双层优化模型及 Benders 分解算法讨论分析

北京邮电大学优化组

杜洪博

2023年12月29日

1 Benders Decomposition

1.1 Unified Primal Subproblems for Benders Decomposition

图 1: 系统结构示意图

为了表示方便,将原始模型以矩阵形式重新表示为如下模型:

$$\min_{x,y,z} \quad \mathbf{a}^{\mathrm{T}}\mathbf{x} + \sum_{i} \mathbf{b}_{i}^{\mathrm{T}}\mathbf{y}_{i} + \sum_{i} \mathbf{c}_{i}^{\mathrm{T}}\mathbf{z}_{i}$$
 (1a)

s.t.
$$G(x) \ge d$$
 (1b)

$$\mathbf{B}_{i}\mathbf{x} + \mathbf{C}_{i}\mathbf{y}_{i} + \mathbf{D}_{i}\mathbf{z}_{i} \ge \mathbf{e}_{i}, \forall i$$
(1c)

$$\mathbf{z}_i \in \{0, 1\}^{K_i}, \forall i \tag{1d}$$

根据标准的 Benders 分解方法, 原问题 (1a)-(1d) 被划分为一个上层主问题 (对应于 DSO 的决策) 和

一组下层子问题 (对应于个体 MCs 的决策). 主问题表示为:

$$\min_{\mathbf{x},\theta} \quad \mathbf{a}^{\mathrm{T}}\mathbf{x} + \sum_{i} \theta_{i} \tag{2a}$$

s.t.
$$\mathbf{G}(\mathbf{x}) \ge \mathbf{d}$$
 (2b)

$$\theta_i \ge 0, \forall i$$
 (2c)

其中 θ_i 为非负连续变量, 用 DSO 近似表示微电网 i 的运行成本. 在每次迭代中, DSO 求解主问题, 并将一个试探解 $(\hat{\mathbf{x}}, \hat{\theta}_i)$ 传递给每个 MC($\forall i$). 反过来, 每个 MC 依次求解两个 Benders 子问题, 以检验试探解的可行性和最优性, 然后通过 Benders 割反馈给 DSO. 可行性子问题为 ($\forall i$):

$$\min_{y_i, z_i, s_i} \quad \mathbf{1}^{\mathrm{T}} \mathbf{s}_i \tag{3a}$$

s.t.
$$C_i \mathbf{y}_i + D_i \mathbf{z}_i + \mathbf{s}_i \ge \mathbf{e}_i - B_i \hat{\mathbf{x}}$$
 (3b)

$$\mathbf{z}_i \in \{0, 1\}^{K_i}, \mathbf{s}_i \ge \mathbf{0} \tag{3c}$$

其中 1 是一个元素为 1 的向量;0 是一个元素为 0 的向量; s_i 是非负松弛变量的向量. 当且仅当 (3a)-(3c) 的最优值为 0 时, 试探解 $(\hat{\mathbf{x}}, \hat{\theta_i})$ 是可行的, 再继续求解最优性子问题 (4a)-(4c); 否则, 将一个可行割返回到主问题, .

$$\min_{\mathbf{y}_i, \mathbf{z}_i} \quad \mathbf{b}_i^{\mathrm{T}} \mathbf{y}_i + \mathbf{c}_i^{\mathrm{T}} \mathbf{z}_i \tag{4a}$$

s.t.
$$\mathbf{C}_i \mathbf{y}_i + \mathbf{D}_i \mathbf{z}_i \ge \mathbf{e}_i - \mathbf{B}_i \hat{\mathbf{x}}$$
 (4b)

$$\mathbf{z}_i \in \{0, 1\}^{K_i} \tag{4c}$$

在求解 (4a)-(4c) 后, MC i 检查得到的解 ($\hat{\mathbf{y}}_i,\hat{\mathbf{z}}_i$), 检查 DSO 近似的微电网运行成本 $\hat{\theta}_i$ 是否达到 $\mathbf{b}_i^{\mathrm{T}}\hat{\mathbf{y}}_i+\mathbf{c}_i^{\mathrm{T}}\hat{\mathbf{z}}_i$. 如果没有, 则将一个最优割返回到主问题 (2a)-(2d), 以重新估计微电网运行成本; 否则, MC i 接受试探解 ($\hat{\mathbf{x}},\hat{\theta}_i$), 并且, 如果后续迭代中电力交换计划不变, 则与 DSO 达成协议. 当且仅当所有的 MC 都与 DSO 达成协议时, 迭代终止.

可以将两个子问题合并统一表示为如下形式:

$$\min_{\mathbf{y}_i, \mathbf{z}_i, \mathbf{s}_i} \quad \mathbf{1}^{\mathrm{T}} \mathbf{s}_i + \xi_i + \zeta_i \tag{5a}$$

s.t.
$$\mathbf{b}_{i}^{\mathrm{T}}\mathbf{y}_{i} + \mathbf{c}_{i}^{\mathrm{T}}\mathbf{z}_{i} + \xi_{i} \geq \hat{\theta}_{i}$$
 (5b)

$$-\mathbf{b}_{i}^{\mathrm{T}}\mathbf{y}_{i} - \mathbf{c}_{i}^{\mathrm{T}}\mathbf{z}_{i} + \zeta_{i} \ge -\hat{\theta}_{i}$$

$$(5c)$$

$$\mathbf{C}_{i}\mathbf{y}_{i} + \mathbf{D}_{i}\mathbf{z}_{i} + \mathbf{s}_{i} \ge \mathbf{e}_{i} - \mathbf{B}_{i}\hat{\mathbf{x}} \tag{5d}$$

$$\mathbf{z}_i \in \{0, 1\}^{K_i}, \mathbf{s}_i \ge \mathbf{0}, \xi_i, \xi_i \ge 0 \tag{5e}$$

其中, ξ_i , ζ_i 为额外的非负松弛变量. 当且仅当所有松弛变量 \mathbf{s}_i , ξ_i , ζ_i 在最优解处都为 0, MC i 接受试探解 $(\hat{\mathbf{x}}, \hat{\theta_i})$.

主问题 (2a)-(2d) 和统一子问题 (5a)-(5e) 可以分别表示成如下紧凑的形式:

$$\min_{\mathbf{x}'} \quad \mathbf{a}'^{\mathrm{T}} \mathbf{x}' \tag{6a}$$

s.t.
$$\mathbf{H}(\mathbf{x}') \ge \mathbf{d}'$$
 (6b)

其中 x' 为 x 中元素与 θ_i ($\forall i$) 的聚合, **H** 为定义在 \mathbf{x}' 上的约束.

$$\min_{\mathbf{y}_i, \mathbf{z}_i, \mathbf{s}_i'} \mathbf{1}^{\mathrm{T}} \mathbf{s}_i' \tag{7a}$$

s.t.
$$\mathbf{C}'_{i}\mathbf{y}_{i} + \mathbf{D}'_{i}\mathbf{z}_{i} + \mathbf{s}'_{i} \ge \mathbf{e}'_{i} - \mathbf{B}'_{i}\widehat{\mathbf{x}}'$$
 (7b)

$$\mathbf{z}_i \in \{0, 1\}^{K_i}, \mathbf{s}_i' \ge \mathbf{0} \tag{7c}$$

其中 \mathbf{s}'_i 为 ξ_i , ζ_i 与 \mathbf{s}_i 中所有元素的聚合.

1.2 Benders Cuts for Mixed-Integer Linear Subproblems

通过上述过程可知, 统一子问题 (7a)-(7c) 是一个混合整数规划问题, 常用的基于对偶化的 Benders 割生成方法无法实现原优化问题 (1a)-(1d) 可行域的外线性化 (outer linearization).

引入辅助 01 变量向量 $\tilde{\mathbf{z}}_i$, 限制 \mathbf{z}_i 等于 $\tilde{\mathbf{z}}_i$, 通过这样的变化, 可以将 \mathbf{z}_i 中的所有元素转化为连续变量. 即, 将 (7a)-(7c) 等价转化为如下形式:

$$\min_{\mathbf{y}_i, \mathbf{z}_i, \mathbf{z}'_i} \quad \mathbf{1}^{\mathbf{T}} \mathbf{s}'_i \tag{8a}$$

s.t.
$$\mathbf{C}_{i}'\mathbf{y}_{i} + \mathbf{D}_{i}'\mathbf{z}_{i} + s_{i}' \ge \mathbf{e}_{i}' - \mathbf{B}_{i}'\hat{\mathbf{x}}'$$
 (8b)

$$\mathbf{z}_i = \tilde{\mathbf{z}}_i \quad (\boldsymbol{\nu}_i) \tag{8c}$$

$$\mathbf{s}_i' \ge \mathbf{0} \tag{8d}$$

$$\tilde{\mathbf{z}}_i \in \{0, 1\}^{K_i} \tag{8e}$$

其中, μ_i 和 ν_i 分别为 (8b) 和 (8c) 的对偶变量的向量. 然后, 将 (8a)-(8e) 重写成以下形式:

$$\min_{\tilde{\mathbf{z}}_i \in \{0,1\}^{K_i}} \left\{ \min_{(y_i, z_i, s_i') \in P_i} \mathbf{1}^{\mathrm{T}} s' \right\}$$
(9a)

其中, $P_i = \{\text{Constraints }(8b) - (8d)\}$, 由于转换掉了 \mathbf{z}_i 的整数约束, 所以 (9a) 是一个线性规划问题. 因此, 对内层问题进行对偶化并变换为如下形式:

$$\min_{\tilde{\mathbf{z}}_i \in \{0,1\}^{K_i}} \left\{ \max_{(\boldsymbol{\mu}_i, \boldsymbol{\nu}_i) \in \mathcal{Q}_i} \left\{ \left(\mathbf{e}_i' - \mathbf{B}_i' \hat{\mathbf{x}}' \right)^{\mathrm{T}} \boldsymbol{\mu}_i + \tilde{\mathbf{z}}_i^{\mathrm{T}} \boldsymbol{\nu}_i \right\} \right\}$$
(9b)

其中, $Q_i = \{ \mathbf{C}_i \boldsymbol{\mu}_i = 0, \mathbf{D}_i^{\text{TT}} \boldsymbol{\mu}_i + \boldsymbol{\nu}_i = 0, 0 \le \boldsymbol{\mu}_i \le 1 \}$, 根据极小极大不等式, 可以得到以下关系:

$$\min_{\tilde{\mathbf{z}}_{i} \in \{0,1\}^{K_{i}}} \left\{ \max_{(\boldsymbol{\mu}_{i}, \boldsymbol{\nu}_{i}) \in \mathcal{Q}_{i}} \left\{ \left(\mathbf{e}_{i}^{\prime} - \mathbf{B}_{i}^{\prime} \hat{\mathbf{x}}^{\prime}\right)^{\mathrm{T}} \boldsymbol{\mu}_{i} + \tilde{\mathbf{z}}_{i}^{\mathrm{T}} \boldsymbol{\nu}_{i} \right\} \right\}$$

$$\geq \max_{(\boldsymbol{\mu}_{i}, \boldsymbol{\nu}_{i}) \in \mathcal{Q}_{i}} \left\{ \min_{\tilde{\mathbf{z}}_{i} \in \{0,1\}^{K_{i}}} \left\{ \left(\mathbf{e}_{i}^{\prime} - \mathbf{B}_{i}^{\prime} \hat{\mathbf{x}}^{\prime}\right)^{\mathrm{T}} \boldsymbol{\mu}_{i} + \tilde{\mathbf{z}}_{i}^{\mathrm{T}} \boldsymbol{\nu}_{i} \right\} \right\} \tag{9c}$$

由于 $\tilde{\mathbf{z}}_i$ 是 01 变量, 所以可以通过枚举 $\tilde{\mathbf{z}}_i$ 的 0 和 1 可能的组合, 来确定 $\tilde{\mathbf{z}}_i^{\mathrm{T}} \boldsymbol{\nu}_i$ 的最优值. 即:

$$\min_{\tilde{\mathbf{z}}_i \in \{0,1\}^{K_i}} \tilde{\mathbf{z}}_i^{\mathrm{T}} v_i = \max_{\boldsymbol{\omega}_i \in \mathcal{O}_i} \mathbf{1}^{\mathrm{T}} \boldsymbol{\omega}_i \tag{9d}$$

其中, $\mathcal{O}_i = \{\omega_i \leq 0, \omega_i \leq \nu_i\}$. 于是可以得到 (9c) 右侧的等价表示:

$$\max_{(\boldsymbol{\mu}_{i},\boldsymbol{\nu}_{i})\in\mathcal{Q}_{i}} \left\{ \left(\mathbf{e}_{i}^{\prime} - \mathbf{B}_{i}^{\prime}\hat{\mathbf{x}}^{\prime}\right)^{\mathrm{T}} \boldsymbol{\mu}_{i} + \min_{\tilde{\mathbf{z}}_{i}\in\{0,1\}^{K_{i}}} \tilde{\mathbf{z}}_{i}^{\mathrm{T}} \boldsymbol{\nu}_{i} \right\}$$

$$= \max_{(\boldsymbol{\mu}_{i},\boldsymbol{\nu}_{i})\in\mathcal{Q}_{i}} \left\{ \left(\mathbf{e}_{i}^{\prime} - \mathbf{B}_{i}^{\prime}\hat{\mathbf{x}}^{\prime}\right)^{\mathrm{T}} \boldsymbol{\mu}_{i} + \max_{\boldsymbol{\omega}_{i}\in\mathcal{O}_{i}} \mathbf{1}^{\mathrm{T}} \boldsymbol{\omega}_{i} \right\}$$
(9e)

其中, 右侧就变成了一个线性规划问题. 可以该问题将重写为如下形式 (记为统一的对偶子问题):

$$F_{D,i}^* = \max_{(\boldsymbol{\mu}_i, \boldsymbol{\nu}_i, \boldsymbol{\omega}_i) \in \mathcal{Q}_i \cap \mathcal{O}_i} \left\{ (\mathbf{e}_i' - \mathbf{B}_i' \hat{\mathbf{x}}')^{\mathrm{T}} \boldsymbol{\mu}_i + \mathbf{1}^{\mathrm{T}} \boldsymbol{\omega}_i \right\}$$
(10a)

其中, $F_{D,i}^*$ 为与 $\hat{\mathbf{x}}'$ 有关的最优值, 并且 $\boldsymbol{\mu}_i$ 和 $\boldsymbol{\omega}_i$ 有最优解 $(\hat{\boldsymbol{\mu}}_i, \hat{\boldsymbol{\omega}}_i)$.

因此, MC i 求解 (10a) 以检查 DSO 在每次迭代中传递过来的试探解 $\hat{\mathbf{x}}$, 如果 $F_{D,i}^* > 0$, 则 MC i 返回如下的割 (记为统一 Benders 割):

$$\left(\mathbf{e}_{i}^{\prime} - \mathbf{B}_{i}^{\prime} x^{\prime}\right)^{\mathrm{T}} \hat{\boldsymbol{\mu}}_{i} + \mathbf{1}^{\mathrm{T}} \hat{\boldsymbol{\omega}}_{i} \leq 0 \tag{10b}$$

1.3 Feasibility Restoration Cuts for Mitigating Duality Gap

由于 01 变量 $\tilde{\mathbf{z}}_i$ 的存在,可能会使得 $F_{D,i}^*$ 与统一原始子问题 (7a)-(7c) 之间产生对偶间隙. (7a)-(7c) 的目标函数值为正对应 DSO 传递的试探解 $\hat{\mathbf{x}}'$ 是不可行的,这种情况下应当将该试探解割掉. 考虑以下两种情况:

- 1. $F_{D,i}^*$ 为正, 说明 $\hat{\mathbf{x}}'$ 违反了 (10b), 当后续迭代 (10b) 加入到主问题后, 该试探解将被割掉.
- 2. $F_{D,i}^*$ 非正, 说明 $\hat{\mathbf{x}}'$ 没有违反 (10b), 此时 (10b) 就无法割掉该试探解, 且后续迭代中主问题的最优解就会被卡在 $\hat{\mathbf{x}}'$ 处. 也就是说, 统一 Benders 割还不够紧.

为了解决第二种情况, 必要时 MC i 在求解统一对偶子问题后, 还需要求解如下可行性恢复子问题:

$$F_{F,i}^* = \min_{\mathbf{x}', \mathbf{y}_i, \mathbf{z}_i} \quad \Delta_i(\mathbf{x}', \hat{\mathbf{x}}') \tag{11a}$$

s.t.
$$\mathbf{B}_{i}'\mathbf{x}' + \mathbf{C}_{i}\mathbf{y}_{i}' + \mathbf{D}_{i}'\mathbf{z}_{i} \ge \mathbf{e}_{i}'$$
 (11b)

$$\mathbf{z}_i \in \{0, 1\}^{K_i} \tag{11c}$$

其中 $\Delta_i(\mathbf{x}',\hat{\mathbf{x}}')$ 表示试探解 $\hat{\mathbf{x}}'$ 与满足 (11b)-(11c) 的任意解之间可行性违反程度的度量, 如下所示:

$$\Delta_i(\mathbf{x}', \hat{\mathbf{x}}') = \sum_h \frac{|x_h' - \hat{x}_h'|}{\vartheta_h}$$
(11d)

其中 x'_h 和 \hat{x}'_h 分别为 \mathbf{x}' 和 $\hat{\mathbf{x}}'$ 中的元素, h 为元素的索引, ϑ_h 为与 \hat{x}'_h 相关的归一化因子, 如下所示:

$$\vartheta_h = \begin{cases} |\hat{x}_h'|, & if \, |\hat{x}_h'| > 0\\ \tau, & if \, |\hat{x}_h'| = 0 \end{cases}, \forall h$$

$$\tag{11e}$$

其中 τ 是一个足够小的正数. 引入一个辅助连续变量 σ_h 来表示 $|x_h' - \hat{x}_h'|$, 并将 (11d) 重写为如下形式:

$$\Delta_i(\mathbf{x}', \hat{\mathbf{x}}') = \sum_h \frac{\sigma_h}{\vartheta_h} \tag{11f}$$

并受到如下约束的限制:

$$\sigma_h \ge x_h' - \hat{x}_h', \sigma_h \ge \hat{x}_h' - x_h', \forall h \tag{11g}$$

$$\sigma_h \le \hat{x}_h' - x_h' + M\delta_h, \sigma_h \le x_h' - \hat{x}_h' + M(1 - \delta_h), \forall h$$

$$\tag{11h}$$

为了使 (11d) 中的绝对值表达式更容易处理, 引入 δ_h 和 M, 其中 δ_h 是辅助 01 变量, M 是一个足够大的 正数.

在求解可行性恢复子问题 (11a)-(11c) 后, 在后续迭代中, 将如下割平面 (记为可行性恢复割) 和统一Benders 割一并加入的主问题中:

$$\Delta_i(\mathbf{x}', \widehat{\mathbf{x}}') \ge F_{F,i}^* \tag{11i}$$

1.4 Iteration Process

图 2: 迭代过程示意图

1 文档所给的双层问题及对部分非线性约束的线性化

1.1 上层模型

1.1.1 上层目标函数

以多能互补系统等年值下的系统总投资最小为优化目标:

$$\min\left(C_{cap} + C_{o\&m} + C_{dep}\right) \tag{1}$$

式中, C_{cap} 为系统等年值下的总投资成本, $C_{o\&m}$ 为系统年运维成本, C_{dep} 为系统折旧成本. 系统等年值下的总投资成本计算方式如下:

$$C_{cap} = \sum_{k=1}^{4} C_{cap,k} \cdot \frac{r(1+r)^m}{(1+r)^m - 1}$$
 (2)

式中, r 为折现率, m 为设备的使用年限, $C_{cap,k}$ 分别为风电、光伏、储能电池逆变器、储能电池装置、光热、储热装置投资成本.

$$\begin{cases} C_{cap,1} = C_W \cdot \lambda_W \\ C_{cap,2} = C_V \cdot \lambda_V \\ C_{cap,3} = C_B \cdot \lambda_{B_1} + E_B \cdot \lambda_{B_2} \\ C_{cap,4} = C_S \cdot \lambda_{S_1} + E_S \cdot \lambda_{S_2} \end{cases}$$

$$(3)$$

式中, 所有的 C, E 均为优化变量.

系统运维成本和折旧成本计算方式如下:

$$\begin{cases}
C_{o\&m} = C_{cap} \cdot \gamma_o \\
C_{dep} = \frac{C_{cap}(1 - \gamma_r)}{m}
\end{cases}$$
(4)

1.1.2 上层约束条件

1. 界约束

$$\begin{cases}
0 \le C_W \le C_W^{\text{max}} \\
0 \le C_V \le C_W^{\text{max}} \\
0 \le C_B \le C_B^{\text{max}} \\
0 \le E_B \le E_B^{\text{max}} \\
0 \le C_S \le C_S^{\text{max}} \\
0 \le E_S \le E_S^{\text{max}}
\end{cases}$$
(5)

2. 储能时长约束

$$\begin{cases} E_B = N_B \cdot C_B \\ N_B \ge \underline{N}_B \end{cases} \tag{6}$$

式中, N_B 表示储能电站的储能时长, 为整数优化变量.

1.2 下层模型

1.2.1 下层目标函数

以等年值下的系统收益最大为优化目标:

$$\max I$$
 (7)

系统年综合收益为售电收益, 计算方式如下:

$$\begin{cases} I = I_E \\ I_E = \lambda_E \cdot \sum_{t=1}^T p_L(t) \cdot \Delta t \end{cases}$$
 (8)

1.2.2 下层约束条件

下层模型考虑的约束条件包括系统安全性约束和清洁性约束,以及各类装置的运行约束,现选取部分约束条件进行分析.

1. 外送通道容量约束:

$$p_L(t) = p_W(t) + p_V(t) + p_B(t) + p_S(t), \forall t$$
(9)

$$p_L^{\min} \le p_L(t) \le p_L^{\max}, \forall t$$
 (10)

- 2. 风电/光伏运行约束:
 - (a) 发电功率范围约束:

$$\begin{cases} 0 \le p_W(t) \le \delta_W(t) \cdot C_W \\ 0 \le p_V(t) \le \delta_V(t) \cdot C_V \end{cases}, \forall t$$
(11)

(b) 利用率约束:

$$\sum_{t \in \Theta} (p_W(t) + p_V(t)) \ge (1 - \varepsilon) \cdot \sum_{t \in \Theta} (\delta_W(t)C_W + \delta_V(t)C_V)$$
(12)

- 3. 储能电站运行约束:
 - (a) 充电功率范围约束 (可线性化):

$$p_B(t) = p_B^{dc}(t) - p_B^{ch}(t) \tag{13}$$

$$\begin{cases}
0 \le p_B^{dc}(t) \le u_B^{dc}(t) \cdot C_B \\
0 \le p_B^{ch}(t) \le u_B^{ch}(t) \cdot C_B
\end{cases}, \forall t \tag{14}$$

式 (14) 线性化后的约束条件为:

$$\begin{cases}
0 \le p_B^{dc}(t) \le u_B^{dc}(t) \cdot C_B^{max} \\
0 \le p_B^{ch}(t) \le u_B^{ch}(t) \cdot C_B^{max} \\
0 \le p_B^{dc}(t) \le C_B \\
0 \le p_B^{ch}(t) \le C_B
\end{cases}, \forall t \tag{15}$$

(b) 充放电状态约束:

$$u_R^{dc}(t) + u_R^{ch}(t) \le 1, \forall t \tag{16}$$

(c) 荷电状态约束:

$$e_B(t+1) = e_B(t) + \gamma_B^{ch} p_B^{ch}(t) - p_B^{dc}(t) / \gamma_B^{dc}, \forall t$$
 (17)

(d) 储能容量范围约束:

$$0 \le e_B(t) \le E_B, \forall t \tag{18}$$

- 4. 光热电站及储热系统运行约束:
 - (a) 集热器热量平衡约束:

$$h_s^{in}(t) = h_s^{cr}(t) + h_s^{ch}(t), \forall t$$
 (19)

(b) 储热/放热功率范围约束:

$$\begin{cases} 0 \le h_S^{ch}(t) \le \bar{h}_S^{ch} \\ 0 \le h_S^{dc}(t) \le \bar{h}_S^{dc} \end{cases}, \forall t$$

$$(20)$$

(c) 热-电功率转化约束:

$$p_s(t) = \eta_s \cdot h_s(t), \forall t \tag{21}$$

(d) 发电功率范围约束 (可线性化):

$$u_S(t) \cdot \delta_S^{\min} \cdot C_S \le p_S(t) \le u_S(t) \cdot \delta_S^{\max} \cdot C_S, \forall t$$
 (22)

式 (22) 线性化后的约束条件为:

$$\begin{cases} u_S(t) \cdot \delta_S^{\min} \cdot C_S^{\min} \le p_S(t) \le u_S(t) \cdot \delta_S^{\max} \cdot C_S^{\max} \\ \delta_S^{\min} \cdot C_S - M \cdot (1 - u_S(t)) \le p_S(t) \le \delta_S^{\max} \cdot C_S \end{cases}, \forall t$$
(23)

(e) 发电热量平衡约束:

$$h_S^{dc}(t) = h_S(t) + v_S(t) \cdot h_S^g, \forall t \tag{24}$$

(f) 运行状态逻辑约束:

$$\begin{cases} u_S(t) - u_S(t-1) - \nu_S(t) \le 0 \\ u_S(t) - \nu_S(t) \ge 0 \end{cases}, \forall t$$
 (25)

(g) 储热装置容量范围约束:

$$0 \le e_S(t) \le E_S, \forall t \tag{26}$$

(h) 储热装置热量平衡约束:

$$e_S(t+1) = e_S(t) + \gamma_S^{ch} h_S^{ch}(t) - h_S^{dc}(t) / \gamma_S^{dc} - h_S^l(t), \forall t$$
 (27)

(i) 储热装置外送能力范围约束:

$$0 \le h_S^l(t) \le \bar{h}_S^l, \forall t \tag{28}$$

- 5. 储能装置与风电/光伏弃电状态的耦合运行策略和约束:
 - (a) 风电/光伏弃电状态约束 (可线性化):

$$(1 - x(t)) \cdot (\overline{p}_W(t) + \overline{p}_V(t)) \le p_W(t) + p_V(t) \le (2 - x(t)) \cdot (\overline{p}_W(t) + \overline{p}_V(t)) - m, \forall t \in \Theta \quad (29)$$

式 (29) 线性化后的约束条件为:

$$\begin{cases}
(\overline{p}_W(t) + \overline{p}_V(t)) - x(t) \cdot M \le p_W(t) + p_V(t) \le 2 \cdot (\overline{p}_W(t) + \overline{p}_V(t)) - m \\
0 \le p_W(t) + p_V(t) \le (\overline{p}_W(t) + \overline{p}_V(t)) - m + (1 - x(t)) \cdot M
\end{cases}, \forall t \in \Theta \qquad (30)$$

(b) 储能电站的运行策略约束 (可线性化):

$$\begin{cases}
0 \le p_B^{dc}(t) \le (1 - x(t)) \cdot C_B \\
0 \le p_B^{ch}(t) \le x(t) \cdot C_B
\end{cases}, \forall t \in \Theta$$
(31)

式 (31) 线性化后的约束条件为:

$$\begin{cases}
0 \leq p_B^{dc}(t) \leq (1 - x(t)) \cdot C_B^{max} \\
0 \leq p_B^{ch}(t) \leq x(t) \cdot C_B^{max} \\
0 \leq p_B^{dc}(t) \leq C_B \\
0 \leq p_B^{ch}(t) \leq C_B
\end{cases}, \forall t \in \Theta$$
(32)

2 对所给双层问题的讨论

2.1 双层规划的一般形式

双层规划问题的一般形式如下,即一个优化问题被另一个优化问题所约束:

$$\min_{x \in \mathcal{X}} \quad f_1(x, y^*) \tag{33}$$

s.t.
$$g_1(x, y^*) \le 0$$
 (34)

$$h_1(x, y^*) = 0 (35)$$

$$y^* \in \arg\min_{y \in Y} \{ f_2(x, y)$$
 (36)

s.t.
$$g_2(x,y) \le 0$$
 (37)

$$h_2(x,y) = 0\} (38)$$

一般来说下层的决策会影响上层的决策结果。以下为双层规划的一般解法示意图:

- 1. Choose an upper level vector of parameters \vec{x} .
- 2. Solve the lower level problem, i.e., find

$$\vec{y} \in \Psi(\vec{x}) = \arg\min\{f(\vec{x}, \vec{z}) : \vec{z} \in Y\}$$

3. Evaluate the feasible solution $F(\vec{x}, \vec{y}^*)$.

图 3: 双层规划示意图

2.2 文档所给双层问题的矩阵表示

1. 上层问题:

$$\min_{\boldsymbol{x} \in \mathbf{X}} \quad \boldsymbol{g}^T \boldsymbol{x} \tag{39}$$

s.t.
$$G(x) \ge d$$
 (40)

2. 下层问题:

$$\min_{\boldsymbol{y} \in F(\boldsymbol{x})} \quad \boldsymbol{h}^T \boldsymbol{y} \tag{41}$$

s.t.
$$Bx + Cy \ge e$$
 (42)

其中, F(x) 为下层可行域.

对于这个双层问题, 根据双层规划的一般解法, 可以假设上层问题传入下层问题的 $x = \hat{x}$, 不妨设 \hat{x} 传入下层问题后下层问题是可行的。

 \hat{x} 传入下层问题后可得如下形式的下层问题:

$$\min_{\boldsymbol{y} \in \boldsymbol{F}(\hat{\boldsymbol{x}})} \quad \boldsymbol{h}^T \boldsymbol{y} \tag{43}$$

s.t.
$$B\hat{x} + Cy \ge e$$
 (44)

假设此问题的最优解为 y^* , 将 y^* 传回上层问题, 结合 \hat{x} , 就获取到了一个上层问题的可行解 (\hat{x}, y^*) , 通过这种方式就可以获取到上层问题的所有可行解, 从而可以求解上层问题.

但(39)所表示的上层问题的目标函数中并没有 y, 因此上层问题的最优值与 y 没有关系, 所以这个双层问题可能并不能完成本来的目的。

故而考虑,将下层问题的目标函数加入到上层问题的目标函数中,从而得到如下形式新的双层问题:

1. 上层问题:

$$\min_{\boldsymbol{x} \in \boldsymbol{X}} \quad \boldsymbol{g}^T \boldsymbol{x} + \boldsymbol{h}^T \boldsymbol{y} \tag{45}$$

s.t.
$$G(x) \ge d$$
 (46)

其中, y 取值范围为下层问题的最优解集.

2. 下层问题:

$$\min_{\boldsymbol{y} \in \boldsymbol{F}(\boldsymbol{x})} \quad \boldsymbol{h}^T \boldsymbol{y} \tag{47}$$

s.t.
$$Bx + Cy \ge e$$
 (48)

其中, F(x) 为下层可行域.

2.3 单层问题

以下为所给文档中给出的单层问题:

4.1 模型概述

式(1)至式(28)共同组成了多能互补发电系统电/热/氢储能容量优化模型,优化变量包括电-热容量、系统各元件在各时段的运行状态等。由于运行阶段 0-1 变量比较多,可先不考虑式(23)、(27)-(28),但约束(14)中仍有 0-1 变量。

将下层目标函数写为:

$$\min(-I) \tag{29}$$

则多能互补发电系统电/热/氢储能容量优化双层模型可以概述为:

$$\min_{\mathbf{x}, \mathbf{y}, \mathbf{z}} \mathbf{g}^{\mathsf{T}} \mathbf{x} + \mathbf{h}^{\mathsf{T}} \mathbf{y}$$
s.t.
$$\mathbf{A} \mathbf{x} \ge \mathbf{b}$$

$$\mathbf{C} \mathbf{x} + \mathbf{D} \mathbf{y} + \mathbf{E} \mathbf{z} \ge \mathbf{e}$$

$$\mathbf{z} \in \{0, 1\}$$
(30)

式中: \mathbf{x} 表示配置决策变量,包括风电场装机容量 C_W 、光伏电站装机容量 C_V 、储能电站装机容量 C_B 、储能电站电池容量 E_B 、光热电站装机容量 C_S 、储热装置容量 E_S 。 \mathbf{y} 表示运行决策变量,包括风电场发电功率 $p_W(t)$ 、光伏电站发电功率 $p_V(t)$ 、储能电站发电功率 $p_B(t)$ 、储能电站蓄电 $e_B(t)$ 、光热电站发电功率 $p_S(t)$ 、储热装置容量 $E_S(t)$ 。 \mathbf{z} 表示运行 0-1 变量,包括储能充电状态变量 $u_B^{ab}(t)$ 、放电状态变量 $u_B^{ab}(t)$ 、光热电站运行状态变量 $u_S(t)$ 、光热电站启机状态 $v_S(t)$ 、风电/光伏弃电状态 x(t)。目标函数中 $\mathbf{g}^T\mathbf{x}$ 对应式(1), $\mathbf{h}^T\mathbf{y}$ 对应式(29)、约束 $\{\mathbf{A}\mathbf{x}\geq\mathbf{b}\}$ 对应配置相关约束,对应约束(5)、(6)。约束 $\{\mathbf{C}\mathbf{x}+\mathbf{D}\mathbf{y}+\mathbf{E}\mathbf{z}\geq\mathbf{e}\}$ 对应运行相关约束,包括配置和运行耦合相关约束、含 0-1 变量的运行相关约束等,对应约束(9)-(26)。

图 4: 单层问题

为了表述简洁这里将下层问题中的变量统一使用 y 表示, 不特意区分 01 变量和连续变量.

$$\min_{\boldsymbol{x},\boldsymbol{y}\in\boldsymbol{F}(\boldsymbol{x},\boldsymbol{y})} \quad \boldsymbol{g}^T\boldsymbol{x} + \boldsymbol{h}^T\boldsymbol{y} \tag{49}$$

s.t.
$$G(x) \ge d$$
 (50)

$$Bx + Cy \ge e \tag{51}$$

其中, $F(x,y) = \{(x,y) | x \in X, y \in F(x) \}.$

2.4 证明新的双层问题与单层问题的最优值相同

要证:

$$\min_{\boldsymbol{x} \in \boldsymbol{X}} \min_{\boldsymbol{y} \in \boldsymbol{F}(\boldsymbol{x})} (\boldsymbol{g}^T \boldsymbol{x} + \boldsymbol{h}^T \boldsymbol{y}) = \min_{\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})} (\boldsymbol{g}^T \boldsymbol{x} + \boldsymbol{h}^T \boldsymbol{y})$$
(52)

(52)可以表示为:

$$\min_{\boldsymbol{x} \in \boldsymbol{X}} \min_{\boldsymbol{y} \in \boldsymbol{F}(\boldsymbol{x})} f(\boldsymbol{x}, \boldsymbol{y}) = \min_{\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})} f(\boldsymbol{x}, \boldsymbol{y}), \quad \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}) = \{(\boldsymbol{x}, \boldsymbol{y}) | \boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{y} \in \boldsymbol{F}(\boldsymbol{x})\}$$
(53)

1. 假设 (x^*, y^*) 为 LHS 的最优解, 同时 (x^*, y^*) 也是 RHS 的可行解, 则有:

$$LHS \le RHS \tag{54}$$

2. 假设 (x^*,y^*) 为 RHS 的最优解, 那么 $\min_{y\in F(x^*)}f(x^*,y)$ 有最优解 (x^*,\widetilde{y}) , 且有:

$$f(\boldsymbol{x}^*, \widetilde{\boldsymbol{y}}) \ge f(\boldsymbol{x}^*, \boldsymbol{y}^*) \tag{55}$$

所以:

$$LHS \ge RHS \tag{56}$$

综上,由(54)和(56)可得:

$$LHS = RHS \tag{57}$$

3 文章中的 Benders 分解存在的问题

文章中只有可行性恢复子问题, 保证了可行性, 但没有保证最优性。

4 对模型中 $E_B = N_B \cdot C_B$ 约束的处理

初步可以使用枚举的方法进行测试, 通过求解多个 MILP 问题实现, 即分别令 $N_B = \underline{N}_B, \underline{N}_B + 1, \cdots$,求解对应的 MILP 问题, 并统计各个问题的目标函数值, 选取最优的目标函数值对应的 N_B 值作为最终的 N_B 值.

5 结论

- 1. 目前双层模型的本质是单层模型, 单层模型的最优解即为双层模型的最优解。
- 2. Benders 分解适用于单层模型的问题,且模型分解后的子问题中不应含有整数变量。