Лекция 18. Конечные автоматы. Отличимые и неотличимые состояния. Теорема Мура о длине слова, отличающего два отличимые состояния автомата. Упрощение конечных автоматов.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

Факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Функции $ar{arphi}$ и $ar{\psi}$

Пусть $\mathcal{A} = (A, B, Q, \varphi, \psi)$ — конечный автомат (без начального состояния).

По функциям arphi и ψ определим функции

$$ar{arphi}: A^* imes Q o B^*$$
 in $ar{\psi}: A^* imes Q o Q.$

Для всех $a\in A$, $lpha\in A^*$, где $|lpha|=m\geqslant 2$, и $q\in Q$ положим:

$$ar{arphi}(\Lambda,q) = \Lambda, \ ar{arphi}(\mathsf{a},q) = arphi(\mathsf{a},q), \ ar{arphi}(lpha,q) = arphi(lpha(1),q)ar{arphi}(lpha(2)\dotslpha(m),\psi(lpha(1),q));$$

$$ar{\psi}(\mathsf{\Lambda},q) = q, \ ar{\psi}(\mathsf{a},q) = \psi(\mathsf{a},q), \ ar{\psi}(\alpha,q) = ar{\psi}(\alpha(2)\dots\alpha(m),\psi(\alpha(1),q)).$$

Содержательный смысл функций $ar{arphi}$ и $ar{\psi}$

Если
$$\mathcal{A}=(A,B,Q,arphi,\psi)$$
, то

- 1) $\bar{\varphi}(\alpha,q)$ слово $\beta\in B^*$, в которое автомат $\mathcal A$ преобразует слово $\alpha\in A^*$ из состояния $q\in Q$;
- 2) $\bar{\psi}(\alpha,q)$ состояние $q'\in Q$, в которое автомат $\mathcal A$ переходит при преобразовании слова $\alpha\in \mathcal A^*$ из состояния $q\in Q$.

Эксперименты с конечными автоматами

Экспериментом для конечного автомата $\mathcal{A} = (A, B, Q, \varphi, \psi)$ называется произвольное слово $\alpha \in A^*$.

Слово $\alpha \in A^*$ отличает состояния $q' \in Q$ и $q'' \in Q$, если

$$\bar{\varphi}(\alpha, \mathbf{q}') \neq \bar{\varphi}(\alpha, \mathbf{q}'').$$

В обратном случае слово $\alpha \in A^*$ не отличает состояния $q' \in Q$ и $q'' \in Q$.

Отличимые и неотличимые состояния

Пусть $\mathcal{A}=(A,B,Q,arphi,\psi)$ — конечный автомат.

Два состояния $q' \in Q$ и $q'' \in Q$ называются отличимыми, если найдется слово $\alpha \in A^*$, которое их отличает, т. е.

$$\bar{\varphi}(\alpha, q') \neq \bar{\varphi}(\alpha, q'').$$

В обратном случае состояния $q' \in Q$ и $q'' \in Q$ называются **неотличимыми**, или **эквивалентными**.

Отличимые и неотличимые состояния

Пример. Рассмотрим диаграмму Мура автоматной функции f:

Состояния 0 и 1 — не отличимы.

Лемма об отличимых состояниях

Лемма 18.1. Пусть $\mathcal{A}=(A,B,Q,\varphi,\psi)$ — конечный автомат без начального состояния и состояния $q'\in Q$ и $q''\in Q$ отличимы каким-то словом длины m и не отличимы никаким словом меньшей длины. Тогда для каждого $k,1\leqslant k\leqslant m$, найдутся состояния $q'_k\in Q$ и $q''_k\in Q$, которые отличимы каким-то словом длины k и не отличимы никаким словом меньшей длины.

Лемма об отличимых состояниях

Доказательство. Пусть $\mathcal{A}=(A,B,Q,\varphi,\psi)$ — конечный автомат и состояния $q'\in Q$ и $q''\in Q$ отличимы словом $\alpha\in A^*$ длины m и не отличимы никаким словом меньшей длины.

Для каждого k, $1\leqslant k\leqslant m$, определим состояния q_k',q_k'' :

$$q'_{k} = \bar{\psi}(\alpha(1) \dots \alpha(m-k), q') \in Q,$$

$$q''_{k} = \bar{\psi}(\alpha(1) \dots \alpha(m-k), q'') \in Q.$$

1. Состояния q_k' и q_k'' отличимы словом

$$\alpha_k = \alpha(m-k+1)\dots\alpha(m)$$

длины k.

Лемма об отличимых состояниях

Доказательство. 2. Докажем от обратного, что состояния q_k' и q_k'' не отличимы никаким словом меньшей длины.

Пусть найдется слово $\alpha_0 \in A^*$ длины $k_0 < k$, отличающее состояния q_k' и q_k'' .

Но тогда состояния q' и q'' отличимы словом

$$\alpha_1 = \alpha(1) \dots \alpha(m-k)\alpha_0$$

длины $(m - k) + k_0 < m$, что противоречит условию.

Следовательно, состояния q_k' и q_k'' не отличимы никаким словом длины, меньшей k.

Теорема 18.1 (Мура). Пусть $\mathcal{A}=(A,B,Q,\varphi,\psi)$ — конечный автомат с r состояниями (|Q|=r). Если состояния $q'\in Q$ и $q''\in Q$ отличимы, то они отличимы некоторым словом длины, не большей (r-1).

Доказательство. Пусть $Q = \{q_1, \dots, q_r\}$.

Для каждого $k,\ k=0,1,\ldots$, рассмотрим следующее отношение R_k на множестве Q:

для $q_i, q_j \in Q$ верно $q_i R_k q_j$, если состояния q_i и q_j не отличимы никаким словом длины, меньшей или равной k.

Полагаем, что $q_i R_0 q_j$ для всех $q_i, q_j \in Q$.

Доказательство.

Докажем, что для каждого k, $k=0,1,\ldots,$ R_k — отношение эквивалентности на Q.

- 1. Рефлексивность: qR_kq для каждого состояния $q\in Q$.
- 2. Симметричность: если $q_i R_k q_j$, то $q_j R_k q_i$.
- 3. Транзитивность: пусть $q_iR_kq_j$ и $q_jR_kq_s$, т. е. для каждого такого $\alpha\in A^*$, что $|\alpha|\leqslant k$, верно

$$\bar{\varphi}(\alpha, q_i) = \bar{\varphi}(\alpha, q_j),$$

$$\bar{\varphi}(\alpha, q_j) = \bar{\varphi}(\alpha, q_s).$$

Тогда для каждого такого $\alpha\in A^*$, что $|\alpha|\leqslant k$, верно и $\bar{\varphi}(\alpha,q_i)=\bar{\varphi}(\alpha,q_s)$, т. е. $q_iR_kq_s$.

Следовательно, R_k — отношение эквивалентности на Q.

Доказательство.

Пусть $r_k = |Q/R_k|$ — число классов эквивалентности по отношению R_k на множестве Q.

Заметим, что $r_0 = 1$.

По условию состояния $q' \in Q$ и $q'' \in Q$ — отличимы.

Пусть $\alpha \in A^*$ — слово наименьшей длины, отличающее состояния q' и q''. Пусть $|\alpha|=m$.

Т. е. состояния q' и q'' отличимы некоторым словом длины m и не отличимы никаким словом меньшей длины.

По лемме для каждого k, $1\leqslant k\leqslant m$, найдутся состояния $q_k'\in Q$ и $q_k''\in Q$, которые отличимы каким-то словом длины k и не отличимы никаким словом меньшей длины.

Доказательство.

Посмотрим, как устроены фактор-множества Q/R_{k-1} и Q/R_k и как соотносятся между собой числа r_{k-1} и r_k при $1\leqslant k\leqslant m$.

Заметим, что если $q_i \bar{R}_{k-1} q_j$, то $q_i \bar{R}_k q_j$.

Т. е. если состояния q_i и q_j отличимы каким-то словом длины, не большей (k-1), то состояния q_i и q_j отличимы и каким-то словом длины, не большей k.

Поэтому $r_{k-1} \leqslant r_k$.

Доказательство.

Рассмотрим состояния q'_k и q''_k . Они не отличимы никаким словом длины, меньшей k.

Значит, по отношению R_{k-1} они находятся в одном классе эквивалентности.

Но они отличимы каким-то словом длины k.

Значит, по отношению R_k они находятся в разных классах эквивалентности.

Следовательно, при переходе от фактор-множества Q/R_{k-1} к фактор-множеству Q/R_k хотя бы один класс эквивалентности по отношению R_{k-1} разбивается хотя бы на два класса эквивалентности по отношению R_k .

Поэтому $r_{k-1} < r_k$.

Доказательство.

Отметим, что т. к. |Q|=r, для всех k верно $r_k\leqslant r$ (т. к. в каждом классе эквивалентности не менее одного состояния).

Получаем возрастающую последовательности чисел:

$$1 = r_0 < r_1 < r_2 < \ldots < r_m \leqslant r.$$

Следовательно, $m \leqslant r - 1$.

$$\alpha \mid \bar{\varphi}(\alpha,0) \mid \bar{\varphi}(\alpha,1) \mid \bar{\varphi}(\alpha,2)$$

α	$\bar{\varphi}(\alpha,0)$	$\bar{\varphi}(\alpha,1)$	$\bar{\varphi}(\alpha,2)$
00	00	00	00

α	$\bar{\varphi}(\alpha,0)$	$\bar{\varphi}(\alpha,1)$	$\bar{\varphi}(\alpha,2)$
00	00	00	00
01	01	01	01

α	$\bar{\varphi}(\alpha,0)$	$\bar{\varphi}(\alpha,1)$	$\bar{\varphi}(\alpha,2)$
00	00	00	00
01	01	01	01
10	00	10	00

α	$\bar{\varphi}(\alpha,0)$	$\bar{\varphi}(\alpha,1)$	$\bar{\varphi}(\alpha,2)$
00	00	00	00
01	01	01	01
10	00	10	00
11	00	10	00

Пример (продолжение).

α	$\bar{\varphi}(\alpha, 0)$	$\bar{\varphi}(\alpha,1)$	$\bar{\varphi}(\alpha, 2)$
00	00	00	00
01	01	01	01
10	00	10	00
11	00	10	00

q(t-1)	x(t)	y(t)	q(t)
0	0	0	1
0	1	0	0
1	0	0	1
1	1	1	0

q(t-1)	x(t)	y(t)	q(t)		
0	0	0	1		у
0	1	0	0	$ \langle $	9
1	0	0	1		9
1	1	1	0		

$$y(t) = x(t) \cdot q(t-1),$$

 $q(t) = \bar{x}(t),$
 $q(0) = 0.$

Достижимые и недостижимые состояния

Пусть $\mathcal{A}=(A,B,Q,\varphi,\psi,q_*)$ — конечный автомат (с начальным состоянием).

Состояние $q\in Q$ называется достижимым, если найдется такое слово $\alpha\in A^*$, что $\bar{\psi}(\alpha,q_*)=q.$

Т. е. состояние достижимо, если автомат из начального состояния может в него перейти по некоторому слову.

В обратном случае состояние $q \in Q$ называется недостижимым.

Понятно, что все недостижимые состояния можно убрать из множества состояний Q автомата \mathcal{A} , никак не изменив отображение $f_{\mathcal{A}}$.

Приведенный конечный автомат

Конечный автомат называется **приведенным**, если он не содержит **недостижимых** и **неотличимых** состояний.

Диаграмма Мура приведенного конечного автомата называется приведенной.

Приведенный конечный автомат

Пример. Следующая диаграмма Мура является приведенной:

Задачи для самостоятельного решения

1. Для каждого $r\geqslant 2$ приведите пример конечного автомата $\mathcal{A}=(A,B,Q,\varphi,\psi)$ с r состояниями (|Q|=r), в котором найдутся два состояния, которые отличимы словом длины (r-1), но не отличимы никаким словом меньшей длины.

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. С. 83–87.
- 2. Марченков С. С. Конечные автоматы. М.: Физматлит, 2008. C. 36–48.
- 3. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. Гл. IV 2.2, 2.4.