7. Przekształcenia liniowe

Zadania

- 1. Które z następujących przekształceń są liniowe?
 - (a) $F: \mathbb{R}^2 \to \mathbb{R}$, $F([x_1, x_2]) = (x_1 + 1)(x_2 1)$
 - (b) $F: \mathbb{R}^2 \to \mathbb{R}^3$, $F([x_1, x_2]) = [x_1 + 2x_2, x_1 x_2, x_1]$
 - (c) $F: R \to R, F(x) = |x|$
 - (d) $F: \mathbb{R}^3 \to \mathbb{R}^3$, $F([x_1, x_2, x_3]) = [x_1x_2, x_1, x_3]$
- 2. Niech $F: C \to C$, $F(z) = \overline{z}$. Pokazać, że F jest przekształceniem liniowym przestrzeni wektorowej $C(\mathbb{R})$. Czy F jest przekształceniem liniowym przestrzeni wektorowej $C(\mathbb{C})$?
- 3. Przekształcenie liniowe $F: \mathbb{Z}_7^2 \to \mathbb{Z}_7^2$ dane jest przez przyporządkownanie $[1,5] \mapsto [3,5]$ oraz $[3,4] \mapsto [5,6]$. Dla dowolnego wektora $\mathbf{v} = [x_1, x_2] \in \mathbb{Z}_7^2$ obliczyć $F(\mathbf{v})$.
- 4. Sprawdzić, czy istnieje przekształcenie liniowe $F: \mathbb{R}^3 \to \mathbb{R}^3$ spełniające warunki: F([5,5,3]) = [1,0,7], F([3,3,3]) = [2,1,5] oraz F([1,2,3]) = [4,2,4].
- 5. Niech $V(\mathbb{K})$ będzie przestrzenią wektorową, a $W_1(\mathbb{K})$ i $W_2(\mathbb{K})$ takimi jej podprzestrzeniami, że $V = W_1 \oplus W_2$. Funkcję $\pi_1 \colon V \to W_1$ określoną dla dowonych $\boldsymbol{w}_1 \in W_1$, $\boldsymbol{w}_2 \in W_2$ wzorem $\pi_1(\boldsymbol{w}_1 + \boldsymbol{w}_2) = \boldsymbol{w}_1$ nazywamy rzutowaniem przestrzeni $V(\mathbb{K})$ na podprzestrzeń $W_1(\mathbb{K})$ wzdłuż podprzestrzeni $W_2(\mathbb{K})$. Pokazać, że odwzorowanie π_1 jest liniowe. Wyrazić analitycznie rzutowanie przestrzeni $R^3(\mathbb{R})$ na podprzestrzeń $\mathcal{L}([1,0,0],[0,1,0])$ wzdłuż podprzestrzeni $\mathcal{L}([1,1,1])$.
- 6. Dla każdego z podanych przekształceń liniowych F wyznaczyć macierz przekształcenia w bazach standardowych odpowiednich przestrzeni wektorowych. Podać bazy i wymiary podprzestrzeni jądra KerF i obrazu ImF.
 - (a) $F: \mathbb{R}^3 \to \mathbb{R}^2$, $F([x_1, x_2, x_3]) = [x_1 + x_2, x_2 + x_3]$
 - (b) $F: \mathbb{R}^3 \to \mathbb{R}^4$, $F([x_1, x_2, x_3]) = [2x_1 x_2 + x_3, x_1 + 2x_2 x_3, -x_1 + 3x_2 2x_3, 8x_1 + x_2 + x_3]$
 - (c) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F([x_1, x_2]) = [2x_1 x_2, 3x_2 6x_1]$
 - (d) $F: \mathbb{R}^4 \to \mathbb{R}^5$, $F([x_1, x_2, x_3, x_4]) = [x_1 + x_2, x_2 + x_3, x_3 + x_4, x_3, x_1]$
 - (e) $F: \mathbb{R}^4 \to \mathbb{R}^3$, $F([x_1, x_2, x_3, x_4]) = [2x_1 + x_3, 2x_2 x_4, x_3 + 2x_4]$
 - (f) $F: \mathbb{R}^4 \to \mathbb{R}^4$, $F([x_1, x_2, x_3, x_4]) = [x_4, x_3, x_2, x_1]$
 - (g) $F: \mathbb{R}^5 \to \mathbb{R}^3$, $F([x_1, x_2, x_3, x_4, x_5]) = [x_1 + x_2 + x_3, x_2 + x_3 + x_4, x_3 + x_4 + x_5]$
 - (h) $F: \mathbb{R}^4 \to \mathbb{R}^3$, $F([x_1, x_2, x_3, x_4]) = [x_1 + 2x_2 + x_3 x_4, x_1 + 2x_3 + x_4, 2x_1 + x_2 + 3x_3]$
 - (i) $F: \mathbb{R}^2 \to \mathbb{R}^2$ obrót o kat α wokół punktu (0,0)
 - (j) $F: \mathbb{R}^2 \to \mathbb{R}^2$ symetria względem osi OX
 - (k) $F: R_2[x] \to R_2[x], F(w)(x) = w'(1)x + w(2)(x^2 + x)$
- 7. Znaleźć macierze podanych przekształceń liniowych we wskazanych bazach odpowiednich przestrzeni liniowych:
 - (a) $F: \mathbb{R}^2 \to \mathbb{R}^3$, $F([x_1, x_2]) = [x_1 + x_2, 2x_1 + x_2, x_1 3x_2]$, w bazach $\mathcal{B}: [1, 1], [1, -1]$ oraz $\mathcal{C}: [1, -1, 0], [0, 1, -1], [0, 0, 1]$
 - (b) $F: \mathbb{R}^3 \to \mathbb{R}^2$, $F([x_1, x_2, x_3]) = [x_1 x_2, x_2 x_3]$, w bazach $\mathcal{B}: [1, 2, 2], [1, 1, 1], [1, 1, 2] \text{ oraz } \mathcal{C}: [1, 1], [1, 0]$