

STUDIEREN. WISSEN. MACHEN.

MODELING & VALIDATION

MYROSLAVA SENKO

Agenda

- Introduction
- Feature Selection
- Algorithm Selection and Model Tuning
- > Conclusion
- Questions

Preprocessing

Done:

Removal of outliers and null values

Data Preparation Missing Value and Feature Transformation Outlier Handling and Scaling

To do:

One Hot Encoding

Modelling

- Removal of redundant features
- Algorithm Selection and Tuning

Train features

season ‡	yr ‡	mnth ‡	weekday ‡	workingday ‡	weathersit ‡	temp ÷	hum ‡	windspeed ‡	leaflets ‡	price reduction ‡
2.0	0	6	5	1.0	1.0	24.8000	53.12505	0.253121	991.0	0.0
4.0	1	11	4	1.0	2.0	12.8667	93.06255	0.152987	601.0	0.0
1.0	1	1	2	1.0	1.0	6.0000	66.18750	0.365671	549.0	0.0
2.0	1	4	1	0.0	1.0	26.5667	84.25005	0.284829	740.0	0.0
1.0	1	3	6	0.0	2.0	20.5667	113.37495	0.110704	773.0	1.0
3.0	0	9	2	1.0	3.0	21.6000	133.04355	0.343943	763.0	0.0
2.0	0	4	5	1.0	2.0	13.4333	125.43750	0.226992	907.0	0.0
3.0	1	8	1	1.0	2.0	30.1000	98.12505	0.129354	861.0	1.0
				4 0	4 0	0/ 0//8	444 50005	0 405777	858.0	2 2

Deleted features

dteday ‡	instant ‡	casual ‡	registered \$
2011-06-03	154	898.0	4414.0
2012-11-15	685	320.0	5125.0
2012-01-03	368	89.0	2147.0
2012-04-16	472	1198.0	5172.0
2012-03-17	442	3155.0	4681.0
		(**):*():*()	
2011-09-06	249	204.0	2506.0
2011-04-08	98	172.0	1299.0
2012-08-06	584	1233.0	5780.0

Label

Deleting features which could distort the results.

Linear regression (preprocessed data without feature selection)

Model	MAE \$	R2 ‡	
Linear regression (no selection)		1716.87302	0.635512

Linear regression without feature selection to set up a base model.

Feature Selection

Nominal features

season ‡	mnth ÷	weekday ‡	weathersit ‡
2.0	6	5	1.0
4.0	11	4	2.0
1.0	1	2	1.0
2.0	4	1	1.0
1.0	3	6	2.0
3.0	9	3	1.0
1.0	2	5	1.0
4.0	10	4	2.0
4.0	10	6	2.0
_ ^ ^		4	4 ^

3	season	season (1:winter, 2:spring, 3:summer, 4:fall)	
5	mnth	month (1 to 12)	
7	weekday	day of the week	
9	weathersit	weather situation: 1: Clear, Few clouds, Partly cloudy, Partly clouds, Partly clouds, Partly clouds, Mist + Broken clouds, Mist + Broken clouds, Mist + Broken clouds, Mist + Clouds, Mist + Thunderstorm + Scattered clouds 4: Heavy Rain + Ice Pallets + Thunderstorm	st + Few clouds, Mist Scattered clouds, Light Rain +

Nominal features:

Feature variance

season	0.731313
mnth	0.905051
weekday	0.818396
weathersit	0.377778

All the features have variance > 0.05.

*	Ş	season	\$ mnth \$	weekday \$;	weathersit \$
count	4	495	495	424		495
unique	4	4	12	6		3
top	5	spring	June	Thursday		Clear
freq	1	133	47	77		308

This table shows number of unique values for each nominal feature.

Nominal features: Variance and One-Hot-Encoding

Value variance

		season_autumn	0.184026
mnth_April	0.076122	season_spring	0.196892
mnth_August	0.079483	season_summer	0.187118
mnth_December	0.074428	season_winter	0.182980
mnth_February	0.076122	weekday_Friday	0.120206
mnth_January	0.076122	weekday_Monday	0.123110
mnth_July	0.074428	weekday_Saturday	0.121662
mnth_June	0.086108	weekday_Thursday	0.131624
mnth_March	0.069300	weekday_Tuesday	0.125980
mnth_May	0.082812	weekday_Wednesd	0.112804
mnth_November	0.076122	weathersit_Clear	0.235538
mnth_October	0.072727	weathersit_Mist	0.227808
mnth_September	0.074428	weathersit_Scat	0.027539

One hot encoding

season_autumn ‡	season_spring ‡	season_summer ÷	season_winter ‡
0	1	0	0
1	0	0	0
0	0	0	1
0	0	1	0

Example of one-hot-encoding for the nominal value "season". Before concatination one of columns will be deleted to avoid singularities.

weathersit_Scattered has a variance of 0.027539, indicating that this weather situation occurs infrequently, compared to the others and thus doesn't play a significant role for the model.

Nominal features: Chi-squared test

Feature

		season	month	weekday	weathersit
Feature	season	(0)	≈0	0.99	0.127
	mnth	-	(0)	0.99	0.012
	weekday	-	-	(0)	0.325
ш	weathersit	-	-	-	(0)

If the p-value -> 0, then the variables are dependent. In case of features it's a proof of collinearity, one of 2 features should be deleted.

- 0 dependent
- 1 independent

		label
	season	≈0
-eature	mnth	≈0 (< season)
ЬĞ	weekday	0.97
	weathersit	0.044

If the p-value -> 0, then the variables are dependent. In case of label it's a proof of correlation, and is a sign that feature is important.

If the p-value -> 1, then the feature and label are independent. The feature has no influence on the result and can be deleted.

Nominal features: Result features

mnth

mnth_August ‡	mnth_December ‡	mnth_February ‡	mnth_January ‡	mnth_July ÷	mnth_June ÷	mnth_March ‡	mnth_May ÷	mnth_November ÷	mnth_October ÷	mnth_September ÷
0	0	0	Θ	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0
0	0	0	1	Θ	Θ	Θ	0	0	0	0

weathersit

Nominal features that will be used for modelling.

‡	yr ‡	workingday ‡	temp ÷	hum ‡	windspeed ‡	leaflets ‡	price reduction ‡
count	495.000000	495.000000	495.000000	495.000000	495.000000	495.000000	495.000000
mean	0.511111	0.684848	0.504746	0.521657	0.400560	0.485820	0.137374
std	0.500382	0.465046	0.248246	0.194587	0.186796	0.283377	0.344590
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.282633	0.381961	0.268526	0.243007	0.000000
50%	1.000000	1.000000	0.515322	0.514501	0.372412	0.480769	0.000000
75%	1.000000	1.000000	0.723609	0.660659	0.501922	0.718531	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

Scaling all the features to perform Variance feature selection. After scaling all the features are in the range [0,1].

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Numeric features: Variance

yr	0.250382
workingday	0.216268
temp	0.061626
hum	0.037864
windspeed	0.034893
leaflets	0.080303
price reduction	0.118742

Variance of features "hum" and "windspeed" is less than 0.05. If the features don't perform well in correlation/collinearity testing, they will be deleted.

Correlation

temp	0.657667
yr	0.295124
workingday	0.001501
price reduction	-0.014675
leaflets	-0.031639
hum	-0.128074
windspeed	-0.206001

Let's take 5 features with the highest correlation to label. Features "workingday" and "price reduction" can be deleted.

Chosen features

temp	0.657667
yr	0.295124
windspeed	-0.206001
hum	-0.128074
leaflets	-0.031639

Features that will be used for modelling.

Numeric features

Collinearity

features \$	VIF Factor ‡
temp	4.461709
yr	1.904048
windspeed	3.744500
hum	5.238580
leaflets	3.388039

•	VIF =	1: not	correlated	to any	other	features
_	V 11 —	II. HOL	Correlated	i to univ	Other	reature:

^{• 1 &}lt; VIF < 5: moderately correlated

	temp	yr	windspeed	hum	leaflets
temp	1.000000	0.027655	-0.180952	0.118373	0.002493
yr	0.027655	1.000000	-0.012301	-0.138729	-0.081810
windspeed	-0.180952	-0.012301	1.000000	-0.220864	-0.009016
hum	0.118373	-0.138729	-0.220864	1.000000	-0.044002
leaflets	0.002493	-0.081810	-0.009016	-0.044002	1.000000

Exploring collinearity to determine correlating features.

[•] VIF >= 5: a significant correlation with other features

Results of feature selection

Chosen numeric features

temp

yr

windspeed

hum

leaflets

We concatenate the following features and will use them for modelling.

Chosen nominal features

mnth_August

mnth_December

mnth_February

mnth_January

mnth_July

mnth_June

mnth_March

mnth_March

mnth_May

mnth_November

mnth_October

mnth_September

weathersit_Mist

weathersit_Scattered

Algorithm Selection and Model Tuning

Algorithm Selection and Model Tuning

- Linear Regression
- > Polynomial Regression
- > K-nearest-Neighbors-Regression
- > Decision Tree Regression

Model ÷	MAE \$	R2 ‡
Linear regression (selected features)	634.589904	0.952309

+32% more accuracy, after selecting features.

Polynomial Regression

*	Model ÷	MAE ÷	R2 ‡
0	Linear regression (selected features)	634.589904	0.952309
1	Polynomial regression (degree: 2)	670.648535	0.915439
2	Decision tree (Max Depth: 6)	780.020660	0.927206
3	KNN Regression (Number of Neighbors: 12)	665.016214	0.946123

- Polynomial Regression with degree 2 has the best result.
- Degree 1 would be Linear regression and 3 has a bad performance.
- Decent MAE and R² values.

- Decision Tree with maximal Depth of 6 has the best result.
- Max Depth of 1 wasn't sufficent
- After Max depth of 6 performance declined
- Good MAE and R² Values
- Max depth refers to the depth of the roots the deeper the root, the more granular the result.

k-nearest-Neighbor-Regression

- The KNN Regression model achieved the best results with a configuration of 12 neighbors.
- Model with 2 Neigbors performed worst
- KNN-Model scored the second highest perforance among the evaluated models
- KNN-Model makes a prediction based on the majority of the knearest neighbors of a data point.

Results

No selection

Model ÷	MAE \$	R2 ‡
0 Linear regression (no selection)	1716.873020	0.635512
1 KNN regression (no selection, neighbors: 3)	2170.631976	0.258834
Polynomial regression (no selection, degree: 2)	2092.486436	0.453127
<pre>3 Decision Tree (no selection, max_depth: 5)</pre>	806.155972	0.826247

 As the results shows feature selection and tuning achieved better results than simply no feature selection.

Feature selection + tuning

 Feature Selection and tuning increseed the performance up to 32% accuracy.

\$	Model ÷	MAE \$	R2 ‡
0	Linear regression (selected features)	634.589904	0.952309
1	Polynomial regression (degree: 2)	670.648535	0.915439
2	Decision tree (Max Depth: 6)	780.020660	0.927206
3	KNN Regression (Number of Neighbors: 12)	665.016214	0.946123

Cross Validation

Cross Validation scores for Linear Regression: [0.94676211 0.94230558 0.95018693 0.94229422 0.93439699]
Cross Validation scores for Polynomial Regression: [0.9632467 0.9370062 0.95459113 0.92708458 0.7394573]

Cross Validation scores for Tree Regression: [0.90401036 0.8711289 0.92139664 0.90895458 0.85123314]

Cross Validation scores for KNN: [0.92645026 0.89568045 0.92421652 0.93490622 0.90336877]

	Model	Average CV
Linear	Regression	0.943189
Polynomial	Regression	0.904277
Tree	Regression	0.891345
	KNN	0.916924

Cross Validation indicates that overfitting is not occurring.

Conclusion

Models with feature selction and tuning performed better than no feature selection Models.

Best perfoming Models:

- 1. Linear Regression with feature selection
- 2. KNN with Neigbors of 12
- 3. Polynomial Regression with degree 2
- 4. Decision Trees with max Depth 6
- 5. Decision Trees with no selection and max depth of 5

Thanks for your attention!