

Language Modeling

Introduction to N-grams

Probabilistic Language Models

- Today's goal: assign a probability to a sentence
 - Machine Translation:
 - P(high winds tonite) > P(large winds tonite)

Why?

- Spell Correction
 - The office is about fifteen **minuets** from my house
 - P(about fifteen minutes from) > P(about fifteen minuets from)
- · Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
- + Summarization, question-answering, etc., etc.!!

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words:
 - $P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$
- Related task: probability of an upcoming word: ${}^{P(w_{5}|w_{1},w_{2},w_{3},w_{4})}$
- A model that computes either of these:

P(W) or $P(w_n|w_{1},w_{2}...w_{n-1})$ is called a language model.

Better: the grammar But language model or LM is standard

How to compute P(W)

- How to compute this joint probability:
 - P(its, water, is, so, transparent, that)
- · Intuition: let's rely on the Chain Rule of Probability

Reminder: The Chain Rule

- Recall the definition of conditional probabilities $p(B \mid A) = P(A,B)/P(A) \qquad \text{Rewriting: } P(A,B) = P(A)P(B \mid A)$
- More variables:
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
- The Chain Rule in General $P(x_1,x_2,x_3,...,x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1,x_2)...P(x_n|x_1,...,x_{n-1})$

The Chain Rule applied to compute joint probability of words in sentence

$$P(w_1 w_2 ... w_n) = \prod_i P(w_i | w_1 w_2 ... w_{i-1})$$

P("its water is so transparent") =

 $P(its) \times P(water|its) \times P(is|its water)$

× P(so|its water is) × P(transparent|its water is so)

How to estimate these probabilities

· Could we just count and divide?

P(the lits water is so transparent that) = Count(its water is so transparent that the) Count(its water is so transparent that)

- · No! Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

• Simplifying assumption:

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{ that})$

Or maybe

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{transparent that})$

Markov Assumption

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i \mid w_{i-k} \dots w_{i-1})$$

 In other words, we approximate each component in the product

$$P(w_i \mid w_1 w_2 \dots w_{i-1}) \approx P(w_i \mid w_{i-k} \dots w_{i-1})$$

Simplest case: Unigram model

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i)$$

Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is,

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model

Condition on the previous word:

$$P(w_i | w_1 w_2 ... w_{i-1}) \approx P(w_i | w_{i-1})$$

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
 - because language has long-distance dependencies:

But we can often get away with N-gram models