Linear Algebra - Key Theorems

Lectured by Dr Simon Wadsley

Michaelmas 2014

Theorem (Steinitz Exchange Lemma). Let V be a vector space over \mathbb{F} . Suppose that $S = \{e_1, \ldots, e_n\}$ is a linearly independent subset of V and $T \subset V$ spans V. Then there is a subset T' of T of order n such that $(T \setminus T') \cup S$ spans V. In particular, $n \leq |T|$.

Corollary. If $\{e_1, \ldots, e_n\} \subset V$ is linearly independent and $\{f_1, \ldots, f_m\}$ spans V, then $n \leq m$ and, possibly after reordering the f_i , $\{e_1, \ldots, e_n, f_{n+1}, \ldots, f_m\}$ spans V.

Proof. By induction. Suppose that we have a subset T'_r of T of order $0 \le r < n$ such that $T_r = (T \setminus T'_r) \cup \{e_1, \ldots, e_r\}$ spans V. Then we can write

$$e_{r+1} = \sum_{i=1}^{k} \lambda_i t_i$$

where $\lambda_i \in \mathbb{F}$ and $t_i \in T_r$. Since $\{e_1, \ldots, e_{r+1}\}$ is linearly independent, there must be some $1 \leq j \leq k$ such that $\lambda_j \neq 0$ and $t_j \notin \{e_1, \ldots, e_r\}$. Let $T'_{r+1} = T'_r \cup \{t_j\}$ and

$$T_{r+1} = (T \setminus T'_{r+1}) \cup \{e_1, \dots, e_{r+1}\} = (T_r \setminus \{t_i\}) \cup \{e_{r+1}\}$$

Now

$$t_j = \frac{1}{\lambda_j} + \sum_{i \neq j} \frac{\lambda_i}{\lambda_j} t_i$$

so $t_j \in \langle T_{r+1} \rangle$ and so $\langle T_{r+1} \rangle = \langle T_{r+1} \cup \{t_j\} \rangle \supset \langle T_r \rangle = V$.

Theorem (Rank-nullity Theorem). If $\alpha: U \to V$ is a linear map between finite dimensional vector spaces over \mathbb{F} then

$$r(\alpha) + n(\alpha) = \dim U$$
.

Proof. Follows easily from the following proposition.

Proposition. If $\alpha: U \to V$ is a linear map between finite dimensional vector spaces then there exists bases $\{e_1, \ldots, e_n\}$ for U and $\{f_1, \ldots f_m\}$ for V such that the matrix representing α is

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

where $r = r(\alpha)$.

Proof. Let e_{k+1}, \ldots, e_n be a basis for $\ker \alpha$ (so that $n(\alpha) = n - k$), and extend it to a basis e_1, \ldots, e_n for U. Let $f_i = \alpha(e_i)$ for $1 \le i \le k$. Claim that $\{f_1, \ldots, f_k\}$ is a basis for $\operatorname{Im} \alpha$

Independence. Suppose that $\sum_{i=1}^k \lambda_i f_i = 0$ for some $\lambda_i \in \mathbb{F}$. Then $\alpha\left(\sum_{i=1}^k \lambda_i e_i\right) = 0$, so $\sum_{i=1}^k \lambda_i e_i \in \ker \alpha$. But $\ker \alpha \cap \langle e_1, \dots, e_k \rangle = 0$ by construction, so $\sum_{i=1}^k \lambda_i e_i = 0$. Since $\{e_1, \dots, e_k\}$ are independent, each $\lambda_i = 0$.

Spanning. Suppose that $v \in \operatorname{Im} \alpha$, so $v = \alpha \left(\sum_{i=1}^k \mu_i e_i \right)$ for some $\mu_i \in \mathbb{F}$. But $\alpha(e_i) = 0$ for i > k and $\alpha(e_i) = f_i$ for $i \leq k$, so $v = \sum_{i=1}^k \mu_i f_i \in \langle f_1, \dots, f_k \rangle$.

Hence $\{f_1, \ldots, f_k\}$ is a basis for $\operatorname{Im} \alpha$ and in particular k = r. Extend this to a basis $\{f_1, \ldots, f_m\}$ for V, then

$$\alpha(e_i) = \begin{cases} f_i & 1 \leqslant i \leqslant r \\ 0 & r+1 \leqslant i \leqslant m \end{cases}$$

so the matrix representing α is as given.

Theorem (Change of basis). Suppose that $\alpha: U \to V$ is a linear map. Let A be the matrix representing α with respect to bases $\langle e_1, \ldots, e_m \rangle$ for U and $\langle f_1, \ldots, f_n \rangle$ for V, and B the matrix representing α with respect to bases $\langle u_1, \ldots, u_m \rangle$ for U and $\langle v_1, \ldots, v_n \rangle$ for V. Then $B = Q^{-1}AP$ where $u_i = \sum P_{ki}e_k$ for $i = 1, \ldots, m$ and $v_j = \sum Q_{lj}f_l$ for $j = 1, \ldots, n$.

(Note that P represents the identity map from U with basis $\langle u_1, \ldots, u_m \rangle$ to U with basis $\langle e_1, \ldots, e_m \rangle$. Similarly, Q represents the identity map from V with basis $\langle v_1, \ldots, v_n \rangle$ to V with basis $\langle f_1, \ldots, f_n \rangle$.)

Theorem. If $A \in \operatorname{Mat}_n(\mathbb{F})$ then $(\operatorname{adj} A)A = A(\operatorname{adj} A) = (\det A)I_n$.

Lemma. Let $\alpha \in \text{End}(V)$ and $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of α . Then $E(\lambda_1) + \ldots + E(\lambda_k)$ is direct.

Proof. Suppose $\sum_{i=1}^k x_i = \sum_{i=1}^k$ with $x_i, y_i \in E(\lambda_i)$. Consider $\beta_j = \prod_{i \neq j} (\alpha - \lambda_i \iota)$. Then

$$\beta_j \left(\sum_{i=1}^k x_i \right) = \sum_{i=1}^k \beta_j(x_i)$$

$$= \sum_{i=1}^k \left(\prod_{r \neq j} (\alpha - \lambda_r \iota)(x_i) \right)$$

$$= \sum_{i=1}^k \left(\prod_{r \neq j} (\lambda_i - \lambda_r) x_i \right)$$

$$= \prod_{r \neq j} (\lambda_j - \lambda_r) x_j$$

and similarly $\beta_j\left(\sum_{i=1}^k y_i\right) = \prod_{r \neq j} (\lambda_j - \lambda_r) y_j$. Then since $\prod_{r \neq j} (\lambda_j - \lambda_r) \neq 0$, have $x_j = y_j$ for each j.

Theorem. Let $\alpha \in \operatorname{End}(V)$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of α . Write $E_i = E(\lambda_i)$. The following are equivalent

(i) α is diagonalisable

- (ii) V has a basis consisting of eigenvectors of α
- (iii) $V = \bigoplus_{i=1}^k E_i$
- (iv) $\sum \dim E_i = \dim V$
- *Proof.* (i) \iff (ii). Suppose A represents α with respect to the basis $\langle e_1, \ldots, e_n \rangle$. A is diagonal $\iff \alpha(e_i) = A_{ii}e_i \iff \langle e_1, \ldots, e_n \rangle$ is a basis of eigenvectors.
- (ii) \iff (iii). (ii) is equivalent to $V = \sum E_i$, but the sum of eigenspaces is direct, so this is equivalent to (iii).
 - (iii) \iff (iv). This is a basic property of direct sums.

Theorem (Diagonalisability Theorem). The linear map $\alpha \in \text{End}(V)$ is diagonalisable if and only if $m_{\alpha}(t)$ has distinct linear factors.

Theorem (Cayley-Hamilton Theorem). Suppose that V is a finite dimensional vector space over \mathbb{F} and $\alpha \in \operatorname{End}(V)$. Then $\chi_{\alpha}(\alpha) = 0$. In particular, m_{α} divides χ_{α} .

Theorem (Jordan Normal Form). Every matrix $A \in \operatorname{Mat}_n(\mathbb{C})$ is similar to a matrix in Jordan Normal Form, which is unique up to reordering of the Jordan blocks.

Theorem (Generalised eigenspace decomposition). Let V be a finite dimensional \mathbb{C} -vector space and $\alpha \in \operatorname{End}(V)$. Suppose that $m_{\alpha}(t) = (t - \lambda_1)^{c_1} \dots (t - \lambda_k)^{c_k}$ with $\lambda_1, \dots, \lambda_k$ distinct. Then $V = V_1 \oplus V_2 \oplus \dots \oplus V_k$ where $V_j = \ker((\alpha - \lambda_j \iota)^{c_k})$.

Proposition. If V is a finite dimensional vector space over \mathbb{F} and P is the change of basis matrix from $\langle e_n, \ldots, e_n \rangle$ to $\langle f_1, \ldots, f_n \rangle$, then the change of basis matrix between the corresponding dual bases $\langle \epsilon_1, \ldots, \epsilon_n \rangle$ and $\langle \eta_1, \ldots, \eta_n \rangle$ is $(P^{-1})^T$.

Proposition. Suppose that V is finite dimensional over \mathbb{F} and $U \subset V$ is a subspace. Then $\dim U + \dim V^{\circ} = \dim V$.

Proposition. Suppose V and W are finite dimensional vector spaces over \mathbb{F} . If $\alpha: V \to W$ is represented by A with respect to the bases $\langle e_n, \ldots, e_n \rangle$ and $\langle f_1, \ldots, f_n \rangle$, then the dual map α^* is represented by A^T with respect to the corresponding dual bases $\langle \epsilon_1, \ldots, \epsilon_n \rangle$ and $\langle \eta_1, \ldots, \eta_n \rangle$.

Proposition (Polarisation Identity). If $q: V \to \mathbb{F}$ is a quadratic form then there exists a unique symmetric bilinear form $\phi: V \times V \to \mathbb{F}$ such that $q(v) = \phi(v, v)$ for all $v \in V$.

Theorem (Canonical form for symmetric bilinear forms). If $\phi: V \times V \to \mathbb{F}$ is a symmetric bilinear form on a finite dimensional vector space V over \mathbb{F} then there is a basis $\langle e_1, \ldots, e_n \rangle$ for V such that ϕ is represented by a diagonal matrix.

Corollary. If ϕ is a symmetric bilinear form on a finite dimensional \mathbb{C} -vector space V then there is a basis $\langle v_1, \ldots, v_n \rangle$ for V such that ϕ is represented by a matrix of the form

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

where $r = r(\phi)$.

Corollary. Every symmetric matrix is $\mathrm{Mat}_n(\mathbb{C})$ is congruent to a matrix of the form

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

Corollary. If ϕ is a symmetric bilinear form a a finite dimensional \mathbb{R} -vector space V then there is a basis $\langle v_1, \ldots, v_n \rangle$ for V such that ϕ is represented by a matrix of the form

$$\begin{pmatrix}
I_s & 0 & 0 \\
0 & I_{r-s} & 0 \\
0 & 0 & 0
\end{pmatrix}$$

where $r = r(\phi)$ and $0 \le s \le r$.

Corollary. Every real symmetric matrix is congruent to a matrix of the form

$$\begin{pmatrix} I_s & 0 & 0 \\ 0 & I_{r-s} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Theorem (Sylvester's Law of Inertia). Let V be an n-dimensional real vector space and ϕ a symmetric bilinear form on V. Then there exist unique integers s, r such that V has a basis $Spanv_1, \ldots, v_n$ with respect to which ϕ is represented by the matrix

$$\begin{pmatrix}
I_s & 0 & 0 \\
0 & I_{r-s} & 0 \\
0 & 0 & 0
\end{pmatrix}$$

The signature of the symmetric bilinear form is defined to be s - (r - s) = 2s - r.

Lemma (Cauchy-Schwarz). Let V be an inner product space and $v, w \in V$. Then $|(v, w)| \leq ||v|| ||w||$.

Corollary (Minkowski's inequality). Let V be an inner product space and $v, w \in V$. Then $||v + w|| \le ||v|| + ||w||$.

Lemma (Parseval's identity). Suppose hat V is a finite dimensional inner product space with orthonormal basis $\langle v_1, \ldots, v_n \rangle$. Then $(v, w) = \sum_{i=1}^n (v_i, v_i)(v_i, w)$. In particular,

$$||v||^2 = \sum_{i=1}^n |(v_i, v)|^2$$

Theorem (Gram-Schmidt process). Let V be an inner product space and e_1, e_2, \ldots linearly independent vectors. Then there is a sequence v_1, v_2, \ldots of orthonormal vectors such that the $\langle e_1, \ldots, e_k \rangle = \langle v_1, \ldots, v_k \rangle$ for each k.

Lemma. Suppose that V is an inner product space and $\alpha \in \text{End}(V)$ is self-adjoint. Then

- (i) α has a real eigenvalue
- (ii) all eigenvalues of α are real
- (iii) eigenvectors with distinct eigenvalues are orthogonal