Shoe Brand Image Classification with Deep Neural Networks

Log Report

• Members:

Arooshi Taneja: AXT210000

Neetesh Kumar Dadwariya : NKD200001 Pooja Ramanlal Bhaiya : PXR210008

Vishakha Singh: VXS200068

• Dataset Information:

Dataset link:

https://publiclyhosteddata.s3.amazonaws.com/nike-adidas-dataset.zip

• Dataset Characteristics:

This dataset contains images of shoes belonging to different shoe brands. The images were pulled from bing using bing_image_search from pypi, 400 images of each class were downloaded and then the dataset was trimmed to 300(some unrelated images were removed in the process of compiling the dataset).

Summary Statistics:

There are total 576 images present in the dataset.

Class Information:

There are 2 categories of shoes: Nike, Adidas

The data distribution of images into different scenes is tabularized below

Categories	Training Data	Validation Data	Testing Data
Nike	230	28	30
Adidas	230	27	30

• Libraries Used -

- matplotlib
- numpy
- pyspark
- scikit-learn (for visualisation)
- tensorflow (only for pre-processing)
- sparkdl (for comparing performance with standard transfer learning models)

• Log Table

Output using different hyperparameters:

1. Learning Rate = 0.1

Epochs	Rate	Hidden Layers	Train Loss	Train Accuracy	Test Loss	Test Accuracy
10	0.1	32	0.26751424 904057100	0.66130434 78260870	0.58333333 33333330	0.59068143 70359430
20	0.1	32	0.24383020 85704720	0.74608695 65217390	0.6875	0.57958627 89419990
30	0.1	32	0.25207121 50630560	0.71782608 69565220	0.5625	0.61442502 6166268
10	0.1	64	0.25362641 32063600	0.65695652 17391300	0.3333333 33333330	0.67294058 34844200
20	0.1	64	0.25972024 842376700	0.65260869 56521740	0.54166666 66666670	0.60870845 02148340
30	0.1	64	0.24925585 513136600	0.71782608 69565220	0.45833333 33333330	0.62915743 86802720
10	0.1	128	0.26381576 95393380	0.71130434 7826087	0.41666666 66666670	0.64524260 47558790
20	0.1	128	0.24733443 33045890	0.74608695 65217390	0.60416666 66666670	0.61985587 53738790
30	0.1	128	0.24555975 063403000	0.74826086 95652170	0.64583333 33333330	0.58842415 58346610

Learning Rate = 0.2

Epochs	Rate	Hidden Layers	Train Loss	Train Accuracy	Test Loss	Test Accuracy
10	0.2	32	0.31527074 482259300	0.61782608 69565220	0.5	0.65796907 52796750
20	0.2	32	0.23922941 07228500	0.73956521 73913040	0.5625	0.59131663 30188850

30	0.2	32	0.23230200 659833200	0.79608695 65217390	0.52083333 33333330	0.61569013 12298430
10	0.2	64	0.24627612 976367900	0.71347826 08695650	0.58333333 33333330	0.58802574 40115710
20	0.2	64	0.25350331 30708600	0.68521739 13043480	0.45833333 33333330	0.63013174 70279260
30	0.2	64	0.22971782 650045500	0.76347826 08695650	0.625	0.59444877 56724880
10	0.2	128	0.24623739 077808800	0.75260869 56521740	0.5625	0.62108615 39635760
20	0.2	128	0.22720191 615018400	0.78304347 82608700	0.52083333 33333330	0.61340790 49770070
30	0.2	128	0.22195777 04849890	0.82217391 30434780	0.54166666 66666670	0.60356875 83253820

Learning Rate = 0.3

Epochs	Rate	Hidden Layers	Train Loss	Train Accuracy	Test Loss	Test Accuracy
10	0.3	32	0.25433885 242712200	0.68739130 43478260	0.60416666 66666670	0.58587389 6460828
20	0.3	32	0.24526839 751877100	0.73304347 82608700	0.4375	0.61411317 73345660
30	0.3	32	0.24908317 983968500	0.71130434 7826087	0.6875	0.58542427 38030310
10	0.3	64	0.26081265 21520700	0.66782608 69565220	0.4375	0.63252826 53478170
20	0.3	64	0.23379250 737033100	0.77217391 30434780	0.72916666 66666670	0.58840392 2721852
30	0.3	64	0.22849949 100935100	0.78956521 73913040	0.52083333 33333330	0.59965447 13191160
10	0.3	128	0.24451328 072397700	0.75913043 47826090	0.54166666 66666670	0.62054963 34588060
20	0.3	128	0.23149074 459534700	0.77869565 2173913	0.60416666 66666670	0.61265462 26116000
30	0.3	128	0.22594945 304866300	0.79608695 65217390	0.375	0.63831599 48352940

2. Hidden Layers = 32

Epochs	Rate	Hidden Layers	Train Loss	Train Accuracy	Test Loss	Test Accuracy
10	0.1	32	0.26751424 904057100	0.66130434 78260870	0.58333333 33333330	0.59068143 70359430
20	0.1	32	0.24383020 85704720	0.74608695 65217390	0.6875	0.57958627 89419990
30	0.1	32	0.25207121 50630560	0.71782608 69565220	0.5625	0.61442502 6166268
10	0.2	32	0.31527074 482259300	0.61782608 69565220	0.5	0.65796907 52796750
20	0.2	32	0.23922941 07228500	0.73956521 73913040	0.5625	0.59131663 30188850
30	0.2	32	0.23230200 659833200	0.79608695 65217390	0.52083333 33333330	0.61569013 12298430
10	0.3	32	0.25433885 242712200	0.68739130 43478260	0.60416666 66666670	0.58587389 6460828
20	0.3	32	0.24526839 751877100	0.73304347 82608700	0.4375	0.61411317 73345660
30	0.3	32	0.24908317 983968500	0.71130434 7826087	0.6875	0.58542427 38030310

Hidden Layers = 64

Epochs	Rate	Hidden Layers	Train Loss	Train Accuracy	Test Loss	Test Accuracy
10	0.1	64	0.25362641 32063600	0.65695652 17391300	0.3333333 33333330	0.67294058 34844200
20	0.1	64	0.25972024 842376700	0.65260869 56521740	0.54166666 66666670	0.60870845 02148340
30	0.1	64	0.24925585 513136600	0.71782608 69565220	0.45833333 33333330	0.62915743 86802720
10	0.2	64	0.24627612 976367900	0.71347826 08695650	0.58333333 33333330	0.58802574 40115710
20	0.2	64	0.25350331 30708600	0.68521739 13043480	0.45833333 33333330	0.63013174 70279260
30	0.2	64	0.22971782 650045500	0.76347826 08695650	0.625	0.59444877 56724880
10	0.3	64	0.26081265 21520700	0.66782608 69565220	0.4375	0.63252826 53478170
20	0.3	64	0.23379250 737033100	0.77217391 30434780	0.72916666 66666670	0.58840392 2721852
30	0.3	64	0.22849949 100935100	0.78956521 73913040	0.52083333 33333330	0.59965447 13191160

Epochs	Rate	Hidden Layers	Train Loss	Train Accuracy	Test Loss	Test Accuracy
10	0.1	128	0.26381576 95393380	0.71130434 7826087	0.41666666 66666670	0.64524260 47558790
20	0.1	128	0.24733443 33045890	0.74608695 65217390	0.60416666 66666670	0.61985587 53738790
30	0.1	128	0.24555975 063403000	0.74826086 95652170	0.64583333 33333330	0.58842415 58346610
10	0.2	128	0.24623739 077808800	0.75260869 56521740	0.5625	0.62108615 39635760
20	0.2	128	0.22720191 615018400	0.78304347 82608700	0.52083333 33333330	0.61340790 49770070
30	0.2	128	0.22195777 04849890	0.82217391 30434780	0.54166666 66666670	0.60356875 83253820
10	0.3	128	0.24451328 072397700	0.75913043 47826090	0.54166666 66666670	0.62054963 34588060
20	0.3	128	0.23149074 459534700	0.77869565 2173913	0.60416666 66666670	0.61265462 26116000
30	0.3	128	0.22594945 304866300	0.79608695 65217390	0.375	0.63831599 48352940

3. Number of epochs = 10

Epochs	Rate	Hidden Layers	Train Loss	Train Accuracy	Test Loss	Test Accuracy
10	0.1	32	0.26751424 904057100	0.66130434 78260870	0.58333333 33333330	0.59068143 70359430
10	0.2	32	0.31527074 482259300	0.61782608 69565220	0.5	0.65796907 52796750
10	0.3	32	0.25433885 242712200	0.68739130 43478260	0.60416666 66666670	0.58587389 6460828
10	0.1	64	0.25362641 32063600	0.65695652 17391300	0.3333333 33333330	0.67294058 34844200
10	0.2	64	0.24627612 976367900	0.71347826 08695650	0.58333333 33333330	0.58802574 40115710
10	0.3	64	0.26081265 21520700	0.66782608 69565220	0.4375	0.63252826 53478170
10	0.1	128	0.26381576 95393380	0.71130434 7826087	0.41666666 66666670	0.64524260 47558790
10	0.2	128	0.24623739 077808800	0.75260869 56521740	0.5625	0.62108615 39635760
10	0.3	128	0.24451328 072397700	0.75913043 47826090	0.54166666 66666670	0.62054963 34588060

Number of epochs = 20

Epochs	Rate	Hidden Layers	Train Loss	Train Accuracy	Test Loss	Test Accuracy
20	0.1	32	0.24383020 85704720	0.74608695 65217390	0.6875	0.57958627 89419990
20	0.2	32	0.23922941 07228500	0.73956521 73913040	0.5625	0.59131663 30188850
20	0.3	32	0.24526839 751877100	0.73304347 82608700	0.4375	0.61411317 73345660
20	0.1	64	0.25972024 842376700	0.65260869 56521740	0.54166666 66666670	0.60870845 02148340
20	0.2	64	0.25350331 30708600	0.68521739 13043480	0.45833333 33333330	0.63013174 70279260
20	0.3	64	0.23379250 737033100	0.77217391 30434780	0.72916666 66666670	0.58840392 2721852
20	0.1	128	0.24733443 33045890	0.74608695 65217390	0.60416666 66666670	0.61985587 53738790
20	0.2	128	0.22720191 615018400	0.78304347 82608700	0.52083333 33333330	0.61340790 49770070
20	0.3	128	0.23149074 459534700	0.77869565 2173913	0.60416666 66666670	0.61265462 26116000

Number of epochs = 30

Epochs	Rate	Hidden Layers	Train Loss	Train Accuracy	Test Loss	Test Accuracy
30	0.1	32	0.25207121 50630560	0.71782608 69565220	0.5625	0.61442502 6166268
30	0.2	32	0.23230200 659833200	0.79608695 65217390	0.52083333 33333330	0.61569013 12298430
30	0.3	32	0.24908317 983968500	0.71130434 7826087	0.6875	0.58542427 38030310
30	0.1	64	0.24925585 513136600	0.71782608 69565220	0.45833333 33333330	0.62915743 86802720
30	0.2	64	0.22971782 650045500	0.76347826 08695650	0.625	0.59444877 56724880
30	0.3	64	0.22849949 100935100	0.78956521 73913040	0.52083333 33333330	0.59965447 13191160
30	0.1	128	0.24555975 063403000	0.74826086 95652170	0.64583333 33333330	0.58842415 58346610
30	0.2	128	0.22195777 04849890	0.82217391 30434780	0.54166666 66666670	0.60356875 83253820
30	0.3	128	0.22594945 304866300	0.79608695 65217390	0.375	0.63831599 48352940

Model Plots

Loss curve for models tuned with different hyperparameter combinations:

(i) Hidden Layers = 32

(ii) Hidden Layers = 64

(iii) Hidden Layers = 128

Accuracy curve for models tuned with different hyperparameter combinations:

(i) Hidden Layers = 32

(ii) Hidden Layers = 64

(iii) Hidden Layers = 128

• <u>Summary</u>

As observed by us, for the dataset used, we obtained the best output/result for the following parameters:

1. Hyperparameters:

Max Number of Iterations: 30

Learning Rate: 0.2 Hidden Layers: 128

2. Result:

Training Accuracy: 0.822174 Test Accuracy: 0.803569 Training Loss: 0.221958 Testing Loss: 0.541667

We reached this conclusion after having a detailed comparison between a combination of parameters, which are logged into a tabular format.