Binomial Expansion

Trevor Jimu

Answer all Questions

Additional Math

- 1. (a) In ascending powers of x, find the first three terms in the expansion of $(1+2x)^6$. [3]
 - (b) Hence find the coefficient of x^2 in the expansion of $(1+2x)^6(1+2x-3x^7)$. [3]
- 2. Find the term independent of x in the expansion of $\left(x^4 \frac{1}{x^3}\right)^{13}$. [3]
- 3. (a) Expand $(2+x)^4 + (2-x)^4$. [3]
 - (b) Using the substitution $u = x^2$, solve the equation $(2+x)^4 + (2-x)^4 = 626$. [3]
- 4. Find, in its simplest form, the coefficient of x^4 in the expansion of:

(a)
$$(1+2x)^9$$

- (b) $\left(x + \frac{5}{x^2}\right)^{16}$ [2]
- 5. (a) In ascending powers of x, find the first three terms in the expansion of $(3+2x)^5$. [2]
 - (b) In the expansion of $(3+2x)^5(a+bx)^5$, the constant term is 1944 and the coefficient of x^2 is -256. Find the value of a and the value of b.
- 6. (a) Find the coefficient of x^2 in the expansion of $(3-2x)^7$. [2]
 - (b) Find the coefficient of x^2 in the expansion of $(2+x)(3-2x)^2$. [3]
- 7. (a) Given that n is a positive integer, write down the first 3 terms, in ascending powers of x, in the expansion of $\left(1 \frac{1}{3}x\right)^n$.
 - (b) The coefficient of x^2 in the expansion of $(1+x)\left(1-\frac{1}{3}x\right)^n$ is $\frac{20}{3}$. Find the value of n. [4]
- 8. Find the term independent of x in the expansion of $\left(x^3 \frac{2}{x^3}\right)^{10}$. [3]