Performance Evaluation of Networks

Sara Alouf

Part II – Queueing Theory

- Part I Markov chains
 - ► Irreducible
 - Discrete-time Markov chains (Chapter 1)
 - ◆ Continuous-time Markov chains (Chapter 2)
 - Absorbing
 - Discrete-time and continuous-time (Chapter 3)
- Part II Queueing Theory

Part II – Queueing Theory

- What is a queue?
 - Supermarket, bank, postoffice, administrations, etc.
 - ► CPU, servers, clusters, etc.
 - Manufacturing, product lines, etc.
 - **.**..
- System with
 - at least one service facility
 - potentially a waiting room (finite or infinite)
 - customers
- Representation

Kendall's Notation

Describe a queueing system

```
A/B/c/K
```

- A → distribution of interarrivals
- B → distribution of service times
- c → number of servers
- $K \rightarrow$ number of customers in system (omitted if infinite)
- Distributions often used
 - ightharpoonup Exponential ightharpoonup M
 - ► Deterministic → D
 - ightharpoonup General ightharpoonup G
 - ightharpoonup Erlang ightharpoonup E
 - ► Phase-type → PH

What is Not in Kendall's Notation

- Service discipline (scheduling)
 - First-in-first-out (First-come-first-served)
 - Last-in-first-out (last-come-first-served)
 - Processor sharing
 - Random
 - ► Shortest-job-first
 - ➤ Shortest-processing-time-first
- Multiple waiting rooms / queues: Join discipline
 - Random
 - ► Join-shortest-queue
 - ▶ Best-out-of-d

- Arrivals: Poisson rate λ → interarrival time $Exp(\lambda)$
- Service time $Exp(\mu)$
- Independence between arrivals and service times
- Service discipline → not relevant (memoryless property)
- \blacksquare X(t) number of customers in system at time t (queue size)
- Proposition 12: $\{X(t), t \ge 0\}$ is a birth-and-death process, birth rate λ , death rate μ
- Proof: construction rule #2

$$i \to i + 1$$
 $\operatorname{Exp}(\lambda)$ $i \to i - 1$ $\operatorname{Exp}(\mu)$ $i > 0$

lacktriangle Transition diagram, $\mathcal{E} = \mathbb{N}$

Global balance equations

$$\lambda \, \pi_{i-1} = \mu \, \pi_i, \qquad i \ge 1$$

- System utilization $\rho = \frac{\lambda}{\mu}$
- Proposition 13: If $\rho < 1$ limiting/stationary distribution is

$$\pi_i = (1 - \rho)\rho^i, \quad i \ge 0$$

Proof

$$\pi_i = \rho \pi_{i-1}$$
$$= \rho^i \pi_0$$

■ Normalization $\sum \pi_i = 1$

$$\sum_{i} \pi_i = 1$$

 $\Leftrightarrow \quad \pi_0 \sum
ho^i = 1 \quad ext{sum of terms in geometric progression}$

stability condition

$$\Rightarrow \pi_0 = 1 - \rho$$
 (ρ system utilization)

$$\Rightarrow \quad \pi_i = (1 - \rho)\rho^i, \quad i \ge 0$$

- Let X stationary version of queue size $\rightarrow X \sim \text{Geom}(1-\rho)$ $1-\rho$ probability to find system empty X number of α failed trials α before finding system empty
- Expected queue size

$$E[X] = \sum_{i \ge 0} i \, \pi_i = (1 - \rho) \sum_{i \ge 0} i \, \rho^i$$

$$= \rho(1 - \rho) \sum_{i \ge 1} i \, \rho^{i-1} = \rho(1 - \rho) \left(\sum_{i \ge 1} \rho^i\right)^i$$

$$\Rightarrow E[X] = \frac{\rho}{1 - \rho}$$

Throughput (= rate of everything that goes through the system)

Thpt =
$$\mu (1 - \pi_0) = \mu \rho = \lambda$$

Burke's Theorem

- Suppose M/M/1 starts in steady-state
 - ▶ Departure process is Poisson with rate λ
 - Queue size at t independent of departures before time t
- Proof: use time-reversibility of M / M / 1
 Forward chain identical to Backwards chain
 - ✓ Arrival process is Poisson with rate λ
 - Queue size at t independent of arrivals after time t

- M/M/1 finite waiting room \rightarrow at most K customers in system
- Queue size is a finite birth-and-death process

$$\pi_i = \rho^i \, \pi_0, \quad 0 \le i \le K$$

- $\pi_i = \rho^i \, \pi_0, \quad 0 \le i \le K$ Normalization $\sum_{i=0}^K \pi_i = 1 \iff \pi_0 \sum_{i=0}^K \rho^i = 1$
- $\Rightarrow \pi_i = \frac{(1-\rho)\,\rho^i}{1-\rho^{K+1}}, \quad i = 0, 1, \dots, K$

• If
$$\rho = 1 \Rightarrow \pi_0 = \frac{1}{K+1} = \pi_i, \quad i = 0, 1, \dots, K$$

■ Transition diagram, $\rho = 1$ $\mathcal{E} = \{0, 1, \dots, K\}$

- We are equally likely to go left or right
- Stationary process X is Uniform between 0 and K

$$\pi_i = \frac{1}{K+1}, \quad i = 0, 1, \dots, K$$

Expected queue size

$$E[X] = \sum_{i=0}^{K} i \, \pi_i = \frac{1}{K+1} \sum_{i=0}^{K} i = \frac{1}{K+1} \frac{K(K+1)}{2} = \frac{K}{2}$$

Stationary distribution always exists!

no stability condition (finite system)

■ Finite system → customers may find system full!

loss probability?

- PASTA : Poisson Arrivals See Time Averages
- Birth-and-death process is ergodic
 - ► Time averages = stationary distribution
- Loss probability = prob customer arrives and sees full queue

$$P_{\text{loss}} = \pi_K = \frac{(1 - \rho) \rho^K}{1 - \rho^{K+1}}$$

■ Throughput Thpt = $\mu (1 - \pi_0) = \lambda (1 - \pi_K)$

- Poisson arrivals rate λ → interarrival time $Exp(\lambda)$
- Service time $Exp(\mu)$
- Multiple servers
- Infinite waiting room
- Queue size is a birth-and-death process
 - $i \rightarrow i + 1$ birth rate λ
 - $\begin{array}{ll} \blacktriangleright i \to i-1 & \text{death rate} \ \ \mu_i = i\mu, \quad i=1,2,\dots,c-1 \\ = c\mu, \quad i \geq c \\ \end{array}$
- System utilization $\rho = \frac{\lambda}{c\mu}$
- Infinite system → stability condition might be needed!

Representation

Example:

call center

lacktriangle Transition diagram, $\mathcal{E} = \mathbb{N}$

Customers served upon arrival

new customer needs to wait

■ Stationary distribution: for i = 1, 2, ...

$$\pi_{i} = \frac{\lambda_{0}\lambda_{1}\cdots\lambda_{i-1}}{\mu_{1}\mu_{2}\cdots\mu_{i}}\pi_{0} = \begin{cases} \left(\frac{\lambda}{\mu}\right)^{i}\frac{1}{i!}\pi_{0} & i = 0, 1, \dots, c\\ \left(\frac{\lambda}{\mu}\right)^{i}\frac{1}{c!}\frac{1}{c^{i-c}}\pi_{0} & i \geq c \end{cases}$$

■ Normalization: if $\rho < 1$ (stability condition)

$$\pi_0 = \left[\sum_{i=0}^{c-1} \left(\frac{\lambda}{\mu} \right)^i \frac{1}{i!} + \left(\frac{\lambda}{\mu} \right)^c \frac{1}{c!} \left(\frac{1}{1-\rho} \right) \right]^{-1}$$

Probability of waiting (PASTA)

$$P_{\text{wait}} = \sum_{i \geq c} \pi_i = \frac{\pi_0 \left(\lambda/\mu\right)^c}{c!} \sum_{i \geq 0} \left(\frac{\lambda}{c\mu}\right)^i = \frac{\pi_0 \left(c\rho\right)^c}{c!(1-\rho)}$$

15 minutes break

M/M/c/c Queue

- Multi-server queue with no waiting room
- Pure loss system (call center without music)
- Finite system → no stability condition
- Queue size is a birth-and-death process
 - ightharpoonup i
 ightharpoonup i + 1 birth rate $\lambda_i = \lambda$ $i = 0, 1, \ldots, c-1$
 - ightharpoonup i
 ightharpoonup i 1 death rate $\mu_i = i\mu, \quad i = 1, 2, \dots, c$
- Transition diagram $\mathcal{E} = \{0, 1, \dots, c\}$

M/M/c/c Queue

Stationary distribution

$$\pi_i = \pi_0 \left(\frac{\lambda}{\mu}\right)^i \frac{1}{i!} \quad i = 0, 1, \dots, c$$
 $\pi_0 = \left[\sum_{i=0}^c \left(\frac{\lambda}{\mu}\right)^i \frac{1}{i!}\right]^{-1}$

Loss probability

$$P_{ ext{loss}} = \pi_c = rac{\left(rac{\lambda}{\mu}
ight)^c rac{1}{c!}}{\sum_{i=0}^c \left(rac{\lambda}{\mu}
ight)^i rac{1}{i!}}$$

- Erlang's loss formula (1917)
- Major historical role in dimensioning phone systems
- Insensitivity property: holds for any service time distribution

Example: Repair Person Model

- K machines
- One repair person
- Each machine breaks after time $Exp(\alpha)$ (break rate is α)
- Upon a breakdown repair request is sent
- Repair person spends time $Exp(\mu)$ to repair one machine
- Questions
 - Probability that i machines are working normally
 - ► Overall failure rate?
- Define X(t) number of functional machines at time t
- State space $\mathcal{E} = \{0, 1, \dots, K\}$

Example: Repair Person Model

- Possible transitions?
 - ightharpoonup i o i + 1 repair is over, time $\text{Exp}(\mu)$
 - $i \rightarrow i 1$ break occurs, time $Exp(i\alpha)$
- Using construction rule #2, process is a (homogeneous)
 CTMC
- It is also a birth-and-death-process
 - Birth rate (of functional machines) $\lambda_i = \mu$
 - Death rate $\mu_i = i \alpha$
- Transition diagram

Example: Repair Person Model

- Number of functional machines
 - = Queue size of M/M/K/K
- Probability that i machines are working normally

$$\pi_i = \frac{\left(\frac{\mu}{\alpha}\right)^i \frac{1}{i!}}{\sum_{j=0}^{K} \left(\frac{\mu}{\alpha}\right)^j \frac{1}{j!}}$$

Overall failure rate

$$\sum_{\substack{i=1\\K-1}}^{K} (i \alpha) \pi_i = \alpha E[X]$$

Overall repair rate
$$\sum_{i=0}^{\infty} \mu \, \pi_i = \mu \, (1-\pi_K)$$

■ In steady-state overall failure rate = overall repair rate

Little's Formula

- Relates three quantities in steady-state
 - ightharpoonup Occupancy in a system \overline{N}
 - **Entrance** rate to the system λ
 - **Sojourn** time in system \overline{T}

$$\overline{N} = \lambda \overline{T}$$

- Valid for work-conserving systems
 system may not be idle if customers waiting
- No assumption on any distribution
- No assumption on service discipline
- Independence assumption

Proof of Little's Formula

- Steady-state → system empties infinitely often
- Let 0 and C be two times when system is empty
- Let k be number of customers served in (0, C)
- \blacksquare $\{a_i\}_{i=1,...,k}$ arrival instants
- \blacksquare $\{d_i\}_{i=1,...,k}$ departure instants
- \blacksquare $\{t_n\}_{n=1,\ldots,2k}$ all instants
- Number of customers over time N(t)

$$N(t)$$
 $k=3$
 t_1 t_2 t_3 t_4 t_5 t_6

$$\overline{N} = rac{1}{C} \int_{0}^{C} N(t) dt$$

$$= rac{1}{C} \sum_{i=1}^{2k-1} N(t_{i}^{+}) (t_{i+1} - t_{i})$$

Proof of Little's Formula

Mean sojourn time

$$\overline{T} = rac{1}{k} \sum_{i=1}^k \left(d_i - a_i
ight)$$

sum of horizontal boxes = sum of vertical boxes

$$\sum_{i=1}^{k} (d_i - a_i) = \sum_{i=1}^{2k-1} N(t_i^+) (t_{i+1} - t_i)$$

$$\Rightarrow \quad \overline{T} \, k = \overline{N} \, C$$

 $\blacksquare \text{ When } C \to \infty, \ \frac{k}{C} \to \lambda \ \Rightarrow \ \overline{T}\lambda = \overline{N}$

Example 5 Page 39

- Consider M/M/1, arrival rate λ , service rate μ
- If $\rho=\frac{\lambda}{\mu}<1$ (queue is stable)

 Mean number of customers $\overline{N}=E[X]=\frac{\rho}{1-\rho}>0$
- Entrance rate = arrival rate (no losses)
- Expected sojourn time

By Little's formula
$$\overline{T} = \frac{\overline{N}}{\lambda} = \frac{\rho}{\lambda(1-\rho)} \Rightarrow \overline{T} = \frac{1}{\mu-\lambda}$$

Expected waiting time

$$\overline{W} = \overline{T} - \frac{1}{\mu} = \frac{\rho}{\mu(1-\rho)}$$

For next week

Lesson 4 to revise

Homework 4 to return on Tuesday 8 October before 9 am

Lesson 5 to read before Lecture 5