Illumination

Lighting
Environment mapping
Shadows

Elsa Model (PMX Type): WeFede (DA) Elsa character and name: Disney

Which light parameters affect lighting in a scene?

Light Sources

Contribute to the "mood" of the rendered image

- Color, intensity, and size of light sources
- Involves several light sources for dramatic effect
- Also affects shadows

Not covered

- Underlying concepts such as radiometry & photometry
- Indirect lighting

[arnoldrenderer.com]

Chapters 10, 18 [Akenine-Möller 2018, chapter 10]

Traffic Lights, © Lucas Zimmermann, 500px.com

[www.lightmap.co.uk]

Directional Light

Described by directional vector

Example: Sun light on Earth (approx.)

Point Light

Isotropic light source, described by position

Need to compute light direction **L** for each fragment

$$L = \frac{p_{light} - x}{|p_{light} - x|}$$

Spotlight

 p_{light}

Results in penumbra, if inner < outer

Light cone limits light direction

• Position, cone direction, opening angle (inner & outer)

Can be used to project textures onto objects

Area Light

Real world lights are not small points!

Use geometry to emit soft light in all directions

- More expensive to compute
- Can be roughly approximated with many point lights

Soft shadows

TNM061 2024 – Illumination

Area Light (cont.)

Sphere

Rectangle

Cylinder

Skydome / Skylight

Simulates a bright environment around scene

• Sphere or dome above the scene

Use HDR images for environment lighting

[arnoldrenderer.com]

Other Light Parameters

Intensity

Color / color temperature

Affected objects

[ledsmaster.com]

Color temperature

Light attenuation aka. light decay

- Light gets weaker with increasing distance to light source
- Physically correct:

$$I \propto \frac{1}{|\boldsymbol{L}|^2}$$

Also possible: limit start and end

Photometric Light (Arnold Renderer)

Use data from real-world light bulbs

• For example, Erco, Lamp, Osram, Philips

[arnoldrenderer.com]

Group Assignment

How would you illuminate a person?

- Number and type of light sources
- Light positioning
- Difference between indoors vs. outdoors?

• ...

Group discussion 5min

[rendernode.com]

Concepts applicable to Computer Graphics, too

Real-world Lighting (Studio)

Types of lights

- Main or key light
 primary light source
 natural lighting seen as secondary main light
- One or more fill lights for balanced appearance soften shadows
- Back light separate object from background highlight edges

[rendernode.com]

Classic Hollywood lighting

- 1. Begin with no lights (not even ambient)
- 2. Add key light
 - Main illumination
 - Move 15-45° to side and up
- 3. Add fill light
- 4. Add back light

Classic Hollywood lighting

- 1. Begin with no lights (not even ambient)
- 2. Add key light
 - Main illumination
 - Move 15-45° to side and up
- 3. Add fill light
- 4. Add back light

Classic Hollywood lighting

- 1. Begin with no lights (not even ambient)
- 2. Add key light
 - Main illumination
 - Move 15-45° to side and up
- 3. Add fill light
- 4. Add back light

Classic Hollywood lighting

1. Begin with no lights (not even ambient)

TNM061 2024 – Illumination

- 2. Add key light
 - Main illumination
 - Move 15-45° to side and up
- 3. Add fill light
- 4. Add back light

Lightmaps

Lighting calculations can be expensive

• Pre-compute static illumination

Bake illumination into texture

Lightmap of a cube [wikipedia]

[wikipedia]

There is more...

Indirect lighting (global illum)

Participating media

- Atmospheric effects
- Light scattering
- Volumetric effects
- Added as shaders

[arnoldrenderer.com]

[knowledge.autodesk.com]

Illumination

Environment lighting & mapping

Environment Lighting

Incoming light does not need to come from light sources

• Capture "far-away" light from entire 360° environment

Use image as skydome

Preferably high dynamic range (HDR)

Source can be a photograph or rendering

Also known as Image-based lighting

[Akenin-Möller 2018]

Chapter 11.4.5 [Akenine-Möller 2018, chapter 10]

[arnoldrenderer.com]

Environment/Reflection Mapping

Cheap way to create reflections

Both diffuse and/or specular

Reflect view direction V at normal

• Use result $\mathbf{R}_{\mathbf{V}}$ to look up environment map

Method is just an approximation!

• No self-reflection, linear interpolation

Possible to use pre-filtered mipmap for different levels of roughness

See also <u>three.js</u> envmaps example

Spherical Mapping

Entire environment captured on a small chrome sphere

- View-dependent
- Circular image also called **light probe**

Singularity at border

Photograph a shiny sphere to create a sphere map

Original images of sphere mapping [Miller 1984, pauldebevec.com]

Cube Map

Map environment to six sides of a cube

• View-independent

Supported on GPU

- Pass R_V directly to cube map sampler
- Largest component picks cube side

Illumination

Shadows

Shadows

Dark area where light is blocked by opaque object Provide important visual cues

• Depth perception & distance

[imgur.com

Real photograph, no shadows during Lahaina Noon (solstice on Hawaii)

Soft Shadows

Point lights, spotlights, and directional light create hard shadows

Infinitesimal points or directions

Requires light source with area > 0

- Light can be partially visible
- → Area light source

Test multiple points in light source for illumination

- Random sampling
- Shadow determined by average light visibility

For hard shadows only: multi-pass rendering + average

Local Shadow Methods

Shadow volumes

Object-space approach
Each object casts an infinite
shadow volume
Stencil test on GPU with
multi-pass rendering

Shadow maps

Image-space approach
2-pass rendering
No real soft shadows

Projective shadows

Only shadows on planes Compute and render shadow as separate object

Shadow Mapping

Idea: things not visible from a light are shadowed

Render scene from light perspective

- Create a shadow map for each light source
- Render only depth
- Orthographic projection for directional light source

Render regular scene

- Transform fragment position into light space
- Query shadow map and compare light depth

Soft shadows:

• Sample shadow map multiple times and filter result

Shadow Mapping (cont.)

Shadow Map Problems

Limited precision of matrix transformations Limited resolution of shadow map

→ shadow map bias (small offset)

→ improved sampling like PCF (sampler2DShadow)

(bias too large)

Summary

- Illumination -

Light sources

- Different types: directional, point, spotlight, area light, skydome
- Basic lighting setup (3-point lighting)

Environment lighting & mapping

- Using HDR environmental maps for illumination & reflection
- Sphere maps, cube maps

Shadows

• Volumetric shadows, shadow maps, soft shadows

References – Illumination

[Akenine-Möller 2018] Tomas Akenine-Möller, Eric Haines, Naty Hoffman, Angelo Pesce, Michał Iwanicki, and Sébastien Hillaire. *Real-Time Rendering*, Fourth Edition, CRC Press, 2018.

[rendernode.com] Studio Lighting Setup in 3ds Max + VRay, https://www.rendernode.com/studio-lighting-setup/

[Birn 2013] Jeremy Birn. Digital Lighting & Rendering, third edition, New Riders Pub, 2013. http://drender.com/light/index.html

[Miller 1984] Gene S. Miller and C. Robert Hoffman. *Illumination and Reflection Maps: Simulated Objects in Simulated and Real Environments*, SIGGRAPH Advanced Computer Graphics Animation course, 1984. http://www.pauldebevec.com/ReflectionMapping/miller.html

Coming up next

Ray Tracing

- Whitted ray tracing
- Path tracing

