Replacement Algorithm (Hamacher)

Least Recently Used (LRU):-

Replace a Cache-line (block)

Replace a Cache-line (block) which has not been neferenced for largest period of time.

- Hit occurs, set the counter-value zero (o) for the newly referred block and increment Eg: (or generally referred block and increment is Eg: (or generally relief) value for all those blocks which have counter-value less than the interior old value of the reffered page.
- · Miss occurs, & Set is not full, counter-associated with just referred block is set to zero(0) and counters of all other blocks are incremented by 1.
 - · Miss Occurs & set is full: Identify the block associated with highest counter-value (above 11 in 4-way Cache) & replace it, Subsequently, counter is set zero(o) and counters of all other blocks are incremented by one

march 11, 2020

Example of Mapping Techniques & LRU Replacement
Policy [Hamacher]

Problem: A computer has separate data & instruction eaches, The data carrie has 8 blocks. Each block can hold a 1 word of 16 bit. Consider the program given in figure to identify the carre tend content in various mapping schemes.

```
int A[4][10];
    int SUM = 0;
    fon (j=0; jolo; j++)
        SUM = SUM + A[0][i];
    AVG = SUM/10;
    foq(i=9; i >0; i++)
        ; [1][0]A _ [1][0]A;
   @ Consider the Array A is organized in column order
 and first element A[o][o] is at location 12A00
     Variables som, i, i are in processors registers
      It is a set-associative mapping.
    7A00
             [0] [0]A 0000 0000 0101 1110
    TAOI
                              70001
                                        [o] [i] A
    FAOR
                                       A[2][0]
    7A03
                                       A[3][0]
    7 A04
                                       [i] [o] A
                               00106
    7AOS
                                       CICIJA
    7A06
                                       DJCJA
    FOAF
                                       [I][E]A
                               →011F
             OHI (010 0010 0111 (A[3][9]
   7A27
                       0111
                               1010
Direct Mapping: -
                                      0010
                                Tag (13)
 Asociative Mapping:
                                Tag(16)
                                Tag (15 bits)
Set Associative Mapping:-
                                                 # Set (1)
```

Dinect	at - Mopping: Content of Cache often pass						, • ,		
Cache	، اون	J 3 3	1=3	j=67	i=8 j=9	6 = 9	े ≈ ५	, i= 2	1:0
0	[0][0]A	A [0] [2]	A[0][4]	A[0][6]	[ह][ब्रे	મહાહ્યુ	A[o][4]	H6][7]	[0][0]A
1			,	L			· ,]	,	1
2) () () () () () () () () () (1 11 1 1		7.1		4° 1		
3			4		,			,	
4	[1] [0]A	A[0][3]	A[b] [5]	[F][o]A	ଧତୀତା	⊌@] ૄ	A[0][5]	H[0][3]	गिंग
5									
6		1	•						-
7						-		,	

Ascelative-Mapping; -

				_	6) S. (
		Conter	it of couche	abter coch	pass
-	Cache Block	j=7)= g	ション	1000/14
t	0	ALO] [O]	-A[0][8]	PLOJEOJA	Ago a company
-	1	EIJ[0]A	[e] [o] A	[1] [0]A	
1	૨	A[0][2]	A LOJ [2]	A [0] [2]	
	3	A[0][3]	A [0] [3]	A.(0) [3]	
-	4 🗐	A[0][4]	TA COJ L4J	A COJ [4]	
-	5	A [0] [6]	[2] [o] A	A COICSI	↓ ↓ .
-	6	AMM	A[0] [6]	[3][0] A	
-	7	A[0][7]	A[0][7]	A[0][7]	

Set-Associative m wassing:all addresses. set O, : AN Will Cache F= 5 Block j=3 j= 70 . 9=1 i= 0 i= 62 [8][0]A ALOJEJ AGJG 0 A [O] [H] [0] [0] A [e] [o] A A[0][5] (() () A [2][5] [1][0] A A[6][6], A [0] [6] [E] [O] A [6][6] A. [F][0]A A [O] [7] A [o][3] A[0][3]