Cerebellar Granule Cell Outgrowth on Schwann Cell Monolayers

Figure 8

Comparison of Wild-type and $\Delta SCIP$ Schwann Cell Protein Expression

Wt

ΔSCIP

2A $ttgagactggttgcataacagcagggtacctgaaagagccttctgggagttagtgaacta \ 60$ 2B ttg agact ggtt gcata acag cag ggt acct gaa agag cctt ctg gg ag tt ag t gaact a2Aggtagattgttttgttcacataacgccaccatcaacttaaagtgaattgtctttgttata 120 2Bggtagattgttttgttcacataacgccaccatcaacttaaagtgaattgtctttgttata2A aatgaggtcactatggacttaccctaaagatcttctgtacttctgtcttccataggacaa 180 2B a at gagg teact at ggact taccet a a agatet tet gt act tet get extended a consideration of the consideration of t2Aatgataagtactacatacctcatctcttgggttattattgtagtcttgcattcatggtta 240 2B at gata a gtacta catacct cat ctctt gggt tattat t g tag tctt g cat tcat ggt ta2Atgaatttaaaaataaataccaattatggaaatagtactaaaggcttgccgcacatgaaac 300 2B tgaatttaaaaataaataccaattatggaaatagtactaaaggcttgccgcacatgaaac2A attattttaattggtttaaagtccctttataaagagtgctacatggtttagataaaggaa 360 2B2A2Ba catata a ctattg a gtta cag g g g attttatta attata a a a t g ca a t ca a t t t a a t t2Aacgtaggtttaagactagtcccttggataagccccaagcgaatttgtcttcagattatta 480 2Bacgtaggtttaagactagtcccttggataagccccaagcgaatttgtcttcagattatta

Figure 2

2A	aaattagtgetgtaaateagggtgggeaatteacagcetttetgaactgaac
2B	aaattagtgctgtaaatcagggtgggcaattcacagcctttetgaactgaac
2A	gcttgcagtgaagtgttctgctgagactgagcaccttacagatatttttctccagaagat 600
2B	gcttgcagtgaagtgttctgctgagactgagcaccttacagatatttttctccagaagat
2A	ggtgctgggtaataaaatcatcacaattagggaatggttagtggtctctactgtggcaaa 660
2B	ggtgctgggtaataaaatcatcacaattagggaatggttagtggtctctactgtggcaaa
2A	tgccaactgttggaattcactitatigiagaaaaacccaaactgagactcttaagttttg 720
2B	tgccaactgttggaattcactttattgtagaaaaacccaaactgagactcttaagttttg
2A	tttagcaatgtgtttctggtatgaaacaaactactgtgtcactgtccaggtaggaaacaa 780
2B	tttagcaatgtgtttctggtatgaaacaaactactgtgtcactgtccaggtaggaaacaa
2A	ttettteaaetgggtttteageataaatgggaaetgatgtagaaggeaggatttageeet 840
2B	ttctttcaactgggttttcagcataaatgggaactgatgtagaaggcaggatttagccct
2A	tetaggeaaaagaaaageteagttgggttteaegagtgtteetgtgettatatteagtet 900
2B	tctaggcaaaagaaaagctcagttgggtttcacgagtgttcctgtgcttatattcagtct
2A	gtgcctacatgttctcatgcatgtctaacctgatttacctcttacctgtaacctacct
2B	gtgcctacatgttctcatgcatgtctaacctgatttacctcttacctgtaacctacct
2A	tcatgtggcttttaattgacagtcactcagccatttctaagcagatatagtagtaccttt 1020
2B	teatgtggettttaattgacagteacteageeatttetaageagatatagtagtaeettt

in this .

2Acagaactcacattggcaagtgtaaaaagatgacttaaggtgaagtgaggacaaaatcaca 1080 2B caga act ca cattgg caagtgtaa aa ag at gactta ag gtgaagtgag gacaa aat caca2A ttctgcatactaacctannnnnnnctccctttaaggtgctaaacttgcacctcatgtcca 1140 2B ttctg catacta acctatttttttctcccttta aggtgcta aacttg cacctcatgtcca2A 2B 2A cttgtgaggaagtgagccagcagtggcctttgcaattgtggatcttgagctctgctctca 1260 2B ctt gt gag gaag t gag ccag cag t gg cctt t gcaat t gt gg at ctt gag ct ct gct ct ca2Agcagatttcaggtgtaaccatttgttaactgtactgaaggtgtgtcctcaagaagaaagt 1320 2B2A gttcaaattaaaaaagctgctgccaagtacactgtgtggtcttctcctttgaatcctagg 1380 2Bgttcaaattaaaaaagctgctgccaagtacactgtgtggtcttctcctttgaatcctagg 2Agttctatccctcttcagagtcatgtttctggtgctgctactttaaaacacagctcacaag 1440 2Bgttctatccctcttcagagtcatgtttctggtgctgctactttaaaacacagctcacaag 2Aaataactaacttgeteaaatatggagaaaacteaatagggtteagggaggttetggeagt 1500 2Ba at a acta act t g ct caa at at g g a g a a act caa t a g g g t c a g g g a g g t c t g g c a g t c a g g g a g g t c t g g c a g t c a g g g a g g t c t g g c a g t c a g g g a g g t c t g g c a g t c a g g g a g g t c t g g c a g t c a g g g a g g t c t g g c a g t c a g g g a g g t c t g g c a g t c a g g g a g g t c t g g c a g

Figure 2 cont.

2A	gtgcagtgtgaaataatcctgagtccttgctgaacacaactgtaggcttgagttataaag 1560
!B	gtgcagtgtgaaataatcctgagtccttgctgaacacaactgtaggcttgagttataaag
2A	cacattecaaattttaaataaaageatttaeteaattattataaaacaacatatttaaaa 1620
!B	cacattccaaattttaaataaaagcatttactcaattattataaaacaacatatttaaaa
	1600
!A	agatgaaccacaccaaaggtcatcaaaacacctttttataaattagataattctacctgt 1680
B.	agatgaaccacaccaaaggtcatcaaaacacctttttataaattagataattctacctgt

Figure 2 cont.

adult sciatic nerve

adult spinal cord
adult brain

muscle

spleen

heart

28S —

kidney

liver

18S —

OPA1 Expression in the Developing CNS

18S —

18S RNA

MSC ΔSCIP
μg/ml GGF2 0 50 0 50

28S -

MCS

OPA1 Induction

0 10 100 150 500 1000 ng/ml FK506

— 28S

— 18S

PC12 Cell Outgrowth on Schwann Cell Monolayers

Figure 7A