Resumo Somatórios

696809 - Marco Aurélio Silva de Souza Júnior

¹Faculdade de Ciência da Comutação – PUC Minas Av. Dom José Gaspar, 500, Coração Eucarístico - Belo Horizonte - MG, Brasil

1. Definição

Somatórios são operadores matemáticos usados para simplificar uma sucessão de adições, finita ou infinita, com parcelas que respeitam algum padrão entre si. São denotados pela letra grega sigma maiúsculo (\sum).

Sua definição pode ser exposta como:

$$\sum_{i=m}^{n} x_i = x_m + x_{m+1} + x_{m+2} + \dots + x_{n-1} + x_n$$

Onde:

 x_i : variável indexada que representa cada termo do somatório;

m: indice inicial;

n: índice final; e

i: índice do somatório, onde o primeiro valor de i é m e o último é n.

2. Algumas propriedades

- 1. $\sum_{i=m}^{n} \alpha.x_i = \alpha \sum_{i=m}^{n} x_i$. 2. $\sum_{i=m}^{n} (x_i \pm y_i) = \sum_{i=m}^{n} x_i \pm \sum_{i=m}^{n} x_i$.
- 3. $\sum_{i=m}^{m} x_i = x_m$.
- 4. $\sum_{i=m}^{n} x_i = \sum_{i=m}^{m} x_i + \sum_{i=p+1}^{n} x_i, \forall m \le p \le n.$

- 4. $\sum_{i=m}^{n} x_{i} = \sum_{i=m}^{n} x_{i} + \sum_{i=p+1}^{n} x_{i}, \forall m \leq p \leq n.$ 5. $\sum_{i=m}^{n} = \sum_{i=m+p}^{n+p} x_{i-p}.$ 6. $\sum_{i=m}^{n} (x_{i+1} x_{i}) = x_{n+1} x_{m}.$ 7. $\sum_{i=m}^{n} \sum_{j=k}^{l} x_{i}.y_{i} = \sum_{i=m}^{n} x_{i} \sum_{j=k}^{l} y_{i}.$ 8. $|\sum_{i=m}^{n} x_{i}| \leq \sum_{i=m}^{n} |x_{i}|.$ 9. $\sum_{n=0}^{t} x_{2n} + \sum_{n=0}^{t} x_{2n+1} = \sum_{n=0}^{2t+1} x_{n}.$ 10. $\sum_{n=0}^{t} \sum_{i=0}^{z-1} x_{z,n+i} = \sum_{n=0}^{z,t+z-1} x_{n}.$ 11. $(\sum_{k=0}^{n} a_{k}).(\sum_{k=0}^{n} b_{k}) = \sum_{k=0}^{2n} \sum_{i=0}^{k} a_{i}b_{k-i} \sum_{k=0}^{n-1} (a_{k} \sum_{i=n+1}^{2n-k} b_{i} + b_{k} \sum_{i=n+1}^{2n-k} a_{i}).$