Departamento de Ciência de Computadores

Modelos de Computação CC1004

Folha Prática 9

- Uma gramática independente de contexto $G = (V, \Sigma, P, S)$
 - está na forma normal de Greibach sse as regras são da forma $A \to a\gamma$, com $\gamma \in V^*$ e $a \in \Sigma$;
 - está na forma normal de Chomsky sse as regras são da forma $A \to a$ ou $A \to BC$, com $B, C \in V$ e $a \in \Sigma$.
- Observação: Se G for uma GIC na forma normal de Chomsky ou na forma normal de Greibach, $\varepsilon \notin \mathcal{L}(G)$. Existem extensões destas formas que permitem ter a regra $S \to \varepsilon$ (para o símbolo inicial) se S não ocorrer no lado direito de nenhuma regra. Pode-se provar que qualquer LIC pode ser gerada por uma GIC nessas condições. A prova é construtiva: dada uma GIC que gere L, descreve o algoritmo de conversão dessa GIC à forma normal pretendida.
- As linguagens reconhecidas por APs são LICs e as LICs são reconhecidas por APs:
 - Transformação de AP em GIC: Seja $A=(Q,\Sigma,\Gamma,\delta,s_0,Z_0,\{\})$ um AP com aceitação por pilha vazia. A GIC G assim definida gera $\mathcal{L}(A)$: as variáveis de G são representadas por ternos [q,Z,q'], com $q,q'\in Q$ e $Z\in \Gamma$, excepto o símbolo inicial que será S, e as regras de G são
 - * $S \rightarrow [q_0, Z_0, q]$, para todo $q \in Q$;
 - * $[q, Z, q'] \to a$, se $(q', \varepsilon) \in \delta(q, a, Z)$, com $a \in \Sigma \cup \{\varepsilon\}$, $Z \in \Gamma$ e $q, q' \in Q$;
 - * $[q, Z, q_n] \to a[q', X_1, q_1] \cdots [q_{n-1}, X_n, q_n]$, se $(q', X_1 \cdots X_n) \in \delta(q, a, Z)$, com $q, q' \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, e $X_1, \dots, X_n \in \Gamma$, para todas as sequências $(q_1, \dots, q_{n-1}, q_n) \in Q^n$.
 - Transformação de GIC em AP: Usando a forma normal de Greibach, podemos provar que qualquer LIC pode ser reconhecida por um autómato de pilha. Dada uma GIC $G = (V, \Sigma, P, S)$ na forma normal de Greibach, a linguagem $\mathcal{L}(G)$ é aceite por pilha vazia pelo autómato de pilha $A = (\{q\}, \Sigma, V, \delta, q, S)$, com $\delta(q, a, X) = \{(q, \gamma) \mid (X \to a\gamma) \in P\}$.
- O algoritmo CYK, de Cocke-Younger-Kasami, permite decidir em $\Theta(n^3|G|)$ se uma palavra $x \in \Sigma^*$ com |x| = n pertence à linguagem gerada por uma gramática G na forma normal de Chomsky. Para cada gramática G fixa, a complexidade é $\Theta(n^3)$.

Quando aplicado à palavra $x = x_1 x_2 \dots x_n$, com $x_i \in \Sigma$, para todo i, constrói uma tabela como a que se indica a seguir, em que a entrada assinalada por $x_i \cdots x_{i+t}$ tem o conjunto das categorias possíveis para a subpalavra $x_i \cdots x_{i+t}$ de x, de acordo com a gramática (ou seja, o conjunto de variáveis da gramática que podem gerar essa sequência de terminais).

#n	$x_1 \cdots x_n$					
#n-1	$x_1 \cdots x_{n-1}$	$x_2 \cdots x_n$				
:	:	:	:			
#3	$x_1x_2x_3$	$x_2x_3x_4$		$x_{n-2}x_{n-1}x_n$		
#2	x_1x_2	x_2x_3		$x_{n-2}x_{n-1}$	$x_{n-1}x_n$	
#1	x_1	x_2	• • •	x_{n-2}	x_{n-1}	x_n
	x_1	x_2		x_{n-2}	x_{n-1}	$\overline{x_n}$

O algoritmo CYK usa uma técnica de desenvolvimento de algoritmos designada por *programação dinâmica*: a tabela é construída por linhas, de baixo para cima (o que corresponde à procura de árvores de derivação usando uma estratégia de construção *bottom-up*).

Para determinar as categorias de uma subpalavra y, analisam-se todas as partições de y como zw, com $z \neq \varepsilon$ e $w \neq \varepsilon$, e, considerando **as categorias anteriormente encontradas** para z e w, obtêm-se as categorias possíveis para zw. A palavra zw (isto é, y) pode ser do tipo T sse Z e W forem admissíveis para z e w e existir a regra $T \to ZW$.

Por exemplo, se a sequência fosse $x_3x_4x_5x_6$, seriam consideradas as partições $x_3|x_4x_5x_6$, $x_3x_4|x_5x_6$, e $x_3x_4x_5|x_6$, Consultar exemplos nos slides.

Dada $G = (V, \Sigma, P, S)$ e $x = x_1 x_2 \dots x_n$, seja N[i, i+t] o conjunto de variáveis que geram $x_i \dots x_{i+t}$, i.e., $N[i, i+t] = \{A \mid A \in V, A \Rightarrow_G^* x_i \dots x_{i+t}\}$.

ALGORITMOCYK(x)

```
Para i \leftarrow 1 até n fazer N[i,i] \coloneqq \{A \mid A \in V, A \to x_i\};

Para todo (i,j), com i \neq j e 1 \leq i \leq n e 1 \leq j \leq n, fazer N[i,j] \coloneqq \emptyset;

Para t \leftarrow 1 até n-1 fazer

Para i \leftarrow 1 até n-t fazer

Para todo BC \in N[i,k]N[k+1,i+t] fazer

Para todo A tal que A \to BC \in P fazer

A \to N[i,i+t] \coloneqq N[i,i+t] \cup \{A\}

Se A \to N[1,n] então retorna "Sim"; senão retorna "Não";
```

Exercícios

1. Considere o autómato $\mathcal{A} = (\{s_0, s_1\}, \{0, 1\}, \{Z, A, B\}, \delta, s_0, Z, \{\})$, com aceitação por pilha vazia, com $\delta(s, a, X) = \emptyset$ exceto para

$$\begin{array}{ll} \delta(s_0, \mathbf{0}, \mathbf{Z}) = \{(s_0, \mathbf{BZ})\} & \delta(s_0, \mathbf{1}, \mathbf{Z}) = \{(s_0, \mathbf{AZ})\} & \delta(s_0, \mathbf{0}, \mathbf{B}) = \{(s_0, \mathbf{BB})\} \\ \delta(s_0, \mathbf{1}, \mathbf{A}) = \{(s_0, \mathbf{AA})\} & \delta(s_0, \mathbf{0}, \mathbf{A}) = \{(s_0, \varepsilon)\} & \delta(s_0, \mathbf{1}, \mathbf{B}) = \{(s_0, \varepsilon)\} \\ \delta(s_0, \varepsilon, \mathbf{A}) = \{(s_1, \varepsilon)\} & \delta(s_1, \varepsilon, \mathbf{A}) = \{(s_1, \varepsilon)\} & \delta(s_1, \varepsilon, \mathbf{Z}) = \{(s_1, \varepsilon)\} \end{array}$$

o qual reconhece a linguagem das palavras de $\{0, 1\}^*$ que têm menos 0's do que 1's.

Por aplicação do método de conversão, determine uma GIC que gere $\mathcal{L}(\mathcal{A})$.

2. Seja
$$\mathcal{G} = (\{A, B, C\}, \{a, b, c\}, P, A), \text{com}$$

$$P = \{A \to aa, A \to C, A \to bbaA, C \to ccC, C \to ccB, C \to cc, B \to bB, B \to baA, B \to b\}.$$

- a) Converta a gramática \mathcal{G} à forma normal de Greibach.
- **b)** Usando a gramática que obteve em **2a)**, determine o AP para reconhecer $\mathcal{L}(\mathcal{G})$, por pilha vazia, que se obtém pelo método de construção definido acima.
- c) Converta a gramática \mathcal{G} para a forma normal de Chomsky.
- d) Aplique o algoritmo CYK para mostrar que bbaccb pertence à linguagem gerada pela gramática que obteve em 2c) e, portanto, a $\mathcal{L}(\mathcal{G})$. Por análise da tabela construída, determine se $x \in \mathcal{L}(\mathcal{G})$ para cada subpalavra x de bbaccb, com $x \neq \varepsilon$.

Linguagens regulares geradas por GICs lineares à direita (ou lineares à esquerda)

- Uma gramática independente de contexto $G = (V, \Sigma, P, S)$
 - é linear à direita sse qualquer regra é da forma $A \to w$ ou $A \to wB$, com $w \in \Sigma^*$ e $B \in V$;
 - é linear à esquerda sse qualquer regra é da forma $A \to w$ ou $A \to Bw$, com $w \in \Sigma^*$ e $B \in V$;
- GICs lineares à direita (esquerda) geram linguagens regulares, e vice-versa:
 - Dado um AFD $A=(S,\Sigma,\delta,s_0,F)$, a linguagem $\mathcal{L}(A)$ é gerada pela gramática linear à direita $G=(\{V_s\mid s\in S\},\Sigma,P,V_{s_0})$, em que P tem a regra $V_s\to aV_{s'}$ sse $\delta(s,a)=s'$ e ainda uma regra $V_f\to \varepsilon$, **por cada estado final** $f\in F$. O mesmo algoritmo pode ser trivialmente adaptado se A for um AFND ou AFND- ε . Um percurso no autómato do estado s_0 até um estado final, em que se consumiu a palavra x, corresponde a uma derivação da palavra x em G a partir de V_{s_0} , e vice-versa.
 - A gramática obtida por aplicação do método de conversão a um AFD é não ambígua. Portanto, qualquer linguagem regular é não ambígua.
 - Dada uma GIC G linear à direita, podemos obter um AFND- ε que reconhece $\mathcal{L}(G)$ pelo algoritmo seguinte. Começamos por substituir todas as regras da forma $X \to w$ por $X \to wX_f$, em que X_f é uma variável nova (e a mesma para todas as regras), e será a única com produção $X_f \to \varepsilon$ (o AFND- ε terá um único estado final). Depois, cada regra da forma $X \to wY$, com $|w| \geq 2$, é substituída por |w| regras, $X \to a_1Y_1, Y_1 \to a_2Y_2, \ldots, Y_{k-1} \to a_kY$, sendo $w = a_1a_2 \ldots a_k$, e $Y_1, \ldots Y_{k-1}$ variáveis novas (criadas para cada regra). O conjunto de estados do AFND- ε corresponde ao conjunto de variáveis da nova gramática e X_f ao estado final. Cada regra $X \to \alpha Y$, com $\alpha \in \Sigma \cup \{\varepsilon\}$, define uma transição do estado X para o estado Y por α .

Exercícios

3. Seja L a linguagem de alfabeto $\{a,b\}$ aceite pelo AFND- ε $A=(S,\Sigma,\delta,s_0,\{s_{12}\})$ representado.

- a) Determine a gramática que resulta da aplicação do algoritmo de transformação ao autómato A.
- b) Mostre que a gramática que obteve em 3a) é ambígua.
- c) Sabendo que o AFND- ε A resultou da aplicação do algoritmo de Thompson a uma expressão regular r que não contém ε , determine r. A seguir, indique r na forma abreviada.

- **d**) Por aplicação do método de conversão (de um AFND- ε para AFD), determine um AFD A' equivalente ao AFND- ε A.
- e) Determine a GIC linear à direita não ambígua que resulta da aplicação do algoritmo de transformação ao AFD A' que obteve na alínea anterior.
- ${\bf f}$) Analise a forma das palavras de L e determine uma GIC linear à esquerda, não ambígua, que gere L.
- **4.** Considere a gramática independente de contexto $\mathcal{G} = (\{A,B,C\},\{\mathtt{a},\mathtt{b},\mathtt{c}\},P,A)$, com

$$P = \{A \to \mathtt{aa}, \, A \to C, \, A \to \mathtt{bba}A, \, C \to \mathtt{cc}C, \, C \to \mathtt{cc}B, \, B \to \mathtt{b}B, \, B \to \mathtt{ba}A, \, B \to \varepsilon\}.$$

- a) Justifique que \mathcal{G} é linear à direita. Conclua que $\mathcal{L}(\mathcal{G})$ é regular.
- **b**) Determine o AFND- ε que se obtém por aplicação do algoritmo de conversão a \mathcal{G} .
- c) Determine uma expressão regular que descreva $\mathcal{L}(\mathcal{G})$.
- **d**) [*] Averigue se a gramática \mathcal{G} é ambígua. Justifique.
- **5.** Seja L a linguagem alfabeto $\{0,1\}$ descrita pela expressão $0^*1^*(00+11)^*$.
- a) Analise a expressão e determine uma GIC que gere L e não seja linear à direita (nem linear à esquerda).
- **b**) Por análise da expressão, determine uma GIC que gere L e seja linear à direita.
- c) Determine o AFD mínimo que aceita L e, por aplicação do método de conversão a esse AFD, determine uma GIC não ambígua que gere L.
- **6.** Seja $L = \mathcal{L}(0^*1^*(00+11)(00+11)^*)$. Determine uma GIC não ambígua que gere L, baseando-se:
- ${\bf a})\,$ numa caraterização da estrutura das palavras de L, de forma não ambígua.
- ${f b}$) na construção de um AFD para L e sua conversão para uma GIC linear à direita não ambígua.
- 7. Por aplicação de algoritmos de conversão, determine uma GIC não ambígua que gere a linguagem aceite pelo autómato finito representado em cada alínea, para $\Sigma = \{a, b\}$.

a)

c)

b)

d)

