EMA2: Lecture contents, week 3

1.3.1. Homogeneous linear ODE of order n

Theorem. (on **structure of solutions** of homogeneous linear ODE)

Consider a homogeneous linear ODE $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0$. If a_i are continuous on an open interval I, then the set of all solutions of this equation on I is a linear space of dimension n.

Consider a homogeneous linear ODE $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0$. Define the transformation $L(y) = y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y$ between spaces of functions on an interval I. Then the set of all solutions of the given equation on I corresponds to the set $\{y; L(y) = 0\} = \text{Ker}(L)$. This transformation is linear, hence Ker(L) is a linear space.

Definition.

Consider a linear ODE $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x)$. Assume that a_i are continuous on an open interval I. By a **fundamental system** of this equation on I we mean an arbitrary basis of the space of solutions of its associated homogeneous equation.

Definition.

Let y_1, y_2, \ldots, y_n be (n-1)-times differentiable functions. We define their **Wronskian** as

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y'_1(x) & y'_2(x) & \dots & y'_n(x) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix}.$$

Theorem.

Consider a homogeneous linear ODE $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0$. Let a_i be continuous on an open interval I. Let y_1, y_2, \ldots, y_n be solutions of this equation on I, let W be their Wronskian.

These functions form a linearly independent set (and thus a fundamental system) if and only if $W(x) \neq 0$ on I if and only if $\exists x_0 \in I : W(x_0) \neq 0$.

Definition.

By a linear ODE with constant coefficients we mean any linear ODE for which $a_0(x) = a_0$, $a_1(x) = a_1, \ldots, a_{n-1}(x) = a_{n-1}$ are constant functions.

Definition.

Consider a linear ODE with constant coefficients

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = b(x).$$

We define its **characteristic polynomial** by $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0$.

We define its **characteristic equation** as $p(\lambda) = 0$. The solutions of this equation are called **characteristic numbers** of the given ODE.

Theorem. (on fundamental system for linear ODE with constant coefficients)

Consider a linear ODE with constant coefficients $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = b(x)$. Let λ be its characteristic number of multiplicity m.

- (1) If $\lambda = \alpha \in \mathbb{R}$, then $e^{\alpha x}$, $x e^{\alpha x}$, ..., $x^{m-1}e^{\alpha x}$ are solutions of the associated homogeneous equation on \mathbb{R} and they are linearly independent.
- (2) If $\lambda = \alpha \pm \beta j \in \mathbb{C}$, $\beta \neq 0$, then $e^{\alpha x} \sin(\beta x)$, $x e^{\alpha x} \sin(\beta x)$, ..., $x^{m-1} e^{\alpha x} \sin(\beta x)$, $e^{\alpha x} \cos(\beta x)$, ..., $x^{m-1} e^{\alpha x} \cos(\beta x)$ are solutions of the associated homogeneous equation on \mathbb{R} and they are linearly independent.

EMA2 lecture 3 © pHabala 2007

(3) The set of functions from (1) and (2) for all characteristic numbers is linearly independent and it forms a fundamental system of the given equation on IR.

Example.

Cauchy problem:
$$y'''' - 3y'' + 2y' = 0$$
, $y(0) = 3$, $y'(0) = -6$, $y''(0) = 13$, $y'''(0) = -22$.

a) Fundamental system:

$$p(\lambda) = \lambda^4 - 3\lambda^2 + 2\lambda = 0$$
 gives $\lambda = 0, 1$ $(2\times), -2$, hence we get fundamental system $\{e^{0\cdot x} = 1, e^x, x e^x, e^{-2x}\}.$

b) General solution: $y(x) = a + be^x + cx e^x + de^{-2x}, x \in \mathbb{R}$.

c) Initial conditions:

$$\begin{array}{lll} y(x) = a + be^x + cx \, e^x + de^{-2x} & 3 = a + b + d \\ y'(x) = be^x + c(x+1)e^x - 2de^{-2x} & -6 = b + c - 2d \\ y''(x) = be^x + c(x+2)e^x + 4de^{-2x} & 13 = b + c2 + 4d \\ y'''(x) = be^x + c(x+3)e^x - 8de^{-2x} & -22 = b + c3 - 8d \\ \text{Hence } a = 1, \, b = -1, \, c = 1, \, d = 3, \, y(x) = 1 - e^x + x \, e^x + 3e^{-2x}, \, x \in I\!\!R. \end{array}$$