```
In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import matplotlib as mpl
import statsmodels.api as sm
```

Лаборатоная работа № 5.1.2

Исследование эффекта Комптона

Работу выполнили студенты 772 группы:

- Усеинов Булат
- Зубков Максим
- Шевцов Владимир

Часть I.

Экспериментальная установка

```
In [2]: #TODO
```

Часть II.

Обработка экспериментальных данных

In [4]: data

Out[4]:

	Thetta	X	N_min	N_max	N	1/N	sigma_N	weight
0	0	0.000000	805	815	810.0	0.001235	5.0	0.200000
1	10	0.015192	775	785	780.0	0.001282	5.0	0.200000
2	20	0.060307	705	720	712.5	0.001404	7.5	0.133333
3	30	0.133975	655	665	660.0	0.001515	5.0	0.200000
4	40	0.233956	595	605	600.0	0.001667	5.0	0.200000
5	50	0.357212	500	540	520.0	0.001923	20.0	0.050000
6	60	0.500000	445	475	460.0	0.002174	15.0	0.066667
7	70	0.657980	380	420	400.0	0.002500	20.0	0.050000
8	80	0.826352	350	375	362.5	0.002759	12.5	0.080000
9	90	1.000000	320	350	335.0	0.002985	15.0	0.066667
10	100	1.173648	300	315	307.5	0.003252	7.5	0.133333
11	110	1.342020	279	295	287.0	0.003484	8.0	0.125000
12	120	1.500000	260	275	267.5	0.003738	7.5	0.133333

Для того, чтобы провести лучшую прямую воспользуемся методом минимизации χ^2 , его также называют взвешенным методом наименьших квадратов (Weighted Least Squares - WLS).

```
In [5]: X = sm.add_constant(data['X'])
        wls_model = sm.WLS(data['1/N'], X, weights=data['weight'])
        results = wls model.fit()
```

/Users/bulat/anaconda3/lib/python3.7/site-packages/numpy/core/from numeric.py:2389: FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. return ptp(axis=axis, out=out, **kwargs)

Получим параметры полинома вида: $y = \mathbf{X} \cdot x + \mathbf{const}$

$$y = \mathbf{X} \cdot x + \mathbf{const}$$

- Х наклон прямой.
- const сдвиг прямой.

Данная реализация WLS дает возможность получить ошибки коэффициентов и другую информацию о том, насколько хорошо была проведена прямая.

In [7]: results.summary()

/Users/bulat/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1450: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=13

"anyway, n=%i" % int(n))

Out[7]:

WLS Regression Results

Dep. Variable:	1/N	R-squared:	0.998
Model:	WLS	Adj. R-squared:	0.998
Method:	Least Squares	F-statistic:	4808.

Date: Mon, 07 Oct 2019 **Prob (F-statistic):** 6.97e-16

Time: 03:52:08 **Log-Likelihood:** 111.49

No. Observations: 13 AIC: -219.0

Df Residuals: 11 **BIC:** -217.8

Df Model: 1

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 0.0013
 1.78e-05
 72.227
 0.000
 0.001
 0.001

 X
 0.0017
 2.41e-05
 69.340
 0.000
 0.002
 0.002

Omnibus: 0.470 Durbin-Watson: 0.510

Prob(Omnibus): 0.791 Jarque-Bera (JB): 0.514

Skew: 0.021 **Prob(JB):** 0.773

Kurtosis: 2.027 **Cond. No.** 2.46

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Из этого отчета видим следующие погрешности:

- $\bullet \ \delta \mathbf{X} = 2.41 \cdot 10^{-5}$
- δ **const** = $1.78 \cdot 10^{-5}$

```
In [8]: mpl.style.use('seaborn')
                                plt.figure(figsize=(20,13))
                                plt.title(r"\frac{1}{N(\theta)} = f(1-\cos \theta)")
                                plt.xlabel(r'$1-\cos \Theta$')
                                plt.ylabel(r'$\dfrac{1}{N(\Theta)}$')
                                plt.plot(data['X'], data['1/N'], 'o', label='Средние величины', col
                                or='red')
                                plt.plot(data['X'], 1/data['N min'], 'v', label='Верхние границы',
                                color='green')
                                plt.plot(data['X'], 1/data['N max'], '^', label='Нижние границы', с
                                olor='green')
                                plt.plot(data['X'], 0.001670*data['X'] + 0.001282, label = '<a href="https://www.ncbel.new.org/linearing/linearing/linearing/new.org/linearing/linearing/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/linearing/new.org/new.org/linearing/new.org/linearing/new.org/linearing/new.org/new.org/linearing/new.org/new.org/linearing/new.org/new.org/linearing/new.org/new.org/new.org/new.org/new.org/new.org/new.org/new.org/new.org/new.org/new.org/new.org/new.org/new.org/new.org/new
                                прямая', color='indigo')
                                plt.plot([0,0], [0.0012, 0.0035], '--', label = r'$\cos \Theta = 1$
                                 ', color='orange')
                                plt.plot([1, 1], [0.0012, 0.0035], '-.', label = r'$\cos \Theta = 0
                                $', color='orange' )
                                plt.legend()
```

Out[8]: <matplotlib.legend.Legend at 0x1c1c153400>

Найдем точку обратную величину к ординате точки пересечения построенного графика и оси ординат, для того, чтобы определить занчение N(0)

Найдем точку обратную величину к ординате точки пересечения построенного графика и прямой $\cos\Theta=0$, для того, чтобы определить занчение N(90)

По формуле

$$mc^2 = E_{\gamma} \frac{N(90)}{N(0) - N(90)}$$

где $E_{\gamma} = 662 \text{ кэB}$

рассчитаем экспериментальную энергию покоя частицы, на которой происходит комптоновское рассеяние первичных $\gamma-$ квантов.

Так как в теории $mc^2=511~{\rm K}$ ЭВ и на практике мы получили $mc^2=508.194\pm25.223~{\rm K}$ ЭВ, то можно сделать вывод, что эксперимент вполне соотносится с теорией.