PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-318339

(43) Date of publication of application: 03.12.1993

(51)Int.CI.

5/00 B25J B25J 9/10

(21)Application number : **04**–**155915**

(71)Applicant: HONDA MOTOR CO LTD

(22)Date of filing:

22.05.1992

(72)Inventor: HASEGAWA TADAAKI

TAKENAKA TORU

(54) LOCUS FORMING METHOD AND ITS DEVICE FOR ROBOT LINKS

(57)Abstract:

PURPOSE: To correct a locus easily at real time by moving in parallel and/or rotating a co-ordinate system from the time when the top of a leg link departs from a floor by a proper amount in an actual space, and fixing the co-ordinate system again onto a landing floor. surface at the time when the top of the leg lands on the floor

CONSTITUTION: In a co-ordinate system, a locus which moves from a No.1 virtual floor surface to a No.2 virtual floor surface is set up beforehand. Next, the co-ordinate system is fixed on an departure floor surface until the time when the top of a leg link 2 departs from a floor. After the time when the top of the leg link 2 departs from the floor, the coordinate system is moved in parallel and/or rotated by a proper amount in an actual space. Then, at the time when the top of the leg lands on the floor, the co-ordinate system is fixed again onto the landing surface to form a locus from departure from the floor to landing on the floor.

LEGAL STATUS

[Date of request for examination]

27.10.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3273443

[Date of registration]

01.02.2002

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

FI

(11)特許出願公開番号

特開平5-318339

(43)公開日 平成5年(1993)12月3日

(51)Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

B 2 5 J

5/00

E 8611-3F

C 8611-3F

9/10

Α

審査請求 未請求 請求項の数5(全 11 頁)

(21)出願番号

特願平4-155915

(71)出願人 000005326

(22)出願日

平成4年(1992)5月22日

本田技研工業株式会社

東京都港区南青山二丁目1番1号

(72)発明者 長谷川 忠明

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(72) 発明者 竹中 透

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(74)代理人 弁理士 吉田 豊 (外1名)

(54)【発明の名称】 ロボットのリンクなどの軌道生成方法及び装置

(57)【要約】

【構成】 ある座標系内に固定されたある仮想床面から、同一の座標系内に固定されたもう一つの仮想床面へ移動する脚軌道を設定する。足平が離床するまでは前記座標系を離床面に固定しておき、足平が離床したら前記座標系を実空間で適当な量だけ連続的に並進及び回転させ、足平が着床したら前記座標系を着床面に固定して任意の点から任意の点への脚軌道を生成する。

【効果】 演算量を大幅に低減することができ、リアルタイムの軌道修正が容易となる。

【特許請求の範囲】

【請求項1】 ロボットのリンクなどの移動する対象物であって、空間内の任意のα点から任意のβ点に移動するものの軌道を生成する方法において、

a. 第1の座標系において前記軌道が持つ運動の拘束条件を含む軌道を予め設定し、

b. 次いで第2の座標系において前記第1の座標系を前 記α点からβ点に並進及び/又は回転させつつ移動させ て軌道を生成する、ことからなることを特徴とするロボ ットのリンクなどの軌道生成方法。

【請求項2】 前記第1の座標系の移動が障害物を回避 するのに必要な移動を含むことを特徴とする請求項1項 記載のロボットのリンクなどの軌道生成方法。

【請求項3】 前記第1の座標系及び/又は第2の座標系の移動をIIR形デジタルフィルタ出力を用いて求めると共に、そのデジタルフィルタのz平面における極配置を、移動が完了すべき時刻が到達する直前に消滅させる様に操作し、よって該デジタルフィルタ出力に基づいて前記第1の座標系の移動を求める様にしたことを特徴とする請求項1項または2項に記載のロボットのリンクなどの軌道生成方法。

【請求項4】 脚式移動ロボットの脚部リンクなどの移動する対象物であって、離床から着床に至る軌道を生成する方法において、

- a. ある座標系内において第1の仮想床面から第2の仮想床面に移動する軌道を予め設定し、
- b. 脚部リンク先端が離床する時刻までは前記座標系を 離床面に固定しておき、
- c. 脚部リンク先端が離床する時刻からは前記座標系を 実空間内で適当な量だけ並進及び/又は回転させ、
- d. 脚部先端が着床する時刻に前記座標系を再び着床面 に固定する、ことからなることを特徴とするロボットの リンクなどの軌道生成方法。

【請求項5】 ロボットのリンクなどの移動する対象物であって、空間内の任意の α点から任意の β点に移動するものの軌道を生成する装置において、

- a. 第1の座標系において前記軌道が持つ運動の拘束条件を含む軌道を生成する手段、
- b. 第2の座標系において前記第1の座標系を前記α点からβ点に移動させる移動手段、及び
- c. 前記第1の座標系内の軌道と第2の座標系内での移動量を重ね合わせて前記α点から前記β点に至る軌道を合成する合成手段、からなることを特徴とするロボットのリンクなどの軌道生成装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明はロボットのリンクなどの軌道生成方法及び装置に関し、より具体的には脚式移動ロボットの脚軌道など、床と脚部リンクの接触条件などの運動の拘束条件の変化する軌道を容易に生成する方 50

法及び装置に関する。

[0002]

【従来の技術】移動する物体で軌道を生成して制御するものは宇宙ロケットを始めとして種々存在するが、そのうちロボットに限っても固定型、移動型を含めて従来より様々なものが提案されており、更に移動型の脚式移動ロボットについても特開昭62-97005号、特開昭63-150176号公報記載のものなどが提案されている。

10 [0003]

【発明が解決しようとする課題】理解を容易にするため に2足歩行の脚式移動ロボットを例にとって説明する と、2足歩行ロボットでは2本の脚で自重を支持しつつ 交互に床面を蹴って移動することから、離床のときと着 床のときに拘束条件が変化する。即ち、図12に示す様 に、離床のときは爪先を中心に回転する様に脚軌道が拘 束され、着地のときはカカトを中心に回転する様に脚軌 道が拘束される。脚軌道を決定するには、例えば足関節 などの角度と位置とを決定しなければならない。図12 は足関節の位置(変位)を示すが、滑らかな軌道を生成 するには、変位、変位速度、変位加速度、角度、角速 度、角加速度とを決定しなければならない。従来は、そ の様な場合には6次の多項式を用いて空中での軌道を生 成していた。そのため、前記した様な着地時と離床時の 様に拘束条件が変化するときは、その間の軌道を滑らか につなげるため境界条件(境界値問題)を解かねばなら なかった。直進であって床面が水平である場合でも演算 量はかなりなものであるが、これが床面が傾いていたり すると演算量が急激に増加し、更に旋回するなどに至っ ては演算量が飛躍的に増加する。従って、従来技術にお いてはオフラインの大型コンピュータを用いて事前に演 算し、これを予め設定する様にしていた。そのため、設 定値で予期しない凹凸、傾斜、障害物に遭遇したとき、 リアルタイムに軌道を修正することができなかった。

【0004】従って、この発明の目的は上記した欠点を解消し、拘束条件が変化するときも境界条件を満足する軌道を容易に生成することができるようにしたロボットのリンクなどの軌道を生成する方法及び装置を提案することにある。

10 【0005】更には、リアルタイムな軌道修正なども容易にできる様にしたロボットのリンクなどの軌道を生成する方法及び装置を提供することを目的とする。

[0006]

【課題を解決するための手段】上記した課題を解決するためにこの発明は例えば請求項1項に示す如く、ロボットのリンクなどの移動する対象物であって、空間内の任意の α点から β 点に移動するものの軌道を生成する方法において、第1の座標系において前記軌道が持つ運動の拘束条件を含む軌道を予め設定し、次いで第2の座標系において前記第1の座標系を前記 α点から β 点に並進及

2

び/又は回転させつつ移動させて軌道を生成する様に構成した。

[0007]

【作用】第1の座標系の中で軌道を予め設定しておき、その第1の座標系を第2の座標系の中で移動させる様にしたことから、第1の座標系においては単純で代表的な軌道を設定しておけば良く、その拘束条件も極めて簡単なもので足りる。より具体的には、その第1の座標系を第2の座標系の中で最初静止させておき、次いで連続的に移動させて最終的に静止させるだけで良い。即ち、移動量や回転量も必要に応じて連続的に変化させるだけで良いことから、極端に少ない演算量で足りて構成を極めて簡易なものとすることができる。また、リアルタイムの軌道修正も容易に行うことができると共に、軌道上の障害物を回避する軌道もより直接的に求めることができる。

[0008]

【実施例】以下、脚式移動ロボットとして2足歩行のロボットを例にとってこの発明の実施例を説明する。図1はそのロボット1を全体的に示す説明スケルトン図であ 20り、左右それぞれの脚部リンク2に6個の関節を備える(理解の便宜のために各関節をそれを駆動する電動モータで示す)。該6個の関節は上から順に、腰の脚部回旋用の関節10R,10L(右側をR、左側をLとする。以下同じ)、腰のロール方向(x軸まわり)の関節12R,12L、同ピッチ方向(y軸まわり)の関節14R,14L、膝部のピッチ方向の関節16R,16L、足首部のピッチ方向の関節18R,18L、同ロール方向の関節20R,20Lとなっており、その下部には足平22R,22Lが取着されると共に、最上位には筐体 30(基体)24が設けられ、その内部には制御ユニット26が格納される。

【0009】上記において腰関節は関節10R(L), 12R(L), 14R(L)から構成され、また足関節 は、関節 18 R (L), 20 R (L) から構成される。 また、腰関節と膝関節との間は大腿リンク32R,32 Lで、膝関節と足関節との間は下腿リンク34R,34 Lで連結される。 ここで、 脚部リンク 2 は左右の足につ いてそれぞれ6つの自由度を与えられ、歩行中にこれら の6×2=12個の関節(軸)をそれぞれ適宜な角度に 40 駆動することで、足全体に所望の動きを与えることがで き、任意に3次元空間を歩行することができる様に構成 される。先に述べた様に、上記した関節は電動モータか らなり、更にはその出力を倍力する減速機などを備える が、その詳細は先に本出願人が提案した出願(特願平1 -324218号、特開平3-184782号) などに 述べられており、それ自体はこの発明の要旨とするとこ ろではないので、これ以上の説明は省略する。

【0010】図1に示すロボット1において、足首部に 滑らかに、具体的にはは公知の6軸力センサ36が設けられ、足平を介してロ 50 な脚軌道を生成する。

ボットに伝達される x, y, z方向の力成分 Fx, Fy, Fzとその方向まわりのモーメント成分 Mx, My, Mzとを測定し、足部の着地の有無と支持脚に加わる力の大きさと方向とを検出する。また足平22R (L)の四隅には静電容量型の接地スイッチ38(図1で図示省略)が設けられて、足平の接地の有無を検出する。更に、筐体24には傾斜センサ40が設置され、x-z平面内のz軸に対する傾きとその角速度、同様にy-z平面内のz軸に対する傾きとその角速度を検出する。また各関節の電動モータには、その回転量を検出する。また各関節の電動モータには、その回転量を検出するロータリエンコーダが設けられる。更に、図1では省

略するが、ロボット1の適宜な位置には傾斜センサ40

の出力を補正するための原点スイッチ42と、フェール

対策用のリミットスイッチ44が設けられる。これらの出力は前記した筐体24内の制御ユニット26に送られる。
【0011】図2は制御ユニット26の詳細を示すブロック図であり、マイクロ・コンピュータから構成される。そこにおいて傾斜センサ40などの出力はA/D変換器50でデジタル値に変換され、その出力はバス52を介してRAM54に送られる。また各電動モータに隣接して配置されるエンコーダの出力はカウンタ56を介してRAM54内に入力されると共に、接地スイッチ38などの出力は波形整形回路58を経て同様にRAM54内に投煙される。また格ではCRAM54内に入力されると共に、接地スイッチ38などの出力は波形整形回路58を経て同様にRAM54内に投煙される。

8などの出力は波形整形回路58を経て同様にRAM54内に格納される。制御ユニット内にはCPUからなる第1、第2の演算装置60,62が設けられており、第1の演算装置60はROM64に格納されているZMP軌道、基本脚軌道(後述)などを読み出して続いて述べる様に脚軌道などをリアルタイムに生成し、それから目標関節角度(関節駆動バターン)を算出してRAM54に送出する。また第2の演算装置62はRAM54からその目標値と検出された実測値とを読み出し、各関節の駆動に必要な制御値を算出してD/A変換器66とサーボアンプを介して各関節を駆動する電動モータに出力する。

【0012】続いて、この制御装置の動作を説明する。 図3はその動作を示す構造化フロー・チャート(PAD 図)である。尚、この発明は脚軌道の生成にあることか ら、以下の説明でもその点に焦点をおいて行う。

0 【0013】同図を参照して具体的に説明する前に、この制御を簡単に説明すると、先ず図4に示す様に基本脚軌道を予め生成しておく。

【0014】即ち、

- i) ある座標系内に固定された仮想床面Pを離床するまでの脚軌道を生成する。
- i i) もう一つの仮想床面Qに着床してからの脚軌道を生成する。
- i i i)上記のi)i i)をつなぎ、足首軌道が連続で滑らかに、具体的には加速度まで連続になる様な代表的な脚軌道を生成する。

【0015】具体的には、境界値問題を最も単純な手法 で回避するために、上記した基本脚軌道は図5に示す様 に予め生成しておく。即ち、

- 離床点(接地点、足平22R(L)の先端)を **i**) 拘束し、それを中心に水平角から最大足平角まで回転し て止まる脚軌道を生成する。
- ii) 足関節18R(L)を拘束し、それを中心に最 大足平角から最小足平角まで回転して止まる脚軌道を生 成する。
- i i i) 着地点(足平22R(L)の後端)を拘束し、 それを中心に最小足平角から水平角まで回転して止まる 脚軌道を生成する。

【0016】次いで、図6に示す様に、実空間内の離床 する前の足平接地面に仮想床面Pが一致する様に、前記 座標系の位置と方向を与える。そして、前記座標系を固 定したまま足平の蹴り動作を行う。

【0017】次いで、離床時刻から着床時刻までに、実 空間での着床すべき接地面に仮想床面Qが一致する様 に、前記座標系の位置と方向を徐々に変化させる。また 避けるべき障害物がある場合には、並進移動量に回避量 20 を重ね合わせることによって障害物を回避する。尚、離 床時刻は、基本脚軌道における足平の蹴り動作の途中に 設定されていても良い。蹴り動作の途中であっても、前 記座標系を上方向に移動させれば離床するので、それに よって一層滑らかな歩容を得ることができる。

【0018】次いで、足平が着床したら、前記座標系を 実空間に固定し、足平のならい動作を行う。即ち、着地 時の衝撃を緩和するために足平22R(L)を床面に良 く倣わせて着地させる。

【0019】上記を図3フロー・チャートを参照して説 30 【0023】 明すると、先ずS10において前記した様に基本脚軌道×

*を生成し、S12に進んで時刻 t を0 からendに設定 する。図7にそのタイミング・チャートを示す。続いて S14に進んで時刻 t が離床時刻を超えて着床時刻前、 即ち、足平22R(L)が床面を離れた状態にあるか否 か判断し、肯定されるときはS16に進んで時刻に応じ て移動座標系の移動量を図7に示す特性に基づいて算出 する。このとき、例えばロボット1を旋回させる必要が あるときは、移動座標系そのものを旋回させることで実 現する。尚、否定されるときはS18に進んで移動座標 10 系を固定しておく。続いて、S20に進んで脚軌道を図 示の様に算出する。尚、S10において時刻tがend を超えたときはプログラムを終了する。

6

【0020】上記で、S16に示す移動座標系の移動量 の算出は、図7に示す様な特性を予めないしはリアルタ イムに設定して行うが、この設定は多項式などを用いて も良く、また変位(移動量)のみを連続させても良く、 更に速度ないしは一層滑らかな軌道を実現する意味で加 速度をも連続させても良い。ことでは本発明者の一人が 案出した有限時間整定関数発生器を用いて決定する例を 次に示す。

【0021】図8のその有限時間整定関数発生器を、特 にその入出力特性を中心に示す説明図である。関数発生 器は、公知のIIR形のデジタルフィルタ100よりな る。そこにおいて図示の如くフィルタ100には、初期 時刻tO(離床時刻)においてステップ状に最終目標値 (座標系の移動量の) に変化する入力を与える。

【0022】 ここで図8に示す構成を差分方程式で表現 すると、数1の様になる。尚、z平面上の極をrで示

【数1】

= r * x 1 k 1 + (1 - r) * u kx 1 kx 2 k = r * x 2 k-1 + (1-r) * x 1 k-r * y k + (1-r) * x2 ky k

【0024】極rは初期値が1より小さい値であり、図 9に示す様に指定到達時刻 t e (着床時刻) に近づくに つれて減少し、指定到達時刻 t e に消滅する様に数2 に※

※示す式の様に設定する。

[0025]

【数2】

$$r = \frac{n' - \frac{n'}{n} k}{n' - \frac{n'}{n} k+1} \qquad (1 \le k \le n)$$

$$r = 0 \qquad (k > n)$$

【0026】数2の式の中のnは、初期時刻t0から指 定到達時刻 t e までのステップ数(即ち、(指定到達時 刻te-初期時刻t0)/刻み時間)を表す。またnダ ッシュは、非負の定数である。

【0027】上記を図10PAD図を参照して説明する 50 マ割り込みを待機し、タイマ割り込みがあったときはS

と、S100においてx0などに適宜な初期値を設定 し、S102に進んで数2の式のkを1からnまで1ず つ増加させながらS104以降を繰り返す。即ち、先ず S104に進んで前記した刻み時間ごとに発生するタイ

106に進んで数2の式からrを求める。次いでS10 8に進んで数1の式のxkに最終目標値を代入し、S1 10に進んで図示の式から出力ykを求める。との様な 処理をS104でタイマ割り込みがなされる度に繰り返 す。この様に、1/(1-r)の値が図8下部で示す如 く指定到達時刻teに向けて徐々に減少する様に極rの 値を1付近から0に向けて変化させることから、換言す ればIIR形から出発してFIR形のデジタルフィルタ に変形させることから、指定到達時刻 te (nステップ 目) において目標値(最終到達値)に整定する滑らかな 10 出力を得ることができる。図11にその出力をアナログ 波形で示すが、図示の如く移動量が指定到達時刻に整定 すると共に、その1次微分値(変位速度)と2次微分値 (変位加速度)までもその時刻に零に整定する滑らかな 出力を容易に得ることができる。この利点は、従来の通 常のフィルタを3段接続したものからは得ることができ ないものである。

【0028】この実施例においては、この様な座標系を 並進・回転変換する手法を用いて軌道を生成する様にし たので、任意の離床点から任意の着地点への滑らかで連 20 続な脚(足先)軌道が、境界条件や拘束条件などの複雑 な制約にも関わらず、極端に少ない演算量で生成でき る。即ち、図4、図6に示す様に、ある座標系で代表的 な脚軌道を基本脚軌道として生成しておき、その座標系 を拘束条件が存在しない遊脚時に移動する様にしたの で、拘束条件を非常に簡易なものに設定することができ る。即ち、変位(位置)、変位速度、変位加速度、角 度、角速度、角加速度まで連続にしようとしたときの境 界条件を簡易なものにすることができる。特に移動量や 現が容易である。また、床面との干渉を避けるために は、その方向に単純に移動量を足し込めば良い。更にま た、上記構成においては座標移動量をx,y,z方向の それぞれについて別々に求め、その後で合成すれば良 い。従って演算量は一層低減する。その結果、予期しな い凹凸や傾斜などに遭遇したときもリアルタイムに軌道 を修正することができ、また軌道上の障害物を回避する 軌道をより直接的に求めることができる。尚、上記は座 標移動量を多項式を用いて求める場合でも同じであっ て、そのときでも多項式の演算量が激減するので、リア 40 ルタイムに軌道修正を容易に行うことができる。

【0029】また実施例においては平坦路を直進ないし は旋回する例を示したが、階段を昇降するときもこの手 法を用いれば容易に軌道を生成することができる。

【0030】また上記において足関節に制御を行う例を 示したが、それに限られるものではなく、膝関節ないし はその上方の関節についても同様である。

【0031】また上記において、ZMP軌道など歩行デ ータの一部を予め設定しておく場合に適用する例を示し たが、それに限られるものではなく、歩行のとき制御値 を全くリアルタイムに求める様にした技術に適用させて も良い。

【0032】また上記において、2足歩行の脚式移動口 ボットを例にとって説明してきたが、それに限られるも のではなく、3足以上の脚式移動ロボットにも、また車 輪型、クローラ型などの他の形態の移動ロボットにも、 更には据え付け型のロボットにも、更にはロボットに限 らず、移動する物体であって軌道を生成するものには全 て妥当するものである。

[0033]

【発明の効果】請求項1項にあっては、ロボットのリン クなどの移動する対象物であって、空間内の任意のα点 から任意のβ点に移動するものの軌道を生成する方法に おいて、第1の座標系において前記軌道が持つ運動の拘 束条件を含む軌道を予め生成し、次いで第2の座標系に おいて前記第1の座標系を前記α点からβ点に並進及び /又は回転させつつ移動させて軌道を生成する様に構成 したことから、複雑な制約条件があっても、演算量を大 幅に減少させることができ、リアルタイムの軌道修正を 容易に行うことができる。

【0034】請求項2項の方法にあっては、前記第1の 座標系の移動が障害物を回避するのに必要な移動を含む 様に構成したので、軌道上の障害物を回避する軌道をよ り直接的に求めることができる。

【0035】請求項3項の方法にあっては、前記第1の 座標系及び/又は第2の座標系の移動をIIR形のデジ タルフィルタ出力を用いて求めると共に、そのデジタル フィルタのZ平面における極配置を、移動が完了すべき 時刻が到達する直前に消滅させる様に操作し、よって該 回転量については高次の微分量が全て0で良いので、実 30 デジタルフィルタの出力に基づいて前記第1の座標系の 移動を求める様に構成したので、座標系の移動量をその 速度、加速度の連続性を満足しながら容易に求めること ができ、結果的に演算量を尚一層低減することができ る。

> 【0036】請求項4項の方法にあっては、脚式移動ロ ボットの脚部リンクなどの移動する対象物であって、離 床から着床に至る軌道を生成する方法において、ある座 標系内において第1の仮想床面から第2の仮想床面に移 動する軌道を予め設定し、脚部リンク先端が離床する時 刻までは前記座標系を離床面に固定しておき、脚部リン ク先端が離床する時刻からは前記座標系を実空間内で適 当な量だけ並進及び/又は回転させ、脚部先端が着床す る時刻に前記座標系を再び着床面に固定する様に構成し たので、任意の離床点から任意の着地点への滑らかで連 続的な脚軌道が、複雑な制約条件にも関わらず、極めて 少ない演算量で生成でき、予期せぬ凹凸、傾斜、障害物 に遭遇したときも、軌道をリアルタイムに容易に修正す ることができる。

【0037】請求項5項にあっては、ロボットのリンク 50 などの移動する対象物であって、空間内の任意のα点か

ら任意のβ点に移動するものの軌道を生成する装置において、第1の座標系において前記軌道が持つ運動の拘束条件を含む軌道を生成する手段、第2の座標系において前記第1の座標系を前記α点からβ点に移動させる移動手段、及び、前記第1の座標系内の軌道と前記第2の座標系内での移動量を重ね合わせて前記α点から前記β点に至る軌道を合成する合成手段からなる様に構成したので、複雑な制約条件を含むときも大幅に少ない演算量で軌道を生成することができ、リアルタイムの軌道修正を容易に行うことができる。

【図面の簡単な説明】

【図1】この発明に係るロボットのリンクなどの軌道生成方法及び装置の例としての2足歩行の脚式移動ロボットの歩行制御装置を全体的に示す概略図である。

【図2】図1に示す制御ユニットの説明ブロック図である。

【図3】図2に示す制御ユニットの動作を示す構造化フロー・チャートである。

【図4】図3フロー・チャートの基本脚軌道の生成を全体的に示す説明図である。

【図5】図4の基本脚軌道の生成を単純化した形で示す説明図である。

【図6】図3フロー・チャートの脚軌道の生成を示す説明図である。

【図7】図3フロー・チャートの時間に対する移動座標系の移動量の特性を示す説明タイミング・チャートである。

*【図8】移動座標系の移動量を決定する有限時間整定関数発生器の構成を示す説明図である。

【図9】図8に示す関数発生器の特性を変更する手法を z平面における極配置を通じて説明する説明図である。

【図10】図8に示す関数発生器の特性を変更をより具体的に説明するフロー・チャートである。

【図11】図8に示す関数発生器の出力をアナログ的に 示す波形図である。

【図12】離床時と着床時とにおける足関節の境界条件 10 を一般的に示す説明図である。

【符号の説明】

	1	脚式移動ロボット(2足歩行ロボ
	ット)	
	2	脚部リンク
	10R, 10L	脚部回旋用の関節
	12R, 12L	腰部のピッチ方向の関節
	14R, 14L	腰部のロール方向の関節
	16R, 16L	膝部のピッチ方向の関節
	18R, 18L	足首部のピッチ方向の関節
20	20R, 20L	足首部のロール方向の関節
	22R, 22L	足平
	2 4	筐体
	2 6	制御ユニット
	3 6	6軸力センサ
	100	有限時間整定関数発生器(IIR
	形デジタルフィルタ)	

[図4]

【図9】

【図1】 【図11】 傾斜センサ信号 .24 y 制御ユニット 【従来の3次フィルタ

【図2】

【図8】

[図12]

 $(x1,y1,z1)=\hat{f}(t1)$

(x2, y2, z2)=f(t2)

【図10】

