15.415 Foundations of Modern Finance

Leonid Kogan and Jiang Wang MIT Sloan School of Management

Lecture 9: Options, Part 1

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

Introduction to option types

Option types:

- Call: The right to buy an asset (the underlying asset) for a given price (exercise price) on or before a given date (expiration date).
- Put: The right to sell an asset for a given price on or before the expiration date.

Exercise styles:

- European: Owner can exercise the option only on expiration date.
- American: Owner can exercise the option on or before expiration date.

Introduction to option types

- Key elements in defining an option:
 - Underlying asset and its price *S*,
 - Exercise price (strike price) *K*,
 - \blacksquare Expiration date (maturity date) T (today is 0),
 - European or American.

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

Example: a European call option

- A European call option on IBM with exercise price \$100.
- It gives the owner (buyer) of the option the right (not the obligation) to buy one share of IBM at \$100 on the expiration date.
- The option's payoff depends on the share price of IBM on the expiration date.

Example: a European call option

IBM Price at T	Action	Payoff
< 80	Not Exercise	0
80	Not Exercise	0
90	Not Exercise	0
100	Not Exercise	0
110	Exercise	10
120	Exercise	20
130	Exercise	30
${\mathcal S}_T$	Exercise	$S_T - 100$

Observations:

- The payoff of an option is never negative; sometimes, it is positive.
- Actual payoff depends on the price of the underlying asset:

$$CF_T(\text{call}) = \max[S_T - K, 0]$$

Payoff diagrams

Payoff diagrams

■ The underlying asset and the bond (with face value \$100) have the following payoff diagrams

Net option payoff

- The net payoff of an option must include its cost.
- Example: a European call on IBM shares with an exercise price of \$100 and maturity of three months is trading at \$5.
- The 3-month interest rate, not annualized, is 0.5%.
- At maturity, the call's net payoff is as follows.

IBM Price	Action	Payoff	Net payoff
< 80	Not Exercise	0	-5.025
80	Not Exercise	0	-5.025
90	Not Exercise	0	-5.025
100	Not Exercise	0	-5.025
110	Exercise	10	4.975
120	Exercise	20	14.975
S_T	Exercise	$S_T - 100$	$S_T - 100 - 5.025$

Net option payoff

The break even point is given by:

Net payoff =
$$\max[S_T - K, 0] - C(1 + r)^T$$

= $S_T - 100 - (5)(1 + 0.005)$
= 0

or

$$S_T = $105.025$$

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

Option strategies: protective put

Buy the underlying stock, and buy a put with a strike price of \$50:

Option strategies: bull spread spread

Buy a call with a strike price of \$45, and write a call with a strike price of \$55:

40

30

50

Stock price at maturity

60

70

Option strategies: straddle

Buy a call with a strike price of \$50, and buy a put with a strike price of \$50:

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

 Consider two firms, A and B, with identical assets but different capital structures (in market value terms).

Balance sheet of A			
Assets	\$30	\$0	Bond
		\$30	Equity
Total	\$30	\$30	

Balance sheet of B			
Assets	\$30	\$25	Bond
		\$5	Equity
Total	\$30	\$30	

- Firm B's bond has a face value of \$50.
- Default is likely: If the firm's assets are worth less than \$50 when the bond matures, the firm will be unable to afford its debt.
- In that event, the assets are turned over to the bondholders, and the equity is worth zero.

■ Consider the value of stock A, stock B, and a call on the underlying assets of firm B with an exercise price of \$50:

Asset value	Value of stock A	Value of stock B	Value of call on assets of B
i i	i i	ŧ	:
\$20	\$20	\$0	\$0
\$40	\$40	\$0	\$0
\$50	\$50	\$0	\$0
\$60	\$60	\$10	\$10
\$80	\$80	\$30	\$30
\$100	\$100	\$50	\$50
:	ŧ	:	:

- Stock B gives the same payoff as a call option written on its assets;
- Thus B's common stocks really are call options on firm's assets.

- Many corporate securities can be viewed as options.
- Equity (E): A call option on the firm's assets (A) with the exercise price equal to its bond's redemption value.
- Debt (D): A portfolio combining the firm's assets (A) and a short position in the call with the exercise price equal to its bond's redemption value:

$$E \equiv \max[0, A - B]$$

$$D \equiv \min[A, B] = A - \max[0, A - B]$$

$$A = D + E$$

- Warrant: Call options on the firm's stock.
- Convertible bond: A portfolio combining straight bonds and a call on the firm's stock with the exercise price related to the conversion ratio;
- Callable bond: A portfolio combining straight bonds and a call written on the bonds.

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

Preliminaries

- For convenience, we refer to the underlying asset as stock. It could also be a bond, foreign currency or some other asset.
- Notation:
 - S: Price of stock now;
 - **S**_T: Price of stock at T;
 - B: Price of discount bond of par \$1 and maturity T ($B \le 1$);
 - C: Price of a European call with strike K and maturity T;
 - P: Price of a European put with strike K and maturity T.
- For our discussion:
 - Consider only European options (no early exercise);
 - Assume no dividends (option cash flow occurs only at maturity).

Basic properties of options

- If an option is exercised now, the resulting cash flow is called its exercise value.
 - For a call, its exercise value is S K, where S is the current stock price;
 - For a put, its exercise value is K S.

- An option is deemed to be:
 - In the money (ITM) if its exercise value is positive;
 - At the money (ATM) if its exercise value is zero;
 - Out of the money (OTM) if its exercise value is negative.

Price bounds

- European options on a non-dividend paying stock.
- 1. The payoff of call can never be negative: $C \ge 0$.
- 2. The payoff of stock dominates that of call: $C \leq S$.

Price bounds (cont'd)

- 3. Lower bound: $C \ge S KB$
 - Strategy (a): Buy a call;
 - Strategy (b): Buy a share of stock by borrowing KB.
 - The payoff of strategy (a) dominates that of strategy (b):

■ Since $C \ge 0$, we have:

$$C \ge \max[S - KB, 0]$$

Price bounds (cont'd)

4. Combining the above, we have:

$$\max[S - KB, 0] \le C \le S$$

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

Put-call parity

Portfolio 1: A call with strike \$100 and a bond with par \$100;

Portfolio 2: A put with strike \$100 and a share of the underlying asset.

Their payoffs are identical, so must be their prices:

This is called the put-call parity.

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

American options, early exercise

- American options are worth more than their European counterparts.
- Without dividends, never exercise American call early.
- If exercise at t < T, collect $S_t K$
- If sell the option at instead, collect at least the price of a European call, which is

$$C(S_t, K, T - t) \ge \max[0, S_t - KB_t] \ge \max[0, S_t - K]$$

- Better to sell than exercise, thus early exercise is never optimal!
- By the law of one price:

$$c(S_t, K, T - t) = C(S_t, K, T - t)$$

American options, early exercise

- Without dividends, it can be optimal to exercise an American put early.
- Example. A put with a strike of \$10 on a stock with price of zero.
 - Exercise now gives \$10 today;
 - Exercise later gives \$10 later.
- Better to exercise now (assuming positive interest rate).

Effect of dividends

With dividends:

$$\max[0, S - KB - PV(D)] \le C \le S$$

Dividends make early exercise more likely for American calls and less likely for American puts.

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

Underlying volatility affects option value

- Option value increases with the volatility of underlying asset.
- Example: two firms, A and B, with the same current price of \$100.
- B has higher volatility of future prices.
- Consider call options written on A and B, respectively, with the same exercise price \$100.

	Good state	Bad state
	Probability = p	Probability = $1 - p$
Stock A	120	80
Stock B	150	50
Call on A	20	0
Call on B	50	0

Clearly, call on stock B should be more valuable.

Binomial option pricing model

- Determinants of option value:
 - 1. price of underlying asset *S*,
 - 2. strike price *K*,
 - 3. time to maturity *T*,
 - 4. interest rate r,
 - 5. volatility of underlying asset σ .

- In order to have a complete option pricing model, we need to make additional assumptions about:
 - Price process of the underlying asset (stock),
 - Other factors.
- We will assume, in particular, that:
- Prices do not allow arbitrage,
- Prices are "reasonable".
- A benchmark model price follows a binomial process.

$$S_0 - S_{up}$$

$$S_{down}$$

A European call on a stock

- Current stock price is \$50;
- There is one period to go;
- Stock price will either go up to \$75 or go down to \$25;
- There are no cash dividends;
- The strike price is \$50;
- One period borrowing and lending rate is 10%.

A European call on a stock

The stock and bond present two investment opportunities:

The option's payoff at expiration is:

$$c_0 - \begin{bmatrix} 25 \\ 0 \end{bmatrix}$$

■ What is C_0 , the value of the option today?

Replicating portfolio

- Form a portfolio of stock and bond that replicates the call's payoff:
- *a* shares of the stock;
- b dollars in the riskless bond.

such that:

$$75a + 1.1b = 25$$

 $25a + 1.1b = 0$

■ Unique solution: a = 0.5 and b = -11.36.

Replicating portfolio

- Replication strategy:
 - buy half a share of stock and sell \$11.36 worth of bond;
 - payoff of this portfolio is identical to that of the call;
 - present value of the call must equal the current cost of this "replicating portfolio" which

$$(50)(0.5) - 11.36 = 13.64$$

- Number of shares needed to replicate one call option is called the option's hedge ratio or delta.
- In the above problem, the option's delta is a = 0.5.

Key concepts

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

Multiple periods:

$$S = 50 - \begin{bmatrix} 75 & -112.5 \\ 37.5 & 37.5 \\ 25 & -12.5 \end{bmatrix}$$

European call price process:

$$C - \begin{bmatrix} C_{uu} = 112.5 \\ C_{ud} = 0 \\ C_{du} = 0 \\ C_{dd} = 0 \end{bmatrix}$$

- The terminal value of the call is known
- lacksquare C_u and C_d denote the option value next period when the stock price goes up and goes down, respectively.
- Compute the initial value working backwards: first C_u and C_d and then C_u

Period 1, "up" node

Start with Period 1:

- Suppose the stock price goes up to \$75 in period 1.
- Construct the replicating portfolio at node (t = 1, up):

$$112.5a + 1.1b = 62.5$$

 $37.5a + 1.1b = 0$

- Unique solution: a = 0.833, b = -28.4.
- The cost of this portfolio: (0.833)(75) 28.4 = 34.075.
- Thus, $C_u = 34.075$.

Period 1, "down" node

Suppose the stock price goes down to \$25 in period 1. Repeat the above for node (t = 1, down):

$$112.5a + 1.1b = 0$$
$$37.5a + 1.1b = 0$$

- The replicating portfolio: a = 0, b = 0.
- The call value at the lower node next period is $C_d = 0$.

Period 0

- Now go back one period, to period 0:
- The option's value next period is either 34.075 or 0:

$$C_0 - C_u = 34.075$$
 $C_d = 0$

■ If we can construct a portfolio of the stock and bond to replicate the value of the option next period, then the cost of this replicating portfolio must equal the option's present value.

Period 0

$$C_0 - \begin{bmatrix} C_u = 34.075 \\ C_d = 0 \end{bmatrix}$$

Find a and b so that:

$$75a + 1.1b = 34.075$$

 $25a + 1.1b = 0$

- Unique solution: a = 0.6815, b = -15.48.
- The cost of this portfolio: (0.6815)(50) 15.48 = 18.60.
- The present value of the option must be $C_0 = 18.60$.
- It is greater than the exercise value 0 (thus no early exercise).

Option replication

■ Period 0: Spend \$18.60 and borrow \$15.48 at 10% interest rate to buy 0.6815 shares of the stock.

Option replication

- Period 1, "up node": the portfolio value is 34.075. Re-balance the portfolio to include 0.833 stock shares, financed by borrowing 28.4 at 10%.
 - One period later, the payoff of this portfolio exactly matches that of the call.
- Period 1, "down node": the portfolio becomes worthless. Close out the position.
 - The portfolio payoff one period later is zero.

- Bottom line:
 - Replicating strategy gives payoffs identical to those of the call.
 - Initial cost of the replicating strategy must equal the call price.

- What we have used to calculate option's value:
 - current stock price,
 - magnitude of possible future changes of stock price volatility,
 - interest rate,
 - strike price,
 - time to maturity.

- What we have not used:
 - probabilities of upward and downward movements,
 - investor's attitude towards risk.
- Questions on the Binomial Model:
 - What is the length of a period?
 - Price can take more than two possible values.
 - Trading takes place continuously.
- Response: The length of a period can be arbitrarily small.

Key concepts

- Introduction: option types
- Payoffs of European options
- Option strategies
- Corporate securities as options
- Pricing bounds for European options
- Put-Call parity for European options
- Early exercise of American options
- Binomial model: single period
- Binomial model: multiple periods

Appendix: Additional results

Put-call parity with a forward

Portfolio 1: A call with strike K and a bond with par K;

Portfolio 2: A put with strike K, long forward contract (forward price F), long bond with fact value F.

$$C + \frac{K}{(1+r)^T} = P + \frac{F}{(1+r)^T}$$

	Portfolio 2	
	PV_0	Payoff
Put	Р	$Max(0, K - S_T)$
Forward	0	$S_T - F$
Bond	$\frac{F}{(1+r)^T}$	F
Total	$P + \frac{F}{(1+r)^T}$	$\max(0, K - S_T) + S_T = \max(S_T, K)$

Put-call parity with a forward

Portfolio 1: A call with strike K and a bond with par K;'

Portfolio 2: A put with strike K, long forward contract (forward price F), long bond with fact value F.

$$C + \frac{K}{(1+r)^T} = P + \frac{F}{(1+r)^T}$$

	Portfolio 1	
	PV_0	Payoff
Call	С	$Max(0,S_T-K)$
Bond	$\frac{K}{(1+r)^T}$	K
Total	$C + \frac{K}{(1+r)^T}$	$Max(0, S_T - K) + K = Max(S_T, K)$