Montrel croz Jorge de Jesús RCFB24 4.1 Para una señas x(+) = e u(+), encuentre la transformada de Laplace X(s) y su región de convergencia. Por definición $X(s) = \int_{-st}^{\infty} e^{-st} u(t) e^{-st} dt$ sabemes que ult) = 0 para tro así ques. quea to b u(t)=1 $= \begin{cases} e^{-at} - st \\ e^{-at} - t \end{cases} = \begin{cases} -a + -st \\ -b + a \end{cases} = \begin{cases} -(s+a)t \\ -(s+a)t \end{cases}$ debenos notar que s e ¢ y que cuando t - as e (sta) t no necesasiamente desaparece s, 2 = x+jp entonces e = e (x+jp)t = e e espt 1e-18t/ = 1 rea coal sea el valor de p asi il too e- 2+ 0 solo si d >0 y si X LO enfonces e asi.

Lim e = 10 Re 7 70

t+00 Re 7 20 entoner -(s+a)t or Re(s+a)>0 $t\to \infty$ = $\begin{cases} 0 & Re(s+a)>0 \\ t\to \infty & Re(s+a)<0 \end{cases}$ $\frac{1}{5+\alpha} \quad \text{si} \quad \text{Re}(5+\alpha) > 0 \implies \frac{1}{9} \quad \text{left} \implies \frac{1}{5+\alpha} \quad \text{Re} \quad 5 > -\alpha$ así pues.

$\mathcal{L}\{u(t)\} = \int u(t) e^{-st} dt = \int e^{-st} dt = -\frac{1}{5} e^{-st} dt$
= L Res >0
C. $(os wot u(t)) = \frac{1}{2} \left(e^{jwot} + e^{jwot} \right) u(t)$
de problemas anteriores
$\frac{s}{s^2 + \omega_0^2} \qquad \text{Re}(s + j\omega) = \text{Re}(s > 0)$
4.3 encuentre la transformada inversei de daplace
a. 75-6 5 ² -5-6
6. 25 ² + 5 5 ² + 35 + 2
C. 6(5+34) 5(3 ² +105+34)
d. (5+1)(5+2) ³

C.
$$\chi(5) = \frac{6(5+34)}{5(5^{2}+105+3^{3})}$$
 $= \frac{6(5+34)}{5(5+34)} = \frac{1}{15} \frac{1}{15} \frac{1}{5} \frac{1}{5$

P	por fracciones	purciale.			
	s) = 6(5+34 5(5 ² +105		5 52	75 1 B HOS T34	
21	hacemo B = 0	y multipl	cames amb	es lados pe	r 5
21m (61.	5+34) =	6 + 52	A52 1105+34		
7	0 = 6f $A = -6$				
	Para B 1 havemen 5=	1			
6(1+34) = -6 + 10+34 1+10 +	34	2 114 0 1		
pare	$x(s) = \frac{8s+70}{(s+1)(s+2)}$	3			
= 5	$\frac{(5)}{(5+2)^3}$ $\frac{(5+2)}{(5+2)}$	- 1 <u>QZ</u>			
para	K1 85+10 1 5 (5+2)3 18	= 2			

$$Q_{0} = \frac{8s+10}{(s+1)(s+2)^{3}} \Big|_{s=-2} = 6$$

$$Q_{1} = \frac{d}{ds} \frac{\left[\frac{8s+10}{(s+1)(s+2)^{3}}\right]}{\left[\frac{4s+10}{(s+1)(s+2)}\right]} \Big|_{s=-2} = -2$$

$$Q_{2} = \frac{1}{2} \left\{\frac{d^{2}}{ds^{2}} \left[\frac{8s+10}{(s+1)(s+2)}\right]\right\} \Big|_{s=-2} = -2$$

$$Q_{3} = \frac{2}{s+1} \frac{d^{2}}{(s+2)^{3}} \left[\frac{8s+10}{(s+2)^{3}}\right] \Big|_{s=-2} = -2$$

$$Q_{3} = \frac{1}{2} \left[\frac{d^{2}}{ds^{2}} \left[\frac{8s+10}{(s+2)^{3}}\right] \Big|_{s=-2} = -2$$

$$Q_{3} = \frac{1}{2} \left[\frac{4s+10}{(s+2)^{3}} \left[\frac{4s+10}{(s+2)^{3}}\right] \Big|$$