IP Services and Basic Routing

Lecture 6

SoftUni Team Technical Trainers

Software University

Questions

sli.do #CNF

Table of Contents

- 1. IP services: DHCP and DNS
- 2. Introduction to routing
- 3. Direct routing
- 4. Inter-VLAN routing
- 5. Static routing

IP services: DHCP and DNS

What is DHCP?

- DHCP: Dynamic Host Configuration Protocol
- Provides automatic distribution of IP addresses and other networking parameters such as:
 - Subnet mask
 - Default gateway
 - DNS servers
 - More...
- Industry standard

Why use DHCP?

- Reduces the administration efforts
- Easy to use from the clients
- Decreases the risk of IP address duplication
- Can provide additional network information
- DHCP fingerprinting

When NOT to use DHCP

- Static IP configurations may be preferred for:
 - Servers
 - Network devices (switches, routers, etc.)
 - Printers
 - Admin stations
- Very small networks may prefer not to use DHCP at all

DHCP Reservations

- Alternative way to have "static" addresses with DHCP:
 DHCP reservations
- The server gives the same IP address to the same client (MAC address) each time
- Examples:
 - Always assign 192.168.1.100 to 37-25-AE-6C-0C-7F
 - Always assign 192.168.1.200 to 41-AA-7E-21-31-54

DHCP Components

- Server
 - DHCP scope range of addresses (pool), lease time, reservations, etc.
 - Uses port UDP 67
- Client
 - Must be configured to use DHCP
 - Uses port UDP 68
- (Relay agent)
 - Used to serve multiple (V)LANs with a single DHCP server

The DHCP Process

- "DORA"
 - Discover
 - > Offer
 - > Request
 - Acknowledge

All messages use <u>broadcast</u> (IPv4)

DHCP Relay

Two facts about the DHCP operation and the (V)LANs:

- 1. DHCP uses broadcast and this is limited to a single (V)LAN
- 2. Multiple (V)LANs = multiple broadcast domains

So how to use DHCP in multiple (V)LANs?

- Two options to serve clients from multiple broadcast domains:
 - Use a separate DHCP server in each (V)LAN
 - Use DHCP relay

DHCP Relay (2)

DNS Introduction

- DNS: Domain Name System
- DNS Usage:
 - To translate names to IP addresses
 - To translate IP addresses to names
 - To find a particular service in the network

^{*}DNS will be discussed in more details in the advanced course

DNS "A" Records

- One of the most commonly used records in DNS
- Matches a hostname (or FQDN) to an IP address
- Examples:
 - pc1 -> 192.168.1.1
 - pc2 -> 192.168.1.2
 - server -> 192.168.1.100
 - www.abv.bg -> 194.153.145.104

DNS: Client-to-Server Communication

- The clients need to know the address of their DNS server(s)
- It can be either:
 - Statically configured

OR

- Dynamically received from a DHCP server
- DNS uses server port 53 (both UDP and TCP)

Introduction to routing

Switching vs Routing

Switches:

- Use Layer 2 information (MAC addresses)
- Forwarding decisions based on the MAC address tables
- Not scalable for big networks

Routers:

- Use Layer 3 information (IP addresses)
- Forwarding decisions based on the routing tables
- Scalable for large networks

What is required for routing?

- When a packet must be sent, the sending device consults its routing table
- The routing table has entries which describe:
 - Which is the destination network?
 - How to reach it?
- Example:

192.168.1.0/24 via 10.1.1.1

Destination network

The Routing Table

All masks are /24

My routing table:

192.168.5.0/24 via 10.1.1.1

172.16.0.0/16 via 10.15.15.1

87.15.23.0/24 via 10.23.23.1

10.1.1.0/24 is connected

10.15.15.0/24 is connected

10.23.23.0/24 is connected

Default Gateway

Default Gateway (2)

My routing table:

192.168.5.0/24 is connected

10.1.1.0/24 is connected

172.16.0.0/16 via 10.1.1.2

87.15.23.0/24 via 10.1.1.2

10.15.15.0/24 via 10.1.1.2

10.23.23.0/24 via 10.1.1.2

OR 1

192.168.5.0/24 is connected

10.1.1.0/24 is connected

0.0.0.0/0 via 10.1.1.2 (default gateway)

The Rule of the Longest Match

Direct routing

How to Route Between VLANs

- To route between two or more VLANs, a Layer 3 device is required (Router or L3 switch)
- Inter-VLAN routing can be done with either
 - The same switch which holds the VLANs (if it is L3)
 - External L3 switch
 - > External router
- Only IP addresses (one per VLAN) and no other static or dynamic routing configuration is required

Inter-VLAN Routing Using the Same Switch

Inter-VLAN Routing Using the Same Switch (2)

- The switch must have L3 functionality
- Configurations required:
 - One IP address per VLAN
 - Default gateway on the end devices

Inter-VLAN Routing Using External Switch

Inter-VLAN Routing Using External Switch (2)

- The external switch must have L3 functionality
- Configurations required:
 - Trunk ports for the switch-to-switch connection
 - One IP address per VLAN on the external switch
 - Default gateway on the end devices

Inter-VLAN Routing Using External Router

Inter-VLAN Routing Using External Router (3)

- Known as "Router on a stick" or "One-armed router"
- Configurations required:
 - Trunk port on the switch
 - Sub-interfaces on the router (with "encapsulation dot1Q vlan")
 - One IP address per sub-interface
 - Default gateway on the end devices

Direct vs indirect Routing

- Directly connected networks (or VLANs) does not require static or dynamic routing configuration
- To reach remote networks, entries in the routing tables must be added – this is known as indirect routing
- The routing table can be updated
 - Statically (manual configuration)
 - Dynamically (requires routing protocol like OSPF)

Static Routes

Summary

- 1. IP services: DHCP and DNS
- 2. Introduction to routing
- 3. Direct routing
- 4. Inter-VLAN routing
- 5. Static routing

SoftUni Diamond Partners

SUPER HOSTING .BG

Решения за твоето утре

Educational Partners

Questions?

Trainings @ Software University (SoftUni)

- Software University High-Quality Education, Pr ofession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

License

- This course (slides, examples, demos, exercises, homework, doc uments, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg
- © Software University https://softuni.bg

