```
In [1]:
         %load_ext autoreload
         %autoreload 2
         %matplotlib inline
In [2]:
         import sys
         import os
         # add library module to PYTHONPATH
        sys.path.append(f"{os.getcwd()}/../")
In [3]:
        import sklearn
         from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
        from dtreeviz.models.sklearn_decision_trees import ShadowSKDTree
         import graphviz
         import pandas as pd
         from dtreeviz.models.shadow_decision_tree import ShadowDecTree
         from dtreeviz.models.sklearn_decision_trees import ShadowSKDTree
         from dtreeviz import trees
         from sklearn import tree
```

Classifier

```
In [4]:
    random_state = 1234
    dataset = pd.read_csv("../data/titanic/titanic.csv")
# Fill missing values for Age
    dataset.fillna({"Age":dataset.Age.mean()}, inplace=True)
# Encode categorical variables
    dataset["Sex_label"] = dataset.Sex.astype("category").cat.codes
    dataset["Cabin_label"] = dataset.Cabin.astype("category").cat.codes
    dataset["Embarked_label"] = dataset.Embarked.astype("category").cat.codes
    features = ["Pclass", "Age", "Fare", "Sex_label", "Cabin_label", "Embarked_label"]
    target = "Survived"
    tree_classifier = DecisionTreeClassifier(max_depth=4, random_state=random_state)
    tree_classifier.fit(dataset[features], dataset[target])
```

Out[4]: DecisionTreeClassifier(max_depth=4, random_state=1234)

Initialize shadow tree

```
In [5]: sk_dtree = ShadowSKDTree(tree_classifier, dataset[features], dataset[target], features, target, [0, 1])
```

Visualizations

viz_leaf_samples

```
In [6]: trees.viz_leaf_samples(tree_classifier, dataset[features], features)
```


ctreeviz_leaf_samples

In [9]: trees.ctreeviz_leaf_samples(sk_dtree)

dtreeviz

show just path

```
In [12]: trees.dtreeviz(sk_dtree, show_just_path=True, X = dataset[features].iloc[10])
```

Out[12]:

viz_leaf_criterion

describe_node_sample

In [15]: trees.describe_node_sample(tree_classifier, node_id=10, x_data=dataset[features], feature_names=features

Out[15]:	Pclass		Age Fare		Sex_label	Cabin_label	Embarked_label	
	count	117.0	117.000000	117.000000	117.0	117.000000	117.000000	
	mean	3.0	23.976667	11.722829	0.0	6.196581	1.341880	
	std	0.0	10.534377	4.695136	0.0	31.167855	0.789614	
	min	3.0	0.750000	6.750000	0.0	-1.000000	0.000000	
	25%	3.0	18.000000	7.775000	0.0	-1.000000	1.000000	
	50%	3.0	27.000000	9.587500	0.0	-1.000000	2.000000	
	75%	3.0	29.699118	15.500000	0.0	-1.000000	2.000000	
	max	3.0	63.000000	23.250000	0.0	145.000000	2.000000	

In [16]: trees.describe_node_sample(sk_dtree, node_id=10)

t[16]:		Pclass	Age	Fare	Sex_label	Cabin_label	Embarked_label
	count	117.0	117.000000	117.000000	117.0	117.000000	117.000000
	mean	3.0	23.976667	11.722829	0.0	6.196581	1.341880
	std	0.0	10.534377	4.695136	0.0	31.167855	0.789614
	min	3.0	0.750000	6.750000	0.0	-1.000000	0.000000
	25%	3.0	18.000000	7.775000	0.0	-1.000000	1.000000
	50%	3.0	27.000000	9.587500	0.0	-1.000000	2.000000
	75%	3.0	29.699118	15.500000	0.0	-1.000000	2.000000
	max	3.0	63.000000	23.250000	0.0	145.000000	2.000000

explain_prediction_path

In [17]: X = dataset[features].iloc[10]
X

Out[17]: Pclass 3.0
Age 4.0
Fare 16.7
Sex_label 0.0
Cabin_label 145.0
Embarked_label 2.0
Name: 10, dtype: float64

```
In [18]:
           print(trees.explain_prediction_path(tree_classifier, X, feature_names=features, explanation_type="plain_
          Age < 36.5
          Fare < 23.35
          Sex label < 0.5
In [19]:
           trees.explain_prediction_path(tree_classifier, X, feature_names=features, explanation_type="sklearn_defa
Out[19]: <AxesSubplot:xlabel='features', ylabel='feature importance'>
             0.7
             0.6
          feature importance
             0.5
             0.4
             0.3
             0.2
             0.1
             0.0
                        Pclass
                                                 Fare
                                                                        Cabin_label
                                     Age
                                                                                  Embarked_label
                                                            Sex_label
```

Regressor

```
features_reg = ["Pclass", "Fare", "Sex_label", "Cabin_label", "Embarked_label", "Survived"]
    target_reg = "Age"
    tree_regressor = DecisionTreeRegressor(max_depth=3, random_state=random_state, criterion="mae")
    tree_regressor.fit(dataset[features_reg], dataset[target_reg])

Out[20]: DecisionTreeRegressor(criterion='mae', max_depth=3, random_state=1234)

In [21]: sk_dtree_reg = ShadowSKDTree(tree_regressor, dataset[features_reg], dataset[target_reg], features_reg, t
```

features

Visualizations

dtreeviz

```
In [22]: trees.dtreeviz(tree_regressor, dataset[features_reg], dataset[target_reg], features_reg, target_reg)

Out[22]:
```


show just path

```
In [23]:
            x = dataset[features_reg].iloc[10]
Out[23]: Pclass
                                  3.0
                                 16.7
           Sex_label
                                  0.0
           Cabin_label
           Embarked label
           Survived
                                   1.0
           Name: 10, dtype: float64
In [24]:
            trees.dtreeviz(sk_dtree_reg, show_just_path=True, X = x)
Out[24]:
                                   Pclass
                                Cabin_label
                                 Age=20.09
n=13
                                   Prediction
                                    24.00
             Pclass Fare Sex_label Cabin_label Embarked_label Survived
              3.00 16.70
                                 145.00
```

viz_leaf_samples

```
In [25]: trees.viz_leaf_samples(tree_regressor, dataset[features_reg], features_reg)
```


viz_leaf_criterion

trees.viz_leaf_criterion(sk_dtree_reg)

viz_leaf_target

In [29]: trees.viz_leaf_target(tree_regressor, dataset[features_reg], dataset[target_reg], features_reg, target_r

In [30]: trees.viz_leaf_target(sk_dtree_reg)

describe_node_sample

In [31]: trees.describe_node_sample(tree_regressor, node_id=1, x_data=dataset[features], feature_names=features_r

Out[31]:		Pclass	Fare	Sex_label	Cabin_label	Embarked_label	Survived
	count	216.0	216.000000	216.000000	216.000000	216.000000	216.000000
	mean	1.0	37.048118	84.154687	0.564815	54.773148	1.175926
	std	0.0	14.046369	78.380373	0.496933	43.781906	0.996073
	min	1.0	0.920000	0.000000	0.000000	-1.000000	-1.000000
	25%	1.0	29.000000	30.923950	0.000000	13.750000	0.000000

	Pclass	Fare	Sex_label	Cabin_label	Embarked_label	Survived
50%	1.0	35.000000	60.287500	1.000000	53.500000	2.000000
75%	1.0	47.250000	93.500000	1.000000	91.250000	2.000000
max	1.0	80.000000	512.329200	1.000000	146.000000	2.000000

In [32]: trees.describe_node_sample(sk_dtree_reg, node_id=1)

Out[32]:	Pclass		Fare	Sex_label	Cabin_label	Embarked_label	Survived
	count	216.0	216.000000	216.000000	216.000000	216.000000	216.000000
	mean	1.0	84.154687	0.564815	54.773148	1.175926	0.629630
	std	0.0	78.380373	0.496933	43.781906	0.996073	0.484026
	min	1.0	0.000000	0.000000	-1.000000	-1.000000	0.000000
	25%	1.0	30.923950	0.000000	13.750000	0.000000	0.000000
	50%	1.0	60.287500	1.000000	53.500000	2.000000	1.000000
	75%	1.0	93.500000	1.000000	91.250000	2.000000	1.000000
	max	1.0	512.329200	1.000000	146.000000	2.000000	1.000000

explain_prediction_path

```
In [33]:
                                         X_reg = dataset[features_reg].iloc[10]
                                         X_reg
                                                                                                                      3.0
Out[33]: Pclass
                                                                                                                   16.7
                                      Sex_label
                                                                                                                     0.0
                                      Cabin_label
                                                                                                               145.0
                                      Embarked label
                                                                                                                      2.0
                                      Survived
                                                                                                                      1.0
                                      Name: 10, dtype: float64
In [34]:
                                         print(trees.explain_prediction_path(tree_regressor, X_reg, feature_names=features_reg, explanation_type=
                                      1.5 \le Pclass
                                      Fare < 27.82
                                      139.5 <= Cabin_label
In [35]:
                                         print(trees.explain_prediction_path(sk_dtree_reg, X_reg, "plain_english"))
                                      1.5 <= Pclass
                                      Fare < 27.82
                                      139.5 <= Cabin_label
In [36]:
                                         trees.explain_prediction_path(tree_regressor, X_reg, feature_names=features_reg, explanation_type="skleatures_reg, explanation_type="skleature
Out[36]: <AxesSubplot:xlabel='features', ylabel='feature importance'>
```



```
In [37]: print(trees.explain_prediction_path(sk_dtree_reg, X_reg, explanation_type="sklearn_default"))
```


rtreeviz_univar

Regression tree depth 2, samples per leaf 1,


```
In [41]: trees.rtreeviz_univar(skdtree_univar)
```


rtreeviz_bivar_3D

```
In [42]:
    features_reg_bivar = ["Age", "Fare"]
    target_reg = "Pclass"
    dtr_bivar = DecisionTreeRegressor(max_depth=3, random_state=random_state, criterion="mae")
    dtr_bivar.fit(dataset[features_reg_bivar], dataset[target_reg])
```

Out[42]: DecisionTreeRegressor(criterion='mae', max_depth=3, random_state=1234)

```
In [43]: skdtree_bivar = ShadowSKDTree(dtr_bivar, dataset[features_reg_bivar], dataset[target_reg], features_reg_
```

In [44]: trees.rtreeviz_bivar_3D(dtr_bivar, dataset[features_reg_bivar], dataset[target_reg], features_reg_bivar,

Regression tree depth 3, training R^2 =0.568


```
In [45]: trees.rtreeviz_bivar_3D(skdtree_bivar)
```

Regression tree depth 3, training R^2 =0.568

rtreeviz_bivar_heatmap

```
features_reg_bivar = ["Pclass", "Fare"]
target_reg = "Age"
dtr_bivar = DecisionTreeRegressor(max_depth=3, random_state=random_state, criterion="mae")
dtr_bivar.fit(dataset[features_reg_bivar], dataset[target_reg])
```

Out[46]: DecisionTreeRegressor(criterion='mae', max_depth=3, random_state=1234)

```
In [47]: skdtree_bivar = ShadowSKDTree(dtr_bivar, dataset[features_reg_bivar], dataset[target_reg], features_reg_

In [48]: trees.rtreeviz_bivar_heatmap(dtr_bivar, dataset[features_reg_bivar], dataset[target_reg], features_reg_bivar]
```



```
In [49]:
```

