Downloading Historical OHLC mid, bid and ask Data for EUR/USD In [1]: **import** warnings warnings.filterwarnings("ignore") from api.oanda_api import OandaApi from infrastructure.instrument_collection import instrumentCollection from infrastructure.collect_data import run_collection import pandas as pd # Initializing our session api = OandaApi() # Downloading the instruments available and storing it in a jason file instruments = api.get account instruments() instrumentCollection.CreateFile(instruments, './data') instrumentCollection.LoadInstruments('./data') # Downloading OHLC prices, 2 years worth 5 minute candles (this might take a while) run_collection(instrumentCollection, api, currencies=["EUR", "USD"], years=2) df = pd.read_pickle("./data/EUR_USD_M5.pkl") EUR_USD M5 EUR_USD M5 2023-01-25 18:46:38.614685+00:00 2023-02-05 04:46:38.614685+00:00 --> 2055 candles loaded EUR_USD M5 2023-02-05 04:46:38.614685+00:00 2023-02-15 14:46:38.614685+00:00 --> 2218 candles loaded EUR_USD M5 2023-02-15 14:46:38.614685+00:00 2023-02-26 00:46:38.614685+00:00 --> 2103 candles loaded EUR_USD M5 2023-02-26 00:46:38.614685+00:00 2023-03-08 10:46:38.614685+00:00 --> 2170 candles loaded EUR_USD M5 2023-03-08 10:46:38.614685+00:00 2023-03-18 20:46:38.614685+00:00 --> 2151 candles loaded EUR_USD M5 2023-03-18 20:46:38.614685+00:00 2023-03-29 06:46:38.614685+00:00 --> 2134 candles loaded EUR_USD M5 2023-03-29 06:46:38.614685+00:00 2023-04-08 16:46:38.614685+00:00 --> 2186 candles loaded EUR_USD M5 2023-04-08 16:46:38.614685+00:00 2023-04-19 02:46:38.614685+00:00 --> 2085 candles loaded EUR_USD M5 2023-04-19 02:46:38.614685+00:00 2023-04-29 12:46:38.614685+00:00 --> 2235 candles loaded EUR_USD M5 2023-04-29 12:46:38.614685+00:00 2023-05-09 22:46:38.614685+00:00 --> 2038 candles loaded EUR_USD M5 2023-05-09 22:46:38.614685+00:00 2023-05-20 08:46:38.614685+00:00 --> 2282 candles loaded EUR USD M5 2023-05-20 08:46:38.614685+00:00 2023-05-30 18:46:38.614685+00:00 --> 1989 candles loaded EUR_USD M5 2023-05-30 18:46:38.614685+00:00 2023-06-10 04:46:38.614685+00:00 --> 2331 candles loaded EUR_USD M5 2023-06-10 04:46:38.614685+00:00 2023-06-20 14:46:38.614685+00:00 --> 1942 candles loaded EUR_USD M5 2023-06-20 14:46:38.614685+00:00 2023-07-01 00:46:38.614685+00:00 --> 2379 candles loaded EUR_USD M5 2023-07-01 00:46:38.614685+00:00 2023-07-11 10:46:38.614685+00:00 --> 1893 candles loaded EUR_USD M5 2023-07-11 10:46:38.614685+00:00 2023-07-21 20:46:38.614685+00:00 --> 2424 candles loaded EUR_USD M5 2023-07-21 20:46:38.614685+00:00 2023-08-01 06:46:38.614685+00:00 --> 1849 candles loaded EUR_USD M5 2023-08-01 06:46:38.614685+00:00 2023-08-11 16:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2023-08-11 16:46:38.614685+00:00 2023-08-22 02:46:38.614685+00:00 --> 1849 candles loaded EUR_USD M5 2023-08-22 02:46:38.614685+00:00 2023-09-01 12:46:38.614685+00:00 --> 2423 candles loaded EUR_USD M5 2023-09-01 12:46:38.614685+00:00 2023-09-11 22:46:38.614685+00:00 --> 1848 candles loaded EUR_USD M5 2023-09-11 22:46:38.614685+00:00 2023-09-22 08:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2023-09-22 08:46:38.614685+00:00 2023-10-02 18:46:38.614685+00:00 --> 1849 candles loaded EUR_USD M5 2023-10-02 18:46:38.614685+00:00 2023-10-13 04:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2023-10-13 04:46:38.614685+00:00 2023-10-23 14:46:38.614685+00:00 --> 1848 candles loaded EUR_USD M5 2023-10-23 14:46:38.614685+00:00 2023-11-03 00:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2023-11-03 00:46:38.614685+00:00 2023-11-13 10:46:38.614685+00:00 --> 1837 candles loaded

EUR_USD M5 2023-11-13 10:46:38.614685+00:00 2023-11-23 20:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2023-11-23 20:46:38.614685+00:00 2023-12-04 06:46:38.614685+00:00 --> 1849 candles loaded EUR_USD M5 2023-12-04 06:46:38.614685+00:00 2023-12-14 16:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2023-12-14 16:46:38.614685+00:00 2023-12-25 02:46:38.614685+00:00 --> 1791 candles loaded EUR_USD M5 2023-12-25 02:46:38.614685+00:00 2024-01-04 12:46:38.614685+00:00 --> 1906 candles loaded EUR_USD M5 2024-01-04 12:46:38.614685+00:00 2024-01-14 22:46:38.614685+00:00 --> 1848 candles loaded EUR_USD M5 2024-01-14 22:46:38.614685+00:00 2024-01-25 08:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2024-01-25 08:46:38.614685+00:00 2024-02-04 18:46:38.614685+00:00 --> 1887 candles loaded EUR_USD M5 2024-02-04 18:46:38.614685+00:00 2024-02-15 04:46:38.614685+00:00 --> 2385 candles loaded EUR_USD M5 2024-02-15 04:46:38.614685+00:00 2024-02-25 14:46:38.614685+00:00 --> 1935 candles loaded EUR_USD M5 2024-02-25 14:46:38.614685+00:00 2024-03-07 00:46:38.614685+00:00 --> 2338 candles loaded EUR_USD M5 2024-03-07 00:46:38.614685+00:00 2024-03-17 10:46:38.614685+00:00 --> 1983 candles loaded EUR_USD M5 2024-03-17 10:46:38.614685+00:00 2024-03-27 20:46:38.614685+00:00 --> 2302 candles loaded EUR_USD M5 2024-03-27 20:46:38.614685+00:00 2024-04-07 06:46:38.614685+00:00 --> 2018 candles loaded EUR_USD M5 2024-04-07 06:46:38.614685+00:00 2024-04-17 16:46:38.614685+00:00 --> 2254 candles loaded EUR_USD M5 2024-04-17 16:46:38.614685+00:00 2024-04-28 02:46:38.614685+00:00 --> 2067 candles loaded EUR_USD M5 2024-04-28 02:46:38.614685+00:00 2024-05-08 12:46:38.614685+00:00 --> 2206 candles loaded EUR_USD M5 2024-05-08 12:46:38.614685+00:00 2024-05-18 22:46:38.614685+00:00 --> 2114 candles loaded EUR_USD M5 2024-05-18 22:46:38.614685+00:00 2024-05-29 08:46:38.614685+00:00 --> 2123 candles loaded EUR_USD M5 2024-05-29 08:46:38.614685+00:00 2024-06-08 18:46:38.614685+00:00 --> 2163 candles loaded EUR_USD M5 2024-06-08 18:46:38.614685+00:00 2024-06-19 04:46:38.614685+00:00 --> 2108 candles loaded EUR_USD M5 2024-06-19 04:46:38.614685+00:00 2024-06-29 14:46:38.614685+00:00 --> 2211 candles loaded EUR_USD M5 2024-06-29 14:46:38.614685+00:00 2024-07-10 00:46:38.614685+00:00 --> 2062 candles loaded EUR USD M5 2024-07-10 00:46:38.614685+00:00 2024-07-20 10:46:38.614685+00:00 --> 2259 candles loaded EUR_USD M5 2024-07-20 10:46:38.614685+00:00 2024-07-30 20:46:38.614685+00:00 --> 2013 candles loaded EUR_USD M5 2024-07-30 20:46:38.614685+00:00 2024-08-10 06:46:38.614685+00:00 --> 2307 candles loaded EUR_USD M5 2024-08-10 06:46:38.614685+00:00 2024-08-20 16:46:38.614685+00:00 --> 1966 candles loaded EUR_USD M5 2024-08-20 16:46:38.614685+00:00 2024-08-31 02:46:38.614685+00:00 --> 2354 candles loaded EUR_USD M5 2024-08-31 02:46:38.614685+00:00 2024-09-10 12:46:38.614685+00:00 --> 1918 candles loaded EUR_USD M5 2024-09-10 12:46:38.614685+00:00 2024-09-20 22:46:38.614685+00:00 --> 2403 candles loaded EUR_USD M5 2024-09-20 22:46:38.614685+00:00 2024-10-01 08:46:38.614685+00:00 --> 1870 candles loaded EUR_USD M5 2024-10-01 08:46:38.614685+00:00 2024-10-11 18:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2024-10-11 18:46:38.614685+00:00 2024-10-22 04:46:38.614685+00:00 --> 1848 candles loaded EUR_USD M5 2024-10-22 04:46:38.614685+00:00 2024-11-01 14:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2024-11-01 14:46:38.614685+00:00 2024-11-12 00:46:38.614685+00:00 --> 1837 candles loaded EUR_USD M5 2024-11-12 00:46:38.614685+00:00 2024-11-22 10:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2024-11-22 10:46:38.614685+00:00 2024-12-02 20:46:38.614685+00:00 --> 1848 candles loaded EUR_USD M5 2024-12-02 20:46:38.614685+00:00 2024-12-13 06:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2024-12-13 06:46:38.614685+00:00 2024-12-23 16:46:38.614685+00:00 --> 1849 candles loaded EUR_USD M5 2024-12-23 16:46:38.614685+00:00 2025-01-03 02:46:38.614685+00:00 --> 1848 candles loaded EUR_USD M5 2025-01-03 02:46:38.614685+00:00 2025-01-13 12:46:38.614685+00:00 --> 1849 candles loaded EUR_USD M5 2025-01-13 12:46:38.614685+00:00 2025-01-23 22:46:38.614685+00:00 --> 2425 candles loaded EUR_USD M5 2025-01-23 22:46:38.614685+00:00 2025-01-25 18:46:38.614217+00:00 --> 279 candles loaded

*** *** EUR_USD M5 2023-01-25 18:45:00+00:00 2025-01-24 21:55:00+00:00 --> 149167 candles ***

181 1.09101 1.09110 1.09084 1.09092 1.09093 1.09102 1.09076 1.09085 1.09109 1.09117 1.09091 1.09098

317 1.09093 1.09101 1.09068 1.09098 1.09086 1.09094 1.09061 1.09091 1.09100 1.09108 1.09075 1.09106

359 1.09098 1.09108 1.09088 1.09092 1.09092 1.09101 1.09080 1.09085 1.09105 1.09116 1.09094 1.09099

In [2]: df.head() **0** 2023-01-25 18:45:00+00:00 245 1.09116 1.09147 1.09112 1.09142 1.09110 1.09140 1.09105 1.09135 1.09123 1.09155 1.09120 1.09148 1 2023-01-25 18:50:00+00:00 309 1.09142 1.09157 1.09102 1.09102 1.09135 1.09150 1.09094 1.09094 1.09149 1.09164 1.09108 1.09109

2 2023-01-25 18:55:00+00:00

3 2023-01-25 19:00:00+00:00

4 2023-01-25 19:05:00+00:00

<class 'pandas.core.frame.DataFrame'> RangeIndex: 149167 entries, 0 to 149166

> volume 149167 non-null int64 mid_o 149167 non-null float64 mid_h 149167 non-null float64

mid_c 149167 non-null float64

13 ask_c 149167 non-null float64

volume

149167.000000

334.968760

307.151709

1.000000

df = generate_dollar_bars(df, 360)

df = apply_indicators(df)

In [9]: df.columns

149167 non-null float64

149167 non-null float64

149167 non-null float64

149167 non-null float64 149167 non-null float64 149167 non-null float64

149167 non-null float64

dtypes: datetime64[ns, tzutc()](1), float64(12), int64(1)

Statistical Summary of the Dataset

mid_o

149167.000000

1.080475

0.018964

1.018430

mid_h

1.080638

0.018952

1.019080

Feature Engineering: Adding Technical Indicators

149167.000000

mid_l

149167.000000

1.080311

0.018975

1.017790

Transforming Data from Time Bars into Dollar Value Bars

mid_c

1.080475

0.018964

1.018440

1.069840

1.082880

1.092660

1.127550

149167.000000

bid_o

149167.000000

1.080394

0.018964

1.018360

1.069760

1.082800

1.092580

1.127480

bid_h

149167.000000

1.080558

0.018953

1.019010

1.069930

1.082940

1.092720

1.127490

bid_l

149167.000000

1.080228

0.018975

1.017710

1.069610

1.082650

1.092430

1.126670

bid_c

149167.000000

1.080394

0.018964

1.018360

1.069760

1.082800

1.092580

1.127470

ask_o

1.080556

0.018964

1.018500

1.069930

1.082950

1.092740

1.127650

149167.000000

ask_h

1.080720

0.018952

1.019160

1.070100

1.083090

1.092880

1.127650

149167.000000

ask_l

149167.000000

1.080391

0.018975

1.017860

1.069770

1.082810

1.092590

1.126830

ask_c

1.080556

0.018964

1.018520

1.069930

1.082950

1.092740

1.127630

149167.000000

Data columns (total 14 columns): # Column Non-Null Count Dtype -----

time

6 bid_o

bid_l

memory usage: 15.9 MB

df.describe()

count

mean

std

Out[4]

In [3]: df.info()

Preview Of Our DataFrame

Dataset Structure and Overview

149167 non-null datetime64[ns, tzutc()]

25% 151.000000 1.069840 1.070010 1.069700 263.000000 1.082870 1.083020 1.082730 75% 1.092660 1.092800 1.092510 421.000000 10707.000000 1.127560 1.127570 1.126750

from technicals.dollar_value_bars import generate_dollar_bars

from models.add_indicators import apply_indicators

from technicals.patterns import apply_candle_props df = apply_candle_props(df) Adding Labels for Model Training using the Triple Barrier Method

Feature Engineering: Adding Technical Patterns

'bid_l', 'bid_c', 'ask_o', 'ask_h', 'ask_l', 'ask_c', 'spread', 'hour', 'day_of_week', 'month', 'minute', 'BB_MA10', 'BB_UP10', 'BB_LW10', 'BB_MA30', 'BB_UP30', 'BB_LW30', 'BB_MA50', 'BB_UP50', 'BB_LW50', 'ATR_7', 'ATR_14', 'ATR_40', 'EMA20', 'KeUp20_10', 'KeLo20_10', 'EMA50', 'KeUp50_50', 'KeLo50_50', 'EMA200', 'KeUp200_50', 'KeLo200_50', 'RSI_7',

'RSI_14', 'RSI_50', 'MACD26_12', 'SIGNAL26_12', 'HIST26_12',

Applying Stationarization to Selected Columns

'BB_MA30', 'BB_UP30', 'BB_LW30', 'BB_MA50', 'BB_UP50', 'BB_LW50',

'RSI_14', 'RSI_50', 'MACD26_12', 'SIGNAL26_12', 'HIST26_12',

'ATR_7', 'ATR_14', 'ATR_40', 'EMA20', 'KeUp20_10', 'KeLo20_10', 'EMA50', 'KeUp50_50', 'KeLo50_50', 'EMA200', 'KeUp200_50', 'KeLo200_50', 'RSI_7',

'ATR_7', 'ATR_14', 'ATR_40', 'EMA20', 'KeUp20_10', 'KeLo20_10', 'EMA50', 'KeUp50_50', 'KeLo50_50', 'EMA200', 'KeUp200_50', 'KeLo200_50', 'RSI_7',

'MACD52_24', 'SIGNAL52_24', 'HIST52_24', 'direction', 'body_size',

Out[9]: Index(['time', 'volume', 'mid_o', 'mid_h', 'mid_l', 'mid_c', 'bid_o', 'bid_h',

'body_perc', 'body_lower', 'body_upper', 'body_bottom_perc', 'body_top_perc', 'mid_point', 'low_change', 'high_change', 'body_size_change', 'body_size_prev', 'direction_prev', 'direction_prev_2', 'body_perc_prev', 'body_perc_prev_2', 'mid_point_prev_2', 'Label', 'trade_duration'],

'MACD52_24', 'SIGNAL52_24', 'HIST52_24']

Selecting Features for Prediction

'body_size_prev', 'direction_prev',

Will be used in the model evaluation faze

from sklearn.ensemble import RandomForestClassifier

from sklearn.experimental import enable_halving_search_cv from sklearn.model selection import HalvingRandomSearchCV

'mid_point_prev_2']

test_set = df[30_000:].copy()

from scipy.stats import randint

'min_samples_leaf': randint(1, 5), 'max_features': ['sqrt', 'log2']

tscv = TimeSeriesSplit(n_splits=5)

X = validation_set[predictors] y = validation_set['Label'] halving_search.fit(X, y)

Best Score: 0.45323481116584563

test_set.dropna(inplace=True)

86.25% there...

halving_search = HalvingRandomSearchCV(

base_rf = RandomForestClassifier(random_state=42)

print("Best Score:", halving_search.best_score_) print("Best Params:", halving_search.best_params_)

best_rf = halving_search.best_estimator_

In [14]: **from** sklearn.ensemble **import** RandomForestClassifier

from technicals.backtesting import model_evaluation

df = stationarize_data(df, stationary_cols).dropna()

dtype='object')

from technicals.labeling import tripple_barrier_labeling

df = tripple_barrier_labeling(df, win=4, loss=2).dropna()

Overview of Dataset Features

from technicals.stationarize_data import stationarize_data # Columns that we want to stationarize stationary_cols = ['volume', 'mid_o', 'mid_h', 'mid_l', 'mid_c', 'bid_o', 'bid_h', 'bid_l', 'bid_c', 'ask_o', 'ask_h', 'ask_l', 'ask_c', 'BB_MA10', 'BB_UP10', 'BB_LW10',

In [11]: predictors = ['volume', 'mid_o', 'mid_h', 'mid_l', 'mid_c', 'bid_o', 'bid_h', 'bid_l', 'bid_c', 'ask_o', 'ask_h', 'ask_l', 'ask_c', 'spread', 'hour', 'day_of_week', 'month', 'minute', 'BB_MA10', 'BB_UP10', 'BB_LW10', 'BB_MA30', 'BB_UP30', 'BB_LW30', 'BB_MA50', 'BB_UP50', 'BB_LW50',

'RSI_14', 'RSI_50', 'MACD26_12', 'SIGNAL26_12', 'HIST26_12',

'body_perc', 'body_lower', 'body_upper', 'body_bottom_perc', 'body_top_perc', 'mid_point', 'low_change', 'high_change',

'direction_prev_2', 'body_perc_prev', 'body_perc_prev_2',

'MACD52_24', 'SIGNAL52_24', 'HIST52_24', 'direction', 'body_size',

Splitting Dataset for Hyperparameter Tuning and Model Evaluation In [12]: # Will be used for hyperparameter tuning validation_set = df[:30_000].copy()

Hyperparameter Tuning Using Halving Random Search In [13]: from sklearn.model_selection import TimeSeriesSplit

param_distributions = { 'n_estimators': randint(100, 500), 'max_depth': randint(5, 20), 'min_samples_split': randint(2, 11),

resource='n_samples', max_resources=10_000, scoring='precision', cv=tscv, verbose=0, random_state=42

rf_predictions = model_evaluation(test_set, best_rf, predictors, start=10_000, step=10_000, memory='off')

Best Params: {'max_depth': 12, 'max_features': 'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 4, 'n_estimators': 224} **Evaluating the Optimized Random Forest Model**

estimator=base rf,param distributions=param distributions,factor=3,

17.25% there... 34.50% there... 51.75% there... 69.00% there...

Model Precision VS Benchmark Performance In [15]: loosing_trades = len(rf_predictions[(rf_predictions['Predictions']==1) & (rf_predictions['Label'] == 0)]) winning_trades = len(rf_predictions[(rf_predictions['Predictions']==1) & (rf_predictions['Label'] == 1)]) precision = (winning_trades / (winning_trades + loosing_trades)) * 100

benchmark = (len(rf_predictions[rf_predictions['Label'] == 1]) / (len(rf_predictions))) * 100

print(f"Precision: {precision:.3f} %") print(f"BenchMark: {benchmark:.3f} %") rf_predictions.value_counts() Precision: 35.041 %

BenchMark: 34.098 % Out[15]: Label Predictions 26705 0.0 0.0 13709 1.0 2647 1.0

Name: count, dtype: int64 Saving the model

In [19]: **from** joblib **import** dump

Save the model dump(best_rf, 'ML_models/random_forest.pkl') Out[19]: ['ML_models/random_forest.pkl']

Running the Live Trading Bot with our ML Model

run_bot() Granularity: M1

v', 'body_perc_prev_2', 'mid_point_prev_2']]}

In [20]: from infrastructure.instrument_collection import instrumentCollection from stream_bot.stream_bot import run_bot instrumentCollection.LoadInstruments("./data")

EUR_USD: {'pair': 'EUR_USD', 'dollar_threshold': 360, 'model': 'ML_models/random_forest.pkl', 'risk': 2, 'probability': 0.6, 'predictors': [['volume', 'mid_o', 'mid_h', 'mid_l', 'mid_c', 'bid_o', 'bid_h', 'bid_h', 'bid_h', 'mid_b', 'mid_ _l', 'bid_c', 'ask_o', 'ask_h', 'ask_l', 'ask_c', 'spread', 'hour', 'day_of_week', 'month', 'BB_MA10', 'BB_LW10', 'BB_LW30', 'BB_LW30', 'BB_MA50', 'BB_LW50', 'ATR_7', 'ATR_14', 'A TR_40', 'EMA20', 'KeUp20_10', 'KeUp20_10', 'KeUp50_50', 'KeUp50_50', 'KeUp50_50', 'KeUp200_50', 'RSI_7', 'RSI_50', 'MACD26_12', 'SIGNAL26_12', 'HIST26_12', 'MACD52_24', 'SIGNAL52_24', 'HIST52_ 24', 'direction', 'body_size', 'body_perc', 'body_bottom_perc', 'body_bottom_perc', 'body_size_prev', 'direction_prev', 'direction_prev_2', 'body_perc_pre