7

4

5

6

7

WHAT IS CLAIMED IS:

1		1.	A	computer-based	method	for	determining	the	optimum	join	sequence	for
2	proce	ssing a	quer	y having a plurali	ity of tab	les f	rom a relation	nal d	atabase sto	ored in	n an electro	onic
3	storag	e devic	e hav	ving a database m	anageme	nt sv	stem, the met	hod	comprising	the s	itens of	

- (a) a first pass for determining an optimum join sequence for joining the plurality of tables from the query; and
- (b) a second pass for using the optimum join sequence for creating a lowest cost access path plan for processing the query.
- 2. The method according to claim 1, wherein the first pass performing successive steps until creation of a simulated composite table having all tables from the query, wherein each said step:

creating a set of miniplans for simulating all possible joins of a predetermined subset of the query tables; and

using a cost model calculations for estimating and saving the least expensive join from said set of joins, thereby determining the optimum join sequence.

- The method according to claim 2, wherein the first pass for each said miniplan storing a used table index, join method, and sorting data, and for each said least expensive join
- 3 storing names of joined tables, join cost and possible row orderings.

7

1

2

- 1 4. The method according to claim 3, wherein the first pass only storing non-2 redundant miniplan data, and saving partial results of the cost model calculations for future 3 reuse.
 - 5. The method according to claim 1, wherein the second pass performing successive steps until creation of a simulated composite table having all tables from the query, wherein each said step being performed in the optimum join sequence.
 - 6. The method according to claim 1, wherein the query being a SQL query.
 - 7. A computer-based processor system for determining the optimum join sequence for processing a query having a plurality of tables from a relational database stored in an electronic storage device having a database management system, the system comprising:

means for performing a first pass for determining an optimum join sequence for joining the plurality of tables from the query; and

- means for performing a second pass for using the optimum join sequence for creating a lowest cost access path plan for processing the query.
- 1 8. The system according to claim 7, wherein the first pass means performing 2 successive steps until creation of a simulated composite table having all tables from the query,
- 3 wherein each said step:

2

3

1

1

2

- 4 creating a set of miniplans for simulating all possible joins of a predetermined subset of the query tables; and
- using a cost model calculations for estimating and saving the least expensive join from said set of joins, thereby determining the optimum join sequence.
 - 9. The system according to claim 8, wherein the first pass means for each said miniplan storing a used table index, join method, and sorting data, and for each said least expensive join storing names of joined tables, join cost and possible row orderings.
 - 10. The system according to claim 9, wherein the first pass means only storing non-redundant miniplan data, and saving partial results of the cost model calculations for future reuse.
 - 11. The system according to claim 7, wherein the second pass means performing successive steps until creation of a simulated composite table having all tables from the query, wherein each said step being performed in the optimum join sequence.
 - 12. The system according to claim 7, wherein the query being a SQL query.
- 1 13. A computer usable medium tangibly embodying a program of instructions 2 executable by the computer to perform a computer-based method for determining the optimum

- join sequence for processing a query having a plurality of tables from a relational database stored in an electronic storage device having a database management system, the method comprising
- 5 the steps of:
- 6 (a) a first pass for determining an optimum join sequence for joining the plurality of tables from the query; and
- 8 (b) a second pass for using the optimum join sequence for creating a lowest cost access
 9 path plan for processing the query.
 - 14. The method according to claim 13, wherein the first pass performing successive steps until creation of a simulated composite table having all tables from the query, wherein each said step:

creating a set of miniplans for simulating all possible joins of a predetermined subset of the query tables; and

using a cost model calculations for estimating and saving the least expensive join from said set of joins, thereby determining the optimum join sequence.

- 1 15. The method according to claim 14, wherein the first pass for each said miniplan
- 2 storing a used table index, join method, and sorting data, and for each said least expensive join
- 3 storing names of joined tables, join cost and possible row orderings.

- 1 16. The method according to claim 15, wherein the first pass only storing non-
- 2 redundant miniplan data, and saving partial results of the cost model calculations for future
- 3 reuse.
- 1 17. The method according to claim 13, wherein the second pass performing
- 2 successive steps until creation of a simulated composite table having all tables from the query,
- 3 wherein each said step being performed in the optimum join sequence.
 - 18. The method according to claim 13, wherein the query being a SQL query.