Reciprocity laws and their rational variants

Louis Dumont

INRIA, France

December 15, 2015

Reciprocity laws: from Legendre to Lehmer

turn left after Artin

Fundamental problem

Problem

Parameter: $k \in \mathbb{N}^*$ a positive integer.

Let $x \in \mathbb{Z}$ be an integer and $p \in \mathbb{N}$ a prime number.

Does there exist $y \in \mathbb{Z}$ such that $x = y^k \mod p$?

Answers (but not really...but still...but actually not): Reciprocity laws

Aim of the talk:

- Use the problem as an excuse to explore the beautiful world of reciprocity laws.
- Good methods for the cases k = 2 and k = 3.

Naive method

Naive algorithm that works for any value of k:

- for all $y \in \mathbb{F}_p$, test wether $x = y^k$ or not.
- if a $y \in \mathbb{F}_p$ such that $x = y^k$ is found, the answer to the problem is "yes", otherwise it is "no"

Can we do better?

The quadratic reciprocity law (k = 2)

Fact: there exists a quadratic residue symbol $\left(\frac{p}{q}\right) \in \{-1,1\}$ with the following properties.

Quadratic residue symbol

- $ullet \left(rac{p}{q}
 ight)=1\Leftrightarrow p$ is a square modulo q
- $\bullet \ \left(\frac{p_1p_2}{q}\right) = \left(\frac{p_1}{q}\right)\left(\frac{p_2}{q}\right)$

Quadratic reciprocity law (Legendre, Gauss)

if p and q are odd primes, then

$$\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{p}{q}\right)$$

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} \qquad \left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$

Example

$$\left(\frac{p_1p_2}{q}\right) = \left(\frac{p_1}{q}\right)\left(\frac{p_2}{q}\right) \quad \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}\left(\frac{p}{q}\right) \quad \left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$

Question: is 13 a square modulo 137?

$$\left(\frac{13}{137}\right) = \left(\frac{137}{13}\right) = \left(\frac{7}{13}\right) = \left(\frac{13}{7}\right)$$
$$= \left(\frac{6}{7}\right) = \left(\frac{2}{7}\right)\left(\frac{3}{7}\right) = -\left(\frac{7}{3}\right) = -\left(\frac{1}{3}\right) = -1$$

Answer: 13 is not a square modulo 137.

More general reciprocity laws

- Quadratic reciprocity law: k = 2
- Eisenstein reciprocity law: any prime k but with special algebraic integers

Eisenstein reciprocity law

$$\left(\frac{\pi_1}{\pi_2}\right)_k = \left(\frac{\pi_2}{\pi_1}\right)_k$$

 π_1, π_2 are primes in $\mathbb{Z}[\zeta]$, with ζ a primitive k-th root of unity

 Hilbert and Artin reciprocity laws: even more general, even more abstract

Rational reciprocity laws

- Quartic and octic reciprocity laws
- Rational cubic reciprocity: Euler, Jacobi, Lehmer,...

There is no known general rational reciprocity law.

From now on, we focus on the case k = 3.

Cubic reciprocity

Cubic reciprocity law (draft version)

$$\left(\frac{\pi_1}{\pi_2}\right)_3 = \left(\frac{\pi_2}{\pi_1}\right)_3$$

 π_1, π_2 are primes in $\mathbb{Z}[\omega]$, with ω a primitive third root of unity

Theorem (Euler, Jacobi)

Let p be a prime such that $p \equiv 1 \mod 3$. Let $q \in \{2, 3, 5, 7\}$. Then p can be written $4p = A^2 + 27B^2$ and

q is a cube modulo $p \iff q$ divides A or B

The arithmetic of $\mathbb{Z}[\omega]$ (Eisenstein integers)

The ring $\mathbb{Z}[\omega]$ (Eisenstein integers)

From now on, ω is a primitive third root of unity: $1 + \omega + \omega^2 = 0$.

 $\mathbb{A} := \mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\}$ is an Euclidean domain.

It has among other things:

- Euclidean division
- congruences
- prime numbers
- prime factorisation
- greatest common divisors
- the norm function

The norm function

If $\alpha = a + b\omega \in \mathbb{A}$, the norm of α is

$$N(\alpha) = \alpha \overline{\alpha} = a^2 - ab + b^2$$

The norm function, invertible elements

$$N(\alpha) = \alpha \overline{\alpha} = a^2 - ab + b^2$$

Properties of the norm

- $N(\alpha) \in \mathbb{Z}$
- $N(\alpha\beta) = N(\alpha) N(\beta)$
- α is invertible in $\mathbb{A} \Leftrightarrow \mathsf{N}(\alpha) = 1$
- if $N(\alpha)$ is prime in \mathbb{Z} , then α is prime in \mathbb{A}

$$\underline{\mathsf{Invertible\ elements:}}\ \mathbb{A}^{\times} = \left\{\pm 1, \pm \omega, \pm \omega^2\right\}$$

Remark:
$$\omega^2 = -1 - \omega$$

Prime eisenstein integers

Some prime rational integers are not prime anymore in \mathbb{A} ! Example: $3 = -\omega^2(1 - \omega)^2$ $7 = -(1 + 3\omega)(2 + 3\omega)$

Primes of $\mathbb{Z}[\omega]$

Let $p \in \mathbb{Z}$ be a rational prime integer.

- if $p \equiv 2 \mod 3$, then p is prime in \mathbb{A}
- ullet if $p\equiv 1\mod 3$, then $p=\pi_1\pi_2$, where π_1 and π_2 are prime in $\mathbb A$
- if p=3, then $3=-\omega^2(1-\omega)^2$ and $1-\omega$ is prime in $\mathbb A$

Primary primes

Definition (Primary primes)

If $p \in \mathbb{Z}$ is a prime such that $p \equiv 1 \mod 3$, then p can be uniquely written (up to conjugation) $p = \pi \overline{\pi}$, where $\pi = a + b\omega$ with

$$a \equiv 1 \mod 3$$
 $b \equiv 0 \mod 3$

The **primary** primes are the primes π as above and the rational primes $p \equiv 2 \mod 3$

Corollary

if $p \in \mathbb{Z}$ is prime and $p \equiv 1 \mod 3$, then p has a unique decomposition

$$4p = A^2 + 27B^2$$

<u>Proof:</u> write $p = \pi \overline{\pi}$ and $\pi = a + b\omega$ with $b \equiv 0 \mod 3$. then $4p = 4(a^2 - ab + b^2) = (2a - b)^2 - 3b^2$

Example

$$p = 13 = (-4 - \omega)\overline{(-4 - \omega)} = (-4 - \omega)(-3 + \omega)$$

 $\pi = (-3 + \omega)$ is **not** primary. Its associates are:

- $\pi = -3 + \omega$
- \bullet $-\pi = 3 \omega$
- $\omega \pi = -1 4\omega$
- $-\omega\pi = 1 + 4\omega$
- $\omega^2 \pi = 4 + 3\omega$
- $\bullet \ -\omega^2\pi = -4 3\omega$

The only primary one is $4 + 3\omega$

Congruences and residue fields in A

How to compute $\alpha = a + b\omega$ modulo π in \mathbb{A} ?

First case:
$$p \equiv 2 \mod 3$$

If $a \equiv \tilde{a} \mod p$ and $b \equiv \tilde{b} \mod p$ then $a + b\omega \equiv \tilde{a} + \tilde{b}\omega \mod p$

$$\mathbb{A}/p\mathbb{A}=\mathbb{F}_p[\omega]$$
 is the field with p^2 elements

Second case:
$$p \equiv 1 \mod 3$$
 and $p = \pi \overline{\pi}$ write $\pi = \mu + \lambda \omega$. then

- $p \equiv 0 \mod \pi$
- $\bullet \ \omega \equiv -\tfrac{\mu}{\lambda} \ \bmod \pi$

conclusion:
$$a+b\omega\equiv a-b\frac{\mu}{\lambda}\mod\pi$$

$$\mathbb{A}/p\mathbb{A} = \mathbb{F}_p$$
 is the field with p elements

Example

$$p = 7 = \pi \overline{\pi}$$
, with $\pi = 1 + 3\omega$.

Then
$$1 + 3\omega \equiv 0 \mod \pi \Longrightarrow \omega \equiv -\frac{1}{3} \equiv 2 \mod \pi$$

conclusion:
$$a + b\omega \equiv a + 2b \mod \pi$$
 for any a and b

for instance:
$$23 + 10\omega \equiv 2 + 3\omega \equiv 8 \equiv 1 \mod 1 + 3\omega$$

The cubic reciprocity law

Cubic residue symbol

- $\bullet \left(\frac{\pi_1}{\pi_2}\right)_3 \in \left\{1, \omega, \omega^2\right\}$
- $\left(\frac{\pi_1}{\pi_2}\right)_3 = 1 \Leftrightarrow \pi_1$ is a cube modulo π_2
- $\bullet \ \left(\frac{\pi_1 \pi_2}{\pi_3}\right)_3 = \left(\frac{\pi_1}{\pi_3}\right)_3 \left(\frac{\pi_2}{\pi_3}\right)_3$
- $\bullet \ \overline{\left(\frac{\pi_1}{\pi_2}\right)_3} = \left(\frac{\overline{\pi_1}}{\overline{\pi_2}}\right)_3$

Cubic reciprocity law (Gauss, Eisenstein)

If π_1 and π_2 are two non-associated **primary** primes of \mathbb{A} , then

$$\left(\frac{\pi_1}{\pi_2}\right)_3 = \left(\frac{\pi_2}{\pi_1}\right)_3$$

Rational cubic reciprocity

Rational cubic reciprocity for q = 2

Question: p is given. Is 2 a cube modulo p?

Easy case: when $p \equiv 2 \mod 3$, every element of \mathbb{F}_p is a cube. From now on, $p \equiv 1 \mod 3$, $p = \pi \overline{\pi}$ with $\pi = a + b\omega$ primary.

- since $\mathbb{A}/\pi\mathbb{A} = \mathbb{F}_p$, 2 is a cube mod $p \Leftrightarrow 2$ is a cube mod π
- 2 is a cube mod $\pi \Leftrightarrow \left(\frac{2}{\pi}\right)_3 = 1 \Leftrightarrow \left(\frac{\pi}{2}\right)_3 = 1 \Leftrightarrow \pi$ is a cube mod 2

$$\mathbb{A}/2\mathbb{A} = \mathbb{F}_2[\omega]$$
 et $\mathbb{F}_2[\omega]^3 = \{0,1\}$

Conclusion: 2 is a cube mod $p \Leftrightarrow b \equiv 0 \mod 2$

Reminder:
$$4p = (2a - b)^2 + 3b^2 = A^2 + 27B^2$$

2 is a cube mod $p \Leftrightarrow A$ and B are even

Example

Question: Is 2 a cube modulo 157?

$$4 \times 157 = 628 = 14^2 + 27 \times 4^2$$

14 and 4 are even \Rightarrow 2 is a cube modulo 157

indeed: $62^3 \equiv 2 \mod 157$

Problem

• How to compute the decomposition $4p = A^2 + 27B^2$ efficiently?

Other formulation:

• How to compute π such that $p = \pi \overline{\pi}$ efficiently ?

Efficient computation of the Eisenstein decomposition

Proposition

Let $p \equiv 1 \mod 3$ be a prime.

- There exists $c \in \mathbb{Z}$ such that $1 + c + c^2 \equiv 0 \mod p$
- The Eisenstein integer $\pi=\gcd(p,\omega-c)$ is a prime that satisfies $p=\pi\overline{\pi}$

Example:
$$p = 157 \rightarrow c = 12$$

Euclidean algorithm: only one step!
$$157 = (\omega - 12)(-13 - \omega)$$

the primary prime associated to
$$\omega - 12$$
 is $\pi = 13 + 12\omega$

Check:
$$A = 2 \times 13 - 12 = 14$$
 $B = 12/3 = 4$

Epilogue

What about cubic rational reciprocity for other values of q?

The computations are more complicated, but everything works the same. There is a family of theorems:

Theorem

Let $q \in \mathbb{Z}$ be a prime. Then, for all primes $p \equiv 1 \mod 3$ with decomposition $4p = A^2 + 27B^2$,

q is a cube mod $p \iff$ a set of congruences on A and B mod q

• What about rational reciprocity laws for higher odd powers ?

The method doesn't work for higher powers, because $\mathbb{Z}[\zeta]$ is not always a Euclidean domain. The question remains open.