Introduction

To make it easier to talk about EDA, it can be good to separate the what, the why, and the how.

At a high level, **why** we want to perform EDA are:

- To understand the data better and map it to what we know (or don't know) about the domain. As a consequence, learn about the domain too!
- To make and test assumptions about the data.
 - o High-level: What is planned to be used to solve the problem?
 - o Assumptions of algorithms, metrics
 - Assumptions data distribution
 - We have enough of feature X (where X is something we considered important)
- To clean and transform data as necessary for further work down the line.
- To inform later modeling decisions.
 - o Algorithm Choice
 - o Metric Choice
 - Handling Missing Data
 - Data Balancing
 - o Transformation?

• ..

Now, onto the **what**. The usual things we are interested in are in the table below. (Note: Please also think about the **why** of each individual topic listed here. E.g. "Why do we want to treat missing values?")

	Topic	General	Specific
1	Variable Identification	What do each column represent? What <i>type</i> of data?	Do we <i>understand</i> each column (maybe it's something domain specific)? If not, ask!
2	Univariate Analysis	How is each column in isolation?	Do the values/distribution make sense?
3	Bi-variate Analysis	How do pairs of columns relate to each other?	Does what we see make sense? Which pairings specifically we might want to focus on?
4	Missing values Identification	How much data is missing in each column? Related: why?	Is it missing at random or there's a pattern? What could be the business reason for it?
5	Missing Values Treatment	How should we handle missing values?	
6	Outlier identification	What kinds of outliers are present in each column?	Are the outliers "true" outliers or errors of measurement? What is the business reason for the

			outliers?
7	Outlier treatment	How should we handle the outliers?	
8	Variable transformation	What transformations should we perform on the variables?	
9	Variable Creation	Any new features we could create?	Are there "intuitive" (for the domain) features we could engineer?

General Tips

Pandas

- You usually shouldn't have to loop through the rows. There should be a vectorized method. Usually.
- Be comfortable with 'fillna', grouping, aggregating, apply, map, pivot, melt, etc.
- Make use of global configurations. E.g. Setting `rcParams` for matplotlib.
- Don't assume. Test your assumptions. Either through:
 - Visualizations
 - "Statistical" Tests
 - Asking the Domain Expert
- If there's no way to verify the assumption currently, still explicitly spell it out. E.g: "France seems to have a lot of data missing. We assume all of the analysis also holds for France i.e it is not a special case".
- Make sure you understand what analysis you are doing (at each point) and why. A good
 practice is to write out what you are looking for/at, why you are doing so and then what you
 found.

Plots:

- Choose the right type of plot. Every type shows a slightly different information. Does it match what you are trying to show/see?
- Be aware of the figsize. Is it looking crammed or maybe unnecessarily wide?
- Label your plots properly. Especially if it is gonna be used to communicate with others.
 - Are the axes labeled?
 - Is there a legend (if necessary)?
 - Is there a title?
 - Is the font legible? E.g: Is the size okay?
- Take a moment to make sure the plot makes sense. Can you explain exactly what it is showing?
- Also, address the findings. What does the plot say? Don't just plot and move on.
- Tools

- Matplotlib for fine-grained control
- Pandas plotting for quick stuff. Note: you can (and probably should) pass in the Axes object i.e `ax`.
- Seaborn for quick and (usually) beautiful stuff.
- Pandas-profiling for a pretty comprehensive first look. In fact, it covers a lot of sections 1 to 4 above.
- Plotly if you want something interactive
- 0 ...

Notebook Hygiene

- o Format it well. E.g. use of section (markdown) headers, **bold**, *italics*, etc.
- Refactor as you perform the analysis. Throw away unnecessary cells. Create functions for common things. (In due time, move them out into modules).
- Re-run periodically (unless it's slow), especially before you commit (to make sure it
 actually runs sequentially end-to-end). If the outputs are many and large, it can be
 good to clear them before commit so as to not have an over-bloated git repo. Or use
 a git hook running this.
- Put in adequate commentary. Your future self will thank you.

Process

- Can be good to create a "Template Notebook" with some base imports and configurations that you can duplicate and work on.
- Don't (I repeat, don't) work on the same notebook in two places. Merging will be hell.
- Name the notebooks well. The cookiecutter naming convention can be good.
- Store data well. Perhaps in DVC or just in a well organized archive somewhere so that you can reproduce analysis later if necessary.

Tools

- Pandas visualization
- seaborn
- pandas-profiling
- plotly

Resources

- Data Exploration Guide
- Data Science Handbook

Choice of Plot

- Choosing the chart type
- Pie Charts are bad

Examples

- Exploration starter example
- <u>NFL Punts Analysis</u> (Mostly for the good incorporation of Domain knowledge)