Cvičení 10: Bipolární tranzistor (BJT) – charakteristiky a zesilovač

C10.1 Charakteristiky BJT

Porovnání NPN a PNP bipolárního tranzistoru (BJT), schematická značka, struktura Vstupní a výstupní charakteristiky BJT, mezní parametry Teplotní závislosti (S10.1 a S10.2)

C10.2 Modely BJT a jejich užití pro určení klidového pracovního bodu

Stavy BJT a jejich jednoduché náhradní obvody Využití jednoduchých náhradních obvodů pro určení pracovního bodu P_0 (CP10.1,CP10.2,CP10.3 – režimy aktivní, nevodivý, saturace)

C10.3 Převodní charakteristiky BJT

C10.4 Nastavení pracovního bodu

Poloha pracovního bodu, varianty obvodových nastavení, vliv teploty (LTSpice/Excel)

C10.5 Vstupní a převodní charakteristika BJT

Měření vstupní a převodní charakteristiky M10.1

BJT – porovnání NPN a PNP (představa):

BJT mezní parametry – vstupní charakteristika

BJT mezní parametry – výstupní charakteristika

BCP56

NPN General Purpose Amplifier

SOT-223

These devices are designed for general purpose medium power amplifiers and switches requiring collector currents to 1A. Sourced from Process 39.

Absolute Maximum Ratings*

A = 25°C unless otherwise noted

Symbol	Parameter	BCP56	Units
V _{CEO}	Collector-Emitter Voltage	80	V
V _{CBO}	Collector-Base Voltage	100	V
V _{EBO}	Emitter-Base Voltage	5	V
Ic	Collector Current - Continuous	1.2	А
T _{J,} T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units	
		BCP56		
P_D	Total Device Dissipation Derate above 25°C	1 8	W mW/°C	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	125	°C/W	

BCP56

SOT-223

Electrical	Charac	teristics
-------------------	--------	-----------

A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 10 mA	80		V
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \mu A$	100		V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = 10 μA	5	0	V
Ісво	Collector Cutoff Current	$V_{CB} = 30 \text{ V}$ $V_{CB} = 30 \text{ V}, T_j = +125^{\circ}\text{C}$		100 10	nA uA
I _{EBO}	Emitter Cutoff Current	V _{EB} = 5V		10	μА
ON CHAR	ACTERISTICS*		40		
h _{FE}	DC Current Gain	I_{C} = 5 mA, V_{CE} = 2V I_{C} = 150 mA, V_{CE} = 2V I_{C} = 500mA, V_{CE} = 2 V	25 40 25	250	-
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 500 m A, I _B = 50 mA		0.5	V
V _{BE(on)}	Base-Emitter On Voltage	I _C = 500 m A, V _{CE} = 2 V		1	V

S10.1: Teplotní závislost výstupních VA charakteristik BJT

cv10_BJT_VAchar.asc

Simulace jsou prováděny při 25 a 125 °C.

Výsledky simulací přeneste do Excelu.

Všimněte si **nárůstu** výstupního proudu I_C s teplotou

S10.2: Teplotní závislost vstupních VA charakteristik BJT

cv10_BJT_lb.asc

Simulace jsou prováděny při 25 a 125 °C.

Výsledky simulací přeneste do Excelu.

Všimněte si **poklesu** vstupního napětí U_{BE} s teplotou

Režimy činnosti BJT – nevodivý

Polarizace přechodu B-E		Polarizace přechodu B-C		Režim
Z	$U_{BE} < U_{P}$	Z	$U_{BC} \le 0$	Nevodivý
Р	U _{BE} > 0	Z	U _{BC} < 0	Normální aktivní
Z	U _{BE} < 0	P	U _{BC} > 0	Inverzní aktivní
Р	U _{BE} > U _P	Р	$U_{BC} \ge U_{P}$	Saturace

Přechod C-B je polarizován závěrně, teče jen malý závěrný proud přechodu C-B. Nazývá se **ZBYTKOVÝ** proud.

TRANZISTOR JE ZAVŘENÝ.

Režimy činnosti BJT – normální aktivní

Polarizace přechodu B-E		Polarizace přechodu B-C		Režim
Z	$U_{BE} < U_{P}$	Z	$U_{BC} \le 0$	Nevodivý
P	U _{BE} > 0	Z	U _{BC} < 0	Normální aktivní
Z	U _{BE} < 0	Р	U _{BC} > 0	Inverzní aktivní
P	U _{BE} > U _P	Р	$U_{BC} \ge U_{P}$	Saturace

Přechod **B-E** je polarizován propustně, teče proud **I**_B = injekce elektronů z E do B a děr z B do E

Přechod **B-C** je polarizován závěrně, = extrakce injikovaných elektronů z B => průtok velkého proudu **I**_C

Proudem I_B řídíme proud I_C

Proudový zesilovací činitel $\beta_F = I_C/I_B \approx 100$

Režimy činnosti BJT – normální aktivní

Polarizace Polarizace přechodu B-E		Režim		
Z	$U_{BE} < U_{P}$	Z	$U_{BC} \le 0$	Nevodivý
P	U _{BE} > 0	Z	U _{BC} < 0	Normální aktivní

Režimy činnosti BJT – inverzní aktivní

Polarizace přechodu B-E		Polarizace přechodu B-C		Režim
Z	U _{BE} < U _P	Z	$U_{BC} \le 0$	Nevodivý
Р	U _{BE} > 0	Z	U _{BC} < 0	Normální aktivní
Z	U _{BE} < 0	P	U _{BC} > 0	Inverzní aktivní
Р	U _{BE} > U _P	Р	$U_{BC} \ge U_{P}$	Saturace

Emitor je zaměněn za kolektor a naopak.

- malé proudové zesílení (β_R<1)
- malé U_{BRCE0} (6 V).

Využití minimální, ale existuje: Vstupní tranzistor logických hradel TTL

Režimy činnosti BJT – saturace

Polarizace přechodu B-E		Polarizace přechodu B-C		Režim
Z	$U_{BE} < U_{P}$	Z	$U_{BC} \le 0$	Nevodivý
P	U _{BE} > 0	Z	U _{BC} < 0	Normální aktivní
Z	U _{BE} < 0	P	U _{BC} > 0	Inverzní aktivní
Р	U _{BE} > U _P	Р	$U_{BC} \ge U_{P}$	Saturace

Saturace nastane, pokud:

$$I_B > \frac{I_{CMAX}}{\beta_F}$$

$$kde I_{CMAX} = \frac{U_{CC}}{R_C}$$

Oba přechody polarizovány v propustném směru \Rightarrow U_{CE} = U_{CES} \rightarrow 0,1 V.

Proudové zesílení významně klesá.

Pro stejný I_C potřebujeme větší I_B!!!

saturace

Příklad CP10.1: Analýza polohy pracovního bodu P_0 Je zadán obvod, známe proudový zesilovací činitel křemíkového tranzistoru, úkolem je určit polohu klidového pracovního bodu P_0 , tj. I_{BPo} , I_{CPo} a U_{CEPo}

Odhad stavu činnosti BJT

- vyloučit lze nevodivý stav a inverzní režim
- předpokládáme aktivní režim
- pokud nebude řešení dávat smysl, bude BJT v saturaci

Náhrada tranzistoru jednoduchým modelem pro vybraný stav činnosti

- parametry modelu $U_{BE} = 0.6-0.7 \text{ V}$, $\Omega_F = 150$

Příklad CP10.1: Analýza polohy pracovního bodu P_0 Je zadán obvod, známe proudový zesilovací činitel křemíkového tranzistoru, úkolem je určit polohu klidového pracovního bodu P_0 , tj. I_{BPo} , I_{CPo} a U_{CEPo}

Řešení:

$$-U_{CC} + R_B \cdot I_B + U_{BE} = 0$$

$$I_B = \frac{U_{CC} - U_{BE}}{R_B} = \frac{12 - 0.65}{270.10^3} = 42 \ [\mu A]$$

$$I_C = \beta_F \cdot I_B = 6.3 \text{ [mA]}$$

$$-U_{CC} + R_C \cdot I_C + U_{CE} = 0$$

$$U_{CE} = U_{CC} - R_C \cdot I_C$$

$$U_{CE} = 12 - 1000 \cdot 6,3.10^{-3}$$

$$U_{CE} = 5,7 \text{ [V]}$$

 $P_0 : I_B = 42\mu A, I_C = 6.3 \text{ mA}, U_{CE} = 5.7 \text{ V}$

Tranzistor je v aktivní oblasti – předpoklady platí

Příklad CP10.2: Analýza polohy pracovního bodu P_0 Je zadán obvod, známe proudový zesilovací činitel křemíkového tranzistoru, úkolem je určit polohu klidového pracovního bodu P_0 , tj. I_{BPo} , I_{CPo} a U_{CEPo}

Řešení:

Náhrada děliče v bázi tranzistoru zdrojem napětí U_{BB} s vnitřním odporem R_B dle Théveninova teorému

$$U_{BB} = U_{CC} \frac{R_2}{R_1 + R_2} = 0.1 \text{ [V]}$$

$$R_B = R_1 \| R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2} = 17.8 \text{ [k}\Omega\text{]}$$

Vzhledem k velikosti napětí U_{BB} (=0,1V) bude tranzistor v nevodivém stavu.

$$P_0: I_B \rightarrow 0, I_C \rightarrow 0, U_{CE} \rightarrow 12V$$

Příklad CP10.3: Analýza polohy pracovního bodu P_0 Je zadán obvod, známe proudový zesilovací činitel křemíkového tranzistoru, úkolem je určit polohu klidového pracovního bodu P_0 , tj. I_{BPo} , I_{CPo} a U_{CEPo}

Odhad stavu činnosti BJT

- vyloučit lze nevodivý stav a inverzní režim
- předpokládáme aktivní režim
- pokud nebude řešení v aktivním režimu dávat smysl, bude BJT v saturaci

Náhrada tranzistoru jednoduchým modelem pro vybraný stav činnosti

- parametry modelu $U_{BF} = 0.6-0.7 \text{ V}$, $\Omega_{F} = 150 \text{ J}$

Příklad CP10.3: Analýza polohy pracovního bodu P_0 Je zadán obvod, známe proudový zesilovací činitel křemíkového tranzistoru, úkolem je určit polohu klidového pracovního bodu P_0 , tj. I_{BPo} , I_{CPo} a U_{CEPo}

Řešení:

$$-U_{CC} + R_B \cdot I_B + U_{BE} = 0$$

$$I_B = \frac{U_{CC} - U_{BE}}{R_B} = \frac{12 - 0.65}{10.10^3} = 1.1 \text{ [mA]}$$

$$I_C = \beta_F \cdot I_B = 170 \text{ [mA]}$$

$$-U_{CC} + R_C \cdot I_C + U_{CE} = 0$$

$$U_{CE} = U_{CC} - R_C \cdot I_C$$

$$U_{CE} = 12 - 1000 \cdot 0.17$$

$$U_{CE} = -158 \text{ [V] !!!!!!}$$

Záporné napětí U_{CE} i jeho absolutní hodnota nedává smysl,

není možné použít náhradní obvod pro aktivní režim.

Použijeme náhradní obvod tranzistoru pro režim saturace.

Příklad CP10.3: Analýza polohy pracovního bodu P_0 Je zadán obvod, známe proudový zesilovací činitel křemíkového tranzistoru, úkolem je určit polohu klidového pracovního bodu P_0 , tj. I_{BPo} , I_{CPo} a U_{CEPo}

Řešení:

Použijeme náhradní obvod tranzistoru pro režim saturace: U_{BE} = 0,7V a U_{CESAT} = 0,1V

$$-U_{CC} + R_B \cdot I_B + U_{BE} = 0$$

$$I_B = \frac{U_{CC} - U_{BE}}{R_B} = \frac{12 - 0.7}{10.10^3} = 1.1 \text{ [mA]}$$

$$-U_{CC} + R_C \cdot I_C + U_{CESAT} = 0$$

$$I_C = \frac{U_{CC} - U_{CESAT}}{R_C} = \frac{12 - 0.1}{1.10^3} = \frac{12 [mA]}{1.10^3}$$

 $P_0 : I_B = 1.1 \text{ mA}, I_C = 12 \text{ mA}, U_{CE} = 0.1 \text{ V}$

Tranzistor je v režimu saturace

Volba polohy klidového pracovního bodu P₀

Zesilovač – normální aktivní režim

Omezení:

Minimální hodnota R_c

dána max. ztrátovým výkonem tranzistoru.

Zesilovač – normální aktivní režim

BJT užit jako zdroj proudu řízený proudem

Zdroj dodává max. výkon do zátěže (BJT)

je-li
$$U_{CE} = U_{CC}/2$$

$$P_{MAX} > U_{CEP0} \cdot I_{CP0} = \frac{U_{CC}}{2} \cdot \frac{U_{CC}}{2 \cdot R_{C}}$$

$$R_{Cmin} > \frac{U_{CC}^{2}}{4 \cdot P}$$

$$R_{Cmin} > \frac{U_{CC}^2}{4 \cdot P_{MAX}}$$

Obvody pro nastavení pracovního bodu P₀

Obvody pro nastavení pracovního bodu P₀

$$I_{C} = \frac{U_{CC} - U_{CE}}{R_{C} + R_{E}}$$

$$I_{B} << I_{C} \Rightarrow I_{E} \approx I_{C}$$

$$I_{B} = \frac{I_{C}}{\beta_{F}}$$

$$I_{B} = \frac{U_{CC} - U_{BE} - R_{E} \cdot I_{C}}{R_{B}}$$

Vhodné

```
    Vzrůst teploty → vzrůst I<sub>C</sub>
    Vzrůst I<sub>C</sub> = vzrůst -R<sub>E</sub>.I<sub>C</sub> → pokles I<sub>B</sub>
    Pokles I<sub>B</sub> → pokles I<sub>C</sub>
```

Regulace není ideální, nedostatečný vliv členu "– R_E.I_C"

Obvody pro nastavení pracovního bodu P₀

Vhodné

```
    Vzrůst teploty → vzrůst I<sub>C</sub>
    Vzrůst I<sub>C</sub> = vzrůst R<sub>C</sub>.I<sub>C</sub> → pokles U<sub>CE</sub>
    Pokles U<sub>CE</sub> → pokles I<sub>B</sub>
    Pokles I<sub>B</sub> → pokles I<sub>C</sub>
```

Vhodný obvod pro teplotní stabilizaci pracovního bodu

Obvody pro nastavení pracovního bodu P₀

$$U_{BB} = U_{CC} \frac{R_{B2}}{R_{B1} + R_{B2}}$$

$$R_{B} = R_{B1} \| R_{B2} = \frac{R_{B1} \cdot R_{B2}}{R_{B1} + R_{B2}}$$

Pokračování na dalším snímku

$$I_{C} = \frac{U_{CC} - U_{CE}}{R_{C} + R_{E}}$$

$$I_{B} << I_{C} \Rightarrow I_{E} \approx I_{C}$$

$$I_{B} = \frac{I_{C}}{\beta_{F}}$$

$$I_{B} = \frac{U_{BB} - U_{BE} - R_{E} \cdot I_{C}}{R_{B}}$$

Obvody pro nastavení pracovního bodu P₀

$$-U_{BB} + R_B \cdot I_B + U_{BE} + R_E \cdot I_E = 0 \quad , \quad I_B << I_C \Rightarrow I_E \approx I_C \quad , \quad I_B = \frac{I_C}{\beta_F} \quad , \quad I_C \approx I_E = \frac{U_{BB} - U_{BE}}{R_E + R_B}$$
Pracovní bod je stabilizován pokud platí

coviii bod je stabilizovani pokud piati

$$U_{BB} >> U_{BE}$$
 $R_E >> \frac{R_B}{\beta}$ $I_C \approx I_E = \frac{U_{BB}}{R_E}$

Teplotně závislé parametry

Typická volba $U_{BB} \approx 0.3 U_{CC}$ $I_{R1R2} \approx 0.1 I_{E} - I_{E}$

Vhodný obvod pro teplotní stabilizaci pracovního bodu

Kolektorový proud:

$$\textbf{I}_{c} = \alpha_{\text{F}}\textbf{I}_{\text{ES}}e^{\frac{U_{\text{BE}}}{nU_{\text{T}}}}$$

kde

 I_{ES} = saturační proud přechodu BE U_T = kT/e = 26 mV (@ T=300K) n = emisní koeficient typicky ~ 1 pro nízkou a vysokou injekci ~ 2

Transconductance

= směrnice převodní charakteristiky

Převodní charakteristika I_C=f(U_{BE})

$$g_{m} = \frac{\partial I_{C}}{\partial U_{BE}} = \frac{1}{n \cdot U_{T}} \cdot \alpha_{F} \cdot I_{ES} \cdot e^{\frac{U_{BE}}{n \cdot U_{T}}} = \frac{1}{n \cdot U_{T}} \cdot I_{C}$$

$$U_{CE} = U_{CC} - R_C \cdot I_C = U_{CC} - R_C \cdot I_{ES} \cdot e^{\frac{DC}{n \cdot U_T}}$$

Střídavé napěťové zesílení zapojení SE:

(pro normální aktivní režim)

$$A_U = \frac{\partial U_{CE}}{\partial U_{BE}} = -\frac{I_C}{n \cdot U_T} \cdot R_C = -g_m \cdot R_C$$

pro $U_T = kT/e = 26 \text{ mV}$ (@ T=300K) $n = \text{emisni koeficient typicky} \sim 1$

$$A_U \approx -40 \cdot I_{CP0} \cdot R_C$$

Převodní charakteristika U_{CE}=f(U_{BE})

kde I_{CP0} je kolektorový proud tranzistoru v jeho pracovním bodě

M10.1: Měření vstupní a převodní charakteristiky BJT

Zapojení pro měření vstupní a převodní charakteristiky

Vstupní charakteristika $U_{BE}=f(I_B)$:

- 1. Pomocí R_B nastavujte proud I_B
- 2. Kontrolujte, že U_{CF}> 0,1 V
- 3. Odečítejte I_B, U_{BE}

Převodní charakteristika $U_{CE}=f(U_{BE})$:

- 1. Pomocí R_B nastavujte proud I_B
- 2. Odečítejte I_B , U_{BE} , U_{CE}

M10.1: Měření vstupní a převodní charakteristiky BJT

Vstupní charakteristika $U_{BE}=f(I_B)$:

- 1. Pomocí R_B nastavujte proud I_B
- 2. Kontrolujte, že U_{CF}> 0,1 V
- 3. Odečítejte I_B , U_{BE}

Převodní charakteristika $U_{CE}=f(U_{BE})$:

- 1. Pomocí R_B nastavujte proud I_B
- 2. Odečítejte I_B , U_{BE} , U_{CE}

M10.1: Měření vstupní a převodní charakteristiky BJT

Vyhodnocení měření – Excel karta Měření vstup. a přev. ch.

