

数字逻辑设计

Digital Logic Design

秦阳 School of Computer Science csyqin@hit.edu.cn

Unit 5 Multi-Level Gate Circuits NAND and NOR Gates

- 多级门电路(Multi-Level Circuits)
- ■两级门电路的设计
- 多输出电路的设计
- Some Examples (半加器等)

半加器 (Half adder)

功能:对两个1位二进制数执行相加运算

$$\begin{array}{ccc} \mathbf{a_i} & \longrightarrow & \mathbf{B_i} \\ \mathbf{b_i} & \longrightarrow & \mathbf{C_i} \end{array}$$

真值表

ai	b _i	Si	C_{i}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S_i = a_i$$
 b_i
 $C_i = a_i b_i$

$$C_i = a_i b_i$$

$$a_i - s_i$$

$$b_i - c$$

利用单一逻辑门与非门实现半加器

$$\begin{cases} S_{i} = \overline{a_{i}}b_{i} + a_{i}\overline{b_{i}} = \overline{a_{i}}b_{i} + a_{i}\overline{b_{i}} + a_{i}\overline{a_{i}} + b_{i}\overline{b_{i}} \\ = a_{i} (\overline{a_{i}} + \overline{b_{i}}) + b_{i} (\overline{a_{i}} + \overline{b_{i}}) = a_{i} \overline{a_{i}b_{i}} + b_{i} \overline{a_{i}b_{i}} \\ = \overline{a_{i}} \overline{a_{i}\overline{b_{i}}} \overline{b_{i}} \overline{a_{i}\overline{b_{i}}} \\ C_{i} = \overline{a_{i}\overline{b_{i}}} \end{cases}$$

全加器(Full adder)

Example 6

$$\begin{array}{ccc}
a_i & \longrightarrow \\
b_i & \longrightarrow & FA \\
c_{i-1} & \longrightarrow & C_i
\end{array}$$

$\mathbf{a_i}$	b _i (Si	$C_{\mathbf{i}}$	
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

b _i c	$\mathbf{b_{i}c_{i-1}}$ $\mathbf{S_{i}}$						
a_i	00	01	11 1	10			
0	0	1	0	1			
1	1	0	1	0			

. 1	C_{i}		
00	01	11 1	10
0	0	1	0
0	1	1	1)
	00 0 0		

$$\begin{split} S_{i} &= \overline{a}_{i} \overline{b}_{i} c_{i-1} + \overline{a}_{i} b_{i} \ \overline{c}_{i-1} + a_{i} \ \overline{b}_{i} \overline{c}_{i-1} + a_{i} \ b_{i} \ c_{i-1} \\ &= & (\overline{a}_{i} \overline{b}_{i} + a_{i} \ b_{i}) \ c_{i-1} + (\overline{a}_{i} b_{i} + a_{i} \ \overline{b}_{i}) \ \overline{c}_{i-1} \\ &= & (\overline{a}_{i} \ \overline{b}_{i}) \ c_{i-1} + (a_{i} \ \overline{b}_{i}) \ \overline{c}_{i-1} \\ &= & a_{i} \ \overline{b}_{i} \ C_{i-1} \end{split}$$

$$C_{i} = & (a_{i} \ \overline{b}_{i}) \ C_{i-1} + a_{i} b_{i}$$

$$C_i = (a_i \quad b_i) C_{i-1} + a_i b$$

Example 6

• solution 1 : $\begin{cases} S_i = a_i & b_i & C_{i-1} \\ C_i = (a_i & b_i) & C_{i-1} + a_i b_i \end{cases}$

$$\begin{array}{ccc}
a_i & \longrightarrow & \\
b_i & \longrightarrow & FA \\
c_{i-1} & \longrightarrow & C
\end{array}$$

solution 2:

$$S_i = a_i \qquad b_i \qquad C_{i-1}$$

$$C_i = (a_i \quad b_i) C_{i-1} + a_i b_i$$

$$\begin{cases} S_i = a_i & b_i \\ C_i = a_i b_i \end{cases}$$

全加器(Full adder)

典型芯片

74LS82: 2-bit adder

74LS283 : 4-bit adder

二进制数 A ₃ A ₂ A ₁ A ₀	余三码 S ₃ S ₂ S ₁ S ₀	二进制数 A ₃ A ₂ A ₁ A ₀	余三码 S ₃ S ₂ S ₁ S ₀
0 0 0 0	0 0 1 1	1000	1011
0 0 0 1	0100	1001	1100
0 0 1 0	0101	1010	×
0 0 1 1	0 1 1 0	1011	×
0 1 0 0	0111	1100	×
0 1 0 1	1 0 0 0	1101	×
0 1 1 0	1001	1110	×
0 1 1 1	1010	1111	×

应用——余3码产生器

A₃A₂A₁A₀: 输入 8421 BCD码

S₃S₂S₁S₀: 输出余3码

S = A + 0011

Example 7

4位并行加法器

 $S_i = a_i \qquad b_i \qquad C_{i-1}$

 $C_i=(a_i b_i) C_{i-1}+a_ib_i$

(1)串行进位

缺点:串行进位,运算速度慢

优点:线路简单

· 关键:进位形成时间

解决方案:改串行进位为并行进位 年

Example 7

$$A = A_3 A_2 A_1 A_0 = 1011$$

 $B = B_3 B_2 B_1 B_0 = 1110$

$$C_i = (A_i B_i) C_{i-1} + A_i B_i$$

$$(2)$$
 超前进位 A $C_i=(A_i \quad B_i) C_{i-1} + A_i B_i$ $C_i=P_iC_{i-1}+G_i$ ——进位迭代公式 $P_i=A_i \quad B_i$ $G_i=A_i B_i$

$$C_0 = P_0 C_{-1} + G_0$$

$$C_1 = P_1 C_0 + G_1 = P_1 P_0 C_{-1} + P_1 G_0 + G_1$$

$$C_2 = P_2 C_1 + G_2 = P_2 P_1 P_0 C_{-1} + P_2 P_1 G_0 + P_2 G_1 + G_2$$

$$C_3 = P_3 C_2 + G_3 = P_3 P_2 P_1 P_0 C_{-1} + P_3 P_2 P_1 G_0 + P_3 P_2 G_1 + P_3 G_2 + G_3$$

(2) 超前进位

$$P_{i} = A_{i} \quad B_{i} \quad G_{i} = A_{i}B_{i}$$

$$C_{0} = P_{0}C_{-1} + G_{0}$$

$$C_{1} = P_{1}C_{0} + G_{1} = P_{1}P_{0}C_{-1} + P_{1}G_{0} + G_{1}$$

$$C_{2} = P_{2}C_{1} + G_{2} = P_{2}P_{1}P_{0}C_{-1} + P_{2}P_{1}G_{0} + P_{2}G_{1} + G_{2}$$

$$C_{3} = P_{3}C_{2} + G_{3} = P_{3}P_{2}P_{1}P_{0}C_{-1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}G_{1} + P_{3}G_{2} + G_{3}$$

ALU

M=0 , addition

M=1 , logic operation

全减器 (Binary Full Subtracter)

$$\begin{array}{ccc}
a_i & \longrightarrow & & \\
b_i & \longrightarrow & & & \\
c_{i-1} & \longrightarrow & & & \\
\end{array}$$

A=
$$a_3 a_2 a_1 a_0 = 1110$$

B = $b_3 b_2 b_1 b_0 = 1011$

a _i	b _i	C _{i-1}	D _i	Ci
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Example 8

真	值	表
---	---	---

a _i	b _i	C _{i-1}	D _i	Ci
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$\begin{cases}
D_{i} = a_{i} & b_{i} & C_{i-1} \\
C_{i} = (C_{i-1} & b_{i}) \overline{a}_{i} + C_{i-1}b_{i}
\end{cases}$$

Example 9

三态门 (Three-State Buffers)

三态——

- 0
- **1**
- Z: 高阻态

$$A \longrightarrow C \equiv A \longrightarrow C$$

三态门(恒等)

B:使能端,高电平有效

- 包括三态恒等门、三态非门、三态与非门等 , 一商品名称为缓冲器(驱动门)。
- 用途之一: 可用来增强输出驱动能力

真值表

В	Α	C
0	0	Z
0	1	Z
1	0	0
1	1	1

三态门 (Three-State Buffers)

В	Α	C	В	Α	C	В	Α	C	В	Α	C
0	0	Z Z 0 1	0	0	Z	0	0	0	0	0	1
0	1	Z	0	1	Z	0	1	1	0	1	0
1	0	0	1	0	1	1	0	Z	1	0	Z
1	1	1	1	1	0	1	1	Z	1	1	Z
		•									

理解三态门——

- 高阻态:电阻很大,相当于开路
- ■高阻态相当于该门同与它连接的电路处于断开的状态。(实际电路中你不可能去断开它)

		S_2		
<i>S</i> ₁	Х	0	1	Z
Χ	Х	Χ	X	X
0	X	0	X	0
1	X	X	1	1
Z	X	0	1	Z

应用

■ 三态总线

■ 管脚输入输出可编程

应用

■ 双向数据总线

理解三态门——

内存里的一个存储单元

- 读写控制线处于低电位时,可以写入;
- 读写控制线处于高电位时,可以读出
- 但是不读不写,就要用高阻态

Example

 $X=X_3X_2X_1X_0$ 为8421BCD码,设计一个MOD 5选择电路,要求选择那些能被5整除的数输出。

X ₃	X	X ₁	X ₀	F	$X_3 X_2 X_1 X_0$	F
0	0	0	0	1	1 0 0 0	0
0	0	0	1	0	1 0 0 1	0
0	0	1	0	0	1 0 1 0	×
0	0	1	1	0	1 0 1 1	×
0	1	0	0	0	1 1 0 0	×
0	1	0	1	1	1 1 0 1	×
0	1	1	0	0	1 1 1 0	×
0	1	1	1	0	1 1 1 1	×

化简

$$F = \overline{X_{2}\overline{X_{1}}X_{0} + \overline{X_{3}}\overline{X_{2}}\overline{X_{1}}\overline{X_{0}}}$$

$$= (\overline{X_{2}\overline{X_{1}}X_{0}}) (\overline{\overline{X}_{3}\overline{X_{2}}\overline{X_{1}}\overline{X_{0}}})$$

逻辑图

$$\overline{F} = (\overline{X_2}\overline{X_1}X_0) (\overline{X_3}\overline{X_2}\overline{X_1}\overline{X_0})$$

OCI (Open Collector Gate)

- 几个OC门的输出端可以直接互连 使用时必须加负载电阻

$$\mathbf{F} = \overline{\mathbf{A}} \overline{\mathbf{B}} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{F}$$

OCi (Open Collector Gate)

$$F=F_1 \cdot F_2 = \overline{A_1B_1C_1} \cdot \overline{A_2B_2C_2}$$

Unit 5 Multi-Level Gate Circuits

- ■多级门电路
- ■两级门电路的设计
- 多输出电路的设计
- Some Examples