EECE 5552-Assistive Robotics Assignment 8-a

Alireza Ramezani

*Due by 11:59 PM Eastern Time, Tuesday, Nov 24

Group project 1

Task 1

Interface the analog temperature sensor module (KY-013) with the Galileo board. Each team can acquire a sensor and a Galileo board for this project. Please sample the sensor at: 1 Hz, 5 Hz, 10 Hz and 20 Hz for 30 seconds. Please plot the results.(Warning: Connect the 5V power supply to the Galileo board first, then connect the board to the computer with the USB cable.)

Figure 1: Intel Galileo Gen2.

Description

The analog temperature sensor module KY-013 for Arduino, measures ambient temperature based on the resistance of the the thermistor.

Figure 2: Analog Temperature Sensor.

Specifications

The KY-013 analog temperature sensor module consists of a NTC thermistor and a 10 k resistor. The resistance of the thermistor varies with surrounding temperature, you can use the Steinhart–Hart equa-

tion to derive precise temperature of the thermistor.

Operating Voltage	5V
Temperature measurement range	-55°C to 125°C [-67°F to 257°F]
Measurement Accuracy	$\pm 0.5 Deg.$

Connection Diagram

Connect the board's power line (middle) and the ground (-) line to 5V and GND respectively. Connect the signal(s) to the pin A0 on the Arduino.

Figure 3: Connect sensor to the board.

KY-013	Arduino
S	A0
middle	5V
-	GND

Code

```
#include <math.h>
double Thermister (int RawADC) {
  double Temp;
  Temp = \log(((10240000/\text{RawADC}) - 10000));
  Temp = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * Temp * Temp ))* Temp );
  Temp = Temp - 273.15; // Convert Kelvin to Celcius
  return Temp;
}
void setup() {
  Serial.begin(9600);
}
void loop() {
  Serial.print(Thermister(analogRead(0))); //read pin A0
  Serial.println("c");
  delay (1);
}
```

Group project 2

Interface the KY-003 Arduino Hall Magnetic Sensor Module with the Galileo board. Each team can acquire a sensor and a Galileo board for this project. Please sample the sensor at: 1 Hz, 5 Hz, 10 Hz and 20 Hz for 30 seconds. Please plot the results. (Warning: Connect the 5V power supply to the Galileo board first, then connect the board to the computer with the USB cable.)

Figure 4: Intel Galileo Gen2.

Description

KY-003 Arduino Hall Magnetic Sensor Module is a switch that will turn on/off in the presence of a magnetic field.

Figure 5: KY-003 Arduino Hall Magnetic Sensor Module.

Specifications

KEYES KY-003 Arduino Hall Magnetic Sensor Module is a switch that will turn on/off in the presence of a magnetic field.

Operating Voltage	4.5V to $24V$
Temperature measurement range	-40°C to 85° C
Dimensions	$18.5 \text{ mm} \times 15 \text{ mm} [0.728 \text{in} \times 0.591 \text{in}]$

Connection Diagram

Connect the Power line (middle) and ground (-) to +5 and GND respectively. Connect signal (s) to pin 3 on the Arduino.

Figure 6: Connect sensor to the board.

KY-003	Arduino
S	Pin 3
middle	+5V
-	GND

Code

The KY-003 Arduino sketch will light up the LED on pin 13 when a magnetic field is detected.

Reference

```
 \begin{array}{l} \textbf{Problem 1} https://arduinomodules.info/ky-013-analog-temperature-sensor-module/Problem 2} https://arduinomodules.info/ky-003-hall-magnetic-sensor-module/\\ \end{array}
```