Energy and Nanotechnology

Sources

http://www.sc.doe.gov

Nano for Energy

- Increased surface area
- Interface and size effects

Nanoscience Research for Energy Needs

- Catalysis by nanoscale materials
- Using interfaces to manipulate energy carriers
- Linking structures and function at the nanoscale
- Assembly and architecture of nanoscale structures
- Theory, modeling, and simulation for energy nanosciences
- Scalable synthesis methods

Examples

Grätzel cell for photovoltaic generation and water splitting

- Radiation transport to maximize absorption
- Two phase flow
- Electrochemical transport
- Multiscale, multiphysics transport

Catalytic nanostructured hydrogen storage materials

- Mass transport
- Heat transfer (intake and release)
- Small scale thermodynamics
- Two phase flow
- Multiscale and multiphysics

Thermoelectrics Devices

Figure of Merit:

Thermal Conductivity

- Refrigeration
- Power Generation:

Critical Challenges:

Reduce phonon heat conduction while maintaining or enhancing electron transport

Nanoscale Effects for Thermoelectrics

Interfaces that Scatter Phonons but not Electrons

State-of-the-Art in Thermoelectrics

PbTe/PbSeTe	Nano	Bulk
S ² σ (μW/cmK ²)	32	28
k (W/mK)	0.6	2.5
ZT (T=300K)	1.6	0.3
Harman et al., S	Science (2003)

Bi ₂ Te ₃ /Sb ₂ Te ₃	Nano	Bulk
$S^2\sigma (\mu W/cmK^2)$	40	50.9
k (W/mK)	0.6	1.45
ZT (T=300K)	2.4	1.0

Venkatasubramanian et al., Nature, 2002.

Potential Applications

Transportation

In US, transportation uses ~26% of total energy.

10% energy conversion efficiency = 26% increase in useful energy

Residential

In US, residential and commercial buildings consume ~35% energy supply

Challenges and Opportunities

- Mass production of nanomaterials
- Energy systems: high heat flux

- Nanomaterials are trans-boundary
- Basic energy research leads to breakthroughs
- Transports (molecular, continuum) are crucial
- Inter-departmental collaborations