# Definition of a Polynomial

What polynomials can have...

What polynomials can't have...

## Local Extrema



### **Local Minimum**

Values at which the function has a local minimum:

Local Minimum values:

#### **Local Maximum**

Values at which the function has a local maximum:

Local Maximum values:

## Degree

Use the equation of the polynomial to determine its degree. Then use the graph to count the number of changes in direction (turning points) and x-intercepts.

|   | Polynomial Function | p(x) = 2x - 2                        | $p(x) = x^2 + 4x$ | $p(x) = x^3 - 4x - 1$ |
|---|---------------------|--------------------------------------|-------------------|-----------------------|
|   | Graph               | 4<br>3<br>2<br>1<br>1<br>3<br>3<br>3 | 1                 | 2-<br>3-<br>4-<br>1   |
|   | Degree              |                                      |                   |                       |
| 4 | # of Turning Points |                                      |                   |                       |
|   | # of x-intercepts   |                                      |                   |                       |

b. What connection do you see between the CVHSCC c. What connection do you see between the degree of a polynomial and its number of turning points?

degree of a polynomial and its number of xintercepts?

| Think about the function: $p(x) = x^4 + 3$ How many turning points do | Now graph it: | How many turning points does it actually have?        |  |
|-----------------------------------------------------------------------|---------------|-------------------------------------------------------|--|
| you think it should have?  How many x-intercepts do you               |               | How many x-intercepts does it actually have?          |  |
| think it should have?                                                 |               | How could you revise your answers in parts 1b and 1c? |  |

What you have observed is that if the degree is n:

- The number of x-intercepts is at most n
- The number of turning points is at most n-1

Or stated differently:

The minimum degree is the number of x-intercepts OR number of turning points +