Matching and substituability

New MCS

Maxime Sylvestre

June 17, 2022

MEC June 22

Table of contents

- 1. Matching
- 2. Substituability And Exchangeability
- 3. Convergence towards the equilibrium

Matching

Issue

Given a set of agents $\mathcal X$ representing demand. And a set of agents $\mathcal Z$ representing offer. On may wonder how will these agents pair up at equilibrium. This raises two issues

- How to model this equilibrium in a reasonable manner?
- How to compute that equilibrium?

Example of use cases

- Job market [1]
- Taxi [2]
- Universities

Network of agents

Let \mathcal{X} (resp. \mathcal{Z}) the set of types of agents x (resp z). Let $n \in \mathbb{R}_+^{\mathcal{X}}$ (resp. $m \in \mathbb{R}_+^{\mathcal{Z}}$) the number of agent for each type in \mathcal{X} (resp. in \mathcal{Z}).

Definition

 $\mu \in \mathbb{R}_+^{\mathcal{X} \times \mathcal{Z}}$ is a matching if

$$\sum_{x} \mu_{xz} \le m_{z}, \quad \sum_{z} \mu_{xz} \le n_{x}$$

4

Modeling the equilibrium

When can a matching be considered stable?

Let $\alpha \in \mathbb{R}^{\mathcal{X} \times \mathcal{Z}}$, a utility vector, i.e. such that α_{xz} quantifies the utility for any agent of type x to pair up with an agent of type z.

Definition

 $G: \mathbb{R}^{\mathcal{X} \times \mathcal{Z}} \to \mathbb{R}$ is a Welfare Function if

$$\frac{\partial G}{\partial \alpha_{xz}}(\alpha) = \text{aggregate demand for } z \text{ from } x$$

Definition of an equilibrium

Let G (resp. H) be a welfare function for \mathcal{X} (resp. \mathcal{Z}). And α (resp. γ) a vector of utilites for agent of type x (resp. z).

Definition

A matching $\mu \in \mathbb{R}_+^{\mathcal{X} imes \mathcal{Z}}$ is an equilibrium if

$$\nabla G(\alpha) = \mu = \nabla H(\gamma)$$

That is demand equals supply.

Reaching an equilibrium

What is the mechanism used to reach an equilibrium?

- Money?
- Money burning?
- Transfers?

Wait and reach an equilibrium

Denote by $au_{xz}^{lpha} \in \mathbb{R}_+$ (resp. au_{xz}^{γ}) the time agents of type x have to wait in order to have access to agents of type z (resp. waiting time of z for x). The utilities are now $lpha - au^{lpha}$ and $\gamma - au^{\gamma}$ Why not $lpha - f(au^{lpha})$ with f weakly increasing?

Aggregate Stable Matching

Note that there cannot be a pair where money is being burned on both sides of the market, i.e., a passenger of type x waiting for a driver of type z while a driver of type z is simultaneously waiting for a passenger of type x. This implies $\min(\tau^{\alpha}, \tau^{\gamma}) = 0$.

Definition

 $\left(\mu, au^{lpha}, au^{\gamma}
ight) \in \mathbb{R}_{+}^{\mathcal{X} imes \mathcal{Z}}$ is an aggregate stable matching if

- $\nabla G(\alpha \tau^{\alpha}) = \mu = \nabla H(\gamma \tau^{\gamma})$
- $\min(\tau^{\alpha}, \tau^{\gamma}) = 0$

Construction of a welfare function

Let $\alpha \in \mathbb{R}^{\mathcal{X} \times \mathcal{Z}}$ the vector of utilities as usual. Assume a bit of uncertainty around the utility of each agent of a specific type x. This random shift in taste is represented by $(\epsilon_{xz})_z$ which is a random variable following the law \mathcal{P}_x .

Now look at the behaviour of the i-th agent of type x_0

$$\max_{z}(\alpha_{x_0z}+\epsilon_{x_0z},0)$$

However since the total number of agent N is large and the shifts in taste are independent.

$$\frac{1}{N}\sum_{i=1}^{n_{x_0}N}\max_{z}(\alpha_{x_0z}+\epsilon_{x_0z}^i,0)\approx n_{x_0}\mathbb{E}_{\mathcal{P}_{x_0}}\left[\max_{z}(\alpha_{x_0z}+\epsilon_{x_0z},0)\right]$$

DARUM

We obtain the following weighted indirect utility function

$$G(\alpha) = \sum_{x} n_{x} \mathbb{E}_{\mathcal{P}_{x}} \left[\max_{z} (\alpha_{xz} + \epsilon_{xz}, 0) \right]$$

Proposition

G is a welfare function

It may not be differentiable everywhere but since it is convex observe that

$$\left(n_{x}\mathcal{P}_{x}\left(\alpha_{xz}+\epsilon_{xz}\geq\max_{\bar{z}}(\alpha_{x\bar{z}}+\epsilon_{x\bar{z}},0)\right)\right)_{xz}\in\partial G(\alpha)$$

We notice that the term on the left is the vector of demand from agents of type x.

Note that G is submodular which will be key to prove the existence of an aggregate stable matching.

Logit case

If for all x the taste shifters $(\epsilon_{xz})_z$ are iid Gumbel variables then

$$G(\alpha) = \sum_{x} n_{x} \log \left(1 + \sum_{z} \exp(\alpha_{xz})\right)$$

And the demand for each coupling xz is

$$\frac{\partial G}{\partial \alpha_{xz}} = \frac{n_x \exp(\alpha_{xz})}{1 + \sum_{z'} \exp(\alpha_{xz'})}$$

Deferred acceptance algorithm

The proof of existence of an aggregate stable matching relies on an explicit construction given by the following algorithm:

- **Step 0** Initialize $\mu^{A,0} = \min(n, m)$
- Step k Three phases

Proposal phase

$$\mu^{\alpha,k} \in \mathop{\mathrm{arg\,max}}_{\mu^{\gamma,k-1} \leq \mu \leq \mu^{A,k}} \mu \alpha - \mathsf{G}^*(\mu)$$

Disposal phase

$$\mu^{\gamma,k} \in \operatorname*{arg\,max}_{\mu < \mu^{\alpha,k}} \mu \gamma - H^*(\mu)$$

Update phase

$$\mu^{A,k+1} = \mu^{A,k} - (\mu^{\alpha,k} - \mu^{\gamma,k})$$

Substituability And

Exchangeability

Old MCS

In the indivisible goods case ([3]) we have for c submodular the set of optimal bundles

$$Q(p,B) \in \arg \max_{Q \subseteq B} \left\{ p(Q) - c(Q) \right\},$$

satisfies this monotony property

$$R(p,B) = B \setminus Q(p,B)$$
 increases with B

New MCS

The question we need to answer is the following. How does the following expression behaves as $(\alpha, \bar{\mu})$ increases.

$$r(\alpha, \bar{\mu}) = \bar{\mu} - \arg\max_{\mu \le \bar{\mu}} \mu \alpha - G^*(\mu)$$

Where G is a convex submodular function. Two things have changed compared to old MCS:

- Goods are divisible, thus the space is continuous
- The function is not submodular but it is the Legendre transform of a submodular function

Link with Topkis

In the case of a convex submodular function G, [6], allows us to describe the behaviour of

$$\arg\max_{\alpha}\mu\alpha-G(\alpha)$$

It is increasing with regard to the following order ([4]):

Definition

We say that a set S is smaller than S' in the Veinott order, $S \leq_p S'$, if:

$$\forall p \in S, \forall p' \in S', p \land p' \in S, p \lor p' \in S'$$

Towards an order on functions

Veinott's order can be seen as an order on the indicator functions of the sets.

Definition

We say that ϕ is smaller than ϕ' in the *p*-order, $\phi \leq_p \phi'$, if

$$\forall p \in \mathsf{dom}\phi, \forall p' \in \mathsf{dom}\phi'$$
$$\phi(p \land p') + \phi'(p \lor p') \le \phi(p) + \phi'(p')$$

Notice that $S \leq_{p} S'$ is equivalent to $\iota_{S} \leq_{p} \iota_{S'}$

Dual order on functions

As we've seen before, G^* is not submodular but G is. This nudges us towards the definition of a dual order.

Definition

We say that ϕ is smaller than ϕ' in the q-order, $\phi \leq_q \phi'$, if

$$\forall q \in \text{dom}(\phi), q' \in \text{dom}(\phi'), \forall \delta_1 \in [0, (x - y)^+], \exists \delta_2 \in [0, (x - y)^-]$$
$$\phi(q - (\delta_1 - \delta_2)) + \phi'(q' + (\delta_1 - \delta_2)) \le \phi(q) + \phi'(q')$$

Key MCS

We are now ready to state this key theorem

Theorem

Each of these assertions are equivalent whenever c is a convex sci proper function

- 1. c is exchangeable, that is $c \leq_q c$,
- 2. c^* is submodular, that is $c^* \leq_p c^*$,
- 3. if $p \leq p'$ then $\pi_{\{p=p'\}}r(p,\bar{q}) \leq_q \pi_{\{p=p'\}}r(p,\bar{q})$ for all \bar{q} .

Moreover any of the property above imply: if $\bar{q} \leq \bar{q}'$ then $r(p,\bar{q}) \leq_q r(p,\bar{q}')$.

Idea for $1 \iff 2$

The whole proof relies on the following sequence of (approximative) equivalences

1.

$$c \leq_q c$$

2.

$$\forall x,y \in \mathsf{dom}(c)$$

$$\sup_{\delta_1 \in [0,(x-y)^+]} \inf_{\delta_2 \in [0,(x-y)^-]} c(x-\delta_1+\delta_2) + c(y+\delta_1-\delta_2) \le f(x) + g(y)$$

3.

$$\forall x, y \in \mathsf{dom}(c)$$

$$\sup_{\lambda \in \mathbb{R}^d} \mu(x+y) + \lambda^+ x - \lambda^- y - c^*(\mu + \lambda) - c^*(\mu) \le c(x) + c(y)$$

$$\mu \in \mathbb{R}^d$$

4. By taking $\lambda = d_f - d_g$ and $\mu = \alpha + d_g$

$$c^* \leq_{p} c^*$$

Convergence towards the equilibrium

Hypothesis

Let G, H two welfare functions, α, γ the initial utility vectors.

Theorem

Suppose that G, H are submodular, convex, proper, closed, sci functions such that min G, min $H > -\infty$. Then there exists an aggregate stable matching $(\mu, \tau^{\alpha}, \tau^{\gamma})$.

We deduce that in DARUM there exists an aggregate stable matching.

Corollary

For any collection of distribution $(\mathcal{P}_x)_x, (\mathcal{Q}_z)_z$. For any utility vectors α, γ . There exists an aggregate stable matching if

$$G(\alpha) = \sum_{x} n_{x} \mathbb{E}_{\mathcal{P}_{x}} \left[\max_{z} (\alpha_{xz} + \epsilon_{xz}, 0) \right]$$

$$H(\gamma) = \sum_{z} m_{z} \mathbb{E}_{\mathcal{Q}_{z}} \left[\max_{x} (\gamma_{xz} + \eta_{xz}, 0) \right]$$

3+1 steps proof

Lemma

For all $k \ge 0$ we have

$$\mu^{\alpha,k} \in \operatorname*{arg\,max}_{\mu \leq \mu^{A,k}} \mu \alpha - \mathcal{G}^*(\mu)$$

Lemma

For any $\mu \in \operatorname{arg\,max}_{\mu \leq \bar{\mu}} \mu \gamma - H^*(\mu)$

$$T^H(\gamma,\bar{\mu}) = \operatorname*{arg\,min}_{\tau \geq 0} \bar{\mu}\tau + H(\gamma - \tau) = (\gamma - \partial H^*(\mu)) \cap \{. \geq 0\} \cap \{.^\top(\bar{\mu} - \mu) = 0\}$$

Lemma

Set
$$\tau^{\alpha,k} = \inf T^{G}(\alpha, \mu^{A,k})$$
 and $\tau^{\gamma,k} = \inf T^{H}(\gamma, \mu^{\alpha,k})$. $(\tau^{\alpha,k})_k$ is weakly increasing, $(\tau^{\gamma,k})$ is weakly decreasing.

Last step

Lemma

$$(\mu^{A,k}), (\mu^{\alpha,k}), (\mu^{\gamma,k}), (\tau^{\alpha,k}), (\tau^{\gamma,k})$$
 converge up to an extraction.

Moreover let

$$\lim \mu^{\alpha,k} = \mu = \lim \mu^{\gamma,k}$$

And

$$\lim \tau^{\alpha,k} = \tau^{\alpha}, \qquad \tau^{\gamma,k} = \tau^{\gamma} \tag{1}$$

We have that $(\mu, \tau^{\alpha}, \tau^{\gamma})$ is an aggregate stable matching

First step

Proof.

It is clear for k = 0. If it is true for $k \ge 0$ we have that

$$\mu^{A,k+1} - \operatorname*{arg\;max}_{\mu \leq \mu^{A,k+1}} \mu \alpha - G^*(\mu) \leq_Q \mu^{A,k} - \operatorname*{arg\;max}_{\mu \leq \mu^{A,k}} \mu \alpha - G^*(\mu)$$

by a classic result from Q-order theory there exists $\mu \in \arg\max_{\mu < \mu^{A,k+1}} \mu \alpha - G^*(\mu)$ such that

$$\mu^{\mathsf{A},k+1} - \mu \le \mu^{\mathsf{A},k} - \mu^{\alpha,k}$$

Thus

$$\mu^{\gamma,k} \le \mu$$

Second step

Proof.

 $\mu\in\arg\max_{\mu\leq\bar{\mu}}\mu\gamma-H^*(\mu)$ is a kuhn tucker vector for the minimisation problem thus

$$\min_{\tau \geq 0} \bar{\mu}^{\top} \gamma + H(\gamma - \tau) = \min_{\tau \geq 0} \bar{\mu}^{\top} \gamma + H(\gamma - \tau) - \tau^{\top} (\bar{\mu} - \mu)$$

Following the same steps as in the proof in [5]. For any $\tau \geq 0$ we have

$$\bar{\mu}^{\top} \gamma + H(\gamma - \tau) - \tau^{\top} (\bar{\mu} - \mu) \leq \bar{\mu}^{\top} \gamma + H(\gamma - \tau)$$

And thus if $\tau \in T^H(\gamma, \bar{\mu})$ we have that

$$au \in (\gamma - \partial H^*(\mu)) \cap \{. \ge 0\} \cap \{.^\top (\bar{\mu} - \mu) = 0\}$$

And conversely.

Third step

Proof.

 $(\mu^{A,k})$ is decreasing, by [4]

Thanks to the result before we notice that

$$\inf T^H(\gamma,\mu^{\alpha,k}) = \inf T^H(\gamma,\mu^{\gamma,k})$$

Since $\mu^{\gamma,k} \leq \mu^{\alpha,k+1}$ we have that

$$T^H(\gamma, \mu^{\alpha,k+1}) \leq_p T^H(\gamma, \mu^{\gamma,k})$$

and thus $\tau^{T,k+1} \leq \tau^{T,k}$

Final step (1/4)

Proof.

 $(\mu^{A,k})$ is decreasing bounded from below by 0 thus it converges to μ^A . $(\tau^{\alpha,k})$, $(\tau^{\gamma,k})$ are in a compact and are monotone so they converge. Since $(\mu^{\alpha,k})$ lies in a compact up to an extraction it converges to μ since $\mu^{\alpha,k}-\mu^{\gamma,k}=\mu^{A,k}-\mu^{A,k+1}\to 0$ we have the first equation.

27

Final step (2/4)

(Cont.) Notice that

$$\begin{aligned} \min_{\tau \geq 0} \mu^{A,k} \tau + G(\alpha - \tau) &= \mu^{A,k} \tau^{\alpha,k} + G(\alpha - \tau^{\alpha,k}) \to \mu^{A} \tau^{\alpha} + G(\alpha - \tau^{\alpha}) \\ \min_{\tau \geq 0} \mu^{A,k} \tau + G(\alpha - \tau) &\to \min_{\tau \geq 0} \mu^{A} \tau + G(\alpha - \tau) \end{aligned}$$

Thus $\tau^{\alpha} \in T^{G}(\alpha, \mu^{A})$ similarly $\tau^{\gamma} \in T^{H}(\gamma, \mu)$. We also have that

$$\mu \in \operatorname*{arg\,max}_{\mu \leq \mu^{A}} \mu \alpha - \mathcal{G}^{*}(\mu), \quad \mu \in \operatorname*{arg\,max}_{\mu \leq \mu} \mu \alpha - \mathcal{G}^{*}(\mu)$$

Since μ is a kuhn tucker vector for the two dual problems we have that

$$\partial H(\gamma - \tau^{\gamma}) \ni \mu \in \partial G(\alpha - \tau^{\alpha})$$

Final step (3/4)

(Cont.)

Let $(x,z) \in \mathcal{X} \times \mathcal{Z}$ such that $\tau_{xz}^{\alpha}, \tau_{xz}^{\gamma} > 0$, since $(\tau^{\gamma,k})_k$ is weakly decreasing

$$\forall k \geq 0, \tau_{xy}^{,k} > 0$$

Thus by duality

$$\forall k \geq 0, \mu_{xz}^{\alpha,k} = \mu_{xz}^{\gamma,k}$$

Thus by going to the limit we have $\mu_{xz}^A = \mu_{xz}^{A,0} = \min(n_x, m_z)$. Since $\tau_{xz}^\alpha > 0$ we have once again by duality $\mu_{xz}^A = \mu_{xz}$. However since μ is a kuhn-tucker vector

$$T^{G}(\alpha, \mu^{A}) = \alpha - \partial G^{*}(\mu) \cap \{\tau \ge 0\} \cap \{(\mu^{A} - \mu)\tau = 0\}$$
$$T^{H}(\gamma, \mu) = \gamma - \partial H^{*}(\mu) \cap \{\tau \ge 0\}$$

Final step (4/4)

(Cont.)

Wlog suppose that $\min(n_x, m_z) = m_z$, we can now show that it is absurd that $\tau_{xz}^{\gamma} > 0$.f Let $\Delta = \tau_{xz}^{\gamma} e_{xz}$ and $\tilde{\mu} \in \text{dom} H^*$,

$$\mu(\gamma - (\tau^{\gamma} - \Delta)) - H^{*}(\mu) = H(\gamma - \tau^{\gamma}) + \mu_{xz} \Delta_{xz}$$

$$\geq \tilde{\mu}(\gamma - \tau^{\gamma}) - H^{*}(\tilde{\mu}) + m_{z} \Delta_{xz}$$

$$\geq \tilde{\mu}(\gamma - (\tau^{\gamma} - \Delta)) - H^{*}(\tilde{\mu})$$

thus $\tau^{\gamma} - \Delta \in \partial H(\mu)$ the other two conditions follow by construction. We finally have $\tau^{\gamma} - \Delta \in T^H(\gamma, \mu)$ however $\tau^{\gamma} - \Delta < \tau^{\gamma} = \inf T^H(\gamma, \mu)$ which is absurd. Finally $\min(\tau^{\alpha}, \tau^{\gamma}) = 0$

Refinements

- ullet Really slow converging algorithm o Hybrid approach
- Instead of having $\alpha \tau \to \text{can}$ the impact of "time" be of the form $\alpha f(\tau)$?
- Is there a way to compute the equilibrium directly?

References

P. Corblet.

Education expansion, sorting, and the decreasing wage premium, 2022.

A. Galichon, Y.-W. Hsieh, and M. Sylvestre.

Characterization of gross substituability: a deferred acceptance algoritm, 2022.

J. W. Hatfield and P. R. Milgrom.

Matching with contracts.

American Economic Review, 95(4):913-935, September 2005.

P. Milgrom and C. Shannon.

Monotone comparative statics.

Econometrica, 62(1):157-180, 1994.

R. T. Rockafellar.

Convex analysis, volume 18.

Princeton university press, 1970.

Topkic