CS 5000 Homework 1

Sally Devitry (A01980316)

Problem 1

Design an FA to have a Junuar robot follow a black line on the white background. You can design either a DFA or an NFA. Specify your FA in a graph that clearly identifies the start state, each transition, and the final states (if there are any).

Solution

 $Q = \{read_sensors, turn_left, turn_right, move_forward\}$

 $\Sigma = \{ black_on_left, black_on_right, black_on_middle, left_turn_complete, right_turn_complete, move_complete, white} \}$

Problem 2

Design an FA to have a Junuar robot follow a blob with its two front sonars. You can design either a DFA or an NFA. Specify your FA in a graph that clearly identifies the start state, each transition, and the final states (if there are any).

Solution

 $Q = \{ read_sensors, turn_left, turn_right, move_forward \} \\ \Sigma = \{ obstacle_left, obstacle_right, obstacle_both, obstacle_none, left_turn_complete, right_turn_complete, move_complete \}$

Problem 3

Design a DFA for the camera-arm unit that solves the Sussman anomaly. You do not have to be too formal when you specify your DFA. A clear graph drawing where all states and transitions are specified is perfectly acceptable. You may assume that your camera-arm unit has the same physical and perceptual capabilities as the camera-arm unit discussed in Lecture 2.

```
q_0 = \{ \text{ on(B, T), on(A, T) on(C, A) clear(B), clear(C)} \}
q_1 = \{ \text{ on(A, T), on(C, A), on(B, C), clear(B) } \}
q_2 = \{ \text{ on}(A, T), \text{ on}(B, T), \text{ on}(C, B), \text{ clear}(A) \text{ clear}(C) \}
q_3 = \{ \text{ on(B, T), on(C, B), on(A, C), clear(A) } \}
q_4 = \{ \text{ on(A, T), on(B, T), on(C, T), clear(A), clear(B), clear(C) } \}
q_5 = \{ \text{ on(A, T), on(C, T), on(B, C), clear(A), clear(B)} \}
q_6 = \{ \text{ on(C, T), on(B, C), on(A, B), clear(A)} \}
F = \{q_6\}
a = \operatorname{puton}(B, C)
b = puton(B, T)
c = \operatorname{puton}(C, B)
d = \operatorname{puton}(C, A)
e = \operatorname{puton}(A, C)
f = \operatorname{puton}(A, T)
g = \operatorname{puton}(C, T)
h = \operatorname{puton}(A, B)
```


Solution

Problem 4

Use the ϵ -closure to construct an NFA M that has no ϵ -transitions and is equivalent to M (i.e., L(M) = L(M)). Specify M' both with a graph similar to the one in Figure 1 and the table for its transition function δ' similar to Table 1.

Solution

The NFA, M, without ϵ -transitions is as follows:

Let
$$r_0 = \{q_0, q_1, q_2\}$$

$$r_1 = \{q_1, q_2\}$$

$$r_2 = \{q_2\}$$

Table 1: Transition function δ for the NFA immediately above. The symbol \emptyset denotes the empty set.

states/inputs	0	1	2	ϵ
r_0	$\{r_0\}$	$\{r_1\}$	$\{r_2\}$	$\{r_0\}$
r_1	$\{\emptyset\}$	$\{r_1\}$	$\{r_2\}$	$\{r_1\}$
r_2	$\{\emptyset\}$	$\{\emptyset\}$	$\{r_2\}$	$\{r_2\}$

Problem 5

Let M be an NFA with ϵ -transitions and let M' be an equivalent NFA without ϵ -transitions obtained with the ϵ -closure. Show that $\epsilon \in L(M)$ if and only if $\epsilon \in L(M')$.

Solution

For ϵ to be in the language of M, the ϵ -closure of the start state must include the end state. For ϵ to be in the language of M, all edges on the path from the start state to to the accepting state must have label ϵ . This translates into an intersection of the accepting states on all states in M'. A simple example demonstrates this point.

The following is an NFA with ϵ transitions.

After converting the above NFA into an equivalent NFA with no ϵ transitions, we have the following, where $r_0 = \{q_0, q_1\}$

Given F as the set of accepting states, the following is true and shows that $\epsilon \in L(M)$ if and only if $\epsilon \in L(M')$.

if
$$\epsilon \in L(M')$$
 then $q_0 \in F$ if $q_0 \in F$ then $\epsilon \in L(M)$

if
$$\epsilon \notin L(M')$$
 then $q_0 \notin F$ if $q_0 \notin F$ then $\epsilon \notin L(M)$