In-Class Quiz 1 (Version B): Vectors and vector-valued functions (§11.1-11.6)

Directions: This quiz is due at the end of lecture.

1.	(3	pts)	A	block	weighing	$\mathbf{g} w$	pounds	rests	on	a	ramp	with	an	incline	of	60	${\it degrees.}$	If	\mathbf{F}	is	the
	gra	vitati	iona	al force	on the	blocl	k then u	se the	pro	ojeo	ction f	ormul	la to	o find it	s n	orm	al compo	onen	ıt.		

- 2. (1 pt) If u and v form two adjacent sides of a parallelogram, then the area of the parallelogram is:
- 3. (3 pts) Suppose $\mathbf{r}(t) = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$ is the equation of the line ℓ passing through the point (x_0, y_0, z_0) and parallel to the vector $\langle a, b, c \rangle$. What is the equation of the projection of ℓ into the yz-plane?

4. (1 pt) A vector-valued function $\mathbf{r}(t)$ is continuous at t=a provided that

$$\lim_{t \to a} \mathbf{r}(t) =$$

5. (2 pts) Let $\mathbf{r}(t) = \langle 1, 2t, 3t^2 \rangle$. Compute $\int \mathbf{r}(t) dt$.