DATAFEST - ML INTRO AND TREES

Bernd Bischl

Computational Statistics, LMU

My interests and research areas

MACHINE LEARNING

- ► General non-parametric methods
- ► Hyper-parameter tuning and model selection

Model-based optimization, selection and tuning

- ► Generalzing MBO strategies to more complex tuning problems
- Parallel MBO

In short: ML + optimization in COMBINATION!

Practical Stuff

- ► Benchmarking repositories
- ► Open science, sharing and reproducibility
- ► Efficient development of statistical software
- ▶ Parallelization

Section 1

Introduction

INTRODUCTION TO MACHINE LEARNING I

WHAT IS (SUPERVISED) MACHINE LEARNING?

- ► Learning structure in data
- ► The art of predicting stuff
- ► Model optimization
- Understanding of grey-box models

INTRODUCTION TO MACHINE LEARNING II

- Data analytical problems increased in the last decade regarding size and complexity
 - ► data mining: storage, organization and analysis of big data sets
 - bio informatics: solving statistical and computational problems in medicine an biology
- Role of statistics: recognition of important patterns and trends, attempt to understand what "data reveals", creation of predictions
- ▶ New York Times (August 2009): "'I keep saying that the sexy job in the next 10 years will be statisticians,"' said Hal Varian, chief economist at Google. "'And I'm not kidding."'

Introduction to Machine Learning III

Supervised Learning

- ► Try to learn the relationship between "input" *x* and "output" *y*.
- ► For learning, there is training data with labels available.
- ► Considered mathematically, both cases are problems of function-approximation: search for an *f* , such that

$$y \approx f(x)$$
.

INTRODUCTION TO MACHINE LEARNING IV

Examples

- ► Handwritten digit recognition
- ► Lung cancer prediction
- ► Email spam recognition
- ► Recommender system (movies, books, etc.)
- ► Word recognition from spoken language
- ▶ ...

SUPERVISED CLASSIFICATION TASKS

GOAL: Predict a class (or membership probabilities)

SUPERVISED REGRESSION TASKS

GOAL: Predict a continuous output

SUPERVISED SURVIVAL TASKS

GOAL: Predict a survival function $\hat{S}(t)$, i.e. the probability to survive to time point t

Unsupervised Cluster tasks

 GOAL : Group data into similar clusters (or estimate fuzzy membership probabilities)

Section 2

CLASSIFICATION AND REGRESSION TREES (CART)

Trees - Introduction

- ► Regression and classification trees exist (and others)
- ► Trees divide the feature space into rectangles and fit simple models (e.g. constant) in each:

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m),$$

where M rectangles R_m are used. c_m is either the average output of the observations in R_m (regression) or the class distribution / most frequent label in R_m (classification).

COMPONENTS OF THE ALGORITHMS

- Greedy: Pick the best feature and its best splitpoint in each iteration
- ► Binary splits vs. multi-way splits
- ► Criteria for the selection of a variable and its splitpoint(s)
- ► Stopping-Criteria
- Handling of missing values
- ► Pruning

TREE BUILDING EXAMPLE I

We use two data sets for our examples:

- ► Regression: The BostonHousing data set has 506 observations (census tracts of Boston from the 1970 census) and 14 variables, medv (median value of the owner-occupied homes) being the target variable.
- ► Classification: The iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris (setosa, versicolor, and virginica).

TREE BUILDING EXAMPLE II

```
library(rattle); library(rpart)
data(BostonHousing, package = "mlbench")
m = rpart(medv ~ ., data = BostonHousing, minsplit = 250)
fancyRpartPlot(m, main = "Regression Tree")
```


Rattle 2016-Apr-02 10:43:17 bischl

TREE BUILDING EXAMPLE III

```
data(BostonHousing, package = "mlbench")
m = ctree(Species ~ ., data = iris)
plot(m, main = "Classification Tree")
```


TREE BUILDING EXAMPLE IV

TREE BUILDING EXAMPLE V

TREE BUILDING EXAMPLE VI

TREE BUILDING EXAMPLE VII

TREE BUILDING ALGORITHMS

- ► AID (Sonquist and Morgan, 1964)
- ► CHAID (Kass, 1980)
- CART (Breiman et al., 1984) <- We mainly focus on this Classification and Regression Trees.
 Only builds binary trees.
- ► C4.5 (Quinlan, 1993)
- ▶ Unbiased Recursive Partitioning (Hothorn et al., 2006)

CART: GOODNESS OF FIT I

► **Continuous targets:** Minimal SSE / variance Dividing all of the data with respect to the split variable X_j at splitpoint s, leads to the following half-spaces

$$R_1(j,s) = \{X : X_j \le s\} \text{ and } R_2(j,s) = \{X : X_j > s\}.$$

Determination of the best split variable and the corresponding splitpoint:

$$\min_{j,s} \left(\min_{c_1} \sum_{X_i \in R_1(j,s)} (Y_i - c_1)^2 + \min_{c_2} \sum_{X_i \in R_2(j,s)} (Y_i - c_2)^2 \right).$$

for arbitrary j and s the inner minimization is solved through: $\hat{c}_1 = \text{mean}(Y_i|X_i \in R_1(j,s))$ and $\hat{c}_2 = \text{mean}(Y_i|X_i \in R_2(j,s))$

CART: GOODNESS OF FIT II

- Categorical targets (K categories): "Impurity Measures"
 - ► Gini-Index:

$$\sum_{k
eq k'} \hat{
ho}_k \hat{
ho}_{k'} = \sum_{k=1}^K \hat{
ho}_k (1-\hat{
ho}_k)$$

Misclassification Error:

$$1 - \arg \max_{k} \hat{p}_{k}$$

► Entropy:

$$-\sum_{k=1}^K \hat{p}_k \log \hat{p}_k ,$$

where \hat{p}_k corresponds to the relative frequency of category k

CART: GOODNESS OF FIT III

CART: STOPPING-CRITERIA

- ► Minimal number of observations per node, for a split to be tried
- ► Minimal increase in goodness of fit, for a split to be tried
- ▶ Minimal number of observations that must be contained in a leaf
- ► Maximal number of levels for tree

ADVANTAGES

- ► Model is easy to comprehend
- Graphical visualizations allow good interpretability
- ► Interaction effects between features can be captured
- ► Tree structure reflects stepwise decisions
- ► Works for non-linear functions as well
- ▶ Built-in feature selection
- ► Can handle missing values
- ► Fast implementations exist for large data sizes
- ▶ Robust versus feature outliers or skewed feature distributions
- ▶ Principle very flexible, custom trees for many tasks can be built

DISADVANTAGES

- ► High instability (variance) of the trees: Small changes in the data can potentially lead to completely different splits, and therefore to completely different trees as well
- ► Prediction function isn't smooth (a step function is fitted)
- ► Linear dependencies must be modeled over several splits, simple linear correlations must be translated into a complex tree structure
- ► Really not the best predictor. But we use trees to create forests and boosting models to achieve state-of-the-art performance!

mlr - Machine Learning in R

```
lrn = makeLearner("classif.ksvm")
plotLearnerPrediction(lrn, sonar.task, features = c("V11", "V12"))
```


mlr - Machine Learning in R

- ► https://github.com/mlr-org/mlr
- ► Clear interface to R classification, regression, clustering and survival analysis methods
- ► More than 100 "basic" ML algorithms! (not counting meta techniques)
- ► Fit, predict, evaluate and resample models
- ► Extensive visualizations for e.g. ROC curves, predictions and partial predictions
- ▶ Benchmarking of learners for multiple data sets
- ► Hyperparameter tuning, feature selection, pre-processing
- Combine different processing steps to a complex data mining chain that can be jointly optimized
- ► OpenML connector for the Open Machine Learning server
- ► Parallelization is built-in
- ▶ Detailed tutorial online