Initial concentration	C_in	5	25	125	mg/L
Particle size	d_P	0.1	1	10	μm
Particle size	d_P	1.00E-07	1.00E-06	1.00E-05	meters
Collector size	d_{C}	0.5	0.5	0.5	mm
Collector size	d_C	5.00E-04	5.00E-04	5.00E-04	meters
Temperature	Т	25	25	25	degrees C
Temperature	Т	298	298		degrees K
Particle density	$ ho_{P}$	1.05	1.05	1.05	g/cm ³
Particle density	$ ho_{P}$	1050	1050	1050	kg/m ³
Water density	ρ_{W}	0.978	0.978	0.978	g/cm ³ from Viessman and Hammer, Table A.8, p. 852
Water density	ρ_{W}	978	978	978	kg/m ³
Bed depth	L	6.00E-01	6.00E-01	6.00E-01	meter
Bed porosity	n	0.4	0.4	0.4	
Overflow rate	V_{f}	15	15		m/hr
Overflow rate	V_{f}	0.004166667	0.004166667	0.004166667	
Dynamic viscosity of water	µ□	8.90E-04	8.90E-04		kg/(m-s) from Viessman and Hammer, Table A.8, p. 852
Boltzmann constant	κ	1.38E-23	1.38E-23	1.38E-23	$m^2 kg / (s K)$
Interception efficiency	$\eta_{\rm I} = 3/2 \; (d_{\rm P}/d_{\rm C})^2$	6.00E-08	6.00E-06	6.00E-04	
Sedimentation efficiency	$\eta_G = (\rho_P - \rho_W) g d_P^2 / (18 \mu V_f)$	1.06E-07	1.06E-05	1.06E-03	
Diffusion efficiency	$\eta_D = 0.9 (\kappa T/(\mu d_P d_C V_f))^{2/3}$	7.11E-04	1.53E-04	3.30E-05	
Overall efficiency	$\eta = \eta_I + \eta_G + \eta_D$	7.11E-04	1.70E-04	1.69E-03	
Attachment efficiency	α	0.2	0.2	0.2	
Outflow concentration	$C_{out} = C_{in} * exp(-3 (1-n) \eta \alpha L/(2 d_C))$	4.29	24.10	86.77	mg/L
Treatment efficiency	$= 1 - C_{out}/C_{in}$	14%	4%	31%	
Attachment efficiency	α	1	1	1	
Outflow concentration	$C_{out} = C_{in} * exp(-3 (1-n) \eta \alpha L/(2 d_c))$	2.32	20.81	20.15	mg/L
Treatment efficiency	= 1 - C _{out} /C _{in}	99%	93%	93%	-
	Out III				

Homework 4, Question 2

Step 1: Determine number of tanks

Two is minimum, but entire flow will go through

one tank if the other is taken out of service.

Three tanks is safer.

Step 2: Determine size of basins

Tank overflow rate fixes total area.

$$A_{p} = \frac{Q}{V_{s}} = \frac{4 \text{ m}^{3}/\text{s}}{3.2 \text{ m/hr}} \cdot 60.60 \frac{\text{s}}{\text{hr}}$$

$$= 4500 \text{ m}^{2} \text{ total}$$

$$= 1500 \text{ m}^{2} \text{ per basin}$$
Length to width ratio should be at least 4 or 5 to 1

Assume $L = 4.5 \text{ W}$

$$A_{p} = L \cdot \text{W} = 4.5 \text{ W}^{2} = 1500 \text{ m}^{2}$$

$$\therefore W = \sqrt{\frac{1500}{4.5}} = 18.3 \text{ m}$$

$$= 18 \text{ m} \text{ (to be multiple of } 6-\text{m scraper width)}$$

$$L = \frac{A_{p}}{W} = \frac{1500}{1800} = 83.3 \text{ m}$$

$$L = \frac{A_{p}}{W} = \frac{1500}{1800} = 83.3 \text{ m}$$

Basin depth should be 3 to 5 m. Use D = 4 m

Step 3: Check design against guidelines

$$L=83.3 \text{ m} \quad W=18 \text{ m} \quad D=4 \text{ m}$$

$$L:D = 83.3:4 = 21:1 > 15:1 \checkmark$$

$$W:D = 18:4 = 4.5:1 \checkmark$$

$$L:W = 4.6:1 \checkmark$$

compute detention time, horizontal velocity, and outlet weir loading rate for max and average flow for 2 and 3 tank configurations:

$$T_{R} = \frac{L \cdot W \cdot D \cdot N}{Q}$$

$$V_{H} = \frac{Q}{W \cdot D \cdot N}$$

$$Q = \frac{Q}{W \cdot N}$$

$$N = \text{number of tanks}$$

$$Q = \text{total flow}$$

See spreadsheet on page 4 for trial with these values. Design fails residence time and horizontal flow criteria.

Getting to a workable design requires multiple iterations. I made this process more efficient by writing an Excel worksheet that allowed me to vary N, L, W, and D and automatically compute the various design criteria. I also used Excel's conditional formatting to automatically flag out-of-range values. It then was pretly simple to vary the design so as to meet all criteria. Pages 5 and 6 show two designs that work. With only 4 tanks, the last design is the least expensive.

Getting the weir parameter was not required of the class. It would entail multiple troughs across the tank.

At 0.75 m³/s per each of four tanks, $\frac{Q}{W} = 150 \frac{m^3}{m \cdot hr}$

This would entail 6 2-sided troughs across the width of the tank plus the end of the tank itself to get an outlet weir loading rate of 11.5 m3/m.hr

Check on basin dimensions:

L =	83.3	m
W =	18	m
D =	4	m
N =	3	

	Case	All tanks, Q _{ave}	All tanks, Q _{max}	1 tank off, Q _{ave}	1 tank off, Q _{max}
N		3	3	2	2
Q	m ³ /s	3	4	3	4
L:D		21	21	21	21
W:D		5	5	5	5
L:W		4.6	4.6	4.6	4.6
T_R	h	1.7	1.2	1.1	0.8
V_f	m/min	0.83	1.11	1.25	1.67
q	m²/h	200	267	300	400
R_h	m	2.8	2.8	2.8	2.8

Design guideline				
Minimum	Maximum			
15				
3	6			
4	5			
1.5	4			
0.3	1.1			

Check on basin dimensions:

	Case	All tanks, Q _{ave}	All tanks, Q _{max}	1 tank off, Q _{ave}	1 tank off, Q _{max}
N		5	5	4	4
Q	m ³ /s	3	4	3	4
L:D		15	15	15	15
W:D		4	4	4	4
L:W		4.2	4.2	4.2	4.2
T_R	h	3.1	2.3	2.5	1.9
V _f	m/min	0.40	0.53	0.50	0.67
q	m ² /h	120	160	150	200
R_h	m	3.2	3.2	3.2	3.2

Design guideline				
Minimum	Maximum			
15				
3	6			
4	5			
1.5	4			
0.3	1.1			

Check on basin dimensions:

L =	83.3	m
W =	18	m
D =	5	m
N =	4	

	Case	All tanks, Q _{ave}	All tanks, Q _{max}	1 tank off, Q _{ave}	1 tank off, Q _{max}
N		4	4	3	3
Q	m ³ /s	3	4	3	4
L:D		17	17	17	17
W:D		4	4	4	4
L:W		4.6	4.6	4.6	4.6
T_R	h	2.8	2.1	2.1	1.6
V_{f}	m/min	0.50	0.67	0.67	0.89
q	m ² /h	150	200	200	267
R _h	m	3.2	3.2	3.2	3.2

Design guideline				
Minimum	Maximum			
15				
3	6			
4	5			
1.5	4			
0.3	1.1			