MPSI 2

Programme des colles de mathématiques.

Semaine 19: du lundi 21 mars au vendredi 25.

Liste des questions de cours

- 1°) Pour la notion de limite d'une fonction en un point, montrer l'équivalence entre la caractérisation séquentielle et la caractérisation par ε .
- 2°) Donner les trois caractérisations de la continuité de f en a.
- 3°) Que peut-on dire lorsque f et g sont continues et coïncident sur une partie dense dans A? Démontrez-le.
- 4°) Démontrer le théorème de la limite monotone dans le cas d'une fonction croissante et majorée sur un intervalle majoré.
- 5°) Montrer qu'un produit cartésien d'un nombre fini de compacts est compact.
- 6°) Enoncer et démontrer le TVI.
- 7°) Enoncer et démontrer le théorème de caractérisation de la continuité par des ouverts.
- 8°) Enoncer puis démontrer un théorème relatif à la continuité des applications linéaires.
- 9°) Que dire de l'image directe d'un compact par une application continue? Démontrez-le.
- 10°) Enoncer et démontrer l'équivalence entre la caractérisation par ε et la caractérisation séquentielle de la continuité uniforme d'une application.
- 11°) Montrer que les réciproques de la proposition "lispchitzienne" \Longrightarrow "uniformément continue" \Longrightarrow "continue" sont fausses.

Première partie

À réviser : topologie, cf programme de colles précédent.

Deuxième partie

Limites de fonctions et continuité

Par défaut, E et F sont deux espaces métriques et f est une fonction de E dans F, définie sur \mathcal{D}_f .

1 Limite en un point

Notation. On fixe une partie A de \mathcal{D}_f . On fixe également a, qui peut être infini. On suppose qu'il existe au moins une suite $(a_n) \in A^{\mathbb{N}}$ telle que $a_n \underset{n \to +\infty}{\longrightarrow} a$. On fixe aussi l dans $F \cup \{\infty, +\infty, -\infty\}$.

1.1 Caractérisation séquentielle

Définition.
$$f(x) \underset{x \to a}{\longrightarrow} l$$
 si et seulement si $\forall (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \ \left(x_n \underset{n \to +\infty}{\longrightarrow} a \Longrightarrow f(x_n) \underset{n \to +\infty}{\longrightarrow} l \right)$.

Unicité de la limite.

$$\text{Lorsque } F = \mathbb{C} \text{ et } l \in \mathbb{C}, \ f(x) \underset{x \in A}{\xrightarrow{x \to a}} \ell \text{ si et seulement si } (\text{Re}(f)(x) \underset{x \in A}{\xrightarrow{x \to a}} \text{Re}(\ell)) \ \land \ (\text{Im}(f)(x) \underset{x \in A}{\xrightarrow{x \to a}} \text{Im}(\ell)).$$

Propriété. Si
$$A \subset B \subset \mathcal{D}_f$$
 et si $f(x) \underset{x \to a \atop x \in B}{\longrightarrow} l$, alors $f(x) \underset{x \to a}{\longrightarrow} l$.

1.2 Caractérisation par " ε "

Si
$$a \in E$$
 et $l \in F$, $f(x) \underset{x \to a \\ x \in A}{\longrightarrow} l \iff \forall \varepsilon \in \mathbb{R}_+^* \ \exists \alpha \in \mathbb{R}_+^* \ \forall x \in A \ (d(x, a) \le \alpha \Longrightarrow d(f(x), l) \le \varepsilon).$

Adaptation aux cas des limites infinies.

1.3 Caractérisation par voisinages

Voisinages de $\pm \infty$ dans \mathbb{R} , voisinages de ∞ dans E.

$$\textbf{Propriété.} \ \ f(x) \underset{x \to a \atop x \neq A}{\longrightarrow} l \Longleftrightarrow \forall V \in \mathcal{V}(l) \ \ \exists U \in \mathcal{V}(a) \ \ f(U \cap A) \subset V.$$

Caractère local de la notion de limite : Pour tout
$$U_0 \in \mathcal{V}(a), f(x) \underset{x \in A}{\longrightarrow} l \iff f(x) \underset{x \in A \cap U_0}{\longrightarrow} l.$$

Lorsque $E = \mathbb{R}$ et $a \in \mathbb{R}$, limite à gauche et à droite en a de f(x).

$$f(x) \xrightarrow[x \to a]{} l$$
 si et seulement si $f(x) \xrightarrow[x \to a]{} l$ et $f(x) \xrightarrow[x \to a]{} l$.

2 Continuité en un point

Définition. Soit $a \in \mathcal{D}_f$. f est continue en a si et seulement si $f(x) \underset{x \in \mathcal{D}_f}{\longrightarrow} f(a)$.

Propriété. Si $a \notin \overline{\mathcal{D}_f \setminus \{a\}}$ (on dit que a est un point isolé de \mathcal{D}_f), f est toujours continue en a. Si $a \in \overline{\mathcal{D}_f \setminus \{a\}}$, f est continue en a si et seulement si $f(x) \underset{x \in \mathcal{D}_f \setminus \{a\}}{\longrightarrow} f(a)$.

Les applications lipschitziennes sont continues.

Si f est continue en a, alors $f|_A$ est aussi continue en a.

Lorsque $E = \mathbb{R}$, continuité à gauche et à droite.

Prolongement par continuité.

Si f et g sont continues et coïncident sur une partie dense dans A, alors f et g coïncident sur A.

3 Théorèmes de composition

Pour que $g(f(x)) \underset{x \to a}{\longrightarrow} m$, il suffit que $f(x) \underset{x \in A}{\longrightarrow} l$ et $g(y) \underset{y \to l}{\longrightarrow} m$. Si $f(x) \underset{x \to a}{\longrightarrow} b$ et si g est continue en b, alors $g(f(x)) \underset{x \to a}{\longrightarrow} g(b)$. Continuité d'une composée.

Limite en un point d'une application à valeurs dans un produit de K-espaces vectoriels normés. Continuité en un point d'une application à valeurs dans un produit de K-espaces vectoriels normés.

4 Opérations algébriques sur les limites

Somme de deux applications à valeurs vectorielles

Si
$$f(x) \xrightarrow[x \to a]{} l$$
 et $g(x) \xrightarrow[x \in A]{} l'$, alors $(f+g)(x) \xrightarrow[x \in A]{} l + l'$.
C'est valable pour des limites infinies, à condition d'éviter la forme indéterminée $\infty - \infty$.

La somme de deux applications continues est continue.

Produit d'une application scalaire par une application vectorielle

Si
$$f(x) \underset{x \to a}{\xrightarrow{x \to a}} l$$
 et $g(x) \underset{x \in A}{\xrightarrow{x \to a}} l'$, alors $(fg)(x) \underset{x \to a}{\xrightarrow{x \to a}} ll'$.

C'est valable pour des limites infinies, à condition d'éviter la forme indéterminée $0 \times \infty$.

Le produit d'une application scalaire continue par une application vectorielle continue est continue.

Le K-espace vectoriel des applications continues d'une partie d'un K-espace vectoriel normé dans un autre K-espace vectoriel normé.

La K-algèbre des applications continues d'une partie d'un K-espace vectoriel normé dans K.

5 Cas des fonctions à valeurs dans \mathbb{R} .

Passage à la limite sur une inégalité large.

Principe du tunnel : Si $f(x) \xrightarrow[x \to a]{a} \ell \in \mathbb{R}$ et $\alpha < \ell < \beta$, alors, au voisinage de $a, \alpha < f(x) < \beta$.

Principe des gendarmes.

Théorème de la limite monotone.

Si $f: [m, M] \longrightarrow \mathbb{R}$ est monotone, elle possède en tout point une limite à droite et une limite à gauche.

Continuité globale 6

Cas des fonctions de \mathbb{R} dans \mathbb{R}

Théorème des valeurs intermédiaires (TVI).

Une fonction continue de I dans \mathbb{R} est injective si et seulement si elle est strictement monotone.

Théorème de la bijection.

Continuité et ouverts

f est continue si et seulement si les images réciproques des ouverts (resp : fermés) sont des ouverts (resp : fermés) relatifs de \mathcal{D}_f .

6.3 Continuité d'une application linéaire.

 $f \in L(E, F)$ est continue si et seulement si elle est bornée sur la boule unité de E, ou encore si et seulement si il existe k tel que $\forall x \in E \ ||f(x)|| \le k||x||$.

En exercice : le \mathbb{K} -espace vectoriel normé des endomorphismes continus sur E.

6.4 Continuité et compacité

L'image directe d'un compact par une application continue est un compact. Si $f:A\longrightarrow \mathbb{R}$ est continue avec A compact, alors f est bornée et elle atteint ses bornes, L'image directe d'un segment de \mathbb{R} par une application continue à valeurs réelles est un segment.

6.5 La continuité uniforme

Caractérisation par ε et caractérisation séquentielle de la continuité uniforme d'une application.

Composée d'applications uniformément continues.

"lispchitzienne" ⇒ "uniformément continue" ⇒ "continue", mais les réciproques sont fausses.

Théorème de Heine.

Prévisions pour la semaine prochaine :

o, O, équivalents et développements limités.