Linear regression

Big Data Analytics 2020-2021 - UMONS Souhaib Ben Taieb

1

Do Exercise 3.3 in LFD.

Exercise 3.3

Consider the hat matrix $H = X(X^TX)^{-1}X^T$, where X is an N by d+1 matrix, and X^TX is invertible.

- (a) Show that H is symmetric.
- (b) Show that $H^K = H$ for any positive integer K.
- (c) If I is the identity matrix of size N, show that $(I H)^K = I H$ for any positive integer K.
- (d) Show that trace(H) = d + 1, where the trace is the sum of diagonal elements. [Hint: trace(AB) = trace(BA).]

Figure 1: Source: Abu-Mostafa et al. Learning from data. AMLbook.

Do Exercise 3.4 in LFD.

Exercise 3.4

Consider a noisy target $y = \mathbf{w}^{*^{\mathrm{T}}}\mathbf{x} + \epsilon$ for generating the data, where ϵ is a noise term with zero mean and σ^2 variance, independently generated for every example (\mathbf{x}, y) . The expected error of the best possible linear fit to this target is thus σ^2 .

For the data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$, denote the noise in y_n as ϵ_n and let $\epsilon = [\epsilon_1, \epsilon_2, \dots, \epsilon_N]^{\mathrm{T}}$; assume that $X^{\mathrm{T}}X$ is invertible. By following (continued on next page)

the steps below, show that the expected in-sample error of linear regression with respect to $\mathcal D$ is given by

$$\mathbb{E}_{\mathcal{D}}[E_{\text{in}}(\mathbf{w}_{\text{lin}})] = \sigma^2 \left(1 - \frac{d+1}{N}\right).$$

- (a) Show that the in-sample estimate of y is given by $\hat{y} = Xw^* + H\epsilon$.
- (b) Show that the in-sample error vector $\hat{\mathbf{y}} \mathbf{y}$ can be expressed by a matrix times ϵ . What is the matrix?
- (c) Express $E_{\rm in}(\mathbf{w}_{\rm lin})$ in terms of ϵ using (b), and simplify the expression using Exercise 3.3(c).
- (d) Prove that $\mathbb{E}_{\mathcal{D}}[E_{\mathrm{in}}(\mathbf{w}_{\mathrm{lin}})] = \sigma^2 \left(1 \frac{d+1}{N}\right)$ using (c) and the independence of $\epsilon_1, \cdots, \epsilon_N$. [Hint: The sum of the diagonal elements of a matrix (the trace) will play a role. See Exercise 3.3(d).]

For the expected out-of-sample error, we take a special case which is easy to analyze. Consider a test data set $\mathcal{D}_{\text{test}} = \{(\mathbf{x}_1, y_1'), \dots, (\mathbf{x}_N, y_N')\}$, which shares the same input vectors \mathbf{x}_n with \mathcal{D} but with a different realization of the noise terms. Denote the noise in y_n' as ϵ_n' and let $\epsilon' = [\epsilon_1', \epsilon_2', \dots, \epsilon_N']^{\text{T}}$. Define $E_{\text{test}}(\mathbf{w}_{\text{lin}})$ to be the average squared error on $\mathcal{D}_{\text{test}}$.

(e) Prove that
$$\mathbb{E}_{\mathcal{D},\epsilon'}[E_{\mathrm{test}}(\mathbf{w}_{\mathrm{lin}})] = \sigma^2 \left(1 + \frac{d+1}{N}\right)$$
.

The special test error $E_{\rm test}$ is a very restricted case of the general out-of-sample error. Some detailed analysis shows that similar results can be obtained for the general case, as shown in Problem 3.11.

Figure 2: Source: Abu-Mostafa et al. Learning from data. AMLbook.

Solve Problem 3.11 in LFD.

Problem 3.11 Consider the linear regression problem setup in Exercise 3.4, where the data comes from a genuine linear relationship with added noise. The noise for the different data points is assumed to be iid with zero mean and variance σ^2 . Assume that the 2nd moment matrix $\Sigma = \mathbb{E}_{\mathbf{x}}[\mathbf{x}\mathbf{x}^T]$ is non-singular. Follow the steps below to show that, with high probability, the out-of-sample error on average is

$$E_{\text{out}}(\mathbf{w}_{\text{lin}}) = \sigma^2 \left(1 + \frac{d+1}{N} + o(\frac{1}{N}) \right).$$

(a) For a test point \mathbf{x} , show that the error $y - g(\mathbf{x})$ is

$$\epsilon - \mathbf{x}^{\mathrm{T}}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\boldsymbol{\epsilon}$$

where ϵ is the noise realization for the test point and ϵ is the vector of noise realizations on the data.

(b) Take the expectation with respect to the test point, i.e., x and ϵ , to obtain an expression for $E_{\rm out}$. Show that

$$E_{\text{out}} = \sigma^2 + \text{trace} \left(\Sigma (X^T X)^{-1} X^T \epsilon \epsilon^T X^T (X^T X)^{-1} \right).$$

[Hints: a = trace(a) for any scalar a; trace(AB) = trace(BA); expectation and trace commute.]

- (c) What is $\mathbb{E}_{\epsilon}[\epsilon \epsilon^{\mathrm{T}}]$?
- (d) Take the expectation with respect to ϵ to show that, on average,

$$E_{\text{out}} = \sigma^2 + \frac{\sigma^2}{N} \operatorname{trace} \left(\Sigma \left(\frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \right).$$

Note that $\frac{1}{N}\mathbf{X}^{\mathrm{T}}\mathbf{X} = \frac{1}{N}\sum_{n=1}^{N}\mathbf{x}_{n}\mathbf{x}_{n}^{\mathrm{T}}$ is an N sample estimate of Σ . So $\frac{1}{N}\mathbf{X}^{\mathrm{T}}\mathbf{X} \approx \Sigma$. If $\frac{1}{N}\mathbf{X}^{\mathrm{T}}\mathbf{X} = \Sigma$, then what is E_{out} on average?

(e) Show that (after taking the expectation over the data noise) with high probability,

$$E_{\text{out}} = \sigma^2 \left(1 + \frac{d+1}{N} + o(\frac{1}{N}) \right).$$

[Hint: By the law of large numbers $\frac{1}{N}X^TX$ converges in probability to Σ , and so by continuity of the inverse at Σ , $\left(\frac{1}{N}X^TX\right)^{-1}$ converges in probability to Σ^{-1} .]

Figure 3: Source: Abu-Mostafa et al. Learning from data. AMLbook.

4

Solve Problem 3.14 in LFD.

Problem 3.14 In a regression setting, assume the target function is linear, so $f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}}\mathbf{w}^{*}$, and $\mathbf{y} = Z\mathbf{w}^{*} + \epsilon$, where the entries in ϵ are zero mean, iid with variance σ^{2} . In this problem derive the bias and variance as follows.

- (a) Show that the average function is $\bar{g}(\mathbf{x}) = f(\mathbf{x})$, no matter what the size of the data set. What is the bias?
- (b) What is the variance? [Hint: Problem 3.11]

Figure 4: Source: Abu-Mostafa et al. Learning from data. AMLbook.

Solve Problem 3.15 in LFD.

Problem 3.15 In the text we derived that the linear regression solution weights must satisfy $X^TXw = X^Ty$. If X^TX is not invertible, the solution $\mathbf{w}_{\mathsf{lin}} = (X^TX)^{-1}X^Ty$ won't work. In this event, there will be many solutions for \mathbf{w} that minimize E_{in} . Here, you will derive one such solution. Let ρ be the rank of X. Assume that the singular value decomposition (SVD) of X is $X = U\Gamma V^T$, where $U \in \mathbb{R}^{N \times \rho}$ satisfies $U^TU = I_{\rho}$, $V \in \mathbb{R}^{(d+1) \times \rho}$ satisfies $V^TV = I_{\rho}$, and $\Gamma \in \mathbb{R}^{\rho \times \rho}$ is a positive diagonal matrix.

- (a) Show that $\rho < d + 1$.
- (b) Show that $\mathbf{w_{lin}} = V\Gamma^{-1}U^{T}\mathbf{y}$ satisfies $X^{T}X\mathbf{w_{lin}} = X^{T}\mathbf{y}$, and hence is a solution.
- (c) Show that for any other solution that satisfies $X^TXw = X^Ty$, $||w|_{lin}|| < ||w||$. That is, the solution we have constructed is the minimum norm set of weights that minimizes E_{in} .

Figure 5: Source: Abu-Mostafa et al. Learning from data. AMLbook.