Package 'radiant.basics'

June 24, 2016

Type Package

Title Basic analysis menu for Radiant. Builds on the radiant.data package
Version 0.5.0
Date 2016-6-24
Description Basic analysis menu for Radiant.
Depends R (>= $3.2.0$), radiant.data (>= 0.5)
Imports ggplot2 (>= 2.0.0), gridExtra (>= 2.0.0), scales (>= 0.3.0), dplyr (>= 0.4.3), tidyr (>= 0.4.1), magrittr (>= 1.5), broom (>= 0.4.0), shiny (>= 0.13.2.9003), psych (>= 1.5.8), import (>= 1.1.0), methods
Suggests devtools (>= 1.8.0), testthat (>= 0.10.0), covr (>= 1.2.0)
<pre>URL https://github.com/radiant-rstats/radiant.basics, http: //vnijs.github.io/radiant/</pre>
BugReports https://github.com/radiant-rstats/radiant.basics/issues
License AGPL-3 file LICENSE
LazyData true
RoxygenNote 5.0.1
R topics documented:
compare_means compare_props consider correlation cross_tabs

36

Index

demand_uk	7
goodness	7
newspaper	8
plot.compare_means	8
plot.compare_props	9
plot.correlation	10
plot.cross_tabs	10
plot.goodness	11
plot.prob_binom	
plot.prob_chisq	13
plot.prob_disc	13
plot.prob_expo	
plot.prob_fdist	
plot.prob_norm	15
plot.prob_pois	15
plot.prob_tdist	
plot.prob_unif	16
plot.single_mean	
plot.single_prop	18
prob_binom	19
prob_chisq	19
prob_disc	20
prob_expo	20
prob_fdist	21
prob_norm	21
prob_pois	22
prob_tdist	22
prob_unif	23
radiant.basics	
salary	
single_mean	24
single_prop	
summary.compare_means	26
summary.compare_props	
summary.correlation	
summary.cross_tabs	
summary.goodness	
summary.prob_binom	
summary.prob_chisq	
summary.prob_disc	
summary.prob_expo	
summary.prob_fdist	
summary.prob_norm	
summary.prob_pois	
summary.prob_tdist	
summary.prob_unif	
summary.single_mean	34
summary.single_prop	35

compare_means 3

compare_means	Compare means for two or more variables	

Description

Compare means for two or more variables

Usage

```
compare_means(dataset, var1, var2, samples = "independent",
  alternative = "two.sided", conf_lev = 0.95, comb = "",
  adjust = "none", test = "t", dec = 3, data_filter = "")
```

Arguments

O	
dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an $r_{\rm d}$ data list from Radiant
var1	A numeric variable or factor selected for comparison
var2	One or more numeric variables for comparison. If var1 is a factor only one variable can be selected and the mean of this variable is compared across (factor) levels of va1r
samples	Are samples independent ("independent") or not ("paired")
alternative	The alternative hypothesis ("two.sided", "greater" or "less")
conf_lev	Span of the confidence interval
comb	Combinations to evaluate
adjust	Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
test	t-test ("t") or Wilcox ("wilcox")
dec	Number of decimals to show
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/quant/compare_means.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class compare_means

See Also

```
summary.compare_means to summarize results
plot.compare_means to plot results
```

```
result <- compare_means("diamonds","cut","price")
result <- diamonds %>% compare_means("cut","price")
```

4 compare_props

Compare proportions across groups

Description

Compare proportions across groups

Usage

```
compare_props(dataset, var1, var2, levs = "", alternative = "two.sided",
  conf_lev = 0.95, comb = "", adjust = "none", dec = 3,
  data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
var1	A grouping variable to split the data for comparisons
var2	The variable to calculate proportions for
levs	The factor level selected for the proportion comparison
alternative	The alternative hypothesis ("two.sided", "greater" or "less")
conf_lev	Span of the confidence interval
comb	Combinations to evaluate
adjust	Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
dec	Number of decimals to show
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

```
See http://vnijs.github.io/radiant/quant/compare_props.html for an example in Radiant
```

Value

A list of all variables defined in the function as an object of class compare_props

See Also

```
summary.compare_props to summarize results
plot.compare_props to plot results
```

```
result <- compare_props("titanic", "pclass", "survived")
result <- titanic %>% compare_props("pclass", "survived")
```

consider 5

consider	Car brand consideration	

Description

Car brand consideration

Usage

```
data(consider)
```

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in attr(consider, "description")

correlation Calculate correlations for two or more variables
--

Description

Calculate correlations for two or more variables

Usage

```
correlation(dataset, vars, method = "pearson", dec = 2, data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
vars	Variables to include in the analysis
method	Type of correlations to calculate. Options are "pearson", "spearman", and "kendall". "pearson" is the default
dec	Number of decimals to show
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The

Details

See http://vnijs.github.io/radiant/quant/correlation.html for an example in Radiant

expression should be a string (e.g., "price > 10000")

Value

A list with all variables defined in the function as an object of class compare_means

6 cross_tabs

See Also

```
summary.correlation_ to summarize results
plot.correlation_ to plot results
```

Examples

```
result <- correlation("diamonds", c("price","carat"))
result <- correlation("diamonds", c("price","carat","clarity"))
result <- correlation("diamonds", "price:table")
result <- diamonds %>% correlation("price:table")
```

cross_tabs

Evaluate associations between categorical variables

Description

Evaluate associations between categorical variables

Usage

```
cross_tabs(dataset, var1, var2, data_filter = "")
```

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

var1 A categorical variable

var2 Another categorical variable

expression should be a string (e.g., "price > 10000")

Details

```
See http://vnijs.github.io/radiant/quant/cross_tabs.html for an example in Radiant
```

Value

A list of all variables used in cross_tabs as an object of class cross_tabs

See Also

```
summary.cross_tabs to summarize results plot.cross_tabs to plot results
```

```
result <- cross_tabs("newspaper", "Income", "Newspaper")
result <- newspaper %>% cross_tabs("Income", "Newspaper")
```

demand_uk 7

Demand in the UK

Description

Demand in the UK

Usage

```
data(demand_uk)
```

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in attr(demand_uk,"description")

goodness	Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Description

Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Usage

```
goodness(dataset, var, p = NULL, data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an
	element in an r_data list from Radiant

var A categorical variable

p Hypothesized distribution as a number, fraction, or numeric vector. If unspeci-

fied, defaults to an even distribution

expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/quant/goodness.html for an example in Radiant

Value

A list of all variables used in goodness as an object of class goodness

8 plot.compare_means

See Also

```
summary.goodness to summarize results
plot.goodness to plot results
```

Examples

```
result <- goodness("newspaper", "Income")</pre>
```

newspaper

Newspaper readership

Description

Newspaper readership

Usage

```
data(newspaper)
```

Format

A data frame with 580 rows and 2 variables

Details

Newspaper readership data for 580 consumers. Description provided in attr(newspaper,"description")

plot.compare_means

Plot method for the compare_means function

Description

Plot method for the compare_means function

Usage

```
## S3 method for class 'compare_means'
plot(x, plots = "scatter", shiny = FALSE,
    custom = FALSE, ...)
```

Arguments

X	Return value from compare_means
plots	One or more plots ("bar", "density", "box", or "scatter")
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This opion can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and http://docs.ggplot2.org/for options.
	further arguments passed to or from other methods

plot.compare_props 9

Details

See http://vnijs.github.io/radiant/quant/compare_means.html for an example in Radiant

See Also

```
compare_means to calculate results
summary.compare_means to summarize results
```

Examples

```
result <- compare_means("diamonds","cut","price")
plot(result, plots = c("bar","density"))</pre>
```

plot.compare_props

Plot method for the compare_props function

Description

Plot method for the compare_props function

Usage

```
## S3 method for class 'compare_props'
plot(x, plots = "bar", shiny = FALSE, ...)
```

Arguments

x	Return value from compare_props
plots	One or more plots of proportions ("bar" or "dodge")
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/compare_props.html for an example in Radiant

See Also

```
compare_props to calculate results
summary.compare_props to summarize results
```

```
result <- compare_props("titanic", "pclass", "survived")
plot(result, plots = c("bar","dodge"))</pre>
```

10 plot.cross_tabs

plot.correlation_

Plot method for the correlation function

Description

Plot method for the correlation function

Usage

```
## S3 method for class 'correlation_'
plot(x, ...)
```

Arguments

x Return value from correlation

... further arguments passed to or from other methods.

Details

See http://vnijs.github.io/radiant/quant/correlation.html for an example in Radiant

See Also

```
correlation to calculate results
summary.correlation_ to summarize results
```

Examples

```
result <- correlation("diamonds",c("price","carat","clarity"))
plot(result)
diamonds %>% correlation("price:clarity") %>% plot
```

plot.cross_tabs

Plot method for the cross_tabs function

Description

Plot method for the cross_tabs function

Usage

```
## S3 method for class 'cross_tabs'
plot(x, check = "", shiny = FALSE, ...)
```

plot.goodness 11

Arguments

X	Return value from cross_tabs
check	Show plots for variables var1 and var2. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "row_perc", "col_perc", and "perc" for row, column, and table percentages respectively
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/cross_tabs.html for an example in Radiant

See Also

```
cross_tabs to calculate results
summary.cross_tabs to summarize results
```

Examples

```
result <- cross_tabs("newspaper", "Income", "Newspaper")
plot(result, check = c("observed","expected","chi_sq"))
newspaper %>% cross_tabs("Income", "Newspaper") %>% plot(c("observed","expected"))
```

plot.goodness

Plot method for the goodness function

Description

Plot method for the goodness function

Usage

```
## S3 method for class 'goodness'
plot(x, check = "", shiny = FALSE, ...)
```

Arguments

х	Return value from goodness
check	Show plots for variable var. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), and "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e))
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

12 plot.prob_binom

Details

See http://vnijs.github.io/radiant/quant/goodness for an example in Radiant

See Also

```
goodness to calculate results summary.goodness to summarize results
```

Examples

```
result <- goodness("newspaper", "Income")
plot(result, check = c("observed","expected","chi_sq"))
newspaper %>% goodness("Income") %>% plot(c("observed","expected"))
```

plot.prob_binom

Plot method for the probability calculator function (binomial)

Description

Plot method for the probability calculator function (binomial)

Usage

```
## S3 method for class 'prob_binom'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x	Return value from prob_binom
type	Probabilities or values
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

plot.prob_chisq 13

plot.prob_chisq

Plot method for the probability calculator (Chi-squared distribution)

Description

Plot method for the probability calculator (Chi-squared distribution)

Usage

```
## S3 method for class 'prob_chisq'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x Return value from prob_chisq

type Probabilities or values

shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

plot.prob_disc

Plot method for the probability calculator function (discrete)

Description

Plot method for the probability calculator function (discrete)

Usage

```
## S3 method for class 'prob_disc'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x Return value from prob_disc

type Probabilities or values

shiny Did the function call originate inside a shiny app further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

```
result <- prob_disc(v = "5 6 7 8 9 10 11 ", p = ".1 .2 .3 .15 .1 .1 .05", pub = 0.95) plot(result, type = "probs")
```

14 plot.prob_fdist

plot.prob_expo

Plot method for the probability calculator (Exponential distribution)

Description

Plot method for the probability calculator (Exponential distribution)

Usage

```
## S3 method for class 'prob_expo'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x Return value from prob_expotype Probabilities or valuesshiny Did the function call originate inside a shiny app

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

plot.prob_fdist

Plot method for the probability calculator (F-distribution)

Description

Plot method for the probability calculator (F-distribution)

Usage

```
## S3 method for class 'prob_fdist'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x Return value from prob_fdist

type Probabilities or values

shiny Did the function call originate inside a shiny app

... further arguments passed to or from other methods

Details

plot.prob_norm 15

plot.prob_norm

Plot method for the probability calculator (normal)

Description

Plot method for the probability calculator (normal)

Usage

```
## S3 method for class 'prob_norm'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x Return value from prob_norm

type Probabilities or values

shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods

Details

 $See \ http://vnijs.github.io/radiant/quant/prob_calc.html \ for \ an \ example \ in \ Radiant$

plot.prob_pois

Plot method for the probability calculator function (Poisson distribu-

tion)

Description

Plot method for the probability calculator function (Poisson distribution)

Usage

```
## S3 method for class 'prob_pois'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x Return value from prob_pois

type Probabilities or values

shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods

Details

16 plot.prob_unif

plot.prob_tdist

Plot method for the probability calculator (t-distribution)

Description

Plot method for the probability calculator (t-distribution)

Usage

```
## S3 method for class 'prob_tdist'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

type

x Return value from prob_tdist

shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods

Probabilities or values

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

plot.prob_unif

Plot method for the probability calculator (uniform)

Description

Plot method for the probability calculator (uniform)

Usage

```
## S3 method for class 'prob_unif'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x Return value from prob_unif type Probabilities or values

shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods

Details

plot.single_mean 17

Plot method for the single_mean function

Description

Plot method for the single_mean function

Usage

```
## S3 method for class 'single_mean'
plot(x, plots = "hist", shiny = FALSE,
    custom = FALSE, ...)
```

Arguments

x	Return value from single_mean
plots	Plots to generate. "hist" shows a histogram of the data along with vertical lines that indicate the sample mean and the confidence interval. "simulate" shows the location of the sample mean and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This opion can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and http://docs.ggplot2.org/for options.
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_mean.html for an example in Radiant

See Also

```
single_mean to generate the result
summary.single_mean to summarize results
```

```
result <- single_mean("diamonds","price", comp_value = 3500)
plot(result, plots = c("hist", "simulate"))</pre>
```

18 plot.single_prop

plot.single_prop

Plot method for the single_prop function

Description

Plot method for the single_prop function

Usage

```
## S3 method for class 'single_prop'
plot(x, plots = "bar", shiny = FALSE,
    custom = FALSE, ...)
```

Arguments

x	Return value from single_prop
plots	Plots to generate. "bar" shows a bar chart of the data. The "simulate" chart shows the location of the sample proportion and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This opion can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and http://docs.ggplot2.org/for options.
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_prop.html for an example in Radiant

See Also

```
single_prop to generate the result
summary.single_prop to summarize the results
```

```
result <- single_prop("diamonds","clarity", lev = "IF", comp_value = 0.05)
plot(result, plots = c("hist", "simulate"))
result <- single_prop("titanic","pclass", lev = "1st")
plot(result, plots = c("hist","simulate"))</pre>
```

prob_binom 19

prob_binom Probability calculator for the binomial distribution (binomial)	prob_binom	Probability calculator for the binomial distribution (binomial)	
--	------------	---	--

Description

Probability calculator for the binomial distribution (binomial)

Usage

```
prob_binom(n, p, 1b = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

n	Number of trials
p	Probability
lb	Lower bound on the number of successes
ub	Upper bound on the number of successes
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

prob_chisq /	Probability calculator for the chi-squared distribution
--------------	---

Description

Probability calculator for the chi-squared distribution

Usage

```
prob_chisq(df, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

df	Degrees of freedom
1b	Lower bound (default is -Inf)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

20 prob_expo

prob_disc Probability calculator for the discrete distribution (discrete)

Description

Probability calculator for the discrete distribution (discrete)

Usage

```
prob_disc(v, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

V	Values
р	Probabilities
1b	Lower bound on the number of successes
ub	Upper bound on the number of successes
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

prob_expo Probability calculator for the exponential distribution	
---	--

Description

Probability calculator for the exponential distribution

Usage

```
prob_expo(rate, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

rate	Rate
lb	Lower bound (default is -Inf)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

prob_fdist 21

prob_fdist	Probability calculator for the F-distribution	
------------	---	--

Description

Probability calculator for the F-distribution

Usage

```
prob_fdist(df1, df2, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

df1	Degrees of freedom
df2	Degrees of freedom
lb	Lower bound (default is -Inf)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

prob_norm	Probability calculator for the normal distribution	

Description

Probability calculator for the normal distribution

Usage

```
prob_norm(mean, stdev, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

mean	Mean
stdev	Standard deviation
1b	Lower bound (default is -Inf)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

prob_tdist

prob_pois Probability calculator for the poisson distribution	
---	--

Description

Probability calculator for the poisson distribution

Usage

```
prob_pois(lambda, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

lambda	Rate
lb	Lower bound (default is -Inf)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

nroh	tdist	
עט זע	tuist	

Probability calculator for the t distribution

Description

Probability calculator for the t distribution

Usage

```
prob_tdist(df, mean = 0, stdev = 1, lb = NA, ub = NA, plb = NA,
    pub = NA, dec = 3)
```

Arguments df

	Degrees of meetical
mean	Mean
stdev	Standard deviation
lb	Lower bound (default is -Inf)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Degrees of freedom

Details

prob_unif 23

prob_unif	Probability calculator for the uniform distribution

Description

Probability calculator for the uniform distribution

Usage

```
prob_unif(min, max, 1b = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

min	Minmum value
max	Maximum value
1b	Lower bound
ub	Upper bound
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

Description

radiant.basics

Launch Radiant in the default browser

Usage

```
radiant.basics()
```

Details

See http://vnijs.github.io/radiant for documentation and tutorials

24 single_mean

salary	Salaries for Professors
--------	-------------------------

Description

Salaries for Professors

Usage

```
data(salary)
```

Format

A data frame with 397 rows and 6 variables

Details

2008-2009 nine-month salary for professors in a college in the US. Description provided in attr(salary,description")

single_mean	Compare a sample mean to a population mean	

Description

Compare a sample mean to a population mean

Usage

```
single_mean(dataset, var, comp_value = 0, alternative = "two.sided",
  conf_lev = 0.95, dec = 3, data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
var	The variable selected for the mean comparison
comp_value	Population value to compare to the sample mean
alternative	The alternative hypothesis ("two.sided", "greater", or "less")
conf_lev	Span for the confidence interval
dec	Number of decimals to show
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

single_prop 25

Value

A list of variables defined in single_mean as an object of class single_mean

See Also

```
summary.single_mean to summarize results
plot.single_mean to plot results
```

Examples

```
single_mean("diamonds", "price")
```

single_prop

Compare a sample proportion to a population proportion

Description

Compare a sample proportion to a population proportion

Usage

```
single_prop(dataset, var, lev = "", comp_value = 0.5,
 alternative = "two.sided", conf_lev = 0.95, dec = 3, data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
var	The variable selected for the proportion comparison
lev	The factor level selected for the proportion comparison
comp_value	Population value to compare to the sample proportion
alternative	The alternative hypothesis ("two.sided", "greater", or "less")
conf_lev	Span of the confidence interval
dec	Number of decimals to show

data_filter Expression entered in, e.g., Data > View to filter the dataset in Radiant. The

expression should be a string (e.g., "price > 10000")

Details

```
See http://vnijs.github.io/radiant/quant/single_prop.html for an example in Radiant
```

Value

A list of variables used in single_prop as an object of class single_prop

See Also

```
summary.single_prop to summarize the results
plot.single_prop to plot the results
```

Examples

```
result <- single_prop("diamonds","cut")
result <- single_prop("diamonds","clarity", lev = "IF", comp_value = 0.05)</pre>
```

summary.compare_means Summary method for the compare_means function

Description

Summary method for the compare_means function

Usage

```
## S3 method for class 'compare_means'
summary(object, show = FALSE, ...)
```

Arguments

object Return value from compare_means

show Show additional output (i.e., t.value, df, and confidence interval)

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/compare_means.html for an example in Radiant

See Also

```
compare_means to calculate results
plot.compare_means to plot results
```

```
result <- compare_means("diamonds","cut","price")
summary(result)
result <- diamonds %>% tbl_df %>% compare_means("x","y")
summary(result)
result <- diamonds %>% tbl_df %>% group_by(cut) %>% compare_means("x",c("x","y"))
summary(result)
```

summary.compare_props Summary method for the compare_props function

Description

Summary method for the compare_props function

Usage

```
## S3 method for class 'compare_props'
summary(object, show = FALSE, ...)
```

Arguments

object Return value from compare_props

show Show additional output (i.e., chisq.value, df, and confidence interval)

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/compare_props.html for an example in Radiant

See Also

```
compare_props to calculate results
plot.compare_props to plot results
```

Examples

```
result <- compare_props("titanic", "pclass", "survived")
summary(result)
titanic %>% compare_props("pclass", "survived") %>% summary
```

summary.correlation_ Summary method for the correlation function

Description

Summary method for the correlation function

Usage

```
## S3 method for class 'correlation_'
summary(object, cutoff = 0, covar = FALSE, ...)
```

28 summary.cross_tabs

Arguments

object Return value from correlation

cutoff Show only corrlations larger than the cutoff in absolute value. Default is a cutoff

of 0

covar Show the covariance matrix (default is FALSE)

... further arguments passed to or from other methods.

Details

See http://vnijs.github.io/radiant/quant/correlation.html for an example in Radiant

See Also

```
correlation to calculate results plot.correlation_ to plot results
```

Examples

```
result <- correlation("diamonds",c("price","carat","clarity"))
summary(result, cutoff = .3)
diamonds %>% correlation("price:clarity") %>% summary
```

summary.cross_tabs

Summary method for the cross_tabs function

Description

Summary method for the cross_tabs function

Usage

```
## S3 method for class 'cross_tabs'
summary(object, check = "", ...)
```

Arguments

object Return value from cross_tabs

check Show table(s) for variables var1 and var2. "observed" for the observed frequen-

cies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the

observed and expected frequencies (i.e., (o - e) / e)

... further arguments passed to or from other methods.

Details

summary.goodness 29

See Also

```
cross_tabs to calculate results
plot.cross_tabs to plot results
```

Examples

```
result <- cross_tabs("newspaper", "Income", "Newspaper")
summary(result, check = c("observed","expected","chi_sq"))
newspaper %>% cross_tabs("Income", "Newspaper") %>% summary("observed")
```

summary.goodness

Summary method for the goodness function

Description

Summary method for the goodness function

Usage

```
## S3 method for class 'goodness'
summary(object, check = "", ...)
```

Arguments

object Return value from goodness

check Show table(s) for the selected variable (var). "observed" for the observed fre-

quencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2/e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the

observed and expected frequencies (i.e., (o - e) / e) $\,$

... further arguments passed to or from other methods.

Details

See http://vnijs.github.io/radiant/quant/goodness for an example in Radiant

See Also

```
goodness to calculate results plot.goodness to plot results
```

```
result <- goodness("newspaper", "Income", c(.3, .7))
summary(result, check = c("observed","expected","chi_sq"))
newspaper %>% goodness("Income", "1/3 2/3") %>% summary("observed")
```

30 summary.prob_chisq

summary.prob_binom

Summary method for the probability calculator function

Description

Summary method for the probability calculator function

Usage

```
## S3 method for class 'prob_binom'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_binom

type Probabilities or values

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

summary.prob_chisq

Summary method for the probability calculator function (Chi-squared distribution)

Description

Summary method for the probability calculator function (Chi-squared distribution)

Usage

```
## S3 method for class 'prob_chisq'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_chisq

type Probabilities or values

... further arguments passed to or from other methods

Details

summary.prob_disc 31

summary.prob_disc

Summary method for the probability calculator function (discrete)

Description

Summary method for the probability calculator function (discrete)

Usage

```
## S3 method for class 'prob_disc'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_disc type Probabilities or values

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

Examples

```
result <- prob_disc(v = "5 6 7 8 9 10 11 ", p = ".1 .2 .3 .15 .1 .1 .05", pub = 0.95) summary(result, type = "probs")
```

summary.prob_expo

Summary method for the probability calculator function (Exponential distribution)

Description

Summary method for the probability calculator function (Exponential distribution)

Usage

```
## S3 method for class 'prob_expo'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_expo

type Probabilities or values

... further arguments passed to or from other methods

Details

32 summary.prob_norm

 ${\it summary.prob_fdist} \qquad {\it Summary method for the probability calculator function (F-distribution)}$

Description

Summary method for the probability calculator function (F-distribution)

Usage

```
## S3 method for class 'prob_fdist'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_fdist

type Probabilities or values

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

summary.prob_norm

Summary method for the probability calculator function (normal)

Description

Summary method for the probability calculator function (normal)

Usage

```
## S3 method for class 'prob_norm'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_norm

type Probabilities or values

... further arguments passed to or from other methods

Details

summary.prob_pois 33

summary.prob_pois	Summary method for the probability calculator function (Poisson dis-
	tribution)

Description

Summary method for the probability calculator function (Poisson distribution)

Usage

```
## S3 method for class 'prob_pois'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_pois

type Probabilities or values

. . . further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

```
{\it summary.prob\_tdist} \qquad {\it Summary method for the probability calculator function (t-distribution)}
```

Description

Summary method for the probability calculator function (t-distribution)

Usage

```
## S3 method for class 'prob_tdist'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_tdist

type Probabilities or values

... further arguments passed to or from other methods

Details

summary.prob_unif

Summary method for the probability calculator function (uniform)

Description

Summary method for the probability calculator function (uniform)

Usage

```
## S3 method for class 'prob_unif'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_unif

type Probabilities or values

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/prob_calc.html for an example in Radiant

summary.single_mean

Summary method for the single_mean function

Description

Summary method for the single_mean function

Usage

```
## S3 method for class 'single_mean'
summary(object, ...)
```

Arguments

object Return value from single_mean

... further arguments passed to or from other methods

Details

 $See \ http://vnijs.github.io/radiant/quant/single_mean.html \ for \ an \ example \ in \ Radiant \ and \ radiant \$

See Also

```
single_mean to generate the results plot.single_mean to plot results
```

summary.single_prop 35

Examples

```
result <- single_mean("diamonds","price")
summary(result)
diamonds %>% single_mean("price") %>% summary
```

summary.single_prop

Summary method for the single_prop function

Description

Summary method for the single_prop function

Usage

```
## S3 method for class 'single_prop'
summary(object, ...)
```

Arguments

object Return value from single_prop

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_prop.html for an example in Radiant

See Also

```
single_prop to generate the results plot.single_prop to plot the results
```

```
result <- single_prop("diamonds","clarity", lev = "IF", comp_value = 0.05)
summary(result)
diamonds %>% single_prop("clarity", lev = "IF", comp_value = 0.05) %>% summary
```

Index

newspaper, 8 salary, 24
compare_means, 3, 8, 9, 26 compare_props, 4, 9, 27 consider, 5 correlation, 5, 10, 28 cross_tabs, 6, 11, 28, 29
demand_uk, 7
goodness, 7, 11, 12, 29
newspaper, 8
plot.compare_means, 3, 8, 26 plot.compare_props, 4, 9, 27 plot.correlation_, 6, 10, 28 plot.cross_tabs, 6, 10, 29 plot.goodness, 8, 11, 29 plot.prob_binom, 12 plot.prob_chisq, 13 plot.prob_disc, 13 plot.prob_expo, 14 plot.prob_fdist, 14 plot.prob_pois, 15 plot.prob_binom, 15 plot.prob_unif, 16 plot.single_mean, 17, 25, 34 plot.single_prop, 18, 25, 35 prob_binom, 12, 19, 30 prob_chisq, 13, 19, 30 prob_chisq, 13, 19, 30 prob_disc, 13, 20, 31 prob_fdist, 14, 21, 32 prob_norm, 15, 21, 32 prob_pois, 15, 22, 33

```
radiant.basics-package
        (radiant.basics), 23
salary, 24
single_mean, 17, 24, 34
single_prop, 18, 25, 35
summary.compare_means, 3, 9, 26
summary.compare_props, 4, 9, 27
summary.correlation_{-}, 6, 10, 27
summary.cross_tabs, 6, 11, 28
summary.goodness, 8, 12, 29
\verb|summary.prob_binom|, 30|
\verb|summary.prob_chisq|, 30
summary.prob_disc, 31
summary.prob_expo, 31
summary.prob_fdist, 32
summary.prob_norm, 32
summary.prob_pois, 33
summary.prob_tdist, 33
summary.prob_unif, 34
summary.single_mean, 17, 25, 34
summary.single_prop, 18, 25, 35
```