Measure and Integration

Notes taken by Runqiu Ye Carnegie Mellon University

 $Summer\ 2025$

${\bf Contents}$

3 Signed measure and differentiation

3

3 Signed measure and differentiation

Exercise (Folland 3.18). Let ν be a complex measure on (X,\mathfrak{M}) . Prove that $L^1(\nu) = L^1(|\nu|)$ and if $f \in L^1(\nu)$, then $|\int f d\nu| \leq \int |f| d|\nu|$.

Proof. For $L^1(\nu) \subset L^1(|\nu|)$, consider $f \in L^1(\nu)$. Note that $\nu = \nu_r + i\nu_i$ and it is easy to verify that $|i\nu_i| = |\nu_i|$. Therefore by Proposition 3.14, we have $|\nu| \leq |\nu_r| + |\nu_i|$. It follows that

$$\int |f| \ d|\nu| \le \int |f| \ d|\nu_r| + \int |f| \ d|\nu_i|$$

$$= \int |f| \ d\nu_r^+ + \int |f| \ d\nu_r^- + \int |f| \ d\nu_i^+ + \int |f| \ d\nu_i^-.$$

Since $f \in L^1(\nu)$, all four terms are finite and thus $f \in L^1(|\nu|)$.

For $L^1(|\nu|) \subset L^1(\nu)$, consider $f \in L^1(|\nu|)$. Then we have

$$\int |f| \ d\nu = \int |f| \frac{d\nu}{d|\nu|} d|\nu| \le \int |f| \left| \frac{d\nu}{d|\nu|} \right| d|\nu| = \int |f| \ d|\nu|,$$

where we have used the fact that $d\nu/d|\nu|$ has absolute value $1|\nu|$ -a.e. This shows that $f \in L^1(\nu)$. Moreover, we have that $|\int f d\nu| \le \int |f| d\nu$. Therefore,

$$\left| \int f \, d\nu \right| \le \int |f| \, d|\nu|,$$

as desired. \Box

Exercise (Folland 3.19). If ν, μ are complex measures and λ is a positive measure, then $\nu \perp \mu$ if and only if $|\nu| \perp |\mu|$, and $\nu \ll \lambda$ if and only if $|\nu| \ll \lambda$.

Exercise (Folland 3.20). If ν is a complex measure on (X,\mathfrak{M}) and $\nu(X) = |\nu|(X)$, then $\nu = |\nu|$.

Proof. By Lebesgue-Randon-Nikodym theorem, we have $d\nu = f d\mu$ for some function f and positive measure μ . It follows that $d|\nu| = |f| d\mu$ and

$$\int f \, d\mu = \int |f| \, d\mu.$$

This shows that $f = |f| \mu$ -a.e., and thus $\nu = |\nu|$.