1. Young's Inequality (Solution by Lander Ver Hoef)

Let $p \in (1, \infty)$ and define q by $\frac{1}{p} + \frac{1}{q} = 1$. Suppose $a, b \ge 0$. Show

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

and that the inequality is strict unless either $a^p = ab$ or $b^q = ab$ (in which case both of these equalities hold!).

Hint: Fix $b \ge 0$ and consider $f(a) = a^p/p + b^q/q - ab$ on $[0, \infty)$. Look at the first and second derivatives of f.

Remark: Your proof should clearly note the place where p > 1 is used.

Solution:

Let $b \ge 0$ and let

$$f(a) = \frac{a^p}{p} + \frac{b^q}{q} - ab,$$

which we will consider on the interval $[0, \infty)$. Notice that $f(a) \ge 0$ precisely when $ab \le a^p/p + b^q/q$, so if we can show that $f(a) \ge 0$ for all a, we have established the inequality.

First, notice that

$$f'(a) = a^{p-1} - b,$$

and because p > 1, we know that

$$f''(a) = (p-1)a^{p-2}$$
.

By setting f' = 0, we see that a stationary point of f(a) occurs at $a^{p-1} = b$. But because $a \ge 0$ and p > 1, f''(a) is greater than or equal to 0, and for all $a \ne 0$, f''(a) > 0. This means that f(a) must be concave up, and the stationary point at $a^{p-1} = b$ is a global minimum.

Observe that if $a^{p-1} = b$, then $a^p = ab$. Furthermore, $a = b^{1/(p-1)}$, and by the definition of q,

$$\frac{1}{q} = 1 - \frac{1}{p} \Rightarrow q = \frac{p}{p-1}.$$

But if we subtract 1 from both sides, we get that

$$q-1=\frac{p}{p-1}-\frac{p-1}{p-1}=\frac{1}{p-1}.$$

Thus, $a = b^{q-1}$, and $ab = b^q$. Substituting into f, we see that at our global minimum, we have that

$$f(a) = \frac{a^p}{p} + \frac{b^q}{q} - ab = \frac{ab}{p} + \frac{ab}{q} - ab = ab\left(\frac{1}{p} + \frac{1}{q} - 1\right) = 0.$$

Thus, $f(a) \ge 0$ for all a, and is equal to zero only when $a^p = ab$ or $b^q = ab$.

2. [Carothers 3.34](Solution by Max Heldman)

If
$$x_n \to x$$
 and $y_n \to y$ in (M, d) , then $d(x_n, y_n) \to d(x, y)$ in \mathbb{R} .

Solution:

Observe that for any $n \in \mathbb{N}$,

$$-d(x_n, x) = d(x_n, y) - d(x_n, y) - d(x_n, x)$$

$$= d(x_n, y) - (d(x_n, y) + d(x_n, x))$$

$$\leq d(x_n, y) - d(x, y)$$

$$\leq d(x_n, x) + d(x, y) - d(x, y) = d(x_n, x).$$

Hence by the squeeze theorem, $d(x_n, y) - d(x, y) \to 0$, that is, $d(x_n, y) \to d(x, y)$. Thus

$$d(x, y_n) - d(x, x_n) \le d(x_n, y_n) + d(x_n, x) - d(x, x_n)$$

= $d(x_n, y_n) \le d(x_n, x) + d(x, y_n)$.

and by the squeeze theorem $d(x_n, y_n) \rightarrow d(x, y)$.

3. Carothers 3.36 (Solution by Sakti Anupindi)

A convergent sequence is Cauchy, and a Cauchy sequence is bounded (that is, the set $\{x_n : n \ge 1\}$ is bounded.

Solution:

Convergent sequence is Cauchy

Let $\frac{\epsilon_1}{2} > 0$. Given a convergent sequence (x_n) , choose $N \ge 1$, $N \in \mathbb{N}$ such that if $n \ge N$, $d(x_n, x) < \frac{\epsilon}{2}$. Now using triangle inequality in **M**, whenever $n, m \ge N$

$$d(x_m, x_n) \le d(x_m, x) + d(x, x_n) \le \frac{\epsilon}{2} + \frac{\epsilon}{2} \le \epsilon < 2\epsilon.$$

Since ϵ is arbitrary, a convergent sequence is Cauchy.

Cauchy sequence is bounded

A subset A of **M** is said to be bounded if it is contained in some ball, that is if $A \subset B_r(x)$ for some $x \in \mathbf{M}$ and r > 0. Since the sequence (x_n) is Cauchy, given $\epsilon > 0$ there is an integer $N \ge 1$ such that $d(x_m, x_n) < \epsilon$ whenever $m, n \ge N$.

Take $\epsilon = 1$. Then there exists N such that $d(x_m, x_n) < 1$ for all $m, n \ge N$. So, this means $x_n \in B_1(x_N)$ for all $n \ge N$. This helps in dealing with infinite terms. For finite terms put $\delta = 1 + \max\{d(x_1, x_N), d(x_2, x_N), \dots, d(x_{N-1}, x_N)\}$. Note $\delta > 0$. Then the set $\{x_n : n \ge 1\} \in B_{\delta}(x_N)$ for all n; so (x_n) is bounded.

4. Carothers 3.39[Mason Brewer]

Solution:

Let us assume that (x_n) does not converge to x and show that this implies that (x_n) has a subsequence with no further subsequence converging to x. Since (x_n) does not converge x, then there exists some ε such that for each $N \in \mathbb{N}$, there exists some $n \geq N$ such

that $|d(x_n, x)| \ge \varepsilon$. Now construct the subsequence (x_{n_i}) through the following iterative process. First, pick $n_0 \ge 1$ so that $|d(x_0, x)| \ge \varepsilon$, and then pick $n_i \ge n_{i-1} + 1 > n_{i-1} \in \mathbb{N}$ so that $|d(x_{n_i}, x)| \ge \varepsilon$. Each n_i is guaranteed to exist by the fact that (x_n) does not converge as stated earlier. Note (x_{n_i}) is in fact a subsequence of (x_n) , and (x_{n_i}) can't possibly have a further subsequence convergent to x since for every $i \in \mathbb{N}$, we have that $|d(x_{n_i}, x)| \ge \varepsilon$.

- 5. Carothers 3.44
- **6.** Carothers 3.46 (Solution by Jody Gaines)

: Given two metric spaces (M, d) and (N, ρ) , we can define a metric on the product $M \times N$ in a variety of ways. Our only requirement is that a sequence of pairs (a_n, x_n) in $M \times N$ should converge precisely when both coordinate sequences (a_n) and (x_n) converges (in (M, d) and (N, ρ) , respectively). Show that each of the following define metrics on $M \times N$ that enjoy this property and that all three are equivalent:

$$d_1((a,x),(b,y)) = d(a,b) + \rho(x,y),$$

$$d_2((a,x),(b,y)) = (d(a,b)^2 + \rho(x,y)^2)^{1/2},$$

$$d_{\infty}((a,x),(b,y)) = \max\{d(a,b),\rho(x,y)\}.$$

Solution:

Let (a_n) and (x_n) be sequences in M and N respectively such that $a_n \to a$ and $x_n \to x$ for some $a \in M$ and $x \in N$. Since $d(a_n, a) \to 0$ and $d(x_n, x) \to 0$ then

$$d_1((a_n, x_n), (a, x)) = d(a_n, a) + \rho(x_n, x) \to 0 + 0 = 0,$$

$$d_2((a_n, x_n), (a, x)) = (d(a_n, a)^2 + \rho(x_n, x)^2)^{1/2} \to (0^2 + 0^2)^{1/2} = 0,$$

$$d_{\infty}((a_n, x_n), (a, x)) = \max\{d(a_n, a), \rho(x_n, x)\} \le d(a_n, a) + \rho(x_n, x) \to 0 + 0 = 0.$$

Suppose $(a_n, x_n) \rightarrow (a, x)$ in d_1 . Then

$$d_2((a_n, x_n), (a, x)) = (d(a_n, a)^2 + \rho(x_n, x)^2)^{1/2}$$

$$\leq (d(a_n, a)^2 + 2d(a_n, a)\rho(x_n, x) + \rho(x_n, x)^2)^{1/2}$$

$$= d(a_n, a) + \rho(x_n, x) \to 0.$$

Likewise if $(a_n, x_n) \rightarrow (a, x)$ in d_2 then

$$d_{\infty}((a_n,x_n),(a,x)) = \max\{d(a_n,a),\rho(x_n,x)\} \leq (d(a_n,a)^2 + \rho(x_n,x)^2)^{1/2} \to 0.$$

Now suppose $(a_n, x_n) \rightarrow (a, x)$ in d_{∞} . Then

$$d_1((a_n, x_n), (a, x)) = d(a_n, x_n) + \rho(a, x) \le 2 \max\{d(a_n, a), \rho(x_n, x)\} \to 0.$$

Hence d_1, d_2, d_{∞} are equivalent metrics.

7. Carother 4.3

8. Carothers 4.11 (Solution by Mason Brewer)

Solution:

Define $E = \{e^{(k)} \mid k \in \mathbb{N}\}$, and let (x_n) be a sequence in E that converges to some x, and so the sequence has the form $(x_n) = (e^{(k_n)})$. Since (x_n) is convergent, then the sequence is Cauchy. Now by convergence, and then there exists some $N \in \mathbb{N}$ such that for $n, m \ge N$, we have that $d(x_n, x_m) < 1$, or $d(e^{(k_n)}, e^{(k_m)}) < 1$. But note that, since we are using the l_1 norm, our distance function is

$$d(e^{(k_n)}, e^{(k_m)}) = ||e^{(k_n)} - e^{(k_m)}||_1 = \sum_{i=1}^{\infty} |e_i^{(k_n)} - e_i^{(k_m)}| = \sum_{i=1}^{\infty} |\delta_{i,k_n} - \delta_{i,k_m}|,$$

Thus, if $k_n \neq k_m$, we get that $d(e^{(k_n)}, e^{(k_m)}) = 2$, and if $k_n = k_m$, we get that $d(e^{(k_n)}, e^{(k_m)}) = 0$. For $n, m \geq N$, we have that $d(e^{(k_n)}, e^{(k_m)}) < 1$, and so it must be that $k_n = k_m$, and so call $e^{(k_n)} = e^{(k_m)} = e^k$. Then for all $\varepsilon > 0$, we have that $n \geq N$ implies $d(e^{(k_n)}, e^k) = 0 < \varepsilon$, and so our sequence converges to $e^k \in E$. Thus E is closed.

9. Carothers 4.19 (Solution by Sakti Anupindi)

Show that $diam(A) = diam(\overline{A})$

Solution:

Let $p, q \in \overline{A}$. Pick $\epsilon > 0$. Then there exist $x, y \in A$ such that $x \in B_{\epsilon}(p)$ and $y \in B_{\epsilon}(q)$. But then

$$d(p,q) \le d(p,x) + d(x,y) + d(y,q) \le diam(A) + 2\epsilon$$
.

Since ϵ is arbitrary, this implies that

$$diam(\overline{A}) \le diam(A).$$
 (1)

Also note that $A \subset \overline{A}$, so

$$diam(A) \le diam(\overline{A}).$$
 (2)

It follows from (3) and (4) that $diam(A) = diam(\overline{A})$.

10. Carothers 4.14 (Solution by Lander Ver Hoef)

Show that the set $A = \{x \in l_2 : |x_n| \le 1/n, n = 1, 2, ...\}$ is a closed set in l_2 but that $B = \{x \in l_2 : |x_n| < 1/n, n = 1, 2, ...\}$ is not an open set. [Hint: Does $B \supset B_{\varepsilon}(0)$?]

Solution:

First, we will show that A is closed. Let (X_n) be a convergent sequence in A, and let a be some element of l_2 that is not in A. Then there exists some N such that $|a_N| > 1/N$, and hence $|a_N| - 1/N = \varepsilon$ for some $\varepsilon > 0$. But then for any x, a term in (X_n) ,

$$||x-a||_2 = \left(\sum_{i=1}^{\infty} |x_n-a_n|^2\right)^{1/2} \ge |a_N-x_N| \ge |a_N|-|x_N| \ge |a_N|-\frac{1}{N} = \varepsilon.$$

However, this implies that (X_n) cannot converge to a, so (X_n) must converge to an element of A, and A is closed.

Next, we will show that B is not open. Observe that $0 \in B$, so if B were open, $B_{\varepsilon}(0) \subseteq B$ for sufficiently small ε . Let $\varepsilon > 0$. Then, for some $N \in \mathbb{N}$ such that $1/N < \varepsilon$, let $x = \{x_n : 1/n \text{ if } n = N, \text{ and } 0 \text{ otherwise}\}$. Clearly, $x \in B_{\varepsilon}(0)$, but $x \notin B$. Thus, B is not open.

11. [Carothers 5.17] (Solution by Max Heldman)

Let $f, g : (M, d) \to (N, \rho)$ be continuous, and let D be a dense subset of M. If f(x) = g(x) for all $x \in D$, then f(x) = g(x) for all $x \in M$. If f is onto, then f(D) is dense in N.

Solution:

Let $x \in M$. Then $x \in \overline{D}$, so there exists a sequence $(x_n) \in D$ converging to x. Then since f and g are continuous, $f(x_n) \to f(x)$ and $g(x_n) \to g(x)$. But each $x_n \in D$, so $f(x_n) = g(x_n)$ for all $n \in \mathbb{N}$. Since limits are unique, this implies f(x) = g(x).

Now suppose f is onto, and let $y \in N$. Then there exists $x \in M$ such that f(x) = y. Moreover, there exists a sequence (x_n) in D converging to x. Since f is continuous, $f(x_n)$ is a sequence in f(D) converging to f(x) = y. Thus $y \in \overline{f(D)}$, and f(D) is dense.

12. Carothers 5.24 (Solution by former 641 student Dixon Jones)

Let *V* be a normed vector space. If $y \in V$ is fixed, show that the maps $\alpha \mapsto \alpha y$ from \mathbb{R} into *V*, and $x \mapsto x + y$, from *V* into *V*, are continuous.

Solution:

Define $f : \mathbb{R} \to V$ by $f(\alpha) = \alpha y$, where $y \in V$ is fixed. Given any $\beta \in \mathbb{R}$ and $\epsilon > 0$, we must exhibit a $\delta > 0$ such that $||f(\beta) - f(\alpha)|| < \epsilon$ whenever $|\beta - \alpha| < \delta$. We have

$$||f(\beta) - f(\alpha)|| = ||\beta y - \alpha y||$$

$$= ||(\beta - \alpha)y||$$

$$= ||\beta - \alpha|||y||.$$

The last step above follows from the scalar property of the norm [Carothers, p. 40, (iii)]. Taking $\delta = \epsilon/\|y\|$, if $|\beta - \alpha| < \delta$ we have

$$||f(\beta)-f(\alpha)||<\frac{\delta}{||y||}||y||=\epsilon$$
,

and f is continuous. (Indeed, f is uniformly continuous, because δ depends only on ϵ and the fixed y.)

Similarly, define $\phi: V \to V$ by $\phi(x) = x + y$, where $y \in V$ is fixed. Given any $z \in V$ and $\epsilon > 0$, we have

$$\|\phi(z) - \phi(x)\| = \|z + y - (x + y)\| = \|z - x\|$$
.

Set $\delta = \epsilon$; then clearly $||z - x|| < \delta$ implies $||\phi(z) - \phi(x)|| < \epsilon$. We conclude that ϕ is (uniformly) continuous. \square

13. Carothers 5.25 (Solution by Jody Gaines)

: A function $f:(M,d) \to (N,\rho)$ is called Lipschitz if there is a constant $K < \infty$ such that $\rho(f(x),f(y)) \le Kd(x,y)$ for all $x,y \in M$. Prove that a Lipschitz mapping is continuous.

Solution:

Note that $K \ge 0$ since $\rho(f(x), f(y)) \ge 0$ for all $x, y \in M$. Moreover if K = 0 then $\rho(f(x), f(y)) \le Kd(x, y) = 0 < r$ for all r > 0 and $x, y \in M$. So suppose K > 0. Let $\epsilon > 0$ and $\delta = \epsilon/K$. Suppose $(x_n) \to x$ for some $x \in M$. Then there exist $N \in \mathbb{N}$ such that if $n \ge N$ then $x_n \in B_{\delta}(x)$. Hence $n \ge N$ implies

$$\rho(f(x_n), f(x)) \leq Kd(x_n, x) < K\delta = \epsilon.$$

Since $f(x_n) \to f(x)$ then f is continuous.