

УНИВЕРЗИТЕТ У НОВОМ САДУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

УНИВЕРЗИТЕТ У НОВОМ САДУ
ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА
НОВИ САД
Департман за рачунарство и аутоматику

Департман за рачунарство и аутоматику Одсек за рачунарску технику и рачунарске комуникације

ИСПИТНИ РАД

Кандидати: Филип Јашић Број индекса: РА46/2014

Предмет: Основи алгоритама и структура ДСП 1

Тема рада: Реализација система за додавање и уклањање шума из

сигнала

Ментор рада: проф. др Миодраг Темеринац

Нови Сад, јануар, 2018.

Садржај

1. Увод	2
1.1 Предајник	3
1.2 Пријемник	3
2. Концепт решења	3
2.1 Предајник	3
2.2 Пријемник	5
3. Тестирање	6

1. Увод

Систем који је потребно реализовати састоји се из 2 дела: блока за додавање шума у сигнал и блока за уклањање шума из говорног звучног сигнала. Шум који се додаје у говорни сигнал јесте тзв. Периодични шум. Периодични шум представља једну или више синусоидалних компоненти које се јављају на одређеним фреквенцијама. Овакав тип шума најчешће јавља се у системима за обраду сигнала као последица спољног утицаја на компоненте система. Један пример појаве оваквог шума у системима за обраду звука јесте појава нискофреквентне компоненте, фреквенције наизменичне струје (50Hz) код појачивачких уређаја. Овакав тип шума најчешће се уклања користећи ускопојасни филтар непропусник опсега (енг. *notch*).

У основи блок за додавање шума се састоји од једног сабирача и једног генератора синусоидалних сигнала који су коначног трајања. Генератор сигнала потребно је имплементирати користећи табелу претраживања која садржи само вредности синуса у првом квадранту.

За потребе испитивања система потребно је омогућити кориснику да одабере једну од могућих 4 фреквенције генерисаног сигнала (задате у табели испод).

Тастер	1	2	3	4
f	1520	1980	2490	3110

(табела претраживања фреквенција за сваки симбол)

1.1 Предајник

Дигитални предајник се састоји од једног сабирача и два генератора синусидалних сигнала који су коначног трајања. У зависности од притиснуте типке генерише се шум чије су фреквенције горе наведене. Шум се генерише све док је тастер притиснут.

1.2 Пријемник

Блок за уклањање шума састоји се из два дела: препознавање фреквенције присутног шума и филтрирање сигнала користрећи *notch* филтер. У меморију уређаја потребно је сместити унапред израчунате коефицијенте 4 различита *notch* филтра. Након препознавања фреквенције шума у сигналу, потребно је на сигнал применити одговарајући *notch* филтер за потискивање те фреквенције.

(Слика комуникационог система двотонског преноса)

2. Концепт решења

За успешно тестирање решења неопходно је повезати две *TMS320C55x* платформе помоћу 3.5*mm* кабла при чему је потребно да на предајнику кабел буде повезан на *LineOut* излаз, а на пријемнику да буде повезан на *LineIn* улаз.

2.1 Предајник

Корисник притисцима тастера SW1 одабира који карактер жели да емитује. Сваким притиском тастера карактер се мења и исписује на LCD дисплеју.Сваки од карактера који су у оптицају за емитовање су кодирани на јединствен начин помоћу наведених фреквенција у форе наведеној таблици.

Емитовање шума везаног за одабрани карактер се врши генерисањем синусоиде коришћењем табеле претраживања (*Lookup* табеле). Њу смо претходно генерисали у засебном програму и она садржи 2048 елемента, али користимо само њему четвртину. Такође потребно је да се памти и фазни померај након генерисања једног блока одбирака који је величине 128 одбирака како би се простопериодичан сигнал наставио тамо где је стао у претходној итерацији генерисања одбирака. Реализација памћења фазног помераја је остварена памћењем броја претходно генерисаних одбирака и на основу тога се рачуна текући померај.

(Слика генерисаног шума у временском домену)

2.2 Пријемник

Пријемник прихвата емитоване сигнале од стране предајника и на основу њихових фреквенција треба да одреди који од карактера је послат. Сигнал се прихвата у бафер који прима 128 одбирака, а бафер над којим се врши *FFT* (брза Фуријеова трансформација) има 256 одбирака па је тако неопходно памћење и претходно примљених одбирака како би се тај бафер попунио (пола старе вредности, пола нове). *FFT* вршимо како би одредили од којих простопериодичних компоненти се састоји примљени сигнал.

(Слика примљеног сигнала у временском домену)

Пре примене FFT, потребно је применити и прозорску функцију над бафером да би се смањио ефекат прозорирања настао блоковском обрадом сигнала. У овом задатку коришћена је Hann прозорска функција.

За успешно декодирање примљеног сигнала потребно је и одредити значајне компоненте (одбирке које су по фреквенцијама најближи могућим генерисаним фреквенцијама).

На крају, да би се шум успешно филтрирао и његова одговарајућа фреквенција на основу изабраног знака исписала на LCD дисплеју пријемника, излазни сигнал пријемника мора да буде исти као сигнал на улазу предајника.

3. Тестирање

Тестирање је извршено повезивањем пријемника и предајника, а затим емитовањем сигнала уз додавање различите фреквенције шума.