QEC Tutorial – Cheat Sheet (Peer Review Draft)

Elifnaz Onder

December 1, 2023

Quantum error correction is required to protect quantum information from decoherence and noise. Unlike classical error correction however we can not copy quantum information since observing/knowing/copying quantum information will result in that information being lost. So, we instead utilize entangled qubits, which create the basis of quantum error correction algorithms. 1. Superposition:

The qubit states of 0 and 1 can exist in a linear combination of both until measured:

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix} \qquad |\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

2. Entanglement:

Bell states are the quantum states of two entangled qubits:

Bell State

$$|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

3. Quantum Measurement: When you make a quantum measurement, you collapse the wavefunction and get either 0 or 1 as your qubit measurement. In a mathematical sense, right after the measurement, the state of the system is an eigenstate of the observable, which means that the value of the observable can be exactly known.

$$P_0 = |0\rangle\langle 0|$$
 $P_1 = |1\rangle\langle 1|$ $\langle A \rangle = \langle \psi | A | \psi \rangle$

4. Quantum Gates: Widely used quantum gates (operators).

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \qquad \text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

5. **QEC Methods:** Widely used, fundamental quantum correction methods. Bit flip code:

$$|0_L\rangle = |0^n\rangle$$
 $|1_L\rangle = |1^n\rangle$ $X|0_L\rangle = |1_L\rangle$ $X|1_L\rangle = |0_L\rangle$

Phase flip code:

$$|0_L\rangle = |+\rangle^{\otimes n} \hspace{1cm} |1_L\rangle = |-\rangle^{\otimes n} \hspace{1cm} Z|+\rangle = |+\rangle \hspace{1cm} Z|-\rangle = -|-\rangle$$

6. QEC Equations:

Error Correction

Corrected State =
$$X^{e_1}Z^{e_2}|\psi\rangle$$

References

Nielsen, M. A., & Chuang, I. L. (2010). *Quantum Computation and Quantum Information*.

Dennis, E., Kitaev, A., Landahl, A., Preskill, J. (2001). Topological quantum memory. Journal of Mathematical Physics.

43. 10.1063/1.1499754.