Lecture 18: CMOS amplifiers (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Summary

MOS structure

- Two different mechanisms to provide negative charges
- Threshold voltage
- Once the MOS is inverted, it is a capacitor.

MOS IV

- Current as a product of density and velocity
- Triode region and saturation region
- Concept of transconductance
- Channel length modulation
- Body effect
- Velocity saturation
- Subthreshold swing

Introduction to G-SPICE

- What is the SPICE?
 - Simulation Program with Intergrated Circuit Emphasis
- G-SPICE is a "SPICE-like" program.
 - It will be serviced through the EDISON website.
 - Today, (unfortunately) the off-line demonstration is made.

A resistor

- Biasing a resistor
 - Input file

```
tstep = 1e-9 ;
tnum = 1000 ;
vsweep = 1 ;
vsweep_value = 1.0 ;
vsweep_num = 100 ;
vsweep_node1 = 0 ;
vsweep_node2 = 1 ;
r[0] = 1 ;
r_value[0] = 1e3 ;
r_node1[0] = 0 ;
r_node2[0] = 1 ;
```

Two resistors

- Biasing two resistors
 - Input file

```
tstep = 1e-9;
tnum = 1000;
vsweep = 1;
vsweep value = 1.0;
vsweep num = 100;
vsweep node1 = 0;
vsweep node2 = 2;
r[0] = 1;
r_value[0] = 1e3;
r_nodel[0] = 0;
r node2[0] = 1;
r[1] = 1;
r value[1] = 1e3;
r nodel[1] = 1;
r node2[1] = 2 ;
```

MOSFET

- MOSFET Id-Vds
 - Input file
 - Change the gate voltage
 - Channel length modulation?

```
tstep = 1e-9;
tnum = 1000;
vdc = 1;
vdc value = 1.8;
vdc node1 = 0;
vdc node2 = 1;
vsweep = 1;
vsweep value = 1.8 ;
vsweep num = 100;
vsweep_node1 = 0 ;
vsweep node2 = 2 ;
mos[\theta] = 1;
mos\ type[0] = 0;
mos vt0[0] = 0.4;
mos kp[0] = 200e-6;
mos w[\theta] = 2.0;
mos l[0] = 0.18 ;
mos\ lambda[0] = 0.1;
mos nodel[0] = 0;
mos node2[0] = 1;
mos node3[0] = 2;
```

Amplifier

- Guess its schematic
 - Its input-output characteristic?

```
tstep = 1e-3;
tnum = 1000 :
vdc = 1;
vdc value = 1.8;
vdc node1 = 0;
vdc node2 = 3;
vsweep = 1;
vsweep value = 1.8;
vsweep num = 100;
vsweep node1 = 0 ;
vsweep node2 = 1 ;
mos[0] = 1;
mos\ type[0] = 0;
mos vt0[0] = 0.4;
mos kp[0] = 100e-6;
mos w[\theta] = 2.0;
mos l[0] = 0.18;
mos lambda[0] = 0.0;
mos nodel[0] = 0;
mos node2[0] = 1;
mos node3[0] = 2;
r[0] = 1;
r value[0] = 5e3 ;
r node1[0] = 2;
r node2[0] = 3;
```

One more...

- Imposing a sinusoidal signal
 - How about the output voltage?

```
tstep = 1e-3;
tnum = 1000 :
vdc = 1:
vdc value = 1.8 ;
vdc node1 = 0;
vdc node2 = 4;
vsweep = 1;
vsweep value = 1.0;
vsweep num = 100;
vsweep node1 = \theta;
vsweep node2 = 1 ;
vsin = 1:
vsin amp = 0.01;
vsin freq = 10;
vsin nodel = 1 ;
vsin node2 = 2;
mos[0] = 1:
mos type[0] = 0;
mos vt0[0] = 0.4;
mos kp[0] = 100e-6;
mos w[0] = 2.0 ;
mos l[0] = 0.18;
mos\ lambda[0] = 0.0;
mos node1[0] = 0;
mos node2[0] = 2;
mos node3[0] = 3;
r[0] = 1 ;
r value[0] = 5e3;
r node1[0] = 3;
r node2[0] = 4;
```

Large-signal model (1/2)

Saturation region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

- Drain current is determined by gate voltage. (voltage-controlled current source)
- Channel-length modulation?

Large-signal model (2/2)

Triode region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2 \right]$$

Still, it can be described by a voltage-controlled current source.

Example 6.13

- Always in the saturation region!
 - Any necessary condition?

Gate and drain are tied.

They are connected to V_{DD} .

Small-signal model

- The large-signal model is complete (within its accuracy limitation).
 - But, for small-signal analysis, it is convenient to have the small-signal model.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

What is g_m and r_o ?

Time-dependent one?

- Everything was in the dc steady-state...
 - How about the frequency-dependent case?
 - Capacitive components can be seen.
 - Their physical origin?

High-frequency, equivalent-circuit model for the case in which the source is connected to the substrate

CMOS

- 9's complementary of 123?
 - **876**
- Complementary MOS
 - Here we have an NMOSFET.
 - A device where the transport is dominated by holes

Why is it important?

Why amplifiers?

- Signal amplification
 - Usually, signals are "weak." (in the μ V or mV range)
 - It is too small for reliable processing.
 - If the signal magnitude is made larger, processing is much easier.

Amplifier

"Weak" signal

- Desirable properties
 - Low power consumption
 - High speed operation
 - Low noise

Impedances (1/3)

- A MOSFET with three terminals
 - Looking into the gate, we see the infinite impedance.
 - (Strictly valid at the low-frequency range)

Impedances (2/3)

- A MOSFET with three terminals
 - Looking into the drain, we see r_0 if the source is ac grounded.

Impedances (3/3)

- A MOSFET with three terminals
 - Looking into the source, we see $1/g_m$ if the gate is ac grounded and channel-length modulation is neglected.

Transistor turned off

- The example 17.5 shows an amplifier circuit.
 - But, the transistor is not turned on.
 - The circuit generates no output signal.

This is a solution.

- The example 16.7 shows a revised circuit.
 - Then, how can we generate 0.75 V, for example?
 - Use of a separate battery can be a way.

Simple biasing (1/2)

- A better way
 - The gate bias voltage is

$$V_{GS} = \frac{R_2}{R_1 + R_2} V_{DD} \tag{17.10}$$

The drain current is

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2 \quad (17.12)$$

Simple biasing (2/2)

- How to apply the small-signal input
 - Use a capacitor!

Source degeneration (1/2)

A resistor placed in series with the source terminal

Source degeneration (2/2)

- Now we have to find the source voltage.
 - (Saturation current of the MOSFET) = (Current flowing through R_S)
 - After a simple manipulation, we can find

$$V_S = V_G + V_1 - V_{TH} - \sqrt{V_1^2 + 2(V_G - V_{TH})V_1}$$

Here,

$$V_1 = \frac{1}{\mu_n C_{ox} \frac{W}{L} R_s}$$

Self-biasing

- Already covered in Example 6.13.
 - Always in the saturation region.

Gate and drain are tied.

Biasing of PMOS devices

- Different polarity
 - The amount of "gate overdrive" is 1.2 V.
 - It is not 0.6 V.

CMOS amplifiers (1/2)

- Select one input. Then, select one output.
 - What are possible topologies?

CMOS amplifiers (2/2)

- Only three are possible.
 - Each of them has own name.

GIST Lecture on May 11, 2016 (Internal use only)

Common-source

Source terminal is grounded.

Small-signal model

Let's draw the small-signal model together!

Gain

- Now, calculate the v_{out} .
 - KCL for the v_{out} node gives

$$v_{out} = -g_m(R_D||r_0)v_{in}$$

Input/output impedances

Input impedance

$$R_{in} = \infty$$

Output impedance

Current-source load

- When $R_D \to \infty$,
 - The gain can be maximized.

