GATE 2022[IN]-64

EE23BTECH11066 - Yakkala Amarnath Karthik

Question:

In the circuit shown, the switch is initially closed. It is opened at t=0 s and remains open thereafter. The time (in milliseconds) at which the output voltage V_{out} becomes LOW is (round off to three decimal places) (GATE IN 2022)

Solution:

At $t=0^-$, when the switch is closed, The voltage across the capacitor is:

$$V_c(0^-) = 5 \times \frac{5}{5+1}$$

$$= \frac{25}{6}V$$
(1)

 $V_{c}\left(0^{-}\right)$ is also the non inverting voltage of the OP-AMP

At $t = 0^+$, when the switch is open, The voltage across inverting terminal is:

$$V_I = 5 \times \frac{600}{600 + 400} \tag{3}$$

$$=2V\tag{4}$$

Fig. 1. circuit diagram in laplace domain at $t = 0^+$

Analysing the circuit at $t=0^+$ in laplace domain:

Using voltage divider rule,

$$V_{NI}(s) = V \times \left[\frac{R}{R + \frac{1}{sC}} \right] \tag{5}$$

$$= \frac{25}{6s} \times \left[\frac{s}{s + \frac{1}{RC}} \right] \tag{6}$$

$$=\frac{25}{6} \times \left[\frac{1}{s + \frac{1}{RC}}\right] \tag{7}$$

Applying inverse laplace:

$$V_{NI}(t) = \frac{25}{6}e^{\frac{-t}{RC}} \tag{8}$$

$$\implies 2 = \frac{25}{6} \times e^{\frac{-t}{RC}} \tag{9}$$

$$\implies t = RC \ln \left(\frac{25}{12}\right) \tag{10}$$

$$= 0.1 \times 10^{-6} \times 5 \times 10^{3} \ln \left(\frac{25}{12}\right) \quad (11)$$

$$=0.367ms\tag{12}$$