随想随感

Rogan

2023年7月12日

目录

1 chapter 1 2

1 CHAPTER 1 2

1 chapter 1

Lemma 1.1. If a rectangle is the almost disjoint union of finitely many other rectangles, say $R = \bigcup_{k=1}^{N} R_k$, then

$$|R| = \sum_{k=1}^{N} |R_k|$$

If $R, R_1, ..., R_N$ are rectangles, and $R \in \bigcup_{k=1}^N R_k$, then

$$|R| \le \sum_{k=1}^{N} |R_k|$$

Remark 1.2. 有限个几乎不交的并集,求面积可以直接相加;有交就小于等于。

theorem 1.3. Every open subset \mathcal{O} of R can be writen uniquely as accountable union of disjoint open intervals

Remark 1.4. 任何开区间可以被分解为可数个不交的开区间的并集

theorem 1.5. Every open subset \mathcal{O} of \mathbb{R}^d , $d \geq 1$, can be written as accountable union of almost disjoint closed cubes

Remark 1.6. 用小立方体(d维)去不断逼近

definition 1.7 (Cantor Set). 非空,有界,闭集,完全不连通,不可数集,零测

definition 1.8 (Exterior Measure). if E is any subset of \mathbb{R}^d , the exterior measure of E is

$$m_*(E) = \inf \sum_{j=1}^{\infty} |Q_j|$$

consedering any arbitrary covering of a closed cube $Q \in \bigcup_{j=1}^{\infty} Q_j(Q_j)$ is also closed cube), note that it suffices to prove that

$$|Q| \le \sum_{j=1}^{\infty} |Q_j|$$

稍微放大 Q_j , 得到 open cube S_j , 之后可以利用有限覆盖定理, 得到

$$|Q| \le (1+\epsilon) \sum_{j=1}^{M} |Q_j| \le (1+\epsilon) \sum_{j=1}^{\infty} |Q_j|$$

1 CHAPTER 1 3

So

$$|Q| \le m_*(Q)$$

对于 closed cube $Q, m_*(Q) \leq |Q|$ 显然, $|Q| \leq m_*(Q)$ 需要稍微放大 Q_j 成 open cube S_j , 之后用有限覆盖定理

对于 open cube Q, 取 closure of Q, 那么 $m_*(Q) \leq |Q|$ 也同样显然, $|Q| \leq m_*(Q)$ 需要取任意被Q覆盖的 open cube Q_0 , 而任何对于Q的立方体开覆盖必然覆盖 Q_0 , 所以下确界 $m_*(Q) \geq |Q_0|$, 又可以取充分接近, 可得 $|Q| \leq m_*(Q)$