

Proyecto MI1 - LAB

Matematica Intermedia 1 (Universidad de San Carlos de Guatemala)

Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias Departamento de matemática

Proyecto 1 | Matemática Intermedia 1

<u>Datos estudiantes</u>

Nombres y Carnes:

José Daniel Velásquez Orozco, 201800722

José Pablo Tobar Cardona, 201800670

Datos Curso

Matemática Intermedia 1

Sección "G"

Inga. Silvia Patricia Hurtarte Hernández

Aux. Lucia Wolford

Guatemala, 30 de septiembre de 2019

Introducción

Para la solución de problemas matemáticos existen diversos métodos y herramientas que se pueden utilizar, las herramientas pueden ir desde el uso de la tecnología como método de solución o de forma tradicional o manual. Para este proyecto se permitió la utilización de un software especializado en el área de matemática el cual ayudó en el análisis matemático de los problemas realizados y los cálculos necesarios para la solución de estos.

En este proyecto de matemática intermedia uno se podrán encontrar problemas relacionados a los temas vistos previamente en clase. Dichos problemas son: La desencriptación de mensajes aplicando el tema de matrices y sus métodos de solución, la solución de integrales con sus gráficas aplicando el tema de métodos de integración y la utilización del software para la creación de dichas gráficas, también se pueden encontrar problemas de integrales definidas las cuales fueron resueltas aplicando diferentes métodos de aproximación. Todos estos problemas fueron dados con el propósito de aprender y practicar la organización en un trabajo grupal.

<u>Índice</u>

Introducción	2
Índice	3
Objetivos	4
Descripción teórica de los métodos	5
Problema 1a y 1b	5
Problema 2	6
Problema 3	6
Aproximación por el método de Simpson	
Aproximación por el método del Trapecio	7
Solución y resultados	8
Problema 1a (Primera parte)	
Problema 1a (Segunda parte)	9
Problema 1b	10
Respuestas problema 1	11
Problema 2	12
Integral impropia	12
Comentario integral impropia	13
Problema 3	12
Método de Simpson	14
Método del Trapecio	15
Conclusiones	16
Bibliografía	17

Objetivos

- Determinar el mensaje encriptado de la matriz dada por medio de una matriz código a través de operaciones entre matrices.
- Obtener las incógnitas de las matrices utilizando la matriz inversa.
- Hallar el valor de la integral definida por medio de la realización de la suma de varias integrales impropias.
- Encontrar los valores de integrales definidas por medio de métodos de aproximación.

Descripción teórica de los métodos

• Problema 1a y 1b

Tenemos la Matriz código "M", a la cual se le debe sacar su Matriz inversa.

Para obtener la matriz inversa se puede realizar por medio de 2 métodos, los cuales son

- 1. Por operaciones elementales:
 - Se opera mediante la matriz original y la matriz identidad. Utilizando operaciones entre filas, llevamos del lado de la matriz original a la matriz identidad, y la matriz resultante será la inversa.
- 2. Por cofactores.

Se debe obtener el determinante de la matriz. Luego, obtener la matriz de cofactores. La tenerla, obtenemos su transpuesta que es la matriz Adjunta. Finalmente, multiplicamos la matriz adjunta por 1 sobre el determinante y obtenemos la inversa.

Con la matriz inversa obtenido, procedemos a multiplicarla por la matriz encriptada que nos proporciona el problema.

Para poder hacer una multiplicación de matrices, es necesario que el tamaño de columnas de la primera matriz sea igual al tamaño de filas de la segunda matriz.

La matriz resultante tendrá la cantidad de filas de la primera matriz y la cantidad de columnas de la segunda matriz.

Al tener la nueva matriz, es necesario realizar un sistema de ecuaciones para poder obtener el valor de las variables de nuestra matriz "M"

Para ello, optamos a tomar, de la nueva matriz, las posiciones "11", "21", "31" ya que el resultado se debe leer entre columnas.

Para resolver las incógnitas, formamos un sistema de 3 ecuaciones con 3 incógnitas.

El sistema puede resolverse de varias formas, unos de los más utilizados en matrices es el método de Gauss y Gauss-Jordan.

Ya con los datos de las variables, los sustituimos en la matriz M código.

Sacamos la nueva matriz inversa

Volvemos a multiplicar la matriz inversa por la matriz proporcionada en el problema.

El resultado es la matriz desencriptada, en la cual solo queda sustituir los números por los caracteres correspondientes.

Problema 2

Integrales impropias:

Es el límite de una integral definida cuando uno o ambos extremos del intervalo de integración se acercan a un número real específico. Además, una integral definida es impropia cuando la función integrando de la integral definida no es continua en todo el intervalo de integración. También se pueden dar ambas situaciones.

Tenemos la función dada:

$$f(x) = \frac{1}{x(\ln x)^2}$$

la cual, debemos integrarla definida de la siguiente manera

$$\int_0^\infty \frac{1}{x(\ln x)^2} dx$$

Para verificar si existen alguna discontinuidad en el intervalo de la integral, debemos valuar la función con los límites de integración.

Como el resultado nos da formas indeterminadas procedemos a separar la integral como la suma de varias integrales impropias.

$$\int_0^{\frac{1}{2}} \frac{1}{x(\ln x)^2} dx + \int_{\frac{1}{2}}^1 \frac{1}{x(\ln x)^2} dx + \int_1^3 \frac{1}{x(\ln x)^2} dx + \int_3^\infty \frac{1}{x(\ln x)^2} dx$$

Problema 3

Aproximación por el Método de Simpson

Para empezar, se procede por hallar el valor de Δx , el cual se obtiene por la siguiente ecuación:

$$\Delta X = \frac{b-a}{n}$$

donde

- o b es el límite superior de la integral
- o a es el límite inferior de la integral
- o n es el valor de intervalos proporcionados

Luego, obtenemos los valores de xi por medio de la ecuación:

$$x_i = a + i\Delta x$$

Con los valores de x_i los valuamos en la función proporcionada.

Los valores de la función valuada en cada x_i , se debe multiplicar por ciertas constantes, las cuales siguen el patrón 1,4,2,4,2,4,2,4,1

Para este método de aproximación es necesario que el valor n sea un número par.

Luego se procede a realizar la aproximación por medio de la siguiente ecuación:

$$S_n = \frac{\Delta x}{3} \sum_{i=1}^n (cf(x_i))$$

Aproximación por el Método del Trapecio

Para empezar, se procede por hallar el valor de Δx , el cual se obtiene por la siguiente ecuación:

$$\Delta x = \frac{b - a}{n}$$

donde

- o b es el límite superior de la integral
- o a es el límite inferior de la integral
- o n es el valor de intervalos proporcionados

Luego, obtenemos los valores de x_i por medio de la ecuación:

$$x_i = a + i\Delta x$$

Con los valores de x_i los valuamos en la función proporcionada.

Los valores de la función valuada en cada x_i , se debe multiplicar por ciertas constantes, las cuales siguen el patrón 1,2,2,2,2,2,1

Para este método de aproximación es necesario que el valor n sea un número par.

Luego se procede a realizar la aproximación por medio de la siguiente ecuación:

$$T_n = \frac{\Delta x}{2} \sum_{i=1}^{n} (cf(x_i))$$

Solución y resultados

<u>Instrucción</u>									Pro	blen	na 1	l a (Prin	nera	part	<u>:e)</u>								
	105	101	73	134	66	160	156	98	109	138	98	88	137	125	129	66	146	100	92	54	138	137	75	78
Tenemos la																-								
matriz	-18	2	31	88	119	205	36	-24	24	9	94	21	80	94	140	10	44	94	82	14	78	80		51
encriptada	71	45	37	53	8	15	76	76	42	70	27	35	51	40	43	49	69	15	22	19	43	51	13	30
F	-4	-67	-2	34	89	44	8	39	-23	-13	30	- 69	2	-3	79	14	2	-3	3	- 12	13	2	77	7
	7	- 07		34	- 03		U	33	23	13	30	-		, ,	73	17			-	12	13		,,	,
	84	8	10	31	11	-50	81	126	42	81	1	30	14	-14	8	68	59	-14	17	23	48	14	23	9
											4	0	4	2 .	7									
Matriz código											1	_		_	2									
a utilizar											4				1									
w william											2			_)									
											0			2 -3	_									
											5	1	0 -	1 -2	2									
Procedemos a										2/3	- 5		2 3	1 -	1 9									
calcular la											_													
inversa de la matriz código										$-\frac{19}{3}$	58 9	_			3 <u>5</u> 9									
matriz codigo		$-\frac{4}{3} \frac{10}{9} \frac{7}{3} -\frac{2}{3} \frac{2}{9}$																						
		$\frac{7}{3} - \frac{19}{9} - \frac{7}{3} = \frac{5}{3} - \frac{11}{9}$																						
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																						
Multiplicamos										3	9	3	3	3	9									
la matriz			T	T _	T I	. 1		_		T	_							T .	_			_	_	
inversa por la		22	13	5	13	1	3 2	7 27	7 19	27	5	4	12	5	5 1	4 2:	1 5	4	9	19	12	5	5	
matriz		14	2	20	16	27	3 3	3 14	1	3	20	5	16	27 2	20 2	7 16	5 27	5	14	27	16	27 2	27	
proporcionada		27	19	27	27	6	9 2	2 22	2 4	16	17	27	27	30 3	33 2	1 2	7 5	14	1	5	27	3 2	20	
en el problema para		8	5	3	22	19	40 2	5 13	3 16	19	16	1	18	12 2	27 1	18	3 12	16	4	20	18	19	5	
obtener el		-	+-			$\overline{}$	_		_				\vdash	_	_	_	_	_			_		_	
mensaje		16	27	16	14	1	14 1	6 5	19	19	14	27	22	21	5 1	4 22	2 27	13	16	27	22	5 1	9	
encriptado																_								
Los caracteres						A = 1 H=8		B=2 I=9	9	C=3 J=10	52		=4 =11		=5 =12		F=6 N=13		G=7 N=14					
para cada número son						Ñ=15		0=16		P=17			18		=19		5=20		T=21					
los siguientes						U=22		V=23		X=24			25		=26									
<i>J. J. G. J. J</i>	Dáno	dole																					ldada	(é)
Obtenemos			(i) el . m a		la o t	ildad r	a (o	_			dada n	` /	1 32 y			a (,)	_			
el siguiente				r			0	С	c n	a (c s		0	S		0	e ı	n	0	_	_			
mensaje					r	_				d c				į,	t	€		a e		С	S			
monsage				_ <u>r</u>		C O	u r n a	n	y m o e		r o r n	а	q u	l e		q u	m	d s	q u	r e	e r			
		Ur	ı ho						ción			mera	ador								anto	aue	el	
		01	-10							-					ree s		Y		,			1		

									• • •	2050	ında	7441	ιυ,							
<u> </u>	2	2 1	69	143	93	50	114	90	84	132	192			154	153	37	79			
	2	22	16	20	1	27	5	5	9	16	13			5		1	40			
Tenemos la		-				-		-	_											
matriz	3	34	57	35	54	40	-3	12	51	-53	52	10	71	13	60	35	46			
encriptada		-				-		-				-								
	2	26 -	32	-40	-3	40	-39	42	-3	-81	-42	14	. 5	-47	-27	10	-5			
								1	0	5	1				•					
								0	1	_	0									
Matriz código								2	0	_	-3									
a utilizar								1	0	_	-2									
										,										
Durant								7 6	0	$-\frac{3}{2}$	<u>17</u> 6									
Procedemos a calcular la									1											
inversa de la								0	1	0	0									
matriz código								$-\frac{1}{6}$	0	$\frac{1}{2}$	$-\frac{5}{6}$									
									0	-1										
								$\frac{2}{3}$	U	-1	<u>4</u> 3									
Multiplicamos																				
la matriz		3	21	1	19	5	27	4	13	4	27	27	22	27	12 19	9 9)			
inversa por la	-				1											_				
matriz proporcionada	_	22	16	20	1	27	5	5	9	16	13	17	5	5	1 1	. 4	0			
en el		1	27	27	14	5	12	14	14	19	29	5	15	20	27 3	1	4			
problema para		14	13	7	4	20	27	16	1	33	20	18	1	27	6 3	()			
obtener el		14	13	,	7	20	27	10	1	33	20	10	1	21	0 3					
mensaje																				
encriptado																				
Los caracteres		10/01/0	= 1 =8		B=2 I=9	- 5	C=3		100	=4 =11		=5 =12		F=6 M=13		G=7 N=14				
para cada número son			:15	_	0=16	- 83	P=17			=18		=19		5=20		T=21				
los signientes			22		V=23	- G	X=2		у=	25	1707	=26								
105 Sigurentes	Dándole al espacio es																		tildada	ı (é)
01.	el 30, i t				1, y	$\overline{}$		_			u tile	dada	(ú) e	el 32	y a la	con	na (,)	el 33.		
Obtenemos		C	:	t i	a r	е	!	d	m	d			u		I	r	i			
el siguiente		u	1 (0	s a		е	е	i	0	m	р	е	е	a a	a d	ó			
mensaje		а	1		n	е	· I	n	n	r	á	е	ñ	S		c r	1			
		n	n	n į	g d	S		0	а	,	S	q	а		f	С				
																	_			
		Cua	nto	mas	grar	ide e	es el	deno	mir	nador	r. má	s ne	auef	ĭa es	la fra	acci	'n			

Instrucción									Pro	blem	a 1b								
Tenemos la	151	63	53	61	2	140	106	77	162	145	86	94	164	118	67	95	69	90	106
matriz	212	139	187	201	141	277	137	126	262	238	178	105	221	263	156	257	163	142	336
encriptada	56	86	82	78	156	56	76	-2	-35	65	9	-14	-20	94	-19	102	40	-27	74
	195	176	138	144	243	197	175	77	81	200	61	29	97	247	28	194	132	1	196
										0 4	1	7							
Matriz código										0 4 3 2	_	_							
a utilizar									-	$\cdot 1 0$	_	_							
										2 2									
				2	1			- 5			_	59			9	7	$\overline{}$	-	
Procedemos a			<u>51</u>	-21a	1 -59c+7	4		5 21 <i>a</i> -59			5 <i>b</i> −21	.a-59c	+74	51	-21a	7 -59c+7	4		
calcular la				5b+4c	-10			a+15c			4a	15b+1	.4		5a-10	0b+7c			
inversa de la				-21 <i>a</i> -3 3 <i>b</i> -27	59c+74	+		21a-5 3a+2c	9c+74 -2	+	5b-21	.a−59c +2b+6		51		-59c+7 +b+3c	4		
matriz código			10 <i>b</i>	42a-1	18c+1	48	10 <i>b</i>	42a-1	18c+14	8 10	0b-42a			10		-118c-	-148		
			51	b+5c	-2 59¢+74	. [- 51	a+4c	4 9c+74		4 <i>b</i> - 5 <i>b</i> -21	5a+12	74		2b-	a+6c 1−59c+	74		
36.10.11		30-21a-39e+/4 30-21a-39e+/4 30-21a-39e+/4 3b-21a-39e+/4																	
Multiplicamos la matriz																			
inversa por la		1800 5b-21a-59e+74																	
matriz		$151\frac{5b+4c-10}{5b-21a-59c+74} - 56\frac{4a-15b+14}{5b-21a-59c+74} - 212\frac{5a+15c-20}{5b-21a-59c+74} + 195\frac{5a-10b+7c}{5b-21a-59c+74}$																	
proporcionada																			
en el problema	50	$56\frac{\frac{27a+2b+6}{10b-42a-118c+148}-212\frac{3a+2c-2}{10b-42a-118c+148}+151\frac{3b-27c+36}{10b-42a-118c+148}-195\frac{18a+b+3c}{10b-42a-118c+148}$																	
(muestra de la	\vdash																		
primera columna)		$151\frac{b+5c-2}{5b-21a-59c+74} - 212\frac{a+4c-4}{5b-21a-59c+74} + 56\frac{4b-5a+12}{5b-21a-59c+74} - 195\frac{2b-a+6c}{5b-21a-59c+74}$																	
Realizar un																			
sistema de 3						1	1800	- 20	`										
ecuaciones con		51.	4- 10		4- 15		1800 a-59c+74				5- 10	L.7.							
3 incógnitas,	15	$1 \frac{5b+}{5b-21a}$	4c-10 2-59c+74	<u> – 56 </u>	5b-21a	59c+74	- 212			+ 195	5b-21a-	59c+74	= 9	, ;	Solutio	on is: [a=3	b = 4	c = -1
con la	$56\frac{27}{10b-42}$	a+2b+6 a-118c+1	$\frac{1}{48} - 2$	$12{10b}$	3a+2c 42a 11	2 8c+148	+ 151-	3b-2	7c+36 -118c+14	<u>-</u> – 19	$5\frac{1}{10b-4}$	8a+b+3a 2a-118a	+148 =	27					
condición que	200 12				124 22				1100.1		100								
el mensaje inicia con SI																			
Sustituimos a									5-1		7	1	59	37	٦				
b y c en la						3	0 4	-1		3	7 0 1	1 .	- <u>59</u> 90	37 90					
matriz código						4	3 2	3	1	$\frac{1}{15}$	_ :	<u>2</u> 9	17 45	$-\frac{16}{45}$					
y calculamos					⊢	_	_	_	-			_			-				
su inversa					Ŀ	-1 -	-1 0	5		5 12	-	1 36	19 36	$-\frac{11}{36}$					
						2 -	-2 2	7			1 0 1	1 8	13 90	1 90	1				
Volvens									_	3	U I	.0	90	90					
Volvemos a multiplicar la					20 9	9 1	5 5	27 5	22 33	3 19 9	9 5 2	27 27	17 5	21 5	26				
matriz inversa							27 4	22 4	5 2				22 33						
por la matriz						.4 18		20 27	4 1		_	22 16	5 27		9 14				
proporcionada					17 2	20 22	22 33	21 17	5 5	20 9	9 1	5 27	4 28	14 1	28				
en el																			
problema.																			
I	<u> </u>																		

Los caracteres			A =	1	B	=2		C=3		D=4		E=5	Ŋ	F=	6	G	=7]		
para cada			H=8	3	I:	-9		J=10	- 5	K=11		L=12	!	M=	13	N	=14			
número son los			Ñ=1	5	0=	16		P=17		Q=18		R=19)	5=	20	Т	=21			
			U=2	2	V=	23		X=24		Y=25		Z=26	5							
siguientes	Dándole al espaci					-						nillas tildad						` '		e tildada (é)
		, -		. ()		, ,			(-)	- ,			()	,				(3) -		
014																		—		
Obtenemos el	S	i	a	е	е		е	u	,	r	i	е			р	е	t	е	Z	
siguiente	i	е			d	u	d	е		0		n	q	n	u	,	i		ó	
mensaje		n	q	р	е	S		d	р		р	S	u	0	е		е	r	n	
	р	S	u	u	,	t	р	e	е	S	i	a	e		d	u	n	а	u	
	Si	i pie	nsa (que j	oued	le, us	sted	pued	e, pe	ero si	i pie	nsa c	jue i	10 pt	iede,	, "tie	ne ra	ızón	,,	

Respuestas - Problema 1

• Problema 1a:

Un hombre es como una fracción cuyo numerador corresponde a lo que él es, en tanto que el denominador es lo que cree ser cuanto mas grande es el denominador, más pequeña es la fracción.

• Problema 1b:

Si piensa que puede, usted puede, pero si piensa que no puede, "tiene razón"

Instrucciones	Problema 2
Tenemos la	$f(x) = \frac{1}{x(1-x)^2}$
siguiente función	$f(x) = \frac{1}{x(\ln x)^2}$
La gráfica de la función en el intervalo [-1,10] es	-2 -1 0 1 2 3 4 5 6 7 8 9 10 1
La integral	$\int_{-\infty}^{\infty} 1$
definida a	$\int_0^\infty \frac{1}{x(\ln x)^2} dx$
calcular es	V . ,
Separando la integral impropia como la suma de varias integrales obtenemos	$\int_0^{\frac{1}{2}} \frac{1}{x(\ln x)^2} dx + \int_{\frac{1}{2}}^1 \frac{1}{x(\ln x)^2} dx + \int_1^3 \frac{1}{x(\ln x)^2} dx + \int_3^\infty \frac{1}{x(\ln x)^2} dx$
Valuamos a mano cada integral impropia (Primera integral)	$\int_0^{\frac{1}{2}} \frac{1}{x(\ln x)^2} dx = \lim_{t \to 0^+} \int_0^{\frac{1}{2}} \frac{1}{x(\ln x)^2} dx$ $\int \frac{1}{x(\ln x)^2} dx = Sustitución u = \ln x, du = \frac{dx}{x}$
	$\int u(\ln x)^{2} x$ $\int u^{-2} du = \frac{-1}{u} Restituimos = \frac{-1}{\ln x} + c$ $\lim_{t \to 0^{+}} \frac{-1}{\ln x} en t y \frac{1}{2} = -\frac{1}{\ln^{\frac{1}{2}}} - 0$
Valuamos la segunda integral	$\int_{\frac{1}{2}}^{1} \frac{1}{x(\ln x)^{2}} dx = \lim_{t \to 1^{-}} \int_{\frac{1}{2}}^{1} \frac{1}{x(\ln x)^{2}} dx$ $\int \frac{1}{x(\ln x)^{2}} dx = Sustitución u = \ln x, du = \frac{dx}{x}$ $\int u^{-2} du = \frac{-1}{u} Restituimos = \frac{-1}{\ln x} + c$ $\lim_{t \to 1^{-}} \frac{-1}{\ln x} en \frac{1}{2} y t = \infty + \frac{1}{\ln^{\frac{1}{2}}}$ $\int_{1}^{3} \frac{1}{x(\ln x)^{2}} dx = \lim_{t \to 1^{+}} \int_{1}^{3} \frac{1}{x(\ln x)^{2}} dx$ $\int \frac{1}{x(\ln x)^{2}} dx = \frac{-1}{\ln x} = \lim_{t \to 1^{+}} \frac{-1}{\ln x} en \ 1y \ 3 = -\frac{1}{\ln 3} - \infty$
Valuamos la tercera integral	$\int_{1}^{3} \frac{1}{x(\ln x)^{2}} dx = \lim_{t \to 1^{+}} \int_{1}^{3} \frac{1}{x(\ln x)^{2}} dx$ $\int \frac{1}{x(\ln x)^{2}} dx = \frac{-1}{\ln x} = \lim_{t \to 1^{+}} \frac{-1}{\ln x} en \ 1y \ 3 = -\frac{1}{\ln 3} - \infty$

Valuamos la cuarta integral	$\int_{3}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \lim_{t \to \infty^{-}} \int_{3}^{\infty} \frac{1}{x(\ln x)^{2}} dx$ $\int \frac{1}{x(\ln x)^{2}} dx = \frac{-1}{\ln x} = \lim_{t \to \infty^{-}} \frac{-1}{\ln x} en \ 3 e \infty = 0 + \frac{1}{\ln 3}$
Uniendo todas las integrales y	$-\frac{1}{\ln^{1}/2} + \infty + \frac{1}{\ln^{1}/2} - \frac{1}{\ln^{3}} - \infty + \frac{1}{\ln^{3}}$
procediendo a sumarlas tenemos	· <u>2</u>
lo siguiente	= ∞
El resultado a	
mano de la	Diverge
integral impropia	
es	
Evaluación de la	
integral por	$\int_{-1}^{\frac{1}{2}} 1 dx + \int_{-1}^{1} 1 dx + \int_{-1}^{3} 1 dx + \int_{-1}^{\infty} 1 dx = -2$
medio de	$\int_0^{\frac{1}{2}} \frac{1}{x(\ln x)^2} dx + \int_{\frac{1}{2}}^1 \frac{1}{x(\ln x)^2} dx + \int_1^3 \frac{1}{x(\ln x)^2} dx + \int_3^\infty \frac{1}{x(\ln x)^2} dx = \infty$
Scientific	
Notebook	

Comentario:

Observando toda la gráfica de la función obtenemos que existe una asíntota vertical en x=1 por lo cual se procede a hacer la sumatoria de varias integrales impropias.

Ambos procedimientos, a mano y en el programa computacional se llega a la conclusión que la integral impropia DIVERGE.

<u>Instrucciones</u>		Problem	a 3 (i) Métod	lo Simpson		
Tenemos la		$\int_{0}^{\pi} \sin \theta$	$\frac{dx}{dx} dx donde$	p = 20		
integral definida		$\int_0^{\cdot} 1 +$	+x	t = 20		
como						
Calculamos el			$\pi - 0$			
valor de Δx		Δx	$=\frac{\pi-0}{20}=0$.1571		
Calculamos los			0 . 0(0.457	(1) 0		
valores de x _i		$x_i =$	0 + 0(0.157)	1) = 0		
	i	Xi	f(x _i)	С	cf(x _i)	
	0	0	0	1	0	
	1	0.1571	1.3520E-01	4	0.5408	
	2	0.3142	2.3514E-01	2	0.4703	
	3	0.4712	3.0858E-01	4	1.2343	
	4	0.6283	3.6098E-01	2	0.7220	
	5	0.7854	3.9605E-01	4	1.5842	
	6	0.9425	4.1649E-01	2	0.8330	
	7	1.0996	4.2438E-01	4	1.6975	
A managa nyagtra	8	1.2566	4.2145E-01	2	0.8429	
Armamos nuestra tabla	9	1.4137	4.0920E-01	4	1.6368	
taoia	10	1.5708	3.8898E-01	2	0.7780	
	11	1.7279	3.6207E-01	4	1.4483	
	12	1.8850	3.2966E-01	2	0.6593	
	13	2.0420	2.9290E-01	4	1.1716	
	14	2.1991	2.5289E-01	2	0.5058	
	15	2.3562	2.1069E-01	4	0.8427	
	16	2.5133	1.6730E-01	2	0.3346	
	17		1.2369E-01	4	0.4948	
	18	2.8274	8.0737E-02	2	0.1615	
	19	2.9845	3.9261E-02	4	0.1570	
	20	3.1416	2.9582E-17	1	0.0000	
	Total				16.1153	
Procedemos a			. n			
utilizar la ecuación del		Sr	$a_{1} = \frac{\Delta x}{3} \sum_{i=1}^{n} (cf(x))^{i}$	(x_i)		
		- 1	$3 \stackrel{\frown}{\underset{i=1}{\longleftarrow}} $	<i>、 ,,,</i>		
Sustituyendo		0.1	571 2 0			
valores tenemos		$S_{20} = \frac{3.1}{3.1}$	$\sum_{i=1}^{n-1} \sum_{i=1}^{n-1} (cf(x_i))^{n-1}$)) = 0.8438		
		•	$\overline{i=1}$			
-			$\frac{571}{3} \sum_{i=1}^{20} (cf(x_i))^{2i}$			

Instrucciones		Problema	3 (ii) Métod	do Trapecio		
Tenemos la integral definida como		$\int_0^1 \frac{1}{x^2 + x^2}$	$\frac{1}{x+1}dx \ don$	nde n = 18		
Calculamos el valor de Δx		Δx	$= \frac{1-0}{18} = 0$.0556		
Calculamos los valores de x _i		$x_i =$	0 + 0(0.055	66) = 0		
	i	Xi	f(x _i)	С	cf(x _i)	
	0	0	1	1	1	
	1	0.0556	0.9446	2	1.8892	
	2	0.1111	0.8901	2	1.7802	
	3	0.1667	0.8372	2	1.6744	
	4	0.2222	0.7864	2	1.5728	
	5	0.2778	0.7380	2	1.4761	
	6	0.3333	0.6923	2	1.3846	
	7	0.3889	0.6493	2	1.2986	
	8	0.4444	0.6090	2	1.2180	
Armamos nuestra	9	0.5000	0.5714	2	1.1429	
tabla	10	0.5556	0.5364	2	1.0728	
	11	0.6111	0.5039	2	1.0078	
	12	0.6667	0.4737	2	0.9474	
	13	0.7222	0.4457	2	0.8913	
	14	0.7778	0.4197	2	0.8394	
	15	0.8333	0.3956	2	0.7912	
	16	0.8889	0.3733	2	0.7465	
	17	0.9444	0.3526	2	0.7051	
	18	1.0000	0.3333	1	0.3333	
	Total				21.7718	
Procedemos a utilizar la ecuación del método de Simpson Sustituyendo			$= \frac{\Delta x}{2} \sum_{i=1}^{n} (cf)$			
valores tenemos		$S_{18} = \frac{0.03}{2}$	$\frac{556}{2} \sum_{i=1}^{18} (cf(x_i))^{18}$)) = 0.6048		

Conclusiones

- El uso de software matemáticos es muy útil, ya que existen problemas en los cuales, hacer evaluaciones a mano tienden a ser demasiados complejos.
- Las matrices se pueden resolver por diferentes métodos y pueden sirven para encontrar soluciones a diferentes problemas incluyendo mensajes ocultos (mensajes encriptados).
- Las integrales definidas deben evaluarse tomando en cuenta siempre que los límites de integración estén dentro del dominio de la función a operar.
- El método de valor aproximado Simpson siempre usa un número par de diferenciales bajo la curva y se calcula utilizando parábolas que pasan por 3 puntos para la aproximación de sus valores.

Bibliografía

- Calculo Transcendentes tempranas. James Stewart Cengage. Octava Edición
- Software Scientific Notebook Version 5.5
- Software Microsoft Excel 2019
- Software Microsoft Word 2019
- Álgebra Lineal una introducción moderna. David Poole. CENGAGE Learning, segunda edición.
- https://es.wikipedia.org/wiki/Integral impropia