We demonstrate how to calculate $\operatorname{tr}(f)$ where $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ with $f((x_1, y_1), (x_2, y_2)) = x_1x_2 + 2x_2y_1 + 3x_1y_2 - y_1y_2$. Under the standard basis for \mathbb{R}^2 , the bilinear form f is represented as

$$\begin{pmatrix} x_1 & y_1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}.$$

This matrix representation shows that

$$f^{\natural} = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}^{\top} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix},$$

and hence

$$\operatorname{tr}(f) = \operatorname{tr}(f^{\natural}) = \operatorname{tr}\begin{pmatrix} 1 & 2\\ 3 & -1 \end{pmatrix} = 0.$$

We will also need the following proposition to show that various families are linearly independent.

Proposition 33.4. Let E and F be two nontrivial vector spaces and let $(u_i)_{i\in I}$ be any family of vectors $u_i \in E$. The family $(u_i)_{i\in I}$ is linearly independent iff for every family $(v_i)_{i\in I}$ of vectors $v_i \in F$, there is some linear map $f: E \to F$ so that $f(u_i) = v_i$ for all $i \in I$.

Proof. Left as an exercise.

33.2 Tensors Products

First we define tensor products, and then we prove their existence and uniqueness up to isomorphism.

Definition 33.3. Let K be a given field, and let E_1, \ldots, E_n be $n \geq 2$ given vector spaces. For any vector space F, a map $f: E_1 \times \cdots \times E_n \to F$ is multilinear iff it is linear in each of its argument; that is,

$$f(u_1, \dots u_{i_1}, v + w, u_{i+1}, \dots, u_n) = f(u_1, \dots u_{i_1}, v, u_{i+1}, \dots, u_n)$$

$$+ f(u_1, \dots u_{i_1}, w, u_{i+1}, \dots, u_n)$$

$$f(u_1, \dots u_{i_1}, \lambda v, u_{i+1}, \dots, u_n) = \lambda f(u_1, \dots u_{i_1}, v, u_{i+1}, \dots, u_n),$$

for all $u_j \in E_j$ $(j \neq i)$, all $v, w \in E_i$ and all $\lambda \in K$, for i = 1, ..., n.

The set of multilinear maps as above forms a vector space denoted $L(E_1, \ldots, E_n; F)$ or $Hom(E_1, \ldots, E_n; F)$. When n = 1, we have the vector space of linear maps L(E, F) (also denoted Hom(E, F)). (To be very precise, we write $Hom_K(E_1, \ldots, E_n; F)$ and $Hom_K(E, F)$.)