Problem 4: Prove Lemma 4.1. from the notes:

Solution (by Ferran Espuña): Let us recall the statement of the lemma: Let $\mathbb{G}_{n,p(n)}$ be the random graph where $p(n) = \frac{c}{n}$ and c > 1 is a constant. Let us fix a vertex v and start a BFS from v, exploring the graph in the order $x_1 = v$, $x_2 \in \mathcal{N}(v), \cdots$. Let A_k be the set of vertices in the BFS queue after k steps (that is, those that have appeared as neighbors of some vertex x_t for $t \leq k$ but are not themselves of the form x_t for some $t \leq k$). For example, $A_0 = \{v = x_1\}, A_1 = \mathcal{N}(x_1) \setminus \{x_1\} = \mathcal{N}(x_1), A_2 = (\mathcal{N}(x_1) \cup \mathcal{N}(x_2)) \setminus \{x_1, x_2\}, \cdots$

Lemma. With this notation, a.a.s., either:

- (1) the process stops before k^- steps, or
- (2) $|A_k| \ge \frac{c}{2}k$ for all $k \in [k^-, k^+]$ and thus the process survives until k^+ .

Where $k^{-} = \log(n)$ and $k^{+} = n^{\frac{2}{3}}$.

Proof. We will assume condition 1 does not hold, and we will bound the probability of condition 2 failing for the first time at some $k \in [k^-, k^+]$. For this, note that condition 2 holding for all previous steps implies that the process has not stopped before k. Furthermore, there is a previous step \hat{k} for which the set of vertices explored in the BFS between steps \hat{k} and k is already predetermined at time \hat{k} , because they are all in $A_{\hat{k}}$. indeed, we know for all $k' \in [k^-, k]$ that $|A_{k'}| \ge \frac{c}{2}k'$. If we set $\frac{c}{2}\hat{k} \ge k - \hat{k}$, what we have just said is true. A valid choice for \hat{k} is $\lceil \frac{2}{3}k \rceil \ge \frac{c+2}{2}k$. A different argument is needed for $\lceil \frac{2}{3}k \rceil < k^-$, but we will worry about that later.

We will assume a model in which the edges of the graph are created at random when the BFS algorithm needs them. That is, at step t, the edges from x_t are determined. The probability $p_{u,k}$ of a given vertex $u \notin \{x_1, \dots x_k\}$ being in A_k bounded below by so of the probability $p_{u,k;\hat{k}}$ of it entering the BFS queue between steps \hat{k} and k. This probability can be calculated right after step \hat{k} , and by symmetry is independent of everything explored previously. Because there are $k - \hat{k} \ge \frac{k+3}{3}$ chances for it to happen between \hat{k} and k, we have that

(1)
$$p_{u,k:\hat{k}} \ge 1 - (1-p)^{\frac{k+3}{3}}$$

And because there are n-k vertices not in $\{x_1, \dots x_k\}$, we have that

(2)
$$|A_k| \ge \operatorname{Binom}\left(n - k, 1 - (1 - p)^{\frac{k+3}{3}}\right)$$

with expectation

(3)
$$\mathbb{E}(|A_k|) \ge (n-k)\left(1 - (1-p)^{\frac{k+3}{3}}\right)$$

To apply Chernoff's bound, we need to bound

(4)
$$f(k) := \frac{\frac{c-1}{2}k}{(n-k)\left(1-(1-p)^{\frac{k+3}{3}}\right)}$$

As it turns out, f(k) is increasing in k. Plugging in $k = k^+$, we get, as $n \to \infty$,

(5)
$$f(k) \le \frac{(c-1)n^{\frac{2}{3}}}{2(n-n^{\frac{2}{3}})\left(1-(1-\frac{c}{n})^{\frac{n^{2}/3}{4}}\right)} \le \frac{c-1}{n^{\frac{1}{3}}\left(1-e^{-\frac{cn^{-1}/3}{4}}\right)}$$