West Florida Mall

Case study

Introduction

- A new mall, west florida mall just had it's grand opening 3 weeks ago.
- It is a part of a series of malls owned by a parent company
- We need a database to keep track of the management of the mall in terms of
 - Stores
 - Owners
 - Workers of the stores

Initial user specifications

1) Mall Information

- a) Mall's name and address
- b) A mall must contain one or more stores

2) Store Information

- a) Store number
- b) Name
- c) Location
- d) Departements
- e) Owner
- f) Manager
- g) Each department is managed by a manager
- h) Each store will have only one store manager
- i) Each store is owned by only one owner
- j) Each store is located in one and only one mall

- 3) Store Manager Information
 - a) Name
 - b) Social security number
 - c) Which store he or she is working for
 - d) salary
- 4) Store Owner Information
 - a) Name
 - b) Address
 - c) Office phone number
 - d) May own more than one store

Step one

• Select one primary entity from the Database requirements description.

• Show attributes to be recorded for that entity.

• We will choose Mall as our primary entity.

Step two

- Use structured english for describing the Database :
 - Entities
 - Attributes
 - keys

The Entity

- For each Mall in the Database we record:
 - Name
 - Address
 - store_names

Attributes for Mall

- For each Mall there will be:
 - One and only one name
 - One and only one address
 - There may be more than one store_name recorded for each Mall

The keys

• For each Mall we assume that the mall <u>name</u> will be unique.

Relations

Mall

<u>Name</u>	Address
<u>itame</u>	7 (ddi 655

Mall-store

<u>Name</u>	store_name

Case study

Part two

Step three

• Examine attributes in the primary entity (with user assistance) to find out if information about one of the attributes is to be recorded.

• We need to store information about the attribute STORE

So by turning the attribute STORE into an entity we need to repeat step two

The Entity

- For each STORE in the database we record:
 - Store name (sname)
 - Store number (snum)
 - Store location (sloc)
 - Departments (dept)

The attribute for STORE

- For each store there will be one and only one
 - Sname
 - o Snum
 - Sloc
 - More than one dept

The keys

• We assume that the <u>snum</u> will be unique.

Step three (B)

• Define the relationship back to the original entity

• There is a relationship (located_in) between STORE and MALL

Step four

- If another entity is appropriate draw the second entity with it's attributes
- We select another entity STORE_MANAGER
- Repeat step two for that entity

The Entity

- For each STORE_MANAGER in the database we record:
 - Store manager name (sm_name)
 - Store manager social security number (sm_ssn)
 - Store manager salary (sm_salary)

The attributes for store_manager

- For each STORE_MANAGER there will be one and only one:
 - Sm_name
 - Sm_ssn
 - o sm_salary

The keys

• For each STORE_MANAGER we will assume that the <u>sm_snn</u> will be unique.

Step five

- Connect entities with relationships if exist
- There is a relationship (manages) between STORE and STORE_MANAGER
- We select our next primary entity OWNER
- Repeating step two for OWNER

The Entity

- For each OWNER in the database we record:
 - Store owner name (so_name)
 - Store owner social security number (so_ssn)
 - Store owner office phone (so_of_phone)
 - Store owner address (so_address)

The attributes for OWNER

- For each OWNER there will be one and only one:
 - o So_name
 - o So_ssn
 - So_off_phone
 - o so_address

The keys

For each OWNER we will assume that the <u>so ssn</u> will be unique.

Step five

• Connect entities with relationships if exist

• There is a relationship (owns) between STORE and OWNER

Relations

MALL

name	address

STORE

sloc	sname	<u>snum</u>
------	-------	-------------

STORE_DEPT

<u>snum</u>	depts
-------------	-------

OWNER

so_ssn	so_name	so_off_phone	so_address
--------	---------	--------------	------------

STORE_MANAGER

sm_snn	sm_name	sm_salary
--------	---------	-----------

Case study

Part three

Step six

- State the exact nature of the relationships in structured English from all sides
- Example:
 - when a relationship is A:B::1:M, there is a relationship from A(1) to B(M) and from B(M) back to A(1)

The relationship located_in

From MALL to STORE

- A mall must have at least one store and can have many stores
- Malls, which are recorded in the database, must have many (one or more)stores
 located in them
- 1(full):N

From STORE to MALL

- Many stores (one or more) must be in one mall
- Stores, which are recorded in the database, must be in one mall
- M(full):1

Mapping

• we have to map the relationship between the MALL entity and the STORE entity

• This is a binary 1:N relationship

• Include the key of the entity on the 1 side of the relationship to the N side as a foreign key

The relationship owns

- From OWNER to STORE
 - Owners, which are recorded in the database, must own one or more stores
 - One owner must own at least one store and may own many stores
 - o 1(full):M
- From STORE to OWNER
 - Stores, which are recorded in the database, must have one and only one owner
 - Many stores can have one owner
 - M(full):1

Mapping

 Include the key of the entity on the 1 side of the relationship to the N side as a foreign key

The relationship manages

From STORE to STORE MANAGER

- Stores, which are recorded in the database, must have one store manager
- Stores must have one store manager and can only have one and only one store manager
- o 1(full):1

From STORE MANAGER to STORE

- Store managers, which are recorded in the database, must manage one and only one store
- Store managers must manage at least one store and can manage only one store
- 1(full):1

Mapping

 Take the key from STORE MANAGER and include it in STORE as the foreign key

Relations

MALL

name	address

Store

sloc	sname	<u>snum</u>	mall_name	so_ssn	sm_ssn

Store_dept

<u>snum</u>	depts
-------------	-------

Owner

so ssn	so name	so_off_phone	so address
	_		_

Store_manager

sm_ssn	sm_name	sm_salary

Case study

Part four

Additional input from the user

- We need additional information for departments
- Each department has at least one employee working for it
- We have to record information about the employees in the store
- Now we have two new entities
 - Departments
 - Employee

The Entity

- For each DEPARTMENT in the database, we record:
 - department name (dname)
 - department number (dnum)

The Attributes for DEPARTMENT

• For each DEPARTMENT there will be one and only one:

Dname

o **Dnum**

The Keys

• For each <u>DEPARTMENT</u>, we <u>do not assume</u> that any attribute will be <u>unique enough</u> to identify individual entities without the accompanying reference to <u>STORE</u>, the <u>owner entity</u>.

The Entity

• For each EMPLOYEE in the database, we record:

employee name (ename)

employee Social Security number (essn)

The Attributes for EMPLOYEE

• For each EMPLOYEE, there will be one and only one:

• Ename

o Essn

The Keys

• For each EMPLOYEE, we will assume that the <u>essn</u> will be unique

structural constraints

- the relationship dept_of:
 - From STORE to DEPARTMENT
 - Stores, which are recorded in the database, must have many (one or more)
 departments
 - From DEPARTMENT to STORE
 - Many departments (one or more) must be in one store
 - 1(full):N
 - M(full):1

structural constraints

- the relationship works_for :
 - Departments, which are recorded in the database, must have one or more employees working for it.
 - 1(full):N

Relations

MALL

name	address

Store

sloc	sname	<u>snum</u>	mall_name	so_ssn	sm_ssn

Owner

so ssn	so_name	so_off_phone	so address
	_		_

Store_manager

sm_ssn	sm_name	sm_salary

Department

dname	<u>dnum</u>	<u>snum</u>

Employee

ename	<u>essn</u>	dnum	snum

Case study

Part five

Additional input from the user

- An employee can also be a department manager
- A department manager can manage at most one department
- A department manager <u>supervises</u> at least <u>one employee</u> and may manage <u>several</u>
 <u>employees</u>
- we have a (recursive relationship) developing since an employee can be a department manager supervising other employees

Relation

Employee

ename	<u>essn</u>	snum	dm_ssn	dnum

Case study

Part six

New Entity

• A PERSON may be an owner, employee, or manager

 For each PERSON, we will record the name, Social Security number address, and phone number.

The Entity

- For each PERSON in the database, we record:
 - o person's name (pname)
 - person's Social Security number (pssn)
 - person's phone (pphone)
 - person's address (padd)

The Attributes for PERSON

- For each PERSON, there will be one and only one:
 - Pname
 - O Pssn
 - Pphone
 - padd

The Keys

• For each PERSON, we will assume that the <u>pssn</u> will be unique

structural constraints

• there is a disjoint relationship between PERSON and STORE_MANAGER,

OWNER, and **EMPLOYEE**

- This means that a person may be an owner, store manager, or an employee
- (a disjoint generalization/specialization relationship)

Relations

MALL

name	address

Store

sloc	sname	<u>snum</u>	mall_name	so_ssn	sm_ssn

Owner

so ssn	so_off_phone
_	

Store_manager

sm_ssn	sm_salary
--------	-----------

Department

dname <u>dnum</u> <u>snum</u>

Employee

Person

<u>pssn</u>	pname	padd	pphone
	Principal	Process	PP

ER Design Methodology

Step one:

Select one, primary entity from the database requirements description and show attributes to be recorded for that entity, Label keys if appropriate.

Step two:

Use structured English for entities, attributes, and keys to describe the database that has been elicited.

Step three:

Examine attributes in the existing entities (possibly with user assistance) to find out if information about one of the entities is to be recorded.

Step three (A):

If information about an attribute is needed, then make the attribute an entity.

Step three (B):

Define the relationship back to the original entity.

Step four:

If another entity is appropriate, draw the second entity with its attributes. Repeat steps 2 and 3 to see if this entity should be further split into more entities.

Step five:

Connect entities with relationships (one or more) if relationships exist.

Step six:

State the exact nature of the relationships in structured English from all sides, for example, if a relationship is A:B::1:M, then there is a relationship from A(1) to B(M) and from B(M) back to A(1).

Step seven:

Show some sample data.

Step eight:

Present the "as designed" database to the user complete with the English for entities, attributes, keys, and relationships. Refine the diagram as necessary.