(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

553102

(19) Weltorganisation für geistiges Eigentum Internationales Büro

TOUR COURSE COME THE SENT CONTRACT TO BE SOMETHING TO SENT CONTRACT OF SENTENCES.

(43) Internationales Veröffentlichungsdatum 28. Oktober 2004 (28.10.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/092442 A1

- (51) Internationale Patentklassifikation⁷: 16/04
- C23C 16/44,
- (21) Internationales Aktenzeichen:
- PCT/DE2004/000748
- (22) Internationales Anmeldedatum:
 - 7. April 2004 (07.04.2004)
- (25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 18 440.6

15. April 2003 (15.04.2003) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): HAHN-MEITNER-INSTITUT BERLIN GMBH [DE/DE]; Glienicker Strasse 100, 14109 Berlin (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SADEWASSER, Sascha [DE/DE]; Czeminskistrasse 7, 10829 Berlin (DE). GLATZEL, Thilo [DE/DE]; Königsweg 230 A, 14129 Berlin (DE). LUX-STEINER, Martha, Christina [CH/DE]; Wolzogenstrasse 8c, 14163 Berlin (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI,

[Fortsetzung auf der nächsten Seite]

(54) Title: ELECTROCHEMICAL METHOD FOR THE DIRECT NANOSTRUCTURED DEPOSITION OF MATERIAL ONTO A SUBSTRATE, AND SEMICONDUCTOR COMPONENT PRODUCED ACCORDING TO SAID METHOD

(54) Bezeichnung: ELEKTROCHEMISCHES VERFAHREN ZUR DIREKTEN NANOSTRUKTURIERBAREN MATERIAL-ABSCHEIDUNG AUF EINEM SUBSTRAT UND MIT DEM VERFAHREN HERGESTELLTES HALBLEITERBAUELEMENT

- (57) Abstract: Previously known methods for depositing a single material component especially in the nanometer range use an electric field between the probe tip of a microscope and the substrate, into which a precursor gas that is provided with a chemical compound containing said material component is introduced. The chemical compound is split under the effect of the field and the material component is released, said material component subsequently depositing on the substrate in the narrowly limited area located below the probe tip. The inventive method simultaneously or sequentially uses several precursor gases (PG), each of which is provided with a different chemical compound (DMCd, DETe) containing a different material component (Cd, Te) in a gas mixture having an adjustable mixing ratio. The material components (Cd, Te) eliminated from the different, split chemical compounds (DMCd, DETe) form a common chemical compound (CdTe) according to the selected mixing ratio, said common chemical compound (CdTe) being deposited on the substrate (S), allowing compound materials, especially also compound semiconductors, containing different material components to be deposited in a parameter-controlled manner at modifiable concentrations. Advantageously, a semiconductor component comprising photodiodes or light-emitting diodes can be composed of nanopoints which are provided with different spectral band gaps and are deposited in a nanostructured manner.
- (57) Zusammenfassung: Die bekannten Verfahren zur Abscheidung einer einzigen Materialkomponente insbesondere im Nanobereich arbeiten mit einem elektrischen Feld zwischen der Sondenspitze eines Mikroskops und dem Substrat, in das ein Precursorgas mit einer die Materialkomponente enthaltenden chemischen Verbindung eingebracht wird. Unter Feldeinwirkung wird die chemische Verbindung aufgespalten und die Materialkomponente freigegeben, die sich dann im eng begrenzten Gebiet unter der Sondenspitze auf dem Substrat abscheidet. Bei dem erfindungsgemäßen Verfahren werden simultan oder sequenziell mehrere Precursorgase (PG) mit jeweils einer anderen, eine andere Materialkomponente (Cd, Te) enthaltenden chemischen Verbindung (DMCd, DETe) in einem Gasgemisch mit einem einstellbaren Mischungsverhältnis eingesetzt, wobei die aus den aufgespaltenen, verschiedenen chemischen

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT,

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\u00fcr \u00e4nderungen der Anspr\u00fcche geltenden
 Frist; Ver\u00f6ffentlichung wird wiederholt, falls \u00e4nderungen
 eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

1

Elektrochemisches Verfahren zur direkten nanostrukturierbaren Materialabscheidung auf einem Substrat und mit dem Verfahren hergestelltes Halbleiterbauelement.

5

10

15

Beschreibung

Die Erfindung bezieht sich auf ein elektrochemisches Verfahren zur direkten nanostrukturierbaren Materialabscheidung auf einem Substrat durch Abscheidung zumindest einer Materialkomponente aus einer druck- und temperaturregelbaren Atmosphäre mit zumindest einem die Materialkomponente in einer Precursorverbindung enthaltenden Precursorgas unter dem Einfluss eines lokal eng begrenzten elektrischen Feldes, das spannungs- und zeitabhängig zwischen der bewegbaren, elektrisch leitenden Sondenspitze eines berührungsfrei abtastenden Mikroskops und dem Substrat aufgebaut ist, wobei die Precursorverbindung oberhalb eines vorgegebenen Spannungsschwellwertes aufgespalten und die herausgetrennte Materialkomponente im Bereich der Sondenspitze auf dem Substrat abgelagert wird, und auf ein mit dem Verfahren hergestelltes Halbleiterbauelement.

20

25

30

Durch die Verwendung von Rastersondenmikroskopen, beispielsweise in einem Rastertunnelmikroskop (STM) oder Rasterkraftmikroskop (SFM oder AFM), kann die gezielte Manipulation von Materie auf der atomaren Skala realisiert werden, was insbesondere für die miniaturisierte Herstellung (Mikro-, aber auch Nanobereich) von elektronischen Schaltungen und Bauelementen von großer Bedeutung ist. Dabei wird zwischen den abtragenden und den auftragenden Verfahren unterschieden. Eine Strukturierung mittels herkömmlicher Lithographieverfahren ist ab einer Größenordnung von unter 100 nm nicht mehr möglich. Da die abtragenden Verfahren insbesondere nicht reversibel sind, gilt das Interesse zunehmend den auftragenden Verfahren. Aus dem Stand der Technik sind hier verschiedene Verfahren bekannt. Beispielswiese wird ein mit einem Wasserfilm als Elektrolyt benetztes

Halbleiter- oder Metall-Substrat durch den Einfluss einer auf ein Potenzial gegenüber dem Substrat gelegten Sondenspitze eines Rasterkraftmikroskops lokal oxidiert (Local Anodic Oxidation LAO). Weiterhin ist es bekannt, eine metallische Struktur auf einem metallischen Substrat lokal abzuscheiden, indem das Substrat vor der Abscheidung durch mechanischen Kontakt mit einer Sondenspitze lokal aktiviert wird. Bei der Nanodrucklithographie (Nanoimprint Lithography NIL) werden aufgedruckte Metall-Halbleiter-Metall-Strukturen aufgeschmolzen und in eine ebenfalls aufgeschmolzene, darüberliegende Kunststoffschicht eingedrückt und dann abgezogen. Dieses Verfahren, das allerdings ohne eine Sondenspitze arbeitet, beispielsweise zur Herstellung von Photodioden mit lateralen Abmessungen von unter 10 nm eingesetzt werden.

10

15

20

25

30

Neben der auch großflächig durchführbaren Elektrodeposition zur Abscheidung von Metallen auf Substraten ist weiterhin aus dem Stand der Technik das STM-CVD-Verfahren (Scanning Tunneling Microscopy assisted Chemical Vapor Deposition) bekannt, bei dem eine lokal eng begrenzte Abscheidung einer Materialkomponente, die durch den Einfluss eines lokal eng begrenzten elektrischen Feldes zwischen einer Sondenspitze und dem Substrat aus einer gasförmigen Precursorverbindung herausgetrennt wird, in festem Zustand Bei diesem erfolgt. Verfahren stellt das Substrat selbst keinen Reaktionspartner (wie bei der LAO), sondern dient ausschließlich als mechanischer Träger. Bezüglich dieses gattungsbildenden Verfahrens wird der nächstliegende Stand der Technik, von dem die vorliegende Erfindung ausgeht, in der Veröffentlichung I von F. Marchi et al.: "Direct patterning of noble metal nanostructures with a scanning tunneling microscope" (J.Vac.Sci.Technol. B 18(3), 2000, pp 1171-1176) beschrieben. Das bekannte Verfahren dient der Abscheidung von Edelmetallspuren auf einem Substrat. Dazu wird ein Precursorgas (Vorläufergas) verwendet, das ein Edelmetall, beispielsweise Gold, Iridium oder Rhodium, als Materialkomponente in einer enthält Precursorverbindung (vergleiche insbesondere Figur Veröffentlichung I). In einer druckdicht abgeschlossenen Atmosphäre

(Vakuumkammer) wird das Precursorgas in den Spalt zwischen der elektrisch leitenden, das Substrat nicht berührenden Sondenspitze eines STM und dem Substrat, beispielsweise ein Siliziumsubstrat, geleitet. Durch serielles Erzeugen von mehreren Spannungspulsen oberhalb eines vorgegebenen Schwellwertes bei Raumtemperatur erfolgt ein Auftrennen der Precursorverbindung im lokal begrenzten Gebiet der Sondenspitze und damit eine Freigabe der abzuscheidenden Materialkomponente. Diese lagert sich dann im Bereich der Sondenspitze auf dem Substrat ab. Im elektrischen Feld erfolgt bei diesem bekannten Verfahren eine Aufspaltung der Precursorverbindung im Precursorgas. Die freigewordene Materialkomponente wird ohne weitere auftretende chemische Reaktion auf dem Substrat abgelagert. Aus der Veröffentlichung II von I.Lyubinetsky et al.: "Two mechanisms of scanning tunneling microscopy assisted nanostructure formation using precursor molecules" (J.Vac.Sci. Technol. B 17(4), 1999, pp 1445-1450) ist es bekannt, mit dem STM-CVD-Verfahren auch einzelne Halbleitermaterialien abzulagern. Dieser Veröffentlichung ist insbesondere die chemisch-physikalische Begründung für die Anwendbarkeit des STM-CVD-Verfahrens zu entnehmen. Es werden zwei Prozessstufen unterschieden. In der ersten Prozessstufe wird die Aufspaltung der Moleküle im Precursorgas durch eine Anlagerung von Elektronen aus dem elektrischen Feld verursacht. In der zweiten Prozessstufe wird die Ablagerung der freigewordenen Materialkomponente unter Bildung von sehr kleinen Clustern, aber ohne weitere chemische Reaktion im elektrischen Feld unter Einfluss der feldinduzierten Oberflächendiffusion erreicht, wobei zuvor das Substrat mit einer Molekülschicht aus dem Precursorgas bedeckt worden ist. In allen genannten Verfahren wird somit nur ein einziges Precursorgas mit einer einzigen enthaltenen Precursorverbindung in die Atmosphäre über dem zu strukturierenden Substrat eingebracht. Es kommt unter dem Einfluss des elektrischen Feldes dann zu einer Spaltung der Precursorverbindung im Precursorgas und zur Abscheidung eines einzigen Elements auf dem Substrat.

30

5

10

20

25

Zusammenfassend sind den aus dem Stand der Technik bekannten STM-CVD-Verfahren insbesondere folgende Verfahrensparameter (die Tabelle ist

20

25

30

nicht als abschließend anzusehen) zu entnehmen (für die verwendete Abkürzungsterminologie gilt: "D"= Di, "T"= Tri, "M"= Methyl, "E"= Ethyl, "B"= Butyl usw.)

- abscheidbare Materialien: Cd, Si, Au, W, Mo, Cu, Ir, Rh, Fe, Ni
 - verwendete Precursorgase: DMCd, DCS (Dichlorsilan), SiH₄, W(CO)₆, Mo(CO)₆, Ni(CO)₄, Cu^I(hfac)(vtms), Fe(C₅H₅)₂
 - Druck der Precursorgase: 10⁻⁵ Pa 1 Pa
 - fließender Strom Sondenspitze-Substrat: 10 pA 10 nA
- angelegte Spannung Sondenspitze-Substrat: -100 V bis + 20 V, wobei ein Schwellwert von +/- 1.7 V überschritten sein muss
 - Dauer des Spannungspulses: 10 ns 6 min
 - Prozesstemperatur : Raumtemperatur (≈ 300 K)

Ausgehend von der oben beschriebenen Eigenschaft der bekannten STM-CVD-Verfahren, nur eine einzelne Materialkomponente ablagern zu können, ist die Aufgabe für die vorliegende Erfindung daher darin zu sehen, das gattungsgemäße Verfahren so auszubilden, dass auch chemische Verbindungen auf dem Substrat abgelagert werden können. Dabei soll das Verfahren aber seine Einfachheit und seine Genauigkeit bei der Erzeugung von nanoskalierbaren Strukturen beibehalten. Es soll jedoch so flexibel durchführbar sein, dass auch unterschiedliche chemische Verbindungen in einem Verfahrensdurchlauf abgeschieden werden können. In mit dem Verfahren nach der Erfindung hergestellten Bauelementen soll insbesondere die Abscheidungsmöglichkeit von Verbindungshalbleitern und die damit verbundene hohe Flexibilität bei der Herstellung zum Tragen kommen.

Als **Lösung** für diese Aufgabe ist bei dem elektrochemischen Verfahren zur direkten nanostrukturierbaren Materialabscheidung auf einem Substrat der eingangs genannten Art deshalb erfindungsgemäß vorgesehen, dass mehrere Precursorgase mit jeweils einer anderen, eine andere Materialkomponente

enthaltenden Precursorverbindung in einem Gasgemisch mit einem einstellbaren Mischungsverhältnis simultan oder sequenziell eingesetzt werden und die aus den aufgespaltenen, verschiedenen Precursorverbindungen herausgetrennten Materialkomponenten entsprechend dem gewählten Mischungsverhältnis eine gemeinsame chemische Verbindung eingehen, die auf dem Substrat lokal abgelagert wird.

10

15

20

25

30

Bei dem erfindungsgemäßen Verfahren werden die beiden bekannten Prozessstufen bedeutsam erweitert und zusätzlich eine weitere Prozessstufe hinzugefügt. Durch den simultanen oder sequenziellen Einsatz mehrerer Precursorgase (oder äquivalent zum simultanen Einsatz durch den Einsatz eines gemischten Precursorgases mit mehreren, jeweils eine andere Materialkomponente enthaltenden Precursorverbindungen) werden im lokal begrenzten elektrischen Feld in der Gasphase in der ersten Prozessstufe nicht nur eine, sondern nunmehr eine Reihe von Materialkomponenten aus ihren jeweiligen Precursorverbindungen herausgetrennt. Diese herausgetrennten Materialkomponenten lagern sich dann jedoch nicht direkt als einfache, geclusterte Moleküle auf dem Substrat ab, sondern reagieren unter dem Einfluss des elektrischen Feldes zwischen Sondenspitze und Substrat entweder bereits in der Gasphase oder nach ihrer Abscheidung auf dem Substrat miteinander. Durch diese, bei dem erfindungsgemäßen Verfahren neue Prozessstufe entsteht ein Material mit einer gemeinsamen chemischen Verbindung. Diese ist zuvor in dieser Form in keinem der Precursorgase enthalten, sondern lediglich ihre einzelnen Komponenten. Dabei ist aber die durch die chemische Reaktion gebildete gemeinsame Verbindung so stabil, dass sie nunmehr als eigenständiges Material auf dem Substrat unter dem räumlich begrenzten Einfluss des elektrischen Feldes abgeschieden wird. Dabei wird das auf die Sondenspitze bezogene Volumen des abgeschiedenen Materials in bekannter Weise durch die Größe, die Dauer und die Art der Spannung zwischen der Sondenspitze und dem Substrat bestimmt. Weiterhin kann die lokale Ablagerung auf die direkte Sondenspitzengröße beschränkt und damit bis in den Nanobereich dimensioniert sein, es können aber auch

6

durch eine gesteuerte Bewegung der Sondenspitze während des Abscheidevorganges größere Strukturen hergestellt werden. Die Zusammensetzung des abzuscheidenden Materials wird durch das Materialkomponentenverhältnis im Gasgemisch und den Partialdruck bestimmt. Somit stellt das erfindungsgemäße Verfahren ein neues Verfahren zur Materialherstellung dar, mit dem gleichzeitig bei der Herstellung auch noch mesoskopische Strukturen, und insbesondere auch Nanostrukturen, aus diesem Material erzeugt werden können.

10

15

20

25

30

Von besonderer Bedeutung in der elektronischen Schaltungs- und Bauelementetechnik sind Verbindungshalbleiter (beispielsweise II-VI, III-V und deren Ableitungen I-III-VI2 und II-IV-V2) aufgrund ihrer speziellen und einstellbaren Leitungseigenschaften. Unverbundene Halbleitermaterialien können bereits mit dem bekannten STM-CVD-Verfahren abgeschieden werden. Insbesondere die Herstellung von Nanostrukturen in Form von Nanopunkten (sogenannte "Quantumdots") und -linien führt hier zu neuen elektronischen Bauelementen (beispielsweise Single-Electron-Transistor) mit quantenphysikalischen Eigenschaften, die eine Reihe von Vorteilen erbringen und auf neue Art zu nutzen sind. Im Zusammenhang mit lichtempfindlichen Reaktionen sind Verbindungshalbleiter von besonderer Bedeutung und somit für die Herstellung von optoelektronischen und photoelektrischen Bauelementen besonders geeignet. Nach einer Fortführung des erfindungsgemäßen Verfahrens ist es daher vorteilhaft, wenn als Materialkomponenten Elemente der chemischen Gruppen V oder VI eingesetzt werden, die mit anderen Materialkomponenten der Gruppen I, II, III und/oder IV zu einem Verbindungshalbleiter als gemeinsame chemische Verbindung miteinander reagieren. Dabei können beispielsweise entsprechend der Anzahl der eingesetzten Materialkomponenten binäre, ternäre, quaternäre, aber auch pentäre oder höher zusammengesetzte Reaktionsprodukte gebildet werden. Insbesondere kann nach einer nächsten Erfindungsfortführung als Verbindungshalbleiter auch bevorzugt Chalkopyrit aus dem Materialsystem (Cu, Ag)(Ga, In, Al)(O, S, Se)₂ gebildet werden. Chalkopyrit-Verbindungshalbleiter zeichnen sich gegenüber dem

15

20

25

30

häufig verwendeten Silizium durch eine deutlich höhere Lichtabsorption aus, was bei einer gleichen Lichtempfindlichkeit zu einem geringeren Materialverbrauch und zu kleineren Strukturen führt.

Auf dem biotechnologischen Sektor und auch auf anderen Gebieten gibt es Anwendungen, die eine spektrale Empfindlichkeit, das heißt eine Empfindlichkeit der Halbleiterbauelemente für unterschiedliche Wellenlängen erfordern. Das Chalkopyrit-Materialsystem (Cu, Ag)(Ga, In, Al)(O, S, Se)₂ [I-III-VI₂-Verbindungshalbleiter] eignet sich aufgrund seiner variablen, die spektrale Empfindlichkeit hervorrufenden Bandlücke bei partieller Substitution einzelner Materialkomponenten besonders zur Herstellung entsprechender Bauelemente. Die partielle Substitution kann gemäß einer nächsten Fortführung der Erfindung vorteilhaft dadurch erreicht werden, dass der Einsatz der Precursorgase und/oder deren Mischungsverhältnis im Gasgemisch während eines Abscheidevorgangs zeitlich variiert wird. Bei der Änderung des Mischungsverhältnisses während des Abscheidungsvorganges bleiben die gleichen Materialkomponenten an der Bildung der gemeinsamen chemischen Verbindung beteiligt, allerdings in veränderlichen Konzentrationen. Die Änderung des Mischungsverhältnisses ist durch eine Änderung der Anteile der Precursorgase und damit durch eine Änderung der Partialdrücke erreichbar. Desweiteren können aber auch die einzelnen Materialkomponenten während des Abscheidungsvorganges ausgetauscht werden. Somit kann mit dem Verfahren nach der Erfindung in einem einzigen Verfahrensdurchlauf sowohl die Art der beteiligten Materialkomponenten (leitend oder halbleitend) als auch deren Konzentration in der gemeinsamen chemischen Verbindung zur Herstellung unterschiedlicher Materialverbundaufbauten auf äußerst einfache Weise variiert werden. Diese Parametervariationen und auch die bereits weiter oben erwähnten Variationen der elektrischen Feldgrößen können nach einer nächsten Erfindungsausgestaltung bevorzugt in Abhängigkeit von der abzuscheidenden gemeinsamen chemischen Verbindung rechnerunterstützt ermittelt und gesteuert werden. Weiterhin steuert das Substrat bei dem Verfahren nach der Erfindung keine Komponenten zum abzuscheidenden

10

15

Material bei und erfüllt nur tragende oder auch elektronische Funktionen, die beispielsweise beim Auslesen elektrischer Signale benötigt werden. Somit können in ihrer Festigkeit und Oberflächemorphologie nahezu beliebige Substrate verwendet werden. Insbesondere kann neben der Verwendung von festen Substraten nach einer anderen Ausgestaltung des Verfahrens nach der Erfindung das Substrat sogar flexibel sein, wodurch sich eine Erweiterung der Anwendungspalette ergibt.

Mit dem Verfahren nach der Erfindung können Nanopunkte oder Nanolinien auf einem Substrat abgeschieden werden, die beispielsweise aus II-VI, III-V, aber auch aus I-III-VI₂, II-IV-V₂ etc. Halbleitern bestehen. Als Beispiele sind zu nennen: CdSe, ZnSe, ZnS, GaAs, InP, GaAlAsP, CuGaSe₂, CuInS₂. Dazu werden bekannte Precursorverbindungen in den das Gasgemisch bildenden Precursorgasen eingesetzt, beispielsweise zur Bereitstellung der einzelnen Materialkomponenten aus (Tabelle nicht abschließend):

Gruppe-I-Elemente: Cu^I(hfac)(vtms) [= Hexafluoroacetylacetonat Cu(I)

Vinyl-trimethylsilan]

Gruppe-II-Elemente:

DMZn, DEZn, DMCd, DECd

20 Gruppe-III-Elemente:

TMAI, TEAI, TMGa, TEGa, TIBGa, TMIn

Gruppe-IV-Elemente:

SiH₄, GeH₄

Gruppe-V-Elemente:

PH₃, AsH₃, DMAs, TMAs, DEAs, TBAs und

Gruppe-VI-Elemente:

DMTe, DMDTe, DMS, DES, MSH (Methylmer-

captan), DESe, C₄H₄Se, H₂S, H₂Se.

25

30

Das erfindungsgemäße Verfahren mit seiner Möglichkeit, aus einer chemischen Reaktion hervorgegangene Verbindungsmaterialien in nahezu beliebigen Strukturen auf einem Substrat abscheiden zu können, ist vielfältig in den unterschiedlichsten Anwendungen einsetzbar. Bereits weiter oben wurden photoelektrische Anwendungen angesprochen, bei denen es auf die Lichtempfindlichkeit der hergestellten Strukturen ankommt. Neben der lichtabsorbierenden Eigenschaft von Verbindungshalbleitern spielt auch das

9

5

10

15

20

25

30

Emittieren von Licht in der Anwendung eine bedeutende Rolle, z.B. in Leuchtdioden (Light Emitting Diode, LED) oder Halbleiterlasem. Ein elektronisches Halbleiterbauelement, das bevorzugt mit dem zuvor erläuterten elektrochemischen Verfahren hergestellt wird, kann daher vorteilhafterweise als lichtabsorbierende Photodiode oder als lichtemittierende Leuchtdiode oder als Array davon ausgebildet sein. Dabei können die Dioden vorteilhaft auch als lichtabsorbierende oder -emittierende Verbindungshalbleiter strukturiert abgeschieden werden. Da die Farbe des absorbierten respektive emittierten Lichts von der Bandlücke des Materials bestimmt wird, kann durch die Zusammensetzung des abgeschiedenen Verbindungshalbleiters diese vorteilhaft eingestellt werden. Weiterhin ist für eine vielfältige Anwendbarkeit eine Ausbildung als Array vorteilhaft, dessen Photo- oder/und Leuchtdioden eine unterschiedliche spektrale Absorptionsrespektive Emissionsfähigkeit aufweisen. Dabei kann das Array bevorzugt einen regelmäßig wiederholten Aufbau aus mehreren Photo- oder/und Leuchtdioden mit unterschiedlicher spektraler Absorptions- respektive Emissionsfähigkeit aufweisen. Schließlich kann das Array noch zu einem kompakten Modul aufgebaut werden, wenn vorteilhafterweise eine isolierende Oxidschicht zwischen den einzelnen Photooder/und Leuchtdioden und eine halbleitende Deckschicht mit den Photooder/und Leuchtdioden entgegengesetzter Ladungsleitung vorgesehen ist.

Beispielsweise kann in der Biotechnologie ein nanoskaliertes Photodiodenarray verwendet werden, das, aufgebracht auf einem biologischen oder biologisch verträglichen Substrat, als künstliche Retina im menschlichen Auge arbeitet. Somit bietet sich bevorzugt ein mit dem elektrochemischen Verfahren nach der Erfindung hergestelltes Halbleiterbauelement an, das durch eine Ausbildung als spektrales Photodiodenarray aus Nano-Photodioden mit unterschiedlicher spektraler Empfindlichkeit gekennzeichnet ist, bei dem die einzelnen Nano-Photodioden durch eng benachbartes Abscheiden von Nanopunkten aus variierbaren Gasgemischen mit halbleitenden Chalkopyriten gebildet werden. Die Abscheidung kann auf einem Substrat mit den Nanopunkten entgegengesetzter Ladungsleitung erfolgen, sodass die

10

einzelnen Photodioden frei kontaktierbar bleiben. Es ist aber auch möglich, dass anschließend eine Isolation der Nanopunkte erfolgt, z.B. durch isolierendes Oxidieren in den Zwischenräumen der Nanopunkte. Somit ist die Kontaktierung der Nano-Photodioden bereits vorgeformt. Desweiteren kann ein regelmäßig wiederholter Aufbau aus zumindest drei Nano-Photodioden unterschiedlicher spektraler Empfindlichkeit realisiert werden. Diese drei Nano-Photodioden können dann insbesondere eine bevorzugte spektrale Empfindlichkeit für die drei technischen Grundfarben blau, grün und rot aufweisen.

10

5

Ausbildungsformen der Erfindung werden nachfolgend anhand von Synthesebeispielen und schematischen Figuren zum weiteren Verständnis der Erfindung näher erläutert. Dabei zeigen:

15

Figuren 1a...c die Prozessstufen des Verfahrens nach der Erfindung und Figuren 2a...d in der Aufsicht die Herstellung eines Photodiodenarrays.

25

20

Im folgenden sind zwei Beispiele für die Abscheidung von insbesondere nanoskalierten Halbleiterstrukturen bei Raumtemperatur mit dem elektrochemischen Verfahren nach der Erfindung angegeben, aus denen die unterschiedliche Festlegung der einzelnen Verfahrensparameter (gewählte Precursorgase, Druck in der Abscheidkammer, Mischungsverhältnis der Precursorgase, Spannung Sondenspitze-Substrat, Tunnelstrom, Spannungspulshöhe, Spannungspulsdauer) hervorgeht. Die Festlegung der einzelnen Verfahrensparameter richtet sich im Einzelfall immer nach der abzuscheidenden chemischen Verbindung und ist durch eine begrenzte Durchführung von Versuchen ohne Weiteres individuell immer festlegbar.

Beispiel (I) - Nanostrukturierung von Kadmiumtellurid CdTe:

Verwendete Precursorgase mit den Precursorverbindungen DMCd und DETe Die Abscheidekammer (beispielsweise eines STM) wird von einem Basisdruck p < 10⁻⁷ Pa mit den Precursorgasen auf einen Druck von 5*10⁻² Pa gefüllt (Durchfluss der Gase), wobei in der Gasphase ein Mischungsverhältnis von DETe: DMCd = 2 eingestellt wird. Das STM wird bei einer Spannung am Substrat von – 1 V und einem Tunnelstrom von 2 nA betrieben. Durch einen Spannungspuls von + 5 V an der Sondenspitze mit einer Dauer von ca. 1 s wird die Spaltung der verschiedenen Precursorverbindungen in den Precursorgasen, die Freigabe der erforderlichen Materialkomponenten Cd und Te und deren Reaktion zu der chemischen Verbindung CdTe im eng begrenzten Bereich unter der Sondenspitze erreicht, welche sich auf dem Substrat unter der Sondenspitze abscheidet.

Beispiel (II) - Nanostrukturierung von Kupfergalliumdiselenid CuGaSe2:

20

25

30

15

5

10

Verwendete Precursorgase mit den Precursorverbindungen: Cu^I(hfac)(vtms), TEGa, DTBSe

Die Abscheidekammer (beispielsweise eines STM) wird von einem Basisdruck $p < 10^{-7}$ Pa mit den Precursorgasen auf einen Druck von 10^{-2} Pa gefüllt (Durchfluss der Gase), wobei in der Gasphase ein Mischungsverhältnis von $Cu^{I}(hfac)(vtms)$: TEGa:DTBSe = 1:1:100 eingestellt wird. Das STM wird bei einer Spannung am Substrat von -1 V und einem Tunnelstrom von 1 nA betrieben. Durch einen Spannungspuls von -7 V an der Sondenspitze mit einer Dauer von ca. 5 min wird die Spaltung der verschiedenen Precursorverbindungen in den Precursorgasen, die Freigabe der erforderlichen Materialkomponenten Cu, Ga und Se und deren Reaktion zu der

gemeinsamen chemischen Verbindung CuGaSe₂ im eng begrenzten Bereich unter der Sondenspitze erreicht, welche sich auf dem Substrat unter der Sondenspitze abscheidet.

Die einzelnen Prozessstufen in den aufgezeigten Beispielen sind in der Figur 1 zu Beispiel I näher dargestellt. Oberhalb eines Substrates S ist eine mechanische Sondenspitze ST, beispielsweise von einem Scanning Tunneling Microscope STM dargestellt. In der Umgebung der Sondenspitze ST befinden sich in einer druckdicht abgeschlossenen Abscheidekammer C (Abscheidungsvorgänge unter Normaldruck- oder Durchflussbedingungen sind ebenfalls durchführbar) die Precursorgase PG DMCd und DETe mit den erforderlichen Materialkomponenten Cd und Te (Figur 1a). In der Figur 1b ist die Freigabe der Materialkomponenten Cd und Te aus den jeweiligen Precursorverbindungen unter Anlegen einer Spannung U zwischen der Sondenspitze ST und dem Substrat S dargestellt. In der Figur 1c ist dann die Abscheidung von CdTe im eng begrenzten Bereich der Sondenspitze ST auf dem Substrat S dargestellt. Dabei kann die chemische Reaktion der gemäß Figur 1b freigewordenen Materialkomponenten Cd und Te zum halbleitenden Kadmiumtellurid CdTe bereits in der Gasphase, aber auch nach der Ablagerung auf dem Substrat S unter dem Einfluss der Sondenspitze ST erfolgt sein.

In der **Figur 2** ist der Prozess für die Erzeugung eines spektral empfindlichen Photodiodenarrays **SPA** schematisch dargestellt. Im gewählten Ausführungsbeispiel werden drei Sorten nanoskalierte Photodioden **PD** mit unterschiedlicher spektraler Empfindlichkeit erzeugt :

gestrichelte Kreise: CuGaS₂ mit $E_g = 2,5$ eV mit Spektralempfindlichkeit "blau" weiße Kreise: CuGa(Se,S)₂ mit $E_g = 2,2$ eV mit Spektralempfindlichkeit "grün" schwarze Kreise:Cu(In,Ga)Se₂ mit $E_g = 1,5$ eV mit Spektralempfindlichkeit "rot"

5

10

15

20

25

15

20

25

30

In einem ersten Schritt (Figur 2a) werden mittels einer Sondenspitze eines STM erste Nanopunkte N₁ (gestrichelte Kreise) aus einem lichtempfindlichen Halbleitermaterial in einem regelmäßigen Muster auf einem metallischen Substrat S abgeschieden. Die gewählten Precursorgase und deren Mischungsverhältnis in der Atmosphäre in der Abscheidekammer bestimmen die Zusammensetzung der abgeschiedenen Nanopunkte und damit deren Bandlücke E_q bzw. spektrale Empfindlichkeit. Anschließend wird die Zusammensetzung der Precursorgase in der Atmosphäre so verändert, beispielsweise durch Erhöhung des Anteils des Precursorgases mit der entsprechenden Materialkomponente, dass die Abscheidung nunmehr zu zweiten Nanopunkten N2 (weiße Kreise) mit der gleichen chemischen Verbindung wie für die ersten Nanopunkte N₁, aber mit einem anderen Mischungsverhältnis der einzelnen Materialkomponenten und damit mit einer anderen Bandlücke führt. Unter diesen Bedingungen werden dann an regelmäßig angeordneten Stellen auf dem Substrat S wiederum die neuen Nanopunkte N₂ gewachsen (Figur 2b). In einem dritten Schritt wird die prozentuale Zusammensetzung des Gasgemisches in der Atmosphäre wiederum verändert, um dritte Nanopunkte N3 (schwarze Kreise) mit einer nochmals verschobenen Bandlücke an entsprechend zwischengelagerten Stellen auf dem Substrat S zu erzeugen (Figur 2c). In einem abschließenden Strukturierungsschritt mit dem Rastersondenmikroskop werden die Zwischenräume auf dem Substrat zwischen den Nanopunkten N₁,N₂,N₃ in einer sauerstoffhaltigen Atmosphäre zum Isolator IS oxidiert (Figur 2d, graue Färbung). Durch das Aufbringen der p-leitenden Chalkopyrit-Nanopunkte auf ein metallisches Substrat entstehen daher jeweils Schottky-Kontakt-Photodioden PD. Es wurden drei verschiedene Photodioden PD mit jeweils anderer spektraler Empfindlichkeit strukturiert, die beispielweise auf einem flexiblen Substrat als künstliche Retina für das menschliche Auge verwendet werden können, die Lichtsensoren im Bereich einiger Mikrometer benötigt. Aber auch laterale Abmessungen von 10 nm und kleiner sind realisierbar.

14

Derartige spektral empfindliche Photodiodenarrays SPA finden aber auch an vielen anderen Stellen Anwendungsmöglichkeiten. Andere optoelektronische Bauelemente mit einem durch Anwendung des Verfahrens nach der Erfindung besonders einfach, insbesondere nanostrukturierten und im Materialaufbau weitgehend beliebig zusammengesetzten und auch veränderlichen Aufbau sind ebenfalls ohne Weiteres herstellbar.

10 Bezugszeichenliste

5

C Abscheidekammer

IS Isolator

Nanopunkt

15 **PD** Photodiode

PG Precursorgas

S Substrat

SPA spektral empfindliches Photodiodenarray

ST Sondenspitze

20 STM Scanning Tunneling Microscope

Patentansprüche

10

20

30

1. Elektrochemisches Verfahren zur direkten nanostrukturierbaren Materialabscheidung auf einem Substrat durch Abscheidung zumindest einer
Materialkomponente aus einer druck- und temperaturregelbaren Atmosphäre
mit zumindest einem die Materialkomponente in einer Precursorverbindung
enthaltenden Precursorgas unter dem Einfluss eines lokal eng begrenzten
elektrischen Feldes, das spannungs- und zeitabhängig zwischen der
bewegbaren, elektrisch leitenden Sondenspitze eines berührungsfrei
abtastenden Mikroskops und dem Substrat aufgebaut ist, wobei die
Precursorverbindung oberhalb eines vorgegebenen Spannungsschwellwertes
aufgespalten und die herausgetrennte Materialkomponente im Bereich der
Sondenspitze auf dem Substrat abgelagert wird,

15 dadurch gekennzeichnet, dass

mehrere Precursorgase (PG) mit jeweils einer anderen, eine andere Materialkomponente (Cd, Te) enthaltenden Precursorverbindung (DMCd, DETe) in einem Gasgemisch mit einem einstellbaren Mischungsverhältnis simultan oder sequenziell eingesetzt werden und die aus den aufgespaltenen, verschiedenen Precursorverbindungen (DMCd, DETe) herausgetrennten Materialkomponenten (Cd, Te) entsprechend dem gewählten Mischungsverhältnis eine gemeinsame chemische Verbindung (CdTe) eingehen, die auf dem Substrat (S) lokal abgelagert wird.

25 2. Elektrochemisches Verfahren nach Anspruch 1,

dadurch gekennzeichnet, dass

als Materialkomponenten Elemente der chemischen Gruppen V und/oder VI (Te) eingesetzt werden, die mit anderen Materialkomponenten der chemischen Gruppen I, II (Cd), III und/oder IV zu einem Verbindungshalbleiter (CdTe) als gemeinsame chemische Verbindung miteinander reagieren.

PCT/DE2004/000748 WO 2004/092442

16

3. Elektrochemisches Verfahren nach Anspruch 2,

dadurch gekennzeichnet, dass

als Verbindungshalbleiter ein Chalkopyrit aus dem Materialsystem (Cu, Ag)(Ga, In, Al)(O, S, Se)2 gebildet wird.

5

4. Elektrochemisches Verfahren nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet, dass

der Einsatz der Precursorgase (PG) und/oder deren Mischungsverhältnis im Gasgemisch während eines Abscheidevorgangs zeitlich variiert wird.

10

15

5. Elektrochemisches Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass

alle Parametervariationen in Abhängigkeit von der abzuscheidenden gemeinsamen chemischen Verbindung (CdTe) rechnerunterstützt ermittelt und gesteuert werden.

6. Elektrochemisches Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass

ein flexibles Substrat (S) verwendet wird.

20

25

7. Halbleiterbauelement, das mit dem elektrochemischen Verfahren nach einem der Ansprüche 1 bis 6 hergestellt wird,

gekennzeichnet durch

eine Ausbildung als lichtabsorbierende Photodiode (PD) oder als lichtemittierende Leuchtdiode oder als Array davon.

8. Halbleiterbauelement nach Anspruch 7,

gekennzeichnet durch

eine Ausbildung als Array (SPA), dessen Photo- (PD) oder/und Leuchtdioden 30 eine unterschiedliche spektrale Absorptions- respektive Emissionsfähigkeit aufweisen.

17

9. Halbleiterbauelement nach Anspruch 8,

gekennzeichnet durch

eine Ausbildung als Array (SPA) mit einen regelmäßig wiederholten Aufbau aus mehreren Photo- (PD) oder/und Leuchtdioden mit unterschiedlicher spektraler Absorptions- respektive Emissionsfähigkeit.

10. Halbleiterbauelement nach einem der Ansprüche 7 bis 9, gekennzeichnet durch

eine isolierende Oxidschicht (IS) zwischen den einzelnen Photo- (PD) oder/und Leuchtdioden und eine halbleitende Deckschicht mit den Photo- (PD) oder/und Leuchtdioden entgegengesetzter Ladungsleitung.

10

1/2

Fig.1

2/2

Fig 2

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C23C16/44 C23C16/04

C. DOCUMENTS CONSIDERED TO BE RELEVANT

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C23C H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, IBM-TDB, PAJ, INSPEC, COMPENDEX

Category °	Citation of document, with indication, where appropriate, of the	ne relevant passages	Relevant to claim No.
х	PATENT ABSTRACTS OF JAPAN vol. 0181, no. 20 (E-1516), 25 February 1994 (1994-02-25) & JP 5 315645 A (SHARP CORP), 26 November 1003 (1003 11 26)		7–9
Y	26 November 1993 (1993-11-26) abstract; figures 1-6		3
X	US 5 789 766 A (WRIGHT PHIL E 4 August 1998 (1998-08-04) claims 1-7; figures 1-3	T AL)	7–10
		-/	
X Furt	lher documents are listed in the continuation of box C.	X Patent family members are listed	l in annex.
*A' docum consi "E' earlier filling "L' docum which citatic "O' docum other "P' docum	ategories of cited documents: ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or a is cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means the priority date claimed	"T" tater document published after the in or priority date and not in conflict wit cited to understand the principle or t invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the cannot be considered to involve an document of particular relevance; the cannot be considered to involve an document is combined with one or ments, such combination being obv in the art. "&" document member of the same pater	h the application but heory underlying the claimed invention of be considered to locument is taken alone claimed invention inventive step when the nore other such docu-ous to a person skilled
Special or "A" docum consiste earfler filing "L" docum which citatic "O" docum other "P" docum later t	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but	or priority date and not in conflict wit cited to understand the principle or t invention "X" document of particular relevance; the cannot be considered novel or cann involve an inventive step when the cannot be considered to involve an document of particular relevance; the cannot be considered to involve an document is combined with one or ments, such combination being obv in the art.	h the application but heory underlying the claimed invention of be considered to locument is taken alone claimed invention inventive step when the nore other such docunous to a person skilled at family
A docum consister of the citation other the country of the citation of the c	dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filling date but than the priority date claimed	or priority date and not in conflict wit cited to understand the principle or t invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the cannot be considered to involve an document is combined with one or ments, such combination being obv in the art. "&" document member of the same pater	h the application but heory underlying the claimed invention of be considered to locument is taken alone claimed invention inventive step when the nore other such docunous to a person skilled at family

INTERNATIONAL SEARCH REPORT

International Application No PC1/DE2004/000748

	Relevant to claim No.
Chance of occurrent with indication, where abbrohers, or the research bassages	Helevan to dan 110.
MARCHI F ET AL: "Direct patterning of noble metal nanostructures with a scanning tunneling microscope" JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B: MICROELECTRONICS PROCESSING AND PHENOMENA, AMERICAN VACUUM SOCIETY, NEW YORK, NY, US, vol. 18, no. 3, May 2000 (2000-05), pages 1171-1176, XP012008167 ISSN: 0734-211X cited in the application page 1171, column 2, line 8 - page 1175, column 2, line 12; figure 1; table 1	1-5
WO 02/084729 A (HAHN MEITNER INST BERLIN GMBH; SCHEER ROLAND (DE); PIETZKER CHRISTIAN) 24 October 2002 (2002-10-24) page 5, line 11 - page 6, line 26; claims 1,2	1-5
WRIGHT ANDREW: "Catching the action on camera to grow thin films" MATER WORLD; MATERIALS WORLD 1999 INST OF MATERIALS, BRENTWOOD, ENGL, vol. 7, no. 7, 1999, pages 409-411, XP001194879 page 409 - page 411; figures 1-4	1-10
EP 1 243 553 A (JAPAN SCIENCE & TECH CORP) 25 September 2002 (2002-09-25) claims 1-4; figures 1,2	
	noble metal nanostructures with a scanning tunneling microscope" JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B: MICROELECTRONICS PROCESSING AND PHENOMENA, AMERICAN VACUUM SOCIETY, NEW YORK, NY, US, vol. 18, no. 3, May 2000 (2000-05), pages 1171-1176, XP012008167 ISSN: 0734-211X cited in the application page 1171, column 2, line 8 - page 1175, column 2, line 12; figure 1; table 1 WO 02/084729 A (HAHN MEITNER INST BERLIN GMBH; SCHEER ROLAND (DE); PIETZKER CHRISTIAN) 24 October 2002 (2002-10-24) page 5, line 11 - page 6, line 26; claims 1,2 WRIGHT ANDREW: "Catching the action on camera to grow thin films" MATER WORLD; MATERIALS WORLD 1999 INST OF MATERIALS, BRENTWOOD, ENGL, vol. 7, no. 7, 1999, pages 409-411, XP001194879 page 409 - page 411; figures 1-4 EP 1 243 553 A (JAPAN SCIENCE & TECH CORP) 25 September 2002 (2002-09-25)

INTERNATIONAL SEARCH REPORT

1	ntern	ational Application No
	Per	/DE2004/000748

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
JP 5315645	Α	26-11-1993	JP	2866527 B2	08-03-1999
US 5789766	Α	04-08-1998	NONE		
WO 02084729	Α	24-10-2002	DE WO EP US	10119463 A1 02084729 A2 1380050 A2 2004115938 A1	24-10-2002 14-01-2004
EP 1243553	A	25-09-2002	JP JP EP WO US	3544353 B2 2002160909 A 1243553 A1 0242203 A1 2003003043 A1	04-06-2002 25-09-2002 30-05-2002

INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C23C16/44 C23C16/04

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \quad C23C \quad H01L \quad \cdot$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweil diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, IBM-TDB, PAJ, INSPEC, COMPENDEX

ategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	PATENT ABSTRACTS OF JAPAN Bd. 0181, Nr. 20 (E-1516), 25. Februar 1994 (1994-02-25) & JP 5 315645 A (SHARP CORP), 26. November 1993 (1993-11-26)	7–9
Υ	Zusammenfassung; Abbildungen 1-6	3
X	US 5 789 766 A (WRIGHT PHIL ET AL) 4. August 1998 (1998-08-04) Ansprüche 1-7; Abbildungen 1-3 -/	7–10
X Well	ere Veröffentlichungen sind der Fortsetzung von Feld C zu X Siehe Anhang Patentfamilie	

 Besondere Kategorien von angegebenen Veröffentlichungen: "A" Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erschelnen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	 *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheilegend ist *&* Veröffentlichung, die Mitglied derselben Patenttamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
16. September 2004	23/09/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Bevollmächtigter Bediensteter Lavéant, P

INTERNATIONALER RECHERCHENBERICHT

C.(Fortsetz	Ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Tei	Betr. Anspruch Nr.
Y	MARCHI F ET AL: "Direct patterning of noble metal nanostructures with a scanning tunneling microscope" JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B: MICROELECTRONICS PROCESSING AND PHENOMENA, AMERICAN VACUUM SOCIETY, NEW YORK, NY, US, Bd. 18, Nr. 3, Mai 2000 (2000-05), Seiten 1171-1176, XP012008167 ISSN: 0734-211X in der Anmeldung erwähnt Seite 1171, Spalte 2, Zeile 8 - Seite 1175, Spalte 2, Zeile 12; Abbildung 1; Tabelle 1	1-5
Υ .	WO 02/084729 A (HAHN MEITNER INST BERLIN GMBH ; SCHEER ROLAND (DE); PIETZKER CHRISTIAN) 24. Oktober 2002 (2002-10-24) Seite 5, Zeile 11 - Seite 6, Zeile 26; Ansprüche 1,2	. 1–5
A	WRIGHT ANDREW: "Catching the action on camera to grow thin films" MATER WORLD; MATERIALS WORLD 1999 INST OF MATERIALS, BRENTWOOD, ENGL, Bd. 7, Nr. 7, 1999, Seiten 409-411, XP001194879 Seite 409 - Seite 411; Abbildungen 1-4	1-10
А	EP 1 243 553 A (JAPAN SCIENCE & TECH CORP) 25. September 2002 (2002-09-25) Ansprüche 1-4; Abbildungen 1,2	1-10
		·

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen	
Per/DE2004/000748	3

lm R angefüh	lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	<u> </u>	Datum der Veröffentlichung	
JP	5315645	Α	26-11-1993	JP	2866527	B2	08-03-1999	
US	5789766	A	04-08-1998	KEIN	NE		•	
MO	02084729	A	24-10-2002	DE WO EP US	10119463 02084729 1380050 2004115938	A2 A2	24-10-2002 24-10-2002 14-01-2004 17-06-2004	
EP	1243553	Α	25-09-2002	JP JP EP WO US	3544353 2002160909 1243553 0242203 2003003043	A A1 A1	21-07-2004 04-06-2002 25-09-2002 30-05-2002 02-01-2003	