Projeto automação residencial

Ruan Flaneto Cartier

July 21, 2021

Contents

1	Resumo	1
2	Lâmpadas 2.1 Descrição do circuito	
3	Controle do ar condicionado 3.1 Descrição do hardware	
4	Descrição do software	3

1 Resumo

Um projeto de automação residencial foi demandado. Para a minha casa, pretende-se usar os ESP8266 para cada tomada para poder ter conexão com o computador central (raspberry pi). Eu vou me limitar ao backend senão o projeto vai ficar complicado demais.

2 Lâmpadas

2.1 Descrição do circuito

Um pequeno trafo recebe a energia da tomada, é retificada por uma ponte retificadora e então o módulo relé com o esp8266 controla o chaveamento da lâmpada. Não menos importante, o interruptor da tomada dever ser alimentado por um resistor, cujo estado é lido por uma porta digital. Quase esqueci

dos sensores de presença. Devido ao espaço ocupado, novos interruptores devem ser comprados. Sendo assim, o μC precisará de 3 portas digitais para controlar os periféricos e mais talvez duas para poder programar em ISP. Pretendo não fazer placa de circuito impresso para simplificar o projeto e to no momento é impossível para mim imprimir sem uma impressora adequada.

2.2 Componentes utilizados (por lâmpada)

- \boxtimes 1 Trafo de carregador;
- \boxtimes 4 Diodos 1n4007;
- □ 1 Capacitor eletrolítico (47uF);
- \boxtimes 1 Capacitor cerâmico (100nF);
- ⊠ 1 Sensor piroelétrico
- □ 1 Conjunto de interruptor; (Precisa comprar)
- ☑ 1 Módulo de acionamento de relé por ESP8266 (figura 1)
- O módulo de relé possui o esquemático como na figura ??

3 Controle do ar condicionado

3.1 Descrição do hardware

O computador principal se conecta ao controle do ar condicionado através dos barramentos de I2C do display e do microcontrolador. O primeiro barramento seria usado para o computador central identificar as configurações atuais do ar condicionado e o segundo serve para fazer alterações nas configurações. Para tanto é preciso fazer uma revisão sobre o protocolo e interpretar os dados lidos.

3.2 I2C revisão

Ao abrir o controle do ar condicionado foram encontrados os pinos 36,37,38 e 44 acessíveis ao usuário. Como mostrado na figura 3. Claramente eles servem para estabelecer comunicação i2c entre o chip e um computador externo.

Fui procurar circuitos de controle remoto que aplicam este microcontrolador e achei um resultado interessante, como na figura 4.

Figure 1: Módulo relé com ESP01 utilizado

Figure 2: Esquema do circuito do módulo com relé

Logo fiquei na dúvida o que seria o VPP do pino 36, pesquisei no datasheet e achei este resultado (vide figura 5).

Depois disso notei que precisava rever um pouco sobre i
2c e achei as seguintes figuras chave: TODO \dots

4 Descrição do software

Os esp8266 das tomadas devem entrar em um ponto de acesso central e então ficar à espera de comandos. Ele age como servidor para responder aos comandos do computador central, porém também irá enviar mensagens durante a

Figure 3: Pinos i2c disponíveis ao usuário.

Figure 4: Pinos i2c disponíveis ao usuário.

Figure 5: Pinos i2c disponíveis ao usuário.

Pin	Type	Description		
Programming Port				
V _{DD}	P	Programming Power (+3.3V)		
VPP	P	Programming High Voltage Power (+7.5V)		
GND	P	Ground		
SCK	1	Programming Clock input Pin		
SDA	I/O	Programming Data Pin		
Note: When P0.5, P0.6	and P0.7 are	e used as test ports, I/O function is forbidden.		

comutação do sensor piroelétrico (descobrir se não vai haver realimentação positiva com a lâmpada) Protocolo de comunicação: Tem que descobrir uma forma de protocolar as mensagens. O receptor vai ler a mensagem e vai decodificá-la. Após decodificar, vai executar a ação de desligar/ligar.

USE o micropython, nada de C, para facilitar sua vida. Procedimentos a serem utilizados na cpu principal:

- $\bullet\,$ get state() # Retorna o estado atual lâmpada;
- \bullet get switch
() # Retorna a posição do interruptor;
- $\bullet\,$ turn(boolean state) # Pede para ligar/desligar a lâmpada