Quantum Logic

Changjae Lee

August 4, 2024

Contents

Ι	Spaces	1
1	Measurable Spaces	3
2	Hilbert Spaces	5
II	Lattices and Algebras	7
3	Lattice Theory	9
	3.1 Lattices	9
	3.2 Distributive Lattices	10
	3.3 Modular Lattices	10
	3.4 Complemented Lattices	10
	3.5 Othomodular Lattices	10
4	Algebras	11

iv CONTENTS

Part I Spaces

Measurable Spaces

Hilbert Spaces

Part II Lattices and Algebras

Lattice Theory

3.1 Lattices

Definition 1. A poset L is a *lattice* if

$$\forall a, b \in L, \sup\{a, b\} \in L \text{ and } \inf\{a, b\} \in L$$

Definition 2. Let A be a nonempty set. An n-ary operation f on the A is a map $A^n \to A$. We define $A^0 = \emptyset$.

number	name
n = 0	nullary operation
n=1	unary opeartion
n=2	binary operation
:	:
	•

Definition 3. A universal algebra, or simply algebra, consists of a nonempty set A and a set F of operations; each $f \in F$ is an n-ary operation for some n (depending on f). We denote this algebra by \mathfrak{A} or (A; F).

A type τ of algebras is a sequence $(n_0, n_1, \ldots, n_{\gamma}, \ldots)$ of nonnegative integers, $\gamma < o(\tau)$, where $o(\tau)$ is an ordinal called the *order* of τ . An algebra $\mathfrak A$ of type τ is an ordered pari (A; F), where A is a nonempty set and F is a sequence $(f_0, \ldots, f_{\gamma}, \ldots)$, where f_{γ} is an n_{γ} -ary operation on A for $\gamma < o(\gamma)$.

Definition 4. Let A; \circ be an alebra of type (2). If

(Idem) Idempotent: $a \circ a = a$ (Comm) Commutativity: $a \circ b = b \circ a$ (Assoc) Associativity: $(a \circ b) \circ c = a \circ (b \circ c)$

holds, then we call (L, \circ) a semilattice.

Definition 5. Let (L, \wedge, \vee) be an algebra of type (2,2) is called a *lattice* if L is a nonempty set, $(L; \vee)$ and $(L; \wedge)$ are semilattices, and

(Asorp) Absorption:
$$\forall a, b \in L, \ a \lor (a \land b) = a \text{ and } a \land (a \lor b) = a.$$

Theorem 1. (a) Let the poset $\mathfrak{L} = (L; \leq)$ be a lattice. Set

$$a \lor b = \sup\{a, b\},$$

 $a \land b = \inf\{a, b\}.$

Then the algebra $\mathfrak{L}^{alg} = (L; \vee, \wedge)$ is a lattice.

(b) Let the algebra $\mathfrak{L} = (L; \vee, \wedge)$ be a lattice. Set

$$a \lor b = b \Rightarrow a \le b$$

Then $\mathfrak{L}^{\mathrm{ord}}$ is a poset, and the $\mathfrak{L}^{\mathrm{ord}}$ is a lattice.

- (c) Let the poset $\mathfrak{L}^{\text{ord}} = (L; \leq)$ be a lattice. Then $(\mathfrak{L}^{\text{alg}})^{\text{ord}} = \mathfrak{L}$.
- (d) Let the algebra $\mathfrak{L} = (L; \vee, \wedge)$ be a lattice. Then $(\mathfrak{L}^{ord})^{alg} = \mathfrak{L}$.
- 3.2 Distributive Lattices
- 3.3 Modular Lattices
- 3.4 Complemented Lattices
- 3.5 Othomodular Lattices

Algebras