Package 'MatrixEpistasis'

November 23, 2017

Type	Package
------	---------

Title An ultrafast exhaustive epistasis scan for quantitative traits with covariate adjustment

Version 0.1.0

Author Shijia Zhu

Maintainer Shijia Zhu <shijia.zhu@mssm.edu>

Description MatrixEpistasis exhaustively scans all pairwise genetic interactions for quantitative traits. MatrixEpistasis works on both discrete genotype and continuous imputed genotype data. MatrixEpistasis can adjust covariates for epistasis detection, such as gender, age, and population structure. The excellent time-efficiency of MatrixEpistasis is achieved by the following innovations: 1) it expresses the intensive computation in terms of large matrix inner products (notably, no matrix inverse), avoiding separately calculating each epistasis model; 2) out of all regression coefficients (including two additive terms, one interaction term and multiple covariate terms), MatrixEpistasis only calculates the test statistic for the interaction term, largely alleviating the computational complexity; 3) the resulting test statistics from MatrixEpistasis are comparable, so that MatrixEpistasis can calculate p-values only for those exceeding the required significance level, therefore discarding a large number of incomplete beta or gamma functions.

License LGPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no

R topics documented:

dummy	2
atrixEpistasis	2
atrixEpistasis_main	4
atrixPar	5
atrixPval	5
atrixQtl	6
	7
C	8
moveNAN	9
noothOOnlot	Ç

2 matrixEpistasis

Index 10

y		
---	--	--

Description

as.dummy transforms a categorical variable to a dummy variable.

Usage

```
as.dummy(x)
```

Arguments

Х

a vector of categorical values

Value

a matrix of dummy variable, where each column represents a category.

Examples

```
x \leftarrow rep(c('red', 'yellow', 'blue'), each=10) dx \leftarrow as.dummy(x)
```

matrixEpistasis

matrixEpistasis

Description

matrixEpistasis uses large matrix operation to perform the exhaustive epistasis scan for quantitative traits with covariate adjustment

Usage

```
matrixEpistasis(snpA, snpB, trait, covariate = NULL)
```

Arguments

snpA	a matrix of numeric values in size of sample*snp representing the 1st group of SNPs, where the column names are the snp_ids
snpB	a matrix of numeric values in size of sample*snp representing the 2nd group of SNPs, where the column names are the snp_ids
trait	a vector of numeric values representing the quantitative trait
covariate	a matrix of numeric values in size of sample*covariate, by default, NULL

matrixEpistasis 3

Value

A list containing the follow components:

- r a matrix of numeric values representing the partial correlation coefficients between snpA*snpB and traits conditioned on snpA, snpB and covariates
- df an integer value representing the degree of freedom

Author(s)

```
Shijia Zhu, <shijia.zhu@mssm.edu>
```

See Also

```
p2c; matrixPval; smoothQQplot
```

Examples

```
# randomly generate a SNP matrix
snp \leftarrow sapply(1:100, function(i) rnorm(1000))
\ensuremath{\text{\#}} assign names to SNPs
colnames(snp) <- paste0('snp',1:100)</pre>
snpA = snp
snpB = snp
# radnomly generate a quantitative trait by simulating the relationship between SNPs and
trait <- snp %*% rnorm(100)
# use the top 5 PCs as the covariates
covariate <- prcomp(snp)$x[,1:5]</pre>
# run matrixEpistasis with covariates adjustment
res <- matrixEpistasis( snpA=snpA, snpB=snpB, trait=trait, covariate = covariate )
r <- res$r
df <- res$df
\# run matrixEpistasis function with covariates adjustment
res <- matrixEpistasis( snpA=snpA, snpB=snpB, trait=trait, covariate = covariate )
# res is a list comprising two components: r and df. res$r is the matrix of partial corre
names (res)
r = res$r
df = res$df
# based on the degree of freedom, run matrixPval function to calculate p values for all p
p <- matrixPval( r , df )</pre>
# alternatively, users can calculate p-values only for those entries with p vlaues less t
# use p2c to covert p value threshold 1e-5 to the corresponding partial correlation coeff
corrThreshold <- p2c( pval=1e-2 , df )
# extract the index for those significant ones
index <- which( abs(r)>corrThreshold , arr.ind=TRUE )
# get the SNP names
snp1 <- colnames(snpA)[ index[,1] ]</pre>
snp2 <- colnames(snpB)[ index[,2] ]</pre>
```

```
# use matrixPval function to calculate p values for only those of interest
pvalue <- matrixPval( r[index] , df )

# build the data frame
sig_res <- data.frame( snp1 , snp2 , pvalue )
head(sig_res)</pre>
```

```
{\tt MatrixEpistasis\_main}
```

matrix Epistasis

Description

matrixEpistasis uses large matrix operation to perform the exhaustive epistasis scan for quantitative traits with covariate adjustment

Usage

```
MatrixEpistasis_main(snpA, snpB, trait, covariate = NULL,
    pvalThreshold = 1e-05, outputFileName)
```

Arguments

snpA	a matrix of numeric values in size of sample*snp representing the 1st group of SNPs, where the column names are the snp_ids		
snpB	a matrix of numeric values in size of sample*snp representing the 2nd group of SNPs, where the column names are the snp_ids		
trait	a vector of numeric values representing the quantitative trait		
covariate	a matrix of numeric values in size of sample*covariate, by default, NULL		
pvalThreshold			
	a numeric value representing the p-value threshold for matrixEpistasis output		
outputFileName			
	a character value indicating the file name of matrixEpistasis output		

Author(s)

```
Shijia Zhu, <shijia.zhu@mssm.edu>
```

See Also

```
matrixEpistasis; matrixPval; p2c;
```

matrixPar 5

Examples

```
# randomly generate a SNP matrix
snp <- sapply(1:100, function(i) rnorm(1000))
# assign names to SNPs
colnames(snp) <- paste0('snp',1:100)
snpA = snp
snpB = snp
# radnomly generate a quantitative trait by simulating the relationship between SNPs and trait <- snp %*% rnorm(100)
# use the top 5 PCs as the covariates
covariate <- prcomp(snp)$x[,1:5]</pre>
MatrixEpistasis_main( snpA=snpA, snpB=snpB, trait=trait, covariate=covariate, pvalThreshops
```

matrixPar

matrixPar

Description

matrixPar calculates the partial correlation using the iterative formula

Usage

```
matrixPar(r12, r13, r23)
```

Arguments

r12	a matrix of correlation coefficients between the 1st and 2nd groups of variables
r13	a matrix of correlation coefficients between the 1st and 3rd groups of varaibles
r23	a matrix of correlation coefficients between the 2nd and 3rd groups of varaibles

Value

a matrix of partial correlation coefficients between the 1st and 2nd groups of variables conditioned on the 3rd

matrixPval

matrixPval

Description

matrixPval calculates the p values for the correlation coefficients based on t-statistics

Usage

```
matrixPval(r, df)
```

6 matrixQtl

Arguments

```
r a vector or matrix of correlation coefficients in [-1,+1] df the degree of freedom
```

Value

a vector or matrix of p values in [0,1]

Examples

```
r <- cor(USArrests)
df <- nrow(USArrests) - 2
pval1 <- matrixPval(r,df)

pval2 <- matrix(ncol=ncol(USArrests),nrow=ncol(USArrests),data=0)
for(i in 1:ncol(USArrests))
{
    for(j in 1:ncol(USArrests))
    {
        pval2[i,j] <- cor.test(USArrests[,i],USArrests[,j])$p.val
    }
}

head(pval1)
head(pval2)</pre>
```

matrixQtl

matrixQtl

Description

matrixQtl calculates the correlation between snp and quantitative trait

Usage

```
matrixQtl(snp, trait, covariate = NULL)
```

Arguments

```
snp a matrix of numeric values in size of sample*snp
trait a matrix of numeric values in size of sample*trait
covariate a matrix of numeric values in size of sample*covariate
```

Value

A list containing two components:

- r a matrix of Pearson correlation between snp and trait in size of snp*trait
- df the degree of freedom

n 7

Author(s)

```
Shijia Zhu, <shijia.zhu@mssm.edu>
```

See Also

```
matrixPval;
```

Examples

```
snp <- sapply(1:100, function(i) rnorm(1000) )
alpha <- sapply(1:10, function(i) rnorm(1000) )
trait <- snp %*% alpha
covariates <- prcomp(snp) $x[,1:5]

qtl <- matrixQtl( snp, trait , covariates )
pval1 <- matrixPval( r=qtl$r , df=qtl$df)

pval2 <- matrix(nrow=ncol(snp), ncol=ncol(trait), data=0)
for(i in 1:ncol(snp))
{
   for(j in 1:ncol(trait))
   {
     pval2[i,j] <- summary(lm(trait[,j]~snp[,i]+covariates))$coef[2,4]
   }
}
head(pval1)
head(pval2)</pre>
```

Description

n standardizes a variable to have zero mean and unit standard deviation

Usage

n(x)

Arguments

Х

a vector of numeric values

Value

a vector of numeric values

p2c

Examples

```
x <- rnorm(100, mean=10, sd=10)
nx <- n(x)
mean(nx)
sd(nx)</pre>
```

p2c *p2c*

Description

p2c converts the given p value to the absolute value of corresponding correlation coefficient

Usage

```
p2c(pval, df)
```

Arguments

pval a numeric value in [0,1] representing the p value

df an integer value representing the degree of freedom

Value

a numeric value in [0,1] representing the absolute value of correlation coefficient

Author(s)

```
Shijia Zhu, <shijia.zhu@mssm.edu>
```

Examples

```
x <- rnorm(100)
y <- x + rnorm(100)
z <- cor.test(x,y)
z
p2c(z$p.value,98)</pre>
```

removeNAN 9

removeNAN

removeNAN

Description

removeNAN removes the missing values from the data matrix.

Usage

```
removeNAN(x, v = 0)
```

Arguments

x a matrix of numeric values

v the value assigned to the missing values, by default, 0

Value

a matrix of numeric values

Examples

```
x <- matrix(c(0,1,NA,2),ncol=2)
x
removeNAN(x)</pre>
```

smoothQQplot

smoothQQplot

Description

smoothQQplot draws the QQplot between two groups of p values together with the smoothed density representation of the scatterplot

Usage

```
smoothQQplot(x, y)
```

Arguments

x a vector of numeric values in [0,1] representing the first group of p values
y a vector of numeric values in [0,1] representing the second group of p values

Examples

```
x \leftarrow runif(10000)

y \leftarrow runif(10000)

smoothQQplot(x,y)
```

Index

```
as.dummy, 2

matrixEpistasis, 2, 4

MatrixEpistasis_main, 4

matrixPar, 5

matrixPval, 3, 4, 5, 7

matrixQtl, 6

n, 7

p2c, 3, 4, 8

removeNAN, 9

smoothQQplot, 3, 9
```