kd education academy (9582701166)

Time: 5 Hour STD 11 Science chemistry Total Marks: 600 kd 700+ neet target ch-8 organic chemistry puricication and characterization part-3

* Chemistry [600]

- 1. On heating, some solid substances change from solid to vapour state without passing through liquid state. The technique used for the purification of such solid substances based on the above principle is known as
 - (A) Sublimation
- (B) Distillation
- (C)

(D) Crystallization

Chromatography

- 2. In Lassaigne's extract of an organic compound, both nitrogen and sulphur are present, which gives blood red colour with Fe^{3+} due to the formation of-
 - (A) $[Fe(SCN)]^{2+}$

- (B) $Fe_4[Fe(CN_6)]_3xH_2O$
- (C) NaSCN

- (D) $[Fe(CN)_5NOS]^{4-}$
- 3. The Kjeldahl's method for the estimation of nitrogen can be used to estimate the amount of nitrogen in which one of the following compounds?

NH₂

(B)

9th & 10 MATHS, SCIENCE &

11th & 12th

MATHS, PHYSICS, CHEMISTRY, (B
BIOLOGY, HISTORY, ECO, POLITY, GI

IIT- JEE, NEET, NDA, (I'We Believe on result rather than p

(C)

(D)

4.	A liquid compound (A) Not steam volat	•	by steam distillation only	if it is
	(B) Steam volatile, i	·		
	(C) Not steam volatile	·		
	(D) Steam volatile, i			
5.	Paper chromatogra		of	
	(A) Column chroma	itography		
	(B) Adsorption chro	omatography		
	(C) Partition chrom	atography		
	(D) Thin layer chron	natography		
6.	gave $40mL$ of nitro the aqueous tensi compound is	ogen collected at $300K$ is 25	nitrogen, $0.25g$ of an or $00K$ temperature and 72 $mm,$ the percentage of	5mm pressure. If nitrogen in the
	(A) 16.76	(B) 15.76	(C) 17.36	(D) 18.20
7.	ammonia evolved percentage of nitro	$\frac{1}{2}$ from $0.75 g$ of same $\frac{1}{2}$ of sa		f $1 M H_2 SO_4$. The
	(A) 37.33	(B) 45.33	11th (C)235.33	(D) 43.33
8.	•	100% Marke in Every Subjects	npound is carried out by to which of the following	•
	(A) $Fe_3[Fe(CN)_6]_2$	Created international State Originals (I' Kana) $Fe_4 [Fe(CN)_6]$	$[1]_3$ (C) $Fe_4[Fe(CN)_6]_2$ ck Near Gupta Hardware Bangali Colony, Sant Nagar, Burari, Delhi-110084	(D) $Fe_3[Fe(CN)_6]_3$
9.	compound required	of nitrogen by d 20 milli mol of <i>I</i>	KJeldahl's method, $2.8g$ H_2SO_4 for the complete itrogen in the sample is?	neutralisation of
	(A) 20	(B) 10	(C) 40	(D) 30
10.	0.12g of $AgBr$. Find	out the percentage	ogen $0.15g$ of an organice% of bromine in the c	ompound
	(A) 34.04	(B) 58.20	(C) 9.24	(D) 0.12
11.	2.18gm of an organ percentage% o		aing sulphur produces 0.1 mpound is ?	$2g$ of $BaSO_4.$ The
	(A) 7.26	(B) 8.98	(C) 10	(D) 6.42
12.	$58 \ ml \ ext{ of } rac{N}{5}H_2SO_4$ compound. Percent		ralize ammonia given b the compound is	y $1 g$ of organic
	(A) 34.3	(B) 82.7	(C) 16.2	(D) 21.6

13.	quantitatively convert		ent in the organic	compound is
	(A) Gaseous ammonia	a .		
	(B) Ammonium sulpha	ate		
	(C) Ammonium phosp	hate		
	(D) Ammonia			
14.	0.5g of hydrocarbon gin hydrocarbon is	gave $0.9g$ water on cor	mbustion. The percent	age of carbon
	(A) 75.8	(B) 80	(C) 56.6	(D) 28.6
15.	_	ns 50% helium and 50 methane in the mixture	-	e. What is the
	(A) 19.97	(B) 0.05	(C) 50	(D) 80
16.		hloride dehydro halog gm (atomic mass of	_	lkene, what is
	(A) 14	(B) 28	(C) 64.5	(D) 7
17.	In Kjeldahl's method (A) Oxidising agent	of estimation of N , CuS (B) Reducing agent	$6O_4$ acts as (C) Catalytic agent	(D) Hydrolysis agent
18.	Which of the following	g pair of the species ha	s the same percentage	e of carbon
	(A) CH_3COOH and C_2	H_5OH MATHS, PHYSICS, BIOLOGY, HISTORY,,	CHEMISTRY, (By KD Sir) ECO, POLITY, GEOGRAPHY	
	(B) $C_6H_{12}O_6$ and $C_{12}H_{12}$			
	(C) $HCOOCH_3$ and C_1	"We Believe on resulting of the state of th	lt rather than promises" जी हे डागे डाएकी बर्जी ही	
	(D) CH_3COOH and $\overline{C_6}$	Add- Gali No- 21, A-1 Block Near Gupta Harc $H_{12}O_6^{ m pp}$	lware Bangali Colony, Sant Nagar, Burari, Delhi- 110084	
19.	•	d has an empirical for a of the compounds is	mula CH_2O , its vapour	density is 45.
	(A) CH_2O	(B) C_2H_5O	(C) C_2H_2O	(D) $C_3H_6O_3$
20.	•	empirical formula $C_2 H$ molecular mass. What	•	, ,
	(A) $C_4H_4O_5$	(B) $C_{10}H_{12}$	(C) C_7O_3	(D) $C_6H_{12}O_3$
21.	The Empirical formula The molecular formula	a of a compound is CI a of the compound is	H_2O and its molecular	weight is 120.
	(A) $C_2H_4O_2$	(B) $C_3H_6O_3$	(C) $C_4H_8O_4$	(D) CH_2O
22.	An organic compound containing carbon hydrogen and oxygen contains 52.20% carbon and 13.04% hydrogen. Vapour density of the compound is 23 . Its molecular formula will be			
	(A) C_2H_6O	(B) C_3H_8O	(C) C_4H_8O	(D) $C_5H_{10}O$

23.	The percentage of N_2	in urea is about		
	(A) 18.05	(B) 28.29	(C) 46.66	(D) 85.56
24.	-	substance in a quant percentage of sulphur		_
	(A) 18.52	(B) 182.2	(C) 17.5	(D) 175.2
25.	An organic compour formula	nd with $C=40\%$ and	H=6.7% will have	the empirical
	(A) CH_2	(B) CH_2O	(C) $C_3H_6O_3$	(D) $C_2H_4O_2$
26.	-	ompound contains $24g$ empirical formula of the	_	nydrogen and
	(A) CH_2O	(B) C_2H_4O	(C) CH_4O	(D) $C_2H_8O_2$
27.	A hydrocarbon has ${\cal C}$	=85.72% and remaining	${f g}\ H.$ The hydrocarbon i	is
	(A) C_2H_4	(B) C_2H_6	(C) C_2H_2	(D) CH_4
28.	formula will be	nd has $C=60\%$, $H=7$	13.3% and $O=26.7%$.	Its empirical
	(A) C_3H_6O	(B) $C_2H_6O_2$	(C) $C_4H_8O_2$	(D) C_3H_8O
29.		ted hydrocarbon is fou The empirical formula 11th	i Ali Subjects	
	(A) C_3H_6	(B) C_3H_8 BIOLOGY, HISTORY, E	(C) C_3H_7 LET	(D) C_6H_{12}
30.	A compound has 50% 290. Its molecular form	The BOARD COSE TO BOARD COSE Add Gali No 21, A 1 Block Near Gupta Hard	nd approximate molec	ular weight is
	(A) <i>CO</i>	(B) C_4O_3	(C) $C_{12}O_9$	(D) C_3O_3
31.		d gave the following remolecular formula of the		5.6, N = 31.1%,
	(A) $C_2H_5N_2$	(B) C_2H_5N	(C) C_2H_7N	(D) C_2H_6N
32.	An organic compound compound is 78, its m	l gave $C=92.31\%$ and I olecular formula is	H=7.69% . If molecular	weight of the
	(A) C_6H_6	(B) C_7H_7	(C) C_6H_{18}	(D) C_8H_{20}
33.	In Kjeldahl's method f	or the estimation of ni	trogen, the formula us	ed is
	(A) $\%N = \frac{1.4 \ VW}{N}$	(B) $\%N = \frac{1.4\ NW}{V}$	(C) $\%N = \frac{VNW}{1.8}$	(D) $\%N = \frac{1.4VN}{W}$
34.	Empirical formula of Molecular formula of	a compound is C_2H_5 the compound is	O and its molecular	weight is 90.
	(A) C_2H_5O	(B) $C_3H_6O_3$	(C) $C_4H_{10}O_2$	(D) $C_5H_{14}O$

35.	An organic compo Empirical formula is	ound contains $C=74.$	0%,~H=8.65% and .	N=17.3%. Its
	(A) C_5H_8N	(B) $C_{10}H_{12}N$	(C) C_5H_7N	(D) $C_{10}H_{14}N$
36.	_	c compound gave $0.22g$	•	mbustion. If it
	(A) 12.5 and 36.6	(B) 25 and 75	(C) 25 and 36.6	(D) 25 and 80
37.	In the estimation of converted to	sulphur organic comp	ound on treating with	conc. HNO_3 is
	(A) SO_2	(B) H_2S	(C) H_2SO_4	(D) SO_3
38.	An organic compou formula is	and contains $C=36\%$ H	f=6% and rest oxyger	n. Its Empirical
	(A) CH_2O	(B) $C_2H_3O_3$	(C) CH_2O_2	(D) $C_2H_2O_2$
39.	_	t the organic compou illed water. Which of the		-
	(A) NaX	(B) NaCN=EP VERMA SIR		(D) Na_2S
40.		ves reddish brown pred precipitate is pay 1 st to 8 9th & 10 MAT		n ferrocyanide.
	(A) $Cu_4[Fe(CN)_6]$	(B) $Cu_2[Fe(CN)_6]$ 111	th (C) $Cu_3[Fe(CN)_6]$	(D) $Cu_3[Fe(CN)_6]_2$
41.	nitroprusside soluti	test for sulphur in the on the purple colour for	med is due to	
	(A) $[Fe(CN)_5NOS]^{4-}$	Consider the control blue company of the control blue co	(C) $[Fe(CN)_5NOS]^{2-}$	(D) $\left[Fe(CN)_6 ight]^{4-}$
42.	•	olution to acidified Lassion is producted, it indic	•	nic compound
	(A) S	(B) <i>N</i>	(C) N and S	(D) S and Cl
43.	In organic compour	nds, nitrogen is tested in	၊ Lassaigne's test as	
	(A) $NaNH_2$	(B) NaCN	(C) $NaNO_2$	(D) $NaNO_3$
44.	In the qualitative an of	alysis of nitrate a browr	າ ring is formed due to	the formation
	(A) NO_2	(B) $FeSO_4NO_2$	(C) $N_2O.FeSO_4$	(D) $FeSO_4.NO$
45.	In Carius method 0.0 chlorine in the comp	099g organic compound bound will be	gave $0.287gAgCl.$ The	percentage of
	(A) 28.6	(B) 71.7	(C) 35.4	(D) 64.2
46.	In Aniline & water m (A) Steam distillation	nixture, Aniline can be se n	eperate by	
	(B) Fractional distilla	ation		

	(C) Simple distillation		
	(D) Distillation under reduced pressure		
47.	A mixture of sand and iodine can be sep	arated by	
	(A) Crystallisation	(B) Sublimation	
	(C) Distillation	(D) Fractional distillation	
48.	A mixture of camphor and benzoic acid o	can be separated by	
	(A) Sublimation		
	(B) Chemical method		
	(C) Fractional distillation		
	(D) Extraction with a solvent		
49.	p- nitrophenol and $o-$ nitrophenol are s	eparated by	
	(A) Crystallisation	(B) Fractional crystallisation	
	(C) Distillation	(D) Steam distillation	
50.	To differentiate between carbon-12, carl	bon- 13 and carbon- 14, the instrument	
	that you would use in KULDEEP VERMA SI	R M. 9582701166	
	(A) Infra-red spectrometer	ATION ACADEMY	
	(B) Atomic absorption spectrometer 18	st to 8th All Subjects MATHS, SCIENCE & S.ST	
	(C) Mass spectrometer	11th & 12th	
	(D) Ultraviolet spectrometer BIOLOGY, HIS	YSICS, CHEMISTRY, (By KD Sir) TORY,,ECO, POLITY, GEOGRAPHY NEET, NDA, CUET	
51.	A mixture of methyl alcohol and acetone	can be separated by	
	(A) Distillation Graduation (B.SC Electronics Hons, Regular)	हों) डान्पें हे डान्पे डाम्प्टने टार्न्पे हें। Gupta Hardware Bangali Colony, Sant Nagar, Burari, Delhi- 110084	
	(B) Fractional distillation Add-Gall No- 21, A-1 Block Neal	Oupla naroware bangan colony, bant ragar, bulan, belink 110004	
	(C) Steam distillation		
	(D) Distillation under reduced pressure		
52.	Given below are two statements :		
	Statement (I) : Kjeldahl method is application	able to estimate nitrogen in pyridine.	
	Statement (II) : The nitrogen present i		
	ammonium sulphate in Kjeldahl method.		
	In the light of the above statements, options given below.	choose the correct answer from the	
	(A) Both Statement I and Statement II is	s false	
	(B) Statement I is false but Statement II	is true	
	(C) Both Statement I and Statement II is		
	(D) Statement I is true but Statement II		
53.	Match List I with List II		
			Page 6

List-I (Compound)	List- <i>II</i> (Colour)	
$A ext{ Fe}_4 [ext{Fe}(ext{CN})_6]_3 \ ext{\cdot xH}_2 ext{O}$	I Violet	
$B [{ m Fe}({ m CN})_5 { m NOS}]^{4-}$	II Blood Red	
$C [{ m Fe(SCN)}]^{2+}$	<i>III</i> Prussian Blue	
$D ext{ (NH4)}_3 ext{PO}_4 \ ext{ } \cdot 12 ext{MoO}_3$	IV Yellow	

Choose the correct answer from the options given below:

- (A) A-III, B-I, C-II, D-IV
- (B) A IV, B I, C II, D III
- (C) A-II, B-III, C-IV, D-I
- (D) A-I, B-II, C-III, D-IV
- 54. Methods used for purification of organic compounds are based on:
 - (A) neither on nature of compound nor on the impurity present.
 - (B) nature of compound only.

M. 9582701166

- (C) nature of compound and presence of impurity.
- (D) presence of impurity only. one Day

1st to 8th All Subjects h & 10 MATHS, SCIENCE & S.ST

- 55. The correct statements among the 1following, for a "chromatography" purification method is:

 MATHS, PHYSICS, CHEMISTRY, (By KD Sir)
 BIOLOGY, HISTORY, ECO, POLITY, GEOGRAPHY
 - (A) Organic compounds run faster than solvent in the thin layer chromatographic plate.
 - (B) Non-polar compounds are retained at top and polar compounds come down in column chromatography.

 Add-Gali No-21, A-1 Block Near Cupta Hardware Bangali Colony, Sant Nagar, Burari, Delhi-110084
 - (C) R_f of a polar compound is smaller than that of a non-polar compound.
 - (D) R_f is an integral value.
- 56. Which of the following statements are correct?
 - *A.* Glycerol is purified by vacuum distillation because it decomposes at its normal boiling point.
 - B. Aniline can be purified by steam distillation as aniline is miscible in water.
 - ${\it C}$. Ethanol can be separated from ethanol water mixture by azeotropic distillation because it forms azeotrope.
 - $\it D$. An organic compound is pure, if mixed $\it M.P$. is remained same.

Choose the most appropriate answer from the options given below:

- (A) A, B, C only
- (B) A, C, D only
- (C) B, C, D only
- (D) A, B, D only
- 57. Using the given figure, the ratio of R_t values of sample A and sample C is $\mathbf{x} \times 10^{-2}$. Value of \mathbf{x} is

(Image)

Samples (A, B, C)Fig: Paper chromatography of Samples → Solvent front 10.0 cm ← → Sample C 6.5 cm ← → Sample B → Sample A 5.0 cm ← ➤ Base line (A) 50 (B) 40 (C) 30 (D) 20 58. The adsorbent used in adsorption chromatography 1s/are A. silica gel B. alumina C. quick lime D. magnesia Choose the most appropriate answer from the options given below: (A) B only (B) C and D only (C) A and B only 59. Following Kjeldahl's method, 1 g of organic compound released ammonia, that neutralised 10 mL of 2M H₂SO₄. The percentage of nitrogen in the compound is %. (B) 56 (D) ED/(CT (C) 70 (A) 50 (D) 80 60. In Kjeldahl's method for estimation of nitrogen, CuSO₄ acts as: (A) Reducing agent (B) Catalytic agent (C) Hydrolysis agent (D) Oxidising agent 61. Lassaigne's test is used for detection of: (A) Nitrogen and Sulphur only (B) Nitrogen, Sulphur and Phosphorous Only ਵਿ आयो आपकी सर्जी है। (C) Phosphorous and halogens only (D) Nitrogen, Sulphur, phosphorous and halogens 62. The Lassiagne's extract is boiled with dil HNO₃ before testing for halogens because, (A) AgCN is soluble in HNO₃ (B) Silver halides are soluble in HNO₃ (C) Ag_2 S is soluble in HNO_3 (D) Na_2 S and NaCN are decomposed by HNO_3 63. Appearance of blood red colour, on treatment of the sodium fusion extract of an organic compound with FeSO₄ in presence of concentrated H₂SO₄ indicates

(C) N and S

the presence of element/s

(B) N

64. The fragrance of flowers is due to the presence of some steam volatile organic

compounds called essential oils. These are generally insoluble in water at room

(A) Br

(D) S

temperature but are miscible with water vapour in vapour phase. A suitable method for the extraction of these oils from the flowers is

- (A) crystallisation
- (B) distillation under reduced pressure
- (C) distillation
- (D) steam distillation
- 65. Match List *I* with List *II*

LIST I	LIST II
(Technique)	(Application)
A. Distillation	I. Separation of glycerol from spent-lye
B. Fractional distil lation	IIAniline - Water mixture
C.	IIISeparation HED VERMA SIR M 9582701166
Steam distillati	of crude oik.). EDUCATION ACADEMY
on	1st to 8th All Subjects
D.	9th & 10 MATHS, SCIENCE & S.ST
Distillation und	I1th & 12th MATHS, PHYSICS, CHEMISTRY, (By KD Sir) BIOLOGY, HISTORY, ECO. POLITY, GEOGRAPHY
er	
reduced press	Aniline to CLASS- 10th BOARD CBSE 99% Marks in (PCM) "We Bellieve on result rather than promises"
ure	CLASS-12th BOARD CBSE Classed International Shirt Original (17 Bask) Confidence from 1880 Graduation (B.S. Classestes Hoss. Reputar) From Manager Callege (2013) S VEARES TEACHING ENTS. Auto-Vali No. 21, A-1 Block Near Gupta Hardware Bangali Colony, Sant Nagar, Burari, Delhi: 110084

Choose the correct answer from the options given below:

- (A) A-IV, B-I, C-II, D-III
- (B) A IV, B III, C II.D I
- (C) A-I.B-II,C-IV,D-III
- (D) A-II, B-III.C-I, D-IV
- 66. 'Adsorption' principle is used for which of the following purification method?
 - (A) Extractiondd
- (B)

- (C) Distillatio
- (D) Sublimation

manage bookmarks Chromatography

- 67. Which among the following purification methods is based on the principle of "Solubility" in two different solvents?
 - (A) Column Chromatography
 - (B) Sublimation
 - (C) Distillation
 - (D) Differential Extraction
- 68. On a thin layer chromatographic plate, an organic compound moved by $3.5 \mathrm{~cm}$, while the solvent moved by $5\,\mathrm{cm}$. The retardation factor of the organic

	compound is ×	10^{-1}		
	(A) 06	(B) 07	(C) 8	(D) 5
69.	is/are A. Column chroma B. Thin layer chrom C. Paper chromato	natography		
70.	is: (A) Fractional dist			iscible substance
		illation under reduced រ	oressure	
	(C) Distillation			
	(D) Steam distillati	on		
71.	estimation of bro Molar mass $AgBr$	nic compound (X) gave mine. $\%$ of bromine in = $188 g mol^{-1} B r = 80 g m$	the compound (X) is $ol^{{ m st}I}$ is subjects MATHS SCIENCE & S.ST	s(Given:
	(A) 20	(B) 30	$11 ext{th} \ (C)_2 ext{50}$ SICS, CHEMISTRY, (By KD Sir)	(D) 40
72.	CO_2 on complete σ	95% Marks in (PCM) CLASS- 12th BOARD CRSE	result rather than promises"	
	(A) 10	Graduation (B.SC Electronics Hons, Regular)	ो सर्जा (े) प्राप्2 अपन्यो सर्जा है। unta Hardware Rannali Colony Sant Nanar Rurari Dolhi, 110084	(D) 13
73.		The bound chapped 2 Add 3 Gall No. 21, ± 1 Block Near 3 and 4 bound 4 and		
	(A) 42	(B) 43	(C) 48	(D) 44
74.	chromatography u	mpounds A,B and C sing hexane and gave to polar compound is \dots	the following result (se	_
	A 6 cm B C 2 cm	8 cm		
	(A) 24	(B) 25	(C) 23	(D) 22

75. Match List *I* with List *II*

List I Element detected	List II Reagent used/Product formed
A Nitrogen	$I.\ Na_{2}\left[Fe(CN)_{5}NO ight]$
B Sulphur	$II.\ AgNO_3$
C Phosphorous	$III. \ Fe_4[Fe(CN)_6]_3$
D Halogen	$IV. (NH_4)_2 MoO_4$

Choose the correct answer from the options given below:

- (A) A-II, B-IV, C-I, D-III
- (B) A IV, B II, C I, D III
- (C) A-II, B-I, C-IV, D-III
- (D) A-III, B-I, C-IV, D-II
- 76. In sulphur estimation. $0.471\,g$ of an organic compound gave $1.4439\,g$ of barium sulphate.The percentage of sulphur in the compound is (Nearest Integer)(Given: Atomic mass Ba: 137u:S:32u,O:16u)
 - (A) 41
- (B) 42

(C) 40

- (D) 38
- 77. Prolonged heating is avoided during the preparation of ferrous ammonium sulphate to
 - (A) prevent oxidation
 - (C) prevent hydrolysis
- 9th & 10 MATH (B) Prevent reduction
- MATHS, PHYSICS, (D) prevent breaking
- 78. Which of the following statement is correct for paper chromatography?
 - (A) Water present in the mobile phase gets absorbed by the paper which then forms the stationary phase energy place.

 Add Gali No. 21, A-1 Block Near Gupta Hardware Bangali Colony, Sant Nagar, Burari, Delhi-110004
 - (B) Water present in the pores of the paper forms the stationary phase.
 - (C) Paper sheet forms the stationary phase.
 - (D) Paper and water present in its pores together form the stationary phase.

79. Match items of column *I* and *II*

Column I (Mixture of	Column II (Separation
compounds)	Technique)
$A H_2O/CH_2Cl_2$	<i>I</i> Crystallization
P. Imaga	II Differential solvent
$B\ Image$	extraction
C Kerosene/Naphthalene	III Column chromatography
$D \ C_6 H_{12} O_6 / NaCl$	IV Fractional Distillation

Correct match is:

$$\begin{array}{l} \textbf{(A)} \,\, A-(iii), B-(iv), C-(ii), D \\ -(i) \end{array}$$

(B)
$$A-(i),B-(iii),C-(ii),D$$

 $-(iv)$

(C)
$$A-(ii), B-(iii), C-(iv), D$$

 $-(i)$

(D)
$$A - (ii), B - (iv), C - (i), D - (iii)$$

80. Match List *I* with List *II*:

List I (Mixture)	List II (Separation Technique)
$A \ CHCl_3 + C_6H_5NH_2$	I Steam distillation
$B \ C_6 H_{14} + C_5 H_{12}$	II Differential extraction
$C \ C_6 H_5 N H_2 + H_2 O$	III Distillation
\overline{D} Organic compound in H_2O	IV Fractional distillation

(A)
$$A-IV,B-I,C-III,D-II.D.$$
 EDUCATION ACADEMY

(B)
$$A - III, B - IV, C - I, D - II$$

1st to 8th All Subjects

(C)
$$A - II, B - I, C - III, D - IV$$

11th & 12th

(D)
$$A - III, B - I, C - IV, D - II$$

MATHS, PHYSICS, CHEMISTRY, (By KD Sir)

- 81. A sample of $0.125\,g$ of an organic compound when analysed by Duma's method yields $22.78\,mL$ of nitrogen gas collected over KOH solution at $280\,K$ and $759\,mm\,Hg$. The percentage of nitrogen in the given organic compound is. (Nearest integer).
 - (a) The vapour pressure of water at 280K is $14.2 \ mmHg$
 - $(b) \ R = 0.082 L \ \ {\rm atm} \ \ K^{-1} mol^{-1}$
 - (A) 22

(B) 23

(C) 21

- (D) 20
- 82. On complete combustion of $0.492\,g$ of an organic compound containing C,H and $O,0.7938\,g$ of CO_2 and $0.4428\,g$ of H_2O was produced. The % composition of oxygen in the compound is
 - (A) 46

(B) 44

(C) 43

- (D) 42
- 83. In the estimation of bromine, $0.5\,g$ of an organic compound gave $0.40\,g$ of silver bromide. The percentage of bromine in the given compound is % (nearest integer)

(Relative atomic masses of Ag and Br are $108\,u$ and $80\,u$, respectively).

(A) 340

(B) 90

(C) 188

(D) 34

	and $'O'$ gives 0.793	g of CO_2 and	of an organic compound co $0.442g$ of $H_2O.$ The percennd is (nearest integer)	J ,
	(A) 64	(B) 92	(C) 50	(D) 46
	in Carius estimatio [in nearest inte	n. The percenta eger]	taining chlorine gave $0.40g$ oge of chlorine present in th d^{-1} and that of Cl is $35.5gmo$	ne compound is
	(A) 40	(B) 140	(C) 80	(D) 143
	•	of water. The p	an organic compound gave percentage of carbon in th	-
	(A) 18	(B) 180	(C) 65	(D) 74
	method in which vo percentage of nitro	olume of N_2 evolugen in the cor	ubjected to estimation of nit lved (at STP) was found to be supposed in 10° at STP: 10° 10	e $22.400mL$. The integer] (Given:
88.	The separation of to The distances trave	No coloured sub lled by solvent fr BIOL 1.2.08 cm and 1.08 100% Marks in Evry Subjects CLASS-10th BOARD CASE CLASS-10th BOARD CASE CLASS-12th BOARD CASE	1st to 8th All Subjects 9th & 10 MATHS SCIENCE & SET stances was done by paper of ront, substance A and substance, Hardward and Subject Subje	thromatography. ance B from the
	The formula of the sodium nitroprussion	purple colour f	ormed in Laissaigne's test fo	or sulphur using
	(A) $NaFe[Fe(CN)_6]$		(B) $Na\left[Cr(NH_3)_2\left(N ight) ight]$	$CS_4]$
	(C) Na_2 [$Fe(CN)_5(Next)$	O)]	(D) $Na_4\left[Fe(CN)_5(Ne^{-CN})$	OS)]
		of the salt gives sent respectively ne and Ni^{2+} ne and Co^{2+} nt and Hg^{2+} nt and Ni^{2+}	alt with cation y^{2+} , addition ϕ a bright red precipitate. The ϕ are	• , ,
91.	List-I		List-II	
	1			
				Page 13

	(A) Chloroform and Aniline	(I) Steam distillation			
	(B) Benzoic acid and Napthalene	(II) Sublimation			
	(C) Water and Aniline	(III) Distillation			
	(D) Napthalene and Sodium chloride	(IV) Crystallisation			
	(A) (A) - (IV), (B) - (III), (C) - (I), (D) - (D)	II)			
	(B) $(A) - (III), (B) - (I), (C) - (IV), (D) - (B)$	II)			
	(C) $(A) - (III), (B) - (IV), (C) - (II), (D) - (D)$	(I)			
	(D) $(A) - (III), (B) - (IV), (C) - (I), (D) - (D)$	II)			
	Kjeldahl's method was used for the compound. The ammonia evolved from $12.5mL$ of $1MH_2SO_4$ solution. The perc (Nearest integer)	m $0.55g$ of the compo	und neutralised		
	(A) 1 (B) 84	(C) 32	(D) 64		
93.	Which of the following is structure of a s	separating finnel?			
	(A) (B) KULDEEP VERMA SI	R (C)	(D)		
	One Day 1s 9th & 10 MATHS, PH' BIOLOGY, HIS' IIT- JEE	St to 8th MATHS 11th YSICS, C TORY, ECO, FORM, DEOGRAPHY E, NEET, NDA, CUET			
	In Carius method for estimation of harmonic matter of the percentage (Nearest integer) [Atomic mass: $Ag=108, Br=80$]	का अचा हु आग अपना है।			
	(A) 4 (B) 400	(C) 40	(D) 0.40		
	In the sulphur estimation, $0.471~{ m g}$ of an osulphate. The percentage of sulphur integer) (Atomic Mass of ${ m Ba}=137{ m u})$				
	(A) 142 (B) 42	(C) 471	(D) 233		
	Complete combustion of $750g$ of an organic compound provides $420g$ of CO_2 and $210g$ of H_2O . The percentage composition of carbon and hydrogen in organic compound is 15.3 and respectively. (Round off to the Nearest Integer)				
	(A) 1 (B) 6	(C) 3	(D) 8		
97.	Match List $-I$ with List $-II$				
			Page 14		

	List- <i>II</i>
List $-I$ Test/Reagents/Observation(s)	Species
	detected
(a) Lassaigne's Test	(i) Carbon
$(b) \ Cu(II) \ {\sf oxide}$	(ii) Sulphur
(a) Silver pitrate	$(iii)\ N,S,P,$
(c) Silver nitrate	and halogen
(d) The sodium fusion extract gives black	(iv) Halogen
precipitate with acetic acid and lead acetate	Specifically

The correct match is

(A)
$$(a) - (iii), (b) - (i), (c) - (ii), (d) - (iv)$$

(B)
$$(a) - (i), (b) - (iv), (c) - (iii), (d) - (ii)$$

(C)
$$(a) - (iii), (b) - (i), (c) - (ii), (d) - (ii)$$

(D)
$$(a) - (i), (b) - (ii), (c) - (iv), (d) - (iii)$$

Figure: Paper chromatography for compounds A and B.

(A) 2 (B) 1 (C) 4 (D) 3

99. In chromotography technique, the purification of compound is independent of

- (A) Mobility or flow of solvent system
 - (B) Solubility of the compound
 - (C) Length of the column or TLC Plate
 - (D) Physical state of the pure compound
- 100. Acidic ferric chloride solution on treatment with excess of potassium ferrocyanide gives a Prussian blue coloured colloidal species. It is:
 - (A) $\operatorname{Fe_4[Fe(CN)_6]}_3$
- (B) $K_5 \text{Fe}[\text{Fe}(\text{CN})_6]_2$
- (C) HFe[Fe(CN)₆]
- (D) KFe $[Fe(CN)_6]$
- 101. Which of the following compound is added to the sodium extract before addition of silver nitrate for testing of halogens?
 - (A) Nitric acid

(B) Ammonia

	(C) Hydrochloric aci	id	(D) Sodium hydro	xide		
102.	Which of the following is $^{\prime}a^{\prime}$ $FALSE$ statement ?					
	(A) Carius tube is us	(A) Carius tube is used in the estimation of sulphur in an organic compound				
	(B) Carius method i	s used for the estimat	ion of nitrogen in an	organic compound		
	(C) Phosphoric acid	produced on oxidatio	n of phosphorus pre	sent in an organic		
	compound is precip	oitated as $Mg_2P_2O_7$ by	adding magnesia mix	ture.		
	(D) Kjeldahl's metho	od is used for the estir	mation of nitrogen in	an organic compound		
103.	$8.~0.8~{ m g}$ of an organic compound was analysed by Kjeldahl's method for the estimation of nitrogen. If the percentage of nitrogen in the compound was found to be 42% , then ${ m mL}$ of $1{ m M}$ ${ m H}_2{ m SO}_4$ would have been neutralized by the ammonia evolved during the analysis.					
	(A) 8	(B) 9	(C) 41	(D) 12		
104.	estimation of brombromine in the orga	organic compound we mine, 0.2397 g of AgR anic compound is er = 108 , Bromine = 80] (B) 12 (D = 108)	Br was obtained. The (Nearest integer)			
105.	The transformation	occurring in Duma's r	,,,,,	v :		
	$\mathrm{C_2H_7\ N} + \left(2\mathrm{x} + rac{\mathrm{y}}{2} ight)\mathrm{Cu}$	${ m RO} ightarrow { m xCO}_2 + rac{y}{2}{ m H}_2{ m O} + rac{z}{2}$ (Integer answer) Historia	$N_2 + \left(2x + \frac{y}{2}\right)Cu$			
	(A) 2	100% Mar (B) 35 70 ts CLASS-1 NIT BURD CBSE "WAS RELIEVE OR I	NEFT NDA, CUET	(D) 15		
106.	gave $30mL$ of nitr	of estimation of nitro ogen collected at 28' sition of nitrogen in the siven: Aqueous tension (B) 19	7K and $758mm$ of	H_g pressure. The (Round off to the		
107		, ,	, ,			
107.	nitric acid in the pre			_		
	(A) $AgNO_3$	(B) HNO_3	(C) $BaSO_4$	(D) CuSO_4		
108.	The Kjeldahl methoreaction products?	od of Nitrogen estim	ation fails for which	of the following		

(c)
$$\underbrace{\frac{(i) \operatorname{SnCl}_2 + \operatorname{HCl}}{(ii) \operatorname{H}_2 O}}$$

(d)
$$NH_2$$
 $NaNO_2$ HCl

- (A) a and d
- (B) c and d
- (C) a, c and d
- (D) b and c
- 109. In Carius method of estimation of halogen, $0.172\,g$ of an organic compound showed presence of $0.08\,g$ of bromine. Which of these is the correct structure of the compound:

(A)

(B) H_3C-CH_2-Br 1th (C)2th MATHS, PHYSICS, CHEMICAL

(D) H_3C-Br

- 110. Glycerol is separated in soap industries by
 - (A) Steam distillation
 - (B) Differential extraction
 - (C) Distillation under reduced pressure
 - (D) Fractional distillation
- 111. In an estimation of bromine by Carius method,1.6 g of an organic compound gave $1.88\,g$ of AgBr. The mass percentage of bromine in the compound is.........

(Atomic mass, $Ag=108, Br=80\,g\,mol^{-1}$)

(A) 50

(B) 55

(C) 45

- (D) 40
- 112. $25\,g$ of an unknown hydrocarbon upon burning produces $88\,g$ of CO_2 and $9\,g$ of H_2O . This unknown hydrocarbon contains.
 - (A) 24g of carbon and 1g of hydrogen
 - (B) $22\,g$ of carbon and $3\,g$ of hydrogen

	(C) $18g$ of carbon and $7g$ of hydrogen					
	(D) $20g$ of carbon and $5g$ of hydrogen					
113.	113. The correct match between items I and II is					
	Item $-I$	Item $-II$ (S	Separation			
	(Mixture)	method)				
	$(a) H_2O$: Sugar	p. Sublimation				
	$(b) \; H_2O$: Aniline	$\it q$. Recrystallizatio	n			
	(c) $H_2O:$ Toluene	$\it r$. Stem distillation	า			
		s. Differential ext	raction			
	(A) $a - d, b - r, c - d$	p		(B) $a-q,b-r,c-s$		
	(C) $a-r,b-p,c-$	s	((D) $a-q,b-r,c-p$		
114.	The correct matc	h between item <i>I</i>	and item <i>I</i>	TI is		
	Item I	Item II				
	(a) Benzaldehyde			M. 9582701166		
	(b) Alumina		EDUCATI	ON ACADEMY		
	(c) Acetonitrile	(r) Adsorbate	1st to 8th 9th & 10 MATHS	All Subjects 5, SCIENCE & S.ST		
	(A) $a o q, \ b o p,$	c ightarrow r	11th MATHS, PHYSICS, C	(B) $a \mapsto r, b \mapsto q, \epsilon$	c o p	
	(C) $a ightarrow q, \ b ightarrow r,$	c o p	IIT- JEE, NE	(D) $a o p,\ b o r,$	c o q	
115.	=	Classed International City Observed (74 Bank)			phy(adsorption of	
	$I>II)$. Which one of the following is a correct statement? Add Gall No 21, A1 Block Near Gupta Hardware Bangali Colony, Sant Nagar, Burari, Delhi-110084 (A) II moves slower and has higher R_f value than I (B) II moves faster and has higher R_f value than I					
		_	·			
		er and has higher er and has highe	•			
116		_	•		alagular waight of	
116.				s $gmol^{-1}$ (at	olecular weight of	
	S=32amu)	containing 870	Sulpitul 1	3g moi (at	offic weight of	
	(A) 600	(B) 200		(C) 400	(D) 300	
117.	and the ammoni	a evolved was ab acid required $20r$	sorbed in nL of $M/1$	$60mL$ of $M/10~H_2$ 0~NaOH solution	jeldahl 's method ${}_{2}SO_{4}$ solution. The for neutralization.	
	(A) 10	(B) 3		(C) 24	(D) 5	

	Column $-I$	Column $-II$				
	(A) Aniline	(i) Red colour	with $FeCl_3$			
	(B) Benzene sulfonic acid	(ii) Violet nitroprusside	colour	with	sodiur	m
	(C) Thiourea	(iii) Blue col solution of FeS		hot an	d acid	ic
	(A) A - (ii); B - (iii); C	C-(i)	(B) $A-(iii$);B-(i)	$\overline{C} = \overline{C} - (ii)$
	(C) $A-(iii); B-(ii); C$	C-(i)	(D) $A-(ii)$;B-(i);	C-(iii)
119.	In Carius method of gave $141mg$ of $AgBr$. (at. mass $Ag=108;Br$	The percentage	_	_		•
	(A) 48	(B) 60	((C) 24		(D) 36
120.	For the estimation of Kjeldahl method and sulphuric acid. The complete neutralization (A) 6	d the evolved inreacted acid	ammonia required 2 tage of nitr	was ab $0mL$ of	sorbed $rac{M}{10}$ sodi	in $60mL$ of $rac{M}{10}$ um hydroxide for
121.	For which of the determine the percer (A) Nitrobenzene	ntage of Nitrogo ss-12th BOARD CBSE determined Show Opposed (Flash) cate for (B). Pyridine	ene 2n result rad D SIR ಕಾ ಚಾರ್ಗ್ನೆ	eldahl m	Rethod nises" वर्जी है।	can be used to (D) Diazomethane
122.	Which of the following (A) Fe^{3+} ion also give (B) Fe^{2+} ion also give	g statements is	incorrect lour with S	CN^- ion	uran, beim- 110004	
	(C) On passing H_2S i (D) Cupric ion reacts $[Cu(NH_3)_4]^{2+}$ ion					
123.	Which of the following nitrogen? (A) Propanenitrile (B) Hydroxylamine hydroxylamine hydroxylamine		is not expe	ected to s	show La	assaignes' test for

132.	On complete combute formula of the hydroc	_	rbon gave $1.8gm$ wa	ter. Empirical	
	(A) CH	(B) <i>CH</i> ₂	(C) CH_3	(D) <i>CH</i> ₄	
133.	Lassaigne's test is not compound	used for the detection	n of the element	in the organic	
	(A) N	(B) S	(C) Cl	(D) <i>O</i>	
134.	Lassaigne's test is not	used for the detection	n of which element?		
	(A) Boron	(B) Halogens	(C) Nitrogen	(D) Sulphur	
135.	•	d water. Which of the	nd is fused with Na following is not the pos	_	
	(A) NaX	(B) NaCN	(C) NaNC	(D) Na_2S	
136.	Lassaigne's test is use (A) Nitrogen and halo (B) Sodium and halog (C) Halogens and sulp (D) All of the above	gens ens Phur KULDEEP VERMA SIR	M. 9582701166 ION ACADEMY		
137.	Which of the following water in a liquid (A) Use of anhydrous (B) Use of litmus pape (C) Taste (D) Smell	MATHS, PHYSICS, BIOLOGY, HISTORY, COPPER Sulphate EE, NE 10th BOARD CRSE 1.0th BOARD CRSE 1	h All Subjects ics method to test the A 2th chemistry, (By KD Sir) eco, Polity, GEOGRAPHY EET, NDA, CUET it rather than promises" வில்குவின்னில்	e presence of	
138.	Which element is estir	nated by Carius metho	d		
	(A) Carbon	(B) Hydrogen	(C) Halogen	(D) Nitrogen	
139.	Aniline-water mixture can be separated by				
	(A) Steam distillation	(B) Extraction	(C) Chromatography	(D) Sublimation	
140.	Glycerol is purified by (A) Steam distillation (C) Sublimation		(B) Vacum distillation (D) Simple distillation		
141.	Aniline-water mixture	can be separated by			
	(A) Steam distillation	(B) Extraction	(C) Chromatography	(D) Sublimation	

142.	To seprate different fractions of crude oil in petroleum industry, the method used is					
	(A) Fractional distrillation					
	(B) Steam distillation					
	(C) Reduced pressur	(C) Reduced pressure distillation				
	(D) Simple distillation	ı				
143.	Nitrating mixture is					
	(A) Fuming nitric acid					
	(B) Mixture of conc.	H_2SO_4 and conc. HNO_3	1			
	(C) Mixture of nitric	acid and anhydrous zin	c chloride			
	(D) None of these					
144.	Chromatography is u	ised for the purification	ı of			
	(A) Solids	(B) liquids	(C) Gases	(D) All of these		
145.	5. Chromatography is a valuable method for the separation, isolation, purification and identification of the constituents of a mixture and it is based on general principle of (A) Phase rule (C) Interphase separation (C) Interphase separation					
146.	In Victor Mayer's method $0.2gm$ of an organic substance displaced $56ml$ of air at					
	•	reight of the compound	,ECO, FOLITT, GEOGRAFITT			
	(A) 56	ASS-10th BOARD CSSE **More BOARD GSSE 2 ASS-1(th BOARD GSSE 2) To this transmost Since Openpiled (IT hanh) GTICE 3 KD SIR 克勒 ST	ult (C) r80an promises" जी ह डाग सारकी सर्जी ही	(D) 28		
147.		oon hydrogen and nitro 1:35 grams. The Empi				
	(A) C_2H_4N	(B) C_3H_4N	(C) C_3H_6N	(D) C_2H_6N		
148.	If N and S are present in an organic compound during Lassaigne test, then both changes into					
	(A) Na_2S and $NaCN$		(B) NaSCN			
	(C) Na_2SO_3 and $NaCN$		(D) Na_2S and $NaCNO$			
149.	Which of the following compound can be separated by steam distillation method					
	(A) Steam volatile but insoluble in water					
	(B) Steam volatile but soluble in water					
	(C) Steam non volatile but sparingly soluble in water					
	(D) Lquid in steam but solid in water					
150.	How will you separate a solution (miscible) of benzene $+CHCl_3$					
	(A) Sublimation	(B) Filtration	(C) Distillation	(D) Crystallisation		

---- Nothing is impossible, the word itself says 'I'm possible'! -----KULDEEP VERMA SIR

M. 9582701166

K.D. EDUCATION ACADEMY