Example 50.5. Consider the Linear Program (P)

minimize
$$c^{\top}v$$

subject to $Av \leq b, v \geq 0$,

where A is an $m \times n$ matrix. The constraints $v \ge 0$ are rewritten as $-v_i \le 0$, so we introduce Lagrange multipliers $\mu \in \mathbb{R}^m_+$ and $\nu \in \mathbb{R}^n_+$, and we have the Lagrangian

$$L(v, \mu, \nu) = c^{\top}v + \mu^{\top}(Av - b) - \nu^{\top}v$$

= $-b^{\top}\mu + (c + A^{\top}\mu - \nu)^{\top}v$.

The linear function $v \mapsto (c + A^{\top}\mu - \nu)^{\top}v$ is unbounded below unless $c + A^{\top}\mu - \nu = 0$, so the dual function $G(\mu, \nu) = \inf_{v \in \mathbb{R}^n} L(v, \mu, \nu)$ is given for all $\mu \geq 0$ and $\nu \geq 0$ by

$$G(\mu, \nu) = \begin{cases} -b^{\top} \mu & \text{if } A^{\top} \mu - \nu + c = 0, \\ -\infty & \text{otherwise.} \end{cases}$$

The domain of G is a proper subset of $\mathbb{R}^m_+ \times \mathbb{R}^n_+$.

Observe that the value $G(\mu, \nu)$ of the function G, when it is defined, is independent of the second argument ν . Since we are interested in maximizing G, this suggests introducing the function G of the single argument μ given by

$$\widehat{G}(\mu) = -b^{\mathsf{T}}\mu,$$

which is defined for all $\mu \in \mathbb{R}^m_+$.

Of course, $\sup_{\mu \in \mathbb{R}^m_+} \widehat{G}(\mu)$ and $\sup_{(\mu,\nu) \in \mathbb{R}^m_+ \times \mathbb{R}^n_+} G(\mu,\nu)$ are generally different, but note that $\widehat{G}(\mu) = G(\mu,\nu)$ iff there is some $\nu \in \mathbb{R}^n_+$ such that $A^\top \mu - \nu + c = 0$ iff $A^\top \mu + c \geq 0$. Therefore, finding $\sup_{(\mu,\nu) \in \mathbb{R}^m_+ \times \mathbb{R}^n_+} G(\mu,\nu)$ is equivalent to the constrained Problem (D_1)

maximize
$$-b^{\top}\mu$$

subject to $A^{\top}\mu \ge -c, \ \mu \ge 0.$

The above problem is the dual of the Linear Program (P).

In summary, the dual function G of a primary Problem (P) often contains hidden inequality constraints that define its domain, and sometimes it is possible to make these domain constraints $\psi_1(\mu) \leq 0, \ldots, \psi_p(\mu) \leq 0$ explicit, to define a new function \widehat{G} that depends only on q < m of the variables μ_i and is defined for all values $\mu_i \geq 0$ of these variables, and to replace the Maximization Problem (D), find $\sup_{\mu \in \mathbb{R}^m_+} G(\mu)$, by the constrained Problem (D_1)

maximize
$$\widehat{G}(\mu)$$

subject to $\psi_i(\mu) \leq 0$, $i = 1, \dots, p$.

Problem (D_1) is different from the Dual Program (D), but it is equivalent to (D) as a maximization problem.