Deciding Persistence or Recurrence Membership

Alexandre Gbaguidi Aïsse

LRDE

Supervisor: Alexandre Duret-Lutz

February 1, 2018

A significant portion of this presentation is inspired by Alexandre Duret-Lutz's contributions to the prcheck paper still on progress.

Context

- Context
- 2 Deciding Recurrence via Deterministic Rabin Automata
- Oeciding Persistence via co-Büchi Automata
- 4 Comparison of both procedures

An ω -automaton $\mathcal{A} = \langle \Sigma, Q, q_0, M, \Delta, \phi \rangle$

An ω -automaton $\mathcal{A} = \langle \Sigma, Q, q_0, M, \Delta, \phi \rangle$

An ω -automaton $\mathcal{A} = \langle \Sigma, Q, q_0, M, \Delta, \phi \rangle$

Expressiveness

Temporal hierarchy of Manna & Pnueli

Manna and Pnueli [MP90]

A hierarchy of temporal properties.

Deciding Recurrence via Deterministic Rabin Automata

- 1 Context
- 2 Deciding Recurrence via Deterministic Rabin Automata
- 3 Deciding Persistence via co-Büchi Automata
- 4 Comparison of both procedures

DBA-realizability

Recurrence class

The recurrence class contains all properties that can be recognized by a DBA.

DBA-realizability

Recurrence class

The recurrence class contains all properties that can be recognized by a DBA.

Theorem ([KPB94])

A DRA is DBA-realizable iff it is DBA-type.

Converting a DRA into an equivalent DBA when it exists

 $T_B = \{ \}$

Rabin: $Fin(0) \wedge Inf(1)$

Converting a DRA into an equivalent DBA when it exists

$$T_B = \{(0,0)\}$$

Rabin: $Fin(0) \wedge Inf(1)$

Converting a DRA into an equivalent DBA when it exists

Büchi: Inf(1)

Deciding Recurrence membership of $\varphi = f \vee \neg f$ via DRA

Our contributions

- Quick simplification
- DBA_realizable

Deciding Persistence via co-Büchi Automata

- Context
- 2 Deciding Recurrence via Deterministic Rabin Automata
- 3 Deciding Persistence via co-Büchi Automata
- 4 Comparison of both procedures

Persistence class

Persistence properties, are those that can be recognized by a co-Büchi automaton.

Persistence class

Persistence properties, are those that can be recognized by a co-Büchi automaton.

$$\varphi
ightarrow \mathcal{A}_{arphi}
ightarrow \mathcal{A}_{ extit{NCA}}
ightarrow \mathcal{A}_{ extit{DCA}}$$

Based on [BK09, BK11],

Persistence class

Persistence properties, are those that can be recognized by a co-Büchi automaton.

$$ec{arphi}
ightarrow \mathcal{A}_{arphi}
ightarrow \mathcal{A}_{ extit{NCA}}
ightarrow \mathcal{A}_{ extit{DCA}}$$

- Based on [BK09, BK11],
- Not always possible,

Persistence class

Persistence properties, are those that can be recognized by a co-Büchi automaton.

$$\varphi
ightarrow \mathcal{A}_{arphi}
ightarrow \mathcal{A}_{ extit{NCA}}
ightarrow \mathcal{A}_{ extit{DCA}}$$

- Based on [BK09, BK11],
- Not always possible,
- But, guarantees that $\mathscr{L}(\mathcal{A}_{\varphi}) \subseteq \mathscr{L}(\mathcal{A}_{\textit{NCA}})$ and $\mathscr{L}(\mathcal{A}_{\varphi}) \subseteq \mathscr{L}(\mathcal{A}_{\textit{DCA}})$

Persistence class

Persistence properties, are those that can be recognized by a co-Büchi automaton.

$arphi o \mathcal{A}_arphi o \mathcal{A}_{ extit{NCA}} o \mathcal{A}_{ extit{DCA}}$

- Based on [BK09, BK11],
- Not always possible,
- But, guarantees that $\mathscr{L}(\mathcal{A}_{\varphi}) \subseteq \mathscr{L}(\mathcal{A}_{\textit{NCA}})$ and $\mathscr{L}(\mathcal{A}_{\varphi}) \subseteq \mathscr{L}(\mathcal{A}_{\textit{DCA}})$
- \mathcal{A}_{NCA} constructed on top of $\mathcal{A}_{\varphi} imes ext{subset_cons}(\mathcal{A}_{\varphi})$

Persistence class

Persistence properties, are those that can be recognized by a co-Büchi automaton.

$arphi o \mathcal{A}_arphi o \mathcal{A}_{ extit{NCA}} o \mathcal{A}_{ extit{DCA}}$

- Based on [BK09, BK11],
- Not always possible,
- But, guarantees that $\mathscr{L}(\mathcal{A}_{\varphi}) \subseteq \mathscr{L}(\mathcal{A}_{\textit{NCA}})$ and $\mathscr{L}(\mathcal{A}_{\varphi}) \subseteq \mathscr{L}(\mathcal{A}_{\textit{DCA}})$
- \mathcal{A}_{NCA} constructed on top of $\mathcal{A}_{\omega} \times \text{subset_cons}(\mathcal{A}_{\omega})$

Deciding Persistence membership of $\varphi = f \vee \neg f$ via NCA

Our contributions

- Quick simplification
- Determinism check
- Avoid Aug. subset cons. when possible
- Avoid dead SCCs

Summary: pros and cons

	Method 1 (via CA)	Method 2 (via DRA)
Translations	$\begin{array}{c} \varphi\prime \to NBA_{\varphi\prime} \\ \neg \varphi\prime \to NBA_{\neg \varphi\prime} \end{array}$	$arphi$ / $ o$ NBA_{arphi}
Conversions	$NBA_{arphi'} o NCA_{arphi'} \ ext{-}$	$DPA_{arphi'} o DRA_{arphi'} \ DRA_{arphi'} o DBA_{arphi'}$
Determinization	-	$NBA_{arphi\prime} o DPA_{arphi\prime}$
Powerset	$\mid In\; NBA_{\varphi\prime} \to NCA_{\varphi\prime}$	-
Acceptance sets	State-based	Transition-based

Comparison of both procedures

- Contex
- 2 Deciding Recurrence via Deterministic Rabin Automata
- Oeciding Persistence via co-Büchi Automata
- 4 Comparison of both procedures

Benchmark's datasets

Two datasets generated using Spot [DLLF+16]

- 13816 random formulas obtained with randltl and ltlfilt,
- 406 pattern formulas obtained with genltl and ltlfilt.

Distribution of random formulas by classes

Deciding persistence on random formulas

Processing chains

Highlighting Points

Legend

- FF: $\varphi\prime$ not pers. & $\mathcal{A}_{\varphi\prime} \text{ not det.}$
- FT: φ / not pers. & \mathcal{A}_{φ} / det.
- TF: φ / pers. & $\mathcal{A}_{\neg \varphi}$ / not det.
- TT: φ / pers. &
 - $\mathcal{A}_{\neg arphi \prime}$ det.

Time consumption of method 1

Time consumption of method 2

Our Work

Quick Simplification (both methods)

- Quick Simplification (both methods)
- DBA_realizable (via DRA)

- Quick Simplification (both methods)
- DBA_realizable (via DRA)
- Determinism check (via CA)

- Quick Simplification (both methods)
- DBA_realizable (via DRA)
- Determinism check (via CA)
- Avoid aug. subset construction when possible (via CA)

- Quick Simplification (both methods)
- DBA_realizable (via DRA)
- Determinism check (via CA)
- Avoid aug. subset construction when possible (via CA)
- Avoid dead SCCs (via CA)

Our Work

- Quick Simplification (both methods)
- DBA_realizable (via DRA)
- Determinism check (via CA)
- Avoid aug. subset construction when possible (via CA)
- Avoid dead SCCs (via CA)

Future work

• Extend method via CA to transition-based acceptance

Our Work

- Quick Simplification (both methods)
- DBA_realizable (via DRA)
- Determinism check (via CA)
- Avoid aug. subset construction when possible (via CA)
- Avoid dead SCCs (via CA)

Future work

- Extend method via CA to transition-based acceptance
- Benchmark constructions of DBA with both methods,

Our Work

- Quick Simplification (both methods)
- DBA_realizable (via DRA)
- Determinism check (via CA)
- Avoid aug. subset construction when possible (via CA)
- Avoid dead SCCs (via CA)

Future work

- Extend method via CA to transition-based acceptance
- Benchmark constructions of DBA with both methods,
- Decide Persistence/Recurrence at a syntactical level by rewriting φ .

Bibliography I

- [AÏ7] Alexandre Gbaguidi Aïsse. A co-büching toolbox. Technical Report 1705, EPITA Research and Development Laboratory (LRDE), 2017.
- [BK09] U. Boker and O. Kupferman. Co-ing Büchi made tight and useful. In Logic in Computer Science (LICS) 09, pages 245–254, 2009.
- [BK11] U. Boker and O. Kupferman. Co-Büching them all. In Foundations of Software Science and Computation Structures (FoSSaCS) 11, Lecture Notes in Computer Science (LNCS). springer, 2011.
- [DLLF+16] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 a framework for LTL and ω-automata manipulation. In Proceedings of the 14th International Symposium on Automated Technology for Verification and Analysis (ATVA'16), volume 9938 of Lecture Notes in Computer Science, pages 122–129. Springer, October 2016.
 - [KPB94] Sriram C. Krishnan, Anuj Puri, and Robert K. Brayton. *Deterministic* ω automata vis-a-vis deterministic Büchi automata, pages 378–386. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.
 - [MP90] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties (invited paper, 1989). In Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing, PODC '90, pages 377–410, New York, NY, USA, 1990. ACM.