Lecture 1: Kottiwtz-Langlands-Rapoport Conjecture

Haitao Zou

Contents

1	Review of Modular Curves	1
2	Mod p points of Modular Curves	2
3	The Statement of Kottiwtz-Langlands-Rapoport Conjecture	4
4	Canonical Integral Model of Siegel Modular Variety	5
5	Motivic Galois Gerbs	5

1 Review of Modular Curves

Let's start with the moduli interpretation of the modular curves, which is the initial example for our major goal of this seminar. Let $N \geq 3$ be an integer. Let $\mathcal{M}_0(N)$ be the moduli functor defined as

$$\operatorname{Sch}/\mathbb{Z}[\frac{1}{N}] \to \operatorname{Sets}$$

$$T \mapsto \{ \text{ all elliptic curves on } T \text{ together with an isomorphism}$$
 of étale finite group scheme $\alpha \colon E[N] \cong \mathbb{Z}/N\mathbb{Z}^2 \}$

Here the isomorphism α is called a N-level structure of E.

Theorem 1.1. Under our assumption, the $\mathcal{M}_0(N)$ is representable by a quasi-projective scheme.

Proof. Consider the forgetful functor from $\mathcal{M}_0(N)$ the moduli functor of 1-pointed elliptic curves $\mathcal{M}_{1,1}$. Viewed as a morphism between stacks, the forgetful functor is finite étale, see [1, Theorem 3.7.1]. It is well-known that $\mathcal{M}_{1,1}$ is a Deligne-Mumford stack, hence so is $\mathcal{M}_0(N)$. To show that $\mathcal{M}_0(N)$ is representable by an $\mathbb{Z}\left[\frac{1}{N}\right]$ -scheme, it is sufficient to show that each object in the fiber category at some T has no non-trivial automorphism.

The requirement $N \geq 3$ is for the rigidity of N-level structures. That means when $N \geq 3$ the endmorphism groups of a pair (E, α) is trivial while when N = 2, it is isomorphic to $\{\pm 1\}$.

Moreover, the represent scheme of $\mathcal{M}_0(N)$, $N \geq 3$ is a smooth affine curve over $\mathbb{Z}[\frac{1}{N}]$, which will be denoted by Y(N). We can compatify Y(N) to be a smooth proper curve over $\mathbb{Z}[\frac{1}{N}]$, which will be denoted by X(N) called the modular curve of N-level. This compactification in the viewpoint of modular forms is given by adding the cusp forms.

Let $\Gamma(N)$ be the principal congruence subgroup of $\mathrm{SL}_2(\mathbb{Z})$, i.e.

$$1 \to \Gamma(N) \to \operatorname{SL}_2(\mathbb{Z}) \xrightarrow{\mod N} \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z}) \to 1.$$

A congruence subgroup of $\mathrm{SL}_2(\mathbb{Z})$ is defined to be an subgroup Γ that contains $\Gamma(N)$ for some integer N. Another way is to identify the \mathbb{C} -points set $Y(N)(\mathbb{C})$ as the quotient of upper half-plane by the congruence subgroup $\Gamma(N) \subset \mathrm{SL}_2(\mathbb{Z})$:

$$\Gamma(N)\backslash\mathfrak{H}$$
,

and then attach the quotient $\Gamma(N)\backslash\mathbb{P}^1(\mathbb{Q})$. Since the $\mathrm{SL}_2(\mathbb{Z})$ -action on the upper half-plane \mathfrak{H} is transitively and $\Gamma(N)$ has finite index in $\mathrm{SL}_2(\mathbb{Z})$, the attached piece is finite as a set. Let \mathfrak{H}^* be the union

$$\mathfrak{H} \cup \mathbb{P}^1(\mathbb{Q})$$
.

In term of the Galois theory, we have the following well-known fact for the N-level structures of elliptic curves.

Proposition 1.2. Let $E/\mathbb{Q}(t)$ be an elliptic curve over the complex j-line such that j(E) = t. Then the Galois representation of its N-torsion points

$$\rho \colon \operatorname{Gal}((\mathbb{Q}(t, E[N])/\mathbb{Q}(t)) \hookrightarrow {}^{1}\operatorname{GL}_{2}(\mathbb{Z}/N\mathbb{Z})$$

is an isomorphism.

Proof. Consider the base-change of E to $\mathbb{C}(t)$. There is an isomorphism

$$\operatorname{Gal}(\mathbb{C}(t, E[N])/\mathbb{C}(t)) \cong \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z});$$
 (1)

see [2, Theorem 1]. We have the following field extensions:

Hence $[\mathbb{Q}(t, E[N]): \mathbb{Q}(t, \mu_N)] \leq [\mathbb{C}(t, E[N]): \mathbb{C}(t)]$. However, since the Galois action on E[N] is compatible with the Weil pairing

$$e_N \colon E[N] \times E[N] \to \mu_N$$

the image of $\operatorname{Gal}(\mathbb{Q}(t, E[N])/\mathbb{Q}(t, \mu_N)) \subset \operatorname{Gal}((\mathbb{Q}(t, E[N])/\mathbb{Q}(t)))$ is contained in $\operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$. Thus its image is $\operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$. Moreover, we know that the determinant $\operatorname{det}(\rho)$ is the character

$$\operatorname{Gal}(\mathbb{Q}(t,\mu_N)/\mathbb{Q}(t)) \to (\mathbb{Z}/N\mathbb{Z})^{\times}$$

 $\xi^k \mapsto k \pmod{N}.$

Hence ρ is surjective.

From the Proposition 1.2, we can see the N-level structure of an elliptic curve E_0/\mathbb{Q} with good reduction at [N] can be viewed as the conjugacy classes of some $\gamma_0 \in \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z})$.

2 Mod p points of Modular Curves

From the moduli interpretation of modular curves, we can see

$$Y(N)(\mathbb{F}_q) \cong \mathcal{M}_0(N)(\mathbb{F}_q)$$

= { the isomorphism classes of elliptic curves over \mathbb{F}_q with N-level structures }

for any $p \nmid N$. In this part, we will discuss the group-theoretic description for the set of \mathbb{F}_q -points of modular curves.

Recall that we have the following isogeny theorem for abelian varieties

Theorem 2.1. Let k be a field finitely generated over \mathbb{F}_p . Let A_1 and A_2 be two abelian varieties over k. Then there is a canonical (e.g. functorial at both A_1 and A_2) isomorphism

$$\operatorname{Hom}(A_1, A_2) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} \operatorname{Hom}_{G_k}(T_{\ell}(A_1), T_{\ell}(A_2)).$$

Here ℓ is allowed to be p, in which case $T_{\ell}(-)$ is the p-divisible group of the abelian variety (also called Barsotti-Tate group in Grothendieck's terminology).

Proof. We deal with the simplest case: elliptic curves over a finite field. The case for general abelian varieties over finite field owes to J. Tate.

For any $\varphi \otimes t \in \text{Hom}(E_1, E_2) \otimes \mathbb{Z}_{\ell}$, the $\eta(\varphi \otimes t) := T_{\ell}(\varphi) \otimes t$ since the set of morphisms bewteen ℓ -typical Tate modules forms a free \mathbb{Z}_{ℓ} -module and the formation is canonical.

The ρ is induced by taking the automorphism of E[N] after fixing a $\mathbb{Z}/N\mathbb{Z}$ -basis. It is injective since E[N] is free \mathcal{O}_E -module.

Remark 2.2. We can discuss the details of the proof in the future lecture about "p-divisible group".

There are only two kinds of p-divisible groups $T_pE := E[p^{\infty}]$ among the elliptic curves over an algebraically closed field k such that $\operatorname{char}(k) = p > 0$:

- $\mu_p \times \mathbb{Q}_p/\mathbb{Z}_p$;
- the formal group of height 2.

The first case is called ordinary and the second case is called supersingular. In term of the Dieudonné theory, the ordinart corresponds to the F-isocrystal whose Newton polygon is coincide with Hodge polygon and the supersingular case corresponds to the F-isocrystal whose Newton polygon is a straight line.

Let
$$x_0 = (E_0, \alpha_0) \in \mathcal{M}_0(N)(\mathbb{F}_q)$$
 and X the set

$$\{(E,\alpha)\in\mathcal{M}_0(N)(\mathbb{F}_q)|E \text{ is isogenous to } E_0\}.$$

Let $I(\gamma_0) := (\operatorname{End}(E_0) \otimes \mathbb{Q})^{\times}$, which is the set of self-isogenies of E_0 . Let

$$H^p := H^1(E_0, \mathbb{A}_f^p) \quad H_p := H^1_{\operatorname{crys}}(E_0/W(\mathbb{F}_q))[\frac{1}{p}].$$

The theory of étale cohomology and crystalline cohomology shows that any isogeny $g: E_0 \to E$ induces isomorphisms between rational cohomologies:

$$H^p(E) \coloneqq H^1(E, \mathbb{A}_f^p) \xrightarrow[\sim]{g^*} H^p \quad H_p(E) \coloneqq H^1_{\operatorname{crys}}(E/W(\mathbb{F}_q)[\frac{1}{p}] \xrightarrow[\sim]{g^*} H_p.$$

Moreover, the image of Tate module $\prod_{\ell \neq p} T_{\ell}(E)$ (resp. BT-group $T_{p}(E)$) of E in H^{p} (resp. H_{p}) can be viewed as $\hat{\mathbb{Z}}^{p}$ -lattice (resp. \mathbb{Z}_{p} -lattice). Let

$$X_p \coloneqq \{\Lambda_p \subset H_p \big| \Lambda_p \text{ is a } F\text{-crystal over } W(\mathbb{F}_q) \}$$

$$X^p \coloneqq \{(\lambda^p, \alpha) \big| \Lambda^p \subset H^p \text{is } G_{\mathbb{F}_q}\text{-stable lattice and persevering the } N\text{-level structure.} \}$$

As a corollary of Tate's isogeny theorem, we have

Proposition 2.3. The map

$$X \to I \backslash X^p \times X_p$$
$$[(E, \alpha)] \mapsto [\{H^p(E), \widetilde{\alpha}), H_p(E)\}]$$

is a bijection.

Let Frob_q be the geometric Frobenius element of the Galois group $\operatorname{Gal}(\bar{\mathbb{F}}_q/\mathbb{F}_q)$. Let γ be the induced \mathbb{A}_f^p -linear automorphism on H^p , as an element in $\operatorname{GL}_2(\mathbb{A}_f^p)$. As $\operatorname{GL}_2(\mathbb{A}_f^p)$ acts transitively on H^p , the automorphism of H^p which fixes the N-level structure α one-to-one corresponding to

$$\operatorname{GL}_2(\mathbb{A}_f^p)/K^p(N),$$

where $K^p(N)$ is the subgroup

$$\left\{g \in \mathrm{GL}_2(\widehat{\mathbb{Z}}^p) \middle| g \equiv \mathrm{id} \pmod{N}\right\}.$$

Thus those g which are compatible with the Galois action can be written as

$$I \setminus X^p \simeq \left\{ [g] \in \mathrm{GL}_2(\mathbb{A}_f^p) / K^p(N) \middle| g \gamma g^{-1} \in K^p(N) \right\}$$

The requirement for elements g in X_p is equivalent to

$$Fq\operatorname{GL}_2(\mathbb{Z}_n) = q\operatorname{GL}_2(\mathbb{Z}_n).$$

where F is the induced absolute Frobenius endmorphism on E_0 , it is σ -linear. It is furthermore equivalent to

$$p \cdot g \operatorname{GL}_2(\mathbb{Z}_p) \subset Fg \operatorname{GL}_2(\mathbb{Z}_p) \subset g \operatorname{GL}_2(\mathbb{Z}_p).$$

Then choose the linearization δ of F, i.e. $F = \delta \sigma$, we can see $\delta \in \mathrm{GL}_2(\mathbb{Q}_q)$ and

$$p \cdot g \operatorname{GL}_2(\mathbb{Z}_p) \subset g^{-1} \delta \sigma(g) \operatorname{GL}_2(\mathbb{Z}_p) \subset \operatorname{GL}_2(\mathbb{Z}_p).$$

It is known that the Hodge slopes of F is (0,1), thus we have

$$X_p \simeq \left\{ g \in \operatorname{GL}_2(\mathbb{Q}_{\square}) / \operatorname{GL}_2(\mathbb{Z}_p) \middle| g^{-1} \delta \sigma(g) \in \operatorname{GL}_2(\mathbb{Z}_q) \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \operatorname{GL}_2(\mathbb{Z}_p) \right\}.$$

To summary, we can describe $Y(N)(\mathbb{F}_q)$ as an disjoint union

$$Y(N)(\mathbb{F}_q) \simeq \coprod_{(\gamma_0; \gamma, \delta)} I(\gamma_0) \backslash X^p(\gamma) \times X_p(\delta),$$

where

- γ is the q-Frobenius endmorphism in $H^1(E, \mathbb{A}_f^p)$ of the elliptic curve isogenous to E_0 ;
- δ is the induced absolute Frobenius on the crystalline cohomology. Denote $\delta\sigma(\delta)\cdots\sigma^{r-1}(\delta)$ by γ_p , where σ is the Frobenius of the unramified closure \mathbb{Q}_p^{ur} ;
- $\gamma_0 \in \operatorname{End}(E) \otimes \mathbb{Q}$ the q-Frobenius and from Tate's isogeny theorem, it is conjugate to γ and γ_p stably.

The index $(\gamma_0; \gamma, \delta)$ is called a *Kottwitz triple*. For an elliptic curve E/\mathbb{F}_q , let π be the q-Frobenius endmorphism in $\operatorname{End}(E) \otimes Q^2$. Let p_{π} be its characteristic polynomial. It can be written as

$$p_{\pi} = t^2 - \operatorname{tr}(\pi)t + q \quad \operatorname{tr}(\pi) \in \mathbb{Z}.$$

Its eigenvalues are Weil q-number which are Galois conjugate with each other, that is $|\operatorname{tr} \pi| < 2\sqrt{q}$. The index $(\gamma_0; \gamma, \delta)$ is effective if

- $\gamma_0 \in GL_2(\mathbb{Q})$ such that $tr(\gamma_0) \in \mathbb{Z}$ and $|tr(\gamma_0)| < 2\sqrt{q}$, and γ_0 is *elliptic* in $GL_2(\mathbb{R})$;
- γ and γ_0 are conjugate after base-change to $\bar{\mathbb{Q}}_\ell$;
- $N\delta := \delta \sigma(\delta) \cdots \sigma^{r-1}(\delta)$ is conjugate to γ_0 in $GL_2(\bar{\mathbb{Q}}_p)$.

3 The Statement of Kottiwtz-Langlands-Rapoport Conjecture

Let (G, X) be a reductive Shimura datumn.

Definition 3.1. A connected Shimura datumn (G, X^+) is called of primitive abelian type if

- G is simple group;
- there is an injective homomorphism $G \hookrightarrow \operatorname{Sp}(V, \psi)$ for some symplectic space (V, ψ) such that the image of X^+ is contained in $X(V, \psi)$.

Definition 3.2. A connected Shimura datumn (G, X^+) is called of abelian type if (G, X^+) is isogenous to a product of Shimura datumn (G_i, X_i^+) , i.e. there is an isogeny $\prod_i G_i \to G$ such that the image of $\prod_i X_i^+$ is contained into X^+ .

In general, the Shimura datumn (G, X) is called of abelian type if (G^{der}, X^+) is of abelian type. Fix an compact open subgroup of $G(\mathbb{Q}_p)$. Let $\operatorname{Sh}_p(G, X)/K_p$.

Definition 3.3 (Milne17). A model of $\operatorname{Sh}_p(G,X)$ over \mathcal{O}_L is a scheme S over \mathcal{O}_L together with a continuous action of $G(\mathbb{A}_f^p)$ and a $G(\mathbb{A}_f^p)$ -equivariant isomorphism

$$S \times_{\mathcal{O}_L} L \xrightarrow{\sim} \operatorname{Sh}_p(G, X)_L.$$

²Since $E^r \cong E$ as $q = p^r$.

Conjecture 3.1. Let Sh(X,G) be a Shimura variety of abelian type. Suppose that Sh(X,G) admits a canonical integral model $\mathcal{S}(X,G)$ defined over the ring of integers of the reflex field E=E(G,X). For any prime $\lambda \mid p$ of E, there is a bijection

$$\mathscr{S}(X,G)_p(\overline{\mathbb{F}}_p) \cong \coprod_{\phi} S(\phi).$$

Here ϕ runs over the set of admissible morphisms. For finite field \mathbb{F}_q such that $k(v) \subset \mathbb{F}_q$ the description is

$$\mathscr{S}(X,G)_p(\mathbb{F}_q) \cong \coprod_{\varphi,\delta} \varprojlim_{K^p} I_{\varphi,\delta}(\mathbb{Q}) \backslash X^p(\varphi,\delta) \times X_p(\varphi,\delta) / K^p. \tag{2}$$

Theorem 3.4. The bijection (2) is true for Shimura variety of abelian type when

- p > 2;
- K_p is hyperspecial, i.e. G extends to a reductive group $G_{\mathbb{Z}_p}$ over \mathbb{Z}_p such that $K_p = G_{\mathbb{Z}_p}(\mathbb{Z}_p) = K^p$.

4 Canonical Integral Model of Siegel Modular Variety

Let (V, Φ) be a symplectic space and G the associated symplectic group.

5 Motivic Galois Gerbs

Let F be a field in characteristic zero and L/F a Galois extension. Let G be an algebraic group over F. The Galois group $\operatorname{Gal}(L/K)$ naturally acts on G(L). Consider the following extension of $\operatorname{Gal}(L/K)$ -modules:

$$1 \to G(L) \to E \to \operatorname{Gal}(L/F) \to 1.$$

Such extension will be called

• split, if it corresponds to the trivial element in

$$\operatorname{Ext}^1_{\operatorname{Gal}(L/K)}(\operatorname{Gal}(L/K),G(L)) = H^2(\operatorname{Gal}(L/K),G(L)).$$

• affine if there is an open-subgroup of Gal(L/F) such that E is split after pull-back.

References

- Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR772569
- [2] David E. Rohrlich, Modular curves, Hecke correspondence, and L-functions, Modular forms and Fermat's last theorem (Boston, MA, 1995), 1997, pp. 41–100. MR1638476