What is claimed is

- A method for encrypting data according to an asymmetrical 1. method, based on a factorization problem, having a public key and a private key; the public key being the iteration number \boldsymbol{L} as well as the composite number n, n preferably being the product of a plurality of large prime numbers; the private key being made up of the factorization of n; the message $m = (m_1, m_2)$ to be encrypted being made up of at least the components m_1 and m_2 ; an encryption function f(x) being iterated a total of L times, with $c=(c_1,c_2)=f^L(m)$; $f(m) = (f_1(m), f_2(m))$ being applicable, and $f_1 = (m_1 o p_1 m_2) \mod n$ as well as $f_2 = (m_1, op_2m_2) \mod n$; op₁ preferably being an addition and op₂ preferably being a multiplication; the encryption function f(x) being selected in such a way that the encryption iteration can be reversed by the L-fold solution of a quadratic equation modulo n, it thereby being possible to retrieve the original message from the encrypted information c = (c1, c2).
- 2. The method as recited in Claim 1, wherein a multivaluedness of the quadratic equation is eliminated by additional bits of a_i und b_i .
- 3. The method as recited in Claim 2, wherein the multivaluedness of the quadratic equation is eliminated by calculating a parity and a Jacobi symbol which, particularly in the case of prime numbers of form 3 mod 4, can be communicated by 2 bits per iteration step.
- 4. The method as recited in one or more of the preceding claims, wherein general iterations $f_1=(k_1\bullet m_1+k_2\bullet m_2)\bmod n$ as well as $f_2=k_3\bullet m_1\bullet m_2\bmod n$ are used, the constants being part of the public key.

5. The method as recited in one or more of the preceding claims,

wherein the composite number n as public key contains more than two factors.

6. The method as recited in one or more of the preceding claims,

wherein the message is now made up of an N-tuple $m=(m_1...m_N)$, the formula for the Lth iteration step using dependencies of N values in each iteration step.

- 7. The method as recited in Claim 6, wherein the multivaluedness is resolved by additional bits that are derived from the values obtained in each iteration.
- 8. The method as recited in one or more of the preceding claims, wherein the multivaluedness is resolved by redundancy in the transmitted data.
- 9. A method for generating a signature, wherein a signature is generated by interchanging the encryption and decryption steps from the preceding method.
- 10. Software for a computer, wherein a method as recited in one or more of the preceding claims is implemented.
- 11. A data carrier for a computer, characterized by the storage of a software as recited in the preceding software claim.
- 12. A computer system, characterized by a device that allows the execution of a method as recited in one or more of the preceding method claims.