# **UE DIGITALE SCHALTUNGEN**

## Arithmetische Schaltungen, Sign Extension



Sebastian Pointner (sebastian.pointner@jku.at)
Robert Wille

21. & 22. November 2018



# Der Plan für die heutige Übung

- 1. Letzter Übungszettel
- 2. Sign Extension
- 3. Binäre Subtraktion
- 4. Halbsubtrahierer
- 5. Komparator
- 6. Zahlenumwandlung Blockbildung
- 7. Divison
- 8. Der neue Übungszettel

J⊻U

## **Sign-Extension**

Behauptung: Digitale Rechenwerke müssen mit einer festen Bitbreite arbeiten.

Sign-Extension im Zweierkomplement:

Os Extension: 0010 <=> 00000010

■ 1s Extension: 1101 <=> 11111101

## **Sign-Extension**

Behauptung: Digitale Rechenwerke müssen mit einer festen Bitbreite arbeiten.

#### Sign-Extension im Zweierkomplement:

■ 0s Extension: 0010 <=> 00000010

■ 1s Extension: 1101 <=> 11111101

### Nachtrag Beispiel Zehnerkomplement letzte Woche:

■ 25 - 8: 25 + 92 => Positive 25 fehlt führende 0

■ 025 + 992: Sign Extension von 92

 $\blacksquare$  025 + 992 = 1017

### Subtraktion von Binärzahlen

### Führe folgende Subtraktionen durch:

- $\blacksquare 1100_{2k} 0010_{2k}$
- $\blacksquare$  1001<sub>2k</sub> 0010<sub>2k</sub>

### Subtraktion von Binärzahlen

### Führe folgende Subtraktionen durch:

- $\blacksquare 1100_{2k} 0010_{2k}$
- $\blacksquare 1001_{2k} 0010_{2k}$
- $\blacksquare$  -7 2 = -9
- $\blacksquare$  -9 = 10111<sub>2k</sub>
- Sign Extension auf  $11001_{2k} 00010_{2k}$  notwendig

### Halbsubtrahierer

- 1. Halbsubtrahierer als Gegenstück zum Halbaddierer
- 2. Leite einen Halbsubtrahierer her
- Realisiere die Schaltung unter Verwendung von NOR-Gattern
  - □ Siehe Logisim Simulator

## Komparatoren

- Komparatoren vergleichen 2 Zahlen
- Kleiner Operator: Ist die Zahl 3 < 4?
- Komparatoren können durch die Subtraktion von 2 Zahlen zueinander realisiert werden

## Komparatoren

- Komparatoren vergleichen 2 Zahlen
- Kleiner Operator: Ist die Zahl 3 < 4?</p>
- Komparatoren können durch die Subtraktion von 2 Zahlen zueinander realisiert werden

#### Beispiel:

- Realisiere einen Komparator auf Basis von Volladdierern
- Vergleiche damit die Werte  $100_{2k} < 011_{2k}$

## Zahlenumwandlung durch Blockbildung

Zahlen der Form  $2^n$  lassen sich durch Blockbildung sehr gut ineinander Übersetzten:

- Binärsystem 2<sup>1</sup>
- Oktalsystem 2<sup>3</sup>
- Hexadezimalsystem 2<sup>4</sup>

Beispiel: Wandel folgende Zahlen durch Blockbildung Binär, Oktal und Hexadezimalsystem

- $\blacksquare$   $AB_{16}$
- $\blacksquare$  1010<sub>2</sub>
- 11<sub>8</sub>

J⊻U

### **Division**

Führe folgende Division im Binärsystem durch:

$$\blacksquare 7D_{16}/31_8$$

Gib das Ergebnis im Hexadezimalsystem an!