Universidad Nacional del Altiplano

Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Autor: Lenin Smith Apaza Cuentas

Semestre: 5to - A

Tema: Programación lineal entera

ACTIVIDAD - Resolución de Ejercicios

Ejercicio 8.1: Método de Branch and Bound

Maximizar:

$$P(x_1, x_2, x_3) = 4x_1 + 3x_2 + 3x_3$$

Sujeto a:

$$4x_1 + 2x_2 + x_3 < 10 \tag{1}$$

$$3x_1 + 4x_2 + 2x_3 \le 14\tag{2}$$

$$2x_1 + x_2 + 3x_3 \le 7 \tag{3}$$

con $x_1, x_2, x_3 \ge 0$ yenteros.

Solución de la versión relajada

Primero resolvemos la versión relajada del problema sin imponer que $x_1, x_2, yx_3 seanenteros$. La solución de la versión relajada es:

$$x_1 = 1.2, \quad x_2 = 2.2, \quad x_3 = 0.8$$

con un valor de la función objetivo $P(x_1, x_2, x_3) = 13.8$.

Construcción del Árbol de Decisión y Subproblemas

Como esta solución no es entera, aplicamos el método de Branch and Bound. Dividimos el problema en los siguientes subproblemas:

Subproblema 1: $\mathbf{x}_1 \leq 1$

$$x_1 = 1$$
, $x_2 = 2.3$, $x_3 = 0.9$

Valor de la función objetivo: P = 13.6.

Subproblema 2: $x_1 \ge 2$

$$x_1 = 2$$
, $x_2 = 0.6$, $x_3 = 0.8$

FINESI

Valor de la función objetivo: P = 12.2.

Subproblema 1.1: $x_1 = 1yx_2 \le 2$

$$x_1 = 1, \quad x_2 = 2, \quad x_3 = 1$$

Valor de la función objetivo: P = 13.0 (solución entera).

Subproblema 1.2: $\mathbf{x}_1 = 1yx_2 \geq 3$

$$x_1 = 0, \quad x_2 = 3, \quad x_3 = 1$$

Valor de la función objetivo: P = 12.0.

Conclusión

La mejor solución entera obtenida es:

$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 1$, $P(x_1, x_2, x_3) = 13.0$

Ejercicio 8.2: Resolución como un Problema de Programación Entera

Maximizar:

$$P(x_1, x_2, x_3) = 4x_1 + 3x_2 + 3x_3$$

Sujeto a:

$$4x_1 + 2x_2 + x_3 \le 10\tag{4}$$

$$3x_1 + 4x_2 + 2x_3 \le 14\tag{5}$$

$$2x_1 + x_2 + 3x_3 \le 7 \tag{6}$$

con $x_1, x_2, x_3 \ge 0$ yenteros.

Solución de Programación Entera

Al resolver este problema como un problema de programación entera sin la relajación, obtenemos la siguiente solución entera óptima:

$$x_1 = 1, \quad x_2 = 2, \quad x_3 = 1$$

con un valor de la función objetivo $P(x_1, x_2, x_3) = 13,0.$

Ejercicio 8.3: Método de Cortes de Gomory

Minimizar:

$$C(x,y) = x - y$$

Sujeto a:

$$3x + 4y \le 6 \tag{7}$$

$$x - y \le 1 \tag{8}$$

con x, y ≥ 0 yenteros.

Solución de la versión relajada

La solución de la versión relajada es:

$$x = 0, \quad y = 1.5$$

con un valor de la función objetivo C(x, y) = -1.5.

Aplicación del Primer Corte de Gomory

Para eliminar la fracción en y = 1.5, aplicamos un corte de Gomory. Esto añade la restricción y ≤ 1 .

$$x = 0, \quad y = 1$$

Valor de la función objetivo: C(x, y) = -1.0.

Conclusión

La solución entera óptima es:

$$x = 0, \quad y = 1, \quad C(x, y) = -1,0$$

Ejercicio 8.4: Método de Cortes de Gomory

Maximizar:

$$P(x_1, x_2, x_3) = 4x_1 + 3x_2 + 3x_3$$

Sujeto a:

$$4x_1 + 2x_2 + x_3 \le 10\tag{9}$$

$$3x_1 + 4x_2 + 2x_3 < 14 \tag{10}$$

$$2x_1 + x_2 + 3x_3 \le 7 \tag{11}$$

con $x_1, x_2, x_3 \ge 0$ yenteros.

Solución de la versión relajada

La solución de la versión relajada es:

$$x_1 = 1,2, \quad x_2 = 2,2, \quad x_3 = 0,8$$

con un valor de la función objetivo $P(x_1, x_2, x_3) = 13.8$.

Aplicación del Primer Corte de Gomory

Para eliminar la fracción en $x_1=1,2, aplicamosuncorte de Gomory que a ña de la restricción <math>x_1\leq 1.$

$$x_1 = 1$$
, $x_2 = 2.3$, $x_3 = 0.9$

Valor de la función objetivo: P = 13.6.

Aplicación del Segundo Corte de Gomory

Para eliminar la fracción en $\mathbf{x}_2=2,3, aplicamosotrocorte de Gomory que a \~na de la restricción <math>x_2\leq 2.$

$$x_1 = 1, \quad x_2 = 2, \quad x_3 = 1$$

Valor de la función objetivo: P = 13.0.

Conclusión

La solución entera óptima es:

$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 1$, $P(x_1, x_2, x_3) = 13,0$

Ejercicio 8.5: Selección de Proyectos de I+D

Maximizar el NPV sujeto a las restricciones de presupuesto para cada año.

Solución

Los proyectos seleccionados para maximizar el NPV son:

Proyectos 3, 4 y 5

con un valor total de NPV: 468.

QR de GitHub para visualizar la Implementación en Python con StreamLit:

