Teoria da Computação

Autômatos de Pilha e Gramáticas Livres de Contexto

Professor Thiago Alves

Introdução

- Autômatos de pilha e gramáticas livres de contexto são capazes de descrever exatamente a classe das linguagem livres de contexto
- Vamos mostrar como converter uma GLC em um autômato de pilha e vice-versa

Lema

Se A é uma linguagem livre de contexto então existe um autômato de pilha P tal que L(P) = A.

Lema

- Se A é uma linguagem livre de contexto então existe um autômato de pilha P tal que L(P) = A.
 - Se A é uma linguagem livre de contexto então existe um GLC G tal que L(G) = A
 - Vamos converter G em um autômato de pilha P

- Temos que descrever um autômato de pilha P que aceita sua entrada w, se G gera w
- A pilha do autômato vai servir para guardar a string de variáveis e terminais
- A cada passo, o autômato deve escolher de forma não-determinística uma das regras para aplicar

- O autômato de pilha inicia colocando a variável inicial de G na pilha
- Pára quando chegar em uma string apenas com terminais
- Aceita se a string na pilha for igual a string de entrada

- ◆Se G for
 - $S \rightarrow 01A1$
 - $A \rightarrow 0A \mid \epsilon$
- Como usar a pilha do autômato?
 - Só pode acessar o símbolo do topo da pilha

- Manter apenas parte da string
 - Símbolos iniciando com a primeira variável

- Vamos chamar o estado inicial de q_{start}

- Seja V uma variável em G e suas regras:
 - $V \to a_{11}...a_{1k1}$
 - **)**
 - $V \rightarrow a_{n1}...a_{nkn}$
- Fazemos:
- $\delta(q_{loop}, \epsilon, V) = \{(q_{V11}, a_{1k1}), ..., (q_{Vn1}, a_{nkn})\}$

- ◆Para cada regra V → a_{i1}...a_{iki} em G:
- $(q_{Vi1}, a_{iki}) \in \delta(q_{loop}, \epsilon, V)$ pela anterior
- Fazemos:

- **•** . . .

- Se no topo da pilha tiver um terminal, devemos verificar se é igual a entrada:
- \bullet δ(q_{loop},a,a) = {(q_{loop},ε)} em que a é um terminal
- Caso o topo seja \$, a string gerada por G é a mesma da entrada do autômato:

- Para finalizar, a definição do autômato de pilha P é:
- \bullet P = (Q,Σ,Γ,δ,q_{start},F) em que:
 - Q é o conjunto de estados utilizados
 - Σ é o conjunto de terminais de G
 - Γ é o conjunto de variáveis e de terminais de G
 - δ foi definido anteriormente
 - $F = \{q_{accept}\}$

Exemplo

Seja a gramática livre de contexto G:

```
S \rightarrow aTb \mid b
```

$$T \rightarrow Ta \mid \epsilon$$

Vamos construir o autômato de pilha P equivalente:

Exemplo

Lema

◆Se A é uma linguagem e P é um autômato de pilha tal que L(P) = A então A é livre de contexto.

Lema

- ◆Se A é uma linguagem e P é um autômato de pilha tal que L(P) = A então A é livre de contexto.
 - Temos um autômato P e queremos construir uma gramática G que gera as strings que P aceita
 - Vamos simplificar o autômato de pilha P para facilitar

- O autômato de pilha P possui um único estado final q_a
 - Basta criar transições ε dos estados que eram finais para q_a

- Esvazia a pilha antes de aceitar
 - O estado que era final fica responsável por esvaziar a pilha e depois vai para q_a

- Cada transição coloca um símbolo na pilha ou tira um símbolo da pilha mas não ambos
 - Uma transição que faz os dois ao mesmo tempo pode ser dividida em uma que coloca e outra que tira
 - Uma transição que não faz nenhum, pode ser adaptada em uma que coloca um símbolo qualquer e outra que tira esse símbolo

- ◆Seja q_s o estado inicial de P
 - Vamos chamar a variável inicial de G por A_{sa}
 - A_{sa} gera as strings que saem de q_s com pilha vazia e chegam em q_a com pilha vazia
 - O primeiro movimento é colocar um símbolo na pilha pois não pode tirar da pilha vazia
 - O último movimento é tirar um símbolo da pilha

- Se o símbolo que for colocado no início for o mesmo tirado no final
 - A pilha fica vazia apenas no início e no final
- ◆Adicionar regra A_{sa} → aA_{ij}b
 - Em que a é o símbolo lido no primeiro movimento, b no último, q_i é o estado depois de q_s e q_j o estado antes de q_a

- Caso contrário,
 - o símbolo colocado no início foi retirado em algum momento antes do final
 - A pilha ficou vazia antes do final
- ◆Adicionamos A_{sa} → A_{si}A_{ia}
 - Em que q_i é o estado corrente quando a pilha fica vazia

- ◆A mesma ideia pode ser aplicada para qualquer par de estados q_i,q_j ∈ Q
- A_{ij} gera as strings que saem do estado qi e chegam no estado qj sem modificar o que já estava na pilha
 - A pilha pode ser adicionada de elementos no caminho
 - Mas os elementos que já estavam não são alterados

- Seja P = $(Q, \Sigma, \Gamma, \delta, q_s, \{q_a\})$
- ♦ Vamos construir $G = (V, \Sigma, R, A_{sa})$ com $V = {A_{ii} | q_i, q_i ∈ Q}$
- Temos que descrever o conjunto de regras R

- Temos que descrever o conjunto de regras R
 - Se $(q_j, u) \in \delta(q_i, a, \epsilon)$ e $(q_m, \epsilon) \in \delta(q_i, b, u)$, colocamos a regra $A_{im} \rightarrow aA_{il}b$

- Temos que descrever o conjunto de regras R
 - Para $q_i, q_j, q_m \in Q$, colocamos $A_{im} \rightarrow A_{ij}A_{jm}$

- Temos que descrever o conjunto de regras R
 - Para cada $q_i \in Q$, colocamos $A_{ii} \rightarrow \epsilon$

Exemplo

 Vamos converter o autômato de pilha abaixo em uma gramática livre de contexto

Exemplo

 $A_{02} \rightarrow aA_{11}b$ • pois $(q_1, \$) \in \delta(q_0, a, \varepsilon) \in (q_2, \varepsilon) \in \delta(q_1, b, \$)$ $A_{11} \rightarrow aA_{11}b$ • pois $(q_1, a) \in \delta(q_1, a, \epsilon) \in (q_1, \epsilon) \in \delta(q_1, b, a)$ $A_{00} \rightarrow A_{00}A_{00} \mid A_{01}A_{10} \mid A_{02}A_{20} \mid \epsilon$ $A_{01} \rightarrow A_{00}A_{01} \mid A_{01}A_{11} \mid A_{02}A_{21}$ $A_{11} \rightarrow A_{10}A_{01} \mid A_{11}A_{11} \mid A_{12}A_{21} \mid \epsilon$

Teorema

◆Uma linguagem B é livre de contexto se e somente se existe uma autômato de pilha P tal que L(P) = B.

Linguagens Regulares

◆Faça um autômato de pilha para reconhecer a linguagem {w ∈ {0,1}* | w termina em 1}

Teorema

◆Se B é uma linguagem regular então B é livre de contexto.

Teorema

- Se B é uma linguagem regular então B é livre de contexto.
 - Se uma linguagem B é regular então existe um AFN A tal que L(A) = B.
 - A partir de A podemos construir um autômato de pilha P tal que L(P) = B.
 - Pelo Teorema anterior, B é livre de contexto.