C. Diverse Substrings

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input

output: standard output

String diversity is the number of symbols that occur in the string at least once. Diversity of s will be denoted by d(s). For example , d("aaa")=1, d("abacaba")=3.

Given a string s, consisting of lowercase Latin letters. Consider all its substrings. Obviously, any substring diversity is a number from 1 to d(s). Find statistics about substrings diversity: for each k from 1 to d(s), find how many substrings of s has a diversity of exactly k.

Input

The input consists of a single line containing s. It contains only lowercase Latin letters, the length of s is from 1 to $3 \cdot 10^5$.

Output

Print to the first line the value d(s). Print sequence $t_1, t_2, ..., t_{d(s)}$ to the following lines, where t_i is the number of substrings of s having diversity of exactly i.

Examples

nput
са
ıtput

input	
aabacaabbad	
output	
4	
14	
19 28	
28	
E	

Note

Consider the first example.

We denote by s(i,j) a substring of "abca" with the indices in the segment [i,j].

- s(1, 1) = "a", d("a") = 1
- s(2,2) = "b", d("b") = 1
- s(3,3) = "c", d("c") = 1
- s(4,4) = "a", d("a") = 1
- s(1,2) = "ab", d("ab") = 2
- s(2,3) = "bc", d("bc") = 2
- s(3,4) = "ca", d("ca") = 2
- s(1,3) = "abc", d("abc") = 3
- s(2,4) = "bca", d("bca") = 3

•
$$s(1,4) = "abca", d("abca") = 3$$

Total number of substring with diversity 1 is 4, with diversity 2 equals 3, 3 diversity is 3.