PROBLEM SET 8. DUE THURSDAY, 14 SEPTEMBER

Reading. Quick Calculus, pp. 185–198.

Supplementary reading. Simmons, sections 5.4, 7.3, 7.4, 10.4, and 10.6.

- 1. (4pts) Graph the following regions. Rotate them around the x-axis and compute their volumes.
 - (a) The region below $f(x) = \sqrt{x}$, above y = 0 and to the left of x = 4.
 - (b) The region below $f(x) = 4x x^2$ above y = 0.
 - (c) The region below $f(x) = 4x x^2$ and above $g(x) = 3(x-2)^2$. (Hint: f(x) = g(x)when x = 1, 3.
- 2. (4pts) Graph the following regions. Rotate them around the y-axis and compute their volumes.
 - (a) The region below $f(x) = \sqrt{x}$, above y = 0 and to the left of x = 4.
 - (b) The region above $f(x) = x^3$, below y = 8 and to the right of x = 0.
 - (c) The region below $f(x) = \sin(x)$, above y = 0 from x = 0 to $x = \pi$.
- 3. (10pts) Compute the following integrals. For some, you may need to apply more than one technique to compute the final integral.

 - (a) $\int \frac{x^2}{\sqrt{1-x^2}} dx$ (b) $\int \frac{x}{\sqrt{1-x^2}} dx$ (c) $\int \frac{25}{(x-4)(2x+1)} dx$ (d) $\int \frac{6x^2-4}{x^2(x-2)} dx$ (e) $\int \frac{4e^x}{e^{2x}-4} dx$
- 4. (2pts) Let's compute the integral $\int \sec(\theta) d\theta$. We can transform this

$$\int \sec(\theta) \ d\theta = \int \frac{d\theta}{\cos(\theta)} = \int \frac{\cos(\theta) \ d\theta}{\cos^2(\theta)} = \int \frac{\cos(\theta)}{1 - \sin^2(\theta)} \ d\theta.$$

Now make a substitution, and then use partial fractions to complete the integral.