LECTURE 2: NEWSVENDOR MODEL

Hailun Zhang@SDS

January 13, 2021

Expected Outcome

- Learn how to compute expected profit function
- Learn how to derive the optimal ordering quantity

- A store sells perishable product, say, paper version of New York Times.
- Selling price $c_p = \$1.00$
- Variable cost $c_v = \$0.25$
- Salvage value $c_s = \$0.00$
- How many copies should the store order from the publisher the previous night?

Demand distribution

 \bullet Suppose the demand D has the following distribution

d	10	15	20	25	30
$\mathbb{P}(D=d)$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{4}$

• Profit

Demand distribution

ullet Suppose the demand D has the following distribution

d	10	15	20	25	30
$\mathbb{P}(D=d)$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{4}$

• Profit

$$Profit(q, D) = \min(q, D)c_p - qc_v + \max(q - D, 0)c_s$$
$$= (q \wedge D)c_p - qc_v + (q - D)^+c_s$$

Notation

$$x^{+} = \max\{x, 0\} = \begin{cases} x, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$$
$$x^{-} = \max\{-x, 0\} = \begin{cases} -x, & \text{if } x \le 0\\ 0, & \text{if } x > 0 \end{cases}$$

For example, $7^+ = 7$, $(-7)^+ = 0$, $7^- = 0$, $(-7)^- = 7$. Therefore, for every real number x, $x = x^+ - x^-$.

How many to order?

- Order q=20 copies every day for n=100000 days total 1188870, average 11.8887.
- Order q=22 copies every day for n=100000 days total 1239199, average 12.3920.

Predict average profit per day

• Order q = 20 copies:

Demand	Profit	Probability
10	5	1/4
15	10	1/8
>=20	15	5/8

Predict average profit per day

• Order q = 20 copies:

Demand	Profit	Probability
10	5	1/4
15	10	1/8
>=20	15	5/8

• Expected profit

$$5(1/4) + 10(1/8) + 15(5/8) = 11.875.$$

Objective

• Maximize the expected profit for a day

$$h(q) = \mathbb{E}[\operatorname{Profit}(q, D)] = c_p \mathbb{E}(q \wedge D) - qc_v + c_s \mathbb{E}(q - D)^+.$$
(1)

Objective

• Maximize the expected profit for a day

$$h(q) = \mathbb{E}[\operatorname{Profit}(q, D)] = c_p \mathbb{E}(q \wedge D) - qc_v + c_s \mathbb{E}(q - D)^+.$$
(1)

• h(20) = 11.875.

Optimal order quantity

• Order q = 25, 26 copies:

Demand	Profit(25)	Probability	Profit(26)
10	3.75	1/4	3.5
15	8.75	1/8	8.5
20	13.75	1/8	13.5
25	18.75	1/4	18.5
30	18.75	1/4	19.5

Expected profit

$$h(25) = 3.75(1/4) + 18.75(1/8) + 13.75(1/8) + 18.75(1/4) + 18.75(1/4) = 13.125.$$

- h(26) = 13.125
- h(27) = 13.125
- h(30) = 13.125

Example: $\mathbb{E}(q \wedge D)$ and $\mathbb{E}(q - D)^+$

Assume that D follows the following distribution.

d	20	25	30	35
$\mathbb{P}[D=d]$	0.1	0.2	0.4	0.3
$30 \wedge d$	20	25	30	30
$(30 - d)^+$	10	5	0	0
$24 \wedge d$	20	24	24	24
$(24-d)^+$	4	0	0	0

Then,

$$\mathbb{E}[(30 \land D)] = 20(0.1) + 25(0.2) + 30(0.4) + 30(0.3)$$
$$= 2 + 5 + 12 + 9 = 28$$
$$\mathbb{E}[(30 - D)^{+}] =$$

EXAMPLE

Let $D \sim \text{Uniform}(20, 40)$. What would $\mathbb{E}[25 \wedge D]$ and $\mathbb{E}[(25 - D)^+]$ be? From uniform distribution, we have

$$f(x) = \begin{cases} 1/20, & \text{if } 20 \le x \le 40\\ 0, & \text{otherwise.} \end{cases}$$

Then,

EXAMPLE

Let $D \sim \text{Uniform}(20, 40)$. What would $\mathbb{E}[25 \wedge D]$ and $\mathbb{E}[(25 - D)^+]$ be? From uniform distribution, we have

$$f(x) = \begin{cases} 1/20, & \text{if } 20 \le x \le 40\\ 0, & \text{otherwise.} \end{cases}$$

Then,

$$\mathbb{E}[25 \wedge D] = \int_{20}^{40} (25 \wedge x) f(x) dx = \int_{20}^{40} \frac{1}{20} (25 \wedge x) dx$$
$$= \int_{20}^{25} \frac{1}{20} x dx + \int_{25}^{40} \frac{1}{20} 25 dx$$
$$= \frac{1}{20} \frac{1}{2} \left(25^2 - 20^2 \right) + \frac{25}{20} 15$$

$$\mathbb{E}(25-D)^+$$

$$\mathbb{E}[(25-D)^{+}] = \int_{20}^{40} (25-x)^{+} f(x) dx = \int_{20}^{25} (25-x) \frac{1}{20} dx$$
$$= \frac{1}{20} \left(\int_{20}^{25} 25 dx - \int_{20}^{25} x dx \right)$$
$$= \frac{1}{20} \left(25 \cdot 5 - \frac{1}{2} (25^{2} - 20^{2}) \right).$$

$$\mathbb{E}(25-D)^+$$

$$\mathbb{E}[(25-D)^{+}] = \int_{20}^{40} (25-x)^{+} f(x) dx = \int_{20}^{25} (25-x) \frac{1}{20} dx$$
$$= \frac{1}{20} \left(\int_{20}^{25} 25 dx - \int_{20}^{25} x dx \right)$$
$$= \frac{1}{20} \left(25 \cdot 5 - \frac{1}{2} (25^{2} - 20^{2}) \right).$$

LEMMA

The following identity holds

$$q = D \wedge q + (q - D)^{+}. \tag{2}$$

Thus
$$\mathbb{E}(25 - D)^+ = 25 - \mathbb{E}(D \wedge 25)$$
.

General continuous r.v.

$$\begin{split} F(x) &= \mathbb{P}[D \leq x] = \int_0^x f(t)dt, \\ \mathbb{E}[y \wedge D] &= \int_0^\infty (y \wedge x) f(x) dx = \int_0^y f(x) x dx + \int_y^\infty f(x) y dx \\ &= \int_0^y f(x) x dx + y \int_y^\infty f(x) dx \\ &= \int_0^y f(x) x dx + y (1 - F(y)) \\ \mathbb{E}(y - D)^+ &= y - \mathbb{E}(y \wedge D) = y F(y) - \int_0^y f(x) x dx. \end{split}$$

h(y) and optimal order quantity

$$h(y) = c_p \mathbb{E}(y \wedge D) - c_v y + \mathbb{E}(y - D)^+ c_s$$

$$= c_p \Big(\int_0^y f(x) x dx + y (1 - F(y)) \Big) - c_c y$$

$$+ c_s \Big(y F(y) - \int_0^y f(x) x dx \Big)$$

$$= (c_p - c_s) \Big(\int_0^y f(x) x dx - y F(y) \Big) + (c_p - c_v) y$$

14 / 15

h(y) and optimal order quantity

$$h(y) = c_p \mathbb{E}(y \wedge D) - c_v y + \mathbb{E}(y - D)^+ c_s$$

$$= c_p \Big(\int_0^y f(x) x dx + y (1 - F(y)) \Big) - c_c y$$

$$+ c_s \Big(y F(y) - \int_0^y f(x) x dx \Big)$$

$$= (c_p - c_s) \Big(\int_0^y f(x) x dx - y F(y) \Big) + (c_p - c_v) y$$

$$h'(y) = -(c_p - c_s) F(y) + (c_p - c_v).$$

h(y) and optimal order quantity

$$h(y) = c_p \mathbb{E}(y \wedge D) - c_v y + \mathbb{E}(y - D)^+ c_s$$

$$= c_p \Big(\int_0^y f(x) x dx + y (1 - F(y)) \Big) - c_c y$$

$$+ c_s \Big(y F(y) - \int_0^y f(x) x dx \Big)$$

$$= (c_p - c_s) \Big(\int_0^y f(x) x dx - y F(y) \Big) + (c_p - c_v) y$$

$$h'(y) = -(c_p - c_s)F(y) + (c_p - c_v).$$

The optimal order quantity y^* satisfies

$$F(y^*) = \frac{c_p - c_v}{c_p - c_s}.$$

Optimal order quantity (discrete case)

• y* is the smallest y such that

$$F(y) \ge \frac{c_p - c_v}{c_p - c_s}.$$

• Example,

$$\frac{c_p - c_v}{c_p - c_s} = \frac{1 - .25}{1 - 0} = .75$$

\overline{d}	10	15	20	25	30
$\boxed{\mathbb{P}(D=d)}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{4}$
F(d)	$\frac{1}{4}$				

• *y** =