자료구조 (Data Structure) 실습 과제

Priority Queue

2024학년도 1학기

Instructor: Prof. Young-guk Ha
Dept. of Computer Science & Engineering

실습 1-1. 다음의 Entry 인터페이스를 이용하여 MyEntry 클래스를 구현하고, Sorted List를 기반으로 MyPQ 클래스를 완성하시오

```
// Interface Entry
public interface Entry {
   public void setKey(Object k);
   public void setValue(Object v);
   public Object getKey();
   public Object getValue();
// Class MyPQ
import java.util.ArrayList; // Java ArrayList 이용
import java.util.Comparator; // Java Comparator 이용
public class MyPQ {
   // Constructors
   MyPQ(Comparator comp) { ... }
   MyPQ(int initialCapacity, Comparator comp) { ... }
   // Implement the following methods
   public int size() { ... }
   public boolean isEmpty() { ... }
   public MyEntry insert(Object k, Object v) { ... }
   public MyEntry removeMin() { ... }
   public MyEntry min() { ... }
```

실습 1-2. Comparator 인터페이스를 이용하여 Integer를 비교하는 IntComparator 클래스를 구현하고, main 메쏘드를 실행하여 결과를 출력하시오

※ 실습 1-1과 1-2는 하나의 프로젝트로 작성할 것

```
// Class IntComparator (두개의 Integer 오브젝트를 비교)
import java.util.Comparator;
public class IntComparator implements Comparator {
   public int compare(Object o1, Object o2) { ... }
   // compare 메쏘드만 구현 (실습자료 뒤에 [별첨1] 참조)
// main 메쏘드 실행 결과 확인
public static void main(String[] args) {
                                                 화면
   IntComparator c = new IntComparator();
                                                 출력
                                                        10
   MyPQ pq = new MyPQ(c);
                                                        20
                                                        30
   pg.insert(new Integer(30), null);
   pg.insert(new Integer(10), null);
   pg.insert(new Integer(20), null);
   System.out.println((Integer)pq.removeMin().getKey());
   System.out.println((Integer)pq.removeMin().getKey());
   System.out.println((Integer)pq.removeMin().getKey());
```

실습 2. MyPQ 클래스를 이용하여 다음 문제를 해결하는 Java 프로그램을 작성하시오

- 1) 2차원 평면상에 아래 그림과 같은 점들이 있을 때, 이 점들을 <u>원점에서부터 가까운 순</u> <u>서</u>대로 출력하는 프로그램을 작성하시오 (PointComparator 구현)
 - ✓ 2차원 평면상의 거리: Euclidean Distance from (0, 0) to $p(x, y) = \operatorname{sqrt}(p.x^2 + p.y^2)$
 - ✓ 2차원 평면상의 점은 java.awt.Point 클래스를 사용하여 구현함 (실습자료 뒤에 [별첨2] 참조)
- 2) 2차원 평면상에 아래 그림과 같은 점들이 있을 때, 이 점들을 <u>원점에서부터 멀리 있는</u> <u>순서(위의 1번 문제와 반대 순서)대로 출력할 수 있도록 새로운 PointComparator2를</u> 구현하고, 이를 이용하여 화면에 결과를 출력하시오
- ❖ <u>상기 1), 2)번 모두 하나의 Java 프로그램에서 출력하도록 할 것</u>

점	위치
a	(5, 4)
b	(2, 7)
c	(9, 5)
d	(3, 1)
e	(7, 2)
f	(9, 7)
g	(1, 4)
h	(4, 3)
i	(8, 2)
j	(4, 8)

[별첨1] Interface java.util.Comparator Reference

Method Summary	
int	compare(Object o1, Object o2) Compares its two arguments for order.
boolean	equals(Object obj) Indicates whether some other object is "equal to" this Comparator.

[별첨2] Class java.awt.Point Reference

Constructor Summary Point() Constructs and initializes a point at the origin (0, 0) of the coordinate space. Point(int x, int y) Constructs and initializes a point at the specified (x, y) location in the coordinate space. Point(Point p) Constructs and initializes a point with the same location as the specified Point object.

Meth	Method Summary		
boolean	equals(Object obj) Determines whether two points are equal.		
Point	getLocation() Returns the location of this point.		
double	getX() Returns the X coordinate of the point in double precision.		
double	getY() Returns the Y coordinate of the point in double precision.		
int	hashCode() Returns the hashcode for this point.		
void	$\frac{\mathbf{move}(\text{int } \mathbf{x}, \text{ int } \mathbf{y})}{\text{Moves this point to the specificed location in the } (x, y) \text{ coordinate plane.}$		
void	SetLocation (double x, double y) Sets the location of this point to the specified float coordinates.		
void	setLocation(int x, int y) Changes the point to have the specificed location.		
void	Sets the location of the point to the specificed location.		
String	$\frac{\textbf{toString}()}{\text{Returns a representation of this point and its location in the } (x, y) \text{ coordinate space as a string.}$		
void	translate(int x, int y) Translates this point, at location (x, y) , by dx along the x axis and dy along the y axis so that it now represents the point $(x + dx, y + dy)$.		