CS1200: Intro. to Algorithms and their Limitations

Prof. Salil Vadhan

Sender–Receiver Exercise 4: Reading for Senders

Harvard SEAS - Fall 2025

2025-10-21

1 Beating Exhaustive Search for Coloring

If you haven't already done so, read the SRE instructions.

The goals of this exercise are:

- to develop your skills at understanding, distilling, and communicating proofs and the conceptual ideas in them, especially for proofs in graph theory
- to reinforce the definition and algorithms we have seen for GRAPH COLORING and the related concept of independent sets
- to expose you to a nontrivial exponential-time algorithm

1.1 The Result

In Corollary 13.5 of the Hesterberg-Vadhan textbook, we saw that Graph 2-Coloring can be solved in time O(n+m) via BFS. However, for Graph 3-Coloring we have not seen any algorithm but exhaustive search, which can take time $O(m \cdot 3^n)$: there are 3^n ways to pick a color for each of the n vertices, and m edges whose endpoints must be checked to have different colors. Here you will see an algorithm with a better running time than exhaustive search:

Theorem 1.1. Graph 3-Coloring can be solved in time $O((1.89)^n)$.

Even though this is still exponential, the improvement over 3^n is significant and allows for solving noticeably larger problem sizes. The best known running time for 3-coloring is approximately $O((1.33)^n)$.

The proof will exploit the following basic relationship between coloring and independent sets:

A k-coloring of a graph G = (V, E) is equivalent to a partition of V into k independent sets (one corresponding to each color class).

1.2 The Proof

The idea of the algorithm as follows. Instead of doing exhaustive search for the entire coloring (for which there are 3^n possibilities), we will just do exhaustive search for the smallest color class S, which must be of size at most n/3. Once we've fixed a possible choice S for the smallest color class, we just need to check that (a) S is an independent set, and (b) when we remove S, the graph is 2-colorable. Each of these checks can be done in time O(n+m). So our runtime is dominated by the number of sets of size at most n/3, which can be shown to be at most c^n for a constant c < 1.89.

To justify this reduction to 2-colorability (and checking independence), we prove the following lemma:

Lemma 1.2. For a graph G = (V, E) and $S \subseteq V$, let $G_{\backslash S} = (V \backslash S, E_{\backslash S})$ where $E_{\backslash S} = \{\{u, v\} \in E : u, v \notin S\}.$

Then:

- 1. If G = (V, E) is 3-colorable, then there is an independent set $S \subseteq V$ of size at most n/3 such that $G_{\setminus S}$ is 2-colorable.
- 2. If for some independent set $S \subseteq V$, $G_{\setminus S}$ is 2-colorable, then G is 3-colorable. Moreover, if $f_{\setminus S}: V \setminus S \to \{0,1\}$ is a 2-coloring of $G_{\setminus S}$, then a 3-coloring f of G is given by:

$$f(v) = \begin{cases} f_{\backslash S}(v) & \text{if } v \notin S \\ 2 & \text{if } v \in S \end{cases}$$

- Proof. 1. Let $f: V \to [3]$ be a 3-coloring of G. The three color classes $f^{-1}(0), f^{-1}(1), f^{-1}(2)$ partition V into disjoint independent sets. At least one of these sets must be of size at most n/3 (else their union would be of size greater than n). Without loss of generality, let's say $|f^{-1}(2)| \leq n/3$. Let $S = f^{-1}(2)$. Then S is an independent set. Moreover, if we restrict f to $V \setminus S$, it only takes on values 0 and 1, so it gives a 2-coloring of $G_{\setminus S}$. This is a 2-coloring of $G_{\setminus S}$, since every edge in $G_{\setminus S}$ is an edge of G, and f assigns different colors to the endpoints of every edge of G.
 - 2. Suppose $S \subseteq V$ is an independent set in G, and $f_{\setminus S}: V \setminus S \to \{0,1\}$ is a 2-coloring of G. Define

$$f(v) = \begin{cases} f_{\backslash S}(v) & \text{if } v \notin S \\ 2 & \text{if } v \in S \end{cases}$$

We will show that f is a 3-coloring of G. Let $e = \{u, v\}$ be any edge in G. Since S is an independent set, it is not possible for both endpoints of e to be in S. If exactly one of the endpoints of e is in S, then f will assign one endpoint color 2 and the other endpoint color 0 or color 1 (according to $f_{\setminus S}$) so e will be properly colored. If both endpoints of e are in $V \setminus S$, then both endpoints are colored according to $f_{\setminus S}$ and hence are properly colored since the edge e is also an edge in $G_{\setminus S}$ and $f_{\setminus S}$ is a coloring of $G_{\setminus S}$.

Given this lemma, it follows that the following algorithm is a correct algorithm for 3-coloring.

```
3by2Coloring(G):
  Input
                      : A graph G = (V, E)
  Output
                      : A 3-coloring f of G, or \perp if none exists
o foreach S \subseteq V of size at most n/3 do
      if S is an independent set in G then
           Construct the graph G_{\setminus S} as defined in Lemma 1.2;
2
          Let f_{\setminus S} = 2-Coloring(G_{\setminus S});
3
          if f_{\setminus S} \neq \bot then
4
               Construct a 3-coloring f from f_{\setminus S} as in Lemma 1.2;
               return f
7 return \perp
```

Algorithm 1.2: 3-Coloring by reduction to 2-Coloring

For each S, we can can check that S is an independent set and solve 2-coloring on $G_{\backslash S}$ in time O(n+m). Thus, to bound the runtime of Algorithm 1.2, it suffices to bound the number of subsets of V of size at most n/3, which can be shown to be at most c^n for a constant c < 1.89 (Lemma 1.3 below), for an overall runtime of

$$O\left((n+m)\cdot c^n\right) \le O\left(1.89^n\right).$$

(Here we use that $(n+m) = O((1.89/c)^n)$, since c < 1.89.)

1.3 A General Combinatorial Bound

You don't need to cover this during the Sender–Receiver Exercise, but in case you are curious, the following is a useful and quite good asymptotic bound on the number of subsets of [n] of size at most pn for any constant $p \in [0, 1/2]$:

Lemma 1.3. For $n \in \mathbb{N}$ and $p \in [0, 1/2]$, the number of subsets of [n] of size at most pn is at most pn for

$$c = \left(\frac{1}{p}\right)^p \cdot \left(\frac{1}{1-p}\right)^{1-p}.$$

Notice that when p = 1/2, we have c = 2 (so we get the trivial bound of 2^n), and it can be shown that as p approaches 0, c approaches 1. Plugging in p = 1/3 as we needed above, we get

$$c = 3^{1/3} \cdot \left(\frac{3}{2}\right)^{2/3} < 1.89.$$