Heterogeneous Risk Minimization

problem

OOD问题

给定训练数据集: $D=\{D^e\}_{e\in \mathrm{supp}(\mathcal{E}_{tr})}$,其中 $D^e=\{(x_i^e,y_i^e)\}_{i=1}^{n_e}$,学习预测器 $f():\mathcal{X} o\mathcal{Y}$,能够达到:

$$\arg\min_{e \in \text{supp}(\mathcal{E})} \mathcal{L}(f|e) \tag{1}$$

其中 $\operatorname{supp}(\mathcal{E}_{tr}) \subset \operatorname{supp}(\mathcal{E})$

解决OOD泛化问题,常常需要借助以下两个假设:

Assumption 2.1存在随机变量 $\Phi^*(X)$,满足

- a. Invariance property: for all $e, e' \in \text{supp}(\mathcal{E})$, we have $P^e(Y|\Phi^*(X)) = P^{e'}(Y|\Phi^*(X))$ holds.
- b. Sufficiency property: $Y = f(\Phi^*) + \epsilon, \ \epsilon \perp X$.

Heterogeneous Risk Minimization.

基于Assumption2.1,作者给出了关于训练数据中的异质性假设:

Assumption 2.2. Heterogeneity Assumption.

For random variable pair (X, Φ^*) and Φ^* satisfying Assumption 2.1, using functional representation lemma (El Gamal & Kim, 2011), there exists random variable Ψ^* such that $X = X(\Phi^*, \Psi^*)$, then we assume $P^e(Y|\Psi^*)$ can arbitrary change across environments $e \in \text{supp}(\mathcal{E})$.

同时比较直观能想到当 $|\mathcal{I}_{\mathcal{E}}|$ 越小说明更强的异质性,有更多的变量被排除在外.基于此作者给出了 HRM 问题

Problem 1 Heterogeneous Risk Minimization.

Given heterogeneous dataset $D = \{D^e\}_{e \in \text{supp}(\mathcal{E}_{latent})}$ without environment labels, the task is to generate environments \mathcal{E}_{tr} with minimal $|\mathcal{I}_{\mathcal{E}_{tr}}|$ and learn invariant model under learned \mathcal{E}_{tr} with good OOD performance.

简单来说就是要找出能让 $|\mathcal{I}_{\mathcal{E}}|$ 最小的数据集,并在这个数据集上进行模型训练.

HRM问题本质上是存在反馈作用的,使用更小的集合 $\mathcal{I}_{\mathcal{E}}$ 获得 \mathcal{E}_{tr} ,可以帮助我们获得更加具有 Invariant属性的预测器 $\Phi(X)$,从而对数据中的Invariant部分会有更加明确的了解从而促进 \mathcal{E}_{tr} 的确定.

related work

基于这两个假设,有很多寻找maximal Invariant predictor的工作,例如Invariant Rationalization,maximal invariant predictor等.

关于maximal Invariant predictor以及不变集合的定义如下:

Definition 2.1. The invariance set \mathcal{I} with respect to \mathcal{E} is defined as:

$$\mathcal{I}_{\mathcal{E}} = \{ \Phi(X) : Y \perp \mathcal{E} | \Phi(X) \}$$

=
$$\{ \Phi(X) : H[Y | \Phi(X)] = H[Y | \Phi(X), \mathcal{E}] \}$$
 (2)

where $H[\cdot]$ is the Shannon entropy of a random variable. The corresponding maximal invariant predictor (MIP) of $\mathcal{I}_{\mathcal{E}}$ is defined as:

$$S = \arg\max_{\Phi \in \mathcal{I}_{\mathcal{E}}} I(Y; \Phi) \tag{3}$$

where $I(\cdot; \cdot)$ measures Shannon mutual information between two random variables.

这个关于maximal Invariant predictor的定义也正好对应关于 $\Phi^*(X)$ 的假设

作者证明了以下的关于 $\Phi^*(X)$ 的定理:

Theorem 2.1. (Informal) For predictor $\Phi^*(X)$ satisfying Assumption 2.1, Φ^* is the maximal invariant predictor with respect to \mathcal{E} and the solution to OOD problem in equation 1 is $\mathbb{E}_Y[Y|\Phi^*] = \arg\min_f \sup_{e \in \text{supp}(\mathcal{E})} \mathbb{E}[\mathcal{L}(f)|e]$.

但theorem要发挥作用往往依赖于一个假设:**从 \mathcal{E}_{tr} 学习到的Invariant set $\mathcal{I}_{\mathcal{E}_{tr}}$ 与 \mathcal{E} 下对应的 $\mathcal{I}_{\mathcal{E}}$ **完全相同.但这实际上很难保证,即:

Theorem 2.2. $\mathcal{I}_{\mathcal{E}} \subseteq \mathcal{I}_{\mathcal{E}_{tr}}$

并且很多情况下,一般environment labels往往不是available的

Theorem 2.3. Given set of environments $\operatorname{supp}(\hat{\mathcal{E}})$, denote the corresponding invariance set $\mathcal{I}_{\hat{\mathcal{E}}}$ and the corresponding maximal invariant predictor $\hat{\Phi}$. For one newly-added environment e_{new} with distribution $P^{new}(X,Y)$, if $P^{new}(Y|\hat{\Phi}) = P^e(Y|\hat{\Phi})$ for $e \in \operatorname{supp}(\hat{\mathcal{E}})$, the invariance set constrained by $\operatorname{supp}(\hat{\mathcal{E}}) \cup \{e_{new}\}$ is equal to $\mathcal{I}_{\hat{\mathcal{E}}}$.

Method

本文中作者主要关注 $X=[\Phi^*,\Psi^*]^T\in\mathbb{R}^d$,即在原特征之上寻找。主要的过程由 \mathcal{M}_c (异质数据识别)与 \mathcal{M}_p (不变预测).结构如下:

Figure 1. The framework of HRM.

因为是基于原特征的所以寻找 $\Phi(X)$ 等价于找一个mask $M:\Phi(X)=M\odot X, \Psi(X)=(1-M)\odot X$ 于是就可以直接进行convert.

Implementation of Mp

在这一部分作者将feature selection与Invaraint Learning结合,尝试学习即Invariant且含有最大信息量的 feature

$$\mathcal{L}^{e}(M \odot X, Y; \theta) = \mathbb{E}_{P^{e}}[\ell(M \odot X^{e}, Y^{e}; \theta)]
\mathcal{L}_{p}(M \odot X, Y; \theta) = \mathbb{E}_{\mathcal{E}_{tr}}[\mathcal{L}^{e}] + \lambda \operatorname{trace}(\operatorname{Var}_{\mathcal{E}_{tr}}(\nabla_{\theta} \mathcal{L}^{e}))$$
(2)

其中需要学习的参数就是 θ , M,其中 λ trace($\mathrm{Var}_{\mathcal{E}_{tr}}(\nabla_{\theta}\mathcal{L}^{e})$)就类似于IRM的约束项用于确保学到的 θ 能在多个环境中达到最优.

由于hard feature selection会引起很大的方差,所以考虑soft feature selection:

$$m_i = \max\{0, \min\{1, \mu_i + \epsilon\}\}\tag{3}$$

其中 $\mu = ig[\mu_1,...,\mu_dig]^T$, $\epsilon \in \mathcal{N}(0,\delta^2)$.于是单一环境中的损失函数为:

$$\mathcal{L}^{e}(\theta, \mu) = \mathbb{E}_{Pe} \mathbb{E}_{M} [\ell(M \odot X^{e}, Y^{e}; \theta) + \alpha ||M||_{0}]$$
(4)

其中 $||M||_0 = \sum_{i \in [d]} \mathrm{Car{D}F}(\mu_i/\sigma)$ 类似于L1正则化确保选择的特征是稀疏的.

最终损失函数的形式为

$$\min_{\theta,\mu} \mathcal{L}_p(\theta;\mu) = \mathbb{E}_{\mathcal{E}_{tr}}[\mathcal{L}^e(\theta,\mu)] + \lambda \operatorname{trace}(\operatorname{Var}_{\mathcal{E}_{tr}}(\nabla_{\theta}\mathcal{L}^e))(8) \quad \text{where} \quad (5)$$

$$\mathcal{L}^e(heta,\mu) = \mathbb{E}_{P^e} \mathbb{E}_M \left[\ell(M \odot X^e, Y^e; heta) + lpha \sum_{i \in [d]} ext{CDF}(\mu_i/\sigma)
ight]$$
 (6)

Implementation of Mc

 \mathcal{M}_c 将单一数据集作为输入,输出多环境的数据集组合.作者通过聚类算法来实现.**聚类的目标是让** $P(Y|\Psi)$ 更加多样化.于是根据 $P(Y|\Psi)$ 进行聚类.初始阶段, $\Psi(X)=X$

作者使用混合高斯模型对数据点进行聚类,首先获取各个样本点所属类别构成的分布: $\hat{P}_N=rac{1}{N}\sum_{i=1}^N \delta_i(\Psi,Y)$,其中

$$\delta_i(\Psi, Y) = \begin{cases} 1, & \text{if } \Psi = \psi_i \text{ and } Y = y_i \\ 0, & \text{otherwise} \end{cases}$$
 (7)

混合高斯分布表示为 $\mathcal{Q}=\{Q|Q=\sum_{j\in[K]}q_jh_j(\Psi,Y),\mathbf{q}\in\Delta_K\}$,于是使用KL散度来尽量接近这两个分布:

$$\min_{Q \in \mathcal{Q}} D_{KL}(\hat{P}_N || Q) \tag{8}$$

KL散度可以简化为

$$\min_{\Theta, \mathbf{q}} \left\{ \mathcal{L}_c = -\frac{1}{N} \sum_{i=1}^{N} \log \left[\sum_{j=1}^{K} g_j h_j(\psi_i, y_i) \right] \right\} \tag{9}$$

最后依赖贝叶斯公式确定数据点属于哪个分布,或者说来自哪个类:

$$P(e_j|\Psi,Y) = q_j h_j(\Psi,Y) / \left(\sum_{i=1}^K q_i h_i(\Psi,Y)\right)$$
 (10)

想法

- 1. 尝试学习即Invariant且含有最大信息量的feature这个其实在IR模型中也可以使用.
- 2. 这篇文章相较于一般的IRM就只做了一方面的改进:利用聚类算法以及迭代的手段来划分出最佳的数据集供Invariant Learning来使用.