ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ"(УНИВЕРСИТЕТ ИТМО)

Факультет Систем управления и робототехники

Кафедра Систем управления и информатики

ГруппаР3340

ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Лабораторная работа №8

ЭКСПЕРИМЕНТАЛЬНОЕ ПОСТРОЕНИЕ ОБЛАСТЕЙ УСТОЙЧИВОСТИ ЛИНЕЙНОЙ СИСТЕМЫ НА ПЛОСКОСТИ ДВУХ ПАРАМЕТРОВ Вариант 9

Проверил:						
Выполнил.						

Цель работы: Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

1 Моделирование системы

Начальные данные: T1=2.5

Рис. 1: Схема моделирования

Рис. 2: Неустойчивая система K=15,T2=0.1

Рис. 3: Устойчивая система K=5,T2=0.1

Рис. 4: Граница устойчивости K=10.5,T2=0.1

2 Расчет границы устойчивости с использованием криетрия Гурвица

Необходимые формулы:

$$W(s) = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K};$$

$$\Gamma = \begin{bmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & K \end{bmatrix}$$

$$K = \frac{T_1 + T_2}{T_1 T_2}$$

3 Сравнение теоретического расчета и экспериментального

T2, c	0,10	0,50	1,00	1,50	2,00	2,50	3,00	3,50	4,00	5,00
К, э	10,50	2,40	1,40	1,10	0,90	0,80	0,77	0,70	0,65	0,60
К, р	10,40	2,40	1,40	1,07	0,90	0,80	0,73	0,69	0,65	0,60

Рис. 5: Экспирементальная граница устойчивости

Рис. 6: Рассчитанная граница устойчивости

Вывод: В данной работе была найдена граница устойчивости эксперементально и аналитически. Как видно по графикам границы совпадают, отсюда можно сделать вывод, расчет произведен верно.