10 POMNILNIKI

Lastnosti pomnilnikov

1. Cena

- \$/GB
 - SRAM: 2000-5000 \$/GB
 - DRAM: 20-80 \$/GB
 - Bliskovni: nekaj \$/GB
 - Magnetni disk: 0,2-2 \$/GB
- poleg pomnilniških celic je treba v ceno vključiti še vso potrebno elektroniko in/ali mehaniko

2. Hitrost dostopa

- hitrost branja in pisanja
- čas dostopa (access time, t_a)
 - · čas od pridobitve naslova do pojavitve podatkov
 - je definiran pri branju
 - pri pisanju je podoben
- pri nekaterih pomnilnikih (DRAM) mora po vsakem dostopu preteči nek čas, preden se lahko prične naslednji dostop
 - čas cikla t_c = t_a + čakanje
- hitrost dostopa (access rate) b_a = 1/t_c
- Gledano s strani naprave, ki bere ali piše v GP, imamo še čas t_p za prenos preko podatkovnih poti
 - prenos naslova in kontrolne informacije do GP ter prenos podatka nazaj (pri branju)
 - t_n je v rangu nekaj ns/m
- GP zaradi velikosti ne more biti na čipu CPE

POMNILNIKI

- DRAM:
 - pri dostopu do poljubnega naslova: čas dostopa $t_a \sim 50$ ns, čas cikla $t_c \sim 60$ ns
 - pri dostopu do zaporednih naslovov hitreje
- SRAM:
 - čas dostopa t_a od 0,5 do 2,5 ns
- Hitrost dostopa pri magnetnem disku je približno 100.000 krat nižja kot pri polprevodniških pomnilnikih
 - v rangu več ms
 - nekje vmes so elektronski diski (EEPROM, Flash)
 - npr. USB ključki
- Razlog za uporabo pomnilniške hierarhije so velike razlike med pomnilniki v hitrosti in ceni
 - kljub zapletenosti, ki jo pomnilniška hierarhija vnaša, so prihranki v hitrosti tako veliki, da se jim ni mogoče odpovedati

3. Način dostopa

3.1 Naključni dostop (random access)

- čas dostopa t_a je konstanten in znan vnaprej ter neodvisen od prejšnjih naslovov
- RAM (random access memory)
 - DRAM (dinamični RAM) GP
 - · SRAM (statični RAM) predpomnilnik
- načini dostopa do zaporednih bitov pri DRAM so hitrejši (vendar jih ne štejemo pod kategorijo zaporednega dostopa)
 - način strani (page mode, PM)
 - o podamo NV, nato pa različne NS
 - o potrebno je le, da so biti v isti vrstici (tudi, če niso zaporedni)
- rafalni ali eksplozijski način (burst mode)
 - · zelo hiter, danes zelo pogosto uporabljan
 - dostop do zaporednih bitov s pomočjo majhnega internega števca, ki se prišteva k NS

DMNILNIKI .

3.2 Zaporedni dostop (serial access)

- čas dostopa je odvisen od prejšnjega naslova
 - če smo bili na naslovu A, je takoj dostopen le naslov A+1
- npr. magnetni trak

3.3 Krožni dostop (rotational access)

- posebna vrsta zaporednega dostopa
 - kot npr. magnetni trak, ki bi bil zlepljen v zanko
- npr. magnetni disk s fiksnimi glavami
- povprečen čas dostopa t_a je enak ½ periode vrtenja

3.4 Kombinacija zaporednega in krožnega dostopa

- magnetni in optični diski s premičnimi glavami
- bralno-pisalna glava se najprej premakne na ustrezno sled (zaporedni dostop), nato pa imamo krožni dostop
- hitrejši od zaporednega ali krožnega dostopa

DMNILNIKI

Asociativni pomnilniki

- Pomnilniki z dostopom preko (dela) vsebine oz. vsebinsko naslovljivi (CAM, Content Addressable Memory) (ostali pomnilniki dostopajo preko naslova)
 - podamo del besede
 - primerja se z vsemi vpisanimi besedami (z ustreznimi biti)
 - primerjava je paralelna, zato zelo hitra
 - velika poraba logike (komparatorji), zato so AP majhni (< 1K)

4. Spremenljivost

- Bralni pomnilniki (ROM Read Only Memory)
 - lahko ga beremo, vpis ni možen (vsaj za uporabnika ne)
 - luknjane kartice, tisk na papirju, CD-ROM, polprevodniški ROM
 - vsebina je obstojna (tj. tudi brez vira energije oz. napajanja)
- Programirljivi bralni pomnilniki (Programmable ROM PROM)
 - · lahko jih programiramo (vpišemo vsebino), sicer ne posebno hitro
 - PROM oz. OTP (One Time Programmable): na principu varovalk
 - EPROM (Erasable PROM): možen večkraten vpis in brisanje
 - programiranje z visoko napetostjo (rabimo programator), brisanje z UVsvetlobo (rabimo brisalnik) – čip ima na vrhu okence
 - EEPROM (Electrically Erasable PROM)
 - programiranje in brisanje z normalno napetostjo
 - Flash: podoben EEPROMu

POMNILNIKI 9

- v računalnikih so bralni pomnilniki uporabljeni za shranjevanje zagonskih programov, ki se vključijo ob vklopu računalnika
 - majhen del GP je torej tipa ROM
- Bralno-pisalni pomnilniki (Random Access Memory)
 - z enako lahkoto beremo in pišemo
 - kratica je zavajajoča: to ni pomnilnik z naključnim dostopom!

NILNIKI 10

5. Obstojnost

Obstaja več razlogov za izgubo informacije:

Destruktivno branje

- pri DRAM je informacija shranjena kot naboj na (zelo) majhnih kondenzatorjih
- pri branju se kondenzatorji v vrstici praznijo, zato jih je treba ponovno nabiti

Dinamično shranjevanje

- tudi sicer se kondenzatorji s časom praznijo (dielektrik oz. izolator ni idealen) in jih je potrebno **osveževati** (refresh) večkrat na sekundo
- odtod ime dinamični RAM
 - statični RAM ne potrebuje osveževanja
- vrstica se prebere in zapiše nazaj

Izpad napajanja

- Obstojni pomnilniki (nonvolatile) ohranijo vsebino tudi, ko pride do izpada napajanja (ROM, magnetni disk, optični disk, ...)
- RAM so neobstojni (volatile)

INIM III

6. Zanesljivost

- Pomnilniki brez gibljivih delov (solid state), tj. polprevodniški, so bolj zanesljivi kot magnetni diski, pri katerih je potrebno mehanično gibanje
- Tudi pri polprevodniških pa so možne napake
 - kondenzator pomnilne celice pri DRAM je tako majhen, da mu lahko stanje spremenijo že kozmični žarki
 - to je **mehka napaka**, ker se celica ne poškoduje in dela naprej
 - zaradi mehkih napak se uporabljajo kode za detekcijo in korekcijo napak (dodatni biti)
 - Trda napaka (ki je redkejša) pa povzroči trajno okvaro celice

Zaščita glavnega pomnilnika

- Operacijski sistem (OS) je program (običajno več programov), ki teče na računalniku in upravlja s programskimi in strojnimi viri, npr.
 - omogoča (lažji) dostop do V/I naprav
 - upravljanje s pomnilnikom
 - večopravilni OS omogoča, da hkrati teče več procesov, itd.
- S pojavom prvih OS se pojavi potreba po mehanizmu, ki omogoča zaščititi en program pred posegi drugega programa
- Del OS mora biti stalno v GP
- Če programer zaradi napake v svojem programu spremeni vsebino pomnilniških lokacij, kjer je OS, lahko pride tudi do razpada sistema (crash)
 - v tem primeru je treba ponovno prenesti programe OS s pomožnega v glavni pomnilnik (s ponovnim zagonom računalnika)

LNIKI

- Problem se je še povečal s pojavom večuporabniških (multiuser) in večopravilnih (multitasking) OS
 - istočasno se izvaja le en program (če imamo eno CPE), vendar si programi delijo isti pomnilniški prostor
 - treba je poskrbeti, da en program ne posega v prostor drugega (namenoma ali nehote, vseeno)
 - predvsem pisanje (spreminjanje), pa tudi branje, če gre za tajne informacije
- Nekateri programi OS so v bralnem pomnilniku in so s tem zaščiteni proti pisanju
 - ostali del OS se prenese z diska v GP
 - če bi bil ves OS v ROMu, bi bilo treba pri novejši verziji spremeniti čipe (oz. vsaj firmware)
 - nerodno, poleg tega to ne ščiti uporabnikov

- Najpreprostejši zaščitni mehanizem je par registrov, ki vsebuje spodnjo in zgornjo mejo naslova, ki pripada programu
 - vsak pomnilniški naslov A se pred dostopom do pomnilnika preveri
 - naslov je veljaven, če velja spodnja meja <= A <= zgornja meja
 - slabosti:
 - · programi morajo zasedati zvezen prostor v pomnilniku
 - vse besede so zaščitene na enak način
 - raje bi imeli "samo branje", "branje ali pisanje", ...

NILNIKI

- Boljše rešitve uporabljajo bloke ali strani (pages) velikosti 1024, 2048 ali 4096 besed, ki so zaščiteni vsak zase
 - vsak program zaseda določeno število strani
 - vsaka stran ima svoj zaščitni ključ (protection key), ki je neko zaporedje bitov
 - shranjeno v tabeli strani za navidezni pomnilnik

- Cilj zaščite je običajnim uporabnikom preprečiti dostop do privilegiranega načina delovanja (privileged mode)
 - v določenih primerih uporabnik potrebuje storitve, ki so dovoljene samo v privilegiranem načinu
 - mnogi OS imajo za ta namen sistemske klice (system calls)
 - preprosti sistemi (npr. vgrajeni embedded) imajo običajno samo en način (privilegiran)
 - gonilnike naprav (device drivers) lahko programira običajen uporabnik
- Poleg strojne zaščite je možna tudi programska

NILNIKI

- Kljub PP je potrebno eventualno še vedno dostopati do GP.
 - Hitrost pomnilnikov DRAM se povečuje bistveno počasneje od hitrosti CPE
- Ena od možnosti pohitritve je povečanje števila naenkrat prenešenih bitov. 2 načina:
 - Širše podatkovne poti do GP.
 - dostop do sestavljenih pomnilniških besed
 - 2. Pomnilniško prepletanje (memory interleaving).
 - GP je razdeljen na m samostojnih delov M_0 , M_1 , ..., M_{m-1}
 - to so moduli oz. banke
 - *m*-kratno prepletanje (*m*-way interleaving)
 - širina podatkovnih poti se ne poveča (vsaj v osnovni izvedbi)
 - vsak modul je samostojen pomnilnik, ki deluje neodvisno od ostalih
 - z dekodiranjem določenih bitov naslova se izbere enega od modulov
 - možnih je m istočasnih dostopov
 - po začetni zakasnitvi je možen po en prenos na urino periodo

.NIKI

19

Organizacija glavnega pomnilnika

- Pove, kako so biti sestavljeni v pomnilniške besede in kakšen je dostop do njih
- GP je videti kot enodimenzionalno zaporedje pomnilniških besed; vsaka ima svoj enoličen naslov

20

Osnovna parametra pomnilnika sta:

- 1. Pomnilniška beseda
 - to je najmanjše število bitov s svojim naslovom
 - o dolžina besede (običajno 1B oz. 8 bitov)
 - običajno je možen dostop do več besed
- 2. Pomnilniški naslov
 - binarno število
 - dolžina naslova določa velikost pomnilniškega prostora
 - pri *m*-bitnem naslovu a_{m-1}...a₁a₀ je lahko največ 2^m besed

MNILNIKI

- 3 vrste signalov
 - naslovni
 - podatkovni
 - kontrolni
- Dolžina registrov CPE je enaka mnogokratniku dolžine pomnilniške besede
- Pomnilniški prostor vsako leto naraste s faktorjem med 1,5 in 2 (torej eksponentno)
- Velikost naslova določa širino vsega, kar lahko vsebuje naslov:
 - ukazov
 - registrov
 - aritmetike za računanje naslova
- Zato je povečati dolžino naslova izjemno težko
 - premajhna dolžina naslova je največja možna napaka pri razvoju novega računalnika, ker jo je kasneje skoraj nemogoče popraviti

NA ANII NIIVI

- GP, ki omogoča dostop do sestavljenih pomnilniških besed, je možno narediti na 2 načina:
 - 1. več paralelnih pomnilnikov
 - spodnji biti naslova določajo, za katerega gre
 - npr. pri dostopu do 8 besed naenkrat je 8 pomnilnikov, spodnji 3 biti določajo pomnilnik
 - 2. vedno se naredi dostop do vseh (npr. 8) besed
 - Kjer je možen dostop do sestavljenih besed, je dobro, če je podatkovno vodilo temu ustrezno široko, sicer je potrebnih več prenosov
 - tudi, če je več prenosov, programer tega ne vidi

INILNIKI

> Primer:

- dolžina pomnilniške besede 1B
- dva sosedna bajta tvorita polbesedo (halfword, 16 bitov)
- štirje sosedni bajti tvorijo besedo (word, 32 bitov)
- osem sosednih bajtov tvorijo dvojno besedo (doubleword, 64 bitov)
- npr. pravilo debelega konca
 - naslov vsake od sestavljenih besed je enak naslovu bajta z največjo težo
- pri večini računalnikov je potrebna poravnanost
 - sestavljene besede morajo biti na naslovih, ki so večkratniki 2, 4, oz. 8
 - sicer je potrebnih več dostopov!
 - npr. če je polbeseda na 24-bitnem naslovu 10FFFF
 - prvi bajt ima naslov 10FFFF, drugi pa 10FFFF+1 = 110000
 - razlikujeta se v 17 bitih!

LNIV

LNIKI

Tehnologija polprevodniških pomnilnikov

> DRAM (Dinamični RAM)

- zgradba
 - izhodi vrstičnega dekodirnika so besedne linije
 - na stolpični dekodirnik so vezane bitne linije
 - naslov je razdeljen na 2 dela:
 - vrstični
 - stolpični

OMNILNIKI

26

Pomnilna celica DRAM

- kondenzator
 - nabit: eno logično stanje (npr. "1"); prazen: drugo logično stanje (npr. "0")
 - C_s ~ 20fF (s ... storage)
- stikalni transistor (MOS)

NILNIKI

- DRAM vsebuje bitno ravnino oz. matriko ALI
 - v njej so besedne in bitne linije, na presečiščih pa so pomnilne celice
 - razlog za 2D organizacijo je velikost dekodirnika in število ter dolžina linij
 - npr. 1Mb pri 1D: dekodirnik 20/1M, 1M besednih linij, zelo dolga bitna linija (z 1M celicami! ogromna kapacitivnost)
 - 2D: 2 dekodirnika 10/1024, 1024 besednih linij, 1024 bitnih linij, 1024 celic na bitni liniji
- Primer: DRAM 32Mb x 1
 - 25-bitni naslov: 15 (vrstični del) + 10 (stolpični del)
 - torej 2¹⁵ besednih linij, 2¹⁰ bitnih linij
 - običajno je besednih linij več kot bitnih
 - zato so lahko krajše (hitrejši dostop zaradi manjše kapacitivnosti)
- Primer: DRAM 32Mb x 8
 - · podobno, vendar 8 bitnih ravnin

DMNILNIKI 28

- Pomnilniški dostop:
 - bitne linije prednabijemo (precharge) na polovično napetost
 - se ne izpraznijo prav hitro zaradi relativno velike kapacitivnosti (C_b), ki je posledica parazitnih kapacitivnosti velikega števila celic na liniji
 - podamo naslov vrstice (NV)
 - aktiviramo signal RAS' (row address strobe), ki je aktivno nizek
 - vsebina vrstice (naboj na kondenzatorjih) gre preko bitnih linij na tipalne ojačevalnike (sense amplifier, SA)
 - v resnici ne čakamo, da se kondenzator popolnoma izprazni, ampak le delno (zaradi hitrosti)
 - ker je C_b > C_s, se napetost bitne linije le malo spremeni običajno nekaj sto mV
 - SA zazna to razliko in vrne logično vrednost (0 ali 1)
 - vrednosti se shranijo v register vrstice (oz. buffer)
 - podamo naslov stolpca (NS)
 - aktiviramo signal CAS' (column address strobe), ki je tudi aktivno nizek
 - pri bralnem dostopu (WE'(write enable) = 1) dobimo na izhodu iskani bit
 - pri pisalnem dostopu (WE' = 0) se bit vpiše v register vrstice
 - register vrstice se vpiše nazaj v celice

NILNIKI 2

- DRAMi uporabljajo naslovno multipleksiranje
 - naslov vrstice in naslov stolpca sta na istih pinih
 - s tem se zmanjša število priključkov (pinov) za bite naslova
 - naslovi so pri DRAMih seveda dolgi (npr. 30 bitov pri 1Gb)
 - priključki so glavni dejavnik pri ceni čipa
 - ne izgubimo kaj dosti na času, saj potrebujemo NV prej kot NS
- Današnji DRAMi so sinhronski (SDRAM)
 - · sinhronizirani so s sistemsko uro
 - imajo 3-stopenjski cevovod
 - · register na vhodu
 - DRAM (asinhronski)
 - register na izhodu
 - najpogostejši so DDR (1,2,3)
 - double data rate

ANUL NULL

SRAM (Statični RAM)

- zgradba je v osnovi podobna kot pri DRAM
- pomnilna celica
 - zapah (podoben RS-zapahu, le način vpisovanja je drugačen)
 - informacija se ne izgublja (vkolikor ne izključimo napajanja)
 - zato se celica imenuje statična

ILNIKI

Pomnilna celica pri ROM:

- bitna linija je vnaprej nabita (prednabita)
- signal na besedni liniji povzroči, da transistor prične prevajati
- tok teče iz bitne linije proti masi, zato se zmanjša naboj na bitni liniji
- posledično upade napetost bitne linije, kar zazna posebno vezje (v izhodni stopnji), ki to tolmači kot "0"
- če transistorja ni, napetost ne upade ("1")

22

- Bliskovni pomnilnik (Flash memory) je vrsta programirljivega pomnilnika ROM (programmable ROM), za katerega lahko uporabnik določi oz. vpiše vsebino, ta pa je potem obstojna (z izklopom napajanja se ne izgubi)
 - V Flash celici je izpeljanka običajnega MOS tranzistorja, ki ima znotraj oksidne plasti dodatno (t.i. plavajočo) plast – kadar je ta nabita z elektroni, tranzistor efektivno ne prevaja (kakor da ga v celici ne bi bilo)

DOMANII NIIVI