4. Canonical Forms

Set-up

Let F be a field, let V be a nontrivial finite dimensional vector space over F, and let $T:V\to V$ be a linear transformation.

Then V is an F[x]-module.

Lemma: V is a finitely generated torsion module over F[x].

Proof: V is generated by a basis, which is finite by assumption. If V were not torsion, there would be a $v \in V$ so that the map $F[x] \to V$ given by $f(x) \mapsto f(T)v$ is injective; but that contradicts the fact that V is finite dimensional.

Eigenvalues and the Characteristic Polynomial.

Definition: An element $\lambda \in F$ is an eigevanlue of T if there is a nonzero $v \in V$ with $Tv = \lambda v$. The vector v is an eigenvector for this eigenvalue.

Definition: Let $c(x) = \det(xI - T)$. Then c(x) is a monic polynomial of degree n called the *characteristic polynomial* of T.

Lemma: λ is an eigenvalue of T if and only if $c(\lambda) = 0$.

Proof: If $c(\lambda) = 0$, then $\det(\lambda I - T) = 0$ so $\lambda I - T$ has a nontrivial kernel; an element of the kernel is an eigenvector with eigenvalue λ . Conversely, if λ is an eigenvalue, then $\lambda I - T$ has nontrivial kernel, so its determinant is zero.

The Minimal polynomial

Since V is a torsion F[x] module, its annihilator

$$Ann(V) = \{f(x) \in F[x] : f(T)v = 0 \forall v \in V$$

is a nonzero ideal in F[x], hence a principal ideal generated by a unique monic polynomial m(x).

Definition: The unique monic generator m(x) of Ann(V) is called the minimal polynomial of T.

Lemma: The minimal polynomial m(x) is the monic polynomial of minimal degree such that m(T)v = 0 for all $v \in V$.

Proof: By definition m(T)v = 0 for all $v \in V$. The collection of polynomials h(x) such that h(T)v = 0 is exactly $\operatorname{Ann}(V)$, and the generator of the ideal $\operatorname{Ann}(V)$ in the Euclidean ring F[x] is its monic polynomial element of minimal degree.

The structure of *V*

By the fundamental theorem of finitely generated modules over PID's, we have two different ways to represent V as an F[x] module.

Invariant Factors: There are monic polynomials $f_1(x)|f_2(x)|\cdots|f_k(x)$ such that

$$V = F[x]/(f_1(x)) \oplus F[x]/(f_2(x)) \oplus \cdots \oplus F[x]/(f_k(x)).$$

Elementary Divisors: There are irreducible polynomials $f_1(x), \ldots, f_k(x)$ and nonnegative integers e_1, \ldots, e_k such that

$$V = F[x]/(f_1(x)^{e_1}) \oplus F[x]/(f_2(x)^{e_2}) \oplus \cdots \oplus F[x]/(f_k(x)^{e_k})$$

The invariant factors are uniquely determined; and the elementary divisors are uniquely determined up to order.

Invariant factors and the minimal polynomial

Lemma: The minimal polynomial m(x) of T is the last (the "largest") invariant factor of T acting on V; all the invariant factors divide m(x).

The cyclic case

Let's focus our attention for the moment on a cyclic F[x] module of the form M = F[x]/(f(x)) where

$$f(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_0$$

- ▶ M is a finite dimensional vector space of degree equal to the degree d of f(x).
- ▶ $1, x, x^2, \dots, x^{d-1}$ is a basis for this module.
- \triangleright x is an F-linear transformation $M \rightarrow M$.

Matrix of x

The linear map given by multiplication by x has the following matrix form in the basis $1, x, x^2, \ldots, x^{d-1}$:

$$[x] = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{d-1} \end{pmatrix}$$

Definition: The matrix for [x] above is called the companion matrix for the polynomial f(x).

Characteristic and minimal polynomials of the companion matrix

Lemma: The characteristic and minimal polynomials of this linear transformation are both f(x).

Proof: The fact that the characteristic polynomial of [x] is f(x) is a computation. The fact that f(x) is the minimal polynomial follows from the fact that x clearly satisfies f(x), and, since $1, x, \ldots, x^{d-1}$ are linearly dependent, there is no relation $\sum a_i x^i = 0$ of degree less than d.