

Instructor Demonstration Variance, Standard Deviation and Z-Score

What are the three measures of central tendency?

The mean, median and mode.

What are the measures of central tendency used for?

Metrics used to describe the center of a data set.

How do you describe the variability of a data set?

Three summary statistics metrics for describing variability

01 Variance

02 Standard Deviation

03 > Z-Score

Variance

- Used to describe how far values in the data set are from the mean
- Describes how much variation exists in the data
- Variance considers the distance of each value in the data set from the center of the data

- σ^2 the variance
- Σ sum of all values on the equation line
- μ the mean of the data set
- N the number of data points

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

Standard Deviation

- Describes how *spread out* the data is from the mean
- Calculated from the square root of the variance
- In the same units of measurement as the mean

- σ standard deviation
- σ^2 the variance

$$\sigma = \sqrt{\sigma^2}$$

Z-Score

- Describes a single value's distance from the mean of the data set
- The distance is in terms of standard deviations
- Can be positive or negative
 - o If negative, the value is less than the mean
 - o If positive, the value is greater than the mean
- The smaller the z-score, the closer the value is to the mean

- X a single value
- µ the mean of the data set
- σ the standard deviation of the data set

$$z = \frac{X - \mu}{\sigma}$$

Activity: Variance, Standard Deviation and Z-Score Review

Variance, Standard Deviation and Z-Score Review

Instructions

- Open the workbook that contains your raw data.
 - File: Unsolved/variance review.xlsx
- Create a new sheet in the workbook and name the sheet "Summary Table"
- Within the new sheet, create a Team column, which contains the following teams:
 - CLE, GSW, LAL, MIA, SAS
- For each team, determine the mean, variance and standard deviation for the following statistics:
 - PTS, AGE, FGA
- Based upon your calculated summary statistics, determine which team had the biggest difference in total season points scored across all of their players.
- Based upon your calculated summary statistics, determine which team had the least variable player age. What was their average player age?
- Based upon your calculated summary statistics, determine which team had the least variability of field goal attempts per player.
- Create a new sheet in the workbook and name the sheet "Cleaveland Z-Scores".
- Within this new sheet, copy over the Player and PTS columns from the raw data for only the CLE team.
- Calculate the z-score for the overall points per player across the whole team.
- Based upon your calculated z-scores, determine which player had the largest difference in total points from the mean of the team.

Suggested Time: 15 minutes

Time's Up! Let's Review.

Instructor Demonstration Quantiles, Outliers and Boxplots

Be careful when describing real-world data

- Real world data can contain extreme values
- Some summary statistics such as the mean take into account all values of a data set
- Extreme values can skew these statistics!

But how can we summarize real- world data?

We can use quantiles to describe segments of a data set!

- Quantiles separate a sorted data set into equal-sized fragments
- Explain that the two most popular types of quantiles are quartiles and percentiles.
 - Quartiles divide the data set into four equal parts
 - Percentiles divide the data set into 100 equal parts

Extreme values may not always be reliable

- In data science, extreme values are often suspicious
 - Could the measurement be a mistake?
 - Is the data trustworthy?
- Suspicious values are called potential outliers
- An outlier is a data point that differs from the rest of a data set
- Outliers can inaccurately skew a data set
 - Can cause us to misrepresent the actual data

There are two ways to identify potential outliers

01

Qualitatively

 Use box and whisker plots to visually identify potential outlier data points

Quantitatively

- Determine the outlier boundaries in a dataset using the "1.5 IQR" rule
 - IQR is the interquartile range, or the range between the 1st and 3rd quartiles
 - Anything below Q1 1.5 IQR could be an outlier
 - Anything above Q3 + 1.5 IQR could be an outlier

Activity: Outliers - Drawn and Quartiled

Variance, Standard Deviation and Z-Score Review

Instructions

Instructions:

- Open up the activity workbook and familiarize yourself with the raw data.
 - File: Unsolved/Outliers Activity Unsolved.xlsx
- Create a new worksheet and name it "Outlier Testing".
- In the "Outlier Testing" worksheet, create a summary statistics table of the Antioxidant_content_in_mmol_100g for the following statistics:
 - Mean
 - Median
 - Minimum value
 - Maximum value
 - First quartile
 - Third quartile
 - Interquartile Range
- Using the calculations from the table, determine the lower and upper boundaries of the 1.5*IQR rule.
- Determine if there are any products whose Antioxidant_content_in_mmol_100g falls outside of the 1.5*IQR boundaries. List those products and their antioxidant content on the worksheet.
- Create a box plot of the Antioxidant_content_in_mmol_100g for all products.
 - **Note**: Be sure to add a title, and label your y-axis.

Time's Up! Let's Review.

Instructor Demonstration Excel's Statistics Add-On

Excel is a great foundational tool

But Excel can be used for even **MORE** statistics!

- The Excel Analysis ToolPak contains
 - T-tests
 - Correlation Tests
 - Regression Tests
 - ANOVA
- All of these functions we will cover throughout the course!

Analysis ToolPak is not designed for in-depth data analytics

- Excel struggles with medium to large data sets
 - >200 columns or >100000 rows
 - Depends on machine
- Excel does not automatically record parameters for statistical tests
- Excel's Analysis ToolPak should be used
 - Gut-checks
 - One-off analysis

How to install and use the Excel Analysis ToolPak - Mac

To Install:

- 1. Go to the "Tools" menu in Excel.
- 2. Select the "Excel Add-Ins..." option.
- 3. Enable the "Analysis ToolPak" option.
- Press "OK".

To Use:

- Go to the "Data" menu in Excel.
- 2. Select the "Data Analysis" option.

How to install and use the Excel Analysis ToolPak - PC

To Install:

- Click the File tab
- Go to Options
- Select the Add-Ins category
- 4. In the Manage box, select Excel Add-ins and click Go
- In the Add-Ins box, enable the Analysis ToolPak and click OK.

To Use:

- Go to the "Data" menu in Excel.
- Go to the "Analyze" section.
- Select the "Data Analysis" option.

FIST TO FIVE:

Who feels comfortable calculating summary statistics in Excel?