TÍCH PHÂN SUY RỘNG

Câu 1: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{2}^{+\infty} \frac{x^2}{\sqrt{x^6 - 1}} dx$

Giải

$$\text{D}\check{a}t \int_{2}^{+\infty} \frac{x^2}{\sqrt{x^6 - 1}} dx = \int_{2}^{+\infty} f(x) dx$$

$$f(x) = \frac{x^{2}}{\sqrt{x^{6} - 1}} \sim \frac{x^{2}}{\sqrt{x^{6}}} = \frac{1}{x} = g(x) > 0, \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{x^{3}}{\sqrt{x^{6} - 1}} = 1.$$

Vì $\int_{2}^{+\infty} \frac{1}{x} dx$ phân kỳ $(\alpha = 1)$, nên $\int_{2}^{+\infty} \frac{x^2}{\sqrt{x^6 - 1}} dx$ phân kỳ theo tiêu chuẩn so sánh 2

Câu 2: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{0}^{1} \frac{\sqrt{x^2 + 1}}{(2x + 1)\sqrt{x}} dx$

Giải:

Tích phân
$$\int_{0}^{1} \frac{\sqrt{x^2 + 1}}{(2x + 1)\sqrt{x}} dx \text{ suy rộng loại 2 tại cận dưới } x = 0; \text{ Đặt } f(x) = \frac{\sqrt{x^2 + 1}}{(2x + 1)\sqrt{x}}$$

Xét
$$g(x) = \frac{1}{\sqrt{x}}$$
 có $\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \frac{\sqrt{x^2 + 1}}{(2x + 1)} = 1.$

Mặt khác $\int_{0}^{1} \frac{dx}{\sqrt{x}}$ hội tụ nên tích phân $\int_{0}^{1} \frac{\sqrt{x^2 + 1}}{(2x + 1)\sqrt{x}} dx$ cũng hội tụ

Câu 3: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{1}^{+\infty} \frac{1 + sinx}{\sqrt{x(x+1)^3}} dx$

Giải

Ta có:
$$0 \le \left| \frac{1 + sinx}{\sqrt{x(x+1)^3}} \right| \le \frac{2}{x^2}, \forall x \ge 1.$$

$$\text{Vì } \int_{1}^{+\infty} \frac{2}{x^2} dx \text{ nên } \int_{1}^{+\infty} \left| \frac{1 + \sin x}{\sqrt{x(x+1)^3}} \right| dx$$

Vậy $\int_{1}^{+\infty} \frac{1+\sin x}{\sqrt{x(x+1)^3}} dx$ hội tụ tuyệt đối theo tiêu chuẩn so sánh 1.

Câu 4: Khảo sát sự hội tụ của tích phân suy rộng: $J = \int_{1}^{+\infty} \frac{x^2 + arctan(x) - 1}{\sqrt{(x-1)(x^7 + 2)}} dx.$

Giải:

$$J = \int_{1}^{+\infty} \frac{x^{2} + arctan(x) - 1}{\sqrt{(x - 1)(x^{7} + 2)}} dx = \int_{1}^{2} \frac{x^{2} + arctan(x) - 1}{\sqrt{(x - 1)(x^{7} + 2)}} dx + \int_{2}^{+\infty} \frac{x^{2} + arctan(x) - 1}{\sqrt{(x - 1)(x^{7} + 2)}} dx = J_{1} + J_{2}$$

Khi
$$x \to 1^+$$
: $f(x) = \frac{x^2 + arctanx - 1}{\sqrt{(x-1)(x^7 + 2)}} \sim \frac{-\frac{\pi}{4}}{\sqrt{3}(x-1)^{\frac{1}{2}}} = g(x)$

Mà $\int_{1}^{2} g(x)$ hội tụ nên J_1 hội tụ

Khi
$$x \to +\infty$$
: $f(x) = \frac{x^2 + arctanx - 1}{\sqrt{(x-1)(x^7 + 2)}} \sim \frac{x^2}{x^{\frac{8}{2}}} = \frac{1}{x^2} = g(x)$

Mà
$$\int_{2}^{+\infty} g(x)dx$$
 hội tụ nên J_2 hội tụ

Vậy
$$J = J_1 + J_2$$
 hội tụ

Câu 5: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{1}^{+\infty} \frac{x^3 + x}{\sqrt{(x+1)^8}} dx$

$$\text{D}\check{\text{at}} \int_{1}^{+\infty} \frac{x^3 + x}{\sqrt{\left(x+1\right)^8}} dx = \int_{1}^{+\infty} f\left(x\right) dx$$

Khi
$$x \to +\infty$$
: $f(x) = \frac{x^3 + x}{\sqrt{(x+1)^8}} \sim \frac{x^3}{\sqrt{(x+1)^8}} = \frac{1}{x}$

Chọn
$$g(x) = \frac{1}{x}$$
, ta có $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} = \frac{x^3 + x}{\sqrt{(x+1)^8}} . x = 1$

Mặt khác ta có $\int_{1}^{+\infty} g(x)dx$ phân kỳ (p=1).

Vậy theo tiêu chuẩn so sánh 2, tích phân $\int_{1}^{+\infty} \frac{x^3 + x}{\sqrt{(x+1)^8}} dx$ phân kỳ

Câu 6: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{1}^{+\infty} \frac{\sqrt{x}}{\sqrt{4(x+1)^5}} dx$

Giải:

Đặt
$$\int_{1}^{+\infty} \frac{\sqrt{x}}{\sqrt{4(x+1)^5}} dx = \int_{1}^{+\infty} f(x) dx$$

Khi
$$x \to +\infty$$
: $f(x) \sim \frac{\sqrt{x}}{\sqrt{4x^5}} = \frac{1}{2x^2}$

Chọn
$$g(x) = \frac{1}{2x^2}$$
, ta có $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} = \frac{\sqrt{x}}{\sqrt{(x+1)^5}}.2x^2 = 1.$

Mặt khác ta có
$$\int_{1}^{+\infty} g(x) dx$$
 hội tụ $(p=2>1)$.

Vậy theo tiêu chuẩn so sánh 2, tích phân $\int\limits_{1}^{+\infty} \frac{\sqrt{x}}{\sqrt{4(x+1)^5}} dx \text{ hội tụ}$

Câu 7: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{1}^{+\infty} \frac{x^2 + 7x - 3}{3x^4 + x\sqrt{x}} dx$

Với
$$x \in [1, \infty)$$
, xét $f(x) = \frac{x^2 + 7x - 3}{3x^4 + x\sqrt{x}} > 0, g(x) = \frac{x^2}{3x^4} = \frac{1}{3x^2} > 0$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \left(\frac{x^2 + 7x - 3}{3x^4 + x\sqrt{x}} . 3x^2 \right) = 1$$

Suy ra
$$K = \int_{1}^{\infty} \frac{x^2 + 7x - 3}{3x^4 + x\sqrt{x}} dx$$
 và $\int_{1}^{\infty} \frac{1}{3x^2} dx$ cùng tính chất hội tụ

Mà
$$\int_{1}^{\infty} \frac{1}{3x^2} dx$$
 hội tụ, vì $p = 2 > 1$. Vậy K hội tụ

Câu 8: Tích phân suy rộng $\int_{2}^{\infty} \frac{x^{1,01} dx}{2x^2 + \sqrt{4 + x^2}}$ hội tụ hay phân kỳ?

Giải:

Với
$$x \in [2, \infty)$$
, xét $f(x) = \frac{x^{1,01}}{2x^2 + \sqrt{4 + x^2}} > 0, g(x) = \frac{1}{x^{0,99}} > 0$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \left(\frac{x^{1,01}}{2x^2 + \sqrt{4 + x^2}} . x^{0,99} \right) = \frac{1}{2}$$

Mà $\int_{2}^{3} \frac{dx}{x^{0.99}}$ phân kỳ nên $\int_{2}^{\infty} \frac{x^{1.01}dx}{2x^2 + \sqrt{4 + x^2}}$ phân kỳ theo tiêu chuẩn so sánh giới hạn

Câu 9: Khảo sát sự hội tụ của tích phân: $\int_{1}^{+\infty} \frac{x^3 + 5x - 1}{x^6 + sinx} dx$

Giải

$$\text{D} \check{a} t \int_{1}^{+\infty} \frac{x^3 + 5x - 1}{x^6 + \sin x} dx = \int_{1}^{+\infty} f(x) dx$$

Khi
$$x \to +\infty$$
: $f(x) \sim \frac{x^3}{x^6} = \frac{1}{x^3}$

Xét
$$g(x) = \frac{1}{x^3}$$
, ta có $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} = \frac{x^3(x^3 + 5x - 1)}{x^6 + \sin x} = 1$.

Mặt khác ta có
$$\int_{1}^{+\infty} \frac{1}{x^3} dx \, \text{hội tụ } \, \text{nên } \int_{1}^{+\infty} \frac{x^3 + 5x - 1}{x^6 + sinx} dx \, \text{hội tụ}$$

Câu 10: Khảo sát sự hội tụ của tích phân: $\int_{1}^{2} \frac{1+x}{x(\sqrt{x}-1)} dx.$

Giải

Tích phân $\int_{1}^{2} \frac{1+x}{x(\sqrt{x}-1)} dx = \int_{1}^{2} f(x) dx$ là tích phân suy rộng loại 2 tại cận dưới.

Xét hàm
$$g(x) = \frac{1}{1-x}$$
; $\lim_{x \to 1^+} \frac{f(x)}{g(x)} = \lim_{x \to 1^+} \frac{(1+x)(x-1)}{x(\sqrt{x}-1)} = \lim_{x \to 1^+} \frac{(1+x)(\sqrt{x}+1)}{x} = 4$

mà
$$\int_{1}^{2} \frac{1}{x-1} dx$$
 phân kì nên tích phân $\int_{1}^{2} \frac{1+x}{x(\sqrt{x}-1)} dx$ phân kì

Câu 11: Xét sự hội tụ của tích phân suy rộng: $I = \int_{0}^{+\infty} \frac{3 + si.n2x}{x^4 + 2.\sqrt[3]{x^2}} dx$.

Giải:

$$I = \int_{0}^{+\infty} \frac{3 + \sin 2x}{x^4 + 2.\sqrt[3]{x^2}} dx = \int_{0}^{2} \frac{3 + \sin 2x}{x^4 + 2.\sqrt[3]{x^2}} dx + \int_{2}^{+\infty} \frac{3 + \sin 2x}{x^4 + 2.\sqrt[3]{x^2}} dx = I_1 + I_2$$

Xét
$$I_1 = \int_0^2 \frac{3 + \sin 2x}{x^4 + 2.\sqrt[3]{x^2}} dx$$

Hàm dưới dấu tích phân là hàm không âm.

Ta có:
$$x \to 0: \frac{3 + \sin 2x}{x^4 + 2.\sqrt[3]{x^2}} \sim \frac{3 + 0}{2.\sqrt[3]{x^2}} (VCB)$$

Mà
$$\int_{0}^{2} \frac{3}{2 \cdot \sqrt[3]{x^2}} dx$$
 hội tụ do $\left(\alpha = \frac{2}{3} < 1\right)$ nên I_1 hội tụ (TCSS2)

Xét
$$I_2 = \int_{2}^{+\infty} \frac{3 + \sin 2x}{x^4 + 2 \cdot \sqrt[3]{x^2}} dx$$
. Ta có : $0 \le \frac{3 + \sin 2x}{x^4 + 2 \cdot \sqrt[3]{x^2}} \le \frac{4}{x^4}$; $\forall x \in [2; +\infty)$

Mà
$$\int_{2}^{+\infty} \frac{3}{x^4} dx$$
 hội tụ do $(\alpha = 4 > 1)$ nên I_2 hội tụ (TCSS1) Kết luận: I hội tụ

Câu 12: Khảo sát sự hội tụ của tích phân sau:
$$\int_{1}^{+\infty} \frac{x^3 + 5x^2 + 1}{2x^5 + x^3 + 5x^2 + 1} dx$$

Đặt
$$f(x) = \frac{x^3 + 5x^2 + 1}{2x^5 + x^3 + 5x^2 + 1}$$
. Xét hàm $g(x) = \frac{1}{x^2}$; $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{1}{2}$

Mà
$$\int_{1}^{+\infty} \frac{1}{x^2} dx$$
 hội tụ nên $\int_{1}^{+\infty} \frac{x^3 + 5x^2 + 1}{2x^5 + x^3 + 5x^2 + 1} dx$ hội tụ

Câu 13: Khảo sát sự hội tụ của tích phân sau: $\int_{1}^{2} \frac{x . ln(1+x)}{\sqrt[3]{x^2-1}} dx$

Giải

Đặt
$$h(x) = \frac{x . ln(1+x)}{\sqrt[3]{x^2-1}}$$
. Xét hàm $k(x) = \frac{1}{\sqrt[3]{x-1}}; \lim_{x \to 1^+} \frac{h(x)}{k(x)} = \lim_{x \to 1^+} \frac{x ln(1+x)}{\sqrt[3]{x+1}} = \frac{ln2}{\sqrt[3]{2}}$

Mà
$$\int_{1}^{2} \frac{1}{\sqrt[3]{x-1}} dx$$
 hội tụ nên $\int_{1}^{2} \frac{x ln(1+x)}{\sqrt[3]{x^2-1}} dx$ hội tụ

Câu 14: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{0}^{1} \frac{x}{\sqrt{1-x^3}} dx$

Giải

Ta có:
$$0 \le \frac{x}{\sqrt{1-x^3}} \sim \frac{1}{\sqrt{3}(x-1)^{\frac{1}{2}}} \text{ khi } x \to 1^-$$

Mà
$$\int_{0}^{1} (1-x)^{-\frac{1}{2}} dx$$
 hội tụ $\Rightarrow \int_{0}^{1} \frac{x}{\sqrt{1-x^3}} dx$ hội tụ

Câu 15: Tích phân suy rộng sau đây hội tụ hay phân kì? Tính giá trị tích phân nếu có:

$$\int_{0}^{\infty} \frac{1}{\sqrt{x} (1+x)} dx.$$

Giải

$$\int_{0}^{\infty} \frac{1}{\sqrt{x(1+x)}} dx = \int_{0}^{1} \frac{1}{\sqrt{x(1+x)}} dx + \int_{1}^{\infty} \frac{1}{\sqrt{x(1+x)}} dx = \lim_{t \to 0^{+}} \int_{t}^{1} \frac{1}{\sqrt{x(1+x)}} dx + \lim_{t \to \infty} \int_{1}^{t} \frac{1}{\sqrt{x(1+x)}} dx$$

$$\int \frac{1}{\sqrt{x}(1+x)} dx = 2\int \frac{1}{1+u^2} du = 2\arctan\sqrt{x} + C \text{ (Đặt } u = \sqrt{x} \text{)}$$

$$\Rightarrow \int_{0}^{\infty} \frac{1}{\sqrt{x}(1+x)} dx = \lim_{t \to 0^{+}} \left(2 \arctan \sqrt{x} \right) \Big|_{1}^{1} + \lim_{t \to \infty} \left(2 \arctan \sqrt{x} \right) \Big|_{1}^{t}$$

$$\Rightarrow x = \lim_{t \to 0^+} \left(2 \cdot \frac{\pi}{4} - 2 \arctan \sqrt{t} \right) + \lim_{t \to \infty} \left(2 \arctan \sqrt{t} - 2 \cdot \frac{\pi}{4} \right) = \pi$$

Câu 16: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{2}^{+\infty} \frac{7 + 3sinx}{\sqrt[3]{(x-2)(x^5+2)}} dx$

Giải:

$$\int_{2}^{+\infty} \frac{7 + 3sinx}{\sqrt[3]{(x-2)(x^5+2)}} dx = \int_{2}^{3} \frac{7 + 3sinx}{\sqrt[3]{(x-2)(x^5+2)}} dx + \int_{3}^{+\infty} \frac{7 + 3sinx}{\sqrt[3]{(x-2)(x^5+2)}} dx = I_1 + I_2$$

Xét I₁

Khi
$$x \to 2^+$$
: $\frac{7 + 3sinx}{\sqrt[3]{(x-2)(x^5+2)}} \sim \frac{7 + 3sin2}{\sqrt[3]{(x-2).34}}$

Do
$$\int_{2}^{3} \frac{7 + 3\sin 2}{\sqrt[3]{(x-2).34}} dx$$
, $\alpha = \frac{1}{3} < 1$ hội tụ nên I_1 hội tụ (TCSS2)

Xét I_2

Khi
$$x \to +\infty$$
: $\frac{7 + 3sinx}{\sqrt[3]{(x-2)(x^5+2)}} \le \frac{10}{\sqrt[3]{(x-2)(x^5+2)}} \sim \frac{10}{x^2}$.

Do
$$\int_{3}^{+\infty} \frac{10}{x^2} dx$$
; $\alpha = 2 > 1$ hội tụ nên $\int_{3}^{+\infty} \frac{10}{\sqrt[3]{(x-2)(x^5+2)}} dx$ hội tụ (TCSS2) nên I_1 hội tụ (TCSS1)

Vậy $I = I_1 + I_2$ hội tụ.

Câu 17: Khảo sát sự hội tụ của tích phân suy rộng: $J = \int_{2}^{3} \frac{\left(x^2 + 3x - 1\right)}{\sqrt[5]{\left(x - 2\right)\left(3 + x\right)}} dx$

Giải

Khi
$$x \to 2^+$$
: $\frac{x^2 + 3x - 1}{\sqrt[5]{(x - 2)(x + 3)}} \sim \frac{9}{\sqrt[5]{5(x - 2)}} > 0(1)$

Mà
$$\int_{2}^{3} \frac{9}{\sqrt[5]{5(x-2)}} dx = \frac{9}{\sqrt[5]{5}} \int_{2}^{3} \frac{dx}{\sqrt[5]{(x-2)}}$$
 hội tụ vì $\alpha = \frac{1}{5} < 1(2)$

Từ (1) và (2) \Rightarrow J hội tụ (theo tiêu chuẩn so sánh 2)

Câu 18: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{1}^{+\infty} \frac{\sqrt{x-1}}{x^3 + \sqrt{x^4 - 1}} dx$

Ta có:
$$0 \le \frac{\sqrt{x-1}}{x^3 + \sqrt{x^4 - 1}} \sim \frac{1}{x^{\frac{5}{2}}} \text{ khi } x \to +\infty$$

$$\int_{1}^{+\infty} x^{-\frac{5}{2}} dx \text{ hội tụ} \Rightarrow \int_{1}^{+\infty} \frac{\sqrt{x-1}}{x^3 + \sqrt{x^4 - 1}} dx \text{ hội tụ}$$

Câu 19: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{1}^{2} \frac{1+\sin x}{x^3-4x^2+4x} dx$

Giải

Đặt
$$\int_{1}^{2} \frac{1+\sin x}{x^3-4x^2+4x} dx = \int_{1}^{2} f(x) dx$$
 x là tích phân suy rộng loại 2 tại cận trên $x = 2$

Xét hàm
$$g(x) = \frac{1}{(x-2)^2}$$
; $\lim_{x \to 2^-} \frac{f(x)}{g(x)} = \lim_{x \to 2^-} \frac{(1+\sin x)(x-2)^2}{x^3-4x^2+4x} = \lim_{x \to 2^-} \frac{1+\sin x}{x} = \frac{1+\sin 2}{2}$ hữu hạn

Mà
$$\int_{1}^{2} \frac{1}{(x-2)^2} dx$$
 phân kỳ nên $\int_{1}^{2} \frac{1+\sin x}{x^3-4x^2+4x} dx$ phân kỳ

Câu 20: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{0}^{+\infty} \frac{x\sqrt{x} - x + 1}{x^3 + x^2 + 1} dx$

Giải

Khi
$$x \to +\infty, \frac{x\sqrt{x} - 1 + 1}{x^3 + x^2 + 1} \sim \frac{1}{x^{\frac{3}{2}}}$$

Mà
$$\int_{1}^{+\infty} \frac{1}{x^{\frac{3}{2}}} dx \text{ hội tụ}$$

Vậy
$$\int_{0}^{+\infty} \frac{x\sqrt{x} - x + 1}{x^3 + x^2 + 1} dx$$
 hội tụ theo tiêu chuẩn so sánh 2

Câu 21: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{1}^{2} \frac{1}{\sqrt{x^4 - 1}} dx.$

Khi
$$x \to 1^+: \frac{1}{\sqrt{x^4 - 1}} \sim \frac{1}{2\sqrt{x - 1}}$$

Mặt khác:
$$\int_{1}^{2} \frac{1}{2\sqrt{x-1}} dx \text{ hội tụ do } \alpha = \frac{1}{2} < 1$$

Vậy
$$\int_{1}^{2} \frac{x + lnx}{\sqrt{x^2 - 5x + 6}} dx$$
. hội tụ theo tiêu chuẩn so sánh 2

Câu 22: Khảo sát sự hội tụ của tích phân suy rộng: $\int_{1}^{+\infty} \frac{\sin x}{x^2 + 1} dx$

Giải

Ta có:
$$\left| \frac{sinx}{x^2 + 1} \right| \le \frac{1}{x^2}, \forall x \ge 1$$

Mà
$$\int_{1}^{+\infty} \frac{dx}{x^2}$$
 hội tụ nên $\int_{1}^{+\infty} \frac{\sin x}{x^2 + 1} dx$ hội tụ

Câu 23: Tính tích phân suy rộng:
$$\int_{2}^{+\infty} \frac{dx}{x \cdot \sqrt{x^2 + x - 1}}$$

Giải:

Đặt
$$\sqrt{x^2 + x - 1} = t + x \rightarrow x = \frac{t^2 + 1}{1 - 2t} \rightarrow dx = \frac{-2(t^2 - t - 1)}{(2t - 1)^2} dt$$

Đổi cận:
$$t = \sqrt{x^2 + x - 1} - x$$
; $x = 2 \rightarrow t = \sqrt{5} - 2$; $x = +\infty \rightarrow t = \lim_{x \to +\infty} \left(\sqrt{x^2 + x - 1} - x \right) = \frac{1}{2}$

$$\rightarrow I = \int_{\sqrt{5}-2}^{\frac{1}{2}} \frac{2dt}{t^2 + 1} = \arctan\frac{1}{2}$$

Câu 24: Tính tích phân suy rộng:
$$\int_{1}^{+\infty} \frac{dx}{x^{\frac{19}{3}} \cdot \sqrt[3]{1+x^2}}$$

$$\int_{1}^{+\infty} \frac{dx}{x^{\frac{19}{3}} \cdot \sqrt[3]{1+x^{2}}} = \int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^{19} + x^{21}}} \Leftrightarrow \int_{1}^{+\infty} \frac{dx}{x^{7} \sqrt[3]{1+\frac{1}{x^{2}}}}$$

Đặt
$$t = \sqrt[3]{1 + \frac{1}{x^2}} \iff t^3 = 1 + \frac{1}{x^2}$$

$$\rightarrow I = \int_{\sqrt[3]{2}}^{1} -\frac{3}{2}t(t^3 - 1)^2 dt = \frac{3}{10}.\sqrt[3]{4} - \frac{27}{80}$$

Câu 25: Khảo sát sự hội tụ của tích phân: $I = \int_{0}^{\pi} \frac{x^{m}}{\sqrt[3]{1-\cos^{2}x}} dx$

Giải:

$$I = \int_{0}^{\pi} \frac{x^{m}}{\sqrt[3]{1 - \cos^{2} x}} dx = \int_{0}^{\frac{\pi}{2}} \frac{x^{m}}{\sqrt[3]{1 - \cos^{2} x}} dx + \int_{\frac{\pi}{2}}^{\pi} \frac{x^{m}}{\sqrt[3]{1 - \cos^{2} x}} dx$$

Khi
$$x \to 0$$
: $f(x) \sim \frac{x^m}{\sqrt[3]{2 \cdot \frac{x^2}{2}}} = \frac{1}{x^{\frac{2}{3}-m}}$. Tp HT khi và chỉ khi $\frac{2}{3} - m < 1 \leftrightarrow m > -\frac{1}{3}$

Khi
$$x \to \pi$$
: $f(x) = \frac{x^m}{\sqrt[3]{1 - \cos(\pi - x)}} \sim \frac{\pi^m}{\sqrt[3]{2 \cdot \frac{(\pi - x)^2}{2}}} = \frac{\pi^m}{(\pi - x)^{\frac{2}{3}}}$. TP hội tụ $\forall m$

Vậy tp đã cho HT với $m > -\frac{1}{3}$

Câu 26: Tính tích phân suy rộng:
$$I = \int_{e}^{+\infty} \frac{dx}{x(ln^3x + ln^2x + lnx)}$$

Giải:

Đặt $t = lnx \rightarrow dt = \frac{dx}{x}$. Ta được t
psr loại 1 của hàm hữu tỉ:

$$I = \int_{1}^{+\infty} \frac{dt}{t + t^2 + t^3} = \ln\sqrt{3} - \frac{\pi\sqrt{3}}{8}$$

Câu 27: Khảo sát sự hội tụ của tích phân: $I = \int_{0}^{1} \frac{lnx}{\sqrt{x(1-x)^{\alpha}}} dx$

Giải

$$I = \int_{0}^{1} \frac{\ln x}{\sqrt{x(1-x)^{\alpha}}} dx = \int_{0}^{\frac{1}{2}} \frac{\ln x}{\sqrt{x(1-x)^{\alpha}}} dx + \int_{\frac{1}{2}}^{1} \frac{\ln x}{\sqrt{x(1-x)^{\alpha}}} dx$$

Khi
$$x \to 0^+$$
: $f(x) \sim \frac{1}{\sqrt{x}}$. TPHT

Khi
$$x \to 1^-$$
: $f(x) \sim \frac{1}{\sqrt{(1-x)^{\alpha}}}$. TP hội tụ khi và chỉ khi $\alpha < 2$

Vậy tp đã cho HT khi và chỉ khi α < 2

Câu 28: Tính tích phân suy rộng: $I = \int_{0}^{1} ln^{n} (1+x) dx$

Giải:

Đặt $t = ln(1+x) \rightarrow x = e^t - 1 \rightarrow dx = e^t dt$. Ta được tích phân

$$I = \int_{-\infty}^{0} t^{n} e^{t} dt = t^{n} e^{t} - nt^{n-1} e^{t} + n(n-1)t^{n-2} e^{t} + \dots + (-1)^{n-1} n! t \cdot e^{t} + (-1)^{n} n! \cdot e^{t} \begin{vmatrix} 0 \\ -\infty \end{vmatrix}$$

Câu 29: Tìm tất cả các giá trị m > 0 để tích phân: $I = \int_0^1 \frac{x^3 + x^{\frac{2}{3}}}{x^2 + arctanx^m}$ hội tụ

Giải

Hàm $f(x) \ge 0, \forall x \in (0,2]$. Ta sẽ so sánh khi $x \to 0^+$. Lưu ý: Không nhận xét f dương thì trừ điểm

$$\alpha > 2: f(x) \sim \frac{x^{\frac{2}{3}}}{x^2} = \frac{1}{x^{\frac{4}{3}}} \Rightarrow \text{TP phân kỳ}$$

$$\alpha = 2: f(x) \sim \frac{x^{\frac{2}{3}}}{2x^2} \Rightarrow \text{TP phân kỳ}$$

$$\alpha < 2: f(x) \sim \frac{x^{\frac{2}{3}}}{x^{\alpha}} = \frac{1}{x^{\alpha} - \frac{2}{3}} \Rightarrow \text{TP hội tụ khi và chỉ khi } \alpha - \frac{2}{3} < 1 \leftrightarrow \alpha < \frac{5}{3}$$

Vậy *I* hội tụ khi và chỉ khi $0 < \alpha < \frac{5}{3}$

Câu 30: Tìm số thực m > 0 để tích phân sau hội tụ $I = \int_0^{+\infty} \frac{\sqrt{1+x^2}}{x^m (1+x^{m+1})} dx$.

Giải:

Ta có:
$$I = \int_{0}^{+\infty} \frac{\sqrt{1+x^2}}{x^m (1+x^{m+1})} dx = \int_{0}^{1} \frac{\sqrt{1+x^2}}{x^m (1+x^{m+1})} dx + \int_{1}^{+\infty} \frac{\sqrt{1+x^2}}{x^m (1+x^{m+1})} dx = I_1 + I_2$$

Hàm $f(x) > 0, \forall x > 0$

$$x \to 0^+: f(x) \sim \frac{1}{x^m} \Rightarrow I_1$$
 hội tụ khi và chỉ khi $m < 1$

$$x \to +\infty$$
: $f(x) \sim \frac{1}{x^{2m}} \Longrightarrow I_2$ hội tụ khi và chỉ khi $m > \frac{1}{2}$

Vậy *I* hội tụ khi và chỉ khi $\frac{1}{2} < m < 1$

Câu 31: Tìm α để tích phân sau hội tụ $I = \int_{0}^{\frac{1}{2}} \frac{dx}{x^{\alpha} \sqrt{1-4x^{2}}}$. Tính tích phân khi $\alpha = -2$

Giải

Ta thấy 2 cận của tích phân làm cho biểu thức dưới dấu tích phân không xác định. Nên ta tách ra thành 2 tích phân suy rộng loại 2 như sau:

$$I = \int_{0}^{\frac{1}{2}} \frac{dx}{x^{\alpha} \sqrt{1 - 4x^{2}}} = \int_{0}^{\frac{1}{4}} \frac{dx}{x^{\alpha} \sqrt{1 - 4x^{2}}} + \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{dx}{x^{\alpha} \sqrt{1 - 4x^{2}}} = I_{1} + I_{2}$$

Xét tích phân
$$I_1$$
: $I_1 = \int_0^{\frac{1}{4}} \frac{dx}{x^{\alpha} \sqrt{1 - 4x^2}}$

Xét khi $x \to 0^+$:

+ Khi
$$\alpha < 0$$
: $\frac{1}{x^{\alpha}\sqrt{1-4x^2}} \sim 0 \Rightarrow I_1$ hội tụ

+ Khi
$$\alpha = 0$$
: $\frac{1}{x^{\alpha}\sqrt{1-4x^2}} \sim \frac{1}{\sqrt{1-4x^2}} \sim 1 \Rightarrow I_1$ hội tụ

+ Khi
$$\alpha > 0$$
: $\frac{1}{x^{\alpha}\sqrt{1-4x^2}} \sim \frac{1}{x^{\alpha}}$

Như vậy thì để I_1 hội tụ thì trong trường hợp này α phải thỏa $0 < \alpha < 1$

Tổng hợp lại thì với α <1 thì I_1 hội tụ!

Xét tích phân
$$I_2:I_2=\int\limits_{\frac{1}{4}}^{\frac{1}{2}}\frac{dx}{x^{\alpha}\sqrt{1-4x^2}}$$

Xét khi
$$x \to \frac{1}{2}^-$$
:

+ Khi

$$\alpha < 0: \frac{1}{x^{\alpha}\sqrt{1-4x^{2}}} = \frac{1}{x^{\alpha}\sqrt{(1+2x)(1-2x)}} \sim \frac{1}{\sqrt{2}\frac{1}{2^{\alpha}}\sqrt{1-2x}} = \frac{1}{\sqrt{2}\frac{1}{2^{\alpha}}\sqrt{2\left(\frac{1}{2}-x\right)}} = \frac{1}{2^{1-\alpha}\left(\frac{1}{2}-x\right)^{\frac{1}{2}}}$$

 \Rightarrow do đây là tích phân suy rộng loại 2 và $\alpha = \frac{1}{2} < 1$ nên I_2 hội tụ.

+ Khi
$$\alpha = 0$$
: $\frac{1}{x^{\alpha}\sqrt{1-4x^2}} \sim \frac{1}{2\left(\frac{1}{2}-x\right)^{\frac{1}{2}}} \Rightarrow I_2$ hội tụ.

+ Khi
$$\alpha > 0$$
: $\frac{1}{x^{\alpha}\sqrt{1-4x^2}} \sim \frac{1}{2^{1-\alpha}\left(\frac{1}{2}-x\right)^{\frac{1}{2}}} \Longrightarrow I_2$ hội tụ

KÉT LUẬN: Do I_2 đã hội tụ nên để cho I hội tụ thì I_1 phải hội tụ. Vậy α < 1 thỏa mãn.

* Tính tích phân khi $\alpha = -2$

Khi
$$\alpha = -2$$
 thì ta có tích phân sau: $I = \int_0^{\frac{1}{2}} \frac{x^2}{\sqrt{1 - 4x^2}} dx = \frac{1}{2} \int_0^{\frac{1}{2}} \frac{x^2}{\sqrt{\frac{1}{4} - x^2}} dx$

Đặt:
$$x = \frac{1}{2} sint$$
 với $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ $\Rightarrow dx = \frac{1}{2} cost dt$

Đổi cận:
$$x = 0 \Rightarrow t = 0; x = \frac{1}{2} \Rightarrow t = \frac{\pi}{2}$$

Tích phân trở thành:
$$\frac{1}{8} \int_{0}^{\frac{\pi}{2}} sin^{2}t dt = \frac{1}{8} \int_{0}^{\frac{\pi}{2}} \left(\frac{1}{2} - \frac{cos2t}{2} \right) dt = \frac{\pi}{32}$$

Câu 32: Tìm α để tích phân sau hội tụ $I = \int_{1}^{+\infty} x^{\alpha} \left(e^{\frac{2}{x^2}} - e^{-\frac{3}{x^2}} \right) dx$. Tính tích phân khi $\alpha = -5$

Giải:

Đây là tích phân suy rộng loại 1.

Khi
$$x \to +\infty$$
, ta có: $x^{\alpha} \left(e^{\frac{2}{x^2}} - e^{-\frac{3}{x^2}} \right) = x^{\alpha} \left[\left(e^{\frac{2}{x^2}} - 1 \right) - \left(e^{-\frac{3}{x^2}} - 1 \right) \right] \sim x^{\alpha} \left(\frac{2}{x^2} - \frac{-3}{x^2} \right) = \frac{5x^{\alpha}}{x^2} = \frac{5}{x^{2-\alpha}}$

Để tích phân hội tụ thì: $2-\alpha > 1 \Rightarrow \alpha < 1$

Khi
$$\alpha = -5$$
, tích phân trở thành: $I = \int_{1}^{+\infty} \frac{e^{\frac{2}{x^2}} - e^{-\frac{3}{x^2}}}{x^5} dx$

Đặt:
$$u = \frac{1}{x^2} \Rightarrow du = -\frac{2}{x^3} dx$$
. Đổi cận: $x = 1 \Rightarrow u = 1; x = +\infty \Rightarrow u = 0$

Tích phân trở thành:
$$I = \frac{1}{2} \int_{0}^{1} u \left(e^{2u} - e^{-3u} \right) du = \frac{1}{2} \int_{0}^{1} u e^{2u} du - \frac{1}{2} \int_{0}^{1} u e^{-3u} du = I_{1} - I_{2}$$

Đến đây dễ dàng tính được I_1, I_2 bằng tích phân từng phân

Vậy
$$I = \frac{e^2}{8} + \frac{2}{9e^3} + \frac{5}{72}$$

Câu 33: Cho tích phân $I = \int_{1}^{+\infty} \frac{dx}{\left(x^m + 2\right)\sqrt{x^2 - 1}}$. Tìm m để tích phân I hội tụ và tính tích phân khi

m = 2

Giải:

Do x = 1 làm cho biểu thức trong dấu tích phân không xác định. Nên đây là tích phân suy rộng loại 1 và 2.

Tách ra thành 2 tích phân sau:

$$I = \int_{1}^{+\infty} \frac{dx}{\left(x^{m} + 2\right)\sqrt{x^{2} - 1}} = \int_{1}^{2} \frac{dx}{\left(x^{m} + 2\right)\sqrt{x^{2} - 1}} + \int_{2}^{+\infty} \frac{dx}{\left(x^{m} + 2\right)\sqrt{x^{2} - 1}} = I_{1} + I_{2}$$

Xét tích phân
$$I_1$$
 sau: $I_1 = \int_1^2 \frac{dx}{(x^m + 2)\sqrt{x^2 - 1}} = \int_1^2 \frac{dx}{(x^m + 2)\sqrt{(x - 1)(x + 1)}}$

Khi
$$x \to 1^+$$
: $\frac{dx}{(x^m + 2)\sqrt{(x-1)(x+1)}} \sim \frac{1}{3\sqrt{2}(x-1)^{\frac{1}{2}}}$

+ Đây là tích phân suy rộng loại 2, thấy $\alpha = \frac{1}{2} < 1 \Rightarrow I_1$ hội tụ.

Xét tích phân
$$I_2 = \int_2^{+\infty} \frac{dx}{(x^m + 2)\sqrt{x^2 - 1}}$$

Khi $x \rightarrow +\infty$ ta xét các trường hợp của m như sau:

Khi
$$m < 0$$
, xét $\frac{1}{(x^m + 2)\sqrt{x^2 - 1}} \sim \frac{1}{2x} \Rightarrow \alpha = 1 \Rightarrow I_2$ phân kỳ $\Rightarrow I$ phân kỳ

Khi
$$m = 0$$
, xét: $\frac{1}{(x^m + 2)\sqrt{x^2 - 1}} \sim \frac{1}{3x} \Rightarrow \alpha = 1 \Rightarrow I_2$ phân kỳ $\Rightarrow I$ phân kỳ

Khi
$$m > 0$$
, xét: $\frac{1}{(x^m + 2)\sqrt{x^2 - 1}} \sim \frac{1}{x^{m+1}}$

Như vậy khi m > 0 thì ta thấy $m+1>1 \Rightarrow I_2$ hội tụ (do đây là tích phân suy rộng loại 1).

Kết luận: + Do I_1 hội tụ nên để I hội tụ thì chỉ phụ thuộc vào I_2 . Suy ra, I hội tụ khi m > 0.

Tính tích phân khi m = 2:

Khi
$$m = 2$$
, tích phân đã cho trở thành: $I = \int_{1}^{+\infty} \frac{dx}{(x^2 + 2)\sqrt{x^2 - 1}} = \int_{1}^{+\infty} \frac{dx}{x(x^2 + 2)\sqrt{1 - \frac{1}{x^2}}}$

$$\text{Dặt: } t = \sqrt{1 - \frac{1}{x^2}} \Rightarrow t^2 = 1 - \frac{1}{x^2} \Rightarrow x^2 = \frac{1}{1 - t^2} \Rightarrow x dx = \frac{t}{(1 - t^2)^2} dt$$

Tích phân đã tương đương với:

$$\int_{1}^{+\infty} \frac{xdx}{x^{2}(x^{2}+2)\sqrt{1-\frac{1}{x^{2}}}} = \int_{0}^{1} \frac{\frac{t}{(1-t^{2})^{2}}}{\frac{1}{1-t^{2}}(\frac{1}{1-t^{2}}+2)t} dt = \int_{0}^{1} \frac{\frac{1}{1-t^{2}}}{\frac{t}{1-t^{2}}+2t} dt = \frac{1}{2} \int_{0}^{1} \frac{1}{\frac{3}{2}-t^{2}} dt$$

$$= \frac{1}{2} \int_{0}^{1} \frac{1}{\left(\frac{\sqrt{6}}{2} - t\right) \left(\frac{\sqrt{6}}{2} + t\right)} dt = \frac{1}{2\sqrt{6}} \int_{0}^{1} \frac{\frac{\sqrt{6}}{2} + t + \frac{\sqrt{6}}{2} - t}{\left(\frac{\sqrt{6}}{2} - t\right) \left(\frac{\sqrt{6}}{2} + t\right)} = \frac{1}{2\sqrt{6}} \int_{0}^{1} \frac{1}{\left(\frac{\sqrt{6}}{2} - t\right)} + \frac{1}{\left(\frac{\sqrt{6}}{2} + t\right)} dt$$

$$= \frac{1}{2\sqrt{6}} \left(-\ln\left|\frac{\sqrt{6}}{2} - t\right| + \ln\left|\frac{\sqrt{6}}{2} + t\right| \right) \left| \frac{1}{0} = \frac{1}{2\sqrt{6}} \ln\left(5 + 2\sqrt{6}\right) \right|$$

Câu 34: Cho tích phân $I = \int_{2}^{+\infty} \frac{dx}{(x^m - 1)\sqrt{2x^2 - 5x + 2}}$. Tìm m để tích phân I hội tụ và tính tích

phân khi m=1

Giải:

kỳ

- Do x = 2 làm cho biểu thức trong dấu tích phân không xác định. Nên đây là tích phân bất định loại 1 và 2.

Tách ra thành 2 tích phân sau:

$$I = \int_{2}^{+\infty} \frac{dx}{\left(x^{m} - 1\right)\sqrt{2x^{2} - 5x + 2}} = \int_{2}^{3} \frac{dx}{\left(x^{m} - 1\right)\sqrt{2x^{2} - 5x + 2}} + \int_{3}^{+\infty} \frac{dx}{\left(x^{m} - 1\right)\sqrt{2x^{2} - 5x + 2}} = I_{1} + I_{2}$$

Xét tích phân
$$I_1$$
 sau: $I_1 = \int_2^3 \frac{dx}{\left(x^m - 1\right)\sqrt{2x^2 - 5x + 2}} = \int_2^3 \frac{dx}{\left(x^m - 1\right)\sqrt{2\left(x - \frac{1}{2}\right)\left(x - 2\right)}}$

Khi
$$x \to 2^+$$
: $\frac{1}{\left(x^m - 1\right)\sqrt{2\left(x - \frac{1}{2}\right)(x - 2)}} \sim \frac{1}{\sqrt{3}\left(2^m - 1\right)\left(x - 2\right)^{\frac{1}{2}}}$

Nhận thấy với mọi $m \neq 0$ (lưu ý vì hàm số chỉ xác định khi $m \neq 0$). Thì $\sqrt{3}(2^m-1)$ luôn là hằng.

Do đó thấy $\alpha = \frac{1}{2} < 1 \Rightarrow I_1$ hội tụ (đây là tích phân suy rộng loại 2).

Xét tích phân
$$I_2 = \int_{3}^{+\infty} \frac{dx}{(x^m - 1)\sqrt{2x^2 - 5x + 2}}$$

Khi $x \rightarrow +\infty$ ta xét các trường hợp của $x \rightarrow +\infty$ như sau:

Khi
$$m < 0$$
, ta xét hàm dương sau:
$$\frac{1}{\left(x^m - 1\right)\sqrt{2x^2 - 5x + 2}} \sim \frac{1}{\sqrt{2}x} \Rightarrow \alpha = 1 \Rightarrow I_2 \text{ phân kỳ} \Rightarrow I \text{ phân}$$

Khi m = 0: không xét vì làm hàm số không xác định $\Rightarrow I$ không có tích phân.

* Khi
$$m > 0$$
, ta có: $\frac{1}{(x^m - 1)\sqrt{2x^2 - 5x + 2}} \sim \frac{1}{\sqrt{2}x^{m+1}}$

Như vậy khi m > 0 thì ta thấy $m+1 > 1 \Rightarrow I_2$ hội tụ.

Kết luận: $+ \text{Do } I_1$ hội tụ nên để I hội tụ thì chỉ phụ thuộc vào I_1 Suy ra, I hội tụ khi m > 0.

Tính tích phân khi
$$m=1: \int_{2}^{+\infty} \frac{dx}{(x-1)\sqrt{2x^2-5x+2}}$$

$$Dat: x-1 = \frac{1}{t} \Rightarrow dx = -\frac{1}{t^2} dt$$

Tích phân đã tương đương với:
$$\int_{2}^{+\infty} \frac{dx}{(x-1)\sqrt{2x^2 - 5x + 2}} = -\int_{1}^{0} \frac{\frac{1}{t^2}}{\frac{1}{t}\sqrt{2\left(\frac{1}{t} + 1\right)^2 - 5\left(\frac{1}{t} + 1\right) + 2}} dt$$

$$=\int_{0}^{1} \frac{dt}{t\sqrt{\frac{2}{t^{2}}-\frac{1}{t}-1}} = \int_{0}^{1} \frac{dt}{\sqrt{2-t-t^{2}}} = \int_{0}^{1} \frac{dt}{\sqrt{\frac{9}{4}-\left(t+\frac{1}{2}\right)^{2}}}$$

Đặt
$$t + \frac{1}{2} = \frac{3}{2} \sin u \Rightarrow dt = \frac{3}{2} \cos u du$$

Tích phân trở thành:
$$\int_{arcsin\frac{1}{3}}^{\frac{\pi}{2}} \frac{\frac{3}{2}cosudu}{\frac{3}{2}cosu} = \frac{\pi}{2} - arcsin\frac{1}{3}$$

Câu 35: Tính tích phân
$$I = \int_{1}^{+\infty} \frac{1}{x\sqrt{|4-x^2|}} dx$$

Giải

Xét:
$$4 - x^2 = 0 \rightarrow x = \pm 2$$

X	1	2	+∞
$\left 4-x^2\right $	$4-x^2$	0	$x^2 - 4$

Vậy, ta có:
$$I = \int_{1}^{+\infty} \frac{1}{x\sqrt{|4-x^2|}} dx = \int_{1}^{2} \frac{1}{x\sqrt{4-x^2}} dx + \int_{2}^{+\infty} \frac{1}{x\sqrt{x^2-4}} dx = I_1 + I_2$$

Xét I_1 :

Đặt
$$t = \frac{1}{x} \rightarrow x = \frac{1}{t} \rightarrow dx = -\frac{1}{t^2} dt$$

Với
$$\begin{cases} x = 1 \\ x = 2 \end{cases} \Rightarrow \begin{cases} t = 1 \\ t = \frac{1}{2} \end{cases}$$

$$I_{1} = \int_{1}^{2} \frac{1}{x\sqrt{4-x^{2}}} dx = \int_{1}^{\frac{1}{2}} \frac{-\frac{1}{t^{2}} dt}{\frac{1}{t} \sqrt{4-\frac{1}{t^{2}}}} = \int_{1}^{\frac{1}{2}} \frac{-dt}{\sqrt{4t^{2}-1}} = \int_{\frac{1}{2}}^{1} \frac{dt}{\sqrt{4t^{2}-1}} = \frac{1}{2} \ln \left| 2t + \sqrt{4t^{2}-1} \right| \left| \frac{1}{2} = \frac{1}{2} \ln \left| 2 + \sqrt{3} \right|$$

Tương tự với $I_2 = \frac{\pi}{4}$

Vậy
$$I = I_1 + I_2 = \frac{1}{2} ln(2 + \sqrt{3}) + \frac{\pi}{4}$$

Câu 36: Tìm tất cả số thực $\alpha > 0$ để tích phân $I = \int_0^{+\infty} \frac{x^{\alpha} - \ln^{\alpha}(1+x)}{\left(x^3 + arctanx^2\right)^{\alpha}} dx$ hội tụ

Giải:

$$I = \int_{0}^{+\infty} \frac{x^{\alpha} - \ln^{\alpha} (1+x)}{\left(x^{3} + \arctan x^{2}\right)^{\alpha}} dx = \int_{0}^{2} \frac{x^{\alpha} - \ln^{\alpha} (1+x)}{\left(x^{3} + \arctan x^{2}\right)^{\alpha}} dx + \int_{2}^{+\infty} \frac{x^{\alpha} - \ln^{\alpha} (1+x)}{\left(x^{3} + \arctan x^{2}\right)^{\alpha}} dx = I_{1} + I_{2}$$

$$\text{D} \underbrace{\text{A}}_{\text{mat}} f(x) = \frac{x^{\alpha} - \ln^{\alpha} (1 + x)}{\left(x^{3} + \arctan x^{2}\right)^{\alpha}}$$

Xét I_1 :

Khi
$$x \to 0^+: f(x) \sim \frac{x^{\alpha} - \left(x - \frac{x^2}{2}\right)^{\alpha}}{\left(x^3 + x^2\right)^{\alpha}} = \frac{x^{\alpha} - x^{\alpha} \left(1 - \frac{x}{2}\right)^{\alpha}}{\left(x^3 + x^2\right)^{\alpha}} \sim \frac{x^{\alpha} - x^{\alpha} \left(1 - \frac{\alpha}{2}x\right)}{x^{2\alpha}} \sim \frac{x^{\alpha+1}}{x^{2\alpha}} = \frac{1}{x^{\alpha-1}}$$

Suy ra I_1 cùng bản chất với $\int_0^2 \frac{1}{x^{\alpha-1}} dx$

Vậy để I_1 hội tụ thì: $\alpha - 1 < 1 \rightarrow \alpha < 2(1)$

Xét I_2 :

Khi
$$x \to +\infty$$
: $f(x) \sim \frac{x^{\alpha}}{x^{3\alpha}} = \frac{1}{x^{2\alpha}}$

Suy ra I_2 cùng bản chất với $\int_2^{+\infty} \frac{1}{x^{2\alpha}} dx$

Vậy để I_2 hội tụ thì: $2\alpha > 1 \rightarrow \alpha > \frac{1}{2}(2)$

Từ (1) và (2): Để I HỘI TỤ thì
$$\frac{1}{2} < \alpha < 2$$

Câu 37: Tìm tất cả các số thực α để tích phân sau hội tụ $I = \int_0^1 \frac{1}{(x+1)\sqrt{xarctanx^{\alpha}}} dx$. Tính giá

trị của tích phân khi $\alpha = \frac{1}{2}$

Giải

x = 0 là điểm kì dị.

Khi $x \rightarrow 0^+$:

TH1:
$$\alpha < 0$$
: $\lim_{x \to 0^+} x^{\alpha} = \lim_{x \to 0^+} = \frac{1}{x^{-\alpha}} = +\infty$

$$\Rightarrow \frac{1}{(x+1)\sqrt{x.arctanx^{\alpha}}} \sim \frac{1}{\sqrt{x.\frac{\pi}{2}}} \sim \frac{1}{x^{\frac{1}{2}}\sqrt{\frac{\pi}{2}}}$$

Suy ra *I* cùng bản chất với
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{2}} \sqrt{\frac{\pi}{2}}} = \sqrt{\frac{2}{\pi}} \int_{0}^{1} \frac{dx}{\frac{1}{x^{2}}}$$

Dễ thấy
$$\sqrt{\frac{2}{\pi}} \int_{0}^{1} \frac{dx}{\frac{1}{x^{2}}}$$
 hội tụ $\Rightarrow I$ hội tụ (1)

TH2:
$$\alpha \ge 0$$
: $\frac{1}{(x+1)\sqrt{x.arctanx^{\alpha}}} \sim \frac{1}{\sqrt{x.x^{\alpha}}} \sim \frac{1}{x^{\frac{1+\alpha}{2}}}$

Suy ra I cùng bản chất với $\int_{0}^{1} \frac{dx}{x^{\frac{1+\alpha}{2}}}$

Vậy để I hội tụ $\frac{1+\alpha}{2} < 1 \Rightarrow \alpha < 1(2)$

Từ (1) và (2) suy ra $\alpha < 1$

Khi $\alpha = \frac{1}{2}$, tích phân trở thành: $I = \int_{0}^{1} \frac{1}{(x+1)\sqrt{x.arctan\sqrt{x}}} dx$

Đặt
$$t = arctan\sqrt{x} \Rightarrow dt = \frac{dx}{2\sqrt{x}(1+x)} \Rightarrow I = \int_{0}^{\frac{\pi}{4}} \frac{2dt}{\sqrt{t}} = 4\sqrt{t} \begin{vmatrix} \frac{\pi}{4} \\ 0 \end{vmatrix} = 2\sqrt{\pi}$$

Câu 38: Xét tính hội tụ của tích phân: $\int_{0}^{+\infty} \frac{x.sin(ax)}{k^2 + x^2} dx (k \neq 0, a \neq 0)$

Giải

Xét hàm $g(x) = \frac{x}{k^2 + x^2}$, ta có: $g'(x) = \frac{k^2 - x^2}{\left(k^2 + x^2\right)^2}$. Như vậy $x \ge |k|$ thì g'(x) < 0 khi đó hàm

g(x) đơn điệu giảm và $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} \frac{x}{k^2 + x^2} = 0$

Mặt khác, với mọi
$$A > a$$
: $\left| \int_{0}^{A} \sin ax dx \right| = \frac{1 - \cos Aa}{|a|} \le \frac{2}{|a|} = M$

Theo dấu hiệu tích phân Dirichle tích phân đã cho hội tụ

Câu 39: Xét sự hội tụ của tích phân: $\int_{a}^{\infty} \frac{\sin x}{x} dx \text{ với } a > 0$

Trước hết theo định lý Dirichlet tích phân $\int_{a}^{\infty} \frac{\sin x}{x} dx$ hội tụ. Tuy nhiên, tích phân $\int_{a}^{\infty} \frac{|\sin x|}{x} dx$ không hội tụ.

Do
$$\frac{|\sin x|}{x} \ge \frac{\sin^2 x}{x} \ge 0, \forall x \in [a, +\infty)$$

Mặt khác:
$$\frac{\sin^2 x}{x} = \frac{1 - \cos 2x}{2x}$$
 nên $\int_a^\infty \frac{\sin^2 x}{x} dx = \frac{1}{2} \int_a^\infty \frac{dx}{x} - \frac{1}{2} \int_a^\infty \frac{\cos 2x}{x} dx$

Tích phân thứ nhất phân kì, tích phân thứ hai hội tụ. Vậy tích phân $\int_{-\infty}^{\infty} \frac{\sin^2 x}{x} dx$ phân kỳ,

$$\Rightarrow \int_{a}^{\infty} \frac{|sinx|}{x} dx \text{ phân kỳ}$$

Câu 40: Tính tích phân suy rộng $\int_{0}^{\infty} \frac{e^{-x^2}}{\left(x^2 + \frac{1}{2}\right)^2} dx$

$$D\tilde{a}t: I(\alpha) = -\int_{0}^{\infty} \frac{e^{-x^{2}}}{x^{2} + \alpha} dx$$

Khi đó, ta có:
$$\int_{0}^{\infty} \frac{e^{-x^{2}}}{x^{2} + \alpha} dx = \int_{0}^{\infty} e^{-x^{2}} \int_{0}^{\infty} e^{-(x^{2} + \alpha)t} dt dx = \int_{0}^{\infty} e^{-\alpha t} \int_{0}^{\infty} e^{-(1+t)x^{2}} dt dx = \int_{0}^{\infty} \frac{\sqrt{\pi}}{2} \cdot \frac{e^{-\alpha t}}{\sqrt{1+t}} dt$$

Ta thấy y:
$$\int_{0}^{\infty} \frac{e^{-x^{2}}}{\left(x^{2} + \frac{1}{2}\right)^{2}} dt = I' \left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2} \int_{0}^{\infty} \frac{t}{\sqrt{1+t}} e^{-\frac{t}{2}} dt$$

Nhưng

$$\int_{0}^{\infty} \frac{t}{\sqrt{1+t}} e^{-\frac{t}{2}} dt = \int_{0}^{\infty} \sqrt{1+t} e^{-\frac{t}{2}} dt - \int_{0}^{\infty} \frac{1}{\sqrt{1+t}} e^{-\frac{t}{2}} dt = \left(-2\sqrt{1+t}e^{-\frac{t}{2}}\right) \Big|_{0}^{\infty} + \int_{0}^{\infty} \frac{1}{\sqrt{1+t}} e^{-\frac{t}{2}} dt - \int_{0}^{\infty} \frac{1}{\sqrt{1+t}} e^{-\frac{t}{2}} dt = 2$$

Vậy
$$\int_{0}^{\infty} \frac{e^{-x^2}}{\left(x^2 + \frac{1}{2}\right)^2} dx = \sqrt{\pi}$$

Câu 41: Tìm
$$\alpha$$
 để tích phân sau hội tụ: $I = \int_0^{+\infty} \frac{x^{\alpha} dx}{\left(1 + x^2\right)\left(\sqrt[5]{1 + x^4} - cosx\right)}$

$$I = \int_{0}^{+\infty} \frac{x^{\alpha} dx}{\left(1 + x^{2}\right) \left(\sqrt[5]{1 + x^{4}} - \cos x\right)} = \int_{0}^{1} \frac{x^{\alpha} dx}{\left(1 + x^{2}\right) \left(\sqrt[5]{1 + x^{4}} - \cos x\right)} + \int_{1}^{+\infty} \frac{x^{\alpha} dx}{\left(1 + x^{2}\right) \left(\sqrt[5]{1 + x^{4}} - \cos x\right)} = I_{1} + I_{2}$$

Xét
$$I_1, x \to 0^+ : f(x) \sim \frac{2}{x^{2-\alpha}}$$

$$\Rightarrow I_1$$
 cùng bản chất với $\int_0^1 \frac{2}{x^{2-\alpha}} dx$

Vậy
$$I_1$$
 hội tụ $\Rightarrow 2-\alpha < 1 \Leftrightarrow \alpha > 1$

Xét
$$I_2, x \to +\infty$$
: $f(x) \sim \frac{2}{x^{\frac{14}{5}-\alpha}}$

$$\Rightarrow$$
 I_2 cùng bản chất với $\int_1^{+\infty} \frac{2}{x^{\frac{14}{5}-\alpha}} dx$

Vậy
$$I_2$$
 hội tụ $\Rightarrow 2-\alpha < 1 \Leftrightarrow \alpha > 1$

Câu 42: Tìm
$$\alpha$$
 để tích phân sau hội tụ: $I = \int_{0}^{+\infty} \frac{\sqrt{1+x^2}}{x^{\alpha}(1+x^{\alpha+1})} dx$

Giải:

$$I = \int_{0}^{+\infty} \frac{\sqrt{1+x^{2}}}{x^{\alpha} \left(1+x^{\alpha+1}\right)} dx = \int_{0}^{1} \frac{\sqrt{1+x^{2}}}{x^{\alpha} \left(1+x^{\alpha+1}\right)} dx + \int_{1}^{+\infty} \frac{\sqrt{1+x^{2}}}{x^{\alpha} \left(1+x^{\alpha+1}\right)} dx = I_{1} + I_{2}$$

Khi
$$\alpha > -1$$

$$X \notin I_1, x \to 0^+ : f(x) \sim \frac{1}{x^{\alpha}}$$

$$\Rightarrow I_1$$
 cùng bản chất với $\int_0^1 \frac{1}{x^{\alpha}} dx$

Vậy
$$I_1$$
 hội tụ $\Leftrightarrow \alpha > 1$

Xét
$$I_2, x \to +\infty$$
: $f(x) \sim \frac{1}{x^{2\alpha}}$

$$\Rightarrow$$
 I_2 cùng bản chất với $\int\limits_1^{+\infty} \frac{1}{x^{2\alpha}} dx$

Vậy
$$I_2$$
 hội tụ $\Rightarrow 2\alpha > 1 \Leftrightarrow \alpha > \frac{1}{2}$

Khi $\alpha < -1$ làm tương tự

Câu 43: Xét sự hội tụ của tích phân sau:
$$I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt{sinxcosx}}$$

$$f(x) \ge 0$$
, kỳ dị tại $\frac{\pi}{2}$ và $0 \Rightarrow$ tách cận

$$I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt{sinxcosx}} = \int_{0}^{\frac{\pi}{3}} \frac{dx}{\sqrt{sinxcosx}} + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{dx}{\sqrt{sinxcosx}} = I_1 + I_2$$

Xét $I_1: f(x)$ kỳ dị tại 0

$$x \to 0^+$$
: $f(x) \sim \frac{1}{\sqrt{x}}$. Vì $\int_0^{\frac{\pi}{3}} \frac{1}{x^{\frac{1}{2}}}$ hội tụ nên I_1 hội tụ

Xét
$$I_2$$
: $f(x)$ kỳ dị tại $\frac{\pi}{2}$

$$x \to \frac{\pi}{2}^-$$
: $f(x) = \frac{1}{\sqrt{\sin x} \cdot \sin\left(\frac{\pi}{2} - x\right)} \sim \frac{1}{\sqrt{\frac{\pi}{2} - x}}$

Vì
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{\left(\frac{\pi}{2} - x\right)^{\frac{1}{2}}} \text{ hội tụ nên } I_2 \text{ hội tụ}$$

Vậy $I = I_1 + I_2$ hội tụ

Câu 44: Tính tích phân suy rộng:
$$I = \int_{1}^{+\infty} \frac{dx}{(x+1)\sqrt{x^2 - x}}$$

Giải:

x = 1 là điểm kỳ dị \Rightarrow Tích phân suy rộng kết hợp. Ta tách thành 2 tích phân:

$$I = \int_{1}^{+\infty} \frac{dx}{(x+1)\sqrt{x^{2}-x}} = \int_{1}^{2} \frac{dx}{(x+1)\sqrt{x^{2}-x}} + \int_{2}^{+\infty} \frac{dx}{(x+1)\sqrt{x^{2}-x}}$$

$$\text{X\'et } I_1 = \int_{1}^{2} \frac{dx}{(x+1)\sqrt{x^2 - x}} = \lim_{k \to 1^{+}} \int_{k}^{2} \frac{dx}{(x+1)\sqrt{x^2 - x}} = \lim_{k \to 1^{+}} \int_{k}^{2} \frac{dx}{(x+1)^2 \sqrt{1 - \frac{3}{x+1} + \frac{2}{(x+1)^2}}}$$

$$\text{D}\check{a}t: \ t = \frac{1}{x+1} \Rightarrow dt = \frac{-dx}{\left(x+1\right)^2}$$

Đổi cận:

x	1	2
t	1	1
	$\overline{2}$	3

Ta có:

$$I_{1} = \lim_{k \to \frac{1}{2}^{-}} \int_{\frac{1}{3}}^{k} \frac{dt}{\sqrt{2t^{2} - 3t + 1}} = \lim_{k \to \frac{1}{2}^{-}} \frac{\sqrt{2}}{2} \ln \left| t - \frac{3}{4} + \sqrt{t^{2} - \frac{3}{2}t + \frac{1}{2}} \right| \left| \frac{k}{1} = \lim_{k \to \frac{1}{2}^{-}} \frac{\sqrt{2}}{2} \ln \left| k - \frac{3}{4} + \sqrt{k^{2} - \frac{3}{2}k + \frac{1}{2}} \right| - \frac{\sqrt{2}}{2} = -\sqrt{2} \ln 2 + \frac{\sqrt{2}}{2} \ln 12$$

$$I_{2} = \int_{2}^{+\infty} \frac{dx}{(x+1)\sqrt{x^{2}-x}} = \lim_{k \to +\infty} \int_{2}^{k} \frac{dx}{(x+1)\sqrt{x^{2}-x}} = \lim_{k \to +\infty} \int_{2}^{+\infty} \frac{dx}{(x+1)^{2}\sqrt{1-\frac{3}{x+1}+\frac{2}{(x+1)^{2}}}}$$

Giải tương tự:
$$I_2 = \frac{\sqrt{2}}{2} ln \frac{1}{12} - \frac{\sqrt{2}}{2} ln \left(\frac{3}{4} - \frac{\sqrt{2}}{2} \right)$$

Vậy
$$I = I_1 + I_2 = -\sqrt{2}ln2 - \frac{\sqrt{2}}{2}ln\left(\frac{3}{4} - \frac{\sqrt{2}}{2}\right)$$

Câu 45: Xét sự hội tụ của tích phân: $\int_{0}^{+\infty} \frac{2x-1}{(3+x^{\alpha})^{4}\sqrt{x^{5}+1}} dx$

Giải:

Khi
$$x \to +\infty$$
 ta so sánh: $2x - 1 \sim 2x; (3 + x^{\alpha}) \sqrt[4]{x^5 + 1} \sim x^{\alpha} x^{\frac{5}{4}} = x^{\alpha + \frac{1}{4}}$

Nên bắt buộc phải chia tp ban đầu thành tổng 2 tp như sau:

$$I = \int_{0}^{+\infty} \frac{2x - 1}{\left(3 + x^{\alpha}\right)^{4} \sqrt{x^{5} + 1}} dx = \int_{0}^{1} \frac{2x - 1}{\left(3 + x^{\alpha}\right)^{4} \sqrt{x^{5} + 1}} dx + \int_{1}^{+\infty} \frac{2x - 1}{\left(3 + x^{\alpha}\right)^{4} \sqrt{x^{5} + 1}} dx = I_{1} + I_{2}$$

 I_1 là tp của hàm liên tục trong đoạn lấy tp nên là tp xác định (tp HT)

Tp
$$I_2$$
 là tp HT khi và chỉ khi $\int_{1}^{+\infty} \frac{1}{x^{\alpha + \frac{1}{4}}} dx$ HT (theo so sánh trên)

Do vậy, tp đã cho HT khi và chỉ khi $\alpha > \frac{3}{4}$

BÀI TẬP TỰ LUYỆN

Câu 1: Khảo sát sự hội tụ của tích phân suy rộng: $J = \int_{1}^{+\infty} \frac{x^2 arctan \frac{1}{x}}{x\sqrt{x} - \sqrt[5]{x} + 4} dx$

Câu 2: Khảo sát sự hội tụ của tích phân
$$I = \int_{0}^{1} \frac{\sqrt{1+x^{\alpha}} - \sqrt[3]{1-\sqrt{x}}}{\sin\sqrt{x}} dx$$

Câu 3: Khảo sát sự hội tụ của tích phân
$$I = \int_{1}^{+\infty} x^{\alpha} ln \left(\frac{x^2 + 3x + 2}{x^2 + x + 1} \right) dx$$

Câu 4: Cho tích phân $\int_{0}^{+\infty} \frac{arctanx}{\left(1+x^2\right)^{\alpha}} dx$. Tìm α để tích phân hội tụ và tính tích phân khi $\alpha = \frac{3}{2}$

Câu 5: Cho tích phân $I = \int_0^1 \frac{arcsin\sqrt{x}dx}{\sqrt{x^{\alpha}(1-x)}}$. Tìm α để tích phân hội tụ và tính tích phân khi $\alpha = 1$

Câu 6: Tìm
$$\alpha$$
 để tích phân sau hội tụ:
$$\int_{0}^{1} \frac{(1-x)^{\frac{5}{3}}}{\arctan^{\alpha}(x-x^{2})}$$

Câu 7: Xét tích phân suy rộng $\int_{0}^{\infty} \frac{dx}{(1+x^3)(1+x^{\alpha})}$, α là tham số. Tìm giá trị α nguyên dương bé nhất để tích phân suy rộng này hội tụ. Với α tìm được, tính tích phân này.

Câu 9: Xét tích phân suy rộng $\int_{1}^{\infty} \frac{1}{x^{m} \cdot \sqrt[3]{1+x^{2}}} dx$. Tìm m điều kiện về m để tích phân suy rộng này hội tụ. Tính giá trị tích phân này khi $m = \frac{7}{3}$

Câu 10: Cho $f(x) = e^{\sin^2 x}$, $g(x) = \int_{3x}^{0} ln(1+\sin t) dt$. Tìm b để $\lim_{x\to 0^{-}} \frac{f(x)}{g(x)}$ nhận giá trị hữu hạn. Với b vừa tìm được, hãy tính giá trị giới hạn trên

Câu 11: Khảo sát sự hội tụ của $I = \int_{0}^{\pi} \frac{\sinh x}{e^{x^2} - \cos x} dx$

Câu 12: Tìm
$$\alpha$$
 để tích phân sau hội tụ $I = \int_{1}^{+\infty} \frac{x^2 + sin(x^2 + 1)}{x^\alpha + (lnx + 1)^\alpha}$

Câu 13: Tìm
$$\alpha$$
 để tích phân sau hội tụ $I = \int_{1}^{+\infty} \frac{2x-1}{(3+x^{\alpha})^{4}\sqrt{x^{5}+1}}$

Câu 14: Tìm
$$\alpha$$
 để tích phân sau hội tụ
$$\int_{0}^{+\infty} \frac{x^2 + \arcsin \frac{1}{x^2}}{1 + x^{\alpha} \sqrt[3]{x}} dx$$