SUMMER PROGRAMME 2021

Approximating continuous functions by smooth functions:

The Stone-Weierstrass Theorem

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

1 Continuous functions

Definition 1.1. A function $f: X \to Y$ is continuous if $f^{-1}(\mathcal{O})$ is open in X for every open set \mathcal{O} in Y.

Lemma 1.1. If X and Y are metric spaces, a function $f: X \to Y$ is continuous if given $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $d(f(x), f(x')) < \epsilon$ for all $x' \in X$ satisfying $d(x, x') < \delta$.

Definition 1.2. Let X and Y be metric spaces. A function $f: X \to Y$ is uniformly continuous if given $\epsilon > 0$, there exists $\delta > 0$ such that $d(f(x), f(x')) < \epsilon$ for all $x, x' \in X$ satisfying $d(x, x') < \delta$.

Theorem 1.2. A continuous function on a compact metric space is uniformly continuous.

2 The Stone-Weierstrass Theorem

Theorem 2.1. Let \mathcal{A} be an algebra of real continuous functions on a compact set K. If A separates points on K and vanishes at no point of K, then the uniform closure of \mathcal{A} consists of all real continuous functions on K.