Чисельні методи Лабораторна робота №1 Варіант №5

Демедюк Віталій 28 лютого 2021 р.

Зміст

Зад	цача №1	3
1.1	Умова	. 3
1.2	Теоретичні відомості	. 3
1.3		
1.4	Необхідні обчислення	4
1.5	Результат роботи програми	. 5
Зад	цача №2	7
2.1	Умова	. 7
2.2	Теоретичні відомості	. 7
2.3	Графік функції	. 7
2.4	Необхідні обчислення	. 7
2.5	Результат роботи програми	8
Зад	дача №3	10
3.1	Умова	10
3.2		
3.3		
3.4		
3.5		
	1.1 1.2 1.3 1.4 1.5 3az 2.1 2.2 2.3 2.4 2.5 3az 3.1 3.2 3.3	1.2 Теоретичні відомості 1.3 Графік функції 1.4 Необхідні обчислення 1.5 Результат роботи програми Задача №2 2.1 Умова 2.2 Теоретичні відомості 2.3 Графік функції 2.4 Необхідні обчислення 2.5 Результат роботи програми Задача №3 3.1 Умова 3.2 Теоретичні відомості 3.3 Графік функції 3.4 Необхідні обчислення

Задача №1 1

Умова 1.1

Знайти мінімальний від'ємний розв'язок $x^3-6x^2+5x+12=0$ методом релаксації.

1.2 Теоретичні відомості

Якщо в методі простої ітерації вибрати $\Psi(x) = \tau = const$, то ми отримаємо метод релаксації, формула якого має вигляд $x_{n+1} = x_n +$ $\tau f(x_n), n = 0, 1, 2, \cdots$

Цей метод збігається, якщо $-2 < \tau f'(x) < 0$.

Якщо в якомусь околі кореня виконуються умови f'(x) < 0,

 $0 < m_1 < |f'(x)| < M_1$, то метод релаксації збігається для $\tau \epsilon \left(0; \frac{2}{M_1}\right)$. Збіжність найкраща за умови:

$$\tau = \tau_{\text{oht}} = \frac{2}{m_1 + M_1}$$

3 такого вибору au для похибки $z_n=x_n-x^*$ правдива оцінка $|z_n|< q^n|z_0|, n=0,1,2,\cdots$, де $q=rac{M_1-m_1}{M_1+m_1}$. Кількість ітерацій, які потрібно виконати для відшукання розв'язку

з точністю ε , можна визначити з нерівності:

$$n \geqslant \left[\frac{\ln\left(\frac{|z_0|}{\varepsilon}\right)}{\ln\left(\frac{1}{q}\right)}\right] + 1$$

Якщо виконується умова f'(x) > 0, то формулу ітераційного методу потрібно записати у вигляді $x_{n+1} = x_n - \tau f(x_n)$

1.3 Графік функції

1.4 Необхідні обчислення

$$f'(x) = (x^3 - 6x^2 + 5x + 12)' = 3x^2 - 12x + 5$$

На графіку функції f(x) бачимо, що рівняння має 3 розв'язки. Перший в околі (-2,0), другий в околі (2,3.5) та третій в околі (3.6,5).

Перший корінь: в околі (-2,0) f'(x)>0 та 0<5<|f'(x)|<41. За формулою:

$$\tau = au_{\text{oht}} = -\frac{2}{5+41} = -\frac{2}{46} \approx -0.043$$

. Виберемо $x_0 = 0$.

Другий корінь: в околі (2,3.5) f'(x)<0 та 0<0.25<|f'(x)|<7. За формулою:

$$\tau = \tau_{\text{oht}} = \frac{2}{0.25 + 7} = \frac{2}{7.25} \approx 0.28$$

. Виберемо $x_0 = 2$.

Третій корінь: в околі (3.6, 5) f'(x) > 0 та 0 < 0.68 < |f'(x)| < 20. За формулою:

$$\tau = au_{\text{ont}} = -\frac{2}{0.68 + 20} = -\frac{2}{20.68} \approx -0.097$$

. Виберемо $x_0 = 5$.

1.5 Результат роботи програми

Вивід програми:

```
x*0 = -1
x*1 = 3
x*2 = 4
Min negative solution: -1
```

Лог-файл:

```
_{1} x0 = 0
_{2} x1 = -0.516000
_3 x2 = -0.846458
_4 x3 = -0.969536
5 \times 4 = -0.995377
_{6} x5 = -0.999345
7 \times 6 = -0.999908
  x7 = -0.999987
  x8 = -0.999998
  x9 = -1.000000
  x10 = -1.000000
  x0 = 2.000000
x1 = 3.680000
  x2 = 3.394857
  x3 = 3.100821
x4 = 2.996727
  x5 = 3.000402
  x6 = 2.999952
  x7 = 3.000006
x8 = 2.999999
  x9 = 3.000000
  -----
x0 = 5.000000
  x1 = 3.836000
x2 = 3.900314
x3 = 3.942975
x4 = 3.968757
  x5 = 3.983345
x6 = 3.991262
x7 = 3.995455
```

- $_{32}$ x8 = 3.997647
- x9 = 3.998785
- x10 = 3.999374
- 35 x11 = 3.999677
- x_{36} $x_{12} = 3.999834$
- x13 = 3.999914
- $38 \times 14 = 3.999956$
- 39 x15 = 3.999977
- $_{40}$ x16 = 3.999988
- x17 = 3.999994
- $x_{18} = 3.999997$
- x19 = 3.999998
- x20 = 3.999999
- x21 = 4.000000
- x22 = 4.000000
- x23 = 4.000000

2 Задача №2

2.1 Умова

Знайти максимальний додатний розв'язок $x^3 + 3x^2 - x - 3 = 0$ методом Ньютона

2.2 Теоретичні відомості

Метод Ньютона застосовують для розв'язання задачі f(x) = 0 із неперервно диференційованою функцією f(x). Спочатку вибирають початкове наближення x_0 , а наступні наближення обчислюють за формулою:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n = 0, 1, 2, \dots, f'(x_n) \neq 0$$

Якщо $f(x)\epsilon C^2[a;b]$, f(a)f(b) < 0, а f''(x) не змінює знак на [a;b], то для $x_0\epsilon[a;b]$, що задовільняє умові $f(x_0)f''(x_0) > 0$, можна методом Ньютона обчислити єдиний корінь рівняння із будь-яким степенем точності.

2.3 Графік функції

2.4 Необхідні обчислення

Знайдемо першу і другу похідну f(x):

$$f'(x) = 3x^2 + 6x - 1$$
$$f''(x) = 6x + 6$$

На графіку функції f(x) бачимо, що рівняння має 3 розв'язки. Перший на проміжку [-4; -2], другий на проміжку [-2; 0] та третій в проміжку [0; 3].

Перший проміжок: $[a;b]=[-4;-2], f(x)\epsilon C^2[-4;-2], f(-4)f(-2)<0,$ та f''(x) не змінює знак на [-4;-2]. Виберемо $x_0=-3.5, x_0\epsilon[-4;-2]$ та $f(x_0)f''(x_0)>0,$ отже методом Ньютона можна обчислити єдиниий корінь рівняння.

Другий проміжок: $[a;b]=[-2;0],\ f(x)\epsilon C^2[-2;0], f(-2)f(0)<0,\ {\rm та}$ f''(x) не змінює знак на [-2;0]. Виберемо $x_0=-1.5.$

Третій проміжок: [a;b] = [0;3], $f(x)\epsilon C^2[0;3]$, f(0)f(3) < 0, та f''(x) не змінює знак на [0;3]. Виберемо $x_0 = 2.5$, $x_0\epsilon[0;3]$ та $f(x_0)f''(x_0) > 0$, отже методом Ньютона можна обчислити єдиниий корінь рівняння.

2.5 Результат роботи програми

Вивід програми:

```
x*0 = -3
x*1 = -1
x*2 = 1
Max positive solution: 1
```

Лог-файл:

x1 = 1.618321 x2 = 1.167004

 $_{15}$ x3 = 1.017512

x4 = 1.000225

x5 = 1.000000

3 Задача №3

3.1 Умова

Знайти максимальний додатний розв'язок $x^3 + x^2 - 4x - 4 = 0$ методом січних.

3.2 Теоретичні відомості

У методі Ньютона основна обчислювальна робота полягає у відшуканні значень f(x) та f'(x). Замінивши похідну f'(x), використовувану в методі Ньютона, різницею послідовних значень функції, віднесеною до різниці значень аргументу(тобто замінивши дотичну січною), отримаємо таку ітераційну формулу для розв'язання рівняння f(x) = 0:

$$x_{n+1} = x_n - \frac{(x_n - x_{n-1})f(x_n)}{f(x_n) - f(x_{n-1})}, n = 0, 1, 2, \dots$$

3.3 Графік функції

3.4 Необхідні обчислення

На графіку функції f(x) бачимо, що рівняння має 3 розв'язки. Перший на проміжку [-4;-2.5], другий на проміжку [-2.5;1] та третій в

проміжку [1; 3].

Перший проміжок: Виберемо $x_0 = -4$, $x_1 = -3.5$ Другий проміжок: Виберемо $x_0 = 0.5$, $x_1 = 0$ Третій проміжок: Виберемо $x_0 = 1$, $x_1 = 1.5$

3.5 Результат роботи програми

Вивід програми:

```
x*0 = -2
x*1 = -1
x*2 = 2

Max positive solution: 2
```

Лог-файл:

```
_____
  x0 = -4
_3 x1 = -3.5
_{4} x1 = -2.829268
5 	ext{ x2} = -2.459801
  x3 = -2.204508
_{7} x4 = -2.069454
  x5 = -2.013794
  x6 = -2.001101
  x7 = -2.000019
  x8 = -2.000000
  x0 = 0.500000
  x1 = 0.000000
  x1 = -1.230769
  x2 = -1.076433
  x3 = -0.982374
  x4 = -1.000964
  x5 = -1.000011
  x6 = -1.000000
  -----
  x0 = 1.000000
  x1 = 1.500000
x1 = 2.846154
```

x2 = 1.792330

₂₆ x3 = 1.921289

x4 = 2.010908

x5 = 1.999484

 $_{29}$ x6 = 1.999997

 $_{30}$ x7 = 2.000000