(B)卷

考试课程		概率i 理组	仑与数 充计	考	试日期	2010 6 月	年 日	成			
课程·	무	A070	2140	175	教师号			任课教	攻师姓 S		
考生姓名	3		学号	(8位)		年级			专게	<u>,</u>	
_	1 1	1.1	<u>=</u>	四	五.	六	七	J)	九	十

- 一、选择题,将正确答案填在括号内(每小题 3 分,共 18 分)
- 1. 对于任意两事件 $A,B,P(A \cup B)$ 等于 (A)

A.
$$P(A) + P(B) - P(AB)$$

B.
$$P(A) + P(B) - P(A)P(B)$$

C.
$$P(A) + P(B)$$

D.
$$1 - P(\overline{A})P(\overline{B})$$

2. 设随机变量 $X \sim b(5,0.2)$,则下列结论中正确的是 (C)

A.
$$P\{X = 2\} = 0.2^2 \times 0.8^2$$

A.
$$P\{X = 2\} = 0.2^2 \times 0.8^3$$
 B. $P\{X = 2\} = 0.8^2 \times 0.2^3$

C.
$$P\{X=2\} = C_5^2 \cdot 0.2^2 \times 0.8^3$$

C.
$$P\{X=2\} = C_5^2 \cdot 0.2^2 \times 0.8^3$$
 D. $P\{X=2\} = C_5^2 \cdot 0.8^2 \times 0.2^3$

3. 随机变量 X 的概率密度为 $f(x) = \frac{1}{2\sqrt{\pi}}e^{-\frac{(x+3)^2}{4}}$, $x \in (-\infty, +\infty)$, 则 $Y = (B) \sim N(0,1)$

$$A. \quad \frac{X+3}{2}$$

B.
$$\frac{X+3}{\sqrt{2}}$$

C.
$$\frac{X-3}{2}$$

D.
$$\frac{X-3}{\sqrt{2}}$$

4. 设随机变量 X 和 Y 相互独立, $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$,则随机变量

$$Z = 2X - 3Y + 1$$
的方差 $D(Z)$ 等于

(D)

A.
$$2\sigma_1^2 - 3\sigma_2^2$$

B.
$$4\sigma_1^2 - 9\sigma_2^2$$

C.
$$4\sigma_1^2 + 9\sigma_2^2 + 1$$
 D. $4\sigma_1^2 + 9\sigma_2^2$

D.
$$4\sigma_1^2 + 9\sigma_2^2$$

5. 设(X,Y)的联合分布律如下表所示:

Y	0	1	2
-1	1/15	t	1/5
1	S	1/5	3/10

则(s,t)=(C)时,X与Y相互独立.

- (A) (1/5,1/15);
- (B) (1/15,1/5);
- (C) (1/10,2/15);
- (D) (2/15,1/10).

6. 设 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知, X_1, X_2, \dots, X_n 为来自总体X的一个样本,则 μ 的 置信度为95%的置信区间为(A).

A.
$$(\overline{X} - \frac{\sigma}{\sqrt{n}} Z_{0.025}, \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{0.025});$$
 B. $(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{0.025}, \overline{X} + \frac{\sigma}{\sqrt{n}} t_{0.025})$

B.
$$(\overline{X} - \frac{\sigma}{\sqrt{n}}t_{0.025}, \overline{X} + \frac{\sigma}{\sqrt{n}}t_{0.025})$$

C.
$$(\overline{X} - \frac{\sigma}{\sqrt{n}} Z_{0.05}, \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{0.05})$$
 D. $(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{0.05}, \overline{X} + \frac{\sigma}{\sqrt{n}} t_{0.05})$

D.
$$(\overline{X} - \frac{\sigma}{\sqrt{n}}t_{0.05}, \overline{X} + \frac{\sigma}{\sqrt{n}}t_{0.05})$$

- 二、填空题(每空格2分,共12分)
- 1. 设事件 A, B 相互独立, P(A) = 0.4 ,P(B) = 0.6 , 则概率 $P(A \cup B) = 0.76$.
- 2. 袋内装有6个白球,4个黑球,从中仟取三个,取出的三个球都是白球的概率 1/6 .
- 3. 设 $X \sim N(10, \sigma^2)$, $P\{10 < X < 20\} = 0.3$, 则 $P\{0 < X < 10\}$ 的值为<u>0.3</u>.
- 4. 设随机变量 X 服从(0,2)上的均匀分布,则随机变量 $Y=X^2$ 在(0,4)上概率密度 $f_Y(y)=$

$$\frac{1}{4\sqrt{y}}$$

- 5. 设随机变量 X 服从二项分布 b(10,0.3), 随机变量 Y 服从正态分布 N(2.4), 且 X, Y 相 互独立,则E(X-2Y)=-1, $D(X-2Y)=_{18.1}$.
- =、(本题 6 %) 将两信息分别编码为 <math>A 和 B 传递出去,接收站收到时, A 被误作 B 的概 率为0.04,而B被误作A的概率为0.03,信息A与信息B传递的频繁程度为2:1,若 接收站收到的信息是A,求原发信息是A的概率.
 - 解:设事件 A_1 为发出信息A,事件 A_2 为收到信息A所求概率为

$$P(A_1|A_2) = \frac{P(A_1)P(A_2|A_1)}{P(A_1)P(A_2|A_1) + P(\overline{A_1})P(A_2|\overline{A_1})}$$
 3 \$\frac{1}{2}\$

$$=\frac{\frac{2}{3}\times(1-0.04)}{\frac{2}{3}\times(1-0.04)+\frac{1}{3}\times0.03}=\frac{64}{65}$$

四. 本题 10 分)设随机变量 X 的密度函数为 $f(x) = \begin{cases} ax, 0 < x < 1 \\ 0, else \end{cases}$

- (1) (3分) 求常数a;
- (2) (3分) 求X的分布函数F(x);
- (3) (4分) 方差 D(X).

解: (1) 因为
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
 ______1 分
 所以 $\int_{0}^{1} ax dx = 1$

得
$$\frac{a}{2} = 1$$
,即 $a = 2$ ______ 3分

(2)
$$X$$
 的分布函数 $F(x) = \int_{-\infty}^{x} f(t)dt$ ______ 1 分

$$F(x) = \begin{cases} 0, & x \le 0 \\ x^2, & 0 < x < 1 \\ 1, & x \ge 1 \end{cases}$$
 3 \(\frac{\frac{1}{3}}{3}\)

$$D(X) = E(X^{2}) - [E(X)]^{2} = \frac{1}{18}$$

五. (本题 18 分)设随机变量(X,Y)的概率分布律为:

X	0	1	2
-1	0.3	0.1	0.2
1	0.1	0.3	0

求: (1) (8分) X 的边缘分布律和Y 的边缘分布律, 并问X 与Y 是否相互独立?

(2) (6分) 相关系数 ρ_{XY} ,并问X与Y是否相关?

(3) (4分)条件概率 $P\{X \ge 1 | Y = 1\}$

解: (1) 关于 X 的边缘分布律为

X	0	1	2
P	0.4	0.4	0.2

_____ 3分

关于Y的边缘分布律为

Y	-1	1
P	0.6	0.4

3分

$$\exists P({X = 0, Y = -1} \neq P{X = 0} \cdot P{Y = -1})$$

所以X与Y不相互独立.

_____2分

(2)
$$E(XY) = -2 \times 0.2 + (-1) \times 0.1 + 0 \times 0.4 + 1 \times 0.3 = -0.2$$

$$E(X) = 0 \times 0.4 + 1 \times 0.4 + 2 \times 0.2 = 0.8$$

$$E(Y) = -1 \times 0.6 + 1 \times 0.4 = -0.2$$

得
$$Cov(X,Y) = E(XY) - E(X)E(Y) = -0.04$$

4 £

$$\mathbb{Z} E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.4 + 2^2 \times 0.2 = 1.2$$

$$E(Y^2) = (-1)^2 \times 0.6 + 1^2 \times 0.4 = 1$$

得
$$D(X) = E(X^2) - [E(X)]^2 = 0.56$$

$$D(Y) = E(Y^2) - [E(Y)]^2 = 0.96$$

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}} = -\frac{\sqrt{10}}{4\sqrt{21}}$$

所以 X 与 Y 相关

6 4

(3) 条件概率
$$P\{X \ge 1 | Y = 1\} = \frac{P\{X \ge 1, Y = 1\}}{P\{Y = 1\}}$$
 2分

$$= \frac{P\{X=1, Y=1\} + P\{X=2, Y=1\}}{P\{X=0\}} = \frac{0.3}{0.4} = \frac{3}{4}$$
 4 \(\frac{1}{2}\)

六. (本题 8 分) 某单位有 150 架电话机,每架分机有 4%的时间要使用外线,假设每架分机是 否使用外线是相互独立的,求该单位有 10 条外线时,至少有一架分机使用外线时需要等待 的概率?

解:设X表示使用外线的电话分机台数,由于 $X \sim b(150,0.04)$, _____3分

则

$$E(X) = 6$$
, $D(X) = 5.76$,由中心极限定理可知:

$$P\{X \ge 11\} = 1 - P\{X < 11\} = 1 - P\{0 < X < 11\}$$

$$= 1 - P\{\frac{0 - 6}{2.4} < \frac{X - 6}{2.4} < \frac{11 - 6}{2.4}\} = 1 - [\Phi(2.083) - \Phi(-2.5)]$$

$$= 2 - \Phi(2.083) + \Phi(2.5)$$

七. (每小题 5 分,共 10 分)设总体 X 的概率密度为 $f(x) = \begin{cases} (\theta+1)x^{\theta}, 0 \le x \le 1 \\ 0, else \end{cases}$,其中 $\theta > -1$

是未知参数, x_1,x_2,\cdots,x_n 是 X 的一个样本 X_1,X_2,\cdots,X_n 的观察值,试求参数 θ 的矩估计量和最大似然估计值.

解: (1)
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x (\theta + 1) x^{\theta} dx = \frac{\theta + 1}{\theta + 2}$$
 3 分 所以令 $E(X) = \overline{X}$,即 $\frac{\theta + 1}{\theta + 2} = \overline{X}$ 4 分 解得参数 θ 的矩估计量为: $\hat{\theta} = \frac{2\overline{X} - 1}{1 - \overline{X}}$ 5 分

(2) 似然函数
$$L(\theta) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} (\theta + 1) x_i^{\theta} = (\theta + 1)^n (x_1 x_2 \cdots x_n)^{\theta}$$
 ______2 分 取对数 $\ln L(\theta) = n \ln(\theta + 1) + \theta \ln(x_1 x_2 \cdots x_n)$

解得参数
$$\theta$$
的最大似然估计值 $\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln x_i} - 1$ ______5分

八.(8 分)设某批电子元件的寿命 X 服从正态分布 $N(\mu,\sigma^2)$, μ,σ^2 均为未知,随机抽取 1 6 只,测得 x=1509 ,s=32 (单位为小时)。求该批电子元件平均寿命 μ 的置信度 为 $1-\alpha$ 的置信区间($\alpha=0.05$, $t_{0.025}(15)=2.1315$, $t_{0.025}(15)=2.1315$

解: 置信区间为
$$(\bar{x} - t_{\frac{\alpha}{2}}(15) \frac{s}{\sqrt{16}}, \bar{x} + t_{\frac{\alpha}{2}}(15) \frac{s}{\sqrt{16}})$$
 ______6分

九. (本题 6 分)设总体 X 服从正态分布 $N(\mu,\sigma^2)$,样本观察值 x_1,x_2,\cdots,x_n 。 对显著性水平 α ,求假设检验 $H_0:\sigma^2 \leq {\sigma_0}^2$ 的拒绝域。

十. (本题 4 分)设随机变量(X,Y)在矩形 $G = \{(x,y) | 0 < x < 2, 0 < y < 1\}$ 上服从均匀分

布,试证: 随机变量
$$Z = X \cdot Y$$
 的概率密度为 $f_Z(z) = \begin{cases} \frac{1}{2} (\ln 2 - \ln z), 0 < z < 2 \\ 0, 其它 \end{cases}$

证: 由题意:
$$(X,Y)$$
的概率密度为 $f(x,y) = \begin{cases} \frac{1}{2}, 0 < x < 2, 0 < y < 1, \\ 0, 其它 \end{cases}$

设Z的分布函数为 $F_z(z)$,

则
$$F_Z(z) = P\{XY \le z\} = \iint_{XY \le z} f(x, y) dx dy$$
 ______2 分

易知: 当 $z \le 0$ 时 $F_z(z) = 0$; 当 $z \ge 2$ 时 $F_z(z) = 1$;

当
$$0 < z < 2$$
时, $F_Z(z) = P\{XY \le z\} = 1 - P\{XY > z\}$

$$=1-\int_{z}^{2}dx\int_{z}^{1}\frac{1}{z}dy=\frac{1}{2}(1+\ln 2-\ln z)z$$

求导: 得
$$Z$$
 的概率密度为 $f_z(z) =$
$$\begin{cases} \frac{1}{2} (\ln 2 - \ln z), 0 < z < 2 \\ 0, 其它 \end{cases}$$
 4 分