

武汉理工大学

Information theory and coding

100 武法理卫大学

>>> 联合自信息量

DMS Z = XY $\{(x_k, y_j) | k = 1, 2, \dots, K; j = 1, 2, \dots, J\}$

$$[XY, P_{XY}] = [(x_k, y_j), P(x_k, y_j)|k = 1, \dots, K; j = 1, \dots, J]$$

$$\sum_{k=1}^{K} \sum_{j=1}^{J} P(x_k, y_j) = 1$$

联合符号 (x_k, y_j) 的先验不确定性称为联合自信息量:

$$I(x_k, y_j) = -\log P(x_k, y_j)$$
 bit/二元符号

>>> 多元联合符号的联合自信息量

三元符号的自信息量为:

$$I(x_k, y_j, z_l) = -\log P(x_k, y_j, z_l)$$
 bit/三元符号

>>> 多元联合符号的联合自信息量

例题:同时掷两个正常的骰子,也就是各面呈现的概率都是1/6。

- (1) "3和5同时出现"这事件的自信息量?
- (2) "两个1同时出现"这事件的自信息量?
- (3) 两个点数中至少有一个是1的自信息?

>>> 条件自信息量

对于联合随机变量: $XY = [(x_k, y_j)|k = 1, 2, \dots, K; j = 1, 2, \dots, J]$

存在两种条件概率: $P(x_k|y_j)$, $P(y_j|x_k)$

 x_k 在条件 y_j 下的条件自信息量 $I(x_k|y_j)$:

$$I(x_k|y_j) = -\log P(x_k|y_j)$$
 bit/符号

物理意义: $I(x_k|y_i)$ 利用后验概率,表示观察到 y_i 后对 x_k 剩下的不确定性。

思考: $I(y_i|x_k) = ?$

物理意义: $I(y_j|x_k)$ 利用转移概率,表示输入 x_k 且观察到 y_j 时干扰引入的不确定性。

>>> 自信息量的物理解释

>>> 自信息量的物理解释

例题:甲在一8×8的方格棋盘上随意放入一个棋子,在乙看来棋子落入的位置是不确定的。

- (1) 在乙看来, 棋子落入某方格的不确定性为多少?
- (2) 若甲告知乙棋子落入方格的行号,这时,在乙看来棋子落入某方格的不确定性为多少?

解 棋格按顺序编号
$$Z = \{z_l | l = 1, 2, \dots, 64\}$$

$$Z = \{z_l | l = 1, 2, \dots, 64\}$$

棋格行号

$$X = \{x_k | k = 1, 2, \dots, 8\}$$

$$P(z_l) = \frac{1}{64}$$
 $l = 1, 2, \dots, 64$

$$P(z_l|x_k) = \frac{1}{8}$$
 $l = 1, 2, \dots, 64; k = 1, 2, \dots, 8$

(1)
$$I(z_l) = -\log P(z_l) = -\log \frac{1}{64} = 6$$
 bit/符号

(2)
$$I(z_l|x_k) = -\log P(z_l|x_k|) = -\log \frac{1}{8} = 3$$
 bit/符号

Information theory

and

⑤ 武侯理卫大学