Deep Learning

Theoretical Exercises – Week 4 – Chapter 5

Exercises on the book "Deep Learning" written by Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Exercises and solutions by T. Méndez and G. Schuster

FS 2024

1 Exercises on Machine Learning Basics

Hint:

Several answers are correct in the multiple choice exercises.

1. The goal of machine learning is to achieve
☐ a small training error.
☐ a large training error.
☐ a small test error.
☐ a large test error.
☐ a small generalization error.
☐ a large generalization error.
2. An overfitted model has
☐ a large test error.
☐ a small test error.
☐ a large training error.
☐ a small training error.
3. An underfitted model has
☐ a large test error.
☐ a small test error.
☐ a large training error.
☐ a small training error.

4.	A mo	odel tends to overfit when
		the training set is small.
		the regularization term has little weight.
		the capacity is smaller than the complexity of the task.
		the test error is close to the Bayes error.
		the training error is smaller then the Bayes error.
5.	To pr	revent overfitting one can
		use a smaller test set.
		use a larger test set.
		use a smaller training set.
		use a larger training set.
		reduce the capacity of the model.
		increase the capacity of the model.
6.	To pr	revent underfitting one can
		use a smaller test set.
		use a larger test set.
		use a smaller training set.
		use a larger training set.
		reduce the capacity of the model.
		increase the capacity of the model.
7.	The g	goal of regularization is to reduce
		the training error.
		the generalization error.
		the test error.
		the Bayes error.
8.	Mark	the correct statements and correct the wrong ones.
		The test set is used to estimate the generalization error.
		The training set is used to control the training.
		The validation set is used to learn the task.
		The training error typically underestimates the generalization error by a smaller amount than the validation error.
		The validation set is used to learn the hyperparameters.

- 9. Given is a set of samples $\{x^{(1)}, \dots, x^{(m)}\}$ that are independently and identically distributed according to a uniform distribution on the interval [-0.8, 1.2].
 - (a) Check whether the sample mean

$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)} \tag{1.1}$$

is an unbiased estimator of the true mean μ .

(b) Assume that the absolute value of each sample is accidentally taken before the sample mean value is calculated. Thus the new estimator is

$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m \left| x^{(i)} \right|. \tag{1.2}$$

Determine the bias of this poor estimator to the mean μ of the initial distribution.

- (c) How can the estimator of (b) be fixed so that he still gives an unbiased estimate?
- 10. **Optional:** Consider a set of samples $\{x^{(1)}, \dots, x^{(m)}\}$ that are independently and identically distributed according to a uniform distribution on the interval $[0, \theta]$, thus

$$p(x^{(i)}, \theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x^{(i)} \le \theta \\ 0, & \text{otherwise} \end{cases}.$$

A biased estimator for the parameter θ is

$$\hat{\theta} = \max(x^{(1)}, \dots, x^{(m)}).$$

Correct this estimator so that it becomes an unbiased estimator for θ .