In[668]:=

```
A = \{ \{4096, 19049, 7682, 775\}, \{8192, 161896, 64899, 5897\}, \}
        {16384, 1278796, 527930, 45795}, {32768, 10609058, 4309244, 427158}};
F0 = {32768, 4211129, 2617605, 1483526, 1154125, 953784, 790602,
       683 213, 600 762, 540 770, 494 730, 465 047, 441 540, 416 444, 398 129,
        381741, 372132, 357547, 351928, 409398, 505710, 567552, 548796};
F1 = \{16384, 516838, 265714, 183713, 140437, \}
        113 359, 94 890, 82 041, 72 388, 64 632, 58 803, 54 670, 51 674, 48 216,
        47 289, 45 911, 44 564, 43 469, 42 696, 61 393, 63 378, 63 028, 61 093};
F2 = \{8192, 64080, 33171, 22805, 17372, 14121, 11870, 10429, 9314, 8331, 7633,
        7211, 6882, 6532, 6307, 6136, 5958, 5796, 5698, 8813, 8251, 8892, 8533};
F3 = {4096, 7550, 3952, 2764, 2138, 1775, 1511, 1322, 1194, 1092,
        1001, 930, 895, 859, 819, 786, 768, 757, 741, 1176, 1094, 1031, 1210};
H1 = \{16384, 1310788, 745327, 562968, 501477, 465289, 440721,
        424 457, 416 755, 411 698, 407 590, 408 886, 409 338, 406 134, 406 790,
        406 262, 409 722, 408 590, 408 314, 468 665, 466 871, 462 337, 455 756};
H2 = \{8192, 162346, 91654, 69249, 60914, 56046, \}
        53 119, 50 947, 49 394, 48 255, 47 550, 46 467, 46 445, 46 310, 46 397,
        46 641, 46 989, 47 145, 47 927, 62 785, 66 474, 67 677, 65 815};
H3 = {4096, 18500, 10028, 7372, 6251, 5712, 5379, 5114, 4926, 4777, 4654,
        4555, 4495, 4417, 4379, 4350, 4335, 4306, 4332, 5783, 5875, 5716, 5760};
k1 = \left(\frac{1}{1000} \text{ // N}\right) Table[{1000 A[i, 1], A[i, 2], A[i, 3], A[i, 4]}, {i, 1, Length[A]}];
{1000 (i - 1), F3[i], F2[i], F1[i], F0[i], H3[i], H2[i], H1[i]}, {i, 2, Length[F0]}];
h = {{"Блочный алгоритм (64x64)", SpanFromLeft, SpanFromLeft,
                                                                          соеденить с ле… соеденить с левым
             SpanFromLeft, SpanFromLeft, "Прямой алгоритм", SpanFromLeft}}~Join~
            соеденить с ле... соеденить с левым
                                                                                                                 соеденить с левым соединить
        \label{eq:continuous} \{\{\mbox{"Pasmep matpuqu", F3[1], F2[1]], F1[1]], F0[1], H3[1], H2[1], H1[1]\}\} \sim \{\{\mbox{"Pasmep matpuqu", F3[1]], F2[1]], F1[1], F1[1], F0[1], H3[1], H3[1], H2[1], H1[1], H1[
        Join~{{"Количество нитей", "Время счета сек.", SpanFromLeft}}~Join~k;
       соединить
                                                                                                                соеденить с левым соединить
 A3 = Table \left[ \left\{ F3 [1], i-1, \frac{F3 [2]}{F3 [i]}, \frac{\frac{F3 [2]}{F3 [i]}}{i-1}, \frac{H3 [2]}{H3 [i]}, \frac{\frac{H3 [2]}{H3 [i]}}{i-1} \right\} // N, \{i, 3, Length [F1] \} \right]; 
 A4 = Table \left[ \left\{ F2 [1], i-1, \frac{F2 [2]}{F2 [i]}, \frac{\frac{F2 [2]}{F2 [i]}}{i-1}, \frac{H2 [2]}{H2 [i]}, \frac{\frac{H2 [2]}{H2 [i]}}{i-1} \right\} // N, \{i, 3, Length [F2]\} \right]; 
 A5 = Table \left[ \left\{ F1 [1], i-1, \frac{F1 [2]}{F1 [i]}, \frac{\frac{F1 [2]}{F1 [i]}}{i-1}, \frac{H1 [2]}{H1 [i]}, \frac{\frac{H1 [2]}{H1 [i]}}{i-1} \right\} // N, \{i, 3, Length [F3] \} \right];
```

```
A0 = Table \left[ \left\{ F0[1], i-1, \frac{F0[2]}{F0[i]}, \frac{\frac{F0[2]}{F0[i]}}{i-1} \right\} // N, \{i, 3, Length[F0]\} \right];
T = Plot[x, \{x, 0, 22\}, PlotStyle \rightarrow Gray,
                            стиль графика серый
    график функции
    GridLines \rightarrow { {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
    _линии координатной сетки
         17, 18, 19, 20, 21, 22}, {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22}},
    Ticks \rightarrow {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22},
    Ілепения
        {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22}}, AxesLabel → {"Threads", "Speedup"}];
                                                              обозначения на осях
f2 = 0.025;
T2 = Plot \left[\left\{\frac{1}{x}\right\}, \{x, 0, 23\}, \text{PlotStyle} \rightarrow \{\text{Green, Dashed}\}\right]; график фf2н± \left(\frac{1-f2}{x}\right) стиль графика \left[\text{зелё} \cdots \right] штриховой пунктир
Labeled[Legended[Show[T, T2, K3], SwatchLegend[{White, Gray, Green, Blue},
                                             _легенда с образ… _белый _серый _зелё… _синий
с помет… с легендой показать
     {"Матрица 4096 x 4096", "Идеал", "Закон Амдаля f=0.025", "Полученное ускорение"}]],
 Text["Блочны алгоритм (64x64)"]]
p31p = {Line[{{0, 0}, {A3[1, 2], A3[1, 5]}}}} ~ Join~Table[
                                                               сое… таблица значений
      Line[{{A3[i, 2], A3[i, 5]}, {A3[i + 1, 2], A3[i + 1, 5]}}], {i, 1, Length[A3] - 1}];
      (ломаная) линия
p32p = Table[Point[{A3[i, 2], A3[i, 5]}], {i, 1, Length[A3]}];
        табл… точка
K3p = Graphics[{{Blue, p31p}, {Thick, Red, p32p}}];
       графика синий
                                         жирный красный
f2p = 0.06;
T2p = Plot \left[\left\{\frac{1}{\text{график ф} \left\{2p \right\} \mu \mu^{\frac{1-f2p}{\nu}}\right\}, \left\{x, 0, 23\right\}, PlotStyle → {Green, Dashed}\right]; \left[\text{стиль графика } \left[\text{зелё···} \right] \right] штриховой пунктир
Labeled[Legended[Show[T, T2p, K3p],
С помет⋯ С легендой Глоказать
   SwatchLegend[{White, Gray, Green, Blue}, {"Матрица 4096 x 4096", "Идеал",
   _легенда c образ· · · _ серый _ зелё· · · _ синий
      "Закон Амдаля f=0.06", "Полученное ускорение"}]], Text["Прямой алгоритм"]]
f1 = 0.015;
T1 = Plot \left[\left\{\frac{1}{1-f_1}\right\}, \{x, 0, 23\}, PlotStyle \rightarrow \{Green, Dashed\}\right]; _стиль графика _зелё··· _штриховой пунктир
p21 = {Line[{{0, 0}, {A4[1, 2], A4[1, 3]}}]}~Join~Table[
```

```
Line[{{A4[i, 2], A4[i, 3]}, {A4[i+1, 2], A4[i+1, 3]}}], {i, 1, Length[A4] - 1}];
    (поманая) пиния
p22 = Table[Point[{A4[i, 2], A4[i, 3]}], {i, 1, Length[A4]}];
     табл… точка
K2 = Graphics[{{Blue, p21}, {Thick, Red, p22}}];
                            жирный красный
    графика
              синий
Labeled[Legended[Show[T, T1, K2], SwatchLegend[{White, Gray, Green, Blue},
                                  легенда с образ… белый серый зелё… синий
с помет··· с легендой показать
    {"Матрица 8192 x 8192", "Идеал", "Закон Амдаля f=0.015", "Полученное ускорение"}]],
 Text["Блочны алгоритм (64x64)"]]
текст
p31 = {Line[{{0, 0}, {A3[1, 2], A3[1, 3]}}}} ~ Join~Table[
                                               сое… таблица значений
      (ломаная) линия
    Line[{{A3[i, 2], A3[i, 3]}, {A3[i+1, 2], A3[i+1, 3]}}], {i, 1, Length[A3] - 1}];
    (ломаная) линия
p32 = Table[Point[{A3[i, 2], A3[i, 3]}], {i, 1, Length[A3]}];
     табл… точка
K3 = Graphics[{{Blue, p31}, {Thick, Red, p32}}];
                синий
                            жирный красный
p21p = {Line[{{0, 0}, {A4[[1, 2]], A4[[1, 5]]}}]}~Join~Table[
                                                сое… таблица значений
       (ломаная) линия
    Line[{{A4[i, 2], A4[i, 5]}, {A4[i+1, 2], A4[i+1, 5]}}], {i, 1, Length[A4] - 1}];
    (ломаная) линия
p22p = Table[Point[{A4[i, 2], A4[i, 5]}], {i, 1, Length[A4]}];
      табл… точка
K2p = Graphics[{{Blue, p21p}, {Thick, Red, p22p}}];
              синий
                               жирный красный
T1p = Plot \left[\left\{\frac{1}{\text{график}}\right\}, {x, 0, 23}, PlotStyle \rightarrow {Green, Dashed}]; 
 [стиль графика [зелё··· [штриховой пунктир
Labeled[Legended[Show[T, T1p, K2p],
с помет… с легендой показать
  SwatchLegend[{White, Gray, Green, Blue}, {"Матрица 8192 х 8192", "Идеал",
  легенда с образ… белый серый зелё… синий
     "Закон Амдаля f=0.1", "Полученное ускорение"}]], Text["Прямой алгоритм"]]
                                                        текст
f0 = 0.01;
p11 = \{Line[\{\{0, 0\}, \{A5[1, 2], A5[1, 3]\}\}]\} \sim Join \sim Table[
                                              сое… Ітаблица значений
      (ломаная) линия
     Line[\{\{A5[i, 2], A5[i, 3]\}, \{A5[i+1, 2], A5[i+1, 3]\}\}], \{i, 1, Length[A5] - 1\}]; \\
    (ломаная) линия
                                                                       длина
p12 = Table[Point[{A5[i, 2], A5[i, 3]}], {i, 1, Length[A5]}];
     табл… точка
K1 = Graphics[{{Blue, p11}, {Thick, Red, p12}}];
               синий
                             жирный красный
    графика
```

```
4 LAB1res.nb
```

```
Labeled[Legended[Show[T, T0, K1], SwatchLegend[{White, Gray, Green, Blue},
с помет… с легендой показать
                                  {"Матрица 16384 x 16384", "Идеал", "Закон Амдаля f=0.01", "Полученное ускорение"}]],
 Text["Блочны алгоритм (64x64)"]]
текст
f0p = 0.1;
Т0р = Plot \left[\left\{\frac{1}{\text{График df0рци}^{\frac{1-f0p}{v}}}\right\}, {x, 0, 23}, PlotStyle → {Green, Dashed}]; 
 _стиль графика __зелё··· _штриховой пунктир
p11p = {Line[{{0, 0}, {A5[1, 2], A5[1, 5]}}]}~Join~Table[
       (ломаная) линия
                                               сое… таблица значений
    Line[{A5[i, 2], A5[i, 5]}, {A5[i + 1, 2], A5[i + 1, 5]}], {i, 1, Length[A5] - 1}];
    (ломаная) линия
p12p = Table[Point[{A5[i, 2], A5[i, 5]}], {i, 1, Length[A5]}];
      табл… точка
K1p = Graphics[{{Blue, p11p}, {Thick, Red, p12p}}];
     графика
               синий
                               жирный красный
Labeled[Legended[Show[T, T0p, K1p],
С помет⋯ С легендой Глоказать
  SwatchLegend[{White, Gray, Green, Blue}, {"Матрица 16384 x 16384", "Идеал",
  _легенда c образ··· _ серый _ зелё··· _ синий
     "Закон Амдаля f=0.1", "Полученное ускорение"}]], Text["Прямой алгоритм"]]
                                                        текст
p01 = {Line[{{0, 0}, {A0[[1, 2]], A0[[1, 3]]}}]}~Join~Table[
                                              сое… таблица значений
      [(ломаная) линия
    Line[{{A0[i, 2], A0[i, 3]}}, {A0[i+1, 2], A0[i+1, 3]}}], {i, 1, Length[A0] - 1}];
    (ломаная) линия
p02 = Table[Point[{A0[i, 2], A0[i, 3]}], {i, 1, Length[A0]}];
     табл… точка
K0 = Graphics[{{Blue, p01}, {Thick, Red, p02}}];
    графика
                синий
                             жирный красный
Text["Блочны алгоритм (64x64)"]
Labeled[Legended[Show[T, T0, K0], SwatchLegend[{White, Gray, Green, Blue},
с помет… с легендой показать
                                  {"Матрица 32768 x 32768", "Идеал", "Закон Амдаля f=0.01", "Полученное ускорение"}]],
 Text["Блочны алгоритм (64x64)"]]
текст
Grid[h, Frame → All]
таблица рамка всё
Grid[{{"Размер матрицы", "Время прямого сек.", "Время блочного (64х64) сек.",
таблица
     "Время паралельного блочного (64x64) 18 нитей сек."}}~Join~k1, Frame \rightarrow All]
                                                             соединить рамка всё
Grid[{{"Блочный (64x64)", SpanFromLeft,
таблица
                           соеденить с левым
    SpanFromLeft, "Прямой алгоритм", SpanFromLeft}}~Join~
    соеденить с ле… соеденить с левым
                                                     соеденить с левым соединить
  {{"Размер матрицы", "Количество нитей", "Ускорение", "Эффективность",
     "Ускорение", "Эффективность"}}~Join~A3, Frame → All]
                                     СОЕЛИНИТЬ ПАМКА ВСЁ
```

```
Grid[{{"Блочный (64x64)", SpanFromLeft,
Таблица
                           соеденить с левым
    SpanFromLeft, SpanFromLeft, "Прямой алгоритм", SpanFromLeft}}~Join~
    _соеденить с ле… _соеденить с левым
                                                    соеденить с левым соединить
  {{"Размер матрицы", "Количество нитей", "Ускорение", "Эффективность",
     "Ускорение", "Эффективность"}}~Join~A4, Frame → All]
                                     соединить рамка всё
Grid[{{"Блочный (64х64)", SpanFromLeft,
Таблица
                           соеденить с левым
    SpanFromLeft, SpanFromLeft, "Прямой алгоритм", SpanFromLeft}}~Join~
    соеденить с ле… соеденить с левым
                                                    соеденить с левым соединить
  {{"Размер матрицы", "Количество нитей", "Ускорение", "Эффективность",
     "Ускорение", "Эффективность"}}~Join~A5, Frame → All]
                                     соединить рамка всё
Grid[{{"Размер матрицы", "Количество нитей",
таблица
    "Ускорение паралельного блочного относительно блочного",
     "Эффективность распаралеливания"}}~Join~A0, Frame → All]
```

Out[686]=

соединить рамка всё

Out[692]=

Out[698]=

Out[707]=

Out[713]=

Out[719]=

Out[723]=

Блочны алгоритм (64х64)

Out[724]=

Out[725]=

Блочный алгоритм (64х64) Прямой алгори					ритм		
Размер матрицы	4096	8192	16 384	32 768	4096 8192 163		16 384
Количество нитей		Время счета сек.					,
1.	7.55	64.08	516.838	4211.13	18.5	162.346	1310.79
2.	3.952	33.171	265.714	2617.61	10.028	91.654	745.327
3.	2.764	22.805	183.713	1483.53	7.372	69.249	562.968
4.	2.138	17.372	140.437	1154.13	6.251	60.914	501.477
5.	1.775	14.121	113.359	953.784	5.712	56.046	465.289
6.	1.511	11.87	94.89	790.602	5.379	53.119	440.721
7.	1.322	10.429	82.041	683.213	5.114	50.947	424.457
8.	1.194	9.314	72.388	600.762	4.926	49.394	416.755
9.	1.092	8.331	64.632	540.77	4.777	48.255	411.698
10.	1.001	7.633	58.803	494.73	4.654	47.55	407.59
11.	0.93	7.211	54.67	465.047	4.555	46.467	408.886
12.	0.895	6.882	51.674	441.54	4.495	46.445	409.338
13.	0.859	6.532	48.216	416.444	4.417	46.31	406.134
14.	0.819	6.307	47.289	398.129	4.379	46.397	406.79
15.	0.786	6.136	45.911	381.741	4.35	46.641	406.262
16.	0.768	5.958	44.564	372.132	4.335	46.989	409.722
17.	0.757	5.796	43.469	357.547	4.306	47.145	408.59
18.	0.741	5.698	42.696	351.928	4.332	47.927	408.314
19.	1.176	8.813	61.393	409.398	5.783	62.785	468.665
20.	1.094	8.251	63.378	505.71	5.875	66.474	466.871
21.	1.031	8.892	63.028	567.552	5.716	67.677	462.337
22.	1.21	8.533	61.093	548.796	5.76	65.815	455.756

Out[726]=

Размер матрицы	Время прямого сек.	Время блочного	Время паралельного
		(64x64) ceĸ.	блочного (64х64)
			18 нитей сек.
4096.	19.049	7.682	0.775
8192.	161.896	64.899	5.897
16 384.	1278.8	527.93	45.795
32 768.	10609.1	4309.24	427.158

Out[727]=

	Прямой алгоритм				
Размер матриць	Количество нитей	Ускорение	Эффективность	Ускорение	Эффективность
4096.	2.	1.91043	0.955213	1.84483	0.922417
4096.	3.	2.73155	0.910516	2.5095	0.836498
4096.	4.	3.53134	0.882834	2.95953	0.739882
4096.	5.	4.25352	0.850704	3.2388	0.647759
4096.	6.	4.99669	0.832782	3.4393	0.573217
4096.	7.	5.71104	0.815863	3.61752	0.516789
4096.	8.	6.32328	0.79041	3.75558	0.469448
4096.	9.	6.91392	0.768213	3.87272	0.430303
4096.	10.	7.54246	0.754246	3.97508	0.397508
4096.	11.	8.11828	0.738025	4.06147	0.369225
4096.	12.	8.43575	0.70298	4.11568	0.342974
4096.	13.	8.78929	0.676099	4.18836	0.322182
4096.	14.	9.21856	0.658469	4.22471	0.301765
4096.	15.	9.6056	0.640373	4.25287	0.283525
4096.	16.	9.83073	0.614421	4.26759	0.266724
4096.	17.	9.97358	0.586681	4.29633	0.252725
4096.	18.	10.1889	0.566052	4.27054	0.237252
4096.	19.	6.42007	0.337898	3.19903	0.16837
4096.	20.	6.90128	0.345064	3.14894	0.157447
4096.	21.	7.32299	0.348714	3.23653	0.15412
4096.	22.	6.23967	0.283621	3.21181	0.145991

Out[728]=

	Прямой алгоритм				
Размер матрицы	Количество нитей	Ускорение	Эффективность	Ускорение	Эффективность
8192.	2.	1.93181	0.965904	1.77129	0.885646
8192.	3.	2.80991	0.936637	2.34438	0.78146
8192.	4.	3.68869	0.922174	2.66517	0.666292
8192.	5.	4.53792	0.907584	2.89666	0.579331
8192.	6.	5.39848	0.899747	3.05627	0.509378
8192.	7.	6.14441	0.877772	3.18657	0.455224
8192.	8.	6.87997	0.859996	3.28676	0.410844
8192.	9.	7.69175	0.854639	3.36434	0.373815
8192.	10.	8.39513	0.839513	3.41422	0.341422
8192.	11.	8.88642	0.807857	3.49379	0.317617
8192.	12.	9.31125	0.775937	3.49545	0.291287
8192.	13.	9.81017	0.754628	3.50564	0.269664
8192.	14.	10.1601	0.725724	3.49906	0.249933
8192.	15.	10.4433	0.696219	3.48076	0.23205
8192.	16.	10.7553	0.672205	3.45498	0.215936
8192.	17.	11.0559	0.650347	3.44355	0.202562
8192.	18.	11.2461	0.624781	3.38736	0.188187
8192.	19.	7.27108	0.382688	2.58575	0.136092
8192.	20.	7.76633	0.388317	2.44225	0.122112
8192.	21.	7.20648	0.343166	2.39884	0.11423
8192.	22.	7.50967	0.341349	2.4667	0.112123

Out[729]=

	Прямой алгоритм				
Размер матрицы	Количество нитей	Ускорение	Эффективность	Ускорение	Эффективность
16 384.	2.	1.94509	0.972546	1.75868	0.879338
16 384.	3.	2.81329	0.937763	2.32835	0.776118
16 384.	4.	3.68021	0.920053	2.61385	0.653464
16 384.	5.	4.5593	0.911861	2.81715	0.56343
16 384.	6.	5.44671	0.907784	2.97419	0.495698
16 384.	7.	6.29975	0.899965	3.08815	0.441165
16 384.	8.	7.13983	0.892479	3.14522	0.393153
16 384.	9.	7.99663	0.888514	3.18386	0.353762
16 384.	10.	8.78931	0.878931	3.21595	0.321595
16 384.	11.	9.45378	0.859434	3.20575	0.291432
16 384.	12.	10.0019	0.833491	3.20221	0.266851
16 384.	13.	10.7192	0.824556	3.22748	0.248267
16 384.	14.	10.9293	0.780668	3.22227	0.230162
16 384.	15.	11.2574	0.750493	3.22646	0.215097
16 384.	16.	11.5977	0.724854	3.19921	0.199951
16 384.	17.	11.8898	0.6994	3.20808	0.18871
16 384.	18.	12.1051	0.672504	3.21025	0.178347
16 384.	19.	8.41852	0.44308	2.79685	0.147203
16 384.	20.	8.15485	0.407742	2.8076	0.14038
16 384.	21.	8.20013	0.390483	2.83514	0.135006
16 384.	22.	8.45986	0.384539	2.87607	0.130731

Out[730]=

Размер матрицы	Количество нитей	Ускорение	Эффективность
		паралельного блочного	распаралеливания
		относительно блочного	
32768.	2.	1.60877	0.804386
32768.	3.	2.83859	0.946198
32 768.	4.	3.64876	0.912191
32 768.	5.	4.41518	0.883036
32 768.	6.	5.32648	0.887747
32 768.	7.	6.16371	0.88053
32 768.	8.	7.00965	0.876206
32768.	9.	7.78728	0.865254
32768.	10.	8.51197	0.851197
32768.	11.	9.05528	0.823207
32 768.	12.	9.53737	0.794781
32 768.	13.	10.1121	0.777855
32 768.	14.	10.5773	0.755521
32 768.	15.	11.0314	0.735425
32768.	16.	11.3162	0.707264
32 768.	17.	11.7778	0.692814
32 768.	18.	11.9659	0.664771
32 768.	19.	10.2861	0.541376
32 768.	20.	8.32716	0.416358
32 768.	21.	7.41981	0.353324
32 768.	22.	7.6734	0.348791