AI24BTECH11002 - K. Akshay Teja

	13)	Identify	which	one is	s a	first-order	phase	transition's
--	-----	----------	-------	--------	-----	-------------	-------	--------------

- a) A liquid to gas transition at its critical temperature
- b) A liquid to gas transition close to its triple point
- c) A paramagnetic to ferromagnetic transition in the absence of a magnetic field
- d) A metal to superconductor transition in the absence of a magnetic field
- 14) Group I lists some physical phenomena while Group II gives some physical parameters. Match the phenomena with the corresponding parameters:

	Group I		Group II
P.	Doppler Broadening	1.	Moment of inertia
Q.	Natural Broadening	2.	Refractive index
R.	Rotational spectrum	3.	Lifetime of the energy level
S.	Total internal reflection	4.	Pressure

b) P-3, Q-2, R-1, S-4

d) P-1, O-4, R-2, S-3

15) The separation between the first Stokes and corresponding anti-Stokes lines of the rotational Raman spectrum in terms of the rotational constant, B is

d) 12B

16) A superconducting ring is cooled in the presence of a magnetic field below its critical temperature (T_c) . The total magnetic flux that passes through the ring is

b)
$$n\frac{h}{2\pi}$$

c)
$$\frac{nh}{4\pi a}$$

d) $\frac{ne^2}{h}$

17) In a cubic crystal, atoms of mass M_1 lie on one set of planes and atoms of mass M_2 lie on planes interleaved between those of the first set. If C is the force constant between nearest neighbor planes, the frequency of lattice vibrations for the optical phonon branch with wavevector k = 0 is

a)
$$\sqrt{2C\left(\frac{1}{M_1} + \frac{1}{M_2}\right)}$$

a)
$$\sqrt{2C\left(\frac{1}{M_1} + \frac{1}{M_2}\right)}$$
 b) $\sqrt{C\left(\frac{1}{2M_1} + \frac{1}{M_2}\right)}$ c) $\sqrt{C\left(\frac{1}{M_1} + \frac{1}{2M_2}\right)}$

c)
$$\sqrt{C\left(\frac{1}{M_1} + \frac{1}{2M_2}\right)}$$

18) In the quark model, which one of the following represents a proton? This means there are

c)
$$a\overline{b}$$

d)
$$c\overline{e}$$

19) The circuit shown above

- a) is a common-emitter amplifier
- b) uses a pop transistor

- c) is an oscillator
- d) has a voltage gain less than one
- 20) Consider a nucleus with N neutrons and Z protons. If m_n , m_p , and BE represent the mass of the neutron, the mass of the proton, and the binding energy of the nucleus respectively, and c is the velocity of light in free space, the mass of the nucleus is given by
 - a) $Nm_n + Zm_n$
- b) $Nm_p + Zm_n$ c) $Nm_n + Zm_p + \frac{BE}{c^2}$ d) $Nm_p + Zm_n + \frac{BE}{c^2}$
- 21) The magnetic field $(in A m^{-1})$ inside a long solid cylindrical conductor of radius $a = 0.1 \,\mathrm{m}$ is $\overrightarrow{H} = \frac{10^4}{r} \left[\frac{1}{\alpha^2} \sin(\alpha r) - \frac{r}{\alpha} \cos(\alpha r) \right] \hat{\phi}$ where $\alpha = \frac{\pi}{2a}$. What is the total current (in A) in the conductor?
 - a) $\frac{\pi}{2\pi}$

c) $\frac{400}{5}$

- d) $\frac{300}{2}$
- 22) Which one of the following current densities, \overrightarrow{J} , can generate the magnetic vector potential $\overrightarrow{A} = (y^2 \hat{i} + x^2 \hat{j})?$
 - a) $\frac{2}{\mu_0} (x\hat{i} + y\hat{j})$ b) $-\frac{2}{\mu_0} (\hat{i} + \hat{j})$ c) $\frac{2}{\mu_0} (\hat{i} \hat{j})$ d) $\frac{2}{\mu_0} (x\hat{i} y\hat{j})$

- 23) The value of the integral $\int_C \frac{e^z}{z^2 3z + 2} dz$ where the contour C is the circle $|z| = \frac{3}{2}$ is
 - a) $2\pi ie$

b) πie

- c) $-2\pi ie$
- d) $-\pi ie$
- 24) In a non-conducting medium characterized by $\epsilon = \epsilon_0$, $\mu = \mu_0$, and conductivity $\sigma = 0$, the electric field $(in \ V \ m^{-1})$ is given by $\overrightarrow{E} = 20 \sin \left[10^8 t - kz\right] \hat{j}$. The magnetic field, $\overrightarrow{H} (in \ A \ m^{-1})$, is given by
 - a) $20k \cos \left[10^8 t kz\right] \hat{i}$ b) $\frac{20k}{10^8 \mu_0} \sin \left[10^8 t kz\right] \hat{j}$

c) $-\frac{20k}{10^8\mu_0} \sin \left[10^8t - kz\right]\hat{i}$ d) $-20k \cos \left[10^8t - kz\right]\hat{j}$