IN THE CLAIMS

Please cancel claims 96-98, 100, and 119-150 without prejudice to applicants' right to pursue the claimed subject matter in a later filed divisional or continuation application.

Please amend claims 76, 99, and 151 and add new claims 153-179 as follows.

76. (Currently amended)

A compound of the formula Ib

or a pharmaceutically acceptable salt or solvate thereof, wherein

either (i) R^1 is H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl, benzyl, halo, -CN, -OR⁷, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CO-(C₁-C₆ alkylene)-OR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -OR⁸, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵COR⁶, -NR⁵COR⁸, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶ and

 R^2 is -Y-Z,

or, R^1 and R^2 , when taken together, represent unbranched C_3 - C_4 alkylene, optionally wherein one methylene group of said C_3 - C_4 alkylene is replaced by an oxygen atom or a nitrogen atom, said nitrogen atom being optionally substituted by R^5 or R^8 .

and R^3 is H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl, benzyl, -CN, halo, -OR⁷, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵COR⁵, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶,

or (ii) R^1 and R^3 are each independently C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl or halo-(C_1 - C_6 alkyl), and R^2 is H,

provided that

- (a) for definition (i), R¹ and R³ are not both H,
- (b) for definition (i), R¹ and R³ are not both optionally substituted phenyl, as defined therein,
- (c) for definition (i), when R^1 and R^3 are both methyl, R^2 is not phenyl or methyl, and
 - (d) for definition (ii), R¹ and R³ are not both methyl;

Y is a direct bond or C₁-C₃ alkylene;

Z is R^{10} or, where Y is C_1 - C_3 alkylene, Z is -NR⁵COR¹⁰, -NR⁵CONR⁵R¹⁰, -NR⁵CONR⁵COR¹⁰ or -NR⁵SO₂R¹⁰;

 R^4 is <u>dichloro-substituted</u> phenyl or <u>pyridyl</u>, <u>each substituted by at least one substituent selected from halo</u>, <u>CN</u>, C_1 - C_6 alkyl, fluoro (C_1 - C_6) alkyl, C_3 - C_7 cycloalkyl and C_1 - C_6 alkoxy;

each R^5 is independently either H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, fluoro- $(C_1$ - $C_6)$ -alkyl, phenyl or benzyl, or, when two such groups are attached to the same nitrogen atom, those two groups taken together with the nitrogen atom to which they are attached represent piperidinyl said piperidinyl being optionally substituted by C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl;

R⁶ is a four to six-membered, aromatic, partially unsaturated or saturated heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen or sulphur heteroatom(s), said heterocyclic group being optionally substituted by -OR⁵, -NR⁵R⁵, -CN, oxo, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, -COR⁷ or halo;

R⁷ is C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl, phenyl or benzyl;

 R^8 is C_1 - C_6 alkyl substituted by phenyl, or pyridyl-or pyrimidinyl, said phenyl, and pyridyl and pyrimidinyl being optionally substituted by halo, -CN, -CONR⁵R⁵, -SO₂NR⁵R⁵, -NR⁵SO₂R⁷, -NR⁵R⁵, -(C₁-C₆ alkylene)-NR⁵R⁵, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy;

 R^9 is H, C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl, said C_1 - C_6 alkyl and C_3 - C_7 cycloalkyl being optionally substituted by -OR⁵, -NR⁵ROR⁵, -NR⁵COR⁵, -CONR⁵R⁵ or R⁶:

 R^{10} is (a) benzyl or C-linked R^6 , said benzyl being optionally substituted by halo, $-OR^5$, $-OR^{12}$, -CN, $-CO_2R^7$, $-CONR^5R^5$, $-OCONR^5R^5$, $-C(=NR^5)NR^5OR^5$, $-CONR^5NR^5R^5$, $-OCONR^5CO_2R^7$, $-NR^5R^5$, $-NR^5R^5$, $-NR^5CO_2R^7$, $-NR^5CONR^5R^5$, $-NR^5COCONR^5R^5$, $-NR^5SO_2R^7$, $-SO_2NR^5R^5$ or R^6 , or (b) when R^1 and R^3 are each independently C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl or halo- $(C_1$ - C_6 alkyl), R^{10} is phenyl, C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl each being optionally substituted by halo, $-OR^5$, $-OR^{12}$, -CN, $-CO_2R^7$, $-CONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-NR^5CO_2R^7$, $-NR^5$

X is -CH₂-, -CHR¹¹-, -CO-, -S-, -SO- or -SO₂-; $R^{11} \text{ is } C_1\text{-}C_6 \text{ alkyl, } C_3\text{-}C_7 \text{ cycloalkyl, fluoro-}(C_1\text{-}C_6)\text{-alkyl or } C_1\text{-}C_6 \text{ alkoxy; and } R^{12} \text{ is } C_1\text{-}C_6 \text{ alkyl substituted by } R^6, \text{-}OR^5, \text{-}CONR^5R^5, \text{-}NR^5COR^5 \text{ or -}NR^5R^5.}$

77. (Previously presented) A compound according to claim 76 wherein R^1 is C_1 - C_6 alkyl, $-OR^7$, $-CO_2R^5$, $-NR^5CO_2R^7$, $-NR^5R^5$, $-NR^5CO_2(C_1-C_6$ alkylene)- OR^5 or R^6 , said C_1-C_6 alkyl being optionally substituted by halo, -CN, $-OR^5$, $-OR^8$, $-CO_2R^5$, $-CONR^5R^5$, $-OCONR^5R^5$, $-NR^5CO_2R^7$, $-NR^5R^5$, $-NR^8R^9$, $-NR^5COR^5$, $-NR^5COR^6$, $-NR^5COR^8$, $-SO_2NR^5R^5$, $-NR^5CONR^5R^5$, $-NR^5SO_2R^7$ or R^6 .

78. (Previously presented) A compound according to claim 77 wherein R^1 is C_1 - C_6 alkyl, $-OR^7$, $-CO_2R^5$, $-NR^5CO_2R^7$, $-NR^5R^5$, $-NR^5CO$ - $(C_1$ - C_6 alkylene)- OR^5 or R^6 , said C_1 - C_6 alkyl being optionally substituted by halo or $-OR^5$.

79. (Previously presented) A compound according to claim 78 wherein R^1 is C_1 - C_3 alkyl, -OCH₃, -CO₂(C_1 - C_2 alkyl), -NHCO₂(C_1 - C_2 alkyl), -NH₂, -N(CH₃)₂, -NHCOCH₂OCH₃ or furanyl, said C_1 - C_3 alkyl being optionally substituted by fluoro or -OH.

- 80. (Previously presented) A compound according to claim 79 wherein R¹ is methyl, ethyl, prop-2-yl, hydroxymethyl, trifluoromethyl, -OCH₃, -CO₂CH₂CH₃, -NHCO₂CH₂CH₃, -NHCO₂CH₂CH₃, or furan-2-yl.
 - 81. (Previously presented) A compound according to claim 80 wherein R¹ is ethyl.
- 82. (Previously presented) A compound according to claim 76 wherein R¹ is methyl, ethyl, trifluoromethyl or -CH₂NHCH₂(4-cyanophenyl).
- 83. (Previously presented) A compound according to claim 76 wherein R² is H, C₁-C₆ alkyl, -(C₁-C₃ alkylene)-NR⁵CO-(C₁-C₆ alkyl), -(C₁-C₃ alkylene)-NR⁵CONR⁵-(C₁-C₆ alkyl), -(C₁-C₃ alkylene)-NR⁵SO₂(C-linked R⁶), -(C₁-C₃ alkylene)-NR⁵CO(C-linked R⁶), -(C₁-C₃ alkylene)-NR⁵CO-(phenyl), each C₁-C₆ alkyl and phenyl being optionally substituted by halo, -OR⁵, -OR¹², -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -C(=NR⁵)NR⁵OR⁵, -CONR⁵NR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁶.
- 84. (Previously presented) A compound according to claim 83 wherein R^2 is H, C_1 - C_6 alkyl, $-(C_1-C_3$ alkylene)-NR 5 CO- $(C_1-C_6$ alkyl), $-(C_1-C_3$ alkylene)-NR 5 CONR 5 - $(C_1-C_6$ alkyl), $-(C_1-C_3$ alkylene)-NR 5 CONR 5 CO-(phenyl), $-(C_1-C_3$ alkylene)-NR 5 SO $_2$ R 6 , $-(C_1-C_3$ alkylene)-NR 5 COR 6 , $-(C_1-C_3$ alkylene)-NR 5 CO-(phenyl), each C_1-C_6 alkyl and phenyl being optionally substituted by halo, $-OR^5$, -CN, $-CO_2R^7$, $-CONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-NR^5COCONR^5R^5$ or R^6 .
- 85. (Previously presented) A compound according to claim 84 wherein R^2 is H, C_1 - C_3 alkyl, -(C_1 - C_2 alkylene)-NHCO-(C_1 - C_3 alkyl), -(C_1 - C_2 alkylene)-NHCONH-(C_1 - C_3 alkyl),

-(C_1 - C_2 alkylene)-NHCONHCO-(phenyl), -(C_1 - C_2 alkylene)-NHSO $_2$ R 6 , -(C_1 - C_2 alkylene)-NHCOR 6 , -(C_1 - C_2 alkylene)-NHCO-(phenyl), each C_1 - C_3 alkyl and phenyl being optionally substituted by fluoro, -OH, -O(C_1 - C_6 alkyl), -CN, -CO $_2$ (C_1 - C_6 alkyl), -CONH $_2$, -OCONHCO $_2$ Ph, -NH $_2$, -N(C_1 - C_6 alkyl) $_2$, -NHCONH $_2$, -NHCOCONH $_2$ or R 6 .

86. (Previously presented) A compound according to claim 83 wherein R⁶ is 2,4-dihydroxypyrimidinyl, 1-methylimidazolyl, tetrahydrofuranyl, 1,5-dimethylpyrazolyl, tetrazolyl, pyridinyl, pyrimidinyl, 3-hydroxypyridazinyl, 2-hydroxypyridinyl, 2-oxo-2H-pyranyl or 1,2,3-thiadiazolyl.

87. (Previously presented) A compound according to claim 85 wherein R² is H. -CH₂OH, -CH₂CH₂OH, -CH₂CH₂CH₂OH, -CH₂OCONH₂, -CH₂CH₂OCONH₂, -CH₂OCONHCO₂Ph, -CH₂CO₂CH₂CH₃, -CH₂CH₂CO₂CH₃, -CH₂CH₂CO₂CH₂CH₃, -CH₂CH₂NH₂, -CH₂CH₂CONH₂, -CH₂CH₂CH₂NH₂, -CH₂CH₂NHCOCHF₂, -CH₂CH₂NHCOCH₂CN, -CH₂CH₂NHCOCH₂N(CH₃)₂, -CH₂CH₂NHCOCH₂OCH₃, -CH₂CH₂NHCOCH₂OH, -CH₂CH₂NHCOCH₂OCH₂CH₃, -CH₂CH₂NHCOCH₂NHCONH₂, -CH₂CH₂NHCOCONH₂, -CH₂CH₂NHCONHCH₂CH₂CH₃, -CH₂CH₂NHCONHCOPh, $-CH_2CH_2NHCONHCO(2,6-difluorophenyl), -CH_2CH_2NHSO_2(2,4-dihydroxypyrimidin-5-yl),\\$ -CH₂CH₂NHSO₂(1-methylimidazol-4-yl), -CH₂CH₂NHCO(tetrahydrofuran-2-yl), -CH₂CH₂NHCO(1,5-dimethylpyrazol-3-yl), -CH₂CH₂NHCOCH₂(tetrazol-1-yl), -CH₂CH₂NHCOPh, -CH₂CH₂NHCO(pyridin-2-yl), -CH₂CH₂NHCO(pyrimidin-2-yl), -CH₂CH₂NHCO(2-fluorophenyl), -CH₂CH₂NHCO(3-hydroxyphenyl), -CH₂CH₂NHCO(3-hydroxypyridazin-6-yl), -CH₂CH₂NHCO(2-hydroxypyridin-6-yl), -CH₂CH₂NHCO(2-oxo-2H-pyran-5-yl) or -CH₂CH₂NHCO(1,2,3-thiadiazol-4-yl).

88. (Previously presented) A compound according to claim 76 wherein R² is H, methyl, -CH₂CH₂OH, -CH₂CH₂OH, -CH₂CH₂OH, -CH₂CH₂NH₂, -CH₂CH₂NH₂, -CH₂CH₂NH₂, -CH₂CH₂NHCOCH₃ or azetidin-3-yl.

- 89. (Previously presented) A compound according to claim 88 wherein R² is -CH₂CH₂OH, -CH₂CH₂NH₂, -CH₂CN or azetidin-3-yl.
- 90. (Previously presented) A compound according to claim 76 wherein R^3 is C_1 - C_6 alkyl, $-CO_2R^5$, $-CONR^5R^5$, $-NR^5CO_2R^7$ or $-NR^5R^5$, said C_1 - C_6 alkyl being optionally substituted by halo, -CN, $-OR^5$, $-CO_2R^5$, $-CONR^5R^5$, $-OCONR^5R^5$, $-NR^5CO_2R^7$, $-NR^5R^5$, $-NR^5CO_2R^7$, -N
- 91. (Previously presented) A compound according to claim 90 wherein R^3 is C_1 - C_6 alkyl, $-CO_2R^5$, $-CONR^5R^5$, $-NR^5CO_2R^7$ or $-NR^5R^5$, said C_1 - C_6 alkyl being optionally substituted by halo, CN or $-OR^5$.
- 92. (Previously presented) A compound according to claim 91 wherein R^3 is C_1 - C_3 alkyl, $-CO_2(C_1$ - C_2 alkyl), $-CONH_2$, $-NHCO_2(C_1$ - C_4 alkyl), $-N(CH_3)_2$ or $-NH_2$, said C_1 - C_3 alkyl being optionally substituted by halo, -CN or -OH.
- 93. (Previously presented) A compound according to claim 92 wherein R^3 is methyl, ethyl, prop-2-yl, hydroxymethyl, cyanomethyl, trifluoromethyl, - $CO_2CH_2CH_3$, - $CONH_2$, - $NHCO_2C(CH_3)_3$, - $N(CH_3)_2$ or - NH_2 .
- 94. (Previously presented) A compound according to claim 93 wherein R³ is methyl, ethyl, prop-2-yl or trifluoromethyl.
 - 95. (Previously presented) A compound according to claim 94 wherein R³ is ethyl.

Claims 96-98 (Canceled)

99. (Currently amended) A compound according to claim <u>76</u> 98 wherein R⁴ is 3-chlorophenyl, 4 chlorophenyl, 3 fluorophenyl, 3,5-dichlorophenyl, <u>2,6-difluorophenyl</u>, <u>3,5-difluorophenyl</u>, <u>3,5-dif</u>

Claim 100. (Canceled)

- 101. (Previously presented) A compound according to claim 76 wherein X is -CH₂-, -CHR¹¹-, -CO-, -S- or -SO₂-.
- 102. (Previously presented) A compound according to claim 101 wherein X is $-CH_2$, $-CH(OCH_3)$ -, -CO-, -S- or $-SO_2$ -.
- 103. (Previously presented) A compound according to claim 102 wherein X is -CH₂-or -S-.
- 104. (Previously presented) A pharmaceutical composition comprising a compound of claim 76 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable excipient, diluent or carrier.

Claims 105-150 (Canceled)

- 151. (Amended) A compound selected from the group consisting of: 2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol;
 - 2-[4-(3-chlorobenzyl)-3-isopropyl-5-methyl-1H-pyrazol-1-yl]ethanol;
 - 2-[4-(3,5-difluorobenzyl) 3-isopropyl-5-methyl-1H-pyrazol-1-yl]ethanol;
 - 2-[4-(3-fluorobenzyl)-3-isopropyl-5-methyl-1H-pyrazol-1-yl]ethanol;
 - 2-[4-(3,5-dichlorobenzyl)-5-isopropyl-3-methyl-1*H*-pyrazol-1-yl]ethanol;
 - ethyl [4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]acetate;

ethyl [4 (3 fluorobenzyl) 3 isopropyl 5 methyl 1H pyrazol 1 yl]acetate;

 N^{1} -{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}ethanediamide;

N-{2-[4-(3,5-dichlorobenzyl) 3,5-diethyl-1H-pyrazol-1-yl]ethyl} 6 oxo-1,6-dihydro-3-pyridazinecarboxamide;

N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-1,5-dimethyl-1H-pyrazole-3-carboxamide;

2-[(aminocarbonyl)amino]-*N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}acetamide;

N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-2-ethoxyacetamide;

N {2-[4 (3,5-dichlorobenzyl) 3,5-diethyl-1H pyrazol-1 yl]ethyl} 2-pyridinecarboxamide;

N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-2-methoxyacetamide;

N {2 [4 (3,5 dichlorobenzyl) 3,5 diethyl 1H pyrazol 1 yl]ethyl} 6 oxo 1,6 dihydro-2 pyridinecarboxamide;

N {2 [4 (3,5 dichlorobenzyl) 3,5 diethyl 1H-pyrazol 1 yl]ethyl} 2-pyrazinecarboxamide;

N {2-[4 (3,5 dichlorobenzyl) 3,5 diethyl-1H pyrazol-1-yl]ethyl} 2-oxo-2H pyran 5-carboxamide;

N {2 [4 (3,5 dichlorobenzyl) 3,5 diethyl 1H pyrazol 1 yl]ethyl} 2 (1H tetraazol 1 yl)acetamide;

N {2 [4 (3,5 dichlorobenzyl) 3,5 diethyl 1H pyrazol 1 yl]ethyl} tetrahydro-2-furancarboxamide;

N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-3-hydroxybenzamide;

N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-2-hydroxyacetamide;

```
N {2 [4 (3,5 dichlorobenzyl) 3,5 diethyl 1H pyrazol 1 yl]ethyl} 1,2,3 thiadiazole 4
carboxamide:
       N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-2-
(dimethylamino)acetamide;
       2-cyano-N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}acetamide;
       N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-2-fluorobenzamide;
       N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-N'-propylurea;
       N-benzoyl-N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}urea;
       2-[4-(3,5-dichlorobenzyl)-3-isopropyl-5-methyl-1H-pyrazol-1-yl]ethanol;
       ethyl [4-(3,5-dichlorobenzyl)-3-isopropyl-5-methyl-1H-pyrazol-1-yl]acetate;
       ethyl [4-(3,5-dichlorobenzyl)-5-isopropyl-3-methyl-1H-pyrazol-1-yl]acetate;
       4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazole;
       2-[4-(3,5-dichlorobenzyl)-3,5-dimethyl-1H-pyrazol-1-yl]ethanol;
       2-[4-(3,5-dichlorobenzyl)-5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanol;
      2 {4 [(4-chlorophenyl)sulfanyl] 3,5-dimethyl-1H pyrazol 1-yl}ethanol;
      ethyl [4-(3-chlorobenzyl)-3-isopropyl-5-methyl-1H-pyrazol-1-yl]acetate;
      ethyl [4 (3,5 difluorobenzyl) 3 isopropyl 5 methyl-1H pyrazol-1-yl]acetate;
      4-(3,5-dichlorobenzyl)-3-isopropyl-5-methyl-1H-pyrazole;
      4-(3,5-difluorobenzyl) 3-isopropyl-5-methyl-1H-pyrazole;
      4 (3-fluorobenzyl) 3-isopropyl-5-methyl-1H-pyrazole;
      4 (3 chlorobenzyl) 3 isopropyl 5 methyl 1H pyrazole;
      2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-dimethyl-1H-pyrazol-1-yl}ethanol:
      2-{4-[(3,5-dichlorophenyl)sulfonyl]-3,5-dimethyl-1H-pyrazol-1-yl}ethanol;
      4-(3,5-dichlorobenzyl)-3,5-dimethyl-1H-pyrazole;
      2-[4-(3,5-dichlorobenzyl)-3,5-dimethyl-1H-pyrazol-1-yl]ethanamine;
      2-[4-(3,5-dichlorobenzyl)-5-ethyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanol;
      2-[4-(3,5-dichlorobenzyl)-3-ethyl-5-(trifluoromethyl)-1H-pyrazol-1-yl]ethanol;
```

2-[4-(3,5-dichlorobenzyl)-5-ethyl-3-methyl-1*H*-pyrazol-1-yl]ethanol:

```
2-[4-(3,5-dichlorobenzyl)-3-(dimethylamino)-5-methyl-1H-pyrazol-1-yl]ethanol;
        2-[4-(3,5-dimethylbenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethanol;
        2-[4-(3,5-dichlorobenzyl)-5-methoxy-3-methyl-1H-pyrazol-1-yl]ethanol;
        2-[4-(3,5-dichlorobenzyl)-5-(2-furyl)-3-methyl-1H-pyrazol-1-yl]ethanol;
        (3,5-dichlorophenyl)[3,5-diethyl-1-(2-hydroxyethyl)-1H-pyrazol-4-yl]methanone;
        (\pm)-2-\{4-[(3,5-dichlorophenyl)(methoxy)methyl]-3,5-diethyl-1H-pyrazol-1-
yl}ethanol;
       2 [4 (2,6 difluorobenzyl) 3,5 diethyl-1H pyrazol-1-yl]ethanol;
       2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl carbamate;
       methyl 3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]propanoate;
       ethyl 3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]propanoate;
       3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]propanamide;
       3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]-1-propanol;
       [4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]methanol;
       [4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]methyl carbamate;
       2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethanamine;
       N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}benzamide;
       N-{2-[4-(3,5-dichlorobenzyl) 3,5-diethyl-1H-pyrazol-1-yl]ethyl}-1-methyl-1H-
imidazole 4-sulfonamide;
       ethyl 4-[(3,5-dichlorophenyl)sulfanyl] 5-ethyl-1-(2-hydroxyethyl)-1H-pyrazole-3-
carbox vlate:
       ethyl 4-[(3,5 dichlorophenyl)sulfanyl]-3-ethyl-1-(2-hydroxyethyl)-1H-pyrazole-5-
carboxylate;
       4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1 (2-hydroxyethyl)-1H-pyrazole-3-
carboxamide;
       2-[4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-3-(hydroxymethyl)-1H-pyrazol-1-
yl]ethanol;
```

2-[4-(3,5-dichlorobenzyl)-3-ethyl-5-methyl-1*H*-pyrazol-1-yl]ethanol;

```
3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]-1-propanamine;
       2-[4-[(3,5-dichlorophenyl)sulfanyl]-3-ethyl-5-(hydroxymethyl)-1H-pyrazol-1-
yl]ethanol;
       N-\{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl\}-2,2-
difluoroacetamide:
       [4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]methyl-phenyl imidodicarbonate;
       N {2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-N'-(2.6-
difluorobenzoyl)urea;
       N {2-[4 (3,5-dichlorobenzyl) 3,5 diethyl 1H-pyrazol-1-yl]ethyl} 2,4 dioxo-1,2,3,4
tetrahydro-5-pyrimidinesulfonamide;
       ethyl 4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1H-pyrazole-3-carboxylate;
       [4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1-(2-hydroxyethyl)-1H-pyrazol-3-
yl]acetonitrile;
       [4-[(3,5-dichlorophenyl)sulfonyl]-5-ethyl-1-(2-hydroxyethyl)-1H-pyrazol-3-
yl]acetonitrile;
       2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-diethyl-1H-pyrazol-1-yl}ethanol;
       4-(3,5-dichlorobenzyl)-3-ethyl-1H-pyrazol-5-amine;
       ethyl 4-(3,5-dichlorobenzyl)-3-ethyl-1-(2-hydroxyethyl)-1H-pyrazol-5-ylcarbamate;
       N-[4-(3,5-dichlorobenzyl)-3-ethyl-1-(2-hydroxyethyl)-1H-pyrazol-5-yl]-2-
methoxyacetamide;
       2-[4-(3,5-dichlorobenzyl)-5-(dimethylamino)-3-ethyl-1H-pyrazol-1-yl]ethanol;
       ethyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-5-methyl-1H-pyrazole-3-carboxylate;
       ethyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-3-methyl-1H-pyrazole-5-carboxylate;
       tert-butyl 4 (3,5-dichlorobenzyl) 1 (2-hydroxyethyl) 5-methyl 1H-pyrazol 3
ylcarbamate;
       2-[3-amino-4-(3,5-dichlorobenzyl)-5-methyl-1H-pyrazol-1-yl]ethanol;
       ethyl [4-(3,5-dichlorobenzyl)-5-methoxy-3-methyl-1H-pyrazol-1-yl]acetate;
       2-[5-amino-4-(3,5-dichlorobenzyl)-3-ethyl-1H-pyrazol-1-yl]ethanol;
```

5 {[3,5 diethyl 1 (2 hydroxyethyl) 1H pyrazol 4 yl]methyl}isophthalonitrile; 5 [(3,5 diethyl 1H pyrazol 4 yl)methyl]isophthalonitrile; 5 {[1 (2 aminoethyl) 3,5 diethyl 1H pyrazol 4 yl]methyl}isophthalonitrile; 2 {4 [(3,5 dibromophenyl)sulfanyl] 3,5 diethyl 1H pyrazol 1 yl}ethanol; and 5 {[3,5 diethyl 1 (2 hydroxyethyl) 1H pyrazol 4 yl]sulfanyl}isophthalonitrile; and the pharmaceutically acceptable salts and solvates thereof.

152. (Previously presented) The compound of claim 151, wherein said compound is selected from the group consisting of 2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-dimethyl-1*H*-pyrazol-1-yl}ethanol; 2-[4-[(3,5-dichlorophenyl)sulfanyl]-3-ethyl-5-(hydroxymethyl)-1*H*-pyrazol-1-yl]ethanol; and 2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazol-1-yl}ethanol.

153. (New) A method for the treatment of a human immunodeficiency viral (HIV), or genetically related retroviral, infection or a resulting acquired immunodeficiency syndrome (AIDS) comprising the administration of an effective amount of compound of the formula Ib

or a pharmaceutically acceptable salt or solvate thereof, wherein

either (i) R¹ is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, halo, -CN, -OR⁷, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CO-(C₁-C₆ alkylene)-OR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -OR⁸, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵COR⁶, -NR⁵COR⁸, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶ and

 R^2 is -Y-Z.

or, R^1 and R^2 , when taken together, represent unbranched C_3 - C_4 alkylene, optionally wherein one methylene group of said C_3 - C_4 alkylene is replaced by an oxygen atom or a nitrogen atom, said nitrogen atom being optionally substituted by R^5 or R^8 ,

and R^3 is H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl, benzyl, -CN, halo, -OR⁷, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵CO₂R⁷, -NR⁵COR⁵, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶,

or (ii) R^1 and R^3 are each independently C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl or halo-(C_1 - C_6 alkyl), and R^2 is H,

provided that

- (a) for definition (i), R¹ and R³ are not both H,
- (b) for definition (i), R¹ and R³ are not both optionally substituted phenyl, as defined therein,
- (c) for definition (i), when R¹ and R³ are both methyl, R² is not phenyl or methyl, and
 - (d) for definition (ii), R¹ and R³ are not both methyl;

Y is a direct bond or C₁-C₃ alkylene;

Z is R^{10} or, where Y is C_1 - C_3 alkylene, Z is -NR⁵COR¹⁰, -NR⁵CONR⁵R¹⁰, -NR⁵CONR⁵COR¹⁰ or -NR⁵SO₂R¹⁰;

R⁴ is dichloro-substituted phenyl;

each R^5 is independently either H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, fluoro- $(C_1$ - $C_6)$ -alkyl, phenyl or benzyl, or, when two such groups are attached to the same nitrogen atom, those two groups taken together with the nitrogen atom to which they are attached represent piperidinyl said piperidinyl being optionally substituted by C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl;

R⁶ is a four to six-membered, aromatic, partially unsaturated or saturated heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen or sulphur heteroatom(s), said

heterocyclic group being optionally substituted by -OR⁵, -NR⁵R⁵, -CN, oxo, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, -COR⁷ or halo;

 R^7 is C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, fluoro-(C_1 - C_6)-alkyl, phenyl or benzyl;

 R^8 is C_1 - C_6 alkyl substituted by phenyl or pyridyl, said phenyl and pyridyl being optionally substituted by halo, -CN, -CONR⁵R⁵, -SO₂NR⁵R⁵, -NR⁵SO₂R⁷, -NR⁵R⁵, -(C₁-C₆ alkylene)-NR⁵R⁵, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy;

R⁹ is H, C₁-C₆ alkyl or C₃-C₇ cycloalkyl, said C₁-C₆ alkyl and C₃-C₇ cycloalkyl being optionally substituted by -OR⁵, -NR⁵COR⁵, -CONR⁵R⁵ or R⁶:

 R^{10} is (a) benzyl or C-linked R^6 , said benzyl being optionally substituted by halo, $-OR^5$, $-OR^{12}$, -CN, $-CO_2R^7$, $-CONR^5R^5$, $-OCONR^5R^5$, $-C(=NR^5)NR^5OR^5$, $-CONR^5NR^5R^5$, $-OCONR^5CO_2R^7$, $-NR^5R^5$, $-NR^5R^5$, $-NR^5CO_2R^7$, $-NR^5CO_2R^7$, $-NR^5CONR^5R^5$, $-NR^5COCONR^5R^5$, $-NR^5SO_2R^7$, $-SO_2NR^5R^5$ or R^6 , or (b) when R^1 and R^3 are each independently C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl or halo-(C_1 - C_6 alkyl), R^{10} is phenyl, C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl each being optionally substituted by halo, $-OR^5$, $-OR^{12}$, -CN, $-CO_2R^7$, $-CONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-NR^5CO_2R^7$, $-NR^5COCONR^5R^5$, $-NR^5COCONR^5R^5$, $-NR^5SO_2R^7$, $-SO_2NR^5R^5$ or R^6 ;

X is $-CH_2$ -, $-CHR^{11}$ -, -CO-, -S-, -SO- or $-SO_2$ -; R^{11} is C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, fluoro- $(C_1$ - $C_6)$ -alkyl or C_1 - C_6 alkoxy; and R^{12} is C_1 - C_6 alkyl substituted by R^6 , $-OR^5$, $-CONR^5R^5$, $-NR^5COR^5$ or $-NR^5R^5$.

154. (New) The method according to claim 153 wherein R^1 is C_1 - C_6 alkyl, $-OR^7$, $-CO_2R^5$, $-NR^5CO_2R^7$, $-NR^5R^5$, $-NR^5CO_2(C_1-C_6$ alkylene)- OR^5 or R^6 , said C_1 - C_6 alkyl being optionally substituted by halo, -CN, $-OR^5$, $-OR^8$, $-CO_2R^5$, $-CONR^5R^5$, $-OCONR^5R^5$, $-NR^5CO_2R^7$, $-NR^5R^5$, $-NR^8R^9$, $-NR^5COR^5$, $-NR^5COR^6$, $-NR^5COR^8$, $-SO_2NR^5R^5$, $-NR^5CONR^5R^5$, $-NR^5SO_2R^7$ or R^6 .

Patent Application U.S. Serial No. 09/899,322 Attorney Docket No. PC10927A

- 155. (New) The method according to claim 154 wherein R^1 is C_1 - C_6 alkyl, $-OR^7$, $-CO_2R^5$, $-NR^5CO_2R^7$, $-NR^5R^5$, $-NR^5CO_2(C_1-C_6)$ alkylene)- OR^5 or R^6 , said C_1 - C_6 alkyl being optionally substituted by halo or $-OR^5$.
- 156. (New) The method according to claim 155 wherein R^1 is C_1 - C_3 alkyl, -OCH₃, -CO₂(C_1 - C_2 alkyl), -NHCO₂(C_1 - C_2 alkyl), -NH₂, -N(CH₃)₂, -NHCOCH₂OCH₃ or furanyl, said C_1 - C_3 alkyl being optionally substituted by fluoro or -OH.
- 157. (New) The method of according to claim 156 wherein R¹ is methyl, ethyl, prop-2-yl, hydroxymethyl, trifluoromethyl, -OCH₃, -CO₂CH₂CH₃, -NHCO₂CH₂CH₃, -NH₂, -N(CH₃)₂, -NHCOCH₂OCH₃ or furan-2-yl.
 - 158. (New) The method according to claim 157 wherein R^1 is ethyl.
- 159. (New) The method according to claim 153 wherein R¹ is methyl, ethyl, trifluoromethyl or -CH₂NHCH₂(4-cyanophenyl).
- The method according to claim 153 wherein R^2 is H, C_1 - C_6 alkyl, -(C_1 - C_3 alkylene)-NR 5 CO-(C_1 - C_6 alkyl), -(C_1 - C_3 alkylene)-NR 5 CONR 5 -(C_1 - C_6 alkyl), -(C_1 - C_3 alkylene)-NR 5 CONR 5 CO-(phenyl), -(C_1 - C_3 alkylene)-NR 5 CO(C-linked R^6), -(C_1 - C_3 alkylene)-NR 5 CO-(phenyl), each C_1 - C_6 alkyl and phenyl being optionally substituted by halo, -OR 5 , -OR 12 , -CN, -CO $_2$ R 7 , -CONR 5 R 5 , -OCONR 5 R 5 , -C(=NR 5)NR 5 OR 5 , -CONR 5 NR 5 R 5 , -OCONR 5 R 5 , -NR 5 SO $_2$ R 7 , -NR 5 R 5 , -NR 5 COR 5 ,
- 161. (New) The method according to claim 160 wherein R^2 is H, C_1 - C_6 alkyl, -(C_1 - C_3 alkylene)-NR 5 CO-(C_1 - C_6 alkyl), -(C_1 - C_3 alkylene)-NR 5 CONR 5 -(C_1 - C_6 alkyl), -(C_1 - C_7 - C_8 alkylene)-NR 5 CONR 5 -(C_1 - C_8 alkyl), -(C_1 - C_8 - C_1 - C_8 - C_1 - C_1 - C_2 - C_1 - C_2 - C_1 - C_2 - C_3 - C_1 - C_2 - C_1 - C_2 - C_3 - C_1 - C_2 - C_1 - C_2 - C_3 - C_1 - C_2 - C_1 - C_2 - C_3 - C_1 - C_2 - C_2 - C_3 - C_1 - C_2 - C_2 - C_3 - C_1 - C_2 - C_2 - C_3 - C_1 - C_2 - C_2 - C_3 - C_1 - C_2 - C_3 - C_2 - C_3 - C_1 - C_2 - C_2 - C_3 - C_2 - C_3 - C_2 - C_3 - C_3 - C_3 - C_1 - C_2 - C_3 - C_3 - C_1 - C_2 - C_3 - C_2 - C_3 - C_2 - C_3 - C_3 - C_3 - C_4 - C_3 - C_4 - C_4 - C_5 - $C_$

 C_3 alkylene)-NR⁵CONR⁵CO-(phenyl), -(C_1 - C_3 alkylene)-NR⁵SO₂R⁶, -(C_1 - C_3 alkylene)-NR⁵COR⁶, -(C_1 - C_3 alkylene)-NR⁵CO-(phenyl), each C_1 - C_6 alkyl and phenyl being optionally substituted by halo, -OR⁵, -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -OCONR⁵R⁵, -NR⁵COCONR⁵R⁵ or R⁶.

162. (New) The method according to claim 161 wherein R^2 is H, C_1 - C_3 alkyl, -(C_1 - C_2 alkylene)-NHCO-(C_1 - C_3 alkyl), -(C_1 - C_2 alkylene)-NHCONH-(C_1 - C_3 alkyl), -(C_1 - C_2 alkylene)-NHCONHCO-(phenyl), -(C_1 - C_2 alkylene)-NHSO $_2$ R 6 , -(C_1 - C_2 alkylene)-NHCOR 6 , -(C_1 - C_2 alkylene)-NHCO-(phenyl), each C_1 - C_3 alkyl and phenyl being optionally substituted by fluoro, -OH, -O(C_1 - C_6 alkyl), -CN, -CO $_2$ (C_1 - C_6 alkyl), -CONH $_2$, -OCONHCO $_2$ Ph, -NH $_2$, -N(C_1 - C_6 alkyl) $_2$, -NHCONH $_2$, -NHCOCONH $_2$ or R 6 .

163. (New) The method according to claim 160 wherein R⁶ is 2,4-dihydroxypyrimidinyl, 1-methylimidazolyl, tetrahydrofuranyl, 1,5-dimethylpyrazolyl, tetrazolyl, pyridinyl, pyrimidinyl, 3-hydroxypyridazinyl, 2-hydroxypyridinyl, 2-oxo-2H-pyranyl or 1,2,3-thiadiazolyl.

164. (New) The method according to claim 162 wherein R² is H, -CH₂OH. -CH₂CH₂OH, -CH₂CH₂OH, -CH₂OCONH₂, -CH₂OCONH₂, -CH₂OCONHCO₂Ph, -CH₂CO₂CH₂CH₃, -CH₂CH₂CO₂CH₃, -CH₂CH₂CO₂CH₂CH₃, -CH₂CH₂CONH₂, -CH₂CH₂NH₂, -CH₂CH₂CH₂NH₂, -CH₂CH₂NHCOCHF₂, -CH₂CH₂NHCOCH₂CN, $-CH_2CH_2NHCOCH_2N(CH_3)_2$, -CH₂CH₂NHCOCH₂OCH₃, -CH₂CH₂NHCOCH₂OH, -CH₂CH₂NHCOCH₂OCH₂CH₃, -CH₂CH₂NHCOCH₂NHCONH₂, -CH₂CH₂NHCOCONH₂, -CH₂CH₂NHCONHCH₂CH₂CH₃, -CH₂CH₂NHCONHCOPh, -CH₂CH₂NHCONHCO(2,6-difluorophenyl), -CH₂CH₂NHSO₂(2,4-dihydroxypyrimidin-5-yl), -CH₂CH₂NHSO₂(1-methylimidazol-4-yl), -CH₂CH₂NHCO(tetrahydrofuran-2-yl), -CH₂CH₂NHCO(1,5-dimethylpyrazol-3-yl), -CH₂CH₂NHCOCH₂(tetrazol-1-yl), -CH₂CH₂NHCOPh, -CH₂CH₂NHCO(pyridin-2-yl), -CH₂CH₂NHCO(pyrimidin-2-yl),

Patent Application U.S. Serial No. 09/899,322 Attorney Docket No. PC10927A

- -CH₂CH₂NHCO(2-fluorophenyl), -CH₂CH₂NHCO(3-hydroxyphenyl), -CH₂CH₂NHCO(3-hydroxypyridazin-6-yl), -CH₂CH₂NHCO(2-hydroxypyridin-6-yl), -CH₂CH₂NHCO(2-oxo-2H-pyran-5-yl) or -CH₂CH₂NHCO(1,2,3-thiadiazol-4-yl).
- 165. (New) The method according to claim 153 wherein R² is H, methyl, -CH₂CH₂OH, -CH₂CH₂OH, -CH₂CH₂NH₂, -CH₂CH₂NH₂, -CH₂CH₂NH₂, -CH₂CH₂NH₂, -CH₂CH₂OCH₃, -CH₂CONH₂, -CH₂CH₂NHCOCH₂OCH₃ or azetidin-3-yl.
- 166. (New) The method according to claim 165 wherein R^2 is $-CH_2CH_2OH$, $-CH_2CH_2NH_2$, $-CH_2CN$ or azetidin-3-yl.
- 167. (New) The method according to claim 153 wherein R^3 is C_1 - C_6 alkyl, $-CO_2R^5$, $-CONR^5R^5$, $-NR^5CO_2R^7$ or $-NR^5R^5$, said C_1 - C_6 alkyl being optionally substituted by halo, -CN, $-OR^5$, $-CO_2R^5$, $-CONR^5R^5$, $-OCONR^5R^5$, $-NR^5CO_2R^7$, $-NR^5R^5$, $-NR^5COR^5$, $-SO_2NR^5R^5$, $-NR^5CONR^5R^5$, $-NR^5SO_2R^7$ or R^6 .
- 168. (New) The method according to claim 167 wherein R^3 is C_1 - C_6 alkyl, $-CO_2R^5$, $-CONR^5R^5$, $-NR^5CO_2R^7$ or $-NR^5R^5$, said C_1 - C_6 alkyl being optionally substituted by halo, CN or $-OR^5$.
- 169. (New) The method according to claim 168 wherein R^3 is C_1 - C_3 alkyl, $-CO_2(C_1$ - C_2 alkyl), $-CONH_2$, $-NHCO_2(C_1$ - C_4 alkyl), $-N(CH_3)_2$ or $-NH_2$, said C_1 - C_3 alkyl being optionally substituted by halo, -CN or -OH.
- 170. (New) The method according to claim 169 wherein R³ is methyl, ethyl, prop-2-yl, hydroxymethyl, cyanomethyl, trifluoromethyl, -CO₂CH₂CH₃, -CONH₂, -NHCO₂C(CH₃)₃, -N(CH₃)₂ or -NH₂.

Patent Application U.S. Serial No. 09/899,322 Attorney Docket No. PC10927A

- 171. (New) The method according to claim 170 wherein R³ is methyl, ethyl, prop-2-yl or trifluoromethyl.
 - 172. (New) The method according to claim 171 wherein R³ is ethyl.
- 173. (New) The method according to claim 153 wherein R⁴ is 3,5-dichlorophenyl.
- 174. (New) The method according to claim 153 wherein X is -CH₂-, -CHR¹¹-, -CO-, -S- or -SO₂-.
- 175. (New) The method according to claim 174 wherein X is -CH₂-, -CH(OCH₃)-, -CO-, -S- or -SO₂-.
 - 176. (New) The method according to claim 175 wherein X is -CH₂- or -S-.
- 177. (New) The method according to claim 153 wherein the compound of formula (Ib) is selected from the group consisting of: 2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol;
 - 2-[4-(3,5-dichlorobenzyl)-5-isopropyl-3-methyl-1*H*-pyrazol-1-yl]ethanol;
 - ethyl [4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]acetate;
 - $N^{1}-\{2-[4-(3,5-{\rm dichlorobenzyl})-3,5-{\rm diethyl-1}H-{\rm pyrazol-1-yl}] {\rm ethanediamide};$
- 2-[(aminocarbonyl)amino]-N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}acetamide;
 - N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-2-ethoxyacetamide;
- N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-2-methoxyacetamide;

```
N-\{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl\}-3-
hydroxybenzamide;
       N-\{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl\}-2-
hydroxyacetamide;
       N-\{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl\}-2-
(dimethylamino)acetamide;
       2-cyano-N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}acetamide;
       N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-2-fluorobenzamide;
       N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-N'-propylurea;
       N-benzoyl-N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}urea;
       2-[4-(3,5-dichlorobenzyl)-3-isopropyl-5-methyl-1H-pyrazol-1-yl]ethanol;
       ethyl [4-(3,5-dichlorobenzyl)-3-isopropyl-5-methyl-1H-pyrazol-1-yl]acetate;
       ethyl [4-(3,5-dichlorobenzyl)-5-isopropyl-3-methyl-1H-pyrazol-1-yl]acetate;
       4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazole;
      2-[4-(3,5-dichlorobenzyl)-3,5-dimethyl-1H-pyrazol-1-yl]ethanol;
      2-[4-(3,5-dichlorobenzyl)-5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanol;
      4-(3,5-dichlorobenzyl)-3-isopropyl-5-methyl-1H-pyrazole;
      2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-dimethyl-1H-pyrazol-1-yl}ethanol;
      2-{4-[(3,5-dichlorophenyl)sulfonyl]-3,5-dimethyl-1H-pyrazol-1-yl}ethanol;
      4-(3,5-dichlorobenzyl)-3,5-dimethyl-1H-pyrazole;
      2-[4-(3,5-dichlorobenzyl)-3,5-dimethyl-1H-pyrazol-1-yl]ethanamine;
      2-[4-(3,5-dichlorobenzyl)-5-ethyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanol;
      2-[4-(3,5-dichlorobenzyl)-3-ethyl-5-(trifluoromethyl)-1H-pyrazol-1-yl]ethanol;
      2-[4-(3,5-dichlorobenzyl)-5-ethyl-3-methyl-1H-pyrazol-1-yl]ethanol;
      2-[4-(3,5-dichlorobenzyl)-3-ethyl-5-methyl-1H-pyrazol-1-yl]ethanol;
      2-[4-(3,5-dichlorobenzyl)-3-(dimethylamino)-5-methyl-1H-pyrazol-1-yl]ethanol;
      2-[4-(3,5-dichlorobenzyl)-5-methoxy-3-methyl-1H-pyrazol-1-yl]ethanol;
      2-[4-(3,5-dichlorobenzyl)-5-(2-furyl)-3-methyl-1H-pyrazol-1-yl]ethanol;
```

```
(3,5-dichlorophenyl)[3,5-diethyl-1-(2-hydroxyethyl)-1H-pyrazol-4-yl]methanone:
       (\pm)-2-\{4-[(3,5-dichlorophenyl)(methoxy)methyl]-3,5-diethyl-1H-pyrazol-1-
yl}ethanol;
       2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl carbamate:
       methyl 3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]propanoate;
       ethyl 3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]propanoate;
       3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]propanamide;
       3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]-1-propanol;
       [4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-vl]methanol:
       [4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]methyl carbamate;
       2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethanamine;
       N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}benzamide;
       2-[4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-3-(hydroxymethyl)-1H-pyrazol-1-
yl]ethanol;
       3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]-1-propanamine;
       2-[4-[(3,5-dichlorophenyl)sulfanyl]-3-ethyl-5-(hydroxymethyl)-1H-pyrazol-1-
yl]ethanol;
       N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl}-2,2-
difluoroacetamide;
       ethyl 4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1H-pyrazole-3-carboxylate;
       [4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1-(2-hydroxyethyl)-1H-pyrazol-3-
yl]acetonitrile;
       [4-[(3,5-dichlorophenyl)sulfonyl]-5-ethyl-1-(2-hydroxyethyl)-1H-pyrazol-3-
yl]acetonitrile;
       2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-diethyl-1H-pyrazol-1-yl}ethanol;
       4-(3,5-dichlorobenzyl)-3-ethyl-1H-pyrazol-5-amine;
       ethyl 4-(3,5-dichlorobenzyl)-3-ethyl-1-(2-hydroxyethyl)-1H-pyrazol-5-ylcarbamate;
```

N-[4-(3,5-dichlorobenzyl)-3-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-5-yl]-2-methoxyacetamide;

2-[4-(3,5-dichlorobenzyl)-5-(dimethylamino)-3-ethyl-1*H*-pyrazol-1-yl]ethanol; ethyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-5-methyl-1*H*-pyrazole-3-carboxylate; ethyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-3-methyl-1*H*-pyrazole-5-carboxylate; 2-[3-amino-4-(3,5-dichlorobenzyl)-5-methyl-1*H*-pyrazol-1-yl]ethanol; ethyl [4-(3,5-dichlorobenzyl)-5-methoxy-3-methyl-1*H*-pyrazol-1-yl]acetate; 2-[5-amino-4-(3,5-dichlorobenzyl)-3-ethyl-1*H*-pyrazol-1-yl]ethanol; and the pharmaceutically acceptable salts and solvates thereof.

178. (New) The method of claim 177, wherein said compound is selected from the group consisting of 2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-dimethyl-1*H*-pyrazol-1-yl}ethanol; 2-[4-[(3,5-dichlorophenyl)sulfanyl]-3-ethyl-5-(hydroxymethyl)-1*H*-pyrazol-1-yl]ethanol; and 2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazol-1-yl}ethanol.

179. (New) A method for the treatment of a disorder treatable by the inhibition of reverse transcriptase, comprising the administration of an effective amount of compound of the formula Ib

or a pharmaceutically acceptable salt or solvate thereof, wherein

either (i) R^1 is H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl, benzyl, halo, -CN, -OR⁷, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CO-(C₁-C₆ alkylene)-OR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -OR⁸, -CO₂R⁵, -CONR⁵R⁵,

-OCONR 5 R 5 , -NR 5 CO $_2$ R 7 , -NR 5 R 5 , -NR 8 R 9 , -NR 5 COR 5 , -NR 5 COR 6 , -NR 5 COR 8 , -SO $_2$ NR 5 R 5 , -NR 5 CONR 5 R 5 , -NR 5 SO $_2$ R 7 or R 6 and

 R^2 is -Y-Z,

or, R^1 and R^2 , when taken together, represent unbranched C_3 - C_4 alkylene, optionally wherein one methylene group of said C_3 - C_4 alkylene is replaced by an oxygen atom or a nitrogen atom, said nitrogen atom being optionally substituted by R^5 or R^8 .

and R^3 is H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl, benzyl, -CN, halo, -OR⁷, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵CO₂R⁷, -NR⁵COR⁵, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶,

or (ii) R^1 and R^3 are each independently C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl or halo-(C_1 - C_6 alkyl), and R^2 is H,

provided that

- (a) for definition (i), R¹ and R³ are not both H,
- (b) for definition (i), R^1 and R^3 are not both optionally substituted phenyl, as defined therein,
- (c) for definition (i), when R^1 and R^3 are both methyl, R^2 is not phenyl or methyl, and
 - (d) for definition (ii), R¹ and R³ are not both methyl;

Y is a direct bond or C₁-C₃ alkylene;

Z is R^{10} or, where Y is C_1 - C_3 alkylene, Z is -NR⁵COR¹⁰, -NR⁵CONR⁵R¹⁰, -NR⁵CONR⁵COR¹⁰ or -NR⁵SO₂R¹⁰;

R⁴ is dichloro-substituted phenyl;

each R^5 is independently either H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, fluoro- $(C_1$ - $C_6)$ -alkyl, phenyl or benzyl, or, when two such groups are attached to the same nitrogen atom, those two groups taken together with the nitrogen atom to which they are attached represent piperidinyl said piperidinyl being optionally substituted by C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl;

 R^6 is a four to six-membered, aromatic, partially unsaturated or saturated heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen or sulphur heteroatom(s), said heterocyclic group being optionally substituted by $-OR^5$, $-NR^5R^5$, -CN, oxo, C_1-C_6 alkyl, C_3-C_7 cycloalkyl, $-COR^7$ or halo;

R⁷ is C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl, phenyl or benzyl;

 R^8 is C_1 - C_6 alkyl substituted by phenyl or pyridyl, said phenyl and pyridyl being optionally substituted by halo, -CN, -CONR⁵R⁵, -SO₂NR⁵R⁵, -NR⁵SO₂R⁷, -NR⁵R⁵, -(C₁-C₆ alkylene)-NR⁵R⁵, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy;

 R^9 is H, C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl, said C_1 - C_6 alkyl and C_3 - C_7 cycloalkyl being optionally substituted by -OR⁵, -NR⁵R⁵, -NR⁵COR⁵, -CONR⁵R⁵ or R⁶;

 R^{10} is (a) benzyl or C-linked R^6 , said benzyl being optionally substituted by halo, $-OR^5$, $-OR^{12}$, -CN, $-CO_2R^7$, $-CONR^5R^5$, $-OCONR^5R^5$, $-C(=NR^5)NR^5OR^5$, $-CONR^5NR^5R^5$, $-OCONR^5CO_2R^7$, $-NR^5R^5$, $-NR^5R^5$, $-NR^5COR^5$, $-NR^5CO_2R^7$, $-NR^5CONR^5R^5$, $-NR^5COCONR^5R^5$, $-NR^5SO_2R^7$, $-SO_2NR^5R^5$ or R^6 , or (b) when R^1 and R^3 are each independently C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl or halo-(C_1 - C_6 alkyl), R^{10} is phenyl, C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl each being optionally substituted by halo, $-OR^5$, $-OR^{12}$, -CN, $-CO_2R^7$, $-CONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-OCONR^5R^5$, $-NR^5CO_2R^7$, $-NR^5C$

X is -CH₂-, -CHR¹¹-, -CO-, -S-, -SO- or -SO₂-; R^{11} is C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, fluoro-(C_1 - C_6)-alkyl or C_1 - C_6 alkoxy; and R^{12} is C_1 - C_6 alkyl substituted by R^6 , -OR⁵, -CONR⁵R⁵, -NR⁵COR⁵ or -NR⁵R⁵.

The above amendments add no new matter to this application. Applicants respectfully request their entry.