

上海交通大学

计算机视觉

教师: 赵旭

班级: AI4701

2024 春

2. 射影几何与变换

主要内容

- * 射影几何基础
- * 2D几何变换

- * 平面上的1个点: $(x,y)^T$ 列向量表示
- * 平面上的1条线: ax + by + c = 0
 - * $(a,b,c)^T$ 线的向量表示
 - * $(a,b,c)^T$ 和 $k(a,b,c)^T$, $k \neq 0$ 表示同一直线
 - * 齐次向量(Homogeneous vector):等价类
- * 所有的 $\mathbb{R}^3 (0,0,0)^T$ 张成了 2D射影空间: \mathbb{P}^2

- * A point $\mathbf{x} = (x, y)^T$ lies on the line $\mathbf{l} = (a, b, c)^T$, 则有:
 - ax + by + c = 0
 - * 向量内积形式: $(x, y, 1)(a, b, c)^T = (x, y, 1)\mathbf{1} = 0$
 - $* (kx, ky, k)\mathbf{l} = 0$
 - * 点的齐次表示: $\mathbf{x} = (x_1, x_2, x_3)^T$
 - ※ 齐次表示下的点也属于2D射影空间ℙ²

- * A point $\mathbf{x} = (x, y)^T$ lies on the line $\mathbf{l} = (a, b, c)^T$, 则有:
 - ax + by + c = 0

内积为0,则在这个线」

- * 向量内积形式: $(x, y, 1)(a, b, c)^T = (x, y, 1)\mathbf{1} = 0$
- $* (kx, ky, k)\mathbf{l} = 0$
- * 点的齐次表示: $\mathbf{x} = (x_1, x_2, x_3)^T$
- ❖ 齐次表示下的点也属于2D射影空间ℙ²

- * 自由度: 2
- * 两条线的交点: $\mathbf{x} = \mathbf{l} \times \mathbf{l}'$
- * 过两点的直线: $l = x \times x'$
- * 无穷远点(平行线的交点)
 - * 两条线 $\mathbf{l} = (a, b, c)^T, \mathbf{l}' = (a, b, c')^T$
 - 交点为: $(b, -a, 0)^T$ 概念完备了,如果加入这样的交点
- * 无穷远线: $\mathbf{l}_{\infty} = (0,0,1)^T$, 无穷远点的集合

- * 点和线的对偶关系:
 - $* \mathbf{l}^T \mathbf{x} = 0$
 - * $\mathbf{x}^T \mathbf{l} = 0$

- * 点和线的对偶关系:
 - $* \mathbf{l}^T \mathbf{x} = 0$
 - * $\mathbf{x}^T \mathbf{l} = 0$

射影变换

一条线还是线

- * 射影变换(单应-Homography): $\mathbb{P}^2 \mapsto \mathbb{P}^2$. 如果3个点 共线,则变换后的3个点也共线,反之亦然。
 - * 可逆性: 射影变换的逆也是射影变换
 - * 组合性: 2个射影变换的组合仍是射影变换
- * 定理: 一个映射 $h: \mathbb{P}^2 \to \mathbb{P}^2$ 是单应,则当且仅当存在一个 3×3 非奇异矩阵H,使得: $h(\mathbf{x}) = H\mathbf{x}$

变换的层次

欧氏变换

- * 两点间距离不变
- * 两条线之间的夹角不变
- * 面积不变
- * 3个自由度,可以通过 2个点对应求解

$$\begin{cases} x' \\ y' \\ 1 \end{cases} = \begin{bmatrix} \epsilon \cos \theta & -\sin \theta & t_x \\ \epsilon \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

where $\epsilon = \pm 1$.

$$\mathbf{x}' = \mathtt{H}_{\mathtt{E}}\mathbf{x} = \left| egin{array}{ccc} \mathtt{R} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & 1 \end{array} \right| \mathbf{x}$$

相似变换

- * 长度的比不变
- * 两条线之间的夹角不变
- * 面积的比不变
- * 形状不变
- * 4个自由度,可以通过 2个点对应求解

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\mathbf{x}' = \mathbf{H}_{\mathbf{S}}\mathbf{x} = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \mathbf{x}$$

仿射变换

- * 平行关系不变

* 平行线段的长度比不变
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

- * 面积的比不变
- * 6个自由度,可以通过 3个点对应求解

$$\mathbf{x}' = \mathbf{H}_{\mathbf{A}}\mathbf{x} = \begin{vmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{vmatrix} \mathbf{x}$$

$$\mathbf{A} = \mathbf{R}(\theta) \, \mathbf{R}(-\phi) \, \mathbf{D} \, \mathbf{R}(\phi)$$

Fig. 2.7. **Distortions arising from a planar affine transformation.** (a) Rotation by $R(\theta)$. (b) A deformation $R(-\phi)$ D $R(\phi)$. Note, the scaling directions in the deformation are orthogonal.

射影变换

- * 直线仍是直线
- * 4个共线点的交比不变
 - * 共线线段长度"比值 的比值"不变
- * 8个自由度,可以通过 4个点对应求解(不存 在3个共线点)

$$\mathbf{x}' = \mathtt{H}_{\mathtt{P}}\mathbf{x} = \left[egin{array}{ccc} \mathtt{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & v \end{array} \right] \mathbf{x}$$

$$\mathbf{v} = (v_1, v_2)^\mathsf{T}$$

射影变换

* 射影变换可分解为相似、仿射和射影变换的合成:

$$\mathbf{H} = \mathbf{H}_{\mathrm{S}} \, \mathbf{H}_{\mathrm{A}} \, \mathbf{H}_{\mathrm{P}} = \left[\begin{array}{cc} s\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{array} \right] \left[\begin{array}{cc} \mathbf{K} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{array} \right] \left[\begin{array}{cc} \mathbf{I} & \mathbf{0} \\ \mathbf{v}^{\mathsf{T}} & v \end{array} \right] = \left[\begin{array}{cc} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & v \end{array} \right]$$

$$A = sRK + tv^{T}$$

无穷远点的变换

无穷远点: $(x_1, x_2, 0)^T$

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \end{pmatrix}$$

Affine

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^\mathsf{T} & v \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ v_1 x_1 + v_2 x_2 \end{pmatrix}$$

Projective

2D变换的对比

2D变换的对比

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} I \mid t \end{bmatrix}_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & t \end{array} ight]_{2 imes 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	angles	\Diamond
affine	$\left[\begin{array}{c} {m A} \end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

齐次坐标的意义

- * 使非线性映射(如透视投影变换),可以用线性矩阵方程表示
- * 很好地表示"无穷远"点和线