Défense d'APP Apprentissage machine

Jacty Milena Saenz Rosales – saej3101

Laurence Milette – mill3003

Anthony Royer – roya2019

Représentation

- Liste de plusieurs caractéristiques tel que:
 - RGB
 - HSV
 - Teinte (Hue)
 - Saturation
 - Détection de contours (Edge detection)
 - Détection de lignes
- 3 techniques choisis
 - **Teinte** (Hue)
 - Lignes verticales
 - Autres lignes (autres que verticales et horizontales)

Teinte - Plages

Teinte - Forêts

Processus de détection de lignes

Processus de détection de lignes

Visualisation des classes, des ellipses à distance 1σ et des frontières Plages 1.0 Forêts Villes 0.5 0.0 -0.5-1.0

-0.5

0.0

-1.0

0.5

1.0

Réprésentation

- Moyenne des valeurs maximales du Hue
- Lignes verticales
- Autres lignes

Prétraitement

- Ensemble de données
- Normalisation
- Essaies décorrélation (non idéale)

Classificateur Bayésien

Probabilité Gaussienne

Choix des hyperparamètres

Hyperparamètres	Valeurs
Modèle	gaussien
Matrice de coûts	$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$

Matrice de confusion

Classificateur Bayésien

Probabilité Gaussienne

Classificateur k-PPV

Choix des hyperparamètres

Hyperparamètres	Valeurs		
Nombre de voisins	5		
Nombre de représentants	17		

Matrice de confusion

Classificateur k-PPV

Représentants pour 5-PPV sur le 17-moy

- Plages
- Forêts
- Villes

Prédiction de 5-PPV, données originales

Classificateur Réseaux Neurones Artificielle (RNA)

Choix des hyperparamètres

Hyperparamètres	Valeurs	
Fonction d'activation	Tanh	
Nombre de couches	9	
Nombre de neurones	10	
Nombre d'épochs	1500	
Taux d'apprentissage	0,0002	
Calcul du <i>loss</i>	categorical	

Matrice de confusion

$$egin{bmatrix} 267 & 7 & 16 \ 4 & 269 & 17 \ 11 & 9 & 270 \end{bmatrix}$$

Prédiction du RNA, données originales

Classificateur Réseaux Neurones Artificielle

NN SimpleNN 9 layers cachées, 10 neurones par couche

- Plages
- Forêts
- Villes

Résultats

- Bon taux d'apprentissage
- Exactitude très proche de l'entrainement

Résultats

Type de Classificateur	Résultats (% d'erreur)	Matrice de confusion		
Bayésien	7-8%	[272 8 23	4 266 7	14 16 260
K-PPV/Moy	10-11%	[284 11 53	4 266 10	2 13 227
RNA	6-8%	[267 4 11	7 269 9	16 17 270

Images en erreurs:

Plages

- Vert/autres couleurs (violet/bleu)
- Les images ayant des gros reflets
- Certains couchés de soleil sombre

Forets

• Pâle ou foncé

Villes

• bleuté et vert

Conclusion

- Représentation : hue et lignes dans l'image
- Niveau cible au-dessus de 90%
- Recommandations
 - Utilisation d'ensemble de données différents (validation et entraînement)
 - Avoir plus de données
 - Implémenter un taux d'apprentissage adaptatif
 - Observer la performance sur plus de 3 classes


```
mirror_object
 peration == "MIRROR_X":
irror_mod.use_x = True
"Irror_mod.use_y = False
"Irror_mod.use_z = False
 _operation == "MIRROR_Y"
 lrror_mod.use_x = False
 irror_mod.use_y = True
 irror_mod.use_z = False
  operation == "MIRROR_Z";
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
  melection at the end -add
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modification
   irror ob.select = 0
 bpy.context.selected_obj
  lata.objects[one.name].sel
  int("please select exaction
      ODERATOR CLASSES ----
```

Présentation du Code