Colle 31 - MPSI Somme de Riemann

Exercice 1 (Questions de cours)

1. Soit $f:[a,b] \to \mathbb{R}$ une fonction M-lipschitzienne. On pose $S_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f(x_k)$ avec $x_k = a + k \frac{b-a}{n}$.

Démontrer que $\lim_{n\to+\infty} S_n = \int_a^b f(t)dt$.

- 2. Démontrer que si $f:[a,b]\to\mathbb{R}$ est continue, positive et si $\int_a^b f(x)dx=0$, alors f est identiquement nulle.
- 3. Enoncer et démontrer la formule de Taylor avec reste intégral au point a à l'ordre n.

Déterminant

Exercice 2

Inverser les matrices suivantes en utilisant la comatrice :

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -3 \\ -1 & 0 & 2 \end{pmatrix}.$$

Sommes de Riemann

Exercice 3

Déterminer les limites des suites définies par le terme général suivant :

a)
$$\sum_{k=1}^{n} \frac{n}{n^2 + k^2}$$
 b) $\sum_{k=1}^{n} \frac{k}{n^2 + k^2}$ c) $\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 2kn}}$.

Exercice 4

En faisant apparaître une somme de Riemann, déterminer un équivalent simple de

$$S_n = \sum_{k=1}^n \sqrt{k}.$$

Exercice 5

Déterminer la limite de la suite de terme général

$$\left(\frac{(2n)!}{n^n n!}\right)^{\frac{1}{n}}.$$

Exercice 6

1. Déterminer

$$\lim_{n \to +\infty} \sum_{p=n+1}^{2n} \frac{1}{p}.$$

2. Pour $\alpha > 1$, déterminer

$$\lim_{n \to +\infty} \sum_{n=n+1}^{2n} \frac{1}{p^{\alpha}}.$$

3. En déduire

$$\lim_{n \to +\infty} \sum_{p=n+1}^{2n} \sin\left(\frac{1}{p}\right).$$

Propriétés de l'intégrale

Exercice 7

Soient $f:[a,b]\to\mathbb{R}$ une fonction continue par morceaux et $x\in]a;b[$. Montrer que

$$\frac{1}{b-a} \int_{a}^{b} f(t)dt \le \max\left(\frac{1}{c-a} \int_{a}^{c} f(t)dt, \frac{1}{b-a} \int_{c}^{b} f(t)dt\right)$$

Exercice 8

Soit $f:[a;b] \to \mathbb{R}$ continue. Montrer que

$$\left| \int_a^b f(t) dt \right| = \int_a^b |f(t)| \, dt, \text{ si et seulement si } f \geq 0 \text{ ou } f \leq 0.$$

Exercice 9

Soit $f:[0;1] \to \mathbb{R}$ continue telle que

$$\int_0^1 f(t)dt = \frac{1}{2}.$$

Montrer que f admet un point fixe.

Exercice 10 (Formule de la moyenne)

Soient $f, g : [a, b] \to \mathbb{R}$ continues avec $g \ge 0$. Montrer qu'il existe $c \in [a; b]$ tel que

$$\int_{a}^{b} f(t)g(t)dt = f(c) \int_{a}^{b} g(t)dt.$$

Formules de Taylor

Exercice 11

Etablir que pour tout $x \in \left[0; \frac{\pi}{2}\right]$,

$$x - \frac{1}{6}x^3 \le \sin x \le x - \frac{1}{6}x^3 + \frac{1}{120}x^5$$

Exercice 12

Montrer que pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{|x|^{n+1} e^{|x|}}{(n+1)!}.$$

En déduire

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!}.$$

Exercice 13

En appliquant l'inégalité de Taylor-Lagrange à la fonction $x \mapsto \ln(1+x)$ entre 0 et 1, montrer que :

$$\lim_{n \to +\infty} 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n} = \ln 2.$$

Exercice 14

Soit $g:[0;1] \to \mathbb{R}$ une fonction continue.

Déterminer les fonctions $f:[0;1]\to\mathbb{R}$, deux fois telles que

$$f(0) = f(1) = 0$$
 et $f'' = q$.

Correction de l'exercice 1 (Question de cours)

1. En remarquant que

$$(x_k - x_{k-1})f(x_k) = \int_{x_{k-1}}^{x_k} f(x_k)dt$$

on a

$$(x_k - x_{k-1})f(x_k) - \int_{x_{k-1}}^{x_k} f(t)dt = \int_{x_{k-1}}^{x_k} [f(x_k) - f(t)] dt$$

puis

$$R_n - \int_a^b f(t)dt = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} \left[f(x_k) - f(t) \right] dt.$$

Posons pour chaque $\delta > 0$:

$$\omega(\delta) = \sup \{ |f(u) - f(t)|, a \le u, t \le b, |u - t| \le \delta \}.$$

Le théorème de Heine 1 affirme que f est uniformément continue sur le segment [a,b] ce qui équivaut à dire que $\lim_{\delta \to 0^+} \omega(\delta) = 0$

0. On a ainsi:

$$\left| R_n - \int_a^b f(t)dt \right| \le \sum_{k=1}^n \int_{x_{k-1}}^{x_k} \omega\left(\frac{b-a}{n}\right) dt = (b-a)\omega\left(\frac{b-a}{n}\right) \to 0, \quad n \to +\infty.$$

2. Par l'absurde, supposons qu'il existe $\alpha \in [a, b]$ tel que $f(\alpha) > 0$. Comme f est continue en α , on a :

$$\forall \epsilon > 0, \exists \eta > 0 : \forall x \in [\alpha - \eta, \alpha + \eta] \Rightarrow f(x) \in [f(\alpha) - \epsilon, f(\alpha) + \epsilon].$$

En particulier, pour $\epsilon = \frac{f(\alpha)}{2} > 0$:

$$\exists \eta > 0 : \forall x \in [\alpha - \eta, \alpha + \eta] \Rightarrow f(x) \in \left[\frac{f(\alpha)}{2}; \frac{3f(\alpha)}{2} \right].$$

Posons $u = \max(a; \alpha - \eta)$ et $v = \min(\alpha + \eta; b)$. On a ainsi : u < v. Soit $x \in [u, v]$. Ainsi

$$\frac{f(\alpha)}{2} \le f(x).$$

Intégrons cette inégalité entre u et v. Comme u < v, il vient :

$$\frac{f(\alpha)}{2}(u-v) \le \int_{u}^{v} f(x)dx$$

Le membre de gauche vérifie $0 < \frac{f(\alpha)}{2}(u-v)$ car $f(\alpha) > 0$ et u < v.

Pour le membre de droite, on a :

$$\int_{a}^{b} f(x)dx = \int_{a}^{u} f(x)dx + \int_{u}^{v} f(x)dx + \int_{v}^{b} f(x)dx > \int_{u}^{v} f(x)dx$$

car f est positive sur [a, b].

On peut finalement écrire :

$$0 < \frac{f(\alpha)}{2}(v - u) \le \int_{u}^{v} f(x)dx \le \int_{a}^{b} f(x)dx$$

ce qui contredit l'hypothèse $\int_a^b f(t)dt = 0$.

3. Soit $f: I \to \mathbb{C}$ une fonction de classe C^{n+1} et $a \in I$. Pour tout $x \in I$ on a :

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_{a}^{x} \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Le terme polynomial est appelée la partie régulière du développement de Taylor de f à l'ordre n en a. Le dernier terme est appelé reste intégral de ce développement. Par récurrence sur $n \in \mathbb{N}$.

Pour n = 0, on a la formule connue

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt.$$

^{1.} Théorème de Heine : Toute application continue d'un segment [a,b] dans $\mathbb R$ est uniformément continue.

Supposons la propriété vérifiée au rang $n \ge 0$.

Soit $f: I \to \mathbb{C}$ de classe C^{n+2} . La fonction f est de classe C^{n+1} donc par hypothèse de récurrence

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Puisque la fonction $f^{(n+1)}$ est de classe C^1 on peut réaliser une intégration par parties sur le reste intégral et ainsi

$$\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt = \left[-\frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) \right]_{a}^{x} + \int_{a}^{x} \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

et ainsi

$$\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(a) + \int_{a}^{x} \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

puis

$$f(x) = \sum_{k=0}^{n+1} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt.$$