TORICS IN *MACAULAY2* SMOOTH PROJECTIVE TORIC VARIETIES

What. A *toric variety* over the field \mathbb{C} is an irreducible variety X such that the algebraic torus $(\mathbb{C}^{\times})^d$ is a Zariski open subset of X, and the action of $(\mathbb{C}^{\times})^d$ on itself extends to an action on X.

Why. Toric varieties form part of a dictionary between algebraic geometry, commutative algebra, and combinatorial geometry. Because of their accessibility and computability, they arise essentially everywhere.

Basic Problems.

- What are smooth projective toric varieties and how do we work with them in *Macaulay2*?
- What are coherent sheaves and how do we represent them in *Macaulay2*?

Prototype. The projective plane \mathbb{P}^2 is the set of line through the origin in \mathbb{C}^3 . More precisely, the multiplicative group \mathbb{C}^\times acts diagonally on \mathbb{C}^3 and lines through the origin correspond to the orbits. Since the origin $\mathbf{0}$ the unique non-maximal orbit, we set $\mathbb{P}^2 := (\mathbb{C}^2 \setminus \{\mathbf{0}\})/\mathbb{C}^\times$. A point $[z_0 \colon z_1 \colon z_2] \in \mathbb{P}^2$ corresponds to the line $(\lambda z_0, \lambda z_1, \lambda z_2) \in \mathbb{C}^3$ where $\lambda \in \mathbb{C}^\times$.

The combinatorial source of \mathbb{P}^2 is the following triangle in \mathbb{R}^2 .

$$\begin{array}{c}
2 \\
\hline
\end{array}$$

$$1 \qquad \Delta_2 := \operatorname{conv} ((0,0), (-1,0), (0,-1))$$

The outer normal vectors induce an exact sequence $0 \longrightarrow \mathbb{Z}^2 \xrightarrow{\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}} \mathbb{Z}^3 \xrightarrow{\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}} \mathbb{Z} \longrightarrow 0$

and applying the functor $\operatorname{Hom}_{\mathbb{Z}}(-,\mathbb{C}^{\times})$ yields the inclusion of tori $1 \longrightarrow \mathbb{C}^{\times} \xrightarrow{\left[\begin{smallmatrix} 1\\1\\1 \end{smallmatrix}\right]} (\mathbb{C}^{\times})^3$. Combined with the entrywise action of $(\mathbb{C}^{\times})^3$ on \mathbb{C}^3 , we obtain the diagonal action on \mathbb{C}^3 .

Polytopes. For d > 0, fix the lattice \mathbb{Z}^d in \mathbb{R}^d . A *lattice polytope* $P \subset \mathbb{R}^d$ is the convex hull of a finite subset of lattice points. We assume that the smallest affine subspace containing P is \mathbb{R}^d . The *vertices* are the points that do not lie in any open line segment joining two points of P. Minkowski first established that P is the convex hull of its vertices and this is the minimal such representation.

Equivalently, P is a bounded intersection of finitely many closed half-spaces with integral normal vectors. A *supporting hyperplane* contains P in one of its associated closed half-spaces and contains a point in P. The unique minimal collection of supporting hyperplanes defining P correspond to the *facets* of P. Let n denote the number of facets.

Examples and Counterexamples.

A polytope P is **smooth** if, for each vertex, the facet normal vectors passing through the vertex form a subset of a basis for \mathbb{Z}^d .

Date: 16 June 2014.

An Example and a Counterexample.

Lemma. The (outer) normal vectors of a smooth lattice polytope induce a short exact sequence

$$0 \longrightarrow \mathbb{Z}^d \xrightarrow{\begin{bmatrix} \mathbf{v}_0 \\ \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{n-1} \end{bmatrix}} \mathbb{Z}^n \xrightarrow{\begin{bmatrix} \mathbf{a}_0 & \mathbf{a}_1 & \cdots & \mathbf{a}_{n-1} \end{bmatrix}} \mathbb{Z}^{n-d} \longrightarrow 0.$$

Idea of Proof. Since P is smooth, a change of basis on \mathbb{Z}^d implies that $\begin{bmatrix} \mathbf{v}_0 \\ \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{n-1} \end{bmatrix} = \begin{bmatrix} C \\ I_d \end{bmatrix}$, so for an appropriate choice of basis on \mathbb{Z}^{n-d} we have $A := \begin{bmatrix} \mathbf{a}_0 & \mathbf{a}_1 & \cdots & \mathbf{a}_{n-1} \end{bmatrix} = \begin{bmatrix} I_{n-d} & -C \end{bmatrix}$

Cox ring. Since \mathbb{C}^{\times} is an injective \mathbb{Z} -module, applying $\operatorname{Hom}_{\mathbb{Z}}(-,\mathbb{C}^{\times})$ gives the exact sequence $1 \longrightarrow (\mathbb{C}^{\times})^{n-d} \stackrel{A^{\mathsf{T}}}{\longrightarrow} (\mathbb{C}^{\times})^{n} \longrightarrow (\mathbb{C}^{\times})^{d} \longrightarrow 1$. Combined with the entrywise action of $(\mathbb{C}^{\times})^{n}$ on \mathbb{C}^{n} , we obtain a (\mathbb{C}^{n-d}) -action on \mathbb{C}^{n} . Algebraically, this action is encoded by the polynomial ring $S := \mathbb{C}[x_0, x_1, \dots, x_{n-1}]$ with the \mathbb{Z}^{n-d} -grading defined by $\deg(x_j) := \mathbf{a}_j$.

Irrelevant Ideal. A *face* of a polytope is the intersection with a supporting hyperplane. Each face corresponds to a unique subset of the facet hyperplanes. Consider the monomial ideal in *S* defined by $B_X := \bigcap_{\sigma \subseteq [n]} \langle x_j : j \in \sigma \rangle$ where the intersection is over all subsets σ corresponding to minimal non-faces.

Examples.

$$B_Q = \langle x_0, x_2 \rangle \cap \langle x_0, x_3 \rangle \cap \langle x_1, x_3 \rangle \cap \langle x_1, x_4 \rangle \cap \langle x_2, x_4 \rangle$$

Theorem. The quotient $X_P := (\mathbb{C}^n \setminus Z(B))/(\mathbb{C}^\times)^{n-d}$ is a projective (normal) toric variety and a smooth compactification of the algebraic torus $(\mathbb{C}^\times)^d$.

REFERENCES

- [M2] D.R. Grayson and M.E. Stillman, *Macaulay2*, a software system for research in algebraic geometry, available at www.math.uiuc.edu/Macaulay2/.
- [CLS] D.A. Cox, J.B. Little, and H.K. Schenck, *Toric varieties*, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011.

This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

GREGORY G. SMITH, DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, K7L 3N6, CANADA

E-mail address: ggsmith@mast.queensu.ca