Algorithmen & Datenstrukturen

Brute Force-Algorithmen

Literaturangaben

Diese Lerneinheit basiert größtenteils auf dem Buch "The Design and Analysis of Algorithms" von Anany Levitin.

In dieser Einheit behandelte Kapitel:

- 3 Brute Force
- 3.1 Selection Sort and Bubble Sort
- 3.2 Sequential Search and Brute-Force String Matching
- 3.3 Closest-Pair and Convex-Hull Problems by Brute Force
- 3.4 Exhaustive Search
- 3.5 Depth-First Search and Breadth-First Search

Brute Force-Ansatz

- Typischerweise relativ schlichter Ansatz, direkt basierend auf:
 - der Problembeschreibung
 - der Definition der beteiligten Konzepte

Beispiele

- Berechnung von a^n (a > 0, n nicht-negative Ganzzahl)
- Berechnung von n!
- Matrizenmultiplikation
- Schlüsselsuche in einer gegebenen Liste von Werten

Stärken und Schwächen

Stärken

- Breites Einsatzfeld
- Einfach zu entwerfen
- Liefert passable Lösungen für einige wichtige Problemtypen (etwa Matrixmultiplikation, Sortieren, Suchen, Zeichenkettenvergleich)
- Vergleichsmaßstab für komplexere Algorithmen

Schwächen

- Führt selten zu den effizientesten Algorithmen
- Brute Force-Algorithmen für einige Probleme unakzeptabel langsam
- Nicht so kreativ/lehrreich wie andere Designtechniken

Brute Force Suche: Selection Sort

```
ALGORITHM SelectionSort(A[0..n-1])

//Sorts a given array by selection sort

//Input: An array A[0..n-1] of orderable elements

//Output: Array A[0..n-1] sorted in ascending order

for i \leftarrow 0 to n-2 do

min \leftarrow i

for j \leftarrow i+1 to n-1 do

if A[j] < A[min] \quad min \leftarrow j

swap A[i] and A[min]
```

Zeiteffizienz?

Speicherplatzbedarf?

Stabilität?

Brute Force Suche: Bubble Sort

ALGORITHM BubbleSort(A[0..n-1])

```
// Sorts a given array by bubble sort

// Input: An array A[0..n-1] of orderable elements

// Output: Array A[0..n-1] sorted in nondecreasing order

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-2-i do

if A[j+1] < A[j] swap A[j] and A[j+1]
```

Zeiteffizienz?

Speicherplatzbedarf?

Stabilität?

Brute Force: Zeichenketten-Vergleich

Aufgabe: Finde in einem Text eine bestimmtes Suchmuster

- Suchmuster: Zeichenkette der Länge m nach der gesucht wird
- Text: (längere) Zeichenkette der Länge n in der gesucht wird

Brute Force-Algorithmus:

- Schritt 1: Richte das Suchmuster am Textanfang aus
- Schritt 2: Beginne links, vergleiche alle Zeichen des Musters mit den korrespondierenden Zeichen des Texts bis:
 - alle Zeichen des Musters gefunden wurden (→ erfolgreiche Suche) oder
 - ein Zeichen nicht übereinstimmt
- Schritt 3: Falls das Suchmuster nicht gefunden wurde, verschiebe das Muster um eine Position nach rechts und wiederhole Schritt 2

Beispiele: Brute Force-Zeichenkettenvergleich

1. Suchmuster: 001011

Text: 100101011010011001011111010

2. Pattern: happy

Text: It is never too late to have a happy childhood.

Pseudocode und Effizienz

```
ALGORITHM BruteForceStringMatch(T[0..n-1], P[0..m-1])
    //Implements brute-force string matching
    //Input: An array T[0..n-1] of n characters representing a text and
            an array P[0..m-1] of m characters representing a pattern
    //Output: The index of the first character in the text that starts a
              matching substring or -1 if the search is unsuccessful
    for i \leftarrow 0 to n - m do
        i \leftarrow 0
        while j < m and P[j] = T[i + j] do
             j \leftarrow j + 1
        if j = m return i
    return -1
```

Effizienz?

Problem des dichtesten Punktepaars (closest pair problem)

 Finde in einer Menge von n Punkten die beiden Punkte mit dem geringsten Abstand

 Brute Force Lösung: Berechne den Abstand zwischen jedem Punktepaar und bestimme das Minimum

Dichtestes Punktepaar: Pseudocode

```
ALGORITHM BruteForceClosestPoints(P)
    //Input: A list P of n (n \ge 2) points P_1 = (x_1, y_1), \dots, P_n = (x_n, y_n)
    //Output: Indices index1 and index2 of the closest pair of points
    dmin \leftarrow \infty
    for i \leftarrow 1 to n-1 do
         for j \leftarrow i + 1 to n do
              d \leftarrow sqrt((x_i - x_i)^2 + (y_i - y_i)^2) //sqrt is the square root function
              if d < dmin
                    dmin \leftarrow d; index1 \leftarrow i; index2 \leftarrow j
    return index1, index2
```

Erschöpfende Suche

Suche nach einem Element mit speziellen Eigenschaften aus einer kombinatorischen Menge von Objekten. z. B.:

- Permutationen
- Kombinationen
- Menge aller Teilmengen

Methode:

- Generiere systematisch alle in Frage kommenden Elemente (= potentielle Lösungen)
- Betrachte alle potentiellen Lösungen nacheinander
 - Verwerfe ungültige Lösungen
 - Bei Optimierungsproblemen: Merke dir die bisher beste gültige Lösung
- Wenn alle Elemente untersucht wurden, gebe die Lösung(en) aus

Beispiel: Problem des Handelsreisenden

- Gegeben: n Städte und die Abstände zwischen allen Städten
- Gesucht: Die kürzeste Rundreise durch alle Städte

- Englischer Name: Traveling Salesman Problem (TSP)
- Alternative Formulierung: Finde den kürzesten Hamiltonkreis eines vollständigen, gewichteten Granhen

Graphen

UWF NEUHAUS

Erschöpfende Suche beim TSP

Rundreise

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$$

 $a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$
 $a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$
 $a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$
 $a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$
 $a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$

Weitere Rundreisen? Weniger Rundreisen? Effizienz?

Reiselänge

$$2+3+7+5 = 17$$

 $2+4+7+8 = 21$
 $8+3+4+5 = 20$
 $8+7+4+2 = 21$
 $5+4+3+8 = 20$
 $5+7+3+2 = 17$

Beispiel: Rucksackproblem

Gegeben: n Gegenstände mit

- den Gewichten (weights) w₁, w₂, ..., w_n
- den Werten (values) v₁, v₂, ..., v_n
- ein Rucksack mit der Gewichtskapazität W

Gesucht: Wertvollste Teilmenge, die noch in den Rucksack passt

Englischer Name: Knapsack Problem

Beispiel: Rucksack mit der Kapazität W = 16

Gegenstand	Gewicht	Wert
1	2 kg	20 €
2	5 kg	30 €
3	10 kg	50€
4	5 kg	10€

Erschöpfende Suche beim Rucksackproblem

Teilmenge	Gesamtgewicht	Gesamtwert
{1}	2	20
{2}	5	30
{3}	10	50
{4}	5	10
{1, 2}	7	50
{1, 3}	12	70
{1, 4}	7	30
{2, 3}	15	80
{2, 4}	10	40
{3, 4}	15	60
{1, 2, 3}	17	ungültig
{1, 2, 4}	12	60
{1, 3, 4}	17	ungültig
{2, 3, 4}	20	ungültig
{1, 2, 3, 4}	22	ungültig

Beispiel: Zuordnungsproblem

Gegeben:

- n Personen und n Tätigkeiten
- Alle potentiellen (Arbeits-) Kosten C(i, j): Kosten, die entstehen, wenn Person i Tätigkeit j ausführt

Gesucht: Finde eine Zuordnung (eine Tätigkeit pro Person), die die Kosten minimiert

Englischer Name: Assignment Problem

Ablauf:

- Erzeuge alle legalen Zuordnungen
- Berechne jeweils die Kosten
- Wähle die preiswerteste Zuordnung

Erschöpfende Suche Zuordnungsproblem

C(i, j)	Tätigkeit 1	Tätigkeit 2	Tätigkeit 3	Tätigkeit 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

Kostenmatrix

Liste potentieller Lösungen

Zuordnung (Spaltennummern)	Gesamtkosten	
1, 2, 3, 4	9 + 4 + 1 + 4 = 18	
1, 2, 4, 3	9 + 4 + 8 + 9 = 30	
1, 3, 2, 4	9 + 3 + 8 + 4 = 24	
1, 3, 4, 2	9 + 3 + 8 + 6 = 26	
1, 4, 2, 3	9 + 7 + 8 + 9 = 33	
1, 4, 3, 2	9 + 7 + 1 + 6 = 23	
usw.	usw.	

Erschöpfende Suche Abschließende Bemerkungen

- Erschöpfende Suche ist aufgrund des hohen Zeitaufwands nur für sehr kleine Problemgrößen anwendbar
- Bei manchen Problemen gibt es wesentlich bessere Alternativen:
 - Eulerkreise
 - Kürzeste Wege
 - Minimalgerüste
 - Zuordnungsproblem
- In vielen anderen Fällen ist erschöpfende Suche (oder eine Variation davon) allerdings der einzig bekannte Weg, eine genaue Lösung zu finden

Beispiel: Graphen-Traversierung

- Zur Lösung vieler Probleme müssen alle Knoten (bzw. Kanten) eines Graphen systematisch verarbeitet werden
- Grundlegende Graphen-Traversierungsalgorithmen:
 - Depth-first search (DFS) (deutsch: Tiefensuche)
 - Breadth-first search (BFS) (deutsch: Breitensuche)

Beispiel: Tiefensuche/ Depth-first Search (DFS)

- Besuche alle Knoten eines Graphen
 - Bewege dich vom letzten besuchten Knoten zu einem weiteren, noch nicht besuchten Knoten
 - Falls es keinen benachbarten, unbesuchten Knoten gibt, kehre zum vorigen Knoten zurück (backtracking)
- Benutzt einen Stack (Kellerspeicher)
 - Ein Knoten wird auf den Stack gepackt, wenn er zum ersten mal besucht wird
 - Ein Knoten wird vom Stack gelöscht, wenn er keine unbesuchten Nachbarn mehr besitzt
- Definiert "Baumstruktur(en)" im Graphen
 - Alle Kanten, die zum Aufsuchen eines unbesuchten Knotens verwendet werden

Pseudocode der Tiefensuche (I)

ALGORITHM DFS(G)

```
//Implements a depth-first search traversal of a given graph //Input: Graph G = \langle V, E \rangle //Output: Graph G with its vertices marked with consecutive integers //in the order they've been first encountered by the DFS traversal mark each vertex in V with 0 as a mark of being "unvisited" count \leftarrow 0 for each vertex v in V do if v is marked with 0 dfs(v)
```

Pseudocode der Tiefensuche (II)

```
dfs(v)
//visits recursively all the unvisited vertices connected to vertex v by a path //and numbers them in the order they are encountered //via global variable count count \leftarrow count + 1; mark v with count for each vertex w in V adjacent to v do

if w is marked with 0

dfs(w)
```

Beispiel: DFS-Traversierung eines ungerichteten Graphen

DFS-Traversierungsstack

DFS-Baum:

Anmerkungen zur Tiefensuche

- Tiefensuche kann mit Adjazenzlisten und Adjazenzmatrizen implementiert werden
 - Adjazenzlisten: Θ(|V|+|E|)
 - Adjazenzmatrix: Θ(|V|²)
- Es entstehen zwei unterschiedliche Knotenordnungen
 - Ordnung, in der die Knoten entdeckt werden
 - Ordnung, in der die Knoten "Sackgassen" werden
- Anwendungen
 - Prüfung auf Zusammenhang, Zusammenhangskomponenten
 - Prüfung auf Zyklenfreiheit
 - Finden von Artikulationspunkten
 - Durchsuchung des Zustandsraums nach möglichen Lösungen

Beispiel: Breitensuche/ Breadth-first Search (BFS)

- Besuche alle Knoten eines Graphen
 - Bearbeite aktuellen Knoten und ermittle zunächst alle noch nicht besuchten Nachbarn
 - Verfahre so der Reihe nach mit allen neu entdeckten Nachbarn
- Benutzt eine Queue (Warteschlange)
 - Ein Knoten wird in die Queue eingereiht, wenn er zum ersten mal entdeckt wird
 - Ein Knoten wird aus der Queue gelöscht, wenn alle seine Nachbarn überprüft wurden
- Definiert "Baumstruktur(en)" im Graphen
 - Alle Kanten, die beim Entdecken eines unbesuchten Knotens verwendet werden

Pseudocode der Breitensuche (I)

ALGORITHM BFS(G)

```
//Implements a breadth-first search traversal of a given graph //Input: Graph G = \langle V, E \rangle //Output: Graph G with its vertices marked with consecutive integers //in the order they have been visited by the BFS traversal mark each vertex in V with 0 as a mark of being "unvisited" count \leftarrow 0 for each vertex v in V do if v is marked with 0 bfs(v)
```

Pseudocode der Breitensuche (II)

```
//visits all the unvisited vertices connected to vertex v by a path
//and assigns them the numbers in the order they are visited
//via global variable count
count ← count + 1; mark v with count and initialize a queue with v
while the queue is not empty do
    for each vertex w in V adjacent to the front vertex do
        if w is marked with 0
            count ← count + 1; mark w with count
            add w to the queue
remove the front vertex from the queue
```

Beispiel: BFS-Traversierung eines ungerichteten Graphen

BFS-Traversierungsqueue

BFS-Baum:

Anmerkungen zur Breitensuche

- Breitensuche kann mit Adjazenzlisten und Adjazenzmatrizen implementiert werden
 - Adjazenzlisten: Θ(|V|+|E|)
 - Adjazenzmatrix: Θ(|V|²)

Äquivalent zur Tiefensuche

- Es entsteht nur eine Knotenordnungen
 - Einfüge- und Lösch-Ordnung in der Queue sind identisch
- Anwendungen
 - Wie bei der Tiefensuche
 - Zusätzlich: Finde die kürzesten Pfade (d. h. die Pfade mit den wenigsten Kanten) von einem bestimmten Knoten zu allen anderen