Customer No. 31013 Docket No. 100647-4010

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

- 1. (Currently Amended) A catalytic composition comprising: a plurality of nanostructures selected from the group consisting of carbon nanotubes, carbide nanorods, and mixtures thereof, each having a substantially uniform diameter between 1 nm and 100 nm and a length to diameter ratio greater than 5, said nanostructures further including a metal carbide compound selected from the group consisting of carbides and oxycarbides of a transition metal, rare earth metal or actinide, said composition having an ammonia desorption peak at a temperature greater than 100°C.
- (Original) The catalytic composition of claim 1, wherein said metal is selected from the group consisting of titanium, tantalum, niobium, zirconium, hafnium, molybdenum, vanadium and tungsten.
- 3. (Original) The catalytic composition of claim 1, wherein said nanostructures are substantially cylindrical, have graphitic layers concentric with their cylindrical axes and are substantially free of pyrolytically deposited carbon.
- 4. (Original) The catalytic composition of claim 1, wherein said composition includes 10% to 95% carbides by weight thereof.
- (Currently Amended) The catalytic composition of claim 4, wherein said
 composition includes 0.5% to 25% oxycarbides by weight of total earbides.
- 6. (Original) The catalytic composition of claim 1, wherein said catalytic composition is bifunctional.

2

Docket No. 100647-4010

- 7. (Currently Amended) A catalytic composition comprising: a plurality of nanostructures selected from the group consisting of carbon nanotubes, carbide nanorods, and mixtures thereof, each having a substantially uniform diameter between 1 nm and 100 nm and a length to diameter ratio greater than 5, said nanostructures further including a metal earbide compound selected from the group consisting of carbides and oxycarbides of a transition metal, rare earth metal or actinide, said nanostructures having been modified by an acidification treatment.
- 8. (Original) The catalytic composition of claim 7, wherein said metal is selected from the group consisting of titanium, tantalum, niobium, zirconium, hafnium, molybdenum, vanadium and tungsten.
- 9. (Original) The catalytic composition of claim 7, wherein said acidification treatment is treatment with an acidifying compound.
- 10. (Original) The catalytic composition of claim 9, wherein said acidifying compound includes an element selected from the group consisting of bromine, chlorine, fluorine, iodine, nitrogen, phosphorus, oxygen, sulfur and any combination thereof.
- 11. (Original) The catalytic composition of claim 10, wherein said acidification treatment is selected from the group consisting of halogenation, chlorination, nitrogenation, oxygenation, and phosphorylation.
- 12. (Original) The catalytic composition of claim 7, wherein said nanostructures are substantially cylindrical, have graphitic layers concentric with their cylindrical axes and are substantially free of pyrolytically deposited carbon.
- 13. (Original) The catalytic composition of claim 7, wherein said composition includes 10% to 95% carbides by weight thereof.

Customer No. 31013 Docket No. 100647-4010

14. (Currently Amended) The catalytic composition of claim 13, wherein said composition further includes 0.5% to 25% oxycarbides by weight total earbides.

- 15. (Original) The catalytic composition of claim 7, wherein said catalytic composition is bifunctional.
 - 16. (Currently Amended) A catalytic composition comprising:
- (a) a rigid porous structure formed from a plurality of nanostructures selected from the group consisting of carbon nanotubes, carbide nanorods, and mixtures thereof, each having a substantially uniform diameter between 1 nm and 100 nm and a length to diameter ratio greater than 5, said nanostructures further including a metal compound earbide selected from the group consisting of carbides and oxycarbides of a transition metal, rare earth metal or actinide, said rigid porous structure including a plurality of interstitial spaces between said nanostructures; and
 - (b) a solid acid in said interstitial spaces.
- 17. (Original) The catalytic composition of claim 16, wherein said metal is selected from the group consisting of titanium, tantalum, niobium, zirconium, hafnium, molybdenum, vanadium and tungsten.
- 18. (Original) The catalytic composition of claim 16, wherein said nanostructures are substantially cylindrical, have graphitic layers concentric with their cylindrical axes and are substantially free of pyrolytically deposited carbon.
- 19. (Original) The catalytic composition of claim 16, wherein said solid acid is a compound containing an element selected from the group consisting of aluminum and zirconium.

Docket No. 100647-4010

Customer No. 31013

- 20. (Original) The catalytic composition of claim 19, wherein said solid acid is a compound containing aluminum and the solid acid has been chlorinated, sulfated, or phosphated.
- 21. (Original) The catalytic composition of claim 19, wherein said solid acid is a compound containing zirconium and the solid acid has been chlorinated, sulfated, or phosphated.
- 22. (Original) The catalytic composition of claim 16, wherein said rigid porous structure has a density greater than about 0.5 gm/cm³ and a porosity greater than about 0.8 cc/gm.
- 23. (Original) The catalytic composition of claim 22, wherein said rigid porous structure is substantially free of micropores and has a crush strength greater than about 1 lb/in².
- 24. (Original) The catalytic composition of claim 16, wherein said composition includes 10% to 95% carbides by weight thereof.
- 25. (Currently Amended) The catalytic composition of claim 24, wherein said composition includes 0.5% to 25% oxycarbides by weight total carbides.
- 26. (Original) The catalytic composition of claim 16, wherein said composition is bifunctional.
- 27. (Currently Amended) A process of preparing a catalytic composition for conducting a fluid phase catalytic reaction comprising the step of: acidifying a plurality of nanostructures selected from the group consisting of carbon nanotubes, carbide nanorods, and mixtures thereof, each having a substantially uniform diameter between 1 nm and 100 nm and a length to diameter ratio greater than 5, said nanostructures further including a metal compound

Customer No. 31013 Docket No. 100647-4010

earbide selected from the group consisting of carbides and oxycarbides of a transition metal, rare earth metal or actinide.

- 28. (Original) The process of claim 27, wherein acidifying said nanostructures comprises using an acidifying compound containing an element selected from the group consisting of bromine, chlorine, fluorine, iodine, nitrogen, phosphorus, sulfur, oxygen and mixtures thereof.
- 29. (Original) The process of claim 28, wherein acidifying said nanostructures further comprises placing said nanostructures in a reactor; and drying said nanostructures.
- 30. (Original) The process of claim 29, wherein acidifying said nanostructures further comprises passivating the plurality of nanostructures with oxygen.
- 31. (Original) The process of claim 27, wherein acidifying said nanostructures is achieved by chlorination, nitration, sulfation, or phosphorylation.
- 32. (Currently Amended) A process of preparing a catalytic composition for conducting a fluid phase catalytic reaction comprising the step of: incorporating a solid acid within the plurality of interstitial spaces within a composition including a plurality of nanostructures selected from the group consisting of carbon nanotubes, carbide nanorods, and mixtures thereof, each having a substantially uniform diameter between 1 nm and 100 nm and a length to diameter ratio greater than 5, said nanostructures further including a metal compound earbide selected from the group consisting of carbides and oxycarbides of a transition metal, rare earth metal or actinide.
- 33. (Original) The process of claim 32, further comprising passivating said composition with oxygen.

6

Docket No. 100647-4010

- 34. (Original) The process of claim 32, wherein said solid acid is a compound containing an element selected from the group consisting of aluminum and zirconium.
- 35. (Original) The process of claim 34, wherein said solid acid is a compound containing aluminum and said solid acid has been chlorinated, sulfated, or phosphated.
- 36. (Original) The process of claim 34, wherein said solid acid is a compound containing zirconium and said solid acid has been chlorinated, sulfated, or phosphated.

Claims 37-55 (Cancelled).