1T01224 - S.E.(INFORMATION TECHNOLOGY) (Sem IV) (Choice Based) / 41001 - APPLIED MATHEMATICS -37497 Q. P. Code: 37497

> Hours: 3 hrs Marks: 80

Note: 1. Question no. 1 is compulsory.

2. Attempt any **three** questions out of remaining **five** questions.

- **Q.1.[a]** Given two lines of regression lines 6y = 5x + 90, 15x = 8y + 130. [5] Find (i) \bar{x} , \bar{y} (ii) correlation coefficient r.
 - **[b]** Show that $(41|(2^{20}-1))$. [5]
 - [c] A random discrete variable x has the probability density function given [5]

X	-2	-1	0	1000	2	3
P(x)	0.2	k	0.1	2k	0.1	2k

Find (i) k (ii) E(X) (iii) V(X).

- [d] Show that $G = \{1, -1, i, -i\}$ is a group under usual multiplication of [5] complex number.
- Q.2.[a] Find gcd (2378, 1769) using Euclidean Algorithm. Also find x and y [6] such that $2378x + 1769y = \gcd(2379,1769)$.
 - [b] Give an example of a graph which has [6]
 - (i) Eulerian circuit but not a Hamiltonian circuit
 - (ii) Hamiltonian circuit but not an Eulerian circuit
 - (iii) Both Hamiltonian circuit and Eulerian circuit
- [c] Show that (D_{10}, \leq) is a lattice. Draw its Hasse diagram. [8]
- Q.3.[a] Derive mgf of Binomial distribution and hence find its mean and variance. [6]
 - [b] It was found that the burning life of electric bulbs of a particular brand [6] was normally distributed with the mean 1200 hrs and the S.D. of 90 hours, Estimate the number of bulbs in a lot of 2500 bulbs having the burning life: (i) more than 1300 hours (ii) between 1050 and 1400 hours.
 - [c] (i) Find inverse of 8^{-1} (mod 77) using Euler's theorem. [8] (ii) Find the Jacobi's symbol of $\left(\frac{32}{15}\right)$.
- **Q.4.[a]** Calculate the coefficient of correlation between x and y from the [6] following data

7/	- LA / /	23	7 10								
2	y	18	22	23	24	25	26	28	29	30	32

[b] Let G be a group of all permutations of degree 3 on 3 symbols 1, 2 & 3. [6] Let $H = \{I, (1 \ 2)\}$ be a subgroup of G. find all the distinct left cosets of H in G and hence index of H.

Q. P. Code: 37497

- [c] (i) The average marks scored by 32 boys is 72 with standard deviation of 8 while that for 36 girls is 70 with standard deviation of 6. Test at 5% LOS whether the boys perform better than the girls.
- [8]
 - (ii) A random sample of 15 items gives the mean 6.2 and variance 10.24. Can it be regarded as drawn from a normal population with mean 5.4 at 5% LOS?
- **Q.5.**[a] Solve $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x = 3 \pmod{7}$. [6]
 - **[b]** Given $L = \{1, 2, 4, 5, 10, 20\}$ with divisibility relation. Verify that (L, \leq) [6] is a distributive but not complimented Lattice.
 - [c] (i) Draw a complete graph of 5 vertices. [8] (ii) Give an example of tree. (sketch the tree).
- **O.6.[a]** Show that $111^{333} + 333^{111}$ is divisible by 7. [6]
 - The following table gives the number of accidents in a city during a week [6] Find whether the accidents are uniformly distributed over a week.

Day	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total
No. of accidents	13	15	9	11	12	10	14	84

- [c] (i) Write the following permutation as the product of disjoint cycles [8] $f = (1 \ 3 \ 2 \ 5) (1 \ 4 \ 5) (2 \ 5 \ 1).$
 - (ii) Simplify as sum of product (A+B)(A+B')(A'+B)(A'+B').

*********<mark>*</mark>**<mark>*</mark>**<mark>*</mark>***************