

Global United Technology Services Co., Ltd.

Report No.: GTSE15010009405

FCC Report

NEG TECHNOLOGY CO., LIMITED Applicant:

Rm 1406, Block B, Jinsejiari, Jingtian south road, Futian **Address of Applicant:**

district, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: S4030 Trade Mark: **OWN**

2AAZ8-S4030 FCC ID:

Applicable standards: FCC CFR Title 47 Part 15 Subpart B:2013

Date of sample receipt: January 20, 2015

January 20-29, 2015 Date of Test:

January 29, 2015 Date of report issue:

PASS * Test Result:

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	January 29, 2015	Original

Prepared By:	Edward.Pan	Date:	January 29, 2015
	Project Engineer		
Check By:	hank. yan	Date:	January 29, 2015
	Reviewer		

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	CO	NTENTS	3
4	TES	ST SUMMARY	4
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	5
	5.4	TEST FACILITY	6
	5.5	TEST LOCATION	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TES	ST INSTRUMENTS LIST	7
7	TES	ST RESULTS AND MEASUREMENT DATA	8
	7.1	CONDUCTED EMISSIONS	8
	7.2	RADIATED EMISSION	
8	TES	ST SETUP PHOTO	17
9	EU7	CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part15.107	PASS
Radiated Emissions	Part15.109	PASS

PASS: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	NEG TECHNOLOGY CO., LIMITED	
Address of Applicant:	Rm 1406, Block B, Jinsejiari, Jingtian south road, Futian district, Shenzhen, China	
Manufacturer:	NEG TECHNOLOGY CO., LIMITED	
Address of Manufacturer:	Rm 1406, Block B, Jinsejiari, Jingtian south road, Futian district, Shenzhen, China	

5.2 General Description of EUT

Product Name:	Mobile Phone
Model No.:	S4030
Power supply:	Model No.: S4030
	Input: AC 100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1A
	DC 3.7V Li-ion Battery, 1600mAh

5.3 Test mode

Test mode:	
Playing mode	Keep the EUT in Playing mode
Video Record mode	Keep the EUT in Video Recording mode
PC mode	Keep the EUT in exchanging data mode.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Apple	PC	A1278	C1MN99ERDTY3	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.7 Deviation from Standards

Biconical, log.per. antenna and horn antenna were used instead of dipole antenna. Semi-anechoic Chamber was used as alternation of open air test sites, and all test suites were performed with radiated method in it.

5.8 Abnormalities from Standard Conditions

None

5.9 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd. Project No.: GTSE150100094RF

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	Mar. 28 2014	Mar. 27 2015	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	July 01 2014	June 30 2015	
4	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	July 01 2014	June 30 2015	
5	Double -ridged waveguide horn	SCHWARZBECK	9120D	GTS208	June 27 2014	June 26 2015	
6	RF Amplifier	HP	8347A	GTS204	July 01 2014	June 30 2015	
7	Preamplifier	HP	8349B	GTS206	July 01 2014	June 30 2015	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial cable	GTS	N/A	GTS210	Mar. 29 2014	Mar. 28 2015	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 29 2014	Mar. 28 2015	

Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2013	Sep. 06 2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	July 01 2014	June 30 2015	
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	July 01 2014	June 30 2015	
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	July 01 2014	June 30 2015	
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	July 01 2014	June 30 2015	
6	Coaxial Cable	GTS	N/A	GTS227	July 01 2014	June 30 2015	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	July 08 2014	July 07 2015	

Test Results and Measurement Data

7.1 Conducted Emissions

Test Requirement:	FCC Part15 B Section 15.107				
Test Method:	ANSI C63.4:2003				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Fraguenov rongo (MUz)	Limit (c	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5 5-30	56	46		
	* Decreases with the logarithm	60	50		
Test setup:	Reference Plane	Tor the frequency.			
	AUX Equipment Test table/Insulation plane Remark EUT: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm 				
	termination. (Please refer to photographs).	o the block diagram of	the test setup and		
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.				
Test Instruments:	Refer to section 6 for details				
Test mode:	Pre-scan all modes in section 5.3, and found the PC mode which is the worst mode, so only the data of worst mode was show on the test report.				
Test results:	Pass				

Measurement Data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0094RF Test mode : PC mode Test Engineer: Mike

est	Engineer:		LICH	C-1-1-		T : -: +	0	
	Freq		LISN Factor				Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1 2 3 4 5 6	0.592 1.117 3.759	38. 27 33. 42 35. 20	0.13	0.12 0.13 0.15	45. 41 38. 52 33. 68 35. 54	61.38 56.00 56.00 56.00	-15. 97 -17. 48 -22. 32 -20. 46	QP QP QP QP

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0094RF Test mode : PC mode Test Engineer: Mike

	biigineer.	Read	LISN				Over		
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
	MHz	dBuV	₫B	dB	dBuV	dBuV	dB		
1	0.190	47.92	0.07	0.13	48.12	64.02	-15.90	QP	
2	0.253	45.10	0.06						
3	0.573	36.44	0.07	0.12	36.63	56.00	-19.37	QP	
4	1.082	32.39	0.08	0.13	32.60	56.00	-23.40	QP	
5	3.943	34.63	0.14	0.15	34.92	56.00	-21.08	QP	
6	6.285	27.06	0.17	0.16	27.39	60.00	-32.61	QP	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Shenzhen, China 518102

7.2 Radiated Emission

 Naulateu Lillission								
Test Requirement:	FCC Part15 B Section 15.109							
Test Method:	ANSI C63.4:2003							
Test Frequency Range:	30MHz to 9GHz							
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver setup:								
	Frequency Detector RBW VB				Remark			
	30MHz- Quasi-peak 1GHz		k 120kHz	300kHz	Quasi-peak Value			
	Above 1GHz Peak		1MHz	3MHz	Peak Value			
		Peak	1MHz	10Hz	Average Value			
Limit:								
	Freque	-	Limit (dBuV		Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-2		43.5		Quasi-peak Value			
	216MHz-9		46.0	0	Quasi-peak Value			
	960MHz-	-1GHz	54.0	0	Quasi-peak Value			
	Above 1	IGHz	54.0	0	Average Value			
	7,0000	10112	74.0	0	Peak Value			
Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.							
	2. The EUT wa antenna, whi tower.				nce-receiving ble-height antenna			
	ground to de	termine the raid vertical pol	naximum value	e of the field	r meters above the d strength. Both are set to make the			
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.							
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test setup:	Below 1GHz							

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Measurement Data

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M HORIZONTAL Condition

Job No. : 0094
Test Mode : PC m
Test Engineer: Chen : 0094RF : PC mdoe

651	rugineer.	Citeri							
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	dВ	dB	dBuV/m	dBuV/m	dВ	
		F0 F4					40.00		
1	81.497	52.51	11.13	1.04	29.79	34.89	40.00	-5.11	QP
2	166.068	53.73	10.85	1.66	29.33	36.91	43.50	-6.59	QP
3	194.453	51.31	12.56	1.81	29.22	36.46	43.50	-7.04	QP
4	270.375	50.45	14.38	2.22	29.80	37.25	46.00	-8.75	QP
5	480.528	48.10	18.07	3.22	29.34	40.05	46.00	-5.95	QP
6	721.726	42.22	21.10	4.17	29.20	38.29	46.00	-7.71	QP

Shenzhen, China 518102

: 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M VERTICAL

Site Condition Job No. Test Mode : 0094RF : PC mdoe Test Engineer: Chen

	Freq		Antenna Factor		_				Remark
	MHz	dBu∜	<u>dB</u> /m		<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2 3 4 5	37.416 165.487 181.920 283.979 480.528	54.48 52.50 49.89	10.82 11.84 14.75	1.66 1.75 2.29	29.27 29.90	37.62 36.82 37.03	43.50 43.50 46.00	-5.88 -6.68 -8.97	QP QP QP
6	962, 162	36, 88	23.49	5, 09	29, 10	36, 36	54.00	-17.64	QP

Above 1GHz

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) HORIZONTAL Condition

: 0094RF Job No. Test Mode Test Engineer : PC mdoe

rugineer:	Chen							
	Read	Antenna	Cable	Preamp		Limit	Over	
Frea							Limit	Remark
MHz	dBuV		dB	dB	dBuV/m	dBuV/m	dB	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ша,	ш, ж			aba 17 m	ши, ж		
1189.000	42.67	25.29	4.46	33.07	39.35	74.00	-34.65	Peak
		27.92						
3583.000	39.04	29.11	7.13	32.66	42.62	74.00	-31.38	Peak
4168.000	37.00	30.10	8.03	32.00	43.13	74.00	-30.87	Peak
4564.000	36.03	31.44	8.39	31.97	43.89	74.00	-30.11	Peak
5644.000	34.08	32.36	9.72	32.35	43.81	74.00	-30.19	Peak
	Freq MHz 1189.000 2647.000 3583.000 4168.000 4564.000	Freq Level MHz dBuV 1189.000 42.67 2647.000 41.34 3583.000 39.04 4168.000 37.00 4564.000 36.03	ReadAntenna Freq Level Factor MHz dBuV dB/m 1189.000 42.67 25.29 2647.000 41.34 27.92 3583.000 39.04 29.11 4168.000 37.00 30.10	ReadAntenna Cable Level Factor Loss MHz dBuV dB/m dB 1189.000 42.67 25.29 4.46 2647.000 41.34 27.92 5.63 3583.000 39.04 29.11 7.13 4168.000 37.00 30.10 8.03 4564.000 36.03 31.44 8.39	ReadAntenna Cable Preamp Loss Factor MHz dBuV dB/m dB dB 1189.000 42.67 25.29 4.46 33.07 2647.000 41.34 27.92 5.63 33.72 3583.000 39.04 29.11 7.13 32.66 4168.000 37.00 30.10 8.03 32.00 4564.000 36.03 31.44 8.39 31.97	ReadAntenna Cable Preamp Level Factor Loss Factor Level	ReadAntenna Cable Preamp Limit Level Factor Level Line Level Factor Leve	ReadAntenna Cable Preamp Limit Over Level Factor Level Limit Limit

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) VERTICAL : 0094RF Condition

Job No. Test Mode : PC mdoe Test Engineer: Chen

~~ ~	mile mile .	OLICAL							
	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	<u>d</u> B	
1	2296.000			5.29		40.23			
2	2773.000				33.59				
3	3574.000	39.12	29.11	7.11	32.67	42.67	74.00	-31.33	Peak
4	4564.000	36.24	31.44	8.39	31.97	44.10	74.00	-29.90	Peak
5	4933.000	35.21	31.90	8.70	32.15	43.66	74.00	-30.34	Peak
6	5725.000	33.08	32.53	9.83	32.29	43.15	74.00	-30.85	Peak

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTSE15010009401

----- end-----