Unsupervised learning

Gosia Migut

Slides credit: David Tax

Admin stuff

Exam practice questions next week

Machine learning

Learning goals of today

- Explain what clustering is and it's applications
- Explain k-means algorithm
- Explain hierarchical clustering, single and complete link
- Pros and cons of k-means and hierarchical clustering
- Implement k-means

Recap PCA

6. project data points to

3. compute covariance matrix

$$\begin{array}{ccc}
h & u \\
h & 2.0 & 0.8 \\
u & 0.8 & 0.6
\end{array}$$

4. eigenvectors + eigenvalues

eig(cov(data))

pick m<d eigenvectors w. highest eigenvalues

7. low-d data

Unlabelled data: what now?

Unsupervised learning: no labels/targets present

Clustering

- Finding natural groups in data where
 - Items within the group are close together
 - Items between groups are far apart

Historic application of clustering

 John Snow, a London physician plotted the locations of cholera deaths on a map during an outbreak in 1850s.

 The locations indicated that cases were clustered around certain intersections where there were polluted wells – exposing both the problem and the solution.

Clustering applications

Market research: find groups of similar customers

Social networks: find communities with similar interests / characteristics

 Recommender systems: find groups of users with similar ratings

What do we need for clustering?

- 1. Proximity measure, either
 - Similarity measure $s(x_i, x_k)$: large if x_i and x_k are similar, or
 - Dissimilarity (distance) measure $d(x_i, x_k)$: small if x_i and x_k are similar

2. Criterion function to evaluate a clustering

- 3. Algorithm to compute clustering
 - Eg. By optimizing the criterion function

Distance measure

- Typically, we need to define a distance between objects first.

• Euclidean:
$$d(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{i=1}^{l} (x_i - y_i)^2}$$

Manhattan

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{l} |x_i - y_i|$$

• Minkowski (
$$l_p$$
-norm) $d_p(\mathbf{x},\mathbf{y}) = \left(\sum_{i=1}^l |x_i-y_i|^p\right)^{1/p}$

More similarity measures

Cosine similarity

$$s_{cos}(\mathbf{x}, \mathbf{y}) = rac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

Pearson's correlation coefficient

$$r_{Pearson}(\mathbf{x}, \mathbf{y}) = \frac{(\mathbf{x} - \mu_x)^T (\mathbf{y} - \mu_y)}{\|\mathbf{x} - \mu_x\| \|\mathbf{y} - \mu_y\|}$$

 and more... (for discrete features, mixed features, categorical features, ...)

Cluster evaluation (a hard problem)

- Intra-cluster cohesion (compactness):
 - Cohesion measures how near the data points in a cluster are to the cluster's mean.
 - Sum of squared errors (SSE) is a commonly used measure.
- Inter-cluster separation (isolation):
 - Separation means that different cluster means should be far away from one another.
- In most applications, expert judgments are still the key

Clustering techniques

Hard vs. soft

- Hard assignments: each point assigned to 1 cluster
 - K-Means
 - Hierarchical clustering
- Soft assignments: each point assigned cluster membership
 - Fuzzy C-means
 - Probabilistic mixture models

K-means clustering

K-mean (girls)

K-means algortihm

- K-means (MacQueen, 1967) is a partitional clustering algorithm
- Let the set of n data points be $\{x_1, x_2, ..., x_n\}$ where $x_i = (x_{i1}, x_{i2}, ..., x_{ip})$ is a feature vector and p the number of dimensions.
- The k-means algorithm partitions the given data into k clusters:
 - Each cluster has a cluster centre (cluster mean), called centroid.
 - K is specified by the user

K-means algorithm

- Given k, the k-means algorithm works as follows:
 - Choose k (random) data points (seeds) to be the initial centroids, cluster centers
 - Assign each data point to the closest centroid
 - Re-compute the centroids using the current cluster memberships
 - 4. If a convergence criterion is not met, repeat steps 2 and 3

K-means questions

- How do we choose the number of centers?
- What is it trying to optimize?
- Are we sure it will terminate?
- Are we sure it will find an optimal clustering?

K-means convergence (stopping) criterion

 no (or minimum) re-assignments of data points to different clusters, or

no (or minimum) change of centroids, or

 minimum decrease in the sum of squared errors (SSE)

Sum of squared errors

Cost function (distortion)

$$J(c,\mu) = \frac{1}{n} \sum_{i=1}^{m} ||x_i - \mu_{C_i}||^2$$

• μ_{C_i} is cluster center to which x_i is assigned

Random initialization

- 2 ≤ k < m
- Random pick K training examples
- Set μ_1 , μ_2 , ..., μ_k equal to these examples

Local optima

Random initialization

```
    For i=1 to 10000
{
        Randomly initialize k means
        Run k-means. Get centroids and means
        Compute cost function J
    }
```

- Pick clustering that gave lowest cost
- For high-dimensional data, many restarts are necessary (e.g. I = 10000)!

Choosing the number of clusters

- Inspect visually
- Known purpose
- Elbow method

Elbow method

K-means summary

- Disadvantages:
 - Finds only convex clusters ("round shapes")
 - Sensitive to initialization
 - Can get stuck in local minima

- Advantages:
 - Very simple
 - Fast

Example exercise

- We have the following points (1, 4), (2, 2), (5, 5) and (4, 6).
- We also have two cluster centroids $\mu_1 = (1, 2)$ and $\mu_2 = (6, 6)$.
- What is the value of the k-means cost function (SSE)?

Clustering techniques

Hierarchical clustering

Hierarchical clustering

- Selecting k is a problem of granularity
 - How course or fine-grained is the structure in the data?
 - No cluster algorithm able to pick k
- Instead of picking k find a hierarchy of structure
 - Course effects: top level contains all points
 - Fine-grained: bottom level
 one cluster per data point

Hierarchical clustering approaches

- Agglomerative (bottom-up):
 - each point starts as cluster
 - group two closest clusters
 - stop at some point

Hierarchical clustering approaches

- Divisive (top-down):
 - all points start in one cluster
 - split cluster in some sensible way
 - stop at some point

Figure 11.1 Dendrogram.

Divisive: hierarchical k-means

- Apply k-means recursively:
 - Run k-mean on the original data for k=2
 - For each of the resulting clusters run k-means with k=2

Aglomerative clustering

 Starting from individual observations, produce sequence of clusterings of increasing size

At each level, two clusters chosen by criterion are

merged

2D scatter plot of data

dissimilarity matrix

Aglomerative clustering

- 1. Determine distances between all clusters
- 2. Merge clusters that are closest
- 3. IF #clusters>1 THEN GOTO 1

- Which clusters to start with?
- What is the distance between clusters?
- Final number of clusters?

Different merging rules

• Single linkage: two nearest objects in the clusters : $g(R,S) = min_{ij} \{ d(x_i,x_j) : x_i \in R, x_j \in S \}$

Complete linkage: two most remote objects in the clusters:

$$g(R,S) = \max_{ij} \{ d(x_i, x_j) : x_i \in R, x_j \in S \}$$

Average linkage: cluster centres :

$$g(R,S) = \frac{1}{|R||S|} \sum_{ij} \{d(x_i, x_j) : x_i \in R, x_j \in S\}$$

Hierarchical clustering: how it works

Input:

- dataset, X: [$n \times p$], or directly:
- dissimilarity matrix, D: [n x n]
- linkage type

Output:

dendrogram

Step 0: all objects are a cluster:

• Step 1: Find the most similar pair: $\min_{(i,j)} \{d(i,j)\} = d(2,3)$

	x_1	x_2	x_3	x_4	x_5
$\overline{x_1}$	0.00	1.58	1.76	5.22	4.53
x_2		0.00	0.74	5.50	5.10
x_3			0.00	4.81	4.48
x_4				0.00	1.12
x_5					0.00

Step 2:

Merge x_2 and x_3 into a single object, $[x_2, x_3]$;

Step 3:

Recompute D – what is the distance between $[x_2, x_3]$ and the rest?

Step 3:

Recompute D – single linkage: $d([x_2,x_3],x_1) = \min(d(x_1,x_2),d(x_1,x_3))$

Step 3:

Recompute D – complete linkage: $d([x_2,x_3],x_1) = \max(d(x_1,x_2),d(x_1,x_3))$

Step 3:

Recompute D – average linkage: $d([x_2,x_3],x_1) = mean(d(x_1,x_2),d(x_1,x_3))$

Step 3:
 Recompute D – single linkage:

x_1	$[x_2,x_3]$	x_4	x_5
$x_1 \ 0.00$	1.58	5.22	4.53
$[x_2,x_3]$	0.00	4.81	4.48
x_4		0.00	1.12
<i>x</i> ₅			0.00

Repeat, step 1:

Find the most similar pair of objects: $\min_{(i,j)} \{d(i,j)\}$ = d(4,5)

• Repeat, step 2: Merge x_4 and x_5 into a single object, $[x_4,x_5]$;

Repeat, step 3:
 Recompute *D* (single linkage):

	x_1	$[x_2, x_3]$	$[x_4,x_5]$
x_1	0.00	1.58	4.53
$[x_2, x_3]$		0.00	4.48
$[x_4,x_5]$			0.00

Repeat steps 1-3 untill a single cluster remains

Linkage and cluster shape

Linkage and cluster shape (2)

Complete linkage

Single linkage

Linkage and cluster shape (3)

Complete linkage

Single linkage

Question: hierarchical clustering

- Given is a dataset: (4, 10), (7,10), (4, 8), (10, 5), (11, 4), (3, 4), (9, 3), (5, 2)
- Cluster the points using agglomerative clustering
- Use single link method with Euclidean distance
- Stopping criterion: 3 clusters
- Detail your methodology, show steps and dendrogram

Hierarchical clustering summary

Pros

- Dendrogram gives overview of all possible clusterings
- Linkage type allows to find clusters of varying shapes
- Different dissimilarity measures can be used

Cons

- Computationally intensive
- Clustering limited to "hierarchical nestings"

Clusters visualized: Co-occurrence heatmap

Clusters visualized: scatterplot matrix

Clusters visualized: 2D embedding

Clustering summary

- We can classify when we don't have (training) labels: clustering
- Definition of cluster is vague
- For clustering we need to :
 - Define distance measure
 - Define criterion function to evaluate a clustering
 - select clustering algorithm
- Discussed clustering algorithms
 - Hierarchical clustering
 - k-means clustering

