COMP2610/COMP6261 - Information Theory

Tutorial 6: Source Coding

Young Lee and Bob Williamson **Tutors**: Debashish Chakraborty and Zakaria Mhammedi

Week 8 (25th – 29th Sep), Semester 2, 2017

1. Probabilistic inequalities

Suppose a coin is tossed n times. The coin is known to land "heads" with probability p. The number of observed "heads" is recorded as a random variable X.

- (a) What is the *exact* probability of X being n-1 or more?
- (b) Using Markov's inequality, compute a bound on the same probability as the previous part.
- (c) Suppose n=2. For what values of p will the bound from Markov's inequality be within 1% of the exact
- 2. AEP and source coding (cf. Cover & Thomas, Problem 3.7)

 $p_0 = 0.995$ and $p_1 = 0.005$. A sequence of bits its g Sequences are code word. Those blocks with more https://eduassistpro.github.io/

- (a) What is the minimum required length of the assigned codeword
- (a) What is the minimum required (b) Calculate the probability of observing a 100-bit, block that has no a assist_pro codeword has been assigned. Compare the bound to the proba
- 3. Typical Sets and Smallest δ -Sufficient Subsets (cf. Cover & Thomas, Problem 3.13)

Let X^N be an extended ensemble for X with $\mathcal{A}_X = \{0,1\}$ and $\mathcal{P}_X = \{0.4,0.6\}$.

- (a) Calculate the entropy H(X).
- (b) Let N=25 and $\beta=0.1$.
 - i. Which sequences in X^N fall in the typical set $T_{N\beta}$? (You may find it helpful to refer to Table 1 below.)
 - ii. Compute $P(\mathbf{x} \in T_{N\beta})$, the probability of a sequence from X^N falling in the typical set.
 - iii. With reference to Table 1 below, how many elements are there in $T_{N\beta}$?
 - iv. How many elements are in the smallest δ -sufficient subset S_{δ} for $\delta = 0.9$?
 - v. What is the essential bit content $H_{\delta}(X^N)$ for $\delta = 0.9$?

4. Source Coding Theorem

Recall that the source coding theorem (for uniform codes) says that for any ensemble X:

$$(\forall \epsilon > 0) (\forall \delta \in (0,1)) (\exists N_0) (\forall N > N_0) \left| \frac{1}{N} H_{\delta}(X^N) - H(X) \right| \le \epsilon.$$

(a) Near, an enthusiastic software developer, has just learned about the source coding theorem. He exclaims: "The theorem allows us to pick any $\epsilon > 0$. So, if I pick $\epsilon = H(X) - \epsilon'$, I get that for sufficiently large N,

$$\frac{1}{N}H_{\delta}(X^N) \ge \epsilon'.$$

This means that by making ϵ' tiny, I can get away with using virtually zero bits per outcome. Great!". Is Near's reasoning correct? Explain why or why not.

- (b) Mello, a skeptical econometrician, has also just learned about the source coding theorem. He complains: "The thereom is not really relevant to me. I am interested in coding blocks of outcomes where each outcome is dependent on the previous outcome, rather than them all being independent of each other. The source coding theorem is not useful in this case."
 - Is Mello's reasoning correct? Explain why or why not.

5. Prefix Codes

Consider the codes $C_1 = \{0, 01, 1101, 10101\}, C_2 = \{00, 01, 100, 101\}, \text{ and } C_3 = \{0, 1, 00, 11\}$

- (a) At C_1 , C_2 , and C_3 , prefix codes? For they uniquely decreable? He C_1 , C_2 , and C_3 , that have the same lengths as C_1 , C_2 , and C_3 , respectively. If
- this is not possible, explain why.
- (c) Is it possible to con
- (d) Is it possible to the state of the state

Add WeChat edu_assist_pro

	\overline{k}	$\binom{N}{k}$	$\binom{N}{k} p_1^k p_0^{N-k}$	$-\frac{1}{N}\log_2 p(\mathbf{x})$
	0	1	0.000000	1.321928
	1	25	0.000000	1.298530
	2	300	0.000000	1.275131
	3	2300	0.000001	1.251733
	4	12650	0.000007	1.228334
	5	53130	0.000045	1.204936
	6	177100	0.000227	1.181537
	7	480700	0.000925	1.158139
	8	1081575	0.003121	1.134740
	9	2042975	0.008843	1.111342
	10	3268760	0.021222	1.087943
Aggiant	nlh	445740	0.043410.4	1.064545
Assignn		5200300	0.075967	E044545 MAGM
	13	5200300	0.113950	1.017748

https://eduassistpro.github.io/

18 480700 0.079986 0.900755	
1 19 177100 1 0.044203 0.877357	
Add 19 W 500 h.014203 ed 0.877357 esist pr	O
21 12650 0.007104 0.830560	
22 2300 0.001937 0.807161	
23 300 0.000379 0.783763	
24 25 0.000047 0.760364	
25 1 0.000003 0.736966	

Table 1: Table for Question 3. Column 1 shows k, the number of 1s in a block of length N=25. Column 2 shows the number of such blocks. Column 3 shows the probability $p(\mathbf{x}) = \binom{N}{k} p_1^k p_0^{N-k}$ of drawing such a block \mathbf{x} . Column 4 shows the Shannon information per symbol in \mathbf{x} .