MN74HC74/MN74HC74S

Dual D-Type Flip-Flop with Preset and Clear

Outline

The MN74HC74/MN74HC74S consists of D-type flip-flop with preset inputs and clear inputs, and has two built-in circuits in one chip.

The respective flip-flop has independent data input, preset input, clear input, clock input, and complementary outputs Q and \overline{Q} . Each input data is transmitted to the output at the rise of the clock pulse. The preset input and the clear input are independent of the clock input, and their active level is "L".

Owing to the silicon gate CMOS process, these flip-flops have realized low power consumption and high noise immunity equivalent to those of a standard CMOS and the operation speed as high as of an LS TTL. The outputs of the respective flip-flop can directly drive ten LS TTL inputs.

To protect the input and output against electrostatic breakdown, a resistor and a diode are used for the Vcc and the GND. The pin configuration and the function are the same as those of the standard 54LS/74LS logic family.

■ Truth Table

	Inpi	Output			
PR	CLR	CLK	D	Q	Q (C
L	Н	×	×	Н	T
Н	L	• X	×	L	Н
L	L	×	×	H*	H*
Н	Н	£	Н	Н	L
Н	Н	5	L	D'L	Н
Н	Н	L	X	Qo	$\overline{\overline{\mathbf{Q}}}_{\mathfrak{d}}$

Note) 1. × : "H" or "L" either will do.

2. F: Leading in positive direction

3. Q0 : Q level before input conditions in table are confirmed. 4. Q0: Q level before input conditions in table are confirmed.

5. H* : When preset, clear are "L", Q \overline{Q} are H but when preset, clear are "H" simultaneously, state of Q, Q can not be predicted.

■ Logic Diagram

■ Absolute Maximum Ratings

Item			Symbol	Rating	Unit		
Supply voltage			V_{cc}	-0.5~+7.0	V		
Input output voltage			V_{l}, V_{O}	-0.5~V _{cc} +0.5	V		
Input protective diode current			I_{IK}	±20	mA		
Output parasitic diode current		I_{OK}	±20	mA			
Output current			$I_{\rm o}$	±25	mA		
Supply current		I_{CC} , I_{GND}	±50	mA			
Storage temp	Storage temperature		$T_{ m stg}$	-65~+150	°C		
	$\begin{array}{c c} MN74HC74 & Ta = -40 \sim +6 \end{array}$		P_{D}	400			
Power	1/11/14/10/4	$Ta = +60 \sim +85^{\circ}C$	1 1)	Decrease to 200mW at the rate of 8mW/°C	mW		
dissipation MN74HC7	MNIZALICZAC	$Ta = -40 \sim +60^{\circ}C$	P_{D}	275	mW		
	WIN /4 HC /45	$Ta = +60 \sim +85^{\circ}C$		Decrease to 200mW at the rate of 3.8mW/°C			

■ Recommended Operating Conditions

Item	Symbol	V _{cc} (V)	Rating	Unit	
Operating power supply voltage	V _{cc}		1.4~6.0	V	
Input output voltage	V _I , V _O		0~Vcc	V	
Operating temperature	T _A		-40~+85	°C	
		2.0	0~1000	ns	
Input rise, fall time	t_r , t_f	4.5	0~500	ns	
		6.0	0~400	ns	

■ DC Characteristics (GND=0V)

Item	Symbol	V	Test Condition			Temperature					
		V _{cc} (V)	V _I	77 6		Ta=25°C			Ta=-40~+85°C		Unit
				Vo	Unit	min.	typ.	max.	min.	max.	
		2.0		76.	100	1.5	6	,	1.5	1	5
Input voltage high level	V_{IH}	4.5	2		9///	3.15		00	3.15	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V
		6.0	10	70	20	4.2	1	37.1	4.2	9	
		2.0	0.	60	10/20	~O//	00	0.3	100	0.3	
Input voltage low level	V_{IL}	4.5	1		9), ((5		0.9	^c O).	0.9	V
		6.0	6,		70			1.2		1.2	
		2.0		-20.0	μA	1.9	2.0	00,	1.9		
	119	4.5	V _{IH}	-20.0	μΑ	4,4	4.5	(1.7	4.4		
Output voltage high level	V _{OH}	6.0	or	-20.0	μΑ	5.9	6.0		5.9		V
		4.5	V _{IL}	-4.0	mA	3.92			3.84		
		6.0		-5.2	mA	5.48	50		5.34		
		2.0		20.0	μΑ	1/1/2	0.0	0.1		0.1	
		4.5	V_{IH}	20.0	μΑ	77.	0.0	0.1		0.1	
Output voltage low level	Vol	6.0	or	20.0	μΑ		0.0	0.1		0.1	V
		4.5	V _{IL}	4.0	mA			0.26		0.33	
		6.0		5.2	mA			0.26		0.33	
Input leakage current	I_{I}	6.0	$V_I = V_{CC}$	or GNI)			±0.1		±1.0	μΑ
Static supply current	Icc	6.0	$V_I = V_{CC}$	or GNI	$I_0 = 0$			4.0		40.0	μΑ

■ AC Characteristics (GND=0V, Input transition time≤6ns, C_i=50pF)

	Symbol	V _{cc} (V)	Test Condition	Temperature					
Item				Ta=25°C			Ta=-40~+85°C		Unit
				min.	typ.	max.	min.	max.	
		2.0			25	75		95	
Output rise time	tTLH	4.5			8	15		19	ns
		6.0			7	13		16	
		2.0			20	75		95	
Output fall time	tTHL	4.5			7	15		19	ns
		6.0			6	13		16	
D		2.0			32	150		190	
Propagation time	t _{PLH}	4.5			14	30		38	ns
$CLK \rightarrow Q, \overline{Q} (L \rightarrow H)$		6.0			11	26		33	
D		2.0			32	150	6)	190	
Propagation time	t _{PHL}	4.5			14	30	10	38	ns
$CLK \rightarrow Q, \overline{Q} (H \rightarrow L)$		6.0			11	26	0.	33	
D		2.0			32	150		190	
Propagation time	t _{PLH}	4.5			14	30		38	ns
PR, CLR \rightarrow Q, \overline{Q} (L \rightarrow H)		6.0			10	26		33	
		2.0			32	150		190	
Propagation time	t _{PHL}	4.5			13	30		38	ns
PR, CLR \rightarrow Q, \overline{Q} (H \rightarrow L)		6.0			10	26		33	
		2.0			© 7	75		95	
Minimum set-up time	t _{su}	4.5	101	10 KI	4	15		19	ns
		6.0	10/1/11	60	3	_13		16	
		2.0	401	S. C	0_ c	0		0	
Minimum hold time	t _h	4.5	25 000		14	0		0_0	ns
	,"	6.0	1000	6	9.,	0		. 0	
		2.0	(1)	1	26	75	3	95	
Minimum pulse width	t _w	4.5	illo Y 11. " Olo		9	15	G	19	ns
PR, CLR		6.0		0),	27	13	allo.	16	
		2.0	713, 43, 716	1 310	5	75	b)	95	,
Minimum recovery time	t _{rem}	4.5	6. 11 40.	Uji.	4	15		19	ns
PR, CLR	0	6.0	, O	$\mathcal{O}_{\mathcal{O}}}}}}}}}}$	2	13		16	
	11/2	2.0	70, 91	6	20		4		
Maximum clock frequency	f_{max}	4.5	4.	30	58		24		MHz
		6.0		35	70		28		

- Switching time measuring circuit and waveforms
 - (1) t_{TLH} , t_{THL} , t_{su} , f_{max} , t_{PLH}/t_{PHL} (CLK \rightarrow Q, \overline{Q}), t_{rem} , t_h
 - 1. Measuring circuit

- (2) t_{PLH}/t_{PHL} (PR, CLR \rightarrow Q \overline{Q}), t_w (PR, CLR)
- 1. Measuring circuit

2. Switching waveforms

2. Switching waveforms

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.