	Local Extreme Value Theorem.
	1. Definitions:
extremum = maximum cr mini- num	Let of be a function with domain l.
maximum or mini- global extremum	Let cel.
D plural forms: extremum: extrema	1> Maximum: f has a maximum at c when:
norimum: marima.	$\forall x \in \mathcal{L}, f(x) \leq f(c)$
minimum: minima. Vocal extremum can be extremum or coell.	2) Uini num: f hos a minimum at c when:
	$\forall x \in \mathcal{L}, f(x) \neq f(e).$ 3) Local Morsinum: f has a local maximum at e when:
	$\exists 8>0$, s.t. $ x-c <8 \Rightarrow f(x) \leq f(c)$.
	4) Local Minimum: of hos a local minimum at c when:
	$\exists 8>0$, s.t. $ x-c <8 \Rightarrow f(x) \Rightarrow f(c)$. The end points deposit count as L max or L min (In some analysis books, it may include
	2. The Local Extreme Value Theorem. Let f be a function with domain an inteval l. Let
	cel.
	lf. of has a local extremum at c
	c is an interior point to l. (not an end-point).
	Then. $f'(c) = 0$ or DNE
	12 Proof.

Tom BVJ, since Is continuous To [-4, 4], x hos as & min in		the entremend endpoints &				
4, 4].	x=4	f(x) = 15. $3x^2 - 6x - 9 =$	X= −4	· f(x) = -	41.	
		f(x) = 8				

