Системы аксиом, тавталогии, правила вывода

В. Л. Селиванов

25 октября 2022 г.

Содержание

1	Основные равносильности	2
2	Основные тавтологии	3
3	Гильбертовское исчисление предикатов	3
	3.1 Аксиомы	3
	3.2 Аксиомы равенства	3
	3.3 Правила вывода	3
4	Генценовское исчисление предикатов (без равенства)	4
	4.1 Аксиомы	4
	4.2 Правила вывода	4
5	Минимальная арифметика и арифметика Пеано	5
6	Аксиомы теории множеств	5

1 Основные равносильности

- 1) $(\varphi \to \psi) \equiv (\neg \varphi \lor \psi);$
- 2) $\neg \neg \varphi \equiv \varphi$;
- 3) $\neg(\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi);$
- 4) $\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi);$
- 5) $(\varphi \wedge \psi) \equiv (\psi \wedge \varphi);$
- 6) $(\varphi \lor \psi) \equiv (\psi \lor \varphi);$
- 7) $\varphi \wedge (\psi \wedge \theta) \equiv (\varphi \wedge \psi) \wedge \theta$;
- 8) $\varphi \lor (\psi \lor \theta) \equiv (\varphi \lor \psi) \lor \theta$;
- 9) $\varphi \wedge (\psi \vee \theta) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \theta);$
- 10) $\varphi \lor (\psi \land \theta) \equiv (\varphi \lor \psi) \land (\varphi \lor \theta).$
- 11) $\neg(\forall x\varphi) \equiv \exists x(\neg\varphi);$
- 12) $\neg(\exists x\varphi) \equiv \forall x(\neg\varphi);$
- 13) $\psi \wedge \forall x \varphi \equiv \forall x (\psi \wedge \varphi);$
- 14) $\psi \vee \exists x \varphi \equiv \exists x (\psi \vee \varphi);$
- 15) $\psi \vee \forall x \varphi \equiv \forall x (\psi \vee \varphi);$
- 16) $\psi \wedge \exists x \varphi \equiv \exists x (\psi \wedge \varphi) (x$ не входит свободно в ψ);
- 17) $\forall x \varphi(x) \equiv \forall y \varphi(y);$
- 18) $\exists x \varphi(x) \equiv \exists y \varphi(y) \ (y \text{ не входит в } \varphi).$

2 Основные тавтологии

- 1) $\varphi \to (\psi \to \varphi);$
- 2) $(\varphi \to \psi) \to ((\varphi \to (\psi \to \theta)) \to (\varphi \to \theta));$
- 3) $\varphi \to (\psi \to (\varphi \land \psi));$
- 4) $(\varphi \wedge \psi) \rightarrow \varphi$;
- 5) $(\varphi \wedge \psi) \rightarrow \psi$;
- 6) $\varphi \to (\varphi \lor \psi)$;
- 7) $\psi \to (\varphi \lor \psi)$;
- 8) $(\varphi \to \theta) \to ((\psi \to \theta) \to ((\varphi \lor \psi) \to \theta));$
- 9) $(\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi);$
- 10) $\neg \neg \varphi \rightarrow \varphi$.

3 Гильбертовское исчисление предикатов

3.1 Аксиомы

- 1) Тавтологии сигнатуры σ ;
- 2) Кванторные аксиомы:

$$\forall x \varphi(x) \to \varphi(t) \quad \mathbf{u} \quad \varphi(t) \to \exists x \varphi(x).$$

3.2 Аксиомы равенства

- 1) $\forall x(x=x)$,
- 2) $\forall x \forall y (x = y \rightarrow y = x),$
- 3) $\forall x \forall y \forall z (x = y \land y = z \rightarrow x = z),$
- 4) $\forall x_1 \forall y_1 \dots \forall x_n \forall y_n (x_1 = y_1 \land \dots \land x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)),$
- 5) $\forall x_1 \forall y_1 \dots \forall x_n \forall y_n (x_1 = y_1 \land \dots \land x_n = y_n \land P(x_1, \dots, x_n) \rightarrow P(y_1, \dots, y_n)).$

3.3 Правила вывода

$$\frac{\varphi, \quad \varphi \to \psi}{\psi}, \quad \frac{\psi \to \varphi(y)}{\psi \to \forall x \varphi(x)}, \quad \frac{\varphi(y) \to \psi}{\exists x \varphi(x) \to \psi},$$

где y — переменная, не входящая свободно в нижнюю формулу.

Вариант И Π_{σ}^* получается, если вместо всех тавтологий берутся только *основные* тавтологии.

4 Генценовское исчисление предикатов (без равенства)

4.1 Аксиомы

$$\Gamma, \varphi \vdash \Delta, \varphi$$

4.2 Правила вывода

$$\begin{array}{ll} \frac{\Gamma,\varphi,\psi\vdash\Delta}{\Gamma,\varphi\wedge\psi\vdash\Delta}, & \frac{\Gamma\vdash\Delta,\varphi;\;\Gamma\vdash\Delta,\psi}{\Gamma\vdash\Delta,\varphi\wedge\psi}, \\ \frac{\Gamma,\varphi\vdash\Delta;\;\Gamma,\psi\vdash\Delta}{\Gamma,\varphi\vee\psi\vdash\Delta}, & \frac{\Gamma\vdash\Delta,\varphi,\psi}{\Gamma\vdash\Delta,\varphi\vee\psi}, \\ \frac{\Gamma\vdash\Delta,\varphi;\;\Gamma,\psi\vdash\Delta}{\Gamma,\varphi\to\psi\vdash\Delta}, & \frac{\Gamma,\varphi\vdash\Delta,\psi}{\Gamma\vdash\Delta,\varphi\to\psi}, \\ \frac{\Gamma\vdash\Delta,\varphi}{\Gamma,\neg\varphi\vdash\Delta}, & \frac{\Gamma,\varphi\vdash\Delta}{\Gamma\vdash\Delta,\neg\varphi}, \\ \frac{\Gamma,\varphi(t)\vdash\Delta}{\Gamma,\forall x\varphi(x)\vdash\Delta}, & \frac{\Gamma\vdash\Delta,\varphi(y)}{\Gamma\vdash\Delta,\forall x\varphi(x)}, \\ \frac{\Gamma,\varphi(y)\vdash\Delta}{\Gamma,\exists x\varphi(x)\vdash\Delta}, & \frac{\Gamma\vdash\Delta,\varphi(t)}{\Gamma\vdash\Delta,\exists x\varphi(x)}, \\ \frac{\Gamma\vdash\Delta,\varphi;\;\Gamma,\varphi\vdash\Delta}{\Gamma\vdash\Delta,\exists x\varphi(x)}, \end{array}$$

5 Минимальная арифметика и арифметика Пеано

- 1) 0+1=1;
- 2) $\forall x \neg (x + 1 = 0);$
- 3) $\forall x \forall y (x+1=y+1 \rightarrow x=y);$
- 4) $\forall x(x+0=x);$
- 5) $\forall x \forall y (x + (y+1) = (x+y) + 1);$
- 6) $\forall x(x \cdot 0 = 0);$
- 7) $\forall x \forall y (x \cdot (y+1) = (x \cdot y) + x);$
- 8) $\forall x \neg (x < 0)$;
- 9) $\forall x \forall y (x < y \lor x = y \lor y < x);$
- 10) $\forall x \forall y (x < y + 1 \leftrightarrow (x < y \lor x = y)).$

Арифметика Пеано ПА получается из МА добавлением схемы аксиом индукции:

$$(\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1))) \to \forall x\varphi(x),$$

где $\varphi(x)$ — любая формула сигнатуры MA.

6 Аксиомы теории множеств

- 1) $\exists x(x=x)$.
- 2) $\forall u(u \in X \leftrightarrow u \in Y) \to X = Y$ (аксиома объёмности).
- 3) $\forall u \forall v \exists X \forall z (z \in X \leftrightarrow z = u \lor z = v)$ (существование мн-ва из двух элементов).
- 4) $\forall X \exists Y \forall u (u \in Y \leftrightarrow u \in X \land \varphi(u))$ (аксиома выделения).
- 5) $\forall X \exists Y \forall u \forall z (u \in z \land z \in X \rightarrow u \in Y)$ (существование объединения семейства мн-в).
- 6) $\forall X \exists Y \forall u (u \in Y \leftrightarrow u \subseteq X)$ (существование множества подмножеств).
- 7) $\forall x \forall y \forall y' (\varphi(x,y) \land \varphi(x,y') \rightarrow y = y')$ $\rightarrow \forall X \exists Y \forall x \forall y (x \in X \land \varphi(x,y) \rightarrow y \in Y)$ (существование образа функции).
- 8) $\exists Y (\emptyset \in Y \land \forall y (y \in Y \to y \cup \{y\} \in Y))$ (существование бесконечного мн-ва).
- 9) $\forall X(X \neq \emptyset \rightarrow \exists x(x \in X \land \forall u(u \in x \rightarrow u \notin X)))$ (аксиома регулярности).
- 10) $\forall X \exists f((f:(P(X) \setminus \{\emptyset\}) \to X) \land \forall Y(Y \subseteq X \land Y \neq \emptyset \to f(Y) \in Y)).$