PROBLEM SET # 2

EC/ACM/CS 112: Bayesian Statistics Caltech

Submission instructions	>> Create a pdf of the R Notebook with your solutions (details below) >> Submit in Canvas
Additional files included in the problem set package	>> dataset problem set 2 >> solutions template (.Rmd file)

PART 1 IMPACT OF MORE DATA ON THE BALL TOSSING PROBLEM

BACKGROUND

- Remember the application of the Binomial Model (BM) that we carried out in Lecture 2.
- We have two juggling balls with maps of the Earth on their surface

- We are interested in applying the Binomial Model to estimate the percentage of surface in each of the balls that represents land (in green) or water (in dark or light blue).
- To do this, we tossed each ball in the air 100 times and recorded whether, after catching it, the base of the middle finger touches water or land

- We then estimated a bivariate binomial model with following assumptions:
 - ++ $Prior(p_1) = Beta(5,5)$, where p_1 denotes the probability of a water landing for ball 1
 - ++ $Prior(p_2) = Beta(5,5)$, where p_2 denotes the probability of a water landing for ball 2
 - ++ The two priors are independent
 - ++ The tosses across balls and across trials are independent

DATASET

- The dataset for this problem set is in the file "PS2_data.csv" included with this package
- The dataset is similar to the one used in class, except for two differences:
 - ++ There is a new variable, called tosser, which indicates the name of person tossing the ball
 - ++ There are twice as many observations for each ball: the initial 100 observations were generated by Prof. Rangel (indicated by ar); the next 100 were generated by a student (indicated by nh).

GOAL

 To explore the role that additional data and variation across samples has in the estimates of a simple binomial model

TO DO

STEP 1 (1 point): Estimate and summarize the model using only the original data collected by ar

- Plot the joint posterior density as a heat map
- Plot the marginal posterior densities for p_1 and p_2 in a single plot (add a figure legend identifying the two curves)
- Compute the mean and standard deviation of the posterior marginal distributions
- Compute the posterior probability that $p_1 < p_2$

STEP 2 (0.5 points). Repeat step 1 using only the new data collected by nh.

STEP 3 (0.5 points). Repeat step 1 using all of the data collected.

POTENTIALLY USEFUL MATERIALS	
R functions	colSums()
	rowSums()
	legend()
	levelplot() – in lattice package

PART 2 MODEL CHECKING: ROLE OF INDEPENDENT PRIORS

BACKGROUND

- A potential concern with the basic model used in class is that, given that the two juggling balls come from the same manufacturer, it is likely that the values of p_1 and p_2 are correlated.
- Thus, the assumption that the joint priors are uncorrelated is a potential concern

GOAL

• Explore the role that the degree of correlation in the joint priors has on the posterior distribution.

TO DO

STEP 1 (2 points). Build a function that takes as inputs the five parameters that describe a bivariate normal distribution and returns a prior matrix based on the associated bivariate normal distribution, truncated to $[0,1] \times [0,1]$

- Start with a refresher or the bivariate distribution (e.g., here http://mathworld.wolfram.com/BivariateNormalDistribution.html)
- Recall that the bivariate normal distribution is described by the following objects:
 - ++ The means for p_1 and p_2 denoted, respectively, μ_1 and μ_2
 - ++ A covariance matrix with parameters $\begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$,

where σ_i^2 denotes the variance for ball-*I*, and ρ denotes the correlation coefficient.

• Make sure that you understand the impact of the different parameters on the shape of the distribution.

- Build a function that takes as input a vector (p_1, p_2) and the parameters that describe the bivariate normal and returns the bivariate normal density at that vector.
- Build a function that takes as inputs the five parameters that describe a bivariate normal distribution and returns a prior matrix based on the associated bivariate normal distribution, truncated to [0,1] X [0,1]
- The prior matrix should have resolution 100 x 100
- Note that summing over all entries of the prior matrix you should get that sum(prior matrix)
 * gridSize² ≈ 1 (see Lecture 2 for a related discussion in the case of one parameter).
- In order to test your work, plot the resulting prior matrix as a heat map for each of the following parameter combinations:
 - a) $\mu_1 = \mu_2 = 0.5$, $\sigma_1 = \sigma_2 = 1$, and $\rho = 0$.
 - b) $\mu_1 = \mu_2 = 0.5$, $\sigma_1 = \sigma_2 = 1$, and $\rho = 0.25$.
 - c) $\mu_1 = \mu_2 = 0.5$, $\sigma_1 = \sigma_2 = 1$, and $\rho = 0.5$

STEP 2 (1 point). Re-estimate the model in Part 1 using all of the available data for each of the following priors:

- a) $\mu_1 = \mu_2 = 0.5$, $\sigma_1 = \sigma_2 = 1$, and $\rho = 0$.
- b) $\mu_1 = \mu_2 = 0.5$, $\sigma_1 = \sigma_2 = 1$, and $\rho = 0.25$.
- c) $\mu_1 = \mu_2 = 0.5$, $\sigma_1 = \sigma_2 = 1$, and $\rho = 0.5$

In each case,

- Plot the joint posterior density as a heat map
- Plot the marginal posterior densities for p_1 and p_2 in a single plot (add a figure legend identifying the two curves)
- Compute the mean and standard deviation of the posterior marginal distributions
- Compute the posterior probability that $p_1 < p_2$

STEP 3 (1 point). What do the results suggest about the concern regarding the uncorrelated priors, given the amount of available data?

PART 3 MODEL CHECKING: ROLE OF MEASUREMENT ERROR

BACKGROUND

- Another potential concern with the basic model is that it ignores the problem of measurement error.
- This is a natural concern, since as the following image shows, sometimes it is hard to determine the location of the ball landing using our simple measurement method

GOAL

 Use synthetic data to explore the impact that ignoring this issue could have on the quality of our statistical model

A SIMPLE MODEL OF BALL TOSSING WITH MEASUREMENT ERROR

- In order to explore this issue we need to modify our simple model to allow for the possibility of measurement error.
- The idea of the modified model is simple.
- Every time we toss a ball, with probability $1-\theta$ it lands in a region where there is no measurement error (e.g., as in the pictures shown in PART 1), but with probability θ it lands in a region where it is very hard to tell (as in the picture just above).
- When the latter case occurs, our measurement is *Water* with probability 50% and *Land* with probability 50%, irrespective of the true location of the landing.
- Details on how to implement the model in code are given below.

TO DO

STEP 1 (3 points). Use synthetic data to understand the impact that ignoring measurement error can have on the quality of our statistical model.

- In order to facilitate replication of your simulation results, initialize the random number generator seed using the command set.seed(123)
- Carry out 10,000 simulations of the following steps:
 - ++ Randomly select the parameters for each simulation step by choosing $p_{True} \sim Unif(0,1)$ and $\theta_{True} \sim Unif(\{0.05, 0.15, 0.25\})$.
 - ++ In each step, build a dataset of 100 tosses of a ball with probability of a water landing given by p_{True} under the assumption that there are no errors. Call it dataNoError.
 - ++ In each step, build a closely related dataset, call it dataWithError, by starting with dataNoError and then selecting uniformly at random a fraction θ_{True} of the entries in which

measurements are determined by flipping a coin.

- ++ The idea is to be able to compare two closely related datasets: the one that would have occurred without any measurement error and the one that we actually observe, but is otherwise identical.
- ++ For each step, compute the posterior distribution separately for the dataNoError and dataWithError, under the assumption that $prior(p) \sim Beta(5,5)$. Note that in both cases the analysist computes the posterior distribution as if there was no measurement error.
- ++ For each simulation step, compute the mean posterior in both cases.
- Use a scatter plot to compare the two mean posteriors. Each point in the plot is the result of simulation step.
- The plot should include the following features:
 - ++ A 45-degree line.
 - ++ Points for different values of θ_{True} should be displayed in different colors.
 - ++ The points should be semi-transparent to facilitate seeing the relative density of points at different locations (see lecture code file *L2_example_2.R* for a related example).
 - ++ A legend describing the color code used in the plot

STEP 2 (1 point).

- Provide a brief qualitative description of the resulting pattern.
- Do you have an intuition for why the pattern looks like this? (Hint: What happens if $\theta_{True} = 1$?)