Chapitre 2 : La granitisation et sa relation avec le métamorphisme

Introduction:

Le granite et les roches granitiques constituent la majeure partie de la croûte continentale. Le granite est une roche plutonique issue d'un refroidissement lent d'un magma en profondeur, ce qui lui confère sa texture grenue à grands cristaux. Le granite est une roche très solide de couleur claire (gris, blanc, rose), on distingue : Un granite d'anatexie et un granite intrusif.

- Quelles sont les conditions de la formation des roches granitiques?
- Quelle est leur relation avec le métamorphisme?

I. Origine et mise en place du granite d'anatexie :

1. Les caractéristiques du granite d'anatexie :

On observe l'affleurement de grandes régions granitiques couvrant de très grandes surfaces. En s'éloignant du granite d'anatexie, on observe une succession de roches métamorphiques, avec une zone de transition constitué de **migmatite**.

Les migmatites présentent un mélange de granite et de gneiss.

2. Les caractéristiques du granite et des roches avoisinantes :

Nom de la roche	Gneiss	Migmatite	Granite
Lame mince	Mica (mi) Ouartz (q) Feldspath potassique(fp)	Plagioclase (pl)	
Etat à la formation	Solide	Solide + Liquide	Liquide
Structure	Foliée à minéraux orientés	Zone foliée et zone grenue	Grenue

- 1- Dégagez les caractéristiques de ces roches.
- 2- Proposez une hypothèse expliquant la relation entre les trois roches.
- 1- On observe que le migmatite, présente un mélange de granite et de gneiss : On y trouve une partie gneissique avec une alternance de lits sombres riches en micas noirs et de lits clairs (foliation) mais aussi des parties claires à texture grenue formées de quartz et de feldspaths similaire à la composition granitique.

2- Le granite et le gneiss possèdent la même composition minéralogique avec des structures différentes, on peut donc supposer que ces roches ont la même origine ; et que le granite est formé alors , sous des conditions de P et T extrêmes.

Les minéraux non orientés du granite témoignent du passage par un état liquide en passant du granite au gneiss, cad que la roche métamorphique (gneiss) subit une fusion partielle, sous des hautes P et T, et donne après refroidissement le granite, on appelle ce type de granite : Granite d'anatexie.

II. Origine du granite d'anatexie et sa relation avec les roches métamorphiques avoisinantes :

1. Conditions d'anatéxie :

L'anatexie est le processus par lequel les roches métamorphiques, soumises à une augmentation de pression et de température, fondent totalement ou partiellement. On peut mettre en évidence l'anatexie par l'expérience de soumettre une roche argileuse à une pression hydrostatique de 2 kbar et une température comprise entre 700 et 850°C, ce qui équivaut à une profondeur de 7 à 8 km. On observe alors, la formation d'un liquide issu de la fusion partielle, qui donne après refroidissement une roche granitique.

2. Origine des granites dans les chaines de collision:

En reliant les informations apportées par les 2 documents, expliquez les conditions d'anatexie dans les chaines de collision.

La collision entre deux plaques portant des continents amène des fragments de croûte continentale à des profondeurs de l'ordre de 50 à 70 km où elles subissent des conditions de pression et de température croissante (figure a).

Cet enfouissement est lié au raccourcissement et à l'épaississement de la croûte continentale qui forme une racine en profondeur avec des reliefs en surface. Les roches d'origine se transforment et deviennent des roches métamorphiques, aboutissant à la formation de gneiss (partie 1 de la courbe).

Sous l'effet de l'isostasie (Équilibre des différents segments de l'écorce terrestre) par poussée de l'asthénosphère, ces roches vont remonter vers la surface, la pression diminue mais la température reste élevée (partie 2 de la courbe).

Ces conditions conduisent à la fusion partielle et à la formation du magma anatectique (Figure b). Progressivement le magma refroidit sur place, une partie du magma reste liée au gneiss pour former la migmatite, et une autre partie forme du granite. Après l'érosion, ses roche affleurent en surface (partie 3 de la courbe).

Remarque: si le magma atteint la surface, il donne la rhyolite (roche volcanique).

III. Origine et mise en place du granite intrusif :

1. Les caractéristiques du granite intrusif :

Echantillon de la cornéenne : roche métamorphique de contact

Enclave de la cornéenne dans le granite

- 1- Déterminer les caractéristiques du granite intrusif à partir du doc 1.
- 2- Analyser les résultats du tableau. Que peut-on conclure ?
- 3- Expliquer la présence d'enclaves de la cornéenne dans le granite.
- 4- Donner une définition au granite intrusif.
- 1- Le granite de Zaër est un pluton intrusif dans les terrains sédimentaires qui l'entourent. Autour du granite, l'intrusion a provoqué le développement d'une large auréole de métamorphisme de contact dans les terrains sédimentaires.
- 2- En s'approchant du granite intrusif on observe :
 - L'absence de l'orientation des minéraux.
 - Augmentations de la taille des cristaux.
 - Disparition de certains minéraux caractéristiques de faible métamorphisme (comme la sericite) et apparition de minéraux caractéristiques de fort métamorphisme et haute température (comme l'andalousite).

On peut conclure que lors de la mise en place des plutons granitiques, les roches encaissantes (sédimentaires) sont soumises à une élévation de température qui a affecté leur structure.

- 3- On observe dans le granite d'intrusion des enclaves. Ce sont des inclusion, que l'on interprète comme étant des fragments du manteau ou de la croûte profonde, arrachés et emportés vers la surface par la montée du magma. Exemples : Enclave de roche encaissante (schiste, calcaire, ou autre) dans un granite en bordure d'un massif intrusif.
- 4- Le granite intrusif ce distingue du granite d'anatexie par son étendu moins large, il est généralement sous forme d'un massif. Autour de ce massif, se développe une bande limitée de roches métamorphique formant une auréole de métamorphisme de contact.

2. Conclusion:

Le granite intrusif se met en place suite à la migration vers la surface d'un magma sous formes d'intrusions qui traversent les couches encaissantes (sédimentaires) et donnent, après refroidissement, le granite intrusif. Lors de la mise en place des plutons granitiques, les roches encaissantes sont soumises à une élévation de température qui affecte leur structure. Ce type de métamorphisme de basse pression et haute température et appelé métamorphisme de contact.

IV. Comparaison entre le granite d'anatexie et le granite intrusif :

	Granite d'anatexie	Granite intrusif
Surface	Large surface	Surface limitée
Roches avoisinantes	Migmatites	Auréole de métamorphisme
Type de métamorphisme	Métamorphisme régional ou métamorphisme thermodynamique	Métamorphisme de contact ou métamorphisme thermique
Origine du granite	Magma issue de l'anatexie et qui se refroidit sur place.	Magma issue de l'anatexie, qui montent (par différence de densité) à travers les roches encaissantes donnant un granite intrusif.