Year 1 – Relativity Lecture 1

Mitesh Patel

Who am 1?

 Lecturer in the High Energy Physics (HEP) group

 Regularly have to deal with relativistic effects!

 Research based at the LHCb experiment at CERN's Large Hadron Collider

Course aims

- The main aims are:
 - To understand Einstein's postulates, and their implications
 - To be able to apply the Lorentz transformation equations
 - To be able to use space-time diagrams and understand the basic properties of four-vectors
 - To be able to apply relativistic energy and momentum to particle collisions
- See the module outline on Blackboard for the full list of topics to be covered

Basic organisation

The main part of the course is 10 lectures

- I will try and do chalk-and-talk mixed with slides [technical challenge!]
- There will be some Menti questions suggest you think about these as if you were in the lecture theatre [codes separately!]
- Lecture notes are on Blackboard, but may be updated slightly during the course when I find the inevitable typos [let me know of mistakes!]
- The notes may contain a bit more detail than the lectures

I would recommend...

- Reading quickly through the Blackboard notes just before the lecture;
 these are usually only ~3-4 pages
- Taking notes during the lecture to ensure you keep engaged
- Reread the Blackboard notes after the lecture the same day

Course problem sheets

- Problem sheets will be available every week for the next four weeks
 - Each problem sheet covers material from the lectures of the week
 - They will also be available on Blackboard
- Each problem sheet will have
 - A problem for discussion in tutorials
 - The rest of the questions are for you to do in your own time
- Solutions will be released after the tutorials for that week have finished
 - I do not want to release solutions until you have had to think about the problems without any solutions in front of you

Broader structure of the module

- As well as lectures & problem sheets
 - two seminars to try and help reinforce your understanding:
 - w/c Monday 22nd May
 - w/c Monday 5th June

Important to try and keep up in order to get the most from these

- Assessed components:
 - Problem sheet (5% of M&R module)
 - Released Friday 2nd June, due Friday 9th June
 - Python-based homework (7.5% of M&R module)
 - Released Friday 9th June, due Friday 30th June

Acknowledgements

- Source of much of the course materials: Dr Caroline Clewley and Prof Paul Dauncey, who gave this course the years before I took it over
 - I will not add their names to all notes, problem sheets, etc. but it should be understood that their input was essential for many aspects of the course
 - Any mistakes are of course entirely my own!
 - Bit worried that they might both have had something seriously against small animals...

Office hours

- There are office hours during Weeks 3-5 inclusive
 - Will announce timing once am confident of your final timetable
- These are for discussing items from the lectures
 - Clarifications, concepts, etc.
 - Not really for problem sheets; they are to be worked on in tutorials or discussed with your tutor, and solutions will be available

Recommended books

- I recommend you get hold of either one of the following
 - Young and Freedman, University Physics (14th edition): This has the main points in one chapter
 - Martin McCall, Classical Mechanics, a Modern Introduction (2nd edition): This contains two chapters on special relativity which are about the right level for this course
- Both are stocked by the Imperial library
 - I will flag up the relevant sections in each set of lecture notes
 - Beware of differing conventions with the symbols!

Overview of lectures

- Lecture 1: Introduction, concepts and classical results
- Lecture 2: The postulates of Relativity
- Lecture 3: Length contraction and simultaneity
- Lecture 4: The Lorentz transformations
- Lecture 5: Space-time diagrams and world lines
- Lecture 6: Four-vectors and causality
- Lecture 7: Energy and momentum
- Lecture 8: Rest mass energy and particle decays
- Lecture 9: Particle reactions
- Lecture 10: The relativistic Doppler effect

What's in a name?

- Einstein published the "Theory of Relativity" in 1905
 - It concerned how physical systems appear when moving at (constant) velocities
 - He showed only relative motion was meaningful
- Einstein extended this in 1916 to accelerations
 - The extended theory turned out to be the theory of gravity
- The names have changed to reflect this
 - The first theory is a special case of the second, so the constant velocity theory is now called "Special Relativity"
 - The more general case is called "General Relativity"
- We will cover only Special Relativity (SR) in this course

What we will do today

- Understand the concepts of active and passive transformations of coordinates
 - Using the example of rotations
- Understand that if there is a symmetry:
 - Physical laws must hold in any coordinate system
 - We cannot define an "absolute" coordinate system
- Look at the Galilean transformations
 - Classically = pre-Relativity, how coordinates change when an observer is moving
 - Requires observers to be in "inertial frames"

Active rotations

 Active rotation when consider an object to be rotated in a fixed coordinate system

Active rotations

Passive rotations

Passive rotation when coordinate system rotated rather than object itself

Active vs Passive observers

Passive rotation by angle φ mathematically equivalent to active rotation by angle -φ
 _{12/05/2023}

16

Passive rotations

Comparing experiments

- Active observer
 - The observer watches an experiment
 - All the apparatus is rotated by some angle $-\phi$
 - The experiment is repeated
 - If physical motion doesn't change the apparatus,
 the observer should see the same results
- Passive observers
 - Two observers use different coordinate frames rotated by $\boldsymbol{\varphi}$
 - The experiment is done once
 - The two observers will see the same results

Rotations and symmetry

- Fundamental assumption of physics that space is 'isotropic'
 - Space is the same in all orientations and has no 'special' direction
- Another way of stating this,
 - We believe there is a perfect symmetry in all directions of space
 - If physical laws are valid in all frames, then which coordinate frame to use is arbitrary. Any frame is as good as any other frame; no coordinate frame is 'better' than the others

Classical physics

- Alice is standing in a train moving with constant speed v relative to Bob on the platform
 - As she passes Bob, Alice drops a ball out of the window.

Classical physics

- Ignoring air resistance
 - Question 1: which path of the ball does Alice observe?
 - Question 2: which path of the ball does Bob observe?

Classical physics

- Given that there is only one set of Newton's laws
 - Question 3: Who sees the ball obey Newton's laws?
 - Alice, Bob, both or neither?

Relativity and transformations

- Fundamental concept underlying Relativity which is equivalent to the rotational symmetry
 - all physical laws must be valid when transforming from one coordinate frame to another
- In SR, the transformation is not due to a change of angle, but to a change in velocity
 - Transformation is mathematically similar to the rotations we saw earlier
 - SR is the special case of frames moving only with fixed velocities, called 'inertial frames'

Inertial frames

- A frame in which any body remains at rest or moves with constant velocity unless acted upon by forces
- Any other frame moving with constant velocity relative to an inertial frame is also an inertial frame.

Relative motion

- Rashid is a traffic cop at Rest by a motorway
- Sam is Sensible and sticks to the Speed limit of 70 mph
- Beth is Breaking the speed limit, doing 90 mph

What does Sam observe?

- Rashid is going at -70 mph (i.e. to the left)
- Sam is at rest
- Beth is doing 20 mph

What does Beth observe?

- Rashid is going at -90 mph
- Sam is going at -20 mph
- Beth is at rest

Galilean transformations

The road ahead

- Imagine Alice throws the ball in the direction of travel, with velocity u
- Question 1: What horizontal speed will Bob observe?

Question 2: What if u=c?

Galilean transformations vs rotations

What we did today

- Saw the concepts of active and passive transformations of coordinates
 - Using the example of rotations
- Saw that if there is a symmetry:
 - Physical laws must hold in any coordinate system
 - We cannot define an "absolute" coordinate system
- Looked at the Galilean transformations
 - Classically = pre-Relativity, how coordinates change when an observer is moving
 - Requires observers to be in "inertial frames"