EMERGENT TOOL **USE FROM MULTI-AGENT AUTOCURRICULA**

Presentation Team: Team 6

3076 Sotiris Ftiakas

3108 Grigoris Barbas

3184 Konstantinos Loizou

3187 Loukas Chatzivasili

3195 Nikolas Petrou

INTRODUCTION

GENERAL ASPECTS

- Simple game of hide-and-seek
- Multi-agent autocurricula
- Reinforcement Learning
- Creators Researchers:
 - 6 Members of OpenAI
 - 1 Member of Google Brain

HIDE AND SEEK GAME

WHAT DOES THE GAME CONSISTS OF?

2 Teams

Hiders and Seekers

Immovable Objects

Randomly generated walls and rooms

Moveable Objects

Ramps, Boxes and interior walls

Preparation phase

Hiders can move Seekers are immobilized

ENVIRONMENT'S SIMULATION

Physics-based environment (MUJOCO engine)
For each episode:

• Hiders: 1-3

Seekers: 1-3

Movable objects: 5-11

Randomly generated static walls and rooms

No supervision for objects

Preparation phase: 40% of the episode

AGENTS' SIMULATION

• Simulated as spherical objects

135-degree front vision

Sensors around agents

Observe other agents

 Team-based visibility reward function

Hiders

+1 if all hiders are hidden

-1 otherwise

Seekers

-1 if all hiders are hidden

+1 otherwise

AGENTS' ACTION TYPES

Move in x, y axis and rotate along z-axis

See objects in their line of sight

Sense distance to objects, walls, and other agents using a sensor

Grab and move objects

Lock objects in place

OPTIMIZATION DETAILS

POLICY ARCHITECTURE

- Ego-centric policy
- x, v for state and velocity
- Entities embedded with fully connected dense layers
- Shared weights on same entity types
- Embedded entities passed through residual self-attention block
- Average pooling, action decision from LSTM
- Normalization layer to every hidden layer

layer 4 attention Size of embedding layer 128 heads of size 32 Generate masks from frontal vision cone and line of sight Entity Embeddings Circular 1D Fully Connected Connected Masked Residual Self Fully Connected # boxes Masked Average Pooling Fully Connected # ramps Grabbing Locking

Residual attention

POLICY OPTIMIZATION

- Stochastic Policy
- Proximal Policy Optimization (PPO)
 - Policy Gradient Variant

$$L = \mathbb{E}\big[\min\big(l_t(\theta)\hat{A}_t, clip(l_t(\theta), 1 - \epsilon, 1 + \epsilon)\hat{A}_t\big], \qquad l_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{old}(a_t|s_t)}$$

- Generalized Advantage Estimation (GAE)
 - Advantage Function

$$\hat{A}_{t}^{H} = \sum_{l=0}^{H} (\gamma \lambda)^{l} \delta_{t+l}, \delta_{t+l} = r_{t+l} + \gamma V(s_{t+l+1}) - V(s_{t+l})$$

LARGE SCALE TRAINING

- Critical role in enabling progression
- Larger batch sizes speeds up convergence
- Default batch size 64,000
- Batch sizes of 16,000 8,000 never converged

EMERGENT BEHAVIOR

SIX DISTINCT STRATEGIES

- Run away and chase
- Shelter building
- Ramp use
- Ramp defense
- Box surfing
- Surf defense

Strategies used by seekers

RUN AWAY AND CHASE

- Hiders learn to avoid sight of seekers
- Seekers learn to keep sight of hiders
- Objects are not used

SHELTER / FORT BUILDING

- Learn to modify the environment
- Move boxes to create shelters
- Put boxes against the walls and doors
- Lock boxes in place

RAMP USE

- Learn to modify the environment
- Move ramps next to shelter
- Climb over ramps and jump in shelter

RAMP DEFENSE

- Lock ramps away from the shelter
- Lock ramps inside the shelter

BOX SURFING

- Push boxes next to locked ramps
- Use the ramps to climb on boxes
- Surf boxes to shelter and jump in

SURF DEFENSE

- Lock ramps
- Lock extra boxes to defend surfing
- Create shelter with the remaining boxes

COLLABORATION

- Agents divide the labor
- Hiders pass ramps to one another
- Hiders carry their own box for construction

RANDOMIZATION OVER COMPONENTS

- Reduced randomization results:
 - □ Fewer stages of evolution
 - Less sophisticated strategies

team size	# boxes	box shape	initial location	walls	emergence
1-3	3-9	random	random	random	6 stages
1	3-9	random	random	random	6 stages
1	7	fixed	random	random	6 stages
1-3	3-9	random	random	no walls	4 stages
1	3-9	random	random	no walls	2 stages*
1	7	fixed	random	no walls	2 stages*
1	7	fixed	fixed	no walls	2 stages

^{*} Hiders run away and use boxes as movable shields.

EVALUATION

ASSESSMENT

- Assess agent capabilities
- Testing on different domain-specific tasks
- 3 types of agents:
 - From scratch
 - 2. Pretrained with Multi-Agent Hide-And-Seek policy
 - 3. Pretrained with Count-Based Intrinsic Motivation policy
- 5 total benchmark intelligence tests

INTELLIGENCE TESTS

Cognition and Memory Tests

Object Counting

Goal: Memory and sense of object permanence

Lock and Return

Goal: Long-term memory

Sequential Lock

Goal: Lock boxes in a particular order

INTELLIGENCE TESTS

Manipulation Tests

Blueprint Construction

Goal: Move boxes to the target location

Shelter Construction

Goal: Construct a shelter around the cylinder

RESULTS

Cognition and Memory Tests

Manipulation Tests

ALTERNATIVE GAME MODE

- Secondary objective for Hiders Food rewards
- Conditions:
 - Eat food after preparation phase only
 - □ Food should be close and visible
 - No food reward while being seen by Seekers
- Emergent Strategy: Build fort around food location
- 4 levels of skill progression

STATISTICAL GRAPHS

ZERO-SHOT GENERALIZATION

ZERO-SHOT GENERALIZATION

- Trained policies zero-shot generalize to larger environments
- Hider reward as a measure for generalization performance
- Increased hiders gradual decline in hider reward
- Increased ramps gradual decline in hider reward
- Increased boxes stable-slow decline in hider reward

REVIEW

REVIEW

Self-play can lead to emergent autocurricula in agent strategy

Multi-agent autocurricula develop humanrelevant skills

Open-sourced environment

SOURCES

- Bowen, B., Ingmar, K., Todor, M., Yi, W., Glenn, P., Bob, M., & Igor, M.,
 EMERGENT TOOL USE FROM MULTI-AGENT AUTOCURRICULA.
 ICLR. (2020)
- John, S., Filip, W., Prafulla, D., Alec, R., Oleg, K., Proximal Policy
 Optimization Algorithms, (2017)
- OpenAI Emergent Tool Use

