# TES Week 9

03 December 2019 23:13

L Shidqina 10647427

#### Task 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

From < https://github.com/bnajafi/TES\_2019-2020\_weeklySubmissions/tree/master/Week%209>

#### Answer task 1

#### Weather data 2 December 2019, 20:00

Website: https://www.meteooggi.it/italia/regione-emilia-romagna/tempo-piacenza/

| Il tempo oggi in Piacenza  Lunedi, 02 Dicembre 2019 |             |                 |                 |                 |                 |                 |             |  |  |  |  |  |
|-----------------------------------------------------|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------|--|--|--|--|--|
|                                                     | 13:00       | 14:00           | 16:00           | 18:00           | 20:00           | 21:00           | 22:00       |  |  |  |  |  |
|                                                     | PartlyCloud | PartlyCloud     | LightCloud      | LightCloud      | PartlyCloud     | Cloud           | PartlyCloud |  |  |  |  |  |
| Temperatura effettiva                               | 10°C        | 10°C            | 9°C             | 6°C             | 7°C             | 7°C             | 8°C         |  |  |  |  |  |
| Temperatura percepita                               | 10°C        | 10°C            | 8°C             | 5°C             | 7°C             | 6°C             | 7°C         |  |  |  |  |  |
| Precipitazioni                                      | 0 mm        | 0 mm            | 0 mm            | <b>0</b> mm     | <b>0</b> mm     | <b>0</b> mm     | <b>0</b> mm |  |  |  |  |  |
| Umidità                                             | 79 %        | 77 %            | 89 %            | 90 %            | 90 %            | 92 %            | 91 %        |  |  |  |  |  |
| Pressione atmosferica                               | 1016 hPa    | <b>1015</b> hPa | <b>1016</b> hPa | <b>1017</b> hPa | <b>1019</b> hPa | <b>1019</b> hPa | 1020 hPa    |  |  |  |  |  |
| alatina la cutilità d'OOV                           |             |                 |                 |                 |                 |                 |             |  |  |  |  |  |

Relative humidity: 90%

Total air pressure P=101.9 kPa

Utilized temperature: 7°C, in Kelvin scale: T=230°K

Using psychometric chart to determine wet bulb temperature, mass of water vapour



```
At 7°C, with relative humidity 90%
-> the absolute humidity \omega=0.0055
-> wet bulb temperature T_{wb}=6^{\circ}C
If
\omega {= 0.622 P_v/P_a}
  = 0.622P_v/P - P_v = 0.0055
and
P = 101.9 \text{ kPa}
∴P_v = 0.893kPa
\Phi = m_v/m_g = 90\%
For ideal gas, m = PV/R_{sp}T
It is known that R_{sp} = 0.4615
Meanwhile P_v = 0.893 \text{ kPa}
With the volume of aula A symbolised as V
m_v = 0.893V/0.4615*230
      = 8.41 \times 10^{-3} \text{V}
Where \Phi=m_v/m_g m_g=m_v/90\%=934~x~10\mbox{-}3V
```

**Task 2** Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

|     | Lat                | 40.65N                                        | Long:        | 17.95E       | Elev                          | 10          | StdP:                                        | 101.2                |                                           | Time Zone:                    | 1.00 (EU | W)         | Period:     | 86-10      | WBAN:      | 99999     |     |
|-----|--------------------|-----------------------------------------------|--------------|--------------|-------------------------------|-------------|----------------------------------------------|----------------------|-------------------------------------------|-------------------------------|----------|------------|-------------|------------|------------|-----------|-----|
|     | Annual He          | eating and H                                  | lumidificat  | ion Design C | onditions                     |             |                                              |                      |                                           |                               |          |            |             |            |            |           |     |
|     | Coldest            | Heatin                                        | no DB        |              | Humidification DP/MCDB and HR |             |                                              |                      |                                           | Coldest month WS/MCDB         |          |            |             | MCWS/PCWD  |            | 1         |     |
|     | Month              |                                               |              | 99.6%        |                               | 99%         |                                              |                      | 0.4%                                      |                               | 1%       |            | to 99.6% DB |            | _          |           |     |
|     | THIOTHUT .         | 99.6%                                         | 99%          | DP           | HR                            | MCDB        | DP                                           | HR                   | MCDB                                      | WS                            | MCDB     | WS         | MCDB        | MCWS       | PCWD       | J         |     |
|     | (a)                | (b)                                           | (c)          | (d)          | (0)                           | (f)         | (g)                                          | (h)                  | (1)                                       | (1)                           | (k)      | (1)        | (m)         | (n)        | (0)        |           |     |
| (1) | 2                  | 2.9                                           | 4.1          | -5.1         | 2.5                           | 7.2         | -3.0                                         | 3.0                  | 7.4                                       | 13.4                          | 10.2     | 12.4       | 10.6        | 3.4        | 250        |           | (1) |
|     | Annual Co          | ooling, Dehu                                  | ımidificatio | on, and Enth | alpy Desigr                   | n Condition | <b>5</b>                                     |                      |                                           |                               |          |            |             |            |            |           |     |
|     |                    | Hottest                                       |              |              | Castas                        | DDAACIAD    |                                              |                      |                                           | Evaporation WB/MCDB MCWS/PCWI |          |            |             |            |            |           |     |
|     | Hottest Month 0.4% |                                               |              |              | Cooling DB/MCWB               |             |                                              | <u> </u>             | 0.4% 1%                                   |                               |          | 2%         |             | to 0.4% DB |            |           |     |
|     | Month              | DB Range                                      | DB           | MCWB         | DB                            | MCWB        | DB                                           | MCWB                 | WB U.                                     | MCDB                          | WB       | MCDB       | WB          | MCDB       | MCWS       | PCWD      |     |
|     | (a)                | (b)                                           | (c)          | (d)          | (0)                           | (f)         | (g)                                          | (h)                  | (i)                                       | (j)                           | (k)      | (1)        | (m)         | (n)        | (0)        | (p)       | )   |
| (2) | 8                  | 7.1                                           | 32.8         | 23.6         | 31.1                          | 24.3        | 29.9                                         | 24.3                 | 27.2                                      | 29.7                          | 26.3     | 29.0       | 25.6        | 28.3       | 4.2        | 180       | (2) |
|     |                    | Dehumidification DP/MCDB and HR Enthalpy/MCDB |              |              |                               |             |                                              |                      |                                           |                               |          |            |             |            | Hours      |           |     |
|     | -                  | 0.4%                                          |              | Deridificant | 1%                            | ODD and th  | <u>`                                    </u> | 2%                   |                                           |                               |          |            |             | 2%         | 8 to 4 &   |           |     |
|     | DP                 | HR                                            | MCDB         | DP           | HR                            | MCDB        | DP                                           | HR                   | MCDB                                      | Enth                          | MCDB     | Enth       | MCDB        | Enth       | MCDB       | 12.8/20.6 |     |
|     | (a)                | (b)                                           | (c)          | (d)          | (0)                           | (f)         | (g)                                          | (h)                  | (i)                                       | (j)                           | (k)      | (1)        | (m)         | (n)        | (0)        | (p)       |     |
| (3) | 26.3               | 21.8                                          | 29.2         | 25.4         | 20.7                          | 28.5        | 24.7                                         | 19.7                 | 27.9                                      | 86.0                          | 30.1     | 82.2       | 29.1        | 78.5       | 28.3       | 1236      | (3) |
|     | Extreme A          | Annual Desig                                  | gn Conditio  | ons          |                               |             |                                              |                      |                                           |                               |          |            |             |            |            |           |     |
|     |                    |                                               |              |              |                               |             |                                              |                      |                                           |                               |          |            |             |            |            |           |     |
|     | Eve                | Extreme Annual WS Extreme Extreme Annual DB   |              |              |                               |             |                                              |                      | n-Year Return Period Values of Extreme DB |                               |          |            |             |            |            |           |     |
|     |                    |                                               | Max          |              | ean                           | Standard    | deviation                                    | n=5 years n=10 years |                                           |                               | years    | n=20 years |             |            | n=50 years |           |     |
|     | 1%                 | 2.5%                                          | 5%           | WB           | Min                           | Max         | Min                                          | Max                  | Min                                       | Max                           | Min      | Max        | Min         | Max        | Min        | Max       | ĺ   |
|     | (0)                | (b)                                           | (c)          | (d)          | (0)                           | (f)         | (g)                                          | (h)                  | (i)                                       | (j)                           | (k)      | (1)        | (m)         | (n)        | (0)        | (p)       |     |
| (4) | 11.3               | 9.9                                           | 8.7          | 31.4         | 0.4                           | 37.3        | 1.4                                          | 3.0                  | -0.6                                      | 39.4                          | -1.4     | 41.1       | -22         | 42.8       | -3.2       | 44.9      | (4) |

#### **Answer Task 2**

### **Internal gains**

1. Sensible cooling load from internal gains:

$$Q_{ig,s} = 136 + 2.2A_{cf} + 22N_{oc} = 136 + (2.2 * 200) + (22 * 2) = 620 \text{ W}$$

2. Latent cooling load from internal gains:

$$Q_{ig,l} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + (0.22 * 200) + (12 * 2) = 88 \text{ W}$$

## Infiltration

For a house with good construction quality, unit leakage area  $A_{ul} = 1.4 \text{ cm}^2/\text{m}^2$ 

$$\therefore$$
 exposed surface  $A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \text{ m}^2$ 

$$A_L = A_{es} * A_{ul} = 344 * 1.4 = 481.6 \text{ cm}^2$$

- Heating and cooling rate

It is known: 
$$T_{cooling} = 24^{\circ}C$$
  
 $T_{heating} = 20^{\circ}C$ 

Case in Brindisi:

$$\begin{split} \Delta T_{cooling} &= 31.1^{o}\text{C} - 24^{o}\text{C} = 7.1^{o}\text{C} = 7.1\text{K} \\ \Delta T_{heating} &= 20^{o}\text{C} - (-4.1^{o}\text{C}) = 24.1^{o}\text{C} = 24.1\text{K} \end{split}$$

$$DR = 7.1^{\circ}C = 7.1K$$

- Infiltration airflow rate

$$\begin{split} IDF_{heating} &= 0.073 \text{ L/s*cm}^2\\ IDF_{cooling} &= 0.033 \text{ L/s*cm}^2 \end{split}$$

$$\begin{array}{l} Q_{i,heating} = A_L*IDF_{heating} = 481.6*0.073 = 35.1568 \text{ L/s} \\ Q_{i,heating} = A_L*IDF_{cooling} = 481.6*0.033 = 15.8928 \text{ L/s} \end{array}$$

The required minimum whole building ventilation rate:

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 * 200 + 3.5 * (1 + 1) = 17 L/s$$

Thus

$$Q_{i-v, heating} = Q_{i, heating} + Q_v = 35.1568 + 17 = 52.1568 L/s$$

$$Q_{\text{i-v, cooling}} = Q_{\text{i, cooling}} + Q_{\text{v}} = 15.8928 + 17 = 32.8928 \text{ L/s}$$

Using the given values:

$$\begin{split} &C_{sensible} = 1.23 \\ &C_{latent} = 2010 \\ &\Delta\omega_{cooling} = 0.0039 \end{split}$$

 $Q_{inf\text{-}ventilation\_cooling\_sensible} = C_{sensible} * Q_{i\text{-}v,cooling} * \Delta T_{cooling} = 1.23* \ 32.893* \ 7.1 = 287.2546 \ W$ 

 $Q_{inf\text{-}ventilation\_cooling\_latent} = C_{sensible} * Q_{i\text{-}v,cooling} * \Delta\omega_{cooling} = 3010* \ 32.893* \ 0.0039 = 386.1309 \ W$ 

 $Q_{inf\text{-}ventilation\_cooling\_sensible} = C_{sensible} * Q_{i\text{-}v,cooling} * \Delta T_{heating} = 1.23* \ 52.157* 24.1 = 1,546.09 \ W$