Soit z, z' deux nombres complexes.

- 1. Rappeler les valeurs de $A = z\overline{z}$, $B = |z\overline{z}|$, $C = |\overline{z}z'|^2$ en fonction de |z| et |z'|.
- 2. On suppose dans cette question et la suivante que |z| < 1 et |z'| < 1. Montrer que

$$\overline{z}z' \neq 1$$

3. Montrer que

$$1 - \left| \frac{z - z'}{1 - \overline{z}z'} \right|^2 = \frac{(1 - |z'|^2)(1 - |z|^2)}{|1 - \overline{z}z'|^2}$$

4. Soit $(z_n)_{n\in\mathbb{N}}$ une suite de nombres complexes vérifiant : $|z_0|<1, |z_1|<1$ et pour tout $n\in\mathbb{N}$:

$$z_{n+2} = \frac{z_n - z_{n+1}}{1 - \overline{z_n} z_{n+1}}$$

Montrer que pour tout $n \in \mathbb{N}$, $|z_n| < 1$ et que $\overline{z_n} z_{n+1} \neq 1$, et donc que $(z_n)_{n \in \mathbb{N}}$ est bien définie pour tout $n \in \mathbb{N}$.

On pourra utiliser les deux questions précédentes dans une récurrence double