Поиск Абелевых строк наибольшей длины

И. Збань Научный руководитель: В. Аксёнов

7 июня 2017 г.

Постановка задачи

Задача: Нахождение наибольшей общей Абелевой подстроки (НОАП) и поиск Абелевых подквадратов.

Постановка задачи

Задача: Нахождение наибольшей общей Абелевой подстроки (НОАП) и поиск Абелевых подквадратов.

Определение 1

Две строки Абелево эквививалентны, если одна строка получается из другой перестановкой символов.

Постановка задачи

Задача: Нахождение наибольшей общей Абелевой подстроки (НОАП) и поиск Абелевых подквадратов.

Определение 1

Две строки Абелево эквививалентны, если одна строка получается из другой перестановкой символов.

Определение 2

Абелев подквадрат — подстрока, представимая как конкатенация двух Абелево эквивалентных строк.

Мотивация

▶ Быстроразвивающаяся область, много публикаций за последнее время

Мотивация

- ▶ Быстроразвивающаяся область, много публикаций за последнее время
- ▶ Встречается как: подзадача в бионформатике (gene clusters, mass indexing), фильтр в задаче поиска образца с ошибками

Мотивация

- ▶ Быстроразвивающаяся область, много публикаций за последнее время
- ▶ Встречается как: подзадача в бионформатике (gene clusters, mass indexing), фильтр в задаче поиска образца с ошибками
- ▶ Связь с известной задачей 3SUM

Содержание работы

В работе выполнены следующие части:

► Реализация и оценка эффективности теоретического алгоритма для решения 3SUM+ для монотонных множеств на примере задачи о числе Абелевых подквадратов

Содержание работы

В работе выполнены следующие части:

- ▶ Реализация и оценка эффективности теоретического алгоритма для решения 3SUM+ для монотонных множеств на примере задачи о числе Абелевых подквадратов
- Анализ задачи НОАП для бинарного алфавита

Содержание работы

В работе выполнены следующие части:

- ▶ Реализация и оценка эффективности теоретического алгоритма для решения 3SUM+ для монотонных множеств на примере задачи о числе Абелевых подквадратов
- Анализ задачи НОАП для бинарного алфавита
- ▶ Решение задачи НОАП для произвольного алфавита

Подсчёт числа Абелевых подквадратов

Задача о числе Абелевых подквадратов сводится к $3SUM^+$ (A+B=C)

Подсчёт числа Абелевых подквадратов

Задача о числе Абелевых подквадратов сводится к $3SUM^+$ $(A+B=\mathcal{C})$

$$A = B = \{(c_a(i), c_b(i))\}, C = \{2 \cdot c_a(i), 2 \cdot c_b(i)\}$$

где $c_a(i), c_b(i)$ — число букв a и b на префиксе длины i .

Смысл сведения можно понять, исходя из того, что мы ищем такую подстроку [i;j) что верно $c_a(k)-c_a(i)=c_a(j)-c_a(k)$, и так же по второму символу, где k — центр подстроки, (i+j)/2.

Подсчёт числа Абелевых подквадратов

Задача о числе Абелевых подквадратов сводится к $3SUM^+$ (A+B=C)

$$A = B = \{(c_a(i), c_b(i))\}, C = \{2 \cdot c_a(i), 2 \cdot c_b(i)\}$$

где $c_a(i), c_b(i)$ — число букв a и b на префиксе длины i .

Смысл сведения можно понять, исходя из того, что мы ищем такую подстроку [i;j) что верно $c_a(k)-c_a(i)=c_a(j)-c_a(k)$, и так же по второму символу, где k — центр подстроки, (i+j)/2.

Искомое число подстрок — $(\#3SUM^+(A, B, C) - (n+1))/2$

Анализ алгоритма на константной строке

Алгоритм работает заметно медленнее, чем решение за n^2 , которое за секунду успевает посчитать около $10\,000$.

Сравнение алгоритмов на случайном тесте

снова заметно медленнее, чем решение за n^2 .

НОАП на бинарном алфавите

График зависимости НОАП двух случайных бинарных строк от n, длины строк. Сгенерирован путем усреднения результата за 10^4 испытаний.

НОАП на бинарном алфавите

В работе доказана оценка сверху, что матожидание длины НОАП двух случайных бинарных строк ограничена сверху линейной функцией с коэффициентом меньше единицы, тем самым опровергнута гипотеза из первоисточника.

Так же в работе доказана оценка снизу линейной функцией 0.05 п.

В работе предлагается сведение задачи к monotonic 3SUM+, лучшее решение которой на данный момент имеет асимптотику $\mathcal{O}(n^{1.86})$.

НОАП на произвольном алфавите

Был разработан алгоритм решения НОАП на произвольном алфавите за $\mathcal{O}(n^2\log\sigma)$ времени и $\mathcal{O}(n)$ памяти.

Сравнение алгоритмов решения НОАП

Год	Авторы	Время	Память
2015	A Alattabi	$\mathcal{O}(n^2\sigma)$	$\mathcal{O}(n\sigma)$
2016	S. Grabowski	$\mathcal{O}(n^2\sigma)$	$\mathcal{O}(n)$
2016	A. Alattabi	$\mathcal{O}(n^2 \log^2 n \log^* n)$	$\mathcal{O}(n\log^2 n)$
2017	Данная работа	$\mathcal{O}(n^2 \log \sigma)$	$\mathcal{O}(n)$

Краткое описание алгоритма

▶ Для фиксированной длины надо проверить, есть ли пара подстрок с одинаковым вектором Парея. При сдвиге вправо в нем меняются 2 элемента, будем хранить его в персистентном дереве отрезков.

Краткое описание алгоритма

- ▶ Для фиксированной длины надо проверить, есть ли пара подстрок с одинаковым вектором Парея. При сдвиге вправо в нем меняются 2 элемента, будем хранить его в персистентном дереве отрезков.
- ▶ Для линейной памяти можно использовать limited node copying.

Краткое описание алгоритма

- ▶ Для фиксированной длины надо проверить, есть ли пара подстрок с одинаковым вектором Парея. При сдвиге вправо в нем меняются 2 элемента, будем хранить его в персистентном дереве отрезков.
- ► Для линейной памяти можно использовать limited node copying.
- Можно пересчитывать уникальный хеш-индекс каждой вершины (в том числе не созданных явно), все еще используя линию памяти.

Вопросы?

Спасибо за внимание.