

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 ПО ДИСЦИПЛИНЕ: ТИПЫ И СТРУКТУРЫ ДАННЫХ

<Длинная арифметика>

Студент < Ермаков И.Г >		
Группа < ИУ7-32Б >		
Название предприятия НУК ИУ МГТ	ГУ им. Н. Э. Баумана	
Студент		_<Фамилия ИО>
Преподаватель _		_<Фамилия ИО>

Оглавление

Условие задачи	3
Техническое задание	3
Структура данных	
Алгоритм	
Набор тестов	

Смоделировать операцию умножения целого числа длиной до 40 десятичных цифр на действительное число в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 40 значащих цифр, а K1 - до 5 цифр.

Техническое Задание

Входные данные

Целое число до 40 цифр, знак опционален, если знак не был введен, по умолчанию считается что введено неотрицательное число

Вещественное число не обязательно вводится в нормализированном виде количество значащих цифр в мантиссе не превышает 30. Ведущие нули (не значащие – до точки и/или до первой цифры) в расчете длины числа не учитываются. Значащие нули после точки учитываются при подсчете длины числа. Десятичное число может представляться без точки: 123 (как целое). При наличии точки в числе возможны следующие варианты его представления: .00025, +123001., – 123.456. Также допускается представление числа в экспоненциальной форме: 1234567 E –20, 1234567E20 или 123.4567E23. Длина порядка <= 5

Выходные данные

Нормализированное вещественное число выводится в форме ± 0 .m1 E \pm K1, где m1 - до 40 значащих цифр, а K1 - до 5 цифр.

Обращение к программе

Программа запускается по команде ./app.exe, далее вводится целое число, затем вещественное, после ввода данных программа выведет нормализированные значения, а затем выведет результат умножения.

- 2)Ошибка считывания целого числа через терминал (результат fgets = NULL)
- 3)В целом числе(без учета знака) встретилось не число
- 4)Ошибка считывания вещественного числа через терминал (результат fgets = NULL)
- 5)Длина мантиссы вещественного числа больше 30
- 6)Введенное вещественное число не соответствует указанному формату
- 7)Длина порядка перед нормализацией введенного вещественного числа больше 99999 по модулю
 - 8)Длина порядка после нормализации введенного вещественного числа больше 99999 по модулю
 - 9)При перемножении двух чисел порядок превысил 99999 по модулю

Целое число вводится с клавиатуры и записывается в массив символов, изначально больше по размеру чем нужно (максимальный размер целого числа вместе со знаком 41 символ), а в программе задается значение 50.

Затем после частичной работы алгоритма распределения и приведения чисел к общему стандарту, т.е в целом числе убираются все незначащие нули, добавляется знак, если его там нет – есть структура куда записываются компоненты числа

```
typedef struct
{
    char num_sign;
    char int_value[MAX_LEN_INT_I + 1];
} int_data;
```

В поле 'num_sign' записывается знак числа (если не был введен, по умолчанию '+') В поле 'int_value' записывается целое число (без незначащих нулей)

Как описывалось ранее, полю 'int_value' указано заведомо число большее длины, описанной в условии задачи

```
MAX_LEN_INT_I = 50
```

Аналогично ниже представлена структура данных, которая хранит приведенные к стандарту компоненты вещественного числа

```
typedef struct
{
    char num_sign;
    char mantissa[MAX_LEN_MANTISSA_I + 1];
    char exp_sign;
    char order[MAX_LEN_ORDER_I + 1];
} double_data;
```

В поле 'num_sign' записывается знак числа (если не был введен, по умолчанию '+')

В поле 'mantissa' записывается мантисса числа (m.n) без незначащих нулей

В поле 'num_sign' записывается знак порядкачисла (если не был введен, по умолчанию '+')

В поле 'order' записывается порядок числа (если не был указан, генерируется)

Как описывалось paнee, полям 'mantissa' и 'order' указаны заведомо числа бОльшие числа длины, описанной в условии задачи

```
MAX_LEN_MANTISSA_I = 40
MAX_LEN_ORDER_I = 10
```

Так же ниже представлена структура данных, которая хранит в себе результат умножения двух чисел, она аналогична структуре хранения вещественного числа, все поля обрабатываются алгоритмом после умножения и если надо приводятся к стандартному виду

```
typedef struct
{
    char num_sign;
    char mantissa[MAX_LEN_MANTISS_RESULT_I + 1];
    char exp_sign;
    char order[MAX_LEN_ORDER_I + 1];
} result_data;
```

В поле 'num_sign' записывается знак числа

В поле 'mantissa' записывается мантисса числа (m.n) без незначащих нулей

В поле 'num_sign' записывается знак порядка числа

В поле 'order' записывается порядок числа

Как описывалось paнee, полям 'mantissa' и 'order' указаны заведомо числа бОльшие числа длины, описанной в условии задачи

MAX_LEN_MANTISS_RESULT_I = 50 MAX_LEN_ORDER_I = 10

Алгоритм программы

1) Считать числа, введенные с клавиатуры в массив символов

- 2) Привести к стандарту оба числа (убрать незначащие нули, добавить знак если отсутсвует, для вещественного числа обновить порядок если требуется, вещественное число нормализовать)
- 3) Разбить числа на компоненты по структурам
- 4) Логически привести числа к целым
- 5) Развернуть числа, перемножить
- 6) Убрать все незначащие нули промежуточного результата, пересчитать порядок, нормализовать
- 7) Вывести результат в форме ±0.m1 E ±K1

Тесты

Суть теста	Целое число	Действительно число	Результат
Умножение двух обычных чисел	2	2	+0.4E+1
Умножение двух обычных чисел	4	4	+0.16E+2
Второе число отрицательное	2	-2	-0.4E+1
Первое число отрицательное	-2	2	-0.4E+1
Оба числа отрицательные	-2	-2	+0.4E+1
Умножение двух обычных	4	48	+0.192E+3
чисел			
Первое число 0	0	4	+0.E+1
Второе число 0	4	0	+0.E+1
Оба числа 0	0	0	+0.E+1
У первого числа ведущие нули	002	2	+0.4E+1
У второго числа ведущие нули	2	002	+0.4E+1
У обоих чисел ведущие нули	002	002	+0.4E+1

Второе число не целое	3	0.15	+0.45E+0
Первое число имеет макси-	9999	1	+0.999999999999999999999999999999999999
мальную длину	(40		E40
	девяток)		
Проверка на округление	9999	2	0.2E41
	(40		
	девяток)		
Проверка на округление	9999	9999 (30	0.9999999999999999999998E69
	(40	девяток)	
	девяток)		
У обоих чисел ведущий	+2	+2	0.4E1
плюс			
У обоих чисел неверный	+-2	+-2	ERROR_FORMAT_NUMBER
формат			
У обоих чисел неверный	++2	++2	ERROR_FORMAT_NUMBER
формат			
У обоих чисел неверный	2	2	ERROR_FORMAT_NUMBER
формат			
У второго числа неверный	2	22	ERROR_FORMAT_NUMBER
формат			
У первого числа неверный	2.2	2	ERROR_FORMAT_NUMBER
формат			
У первого числа неверный	2e2	2	ERROR_FORMAT_NUMBER
формат			
У второго числа неверный	2	2ee2	ERROR_FORMAT_NUMBER
формат			
Первое число слишком	9999	2	ERROR_TOO_LONG_MANTISS
длинное	(31		
	девятка)		
У второго числа слишком	2	9999	ERROR_TOO_LONG_MANTISS
длинная мантисса		(31девятка)	
В результате получается	1	9e99999	IMPOSSIBLE_TO_MULTIPLY_NUMBERS
порядок больше 99999			
В результате порядок	1	9e99998	+0.9E+99997
равный 99999			