Assembly Tutorial Michael Schatz

Oct 23, 2014 Programming for Biology

Outline

- I. Sample Data for your mission!
- 2. ALLPATHS-LG
- 3. MUMmer

Halomonas sp. GFAJ-I

Library 2: Short jump Avg Read length: 50bp Insert length: 2000bp

A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus Wolfe-Simon et al (2010) Science. 332(6034)1163-1166.

Digital Information Storage Decoding self-referential DNA that encodes these notes. Decoding self-referential DNA that encodes the self-reference at the self

Mission Impossible

- I. Setup virtual machine sudo make install
- 2. Download Reference Genome wget http://schatzlab.cshl.edu/asm.tgz tar xzvf asm.tgz
- 3. Decode the secret message
 - Assemble the reads, Align to reference, Extract secret
 - 2. dna-encode.pl -d

How to use ALLPATHS-LG

- 1. Data requirements (*** most critical thing ***)
- 2. Computational requirements & Installation
- 3. Preparing your data
- 4. Assembling
- 5. What is an ALLPATHS-LG assembly?

ALLPATHS-LG sequencing model

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage (x)	Required
Fragment	180*	≥ 100	45	yes
Short jump	3,000	≥ 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no**
Fosmid jump	40,000	≥ 26	1	no**

*See next slide.

**For best results. Normally not used for small genomes. However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

Libraries from 180 bp fragments

Pairs of 100 base reads from these libraries are merged to create 'reads' that are twice as long:

For longer reads, fragment size would be increased proportionally.

How to use ALLPATHS-LG	
Data requirements	
2. Computational requirements & installation	
Preparing your data	
4. Assembling	
5. What is an ALLPATHS-LG assembly?	
	1
Computational requirements	
• 64-bit Linux	
• 64-0ii Linux • runs multi-threaded on a single machine	
Turis multi-inreaded on a single machine memory requirements	
 about 160 bytes per genome base, implying 	-
 need 512 GB for mammal (Dell R315, 48 processors, \$39,000) need 1 GB for bacterium (theoretically) if coverage different than recommended, adjust 	
potential for reducing usage	
• wall clock time to complete run	
 5 Mb genome → 1 hour (8 processors) 2500 Mb genome → 500 hours (48 processors) 	
	1
Installing ALLPATHS-LG	-
Websers	
Web page:	
http://www.broadinstitute.org/software/allpaths-lg/blog/	
General instructions:	
http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/general-instructions-building-our-software	

Getting the ALLPATHS-LG source Our current system is to release code daily if it passes a test consisting of several small assemblies: Download the latest build from: ftp://ftp.broadinstitute.org/pub/crd/ALLPATHS/ Release-LG/ Unpack it: $\mbox{\ensuremath{\$}}$ tar xzf allpathslg-39099.tar.gz (substitute the latest revision id for 39099) This creates a source code directory allpathslg-39099: $\mbox{\%}$ cd allpathslg-39099 Building ALLPATHS-LG $\underline{\textbf{Step one:}} \quad ./\texttt{configure}$ Options: -prefix=<prefix path> put binaries in fix path>/bin, else ./bin Step two: make and make install Options: -j<n> compile with n parallel threads Step three: add bin directory to your path How to use ALLPATHS-LG 1. Data requirements 2. Computational requirements & Installation 3. Preparing your data 4. Assembling 5. What is an ALLPATHS-LG assembly?

Preparing data for ALLPATHS-LG	
Before assembling, prepare and import your read data. ALLPATHS-LG expects reads from:	
At least one fragment library.	
 One should come from fragments of size ~180 bp. This isn't checked but otherwise results will be bad. 	
At least one jumping library.	
IMPORTANT: use all the reads, including those that fail the Illumina purity filter (PF). These low quality reads may cover difficult parts of the genome.	
ALLPATHS-LG input format]
ALL DATIO LO con located data from	
ALLPATHS-LG can import data from: BAM, FASTQ, FASTA/QUALA or FASTB/QUALB files.	
You must also provide two metadata files to describe them: in libs.csv -describes the libraries	
in_groups.csv - ties files to libraries	
FASTQ format: consists of records of the form	
@ <read name=""> <sequence allowed="" bases,="" lines="" multiple="" of=""></sequence></read>	
+ <sequence allowed="" ascii="" by="" code="" lines="" multiple="" n+33,="" of="" qn="" quality="" represented="" scores,="" with=""></sequence>	
illies allowed>	
Libraries - in_libs.csv (1 of 2)]
For fragment libraries only	
frag_size - estimated mean fragment size frag_stddev - estimated fragment size std dev	
For jumping libraries only	
insert_size - estimated jumping mean insert size insert_stddev - estimated jumping insert size std dev	
These values determine how a library is used. If insert_size is ≥ 20000, the library is assumed to be a Fosmid jumping library.	

Paired reads can either point towards each other, or away from each other. Currently fragment reads must be <code>inward</code>, jumping reads <code>outward</code>, and Fosmid jumping reads <code>inward</code>.

Libraries - in_libs.csv (2 of 2)

Reads can be trimmed to remove non-genomic bases produced by the library construction method:

genomic_start

genomic_end

- inclusive zero-based range of read bases to be kept; if blank or 0 keep all bases

Reads are trimmed in their original orientation.

Extra optional fields (descriptive only - ignored by ALLPATHS)

project_name - a string naming the project. organism_name - the organism name.
type - the organism name.
transparent - fragment, jumping, EcoP15I, etc.

EXAMPLE

Input files - in_groups.csv

Each line in $in_groups.csv$ comma separated value file, corresponds to a BAM or FASTQ file you wish to import for assembly.

The library name must match the names in $in_{libs.csv}$.

group_name library_name file_name

- a unique nickname for this file
- library to which the file belongs - the absolute path to the file

(should end in .bam or .fastq)

(use wildcards '?', '*' for paired fastqs)

Example:

group_name, library_name, file_name
302GJ, Solexa-11541, /seq/Solexa-11541/302GJABXX.bam
303GJ, Solexa-11623, /seq/Solexa-11623/303GJABXX.?.fastq

How to import assembly data files

PrepareAllPathsInputs.pl
 IN_GROUPS_CSV=<in groups file> IN_GROUPS_CSV=<in groups IIIe>
IN_LIBS_CSV=<in libs file>
DATA_DIR=<full path of data directory>
PLOIDY=<ploidy, either 1 or 2>
PICARD_TOOLS_DIR=PLOIDS_DIR=CARD_TOOLS_DIR=

- IN_GROUPS_CSV and IN_LIBS_CSV: optional arguments with default values ./in_groups.csv and ./in_libs.csv. These arguments determine where the data are found.
- DATA_DIR: imported data will be placed here.
- PLOIDY: either 1 (for a haploid or inbred organism), or 2 (for a diploid organism) - we have not tried to assemble organisms having higher ploidy!
- PICARD_TOOLS_DIR: path to Picard tools, for data conversion from BAM.

Putting it all together

Collect the BAM or FASTQ files that you wish to assemble. Create a in_libs.csv metadata file to describe your libraries and a in_groups.csv metadata file to describe your data files.

2. Prepare input files

% cd /path/to/data/
% PrepareAllPathsInputs.pl \
DATA_DIR=`pwd` PLOIDY=1 >& prepare.log

How to use ALLPATHS-LG

- 1. Data requirements
- 2. Computational requirements & installation
- 3. Preparing your data
- 4. Assembling

5. What is an ALLPATHS-LG assembly?

How to assemble

Do this:

```
RunAllPathsLG

PRE=<prefix path>
REFERENCE NAME=<reference dir>
DATA_SUBDIR=<data dir>
RUN=<run dir>
```

 $\label{eq:local_decomposition} \begin{tabular}{ll} \underline{Automatic resumption}. & If the pipeline crashes, fix the problem, then run the same $$\operatorname{RunAllPathsLG}$ command again. Execution will resume where it left off. \\ \end{tabular}$

Results. The assembly files are:

final.contigs.fasta
final.assembly.fasta
final.assembly.efasta
final.assembly.efasta
final.assembly.efasta
final.assembly.efasta
final.assembly.efasta
final.assembly.efasta

Putting it all together

Collect the BAM or FASTQ files that you wish to assemble. Create a in_libs.csv metadata file to describe your libraries and a in_groups.csv metadata file to describe your data files.

2. Prepare input files

```
% PrepareAllPathsInputs.pl \
    DATA_DIR=`pwd` PLOIDY=1 >& prepare.log
```

3. Assemble

ssemble.
% RunAllPathsLG \
 PRE=. REFERENCE_NAME=. \
 DATA_SUBDIR=. RUN=default THREADS=4 >& run.log

How to use ALLPATHS-LG

- 1. Data requirements
- 2. Computational requirements & installation
- 3. Preparing your data
- 4. Assembling
- 5. What is an ALLPATHS-LG assembly?

1. Linear assemblies	
contigs in scaffolds	
contig: a contiguous sequence of bases	
ctgcccctgtgccatggctttgagctcttcccacttcttttctattagattcaatgtatctggtttatgttgag	
TCCTAGATCCACTTGGACTTGGACATTTCTACAAGAGACATATATAGGTCTGTTTTTATTCTACTACAACAGACAG	
${\tt CCATGAGTATGTGTTTCATTTCTGGGTCTTCAATTGTATTCCATTAGTCAACATATCTGTCTCTGTACCAATACCATGC}$	
scaffold: a sequence of contigs, separated by gaps	
TCCTAGATCCACTTGGACTTGAGCTTTGTACAAGATGACATATATAGGTCTGTTTTTATTCTTCTACATACA	
CCATGAGTATGTGGTTTCATTTCTGGGTCTTCAATTGTATTCCATTAGTCAACATATCTGTCTCTGTACCAATACCATGC NNNNNNN	
AGTTTTTACCACANTTGCTCTATAGTANAGCTTGAGGTCAGGGTTGGTGATCCCTCCAGCCATTCTTTCATTATTAAGAATTGTTTTTCCAGGCGAATTTGAGAATTGCTCTTTCCAGGCTTTTTAAGAATTGTGTT	
NERRINGERINGERINGERINGERINGERINGERINGERI	
Number of Ns = predicted gap size, with error bars (can't be displayed in fasta format)	
	7
1. Linear assemblies	
Example of an assembly in fasta format	
>scaffold 1	
TCCTAGATCCACTTGGACTTGAGCTTTGTACAAGATGACATATATAGGTCTGTTTTTATTCTTCTACATACA	
CCATGAGTATGTGGTTTCATTTCTGGGTCTTCAATTGTATTCCATTAGTCAACATATCTGTCTCTGTACCAATACCATGC NNNNNNNN	
AGTTTTTACCACATTGCTCTATAGTAAGCTTGAGGTCAGGGTTGGTGATCCCTCCAGCCATTCTTTCATTATTAAGAA TTGTTTTCCCTAGTCTGGGTTTTTTGCTTTTCCAGGCGAATTTGAGAATTGCTCTTTCCATGTCTTTGAAGAATTGTGTT	
NNINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	
CCACAAGCATGGGAGCGCTCTCCATTTTCTGAGATCTTCTTCAATTTCTTTGAGAAACTTGAAGTTATTGTCATACA >scaffold 2	
CTGAAGTTGTTTATCAGCTGGAGAAGTTCTCAGGTAGAATTTTTGGGATTGCTTATGTATG	
${\tt CAAGTACTATATTGAATAGATATGGGGAGAGTGGGAATCCTTGTCTTGTCTCCGATTTCAGTGGGATTGCTTCAAGTATGCTGGGATTGCTTCAAGTATGGGGATGGGGATTGCTTCAAGTATGGGGATTGCTTCAAGTATGGGGATTGCTTCAAGTATGGGGATGGGGATGGGGATTGCTTGTCAAGTATGGGGATGGGGATGGGGATGGGGATGGGGATGGGGATGGGGATGGGGATGGGATGGGAGATGGGGATGGGGATGGGGATGGGGATGGGGATGGGGATGGGGATGGGGATGGGGATGGGGATGGGGATGGGAGATGGGAGATGGGAGATGGGAATGGGAGAGGAG$	
	1
3. Linearized graph assemblies	
	-
<u>Efasta</u>	
ACTGTTT{A,C}GAAAT A or C at site	
CGCGTTTTTTTTT { ,T,TT}CAT 0 or 1 or 2 Ts at site	
Example of an assembly in efasta format	
>scaffold_1	
TCC7AGATCCACTTGGACTTGGTATATATATATATATATATATA	
CCATSAGTATGTGGTTTCATTTCTGGGTCTCAATTGTATTCCATTAGTCAACATATCTGTCTCTGTACCAATACCATGC NNNNNNN AGTTTTTACCACAATTGCTCTATAGTAAAGCTTGAGGTCAGGGTTGGTGATCCCTCCAGCCATTCTTTCATTATTAAGAA	
AGTITITACCACANITGCTC TATAGIAANGCITTGCAGGITAGGGITAGTGATACCCTCCAGCCATTCTTTCATTATAAGAA TTGTTTTCCCTAGTCTGGGTTTTTGCTTTTCCAGGGCAATTTGAGAATTGTGTCTTTCCATGTCTTTGAAGAATTGTGTT NNNNNNNNNNNNNNNNNNNNNNN	
GGGATTTGATGGGGTTTGCATTGAATCTGTAGATTGCTTTGGTAAGATGGTTAGTTTACTATGTTAATTCTGCCAAT CCACAAGCATGGGACCCCTCTCCATTTTCTGAGATCTTTCTT	
>scaffold_2 CTGAAGTTGTTTATCAGCTGGAGAAGTTCTCAGGTAGAATTTTTGGGATT {A,C,G}GCTTATGTATGCTATCTTGCAAA	
TAGTGATACCTTGATTTCTTTTTACCAATATGTATCCCATTGATCTCTTTTCTGTTGTCTTATTGTTCTAGCTAACACTT	

Putting it all together

1. Collect the BAM or FASTQ files that you wish to assemble. Create a $\verb"in_libs.csv" metadata file to describe your libraries and a$ $\verb|in_groups.csv| \ensuremath{\mathsf{metadata}} \ensuremath{\mathsf{file}} \ensuremath{\mathsf{to}} \ensuremath{\mathsf{describe}} \ensuremath{\mathsf{your}} \ensuremath{\mathsf{data}} \ensuremath{\mathsf{files}}.$

2. Prepare input files

% PrepareAllPathsInputs.pl \
DATA_DIR=`pwd` PLOIDY=1 >& prepare.log

3. Assemble.

% RunAllPathsLG \
 PRE=. REFERENCE_NAME=. \
 DATA_SUBDIR=. RUN=default THREADS=4 >& run.log

4. Get the results (four files).
% cd default/ASSEMBLIES/test/
% less final.{assembly,contigs}.{fasta,efasta}

Whole Genome Alignment with MUMmer

Find and decode

nucmer -maxmatch ref.fasta \
default/ASSEMBLIES/test/final.contigs.fasta -p refctg
-maxmatch Find maximal exact matches (MEMs) without repeat filtering
-p refctg Set the output prefix for delta file

mummerplot --layout refctg.delta
-r Show the dotplot

samtools faidx default/ASSEMBLIES/test/final.contigs.fasta

 $samtools\ faidx\ default/ASSEMBLIES/test/final.contigs.fasta \ \ contig_XXX:YYY-ZZZ\ |\ ./dna-encode\ -d$

See manual at http://mummer.sourceforge.net/manual

Resources

- Assembly Competitions
 - Assemblathon: http://assemblathon.org/
 - GAGE: http://gage.cbcb.umd.edu/
- Assembler Websites:
 - ALLPATHS-LG: http://www.broadinstitute.org/software/allpaths-lg/blog/
 - $\ \ \textbf{SOAPdenovo:} \\ \underline{\text{http://soap.genomics.org.cn/soapdenovo.html}}$
 - $\ \ Celera \ Assembler: \underline{http://wgs-assembler.sf.net}$
- Tools:
 - MUMmer: http://mummer.sourceforge.net/
 - Quake: http://www.cbcb.umd.edu/software/quake/
 - AMOS: http://amos.sf.net

	_
1	2
ı	J