Анализ и сравнение алгоритмов демодуляции

Ковалов А. И., студент кафедры Инфокоммуникационные технологии и системы связи СПБГУАП, akovalov@vu.spb.ru

Аннотация

В данной статье рассматриваются алгоритмы демодуляции сигнала с точки зрения алгоритмической сложности и качества обработки сигнала на сигнальных созвездиях QPSK, 16QAM, 64QAM, 256QAM. Статья несёт обзорный характер и не предлагает новых алгоритмов или подходов, однако позволяет оценить и сравнить ряд алгоритмов.

Введение

На сегодняшний день беспроводные технологии плотно проникли в повседневную жизнь. Невозможно представить современную технику, различного уровня, без определённой системы связи: начиная от специализированной и бытовой техники, заканчивая носимыми устройствами.

В связи с важностью систем беспроводной связи, к подобным решениям предъявляется ряд серьёзных требований, главными из которых являются: стоимость решения, энергопотребление и качество обработки сигнала.

Качество обработки сигнала, в свою очередь, напрямую зависит от используемых подходов, а один из основных алгоритмов беспроводного приёмника — алгоритм демодуляции, определяющий качество и сложность обработки сигнала.

В статье произведён обзор и сравнение различных методов демодуляции сигнала на сигнальных созвездиях QPSK, 16QAM, 64QAM, 256QAM.

Общая модель системы

Упрощённая схема системы цифровой связи изображена на рисунке 1. На передающей стороне, сигнал (поток бит) последовательно проходит через следующие блоки: кодер канала, модулятор (Modulation symbol mapper, Digital up converter). На приёмной стороне: демодулятор (Digital down converter, Modulation symbol de-mapper), декодер канала.

Для простоты моделирования и наглядности результатов, в работе используется упрощённая схема приёмопередатчи с аддитивным белым гауссовским шумом (АБГШ) [1], а сигнал представлен в комплексной форме (y_I/y_Q — мнимая/действительная компоненты, соответственно).

Рис. 1: Упрощённая схема системы цифровой связи

Общая задача блока демодуляции

Функции демодулятора — расчёт функции логарифма отношения правдоподобия (LLR) для каждого бита принятого сигнала, далее, для i-го бита, записывается, как λ_i :

$$\lambda_i = \ln\left(\frac{Pr\{b_i = 1|r\}}{Pr\{b_i = 0|r\}}\right),\tag{1}$$

где r — принятый сигнал, а b_i — i-й бит переданного сообщения.

Демодулятор по мнимому расстояния (под-оптимальный алгоритм)

Общее выражение (1), можно оценить следующим образом [2]:

$$\ln\left(\frac{Pr\{b_i = 1|r\}}{Pr\{b_i = 0|r\}}\right) \approx \frac{1}{\sigma^2} \left(d_{i,0}^2 - d_{i,1}^2\right),\,$$

где $d_{i,j}$ — Евклидово расстояние от принятого сигнала на модуляционном созвездии до ближайшей точки с i-м битом, равным нулю или единице, соответственно.

Таким образом, в алгоритме по минимуму расстояния, LLR i-го бита вычисляется как:

$$\lambda_i = \frac{1}{\sigma^2} \left(d_{i,0}^2 - d_{i,1}^2 \right). \tag{2}$$

Демодулятор по минимуму расстояния для созвездий QAM

Для квадратурно-амплитудной модуляции существует упрощённый метод вычисления выражения 2 [3]:

$$\lambda_i = S \cdot D_i, \tag{3}$$

где S — масштабирующий коэффициент, зависящий от используемого созвездия, D — функция от принятого сигнала, i — номер бита в отображении битовой последовательности в модуляционный символ [4].

Пример расчёта для созвездия 16QAM:

$$K = \frac{2}{\sqrt{10}}\beta, S = -2 \cdot \frac{1}{\sigma^2} \cdot K;$$

$$D_0 = \begin{cases} y_I & |y_I| \le K, \\ 2y_I - K & y_I > K, \\ 2y_I + K & y_I < -K; \end{cases}$$

$$D_1 = \begin{cases} y_Q & |y_Q| \le K, \\ 2y_Q - K & y_Q > K, \\ 2y_Q + K & y_Q < -K; \end{cases}$$

$$D_2 = -|y_I| + K;$$

$$D_3 = -|y_O| + K,$$

где K — параметр, задаваемый сигнальным созвездием, σ^2 — общая энергия шума, β — коэффициент масштабирования принятого сигнала.

Демодулятор порогового решения

Алгоритм демодуляции, описанный в предыдущем разделе, может быть аппроксимирован для QAM-схем, путём изменения расчёта функции D_i [5]. Пример расчёт для созвездия 16QAM:

$$K = \frac{2}{\sqrt{10}}\beta, S = -\frac{1}{\sigma^2};$$

$$D_0 = y_I;$$

$$D_1 = y_Q;$$

$$D_2 = K - |y_I|;$$

$$D_3 = K - |y_O|.$$

Результаты моделирования

На рисунке 2 приведены результаты моделирования: вероятность ошибки на блок, для рассматриваемых алгоритмов.

Рис. 2: Результаты моделирования с 8-ю итерациями Турбо-декодера, скоростью кода 1/3 и длинной блока 192 на сигнальных созвездиях: QPSK, 16QAM, 64QAM, 256QAM

На рисунке 2 представлены результаты моделирования рассмотренных алгоритмов. На уровне вероятности ошибки 10^{-2} демодулятор порогового решения проигрывает демодулятору по минимуму расстояний не больше 0.1 Дб, таблица 1.

Таблица 1: Таблица разницы качества обработки сигнала алгоритмом порогового принятия решений от алгоритма по минимуму расстояния при вероятности ошибки $10^{-2}\,$

Созвездие	QPSK	16QAM	64QAM	256QAM
Разница, дБ	0	$\sim 0,02$	$\sim 0,05$	$\sim 0,1$

С увеличением размерности сигнального созвездия, алгоритм порогового принятия решения начинает показывать значительную разницу в вероятности ошибки на блок ($\sim 0,1$ дБ на созвездии 256QAM), по сравнению с демодулятором по минимуму расстояний.

Результаты сравнения алгоритмов

Сложность алгоритмов приведена в базовых математических операциях: умножение ("*"), сложение/вычитание ("+, -") и взятие по модулю числа ("abs").

В таблице 2 под следующими колонками приведены результаты для соответствующих алгоритмов:

- А1 демодулятор по минимуму расстояний. Расчёт по формуле 2;
- A1 демодулятор по минимуму расстояний для созвездия QAM. Расчёт по формуле 3;
- А1 алгоритм порогового принятия решения.

Из результатов, приведённых в таблице 2, можно видеть, что наименьшую сложность имеет алгоритм порогового решения. Использование свойств отображения битовых последовательностей на символы квадратурно-амплитудной модуляции позволяют значительно упростить реализацию демодулятора по минимуму расстояний.

Заключение

В данной статье были рассмотрены следующие алгоритмы демодуляции сигнала: алгоритм по минимуму расстояния при помощи выражений 2 и 3 и алгоритм порогового принятия решений. Было приведено описание каждого из алгоритмов и подсчитана алгоритмическая сложность. Кроме того, было произведено сравнение качества обработки сигнала на сигнальных созвездиях QPSK, 16QAM, 64QAM, 256QAM, из которого следует:

• расчёты по формулам 2 и 3 показывают одинаковые результаты по качеству обработки сигнала, однако вычисление 3 обладает меньшей сложностью, таблица 2;

Таблица 2: Таблица сложности демодуляторов по операциям

Созвездие	Операции	A1	A2	A3
QPSK	QPSK <,>		0	0
	+, -	11	1	0
	*	8	4	2
	abs	0	0	0
16QAM	<,>	10	4	0
	+, -	19	6	2
	*	14	6	4
	abs	0	2	2
64QAM	<,>	20	14	0
	+, -	27	17	6
	*	20	8	6
	abs	0	2	4
256QAM	<,>	38	30	0
	+, -	35	24	8
	*	26	10	8
	abs	0	2	6

- для сигнального созвездия QPSK все алгоритмы показали одинаковый результат по качеству обработки сигнала, и с учётом сложности алгоритмов, алгоритм порогового принятия решения является оптимальным выбором для QPSK созвездия;
- не смотря на выигрыш в производительности, алгоритм порогового принятия решений начинает отставать в качестве обработки сигнала при увеличении размерности сигнального созвездия, таблица 1.

Литература

- [1] Трофимов А. Н. Методы передачи дискретных сообщений. // СПБГУАП. 2010.
- [2] Mahmoudi R., Iniewski K. Low power emerging wireless technologies. CRC Press, 2013.

- [3] Ali I., Wasenmüller U., Wehn N. A high throughput architecture for a low complexity soft-output demapping algorithm // Advances in Radio Science. 2015. T. 13. №. С. C. 73-80.
- [4] Kim K. S. et al. General log-likelihood ratio expression and its implementation algorithm for Gray-Coded QAM signals // ETRI journal. 2006. T. 28. №. 3. C. 291-300.
- [5] Tosato F., Bisaglia P. Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2 // Communications, 2002. ICC 2002. IEEE International Conference on. — IEEE, 2002. — T. 2. — C. 664-668.