import pandas as pd
import numpy as num
import matplotlib.pyplot as mat
import seaborn as sea
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import KNeighborsClassifier

In [249...

df = pd.read_csv('C:/Users/mohieldine/Desktop/Python Tutorial/Indian Used Cars/usedCar
df.head(100)

from sklearn.metrics import accuracy_score, precision_score, recall_score,f1_score

Out[249]:		Id	Company	Model	Variant	FuelType	Colour	Kilometer	BodyStyle	Tra
	0	555675	MARUTI SUZUKI	CELERIO(2017- 2019)	1.0 ZXI AMT O	PETROL	Silver	33197	НАТСНВАСК	
	1	556383	MARUTI SUZUKI	ALTO	LXI	PETROL	Red	10322	НАТСНВАСК	
	2	556422	HYUNDAI	GRAND I10	1.2 KAPPA ASTA	PETROL	Grey	37889	НАТСНВАСК	
	3	556771	TATA	NEXON	XT PLUS	PETROL	A Blue	13106	НАТСНВАСК	
	4	559619	FORD	FIGO	EXI DURATORQ 1.4	DIESEL	Silver	104614	HATCHBACK	
	•••		•••			•••	•••			
	95	585018	VOLKSWAGEN	POLO	GT TSI 1.2 PETROL AT	PETROL	White	63088	НАТСНВАСК	
	96	585031	HYUNDAI	ELITE I20	SPORTZ 1.2	PETROL	Red	45607	HATCHBACK	
	97	585039	FORD	ECOSPORT(2017- 2019)	TREND 1.5L TDCI	DIESEL	Brown	63212	SUV	
	98	585066	NISSAN	KICKS	XV 1.5	PETROL	White	40924	SUV	
	99	585068	HYUNDAI	SANTRO	1.1 LS	PETROL	Silver	86140	HATCHBACK	

100 rows × 19 columns

```
df.drop(columns=['Variant'], inplace=True)
In [251...
In [252...
           df['FuelType'] = df['FuelType'].replace({'manual': 'Manual'})
           df.shape
In [253...
           (1064, 17)
Out[253]:
           df.columns
In [254...
           Index(['Company', 'Model', 'FuelType', 'Colour', 'Kilometer', 'BodyStyle',
Out[254]:
                   'TransmissionType', 'ManufactureDate', 'ModelYear', 'CngKit', 'Price',
                  'Owner', 'DealerState', 'DealerName', 'City', 'Warranty',
                  'QualityScore'],
                 dtype='object')
           df.duplicated().sum()
In [255...
Out[255]:
           df.isnull().sum()
In [256...
                                   0
           Company
Out[256]:
                                   0
           Model
           FuelType
                                   1
           Colour
                                   0
           Kilometer
                                   0
           BodyStyle
                                   0
           TransmissionType
                                 714
           ManufactureDate
                                   0
           ModelYear
                                   0
           CngKit
                                1042
           Price
                                   0
           Owner
                                   0
           DealerState
                                   0
           DealerName
                                   0
           City
                                   0
           Warranty
                                   0
           QualityScore
                                   0
           dtype: int64
           df.drop(columns='TransmissionType',inplace = True)
In [257...
           df.drop(columns='CngKit',inplace = True)
           df.shape
In [258...
           (1064, 15)
Out[258]:
In [259...
           df.head(20)
```

	Company	Model	FuelType	Colour	Kilometer	BodyStyle	ManufactureDate	Mod
0	MARUTI SUZUKI	CELERIO(2017- 2019)	PETROL	Silver	33197	НАТСНВАСК	2018-02-01	
1	MARUTI SUZUKI	ALTO	PETROL	Red	10322	HATCHBACK	2021-03-01	
2	HYUNDAI	GRAND I10	PETROL	Grey	37889	НАТСНВАСК	2015-03-01	
3	TATA	NEXON	PETROL	A Blue	13106	НАТСНВАСК	2020-08-01	
4	FORD	FIGO	DIESEL	Silver	104614	НАТСНВАСК	2010-11-01	
5	MERCEDES BENZ	E CLASS	DIESEL	Black	87700	SEDAN	2013-04-01	
6	VOLKSWAGEN	AMEO	DIESEL	Blue	70577	SEDAN	2017-06-01	
7	MARUTI SUZUKI	ERTIGA	PETROL	A Blue	76259	MPV	2013-07-01	
8	MARUTI SUZUKI	SWIFT	PETROL	Silver	85000	НАТСНВАСК	2015-02-01	
9	HYUNDAI	I10	PETROL	Red	77000	НАТСНВАСК	2008-05-01	
10	VOLKSWAGEN	AMEO	PETROL	Steel Grey	29416	SEDAN	2018-07-01	
11	MARUTI SUZUKI	CELERIO	PETROL	Red	64277	НАТСНВАСК	2017-09-01	
12	HYUNDAI	CRETA(2018- 2019)	DIESEL	Red	51078	SUV	2018-09-01	
13	MARUTI SUZUKI	VITARA BREZZA	DIESEL	Red	66535	SUV	2017-04-01	
14	MAHINDRA	XUV500	DIESEL	Moondust Silver	58422	SUV	2016-06-01	
15	HONDA	JAZZ	PETROL	Orange	53377	НАТСНВАСК	2016-01-01	
16	HYUNDAI	GRAND I10	PETROL	Marine Blue	19365	НАТСНВАСК	2019-01-01	
17	RENAULT	DUSTER	PETROL	Brown	42773	SUV	2017-01-01	
18	NISSAN	MICRA ACTIVE	PETROL	Silver	17511	НАТСНВАСК	2015-11-01	
19	MARUTI SUZUKI	CELERIO	PETROL	Red	48042	НАТСНВАСК	2016-01-01	

```
df.nunique()
In [260...
                                23
          Company
Out[260]:
          Model
                               218
           FuelType
                                 5
           Colour
                                76
           Kilometer
                              1006
           BodyStyle
                                10
           ManufactureDate
                               162
           ModelYear
                                17
           Price
                               367
           Owner
                                 4
          DealerState
                                10
          DealerName
                                57
          City
                                11
                                 2
           Warranty
           QualityScore
                                43
           dtype: int64
In [261...
          company_counts = df['Company'].value_counts()
           # Create a bar chart
           mat.figure(figsize=(10, 6))
           company_counts.plot(kind='bar', color='blue')
           mat.title("Count of Each Company Type")
           mat.xlabel("Company Type")
           mat.ylabel("Count")
           mat.show()
```



```
In [262...
company_counts = df['ModelYear'].value_counts()

# Create a bar chart
mat.figure(figsize=(10, 6))
company_counts.plot(kind='bar', color='lightcoral')
mat.title("Count of Each Car Model")
mat.xlabel("Company Type")
mat.ylabel("Count")
mat.show()
```



```
In [263...
company_counts = df['FuelType'].value_counts()

# Create a bar chart
mat.figure(figsize=(10, 6))
company_counts.plot(kind='barh', color='blue')
mat.title("Fuel Type")
mat.xlabel("Count")
mat.ylabel("Fuel")
mat.show()
```



```
In [264... # Create a figure
fig, ax = mat.subplots(figsize=(10, 6))

# Get the top 10 counts and their corresponding colors
top_10_counts = df['Colour'].value_counts().head(10)

# Create a horizontal bar chart for the top 10 counts
sea.barplot(x=top_10_counts, y=top_10_counts.index, color='blue', ax=ax)

# Set labels and title for the plot
ax.set_xlabel("Count")
ax.set_ylabel("Fuel")
ax.set_title("Top 10 Counts Colour")

# Show the plot
mat.show()
```



```
In [265... sea.histplot(data=df, x='QualityScore', bins=20, color='magenta')

# Set Labels and title
mat.xlabel('Quality Score')
mat.ylabel('Frequency')
mat.title('Histogram of Quality Score')

# Show the plot
mat.show()
```

Histogram of Quality Score


```
In [266... # Create a figure
fig, ax = mat.subplots(figsize=(10, 6))

# Get the top 10 counts and their corresponding colors
top_10_counts = df['BodyStyle'].value_counts().head(10)

# Create a horizontal bar chart for the top 10 counts
sea.barplot(x=top_10_counts, y=top_10_counts.index, color='brown', ax=ax)

# Set labels and title for the plot
ax.set_xlabel("Count")
ax.set_ylabel("Fuel")
ax.set_title("Top 10 Body Style")

# Show the plot
mat.show()
```



```
In [267...
# Create a figure
fig, ax = mat.subplots(figsize=(10, 6))

# Get the top 10 counts and their corresponding colors
top_10_counts = df['Owner'].value_counts()

# Create a horizontal bar chart for the top 10 counts
sea.barplot(x=top_10_counts, y=top_10_counts.index, color='purple', ax=ax)

# Set labels and title for the plot
ax.set_xlabel("Count")
ax.set_ylabel("Fuel")
ax.set_title("Top 10 Body Style")

# Show the plot
mat.show()
```


400

Count

600

800

```
In [268...
           df.dtypes
                                object
          Company
Out[268]:
                                object
           Model
           FuelType
                                object
           Colour
                                object
           Kilometer
                                 int64
           BodyStyle
                                object
           ManufactureDate
                               object
           ModelYear
                                 int64
           Price
                               object
           0wner
                                object
           DealerState
                               object
           DealerName
                               object
                               object
           City
           Warranty
                                 int64
                               float64
           QualityScore
           dtype: object
           #LabelEncoder to convert all the non-numeric values to numeric
In [269...
           cols = df.columns[df.dtypes == 'object']
           #Label encoder object
           le = LabelEncoder()
           #Label encoding the columns
           for i in cols:
               le.fit(df[i])
               df[i] = le.transform(df[i])
           df.dtypes
In [270...
```

200

```
int32
                                 Company
Out[270]:
                                 Model
                                                                                                    int32
                                 FuelType
                                                                                                    int32
                                 Colour
                                                                                                    int32
                                 Kilometer
                                                                                                    int64
                                 BodyStyle
                                                                                                    int32
                                 ManufactureDate
                                                                                                    int32
                                 ModelYear
                                                                                                    int64
                                 Price
                                                                                                    int32
                                 0wner
                                                                                                    int32
                                 DealerState
                                                                                                    int32
                                 DealerName
                                                                                                    int32
                                 City
                                                                                                    int32
                                                                                                    int64
                                 Warranty
                                                                                              float64
                                 QualityScore
                                 dtype: object
In [271...
                                 #removing the outliers
                                 z_score_threshold = 3
                                  z_scores = num.abs((df[['FuelType', 'ManufactureDate', 'Warranty','Company']] - df[['FuelType', 'ManufactureDate', 'Warranty', 'Company']] - df[['FuelType', 'ManufactureDate', 'Warranty', 
                                 df_no_outliers = df[(z_scores <= z_score_threshold).all(axis=1)]</pre>
                                 #Min Max Scaler
In [272...
                                 Min_Max = MinMaxScaler()
                                 df['FuelType'] = Min_Max.fit_transform(df['FuelType'].values.reshape(-1,1))
                                 df['ManufactureDate'] = Min Max.fit transform(df['ManufactureDate'].values.reshape(-1,1
                                 df['Warranty']= Min_Max.fit_transform(df['Warranty'].values.reshape(-1,1))
                                 df['Company'] = Min Max.fit transform(df['Company'].values.reshape(-1,1))
                                 mat.figure(figsize=(20,20))
In [273...
                                 sea.heatmap(df.corr(), annot=True)
                                 <Axes: >
Out[273]:
```


In [274... #define the training and learning model
 X_train, X_test, y_train, y_test = train_test_split(df.drop(columns='Price'), df['Pric
In [275... from sklearn.model_selection import GridSearchCV
#Random forest clasifier

```
#Random_forest_clasifier
rfc = RandomForestClassifier()
param_grid = {
    'max_depth': [2,4,6,8,10],
    'min_samples_leaf': [2,4,6,8,10],
    'min_samples_split': [2,4,6,8,10],
    'criterion': ['gini', 'entropy'],
    'random_state': [0,42]
}
```

```
grid search = GridSearchCV(estimator = rfc, param grid = param grid, cv = 3, n jobs =
          #Fitting the data
          grid_search.fit(X_train, y_train)
          #Best parameters
          print(grid_search.best_params_)
          Fitting 3 folds for each of 500 candidates, totalling 1500 fits
          C:\Users\mohieldine\AppData\Local\anaconda3\Lib\site-packages\sklearn\model selection
          \_split.py:700: UserWarning: The least populated class in y has only 1 members, which
          is less than n_splits=3.
            warnings.warn(
          {'criterion': 'entropy', 'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split':
          8, 'random state': 42}
          #Random Forest Classifier accuracy
In [276...
          rfc = RandomForestClassifier(criterion='entropy', max_depth=10, min_samples_leaf=10, n
          #Fitting the data
          rfc.fit(X_train, y_train)
          #Training accuracy
          print('Training Accuracy: ', rfc.score(X_train, y_train))
          #Predicting the values
          r_pred = rfc.predict(X_test)
          Training Accuracy: 0.7215041128084606
In [277...
          from sklearn.model selection import GridSearchCV
          #Decision Tree Classifier
          dtree = DecisionTreeClassifier()
          param_grid = {
               'max depth': [2,4,6,8,10],
               'min_samples_leaf': [2,4,6,8,10],
               'min_samples_split': [2,4,6,8,10],
               'criterion': ['gini', 'entropy'],
               'random state': [0,42]
          }
          #Grid Search Object with Decision Tree Classifier
          grid_search = GridSearchCV(estimator = dtree, param_grid = param_grid, cv = 3, n_jobs
          #Fitting the data
          grid search.fit(X train, y train)
          #Best parameters
          print(grid search.best params )
          Fitting 3 folds for each of 500 candidates, totalling 1500 fits
          C:\Users\mohieldine\AppData\Local\anaconda3\Lib\site-packages\sklearn\model_selection
          \ split.py:700: UserWarning: The least populated class in y has only 1 members, which
          is less than n_splits=3.
            warnings.warn(
          {'criterion': 'gini', 'max_depth': 4, 'min_samples_leaf': 2, 'min_samples_split': 2,
           'random_state': 0}
```

#Grid Search Object with Random Forest Classifier

```
In [278...
          #Decision Tree Classifier accuracy
          dtree = DecisionTreeClassifier(criterion='gini', max_depth=6, min_samples_leaf=2, min
          #Fitting the data
          dtree.fit(X train, y train)
          #Training accuracy
          print('Training Accuracy: ', dtree.score(X train, y train))
          #Predicting the values
          d_pred = dtree.predict(X_test)
          Training Accuracy: 0.14336075205640422
In [279...
          from sklearn.model selection import GridSearchCV
          #K Nearst Classifier
          knn = KNeighborsClassifier()
          param grid = {
               'n_neighbors': [2,4,6,8,10],
               'weights': ['uniform', 'distance'],
               'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute']
          }
          #Grid Search Object with KNN Classifier
          grid_search = GridSearchCV(estimator = knn, param_grid = param_grid, cv = 3, n_jobs =
          #Fitting the data
          grid_search.fit(X_train, y_train)
          #Best parameters
          print(grid_search.best_params_)
          Fitting 3 folds for each of 40 candidates, totalling 120 fits
          C:\Users\mohieldine\AppData\Local\anaconda3\Lib\site-packages\sklearn\model selection
          \_split.py:700: UserWarning: The least populated class in y has only 1 members, which
          is less than n_splits=3.
            warnings.warn(
          {'algorithm': 'auto', 'n neighbors': 8, 'weights': 'uniform'}
          #KNN Classifier Acurracy
In [280...
          knn = KNeighborsClassifier(algorithm='ball_tree', n_neighbors=6, weights='uniform')
          #Fitting the data
          knn.fit(X_train, y_train)
          #Training accuracy
          print('Training Accuracy: ', knn.score(X_train, y_train))
          #Predicting the values
          k_pred = knn.predict(X_test)
          Training Accuracy: 0.18801410105757932
          fig, ax = mat.subplots(1, 2, figsize=(20, 8))
In [281...
          # Decision Tree Classifier Feature Importance
          feature_df = pd.DataFrame({'Features': X_train.columns, 'Importance': dtree.feature_in
          feature_df.sort_values('Importance', ascending=False, inplace=True)
           sea.barplot(x = 'Importance', y = 'Features', data = feature_df, ax=ax[0]).set_title('
```

```
# Random Forest Classifier Feature Importance
feature_df = pd.DataFrame({'Features': X_train.columns, 'Importance': rfc.feature_importance', ascending=False, inplace=True)
sea.barplot(x = 'Importance', y = 'Features', data = feature_df, ax=ax[1]).set_title('
```

Out[281]: Text(0.5, 1.0, 'Random Forest Classifier Feature Importance')


```
In []:
```