2-Connected Graphs

Definition 1

A graph is **connected** if for any two vertices $x, y \in V(G)$, there is a path whose endpoints are x and y.

A connected graph G is called **2-connected**, if for every vertex $x \in V(G), G - x$ is connected.

2-connected graph

1-connected graph

A **separating set** or **vertex cut** of a connected graph G is a set $S \subset V(G)$ such that G - S is disconnected.

The **connectivity** of G, denoted $\kappa(G)$ is the smallest size of a vertex set S such that G-S is disconnected or has only one vertex.

Two paths connecting two given vertices x and y are called **internally disjoint** if x and y are the only common vertices for the paths.

A **disconnecting set** of edges F is such that G - F has more connected components than G does.

A connected graph G is called k-edge-connected if every disconnecting edge set has at least k edges.

The **edge-connectivity** of a connected graph G, written $\kappa'(G)$, is the minimum size of a disconnecting set.

An **edge cut** is a set of edges of the form $[S, \overline{S}]$ for some $S \subset V(G)$. Here $[S, \overline{S}]$ denotes the set of edges xy, where $x \in S$ and $y \in \overline{S}$. **Theorem 1** (Whitney, 1927) A connected graph G with at least three vertices is 2-connected iff for every two vertices $x, y \in V(G)$, there is a cycle containing both.

Proving \Leftarrow (*sufficient condition*): If every two vertices belong to a cycle, no removal of one vertex can disconnect the graph.

Proving \Rightarrow (necessary condition): If G is 2-connected, every two vertices belong to a cycle.

We will prove it by induction on the distance dist(u, v) between two vertices in the graph.

BASE.

Since the vertices are distinct, the smallest distance is 1. This means that the vertices u and v are adjacent.

Let z be any vertex in G different from u and v. Because of the removal of u (resp. v) does not disconnect G, there is a path P_1 (resp. P_2) which connects u (resp. v) with z and does not contain v (resp. u).

The cycle containing u and v consists of the edge (u, v) and a path from u to v obtained from the walk from v to z, using P_2 followed by the reverse of the path P_1 from z to u (see figure below.

INDUCTIVE STEP.

Now, let the proposition be true for all pairs of vertices on the distance $\leq k$, and let dist(u, v) = k + 1, where $k \geq 0$. Consider the shortest path from u to v and let w be the vertex on the path which is adjacent to v. Since dist(u, w) = k, there is a cycle C containing u and w.

Furthermore, since the removal of w does not disconnect u from v, let here is a path P which connects u with v but does not contain w. A cycle containing u and v can be constructed from C and P the way it is illustrated in the figure below (give a rigorous description !).

Problem 1 Let G be a connected graph, and let H be obtained from G by adding edges xy iff $dist_G(x,y) = 2$. Prove that H is 2-connected.

Problem 2 Let graph G satisfy the following condition: for every edge xy there are two cycles C_1 and C_2 such that their intersection is xy. Prove that G is 3-edge-connected.

Problem 3 Prove that Petersen graph is 3-edge-connected

