AUTOENCODERS

teoría, herramientas y casos prácticos

David Charte

18 de diciembre de 2019

Índice

Fundamentos

Herramientas

Casos prácticos

Detección de anomalías

Aprendizaje no supervisado

DEFINICIÓN

Búsqueda de patrones en datos sin etiquetar

MOTIVACIÓN

Escasez de datos etiquetados, búsqueda de estructuras implícitas

MÉTODOS CLÁSICOS

K-medias (clustering), LOF (anomalías)

Aprendizaje de representaciones

MOTIVACIÓN

Los modelos dependen de las variables Las representaciones mezclan factores que explican la variación

TRANSFORMACIONES CLÁSICAS

Componentes principales, discriminantes lineales, escalado multidimensional, extracción de *manifolds*

APLICACIONES

Procesamiento de señales, reconocimiento de objetos, NLP, Transfer learning

LECTURA RECOMENDADA

Representation Learning. A review and new perspectives (Bengio et al.)

Redes neuronales

Capas de operaciones sencillas

+

Transformaciones no lineales

+

Se propagan errores hacia atrás

+

Se actualizan parámetros con SGD

CLAVES

Cada capa extrae una representación

Una arquitectura es una familia paramétrica de funciones

El objetivo es diferenciable (c.p.d.)

Autoencoders

Composición de un codificador y un decodificador.

OBJETIVO

$$\min_{\theta} \sum_{\mathbf{x}} d(\mathbf{c}, g_{\theta}(f_{\theta}(\mathbf{x})))$$

LECTURA RECOMENDADA

A practical tutorial on autoencoders for nonlinear feature fusion (Charte et al.)

Creación de un autoencoder

TENSORFLOW/KERAS

```
l_input = Input(shape=(100,))
l_{encoding} = Dense(10)(l_{input})
1 code = Input(shape=(10.))
l_{decoding} = Dense(100)(l_{code})
encoder = Model(l_input, l_encoding)
decoder = Model(l_code, l_decoding)
autoencoder = Model(l_input, decoder(l_encoding))
autoencoder.compile(optimizer="rmsprop", loss="mean_squared_error")
RUTA (cran.r-project.org/package=ruta)
model = autoencoder(input() + dense(10) + output())
```


Implementaciones

RUTA ruta.software
Autoencoders denso, convolucional +
sparse, contractive, denoising, robust, variational

AUTOENCODER pypi.org/project/autoencoder/ Autoencoder convolucional personalizable

KERAS github.com/keras-team/keras/blob/master/examples/variational_
autoencoder_deconv.py
Autoencoder variacional convolucional (MNIST)

SEQ2SEQ pypi.org/project/seq2seq
Encoder-decoder para secuencias reales

CASOS PRÁCTICOS

Embedding

Ajuste de distribuciones (I): instance generation

Variational AE:

Ajuste de distribuciones (II): feature disentanglement

Adversarial AE = AE + GAN

LECTURA RECOMENDADA

Adversarial Autoencoders (Makhzani et al.)

Limpieza

Otras aplicaciones

Superresolución de imágenes

Compresión de imágenes y señales

Hashing semántico

Transfer learning

Recuperación de **poses** humanas

Aprendizaje de formas 3D

Sistemas de **recomendación** y etiquetado

DETECCIÓN DE ANOMALÍAS

Estrategia

CONJETURA

Un autoencoder entrenado en datos normales no puede reconstruir datos anómalos

MÉTODO

Score = error de reconstrucción

LECTURA RECOMENDADA

Anomaly detection using autoencoders with nonlinear dimensionality reduction (Sakurada et al.)

Implementación

Detección de ataques en redes: UNSW-NB15

```
autoencoder = Sequential([
  Dense(units=2, input_shape=187, activation="relu"),
  Dense(units=187)
1)
autoencoder.compile(loss="mean_squared_error", optimizer="adam")
autoencoder.fit(train_x, train_x, epochs=5, batch_size=256)
rec = autoencoder.predict(test_x)
train_rec = autoencoder.predict(train_x)
# cálculo de errores...
```


Resultados

Extensiones

- 1. Variacional
- 2. FP reducer/ clasificador
- 3. Ensemble

Casos reales en mantenimiento predictivo

Chen, Z., & Li, W. (2017). Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. IEEE Transactions on Instrumentation and Measurement, 66(7), 1693-1702.

Jiang, G., He, H., Xie, P., & Tang, Y. (2017). Stacked multilevel-denoising autoencoders: A new representation learning approach for wind turbine gearbox fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 66(9), 2391-2402.

Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., & Chen, X. (2016). A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement, 89, 171-178.

Gugulothu, N., TV, V., Malhotra, P., Vig, L., Agarwal, P., & Shroff, G. (2017). Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv:1709.01073.

EN RESUMEN...

En resumen...

Un autoencoder encuentra representaciones de forma no supervisada

Se adapta a multitud de casos de representation learning

Detecta anomalías conociendo solo casos normales

