$\begin{array}{c} {\rm Data\ Flow\ Analysis} \\ {\rm Assignment\ 2} \end{array}$

Iacopo Ruzzier, Daniele Fassetta, Anna Semeraro

$14~\rm aprile~2025$

Indice

1	\mathbf{Ver}	y Busy Expressions	2
	1.1	Definizione del problema	2
	1.2	Esempio di esecuzione	2
2	Dor	minator Analysis	3
	2.1	Definizione del problema	9
	2.2	Esempio di esecuzione	9
3	Con	nstant propagation	4
	3.1	Definizione del problema	4
	3.2	Esempio di esecuzione	4

1 Very Busy Expressions

1.1 Definizione del problema

- Un'espressione è **very busy** in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga definito.
- Un'espressione a+b è very busy in un punto p se a+b è valutata in tutti i percorsi da p a Exit e non c'è una definizione di a o b lungo tali percorsi

	Very Busy Expressions
Domain	Expressions
Direction	Backward
	$in[b] = f_b(out[b])$
	$out[b] = \wedge in(succ[b])$
Transfer function	$f_b = Gen_b \cup (x - Kill_b)$
Meet Operation (\land)	Ω
Boundary Condition	$in[exit] = \emptyset$
Initial interior points	$in[b] = \mathcal{U}$

Tabella 1: Very busy expressions

Dove

- \bullet Gen[b]: espressioni valutate all'interno del Basic Block
- $\bullet~Kill[b]$: un'espressione viene uccisa quando un suo operando viene ridefinito all'interno di b

1.2 Esempio di esecuzione

2 Dominator Analysis

2.1 Definizione del problema

- \bullet In un CFG diciamo che un nodo X domina un altro nodo Yse il nodo Xappare in ogni percorso del grafo che porta dal blocco Entry al blocco Y
- annotiamo ogni basic block B_i con un insieme $Dom[B_i]$:
 - $-B_i \in Dom[B_j] \iff B_i \text{ domina } B_j$
 - $-\ B_i \in Dom[B_i]$: per definizione un nodo domina se stesso

	Dominator Analysis
Domain	Basic Blocks
Direction	Forward
	$out[b] = f_b(in[b])$
	$in[b] = \wedge out(pred[b])$
Transfer function	$f_b = Dom[b] = b \cup x$
Meet Operation (\land)	Ω
Boundary Condition	out[entry] = entry
Initial interior points	$out[b] = \mathcal{U}$

Tabella 2: Dominator analysis

2.2 Esempio di esecuzione

ВВ	Iterazione 1	
	$IN[B] = \wedge OUT(pred[b])$	$DOM[B] = B \cup IN[B]$
A	/	A (boundary condition)
В	A	$B \cup A = \{A, B\}$
С	A	$C \cup A = \{A, C\}$
D	$\{A,C\}$	$D \cup \{A,C\} = \{A,C,D\}$
E	$\{A,C\}$	$E \cup \{A,C\} = \{A,C,E\}$
F	${A, C, D} \cap {A, C, E} = {A, C}$	$F \cup \{A,C\} = \{A,C,F\}$
G	$\{A,B\}\cap\{A,C,F\}=A$	$G \cup A = \{A,G\}$

3 Constant propagation

3.1 Definizione del problema

- L'obiettivo della constant propagation è quello di determinare in quali punti del programma le variabili hanno un valore costante.
- L'informazione da calcolare per ogni nodo del CFG è un insieme di coppie del tipo <variabile, valore costante>.
- Se abbiamo la coppia $\langle x, c \rangle$ al nodo n, significa che x è garantito avere il valore c ogni volta che n viene raggiunto durante l'esecuzione del programma.

	Constant Propagation
Domain	pairs (v,c)
Direction	Forward
	$out[b] = f_b(in[b])$
	$in[b] = \wedge out(pred[b])$
Transfer function	$f_b = Gen[b] \cup (x - Kill[b])$
Meet Operation (\land)	Ω
Boundary Condition	$out[entry] = \emptyset$
Initial interior points	$out[b] = \mathcal{U}$

Tabella 3: Constant propagation

- Gen[b] rappresenta l'insieme di nuovi assegnamenti (all'interno di b) con valore costante. I casi di interesse sono:
 - x = c con c costante: $Gen[b] = Gen[b] \cup (x, c)$
 - x = c1⊕c2 con c1,c2 costanti: $Gen[b] = Gen[b] \cup (x, c1 \oplus c2)$ (calcolando il valore dell'espressione)
 - $x = c \oplus y \circ x = y \oplus c \circ con c \circ costante$:
 - 1. controlliamo che y sia presente nell'insieme in input: $\exists (y, v_y) \in In[b]$
 - 2. se è vero, $Gen[b] = Gen[b] \cup (x, e)$ con $e = c \oplus v_y$ (o $v_y \oplus c$)
 - -x = y \oplus z, valutando y e z allo stesso modo del caso precedente:

$$\exists (y, v_y), (z, v_z) \in In[b] \implies Gen[b] = Gen[b] \cup (x, e) \text{ con } e = v_y \oplus v_z$$

Nel caso di definizioni multiple di \mathbf{x} , riteniamo valida solamente l'ultima all'interno di b

• Kill[b]: ogni definizione x = expr uccide le coppie $(x,c) \in \mathcal{D}$ (dominio)

3.2 Esempio di esecuzione

L'algoritmo arriva a convergenza all'iterazione 3 (notiamo in particolare che dalla seconda iterazione non cambia IN[BB9], ovvero l'input del blocco WHILE, unico ad avere predecessori multipli).

	Iterazione 1	
	IN[B]	OUT[B]
BB1	Ø	∅ (boundary condition)
BB2	Ø	$\{(k,2)\}$
BB3	$\{(k,2)\}$	$\{(k,2)\}$
BB4	$\{(k,2)\}$	$\{(k,2),(a,4)\}$
BB5	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$
BB6	$\{(k,2)\}$	$\{(k,2),(a,4)\}$
BB7	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,8)\}$
BB8	$\{(k,2),(a,4)\}$	$\{(k,4),(a,4)\}$
BB9	$\{(k,4),(a,4)\} \cap \mathcal{U} = \{(k,4),(a,4)\}$	$\{(k,4),(a,4)\}$
BB10	$\{(k,4),(a,4)\}$	$\{(k,4),(a,4),(b,2)\}$
BB11	$\{(k,4),(a,4),(b,2)\}$	$\{(k,4),(a,4),(b,2),(x,8)\}$
BB12	$\{(k,4),(a,4),(b,2),(x,8)\}$	$\{(k,4),(a,4),(b,2),(x,8),(y,8)\}$
BB13	$\{(k,4),(a,4),(b,2),(x,8),(y,8)\}$	$\{(k,5),(a,4),(b,2),(x,8),(y,8)\}$
BB14	$\{(k,4),(a,4)\}$	$\{(k,4),(a,4)\}$
BB15	$\{(k,4),(a,4)\}$	

	Iterazione 2	
	IN[B]	OUT[B]
BB1	/	\emptyset (boundary condition)
BB2	Ø	$\{(k,2)\}$
BB3	$\{(k,2)\}$	$\{(k,2)\}$
BB4	$\{(k,2)\}$	$\{(k,2),(a,4)\}$
BB5	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$
BB6	$\{(k,2)\}$	$\{(k,2),(a,4)\}$
BB7	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,8)\}$
BB8	$\{(k,2),(a,4)\}$	$\{(k,4),(a,4)\}$
BB9	$\{(k,4),(a,4)\} \cap \{(y,8),(k,5),(a,4),(b,2)(x,8)\} = \{(a,4)\}$	$\{(a,4)\}$
BB10	$\{(a,4)\}$	$\{(a,4),(b,2)\}$
BB11	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2)\}$
BB12	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2),(y,8)\}$
BB13	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$
BB14	$\{(a,4)\}$	$\{(a,4)\}$
BB15	$\{(a,4)\}$	

	Iterazione 3	
	IN[B]	OUT[B]
BB1	/	\emptyset (boundary condition)
BB2	Ø	$\{(k,2)\}$
BB3	$\{(k,2)\}$	$\{(k, 2)\}$
BB4	$\{(k,2)\}$	$\{(k,2),(a,4)\}$
BB5	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$
BB6	$\{(k,2)\}$	$\{(k,2),(a,4)\}$
BB7	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,8)\}$
BB8	$\{(k,2),(a,4)\}$	$\{(k,4),(a,4)\}$
BB9	$\{(k,4),(a,4)\}\cap\{(y,8),(a,4),(b,2)\}=\{(a,4)\}$	$\{(a,4)\}$
BB10	$\{(a,4)\}$	$\{(a,4),(b,2)\}$
BB11	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2)\}$
BB12	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2),(y,8)\}$
BB13	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$
BB14	$\{(a,4)\}$	$\{(a,4)\}$
BB15	$\{(a,4)\}$	/