RPS Analiza podatkov

A. Blejec

21. november 2013

Vprašanja

Nekaj vprašanj, na katere bi radi odgovorili je:

- Ali so fantje večji od deklet?
- Ali so fantje težji od deklet?
- Ali sta razpon rok in višina približno enaka?
- ▶ Ali drži Galtonovo opažanje glede višine otrok in staršev?
- **.**..

Zbrali smo nekaj podatkov o študentih, s katerimi si bomo lahko poskusili odgovoriti.

Podatki

Podaki so o študentih 3. letnika biologije v letu 2012/13 so v datoteki lfn in na http://bit.ly/16oBVpR

```
fpath <- "http://bit.ly/16oBVpR"
  data <- read.table(fpath, header = TRUE, sep = "\t")
  names(data)

[1] "starost" "mesec" "spol" "masa" "visina"
[6] "roke" "cevelj" "lasje" "oci" "mati"
[11] "oce" "majica"</pre>
```

Opisna statistika

summary(data[, 1:6])

starost		mesec		spol	masa
Min.	:20.00	Min.	: 0.000	F:33	Min. :50.00
1st Qu	.:21.00	1st Qu	.: 5.000	M:10	1st Qu.:55.50
Median	:21.00	Median	: 7.000		Median :61.00
Mean	:22.07	Mean	: 6.814		Mean : 63.42
3rd Qu	.:22.00	3rd Qu	.: 9.500		3rd Qu.:70.00
Max.	:59.00	Max.	:11.000		Max. :91.00

visina	roke		
Min. :156.0	Min. :154.0		
1st Qu.:164.0	1st Qu.:163.2		
Median :170.0	Median :167.8		
Mean :169.9	Mean :169.3		
3rd Qu.:173.5	3rd Qu.:172.5		
Max. :189.0	Max. :193.0		
	NA's ·5		

Ali pri podatkih kaj opazite?

Nenavadni podatki

Kaj storiti s tistim, ki je napisal, da je rojen v mesecu 0? Eden pa je star 59 let??

Popravljanje podatkov

Odstranimo ta starga

```
data <- data[data$starost < 30, ]
Podatke o mesecu 0 spremenimo v NA</pre>
```

```
data[data$mesec == 0, "mesec"] <- NA
table(data$mesec)
. 2 3 4 5 6 7 8 9 10 11
. 3 2 3 4 3 7 5 2 5 6</pre>
```

Nadaljevanje opisa

```
summary(data[, 7:dim(data)[2]])
cevelj lasje oci
```

Min. :36.00 S:19 S:23 Min. :157.0

1st Qu.:38.00 T:23 T:19 1st Qu.:160.0

Median :39.00 Median :165.0

Mean :39.93 Mean :165.6

3rd Qu.:41.00 3rd Qu.:168.0

Max. :48.00 Max. :180.0

NA's :5

oce majica
Min. :170.0 L: 4
1st Qu.:174.0 M:19
Median:179.0 S:16
Mean:179.1 XL: 1
3rd Qu.:182.0 XS: 2
Max.:190.0

NA's :5

mati

Višina po spolu

Povzetek višin glede na spol

```
summary(data$mati)
  Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 157.0 160.0 165.0 165.6 168.0 180.0
 by (data$visina, data$spol, summary)
data$spol: F
  Min. 1st Qu. Median Mean 3rd Qu. Max.
 156.0 163.0 168.0 166.8 170.0 178.0
data$spol: M
  Min. 1st Qu. Median Mean 3rd Qu. Max.
 171.0 180.0 180.0 180.2 183.0 189.0
 summary(data$oce)
  Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 170.0 174.0 179.0 179.1 182.0 190.0 5
```

5

Doseg spremenljivk v objektu data.frame

Poglejte kakšne so vrednosti spremenljivke visina! Ali je v delovnem prostoru (workspace)? Do spremenljivk lahko pridem posredno na več načinov

- ▶ data\$visina
- data[, 'visina']
- ▶ data[,5]

Neposreden dostop

Neposreden dostop do spremenljivk omogoči

```
attach(data)
length(visina)

[1] 42
visina[1:5]

[1] 173 178 167 171 171
```

Grafični prikaz podatkov

plot (visina)

Grafični prikaz podatkov

plot(visina, pch = 16, col = spol)

Kumulativa

```
x <- visina
plot(x, rank(x), pch = 16, col = spol)</pre>
```


Kumulativa in normalna aproksimacija

```
plot(x, rank(x), pch = 16, col = spol)
  q <- qnorm((rank(x) - 0.5)/length(x), mean(x),
+      sd(x))
  points(q, rank(x), col = 4)
  segments(x, rank(x), q, rank(x))</pre>
```


Slika kvantilov

qqnorm(visina, col = spol, pch = 16)
qqline(visina)


```
Boxplot(visina ~ spol, col = c("pink", "lightblue"))
    rug(jitter(visina[spol == "F"]), side = 2)
    rug(jitter(visina[spol == "M"]), side = 4)
```


Student t-test

```
t.test(visina ~ spol)
Welch Two Sample t-test
data: visina by spol
t = -6.4643, df = 12.502, p-value = 2.55e-05
alternative hypothesis: true difference in means is not
95 percent confidence interval:
-17.901862 -8.906219
sample estimates:
mean in group F mean in group M
       166.8182 180.2222
Lahko tudi tako:
```

Oglejte si, kaj vrne funkcija t.test(). Dorišite točki povprečij.

t.test(visina[spol == "F"], visina[spol == "M"])

Teža in spol

Izberite si nekaj prejšnjih prikazov in

- Raziščite kako je s težo pri dekletih in fantih.
- ► Izračunajte novo spremenljivko *BMI* = masa/visina²
- ► Kaj pa velja za BMI?

Velikost staršev in potomcev

Galton je ugotavljal korelacijo med velikostjo staršev in potomcev. Uvedel je pojem regresija, ki izvira iz ugotovitve, da so velikost staršev in potomcev v posebnem razmerju, ki zagotavlja 'regesijo' k povprečju.

Fantje

Koeficienti

summary(fit)

```
Call:
lm(formula = visina ~ oce, data = data)
Residuals:
            10 Median
                           3Q
   Min
                                Max
-14.298 -4.298 -1.343 3.998 16.315
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.4128 39.1670 2.130 0.0403 *
           0.4774 0.2186 2.183 0.0358 *
oce
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Residual standard error: 7.231 on 35 degrees of freedom
  (5 observations deleted due to missingness)
Multiple R-squared: 0.1199, Adjusted R-squared: 0.09474
```

fit <- lm(visina ~ oce, data = data)</pre>

Grafična analiza

$$par(mfrow = c(2, 2))$$

 $plot(fit, col = spol)$

Regresija

```
plot(visina, masa)
abline(lm(masa ~ visina))
```


Regresija

cor (masa, visina)

fit <- lm(masa ~ visina)</pre>

[1] 0.7049331

```
summary(fit)
Call:
lm(formula = masa ~ visina)
Residuals:
   Min
         10 Median 30
                                 Max
-15.354 -4.140 -1.786 3.579 24.042
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -92.2700 24.6887 -3.737 0.000581 ***
visina 0.9136 0.1453 6.286 1.87e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Posidual standard orrery 7 202 on 40 degrees of freedom
```

Regresija

```
fit <- lm(masa ~ visina * spol)</pre>
 summary(fit)
Call:
lm(formula = masa ~ visina * spol)
Residuals:
  Min 10 Median 30 Max
-8.381 -4.148 -1.588 3.022 11.878
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -13.1070 31.2526 -0.419 0.6773
visina 0.4297 0.1872 2.295 0.0274 *
spolM 100.1884 73.0398 1.372 0.1782
visina:spolM -0.4795 0.4113 -1.166 0.2509
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Residual standard error: 5.738 on 38 degrees of freedom
```

```
plot(visina, masa, col = spol)
abline(lm(masa ~ visina))
points(visina, predict(fit), pch = 16, col = spol)
```


Analiza variance

```
fvis \leftarrow cut(visina, breaks = c(155, 165, 175,
+ 200), labels = c("M", "S", "V")
  table (fvis)
fvis
M S V
12 22 8
  (m <- by(masa, fvis, mean))</pre>
fvis: M
[1] 56.16667
fvis: S
[1] 62.04545
fvis: V
[1] 74.625
```

A_OV

```
plot(masa, fvis)
points(m, 1:3, pch = 16, cex = 2)
```


AOV

```
fit <- lm(masa ~ 0 + fvis)</pre>
 summary(fit)
Call:
lm(formula = masa \sim 0 + fvis)
Residuals:
            10 Median
   Min
                           3Q
                                 Max
-19.625 -4.510 -1.167 2.924 25.954
Coefficients:
     Estimate Std. Error t value Pr(>|t|)
fvisM 56.167
                2.295 24.48 <2e-16 ***
fvisS 62.045
                1.695 36.61 <2e-16 ***
                  2.811 26.55 <2e-16 ***
fvisV 74.625
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
```

Residual standard error: 7.949 on 39 degrees of freedom Multiple R-squared: 0.9855, Adjusted R-squared: 0.9843

Fantje

Dekleta

Dekleta

Fantje in dekleta

