

Chapter 05 Appendix: Indifference Curves

Indifference Curves

Indifference curve: a curve depicting alternative combinations of goods that yield equal satisfaction.

- This is a mechanism for illustrating consumer preferences.
- It can be used as a basis from which to construct a demand curve.

Indifference Curves

- On the graph, you have several choices between Cokes and games. The line indicates a series of combos that yield equal satisfactions.
- Since satisfactions are equal, the consumer would be indifferent as to which choice he or she would make.

Indifference Curves

- The further away from the origin, the more total utility there is.
- Curve I₂ yields more total utility than curve I₁.
- Curve I₃ yields less total utility than curve I₁.
- This collection of curves is called an indifference map.

The Budget Constraint

- We operate with limited income – that is, on a budget. This limits what we can buy.
- This slide shows two budgets and what they can buy: one with \$1 and one with \$2.

Let's Take a Different Look

Connect the Dots: Consumer Choice & Indifference Curves

Optimal Consumption

- The objective is to reach the highest indifference curve that is compatible with our budget constraint.
- That occurs at point M. No other affordable combination lies on a higher indifference curve than I_C.
- For example, combination
 G lies on a lower
 indifference curve.

Relation to the Demand Curve

Whenever the price of a good changes, the budget constraint shifts.

- With \$2 to spend, increase the price of a video game from \$0.10 to \$0.25 to \$0.50 reduces the maximum number of games that can be purchased from 20 to 8 to 4.
- The optimal consumption of games shifts from S to M to N.

Relation to the Demand Curve

We can construct the demand curve for games, using points N, M, and S.

As price falls,
 quantity
 demanded rises,
 and vice versa.

Practice Question

Use the indifference curves and the budget lines in Figure 19.3 to answer the indicated question. Assume the price of Y is \$1 per unit. If the price per unit of good X is \$1, the optimal consumption is found at point

Figure 19.3

a) B

b) D

c) E

d) C

Practice Question - Answer

Use the indifference curves and the budget lines in Figure 19.3 to answer the indicated question. Assume the price of Y is \$1 per unit. If the price per unit of good X is \$1, the optimal consumption is found at point

Figure 19.3

a) B

b) D

c) E

l) C