期末試験の解答例

問題
$$\mathbf{1}$$
 (1) $\begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$

$$(2) \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} -1 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 0 & 0 & 0 \\ 2 & 0 & 1 \end{array}\right)$$

問題 2 (1) 例えば $\varphi(2E) = 4E \neq 2\varphi(E)$ だから, φ は線形写像ではない.

(2) 任意の $X, Y \in M(2, 2; K), c \in K$ に対して,

$$\psi(X+Y) = (X+Y) + {}^{t}(X+Y) = X + Y + {}^{t}X + {}^{t}Y = (X+{}^{t}X) + (Y+{}^{t}Y) = \psi(X) + \psi(Y),$$

$$\psi(cX) = cX + {}^{t}(cX) = cX + c({}^{t}X) = c(X+{}^{t}X) = c\psi(X)$$

となるので、 ψ は線形写像である.

問題 $\mathbf{3}$ (1) $\varphi(1)=0$, $\varphi(x)=1$, $\varphi(x^2)=2x$ より, φ の $1,x,x^2$ に関する表現行列は

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right).$$

また, $\psi(1)=-2,\,\psi(x)=-1,\,\psi(x^2)=-2x+2x^2$ より ψ の $1,x,x^2$ に関する表現行列は

$$\left(\begin{array}{ccc} -2 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{array}\right).$$

(2) $\psi\circ\varphi$ の $1,x,x^2$ に関する表現行列は

$$\begin{pmatrix} -2 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

(3) まず $c_0, c_1, c_2 \in \mathbb{R}$ について,

$$(\psi \circ \varphi)(c_0 + c_1 x + c_2 x^2) = (1, x, x^2) \begin{pmatrix} 0 & -2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} = -2c_1 - 2c_2$$

となる.

$$f(x) = c_0 + c_1 x + c_2 x^2$$
 とすると,

$$f(x) \in \text{Ker}(\psi \circ \varphi) \Leftrightarrow -2c_1 - 2c_2 = 0 \Leftrightarrow c_2 = -c_1.$$

よって, $\operatorname{Ker}(\psi \circ \varphi) = \{c_0 + c_1 x + c_2 x^2 \mid c_2 = -c_1\} = \langle 1, x - x^2 \rangle$ であり, $1, x - x^2$ は $\operatorname{Ker}(\psi \circ \varphi)$ の基底である.

また, $\operatorname{Im}(\psi \circ \varphi) = \{-2c_1 - 2c_2 \mid c_1, c_2 \in \mathbb{R}\} = \{c \mid c \in \mathbb{R}\} = \langle 1 \rangle$ で, 1 が $\operatorname{Im}(\psi \circ \varphi)$ の基底となる.