习题三: 随机变量的函数

一、选择题:

- 1. 设 R.V.X,Y 相互独立,且 $X \sim N(2,1),Y \sim N(1,1)$,则以下正确的是 1
 - A. $P\{X Y \le 1\} = \frac{1}{2}$;
- B. $P\{X Y \le 0\} = \frac{1}{2}$;
- C. $P\{X + Y \le 1\} = \frac{1}{2}$; D. $P\{X + Y \le 0\} = \frac{1}{2}$.
- 2. (2012) 设随机变量 X 和 Y 相互独立,且都服从区间(0,1)上的均匀分布,则

 $P\{X^2 + Y^2 \le 1\} =$

1

- A. $\frac{1}{4}$; B. $\frac{1}{2}$; C. $\frac{\pi}{8}$; D $\frac{\pi}{4}$.
- 3. 设随机变量 X, Y 相互独立,且均服从泊松分布 P(2),则 P(X + Y = 2) =1

 - A. $2e^{-2}$; B. $4e^{-2}$:
- $C. 8e^{-4}$:
- 4. 已知两个随机变量 X, Y 相互独立同分布,且 $P\{X=-1\}=P\{Y=-1\}=\frac{1}{2}$,

$$P{X = 1} = P{Y = 1} = \frac{1}{2}$$
,则下列各式中成立的是

1

A. $P\{X = Y\} = \frac{1}{2}$;

B. $P\{X = -Y\} = 1$;

C. $P\{X + Y = 0\} = \frac{1}{4}$;

- D. $P\{XY = 1\} = \frac{1}{4}$.
- 5. 设连续型随机变量 X 的概率密度 $p(x) = \frac{1}{\pi(1+x^2)}$, 则 Y = 2X 的概率密度为

A.
$$\frac{1}{\pi(1+4y^2)}$$
; B. $\frac{2}{\pi(4+y^2)}$; C. $\frac{1}{\pi(1+y^2)}$; D. $\frac{1}{\pi} \arctan y$

B.
$$\frac{2}{\pi(4+y^2)}$$

C.
$$\frac{1}{\pi(1+y^2)}$$
;

- 6. 设连续型随机变量 X 的分布密度为 $p(x) = \begin{cases} 2x^3 e^{-x^2} & x > 0 \\ 0 & x \le 0 \end{cases}$, 则 $Y = X^2$ 的分布密

度为 1

A.
$$p_{Y}(y) = \begin{cases} ye^{-y} & y > 0 \\ y & y \le 0 \end{cases}$$
;

B.
$$p_{Y}(y) = \begin{cases} e^{-y} & y > 0 \\ y & y \le 0 \end{cases}$$
;

C.
$$p_{Y}(y) = \begin{cases} ye^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$
; D. $p_{Y}(y) = \begin{cases} ye^{y} & y > 0 \\ y & y \le 0 \end{cases}$.

D.
$$p_{\gamma}(y) = \begin{cases} ye^{y} & y > 0 \\ y & y \le 0 \end{cases}$$

7. 设随机变量 X,Y 相互独立, 其分布函数分别为 $F_1(x)$ 、 $F_2(y)$, 则随机变量

 $Z = \max(X, Y)$ 的分布函数为

- A. $F(z) = \max\{F_1(z), F_2(z)\};$ B. $F(z) = \min\{1 F_1(z), 1 F_2(z)\};$
- C. $F(z) = F_1(z)F_2(z)$;
- D. $F(z) = 1 [1 F_1(z)][1 F_2(z)]$.
- 8. (2008)设随机变量 X,Y 独立同分布,其 X 的分布函数分别为 F(x),则随机变

量 $Z = \max(X,Y)$ 的分布函数为

1

A. $F^{2}(x)$;

- B. F(x)F(y);
- C. $1 [1 F(x)]^2$;
- D. [1 F(x)][1 F(y)]

二、填空题:

1. 设随机变量 $X \sim B(2, p)$,随机变量 $Y \sim B(3, p)$,若 $P(X \ge 1) = \frac{5}{9}$,

2. 设随机变量X和Y相互独立,且X和Y的概率分布分别为,

X	0	1	2	3
P	1/2	1/4	1/8	1/8

Y	-1	0	1
P	1/3	1/3	1/3

则 $P{X + Y = 2} =$ ______.

- 3. 设 $X \sim U(0,2)$,则 $Y = X^2$ 在 (0,4) 内的概率分布密度 $p_Y(y) =$ ______.
- 4. 设随机变量 X 的分布密度为 $p(x) = \begin{cases} 2x & 0 < x < 1 \\ 0 & x \le 0 \text{ or } x \ge 1 \end{cases}$, 若随机变量 Y 表示对

X 的 3 次独立观察中事件 $(X \le \frac{1}{2})$ 出现的次数,则 P(Y = 0) = ______.

5.	设随机变量 X , Y 相互独立且均服从标准正态分布,则概率 $P\{\max(X,Y) \leq 0\}$
	=
6.	(2006)设随机变量 X, Y相互独立且均服从区间[0,3]上的均匀分布,则概率
	$P\{\max(X,Y)\leq 1\} = \underline{\hspace{1cm}}.$
7.	设随机变量 X , Y 相互独立且均服从 $B(1, 0.9)$,则 $Z = min(X,Y)$ 的分布律
	为