VE216 Recitation Class 3

Fourier Series

MA, Anlin

UM-SJTU Joint Institute

June 2023

Table of Contents

Fourier Series

2 Filters

Why FS?

For a LTI system: When

$$x(t) = e^{st}$$

Then

$$y(t) = x(t) * h(t)$$

$$= \int_{-\infty}^{\infty} h(\tau)x(t - \tau)d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{st - s\tau}d\tau$$

$$= e^{st} \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau$$

$$= x(t) \cdot H(s)$$

Frequency Response

When we take s to be purely imaginary, i.e. $s=j\omega$

$$H(s)|_{s=j\omega} = H(j\omega) = H(\omega)$$

$$= \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$$

$$= |H(\omega)| e^{j\Delta H(\omega)}$$

Then

$$y(t) = x(t) \cdot H(\omega) = e^{j\omega t} \mid H(\omega) \mid e^{j\angle H(\omega)}$$

Summary

A LTI system only changes the magnitude and phase of the input.

FS Expressions

Linearity tells us that, if

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$
 (Synthesis Equation)

where

$$c_k=rac{1}{T_0}\int_{T_0}x(t)e^{-jk\omega_0t}dt$$
 (Analysis Equation)
$$c_0=rac{1}{T_0}\int_{T_0}x(t)dt$$

Then

$$y(t) = \sum_{k=-\infty}^{\infty} H(k\omega_0) c_k e^{jk\omega_0 t}$$

Real Forms of FS

$$x(t) = c_0 + 2\sum_{k=1}^{\infty} \mid c_k \mid cos(k\omega_0 t + \angle c_k)$$
 (Combined Trigonometric Form)
$$x(t) = c_0 + 2\sum_{k=1}^{\infty} Re(c_k) \cdot cos(k\omega_0 t) - Im(c_k) \cdot sin(k\omega_0 t)$$
 (Trigonometric Form)

Exercises

Table of Fourier Series for Common Signals				
Name	Waveform	c_0	$c_k, k \neq 0$	Comments
Sawtooth	$x(t)$ X_0	$\frac{X_0}{2}$	$jrac{X_0}{2\pi k}$	
Impulse train	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_0}{T_0}$	$\frac{X_0}{T_0}$	
Rectangular wave	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{TX_0}{T_0}$	$\frac{TX_0}{T_0}\operatorname{sinc}\left(\frac{Tk\omega_0}{2\pi}\right)$	$\frac{Tk\omega_0}{2\pi} = \frac{Tk}{T_0}$
Square wave	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$-j\frac{2X_0}{\pi k}$	$c_k = 0, k$ even
Triangular wave sine	$\begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$	$\frac{X_0}{2}$	$\frac{-2X_0}{(\pi k)^2}$	$c_k = 0, k$ even

Gibbs Phenomenon

Overshoot/Undershoot near discontinuity

```
Exercise
Sketch the following code in MATLAB;
a0 = 1:
t=-10:0.01:10:
x=0*t:
x=x+a0:
for k=1:50
x=x+\cos(k.*pi.*t)*(\sin(pi.*k./2))./(pi.*k./2);
end
plot(t,x);
axis([-5 5 -0.5 1.5]);
xlabel('time t [Hz]');
ylabel('inout signal x(t)');
title('plot 1');
```

FS Properties

- ullet Hermitian Symmetry: x(t) Real $o c_{-k} = c_k^*$ (Also hold for systems)
 - \rightarrow x(t) Real & Even: c_k Real & Even
 - ► x(t) Real & Odd: c_k Purely imaginary & Odd
- Amplitude: $y(t)=ax(t) \rightarrow \omega'=\omega_0$, $c_k'=ac_k$
- Time: $y(t)=x(at+b) \rightarrow \omega' = a\omega_0, \ c_k' = c_k \cdot e^{jk\omega_0 b}$
- Conjugation: $y(t)=[x(t)]^* \rightarrow \omega^{'}=\omega_0, \ c_k^{'}=c_{-k}^*$
- Differentiation: $y(t) = \frac{d}{dt}x(t) \rightarrow \omega' = \omega_0, \ c_k' = jk\omega_0 \cdot c_k$
- Parseval's Relation: $P = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{-\infty}^{\infty} |c_k|^2$

Spectra

- Power Density Spectrum: $|c_k|^2$ vs. $k\omega$
- Magnitude Spectrum: $|c_k|$ vs. $k\omega$
- Phase Spectrum: $\angle c_k$ vs. $k\omega$

Table of Contents

Fourier Series

2 Filters

Filters

Filters are used to allow certain frequencies to pass while blocking others

- Lowpass Filter
- Highpass Filter
- Bandpass Filter

Differential Equations

$$H(s) = \frac{\sum_{0}^{M} a_k s^k}{\sum_{0}^{N} b_k s^k}$$

Where:

 a_k 's are coefficients in front of x(t), b_k 's are coefficients in front of y(t)

Exercise

$$\frac{d^2}{dt^2}y(t) - 2\frac{d}{dt}y(t) = x(t)$$

- H(s)?
- When input is sin(2t)+sin(3t)+sin(4t), what is the output?

Total Harmonic Distortion

$$\begin{aligned} \textit{THD} &= 1 - \frac{\mathsf{Average\ Power\ in\ First\ Fundamental}}{\mathsf{Average\ Signal\ Power}} \\ &= 1 - \frac{\mid c_1\mid^2}{\sum_{-\infty}^{\infty}\mid c_k\mid^2} \end{aligned}$$

Exercise

$$y(t) = 3[x(t) - 2\cos(\omega_0 t) \cdot x(t)]$$

- $x(t)=\cos(\omega_0 t)$
- $x(t)=\sin(\omega_0 t)$