This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

®日本国特許庁(JP)

10 特許出願公告

129 特 129 許 公 報(B2)

平1-31958

@Int.CI.4 C 02 F 3/30 3/34 職別配号 101

庁内整理番号 Z-7432-4D A-7432-4D

中央研究所内

❷❸公告 平成1年(1989)6月28日

発明の数 1 (全6頁)

❷発明の名称 廃水の処理方法

> 创特 顧 昭57-146243

多公 昭59-36600

经出 頤 昭57(1982)8月25日

∰昭59(1984)2月28日

@発 明 者 木 隆 錴

神奈川県蘇沢市藤沢4720番地 荏原インフイルコ株式会社 中央研究所内

@発 明 者 遼 鑫 盌 朗

神奈川県藤沢市蘇沢4720番地 荏原インフイルコ株式会社 中央研究所内

@発 明 者 松尾 吉 商

神奈川県藤沢市蘇沢4720番地 荏原インフイルコ株式会社

勿出 顧 人 荏原インフイルコ株式

東京都港区港南1丁目6番27号

会社

190代理人 弁理士 高木 正行 外1名 審 査 官

П 愽

公害防止関連技術

8多考文献

特朗 昭56—144797 (JP, A) 特阻 昭57-12893 (JP, A)

昭56-124496 (JP, A) 特開

1

1 ジチオン酸、ポリチオン酸の少なくとも一方 および窒素分を含有する廃水を好気的工程と嫌気 的工程を有する生物処理工程で処理する際に、

嫌気的工程にイオウ、イオウ化合物の少なくと 5 も一方と炭酸ソーダを添加し、かつPH6.0以上に 保つてNOxを生物学的に脱窟すると共に該脱窒 により微生物を増殖させ、該増殖した微生物を好 気的工程で廃水と接触せしめてジチオン酸およ る廃水の処理方法。

- 2 前記生物処理工程が前記好気的工程、前記嫌 気的工程、再曝気工程および沈殿工程より構成さ れ、該沈殿工程による沈殿汚泥の一部を前配好気 的工程に返送して行われるものである特許請求の 15 る。 範囲第1項配載の方法。
- 3 前記好気的工程が、生物学的硝化工程である 特許請求の範囲第1項又は第2項記載の方法。
- 4 前記嫌気的工程が、イオウ又はイオウ化合物

求の範囲第1項、第2項又は第3項記載の方法。

2

- 5 前記嫌気的工程が、イオウ又はイオウ化合物 の充塡層を用いて行われるものである特許請求の 範囲第1項、第2項又は第3項記載の方法。
- 6 前配好気的工程がアルカリ剤として炭酸ソー ダを添加して行われるものである特許請求の範囲 第1項、第2項、第3項、第4項又は第5項記載 の方法。
- 前記イオウ化合物が、硫化ソーダ又は鉄系硫 び/又はポリチオン酸を酸化することを特徴とす 10 化物である特許請求の範囲第1項、第2項、第3 項、第4項、第5項又は第6項配載の方法。 発明の詳細な説明

本発明はジチオン酸、ポリチオン酸を含有する 廃水を生物学的に処理する方法に関するものであ

排ガス中のSOxの脱硫、NOxの脱硝に際して 排出される廃水には高濃度のジチオン酸、ポリチ オン酸、NHa、NOxが含有されている。排水中 のNHa、NOxは富栄養化の原因物質としてその・ を廃水中に懸濁させて行われるものである特許請 20 除去が望まれているが、生物学的な硝化脱窒法に

よつて比較的容易に除去される。しかしながら、 脱窒に際してNOxの還元剤となる有機炭素源が **多量に必要であり、運転経費の大部分を占るため** 憂慮されている。

一方、ジチオン酸、ポリチオン酸はCODmnの 5 成分となるためそれらの除去が望まれているが、 とりわけジチオン酸は生物学的にも物理化学的に も難分解性のため、これまで種々の方法が鋭意検 討されている。この中でイオウ交換樹脂によつて ジチオン酸を濃縮し、湿式燃焼する方法が実用段 10 酸の酸化が可能になることを見い出した。 階にあるが、コストが非常に高いという欠点があ **ర**ం

本発明は、以上の諸欠点を合理的に解消し、廃 水の脱密と廃水中のジチオン酸及び/又はポリチ 処理方法を提供することを目的とするものであ

以下、本発明を完成するに至つた経過について 説明する。

生物学的硝化脱窒プロセス用いて、NHaを多量 に含有する火力発電所の脱硝脱硫廃水の窒素除去 を行い、極めて良い成績を得ることができた。

第1図の方式は廃水(脱硝脱硫廃水) 1中の をNOx(NO:及び/又はNO:) にまで酸化したの ち、嫌気的条件に保持した脱窒槽3に導き、脱窒 用の還元剤8としてメタノールを添加して脱窒菌 によりNOxをNaガスにまで還元分解するもので ある。硝化槽2ではNH4の硝化によつてPHを低 30 下するが、硝化菌の至適円は中性範囲にあるの で、アルカリ剤8を添加して硝化槽混合液の円は 中性付近に維持される。第1図の方式では脱窒に 際して遊離したアルカリ分が硝化槽2に循環さ れ、その分硝化槽2に添加するべきアルカリ剤8 35 によつて硝化槽2へ流入することから、嫌気的条 が減少するように工夫されている。

この方式により処理水 5 のNH:-N、NOx-Nをそれぞれ1ppm以下(廃水1のNH,-Nは 305ppm)にすることができたが、CODwnの除 去率が極めて悪く、30~35%程度の除去率しか得 40 る。 られなかつた。そこで廃水1の水量負荷を生物学 的硝化脱窒に必要な1/5にしたり、硝化槽2の水 温、汚泥濃度を高めるなどの工夫を行つてみたが CODunの除去率は向上しなかつた。この理由に

ついて調査したところ、脱硝脱硫廃水に多量に含 有されているジチオン酸(SzOiが生物処理にお いて全く酸化されず、これがCODunの除去効率 の向上しない原因であることがわかつた。

処理水のCODωnを低減するため、本発明者ら は種々検討を加えた結果、脱窒槽3に添加する還 元剤 9 としてメタノールの代りにNa₂S(硫化ソー ダ)を用いることにより、脱窒槽3における NOxの還元分解と、硝化槽2におけるジチオン

次にこの経過を人工廃水を用いた例について述 べる。

本発明者らは、還元剤8としてメタノールの代 りにNa₂Sを、Na₂Sを利用して脱窒する菌の増殖 オン酸の酸化分解処理を的確に行うことができる 15 用炭素源として炭酸ソーダ (Na₂CO₂) 9'を脱 窒槽 3 にそれぞれ添加したところ、当初はNOx の除去率が大幅に悪化し、大量のNOxが処理水 に残留したが、経日的にNOxの除去率が向上し、 約3週間後にはメタノール添加時と同等となつ 本発明者らは、第1図に示す脱窒液循環方式の 20 た。NOxの除去率の向上と並行してジチオン酸 のの酸化率も向上し、処理水のCODwnも低減し 始めた。そこで、それまで過剰に添加していた NaxSを、次式に示す化学量論的に必要な量を過 不足なく添加するようにしたところ、NaxSは、 NH。を好気的条件にある硝化槽2に導き、NH。 25 嫌気的条件にある脱窒槽3で完全に消費され、そ の結果返送汚泥 6、循環液(脱窒液) 7に随伴さ れて硝化槽2で酸化されることがなくなつた。 15Na₂S+24NO₅+12H₂O

→12N₁+15Na₂SO₄+24OH⁻

このようにNa.Sが好気的条件で酸化されるこ とが完全になくなつても、硝化槽2におけるジチ オン酸酸化能力は実験終了後の2ケ月まで劣化す ることがなかつた。第1図のフローにおいて脱窒 槽3の活性汚泥は返送汚泥8、脱蜜混合液の循環 件下でNOxの酸素を利用してNaxSを酸化し増殖 した微生物は、好気的条件にある硝化槽2でジチ オン酸を酸化する能力のあることがわかる。な お、第1図中4は沈殿槽、10は再ばつ気槽であ

一方、上記活性汚泥を用いて嫌気的条件下で、 Na₂Sによるジチオン酸の還元分解を試みたとこ ろ、ジチオン酸は殆ど分解されなかつた。

NasSは脱密の還元剤としては高価なので、次

5

に比較的安価な粒子状イオウを脱窒槽に充塡し、 脱窒混合液を循環しない第2図の装置によつて硝 化、脱窒およびジチオン酸の酸化を試みたところ 極めて良好な成績が得られた。

しかして本発明は、上配実験結果に基づいて完 5 成されたものであり、ジチオン酸、ポリチオン酸 の少なくとも一方および窒素分を含有する廃水を 好気的工程と嫌気的工程を有する生物処理工程で 処理する際に、嫌気的工程にイオウ、イオウ化合 物の少なくとも一方と炭酸ソーダを添加し、かつ 10 PH6.0以上に保つてNOxを生物学的に脱窒すると 共に該脱窒により微生物を増殖させ、該増殖した 微生物を好気的工程で廃水と接触せしめてジチオ ン酸および/又はポリチオン酸を酸化することを 特徴とする廃水の処理方法である。

次に、本発明の一実施腹様を2図に示す装置に よる実験結果に基づいて説明する。

廃水1は返送汚泥 8 とともに硝化槽 2 に流入 し、NHaはNOxに硝化されジチオン酸およびポ 化によって酸が生成してHが低下するため、アル カリ剤8としてNa2CO2が添加されるが、その量 は州コントローラ11によつて州が中性域になる ように制御される。一方、ジチオン酸の酸化も円 に保つようにするとよい。

硝化が終了した混合物は脱窒槽るに流入し、 NOxは脱窒槽3内に充塡されている還元剤9と してのイオウ粒子と増殖用炭素源としての炭酸ソ る脱窒反応は化学量論的に次式で表わすことがで

5S+6NaNO₃+2H₂O

→3N₂+3N₂SO₄+2H₂SO₄

この式からわかるように脱窒に際しHaSOaが 35 副生するため、脱窒槽3混合液の風が低下する。 脱密菌の活性は硝化菌ほど附に影響されないが、 PHが5.5以下になると活性が大幅に低下するので、 PHが6.0以上になるように制御する。

てはNaOHよりもNa:CO:がよい。これはイオウ を利用して脱窒する微生物が自栄養細菌であり、 増殖に必要な炭素源として無機炭素を必要とする からである。

6

脱窒槽3内の混合液の攪拌は回転式攪拌機の如 き機械攪拌で行つてもよいが、第2図に示した如 く脱窟槽3気相部のガスを用いてブロワー12に よるガス攪拌を採用してもよい。

源元剤8としてのイオウは固定されているより も混合液の攪拌によつて流動化するようにした方 が望ましい。また第2図の如く脱窒槽3中に特に イオウの充填区域を設けず、脱窒槽3全体にイオ ウ粒が分布するようにしてもよいが、この場合は イオウ粒と混合液が均一に接触するように、散気 管あるいは散気板の数を多くし、攪拌ガス量を増 加することが望ましい。

脱密構3から流出する混合液は好気的条件にあ る再ばつ気槽10に流入し、嫌気的条件において 15 活性汚泥が溶出した有機物を酸化して処理水質を 向上させ、さらに微生物フロックに付着している 微細なN。気泡を大気閉放下で除去し沈殿槽4に おける微生物フロックの浮上を防止する。再ばつ 気槽10における有機物の酸化およびNzガスの リチオン酸は硫酸に酸化される。硝化槽2では硝 20 脱気は短時間で終了するので、混合液の滞留時間 は1時間程度で充分である。再ばつ気液は沈殿槽 4で固液分離され、処理水5は放流され汚泥は硝 化槽2へ返送される。

上記還元剤8としてはNa₂S、イオウ粒のほか は中性域が最もよいので、硝化槽2のPHを中性域 25 にイオウの粉末、硫化鉄あるいはその粉末を用い てもよく、脱窒およびジチオン酸の酸化を同様に 効果的に行うことができる。

また脱窒槽3の代りに第3図に示すように脱窒 檜塔13を使用し、イオウ粒または硫化鉄粒の固 ーダg′の存在下により脱窒される。イオウによ 30 定床あるいは流動床にすれば、ポンプ14の押し 込み液流によつて塔内の混合液が攪拌されるの で、機械攪拌あるいはガス攪拌の設備は不要とな る。なお、第3図中15は循環液、16は流量調 節用の弁である。

本発明の方法では脱窒工程でアルカリの生成が 期待できないので、第1図のフローのような硝化 槽2のアルカリ分補給のための脱窒液循環は無駄 であるが、硝化槽2で高濃度のNOsが蓄積して 活性汚泥にとつて有害となる場合には、脱窒液を 脱窒槽3のPHコントローラ用アルカリ剤8とし 40 循環してNO:濃度を低下させることは有効であ

> 次に、本発明の実施例について、脱窒の還元利 としてメタノールおよびエタノールを用いた例と 比較して記載する。実施に際しては第2図のフロ

----(2)

7

8

ーを採用し、脱窒槽に還元剤を注入する方法と充 塡する方法の二通りを行つた。

第1表に処理条件を、第2表に還元剤の使用条 件を、第3表に処理水の水質をそれぞれ示した。 第1表 処理条件(平均値)

廃水処理量………50ℓ/日 水温------25℃ 混合液MLSS------4100~4800mg/ &

処理槽容積 硝化槽……20 € 脱窒槽------20 & 再ばつ気槽………4.ℓ 5 硝化槽、脱室槽のpli······7.0~7.2

第2表 還元剤の使用条件

実施Na.	SATISMO. A B		С	D	E	F	G	
還元剤の 種類	メタノール	エタノール	Na _e S	粒状イオウ	粉末イオ ウ※	粒状硫化 鉄	粉末硫化 鉄※	
供給方法	注入	注入	水に溶解し て注入	充填	水に懸濁 して注入	充填	水に懸濁し て注入	
還元剤の 添加量	60 ml / 日	50nl/日	46g/日	1000g	36g/日	5000g	200g/日	

- 注1) 活性汚泥は下水処理場から採取したものを用い、各実施例につき10日〜40日馴養したのち処 理成績を示すデータを得た。
- 注2) ※粉末イオウ、粉末硫化鉄の直径は0.1㎜以下であり、また粉末を水を懸濁するに際し陰イ オン界面活性剤を添加した。
- 注3) 炭酸ソーダを増殖用炭素源及びpHコントロール用として添加し、pH7.0~7.2とした。

第3表 処理水質(単位189/ℓ)

	人工廃水	処 理 水								
		A	В	С	D	E	F	G		
NHa —N	320	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
NO³ —N	35	<0.5	<0.5	<0, 5	<0.5	<0.5	<12	<1.5		
CODMD	51	35	36	6	7	5	9	12		
S ₂ O ₈ -	280	275	277	Tr	Tr	Tr	Tr	Tr		

注) COD₄₀、S₂O₆~は平均値

第2表および第3表からわかるように、従来の 35 しかしながら実施McF、Gの活性汚泥は沈降性、 ように還元剤としてメタノール、エタノールを用 いた場合、脱窒は良好に行われているが、ジチオ ン酸は酸化されずCODwnの除去率も悪かつた。 一方、イオウおよび硫化鉄を用いた場合には脱窒 もジチオン酸の除去も良好であつた。

なお、硫化鉄を用いた実施版F、Gにおいて NO:-Nが若干残留しているが、これは硫化鉄 が還元剤として利用しずらいか、あるいは馴養期 間(40日)が短かかつたことによると思われる。

- 濃縮性が他の実施例よりはるかに優れていたの で、実施例よりも高濃度のMLSSで運転すること が可能であり、それによってNO。の残留を防止 できると考えられる。
- また第2表に示した実施例の他のメタノールと **4**0 NasS、メタノールと粒状イオウを還元剤として 利用したところ、処理水の水質は第3表のC、 D、Eとほぼ同様の結果となり、S₂O₆2-の除去 に有効であつた。

実施MA~Gにおいて硝化槽のNOxはNO。で あつたが、実施MLE、Gの活性汚泥を用いて NO₂(亜硝酸)を第2表の実施ME、Gの方法で 脱窒させて活性汚泥を増殖したところ、活性汚泥 能力を示した。また実施McE、Gの活性汚泥を用 いて他のポリチオン酸例えばS***、SaO**を酸化 したところ極めて容易に酸化分解されることが判 明した。

嫌気的工程、再ばつ気工程及び沈殿工程をこの順 序で組合わせることによつて生物学的硝化脱密素 プロセスが構成されていたが、本発明方法はこれ に限定されるものではない。

すなわち、イオウ又はイオウ化合物を使用して 15 得られるものである。 行う生物学的脱窒工程で増殖した微生物の共存下 でジチオン酸等の酸化分解処理を行う好気的生物 処理工程とを有するプロセスであるならばどのよ うなものでもよく、脱窒プロセスとしては第1図 に示すような脱窒液循環方式のほかに硝化液循環 20 方式を採用することもできる。また、上配好気的 工程としては硝化工程単独に限らず、BODを酸 化処理する工程を硝化工程の前段に設けたものを 採用することもできる。

ウあるいはイオウ化合物を存在せしめることによ つて、廃水の脱窒と同時にジチオン酸および他の

ポリチオン酸を好気的に酸化分解する能力のある 微生物を増殖し、該微生物を利用して廃水中のジ チオン酸等を好気的工程で酸化分解すると共に、 前記嫌気的工程に炭酸ソーダを添加してPH6.0以 はNOsを脱窒したときと同等のジチオン酸酸化 5 上に保つように構成したものであり、したがつ て、従来方法では除去困難なジチオン酸等を簡便 なプロセス・装置により極めて高い除去率で除去 できるうえ、これまで脱窒に多量に消費されてい たメタノールなどのアルコールも不要となり、イ 上記二つの実施態様においては、好気的工程、 10 オウ等の消費量は嫌気的工程においてNOxを脱 窒処理するに足る量であればよく著しい省エネル 半化が可能となり、炭酸ソーダを脱寂菌の活性維 持及び増殖用とPI調整用に利用することができる うえ、維持管理も容易であるなど、多大の効果が

図面の簡単な脱明

第1図は本発明の基礎実験の要額を示すフロー シート、第2図及び第3図は本発明のそれぞれ異 なる実施態様を示すフロートシートである。

1 ……廃水、2 ……硝化槽、3 ……脱窒槽、4 ······沈殿槽、5······処理水、6······返送污泥、7 ······循環液、8······アルカリ剤、8······選元剤、 9'……炭酸ソーダ、10……再ばつ気槽、11 ……円コントローラ、12……プロワー、13… 以上述べたように本発明は、鎌気的工程にイオ 25 …脱窒塔、14……ポンプ、15……循環液、1 6 ……弁。

第1図

