

Galaxy Number Density: 10 arcmin⁻² Current Data

SNR = 1.757 dB $P_{corelator} = 0.453$

Department of Space & Climate Physics

Super-resolution MAP estimation versus Kaiser-Squires for various settings [1]

Current

Inverse

Bayesian sampling versus optimisation [2,3]

Application to Abel 520 merging cluster observational data [1]

Galaxy Number Density: 10 arcmin⁻² Current Data

SNR = 1.757 dB $P_{correlation} = 0.463$

Planar Weak lensing

C12

Super-resolution MAP estimation versus Kaiser-Squires for various settings [1]

Bayesian sampling versus optimisation [2,3]

Application to Abel 520 merging cluster observational data [1]

Spherical Weak Lensing

Simulated dark matter reconstruction on the celestial sphere. Note the fine detail recovered by our estimator which is missed by the current method [4]