

EK2390 Project Course in Integrated Circuits for RF and Microwave Technology

Group 2 - Project Presentation

by

Kirtan Premprakash Patel Ram Prakash Padmanabhan

Contents of the Presentation

- Problem Statement
- 2. Theoretical Calculation and Matching
- 3. Design of Small Signal Amplifier
- 4. Microstrip Layout Design
- 5. Laboratory
 - a. Low Noise Amplifier
 - b. Mixer
 - c. Voltage Controlled Oscillator

Problem Statement

Maximizing Gain using Input and Output Matching

KTH Royal Institute of Technology

BJT S-Parameters and Theoretical Maximum

$$S = \begin{bmatrix} 0.6555 \angle 126.9^{\circ} & 0.1142 \angle 7.7^{\circ} \\ 2.011 \angle 22.5^{\circ} & 2.001 \angle -138.1^{\circ} \end{bmatrix}$$

Solving for conjugate matching gives a quadratic equation, hence 2 solutions for maximum gain

$$\Gamma_{S_1} = -0.8029 - j0.9732 \approx 1.26172 - 129.52^{\circ}, \quad \Gamma_{S_2} = -0.5044 - j0.6114 \approx 0.79262 - 129.52^{\circ},$$

$$\Gamma_{L_1} = -0.7482 + j1.6476 \approx 1.80952114.42^{\circ} \quad \Gamma_{L_2} = -0.2285 + j0.5032 \approx 0.55272114.42^{\circ}$$

Cannot be achieved using passive components

Can be achieved using passive components

BJT S-Parameters and Theoretical Maximum

$$S = \begin{bmatrix} 0.6555 \angle 126.9^{\circ} & 0.1142 \angle 7.7^{\circ} \\ 2.011 \angle 22.5^{\circ} & 2.001 \angle -138.1^{\circ} \end{bmatrix}$$

Thus, our solution of reflection coefficient for which we design our matching circuits

$$\Gamma_S = -0.5044 - j0.6114 \approx 0.7926 \angle -129.52^{\circ}, \quad \Gamma_L = -0.2285 + j0.5032 \approx 0.5527 \angle 114.42^{\circ}$$

And the total maximum gain is

KTH Royal Institute of Technology

Design of Matching Circuits: Input Matching

Design of Matching Circuits: Input Matching

$$\overline{\gamma}_c = \overline{\gamma}_1 - \overline{\gamma}_3$$
 $\therefore \overline{\gamma}_c = j2.57$
 $\therefore \overline{z}_c = -j0.39$

open stub length =
$$0.441\lambda - 0.25\lambda$$

= 0.191λ

Design of Matching Circuits: Output Matching

Design of Matching Circuits: Output Matching

$$\overline{\gamma}_c = \overline{\gamma}_1 - \overline{\gamma}_3$$
 $\therefore \overline{\gamma}_c = j^{1.31}$
 $\therefore \overline{z}_c = -j^{0.76}$

open stub length =
$$0.396 \lambda - 0.25\lambda$$

= 0.146λ

Matching: Schematic

Electrical length
$$\beta L = \frac{2\pi}{\lambda} n\lambda = 2\pi \times n \text{ rad} = 360 \times n \text{ deg}$$

Matching : Schematic

9.684 dB at 5 GHz

Impedance Plots

KTH Royal Institute of Technology

KTH Royal Institute of Technology

OIP3 Intermodulation: -81.88 dBm

OIP3 Harmonic: -62.87 dBm

KTH Royal Institute of Technology

Matching: Layout

Electrical length
$$\beta L = \frac{2\pi}{\lambda} n\lambda = 2\pi \times n \text{ rad} = 360 \times n \text{ deg}$$

Matching: Layout

9.618 dB at 4.9 GHz 8.86 at 5 GHz

OIP3 Intermodulation: -82.08 dBm

OIP3 Harmonic: -64.47 dBm

Tapeout

