機械学習を活用した 自転車シェアリングの需要予測 及び価格変動モデルのご提案

日産自動車株式会社 市場情報統括本部 趙 惟恒 1. 自転車シェアリングビジネスの現状に対する理解

2. 需要変動の影響要因分析

3. 機械学習による需要予測モデルの構築

4. 需要予測に基づく価格変動モデルの提案

1. 自転車シェアリングビジネスの現状に対する理解

2. 需要変動の影響要因分析

3. 機械学習による需要予測モデルの構築

4. 需要予測に基づく価格変動モデルの提案

貴社(Ford Motor)はベイエリアで自転車のシェアリングのビジネスを展開している

ステーション数(2015年8月時点)

City	Stations
Mountain View	7
Palo Alto	5
Redwood City	7
San Francisco	35
San Jose	16

2014年10月頃をピークに需要は頭打ち傾向

1ヶ月ごとの利用数推移[回]

需要が頭打ちになる要因:

Frequency

そもそも需要数は場所などによってオーダーが大きく異る

例えば、San Francisco, San Joseなどのダウンタウンでは利用数5万回を 超えているところもあるが、Palo Altoのような学生街は2千回前後。

Frequency

ほかにも、時間帯、月、位置、 天気など様々な影響要因が考

50000

集計期間:2013/8~2015/8の3年間

需要が頭打ちになる要因:

しかし、ステーションのdock数は各都市20前後で平準 化されており、需要に合わせた数を配置できていない

集計期間:2013/8~2015/8の3年間

需要が頭打ちになる要因: 価格プランも膠着的、需要に合わせた柔軟な設定 が出来ていない

現状の価格設定(非会員)

一回:3ドル(30min上限)

- 日:9.95ドル(24時間;30min制限)

一年:149ドル (年間;45min制限)

Choose your plan

Single Ride

\$3/trip

Ride from point A to B with 30 minutes of ride time.

See Details

Perfect for the explorer

Day Pass

\$9.95 / day

Explore the city with unlimited 30-minute trips in a 24-hour period.

See Details

Annual

Membership

\$149/year

Best deal for locals

Unlimited 45-minute trips.

Join Now

→ Or pay in installments (\$14.90/month)

Bike Share for All

Low-income residents qualify for a discounted membership.

→ Learn More

More Options

- → Corporate Memberships
- → Bulk Passes

利用数の頭打ち傾向を改善するには、需要を正確に把握し、利用ニーズの取りこぼし/無駄を解消する必要がある

需要数は月、日、場所など様々な要因によって変動する

ステーション**docks**数、 価格設定は膠着的

受給のアンマッチが発生し、お客さんの利用ニーズ を取りこぼし/無駄を引き起こしている

近い未来の利用数を正確に予測し、 需要に合わせた柔軟な価格、docks数設定が必要

機械学習による需要予測モデルのご提案

1. 自転車シェアリングビジネスの現状に対する理解

2. 需要変動の影響要因分析

3. 機械学習による需要予測モデルの構築

4. 需要予測に基づく価格変動モデルの提案

需要変動の影響要因: そもそも、平日/休日によって需要が大きく異なる 平日の需要は休日の2-3倍前後

一日ごとの利用数推移[回]

Weekday: Mon/Tue/Wen/Thu/Fri

Weekend: Sat/Sun

集計期間:2013/8~2015/8の3年間

需要変動の影響要因: 曜日の影響は都市によってもことなる。ダウンタウン

需要変動の影響要因: 時間帯によっても大きく変動する、平日の朝・夜ラッシュ時は利用数が高く、昼と夜は利用が少ない

需要変動の影響要因: 全体として夏季、特に7月の利用数が高く、 冬季、特に12月の利用が少ない

需要変動の影響要因: 雨、霧、雷など気象イベントがない日(No_RainForg) の利用が多い

需要変動の影響要因: 気温による影響も若干ある模様 気温が高いほど利用数が若干増える傾向にある

需要変動の影響要因:

参考:風の強さとはあまり関係がない模様 このように、天気と利用数も関連があると思われる

1. 自転車シェアリングビジネスの現状に対する理解

2. 需要変動の影響要因分析

3. 機械学習による需要予測モデルの構築

4. 需要予測に基づく価格変動モデルの提案

需要予測モデルのご提案:

ステーション位置/月/日付/時間帯/天気などを説明変数とし、ステーションの時間帯別利用数の予測するモデルを機

械学習で構築

機械学習モデル

ステーション位置、年月日、平日 休日フラグ、時間帯フラグ、各種 天気データを入力データにセット

入力と出力を元に、複数モデルによる機械学習 を実施し、予測精度が最も高いモデルを選択 出力データには、 ステーション別時 間帯別需要数を セット

日々の時間帯別利用数を予測するモデルを作成

利用数予測

各種前提条件:

説明変数・被説明変数一覧

2013年8月~2015年8月までのデータを結合、集計

*weatherデータは欠損値が存在するため、時系列であることを考慮し、直前のデータで補間

説明変数	要因/単位	取得先
ステーション緯度(LAT)	度	Stationデータより取得
ステーション経度(LONG)	度	Stationデータより取得
年	2013/2014/2015	Tripデータ
月	1/2/3/4/5/6/7/8/9/10/11/12	Tripデータ
日	1-31日	Tripデータ
曜日	Weekday(月曜日 ~ 金曜日) Weekend(土曜日、日曜日)	Tripデータより条件分岐で作成、 変数ダミー化
時間帯	Moring Rush (6-10時) Noon(11-15時) Evening Rush(16-20時) Night(21-翌日5時)	Tripデータより 条件分岐で作成 変数はダミー化
天気イベント	No_RainFog(イベントなし)/Rain/Fog-Rain/ Rain-Thunderstorm	Weatherデータ*
平均気温	F	Weatherデータ*
平均湿度	%	Weatherデータ*
平均風速	mph	Weatherデータ*
平均気圧	inches	Weatherデータ*
雲量	0/1/2/3/4/5/6/7/8	Weatherデータ*
可視度	Miles	Weatherデータ*
降水量	Inches	Weatherデータ*
被説明変数	要因/単位	取得先
利用数 (Trips)		Tripsデータより、説明変数で groupbyして集計

各種前提条件: 選択モデル、学習・検証データ、精度検証条件

- ・選択モデル
 - 重回帰
 - Rige回帰
 - Lasso回帰
 - 決定木

- Random Forest
- Gradient Boosting
- Ada Boosting

学習データ

• 2013年-2015年データのうち、ランダムに抽出された8割前後の データ・セット

検証データ

• 2013年-2015年データのうち、ランダムに抽出された2割前後の データ・セット

• 精度検証条件

• 5回のクロスバリデーションによって検証

モデルの選択: クロスバリデーションの結果、Random Forestの精度 が一番高かったため、予測モデルに使用

検証モデル	Mean R2	Negative Mean Squad Error
重回帰	0.24	-40.02
Rige回帰	0.24	-40.02
Lasso回帰	0.00	-52.65
決定木	0.68	-16.68
Random Forest	0.85	-8.22
Gradient Boosting	0.60	-21.05
Ada Boosting	0.40	-31.53

ハイパーパラメータチューニング: Random Forestモデルについて、以下のパラメータ条件で グリッドサーチによるパラメータチューニングを実施

```
tuned_parameters_rdfr = {
    "max_depth": [2,3, None],
    "n_estimators":[100, 200, 300],
    "max_features": [1, 3, 5],
    "min_samples_split": [2, 3, 10],
    "min_samples_leaf": [1, 3, 10],
    "bootstrap": [True, False],
    }
}
```

各5回ずつのクロスバリデーションの結果、 最も精度の良い条件を抽出

max_depth=None, max_features=5, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1, min_samples_split=10,
min_weight_fraction_leaf=0.0, n_estimators=300

予測結果の確認: 一日ごとの予測結果は、実際の需要をうまく追従できていて、実用域に達している

一日ごとの予測利用数と実利用数[回] (総数集計)

参考:100セットだけ取り出した場合の結果

一日ごとの予測利用数と実利用数[回] (総数集計)

時間帯ごとの予測結果も実需要を比較的うまく追従でき ていて、実用域に達していると思われる

時間帯ごとの予測利用数と実利用数 [回] (San Francisco市, 平日)

参考:100セットだけ取り出した場合の結果

時間帯ごとの予測利用数と実利用数 [回] (San Francisco市, 平日)

参考:変数の重要度が高いのは、位置(ステーションを

区別)、朝/夜ラッシュ、平日/休日、気温など

変数ごとの重要度(ランダムフォレスト)

1. 自転車シェアリングビジネスの現状に対する理解

2. 需要変動の影響要因分析

3. 機械学習による需要予測モデルの構築

4. 需要予測に基づく価格変動モデルの提案

変動価格モデルのご提案:

現在の膠着的な価格体系を改め、機械学習で予測された需要数をもとにその日、その時間帯、そのステーションの価格を柔軟に変動させる

変動する需要に対して価格が一定値であり、 需要が多い・少ないときの売上の取りこぼ しが発生する

機械学習で予測された需要のもと、ステーション、日付、天気、時間帯の違いに応じ、 価格を上下させることで、需給にあった価格 体系にする

モデル (例)

価格変動率% $(t) = (1/価格弾性値) \times 需要変動率%(t)$

価格変動率:設定価格/現在の一定価格 需要変動率:予測需要数/平均需要数

価値の提供方法:

変動価格モデルをスマホアプリに組み込み、お客様に最適 価格をアプリ内決済によってリアルタイムで提供

1 アプリから必要な 変数データを取得

Dock位置 日付/曜日 天気など 2 機械学習によってその条件 下での需要数を弾き出す

3 予測された需要数を価格変 動モデルに当てはめ、その 時の最適価格を計算

4 最適価格をアプリで即提案 アプリ内決済による支払い を実施

需要予測に基づいた価格変動率の計算例

価格弾性値:10 と仮定した場合

時間帯ごとの価格変動率例(San Francisco市, 平日)

APPENDIX

- 時間があったら(PCスペックが足りていたら)やってみたかったこと
 - ステーションごとの稼働率の予測
 - PCスペック不足により、status.csvの集計、処理に時間がかかりすぎてしまい、時間が足りず(MYSQL, SQLiteで扱っても同じ)。
 - SVM、ニューラルネットワークなどのモデルの適用
 - Fitメソッドの呼び出しに10分かかるため、クロスバリデーション、ハイパーパラメータ チューニングをする時間が足りず。
 - 複数モデルのハイパーパラメータチューニング
 - PCスペック不足により時間が足りず。
 - 価格変動モデルの精緻化
 - 思いつく範囲の線形モデルで立ててみたが、実際にはより実情を反映したモデルがあると 思われる。