1 Quantum Mechanincs In 1D

2 Quantum Erasers

3 Spherical Harmonics

3.1 Feynman's Trick

Consider the Spherical Harmonic,

$$Y_m^{\ell}(\theta,\phi) = \langle \theta, \phi | \ell, m \rangle$$

Now denote the state with total angular momentum $\ell(\ell+1)$ and component m along the axis defined by (θ, ϕ) as $|\ell, m, \theta, \phi\rangle$. That is,

$$|\ell, m, \theta, \phi\rangle = R(\theta, \phi) |\ell, m\rangle$$

These states with fixed (θ, ϕ) and ℓ varying over m form a complete set of states for the fixed ℓ -multiplet subspace. thus,

$$Y_m^{\ell}(\theta,\phi) = \langle \theta, \phi | \ell, m \rangle = \sum_{m'=-\ell}^{\ell} \langle \theta, \phi | \ell, m', \theta, \phi \rangle \langle \ell, m', \theta, \phi | \ell, m \rangle$$

However, it is easily shown that,

$$\langle \theta, \phi | \ell, m', \theta, \phi \rangle = \langle +z | R(\theta, \phi)^{\dagger} R(\theta, \phi) | \ell, m' \rangle = \langle +z | \ell, m' \rangle = Y_{m'}^{\ell}(0, 0)$$

is zero unless m=0. Thus we find,

$$Y_m^{\ell}(\theta,\phi) = Y_0^{\ell}(0,0) \langle \ell, 0, \theta, \phi | \ell, m \rangle = Y_0^{\ell}(0,0) \langle \ell, 0 | R(\theta,\phi)^{\dagger} | \ell, m \rangle$$

which agrees with Feynman's formula.

4 Multi-Electron Atoms

4.1 The Born-Oppenheimer Approximation

4.2 Exchange Energies

First consider two electrons in a central nuclear potential with Hamiltonian,

$$\hat{H} = \hat{H}_1 + \hat{H}_2 + \frac{e^2}{|r_1 - r_2|} = \frac{\hat{p}_1^2}{2m_e} + \frac{\hat{p}_2^2}{2m_e} - \frac{Ze^2}{r_1} - \frac{Ze^2}{r_2} + \frac{e^2}{|r_1 - r_2|}$$

where $\hat{H}_1 = \hat{H}_e \otimes I_2$ and $\hat{H}_2 = I_1 \otimes \hat{H}_e$ and,

$$\hat{H}_e = \frac{\hat{p}^2}{2m_e} - \frac{Ze^2}{r}$$

Consider two electrons in states $|\psi\rangle$ and $|\phi\rangle$ given by the slater determinant,

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left[|\psi\rangle \otimes |\phi\rangle - |\phi\rangle \otimes |\psi\rangle \right]$$

Note we may require $\langle \psi | \psi \rangle = \langle \phi | \phi \rangle = 1$ and $\langle \psi | \phi \rangle = 0$ without loss of generality since any parallel term is removed in the antisymmetrization. Now consider,

$$\begin{split} \langle \Psi | \, \hat{H} \, | \Psi \rangle &= \frac{1}{2} \left[\langle \psi | \, \hat{H}_e \, | \psi \rangle + \langle \phi | \, \hat{H}_e \, | \phi \rangle + \langle \psi | \otimes \langle \phi | \, \frac{e^2}{|r_1 - r_2|} \, | \psi \rangle \otimes | \phi \rangle \right] \\ &- \frac{1}{2} \left[\langle \psi | \, \hat{H}_e \, | \phi \rangle \, \langle \phi | \psi \rangle + \langle \psi | \phi \rangle \, \langle \phi | \, \hat{H}_e \, | \psi \rangle + \langle \psi | \otimes \langle \phi | \, \frac{e^2}{|r_1 - r_2|} \, | \phi \rangle \otimes | \psi \rangle \right] \\ &- \frac{1}{2} \left[\langle \phi | \, \hat{H}_e \, | \psi \rangle \, \langle \psi | \phi \rangle + \langle \phi | \psi \rangle \, \langle \psi | \, \hat{H}_e \, | \phi \rangle + \langle \phi | \otimes \langle \psi | \, \frac{e^2}{|r_1 - r_2|} \, | \psi \rangle \otimes | \phi \rangle \right] \\ &+ \frac{1}{2} \left[\langle \phi | \, \hat{H}_e \, | \phi \rangle + \langle \psi | \, \hat{H}_e \, | \psi \rangle + \langle \phi | \otimes \langle \psi | \, \frac{e^2}{|r_1 - r_2|} \, | \phi \rangle \otimes | \psi \rangle \right] \end{split}$$

We may combine these matrix ellements to find,

$$\langle \Psi | \hat{H} | \Psi \rangle = \langle \psi | \hat{H}_e | \psi \rangle + \langle \phi | \hat{H}_e | \phi \rangle + \langle \psi | \otimes \langle \phi | \frac{e^2}{|r_1 - r_2|} | \psi \rangle \otimes | \phi \rangle$$
$$- \langle \phi | \otimes \langle \phi | \frac{e^2}{|r_1 - r_2|} | \phi \rangle \otimes | \phi \rangle$$

This is the energy we expect for the first electron in state $|\psi\rangle$ and the second in state $|\phi\rangle$ except for the last term, the exchange energy,

$$E_{\text{ex}} = -\langle \phi | \otimes \langle \phi | \frac{e^2}{|r_1 - r_2|} | \phi \rangle \otimes | \phi \rangle = -\int d^3 x \, d^3 y \, \phi^*(x) \psi^*(y) \frac{e^2}{|\vec{x} - \vec{y}|} \psi(x) \phi(y)$$
$$-\int d^3 x \, d^3 y \, \frac{e^2}{|\vec{x} - \vec{y}|} \psi(x) \phi^*(x) \psi^*(y) \phi(y)$$

4.3 Hartee-Fock Theory

The wavefunction of an arbitrary n-electron state must be totally antisymmetric. Given an orthonormal set of n single-electron states the closest mult-electron state which satisfies the proper fermionic condition is given by a Slater determinant,

$$\Psi(x_1, \dots, x_n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \psi_1(x_1) & \psi_1(x_2) & \dots & \psi_1(x_n) \\ \psi_2(x_1) & \psi_2(x_2) & \dots & \psi_2(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_n(x_1) & \psi_n(x_2) & \dots & \psi_n(x_n) \end{vmatrix}$$

Where ψ_i is the *i*-th spin-orbital i.e. the variable x_i lives in the product space of position and spin degrees of freedom. Explicity, $x = (\vec{r}, s)$ and $\psi_i(x) = (\langle \vec{r} | \otimes \langle s |) | \psi_i \rangle$. Recall that this multi-electron state is only properly normalized if we require that,

$$\langle \psi_i | \psi_j \rangle = \delta_{ij}$$

Our first task is to compute the energy of such a Slater determinant. Recall that, under the Born-Oppenhiemer approximation, the multi-electron Hamiltonian is,

$$\hat{H} = \sum_{i=1}^{n} \left[\frac{\vec{p}_i^2}{2m_e} - \sum_{j=1}^{N} \frac{Z_j e^2}{|\vec{r}_i - \vec{R}_j|} \right] + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} = \sum_{i=1}^{n} \hat{H}_S^{(i)} + \frac{1}{2} \sum_{i \neq j} \hat{H}_R^{(ij)}$$

where \hat{H}_S , the single particle Hamiltonian acts on the product space as a product, and \hat{H}_R only mixes pairs of spaces. Thus we have,

$$E_{\Psi} = \langle \Psi | \hat{H} | \Psi \rangle = \sum_{i=1}^{n} \langle \Psi | \hat{H}_{S}^{(i)} | \Psi \rangle + \frac{1}{2} \sum_{i \neq j} \langle \Psi | \hat{H}_{R}^{(ij)} | \Psi \rangle$$

$$= \frac{1}{n!} \sum_{\sigma, \tau \in S_{n}} \sum_{i=1}^{n} (-1)^{\operatorname{sign}(\sigma) + \operatorname{sign}(\tau)} \langle \psi_{\sigma(1)} | \otimes \cdots \otimes \langle \psi_{\sigma(n)} | \hat{H}_{S}^{(i)} | \psi_{\tau(1)} \rangle \otimes \cdots \otimes | \psi_{\tau(n)} \rangle$$

$$+ \frac{1}{2n!} \sum_{\sigma, \tau \in S_{n}} \sum_{i \neq j} (-1)^{\operatorname{sign}(\sigma) + \operatorname{sign}(\tau)} \langle \psi_{\sigma(1)} | \otimes \cdots \otimes \langle \psi_{\sigma(n)} | \hat{H}_{R}^{(ij)} | \psi_{\tau(1)} \rangle \otimes \cdots \otimes | \psi_{\tau(n)} \rangle$$

Now if $\sigma \neq \tau$ then there are at least two values which differ between them (since σ and τ are permuations). Therefore, the first inner product is zero unless $\sigma = \tau$. Thus, the single particle Hamiltonian gives a contribution,

$$\frac{1}{n!} \sum_{\sigma \in S_n} \sum_{i=1}^n \left\langle \psi_{\sigma(1)} \middle| \otimes \cdots \otimes \left\langle \psi_{\sigma(n)} \middle| \hat{H}_S^{(i)} \middle| \psi_{\sigma(1)} \right\rangle \otimes \cdots \otimes \left| \psi_{\sigma(n)} \right\rangle = \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{i=1}^n h_{\sigma(i)} = \sum_{i=1}^n h_i$$

where

$$h_i = \langle \psi_i | \hat{H}_S | \psi_i \rangle$$

since the sum over such values is invariant under permutation. Now consider the two-electron repulsion terms,

$$\frac{1}{n!} \sum_{\sigma, \tau \in S_n} \sum_{i \neq j} (-1)^{\operatorname{sign}(\sigma) + \operatorname{sign}(\tau)} \left\langle \psi_{\sigma(1)} \right| \otimes \cdots \otimes \left\langle \psi_{\sigma(n)} \right| \hat{H}_R^{(ij)} \left| \psi_{\tau(1)} \right\rangle \otimes \cdots \otimes \left| \psi_{\tau(n)} \right\rangle$$

Since all but two of the single-particle states must correspond for the inner product to be nonzero, the only non-equal option is that σ and τ differ by a single transposition, that is, $\sigma = \tau \circ (a \ b)$. Thus, the repulsion terms become,

$$\frac{1}{n!} \sum_{\sigma \in S_n} \sum_{i \neq j} \left\langle \psi_{\sigma(1)} \middle| \otimes \cdots \otimes \left\langle \psi_{\sigma(n)} \middle| \hat{H}_R^{(ij)} \middle| \psi_{\sigma(1)} \right\rangle \otimes \cdots \otimes \middle| \psi_{\sigma(n)} \right\rangle
- \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{a < b} \sum_{i \neq j} \left\langle \psi_{\sigma(1)} \middle| \otimes \cdots \otimes \left\langle \psi_{\sigma(n)} \middle| \hat{H}_R^{(ij)} \middle| \psi_{\sigma(1)} \right\rangle \otimes \cdots \otimes \middle| \psi_{\sigma(n)} \right\rangle
\frac{1}{n!} \sum_{\sigma \in S_n} \sum_{i \neq j} J_{\sigma(i)\sigma(j)} - \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{i \neq j} K_{\sigma(i)\sigma(j)}
= \sum_{i \neq j} [J_{ij} - K_{ij}]$$

where,

$$J_{ij} = \langle \psi_i | \otimes \langle \psi_j | H_R | \psi_i \rangle \otimes | \psi_j \rangle = \int d^3 x_1 d^3 x_2 \, \psi_i^*(x_1) \psi_j^*(x_2) \frac{e^2}{|\vec{r}_1 - \vec{r}_2|} \psi_i(x_1) \psi_j(x_2)$$
$$K_{ij} = \langle \psi_i | \otimes \langle \psi_j | H_R | \psi_j \rangle \otimes | \psi_i \rangle = \int d^3 x_1 d^3 x_2 \, \psi_i^*(x_1) \psi_j^*(x_2) \frac{e^2}{|\vec{r}_1 - \vec{r}_2|} \psi_j(x_1) \psi_i(x_2)$$

Note that if $|\psi_i\rangle$ and $|\psi_j\rangle$ are product states in the spin degrees of freedom then K_{ij} is zero for opposite spin states. Thus, finally, the energy becomes,

$$E_{\Psi} = \langle \Psi | \hat{H} | \Psi \rangle = \sum_{i=1}^{n} h_i + \frac{1}{2} \sum_{i,j=1}^{n} [J_{ij} - K_{ij}]$$

Note that we may include the i = j cross terms noting that $K_{ii} = J_{ii}$. Now we use the variational principal with respect to the states $|\psi_1\rangle$ subject to the constraint,

$$\langle \psi_1 | \psi_j \rangle = \delta_{ij}$$

Therefore we introduce Largange multipliers and set the variation to zero,

$$\frac{\delta}{\delta \psi_i^*(x)} \left[\langle \Psi | \hat{H} | \Psi \rangle - \sum_{i,j=1}^n (\langle \psi_i | \psi_j \rangle - \delta_{ij}) \varepsilon_{ij} \right] = 0$$

Therefore,

$$\left(\hat{H}_S + \sum_{j=1}^n [\hat{J}_j - \hat{K}_j]\right) \psi_i(x) = \sum_{j=1}^n \varepsilon_{ij} \psi_j(x)$$

where,

$$\hat{J}_j \psi(x) = \left[\int d^3 x_j \, \psi_j^*(x_j) \frac{e^2}{|\vec{r} - \vec{r}_j|} \psi_j(x_j) \right] \psi(x)$$

$$\hat{K}_j \psi(x) = \left[\int d^3 x_j \, \psi_j^*(x_j) \frac{e^2}{|\vec{r} - \vec{r}_j|} \psi(x_j) \right] \psi_j(x)$$

Thus we have derived the Fock operator,

$$\hat{F} = \hat{H}_S + \sum_{j=1}^{n} [\hat{J}_j - \hat{K}_j]$$

It remains to solve this pseudo-eigenvalue problem with the nonlinear operators. First, let U_{ij} be an $n \times n$ special unitary matrix. Consider the transformation,

$$|\psi_i'\rangle = \sum_{j=1}^n U_{ij} |\psi_j\rangle$$

which preserves the inner product,

$$\left\langle \psi_i' \middle| \psi_j' \right\rangle = \sum_{k,\ell=1}^n \left\langle \psi_k \middle| \psi_\ell \right\rangle U_{ik}^* U_{j\ell} = \sum_{k,\ell=1}^n \delta_{k\ell} U_{ik}^* U_{j\ell} = \sum_{k=1}^n \left\langle \psi_k \middle| \psi_\ell \right\rangle U_{jk} (U^\dagger)_{ki} = \delta_{ij}$$

Now consider the matrix,

$$\begin{pmatrix} \psi_1'(x_1) & \psi_1'(x_2) & \cdots & \psi_1'(x_n) \\ \psi_2'(x_1) & \psi_2'(x_2) & \cdots & \psi_2'(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_n'(x_1) & \psi_n'(x_2) & \cdots & \psi_n'(x_n) \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} & \cdots & U_{1n} \\ U_{21} & U_{22} & \cdots & U_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ U_{n1} & U_{n2} & \cdots & U_{nn} \end{pmatrix} \begin{pmatrix} \psi_1(x_1) & \psi_1(x_2) & \cdots & \psi_1(x_n) \\ \psi_2(x_1) & \psi_2(x_2) & \cdots & \psi_2(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_n(x_1) & \psi_n(x_2) & \cdots & \psi_n(x_n) \end{pmatrix}$$

Since $\det U = 1$ thus we have shown that the determinant of this matrix remains unchanged and thus $|\Psi'\rangle = |\Psi\rangle$. Therefore, transforming a solution set of single-electron wave functions via U will not change of the physical wavefunction and thus still represent an energy minimum. Since ε_{ij} is a symmetric matrix, it can be diagonalized via a special unitary matrix U. Therefore, we can apply such a transformation to make the representing single-electron wavefunction eigenvectors of the matrix ϵ_{ij} to reduce the Fock equation to the eigenvalue form,

$$\hat{F}\psi_i = \varepsilon_i \psi_i$$

- 5 Time Independent Perturbation Theory
- 5.1 Non-Degenerate Perturbation Theory
- 5.2 First-Order
- 5.2.1 Second-Order Non-Degenerate Perturbation Theory
- 5.2.2 Higher-Order Non-Degenerate Perturbation Theory
- 6 Degenerate Perturbation Theory
- 6.1 First-Order Degenerate Perturbation Theory
- 6.1.1 Second-Order Degenerate Perturbation Theory
- 7 Symmetries and Conservation
- 8 Wigner's Theorem
- 8.1 Quantum Dynamics
- 8.1.1 Unitary Time Evolution
- 8.1.2 The Heisenberg Picture
- 8.1.3 The Interaction Picture
- 8.2 The Adjoint Representation

(DEGENERACY) (WINGER THEOREM)

- 9 Representation Theory
- 9.1 Tensor Operators
- 9.2 The Wigner-Eckart Theorem
- 10 Angular Momentum
- 11 The Radial Equation
- 12 The Harmonic Oscillator
- 12.1 The Explicit Series Solution
- 12.2 The Operator Method
- 12.3 Coherent States
- 12.4 Squeezed States
- 12.5 Multidimensional Harmoic Oscilators

(SYMMETRY SU(N))

- 12.6 Coupled Oscillators
- 13 The Hydrogen Atom
- 13.1 The Non-Relativistic Solution
- 13.1.1 The Explicit Series Solution
- 13.1.2 The Operator Method
- 13.2 Hidden Symmetry of the Coulomb Problem (RUNGE LENZ)

13.3	Relativistic Corrections
13.3.1	Relativistic Momentum
13.3.2	Spin-Orbit Coupling
13.3.3	The Darwin Term
13.3.4	The First-Order Relativistic Correction
13.4	The Hyperfine Structure
13.4.1	Nuclear Spin and Applied Magnetic Fields
13.5	Atoms in Applied Fields
13.5.1	The Stark Effect
13.5.2	The (Anamalous) Zeeman Effect
13.5.3	The Lande g Factor
14	Two State Systems
14.1	Time-Independent Solution
14.2	The Amonia Mazer
14.3	Nuclear Magnetic Resonance
	9
15	Time-Dependent Perturbation Theory
15.1	Time-Dependent Perturbation Theory
15.1	Time-Dependent Perturbation Theory The General Case
15.1 15.1.1	Time-Dependent Perturbation Theory The General Case First-Order Time-Dependent Perturbation Theory
15.1 15.1.1 15.1.2	Time-Dependent Perturbation Theory The General Case First-Order Time-Dependent Perturbation Theory Higher-Order Time-Dependent Perturbation Theory
15.1 15.1.1 15.1.2 15.2	Time-Dependent Perturbation Theory The General Case First-Order Time-Dependent Perturbation Theory Higher-Order Time-Dependent Perturbation Theory Harmonic Perturbations
15.1 15.1.1 15.1.2 15.2 15.2.1	Time-Dependent Perturbation Theory The General Case First-Order Time-Dependent Perturbation Theory Higher-Order Time-Dependent Perturbation Theory Harmonic Perturbations First-Order Time-Dependent Perturbation Theory
15.1 15.1.1 15.1.2 15.2 15.2.1 15.2.2 15.2.3	Time-Dependent Perturbation Theory The General Case First-Order Time-Dependent Perturbation Theory Higher-Order Time-Dependent Perturbation Theory Harmonic Perturbations First-Order Time-Dependent Perturbation Theory Second-Order Time-Dependent Perturbation Theory
15.1 15.1.1 15.1.2 15.2 15.2.1 15.2.2 15.2.3	Time-Dependent Perturbation Theory The General Case First-Order Time-Dependent Perturbation Theory Higher-Order Time-Dependent Perturbation Theory Harmonic Perturbations First-Order Time-Dependent Perturbation Theory Second-Order Time-Dependent Perturbation Theory The Exact Result
15.1 15.1.1 15.1.2 15.2 15.2.1 15.2.2 15.2.3 16	Time-Dependent Perturbation Theory The General Case First-Order Time-Dependent Perturbation Theory Higher-Order Time-Dependent Perturbation Theory Harmonic Perturbations First-Order Time-Dependent Perturbation Theory Second-Order Time-Dependent Perturbation Theory The Exact Result The Atomic Theory of Radiation
15.1 15.1.1 15.1.2 15.2 15.2.1 15.2.2 15.2.3 16 16.1 16.2	Time-Dependent Perturbation Theory The General Case First-Order Time-Dependent Perturbation Theory Higher-Order Time-Dependent Perturbation Theory Harmonic Perturbations First-Order Time-Dependent Perturbation Theory Second-Order Time-Dependent Perturbation Theory The Exact Result The Atomic Theory of Radiation Stimulated Emission and Absoption Spontaneous Emission The Dirac Equation
15.1 15.1.1 15.1.2 15.2 15.2.1 15.2.2 15.2.3 16 16.1 16.2	Time-Dependent Perturbation Theory The General Case First-Order Time-Dependent Perturbation Theory Higher-Order Time-Dependent Perturbation Theory Harmonic Perturbations First-Order Time-Dependent Perturbation Theory Second-Order Time-Dependent Perturbation Theory The Exact Result The Atomic Theory of Radiation Stimulated Emission and Absoption Spontaneous Emission

17.3 The Non-Relativistic Limit

17.3.1 First Relativistic Corrections