VMLS Cheatsheet[1-9] - meanmachin3	$\bullet f(\alpha_1 x_1 + + \alpha_k x_k) = \alpha_1 f(x_1) + +$	By Chebyshev inequality, $ x_i - \mathbf{avg}(x) \ge$
	$\alpha_k f(x_k)$ A function that satisfies superposition is	α std (x) then $k/n \le (std(x)/a)^2$. (This ine-
1 Vectors	called <i>linear</i>	quality is only interesting for $a > std(x)$
Vectors	Linear function satisfies	Cauchy–Schwarz inequality: $ a^T b \le a b $
•An ordered finite list of numbers.	• Homogeneity: For any n-vector x and any	3.4 Angle
•Block or stacked vectors($a = [b, c, d]$),	$\operatorname{scalar} \alpha, f(\alpha x) = \alpha f(x)$	angle between two nonzero vectors a, b defined as
Subvectors $(a_{r:s} = (a_r,, a_s))$, Zero vec-	•Additivity: For any n-vectors x and y,	
tors (all elements equal to zero), Unit	f(x+y) = f(x) + f(y)	$\angle(a,b) = \arccos(\frac{a^T b}{\ a\ \ b\ })$
$vectors((e_i = 1)), Ones vector(1_n) &$	Affine functions $f: R_n \to R$ is affine if	$a^T b = a b cos(\angle(a,b))$
Sparsity $(nnz(x))$	and only if it can be expressed as $f(x) = \int_{0}^{x} f(x) dx$	Classification of angles
Vector addition	$a^{1}x + b$ for some n-vector a and scalar b, which is sometimes called the <i>offset</i> •Any	$\theta = \pi/2$: $a \perp b$
•Commutative: $a + b = b + a$ •Associative: $(a + b) + c = a + (b + c)$	affine scalar-valued function satisfies the	$\theta = 0$: $a^T b = a b $
• $a + 0 = 0 + a = a$	following variation on the super-position	$\theta = \pi = 180^{\circ} : a^{T}b = - a b $
$\bullet a - a = 0$	property: $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$, whe-	$\theta \le \pi/2 = 90^\circ = a^T b \ge 0$
1.1 Scalar-vector multiplication	$re \alpha + \beta = 1$	$\theta \ge \pi/2 = 90^\circ = a^T b \le 0$
(-2)(1,9,6) = (-2,-18,-12)	2.2 Taylor approximation	T z
• Commutative: $\alpha a = a\alpha$	The (first-order) Taylor approximation of	Correlation Coeficient $(\rho) \rho = \frac{\tilde{a}^T b}{\ \tilde{a}\ \ \tilde{b}\ }$
• Left-distributive: $(\beta + \gamma)a = \beta a + \gamma a$	f near (or at) the point z:	With $u = \tilde{a}/\mathbf{std}(a) \& u = \tilde{b}/\mathbf{std}(b)$,
• Right-distributive: $a(\beta + \gamma) = a\beta + a\gamma$	$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$	$\rho = u^T v/n$ where $ u = v = n$
Linear combinations: $\beta_1 a_1 + + \beta_m a_m$	Alternatively, $\hat{f}(x) = f(z) + \nabla f(z)^T (x - z)$	atd(a+b)
• With Unit vectors: $b = b_1 e_1 + + b_n e_n$	2.3 Regression model	std(a+b) =
• If $\beta_1 + + \beta_m = 1$, linear combination is	Regression model is (the affine function of	$\sqrt{std(a)^2 + 2\rho std(a)std(b) + std(b)^2}$
said to be affine combination	$\mathbf{x}) \hat{\mathbf{y}} = \mathbf{x}^T \boldsymbol{\beta} + \mathbf{v}$	Properties of standard deviation
1.2 Inner product	3 Norm and distance	$\bullet \mathbf{std}(x+a1) = \mathbf{std}(x)$
$a^{T}b = a_{1}b_{1} + a_{2}b_{2} + + a_{n}b_{n}$ Properties:	3.1 Norm	$\bullet \mathbf{std}(ax) = a std(x)$
•Commutativity: $a^Tb = b^Ta$	Euclidean norm (or just norm) is	Standardization $z = \frac{1}{\operatorname{std}(x)}(x - \operatorname{avg}(x)1)$
•Scalar multiplication Associativity:	$ x = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$	3.5 Complexity
$(\gamma a)^T b = \gamma (a^T b)$,	•norm: 2n
• Vector addition Distributivity:	Properties •homogeneity: $\ \beta x\ = \beta x $	•rms: 2n
$(a+b)^T c = a^T c + b^T c.$	•triangle inequality: $ x + y \le x + y $	• <i>dist</i> (<i>a,b</i>): 3n
General examples:	•non negativity: $ x \ge 0$	•∠(<i>a</i> , <i>b</i>): 6n
•Unit vector: $e_i^T a = a_i$	•definiteness: $ x = 0$ only if $x = 0$	1 Clustering
•Sum: $1^T a = a^1 + + a^n$ •Average: $(1/n)^T a = (a^1 + + a^n)/n$	positive definiteness = non negativity + de-	4 Clustering 4.1 Clustering
	finiteness	4.2 A clustering Objective
•Sum of squares: $a^T a = a_1^2 + + a_n^2$	$\mathbf{rms}(\mathbf{x}) = \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} = \frac{\ \mathbf{x}\ }{\sqrt{n}}$	$G_i \subset \{i c_i = j\}$ where G_i is set of all indi-
•Selective sum: If $b_i = 1 \text{ or } 0$, $b^T a$ is the	V ***	ces i for which $c_i = j$
sum of elements for which $b_i = 1$,	•Norm of a sum:	•Group representatives: n-vectors $z_1,,z_k$
Block vectors $a^T b = a_1^T b_1 + + a_k^T b_k$	$ a+b ^2 = (x+y)^T (x+y) = x ^2 + 2x^T y + b ^2$	•Clustering objective is
- "	Norm of block vectors $ (a,b,c) =$	$J^{clust} = \frac{1}{N} \sum_{i=1}^{N} x_i - Z_{c_i} ^2$
1.3 Complexity of vector computations	$\sqrt{\ a\ ^2 + \ b\ ^2 + \ c\ ^2} = \ (\ a\ , \ b\ , \ c\)\ $	•mean square distance from vectors to
Space: 8n bytes	Chebyshev inequality k of its entries satisfy x > a	associated representative
Complexity of vector operations: $x^T y =$	tisfy $ x_i \ge a$,	•goal: choose clustering c_i and representatives z_j to minimize $J_c lust$
2n-1 flops (n scalar multiplications and $n-1$ scalar additions)	then $\frac{k}{n} \le (\frac{\text{rms}(x)}{a})^2$	
Complexity of sparse vector operations: If	3.2 Distance	4.3 The k-means algorithm
x is sparse, then computing ax requi-	$\mathbf{dist}(a,b) = a-b $	given $x_1,,x_N \in \mathbb{R}^n$ and $z_1,,z_k \in \mathbb{R}^n$
res $\mathbf{nnz}(x)$ flops, If x and y are sparse,	Triangle Inequality: $ a-c ^2 = (a-b)+(b-c) ^2$	repeat
computing x + y requires no more than	$ c \le a - b + b - c $	- Update partition: assign i to G_j , $j =$
min nnz (x), nnz (y). computing $x_T y$ requi-	z_j is the nearest neighbor of x if	$argmin_{j'} x_i-z_{j'} _2$
res no more than 2 min nnz (x), $\mathbf{nnz}(y)$	$ x - z_j \le x - z_i , i = 1,, m$	– Update centroids: $Z_j = \frac{1}{ G_i } \sum_{i \in G_j} x_i$
flops 2 Linear functions	3.3 Standard Deviation	1 11
2.1 Linear functions 2.1 Linear functions	de-meaned vector: $\tilde{x} = x - \mathbf{avg}(x)1$	until $z1,,zk$ stop changing
$f: \mathbb{R}^n \to \mathbb{R}$ means f is a function mapping	standard deviation:	5 Linear Independence
n-vectors to numbers	$\mathbf{std}(\mathbf{x}) = \mathbf{rms}(\tilde{x}) = \frac{\ x - (1^T x/n)1\ }{\sqrt{n}}$	$(a_1,,a_k)$ is linearly dependent if
Superposition & linearity: $f(\alpha x + \beta y) =$	\sqrt{n}	$\beta_1 a_1 + + \beta_k a_k = 0$, for some $\beta_1,, \beta_k$, that
$\alpha f(x) + \beta f(y)$	$rms(x)^2 = avg(x)^2 + std(x)^2$	are not all zero

VMLS Cheatsheet[1-9] - meanmachin3

• $f(\alpha_1 x_1 + ... + \alpha_k x_k) = \alpha_1 f(x_1) + ... + By Chebyshev inequality, |x_i - avg(x)| \ge$

```
They are normalized if ||a_i|| = 1 for i=1,...,k
                                                     (\beta + \gamma)A = \beta A + \gamma A, (\beta \gamma)A = \beta(\gamma A)
•orthonormal if orthogonal & normalized
                                                     Matrix norm ||A|| = \sqrt{\sum_{i=1}^n \sum_{j=1}^m A_{ij}^2} ma-
•can be expressed using inner products
a_i^T a_j = \begin{cases} 1, & \text{if } i = j \\ 0, & i \neq j \end{cases}
                                                     trix norm satisfies the properties of any

    orthonormal sets of vectors are linearly

                                                     6.4 Matrix-vector multiplication
independent
•a_1,...,a_n is an orthonormal basis, we ha-
ve for any n-vector x = (a_1^T x)a_1 + ... +
5.4 Gram-Schmidt(orthogonalization)
An algorithm to check if a_1,...,a_k are li-
nearly independent
given n-vectors a_1,...a_n
for i = 1....k
1.Orthogonalization:
\tilde{q}_i = a_i - (q_1^T a_i)q_1 - \dots - (q_{i-1}^T a_i)q_{i-1}
2. Test for linear dependence:
if \tilde{q} = 0, quit
3. Normalization: q_i = \tilde{q}_i / ||\tilde{q}_i||
•if G-S does not stop early (in step 2),
a_1,...,a_k are linearly independent
•if G–S stops early in iteration i = j, then
a_i is a linear combination of a_1,...,a_{i-1} (so
a_1,...,a_k are linearly dependent)
Complexity: 2nk^2
6 Matrices
6.1 Matrices
The set of real m \times n matrices is denoted
```

6.2 Zero and identity matrices

• Zero: All elements equals 0.

• Sparse: If many entries are 0

diagonal element equals 1.

angular if $A_{ij} = 0$ for i < j

5.1 Linear Independence

 $(a_n^T x)a_n$

 $(a_1,...,a_k)$ is linearly independent if $\beta_1 a_1 + ... + \beta_k a_k = 0 \& \beta_1 = ... = \beta_k = 0$

Adding vector to linearly dependent

•Removing vector from linearly inde-

pendent makes new vector linearly

makes new vector linearly dependent

exists a edge else , $A_{ij} = 0$ independent 6.3 Transpose, addition and norm 5.2 Basis **Block matrix Transpose** basis: A collection of n linearly indepen- $B1^T | A^T$ C^T dent(maximum possible size) n-vectors C B^T Independence-dimension inequality **Symmetric matrix**: $A = A^T$ •a linearly independent set of n-vectors can Properties of matrix addition have at most n elements •Commutativity: A + B = B + A• any set of n + 1 or more n-vectors is linear-•Associativity: (A + B) + C = A + (B + C)ly dependent •Addition with zero matrix: A+0=0+A=5.3 Orthonomal Vectors $a_1,...,a_k$ are (mutually) orthogonal if $a_i \perp$ •Transpose of sum: $(A + B)^T = A^T + B^T$ a_i for i != iIf A is a matrix and β , γ are scalars

•Adjacency Matrix:

 $A_{ij} = \begin{cases} 1, & (i,j) \in R \\ 0, & (i,j) \notin R \end{cases}$

(1,2),(1,3),(2,1),(2,4),(3,4),(4,1)

A relation R on 1, ..., n is represented by

the n×n matrix A with $A_{ij} = 1$, if there

A is an $m \times n$ matrix and x is an n-vector, then the matrix-vector product y = Ax $y_i = \sum_{k=1}^n A_{ik} x_k = A_{i1} x_1 + ... + A_{in} x_n$ for •Row and column interpretations. y = Ax can be expressed as $y_i = b_i^T x$, i =1,.., m where b_1^T ,..., b_m^T are rows of A • y = Ax could also be expressed in terms of column $y = x_1 a_1 + x_2 a_2 + ... + x_n a_n$ 6.5 Complexity addition: mn

7 Matrix examples 7.1 Geometric transformations

• Scaling: y = Ax with A = aI stretches a vector by the factor |a| (or shrinks it when |a| < 1), and it flips the vector (reverses

•Dilation: y = Dx, where D is a diagonal matrix, D = diag(d1, d2). Stretches the vector x by different factors along the two different axes. (Or shrinks, if $|d_i| < 1$,

•Diagonal: off-diagonal entries are zero

•Triangular: upper triangular if β_1, \dots, β_k , that $A_{ij} = 0$ for i > j, and it is lower tri-

•Identity: All elements equals 0 and

 $\begin{bmatrix} \sin\theta & \cos\theta \end{bmatrix} x$

 θ radians with respect to horizontal.

sparse matrix addition: If A or B or both are sparse $min\{nnz(A), nnz(B)\}$ vector multiplication A_{mxn} with n-vector: $m(2n-1)\approx 2mn$ *Matrix Transpose*: 0 flops

its direction) if a < 0

and flips, if di < 0.)

•Rotation Matrix (counter clockwise): $[\cos\theta - \sin\theta]$

•Reflection Suppose that y is the vector obtained by reflecting x through the line that passes through the origin, inclined

VMLS Cheatsheet[1-9] - meanmachin3

$$y = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} x$$

• Projection into a line Projection of point x onto a set is the point in the set that is closest to x.

closest to x.

$$y = \begin{bmatrix} (1/2)(1 + \cos(2\theta)) & (1/2)\sin(2\theta) \\ (1/2)\sin(2\theta) & (1/2)(1 - \cos(2\theta)) \end{bmatrix}$$

7.2 Selectors

An $m \times n$ selector matrix A is one in which each row is a unit vector (transposed):

$$\begin{bmatrix} e_{k_1}^T \\ \vdots \\ e_{k_m}^T \end{bmatrix}$$

When it multiplies a vector, it simply copies the k_i th entry of x into the *i*th entry of y = Ax:

$$y = (x_{k_1}, x_{k_2}, ..., x_{k_m})$$

r:s matrix slicing

$$A = [0_{m \times (r-1)} I_{m \times m} 0_{m \times (n-s)}]$$

where m = s - r + 1

7.3 Incidence matrix

Directed graph: A directed graph consists of a set of vertices (or nodes), labeled 1,...,n, and a set of directed edges (or branches), labeled 1,...,m.

$$A_{ij} = \begin{cases} 1, & \text{edge j points to node i} \\ -1, & \text{edge j points from node i} \\ 0, & \text{otherwise} \end{cases}$$

7.4 Convolution

The convolution of an n-vector a and an m-vector b is the (n + m - 1)-vector denoted c = a * b

$$c_k = \sum_{i+j=k+1} a_i b_j, k = 1, ..., n+m-1$$

Properties of convolution • symmetric: a * b = b * a

• associative: (a * b) * c = a * (b * c)

•
$$a*b=0$$
 implies that either $a=0$ or $b=0$

•A basic property is that for fixed a, the convolution a * b is a linear function of b; and for fixed b, it is a linear function of a, a * b = T(b)a = T(a)b where where T(b) is the $(n + m - 1) \times n$ matrix with entries

$$\Gamma(b)_{ij} = \begin{cases} b_{i-j+1}, & 1 \le i-j+1 \le m \\ 0, & \text{otherwise} \end{cases}$$

Complexity of convolution

•c = a * b: 2mn flops

•T(a)borT(b)a: 2mn flops Convolution could be calculated faster using fast Fourier transform (FFT) :

 $5(m+n)\log_2(m+n)f\log_2(m+n)$

8 Linear equations

8.1 Linear and affine functions

•Superposition condition: $f(\alpha x + \beta y) =$ $\alpha f(x) + \beta f(y)$

•Such an f is called Linear Matrix vector product function:

•A is $m \times n$ matrix such that f(x) = Ax

•f is linear: $f(\alpha x + \beta y) = A(\alpha x + \beta y) =$

 $\alpha f(x) + \beta f(y)$

•Converse is true: If $f: \mathbb{R}^n \mapsto \mathbb{R}^m$ is linear, then

 $f(x) = f(x_1e_1 + x_2e_2 + ...x_ne_n)$ $x = x_1 f(e_1) + x_2 f(e_2) + ... x_n f(e_n) = Ax$ with $A = [f(e_1) + f(e_2) + ... f(e_n)]$

Affine Functions: $f: \mathbb{R}^n \mapsto \mathbb{R}^m$ is affine if it is a linear function plus a constant i.e f(x) = Ax + b same as $f(\alpha x + \beta y) =$ $\alpha f(x) + \beta f(y)$ holds for all x, y and α, β such that $\alpha + \beta = 1$

A and b can be calculated as $A = [f(e_1) - f(0) \ f(e_2) - f(0)...f(e_n)$ f(0)]; b = f(0)

 Affine functions sometimes incorrectly called linear functions

8.2 Linear function models

Price elasticity of demand δ_z^{price} $(p_i^{new} - p_i)/p_i$: fractional changes in prices $\delta_{i}^{dem} = (d_{i}^{new} - d_{i})/d_{i}$: fractional change in demand Price demand elasticity model: $\delta^{dem} = E \delta^{price}$

Taylor series approximation

•The (first-order) Taylor approximation of f near (or at) the point z:

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$$

•in compact notation: $\hat{f}(x) = f(z) + Df(z)(x - z)$

8.3 Systems of linear equations

•set (or system) of m linear equations in n variables $x_1,...,x_n$:

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

$$A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n = b_m$$

systems of linear equations classified

- under-determined if m < n (A wide)

- square if m = n (A square)

- over-determined if m > n (A tall)

9 Linear dynamical systems

9.1 Linear dynamical systems

 $x_{t+1} = A_t x_t$, t = 1, 2, ...

 $\bullet A_t$ are n \times n dynamics matrices

• $(A_t)_{ij}(x_t)_i$ iscontribution $to(x_{t+1})_i$ from $(x_t)_i$

•system is called time-invariant if $A_t = A$

doesn't depend on time •can simulate evolution of xt using recursion $x_{t+1} = A_t x$

•linear dynamical system with input $x_{t+1} = A_t x_t + B_t u_t + c_t$, t = 1,2,...

 $-u_t$ is an input m-vector

 $-B_t$ is n × m input matrix

 $-c_t$ is offset K-Markov model:

 $x_{t+1} = A_1 x_t + ... + A_K x_{t-K+1}, t = K,K +$

next state depends on current state and

K - 1 previous states - also known as auto-regressive model

- for K = 1, this is the standard linear dynamical system $x_{t+1} = Ax_t$

Population dynamics

Epidemic dynamics

9.4 Motion of a mass

9.5 Supply chain dynamics