Retrieval Augmented Generation

Lesson Overview

Key Topics Covered:

- 1. Introduction
 - LLM Limitations
 - What is RAG
 - Why RAG is needed
- 2. Semantic Search
 - Dense Retrieval
 - Reranking Methods
 - Document Embeddings
- 3. RAG Implementation
 - Document Chunking Strategies
 Embedding Generation
 - Vector Storage
 - RAG Workflow
- 4. Practical Workshop

1. LLMS's Limitations

Outdated Information

Models only have information up to their training cutoff date. New data requires retraining, which is resource-intensive.

Hallucinations

May generate plausible but incorrect information, particularly challenging when combining retrieved and generated content.

Knowledge Gap Response

Instead of acknowledging uncertainty, may generate incorrect answers when information is missing from its knowledge base.

Domain Specificity

Generic responses may lack accuracy for specialized domains, requiring careful knowledge base curation.

Source Attribution

Difficulty in tracking and citing original sources, raising concerns about information credibility and attribution.

Long Training Time

Updating models with new information requires extensive computational resources and time, making rapid knowledge updates challenging.

1.1 What is RAG

Retrieval-Augmented Generation combines LLMs with external knowledge bases

Retrieval Augmented Generation is a <u>branch of AI</u> that combines <u>information retrieval</u> and <u>text</u> generation. This approach enables AI models to retrieve relevant knowledge from external sources and incorporate it into their generated responses, improving accuracy and contextual relevance.

Luigi Serreli Text Classification and NLP Seminar 4/12

1.2 Why RAG

LLMs are designed to generate responses, which can lead to fabricated answers when facing uncertainty. This phenomenon, known as hallucination, poses significant risks in applications where accuracy is crucial.

Enterprise Search

Access and query internal documents, policies, and procedures accurately

⚠ Critical business decisions based on outdated or incorrect information

Customer Support

Real-time access to product documentation and support history

Providing incorrect solutions to customer issues

Educational Systems

Personalized learning with accurate course materials and resources

⚠ Spreading misinformation to students

Legal Assistance

Access to case law and legal documentation

⚠ Incorrect legal interpretations or advice

Medical Knowledge

Access to latest research and medical protocols

⚠ Critical errors in medical information

Research Tools

Scientific literature analysis and citation

⚠ Fabricated research findings

RAG as a Solution

By grounding responses in verified external knowledge, RAG ensures accuracy and reliability in critical applications, significantly reducing the risk of hallucinations while maintaining the generative capabilities of LLMs.

1.3 Semantic Search Approaches

From Hands-On Large Language Models: Language Understanding and Generation.

1.4 Semantic Search Approaches + LLMs = RAG

From Hands-On Large Language Models: Language Understanding and Generation.

1.5 Dense Retrieval and Embeddings

1.6 How can we transform a document to embeddings

We know how to embed a word or a sentence

From Hands-On Large Language Models: Language Understanding and Generation.

External Knowledge

Long documents containing knowledge in various formats (manuals, articles, documentation)
Raw source material that needs to be processed for efficient retrieval

Embedding Generation

Converting text chunks into numerical vectors

Using embedding models to create dense vector representations of text

Document Chunking

Breaking down large documents into smaller, manageable pieces

Chunks maintain semantic coherence while being small enough for effective embedding

Vector Storage

Storing embeddings in specialized vector databases

Enables efficient similarity search and retrieval

1.7 Chunking Strategies

Document Level

One vector per entire document

Key Points:

- Preserves full context
- · Less storage efficient
- May miss specific details
- Better for short documents

One vector per document

Fixed-Size Chunks

Document split into multiple chunks

Key Points:

- · Better for long documents
- More granular retrieval
- Multiple vectors per document
- · Needs careful size selection

Chunk document into multiple chunks

Token-Based Splitting

Split based on token count

Key Points:

- Precise control over context window
- Can handle overlapping
- · Maintains semantic units
- Common in modern LLMs

Overlapping window of sentences

Luigi Serreli Text Classification and NLP Seminar 10/12

1.8 How RAG Works

From Hands-On Large Language Models: Language Understanding and Generation.

1.9 Summary

Luigi Serreli Text Classification and NLP Seminar 12/<u>12</u>