

Multimodale Analyse

Clustering Verfahren

Elisabeth André
Chi Tai Dang
Stephan Hammer

Human Centered Multimedia

Institute of Computer Science
Augsburg University
Universitätsstraße. 6a
86159 Augsburg, Germany

Clustering Verfahren Aufgabe und Zielsetzung

- Daten zu "natürlichen" Gruppen (Clusters) gruppieren
- Natürliche Gruppierung heißt:
 - Daten innerhalb einer Gruppe sind ähnlich zueinander
 - Daten verschiedener Gruppen sind unähnlich zueinander
- Vielzahl von Methoden zur Berechnung von Ähnlichkeit
- Vielzahl von Formen und Eigenschaften von Clustern
 - z.B. disjunkte vs. überlappende Cluster
 - z.B. deterministische vs. probabilistische Cluster
 - · z.B. hierarchische vs. flache Cluster

Clustering Verfahren Einsatzgebiete von Clustering

- Im Marketing zur Einordnung von Kunden in Gruppen und der Erstellung von gezielten Marketingstrategien
- Zur hierarchischen Strukturierung von Textdokumenten
- Erstellung von thematischen Karten aus Satellitenbildern
- In der Stadtplanung zur Gruppierung von Gebäudetypen
- Einordnung von Erdbeben-Epizentren zu Verwerfungen der Kontinentalplatten bei Untersuchung von Erdbeben
- Einordnung von Nutzern mit ähnlichem Interaktionsverhalten

Clustering Verfahren Clustering vs. Klassifikation

- Unterschiede zwischen Clustering und Klassifikation
 - Bei der Klassifikation sind die Klassen in die klassifiziert werden soll bereits vorgegeben.
 - Bei Clustering werden die Klassen zunächst noch durch eine bestimmte Cluster-Analyse gesucht.
 - → Clustering ein nicht überwachtes Lernverfahren

Clustering Verfahren Cluster-Zuordnung

Gegeben:

- Eine bereits vorgegebene Menge von k Clustern K_1 bis K_k
- Ein neues Objekt X das noch keinem der Cluster angehört

Gesucht:

Zuordnung des Objekts X zu einem der k Cluster K₁ bis Kk

Ansatz:

- 1. Vergleiche das Objekt X zu allen Instanzen jedes Clusters.
- 2. Wähle das Cluster, dessen Objekte X am ähnlichsten sind.

Clustering Verfahren Cluster-Analyse

Gegeben:

Datensatz gegeben als eine Menge von n Objekten X₁ bis Xn

Gesucht

- Diejenigen k Klassen K_1 bis K_k welche die n Objekte gemäß maximaler Ähnlichkeit gruppieren. Voraussetzungen dabei:
 - Die Anzahl der Klassen k ist bei Beginn bereits vorgegeben
 - Die Anzahl der Klassen k hängt ab von einer vorgegebenen
 Mindestdistanz, die von den Objekten die in verschiedenen
 Klassen liegen eingehalten werden muss.

Clustering Verfahren Cluster-Analyse

 Cluster-Analyse ist nicht eindeutig und hängt stark von der Anzahl der Cluster und den Ähnlichkeitsmaßen ab

Clustering Verfahren Ansätze zum Clustering

Verfahren zur Clusterbildung

Bottom-Up

Beginne mit vielen Klassen und verschmelze diese in immer größer werdende Klassen.

Hierarchisch-Agglomerative Verfahren

Hierarchie entsteht durch die Zusammenlegung von elementaren Klassen

Top-Down

Beginne mit einer Klasse und teile diese immer weiter auf. (wird kaum praktiziert)

Partitionierende Verfahren

Klassenzahl *k* wird zusammen mit *k* Kristallisationskernen vorgegeben. Neue Objekte werden gemäß ihres Abstands zum nächstgelegenen Kristallisationspunkt eingeordnet. Mit wachsenden Klassen, können Kristallisationskerne neu festgelegt werden.

Clustering Verfahren Methoden der Distanzmessung

- Die Bestimmung der **Distanz** zwischen zwei Clustern ist das Kriterium zur Verschmelzung der beiden Cluster oder um zu entscheiden welcher Cluster einem neuen Objekt am **nächsten** liegt:
 - Minimum/Maximum: Distanz des nächsten bzw. weitesten Nachbarn.

 Gruppenmittel: Mittlerer paarweiser Abstand zwischen Klasseninstanzen.

 Centroid-Abstand: Abstände der Mittelpunkte der einzelnen Cluster.

Clustering Verfahren Verschiedene Distanzmaße

• Euklidische Norm:

$$d(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + ... + (p_n - q_n)^2}$$

Manhattan Norm:

$$d(p,q) = |(p_1 - q_1)| + |(p_2 - q_2)| + \dots + |(p_n - q_n)|$$

$$p = (p_1, ..., p_n)$$

 $q = (q_1, ..., q_n)$

Maximum Norm:

$$d(p,q) = \max\{ |p_1 - q_1|, |p_2 - q_2|, ..., |p_n - q_n| \}$$

Minkowski Norm:

$$d(p,q) = \left((p_1 - q_1)^x + |(p_2 - q_2)^x + ... + |(p_n - q_n)^x|^x \right)^{\frac{1}{x}}$$

Clustering Verfahren Verschiedene Distanzmaße

Die vorherigen Abstandsmaße werden in der Regel für numerische Werte eingesetzt. Bei Daten von Objekten X=(x₁,..., x_n) mit nominalen Attributwerten x_i, wie z.B. "Geschlecht" verwendet man als Abstandsmaß z.B.

$$d(X,Y) = \sum_{i=1}^{n} d(x_i, y_i), \quad d(x_i, y_i) = \begin{cases} 0, & wenn \ x_i = y_i \\ 1, & wenn \ x_i \neq y_i \end{cases}$$

 Für endliche Mengen als Objekte vergleicht man die Anzahl der verschiedenen Elemente innerhalb X und Y

$$d(X,Y) = \frac{|X \cup Y| - |X \cap Y|}{|X \cup Y|}$$

Clustering Verfahren Der K-Means Algorithmus

- Initialisierung (Produziere zunächst k disjunkte Cluster)
 - Wähle für jeden der k Cluster einen Clusterschwerpunkt S_i
 - S_i kann dabei bereits ein willkürliches Objekt X_i sein oder man wählt S_i nach Belieben, d.h. noch keines der Objekte $X_1 \dots X_n$
- Einordnung (Für alle einzuordnenden Objekte X₁ ... X_n)
 - Errechne den Abstand von X_i zu jedem der k Schwerpunkte
 - Lege X_i in den Cluster mit geringstem Schwerpunkt-Abstand
- **Berechnung** (Für alle Cluster $K_1 ... K_k$)
 - Berechne den Schwerpunkt für K_i neu denn durch Zuordnung der Objekte können sich Cluster-Schwerpunkte verschieben.
- Wiederholung (Bis alle Clusterschwerpunkte S_i stabil sind)
 - Wiederhole die Schritte Einordnung und Berechnung

Clustering Verfahren K-Means Beispielaufgabe

- 8 Datensätze A₁,..., A₈ sollen auf 3 Cluster aufteilt werden, d.h. k=3
- Als das Distanzmaß soll die Euklidsche Distanz verwendet werden
- Als Schwerpunkte für die Cluster wähle $S_1 = A_1$, $S_2 = A_4$ und $S_3 = A_7$
- 1. Trage die Punkte in ein 2-dimensionales Koordinatensystem ein

Clustering Verfahren K-Means Beispielaufgabe

2. Berechne **Distanzmatrix** mit den Distanzen zwischen den Punkten

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{72}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	$\sqrt{58}$
A8								0

Clustering Verfahren K-Means Beispielaufgabe

3. Ordne die Punkte $A_1,...,A_8$ gemäß ihrem Abstand zu den drei Schwerpunkten S_1,S_2 und S_3 in einen der bisherigen Cluster ein

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{72}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2	$\sqrt{25}$	0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3	$\sqrt{36}$	√37	0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	√53	$\sqrt{41}$
A4	$\sqrt{13}$	$\sqrt{18}$	$\sqrt{25}$	0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5	√50	$\sqrt{25}$	$\sqrt{2}$	$(\sqrt{13})$	0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6	√52	$\sqrt{17}$	$\sqrt{2}$	$\left(\sqrt{17}\right)$	$\sqrt{2}$	0	$\sqrt{29}$	$\sqrt{29}$
A7	$\sqrt{65}$	$\sqrt{10}$	√53	152	√45	$\sqrt{29}$	0	$\sqrt{58}$
A8	$\sqrt{5}$	$\sqrt{20}$	$\sqrt{41}$	$\sqrt{2}$	$\sqrt{25}$	$\sqrt{29}$	$\sqrt{58}$	0

Clustering Verfahren K-Means Beispielaufgabe

4. Bestimme für jeden Cluster einen neuen Schwerpunkt S_1, S_2 und S_3

Clustering Verfahren K-Means Beispielaufgabe

5. Berechne ausgehend von den neuen Schwerpunkten S_1 , S_2 und S_3 die **neue Distanzmatrix** mit den Abständen aller Punkte zu diesen neuen Schwerpunkten und **ordne** die Punkte **neu in** die **Cluster**.

Clustering Verfahren K-Means Beispielaufgabe

6. Wiederhole Schritt 5 solange bis sich die Cluster nicht mehr ändern

7. Wann immer ein neues Objekt hinzukommt führe Neuberechnung der Clusterzuordnung und der neuen Cluster-Schwerpunkte durch

Clustering Verfahren K-Means Eigenschaften

- Je nach Verfahren zur Abstandsmessung kann sich der Abstand durch die Hinzunahme eines weiteren Objekts ändern (z.B. bei der Schwerpunktsmethode oder der des nächsten Nachbarn) → Daher sind eventuell mehrere Iterationen notwendig, bis stabile Cluster vorliegen.
- Wählt man für die initialen Schwerpunkte S_j jeweils die Objekte X_j, so enthält jeder Cluster immer mindestens ein Element und dann überlappen die Cluster nicht und sind nicht hierarchisch.
- Die Cluster-Initialisierung hat starken Einfluss auf das Endergebnis und die Anzahl der benötigten Iterationen.

Clustering Verfahren Der K-Nearest Neighbor (kNN)

Gegeben:

- Eine Menge von Beispielobjekten B₁,...,B_n
- Eine neue einzuordnende Objekt Instanz X

Gesucht:

 Das Cluster mit den k nächsten Nachbarpunkten von X (Im Gegensatz zu Cluster mit nächstem Schwerpunkt)

Ansatz:

- 1. Berechne den Abstand $D(X, B_i)$ für alle Beispielobjekte B_i
- Seien dann B₁(X),...,B_k(X) die k n\u00e4chsen Nachbarn von X, dann bestimme nun das Cluster K, dem die meisten der B_i(X) angeh\u00f6ren und ordne dann X diesem Cluster K zu.

Clustering Verfahren Der K-Nearest Neighbor (kNN)

- Oft erhält man unterschiedliche Cluster für verschiedene Werte von k → Wie soll man k wählen?
- Meist untersucht man einen Bereich von Werten für k und wählt dann dasjenige k mit den besten Ergebnissen

Problem:

- Wie evaluiert man die Performanz eines Cluster Ergebnis?
- Woher wissen wir, dass die Cluster korrekt bzw. gut sind?

Lösung:

- Intuitiv: Teste die Cluster intuitiv. Überprüfe, ob sie Sinn machen, d.h. nach eigenem Ermessen sinnvoll einordnen.
- **Experte:** Lasse einen Experten Cluster manuell erstellen und vergleiche sie anschließend mit den automatisch Generierten.
- **Vergleich:** Vergleiche die Cluster mit einer vordefinierten Klassifikation, sofern es eine gibt und sie bekanntlich gut ist
- Aufgabe: Führe eine aufgabenbasierte Evaluation durch, d.h. überprüfe, ob ein anderer Algorithmus durch die Verwendung der Cluster verbessert werden kann.

Beispiel:

Clusteralgorithmus zur Gruppierung von Audioaufnahmen

Intuitiv oder Experte:

• Überprüfe selbst wie sich die Audioaufnahmen in Cluster charakterisieren lassen oder frage einfach Dieter Bohlen.

Vergleich:

 Schaue nach ob die Cluster mit den Ergebnissen verschiedener Klassifikatoren (z.B. Geschlecht, Alter, etc.) korrespondieren.

• Aufgabe:

 Prüfe, ob sich durch das Clustering die Emotionserkennung verbessern lässt. Vergleiche Ergebnis eines Klassifikators für alle Daten mit zwei anderen Klassifikatoren, die auf ein Merkmal trainiert wurden.

Beispiel:

Wird durch das Clustering die Emotionserkennung besser?

Manuelles intuitives Überprüfen der Cluster Ergebnisse:

Hauptsächlich Zeichnungen

von Dinosauriern und Vögeln

Hauptsächlich Fotographien von Blüten und Blumen

Ansonsten total chaotisch überlappende Cluster

Hidden Markov Modelle Beispiel für Training

Gefangener im Verlies

Ein Gefangener im Kerkerverlies möchte das aktuelle Wetter herausfinden. Er schätzt, dass die Schuhe der Wärter bei Regen zu 90 % dreckig, bei sonnigem Wetter aber nur zu 60 % dreckig sind, so kann er durch Beobachtung der Wärterschuhe Rückschlüsse über das Wetter ziehen. Zu Beginn geht er davon aus, dass alle Wetteränderungen gleichwahrscheinlich sind.

Ergebnis nach Training (für O = Sauber, Dreckig, Dreckig):

Hidden Markov Modelle Wahl der Wahrscheinlichkeiten

- Auch wenn man wenig Informationen hat, müssen die Wahrscheinlichkeiten vernünftig gewählt werden.
- Eine unbedachte Wahl kann ein Training des Modells unmöglich machen.

Beispiel:

Clustering Bonusaufgabe

- Sie haben verschiedene Clustering-Verfahren sowie Methoden und Maße zur Berechnung der Distanz von Merkmalen kennengelernt.
- Sie sollen Clustering anwenden um einzelne Hunde basierend auf ihren äußeren Merkmalen in Cluster einzuordnen. Die Cluster sollen später im Idealfall die verschiedenen Hunderassen repräsentieren.

Größe: 52cm Gewicht: 24kg Farbe: Dunkel Fell: Kurz

Größe: 26cm Gewicht: 8kg Farbe: Dunkel Fell: Kurz

Paul (Jack Russel)

Größe: 25cm Gewicht: 7kg Farbe: Hell Fell: Kurz

Tom (Jack Russel)

Größe: 23cm Gewicht: 5kg Farbe: Hell Fell: Mittel

- 1. Finden Sie **ein** Merkmal (Größe, Gewicht, Farbe, Fell) das sehr gut geeignet ist um ein klare Trennung beim Clustering vorzunehmen?
- 2. Finden Sie eine sehr gut geeignete **Kombination** von Merkmalen?

Größe: 52cm Gewicht: 24kg Farbe: Dunkel Fell: Kurz

Größe : 26cm Gewicht: 8kg Farbe: Dunkel

Fell: Kurz

Paul (Jack Russel)

Größe : 25cm Gewicht: 7kg Farbe: Hell Fell: Kurz

Tom (Jack Russel)

Größe: 23cm Gewicht: 5kg Farbe: Hell Fell: Mittel

- Keines der Merkmale ist alleine geeignet für eine klare Trennung!
- 2. Die Kombination aus **Größe** und **Farbe** liefert gute Abgrenzungen!

Aber Achtung! Was passiert, wenn jetzt noch Jimmy dazu kommt?

→ Manchmal ist es schwierig gute Abgrenzungs-Merkmale zu finden.