GUÍA AR 8

Niveles genéricos de dispensa

REVISIÓN 1

Aprobada por Resolución ARN Nº 500/19

(Boletín Oficial 14/11/19)

DEPENDIENTE DE LA PRESIDENCIA DE LA NACION

AUTORIDAD REGULATORIA NUCLEAR

Av. del Libertador 8250 (C1429BNP) Ciudad Autónoma de Buenos Aires ARGENTINA Teléfonos (011) 6323-1300 / 5789-7600 www.argentina.gob.ar/arn

GUÍA AR 8 - Revisión 1

NIVELES GENÉRICOS DE DISPENSA

La Ley Nº 24.804 establece que la Autoridad Regulatoria Nuclear tiene a su cargo la función de regulación y fiscalización de la actividad nuclear en todo lo referente a los temas de seguridad radiológica y nuclear, protección física y fiscalización del uso de materiales nucleares, licenciamiento y fiscalización de instalaciones nucleares, salvaguardias internacionales, y la de dictar las normas correspondientes.

Con el fin de facilitar el cumplimiento de las Normas Regulatorias, la Autoridad Regulatoria Nuclear elabora Guías Regulatorias.

Las recomendaciones de las Guías Regulatorias no tienen carácter obligatorio.

ÍNDICE

A.	CONSIDERACIONES GENERALES	1
B.	EXPLICACIÓN DE TÉRMINOS	2
C.	RECOMENDACIONES	3
C.1.	DISPENSA DE MATERIALES A PARTIR DE SU CONCENTRACIÓN DE ACTIVIDAD	3
C.1.1.	Radionucleidos de origen natural	3
C.1.2.	Radionucleidos de origen artificial	3
C.1.3.	Mezcla de radionucleidos de origen natural y artificial	3
C.1.4.	Determinación de la concentración de actividad en el material	3
C.2.	DISPENSA DE MATERIALES A PARTIR DE SU CONTAMINACIÓN SUPERFICIAL	4
Tabla 1.	Niveles genéricos de dispensa por concentración de actividad de radionucleidos de origen natural	5
Tabla 2.	Niveles genéricos de dispensa por concentración de actividad de radionucleidos de origen artificial	5
Tabla 3.	Niveles genéricos de dispensa por contaminación superficial	9

A. CONSIDERACIONES GENERALES

- 1. Esta guía recomienda niveles genéricos de dispensa por concentración de actividad en material sólido, aplicables a los radionucleidos indicados en las Tablas 1 y 2, o por contaminación superficial, de acuerdo a lo indicado en la Tabla 3.
- 2. La información presentada en esta Guía puede ser utilizada para facilitar la presentación de la solicitud de dispensa de determinados materiales con concentraciones de actividad o contaminación superficial que no superen los niveles genéricos de dispensa recomendados en esta Guía.
- 3. La Autoridad Regulatoria puede considerar necesario conceder la dispensa de materiales con niveles superiores a los recomendados en esta Guía a través de una dispensa condicional.

- 4. Los criterios generales de dispensa son:
 - i. los riesgos radiológicos derivados de los materiales dispensados sean tan bajos que no sea preciso su control reglamentario; o
 - ii. el control reglamentario constante de los materiales no reporte beneficio neto alguno, en el sentido de que ninguna medida de control razonable daría unos resultados que mereciesen la pena en lo que respecta a la reducción de las dosis individuales o la reducción de los riesgos para la salud
 - iii. los materiales podrán quedar dispensados sin ulterior examen siempre que, en todas las circunstancias razonablemente previsibles, la dosis efectiva que se prevea recibirá cualquier persona a causa de los materiales dispensados, sea del orden de 10 μSv o menos en un año
 - iv. a fin de tener en cuenta escenarios de baja probabilidad, puede utilizarse un criterio diferente, a saber, que la dosis efectiva que se prevea recibirá cualquier persona en esos escenarios de baja probabilidad¹ no exceda 1 mSv en un año.
- **5.** Los niveles genéricos de dispensa por concentración de actividad, que figuran en las Tablas 1 y 2, tienen en cuenta:
 - i. los criterios de seguridad radiológica establecidos en la Norma AR 10.1.1 "Norma Básica de Seguridad Radiológica"
 - ii. los niveles de dispensa aprobados por el Organismo Internacional de Energía Atómica (OIEA) (Informe GOV/2004/54-GC(48)/8 de la Junta de Gobernadores, avalado por Resolución GC(48)/RES/10 de la Conferencia General del OIEA)
 - iii. la guía para la aplicación de los conceptos de exclusión, exención y dispensa, publicada por el OIEA (Safety Guide Nº RS-G-1.7)
 - iv. el informe técnico sobre el cálculo de los niveles de concentración de actividad para exclusión, exención y dispensa, publicado por el OIEA (Safety Report Series Nº 44).
- **6.** No hay restricciones a las cantidades de material a las que pueden aplicarse las recomendaciones de esta Guía.
- 7. Las recomendaciones de esta Guía para la dispensa de materiales por concentración de actividad se aplican a radionucleidos de origen natural o artificial, indicados en las Tablas 1 y 2, que estén presentes en materiales sólidos razonablemente homogéneos.
- **8.** Las recomendaciones de esta Guía para la dispensa de materiales por concentración de actividad no se aplican a:
 - i. radionucleidos en comestibles o en productos que se utilicen para su elaboración
 - ii. radionucleidos en alimentos para animales o en productos que se utilicen para su elaboración.
- Las recomendaciones de esta Guía no contemplan la reducción de las concentraciones de actividad del material mediante la dilución deliberada del mismo.

B. EXPLICACIÓN DE TÉRMINOS

10. Dispensa: liberación de la aplicación de todo control ulterior por parte de la Autoridad Regulatoria del material con contenido radiactivo utilizado en prácticas licenciadas, autorizadas o registradas por dicha autoridad.

¹ Los escenarios de baja probabilidad están definidos en la IAEA Safety Report Series No 44 "Derivation of Activity Concentration Values for Exclusion, Exemption and Clearance".

11. Dispensa condicional: dispensa de materiales cuya concentración de actividad o contaminación superficial, resulta superior a los niveles genéricos establecidos en esta guía, pero que bajo un estudio caso por caso, la dosis ocasionada en la persona representativa se encuentra dentro del rango de dosis trivial (10-100µSv/a)².

C. RECOMENDACIONES

C.1 DISPENSA DE MATERIALES A PARTIR DE SU CONCENTRACIÓN DE ACTIVIDAD

C.1.1. Radionucleidos de origen natural

- 12. Los niveles genéricos recomendados en esta sección de la Guía para radionucleidos de origen natural utilizados en prácticas reguladas, son válidos para las cadenas de desintegración encabezadas por U-238, U-235 o Th-232, debiendo aplicarse el valor indicado en la Tabla 1 al correspondiente precursor de la cadena.
- **13.** Los niveles genéricos para radionucleidos de origen natural recomendados en esta sección de la Guía, pueden utilizarse individualmente para cada producto de desintegración o para los radionucleidos que encabezan los subconjuntos de las cadenas de desintegración.
- **14.** En el caso de materiales que contengan una mezcla de radionucleidos de origen natural, la concentración de cada uno de ellos debería ser menor que el nivel genérico de dispensa correspondiente indicado en la Tabla 1.

C.1.2. Radionucleidos de origen artificial

15. En el caso de la dispensa de los materiales radiactivos con más de un radionucleido de origen artificial, la condición para la dispensa es que la suma de las concentraciones de la actividad de los distintos radionucleidos sea inferior al nivel de dispensa derivado para la mezcla (X_m), definido como:

$$X_{\mathrm{m}} = \frac{1}{\sum_{i=1}^{n} \frac{f(i)}{X(i)}}$$

Donde

f(i) es la fracción en masa de concentración de actividad del radionucleido i en la mezcla;

X(i) es el nivel aplicable al radionucleido i indicado en la Tabla 2 y n es el número de radionucleidos presentes.

C.1.3. Mezcla de radionucleidos de origen natural y artificial

16. Cuando se trate de una mezcla de radionucleidos de origen natural y artificial, deberían satisfacerse las condiciones indicadas en las secciones C.1.1. y C.1.2. de esta Guía.

C.1.4. Determinación de la concentración de actividad en el material

17. Los niveles genéricos de dispensa por concentración de actividad recomendados en esta Guía se aplican a material sólido y razonablemente homogéneo, por lo que la verificación de las condiciones indicadas en esta Guía debería efectuarse en base al promedio de las determinaciones de la concentración de actividad en el material.

² Dosis trivial definida de acuerdo a ICRP PUBLICATION 104 (Apartado 4.1.1. The principle of low individual risk).

- **18.** El procedimiento para promediar la determinación de la concentración de actividad en el material debería contemplar, entre otros, los siguientes aspectos:
 - i. el tipo de material, considerando además la eventual concentración de actividad en o cerca de las superficies del mismo
 - ii. la segregación del material en el momento de su generación, de manera que resulte tan homogéneo como sea posible.
- **19.** La determinación de la concentración de actividad en el material, debería efectuarse según un procedimiento que contemple, entre otros, los siguientes aspectos:
 - i. la realización de mediciones directas en el material, el uso de relaciones de actividades apropiadamente derivadas y la identificación del historial del material desde su origen u otras maneras aceptables para la Autoridad Regulatoria de reseñar los antecedentes operacionales del mismo
 - **ii.** la realización de análisis de laboratorio sobre muestras representativas del material, dependiendo de los radionucleidos presentes en el material y como complemento de las mediciones directas.

C.2. DISPENSA DE MATERIALES A PARTIR DE SU CONTAMINACIÓN SUPERFICIAL

- **20.** Los Niveles Genéricos de Dispensa por contaminación superficial aplican a aquellos materiales con radionucleidos de origen natural y/o artificial que estén únicamente contaminados en su superficie.
- **21.** Para realizar la dispensa de materiales a partir de su contaminación superficial se debería demostrar que dichos materiales no se encuentran activados.
- **22.** Los niveles genéricos de dispensa por contaminación superficial se encuentran indicados en la Tabla 3.
- 23. Los valores indicados en la Tabla 3 podrán aplicarse tanto en caso de contaminación fija como arrastrable.
- **24.** La verificación de los valores de dispensa debería efectuarse en base al promedio de la contaminación superficial en el material.
- **25.** El promedio de la contaminación superficial debería realizarse en una superficie no mayor a 300 cm², seleccionando la cantidad de mediciones en función de la heterogeneidad del material.

Tabla 1: Niveles genéricos de dispensa por concentración de actividad de radionucleidos de origen natural

Radionucleido	Concentración de actividad (Bq/g)
K-40	10
Cada radionucleido de la cadena de desintegración del uranio o de la cadena de desintegración del torio	1

Tabla 2: Niveles genéricos de dispensa por concentración de actividad de radionucleidos de origen artificial

Radionucleido	Concentración de actividad (Bq/g)	Radionucleido	Concentración de actividad (Bq/g)
H-3	100	Co-58	1
Be-7	10	Co-58m	10 000
C-14	1	Co-60	0,1
F-18	10	Co-60m	1 000
Na-22	0,1	Co-61	100
Na-24	1	Co-62m	10
Si-31	1 000	Ni-59	100
P-32	1 000	Ni-63	100
P-33	1 000	Ni-65	10
S-35	100	Cu-64	100
CI-36	1	Zn-65	0,1
CI-38	10	Zn-69	1 000
K-42	100	Zn-69m(a)	10
K-43	10	Ga-72	10
Ca-45	100	Ge-71	10 000
Ca-47	10	As-73	1 000
Sc-46	0,1	As-74	10
Sc-47	100	As-76	10
Sc-48	1	As-77	1 000
V-48	1	Se-75	1
Cr-51	100	Br-82	1
Mn-51	10	Rb-86	100
Mn-52	1	Sr-85	1
Mn-52m	10	Sr-85m	100
Mn-53	100	Sr-87m	100
Mn-54	0,1	Sr-89	1 000
Mn-56	10	Sr-90(a)	1
Fe-52(a)	10	Sr-91(a)	10
Fe-55	1 000	Sr-92	10
Fe-59	1	Y-90	1 000
Co-55	10	Y-91	100
Co-56	0,1	Y-91m	100
Co-57	1	Y-92	100

Tabla 2: Niveles genéricos de dispensa por concentración de actividad de radionucleidos de origen artificial (cont.)

Radionucleido	Concentración de actividad (Bq/g)	Radionucleido	Concentración de actividad (Bq/g)
Y-93	100	In-111	10
Zr-93	10	In-113m	100
Zr-95(a)	1	In-114m(a)	10
Zr-97(a)	10	In-115m	100
Nb-93m	10	Sn-113(a)	1
Nb-94	0,1	Sn-125	10
Nb-95	1	Sb-122	10
Nb-97(a)	10	Sb-124	1
Nb-98	10	Sb-125(a)	0,1
Mo-90	10	Te-123m	1
Mo-93	10	Te-125m	1 000
Mo-99(a)	10	Te-127	1 000
Mo-101(a)	10	Te-127m(a)	10
Tc-96	1	Te-129	100
Tc-96m	1 000	Te-129m(a)	10
Tc-97	10	Te-131	100
Tc-97m	100	Te-131m(a)	10
Tc-99	1	Te-132(a)	1
Tc-99m	100	Te-133	10
Ru-97	10	Te-133m	10
Ru-103(a)	1	Te-134	10
Ru-105(a)	10	I-123	100
Ru-106(a)	0,1	I-125	100
Rh-103m	10 000	I-126	10
Rh-105	100	I-129	0,01
Pd-103(a)	1 000	I-130	10
Pd-109(a)	100	I-131	10
Ag-105	1	I-132	10
Ag-110ma	0,1	I-133	10
Ag-111	100	I-134	10
Cd-109(a)	1	I-135	10
Cd-115(a)	10	Cs-129	10
Cd-115m(a)	100	Cs-131	1 000

Tabla 2: Niveles genéricos de dispensa por concentración de actividad de radionucleidos de origen artificial (cont.)

Radionucleido	Concentración de actividad (Bq/g)	Radionucleido	Concentración de actividad (Bq/g)
Cs-132	10	Er-171	100
Cs-134	0,1	Tm-170	100
Cs-134m	1 000	Tm-171	1 000
Cs-135	100	Yb-175	100
Cs-136	1	Lu-177	100
Cs-137(a)	0,1	Hf-181	1
Cs-138	10	Ta-182	0,1
Ba-131	10	W-181	10
Ba-140	1	W-185	1 000
La-140	1	W-187	10
Ce-139	1	Re-186	1 000
Ce-141	100	Re-188	100
Ce-143	10	Os-185	1
Ce-144(a)	10	Os-191	100
Pr-142	100	Os-191m	1 000
Pr-143	1 000	Os-193	100
Nd-147	100	Ir-190	1
Nd-149	100	Ir-192	1
Pm-147	1 000	Ir-194	100
Pm-149	1 000	Pt-191	10
Sm-151	1 000	Pt-193m	1 000
Sm-153	100	Pt-197	1 000
Eu-152	0,1	Pt-197m	100
Eu-152m	100	Au-198	10
Eu-154	0,1	Au-199	100
Eu-155	1	Hg-197	100
Gd-153	10	Hg-197m	100
Gd-159	100	Hg-203	10
Tb-160	1	TI-200	10
Dy-165	1 000	TI-201	100
Dy-166	100	TI-202	10
Ho-166	100	TI-204	1
Er-169	1 000	Pb-203	10

Tabla 2: Niveles genéricos de dispensa por concentración de actividad de radionucleidos de origen artificial (cont.)

Radionucleido	Concentración de actividad (Bq/g)	Radionucleido	Concentración de actividad (Bq/g)
Bi-206	1	Pu-241	10
Bi-207	0,1	Pu-242	0,1
Po-203	10	Pu-243	1 000
Po-205	10	Pu-244(a)	0,1
Po-207	10	Am-241	0,1
At-211	1 000	Am-242	1 000
Ra-225	10	Am-242m(a)	0,1
Ra-227	100	Am-243(a)	0,1
Th-226	1 000	Cm-242	10
Th-229	0,1	Cm-243	1
Pa-230	10	Cm-244	1
Pa-233	10	Cm-245	0,1
U-230	10	Cm-246	0,1
U-231	100	Cm-247(a)	0,1
U-232(a)	0,1	Cm-248	0,1
U-233	1	Bk-249	100
U-236	10	Cf-246	1 000
U-237	100	Cf-248	1
U-239	100	Cf-249	0,1
U-240(a)	100	Cf-250	1
Np-237(a)	1	Cf-251	0,1
Np-239	100	Cf-252	1
Np-240	10	Cf-253	100
Pu-234	100	Cf-254	1
Pu-235	100	Es-253	100
Pu-236	1	Es-254(a)	0,1
Pu-237	100	Es-254m(a)	10
Pu-238	0,1	Fm-254	10 000
Pu-239	0,1	Fm-255	100
Pu-240	0,1		

(a) A continuación se enumeran los radionucleidos progenitores, así como su progenie cuyas contribuciones a las dosis se tienen en cuenta en los cálculos de las dosis (por lo que solo hay que considerar el nivel de dispensa del radionucleido progenitor):

25 Te-125m
27m Te-127
29m Te-129
31m Te-131
32 I-132
37 Ba-137m
Pr-144, Pr-144m
32 Th-228, Ra-224, Rn-
220, Po-216, Pb-212,
Bi-212, Tl-208
Np-240m, Np-240
237 Pa-233
244 U-240, Np-240m, Np-
240
242m Np-238
243 Np-239
247 Pu-243
254 Bk-250
254m Fm-254

Tabla 3: Niveles genéricos de dispensa por contaminación superficial

Radionucleido	Valor de contaminación superficial (Bq/cm²)	
Alfa de baja toxicidad/ beta-gamma	0,4	
Resto de radionucleidos alfa	0,04	