4N26 4N27

4N28

NPN PHOTOTRANSISTOR AND PN INFRARED EMITTING DIODE

. Gallium Arsenide LED optically coupled to a Silicon Photo Transistor designed for applications requiring electrical isolation, high-current transfer ratios, small package size and low cost; such as interfacing and coupling systems, phase and feedback controls, solidstate relays and general-purpose switching circuits.

- High Isolation Voltage VISO = 2500 V (Min) 4N25 1500 V (Min) 4N26, 4N2′ 500 V (Min) 4N28 500 Min) 4N28 4N26 2.1 μs (Tγp) 4N27, 4N28 4N26 50 μs (Tγp) 4N27, 4N28 50 μs (Tγp) 4N27, 4N28
 Economical, Compact, Dual-In-Line Package

FIGURE 13 - "Est Circuit von Frak e dan Molse Figure
4 to Dinnu Cross hints" actor a transform

- · Economical, Compact, Dual-In-Line Package
- *MAXIMUM RATINGS (T. = 25°C

Rating	Symbol	Unit	
INFRARED EMITTING DIODE MAXIMUM	RATINGS		
Reverse Voltage	VR	30	Volts
Forward Current - Continuous	T I E	80	mA
Forward Current - Peak Pulse Width = 300 µs, 2.0% Duty Cycle	31t - 3	3.0.	Amp
Total Device Dissipation @ T _A 25°C Negligible Power in Transistor	Po	150	mW
Derate above 25°C		2.0	mW.ºC

PHOTOTRANSISTOR MAXIMUM RATINGS			
Collector-Emitter Voltage	VCEO	30	Volts
Emitter-Collector Voltage	VECO	7.0	Volts
Collector-Base Voltage	V СВО	70	Volts
Total Device Dissipation @ T _A 25°C Negligible Power in Diode	Po	150	mW QC

TOTAL DEVICE RATINGS			
Total Device Dissipation @ T _A = 25°C Equal Power Dissipation in Each Element Derate above 25°C	PD	250 3.3	mW/°C
Junction Temperature Range	TJ	-55 to +100	°C
Storage Temperature Range	Tstg	-55 to +150	°C
Soldering Temperature (10 s)		260	90

* Indicates JEDEC Registered Data

INFRARED LIGHT EMITTING DIODE PHOTOTRANSISTOR COUPLED PAIR

Characteristic	Symbol	Min	Тур	Max	Unit	
*Reverse Leskage Current (V _R = 3.0 V, R _L = 1.0 M ohms)	1 _R	7-	0.05	100	μА	
*Forward Voltage (Ip = 50 mA)	VF	-	1.2	1.5	Volts	
Capacitance (V _R = 0 V, f = 1.0 MHz)	C	1 7	150	-	pF	

PHOTOTRANSISTOR CHARACTERISTICS (TA = 25°C and IF = 0 unless otherwise mited)

Characteristic		Symbol	Min '	Тур	Мая	Uhit
*Collector-Emitter Dark Current (VCE = 10 V, Base Open)	4N25, 4N26, 4N27 4N28	CEO	-	3.5	50 100	nA.
*Collector-Base Dark Current (VCB = 10 V, Emitter Open)		'сво	100	**	20	nA
*Collector-Base Breakdown Voltage (IC = 100 µA, IE = 0)		BVCBO	70	-	-	Volts
*Collector-Emitter Braskdown Voltage (IC = 1.0 mA, IB * Qi		BVCEO	30		-	Volts
Emitter-Collector Breakdown Voltage (IE = 100 µA, IB = 0)	222	BVECO	7.0	-		Volts
OC Current Gain (VCE = 5.0 V IC = 500 µA)		"FE	7	250	-	-

COUPLED CHARACTERISTICS (T. = 25 C unles

Characteristic		Symbol	Min	Тур	Max	Unit
*Collector Output Current (1) IVCE = 10 V, I _E = 10 mA, I _B = 0)	4N25,4N26 4N27,4N28	'c	20	5.0 3.0	2	mA
*Isolation Voltage (2)	4N26,4N27 4N28		2500 1500 500	10112-1-	- 1ญี่ปก	Volts
(V = 500 V)				10,,	-	Ohms
*Collector-Emitter Saturation (I _C = 2.0 mA, I _F = 50 mA)		VCE(sat)		0.2	0.5	Volts
(V = 0, f = 1.0 MHz)	JE	- 1	724	1.3	1	pF
Bandwidth (3) (Ic = 2.0 mA, R ₁ = 100 ohms, Figure 11)	The same of the			300		kHz

Delay Time	(Ic = 10 inA, Vcc = 10 V)	4N25,4N26 4N27,4N28	¹d	-	0.07	2	μ5
lise Time	Figures 6 and 8 4N25,4N26 4N27,4N28		1,		0.8	-	μς
Storage Time	(Ic = 10 mA, Vcc = 10 1/)	4N25,4N26 4N27,4N28	t _s	- Indian	4.0	-	μѕ
Fall Time	Figures 7 and 8	4N25,4N26 4N27,4N28	16	-	7.0	-	μѕ

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 11 - FREQUENCY RESPONSE TEST CIRCUIT

TYPICAL APPLICATIONS

FIGURE 12 – ISOLATED MTTL TO MOS (P-CHANNEL) LEVEL TRANSLATOR

FIGURE 13 - COMPUTER/PERIPHERAL INTERCONNECT

FIGURE 14 - POWER AMPLIFIER

FIGURE 15 - INTERFACE BETWEEN LOGIC AND LOAD

Typical Electrical Characteristics

4N35 4N36 4N37

Electrical Characteristics—Input Diode T_A = 25°C

Lioutilou	T 1 1-11-	Min	Тур	Max	Units	Test Conditions
Symbol	Characteristic	-	-	1.5	V	IE = 10 mA
V _F *	Forward Voltage Reverse Leakage Current Capacitance	0.8	0.01	10 100	μA pF	$V_R = 6.0 \text{ V}$ $V_R = 0 \text{ V}$ $f = 1 \text{ MHz}$

Electrical Characteristics — Output Transistor TA = 25°C

	Characteristics	Min	Тур	Max	Units	Test Conditions
Symbol	Characteristic	-	-		V	Ic = 10 mA
VCEO* VCBO* VECO*	Collector-to-Emitter Voltage Collector-to-Base Voltage Emitter-to-Collector Voltage	30 70 7.0	65 165 14		V	$I_C = 100 \mu A$ $I_E = 100 \mu A$, $I_F = 0$
ICEO*	Collector-to-Emitter Leakage Current		5.0	50	nA	V _{CE} = 10 V, I _F = 0
ICEO*	Collector-to-Emitter Leakage Current			500	μΑ	V _{CE} = 30 V, I _F = 0, T _A = 100°C
hFE	Forward Current Gain	100	250		17-11-	$V_{CE} = 5.0 \text{ V},$ $I_{C} = 100 \mu\text{A}$
Ccb	Collector-to-Base Capacitance		25		pF	V _{CB} = 10 V

	Characteristics—Coupled T _A = 25°C	Min	Тур	Max	Units	Test Condition
Symbol						PW = 8 ms
10.	Input-to-Output Current			100	μА	VIO = 3550 V
	4N35			100	μА	VIO = 2500 V
*	4N36			100	μА	VIO = 1500 V
	4N37 Collector-to-Emitter Saturation Voltage			0.3	V	IC = 0.5 mA,
V _{CE(sat)} *	Conector-to-Emitter Catalation 101123					IF = 10 mA
L /L-/CTD*	Collector Current Transfer Ratio (Note)	100			%	V _{CE} = 10 V,
IC/IF(CTR)*	Collector Carrelli Francis					IF = 10 mA
IC/IF(CTR)*	Collector Current Transfer Ratio (Note)	40			%	V _{CE} = 10 V,
Cultonia						$I_F = 10 \text{ mA},$ $T_A = -55^{\circ}\text{C}$
						to 100°C
		1011			Ω	V _{IO} = 500 V
RIO	Input-to-Output Resistance	10.	1.0	2.5	pF	$V_{10} = 0$
CIO	Input-to-Output Capacitance		1.0			f = 1.0 MHz
	T Time		5.0	10	μS	Ic = 2.0 mA,
ton	Turn-on Time					V _{CC} = 10 V,
						$R_L = 100 \Omega$
	Turn-off Time		5.0	10	μS	$I_C = 2.0 \text{ mA},$
toff	Turn-on Time					V _{CC} = 10 V,
						$R_L = 100 \Omega$

Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
*Indicates JEDEC registered values.

LSTTL/7 Optocoul Optoelectronic Pro

General Descript The 6N137 optoc emitting diode and is collected in the is amplified by a h Schottky-clamper Temperature, cur the circuit.

This isolator desi patibility while at isolation betweer ates from a 5 V a to sink at least 1 to 70°C tempera rent is 5 mA. Who isolating mode, th An LSTTL/TTL-C gates the output

The 6N137 is app subsystems that tials, signal level common-mode no programmable flo other machine co

LSTTL/TTL Con Ultra High Spee Low Input Curre High Common-N **Guaranteed Per** 3000 V dc Insul

Absolute Maxim Up to 70°C)

Maximum Temp Operating Temp Storage Temper Pin Temperature (1.6 mm below s

Maximum Powe **Output Collector** Dissipation

*JEDEC Registered I

Optically-Coupled solator

Otoelectronic Products

4N35 4N36 4N37

st Conditions

 $= 100 \mu A$ = 0 = $100 \mu A$, = 0

 $= 100 \mu A$ = 0

E = 10 V, se Open E = 5.0 V. = 500 µA

st Conditions

E = 10 V, = 10 mA E = 10 V, = 10 mA E = 10 V, = 10 mA

= 500 V

= 2.0 mA, = 8.0 mA

= 8.0 mA = 2.0 mA, = 8.0 mA = 0, 1.0 MHz = 50 mA,

C = 10 V = 180Ω , = 200 mA = 50 mA,

C = 10 V,= 180 Ω , = 200 mA

e time required for

General Description

The 4N35, 4N36 and 4N37 series of optoisolators has Isilicon npn Planar phototransistor in close proximity ba GaAs diode. Optical coupling provides a high legree of ac and dc isolation. A capability for continuous operation of the input diode results in a requency response extending to dc. Connection to he transistor base is also provided for design exibility. This isolator series is covered under UL component recognition program, reference file £55299.

Glassolated™

High Current Transfer Ratio - Minimum 100% 1500 V to 3500 V Minimum Isolation Input-to-Output

10¹¹ Ω Isolation Resistance low Coupling Capacitance—Typically 1.0 pF

Absolute Maximum Ratings

Maximum Temperature and Humidity

-55°C to +150°C Storage Temperature* -55°C to +100°C Operating Temperature PinTemperature (Soldering, 10s)* 260°C Relative Humidity at 85°C* 85%

input Diode

6.0 V Reverse Voltage VR* · 60 mA **Forward Current** Peak Forward Current at 1 µs pulse width, 300 pps 3.0 A Power Dissipation at 100 mW TA = 25°C

1.33 mW/°C

Output Transistor

VCE* Collector-to-Emitter 30 V Voltage VCB* Collector-to-Base Voltage 70 V **Emitter-to-Collector** VEC.

Derate Linearly from 25°C

7.0 V Voltage 100 mA Collector Current

Power Dissipation at $T_A = 25$ °C 300 mW 4.0 mW/°C Derate Linearly from 25°C

'Indicates JEDEC registered values.

Package Outline

Notes
All dimension in inches bold and millimeters (parentheses) Tolerance unless specified = ± 0.15 (0.381)

Connection Diagram DIP (Top View)

Din

1	Anode (+)	Input Diode
2	Cathode (-)	Imput Diodo
3	NC .	
4	Emitter	Output npn
5	Collector	Phototransisto
6	Base)

BULLETIN NO. DL-S 7312030, NOVEMBER 1973

COMPATABLE WITH STANDARD DTL AND TTL INTEGRATED CIRCUITS

- Gallium Arsenide Diode Infrared Source Optically Coupled to a Silicon N-P-N Phototransistor
- High Direct-Current Transfer Ratio
- Base Lead Provided for Conventional Transistor Biasing
- High-Voltage Electrical Isolation . . . 1.5-kV or 2.5-kV Rating
- Plastic Dual-In-Line Package
- High-Speed Switching: $t_r = 2 \mu s$, $t_f = 2 \mu s$ Typical

mechanical data

The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on a 6-lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

solute maximum racings																				11			±1.5 kV
Input-to-Output Voltage:	TIL111										*	•	*				•						±2.5 kV
	TII 114	TH 11	b. 11	L11					* *			18											
Collector-Base Voltage						*	*	*		*			*		• .		•		•				. 30 V
Collector-Emitter Voltage	(See Not	te 1)						*			*												. 7 V
Emitter-Collector Voltage							*				٠												. 7 V
F total Dave Maltage														A	*					•		*	
Input-Diode Reverse Volt	age	Current	t at (c	r be	low	25	°C	Fr	ee-A	ir	Ter			4	6						-		
	11 A 1.	bala	11 25	CF	TOO.	. Δii	Te	mr	era	ture	80												
			21									*		*	*	 	*	*	*	*			150 mW
Phototransistor (Se Total, Infrared-Emi																							
Storage Temperature Ran Lead Temperature 1/16 I	nch from	Case f	or 10	Sec	onds			*			*		*	*	*				*		,		-30 -

- NOTES: 1. This value applies when the base-emitter diode is open-circuited.

 2. Derate linearly to 100°C free-sir temperature at the rate of 1.33 mA°C.

 3. Derate linearly to 100°C free-sir temperature at the rate of 2 mW/°C.

 4. Derate linearly to 100°C free-sir temperature at the rate of 2 mW/°C.

 5. Derate linearly to 100°C free-sir temperature at the rate of 3.33 mW/°C.

w = 50 µs, duty 2, Cin \$ 20 pF.

TYP

10

1013

rted together.

MAX UNIT

500

V

HA

MA

UNIT

118

115

INTED IN U.S A ony circuits shown fent intringement.

HE BEST PRODUCT POSSIBLE

TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 3012 • DALLAS, TEXAS 75222

119

electrical characteristics at 25°C free-air temperature

	PARAME	PARAMETER TEST CONDITIONS			TIL 111			TIL116	3	TIL117			UNIT	
			1251 35.00			TYP		MIN	TYP	MAX	MIN	TYP	MAX	
V(BR)CBO	Collector- Breakdow		IC = 10 μA, IF = 0	IE = 0,	70			70			70			V
V(BR)CEO	Collector- Breakdow	Emitter in Voltage	I _C = 1 mA, I _F = 0	1 _B = 0,	30			30	74		30			V
V(BR)EBO	Emitter-B Breakdow	ase in Voltage	I _E = 10 μA, I _F = 0	1C = 0,	7			7			7			V
IR	Input Dio Reverse C		V _R = 3 V				10			10			10	μА
	On-State	Phototransistor	V _{CE} = 0.4 V, I _B = 0	IF = 16 mA,	2	7								mA
(C(on)	Collector	Operation	V _{CE} = 10 V, I _B = 0	IF = 10 mA,				2	5		5	9		THE.
	Current	Photodiode Operation	V _{CB} = 0.4 V,	IF = 16 mA,	10	20		10	20		10	20		μА
C(off)	Off-State Collector Current	Phototransistor Operation	V _{CE} = 10 V, I _B = 0	lF = 0,		1	50		1	50		1	50	nA
		Photodiode Operation	V _{CB} = 10 V, I _E = 0	IF = 0,		0.1	20		0.1	20		0.1	20	nA.
	Transistor Static		VCE = 5 V.	IC = 10 mA,	100	300					200	550		
pEE	Forward Current Transfer Ratio		V _{CE} = 5 V, I _F = 0	IC = 100 μA,				100	300					
VF	Input Dio	de Static	IF = 16 mA			1.2	1.4					1.2	1.4	V
* F	Forward \	Voltage	IF = 60 mA						1.25	1.5				
			IC = 2 mA, IB = 0	IF = 16 mA,		0.25	0.4							
VCE (sat)	Collector-Emitter Saturation Voltage		IC = 2.2 mA, IB = 0	IF = 15 mA,					0.25	0.4				v
			I _C = 0.5 mA, I _B = 0	IF = 10 mA,								0.25	0.4	
10	Input-to-Output Internal Resistance			kV for TIL111, kV for all others,	1011	*		1011			1011			Ω
Cio	Input-to-C		V _{in-out} = 0, See Note 6	f = 1 MHz,		1	1.3		1	1.3		1	1.3	pF

NOTE 6: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.

switching characteristics at 25°C free-air temperature

PARAMETER		TER	TEST CONDITIONS		TIL111 TIL114			TIL11	6	TIL117			UNIT
					TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
tr	Rise Time	Phototransistor	VCC = 10 V, IC(on) = 2 mA,		2	5		2	7		2	9	
tf	Fall Time	Operation	R _L = 100 Ω, See Test Circuit A of Figure 1		2	5		2	7		2	9	μѕ
tr	Rise Time	Photodiode	V _{CC} = 10 V, I _{C(on)} = 20 μA		1			1			1		
tf	Fall Time	Operation	R _L = 1 kΩ, See Test Circuit B of Figure 1		1			- 1			1		μѕ

TEST CIRCL

NOTES: a. The input $t_W = 100 \mu$ b. The output

100 40 10 IC-Collector Current-mA 0.4 0.1 0.04

> 0.01 0.1

INPUT

PARAMETER MEASUREMENT INFORMATION

Adjust amplitude of input pulse for: IC(on) = 2 mA (Test Circuit A) or IC(on) = 20 μA (Test Circuit B)

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text{out}} = 50 \, \Omega$, $t_r \le 15 \, \text{ns}$, duty cycle = 1%,

 t_W = 100 μ s. b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r \le 12$ ns, $R_{in} > 1$ M Ω , $C_{in} \le 20$ pF.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS

TIL111, TIL114

COLLECTOR CURRENT

VS

INPUT-DIODE FORWARD CURRENT

FIGURE 2

TIL116, TIL117

COLLECTOR CURRENT

VS

TEXAS INSTRUMENTS
POST OFFICE BOX 5012 - DALLAS, TEXAS 75232

121

1173 1173

UNIT

V

٧

V

mA

μΑ

20 nA

V

Ω

ted together

UNIT

μs

µs.

0.4

1.3 pF

AX

9

MAX

10 µA

TYPICAL CHARACTERISTICS

COLLECTOR CURRENT COLLECTOR-EMITTER VOLTAGE

TIL117 COLLECTOR CURRENT

RELATIVE ON-STATE COLLECTOR CURRENT FREE-AIR TEMPERATURE

These parameters were measured using pulse techniques. t_W = 1 ms, duty cycle ≤ 2%.

1172

10 000 VCE = 10 V 4 000 18 = 0 1F = 0

OFF-STA"

FREE

INPU' CONDUCT

NOTE B: These paramets

1174

Il cannol assume any responsib or represent that they are free

TEXAS INSTRUMENTS RESERVES THE RIGH IN ORDER TO IMPROVE DESIGN AND TO

TYPICAL CHARACTERISTICS

NORMALIZED TRANSISTOR STATIC FORWARD CURRENT TRANSFER RATIO

INPUT DIODE FORWARD

COLLECTOR CURRENT

FIGURE 11

Andrew Andrews

VF-Forward Voltage-V

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

NOTE 8: These perameters were measured using pulse techniques, t_w = 1 ms, duty cycle ≤ 2%.

1173

125

25°C

ote 7

8 20

RENT

Il cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

0

0

TUS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME I ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

123

- Gallium Arsenide Diode Infrared Source Optically Coupled
 to a Silicon N-P-N Phototransistor
- High Direct-Current Transfer Ratio
- Base Lead Provided for Conventional Transistor Biasing (TIL112, TIL115)
- High-Voltage Electrical Isolation . . . 1.5-kV or 2.5-kV Rating
- Plastic Dual-In-Line Package
- High-Speed Switching: $t_r = 2 \mu s$, $t_f = 2 \mu s$ Typical

mechanical data

The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on a 6-lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

						TIL112	TIL115	TIL118
Input-to-Output Voltage						±1.5 kV	±2.5 kV	±1.5 kV
Collector-Base Voltage						30 V	30 V	
Collector-Emitter Voltage (See Note 1)				*		20 V	20 V	- 20 V
Emitter-Collector Voltage						4 V	4 V	4 V
Emitter-Base Voltage						4 V	4 V	
Input-Diode Reverse Voltage						3 V	3 V	3 V
Input-Diode Continuous Forward Current at (or below) 25°C Free-Air Temperature (See Note 2)						-	- 100 mA	
Continuous Power Dissipation at (or below) 25°C Free-Air Temperatu	ure	:						
Infrared-Emitting Diode (See Note 3)							150 mW	
Phototransistor (See Note 4)						4	- 150 mW	
Total (Infrared-Emitting Diode plus Phototransistor, See Note 5)							- 250 mW	
Storage Temperature Range							5°C to 15	
Lead Temperature 1,6 mm (1/16 Inch) from Case for 10 Seconds .					,	4	- 260°C-	-

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. Derate linearly to 100°C free-air temperature at the rate of 1.33 mA/°C.
- 3. Derate linearly to 100°C free-air temperature at the rate of 2 mW/°C.
- 4. Derate linearly to 100°C free-air temperature at the rate of 2 mW/°C.
- 5. Derate linearly to 100°C free-air temperature at the rate of 3.33 mW/°C.

7-42

TEXAS INSTRUMENTS

· Cellium Avenide Clode Intered Soling Course Lounn electrical characteristics at 25°C free-air temperature

		RAMETER TEST CONDITIONS			TIL112 ·			41 47	TIL115	5	1			
	PARAME	IEH	TEST CONDITIONS!		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNI
V _(BR) CBO	Collector- Breakdow	Base n Voltage	I _C = 10 μA, I _F = 0	IE ≈ 0,	30	ai.	1.	30						V
V(BR)CEO	Collector- Breakdow	Emitter in Voltage	I _C = 1 mA, I _F = 0	1 _B = 0,	20	10.1	"KS"	20	1		20			V
V(BR)EBO	Emitter-Base Breakdown Voltage		IE = 10 μA, IF = 0	IC = 0,	4	ziw	7 -	4						V
V(BR)ECO	Emitter-C Breakdow	ollector on Voltage	IE = 10 μA.	1F = 0							4	30-1	001111	V
(C(on)	On-State Collector	Phototransistor Operation	V _{CE} = 5 V, I _B = 0	IF = 10 mA,	0.2	2		0.2	2		1	2		mA
	Current	Photodiode Operation	V _{CB} = 5 V, I _E = 0	IF = 10 mA,	2	10		2	10					μА
	Off State Collector Current	Phototransistor Operation	V _{CE} = 5 V, I _B = 0	-1F = 0'		1	100		1	100		1	100	
C(off)		Photodiode Operation	V _{CB} = 5 V, I _E = 0	IF = 0,		0.1	50		0.1	50				nA
hFE		r Static Forward ransfer Ratio	V _{CE} = 5 V, I _F = 0	Ic = 10 mA,	50	200		50	200					
VF	Input Dic		IF = 10 mA			1.2	1.5		1.2	1,5		1.2	1.5	V
VCE(sat)	Collector	Emitter n Voltage	IC = 2 mA, IB = 0	IF = 50 mA,			0.5			0.5			0.5	V
*10	Input-to-Output Internal Resistance		Vin-out = ±1. See Note 6	5 kV,	1011						1011			Ω
			V _{in-out} = ±2. See Note 6	5 kV,			100	1011						12
Cio	Input-to-		V _{in-out} = 0, See Note 6	f = 1 MHz,		1	2		1	2		1	2	pF

Coordinate Characteristics at 25° C free-air temperature NOTE 6: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.

	DADAMES	ren.	TEST SOMETIONS		TIL112			TIL11	5	TIL118			UNIT
PARAMETER		ER	TEST CONDITIONS		TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	CIVII
tr	Rise Time	Phototransistor	$V_{CC} = 10 \text{ V}, I_{C(on)} = 2 \text{ mA},$ $R_1 = 100 \Omega,$		2	15		2	15		2	15	из
tf	Fall Time	Operation	See Test Circuit A of Figure 1		2	15		2	15		2	15	-
tr	Rise Time	Photodiode	$V_{CC} = 10 \text{ V}, I_{C(on)} = 20 \mu \text{A}$ $R_1 = 1 \text{ k}\Omega,$		1			1					μς
tf	Fall Time	Operation	See Test Circuit B of Figure 1		1			1					μς

TEXAS INSTRUMENTS

PARAMETER MEASUREMENT INFORMATION

Adjust amplitude of input pulse for: (C(on) = 2 mA (Test Circuit A) or IC(on) = 20 µA (Test Circuit B)

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{out} = 50 \ \Omega$, $t_r \le 15 \ ns$, duty cycle $\approx 1\%$, t_w = 100 μs.

b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{\rm f} \le 12$ ns, $R_{\rm in} \ge 1$ M $\Omega_{\rm c}$ $C_{\rm in} \le 20$ pF.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS

NOTES: 7. Pulse operation of input diode is required for operation beyond limits shown by dotted lines.

8. These parameters were measured using pulse techniques $t_{\rm W}$ = 1 ms, duty cycle \leq 2%.

TYPICAL CHARACTERISTICS

NORMALIZED TRANSISTOR STATIC FORWARD CURRENT TRANSFER RATIO

OPTOCOUPLERS

7-46

INPUT DIODE FORWARD CONDUCTION CHARACTERISTICS

FIGURE 5

COLLECTOR CURRENT MODULATION FREQUENCY

FIGURE 7

NOTE 8: These parameters were measured using pulse techniques. tw = 1 ms, duty cycle < 2%.

TYPES TIL113, TIL119, TIL119A **OPTOCOUPLERS**

D1499, AUGUST 1981-REVISED FEBRUARY 1983

- Gallium Arsenide Diode Infrared Source Optically Coupled to a Silicon N-P-N Darlington-Connected Phototransistor
- · High Direct-Current Transfer Ratio . . . 300% Minimum at 10 mA
- High-Voltage Electrical Isolation . . . 1500-Volt Rating
- Plastic Dual-In-Line Package
- Base Lead Provided on TIL 113 for Conventional Transistor Biasing
- No Base Lead Connection on TIL 119A for High-EMI Environments
- · Typical Applications Include Remote Terminal Isolation, SCR and Triac Triggers, Mechanical Relays, and Pulse Transformers

mechanical data

The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon darlington-connected phototransistor mounted on a 6-lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D PARENTHETICALLY IN INCHES	I EBS
bsolute maximum ratings at 25°C free-air temperature	(unless otherwise noted)	C
Input-to-Output Voltage		. ±1.5 kV
Collector-Base Voltage (TIL113)		30 V
Collector-Emitter Voltage (See Note 1)		30 V
Emitter-Collector Voltage		7V
Emitter-Base Voltage (TIL113)		7.V
Input-Diode Reverse Voltage		3 V
Input-Diode Continuous Forward Current at (or below) 25	°C Free-Air Temperature (See Note 2)	. 100 mA
Continuous Power Dissipation at (or below) 25°C Free-Air	Temperature:	
Infrared-Emitting Diode (See Note 3)		. 150 mW
Phototransistor (See Note 4)		
Total (Infrared-Emitting Diode plus Phototransisto		
Lead Temperature 1,6 mm (1/16 Inch) from Case for 10 Se		

NOTES: 1. This value applies when the base-emitter diode is open-circuited

- 2. Derate linearly to 100°C free air temperature at the rate of 1.33 mA/°C.
- 3. Derate linearly to 100°C free-air temperature at the rate of 2 mW/°C.
- 4. Derate linearly to 100°C free-air temperature at the rate of 2 mW/°C.