MA: ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

UNIT-I: First Order ODE

• UNIT-II: Ordinary Differential Equations of Higher Order

• UNIT-III: Laplace transforms

• UNIT-IV: Vector Differentiation

• UNIT-V: Vector Integration

UNIT-I: First Order ODE

• Exact differential equations

• Equations reducible to exact differential equations

• Linear equations

Bernoulli's equations

Orthogonal trajectories (only in Cartesian Coordinates)

• Applications:

Newton's law of cooling

o Law of natural growth and decay

Exact differential equations

• The equation should be in the form of Mdx + Ndy = 0

• Such that
$$\frac{\delta M}{\delta y} = \frac{\delta N}{\delta x}$$

• Then, The general Solution is
$$\int\limits_{(y\ constants)} M dx \ + \int\limits_{(eliminate\ x\ terms)} N\ dy \ = \ 0$$

Equations reducible to exact differential equationsMethod 1

• IF Equation
$$Mdx + Ndy = 0$$
 is homogenous

• Such that
$$\frac{\delta M}{\delta y} \neq \frac{\delta N}{\delta x}$$

$$\circ \quad \text{Find Integrating Factor } I_f \ = \frac{1}{Mx + Ny}$$

$$\circ$$
 Multiply $Mdx + Ndy = 0$ with I_f

• Find the general solutions with the Exact Method for the resultant equation.

Method 2

• IF Equation Mdx + Ndy = 0 is non-homogenous

• Such that
$$\frac{\delta M}{\delta y}$$
 $\neq \frac{\delta N}{\delta x}$ and $y f(x,y) dx + x g(x,y) dy = 0$

$$\circ \quad \text{Find Integrating Factor } I_f \ = \frac{1}{\mathit{Mx-Ny}}$$

$$\circ$$
 Multiply $Mdx + Ndy = 0$ with I_f

• Find the general solutions with the Exact Method for the resultant equation.

Method 3

• IF Equation Mdx + Ndy = 0 is non-homogenous

• Such that
$$\frac{\delta M}{\delta y} \neq \frac{\delta N}{\delta x}$$
 and $y f(x, y) dx + x g(x, y) dy \neq 0$

$$\circ \quad \text{Find Integrating Factor } I_F \ = \ e^{\int f(x)} \text{ where } f(x) \ = \frac{1}{N} \left[\frac{\delta M}{\delta y} \ - \ \frac{\delta N}{\delta x} \right]$$

$$\circ$$
 Multiply $Mdx + Ndy = 0$ with I_f

o Find the general solutions with the Exact Method for the resultant equation.

Method 4

• IF Equation Mdx + Ndy = 0 is non-homogenous

• Such that
$$\frac{\delta M}{\delta y} \neq \frac{\delta N}{\delta x}$$
 and $y f(x, y) dx + x g(x, y) dy \neq 0$

$$\circ$$
 Find Integrating Factor $I_F = e^{\int g(x)}$ where $g(x) = \frac{1}{M} \left[\frac{\delta N}{\delta x} - \frac{\delta M}{\delta y} \right]$

$$\circ$$
 Multiply $Mdx + Ndy = 0$ with I_f

Find the general solutions with the Exact Method for the resultant equation.

Linear equations

• IF Equation is in the form $\frac{\delta y}{\delta x} + y P(x) = Q(x)$

$$\int P(x) dx$$

- \circ Then, Integrating Factor $I_{_F} = e$
- \circ And General Solution is y . $I_f = \int I_f \, Q(x) dx + c$

Bernoulli's equations

- IF Equation is in the form $\frac{\delta y}{\delta x} + y P(x) = y^n \cdot Q(x)$
- Convert into the equation $\frac{1}{y^n} \cdot \frac{\delta y}{\delta x} + y^{1-n} P(x) = Q(x)$
- Let $y^{n-1} = t$ and differentiate
- After solving $\frac{\delta t}{\delta x} + t P_1(x) = Q_1(x)$
- Solve using Linear equations method

Orthogonal trajectories (only in Cartesian Coordinates)

- $\bullet \quad \text{if } f(x, y, c) = 0$
 - Differentiate with respect to x giving $f(x, y, \frac{\delta y}{\delta x}) = 0$
 - Replace $\frac{\delta y}{\delta x}$ with $\frac{-\delta x}{\delta y}$ giving $f(x, y, \frac{-\delta x}{\delta y}) = 0$ which is the DE of the family of curves.
 - Soive (INTEGRATION) $f(x, y, \frac{-\delta x}{\delta y}) = 0$
- If $f(x, y, \frac{-\delta x}{\delta y}) = 0$ is equal to $f(x, y, \frac{-\delta x}{\delta y}) = 0$ It is self Orthogonal.

Applications:

Newton's law of cooling

•
$$\frac{\delta \Theta}{\delta t} \alpha (\Theta - \Theta_0)$$
 or $\Theta - \Theta_0 = c e^{-kt}$

- \circ Where θ is temperature at tile "t" and $\theta_{\it 0}$ is the temperature of medium or room temperature.
- Case i: t = 0 to find "c"
- Case ii: $t \neq 0$ to find "k"
- Case iii: Find the required value θ or t or θ_0

Law of natural growth and decay

•
$$\frac{\delta X}{\delta t} \alpha X \text{ or } \frac{\delta X}{\delta t} = \pm k X \text{ or } X = c e^{\pm kt}$$

- Case i: t = 0 to find "c"
- Case ii: $t \neq 0$ to find "k"
- Case iii: Find the required value *X* or "t"

UNIT-II: Ordinary Differential Equations of Higher Order

- Second order linear differential equations with constant coefficients
 - Non-homogeneous terms of the type:
 - $\mathbf{e}^{a\lambda}$
 - \blacksquare sin ax
 - cos ax
 - \blacksquare polynomials in x
 - $e^{ax}V(x)$ and xV(x)
- Method of variation of parameters
- Equations reducible to linear ODE with constant coefficients:
 - Legendre's equation
 - Cauchy-Euler equation
- Applications:
 - Electric circuits

Second order linear differential equations with constant coefficients

Given f(D)y = 0

General Solution is $Y = Y_c$

- Finding Y_c :
 - o For Real and different
 - $\blacksquare \quad \text{If } m_{1}, \ m_{2}, \ m_{3}, \dots \ m_{n} \text{ are the roots for x then}$

$$C.F = c_1 e^{m_1 x} + c_2 e^{2x} + ... + c_n e^{m_n x}$$

- o For real and same
 - If m_1 , m_1 , m_2 ,... m_n are the roots for x then

Constant coefficients =
$$(c_1 + c_2 x)e^{m_1 x} + c_2 e^{2x} + ... + c_n e^{m_n x}$$

- For complex roots
 - If $\alpha \pm \beta i$ are the roots of x then

Constant coefficients =
$$(c_1 \cos \beta x + c_2 \sin \beta x)e^{\alpha x}$$

Non-homogeneous terms of the type:

Given
$$f(D)y = \phi(x)$$

General Solution is $Y = Y_c + Y_p$

- Finding Y_{a}
 - USing pervious methods
- Finding Y_n

$$\circ \quad Y_p = \frac{1}{f(D)} \, \varphi(x)$$

- $\circ \quad \text{If } \varphi(x) = e^{ax}$
 - Replace f(D) with f(a)
 - simplify

$$\bullet \quad \text{If } f(a) = 0$$

•
$$Y_p = \frac{1}{f(a)} \frac{x^m}{m!} e^{ax}$$
 where $\frac{1}{f(a)}$ is non zero.

- $\circ \quad \text{If } \varphi(x) = \sin ax \text{ or } \varphi(x) = \cos ax$
 - In f(D) replace D^2 with $-a^2$
 - Simplify (Only constants in the denominator)

$$\bullet \quad \text{If } f(-a^2) = 0$$

• For
$$\phi(x) = \sin ax \Rightarrow Y_p = -\frac{x}{2a} \cos ax$$

• For
$$\phi(x) = \cos ax \Rightarrow Y_p = \frac{x}{2a} \sin ax$$

$$\circ \quad \text{If } \varphi(x) = x^m$$

■ Redice
$$\frac{1}{f(D)}x^m = > \frac{1}{1 \pm \phi(D)}x^m = > (1 \pm \phi(D))^{-n}x^m$$

• Replace with
$$(1 + D)^{-1} = 1 - D + D^2 - D^3$$
 ...

$$(1 - D)^{-1} = 1 + D + D^2 + D^3 \dots$$

$$(1 + D)^{-2} = 1 - 2D + 3D^2 - 4D^3 \dots$$

$$(1-D)^{-2} = 1 + 2D + 3D^2 + 4D^3 \dots$$

$$(1 + D)^{-3} = 1 - 3D + 6D^2 - 10D^3 \dots$$

$$(1-D)^{-3} = 1 + 3D + 36 + 10D^3...$$

• Simplify

$$\circ \quad \text{If } \varphi(x) = e^{ax}.V(x)$$

$$Y_p = \frac{1}{f(D)} e^{ax} . V(x) = e^{ax} [\frac{1}{f(D+a)} . V(x)]$$

- Simplify $\frac{1}{f(D+a)}$. V(x) using previous methods
- Simplify (Only constants in the denominator)
- \circ If $\phi(x) = x.V(x)$

$$Y_p = \frac{1}{f(D)} x. V(x) = \left[x - \frac{f^1(D)}{f(D)} \right] \frac{1}{f(D)}. V(x)$$

- Simplify $\frac{1}{f(D)}$. V(x) using previous methods
- Simplify (Only constants in the denominator)
- General Solution is Y = Yc + Yp

Method of variation of parameters

- Reduce the equation to $(D^2 + PD + Q)y = R$
- Find Y_c using previous methods

$$\circ \quad \text{Where } Y_{c} = c_{1} u(x) + c_{2} v(x)$$

• Find Y_p

$$\circ Y_{p} = Au + Bv$$

$$\circ$$
 Where $A = -\int \frac{v R}{w(u,v)}$ where $w(u,v) = uv' - vu'$

$$\circ$$
 And $B = \int \frac{u R}{w(u,v)}$ where $w(u,v) = uv' - vu'$

Equations reducible to linear ODE with constant coefficients:

Cauchy-Euler equation

- Reduce equation to $\left(x^n \frac{d^n x}{dy^n} + p_1 x^{n-1} \frac{d^{n-1} x}{dy^{n-1}} + p_2 \frac{d^{n-2} x}{dy^{n-2}} + \dots + p_n\right) y = Q$ i.e, $\left(x^n D^n + p_1 x^{n-1} D^{n-1} + p_2 x^{n-2} D^{n-2} + \dots + p_n\right) y = Q$
- Let $x = e^z$, $z = \log x$ and $x D = \theta$, $x^2 D^2 = \theta(\theta 1)$, $x^3 D^3 = \theta(\theta 1)(\theta 2)$,
- ullet Find Y_{c} and Y_{p} for the equation with z as variable and the general solution
- Replace z with x

Legendre's equation

• Reduce the equation to

$$\left((ax + b)^n D^n + p_1 (ax + b)^{n-1} D^{n-1} + p_2 (ax + b)^{n-2} D^{n-2} + \dots + p_n \right) y = Q$$

• Let $ax + b = e^z$, z = log(ax + b) and

$$(ax + b) D = \theta$$
, $(ax + b)^2 D^2 = \theta(\theta - 1)$, $(ax + b)^3 D^3 = \theta(\theta - 1)(\theta - 2)$, ...

- Find Y_c and Y_p for the equation with z as variable and the general solution
- Replace z with (ax + b)

Applications:

Electric circuits

UNIT-III: Laplace transforms

- Laplace Transform of standard functions
- First shifting theorem
- Second shifting theorem
- Unit step function
- Dirac delta function
- Laplace transforms of functions when they are multiplied and divided by 't'
- Laplace transforms of derivatives and integrals of function
- Evaluation of integrals by Laplace transforms
- Laplace transform of periodic functions
- Inverse Laplace transform by different methods
- Convolution theorem (without proof)
- Applications:
 - Solving initial value problems by Laplace Transform method

Laplace Transform of standard functions

f(t)	$L\{f(t)\}$
1	$\frac{1}{s}$
K (constant)	$\frac{k}{s}$
t^n	$\frac{n!}{s^{n+1}}$
t ⁿ (n is fraction or negative)	$\frac{s+n}{s^{n+1}}$
Sin at	$\frac{a}{s^2+a^2}$
Cos at	$\frac{s}{s^2+a^2}$
e^{at}	$\frac{1}{s-a}$
e^{-at}	$\frac{1}{s+a}$

Sin hat	$\frac{a}{s^2 - a^2}$
Cos hat	$\frac{s}{s^2-a^2}$
t	$\frac{1}{a^2}$
\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$

First shifting theorem

If
$$L\{f(t)\} = \overline{f}(s)$$
 then $L\{e^{at}f(t)\} = \{\overline{f}(t)\}_{s \to s-a} = \{\overline{f}(s-a)\}$

Second shifting theorem

If
$$L\{f(t)\} = \overline{f}(s)$$
 and $g(t) = \left\{\frac{f(t-a), t>a}{0, t< a}\right\}$ then $L\{g(t)\} = e^{-as}\overline{f}(s)$ or

$$L\{f(t-a). g(t-a)\} = e^{-as} \overline{f}(s)$$

Unit step function

$$L\{u(t-a)\} = \frac{e^{-as}}{s}$$

Dirac delta function

$$L\{f(t-a)\} = e^{-as}$$

Change of Scale Property

$$L\{f(at)\} = \frac{1}{a}\overline{f}(\frac{s}{a})$$

Laplace transforms of functions when they are multiplied and divided by 't'

If
$$L\{f(t)\} = \overline{f}(s)$$
 then

$$L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} \overline{f}(s)$$

$$L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} \overline{f}(s)$$

$$Sin A * Cos B = \frac{1}{2}(Sin(A+B) + Sin(A-B))$$

$$Cos A * Sin B = \frac{1}{2}(Sin(A + B) - Sin(A - B))$$

$$Cos A * Cos B = \frac{1}{2}(Cos(A + B) + Cos(A - B))$$

$$Sin A * Sin B = \frac{1}{2}(Cos(A - B) - Cos(A + B))$$

Laplace transforms of derivatives and integrals of function

If
$$L\{f(t)\} = \overline{f}(s)$$
 then

$$L\left\{\int_{0}^{t} f(t)dt\right\} = \frac{1}{s}\overline{f}(s)$$

Evaluation of integrals by Laplace transforms

If
$$L\{f(t)\} = \overline{f}(s)$$
 then

$$L\left\{\int_{0}^{\infty} e^{-at} f(t) dt\right\} = \left[\overline{f}(s)\right]_{s=a}$$

Laplace transform of periodic functions

If
$$L\{f(t)\} = \overline{f}(s)$$
 then

$$L\{f(t)\} = \frac{1}{1-e^{sT}} \int_{0}^{T} e^{-st} f(t) dt$$

Inverse Laplace transform by different methods

$\overline{f}(s)$	$L^{-1}\{\overline{f}(s)\} = f(t)$
$\frac{1}{s}$	1
$\frac{1}{s^{n+1}}$, n = +ve	$\frac{t^n}{n!}$
$\frac{1}{s^{n+1}}$, n < -1	$\frac{t^n}{\Gamma(n+1)}$
$\frac{1}{s-a}$	e^{at}
$\frac{1}{s+a}$	e^{-at}
$\frac{1}{s^2 + a^2}$	$\frac{1}{a}$ sin at
$\frac{s}{s^2+a^2}$	cos at
$\frac{1}{s^2 - a^2}$	$\frac{1}{a}$ sin at
$\frac{s}{s^2-a^2}$	cos at

$\frac{1}{\left(s-a\right)^2+b^2}$	$\frac{1}{b}e^{at}\sin bt$
$\frac{s-a}{\left(s-a\right)^2+b^2}$	e ^{at} cos bt
$\frac{1}{\left(s-a\right)^2-b^2}$	$\frac{1}{b}e^{at}\sinh bt$
$\frac{s-a}{\left(s-a\right)^2-b^2}$	e ^{at} cosh bt
$\frac{2as}{\left(s^2+a^2\right)^2}$	t sin at
$\frac{s^2 - a^2}{(s^2 + a^2)^2}$	t cos at

Could use Partial fraction when denominator has

S.No.	Form of the rational function	Form of the partial fraction
1.	$\frac{px+q}{(x-a)(x-b)}, a \neq b$	$\frac{A}{x-a} + \frac{B}{x-b}$
2.	$\frac{px+q}{(x-a)^2}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2}$
3.	$\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)}$	$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$
4.	$\frac{px^2 + qx + r}{(x-a)^2 (x-b)}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$
5.	$\frac{px^2 + qx + r}{(x-a)(x^2 + bx + c)}$	$\frac{A}{x-a} + \frac{Bx + C}{x^2 + bx + c}$
	• where $x^2 + bx + c$ cannot be factorised further	

Convolution theorem (without proof)

$$L^{-1}\{\overline{f}(s) * \overline{g}(s)\} = f(u) * g(u) = \int_{0}^{u} f(t) * g(t - u) dt$$

$$\overline{f^n}(s) = \frac{(-1)^n \overline{f^n}(s)}{t}$$

Applications:

Solving initial value problems by Laplace Transform method

$$y^{i} = s.L(y) - y(0)$$

$$y^{ii} = s^{2}.L(y) - s.y(0) - y^{i}(0)$$

$$y^{iii} = s^{3}.L(y) - s^{2}.y(0) - s.y(0) - y^{i}(0)$$

UNIT-IV: Vector Differentiation

- Vector point functions and scalar point functions
- Gradient
- Divergence and Curl
- Directional derivatives
- Tangent plane and normal line
- Vector identities
- Scalar potential functions
- Solenoidal and Irrotational vectors

Vector point functions and scalar point functions

$$\frac{\delta}{\delta t}(\bar{a} \pm \bar{b}) = \frac{\delta}{\delta t}\bar{a} \pm \frac{\delta}{\delta t}\bar{b}$$

$$\frac{\delta}{\delta t} (\overline{a} \cdot \overline{b}) = \frac{\delta}{\delta t} \overline{a} \cdot \overline{b} + \overline{a} \cdot \frac{\delta}{\delta t} \overline{b}$$

$$\frac{\delta}{\delta t} (\overline{a} x \overline{b}) = \frac{\delta}{\delta t} \overline{a} x \overline{b} + \overline{a} x \frac{\delta}{\delta t} \overline{b}$$

Gradient

$$\nabla = \overline{i} \frac{\delta}{\delta x} + \overline{j} \frac{\delta}{\delta y} + \overline{k} \frac{\delta}{\delta z}$$

$$\nabla \Phi = \overline{i} \frac{\delta \Phi}{\delta x} + \overline{j} \frac{\delta \Phi}{\delta y} + \overline{k} \frac{\delta \Phi}{\delta z}$$

Directional derivatives

Directional derivatives ϕ in direction of $\frac{\overline{e}}{e} = \frac{\nabla f}{|\nabla f|}$

Find
$$\overline{e}$$
 . $\nabla \Phi$

Unit Vector:

For Vector:
$$\overline{e} = \frac{\overline{a}}{|\overline{a}|}$$
,

For Scalar:
$$\overline{e} = \frac{\nabla f}{|\overline{\nabla} f|}$$

In x-y Plane,
$$\overline{e} = -\overline{k}$$

In y-z Plane,
$$\overline{e} = -\overline{i}$$

In z-x Plane,
$$e^- = -\bar{j}$$

Angle between 2 surfaces:

$$Cos \Theta = \frac{\nabla f \cdot \nabla g}{|\nabla f| |\nabla g|}$$

Generally,

$$\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$$

$$|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

$$r^2 = x^2 + y^2 + z^2$$

$$\frac{\delta r}{\delta x} = \frac{x}{r}, \frac{\delta r}{\delta y} = \frac{y}{r}, \frac{\delta r}{\delta z} = \frac{z}{r}$$

Tangent plane and normal line

Normal Line: $\overline{e} = \frac{\nabla f}{|\overline{\nabla f}|}$ at (x, y, z)

Internally Orthogonal: $\nabla f \cdot \nabla g = 0$

Vector identities

Triple Products

$$A \cdot (B \times C) = B \cdot (C \times A) = C \cdot (A \times B)$$

 $A \times (B \times C) = (C \times B) \times A = B(A \cdot C) - C(A \cdot B)$

Product Rules

$$\nabla (fg) = f \nabla g + g \nabla f$$

$$\nabla (A \bullet B) = A \times (\nabla \times B) + (A \bullet \nabla)B + B \times (\nabla \times A) + (A \bullet \nabla)B$$

$$\nabla \cdot (fA) = f(\nabla \cdot A) + A \cdot (\nabla f)$$

$$\nabla \times (fA) = f(\nabla \times A) - A \times (\nabla f)$$

$$\nabla \cdot (A \times B) = B \cdot (\nabla \times A) + A \cdot (\nabla \times B)$$

$$\nabla \times (A \times B) = (B \bullet \nabla)A - (A \bullet \nabla)B + A(\nabla \bullet B) - B(\nabla \bullet A)$$

Scalar potential functions

$$\overline{F} = \nabla \Phi$$

Solenoidal and Irrotational vectors

Divergence of Vector

$$div \, \overline{f} = \overline{i} \cdot \frac{\delta \overline{f}}{\delta x} + \overline{j} \cdot \frac{\delta \overline{f}}{\delta y} + \overline{k} \cdot \frac{\delta \overline{f}}{\delta z}$$

Solenoidal Vector: $div \overline{f} = 0$

Curl of Vector

$$Curl \overline{f} = \overline{i} \times \frac{\delta \overline{f}}{\delta x} + \overline{j} \times \frac{\delta \overline{f}}{\delta y} + \overline{k} \times \frac{\delta \overline{f}}{\delta z}$$

$$Curl \overline{f} = \sum_{i} \overline{i} \times \frac{\delta \overline{f}}{\delta x}$$

Irrotational of Vector: $curl \overline{f} = 0$

UNIT-V: Vector Integration

- Line integrals
- Surface integrals
- Volume integrals
- Theorems of Green, Gauss and Stokes (without proofs) and their applications

Line integrals

Work Done

$$\int_{A}^{B} \overline{F} \cdot d\overline{r}$$

Where, \overline{F} is a vector, $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$, A to B is displacement

Line integrals

$$\int_{C} \overline{F} \cdot d\overline{r}$$

Where, \overline{F} is a vector, $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$, C is a curve

Surface integrals

$$\int\limits_S \overline{F} \bullet \overline{n} \, ds = \int\limits_R \frac{\overline{F} \bullet \overline{n}}{|\overline{F} \bullet \overline{k}|} dx \, dy$$
 , For x-y Plane

$$\int\limits_{S} \overline{F} \bullet \overline{n} \, ds = \int\limits_{R} \int\limits_{|\overline{F} \bullet \overline{i}|}^{|\overline{F} \bullet \overline{i}|} dy \, dz \quad \text{, For y-z Plane}$$

$$\int\limits_{S} \overline{F} \bullet \overline{n} \, ds = \int\limits_{R} \int\limits_{|\overline{F} \bullet \overline{j}|} \overline{|F \bullet \overline{j}|} \, dz \, dx \quad \text{, For z-x Plane}$$

Volume integrals

$$\overline{F} = F_1 \overline{i} + F_2 \overline{j} + F_3 \overline{k}$$

$$\int_{V} \overline{F} dv = \int_{x} \int_{y} \int_{z} (F_{1} \overline{i} + F_{2} \overline{j} + F_{3} \overline{k}) dx dy dz$$

<u>Theorems of Green, Gauss and Stokes (without proofs) and their applications</u> Green Theorem

$$\oint_{c} M dx + N dy = \iint_{R} \left(\frac{\delta N}{\delta x} - \frac{\delta M}{\delta y} \right) dx \, dy$$

Gauss Theorem

$$\oint_{S} F \bullet \overline{n} \, ds = \int_{V} \nabla \bullet \overline{F} \, dv$$

Stokes Theorem

$$\oint F \cdot \overline{n} dr = \iint curl(F) \cdot n ds$$