

Struktur og bindingslære (mest repetisjon)

Struktur og bindingslære

Atomet

- Består av en positivt ladd atomkjerne omgitt av elektroner
- Elektronstrukturen til atomet beskrives med en bølgeligning.
 Kvadrert gir bølgeligningen
 - "sannsynligheten for å finne elektronet innen et visst avgrenset volum"
- Elektronene befinner seg i orbitaler omkring atomet
 - maksimalt to elektroner pr. orbital
- Ulike orbitaler har forskjellig energi, fasong og utstrekning
 - s, p, d, f... orbitaler
 - Elektroner fylles på suksessivt fra lavestliggende orbital og oppover
 - $\quad 1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 4p \rightarrow 3d \rightarrow \dots$

Kjemisk binding

- Kovalente bindinger
 - Elektronpar deles mellom atomer
 - Hvert atom oppnår edelgasstruktur ("oktett")
 - Lewis-strukturer (elektronprikkstrukturer)
 - Kekulé-strukturer (strekstrukturer)
- Valensbindingsteori
 - Deling av elektroner skjer ved "overlapp" av orbitaler på naboatomer
 - Hybridisering av orbitaler på et atom
 - Sigma-bindinger (σ) med elektrontetthet langs bindings-aksen
 - Pi-bindinger (π) med elektrontetthet over/under bindingsaksen
- Molekylorbital-teori
 - Atomorbitaler kombineres til molekylorbitaler som har utstrekning over hele molekylet

Karbonatomet

Metan, CH₄

Et tetraeder

Bonds in plane
Bond receding of page
into page

H

Bond coming

out of plane

Karbonatomets valensorbitaler benyttes til bindingsdannelse

Hybridisering – sp³

Ved å "blande" én s-orbital og tre p-orbitaler får man fire sp³-*hybrid-orbitaler* som peker mot hvert sitt hjørne av et tetraeder:

Disse fire sp³-orbitalene kan benyttes til bindingsdannelse.

Korrekt geometri forutsies da for metan, etan osv.

KJM 1110 - Mats Tilset

Hybridisering – sp²

Ved å "blande" en s-orbital og to p-orbitaler får man tre sp²-*hybridorbitaler* som peker mot hvert sitt hjørne av en

trekant:

Disse tre sp²-orbitalene og den ubrukte p-orbitalen kan benyttes til bindingsdannelse.

Korrekt geometri forutsies da for eten (etylen).

Hybridisering – sp

Ved å "blande" en s-orbital og en p-orbital får man to sp-*hybrid-orbitaler* som peker i motsatt retning av

Disse to sp-orbitalene og de to ubrukte p-orbitalene kan benyttes til bindingsdannelse.

Korrekt geometri forutsies da for etyn (acetylen).

KJM 1110 - Mats Tilset

2-metylbutan