life.augmented

LSM6DS3TR-C

iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

Datasheet - production data

Features

- "Always-on" experience with low power consumption for both accelerometer and gyroscope
- Power consumption: 0.90 mA in combo highperformance mode
- · Smart FIFO up to 4 kbyte based on features set
- Android M compliant
- Hard, soft ironing for external magnetic sensor corrections
- ±2/±4/±8/±16 g full scale
- ±125/±250/±500/±1000/±2000 dps full scale
- Analog supply voltage: 1.71 V to 3.6 V
- Independent IO supply (1.62 V)
- Compact footprint, 2.5 mm x 3 mm x 0.83 mm
- SPI & I²C serial interface with main processor data synchronization feature
- · Pedometer, step detector and step counter
- · Significant motion and tilt function
- Standard interrupts: free-fall, wakeup, 6D/4D orientation, click and double-click
- · Embedded temperature sensor
- ECOPACK[®], RoHS and "Green" compliant

Applications

- · Pedometer, step detector and step counter
- · Significant motion and tilt functions
- Indoor navigation
- Tap and double-tap detection
- IoT and connected devices
- Intelligent power saving for handheld devices

- Vibration monitoring and compensation
- Free-fall detection
- 6D orientation detection

Description

The LSM6DS3TR-C is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope performing at 0.90 mA in high-performance mode and enabling always-on low-power features for an optimal motion experience for the consumer.

The LSM6DS3TR-C supports main OS requirements, offering real, virtual and batch sensors with 4 kbyte for dynamic data batching.

ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DS3TR-C has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and an angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000$ dps.

High robustness to mechanical shock makes the LSM6DS3TR-C the preferred choice of system designers for the creation and manufacturing of reliable products.

The LSM6DS3TR-C is available in a plastic land grid array (LGA) package.

Table 1. Device summary

Temp. range [°C]	Package	Packing
-40 to +85	LGA-14L (2.5x3x0.83mm)	Tape & Reel

Contents LSM6DS3TR-C

Contents

1	Ove	rview .		. 11
2	Emb	edded lo	ow-power features	. 12
	2.1	Tilt dete	ection	. 12
3	Pin (descripti	ion	. 13
4	Mod	ule spec	cifications	. 15
	4.1	Mechar	nical characteristics	. 15
	4.2	Electric	cal characteristics	. 18
	4.3	Temper	rature sensor characteristics	. 19
	4.4	Commi	unication interface characteristics	. 20
		4.4.1	SPI - serial peripheral interface	20
		4.4.2	I ² C - inter-IC control interface	21
	4.5	Absolut	te maximum ratings	. 22
	4.6	Termino	ology	. 23
		4.6.1	Sensitivity	23
		4.6.2	Zero-g and zero-rate level	23
5	Fund	ctionality	y	. 24
	5.1	Operati	ing modes	. 24
	5.2	Gyrosc	ope power modes	. 24
	5.3	Acceler	rometer power modes	. 24
	5.4		liagram of filters	
		5.4.1	Block diagrams of the gyroscope filters	
		5.4.2	Block diagram of the accelerometer filters	
	5.5	FIFO .		. 28
		5.5.1	Bypass mode	28
		5.5.2	FIFO mode	29
		5.5.3	Continuous mode	29
		5.5.4	Continuous-to-FIFO mode	29
		5.5.5	Bypass-to-Continuous mode	29
		5.5.6	FIFO reading procedure	30

6	Digit	ll interfaces	31
	6.1	I ² C/SPI interface	31
	6.2	Master I ² C	31
	6.3	I ² C serial interface	32
		6.3.1 I ² C operation	32
	6.4	SPI bus interface	34
		6.4.1 SPI read	35
		6.4.2 SPI write	
		6.4.3 SPI read in 3-wire mode	36
7	Appl	cation hints	37
8	Regi	ter mapping	38
9	Regi	ter description	41
	9.1	FUNC_CFG_ACCESS (01h)	41
	9.2	SENSOR_SYNC_TIME_FRAME (04h)	41
	9.3	SENSOR_SYNC_RES_RATIO (05h)	41
	9.4	FIFO_CTRL1 (06h)	42
	9.5	FIFO_CTRL2 (07h)	42
	9.6	FIFO_CTRL3 (08h)	43
	9.7	FIFO_CTRL4 (09h)	44
	9.8	FIFO_CTRL5 (0Ah)	44
	9.9	DRDY_PULSE_CFG_G (0Bh)	45
	9.10	INT1_CTRL (0Dh)	46
	9.11	INT2_CTRL (0Eh)	47
	9.12	WHO_AM_I (0Fh)	47
	9.13	CTRL1_XL (10h)	48
	9.14	CTRL2_G (11h)	49
	9.15	CTRL3_C (12h)	50
	9.16	CTRL4_C (13h)	51
	9.17	CTRL5_C (14h)	51
	9.18	CTRL6_C (15h)	53
	9.19	CTRL7_G (16h)	54

Contents LSM6DS3TR-C

9.20	CTRL8_XL (17h)	54
9.21	CTRL9_XL (18h)	55
9.22	CTRL10_C (19h)	56
9.23	PU_CFG (1Ah)	56
9.24	WAKE_UP_SRC (1Bh)	57
9.25	TAP_SRC (1Ch)	57
9.26	D6D_SRC (1Dh)	58
9.27	STATUS_REG (1Eh)	58
9.28	OUT_TEMP_L (20h), OUT_TEMP_H (21h)	59
9.29	OUTX_L_G (22h)	59
9.30	OUTX_H_G (23h)	59
9.31	OUTY_L_G (24h)	60
9.32	OUTY_H_G (25h)	60
9.33	OUTZ_L_G (26h)	60
9.34	OUTZ_H_G (27h)	61
9.35	OUTX_L_XL (28h)	61
9.36	OUTX_H_XL (29h)	
9.37	OUTY_L_XL (2Ah)	61
9.38	OUTY_H_XL (2Bh)	
9.39	OUTZ_L_XL (2Ch)	62
9.40	OUTZ_H_XL (2Dh)	
9.41	FIFO_STATUS1 (3Ah)	
9.42	FIFO_STATUS2 (3Bh)	63
9.43	FIFO_STATUS3 (3Ch)	
9.44	FIFO_STATUS4 (3Dh)	
9.45	FIFO_DATA_OUT_L (3Eh)	
9.46	FIFO_DATA_OUT_H (3Fh)	
9.47	TIMESTAMP0_REG (40h)	
9.48	TIMESTAMP1_REG (41h)	
9.49	TIMESTAMP2_REG (42h)	
9.50	STEP_TIMESTAMP_L (49h)	
9.51	STEP_TIMESTAMP_H (4Ah)	66
9 52	STEP COUNTER I (4Rh)	66

	9.53	STEP_COUNTER_H (4Ch)
	9.54	FUNC_SRC (53h) 67
	9.55	TAP_CFG (58h)
	9.56	TAP_THS_6D (59h) 69
	9.57	INT_DUR2 (5Ah)
	9.58	WAKE_UP_THS (5Bh)
	9.59	WAKE_UP_DUR (5Ch)
	9.60	FREE_FALL (5Dh)
	9.61	MD1_CFG (5Eh)
	9.62	MD2_CFG (5Fh)
	9.63	MASTER_CMD_CODE (60h)
	9.64	SENS_SYNC_SPI_ERROR_CODE (61h)
	9.65	X_OFS_USR (73h)
	9.66	Y_OFS_USR (74h)
	9.67	Z_OFS_USR (75h)
10	Emb	edded functions register mapping
11	Emb	edded functions registers description
	11.1	CONFIG_PEDO_THS_MIN (0Fh)
	11.2	SM_THS (13h)
	11.3	PEDO_DEB_REG (14h)
	11.4	STEP_COUNT_DELTA (15h)
12	Sold	ering information
13	Pack	age information
	13.1	LGA-14 package information
	13.2	LGA-14 packing information
14	Revi	sion history

List of tables LSM6DS3TR-C

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	14
Table 3.	Mechanical characteristics	15
Table 4.	Electrical characteristics	18
Table 5.	Temperature sensor characteristics	19
Table 6.	SPI slave timing values	20
Table 7.	I ² C slave timing values	21
Table 8.	Absolute maximum ratings	22
Table 9.	Serial interface pin description	31
Table 10.	Master I ² C pin details	31
Table 11.	I ² C terminology	
Table 12.	SAD+Read/Write patterns	
Table 13.	Transfer when master is writing one byte to slave	33
Table 14.	Transfer when master is writing multiple bytes to slave	33
Table 15.	Transfer when master is receiving (reading) one byte of data from slave	33
Table 16.	Transfer when master is receiving (reading) multiple bytes of data from slave	33
Table 17.	Registers address map	38
Table 18.	FUNC_CFG_ACCESS register	41
Table 19.	FUNC_CFG_ACCESS register description	41
Table 20.	SENSOR_SYNC_TIME_FRAME register	
Table 21.	SENSOR_SYNC_TIME_FRAME register description	41
Table 22.	SENSOR_SYNC_RES_RATIO register	
Table 23.	SENSOR_SYNC_RES_RATIO register description	
Table 24.	FIFO_CTRL1 register	
Table 25.	FIFO_CTRL1 register description	42
Table 26.	FIFO_CTRL2 register	
Table 27.	FIFO_CTRL2 register description	42
Table 28.	FIFO_CTRL3 register	
Table 29.	FIFO_CTRL3 register description	
Table 30.	Gyro FIFO decimation setting	
Table 31.	Accelerometer FIFO decimation setting	
Table 32.	FIFO_CTRL4 register	
Table 33.	FIFO_CTRL4 register description	44
Table 34.	Third FIFO data set decimation setting	44
Table 35.	FIFO_CTRL5 register	44
Table 36.	FIFO_CTRL5 register description	44
Table 37.	FIFO ODR selection	45
Table 38.	FIFO mode selection	45
Table 39.	DRDY_PULSE_CFG_G register	
Table 40.	DRDY_PULSE_CFG_G register description	45
Table 41.	INT1_CTRL register	46
Table 42.	INT1_CTRL register description	46
Table 43.	INT2_CTRL register	47
Table 44.	INT2_CTRL register description	47
Table 45.	WHO_AM_I register	
Table 46.	CTRL1_XL register	
Table 47.	CTRL1_XL register description	
Table 48	Accelerometer ODR register setting	48

LSM6DS3TR-C List of tables

Table 49.	CTRL2_G register	
Table 50.	CTRL2_G register description	
Table 51.	Gyroscope ODR configuration setting	
Table 52.	CTRL3_C register	
Table 53.	CTRL3_C register description	
Table 54.	CTRL4_C register	
Table 55.	CTRL4_C register description	
Table 56.	CTRL5_C register	
Table 57.	CTRL5_C register description	
Table 58.	Output registers rounding pattern	
Table 59.	Angular rate sensor self-test mode selection	
Table 60.	Linear acceleration sensor self-test mode selection	
Table 61.	CTRL6_C register	
Table 62.	CTRL6_C register description	
Table 63.	Trigger mode selection	
Table 64.	Gyroscope LPF1 bandwidth selection	
Table 65.	CTRL7_G register	
Table 66.	CTRL7_G register description	
Table 67.	CTRL8_XL register	54
Table 68.	CTRL8_XL register description	
Table 69.	Accelerometer bandwidth selection	
Table 70.	CTRL9_XL register	55
Table 71.	CTRL9_XL register description	
Table 72.	CTRL10_C register	56
Table 73.	CTRL10_C register description	
Table 74.	PU_CFG register	56
Table 75.	PU_CFG register description	56
Table 76.	WAKE_UP_SRC register	
Table 77.	WAKE_UP_SRC register description	
Table 78.	TAP_SRC register	
Table 79.	TAP_SRC register description	
Table 80.	D6D_SRC register	
Table 81.	D6D_SRC register description	
Table 82.	STATUS_REG register	
Table 83.	STATUS_REG register description	
Table 84.	OUT_TEMP_L register	
Table 85.	OUT_TEMP_H register	59
Table 86.	OUT_TEMP register description	59
Table 87.	OUTX_L_G register	
Table 88.	OUTX_L_G register description	
Table 89.	OUTX_H_G register	
Table 90.	OUTX_H_G register description	
Table 91.	OUTY_L_G register	60
Table 92.	OUTY_L_G register description	
Table 93.	OUTY_H_G register	
Table 94.	OUTY_H_G register description	
Table 95.	OUTZ_L_G register	
Table 96.	OUTZ_L_G register description	
Table 97.	OUTZ_H_G register	
Table 98.	OUTZ_H_G register description	
Table 99.	OUTX_L_XL register	
Table 100.	OUTX_L_XL register description	61

List of tables LSM6DS3TR-C

Table 101.	OUTX_H_XL register	61
Table 102.	OUTX_H_XL register description	61
Table 103.	OUTY_L_XL register	61
Table 104.	OUTY_L_XL register description	61
Table 105.	OUTY_H_G register	62
Table 106.	OUTY H G register description	62
Table 107.	OUTZ_L_XL register	62
Table 108.	OUTZ_L_XL register description	
Table 109.	OUTZ H XL register	
Table 110.	OUTZ_H_XL register description	62
Table 111.	FIFO_STATUS1 register	
Table 112.	FIFO STATUS1 register description	
Table 113.	FIFO_STATUS2 register	63
Table 114.	FIFO_STATUS2 register description	
Table 115.	FIFO_STATUS3 register	
Table 116.	FIFO_STATUS3 register description	
Table 117.	FIFO_STATUS4 register	
Table 118.	FIFO STATUS4 register description	
Table 119.	FIFO_DATA_OUT_L register	
Table 120.	FIFO_DATA_OUT_L register description	
Table 121.	FIFO_DATA_OUT_H register	
Table 122.	FIFO_DATA_OUT_H register description	
Table 123.	TIMESTAMPO_REG register	
Table 124.	TIMESTAMPO_REG register description	
Table 125.	TIMESTAMP1_REG register	
Table 126.	TIMESTAMP1_REG register description	
Table 127.	TIMESTAMP2_REG register	
Table 128.	TIMESTAMP2_REG register description	
Table 129.	STEP_TIMESTAMP_L register	
Table 130.	STEP_TIMESTAMP_L register description	
Table 131.	STEP_TIMESTAMP_H register	
Table 132.	STEP_TIMESTAMP_H register description	
Table 133.	STEP_COUNTER_L register	
Table 134.	STEP COUNTER L register description	
Table 135.	STEP_COUNTER_H register	
Table 136.	STEP_COUNTER_H register description	
Table 137.	FUNC_SRC register	
Table 138.	FUNC SRC register description	
Table 139.	TAP CFG register	
Table 140.	TAP CFG register description	68
Table 141.	TAP_THS_6D register	
Table 142.	TAP THS 6D register description	
Table 143.	Threshold for D4D/D6D function	69
Table 144.	INT DUR2 register	69
Table 145.	INT_DUR2 register description	
Table 146.	WAKE_UP_THS register	
Table 147.	WAKE UP THS register description	
Table 148.	WAKE_UP_DUR register	
Table 149.	WAKE UP DUR register description	
Table 150.	FREE_FALL register	
Table 151.	FREE FALL register description	
Table 152.	Threshold for free-fall function	

LSM6DS3TR-C List of tables

Table 153.	MD1_CFG register	72
Table 154.	MD1_CFG register description	72
Table 155.	MD2_CFG register	73
Table 156.	MD2_CFG register description	73
Table 157.	MASTER_CMD_CODE register	73
Table 158.	MASTER_CMD_CODE register description	73
Table 159.	SENS_SYNC_SPI_ERROR_CODE register	74
Table 160.	SENS_SYNC_SPI_ERROR_CODE register description	74
Table 161.	X_OFS_USR register	
Table 162.	X_OFS_USR register description	
Table 163.	Y_OFS_USR register	
Table 164.	Y_OFS_USR register description	
Table 165.	Z_OFS_USR register	
Table 166.	Z_OFS_USR register description	
Table 167.	Register address map - embedded functions	
Table 168.	CONFIG_PEDO_THS_MIN register	
Table 169.	CONFIG_PEDO_THS_MIN register description	
Table 170.	SM_THS register	
Table 171.	SM_THS register description	
Table 172.	PEDO_DEB_REG register default values	
Table 173.	PEDO_DEB_REG register description	
Table 174.	STEP_COUNT_DELTA register	
Table 175.	STEP_COUNT_DELTA register description	
Table 176.	Reel dimensions for carrier tape of LGA-14 package	
Table 177.	Document revision history	82

List of figures LSM6DS3TR-C

List of figures

Figure 1.	Pin connections	13
Figure 2.	SPI slave timing diagram	
Figure 3.	I ² C slave timing diagram	
Figure 4.	Block diagram of filters	25
Figure 5.	Gyroscope digital chain	
Figure 6.	Accelerometer chain	26
Figure 7.	Accelerometer composite filter	27
Figure 8.	Read and write protocol	34
Figure 9.	SPI read protocol	35
Figure 10.	Multiple byte SPI read protocol (2-byte example)	35
Figure 11.	SPI write protocol	35
Figure 12.	Multiple byte SPI write protocol (2-byte example)	36
Figure 13.	SPI read protocol in 3-wire mode	36
Figure 14.	LSM6DS3TR-C electrical connections	37
Figure 15.	LGA-14 2.5x3x0.86 mm package outline and mechanical data	79
Figure 16.	Carrier tape information for LGA-14 package	80
Figure 17.	LGA-14 package orientation in carrier tape	80
Figure 18	Reel information for carrier tane of LGA-14 nackage	81

LSM6DS3TR-C Overview

1 Overview

The LSM6DS3TR-C is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

The integrated power-efficient modes are able to reduce the power consumption down to 0.90 mA in high-performance mode, combining always-on low-power features with superior sensing precision for an optimal motion experience for the consumer thanks to ultra-low noise performance for both the gyroscope and accelerometer.

Up to 4 kbyte of FIFO with dynamic allocation of accelerometer and gyroscope data allows overall power saving of the system.

Like the entire portfolio of MEMS sensor modules, the LSM6DS3TR-C leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DS3TR-C is available in a small plastic land grid array (LGA) package of 2.5 x 3.0 x 0.83 mm to address ultra-compact solutions.

2 Embedded low-power features

The LSM6DS3TR-C has been designed to be fully compliant with Android, featuring the following on-chip functions:

- · 4 kbyte data buffering
 - 100% efficiency with flexible configurations and partitioning
 - Possibility to store timestamp
- Event-detection interrupts (fully configurable):
 - Free-fall
 - Wakeup
 - 6D orientation
 - Click and double-click sensing
 - Activity / inactivity recognition
- Specific IP blocks with negligible power consumption and high-performance:
 - Pedometer functions: step detector and step counters
 - Tilt (refer to Section 2.1: Tilt detection for additional information)
 - Significant motion detection

2.1 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve both the targets of ultra-low power consumption and robustness during the short duration of dynamic accelerations.

It is based on a trigger of an event each time the device's tilt changes. For a more customized user experience, in the LSM6DS3TR-C the tilt function is configurable through:

- a programmable average window
- a programmable average threshold

The tilt function can be used with different scenarios, for example:

- Triggers when phone is in a front pants pocket and the user goes from sitting to standing or standing to sitting;
- b) Doesn't trigger when phone is in a front pants pocket and the user is walking, running or going upstairs.

577

LSM6DS3TR-C Pin description

3 Pin description

Pigure 1. Pin connections

Z

X

Direction of detectable acceleration (top view)

A

O

O

O

Direction of detectable angular rate (top view)

Direction of detectable angular rate (top view)

Direction of detectable angular rate (top view)

Pin description LSM6DS3TR-C

Table 2. Pin description

Pin#	Name	Function	
1	SDO/SA0	SPI 4-wire interface serial data output (SDO) I ² C least significant bit of the device address (SA0)	
2	RES	Connect to VDDIO or GND	
3	RES	Connect to VDDIO or GND	
4	INT1	Programmable interrupt 1	
5	VDDIO ⁽¹⁾	Power supply for I/O pins	
6	GND	0 V supply	
7	GND	0 V supply	
8	VDD ⁽¹⁾	Power supply	
9	INT2	Programmable interrupt 2 (INT2) / Data enable (DEN)	
10	NC	Leave unconnected ⁽²⁾	
11	NC	Leave unconnected ⁽²⁾	
12	CS	SPI mode selection (1: SPI idle mode; 0: SPI communication mode)	
13	SCL	I ² C serial clock (SCL) SPI serial port clock (SPC)	
14	SDA	I ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	

^{1.} Recommended 100 nF filter capacitor.

^{2.} Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 3. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
				±2		
LA_FS	Linear acceleration measurement			±4		g
	range			±8		
				±16]
				±125		
	A I f .			±250]
G_FS	Angular rate measurement range			±500		dps
	inicasurement range			±1000		
				±2000		
		FS = ±2		0.061		
	1 : (2)	FS = ±4	1	0.122		/I OD
LA_So	Linear acceleration sensitivity ⁽²⁾	FS = ±8	1	0.244		mg/LSB
		FS = ±16	1	0.488		
	Angular rate sensitivity ⁽²⁾	FS = ±125		4.375 8.75 17.50		mdps/LSB
		FS = ±250	1			
G_So		FS = ±500	1			
		FS = ±1000]	35		
		FS = ±2000		70		
LA_SoDr	Linear acceleration sensitivity change vs. temperature ⁽³⁾	from -40° to +85°		±0.01		%/°C
G_SoDr	Angular rate sensitivity change vs. temperature ⁽³⁾	from -40° to +85°		±0.007		%/°C
LA_TyOff	Linear acceleration zero-g level offset accuracy ⁽⁴⁾			±40		m <i>g</i>
G_TyOff	Angular rate zero-rate level ⁽³⁾			±3		dps
LA_OffDr	Linear acceleration zero-g level change vs. temperature ⁽³⁾			±0.5		mg/°C
G_OffDr	Angular rate typical zero-rate level change vs. temperature ⁽³⁾			±0.05		dps/°C
Rn	Rate noise density in high- performance mode ⁽⁵⁾			5		mdps/√Hz
RnRMS	Gyroscope RMS noise in normal/low-power mode ⁽⁶⁾			75		mdps

Table 3. Mechanical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
		FS = ±2 g		90		
Δ	Acceleration noise density	FS = ±4 g		90		1
An	in high-performance mode ⁽⁷⁾	FS = ±8 <i>g</i>		90		- μ <i>g</i> /√Hz
		FS = ±16 <i>g</i>		130		1
		FS = ±2 g		1.7		
D. 40	Acceleration RMS noise	FS = ±4 <i>g</i>		2.0		(5.40)
RMS	in normal/low-power mode ⁽⁸⁾⁽⁹⁾	FS = ±8 <i>g</i>		2.4		mg(RMS)
		FS = ±16 <i>g</i>		3.0		-
				1.6 ⁽¹⁰⁾		
				12.5		
				26		
LA_ODR	Linear acceleration output data rate			52		
				104		
				208		
				416		
				833		
				1666		
				3332		
				6664		Hz
				12.5		
				26		
				52		
				104		
C ODD	Annular rate output data rate			208		
G_ODR	Angular rate output data rate			416		
				833		
				1666		
				3332		
				6664		
V. I	Linear acceleration self-test output change ⁽¹¹⁾⁽¹²⁾⁽¹³⁾		90		1700	m <i>g</i>
Vst	Angular rate	FS = 250 dps	20		80	dps
	self-test output change ⁽¹⁴⁾⁽¹⁵⁾	FS = 2000 dps	150		700	dps
Тор	Operating temperature range		-40		+85	°C

- 1. Typical specifications are not guaranteed.
- 2. Sensitivity values after factory calibration test and trimming
- 3. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
- 4. Values after factory calibration test and trimming.
- 5. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
- 6. Gyroscope RMS noise in normal/low-power mode is independent of the ODR and FS setting.
- 7. Accelerometer noise density in high-performance mode is independent of the ODR.

- 8. Accelerometer RMS noise in normal/low-power mode is independent of the ODR.
- 9. Noise RMS related to BW = ODR /2 (for ODR /9, typ value can be calculated by Typ *0.6).
- 10. This ODR is available when accelerometer is in low-power mode.
- 11. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in CTRL5_C (14h), Table 60 for all axes.
- 12. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 0.061 mg at ±2 g full scale.
- 13. Accelerometer self-test limits are full-scale independent.
- 14. The sign of the angular rate self-test output change is defined by the STx_G bits in CTRL5_C (14h), Table 59 for all axes.
- 15. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.

4.2 Electrical characteristics

2 Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		Vdd + 0.1	V
IddHP	Gyroscope and accelerometer current consumption in high-performance mode	ODR = 1.6 kHz		0.90		mA
IddNM	Gyroscope and accelerometer current consumption in normal mode	ODR = 208 Hz		0.45		mA
IddLP	Gyroscope and accelerometer current consumption in low-power mode	ODR = 52 Hz		0.29		mA
LA_lddHP	Accelerometer current consumption in high-performance mode	ODR < 1.6 kHz ODR ≥ 1.6 kHz		150 160		μA
LA_lddNM	Accelerometer current consumption in normal mode	ODR = 208 Hz		85		μA
LA_lddLM	Accelerometer current consumption in low-power mode	ODR = 12.5 Hz		9		μA
IddPD	Gyroscope and accelerometer current consumption during power-down			3		μA
Ton	Turn-on time			35		ms
V _{IH}	Digital high-level input voltage		0.7 *VDD_IO			V
V _{IL}	Digital low-level input voltage				0.3 *VDD_IO	V
V _{OH}	High-level output voltage	I _{OH} = 4 mA ⁽²⁾	VDD_IO - 0.2			V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA ⁽²⁾			0.2	V
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

^{2. 4} mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital pad in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL} .

4.3 Temperature sensor characteristics

0 Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 5. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
TODR ⁽²⁾	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽³⁾		-15		+15	°C
TSen	Temperature sensitivity			256		LSB/°C
TST	Temperature stabilization time ⁽⁴⁾				500	μs
T_ADC_res	Temperature ADC resolution			16		bit
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

^{2.} When the accelerometer is in Low-Power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR.

^{3.} The output of the temperature sensor is 0 LSB (typ.) at 25 $^{\circ}\text{C}.$

^{4.} Time from power ON bit to valid data based on characterization data.

4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 6. SPI slave timing values

Compleal	Dougnoston	Val	Value ⁽¹⁾	
Symbol	Parameter	Min	Max	Unit
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)} SDO output hold time		5		
t _{dis(SO)}	SDO output disable time		50	

Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 2. SPI slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.

4.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 7. I²C slave timing values

Cumbal	Parameter	I ² C standard mode ⁽¹⁾		I ² C fast mode ⁽¹⁾		Unit
Symbol	Parameter	Min	Max	Min	Max	
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		– µs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	μs
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		116
t _{su(SP)}	STOP condition setup time	4		0.6		– µs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

^{1.} Data based on standard I^2C protocol requirement, not tested in production.

Figure 3. I²C slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.

Absolute maximum ratings 4.5

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.2 ms	10,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	0.3 to Vdd_IO +0.3	V

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ± 1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see *Table 3*).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see *Table 3*).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-*g* level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 *g* on both the X-axis and Y-axis, whereas the Z-axis will measure 1 *g*. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-*g* offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-g level change vs. temperature" in *Table 3*. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see *Table 3*).

Functionality LSM6DS3TR-C

5 Functionality

5.1 Operating modes

In the LSM6DS3TR-C, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The LSM6DS3TR-C has three operating modes available:

- only accelerometer active and gyroscope in power-down
- only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo-mode the ODRs are totally independent.

5.2 Gyroscope power modes

In the LSM6DS3TR-C, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

5.3 Accelerometer power modes

In the LSM6DS3TR-C, the accelerometer can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in *CTRL6_C (15h)*. If XL_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (1.6, 12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

24/83 DocID030071 Rev 2

LSM6DS3TR-C Functionality

5.4 Block diagram of filters

Gyroscope Low ADC1 S Front-end Pass ■ CS I2C/SPI SCL/SPC Μ Ε Regs SDA/SDIO SDO Interface Array, Ε Ν XL ADC2 **FIFO** M S Low Front-end ■INT1 **Pass** S 0 Interrupt Mng R INT2 Temperature Sensor Clock & Phase Voltage and Trimming Circuit & Test Power Management current **FTP** reference Interface Generator

Figure 4. Block diagram of filters

5.4.1 Block diagrams of the gyroscope filters

In the LSM6DS3TR-C, the gyroscope filtering chain depends on the settings and configuration of the device.

ADC HPEN_G FTYPE[1:0] LPF1_SEL_G

Figure 5. Gyroscope digital chain

The gyroscope ODR is selectable from 12.5 Hz up to 6.66 kHz. A low-pass filter (LPF1) is available, for more details about the filter characteristics see *Table 64: Gyroscope LPF1 bandwidth selection*.

Data can be acquired from the output registers and FIFO.

Functionality LSM6DS3TR-C

5.4.2 Block diagram of the accelerometer filters

In the LSM6DS3TR-C, the filtering chain for the accelerometer part is composed of the following:

- Analog filter (anti-aliasing)
- Digital filter (LPF1)
- Composite filter

Details of the block diagram appear in the following figure.

Figure 6. Accelerometer chain

The configuration of the digital filter can be set using the LPF1_BW_SEL bit in CTRL1_XL (10h) and the INPUT_COMPOSITE bit in CTRL8_XL (17h).

26/83 DocID030071 Rev 2

LSM6DS3TR-C Functionality

Figure 7. Accelerometer composite filter

1. Pedometer, step detector and step counter, significant motion and tilt functions.

Functionality LSM6DS3TR-C

5.5 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO.

The LSM6DS3TR-C embeds 4 kbytes data FIFO to store the following data:

- gyroscope
- accelerometer
- external sensors
- step counter and timestamp
- temperature

Writing data in the FIFO can be configured to be triggered by the:

- accelerometer/gyroscope data-ready signal; in which case the ODR must be lower than or equal to both the accelerometer and gyroscope ODRs;
- sensor hub data-ready signal;
- step detection signal.

In addition, each data can be stored at a decimated data rate compared to FIFO ODR and it is configurable by the user, setting the *FIFO_CTRL3 (08h)* and *FIFO_CTRL4 (09h)* registers. The available decimation factors are 2, 3, 4, 8, 16, 32.

The programmable FIFO threshold can be set in *FIFO_CTRL1* (06h) and *FIFO_CTRL2* (07h) using the FTH [11:0] bits.

To monitor the FIFO status, dedicated registers *FIFO_STATUS1* (3Ah), *FIFO_STATUS2* (3Bh), *FIFO_STATUS3* (3Ch), *FIFO_STATUS4* (3Dh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO threshold status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pads of these status events, the configuration can be set in *INT1_CTRL* (0Dh) and *INT2_CTRL* (0Eh).

The FIFO buffer can be configured according to five different modes:

- Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode

Each mode is selected by the FIFO_MODE_[2:0] bits in the *FIFO_CTRL5 (0Ah)* register. To guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first sample acquired must be discarded.

5.5.1 Bypass mode

In Bypass mode ($FIFO_CTRL5$ (OAh) ($FIFO_MODE_[2:0] = 000$), the FIFO is not operational and it remains empty.

Bypass mode is also used to reset the FIFO when in FIFO mode.

LSM6DS3TR-C Functionality

5.5.2 FIFO mode

In FIFO mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing *FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0]) to '000' After this reset command, it is possible to restart FIFO mode by writing *FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0]) to '001'.

FIFO buffer memorizes up to 4096 samples of 16 bits each but the depth of the FIFO can be resized by setting the FTH [11:0] bits in *FIFO_CTRL1 (06h)* and *FIFO_CTRL2 (07h)*. If the STOP_ON_FTH bit in *CTRL4_C (13h)* is set to '1', FIFO depth is limited up to FTH [11:0] bits in *FIFO_CTRL1 (06h)* and *FIFO_CTRL2 (07h)*.

5.5.3 Continuous mode

Continuous mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag *FIFO_STATUS2* (3Bh)(FTH) is asserted when the number of unread samples in FIFO is greater than or equal to *FIFO_CTRL1* (06h) and *FIFO_CTRL2* (07h)(FTH [11:0]).

It is possible to route *FIFO_STATUS2* (3Bh)(FTH) to the INT1 pin by writing in register *INT1_CTRL* (0Dh)(INT1_FTH) = '1' or to the INT2 pin by writing in register *INT2_CTRL* (0Eh)(INT2_FTH) = '1'.

A full-flag interrupt can be enabled, *INT1_CTRL* (*0Dh*)(INT_FULL_FLAG) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the OVER_RUN flag in *FIFO_STATUS2 (3Bh)* is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in *FIFO_STATUS1* (3Ah) and *FIFO_STATUS2* (3Bh) (DIFF_FIFO[11:0]).

5.5.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode *FIFO_CTRL5* (0Ah)(FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt registers *FUNC_SRC* (53h), *TAP_SRC* (1Ch), *WAKE_UP_SRC* (1Bh) and *D6D_SRC* (1Dh).

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.

When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

5.5.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers in one of the following interrupt registers *WAKE_UP_SRC (1Bh), TAP_SRC (1Ch), D6D_SRC (1Dh)*, and *FUNC_SRC (53h)* are equal to '1', otherwise FIFO content is reset (Bypass mode).

Functionality LSM6DS3TR-C

5.5.6 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers (FIFO_DATA_OUT_L (3Eh)) and FIFO_DATA_OUT_H (3Fh)) and each FIFO sample is composed of 16 bits.

All FIFO status registers (*FIFO_STATUS1* (*3Ah*), *FIFO_STATUS2* (*3Bh*), *FIFO_STATUS3* (*3Ch*), *FIFO_STATUS4* (*3Dh*)) can be read at the start of a reading operation, minimizing the intervention of the application processor.

Saving data in the FIFO buffer is organized in four FIFO data sets consisting of 6 bytes each:

The 1st FIFO data set is reserved for gyroscope data;

The 2nd FIFO data set is reserved for accelerometer data;

The 3rd FIFO data set can be associated to either timestamp information or to the temperature sensor data.

LSM6DS3TR-C Digital interfaces

6 Digital interfaces

6.1 I²C/SPI interface

The registers embedded inside the LSM6DS3TR-C may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.

The serial interfaces are mapped onto the same pins. To select/exploit the I^2C interface, the CS line must be tied high (i.e connected to Vdd_IO).

	rable of Corrar interrace pin accomplicit
Pin name	Pin description
CS	SPI enable I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)
SCL/SPC	I ² C Serial Clock (SCL) SPI Serial Port Clock (SPC)
SDA/SDI/SDO	I ² C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SDO/SA0	SPI Serial Data Output (SDO) I ² C less significant bit of the device address

Table 9. Serial interface pin description

6.2 Master I²C

If the LSM6DS3TR-C is configured in Mode2, a master I²C line is available. The master serial interface is mapped in the following dedicated pins.

Pin name	Pin description
MSCL	I ² C serial clock master
MSDA	I ² C serial data master
MDRDY	I ² C master external synchronization signal

Table 10. Master I²C pin details

Digital interfaces LSM6DS3TR-C

6.3 I²C serial interface

The LSM6DS3TR-C I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Table 11. I²C terminology

Term	Description			
Transmitter The device which sends data to the bus				
Receiver The device which receives data from the bus				
Master	The device which initiates a transfer, generates clock signals and terminates a transfer			
Slave	The device addressed by the master			

There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemeted with fast mode (400 kHz) I²C standards as well as with the standard mode.

In order to disable the I^2C block, ($I2C_disable$) = 1 must be written in $CTRL4_C$ (13h).

6.3.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the LSM6DS3TR-C is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is '1' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the LSM6DS3TR-C behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the *CTRL3_C* (12h) (IF_INC).

32/83 DocID030071 Rev 2

LSM6DS3TR-C Digital interfaces

The slave address is completed with a Read/Write bit. If the bit is '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. *Table 12* explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 12. SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 13. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 14. Transfer when master is writing multiple bytes to slave

	Master	ST	SAD + W		SUB		DATA		DATA		SP
Ī	Slave			SAK		SAK		SAK		SAK	

Table 15. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 16. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DAT A		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

Digital interfaces LSM6DS3TR-C

6.4 SPI bus interface

The LSM6DS3TR-C SPI is a bus slave. The SPI allows writing and reading the registers of the device.

The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.

Figure 8. Read and write protocol

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: $R\overline{W}$ bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of **SDI** and **SDO** remain unchanged.

477

LSM6DS3TR-C Digital interfaces

6.4.1 SPI read

Figure 9. SPI read protocol

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 10. Multiple byte SPI read protocol (2-byte example)

6.4.2 SPI write

Figure 11. SPI write protocol

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

Digital interfaces LSM6DS3TR-C

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 12. Multiple byte SPI write protocol (2-byte example)

6.4.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the *CTRL3_C* (12h) (SIM) bit equal to '1' (SPI serial interface mode selection).

Figure 13. SPI read protocol in 3-wire mode

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

LSM6DS3TR-C Application hints

7 Application hints

Figure 14. LSM6DS3TR-C electrical connections

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, $C2 = 100 \, nF$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

Register mapping LSM6DS3TR-C

8 Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

Table 17. Registers address map

N	_	Regis	Register address		0
Name	Type	Hex	Binary	- Default	Comment
RESERVED	-	00	00000000	-	Reserved
FUNC_CFG_ACCESS	r/w	01	00000001	00000000	Embedded functions configuration register
RESERVED	-	02	00000010	-	Reserved
RESERVED	-	03	00000011	-	Reserved
SENSOR_SYNC_TIME_ FRAME	r/w	04	00000100	00000000	Sensor sync
SENSOR_SYNC_RES_ RATIO	r/w	05	00000101	00000000	configuration register
FIFO_CTRL1	r/w	06	00000110	00000000	
FIFO_CTRL2	r/w	07	00000111	00000000	
FIFO_CTRL3	r/w	08	00001000	00000000	FIFO configuration registers
FIFO_CTRL4	r/w	09	00001001	00000000	. regions
FIFO_CTRL5	r/w	0A	00001010	00000000	
DRDY_PULSE_CFG_G	r/w	0B	00001011	00000000	
RESERVED	-	0C	00001100	-	Reserved
INT1_CTRL	r/w	0D	00001101	00000000	INT1 pin control
INT2_CTRL	r/w	0E	00001110	00000000	INT2 pin control
WHO_AM_I	r	0F	00001111	01101010	Who I am ID
CTRL1_XL	r/w	10	00010000	00000000	
CTRL2_G	r/w	11	00010001	00000000	
CTRL3_C	r/w	12	00010010	00000100	
CTRL4_C	r/w	13	00010011	00000000	
CTRL5_C	r/w	14	00010100	00000000	Accelerometer and gyroscope control
CTRL6_C	r/w	15	00010101	00000000	registers
CTRL7_G	r/w	16	00010110	00000000	
CTRL8_XL	r/w	17	0001 0111	00000000	
CTRL9_XL	r/w	18	00011000	00000000	
CTRL10_C	r/w	19	00011001	00000000	

LSM6DS3TR-C Register mapping

Table 17. Registers address map (continued)

	Register address		Continued		
Name	Туре	Hex	Binary	Default	Comment
PU_CFG	r/w	1A	00011010	0000000	Pin 2 and pin 3 pull-up configuration
WAKE_UP_SRC	r	1B	00011011	output	
TAP_SRC	r	1C	00011100	output	Interrupt registers
D6D_SRC	r	1D	00011101	output	
STATUS_REG	r	1E	00011110	output	Status data register for user interface
RESERVED	-	1F	00011111	-	
OUT_TEMP_L	r	20	00100000	output	Temperature output
OUT_TEMP_H	r	21	00100001	output	data registers
OUTX_L_G	r	22	00100010	output	
OUTX_H_G	r	23	00100011	output	
OUTY_L_G	r	24	00100100	output	Gyroscope output registers for user
OUTY_H_G	r	25	00100101	output	interface
OUTZ_L_G	r	26	00100110	output	
OUTZ_H_G	r	27	00100111	output	
OUTX_L_XL	r	28	00101000	output	
OUTX_H_XL	r	29	00101001	output	
OUTY_L_XL	r	2A	00101010	output	Accelerometer output
OUTY_H_XL	r	2B	00101011	output	registers
OUTZ_L_XL	r	2C	00101100	output	
OUTZ_H_XL	r	2D	00101101	output	
RESERVED	-		2E-39	-	Reserved
FIFO_STATUS1	r	3A	00111010	output	
FIFO_STATUS2	r	3B	00111011	output	FIFO status registers
FIFO_STATUS3	r	3C	00111100	output	FIFO status registers
FIFO_STATUS4	r	3D	00111101	output	
FIFO_DATA_OUT_L	r	3E	00111110	output	FIFO data output
FIFO_DATA_OUT_H	r	3F	00111111	output	registers
TIMESTAMP0_REG	r	40	01000000	output	
TIMESTAMP1_REG	r	41	01000001	output	Timestamp output registers
TIMESTAMP2_REG	r/w	42	01000010	output	1.23.51.5
RESERVED	-	43-48		-	Reserved

Register mapping LSM6DS3TR-C

Table 17. Registers address map (continued)

Name	Time	Register address		Default	Comment
Name	Туре	Hex	Binary	Delault	Comment
STEP_TIMESTAMP_L	r	49	0100 1001	output	Step counter
STEP_TIMESTAMP_H	r	4A	0100 1010	output	timestamp registers
STEP_COUNTER_L	r	4B	01001011	output	Step counter output
STEP_COUNTER_H	r	4C	01001100	output	registers
RESERVED	-	4D-52		-	Reserved
FUNC_SRC	r	53	01010011	output	Interrupt register
RESERVED	-	54-57		-	Reserved
TAP_CFG	r/w	58	01011000	00000000	
TAP_THS_6D	r/w	59	01011001	00000000	
INT_DUR2	r/w	5A	01011010	00000000	
WAKE_UP_THS	r/w	5B	01011011	00000000	Interrupt registers
WAKE_UP_DUR	r/w	5C	01011100	00000000	Interrupt registers
FREE_FALL	r/w	5D	01011101	00000000	
MD1_CFG	r/w	5E	01011110	00000000	
MD2_CFG	r/w	5F	01011111	00000000	
MASTER_CMD_CODE	r/w	60	01100000	00000000	
SENS_SYNC_SPI_ ERROR_CODE	r/w	61	0110 0001	00000000	
RESERVED	-	62-72		-	Reserved
X_OFS_USR	r/w	73	01110011	00000000	
Y_OFS_USR	r/w	74	01110100	00000000	Accelerometer user offset correction
Z_OFS_USR	r/w	75	01110101	00000000	255. 51155. 551155.
RESERVED	-	76-7F		-	Reserved

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r/w).

Table 18. FUNC_CFG_ACCESS register

FUNC_ O	(1) 0 ⁽¹⁾	0 ⁽¹⁾ 0 ⁽¹⁾) 0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
---------	----------------------	-----------------------------------	--------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 19. FUNC_CFG_ACCESS register description

FUNC_CFG_ FN	Enable access to the embedded functions configuration register ⁽¹⁾ . Default value: 0
	(0: disable access to embedded functions configuration registers;
	1: enable access to embedded functions configuration registers)

^{1.} The embedded functions configuration registers details are available in Section 10: Embedded functions register mapping, and Section 11: Embedded functions registers description.

9.2 SENSOR_SYNC_TIME_FRAME (04h)

Sensor synchronization time frame register (r/w).

Table 20. SENSOR_SYNC_TIME_FRAME register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	TPH_3	TPH_2	TPH_1	TPH_0
------------------	------------------	------------------	------------------	-------	-------	-------	-------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 21. SENSOR_SYNC_TIME_FRAME register description

TPH_ [3:0]	Sensor synchronization time frame with the step of 500 ms and full range of 5 s. Unsigned 8-bit.
	Default value: 0000 0000 (sensor sync disabled)

9.3 SENSOR_SYNC_RES_RATIO (05h)

Sensor synchronization resolution ratio (r/w)

Table 22. SENSOR_SYNC_RES_RATIO register

0 ⁽¹⁾	RR_1	RR_0					
------------------	------------------	------------------	------------------	------------------	------------------	------	------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 23. SENSOR SYNC RES RATIO register description

	Resolution ratio of error code for sensor synchronization:
	00: SensorSync, Res_Ratio = 2-11
RR_[1:0]	01: SensorSync, Res_Ratio = 2-12
	10: SensorSync, Res_Ratio = 2-13
	11: SensorSync, Res_Ratio = 2-14

9.4 FIFO_CTRL1 (06h)

FIFO control register (r/w).

Table 24. FIFO_CTRL1 register

	FT 0		ET. 1 4	ET	ET	ET11 4	ET
FTH 7	FTH 6	FTH 5	FTH 4	FTH 3	FTH 2	FTH 1	FTH 0
_	_	_	_	_	_	_	_

Table 25. FIFO_CTRL1 register description

FTH_[7:0]	FIFO threshold level setting ⁽¹⁾ . Default value: 0000 0000.
	Watermark flag rises when the number of bytes written to FIFO after the next write is
	greater than or equal to the threshold level.
	Minimum resolution for the FIFO is 1 LSB = 2 bytes (1 word) in FIFO

^{1.} For a complete watermark threshold configuration, consider FTH_[10:8] in FIFO_CTRL2 (07h).

9.5 FIFO_CTRL2 (07h)

FIFO control register (r/w).

Table 26. FIFO_CTRL2 register

TIMER_PEDO	TIMER_PEDO	n(1)	o(1)	FIFO_	ETU10	ETU 0	ETU 0	
_FIFO_EN	_FIFO_DRDY	0, ,	0, ,	TEMP_EN	FIHTU	гіп_9	гіп_о	

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 27. FIFO_CTRL2 register description

TIMER_PEDO _FIFO_EN	Enable pedometer step counter and timestamp as 3 rd FIFO data set. Default: 0 (0: disable step counter and timestamp data as 3 rd FIFO data set; 1: enable step counter and timestamp data as 3 rd FIFO data set)
TIMER_PEDO _FIFO_DRDY	FIFO write mode. Default: 0 (0: enable write in FIFO based on XL/Gyro data-ready; 1: enable write in FIFO at every step detected by step counter.)
FIFO_TEMP_EN	Enable the temperature data storage in FIFO. Default: 0. (0: temperature not included in FIFO; 1: temperature included in FIFO)
FTH_[10:8]	FIFO threshold level setting ⁽¹⁾ . Default value: 0000 Watermark flag rises when the number of bytes written to FIFO after the next write is greater than or equal to the threshold level. Minimum resolution for the FIFO is 1LSB = 2 bytes (1 word) in FIFO

^{1.} For a complete watermark threshold configuration, consider FTH_[7:0] in FIFO_CTRL1 (06h).

577

9.6 FIFO_CTRL3 (08h)

FIFO control register (r/w).

Table 28. FIFO_CTRL3 register

n(1)	n(1)	DEC_FIFO	DEC_FIFO	DEC_FIFO	DEC_FIFO	DEC_FIFO	DEC_FIFO
0、/	0, ,	_GYRO2	_GYRO1	_GYRO0	_XL2	_XL1	_XL0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 29. FIFO_CTRL3 register description

DEC_FIFO_GYRO [2:0]	Gyro FIFO (first data set) decimation setting. Default: 000 For the configuration setting, refer to <i>Table 30</i> .
DEC_FIFO_XL [2:0]	Accelerometer FIFO (second data set) decimation setting. Default: 000 For the configuration setting, refer to <i>Table 31</i> .

Table 30. Gyro FIFO decimation setting

DEC_FIFO_GYRO [2:0]	Configuration
000	Gyro sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

Table 31. Accelerometer FIFO decimation setting

DEC_FIFO_XL [2:0]	Configuration
000	Accelerometer sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

9.7 FIFO_CTRL4 (09h)

FIFO control register (r/w).

Table 32. FIFO_CTRL4 register

Table 33. FIFO_CTRL4 register description

	<u> </u>
STOP_ON_FTH	Enable FIFO threshold level use. Default value: 0. (0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level)
ONLY_HIGH_DATA	8-bit data storage in FIFO. Default: 0 (0: disable MSByte only memorization in FIFO for XL and Gyro; 1: enable MSByte only memorization in FIFO for XL and Gyro in FIFO)
DEC_DS3_FIFO[2:0]	Third FIFO data set decimation setting. Default: 000 For the configuration setting, refer to <i>Table 34</i> .

Table 34. Third FIFO data set decimation setting

DEC_DS3_FIFO[2:0]	Configuration
000	Third FIFO data set not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

9.8 FIFO_CTRL5 (0Ah)

FIFO control register (r/w).

Table 35. FIFO_CTRL5 register

n(1)	ODR_	ODR_	ODR_	ODR_	FIFO_	FIFO_	FIFO_
0(1)	FIFO_3	FIFO_2	FIFO_1	FIFO_0	MODE_2	MODE_1	MODE_0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 36. FIFO_CTRL5 register description

ODR_FIFO_[3:0]		FIFO ODR selection, setting FIFO_MODE also. Default: 0000	
		For the configuration setting, refer to <i>Table 37</i>	
	FIFO MODE [2:0]	FIFO mode selection bits, setting ODR_FIFO also. Default value: 000	
		For the configuration setting refer to <i>Table 38</i>	

Table 37. FIFO ODR selection

ODR_FIFO_[3:0]	Configuration ⁽¹⁾
0000	FIFO disabled
0001	FIFO ODR is set to 12.5 Hz
0010	FIFO ODR is set to 26 Hz
0011	FIFO ODR is set to 52 Hz
0100	FIFO ODR is set to 104 Hz
0101	FIFO ODR is set to 208 Hz
0110	FIFO ODR is set to 416 Hz
0111	FIFO ODR is set to 833 Hz
1000	FIFO ODR is set to 1.66 kHz
1001	FIFO ODR is set to 3.33 kHz
1010	FIFO ODR is set to 6.66 kHz

^{1.} If the device is working at an ODR slower than the one selected, FIFO ODR is limited to that ODR value.

Table 38. FIFO mode selection

FIFO_MODE_[2:0]	Configuration mode	
000	Bypass mode. FIFO disabled.	
001	FIFO mode. Stops collecting data when FIFO is full.	
010	Reserved	
011	Continuous mode until trigger is deasserted, then FIFO mode.	
100	Bypass mode until trigger is deasserted, then Continuous mode.	
101	Reserved	
110	Continuous mode. If the FIFO is full, the new sample overwrites the older one.	
111	Reserved	

9.9 DRDY_PULSE_CFG_G (0Bh)

DataReady configuration register (r/w).

Table 39. DRDY_PULSE_CFG_G register

DRDY_ PULSED	0 ⁽¹⁾						
-----------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 40. DRDY_PULSE_CFG_G register description

DRDY_PULSED	Enable pulsed DataReady mode. Default value: 0
	(0: DataReady latched mode. Returns to 0 only after output data have been read;
	1: DataReady pulsed mode. The DataReady pulses are 75 µs long.)

9.10 INT1_CTRL (0Dh)

INT1 pad control register (r/w).

Each bit in this register enables a signal to be carried through INT1. The pad's output will supply the OR combination of the selected signals.

Table 41. INT1_CTRL register

INT1_STEP_		INT1_FULL	INT1_	INT1_	INT1_	INT1_	INT1_
DETECTOR	_MOT	_FLAG	FIFO_OVR	FTH	BOOT	DRDY_G	DRDY_XL

Table 42. INT1_CTRL register description

INT1_STEP_	Pedometer step recognition interrupt enable on INT1 pad. Default value: 0					
DETECTOR	(0: disabled; 1: enabled)					
INT1 SIGN MOT	Significant motion interrupt enable on INT1 pad. Default value: 0					
INTI_SIGN_WOT	(0: disabled; 1: enabled)					
INT1 FULL FLAG	FIFO full flag interrupt enable on INT1 pad. Default value: 0					
INTI_I OLL_I LAG	(0: disabled; 1: enabled)					
INT1_FIFO_OVR	FIFO overrun interrupt on INT1 pad. Default value: 0					
	(0: disabled; 1: enabled)					
INT1 FTH	FIFO threshold interrupt on INT1 pad. Default value: 0					
	(0: disabled; 1: enabled)					
INT1 BOOT	Boot status available on INT1 pad. Default value: 0					
	(0: disabled; 1: enabled)					
INT1 DRDY G	Gyroscope Data Ready on INT1 pad. Default value: 0					
INTI_DIXDI_G	(0: disabled; 1: enabled)					
INT1_DRDY_XL	Accelerometer Data Ready on INT1 pad. Default value: 0					
IIIII_DIXDI_XL	(0: disabled; 1: enabled)					

9.11 INT2_CTRL (0Eh)

INT2 pad control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pad's output will supply the OR combination of the selected signals.

Table 43. INT2_CTRL register

INT2_STE	INT2_STEP_ COUNT_OV	INT2_ FULL_FLAG	INT2_ FIFO_OVR	''' ' '	INT2_ DRDY _TEMP	INT2_ DRDY_G	INT2_ DRDY_XL	
----------	------------------------	--------------------	-------------------	---------	------------------------	-----------------	------------------	--

Table 44. INT2_CTRL register description

INT2_STEP_DELTA	Pedometer step recognition interrupt on delta time ⁽¹⁾ enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)		
INT2_STEP_COUNT Step counter overflow interrupt enable on INT2 pad. Default value (0: disabled; 1: enabled)			
INT2_FULL_FLAG	FIFO full flag interrupt enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)		
INT2_FIFO_OVR	FIFO overrun interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)		
INT2_FTH	FIFO threshold interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)		
INT2_DRDY_TEMP	Temperature Data Ready in INT2 pad. Default value: 0 (0: disabled; 1: enabled)		
INT2_DRDY_G	Gyroscope Data Ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)		
INT2_DRDY_XL	Accelerometer Data Ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)		

^{1.} Delta time value is defined in register STEP_COUNT_DELTA (15h).

9.12 WHO_AM_I (0Fh)

Who_AM_I register (r). This register is a read-only register. Its value is fixed at 6Ah.

Table 45. WHO_AM_I register

0 1 1	0	1 0	1	0
-------	---	-----	---	---

9.13 CTRL1_XL (10h)

Linear acceleration sensor control register 1 (r/w).

Table 46. CTRL1_XL register

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	FS_XL1	FS_XL0	LPF1_BW_ SEL	0 ⁽¹⁾

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 47. CTRL1_XL register description

ODR_XL [3:0]	Output data rate and power mode selection. Default value: 0000 (see <i>Table 48</i>).
FS_XL [1:0]	Accelerometer full-scale selection. Default value: 00. (00: ±2 g; 01: ±16 g; 10: ±4 g; 11: ±8 g)
LPF1_BW_SEL	Accelerometer digital LPF (LPF1) bandwidth selection. For bandwidth selection refer to CTRL8_XL (17h).

Table 48. Accelerometer ODR register setting

ODR_ XL3	ODR_ XL2	ODR_ XL1	ODR_ XL0	ODR selection [Hz] when XL_HM_MODE = 1	ODR selection [Hz] when XL_HM_MODE = 0
0	0	0	0	Power-down	Power-down
1	0	1	1	1.6 Hz (low power only)	12.5 Hz (high performance)
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)
1	1	х	х	Not allowed	Not allowed

9.14 CTRL2_G (11h)

Angular rate sensor control register 2 (r/w).

Table 49. CTRL2 G register

ODR_G	3 ODR_G2	ODR_G1	ODR_G0	FS_G1	FS_G0	FS_125	0 ⁽¹⁾

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 50. CTRL2_G register description

ODR_G [3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to <i>Table 51</i>)
FS_G [1:0]	Gyroscope full-scale selection. Default value: 00 (00: 250 dps; 01: 500 dps; 10: 1000 dps; 11: 2000 dps)
FS_125	Gyroscope full-scale at 125 dps. Default value: 0 (0: disabled; 1: enabled)

Table 51. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR [Hz] when G_HM_MODE = 1	ODR [Hz] when G_HM_MODE = 0	
0	0	0	0	Power down	Power down	
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)	
0	0	1	0	26 Hz (low power)	26 Hz (high performance)	
0	0	1	1	52 Hz (low power)	52 Hz (high performance)	
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)	
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)	
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)	
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)	
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)	
1	0	0	1	3.33 kHz (high performance	3.33 kHz (high performance)	
1	0	1	0	6.66 kHz (high performance	6.66 kHz (high performance)	
1	0	1	1	Not available	Not available	

9.15 CTRL3_C (12h)

Control register 3 (r/w).

Table 52. CTRL3_C register

BOOT BDU HLACTIVE PPOD SIM IFINC BLE SWF	BOOT	BDU	H_LACTIVE	PP_OD	SIM	IF_INC	BLE	SW_RESET
--	------	-----	-----------	-------	-----	--------	-----	----------

Table 53. CTRL3_C register description

воот	Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content)
BDU	Block Data Update. Default value: 0 (0: continuous update; 1: output registers not updated until MSB and LSB have been read)
H_LACTIVE	Interrupt activation level. Default value: 0 (0: interrupt output pads active high; 1: interrupt output pads active low)
PP_OD	Push-pull/open-drain selection on INT1 and INT2 pads. Default value: 0 (0: push-pull mode; 1: open-drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface).
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1 (0: disabled; 1: enabled)
BLE	Big/Little Endian Data selection. Default value 0 (0: data LSB @ lower address; 1: data MSB @ lower address)
SW_RESET	Software reset. Default value: 0 (0: normal mode; 1: reset device) This bit is cleared by hardware after next flash boot.

9.16 CTRL4_C (13h)

Control register 4 (r/w).

Table 54. CTRL4_C register

DEN_ XL_EN	SLEEP	INT2_on_ INT1	DEN_DRDY _INT1	DRDY_ MASK	I2C_disable	LPF1_SEL_G	0 ⁽¹⁾	
---------------	-------	------------------	-------------------	---------------	-------------	------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 55. CTRL4_C register description

DEN_XL_EN	Extend DEN functionality to accelerometer sensor. Default value: 0 (0: disabled; 1: enabled)
SLEEP	Gyroscope sleep mode enable. Default value: 0 (0: disabled; 1: enabled)
DEN_DRDY _INT1	DEN DRDY signal on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_on_INT1	All interrupt signals available on INT1 pad enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pads; 1: all interrupt signals in logic or on INT1 pad)
DRDY_MASK	Configuration 1 data available enable bit. Default value: 0 (0: DA timer disabled; 1: DA timer enabled)
I2C_disable	Disable I ² C interface. Default value: 0 (0: both I ² C and SPI enabled; 1: I ² C disabled, SPI only enabled)
LPF1_SEL_G	Enable gyroscope digital LPF1. The bandwidth can be selected through FTYPE[1:0] in CTRL6_C (15h). (0: disabled; 1: enabled)

9.17 CTRL5_C (14h)

Control register 5 (r/w).

Table 56. CTRL5_C register

ROUNDING2 ROUNDING1 ROUNDING0 DE	ST1_G ST0_G	ST1_XL ST0_XL
----------------------------------	-------------	---------------

Table 57. CTRL5_C register description

ROUNDING[2:0]	Circular burst-mode (rounding) read from the output registers. Default value: 000 (000: no rounding; Others: refer to <i>Table 58</i>
DEN_LH	DEN active level configuration. Default value: 0 (0: active low; 1: active high)
ST_G [1:0]	Angular rate sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 59</i>)
ST_XL [1:0]	Linear acceleration sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 60</i>)

Table 58. Output registers rounding pattern

ROUNDING[2:0]	Rounding pattern
000	No rounding
001	Accelerometer only
010	Gyroscope only
011	Gyroscope + accelerometer

Table 59. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 60. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

9.18 CTRL6_C (15h)

Angular rate sensor control register 6 (r/w).

Table 61. CTRL6_C register

TRIG_EN	LVL_EN	LVL2_EN	XL_HM_MODE	USR_ OFF_W	0 ⁽¹⁾	FTYPE_1	FTYPE_0
---------	--------	---------	------------	---------------	------------------	---------	---------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 62. CTRL6_C register description

TRIG_EN	DEN data edge-sensitive trigger enable. Refer to <i>Table 63</i> .
LVL_EN	DEN data level-sensitive trigger enable. Refer to <i>Table 63</i> .
LVL2_EN	DEN level-sensitive latched enable. Refer to <i>Table 63</i> .
XL_HM_MODE	High-performance operating mode disable for accelerometer. Default value: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
USR_OFF_W	Weight of XL user offset bits of registers 73h, 74h, 75h $0 = 2^{-10}$ g/LSB $1 = 2^{-6}$ g/LSB
FTYPE[1:0]	Gyroscope's low-pass filter (LPF1) bandwidth selection <i>Table 64</i> shows the selectable bandwidth values.

Table 63. Trigger mode selection

TRIG_EN, LVL1_EN, LVL2_EN	Trigger mode
100	Edge-sensitive trigger mode is selected
010	Level-sensitive trigger mode is selected
011	Level-sensitive latched mode is selected
110	Level-sensitive FIFO enable mode is selected

Table 64. Gyroscope LPF1 bandwidth selection

	ODR =	800 Hz	ODR = 1.6 kHz		ODR =	3.3 kHz	ODR = 6.6 kHz	
FTYPE[1:0]	BW	Phase delay ⁽¹⁾	BW	Phase delay ⁽¹⁾	BW	Phase delay ⁽¹⁾	BW	Phase delay ⁽¹⁾
00	245 Hz	14°	315 Hz	10°	343 Hz	8°	351 Hz	7°
01	195 Hz	17°	224 Hz	12°	234 Hz	10°	237 Hz	9°
10	155 Hz	19°	168 Hz	15°	172 Hz	12°	173 Hz	11°
11	293 Hz	13°	505 Hz	8°	925 Hz	6°	937 Hz	5°

^{1.} Phase delay @ 20 Hz

9.19 CTRL7_G (16h)

Angular rate sensor control register 7 (r/w).

Table 65. CTRL7_G register

G_HM_MODE HP_EN_G HPM	_G HPM0_G	0 ⁽¹⁾ R	OUNDING_ STATUS	0 ⁽¹⁾	0 ⁽¹⁾	
-----------------------	-----------	--------------------	--------------------	------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 66. CTRL7_G register description

High-performance operating mode disable for gyroscope(1). Default: 0
(0: high-performance operating mode enabled;
1: high-performance operating mode disabled)
Gyroscope digital high-pass filter enable. The filter is enabled only if the gyro is in HP
mode. Default value: 0
(0: HPF disabled; 1: HPF enabled)
Gyroscope digital HP filter cutoff selection. Default: 00
(00 = 16 mHz
01 = 65 mHz
10 = 260 mHz
11 = 1.04 Hz)
Source register rounding function on WAKE_UP_SRC (1Bh), TAP_SRC (1Ch),
D6D_SRC (1Dh), STATUS_REG (1Eh), and FUNC_SRC (53h).
Default value: 0
(0: Rounding disabled; 1: Rounding enabled)

9.20 CTRL8_XL (17h)

Linear acceleration sensor control register 8 (r/w).

Table 67. CTRL8_XL register

LPF2_XL_ EN	HPCF_ XL1	HPCF_ XL0	HP_REF _MODE	INPUT_ COMPO SITE	HP_SLOPE_X L_EN	0 ⁽¹⁾	LOW_PASS _ON_6D
----------------	--------------	--------------	-----------------	-------------------------	--------------------	------------------	--------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 68. CTRL8_XL register description

LPF2_XL_EN	Accelerometer low-pass filter LPF2 selection. Refer to Figure 7.
HPCF_XL[1:0]	Accelerometer LPF2 and high-pass filter configuration and cutoff setting. Refer to <i>Table 69</i> .
HP_REF_MODE	Enable HP filter reference mode. Default value: 0 (0: disabled; 1: enabled)
INPUT_COMPOSITE	Composite filter input selection. Default: 0 (0: ODR/2 low pass filtered sent to composite filter (default) 1: ODR/4 low pass filtered sent to composite filter)
HP_SLOPE_XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 7.
LOW_PASS_ON_6D	LPF2 on 6D function selection. Refer to Figure 7.

HP_SLOPE_ XL_EN	LPF2_XL_EN	LPF1_BW_SEL	HPCF_XL[1:0]	INPUT_ COMPOSITE	Bandwidth
	0	0	-	-	ODR/2
	0	1	-	-	ODR/4
0			00		ODR/50
(low-pass path) ⁽¹⁾	1	-	01	1 (low noise) 0 (low latency)	ODR/100
			10		ODR/9
			11		ODR/400
			00		ODR/4
1 (high-pass path) ⁽²⁾			01	0	ODR/100
	-	-	10		ODR/9
			11		ODR/400

Table 69. Accelerometer bandwidth selection

9.21 CTRL9_XL (18h)

Linear acceleration sensor control register 9 (r/w).

Table 70. CTRL9_XL register

DEN_X DEN_Y DEN_Z	DEN_XL_G	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
-------------------	----------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 71. CTRL9_XL register description

DEN_X	DEN value stored in LSB of X-axis. Default value: 1 (0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)
DEN_Y	DEN value stored in LSB of Y-axis. Default value: 1 (0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB)
DEN_Z	DEN value stored in LSB of Z-axis. Default value: 1 (0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB)
DEN_XL_G	DEN stamping sensor selection. Default value: 0 (0: DEN pin info stamped in the gyroscope axis selected by bits [7:5]; 1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])

^{1.} The bandwidth column is related to LPF1 if LPF2_XL_EN = 0 or to LPF2 if LPF2_XL_EN = 1.

^{2.} The bandwidth column is related to the slope filter if HPCF_XL[1:0] = 00 or to the HP filter if HPCF_XL[1:0] = 01/10/11.

9.22 CTRL10_C (19h)

Control register 10 (r/w).

Table 72. CTRL10_C register

0 ⁽¹⁾	0 ⁽¹⁾	TIMER_ EN	PEDO_ EN	TILT_ EN	FUNC_EN	PEDO_RST _STEP	SIGN_ MOTION_EN
------------------	------------------	--------------	-------------	-------------	---------	-------------------	--------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 73. CTRL10 C register description

	idalo i di di i i i i i i i i i i i i i i i
TIMER_EN	Enable timestamp count. The count is saved in TIMESTAMP0_REG (40h), TIMESTAMP1_REG (41h) and TIMESTAMP2_REG (42h). Default: 0 (0: timestamp count disabled; 1: timestamp count enabled)
PEDO_EN	Enable pedometer algorithm ⁽¹⁾ . Default value: 0 (0: pedometer algorithm disabled; 1: pedometer algorithm enabled)
TILT_EN	Enable tilt calculation ⁽¹⁾ .
FUNC_EN	Enable embedded functionalities (pedometer, tilt, significant motion detection, sensor hub and ironing). Default value: 0 (0: disable functionalities of embedded functions and accelerometer filters; 1: enable functionalities of embedded functions and accelerometer filters)
PEDO_RST_ STEP	Reset pedometer step counter. Default value: 0 (0: disabled; 1: enabled)
SIGN_MOTION_EN	Enable significant motion detection function ⁽¹⁾ . Default value: 0 (0: disabled; 1: enabled)

^{1.} This is effective if the FUNC_EN bit is set to '1'.

9.23 PU_CFG (1Ah)

Pin 2 and pin 3 pull-up configuration register (r/w).

Table 74. PU_CFG register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	PULL_UP _EN	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
------------------	------------------	------------------	------------------	----------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 75. PU_CFG register description

	Enable internal pull-up on pin 2 and pin 3. Default value: 0
PULL_UP_EN	(0: internal pull-up on pin 2 and pin3 disabled;
	1: internal pull-up on pin 2 and pin3 enabled)

9.24 WAKE_UP_SRC (1Bh)

Wake up interrupt source register (r).

Table 76. WAKE_UP_SRC register

0	0	FF_IA	SLEEP_ STATE_IA	WU_IA	X_WU	Y_WU	Z_WU
---	---	-------	--------------------	-------	------	------	------

Table 77. WAKE_UP_SRC register description

FF_IA	Free-fall event detection status. Default: 0 (0: free-fall event not detected; 1: free-fall event detected)
SLEEP_ STATE_IA	Sleep event status. Default value: 0 (0: sleep event not detected; 1: sleep event detected)
WU_IA	Wakeup event detection status. Default value: 0 (0: wakeup event not detected; 1: wakeup event detected.)
x_wu	Wakeup event detection status on X-axis. Default value: 0 (0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y_WU	Wakeup event detection status on Y-axis. Default value: 0 (0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z_WU	Wakeup event detection status on Z-axis. Default value: 0 (0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)

9.25 TAP_SRC (1Ch)

Tap source register (r).

Table 78. TAP_SRC register

0	TAP_IA	SINGLE_ TAP	DOUBLE_ TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP	
---	--------	----------------	----------------	----------	-------	-------	-------	--

Table 79. TAP_SRC register description

TAP_IA	Tap event detection status. Default: 0 (0: tap event not detected; 1: tap event detected)
SINGLE_TAP	Single-tap event status. Default value: 0 (0: single tap event not detected; 1: single tap event detected)
DOUBLE_TAP	Double-tap event detection status. Default value: 0 (0: double-tap event not detected; 1: double-tap event detected.)
TAP_SIGN	Sign of acceleration detected by tap event. Default: 0 (0: positive sign of acceleration detected by tap event; 1: negative sign of acceleration detected by tap event)
X_TAP	Tap event detection status on X-axis. Default value: 0 (0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Y_TAP	Tap event detection status on Y-axis. Default value: 0 (0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
Z_TAP	Tap event detection status on Z-axis. Default value: 0 (0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)

9.26 D6D_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r)

Table 80. D6D_SRC register

DEN_ DRDY	D6D_IA	ZH	ZL	YH	YL	ХН	XL	
--------------	--------	----	----	----	----	----	----	--

Table 81. D6D_SRC register description

DEN_ DRDY	DEN data-ready signal. It is set high when data output is related to the data coming from a DEN active condition. ⁽¹⁾
D6D_ IA	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0 (0: change position not detected; 1: change position detected)
ZH	Z-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
YH	Y-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over-threshold) detected)
YL	Y-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
ХН	X-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)
XL	X-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)

The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the DRDY_PULSE_CFG_G (0Bh) register.

9.27 STATUS_REG (1Eh)

The STATUS_REG register is read by the SPI/ I^2 C interface (r).

Table 82. STATUS_REG register

0	0	0	0	0	TDA	GDA	XLDA	

Table 83. STATUS_REG register description

TDA	Temperature new data available. Default: 0 (0: no set of data is available at temperature sensor output;
	a new set of data is available at temperature sensor output)
	Gyroscope new data available. Default value: 0
GDA	(0: no set of data available at gyroscope output; 1: a new set of data is available at gyroscope output)
	Accelerometer new data available. Default value: 0
XLDA	(0: no set of data available at accelerometer output; 1: a new set of data is available at accelerometer output)

9.28 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 84. OUT TEMP L register

10010 041 00 1_12 10glotto								
Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0	
Table 85. OUT_TEMP_H register								
Temp15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8	

Table 86. OUT_TEMP register description

ſ	Temp[15:0]	Temperature sensor output data
Temp[15.0]	The value is expressed as two's complement sign extended on the MSB.	

9.29 OUTX_L_G (22h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

Table 87. OUTX_L_G register

- <u> </u>							
D7	D6	D5	D4	D3	D2	D1	D0

Table 88. OUTX_L_G register description

	Pitch axis (X) angular rate value (LSbyte)	
	D[15:0] expressed in two's complement and its value depends on the interface used:	
	SPI1/I ² C: Gyro UI chain pitch axis output	

9.30 OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

Table 89. OUTX_H_G register

D15	D14	D13	D12	D11	D10	D9	D8
				l			

Table 90. OUTX_H_G register description

	Pitch axis (X) angular rate value (MSbyte)
D[15:8]	D[15:0] expressed in two's complement and its value depends on the interface used:
	SPI1/I ² C: Gyro UI chain pitch axis output

9.31 OUTY_L_G (24h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

Table 91. OUTY_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 92. OUTY_L_G register description

	Roll axis (Y) angular rate value (LSbyte)
D[7:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
	SPI1/I ² C: Gyro UI chain roll axis output

9.32 OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

Table 93. OUTY_H_G register

D15		015		D13	D12	D11	D10	D9	D8
-----	--	-----	--	-----	-----	-----	-----	----	----

Table 94. OUTY_H_G register description

	Roll axis (Y) angular rate value (MSbyte)
D[15:8]	D[15:0] expressed in two's complement and its value depends on the interface used:
	SPI1/I ² C: Gyro UI chain roll axis output

9.33 OUTZ_L_G (26h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

Table 95. OUTZ_L_G register

	ſ	D7	D6	D5	D4	D3	D2	D1	D0
--	---	----	----	----	----	----	----	----	----

Table 96. OUTZ_L_G register description

	Yaw axis (Z) angular rate value (LSbyte)
	D[15:0] expressed in two's complement and its value depends on the interface used:
	SPI1/I ² C: Gyro UI chain yaw axis output

9.34 OUTZ_H_G (27h)

Angular rate sensor Yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

Table 97. OUTZ_H_G register

D15	D14	D13	D12	D11	D10	D9	D8	

Table 98. OUTZ_H_G register description

	Yaw axis (Z) angular rate value (MSbyte)
D[15:8]	D[15:0] expressed in two's complement and its value depends on the interface used:
	SPI1/I ² C: Gyro UI chain yaw axis output

9.35 OUTX_L_XL (28h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 99. OUTX_L_XL register

D7	D6	D5	D4	D3	D2	D1	D0

Table 100. OUTX_L_XL register description

D[7:0] X-axis linear acceleration value (LSbyte)
--

9.36 OUTX_H_XL (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 101. OUTX_H_XL register

D15	D14	D13	D12	D11	D10	D9	D8
-----	-----	-----	-----	-----	-----	----	----

Table 102. OUTX_H_XL register description

D[15:8]	X-axis linear acceleration value (MSbyte)
---------	---

9.37 **OUTY_L_XL** (2Ah)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 103. OUTY_L_XL register

D7	D6	D5	D4	D3	D2	D1	D0
----	----	----	----	----	----	----	----

Table 104. OUTY_L_XL register description

D[7:0]	Y-axis linear acceleration value (LSbyte)	
--------	---	--

9.38 OUTY_H_XL (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 105. OUTY H G register

				~				
D15	D14	D13	D12	D11	D10	D9	D8	l

Table 106. OUTY_H_G register description

D[15:8] Y-axis linear acceleration value (MSbyte)

9.39 **OUTZ_L_XL** (2Ch)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 107. OUTZ L XL register

D7	D6	D5	D4	D3	D2	D1	D0	

Table 108. OUTZ_L_XL register description

D[7:0]	Z-axis linear acceleration value (LSbyte)
--------	---

9.40 OUTZ_H_XL (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 109. OUTZ_H_XL register

D15	D14	D13	D12	D11	D10	D9	D8

Table 110. OUTZ_H_XL register description

D[15:8]	Z-axis linear acceleration value (MSbyte)	

9.41 FIFO_STATUS1 (3Ah)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in *CTRL3_C* (12h) to 1.

Table 111. FIFO_STATUS1 register

| DIFF_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FIFO_7 | FIFO_6 | FIFO_5 | FIFO_4 | FIFO_3 | FIFO_2 | FIFO_1 | FIFO_0 |

Table 112. FIFO STATUS1 register description

DIFF_FIFO_[7:0]	Number of unread words (16-bit axes) stored in FIFO ⁽¹⁾ .

^{1.} For a complete number of unread samples, consider DIFF_FIFO [10:8] in FIFO_STATUS2 (3Bh).

9.42 FIFO_STATUS2 (3Bh)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in *CTRL3_C* (12h) to 1.

Table 113. FIFO_STATUS2 register

WaterM OVER_RUN FI	- FMPTY	FIFO_ FULL_ SMART	0	DIFF_ FIFO_10	DIFF_ FIFO_9	DIFF_ FIFO_8
--------------------	---------	-------------------------	---	------------------	-----------------	-----------------

Table 114. FIFO_STATUS2 register description

WaterM	FIFO watermark status. The watermark is set through bits FTH_[7:0] in FIFO_CTRL1 (06h). Default value: 0 (0: FIFO filling is lower than watermark level ⁽¹⁾ ; 1: FIFO filling is equal to or higher than the watermark level)
OVER_RUN	FIFO overrun status. Default value: 0 (0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO_FULL_ SMART	Smart FIFO full status. Default value: 0 (0: FIFO is not full; 1: FIFO will be full at the next ODR)
FIFO_EMPTY	FIFO empty bit. Default value: 0 (0: FIFO contains data; 1: FIFO is empty)
DIFF_FIFO_[10:8]	Number of unread words (16-bit axes) stored in FIFO ⁽²⁾ .

^{1.} FIFO watermark level is set in FTH_[11:0] in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h).

9.43 FIFO_STATUS3 (3Ch)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in *CTRL3_C* (12h) to 1.

Table 115. FIFO_STATUS3 register

| FIFO_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PATTERN |
| _7 | _6 | _5 | _4 | _3 | _2 | _1 | _0 |

Table 116. FIFO_STATUS3 register description

FIFO_ PATTERN_[7:0]	Word of recursive pattern read at the next reading.
------------------------	---

^{2.} For a complete number of unread samples, consider DIFF_FIFO [7:0] in FIFO_STATUS1 (3Ah).

9.44 FIFO_STATUS4 (3Dh)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in *CTRL3_C* (12h) to 1.

Table 117. FIFO_STATUS4 register

0 0 0 0 FIFO_ PATTERN_9 PATTERN_

Table 118. FIFO_STATUS4 register description

FIFO_ PATTERN_[9:8]	Word of recursive pattern read at the next reading.
------------------------	---

9.45 FIFO_DATA_OUT_L (3Eh)

FIFO data output register (r). For a proper reading of the register, it is recommended to set the BDU bit in *CTRL3_C (12h)* to 1.

Table 119. FIFO_DATA_OUT_L register

| DATA_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| OUT_ |
| FIFO_L_7 | FIFO_L_6 | FIFO_L_5 | FIFO_L_4 | FIFO_L_3 | FIFO_L_2 | FIFO_L_1 | FIFO_L_0 |

Table 120. FIFO_DATA_OUT_L register description

DATA_OUT_FIFO_L_[7:0]	FIFO data output (first byte)
-----------------------	-------------------------------

9.46 FIFO_DATA_OUT_H (3Fh)

FIFO data output register (r). For a proper reading of the register, it is recommended to set the BDU bit in *CTRL3_C* (12h) to 1.

Table 121. FIFO_DATA_OUT_H register

| DATA_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| OUT_ |
| FIFO_H_7 | FIFO_H_6 | FIFO_H_5 | FIFO_H_4 | FIFO_H_3 | FIFO_H_2 | FIFO_H_1 | FIFO_H_0 |

Table 122. FIFO_DATA_OUT_H register description

DATA_OUT_FIFO_H_[7:0]	FIFO data output (second byte)
-----------------------	--------------------------------

9.47 TIMESTAMP0_REG (40h)

Timestamp first byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in *WAKE_UP_DUR* (5Ch).

Table 123. TIMESTAMP0_REG register

| TIMESTA |
|---------|---------|---------|---------|---------|---------|---------|---------|
| MP0_7 | MP0_6 | MP0_5 | MP0_4 | MP0_3 | MP0_2 | MP0_1 | MP0_0 |

Table 124. TIMESTAMP0_REG register description

TIMESTAMP0_[7:0]	TIMESTAMP first byte data output
------------------	----------------------------------

9.48 TIMESTAMP1_REG (41h)

Timestamp second byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting value in *WAKE_UP_DUR (5Ch)*.

Table 125. TIMESTAMP1_REG register

| TIMESTA |
|---------|---------|---------|---------|---------|---------|---------|---------|
| MP1_7 | MP1_6 | MP1_5 | MP1_4 | MP1_3 | MP1_2 | MP1_1 | MP1_0 |

Table 126. TIMESTAMP1_REG register description

TIMESTAMP1_[7:0]	TIMESTAMP second byte data output

9.49 TIMESTAMP2_REG (42h)

Timestamp third byte data output register (r/w). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in *WAKE_UP_DUR* (5Ch). To reset the timer, the AAh value has to be stored in this register.

Table 127. TIMESTAMP2_REG register

TIMESTA	l							
MP2_7	MP2_6	MP2_5	MP2_4	MP2_3	MP2_2	MP2_1	MP2_0	

Table 128. TIMESTAMP2_REG register description

9.50 STEP_TIMESTAMP_L (49h)

Step counter timestamp information register (r). When a step is detected, the value of TIMESTAMP_REG1 register is copied in STEP_TIMESTAMP_L.

Table 129. STEP_TIMESTAMP_L register

Γ	STEP_							
	TIMESTA							
	MP_L_7	MP_L_6	MP_L_5	MP_L_4	MP_L_3	MP_L_2	MP_L_1	MP_L_0

Table 130. STEP_TIMESTAMP_L register description

STEP_TIMESTAMP_L[7:0]	Timestamp of last step detected.
-----------------------	----------------------------------

9.51 STEP_TIMESTAMP_H (4Ah)

Step counter timestamp information register (r). When a step is detected, the value of TIMESTAMP_REG2 register is copied in STEP_TIMESTAMP_H.

Table 131. STEP_TIMESTAMP_H register

1	STEP_							
	TIMESTA							
	MP_H_7	MP_H_6	MP_H_5	MP_H_4	MP_H_3	MP_H_2	MP_H_1	MP_H_0

Table 132. STEP_TIMESTAMP_H register description

STEP_TIMESTAMP_H[7:0]	Timestamp of last step detected.
-----------------------	----------------------------------

9.52 STEP_COUNTER_L (4Bh)

Step counter output register (r).

Table 133. STEP_COUNTER_L register

| STEP_CO |
|---------|---------|---------|---------|---------|---------|---------|---------|
| UNTER_L |
| _7 | _6 | _5 | _4 | _3 | _2 | _1 | _0 |

Table 134. STEP_COUNTER_L register description

STEP_COUNTER_L_[7:0]	Step counter output (LSbyte)
----------------------	------------------------------

66/83 DocID030071 Rev 2

9.53 STEP_COUNTER_H (4Ch)

Step counter output register (r).

Table 135. STEP_COUNTER_H register

ſ	STEP_CO							
	UNTER_H							
	_7	_6	_5	_4	_3	_2	_1	_0

Table 136. STEP_COUNTER_H register description

unter output (MSbyte)
ι

9.54 FUNC_SRC (53h)

Significant motion, tilt, step detector, hard/soft-iron and sensor hub interrupt source register (r).

Table 137. FUNC_SRC register

STEP_ COUNT _DELTA _IA	SIGN_ MOTION_IA	TILT_IA	STEP_ DETECTED	STEP_ OVERFLOW	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
---------------------------------	--------------------	---------	-------------------	-------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 138. FUNC_SRC register description

STEP_COUNT _DELTA_IA	Pedometer step recognition on delta time status. Default value: 0 (0: no step recognized during delta time; 1: at least one step recognized during delta time)
SIGN_ MOTION_IA	Significant motion event detection status. Default value: 0 (0: significant motion event not detected; 1: significant motion event detected)
TILT_IA	Tilt event detection status. Default value: 0 (0: tilt event not detected; 1: tilt event detected)
STEP_ DETECTED	Step detector event detection status. Default value: 0 (0: step detector event not detected; 1: step detector event detected)
STEP_ OVERFLOW	Step counter overflow status. Default value: 0 (0: step counter value < 2 ¹⁶ ; 1: step counter value reached 2 ¹⁶)

9.55 TAP_CFG (58h)

Enables interrupt and inactivity functions, configuration of filtering and tap recognition functions (r/w).

Table 139. TAP_CFG register

INTERRUPTS INACT_EN1	INACT_EN0	SLOPE _FDS	TAP_X_EN	TAP_Y_EN	TAP_Z_EN	LIR
----------------------	-----------	---------------	----------	----------	----------	-----

Table 140. TAP_CFG register description

	<u>, </u>
INTERRUPTS _ENABLE	Enable basic interrupts (6D/4D, free-fall, wake-up, tap, inactivity). Default 0. (0: interrupt disabled; 1: interrupt enabled)
INACT_EN[1:0]	Enable inactivity function. Default value: 00 (00: disabled 01: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro does not change; 10: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to sleep mode; 11: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to power-down mode)
SLOPE_FDS	HPF or SLOPE filter selection on wake-up and Activity/Inactivity functions. Refer to Figure 7. Default value: 0 (0: SLOPE filter applied; 1: HPF applied)
TAP_X_EN	Enable X direction in tap recognition. Default value: 0 (0: X direction disabled; 1:X direction enabled)
TAP_Y_EN	Enable Y direction in tap recognition. Default value: 0 (0: Y direction disabled; 1:Y direction enabled)
TAP_Z_EN	Enable Z direction in tap recognition. Default value: 0 (0: Z direction disabled; 1:Z direction enabled)
LIR	Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)

9.56 TAP_THS_6D (59h)

Portrait/landscape position and tap function threshold register (r/w).

Table 141. TAP_THS_6D register

DAI	D EN	SIXD_THS	SIXD_THS	TAP_THS	TAP_THS	TAP_THS	TAP_THS	TAP_THS
D41	D_EIN	1	0	4	3	2	1	0

Table 142. TAP_THS_6D register description

	4D orientation detection enable. Z-axis position detection is disabled.
D4D_EN	Default value: 0
	(0: enabled; 1: disabled)
SIXD THS[1:0]	Threshold for 4D/6D function. Default value: 00
	For details, refer to <i>Table 143</i> .
TAP_THS[4:0]	Threshold for tap recognition. Default value: 00000 1 LSb corresponds to FS_XL/2 ⁵

Table 143. Threshold for D4D/D6D function

SIXD_THS[1:0]	Threshold value
00	80 degrees
01	70 degrees
10	60 degrees
11	50 degrees

9.57 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w).

Table 144. INT_DUR2 register

DUR3 DUR2 DUR1 DUR0 QUIET1 QUIET0 SHOCK1 SHOCK0

Table 145. INT_DUR2 register description

	Duration of maximum time gap for double tap recognition. Default: 0000
	When double tap recognition is enabled, this register expresses the maximum time
DUR[3:0]	between two consecutive detected taps to determine a double tap event. The
	default value of these bits is 0000b which corresponds to 16*ODR_XL time. If the
	DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.
	Expected quiet time after a tap detection. Default value: 00
	Quiet time is the time after the first detected tap in which there must not be any
QUIET[1:0]	overthreshold event. The default value of these bits is 00b which corresponds to
	2*ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB
	corresponds to 4*ODR_XL time.
	Maximum duration of overthreshold event. Default value: 00
	Maximum duration is the maximum time of an overthreshold signal detection to be
SHOCK[1:0]	recognized as a tap event. The default value of these bits is 00b which corresponds
	to 4*ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB
	corresponds to 8*ODR_XL time.

9.58 **WAKE_UP_THS** (5Bh)

Single and double-tap function threshold register (r/w).

Table 146. WAKE_UP_THS register

SINGLE_ DOUBLE	0	WK THS5	WK THS4	WK THS3	WK THS2	WK THS1	WK THS0
_TAP							

Table 147. WAKE_UP_THS register description

	Single/double-tap event enable. Default: 0
SINGLE_DOUBLE_TAP	(0: only single-tap event enabled;
	1: both single and double-tap events enabled)
WK_THS[5:0]	Threshold for wakeup. Default value: 000000 1 LSb corresponds to FS_XL/2 ⁶

9.59 WAKE_UP_DUR (5Ch)

Free-fall, wakeup, timestamp and sleep mode functions duration setting register (r/w).

Table 148. WAKE_UP_DUR register

EE DUDE	WAKE_	WAKE_	TIMER_	SLEEP_	SLEEP_	SLEEP_	SLEEP_
FF_DUR5	DUR1	DUR0	HR _	DUR3	DUR2	DUR1	DUR0

Table 149. WAKE_UP_DUR register description

	Free fall duration event. Default: 0
FF_DUR5	For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration.
	1 LSB = 1 ODR_time
WAKE DUDITION	Wake up duration event. Default: 00
WAKE_DUR[1:0]	1LSB = 1 ODR_time
TIMER HR	Timestamp register resolution setting ⁽¹⁾ . Default value: 0
I IIVIEK_FIK	(0: 1LSB = 6.4 ms; 1: 1LSB = 25 μs)
SLEEP DUR[3:0]	Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR)
SLEEF_DUR[3.0]	1 LSB = 512 ODR

Configuration of this bit affects TIMESTAMP0_REG (40h), TIMESTAMP1_REG (41h), TIMESTAMP2_REG (42h), STEP_TIMESTAMP_L (49h), STEP_TIMESTAMP_H (4Ah), and CTRL6_C (15h) registers.

70/83 DocID030071 Rev 2

9.60 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w).

Table 150. FREE_FALL register

	FF DUF	4 FF DUR3	FF DUR2	FF DUR1	FF DUR0	FF THS2	FF THS1	FF THS0
--	--------	-----------	---------	---------	---------	---------	---------	---------

Table 151. FREE_FALL register description

	Free-fall duration event. Default: 0						
FF_DUR[4:0]	For the complete configuration of the free fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration						
FF THS[2:0]	Free fall threshold setting. Default: 000						
FF_1H3[2.0]	For details refer to <i>Table 152</i> .						

Table 152. Threshold for free-fall function

FF_THS[2:0]	Threshold value
000	156 mg
001	219 mg
010	250 mg
011	312 mg
100	344 mg
101	406 mg
110	469 mg
111	500 mg

9.61 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w).

Table 153. MD1_CFG register

INT1_ INACT_ STATE	INT1_ SINGLE_ INT1_WU TAP	INT1_FF DO	NT1_ DUBLE_ INT1_6D TAP	INT1_TILT	INT1_ TIMER	
--------------------------	---------------------------------	------------	-------------------------------	-----------	----------------	--

Table 154. MD1_CFG register description

INT1_INACT_ STATE	Routing on INT1 of inactivity mode. Default: 0 (0: routing on INT1 of inactivity disabled; 1: routing on INT1 of inactivity enabled)
INT1_SINGLE_ TAP	Single-tap recognition routing on INT1. Default: 0 (0: routing of single-tap event on INT1 disabled; 1: routing of single-tap event on INT1 enabled)
INT1_WU	Routing of wakeup event on INT1. Default value: 0 (0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled)
INT1_FF	Routing of free-fall event on INT1. Default value: 0 (0: routing of free-fall event on INT1 disabled; 1: routing of free-fall event on INT1 enabled)
INT1_DOUBLE _TAP	Routing of tap event on INT1. Default value: 0 (0: routing of double-tap event on INT1 disabled; 1: routing of double-tap event on INT1 enabled)
INT1_6D	Routing of 6D event on INT1. Default value: 0 (0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)
INT1_TILT	Routing of tilt event on INT1. Default value: 0 (0: routing of tilt event on INT1 disabled; 1: routing of tilt event on INT1 enabled)
INT1_TIMER	Routing of end counter event of timer on INT1. Default value: 0 (0: routing of end counter event of timer on INT1 disabled; 1: routing of end counter event of timer event on INT1 enabled)

9.62 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w).

Table 155. MD2_CFG register

INT2_	INT2_			INT2_			
INACT_	SINGLE_	INT2_WU	INT2_FF	DOUBLE_	INT2_6D	INT2_TILT	0 ⁽¹⁾
STATE	TAP	_	_	TAP	_	_	

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 156. MD2_CFG register description

INT2_INACT_ STATE	Routing on INT2 of inactivity mode. Default: 0 (0: routing on INT2 of inactivity disabled; 1: routing on INT2 of inactivity enabled)
INT2_SINGLE_ TAP	Single-tap recognition routing on INT2. Default: 0 (0: routing of single-tap event on INT2 disabled; 1: routing of single-tap event on INT2 enabled)
INT2_WU	Routing of wakeup event on INT2. Default value: 0 (0: routing of wakeup event on INT2 disabled; 1: routing of wake-up event on INT2 enabled)
INT2_FF	Routing of free-fall event on INT2. Default value: 0 (0: routing of free-fall event on INT2 disabled; 1: routing of free-fall event on INT2 enabled)
INT2_DOUBLE _TAP	Routing of tap event on INT2. Default value: 0 (0: routing of double-tap event on INT2 disabled; 1: routing of double-tap event on INT2 enabled)
INT2_6D	Routing of 6D event on INT2. Default value: 0 (0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)
INT2_TILT	Routing of tilt event on INT2. Default value: 0 (0: routing of tilt event on INT2 disabled; 1: routing of tilt event on INT2 enabled)

9.63 MASTER_CMD_CODE (60h)

Table 157. MASTER_CMD_CODE register

| MASTER_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CMD_ |
| CODE7 | CODE6 | CODE5 | CODE4 | CODE3 | CODE2 | CODE1 | CODE0 |

Table 158. MASTER_CMD_CODE register description

MASTER_CMD_ CODE[7:0]	Master command code used for stamping for sensor sync. Default: 0	
[0.0]		П

9.64 SENS_SYNC_SPI_ERROR_CODE (61h)

Table 159. SENS_SYNC_SPI_ERROR_CODE register

| ERROR_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CODE7 | CODE6 | CODE5 | CODE4 | CODE3 | CODE2 | CODE1 | CODE0 |

Table 160. SENS_SYNC_SPI_ERROR_CODE register description

ERROR_CODE[7:0]	Error code used for sensor synchronization. Default: 0)
-----------------	---

9.65 X_OFS_USR (73h)

Accelerometer X-axis user offset correction (r/w)

Table 161. X_OFS_USR register

| X_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| | | | | | | | USR_0 |

Table 162. X_OFS_USR register description

X_OFS_USR_	Accelerometer X-axis user offset correction expressed in two's complement,
[7:0]	weight depends on CTRL6_C(4) bit. The value must be in the range [-127 127].

9.66 Y_OFS_USR (74h)

Accelerometer Y-axis user offset correction (r/w)

Table 163. Y_OFS_USR register

| Y_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 164. Y OFS USR register description

	Accelerometer Y-axis user offset correction expressed in two's complement,
[7:0]	weight depends on CTRL6_C(4) bit. The value must be in the range [-127 127].

9.67 Z_OFS_USR (75h)

Accelerometer Z-axis user offset correction (r/w)

Table 165. Z_OFS_USR register

| Z_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| | . – – | USR_5 | | USR_3 | | | |

Table 166. Z_OFS_USR register description

	Accelerometer Z-axis user offset correction expressed in two's complement,
[7:0]	weight depends on CTRL6_C(4) bit. The value must be in the range [-127 127].

577

10 Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses.

The embedded functions registers are accessible when FUNC_CFG_EN is set to '1' in FUNC_CFG_ACCESS (01h).

Note:

All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

Table 167. Register address map - embedded functions

Name	Tuna	Register	address	Default	Comment
Name	Type	Hex	Binary	Delault	
RESERVED	-	00-0E			Reserved
CONFIG_PEDO_THS_MIN	r/w	0F	00001111	00010000	
RESERVED	-	10-12			Reserved
SM_THS	r/w	13	00010011	00000110	
PEDO_DEB_REG	r/w	14	00010100	01101110	
STEP_COUNT_DELTA	r/w	15	0001 0101	00000000	

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

11 Embedded functions registers description

Note:

All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

11.1 CONFIG_PEDO_THS_MIN (0Fh)

Table 168. CONFIG_PEDO_THS_MIN register

PEDO_FS 0 0	ths_min_4	ths_min_3	ths_min_2	ths_min_1	ths_min_0
-------------	-----------	-----------	-----------	-----------	-----------

Table 169. CONFIG_PEDO_THS_MIN register description

PEDO_FS	Pedometer data elaboration at 4 <i>g</i> . (0: elaboration of 2 <i>g</i> data; 1: elaboration of 4 <i>g</i> data)
ths_min_[4:0]	Minimum threshold to detect a peak. Default is 10h.

11.2 SM_THS (13h)

Significant motion configuration register (r/w).

Table 170. SM_THS register

Γ	SM_THS_							
	7	6	5	4	3	2	1	0

Table 171. SM_THS register description

SM_THS[7:0]	Significant motion threshold. Default value: 00000110
-------------	---

11.3 PEDO_DEB_REG (14h)

Table 172. PEDO_DEB_REG register default values

| DEB_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TIME4 | TIME3 | TIME2 | TIME1 | TIME0 | STEP2 | STEP1 | STEP0 |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 | |

Table 173. PEDO_DEB_REG register description

DEB_TIME[4:0]	Debounce time. If the time between two consecutive steps is greater than DEB_TIME*80ms, the debouncer is reactivated. Default value: 01101
DEB_STEP[2:0]	Debounce threshold. Minimum number of steps to increment step counter (debounce). Default value: 110

76/83 DocID030071 Rev 2

11.4 STEP_COUNT_DELTA (15h)

Time period register for step detection on delta time (r/w).

Table 174. STEP_COUNT_DELTA register

| SC_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| DELTA_7 | DELTA_6 | DELTA_5 | DELTA_4 | DELTA_3 | DELTA_2 | DELTA_1 | DELTA_0 |

Table 175. STEP_COUNT_DELTA register description

SC_DELTA[7:0]	Time period value ⁽¹⁾ (1LSB = 1.6384 s)
---------------	---

This value is effective if the TIMER_EN bit of CTRL10_C (19h) is set to 1 and the TIMER_HR bit of WAKE_UP_DUR (5Ch) register is set to 0.

12 Soldering information

The LGA package is compliant with the ECOPACK®, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.

Land pattern and soldering recommendations are available at www.st.com/mems.

13 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

13.1 LGA-14 package information

Figure 15. LGA-14 2.5x3x0.86 mm package outline and mechanical data

Package information LSM6DS3TR-C

LGA-14 packing information 13.2

Figure 16. Carrier tape information for LGA-14 package

Figure 17. LGA-14 package orientation in carrier tape

DocID030071 Rev 2 80/83

Figure 18. Reel information for carrier tape of LGA-14 package

Table 176. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)				
A (max)	330			
B (min)	1.5			
С	13 ±0.25			
D (min)	20.2			
N (min)	60			
G	12.4 +2/-0			
T (max)	18.4			

Revision history LSM6DS3TR-C

14 Revision history

Table 177. Document revision history

Date	Revision	Changes	
27-Feb-2017	2	Initial public release	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

