CS 491 CAP Advanced Search & Simulation

Jingbo Shang University of Illinois at Urbana-Champaign Dec 1, 2017

- ♦ Bitmasks for Pruning
- ♦ Search Order
- ♦ Bidirectional Search
- ♦ A* Search

- **† Bitmasks for Pruning**
- ♦ Search Order
- ♦ Bidirectional Search
- ♦ A* Search

N Queens

 \diamond Find the total number of layouts of n queens on an $n \times n$ chessboard, such that any two queens will not attach each other.

♦Bruteforce:

- Every time, put a queen at (x, y)
- Mark (*, y) and $(x + \Delta, y + \Delta)$ and $(x + \Delta, y \Delta)$ as attacked
 - •This step is O(n)

Recursion

Bitmask

- \diamond Query the *d*-th digit of *x*
 - $(x \gg d) \& 1$
- \diamond Set the *d*-th digit of *x* as 1
 - $-x \mid (1 \ll d)$
- \diamond Set the *d*-th digit of *x* as 0
 - $x & (\sim (1 \ll d))$
- \diamond Only keep the last non-zero digit of x
 - -x & (-x)

N Queens

- ♦ Mark columns, diagonals only
- \diamond It becomes O(1)
- \diamond Find the possible position in *x*-th row
- ♦⇔ Find the non-zero bits

- ♦ Bitmasks for Pruning
- **♦ Search Order**
- ♦ Bidirectional Search
- ♦ A* Search

Sudoku

 \diamond 9×9 and 16×16

- ♦No same number in a row
- ♦No same number in a col
- ♦No same number in a sub-square

♦Find a solution

1		3			5		9
		2	1	9	4		
			7	4	9	2	
3			5	2			6
	6				2 2	5	
7		2 - 5	8	3	- 5	8 - 3	4
			4	1	2 00	60 X	
		9	2	5	8		
8		4			1		7

Sudoku - Bruteforce

- ♦Find an empty cell
- ♦Enumerate a possible number to fill
- ♦ Mark its row, column, and subsquare
 - Bitmasks could be used again!

1		3			5		9
		2	1	9	4		
			7	4			
3			5	2			6
	6					5	
7		2 0	8	3			4
			4	1		8	
		9	2	5	8		
8		4			1		7

Sudoku - Heuristic

- ♦Find an empty cell
- ♦With the **smallest** number of possible numbers

- ♦ Bitmasks for Pruning
- ♦ Search Order
- **♦ Bidirectional Search**
- ♦ A* Search

Bidirectional search

- ♦ Find shortest path given an initial node and a target node.
- ♦ Two simultaneous searches
 - Start $\rightarrow ... \rightarrow$ an overlap! $\leftarrow ... \leftarrow$ Target
- ♦ Faster!
 - Suppose both searches expand a <u>tree</u> with <u>branching factor</u> b
 - the distance from start to goal is *d*
 - Each of the two searches: $O(b^{d/2})$
 - A single search: $O(b^d)$

Bidirectional search

♦Requirement: the reversed move is easy to obtain


```
1 2 3
x 4 6
7 5 8
```

- ♦ How many different layouts?
- ♦Bidirectional BFS is much faster than BFS

k-sum

- \diamond Given an array a[1..n] and a target sum s
- \diamond Is it possible to find k numbers such that their sum is exactly s?

$$\diamond O(n^{\left\lceil \frac{k}{2} \right\rceil})$$
 is desired

- ♦ Bitmasks for Pruning
- ♦ Search Order
- ♦ Bidirectional Search
- **♦ A* Search**

A* search

- $\diamond g(x)$ is the current cost from start to x
- \diamond Design a heuristic function h(x), which estimates the cost of the cheapest path from x to the goal
 - problem-specific
 - admissible, meaning that it never overestimates the actual cost to get to the nearest goal node

$$\diamond f(x) = g(x) + h(x)$$

 \diamond Use f(x) as the priority

A* search

- \diamond Maintain a priority queue Q
- \diamond Pick x with the highest priority f(x) from Q
- \diamond If x is the goal, f(x) is the answer
- \diamond Expand $x \rightarrow y_1, y_2, ..., y_k$
- ♦Push all *unseen y*'s into *Q*

Dijkstra Revisit

- ♦Dijkstra's algorithm can be viewed as a special case of A*
 - Pick the unseen closet node
 - g(x) is the current shortest distance
 - $\bullet h(x) = 0$


```
♦ Goal:
♦ 1 2 3 4
♦ 5 6 7 8
♦ 9 10 11 12
♦ 13 14 15 X
```

of the tiles with which it shares an edge.

- ♦ How many different layouts?
- \$15!=1,307,674,368,000
- ♦Toooo large for BFS

♦ Any heuristic?

♦Sum of Manhattan Distances to their destinations

Recommended Readings

- ♦ <u>USACO 1.4.1 Search Techniques</u>
- ♦ <u>Bidirectional Search</u>
- ♦A* Search
- **♦**Exact Cover
- **♦** Dancing Links

Q&A

