Supplementary material

Maintaining sliding-window neighborhood profiles in interaction networks

Rohit Kumar¹, Toon Calders¹, Aristides Gionis², and Nikolaj Tatti²

¹Department of Computer and Decision Engineering Université Libre de Bruxelles, Belgium

²Helsinki Institute for Information Technology Aalto University, Finland

A Correctness and complexity of the exact algorithm

Proposition 1. AddEdge updates the summary correctly.

Proof. Assume that we are adding $\{a,b\}$ at time t, and let H be the shapshot graph before adding this edge. Fix x. Let us define $\alpha_v(i) = h_H(x,v,i)$. Similarly, define $\beta_v(i) = h_{(t+1)}(x,v,i)$. To prove the proposition we need to show that (1) $\beta_v(i) = \max(g(v,x,i),\alpha_v(i))$ and (2) if g(v,x,i) is not set, then $\alpha_v(i) = \beta_v(i)$. Let us first prove that whenever set, we maintain the invariant,

$$g(v, x, i) \le \max\{h(p) \mid p \in Q_v, |p| - 1 \le i\} \le b_v(i),$$
 (1)

where Q_v contains all paths from x to v in G(t+1) containing (a,b) or (b,a). Note that the second inequality follows immediately from the definition of β . We prove the first by induction over i. The case i=1 is trivial. If i>1, then if g(v,x,i) is set, then either it is set by ADDEDGE or there is w such that g(w,x,i-1) is set. In the first case and, due to induction assumption, in the second case, it follows that g(v,x,i) is a horizon of some path in Q_v of length at most i.

We prove the main claim also by induction over i. Assume i = 1. The initialization of g(v, x, 1) in ADDEDGE now guarantees (1) and (2).

Assume i > 1. Assume that $\beta_v(i) > \alpha_v(i)$. This can only happen if there is a path $p = \langle v_0, \dots, v_k \rangle \in Q_v$ with $h(p) = \beta(i)$. Let $p' = \langle v_0, \dots, v_{k-1} \rangle$ and let $w = v_{k-1}$. We must have $\alpha_w(i-1) < \beta_w(i-1)$, as otherwise we have $\beta_v(i) = \alpha_v(i)$. By induction, (1) immediately implies that $\beta_w(i-1) = g(w, x, i-1) > \alpha_w(i-1)$. This means that MERGE(x, w, g(w, x, i-1), i-1) is called, and it returns true. Consequently, $g(v, x, i) \geq h(p) = \beta_v(i)$, Eq. 1 implies that $g(v, x, i) = \beta_v(i)$. This immediately proves (1) and (2).

Proposition 2. Let n = |V|, m = |E|, and r be the upper bound on the distances we are maintaining. The time complexity of ADDEDGE is $\mathcal{O}(rmn \log(n))$. The space complexity is $\mathcal{O}(rn^2)$.

Proof. The complexity of Algorithm 3 is $\log(n)$, since we need to search a summary and update $S^{v}[i]$ for node x.

Every g(u, x, i + 1) will be initiated only if g(v, x, i) was set for one of its neighbors v. As such, this may happen at most as many times as u has neighbors in the graph. Since the cummulative sum of all neighbors is 2m we can hence bound the number of times a g(u, x, i + 1) is set for x to 2m. Since there are n nodes, lines 5,6,7 are executed at most 2nm times per length i, and as a consequence this is also an upper bound on the number of calls to Algorithm 3. Putting it all together, we get a complexity of $\mathcal{O}(2nmr(\log(n)))$ for Algorithm 2. Since Algorithm 1 does only call Algorithm 2 once, this proves the complexity bound for time.

The complexity bound on space easily follows from the observation that for every node v, and every distance i = 0, ..., r, the summary $S^v[i]$ contains at most one entry for any other node.

B Correctness and complexity of the sketch algorithm

Proposition 4 (Part 1). The sketch version of ADDEDGE updates the summary correctly.

Proof. Assume that we are adding $\{a,b\}$ at time t, and let H be the shapshot graph before adding this edge. Fix x. Let us define $\alpha_v(i) = t$, where $(x,t) \in C^v[i]$ (based on H), and ∞ otherwise. Similarly, define $\beta_v(i)$ using G(t+1). To prove the proposition we need to show that (1) $\beta_v(i) = \max(g(v,x,i),\alpha_v(i))$ and (2) if g(v,x,i) is not set, then $\alpha_v(i) = \beta_v(i)$.

Let us first prove that whenever set, we maintain the invariant

$$g(v, x, i) \le \max\{h(p) \mid p \in Q_v, |p| - 1 \le i\} \le b_v(i),$$
 (2)

where Q_v contains all paths from a node y, with $\rho(y) = x$, to v in G(t+1) containing (a,b) or (b,a). The second inequality follows immediately by definition of β . We prove the first by induction over i. The case i=1 is trivial. If i>1, then if g(v,x,i) is set, then either it is set by ADDEDGE or there is w such that g(w,x,i-1) is set. In the first case and, due to induction assumption, in the second case, it follows that g(v,x,i) is a horizon of some path in Q_v of length at most i.

We prove the main claim also by induction over i. Assume i = 1. The initialization of g(v, x, 1) in ADDEDGE now guarantees (1) and (2).

Assume i > 1. Assume that $\beta_v(i) > \alpha_v(i)$. This can only happen if there is a path $p = \langle v_0, \dots, v_k \rangle \in Q_v$ with $h(p) = \beta(i)$. Let $p' = \langle v_0, \dots, v_{k-1} \rangle$ and let $w = v_{k-1}$. We must have $\alpha_w(i-1) < \beta_w(i-1)$, as otherwise we have $\beta_v(i) = \alpha_v(i)$. By induction, (1) immediately implies that $\beta_w(i-1) = g(w, x, i-1) > \alpha_w(i-1)$. This means that MERGE(x, w, g(w, x, i-1), i-1) is called, and it returns true. Consequently, $g(v, x, i) \geq h(p) = \beta_v(i)$, Eq. 2 implies that $g(v, x, i) = \beta_v(i)$. This immediately proves (1) and (2).

The next proposition gives an upper bound on space and memory consumption of the algorithm.

Proposition 4 (Part 2). Let n = |V|, m = |E|, and r be the upper bound on the distances we are maintaining. The time complexity of the sketch version of ADDEDGE is $\mathcal{O}(2^k rm \log^2(n))$. The space complexity is $\mathcal{O}(2^k nr \log^2 n)$.

Proof. Algorithm 4 needs to visit the iterate the entries in $C^v[i]$. Since there are at most $\mathcal{O}(\log n)$ different values of ρ , there are at most $\mathcal{O}(\log n)$ entries.

Every g(u, x, i + 1) will be initiated only if g(v, x, i) was set for one of its neighbors v. As such, this may happen at most as many times as u has neighbors in the graph. Since the cummulative sum of all neighbors is 2m we can hence bound the number of times a g(u, x, i + 1) is set for x to 2m. Since there are $\mathcal{O}(\log n)$ different values of ρ , lines 5,6,7 are executed at most $\mathcal{O}(\log nm)$ times per length i, and as a consequence this is also an upper bound on the number of calls to Algorithm 3. Putting it all together, we get a complexity of $\mathcal{O}(2mr\log^2(n))$ for Algorithm 2. Since Algorithm 1 does only call Algorithm 2 once, this proves the complexity bound for time.

The complexity bound on space easily follows from the observation that for every node v, and every distance i = 0, ..., r, the summary $C^v[i]$ contains at most $\mathcal{O}(\log n)$ entries that, and each entry requires $\mathcal{O}(\log n)$ space.

C Code to run the experiments

Please download the instruction and code to run the experiments from the below link:

Download Experiment Code