Power Dissipation on SAFARI FDM Model vs R_{TES} and Lin (Input inductance)

Simulation of SAFARI FDM Blocks up to Input of the 1st SQUID

Simulation and Modeling using LTspiceXVII

Amin Aminaei, January 2021

- Simulate the power dissipations and current drop with parameters:
- 1. Voltage 1000 mV, Rfb = 9370 Ohm
- 2. Rtes=60 & 100 mOhm. Lr=3uH, C ratio=9, f=1MHz-3.8MHz, N=88 LCs
- 3. With common inductance Lc is 2 nH & 0 nH
- 4. Simulation for a) common inductance of 2nH and no common inductance (S.C., in LTSpice a very small value of 0.00001fH to see the current)

	Rtes	Lc
а	60 mOhm	2nH
b	60 mOhm	0
С	100 mOhm	2nH
d	100 mOhm	0

For simplicity, twisted pairs are first modelled with LC lines. Z0=(L/C) ^0.5=70.70hm Transmission line model is presented in slide 12-14.

Rsnub=2.2 Ohm
Max. power dissipation: ~2.2* (600e-9)^2=7.9e-13 W

Rshunt=0.10hm
Max power dissipation~0.1*(100e-6)^2=1e-9W(1nW)

2.5MHz

3.0MHz

3.5MHz

4.0MHz

4.5MHz

2.0MHz

1.5MHz

1.0MHz

Rtes

0.5MHz

Rsnub=2.2 Ohm
Max. power dissipation: ~2.2* (3.6e-9)^2=2.9e-17W

Rshunt=0.10hm

Max. power dissipation: ~0.1* (102.9e-6)^2=1.05e-9 W (1.05nW)

Rsnub=2.2 Ohm Max. power dissipation: ~2.2* (87e-9)^2=1.67e-14W

Rshunt=0.10hm

Max. power dissipation: ~0.1* (102.9e-6)^2=1.05e-9 W (1.05nW)

Similar to Rtes=60mOhm but the pattern is changed (cycle of Max and Min)

	Rtes	Lc
d	100 mOhm	0
≺ Resonators-88pix-Qian-Jan21.asc		

Rsnub=2.2 Ohm
Max. power dissipation: ~2.2* (2.5e-9)^2=1.3e-17 W

Impact of R_{ac bias}

 ${\rm R_{ac\ bias}\ 5k\Omega\ 10k\Omega\ 20k\Omega},$ Rtes= $100{\rm m},$ Rshunt=0.1 Ω

 $R_{ac\;bias}\;5k\Omega\;10k\Omega\;20k\Omega,\;Rtes=100m,\;Rsnub=2.2\Omega$

Impact of input AC bias loom a. Characteristic Impedance

X=500nH 400nH 100nH Z0= $70 \Omega 63 \Omega 32 \Omega$

Impact of input AC bias loom b. length of loom

b1. Short length: (L=500nH, C=100pF, R=G=0)

b2. long length: (L=500nH, C=100pF, R=G=0)
L= 2m 5m 10m with long cable (10m), resonance appear within FDM frequencies (3.5MHz)

b1. Input Loom: (L=500nH, C=100pF, R=G=0), Rtes=100m Rac=50kOhm, Length= 10cm 50cm 1m

- (1) the power dissipation is higher when having a higher common inductance.
- (2) the power dissipation is higher when with lower TES resistance (lower in transition).
- (3) the highest power dissipation comes from shunt resistance which is around 1.05 nW.
- (4) the higher the Rac bias, the lower current, so lower power dissipation. Actually now we use 50 kOhm, so should be safe.
- (5) the impedance of AC bias loom influence is not significant.
- (6) the longer The AC bias loom, the higher power dissipation.
- (7) if the loom is very long, will be 3.5 MHz unwanted resonance.

Thanks Qian!