CS 4495 Computer Vision RANdom SAmple Consensus

Aaron Bobick
School of Interactive
Computing

Administrivia

- PS 3:
 - Check Piazza learn about least squares solutions and pseudo inverses
 - For 1.3, instead of using 4, 8 and 16 points and looking at the average residuals of 5 points, use 4,8, and 15 – since there are only 20 points!!
 - Due TUES October 18. Don't blow it!
- PS 4 will be out the 20th and due the 30th.

Matching with Features

Detect feature points in both images

An introductory example:

Harris corner detector

C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

Harris Detector: Mathematics

$$M = A^{T} A = \begin{bmatrix} \sum_{x} I_{x} I_{x} & \sum_{x} I_{x} I_{y} \\ \sum_{x} I_{x} I_{y} & \sum_{x} I_{y} I_{y} \end{bmatrix}$$

Measure of corner response:

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$
$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

(k - empirical constant, k = 0.04 - 0.06)

Harris Detector: Mathematics

- *R* depends only on eigenvalues of M
- R is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region

Key point localization

- General idea: find robust extremum (maximum or minimum) both in space and in scale.
- SIFT specific suggestion: use DoG pyramid to find maximum values (remember edge detection?) – then eliminate "edges" and pick only corners.
- More recent: use Harris detector to find maximums in space and then look at the Laplacian pyramid (we'll do this later) for maximum in scale.

Each point is compared to its 8 neighbors in the current image and 9 neighbors each in the scales above and below.

Remove low contrast, edge bound

Extrema points

Contrast > C

Not only on edge

Scale Invariant Detectors

- Harris-Laplacian¹
 Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

- SIFT (Lowe)²
 Find local maximum of:
 - Difference of Gaussians in space and scale

¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 2004

Point Descriptors

- We know how to detect points
- Next question: How to match them?

Point descriptor should be:

- 1. Invariant
- 2. Distinctive

Another version of the problem...

Want to find

... in here

Idea of SIFT

 Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

SIFT Features

SIFT vector formation

- 4x4 array of gradient orientation histograms over 4x4 pixels
 - not really histogram, weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

Extract features

- Extract features
- Compute putative matches

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T
 - Verify transformation (search for other matches consistent with T)

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T
 - Verify transformation (search for other matches consistent with T)

How to get "putative" matches?

Feature matching

- Exhaustive search
 - for each feature in one image, look at all the other features in the other image(s) – pick best one
- Hashing
 - compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- Nearest neighbor techniques
 - k-trees and their variants

Feature-space outlier rejection

- Let's not match all features, but only these that have "similar enough" matches?
- How can we do it?
 - SSD(patch1,patch2) < threshold
 - How to set threshold?

Feature-space outlier rejection

- A better way [Lowe, 1999]:
 - 1-NN: SSD of the closest match
 - 2-NN: SSD of the <u>second-closest</u> match
 - Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
 - That is, is our best match so much better than the rest?

Feature matching

- Exhaustive search
 - for each feature in one image, look at all the other features in the other image(s) – pick best one
- Hashing
 - compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- Nearest neighbor techniques
 - k-trees and their variants

 Problem: Even when pick best match, still lots (and lots) of wrong matches – "outliers"

Another way to remove mistakes

- Why are we doing matching?
 - To compute a model of the relation between entities
- So this is really "model fitting"

Fitting

 Choose a parametric model to represent a set of features – remember this???

simple model: lines simple model: circles

complicated model: car

Fitting: Issues

Case study: Line detection

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Slide: S. Lazebnik

y=mx+b

Least squares line fitting

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = m x_i + b$
- •Find (*m*, *b*) to minimize

Find
$$(m, b)$$
 to minimize
$$E = \sum_{i=1}^{n} \left(y_i - \begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} \right)^2 = \left\| \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} \right\|^2 = \left\| Y - XB \right\|^2$$

$$= (Y - XB)^T (Y - XB) = Y^T Y - 2(XB)^T Y + (XB)^T (XB)$$

$$\frac{dE}{dR} = 2X^T XB - 2X^T Y = 0$$

$$X^T X B = X^T Y$$

Normal equations: least squares solution to XB = Y

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

•Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$: $|ax_i + by_i - d|$

- Distance between point (x_i, y_i) and line ax+by=d
- Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

- •Distance between point (x_i, y_i) and line ax+by=d
- •Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0$$

Unit normal:

$$(x_{i}, y_{i}) \quad N=(a, b)$$

$$d = \frac{a}{n} \sum_{i=1}^{n} x_{i} + \frac{b}{n} \sum_{i=1}^{n} x_{i} = a\overline{x} + b\overline{y}$$

$$x_{i} - \overline{x} \quad y_{i} - \overline{y}$$

$$x_{i} - \overline{y} \quad a$$

$$\frac{\overline{\partial d}}{\overline{\partial d}} = \underline{\sum}_{i=1}^{n} -2(dx_i + by_i - d) = 0 \qquad d = \underline{-\frac{\sum}_{i=1}^{n} x_i + \frac{\sum}_{i=1}^{n} x_i - dx + by}$$

$$E = \sum_{i=1}^{n} (a(x_i - \overline{x}) + b(y_i - \overline{y}))^2 = \begin{vmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{vmatrix}^2 = (UN)^T (UN)$$

$$\frac{dE}{dN} = 2(U^T U)N = 0$$

Solution to $(U^TU)N = 0$, subject to $||N||^2 = 1$: eigenvector of U^TU associated with the smallest eigenvalue (least squares solution to homogeneous linear system UN = 0)

$$U = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix}$$

$$U = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix} \qquad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \overline{x})^2 & \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) & \sum_{i=1}^n (y_i - \overline{y})^2 \end{bmatrix}$$

second moment matrix

Least squares: Robustness to noise

Least squares fit to the red points:

Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators

• General approach: minimize
$$\sum_{i} \rho(r_i(x_i, \theta); \sigma)$$

 $r_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters θ ρ – robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large

Behaves much the same as least squares

"Find consistent matches"???

- Some points (many points) are static in the world
- Some are not
- Need to find the right ones so can compute pose.
- Well tried approach:
 - Random Sample Consensus (RANSAC)

Simpler Example

Fitting a straight line

Discard Outliers

- No point with d>t
- RANSAC:
 - RANdom SAmple Consensus
 - Fischler & Bolles 1981
 - Copes with a large proportion of outliers

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

(RANdom SAmple Consensus):

Fischler & Bolles in '81.

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

$$N_I = 6$$

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Best Line has most support

More support -> better fit

In General

- Fit a more general model
- Sample = minimal subset s
 - Translation: pick one point pair
 - Homography (for plane) pick 4 point pairs
 - Fundamental matrix pick 7 point pairs

Algorithm

- Randomly select s points
- Instantiate a model
- Get consensus set S_i
- If | S_i |>T, terminate and return model
- Repeat for N trials, return model with max | S_i |

Distance Threshold

- Requires noise distribution
- Location: Gaussian noise with σ
- Distance: Chi-squared distribution with DOF m
 - 95% cumulative:
 - Line, F: m=1, t=3.84 σ^2
- I.e. -> 95% prob that d<t when point is inlier

How many samples?

- We want: at least one sample with all inliers
- Can't guarantee: probability p
- E.g. p = 0.99

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²
- Number of samples N
 - Choose *N* so that, with probability *p*, at least one random sample is free from outliers (e.g. *p*=0.99) (outlier ratio: *e*)

Source: M. Pollefeys

Calculate N

- s number of points to compute solution
- p probability of success
- e proportion outliers, so % inliers = (1-e)
- P(sample set with all inliers)=(1-e)s
- P(sample set will have at least one outlier)= (1-(1-e)s)
- P(all N samples have outlier)=(1-(1-e)s) N
- We want P(N samples an outlier)<1-p
- $(1-(1-e)^s)^N < 1-p$

$$N > \log(1-p)/\log(1-(1-e)^s)$$

Samples required for inliers only in a sample

• P=0.99

• s=2,
$$\varepsilon$$
=50%

• s=4,
$$\varepsilon$$
=50%

• s=8, ε =50%

$$=> N=2$$

$$=> N=3$$

$$=> N=72$$

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

- $N = f(\varepsilon)$, not the number of points
- N increases steeply with s

$$N > \log(1-p)/\log(1-(1-e)^s)$$

Matching features

RAndom SAmple Consensus

RAndom SAmple Consensus

Least squares fit

RANSAC for estimating homography

- RANSAC loop:
- 1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Compute *inliers* where $SSD(p_i', \mathbf{H} p_i) < \varepsilon$
- 4. Keep largest set of inliers
- Re-compute least-squares H estimate on all of the inliers

2D transformation models

Similarity

 (translation,
 scale, rotation)

Affine

Projective (homography)

Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
- Adaptive procedure:
 - N=∞, sample count =0
 - While N >sample_count
 - Choose a sample and count the number of inliers
 - Set e = 1 (number of inliers)/(total number of points)
 - Recompute N from e:

$$N = \log(1-p)/\log(1-(1-e)^s)$$

Increment the sample_count by 1

RANSAC conclusions

Good

- Simple and general
- Applicable to many different problems, often works well in practice
- Robust to outliers
- Applicable for larger number of parameters than Hough transform
- Parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)
- Every problem in robot vision