计算机体系结构

胡伟武、汪文祥

龙芯2号处理器核结构图

功能部件

- 定点补码加法器设计
- · 定点ALU设计
- 定点补码乘法器的设计

定点补码加法器设计

先行进位加法器

- 一位全加器
 - 三个输入: A, B, Cin
 - 两个输出: S, Cout

S= ^A*^B*Cin+^A*B*^Cin+A*^B*^Cin+A*B*Cin

		٨	A	\mathbf{A}			
		00	01	11	10		
^C	0	0	0	1	0		
\mathbf{C}	1	0	1	1	1		
		^ B	I	}	^B		

Cout= $A*B+A*$	Cin+B*Cin
----------------	-----------

A	В	Cin	\mathbf{S}	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

一位全加器

串行进位加法器

- 以16位加法器为例
- 进位从低位到高位传送,形成c16需要32级门延迟
- 延迟随位数增长线性增长

进位的传递

- gi=ai*bi称为进位生成因子,只要gi为1,就有进位
- pi=ai+bi称为进位传递因子,只要pi为1,就把低位进位向前 传递
- 四位进位传递为例

```
c1 = g0+(p0*c0)
c2 = g1+(p1*g0)+(p1*p0*c0)
c3 = g2+(p2*g1)+(p2*p1*g0)+(p2*p1*p0*c0)
c4 = g3+(p3*g2)+(p3*p2*g1)+(p3*p2*p1*g0)+(p3*p2*p1*p0*c0)
```

• 只要低位有一个进位生成,而且被传递,则进位输出为1 8

4位并行进位逻辑

五输入与非门不常用

- · 五个N管串接电阻大
 - 一般最多串接四个

以16位加法器为例

- · 输入为pi、gi,输出为ci
- 每次并行产生4位进位,从pi、gi产生c16只要4级传递,8
 级门延迟(产生运算结果还需要一个异或)。原来从ai、bi产生c16需要16级传递,32级门延迟
- 分块,块内并行,块间串行
- 块内并行,块间并行?

块内并行, 块间并行

- 老办法:产生每块的进位传递因子和进位产生因子
- 进位传递因子:每一位的传递因子都为1时才能传递
 - P = p0*p1*p2*p3
- 进位产生因子: 块内产生进位, 不考虑进位输入

```
G = g3+(p3*g2)+(p3*p2*g1)+(p3*p2*p1*g0)
c4 = g3+(p3*g2)+(p3*p2*g1)+(p3*p2*p1*g0)+(p3*p2*p1*p0*c0)
= G + (P*c0)
```


进位生成与传递逻辑

块间并行加法器

- 自下而上形成pigi, 自上而下形成ci
- 共6级门延迟:
 - 第一层pg, 第二层c(c4, c8, c12), 第一层c(c1, c2, c3, c5, ...)

32/64位加法器

- 自下而上形成pigi,自上而下形成ci
- 共10级门延迟:
 - 第一层pg,第二层pg,第三层c(c16, c32,...),第二层c(c20, c24,...),第一层c(c21, c22, c23, c25,...)

补码减法算法

- $[A]_{\nmid h}$ $[B]_{\nmid h}$ = $[A-B]_{\nmid h}$ = $[A]_{\nmid h}$ + $[-B]_{\nmid h}$
 - [-B]** 的计算: [B]** "取反加1"
- · 只要在B的输入端对B进行取反并置进位为1.

溢出判断

• 加法: A和B的符号位相同,但结果的符号位与A和B的符号位不同,即正数相加得负或负数相加得正

- 减法: 正数减负数结果为负数或负数减正数结果为正数 ov=s31*^a31*b31+^s31*a31*^b31
- 因此,运算器溢出条件为

- 例:
 - 1001+0101(-7+5), 0011+0100(3+4)
 - 0101+0101(5+5), 1100+1100(-4+(-4))
 - 0101-0011(5-3), 0011-0101(3-5)
 - 1100-0101(-4-5), 0101-1100(5-(-4))

定点ALU设计

ALU的实现

- · ALU表示算术逻辑单元
 - 实现加减法器
 - 实现逻辑运算(a&b, a|b, a xor b在加法器中产生)
 - 实现比较器(相等、大小)
 - 实现移位器
- 最后,根据操作类型,从多个结果中选择

判断相等

- 判断多bit的A信号和B信号是否相等: $A_{0-n} == B_{0-n}$
 - 使用异或逻辑逐bit的判断 $(A_0^{B_0}, A_1^{B_1}, \dots, A_n^{B_n})$
- · 每个bit结果,有任何一个为1,则输出为0
 - 多输入或非门,位数多时需要多级逻辑

判断大小

- · 使用A-B来判断大小
 - A-B > 0 (结果符号位为0)则代表A大于B
- 小心溢出

$$Cond_{A < B} = \sim Ov \& s_{63} | Ov \& \sim s_{63}$$

= $a_{63} \& s_{63} | \sim b_{63} \& s_{63} | a_{63} \& \sim b_{63}$

移位操作

- 移位操作: 同时也是乘以/除以 2的幂次的运算
 - 逻辑左移 (低位补0)
 - 逻辑右移 (高位补0)
 - 算数右移 (高位补符号位)
 - 循环右移 (高位补右侧挤掉的数据)
- 例: 将32位数 0xABCD1234 移8位
 - 逻辑左移 0xCD123400
 - 逻辑右移 0x00ABCD12
 - 算数右移 0xFFABCD12
 - 循环右移 0x34ABCD12

移位操作(二)

- · 对于移N位数的移位操作,使用N选1来实现
 - 根据要移动的位数,从N个输入中选一个
 - 每个输入将输入移动特定位数,不需要延迟和逻辑
- 每种移位结果再根据移位操作类型选择

补码乘法器设计

补码乘法原理

- $[X]_{\uparrow h} + [Y]_{\uparrow h} = [X + Y]_{\uparrow h}$, 但 $[X]_{\uparrow h} * [Y]_{\uparrow h}! = [X * Y]_{\uparrow h}$
- 问题:已知[X]_补和[Y]_补,求[X*Y]_补.

- 在推导中,[X] 补符号位扩充到64位
- ・ 若 $X=-x_{31}x_{30}$ x_0 ,则[$X*2^k$]_补为对 $00...0x_{31}x_{30}$... x_0 0_{k-1}... 0_1 0₀(一共64位)按位取反后加1,结果为:

$$11...1 ^x_{31} ^x_{30}... ^x_0 1_{k-1}...1_1 1_0 + 1$$
 = $11...1 ^x_{31} ^x_{30}... ^x_0 0_{k-1}...0_1 0_0 + 10_{k-1}...0_1 0_0 = (11...1 ^x_{31} ^x_{30}... ^x_0 + 1)0_{k-1}...0_1 0_0$ 这正是[X]** 2*的结果.

补码乘法算法

- $[X*Y]_{\nmid h} = [X]_{\nmid h} * (-y_{31}*2^{31} + y_{30}*2^{30} + \dots + y_1*2^1 + y_0*2^0)$
- 与普通乘法类似,只是符号位乘项要变加为减
- 符号位的特殊性增加了电路复杂度

```
1011*1011 (-5*-5)
                        1011*0101 (-5*5)
    1011
                            1011
   *1011
                            *0101
+11111011
                        +11111011
+1111011
                        +0000000
+000000
                        +111011
-11011
                        -00000
00011001(25)
                         11100111 (-25)
```

Booth算法

• 对(-
$$y_{31}$$
*2³¹ + y_{30} *2³⁰ +.....+ y_1 *2¹ + y_0 *2⁰)进行变换
(- y_{31} *2³¹ + y_{30} *2³⁰ +.....+ y_1 *2¹ + y_0 *2⁰)
= (y_{30} - y_{31})*2³¹ + (y_{29} - y_{30})*2³⁰ ++ (y_0 - y_1)*2¹ + (y_{-1} - y_0)*2⁰

• 每一项都一样,每次看两位

1011*1011	(-5*-5)
1011	
*1011	
-11111011	
+0000000	
+111011	
- <mark>1</mark> 1011	
+00000101	
+0000000	
+111011	
+00101	
00011001	(25)

y _i	y _{i-1}	操作
0	0	+0
0	1	+[X]*
1	0	-[X] _补
1	1	+0

1011*0101	(-5*5)
1011 *0101	
11111011	
-11111011 +1111011	
- <mark>11</mark> 1011 + <mark>1</mark> 1011	
+00000101	
+1111011 +000101	
+11011	
11100111	(-25) 27

Booth二位一乘算法

• 对(-y₃₁*2³¹+y₃₀*2³⁰+.....+y₁*2¹+y₀*2⁰)进行变换

$$(-y_{31}*2^{31}+y_{30}*2^{30}+\ldots...+y_1*2^1+y_0*2^0)$$

$$= (y_{29} + y_{30} - 2 + y_{31}) + 2^{30} + (y_{27} + y_{28} - 2 + y_{29}) + 2^{28} + \dots + (y_1 + y_2 - 2 + y_3) + 2^{2} + (y_{-1} + y_0 - 2 + y_1) + 2^{0}$$

• 每一项都一样,每次看三位,只要16项相加

\mathbf{y}_{i+1}	$\mathbf{y_i}$	\mathbf{y}_{i-1}	操作
0	0	0	+0
0	0	1	+[X] _补
0	1	0	+[X] _{*\}
0	1	1	+2[X] _{ネト}
1	0	0	-2[X] _补
1	0	1	-[X] _{ネト}
1	1	0	-[X] _{ネト}
1	1	1	0

Booth两位乘

1010×100)1 (-6×-7)
	1010
×	1001
+11	1111010(010)
	1010 (100)
+11	1111010
+00	0110
100	0101010 (42)

1010×010	1 (-6×5)
	1010
X	0101
	+11111010(010)
	+111010(010)
	+11111010
	+111010
	111100010(-30)

- 循环次数降低一倍
- 每次循环算法一样
- [X]_补只有移1位和补码加减运算(两位一乘但不用乘3)

Booth算法的串行实现

- 以二位一乘为例,32位定点乘法需要把16个数相加
 - 可以用一个加法器加15次,需要15个时钟周期
- 与普通移位乘法器的<mark>输入选择</mark>不同:普通无符号移位乘法器的输入选择为32位门

Booth两位乘电路

- [X]补表示为x₇x₆x₅x₄x₃x₂x₁x₀
- 部分积表示为p₇p₆p₅p₄p₃p₂p₁p₀+c
 - 补码减法 = 按位取反再 + 1
 - 注意左移的处理方式

$$p_i = egin{cases}
\sim x_i, & 选择 - X \\
\sim x_{i-1}, & 选择 - 2X \\
x_i, & 选择X \\
x_{i-1}, & 选择2X \\
0, & 选择0
\end{cases}$$

$$c = \begin{cases} 1, & \text{选择} - X \vec{u} - 2X \\ 0, & \text{选择} X \vec{u} 2X \vec{u} 0 \end{cases}$$

y_{i+1}	y _i	\mathbf{y}_{i-1}	操作
0	0	0	+0
0	0	1	+[X] _{ネト}
0	1	0	+[X] _{ネト}
0	1	1	+2[X] _{ネト}
1	0	0	-2[X] _{ネト}
1	0	1	-[X] _{ネト}
1	1	0	-[X] _{ネト}
1	1	1	0

Booth二位乘的输入选择逻辑

• 其中一位

y_{i+1}		$\mathbf{y_i}$	操作
y_{i-1}			
0	0	0	+0
0	0	1	+[X] _ネ
0	1	0	+[X]*
0	1	1	+2[X] _ネ
1	0	0	-2[X] _ネ
1	0	1	-[X] _{ネト}
1	1	0	-[X] _{ネト}
1	1	1	0

Booth二位乘的输入选择逻辑

• 一组所有位

Wallace加法树

- 串行把16个数相加,需要15次加法时间
 - 64位加法需要2+10+3=15级们延迟
- 用15个加法器组织成树状,需要4次加法时间,又浪费硬件
- Wallace树基本思想
 - n个全加器每次把三个n位的数相加转换成两个数相加
 - 因此,n个全加器每次可以把m个n位的数相加转换成2m/3个数相加, 再用一层全加器转换成4m/9个数相加,直到转换成2个数;再用加法器 把最后两个数相加

全加器

- 三个输入,两个输出
- 进位输出在下一级相加时连到下一位
- 两级门延迟

全加器把三个加数变成两个加数

x 31	x 30	x 29	•••		x 5	x4	x3	x 2	x1	x 0					
x 31	x 31	x 31	x 31	x 30	x 29	x 28	x 27	••••		x 3	x 2	x 1	x 0		
x 31	x31	x 30	x 29	x 28	x 27	x 26	x 25	••••		х1	x 0				
s36	s35	s34	s33	s32	s31	s 30	s29			s 5	s4	s3	s2	s1	s0
c35	c34	c33	c32	c31	c 30	c29	c18			c4	с3	c2	c1	c0	

例: 3个4位数相加

- 3个四位数相加
 - 3个(ABD)4bit数的加法,转换为2个数的加法
 - $A + B + D = S + \{C,1'b0\}$ (请着重注意连线的方式)
 - 3+15级门延迟 (vs. 15+15级们延迟)

注:

回顾乘法算法,两个N 位数相加,只保留N位 的结果,高位可以丢弃

例: 4个4位数相加

注意:

根据公式,

C_{tmp}在参与第二层运算时,已经左移1位

因此, C_{tmp0} 要与 S_{tmp1} 和 E_1 参与同一个全加器

其中一位

- 把4个数变成2个数相加需要两级全加器
 - 请关注 C_2 和 S_2 的生成逻辑,抽象出来,即为1bit华莱士树

1位华莱士树

连线规则:

- 每一层可以把3n个加数变成2n个加数
- 除最高层全加器外,进位输入和进位输出个数相等
- 接收的进位输入信号,必须接到进位输出该信号层次的上一层或更高(例如第一层的 N_6 和 N_7 ,以及第3层的 C_3)

多位华莱士树

将多个1bit华莱士树连接,将多个多位数相加转为2个 多位数相加

可以看出:任意S和C结果,最多需要4级全加器的延迟

华莱士树进位连接要求

- 进位输入信号必须接到进位输出该信号层次的上一层或更高
 - 下图也使用全加器,将8个数变为2个数:

- 看似3级延迟
- 也是6个全加器
- 进位输入和输出等宽
- 为何不使用这个更快的 逻辑?

错误范例请勿模仿

偷鸡不成蚀把米

- 把多个树连起来,算算延迟:
 - 1. 输出依赖于①号全加器
 - 2. ① 依赖上个树进位的 C_4 ,由②号全加器计算
- 3. ② 依赖于上个树的C3,由③号全加器计算 问题在于:同一层运算使
- 4. ③ 依赖于当前树中的④号全加器
- 5. ④ 依赖于上个树的C₀,由⑤号全加器计算

- 完成一次进位传递需要5 级全加器
 - 偷鸡不成,反蚀把米!
- 问题在于:同一层运算使用了同一层的进位

16个数相加的1位加法树

16个数相加的四位华莱士树(左右进位相连)

32*32补码乘法器框图

李凯 likai@iie.ac.cn

说明

- 32位的[X]_补,[-X]_补,[2X]_补,[-2X]_补如何扩展到64位
 - [X]_补: 左边符号位扩充, 右边补0
 - [-X]*:对[X]*按位求反,左边符号位扩充,右边补1,末位加1.
- 末位的进位问题
 - 由-2[X]_补, -[X]_补引起
 - 加法树中的全加器/半加器个数至少是(相加数的个数-1)
- 硬件优化
 - 低位 "0"不用加
 - 高位符号位扩充位可以优化
 - 请查阅相关资料

作业