

Orbital Mechanics Final Project

Group 2163

Alberto Boffi 10610403 994043 Andrea Campagna 10847652 993780 Luca Ciavirella 10574079 988304 Enrico Raviola 10864213 988668

Index

- Interplanetary Mission
 - Preliminary Analysis
 - Method 1
 - Method 2
 - Results

- Planetary Mission
 - <u>Objectives</u>
 - Ground Tracks
 - Repeating Ground Tracks
 - <u>Propagation</u>
 - <u>HF Filtering</u>
 - Real Satellite Comparison

Interplanetary Mission – Preliminary Analysis

Jupiter - Earth - Venus

- Earliest departure date: 2025/08/01
- Latest arrival date: 2065/08/01

Selected ToFs:

	ToF1	ToF2
min	500	50
max	3000	1500

Figure 1: Departure – Flyby Pork Chop Plot

Interplanetary Mission – Preliminary Analysis

Figure 2: Flyby – Arrival Pork Chop Plot

Figure 3: Zoomed Departure – Flyby Pork Chop Plot

Interplanetary Mission – Preliminary Analysis

Figure 4: 3D Pork Chop Plot in ToFs space

Figure 5: 3D Pork Chop Plot in dates space

Interplanetary Mission – Method 1

Interplanetary Mission – Method 1 Mesh Convergence

Discretization Grid	Departure window time step [days]	First ToF time step [days]	Second ToF time step [days]	Run time [sec]	$\Delta { m v} \ { m [km/sec]}$
250x75x75	58.4	33.3	33.3	1115	13.8063
250 x 100 x 100	58.4	25	15	2547	13.4847
250x150x150	58.4	16.7	10	4470	13.2796
$300 \times 150 \times 150$	48.6	16.7	10	7286	13.3454
300x200x200	48.6	12.5	7.5	9498	13.3211
350x200x200	41.7	12.5	7.5	12664	13.3311
350x250x250	41.7	10	6	15832	13.3046
400x250x250	36.5	10	6	17558	13.2169

Interplanetary Mission – Method 2

Interplanetary Mission – Method 2 Mesh Convergence

Departure discretization	Departure window Time step [days]	Run Time [sec]	$oldsymbol{\Delta v} [ext{km/sec}]$
175 sub-windows	83.5	3159	13.5385
200 sub-windows	73.1	5073	13.5084
225 sub-windows	65	6872	13.4163
250 sub-windows	58.4	6692	13.4229
300 sub-windows	48.7	8147	13.4158
500 sub-windows	29.2	12432	13.2534
600 sub-windows	24.3	16364	13.2702

Interplanetary Mission – Results

	Departure	Flyby	Arrival	
Date	12/30/2040	11/21/2043	03/03/2045	
Natural Flyby Δv		$6.71739 \; [\mathrm{km/sec}]$		
Total Δv required		$13.2169 \; [\mathrm{km/sec}]$		
Perigee passage altitude		301 [km]		
Time inside Earth SOI		138138 [sec		

Interplanetary Mission – Results

Figure 6: Interplanetary Trajectory

Interplanetary Mission – Results

Figure 7: Flyby Trajectory

Planetary Mission – Objectives

Aim of the mission: Earth's observtion

- Ground track estimation
- J2 and SRP perturbed orbit analysis
- Real satellite comparison

Figure 8: Nominal Orbit

Planetary Mission – Ground Tracks

Figure 9: Unperturbed Ground track -1 day

Figure 10: Perturbed Ground track -1 day

Planetary Mission – Repeating Ground Tracks

Figure 11: Repeating Ground tracks – 10 day

Figure 12: Repeating Ground tracks – 1 day

Figure 13: Repeating Ground tracks zoom-in -1 day

Planetary Mission – Propagation

The evolution of Keplerian elements through two different methods:

- Gauss planetary equations
- Cartesian equation of motion

Figure 14: Perturbed Orbit

Planetary Mission – Propagation

Figure 15: Evolution of Perturbed Orbit's Keplerian Elements

Figure 16: Evolution of Perturbed Orbit's Keplerian Elements – Error between direct integration and Gauss propagation

Planetary Mission – Propagation

Figure 17: Evolution of Perturbed Orbit's Keplerian Elements

Figure 18: Evolution of Perturbed Orbit's Keplerian Elements – Error between direct integration and Gauss propagation

Planetary Mission – HF Filtering

Figure 19: Filtering of Keplerian Elements

Planetary Mission – Real Satellite Comparison

Figure 20: Comparison of Kepler Element's Propagation with a Real Satellite

Thank you for your attention

Alberto Boffi
Andrea Campagna
Luca Ciavirella
Enrico Raviola