

Project Overview

 Working Title: Studies of Artificial Neural Network Generalization Performance While Training on Materials Physics Research Data

Project Overview

 Working Title: Studies of Artificial Neural Network Generalization Performance While Training on Materials Physics Research Data

 <u>Aim</u>: Investigate how different (combinations of) regularization techniques influence ANN prediction accuracy on verification data points sampled from real materials research data sets describing various physical systems.

Discrete Data: Binary Classification

Monocrystalline (1)

Polycrystalline (0)

Continuous Data: Regression

Raman Spectrum of MoS₂

Fitting E_{2g} and A_{1g} Modes

Project Outline

- 1. Finish gathering data (partially completed).
- 2. Implement artificial neural network algorithms in Python3 via PyTorch, Scikit–Learn, Scikit–Optimize, etc.
- 3. Survey regularization and other related design optimization techniques for improving ANN generalization performance on the data.
- 4. Compare the improvements made by the various approaches and use the champion case to generalize and predict a growth space