

INSTITUTE OF PSYCHIATRY, PSYCHOLOGY & NEUROSCIENCE

Module:

Techniques in Neuroscience

Week 1:

Understanding the brain: Who we study, how and why?

Dr Vincent Giampietro

Topic 1: The living brainPart 1 of 3

Topic list

This week, we will be looking at the following topics:

- Topic 1: The living brain
- Topic 2: Model organisms
- Topic 3: Focused journal club

Click **Next** to continue

Week1 Understanding the brain: Who we study, how and why?

Topic 1: The living brain 2 of 20

Neuroimaging as a treatment option

Real-time fMRI neurofeedback

Week1 Understanding the brain: Who we study, how and why?

Topic 1: The living brain

3 of 20

Lecture overview

Part 1

Co-evolution of structural and functional neuroimaging

Part 2

Functional neuroimaging techniques

Part 3

Functional magnetic resonance imaging (fMRI) in detail

Week 1 Understanding the brain: Who we study, how and why?

Topic 1: The living brain

Characteristics of lesion studies:

Study:

functional deficits after brain damage.

Invaluable tool in the understanding of:

the relationship between brain and behaviour.

Main drawback:

information for the precise location of the lesion was only available after patient's death.

Week1 Understanding the brain: Who we study, how and why?

Topic 1: The living brain

Early days: function (2)

Main use of EEG in a clinical setting:

- detect and characterise epileptic seizures
- combined with fMRI, it is used to identify the whole network of brain regions involved

Stone & Hughes (2013)

Week1 Understanding the brain: Who we study, how and why?

Topic 1: The living brain 14 of 20

1970s: structure (CT scan)

First CT scan, Atkinson Morley's Hospital

Godfrey Hounsfield English electrical engineer

Developed the first commercial CT scanner (1967)

CT: computed tomography

Also called:

- X-ray CT
- computerised axial tomography (CAT)

Filler (2010); Sittig et al. (2006)

Topic 1: The living brain

Understanding the brain: Who we study, how and why?

1970s: function (PET scan)

Positron Emission Tomography (PET)

How does it work:

PET is a nuclear medicine technique which involves tagging an active molecule with a short-lived radioactive tracer and then injecting it in the body. Tissue tracer concentration and location can be computed by detecting the GAMMA rays emitted as a byproduct of the decay of the radioactive tracer.

PET 111 1975 ECAT 11 1977 NeuroECAT 1978 **ECAT 931** 1985

> ECAT EXACT HR 1995

Radioactive tracers decay quickly and thus need to be produced onsite in a cyclotron.

Paans et al. (2002)

Week1 Understanding the brain: Who we study, how and why?

Topic 1: The living brain

Today: structure (MRI)

Magnetic Resonance Imaging (MRI) Workhorse of today's neuroimaging research

Used to study brain structure in different ways:

- · higher resolution anatomical scanning
- looking at microstructural changes with diffusion tensor imaging (DTI)
- mapping white matter tracks in the brain

High-resolution anatomical scanning

MRI scanner

Understanding the brain: Who we study, how and why?

Topic 1: The living brain

17 of 20

Today: function (fMRI)

Functional magnetic resonance imaging (fMRI)

fMRI scanner

Measures dynamic changes every couple of seconds in the whole brain during experimental tasks (task-based fMRI) or at rest (resting state fMRI).

Example of raw fMRI data

Week1 Understanding the brain: Who we study, how and why?

Topic 1: The living brain

Today: structure vs function

MRI scanners are versatile tools.

Typical volumetric scan for diagnostics

Functional activations overlaid on raw fMRI data

Difference in image quality is due to variation in spatial and temporal resolution.

Structural imaging:

- takes minutes to acquire > low temporal resolution
- great amount of details > high spatial resolution

fMRI - dynamic imaging:

- takes seconds to acquire > high temporal resolution
- poor amount of details > low spatial resolution

Understanding the brain: Who we study, how and why? Topic 1: The living brain 19 of 20

End of part 1

Week 1 Understanding the brain: Who we study, how and why?

Topic 1: The living brain