TD3: Intégration, théorèmes de convergence

Exercice 1. [Mise en jambes]

- 1. Soit (f_n) une suite de fonctions continues sur [0,1] telles que $0 \le f_n \le 1$, et telle que f_n converge simplement vers 0. Montrer que $\lim_{n \to +\infty} \int_0^1 f_n(x) dx = 0$.
- 2. Soit $f \in \mathcal{L}^1(E, \mathcal{E}, \mu)$, montrer que pour tout A > 0, on a $\mu(|f| \ge A) \le \frac{1}{A} \int_E |f| d\mu$.
- 3. Soit $f \in \mathcal{L}^1(E, \mathcal{E}, \mu)$, montrer que

$$\int |f| d\mu = 0 \Rightarrow f = 0 \quad \mu\text{-p.p.} \quad \int |f| d\mu < +\infty \Rightarrow |f| < +\infty \quad \mu\text{-p.p.}$$

Que dire des réciproques de ces propriétés?

4. Montrer qu'il existe une suite de fonctions mesurables (f_n) telle que

$$\liminf_{n \to +\infty} \int f_n(x) dx \le \int \liminf_{n \to +\infty} f_n(x) dx.$$

Exercice 2. [Théorème fondamental de l'analyse] Soit f une fonction dérivable sur [0,1].

- 1. Montrer que f' est mesurable pour la tribu des boréliens de \mathbb{R} .
- 2. On suppose que f' est bornée. Montrer que $\int_0^1 f'(x)dx = f(1) f(0)$.
- 3. Trouver une fonction continue et presque partout dérivable sur [0, 1] telle que

$$f(0) = 0$$
, $f(1) = 1$ et $\int_0^1 f'(x)dx = 0$.

Exercice 3. Soit $f:]0,1[\to \mathbb{R}$ une fonction positive, monotone et intégrable. Déterminer la valeur de $\lim_{n \to +\infty} \int_{[0,1[} f(x^n) dx$.

Exercice 4. [Un peu de calcul]

1. Calculer en fonction de $\alpha \in \mathbb{R}$ les limites quand $n \to +\infty$ de

$$\int_0^n (1 - x/n)^n x^{\alpha - 1} dx \text{ et de } \int_0^n (1 - x/n)^n e^{\alpha x} dx.$$

2. Soit (f_n) une suite de fonctions intégrables sur (E, \mathcal{E}, μ) , montrer que

$$\sum_{n\geq 0} \int_{E} |f_n| d\mu < +\infty \text{ implique } \sum_{n\geq 0} \int_{E} f_n d\mu = \int_{E} \left(\sum_{n\geq 0} f_n\right) d\mu,$$

puis calculer $\int_0^1 \frac{\ln x}{1-x} dx$.

Pour aller plus loin

Exercice 5. Montrer que pour tout $\epsilon > 0$, il existe un ouvert O tel que $\mathbb{Q} \subset O$ mais la mesure de Lebesgue de O est plus petite qu' ϵ .

Exercice 6. [Uniforme continuité de l'intégrale] Soit (E, \mathcal{E}, μ) un espace mesuré et $f: E \to \mathbb{R}$ une fonction intégrable.

- 1. Montrer que $\lim_{n\to+\infty} \int |f| \mathbb{1}_{\{|f|>n\}} d\mu = 0$.
- 2. Montrer que $\forall \epsilon > 0, \, \exists \delta > 0, \, \forall A \in \mathcal{E}, \, \mu(A) < \delta \Rightarrow \int_A |f| \mathrm{d}\mu < \epsilon.$
- 3. En déduire si f est une fonction intégrable de $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, alors la fonction $F: u \mapsto \int_0^u f(x) dx$ est uniformément continue.

Exercice 7. [Le retour de Borel-Cantelli]

- 1. Soit (E, \mathcal{E}, μ) un espace mesuré, on pose (A_n) une suite d'ensembles mesurables telle que $\sum_{n\geq 1}\mu(A_n)<+\infty$. Démontrer le Lemme de Borel-Cantelli en utilisant la suite de fonction $(\sum_{k=1}^n\mathbbm{1}_{A_k})_{n\in\mathbb{N}}$.
- 2. Soit $f:(\mathbb{R},\mathcal{B}(\mathbb{R}))\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction intégrable pour la mesure de Lebesgue et $\alpha>0$. Montrer que pour presque tout $x\in\mathbb{R}$ on a $\lim_{n\to+\infty}n^{-\alpha}f(nx)=0$.
- 3. Soit (α_n) une suite de réels strictement positifs telle que $\sum_{n=1}^{+\infty} \sqrt{\alpha_n} < +\infty$ et (a_n) une suite de réels. Montrer que pour presque tout $x \in \mathbb{R}$, on a $\sum_{n=1}^{+\infty} \frac{\alpha_n}{|x-a_n|} < +\infty$.
- 4. (*) Montrer qu'on a également $\sum_{n=1}^{+\infty} \sqrt{\frac{\alpha_n}{|x-a_n|}} < +\infty$ pour presque tout $x \in \mathbb{R}$.

Exercice 8. [Une extension du théorème de convergence dominée] Soit (E, \mathcal{E}, μ) un espace mesuré, on suppose $\mu(E) < +\infty$. Une famille $(f_i)_{i \in I}$ de fonctions mesurables de E dans \mathbb{R} est dite uniformément intégrable si $\limsup_{c \to +\infty} \sup_{i \in I} \int_{|f_i| > c} |f_i| d\mu = 0$.

- 1. Montrer que toute famille finie de $\mathcal{L}^1(\mu)$ est uniformément intégrable.
- 2. Montrer que la famille $(f_i)_{i\in I}$ est uniformément intégrable si et seulement si les deux propriétés suivantes sont satisfaites :

$$\sup_{i \in I} \int |f_i| d\mu < +\infty \quad \text{ et } \quad \forall \epsilon > 0, \exists \delta > 0 : \forall A \in \mathcal{E}, \mu(A) \le \delta \Rightarrow \sup_{i \in I} \int_A |f_i| d\mu < \epsilon. \quad (\star)$$

- 3. Montrer que si $(f_i)_{i\in I}$ et $(g_i)_{i\in I}$ sont uniformément intégrables, alors il en est de même pour $(f_i+g_i)_{i\in I}$.
- 4. Soit (f_n) une suite de fonctions telle que $f_n(x) \to f(x)$ pour μ -presque tout $x \in E$. Montrer que $f \in \mathcal{L}^1(\mu)$ et $\lim_{n \to +\infty} \int_E |f_n f| d\mu = 0$ si et seulement si (f_n) est uniformément intégrable.
- 5. Montrer le critère de de la Vallée-Poussin : une famille $(f_i)_{i\in I}$ est uniformément intégrable si et seulement si il existe une fonction convexe $G: \mathbb{R}_+ \to \mathbb{R}_+$ convexe croissante telle que

$$\lim_{x \to +\infty} \frac{G(x)}{x} = +\infty \quad \text{ et } \quad \sup_{i \in I} \int G(|f_i|) d\mu < +\infty.$$

6. En déduire qu'une suite de fonctions bornée dans \mathcal{L}^p qui converge μ -p.p. vers f converge également vers f dans \mathcal{L}^1 .