Example Code using PROC BGLIMM

Simple Linear Regression with Class Variable

```
In [1]: proc bglimm data=sashelp.class seed=8675309;
    class sex;
    model Weight = Height Age Sex / dist=normal coeffprior=normal(variance=1e6);
run;
```

SAS Connection established. Subprocess id is 76633

The SAS System

Model Information		
Data Set	SASHELP.CLASS	
Response Variable	Weight	
Distribution	Normal	
Link Function	Identity	
Fixed Effects Included	Yes	
Random Effects Included	No	
Sampling Algorithm	Conjugate	
Burn-In Size	500	
Simulation Size	5000	
Thinning	1	
Random Number Seed	8675309	
Number of Threads	1	

Class Level Information		
Class	Levels	Values
Sex	2	FM

Number of Observations	
Number of Observations Read	19
Number of Observations Used	19

Independent Normal Priors for Fixed Effects			
Parameter	Mean	Variance	
Intercept	0	1000000	
Height	0	1000000	
Age	0	1000000	
Sex F	0	1000000	

Priors for Scale and Covariance Parameters			
Parameter Prior			
Scale	Inverse Gamma (Shape=2, Scale=2)		

Posterior Summaries and Intervals					
Parameter	N	Mean	Standard Deviation	95% HPD Interval	
Intercept	5000	-116.0	33.7405	-186.5	-52.4437
Height	5000	2.8694	0.9448	0.8729	4.6574
Age	5000	3.1130	3.0759	-2.8693	9.3670
Sex F	5000	-8.9601	5.4511	-20.2018	1.1647
Sex M	0				
Scale	5000	108.8	39.1999	46.6659	186.3

Effective Sample Sizes				
Parameter	ESS	Autocorrelation Time	Efficiency	
Intercept	5000.0	1.0000	1.0000	
Height	4813.2	1.0388	0.9626	
Age	5000.0	1.0000	1.0000	
Sex F	5000.0	1.0000	1.0000	
Sex M				
Scale	3488.1	1.4334	0.6976	

Toy Example:

Normal Response with Random Effects (MIXED)

```
In [2]: data work.toy;
    length toy $1;
    input toy $ adhesive $ pressure @@;
datalines;
1 c 67.0 1 b 71.9 1 a 72.2
2 c 67.5 2 b 68.8 2 a 66.4
3 c 76.0 3 b 82.6 3 a 74.5
4 c 72.7 4 b 78.1 4 a 67.3
5 c 73.1 5 b 74.2 5 a 73.2
6 c 65.8 6 b 70.8 6 a 68.7
7 c 75.6 7 b 84.9 7 a 69.0
;
run;
```

```
11
                                                                    The SAS System
        Monday, June 3, 2024 03:34:00 PM
        59
                   ods listing close;ods html5 (id=saspy_internal) file=_tomods1 options(bitm
        ap_mode='inline') device=svg style=HTMLBlue;
                 ! ods graphics on / outputfmt=png;
        NOTE: Writing HTML5(SASPY_INTERNAL) Body file: _TOMODS1
        60
        61
                   data work.toy;
        62
                      length toy $1;
                      input toy $ adhesive $ pressure @@;
        63
        64
                   datalines;
        NOTE: SAS went to a new line when INPUT statement reached past the end of a line.
        NOTE: The data set WORK.TOY has 21 observations and 3 variables.
        NOTE: DATA statement used (Total process time):
              real time
                                  0.00 seconds
                                  0.00 seconds
              cpu time
        72
        73
                   run;
        74
        75
        76
        77
                   ods html5 (id=saspy_internal) close;ods listing;
        78
        12
                                                                    The SAS System
        Monday, June 3, 2024 03:34:00 PM
        79
In [3]: proc mixed data=work.toy;
           class adhesive toy;
           model pressure = adhesive / solution ddfm=kr2;
           random toy;
        run;
```

The SAS System

The Mixed Procedure

Model Information		
Data Set	WORK.TOY	
Dependent Variable	pressure	
Covariance Structure	Variance Components	
Estimation Method	REML	
Residual Variance Method	Profile	
Fixed Effects SE Method	Kenward-Roger2	
Degrees of Freedom Method	Kenward-Roger2	

Class Level Information			
Class Levels Valu			
adhesive	3	abc	
toy	7	1234567	

Dimensions	
Covariance Parameters	2
Columns in X	4
Columns in Z	7
Subjects	1
Max Obs per Subject	21

Number of Observations		
Number of Observations Read	21	
Number of Observations Used	21	
Number of Observations Not Used	0	

Iteration History				
Iteration	Evaluations	-2 Res Log Like	Criterion	
0	1	112.40987952		
1	1	107.79020201	0.00000000	

Convergence criteria met.

Covariance Parameter Estimates				
Cov Parm Estimate				
toy	11.4478			
Residual	10.3716			

Fit Statistics	
-2 Res Log Likelihood	107.8
AIC (Smaller is Better)	111.8
AICC (Smaller is Better)	112.6
BIC (Smaller is Better)	111.7

Solution for Fixed Effects						
Effect	adhesive	Estimate	Standard Error	DF	t Value	Pr > t
Intercept		71.1000	1.7655	11.6	40.27	<.0001
adhesive	а	-0.9143	1.7214	12	-0.53	0.6050
adhesive	b	4.8000	1.7214	12	2.79	0.0164
adhesive	С	0				

Type 3 Tests of Fixed Effects				
Effect	Num DF	Den DF	F Value	Pr > F
adhesive	2	12	6.36	0.0131

Normal Response with Random Effects (BGLIMM)

```
In [4]: proc bglimm data=work.toy seed=8675309;
    class adhesive toy;
    model pressure = adhesive / dist=normal coeffprior=normal(variance=1e6);
    random int / subject=toy;
run;
```

The SAS System

Model Information				
Data Set	WORK.TOY			
Response Variable	pressure			
Distribution	Normal			
Link Function	Identity			
Fixed Effects Included	Yes			
Random Effects Included	Yes			
Sampling Algorithm	Conjugate			
Burn-In Size	500			
Simulation Size	5000			
Thinning	1			
Random Number Seed	8675309			
Number of Threads	1			

Class Level Information				
Class	Levels	Values		
adhesive	3	abc		
toy	7	1234567		

Number of Observations	
Number of Observations Read	21
Number of Observations Used	21

Independent Normal Priors for Fixed Effects				
Parameter	Mean	Variance		
Intercept	0	1000000		
adhesive a	0	1000000		
adhesive b	0	1000000		

Priors for Scale and Covariance Parameters			
Parameter	Prior		
Scale	Inverse Gamma (Shape=2, Scale=2)		
Random Var	Inverse Gamma (Shape=2, Scale=2)		

Posterior Summaries and Intervals					
Parameter	N	Mean	Standard Deviation	95% HPE) Interval
Intercept	5000	71.0953	1.6200	67.9998	74.3500
adhesive a	5000	-0.8956	1.8515	-4.6440	2.8192
adhesive b	5000	4.7668	1.8608	1.0038	8.3715
adhesive c	0				
Scale	5000	12.2922	5.5328	3.8440	23.0906
Random Var	5000	4.9750	5.1886	0.2362	14.0160

Effective Sample Sizes				
Parameter	ESS	Autocorrelation Time	Efficiency	
Intercept	1328.1	3.7649	0.2656	
adhesive a	5000.0	1.0000	1.0000	
adhesive b	5000.0	1.0000	1.0000	
adhesive c				
Scale	894.9	5.5874	0.1790	
Random Var	757.2	6.6036	0.1514	

Comparison of Frequentist Estimates and Posterior Means:

Parameter	MIXED Value	BGLIMM Value
Intercept	71.1000	71.0953
Adhesive a	-0.9143	-0.8956
Adhesive b	4.8000	4.7668
Adhesive c	0	0
VC Toy	11.4478	4.9750
VC Residual	10.3716	12.2922

Crab Example:

Poisson Regression with Random Effects (GLIMMIX)

```
In [5]: data work.crab;
    input color spine width satellites weight site;
    color=color-1;
    weight=weight/1000;
```

- N	L - 7.	•			
		ines;	0	2050	1
3 4	3	28.3	8	3050	1
2	3 1	26.0	0 9	1550 2300	1
4		24.8	9		1
4	3	26.0	4	2100	
3	3	23.8	9	2600 2100	1
2	1	26.5	0	2350	1
4	2	24.7	0	1900	1
3	1	23.7	0	1950	1
4	3	25.6	0	2150	1
4	3	24.3	0	2150	1
3	3	25.8	0	2650	1
3	3	28.2	11	3050	2
5	2	21.0	0	1850	2
3	1	26.0	14	2300	2
2	1	27.1	8	2950	2
3	3	25.2	1	2000	2
3	3	29.0	1	3000	2
5	3	24.7	0	2200	2
3	3	27.4	5	2700	2
3	2	23.2	4	1950	3
2	2	25.0	3	2300	3
3	1	22.5	1	1600	3
4	3	26.7	2	2600	3
5	3	25.8	3	2000	3
5	3	26.2	0	1300	3
3	3	28.7	3	3150	3
3	1	26.8	5	2700	3
5	3	27.5	0	2600	3
3	3	24.9	0	2100	3
2	1	29.3	4	3200	3
2	3	25.8	0	2600	4
3	2	25.7	0	2000	4
3	1	25.7	8	2000	4
3	1	26.7	5	2700	4
5	3	23.7	0	1850	4
3	3	26.8	0	2650	4
3	3	27.5	6	3150	4
5	3	23.4	0	1900	4
3	3	27.9	6	2800	4
4	3	27.5	3	3100	4
2	1	26.1	5	2800	4
2	1	27.7	6	2500	4
3	1	30.0	5	3300	5
4	1	28.5	9	3250	5
4	3	28.9	4	2800	5
3	3	28.2	6	2600	5
3	3	25.0	4	2100	5
3	3	28.5	3	3000	5
3	1	30.3	3	3600	5
5	3	24.7	5	2100	5
3	3	27.7	5	2900	6
2	1	27.4	6	2700	6
3	3	22.9	4	1600	6
3	1	25.7	5	2000	6
3	3	28.3	15	3000	6
_	,	20.5		5000	0

3	3	27.2	3	2700	6
4	3	26.2	3	2300	6
3	1	27.8	0	2750	6
5	3	25.5	0	2250	6
4	3	27.1	0	2550	6
4	3	24.5	5	2050	6
4	1	27.0	3	2450	6
3	3	26.0	5	2150	6
3	3	28.0	1	2800	7
3	3	30.0	8	3050	7
3	3	29.0	10	3200	7
3	3	26.2	0	2400	7
3	1	26.5	0	1300	7
3	3	26.2	3	2400	7
4	3	25.6	7	2800	7
4	3	23.0	1	1650	7
4	3	23.0	0	1800	7
3	3	25.4	6	2250	7
4	3	24.2	0	1900	7
3	2	22.9	0	1600	7
4	2	26.0	3	2200	7
3	3	25.4	4	2250	7
4	3	25.7	0	1200	8
3	3	25.1	5	2100	8
4	2	24.5	0	2250	8
5	3	27.5	0	2900	8
4	3	23.1	0	1650	8
4	1	25.9	4	2550	8
3	3	25.8	0	2300	8
5	3	27.0	3	2250	8
3	3	28.5	0	3050	8
5	1	25.5	0	2750	8
5	3	23.5	0	1900	8
3	2	24.0	0	1700	8
3	1	29.7	5	3850	8
3	1	26.8	0	2550	8
5	3	26.7	0	2450	9
3	1	28.7	0	3200	9
4	3	23.1	0	1550	9
3	1	29.0	1	2800	9
4	3	25.5	0	2250	9
4	3	26.5	1	1967	9
4	3	24.5	1	2200	9
4	3	28.5	1	3000	9
3	3	28.2	1	2867	9
3	3	24.5	1	1600	9
3	3	27.5	1	2550	9
3	2	24.7	4	2550	9
3	1	25.2	1	2000	9
4	3	27.3	1	2900	10
3	3	26.3	1	2400	10
3			1	3100	10
	3	29.0			
3	3	25.3	2	1900	10
3	3	26.5	4	2300	10
3	3	27.8	3	3250	10
3	3	27.0	6	2500	10
4	3	25.7	0	2100	10

```
3
   3
      25.0
            2
                2100 10
3
  3
      31.9
            2
                3325 10
5
   3
      23.7
             0
                1800 10
5
   3
      29.3
            12 3225 10
4
   3
      22.0
                1400 10
            0
3
   3
      25.0
            5
                2400 10
4
   3
      27.0
            6
                2500 10
4
   3
      23.8
            6
                1800 10
2
   1
      30.2
            2
                3275 10
   3
      26.2
            0
                2225 11
4
3
   3
      24.2
            2
                1650 11
3
   3
      27.4
            3
                2900 11
3
   2
      25.4
            0
                2300 11
4
   3
      28.4
            3
                3200 11
5
   3
      22.5
            4
                1475 11
3
      26.2
            2
   3
                2025 11
3
      24.9
   1
            6
                2300 11
2
   2
      24.5
            6
                1950 11
3
      25.1
                1800 11
   3
            0
3
   1
      28.0
            4
                2900 11
5
   3
      25.8
             10 2250 11
3
      27.9
   3
            7
                3050 11
3
   3
      24.9
                2200 11
             0
3
   1
      28.4
            5
                3100 11
4
   3
      27.2
            5
                2400 11
3
   2
      25.0
            6
                2250 11
3
   3
      27.5
             6
                2625 11
3
   1
      33.5
            7
                5200 12
3
      30.5
   3
            3
                3325 12
4
   3
      29.0
            3
                2925 12
3
   1
      24.3
            0
                2000 12
3
   3
      25.8
            0
                2400 12
5
   3
      25.0
            8
                2100 12
3
                3725 12
   1
      31.7
            4
3
   3
      29.5
            4
                3025 12
4
   3
      24.0
            10 1900 12
3
   3
      30.0
            9
                3000 12
3
   3
      27.6
            4
                2850 12
3
   3
      26.2
            0
                2300 12
3
   1
      23.1
             0
                2000 12
3
      22.9
            0
                1600 12
   1
5
   3
      24.5
            0
                1900 12
3
   3
      24.7
            4
                1950 12
3
   3
      28.3
            0
                3200 12
3
   3
      23.9
            2
                1850 12
4
   3
      23.8
            0
                1800 12
4
   2
      29.8
                3500 12
            4
3
      26.5
   3
            4
                2350 13
3
   3
      26.0
            3
                2275 13
3
   3
      28.2
            8
                3050 13
5
   3
      25.7
             0
                2150 13
3
   3
      26.5
            7
                2750 13
3
   3
      25.8
                2200 13
            0
4
   3
      24.1
            0
                1800 13
4
   3
      26.2
            2
                2175 13
             3
   3
      26.1
                2750 13
   3
      29.0
            4
                3275 13
```

```
2 1 28.0 0 2625 13
        5 3 27.0 0 2625 13
        3 2 24.5 0 2000 13
        run;
        17
                                                                   The SAS System
        Monday, June 3, 2024 03:34:00 PM
                   ods listing close;ods html5 (id=saspy_internal) file=_tomods1 options(bitm
        ap_mode='inline') device=svg style=HTMLBlue;
                 ! ods graphics on / outputfmt=png;
        NOTE: Writing HTML5(SASPY_INTERNAL) Body file: _TOMODS1
        112
        113
                   data work.crab;
        114
                      input color spine width satellites weight site;
                      color=color-1;
        115
        116
                      weight=weight/1000;
        117
                   datalines;
        NOTE: The data set WORK.CRAB has 173 observations and 6 variables.
        NOTE: DATA statement used (Total process time):
              real time
                                  0.00 seconds
              cpu time
                                  0.02 seconds
        291
        292
                   run;
        293
        294
        295
        296
        297
                   ods html5 (id=saspy_internal) close;ods listing;
        298
        18
                                                                   The SAS System
        Monday, June 3, 2024 03:34:00 PM
        299
In [6]: proc glimmix data=work.crab;
           class color spine site;
           model satellites = color spine weight width / dist=poi link=log solution;
           random int / subject=site;
        run;
```

The SAS System

Model Information					
WORK.CRAB					
satellites					
Poisson					
Log					
Default					
site					
Residual PL					
Containment					

Class Level Information					
Class	Levels	Values			
color	4	1 2 3 4			
spine	3	123			
site	13	1 2 3 4 5 6 7 8 9 10 11 12 13			

Number of Observations Read	173
Number of Observations Used	173

Dimensions				
G-side Cov. Parameters	1			
Columns in X	10			
Columns in Z per Subject	1			
Subjects (Blocks in V)				
Max Obs per Subject	20			

Optimization Information					
Optimization Technique	Dual Quasi-Newton				
Parameters in Optimization	1				
Lower Boundaries	1				
Upper Boundaries	0				
Fixed Effects	Profiled				
Starting From	Data				

Iteration History							
Iteration	Restarts	Subiterations	Objective Function	Change	Max Gradient		
0	0	2	449.40569089	2.00000000	0.000623		
1	0	4	614.1159541	2.00000000	0.000098		
2	0	4	663.19815369	0.85657396	9.516E-6		
3	0	2	666.8508521	0.01462831	1.617E-7		
4	0	1	666.88102643	0.00001436	7.644E-9		
5	0	0	666.881122	0.00000000	5.635E-6		

Convergence criterion (PCONV=1.11022E-8) satisfied.

Fit Statistics			
-2 Res Log Pseudo-Likelihood	666.88		
Generalized Chi-Square	467.88		
Gener. Chi-Square / DF	2.84		

Covariance Parameter Estimates						
Cov Parm	Subject	Estimate	Standard Error			
Intercept	site	0.1494	0.07803			

Solutions for Fixed Effects							
Effect	color	spine	Estimate	Standard Error	DF	t Value	Pr > t
Intercept			-0.6317	1.0019	12	-0.63	0.5402
color	1		0.3829	0.2385	153	1.61	0.1105
color	2		0.1641	0.1702	153	0.96	0.3364
color	3		-0.00907	0.1866	153	-0.05	0.9613
color	4		0				
spine		1	-0.03307	0.1242	153	-0.27	0.7904
spine		2	-0.1886	0.2022	153	-0.93	0.3525
spine		3	0				
weight			0.5395	0.1755	153	3.07	0.0025
width			0.006855	0.05181	153	0.13	0.8949

Type III Tests of Fixed Effects					
Effect	Num DF	Den DF	F Value	Pr > F	

Type III Tests of Fixed Effects						
Effect	Num DF Den DF F Value Pr > F					
color	3	153	1.48	0.2217		
spine	2	153	0.44	0.6447		
weight	1	153	9.45	0.0025		
width	1	153	0.02	0.8949		

Poisson Regression with Random Effects (BGLIMM)

```
In [7]: proc bglimm data=work.crab seed=8675309 diag=all plots=all;
    class color spine site;
    model satellites = color spine weight width / dist=poisson link=log;
    random int / subject=site;
run;
```

The SAS System

	Model Information
Data Set	WORK.CRAB
Response Variable	satellites
Distribution	Poisson
Link Function	Log
Fixed Effects Included	Yes
Random Effects Included	Yes
Sampling Algorithm	Gamerman, Conjugate
Burn-In Size	500
Simulation Size	5000
Thinning	1
Random Number Seed	8675309
Number of Threads	1

Class Level Information			
Class	Levels	Values	
color	4	1234	
spine	3	123	
site	13	1 2 3 4 5 6 7 8 9 10 11 12 13	

Number of Observations		
Number of Observations Read	173	
Number of Observations Used	173	

Priors for Fixed Effects			
Parameter Price			
Intercept	Constant		
color 1	Constant		
color 2	Constant		
color 3	Constant		
spine 1	Constant		
spine 2	Constant		
weight	Constant		

Priors for Fixed Effects			
Parameter Prior			
width Constant			

Priors for Scale and Covariance Parameters			
Parameter	Prior		
Random Var	m Var Inverse Gamma (Shape=2, Scale=2)		

Posterior Summaries and Intervals					
Parameter	N	Mean	Standard Deviation	95% HPD Interval	
Intercept	5000	-0.6361	1.0030	-2.5912	1.2345
color 1	5000	0.3608	0.2335	-0.1052	0.8109
color 2	5000	0.1612	0.1720	-0.1633	0.5129
color 3	5000	-0.00556	0.1875	-0.3535	0.3736
color 4	0				
spine 1	5000	-0.0265	0.1243	-0.2535	0.2281
spine 2	5000	-0.2025	0.2088	-0.6026	0.2103
spine 3	0				
weight	5000	0.5456	0.1764	0.2051	0.8781
width	5000	0.00533	0.0519	-0.0919	0.1066
Random Var	5000	0.4560	0.1912	0.1827	0.8319

	Posterior Autocorrelations			
Parameter	Lag 1	Lag 5	Lag 10	Lag 50
Intercept	0.4222	0.0068	-0.0030	-0.0076
color 1	0.4470	0.0430	-0.0167	0.0064
color 2	0.4387	0.0112	-0.0191	-0.0086
color 3	0.4325	-0.0014	-0.0380	-0.0223
color 4				
spine 1	0.4034	0.0528	0.0077	0.0257
spine 2	0.4475	0.0315	0.0263	0.0058
spine 3				
weight	0.3996	0.0236	-0.0082	-0.0124
width	0.4106	0.0036	-0.0036	-0.0090
Random Var	0.1051	0.0428	0.0408	0.0231

Effective Sample Size			
Parameter	ESS	Autocorrelation Time	Efficiency
Intercept	1985.1	2.5188	0.3970
color 1	1729.1	2.8917	0.3458
color 2	1882.4	2.6561	0.3765
color 3	1988.5	2.5144	0.3977
color 4			
spine 1	1750.2	2.8568	0.3500
spine 2	1779.7	2.8095	0.3559
spine 3			
weight	2101.2	2.3796	0.4202
width	2086.5	2.3963	0.4173
Random Var	2425.5	2.0615	0.4851

	Monte Carlo Standard Error				
Parameter	MCSE	Standard Deviation	MCSE/SD		
Intercept	0.0225	1.0030	0.0224		
color 1	0.00561	0.2335	0.0240		
color 2	0.00396	0.1720	0.0230		
color 3	0.00420	0.1875	0.0224		
color 4					
spine 1	0.00297	0.1243	0.0239		
spine 2	0.00495	0.2088	0.0237		
spine 3					
weight	0.00385	0.1764	0.0218		
width	0.00114	0.0519	0.0219		
Random Var	0.00388	0.1912	0.0203		

Ge	Geweke Diagnostics			
Parameter	meter z Pr > z			
Intercept	-0.7959	0.4261		
color 1	0.0963	0.9233		
color 2	0.3204	0.7487		
color 3	0.4559	0.6485		
color 4				

Ge	Geweke Diagnostics				
Parameter	z	Pr > z			
spine 1	1.6449	0.1000			
spine 2	-1.6347	0.1021			
spine 3					
weight	0.4923	0.6225			
width	-0.9570	0.3386			
Random Var	-0.0642	0.9488			

Raftery-Lewis Diagnostics					
Quantile=0.025	Accuracy=+	-/-0.005 Pı	robability=0.9	5 Epsilon=0.001	
Parameter		Number	of Samples	Dependence	
Farameter	Burn-In	Total	Minimum	Factor	
Intercept	7	7398	3746	1.9749	
color 1	8	8927	3746	2.3831	
color 2	7	7677	3746	2.0494	
color 3	6	7004	3746	1.8697	
color 4					
spine 1	9	9874	3746	2.6359	
spine 2	16	16853	3746	4.4989	
spine 3					
weight	8	8600	3746	2.2958	
width	7	7677	3746	2.0494	
Random Var	2	3742	3746	0.9989	

	Heidelberger-Welch Diagnostics							
			Statio	onarity Test	Half-Width Tes			Width Test
Parameter	Cramer- von Mises Stat	p- Test Value Outcome		Iterations Discarded	Half- Width	Mean	Relative Half- Width	Test Outcome
Intercept	0.1470	0.3988	Passed	0	0.0478	-0.6361	-0.0751	Passed
color 1	0.0535	0.8549	Passed	0	0.0107	0.3608	0.0295	Passed
color 2	0.2780	0.1562	Passed	0	0.00626	0.1612	0.0388	Passed
color 3	0.1529	0.3808	Passed	0	0.00623	-0.00556	-1.1198	Failed
color 4								
spine 1	0.4039	0.0706	Passed	500	0.00757	-0.0275	-0.2754	Failed
spine 2	0.4229	0.0629	Passed	0	0.00996	-0.2025	-0.0492	Passed

						Heidelberg	ger-Welch D	iagnostics
			Statio	Stationarity Test Half-			Half-	Width Test
Parameter	von p	p- Value	Test Outcome	Iterations Discarded	Half- Width	Mean	Relative Half- Width	Test Outcome
spine 3								
weight	0.0343	0.9600	Passed	0	0.00727	0.5456	0.0133	Passed
width	0.2058	0.2565	Passed	0	0.00237	0.00533	0.4451	Failed
Random Var	0.3336	0.1090	Passed	0	0.00944	0.4560	0.0207	Passed

The SAS System

Comparison of Frequentist Estimates and Posterior Means:

Parameter	GLIMMIX	BGLIMM
Intercept	-0.6317	-0.6361
Color1	0.3829	0.3608
Color2	0.1641	0.1612
Color3	-0.00907	-0.00556
Color4	0	0
Spine1	-0.03307	-0.0265
Spine2	-0.1886	-0.2025
Spine3	0	0
Weight	0.5395	0.5456
Width	0.006855	0.00533
VC Site	0.1494	0.4560

Heartrate Example:

Continuous Response (Normal) with Repeated Measures (MIXED)

```
In [8]: data work.heartrate;
           input patient drug$ baseline hr1 hr5 hr15 hr30 hr1h;
           array hra{5} hr1 hr5 hr15 hr30 hr1h;
           do i = 1 to 5;
              if (i = 1) then hours = 1/60;
              else if (i = 2) then hours = 5/60;
              else if (i = 3) then hours = 15/60;
              else if (i = 4) then hours = 30/60;
              else hours = 1;
              heartrate = hra{i};
              output;
           end;
           drop i hr1 hr5 hr15 hr30 hr1h;
           datalines;
        201 p
                 92
                      76
                           84
                                88
                                     96
                                          84
        202 b
                 54
                      58
                           60
                                60
                                     60
                                          64
        203 p
                      86
                           82
                                84
                                          82
                 84
                                     86
        204 a
                 72
                      72
                                     78
                                          72
                           68
                                68
        205 b
                 80
                      84
                           84
                                96
                                     92
                                          72
        206 p
                 68
                      72
                           68
                                68
                                     64
                                          62
        207 a
                100
                    104 100
                                92
                                     92
                                          68
        208 a
               60
                      60
                           58
                                56
                                     50
                                          56
        209 a
                 88
                     104
                           88
                                88
                                     78
                                          84
        210 b
                 92
                      82
                           82
                                76
                                     82
                                          80
        211 b
                 88
                      80
                           84
                                     80
                                          78
                                80
        212 p
                102
                      86
                           86
                                96
                                     86
                                          88
        214 a
                 84
                      92 100
                                88
                                     88
                                          80
        215 b
                 104 100
                           96
                                88
                                     92
                                          84
        216 a
                 92
                      80
                           72
                                64
                                     68
                                          64
        217 p
                      88
                           84
                                76
                                     88
                                          84
                 92
                                80
        218 a
                 72
                      84
                           78
                                     80
                                          76
        219 b
                 72 100
                           92
                                84
                                     88
                                          80
        220
                 80
                      80
                           80
                                78
                                     80
                                          78
             р
        221 p
                 72
                      68
                           76
                               72
                                     72
                                          68
        222 b
                 88
                      88
                           98
                               98
                                     96
                                          88
                                          80
        223 b
                 88
                      88
                           96 88
                                     88
        224 p
                 88
                      78
                           84
                                64
                                     68
                                          64
        232 a
                 78
                      72
                           72
                                78
                                     80
                                          68
        run;
```

```
23
                                                                    The SAS System
        Monday, June 3, 2024 03:34:00 PM
        332
                   ods listing close; ods html5 (id=saspy internal) file= tomods1 options(bitm
        ap_mode='inline') device=svg style=HTMLBlue;
                  ! ods graphics on / outputfmt=png;
        NOTE: Writing HTML5(SASPY_INTERNAL) Body file: _TOMODS1
        333
        334
                   data work.heartrate;
        335
                      input patient drug$ baseline hr1 hr5 hr15 hr30 hr1h;
        336
                      array hra{5} hr1 hr5 hr15 hr30 hr1h;
        337
                      do i = 1 to 5;
                         if (i = 1) then hours = 1/60;
        338
        339
                         else if (i = 2) then hours = 5/60;
        340
                         else if (i = 3) then hours = 15/60;
        341
                         else if (i = 4) then hours = 30/60;
        342
                         else hours = 1;
        343
                         heartrate = hra{i};
        344
                         output;
        345
                      end;
                      drop i hr1 hr5 hr15 hr30 hr1h;
        346
        347
                      datalines;
        NOTE: The data set WORK.HEARTRATE has 120 observations and 5 variables.
        NOTE: DATA statement used (Total process time):
              real time
                                   0.00 seconds
              cpu time
                                   0.01 seconds
        372
        373
                   run;
        374
        375
        376
        377
        378
                   ods html5 (id=saspy_internal) close;ods listing;
        379
        24
                                                                    The SAS System
        Monday, June 3, 2024 03:34:00 PM
        380
In [9]: proc mixed data=work.heartrate;
           class drug hours;
           model heartrate = baseline drug drug*baseline / solution ddfm=kr2;
           repeated hours/ type=un subject=patient;
        run;
```

The SAS System

The Mixed Procedure

Model Information			
Data Set	WORK.HEARTRATE		
Dependent Variable	heartrate		
Covariance Structure	Unstructured		
Subject Effect	patient		
Estimation Method	REML		
Residual Variance Method	None		
Fixed Effects SE Method	Kenward-Roger2		
Degrees of Freedom Method	Kenward-Roger2		

Class Level Informati					
Class	Levels	Values			
drug	3	аbр			
hours	5	0.0166666667 0.0833333333 0.25 0.5 1			

Dimensions	
Covariance Parameters	15
Columns in X	8
Columns in Z	0
Subjects	24
Max Obs per Subject	5

Number of Observations		
Number of Observations Read	120	
Number of Observations Used	120	
Number of Observations Not Used	0	

Iteration Histor					
Iteration	Evaluations	-2 Res Log Like	Criterion		
0	1	853.84973139			
1	2	780.74069548	0.00157255		
2	1	780.22026660	0.00015186		
3	1	780.17341828	0.00000304		

Iteration Histo							
	Iteration	Evaluations	-2 Res Log Like	Criterion			
	4	1	780.17253674	0.00000000			

Convergence criteria met.

Covariance Parameter Estimates				
Cov Parm	Subject	Estimate		
UN(1,1)	patient	121.93		
UN(2,1)	patient	88.8569		
UN(2,2)	patient	94.6168		
UN(3,1)	patient	64.1357		
UN(3,2)	patient	66.2286		
UN(3,3)	patient	92.3397		
UN(4,1)	patient	60.5103		
UN(4,2)	patient	65.9367		
UN(4,3)	patient	75.3812		
UN(4,4)	patient	87.2560		
UN(5,1)	patient	18.9874		
UN(5,2)	patient	17.9136		
UN(5,3)	patient	39.6907		
UN(5,4)	patient	36.5657		
UN(5,5)	patient	61.8748		

Fit Statistics			
-2 Res Log Likelihood	780.2		
AIC (Smaller is Better)	810.2		
AICC (Smaller is Better)	815.1		
BIC (Smaller is Better)	827.8		

Null	Null Model Likelihood Ratio Test					
DF	Chi-Square	Pr > ChiSq				
14	73.68	<.0001				

Solution for Fixed Effects							
	Effect	drug	Estimate	Standard Error	DF	t Value	Pr > t

Solution for Fixed Effects							
Effect	drug	Estimate	Standard Error	DF	t Value	Pr > t	
Intercept		26.3125	24.6028	18	1.07	0.2990	
baseline		0.6081	0.2881	18	2.11	0.0491	
drug	а	10.3427	32.0594	18	0.32	0.7507	
drug	b	15.2890	30.6136	18	0.50	0.6235	
drug	р	0					
baseline*drug	а	-0.1431	0.3826	18	-0.37	0.7128	
baseline*drug	b	-0.1327	0.3600	18	-0.37	0.7166	
baseline*drug	р	0					

Type 3 Tests of Fixed Effects							
Effect	Num DF	Den DF	F Value	Pr > F			
baseline	1	18	12.42	0.0024			
drug	2	18	0.12	0.8834			
baseline*drug	2	18	0.09	0.9179			

```
In [10]: proc bglimm data=work.heartrate seed=8675309 diag=all plots=all;
    class drug hours patient;
    model heartrate = baseline drug drug*baseline / dist=normal;
    repeated hours/ type=un sub=patient;
run;
```

The SAS System

	Model Information
Data Set	WORK.HEARTRATE
Response Variable	heartrate
Distribution	Normal
Link Function	Identity
Fixed Effects Included	Yes
Random Effects Included	No
Sampling Algorithm	Conjugate
Burn-In Size	500
Simulation Size	5000
Thinning	1
Random Number Seed	8675309
Number of Threads	1

		Class Level Information
Class	Levels	Values
drug	3	аьр
hours	5	0.0166666667 0.0833333333 0.25 0.5 1
patient	24	201 202 203 204 205 206 207 208 209 210 211 212 214 215 216 217 218 219 220 221 222 223 224 232

Number of Observations				
Number of Observations Read	120			
Number of Observations Used	120			

Priors for Fixed Effects					
Parameter	Prior				
Intercept	Constant				
baseline	Constant				
drug a	Constant				
drug b	Constant				
baseline*drug a	Constant				
baseline*drug b	Constant				

Priors for Scale and Covariance Parameters		
Parameter	Prior	
Residual Cov	Inverse Wishart (DF=8, Scale=8)	

Posterior Summaries and Intervals						
Parameter	N	Mean	Standard Deviation	95% HPI) Interval	
Intercept	5000	26.6251	17.3101	-4.6967	63.0853	
baseline	5000	0.6047	0.2011	0.1805	0.9723	
drug a	5000	9.5789	26.0936	-43.9401	59.3345	
drug b	5000	15.0200	22.0831	-28.4949	58.8145	
drug p	0					
baseline*drug a	5000	-0.1331	0.3239	-0.7473	0.5337	
baseline*drug b	5000	-0.1287	0.2630	-0.6272	0.4156	
baseline*drug p	0					
Residual UN(1,1)	5000	113.0	44.8455	42.5884	201.7	
Residual UN(2,1)	5000	82.3507	38.2465	24.6172	160.5	
Residual UN(2,2)	5000	88.0431	35.8068	33.7373	161.1	
Residual UN(3,1)	5000	59.5948	31.5897	9.8821	122.9	
Residual UN(3,2)	5000	61.6034	28.5501	16.0573	117.4	
Residual UN(3,3)	5000	86.1366	28.0398	39.5599	140.0	
Residual UN(4,1)	5000	56.1634	31.6483	5.9291	117.4	
Residual UN(4,2)	5000	61.2318	28.9605	16.0253	118.7	
Residual UN(4,3)	5000	70.0939	26.3206	27.9061	121.5	
Residual UN(4,4)	5000	81.2360	27.9096	38.6838	135.9	
Residual UN(5,1)	5000	18.5105	20.0519	-16.7690	61.6879	
Residual UN(5,2)	5000	17.6011	17.4506	-13.5262	53.9192	
Residual UN(5,3)	5000	37.7513	18.8746	7.6873	75.5229	
Residual UN(5,4)	5000	34.8159	17.7153	3.3200	69.5687	
Residual UN(5,5)	5000	58.9579	24.8244	24.1370	106.3	

	Posterior Autocorrelations						
Parameter	Parameter Lag 1 Lag 5 Lag 10 Lag						
Intercept	0.0570	0.0249	0.0303	-0.0023			
baseline	0.0468	0.0190	0.0304	-0.0071			
drug a	0.2796	0.0729	0.0325	0.0239			
drug b	0.1112	0.0356	0.0103	0.0046			

Posterior Autocorrelations						
Parameter	Lag 1	Lag 5	Lag 10	Lag 50		
drug p						
baseline*drug a	0.3372	0.0879	0.0326	0.0211		
baseline*drug b	0.1347	0.0385	0.0095	0.0023		
baseline*drug p						
Residual UN(1,1)	0.4569	0.1225	0.0068	0.0011		
Residual UN(2,1)	0.5165	0.1362	0.0258	-0.0009		
Residual UN(2,2)	0.4919	0.1267	0.0412	-0.0025		
Residual UN(3,1)	0.4491	0.0952	0.0312	0.0084		
Residual UN(3,2)	0.4271	0.0820	0.0419	0.0063		
Residual UN(3,3)	0.2258	0.0221	0.0276	0.0056		
Residual UN(4,1)	0.4933	0.1232	0.0352	0.0093		
Residual UN(4,2)	0.4691	0.1074	0.0481	0.0117		
Residual UN(4,3)	0.2832	0.0539	0.0417	0.0149		
Residual UN(4,4)	0.2911	0.0595	0.0411	0.0229		
Residual UN(5,1)	0.3406	0.0470	0.0182	0.0137		
Residual UN(5,2)	0.3086	0.0230	0.0172	-0.0060		
Residual UN(5,3)	0.2418	0.0068	0.0179	0.0098		
Residual UN(5,4)	0.2500	0.0082	0.0169	-0.0028		
Residual UN(5,5)	0.4732	0.0959	0.0095	0.0059		

	Effective Sample Sizes						
Parameter	ESS	Autocorrelation Time	Efficiency				
Intercept	3761.9	1.3291	0.7524				
baseline	4571.9	1.0936	0.9144				
drug a	1545.8	3.2346	0.3092				
drug b	2928.6	1.7073	0.5857				
drug p							
baseline*drug a	1392.2	3.5914	0.2784				
baseline*drug b	2763.2	1.8095	0.5526				
baseline*drug p							
Residual UN(1,1)	1236.9	4.0424	0.2474				
Residual UN(2,1)	1093.2	4.5738	0.2186				
Residual UN(2,2)	1116.7	4.4777	0.2233				
Residual UN(3,1)	1278.6	3.9107	0.2557				

Effective Sample Sizes						
Parameter	ESS	Autocorrelation Time	Efficiency			
Residual UN(3,2)	1330.1	3.7591	0.2660			
Residual UN(3,3)	2440.9	2.0485	0.4882			
Residual UN(4,1)	1138.7	4.3911	0.2277			
Residual UN(4,2)	1196.0	4.1807	0.2392			
Residual UN(4,3)	1983.0	2.5215	0.3966			
Residual UN(4,4)	1696.9	2.9465	0.3394			
Residual UN(5,1)	1888.0	2.6483	0.3776			
Residual UN(5,2)	2154.7	2.3205	0.4309			
Residual UN(5,3)	2710.3	1.8448	0.5421			
Residual UN(5,4)	2687.2	1.8607	0.5374			
Residual UN(5,5)	1391.4	3.5935	0.2783			

Monte Carlo Standard Errors						
Parameter	MCSE	Standard Deviation	MCSE/SD			
Intercept	0.2822	17.3101	0.0163			
baseline	0.00297	0.2011	0.0148			
drug a	0.6637	26.0936	0.0254			
drug b	0.4081	22.0831	0.0185			
drug p						
baseline*drug a	0.00868	0.3239	0.0268			
baseline*drug b	0.00500	0.2630	0.0190			
baseline*drug p						
Residual UN(1,1)	1.2751	44.8455	0.0284			
Residual UN(2,1)	1.1568	38.2465	0.0302			
Residual UN(2,2)	1.0715	35.8068	0.0299			
Residual UN(3,1)	0.8835	31.5897	0.0280			
Residual UN(3,2)	0.7828	28.5501	0.0274			
Residual UN(3,3)	0.5675	28.0398	0.0202			
Residual UN(4,1)	0.9379	31.6483	0.0296			
Residual UN(4,2)	0.8374	28.9605	0.0289			
Residual UN(4,3)	0.5911	26.3206	0.0225			
Residual UN(4,4)	0.6775	27.9096	0.0243			
Residual UN(5,1)	0.4615	20.0519	0.0230			

Monte Carlo Standard Errors						
Parameter	MCSE	Standard Deviation	MCSE/SD			
Residual UN(5,2)	0.3759	17.4506	0.0215			
Residual UN(5,3)	0.3625	18.8746	0.0192			
Residual UN(5,4)	0.3417	17.7153	0.0193			
Residual UN(5,5)	0.6655	24.8244	0.0268			

Geweke Diagnostics					
Parameter	Pr > z				
Intercept	0.0394	0.9685			
baseline	-0.0675	0.9462			
drug a	-0.2494	0.8030			
drug b	-0.4477	0.6544			
drug p					
baseline*drug a	0.1832	0.8547			
baseline*drug b	0.4513	0.6518			
baseline*drug p					
Residual UN(1,1)	0.7854	0.4322			
Residual UN(2,1)	0.5858	0.5580			
Residual UN(2,2)	0.4917	0.6229			
Residual UN(3,1)	0.8063	0.4200			
Residual UN(3,2)	0.6498	0.5158			
Residual UN(3,3)	0.6659	0.5055			
Residual UN(4,1)	0.7147	0.4748			
Residual UN(4,2)	0.5946	0.5521			
Residual UN(4,3)	0.8636	0.3878			
Residual UN(4,4)	0.7499	0.4533			
Residual UN(5,1)	1.3171	0.1878			
Residual UN(5,2)	1.1225	0.2617			
Residual UN(5,3)	1.1777	0.2389			
Residual UN(5,4)	1.1873	0.2351			
Residual UN(5,5)	0.7208	0.4710			

Raftery-Lewis Diagnostics						
Quantile=0.025 Accuracy=+/-0.005 Probability=0.95 Epsilon=0.001						
Parameter	N	Dependence				
Farameter	Burn-In	Total	Minimum	Factor		
Intercept	2	3742	3746	0.9989		
baseline	2	3995	3746	1.0665		
drug a	3	4198	3746	1.1207		
drug b	2	3930	3746	1.0491		
drug p						
baseline*drug a	3	4268	3746	1.1393		
baseline*drug b	3	4304	3746	1.1490		
baseline*drug p						
Residual UN(1,1)	7	8931	3746	2.3841		
Residual UN(2,1)	7	9422	3746	2.5152		
Residual UN(2,2)	3	4559	3746	1.2170		
Residual UN(3,1)	3	4063	3746	1.0846		
Residual UN(3,2)	3	4268	3746	1.1393		
Residual UN(3,3)	3	4130	3746	1.1025		
Residual UN(4,1)	3	4063	3746	1.0846		
Residual UN(4,2)	3	4130	3746	1.1025		
Residual UN(4,3)	3	4198	3746	1.1207		
Residual UN(4,4)	3	4063	3746	1.0846		
Residual UN(5,1)	2	3742	3746	0.9989		
Residual UN(5,2)	2	3866	3746	1.0320		
Residual UN(5,3)	2	3742	3746	0.9989		
Residual UN(5,4)	2	3803	3746	1.0152		
Residual UN(5,5)	2	3866	3746	1.0320		

	Heidelberger-Welch Diagnostics							
	Stationarity Test			Half-Width Test			Width Test	
Parameter	Cramer- von Mises Stat	p- Value	Test Outcome	Iterations Discarded	Half- Width	Mean	Relative Half- Width	Test Outcome
Intercept	0.0868	0.6538	Passed	0	0.5825	26.6251	0.0219	Passed
baseline	0.0852	0.6622	Passed	0	0.00636	0.6047	0.0105	Passed
drug a	0.0951	0.6096	Passed	0	1.1968	9.5789	0.1249	Failed

Heidelberger-Welch Diagnostics								
Parameter	Stationarity Test				Half-Width Test			
	Cramer- von Mises Stat	p- Value	Test Outcome	Iterations Discarded	Half- Width	Mean	Relative Half- Width	Test Outcome
drug b	0.1094	0.5407	Passed	0	0.7529	15.0200	0.0501	Passed
drug p								
baseline*drug a	0.0820	0.6804	Passed	0	0.0157	-0.1331	-0.1182	Failed
baseline*drug b	0.1042	0.5644	Passed	0	0.00907	-0.1287	-0.0705	Passed
baseline*drug p								
Residual UN(1,1)	0.0415	0.9251	Passed	0	2.6235	113.0	0.0232	Passed
Residual UN(2,1)	0.0400	0.9334	Passed	0	2.3227	82.3507	0.0282	Passed
Residual UN(2,2)	0.0429	0.9179	Passed	0	2.1136	88.0431	0.0240	Passed
Residual UN(3,1)	0.0575	0.8299	Passed	0	1.7603	59.5948	0.0295	Passed
Residual UN(3,2)	0.0484	0.8858	Passed	0	1.5168	61.6034	0.0246	Passed
Residual UN(3,3)	0.0514	0.8678	Passed	0	1.0813	86.1366	0.0126	Passed
Residual UN(4,1)	0.0518	0.8652	Passed	0	1.8960	56.1634	0.0338	Passed
Residual UN(4,2)	0.0466	0.8968	Passed	0	1.6249	61.2318	0.0265	Passed
Residual UN(4,3)	0.0854	0.6611	Passed	0	1.1964	70.0939	0.0171	Passed
Residual UN(4,4)	0.0772	0.7080	Passed	0	1.3300	81.2360	0.0164	Passed
Residual UN(5,1)	0.0958	0.6057	Passed	0	0.9363	18.5105	0.0506	Passed
Residual UN(5,2)	0.0710	0.7456	Passed	0	0.7735	17.6011	0.0439	Passed
Residual UN(5,3)	0.1089	0.5431	Passed	0	0.7241	37.7513	0.0192	Passed
Residual UN(5,4)	0.0841	0.6685	Passed	0	0.6922	34.8159	0.0199	Passed
Residual UN(5,5)	0.1008	0.5810	Passed	0	1.3200	58.9579	0.0224	Passed

7/30/24, 10:24 AM BGLIMMExample

The SAS System

The BGLIMM Procedure

In []: