RADET FOR VIDAREGAANDE OPPLÆRING Studieretning for allmenne fag Naturfaglinja og ny struktur 3. årssteg EXAMEN ARTIUM 1981 UTSETT OG NY PRØVE

Kode 3321, 3361

KJEMI

Eksamenstid: 5 timar

Oppgåva har 2 tekstsider.

Nynorsk tekst Bokmålstekst på den andre sida!

M står for mol/dm³. Atommassar/atomvekter det blir bruk for, står oppførte etter oppgåve V.

Ι

- a) Teikn elektronformelen (elektronprikkstrukturen) for vassmolekylet. Kva kallar vi bindinga mellom atoma i dette molekylet?

 Forklar kvifor vassmolekylet er ein dipol.
- b) Forklar kva hydrogenbinding er. Kva har hydrogenbindingane å seie for eigenskapane til vatnet?
- c) Definer omgrepet salt. Skriv formelen for og namnet på to ulike salt.
- d) Vatn er eit godt løysingsmiddel for mange salt. Forklar kvifor det er slik.
- e) Rekn ut løysingsevna i g/dm 3 av AgCl og PbCl $_2$ ved 100° C når K $_{\rm sp}({\rm AgCl}) = 2.1 \cdot 10^{-8} \; {\rm M}^2$ og K $_{\rm sp}({\rm PbCl}_2) = 6.9 \cdot 10^{-3} \; {\rm M}^3$ ved denne temperaturen. Forklar korleis skilnaden i løysingsevne for desse stoffa blir utnytta i den kvalitative analysen.

II

- a) Rekn ut kor mange gram fast natriumhydroksyd som må vegast inn for å lage $500~{\rm cm}^3$ 0,1 M natriumhydroksydløysing.
- b) For å bestemme den nøyaktige konsentrasjonen av løysinga i a) kan vi gjere ei innstilling av løysinga med kaliumhydrogenftalat, C_6H_4 (COOK) COOH. Skriv reaksjonslikninga for denne nøytralisasjonen.
- c) 0,882 g kaliumhydrogenftalat vart vege inn og løyst i litt destillert vatn i ein erlenmeyerkolbe. Løysinga vart titrert mot natriumhydroksydløysinga i a). Forbruket av denne var 45,5 cm³. Bestem den nøyaktige konsentrasjonen til natriumhydroksydløysinga.

III

- a) Rekn ut pH i 0,100 M eddiksyreløysing. K_a (CH₃COOH) = 1,8·10⁻⁵ M.
- b) 25,0 cm³ 0,100 M eddiksyreløysing vart titrert med 0,100 M NaOH-løysing. Under titreringa vart pH avlese og desse resultata funne:

Tilsett mengd 0,100 M NaOH(cm ³)	0	5	10	15	20	23	24,5	24,8
Нд	2,9	4,1	4,5	4,9	5,3	5,7	6,4	6,9
_	24,9	25,0	25,1	25,2	25,5	27	30	35
	7,1	8,7	10,3	10,6	11,0	11,6	12,0	12,2

- 2 -

Framstill titrerkurva grafisk. Set av langs l.aksen (x-aksen) tilsett mengd NaOH og langs 2.aksen (y-aksen) pH-verdiane.

- c) Les av på grafen pH-verdien ved ekvivalenspunktet for titreringa.
- d) Rekn ut pH i løysinga ved ekvivalenspunktet.

IV

a) Sinkoksyd blir danna ved rosting av sinkblende:

$$ZnS + O_2 \rightarrow ZnO + SO_2$$

Balanser likninga.

Kor mange kilogram sinkoksyd blir danna frå 1200 kg sinksulfid dersom utbytet i reaksjonen er 80%?

- b) Korleis kan metallet sink framstillast frå sinkoksyd? Skriv reaksjonslikninga.
- c) Kva blir sink brukt til?
- d) Sinksulfat inneheld krystallvatn. 2,14 g ZnSO₄·xH₂O blir varma opp til alt krystallvatnet forsvinn.

 Det vassfrie saltet har massen 1,20 g. Bestem x.
- e) Kor mange gram sink må vi løyse i saltsyre for å få danna 0,50 dm hydrogengass, målt ved standardvilkår (0 $^{\rm O}$ C, 1 atm.). Ved 0 $^{\rm O}$ C og 1 atm. er molvolumet 22,4 dm $^{\rm 3}$.

V

- a) Kva meiner vi med ei funksjonell gruppe? Nemn tre døme på funksjonelle grupper og teikn strukturformlane.
- b) Forklar skilnaden i struktur på ein primær, ein sekundær og ein tertiær alkohol.
- c) Kva reaksjonsprodukt kan vi eventuelt få om vi oksyderer desse alkoholane: 1) 1-propanol, 2) 2-butanol, 3) 2-metyl-2-propanol?
 - Benzosyre har formelen $C_6^H_5^{COOH}$. Teikn strukturformelen. Skriv likninga
- for den reaksjonen som skjer når benzosyre blir løyst i vatn.

 e) 1,45 g av ei organisk sambinding som bestod berre av karbon, hydrogen
- og oksygen, vart fullstendig forbrend i overskott av oksygen. Det vart danna 3,30 g CO₂ og 1,35 g H₂O.

Bestem den empiriske (enklaste) formelen til sambindinga.

Atommassar (u)/atomvekter

Aq:	107,9	Na:	23,0
c :	12,0	0:	16,0
C1:	35,5	Pb:	207,2
н:	1.0	s:	32,1
к:	39,1	Zn:	65,4

RÅDET FOR VIDEREGÅENDE OPPLÆRING Studieretning for allmenne fag Naturfaglinja og ny struktur 3. årstrinn EXAMEN ARTIUM 1981 UTSATT OG NY PRØVE

Kode 3321, 3361

KJEMI

Eksamenstid: 5 timer

Oppgaven har 2 tekstsider.

Bokmålstekst

Nynorsk tekst på den andre sida!

M står for mol/dm³. Atommasser/Atomvekter det blir bruk for, står oppført etter oppgave V.

Ι

- a) Tegn elektronformelen (elektronprikkstrukturen) for vannmolekylet. Hva kaller vi bindingen mellom atomene i dette molekylet? Forklar hvorfor vannmolekylet er en dipol.
- b) Forklar hva hydrogenbinding er. Hvilken betydning har hydrogenbindingene for vannets egenskaper?
- c) Definer begrepet salt. Skriv formelen for og navnet på to forskjellige salter.
- d) Vann er et godt løsningsmiddel for mange salter. Forklar hvorfor det er slik.
- e) Regn ut løseligheten i g/dm 3 av AgCl og PbCl $_2$ ved 100 $^{\rm O}$ C når K $_{\rm sp}({\rm AgCl}) = 2.1 \cdot 10^{-8}$ M 2 og K $_{\rm sp}({\rm PbCl}_2) = 6.9 \cdot 10^{-3}$ M 3 ved denne temperaturen. Forklar hvordan forskjellen i løselighet for disse stoffene blir utnyttet i den kvalitative analysen.

ΙI

- a) Regn ut hvor mange gram fast natriumhydroksyd som må veies inn for å lage 500 cm³ 0,1 M natriumhydroksydløsning.
- b) For å bestemme den nøyaktige konsentrasjonen av løsningen i a) kan vi foreta en innstilling av løsningen med kaliumhydrogenftalat, C_6H_4 (COOK) COOH. Skriv reaksjonslikningen for denne nøytralisasjonen.
- c) 0,882 g kaliumhydrogenftalat ble veid inn og løst i litt destillert vann i en erlenmeyerkolbe. Løsningen ble titrert mot natriumhydroksydløsningen i a). Forbruket av denne var 45,5 cm³. Bestem den nøyaktige konsentrasjonen til natriumhydroksydløsningen.

TTT

- a) Beregn pH i 0,100 M eddiksyreløsning. K_a (CH₃COOH) = 1,8·10⁻⁵ M.
- b) 25,0 cm³ 0,100 M eddiksyreløsning ble titrert med 0,100 M NaOH-løsning. Under titreringen ble pH avlest og følgende resultater funnet:

Tilsatt mengde 0,100 M NaOH(cm ³)	0	5	10	15	20	23	24,5	24,8
Н	2,9	4,1	4,5	4,9	5,3	5,7	6,4	6,9
_	24,9	25,0	25,1	25,2	25,5	27	30	35
	7,1	8,7	10,3	10,6	11.0	11.6	12.0	12.2

Framstill titrerkurven grafisk. Avsett langs l.aksen (x-aksen) tilsatt mengde NaOH og langs 2.aksen (y-aksen) pH-verdiene.

- c) Les av på grafen pH-verdien ved ekvivalenspunktet for titreringen.
- l) Regn ut pH i løsningen ved ekvivalenspunktet.

ΙV

- 2 -

a) Sinkoksyd blir dannet ved røsting av sinkblende:

$$ZnS + O_2 \rightarrow ZnO + SO_2$$

Balanser likningen.

Hvor mange kilogram sinkoksyd dannes fra 1200 kg sinksulfid dersom utbyttet i reaksjonen er 80%?

- b) Hvordan kan metallet sink framstilles fra sinkoksyd? Skriv reaksjonslikningen.
- c) Hva brukes sink til?
- d) Sinksulfat inneholder krystallvann. 2,14 g ${\rm ZnSO_4 \cdot xH_2O}$ varmes opp til alt krystallvannet forsvinner. Det vannfrie saltet har massen 1,20 g. Bestem x.
- e) Hvor mange gram sink må vi løse i saltsyre for å få dannet 0,50 dm 3 hydrogengass, målt ved standardbetingelser (0 $^{\rm O}$ C, 1 atm.). Ved 0 $^{\rm O}$ C og 1 atm. er molvolumet 22,4 dm 3 .

V

- a) Hva mener vi med en funksjonell gruppe? Nevn tre eksempler på funksjonelle grupper og tegn strukturformlene.
- o) Forklar forskjellen i struktur på en primær, en sekundær og en tertiær alkohol.
- c) Hvilket reaksjonsprodukt kan vi eventuelt få om vi oksyderer disse alkoholene:
 1) 1-propanol, 2) 2-butanol, 3) 2-metyl-2-propanol?
- d) Benzosyre har formelen C_6H_5COOH . Tegn strukturformelen. Skriv likningen for den reaksjonen som skjer når benzosyre blir løst i vann.
- e) 1,45 g av en organisk forbindelse som bestod bare av karbon, hydrogen og oksygen, ble fullstendig forbrent i overskott av oksygen. Det ble dannet 3,30 g $\rm CO_2$ og 1,35 g $\rm H_2O$.

Bestem den empiriske (enkleste) formelen til forbindelsen.

Atommasser (u) / atomvekter

Ag:	107,9	Na:	23,0
C :	12,0	0:	16,0
Cl:	35,5	Pb:	207,2
н:	1,0	s:	32,1
K :	39,1	Zn:	65,4