Attitude Estimation of Quadcopter

Ashay Wakode

Indian Institute of Technology Bombay

22-11-2021

System Definition

- System : Quadcopter
- Only Attitude (Orientation) of the Quadcopter is estimated

Figure 1: O_{NED} : Inertial Frame, O_{ABC} : Body Frame 1

¹Image Acknowledgement : Sabatino, Francesco. "Quadrotor control: modeling, nonlinear control design, and simulation." (2015).

System Dynamics : Preliminaries

- ▶ 321 Euler angles: An ordered pair of rotation of angle ψ about the body frame z axis, then rotate by angle θ about the rotated body frame y axis, then rotate by angle ϕ about the final body frame x axis.
- ▶ Rotation matrix (R): A matrix with that transforms a vector in one frame to another frame. Rotation matrices have the following properties:
 - ▶ det(R) = 1
 - $ightharpoonup R^T R = I_{3 \times 3}$
- ► Attitude Dynamics :

$$\mathcal{I} \times \dot{\omega} + \omega \times \mathcal{I}\omega = M \tag{1}$$

where \mathcal{I} is the system moment of inertia in body frame, $\omega := [\omega_1, \omega_2, \omega_3]^T$ is the angular velocity of the body frame represented in the body frame and M is the external torque represented in the body frame.

System Dynamics : Preliminaries

Rotational kinematics:

$$\dot{\phi} = \omega_1 + \tan\theta(\omega_2 \sin\phi + \omega_3 \cos\phi) \tag{2}$$

$$\dot{\theta} = \omega_2 \cos\phi - \omega_3 \sin\phi \tag{3}$$

$$\dot{\psi} = \sec\theta(\omega_2 \sin\phi + \omega_3 \cos\phi) \tag{4}$$

- Sensors used :
 - Magnetometer : Magnetic Field in Body Frame

$$m_{y} = R^{T} m_{I} + \nu_{m} \tag{5}$$

Accelerometer : Acceleration in Body Frame

$$a_{v} = R^{T} a_{I} + v_{a} \tag{6}$$

Gyroscope : Angular Velocity in Body Frame

$$\omega_{\mathsf{v}} = \mathsf{R}^{\mathsf{T}} \omega_{\mathsf{I}} + \mathsf{v}_{\omega} \tag{7}$$

System Dynamics

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \\ \dot{\omega}_{1} \\ \dot{\omega}_{2} \\ \dot{\omega}_{3} \end{bmatrix} = Ax + \begin{bmatrix} 0 \\ 0 \\ 0 \\ M_{1} \\ M_{2} \\ M_{3} \end{bmatrix} + I_{6 \times 6}d$$
 (8)

$$A(x) = \begin{bmatrix} 0 & 0 & 0 & 1 & tan\theta sin\phi & tan\theta sin\phi \\ 0 & 0 & 0 & 0 & cos\phi & -sin\phi \\ 0 & 0 & 0 & 0 & sec\theta sin\phi & sec\theta cos\phi \\ 0 & 0 & 0 & 0 & \frac{l_{yy}-l_{zz}}{l_{xx}}\omega_3 & 0 \\ 0 & 0 & 0 & \frac{l_{zz}-l_{xx}}{l_{yy}}\omega_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{l_{xx}-l_{yy}}{l_{zz}}\omega_3 & 0 \end{bmatrix}, d^{\sim}N(0, 10^{-4}l_{6\times6})$$

$$(9)$$

System Dynamics : Measurement Model

$$y = \begin{bmatrix} R^T m_I \\ R^T a_I \\ \omega \end{bmatrix} + v, v^* N(0, 10^{-4} I_{9 \times 9})$$
 (10)

- $m_I^T = [0, 0.00003, 0]$ Tesla
- $ightharpoonup a_I^T = [0, 0, 9.81] \ m/s^2$

```
\begin{array}{lll} \mathcal{R} = \\ \begin{bmatrix} \cos\theta\cos\psi & \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi \\ \cos\theta\sin\psi & \sin\phi\sin\theta\sin\psi - \cos\phi\cos\psi & \cos\phi\sin\theta\sin\psi + \sin\phi\cos\psi \\ -\sin\theta & \sin\phi\cos\theta & \cos\phi\cos\theta \end{bmatrix} \end{array}
```

System Dynamics : Input for Simulation

Following control law was implemented to get non-singular state trajectory.

$$M = \omega \times \mathcal{I}\omega - \mathcal{I}k_{p}\omega \tag{11}$$

Above equation can be substituted in eq. 1,

$$\mathcal{I} \times \dot{\omega} + \omega \times \mathcal{I}\omega = M$$

to get ω_1 , ω_2 and ω_3 as function of time. These function can be back substituted in eq.11 to get the inputs M for the system.

KF implementation

Linearization point :
$$x_{eq} = [0_{6\times1}]$$

LTI form: $= \begin{bmatrix} 0_{3\times3} & I_{3\times3} \\ 0_{3\times3} & 0_{3\times3} \end{bmatrix} \times + \begin{bmatrix} 0_{3\times3} \\ I_{3\times3} \end{bmatrix} M + I_{6\times6}d = Ax + BM + Hd$
Discretization time (h) $= 0.01$ sec
Number of iterations used $= 50$

$$\Phi = exp(Ah)$$
 $\Gamma = \int_0^h exp(A\tau)B d\tau$ $\Gamma_d = \int_0^h exp(A\tau)H d\tau$

$$\Phi = \begin{bmatrix} 1 & 0 & 0 & 0.01 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0.01 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0.01 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}; 100\Gamma_d = \begin{bmatrix} 1 & 0 & 0 & \frac{5}{1000} & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{5}{1000} & 0 \\ 0 & 0 & 1 & 0 & 0 & \frac{5}{1000} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

KF Implmentation

$$x_{k|k-1} = \Phi x_{k-1|k-1} + \Gamma M_{k-1|k-1} + \Gamma d_{k-1|k-1}$$
 (12)

$$y_k = Cx_{k|k-1} + v \tag{13}$$

$$P(0|0) = 10^{-4} I_{6\times6}, v N(0, 10^{-4} I_{9\times9}), d_{k-1} N(0, 10^{-4} I_{6\times6})$$

EKF Implementation

Linearization point : Operation Point (x_o)

System Dynamics used: $x_{o+1} = \Phi x_o + \Gamma M + \Gamma_d d$

Discretization time (h) = 0.01 sec

Number of iterations used = 50

$$\Phi = \exp(A(x_o)h); \quad \Gamma = \int_0^h \exp(A(x_o)\tau)B \, d\tau; \quad \Gamma_d = \int_0^h \exp(A(x_o)\tau)H \, d\tau$$

$$x_{k|k-1} = \Phi x_{k-1|k-1} + \Gamma M_{k-1|k-1} + \Gamma d_{k-1|k-1}$$
 (14)

$$y_k = Cx_{k|k-1} + v \tag{15}$$

$$P(0|0) = 10^{-4} I_{6\times6}, v N(0, 10^{-4} I_{9\times9}), d_{k-1} N(0, 10^{-4} I_{6\times6})$$

UKF: Implementation

Augmented UKF was implemented even though the disturbance and process noise are additive since the number of iterations (50) is less and hence higher number of states in augmented system won't affect the execution time.

- ightharpoonup M = 6+6+9 = 21, Number of Sample points = 43
- $\kappa = 1, \rho = 4.69$

$$x(k|k)^{i} = \begin{bmatrix} x(k|k)^{i} \\ d(k)^{i} \\ v(k+1)^{i} \end{bmatrix} \qquad P^{a}(k|k) = \begin{bmatrix} P(k|k) & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & R \end{bmatrix}$$

$$P_{\epsilon\epsilon} = P(k+1|k) = \sum_{i=1}^{2M+1} \omega^i (\epsilon^{(i)}(k+1|k)) (\epsilon^{(i)}(k+1|k))^T$$

Figure 2: ϕ

Figure 3: θ

Figure 4: ψ

Figure 5: ω_1

Figure 6: ω_2

Figure 7: ω_3

Figure 8: ϕ

Figure 9: θ

Figure 10: ψ

20/38

Figure 11: ω_1

Figure 12: ω_2

Figure 13: ω_3

Spectral Radii Plot

Figure 14: Spectral Radii

Figure 15: Estimation error in ϕ

Figure 16: Estimation error in θ

Figure 17: Estimation error in ψ

Figure 18: Estimation error in ω_1

Figure 19: Estimation error in ω_2

Figure 20: Estimation error in ω 3

Mean and Covariance of Innovation

$Filters \to$	kf		ekf		ukf	
Innovation	mean	covariance	mean	covariance	mean	covariance
error ↓						
e ₁	-0.0007	9.0179e-	-0.0007	9.0178e-	0.0000	6.7905e-
		05		05		12
e ₂	-0.0008	8.7224e-	-0.0007	8.7223e-	0.0000	1.7803e-
		05		05		11
e ₃	0.0005	8.4393e-	0.0005	8.4395e-	0.0000	2.8664e-
		05		05		12
e ₄	-0.0196	0.0273	-0.3144	0.0302	-2.0519	1.6741
e ₅	0.0459	0.0365	0.9483	0.2146	1.2571	0.5082

Mean and Covariance of Innovation

$Filters \to$	kf		ekf		ukf	
Innovation	mean	covariance	mean	covariance	mean	covariance
error ↓						
e ₆	0.0013	8.0609e-	-9.5867	1.9140	-9.3140	1.9015
		05				
e ₇	0.0029	4.9043e-	0.0274	8.7984e-	0.0365	4.0369e-
		04		04		04
e ₈	0.0007	4.6999e-	-0.1852	0.0221	-0.1848	0.0218
		04				
e ₉	0.0023	4.6729e-	-0.0579	0.0038	-0.0543	0.0036
		04				

Root Mean Squared Error

	x ₁	x ₂	Х3	X4	X5	x ₆
kf	0.1718	0.0300	0.0581	0.0385	0.2419	0.0859
ekf	0.1757	0.0340	0.0262	0.0686	0.0250	0.0136
ukf	0.2924	0.0623	0.1050	0.0368	0.2422	0.0835

Normalized Estimation Error Squared (NEES) for kf

Figure 21: $\alpha = 0.05, \zeta_1 = 1.6354, \zeta_2 = 12.5916$

Normalized Estimation Error Squared (NEES) for ekf

Figure 22: $\alpha = 0.05, \zeta_1 = 1.6354, \zeta_2 = 12.5916$

Normalized Estimation Error Squared (NEES) for ukf

Figure 23: $\alpha = 0.05, \zeta_1 = 1.6354, \zeta_2 = 12.5916$

Discussion and Conclusion

- One of the system dynamics involves $sec(\theta)$ which blows up at $\theta = \pi/2$, therefore the number of iteration and discretization step was reduced from 0.1 to 0.01.
- In kf and ekf reduction in initial value of P(0|0) resulted results without high-magnitude matrices, while reverse was true in ukf.
- Nalman filter showed better results than Extended Kalman filter for all but one state. Unscented Kalman filter showed better results than Kalman filter only for last three states, namely, ω_1 , ω_2 and ω_3
- ▶ The **NEES** plots show that all the three filter are not $\alpha = 0.05$ consistent and therefore refinement is needed.

Thanks

