Worksheet #10: Fractals from probablistic games

Part 1 Apply $f_1(x) = \frac{x}{3}$ or $f_2(x) = \frac{x+2}{3}$ with equal probability of 1/2 on each iteration.

Starting with $p(x_0)$ uniform on [0, 1],

Density \ \fr

Find $p(x_1)$ and sketch. [Hint: what geometrically does f_2 do?]

Density

Find $p(x_2)$ and sketch.

What is $p(x_n)$?

 $P(x_n)$? $P(x_n) \leq (3/2)^n \quad \text{if } x \in \mathbb{K}_n$ $P(x_n) \leq (3/2)^n \quad \text{otherwise}$

What is the limiting attractor set as $n \to \infty$?

Ko - the missing third contor se

Prove an upper bound on the distance of x_n to this set. [Hint: The distance is bounded by the distance from x_0 to the set.]

The maximum distance would be if xo=1/2.

upon each iteration you move 31 closer.

> dist (xn, ka) < toon

Part 2 Now try a 2D example. Start with x_0 uniform in a triangle. Apply

$$f_1(x) = \left(rac{x}{2},rac{y}{2}
ight) \ f_2(x) = \left(rac{x+1}{2},rac{y}{2}
ight) \ f_3(x) = \left(rac{x}{2},rac{y+1}{2}
ight)$$

with probabilities 1/3. Deduce the attractor set.

Sierpinski gasket.