Lembar Kerja Praktikum Struktur Data (KOM120H)

Pertemuan 13: Implementasi Huffman code

Huffman Code

Huffman code adalah teknik pengodean yang banyak digunakan untuk kompresi data. Panjang kode untuk suatu simbol berbanding terbalik dengan frekuensi simbol tersebut di dalam pesan asli.

Membangun Huffman tree

277	Hitung frekuensi tiap simbol dalam pesan	
•	Mulai dengan forest dengan single node trees	Masing-masing node berisikan simbol dan frekuensi
8	Lakukan secara rekursif	Pilih dua <i>tree</i> dengan frekuensi terkecil diroot Hasilkan <i>tree</i> baru dengan dua <i>tree</i> tsb dan simpan jumlah frekuensi di <i>root</i>
~	Selesai ketika tersisa satu <i>tree</i>	Merupakan Huffman coding tree

Bacalah artikel berikut mengenai implementasi Huffman code dengan bahasa C:

https://medium.com/@adeesha-savinda/c-program-for-text-compression-using-huffman-coding-6625d31d9e43

Coba jalankan kode tsb baik untuk encoding maupun decoding, lalu kerjakanlah soal-soal berikut:

1. Buatlah *Huffman code* untuk nama kamu secara manual (gambarkan langkah per langkah). Berapakah rasio kompresi yang dicapai? Jila sa dan sh masing-masing merupakan ukuran pesan asli (dengan 8 bit per karakter) dan pesan hasil kompresi dalam byte, rasio kompresi bisa dihitung sebagai:

$$\frac{s_a - s_h}{s_h} \times 100\%$$

Dengan:

- s_a = ukuran pesan asli (dengan 8 bit per karakter)
- s_h = pesan hasil kompresi dalam byte dan dibulatkan ke atas
- 2. Bandingkan hasilmu di nomor 1 dengan luaran dari implementasi *Huffman code* di artikel tersebut.

- 3. Berapa banyak simbol unik yang didukung implementasi tersebut? Bagian mana saja yang harus diubah jika lebih banyak simbol unik diperlukan?
- 4. Jelaskan baris-baris perintah di fungsi qinsert.
- 5. Jelaskan baris-baris perintah di fungsi qremove.
- 6. Perhatikan *array* s di fungsi import_file. Apakah ukuran 16 elemen memadai untuk semua kemungkinan? Jelaskan.
- 7. Apa yang dapat dilakukan jika kita tidak ingin membangun *Huffman code* untuk setiap pesan? Dalam skenario seperti apa pendekatan tersebut berguna?