

Spring Activity Week 28th of April – 2nd of May

UKRI AI Centre for Doctoral Training in Sustainable Understandable agri-food Systems Transformed by Artificial Intelligence (SUSTAIN)

1. Reinforce Computation Training for earlier Activity Weeks

2. Build Collaboration within Cohort (Group Activities)

3. Data Management Plan Training

	Mon	Tue	Wed	Thur	Fri
09:00 - 09:30		Focus Time:	Focus Time:	Focus Time:	Focus Time:
09:30 - 10:00		Hackathon	Hackathon	Hackathon	Hackathon
10:00 - 10:30	Welcome &	Hackathon		Hackathon	Hackathon
10:30 - 11:00	Hackathon	Drop-In Clinic	Student	Drop-In Clinic	Conclusion (1
11:00 - 11:30		Focus Time:	Presentations	Focus Time:	DMP QA
11:30 - 12:00		Hackathon		Hackathon	DIVIP QA
12:00 - 12:30	Lunch	Lunch	Lunch	Lunch	Lunch
12:30 - 13:00	Luncii	Lunch	Lunch	Lunch	Lunch
13:00 - 13:30					
13:30 - 14:00			Student	DMP Task	
14:00 - 14:30	Hackathon -	DAID Tools to a	Presentations	DIVIP I dSK	
14:30 - 15:00	Group Acitivty	DMP Training			
15:00 - 15:30					
15:30 - 16:00					

Hackathon

UKRI AI Centre for Doctoral Training in Sustainable Understandable agri-food Systems Transformed by Artificial Intelligence (SUSTAIN)

Conventional Inspection

- Manual, labour intensive process
- 1,000's of species
- Limited sampling; 200 seeds per bag

Dataset

- 8,640 rice seed kernels: 90 rice seed species and 96 kernels per
- Imaging systems:
 - Visible Near Infrared (VIS/NIR) Hyperspectral Imaging Device System (~385nm - ~1000nm) consisting of a Specim V10E Imaging Spectrograph and Hamamatsu ORCA-05G CCD camera.
 - RGB Fujifilm X-M1 with a 35mm/F2.0, ISO 400.

https://doi.org/10.5281/zenodo.3241922

Dataset already on Maxwell; see repository for full path

Partial Dataset (~1GB): https://tinyurl.com/hsi-partial

Research Article: https://doi.org/10.1109/ACCESS.2020.2969847

Figure 2-1. High-energy visible (HEV) blue light ranges from 380 to 500 nm. The blue light rays that border UV (at 380 nm) have the highest energy.

RGB vs HSI

Push Broom Camera

Automatic Inspection

HSI Calibration

Imbalanced illumination

Correct sensor effects

HSI Calibration

Example Spectra

Dataset and Simple Notebook

https://github.com/SUSTAIN-CDT/rice-hsi-hackathon-2025

Partial Dataset (~1GB):

https://tinyurl.com/hsi-partial

Teams

Team A:

- Aura
- Lauren
- Alisa
- Jack

Team B:

- Athinoulla
- Dominik
- James
- Villanelle

Could you please come up with a name for your team?

- Explore the Dataset: Investigate the hyperspectral data to identify interesting patterns
- Develop a Model: Create an innovative approach to analyze or classify the rice seed varieties
- Visualize Results: Generate some visualizations that demonstrate your findings
- Prepare a Presentation: Document your methodology and results for Friday's presentation

- Code Repository: Well-documented code for your analysis and models
- Results Summary: Key findings and visualizations
- Presentation: A 15-minute presentation explaining your approach and discoveries
- Technical Documentation: Methods, challenges, and potential applications

- Innovation: Originality of approach and techniques
- Technical Merit: Effectiveness and sophistication of models/algorithms
- Insights: Quality and relevance of discoveries from the data
- Presentation: Clarity and engagement of the final presentation

Good Luck

