$R_a=K[X,Y]/(X^2-Y^2-X-Y-a)\cong K[S,T]/(ST-a)$ なので、 $R_a=K[X,Y]/(XY-a)$ として考えればよい。

(1) Hilbert の零点定理より, K[X,Y] の極大イデアルは $\alpha,\beta\in K$ を使って, $(X-\alpha,Y-\beta)$ と表せる. これを $\mathfrak{m}_{\alpha,\beta}$ と定める.

剰余環のイデアルの対応関係より、 \mathfrak{m} を R_0 の極大イデアルとすれば、 $\mathfrak{m}=\mathfrak{m}_{\alpha,\beta}/(XY)$ と表せる. このとき、 $(XY)\subseteq\mathfrak{m}_{\alpha,\beta}$ より、 $X=\alpha,Y=\beta$ を代入する写像を考えれば、 $\alpha\beta=0$ となる. また、K は特に整域なので、 $\alpha=0$ または $\beta=0$ である. 以下、 $\beta=0$ と仮定する. $\alpha=0$ のとき、

$$\mathfrak{m}/\mathfrak{m}^2 = (\mathfrak{m}_{0,0}/(XY))/(\mathfrak{m}_{0,0}/(XY))^2 = \mathfrak{m}_{0,0}/(\mathfrak{m}_{0,0}^2 + (XY)) = (X,Y)/(X^2,Y^2,XY)$$

となるので, $\dim_K \mathfrak{m}/\mathfrak{m}^2 = 2$ である. また, $\alpha \neq 0$ のときには,

$$\mathfrak{m}/\mathfrak{m}^2 = (\mathfrak{m}_{\alpha,0}/(XY))/(\mathfrak{m}_{\alpha,0}/(XY))^2 = \mathfrak{m}_{\alpha,0}/(\mathfrak{m}_{\alpha,0}^2 + (XY)) = (X - \alpha, Y)/((X - \alpha)^2, Y)$$

となるので, $\dim_K \mathfrak{m}/\mathfrak{m}^2 = 1$ となる.

さらに、m が単項イデアルの場合は

$$\mathfrak{m}/\mathfrak{m}^2 = \mathfrak{m} \otimes_{R_0} R_0/\mathfrak{m} = R_0/\mathfrak{m} = K$$

となるので、 $\dim_K \mathfrak{m}/\mathfrak{m}^2 = 1$ となる. したがって、 $\alpha = 0$ の場合には \mathfrak{m} は単項イデアルでない. また、 $\alpha \neq 0$ の場合には $\mathfrak{m} = (X - \alpha)R_0$ となるので、 \mathfrak{m} は単項イデアルになる.

(2) (1) と同様にして, $\alpha\beta=a\neq 0$ であって, K は特に整域なので, $\alpha\neq 0$ かつ $\beta\neq 0$ が成り立つ. このとき, $\mathfrak{m}=(X-\alpha)R_a$ なので, 単項イデアルであって, (1) で示していることから, $\dim_K\mathfrak{m}/\mathfrak{m}^2=1$ が成り立つ.