13BS1003 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, July-2016 ENGINEERING MATHEMATICS-III (Common to CE, EEE, ME, ECE, CSE & IT)

Time: 3 hours Max Marks:70

PART-A

Answer all questions

 $[10 \times 1 = 10M]$

- 1 (a) Define echelon form of a matrix.
 - (b) Find the sum and product of the eigen values of the matrix $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$.
 - (c) Find the matrix of the quadratic form $x^2 6xy + 3y^2$.
 - (d) State Cayley-Hamilton theorem.
 - (e) If f(x) = x in $(-\pi, \pi)$, then find the Fourier coefficient a_2 .
 - (f) State complex form of Fourier integral of a function..
 - (g) Find the finite Fourier sine transform of $f(x) = \sin ax$ in $(0, \pi)$.
 - (h) Find the inverse Z transform of $\frac{4z}{z-a}$.
 - (i) Write the relation between beta and gamma functions.
 - (j) Evaluate $\int_{0}^{\pi/2} \sqrt{\cot \theta} \ d\theta.$

PART-B

Answer one question from each unit.

 $[5 \times 12 = 60M]$

2 (a) Find the rank of $A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ 4 & 2 & 2 & -1 \\ 2 & 2 & 0 & -1 \end{bmatrix}$

[6M+6M]

(b) For what values of k the equations x + y + z = 1, 2x + y + 4z = k, $4x + y + 10z = k^2$ have a solution and solve them completely in each case.

(OR)

- 3 (a) Test the following system for consistency and if consistent solve it x + 2y + z = 3, 2x + 3y + 2z = 5, 3x 5y + 5z = 2, 3x + 9y z = 4. [6M+6M]
 - (b) Express the following system in matrix form and solve by Gauss elimination method: $2x_1 + x_2 + 2x_3 + x_4 = 6$, $6x_1 6x_2 + 6x_3 + 12x_4 = 36$, $4x_1 + 3x_2 + 3x_3 3x_4 = -1$, $2x_1 + 2x_2 x_3 + x_4 = 10$.

UNIT-II

- 4 (a) Determine the eigen values and eigen vectors of $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$. [6M+6M]
 - (b) Verify Caley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and find A^{-1} .

(OR)

5. Diagonalize the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ and hence find A^4 . [12M]

UNIT-III

6 (a) Obtain the Fourier series to represent $f(x) = \frac{1}{4}(\pi - x)^2$ in $0 < x < 2\pi$.

Hence show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$.

(b) Find the Fourier transform of $e^{-x^2/2}$, $-\infty < x < \infty$.

[6M+6M]

(OR)

- 7 (a) Find the Fourier series to represent $f(x) = x^2 2$, when $-2 \le x \le 2$.
 - (b) Find the Fourier transform of f(x) defined by $f(x) = \begin{cases} 1 x^2, & \text{if } |x| \le 1 \\ 0, & \text{if } |x| > 1 \end{cases}$.

Hence evaluate $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx.$

[6M+6M]

UNIT-IV

- 8 (a) Find $Z[\cosh at \sin bt]$.
 - (b) Solve the difference equation using Z transform: $u_{n+2} 3u_{n+1} + 2u_n = 0$ given that $u_0 = 0, u_1 = 1.$ [4M+8M]

(OR

- 9 (a) If $f(z) = \frac{2z^2 + 3z + 4}{(z-3)^3}$, |z| > 3, then find the values of f(1), f(2) and f(3).
 - (b) Using Convolution theorem, find $Z^{-1} \left[\frac{z^2}{(z-4)(z-5)} \right]$. [6M+6M]

UNIT-V

10 (a) Show that $\int_{0}^{1} y^{q-1} \left(\log \frac{1}{y} \right)^{p-1} dy = \frac{\Gamma(p)}{q^{p}}$, where p>0, q>0.

(b) Prove that $\Gamma\left(n+\frac{1}{2}\right) = \frac{\Gamma(2n+1)\sqrt{\pi}}{2^{2n}\Gamma(n+1)}$. **[6M+6M]**

(OR)

- 11 (a) Show that $\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx$.
 - (b) Evaluate $\int_{0}^{1} x^{4} \left(\log \frac{1}{x} \right)^{3} dx$. **[6M+6M]**