Zadání:

Ve zdrojové databázi najdete celkem 17 měření EKG signálu. Signál je již filtrován a centralizován kolem podélné osy. EKG signál obsahuje dominantní peaky, které se nazývají R vrcholy. Vzdálenost těchto vrcholů určuje dobu mezi jednotlivými tepy. Počet tepů za minutu je tedy počet R vrcholů v signálu o délce jedné minuty. Navrhněte algoritmus, který bude automaticky detekovat počet R vrcholů v EKG signálech a prezentujte tepovou frekvenci při jednotlivých jízdách/měřeních. Vás algoritmus následně otestujte na databázi MIT-BIH https://physionet.org/content/nsrdb/1.0.0/ a prezentujte jeho úspěšnost vzhledem k anotovaným datům z databáze.

Postup řešení

Programová část práce byla implementována v jazyce Python s využitím knihoven **numpy**, **wfdb** pro načítání EKG dat a **matplotlib** pro vizualizaci. Následující kroky představují základní algoritmus:

1. Načtení dat EKG:

Data byla načtena pomocí knihovny wfdb, která umožňuje čtení a zpracování EKG signálů.

2. Vyhlazení signálu:

Implementace mediánového filtru pomocí konvoluce pro redukci šumu v EKG signálu. Důležitý aspektem při konvoluci je velikost konvolučního jádra, kterou jsme zvolili 3. Výběr jsme provedli s ohledem na kompromis mezi efektivitou odstranění šumu a zachováním charakteristik signálu.

3. Adaptivní prahování založené na mediánu:

Adaptivní prahování je metoda pro dynamické nastavení prahu, který se mění podle lokálních vlastností signálu. Pro každý bod signálu definovaného oknem je vypočítán medián z bodů z tohoto okna.

4. Detekce R-vrcholů:

Implementace algoritmu pro nalezení R-vrcholů na základě adaptivního prahu a lokalních vlastností signálu. Je tady využit adaptivní práh, který se přizpůsobuje lokálním vlastnostem signálu. Důležité je zde zvolit správné okno pro výpočet mediánu.

Výpočet tepové frekvence:

Výpočet tepové frekvence na základě počtu detekovaných R-vrcholů za minutu.

Vzorek	bpm
drive01	76.25876002016227
drive02	68.93566322478156
drive03	80.65619400518413
drive04	72.76065977867519
drive05	67.85514680549707
drive06	77.92811980033277
drive07	74.51821842705351
drive08	65.1890453046576
drive09	70.92742057832933
drive10	76.70648464163821
drive11	64.92208909776924
drive12	64.14747796373238
drive13	78.41337288543254
drive14	78.41337288543254
drive15	64.03401143870047
drive16	75.83763654419067
drive17a	72.59508686002908
drive17b	71.50822166800525

Závěr

Naším měřením jsme získali příslušné tepové hodnoty jednotlivých účastníků měření. Naše indikované výsledky nabývají reálných hodnot.