# **DOUBLE INTEGRALS**

FARIKHIN DEPT MATEMATIKA

### **Double Integrals**

Suppose that f(x, y) is defined on a rectangular region R given by

$$R: \qquad a \le x \le b, \quad c \le y \le d.$$

We imagine R to be covered by a network of lines parallel to the x- and y-axes



If f is continuous throughout R, then, as we refine

$$\iint\limits_R f(x,y)\,dx\,dy. = \iint\limits_R f(x,y)\,dA = \lim_{\Delta A\to 0} \sum_{k=1}^n f(x_k,y_k) \Delta A_k.$$

### **Properties of Double Integrals**

1. 
$$\iint_{R} kf(x, y) dA = k \iint_{R} f(x, y) dA$$
 (any number k)

2. 
$$\iint_R (f(x, y) \pm g(x, y)) dA = \iint_R f(x, y) dA \pm \iint_R g(x, y) dA$$

3. 
$$\iint_{R} f(x, y) dA \ge 0 \quad \text{if} \quad f(x, y) \ge 0 \text{ on } R$$

**4.** 
$$\iint_R f(x, y) dA \ge \iint_R g(x, y) dA \quad \text{if} \quad f(x, y) \ge g(x, y) \text{ on } R$$

5. 
$$\iint_{R} f(x, y) dA = \iint_{R_{1}} f(x, y) dA + \iint_{R_{2}} f(x, y) dA.$$

It holds when R is the union of two nonoverlapping rectangles  $R_1$  and  $R_2$ 

#### KOMPUTASI UNTUK DOUBLE INTEGRAL

#### Theorem 1

If f(x, y) is continuous on the rectangular region  $R: a \le x \le b, c \le y \le d$ , then

$$\iint_{R} f(x, y) dA = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx.$$

#### Theorem 2

Let f(x, y) be continuous on a region R.

1. If R is defined by  $a \le x \le b$ ,  $g_1(x) \le y \le g_2(x)$ , with  $g_1$  and  $g_2$  continuous on [a, b], then

$$\iint_{R} f(x, y) dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy dx.$$

2. If R is defined by  $c \le y \le d$ ,  $h_1(y) \le x \le h_2(y)$ , with  $h_1$  and  $h_2$  continuous on [c, d], then

$$\iint_{R} f(x, y) dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) dx dy.$$

#### **EXAMPLE**

Calculate 
$$\iint_R f(x, y) dA$$
 for

$$f(x, y) = 1 - 6x^2y$$
 and  $R: 0 \le x \le 2, -1 \le y \le 1.$ 

#### Solution

$$\iint_{R} f(x, y) dA = \int_{-1}^{1} \int_{0}^{2} (1 - 6x^{2}y) dx dy = \int_{-1}^{1} \left[ x - 2x^{3}y \right]_{x=0}^{x=2} dy$$
$$= \int_{-1}^{1} (2 - 16y) dy = \left[ 2y - 8y^{2} \right]_{-1}^{1} = 4.$$

$$\int_0^2 \int_{-1}^1 (1 - 6x^2 y) \, dy \, dx = \int_0^2 \left[ y - 3x^2 y^2 \right]_{y=-1}^{y=1} dx$$
$$= \int_0^2 \left[ (1 - 3x^2) - (-1 - 3x^2) \right] dx = \int_0^2 2 \, dx = 4.$$

EXAMPLE. Calculate

$$\iint\limits_R \frac{\sin x}{x} \, dA,$$

where R is the triangle in the xy-plane bounded by the x-axis, the line y = x, and the line x = 1.

**Solution** If we integrate first with respect to y and then with respect to x, we find

$$\int_0^1 \left( \int_0^x \frac{\sin x}{x} \, dy \right) dx = \int_0^1 \left( y \frac{\sin x}{x} \right]_{y=0}^{y=x} dx = \int_0^1 \sin x \, dx$$
$$= -\cos(1) + 1 \approx 0.46.$$

If we reverse the order of integration and attempt to calculate

$$\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} \ dx \, dy, \ \red{27?}$$

# Cara menentukan batas integral

- 1. Buat gambar region R
- 2. Tentukan bagian atas dan bawah kurvanya

To evaluate  $\iint_R f(x, y) dA$  over



# Cara menentukan batas pada integral anda (1)

#### Integral trhdp dy kemudian dx



- 1. Buat garis sejajar-Y
- 2. cari kurva bag atas
- 3. cari kurva bag bawah



 Cari titik potong kedua kurva tentukan nilai terkecil dan ter besar utk koordinat - X

$$\iint\limits_R f(x, y) \, dA = \int_{x=0}^{x=1} \int_{y=1-x}^{y=\sqrt{1-x^2}} f(x, y) \, dy \, dx.$$

# Cara menentukan batas pada integral anda (1)

#### INTEGRAL TRHDP DX KEMUDIAN DY

- 1. Buat garis sejajar X
- 2. cari kurva bag atas (sbg fs y)
- 3. cari kurva bag bawah (sbg fs y)
- 4. cari titik potong kurva atas & kurva bawah. Tentukan nilai terbesar dan terkecil koordinta-Y



$$\iint_{R} f(x, y) dA = \int_{0}^{1} \int_{1-y}^{\sqrt{1-y^{2}}} f(x, y) dx dy.$$

**EXAMPLE** write an equivalent integral with the order of integration reversed.

$$\int_0^2 \int_{x^2}^{2x} (4x + 2) \, dy \, dx$$

**Solution** The region of integration is given by the inequalities  $x^2 \le y \le 2x$  and  $0 \le x \le 2$ . It is therefore the region bounded by the curves  $y = x^2$  and y = 2x between x = 0 and x = 2



The integral is

$$\int_0^4 \int_{y/2}^{\sqrt{y}} (4x + 2) \, dx \, dy.$$

The common value of these integrals is 8.

# LATIHAN : TULIS DALAM BENTUK dxdy

$$\int_0^1 \int_2^{4-2x} dy \, dx$$

$$\int_0^1 \int_{1-x}^{1-x^2} dy \, dx$$





The height of this column is f(x, y), so its volume is

$$dV = f(x, y) dA.$$

$$V = \iint dV = \iint_R f(x, y) \ dA.$$

**EXAMPLE** Find the volume of the prism whose base is the triangle in the xy-plane bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane

$$z = f(x, y) = 3 - x - y$$
.

#### Solution

For any x between 0 and 1, y may vary from y = 0 to y = x Hence,

$$V = \int_0^1 \int_0^x (3 - x - y) \, dy \, dx = \int_0^1 \left[ 3y - xy - \frac{y^2}{2} \right]_{y=0}^{y=x} dx$$
$$= \int_0^1 \left( 3x - \frac{3x^2}{2} \right) dx = \left[ \frac{3x^2}{2} - \frac{x^3}{2} \right]_{x=0}^{x=1} = 1.$$



## **HUBUNGAN POLAR & KARTESIAN**

### **Equations Relating Polar and Cartesian Coordinates**

$$x = r \cos \theta$$
,  $y = r \sin \theta$ ,  $x^2 + y^2 = r^2$ ,  $\frac{y}{x} = \tan \theta$  (2)

### EXAMPLE 4

| Polar equation                          | Cartesian equivalent      |
|-----------------------------------------|---------------------------|
| $r\cos\theta=2$                         | x = 2                     |
| $r^2 \cos \theta \sin \theta = 4$       | xy = 4                    |
| $r^2\cos^2\theta - r^2\sin^2\theta = 1$ | $x^2 - y^2 = 1$           |
| $r = 1 + 2r \cos \theta$                | $y^2 - 3x^2 - 4x - 1 = 0$ |

## **Changing Cartesian Integrals into Polar Integrals**

**Step 1:** Substitute  $x = r \cos \theta$  and  $y = r \sin \theta$ , and replace dx dy by  $r dr d\theta$  in the Cartesian integral.

**Step 2:** Supply polar limits of integration for the boundary of R.

The Cartesian integral then becomes

$$\iint\limits_R f(x, y) \, dx \, dy = \iint\limits_G f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta,$$

#### **EXAMPLE** Evaluate

$$\iint\limits_{B} e^{x^2+y^2} dy \, dx,$$

where R is the semicircular region bounded by the x-axis and the curve  $y = \sqrt{1 - x^2}$  (Fig. 13.28).

#### Solution

$$\iint_{R} e^{x^{2}+y^{2}} dy \, dx = \int_{0}^{\pi} \int_{0}^{1} e^{r^{2}} r \, dr \, d\theta = \int_{0}^{\pi} \left[ \frac{1}{2} e^{r^{2}} \right]_{0}^{1} d\theta$$
$$= \int_{0}^{\pi} \frac{1}{2} (e-1) \, d\theta = \frac{\pi}{2} (e-1).$$



**13.28**  $0 \le r \le 1$ ,  $0 \le \theta \le \pi$ .

## Latihan

If R is the region bounded by the lines y = x, y = 0, x = 1, evaluate the double integral

$$\iint_{R} \frac{dx \, dy}{(1+x^2+y^2)^{3/2}}$$

by changing to polar coordinates.

Evaluate the integral

$$\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} (x^2 + y^2) \, dy \, dx$$

by changing to polar coordinates.