

Software Project Management SSZG622

Prof. Narasimha Bolloju, Ph.D.

Department of Computer Science and Information Systems

Birla Institute of Technology and Science, Pilani

About the SPM course

- Flipped mode with recorded lecture content on Taxila/elearn platform
- Small group work (on MS-Teams)
- ACL case study used in all contact sessions

Activity - CS01#1

a)What do software project managers do or expected to do? b)What are the typical challenges associated with managing software development projects?

Topics

- Project vs. program vs. portfolio
- SDLC vs. project life cycle
- Why SPM is challenging?
- Evaluation scheme and assignment details
- Objectives for information system and project management

https://kevinberardinelli.com/2011/03/07/project-management-body-of-knowledge-pmbok-notes-introduction-chapter-1/

Activity - CS01#2

Why A2Z Cinemas Ltd (ACL) wanted to start Mux Core Project (especially when they have other systems providing the required functionality)?

SDLC vs project life cycle

Software development projects -Success vs failure

innovate achieve lead

MODERN RESOLUTION FOR ALL PROJECTS

	2011	2012	2013	2014	2015
SUCCESSFUL	29%	27%	31%	28%	29%
CHALLENGED	49%	56%	50%	55%	52%
FAILED	22%	17%	19%	17%	19%

The Modern Resolution (OnTime, OnBudget, with a satisfactory result) of all software projects from FY2011–2015 within the new CHAOS database. Please note that for the rest of this report CHAOS Resolution will refer to the Modern Resolution definition not the Traditional Resolution definition.

https://www.infoq.com/articles/standish-chaos-2015

Project Success Quick Reference Card

Modern measurement (software projects)

Based on CHAOS 2020: Beyond Infinity Overview, January 2021, QRC by Henry Portman

Good Sponsor, Good Team, and Good Place are the only things we need to improve and build on to improve project performance.

The Good Place is where the sponsor and team work to create the product. It's made up of the people who support both sponsor and team. These people can be helpful or destructive. It's imperative that the organization work to improve their skills if a project is to succeed. This area is the hardest to mitigate, since each project is touched by so many people. Principles for a Good Place are:

- · The Decision Latency Principle
- The Emotional Maturity Principle
- The Communication Principle
- The User Involvement Principle
- The Five Deadly Sins Principle
- The Negotiation Principle
- . The Competency Principle
- . The Optimization Principle
- . The Rapid Execution Principle
- . The Enterprise Architecture Principle

Successful project Resolution by Good Place Maturity Level:

highly mature	50%
mature	34%
moderately mature	23%
not mature	23%

The Good Team is the project's workhorse. They do the heavy lifting. The sponsor breathes life into the project, but the team takes that breath and uses it to create a viable product that the organization can use and from which it derives value. Since we recommend small teams, this is the second easiest area to improve. Principles for a Good Team are:

- . The Influential Principle
- The Mindfulness Principle
- The Five Deadly Sins Principle

challenged

- The Problem-Solver Principle
- . The Communication Principle
- . The Acceptance Principle
- The Respectfulness Principle
- The Confrontationist Principle
- . The Civility Principle
- The Driven Principle

failed

19%

successful

31%

Successful project Resolution by Good Team Maturity Level:

highly mature	66%
mature	46%
moderately mature	21%
not mature	1%

The Good Sponsor is the soul of the project. The sponsor breathes life into a project, and without the sponsor there is no project. Improving the skills of the project sponsor is the number-one factor of success – and also the easiest to improve upon, since each project has only one. Principles for a Good Sponsor are:

- The Decision Latency principle
- The Vision Principle
- The Work Smart Principle
- The Daydream Principle
- The Influence Principle
- The Passionate Principle
- The People Principle
- The Tension Principle
- The Torque Principle
- The Progress Principle

https://hennyportman.wordpress.com/2021/01/06/review-standish-group-chaos-2020-beyond-infinity/

Activity - CS01#3

What are the possible reasons for unsuccessful projects (i.e., failed or challenged projects)?

Evaluation scheme

No	Name	Туре	Duration	Weight	Day, Date, Session, Time
EC-1	Quiz 1	Online	1 week	5%	Before mid-sem test
	Quiz 2	Online	1 week	5%	After mid-sem test
	Assignment 1 and Assignment 2	Report	~ 2 weeks each	10% + 10%	Before the mid-sem test and Before the comprehensive exam
EC-2	Mid-Semester Test	Closed Book	2 hours	30%	Refer to the semester calendar
EC-3	Comprehensive Exam	Open Book	2 hours	40%	Refer to the semester calendar

Individual assignments

- You will prepare and submit a report on a topic related to software project management in two parts
- You are expected to put in 10 to 12 hours of total effort in study, collecting relevant information, and preparation of the report
- Submissions will be checked for plagiarism using Turnitin tool (no marks will be awarded for reports with similarity score above 25%)
- Further details to be provided after topic assignment in next week

Sample topics for the assignment

Software effort estimation

Project initiation or planning

Project management life cycle

Project risk management

Techniques for quality improvement

Project scheduling

Build or buy decision making

Project evaluation

Activity - CS01#4

For the Mux-Core project of ACL, identify objectives for

- a) Mux-Core system and
- b) Mux-Core project management

SS ZG622:

Software Project Management

Contact Session # 2

Prof. Narasimha Bolloju, BITS-Pilani, Hyderabad Campus

- Buy vs. build decision
- Plan-driven and agile process models
 - Some popular models
 - Selection of right process model for a given project
- Agile paradigm shift
- Overview of Scrum and user stories

BUILD VS BUY

Build vs Buy Matrix

Activity CS2 #1

Which option is best suited for the Mux Core System(s) at ACL? And, why?

Plan-driven vs. agile process models

- In plan-driven process models, activities are planned in advance and progress is measured against the plan
- In agile process models, planning is incremental and it is easier to change the process to reflect changing requirements
- There is no right or wrong process model; most organizations/teams include elements from both in their process models

The Agile Paradigm Shift

Specific elements of the paradigm shift

- Customer-driven vs. customer-centric
- Change as an asset vs a risk
- Internally vs externally managed
- Teamwork vs. individual performance

https://blog.planview.com/4-paradigm-shifts-that-traditional-project-management-teams-must-embrace-to-make-agile-work/

Activity CS2 #2

Identify pros and cons of using the following process models for the Mux-Core Project

- waterfall
- iterative/incremental
- scrum (agile)

Agile method Scrum - Overview

http://www.programmeronrails.com/2016/03/20/scrum-overview/

Product Backlog written as User Stories

User Story Template

 As a user/role, I want to functionality/feature so that benefit

Example user stories in Library System

- As a student, I want to reserve books I want so that I can borrow the books as soon as they are available
- As a faculty, I want to recommend books for my courses so that my students will be able to read those books Read https://www.mountaingoatsoftware.com/agile/user-stories

Activity - CS02#4

Write four or five user stories for the Sales system of Mux-Core project at ACL

SS ZG622:

Software Project Management

Contact Session # 3
Prof. Narasimha Bolloju, BITS-Pilani, Hyderabad Campus

Outline

- Agile process Scrum sprint planning
 - Product backlog (evolving system scope)
 - Prioritizing and sprint backlog
 - Estimating story points
 - Burndown charts for project management
 - Decomposition of complex user stories

Mux-Core Sales – Expected functionality

As a/an	I want to	So that
Supervisor	view daily sales performance of movies on dashboard	I can provide my feedback to my manager
Manager	view sales performance of various movies and screens	I can analyze sales performance
Manager	compare sales of movies with those at other multiplexes	I can analyze differences and take necessary actions
Manager	set discounts on specific shows	the multiplex can attract more customers
Manager	receive notifications about sales deviations	I can review the sales pattern and take necessary actions
Counter Staff	sign in for a sales duty session	I can sell tickets to customers
Counter Staff	sell movie tickets to customers	they can be admitted to watch movies
Counter Staff	sign out of sales duty session	my session details can be recorded and closed
Customer	search for movies and shows	I can select a movie show I am interested in
Customer	register for a loyalty card	I can buy tickets online and rate movies
Customer	buy tickets for a selected movie show	I/we can be admitted to watch that movie show
Customer	rate and review movies I have seen	other customers can read from my rating/review
Customer	view my loyalty card points balance	I can purchase tickets with those points

Product backlog prioritization by "value"

As a/an	I want to
Manager	view sales performance of various movies and screens
Manager	compare sales of movies with those at other multiplexes
Manager	set discounts on specific shows
Manager	receive notifications about sales deviations from targets
Counter Staff	sign in for a sales duty session
Counter Staff	sell movie tickets to customers
Counter Staff	sign out of sales duty session
Customer	search for movies and shows
Customer	register for a loyalty card
Customer	buy tickets for a selected movie show
Customer	rate and review movies I have seen
Customer	view my loyalty card points balance

Prioritize the given user stories by changing the order of the stories (high value ones at the top)

https://pollev.com/narsibolloju019

Scrum - estimation

- Traditional software teams give estimates in a time format: days, weeks, months.
- Many agile teams, however, have transitioned to story points. Story points rate the <u>relative</u> <u>effort</u> of work using
 - Fibonacci-like format: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
 - Powers of 2: 1, 2, 4, 8, 16, 32, 64, ...
 - T-shirt sizes: XXS, XS, S, M, L, XL, XXL
 - ...

Planning Poker – estimation technique

- All participants use numbered playing cards and estimate the items
- Individual estimates are done and discussion is raised when there are large differences
- This process is repeated till the whole team reached consensus about the agreed estimation (which is not an average of estimates!)

https://technology.amis.nl/2016/03/23/8-agile-estimation-techniques-beyond-planning-poker/

Estimation of "story points" for "set discounts on specific shows" using powers of 2: 1, 2, 4, 8, 16, 32, ...

Burndown Chart - example

Burndown Charts

Decompose the user story "sell movie tickets to customers" into several simpler user stories

User story decomposition - vertical slicing

https://gojko.net/2012/01/23/splitting-user-stories-the-hamburger-method/

User story decomposition - vertical slicing

https://gojko.net/2012/01/23/splitting-user-stories-the-hamburger-method/

SS ZG622:

Software Project Management

Contact Session # 5

Prof. Narasimha Bolloju, BITS-Pilani, Hyderabad Campus

Outline

- Effort estimation in plan-driven processes
- Function point estimation method
- Function points to effort
- Function points to SLOC

Mux-Core Sales – Expected functionality

As a/an	I want to	So that
Supervisor	view daily sales performance of movies on dashboard	I can provide my feedback to my manager
Manager	view sales performance of various movies and screens	I can analyze sales performance
Manager	compare sales of movies with those at other multiplexes	I can analyze differences and take necessary actions
Manager	set discounts on specific shows	the multiplex can attract more customers
Manager	receive notifications about sales deviations	I can review the sales pattern and take necessary actions
Counter Staff	sign in for a sales duty session	I can sell tickets to customers
Counter Staff	sell movie tickets to customers	they can be admitted to watch movies
Counter Staff	sign out of sales duty session	my session details can be recorded and closed
Customer	search for movies and shows	I can select a movie show I am interested in
Customer	register for a loyalty card	I can buy tickets online and rate movies
Customer	buy tickets for a selected movie show	I/we can be admitted to watch that movie show
Customer	rate and review movies I have seen	other customers can read from my rating/review
Customer	view my loyalty card points balance	I can purchase tickets with those points

BITS Pilani, Deemed to be University under Section 3 of UGC Act, 1956

Give a rough estimate of the total effort in person-months for developing the Mux-Core sales system with the requirements listed on the previous slide (pollev.com/narsibolloju019)

1

Overall effort estimation

- Based on specifications of a software application
- Typical approaches: function point method, SLOC/KLOC method, object points method, OR purely experience-based
- Combines programmer productivity (historical data), development and implementation technologies, and other application characteristics
- Often the effort is represented in terms of person-months

Activity CS5 #2

Give a rough estimate of the total effort in person-months for developing the Mux-Core sales system considering individual functions/user stories

Use <u>this Google Sheet</u> first and then submit your estimate in Chat

		Funct	tion Count			
		1 dillo	John Count			
	Item	Item Description	Complexity	Count	Weight	Weighted
	Item	item bescription	Complexity	Count	vveignt	Count
			Simple	0	3	0
	1 Numb	Number of User Inputs	Average	0	4	0
		84	Complex	0	6	0
unction	945.000		Simple	0	4	0
unction	2	2 Number of User Outputs Average Complex	0	5	0	
- ! L	904000		Complex	0	7	0
oint	3	3 Number of User Inquiries	Simple	0	3	0
			Average	0	4	0
stimation			Complex	0	6	0
			Simple	0	7	0
	4	Number of Files	Average	0	10	0
			Complex	0	15	0
			Simple	0	5	0
	5	Number of External Interfaces	Average	0	7	0
			Complex	0	10	0
	Total W	Veighted Function Count (FC)				0

Function Points Calculation Sheet

Function

estimation

point

lead

Function point estimation - Complexity example

	Number and source of data tables					
Number of views contained	Total < 4 (<2 servers; <3 clients)	Total < 8 (<3 servers; 3 to 5 clients)	Total > 7 (>3 servers > 5 clients)			
<3	simple	simple	average			
3 to 7	simple	average	complex			
>7	average	complex	complex			

https://www.gristprojectmanagement.us/software-2/albrecht-function-point-analysis.html https://www.gristprojectmanagement.us/software/albrecht-function-point-analysis.html

CS5 #3 - FP estimation

Estimate the function points for the specified functionality of Mux-Core system

Instructions:

- Make a copy of this document "CS4 estimating function points"
- Estimate function points for F2 to F6 (for F1 it is already estimated)
- Post the estimated function points into the chat window

FP productivity based on programming language (only an example)

Language	Hours per FP	FP per month
ASP*	06.1	28
Visual Basic	08.5	20
Java	10.6	16
SQL	10.8	16
C++	12.4	14
С	13.0	13
PL/1	14.2	12
C#	15.5	11
COBOL	16.8	10
ABAP	19.9	9

http://www.webratio.com/website/documentation/Case Study Productivity with WebRatio.pdf

SLOC for function point programming languages

		QSI	/ SLOC/FP Data	
Language	Avg	Median	Low	High
ABAP (SAP) *	28	18	16	60
ASP*	51	54	15	69
Assembler *	119	98	25	320
Brio +	14	14	13	16
C *	97	99	39	333
C++ *	50	53	25	80
C# *	54	59	29	70
COBOL *	61	55	23	297
Cognos Impromptu Scripts +	47	42	30	100
Cross System Products (CSP) +	20	18	10	38
Cool:Gen/IEF *	32	24	10	82
Datastage	71	65	31	157
Excel *	209	191	131	315
Focus *	43	45	45	45
FoxPro	36	35	34	38
HTML *	34	40	14	48
J2EE *	46	49	15	67
Java *	53	53	14	134
JavaScript *	47	53	31	63

SS ZG622:

Software Project Management

Contact Session # 6

Prof. Narasimha Bolloju, BITS-Pilani, Hyderabad Campus

Project planning - Topics

- Project planning in plan-driven methods
 - Mapping effort to duration (and schedule)
 - Example of effort distribution in waterfall methods
 - COCOMO II overview and application
 - Work breakdown structure (WBS)
 - Gantt charts and critical path(s)
- Project planning in agile methods
 - Example of effort distribution in agile methods
 - Example tool Pivotal Tracker (user stories, bugs, chores and milestones)

The Agile Paradigm Shift

Mapping effort to duration

- Effort in function points or KLOC (source lines of delivered code in thousands)
- Effort to duration
 - Experience-based and/or heuristics-based methods
 - Parametric methods like COCOMO81 and COCOMO II

CS6-#1 Estimate project duration

Assuming that the effort and productivity for the Mux-core project are as follows:

- -Function points ~ 500
- Average productivity 10 function points per month per member

What should be the ideal project duration?

https://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf

COCOMO formula for duration

COCOMO formula for duration calculation: $M = a \times E^b$ where E is the estimated effort and

Project Type	a	b
Organic	2.5	0.38
Semi-detached	2.5	0.35
Embedded	2.5	0.32

Assuming that Mux-Core is a semi-detached project type with 500 fp, the project duration should be 22 months

Example of effort distribution in achieve lead waterfall process

https://www.slideshare.net/brickedestimation/effort-distributiononwaterfallandagile

Software Cost Estimation Methods

- Cost estimation : prediction of both the person-effort and elapsed time of a project
- Methods:
 - Algorithmic
 - Expert judgement
 - Estimation by analogy
 - Parkinsonian

- Price-to-win
- Top-down
- Bottom-up
- Best approach is a combination of methods
 - compare and iterate estimates, reconcile differences
- COCOMO the "COnstructive COst MOdel"
 - COCOMO II is the update to Dr. Barry Boehm 's COCOMO 1981
- COCOMO is the most widely used, thoroughly documented and calibrated cost model

3

https://slideplayer.com/slide/7947860/

COCOMO Black Box Model

@USC-CSSE

https://slideplayer.com/slide/7947860/

Brief introduction https://www.geeksforgeeks.org/software-engineering-cocomo-ii-model/

COCOMO II Calculator (read chap 5 of the text book for details)

Software Size Sizing Method Fu	unction Poir	nts	•				
Function Points Language	Java		▼				
Software Scale Drivers							
Precedentedness	Nominal	•	Architecture / Risk Resolution	Nominal	•	Process Maturity	Nominal
Development Flexibility	Nominal	•	Team Cohesion	Nominal	•		
Software Cost Drivers							
Product			Personnel			Platform	
Required Software Reliability	Nominal	•	Analyst Capability	Nominal	•	Time Constraint	Nominal
Data Base Size	Nominal	•	Programmer Capability	Nominal	•	Storage Constraint	Nominal
Product Complexity	Nominal	•	Personnel Continuity	Nominal	•	Platform Volatility	Nominal
Developed for Reusability	Nominal	•	Application Experience	Nominal	•	Drainet	
Documentation Match to Lifecycle Needs	Nominal	•	Platform Experience	Nominal	•	Project Use of Software Tools	Nominal
			Language and Toolset Experience	Nominal	•	Multisite Development	Nominal
						Required Development Schedule	Nominal

http://softwarecost.org/tools/COCOMO/

COCOMO II Calculator (read chap 5 of the text book for details)

Results

Software Development (Elaboration and Construction)

Effort = 169.9 Person-months Schedule = 20.0 Months Cost = \$4246906

Total Equivalent Size = 40000 SLOC Effort Adjustment Factor (EAF) = 1.00

Note: Assume \$ = INR for interpretation of the inputs and results;; i.e., 25k rupees average salary per month

Unified Process (for explaining

estimation results)

Iterative Development

Business value is delivered incrementally in time-boxed cross-discipline iterations.

Results

Software Development (Elaboration and Construction)

Effort = 169.9 Person-months Schedule = 20.0 Months Cost = \$4246906

Total Equivalent Size = 40000 SLOC Effort Adjustment Factor (EAF) = 1.00

Acquisition Phase Distribution

Phase	Effort (Person- months)	Schedule (Months)	Average Staff	Cost (Dollars)
Inception	10.2	2.5	4.1	\$254814
Elaboration	40.8	7.5	5.4	\$1019258
Construction	129.1	12.5	10.3	\$3227649
Transition	20.4	2.5	8.2	\$509629

Software Effort Distribution for RUP/MBASE (Person-Months)

Phase/Activity	Inception	Elaboration	Construction	Transition
Management	1.4	4.9	12.9	2.9
Environment/CM	1.0	3.3	6.5	1.0
Requirements	3.9	7.3	10.3	0.8
Design	1.9	14.7	20.7	0.8
Implementation	0.8	5.3	43.9	3.9
Assessment	0.8	4.1	31.0	4.9
Deployment	0.3	1.2	3.9	6.1

https://csse.usc.edu/tools/COCOMOII.php

COCOMO II Calculator (read chap 5 of the text book for details)

Software Effort Distribution for RUP/MBASE (Person-Months)

Phase/Activity	Inception	Elaboration	Construction	Transition
Management	1.4	4.9	12.9	2.9
Environment/CM	1.0	3.3	6.5	1.0
Requirements	3.9	7.3	10.3	0.8
Design	1.9	14.7	20.7	0.8
Implementation	0.8	5.3	43.9	3.9
Assessment	0.8	4.1	31.0	4.9
Deployment	0.3	1.2	3.9	6.1

Note: Assume \$ = INR for interpretation of the inputs and results;; i.e., 25k rupees average salary per month

http://softwarecost.org/tools/COCOMO/

Project Planning involves

- Work Breakdown Structure (WBS):
 Breaking down the work into parts and assign these to project team members, anticipate problems that might arise and prepare tentative solutions to those problems.
- Project Plan, which is created at the start of a project, is used to communicate how the work will be done to the project team and customers, and to help assess progress on the project.

Example of WBS fragment

3 Physical Design

3.01 Design or specify physical database

3.01.01	Review	logical	database	design
$\mathbf{J}.\mathbf{U}\mathbf{I}.\mathbf{U}\mathbf{I}$	INCVICVV	logical	database	ucsign

3.01.02 Determine access methods to be used

3.01.03 Normalize database

3.01.04 Design database architecture

3.01.05 Identify reusable database structures

3.01.06 Develop detailed database layout

3.01.07 Develop database file, record, and schema descriptions

3.01.08 Develop module calling sequences

3.01.09 Update data dictionary entries

3.01.10 Validate physical database design

See WBS waterfall.pdf on the course website for a complete decomposition

CS6-#3 Gantt Chart

Activity	Duration (weeks)	Depends on	ResouGrce
Α	3		SA
В	1	Α	SD1
С	2	Α	SD2
D	4	Α	SD2
Е	3	В	CD1
F	3	С	CD1
G	6	D	CD2
Н	3	E,F,G	SA

Prepare a Gantt Chart (on paper or any tool you can find) to find the critical path and project duration

Activity planning – Sample Gantt Charting tool

Tomsplanner (login using your BITS email ID)

All Sprint Review

5 % on

Review

in agile process (Scrum)

High Level Requirement and Priority Initial Architecture

10 % of total project effort spend on High Level Requirement and Planning

Sprint 1	Sprint2	Sprint n
# Requirement Evolve	# Requirement Evolve	# Requirement Evolve
# Test Driven Development	# Test Driven Development	# Test Driven Development
# Delivery and feedback	# Delivery and feedback	# Delivery and feedback
20% on Sprint1	15 % on Sprint2	50% on Sprint n
After high level R	equirement and Pl	anning generally

85 % of effort distribute among different Sprints.

Each Sprint contains separate effort, depending on

https://www.slideshare.net/brickedestimation/effort-distributiononwaterfallandagile

its size.

Pivotal Tracker

https://www.pivotaltracker.com/help/articles/creating_a_project/

21

Pivotal Tracker

- Epics
- Icebox
- My work
- Story types
 - Features
 - Chores
 - Bugs
 - Releases

SS ZG622:

Software Project Management

Contact Session # 7

Prof. Narasimha Bolloju, BITS-Pilani, Hyderabad Campus

Topics

- Quality management
- Quality planning
 - Identification relevant quality attributes
 - Identification of associated measures
 - Setting up standards for the product and processes

Quality

- Quality, simplistically, means that a product should meet its specification
- The software product should deliver the required functionality (functional requirements) with the required quality attributes (non-functional requirements)

innovate achieve lead

Quality management

https://www.scnsoft.com/blog/quality-management-optimization

Quality management

- Quality planning
 - setting quality standards and developing a plan to achieve them
- Quality assurance
 - ensuring that the development process is compliant with the quality plan
- Quality control
 - monitoring and evaluating the product to ensure that it meets the quality requirements

Further discussion on this topic is planned during the second half of this course

Quality plan

- Identifies the most significant quality attributes appropriate for the product
- Defines the assessment process in detail for each quality attribute (including goals or target values)
- Indicates which standards should be applied and defines new standards as necessary

A part of an example quality plan

Process	Process quality standards & Stakeholder expectations	Quality assurance activity	Frequency/ interval	Who is responsible
Review software development practices of software application XYZ	Developers have completely and accurately captured application requirements.	Peer review of software requirements specification.	At regular intervals during the collection of requirements and a final review at the conclusion of requirements collection.	Lead developer in conjunction with other knowledgeable developers.

Source: www.acqnotes.com

Quality attribute example

- Reliability probability of system working satisfactorily within a specific period of time
- Possible measures:
 - Availability: % of a time that a system is usable
 - Mean time between failures: total service time/number of failures
 - Failure on demand: probability that system will not available when needed
 - Support activity: number of fault reports generated and processed

Trade-offs: Cost & Complexity vs. Availability

https://docs.oracle.com/cd/E17952_01/mysql-5.5-en/ha-overview.html

CS#7-1

Suggest and justify three quality attributes relevant for Mux-Core system

Software Quality Attributes

- Safety
- Security
- Reliability
- Resilience
- Robustness
- Understandability
- Testability
- Adaptability

- Modularity
- Complexity
- Portability
- Usability
- Reusability
- Efficiency
- Learnability

Quality attributes and some related measures/metrics

CS#7-2

Suggest measures for the selected quality attributes relevant for Mux-Core system

Ex: Reliability – availability, MTTF, MTTR, prob. failure on demand

SS ZG622:

Software Project Management

Contact Session # 8

Prof. Narasimha Bolloju, BITS-Pilani, Hyderabad Campus

Risk Management

2

Risk Management

- Risk identification –
 what are the risks to a
 project?
- Risk analysis which ones are really serious?
- Risk planning what shall we do?
- Risk monitoring has the planning worked?

Visit http://www.projectengineer.net/project-risk-checklist/ and identify five or six possible risks relevant for the Mux-Core project

Post your suggestions with justification with the probability of its occurrence high/medium/low and severity or impact (e.g., high > 0.8, medium > 0.4, low <= 0.4)

E.g., scope creep (medium) – many of the requirements related to administration and counter ticket sales are fairly well understood; but, the mobile/web for customers and management support need more clarity

(Try different risk categories; Do not repeat the entries posted by others; instead improve those entries)

innovate achieve lead

Risk Management

Risk Probability and Severity

- R1 scope creep
- R2 quality of product does not meet standards
- R3 project is running behind schedule

Suggest **reduce (mitigate)** and **transfer** types of risk management for the above risks (refer your suggestions using R1, R2 or R3)

DEMO – Risk Management Tools

A video is available at

https://www.softexpert.com/produto/risk-control-management/

SS ZG622:

Software Project Management

Contact Session # 9

Prof. Narasimha Bolloju, BITS-Pilani, Hyderabad Campus

Mid Semester Review

innovate achieve lead

Introduction to SPM

- Characteristics of software projects and challenges in managing projects
- Software project failures
- Project life cycle vs SDLC differences and common activities
- Portfolio vs program vs project

Project goals and metrics

- Business, program and project objectives
- Project management objectives vs. objectives for software system
- Integrating metrics within the software process

Software development models (process models)

- Plan-driven vs agile process models
- Requirements engineering process
- Managing requirements (scope creep)
- Choosing the right process model for a given software development project

Estimation techniques

- Challenges in effort estimation
- Bottom-up vs top-down estimation
- Function-point estimation
- Estimation in plan-driven vs agile processes (story points and Planning poker)
- Effort distribution in plan-driven vs agile processes

Project planning and scheduling

- Phases in plan-driven processes
- Iterations in agile processes (sprints in Scrum)
- Work breakdown structure
- Scheduling using Gantt charts and AoN diagrams
- Resource scheduling
- Effort distribution in plan-driven and agile processes

innovate achieve lead

Quality planning

- Identification relevant (internal and external) quality attributes
- Selecting measures or metrics
- Defines the assessment process in detail for each quality attribute (including goals or target values)

Syllabus for mid-semester test

Contact Session	Topics	Ref Modules	Pre-contact Session prep	During Contact Session	CP# for Discussion
1,2	Introduction to SPM & Overview of Process Models	M1,M2	RL1.1, RL2.1, RL2.2, RL2.3	CS1.0, CS2.0	2,18,19,20
3	Project Initiation & Defining Project Goals	M2, M3	RL3.1, RL3.2	CS3.0	
4,5	Software Effort Estimation	M4	RL4.1 → RL4.5	CS4.0, CS5.0	1
6,7	Software Project Planning / Quality Planning	M5, M7	RL5.1 → RL5.4, RL7.1	CS6.0, CS7.0	16,17
8	(All topics covered till date)	M1 → M5 and M7	(All RLs in M1→M6)	Pre-Mid Review CS8.0	

Note: Risk management (RL6.1 and RL6.2) is not part of the mid-sem test syllabus