Linear Algebra

Functions

Recall that a *function* is a rule that associates with each element of a set A one and only one element in a set B.

▶ If f associates the element b with the element a, then we write

$$b = f(a)$$

and we say that b is the *image* of a under f or that f(a) is the *value* of f at a.

- ▶ The set A is called the **domain** of f and the set B the **codomain** of f.
- ► The subset of the codomain that consists of all images of elements in the domain is called the *range* of f.

Transformations

DEFINITION 1 If f is a function with domain R^n and codomain R^m , then we say that f is a **transformation** from R^n to R^m or that f **maps** from R^n to R^m , which we denote by writing

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

In the special case where m = n, a transformation is sometimes called an *operator* on \mathbb{R}^n .

Matrix Transformations

In this section we will be concerned with the class of transformations from R^n to R^m that arise from linear systems.

$$w_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$w_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$$

which we can write in matrix notation as

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

or more briefly as $\mathbf{w} = A\mathbf{x}$

we will view it as a transformation that maps a vector \mathbf{x} in R^n into the vector \mathbf{w} in R^m by multiplying \mathbf{x} on the left by A.

We call this a *matrix transformation* (or *matrix operator* in the special case where m = n).

We denote it by

$$T_A: \mathbb{R}^n \to \mathbb{R}^m$$

or more briefly as $\mathbf{w} = T_A(\mathbf{x})$. We call the transformation T_A multiplication by A.

➤ On occasion we will find it convenient to express in the schematic form

$$\mathbf{x} \xrightarrow{T_A} \mathbf{w}$$

which is read " T_A maps \mathbf{x} into \mathbf{w} ."

► EXAMPLE 1 A Matrix Transformation from R⁴ to R³

The transformation from R^4 to R^3 defined by the equations

$$w_1 = 2x_1 - 3x_2 + x_3 - 5x_4$$

$$w_2 = 4x_1 + x_2 - 2x_3 + x_4$$

$$w_3 = 5x_1 - x_2 + 4x_3$$

can be expressed in matrix form as

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

from which we see that the transformation can be interpreted as multiplication by

$$A = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix}$$

Although the image under the transformation T_A of any vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

in R^4 could be computed directly from the defining equations, we will find it preferable to use the matrix A. For example, if

$$\mathbf{x} = \begin{bmatrix} 1 \\ -3 \\ 0 \\ 2 \end{bmatrix}$$

then it follows that

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = T_A(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{vmatrix} 1 \\ -3 \\ 0 \\ 2 \end{vmatrix} = \begin{bmatrix} 1 \\ 3 \\ 8 \end{bmatrix}$$

EXAMPLE 2 Zero Transformations

If 0 is the $m \times n$ zero matrix, then

$$T_0(\mathbf{x}) = 0\mathbf{x} = \mathbf{0}$$

so multiplication by zero maps every vector in \mathbb{R}^n into the zero vector in \mathbb{R}^m .

We call T_0 the *zero transformation* from \mathbb{R}^n to \mathbb{R}^m .

EXAMPLE 3 Identity Operators

If I is the $n \times n$ identity matrix, then

$$T_I(\mathbf{x}) = I\mathbf{x} = \mathbf{x}$$

so multiplication by I maps every vector in \mathbb{R}^n to itself.

We call T_I the *identity operator* on \mathbb{R}^n .

Properties of Matrix Transformations

THEOREM 1.8.1 For every matrix A the matrix transformation $T_A: \mathbb{R}^n \to \mathbb{R}^m$ has the following properties for all vectors \mathbf{u} and \mathbf{v} and for every scalar k:

- (a) $T_A(0) = 0$
- (b) $T_A(k\mathbf{u}) = kT_A(\mathbf{u})$ [Homogeneity property]
- (c) $T_A(\mathbf{u} + \mathbf{v}) = T_A(\mathbf{u}) + T_A(\mathbf{v})$ [Additivity property]
- (d) $T_A(\mathbf{u} \mathbf{v}) = T_A(\mathbf{u}) T_A(\mathbf{v})$

THEOREM 1.8.2 $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation if and only if the following relationships hold for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n and for every scalar k:

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ [Additivity property]
- (ii) $T(k\mathbf{u}) = kT(\mathbf{u})$ [Homogeneity property]

The additivity and homogeneity properties in Theorem 1.8.2 are called *linearity* conditions, and a transformation that satisfies these conditions is called a *linear transformation*.

Matrix transformations are not the only kinds of transformations. For example, if

$$w_1 = x_1^2 + x_2^2 w_2 = x_1 x_2$$
 (1)

then there are no constants a, b, c, and d for which

$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1^2 + x_2^2 \\ x_1 x_2 \end{bmatrix}$$

so that the equations in (1) do not define a matrix transformation from R^2 to R^2 .

THEOREM 1.8.3 Every linear transformation from R^n to R^m is a matrix transformation, and conversely, every matrix transformation from R^n to R^m is a linear transformation.

THEOREM 1.8.4 If $T_A: R^n \to R^m$ and $T_B: R^n \to R^m$ are matrix transformations, and if $T_A(\mathbf{x}) = T_B(\mathbf{x})$ for every vector \mathbf{x} in R^n , then A = B.

Finding the Standard Matrix for a Matrix Transformation

- **Step 1.** Find the images of the standard basis vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ for \mathbb{R}^n .
- **Step 2.** Construct the matrix that has the images obtained in Step 1 as its successive columns. This matrix is the standard matrix for the transformation.

EXAMPLE 4 Finding a Standard Matrix

Find the standard matrix A for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the formula

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + x_2 \\ x_1 - 3x_2 \\ -x_1 + x_2 \end{bmatrix}$$

Solution

$$T(\mathbf{e}_1) = T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\1\\-1\end{bmatrix} \text{ and } T(\mathbf{e}_2) = T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-3\\1\end{bmatrix}$$

Thus, it follows that the standard matrix is

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2)] = \begin{bmatrix} 2 & 1 \\ 1 & -3 \\ -1 & 1 \end{bmatrix}$$

EXAMPLE 5 Computing with Standard Matrices

For the linear transformation in Example 4, use the standard matrix A obtained in that example to find

$$T\left(\begin{bmatrix}1\\4\end{bmatrix}\right)$$

Solution The transformation is multiplication by A, so

$$T\left(\begin{bmatrix}1\\4\end{bmatrix}\right) = \begin{bmatrix}2 & 1\\1 & -3\\-1 & 1\end{bmatrix}\begin{bmatrix}1\\4\end{bmatrix} = \begin{bmatrix}6\\-11\\3\end{bmatrix}$$

EXAMPLE 6 Finding a Standard Matrix

Rewrite the transformation $T(x_1, x_2) = (3x_1 + x_2, 2x_1 - 4x_2)$ in column-vector form and find its standard matrix.

Solution

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + x_2 \\ 2x_1 - 4x_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Thus, the standard matrix is

$$\begin{bmatrix} 3 & 1 \\ 2 & -2 \end{bmatrix}$$

General Linear Transformations

Up to now our study of linear transformations has focused on transformations from R^n to R^m .

In this section we will turn our attention to linear transformations involving general vector spaces.

Definitions and Terminology

• We defined a matrix transformation $T_A: \mathbb{R}^n \to \mathbb{R}^m$ to be a mapping of the form

$$T_A(\mathbf{x}) = A\mathbf{x}$$

in which A is an $m \times n$ matrix.

We subsequently established in Theorem that the matrix transformations are precisely the linear transformations from R^n to R^m , that is,

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

and $T(k\mathbf{u}) = kT(\mathbf{u})$

We will use these two properties as the starting point for defining more general linear transformations.

DEFINITION 1 If $T: V \to W$ is a mapping from a vector space V to a vector space W, then T is called a *linear transformation* from V to W if the following two properties hold for all vectors \mathbf{u} and \mathbf{v} in V and for all scalars k:

- (i) $T(k\mathbf{u}) = kT(\mathbf{u})$ [Homogeneity property]
- (ii) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ [Additivity property]

In the special case where V = W, the linear transformation T is called a *linear operator* on the vector space V.

More generally, if $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are vectors in V and k_1, k_2, \dots, k_r are any scalars, then

$$T(k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_r\mathbf{v}_r) = k_1T(\mathbf{v}_1) + k_2T(\mathbf{v}_2) + \dots + k_rT(\mathbf{v}_r)$$
(1)

THEOREM 8.1.1 *If* $T: V \rightarrow W$ *is a linear transformation, then*:

- (a) T(0) = 0.
- (b) $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$ for all \mathbf{u} and \mathbf{v} in V.

EXAMPLE 1 Matrix Transformations

Because we have based the definition of a general linear transformation on the homogeneity and additivity properties of *matrix transformations*, it follows that every matrix transformation $T_A: R^n \to R^m$ is also a linear transformation in this more general sense with $V = R^n$ and $W = R^m$.

EXAMPLE 2 The Zero Transformation

Let V and W be any two vector spaces. The mapping $T: V \to W$ such that $T(\mathbf{v}) = \mathbf{0}$ for every \mathbf{v} in V is a linear transformation called the *zero transformation*.

To see that T is linear, observe that

$$T(\mathbf{u} + \mathbf{v}) = \mathbf{0},$$
 Therefore,
$$T(\mathbf{u} + \mathbf{v}) = \mathbf{0},$$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 and
$$T(\mathbf{v}) = \mathbf{0},$$
 and
$$T(k\mathbf{u}) = kT(\mathbf{u})$$

EXAMPLE 3 The Identity Operator

Let V be any vector space. The mapping $I: V \to V$ defined by $I(\mathbf{v}) = \mathbf{v}$ is called the *identity operator* on V. We will leave it for you to verify that I is linear.

EXAMPLE 4 Dilation and Contraction Operators

If V is a vector space and k is any scalar, then the mapping $T: V \to V$ given by $T(\mathbf{x}) = k\mathbf{x}$ is a linear operator on V, for if c is any scalar and if **u** and **v** are any vectors in V, then

$$T(c\mathbf{u}) = k(c\mathbf{u})$$
 $T(\mathbf{u} + \mathbf{v}) = k(\mathbf{u} + \mathbf{v})$
 $= c(k\mathbf{u})$ $= k\mathbf{u} + k\mathbf{v}$
 $T(c\mathbf{u}) = cT(\mathbf{u})$ $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$

If 0 < k < 1, then T is called the *contraction* of V with factor k, and if k > 1, it is called the *dilation* of V with factor k.

EXAMPLE 5 A Linear Transformation from P_n to P_{n+1}

Let $\mathbf{p} = p(x) = c_0 + c_1 x + \cdots + c_n x^n$ be a polynomial in P_n , and define the transformation $T: P_n \to P_{n+1}$ by

$$T(\mathbf{p}) = T(p(x)) = xp(x) = c_0x + c_1x^2 + \dots + c_nx^{n+1}$$

This transformation is linear because for any scalar k and any polynomials \mathbf{p}_1 and \mathbf{p}_2 in P_n we have

$$T(k\mathbf{p}) = T(kp(x))$$

$$= x(kp(x))$$

$$= x(p_1(x) + p_2(x))$$

$$= k(xp(x))$$

$$= k(xp(x))$$

$$T(k\mathbf{p}) = kT(\mathbf{p})$$

$$T(\mathbf{p}_1 + \mathbf{p}_2) = T(p_1(x) + p_2(x))$$

$$= xp_1(x) + xp_2(x)$$

$$T(\mathbf{p}_1 + \mathbf{p}_2) = T(\mathbf{p}_1) + T(\mathbf{p}_2)$$

EXAMPLE 7 Transformations on Matrix Spaces

Let M_{nn} be the vector space of $n \times n$ matrices. In each part determine whether the transformation is linear.

(a)
$$T_1(A) = A^T$$

(b)
$$T_2(A) = \det(A)$$

Solution (a)

$$T_1(kA) = (kA)^T$$
 $T_1(A + B) = (A + B)^T$
 $= kA^T$ $= A^T + B^T$
 $T_1(kA) = kT_1(A)$ $T_1(A + B) = T_1(A) + T_1(B)$

so T_1 is linear.

Solution (b)
$$T_2(kA) = \det(kA)$$
$$= k^n \det(A)$$
$$= k^n T_2(A)$$

Note that additivity also fails because

det(A + B) and det(A) + det(B) are not generally equal.

Thus, T_2 is not homogeneous and hence not linear

EXAMPLE 8 Translation Is Not Linear

$$T(\mathbf{x}) = \mathbf{x} + \mathbf{x}_0$$

Part (*a*) of Theorem 8.1.1 states that a linear transformation maps **0** to **0**. This property is useful for identifying transformations that are *not* linear.

For example, if \mathbf{x}_0 is a fixed nonzero vector in \mathbb{R}^2 , then the transformation

$$T(\mathbf{x}) = \mathbf{x} + \mathbf{x}_0$$

▲ Figure 8.1.1 $T(\mathbf{x}) = \mathbf{x} + \mathbf{x}_0$ translates each point \mathbf{x} along a line parallel to \mathbf{x}_0 through a distance $\|\mathbf{x}_0\|$.

has the geometric effect of translating each point \mathbf{x} in a direction parallel to \mathbf{x}_0 through a distance of $\|\mathbf{x}_0\|$ (Figure 8.1.1). This cannot be a linear transformation since $T(\mathbf{0}) = \mathbf{x}_0$, so T does not map $\mathbf{0}$ to $\mathbf{0}$.

EXAMPLE 9 The Evaluation Transformation

Let V be a subspace of $F(-\infty, \infty)$, let

$$x_1, x_2, \ldots, x_n$$

be a sequence of distinct real numbers, and let $T: V \to \mathbb{R}^n$ be the transformation

$$T(f) = (f(x_1), f(x_2), \dots, f(x_n))$$
 (2)

that associates with f the n-tuple of function values at x_1, x_2, \ldots, x_n .

We call this the *evaluation transformation* on V at x_1, x_2, \ldots, x_n . Thus, for example, if

$$x_1 = -1$$
, $x_2 = 2$, $x_3 = 4$

and if $f(x) = x^2 - 1$, then

$$T(f) = (f(x_1), f(x_2), f(x_3)) = (0, 3, 15)$$

The evaluation transformation in (2) is linear, for if k is any scalar, and if f and g are any functions in V, then

$$T(kf) = ((kf)(x_1), (kf)(x_2), \dots, (kf)(x_n))$$

$$= (kf(x_1), kf(x_2), \dots, kf(x_n))$$

$$= k(f(x_1), f(x_2), \dots, f(x_n))$$

$$T(kf) = kT(f)$$

and

$$T(f+g) = ((f+g)(x_1), (f+g)(x_2), \dots, (f+g)(x_n))$$

$$= (f(x_1) + g(x_1), f(x_2) + g(x_2), \dots, f(x_n) + g(x_n))$$

$$= (f(x_1), f(x_2), \dots, f(x_n)) + (g(x_1), g(x_2), \dots, g(x_n))$$

$$T(f+g) = T(f) + T(g)$$

Finding Linear Transformations from Images of Basis Vectors

If $T_A: R^n \to R^m$ is multiplication by A, and if $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ are the standard basis vectors for R^n , then A can be expressed as

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2) \mid \cdots \mid T(\mathbf{e}_n)]$$

It follows from this that the image of any vector $\mathbf{v} = (c_1, c_2, \dots, c_n)$ in \mathbb{R}^n under multiplication by A can be expressed as

$$T_A(\mathbf{v}) = c_1 T_A(\mathbf{e}_1) + c_2 T_A(\mathbf{e}_2) + \dots + c_n T_A(\mathbf{e}_n)$$

This formula tells us that for a matrix transformation the image of any vector is expressible as a linear combination of the images of the standard basis vectors. This is a special case of the following more general result.

THEOREM 8.1.2 Let $T: V \to W$ be a linear transformation, where V is finite-dimensional. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for V, then the image of any vector \mathbf{v} in V can be expressed as

$$T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \dots + c_n T(\mathbf{v}_n)$$
(3)

where c_1, c_2, \ldots, c_n are the coefficients required to express \mathbf{v} as a linear combination of the vectors in the basis S.

Proof Express v as $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$ and use the linearity of T.

EXAMPLE 10 Computing with Images of Basis Vectors

Consider the basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for R^3 , where

$$\mathbf{v}_1 = (1, 1, 1), \quad \mathbf{v}_2 = (1, 1, 0), \quad \mathbf{v}_3 = (1, 0, 0)$$

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation for which

$$T(\mathbf{v}_1) = (1, 0), \quad T(\mathbf{v}_2) = (2, -1), \quad T(\mathbf{v}_3) = (4, 3)$$

Find a formula for $T(x_1, x_2, x_3)$, and then use that formula to compute T(2, -3, 5).

We first need to express $\mathbf{x} = (x_1, x_2, x_3)$ as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 . If we write

$$(x_1, x_2, x_3) = c_1(1, 1, 1) + c_2(1, 1, 0) + c_3(1, 0, 0)$$

then on equating corresponding components, we obtain

$$c_1 + c_2 + c_3 = x_1$$

 $c_1 + c_2 = x_2$
 $c_1 = x_3$

which yields $c_1 = x_3$, $c_2 = x_2 - x_3$, $c_3 = x_1 - x_2$, so

$$(x_1, x_2, x_3) = x_3(1, 1, 1) + (x_2 - x_3)(1, 1, 0) + (x_1 - x_2)(1, 0, 0)$$
$$= x_3 \mathbf{v}_1 + (x_2 - x_3) \mathbf{v}_2 + (x_1 - x_2) \mathbf{v}_3$$

Thus

$$T(x_1, x_2, x_3) = x_3 T(\mathbf{v}_1) + (x_2 - x_3) T(\mathbf{v}_2) + (x_1 - x_2) T(\mathbf{v}_3)$$

= $x_3 (1, 0) + (x_2 - x_3)(2, -1) + (x_1 - x_2)(4, 3)$

$$T(x_1, x_2, x_3) = (4x_1 - 2x_2 - x_3, 3x_1 - 4x_2 + x_3)$$

From this formula we obtain

$$T(2, -3, 5) = (9, 23)$$

