de Telecomunicació de Barcelona

PERSITAT POLITÉCNICA DE CATALUNYA

DEPARTAMENT DE TSC

Procesado de Señal

22-Enero-08

Profesores: Miguel A. Lagunas, Montserrat Nájar,

Ana Pérez Neira.

Duración:

Solución Ejercicio 1

El presente ejercicio obtiene un algoritmo que permite obtener con bajo cálculo el autovector asociado al autovalor máximo de la matriz de correlación $\mathbf{R}_{x} = E\left[\mathbf{x}_{n}\mathbf{x}_{n}^{H}\right]$. Para ello se pide resolver los siguientes apartados.

a.- Considere la expresión (1), en donde \mathbf{x}_n y \mathbf{w}_n son vectores de Q componentes cada uno, y demuestre que la minimización que plantea da como resultado un autovector de \mathbf{R}_{x} . En dicha demostración halle el autovalor, λ , asociado e indique si se corresponde con λ_{max} o λ_{min} , justifiquelo.

$$\max_{\mathbf{w}} \mathbf{w}^{H} \mathbf{R}_{x} \mathbf{w}$$

$$sujeto \ a \ \mathbf{w}^{H} \mathbf{w} = 1$$
(1)

Solución:

La optimización se obtiene a través de $\frac{\partial L}{\partial \mathbf{w}^H} = \mathbf{0}$. Como $L = \mathbf{w}^H \mathbf{R}_x \mathbf{w} - \mathbf{I} \mathbf{w}^H \mathbf{w}$ entonces $\mathbf{R}_x \mathbf{w} = \mathbf{I} \mathbf{w}$

Para que cumpla $\mathbf{w}^H \mathbf{w} = 1 \Rightarrow \mathbf{I} = \mathbf{w}^H \mathbf{R}_{\mathbf{w}} \mathbf{w} = \mathbf{I}_{\text{max}}$

b.- Demuestre que se obtiene el mismo resultado si se plantea el problema como

$$\min_{\mathbf{w}} E \left[\left| \mathbf{x}_{n} - \mathbf{w} \mathbf{w}^{H} \mathbf{x}_{n} \right|^{2} \right]$$

$$sujeto \ a \quad \mathbf{w}^{H} \mathbf{w} = 1$$
(2)

NOTA: para
$$f = (\mathbf{a}^H \mathbf{b})(\mathbf{a}^H \mathbf{c}) \rightarrow \frac{\partial f}{\partial \mathbf{a}^H} = \mathbf{b}(\mathbf{a}^H \mathbf{c}) + (\mathbf{a}^H \mathbf{b})\mathbf{c}$$

Solución:

En este caso $L = E[|\mathbf{x}_n|^2] - 2\mathbf{w}^H \mathbf{R}_x \mathbf{w} + \mathbf{w}^H \mathbf{R}_x \mathbf{w} \mathbf{w}^H \mathbf{w} - \mathbf{I}(\mathbf{w}^H \mathbf{w} - 1)$

$$\frac{\partial L}{\partial \mathbf{w}^{H}} = \mathbf{0} \Rightarrow -2\mathbf{R}_{x}\mathbf{w} + \mathbf{R}_{x}\mathbf{w}\mathbf{w}^{H}\mathbf{w} + (\mathbf{w}^{H}\mathbf{R}_{x}\mathbf{w})\mathbf{w} = \mathbf{I}\mathbf{w} \quad (*)$$

Para que cumpla $\mathbf{w}^H \mathbf{w} = 1 \Rightarrow \mathbf{l} = -2\mathbf{w}^H \mathbf{R}_{\mathbf{v}} \mathbf{w} + 2\mathbf{w}^H \mathbf{R}_{\mathbf{v}} \mathbf{w} = 0$

Sustituyendo $\lambda=0$ en (*) se obtiene que $\mathbf{R}_{x}\mathbf{w}=(\mathbf{w}^{H}\mathbf{R}_{x}\mathbf{w})\mathbf{w}$ y coincide con el resultado del apartado anterior.

La minimización de (2) puede interpretarse como el diseño de un vector w que minimiza el error $\mathbf{e} = \mathbf{x} - \mathbf{w}$. y, siendo $y = \mathbf{w}^H \mathbf{x}$

Con el objetivo de obtener un método de baja complejidad para calcular w (que no presente problemas numéricos cuando \mathbf{R}_x se estima con bajo número de muestras), se propone obtener \mathbf{w}_n iterativamente a través de (3)

$$\min_{\mathbf{w}_n} |\mathbf{w}_n - \mathbf{w}_{n-1}|^2$$

$$sujeto \ a \ \mathbf{w}_n y_n = \mathbf{x}_n$$
(3)

con $y_n = \mathbf{w}_{n-1}^H \mathbf{x}_n$, ya que se considera que para señales de variación lenta o estacionarias, la diferencia entre \mathbf{w}_n y \mathbf{w}_{n-1} es pequeña. Al minimizar la diferencia entre vectores \mathbf{w} de iteraciones sucesivas en (3), se busca que dicho diseño garantice la convergencia del algoritmo.

c.- Halle el vector \mathbf{w}_n que verifica (3) y demuestre que se puede calcular como

$$\mathbf{w}_{n} = \mathbf{w}_{n-1} - \mathbf{m} \left(\mathbf{w}_{n-1} y_{n} - \mathbf{x}_{n} \right) y_{n}^{*} \tag{4}$$

dé el valor de µ

Solución:

$$L = \mathbf{w}_n^H \mathbf{w}_n + \mathbf{w}_{n-1}^H \mathbf{w}_{n-1} - \mathbf{w}_n^H \mathbf{w}_{n-1} - \mathbf{w}_{n-1}^H \mathbf{w}_n + (\mathbf{w}_n^H y_n^* - \mathbf{x}_n^H)?$$

$$\frac{\partial L}{\partial \mathbf{w}_n^H} = \mathbf{0} \Rightarrow \mathbf{w}_n - \mathbf{w}_{n-1} + 2y_n^* = \mathbf{0} \quad (**)$$

Para que se cumpla $\mathbf{w}_n y_n = \mathbf{x}_n \Rightarrow \mathbf{I} = \frac{1}{|y_n|^2} (\mathbf{w}_{n-1} y_n - \mathbf{x}_n)$

Sustituyendo en (**) se obtiene

$$\mathbf{w}_{n} = \mathbf{w}_{n-1} - \mathbf{m} \left(\mathbf{w}_{n-1} y_{n} - \mathbf{x}_{n} \right) y_{n}^{*} \quad \text{con} \quad \mathbf{m} = \frac{1}{\left| y_{n} \right|^{2}}$$

d.- Compruebe que la solución óptima de (4) en régimen permanente es el autovector asociado al autovalor máximo de \mathbf{R}_{x} .

Solución:

$$E[\mathbf{w}_{n} - \mathbf{w}_{n-1}] \Rightarrow \mathbf{w}(\mathbf{w}^{H}\mathbf{R}_{x}\mathbf{w}) = \mathbf{R}_{x}\mathbf{w}$$

e.- Teniendo en cuenta que (4) pretende resolver (2) ¿es (4) un algoritmo de gradiente instantáneo? Justifique la respuesta.

Solución:

El gradiente de la potencia del error hallada en (2) es $\nabla x = -2\mathbf{R}_x \mathbf{w} + \mathbf{R}_x \mathbf{w} \mathbf{w}^H \mathbf{w} + (\mathbf{w}^H \mathbf{R}_x \mathbf{w}) \mathbf{w}$ Su valor instantáneo es

$$\nabla \mathbf{x}_{inst} = -\mathbf{x}_n \, \mathbf{x}_n^H \, \mathbf{w} + \left(\mathbf{w}^H \, \mathbf{x}_n \, \mathbf{x}_n^H \, \mathbf{w} \right) \mathbf{w} =$$

$$= \left(\mathbf{w}_{n-1} y_n - \mathbf{x}_n \right) y_n^*$$

Por lo tanto, (4) es un algoritmo de gradiente instantáneo

- **f.-** Indique las similitudes y diferencias de (4) con un algoritmo NMLS. Para ello:
 - Dé la expresión general del NMLS
 - Compare dicha expresión general con (4) y dé la expresión del error e(n) y de los datos

En (4) tenemos un algoritmo del tipo LMS normalizado o NLMS:

$$w_n = w_{n-1} - \frac{\mathbf{a}}{\left|\mathbf{y}_n\right|^2} \mathbf{y}_n e^*(n)$$

con la diferencia de que la señal de datos en (4) es un escalar y el error es un vector

Ejercicio 2

En este ejercicio se considera el diseño de un codificador de imagen óptimo. La imagen se define como un vector aleatorio \mathbf{u} de dimensión Nx1 con media nula y matriz de covarianza \mathbf{R} . El vector \mathbf{u} se transforma con la transformación lineal definida por la matriz compleja \mathbf{A} de dimensión NxN. Esta transformación da lugar al vector complejo \mathbf{v} cuyas componentes están incorreladas entre sí. Cada componente del vector \mathbf{v} se cuantifica independientemente. El vector cuantificado \mathbf{v}' se transforma linealmente con la matriz \mathbf{B} dando lugar al vector \mathbf{u}' .

El objetivo es encontrar las matrices de transformación $\bf A$ y $\bf B$ que minimizan la distorsión, definida como el error cuadrático medio entre los vectores $\bf u$ y $\bf u'$.

$$D = \frac{1}{N} E \left\{ Tr \left[\left(\mathbf{u} - \mathbf{u}' \right) \left(\mathbf{u} - \mathbf{u}' \right)^T \right] \right\}$$

a) Defina la distorsión D en función de los vectores transformados ${\bf v}$ y ${\bf v}'$ y de las matrices de transformación ${\bf A}$ y ${\bf B}$.

Solución:
$$D = \frac{1}{N} E \left\{ Tr \left[\left(\mathbf{A}^{-1} \mathbf{v} - \mathbf{B} \mathbf{v}' \right) \left(\mathbf{A}^{-1} \mathbf{v} - \mathbf{B} \mathbf{v}' \right)^{H} \right] \right\}$$

b) Obtenga la matriz **B** que minimiza la distorsión D en función de la matriz **A** y de las matrices de correlación: $\mathbf{R}_{\mathbf{v'v'}} = E\left[\mathbf{v'v'}^H\right]$ y $\mathbf{R}_{\mathbf{vv'}} = E\left[\mathbf{vv'}^H\right]$.

Solución:
$$\mathbf{B} = \mathbf{A}^{-1} \mathbf{R}_{\mathbf{v}\mathbf{v}'} \mathbf{R}_{\mathbf{v}'\mathbf{v}'}^{-1}$$

El cuantificador óptimo que minimiza la potencia del ruido de cuantificación genera una señal cuantificada ortogonal al error de cuantificación: $E \lceil (\mathbf{v}' - \mathbf{v}) \mathbf{v}'^H \rceil = \mathbf{0}$.

c) Considerando el cuantificador óptimo, demuestre que la distorsión mínima puede definirse como:

$$D = \frac{1}{N} Tr \left[\mathbf{A}^{-1} \mathbf{F} \mathbf{A} \mathbf{R} \right] \quad siendo \quad \mathbf{F} = diag \left\{ f \left(b_k \right) \right\}$$

donde $f(b_k)$ es la distorsión de un cuantificador de b_k bits cuando la varianza de la entrada es la unidad, siendo el error de cuantificación:

$$\sigma_q^2(k) = E \left[\left| v(k) - v'(k) \right|^2 \right] = E \left[\left| v(k) \right|^2 \right] f(b_k)$$

Solución:
$$\mathbf{R}_{\mathbf{v}\mathbf{v}'}\mathbf{R}_{\mathbf{v}'\mathbf{v}'}^{-1} = \mathbf{I} \Rightarrow \mathbf{B} = \mathbf{A}^{-1}$$

$$D = \frac{1}{N}Tr\left[\mathbf{A}^{-1}\mathbf{F}\mathbf{R}_{\mathbf{v}\mathbf{v}}\left(\mathbf{A}^{-1}\right)^{H}\right]$$

$$\mathbf{R}_{\mathbf{v}\mathbf{v}} = \mathbf{A}\mathbf{R}\mathbf{A}^{H}$$

d) Minimice la distorsión con respecto a la transformación **A** y demuestre que la transformación óptima corresponde a la transformada KL.

Solución:
$$\frac{\partial D}{\partial \mathbf{A}} = -\frac{1}{N} \left(\mathbf{A}^{-1} \mathbf{F} \mathbf{A} \mathbf{R} \mathbf{A}^{-1} \right)^{T} + \frac{1}{N} \left(\mathbf{R} \mathbf{A}^{-1} \mathbf{F} \right)^{T} \Rightarrow \mathbf{F} \left(\mathbf{A} \mathbf{R} \mathbf{A}^{-1} \right) = \left(\mathbf{A} \mathbf{R} \mathbf{A}^{-1} \right) \mathbf{F}$$

 \mathbf{F} diagonal $\Rightarrow \mathbf{A}\mathbf{R}\mathbf{A}^{-1}$ diagonal

 \mathbf{ARA}^{H} diagonal $\Rightarrow \mathbf{AA}^{H} = \mathbf{I}$

 $\bf A$ autovectores de $\bf R$

Utilizando una transformación arbitraria A y definiendo $B = A^{-1}$, la distorsión puede definirse como:

$$D = \frac{1}{N} \sum_{k=0}^{N-1} E \left[\left| v(k) - v'(k) \right|^2 \right] = \frac{1}{N} \sum_{k=0}^{N-1} \sigma_k^2 f(b_k)$$

donde σ_k^2 es la varianza del coeficiente transformado v(k).

Considere la función de distorsión del cuantificador en función del número de bits $f(b) = 2^{-2b}$.

e) Obtenga el número de bits necesario para cuantificar los coeficientes transformados asumiendo un valor dado de distorsión D.

Solución:
$$M = \sum_{k=0}^{N-1} \frac{1}{2} \log_2 \frac{\sigma_k^2}{D} = \frac{1}{2} \log_2 \left(\prod_{k=0}^{N-1} \sigma_k^2 \right) - \frac{N}{2} \log_2 D$$

f) Demuestre que el número de bits necesario es mínimo cuando ${\bf A}$ es la transformación KL.

Solución:
$$\prod_{k=0}^{N-1} \sigma_k^2 = \det(\mathbf{R})$$

$$M_{KL} = \frac{1}{2} \log_2 \left(\det(\mathbf{R}) \right) - \frac{N}{2} \log_2 D$$

$$M - M_{KL} = \frac{1}{2} \log_2 \left(\frac{\prod_{k=0}^{N-1} \sigma_k^2}{\det(\mathbf{R})} \right) \ge 0$$

NOTAS:
$$Tr[\mathbf{XY}] = Tr[\mathbf{YX}] \qquad \frac{\partial [Tr[\mathbf{XY}]]}{\partial \mathbf{X}} = \mathbf{Y}^{T}$$
$$\frac{\partial Tr[\mathbf{X}^{-1}\mathbf{YXZ}]}{\partial \mathbf{X}} = -(\mathbf{X}^{-1}\mathbf{YXZX}^{-1})^{T} + (\mathbf{ZX}^{-1}\mathbf{Y})^{T}$$

Si XY = YX y X es diagonal, Y es también diagonal

 $\det(\mathbf{X}) \le \prod_{k=1}^{N} x(k,k)$, donde x(k,k) es el elemento de la fila k y

columna k de la matriz X.