《算法设计与分析》

第四章 贪心方法

马丙鹏 2023年10月16日

第四章 贪心方法

- 4.1 一般方法
- 4.2 背包问题
- 4.3 带有限期的作业排序
- 4.4 最优归并模式
- 4.5 最小生成树
- 4.6 单源点最短路径

- 1. 问题的描述
 - □设G=(V, E)是一个无向连通图。
 - 口子图:
 - ▶从原图中删去一些点或删去一些线或既删去一些 点又删去一些线,剩下的部分(当然必须仍然是图)。
 - □生成子图:
 - ▶同"子图",但只允许删去线,不允许删去点。
 - 口生成树:
 - →如果G的生成子图T=(V, E')是一棵树,则称T是G 的一棵生成树。
 - □最小生成树:
 - >G中具有最小成本的生成树。 中国科学院大学 University of Chinese Academy of Sciences 3

- 2. 贪心策略
 - 口实际应用:
 - ▶在设计通信网络时,用图的顶点表示城市,用边的权表示建立城市和城市之间的通信线路所需的费用,则最小生成树就给出了建立通信网络的最经济的方案

- 2. 贪心策略
 - □度量标准:
 - ➤选择能使迄今为止所计入的边的成本和有最小增加的那条边。
 - ▶Prim算法
 - >Kruskal算法

■ 3. Prim算法

- □策略:使得迄今所选择的边的集合A构成一棵树;对将要计入到A中的下一条边(u, v),应是E中一条当前不在A中且使得A∪{(u, v)}也是一棵树的最小成本边。
 - ▶设X为已部分构建的最小生成树的顶点集合
 - ▶选取满足条件u∈X,v∈V-X,且成本最小的边, 并将顶点v添加到X中。这个过程一直进行到X=V 时为止。

■ 3. Prim算法

□策略:使得迄今所选择的边的集合A构成一棵树;对将要计入到A中的下一条边(u, v),应是E中一条当前不在A中且使得A∪{(u, v)}也是一棵树的最小成本边。

(6, 4)

20

1 2 3 次 大学 Universit 6 Chinese Academy of Sciences 7

■ 3. Prim算法

□策略:使得迄今所选择的边的集合A构成一棵树;对将要计入到A中的下一条边(u, v),应是E中一条当前不在A中且使得A∪{(u, v)}也是一棵树的最小成本边。

$$>V(T_P) = \{1, 2, 3, 4, 5, 6\}$$

$$\triangleright E(T_P) = \{ (1, 2), (2, 6), (3, 5), (4, 6), (3, 6) \}$$
 中国科学院大学

算法4.7 Prim最小生成树算法

procedure PRIM(E, COST, n, T, mincost)

//E是G的边集。COST(n, n)是n结点图G的成本邻接矩阵,矩阵元素COST(i, \mathbf{j})是一个正实数,如果不存在边(\mathbf{i} , \mathbf{j}),则为+ ∞ 。计算一棵最小生成树并把它 作为一个集合存放到数组T(1:n-1, 2)中(T(i, 1), T(i, 2))是最小成本生成树的一 条边。最小成本生成树的总成本最后赋给mincost//

- real COST(n, n), mincost
- integer NEAR(n), n, i, k, l, T(1:n-1, 2)
- (k, l)←具有最小成本的边
- $mincost \leftarrow COST(k, l)$
- $(T(1, 1), T(1, 2)) \leftarrow (k, l)$
- for i←1 to n do //将NEAR置初值//
- if COST(i, l) <COST(i, k) then NEAR(i)←l
- 8 else NEAR(i) \leftarrow k
- endif
- **10** repeat
- 11 $NEAR(k) \leftarrow NEAR(l) \leftarrow 0$


```
for i←2 to n-1 do //找T的其余n-2条边//
12
           设j是NEAR(j)≠0 且COST(j, NEAR(j))最小的下标
13
14
            (T(i, 1), T(i, 2)) \leftarrow (j, NEAR(j))
15
           mincost \leftarrow mincost + COST(j, NEAR(j))
16
           NEAR(j)\leftarrow 0
           for k←1 to n do //修改NEAR//
17
              if NEAR(k)\neq 0 and COST(k, NEAR(k))>COST(k, j)
18
19
                  then NEAR(k)←j
20
               endif
21
           repeat
22
        repeat
23
        if mincost>∞ then print('no spanning tree') endif
24
     end PRIM
```


■ 3. Prim算法

i	1	2	3	4	5	6
NEAR	0	0	2	1	2	2
COST	0	0	50	30	40	25
NEAR	0	0	2	1	2	0
NEAR	0	0	6	6	2	0
COST	0	0	15	20	40	0
NEAR	0	0	0	6	2	0
NEAR	0	0	0	6	3	0
COST	0	0	0	20	35	0
NEAR	0	0	0	0	3	0

■ 3. Prim算法

- □计算复杂性:
 - ▶第3行花费Θ(e)(e=|E|)时间,
 - ▶第4行花费Θ(1)时间;
 - >第6-9行的循环花费Θ(n)时间;
 - >第12行和第17-21行的循环分别要求Θ(n)时间,因此第12-21行循环要花费 $Θ(n^2)$ 时间。
 - \rightarrow 所以PRIM算法具有 $\Theta(n^2)$ 的时间复杂度

■ 3. Prim算法

- □另一种PRIM算法
 - ▶最小生成树中包含了与每个结点v相关的一条最小 成本边。

证明略。

- ▶方法:
 - ✓从一棵包含任何一个随意指定的结点而没有边的树开始这一算法,
 - ✓然后再逐条增加边。

■ 4. Kruskal算法

□(连通)图的边按成本的非降次序排列,下一条计入生成树T中的边是还没有计入的边中具有最小成本、且

和T中现有的边不会构成环路的边。

1	10 2 50
30	45 40 35 3
4	25/55/15
	20 6

边	成本
(1,2)	10
(3, 6)	15
(4, 6)	20
(2, 6)	25
(1, 4)	30
(3, 5)	35
(2, 5)	40
(1, 5)	45
(2, 3)	50
(5, 6)	55

■ 4. Kruskal算法

边	成本
(1, 2)	10
(3, 6)	15
(4, 6)	20
(2, 6)	25
(1, 4)	30
(3, 5)	35
(2, 5)	40
(1, 5)	45
(2, 3)	50
(5, 6)	55

■ 4. Kruskal算法

边	成本	
(1, 2)	10	
(3, 6)	15	4
(4, 6)	20	6
(2, 6)	25	
(1, 4)	30	1 10 2
(3, 5)	35	
(2, 5)	40	35 3
(1, 5)	45	25/5/
(2, 3)	50	4 15
(5, 6)	55	20 6

$$ightharpoonup V(T_K) = \{1, 2, 3, 4, 5, 6\}$$

$$ightharpoonup E(T_K) = \{ (1, 2), (2, 6), (3, 5), (4, 6), (3, 6) \}$$
 中国科学院大学

University of Chinese Academy of Sciences 6

■ 4. Kruskal算法

□Kruskal算法的概略描述

```
算法4.8 Kruskal算法的概略描述
```

```
    T←空
    while T的边少于n-1 do
    从E中选取一条最小成本的边(v, w)
    从E中删除(v, w)
    if (v, w)在T中不生成环
    then 将(v, w)加入到T中
    else 舍弃(v, w)
    endif
    repeat
```


算法4.9 Kruskal算法

procedure KRUSKAL(E, COST, n, T, mincost)

```
real mincost, COST(1:n, 1:n);
integer PARENT(1:n), T(1:n-1, 2), n;
以边成本为元素构造一个min堆
PARENT← -1 //每个结点都在不同的集合中//
i←mincost←0
```

//G有n个结点,E是G的边集。 COST(u, v)是边(u, v)的成本。 T是最小成本生成树的边集, mincost是它的成本//

```
while i<n-1 and 堆非空 do
从堆中删去最小成本边(u, v)并重新构造堆
j←FIND(u); k←FIND(v)
if(j≠k) then i←i+1
T(i, 1) ←u; T(i, 2) ←v
mincost←mincost + COST(u, v)
call UNION(j, k)
endif
repeat
```

if i≠n-1 then print('no spanning tree') endif

return end KRUSKAL

■ 4. Kruskal算法

口注:

- ▶FIND(i):查找含有元素i的树根,
- ➤UNION(i, j):使用加权规则合并根为i和j的两个树
- ▶边集以min-堆的形式保存,一条当前最小成本边可以在O(loge)的时间内找到;
- ▶算法的计算时间是O(eloge)。

■ 5. 破圈法

□任取一圈,去掉圈中最长边,直到无圈。

最小树长为 C(T)=4+3+5+2+1=15。

■ 5. 破圈法

□任取一圈,去掉圈中最长边,直到无圈。

■ 5. 破圈法

□任取一圈,去掉圈中最长边,直到无圈。

■ 5. 破圈法

□任取一圈,去掉圈中最长边,直到无圈。

第四章 贪心方法

- 4.1 一般方法
- 4.2 背包问题
- 4.3 带有限期的作业排序
- 4.4 最优归并模式
- 4.5 最小生成树
- 4.6 单源点最短路径

- ■1. 问题描述
 - □最短路径问题
 - ▶单源点最短路径问题
 - >每对结点之间的路径问题
 - ▶特定线路下的最短路径问题等
 - □单源点最短路径问题
 - \triangleright 已知一个n结点有向图G=(V, E)和边的权函数c(e),求由G中某指定结点 v_0 到其它各结点的最短路径。
 - ▶路径长度:路径上所有边的权值之和。
 - ▶最短路径:具有最小长度的路径。
 - ▶假定边的权值为正。

■1. 问题描述

 \square 例4.10 如图所示。设 v_0 是起始点,求 v_0 到其它各结点的最短路径。

叶江	以汉
$(1) v_0 v_2$	10
$(2) v_0 v_2 v_3$	25
$(3) v_0 v_0 v_0 v_1$	45

败亿

 $(4) v_0 v_4$ 45

>注: 路径按照长度的非降次序给出

- 2. 贪心策略求解
 - □度量标准
 - >度量标准的选择:
 - ✓逐条构造最短路径,可以使用迄今已生成的所有路径长度之和作为度量,
 - ✓——为使之达到最小,其中任意一条路径都应 具有最小长度。
 - 》假定已经构造了i条最短路径,则下一条要构造的 路径应是下一条最短的路径。
 - ▶处理规则:
 - ✓按照路径长度的非降次序依次生成从结点v₀到 其它各结点的最短路径。 中国科学院大学

■ 2. 贪心策略求解 □度量标准 ➤例

问题:如何对尚未生成的路 径长度进行排序,以确定其 中最短者?

路径	长度
$(1) v_0 v_2$	10
$(2) v_0 v_2 v_3$	25
$(3) v_0 v_2 v_3 v_1$	45
$(4) v_0 v_4$	45

- 2. 贪心策略求解
 - □贪心算法
 - \rightarrow 设S是已经生成了最短路径的结点集合(包括 v_0)
 - ▶对于当前不在S中的结点w,记DIST(w)是从v₀开始,只经过S中的结点而在w结束的那条最短路径的长度。

▶则有,

■ 2. 贪心策略求解

- □贪心算法
 - (1) 如果下一条最短路径是到结点u,则这条路径是从结点 v_0 出发在u处终止,且只经过那些在S中的结点,即由 v_0 至u的这条最短路径上的所有中间结点都是S中的结点: $v_0, s_1, s_2, ..., s_{m-1}, u$

↑ 均在S中

➤证明: 设w是这条路径上的任意中间结点,则从v₀到u的路径也包含了一条从v₀到w的路径,且其长度小于从v₀到u的路径长度。

 $v_0, s_1, s_2, ..., w, ..., s_{m-1}, u$

- 2. 贪心策略求解
 - □贪心算法
 - ▶根据生成规则:
 - ✓最短路径是按照路径长度的非降次序生成的, 因此从v₀到w的最短路径应该已经生成。
 - ✓从而w也应该在S中。
 - ▶故,不存在不在S中的中间结点。
 - (2) 所生成的下一条路径的终点u必定是所有不在S内的结点中且具有最小距离DIST(u)的结点。

- 2. 贪心策略求解
 - □贪心算法
 - (3) 如果选出了这样结点u并生成了从v₀到u的最短路径之后,结点u将成为S中的一个成员。 此时,那些从v₀出发,只经过S中的结点并且在S外的结点w处结束的最短路径可能会减少——DIST(w)的值变小:
 - ➤如果这样的路径的长度发生了改变,则这些路径 必定是一条从v₀开始,经过u然后到w的更短的路 径所致。

- 2. 贪心策略求解
 - □贪心算法
 - ▶根据DIST(w)的定义,它所表示的 v_0 至w的最短路 径上的所有中间结点都在S中;
 - >故只考虑<u, w>∈E和<u, w> ∉E的情况
 - ▶对于从v₀至w,且经过最后一个中间结点为u的最短路径,有

DIST(w) = DIST(u) + c(u, w)

▶随着u的加入,DIST(w)调整为

DIST(w) = min(DIST(w), DIST(u) + c(u, w))

算法4.10 生成最短路径的贪心算法

procedure SHORTEST-PATHS(v, COST, DIST, n)

```
boolean S(1:n);
real COST(1:n, 1:n), DIST(1:n)
integer u, v, n, num, i, w
for i←1 to n do //将集合S初始化为空//
S(i) ←0; DIST(i) ←COST(v, i)
repeat
```

//G是一个n结点有向图,它由 其成本邻接矩阵COST(n, n)表 示,DIST(j)被置以结点v到结 点j的最短路径长度,这里 1≤j≤n。DIST(v)被置成零//

 $S(v) \leftarrow 1$; DIST(v) $\leftarrow 0$ //结点v计入S//

```
for num←2 to n-1 do //确定由结点v出发的n-1条路//
选取结点u,它使得DIST(u)= min {DIST(w)}
S(u) ←1 //结点u计入S//
for 所有S(w)=0的结点w do //修改DIST(w)//
DIST(w) = min(DIST(w), DIST(u) + COST(u, w))
repeat
```

repeat

- 2. 贪心策略求解
 - □计算时间
 - ▶算法4.10的计算时间是: O(n²)
 - (1) for $i \leftarrow 1$ to n do $S(i) \leftarrow 0; DIST(i) \leftarrow COST(v,i)$ repeat
 - (2) for num \leftarrow 2 to n-1 do O(n-2) 选取结点u,它使得DIST(u) = $\min_{S(w)=0} \{DIST(w)\}$ O(n) O(n) O(n) for 所有S(w) = 0的结点w do O(n) DIST(w) = $\min(DIST(w), DIST(u) + COST(u, w))$

repeat repeat

- 2. 贪心策略求解
 - □计算时间
 - ▶最短路径算法的时间复杂度
 - ✓由于任何一条边都有可能是最短路径中的边, 所以任何最短路径算法都必须至少检查图中的 每条边一次,所以这样的算法的最小时间是 O(e)。
 - ✓由于用邻接矩阵表示图,要确定哪些边在图中 正好需要O(n²)时间,因此任何使用这种表示 法的最短路径算法必定花费O(n²)时间。
 - ✓算法SHORTEST-PATHS在常因子范围内是最优的。

例4.11 求下图中从v₁出发到其余各结点的最短路径

图的成本邻接矩阵:

迭代	选取的 结点		S				DIST	-		
	结点			(1)	(2)	(3)	(4)	(5)	(6)	(7)
置初值	_	1		0	20	50	30	+∞	+∞	+∞
					,	1/				
				1		17				

迭代	选取的 结点	S	DIST (1) (2) (3) (4) (5) (6) (7)
置初值	_	1	$0 20 50 30 +\infty +\infty +\infty$
1	2	1, 2	$0 (20) 45 \downarrow 30 +\infty 90 \downarrow +\infty$
	2	0 v ₂ 50 40	70 V ₃ 50 V ₆ 50 V ₇ 25 V ₅ 70

DIST(6)=min(DIST(6), DIST(2)+C(2, 6))
=min(
$$+\infty$$
, 20+70)
=90

迭代	选取的 结点	S				DIST	1		
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)
置初值	<u> </u>	1	0	20	50	30	$+\infty$	+∞	<u></u> +∞
1	2	1, 2	0	20	45	30	$+\infty$	90	$+\infty$
2	4	1, 2 1, 2, 4	0	20	45	(30)	85	90	$+\infty$
							*		

DIST(5)=min(DIST(5), DIST(4)+C(4,5))
=min(
$$+\infty$$
, 30+55)
=85

迭代	选取的 结点	S				DIST	1		
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)
置初值	_	1	0	20	50	30	+∞	$+\infty$	$+\infty$
1	2	1, 2	0	20	45	30	$+\infty$	90	$+\infty$
2	4	1, 2, 4	0	20	45	30	85	90	$+\infty$
3	3	1, 2, 4, 3	0	20	(45)	30	70	90	$+\infty$
					A	,	, T		

DIST(5)=min(DIST(5), DIST(3)+C(3, 5)) =min(85, 45+25) =70

迭代	选取的	S				DIST			
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)
置初值	_	1	0	20	50	30	$+\infty$	$+\infty$	+∞
1	2	1, 2	0	20	45	30	$+\infty$	90	$+\infty$
2	4	1, 2, 4	0	20	45	30	85	90	$+\infty$
3	3	1, 2, 4, 3	0	20	45	30	70	90	+∞
4	5	1, 2, 4, 3, 5	0	20	45	30	(70)	80	140
									•
						1 100		1	

DIST(6)=min(DIST(6), DIST(5)+C(5, 6)) =min(90, 70+10) =80 DIST(7)=min(DIST(7), DIST(5)+C(5, 7)) =min($+\infty$, 70+70) =140

迭代	选取的	S				DIST			
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)
置初值	_	1	0	20	50	30	$+\infty$	+∞	+∞
1	2	1, 2	0	20	45	30	$+\infty$	90	$+\infty$
2	4	1, 2, 4	0	20	45	30	85	90	$+\infty$
3	3	1, 2, 4, 3	0	20	45	30	70	90	$+\infty$
4	5	1, 2, 4, 3, 5	0	20	45	30	70	80	140
5	6	1,2,4, 3, 5, 6	0	20	45	30	70	80	130

迭代	选取的	S				DIST	-		
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)
置初值	_	1	0	20	50	30	$+\infty$	$+\infty$	$+\infty$
1	2	1, 2	0	20	45	30	$+\infty$	90	$+\infty$
2	4	1, 2, 4	0	20	45	30	85	90	$+\infty$
3	3	1, 2, 4, 3	0	20	45	30	70	90	$+\infty$
4	55	1, 2, 4, 3, 5	0	_20_	_45_	30_	70_	80	140
5	6	1,2, 4, 3, 5, 6	0	20	45	30	70	80	130

算法的执行在有n-1个结点加入到S中后终止,此时求出了 v_0 至其它各结点的最短路径。

- 2. 贪心策略求解
 - □如何求出所有这些最短路径?
 - ▶提示: 如果DIST(w)是通过计算 DIST(w) = min(DIST(w), DIST(u) + COST(u, w)) 且因为DIST(u) + COST(u, w)较小而得来的,问w 之前的那个节点应该是谁?
 - ▶应该是u
 - ➤u之前又是哪个节点呢?

■ 2. 贪心策略求解

口下图中的权 c_{ij} 表示 v_i 到 v_j 的距离(费用、时间),从 v_1 修一条公路或架设一条高压线到 v_7 ,如何选择一条路线使距离最短。

■ 2. 贪心策略求解

 v_1 到 v_7 的最短路为: $p_{17} = \{v_1, v_2, v_3, v_5, v_7\}$,最短路长为 $L_{17} = 29$

口下图中的权 c_{ij} 表示 v_i 到 v_j 的距离(费用、时间),从 v_1 修一条公路或架设一条高压线到 v_7 ,如何选择一条路线使距离是短。

- 2. 贪心策略求解
 - □求图所示レ₁到各点的最短路及最短距离

迭代	选取的 结点	S	DIST							
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
置初值	_	1	0	4	5	2	+∞	+∞	+∞	+∞

迭代	选取的 结点	S	DIST								
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7) (8)		
置初值	_	1	0	4	5	2	+∞	+∞	+∞ +∞		
1	4	1, 4	0	4	3	(2)	$+\infty$	$+\infty$	$+\infty +\infty$ $10 \downarrow +\infty$		
					,	N_D			•		

迭代	选取的	S	DIST							
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
置初值	_	1	0	4	5	2	+∞	+∞	+∞	+∞
1	4	1, 4	0	4	3	2	$+\infty$	$+\infty$	10	$+\infty$
2	3	1, 4, 3	0	4	(3)	2	6	12	6	, +∞

迭代	选取的	S		DIST								
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
置初值	_	1	0	4	5		+∞					
1	4	1, 4	0	4	3	2	$+\infty$	$+\infty$	10	$+\infty$		
2	3	1, 4, 3	0	4	3	2	6	12	6	$+\infty$		
		1, 4, 3, 2	0 !	4	3	2	6	12	6	$+\infty$		

迭代	选取的	S				DIST	.			
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
置初值	_	1	0	4	5	2	+∞	+∞	+∞	$+\infty$
1	4	1, 4	0	4	3	2	$+\infty$	$+\infty$	10	$+\infty$
2	3	1, 4, 3	0	4	3	2	6	12	6	$+\infty$
3	2	1, 4, 3, 2	0	4	3	2	6	12	6	$+\infty$
4	5	1, 4, 3, 2,5	0	4	3	2	6)	8	6	18 ↓

迭代	选取的	S	DIST							
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
置初值	_	1	0	4	5	2	+∞	+∞	+∞	+∞
1	4	1, 4	0	4	3	2	$+\infty$	$+\infty$	10	$+\infty$
2	3	1, 4, 3	0	4	3	2	6	12	6	$+\infty$
3	2	1, 4, 3, 2	0	4	3	2	6	12	6	$+\infty$
4	5	1, 4, 3, 2,5	0	4	3	2	6	8	6	18
5	7	1,4,3,2,5,7	0	4	3	2	6	8	6)	18

迭代	选取的	S	DIST							
	结点		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
置初值	_	1	0	4	5	2	+∞	+∞	+∞	+∞
1	4	1, 4	0	4	3	2	$+\infty$	$+\infty$	10	$+\infty$
2	3	1, 4, 3	0	4	3	2	6	12	6	$+\infty$
3	2	1, 4, 3, 2	0	4	3	2	6	12	6	$+\infty$
4	5	1, 4, 3, 2,5	0	4	3	2	6	8	6	18
5	7	1,4,3,2,5,7	0	4	3	2	6	8	6	18
6	6	1,4,3,2,5,7,6	0	4	3	2	6	8	6	18

- 2. 贪心策略求解
 - □求图所示レ₁到各点的最短路及最短距离

■ 3. 最短路径生成树

- □对于无向连通图G,由结点v到其余各结点的最短路 径的边构成G的一棵生成树,称为最短路径生成树。
- 口注:不同起点v的生成树可能不同。

原始图

由结点1出发的最短路径生成树

最小成本生成树

- 4. 贪心策略的基本要素
 - □贪心法总是作出在当前看来最好的选择。也就是说贪心法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。
 - □它期望通过所作的局部最优选择产生出一个全局最优 解。
 - □虽然贪心法不能对所有问题都得到整体最优解,但对 许多问题它能产生整体最优解。如单源最短路经问题, 最小生成树问题等。
 - □而在一些情况下,即使贪心算法不能得到整体最优解, 其最终结果却是最优解的很好近似。

作业-课后练习13

- ■问题描述
 - □利用Prim算法,求下面无向图的最小生成树。
 - □利用Kruskal算法,求下面无向图的最小生成树。
 - □利用破圈法,求下面无向图的最小生成树。

作业-课后练习14

■问题描述

- □在下面的有向图中,利用算法SHORTEST-PATHS获取按照长度非降次序排列的由结点到其余结点的最短路径长度。
- □将结点s作为源点,计算其到其余结点的最短路径长 度。
- □将结点z作为源点,计算其到其余结点的最短路径长度。

作业-算法实现3

■删数问题

- □通过键盘输入一个高精度的正整数n(n的有效位数 ≤240),去掉其中任意s个数字后,剩下的数字按原左 右次序将组成一个新的正整数。编程对给定的n和s,寻找一种方案,使得剩下的数字组成的新数最小。
- 口输入: n,s
- □输出:最后剩下的最小数
- □输入示例

178543

4

13

□输出示例

作业-算法实现3

- ■删数问题
 - □要求
 - ▶给出算法的说明性文档
 - ▶用C语言(C++, Matlab)编写该算法的程序
 - ▶上载到课程网站上

End

