed to the data bus;
6	a control bus;
7	a preamble detection component coupled to the control bus, the data signal further
8	being fed to the preamble detection component, the preamble detection component configured to
9	detect preambles using a first spreading code;
10	plural demodulation circuits, each coupled to the data bus and to the control bus,
11	each configured to produce a data stream from data received over the data bus;
12	a selection component operatively coupled to the preamble detection component
13	and coupled to the control bus, the selection component configured to select an available
14	demodulation circuit; and
15	plural additional preamble detection components, each configured to detect
16	preambles using a spreading code different from the spreading code of the other preamble
17	detection components, each coupled to receive the data signal, each coupled to the data bus, each
18	coupled to the selection component,
19	wherein one of the demodulation circuits operates on data in response to control
20	signals issued by the preamble detection component and by the selection component, so that
21	multiple data bursts received by the preamble detection component can be concurrently
22	processed by selected ones of the demodulation circuits.

77. (Canceled)

1	78. (Currently amended): The receiver of claim 77 further including In a
2	system for providing multiple access over a single communication channel, a receiver
3	comprising:
4	an analog to digital converter to provide a digital signal comprising a plurality of
5	signal components, the signal components being transmitted by a plurality of transmitters, each
6	transmitter using a first spreading code to produce its signal component, the same first spreading
7	code being used by each of the transmitters;
8	a data bus, the digital signal being fed to the data bus;
9	a control bus;
10	a preamble detection component coupled to the control bus, the digital signal
11	further being fed to the preamble detection component, the preamble detection component
12	configured to detect a preamble in each of the received signal components using a first spreading
13	code;
14	plural demodulation circuits, each coupled to the data bus and to the control bus,
15	each demodulation circuit configured to produce a data stream from data received over the data
16	<u>bus;</u>
17	a selection component operatively coupled to the preamble detection component
18	and coupled to the control bus, the selection component configured to select an available
19	demodulation circuit; and
20	plural additional preamble detection components, each additional preamble
21	detection component configured to detect preambles using a spreading code different from the
22	spreading code of the other preamble detection components, each coupled to receive the data
23	signal, each coupled to the data bus, each coupled to the selection component,
24	wherein one of the demodulation circuits operates on data in response to control
25	signals issued by the preamble detection component and by the selection component, so that
26	multiple data bursts received by the preamble detection component can be concurrently
27	processed by selected ones of the demodulation circuits.

1	79. (Currently amended): In a system for providing multiple access over a
2	single communication channel, a receiver comprising:
3	means for producing a digital signal representing a received data burst, the digital
4	signal comprising a plurality of received signal components having been transmitted from a
5	plurality of different transmitters, each transmitter using a first spreading code that is the same
6	among the transmitters;
7	a data bus, the digital signals being fed to the data bus;
8	a control bus;
9	a preamble detection component coupled to the control bus, the digital signal
10	further being fed to the preamble detection component, the preamble detection component
11	configured to detect preambles using the first spreading code;
12	plural demodulation circuits, each coupled to the data bus and to the control bus,
13	each configured to produce a data stream from data received over the data bus; [[and]]
14	a selection component operatively coupled to the preamble detection component
15	and coupled to the control bus, the selection component configured to select an available
16	demodulation circuit[[,]]; and
17	plural additional preamble detection components, each additional preamble
18	detection component configured to detect preambles using a spreading code different from the
19	spreading code of the other preamble detection components, each coupled to receive the data
20	signal, each coupled to the data bus, each coupled to the selection component,
21	wherein one of the demodulation circuits operates on data in response to control
22	signals issued by the preamble detection component and by the selection component, so that
23	multiple data bursts received by the preamble detection component can be concurrently
24	processed by selected ones of the demodulation circuits.