	Theoretical	Theoretical Computer Science Cheat Sheet
	Definitions	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i} i = \frac{n(n+1)}{2}, \sum_{i} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{i} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{m} i^m = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{m} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^m \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{n=1}^{m-1} i^m = \frac{1}{m+1} \sum_{m=1}^{m} {m+1 \choose k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon, \forall n \ge n_0$.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
S dns	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{c^d} c^i = \frac{1}{c-1}, c \neq 1, \sum_{i=0}^{c^d} c^i = \frac{1}{1-c}, \sum_{i=1}^{c^d} c^i = \frac{1}{1-c}, c < 1, c < 1, $
inf S	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{c} i \dot{c}^i = \frac{nc^{r+r} - (n+1)c^{r+r} + c}{(c-1)^2}, c \neq 1, \sum_{i=0}^{c} i c^i = \frac{c}{(1-c)^2}, c < 1.$
$\liminf_{n\to\infty} a_n$	$\lim_{n \to \infty} \inf\{a_i \mid i \ge n, i \in \mathbb{N}\}.$	Harmonic series: $H = \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{j_{H,i} - n(n+1)}{n}H = n(n-1)$
$\limsup_{n\to\infty}a_n$	$\lim_{n \to \infty} \sup\{a_i \mid i \ge n, i \in \mathbb{N}\}.$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1} H_i = (n+1)H_n - n, \sum_{i=1} {n \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
[w]	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$, $\binom{n}{n-1} = \binom{n}{n-1}$, $\binom{n}{n-1} = \binom{n}{n-1}$,
$\binom{n}{k}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$n-k \choose n-k$,
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	9.
$\binom{n}{k}$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{k} = \binom{n}{k} = 1$,
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	$\left\{ \right\} = 2^{n-1} - 1, \qquad 13. \left\{ {n \atop k} \right\}$
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!$	1), 15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1},$	1)! H_{n-1} , 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1$, 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix}$,
18. $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1)^n$	1) $\begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$, 19. $\begin{Bmatrix} n \\ n-1 \end{Bmatrix}$	$\begin{bmatrix} n \\ i - 1 \end{bmatrix} = \begin{bmatrix} n \\ 2 \end{bmatrix}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n \\ k \end{bmatrix}$
22. $\binom{n}{0} = \binom{n}{n-1} = 1,$	$\binom{n}{-1} = 1,$ 23. $\binom{n}{k} = \binom{n}{k}$	$\binom{n}{n-1-k}$, 24. $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,
25. $\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$	if $k = 0$, 26. $\binom{n}{1}$ otherwise	$ > = 2^n - n - 1, $ $ 27. $
28. $x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n},$	$\left\langle \begin{pmatrix} x+k \\ n \end{pmatrix}, \qquad 29. \left\langle \begin{pmatrix} n \\ m \end{pmatrix} \right\rangle = \sum_{k=0}^{m}$	30. m!
31. $\binom{n}{m} = \sum_{k=0}^{n}$	31. $\binom{n}{m} = \sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!$	32. $\left\langle {n \atop 0} \right\rangle = 1,$ 33. $\left\langle {n \atop n} \right\rangle = 0$ for $n \neq 0,$
34. $\left\langle \left\langle {n \atop k} \right\rangle \right\rangle = (k - 1)^n$	34. $\binom{n}{k} = (k+1) \binom{n-1}{k} + (2n-1-k) \binom{n-1}{k-1}$,	
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \dot{x}$	36. $ \begin{cases} x \\ x-n \end{cases} = \sum_{k=0}^{n} \left\langle \left\langle n \right\rangle \right\rangle \left(x+n-1-k \right), $	37. ${n+1 \brace m+1} = \sum_k {n \choose k} {k \brack m} = \sum_{k=0}^n {k \brack m} {(m+1)^{n-k}},$

tt Sheet	Trees	39. $\begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle k \right \left\langle k \right\rangle = \left\langle k \right\rangle$, vertices has $n-1$ edges. 41. $\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} \binom{k}{m} (-1)^{m-k}$, Kraft inequality: If the depths of the lawes of t		sons.	(Generating functions: 1. Multiply both sides of the equation by x^i . 2. Sum both sides over all i for which the equation is valid. 3. Choose a generating function $G(x)$. 3. Choose a generating function $G(x)$. 4. Solve for $G(x)$. 4. Solve for $G(x)$. 5. The coefficient of x^i in $G(x)$ is g_i . Example: $g_{i+1} = 2g_i + 1, g_0 = 0.$ Multiply and sum: $\sum_{i \ge 0} g_{i+1}x^i = \sum_{i \ge 0} g_ix^i + \sum_{i \ge 0} x^i.$ We choose $G(x) = \sum_{i \ge 0} x^j g_i$. Rewrite in terms of $G(x)$: $\frac{G(x)}{x} = 2G(x) + \sum_{i \ge 0} x^i.$ Solve for $G(x)$: $\frac{x}{x} = 2G(x) + \sum_{i \ge 0} x^i.$ Solve for $G(x)$: $\frac{x}{x} = 2G(x) + \frac{1}{1-x}.$ Solve for $G(x)$: $\frac{x}{G(x)} = \frac{x}{(1-x)(1-2x)}.$ Expand this using partial fractions: $G(x) = x\left(\frac{1-2x}{i\ge 0} - \frac{1-x}{i\ge 0}\right)$ $= x\left(\frac{2\sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i}{i\ge 0}\right)$ $= \sum_{i \ge 0} (2^{i+1} - 1)x^{i+1}.$ So $g_i = 2^i - 1$.
Theoretical Computer Science Cheat Sheet	Identities Cont.	$\begin{vmatrix} n^{n-k} = n! \sum_{k=0}^{n} \frac{1}{k!} {k \brack m}, & 39. \begin{bmatrix} x \\ x - n \end{bmatrix}$ $41. \begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=0}^{n}$ $43. \begin{bmatrix} m+n+1 \\ m \end{bmatrix}$	$ \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{n}{k} (-1)^{m-k}, 45. (n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \text{for } n \ge m, $ $ \binom{n}{n-m} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}. 47. \binom{n}{n-m} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}. $ $ \binom{n}{k+m} = \sum_{k} \binom{m-n}{n+k} \binom{m+n}{k} \binom{m+k}{k}. $ $ \binom{n}{k+m} = \sum_{k} \binom{n}{k+m} \binom{m+n}{k} \binom{m+k}{k}. $ $ \binom{n}{k+m} = \sum_{k} \binom{n}{k+m} \binom{n}{k} \binom{n}{k}. $	Boommond	$1(T(n) - 3T(n/2) = n)$ $3(T(n/2) - 3T(n/4) = n/2)$ $\vdots \qquad \vdots \qquad \vdots$ $3^{\log_2 n - 1}(T(2) - 3T(1) = 2)$ Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m = T(n) - 3^m$ $T(n) - n^k \text{ where } k = \log_2 3 \approx 1.58496.$ Summing the right side we get $T(n) - 2^m = T(n) - 3^m = 1.7 + 1.5$
		38. $\begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{n-k} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} m \\ m \end{bmatrix}$ 40. $\begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k} \binom{n}{k} \begin{Bmatrix} k+1 \\ k+1 \end{Bmatrix} (-1)^{n-k}$, 42. $\begin{Bmatrix} m+n+1 \\ m \end{Bmatrix} = \sum_{k} k \begin{Bmatrix} n+k \\ k \end{Bmatrix}$,	44. $\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{n}{m} \binom{n-k}{m}$, 45. $\binom{n}{m+n} \binom{n-k}{m+k} \binom{n+k}{m+k} \binom{n+k}{k}$, 48. $\binom{\ell+m}{\ell+m} \binom{\ell+m}{\ell} = \sum_{k} \binom{n}{k} \binom{n-k}{k}$, $\binom{\ell+m}{\ell+m} \binom{\ell+m}{\ell} = \sum_{k} \binom{n-k}{k} \binom{n-k}{k}$, $\binom{\ell+m}{\ell+m} \binom{\ell+m}{\ell+m} = \sum_{k} \binom{n-k}{\ell} \binom{n-k}{k}$, $\binom{\ell+m}{\ell+m} \binom{\ell+m}{\ell+m} = \sum_{k} \binom{n-k}{\ell} \binom{n-k}{k}$		Master method: $T(n) = aT(n/b) + f(n), a \geq 1, b > 1$ If $\exists c > 0$ such that $f(n) = O(n^{\log_6 a} - c)$ then $T(n) = \Theta(n^{\log_6 a})$ If $f(n) = \Theta(n^{\log_6 a})$ bein $T(n) = \Theta(n^{\log_6 a} \log_2 n).$ If $\exists c > 0$ such that $f(n) = \Omega(n^{\log_6 a - c})$ and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n , then $T(n) = \Theta(f(n)).$ Substitution (example): Consider the following recurrence $T(n) = O(f(n)).$ Substitution example): Consider the following recurrence and the substitution of the substitution we find $u_{i+1} = 2^{2i} \cdot T_{i+1}^{i} = 1$ Note that T_i is always a power of two. Let $u_i = h_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} are $\frac{2}{2^{i+1}} + \frac{i}{2^{i}}$. Substituting we find $u_{i+1} = \frac{2}{2^{i+1}} + \frac{i}{2^{i}}.$ Substituting we find $u_{i+1} = \frac{2}{2^{i+1}} + \frac{i}{2^{i}}.$ Substituting we find that T_i has the closed form $T_i = 2^{i2^{i-1}}.$ Summing factors (example): Consider the following recurrence and the side on the left side recurrence, and choose a factor which makes the left side "telescond"

Sheet	1.61803, $\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx61803$	Probability	Continuous distributions: If	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx.$	((-)-1) a (then p is the probability density function of X If	$\Pr[X < a] = P(a),$	then P is the distribution function of X . If	P and p both exist then	$P(a) = \int^a n(x) dx$	A = A = A = A = A = A = A = A = A = A =	Expectation: If X is discrete	$E[g(X)] = \sum g(x) \Pr[X = x].$	If X continuous then	$\mathbb{E}[\alpha(X)] = \int_{-\alpha(x)}^{\infty} \alpha(x) dx = \int_{-\alpha(x)}^{\infty} dD(x)$	$E[g(\Delta)] = \int_{-\infty} g(x)P(x) dx = \int_{-\infty} g(x) dx (x).$	Variance, standard deviation:	$VAR[X] = E[X^2] - E[X]^2,$	$\sigma = \sqrt{\text{VAR}[X]}$.	For events A and B :	$\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]$	$\Pr[A \land B] = \Pr[A] \cdot \Pr[B],$	iff A and B are independent.	$\Pr[A B] = \frac{\Pr[A \land B]}{\frac{1}{2}}$	$\operatorname{Pr}_{-1} = \operatorname{Pr}_{-1} = P$	For random variables X and Y : $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$	$E[x, x] = E[x] \cdot E[x]$, if X and Y are independent	$\mathbb{E}[X+Y] \equiv \mathbb{E}[X] + \mathbb{E}[Y].$	$\mathbf{E}[cX] = c\mathbf{E}[X].$	Baves' theorem:	$\Pr[A: B = \frac{\Pr[B A_i]\Pr[A_i]}{\Pr[A_i]}$	$\sum_{j=1}^{n} \Pr[A_j] \Pr[B A_j]$	Inclusion-exclusion: $\begin{bmatrix} r & r & r \\ r & r & r \end{bmatrix}$	$\Pr\left[\bigvee_{i=1} X_i\right] = \sum_{i=1} \Pr[X_i] +$, , , , , , , , , , , , , , , , , , ,	$\sum_{i=1}^{k-1} (-1)^{k+1} \sum_{i,j} \Pr\left[\bigwedge X_{i,j} ight].$	$k=2$ $\eta < \cdots < \eta_k$ $j=1$	Moment mequantes:	$\Pr\left[X \geq \lambda \operatorname{E}[X]\right] \leq \frac{\varepsilon}{\lambda},$	$\Pr\left[X - \mathbb{E}[X] > \lambda \cdot \sigma\right] < \frac{1}{L}$	Ω	Pr[$X = k$] = pq^{k-1} , $q = 1 - p$,		$E[X] = \sum_{k=1} kpq^{k-1} = \frac{1}{p}.$	w — w
Theoretical Computer Science Cheat Sheet	.828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx 1.61803$,	General	Bernoulli Numbers $(B_i = 0, \text{ odd } i \neq 1)$:	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	Change of base, quadratic formula:	$\mp q-$	$\log_a b$, $2a$	Euler's number e:	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$(1 + \frac{1}{2})^n > e > (1 + \frac{1}{2})^{n+1}$. (1 1) > (1 1) .	$(1+\frac{1}{n})^n = e - \frac{c}{2n} + \frac{anc}{24n^2} - O\left(\frac{a}{n^3}\right).$	Harmonic numbers:	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$		$\ln n < H_n < \ln n + 1,$	$H_n \equiv \ln n + \gamma + O\left(\frac{1}{2}\right)$.	(u).	Factorial, Stirling's approximation:	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$-(n)^n$	$n! = \sqrt{2\pi n} \left(\frac{\tilde{c}}{e} \right) \left(1 + \Theta \left(\frac{\tilde{c}}{n} \right) \right).$	Ackermann's function and inverse:	$ (2^j) \qquad i = 1 $	$a(i,j) = \begin{cases} a(i-1,2) & j=1 \\ c(i-1,2) & i \le s \end{cases}$	$\left(\frac{a(t-1,a(t,j-1))}{a(t-1,a(t,j-1))}\right), \ t, j \geq 2$	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	Binomial distribution:	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	(n)	$\mathrm{E}[X] = \sum_{k=1}^{k} k \binom{k}{k} p^n q^n = np.$	Poisson distribution:	$\Pr[X=k] = \frac{e^{-rA^2}}{k!}, \operatorname{E}[X] = \lambda.$	Normal (Gaussian) distribution:	$m(\pi) = \frac{1}{e^{-(x-\mu)^2/2\sigma^2}} \text{ E}[Y] =$	$P(x) = \sqrt{2\pi\sigma}$, $E[A] = \mu$.	The "coupon collector": We are given a	random coupon each day, and there are n different types of compons. The distribu-	tion of coupons is uniform. The expected	number of days to pass before we to col-	lect all n types is	nH_n .	
	$e \approx 2.71828$,	p_i	2	က	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	29	71	73	79	83	68	97	101	103	107	109	197	131									1	2.	86 9 1 20 45 10 1	- ^- ^- ^-
	$\pi \approx 3.14159,$	2^i	2	4	∞	16	32	64	128	256	512	1,024	2,048	4,096	8,192	16,384	32,768	65,536	131,072	262,144	524,288	1,048,576	2,097,152	4,194,304	8,388,608	16,777,216	33,554,432	67,108,864	134,217,728	268,435,456	536,870,912	9 147 483 648	4,294,967,296	Pascal's Triangle	1	1.1	121	1 3 3 1	14641	$15\ 10\ 10\ 5\ 1$	1615201561	1 7 21 35 35 21 7 1	1 8 28 56 70 56 28 8 1	1 9 36 84 126 126 84 36 9 1 1 10 45 120 210 252 210 120 45 10 1	
		i	1	2	က	4	ಬ	9	-	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	22	26	27	28	50	31 00	32											1 t	i > +

Theoretical	Theoretical Computer Science Cheat Sheet	
Trigonometry	Matrices	More Trig.
(T)(0)	Multiplication: $C = A \cdot B, c_{i,j} = \sum_{a_{i,k}} a_{i,k} b_{k,j}.$	
$A = \begin{pmatrix} C & \begin{pmatrix} \cos \theta, \sin \theta \end{pmatrix} \\ \begin{pmatrix} -1, 0 \end{pmatrix} & \begin{pmatrix} 1, 0 \end{pmatrix} \end{pmatrix}$	Determin	$A = A \begin{pmatrix} n \\ c \\ c \end{pmatrix} B$ Law of cosines:
$\frac{\Box^c}{B} \xrightarrow{a} \qquad (0,1)$	$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$	$c^2 = a^2 + b^2 - 2ab\cos C.$ Area:
rythagorean theorem: $C^2 = A^2 + B^2.$ Definitions:	2×2 and 3×3 determinant: $\begin{vmatrix} a & b \\ a \end{vmatrix} = ad - bc$	$A = \frac{1}{2}hc,$
Definitions: $\sin a = A/C$, $\cos a = B/C$, $\csc a = C/B$.	$\begin{vmatrix} c & d \end{vmatrix} = \frac{aa}{aa} = \frac{c}{c},$	$= \frac{1}{2}ab\sin C,$ $= \frac{c^2 \sin A \sin B}{2 + C}.$
	$\begin{vmatrix} e & f \\ h & i \end{vmatrix} = g \begin{vmatrix} e \\ e \end{vmatrix}$	$2\sin C$ Heron's formula:
circle: \overline{AB}	= aer + bfg + cdh $= -ceg - fha - ibd.$ Permanents:	$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$ $s = \frac{1}{2}(a+b+c),$
A+B+C	$\operatorname{perm} A = \sum \prod_{i=1}^{n} a_{i,\pi(i)}.$	$s_a = s - a,$ $s_b = s - b.$
$\sin x = \frac{1}{\cos x}, \qquad \cos x = \frac{1}{\sec x},$	$\frac{\pi}{\text{Hyperbolic Functions}}$	$s_c = s - c$.
, $\sin^2 z$	Definitions: $e^x - e^{-x}$	More identities:
$1 + \tan^2 x = \sec^2 x,$ $1 + \cot^2 x = \csc^2 x,$	$\sinh x = \frac{c}{c} \frac{c}{x}, \cosh x = \frac{c}{c} \frac{+c}{x},$	$\sin\frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}},$
$\sin x = \cos\left(\frac{\pi}{2} - x\right),$ $\sin x = \sin(\pi - x),$, e	$\cos\frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}},$
$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$	$\operatorname{sech} x = \frac{1}{\cosh x}, \operatorname{coth} x = \frac{1}{\tanh x}.$	$\tan\frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}},$
$\cot x = -\cot(\pi - x), \qquad \cot x = \cot \frac{x}{2} - \cot x,$	Identities: $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = $	$= \frac{1 + \cos x}{1 - \cos x}$
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$		$\sin x$ $=$ $\sin x$
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$	-	$1 + \cos x$, $\sqrt{1 + \cos x}$
$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$	c cosh y	$\cot \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 - \cos x}},$
$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$	$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$	$=\frac{1+\cos x}{\sin x}$,
$\sin 2x = 2\sin x \cos x, \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x},$	$\sinh 2x = 2\sinh x\cosh x,$	$=\frac{\sin x}{1-\cos x},$
$\cos 2x = \cos^2 x - \sin^2 x$, $\cos 2x = 2\cos^2 x - 1$,	2 3	$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$
$\cos 2x = 1 - 2\sin^2 x$, $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$,	$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$	$\cos x = \frac{e^{ix} + e^{-ix}}{2},$
$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$ $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$	$(\cos x + \sin x) = \cot nx + \sin nx, n \in \mathbb{Z},$ $2\sinh^2 \frac{x}{2} = \cosh x - 1, 2\cosh^2 \frac{x}{2} = \cosh x + 1.$	$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}},$
$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$	$\theta \sin \theta \cos \theta \tan \theta$ in mathematics	$= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$
$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$	0 1 0	$\sin x = \frac{\sinh ix}{i},$
Euler's equation: $e^{ix}=\cos x+i\sin x, \qquad e^{i\pi}=-1.$		$\cos x = \cosh ix,$
v2.02 ©1994 by Steve Seiden sseiden@acm.org	$\frac{\pi}{3}$ $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $\sqrt{3}$ – J. von Neumann $\frac{\pi}{2}$ 1 0 ∞	$\tan x = \frac{\tan n x}{i}$.
nttp://www.csc.isu.edu/ seiden	1	

	etical Comput	Theoretical Computer Science Cheat Sheet		
Number Theory The Chinese remainder theorem: There ex-	Definitions:	Graph I neory	eory Notation:	Wallis' id
ists a number C such that:		An edge connecting a ver-	5	K Kampy
$C \equiv r_1 \mod m_1$		tex to itself.	V(G) Vertex set	Dromodo
	Directed Simple	Each edge has a direction. Graph with no loops or		Drouncke
$C \equiv r_n \mod m_n$		multi-edges.	~ ·	
if m_i and m_i are relatively prime for $i \neq i$	Walk Trail	A sequence $v_0e_1v_1 \dots e_\ell v_\ell$. A walk with distinct edges.		(
and n_{ij} are removed frame for $i \neq j$.		A trail with distinct	$\chi(G)$ Chromatic number	Gregrory'
positive integers less than x relatively	Commontad	vertices.	$\chi_E(G)$ Edge chromatic number G^c Complement graph	Newton's
prime to x . If $\prod_{i=1}^{n} p_i^x$ is the prime factorization of x then		a path between any two	K _n Complete graph K Complete hinartite graph	
$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1}(p_i - 1).$	Component	vertices. A maximal connected	$r(k,\ell)$ Ramsey number	6 2 2
i=1 Rulow's thooward. If a and h are relatively		subgraph.	Geometry	Sharp's se
prime then	ee	A connected acyclic graph. A tree with no root.	Projective coordinates: triples (π, u, z) not all π u and z core	$\frac{\pi}{6} = \frac{1}{\sqrt{5}}$
$1 \equiv a^{\varphi(v)} \mod b.$	DAG Eulerian	Directed acyclic graph. Graph with a trail visiting	(x, y, z), increase, y and z zero. $(x, y, z) = (cx, cy, cz) \forall c \neq 0.$	V. S. V. See Euler's se
Fermat's theorem: $1 \equiv a^{p-1} \mod p.$		each edge exactly once.	Cartesian Projective	25
The Euclidean algorithm: if $a > b$ are in-	Hamittonian	Graph with a cycle visiting each vertex exactly once.	(x,y) $(x,y,1)y = mx + b$ $(m,-1,b)$	9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tegers then $\gcd(a,b) = \gcd(a \bmod b,b)$.	Cut	A set of edges whose re- moval increases the num-		12
If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x		ber of components.	metric:	
then $\frac{n}{n} e^{i+1} - 1$	Cut-set Cut edge	A minimal cut. A size 1 cut.	$\sqrt{(x_1-x_0)^2+(y_1-y_0)^2},$	Let $N(x)$
$S(x) = \sum_{d x} d = \prod_{i=1} \frac{p_i}{p_i - 1}.$	ted	A graph connected with the removal of any $k-1$	$[x_1 - x_0 ^p + y_1 - y_0 ^p]^{1/p},$	tions of $N(x)/D(x)$
Perfect Numbers: x is an even perfect num-		vertices.	$\lim_{p \to \infty} \left[x_1 - x_0 ^* + y_1 - y_0 ^* \right] .$	sion. Firs
ber iff $x = 2^{n-1}(2^n-1)$ and 2^n-1 is prime. Wilson's theorem: n is a prime iff	k-Tough	$\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) < S $.	Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :	N by D,
whish is a prime in $(n-1)! \equiv -1 \mod n$.	k-Regular	A graph where all vertices	$\frac{1}{2}$ abs $\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Möbius inversion: if $i = 1$.	k-Factor	nave degree κ. A k-regular spanning	Angle formed by three points:	where the
$\mu(i) = \begin{cases} 0 & \text{if } i \text{ is not square-free.} \\ \frac{1}{i-1} & \text{if } i \text{ is the need of of } \end{cases}$	Matchina	subgraph. A set of edges, no two of	(m m)	D. Secon ing rules:
$(-1)^r$ if the product of r distinct primes.	ž.	which are adjacent.	(x_2, y_2)	
į.	Clique	A set of vertices, all of which are adjacent	9	- x) ,
$G(a) = \sum_{d a} F(d),$	Ind. set	A set of vertices, none of	$(0,0)$ ℓ_1 (x_1,y_1) (x_2,x_3)	where
then	Vertex cover	which are adjacent. Vertex cover A set of vertices which	$\cos \theta = \frac{(-1, 91)^{-1} (-2, 92)}{\ell_1 \ell_2}.$	ţ
$F(a) = \sum_{a \in \mathcal{A}} \mu(d) G\left(\frac{a}{d}\right).$	ā	cover all edges.	Line through two points (x_0, y_0)	For a reposition $N(x)$
ala Prime mimbers:	Flanar graph	Fundar graph A graph which can be embeded in the plane.	and (x_1, y_1) . $\begin{vmatrix} x & y & 1 \end{vmatrix}$	$(x-a)^m$
$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$	Plane graph	Plane graph An embedding of a planar graph.	$\begin{array}{ccc} x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{array} = 0.$	where
$+O\left(\frac{n}{\ln n}\right),$		$\sum_{c \in C} \deg(v) = 2m.$	Area of circle, volume of sphere: $A = \pi r^2$, $V = \frac{4}{7}\pi r^3$.	A_k
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$	If G is planar t	If G is planar then $n-m+f=2$, so	12	The reaso world; the
$+O\left(\frac{n}{(\ln n)^4}\right).$	$f \le 2n$ Any planar gr	$f \le 2n-4, m \le 3n-6.$ Any planar graph has a vertex with de-	it is because I have stood on the shoulders of giants.	to adapt all progre
	gree ≥ 9.		- Issac Ivewion	2000

Theo	Theoretical Computer Science Cheat Sheet	ot nlus
Vallis' identity:	Derivatives:	
$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$	1. $\frac{d(cu)}{dx} = c\frac{du}{dx}$, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$	$\frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$,
Brouncker's continued fraction expansion: $\frac{\pi}{4} = 1 + \frac{1^2}{3^2}$	$\frac{du}{dx}$,	$t(\frac{dv}{dx})$,
$2 + \frac{52}{2 + \frac{72}{2 + \dots}}$	7. $\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx},$	$8. \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$
aregrory's series: $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$	$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$	10. $\frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$
Newton's series: $\frac{\pi}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1 \cdot 3}{2} + \cdots$	11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$	12. $\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$
b 2 $2 \cdot 3 \cdot 2^3$ $2 \cdot 4 \cdot 5 \cdot 2^5$ Sharp's series:	13. $\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx},$	14. $\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$
$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$	15. $\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$	16. $\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx},$
Euler's series:	17. $\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx},$	18. $\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx},$
$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$ $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^4} + \frac{1}{2^4} + \cdots$	19. $\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx},$	20. $\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$
$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$	21. $\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx},$	22. $\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx},$
Partial Fractions	23. $\frac{d(\tanh u)}{a(\tanh u)} = \operatorname{sech}^2 u \frac{du}{du}.$	24. $\frac{d(\coth u)}{d(\coth u)} = -\operatorname{csch}^2 u \frac{du}{du}$
Let $N(x)$ and $L(x)$ be polynomial tunctions of x . We can break down	$\frac{dx}{dx} \qquad \frac{dx}{dx}$	$\frac{dx}{dx} = \frac{dx}{(\operatorname{csch} u)} = \frac{dx}{(\operatorname{coch} u)^{-1}} \frac{du}{du}$
(x)/D(x) using partial fraction expansion. First, if the degree of N is greater	$\frac{dx}{d(\operatorname{arcsinh} u)} = \frac{con u \cos u}{dx} \frac{dx}{dx},$	$\frac{dx}{d(\operatorname{arccosh} u)} = \frac{dx}{1 + du}$
an or equal to the degree of D , divide 7 by D , obtaining	27. $\frac{dx}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{dx}{dx}$	28. $\frac{(x-x)^2}{dx} = \frac{1}{\sqrt{u^2-1}} \frac{(x-x)^2}{dx}$
$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$	29. $\frac{d(\arctan uu)}{dx} = \frac{1}{1-u^2} \frac{du}{dx},$	30. $\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx},$
where the degree of N' is less than that of D . Second, factor $D(x)$. Use the follow-	31. $\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$	32. $\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{ u \sqrt{1+u^2}} \frac{du}{dx}$.
ig rules: For a non-repeated factor: $\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$	Integrals: \int , \int ,	
where	$1. \int cu dx = c \int u dx,$	2. $\int (u+v) dx = \int u dx + \int v dx,$
$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$	3. $\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1,$	4. $\int \frac{1}{x} dx = \ln x$, 5. $\int e^x dx = e^x$,
For a repeated factor: $N(x) = \sum_{m=1}^{m-1} A_k = N'(x)$	$6. \int \frac{dx}{1+x^2} = \arctan x,$	7. $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$
$\frac{(x-a)^m D(x)}{(x-a)^{m-k}} = \sum_{k=0}^{\infty} \frac{(x-a)^{m-k}}{(x-a)^{m-k}} + \frac{D(x)}{D(x)},$	$\mathbf{8. } \int \sin x dx = -\cos x,$	$9. \int \cos x dx = \sin x,$
where $A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$	10. $\int \tan x dx = -\ln \cos x ,$	11. $\int \cot x dx = \ln \cos x ,$
The reasonable man adapts himself to the	12. $\int \sec x dx = \ln \sec x + \tan x ,$	13. $\int \csc x dx = \ln \csc x + \cot x ,$
world, the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. —Coorne Remand Shaw	14. $\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2},$	a>0,
to adapt the world to himself. Therefore all progress depends on the unreasonable. – George Bernard Shaw	14. $\int \arcsin\frac{x}{a}dx = \arcsin\frac{x}{a} + \sqrt{a^2 - x^2}$	

	Theoretical Computer Science Cheat Sheet	Theoretical
	Calculus Cont.	Calculus Cont.
15.	$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, a > 0, \qquad \qquad \textbf{16.} \int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), a > 0,$	62. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\arccos\frac{a}{ x }, a > 0,$ 63.
17.	17. $\int \sin^2(ax)dx = \frac{1}{2n}(ax - \sin(ax)\cos(ax)),$ 18. $\int \cos^2(ax)dx = \frac{1}{2n}(ax + \sin(ax)\cos(ax)),$	64. $\int \frac{x dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2}, $ 65. $\int \frac{x}{a^2} dx$
19.	$\sec^2 x dx = \tan x,$	$\frac{1}{\sqrt{h^2 - 4ac}} \ln \left \frac{2ax}{2ax} \right $
$\frac{21.}{}$	$\sin^{n} x dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x dx,$	$66. \int \frac{dx^2 + bx + c}{ax^2 + bx + c} = \begin{cases} \sqrt{\sqrt{9 - 4ac}} & \frac{1}{2ac} + b \\ \frac{2}{\sqrt{ aa - b ^2}} & \arctan \frac{2ax + b}{\sqrt{ aa - b ^2}} \end{cases}$
23.	$\int \tan^n x dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x dx, n \neq 1,$	$\left(\frac{1}{\overline{-}}\ln\left 2ax+b+2\sqrt{a}\right.\right)$
25.	$\sec^n x dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx, n \neq 1,$	$67. \int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \sqrt{a} & -x < -\frac{1}{\sqrt{a}} \\ \frac{1}{\sqrt{a}} \arcsin \frac{-2ax - b}{\sqrt{a}} \end{cases}$
26.	$\int \csc^n x dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x dx, n \neq 1, 27. \int \sinh x dx = \cosh x, 28. \int \cosh x dx = \sinh x,$	68. $\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{\sqrt{ax^2 + bx + c}} + \frac{1}{2} + \frac{1}{$
29.	29. $\int \tanh x dx = \ln \cosh x , \text{ 30. } \int \coth x dx = \ln \sinh x , \text{ 31. } \int \operatorname{sech} x dx = \arctan \sinh x, \text{ 32. } \int \operatorname{csch} x dx = \ln \tanh \frac{x}{2} ,$	4a
33.	33. $\int \sinh^2 x dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$, 34. $\int \cosh^2 x dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$, 35. $\int \operatorname{sech}^2 x dx = \tanh x$,	69. $\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c} - \frac{b}{2a}}{a} - \frac{\frac{b}{2a}}{\sqrt{ax}}$
36.		$\int_{C} \frac{-1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}\sqrt{ax^2 + bx} + \frac{x}{c}}{\sqrt{c}} \right $
. 38.	$ \cos h \frac{x}{a} > 0 \text{ and } a $ $ \cos h \frac{x}{a} < 0 \text{ and } a $	70. $\int \frac{x\sqrt{ax^2 + bx + c}}{x\sqrt{ax^2 + bx + c}} = \begin{cases} v - 1 \\ \frac{1}{\sqrt{-c}} & \frac{bx + 2c}{ x \sqrt{b^2 - 4ac}} \end{cases}$
39.	$\frac{dx}{\sqrt{n^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), a > 0,$	71. $\int x^3 \sqrt{x^2 + a^2} dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2)^{3/2},$
40.	$41. \int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, a > 0,$	72. $\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$
42.	42. $\int (a^2 - x^2)^{3/2} dx = \frac{\pi}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{\pi}{a}, a > 0,$	73. $\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax)$
43.	$\frac{dx}{\sqrt{n^2-x^2}} = \arcsin\frac{x}{a}, a > 0, \qquad 44. \int \frac{dx}{n^2-x^2} = \frac{1}{2n} \ln \left \frac{a+x}{a-x} \right , \qquad 45. \int \frac{dx}{(n^2-x^2)^{3/2}} = \frac{x}{n^2\sqrt{n^2-n^2}}.$	74. $\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$
46.	$\sqrt{a^2 \pm x^2} dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left x + \sqrt{a^2 \pm x^2} \right , $ 47. $\int \frac{dx}{dx} dx = \int d$	75. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$
48.	$\frac{dx}{\alpha r^2 + hr} = \frac{1}{a} \ln \left \frac{x}{a + hr} \right ,$	76. $\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^m dx = \frac{n}{n+1} \int x^n dx = \frac{n}{n+1} \int x$
50.	$\int \frac{dx}{\sqrt{a+bx}} dx = 2\sqrt{a+bx} + d \int \frac{1}{a\sqrt{a+bx}} dx,$ 51.	$x^{1} = x^{\frac{1}{2}} = x^{\frac{1}{2}}$
52.	$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$	
54.		$x^4 = x^4 + 6x^3 + 7x^2 + x^1 = x^5 = x^5 + 15x^4 + 25x^3 + 10x^2 + x^1 = x^5 + 25x^3 + 10x^2 + x^1 = x^2 + 25x^3 + 10x^2 + x^2 + x^$
56.	$\int \frac{x dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2}, \qquad 57. \int \frac{x^2 dx}{\sqrt{a^2 - x^2}}$	$\frac{x^{\overline{1}}}{x^{\overline{2}}} = x^{1} \qquad x^{\underline{1}} = \frac{x^{\underline{1}}}{x^{2} + x^{1}}$
58.	$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left \frac{a + \sqrt{a^2 + x^2}}{x} \right , $ 59. \int	$= x^{3} + 3x^{2} + 2x^{1}$ $= x^{4} + 6x^{3} + 11x^{2} + 6x^{1}$
60.	$\int x\sqrt{x^2 \pm a^2} dx = \frac{1}{3}(x^2 \pm a^2)^{3/2}, \qquad \qquad 61. \int \frac{dx}{x\sqrt{x^2 \pm a^2}} = \frac{1}{a} \ln \left \frac{x}{a + \sqrt{a^2 + x^2}} \right ,$	$x^5 + 10x^4 + 35x^3 + 50x^2 + 24x^1$

Theoretical Computer Science Cheat Sheet	heet
Calculus Cont.	Finite Calculus
$\frac{dx}{x\sqrt{n^2-a^2}} = \frac{1}{a}\arccos\frac{a}{ x }, a > 0, \qquad 63. \int \frac{dx}{\sqrt{a^2+a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$	Difference, shift operators: $\Delta f(x) = f(x+1) - f(x).$
65.	Ef(x) = f(x+1). Fundamental Theorem:
$\int \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right , \text{ if } b^2 > 4$	$f(x) = \Delta F(x) \Leftrightarrow \sum_{b} f(x)\delta x = F(x) + C.$
$ax^2 + bx + c$ $\left\{\begin{array}{c} \frac{2}{\sqrt{4ac - b^2}} & \text{arctan} \frac{2ax + b}{\sqrt{4ac - b^2}}, \\ \sqrt{4ac - b^2}, & \text{if } b^2 < 4ac, \end{array}\right.$	$\sum_{a} f(x)\delta x = \sum_{i=a} f(i).$ Differences:
$\int \frac{dx}{-a} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right , & \text{if } a > 0, \end{cases}$	$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$ $\Delta(uv) = u\Delta v + \mathbf{E} v\Delta u,$
$\sqrt{ax^2 + bx + c} = \sqrt{\frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}}, \text{if } a < 0,$	
$\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\begin{array}{ll} \Delta(H_x) = x^{-}, & \Delta(z^-) = z^-, \\ \Delta(c^x) = (c-1)c^x, & \Delta\binom{x}{m} = \binom{x^-}{m-1}. \\ \text{Sums:} \end{array}$
$\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\sum cu \delta x = c \sum u \delta x,$ $\sum \langle c_{(x_1 + x_2)} \rangle_{\delta x_2} = \sum_{x_1 + x_2 + x_3} \sum_{x_2 + x_3 + x_4} \sum_{x_3 + x_4 + x_4} \sum_{x_3 + x_4 + x$
$\left(\frac{-1}{-1} \ln \left \frac{2\sqrt{\bar{c}}\sqrt{ax^2 + bx + \bar{c}} + bx + 2c}{if} \right \right. $ if $c > 0$	$\sum (u+v) ox \equiv \sum uox + \sum v ox,$ $\sum u\Delta v \delta x = uv - \sum \mathbf{E} v\Delta u \delta x,$
$ \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \sqrt{c} & x \\ \frac{1}{x\sqrt{ax^2 + bx + c}} \end{cases} = \begin{cases} \sqrt{c} & x \\ \frac{1}{x\sqrt{ax^2 + bx + c}} \end{cases} \text{ if } c < 0, $	$\sum x^{n} \delta x = \frac{x^{n+1}}{m+1}, \qquad \sum x^{-1} \delta x = H_x,$ $\sum c^{x} \delta x = \frac{x}{c^{-1}}, \qquad \sum \binom{x}{n} \delta x = \binom{x}{m+1}.$
71. $\int x^3 \sqrt{x^2 + a^2} dx = (\frac{1}{3}x^2 - \frac{1}{15}a^2)(x^2 + a^2)^{3/2},$	Powe (
$\int x^{n} \sin(ax) dx = -\frac{1}{a} x^{n} \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx,$	
$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx,$	$x^{-} = \overline{(x+1)\cdots(x+ n)}, n < 0,$ $x^{\overline{n+m}} = x^{\overline{m}}(x-m)^{\underline{n}}.$
$x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$	Rising Factorial Powers: $x^{\overline{n}} = x(x+1)\cdots(x+n-1), n>0,$
75. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$	$x^{\overline{0}} = 1,$
$\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$	$x^{\overline{n}} = \frac{x^{\overline{n}}}{(x-1)\cdots(x- n)}, n < 0,$ $x^{\overline{n+n}} = x^{\overline{n}}(x+m)^{\overline{n}}.$
II	Conversion: $x^{\underline{n}} = (-1)^n (-x^{\underline{n}})^{\overline{n}} = (x-n+1)^{\overline{n}}$
$x^{2} + x^{\perp} = x^{2} - x^{\top}$ $x^{3} + 3x^{2} + x^{\perp} = x^{3} - 3x^{2} + x^{\top}$	$= 1/(x+1)^{-n},$ $x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$=1/(x-1)^{-n}, (x-1)^{-n}, x = 1/(x-1)^{-n}, x = 1/(x-1)^{-n}, x = 1/(x-1)^{-n}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$x'' = \sum_{k=1} \left\{ k \right\} x^{\underline{\underline{n}}} = \sum_{k=1} \left\{ k \right\} (-1)^{n-n} x^n,$
$x^{2} = x^{2}$ $x^{3} = x^{3} = x^{4} = x^{4} = x^{4}$	$x = \sum_{k=1} \left[\frac{1}{k} \right] (-1)^{n-\kappa} x^{\kappa},$ $\overline{x} \qquad \sum_{k=1} \left[n \right]_{-k}$
$x^5 + 10x^4 + 35x^3 + 50x^2 + 24x^1 \qquad x^{\underline{5}} = x^5 - 10x^4 + 35x^3 - 50x^2 + 24x^1$	$x'' = \sum_{k=1} \left\lfloor k \right\rfloor x''.$

																										1	
	Ordinary power series:	A(=) N	$A(x) \equiv \sum_{i=0}^{n} a_i x$.	Exponential power series:	$A(x) = \sum_{i \in A} a_i \frac{x^i}{i!}.$	i=0 Dirichlet power series:	$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$	Binomial theorem: $\sum_{n=0}^{\infty} \binom{n}{n} \sum_{n=0}^{\infty} \frac{1}{n}$	$(x+y)^n = \sum_{k=0}^n \binom{k}{k} x^{n-k} y^n.$	Difference of like powers: n-1	$x^{n} - y^{n} = (x - y) \sum_{k=0}^{\infty} x^{n-1-k} y^{k}.$	For ordinary power series: $\stackrel{\sim}{\sim}$	$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$	$x^k A(x) \equiv \sum_{i=1}^{\infty} a_{i-1i} x^i$	$\sum_{i=k}^{n-1} \frac{n}{i} = k$	$\frac{A(x) - \sum_{i=0}^{A} \frac{a_i x}{a_i}}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$	$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$	$A'(x) = \sum_{i=0}^{\infty} (i+1)a_{i+1}x^{i},$	$xA'(x) = \sum_{i=1}^{\infty} ia_i x^i,$	$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^{i},$	$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$	$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{s-o} a_{2i+1} x^{2i+1}.$	Summation: If $b_i = \sum_{j=0}^{i} a_i$ then	$B(x) = \frac{1}{1-x}A(x).$ Convolution:	$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$	God made the natural numbers:	all the rest is the work of man. - Leopold Kronecker
I neoretical Computer Science Cheat Sheet	0.1100	$\frac{1}{2} \frac{(x-a)^i}{(x^i)^{(a)}} f^{(i)}(a)$	· ii 0		I	II	$=\sum_{i=0}^{\infty}x^{ni},$:	$=\sum_{i=0}^{\infty} \frac{x^s}{i!},$	II		II	$\dots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$	II	II	$=\sum_{i=0}^{n-1} \binom{n}{i} x^i,$	$\cdots = \sum_{i=0}^{\infty} {i \choose i} x^i,$		$=\sum_{i=0}^{\infty}\frac{1}{i+1}\binom{2i}{i}x^{i},$	$=\sum_{i=0}^{\infty} \binom{2i}{i} x^i,$:	II	$=\sum_{i=2}^{\infty}\frac{H_{i-1}x^{i}}{i},$	$=\sum_{i=0}^{\infty}F_{i}x^{i},$	II
Theoretical Compu		$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{(x - a)^2}f'''(a) + \dots = \sum_{n=0}^{\infty} \frac{(x - a)^n}{n}f^{(i)}(a)$	2 (2) 2	$-1 + \infty + \infty^2 + \infty^3 + \infty^4 + \cdots$: +	$= 1 + cx + c^2x^2 + c^3x^3 + \cdots$	$= 1 + x^n + x^{2n} + x^{3n} + \cdots$	$= x + 2x^2 + 3x^3 + 4x^4 + \dots$	$= \pi \pm 9n\pi^2 \pm 3n\pi^3 \pm 4n\pi^4 \pm$		$= 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots$	$= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \dots$. 6	$=x+\frac{1}{2}x^2+\frac{1}{3}x^3+\frac{1}{4}x^4+\cdots$	$= x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots$	$= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots$	$= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \dots$	$= 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots$	$= 1 + (n+1)x + \binom{n+2}{2}x^2 +$	$= 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \dots$	$= 1 + x + 2x^2 + 5x^3 + \dots$	$= 1 + x + 2x^2 + 6x^3 + \cdots$	$= 1 + (2+n)x + {\binom{4+n}{2}}x^2 +$	$= x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{25}{12}x^4 + \dots$	$= \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots$	$= x + x^2 + 2x^3 + 3x^4 + \cdots$	$= F_n x + F_{2n} x^2 + F_{3n} x^3 + \cdots$
	Tavlor's series:	$f(x) \equiv f(a) + (x - a) f'(a)$	Expansions:	Expansions.	$\frac{1-x}{x}$	$\frac{1}{1-cx}$	$\frac{1}{1-x^n}$	$\frac{x}{(1-\omega)^2}$	$\frac{1}{m^k} \frac{d^n}{d^n} \left(\begin{array}{c} 1 \\ \end{array} \right)$	$\frac{x}{dx^n} \left(\frac{1-x}{1-x} \right)$	e ⁹	$\ln(1+x)$, 1	$\ln \frac{1}{1-x}$	$\sin x$	$x \cos x$	$\tan^{-1} x$	$(1+x)^n$	$\frac{1}{(1-x)^{n+1}}$	$\frac{x}{e^x - 1}$	$\frac{1}{2x}(1-\sqrt{1-4x})$	$\frac{1}{\sqrt{1-4x}}$	$\frac{1}{\sqrt{1-4x}} \left(\frac{1-\sqrt{1-4x}}{2x} \right)^n$	$\frac{1}{1-x}\ln\frac{1}{1-x}$	$\frac{1}{2} \left(\ln \frac{1}{1-x} \right)^2$	$\frac{x}{1 - x - x^2}$	$\frac{F_n x}{1 - (F_{n-1} + F_{n+1}) x - (-1)^n x^2}$