Završni ispit iz kolegija Praktikum automatizacije Datum: 30. lipnja 2016.

Postupak proizvodnje piva uključuje fazu miješanja vode udjela 80-89% s ekstraktom slada, ovisno o traženom receptu. Slika 1 prikazuje spremnik za miješanje dvaju tekućina uz mogućnost reguliranja protoka vode prema traženoj vrijednosti. Uz konstantni protok ekstrakta slada, udio vode određen je visinom mješavine u spremniku. Cijeli proces moguće je nadomjestiti prijenosnom funkcijom:

$$G_p(s) = \frac{H_s(s)}{U_v(s)} = \frac{K_p}{1 + T_a s} e^{-T_z s}.$$

Mjerač visine tekućine u spremniku spojen na PIW272 daje izlazni napon [-10, 10] V za [0, 8] m visine, a upravljački signal za otvorenost ventila [0, 100] % šalje se na PQW752 i odgovarajući D/A pretvornik te pretvara u raspon [-20, 20] mA. Očekuje se međutim da će visina tekućine u spremniku uvijek biti u rasponu [0.5, 5] m.

Slika 1. Skica postupka miješanja vode i ekstrakta slada u spremniku uz pripadni regulacijski krug i adrese PLC-a

Zadatak 1. (9 bodova)

Za postupak miješanja tekućina, regulator PI tipa osigurava željenu visinu mješavine djelujući na otvorenost ventila kao upravljačku varijablu. Parametri regulatora su: $K_R = 2.5$, $T_I = 1$ s uz vrijeme uzorkovanja je T = 0.2 s. Referentna veličina visine spremnika zapisana je u memorijskoj lokaciji MD150, u REAL formatu u obliku [0,100]%.

a) (4 boda) U nastavku pridružite odgovarajuće vrijednosti ulaznim i izlaznim parametrima bloka FB41 koji su potrebni da se PI regulacija obavlja u skladu s tekstom zadatka te da se pritom postigne najveća moguća preciznost regulatora. Logički '0' na ulazima tipa BOOL upisujte kao '0', a logički '1' kao '1'. Na ulaze za koje smatrate da nije potrebno zadavati vrijednost stavite 'x'.

MAN_ON=	PVPER_ON=	P_SEL=	I_SEL=
D_SEL=	CYCLE=	SP_INT=	DEADB W=
PV_IN=	PV_PER=	MAN=	GAIN=
TI=	TD=	PV_FAC=	PV OFF=
LMN_FAC=	LMN_OFF=	DISV=	LMN_PER=

- b) (1 bod) Koliko iznosi vrijednost upisana u PQW752 za traženu otvorenost ventila od 54%? PQW752₁₀=
- c) (2 boda) U slučaju da visina mješavine u spremniku dostigne ili premaši gornju granicu od 5 m, potrebno je uklopiti crpku spojenu putem AS-I mreže na adresu Q8.0 te signalizirati uključenost aktiviranjem LED-a spojenog na Q8.1. Realizirajte traženu funkcionalnost u OB1.
- d) (2 boda) AS-I mreža povezana je DP/AS-i Linkom te PROFIBUS mrežom na PLC. Koliko je maksimalno moguće kašnjenje između detektiranja dostizanja gornje granice visine mješavine u spremniku i uključenja pumpe ako maksimalno vrijeme jednog ciklusa komunikacije na AS-I mreži iznosi 1 ms, a OB1 ciklus traje 12 ms, a parametri PROFIBUS mreže dani su na Slici 2? Obrazložite odgovor.

Slika 2. Parametri PROFIBUS mreže

Zadatak 2. (11 bodova)

Postupak proizvodnje piva moguće je prilagoditi različitim ciljanim proizvodima putem recepata koji se nalaze u podatkovnom bloku. Recepti su tajni i pohranjeni slijedno unutar podatkovnog bloka kao polje struktura, a moguće ih je dohvatiti pomoću jedinstvene šifre #recept_id. Polje struktura recepata uključuje varijable dane u tablici.

Varijabla	Tip	Opis	
#recept_id	INT	šifra recepta	
#udio	REAL	udio vode u ukupnoj mješavini	
#brzina	REAL	brzina miješanja u postotku	
#vrijeme	INT	vrijeme ciklusa miješanja u sekundama	

- a) (4 boda) Realizirajte dohvat recepta unutar univerzalnog funkcijskog bloka FB20 koji kao ulaz prima redni broj podatkovnog bloka nepoznate duljine #db_no (INT) i šifru recepta #recept_id, a kao izlaz daje logičku indikaciju postoji li recept u polju #pronadjen te parametre recepta #udio, #brzina i #vrijeme.
- b) (2 boda) Realizirajte poziv FB20 uz podatkovni blok DB120 koji sadrži recepte te šifrom recepta pohranjenoj u memorijskoj lokaciji MW50. Udio vode u ukupnoj mješavini potrebno je pretvoriti u oblik pogodan za daljnju regulaciju tj. u visinu tekućine u spremniku pohranjenu u MD150. Pri tome je protok ekstrakta slada konstantan, a uz poznate parametre spremnika osigurava visinu tekućine od 0.5 m.
- c) (2 boda) Miješanje tekućine u spremniku obavlja se miješalicom s elektromotornim pogonom koji uključuje SINAMICS S120 pretvarač. Miješanje se obavlja na način da se odgovarajućom brzinom #brzina motor okreće prvo u jednu stranu u trajanju #vrijeme, a zatim u drugu te se taj ciklus periodički ponavlja. Pretvaraču se pristupa putem riječi QW11 i QW13, a referenca brzine nalazi se u rasponu [-16384,16384].
- d) (1 bod) Ako recept ne postoji unutar podatkovnog bloka, motor je potrebno ugasiti te onemogućiti protok vode (ventil postaviti na 0%).
- e) (1 bod) Objasnite pojmove arbitriranja sabirnicom i master-slave komunikacije. Gdje se koriste na navedenom primjeru regulacije miješanja vode i ekstrakta slada?
- f) (1 bod) Koja je razlika između SCADA-e i HMI-a?

Napomena: Motor se uključuje slanjem kontrolne riječi $047F_{16}$ na odgovarajuću adresu, a gasi pomoću $047E_{16}$. Poziv FB20 te funkcionalnost zadataka b,c,d implementirajte u isti OB.

Prilikom rješavanja zadataka koji uključuju implementaciju kôda, potrebno je u zaglavlju funkcije navesti sve korištene varijable: ime, tip i veličinu.