Quine-Mac Cluskey

Impliquant premier : non simplifiable en supprimant une de ses variables. Ex: F = X + Y!Z

- Lister tous les minterms de f dans une table.
- Les grouper par poids (nombre de 1 dans chaque minterm).
- Comparer les termes pour créer une nouvelle table avec les combinaisons trouvées : 0100 + 0101 = 010x.
- Rayer chaque terme utilisé pour la combinaison.
- Répéter jusqu'à ce qu'il n'y ai plus de simplification possible.

Impliquants premiers : termes non rayés. Sélectionner les impliquants premiers essentiels. Choisir les impliquants restant formant l'ensemble minimal.

F(A, B, C) = A!B + !AB + !AC + BC Forme canonique disjonctive : F(A, B, C) = A!BC + A!B!C + !ABC+ !AB!C + !A!BC + ABC Forme binaire F(A,B,C)=101+100+011+010+001+111.

Poi	ds 1		Poids2	Poi	ds 3
001			011	111	l.
010)		101		
100)				
001					0x1
010					x01
				_	
100					01x
					10x
011		<<			
101		_			x11
				$ \longrightarrow $	1x1
111					

Impliquants premiers: 01x, 10x et xx1.

Les trois impliquants premiers sont des impliquants essentiels. La fonction est entièrement exprimée par ses impliquants essentiels.

-> F(A, B, C) = !AB + A!B + C.

Langages et mots

/!\ Ne pas oublier le mot vide.

 $L.(M \cap N) \neq (L.M) \cap (L.N)$

 $\begin{array}{l} L.(M\ \cup\ N)=(L.M)\ \cup\ (L.N)\\ m\ \in\ L.(M\ \cup\ N)\\ u\ \in\ L,v\ \in\ M\ \cup\ N\\ ->m=uv\\ Si\ v\ \in\ M\ ->m\ \in\ L.M\\ Si\ v\ \in\ N\ ->m\ \in\ L.M\\ ->m\ \in\ L.(M\ \cup\ N)\\ ->L.(M\ \cup\ N)\ \subset\ (L.M)\ \cup\ (L.N)\\ Si\ X\ \subset\ Y\ alors\ M.X\ \subset\ M.Y,\ donc\ L.M\ \subset\ L.(M\ \cup\ N)\ et\\ L.N\ \subset\ L.(M\ \cup\ N),\ on\ a\ donc\ (L.M)\ \cup\ (L.N)\ \subset\ L.(M\ \cup\ N)\\ \end{array}$

$$\begin{split} L.(M &\cap N) \subset (L.M) \cap (L.N). \\ m &\in L.(M &\cap N) \\ u &\in L, v \in M \cap N -> m = uv \\ v &\in M, m \in L.M \\ v &\in N, m \in L.N -> m \in (L.M) \cap (L.N). \\ \text{En revanche on n'a pas toujours l'inclusion dans l'autre sens.} \\ \text{Ex: L = {a, ab}, M ={bc} et N ={c}.} \\ \text{On a M } \cap N = \emptyset, \text{ donc } L.(M \cap N) = \emptyset \\ \text{alors que } (L.M) \cap (L.N) = \text{ {abc}} \end{split}$$

Si ϵ appartient à L1.L2 -> L1 et L2 contiennent ϵ .

L* n'est pas un langage infini si L = \emptyset ou L = $\{\epsilon\}$.

(L1 \cup L2)* \neq L1* \cup L2*. L1 = {a}* et L2 = {b}*. abab appartient à (L1 \cup L2)*, mais pas à L1* \cup L2*. Il appartient à (L1.L2)* mais pas à L1*.L2*.

 $\{a\}.L = \{a\}.M \rightarrow L = M.$ $I \subseteq L$, puisque $\{a\}.L = \{a\}.M$, $m \subseteq M$ tel que al = am donc I = m et donc $I \subseteq M$, donc $L \subseteq M$. Réciproque symétrique.

 $L* = M* \text{ et } L \neq M.$ $L = \{b\} \text{ et } M = \{bb, b\}, \text{ on a } L* = M* = \{b\}*$