Problema 11

Aplique o método dual ao problema da cobertura mínima por conjuntos (MINCC), definido na seção 2.2. Mostre que o algoritmo resultante é uma β -aproximação, onde β é o número máximo de conjuntos em que um elemento aparece.

Resposta. Primeiro, precisamos formular o primal e o dual do problema (MinCC). Seja E o conjunto de elementos do problema e S o conjunto de conjuntos. Seja, também $c \in \mathbb{Q}^{|S|}_{\geq}$ o vetor de custos dos conjuntos em S. Precisamos formular o primal e o dual usados na técnica dual nesta análise.

min
$$c^T x$$

s.a. $x(\delta(e)) \ge 1$ $\forall e \in E$ (1)
 $x_s \ge 0$ $\forall s \in \mathcal{S}$

$$\max \quad \mathbf{1}^{T} y$$
s.a. $y(s) \leq c_{s} \qquad \forall s \in \mathcal{S}$

$$y_{e} \geq 0 \qquad \forall e \in E$$

$$(2)$$

Com $y(s) = \sum_{e \in s} y_e$ para todo $s \in \mathcal{S}$ e $x(\delta(e)) = \sum_{s \in \delta(e)} x_s$ para todo $e \in E$. O vetor $\tilde{(}x)$ tal que $\tilde{x}_s = 1 \forall s \in \mathcal{S}$ é uma solução viável do primal enquanto o vetor nulo é viável no dual. Assim, vale o teorema da dualidade forte e soluções ótimas deste programa devem respeitar folgas complementares e, também, se \bar{x} é ótimo no primal e \bar{y} é ótimo no dual,

$$\operatorname{opt}(E, \mathcal{S}, c) \ge c^T x = \mathbb{1}^T.$$

Escolhemos, então, o conjunto C de todos os conjuntos de S que respeitam $\bar{y}(s) = c_s$. Já que valem folgas complementares, se $\bar{x}_s > 0$, então o conjunto s foi escolhido, logo, para todo $e \in E$, pelo menos um s foi escolhido tal que $e \in s$, assim, C é uma cobertura por conjuntos do conjunto E. Agora, temos que

$$c(C) = \sum_{s \in S} c_s = \sum_{s \in S} \bar{y}(s),$$

agora, se cada elemento aparece no máximo β vezes em cada conjunto, temos que

$$\sum_{s \in S} \bar{y}(s) \le \beta \bar{y}E = \beta \text{opt}(E, c).$$

Assim, a estratégia apresentada é uma β -aproximação para o problema MINCC.

Problema 12

O MINCA é um caso particular "fácil" do MINCC: existe um algoritmo polinomial que o resolve. Mostre que o método dual dá uma Δ -aproximação polinomial para o MINCA, onde Δ é o grau máximo em G.

Resposta. É possível modelar uma instância de MINCA(G,c) com uma instância de MINCC (E,\mathcal{S},c) . Basta escolher $E=V(G), \mathcal{S}=E(G)$ e usar o mesmo vetor de custos. Assim, temos que cada elemento de E pertence a no máximo Δ conjuntos de \mathcal{S} . Assim, o método dual dá uma Δ -aproximação para o problema.