Spis treści

1. Ce	el projektu	3
2. Tw	orzenie modelu	3
2.1.	Odgięcie bazowe – arkusz nr 1	3
2.2.	Odgięcie krawędzi	4
2.3.	Zamknięcie narożników	5
2.4.	Otwory pod łączenie obu części obudowy	6
2.5.	Uskok	6
2.6.	Wycięcia dla możliwości zamontowania drugiej części obudowy	7
2.7.	Otwory wentylacyjne oraz pod okablowanie	7
2.8.	Przetłoczenie	9
2.9.	Gotowa pierwsza część obudowy	10
2.10.	. Arkusz nr 2	10
3. Go	otowy model (złożenie)	12

1. Cel projektu

Celem projektu było stworzenie modelu wybranego przedmiotu z arkusza blachy w programie Solidworks za pomocą narzędzia do arkuszy blach. Do zamodelowania wybrano obudowę do zasilacza komputerowego.

2. Tworzenie modelu

2.1. Odgięcie bazowe – arkusz nr 1

Odgięcie bazowe, które jest podstawą do dalszej pracy w module arkusza blach, wykonano następująco. Wybrano opcję *Odgięcie bazowe/Wypust*, wybrano płaszczyznę i stworzono szkic. Następie ustawiono grubość blachy (w tym wypadku wynosi 2mm).

Rysunek 1. Odgięcie bazowe

2.2. Odgięcie krawędzi

Następnym krokiem jest wykonanie krawędzi. Wykonano to za pomocą opcji *Odgięcie krawędzi*. Wybrano krawędź, która będzie wewnętrzna w modelu, ustawiono promień odgięcia oraz na jaką odległość ma być wyciągnięta.

Rysunek 2. Odgięcie krawędzi

W analogiczny sposób wykonano pozostałe boki obudowy.

Rysunek 3. Pozostałe boki modelu

2.3. Zamknięcie narożników

Aby zamknąć narożnik rozwinięto opcję *Narożniki* i wybrano *Zamknięty narożnik*. Wybrano ścianę do wydłużenia oraz do dopasowania, typ narożnika i długość przerwy.

Rysunek 4. Zamykanie narożnika

Analogicznie postąpiono z pozostałymi narożnikami wzdłuż osi Z.

Rysunek 5. Zamknięte wszystkie narożniki

2.4. Otwory pod łączenie obu części obudowy

Kolejnym krokiem było wykonanie otworów aby można było połączyć obie części obudowy. W tym celu wybrano opcję *Wyciągnięcie wycięcia* i wykonano szkic na wybranych ścianach modelu.

Rysunek 6. Otwory pod łączenie z drugą częścią obudowy

W trakcie powstawiania modelu stworzono jeszcze kilka niezbędnych otworów w innych ścianach. Będą one widoczne w kolejnych krokach.

2.5. Uskok

Dla łatwiejszego montażu wykonano uskok w jeden ze ścian. Wybrano opcję *Uskok*, wyznaczono ścianę i na niej linię, gdzie ma się uskok znajdować. Wybrano również odpowiednią formę odsunięcia oraz pozycję.

Rysunek 7. Wykonanie uskoku

2.6. Wycięcia dla możliwości zamontowania drugiej części obudowy

W celu możliwości włożenia drugiej części obudowy (pokrywy) wycięto brzegi widocznych poniżej ścian. Zrobiono to za pomocą opcji *Wyciągnięcie wycięcia*.

Rysunek 8. Wycięcia pod montaż drugiej części obudowy

2.7. Otwory wentylacyjne oraz pod okablowanie

Model zakładał wykonanie w dwóch ścianach (pierwszej części obudowy) różnych otworów ułatwiających cyrkulację powietrza i odprowadzanie ciepła. Poniżej przedstawiono oba zestawy otworów. Oba zostały wykonane za pomocą opcji *Wyciągnięcie wycięcia* oraz *Szyk liniowy*. Na rysunku 9 widać zastosowanie szyku liniowego w jednym kierunku oraz otwór na wyprowadzenie kabli na zewnątrz. Na rysunku 10 widać zastosowanie kilku szyków liniowych w dwóch kierunkach oraz wycięcie na gniazdko.

Rysunek 9. Pierwszy zestaw otworów wentylacyjnych oraz otwór na kable

Rysunek 10. Drugi zestaw otworów wentylacyjnych oraz wycięcie na gniazdko

2.8. Przetłoczenie

Ostatnim krokiem w tej części było wykonanie przetłoczenia. W tym celu stworzono nowy plik, wykonano szkic, który wyciągnięto na odległość 2mm i wykonano po jednej stronie zaokrąglenia o wartości 1 mm. Następnie wybrano opcję *Narzędzie formowania* i wybrano ścianę bez zaokrągleń jako ścianę zatrzymującą.

narzędzia do tłoczenia.

Rysunek 11. Narzędzie formownia

Rysunek 12. Wstawione w model narzędzie do tłoczenia

2.9. Gotowa pierwsza część obudowy

Rysunek 13. Pierwsza część obudowy

2.10. Arkusz nr 2

W tym przypadku kroki postępowania są analogiczne co w modelu powyżej. Wykonano odgięcie bazowe, odgięcia krawędzi oraz otwory pozwalające na montaż elementów. Jedynym dodatkowym krokiem było wykonanie otworu wentylacyjnego. Na początku stworzono odpowiedni szkic z okręgów oraz przecinających je linii. Następnie wybrano opcję *Otwór wentylacyjny*, wybrano odpowiednie fragmenty szkicu jako granice, żebra, mostki i granicę wypełnienia.

Rysunek 14. Otwór wentylacyjny

Rysunek 15. Gotowa druga część obudowy

3. Gotowy model (złożenie)

Rysunek 16. Gotowa obudowa zasilacza

