#### Introduction aux bases de données

Concepts, utilisation et développement

Damien Pellier damien.pellier@imag.fr http://membres-liglab.imag.fr/pellier/



# Objectif du cours

• Former les étudiants à l'utilisation et à la conception de Bases de Données au sein d'un système d'information

2/369

# Compétences visées

- 1. Connaître les principes des bases de données relationnelles
- 2. Maîtriser les principes de l'algèbre relationnelle
- 3. Savoir écrire des requêtes de manipulation de données en SQL
- Savoir concevoir et normaliser un modèle conceptuel de données à partir d'un cahier des charges
- 5. Savoir dériver un schéma relationnel de bases de données à partir d'un modèle de données

#### Plan du cours

1/369

- Partie I : Introduction aux bases de données relationnelles
  - Cours 1 : Concepts des bases de données relationnelles
  - Cours 2 : L'algèbre relationnelle
- Partie II : Utilisation des bases de données relationnelles
  - Cours 3: Le langage SQL DML (1)
  - Cours 4 : Le langage SQL DML (2)
  - Cours 5 : Le langage SQL DDL
- Partie III : Developpement des bases de données relationnelles
  - Cours 6 : Le modèle entité-association
  - Cours 7 : Élaboration d'un schéma conceptuel
  - Cours 8 : Production du schéma de la base de données

3/369 4/369

#### Organisation et modalités de contrôle des connaissances

- Organisation du cours
  - 8 séances de cours
  - 4 séances de TD
  - 4 séances de TP
- Modalités de contrôle de connaissances
  - ullet Note finale = TP ou Projet
- Adresse du cours en ligne
  - http://membres-liglab.imag.fr/pellier/teaching/bd

5/369

# Références bibliographiques

- Introduction aux Bases de Données, C. Date, Vuibert, 2004
- Bases de Données, G. Gardarin, Eyrolles, 2003
- SQL 2 De la théorie à l'application, P. Delmal, De Boeck Université, 1998
- Bases de données, J-L. Hainaut, 2009

#### Organisation et modalités de contrôle des connaissances

• Semaine 1: 18/09 CM1 TD1 Projet

• Semaine 2: 25/09 CM2 TD2 Projet

• Semaine 3: 02/10 CM3 TD3 TP1-DCISS

• Semaine 4: 09/10 CM4 TD4 TP1-SSD-C2ES

• Semaine 5 : 16/10 CM5 TD5 TP2-DCISS

• Semaine 6: 23/10 CM6 TD6 Projet

• Semaine 7: 06/11 CM7 TD7 TP2-SSD-C2ES

• Semaine 8: 13/11 CM8 TD8 TP3-DCISS

• Semaine 9: 20/11 TP3-SSD-C2ES TP4-DCISS

• Semaine 10: 27/11 TP4-SSD-C2ES Projet

#### Comment réussir ce module?

# Les devises Shadok



EN ESSAYANT CONTINUELLEMENT ON FINIT PAR REUSSIR. DONC: PLUS 4A RATE, PLUS ON A DECHANCES QUE GA MARCHE.



6/369

IL VAUT MIEUX POMPER MÊME S'IL NE SE PASSE RIEN QUE RISQUER QU'IL SE PASSE QUELQUE CHOSE DE PIRE EN NE. POMPANT PAS.

7/369 8/369

#### Comment réussir ce module?



9/369

#### Régle 1 : Assistez à tous les cours, TD et TP

- En cas d'absence à un cours rattrapez rapidement
- Une absence non rattrapée ⇒ un décrochage

#### Régle 2 : Lisez le sujet de TP ou TD avant la séance encad

• Vous gagnerez beaucoup de temps

#### Régle 3 : Posez des questions!

• Les enseignants sont là pour y répondre

#### Régle 4 : Ne laissez pas passer un mot ou un concept sans le comprendre

• Demandez systématiquement à un enseignant

#### Régle 5 : Relisez votre TD ou TP le soir après l'avoir fait

 Profitez de la séance suivante pour poser les questions que vous aurez préalablement préparées

# Première partie I

# Concepts des bases de données relationnelles

10/369

#### Plan du cours

- Partie I : Introduction aux bases de données relationnelles
  - Cours 1 : Concepts des bases de données relationnelles
  - Cours 2 : L'algèbre relationnelle
- Partie II : Utilisation des bases de données relationnelles
  - Cours 3: Le langage SQL DML (1)
  - Cours 4: Le langage SQL DML (2)
  - Cours 5 : Le langage SQL DDL
- Partie III : Developpement des bases de données relationnelles
  - Cours 6 : Le modèle entité-association
  - Cours 7 : Élaboration d'un schéma conceptuel
  - Cours 8 : Production du schéma de la base de données

### Qu'est ce qu'une base de données?

- Une collection de données cohérentes entre elles, généralement de taille importante
- Modélise des informations du monde réel
  - Entités, e.g., étudiants, cours, notes, etc.
  - Associations, e.g., Bob a choisi le cours de BD
- Exemples de bases de données
  - Achats en ligne
  - Abonnement à un club de sport
  - Compte en banque
  - Réservation de billets de train
  - Étude à l'université
  - etc.

11/369 12/369

### Les défis des bases de données aujourd'hui

- Multicité des types de données
  - Exemples :
    - Données multimédias (images, vidéo, musique)
    - Données géographiques
- L'information incorrecte et incomplète
  - Comment produire de l'information correcte à partir de données imprécises ou erronnées?
- Accès aisé par des non-informaticiens
- Maintenance et évolution
- Des données distribuées et nomades
  - Les données sont nomades, intermittentes, dupliquées
- Base de données et le Web
- Les données décisionnelles
- Vers des normes d'accès aux données pour les applications
  - Par exemples : Hibernate, EJB

13/369

# Pourquoi un SGBD?

- Indépendance des données/applications et sûreté d'accès aux données
- Temps de développement d'applications réduit
  - ⇒ réduction des coûts de développement
- Intégrité des données et sécurité des accès
- Adminsitration des données uniformes et cohérentes
- Concurrence des accès et reprise sur panne

#### Qu'est ce qu'un SGBD?

- Un Système de Gestion de Bases de Données (SGBD) est un logiciel destiné au stockage et à la manipulation de bases de données
- Tous les traitements des données se font obligatoirement par son intermédiaire :
  - Interrogation
  - Ajout
  - Suppression
  - Modification
- Exemples de fournisseurs de SGBD
  - Oracle
  - MySQL
  - PostgreSQL
  - etc.

14/369

#### Indépendance des données

- Indépendance des applications par rapport au modèle physique autorise :
  - de modifier l'organisation physique sans modifier le schéma logique ni les applications
    - d'ajout d'index
    - de changer de méthode d'accès, e.g., chaînage vs. hachage
- Indépendance logique des données
  - Chaque application ou groupe d'utilisateurs peut :
    - assembler différemment les données
    - ne voir qu'une partie des données (Schémas externes)
  - Permet de modifier le schéma logique sans modifier les applications
    - Ajout/suppression d'une entité

15/369 16/369

### Intégrité et unicité des données

#### Intégrité

- les données contenues dans une BD forment un tout cohérent répondant à des contraintes d'intégrités vérifiées à tout moment par le SGBD
  - Exemples
    - ightarrow Tout électeur a un âge > 18 ans
    - → A tout instant la somme des crédits = la somme des débits
- Unicité des données (non redondance)
  - Cohérence des données
    - Si une donnée est dupliquée, laquelle est la bonne?
  - Faciliter de mise à jour et de recherche
    - Est-on sûr d'avoir mis à jour toutes les copies d'une même donnée?

17/369

# Description des données (1/3)



Figure 1 - Modèle ANSI - SPARC

#### Confidentialité et sûreté des traitements

#### Confidentialité

 Gestion des autorisations d'accès à tout ou partie de la BD aux différentes personnes de l'organisation

#### Concurrence

- Les données sont accédées simultanément par plusieurs utilisateurs
  - ⇒ Éviter les conflits qui dégraderaient la cohérence de la BD
- Chaque utilisateur à l'impression d'être le seul à travailler sur la BD
- ⇒ verrouillage, transaction

#### Sécurité

- Remise de la BD dans l'état cohérent le plus récent après une panne
- Idée : Garder un journal ou log (historique) de toutes les actions élémentaires de mise à jour et de validation réalisées par le SGBD :
  - Avant qu'un changement ne soit réalisé, l'action est tracée dans un fichier de log
  - Après un crash, l'effet des transactions non abouties est annulé à l'aide du fichier de log

18/369

# Description des données (2/3)

- Schéma externe aussi appelé vue
  - Structure des données telle que perçue par chaque groupe de travail de l'organisation
    - tous les utilisateurs n'ont pas à connaître le schéma logique dans son ensemble
      - ⇒ données inutiles à l'utilisateur
      - ⇒ sécurité, confidentialité
- Schéma conceptuel aussi appelé schéma logique
  - Structure et sémantique des données d'une organisation sans souci d'implémentation. Par exemple :
    - Type de données élémentaires des attributs des objets
    - Règles régissant les données
- Schéma interne
  - Structure de stockage des données en machine
    - fichiers (nom, organisation, localisation)
    - article des fichiers (longueur, champs, placement)
    - chemin d'accès aux données (index, chaînage, hachage)

19/369 20/369

# Description des données (3/3)

#### • Schéma conceptuel

Clients(idl: integer, Nom: string, Prénom: string, Profession: string)
Comptes(idc: string, type: string, solde: string, idl: integer)
Opérations(idc: string, dte: date, type: string, montant: integer)

Schéma externe

Cumul\_mensuel(mois : string, idc :string, Nom : String, Prénom : string, total\_crédits :integer, total\_débits : integer)

- Schéma interne
  - Les relations sont stockées dans des fichiers non séquentiels

21/369

# Place aux concepts au travers d'un exemple (1/7)

| Commande no                                 |                                                           |      |          |            |
|---------------------------------------------|-----------------------------------------------------------|------|----------|------------|
| Numéro de cli<br>Nom<br>Adresse<br>Localité | ent : B512<br>: GILLET<br>: 14, r. de l'Eté<br>: Toulouse |      |          |            |
| N° PRODUIT                                  | LIBELLE PRODUIT                                           | PRIX | QUANTITE | SOUS-TOTAL |
| CS464                                       | CHEV. SAPIN 400x6x4                                       | 220  | 180      | 39600      |
| PA45                                        | POINTE ACIER 45 (20K)                                     | 105  | 22       | 2310       |
| PA6o                                        | POINTE ACIER 60 (10K)                                     | 95   | 70       | 6650       |
| PH22                                        | PL. HETRE 200x20x2                                        | 230  | 92       | 21160      |
|                                             |                                                           |      |          |            |
|                                             |                                                           |      |          |            |
|                                             | 97200                                                     |      |          |            |

# Modèle de description de données

- Modèle de description de données
  - Ensemble de concepts et de règles de composition de ces concepts permettant de décrire des données
    - Exemples :
      - ⇒ Modèle hiérarchique
      - ⇒ Modèle réseau
      - ⇒ Modèle relationnel
      - ⇒ Modèle objets
- Langage de description de données (LDD)
  - Langage supportant un modèle et permettant de décrire les données d'une BD d'une manière assimilable par une machine
    - Exemples :
      - ⇒ SQL (modèle relationnel)

22/369

# Place aux concepts au travers d'un exemple (2/7)



23/369 24/369

# Place aux concepts au travers d'un exemple (3/7)

#### Données de la commande

| NCOM  | DATECOM  | TOTAL-COMMAND |
|-------|----------|---------------|
| 30188 | 2/1/2009 | 97200         |

#### Données du client

| NCLI | NOM    | ADRESSE         | LOCALITE |
|------|--------|-----------------|----------|
| B512 | GILLET | 14, r. de l'Eté | Toulouse |

#### Données des détails

| NPRO  | LIBELLE               | PRIX | QCOM | SOUS-TOTAL |
|-------|-----------------------|------|------|------------|
| CS464 | CHEV. SAPIN 400x6x4   | 220  | 180  | 39600      |
| PA45  | POINTE ACIER 45 (20k) | 105  | 22   | 2310       |
| PA60  | POINTE ACIER 60 (10k) | 95   | 70   | 6650       |
| PH222 | PL. HETRE 200x20x2    | 230  | 92   | 21160      |

25/369

# Place aux concepts au travers d'un exemple (5/7)

#### Données des commandes

| NCOM  | NCLI | DATECOM    |
|-------|------|------------|
| 30188 | B512 | 2/1/2009   |
| 30179 | C400 | 22/12/2008 |

#### Données des clients

| NCLI | NOM    | ADRESSE          | LOCALITE |
|------|--------|------------------|----------|
| B512 | GILLET | 14, r. de l'Eté  | Toulouse |
| C400 | FERARD | 63, r. de Tertre | Poitier  |

#### Données des détails

| NCOM  | NPRO  | LIBELLE               | PRIX | QCOM |
|-------|-------|-----------------------|------|------|
| 30188 | CS464 | CHEV. SAPIN 400x6x4   | 220  | 180  |
| 30188 | PA45  | POINTE ACIER 45 (20k) | 105  | 22   |
| 30188 | PA60  | POINTE ACIER 60 (10k) | 95   | 70   |
| 30188 | PH222 | PL. HETRE 200x20x2    | 230  | 92   |
| 30179 | CS262 | CHEV. SAPIN 400x6x4   | 75   | 60   |
| 30179 | PA60  | POINTE ACIER 60 (10k) | 95   | 20   |

Place aux concepts au travers d'un exemple (4/7)

- On avance mais le résultat n'est pas satisfaisant
  - Certaines données sont calculées, e.g., total de la commande et sous-totale ⇒ il n'est pas nécessaire de les stocker
  - 2. En l'état il est impossible de reconstruire le document initial
    - Comment récupérer le client d'une commande puisque nous avons extrait et rangé ailleurs le fragment décrivant ce client ?
    - Comment indentifier la commande de laquelle nous avons extrait un détail?
    - $\Rightarrow$  il manque des données de références pour effectuer des liaisons entre les données

26/369

# Place aux concepts au travers d'un exemple (6/7)

- Un résultat prometteur, mais
  - Certaines données sont stockées de manière redondantes dans les données de détails, e.g., libellé et prix
    - sources d'erreurs
    - inutiles et dangereux

 $\Rightarrow$  il serait plus pertinent de construire une 4ème table pour stocker de manière unique les informations relatives aux produits

27/369 28/369

### Place aux concepts au travers d'un exemple (7/7)

# Données des commandes NCOM | NCLI | DATI

#### Données des clients

| NCOM  | NCLI | DATECOM    |
|-------|------|------------|
| 30188 | B512 | 2/1/2009   |
| 30179 | C400 | 22/12/2008 |

| NCLI | NOM    | ADRESSE          | LOCALITE |
|------|--------|------------------|----------|
| B512 | GILLET | 14, r. de l'Eté  | Toulouse |
| C400 | FERARD | 63, r. de Tertre | Poitier  |

#### Données des détails

#### Données des produits

| NCOM  | NPRO  | QCOM |
|-------|-------|------|
| 30188 | CS464 | 180  |
| 30188 | PA45  | 22   |
| 30188 | PA60  | 70   |
| 30188 | PH222 | 92   |
| 30179 | CS262 | 60   |
| 30179 | PA60  | 20   |

| NPRO  | LIBELLE               | PRIX |
|-------|-----------------------|------|
| CS464 | CHEV. SAPIN 400x6x4   | 220  |
| PA45  | POINTE ACIER 45 (20k) | 105  |
| PA60  | POINTE ACIER 60 (10k) | 95   |
| PH222 | PL. HETRE 200x20x2    | 230  |
| CS262 | CHEV. SAPIN 400x6x4   | 75   |
|       |                       |      |

29/369

### Tables, lignes et colonnes

- Les données d'une base de données sont organisées sous la forme de tables
- Une table contient une collection de lignes stockées sur un support physique, e.g., un disque
- Une ligne est une suite de valeurs d'un type déterminé, e.g., integer, string
  - Une ligne regroupe des informations concernant un objet, un individu ou un événement, etc.
  - Une ligne représente un concept du monde réel, appelé entité ou fait
  - Les lignes d'une même table ont le même format ou structure
- L'ensemble des valeurs de même type correspondant à une même propriété s'appelle colonne

| CLIENT    |                  |          |           |  |
|-----------|------------------|----------|-----------|--|
| NOM       | ADRESSE          | LOCALITE | COMPTE    |  |
| HANSENNE  | 23, A. Dumont    | Poitier  | 1.250,00  |  |
| MERCIER   | 25, r. Lemaître  | Namur    | -2.300,00 |  |
| TOUSSAINT | 5, r. Godefroid  | Poitier  | 0,00      |  |
| VANBIST   | 180, r. Forimont | Lille    | 720,00    |  |

#### Premières conclusions

- 1. Une base de données est constituée d'un ensemble de tables
- 2. Chaque table contient les données relatives à des entités de même nature
- 3. Chaque ligne d'une table reprend les données relatives à une entité
- 4. Chaque colonne d'une table décrit une propriété commune des entités
- 5. Les lignes d'une table sont distinctes
- 6. Le jeux de colonnes dont les valeurs sont uniques constitue un identifiant ou clé primaire de la table
- 7. Les lignes d'une table peuvent faire référence chacune à une ligne d'une autre table. On parle alors de clé étrangère
- 8. On évite de stocker les informations qui peuvent être calculées
- 9. On ne conserve pas dans une même table des informations relatives à plusieurs entités
- 10. Il est nécessaire d'avoir un langage d'interrogation de la base de données

30/369

#### Tables, lignes et colonnes

| FOURNISSEUR |         |        |
|-------------|---------|--------|
| NUMF        | NOMF    | VILLEF |
| 46          | GERCIN  | Paris  |
| 81          | DUMONT  | Paris  |
| 152         | MERCIER | Tours  |
| 174         | CHARLES | Nevers |
| 259         | CHARLES | Liège  |
| 376         | RENIER  | Nevers |

| OFFRE |      |      |
|-------|------|------|
| NUMF  | NUMP | PRIX |
| 46    | 15   | 46   |
| 46    | 57   | 32   |
| 81    | 14   | 65   |
| 81    | 15   | 48   |
| 152   | 14   | 62   |
| 152   | 15   | 46   |
| 152   | 57   | 34   |
| 174   | 57   | 32   |

| PIECE |        |  |
|-------|--------|--|
| NUMP  | TYPE   |  |
| 14    | Boulon |  |
| 15    | Boulon |  |
| 57    | Ecrou  |  |

31/369 32/369

#### Les identifiants

- Toutes les colonnes ne jouent pas le même rôle dans une table
- Il faut être en mesure de désigner de manière univoque une ligne décrivant une entité
- On appelle identifiant de la table la colonne qui l'identifie de manière unique

#### Remarques

- Un identifiant peut être composé de plusieurs colonnes
- Rien n'interdit d'imposer plus d'un identifiant par table

#### Les identifiants

| FOURNISSEUR |         |        |  |
|-------------|---------|--------|--|
| NUMF NOMF   |         | VILLEF |  |
| 46          | GERCIN  | Paris  |  |
| 81          | DUMONT  | Paris  |  |
| 152         | MERCIER | Tours  |  |
| 174         | CHARLES | Nevers |  |
| 259         | CHARLES | Liège  |  |
| 376         | RENIER  | Nevers |  |

| OFFRE |      |      |  |
|-------|------|------|--|
| NUMF  | NUMP | PRIX |  |
| 46    | 15   | 46   |  |
| 46    | 57   | 32   |  |
| 81    | 14   | 65   |  |
| 81    | 15   | 48   |  |
| 152   | 14   | 62   |  |
| 152   | 15   | 46   |  |
| 152   | 57   | 34   |  |
| 174   | 57   | 32   |  |

| PIECE     |        |  |
|-----------|--------|--|
| NUMP TYPE |        |  |
| 14        | Boulon |  |
| 15        | Boulon |  |
| 57        | Ecrou  |  |

34/369

#### Les identifiants

- L'identifiant le plus représentatif est appelé identifiant primaire
  - Le terme anglais est primary key
- Les autres sont appelés identifiants secondaires
- Toutes les tables possèdent un identifiant primaire qui peut être composite (plusieurs colonnes) et un nombre quelconque d'identifiants secondaires
  - Le nombre d'identifiants secondaires peut être nul
- Toutes les entités d'une table possèdent au moins un identifiant
  - ⇒ les identifiants d'une table constituent un ensemble et sont donc distints

#### Les identifiants

- Pour jouer son rôle d'identification, l'identifiant doit être unique
- Cette propriété s'appelle contrainte d'unicité
- Elle est garantie par le SGBD au moment des ajouts dans la table
- Exemple :

| OFFRE |                |    |  |  |  |
|-------|----------------|----|--|--|--|
| NUMF  | NUMF NUMP PRIX |    |  |  |  |
| 46    | 15             | 46 |  |  |  |
| 46    | 57             | 32 |  |  |  |
| 81    | 14             | 65 |  |  |  |
| 81    | 15             | 48 |  |  |  |
| 152   | 14             | 62 |  |  |  |
| 152   | 15             | 46 |  |  |  |
| 152   | 57             | 34 |  |  |  |
| 174   | 57             | 32 |  |  |  |

35/369 36/369

#### Les identifiants

- Un identifiant primaire ne peut être constitué que de colonnes dont les valeurs doivent être renseignées
  - C'est ce qu'on appelle l'intégrité d'entité
- L'idée est que l'essence même d'une entité se concentre dans son identifiant

#### Remarque

• Cette contrainte n'est pas exigée pour les identifiants secondaires

37/369

# Les clés étrangères

- Une colonne, ou un emsemble de colonnes, dont le rôle est de référencer une ligne dans une autre table (dite table cible) est dénommée clé étrangère (foreign key)
- Exemple :

| FOURNISSEUR |         |        |  |
|-------------|---------|--------|--|
| NUMF NOMF   |         | VILLEF |  |
| 46          | GERCIN  | Paris  |  |
| 81          | DUMONT  | Paris  |  |
| 152         | MERCIER | Tours  |  |
| 174         | CHARLES | Nevers |  |
| 259         | CHARLES | Liège  |  |
| 376         | RENIER  | Nevers |  |
|             |         |        |  |

| OFFRE |      |    |  |
|-------|------|----|--|
| NUMF  | PRIX |    |  |
| 46    | 15   | 46 |  |
| 46    | 57   | 32 |  |
| 81    | 14   | 65 |  |
| 81    | 15   | 48 |  |
| 152   | 14   | 62 |  |
| 152   | 15   | 46 |  |
| 152   | 57   | 34 |  |
| 174   | 57   | 32 |  |

| PIECE |        |  |
|-------|--------|--|
| NUMP  | TYPE   |  |
| 14    | Boulon |  |
| 15    | Boulon |  |
| 57    | Ecrou  |  |
|       |        |  |

#### Les identifiants

- Tout ensemble de colonnes qui comprend un identifiant est un identifiant
  - Par exemple : (NUMF, NOMF) est un identifiant de la table FOURNISSEUR
- Un identifiant dont on ne peut retirer aucun élément sans qu'il perde sa qualité d'identifiant est appelé identifiant minimal
- Il est évident qu'il est important de définir que des identifiants minimaux

38/369

# Les clés étrangères

- Il est nécessaire que l'ensemble des valeurs d'une clé étrangère soit un sous-ensemble des valeurs de l'identifiant cible
- Cette contrainte s'appelle contrainte référentielle
- Exemple :
  - L'ajout de la ligne (174, 97, 125) dans la table OFFRE serait rejeté puisque 97 n'est pas un identifiant de pièce dans la table PIECE

| FOURNISSEUR |         |        |  |
|-------------|---------|--------|--|
| NUMF        | NOMF    | VILLEF |  |
| 46          | GERCIN  | Paris  |  |
| 81          | DUMONT  | Paris  |  |
| 152         | MERCIER | Tours  |  |
| 174         | CHARLES | Nevers |  |
| 259         | CHARLES | Liège  |  |
| 376         | RENIER  | Nevers |  |

| OFFRE |      |      |
|-------|------|------|
| NUMF  | NUMP | PRIX |
| 46    | 15   | 46   |
| 46    | 57   | 32   |
| 81    | 14   | 65   |
| 81    | 15   | 48   |
| 152   | 14   | 62   |
| 152   | 15   | 46   |
| 152   | 57   | 34   |
| 174   | 57   | 32   |

| PIECE |        |  |
|-------|--------|--|
| NUMP  | TYPE   |  |
| 14    | Boulon |  |
| 15    | Boulon |  |
| 57    | Ecrou  |  |

39/369 40/369

#### Schéma et contenu d'une base de données

#### Schéma d'une base

- Description au moyen d'un langage déterminé d'un ensemble de données particulier
  - Change peu souvent
- Exemple :

| FOURNISSEUR |      |        |  |
|-------------|------|--------|--|
| NUMF        | NOMF | VILLEF |  |

| OFFRE     |  |      |  |
|-----------|--|------|--|
| NUMF NUMP |  | PRIX |  |



#### • Instance d'une base

- Données effectivement contenues dans la base à un instant précis
  - Change à chaque mise à jour : ajout, suppression ou modification

| FOURNISSEUR |           |        |  |
|-------------|-----------|--------|--|
| NUMF        | NUMF NOMF |        |  |
| 46          | GERCIN    | Paris  |  |
| 81 DUMONT   |           | Paris  |  |
| 152 MERCIER |           | Tours  |  |
| 174 CHARLES |           | Nevers |  |
| 259 CHARLES |           | Liège  |  |
| 376 RENIER  |           | Nevers |  |

| OFFRE |           |    |  |
|-------|-----------|----|--|
| NUMF  | NUMF NUMP |    |  |
| 46    | 15        | 46 |  |
| 46    | 57        | 32 |  |
| 81    | 14        | 65 |  |
| 81    | 15        | 48 |  |
| 152   | 14        | 62 |  |
| 152   | 15        | 46 |  |
| 152   | 57        | 34 |  |
| 174   | 57        | 32 |  |
|       |           |    |  |

| PIECE |        |  |
|-------|--------|--|
| NUMP  | TYPE   |  |
| 14    | Boulon |  |
| 15    | Boulon |  |
| 57    | Ecrou  |  |

41/369

#### Le phénomène de redondance interne

| LIVRE  |                |             |               |            |           |
|--------|----------------|-------------|---------------|------------|-----------|
| NUMERO | TITRE          | AUTEUR      | ISBN          | DATE_ACHAT | RAYONNAGE |
| 1029   | Les misérables | Hugo V.     | 2 02 033300 7 | 17/10/2008 | F3        |
| 1030   | Les misérables | Hugo V.     | 2 02 033300 7 | 17/10/2008 | F3        |
| 1032   | Le Postier     | Bukowski C. | 2 253 14911 X | 17/10/2008 | G5        |
| 1045   | Le K           | Buzzati D.  | 2 253 05354 6 | 22/02/2009 | F3        |
| 1067   | Le Postier     | Bukowski C. | 2 253 14911 X | 24/02/2009 | G5        |
| 1022   | Le Postier     | Bukowski C. | 2 253 14911 X | 03/10/2008 | G6        |

- Problème: Lorsqu'un livre existe en plusieurs exemplaires, les informations (TITRE, AUTEUR, ISBN) sont dupliquées
- Cette situation viole le principe fondateur des bases de données
  - tout fait pertinent du domaine d'application doit être enregistré une et une seule fois

# Représentation graphique d'un schéma



42/369

#### Le phénomène de redondance interne

#### • Inconvénients de la redondance

- 1. La table occupe un espace excessif et inutil
- Les modifications sont coûteuses puisqu'il faut mettre à jour toutes les données dupliquées
- 3. Comment garantir que les données dupliquées restent identiques et cohérentes?
  - Exemples :
  - → Si le premier ajout d'un livre se fait librement, les ajouts d'un autre exemplaire doivent se faire conformément aux informations déjà saisies
  - → L'effacement du seul exemplaire d'un livre supprimerait définitivement les informations concernant son titre et son auteur

#### • Dépendance fonctionnelle

- Il existe une contrainte entre les colonnes de la table LIVRE
  - ISBN → TITRE, AUTEUR
  - ISBN est le déterminant et (TITRE, AUTEUR) les déterminés
- Les dépendances fonctionnelles doivent être évitées au sein d'une même table

43/369 44/369

# Le phénomène de redondance interne

| OUVRAGE          |                |             |
|------------------|----------------|-------------|
| ISBN TITRE AUTEU |                | AUTEUR      |
| 2 02 033300 7    | Les misérables | Hugo V.     |
| 2 253 14911 X    | Le Postier     | Bukowski C. |
| 2 253 05354 6    | Le K           | Buzzati D.  |

| EXEMPLAIRE |               |            |           |
|------------|---------------|------------|-----------|
| NUMERO     | ISBN          | DATE_ACHAT | RAYONNAGE |
| 1029       | 2 02 033300 7 | 17/10/2008 | F3        |
| 1030       | 2 02 033300 7 | 17/10/2008 | F3        |
| 1032       | 2 253 14911 X | 17/10/2008 | G5        |
| 1045       | 2 253 05354 6 | 22/02/2009 | F3        |
| 1067       | 2 253 14911 X | 24/02/2009 | G5        |
| 1022       | 2 253 14911 X | 03/10/2008 | G6        |

45/369

#### La normalisation

- La décomposition d'une relation est le remplacement d'une relation R par un ensemble de relations  $R_1, \ldots, R_n$  tel que
  - Attributs de R = l'union de tous les attributs des  $R_i$
  - $R_i$  est obtenu à partir de R par projection sur les attributs de  $R_i$
- Décomposition sans perte
  - de sorte que l'on puisse retrouver exactement l'information de départ
  - une décomposition est sans perte ssi elle préserve les dépendances fonctionnelles

#### La normalisation

#### Objectif

- Définir des règles pour décomposer les relations tout en préservant les DF sans perdre d'informations afin de représenter les objets et les associations canoniques du monde réel
- Eviter les anomalies de mises à jour
- Eviter les réponses érronées
- Outils :
  - Dépendances fonctionnelles
  - Décompositions
  - Formes normales

46/369

#### La normalisation

#### Définition

• Une relation est dite de première forme normale, si elle admet une clé et que tous ses attributs contiennent une valeur atomique

#### Exemple

• PILOT (ID, NOM, AVIONS)

| PILOT |               |                   |  |
|-------|---------------|-------------------|--|
| ID    | NOM           | AVIONS            |  |
| 2     | BERLIOZ       | {Albastros, AEG}  |  |
| 3     | De St-Exupéry | {AGO, Fokker}     |  |
| 5     | Garros        | {Gotha, Zeppelin} |  |

- La relation PILOT n'est pas en première forme normale
  - elle possède une clé
  - mais l'attribut AVIONS n'est pas atomique

47/369 48/369

#### La normalisation

#### Définition

- Une relation est en deuxième forme normale ssi :
  - 1. Elle est en première forme normale
  - 2. Tout attribut non clé ne dépend pas d'une partie de clé

#### Exemple

- PILOT (ID, NOM, LICENCE, DATE\_OBTENTION)
- n'est pas en deuxième forme normale car
  - ID  $\rightarrow$  NOM
  - LICENCE → DATE\_OBTENTION

Une telle relation doit être décomposée en

- PILOT (ID, NOM, LICENCE)
- LICENCE\_PILOT (LICENCE, DATE\_OBTENTION)

49/369

#### La normalisation

#### • La troisième forme normale :

- enlève les redondances dûes aux dépendances transitives
- permet de ne pas perdre d'information
- permet de ne pas perdre des dépendances

#### • Remarques :

- Un modèle relationnel doit être de troisième forme normale
- La troisième forme normale est la plus utilisée du fait de son équilibre entre redondance et performance
- Cependant pour certains systèmes (surtout distribués), lorsque la redondance n'est pas un problème, une dénormalisation est effectuée pour augmenter les performances

#### La normalisation

#### Définition

- Une relation est en troisième forme ssi :
  - 1. Elle est en deuxième forme normale
  - 2. Tout attribut n'appartement pas à une clé ne dépend pas d'un autre attribut non clé

#### Exemple

- AVION (ID, CONSTRUCTEUR, TYPE, PUISSANCE, AUTONOMIE)
- n'est pas en troisième forme normale car
  - ID → CONSTRUCTEUR, TYPE
  - TYPE → PUISSANCE, AUTONOMIE

Une telle relation doit être décomposée en

- AVION (ID, CONSTRUCTEUR, TYPE)
- MODÈLE (TYPE, PUISSANCE, AUTONOMIE)

50/369

#### La normalisation

#### • C'est quand qu'on s'arrête?

- Les quatrièmes, cinquièmes et sixièmes formes normales évitent principalement la redondance d'information, elles sont plus précises
- En pratique la FN 3 est suffisante
  - En effet, les projections et les jointures sont coûteuses pour le système, ainsi une trop forte normalisation diminue fortement les performances

51/369 52/369

#### La normalisation

- Tant que l'ensemble des attributs n'est pas vide, on doit successivement :
  - 1. Choisir un attribut X qui n'est le but d'aucune dépendance fonctionnelle
  - 2. Construire une relation dont X est la clé et qui comporte tous les attributs qui sont déterminés fonctionnellement par X
  - 3. Renouveler cette opération pour toutes les dépendances complexes auxquelles l'attribut X participe
  - Supprimer toutes les dépendances qui ont été prises en compte, ainsi que tous les attributs figurant dans ces dépendances et qui ne sont eux-mêmes sources d'aucune nouvelle dépendance (attributs isolés).

• Exercice 1 : Vérifier si le schéma suivant est normalisé. Si nécessaire, le décomposer en tables normalisées :

54/369

VENTE (NPRO, CLIENT, DATE, QUANTITE, ADRESSE, DELEGUE, REGION)

#### La normalisation

• Exercice 1 : Vérifier si le schéma suivant est normalisé. Si nécessaire, le décomposer en tables normalisées :

VENTE (NPRO, CLIENT, DATE, QUANTITE, ADRESSE, DELEGUE, REGION) CLIENT  $\longrightarrow$  ADRESSE, DELEGUE DELEGUE  $\longrightarrow$  REGION



VENTE (NPRO, CLIENT, DATE, QUANTITÉ)
CLI (CLIENT, ADRESSE, DELEGUE)
REP (DELEGUE, REGION)

### La normalisation

53/369

La normalisation

Exercice 2 : Décomposer si nécessaire le schéma ci-dessous :
 COMMANDE (NCOM, NCLI, NOM, DATE, NPRO, LIBELLE)

55/369 56/369

# La normalisation

• Exercice 2 : Décomposer si nécessaire le schéma ci-dessous :

COMMANDE (NCOM, NCLI, NOM, DATE, NPRO, LIBELLE)  $NCLI \longrightarrow NOM$  $\mathsf{NPRO} \longrightarrow \mathsf{LIBELLE}$ 



COMMANDE (NCOM, NCLI, DATE, NPRO) CLIENT (NCLI, NOM) PRODUIT (NPRO, LIBELLE)

# Que retenir?

- Les concepts de tables, d'identifiants, de lignes, de colonnes, d'entités de faits
- Les notions de clés primaires, clés étrangères
- La différence entre schéma conceptuel, instance d'une base de données et SGBD
- Le problème de la redondance interne
- Les différens types de contraintes : contrainte d'unicité, dépendances fonctionnelles
- Le principe de normalisation et de décomposition

57/369 58/369