(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 April 2004 (15.04.2004)

PCT

(10) International Publication Number WO 2004/030615 A2

(51) International Patent Classification7:

A61K

(21) International Application Number:

PCT/US2003/028547

(22) International Filing Date:

29 September 2003 (29.09.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/414,971

2 October 2002 (02.10.2002) U

(71) Applicant (for all designated States except US): GENEN-TECH, INC. [US/US]; 1 DNA Way, South San Francisco, CA 94080-4990 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WU, Thomas, D. [US/US]; 41 Nevada Street, San Francisco, CA 94110 (US). ZHANG, Zemin [US/US]; 876 Taurus Drive, Foster City, CA 94404 (US). ZHOU, Yan [CN/US]; #111, 525 N Curtis Avenue, Alhambra, CA 91801 (US).

(74) Agents: KRESNAK, Mark T. et al.; c/o Genentech, Inc., MS49, 1 DNA Way, South San Francisco, CA 94080-4990 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF TUMOR

(57) Abstract: The present invention is directed to compositions of matter useful for the diagnosis and treatment of tumor in mammals and to methods of using those compositions of matter for the same.

COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF TUMOR

FIELD OF THE INVENTION

The present invention is directed to compositions of matter useful for the diagnosis and treatment of tumor in mammals and to methods of using those compositions of matter for the same.

5

BACKGROUND OF THE INVENTION

Malignant tumors (cancers) are the second leading cause of death in the United States, after heart disease (Boring et al., CA Cancel J. Clin. 43:7 (1993)). Cancer is characterized by the increase in the number of abnormal, or neoplastic, cells derived from a normal tissue which proliferate to form a tumor mass, the invasion of adjacent tissues by these neoplastic tumor cells, and the generation of malignant cells which eventually spread via the blood or lymphatic system to regional lymph nodes and to distant sites via a process called metastasis. In a cancerous state, a cell proliferates under conditions in which normal cells would not grow. Cancer manifests itself in a wide variety of forms, characterized by different degrees of invasiveness and aggressiveness.

15

20

25

10

In attempts to discover effective cellular targets for cancer diagnosis and therapy, researchers have sought to identify transmembrane or otherwise membrane-associated polypeptides that are specifically expressed on the surface of one or more particular type(s) of cancer cell as compared to on one or more normal non-cancerous cell(s). Often, such membrane-associated polypeptides are more abundantly expressed on the surface of the cancer cells as compared to on the surface of the non-cancerous cells. The identification of such tumor-associated cell surface antigen polypeptides has given rise to the ability to specifically target cancer cells for destruction via antibody-based therapies. In this regard, it is noted that antibody-based therapy has proved very effective in the treatment of certain cancers. For example, HERCEPTIN® and RITUXAN® (both from Genentech Inc., South San Francisco, California) are antibodies that have been used successfully to treat breast cancer and non-Hodgkin's lymphoma, respectively. More specifically, HERCEPTIN® is a recombinant DNA-derived humanized monoclonal antibody that selectively binds to the extracellular domain of the human epidermal growth factor receptor 2 (HER2) proto-oncogene. HER2 protein overexpression is observed in 25-30% of primary breast cancers. RITUXAN® is a genetically engineered chimeric murine/human monoclonal antibody directed against the CD20 antigen found on the surface of normal and malignant B lymphocytes. Both these antibodies are recombinantly produced in CHO cells.

30

In other attempts to discover effective cellular targets for cancer diagnosis and therapy, researchers have sought to identify (1) non-membrane-associated polypeptides that are specifically produced by one or more particular type(s) of cancer cell(s) as compared to by one or more particular type(s) of non-cancerous normal cell(s), (2) polypeptides that are produced by cancer cells at an expression level that is significantly higher than that of one or more normal non-cancerous cell(s), or (3) polypeptides whose expression is specifically limited

to only a single (or very limited number of different) tissue type(s) in both the cancerous and non-cancerous state (e.g., normal prostate and prostate tumor tissue). Such polypeptides may remain intracellularly located or may be secreted by the cancer cell. Moreover, such polypeptides may be expressed not by the cancer cell itself, but rather by cells which produce and/or secrete polypeptides having a potentiating or growth-enhancing effect on cancer cells. Such secreted polypeptides are often proteins that provide cancer cells with a growth advantage over normal cells and include such things as, for example, angiogenic factors, cellular adhesion factors, growth factors, and the like. Identification of antagonists of such non-membrane associated polypeptides would be expected to serve as effective therapeutic agents for the treatment of such cancers. Furthermore, identification of the expression pattern of such polypeptides would be useful for the diagnosis of particular cancers in mammals.

10

15

20

5

Despite the above identified advances in mammalian cancer therapy, there is a great need for additional diagnostic and therapeutic agents capable of detecting the presence of tumor in a mammal and for effectively inhibiting neoplastic cell growth, respectively. Accordingly, it is an objective of the present invention to identify: (1) cell membrane-associated polypeptides that are more abundantly expressed on one or more type(s) of cancer cell(s) as compared to on normal cells or on other different cancer cells, (2) non-membrane-associated polypeptides that are specifically produced by one or more particular type(s) of cancer cell(s) (or by other cells that produce polypeptides having a potentiating effect on the growth of cancer cells) as compared to by one or more particular type(s) of non-cancerous normal cell(s), (3) non-membrane-associated polypeptides that are produced by cancer cells at an expression level that is significantly higher than that of one or more normal noncancerous cell(s), or (4) polypeptides whose expression is specifically limited to only a single (or very limited number of different) tissue type(s) in both a cancerous and non-cancerous state (e.g., normal prostate and prostate tumor tissue), and to use those polypeptides, and their encoding nucleic acids, to produce compositions of matter useful in the therapeutic treatment and diagnostic detection of cancer in mammals. It is also an objective of the present invention to identify cell membrane-associated, secreted or intracellular polypeptides whose expression is limited to a single or very limited number of tissues, and to use those polypeptides, and their encoding nucleic acids, to produce compositions of matter useful in the therapeutic treatment and diagnostic detection of cancer in mammals.

25

SUMMARY OF THE INVENTION

A. Embodiments

30

In the present specification, Applicants describe for the first time the identification of various cellular polypeptides (and their encoding nucleic acids or fragments thereof) which are expressed to a greater degree on the surface of or by one or more types of cancer cell(s) as compared to on the surface of or by one or more types of normal non-cancer cells. Alternatively, such polypeptides are expressed by cells which produce and/or secrete polypeptides having a potentiating or growth-enhancing effect on cancer cells. Again alternatively, such polypeptides may not be overexpressed by tumor cells as compared to normal cells of the same tissue type, but rather may be specifically expressed by both tumor cells and normal cells of only a single or very limited

35

number of tissue types (preferably tissues which are not essential for life, e.g., prostate, etc.). All of the above polypeptides are herein referred to as <u>Tumor-associated Antigenic Target polypeptides</u> ("TAT" polypeptides) and are expected to serve as effective targets for cancer therapy and diagnosis in mammals.

Accordingly, in one embodiment of the present invention, the invention provides an isolated nucleic acid molecule having a nucleotide sequence that encodes a tumor-associated antigenic target polypeptide or fragment thereof (a "TAT" polypeptide).

5

10

15

20

25

30

35

In certain aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% nucleic acid sequence identity, to (a) a DNA molecule encoding a full-length TAT polypeptide having an amino acid sequence as disclosed herein, a TAT polypeptide amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane TAT polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length TAT polypeptide amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% nucleic acid sequence identity, to (a) a DNA molecule comprising the coding sequence of a full-length TAT polypeptide cDNA as disclosed herein, the coding sequence of a TAT polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane TAT polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length TAT polypeptide amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

In further aspects, the invention concerns an isolated nucleic acid molecule comprising a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% nucleic acid sequence identity, to (a) a DNA molecule that encodes the same mature polypeptide encoded by the full-length coding region of any of the human protein cDNAs deposited with the ATCC as disclosed herein, or (b) the complement of the DNA molecule of (a).

Another aspect of the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a TAT polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated, or is complementary to such encoding nucleotide sequence, wherein the transmembrane domain(s) of such polypeptide(s) are disclosed herein. Therefore, soluble extracellular domains of the herein described TAT polypeptides are contemplated.

In other aspects, the present invention is directed to isolated nucleic acid molecules which hybridize to (a) a nucleotide sequence encoding a TAT polypeptide having a full-length amino acid sequence as disclosed herein, a TAT polypeptide amino acid sequence lacking the signal peptide as disclosed herein, an extracellular

5

10

15

20

25

30

35

domain of a transmembrane TAT polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length TAT polypeptide amino acid sequence as disclosed herein, or (b) the complement of the nucleotide sequence of (a). In this regard, an embodiment of the present invention is directed to fragments of a full-length TAT polypeptide coding sequence, or the complement thereof, as disclosed herein, that may find use as, for example, hybridization probes useful as, for example, diagnostic probes, antisense oligonucleotide probes, or for encoding fragments of a full-length TAT polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-TAT polypeptide antibody, a TAT binding oligopeptide or other small organic molecule that binds to a TAT polypeptide. Such nucleic acid fragments are usually at least about 5 nucleotides in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, or 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length. It is noted that novel fragments of a TAT polypeptide-encoding nucleotide sequence may be determined in a routine manner by aligning the TAT polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which TAT polypeptide-encoding nucleotide sequence fragment(s) are novel. All of such novel fragments of TAT polypeptide-encoding nucleotide sequences are contemplated herein. Also contemplated are the TAT polypeptide fragments encoded by these nucleotide molecule fragments, preferably those TAT polypeptide fragments that comprise a binding site for an anti-TAT antibody, a TAT binding oligopeptide or other small organic molecule that binds to a TAT polypeptide.

In another embodiment, the invention provides isolated TAT polypeptides encoded by any of the isolated nucleic acid sequences hereinabove identified.

In a certain aspect, the invention concerns an isolated TAT polypeptide, comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity, to a TAT polypeptide having a full-length amino acid sequence as disclosed herein, a TAT polypeptide amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane TAT polypeptide protein, with or without the signal peptide, as disclosed herein, an amino acid sequence encoded by any of the nucleic acid sequences disclosed herein or any other specifically defined fragment of a full-length TAT polypeptide amino acid sequence as disclosed herein.

In a further aspect, the invention concerns an isolated TAT polypeptide comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% amino acid

sequence identity, to an amino acid sequence encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein.

In a specific aspect, the invention provides an isolated TAT polypeptide without the N-terminal signal sequence and/or without the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as hereinbefore described. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the TAT polypeptide and recovering the TAT polypeptide from the cell culture.

5

10

15

20

25

30

35

Another aspect of the invention provides an isolated TAT polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the TAT polypeptide and recovering the TAT polypeptide from the cell culture.

In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described polypeptides. Host cells comprising any such vector are also provided. By way of example, the host cells may be CHO cells, *E. coli* cells, or yeast cells. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture.

In other embodiments, the invention provides isolated chimeric polypeptides comprising any of the herein described TAT polypeptides fused to a heterologous (non-TAT) polypeptide. Example of such chimeric molecules comprise any of the herein described TAT polypeptides fused to a heterologous polypeptide such as, for example, an epitope tag sequence or a Fc region of an immunoglobulin.

In another embodiment, the invention provides an antibody which binds, preferably specifically, to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, single-chain antibody or antibody that competitively inhibits the binding of an anti-TAT polypeptide antibody to its respective antigenic epitope. Antibodies of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The antibodies of the present invention may optionally be produced in CHO cells or bacterial cells and preferably induce death of a cell to which they bind. For diagnostic purposes, the antibodies of the present invention may be detectably labeled, attached to a solid support, or the like.

In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described antibodies. Host cell comprising any such vector are also provided. By way of example, the host cells may be CHO cells, *E. coli* cells, or yeast cells. A process for producing any of the herein described antibodies is further provided and comprises culturing host cells under conditions suitable for expression of the desired antibody and recovering the desired antibody from the cell culture.

In another embodiment, the invention provides oligopeptides ("TAT binding oligopeptides") which

bind, preferably specifically, to any of the above or below described TAT polypeptides. Optionally, the TAT binding oligopeptides of the present invention may be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The TAT binding oligopeptides of the present invention may optionally be produced in CHO cells or bacterial cells and preferably induce death of a cell to which they bind. For diagnostic purposes, the TAT binding oligopeptides of the present invention may be detectably labeled, attached to a solid support, or the like.

5

10

15

20

25

30

35

In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described TAT binding oligopeptides. Host cell comprising any such vector are also provided. By way of example, the host cells may be CHO cells, *E. coli* cells, or yeast cells. A process for producing any of the herein described TAT binding oligopeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired oligopeptide and recovering the desired oligopeptide from the cell culture.

In another embodiment, the invention provides small organic molecules ("TAT binding organic molecules") which bind, preferably specifically, to any of the above or below described TAT polypeptides. Optionally, the TAT binding organic molecules of the present invention may be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The TAT binding organic molecules of the present invention preferably induce death of a cell to which they bind. For diagnostic purposes, the TAT binding organic molecules of the present invention may be detectably labeled, attached to a solid support, or the like.

In a still further embodiment, the invention concerns a composition of matter comprising a TAT polypeptide as described herein, a chimeric TAT polypeptide as described herein, an anti-TAT antibody as described herein, a TAT binding oligopeptide as described herein, or a TAT binding organic molecule as described herein, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier.

In yet another embodiment, the invention concerns an article of manufacture comprising a container and a composition of matter contained within the container, wherein the composition of matter may comprise a TAT polypeptide as described herein, a chimeric TAT polypeptide as described herein, an anti-TAT antibody as described herein, a TAT binding oligopeptide as described herein, or a TAT binding organic molecule as described herein. The article may further optionally comprise a label affixed to the container, or a package insert included with the container, that refers to the use of the composition of matter for the therapeutic treatment or diagnostic detection of a tumor.

Another embodiment of the present invention is directed to the use of a TAT polypeptide as described herein, a chimeric TAT polypeptide as described herein, an anti-TAT polypeptide antibody as described herein, a TAT binding oligopeptide as described herein, or a TAT binding organic molecule as described herein, for the preparation of a medicament useful in the treatment of a condition which is responsive to the TAT polypeptide, chimeric TAT polypeptide, anti-TAT polypeptide antibody, TAT binding oligopeptide, or TAT

binding organic molecule.

5

10

15

20

25

30

35

B. Additional Embodiments

Another embodiment of the present invention is directed to a method for inhibiting the growth of a cell that expresses a TAT polypeptide, wherein the method comprises contacting the cell with an antibody, an oligopeptide or a small organic molecule that binds to the TAT polypeptide, and wherein the binding of the antibody, oligopeptide or organic molecule to the TAT polypeptide causes inhibition of the growth of the cell expressing the TAT polypeptide. In preferred embodiments, the cell is a cancer cell and binding of the antibody, oligopeptide or organic molecule to the TAT polypeptide causes death of the cell expressing the TAT polypeptide. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, or single-chain antibody. Antibodies, TAT binding oligopeptides and TAT binding organic molecules employed in the methods of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The antibodies and TAT binding oligopeptides employed in the methods of the present invention may optionally be produced in CHO cells or bacterial cells.

Yet another embodiment of the present invention is directed to a method of therapeutically treating a mammal having a cancerous tumor comprising cells that express a TAT polypeptide, wherein the method comprises administering to the mammal a therapeutically effective amount of an antibody, an oligopeptide or a small organic molecule that binds to the TAT polypeptide, thereby resulting in the effective therapeutic treatment of the tumor. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, or single-chain antibody. Antibodies, TAT binding oligopeptides and TAT binding organic molecules employed in the methods of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The antibodies and oligopeptides employed in the methods of the present invention may optionally be produced in CHO cells or bacterial cells.

Yet another embodiment of the present invention is directed to a method of determining the presence of a TAT polypeptide in a sample suspected of containing the TAT polypeptide, wherein the method comprises exposing the sample to an antibody, oligopeptide or small organic molecule that binds to the TAT polypeptide and determining binding of the antibody, oligopeptide or organic molecule to the TAT polypeptide in the sample, wherein the presence of such binding is indicative of the presence of the TAT polypeptide in the sample. Optionally, the sample may contain cells (which may be cancer cells) suspected of expressing the TAT polypeptide. The antibody, TAT binding oligopeptide or TAT binding organic molecule employed in the method may optionally be detectably labeled, attached to a solid support, or the like.

A further embodiment of the present invention is directed to a method of diagnosing the presence of a tumor in a mammal, wherein the method comprises detecting the level of expression of a gene encoding a TAT polypeptide (a) in a test sample of tissue cells obtained from said mammal, and (b) in a control sample of known normal non-cancerous cells of the same tissue origin or type, wherein a higher level of expression of the

TAT polypeptide in the test sample, as compared to the control sample, is indicative of the presence of tumor in the mammal from which the test sample was obtained.

Another embodiment of the present invention is directed to a method of diagnosing the presence of a tumor in a mammal, wherein the method comprises (a) contacting a test sample comprising tissue cells obtained from the mammal with an antibody, oligopeptide or small organic molecule that binds to a TAT polypeptide and (b) detecting the formation of a complex between the antibody, oligopeptide or small organic molecule and the TAT polypeptide in the test sample, wherein the formation of a complex is indicative of the presence of a tumor in the mammal. Optionally, the antibody, TAT binding oligopeptide or TAT binding organic molecule employed is detectably labeled, attached to a solid support, or the like, and/or the test sample of tissue cells is obtained from an individual suspected of having a cancerous tumor.

10

5

Yet another embodiment of the present invention is directed to a method for treating or preventing a cell proliferative disorder associated with altered, preferably increased, expression or activity of a TAT polypeptide, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a TAT polypeptide. Preferably, the cell proliferative disorder is cancer and the antagonist of the TAT polypeptide is an anti-TAT polypeptide antibody, TAT binding oligopeptide, TAT binding organic molecule or antisense oligonucleotide. Effective treatment or prevention of the cell proliferative disorder may be a result of direct killing or growth inhibition of cells that express a TAT polypeptide or by antagonizing the cell growth potentiating activity of a TAT polypeptide.

20

15

Yet another embodiment of the present invention is directed to a method of binding an antibody, oligopeptide or small organic molecule to a cell that expresses a TAT polypeptide, wherein the method comprises contacting a cell that expresses a TAT polypeptide with said antibody, oligopeptide or small organic molecule under conditions which are suitable for binding of the antibody, oligopeptide or small organic molecule to said TAT polypeptide and allowing binding therebetween.

25

Other embodiments of the present invention are directed to the use of (a) a TAT polypeptide, (b) a nucleic acid encoding a TAT polypeptide or a vector or host cell comprising that nucleic acid, (c) an anti-TAT polypeptide antibody, (d) a TAT-binding oligopeptide, or (e) a TAT-binding small organic molecule in the preparation of a medicament useful for (i) the therapeutic treatment or diagnostic detection of a cancer or tumor, or (ii) the therapeutic treatment or prevention of a cell proliferative disorder.

30

Another embodiment of the present invention is directed to a method for inhibiting the growth of a cancer cell, wherein the growth of said cancer cell is at least in part dependent upon the growth potentiating effect(s) of a TAT polypeptide (wherein the TAT polypeptide may be expressed either by the cancer cell itself or a cell that produces polypeptide(s) that have a growth potentiating effect on cancer cells), wherein the method comprises contacting the TAT polypeptide with an antibody, an oligopeptide or a small organic molecule that binds to the TAT polypeptide, thereby antagonizing the growth-potentiating activity of the TAT polypeptide and, in turn, inhibiting the growth of the cancer cell. Preferably the growth of the cancer cell is completely inhibited. Even more preferably, binding of the antibody, oligopeptide or small organic molecule to the TAT polypeptide induces the death of the cancer cell. Optionally, the antibody is a monoclonal antibody, antibody fragment,

35

chimeric antibody, humanized antibody, or single-chain antibody. Antibodies, TAT binding oligopeptides and TAT binding organic molecules employed in the methods of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The antibodies and TAT binding oligopeptides employed in the methods of the present invention may optionally be produced in CHO cells or bacterial cells.

5

10

15

20

25

30

Yet another embodiment of the present invention is directed to a method of therapeutically treating a tumor in a mammal, wherein the growth of said tumor is at least in part dependent upon the growth potentiating effect(s) of a TAT polypeptide, wherein the method comprises administering to the mammal a therapeutically effective amount of an antibody, an oligopeptide or a small organic molecule that binds to the TAT polypeptide, thereby antagonizing the growth potentiating activity of said TAT polypeptide and resulting in the effective therapeutic treatment of the tumor. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, or single-chain antibody. Antibodies, TAT binding oligopeptides and TAT binding organic molecules employed in the methods of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The antibodies and oligopeptides employed in the methods of the present invention may optionally be produced in CHO cells or bacterial cells.

Yet further embodiments of the present invention will be evident to the skilled artisan upon a reading of the present specification.

BRIEF DESCRIPTION OF THE DRAWINGS

In the list of figures for the present application, specific cDNA sequences which are upregulated in certain tumor tissues as compared to their normal tissue counterparts are individually identified with a designation beginning with the letters "DNA" followed by a specific numerical designation. A full or partial length protein sequence that is encoded by a cDNA sequence identified and shown herein is individually identified with a designation beginning with the letters "PRO" followed by a specific numerical designation. Figures showing encoded amino acid sequences immediately follow the figure showing the cDNA sequence encoding that specific amino acid sequence. If start and/or stop codons have been identified in a cDNA sequence shown in the attached figures, they are shown in bold and underlined font.

List of Figures

3	•
Figure 1: DNA323717, XM_059201, gen.XM_059201	Figure 53: PRO80499
Figure 2: DNA323718, XM_117159, gen.XM_117159	Figure 54: DNA323743, XM_086587, gen.XM_086587
Figure 3: DNA323719, XM_114062, gen.XM_114062	Figure 55: DNA323744, XM_059230, gen.XM_059230
Figure 4: DNA323720, XM_086178, gen.XM_086178	Figure 56: PRO80501
Figure 5: PRO80480	Figure 57A-B: DNA323745, XM_048780,
Figure 6: DNA323721, XM_051556, gen.XM_051556	gen.XM_048780
Figure 7: PRO80481	Figure 58: DNA323746, XM_053183, gen.XM_053183
Figure 8: DNA323722, NM_017891, gen.NM_017891	Figure 59: DNA323747, XM_165442, gen.XM_165442
Figure 9: PRO80482	Figure 60: DNA323748, NM_033440, gen.NM_033440
Figure 10: DNA323723, NM_018188, gen.NM_018188	Figure 61: PRO2269
Figure 11: PRO80483	Figure 62: DNA323749, NM_024329, gen.NM_024329
Figure 12: DNA323724, NM_002617, gen.NM_002617	Figure 63: PRO80505
Figure 13: PRO23746	Figure 64: DNA323750, XM_018205, gen.XM_018205
Figure 14: DNA323725, XM_049742, gen.XM_049742	Figure 65: PRO80506
Figure 15: DNA323726, NM_033534, gen.NM_033534	Figure 66: DNA323751, XM_011650, gen.XM_011650
Figure 16: PRO80484	Figure 67: DNA323752, XM_017315, gen.XM_017315
Figure 17: DNA323727, NM_014188, gen.NM_014188	Figure 68A-B: DNA323753, XM_030470,
Figure 18: PRO80485	gen.XM_030470
Figure 19: DNA323728, XM_086180, gen.XM_086180	Figure 69: DNA323754, NM_004930, gen.NM_004930
Figure 20: DNA323729, XM_166599, gen.XM_166599	Figure 70: PRO80510
Figure 21: PRO80487	Figure 71: DNA323755, NM_003689, gen.NM_003689
Figure 22: DNA323730, NM_017900, gen.NM_017900	Figure 72: PRO80511
Figure 23: PRO80488	Figure 73: DNA323756, NM_016183, gen.NM_016183
Figure 24: DNA323731, XM_001589, gen.XM_001589	Figure 74: PRO80512
Figure 25: PRO80489	Figure 75: DNA323757, XM_015234, gen.XM_015234
Figure 26: DNA323732, NM_016176, gen.NM_016176	Figure 76A-B: DNA323758, XM_027916,
Figure 27: PRO80490	gen.XM_027916
Figure 28: DNA323733, XM_117692, gen.XM_117692	Figure 77: DNA323759, XM_033683, gen.XM_033683
Figure 29: DNA323734, XM_086360, gen.XM_086360	Figure 78: DNA323760, XM_001826, gen.XM_001826
Figure 30: PRO80492	Figure 79: DNA323761, XM_033654, gen.XM_033654
Figure 31: DNA287173, NM_001428, gen.NM_001428	Figure 80: PRO80517
Figure 32: PRO69463	Figure 81: DNA323762, NM _001791, gen.NM _001791
Figure 33: DNA323735, XM_001299, gen.XM_001299	Figure 82: PRO26194
Figure 34: DNA323736, NM_000983, gen.NM_000983	Figure 83: DNA323763, NM_005826, gen.NM_005826
Figure 35: PRO80493	Figure 84: PRO60815
Figure 36A-B: DNA227821, NM_014851,	Figure 85: DNA323764, XM_086357, gen.XM_086357
gen.NM_014851	Figure 86: PRO80518
Figure 37: PRO38284	Figure 87: DNA323765, NM_000975, gen.NM_000975
Figure 38A-B: DNA323737, XM_086204,	Figure 88: PRO80519
gen.XM_086204	Figure 89: DNA323766, NM _007260, gen.NM _007260
Figure 39: PRO80494	Figure 90: PRO61250
Figure 40: DNA323738, XM_030920, gen.XM_030920	Figure 91: DNA323767, NM_017761, gen.NM_017761
Figure 41: DNA323739, NM_018948, gen.NM_018948	Figure 92: PRO80520
Figure 42: DNA273712, NM_007262, gen.NM_007262	Figure 93: DNA323768, NM _006625, gen.NM _006625
Figure 43: PRO61679	Figure 94: PRO22196
Figure 44: DNA151148, NM_004781, gen.NM_004781	Figure 95: DNA323769, NM_054016, gen.NM_054016
Figure 45: PRO12618	Figure 96: PRO80521
Figure 46: DNA323740, XM_086151, gen.XM_086151	Figure 97: DNA323770, XM _086375, gen.XM _086375
Figure 47: PRO80497	Figure 98: DNA323771, XM _006290, gen.XM _006290
Figure 48: DNA171408, NM_004401, gen.NM_004401	Figure 99: DNA323772, NM_015484, gen.NM_015484
Figure 49: PRO20136	Figure 100: PRO80524
Figure 50: DNA323741, NM_003132, gen.NM_003132	Figure 101A-B: DNA323773, XM_001616,
Figure 51: PRO80498	gen.XM_001616
Figure 52: DNA323742, XM_086586, gen.XM_086586	Figure 102: DNA323774, XM_058240,

gen.XM_086444 gen.XM_058240 Figure 137: DNA323797, NM_024640, Figure 103: DNA323775, XM_059117, gen.NM_024640 gen.XM_059117 Figure 104: PRO80527 Figure 138: PRO80547 Figure 139A-B: DNA323798, XM_049310, Figure 105: DNA226262, NM_005563, gen.XM_049310 gen.NM_005563 Figure 140: DNA323799, XM_113374, Figure 106: PRO36725 gen.XM_113374 Figure 107: DNA323776, NM_022778, Figure 141: DNA323800, XM_002105, gen.NM_022778 Figure 108: PRO80528 gen.XM_002105 Figure 142: DNA323801, NM_014571, Figure 109: DNA323777, XM_017846, gen.NM_014571 gen.XM_017846 Figure 143: PRO80550 Figure 110: DNA323778, NM_005517, Figure 144: DNA323802, XM_165438, gen.NM_005517 gen.XM_165438 Figure 111: PRO80530 Figure 145: DNA323803, XM_029844, Figure 112A-C: DNA323779, XM_046918, gen.XM_029844 gen.XM_046918 Figure 146: DNA188748, NM_006559, Figure 113: DNA323780, XM_002114, gen.NM_006559 gen.XM_002114 Figure 147: PRO22304 Figure 114: DNA323781, XM_059066, Figure 148: DNA323804, NM_003757, gen.XM_059066 Figure 115: PRO80533 gen.NM_003757 Figure 149: PRO80553 Figure 116: DNA323782, NM_018066, Figure 150: DNA323805, NM_004964, gen.NM_018066 gen.NM_004964 Figure 117: PRO80534 Figure 151: PRO80554 Figure 118: DNA323783, NM_006600, Figure 152: DNA323806, NM_023009, gen.NM_006600 gen.NM_023009 Figure 119: PRO80535 Figure 153: PRO80555 Figure 120: DNA323784, XM_059067, Figure 154: DNA323807, XM_030423, gen.XM_059067 gen.XM_030423 Figure 121: PRO80536 Figure 155A-B: DNA323808, XM_036299, Figure 122: DNA323785, NM_032872, gen.NM_032872 gen.XM_036299 Figure 156: PRO80557 Figure 123: PRO80537 Figure 157: DNA227213, NM_003680, Figure 124: DNA196349, NM_006990, gen.NM_003680 gen.NM_006990 Figure 158: PRO37676 Figure 125: PRO24856 Figure 159: DNA323809, NM_006112, Figure 126: DNA323788, XM_001640, gen.NM_006112 gen.XM_001640 Figure 160: PRO80558 Figure 127: DNA323789, NM_002946, Figure 161: DNA323810, XM_018136, gen.NM_002946 gen.XM_018136 Figure 128: PRO59099 Figure 162: PRO80559 Figure 129: DNA323790, XM_114044, Figure 163: DNA323811, XM_117184, gen.XM_114044 gen.XM_117184 Figure 130: DNA323791, XM_059088, Figure 164: PRO80560 gen.XM_059088 Figure 165: DNA323812, NM_017825, Figure 131: DNA323792, NM_031459, gen.NM_017825 gen.NM_031459 Figure 166: PRO80561 Figure 132: PRO80542 Figure 167: DNA189315, NM_014408, Figure 133: DNA323793, XM_010664, gen.NM_014408 gen.XM_010664 Figure 168: PRO22262 Figure 134: DNA323794, XM_001812, Figure 169A-B: DNA323813, XM_029031, gen.XM_001812 gen.XM_029031 Figure 135: DNA323795, XM_001807, Figure 170: PRO80562 gen.XM_001807 Figure 136: DNA323796, XM_086444, Figure 171: DNA323814, XM_059171,

Figure 207: PRO80575

Figure 208: DNA323828, XM_046557, gen.XM_059171 gen.XM_046557 Figure 172: PRO80563 Figure 173: DNA83085, NM_000760, gen.NM_000760 Figure 209: PRO80576 Figure 210: DNA323829, NM_001012, Figure 174: PRO2583 Figure 175: DNA323815, XM_165984, gen.NM_001012 Figure 211: PRO10760 gen.XM_165984 Figure 212: DNA323830, XM_046551, Figure 176: DNA323816, XM_029842, gen.XM_046551 gen.XM_029842 Figure 213A-B: DNA323831, XM_027983, Figure 177: PRO2851 gen.XM_027983 Figure 178: DNA323817, XM_086384, Figure 214: DNA323832, XM_086324, gen.XM_086384 gen.XM_086324 Figure 179: PRO80565 Figure 215: PRO80579 Figure 180A-C: DNA274487, NM_014747, Figure 216: DNA323833, XM_032391, gen.NM_014747 gen.XM_032391 Figure 181: PRO62389 Figure 217: PRO80580 Figure 182: DNA323818, XM_010712, Figure 218: DNA103214, NM_006066, gen.XM_010712 gen.NM_006066 Figure 183: DNA323819, NM_024664, Figure 219: PRO4544 gen.NM_024664 Figure 220: DNA304686, NM_002574, Figure 184: PRO80567 gen.NM_002574 Figure 185: DNA323820, XM_059214, Figure 221: PRO71112 gen.XM_059214 Figure 222: DNA323834, NM_032756, Figure 186: PRO80568 gen.NM_032756 Figure 187: DNA323821, XM_046349, Figure 223: PRO80581 gen.XM_046349 Figure 224: DNA323835, XM_059133, Figure 188: DNA103253, NM_006516, gen.XM_059133 gen.NM_006516 Figure 225: PRO80582 Figure 189: PRO4583 Figure 226: DNA323836, XM_027313, Figure 190: DNA323822, XM_086543, gen.XM_027313 gen.XM_086543 Figure 227: PRO80583 Figure 191: PRO80570 Figure 228: DNA323837, XM .054868, Figure 192: DNA274745, NM_006824, gen.XM_054868 gen.NM_006824 Figure 229: DNA323838, NM_001262, Figure 193: PRO62518 gen.NM_001262 Figure 194: DNA273060, NM_001255, Figure 230: PRO59546 gen.NM_001255 . Figure 231: DNA323839, XM_086391, Figure 195: PRO61125 gen.XM_086391 Figure 196: DNA323823, NM_030587, Figure 232: PRO80584 gen.NM_030587 Figure 233: DNA323840, XM_114798, Figure 197: PRO80571 gen.XM_114798 Figure 198: DNA323824, XM_097649, Figure 234: PRO80585 gen.XM_097649 Figure 235: DNA272748, NM_002979, Figure 199: DNA256503, NM _003780, gen.NM_002979 gen.NM_003780 Figure 236: PRO60860 Figure 200: PRO51539 Figure 237: DNA323841, XM_038911, Figure 201: DNA323825, XM_046450, gen.XM_038911 gen.XM_046450 Figure 238: PRO80586 Figure 202A-B: DNA272024, NM_014663, Figure 239: DNA323842, NM_018070, gen.NM_014663 gen.NM_018070 Figure 203: PRO60298 Figure 240: PRO80587 Figure 204: DNA323826, XM_046565, Figure 241: DNA323843, NM_024603, gen.XM_046565 gen.NM_024603 Figure 205: PRO80574 Figure 242: PRO80588 Figure 206: DNA323827, NM_024602, Figure 243: DNA323844, XM_086389, gen.NM_024602

gen.XM_086389

Figure 244: DNA323845, XM_038852,	Figure 278: PRO80607
gen.XM_038852	Figure 279: DNA323865, XM_086165,
Figure 245: DNA323846, NM_032864,	gen.XM_086165
gen.NM_032864	Figure 280: DNA323866, XM_086167,
Figure 246: PRO80591	gen.XM_086167
Figure 247: DNA323847, NM_024586,	Figure 281: DNA323867, XM_086166,
gen.NM_024586	gen.XM_086166
Figure 248: PRO80592	Figure 282: DNA323868, XM_086138,
Figure 249A-B: DNA323848, XM_097565,	gen.XM_086138
gen.XM_097565	Figure 283: PRO80611
Figure 250: DNA323849, XM_001472,	Figure 284: DNA323869, NM_000969,
gen.XM_001472	gen.NM_000969
Figure 251A-C: DNA323850, XM_055481,	Figure 285: PRO80612
gen.XM_055481	Figure 286: DNA323870, XM_088863,
Figure 252: PRO80593	gen.XM_088863
Figure 253: DNA323851, XM_010615,	Figure 287: PRO80613
gen.XM_010615	Figure 288: DNA271003, NM_003729,
Figure 254A-B: DNA323852, XM_089138,	gen.NM_003729
gen.XM_089138	Figure 289: PRO59332
Figure 255: PRO80595	Figure 290: DNA323871, XM_165981,
Figure 256A-B: DNA323853, XM_059180,	gen.XM_165981
gen.XM_059180	Figure 291: PRO80614
Figure 257: DNA323854, XM_015717,	Figure 292: DNA275139, NM_013296,
gen.XM_015717	gen.NM_013296
Figure 258: PRO80597	Figure 293: PRO62849
Figure 259: DNA323855, XM_114125,	Figure 294: DNA323872, XM_058702,
gen.XM_114125	gen.XM_058702
Figure 260: DNA323856, NM_015640,	Figure 295: DNA323873, XM 054978,
gen.NM_015640	gen.XM_054978
Figure 261: PRO80599	Figure 296: DNA323874, NM _032636,
Figure 262: DNA323857, NM_017768,	gen.NM_032636
gen.NM_017768	Figure 297: PRO80617
Figure 263: PRO80600	Figure 298: DNA323875, NM _006513,
Figure 264: DNA323858, XM_165977,	gen.NM_006513
gen.XM_165977	Figure 299: PRO80618
Figure 265: DNA323859, XM_086343,	Figure 300: DNA323876, NM _006621,
gen.XM_086343	gen.NM_006621
Figure 266: PRO80602	Figure 301: PRO80619
Figure 267: DNA269708, NM_007034,	Figure 302A-B: DNA323877, NM_007158,
gen.NM_007034	gen.NM_007158
Figure 268: PRO58118	Figure 303: PRO80620
Figure 269: DNA323860, NM_001554,	Figure 304: DNA323878, XM_086132,
gen.NM_001554	gen.XM_086132
Figure 270: PRO80603	Figure 305: PRO80621
	Figure 306: DNA323879, NM_004000,
Figure 271: DNA226260, NM_006769,	
gen.NM_006769	gen.NM_004000 Figure 307: PRO80622
Figure 272: PRO36723	•
Figure 273: DNA323861, NM_004261,	Figure 308: DNA323880, NM .001688,
gen.NM_004261	gen.NM_001688
Figure 274: PRO80604	Figure 309: PRO80623
Figure 275: DNA323862, XM_165983,	Figure 310: DNA323881, NM_019099,
gen.XM_165983	gen.NM_019099
Figure 276: DNA323863, XM_016164,	Figure 311: PRO80624
gen.XM_016164	Figure 312A-B: DNA323882, NM_000701,
Figure 277: DNA323864, XM_086164,	gen.NM_000701
gen.XM_086164	Figure 313: PRO80625

Figure 314A-B: DNA323883, XM_018332, gen.NM_002810 Figure 349: PRO61638 gen.XM_018332 Figure 315A-B: DNA323884, XM_040709, Figure 350: DNA290284, NM_005997, gen.XM_040709 gen.NM_005997 Figure 316: PRO80627 Figure 351: PRO70433 Figure 317: DNA323885, XM_086518, Figure 352: DNA323903, XM_097639, gen.XM_086518 gen.XM_097639 Figure 318A-D: DNA323886, XM_034671, Figure 353: DNA323904, XM_041879, gen.XM_034671 gen.XM_041879 Figure 319: DNA323887, XM_034662, Figure 354: DNA323905, XM _041884, gen.XM_034662 gen.XM_041884 Figure 320: PRO80630 Figure 355: PRO80644 Figure 321: DNA323888, XM_039721, Figure 356: DNA225809, NM_000396, gen.XM_039721 gen.NM_000396 Figure 322: PRO80631 Figure 357: PRO36272 Figure 323A-B: DNA323889, XM_086397, Figure 358: DNA323906, NM_025150, gen.XM_086397 gen.NM_025150 Figure 359: PRO80645 Figure 324A-B: DNA323890, XM_086515, Figure 360: DNA323907, XM_114098, gen.XM_086515 Figure 325: PRO80633 gen.XM_114098 Figure 326: DNA323891, XM_016480, Figure 361: DNA323908, XM_113369, gen.XM_016480 gen.XM_113369 Figure 327: DNA323892, XM_165975, Figure 362: PRO80646 gen.XM_165975 Figure 363: DNA323909, XM_099467, Figure 328: DNA323893, NM_016361, gen.XM_099467 gen.NM_016361 Figure 364: DNA323910, NM_002965, gen.NM_002965 Figure 329: PRO231 Figure 330: DNA323894, XM_059210, Figure 365: PRO80648 gen.XM_059210 Figure 366: DNA323911, XM_086400, Figure 331: DNA323895, XM_086296, gen.XM_086400 gen.XM_086296 Figure 367: DNA210134, NM_014624, Figure 332: DNA323896, NM_030920, gen.NM_014624 gen.NM_030920 Figure 368: PRO33679 Figure 333: PRO80638 Figure 369: DNA304666, NM_002961, gen.NM_002961 Figure 334: DNA323897, NM_016022, Figure 370: PRO71093 gen.NM_016022 Figure 335: PRO80639 Figure 371: DNA304720, NM_019554, Figure 336: DNA323898, NM_031901, gen.NM_019554 Figure 372: PRO71146 gen.NM_031901 Figure 337: PRO80640 Figure 373: DNA323912, XM_165976, Figure 338A-B: DNA323899, XM_088788, gen.XM_165976 gen.XM_088788 Figure 374: DNA227577, NM_006271, Figure 339: PRO80641 gen.NM_006271 Figure 340: DNA274759, NM_005620, Figure 375: PRO38040 gen.NM_005620 Figure 376: DNA323913, XM_114097, Figure 341: PRO62529 gen.XM_114097 Figure 342: DNA323900, XM_001468, Figure 377: DNA323914, XM_040009, gen.XM_001468 gen.XM_040009 Figure 343: PRO49642 Figure 378: PRO80651 Figure 344: DNA323901, NM_006862, Figure 379: DNA323915, NM_024330, gen.NM_006862 gen.NM_024330 Figure 380: PRO703 Figure 345: PRO80642 Figure 346: DNA227529, NM_002796, Figure 381: DNA323916, NM_012437, gen.NM_002796 gen.NM_012437 Figure 347: PRO37992 Figure 382: PRO80652 Figure 348: DNA323902, NM_002810, Figure 383: DNA323917, XM_086271,

gen.XM_086271	Figure 419: PRO80667
Figure 384: DNA323918, XM_114055,	Figure 420: DNA323935, NM_018116,
	gen.NM_018116
gen.XM_114055	Figure 421: PRO80668
Figure 385: PRO37535	Figure 422: DNA323936, NM _002004,
Figure 386: DNA323919, XM_113360,	
gen.XM_113360	gen.NM_002004
Figure 387: PRO80654	Figure 423: PRO80669
Figure 388: DNA323920, XM_086564,	Figure 424: DNA323937, NM .005698,
gen.XM_086564	gen.NM_005698
Figure 389: DNA323921, NM_005973,	Figure 425: PRO80670
gen.NM_005973	Figure 426: DNA323938, NM_052837,
Figure 390: PRO80656	gen.NM_052837
Figure 391: DNA323922, XM_044077,	Figure 427: PRO80671
gen.XM_044077	Figure 428: DNA194600, NM_006589,
Figure 392: DNA323923, NM_001878,	gen.NM_006589
gen.NM_001878	Figure 429: PRO23942
Figure 393: PRO80657	Figure 430: DNA323939, XM_086567,
Figure 394: DNA323924, NM_021948,	gen.XM_086567
gen.NM_021948	Figure 431: PRO80672
Figure 395: PRO6018	Figure 432: DNA323940, XM _086552,
Figure 396: DNA273088, NM_006365,	gen.XM_086552
gen.NM_006365	Figure 433: DNA323941, XM 036744,
Figure 397: PRO61146	gen.XM_036744
Figure 398: DNA323925, XM_044127,	Figure 434: DNA323942, NM_130898,
gen.XM_044127	gen.NM_130898
Figure 399: PRO80658	Figure 435: PRO80675
Figure 400: DNA323926, XM .053245,	Figure 436: DNA226793, NM _006694,
gen.XM_053245	gen.NM_006694
Figure 401: PRO80659	Figure 437: PRO37256
Figure 402: DNA257916, NM_032323,	Figure 438: DNA294794, NM _002870,
gen.NM_032323	gen.NM_002870
Figure 403: PRO52449	Figure 439: PRO70754
Figure 404: DNA323927, NM_005572,	Figure 440: DNA323943, NM .001030,
gen.NM_005572	gen.NM_001030
Figure 405: PRO80660	Figure 441: PRO80676
Figure 406: DNA323928, XM_044166,	Figure 442: DNA323944, XM_036829,
gen.XM_044166	gen.XM_036829
Figure 407: PRO80661	Figure 443: PRO80677
Figure 408: DNA323929, XM_044128,	Figure 444: DNA323945, NM .015449,
gen.XM_044128	gen.NM_015449
Figure 409: DNA226125, NM_003145,	Figure 445: PRO80678 '
gen.NM_003145	Figure 446: DNA323946, NM .014847,
Figure 410: PRO36588	gen.NM_014847
Figure 411A-B: DNA323930, XM_044172,	Figure 447: PRO80679
gen.XM_044172	Figure 448: DNA323947, XM _036934,
Figure 412: DNA323931, NM_032292,	gen.XM_036934
gen.NM_032292	Figure 449: PRO80680
Figure 413: PRO80664	Figure 450A-B: DNA323948, XM_036845,
Figure 414: DNA323932, NM_004632,	gen.XM_036845
gen.NM_004632	Figure 451: DNA323949, XM_010636,
Figure 415: PRO80665	gen.XM_010636
Figure 416: DNA323933, XM_044075,	Figure 452: DNA323950, NM _006556,
gen.XM_044075	gen.NM_006556
Figure 417: PRO80666	Figure 453: PRO62574
Figure 418: DNA323934, NM_018253,	Figure 454: DNA323951, XM_034082,
gen.NM_018253	gen.XM_034082

Figure 455: DNA323952, NM _025207,	Figure 490: DNA323971, XM_086481,
=	-
gen.NM_025207	gen.XM_086481
Figure 456: PRO80684	Figure 491: PRO80700 Figure 492: DNA323972, XM_059191,
Figure 457: DNA103436, NM_003815,	
gen.NM_003815	gen.XM_059191
Figure 458: PRO4763	Figure 493: DNA323973, XM _086485,
Figure 459: DNA323953, NM_003516,	gen.XM_086485
gen.NM_003516	Figure 494: DNA323974, XM_086484,
Figure 460: PRO80685	gen.XM_086484
Figure 461: DNA323954, NM_005850,	Figure 495: DNA323975, XM_047479,
gen.NM_005850 (gen.XM_047479
Figure 462: PRO59725	Figure 496: PRO80704
Figure 463A-B: DNA323955, NM _014849,	Figure 497: DNA323976, NM _003617,
gen.NM_014849	gen.NM_003617
Figure 464: PRO80686	Figure 498: PRO37806
Figure 465: DNA323956, XM_059094,	Figure 499: DNA254298, NM _025226,
gen.XM_059094	gen.NM_025226
Figure 466: DNA323957, XM_058247,	Figure 500: PRO49409
gen.XM_058247	Figure 501: DNA323977, XM_034000,
Figure 467: PRO80688	gen.XM_034000
Figure 468: DNA323958, NM_003779,	Figure 502: PRO80705
gen.NM_003779	Figure 503: DNA323978, NM _032738,
Figure 469: PRO80689	gen.NM_032738
Figure 470: DNA323959, NM_004550,	Figure 504: PRO329
gen.NM_004550	Figure 505: DNA323979, NM _000569,
Figure 471: PRO58974	gen.NM_000569
Figure 472: DNA323960, XM_085581,	Figure 506: PRO80706
gen.XM_085581	Figure 507: DNA323980, XM_088945,
Figure 473: DNA323961, XM_113379,	gen.XM_088945
gen.XM_113379	Figure 508: PRO80707
Figure 474: DNA226619, NM_003564,	Figure 509: DNA323981, XM_060331,
gen.NM_003564	gen.XM_060331
Figure 475: PRO37082	Figure 510: PRO80708
Figure 476A-B: DNA323962, XM_049680,	Figure 511: DNA323982, NM_004905,
gen.XM_049680	gen.NM_004905
Figure 477: DNA323963, XM_165443,	Figure 512: PRO80709
gen.XM_165443	Figure 513: DNA323983, NM_017847,
Figure 478: PRO80693	gen.NM_017847
Figure 479: DNA323964, XM_086381,	Figure 514: PRO80710
gen.XM_086381	Figure 515A-B: DNA323984, XM_051877,
Figure 480: PRO80694	gen.XM_051877
Figure 481A-B: DNA323965, NM _002857,	Figure 516: PRO62077
gen.NM_002857	Figure 517: DNA323985, NM_005717,
Figure 482: PRO80695	gen.NM_005717
Figure 483A-B: DNA323966, XM_049690,	Figure 518: PRO80711
gen.XM_049690	Figure 519A-B: DNA271986, NM_014837,
Figure 484: DNA323967, XM_114153,	gen.NM_014837
gen.XM_114153	Figure 520: PRO60261
Figure 485: DNA323968, XM_086378,	Figure 521A-B: DNA323986, XM_056923,
gen.XM_086378	gen.XM_056923
Figure 486: DNA323969, XM .001897,	Figure 522: DNA323987, XM_046464,
	gen.XM_046464
gen.XM_001897	Figure 523: DNA323988, XM_002068,
Figure 487: PRO10002	gen.XM_002068
Figure 488: DNA323970, NM_052862,	Figure 524A-B: DNA323989, XM_001289,
gen.NM_052862	
Figure 489: PRO80699	gen.XM_001289

	77 77 77 77 77 77 77 77 77 77 77 77 77
Figure 525: DNA323990, XM_114109,	Figure 560A-B: DNA324007, XM_114030,
gen.XM_114109	gen.XM_114030
Figure 526: PRO80714	Figure 561: DNA324008, XM_097519,
Figure 527: DNA323991, NM_022371,	gen.XM_097519
gen.NM_022371	Figure 562: DNA324009, XM_059120,
Figure 528: PRO80715	gen.XM_059120
Figure 529: DNA323992, NM_004673,	Figure 563: PRO80730
gen.NM_004673	Figure 564: DNA324010, NM_016456,
Figure 530: PRO188	gen.NM_016456
Figure 531: DNA323993, XM_060517,	Figure 565: PRO1248
gen.XM_060517	Figure 566: DNA324011, XM_036556,
Figure 532: DNA323994, XM_165978,	gen.XM_036556
gen.XM_165978	Figure 567: DNA324012, XM_001914,
Figure 533: PRO80717	gen.XM_001914
Figure 534: DNA323995, XM_117181,	Figure 568: DNA324013, XM_001916,
gen.XM_117181	gen.XM_001916
Figure 535: DNA323996, NM_018122,	Figure 569: DNA324014, NM _018085,
gen.NM_018122	gen.NM_018085
Figure 536: PRO80719	Figure 570: PRO80734
Figure 537: DNA323997, XM_042967,	Figure 571: DNA324015, NM .006335,
gen.XM_042967	gen.NM_006335
Figure 538: DNA323998, XM _086494,	Figure 572: PRO80735
gen.XM_086494	Figure 573: DNA324016, XM_036500,
Figure 539: PRO80720	gen.XM_036500
Figure 540: DNA290234, NM _002923,	Figure 574: PRO80736
gen.NM_002923	Figure 575: DNA324017, XM _036507,
Figure 541: PRO70333	gen.XM_036507
Figure 542: DNA323999, XM_086328,	Figure 576: DNA196344, NM_004767,
gen.XM_086328	gen.NM_004767
Figure 543: DNA324000, XM_086282,	Figure 577: PRO24851
gen.XM_086282	Figure 578: DNA247474, NM_014176,
Figure 544: DNA324001, XM_053633,	gen.NM_014176
gen.XM_053633	Figure 579: PRO44999
Figure 545: DNA256905, NM_138391,	Figure 580A-B: DNA324018, XM_084055,
gen.NM_138391	gen.XM_084055
Figure 546: PRO51836	Figure 581: DNA324019, XM_010682,
Figure 547: DNA324002, XM_015434,	gen.XM_010682
gen.XM_015434	Figure 582: DNA324020, XM_117185,
Figure 548: DNA324003, NM_006763,	gen.XM_117185
gen.NM_006763	Figure 583: DNA324021, XM_055880,
Figure 549: PRO80725	gen.XM_055880
Figure 550: DNA227246, NM_005686,	Figure 584: PRO80740
gen.NM_005686	Figure 585: DNA193882, NM_014184,
Figure 551: PRO37709	gen.NM_014184
Figure 552: DNA324004, XM_058405,	Figure 586: PRO23300
gen.XM_058405	Figure 587: DNA324022, NM_018212,
Figure 553A-B: DNA226005, NM_000228,	gen.NM_018212
gen.NM_000228	Figure 588: PRO80741
Figure 554: PRO36468	Figure 589: DNA324023, XM_086431,
Figure 555: DNA324005, NM_015714,	gen.XM_086431
gen.NM_015714	Figure 590: PRO80742
Figure 556: PRO11582	Figure 591: DNA324024, XM_037329,
Figure 557: DNA324006, XM _086142,	gen.XM_037329
gen.XM_086142	Figure 592: DNA324025, XM_086432,
Figure 558: DNA83046, NM _000574, gen.NM _000574	· · · · · · · · · · · · · · · · · · ·
Figure 559: PRO2569	Figure 593A-B: DNA324026, XM _010732,
115010 337. 1102307	

gen.XM_010732 gen.XM_056970 Figure 629: PRO80762 Figure 594: DNA227504, NM_000447, gen.NM_000447 Figure 630: DNA324046, NM_032324, Figure 595: PRO37967 gen.NM_032324 Figure 631: PRO80763 Figure 596: DNA324027, NM_012486, Figure 632: DNA324047, XM_086257, gen.NM_012486 Figure 597: PRO80745 gen.XM_086257 Figure 633: PRO80764 Figure 598A-B: DNA324028, XM_113361, Figure 634: DNA324048, XM_114137, gen.XM_113361 Figure 599A-B: DNA324029, XM_001958, gen.XM_114137 gen.XM_001958 Figure 635: PRO80765 Figure 636: DNA324049, NM .000143, Figure 600: DNA324030, XM_016199, gen.NM_000143 gen.XM_016199 Figure 601: DNA324031, XM_086244, Figure 637: PRO62607 Figure 638: DNA324050, XM _090833, gen.XM_086244 gen.XM_090833 Figure 602: DNA324032, XM_086245, Figure 639: DNA324051, NM_130398, gen.XM_086245 gen.NM_130398 Figure 603: DNA254346, NM_024709, Figure 640: PRO80767 gen.NM_024709 Figure 641: DNA324052, XM_117196, Figure 604: PRO49457 Figure 605: DNA324033, XM_088107, gen.XM_117196 gen.XM_088107 Figure 642: DNA324053, XM_018041, Figure 606: DNA324034, NM_032890, gen.XM_018041 Figure 643: DNA324054, NM_001011, gen.NM_032890 Figure 607: PRO80752 gen.NM_001011 Figure 644: PRO10692 Figure 608: DNA324035, XM .052974, Figure 645: DNA324055, NM_024027, gen.XM_052974 gen.NM_024027 Figure 609: PRO80753 Figure 610: DNA324036, XM_047499, Figure 646: PRO1182 Figure 647: DNA324056, NM_016030, gen.XM_047499 gen.NM_016030 Figure 611: PRO80754 Figure 648: PRO80770 Figure 612: DNA324037, NM_000858, Figure 649: DNA103217, NM_003310, gen.NM_000858 gen.NM_003310 Figure 613: PRO80755 Figure 650: PRO4547 Figure 614: DNA324038, NM_024319, gen.NM_024319 Figure 651: DNA275195, NM_001034, gen.NM_001034 Figure 615: PRO80756 Figure 652: PRO62893 Figure 616: DNA324039, XM_047545, Figure 653: DNA324057, XM_059368, gen.XM_047545 Figure 617: PRO4914 gen.XM_059368 Figure 654: PRO80771 Figure 618A-B: DNA324040, XM_056884, Figure 655: DNA324058, NM_006826, gen.XM_056884 gen.NM_006826 Figure 619: DNA324041, XM_098599, gen.XM_098599 Figure 656: PRO70258 Figure 620: DNA324042, XM_165439, Figure 657: DNA324059, NM_005378, gen.XM_165439 gen.NM_005378 Figure 658: PRO80772 Figure 621: PRO80759 Figure 659: DNA324060, NM _002539, Figure 622: DNA324043, XM_089030, gen.NM_002539 gen.XM_089030 Figure 660: PRO80773 Figure 623: PRO80760 Figure 661: DNA324061, XM_096149, Figure 624: DNA82328, NM_000029, gen.NM_000029 gen.XM_096149 Figure 625: PRO1707 Figure 662: DNA275049, NM_004939, Figure 626: DNA324044, NM_014236, gen.NM_014236 gen.NM_004939 Figure 627: PRO80761 Figure 663: PRO62770 Figure 628: DNA324045, XM_056970, Figure 664A-B: DNA324062, XM_036450,

gen.NM_021095

Figure 699: PRO38008

Figure 700: DNA324079, XM_002435,

gen.XM_036450 gen.XM_002435 Figure 665: DNA324063, XM_103946, Figure 701: DNA324080, NM_000221, gen.XM_103946 gen.NM_000221 Figure 666: PRO80775 Figure 702: PRO80790 Figure 667: DNA324064, NM_014713, Figure 703: DNA271243, NM_006488, gen.NM_014713 gen.NM_006488 Figure 668: PRO80776 Figure 704: PRO59558 Figure 669: DNA324065, XM_087206, Figure 705: DNA324081, NM_007046, gen.XM_087206 gen.NM_007046 Figure 670: DNA324066, NM_106552, Figure 706: PRO9886 gen.NM_106552 Figure 707: DNA324082, NM_021831. Figure 671: PRO80778 gen.NM_021831 Figure 672: DNA324067, XM_092135, Figure 708: PRO80791 gen.XM_092135 Figure 709: DNA324083, NM_020134, Figure 673: PRO80779 gen.NM_020134 Figure 674: DNA324068, NM_017910, Figure 710: PRO80792 gen.NM_017910 Figure 711: DNA103593, NM_000183, Figure 675: PRO80780 gen.NM_000183 Figure 676: DNA324069, XM_092517, Figure 712: PRO4917 gen.XM_092517 Figure 713: DNA324084, NM_000182, Figure 677: PRO80781 gen.NM_000182 Figure 678A-B: DNA324070, NM_025203, Figure 714: PRO80793 gen.NM_025203 Figure 715: DNA324085, XM_097976, Figure 679: PRO80782 gen.XM_097976 Figure 680: DNA324071, XM_002480, Figure 716A-B: DNA324086, XM_039712, gen.XM_002480 gen.XM_039712 Figure 681: DNA324072, NM_002707, Figure 717: DNA324087, NM_022552, gen.NM_002707 gen.NM_022552 Figure 682: PRO12199 Figure 718: PRO80796 Figure 683: DNA324073, XM_087151, Figure 719: DNA324088, NM_024572, gen.XM_087151 gen.NM_024572 Figure 684: DNA227165, NM_014748, Figure 720: PRO80797 gen.NM_014748 Figure 721: DNA324089, NM_018607, Figure 685: PRO37628 gen.NM_018607 Figure 686: DNA324074, NM_015636, Figure 722: PRO80798 gen.NM_015636 Figure 723: DNA324090, XM_165448, Figure 687: PRO80785 gen.XM_165448 Figure 688: DNA273800, NM_001521, Figure 724: PRO80799 gen.NM_001521 Figure 725: DNA324091, XM_087195. Figure 689: PRO61761 gen.XM_087195 Figure 690: DNA324075, XM_047175, Figure 726: DNA324092, XM_087193. gen.XM_047175 gen.XM_087193 Figure 691: PRO80786 Figure 727: DNA324093, NM_138801, Figure 692A-B: DNA324076, NM_004341, gen.NM_138801 gen.NM_004341 Figure 728: PRO80802 Figure 693: PRO80787 Figure 729: DNA324094, XM_098004. Figure 694: DNA324077, NM_016085, gen.XM_098004 gen.NM_016085 Figure 730: PRO80803 Figure 695: PRO80788 Figure 731: DNA324095, XM_031519, Figure 696: DNA324078, NM_080592, gen.XM_031519 gen.NM_080592 Figure 732: PRO80804 Figure 697: PRO80789 Figure 733A-B: DNA324096, XM_031527, Figure 698: DNA227545, NM_021095, gen.XM_031527

gen.XM_038576

Figure 735: PRO80806

Figure 734: DNA324097, XM_038576,

WO 2004/030615

Figure 736: DNA324098, XM_117264, gen.XM_010881 gen.XM_117264 Figure 772: DNA324115, XM_087069, Figure 737: PRO80807 gen.XM_087069 Figure 738A-B: DNA324099, XM_031626, Figure 773: DNA324116, XM_016625, gen.XM_031626 gen.XM_016625 Figure 739: PRO80808 Figure 774: PRO80820 Figure 740: DNA324100, XM_057664, Figure 775: DNA324117, XM_087068, gen.XM_057664 gen.XM_087068 Figure 741: DNA226428, NM _000251, Figure 776: DNA324118, XM_002674, gen.NM_000251 gen.XM_002674 Figure 742: PRO36891 Figure 777: DNA324119, XM_065884. Figure 743: DNA324101, XM_087211, gen.XM_065884 gen.XM_087211 Figure 778: PRO80823 Figure 744A-B: DNA275066, NM_000179, Figure 779A-B: DNA324120, XM_002739, gen.NM_000179 gen.XM_002739 Figure 745: PRO62786 Figure 780: DNA324121, XM_031596, Figure 746A-C: DNA270154, NM_003128, gen.XM_031596 gen.NM_003128 Figure 781: PRO61325 Figure 747: PRO58543 Figure 782: DNA324122, XM_031585, Figure 748: DNA324102, XM_087051, gen.XM_031585 gen.XM_087051 Figure 783: DNA324123, XM_031586, Figure 749: DNA324103, NM _002954, gen.XM_031586 gen.NM_002954 Figure 784: DNA324124, XM_018039, Figure 750: PRO62239 gen.XM_018039 Figure 751: DNA271060, NM_002453, Figure 785: DNA324125, NM_032822, gen.NM_002453 gen.NM_032822 Figure 752: PRO59384 Figure 786: PRO80827 Figure 753: DNA324104, XM_048088, Figure 787A-B: DNA324126, XM_096172, gen.XM_048088 gen.XM_096172 Figure 788A-B: DNA324127, XM_002727, Figure 754: PRO80811 Figure 755: DNA324105, XM_010886, gen.XM_002727 gen.XM_010886 Figure 789: DNA324128, NM_003124, Figure 756: PRO80812 gen.NM_003124 Figure 757: DNA324106, XM_045283, Figure 790: PRO80830 gen.XM_045283 Figure 791: DNA324129, XM_086980, Figure 758: PRO80813 gen.XM_086980 Figure 759: DNA324107, NM_006430, Figure 792: DNA227795, NM_006429. gen.NM_006430 gen.NM_006429 Figure 760: PRO80814 Figure 793: PRO38258 Figure 761A-B: DNA324108, NM _003400, Figure 794: DNA287167, NM_006636, gen.NM_003400 gen.NM_006636 Figure 762: PRO59544 Figure 795: PRO59136 Figure 763: DNA324109, XM_018301, Figure 796: DNA324130, NM_033046, gen.XM_018301 gen.NM_033046 Figure 764: DNA324110, NM_005917, Figure 797: PRO80832 gen.NM_005917 Figure 798: DNA324131, NM_133637, Figure 765: PRO4918 gen.NM_133637 Figure 766: DNA324111, XM_016843, Figure 799: PRO80833 gen.XM_016843 Figure 800: DNA324132, XM_035220, Figure 767: PRO80816 gen.XM_035220 Figure 768: DNA324112, XM_088638, Figure 801: DNA324133, NM_013247, gen.XM_088638 gen.NM_013247 Figure 769: PRO80817 Figure 802: PRO80835 Figure 770: DNA324113, XM_002647, Figure 803: DNA227528, NM_021103, gen.XM_002647 gen.NM_021103 Figure 771: DNA324114, XM_010881, Figure 804: PRO37991

Figure 839: DNA324153, XM _087122,

Figure 805: DNA324134, XM .086920, gen, XM_087122 Figure 840: PRO80853 gen.XM_086920 Figure 806: DNA150725, NM_001747, Figure 841: DNA324154, XM_018540, gen.NM_001747 gen.XM_018540 Figure 807: PRO12792 Figure 842: DNA324155, XM_087040, Figure 808: DNA324135, NM .005911, gen.XM_087040 gen.NM_005911 Figure 843: DNA324156, NM_032212, Figure 809: PRO80837 gen.NM_032212 Figure 810: DNA324136, NM_032827, Figure 844: PRO80856 Figure 845: DNA324157, XM_002217, gen.NM_032827 Figure 811: PRO80838 gen.XM_002217 Figure 812: DNA324137, NM_017952, Figure 846: PRO80857 gen.NM_017952 Figure 847: DNA324158, NM_000576, gen.NM_000576 Figure 813: PRO80839 Figure 814: DNA227190, NM_006839, Figure 848: PRO65 gen.NM_006839 Figure 849: DNA324159, XM .086923, Figure 815: PRO37653 gen.XM_086923 Figure 850: DNA324160, XM_086925, Figure 816: DNA324138, XM_114215, gen.XM_086925 gen.XM_114215 Figure 851A-B: DNA324161, XM_114266, Figure 817: DNA324139, XM_052989, gen.XM_114266 gen.XM_052989 Figure 852: PRO80860 Figure 818: DNA324140, XM_049116, Figure 853: DNA324162, XM_002704, gen.XM_049116 gen.XM_002704 Figure 819: PRO80842 Figure 854: DNA194740, NM_005291, Figure 820A-B: DNA324141, XM_049108, gen.NM_005291 gen.XM_049108 Figure 855: PRO24028 Figure 821: PRO80843 Figure 856A-B: DNA324163, XM_114267, Figure 822: DNA324142, XM_049113, gen.XM_114267 gen.XM_049113 Figure 857: DNA324164, XM_034952, Figure 823: DNA324143, XM_002611, gen.XM_034952 gen.XM_002611 Figure 824A-B: DNA324144, XM_114247, Figure 858: DNA324165, XM_086950, gen.XM_086950 gen.XM_114247 Figure 859A-B: DNA255531, NM_017751, Figure 825: DNA324145, NM_017789, gen.NM_017751 gen.NM_017789 Figure 860: PRO50596 Figure 826: PRO80846 Figure 827: DNA324146, NM_001862, Figure 861: DNA324166, XM_017698, gen.NM_001862 gen.XM_017698. Figure 828: PRO80847 Figure 862: DNA324167, XM_030529, gen.XM_030529 Figure 829: DNA324147, NM .005783, Figure 863: PRO80866 gen.NM_005783 Figure 864: DNA275240, NM_005915, Figure 830: PRO80848 gen.NM_005915 Figure 831A-B: DNA324148, XM_037108, Figure 865: PRO62927 gen.XM_037108 Figure 866: DNA324168, XM_043173, Figure 832: DNA324149, NM_000993, gen.XM_043173 gen.NM_000993 Figure 833: PRO11197 Figure 867: DNA324169, XM_092489, Figure 834: DNA324150, NM_017546, gen.XM_092489 Figure 868: PRO80868 gen.NM_017546 Figure 869: DNA324170, XM_115672, Figure 835: PRO80850 gen.XM_115672 Figure 836: DNA324151, NM_001450, Figure 870: PRO80869 gen.NM_001450 Figure 871: DNA324171, NM_020548, Figure 837: PRO80851 gen.NM_020548 Figure 838: DNA324152, XM_114229, Figure 872: PRO60753 gen.XM_114229

Figure 873: DNA324172, XM_037101,

gen.XM_015920

gen.XM_037101 Figure 910: DNA324190, XM_166007, Figure 874: PRO80870 gen.XM_166007 Figure 875: DNA324173, NM_032390, Figure 911: DNA324191, XM_015922, gen.NM_032390 gen.XM_015922 Figure 876: PRO80871 Figure 912: DNA324192, XM_087061, Figure 877: DNA324174, XM_002447, gen.XM_087061 gen.XM_002447 Figure 913: PRO80888 Figure 878: DNA324175, NM_033416, Figure 914: DNA324193, XM_087062, gen.NM_033416 gen.XM_087062 Figure 879: PRO80873 Figure 915: PRO80889 Figure 880: DNA324176, XM_016288, Figure 916: DNA324194, NM_001463, gen.XM_016288 gen.NM_001463 Figure 881: DNA272127, NM_003937, Figure 917: PRO80890 gen.NM_003937 Figure 918: DNA324195, XM_092158, Figure 882: PRO60397 gen.XM_092158 Figure 883: DNA324177, XM_030582, Figure 919: PRO80891 gen.XM_030582 Figure 920: DNA324196, XM_059351. Figure 884: PRO80875 gen.XM_059351 Figure 885: DNA324178, NM_015702, Figure 921A-B: DNA324197, NM_000090, gen.NM_015702 gen.NM_000090 Figure 886: PRO80876 Figure 922: PRO2665 Figure 887: DNA324179, NM_016838. Figure 923: DNA324198, NM_014585, gen.NM_016838 gen.NM_014585 Figure 888: PRO80877 Figure 924: PRO37675 Figure 889: DNA324180, NM_016839, Figure 925: DNA324199, XM_010778, gen.NM_016839 gen.XM_010778 Figure 890: PRO80878 Figure 926: DNA324200, XM_086961, Figure 891: DNA324181, XM_087118, gen.XM_086961 gen.XM_087118 Figure 927: DNA324201, XM_165994, Figure 892: PRO80879 gen.XM_165994 Figure 893: DNA324182, XM_165998, Figure 928: DNA324202, XM_045170, gen.XM_165998 gen.XM_045170 Figure 894: DNA324183, NM_001935. Figure 929: DNA324203, XM_113390. gen.NM_001935 gen.XM_113390 Figure 895: PRO80881 Figure 930: DNA299899, NM_002157, Figure 896: DNA324184, NM_020675, gen.NM_002157 gen.NM_020675 Figure 931: PRO62760 Figure 897: PRO80882 Figure 932: DNA324204, XM_087045, Figure 898: DNA88051, NM_000079, gen.NM_000079 gen.XM_087045 Figure 899: PRO2146 Figure 933: DNA324205, XM_086944, Figure 900: DNA324185, XM_166008, gen.XM_086944 gen.XM_166008 Figure 934: DNA271608, NM_014670. Figure 901: DNA324186, XM_087240, gen.NM_014670 gen.XM_087240 Figure 935: PRO59895 Figure 902: PRO11403 Figure 936: DNA324206, XM_027963, Figure 903: DNA324187, NM_013341, gen.XM_027963 gen.NM_013341 Figure 937: PRO80900 Figure 904: PRO80883 Figure 938: DNA324207, XM_010852, Figure 905: DNA304805, NM_031942, gen.XM_010852 gen.NM_031942 Figure 939: PRO80901 Figure 906: PRO69531 Figure 940: DNA324208, XM_028034, Figure 907: DNA324188, XM_059465, gen.XM_028034 gen.XM_059465 Figure 941: DNA324209, NM_015934, Figure 908: PRO80884 gen.NM_015934 Figure 909: DNA324189, XM_015920. Figure 942: DNA324210, XM_087028,

gen.XM_087028

WO 2004/030615

Figure 943: PRO80903 Figure 979: DNA324230, XM_050638, Figure 944: DNA324211, XM_092346, gen.XM_050638 gen.XM_092346 Figure 980A-B: DNA324231, NM _002846, Figure 945: PRO80904 gen.NM_002846 Figure 946: DNA324212, XM_002669, Figure 981: PRO2610 gen.XM_002669 Figure 982: DNA324232, NM_006000, Figure 947: PRO80905 gen.NM_006000 Figure 948: DNA324213, NM_021121, Figure 983: PRO26228 gen.NM_021121 Figure 984: DNA324233, XM_050891, Figure 949: PRO23124 gen.XM_050891 Figure 950: DNA324214, NM _001959, Figure 985: DNA324234, XM_087162, gen.NM_001959 gen.XM_087162 Figure 951: PRO23124 Figure 986: DNA324235, XM_058098, Figure 952: DNA324215, XM_030834, gen.XM_058098 gen.XM_030834 Figure 987: PRO80920 Figure 953: PRO80906 Figure 988: DNA324236, NM_022453, Figure 954A-C: DNA324216, XM_055254, gen.NM_022453 gen.XM_055254 Figure 989: PRO80921 Figure 955: DNA324217, NM_004044, Figure 990: DNA324237, NM_032726, gen.NM_004044 gen.NM_032726 Figure 956: PRO80908 Figure 991: PRO70675 Figure 957: DNA324218, XM_114298, Figure 992: DNA324238, XM_010866, gen.XM_114298 gen.XM_010866 Figure 958: DNA324219, NM_021141, Figure 993: DNA324239, XM_087166, gen.NM_021141 gen.XM_087166 Figure 959: PRO59313 Figure 994: DNA254204, NM_001087, Figure 960A-B: DNA324220, XM_098048, gen.NM_001087 gen.XM_098048 Figure 995: PRO49316 Figure 961: PRO80910 Figure 996: DNA324240, NM_005731, Figure 962: DNA324221, XM_098047, gen.NM_005731 gen.XM_098047 Figure 997: PRO80924 Figure 963: PRO80911 Figure 998: DNA189697, NM_004846, Figure 964: DNA324222, XM_002636, gen.NM_004846 gen.XM_002636 Figure 999: PRO23123 Figure 965: DNA324223, XM_087181, Figure 1000: DNA324241, NM_025202, gen.XM_087181 gen.NM_025202 Figure 966: DNA324224, NM_000998, Figure 1001: PRO80925 gen.NM_000998 Figure 1002: DNA324242, XM_115825, Figure 967: PRO10498 gen.XM_115825 Figure 968: DNA324225, XM_059422, Figure 1003: PRO80926 Figure 1004: DNA324243, XM_010858, gen.XM_059422 Figure 969: PRO9984 gen.XM_010858 Figure 970: DNA324226, XM_092545, Figure 1005: PRO80927 gen.XM_092545 Figure 1006: DNA324244, XM .002540, Figure 971: DNA324227, XM_059461, gen.XM_002540 gen.XM_059461 Figure 1007: DNA324245, XM_048690, Figure 972: PRO80915 gen.XM_048690 Figure 973: DNA324228, NM_018674, Figure 1008: PRO80929 gen.NM_018674 Figure 1009: DNA324246, NM_030926, Figure 974: PRO80916 gen.NM_030926 Figure 1010: PRO80930 Figure 975: DNA324229, XM_050962, gen.XM_050962 Figure 1011: DNA324247, XM_087218, Figure 976: PRO80917 gen.XM_087218 Figure 977: DNA194827, NM_012100, Figure 1012: DNA324248, NM_004509, gen.NM_012100 gen.NM_004509 Figure 978: PRO24091 Figure 1013: PRO80932

Figure 1014: DNA324249, NM_004510,	Figure 1049: DNA324269, NM_006354,
gen.NM_004510	gen.NM_006354
Figure 1015: PRO80933	Figure 1050: PRO80952
Figure 1016: DNA324250, NM_080424,	Figure 1051: DNA324270, NM_133480,
gen.NM_080424	gen.NM_133480
Figure 1017: PRO80934	Figure 1052: PRO80953
Figure 1018: DNA324251, NM_018410,	Figure 1053: DNA324271, NM_133481,
gen.NM_018410	gen.NM_133481
Figure 1019: PRO80935	Figure 1054: PRO80954
Figure 1020: DNA324252, NM_017974,	Figure 1055: DNA324272, NM_005718,
gen.NM_017974	gen.NM_005718
Figure 1021: PRO80936	Figure 1056: PRO80955
Figure 1022A-B: DNA324253, XM_096169,	Figure 1057: DNA324273, NM_015644,
gen.XM_096169	gen.NM_015644
Figure 1023: PRO80937	Figure 1058: PRO80956
Figure 1024: DNA150884, NM_005855,	Figure 1059: DNA324274, XM_059561,
gen.NM_005855	gen.XM_059561
Figure 1025: PRO12520	Figure 1060: DNA324275, XM_052310,
Figure 1026A-B: DNA324254, NM_004735,	gen.XM_052310
gen.NM_004735	Figure 1061: PRO80958
Figure 1027: PRO80938	Figure 1062: DNA269910, NM _006395,
Figure 1028A-C: DNA324255, XM_030203,	gen.NM_006395
gen.XM_030203	Figure 1063: PRO58308
Figure 1029: DNA324256, XM_059372,	Figure 1064: DNA324276, NM_000994,
gen.XM_059372	gen.NM_000994
Figure 1030: DNA324257, NM_002712,	Figure 1065: PRO80959
gen.NM_002712	Figure 1066: DNA151017, NM_004844,
Figure 1031: PRO80941	gen.NM_004844
Figure 1032A-B: DNA324258, XM_042326,	Figure 1067: PRO12841
gen.XM_042326	Figure 1068: DNA324277, XM_059557,
Figure 1033: PRO80942	gen.XM_059557
Figure 1034: DNA324259, NM_004404,	Figure 1069: PRO80960
gen.NM_004404	Figure 1070A-B: DNA324278, XM_042860,
Figure 1035: PRO80943	gen.XM_042860
Figure 1036: DNA324260, XM_002742,	Figure 1071: PRO80961
gen.XM_002742	Figure 1072: DNA324279, XM_042841,
Figure 1037: DNA324261, NM_138483,	gen.XM_042841
gen.NM_138483	Figure 1073: PRO80962
Figure 1038: PRO80945	Figure 1074: DNA324280, XM_053712,
Figure 1039: DNA324262, XM_115706,	gen.XM_053712
gen.XM_115706	Figure 1075: DNA324281, XM_087284,
Figure 1040: DNA324263, XM_115722,	gen.XM_087284
gen.XM_115722	Figure 1076: DNA324282, NM_002948,
Figure 1041: DNA324264, XM_084141,	gen.NM_002948
gen.XM_084141	Figure 1077: PRO6360
Figure 1042: DNA324265, XM_005086,	Figure 1078: DNA324283, XM_053323,
gen.XM_005086	gen.XM_053323
Figure 1043: DNA324266, NM_015453,	Figure 1079A-B: DNA324284, NM_001068,
gen.NM_015453	gen.NM_001068
Figure 1044: PRO80949	Figure 1080: PRO80966
Figure 1045: DNA324267, NM_022485,	Figure 1081: DNA252367, NM_017801,
gen.NM_022485	gen.NM_017801
Figure 1046: PRO80950	Figure 1082: PRO48357
Figure 1047A-B: DNA324268, XM_054520,	Figure 1083: DNA324285, XM_093624,
gen.XM_054520	gen.XM_093624
Figure 1048: PRO80951	Figure 1084: PRO80967
-	

gen.XM_087588 Figure 1085: DNA324286, XM_046401, gen.XM_046401 Figure 1121: DNA324302, XM_166011, gen.XM_166011 Figure 1086: DNA324287, NM_022461, Figure 1122A-B: DNA324303, XM_114364, gen.NM_022461 Figure 1087: PRO80969 gen.XM_114364 Figure 1123A-B: DNA324304, XM_033294, Figure 1088: DNA324288, XM_113410, gen.XM_113410 gen.XM_033294 Figure 1089: DNA88100, NM_000404, Figure 1124: PRO80983 gen.NM_000404 Figure 1125: DNA324305, NM_138614, Figure 1090: PRO2172 gen.NM_138614 Figure 1091: DNA324289, XM .091076, Figure 1126: PRO80984 Figure 1127: DNA324306, XM_002899, gen.XM_091076 Figure 1092: PRO80970 gen.XM_002899 Figure 1128: DNA225910, NM_004345, Figure 1093A-B: DNA271187, NM_005109, gen.NM_004345 gen.NM_005109 Figure 1129: PRO36373 Figure 1094: PRO59504 Figure 1095: DNA324290, NM_002468, Figure 1130: DNA324307, XM_010953, gen.NM_002468 gen.XM_010953 Figure 1096: PRO36735 Figure 1131: DNA324308, XM_051518, gen.XM_051518 Figure 1097: DNA269930, NM_001607, Figure 1132A-D: DNA324309, NM_001407, gen.NM_001607 gen.NM_001407 Figure 1098: PRO58328 Figure 1133: PRO50095 Figure 1099: DNA270401, NM _003149, Figure 1134: DNA324310, NM_003365, gen.NM_003149 gen.NM_003365 Figure 1100: PRO58784 Figure 1135: PRO80988 Figure 1101: DNA324291, XM_087370, Figure 1136: DNA324311, XM_003245, gen.XM_087370 gen.XM_003245 Figure 1102: PRO80971 Figure 1137: DNA324312, XM_047561, Figure 1103: DNA324292, XM_098158, gen.XM_098158 gen.XM_047561 Figure 1104: PRO80972 Figure 1138: PRO80990 Figure 1139: DNA324313, XM_116853, Figure 1105: DNA324293, XM_017364, gen.XM_116853 gen.XM_017364 Figure 1140A-B: DNA324314, XM_113405, Figure 1106: DNA324294, XM_087349, gen.XM_113405 gen.XM_087349 Figure 1141: DNA324315, XM_114323, Figure 1107: PRO80974 gen.XM_114323 Figure 1108: DNA226547, NM _002295, Figure 1142: PRO80993 gen.NM_002295 Figure 1143: DNA324316, XM_002828, Figure 1109: PRO37010 gen.XM_002828 Figure 1110: DNA324295, NM _003973, gen.NM_003973 Figure 1144: PRO80994 Figure 1111: PRO80975 Figure 1145: DNA150976, NM _022171, Figure 1112: DNA324296, XM_030417, gen.NM_022171 gen.XM_030417 Figure 1146: PRO12565 Figure 1147: DNA324317, XM_041507, Figure 1113: DNA324297, NM_020347, gen.XM_041507 gen.NM_020347 Figure 1148: PRO71103 Figure 1114: PRO80977 Figure 1149: DNA103505, NM_004636, Figure 1115: DNA324298, XM _087346, gen.NM_004636 gen.XM_087346 Figure 1150: PRO4832 Figure 1116: PRO80978 Figure 1117: DNA324299, XM_096198, Figure 1151: DNA324318, NM_006764, gen.XM_096198 gen.NM_006764 Figure 1152: PRO80995 Figure 1118: PRO80979 Figure 1153: DNA150562, NM_007275, Figure 1119: DNA324300, XM_003222, gen.NM_007275 gen.XM_003222 Figure 1154: PRO12779 Figure 1120: DNA324301, XM_087588,

Figure 1191: PRO81010 Figure 1155: DNA254582, NM_004635, Figure 1192: DNA324336, XM_166015, gen.NM_004635 gen.XM_166015 Figure 1156: PRO49685 Figure 1193: DNA324337, XM_113395, Figure 1157: DNA324319, NM_052859, gen.XM_113395 gen.NM_052859 Figure 1194: PRO81012 Figure 1158: PRO80996 Figure 1195: DNA269730, NM_014814, Figure 1159: DNA324320, NM_001064, gen.NM_014814 gen.NM_001064 Figure 1196: PRO58140 Figure 1160: PRO80997 Figure 1197: DNA324338, XM_036938, Figure 1161: DNA324321, XM_041211, gen.XM_036938 gen.XM_041211 Figure 1198: DNA324339, XM_029369, Figure 1162: DNA324322, XM_003213, gen.XM_029369 gen.XM_003213 Figure 1199: DNA324340, XM_076414, Figure 1163A-C: DNA324323, XM_037423, gen.XM_076414 gen.XM_037423 Figure 1200: PRO81015 Figure 1164: PRO80999 Figure 1201: DNA324341, XM_093546, Figure 1165A-B: DNA227307, NM_007184, gen.XM_093546 gen.NM_007184 Figure 1202: DNA324342, XM_113409, Figure 1166: PRO37770 gen.XM_113409 Figure 1167: DNA324324, NM_000688, Figure 1203: DNA324343, XM_087268, gen.NM_000688 gen.XM_087268 Figure 1168: PRO81000 Figure 1204: DNA324344, XM_116071, Figure 1169: DNA324325, XM_067715, gen.XM_116071 gen.XM_067715 Figure 1205: DNA324345, XM_116072, Figure 1170: DNA324326, NM_000992, gen.XM_116072 gen.NM_000992 Figure 1206: DNA324346, NM_000986, Figure 1171: PRO62153 gen.NM_000986 Figure 1172: DNA324327, NM_000666, Figure 1207: PRO10602 gen.NM_000666 Figure 1208: DNA324347, XM_015462, Figure 1173: PRO81002 Figure 1174: DNA324328, NM .032750, gen.XM_015462 Figure 1209: DNA324348, XM_167366, gen.NM_032750 gen.XM_167366 Figure 1175: PRO81003 Figure 1210: PRO81022 Figure 1176: DNA324329, NM_033008, Figure 1211: DNA324349, XM .. 087331, gen.NM_033008 gen.XM_087331 Figure 1177: PRO81004 Figure 1212: PRO81023 Figure 1178: DNA324330, NM_033010, Figure 1213: DNA324350, XM_039952, gen.NM_033010 gen.XM_039952 Figure 1179: PRO81005 Figure 1214: DNA324351, XM_045290, Figure 1180: DNA324331, NM_020418, gen.XM_045290 gen.NM_020418 Figure 1215: PRO81025 Figure 1181: PRO81006 Figure 1216A-B: DNA324352, NM .007085, Figure 1182: DNA273919, NM_004704, gen.NM_007085 gen.NM_004704 Figure 1217: PRO2077 Figure 1183: PRO61870 Figure 1184A-B: DNA324332, XM_087448, Figure 1218: DNA324353, NM _004547, gen.NM_004547 gen.XM_087448 Figure 1219: PRO81026 Figure 1185: PRO81007 Figure 1220: DNA324354, XM_027161, Figure 1186: DNA324333, XM_002855, gen.XM_002855 gen.XM_027161 Figure 1221A-B: DNA324355, XM .032269, Figure 1187: DNA324334, XM_002854, gen.XM_032269 gen.XM_002854 Figure 1222: PRO81028 Figure 1188: DNA0, NM_002854, gen.NM_002854 Figure 1223: DNA88547, NM_006810, Figure 1189: PRO gen.NM_006810 Figure 1190: DNA324335, XM_096195, Figure 1224: PRO2837 gen.XM_096195

Figure 1225: DNA324356, XM_114301, Figure 1259: PRO81046 Figure 1260: DNA324378, NM_000532, gen.XM_114301 Figure 1226: PRO81029 gen.NM_000532 Figure 1227: DNA324357, XM_098173, Figure 1261: PRO81047 Figure 1262: DNA324379, XM_036118, gen.XM_098173 Figure 1228: PRO81030 gen.XM_036118 Figure 1229: DNA324358, XM_042618, Figure 1263: DNA324380, XM_084123, gen.XM_084123 gen.XM_042618 Figure 1230: PRO81031 Figure 1264: DNA324381, XM_018149, gen.XM_018149 Figure 1231: DNA324359, XM_084129, Figure 1265: DNA324382, XM_087342, gen.XM_084129 gen.XM_087342 Figure 1232: DNA324360, XM_098154, Figure 1266: DNA324383, XM_059516, gen.XM_098154 Figure 1233: PRO81033 gen.XM_059516 Figure 1234: DNA324361, XM_050552, Figure 1267: DNA324384, XM_087341, gen.XM_087341 gen.XM_050552 Figure 1235: DNA324362, NM_032343, Figure 1268: DNA324385, XM_165451, gen.XM_165451 gen.NM_032343 Figure 1269: PRO81053 Figure 1236: PRO81034 Figure 1237: DNA324363, XM_051264, Figure 1270: DNA269858, NM _004766, gen.NM_004766 gen.XM_051264 Figure 1271: PRO58259 Figure 1238A-B: DNA324364, NM_013336, Figure 1272: DNA324386, NM_030921, gen.NM_013336 Figure 1239: PRO1314 gen.NM_030921 Figure 1240: DNA324365, XM_067264, Figure 1273: PRO51109 Figure 1274: DNA324387, XM_002859, gen.XM_067264 Figure 1241: PRO81036 gen.XM_002859 Figure 1242: DNA324366, XM_114309, Figure 1275: DNA324388, XM_166014, gen.XM_114309 gen.XM_166014 Figure 1243: DNA324367, XM_084111, Figure 1276: DNA324389, NM_013363, gen.XM_084111 gen.NM_013363 Figure 1244: DNA324368, XM_113397, Figure 1277: PRO287 gen.XM_113397 Figure 1278: DNA324390, XM_058267, gen.XM_058267 Figure 1245: DNA324369, XM_098111, Figure 1279: PRO81056 gen.XM_098111 Figure 1280A-B: DNA324391, NM_032383, Figure 1246: DNA324370, NM_004637, gen.NM_004637 gen.NM_032383 Figure 1281: PRO81057 Figure 1247: PRO81040 Figure 1282: DNA324392, NM_015472, Figure 1248: DNA324371, NM_020701, gen.NM_020701 gen.NM_015472 Figure 1249: PRO81041 Figure 1283: PRO81058 Figure 1250: DNA324372, NM_003418, Figure 1284: DNA324393, NM_014445, gen.NM_003418 gen.NM_014445 Figure 1251: PRO81042 Figure 1285: PRO11048 Figure 1252: DNA324373, XM_059583, Figure 1286: DNA324394, XM_042168, gen.XM_042168 gen.XM_059583 Figure 1287: PRO81059 Figure 1253: PRO81043 Figure 1254: DNA324374, XM_113417, Figure 1288A-B: DNA324395, XM_114356, gen.XM_113417 gen.XM_114356 Figure 1289: DNA324396, XM_105236, Figure 1255: DNA324375, XM_093487, gen.XM_093487 gen.XM_105236 Figure 1290: DNA324397, XM_010978, Figure 1256A-B: DNA324376, XM_030812, gen.XM_030812 gen.XM_010978 Figure 1291: DNA324398, XM_017356, Figure 1257: PRO58177 gen.XM_017356 Figure 1258A-B: DNA324377, XM_039805, Figure 1292A-B: DNA324399, XM_039796, gen.XM_039805

gen.XM_039796 Figure 1327: DNA89239, NM_000893, Figure 1293: PRO81064 gen.NM_000893 Figure 1294: DNA324400, XM_016334, Figure 1328: PRO2906 gen.XM_016334 Figure 1329: DNA324420, XM_113422, Figure 1295: DNA324401, XM_116058, gen.XM_113422 gen.XM_116058 Figure 1330: DNA225592, NM_001622, Figure 1296: DNA324402, XM_113408, gen.NM_001622 gen.XM_113408 Figure 1331: PRO36055 Figure 1297: DNA324403, NM _002492, Figure 1332: DNA324421, XM_005180, gen.NM_002492 gen.XM_005180 Figure 1298: PRO81068 Figure 1333: DNA324422, XM_087392, Figure 1299: DNA324404, XM_037381, gen.XM_087392 gen.XM_037381 Figure 1334: PRO81086 Figure 1300: DNA324405, XM_037377, Figure 1335A-B: DNA272605, NM_003722, gen.XM_037377 gen.NM_003722 Figure 1301: PRO69681 Figure 1336: PRO60741 Figure 1302A-B: DNA324406, XM_087254, Figure 1337: DNA324423, XM_117311, gen.XM_087254 gen.XM_117311 Figure 1303: PRO81070 Figure 1338: DNA324424, XM_116034, Figure 1304: DNA324407, XM_037600, gen.XM_116034 gen.XM_037600 Figure 1339: PRO81088 Figure 1305: PRO81071 Figure 1340A-B: DNA324425, XM_084110, Figure 1306: DNA324408, NM_018023, gen.XM_084110 gen.NM_018023 Figure 1341: DNA324426, XM_038243, Figure 1307: PRO81072 gen.XM_038243 Figure 1308: DNA324409, XM_093423, Figure 1342: PRO81090 gen.XM_093423 Figure 1343: DNA324427, XM_087359, Figure 1309: PRO81073 gen.XM_087359 Figure 1310: DNA324410, XM_029136, Figure 1344: DNA324428, XM_114328, gen.XM_029136 gen.XM_114328 Figure 1311: PRO81074 Figure 1345: DNA324429, XM_098109, Figure 1312: DNA324411, XM_087322, gen.XM_098109 gen.XM_087322 Figure 1346: PRO81093 Figure 1313A-B: DNA324412, XM_029132, Figure 1347: DNA324430, XM_087410, gen.XM_087410 gen.XM_029132 Figure 1314A-B: DNA324413, XM_029104, Figure 1348: DNA324431, NM_033316, gen.XM_029104 gen.NM_033316 Figure 1315: DNA324414, XM_084120, Figure 1349: PRO81095 gen.XM_084120 Figure 1350: DNA324432, XM_166017, Figure 1316: DNA254620, NM_005787, gen.XM_166017 Figure 1351: PRO81096 gen.NM_005787 Figure 1317: PRO49722 Figure 1352: DNA79129, NM _001647, Figure 1318: DNA324415, NM_032331, gen.NM_001647 gen.NM_032331 Figure 1353: PRO2551 Figure 1319: PRO81079 Figure 1354: DNA324433, NM_032288, Figure 1320: DNA324416, XM_011074, gen.NM_032288 gen.XM_011074 Figure 1355: PRO81097 Figure 1321: PRO81080 Figure 1356: DNA324434, XM_086228, Figure 1322: DNA324417, XM_087295, gen.XM_086228 Figure 1357: PRO81098 gen.XM_087295 Figure 1323: DNA324418, XM_087289, Figure 1358: DNA324435, XM_087278, gen.XM_087289 gen.XM_087278 Figure 1324: PRO81082 Figure 1359: DNA324436, XM_018523, Figure 1325: DNA324419, XM_105658, gen.XM_018523 gen.XM_105658 Figure 1360: DNA324437, XM_087297, Figure 1326: PRO81083 gen.XM_087297

Figure 1397: PRO60542 Figure 1361: DNA324438, XM_002255, Figure 1398A-B: DNA324455, XM_052626, gen.XM_002255 gen.XM_052626 Figure 1362: PRO81102 Figure 1363: DNA324439, XM_053122, Figure 1399: PRO81118 Figure 1400: DNA324456, NM_016930, gen.XM_053122 gen.NM_016930 Figure 1364: DNA324440, XM_042695, Figure 1401: PRO81119 gen.XM_042695 Figure 1402: DNA324457, XM _035824, Figure 1365: DNA324441, XM_011160, gen.XM_035824 gen.XM_011160 Figure 1403: PRO81120 Figure 1366: DNA324442, NM_007100, Figure 1404: DNA324458, NM_033296, gen.NM_007100 gen.NM_033296 Figure 1367: PRO81106 Figure 1405: PRO81121 Figure 1368: DNA139747, NM_002477, gen.NM_002477 Figure 1406: DNA324459, NM_138699, gen.NM_138699 Figure 1369: PRO9785 Figure 1407: PRO81122 Figure 1370: DNA253804, NM_032219, Figure 1408: DNA324460, XM_116285, gen.NM_032219 gen.XM_116285 Figure 1371: PRO49209 Figure 1409: PRO81123 Figure 1372: DNA324443, NM_138385, gen.NM_138385 Figure 1410: DNA324461, XM_041221, gen.XM_041221 Figure 1373: PRO81107 Figure 1374: DNA324444, NM_006342, Figure 1411: PRO81124 Figure 1412: DNA324462, XM_117351, gen.NM_006342 gen.XM_117351 Figure 1375: PRO81108 Figure 1413: DNA324463, XM_039165, Figure 1376A-C: DNA324445, NM_133330, gen.XM_039165 gen.NM_133330 Figure 1414: DNA324464, NM_025205, Figure 1377: PRO81109 Figure 1378A-C: DNA324446, NM_014919, gen.NM_025205 Figure 1415: PRO81127 gen.NM_014919 Figure 1379: PRO81110 Figure 1416: DNA324465, XM_039173, gen.XM_039173 Figure 1380A-C: DNA324447, NM_133332, Figure 1417: DNA324466, XM_039176, gen.NM_133332 gen.XM_039176 Figure 1381: PRO81111 Figure 1418: DNA324467, XM_087583, Figure 1382: DNA324448, NM_005663, gen.XM_087583 gen.NM_005663 Figure 1419: DNA324468, NM_017491, Figure 1383: PRO81112 Figure 1384A-B: DNA324449, XM _098248, gen.NM_017491 gen.XM_098248 Figure 1420: PRO12077 Figure 1421: DNA324469, NM_005112, Figure 1385: PRO81113 gen.NM_005112 Figure 1386: DNA270615, NM_002938, Figure 1422: PRO81131 gen.NM_002938 Figure 1423: DNA324470, XM_011129, Figure 1387: PRO58986 Figure 1388A-B: DNA324450, NM_014190, gen.XM_011129 Figure 1424A-B: DNA324471, XM _052530, gen.NM_014190 gen.XM_052530 Figure 1389: PRO81114 Figure 1390A-B: DNA324451, NM_014189, Figure 1425: DNA324472, NM_000661, gen.NM_000661 gen.NM_014189 Figure 1426: PRO81134 Figure 1391: PRO81115 Figure 1427A-B: DNA324473, NM_002913, Figure 1392: DNA324452, XM_035572, gen.NM_002913 gen.XM_035572 Figure 1428: PRO81135 Figure 1393: PRO81116 Figure 1429A-B: DNA324474, XM_047477, Figure 1394A-B: DNA324453, NM_014556, gen.NM_014556 gen.XM_047477 Figure 1430: DNA324475, NM_004181, Figure 1395: PRO81117 Figure 1396: DNA324454, NM_001313, gen.NM_004181 Figure 1431: PRO81137 gen.NM_001313

Figure 1432: DNA324476, XM_003435,	gen.XM_096203
gen.XM_003435	Figure 1465: DNA324498, XM_084158,
Figure 1433: DNA324478, XM_010941,	gen.XM_084158
gen.XM_010941	Figure 1466: DNA324499, XM_034710,
Figure 1434: DNA324479, XM_059593,	gen.XM_034710
gen.XM_059593	Figure 1467: PRO81156
Figure 1435: DNA324480, NM_001553,	Figure 1468: DNA324500, XM_034713,
gen.NM_001553	gen.XM_034713
Figure 1436: PRO81141	Figure 1469: DNA324501, XM_059633,
Figure 1437: DNA257511, NM_032313,	gen.XM_059633
gen.NM_032313	Figure 1470: DNA324502, XM_114426,
Figure 1438: PRO52083	gen.XM_114426
Figure 1439: DNA324481, XM_071623,	Figure 1471: DNA324503, XM_056957,
gen.XM_071623	gen.XM_056957
Figure 1440A-B: DNA324482, XM_036002,	Figure 1472: DNA324504, XM_088472,
gen.XM_036002	gen.XM_088472
Figure 1441: DNA324483, XM_058927,	Figure 1473: DNA324505, XM_114424,
gen.XM_058927	gen.XM_114424
Figure 1442: DNA324484, XM_059628,	Figure 1474A-B: DNA324506, XM_042301,
gen.XM_059628	gen.XM_042301
Figure 1443: DNA324485, XM_046057,	Figure 1475: PRO81163
gen.XM_046057	Figure 1476: DNA324507, XM_017925,
Figure 1444: PRO81146	gen.XM_017925
Figure 1445: DNA324486, XM 031320,	Figure 1477: DNA324508, XM_052336,
gen.XM_031320	gen.XM_052336
Figure 1446: DNA225919, NM _001134,	Figure 1478: DNA324509, NM_002106,
gen.NM.001134	gen.NM_002106
Figure 1447: PRO36382	Figure 1479: PRO10297
Figure 1448A-B: DNA324487, XM_003511,	Figure 1480: DNA324510, XM_085068,
gen.XM_003511	gen.XM_085068
Figure 1449: DNA324488, NM .006835,	Figure 1481: PRO81166
gen.NM_006835	Figure 1482: DNA324511, XM_165473,
Figure 1450: PRO4605	gen.XM_165473
Figure 1451: DNA324489, XM _003305,	Figure 1483: DNA324512, XM_087514,
gen.XM_003305	gen.XM_087514
Figure 1452: DNA324490, XM_113425,	Figure 1484: DNA324513, XM_116247,
gen.XM_113425	gen.XM_116247
Figure 1453: DNA324491, XM_001389,	Figure 1485: DNA324514, NM_002358,
gen.XM_001389	gen.NM_002358
Figure 1454: PRO81148	Figure 1486: PRO81169
Figure 1455: DNA324492, XM_087527,	Figure 1487: DNA324515, XM_050200,
gen.XM_087527	gen.XM_050200
Figure 1456: DNA324493, XM_035986,	Figure 1488: PRO81170
gen.XM_035986	Figure 1489: DNA225584, NM_001154,
Figure 1457A-B: DNA324494, NM_014933,	gen.NM_001154
gen.NM_014933	Figure 1490: PRO36047
Figure 1458: PRO81150	Figure 1491: DNA324516, NM_024900,
Figure 1459: DNA290585, NM_000582,	gen.NM_024900
gen.NM_000582	Figure 1492: PRO81171
Figure 1460: PRO70536	Figure 1493: DNA324517, XM_040752,
Figure 1461: DNA324495, XM_055551,	gen.XM_040752
gen.XM_055551	Figure 1494: DNA324518, NM_002413,
Figure 1462: PRO81151	gen.NM_002413
Figure 1463: DNA324496, XM_087498,	Figure 1495: PRO60956
gen.XM_087498	Figure 1496: DNA324519, XM_114401,
Figure 1464: DNA324497, XM_096203,	gen.XM_114401
	<u> </u>

Figure 1497: DNA324520, XM_068164,	Figure 1532: DNA324538, XM_116204,
gen.XM_068164	gen.XM_116204
Figure 1498: PRO81174	Figure 1533: DNA324539, XM_116205,
Figure 1499: DNA324521, XM_060067,	gen.XM_116205
gen.XM_060067	Figure 1534: DNA324540, XM_098405,
Figure 1500: DNA324522, XM_003555,	gen.XM_098405
gen.XM_003555	Figure 1535: DNA324541, XM _052313,
Figure 1501: PRO81176	gen.XM_052313
-	•
Figure 1502: DNA324523, XM_034321,	Figure 1536: PRO81195
gen.XM_034321	Figure 1537: DNA324542, XM_087659,
Figure 1503: PRO81177	gen.XM_087659
Figure 1504: DNA324524, NM_006439,	Figure 1538: PRO81196
gen.NM_006439	Figure 1539: DNA324543, XM_029096,
Figure 1505: PRO81178	gen.XM_029096
Figure 1506: DNA324525, NM_001006,	Figure 1540: DNA324544, XM_003825,
gen.NM_001006	gen.XM_003825
Figure 1507: PRO81179	Figure 1541: DNA324545, XM_057994,
Figure 1508: DNA227575, NM_005141,	gen.XM_057994
gen.NM_005141	Figure 1542: PRO81199
Figure 1509: PRO38038	Figure 1543: DNA324546, XM_087686,
Figure 1510: DNA324526, XM_114368,	gen.XM_087686
gen.XM_114368	Figure 1544: DNA324547, XM_017641,
Figure 1511A-B: DNA225920, NM_000508,	gen.XM_017641
gen.NM_000508	Figure 1545: DNA324548, NM_030782,
Figure 1512: PRO36383	gen.NM_030782
Figure 1513: DNA324527, NM_021871,	Figure 1546: PRO81202
gen.NM_021871	Figure 1547: DNA324549, XM_084168,
Figure 1514: PRO81181	gen.XM_084168
Figure 1515: DNA225921, NM_000509,	Figure 1548: DNA324550, XM_057492,
gen.NM_000509	gen.XM_057492
Figure 1516: PRO36384	Figure 1549: DNA324551, XM_087597,
Figure 1517: DNA324528, NM_021870,	gen.XM_087597
gen.NM_021870	Figure 1550: DNA324552, XM_087601,
Figure 1518: PRO81182	gen.XM_087601
Figure 1519: DNA324529, XM_059623,	Figure 1551: DNA324554, XM_087599,
gen.XM_059623	gen.XM_087599
Figure 1520: DNA324530, XM_106246,	Figure 1552: DNA324555, XM_114435,
gen.XM_106246	gen.XM_114435
Figure 1521: PRO81184	Figure 1553: DNA324556, XM_087600,
Figure 1522: DNA324531, NM_002129,	gen.XM_087600
gen.NM_002129	Figure 1554: DNA324557, XM_016170,
Figure 1523: PRO81185	gen.XM_016170
Figure 1524: DNA324532, XM_040321,	Figure 1555: DNA324558, XM_114434,
gen.XM_040321	gen.XM_114434
Figure 1525: DNA324533, XM_015563,	Figure 1556: DNA324559, XM_113452,
gen.XM_015563	gen.XM_113452
Figure 1526: DNA324534, NM_024748,	Figure 1557: DNA324560, XM_071580,
gen.NM_024748	gen.XM_071580
Figure 1527: PRO81188	Figure 1558: PRO81213
Figure 1528: DNA324535, XM_165470,	Figure 1559: DNA324561, XM_087713,
gen.XM_165470	gen.XM_087713
Figure 1529: PRO81189	Figure 1560: PRO81214
Figure 1530A-E: DNA324536, XM_003477,	Figure 1561: DNA324562, XM_094440,
gen.XM_003477	gen.XM_094440
Figure 1531: DNA324537, XM_165465,	Figure 1562: DNA324563, XM_106739,
gen.XM_165465	gen.XM_106739
	-

Figure 1597: DNA324584, XM_087610, Figure 1563: PRO81216 gen.XM_087610 Figure 1564: DNA324564, XM_087614, Figure 1598: DNA288259, NM_031966, gen.XM_087614 Figure 1565: DNA324565, XM_004009, gen.NM_031966 gen.XM_004009 Figure 1599: PRO4676 Figure 1600: DNA324585, XM_042025, Figure 1566: PRO81219 Figure 1567: DNA324566, XM_114437, gen.XM_042025 gen.XM_114437 Figure 1601: PRO81238 Figure 1568: DNA324567, XM_043771, Figure 1602: DNA324586, NM_005713, gen.XM_043771 gen.NM_005713 Figure 1603: PRO81239 Figure 1569: PRO81221 Figure 1604: DNA324587, XM .059709, Figure 1570: DNA324568, NM _000997, gen.NM_000997 gen.XM_059709 Figure 1605: PRO81240 Figure 1571: PRO11077 Figure 1606: DNA324588, XM_116447, Figure 1572: DNA324569, XM_003869, gen.XM_116447 gen.XM_003869 Figure 1573: DNA227173, NM _001465, Figure 1607: PRO81241 gen.NM_001465 Figure 1608: DNA324589, XM_037260, gen.XM_037260 Figure 1574: PRO37636 Figure 1609: DNA324590, XM_098351, Figure 1575: DNA324570, NM_018034, gen.XM_098351 gen.NM_018034 Figure 1610: DNA324591, XM_098354, Figure 1576: PRO81223 gen.XM_098354 Figure 1577: DNA324571, NM_032637, Figure 1611: DNA324592, XM .098352, gen.NM_032637 Figure 1578: PRO81224 gen.XM_098352 Figure 1579: DNA324572, NM_005983, Figure 1612: DNA324593, XM_166037, gen.NM_005983 gen.XM_166037 Figure 1613: PRO81246 Figure 1580: PRO81225 Figure 1614: DNA324594, XM_041694, Figure 1581A-B: DNA324573, XM .003896, gen.XM_041694 gen.XM_003896 Figure 1615: DNA324595, XM_165488, Figure 1582: DNA287282, NM .. 002130, gen.XM_165488 gen.NM_002130 Figure 1583: PRO69554 Figure 1616: PRO81248 Figure 1617: DNA324596, XM_059669, Figure 1584: DNA324574, XM_114442, gen.XM_059669 gen.XM_114442 Figure 1618: PRO81249 Figure 1585: PRO81227 Figure 1619: DNA324597, XM _027964, Figure 1586: DNA324575, XM_114439, gen.XM_027964 gen.XM_114439 Figure 1620: PRO81250 Figure 1587: DNA324576, XM_114440, Figure 1621: DNA324598, XM_088020, gen.XM_114440 Figure 1588A-B: DNA324577, XM_032902, gen.XM_088020 Figure 1622: DNA324599, XM_117387, gen.XM_032902 gen.XM_117387 Figure 1589: PRO81230 Figure 1623: DNA324600, XM_114469, Figure 1590: DNA324578, XM_032895, gen.XM_114469 gen.XM_032895 Figure 1624: DNA324601, NM..001207, Figure 1591: DNA324579, XM_084179, gen.NM_001207 gen.XM_084179 Figure 1625: PRO22771 Figure 1592: DNA324580, XM_041712, gen.XM_041712 Figure 1626A-B: DNA324602, XM_032553, gen.XM_032553 Figure 1593: DNA324581, XM_116439, Figure 1627: DNA254147, NM_000521, gen.XM_116439 gen.NM_000521 Figure 1594: PRO81234 Figure 1628: PRO49262 Figure 1595: DNA324582, XM_087611, Figure 1629: DNA324603, NM_031482, gen.XM_087611 gen.NM_031482 Figure 1596: DNA324583, XM_059653, gen.XM_059653 Figure 1630: PRO81254

Figure 1631: DNA324604, XM_087790, Figure 1666: DNA324622, XM_003830, gen.XM_087790 gen.XM_003830 Figure 1632: DNA324605, NM_001025, Figure 1667: PRO81269 gen.NM_001025 Figure 1668: DNA324623, XM_037002, Figure 1633: PRO10685 gen.XM_037002 Figure 1634: DNA324606, XM_098362, Figure 1669: DNA324624, XM_166026, gen.XM_098362 gen.XM_166026 Figure 1635: PRO81256 Figure 1670: DNA324625, XM_041059, Figure 1636: DNA324607, NM_003401, gen.XM_041059 gen.NM_003401 Figure 1671: DNA83020, NM_000358, Figure 1637: PRO70327 gen.NM_000358 Figure 1638: DNA290231, NM_022550, Figure 1672: PRO2561 gen.NM_022550 Figure 1673: DNA324626, NM_003687, Figure 1639: PRO70327 gen.NM_003687 Figure 1640: DNA324608, XM_017857, Figure 1674: PRO81272 gen.XM_017857 Figure 1675: DNA324627, XM_034862, Figure 1641: DNA324609, XM_117398, gen.XM_034862 gen.XM_117398 Figure 1676: PRO34544 Figure 1642A-B: DNA257253, NM_032280, Figure 1677: DNA103380, NM_003374, gen.NM_032280 gen.NM_003374 Figure 1643: PRO51851 Figure 1678: PRO4710 Figure 1644: DNA324610, XM_003771, Figure 1679: DNA324628, XM_017474, gen.XM_003771 gen.XM_017474 Figure 1645: PRO81259 Figure 1680: PRO63082 Figure 1646A-B: DNA269816, NM_002397, Figure 1681A-B: DNA324629, NM_014829, gen.NM_002397 gen.NM_014829 Figure 1647: PRO58219 Figure 1682: PRO81273 Figure 1683A-B: DNA324630, XM_114482, Figure 1648: DNA324611, XM_116427, gen.XM_116427 gen.XM_114482 Figure 1649: PRO81260 Figure 1684: PRO81274 Figure 1650: DNA324612, NM_004772, Figure 1685: DNA324631, NM_004893, gen.NM_004772 gen.NM-004893 Figure 1651: PRO81261 Figure 1686: PRO81275 Figure 1652: DNA324613, XM_016674, Figure 1687: DNA269809, NM_006805, gen.XM_016674 gen.NM_006805 Figure 1653: PRO81262 Figure 1688: PRO58213 Figure 1654: DNA324614, XM_113463, Figure 1689: DNA226872, NM_001964, gen.XM_113463 gen.NM_001964 Figure 1655: DNA324615, XM_034744, Figure 1690: PRO37335 gen.XM_034744 Figure 1691: DNA324632, XM_116307, Figure 1656: DNA324616, XM_087745, gen.XM_116307 gen.XM_087745 Figure 1692: PRO81276 Figure 1657: PRO81264 Figure 1693: DNA324633, NM .004134, Figure 1658: DNA324617, XM_018473, gen.NM_004134 gen.XM_018473 Figure 1694: PRO81277 Figure 1659: PRO81265 Figure 1695: DNA324634, XM_038221, Figure 1660: DNA324618, XM_087635, gen.XM_038221 gen.XM_087635 Figure 1696: PRO81278 Figure 1661: PRO81266 Figure 1697: DNA271931, NM_005754, Figure 1662: DNA324619, XM_087637, gen.NM_005754 gen.XM_087637 Figure 1698: PRO60207 Figure 1663: DNA324620, XM_166027, Figure 1699: DNA324635, XM_003841, gen.XM_166027 gen.XM_003841 Figure 1664: DNA324621, NM_014035, Figure 1700: DNA324636, XM_032759, gen.NM_014035 gen.XM_032759 Figure 1665: PRO1285 Figure 1701: DNA324637, XM_017591,

gen.XM_017591 gen.NM_018913 Figure 1702: DNA324638, NM_006058, Figure 1737: PRO81293 gen.NM_006058 Figure 1738A-B: DNA324656, NM_018914, Figure 1703: PRO81280 gen.NM_018914 Figure 1704: DNA324639, NM_002084, Figure 1739: PRO81294 Figure 1740A-B: DNA324657, NM_018915, gen.NM_002084 Figure 1705: PRO81281 gen.NM_018915 Figure 1706: DNA324640, NM_018047, Figure 1741: PRO36020 gen.NM_018047 Figure 1742A-B: DNA324658, NM_018916, Figure 1707: PRO81282 gen.NM_018916 Figure 1743: PRO81295 Figure 1708: DNA324641, NM_005617, gen.NM_005617 Figure 1744A-B: DNA324659, NM_018917, Figure 1709: PRO10849 gen.NM_018917 Figure 1745: PRO81296 Figure 1710: DNA324642, XM_003937, Figure 1746A-B: DNA324660, NM_018918, gen.XM_003937 Figure 1711: DNA324643, XM_087621, gen.NM_018918 gen.XM_087621 Figure 1747: PRO81297 Figure 1748A-B: DNA324661, NM_018919, Figure 1712A-B: DNA324644, XM_003789, gen.NM_018919 gen.XM_003789 Figure 1749: PRO81298 Figure 1713: DNA324645, XM_087652, Figure 1750A-B: DNA324662, NM_018920, gen.XM_087652 gen.NM_018920 Figure 1714: DNA324646, XM_068853, Figure 1751: PRO81299 gen.XM_068853 Figure 1715: PRO81286 Figure 1752A-B: DNA324663, NM_018921, Figure 1716: DNA324647, XM_116465, gen.NM_018921 Figure 1753: PRO81300 gen.XM_116465 Figure 1754A-B: DNA324664, NM_018922, Figure 1717: PRO81287 Figure 1718: DNA302020, NM _005573, gen.NM_018922 gen.NM_005573 Figure 1755: PRO81301 Figure 1756A-B: DNA324665, NM_018923, Figure 1719: PRO70993 Figure 1720: DNA324648, XM_113467, gen.NM_018923 gen.XM_113467 Figure 1757: PRO81302 Figure 1758A-B: DNA324666, NM_018924, Figure 1721: DNA271626, NM_014773, gen.NM_018924 gen.NM_014773 Figure 1759: PRO81303 Figure 1722: PRO59913 Figure 1760A-B: DNA324667, NM_018925, Figure 1723A-B: DNA324649, XM_056315, gen.NM_018925 gen.XM_056315 Figure 1761: PRO81304 Figure 1724: DNA324650, NM_024668, gen.NM_024668 Figure 1762A-B: DNA324668, NM_018926, Figure 1725: PRO81289 gen.NM_018926 Figure 1726: DNA324651, NM_080670, Figure 1763: PRO81305 gen.NM_080670 Figure 1764A-B: DNA324669, NM_018927, gen.NM_018927 Figure 1727: PRO81290 Figure 1765: PRO37091 Figure 1728A-B: DNA324652, NM_002588, Figure 1766A-B: DNA324670, NM_018928, gen.NM_002588 gen.NM_018928 Figure 1729: PRO81291 Figure 1767: PRO81306 Figure 1730A-B: DNA324653, NM_003735, Figure 1768A-B: DNA324671, NM_018929, gen.NM_003735 Figure 1731: PRO81292 gen.NM_018929 Figure 1769: PRO81307 Figure 1732A-B: DNA150679, NM_003736, Figure 1770A-B: DNA324672, NM_032088, gen.NM_003736 gen.NM_032088 Figure 1733: PRO12416 Figure 1771: PRO81308 Figure 1734A-B: DNA324654, NM_018912, Figure 1772A-B: DNA324673, NM_032092, gen.NM_018912 gen.NM_032092 Figure 1735: PRO36058

Figure 1736A-B: DNA324655, NM_018913,

Figure 1773: PRO81309

Figure 1774: DNA324674, NM_032403, Figure 1809: PRO81327 gen.NM_032403 Figure 1810: DNA324694, XM_116856, Figure 1775: PRO81310 gen.XM_116856 Figure 1776: DNA324675, NM_032402, Figure 1811: DNA324695, XM_003716, gen.NM_032402 gen.XM_003716 Figure 1777: PRO81311 Figure 1812: DNA227320, NM _003714, Figure 1778: DNA324676, XM_098387, gen.NM_003714 gen.XM_098387 Figure 1813: PRO37783 Figure 1779: DNA324677, NM_002109, Figure 1814: DNA324696, NM_032361, gen.NM_002109 gen.NM_032361 Figure 1780: PRO4908 Figure 1815: PRO81330 Figure 1781: DNA324678, XM_084180, Figure 1816: DNA324697, XM_087773, gen.XM_084180 gen.XM_087773 Figure 1817: DNA324698, XM_114457, Figure 1782: PRO81313 Figure 1783: DNA324679, XM_039975, gen.XM_114457 Figure 1818: DNA324699, XM_165483, gen.XM_039975 Figure 1784: PRO81314 gen.XM_165483 Figure 1785: DNA324680, NM_033551, Figure 1819: DNA324700, XM_114453, gen.XM_114453 gen.NM_033551 Figure 1820: DNA324701, XM_165484, Figure 1786: PRO81315 Figure 1787: DNA324681, NM_004821, gen.XM_165484 Figure 1821: DNA324702, XM_030771, gen.NM_004821 Figure 1788: PRO81316 gen.XM_030771 Figure 1789: DNA324682, XM_068395, Figure 1822: PRO19615 gen.XM_068395 Figure 1823: DNA324703, XM_030777, Figure 1790: PRO81317 gen.XM_030777 Figure 1791: DNA226418, NM_004060, Figure 1824: DNA324704, XM_030782, gen.NM_004060 gen.XM_030782 Figure 1825: PRO81336 Figure 1792: PRO36881 Figure 1793A-B: DNA324683, XM_056963, Figure 1826: DNA324705, NM_030567, gen.XM_056963 gen.NM_030567 Figure 1794: PRO81318 Figure 1827: PRO81337 Figure 1795: DNA324684, NM_004219, Figure 1828: DNA225909, NM_000505, gen.NM_004219 gen.NM_000505 Figure 1829: PRO36372 Figure 1796: PRO81319 Figure 1797: DNA324685, XM_094243, Figure 1830: DNA274206, NM .006816, gen.XM_094243 gen.NM_006816 Figure 1831: PRO62135 Figure 1798A-B: DNA324686, XM_047964, gen.XM_047964 Figure 1832: DNA324706, NM_031300, Figure 1799: DNA324687, XM_016345, gen.NM_031300 gen.XM_016345 Figure 1833: PRO81338 Figure 1800: DNA324688, NM_002887, Figure 1834: DNA324707, NM_013237, gen.NM_002887 gen.NM_013237 Figure 1835: PRO81339 Figure 1801: PRO81323 Figure 1802: DNA324689, XM_166029, Figure 1836: DNA324708, NM_002011, gen.NM_002011 gen.XM_166029 Figure 1803: DNA324690, NM_002520, Figure 1837: PRO81340 Figure 1838: DNA324709, NM_022963, gen.NM_002520 Figure 1804: PRO58993 gen.NM_022963 Figure 1805: DNA324691, XM_043340, Figure 1839: PRO81341 gen.XM_043340 Figure 1840: DNA324710, XM_038946, Figure 1806: PRO81325 gen.XM_038946 Figure 1807: DNA324692, XM_116340, Figure 1841: DNA324711, XM_113454, gen.XM_113454 gen.XM_116340 Figure 1808A-B: DNA324693, XM_043388, Figure 1842: DNA324712, XM_166028, gen.XM_043388 gen.XM_166028

Figure 1843: DNA324713, NM_015043, Figure 1877: DNA324731, XM_168123, gen.NM_015043 gen.XM_168123 Figure 1844: PRO81345 Figure 1878: DNA324732, XM_166457, Figure 1845: DNA324714, XM_113468, gen.XM_166457 gen.XM_113468 Figure 1879: DNA324733, XM_166469, Figure 1846: DNA324715, NM_014275, gen.XM_166469 gen.NM_014275 Figure 1880: DNA324734, NM_018135, Figure 1847: PRO1927 gen.NM_018135 Figure 1848: DNA324716, NM_054013, Figure 1881: PRO81359 gen.NM_054013 Figure 1882A-B: DNA324735, XM_166340, Figure 1849: PRO81347 gen.XM_166340 Figure 1850: DNA270675, NM_005520, Figure 1883: DNA324736, XM_087960, gen.NM_005520 gen.XM_087960 Figure 1851: PRO59040 Figure 1884: DNA324737, XM_166362, Figure 1852: DNA324717, NM .006098, gen.XM_166362 gen.NM_006098 Figure 1885: PRO81362 Figure 1853: PRO25849 Figure 1886: DNA227204, NM_015388. Figure 1854: DNA269593, NM_005110, gen.NM_015388 gen.NM_005110 Figure 1887: PRO37667 Figure 1855: PRO58006 Figure 1888: DNA324738, XM_166425, Figure 1856: DNA324718, XM_116365, gen.XM_166425 gen.XM_116365 Figure 1889: PRO81363 Figure 1857: DNA324719, XM_116511, Figure 1890: DNA324739, NM_057161, gen.XM_116511 gen.NM_057161 Figure 1858: DNA324720, XM_087823, Figure 1891: PRO81364 gen.XM_087823 Figure 1892: DNA270613, NM_006245, Figure 1859A-C: DNA324721, XM_053955, gen.NM_006245 Figure 1893: PRO58984 gen.XM_053955 Figure 1860: DNA324722, XM_113476, Figure 1894: DNA324740, NM_006586, gen.XM_113476 gen.NM_006586 Figure 1861: DNA324723, XM_116514, Figure 1895: PRO81365 gen.XM_116514 Figure 1896: DNA324741, XM_166402, Figure 1862: DNA324724, XM_094741, gen.XM_166402 gen.XM_094741 Figure 1897: PRO81366 Figure 1863: DNA324725, NM_025168, Figure 1898: DNA324742, NM_001760, gen.NM_025168 gen.NM_001760 Figure 1864: PRO81354 Figure 1899: PRO81367 Figure 1865A-B: DNA324726, XM_165740, Figure 1900: DNA287246, NM_004053, gen.NM_004053 gen.XM_165740 Figure 1866: DNA272171, NM _002388, Figure 1901: PRO69521 Figure 1902: DNA324743, NM_017601, gen.NM_002388 Figure 1867: PRO60438 gen.NM_017601 Figure 1868: DNA324727, XM_167169, Figure 1903: PRO81368 gen.XM_167169 Figure 1904: DNA275630, NM_006708, Figure 1869: PRO81355 gen.NM_006708 Figure 1870: DNA324728, NM_014452, Figure 1905: PRO63253 gen.NM_014452 Figure 1906: DNA324744, NM_014341, Figure 1871: PRO868 gen.NM_014341 Figure 1872: DNA324729, XM_166349, Figure 1907: PRO81369 gen.XM_166349 Figure 1908: DNA304460, NM_016059, Figure 1873: PRO81356 gen.NM_016059 Figure 1874: DNA304680, NM_007355, Figure 1909: PRO4984 gen.NM_007355 Figure 1910: DNA324745, XM_166412, Figure 1875: PRO71106 gen.XM_166412 Figure 1876: DNA324730, XM_165772, Figure 1911: PRO81370 gen.XM_165772 Figure 1912: DNA304716, NM_078467,

gen.NM_022551 gen.NM_078467 Figure 1947: PRO71088 Figure 1913: PRO71142 Figure 1948: DNA324767, XM_165747, Figure 1914: DNA324746, XM_166417, gen.XM_165747 gen.XM_166417 Figure 1949: DNA324768, XM_165698, Figure 1915: PRO81371 Figure 1916A-B: DNA324747, NM_003137, gen.XM_165698 gen.NM_003137 Figure 1950: PRO4884 Figure 1951A-B: DNA324769, XM_165770, Figure 1917: PRO81372 Figure 1918A-B: DNA324748, NM_004117, gen.XM_165770 Figure 1952: DNA287227, NM_004159, gen.NM_004117 gen.NM_004159 Figure 1919: PRO36841 Figure 1920: DNA324749, XM_166419, Figure 1953: PRO69506 Figure 1954: DNA324770, XM_165717, gen.XM_166419 gen.XM_165717 Figure 1921: DNA324750, XM_165794, Figure 1955: DNA324771, XM_166480, gen.XM_165794 gen.XM_166480 Figure 1922: DNA324751, NM_007104, Figure 1956: DNA324772, XM_165801, gen.NM_007104 gen.XM_165801 Figure 1923: PRO10360 Figure 1957A-B: DNA324773, NM_000592, Figure 1924: DNA324752, NM_024294, gen.NM_000592 gen.NM_024294 Figure 1958: PRO36316 Figure 1925: PRO81375 Figure 1959: DNA324774, NM .001710, Figure 1926: DNA324753, NM_022758, gen.NM_022758 gen.NM_001710 Figure 1960: PRO36305 Figure 1927: PRO50582 Figure 1928: DNA324754, XM_168070, Figure 1961: DNA227607, NM_005346, gen.XM_168070 gen.NM_005346 Figure 1962: PRO38070 Figure 1929: DNA324755, NM_012391, Figure 1963: DNA304668, NM_005345, gen.NM_012391 gen.NM_005345 Figure 1930: PRO81377 Figure 1964: PRO71095 Figure 1931: DNA324756, XM_166459, Figure 1965: DNA324775, NM_021177, gen.XM_166459 Figure 1932: DNA324757, XM_166333, gen.NM_021177 Figure 1966: PRO81394 gen.XM_166333 Figure 1967A-B: DNA272263, NM_006295, Figure 1933: PRO81379 gen.NM_006295 Figure 1934: DNA324758, XM_058039, Figure 1968: PRO70138 gen.XM_058039 Figure 1969: DNA287319, NM_001288, Figure 1935: PRO81380 Figure 1936: DNA324759, XM_087990, gen.NM_001288 gen.XM_087990 Figure 1970: PRO69584 Figure 1971: DNA324776, NM .001320, Figure 1937: DNA324760, XM_165743, gen.NM_001320 gen.XM_165743 Figure 1972: PRO63052 Figure 1938: DNA324761, XM_166360, Figure 1973A-B: DNA324777, NM_004639, gen.XM_166360 gen.NM_004639 Figure 1939: DNA324763, XM_059801, Figure 1974: PRO81395 gen.XM_059801 Figure 1975A-B: DNA324778, NM .080703, Figure 1940: DNA324764, XM_166363, gen.NM_080703 gen.XM_166363 Figure 1976: PRO81396 Figure 1941: DNA324765, XM_016857, gen.XM_016857 Figure 1977A-B: DNA324779, NM_080702, Figure 1942: DNA227442, NM_001350, gen.NM_080702 gen.NM_001350 Figure 1978: PRO81397 Figure 1979A-B: DNA324780, NM_004638, Figure 1943: PRO37905 gen.NM_004638 Figure 1944: DNA324766, NM_005452, Figure 1980: PRO81398 gen.NM_005452 Figure 1981A-B: DNA324781, NM_080686, Figure 1945: PRO81387 Figure 1946: DNA304661, NM_022551, gen.NM_080686

gen.NM_018950 Figure 1982: PRO81399 Figure 1983: DNA324782, XM_165771, Figure 2018: PRO81414 Figure 2019: DNA324800, XM_166392, gen.XM_165771 gen.XM_166392 Figure 1984: DNA324783, NM_080598, gen.NM_080598 Figure 2020: PRO81415 Figure 2021: DNA324801, XM_166336, Figure 1985: PRO71125 gen.XM_166336 Figure 1986: DNA304699, NM_004640, Figure 2022: PRO81416 gen.NM_004640 Figure 2023: DNA324802, XM_167128, Figure 1987: PRO71125 gen.XM_167128 Figure 1988: DNA324784, XM_165765, Figure 2024: PRO23797 gen.XM_165765 Figure 1989: PRO81400 Figure 2025: DNA324803, XM_167161, Figure 1990: DNA324785, XM_087945, gen.XM_167161 Figure 2026: PRO81417 gen.XM_087945 Figure 2027: DNA324804, NM_013375, Figure 1991: PRO81401 gen.NM_013375 Figure 1992: DNA324786, XM_166381, Figure 2028: PRO81418 gen.XM_166381 Figure 2029: DNA324805, NM_007047, Figure 1993: PRO81402 gen.NM_007047 Figure 1994: DNA324787, XM_168104, Figure 2030: PRO81419 gen.XM_168104 Figure 2031: DNA324806, XM_167179, Figure 1995: DNA324788, XM_166401, gen.XM_167179 gen.XM_166401 Figure 2032: DNA290785, NM_003107, Figure 1996: PRO81404 Figure 1997: DNA271040, NM_001517, gen.NM_003107 gen.NM_001517 Figure 2033: PRO70544 Figure 1998: PRO59365 Figure 2034: DNA150772, NM _003472, gen.NM_003472 Figure 1999A-B: DNA324789, XM_165738, Figure 2035: PRO12797 gen.XM_165738 Figure 2036A-B: DNA324807, XM_165728, Figure 2000: DNA324790, XM_087939, gen.XM_165728 gen.XM_087939 Figure 2037: DNA324808, XM_165749, Figure 2001: PRO81406 Figure 2002: DNA324791, XM_166353, gen.XM_165749 Figure 2038: PRO81421 gen.XM_166353 Figure 2039A-B: DNA324809, NM_004973, Figure 2003: PRO1112 gen.NM_004973 Figure 2004A-B: DNA324792, XM_166376, gen.XM_166376 Figure 2040: PRO81422 Figure 2005: PRO81407 Figure 2041: DNA324810, XM_167196, Figure 2006A-B: DNA324793, XM_165799, gen.XM_167196 Figure 2042: DNA324811, XM_166446, gen.XM_165799 gen.XM_166446 Figure 2007: DNA290264, NM_025263, Figure 2043: PRO81424 gen.NM_025263 Figure 2044A-C: DNA324812, XM_165777, Figure 2008: PRO70393 Figure 2009: DNA324794, XM_166361, gen.XM_165777 Figure 2045: DNA324813, XM_037875, gen.XM_166361 Figure 2010: PRO81409 gen, XM_037875 Figure 2011: DNA324795, XM_165764, Figure 2046: PRO81426 gen.XM_165764 Figure 2047: DNA324814, XM_167225, gen.XM_167225 Figure 2012: PRO81410 Figure 2013: DNA324796, XM_165758, Figure 2048: PRO81427 Figure 2049: DNA324815, XM_166357, gen.XM_165758 Figure 2014: PRO81411 gen.XM_166357 Figure 2050: DNA324816, NM_001069, Figure 2015: DNA324797, XM_166406, gen.NM_001069 gen.XM_166406 Figure 2016: DNA324798, XM_165809, Figure 2051: PRO81429 gen.XM_165809 Figure 2052: DNA324817, NM_001500, Figure 2017: DNA324799, NM_018950, gen.NM_001500

Figure 2053: PRO81430 Figure 2087: DNA324839, XM_167016, Figure 2054A-B: DNA324818, XM_166042, gen.XM_167016 Figure 2088: PRO81449 gen.XM_166042 Figure 2055: PRO51389 Figure 2089: DNA324840, XM_087855, Figure 2056: DNA324819, XM_052721, gen.XM_087855 gen.XM_052721 Figure 2090: DNA324841, XM_087853, Figure 2057: DNA324820, XM_165499, gen.XM_087853 Figure 2091: DNA324842, XM_165669, gen.XM_165499 Figure 2058: DNA324821, XM_114497, gen.XM_165669 Figure 2092: DNA324843, XM_166303, gen.XM_114497 gen.XM_166303 Figure 2059: DNA324822, XM_011117, Figure 2093: PRO81453 gen.XM_011117 Figure 2094: DNA324844, XM_167027, Figure 2060: DNA324823, XM_094855, gen.XM_094855 gen.XM_167027 Figure 2061: PRO81435 Figure 2095: PRO81454 Figure 2062: DNA324824, XM_059776, Figure 2096: DNA324845, XM_167037, gen.XM_059776 gen.XM_167037 Figure 2097: PRO81455 Figure 2063: PRO81436 Figure 2064: DNA324825, XM_055641, Figure 2098: DNA324846, XM_018182, gen.XM_018182 gen.XM_055641 Figure 2099: DNA227924, NM _000165, Figure 2065: DNA324826, XM_004151, gen.XM_004151 gen.NM_000165 Figure 2066: DNA324827, NM_133645, Figure 2100: PRO38387 Figure 2101: DNA324847, XM_166310, gen.NM_133645 Figure 2067: PRO81439 gen.XM_166310 Figure 2102: PRO81457 Figure 2068: DNA324828, XM_097453, gen.XM_097453 Figure 2103: DNA324848, XM_168054, Figure 2069: DNA324829, XM_029228, gen.XM_168054 gen.XM_029228 Figure 2104: DNA271418, NM_003287, gen.NM'_003287 Figure 2070: DNA103471, NM_006670, gen.NM_006670 Figure 2105: PRO59717 Figure 2071: PRO4798 Figure 2106: DNA324849, XM_114492, Figure 2072: DNA324830, XM_068963, gen.XM_114492 Figure 2107: DNA324850, XM_037056, gen.XM_068963 gen.XM_037056 Figure 2073: PRO81441 Figure 2108: DNA324851, XM_098468, Figure 2074: DNA324831, XM _040623, gen.XM_098468 gen.XM_040623 Figure 2109: PRO19933 Figure 2075: DNA324832, NM_020320, Figure 2110: DNA324852, XM_004526, gen.NM_020320 Figure 2076: PRO81443 gen.XM_004526 Figure 2077: DNA324833, NM _014107, Figure 2111: DNA324853, NM_001016, gen.NM_014107 gen.NM_001016 Figure 2078: PRO81444 Figure 2112: PRO81462 Figure 2113: DNA324854, XM_004297, Figure 2079A-B: DNA324834, XM_084204, gen.XM_004297 gen.XM_084204 Figure 2114: DNA324855, XM_004256, Figure 2080: DNA324835, XM_017517, gen.XM_004256 gen.XM_017517 Figure 2115: PRO81464 Figure 2081: DNA324836, NM_032929, gen.NM_032929 Figure 2116: DNA324856, NM_014320, Figure 2082: PRO81446 gen.NM_014320 Figure 2083: DNA324837, XM _003611, Figure 2117: PRO81465 gen.XM_003611 Figure 2118: DNA324857, XM_059741, Figure 2084: PRO81447 gen.XM_059741 Figure 2085: DNA324838, XM_068919, Figure 2119: DNA324858, XM_017831, gen.XM_068919 gen.XM_017831 Figure 2086: PRO81448 Figure 2120: PRO81467

Figure 2121: DNA324859, XM_049899, Figure 2154: DNA324883, XM_087991, gen.XM_049899 gen.XM_087991 Figure 2155: DNA324884, NM_005514, Figure 2122: DNA324860, XM_004379, gen.XM_004379 gen.NM_005514 Figure 2123A-C: DNA324861, XM_087834, Figure 2156: PRO81490 Figure 2157: DNA324885, XM_166327, gen.XM_087834 Figure 2124A-B: DNA324862, XM_087836, gen.XM_166327 Figure 2158: PRO81491 gen.XM_087836 Figure 2159: DNA324886, XM_165692, Figure 2125: PRO81471 Figure 2126: DNA324863, NM_005389, gen.XM_165692 Figure 2160: DNA324887, XM_117449, gen.NM_005389 Figure 2127: PRO66279 gen.XM_117449 Figure 2128A-C: DNA324864, XM_029746, Figure 2161: DNA324888, XM_086428, gen.XM_086428 gen.XM_029746 Figure 2162: PRO81494 Figure 2129: PRO66282 Figure 2163: DNA324889, NM_032350, Figure 2130: DNA324865, XM_004383, gen.NM_032350 gen.XM_004383 Figure 2164: PRO81495 Figure 2131: DNA324866, XM_059745, Figure 2165: DNA324890, NM_013393, gen.XM_059745 gen.NM_013393 Figure 2132: DNA324867, XM.033912, gen.XM_033912 Figure 2166: PRO81496 Figure 2167: DNA324891, XM_165860, Figure 2133: PRO81474 gen.XM_165860 Figure 2134: DNA324868, XM_033910, Figure 2168: DNA324892, XM_166541, gen.XM_033910 Figure 2135: DNA324870, NM_003181, gen.XM_166541 Figure 2169: PRO81498 gen.NM_003181 Figure 2170A-B: DNA324893, XM_166523, Figure 2136: PRO81476 gen.XM_166523 Figure 2137: DNA324871, NM_002793, Figure 2171: PRO81499 gen.NM_002793 Figure 2138: PRO81477 Figure 2172: DNA324894, NM_016003, Figure 2139: DNA324872, XM_044866, gen.NM_016003 Figure 2173: PRO81500 gen.XM_044866 Figure 2174: DNA225631, NM_001101, Figure 2140: DNA324873, XM_116524, gen.XM_116524 gen.NM_001101 Figure 2175: PRO36094 Figure 2141: DNA324874, XM_059773, gen.XM_059773 Figure 2176: DNA274326, NM_003088, Figure 2142: DNA324875, XM_084998, gen.NM_003088 Figure 2177: PRO62244 gen.XM_084998 Figure 2178: DNA324895, NM_006303, Figure 2143: PRO81481 gen.NM_006303 Figure 2144: DNA324876, XM_058266, Figure 2179: PRO81501 gen.XM_058266 Figure 2180: DNA324896, NM_014413, Figure 2145: DNA324877, XM_042422, gen.NM_014413 gen.XM_042422 Figure 2181: PRO60579 Figure 2146A-B: DNA324878, XM_054706, Figure 2182: DNA247595, NM_006908, gen.XM_054706 Figure 2147: DNA324879, XM_166049, gen.NM_006908 Figure 2183: PRO45014 gen.XM_166049 Figure 2184: DNA324897, NM_006854, Figure 2148: DNA324880, XM_042473, gen.NM_006854 gen.XM_042473 Figure 2185: PRO12468 Figure 2149: PRO81486 Figure 2186: DNA324898, NM_024067, Figure 2150: DNA324881, XM_167046, gen.NM_024067 gen.XM_167046 Figure 2187: PRO81502 Figure 2151: PRO23797 Figure 2188: DNA324899, NM_002947, Figure 2152: DNA324882, XM_071937, gen.XM_071937 gen.NM_002947 Figure 2153: PRO81487 Figure 2189: PRO81503

Figure 2190: DNA324900, XM-166531, . gen.XM_166494 gen.XM_166531 Figure 2225: DNA324920, XM_107825, Figure 2191: DNA324901, XM_166540, gen.XM_107825 Figure 2226A-B: DNA324921, NM_022748, gen.XM_166540 gen.NM_022748 Figure 2192: PRO81505 Figure 2227: PRO81523 Figure 2193: DNA193955, NM_002489, Figure 2228: DNA324922, NM_000598, gen.NM_002489 Figure 2194: PRO23362 gen.NM_000598 Figure 2195: DNA324902, XM_088264, Figure 2229: PRO119 Figure 2230A-B: DNA324923, XM_166594, gen.XM_088264 gen.XM_166594 Figure 2196: PRO81506 Figure 2231: PRO81524 Figure 2197: DNA324903, XM_165841, Figure 2232A-B: DNA275334, NM_030900, gen.XM_165841 gen.NM_030900 Figure 2198: DNA324904, XM_166521, Figure 2233: PRO63009 gen.XM_166521 Figure 2234: DNA324924, NM_031443, Figure 2199: PRO81508 Figure 2200: DNA324905, XM_166506, gen.NM_031443 Figure 2235: PRO81525 gen.XM_166506 Figure 2201: PRO81509 Figure 2236: DNA324925, NM_012412, gen.NM_012412 Figure 2202: DNA324906, XM_166505, Figure 2237: PRO61812 gen.XM_166505 Figure 2238: DNA324926, NM_021130, Figure 2203: DNA324907, XM_166514, gen.NM_021130 gen.XM_166514 Figure 2239: PRO7427 Figure 2204: DNA324908, XM_166515, Figure 2240A-B: DNA324927, XM_165877, gen.XM_166515 gen.XM_165877 Figure 2205: DNA324909, XM_166512, Figure 2241: PRO81526 gen.XM_166512 Figure 2242: DNA227268, NM_019082, Figure 2206: DNA227929, NM_019059, gen.NM_019082 gen.NM_019059 Figure 2243: PRO37731 Figure 2207: PRO38392 Figure 2244: DNA324928, XM_015258, Figure 2208A-B: DNA324910, NM_018947, gen.XM_015258 gen.NM_018947 Figure 2209: PRO81514 Figure 2245: DNA324929, XM_165870, gen.XM_165870 Figure 2210: DNA324911, NM _002137, Figure 2246: DNA273865, NM_006230, gen.NM_002137 gen.NM_006230 Figure 2211: PRO81515 Figure 2247: PRO61824 Figure 2212: DNA324912, NM _031243, Figure 2248A-B: DNA324930, XM_165882, gen.NM_031243 gen.XM_165882 Figure 2213: PRO6373 Figure 2249: DNA324931, XM_165867, Figure 2214: DNA324913, NM_007276, gen.NM_007276 gen.XM_165867 Figure 2215: PRO81516 Figure 2250: PRO61688 Figure 2216: DNA324914, NM_016587, Figure 2251: DNA324932, NM_014063, gen.NM_016587 gen.NM_014063 Figure 2252: PRO81529 Figure 2217: PRO81517 Figure 2253: DNA324933, XM_165872, Figure 2218: DNA324915, XM_040853, gen.XM_165872 gen.XM_040853 Figure 2254: DNA304707, NM_002787, Figure 2219: DNA324916, XM_166509, gen.NM_002787 gen.XM_166509 Figure 2255: PRO71133 Figure 2220: DNA324917, XM_166513, Figure 2256: DNA324934, XM_016733, gen.XM_166513 Figure 2221: PRO81520 gen.XM_016733 Figure 2257: PRO81531 Figure 2222: DNA324918, XM_166504, Figure 2258: DNA324935, XM_165876, gen.XM_166504 gen.XM_165876 Figure 2223: PRO81521 Figure 2259A-B: DNA324936, NM_014800, Figure 2224: DNA324919, XM_166494,

gen.NM_014800 Figure 2295A-B: DNA324954, NM_032999, Figure 2260: DNA324937, NM_130442, gen.NM_032999 gen.NM_130442 Figure 2296: PRO81551 Figure 2297: DNA324955, XM_088239, Figure 2261: PRO81534 Figure 2262: DNA226416, NM_000385, gen.XM_088239 Figure 2298: PRO81552 gen.NM_000385 Figure 2263: PRO36879 Figure 2299A-B: DNA324956, XM_167500, Figure 2264A-B: DNA324938, XM_167339, gen.XM_167500 Figure 2300A-B: DNA324957, XM_167504, gen.XM_167339 gen.XM_167504 Figure 2265: DNA287189, NM_002047, gen.NM_002047 Figure 2301: DNA324958, XM_167498, Figure 2266: PRO69475 gen.XM_167498 Figure 2302: DNA324959, XM_168454, Figure 2267: DNA324939, XM_170195, gen.XM_168454 gen.XM_170195 Figure 2303: PRO81556 Figure 2268: PRO81536 Figure 2269: DNA324940, XM_168378, Figure 2304: DNA324960, NM_031925, gen.XM_168378 gen.NM_031925 Figure 2270: PRO81537 Figure 2305: PRO81557 Figure 2306: DNA324961, NM_005918, Figure 2271: DNA324941, XM_168354, gen.XM_168354 gen.NM_005918 Figure 2272: PRO81538 Figure 2307: PRO81558 Figure 2273: DNA324942, XM_167494, Figure 2308: DNA304710, NM_001540, gen.XM_167494 gen.NM_001540 Figure 2274: DNA103588, NM_001762, Figure 2309: PRO71136 Figure 2310: DNA324962, XM_168470, gen.NM_001762 Figure 2275: PRO4912 gen.XM_168470 Figure 2276: DNA324943, XM_037741, Figure 2311: DNA324963, XM_168461, gen.XM_168461 gen.XM_037741 Figure 2277: PRO81540 Figure 2312A-B: DNA324964, XM_167502, Figure 2278: DNA324944, XM_050265, gen.XM_167502 gen.XM_050265 Figure 2313: DNA324965, XM_017442, Figure 2279: PRO81541 gen.XM_017442 Figure 2314: PRO81561 Figure 2280: DNA324945, XM_017483, gen.XM_017483 Figure 2315: DNA324966, XM_168450, Figure 2281A-B: DNA324946, XM_018359, gen.XM_168450 Figure 2316: DNA324967, XM_168435, gen.XM_018359 Figure 2282: DNA324947, XM_059876, gen.XM_168435 Figure 2317: DNA324968, XM_168464, gen.XM_059876 Figure 2283: PRO81544 gen.XM.168464 Figure 2318: DNA324969, XM_170427, Figure 2284: DNA324948, NM_032951, gen.NM_032951 gen.XM_170427 Figure 2285: PRO81545 Figure 2319A-B: DNA324971, NM_015068, Figure 2286: DNA324949, NM_032953, gen.NM_015068 Figure 2320: PRO81566 gen.NM_032953 Figure 2287: PRO81546 Figure 2321A-B: DNA324972, XM_167476, Figure 2288: DNA324950, NM_022170, gen.XM_167476 Figure 2322: DNA324973, XM_168181, gen.NM_022170 Figure 2289: PRO81547 gen.XM_168181 Figure 2290: DNA324951, NM_031992, Figure 2323: DNA324974, XM_168251, gen.NM_031992 gen.XM_168251 Figure 2291: PRO81548 Figure 2324: PRO81569 Figure 2292: DNA324952, XM_004901, Figure 2325: DNA324975, XM_167477, gen.XM_004901 gen.XM_167477 Figure 2293: DNA324953, NM_016328, Figure 2326: DNA324976, NM_005837, gen.NM_005837 gen.NM_016328 Figure 2294: PRO81550 Figure 2327: PRO81571

gen.NM_057089 Figure 2328: DNA324977, XM_167483, Figure 2364: PRO81588 gen.XM_167483 Figure 2365: DNA324995, NM _001283, Figure 2329: DNA324978, XM_167484, gen.NM_001283 gen.XM_167484 Figure 2366: PRO41882 Figure 2330: PRO81572 Figure 2367: DNA324996, NM_003378, Figure 2331: DNA324979, NM_030935, gen.NM_030935 gen.NM_003378 Figure 2368: PRO81589 Figure 2332: PRO81573 Figure 2369: DNA324997, NM_001084, Figure 2333: DNA324980, NM _019606, gen.NM_001084 gen.NM_019606 Figure 2370: PRO58437 Figure 2334: PRO81574 Figure 2371: DNA270711, NM_006349, Figure 2335: DNA324981, NM _024070, gen.NM_006349 gen.NM_024070 Figure 2372: PRO59074 Figure 2336: PRO81575 Figure 2373: DNA324998, NM_024653, Figure 2337: DNA324982, XM_084241, gen.XM_084241 gen.NM_024653 Figure 2374: PRO81590 Figure 2338: DNA324983, NM_006833, Figure 2375: DNA324999, XM_168548, gen.NM_006833 gen.XM_168548 Figure 2339: PRO22897 Figure 2376: DNA325000, NM_032958, Figure 2340: DNA324984, NM_032164, gen.NM_032958 gen.NM_032164 Figure 2377: PRO81591 Figure 2341: PRO81578 Figure 2378: DNA325001, NM_002803, Figure 2342: DNA304801, NM_004889, gen.NM_002803 gen.NM_004889 Figure 2379: PRO81592 Figure 2343: PRO71211 Figure 2380: DNA325002, XM_168572, Figure 2344: DNA324985, NM _006693, gen.XM_168572 gen.NM_006693 Figure 2381: DNA325003, XM_071605, Figure 2345: PRO81579 gen.XM_071605 Figure 2346: DNA324986, XM_165839, Figure 2382: PRO81594 gen.XM_165839 Figure 2347: PRO81580 Figure 2383: DNA325004, XM .033876, Figure 2348: DNA272090, NM_005720, gen.XM_033876 Figure 2384: PRO81595 gen.NM_005720 Figure 2385A-B: DNA325005, XM_027214, Figure 2349: PRO60360 gen.XM_027214 Figure 2350: DNA324987, XM_165836, Figure 2386: DNA325006, XM_088073, gen.XM_165836 gen.XM_088073 Figure 2351A-B: DNA324988, XM_166482, Figure 2387: DNA325007, XM_072430, gen.XM_166482 gen.XM_072430 Figure 2352: DNA324989, XM .088180, Figure 2388: PRO81598 gen.XM_088180 Figure 2389: DNA325008, XM_050430, Figure 2353A-B: DNA324990, XM_166485, gen.XM_050430 gen.XM_166485 Figure 2390: PRO81599 Figure 2354: PRO81584 Figure 2391: DNA325009, NM _001753, Figure 2355: DNA324991, NM_001673, gen.NM_001753 gen.NM_001673 Figure 2392: PRO81600 Figure 2356: PRO81585 Figure 2393: DNA226560, NM .006136, Figure 2357: DNA324992, NM_133436, gen.NM_006136 gen.NM_133436 Figure 2394: PRO37023 Figure 2358: PRO81586 Figure 2395: DNA325010, XM_012284, Figure 2359: DNA324993, XM_168586, gen.XM_168586 gen.XM_012284 Figure 2396: DNA325011, NM .005000, . Figure 2360: PRO81587 gen.NM_005000 Figure 2361: DNA83141, NM_000602, Figure 2397: PRO59380 gen.NM_000602 Figure 2398: DNA325012, NM _001662, Figure 2362: PRO2604 gen.NM_001662 Figure 2363: DNA324994, NM_057089,

gen.XM_016700 Figure 2399: PRO39773 Figure 2434: DNA325035, XM_042781, Figure 2400: DNA325013, XM_011618, gen.XM_042781 gen.XM_011618 Figure 2435: DNA304685, NM_003143, Figure 2401: PRO81602 gen.NM_003143 Figure 2402: DNA325014, XM_004627, Figure 2436: PRO71111 gen.XM_004627 Figure 2437: DNA325036, NM_018238, Figure 2403: DNA325015, XM_045401, gen.NM_018238 gen.XM_045401 Figure 2438: PRO81625 Figure 2404: DNA325016, XM_114602, Figure 2439: DNA325037, XM_035107, gen.XM_114602 Figure 2405: PRO81605 gen.XM_035107 Figure 2440: DNA325038, NM_003461, Figure 2406: DNA325017, XM_117481, gen.NM_003461 gen.XM_117481 Figure 2441: PRO10194 Figure 2407A-C: DNA325018, XM_045856, Figure 2442: DNA325039, NM_004911, gen.XM_045856 gen.NM_004911 Figure 2408: PRO81607 Figure 2443: PRO2733 Figure 2409A-B: DNA325019, XM_088105, Figure 2444A-B: DNA325040, XM_114578, gen.XM_088105 Figure 2410: PRO81608 gen.XM_114578 Figure 2411: DNA325020, XM_011548, Figure 2445: PRO81627 Figure 2446: DNA325041, XM_088135, gen.XM_011548 gen.XM_088135 Figure 2412: PRO81609 Figure 2447: DNA325042, XM_098654, Figure 2413: DNA325021, XM_045952, gen.XM_098654 gen.XM_045952 Figure 2448: PRO81629 Figure 2414: DNA325022, XM_046001, Figure 2449: DNA325043, NM_023942, gen.XM_046001 gen.NM_023942 Figure 2415: PRO81611 Figure 2416: DNA325023, XM_088099, Figure 2450: PRO81630 Figure 2451: DNA325044, NM_138434, gen.XM_088099 gen.NM_138434 Figure 2417: DNA325024, XM_040498, Figure 2452: PRO81631 gen.XM_040498 Figure 2453: DNA325045, XM_084238, Figure 2418: DNA325025, XM_088103, gen.XM_084238 gen.XM_088103 Figure 2454A-B: DNA325046, XM_032216, Figure 2419: PRO81614 gen.XM_032216 Figure 2420: DNA325026, XM_088122, gen.XM_088122 Figure 2455A-B: DNA325047, XM_032121, gen.XM_032121 Figure 2421: PRO81615 Figure 2456: DNA325048, NM_031434, Figure 2422: DNA325027, XM_088119, gen.NM_031434 gen.XM_088119 Figure 2457: PRO1555 Figure 2423: DNA325028, NM_001628, Figure 2458: DNA226337, NM_005692, gen.NM_001628 gen.NM_005692 Figure 2424: PRO81617 Figure 2425: DNA325029, NM_020299, Figure 2459: PRO36800 Figure 2460: DNA325049, NM _005614, gen.NM_020299 gen.NM_005614 Figure 2426: PRO81618 Figure 2461: PRO37938 Figure 2427: DNA325030, NM_024033, Figure 2462A-B: DNA325050, NM_053043, gen.NM_024033 gen.NM_053043 Figure 2428: PRO81619 Figure 2429: DNA325031, XM_114555, Figure 2463: PRO81634 Figure 2464: DNA325051, NM_022458, gen.XM_114555 gen.NM_022458 Figure 2430: DNA325032, XM_059839, Figure 2465: PRO81635 gen.XM_059839 Figure 2466: DNA325052, XM_098669, Figure 2431: PRO81621 Figure 2432: DNA325033, XM_095146, gen.XM_098669 Figure 2467: DNA325053, NM_017760, gen.XM_095146

gen.NM_017760

Figure 2433: DNA325034, XM_016700,

Figure 2502: PRO81652

Figure 2503: DNA325073, NM_025232, Figure 2468: PRO81637 gen.NM_025232 Figure 2469: DNA325054, XM_036413, Figure 2504: PRO81653 gen.XM_036413 Figure 2470A-B: DNA325055, XM_032944, Figure 2505: DNA325074, XM_027440, gen.XM_027440 gen.XM_032944 Figure 2506: DNA225671, NM_001831, Figure 2471: DNA325056, XM_117444, gen.NM_001831 gen.XM_117444 Figure 2507: PRO36134 Figure 2472: DNA325057, XM_117452, Figure 2508: DNA325075, NM .024567, gen.XM_117452 gen.NM_024567 Figure 2473: DNA325058, XM _070203, Figure 2509: PRO81654 gen.XM_070203 Figure 2510: DNA325076, NM_018250, Figure 2474: PRO81641 gen.NM_018250 Figure 2475: DNA325059, XM_095371, Figure 2511: PRO81655 gen.XM_095371 Figure 2512: DNA227267, NM_018660, Figure 2476: DNA325060, NM_004084, gen.NM_018660 gen.NM_004084 Figure 2513: PRO37730 Figure 2477: PRO2570 Figure 2514A-B: DNA325077, XM_095545, Figure 2478: DNA325061, NM_005217, gen.XM_095545 gen.NM_005217 Figure 2515: DNA325078, XM_088338, Figure 2479: PRO9980 Figure 2480: DNA325062, XM_070188, gen.XM_088338 Figure 2516: PRO81657 gen.XM_070188 Figure 2517: DNA325079, XM_114617, Figure 2481: PRO81643 gen.XM_114617 Figure 2482: DNA325063, XM .035680, Figure 2518: PRO81658 gen.XM_035680 Figure 2519: DNA325080, XM_088336, Figure 2483: DNA325064, XM_035662, gen.XM_088336 gen.XM_035662 Figure 2520: PRO81659 Figure 2484: PRO3344 Figure 2521: DNA325081, XM_047083, Figure 2485: DNA325065, XM_005305, gen.XM_047083 gen.XM_005305 Figure 2522: PRO81660 Figure 2486: PRO81645 Figure 2523: DNA325082, XM_114618, Figure 2487: DNA325066, XM_050293, gen.XM_114618 gen.XM_050293 Figure 2524: PRO81661 Figure 2488A-B: DNA325067, XM_027679, Figure 2525: DNA325083, XM_050215, gen.XM_027679 gen.XM_050215 Figure 2489: PRO81647 Figure 2526: DNA325084, XM_113531, Figure 2490A-B: DNA325068, XM_027651, gen.XM_113531 gen_XM_027651 Figure 2527: DNA325085, NM_018310, Figure 2491: DNA274178, NM_005775, gen.NM_018310 gen.NM_005775 Figure 2528: PRO81664 Figure 2492: PRO62108 Figure 2529: DNA325086, XM_088294, Figure 2493: DNA325069, XM_113557, gen.XM_088294 gen.XM_113557 Figure 2530: DNA325087, XM_013112, Figure 2494: PRO81649 gen.XM_013112 Figure 2495: DNA83022, NM_001199, Figure 2531: DNA325088, XM_059933, gen.NM_001199 gen.XM_059933 Figure 2496: PRO2042 Figure 2532: PRO1108 Figure 2497: DNA325070, NM_006128, Figure 2533: DNA325089, XM_011629, gen.NM_006128 gen.XM_011629 Figure 2498: PRO81650 Figure 2534: DNA325090, NM_000930, Figure 2499: DNA325071, NM_006131, gen.NM_000930 gen.NM_006131 Figure 2535: PRO4 Figure 2500: PRO81651 Figure 2536: DNA325091, NM .000931, Figure 2501: DNA325072, NM_006132, gen.NM_000931 gen.NM_006132 Figure 2537: PRO81668

gen.XM_050731 Figure 2538: DNA325092, NM_033011, Figure 2572: DNA325113, XM_088325, gen.NM_033011 gen.XM_088325 Figure 2539: PRO81669 Figure 2540: DNA325093, XM_166063, Figure 2573: PRO81687 Figure 2574: DNA325114, XM_088323, gen.XM_166063 Figure 2541: DNA325094, NM_025070, gen.XM_088323 Figure 2575: DNA325115, NM_001444, gen.NM_025070 gen.NM_001444 Figure 2542: PRO81671 Figure 2543A-B: DNA325095, XM_030268, Figure 2576: PRO81689 Figure 2577: DNA325116, XM_013127, gen.XM_030268 Figure 2544: DNA325096, XM_030274, gen.XM_013127 Figure 2578: PRO81690 gen.XM_030274 Figure 2579: DNA325117, XM_165514, Figure 2545: PRO81673 Figure 2546: DNA151010, NM_003350, gen.XM_165514 Figure 2580: PRO81691 gen.NM_003350 Figure 2581: DNA325118, XM_017816, Figure 2547: PRO12838 gen.XM_017816 Figure 2548: DNA325097, XM_113540, Figure 2582: DNA325119, XM_098747, gen.XM_113540 Figure 2549: PRO81674 gen.XM_098747 Figure 2583: DNA325120, XM_050506, Figure 2550: DNA325098, NM_006330, gen.XM_050506 gen.NM_006330 Figure 2551: PRO59230 Figure 2584: DNA325121, NM_024613, gen.NM_024613 Figure 2552: DNA325099, NM_001023, Figure 2585: PRO81695 gen.NM_001023 Figure 2586: DNA325122, XM_011642, Figure 2553: PRO58263 gen.XM_011642 Figure 2554: DNA325100, XM_095667, Figure 2587: PRO81696 gen.XM_095667 Figure 2588: DNA325123, NM_000989, Figure 2555: PRO81675 Figure 2556: DNA325101, XM_114640, gen.NM_000989 Figure 2589: PRO11265 gen.XM_114640 Figure 2557: DNA325102, XM_057780, Figure 2590: DNA325124, NM_003406, gen.XM_057780 gen.NM_003406 Figure 2591: PRO71091 Figure 2558: DNA325103, XM_166064, gen.XM_166064 Figure 2592: DNA325125, XM_011657, gen.XM_011657 Figure 2559: DNA325104, XM_088399, Figure 2593: DNA131588, NM_002568, gen.XM_088399 gen.NM_002568 Figure 2560: DNA325105, XM_088401, Figure 2594: PRO7445 gen.XM_088401 Figure 2595: DNA325126, XM_018287, Figure 2561: DNA325106, XM_042658, gen.XM_018287 gen.XM_042658 Figure 2596: DNA325127, NM_001568, Figure 2562: DNA325107, XM_011769, gen.NM_001568 gen.XM_011769 Figure 2597: PRO81699 Figure 2563: DNA325108, XM_044627, Figure 2598: DNA325128, NM_003756, gen.XM_044627 gen.NM_003756 Figure 2564: DNA325109, XM_098761, Figure 2599: PRO81700 gen.XM_098761 Figure 2600A-B: DNA272050, NM_006265, Figure 2565: DNA226496, NM_006837, gen.NM_006265 gen.NM_006837 Figure 2601: PRO60321 Figure 2566: PRO36959 Figure 2602: DNA325129, NM_052886, Figure 2567: DNA325110, NM_014294, gen.NM_014294 gen.NM_052886 Figure 2603: PRO81701 Figure 2568: PRO23248 Figure 2604: DNA325130, XM_016047, Figure 2569: DNA325111, NM_000971, gen.XM_016047 gen.NM_000971 Figure 2605: DNA325131, XM_005060, Figure 2570: PRO81685 Figure 2571: DNA325112, XM_050731, gen.XM_005060

Figure 2639: PRO81722 Figure 2606: DNA325132, NM_005005, Figure 2640: DNA325156, XM_088550, gen.NM_005005 gen.XM_088550 Figure 2607: PRO81704 Figure 2608: DNA325133, XM_037657, Figure 2641: DNA325157, XM_088552, gen.XM_088552 gen.XM_037657 Figure 2609: DNA325134, XM_029567, Figure 2642: DNA325158, XM_088553, gen.XM_088553 gen.XM_029567 Figure 2643: PRO81725 Figure 2610: PRO81705 Figure 2644: DNA325159, XM_059979, Figure 2611: DNA325135, XM_088316, gen.XM_088316 gen.XM_059979 Figure 2645: DNA325160, XM_167558, Figure 2612: DNA325136, XM_051298, gen.XM_167558 gen.XM_051298 Figure 2646: DNA325161, XM_039654, Figure 2613: DNA325137, XM_088370, gen.XM_039654 gen.XM_088370 Figure 2647: DNA325162, XM_060006, Figure 2614: DNA325138, NM_016647, gen.XM_060006 gen.NM_016647 Figure 2648: PRO81729 Figure 2615: PRO23201 Figure 2649: DNA325163, NM_001122, Figure 2616: DNA325139, NM_052963, gen.NM_001122 gen.NM_052963 Figure 2650: PRO81730 Figure 2617: PRO81708 Figure 2651: DNA325164, NM_001010, Figure 2618: DNA325140, XM_049247, gen.NM_001010 gen.XM_049247 Figure 2652: PRO10824 Figure 2619: DNA325141, XM _058968, Figure 2653: DNA325165, NM_058195, gen.XM_058968 gen.NM_058195 Figure 2620: DNA325143, NM_023078, Figure 2654: PRO81731 gen.NM_023078 Figure 2655: DNA325166, NM .000077, Figure 2621: PRO81711 gen.NM_000077 Figure 2622: DNA325144, XM_117487, Figure 2656: PRO36693 gen.XM_117487 Figure 2623: DNA325145, XM_049226, Figure 2657: DNA325167, NM_058196, gen.XM_049226 gen.NM_058196 Figure 2658: PRO81732 Figure 2624: PRO81714 Figure 2659: DNA325168, XM_017931, Figure 2625: DNA325146, XM_114613, gen.XM_017931 gen.XM_114613 Figure 2660: DNA271847, NM_001539, Figure 2626: DNA325147, XM_035368, gen.NM_001539 gen.XM_035368 Figure 2661: PRO60127 Figure 2627: DNA325148, XM_113532, Figure 2662: DNA270991, NM .004323, gen.XM_113532 gen.NM_004323 Figure 2628: DNA325149, XM_088321, Figure 2663: PRO59321 gen.XM_088321 Figure 2664: DNA325169, NM_016410, Figure 2629: DNA325150, XM -035373, gen.NM_016410 gen.XM_035373 Figure 2665: PRO81734 Figure 2630: PRO81719 Figure 2666: DNA325170, XM_005543, Figure 2631: DNA325151, XM_035370, gen.XM_035370 gen.XM_005543 Figure 2632: PRO81720 Figure 2667: PRO38028 Figure 2668: DNA325171, NM_001842, Figure 2633: DNA325152, NM .000973, gen.NM_001842 gen.NM_000973 Figure 2669: PRO21481 Figure 2634: PRO22907 Figure 2670: DNA226345, NM_005866, Figure 2635: DNA325153, NM_033301, gen.NM_005866 gen.NM_033301 Figure 2671: PRO36808 Figure 2636: PRO22907 Figure 2672: DNA325172, XM .088563, Figure 2637: DNA325154, XM_049421, gen.XM_088563 gen.XM_049421 Figure 2638: DNA325155, XM _034640, Figure 2673: DNA325173, XM_059998, gen.XM_059998 gen.XM_034640

Figure 2709: PRO81748

Figure 2710: DNA325188, XM_018006, Figure 2674: PRO59579 gen.XM_018006 Figure 2675: DNA325174, NM_013442, Figure 2711: DNA325189, XM_017996, gen.NM_013442 gen.XM_017996 Figure 2676: PRO9819 Figure 2712: DNA325190, XM_016113, Figure 2677: DNA325175, XM_114661, gen.XM_016113 gen.XM_114661 Figure 2713: PRO81751 Figure 2678: PRO81736 Figure 2714: DNA272655, NM_001827, Figure 2679: DNA325176, XM_048479, gen.NM_001827 gen.XM_048479 Figure 2715: PRO60781 Figure 2680: DNA290319, NM_003289, Figure 2716A-B: DNA325191, NM_002161, gen.NM_003289 gen.NM_002161 Figure 2681: PRO70595 Figure 2717: PRO81752 Figure 2682A-C: DNA325177, NM_006289, Figure 2718A-B: DNA325192, NM_013417, gen.NM_006289 gen.NM_013417 Figure 2683: PRO81738 Figure 2719: PRO81753 Figure 2684: DNA325178, XM_048518, Figure 2720A-B: DNA325193, XM _046863, gen.XM_048518 gen.XM_046863 Figure 2685: PRO81739 Figure 2721: PRO81754 Figure 2686: DNA325179, XM_048539, Figure 2722: DNA325194, XM_046836, gen.XM_048539 gen.XM_046836 Figure 2687: PRO81740 Figure 2723: DNA275322, NM_003837, Figure 2688: DNA325180, XM_114662, gen.NM_003837 gen.XM_114662 Figure 2724: PRO63000 Figure 2689: DNA325181, NM_001833, Figure 2725A-B: DNA325195, XM .098943, gen.NM_001833 gen.XM_098943 Figure 2690: PRO81742 Figure 2726: DNA325196, XM_016308, Figure 2691: DNA227491, NM_007096, gen.XM_016308 gen.NM_007096 Figure 2727: DNA325197, XM_005525, Figure 2692: PRO37954 gen.XM_005525 Figure 2693: DNA254771, NM_012203, Figure 2728: DNA325198, NM_003389, gen.NM_012203 gen.NM_003389 Figure 2694: PRO49869 Figure 2729: PRO81759 Figure 2695: DNA89242, NM_000700, Figure 2730: DNA325199, NM_033219, gen.NM_000700 gen.NM_033219 Figure 2696: PRO2907 Figure 2731: PRO81760 Figure 2697: DNA325182, XM_041020, Figure 2732: DNA325200, NM_006401, gen.XM_041020 gen.NM_006401 Figure 2698: PRO81743 Figure 2733: PRO81761 Figure 2699: DNA325183, XM_114686, Figure 2734: DNA272213, NM_002486, gen.XM_114686 gen.NM_002486 Figure 2700: DNA325184, XM_088637, Figure 2735: PRO60475 gen.XM_088637 Figure 2736: DNA325201, NM_001333, Figure 2701: DNA287216, NM_021154, gen.NM_001333 gen.NM_021154 Figure 2737: PRO81762 Figure 2702: PRO69496 Figure 2703: DNA288247, NM_058179, gen.XM_116818 gen.NM_058179 Figure 2704: PRO70011 Figure 2705: DNA325185, XM .071178, gen.NM_006808 gen.XM_071178 Figure 2706: PRO81746 Figure 2707: DNA325186, XM_005490, gen.XM_070873 gen.XM_005490 Figure 2708: DNA325187, NM_031263, gen.NM_031263

Figure 2738: DNA325202, XM_116818, Figure 2739: PRO81763 Figure 2740: DNA254543, NM_006808, Figure 2741: PRO49648 Figure 2742: DNA325203, XM_070873, Figure 2743: PRO81764 Figure 2744: DNA325204, XM_042788, gen.XM_042788 48

Figure 2745: PRO81765 Figure 2779: PRO81780 Figure 2746: DNA257309, NM_032342, Figure 2780: DNA325222, NM_000976, gen.NM_000976 gen.NM_032342 Figure 2747: PRO51901 Figure 2781: PRO62236 Figure 2748: DNA325205, XM_088569, Figure 2782: DNA218841, NM_012098, gen.XM_088569 gen.NM_012098 Figure 2749: PRO81766 Figure 2783: PRO34473 Figure 2784A-B: DNA325223, XM_052725, Figure 2750: DNA325206, XM _088571. gen.XM_088571 gen.XM_052725 Figure 2785: PRO81781 Figure 2751: DNA271722, NM_004697, gen.NM_004697 Figure 2786: DNA325224, XM_011752, gen.XM_011752 Figure 2752: PRO60006 Figure 2787: DNA325225, XM_026944, Figure 2753: DNA325207, NM_017443, gen.XM_026944 gen.NM_017443 Figure 2754: PRO81768 Figure 2788: PRO81783 Figure 2789: DNA325226, XM_116806, Figure 2755A-C: DNA325208, XM_005348, gen.XM_116806 gen.XM_005348 Figure 2790A-B: DNA325227, NM _005347, Figure 2756: DNA325209, XM_114646, gen.XM_114646 gen.NM_005347 Figure 2757: DNA325210, XM_038391, Figure 2791: PRO81785 Figure 2792: DNA325228, NM_005833, gen.XM_038391 Figure 2758: PRO81771 gen.NM_005833 Figure 2759A-B: DNA325211, XM_045296, Figure 2793: PRO81786 Figure 2794: DNA325229, NM_007209, gen.XM_045296 gen.NM_007209 Figure 2760: DNA325212, XM_005365, Figure 2795: PRO61897 gen.XM_005365 Figure 2761: DNA289530, NM_004435, Figure 2796: DNA88350, NM_000177, gen.NM_004435 gen.NM_000177 Figure 2762: PRO70290 Figure 2797: PRO2758 Figure 2763: DNA287271, NM_032799, Figure 2798A-B: DNA325230, XM_011749, gen.NM_032799 gen.XM_011749 Figure 2764: PRO69542 Figure 2799: DNA325231, XM_114679, Figure 2765: DNA325213, XM_026987, gen.XM_114679 gen.XM_026987 Figure 2800: DNA325232, XM_087041, gen.XM_087041 Figure 2766: DNA325214, XM_026985, gen.XM_026985 Figure 2801: DNA325233, XM_114678, Figure 2767: DNA225630, NM_016174, gen.XM_114678 gen.NM_016174 Figure 2802: DNA325234, XM_114677, Figure 2768: PRO36093 gen.XM_114677 Figure 2803: DNA325235, XM_087038, Figure 2769: DNA325215, XM_026968, gen.XM_087038 gen.XM_026968 Figure 2804: DNA325236, XM_059637, Figure 2770: PRO81775 Figure 2771: DNA325216, XM_026951, gen.XM_059637 Figure 2805: PRO81792 gen.XM_026951 Figure 2806: DNA325237, NM_000368, Figure 2772: DNA325217, NM_025072, gen.NM_025072 gen.NM_000368 Figure 2773: PRO33818 Figure 2807: PRO60115 Figure 2808: DNA325238, XM_033385, Figure 2774: DNA325218, XM_033424, gen.XM_033385 gen.XM_033424 Figure 2809A-B: DNA325239, XM_033380, Figure 2775: DNA325219, NM _004957, gen.XM_033380 gen.NM_004957 Figure 2810: PRO81794 Figure 2776: PRO81778 Figure 2777: DNA325220, XM_033457, Figure 2811: DNA325240, XM_033362, gen.XM_033362 gen.XM_033457 Figure 2778A-B: DNA325221, XM_033460, Figure 2812: PRO81795

Figure 2813: DNA325241, XM_059986,

gen.XM_033460

gen.XM_088459 gen.XM_059986 Figure 2848: PRO81815 Figure 2814: PRO81796 Figure 2849: DNA325264, XM_054752, Figure 2815A-B: DNA325242, XM_033361, gen.XM_054752 gen.XM_033361 Figure 2850: PRO81816 Figure 2816: PRO81797 Figure 2851: DNA325265, XM_084270, Figure 2817A-B: DNA325243, XM_033360, gen.XM_084270 gen.XM_033360 Figure 2852: DNA325266, XM_054763, Figure 2818: DNA325244, XM_033359, gen.XM_054763 gen.XM_033359 Figure 2853: PRO81817 Figure 2819A-B: DNA325245, XM_033355, Figure 2854: DNA325267, XM_114655, gen.XM_033355 gen.XM_114655 Figure 2820: DNA325246, NM_014285, Figure 2855: DNA325268, XM_038030, gen.NM_014285 gen.XM_038030 Figure 2821: PRO81800 Figure 2856: PRO59351 Figure 2822: DNA325247, NM_054012, Figure 2857: DNA325269, XM _072526, gen.NM_054012 gen.XM_072526 Figure 2823: PRO81801 Figure 2858: PRO81819 Figure 2824: DNA325248, XM_035103, Figure 2859: DNA325270, XM_059961, gen.XM_035103 gen.XM_059961 Figure 2825: DNA325249, XM_035109, Figure 2860: DNA325271, NM_032928, gen.XM_035109 gen.NM_032928 Figure 2826: DNA325250, NM_000972, Figure 2861: PRO81821 gen.NM_000972 Figure 2862: DNA325272, NM_014172, Figure 2827: PRO81804 gen.NM_014172 Figure 2828: DNA325251, NM_033161, Figure 2863: PRO81822 gen.NM_033161 Figure 2864: DNA325273, XM_038049, Figure 2829: PRO81805 gen.XM_038049 Figure 2830: DNA325252, NM _000787, Figure 2865: PRO62069 gen.NM_000787 Figure 2866: DNA325274, XM_038063, Figure 2831: PRO81806 gen.XM_038063 Figure 2832A-B: DNA325253, XM_011778, Figure 2867: PRO81823 gen.XM_011778 Figure 2868: DNA325275, NM _000954, Figure 2833: DNA325254, XM_088426, gen.NM_000954 gen.XM_088426 Figure 2869: PRO81824 Figure 2834: DNA325255, NM_002003, Figure 2870: DNA325276, XM_088461, gen.NM_002003 gen.XM_088461 Figure 2835: PRO1910 Figure 2871: DNA325277, XM_059966, Figure 2836: DNA325256, NM_058199, gen.XM_059966 gen.NM_058199 Figure 2872: PRO81826 Figure 2837: PRO81809 Figure 2873: DNA325278, XM_114649, Figure 2838: DNA325257, XM_059945, gen.XM_114649 gen.XM_059945 Figure 2874: DNA325279, XM_117519, Figure 2839: DNA325258, XM_088422, gen.XM_117519 gen.XM_088422 Figure 2875: DNA325280, XM_053206, Figure 2840: PRO81811 gen.XM_053206 Figure 2841: DNA325259, XM_029168, Figure 2876: DNA325281, XM_040272, gen.XM_029168 gen.XM_040272 Figure 2842: PRO81812 Figure 2877: PRO58939 Figure 2843: DNA325260, XM_098913, Figure 2878: DNA325282, XM _005724, gen.XM_098913 gen:XM_005724 Figure 2844: PRO81813 Figure 2879: DNA325283, XM_040267, Figure 2845: DNA325261, XM_114669, gen.XM_040267 gen.XM_114669 Figure 2880: PRO81831 Figure 2846: DNA325262, XM_113564, Figure 2881: DNA325284, XM_048859, gen.XM_113564 gen.XM_048859 Figure 2847A-B: DNA325263, XM_088459,

Figure 2917: PRO81849 Figure 2882: PRO62617 Figure 2883: DNA325285, NM_003739, Figure 2918: DNA325305, XM_166665, gen.XM_166665 gen.NM_003739 Figure 2919A-B: DNA325306, NM_002211, Figure 2884: PRO81832 gen.NM_002211 Figure 2885: DNA325286, XM_060976, Figure 2920: PRO81851 gen.XM_060976 Figure 2921A-B: DNA325307, XM_165567, Figure 2886: PRO81833 Figure 2887: DNA325287, XM_167626, gen.XM_165567 Figure 2922: DNA325308, XM_166157, gen.XM_167626 Figure 2888: PRO81834 gen.XM_166157 Figure 2923: DNA325309, NM_032023, Figure 2889: DNA325288, XM_165555, gen.NM_032023 gen.XM_165555 Figure 2924: PRO52537 Figure 2890: PRO81835 Figure 2925: DNA325310, XM_165560, Figure 2891: DNA325289, NM_001494, gen.XM_165560 gen.NM_001494 Figure 2926: DNA325311, XM_165563, Figure 2892: PRO81836 gen.XM_165563 Figure 2893: DNA325290, NM _032905, gen.NM_032905 Figure 2927: DNA325312, XM_113615, Figure 2894: PRO81837 gen.XM_113615 Figure 2928: PRO81855 Figure 2895: DNA325291, NM_005174, Figure 2929: DNA325313, XM_165890, gen.NM_005174 gen.XM_165890 Figure 2896: PRO81838 Figure 2930: DNA325314, XM_061126, Figure 2897: DNA325292, XM_165557, gen.XM_061126 gen.XM_165557 Figure 2931: DNA325315, XM_061125, Figure 2898: DNA325293, XM_167374, gen.XM_061125 gen.XM_167374 Figure 2932: PRO81858 Figure 2899: DNA273759, NM_006023, Figure 2933: DNA325316, XM_054474, gen.NM_006023 gen.XM_054474 Figure 2900: PRO61721 Figure 2934: DNA325317, XM_165888, Figure 2901: DNA325294, XM_167411, gen.XM_165888 gen.XM_167411 Figure 2935: DNA325318, XM_054475, Figure 2902: DNA325295, NM_031453, gen.XM_054475 gen.NM_031453 Figure 2936: PRO81861 Figure 2903: PRO81841 Figure 2937: DNA325319, XM_015652, Figure 2904: DNA325296, XM_167414, gen.XM_015652 gen.XM_167414 Figure 2938: PRO81862 Figure 2905: PRO12851 Figure 2939: DNA325320, XM_036593, Figure 2906: DNA325297, XM_166717, gen.XM_036593 gen.XM_166717 Figure 2940: PRO81863 Figure 2907: PRO81842 Figure 2941: DNA325321, XM_165891, Figure 2908: DNA325298, XM_005100, gen.XM_165891 gen.XM_005100 Figure 2909: DNA325299, XM_038536, Figure 2942: DNA325322, XM_084450, gen.XM_084450 gen.XM_038536 Figure 2943: PRO81865 Figure 2910A-B: DNA325300, XM_084420, Figure 2944: DNA325323, XM_084385, gen.XM_084420 gen.XM_084385 Figure 2911: DNA325301, XM_084429, Figure 2945: DNA325324, NM_021226, gen.XM_084429 gen.NM_021226 Figure 2912: PRO81846 Figure 2946: PRO81867 Figure 2913A-C: DNA325302, XM_165551, Figure 2947: DNA193957, NM_003055, gen.XM_165551 gen.NM_003055 Figure 2914: DNA325303, XM _059720, Figure 2948: PRO23364 gen.XM_059720 Figure 2949: DNA325325, NM_032997, Figure 2915: PRO81848 Figure 2916A-B: DNA325304, NM_019619, gen.NM_032997 Figure 2950: PRO81868 gen.NM_019619

gen.NM_005729 Figure 2951: DNA287642, NM_018464, Figure 2987: PRO37073 gen.NM_018464 Figure 2952: PRO9902 Figure 2988: DNA325342, XM_166629, Figure 2953: DNA325326, XM_084451, gen.XM_166629 gen.XM_084451 Figure 2989: PRO81883 Figure 2990: DNA103506, NM_001157, Figure 2954: PRO81869 Figure 2955: DNA325327, NM_012207, gen.NM_001157 Figure 2991: PRO4833 gen.NM_012207 Figure 2992: DNA325343, XM_016093, Figure 2956: PRO81870 gen.XM_016093 Figure 2957: DNA325328, NM_024045, Figure 2993: PRO81884 gen.NM_024045 Figure 2958: PRO81871 Figure 2994: DNA325344, XM_084467, Figure 2959: DNA325329, NM _004728, gen.XM_084467 Figure 2995: PRO81885 gen.NM_004728 Figure 2960: PRO81872 Figure 2996: DNA304488, NM_032333, Figure 2961: DNA88562, NM_002727, gen.NM_032333 Figure 2997: PRO71057 gen.NM_002727 Figure 2998: DNA325345, XM_043589, Figure 2962: PRO2842 gen.XM_043589 Figure 2963: DNA325330, XM_167395, Figure 2999: DNA325346, XM_043605, gen.XM_167395 gen.XM_043605 Figure 2964: DNA227172, NM_021129, Figure 3000: DNA325347, XM_087480, gen.NM_021129 Figure 2965: PRO37635 gen.XM_087480 Figure 3001: PRO81887 Figure 2966A-B: DNA325331, XM_166125, gen.XM_166125 Figure 3002: DNA325348, NM_002921, gen.NM_002921 Figure 2967: PRO81874 Figure 3003: PRO81888 Figure 2968: DNA325332, XM_044354, Figure 3004: DNA226217, NM_005271, gen.XM_044354 gen.NM_005271 Figure 2969: PRO81875 Figure 3005: PRO36680 Figure 2970: DNA325333, XM_032520, Figure 3006: DNA325349, XM_089551, gen.XM_032520 gen.XM_089551 Figure 2971: DNA325334, NM_019058, Figure 3007: PRO81889 gen:NM_019058 Figure 3008: DNA287237, NM_001613, Figure 2972: PRO81877 Figure 2973: DNA325335, XM_045140, gen.NM_001613 gen.XM_045140 Figure 3009: PRO39648 Figure 2974: PRO2875 Figure 3010: DNA325350, XM_084477, Figure 2975: DNA325336, XM_116863, gen.XM_084477 Figure 3011: PRO69523 gen.XM_116863 Figure 2976: DNA325337, XM_032476, Figure 3012: DNA325351, XM_084480, gen.XM_084480 gen.XM_032476 Figure 3013A-B: DNA325352, NM _013451, Figure 2977: DNA325338, XM_114894, gen.NM_013451 gen.XM_114894 Figure 3014: PRO12813 Figure 2978: DNA325339, NM_033022, gen.NM_033022 Figure 3015: DNA325353, XM_018167, gen.XM_018167 Figure 2979: PRO81881 Figure 3016; DNA325354, XM_084372, Figure 2980: DNA325340, NM_001026, gen.NM_001026 gen.XM_084372 Figure 3017: DNA325355, NM _020992, Figure 2981: PRO11139 gen.NM_020992 Figure 2982: DNA103421, NM_003375, Figure 3018: PRO81893 gen.NM_003375 Figure 3019: DNA325356, XM_089514, Figure 2983: PRO4749 gen.XM_089514 Figure 2984A-B: DNA325341, XM_166093, Figure 3020A-B: DNA325357, XM_058343, gen.XM_166093 gen.XM_058343 Figure 2985: PRO81882 Figure 3021: PRO81895 Figure 2986: DNA304459, NM_005729,

Figure 3022: DNA325358, XM_058602, Figure 3058A-B: DNA325377, XM _005938, gen.XM_058602 gen.XM_005938 Figure 3059A-B: DNA325378, XM_031992, Figure 3023: PRO81896 Figure 3024A-B: DNA325359, NM_015179, gen.XM_031992 gen.NM_015179 Figure 3060: PRO81912 Figure 3025: PRO81897 Figure 3061: DNA325379, NM_032747, Figure 3026: DNA325360, XM_083842, gen.NM_032747 gen.XM_083842 Figure 3062: PRO81913 Figure 3027: PRO69473 Figure 3063: DNA325380, NM _005004, gen.NM_005004 Figure 3028: DNA325361, XM_084413, Figure 3064: PRO81914 gen.XM_084413 Figure 3065: DNA325381, XM_030447, Figure 3029: DNA325362, NM_022362, gen.NM_022362 gen.XM_030447 Figure 3030: PRO81899 Figure 3066: DNA273521, NM_002079, gen.NM_002079 Figure 3031: DNA325363, NM_032112, Figure 3067: PRO61502 gen.NM_032112 Figure 3068A-B: DNA325382, NM_032211, Figure 3032: PRO81900 Figure 3033: DNA325364, NM_021830, gen.NM_032211 Figure 3069: PRO81916 gen.NM_021830 Figure 3070: DNA325383, NM_031484, Figure 3034: PRO81901 gen.NM_031484 Figure 3035A-B: DNA325365, XM_046743, Figure 3071: PRO81917 gen.XM_046743 Figure 3072: DNA325384, XM_084632, Figure 3036: PRO81902 gen.XM_084632 Figure 3037: DNA325366, NM_013274, gen.NM_013274 Figure 3073: DNA325385, XM_084359, Figure 3038: PRO81903 gen.XM_084359 Figure 3039: DNA325367, NM_022039, Figure 3074A-D: DNA325386, XM_045667, gen.NM_022039 gen.XM_045667 Figure 3075: DNA325387, XM_109162, Figure 3040: PRO81904 Figure 3041A-B: DNA325368, XM_031866, gen.XM_109162 Figure 3076: DNA227509, NM_000274, gen.XM_031866 Figure 3042A-B: DNA325369, NM_015062, gen.NM_000274 gen.NM_015062 Figure 3077: PRO37972 Figure 3043: PRO81905 Figure 3078: DNA325388, XM_058361, Figure 3044A-B: DNA325370, XM_031890, gen.XM_058361 Figure 3079: PRO81922 gen.XM_031890 Figure 3080: DNA325389, XM_084505, Figure 3045A-B: DNA325371, NM_004193, gen.NM_004193 gen.XM_084505 Figure 3046: PRO81907 Figure 3081: PRO81923 Figure 3082A-B: DNA325390, XM_049795, Figure 3047: DNA325372, NM .024040, gen.XM_049795 gen.NM_024040 Figure 3048: PRO81908 Figure 3083: PRO81924 Figure 3084: DNA325391, XM_058406, Figure 3049: DNA325373, XM _031949, gen.XM_058406 gen.XM_031949 Figure 3085: PRO81925 Figure 3050: PRO4900 Figure 3086: DNA325392, XM_055573, Figure 3051A-B: DNA144601, NM_016169, gen.XM_055573 gen.NM_016169 Figure 3087: PRO60991 Figure 3052: PRO34073 Figure 3053: DNA325374, XM _005698, Figure 3088: DNA325393, XM_005969, gen.XM_005969 gen.XM_005698 Figure 3089: DNA325394, NM_007190, Figure 3054: PRO81909 gen.NM_007190 Figure 3055: DNA325375, NM_006523, Figure 3090: PRO81926 gen.NM_006523 Figure 3091: DNA325395, NM_000982, Figure 3056: PRO59043 Figure 3057: DNA325376, XM_018279, gen.NM_000982 gen.XM_018279 Figure 3092: PRO81927

Figure 3093: DNA269952, NM _004725, Figure 3129: DNA325412, XM_044932, gen.NM_004725 gen.XM_044932 Figure 3094: PRO58348 Figure 3130: PRO81943 Figure 3095: DNA325396, NM_024942, Figure 3131A-B: DNA325413, XM_044957, gen.NM_024942 gen.XM_044957 Figure 3096: PRO81928 Figure 3132: PRO81944 Figure 3097: DNA325397, NM_016567, Figure 3133: DNA325414, NM_001909, gen.NM_016567 gen.NM_001909 Figure 3098: PRO81929 Figure 3134: PRO292 Figure 3099: DNA325398, NM_004092, Figure 3135: DNA325415, XM_006475, gen.NM_004092 gen.XM_006475 Figure 3136: DNA325416, XM_006483, Figure 3100: PRO81930 Figure 3101: DNA269431, NM_006659, gen.XM_006483 gen.NM_006659 Figure 3137: DNA325417, NM_001751, Figure 3102: PRO57854 gen.NM_001751 Figure 3103: DNA325399, XM_005675, Figure 3138: PRO69635 gen.XM_005675 Figure 3139: DNA325418, XM_114981, Figure 3104: DNA325400, XM_114862, gen.XM_114981 gen.XM_114862 Figure 3140: PRO81945 Figure 3105: PRO81932 Figure 3141: DNA325419, XM_083852, Figure 3106: DNA325401, XM_088009, gen.XM_083852 gen.XM_088009 Figure 3142: DNA325420, NM_000559, Figure 3107: DNA325402, NM_016526, gen.NM_000559 gen.NM_016526 Figure 3143: PRO81946 Figure 3108: PRO81934 Figure 3144: DNA325421, NM_000184, Figure 3109: DNA255696, NM_021932, gen.NM_000184 gen.NM_021932 Figure 3145: PRO81947 Figure 3110: PRO50756 Figure 3146: DNA325422, NM _005330, Figure 3111: DNA325403, XM_043220, gen.NM_005330 gen.XM_043220 Figure 3147: PRO81948 Figure 3112: PRO81935 Figure 3148: DNA325423, XM_015243, Figure 3113: DNA255078, NM_006435, gen.XM_015243 Figure 3149: DNA325424, NM_015324, gen.NM_006435 Figure 3114: PRO50165 gen.NM_015324 Figure 3115: DNA325404, NM_002339, Figure 3150: PRO81950 gen.NM_002339 Figure 3151: DNA325425, XM_006424, Figure 3116: PRO81936 gen.XM_006424 Figure 3152: DNA325426, XM_113238, Figure 3117: DNA325405, XM_028192, gen.XM_028192 gen.XM_113238 Figure 3153A-C: DNA325427, XM_052786, Figure 3118: PRO81937 Figure 3119: DNA325406, XM_096544, gen.XM_052786 Figure 3154: PRO81953 gen.XM_096544 Figure 3120: DNA325407, NM_000612, Figure 3155: DNA325428, NM_000990, gen.NM_000612 gen.NM ..000990 Figure 3121: PRO124 Figure 3156: PRO25985 Figure 3122: DNA325408, XM_084742, Figure 3157A-B: DNA325429, XM_045750, gen.XM_084742 gen.XM_045750 Figure 3123: PRO81939 Figure 3158: PRO81954 Figure 3124: DNA325409, XM_084739, Figure 3159: DNA325430, XM_058414, gen.XM_084739 gen.XM_058414 Figure 3125: DNA325410, XM _058505, Figure 3160: PRO81955 gen.XM_058505 Figure 3161A-B: DNA325431, XM_049197, Figure 3126: PRO81941 gen.XM_049197 Figure 3127: DNA325411, XM_006139, Figure 3162: PRO81956 gen.XM_006139 Figure 3163A-B: DNA325432, NM_001418, Figure 3128: PRO81942 gen.NM_001418

Figure 3164: PRO81957	gen.NM_003646
Figure 3165: DNA325433, XM_096520,	Figure 3198: PRO81977
gen.XM_096520	Figure 3199: DNA325455, NM_004551,
Figure 3166: PRO81958	gen.NM_004551
Figure 3167: DNA325434, XM_006212,	Figure 3200: PRO81978
gen.XM_006212	Figure 3201: DNA325456, XM_006170,
Figure 3168: PRO81959	gen.XM_006170
Figure 3169: DNA325435, XM_084527,	Figure 3202: DNA325457, XM_037173,
gen.XM_084527	gen.XM_037173
Figure 3170: DNA325436, XM_016139,	Figure 3203: PRO81980
gen.XM_016139	Figure 3204: DNA150974, NM_005693,
0	gen.NM_005693
Figure 3171: DNA325437, NM_001017,	Figure 3205: PRO12224
gen.NM_001017	Figure 3206: DNA226080, NM_001610,
Figure 3172: PRO11262	gen.NM_001610
Figure 3173: DNA325438, NM _014267, gen.NM _014267	Figure 3207: PRO36543
Figure 3174: PRO81962	Figure 3208: DNA270134, NM_000107,
Figure 3175: DNA97285, NM_005566,	gen.NM_000107
gen.NM_005566	Figure 3209: PRO58523
Figure 3176: PRO3632	Figure 3210: DNA325458, NM_016223,
Figure 3177: DNA325439, XM_115081,	gen.NM_016223
gen.XM_115081	Figure 3211: PRO81981
Figure 3178: DNA325440, XM_036339,	Figure 3212: DNA325459, XM_037147,
gen.XM_036339	gen.XM_037147
Figure 3179: PRO81964	Figure 3213: PRO81982
Figure 3180: DNA325441, XM_084514,	Figure 3214: DNA325460, XM_015705,
gen.XM_084514	gen.XM_015705
Figure 3181: PRO81965	Figure 3215: DNA272728, NM_003146,
Figure 3182: DNA325442, XM_084516,	gen.NM_003146
gen.XM_084516	Figure 3216: PRO60847
Figure 3183: DNA325443, XM_084515,	Figure 3217: DNA325461, XM_165611,
gen.XM_084515	gen.XM_165611
Figure 3184: DNA325444, XM_084517,	Figure 3218: DNA287417, NM_024098,
gen.XM_084517	gen.NM_024098
Figure 3185: DNA325445, XM_034431,	Figure 3219: PRO69674
gen.XM_034431	Figure 3220: DNA227088, NM_014502,
Figure 3186: PRO11691	gen.NM_014502
Figure 3187: DNA325446, XM _030326,	Figure 3221: PRO37551
gen.XM_030326	Figure 3222: DNA325462, XM_165610,
Figure 3188: DNA325447, NM_057174,	gen.XM_165610
gen.NM_057174	Figure 3223A-B: DNA325463, XM_165612,
Figure 3189: PRO81970	gen.XM_165612
Figure 3190: DNA325448, NM_004813,	Figure 3224: DNA325464, XM_166234,
gen.NM_004813	gen.XM_166234
Figure 3191: PRO81971	Figure 3225: DNA325465, NM_015533,
Figure 3192: DNA325449, XM_167437,	gen.NM_015533
gen.XM_167437	Figure 3226: PRO81988
Figure 3193: DNA325450, XM_054856,	Figure 3227: DNA325466, XM_166232,
gen.XM_054856	gen.XM_166232
Figure 3194: DNA325451, XM_004330,	Figure 3228A-B: DNA325467, XM_167748,
gen.XM_004330	gen.XM_167748
Figure 3195: DNA325452, XM_084681,	Figure 3229: PRO81990
gen.XM_084681	Figure 3230: DNA325468, NM_004739,
Figure 3196: DNA325453, XM_006297,	gen.NM_004739
gen.XM_006297	Figure 3231: PRO81991
Figure 3197: DNA325454, NM_003646,	Figure 3232: DNA325469, NM_014610,

gen.NM_014610 Figure 3268: DNA325488, XM_113223, Figure 3233: PRO81992 gen.XM_113223 Figure 3269: DNA325489, XM_045642, Figure 3234: DNA325470, XM_167747, gen.XM_045642 gen.XM_167747 Figure 3270: DNA325490, XM_006533, Figure 3235: PRO81993 gen.XM_006533 Figure 3236: DNA287254, NM_024099, gen.NM_024099 Figure 3271: DNA325491, XM_045613, gen.XM_045613 Figure 3237: PRO69528 Figure 3272: PRO59721 Figure 3238: DNA325471, NM_015853, Figure 3273A-B: DNA325492, XM_045612, gen.NM_015853 gen.XM_045612 Figure 3239: PRO81994 Figure 3240: DNA325472, NM_032667, Figure 3274: PRO82009 Figure 3275: DNA325493, XM_113224, gen.NM_032667 gen.XM_113224 Figure 3241: PRO81995 Figure 3276: DNA325494, XM_045499, Figure 3242: DNA325473, NM _006362, gen.XM_045499 gen.NM_006362 Figure 3277: PRO82011 Figure 3243: PRO81996 Figure 3278: DNA325495, XM_045525, Figure 3244: DNA325474, XM_167716, gen.XM_045525 gen.XM_167716 Figure 3245: DNA75863, NM _002411, Figure 3279: DNA325496, NM_013265, gen.NM_013265 gen.NM_002411 Figure 3280: PRO82013 Figure 3246: PRO2018 Figure 3281: DNA325497, XM _006529, Figure 3247: DNA325475, XM_087710, gen.XM_006529 gen.XM_087710 Figure 3282: PRO60008 Figure 3248: DNA325476, XM_167726, Figure 3283: DNA325498, XM_053787, gen.XM_167726 gen.XM_053787 Figure 3249: DNA325477, NM_004265, gen.NM_004265 Figure 3284: DNA269803, NM _001667, gen.NM_001667 Figure 3250: PRO12878 Figure 3251A-B: DNA325478, NM_013402, Figure 3285: PRO58207 Figure 3286: DNA325499, XM_115031, gen.NM_013402 Figure 3252: PRO81999 gen.XM_115031 Figure 3287: DNA325500, XM_084702, Figure 3253: DNA325479, NM_004111, gen.XM_084702 gen.NM_004111 Figure 3288: DNA325501, XM_053796, Figure 3254: PRO69568 gen.XM_053796 Figure 3255: DNA325480, XM_048286, Figure 3289: DNA325502, NM -002689, gen.XM_048286 gen.NM_002689 Figure 3256: DNA325481, NM_004322, Figure 3290: PRO82018 gen.NM_004322 Figure 3291A-D: DNA325503, XM_167804, Figure 3257: PRO20117 gen.XM_167804 Figure 3258: DNA325482, NM _032989, Figure 3292: PRO82019 gen.NM_032989 Figure 3293: DNA325504, XM_166235, Figure 3259: PRO20117 Figure 3260: DNA325483, XM_011988, gen.XM_166235 Figure 3294: DNA325505, XM_166236, gen.XM_011988 gen.XM_166236 Figure 3261: DNA325484, NM_031472, Figure 3295: DNA270721, NM_006842, gen.NM_031472 gen.NM_006842 Figure 3262: PRO82002 Figure 3296: PRO59084 Figure 3263: DNA325485, XM_037808, Figure 3297: DNA189687, NM _000852, gen.XM_037808 Figure 3264: DNA325486, NM_004074, gen.NM_000852 gen.NM_004074 Figure 3298: PRO25845 Figure 3265: PRO82004 Figure 3299: DNA325506, NM_007103, Figure 3266: DNA325487, NM_017670, gen.NM_007103 Figure 3300: PRO58606 gen.NM_017670 Figure 3301: DNA325507, NM_005851, Figure 3267: PRO82005

gen.XM_166253 gen.NM_005851 Figure 3337: DNA325526, NM _001293, Figure 3302: PRO69461 Figure 3303A-B: DNA325508, XM_165598, gen.NM_001293 Figure 3338: PRO82034 gen.XM_165598 Figure 3304: DNA325509, NM_006019, Figure 3339: DNA325527, XM _042852, gen.XM_042852 gen.NM_006019 Figure 3340: PRO82035 Figure 3305: PRO82023 Figure 3341: DNA325528, XM_165628, Figure 3306: DNA325510, NM_006053, gen.XM_165628 gen.NM_006053 Figure 3342A-B: DNA325529, NM_080491, Figure 3307: PRO24831 Figure 3308: DNA325511, XM_166196, gen.NM_080491 Figure 3343: PRO82037 gen.XM_166196 Figure 3344A-B: DNA325530, NM_012296, Figure 3309: PRO82024 gen.NM_012296 Figure 3310: DNA325512, XM_165600, Figure 3345: PRO60311 gen.XM_165600 Figure 3346: DNA325531, NM _032379, Figure 3311A-B: DNA325513, NM 053056, gen.NM_032379 gen.NM_053056 Figure 3347: PRO82038 Figure 3312: PRO4870 Figure 3348: DNA325532, NM_007173, Figure 3313: DNA103474, NM_003824, gen.NM_007173 gen.NM_003824 Figure 3349: DNA325533, XM_166239, Figure 3314: PRO4801 gen.XM_166239 Figure 3315: DNA325514, XM_096486, Figure 3350: DNA325534, XM _084610, gen.XM_096486 gen.XM_084610 Figure 3316A-B: DNA325515, NM_003626, gen.NM_003626 Figure 3351: PRO82040 Figure 3352: DNA325535, XM .058450, Figure 3317: PRO82027 Figure 3318A-B: DNA325516, XM_167853, gen.XM_058450 Figure 3353: DNA325536, XM_084601, gen.XM_167853 gen.XM_084601 Figure 3319: PRO82028 Figure 3354: PRO82042 Figure 3320: DNA325517, NM _014042, Figure 3355A-B: DNA325537, XM_006464, gen.NM_014042 gen.XM_006464 Figure 3321: PRO82029 Figure 3356: PRO82043 Figure 3322A-B: DNA325518, NM _001567, Figure 3357: DNA325538, XM_084570, gen.NM_001567 gen.XM_084570 Figure 3323: PRO61238 Figure 3358: DNA325539, XM .051435, Figure 3324: DNA325519, XM_167433, gen.XM_051435 gen.XM_167433 Figure 3359: DNA325540, NM .001467, Figure 3325: DNA325520, XM_165616, gen.NM_001467. gen.XM_165616 Figure 3360: PRO82045 Figure 3326: DNA325521, NM_032871, Figure 3361: DNA325541, NM_001028, gen.NM_032871 gen.NM_001028 Figure 3327: PRO57307 Figure 3362: PRO82046 Figure 3328: DNA325522, XM_165631, Figure 3363: DNA325542, XM_113230, gen.XM_165631 Figure 3329: DNA254186, NM_014752, gen.XM_113230 Figure 3364: DNA325543, XM_115062, gen.NM_014752 gen.XM_115062 Figure 3330: PRO49298 Figure 3331: DNA325523, NM_001005, Figure 3365: DNA325544, XM_115063, gen.XM_115063 gen.NM_001005 Figure 3366: DNA325545, XM_113229, Figure 3332: PRO82032 gen.XM_113229 Figure 3333: DNA88176, NM_001235, Figure 3367A-B: DNA325546, XM_051489, gen.NM_001235 gen.XM_051489 Figure 3334: PRO2685 Figure 3368: PRO82050 Figure 3335A-B: DNA325524, XM_165627, Figure 3369: DNA325547, NM_022003, gen.XM_165627 gen.NM_022003 Figure 3336: DNA325525, XM_166253,

Figure 3370: PRO82051 Figure 3405: PRO82066 Figure 3371: DNA325548, XM_006432, Figure 3406: DNA325565, XM_166177, gen.XM_006432 gen.XM_166177 Figure 3407: DNA325566, XM_165571, Figure 3372: PRO82052 Figure 3373: DNA325549, XM_051716, gen.XM_165571 Figure 3408: PRO82068 gen.XM_051716 Figure 3409: DNA325567, XM_166174, Figure 3374: DNA325550, NM_025164, gen.XM_166174 gen.NM_025164 Figure 3375: PRO82054 Figure 3410: PRO82069 Figure 3411: DNA325568, NM _001274, Figure 3376: DNA225752, NM_000039, gen.NM_001274 gen.NM_000039 Figure 3412: PRO12187 Figure 3377: PRO36215 Figure 3413: DNA325569, XM_165586, Figure 3378: DNA325551, XM_052113, gen.XM_165586 gen.XM_052113 Figure 3414: DNA325570, XM_165584, Figure 3379: PRO82055 gen.XM_165584 Figure 3380: DNA271324, NM_006169, Figure 3415: DNA257965, NM_032873, gen.NM_006169 gen.NM_032873 Figure 3381: PRO59629 Figure 3416: PRO52492 Figure 3382: DNA325552, XM _084658, Figure 3417: DNA325571, XM_167780, gen.XM_084658 gen.XM_167780 Figure 3383: PRO82056 Figure 3418: DNA325572, XM_166743, Figure 3384: DNA325553, NM _000795, gen.XM_166743 gen.NM_000795 Figure 3419: PRO82072 Figure 3385: PRO12448 Figure 3420: DNA325573, NM_012101, Figure 3386: DNA325554, NM_017868, gen.NM_012101 gen.NM_017868 Figure 3421: PRO82073 Figure 3387: PRO82057 Figure 3422: DNA325574, NM_058193, Figure 3388: DNA325555, XM_084654, gen.NM_058193 gen.XM_084654 Figure 3423: PRO82074 Figure 3389: PRO82058 Figure 3424: DNA325575, XM_084522, Figure 3390: DNA272413, NM_003002, gen.XM_084522 gen.NM_003002 Figure 3425: PRO82075 Figure 3391: PRO60666 Figure 3426: DNA325576, XM_091786, Figure 3392: DNA271843, NM _004398, gen.XM_091786 gen.NM_004398 Figure 3427: DNA325577, XM_165390, Figure 3393: PRO60123 gen.XM_165390 Figure 3394: DNA325556, XM_017369, gen.XM_017369 Figure 3428: DNA325578, XM_084525, Figure 3395: DNA325557, NM _032299, gen.XM_084525 Figure 3429A-B: DNA325579, XM_010494, gen.NM_032299 gen.XM_010494 Figure 3396: PRO82060 Figure 3430A-B: DNA325580, NM_015064, Figure 3397: DNA325558, XM_055369, gen.NM_015064 gen.XM_055369 Figure 3431: PRO82078 Figure 3398: DNA325559, XM_051430, Figure 3432: DNA325581, NM_030775, gen.XM_051430 gen.NM_030775 Figure 3399: DNA325560, XM_006467, Figure 3433: PRO71031 gen.XM_006467 Figure 3434: DNA297398, NM_032642, Figure 3400: DNA325561, XM_113226, gen.NM_032642 gen.XM_113226 Figure 3435: PRO71031 Figure 3401: DNA325562, XM_165592, Figure 3436: DNA325582, XM_017080, gen.XM_165592 gen.XM_017080 Figure 3402: PRO82064 Figure 3437: DNA325583, XM_113739, Figure 3403: DNA325563, XM_166181, gen.XM_113739 gen.XM_166181 Figure 3438: PRO82080 Figure 3404: DNA325564, XM_052862, Figure 3439: DNA325584, NM_002014, gen.XM_052862

gen.NM_002046

Figure 3474: PRO36095 gen.NM_002014 Figure 3475A-B: DNA325602, XM_006958, Figure 3440: PRO59262 Figure 3441: DNA325585, XM_096661, gen.XM_006958 Figure 3476: DNA83180, NM_002342, gen.XM_096661 gen.NM_002342 Figure 3442: DNA325586, NM_018463, Figure 3477: PRO2622 gen.NM_018463 Figure 3478: DNA103514, NM_001038, Figure 3443: PRO82082 gen.NM_001038 Figure 3444: DNA325587, NM_021953, Figure 3479: PRO4841 gen.NM_021953 Figure 3480: DNA188396, NM_001065, Figure 3445: PRO82083 gen.NM_001065 Figure 3446: DNA325588, NM_031465, Figure 3481: PRO21924 gen.NM_031465 Figure 3447: PRO82084 Figure 3482A-C: DNA325603, XM .006947, Figure 3448: DNA325589, NM_005002, gen.XM_006947 Figure 3483A-B: DNA325604, XM_006936, gen.NM_005002 Figure 3449: PRO82085 gen.XM_006936 Figure 3484: PRO82097 Figure 3450: DNA325590, XM_033227, Figure 3485A-B: DNA325605, XM .006925, gen.XM_033227 gen.XM_006925 Figure 3451: DNA325591, XM_116926, Figure 3486: DNA325606, XM_096630, gen.XM_116926 Figure 3452: DNA88114, NM_001734, gen.XM_096630 Figure 3487: PRO82099 gen.NM_001734 Figure 3488: DNA325607, XM_084901, Figure 3453: PRO2660 Figure 3454: DNA325592, XM_058574, gen.XM_084901 Figure 3489: DNA226028, NM_002355, gen.XM_058574 gen.NM_002355 Figure 3455: DNA325593, NM_007273, Figure 3490: PRO36491 gen.NM_007273 Figure 3491: DNA325608, XM_031807, Figure 3456: PRO36970 gen.XM_031807 Figure 3457A-B: DNA325594, XM_032588, Figure 3492: PRO82101 gen.XM_032588 Figure 3493A-B: DNA325609, XM_049663, Figure 3458: DNA325595, NM_001975, gen.XM_049663 gen.NM_001975 Figure 3494: DNA325610, XM_012159, Figure 3459: PRO38010 gen.XM_012159 Figure 3460: DNA325596, NM_000365, Figure 3495: DNA325611, XM_084922, gen.NM_000365 gen.XM_084922 Figure 3461: PRO69549 Figure 3496: DNA325612, NM_031289, Figure 3462: DNA325597, XM_032614, gen.NM_031289 gen.XM_032614 Figure 3463: DNA325598, NM_002075, Figure 3497: PRO82104 Figure 3498: DNA226771, NM_003979, gen.NM_002075 gen.NM_003979 Figure 3464: PRO82091 Figure 3499: PRO37234 Figure 3465: DNA325599, XM_165910, Figure 3500: DNA325613, XM_084918, gen.XM_165910 gen.XM_084918 Figure 3466: DNA151827, NM_005439, Figure 3501: DNA325614, NM_007178, gen.NM_005439 gen.NM_007178 Figure 3467: PRO12902 Figure 3502: PRO82106 Figure 3468A-B: DNA254624, NM_001273, Figure 3503: DNA325615, XM_041100, gen.NM_001273 gen.XM_041100 Figure 3469: PRO49726 Figure 3504A-B: DNA325616, XM .058567, Figure 3470: DNA325600, NM_015438, gen.XM_058567 gen.NM_015438 Figure 3505: PRO82107 Figure 3471: PRO82093 Figure 3506A-B: DNA325617, XM_166605, Figure 3472: DNA325601, XM_033263, gen.XM_166605 gen.XM_033263 Figure 3507: DNA325618, XM_029805, Figure 3473: DNA225632, NM_002046,

gen.XM_029805

Figure 3508: PRO82109 Figure 3543: DNA325636, XM_012272, Figure 3509: DNA325619, NM _005889, gen.XM_012272 gen.NM_005889 Figure 3544: PRO82127 Figure 3545A-B: DNA325637, XM_056481, Figure 3510: PRO82110 Figure 3511: DNA256072, NM_001644, gen.XM_056481 Figure 3546: DNA325638, NM_006262, gen.NM_001644 gen.NM_006262 Figure 3512: PRO51121 Figure 3513: DNA325620, NM_018686, Figure 3547: PRO82129 Figure 3548: DNA325639, NM_018113, gen.NM_018686 gen.NM_018113 Figure 3514: PRO82111 Figure 3549: PRO82130 Figure 3515: DNA325621, XM_084770, Figure 3550: DNA271344, NM_001659, gen.XM_084770. Figure 3516: PRO82112 gen.NM_001659 Figure 3551: PRO59647 Figure 3517: DNA325622, NM_018048, Figure 3552: DNA325640, NM _017822, gen.NM_018048 gen.NM_017822 Figure 3518: PRO82113 Figure 3553: PRO82131 Figure 3519: DNA325623, XM_113730, Figure 3554A-E: DNA325641, XM_028760, gen.XM_113730 gen.XM_028760 Figure 3520: DNA150978, NM_007244, Figure 3555: DNA272379, NM_002733, gen.NM_007244 Figure 3521: PRO11601 gen.NM_002733 Figure 3556: PRO60634 Figure 3522: DNA325624, NM_006250, Figure 3557: DNA325642, XM_084866, gen.NM_006250 gen.XM_084866 Figure 3523: PRO82115 Figure 3524: DNA79313, NM _005042, Figure 3558: PRO82133 Figure 3559: DNA325643, XM_006826, gen.NM_005042 Figure 3525: PRO2555 gen.XM_006826 Figure 3560: DNA325644, XM_113719, Figure 3526: DNA150997, NM _004982, gen.XM_113719 gen.NM_004982 Figure 3561: DNA325645, XM_028662, Figure 3527: PRO12573 gen.XM_028662 Figure 3528: DNA325625, XM_050074, Figure 3562: DNA325646, XM_035497, gen.XM_050074 gen.XM_035497 Figure 3529: DNA325626, NM_024854, Figure 3563: PRO82137 gen.NM_024854 Figure 3564: DNA325647, XM_035490, Figure 3530: PRO82117 gen.XM_035490 Figure 3531: DNA325627, XM_084807, gen.XM_084807 Figure 3565: PRO82138 Figure 3532: DNA325628, XM_165906, Figure 3566: DNA325648, NM_013277, gen.NM_013277 gen.XM_165906 Figure 3567: PRO82139 Figure 3533A-B: DNA325629, XM_038659, Figure 3568: DNA325649, NM_003076, gen.XM_038659 gen.NM_003076 Figure 3534: PRO82120 Figure 3535: DNA325630, XM_006694, Figure 3569: PRO82140 Figure 3570: DNA325650, XM_115117, gen.XM_006694 Figure 3536: DNA325631, XM_006748, gen.XM_115117 Figure 3571: DNA325651, XM_035485, gen.XM_006748 Figure 3537: PRO82122 gen.XM_035485 Figure 3538: DNA325632, XM_016640, Figure 3572A-B: DNA325652, NM_016357, gen.XM.016640 gen.NM_016357 Figure 3539: DNA325633, XM_096146, Figure 3573: PRO82143 Figure 3574: DNA325653, NM_005171, gen.XM_096146 Figure 3540A-B: DNA325634, XM_084841, gen.NM_005171 Figure 3575: PRO60924 gen.XM_084841 Figure 3541: PRO82125 Figure 3576: DNA325654, NM_014033, Figure 3542: DNA325635, XM_090218, gen.NM_014033 gen.XM_090218 Figure 3577: PRO4348

T' 0500 TAXABOSCES VA 000000	T' 0611 DD000160
Figure 3578: DNA325655, XM_096620,	Figure 3611: PRO82162
gen.XM_096620	Figure 3612: DNA325674, NM_031157,
Figure 3579: DNA325656, XM_165905,	gen.NM_031157
gen.XM_165905	Figure 3613: PRO82163
Figure 3580: DNA325657, XM_015481,	Figure 3614: DNA325675, NM _004178,
gen.XM_015481	gen.NM_004178
Figure 3581: DNA325658, XM_049148,	Figure 3615: PRO82164
gen.XM_049148	Figure 3616: DNA325676, NM_134323,
Figure 3582: DNA325659, XM_084885,	gen.NM_134323
gen.XM_084885	Figure 3617: PRO82165
Figure 3583: DNA325660, XM _084884,	Figure 3618: DNA325677, NM_134324,
gen.XM_084884	gen.NM_134324
Figure 3584: DNA325661, XM_113726,	Figure 3619: PRO82166
gen.XM_113726	Figure 3620: DNA290294, NM_005016,
Figure 3585: DNA325662, XM_015476,	gen.NM_005016
gen.XM_015476	Figure 3621: PRO70453
Figure 3586: DNA325663, XM_049141,	Figure 3622: DNA325678, NM_031989,
gen.XM_049141	gen.NM_031989
Figure 3587: PRO82152	Figure 3623: PRO82167
Figure 3588: DNA227191, NM_021934,	Figure 3624: DNA325679, XM_028643,
gen.NM_021934	gen.XM_028643
Figure 3589: PRO37654	Figure 3625: PRO82168
Figure 3590: DNA325664, XM_083868,	Figure 3626: DNA325680, XM_006710,
gen.XM_083868	gen.XM_006710
Figure 3591: DNA270458, NM_002273,	Figure 3627: PRO82169
gen.NM_002273	Figure 3628: DNA227094, NM _005594,
Figure 3592: PRO58837	gen.NM_005594
Figure 3593: DNA227092, NM_000224,	Figure 3629: PRO37557
gen.NM_000224	Figure 3630: DNA325681, XM_084824,
Figure 3594: PRO37555	gen.XM_084824
Figure 3595: DNA325665, XM _029728,	Figure 3631: DNA304783, NM _014255,
gen.XM_029728	gen.NM_014255
Figure 3596: DNA325666, XM_015468,	Figure 3632: PRO4426
gen.XM_015468	Figure 3633: DNA325682, XM_165903,
Figure 3597: PRO82155	gen.XM_165903
Figure 3598: DNA325667, XM_012162,	Figure 3634: DNA325683, XM_115140,
gen.XM_012162	gen.XM_115140
Figure 3599: DNA325668, XM_084789,	Figure 3635: DNA325684, XM_113712,
gen.XM_084789	
Figure 3600: DNA196351, NM _002178,	gen.XM_113712 Figure 3636: DNA325685, NM_006601,
gen.NM_002178	gen.NM_006601
<u> </u>	
Figure 3601: PRO3449	Figure 3637: PRO82174
Figure 3602A-B: DNA325669, XM_029631,	Figure 3638: DNA325686, XM_012182,
gen.XM_029631	gen.XM_012182
Figure 3603: PRO82158	Figure 3639: PRO82175
Figure 3604: DNA325670, NM_015665,	Figure 3640: DNA325687, XM_048943,
gen.NM_015665	gen.XM_048943
Figure 3605: PRO82159	Figure 3641: DNA325688, XM_053164,
Figure 3606: DNA325671, NM_014311,	gen.XM_053164
gen.NM_014311	Figure 3642: DNA325689, XM_048991,
Figure 3607: PRO82160	gen.XM_048991
Figure 3608: DNA325672, XM _096606,	Figure 3643: DNA325690, NM_024068,
gen.XM_096606	gen.NM_024068
Figure 3609: PRO82161	Figure 3644: PRO82179
Figure 3610: DNA325673, NM_018457,	Figure 3645A-B: DNA325691, XM_056346,
gen.NM_018457	gen.XM_056346

gen.NM_005981 Figure 3646: DNA325692, NM_021019, gen.NM_021019 Figure 3682: PRO4666 Figure 3683: DNA325711, NM_000075, Figure 3647: PRO82181 gen.NM_000075 Figure 3648: DNA325693, NM_079423, Figure 3684: PRO4873 gen.NM_079423 Figure 3649: PRO82182 Figure 3685: DNA325712, NM_052984, Figure 3650: DNA325694, NM_079425, gen.NM_052984 Figure 3686: PRO82194 gen.NM_079425 Figure 3687: DNA325713, NM_000785, Figure 3651: PRO82183 Figure 3652: DNA325695, XM_049048, gen.NM_000785 Figure 3688: PRO58440 gen.XM_049048 Figure 3689: DNA325714, NM _005371, Figure 3653: PRO82184 gen.NM_005371 Figure 3654: DNA325696, NM_021104, Figure 3690: PRO82195 gen.NM_021104 Figure 3655: PRO11213 Figure 3691: DNA325715, NM_023032, gen.NM_023032 Figure 3656: DNA325697, NM -001029, Figure 3692: PRO82196 gen.NM_001029 Figure 3657: PRO10838 Figure 3693: DNA325716, NM .023033, gen.NM_023033 Figure 3658: DNA325698, XM_001482, gen.XM_001482 Figure 3694: PRO82197 Figure 3659: DNA325699, XM_049150, Figure 3695: DNA325717, NM_005726, gen.NM_005726 gen.XM_049150 Figure 3660: DNA325700, NM_006928, Figure 3696: PRO82198 Figure 3697: DNA325718, NM_006576, gen.NM_006928 Figure 3661: PRO2846 gen.NM_006576 Figure 3698: PRO82199 Figure 3662: DNA325701, XM_056353, Figure 3699A-B: DNA325719, XM_096038, gen.XM_056353 Figure 3663: DNA325702, NM_001780, gen.XM_096038 Figure 3700: DNA325720, XM_056681, gen.NM_001780 Figure 3664: PRO283 gen.XM_056681 Figure 3665: DNA325703, NM_031479, Figure 3701: PRO82201 Figure 3702: DNA325721, XM_084909, gen.NM_031479 gen.XM_084909 Figure 3666: PRO21773 Figure 3703: PRO82202 Figure 3667A-: DNA137231, NM_005269, Figure 3704: DNA325722, XM_004098, gen.NM_005269 Figure 3668: PRO9112 gen.XM_004098 Figure 3705: DNA325723, XM_084912, Figure 3669: DNA325704, NM_004990, gen.NM_004990 gen.XM_084912 Figure 3670: PRO82188 Figure 3706: PRO82204 Figure 3707: DNA325724, XM_040221, Figure 3671: DNA325705, XM_058528, gen.XM_058528 gen.XM_040221 Figure 3672: DNA325706, XM .084801, Figure 3708: DNA325725, XM _016605, gen.XM_016605 gen.XM_084801 Figure 3709: PRO82206 Figure 3673: PRO82190 Figure 3674: DNA325707, XM_048603, Figure 3710: DNA325726, XM_017508, gen.XM_017508 gen.XM_048603 Figure 3711: PRO82207 Figure 3675: PRO82191 Figure 3676: DNA325708, NM_133483, Figure 3712: DNA325727, NM_032338, gen.NM_133483 gen.NM_032338 Figure 3677: PRO82192 Figure 3713: PRO82208 Figure 3714A-B: DNA325728, XM_052460, Figure 3678: DNA79101, NM_006812, gen.XM_052460 gen.NM_006812 Figure 3679: PRO2549 Figure 3715: DNA325729, XM_083866, Figure 3680: DNA325709, XM_096566, gen.XM_083866 gen.XM_096566 Figure 3716: PRO82210 Figure 3681: DNA325710, NM_005981, Figure 3717: DNA304694, NM_020401,

Figure 3753: PRO9987 gen.NM_020401 Figure 3754: DNA325747, XM_167518, Figure 3718: PRO71120 gen.XM_167518 Figure 3719: DNA325730, XM _052474, Figure 3755: DNA325748, XM_052542, gen.XM_052474 Figure 3720: DNA227474, NM_015646, gen.XM_052542 Figure 3756: PRO82223 gen.NM_015646 Figure 3757: DNA325749, NM _003877, Figure 3721: PRO37937 Figure 3722: DNA325731, XM_053952, gen.NM_003877 Figure 3758: PRO12839 gen.XM_053952 Figure 3759: DNA325750, XM_012219, Figure 3723: PRO82212 gen.XM_012219 Figure 3724: DNA227171, NM _014515, Figure 3760: PRO69473 gen.NM_014515 Figure 3761: DNA325751, XM_012145, Figure 3725: PRO37634 gen.XM_012145 Figure 3726: DNA325732, XM_046041, Figure 3762: PRO82224 gen.XM_046041 Figure 3763: DNA274361, NM_000895, Figure 3727: DNA271492, NM _006530, gen.NM_000895 gen.NM_006530 Figure 3764: PRO62273 Figure 3728: PRO59785 Figure 3765: DNA325752, XM_006887, Figure 3729: DNA226014, NM_000239, gen.XM_006887 gen.NM_000239 Figure 3766: DNA325753, XM_006589, Figure 3730: PRO36477 gen.XM_006589 Figure 3731: DNA325733, XM _084645, Figure 3767: DNA325754, XM_090458, gen.XM_084645 gen.XM_090458 Figure 3732A-B: DNA325734, XM_039395, Figure 3768: PRO82227 gen.XM_039395 Figure 3769: DNA325755, XM_052641, Figure 3733: PRO82213 gen.XM_052641 Figure 3734: DNA325736, XM_040644, Figure 3770: PRO82228 gen.XM_040644 Figure 3771A-B: DNA325756, XM_049211, Figure 3735: PRO82214 gen.XM_049211 Figure 3736A-B: DNA325737, XM _006578, Figure 3772: DNA325757, XM _049201, gen.XM_006578 gen.XM_049201 Figure 3737: DNA325738, XM _038308, Figure 3773: DNA325758, XM_058556, gen.XM_038308 gen.XM_058556 Figure 3738: PRO82215 Figure 3774: DNA325759, XM_083864, Figure 3739: DNA325739, XM _096597, gen.XM_083864 gen.XM_096597 Figure 3775: DNA325760, XM_062437, Figure 3740: DNA325740, NM_001920, gen.XM_062437 gen.NM_001920 Figure 3776: PRO82232 Figure 3741: PRO2841 Figure 3777: DNA254777, NM_014325, Figure 3742: DNA325741, NM_133503, gen.NM_014325 gen.NM_133503 Figure 3778: PRO49875 Figure 3743: PRO2841 Figure 3779: DNA325761, XM_090413, Figure 3744: DNA325742, NM_133504, gen.XM_090413 gen.NM_133504 Figure 3780: PRO82233 Figure 3745: PRO82218 Figure 3781: DNA325762, NM_000970, Figure 3746: DNA325743, NM_133505, gen.NM_000970 gen.NM_133505 Figure 3782: PRO82234 Figure 3747: PRO82219 Figure 3783: DNA325763, XM_084800, Figure 3748: DNA325744, NM_133507, gen.XM_084800 gen.NM_133507 Figure 3784: PRO82235 Figure 3749: PRO82220 Figure 3785: DNA325764, NM_006817, Figure 3750: DNA325745, NM_133506, gen.NM_006817 gen.NM_133506 Figure 3786: PRO70694 Figure 3751: PRO82221 Figure 3787A-C: DNA325765, XM_083892, Figure 3752: DNA325746, NM _002345, gen.XM_083892 gen.NM_002345

Figure 3788A-B: DNA325766, XM_084941, gen.XM_084941 Figure 3789: PRO82237 Figure 3790A-B: DNA325767, NM _057169, gen.NM_057169 Figure 3791: PRO82238 Figure 3792A-B: DNA325768, NM_014776, gen.NM_014776 Figure 3793: PRO82239 Figure 3794: DNA325769, NM_032904, gen.NM_032904 Figure 3795: PRO82240 Figure 3796A-B: DNA325770, XM_007003, gen.XM_007003 Figure 3797: DNA325771, XM_007002, gen.XM_007002 Figure 3798: DNA325772, XM_056996, gen.XM_056996 Figure 3799: PRO82243 Figure 3800: DNA325773, XM_084946, gen.XM_084946 Figure 3801: PRO82244 Figure 3802: DNA325775, XM_027102, gen.XM_027102 Figure 3803: PRO82245 Figure 3804: DNA325776, XM_084948, gen.XM_084948 Figure 3805: DNA325777, NM_007062, gen.NM_007062 Figure 3806: PRO82247 Figure 3807: DNA325778, NM_006825, gen.NM_006825 Figure 3808: PRO82248 Figure 3809: DNA325779, XM_115197, gen.XM_115197 Figure 3810: DNA325780, NM_017901, gen.NM_017901 Figure 3811: PRO82250 Figure 3812: DNA325781, NM_032814, gen.NM_032814 Figure 3813: PRO82252 Figure 3814: DNA325782, XM_084889, gen.XM_084889 Figure 3815: PRO82253 Figure 3816: DNA325783, NM_002567, gen.NM_002567 Figure 3817: PRO59001 Figure 3818: DNA325784, XM_084808, gen.XM_084808 Figure 3819: DNA325785, XM _096572, gen.XM_096572 Figure 3820: PRO82255 Figure 3821: DNA325786, XM_045010, gen.XM_045010 Figure 3822: PRO82256

Figure 3823: DNA270677, NM_014868,

gen.NM_014868 Figure 3824: PRO59042 Figure 3825: DNA325787, XM_052893, gen.XM_052893 Figure 3826A-B: DNA325788, XM_045802, gen.XM_045802 Figure 3827: DNA302016, NM_001002, gen.NM_001002 Figure 3828: PRO70989 Figure 3829: DNA325789, NM_053275, gen.NM_053275 Figure 3830: PRO70989 Figure 3831: DNA325790, NM _006253, gen.NM_006253 Figure 3832: PRO82259 Figure 3833: DNA325791, XM_045187, gen.XM_045187 Figure 3834: DNA325792, XM_045963, gen.XM_045963 Figure 3835: DNA325793, XM_006595, gen.XM_006595 Figure 3836: DNA325794, XM_012124, gen.XM_012124 Figure 3837: DNA325795, NM_002813, gen.NM_002813 Figure 3838: PRO82263 Figure 3839: DNA325796, NM_019887, gen.NM_019887 Figure 3840: PRO69471 Figure 3841A-B: DNA325797, XM_038791, gen.XM_038791 Figure 3842: PRO82264 Figure 3843: DNA325798, NM_016638, gen.NM_016638 Figure 3844: PRO82265 Figure 3845: DNA325799, XM_116913, gen.XM_116913 Figure 3846: PRO82266 Figure 3847: DNA325800, NM_006815, gen.NM_006815 Figure 3848: PRO4793 Figure 3849: DNA325801, XM _006566, gen.XM_006566 Figure 3850: PRO82267 Figure 3851: DNA325802, NM _032656, gen.NM_032656 Figure 3852: PRO82268 Figure 3853: DNA325803, XM_055013, gen.XM_055013 Figure 3854: PRO82269 Figure 3855: DNA325804, XM_113737, gen.XM_113737 Figure 3856A-C: DNA325805, XM_045602, gen.XM_045602 Figure 3857: DNA325806, XM_087955, gen.XM_087955

Figure 3858: PRO82272 Figure 3893: DNA325825, XM_085017, Figure 3859A-B: DNA325807, XM_044334, gen.XM_085017 gen.XM_044334 Figure 3894: PRO82291 Figure 3860: PRO82273 Figure 3895: DNA325826, XM_017432, Figure 3861: DNA325808, XM_012184, gen.XM_017432 gen.XM_012184 Figure 3896A-B: DNA270254, NM_002015, Figure 3862: DNA325809, XM_113702, gen.NM_002015 Figure 3897: PRO58642 gen.XM_113702 Figure 3863: PRO82275 Figure 3898: DNA325827, NM_005830, Figure 3864A-B: DNA270015, NM_003453, gen.NM_005830 gen.NM_003453 Figure 3899: PRO58092 Figure 3865: PRO58410 Figure 3900: DNA281436, NM .003295, Figure 3866: DNA226853, NM_004004, gen.NM_003295 gen.NM_004004 Figure 3901: PRO66275 Figure 3902: DNA325828, XM_038371, Figure 3867: PRO37316 Figure 3868: DNA325810, XM_167911, gen.XM_038371 Figure 3903A-B: DNA325829, XM_165636, gen.XM_167911 Figure 3869: DNA325811, XM_167918, gen.XM_165636 Figure 3904: DNA325830, XM_166266, gen.XM_167918 Figure 3870: DNA325812, XM_084982, gen.XM_166266 gen.XM_084982 Figure 3905: PRO82295 Figure 3871: PRO82278 Figure 3906: DNA325831, NM_014166, Figure 3872: DNA325813, NM_024026, gen.NM_014166 gen.NM_024026 Figure 3907: PRO82296 Figure 3873: PRO82279 Figure 3908: DNA325832, NM_021999, Figure 3874: DNA325814, XM_012638, gen.NM_021999 gen.XM_012638 Figure 3909: PRO1869 Figure 3875: PRO82280 Figure 3910: DNA325833, NM_030925, Figure 3876: DNA325815, XM_167439, gen.NM_030925 Figure 3911: PRO82297 gen.XM_167439 Figure 3912: DNA274058, NM_016119, Figure 3877: DNA325816, XM_167906, gen.XM_167906 gen.NM_016119 Figure 3913: PRO61999 Figure 3878A-B: DNA325817, NM_014778, gen.NM_014778 Figure 3914: DNA325834, NM_032565, Figure 3879: PRO82283 gen.NM_032565 Figure 3880: DNA325818, XM_169414, Figure 3915: PRO11982 gen.XM_169414 Figure 3916: DNA325835, XM_085044, Figure 3881A-B: DNA325819, NM_006646, gen.XM_085044 gen.NM_006646 Figure 3917: DNA325836, XM_165639, Figure 3882: PRO82285 gen.XM_165639 Figure 3883: DNA325820, XM_167892, Figure 3918: DNA325837, XM_018399, gen.XM_167892 gen.XM_018399 Figure 3884: DNA325821, NM _015932, Figure 3919: PRO82300 gen.NM_015932 Figure 3920: DNA325838, XM_058977, Figure 3885: PRO82287 gen.XM_058977 Figure 3886: DNA325822, XM_166273, Figure 3921: DNA325839, XM_015840, gen.XM_166273 gen.XM_015840 Figure 3887: DNA304669, NM_002128, Figure 3922: PRO82302 gen.NM_002128 Figure 3923: DNA325840, XM_007199, Figure 3888: PRO71096 gen.XM_007199 Figure 3889: DNA325823, NM_014887, Figure 3924: DNA325841, XM_016351, gen.NM_014887 gen.XM_016351 Figure 3890: PRO82289 Figure 3925: DNA325842, XM_041209, Figure 3891: DNA325824, NM_002915, gen.XM_041209 gen.NM_002915 Figure 3926: DNA325843, XM_058611, Figure 3892: PRO82290 gen.XM_058611

Figure 3927: PRO82305 Figure 3961: PRO82325 Figure 3928: DNA325844, XM_041473, Figure 3962: DNA210180, NM_005132, gen.XM_041473 gen.NM_005132 Figure 3929: PRO82306 Figure 3963: PRO33717 Figure 3930: DNA325845, XM_032443, Figure 3964: DNA325867, XM_033337, gen.XM_033337 gen.XM_032443 Figure 3931: DNA325847, XM_048957, Figure 3965: PRO82326 gen.XM_048957 Figure 3966: DNA325868, XM_096772, Figure 3932: DNA325848, XM_015842, gen.XM_096772 gen.XM_015842 Figure 3967: DNA325869, XM_007293, Figure 3933: DNA325849, XM_084997, gen.XM_007293 gen.XM_084997 Figure 3968: DNA325870, XM_007288, Figure 3934: PRO82311 gen.XM_007288 Figure 3935: DNA325850, NM _024089, Figure 3969A-B: DNA325871, XM_033391, gen.NM_024089 gen.XM_033391 Figure 3936: PRO82312 Figure 3970: PRO82329 Figure 3937A-B: DNA325851, XM_049904, Figure 3971: DNA325872, NM_017815, gen.NM_017815 gen.XM_049904 Figure 3938: DNA325852, NM_024537, Figure 3972: PRO82330 Figure 3973: DNA325873, NM_006109, gen.NM_024537 Figure 3939: PRO82314 gen.NM_006109 Figure 3940: DNA325853, NM_023011, Figure 3974: PRO82331 gen.NM_023011 Figure 3975: DNA325874, XM_033435, Figure 3941: PRO82315 gen.XM_033435 Figure 3942: DNA325854, NM_080687, Figure 3976: DNA225865, NM_004995, gen.NM_080687 gen.NM_004995 Figure 3943: PRO82316 Figure 3977: PRO36328 Figure 3944: DNA325855, XM_041484, Figure 3978: DNA325875, XM_058647, gen.XM_041484 gen.XM_058647 Figure 3945: PRO82317 Figure 3979: PRO82333 Figure 3946A-B: DNA325856, XM_113752, Figure 3980: DNA325876, XM_033445, gen.XM_113752 gen.XM_033445 Figure 3947: PRO82318 Figure 3981: DNA325877, NM_005015, Figure 3948: DNA325857, XM_115215, gen.NM_005015 gen.XM_115215 Figure 3982: PRO82334 Figure 3949: DNA325858, XM_046651, Figure 3983: DNA325878, XM_012377, gen.XM_046651 gen.XM_012377 Figure 3950: DNA325859, XM_046648, Figure 3984: DNA227321, NM_001344, gen.XM_046648 gen.NM_001344 Figure 3951: DNA325860, XM_046642, Figure 3985: PRO37784 gen.XM_046642 Figure 3986: DNA325879, XM_058646, Figure 3952: PRO10404 gen.XM_058646 Figure 3953: DNA325861, XM_017914, Figure 3987: DNA325880, XM_085106, gen.XM_017914 gen.XM_085106 Figure 3954: PRO82321 Figure 3988: DNA325881, NM_019852, Figure 3955: DNA325862, XM_085166, gen.NM_019852 gen.XM_085166 Figure 3989: PRO82338 Figure 3956: PRO82322 Figure 3990: DNA325882, XM_012376, Figure 3957: DNA325863, XM_007316, gen.XM_012376 gen.XM_007316 Figure 3991: DNA325883, XM_033553, Figure 3958: DNA325864, XM_007315, gen.XM_033553 gen.XM_007315 Figure 3992: DNA226105, NM_002934, Figure 3959: DNA325865, XM_033251, gen.NM_002934 gen.XM_033251 Figure 3993: PRO36568 Figure 3960: DNA325866, NM_024658, Figure 3994: DNA325884, XM_033595, gen.NM_024658 gen.XM_033595

Figure 4031: DNA325905, XM _085125, Figure 3995: PRO2871 Figure 3996: DNA325885, XM_007491, gen.XM_085125 Figure 4032: DNA325906, XM_031025, gen.XM_007491 Figure 3997: DNA325886, NM_001641, gen.XM_031025 Figure 4033: DNA325907, XM_085066, gen.NM_001641 Figure 3998: PRO82342 gen.XM_085066 Figure 4034: DNA325908, XM_096744, Figure 3999: DNA325887, NM_080648, gen.XM_096744 gen.NM_080648 Figure 4035: DNA325909, NM_016445, Figure 4000: PRO82343 Figure 4001: DNA325888, NM_080649, gen.NM_016445 gen.NM_080649 Figure 4036: PRO82364 Figure 4037: DNA325910, NM_016026, Figure 4002: PRO82344 Figure 4003: DNA325889, NM_017807, gen.NM_016026 Figure 4038: PRO82365 gen.NM_017807 Figure 4039: DNA325911, XM_031074, Figure 4004: PRO82345 gen.XM_031074 Figure 4005A-C: DNA325890, XM_007488, Figure 4040: DNA325912, NM_001102, gen.XM_007488 gen.NM_001102 Figure 4006: DNA325891, NM_021178, Figure 4041: PRO82367 gen.NM_021178 Figure 4007: PRO82347 Figure 4042: DNA225649, NM_022137, gen.NM_022137 Figure 4008: DNA325892, XM_041235, gen.XM_041235 Figure 4043: PRO36112 Figure 4044: DNA325913, XM_085065, Figure 4009: PRO82348 gen.XM_085065 Figure 4010: DNA325893, NM_002028, Figure 4045: DNA325914, XM_007441, gen.NM_002028 Figure 4011: PRO82349 gen.XM_007441 Figure 4012: DNA325894, NM_002083, Figure 4046: DNA325915, NM_006821, gen.NM_006821 gen.NM_002083 Figure 4047: PRO82369 Figure 4013: PRO82350 Figure 4014A-B: DNA325895, XM_085127, Figure 4048: DNA325916, NM_006432, gen.XM_085127 gen.NM_006432 Figure 4049: PRO2066 Figure 4015: PRO82351 Figure 4016A-B: DNA325896, NM_001530, Figure 4050A-B: DNA325917, XM_085151, gen.XM_085151 gen.NM_001530 Figure 4051: PRO82370 Figure 4017: PRO82352 Figure 4052: DNA325918, NM_002632, Figure 4018: DNA325897, XM_058210, gen.NM_002632 gen.XM_058210 Figure 4019: DNA325898, XM_085141, Figure 4053: PRO82371 Figure 4054: DNA325919, XM_085162, gen.XM_085141 Figure 4020: DNA325899, NM_021728, gen.XM_085162 Figure 4055: DNA325920, NM_012111, gen.NM_021728 gen.NM_012111 Figure 4021: PRO82355 Figure 4056: PRO82373 Figure 4022: DNA325900, NM_002306, gen.NM_002306 Figure 4057: DNA325921, NM_024824, gen.NM_024824 Figure 4023: PRO82356 Figure 4024: DNA325901, XM_007328, Figure 4058: PRO82374 Figure 4059: DNA269498, NM_002802, gen.XM_007328 gen.NM_002802 Figure 4025A-B: DNA325902, XM_051712, Figure 4060: PRO57917 gen.XM_051712 Figure 4061: DNA325922, XM_058677, Figure 4026: PRO82357 gen.XM_058677 Figure 4027: DNA325903, XM_007324, Figure 4062: PRO82375 gen.XM_007324 Figure 4063: DNA325923, NM_006888. Figure 4028: PRO82358 gen.NM_006888 Figure 4029: DNA325904, NM_002863, Figure 4064: PRO4904 gen.NM_002863 Figure 4030: PRO82359 Figure 4065: DNA325924, NM_001275,

Figure 4099; PRO82391 gen.NM_001275 Figure 4100: DNA325945, XM_040898, Figure 4066: PRO2054 gen.XM_040898 Figure 4067: DNA325925, XM_029288, Figure 4101: DNA325946, NM_005432, gen.XM_029288 gen.NM_005432 Figure 4068A-B: DNA325926, XM_016487, Figure 4102: PRO60070 gen.XM_016487 Figure 4103A-B: DNA325947, XM_050278, Figure 4069: DNA325927, NM _020414, gen.XM_050278 gen.NM_020414 Figure 4104: PRO82393 Figure 4070: PRO62099 Figure 4105: DNA325948, XM_113759, Figure 4071: DNA325928, XM_016486, gen.XM_113759 gen.XM_016486 Figure 4106: DNA325949, NM_006427, Figure 4072: DNA325929, XM_007483, gen.NM_006427 gen.XM_007483 Figure 4107: PRO82395 Figure 4073: DNA325930, XM_028358, Figure 4108: DNA325950, NM_021709, gen.XM_028358 gen.NM_021709 Figure 4074: DNA325931, XM_028347, Figure 4109: PRO82396 gen.XM_028347 Figure 4110: DNA103509, NM_005163, Figure 4075: DNA325932, XM_028322, gen.NM_005163 gen.XM_028322 Figure 4076: PRO82381 Figure 4111: PRO4836 Figure 4112: DNA325951, NM_017955, Figure 4077: DNA325933, XM_056317, gen.NM_017955 gen.XM_056317 Figure 4113: PRO82397 Figure 4078: PRO82382 Figure 4114: DNA325952, XM_088588, Figure 4079: DNA151893, NM_021966, gen.XM_088588 gen.NM_021966 Figure 4115: DNA325953, XM_060012, Figure 4080: PRO12916 gen.XM_060012 Figure 4081: DNA325934, XM_007272, Figure 4116: DNA325954, XM_034953, gen.XM_007272 gen.XM_034953 Figure 4082: DNA325935, XM_090914, Figure 4117: PRO82400 gen.XM_090914 Figure 4118: DNA325955, XM_058636, Figure 4083: PRO82383 gen.XM_058636 Figure 4084: DNA325936, NM_022747, Figure 4119: DNA325956, XM_035014, gen.NM_022747 gen.XM_035014 Figure 4085: PRO82384 Figure 4120: DNA325957, XM_088587, Figure 4086: DNA325937, XM_041014, gen.XM_088587 gen.XM_041014 Figure 4121: DNA325958, XM_088589, Figure 4087: PRO60575 gen.XM_088589 Figure 4088: DNA325938, NM .003836, Figure 4122: DNA325959, XM_071801, gen.NM_003836 gen.XM_071801 Figure 4089: PRO82385 Figure 4123: DNA325960, XM_018054, Figure 4090A-B: DNA325939, XM_040952, gen.XM_018054 gen.XM_040952 Figure 4124: DNA325961, XM_091108, Figure 4091: DNA325940, XM_058618, gen.XM_091108 gen.XM_058618 Figure 4125A-B: DNA325962, XM_039225, Figure 4092: DNA325941, NM _005348, gen.XM_039225 gen.NM_005348 Figure 4126: PRO82408 Figure 4093: PRO82388 Figure 4127: DNA325963, XM_165921, Figure 4094: DNA325942, XM_040942, gen.XM_165921 gen.XM_040942 Figure 4128: PRO82409 Figure 4095: DNA226324, NM_014226, Figure 4129: DNA325964, XM_007751, gen.NM_014226 gen.XM_007751 Figure 4096: PRO36787 Figure 4130: DNA325965, XM_085203, Figure 4097A-B: DNA325943, XM .007254, gen.XM_085203 gen.XM_007254 Figure 4131: PRO82411 Figure 4098A-B: DNA325944, NM_001969, Figure 4132: DNA325966, XM_085204, gen.NM_001969

Figure 4167A-B: DNA325986, XM_007531. gen.XM_085204 gen.XM_007531 Figure 4133: DNA325967, XM_012398, Figure 4168: DNA325987, NM_014444, gen.XM_012398 gen.NM_014444 Figure 4134A-B: DNA325968, XM_036727, Figure 4169: PRO82431 gen.XM_036727 Figure 4170A-B: DNA227206, NM _005657, Figure 4135: DNA325969, XM_017240, gen.NM_005657 gen.XM_017240 Figure 4171: PRO37669 Figure 4136: DNA325970, NM_020149, Figure 4172: DNA325988, NM_020990, gen.NM_020149 gen.NM_020990 Figure 4137: PRO82415 Figure 4173: PRO82432 Figure 4138A-B: DNA325971, XM_031617, Figure 4174: DNA325989, NM_005313, gen.XM_031617 gen.NM_005313 Figure 4139A-B: DNA325972, NM _001211, Figure 4175: PRO2732 gen.NM_001211 Figure 4176: DNA325990, NM_005770, Figure 4140: PRO82417 gen.NM_005770 Figure 4141A-B: DNA151831, NM _004573, Figure 4177: PRO82433 gen.NM_004573 Figure 4178: DNA325991, NM_004048, Figure 4142: PRO12198 gen.NM_004048 Figure 4143: DNA325973, NM_130468, Figure 4179: PRO4379 gen.NM_130468 Figure 4180: DNA325992, XM_032403, Figure 4144: PRO82418 gen.XM_032403 Figure 4145: DNA325974, XM_031554, Figure 4181: PRO82434 gen.XM_031554 Figure 4182: DNA219233, NM _014335, Figure 4146: PRO82419 gen.NM_014335 Figure 4147: DNA325975, XM_031515, Figure 4183: PRO34557 gen.XM_031515 Figure 4184A-C: DNA325993, XM _034890, Figure 4148: DNA325976, NM_024111, gen.XM_034890 gen.NM_024111 Figure 4185: PRO82435 Figure 4149: PRO82421 Figure 4186: DNA325994, XM_058684, Figure 4150: DNA325977, NM_032196, gen.XM_058684 gen.NM_032196 Figure 4187: DNA325995, NM_003104, Figure 4151: PRO82422 gen.NM_003104 Figure 4152: DNA325978, NM_016359, Figure 4188: PRO82437 gen.NM_016359 Figure 4189: DNA325996, XM_007651, Figure 4153: PRO82423 gen.XM_007651 Figure 4154: DNA325979, NM_018454, Figure 4190: PRO82438 gen.NM_018454 Figure 4191: DNA325997, XM_090991, Figure 4155: PRO82424 gen.XM_090991 Figure 4156A-B: DNA325980, XM_007545, Figure 4192: PRO82439 gen.XM_007545 Figure 4193: DNA325998, NM_016304, Figure 4157: DNA325981, XM_091159, gen.NM_016304 gen.XM_091159 Figure 4194: PRO82440 Figure 4158: PRO82425 Figure 4195: DNA325999, NM_017610, Figure 4159: DNA325982, XM_031718, gen.NM_017610 gen.XM_031718 Figure 4196: PRO82441 Figure 4160: DNA325983, XM_085307, Figure 4197: DNA326000, NM_004701, gen.XM_085307 gen.NM_004701 Figure 4161: DNA227559, NM ..000070, Figure 4198: PRO82442 gen.NM_000070 Figure 4199A-B: DNA326001, XM _012418, Figure 4162: PRO38022 gen.XM_012418 Figure 4163A-B: DNA325984, XM_113823, Figure 4200: DNA326002, XM_039702, gen.XM_113823 gen.XM_039702 Figure 4164: PRO82428 Figure 4201: PRO82444 Figure 4165: DNA325985, XM_016713, Figure 4202: DNA326003, XM_113266, gen.XM_016713 gen.XM_113266 Figure 4166: PRO82429

Figure 4203: DNA326004, NM_001218, Figure 4238: PRO82460 gen.NM_001218 Figure 4239: DNA326022, XM_015366, Figure 4204: PRO54594 gen.XM_015366 Figure 4205: DNA326005, NM_015920, Figure 4240: PRO82461 gen.NM_015920 Figure 4241: DNA326023, XM_096060, Figure 4206: PRO82446 gen.XM_096060 Figure 4207: DNA326006, XM_113268, Figure 4242: DNA287331, NM_002654, gen.XM_113268 gen.NM_002654 Figure 4208: DNA255340, NM_017684, Figure 4243: PRO69595 gen.NM_017684 Figure 4244: DNA326024, XM_037778, Figure 4209: PRO50409 gen.XM_037778 Figure 4210: DNA326007, NM_002537, Figure 4245: DNA326025, XM_096842, gen.NM_002537 gen.XM_096842 Figure 4211: DNA326008, XM_085283, Figure 4246: DNA326026, NM_022369, gen.XM_085283 gen.NM_022369 Figure 4212: PRO82448 Figure 4247: PRO82465 Figure 4213: DNA326009, XM_016985, Figure 4248: DNA326027, NM_032907, gen.XM_016985 gen.NM_032907 Figure 4214: DNA234442, NM_014736, Figure 4249: PRO82466 gen.NM_014736 Figure 4250: DNA326028, XM_058699, Figure 4215: PRO38852 gen.XM_058699 Figure 4216: DNA326010, NM_022048, Figure 4251: DNA326029, XM_118637. gen.NM_022048 gen.XM_118637 Figure 4217: PRO82450 Figure 4252: DNA326030, XM_053585, Figure 4218: DNA326011, NM_000942, gen.XM_053585 gen.NM_000942 Figure 4253: PRO82469 Figure 4219: PRO2720 Figure 4254: DNA326031, XM_085239, Figure 4220: DNA326012, XM_050964, gen.XM_085239 gen.XM_050964 Figure 4255: PRO82470 Figure 4221: DNA326013, XM_007623, Figure 4256: DNA326032, XM_034897, gen.XM_007623 gen.XM_034897 Figure 4222A-B: DNA326014, NM_133375, Figure 4257A-B: DNA326033, XM_057020, gen.NM_133375 gen.XM_057020 Figure 4223: PRO82453 Figure 4258: PRO82472 Figure 4224: DNA226646, NM_017882, Figure 4259: DNA326034, NM_000743, gen.NM_017882 gen.NM_000743 Figure 4225: PRO37109 Figure 4260: PRO61219 Figure 4226: DNA326015, NM_015322, Figure 4261: DNA326035, NM_002789, gen.NM_015322 gen.NM_002789 Figure 4227: PRO82454 Figure 4262: PRO60499 Figure 4228: DNA326016, NM_001003, Figure 4263: DNA326036, XM_091100, gen.NM_001003 gen.XM_091100 Figure 4229: PRO82455 Figure 4264: PRO82473 Figure 4230A-B: DNA326017, XM_051463, Figure 4265: DNA255370, NM_012170, gen.XM_051463 gen.NM_012170 Figure 4231: PRO82456 Figure 4266: PRO50438 Figure 4232: DNA326018, NM_018357. Figure 4267: DNA273014, NM_000126, gen.NM_018357 gen.NM_000126 Figure 4233: PRO82457 Figure 4268: PRO61085 Figure 4234: DNA326019, XM_063639, Figure 4269: DNA326037, XM_044565, gen.XM_063639 gen.XM_044565 Figure 4235: PRO82458 Figure 4270: DNA326038, NM_025234, Figure 4236: DNA326020, XM_085249, gen.NM_025234 gen.XM_085249 Figure 4271: PRO82475 Figure 4237: DNA326021, XM_016076, Figure 4272: DNA326039, XM_044569, gen.XM_016076 gen.XM_044569

Figure 4273: DNA326040, NM_005724, Figure 4307A-B: DNA326060, XM_044533, gen.XM_044533 gen.NM_005724 Figure 4308: PRO82495 Figure 4274: PRO730 Figure 4275: DNA326041, XM_049354, Figure 4309A-C: DNA326061, XM_054900, gen.XM_049354 gen.XM_054900 Figure 4310: DNA326062, NM_032162, Figure 4276: PRO82477 Figure 4277: DNA326042, NM_007364, gen.NM_032162 Figure 4311A-B: DNA326063, XM_015835, gen.NM_007364 Figure 4278: DNA326043, XM_044593, gen.XM_015835 gen.XM_044593 Figure 4312: DNA326064, NM_018668, gen.NM_018668 Figure 4279: DNA326044, NM_006791, Figure 4313: PRO82499 gen.NM_006791 Figure 4314: DNA326065, XM_085262, Figure 4280: PRO82479 gen.XM_085262 Figure 4281: DNA326045, XM_060042, Figure 4315: DNA326066, NM _033544, gen.XM_060042 Figure 4282: DNA326046, XM_085215, gen.NM_033544 Figure 4316: PRO82501 gen.XM_085215 Figure 4317: DNA326067, XM_049372, Figure 4283: DNA326047, NM_001021, gen.XM_049372 gen.NM_001021 Figure 4318: PRO82502 Figure 4284: PRO82482 Figure 4319: DNA326068, XM_017971, Figure 4285: DNA326048, XM_031404, gen.XM_017971 gen.XM_031404 Figure 4320: DNA275181, NM_003090, Figure 4286: DNA326049, XM_096844, gen.NM_003090 gen.XM_096844 Figure 4321: PRO62882 Figure 4287: DNA326050, XM_045681, Figure 4322: DNA326069, XM_012462, gen.XM_045681 gen.XM_012462 Figure 4288: PRO82485 Figure 4323A-B: DNA326070, XM_085525, Figure 4289: DNA326051, XM_085280, gen.XM_085280 gen.XM_085525 Figure 4290: DNA326052, NM_022839, Figure 4324: PRO82505 gen.NM_022839 Figure 4325: DNA326071, XM_165923, Figure 4291: PRO82487 gen.XM_165923 Figure 4326: DNA326072, XM_113836, Figure 4292: DNA326053, XM_031354, gen.XM_113836 gen.XM_031354 Figure 4327: DNA326073, NM_017668, Figure 4293: DNA326054, NM.002168, gen.NM_017668 gen.NM_002168 Figure 4328: PRO82508 Figure 4294: PRO82489 Figure 4329: DNA326074, XM_027309, Figure 4295: DNA326055, XM_031292, gen.XM_027309 gen.XM_031292 Figure 4330: PRO82509 Figure 4296: DNA326056, NM_022566, Figure 4331: DNA326075, XM_018432, gen.NM_022566 Figure 4297: PRO82491 gen.XM_018432 Figure 4298A-B: DNA326057, XM_051860, Figure 4332: PRO82510 Figure 4333: DNA326076, XM_115352, gen.XM_051860 Figure 4299: PRO82492 gen.XM_115352 Figure 4334: DNA326077, XM _027365, Figure 4300: DNA275144, NM_000137, gen.XM_027365 gen.NM_000137 Figure 4335: DNA326078, NM_016641, Figure 4301: PRO62852 Figure 4302: DNA326058, NM_016645, gen.NM_016641 Figure 4336: PRO38464 gen.NM_016645 Figure 4337: DNA326079, XM_058796, Figure 4303: PRO82493 gen.XM_058796 Figure 4304: DNA326059, XM_044523, Figure 4338: DNA326080, XM_017984, gen.XM_044523 gen.XM_017984 Figure 4305: DNA150485, NM _006384, Figure 4339: PRO82513 gen.NM_006384 Figure 4340: DNA326081, NM .020677, Figure 4306: PRO12774

gen.NM_020677 Figure 4377: PRO82524 Figure 4341: PRO82514 Figure 4378: DNA326097, NM_023936, Figure 4342: DNA326082, XM_036680, gen.NM_023936 gen.XM_036680 Figure 4379: PRO82525 Figure 4343: PRO37961 Figure 4380: DNA326098, XM_034590, Figure 4344A-B: DNA326083, XM_048119, gen.XM_034590 gen.XM_048119 Figure 4381: PRO82526 Figure 4345: PRO82515 Figure 4382: DNA326099, NM_002952, Figure 4346: DNA326084, NM_024589, gen.NM_002952 gen.NM_024589 Figure 4383: PRO82527 Figure 4347: PRO82516 Figure 4384: DNA326100, NM_006453, Figure 4348: DNA326085, XM_050534, gen.NM_006453 gen.XM_050534 Figure 4385: PRO82528 Figure 4349: PRO82517 Figure 4386: DNA326101, NM_014353, Figure 4350: DNA326086, NM_024571, gen.NM_014353 gen.NM_024571 Figure 4387: PRO82529 Figure 4351: PRO82518 Figure 4388: DNA326102, NM_032271, Figure 4352: DNA326087, XM_027558, gen.NM_032271 gen.XM_027558 Figure 4389: PRO82530 Figure 4353: DNA326088, XM_008126, Figure 4390: DNA326103, XM_028848, gen.XM_008126 gen.XM_028848 Figure 4354: DNA326089, NM _000517. Figure 4391: PRO82531 gen.NM_000517 Figure 4392: DNA326104, NM_006711, Figure 4355: PRO3629 gen.NM_006711 Figure 4356: DNA326090, NM_000558, Figure 4393: PRO82532 gen.NM_000558 Figure 4394: DNA326105, NM_080594, Figure 4357: PRO3629 gen.NM_080594 Figure 4358: DNA326091, NM_018032, Figure 4395: PRO82533 gen.NM_018032 Figure 4396: DNA326106, NM_024339, Figure 4359: PRO38311 gen.NM_024339 Figure 4360: DNA273839, NM_006428, Figure 4397: PRO82534 gen.NM_006428 Figure 4398: DNA326107, NM_016639, Figure 4361: PRO61799 gen.NM_016639 Figure 4362A-B: DNA256844, NM_005632, Figure 4399: PRO12683 gen.NM_005632 Figure 4400: DNA326108, NM_021195, Figure 4363: PRO51775 gen.NM_021195 Figure 4364: DNA326092, XM_083939, Figure 4401: PRO82535 Figure 4402: DNA326109, NM_004203, gen.XM_083939 Figure 4365: PRO82521 gen.NM_004203 Figure 4366: DNA326093, NM_058192, Figure 4403: PRO82536 gen.NM_058192 Figure 4404: DNA326110, XM_058784, Figure 4367: PRO82522 gen.XM_058784 Figure 4368: DNA326094, XM_027412, Figure 4405: PRO82537 gen.XM_027412 Figure 4406: DNA326111, NM_024507, Figure 4369: PRO82523 gen.NM_024507 Figure 4370: DNA256886, NM_014587, Figure 4407: PRO82538 gen.NM_014587 Figure 4408: DNA326112, NM_006799, Figure 4371: PRO51815 gen.NM_006799 Figure 4372A-B: DNA326095, NM_001287, Figure 4409: PRO303 gen.NM_001287 Figure 4410A-C: DNA326113, XM_036528, Figure 4373: PRO38480 gen.XM_036528 Figure 4374: DNA254781, NM_016111, Figure 4411: DNA326114, NM_025108, gen.NM_016111 gen.NM_025108 Figure 4375: PRO49879 Figure 4412: PRO82540 Figure 4376: DNA326096, XM_034586, Figure 4413A-C: DNA326115, XM_165411, gen.XM_034586 gen.XM_165411

gen.XM_085340 Figure 4414: DNA326116, NM_016292, Figure 4449: DNA326136, NM_003752, gen.NM_016292 gen.NM_003752 Figure 4415: PRO82542 Figure 4450: PRO60325 Figure 4416: DNA326117, NM _002484, Figure 4451: DNA326137, NM_012248, gen.NM_002484 gen.NM_012248 Figure 4417: PRO82543 Figure 4418: DNA326118, XM_113845, Figure 4452: PRO82560 Figure 4453A-B: DNA326138, XM_046035, gen.XM_113845 gen, XM_046035 Figure 4419: PRO82544 Figure 4454: DNA326139, NM_024671, Figure 4420: DNA326119, XM_113843, gen.NM_024671 gen.XM_113843 Figure 4455: PRO82562 Figure 4421: DNA97293, NM _003366, Figure 4456: DNA326140, NM_033410, gen.NM_003366 gen.NM_033410 Figure 4422: PRO3640 Figure 4457: PRO82563 Figure 4423: DNA326120, NM_006110, Figure 4458: DNA326141, NM_024031, gen.NM_006110 gen.NM_024031 Figure 4424: PRO82546 Figure 4459: PRO82564 Figure 4425: DNA326121, XM_085445, Figure 4460A-B: DNA326142, XM_034375, gen.XM_085445 gen.XM_034375 Figure 4426: DNA326122, XM_113876, Figure 4461: DNA326143, XM_012569, gen.XM_113876 gen.XM_012569 Figure 4427A-B: DNA326123, XM_055195, Figure 4462: DNA326144, XM_050194, gen.XM_055195 gen.XM_050194 Figure 4428: PRO82548 Figure 4463: DNA326145, XM_008106, Figure 4429: DNA326124, XM_113291, gen.XM_008106 gen.XM_113291 Figure 4464: PRO82567 Figure 4430A-B: DNA326125, XM_007988, Figure 4465: DNA326146, NM_004960, gen.XM_007988 gen.NM_004960 Figure 4431: DNA326126, XM_113874, Figure 4466: PRO82568 gen.XM_113874 Figure 4467: DNA326147, XM_113293, Figure 4432: DNA326127, XM_102377, gen.XM_113293 gen.XM_102377 Figure 4468: DNA326148, NM_022744, Figure 4433: PRO82551 gen.NM_022744 Figure 4434: DNA326128, XM_086278, Figure 4469: PRO82570 gen.XM_086278 Figure 4470: DNA326149, NM_024048, Figure 4435: DNA326129, XM_085452, gen.NM_024048 gen.XM_085452 Figure 4471: PRO82571 Figure 4436: DNA326130, NM_018054, Figure 4472: DNA326150, XM 018088, gen.NM_018054 gen.XM_018088 Figure 4437: PRO82554 Figure 4473: PRO82572 Figure 4438A-B: DNA326131, XM_056260, Figure 4474: DNA326151, XM_007963, gen.XM_056260 gen.XM_007963 Figure 4439: PRO82555 Figure 4475: PRO82573 Figure 4440: DNA326132, NM_032626, Figure 4476: DNA274002, NM_014321, gen.NM_032626 gen.NM_014321 Figure 4441: PRO82556 Figure 4477: PRO61948 Figure 4442: DNA326133, NM_005030, Figure 4478: DNA326152, XM_015700, gen.NM_005030 gen:XM_015700 Figure 4443: PRO82557 Figure 4479: DNA326153, XM_051219, Figure 4444: DNA326134, NM_032486, gen.XM_051219 gen.NM_032486 Figure 4480: DNA326154, XM_085393, Figure 4445: PRO82558 gen.XM_085393 Figure 4446: DNA289522, NM_005003, Figure 4481: PRO82576 gen.NM_005003 Figure 4482: DNA326155, XM_085395, Figure 4447: PRO70276 gen.XM_085395 Figure 4448: DNA326135, XM_085340,

Figure 4483: DNA326156, XM_091270, Figure 4518: DNA326174, NM_002720, gen.XM_091270 gen.NM_002720 Figure 4519: PRO42208 Figure 4484: DNA326157, XM_165656, Figure 4520: DNA287355, NM_000034, gen.XM_165656 gen.NM_000034 Figure 4485: DNA326158, NM_032330, Figure 4521: PRO69617 gen.NM_032330 Figure 4522: DNA326175, NM_031478, Figure 4486: PRO82579 Figure 4487: DNA254532, NM_001043, gen.NM_031478 gen.NM_001043 Figure 4523: PRO82593 Figure 4524: DNA326176, XM_085434, Figure 4488: PRO49639 gen.XM_085434 Figure 4489: DNA326159, XM_165658, Figure 4525: PRO82594 gen.XM_165658 Figure 4526: DNA326177, XM_058116, Figure 4490: DNA326160, XM_166285, gen.XM_058116 gen.XM_166285 Figure 4527: DNA326178, XM_165649, Figure 4491: DNA326161, XM_166282, gen.XM_165649 gen.XM_166282 Figure 4528: DNA326179, XM_165647, Figure 4492: PRO82582 gen.XM_165647 Figure 4493: DNA326162, XM_165657, Figure 4529: PRO82597 gen.XM_165657 Figure 4530: DNA194805, NM_014685, Figure 4494: PRO82583 gen.NM_014685 Figure 4495: DNA326163, NM_032038, Figure 4531: PRO24075 gen.NM_032038 Figure 4532: DNA326180, XM_166277, Figure 4496: PRO82584 gen.XM_166277 Figure 4497: DNA326164, XM_008065, Figure 4533: PRO82598 gen.XM_008065 Figure 4534: DNA326181, XM_165645, Figure 4498: DNA326165, NM_017458, gen.XM_165645 gen.NM_017458 Figure 4535: DNA326182, NM_018110, Figure 4499: PRO82585 Figure 4500: DNA326166, NM_005115, gen.NM_018110 Figure 4536: PRO82599 gen.NM_005115 Figure 4537: DNA326183, XM_165648, Figure 4501: PRO82586 gen.XM_165648 Figure 4502: DNA326167, NM_024516, Figure 4538: DNA326184, XM_167453, gen.NM_024516 gen.XM_167453 Figure 4503: PRO82587 Figure 4539: DNA326185, NM_022770, Figure 4504: DNA326168, XM_113299, gen.NM_022770 gen.XM_113299 Figure 4540: PRO82602 Figure 4505: DNA326169, XM_055771, Figure 4541: DNA326186, XM_167456, gen.XM_055771 gen.XM_167456 Figure 4506: PRO82589 Figure 4542: PRO82603 Figure 4507: DNA271171, NM_007317, Figure 4543: DNA326187, XM_058745, gen.NM_007317 gen.XM_058745 Figure 4508: PRO59491 Figure 4544: DNA326188, XM_091420, Figure 4509: DNA326170, XM_008064, gen.XM_008064 gen.XM_091420 Figure 4510: PRO82590 Figure 4545: DNA326189, NM_004691, gen.NM_004691 Figure 4511: DNA326171, NM_003123, Figure 4546: PRO82606 gen.NM_003123 Figure 4547: DNA326190, NM_000196, Figure 4512: PRO2355 gen.NM_000196 Figure 4513: DNA326172, XM _085442, Figure 4548: PRO82607 gen.XM_085442 Figure 4549A-B: DNA326191, NM_004360, Figure 4514: DNA326173, XM _055132, gen.NM_004360 gen.XM_055132 Figure 4550: PRO2672 Figure 4515: PRO82592 Figure 4516: DNA274180, NM_007074, Figure 4551: DNA326192, XM_039306, gen.XM_039306 gen.NM_007074 Figure 4552: PRO82608 Figure 4517: PRO62110

Figure 4553: DNA326193, NM_030579, gen.NM_018124 Figure 4589: PRO82623 gen.NM_030579 Figure 4590: DNA326210, XM_091399, Figure 4554: PRO82609 gen.XM_091399 Figure 4555: DNA326194, XM_012487, Figure 4591: PRO82624 gen.XM_012487 Figure 4592A-B: DNA326211, NM_014003, Figure 4556: DNA326195, NM _014062, gen.NM_014003 gen.NM_014062 Figure 4593: PRO82625 Figure 4557: PRO82611 Figure 4594: DNA326212, NM_017853, Figure 4558: DNA326196, XM_085471, gen.NM_017853 gen.XM_085471 Figure 4595: PRO82626 Figure 4559: PRO82612 Figure 4596: DNA326213, XM_042621, Figure 4560: DNA326197, XM_113855, gen.XM_042621 gen.XM_113855 Figure 4597: DNA326214, XM_064091, Figure 4561: DNA326198, XM_085475, gen.XM_064091 gen.XM_085475 Figure 4598: PRO82627 Figure 4562: DNA326199, XM_028151, Figure 4599: DNA326215, XM_085981, gen.XM_028151 gen.XM_085981 Figure 4563: PRO82615 Figure 4564: DNA275408, NM_001605, Figure 4600A-B: DNA326216, XM_051778, gen.XM_051778 gen.NM_001605 Figure 4601: PRO82629 Figure 4565: PRO63068 Figure 4602: DNA326217, NM_004483, Figure 4566: DNA326200, NM_007242, gen.NM_004483 gen.NM_007242 Figure 4603: PRO82630 Figure 4567: PRO82616 Figure 4604: DNA326218, NM_020188, Figure 4568: DNA189703, NM_005548, gen.NM_020188 gen.NM_005548 Figure 4605: PRO82631 Figure 4569: PRO22637 Figure 4606: DNA326219, XM_033922, Figure 4570: DNA326201, XM_113853, gen.XM_033922 gen.XM_113853 Figure 4607: PRO82632 Figure 4571: DNA326202, NM _032140, Figure 4608: DNA326220, XM_113840, gen.NM_032140 gen.XM_113840 Figure 4572: PRO82618 Figure 4609: PRO82633 Figure 4573: DNA326203, NM_030819, Figure 4610: DNA326221, NM_016095, gen.NM_030819 gen.NM_016095 Figure 4574: PRO82619 Figure 4611: PRO82634 Figure 4575: DNA304704, NM _005796, Figure 4612: DNA326222, NM_006067, gen.NM_005796 gen.NM_006067 Figure 4576: PRO71130 Figure 4613: PRO50658 Figure 4577: DNA326204, XM_043047, Figure 4614: DNA326223, NM_001861, gen.XM_043047 gen.NM_001861 Figure 4578: PRO49967 Figure 4615: PRO82635 Figure 4579: DNA88261, NM_001907, Figure 4616A-B: DNA326224, XM_085483, gen.NM_001907 gen.XM_085483 Figure 4580: PRO2719 Figure 4581A-B: DNA326205, NM _005072, Figure 4617: DNA326225, NM_017566, gen.NM_017566 gen.NM_005072 Figure 4618: PRO82637 Figure 4582: PRO4814 Figure 4619: DNA326226, XM_057150, Figure 4583: DNA326206, XM_165410, gen.XM_057150 gen.XM_165410 Figure 4620: PRO82638 Figure 4584: DNA326207, NM_017803, Figure 4621: DNA326227, XM_058739, gen.NM_017803 gen.XM_058739 Figure 4585: PRO82621 Figure 4622: DNA326228, XM_085327, Figure 4586A-B: DNA326208, NM _004555, gen.XM_085327 gen.NM_004555 Figure 4623: PRO82640 Figure 4587: PRO82622 Figure 4624: DNA326229, XM_047436, Figure 4588A-B: DNA326209, NM_018124,

gen.XM_047436	gen.XM_008509
Figure 4625: PRO82641	Figure 4659: DNA326251, XM_085687,
Figure 4626: DNA227234, NM_002386,	gen.XM_085687
•	
gen.NM_002386	Figure 4660: PRO82661
Figure 4627: PRO37697	Figure 4661: DNA326252, XM_027825,
Figure 4628: DNA326230, NM_014972,	gen.XM_027825
gen.NM_014972	Figure 4662: PRO82662
Figure 4629: PRO82642	Figure 4663: DNA326253, XM_053717,
Figure 4630: DNA326231, XM_071873,	gen.XM_053717
gen.XM_071873	Figure 4664: PRO82663
Figure 4631: PRO82643	Figure 4665: DNA326254, NM_005022,
Figure 4632: DNA326232, XM_047525,	gen.NM_005022
gen.XM_047525	Figure 4666: PRO62780
Figure 4633: DNA326233, NM_000977,	Figure 4667A-B: DNA326255, XM_028398,
gen.NM_000977	gen.XM_028398
Figure 4634: PRO82645	Figure 4668: PRO82664
Figure 4635: DNA326234, NM_033251,	Figure 4669: DNA326256, NM_000018,
gen.NM_033251	gen.NM_000018
Figure 4636: PRO82646	Figure 4670: PRO66265
Figure 4637: DNA326235, XM _085408,	Figure 4671: DNA326257, XM_008334,
gen.XM_085408	gen.XM_008334
Figure 4638: DNA326236, NM _004933,	Figure 4672: DNA326258, NM_024297,
gen.NM_004933	gen.NM_024297
Figure 4639: PRO2198	Figure 4673: PRO82665
Figure 4640: DNA326237, XM_113882,	Figure 4674: DNA326259, XM_113324,
gen.XM_113882	gen.XM_113324
Figure 4641: DNA326238, XM_010938,	Figure 4675: DNA326260, XM_012676,
gen.XM_010938	gen.XM_012676
Figure 4642: DNA326239, NM_006761,	Figure 4676: PRO82667
gen.NM_006761	Figure 4677: DNA326261, XM_085691,
Figure 4643: PRO39530	gen.XM_085691
Figure 4644A-B: DNA326240, XM_017096,	Figure 4678: DNA326262, XM_028417,
gen.XM_017096	gen.XM_028417
Figure 4645: DNA326241, XM_033714,	Figure 4679: PRO82669
gen.XM_033714	Figure 4680A-B: DNA326263, XM_041964,
Figure 4646A-B: DNA326242, XM_033689,	gen.XM_041964
gen.XM_033689	Figure 4681: PRO82670
Figure 4647: DNA326243, NM_002615,	Figure 4682: DNA326264, NM_019013,
gen.NM_002615	gen.NM_019013
Figure 4648: DNA326244, XM_056082,	Figure 4683: PRO82671
gen.XM_056082	Figure 4684: DNA326265, XM_008538,
Figure 4649: PRO82654	gen.XM_008538
Figure 4650: DNA326245, XM_008557,	Figure 4685: PRO82672
gen.XM_008557	Figure 4686: DNA326266, XM_008441,
Figure 4651: DNA326246, XM_045183,	gen.XM_008441
gen.XM_045183	Figure 4687: DNA97300, NM_001416,
Figure 4652: PRO82656	gen.NM_001416
Figure 4653: DNA326247, XM_113901,	Figure 4688: PRO3647
gen.XM_113901	Figure 4689: DNA326267, NM _004870,
Figure 4654: DNA326248, NM_080822,	gen.NM_004870
gen.NM_080822	Figure 4690: PRO82674
Figure 4655: PRO82658	Figure 4691: DNA326268, NM_006942,
Figure 4656A-B: DNA326249, XM_029438,	gen.NM_006942
gen.XM_029438	Figure 4692: PRO82675
Figure 4657: PRO82659	Figure 4693: DNA326269, XM_008679,
Figure 4658: DNA326250, XM 2008509,	gen.XM_008679
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Paris 211 - 100001>

gen.XM_051763 Figure 4694: DNA326270, XM_008231, Figure 4728: DNA290292, NM_018955, gen.XM_008231 gen.NM_018955 Figure 4695: DNA326271, XM_113328, Figure 4729: PRO70449 gen.XM_113328 Figure 4730: DNA326289, XM_058900, Figure 4696: DNA326272, XM_113929, gen.XM_058900 gen.XM_113929 Figure 4731: PRO82691... Figure 4697: DNA326273, NM_001970, Figure 4732: DNA326290, XM_039921, gen.NM_001970 gen.XM_039921 Figure 4698: PRO82678 Figure 4733: PRO82692 Figure 4699: DNA297388, NM_004217, Figure 4734: DNA326291, XM_012549, gen.NM_004217 gen.XM_012549 Figure 4700: PRO70812 Figure 4735: DNA326292, XM _085548, Figure 4701: DNA326274, XM_165421, gen.XM_085548 gen.XM_165421 Figure 4736: PRO82694 Figure 4702: PRO82679 Figure 4737: DNA326293, NM_018019, Figure 4703: DNA326275, XM_113325, gen.NM_018019 gen.XM_113325 Figure 4738: PRO82695 Figure 4704: DNA326276, XM_165422, Figure 4739: DNA326294, NM_138427, gen.XM_165422 gen.NM_138427 Figure 4705: PRO49182 Figure 4740: PRO82696 Figure 4706: DNA326277, XM_113931, Figure 4741: DNA326295, XM_085545, gen.XM_113931 gen.XM_085545 Figure 4707: DNA326278, XM_036659, Figure 4742A-B: DNA227084, NM_004176, gen.XM_036659 gen.NM_004176 Figure 4708: DNA103401, NM_003876, Figure 4743: PRO37547 gen.NM_003876 Figure 4744: DNA326296, XM_012615, Figure 4709: PRO4729 gen.XM_012615 Figure 4710A-B: DNA326279, XM_042698, Figure 4745: DNA326297, XM_085722, gen.XM_042698 gen.XM_085722 Figure 4711: PRO82683 Figure 4746: PRO82699 Figure 4712A-B: DNA326280, XM_017234, Figure 4747: DNA255414, NM _018242, gen.XM_017234 gen.NM_018242 Figure 4713: DNA326281, XM_165418, Figure 4748: PRO50481 gen.XM_165418 Figure 4714: DNA304715, NM_000987, Figure 4749: DNA326298, XM_045044, gen.XM_045044 gen.NM_000987 Figure 4750: DNA326299, XM _008323, Figure 4715: PRO71141 gen.XM_008323 Figure 4716A-B: DNA326282, NM_004618, Figure 4751: DNA326300, XM_045535, gen.NM_004618 gen.XM_045535 Figure 4717: PRO62981 Figure 4752A-B: DNA326301, XM_045551, Figure 4718: DNA326283, XM .085743, gen.XM_045551 gen.XM_085743 Figure 4753: PRO82702 Figure 4719A-B: DNA254198, NM_002018, Figure 4754: DNA326302, XM _097204, gen.NM_002018 Figure 4720: PRO49310 gen, XM_097204 Figure 4755: DNA326303, XM_058867, Figure 4721A-B: DNA326284, XM_039910, gen.XM_058867 gen.XM_039910 Figure 4756: PRO82704 Figure 4722: PRO82687 Figure 4757: DNA326304, XM_085672, Figure 4723A-C: DNA326285, XM_113310, gen.XM_085672 gen.XM_113310 Figure 4758: DNA326305, XM_031536, Figure 4724: DNA326286, XM _085613, gen.XM_031536 gen.XM_085613 Figure 4759: PRO82706 Figure 4725: DNA326287, NM_006470, Figure 4760: DNA326306, XM _008486, gen.NM_006470 gen.XM_008486 Figure 4726: PRO82689 Figure 4761: DNA326307, NM_015584, Figure 4727: DNA326288, XM_051763,

gen.NM_015584 Figure 4762: PRO82707 Figure 4763: DNA326308, NM_000638, gen.NM_000638 Figure 4764: PRO82708 Figure 4765A-B: DNA326309, XM_031466, gen.XM_031466 Figure 4766: PRO82709 Figure 4767: DNA326310, XM_031415, gen.XM_031415 Figure 4768: DNA326311, XM_117066, gen.XM_117066 Figure 4769: DNA326312, XM_031427, gen.XM_031427 Figure 4770: PRO82712 Figure 4771: DNA326313, NM_032322, gen.NM_032322 Figure 4772: PRO82713 Figure 4773A-B: DNA326314, XM_050101, gen.XM_050101 Figure 4774: PRO82714 Figure 4775: DNA326315, XM_056730, gen.XM_056730 Figure 4776: PRO82715 Figure 4777: DNA326316, XM_008462, gen.XM_008462 Figure 4778: DNA287427, NM_002815, gen.NM_002815 Figure 4779: PRO69684 Figure 4780: DNA326317, NM _015544, gen.NM_015544 Figure 4781: PRO82717 Figure 4782: DNA188351, NM_005623, gen.NM_005623 Figure 4783: PRO21887 Figure 4784: DNA326318, NM _002878, gen.NM_002878 Figure 4785: PRO82718 Figure 4786: DNA326319, NM_133627, gen.NM_133627 Figure 4787: PRO82719 Figure 4788: DNA326320, NM_133630, gen.NM_133630 Figure 4789: PRO82720 Figure 4790: DNA326321, NM_133629, gen.NM_133629 Figure 4791: PRO82721 Figure 4792: DNA326322, NM_018096, gen.NM_018096 Figure 4793: PRO37791 Figure 4794A-B: DNA326323, XM_039474, gen.XM_039474 Figure 4795: PRO82722 Figure 4796A-B: DNA66475, NM_004448,

gen.NM_004448

Figure 4797: PRO1204

Figure 4798: DNA326324, NM_000981, gen.NM_000981 Figure 4799: PRO4738 Figure 4800A-B: DNA326325, XM_008150, gen.XM_008150 Figure 4801: DNA326326, NM_000978, gen.NM_000978 Figure 4802: PRO82724 Figure 4803: DNA326327, XM_058830, gen.XM_058830 Figure 4804: PRO82725 Figure 4805: DNA270979, NM_002809, gen.NM_002809 Figure 4806: PRO59309 Figure 4807: DNA326328, NM_000422, gen.NM_000422 Figure 4808: PRO82726 Figure 4809: DNA326329, XM_008579, gen.XM_008579 Figure 4810: DNA326330, NM_002276, gen.NM_002276 Figure 4811: PRO82728 Figure 4812: DNA272889, NM _002275, gen.NM_002275 Figure 4813: PRO60979 Figure 4814: DNA326331, NM_002274, gen.NM_002274 Figure 4815: PRO82729 Figure 4816: DNA326332, NM .000526, gen.NM_000526 Figure 4817: PRO82730 Figure 4818: DNA326333, XM_049937, gen.XM_049937 Figure 4819A-B: DNA326334, XM_113334, gen.XM_113334 Figure 4820: DNA226389, NM _000964, gen.NM_000964 Figure 4821: PRO36852 Figure 4822: DNA326335, NM_006455, gen.NM_006455 Figure 4823: PRO82732 Figure 4824: DNA326336, XM_113938, gen.XM_113938 Figure 4825: DNA326337, XM _036465, gen.XM_036465 Figure 4826: DNA326338, XM_055061, gen.XM_055061 Figure 4827A-B: DNA326339, XM_036462, gen.XM_036462 Figure 4828: PRO82736 Figure 4829: DNA326340, XM _048654, gen.XM_048654 Figure 4830: DNA326341, NM_025197, gen.NM_025197 Figure 4831: PRO82737 Figure 4832: DNA326342, XM_054038,

Figure 4868: PRO82754 gen.XM_054038 Figure 4869: DNA326359, XM_008402, Figure 4833: PRO82738 gen.XM_008402 Figure 4834: DNA326343, NM _002265, Figure 4870: PRO82755 gen.NM_002265 Figure 4871: DNA326360, NM_017595, Figure 4835: PRO82739 gen.NM_017595 Figure 4836: DNA326344, XM_032201, Figure 4872: PRO82756 gen.XM_032201 Figure 4873: DNA326361, XM_085636, Figure 4837: PRO82740 gen.XM_085636 Figure 4838: DNA326345, NM_012138, Figure 4874: PRO82757 gen.NM_012138 Figure 4875: DNA326362, NM_006373, Figure 4839: PRO82741 gen.NM_006373 Figure 4840: DNA326346, XM_018534, Figure 4876: PRO82758 gen.XM_018534 Figure 4877: DNA196642, NM_005440, Figure 4841: DNA227873, NM_001050, gen.NM_005440 gen.NM_001050 Figure 4878: PRO25115 Figure 4842: PRO38336 Figure 4879A-B: DNA270901, NM_004247, Figure 4843: DNA270975, NM_000386, gen.NM_000386 gen.NM_004247 Figure 4880: DNA326363, XM_050159, Figure 4844: PRO59305 gen.XM_050159 Figure 4845: DNA88378, NM_002087, Figure 4881: DNA326364, XM_083983, gen.NM_002087 gen.XM.083983 Figure 4846: PRO2769 Figure 4882: PRO82760 Figure 4847: DNA326347, NM_016016, Figure 4883A-B: DNA326365, NM_021079, gen.NM_016016 gen.NM_021079 Figure 4848: PRO82743 Figure 4884: PRO82761 Figure 4849: DNA326348, XM_012642, Figure 4885: DNA326366, NM_133373, gen.XM_012642 gen.NM_133373 Figure 4850A-B: DNA326349, NM_005474, gen.NM_005474 Figure 4886: PRO82762 Figure 4887: DNA97290, NM_002512, Figure 4851: PRO82745 gen.NM_002512 Figure 4852: DNA326350, XM_045901, Figure 4888: PRO3637 gen.XM_045901 Figure 4889: DNA227071, NM_000269, Figure 4853: PRO82746 gen.NM_000269 Figure 4854: DNA257428, NM ..032376, Figure 4890: PRO37534 gen.NM_032376 Figure 4891: DNA227764, NM_003971, Figure 4855: PRO52010 gen.NM_003971 Figure 4856: DNA326351, XM_008351, Figure 4892: PRO38227 gen.XM_008351 Figure 4893A-B: DNA326367, NM_020038, Figure 4857: DNA326352, XM_032852, gen.NM_020038 gen.XM_032852 Figure 4894: PRO82763 Figure 4858: PRO82748 Figure 4895A-B: DNA326368, NM_020037, Figure 4859: DNA326353, NM _025233, gen.NM_025233 gen.NM_020037 Figure 4896: PRO82764 Figure 4860: PRO82749 Figure 4861: DNA326354, XM_032817, Figure 4897: DNA326369, XM_037971, gen.XM_037971 gen.XM_032817 Figure 4898: DNA254791, NM_018346, Figure 4862: PRO82750 gen.NM_018346 Figure 4863: DNA326355, XM_032813, Figure 4899: PRO49888 gen.XM_032813 Figure 4900: DNA287425, NM_018509, Figure 4864: DNA326356, XM_032766, gen.NM_018509 gen.XM_032766 Figure 4901: PRO69682 Figure 4865: DNA326357, NM_003766, Figure 4902A-B: DNA326370, XM_008432, gen.NM_003766 gen.XM_008432 Figure 4866: PRO82753 Figure 4903: DNA88554, NM_000250, Figure 4867: DNA326358, XM_008401, gen.NM_000250 gen.XM_008401

gen.XM_044367

Figure 4939: DNA227055, NM_002634, Figure 4904: PRO2839 gen.NM_002634 Figure 4905: DNA326371, XM_113919, Figure 4940: PRO37518 gen.XM_113919 Figure 4941: DNA326390, XM_011118, Figure 4906: DNA326372, NM_017777, gen.XM_011118 gen.NM_017777 Figure 4942: DNA326391, XM_055199, Figure 4907: PRO82768 gen.XM_055199 Figure 4908: DNA326373, NM .006924, Figure 4943A-B: DNA326392, XM_044372, gen.NM_006924 gen.XM_044372 Figure 4909: PRO82769 Figure 4944: DNA326393, XM_113315, Figure 4910: DNA326374, XM_115480, gen.XM_115480 gen.XM_113315 Figure 4911: DNA326375, NM_005831, Figure 4945: DNA326394, XM_012609, gen.XM_012609 gen.NM_005831 Figure 4946: DNA326395, NM_005220, Figure 4912: PRO59328 gen.NM_005220 Figure 4913: DNA326376, XM_117061, Figure 4947: PRO82787 gen.XM_117061 Figure 4948: DNA326396, XM .085589, Figure 4914: PRO82771 gen.XM_085589 Figure 4915: DNA326377, XM _008459, Figure 4949: PRO82788 gen.XM_008459 Figure 4950: DNA326397, XM_012634, Figure 4916A-B: DNA326378, XM_012651, gen.XM_012634 gen.XM_012651 Figure 4951: DNA326398, XM_085627, Figure 4917: DNA326379, NM_021626, gen.XM_085627 gen.NM_021626 Figure 4952: PRO82790 Figure 4918: PRO302 Figure 4953: DNA150814, NM_002086, Figure 4919: DNA287291, NM _021213, gen.NM_002086 gen.NM_021213 Figure 4954: PRO12806 Figure 4920: PRO69561 Figure 4955: DNA326399, NM_024844, Figure 4921A-B: DNA326380, NM_004859, gen.NM_024844 gen_NM_004859 Figure 4956: PRO82791 Figure 4922: PRO82774 Figure 4957: DNA326400, XM_041583, Figure 4923: DNA326381, XM_083966, gen.XM_041583 gen.XM_083966 Figure 4958: DNA326401, XM_046932, Figure 4924: DNA326382, XM_044426, gen.XM_046932 gen.XM_044426 Figure 4959: PRO82792 Figure 4925: PRO82776 Figure 4960: DNA326402, NM_004524, Figure 4926: DNA326383, XM_008253, gen.NM_004524 gen.XM_008253 Figure 4927: DNA326384, XM_044394, Figure 4961: PRO82793 Figure 4962A-B: DNA326403, XM_113951, gen.XM_044394 gen.XM_113951 Figure 4928: PRO10400 Figure 4963A-B: DNA88430, NM_000213, Figure 4929: DNA326385, NM_017647, gen.NM_000213 gen.NM_017647 Figure 4964: PRO2788 Figure 4930: PRO82778 Figure 4965A-B: DNA326404, XM_036104, Figure 4931: DNA326386, NM _007372, gen.XM_036104 gen.NM_007372 Figure 4966: PRO82794 Figure 4932: PRO82779 Figure 4967: DNA326405, NM_000154, Figure 4933: DNA326387, NM _002401, gen.NM_000154 gen.NM_002401 Figure 4968: PRO82795 Figure 4934: PRO37764 Figure 4969: DNA326406, NM_005324, Figure 4935: DNA326388, XM_044376, gen.NM_005324 gen.XM_044376 Figure 4936A-B: DNA150457, NM_006039, Figure 4970: PRO11403 Figure 4971A-B: DNA326407, XM_036115, gen.NM_006039 gen.XM_036115 Figure 4937: PRO12265 Figure 4972: PRO82796 Figure 4938: DNA326389, XM_044367, Figure 4973: DNA326408, XM_054344,

gen.NM_016286

Figure 5007: PRO82813 gen.XM_054344 Figure 5008: DNA326429, NM_004127, Figure 4974: PRO82797 gen.NM_004127 Figure 4975: DNA274755, NM_002766, Figure 5009: PRO82814 gen.NM_002766 Figure 5010A-C: DNA326430, XM_113943, Figure 4976: PRO70703 gen.XM_113943 Figure 4977A-B: DNA326409, XM_085531, Figure 5011: DNA326431, XM_113330, gen.XM_085531 gen.XM_113330 Figure 4978: DNA326410, XM_113892, Figure 5012: PRO82816 gen.XM_113892 Figure 5013: DNA326432, XM_113303, Figure 4979: PRO82799 Figure 4980: DNA326411, XM_017578, gen.XM_113303 Figure 5014: DNA287234, NM .031968, gen.XM_017578 gen.NM_031968 Figure 4981: PRO82800 Figure 5015: PRO69513 Figure 4982: DNA326412, XM_036785, Figure 5016: DNA326433, NM _022158, gen.XM_036785 gen.NM_022158 Figure 4983: PRO39201 Figure 5017: PRO82818 Figure 4984: DNA326413, XM_097043, Figure 5018: DNA326434, XM_038424, gen.XM_097043 gen.XM_038424 Figure 4985: DNA129504, NM_001168, Figure 5019: DNA326435, XM .085735, gen.NM_001168 gen.XM_085735 Figure 4986: PRO7143 Figure 5020: DNA326436, XM_046765, Figure 4987: DNA326414, XM_037196, gen.XM_046765 gen.XM_037196 Figure 5021: DNA326437, XM_046769, Figure 4988: DNA326415, XM_037195, gen.XM_046769 gen.XM_037195 Figure 5022: DNA326438, XM_046767, Figure 4989: DNA326416, XM_045104, gen.XM_046767 gen.XM_045104 Figure 5023: DNA273694, NM _006101, Figure 4990: PRO37540 gen.NM_006101 Figure 4991: DNA326417, XM_085563, Figure 5024: PRO61661 gen.XM_085563 Figure 5025A-B: DNA326439, XM_028744, Figure 4992A-B: DNA326418, XM_085716, gen.XM_028744 gen.XM_085716 Figure 5026: DNA326440, XM_165954, Figure 4993: PRO82805 gen.XM_165954 Figure 4994A-B: DNA326419, XM_049934, Figure 5027: DNA326441, XM_041678, gen.XM_049934 Figure 4995: DNA326420, XM_049931, gen.XM_041678 Figure 5028: DNA326442, XM_113343, gen.XM_049931 gen.XM_113343 Figure 4996A-B: DNA326421, XM_045581, Figure 5029: PRO82825 gen.XM_045581 Figure 5030: DNA326443, XM_067325, Figure 4997: PRO82807 gen.XM_067325 Figure 4998: DNA326422, XM_113945, Figure 5031: DNA326444, XM_012741, gen.XM_113945 gen.XM_012741 Figure 4999: DNA326423, XM_046481, Figure 5032: DNA326445, NM_014214, gen.XM_046481 gen.NM_014214 Figure 5000: DNA326424, XM_097195, Figure 5033: PRO82828 gen.XM_097195 Figure 5034A-B: DNA326446, XM_035640, Figure 5001: DNA326425, XM_097193, gen.XM_035640 gen.XM_097193 Figure 5035: PRO82829 Figure 5002: DNA326426, NM_004309, Figure 5036: DNA326447, XM_016382, gen.NM_004309 gen.XM_016382 Figure 5003: PRO61246 Figure 5037: DNA326448, NM _032933, Figure 5004: DNA326427, XM_046472, gen.NM_032933 gen.XM_046472 Figure 5038: PRO82831 Figure 5005: PRO82812 Figure 5039: DNA274690, NM _006938, Figure 5006: DNA326428, NM_016286, gen.NM_006938

Figure 5040A-B: DNA88457, NM_000227, Figure 5074: DNA326467, XM_006937, gen.NM_000227 gen.XM_006937 Figure 5075: DNA326468, XM _085779, Figure 5041: PRO2799 gen.XM_085779 Figure 5042: DNA326449, XM_085791, Figure 5076: DNA326469, XM_011089, gen.XM_085791 gen.XM_011089 Figure 5043: DNA326450, XM_085789, Figure 5077: PRO82850 gen.XM_085789 Figure 5078: DNA326470, XM_169540, Figure 5044: PRO82833 Figure 5045: DNA326451, XM_085790, gen.XM_169540 Figure 5079: PRO82851 gen.XM_085790 Figure 5046: DNA326452, XM_015755, Figure 5080: DNA326471, XM_167008, gen.XM_167008 gen.XM_015755 Figure 5081: PRO82852 Figure 5047: PRO82835 Figure 5082: DNA326472, XM_048471, Figure 5048: DNA326453, XM .097232, gen.XM_097232 gen.XM_048471 Figure 5083A-B: DNA326473, XM .008812, Figure 5049: DNA326454, XM_085788, gen.XM_008812 gen.XM _085788 Figure 5084A-B: DNA326474, XM_117096, Figure 5050: DNA88281, NM_001944, gen.XM_117096 gen.NM_001944 Figure 5085: PRO82855 Figure 5051: PRO2267 Figure 5086: DNA326475, NM_002385, Figure 5052: DNA271841, NM_003787, gen.NM_002385 gen.NM_003787 Figure 5087: PRO82856 Figure 5053: PRO60121 Figure 5088: DNA326476, XM_015241, Figure 5054: DNA326455, XM_008723, gen.XM_015241 gen.XM_008723 Figure 5089A-B: DNA326477, XM_008695, Figure 5055: DNA326456, XM_084007, gen.XM_008695 gen.XM_084007 Figure 5090A-B: DNA326478, XM_041872, Figure 5056: DNA256813, NM_018255, gen.NM_018255 gen.XM_041872 Figure 5091: PRO82859 Figure 5057: PRO51744 Figure 5092: DNA326479, XM_051586, Figure 5058: DNA326457, XM_085775, gen.XM_051586 gen.XM_085775 Figure 5093: DNA326480, NM_003712, Figure 5059: PRO82840 gen.NM_003712 Figure 5060: DNA326458, NM_138443, Figure 5094: PRO1077 gen.NM_138443 Figure 5095: DNA326481, XM_042018, Figure 5061: PRO82841 gen.XM_042018 Figure 5062: DNA326459, XM_038872, Figure 5096: PRO2560 gen.XM_038872 Figure 5097: DNA326482, XM_114018, Figure 5063: PRO82842 gen.XM_114018 Figure 5064: DNA326460, XM_086779, Figure 5098: DNA326483, NM_017876, gen.XM_086779 Figure 5065: DNA326461, XM_167363, gen.NM_017876 Figure 5099: PRO82861 gen.XM_167363 Figure 5100: DNA326484, NM_031990, Figure 5066: DNA326462, XM_031944, gen.XM_031944 gen.NM_031990 Figure 5101: PRO82862 Figure 5067: DNA326463, NM _000985, Figure 5102: DNA326485, NM_002819, gen.NM_000985 gen.NM_002819 Figure 5068: PRO82846 Figure 5103: PRO62899 Figure 5069: DNA326464, NM_002396, Figure 5104: DNA326486, NM_005224, gen.NM_002396 gen.NM_005224 Figure 5070: PRO61113 Figure 5105: PRO82863 Figure 5071: DNA326465, XM_166288, Figure 5106: DNA326487, XM_037565, gen.XM_166288 gen.XM_037565 Figure 5072: DNA326466, NM_004539, Figure 5107: PRO82864 gen.NM_004539 Figure 5108: DNA326488, XM_092042, Figure 5073: PRO60800

gen.NM_001319

Figure 5142: PRO82881 gen.XM_092042 Figure 5143: DNA326510, NM_017797, Figure 5109: DNA326489, XM_037572, gen.NM_017797 gen.XM_037572 Figure 5144: PRO82882 Figure 5110: DNA326490, XM_009279, Figure 5145: DNA326511, XM_030714, gen.XM_009279 gen.XM_030714 Figure 5111: PRO82867 Figure 5146: DNA256555, NM_017572, Figure 5112: DNA326491, NM_002085, gen.NM_017572 gen.NM_002085 Figure 5147: PRO51586 Figure 5113A-B: DNA326492, XM .009277, Figure 5148A-B: DNA326512, NM_003938, gen.XM_009277 gen.NM_003938 Figure 5114: DNA326493, XM_012913, Figure 5149: PRO82884 gen.XM_012913 Figure 5150A-B: DNA326513, XM_046822, Figure 5115: DNA274101, NM_001687, gen.XM_046822 gen.NM_001687 Figure 5151: PRO82885 Figure 5116: PRO62039 Figure 5152: DNA326514, NM_007165, Figure 5117: DNA326494, XM_028067, gen.NM_007165 gen.XM_028067 Figure 5153: PRO82886 Figure 5118: PRO82871 Figure 5154: DNA287636, NM_004152, Figure 5119: DNA326495, XM_028064, gen.NM_004152 gen.XM_028064 Figure 5155: DNA326515, NM_012458, Figure 5120: DNA326496, NM_024407, gen.NM_012458 gen.NM_024407 Figure 5156: PRO82887 Figure 5121: PRO82872 Figure 5157: DNA326516, NM_032737, Figure 5122: DNA326497, NM_000156, gen.NM_032737 gen.NM_000156 Figure 5158: PRO82888 Figure 5123: PRO58046 Figure 5159: DNA326517, XM_030485, Figure 5124: DNA326498, NM_138924, gen.XM_030485 gen.NM_138924 Figure 5160: DNA326518, XM_046934, Figure 5125: PRO82873 gen.XM_046934 Figure 5126: DNA326499, NM_001018, Figure 5161: DNA326519, NM_003021, gen.NM_001018 gen.NM_003021 Figure 5127: PRO10485 Figure 5162: PRO62302 Figure 5128: DNA326500, XM_086101, Figure 5163: DNA326520, XM_055686, gen.XM_086101 gen.XM_055686 Figure 5129: PRO82874 Figure 5164: PRO37951 Figure 5130: DNA326501, XM_086102, Figure 5165: DNA326521, XM_009222, gen.XM_086102 gen.XM_009222 Figure 5131: DNA326502, XM_047584, Figure 5166: DNA326522, XM_052635, gen.XM_047584 gen.XM_052635 Figure 5132A-B: DNA326503, XM_047600, Figure 5167: PRO82892 gen.XM_047600 Figure 5168: DNA326523, XM_052661, Figure 5133: PRO38496 gen.XM_052661 Figure 5134: DNA326504, XM_097420, Figure 5169: DNA326524, NM_016263, gen.XM_097420 gen.NM_016263 Figure 5135A-B: DNA326505, XM_030721, Figure 5170: PRO82893 gen.XM_030721 Figure 5171: DNA326525, NM_006339, Figure 5136: PRO82877 gen.NM_006339 Figure 5137: DNA326506, XM_030720, Figure 5172: PRO82894 gen.XM_030720 Figure 5173: DNA326526, NM_032753, Figure 5138: DNA326507, NM .031213, gen.NM_032753 gen.NM_031213 Figure 5174: PRO82895 Figure 5139: PRO82879 Figure 5175: DNA326527, XM_056421, Figure 5140: DNA326508, XM_039723, gen.XM_056421 gen.XM_039723 Figure 5176A-B: DNA326528, XM_031917, Figure 5141: DNA326509, NM_001319,

gen.XM_031917

Figure 5177: PRO82897 gen.XM_012798 Figure 5213: DNA326548, XM _044608, Figure 5178: DNA326529, NM_001961, gen.XM_044608 gen.NM_001961 Figure 5214: DNA326549, NM_003624, Figure 5179: PRO62225 Figure 5180: DNA326530, XM_016871, gen.NM_003624 gen.XM_016871 Figure 5215: PRO82915 Figure 5181: DNA326531, NM 016539, Figure 5216: DNA326550, NM_016579, gen.NM_016539 gen.NM_016579 Figure 5217: PRO224 Figure 5182: PRO82899 Figure 5218A-B: DNA326551, XM_048351, Figure 5183: DNA326532, XM_117122, gen.XM_048351 gen.XM_117122 Figure 5219: DNA326552, XM_048364, Figure 5184: DNA326533, XM_031857, gen.XM_048364 gen.XM_031857 Figure 5220: PRO82917 Figure 5185: PRO82901 Figure 5221: DNA326553, XM_091938, Figure 5186: DNA326534, NM_024333, gen.XM_091938 gen.NM_024333 Figure 5187: PRO82902 Figure 5222: DNA326554, XM_097300, gen.XM_097300 Figure 5188: DNA326535, NM_003025, Figure 5223: DNA326555, XM_049282, gen.NM_003025 gen.XM_049282 Figure 5189: PRO82903 Figure 5224: PRO82920 Figure 5190: DNA326536, NM_025241, Figure 5225: DNA326556, XM_058232, gen.NM_025241 gen.XM_058232 Figure 5191: PRO82904 Figure 5226: DNA326557, XM_045151, Figure 5192: DNA326537, XM_035638, gen.XM_035638 gen.XM_045151 Figure 5227A-B: DNA326558, XM_050435, Figure 5193: PRO82905 Figure 5194A-B: DNA326538, XM_035636, gen.XM_050435 Figure 5228: PRO82923 gen.XM_035636 Figure 5229: DNA326559, XM_113988, Figure 5195: DNA326539, XM_012862, gen.XM_113988 gen.XM_012862 Figure 5230: DNA326560, NM_058164, Figure 5196A-B: DNA326540, XM_035627, gen.NM_058164 gen.XM_035627 Figure 5197A-B: DNA326541, XM_035625, Figure 5231: PRO82925 Figure 5232: DNA227280, NM_020230, gen.XM_035625 gen.NM_020230 Figure 5198: PRO82909 Figure 5233: PRO37743 Figure 5199: DNA274761, NM_014649, Figure 5234: DNA270621, NM_003755, gen.NM_014649 gen.NM_003755 Figure 5200: PRO62531 Figure 5235: PRO58991 Figure 5201: DNA272421, NM .006012, Figure 5236: DNA326561, XM_049502, gen.NM_006012 Figure 5202: PRO60674 gen.XM_049502 Figure 5237: DNA326562, NM_007065, Figure 5203: DNA326542, NM_003685, gen.NM_007065 gen.NM_003685 Figure 5238: PRO63226 Figure 5204: PRO82910 Figure 5239: DNA326563, XM_049561, Figure 5205A-B: DNA326543, XM_009010, gen.XM_049561 gen.XM_009010 Figure 5240: DNA326564, XM_017204, Figure 5206: DNA270315, NM_004240, gen.NM_004240 gen.XM_017204 Figure 5207: PRO58702 Figure 5241: DNA326565, NM_005498, Figure 5208: DNA326544, NM_005490, gen.NM_005498 Figure 5242: PRO62112 gen.NM_005490 Figure 5243: DNA326566, XM .008887, Figure 5209: PRO201 gen.XM_008887 Figure 5210: DNA326546, XM _044619, Figure 5244: DNA326567, XM_085862, gen.XM_044619 gen.XM_085862 Figure 5211: PRO82912 Figure 5245: PRO82930 Figure 5212: DNA326547, XM_012798,

Figure 5246: DNA326568, XM_084014, gen.XM_084014 Figure 5247A-B: DNA326569, XM_032710, gen.XM_032710 Figure 5248: DNA326570, XM_032719, gen.XM_032719 Figure 5249: PRO82933 Figure 5250: DNA326571, NM_024029, gen.NM_024029 Figure 5251: PRO23794 Figure 5252: DNA326572, XM_032724, gen.XM_032724 Figure 5253: PRO82934 Figure 5254A-B: DNA326573, NM .003072, gen.NM_003072 Figure 5255: PRO82935 Figure 5256A-B: DNA326574, XM _009082, gen.XM_009082 Figure 5257: DNA326575, XM_032774, gen.XM_032774 Figure 5258: DNA218271, NM_000121, gen.NM_000121 Figure 5259: PRO34323 Figure 5260: DNA326576, XM_057074, gen.XM_057074 Figure 5261: DNA326577, XM_032782, gen.XM_032782 Figure 5262: DNA326578, NM_032377, gen.NM_032377 Figure 5263: PRO82939 Figure 5264: DNA326579, XM_015697, gen.XM_015697 Figure 5265: PRO82940 Figure 5266: DNA326580, XM_010156, gen.XM_010156 Figure 5267: DNA326581, NM _001930, gen.NM_001930 Figure 5268: PRO58446 Figure 5269: DNA326582, NM 013406, gen.NM_013406 Figure 5270: DNA326583, NM_013407, gen.NM_013407 Figure 5271: PRO82943 Figure 5272: DNA103320, NM_002229, gen.NM_002229 Figure 5273: PRO4650 Figure 5274: DNA326584, XM_009063, gen.XM_009063 Figure 5275: PRO82944 Figure 5276: DNA326585, XM_085917, gen.XM_085917 Figure 5277: DNA274034, NM_006397, gen.NM_006397 Figure 5278: PRO61977 Figure 5279: DNA287243, NM_004461,

gen.NM_004461

Figure 5280: PRO69518 Figure 5281: DNA326586, XM_032020, gen.XM_032020 Figure 5282: PRO2718 Figure 5283: DNA326587, NM_005053, gen.NM_005053 Figure 5284: PRO22613 Figure 5285: DNA326588, XM_085916, gen.XM_085916 Figure 5286: DNA326589, NM_017722, gen.NM_017722 Figure 5287: PRO82947 Figure 5288: DNA326590, NM _003765, gen.NM_003765 Figure 5289: PRO82948 Figure 5290: DNA326591, XM_051364, gen.XM_051364 Figure 5291: PRO82949 Figure 5292: DNA326592, XM_031345, gen.XM_031345 Figure 5293: PRO82950 Figure 5294: DNA326593, XM_113352, gen.XM_113352 Figure 5295: DNA326594, XM_058967, gen.XM_058967 Figure 5296: PRO82952 Figure 5297: DNA326595, XM_085909, gen.XM_085909 Figure 5298: DNA269894, NM_002730, gen.NM_002730 Figure 5299: PRO58292 Figure 5300: DNA326596, NM_018154, gen.NM_018154 Figure 5301: PRO82954 Figure 5302: DNA326597, XM_031276, gen.XM_031276 Figure 5303: DNA326598, XM_031273, gen.XM_031273 Figure 5304: PRO82956 Figure 5305: DNA326599, XM 2031263, gen.XM_031263 Figure 5306: PRO82957 Figure 5307: DNA326600, XM_031251, gen.XM_031251 Figure 5308: DNA326601, NM_006844, gen.NM_006844 Figure 5309: PRO82958 Figure 5310A-C: DNA326602, XM _009303, gen.XM_009303 Figure 5311: DNA326603, XM_086074, gen.XM_086074 Figure 5312: DNA269630, NM _003290, gen.NM_003290 Figure 5313: PRO58042 Figure 5314: DNA326604, NM _005370, gen.NM_005370

gen.XM_114004

Figure 5350: DNA326625, NM_012181, Figure 5315: PRO12130 gen.NM_012181 Figure 5316: DNA326605, XM_113348, Figure 5351: PRO82980 gen.XM_113348 Figure 5352: DNA227249, NM_007263, Figure 5317: DNA326606, NM_032207, gen.NM_007263 gen.NM_032207 Figure 5353: PRO37712 Figure 5318: PRO82962 Figure 5354: DNA326626, XM_018515, Figure 5319A-B: DNA326607, NM .006387, gen.XM_018515 gen.NM_006387 Figure 5355: DNA326627, NM_033415, Figure 5320: PRO82963 gen.NM_033415 Figure 5321: DNA326608, NM_024881, Figure 5356: PRO82982 gen.NM_024881 Figure 5357: DNA326628, XM _009330, Figure 5322: PRO82964 gen.XM_009330 Figure 5323: DNA326609, NM_024104, Figure 5358: DNA326629, NM_134440, gen.NM_024104 gen.NM_134440 Figure 5324: PRO82965 Figure 5359: PRO82983 Figure 5325A-C: DNA326610, XM .008854, Figure 5360: DNA326630, NM _003721, gen.XM_008854 gen.NM_003721 Figure 5326: DNA326611, NM_014173, Figure 5361: PRO59220 gen.NM_014173 Figure 5362: DNA326631, NM_015965, Figure 5327: PRO82967 gen.NM_015965 Figure 5328: DNA287240, NM_004335, Figure 5363: PRO82984 gen.NM_004335 Figure 5364: DNA326632, XM_016378, Figure 5329: PRO29371 gen.XM_016378 Figure 5330: DNA326612, XM_050660, Figure 5365: PRO82985 gen.XM_050660 Figure 5366: DNA326633, XM_114027, Figure 5331: DNA326613, XM_086116, gen.XM_114027 gen.XM_086116 Figure 5367: DNA326634, XM_165963, Figure 5332: DNA326614, NM_018174, gen.XM_165963 gen.NM_018174 Figure 5368: PRO82987 Figure 5333: PRO82970 Figure 5369: DNA326635, XM_015769, Figure 5334: DNA326615, NM_000980, gen.XM_015769 gen.NM_000980 Figure 5370: DNA326636, XM_012812, Figure 5335: PRO82971 gen.XM_012812 Figure 5336: DNA326616, XM_055230, Figure 5371: DNA326637, XM _085971, gen.XM_055230 gen.XM_085971 Figure 5337: DNA326617, XM_012179, Figure 5372: DNA326638, XM_037662, gen.XM_012179 gen.XM_037662 Figure 5338A-B: DNA326618, XM_009293, Figure 5373: PRO82991 gen.XM_009293 Figure 5374: DNA326639, NM_001238, Figure 5339: DNA326619, XM_038146, gen.NM_001238 gen.XM_038146 Figure 5375: PRO82992 Figure 5340: PRO82975 Figure 5376: DNA326640, NM_057182, Figure 5341: DNA326620, XM_092046, gen.NM_057182 gen.XM_092046 Figure 5377: PRO4756 Figure 5342: PRO82976 Figure 5343: DNA326621, XM_038098, Figure 5378: DNA326641, XM _009180, gen.XM_009180 gen.XM_038098 Figure 5379: DNA326642, XM_117118, Figure 5344: PRO82977 Figure 5345: DNA326622, NM_032627, gen.XM_117118 Figure 5380: DNA326643, XM _092049, gen.NM_032627 gen.XM_092049 Figure 5346: PRO82978 Figure 5381: PRO82995 Figure 5347: DNA326623, XM_165960, Figure 5382: DNA326644, XM _028672, gen.XM_165960 gen.XM_028672 Figure 5348: PRO82979 Figure 5383: DNA326645, XM_028666, Figure 5349: DNA326624, XM_114004, gen.XM_028666

Figure 5384: DNA326646, XM_009338, gen.XM_009338 Figure 5385: DNA326647, XM_048258, gen.XM_048258 Figure 5386: PRO82998 Figure 5387: DNA256836, NM_018468, gen.NM_018468 Figure 5388: PRO51767 Figure 5389: DNA326648, NM_024321, gen.NM_024321 Figure 5390: PRO82999 Figure 5391A-B: DNA326649, XM_049237, gen.XM_049237 Figure 5392: PRO83000 Figure 5393: DNA326650, NM_032635, gen.NM_032635 Figure 5394: PRO23845 Figure 5395: DNA326651, XM_115615, gen.XM_115615 Figure 5396A-B: DNA326652, XM_091984, gen.XM_091984 Figure 5397: PRO83002 Figure 5398: DNA326653, XM_085986, gen.XM_085986 Figure 5399: DNA326654, XM_032285, gen.XM_032285 Figure 5400: PRO83004 Figure 5401: DNA326655, NM_002812, gen.NM_002812 Figure 5402: PRO83005 Figure 5403A-E: DNA326656, XM _029455, gen.XM_029455 Figure 5404: DNA326657, XM_029450, gen.XM_029450 Figure 5405: PRO83007 Figure 5406: DNA326658, XM_009149, gen.XM_009149 Figure 5407: PRO62500 Figure 5408: DNA326659, XM_056602, gen.XM_056602 Figure 5409: DNA326660, NM_012237, gen.NM_012237 Figure 5410: PRO83008 Figure 5411: DNA326661, NM_030593, gen.NM_030593 Figure 5412: PRO83009 Figure 5413: DNA326662, NM_017827, gen.NM_017827 Figure 5414: PRO83010 Figure 5415: DNA326663, NM_021107, gen.NM_021107 Figure 5416: PRO83011 Figure 5417: DNA326664, NM_033363, gen.NM_033363 Figure 5418: PRO83012

Figure 5419: DNA326665, XM_059045,

gen.XM_059045 Figure 5420: PRO83013 Figure 5421: DNA273474, NM_005884, gen.NM_005884 Figure 5422: PRO61458 Figure 5423: DNA326666, XM_046090, gen.XM_046090 Figure 5424: PRO83014 Figure 5425: DNA326667, XM _086004, gen.XM_086004 Figure 5426: DNA272347, NM_001020, gen.NM_001020 Figure 5427: PRO60603 Figure 5428A-B: DNA326668, NM_003169, gen.NM_003169 Figure 5429: PRO12822 Figure 5430: DNA326669, XM_053074, gen.XM_053074 Figure 5431: PRO83016 Figure 5432: DNA326670, NM_016941, gen.NM_016941 Figure 5433: PRO83017 Figure 5434: DNA256840, NM_004714, gen.NM_004714 Figure 5435: PRO51771 Figure 5436: DNA326671, NM_001436, gen.NM_001436 Figure 5437: PRO83018 Figure 5438: DNA326672, XM_016410, gen.XM_016410 Figure 5439: DNA326673, XM_012860, gen.XM_012860 Figure 5440: DNA326674, XM_097365, gen.XM_097365 Figure 5441: DNA274139, NM_006503, gen.NM_006503 Figure 5442: PRO62075 Figure 5443: DNA326675, XM_009203, gen.XM_009203 Figure 5444: DNA326676, XM_047409, gen.XM_047409 Figure 5445: DNA326677, XM_047376, gen.XM_047376 Figure 5446A-B: DNA326678, XM_047374, gen.XM_047374 Figure 5447: DNA326679, XM_059052, gen.XM_059052 Figure 5448: DNA273600, NM .004596, gen.NM_004596 Figure 5449: PRO61575 Figure 5450: DNA326680, XM_030914, gen.XM_030914 Figure 5451: DNA326681, NM_052848, gen.NM_052848 Figure 5452: PRO83027 Figure 5453: DNA326682, XM_008912,

gen.XM_008912	gen.XM_085950
Figure 5454: DNA326683, NM_020158,	Figure 5488: DNA326704, XM_028263,
gen.NM_020158	gen.XM_028263
Figure 5455: PRO83029	Figure 5489: DNA326705, XM_085928,
Figure 5456: DNA326684, XM_030901,	gen.XM_085928
gen.XM_030901	Figure 5490: PRO36963
Figure 5457: PRO83030	Figure 5491: DNA326706, XM_028267,
Figure 5458: DNA326685, NM_018035,	gen.XM_028267
gen.NM_018035	Figure 5492: DNA326707, NM_013403,
Figure 5459: PRO83031	gen.NM_013403
Figure 5460: DNA326686, XM_085874,	Figure 5493: PRO83050
gen.XM_085874	Figure 5494: DNA103580, NM_001743,
Figure 5461: DNA326687, XM_085875,	gen.NM_001743
gen.XM_085875	Figure 5495: PRO4904
Figure 5462: DNA326688, XM_085876,	Figure 5496: DNA326708, XM_009126,
gen.XM_085876	gen.XM_009126
Figure 5463: DNA326689, XM_058949,	Figure 5497: DNA326709, NM_006247,
gen.XM_058949	gen.NM_006247
Figure 5464: PRO83035	Figure 5498: PRO25881
Figure 5465: DNA326690, XM_030895,	Figure 5499: DNA326710, NM_003370,
gen.XM_030895	gen.NM_003370
Figure 5466: DNA326691, XM_115603,	Figure 5500: PRO83052
gen.XM_115603	Figure 5501: DNA326711, XM_085856,
Figure 5467: PRO83037	gen.XM_085856
Figure 5468: DNA326692, NM_001022,	Figure 5502: DNA150784, NM_001983,
gen.NM_001022	gen.NM_001983
Figure 5469: PRO83038	Figure 5503: PRO12800
Figure 5470: DNA326693, NM_004706,	Figure 5504: DNA270931, NM_012099,
gen.NM_004706	gen.NM_012099
Figure 5471: PRO83039	Figure 5505: PRO59264
Figure 5472: DNA326694, XM _008878,	Figure 5506A-B: DNA257531, NM_031417,
gen.XM_008878	gen.NM_031417
Figure 5473: PRO83040	Figure 5507: PRO52101
Figure 5474: DNA326695, NM_022752,	Figure 5508: DNA326712, NM_001294,
gen.NM_022752	gen.NM_001294
Figure 5475: PRO83041	Figure 5509: PRO83054
Figure 5476: DNA151808, NM_006494,	Figure 5510: DNA326713, XM _097274,
gen.NM_006494	gen.XM_097274
Figure 5477: PRO12892	Figure 5511: DNA88084, NM .000041,
Figure 5478: DNA326696, NM_001816,	gen.NM_000041
gen.NM_001816	Figure 5512: PRO2644
Figure 5479: PRO34151	Figure 5513: DNA256533, NM_006114,
Figure 5480: DNA326697, NM_000554,	gen.NM_006114
gen.NM_000554	Figure 5514: PRO51565
Figure 5481: PRO83042	Figure 5515: DNA251057, NM _002856,
Figure 5482: DNA326698, XM_049920,	gen.NM_002856
gen.XM_049920	Figure 5516: PRO47354
Figure 5483: DNA326699, XM_055859,	Figure 5517: DNA226011, NM_005581,
gen.XM_055859	gen.NM_005581
Figure 5484A-B: DNA326700, XM_009125,	Figure 5518: PRO36474
gen.XM_009125	Figure 5519: DNA326714, NM_012116,
Figure 5485: DNA326701, XM_008860,	gen.NM_012116
gen.XM_008860	Figure 5520: PRO83056
Figure 5486: DNA326702, XM_009036,	Figure 5521: DNA326715, XM .097275,
gen.XM_009036	gen.XM_097275
Figure 5487: DNA326703, XM _085950,	Figure 5522: DNA326716, XM_008851,
	HIGHITE 3322: DNA320/10. AMI_000031.

gen.XM_008851	gen.NM_003598
Figure 5523: DNA274289, NM_016440,	Figure 5557: PRO83075
gen.NM_016440	Figure 5558: DNA326736, NM_006666,
Figure 5524: PRO62212	gen.NM_006666
Figure 5525: DNA326717, NM_012068,	Figure 5559: PRO83076
gen.NM_012068	Figure 5560: DNA326737, XM_114024,
Figure 5526: PRO83059	gen.XM_114024
Figure 5527: DNA326718, XM_085927,	Figure 5561: PRO83077
gen.XM_085927	Figure 5562: DNA304658, NM_000146,
Figure 5528: DNA326719, XM_084023,	gen.NM_000146
gen.XM_084023	Figure 5563: PRO71085
Figure 5529: DNA326720, XM_167530,	Figure 5564: DNA326738, NM_004324,
gen.XM_167530	gen.NM_004324
Figure 5530: DNA326721, XM_114025,	Figure 5565: PRO38101
gen.XM_114025	Figure 5566: DNA326739, NM_006184,
Figure 5531: DNA326722, XM_008985,	gen.NM_006184
gen.XM_008985	Figure 5567: PRO83078
Figure 5532: DNA326723, NM_030973,	Figure 5568: DNA273066, NM_001190,
gen.NM_030973	gen.NM_001190
Figure 5533: PRO83065	Figure 5569: PRO61129
Figure 5534: DNA326724, NM_025129,	Figure 5570: DNA326740, XM_058987,
gen.NM_025129	gen.XM_058987
Figure 5535: PRO83066	Figure 5571: DNA326741, NM_000979,
Figure 5536: DNA326725, NM_014203,	gen.NM_000979
gen.NM_014203	Figure 5572: PRO83080
Figure 5537: DNA326726, XM_085934,	Figure 5573: DNA326742, XM_085935,
gen.XM_085934	gen.XM_085935
Figure 5538: PRO83068	Figure 5574: DNA326743, NM_031485,
Figure 5539: DNA326727, NM _001536,	gen.NM_031485
gen.NM_001536	Figure 5575: PRO61308
Figure 5540: PRO83069	Figure 5576: DNA103239, NM_006801,
Figure 5541: DNA326728, XM_165432,	gen.NM_006801
gen.XM_165432	Figure 5577: PRO4569
Figure 5542: DNA274823, NM _001571,	Figure 5578: DNA326744, XM_046419,
gen.NM_001571	gen.XM_046419
Figure 5543: PRO62582	Figure 5579: PRO83082
Figure 5544A-B: DNA326729, XM_046313,	Figure 5580: DNA326745, NM .002691,
gen.XM_046313	gen.NM_002691
Figure 5545: PRO83071	Figure 5581: PRO83083
Figure 5546: DNA326730, NM_015953,	Figure 5582: DNA326746, XM_056286,
gen.NM_015953	gen.XM_056286
Figure 5547: PRO83072	Figure 5583: PRO83084
Figure 5548: DNA326731, XM_027904,	Figure 5584: DNA326747, XM_058990,
gen.XM_027904	gen.XM_058990
Figure 5549: DNA326732, XM_084026,	Figure 5585: PRO83085
gen.XM_084026	Figure 5586: DNA326748, XM_091981,
Figure 5550: DNA290260, NM_012423,	gen.XM_091981
gen.NM_012423	Figure 5587: PRO83086
Figure 5551: PRO70385	Figure 5588: DNA326749, NM_032712,
Figure 5552: DNA326733, XM_058991,	gen.NM_032712
gen.XM_058991	Figure 5589: PRO23238
Figure 5553: PRO83073	Figure 5590: DNA83154, NM .001648,
Figure 5554: DNA326734, NM_017916,	gen.NM_001648
gen.NM_017916	Figure 5591: PRO2109
Figure 5555: PRO83074	Figure 5592: DNA326750, XM_055658,
Figure 5556: DNA326735, NM_003598,	gen.XM_055658

Figure 5593: DNA269481, NM_001985, gen.NM_001985 Figure 5594: PRO57901 Figure 5595: DNA326751, XM_091886, gen.XM_091886 Figure 5596: PRO83087 Figure 5597: DNA326752, XM_008830, gen.XM_008830 Figure 5598: DNA326753, XM_039908, gen.XM_039908 Figure 5599: PRO83089 Figure 5600: DNA326754, NM_015629, gen.NM_015629 Figure 5601: PRO83090 Figure 5602: DNA326755, XM_050236, gen.XM_050236 Figure 5603: DNA326756, XM_050589, gen.XM_050589 Figure 5604: PRO83092 Figure 5605: DNA326757, XM_117128, gen.XM_117128 Figure 5606: PRO83093 Figure 5607: DNA326758, XM_059321, gen.XM_059321 Figure 5608: DNA326759, NM_003283, gen.NM_003283 Figure 5609: PRO83095 Figure 5610A-B: DNA326760, NM_014931, gen.NM_014931 Figure 5611: PRO83096 Figure 5612: DNA326761, XM_035919, gen.XM_035919 Figure 5613: DNA326762, NM_000991, gen.NM_000991 Figure 5614: PRO83098 Figure 5615: DNA273346, NM_014501, gen.NM_014501 Figure 5616: PRO61349 Figure 5617: DNA326763, NM_013333, gen.NM_013333 Figure 5618: PRO83099 Figure 5619: DNA326764, NM .007279, gen.NM_007279 Figure 5620: PRO83100 Figure 5621: DNA326765, NM_016202, gen.NM_016202 Figure 5622: PRO83101 Figure 5623: DNA326766, XM _034377, gen.XM_034377 Figure 5624: PRO83102 Figure 5625: DNA272062, NM_014453, gen.NM_014453 Figure 5626: PRO60333

Figure 5627: DNA254548, NM _005762,

gen.NM_005762

Figure 5628: PRO49653

Figure 5629: DNA326767, XM_085972, gen.XM_085972 Figure 5630: PRO83103 Figure 5631: DNA326768, NM_032792, gen.NM_032792 Figure 5632: PRO83104 Figure 5633: DNA326769, NM .001009, gen.NM_001009 Figure 5634: PRO83105 Figure 5635: DNA326770, XM_058125, gen.XM_058125 Figure 5636: DNA326771, NM_024691, gen.NM_024691 Figure 5637: PRO83107 Figure 5638: DNA297288, NM_021158, gen.NM_021158 Figure 5639: PRO70810 Figure 5640: DNA304662, NM_031229, gen.NM_031229 Figure 5641: PRO71089 Figure 5642: DNA326772, NM_031228, gen.NM_031228 Figure 5643: PRO83108 Figure 5644: DNA326773, XM_097749, gen.XM_097749 Figure 5645: PRO83109 Figure 5646: DNA326774, XM_055993, gen.XM_055993 Figure 5647: DNA326775, XM_009622, gen.XM_009622 Figure 5648: DNA326776, NM_000801, gen.NM_000801 Figure 5649: PRO59142 Figure 5650: DNA326777, NM_054014, gen.NM_054014 Figure 5651: PRO59142 Figure 5652: DNA326778, NM_016143, gen.NM_016143 Figure 5653: PRO83112 Figure 5654: DNA287270, NM_003091, gen.NM_003091 Figure 5655: PRO69541 Figure 5656: DNA326779, NM_052881, gen.NM_052881 Figure 5657: PRO83113 Figure 5658: DNA326780, XM_044914, gen.XM_044914 Figure 5659: PRO83114 Figure 5660: DNA326781, XM_044915, gen.XM_044915 Figure 5661: DNA326782, NM _006899, gen.NM_006899 Figure 5662: PRO83116 Figure 5663: DNA326783, NM_019609, gen.NM_019609 Figure 5664: PRO83117

Figure 5665: DNA326784, NM_021826, gen.NM_021826 Figure 5666: PRO83118 Figure 5667: DNA326785, XM_045418, gen.XM_045418 Figure 5668: DNA287261, NM .017874, gen.NM_017874 Figure 5669: PRO69533 Figure 5670: DNA326786, XM_086710, gen.XM_086710 Figure 5671: DNA326787, XM_045451, gen.XM_045451 Figure 5672: PRO83121 Figure 5673: DNA326788, XM_114174, gen.XM_114174 Figure 5674: DNA326789, XM_045460, gen.XM_045460 Figure 5675: DNA326790, XM_059268, gen.XM_059268 Figure 5676A-B: DNA271010, NM_014737, gen.NM_014737 Figure 5677: PRO59339 Figure 5678: DNA326791, XM_056035, gen.XM_056035 Figure 5679: DNA83170, NM_001819, gen.NM_001819 Figure 5680: PRO2615 Figure 5681: DNA227348, NM_019095, gen.NM_019095 Figure 5682: PRO37811 Figure 5683: DNA326792, NM_003092, gen.NM_003092 Figure 5684: PRO83125 Figure 5685: DNA287290, NM_014426, gen.NM_014426 Figure 5686: PRO69560 Figure 5687: DNA326793, XM_086701, gen.XM_086701 Figure 5688: DNA326794, XM_117209, gen.XM_117209 Figure 5689A-B: DNA326795, XM_046520, gen.XM_046520 Figure 5690: PRO83128 Figure 5691: DNA326796, XM_115846, gen.XM_115846 Figure 5692: PRO83129 Figure 5693: DNA326797, NM_080820, gen.NM_080820 Figure 5694: PRO83130 Figure 5695: DNA326798, XM_086715, gen.XM.086715 Figure 5696: DNA326799, XM_092760, gen.XM_092760 Figure 5697: PRO83132

Figure 5698: DNA326800, NM_012255,

gen.NM_012255

Figure 5699: PRO83133 Figure 5700: DNA326801, XM_012970, gen.XM_012970 Figure 5701: DNA326802, XM_042765, gen.XM_042765 Figure 5702: PRO83135 Figure 5703: DNA150548, NM_001247, gen.NM_001247 Figure 5704: PRO12324 Figure 5705A-B: DNA326803, XM_009436, gen.XM_009436 Figure 5706: DNA326804, XM_114178, gen.XM_114178 Figure 5707: PRO83137 Figure 5708: DNA326805, XM_046160, gen.XM_046160 Figure 5709: PRO83138 Figure 5710: DNA326806, XM_046179, gen.XM_046179 Figure 5711: PRO83139 Figure 5712: DNA326807, XM_086745, gen.XM_086745 Figure 5713: DNA326808, NM_138578, gen.NM_138578 Figure 5714: PRO83141 Figure 5715: DNA326809, NM_012112, gen.NM_012112 Figure 5716: PRO83142 Figure 5717: DNA326810, XM_086736, gen.XM_086736 Figure 5718: PRO83143 Figure 5719: DNA326811, NM_030815, gen.NM_030815 Figure 5720: PRO83144 Figure 5721A-B: DNA150767, NM_014742, gen.NM_014742 Figure 5722: PRO12460 Figure 5723A-B: DNA326812, XM_047007, gen.XM_047007 Figure 5724: PRO83145 Figure 5725A-B: DNA326813, XM_047011, gen.XM_047011 Figure 5726: PRO83146 Figure 5727A-B: DNA326814, XM_047018, gen.XM_047018 Figure 5728: DNA326815, XM_009450, gen.XM_009450 Figure 5729: DNA326816, NM_033197, gen.NM_033197 Figure 5730: PRO83149 Figure 5731: DNA326817, XM_097772, gen.XM_097772 Figure 5732: PRO83150 Figure 5733: DNA326818, NM_016732, gen.NM_016732 Figure 5734: DNA97298, NM_003908,

gen.NM_024855 gen.NM_003908 Figure 5770: PRO83165 Figure 5735: PRO3645 Figure 5771A-B: DNA227472, NM_002660, Figure 5736: DNA326819, NM_000687, gen.NM_002660 gen.NM_000687 Figure 5772: PRO37935 Figure 5737: PRO83152 Figure 5738: DNA273517, NM_000178, Figure 5773: DNA326836, XM_097727, gen.XM_097727 gen.NM_000178 Figure 5774: DNA103525, NM_002466, Figure 5739: PRO61498 gen.NM_002466 Figure 5740: DNA326820, NM_018217, Figure 5775: PRO4852 gen.NM_018217 Figure 5776: DNA326837, XM_029810, Figure 5741: PRO83153 gen.XM_029810 Figure 5742: DNA326821, NM _002212, Figure 5777: PRO83167 gen.NM_002212 Figure 5743: PRO60945 Figure 5778: DNA326838, XM_029822, gen.XM_029822 Figure 5744A-C: DNA326822, NM -007186, Figure 5779: DNA326839, NM_002638, gen.NM_007186 gen.NM_002638 Figure 5745: DNA226758, NM _015966, Figure 5780: PRO2065 gen.NM_015966 Figure 5781: DNA326840, NM_003064, Figure 5746: PRO37221 gen.NM_003064 Figure 5747: DNA194701, NM _003915, Figure 5782: PRO1720 gen.NM_003915 Figure 5783: DNA326841, NM_015937, Figure 5748: PRO24002 gen.NM_015937 Figure 5749: DNA326823, XM_113380, Figure 5784: PRO83169 gen.XM_113380 Figure 5785: DNA273320, NM_007019, Figure 5750: DNA326824, NM_016558, gen.NM_007019 gen.NM_016558 Figure 5786: PRO61327 Figure 5751: PRO83155 Figure 5787: DNA326842, NM_033421, Figure 5752: DNA326825, NM_015511, gen.NM_033421 gen.NM_015511 Figure 5788: PRO83170 Figure 5753: PRO83156 Figure 5789: DNA88569, NM_006227, Figure 5754: DNA326826, XM_009501, gen.NM_006227 gen.XM_009501 Figure 5790: PRO2420 Figure 5755: PRO83157 Figure 5791: DNA88239, NM_004994, Figure 5756: DNA326827, XM_057236, gen.NM_004994 gen.XM_057236 Figure 5792: PRO2711 Figure 5757: DNA326828, NM_024918, Figure 5793: DNA326843, XM_057374, gen.NM_024918 gen.XM_057374 Figure 5758: PRO83159 Figure 5794: DNA326844, XM_114163, Figure 5759: DNA326829, XM_009642, gen.XM_114163 gen.XM_009642 Figure 5795A-B: DNA326845, XM_097731, Figure 5760: DNA194807, NM_006698, gen.XM_097731 gen.NM_006698 Figure 5796A-B: DNA326846, XM _030044, Figure 5761: PRO24077 Figure 5762: DNA326830, XM_009686, gen.XM_030044 Figure 5797: PRO83174 gen.XM_009686 Figure 5798: DNA326847, NM_017895, Figure 5763: DNA326831, NM_030877, gen.NM_017895 gen.NM_030877 Figure 5799: PRO83175 Figure 5764: PRO83161 Figure 5800: DNA326848, XM_097713, Figure 5765: DNA326832, XM_028806, gen.XM_097713 gen.XM_028806 Figure 5801: PRO83176 Figure 5766A-B: DNA326833, XM_028810, Figure 5802: DNA326849, NM_005985, gen.XM_028810 gen.NM_005985 Figure 5767: PRO83163 Figure 5768: DNA326834, XM_012931, Figure 5803: PRO83177 Figure 5804: DNA326850, NM_003349, gen.XM_012931 gen.NM_003349 Figure 5769: DNA326835, NM_024855,

gen.XM_037202

Figure 5841: PRO83190 Figure 5805: PRO83178 Figure 5806: DNA326851, NM_022442, Figure 5842: DNA326868, XM _037206, gen.XM_037206 gen.NM_022442 Figure 5843: PRO83191 Figure 5807: PRO83179 Figure 5844: DNA103486, NM_007002, Figure 5808: DNA326852, NM_005194, gen.NM_007002 gen.NM_005194 Figure 5845: PRO4813 Figure 5809: DNA326853, NM_002827, Figure 5846A-D: DNA326869, XM _037217, gen.NM_002827 gen.XM_037217 Figure 5810: PRO38066 Figure 5847: DNA326870, NM_001024, Figure 5811: DNA326854, NM_003859, gen.NM_001024 gen.NM_003859 Figure 5848: PRO83193 Figure 5812: PRO83180 Figure 5849: DNA326871, NM _018270, Figure 5813: DNA326855, XM_114165, gen.NM_018270 gen.XM_114165 Figure 5850: PRO83194 Figure 5814: DNA269526, NM_001324, Figure 5851: DNA326872, XM_028783, gen.NM_001324 gen.XM_028783 Figure 5815: PRO57942 Figure 5852: PRO83195 Figure 5816: DNA326856, XM_009549, gen.XM_009549 Figure 5853: DNA326873, NM_001853, gen.NM_001853 Figure 5817: PRO83182 Figure 5854: PRO83196 Figure 5818: DNA326857, XM_030621, Figure 5855: DNA326874, NM _080796, gen.XM_030621 gen.NM_080796 Figure 5819: DNA326858, XM _086648, Figure 5856: PRO83197 gen.XM_086648 Figure 5857: DNA326875, NM _022105, Figure 5820: PRO83183 gen.NM_022105 Figure 5821: DNA326859, XM_009672, Figure 5858: PRO83198 gen.XM_009672 Figure 5859: DNA326876, NM_080797, Figure 5822: PRO83184 Figure 5823A-B: DNA326860, XM_009671, gen.NM_080797 Figure 5860: PRO83199 gen.XM_009671 Figure 5861: DNA326877, NM_018209, Figure 5824: DNA326861, NM_004738, gen.NM_018209 gen.NM_004738 Figure 5862: PRO83200 Figure 5825: PRO983 Figure 5863A-C: DNA326878, XM_028834, Figure 5826: DNA326862, NM_016592, gen.XM_028834 gen.NM_016592 Figure 5864: PRO83201 Figure 5827: PRO83185 Figure 5865: DNA326879, NM_024299, Figure 5828: DNA326863, NM_080425, gen.NM_024299 gen.NM_080425 Figure 5866: PRO83202 Figure 5829: PRO83186 Figure 5867A-C: DNA326880, XM_028918, Figure 5830: DNA304670, NM .000516, gen.NM_000516 gen.XM_028918 Figure 5868: PRO83203 Figure 5831: PRO71097 Figure 5832: DNA326864, NM_080426, Figure 5869: DNA326881, NM_032527, gen.NM_032527 gen.NM_080426 Figure 5833: PRO83187 Figure 5870: PRO83204 Figure 5871A-B: DNA326882, XM_028966, Figure 5834: DNA326865, XM_030699, gen.XM_028966 gen.XM_030699 Figure 5872: PRO83205 Figure 5835: PRO83188 Figure 5873: DNA269746, NM_012469, Figure 5836: DNA188229, NM_000114, gen.NM_012469 gen.NM_000114 Figure 5874: PRO58155 Figure 5837: PRO21728 Figure 5875: DNA326883, XM_114154, Figure 5838: DNA326866, NM .002792, gen.XM_114154 gen.NM_002792 Figure 5876: DNA326884, XM_072173, Figure 5839: PRO83189 gen.XM_072173 Figure 5840A-B: DNA326867, XM_037202,

Figure 5877: DNA326885, XM_086759,

Figure 5912: PRO83219

Figure 5913: DNA326901, XM_036042, gen.XM_086759 Figure 5878: DNA326886, XM_086760, gen.XM_036042 Figure 5914: DNA326902, XM_086770, gen.XM_086760 gen.XM_086770 Figure 5879: DNA326887, NM_021219, Figure 5915: DNA326903, NM_004928, gen.NM_021219 gen.NM_004928 Figure 5880: PRO28687 Figure 5916: PRO83222 Figure 5881: DNA188732, NM_000484, Figure 5917: DNA326904, XM_036087, gen.NM_000484 gen.XM_036087 Figure 5882: PRO25302 Figure 5918: PRO83223 Figure 5883: DNA326888, NM_016940, Figure 5919: DNA326905, XM_009805, gen.NM_016940 gen.XM_009805 Figure 5884: PRO83210 Figure 5920: PRO83224 Figure 5885: DNA254572, NM_006585, Figure 5921: DNA226409, NM_004339, gen.NM_006585 gen.NM_004339 Figure 5886: PRO49675 Figure 5922: PRO36872 Figure 5887: DNA326889, NM_005806, Figure 5923: DNA326906, XM_036107, gen.NM_005806 gen.XM_036107 Figure 5888: PRO83211 Figure 5924A-B: DNA326907, XM_036175, Figure 5889: DNA326890, XM_114185, gen.XM_036175 gen.XM_114185 Figure 5925: DNA326908, XM _097817, Figure 5890: DNA254994, NM_017613, gen.XM_097817 gen.NM_017613 Figure 5926A-B: DNA326909, XM_054566, Figure 5891: PRO50083 gen.XM_054566 Figure 5892: DNA274129, NM_001697, Figure 5927: DNA326910, XM_036755, gen.NM_001697 gen.XM_036755 Figure 5893: PRO62065 Figure 5928: DNA326911, XM_086773, Figure 5894: DNA326891, NM_001757, gen.XM_086773 gen.NM_001757 Figure 5929: DNA326912, XM_097807, Figure 5895: PRO83212 gen.XM_097807 Figure 5896A-C: DNA151898, NM_003316, Figure 5930: DNA326913, XM_086777, gen.NM_003316 gen.XM_086777 Figure 5897: PRO12135 Figure 5931: DNA326914, NM_002340, Figure 5898: DNA326892, NM_003720, gen.NM_002340 gen.NM_003720 Figure 5932: PRO83233 Figure 5899: PRO83213 Figure 5933A-B: DNA326915, NM_003906, Figure 5900: DNA326893, NM_002606, gen.NM_003906 gen.NM_002606 Figure 5934: PRO83234 Figure 5901: PRO83214 Figure 5935: DNA226617, NM .006272, Figure 5902: DNA326894, XM_033015, gen.NM_006272 gen.XM_033015 Figure 5936: PRO37080 Figure 5903: DNA326895, XM_033016, Figure 5937: DNA326916, NM_033070, gen.XM_033016 gen.NM_033070 Figure 5904: PRO59669 Figure 5938: PRO83235 Figure 5905: DNA326896, NM .003681, Figure 5939: DNA255046, NM_017829, gen.NM_003681 gen.NM_017829 Figure 5906: PRO69486 Figure 5940: PRO50134 Figure 5907: DNA326897, XM_035999, Figure 5941: DNA326917, NM_001696, gen.XM_035999 gen.NM_001696 Figure 5908: DNA326898, NM_020132, Figure 5942: PRO83236 gen.NM_020132 Figure 5943A-B: DNA326918, XM_032996, Figure 5909: PRO83217 gen.XM_032996 Figure 5910: DNA326899, XM_036011, Figure 5944: PRO83237 gen.XM_036011 Figure 5945: DNA326919, XM_167538, Figure 5911: DNA326900, NM_013369, gen.XM_167538 gen.NM_013369 Figure 5946: DNA326920, XM_033090,

gen.XM_033090	Figure 5981A-B: DNA326938, XM_037797,
Figure 5947: DNA225954, NM_000407,	gen.XM_037797
gen.NM _000407	Figure 5982: PRO83256
Figure 5948: PRO36417	Figure 5983: DNA326939, NM_004175,
Figure 5949: DNA326921, XM_058918,	gen.NM_004175
gen.XM_058918	Figure 5984: PRO83257
Figure 5950: DNA326922, XM_097833,	Figure 5985: DNA326940, XM_086821,
gen.XM_097833	gen.XM_086821
Figure 5951: DNA326923, NM_024627,	Figure 5986: DNA326941, XM_092888,
gen.NM_024627	gen.XM_092888
Figure 5952: PRO83242	Figure 5987: DNA326942, NM_005080,
Figure 5953: DNA326924, XM_086809,	gen.NM_005080
gen.XM_086809	Figure 5988: PRO83260
Figure 5954: DNA326925, NM_006440,	Figure 5989: DNA269830, NM_005243,
gen.NM_006440	gen.NM_005243
Figure 5955: PRO83244	Figure 5990: PRO58232
Figure 5956: DNA226561, NM .000754,	Figure 5991: DNA326943, NM_006478,
gen.NM_000754	gen.NM_006478
Figure 5957: PRO37024	Figure 5992: PRO83261
Figure 5958: DNA326926, NM_007310,	Figure 5993A-B: DNA326944, XM _037945,
gen.NM_007310	gen.XM_037945
Figure 5959: PRO83245	Figure 5994: DNA103462, NM_000268,
Figure 5960A-B: DNA326927, XM .033813,	gen.NM_000268
gen.XM_033813	Figure 5995: PRO4789
Figure 5961: DNA326928, NM_022727,	Figure 5996: DNA326945, NM_032204,
gen.NM_022727	gen.NM_032204
Figure 5962: PRO83247	Figure 5997: PRO83263
Figure 5963: DNA326929, XM_086805,	Figure 5998: DNA326946, XM_066291,
gen.XM_086805	gen.XM_066291
Figure 5964: DNA326930, XM_086873,	Figure 5999: DNA326947, NM_005877,
gen.XM_086873	gen.NM_005877
Figure 5965: DNA257549, NM _030573,	Figure 6000: PRO62328
gen.NM_030573	Figure 6001: DNA326948, NM_016498,
Figure 5966: PRO52119	gen.NM_016498
Figure 5967: DNA326931, XM .096155,	Figure 6002: PRO83265
gen.XM_096155	Figure 6003: DNA254141, NM_014303,
Figure 5968: DNA326932, XM_096156,	gen.NM_014303
gen.XM.096156	Figure 6004: PRO49256
Figure 5969A-B: DNA326933, XM_036937,	Figure 6005A-B: DNA151882, NM_014941,
gen.XM_036937	gen.NM_014941
Figure 5970: PRO83252	Figure 6006: PRO12134 Figure 6007: DNA326949, NM_006932,
Figure 5971: DNA326934, XM_097886,	gen.NM_006932
gen.XM_097886 Figure 5972: PRO83253	Figure 6008: PRO83266
	Figure 6009: DNA326950, NM_134269,
Figure 5973: DNA304835, NM_022044,	gen.NM_134269
gen.NM_022044 Figure 5974: PRO71242	Figure 6010: PRO83267
Figure 5975: DNA326935, NM_006115,	Figure 6011: DNA270697, NM_004147,
gen.NM_006115	gen.NM_004147
Figure 5976: PRO37012	Figure 6012: PRO59061
Figure 5970: PNO37012 Figure 5977: DNA326936, XM _037682,	Figure 6013: DNA326951, XM_059335,
gen.XM_037682	gen.XM_059335
Figure 5978: PRO83254	Figure 6014: DNA326952, XM_018539,
Figure 5979: DNA326937, NM_002415,	gen.XM_018539
gen.NM_002415	Figure 6015: DNA326953, NM_014306,
Figure 5980: PRO83255	gen.NM_014306
1 18u10 2700, 1 NO03233	Portrational .

Figure 6016: PRO83270 Figure 6017: DNA326954, NM_012179, gen.NM_012179 Figure 6018: PRO83271 Figure 6019A-B: DNA326955, XM 038584, gen.XM_038584 Figure 6020: DNA151752, NM_002133, gen.NM_002133 Figure 6021: PRO12886 Figure 6022: DNA326956, XM_009947, gen.XM_009947 Figure 6023: PRO12845 Figure 6024: DNA326957, XM_114209, gen.XM_114209 Figure 6025A-B: DNA326958, NM_002473, gen.NM_002473 Figure 6026: PRO83273 Figure 6027: DNA188740, NM_003753, gen.NM_003753 Figure 6028: PRO22481 Figure 6029: DNA326959, NM_021126, gen.NM_021126 Figure 6030: PRO70331 Figure 6031: DNA326960, XM_009967, gen.XM_009967 Figure 6032: DNA326961, NM_013365, gen.NM_013365 Figure 6033: PRO83274 Figure 6034: DNA290259, NM_018957, gen.NM_018957 Figure 6035: PRO70383 Figure 6036: DNA326962, NM_020315, gen.NM_020315 Figure 6037: PRO83275 Figure 6038: DNA304719, NM_002305, gen.NM_002305 Figure 6039: PRO71145 Figure 6040: DNA326963, NM _007032, gen.NM_007032 Figure 6041: PRO83276 Figure 6042: DNA326964, XM_009973, gen.XM_009973 Figure 6043: DNA326965, XM_086830, gen.XM_086830 Figure 6044: PRO83278 Figure 6045: DNA254240, NM_016091, gen.NM_016091 Figure 6046: PRO49352 Figure 6047A-B: DNA326966, XM_039236, gen.XM_039236 Figure 6048: PRO83279 Figure 6049: DNA326967, NM_006941, gen.NM_006941

Figure 6050: PRO83280

gen.XM_039248

Figure 6051: DNA326968, XM_039248,

Figure 6052: DNA326969, NM_012323, gen.NM_012323 Figure 6053: PRO83282 Figure 6054: DNA326970, NM_012264, gen.NM_012264 Figure 6055: PRO12490 Figure 6056: DNA326971, NM_015373, gen.NM_015373 Figure 6057: PRO83283 Figure 6058: DNA326972, NM_020243, gen.NM_020243 Figure 6059: PRO23231 Figure 6060: DNA326973, XM_039339, gen.XM_039339 Figure 6061: DNA326974, NM_000967, gen.NM_000967 Figure 6062: PRO83285 Figure 6063: DNA326975, XM _010000, gen.XM_010000 Figure 6064: DNA326976, XM_010002, gen.XM_010002 Figure 6065: DNA326977, XM_039372, gen.XM_039372 Figure 6066: DNA326978, XM_013010, gen.XM_013010 Figure 6067: PRO83288 Figure 6068: DNA254165, NM_000026, gen.NM_000026 Figure 6069: PRO49278 Figure 6070: DNA326979, NM_003932, gen.NM_003932 Figure 6071: PRO4586 Figure 6072: DNA326980, NM_014248, gen.NM_014248 Figure 6073: PRO83289 Figure 6074: DNA326981, XM_086844, gen.XM_086844 Figure 6075: DNA219225, NM_002883, gen.NM_002883 Figure 6076: PRO34531 Figure 6077: DNA326982, NM_003216, gen.NM_003216 Figure 6078: PRO83291 Figure 6079: DNA270954, NM _001098, gen.NM_001098 Figure 6080: PRO59285 Figure 6081: DNA326983, NM_001469, gen.NM_001469 Figure 6082: PRO4872 Figure 6083: DNA326984, NM_005008, gen.NM_005008 Figure 6084: PRO83292 Figure 6085A-B: DNA326985, NM_004599, gen.NM_004599 Figure 6086: PRO83293

Figure 6087A-B: DNA326986, XM_010024,

gen.XM_010024 gen.XM_115924 Figure 6122: DNA327007, XM_113585, Figure 6088: DNA326987, XM_040066, gen.XM_113585 gen.XM_040066 Figure 6123A-C: DNA327008, XM_035465, Figure 6089: DNA326988, XM_013015, gen.XM_035465 gen.XM_013015 Figure 6124: DNA327009, NM_002414, Figure 6090A-B: DNA326989, XM_084084, gen.NM_002414 gen.XM_084084 Figure 6125: PRO2373 Figure 6091: DNA326990, XM_040095, Figure 6126: DNA269793, NM_005333, gen.XM_040095 gen.NM_005333 Figure 6092: PRO83297 Figure 6093: DNA326991, XM_086875, Figure 6127: PRO58198 Figure 6128: DNA327010, XM_088747, gen.XM_086875 gen.XM_088747 Figure 6094: DNA326992, XM_010029, Figure 6129: PRO83316 gen.XM_010029 Figure 6130: DNA327011, XM_114720, Figure 6095: DNA326993, NM_007311, gen.XM_114720 gen.NM_007311 Figure 6131: DNA327012, XM_115886, Figure 6096: PRO83300 gen.XM_115886 Figure 6097: DNA326994, NM_015140, gen.NM_015140 Figure 6132: DNA327013, XM_010272, gen.XM_010272 Figure 6098: PRO83301 Figure 6099: DNA326995, XM_043614, Figure 6133: PRO83319 Figure 6134: DNA327014, NM_006746, gen.XM_043614 gen.NM_006746 Figure 6100: PRO83302 Figure 6135: PRO83320 Figure 6101: DNA256070, NM_022141, Figure 6136: DNA327015, XM_115890, gen.NM_022141 gen.XM_115890 Figure 6102: PRO51119 Figure 6137: PRO83321 Figure 6103: DNA326996, XM_010040, Figure 6138: DNA327016, NM _000284, gen.XM_010040 gen.NM_000284 Figure 6104: DNA237931, NM_005036, Figure 6139: PRO59441 gen.NM_005036 Figure 6140: DNA327017, NM_004595, Figure 6105: PRO39030 gen.NM_004595 Figure 6106A-B: DNA326997, XM_027143, Figure 6141: PRO61744 gen.XM_027143 Figure 6142: DNA327018, XM_166078, Figure 6107: PRO83304 Figure 6108A-B: DNA326998, XM_010055, gen.XM_166078 Figure 6143: DNA327019, NM_001415, gen.XM_010055 Figure 6109: DNA326999, NM_025204, gen.NM_001415 Figure 6144: PRO83323 gen.NM_025204 Figure 6145: DNA327020, XM_013086, Figure 6110: PRO83306 Figure 6111: DNA327000, XM_041248, gen.XM_013086 Figure 6146: DNA327021, XM_060030, gen.XM_041248 Figure 6112: PRO83307 gen.XM_060030 Figure 6147: DNA227689, NM_002364, Figure 6113: DNA327001, XM_092966, gen.NM_002364 gen.XM_092966 Figure 6114: DNA327002, XM_037468, Figure 6148: PRO38152 Figure 6149: DNA274829, NM_003662, gen.XM_037468 gen.NM_003662 Figure 6115: PRO83309 Figure 6150: PRO62588 Figure 6116: DNA327003, XM_037474, Figure 6151: DNA327022, XM_088619, gen.XM_037474 gen.XM_088619 Figure 6117: PRO83310 Figure 6152: DNA327023, XM_088622, Figure 6118: DNA327004, XM_013029, gen.XM_088622 gen.XM_013029 Figure 6153A-B: DNA327024, XM_084288, Figure 6119: DNA327005, XM_114724, gen.XM_084288 gen.XM_114724 Figure 6154: PRO59168 Figure 6120: PRO83312 Figure 6155: DNA327025, XM_054221,

Figure 6121: DNA327006, XM_115924,

gen.NM_004493 gen.XM_054221 Figure 6191: PRO61938 Figure 6156: PRO83328 Figure 6192A-B: DNA327044, XM_050403, Figure 6157: DNA327026, XM_018019, gen.XM_050403 gen.XM_018019 Figure 6193: PRO83343 Figure 6158: DNA327027, XM_088665, Figure 6194: DNA327045, XM_029187, gen.XM_088665 Figure 6159: DNA327028, NM_005300, gen.XM_029187 Figure 6195: PRO83344 gen.NM_005300 Figure 6196: DNA327046, XM_013060, Figure 6160: PRO37083 gen.XM_013060 Figure 6161: DNA327029, XM_018241, Figure 6197: DNA227943, NM_006787, gen.XM_018241 gen.NM_006787 Figure 6162: PRO83331 Figure 6198: PRO38406 Figure 6163: DNA327030, NM_014138, Figure 6199: DNA327047, NM_014481, gen.NM_014138 gen.NM_014481 Figure 6164: PRO83332 Figure 6200: PRO83345 Figure 6165: DNA327031, NM_005676, Figure 6201: DNA327048, XM_034935, gen.NM_005676 Figure 6166: PRO83333 gen.XM_034935 Figure 6167: DNA327032, NM_003334, Figure 6202: PRO83346 Figure 6203: DNA327049, XM_084287, gen.NM_003334 gen.XM_084287 Figure 6168: PRO83334 Figure 6204: DNA327050, NM_007268, Figure 6169: DNA327033, XM_010378, gen.NM_007268 gen.XM_010378 Figure 6205: PRO34043 Figure 6170: DNA327034, XM_033884, Figure 6206: DNA327051, XM_015516, gen.XM_033884 gen.XM_015516 Figure 6171: PRO83335 Figure 6207A-B: DNA327052, XM_013042, Figure 6172: DNA327035, XM_033878, gen.XM_013042 gen.XM_033878 Figure 6208: PRO83349 Figure 6173: DNA327036, XM_033862, Figure 6209: DNA327053, XM_088630, gen.XM_033862 gen.XM_088630 Figure 6174: DNA327037, NM_004182, Figure 6210: DNA327054, NM_031206, gen.NM_004182 gen.NM_031206 Figure 6175: PRO83337 Figure 6211: PRO83351 Figure 6176: DNA327038, XM _047032, Figure 6212: DNA327055, XM_093050, gen.XM_047032 gen.XM_093050 Figure 6177: DNA327039, XM_047024, Figure 6213: PRO83352 gen.XM_047024 Figure 6214A-B: DNA225721, NM_018977, Figure 6178: PRO83339 Figure 6179: DNA327040, NM_017883, gen.NM_018977 Figure 6215: PRO36184 gen.NM_017883 Figure 6216: DNA327056, XM_010141, Figure 6180: PRO83340 gen.XM_010141 Figure 6181: DNA238039, NM_005710, Figure 6217: PRO38021 gen.NM_005710 Figure 6218: DNA327057, XM_088689, Figure 6182: PRO39127 gen.XM ..088689 Figure 6183: DNA327041, XM_054098, Figure 6219: PRO83353 gen.XM_054098 Figure 6220: DNA327058, XM_088688, Figure 6184: PRO83341 Figure 6185: DNA327042, NM_002668, gen.XM_088688 Figure 6221: PRO83354 gen.NM_002668 Figure 6222: DNA327059, NM_018486, Figure 6186: PRO34584 gen.NM_018486 Figure 6187: DNA271580, NM_014008, Figure 6223: PRO83355 gen.NM_014008 Figure 6224: DNA327060, NM_001007, Figure 6188: PRO59868 gen.NM_001007 Figure 6189A-B: DNA327043, XM .032930, Figure 6225: PRO42022 gen.XM_032930 Figure 6226: DNA327061, XM_093130,

Figure 6190: DNA273992, NM_004493,

, xp. (000100	Figure 6260: PRO83372
gen.XM_093130	Figure 6261: DNA327081, XM_066900,
Figure 6227: DNA327062, XM_084296,	gen.XM_066900
gen.XM_084296	Figure 6262: PRO83373
Figure 6228: DNA327063, XM_093241,	Figure 6263: DNA327082, XM_104983,
gen.XM_093241	gen.XM_104983
Figure 6229: DNA327064, XM_084283,	Figure 6264: PRO83374
gen.XM_084283	Figure 6265: DNA327083, XM_088736,
Figure 6230: DNA273254, NM_000291,	gen.XM_088736
gen.NM_000291	Figure 6266: PRO83375
Figure 6231: PRO61271 Figure 6232: DNA327065, XM_018142,	Figure 6267: DNA327084, XM_088738,
=	gen.XM_088738
gen.XM_018142 Figure 6233: DNA327066, XM_030373,	Figure 6268: DNA327085, XM_088739,
	gen.XM_088739
gen.XM_030373 Figure 6234: PRO83360	Figure 6269: DNA327086, XM_010117,
Figure 6235: DNA327067, XM_165533,	gen.XM_010117
-	Figure 6270A-B: DNA76504, NM .001560,
gen.XM_165533 Figure 6236: PRO83361	gen.NM_001560
Figure 6237: DNA327068, XM_051476,	Figure 6271: PRO2537
gen.XM_051476	Figure 6272: DNA227181, NM _006667,
Figure 6238: DNA327069, XM_051471,	gen.NM_006667
gen.XM_051471	Figure 6273: PRO37644
Figure 6239: DNA270496, NM_001325,	Figure 6274: DNA327087, XM_010362,
gen.NM_001325	gen.XM_010362
Figure 6240: PRO58875	Figure 6275: DNA327088, XM_016125,
Figure 6241: DNA327070, XM_033147,	gen.XM_016125
gen.XM_033147	Figure 6276: DNA327089, NM_015129,
Figure 6242: DNA327071, NM_004085,	gen.NM_015129
gen.NM _004085	Figure 6277: PRO83381
Figure 6243: PRO59022	Figure 6278: DNA327090, NM_001000,
Figure 6244: DNA327072, NM_021029,	gen.NM_001000
gen.NM_021029	Figure 6279: PRO10935
Figure 6245: PRO10723	Figure 6280: DNA327091, XM_010436,
Figure 6246: DNA327073, NM_012286,	gen.XM_010436
gen.NM_012286	Figure 6281: DNA327092, XM_115874,
Figure 6247: PRO83365	gen.XM_115874
Figure 6248: DNA327074, NM_024863,	Figure 6282: DNA327093, XM_029461,
gen.NM_024863	gen.XM_029461
Figure 6249: PRO83366	Figure 6283: PRO83383
Figure 6250: DNA327075, XM .043643,	Figure 6284: DNA327094, XM_017930,
gen.XM_043643	gen.XM_017930
Figure 6251: DNA327076, NM_052936,	Figure 6285: DNA227656, NM_004208,
gen.NM_052936	gen.NM_004208
Figure 6252: PRO83368	Figure 6286: PRO38119
Figure 6253: DNA327077, XM_088710,	Figure 6287: DNA273487, NM_004794,
gen.XM_088710	gen.NM_004794
Figure 6254: PRO83369	Figure 6288: PRO61470
Figure 6255: DNA327078, XM_166081,	Figure 6289: DNA327095, XM_088745,
gen.XM_166081	gen.XM_088745
Figure 6256: DNA327079, XM_096303,	Figure 6290: PRO83385
gen.XM_096303	Figure 6291: DNA327096, XM_114708,
Figure 6257: DNA254785, NM_032227,	gen.XM_114708
gen.NM_032227	Figure 6292: PRO83386
Figure 6258: PRO49883	Figure 6293: DNA327097, NM _016267,
Figure 6259: DNA327080, XM_115923,	gen.NM_016267
gen.XM_115923	Figure 6294: PRO83387

gen.NM_006013 Figure 6295A-B: DNA327098, XM_042963, Figure 6327: PRO62466 gen.XM_042963 Figure 6328: DNA327115, XM_048410, Figure 6296: PRO83388 gen.XM_048410 Figure 6297: DNA327099, XM_042968, Figure 6329A-C: DNA327116, XM_048404, gen.XM_042968 gen.XM_048404 Figure 6298: PRO83389 Figure 6330A-C: DNA327117, NM_004992, Figure 6299: DNA327100, XM_093219, gen.XM_093219 gen.NM_004992 Figure 6300: DNA327101, NM_016249, Figure 6331: PRO83403 gen.NM_016249 Figure 6332: DNA227013, NM_001569, gen.NM_001569 Figure 6301: PRO83391 Figure 6333: PRO37476 Figure 6302: DNA327102, XM_098995, Figure 6334A-B: DNA225800, NM_000425, gen.XM_098995 gen.NM_000425 Figure 6303: PRO83392 Figure 6335: PRO36263 Figure 6304: DNA327103, XM_041921, Figure 6336A-B: DNA327118, NM_024003, gen.XM_041921 gen.NM_024003 Figure 6305: PRO83393 Figure 6337: PRO83404 Figure 6306: DNA327104, XM_048905, Figure 6338: DNA225655, NM_006280, gen.XM_048905 gen.NM_006280 Figure 6307: PRO83394 Figure 6339: PRO36118 Figure 6308: DNA327105, NM_005364, Figure 6340: DNA276159, NM_004135, gen.NM_005364 gen.NM_004135 Figure 6309: PRO83395 Figure 6341: PRO63299 Figure 6310: DNA327106, XM_010178, Figure 6342A-B: DNA230792, NM_000033, gen.XM_010178 Figure 6311: DNA327107, XM_088592, gen.NM_000033 Figure 6343: PRO38730 gen.XM_088592 Figure 6344: DNA103558, NM_005745, Figure 6312: PRO25245 gen.NM_005745 Figure 6313: DNA327108, XM_018108, Figure 6345: PRO4885 gen.XM_018108 Figure 6346: DNA327119, XM _042155, Figure 6314: PRO83397 Figure 6315: DNA327109, XM_018109, gen.XM_042155 Figure 6347: PRO83405 gen.XM_018109 Figure 6316: DNA327110, NM_005362, Figure 6348: DNA327120, XM_042153, gen.XM_042153 gen.NM_005362 Figure 6349: DNA327121, XM_117555, Figure 6317: PRO24021 gen.XM_117555 Figure 6318: DNA254783, NM_001363, Figure 6350: DNA327122, XM_084311, gen.NM_001363 gen.XM_084311 Figure 6319: PRO49881 Figure 6351: DNA327123, XM_033232, Figure 6320: DNA327111, XM_049337, gen.XM_033232 gen.XM_049337 Figure 6352: DNA327124, XM_117539, Figure 6321: DNA227917, NM_019848, gen.XM_117539 gen.NM_019848 Figure 6353: DNA327125, XM .027952, Figure 6322: PRO38380 gen.XM_027952 Figure 6323: DNA327112, NM_004699, Figure 6354: DNA327126, XM_114692, gen.NM_004699 Figure 6324: PRO83400 gen.XM_114692 Figure 6355A-B: DNA327127, XM_165530, Figure 6325: DNA327113, XM _048420, gen.XM_165530 gen.XM_048420 Figure 6326: DNA327114, NM_006013,

DNA Index (to Figure number)

DNA0, 1188	DNA171408,48
DNA103214, 218	DNA188229, 5836
DNA103217, 649	DNA188351, 4782
DNA103239, 5576	DNA188396, 3480
DNA103253, 188	DNA 188732, 5882
DNA103320, 5272	DNA188740, 6027
DNA103380, 1677	DNA 188748, 146
DNA103401, 4708	DNA189315, 167
DNA103421, 2982	DNA189687, 3297
DNA103436, 457	DNA189697, 998
DNA103462, 5994	DNA189703, 4568
DNA103471, 2070	DNA193882, 585
DNA103474, 3313	DNA193955, 2193
DNA103486, 5844	DNA193957, 2947
DNA103505, 1149	DNA194600, 428
DNA103506, 2990	DNA194701, 5747
DNA103509, 4110	DNA194740, 854
	DNA194805, 4530
DNA103525, 5774	DNA194807, 5760
DNA103558, 6344	DNA194827, 977
DNA103580, 5494	DNA196344, 576
DNA103588, 2274	DNA196349, 124
DNA103593, 711	DNA196351, 3600
DNA129504, 4985	DNA196642, 4877
DNA131588, 2593	DNA210134, 367
DNA137231, 3667	DNA210180, 3962
DNA139747, 1368	DNA218271, 5258
DNA144601, 3051	DNA218841, 2782
DNA150457, 4936	DNA219225, 6075
DNA150485, 4305	DNA219233, 4182
DNA150548, 5703	DNA225584, 1489
DNA150562, 1153	DNA225592, 1330
DNA150679, 1732	DNA225630, 2767
DNA150725, 806	DNA225631, 2174
DNA150767, 5721	DNA225632, 3473
DNA150772, 2034	DNA225649, 4042
DNA150772, 2034 DNA150784, 5502	DNA225655, 6338
DNA150814, 4953	DNA225671, 2506
DNA150884, 1024	DNA225721, 6214
DNA150974, 3204	DNA225752, 3376
DNA150976, 1145	DNA225800, 6334
DNA150978, 3520	DNA225809, 356
	DNA225865, 3976
DNA150997, 3526	DNA225909, 1828
DNA151010, 2546	DNA225910, 1128
DNA151017, 1066	DNA225919, 1446
DNA 151752 6020	DNA225919, 1440 DNA225920, 1511
DNA151752, 6020	DNA225920, 1511 DNA225921, 1515
DNA151808, 5476	
DNA151827, 3466	DNA225954, 5947
DNA151831, 4141	DNA226005, 553
DNA151882, 6005	DNA226011,5517
DNA151893, 4079	DNA226014, 3729
DNA151898, 5896	DNA226028, 3489

·	
DNA226080, 3206	DNA227491, 2691
DNA226105, 3992	DNA227504, 594
DNA226125, 409	DNA227509, 3076
DNA226217, 3004	DNA227528, 803
DNA226260, 271	DNA227529, 346
DNA226262, 105	DNA227545, 698
DNA226324, 4095	DNA227559, 4161
DNA226337, 2458	DNA227575, 1508
DNA226345, 2670	DNA227577, 374
	DNA227607, 1961
DNA226389, 4820	DNA227656, 6285
DNA226409, 5921	DNA227689, 6147
DNA226416, 2262	DNA227764, 4891
DNA226418, 1791	DNA227795, 792
DNA226428, 741	DNA227821, 36
DNA226496, 2565	DNA227873, 4841
DNA226547, 1108	DNA227917, 6321
DNA226560, 2393	DNA227924, 2099
DNA226561,5956	DNA227929, 2206
DNA226617, 5935	DNA227929, 2200 DNA227943, 6197
DNA226619, 474	
DNA226646, 4224	DNA230792, 6342
DNA226758, 5745	DNA234442, 4214
DNA226771, 3498	DNA237931, 6104
DNA226793, 436	DNA238039, 6181
DNA226853, 3866	DNA247474, 578
DNA226872, 1689	DNA247595, 2182
DNA227013, 6332	DNA251057, 5515
DNA227055, 4939	DNA252367, 1081
DNA227071, 4889	DNA253804, 1370
DNA227084, 4742	DNA254141, 6003
DNA227088, 3220	DNA254147, 1627
DNA227092, 3593	DNA254165, 6068
DNA227094, 3628	DNA254186, 3329
DNA227165, 684	DNA254198, 4719
DNA227171, 3724	DNA254204, 994
DNA227172, 2964	DNA254240, 6045
DNA227173, 1573	DNA254298, 499
DNA227181,6272	DNA254346, 603
DNA227190, 814	DNA254532, 4487
DNA227191, 3588	DNA254543, 2740
DNA227204, 1886	DNA254548, 5627
DNA227206, 4170	DNA254572, 5885
DNA227213, 157	DNA254582, 1155
DNA227234, 4626	DNA254620, 1316
DNA227246, 550	DNA254624, 3468
DNA227249, 5352	DNA254771, 2693
DNA227267, 2512	DNA254777, 3777
DNA227268, 2242	DNA254781, 4374
DNA227280, 5232	DNA254783, 6318
DNA227307, 1165	DNA254785, 6257
DNA227320, 1812	DNA254791, 4898
DNA227321, 3984	DNA254994, 5890
DNA227348, 5681	DNA255046, 5939
DNA227442, 1942	DNA255078, 3113
DNA227472, 1942 DNA227472, 5771	DNA255340, 4208
DNA227472, 3771 DNA227474, 3720	DNA255370, 4265
DIN MAIT (1) DING	

DNA255414, 4747	DNA270721, 3295	j
DNA255531, 859	DNA270901, 4879)
DNA255696, 3109	DNA270931, 5504	
DNA256070, 6101	DNA270954, 6079	
DNA256072, 3511	DNA270975, 4843	
	DNA270979, 4805	
DNA256503, 199	DNA270991, 2662	
DNA256533, 5513	DNA271003, 288	
DNA256555, 5146	DNA271010, 5676	;
DNA256813, 5056 DNA256836, 5387	DNA271040, 1997	
	DNA271060, 751	
DNA256840, 5434	DNA271171, 4507	ı
DNA256844, 4362	DNA271187, 1093	
DNA256886, 4370 DNA256905, 545	DNA271243, 703	
	DNA271324, 3380)
DNA257253, 1642	DNA271344, 3550	
DNA257309, 2746	DNA271418, 2104	
DNA257428, 4854	DNA271492, 3727	
DNA257511, 1437	DNA271580, 6187	
DNA257531, 5506 DNA257549, 5965	DNA271608, 934	
	DNA271626, 1721	ı
DNA257916, 402 DNA257965, 3415	DNA271722, 2751	
DNA269431, 3101	DNA271841, 5052	
DNA269481,5593	DNA271843, 3392	
DNA269498, 4059	DNA271847, 2660	
DNA269526, 5814	DNA271931, 1697	
DNA269593, 1854	DNA271986, 519	
DNA269630, 5312	DNA272024, 202	
DNA269708, 267	DNA272050, 2600	0
DNA269730, 1195	DNA272062, 5625	5
DNA269746, 5873	DNA272090, 2348	8
DNA269793, 6126	DNA272127, 881	
DNA269803, 3284	DNA272171, 1860	6
DNA269809, 1687	DNA272213, 2734	
DNA269816, 1646	DNA272263, 196	7
DNA269830, 5989	DNA272347, 5426	
DNA269858, 1270	DNA272379, 355	
DNA269894, 5298	DNA272413, 339	
DNA269910, 1062	DNA272421, 520	1
DNA269930, 1097	DNA272605, 133	5
DNA269952, 3093	DNA272655, 271	
DNA270015, 3864	DNA272728, 321	
DNA270134, 3208	DNA272748, 235	
DNA270154, 746	DNA272889, 481	
DNA270254, 3896	DNA273014, 426	
DNA270315, 5206	DNA273060, 194	
DNA270401, 1099	DNA273066, 556	
DNA270458, 3591	DNA273088, 396	_
DNA270496, 6239	DNA273254, 623	
DNA270613, 1892	DNA273320, 578	
DNA270615, 1386	DNA273346, 561	
DNA270621, 5234	DNA273474, 542	
DNA270675, 1850	DNA273487, 628	
DNA270677, 3823	DNA273517, 573	
DNA270697, 6011	DNA273521, 306	
DNA270711, 2371	DNA273600, 544	ŏ

WO 2004/030615 PCT/US2003/028547

DNA273694, 5023	DNA287290, 5685
DNA273712, 42	DNA287291, 4919
DNA273759, 2899	DNA287319, 1969
DNA273800, 689	DNA287331, 4242
DNA273839, 4360	DNA287355, 4520
DNA273865, 2246	DNA287417, 3218
DNA273919, 1182	DNA287425, 4900
DNA273992, 6190	DNA287427, 4778
DNA274002, 4476	DNA287636, 5154
DNA274034, 5277	DNA287642, 2951
DNA274058, 3912	DNA288247, 2703
DNA274101, 5115	DNA288259, 1598
DNA274129, 5892	DNA289522, 4446
DNA274139, 5441	DNA289530, 2761
DNA274178, 2491	DNA290231, 1638
DNA274180, 4516	DNA290234, 540
DNA274206, 1830	DNA290259, 6034
DNA274289, 5523	DNA290260, 5550
DNA274269, 3323 DNA274326, 2176	DNA290264, 2007
DNA274361, 3763	DNA290284, 350
DNA274487, 180	DNA290292, 4728
DNA274467, 180 DNA274690, 5039	DNA290294, 3620
·	DNA290319, 2680
DNA274745, 192	DNA290585, 1459
DNA274755, 4975	DNA290785, 2032
DNA274759, 340	DNA294794, 438
DNA274761, 5199	DNA297288, 5638
DNA274823, 5542	DNA297388, 4699
DNA274829, 6149	DNA297386, 4699 DNA297398, 3434
DNA275049, 662	DNA297396, 3434 DNA299899, 930
DNA275066, 744	DNA302016, 3827
DNA275139, 292	DNA302010, 3827 DNA302020, 1718
DNA275144, 4300	DNA302020, 1718 DNA304459, 2986
DNA275181, 4320	
DNA275195,651	DNA304460, 1908
DNA275240, 864	DNA304488, 2996
DNA275322, 2723	DNA304658, 5562
DNA275334, 2232	DNA304661, 1946
DNA275408, 4564	DNA304662, 5640
DNA275630, 1904	DNA304666, 369
DNA276159, 6340	DNA304668, 1963
DNA281436, 3900	DNA304669, 3887
DNA287167, 794	DNA304670, 5830
DNA287173,31	DNA304680, 1874
DNA287189, 2265	DNA304685, 2435
DNA287216, 2701	DNA304686, 220
DNA287227, 1952	DNA304694, 3717
DNA287234, 5014	DNA304699, 1986
DNA287237, 3008	DNA304704, 4575
DNA287240, 5328	DNA304707, 2254
DNA287243, 5279	DNA304710, 2308
DNA287246, 1900	DNA304715, 4714
DNA287254, 3236	DNA304716, 1912
DNA287261, 5668	DNA304719, 6038
DNA287270, 5654	DNA304720, 371
DNA287271, 2763	DNA304783, 3631
DNA287282, 1582	DNA304801, 2342
,	

DNA304805, 905	DNA323771, 98
DNA304835, 5973	DNA323772, 99
DNA323717, 1	DNA323773, 101
DNA323718, 2	DNA323774, 102
DNA323719, 3	DNA323775, 103
DNA323720,4	DNA323776, 107
DNA323721,6	DNA323777, 109
DNA323722, 8	DNA323778, 110
DNA323723, 10	DNA323779, 112
DNA323724, 12	DNA323780, 113
DNA323725, 14	DNA323781, 114
DNA323726, 15	DNA323782, 116
DNA323727, 17	DNA323783, 118
DNA323728, 19	DNA323784, 120
DNA323729, 20	DNA323785, 122
DNA323730, 22	DNA323788, 126
DNA323731, 24	DNA323789, 127
DNA323732, 26	DNA323790, 129
DNA323733, 28	DNA323791, 130
DNA323734, 29	DNA323792, 131
DNA323735, 33	DNA323793, 133
DNA323736, 34	DNA323794, 134
DNA323730, 34 DNA323737, 38	DNA323795, 135
DNA323738, 40	DNA323796, 136
	DNA323797, 137
DNA323739, 41	DNA323798, 139
DNA323740, 46	DNA323799, 140
DNA323741, 50	DNA323800, 141
DNA323742, 52	
DNA323744, 55	DNA323801, 142 DNA323802, 144
DNA323744,55	•
DNA323745, 57	DNA323803, 145
DNA323746, 58	DNA323804, 148
DNA323747, 59	DNA323805, 150
DNA323748, 60	DNA323806, 152
DNA323749, 62	DNA323807, 154
DNA323750, 64	DNA323808, 155
DNA323751, 66	DNA323809, 159
DNA323752, 67	DNA323810, 161
DNA323753, 68	DNA323811, 163
DNA323754, 69	DNA323812, 165
DNA323755,71	DNA323813, 169
DNA323756, 73	DNA323814, 171
DNA323757,75	DNA323815, 175
DNA323758, 76	DNA323816, 176
DNA323759,77	DNA323817, 178
DNA323760, 78	DNA323818, 182
DNA323761,79	DNA323819, 183
DNA323762, 81	DNA323820, 185
DNA323763, 83	DNA323821, 187
DNA323764, 85	DNA323822, 190
DNA323765, 87	DNA323823, 196
DNA323766, 89	DNA323824, 198
DNA323767,91	DNA323825, 201
DNA323768, 93	DNA323826, 204
DNA323769, 95	DNA323827, 206
DNA323770,97	DNA323828, 208
	•

WO 2004/030615 PCT/US2003/028547

DNA323829, 210	DNA323885, 317
DNA323830, 212	DNA323886, 318
DNA323831, 213	DNA323887, 319
DNA323832, 214	DNA323888, 321
DNA323833, 216	DNA323889, 323
DNA323834, 222	DNA323890, 324
DNA323835, 224	DNA323891, 326
DNA323836, 226	DNA323892, 327
DNA323837, 228	DNA323893, 328
DNA323838, 229	DNA323894, 330
DNA323839, 231	DNA323895, 331
DNA323840, 233	DNA323896, 332
DNA323841, 237	DNA323897, 334
DNA323842, 239	DNA323898, 336
DNA323843, 241	DNA323899, 338
DNA323844, 243	DNA323900, 342
DNA323845, 244	DNA323901, 344
DNA323846, 245	DNA323901, 344 DNA323902, 348
DNA323847, 247	DNA323902, 346 DNA323903, 352
•	•
DNA323848, 249	DNA323904, 353
DNA323849, 250	DNA323905, 354
DNA323850, 251	DNA323906, 358
DNA323851, 253	DNA323907, 360
DNA323852, 254	DNA323908, 361
DNA323853, 256	DNA323909, 363
DNA323854, 257	DNA323910, 364
DNA323855, 259	DNA323911, 366
DNA323856, 260	DNA323912, 373
DNA323857, 262	DNA323913, 376
DNA323858, 264	DNA323914, 377
DNA323859, 265	DNA323915, 379
DNA323860, 269	DNA323916, 381
DNA323861, 273	DNA323917, 383
DNA323862, 275	DNA323918, 384
DNA323863, 276	DNA323919, 386
DNA323864, 277	DNA323920, 388
DNA323865, 279	DNA323921, 389
DNA323866, 280	DNA323922, 391
DNA323867, 281	DNA323923, 392
DNA323868, 282	DNA323924, 394
DNA323869, 284	DNA323925, 398
DNA323870, 286	DNA323926, 400
DNA323871, 290	DNA323927, 404
DNA323872, 294	DNA323928, 406
DNA323873, 295	DNA323929, 408
DNA323874, 296	DNA323930, 411
DNA323875, 298	DNA323931,412
DNA323876, 300	DNA323932, 414
DNA323877, 302	DNA323933, 416
DNA323878, 304	DNA323934, 418
DNA323879, 306	DNA323935, 420
DNA323880, 308	DNA323936, 422
DNA323881, 310	DNA323937, 424
DNA323882, 312	DNA323938, 426
DNA323883, 314	DNA323939, 430
DNA323884, 315	DNA323940, 432

_	•		
DNA323941,433			DNA323997, 537
DNA323942, 434			DNA323998, 538
DNA323943, 440			DNA323999, 542
DNA323944, 442			DNA324000, 543
DNA323945, 444			DNA324001,544
DNA323946, 446			DNA324002, 547
			DNA324003, 548
DNA323947, 448			DNA324004, 552
DNA323948, 450			
DNA323949, 451			DNA324005, 555
DNA323950, 452			DNA324006, 557
DNA323951,454			DNA324007, 560
DNA323952, 455			DNA324008, 561
DNA323953, 459			DNA324009, 562
DNA323954, 461			DNA324010, 564
DNA323955, 463			DNA324011, 566
DNA323956, 465			DNA324012, 567
DNA323957, 466		•	DNA324013, 568
DNA323958, 468			DNA324014, 569
DNA323959, 470			DNA324015, 571
DNA323960, 472			DNA324016, 573
DNA323961, 473			DNA324017, 575
DNA323962, 476			DNA324018, 580
•			DNA324019, 581
DNA323963, 477			DNA324019, 581
DNA323964, 479			
DNA323965, 481			DNA324021, 583
DNA323966, 483	*	•	DNA324022, 587
DNA323967, 484			DNA324023, 589
DNA323968, 485			DNA324024, 591
DNA323969, 486			DNA324025, 592
DNA323970,488			DNA324026, 593
DNA323971,490			DNA324027, 596
DNA323972, 492			DNA324028, 598
DNA323973, 493			DNA324029, 599
DNA323974, 494			DNA324030, 600
DNA323975, 495	•		DNA324031,601
DNA323976, 497			DNA324032, 602
DNA323977, 501			DNA324033, 605
DNA323978, 503			DNA324034, 606
DNA323979, 505			DNA324035, 608
DNA323980, 507			DNA324036, 610
DNA323981, 509			DNA324037, 612
DNA323982, 511			DNA324038, 614
			DNA324039, 616
DNA323983, 513			DNA324040, 618
DNA323984, 515			DNA324041, 619
DNA323985, 517			
DNA323986, 521			DNA324042, 620
DNA323987, 522	•		DNA324043, 622
DNA323988, 523			DNA324044, 626
DNA323989, 524			DNA324045, 628
DNA323990, 525			DNA324046, 630
DNA323991,527			DNA324047, 632
DNA323992, 529			DNA324048, 634
DNA323993, 531			DNA324049, 636
DNA323994, 532			DNA324050, 638
DNA323995, 534			DNA324051, 639
DNA323996, 535			DNA324052, 641
~145000000000000000000000000000000000000			·, - ·

DNA324053, 642	DNA324109, 763
DNA324054, 643	DNA324110, 764
DNA324055, 645	DNA324111,766
DNA324056, 647	DNA324112,768
DNA324057,653	DNA324113,770
DNA324058, 655	DNA324114,771
DNA324059, 657	DNA324115,772
DNA324060, 659	DNA324116, 773
DNA324061, 661	DNA324117,775
DNA324062, 664	DNA324118,776
DNA324063, 665	DNA324119,777
DNA324064, 667	DNA324120, 779
DNA324065, 669	DNA324121, 780
DNA324066, 670	DNA324122, 782
-	DNA324123, 783
DNA324067, 672	DNA324124, 784
DNA324068, 674	DNA324125, 785
DNA324069, 676	DNA324126, 787
DNA324070, 678	DNA324127, 788
DNA324071, 680	DNA324128, 789
DNA324072, 681	DNA324129, 791
DNA324073, 683	DNA324129, 791
DNA324074, 686	DNA324131, 798
DNA324075, 690	DNA324131, 798 DNA324132, 800
DNA324076, 692	_
DNA324077, 694	DNA324133, 801
DNA324078, 696	DNA324134, 805
DNA324079, 700	DNA324135, 808
DNA324080, 701	DNA324136, 810
DNA324081, 705	DNA324137, 812
DNA324082, 707	DNA324138, 816
DNA324083, 709	DNA324139, 817
DNA324084, 713	DNA324140, 818
DNA324085, 715	DNA324141, 820
DNA324086, 716	DNA324142, 822
DNA324087, 717	DNA324143, 823
DNA324088, 719	DNA324144, 824
DNA324089, 721	DNA324145, 825
DNA324090, 723	DNA324146, 827
DNA324091, 725	DNA324147, 829
DNA324092, 726	DNA324148, 831
DNA324093, 727	DNA324149, 832
DNA324094, 729	DNA324150, 834
DNA324095, 731	DNA324151, 836
DNA324096, 733	DNA324152, 838
DNA324097, 734	DNA324153, 839
DNA324098, 736	DNA324154, 841
DNA324099, 738	DNA324155, 842
DNA324100, 740	DNA324156, 843
DNA324101,743	DNA324157, 845
DNA324102,748	DNA324158, 847
DNA324103, 749	DNA324159, 849
DNA324104, 753	DNA324160, 850
DNA324105, 755	DNA324161, 851
DNA324106, 757	DNA324162, 853
DNA324107, 759	DNA324163, 856
DNA324108, 761	DNA324164, 857
· · · · · · · · · · · · · · · · · · ·	

DNA324165, 858	DNA324221, 962
DNA324166, 861	DNA324222, 964
DNA324167, 862	DNA324223, 965
DNA324168, 866	DNA324224, 966
DNA324169, 867	DNA324225, 968
DNA324170, 869	DNA324226, 970
DNA324171, 871	DNA324227, 971
DNA324172, 873	DNA324228, 973
DNA324173, 875	DNA324229, 975
DNA324174, 877	DNA324230, 979
DNA324175, 878	DNA324231, 980
DNA324176, 880	DNA324232, 982
DNA324177, 883	DNA324233, 984
DNA324178, 885	DNA324234, 985
DNA324179, 887	DNA324235, 986
DNA324180, 889	DNA324236, 988
DNA324181, 891	DNA324237, 990
•	DNA324238, 992
DNA324182, 893	DNA324239, 993
DNA324183, 894	•
DNA324184, 896	DNA324240, 996
DNA324185, 900	DNA324241, 1000
DNA324186, 901	DNA324242, 1002
DNA324187, 903	DNA324243, 1004
DNA324188, 907	DNA324244, 1006
DNA324189, 909	DNA324245, 1007
DNA324190, 910	DNA324246, 1009
DNA324191, 911	DNA324247, 1011
DNA324192, 912	DNA324248, 1012
DNA324193, 914	DNA324249, 1014
DNA324194, 916	DNA324250, 1016
DNA324195, 918	DNA324251, 1018
DNA324196, 920	DNA324252, 1020
DNA324197, 921	DNA324253, 1022
DNA324198, 923	DNA324254, 1026
DNA324199, 925	DNA324255, 1028
DNA324200, 926	DNA324256, 1029
DNA324201, 927	DNA324257, 1030
DNA324202, 928	DNA324258, 1032
DNA324203, 929	DNA324259, 1034
DNA324204, 932	DNA324260, 1036
DNA324205, 933	DNA324261, 1037
DNA324206, 936	DNA324262, 1039
DNA324207, 938	DNA324263, 1040
DNA324208, 940	DNA324264, 1041
DNA324209, 941	DNA324265, 1042
DNA324210, 942	DNA324266, 1043
DNA324211, 944	DNA324267, 1045
DNA324212, 946	DNA324268, 1047
DNA324213, 948	DNA324269, 1049
DNA324214, 950	DNA324270, 1051
DNA324215, 952	DNA324271, 1053
DNA324216, 954	DNA324272, 1055
DNA324217, 955	DNA324273, 1057
DNA324218, 957	DNA324274, 1059
DNA324219, 958	DNA324275, 1060
DNA324220, 960	DNA324276, 1064
DIN LOUTELU, 700	2. 1. 22 2 12 7 U, 10UT

DNA324277, 1068	DNA324333, 1186
DNA324278, 1070	DNA324334, 1187
DNA324279, 1072	DNA324335, 1190
DNA324280, 1074	DNA324336, 1192
DNA324281, 1075	DNA324337, 1193
DNA324282, 1076	DNA324338, 1197
DNA324283, 1078	DNA324339, 1198
DNA324284, 1079	DNA324340, 1199
DNA324285, 1083	DNA324341, 1201
DNA324286, 1085	DNA324342, 1202
	DNA324343, 1203
DNA324287, 1086	DNA324344, 1204
DNA324288, 1088	DNA324345, 1205
DNA324289, 1091	DNA324346, 1206
DNA324290, 1095	DNA324347, 1208
DNA324291, 1101	DNA324348, 1209
DNA324292, 1103	
DNA324293, 1105	DNA324349, 1211
DNA324294, 1106	DNA324350, 1213
DNA324295, 1110	DNA324351, 1214
DNA324296, 1112	DNA324352, 1216
DNA324297, 1113	DNA324353, 1218
DNA324298, 1115	DNA324354, 1220
DNA324299, 1117	DNA324355, 1221
DNA324300, 1119	DNA324356, 1225
DNA324301, 1120	DNA324357, 1227
DNA324302, 1121	DNA324358, 1229
DNA324303, 1122	DNA324359, 1231
DNA324304, 1123	DNA324360, 1232
DNA324305, 1125	DNA324361, 1234
DNA324306, 1127	DNA324362, 1235
DNA324307, 1130	DNA324363, 1237
DNA324308, 1131	DNA324364, 1238
DNA324309, 1132	DNA324365, 1240
DNA324310, 1134	DNA324366, 1242
DNA324311, 1136	DNA324367, 1243
DNA324312, 1137	DNA324368, 1244
DNA324313, 1139	DNA324369, 1245
DNA324314, 1140	DNA324370, 1246
DNA324315, 1141	DNA324371, 1248
DNA324316, 1143	DNA324372, 1250
DNA324317, 1147	DNA324373, 1252
DNA324318, 1151	DNA324374, 1254
DNA324319, 1157	DNA324375, 1255
DNA324320, 1159	DNA324376, 1256
DNA324321, 1161	DNA324377, 1258
	DNA324378, 1260
DNA324322, 1162	DNA324379, 1262
DNA324323, 1163	DNA324380, 1263
DNA324324, 1167	DNA324380, 1264
DNA324325, 1169	DNA324381, 1264 DNA324382, 1265
DNA324326, 1170	DNA324382, 1203 DNA324383, 1266
DNA324327, 1172	
DNA324328, 1174	DNA324384, 1267
DNA324329, 1176	DNA324385, 1268
DNA324330, 1178	DNA324386, 1272
DNA324331, 1180	DNA324387, 1274
DNA324332, 1184	DNA324388, 1275

DNA324389, 1276	DNA324445, 1376
DNA324390, 1278	DNA324446, 1378
DNA324391, 1280	DNA324447, 1380
DNA324392, 1282	DNA324448, 1382
DNA324393, 1284	DNA324449, 1384
DNA324394, 1286	DNA324450, 1388
DNA324395, 1288	DNA324451, 1390
DNA324396, 1289	DNA324452, 1392
·	DNA324453, 1394
DNA324397, 1290	DNA324454, 1396
DNA324398, 1291	-
DNA324399, 1292	DNA324455, 1398
DNA324400, 1294	DNA324456, 1400
DNA324401, 1295	DNA324457, 1402
DNA324402, 1296	DNA324458, 1404
DNA324403, 1297	. DNA324459, 1406
DNA324404, 1299	DNA324460, 1408
DNA324405, 1300	DNA324461, 1410
DNA324406, 1302	DNA324462, 1412
DNA324407, 1304	DNA324463, 1413
DNA324408, 1306	DNA324464, 1414
DNA324409, 1308	DNA324465, 1416
DNA324410, 1310	DNA324466, 1417
DNA324411, 1312	DNA324467, 1418
DNA324412, 1313	DNA324468, 1419
DNA324413, 1314	DNA324469, 1421
DNA324414, 1315	DNA324470, 1423
DNA324415, 1318	DNA324471, 1424
DNA324416, 1320	DNA324472, 1425
DNA324417, 1322	DNA324473, 1427
DNA324418, 1323	DNA324474, 1429
DNA324419, 1325	DNA324475, 1430
DNA324420, 1329	DNA324476, 1432
DNA324421, 1332	DNA324478, 1433
DNA324422, 1333	DNA324479, 1434
	DNA324480, 1435
DNA324423, 1337	DNA324481, 1439
DNA324424, 1338	DNA324482, 1440
DNA324425, 1340	DNA324483, 1441
DNA324426, 1341	•
DNA324427, 1343	DNA324484, 1442
DNA324428, 1344	DNA324485, 1443
DNA324429, 1345	DNA324486, 1445
DNA324430, 1347	DNA324487, 1448
DNA324431, 1348	DNA324488, 1449
DNA324432, 1350	DNA324489, 1451
DNA324433, 1354	DNA324490, 1452
DNA324434, 1356	DNA324491, 1453
DNA324435, 1358	DNA324492, 1455
DNA324436, 1359	DNA324493, 1456
DNA324437, 1360	DNA324494, 1457
DNA324438, 1361	DNA324495, 1461
DNA324439, 1363	DNA324496, 1463
DNA324440, 1364	DNA324497, 1464
DNA324441, 1365	DNA324498, 1465
DNA324442, 1366	DNA324499, 1466
DNA324443, 1372	DNA324500, 1468
DNA324444, 1374	DNA324501, 1469

DNA324502, 1470	DNA324559, 1556
DATA 224502 1471	DNA324560, 1557
DNA324503, 1471	
DNA324504, 1472	DNA324561, 1559
DNA324505, 1473	DNA324562, 1561
DNA324506, 1474	DNA324563, 1562
DNA324507, 1476	DNA324564, 1564
DNA324508, 1477	DNA324565, 1565
DNA324509, 1478	DNA324566, 1567
DNA324510, 1480	DNA324567, 1568
DNA324511, 1482	DNA324568, 1570
DNA324512, 1483	DNA324569, 1572
DNA324513, 1484	DNA324570, 1575
DNA324514, 1485	DNA324571, 1577
DNA324515, 1487	DNA324572, 1579
DNA324516, 1491	DNA324573, 1581
DNA324517, 1493	DNA324574, 1584
	DNA324575, 1586
DNA324518, 1494	DNA324576, 1587
DNA324519, 1496	
DNA324520, 1497	DNA324577, 1588
DNA324521, 1499	DNA324578, 1590
DNA324522, 1500	DNA324579, 1591
DNA324523, 1502	DNA324580, 1592
DNA324524, 1504	DNA324581, 1593
DNA324525, 1506	DNA324582, 1595
DNA324526, 1510	DNA324583, 1596
DNA324527, 1513	DNA324584, 1597
DNA324528, 1517	DNA324585, 1600
DNA324529, 1519	DNA324586, 1602
DNA324530, 1520	DNA324587, 1604
DNA324531, 1522	DNA324588, 1606
DNA324532, 1524	DNA324589, 1608
DNA324533, 1525	DNA324590, 1609
DNA324534, 1526	DNA324591, 1610
DNA324535, 1528	DNA324592, 1611
DNA324536, 1530	TNYA 204502 1612
DI111327330, 1330	DNA324593, 1612
DNA324537, 1531	DNA324593, 1612 DNA324594, 1614
· ·	
DNA324537, 1531	DNA324594, 1614
DNA324537, 1531 DNA324538, 1532	DNA324594, 1614 DNA324595, 1615
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324545, 1541	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324544, 1541 DNA324546, 1543	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324545, 1541 DNA324546, 1543 DNA324546, 1543	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629 DNA324604, 1631
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324545, 1541 DNA324546, 1543 DNA324546, 1543 DNA324547, 1544 DNA324548, 1545	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629 DNA324604, 1631 DNA324605, 1632
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324544, 1541 DNA324546, 1543 DNA324546, 1543 DNA324547, 1544 DNA324548, 1545 DNA324549, 1547	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629 DNA324604, 1631 DNA324605, 1632 DNA324606, 1634
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324545, 1541 DNA324546, 1543 DNA324546, 1543 DNA324547, 1544 DNA324548, 1545 DNA324549, 1547 DNA324550, 1548	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629 DNA324604, 1631 DNA324605, 1632 DNA324606, 1634 DNA324607, 1636
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324545, 1541 DNA324546, 1543 DNA324547, 1544 DNA324548, 1545 DNA324549, 1547 DNA324550, 1548 DNA324551, 1549	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629 DNA324604, 1631 DNA324605, 1632 DNA324606, 1634 DNA324607, 1636 DNA324608, 1640
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324545, 1541 DNA324546, 1543 DNA324547, 1544 DNA324548, 1545 DNA324549, 1547 DNA324550, 1548 DNA324551, 1549 DNA324552, 1550	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629 DNA324604, 1631 DNA324605, 1632 DNA324606, 1634 DNA324607, 1636 DNA324608, 1640 DNA324609, 1641
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324545, 1541 DNA324546, 1543 DNA324547, 1544 DNA324548, 1545 DNA324549, 1547 DNA324550, 1548 DNA324551, 1549 DNA324552, 1550 DNA324554, 1551	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629 DNA324604, 1631 DNA324605, 1632 DNA324606, 1634 DNA324607, 1636 DNA324608, 1640 DNA324609, 1641 DNA324610, 1644
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324545, 1541 DNA324546, 1543 DNA324547, 1544 DNA324548, 1545 DNA324549, 1547 DNA324550, 1548 DNA324551, 1549 DNA324552, 1550 DNA324554, 1551 DNA324554, 1551	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629 DNA324604, 1631 DNA324605, 1632 DNA324606, 1634 DNA324607, 1636 DNA324608, 1640 DNA324609, 1641 DNA324610, 1644 DNA324611, 1648
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324545, 1541 DNA324546, 1543 DNA324547, 1544 DNA324548, 1545 DNA324549, 1547 DNA324550, 1548 DNA324551, 1549 DNA324552, 1550 DNA324554, 1551 DNA324554, 1551 DNA324556, 1553	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629 DNA324604, 1631 DNA324605, 1632 DNA324606, 1634 DNA324607, 1636 DNA324608, 1640 DNA324609, 1641 DNA324610, 1644 DNA324611, 1648 DNA324611, 1648
DNA324537, 1531 DNA324538, 1532 DNA324539, 1533 DNA324540, 1534 DNA324541, 1535 DNA324542, 1537 DNA324543, 1539 DNA324544, 1540 DNA324545, 1541 DNA324546, 1543 DNA324547, 1544 DNA324548, 1545 DNA324549, 1547 DNA324550, 1548 DNA324551, 1549 DNA324552, 1550 DNA324554, 1551 DNA324554, 1551	DNA324594, 1614 DNA324595, 1615 DNA324596, 1617 DNA324597, 1619 DNA324598, 1621 DNA324599, 1622 DNA324600, 1623 DNA324601, 1624 DNA324602, 1626 DNA324603, 1629 DNA324604, 1631 DNA324605, 1632 DNA324606, 1634 DNA324607, 1636 DNA324608, 1640 DNA324609, 1641 DNA324610, 1644 DNA324611, 1648

	•	
DNA324615, 1655		DNA324671, 1768
DNA324616, 1656		DNA324672, 1770
DNA324617, 1658		DNA324673, 1772
DNA324618, 1660		DNA324674, 1774
DNA324619, 1662		DNA324675, 1776
DNA324620, 1663		DNA324676, 1778
DNA324621, 1664		DNA324677, 1779
		DNA324678, 1781
DNA324622, 1666		DNA324679, 1783
DNA324623, 1668		DNA324680, 1785
DNA324624, 1669		DNA324681, 1787
DNA324625, 1670		DNA324682, 1789
DNA324626, 1673		
DNA324627, 1675		DNA324683, 1793
DNA324628, 1679		DNA324684, 1795
DNA324629, 1681		DNA324685, 1797
DNA324630, 1683		DNA324686, 1798
DNA324631, 1685		DNA324687, 1799
DNA324632, 1691		DNA324688, 1800
DNA324633, 1693		DNA324689, 1802
DNA324634, 1695		DNA324690, 1803
DNA324635, 1699	•	DNA324691, 1805
DNA324636, 1700		DNA324692, 1807
DNA324637, 1701		DNA324693, 1808
DNA324638, 1702		DNA324694, 1810
DNA324639, 1704		DNA324695, 1811
DNA324640, 1706		DNA324696, 1814
DNA324641, 1708		DNA324697, 1816
DNA324642, 1710		DNA324698, 1817
DNA324643, 1711		DNA324699, 1818
DNA324644, 1712		DNA324700, 1819
DNA324645, 1713	•	DNA324701, 1820
DNA324646, 1714		DNA324702, 1821
DNA324647, 1716		DNA324703, 1823
DNA324648, 1720		DNA324704, 1824
DNA324649, 1723		DNA324705, 1826
DNA324650, 1724		DNA324706, 1832
DNA324651, 1726		DNA324707, 1834
DNA324652, 1728		DNA324708, 1836
DNA324653, 1730		DNA324709, 1838
DNA324654, 1734		DNA324710, 1840
DNA324655, 1736		DNA324711, 1841
		DNA324712, 1842
DNA324656, 1738		DNA324713, 1843
DNA324657, 1740		
DNA324658, 1742		DNA324714, 1845
DNA324659, 1744		DNA324715, 1846
DNA324660, 1746		DNA324716, 1848
DNA324661, 1748		DNA324717, 1852
DNA324662, 1750		DNA324718, 1856
DNA324663, 1752		DNA324719, 1857
DNA324664, 1754		DNA324720, 1858
DNA324665, 1756		DNA324721, 1859
DNA324666, 1758		DNA324722, 1860
DNA324667, 1760		DNA324723, 1861
DNA324668, 1762		DNA324724, 1862
DNA324669, 1764		DNA324725, 1863
DNA324670, 1766	•	DNA324726, 1865
• •		

DNA324727, 1868	DNA324784, 1988
DNA324728, 1870	DNA324785, 1990
DNA324729, 1872	DNA324786, 1992
DNA324730, 1876	DNA324787, 1994
DNA324731, 1877	DNA324788, 1995
DNA324732, 1878	DNA324789, 1999
DNA324733, 1879	DNA324790, 2000
DNA324734, 1880	DNA324791, 2002
DNA324735, 1882	DNA324792, 2004
	DNA324793, 2006
DNA324736, 1883	DNA324794, 2009
DNA324737, 1884	
DNA324738, 1888	DNA324795, 2011
DNA324739, 1890	DNA324796, 2013
DNA324740, 1894	DNA324797, 2015
DNA324741, 1896	DNA324798, 2016
DNA324742, 1898	DNA324799, 2017
DNA324743, 1902	DNA324800, 2019
DNA324744, 1906	DNA324801, 2021
DNA324745, 1910	DNA324802, 2023
DNA324746, 1914	DNA324803, 2025
DNA324747, 1916	DNA324804, 2027
DNA324748, 1918	DNA324805, 2029
DNA324749, 1920	DNA324806, 2031
DNA324750, 1921	DNA324807, 2036
DNA324751, 1922	DNA324808, 2037
DNA324752, 1924	DNA324809, 2039
DNA324753, 1926	DNA324810, 2041
DNA324754, 1928	DNA324811, 2042
DNA324755, 1929	DNA324812, 2044
DNA324756, 1931	DNA324813, 2045
	DNA324814, 2047
DNA324757, 1932	DNA324815, 2047
DNA324758, 1934	
DNA324759, 1936	DNA324816, 2050
DNA324760, 1937	DNA324817, 2052
DNA324761, 1938	DNA324818, 2054
DNA324763, 1939	DNA324819, 2056
DNA324764, 1940	DNA324820, 2057
DNA324765, 1941	DNA324821, 2058
DNA324766, 1944	DNA324822, 2059
DNA324767, 1948	DNA324823, 2060
DNA324768, 1949	DNA324824, 2062
DNA324769, 1951	DNA324825, 2064
DNA324770, 1954	DNA324826, 2065
DNA324771, 1955	DNA324827, 2066
DNA324772, 1956	DNA324828, 2068
DNA324773, 1957	DNA324829, 2069
DNA324774, 1959	DNA324830, 2072
DNA324775, 1965	DNA324831, 2074
DNA324776, 1971	DNA324832, 2075
DNA324777, 1973	DNA324833, 2077
· · · · · · · · · · · · · · · · · · ·	DNA324834, 2079
DNA324778, 1975	DNA324835, 2080
DNA324779, 1977	
DNA324780, 1979	DNA324836, 2081
DNA324781, 1981	DNA324837, 2083
DNA324782, 1983	DNA324838, 2085
DNA324783, 1984	DNA324839, 2087

DNA324840, 2089	DNA324897, 2184
DNA324841, 2090	DNA324898, 2186
DNA324842, 2091	DNA324899, 2188
DNA324843, 2092	DNA324900, 2190
DNA324844, 2094	DNA324901, 2191
DNA324845, 2096	DNA324902, 2195
DNA324846, 2098	DNA324903, 2197
DNA324847, 2101	DNA324904, 2198
DNA324848, 2103	DNA324905, 2200
DNA324849, 2106	DNA324906, 2202
DNA324850, 2107	DNA324907, 2203
DNA324851, 2108	DNA324908, 2204
DNA324852, 2110	DNA324909, 2205
DNA324853, 2111	DNA324910, 2208
	DNA324911, 2210
DNA324854, 2113	DNA324912, 2212
DNA324855, 2114	DNA324913, 2214
DNA324856, 2116	DNA324914, 2216
DNA324857,2118	DNA324915, 2218
DNA324858, 2119	DNA324916, 2219
DNA324859, 2121	DNA324917, 2220
DNA324860, 2122	DNA324917, 2222 DNA324918, 2222
DNA324861,2123	DNA324918, 2222 DNA324919, 2224
DNA324862, 2124	DNA324919, 2224 DNA324920, 2225
DNA324863, 2126	DNA324921, 2226
DNA324864, 2128	- ·
DNA324865, 2130	DNA324922, 2228
DNA324866, 2131	DNA324923, 2230
DNA324867, 2132	DNA324924, 2234
DNA324868, 2134	DNA324925, 2236
DNA324870, 2135	DNA324926, 2238
DNA324871, 2137	DNA324927, 2240
DNA324872, 2139	DNA324928, 2244
DNA324873, 2140	DNA324929, 2245
DNA324874, 2141	DNA324930, 2248
DNA324875, 2142	DNA324931, 2249
DNA324876, 2144	DNA324932, 2251
DNA324877, 2145	DNA324933, 2253
DNA324878, 2146	DNA324934, 2256
DNA324879, 2147	DNA324935, 2258
DNA324880, 2148	DNA324936, 2259
DNA324881, 2150	DNA324937, 2260
DNA324882, 2152	DNA324938, 2264
DNA324883, 2154	DNA324939, 2267
DNA324884, 2155	DNA324940, 2269
DNA324885, 2157	DNA324941, 2271
DNA324886, 2159	DNA324942, 2273
DNA324887, 2160	DNA324943, 2276
DNA324888, 2161	DNA324944, 2278
DNA324889, 2163	DNA324945, 2280
DNA324890, 2165	DNA324946, 2281
DNA324891, 2167	DNA324947, 2282
DNA324892, 2168	DNA324948, 2284
DNA324893, 2170	DNA324949, 2286
	DNA324950, 2288
DNA324894, 2172	DNA324951, 2290
DNA324895, 2178	DNA324952, 2292
DNA324896, 2180	DNAJ64736, 6676

WO 2004/030615

•	
DNA324953, 2293	DNA325010, 2395
DNA324954, 2295	DNA325011, 2396
DNA324955, 2297	DNA325012, 2398
DNA324956, 2299	DNA325013, 2400
DNA324957, 2300	DNA325014, 2402
DNA324958, 2301	DNA325015, 2403
DNA324959, 2302	DNA325016, 2404
DNA324960, 2304	DNA325017, 2406
DNA324961, 2306	DNA325018, 2407
DNA324962, 2310	DNA325019, 2409
DNA324963, 2311	DNA325020, 2411
DNA324964, 2312	DNA325021, 2413
DNA324965, 2313	DNA325022, 2414
DNA324966, 2315	DNA325023, 2416
DNA324967, 2316	DNA325024, 2417
DNA324968, 2317	DNA325025, 2418
DNA324969, 2318	DNA325026, 2420
DNA324971, 2319	DNA325027, 2422
DNA324972, 2321	DNA325028, 2423
DNA324973, 2322	DNA325029, 2425
DNA324974, 2323	DNA325030, 2427
DNA324975, 2325	DNA325031, 2429
DNA324976, 2326	DNA325032, 2430
DNA324977, 2328	DNA325033, 2432
DNA324978, 2329	DNA325034, 2433
DNA324979, 2331	DNA325035, 2434
DNA324980, 2333	DNA325036, 2437
DNA324981, 2335	DNA325037, 2439
DNA324982, 2337	DNA325038, 2440
DNA324983, 2338	DNA325039, 2442
DNA324984, 2340	DNA325040, 2444
DNA324985, 2344	DNA325041, 2446
DNA324986, 2346	DNA325042, 2447
DNA324987, 2350	DNA325043, 2449
DNA324988, 2351	DNA325044, 2451
DNA324989, 2352	DNA325045, 2453
DNA324990, 2353	DNA325046, 2454
DNA324991, 2355	DNA325047, 2455
DNA324992, 2357	DNA325048, 2456
DNA324993, 2360	DNA325049, 2460
DNA324994, 2363	DNA325050, 2462
DNA324995, 2365	DNA325051, 2464
DNA324996, 2367	DNA325052, 2466
DNA324997, 2369	DNA325053, 2467
DNA324998, 2373	DNA325054, 2469
DNA324999, 2375	DNA325055, 2470
DNA325000, 2376	DNA325056, 2471
DNA325001, 2378	DNA325057, 2472
DNA325002, 2380	DNA325058, 2473
DNA325003, 2381	DNA325059, 2475
DNA325004, 2383	DNA325060, 2476
DNA325005, 2385	DNA325061, 2478
DNA325006, 2386	DNA325062, 2480
DNA325007, 2387	DNA325063, 2482
DNA325008, 2389	DNA325064, 2483
DNA325009, 2391	DNA325065, 2485

DNA325066, 2487	DNA325122, 2586
DNA325067, 2488	DNA325123, 2588
	DNA325124, 2590
DNA325068, 2490	
DNA325069, 2493	DNA325125, 2592
DNA325070, 2497	DNA325126, 2595
DNA325071, 2499	DNA325127, 2596
DNA325072, 2501	DNA325128, 2598
DNA325073, 2503	DNA325129, 2602
DNA325074, 2505	DNA325130, 2604
DNA325075, 2508	DNA325131, 2605
DNA325076, 2510	DNA325132, 2606
DNA325077, 2514	DNA325133, 2608
DNA325078, 2515	DNA325134, 2609
DNA325079, 2517	DNA325135, 2611
DNA325080, 2519	DNA325136, 2612
DNA325081, 2521	DNA325137, 2613
DNA325082, 2523	DNA325138, 2614
DNA325083, 2525	DNA325139, 2616
DNA325084, 2526	DNA325140, 2618
DNA325085, 2527	DNA325141, 2619
DNA325086, 2529	DNA325143, 2620
DNA325080, 2529 DNA325087, 2530	DNA325144, 2622
•	DNA325145, 2623
DNA325088, 2531	DNA325146, 2625
DNA325089, 2533	DNA325147, 2626
DNA325090, 2534	DNA325147, 2020 DNA325148, 2627
DNA325091, 2536	
DNA325092, 2538	DNA325149, 2628
DNA325093, 2540	DNA325150, 2629
DNA325094, 2541	DNA325151, 2631
DNA325095, 2543	DNA325152, 2633
DNA325096, 2544	DNA325153, 2635
DNA325097, 2548	DNA325154, 2637
DNA325098, 2550	DNA325155, 2638
DNA325099, 2552	DNA325156, 2640
DNA325100, 2554	DNA325157, 2641
DNA325101, 2556	DNA325158, 2642
DNA325102, 2557	DNA325159, 2644
DNA325103, 2558	DNA325160, 2645
DNA325104, 2559	DNA325161, 2646
DNA325105, 2560	DNA325162, 2647
DNA325106, 2561	DNA325163, 2649
DNA325107, 2562	DNA325164, 2651
DNA325108, 2563	DNA325165, 2653
DNA325109, 2564	DNA325166, 2655
DNA325110, 2567	DNA325167, 2657
DNA325111, 2569	DNA325168, 2659
DNA325112, 2571	DNA325169, 2664
DNA325113, 2572	DNA325170, 2666
DNA325114, 2574	DNA325171, 2668
DNA325115, 2575	DNA325172, 2672
DNA325116, 2577	DNA325173, 2673
DNA325117, 2579	DNA325174, 2675
DNA325118, 2581	DNA325175, 2677
DNA325119, 2582	DNA325176, 2679
DNA325120, 2583	DNA325177, 2682
DNA325120, 2585 DNA325121, 2584	DNA325177, 2082 DNA325178, 2684
J177J2J141, 2J04	11 ADAGE 1 10, AUGT

• · ·	
DNA325179, 2686	DNA325235, 2803
DNA325180, 2688	DNA325236, 2804
DNA325181, 2689	DNA325237, 2806
DNA325182, 2697	DNA325238, 2808
DNA325183, 2699	DNA325239, 2809
DNA325184, 2700	DNA325240, 2811
DNA325185, 2705	DNA325241, 2813
DNA325186, 2707	DNA325242, 2815
DNA325187, 2708	DNA325243, 2817
DNA325188, 2710	DNA325244, 2818
DNA325189, 2711	DNA325245, 2819
DNA325190, 2712	DNA325246, 2820
DNA325191, 2716	DNA325247, 2822
DNA325192, 2718	DNA325247, 2822 DNA325248, 2824
DNA325193, 2720	
DNA325194, 2722	DNA325249, 2825 DNA325250, 2826
DNA325194, 2722 DNA325195, 2725	-
-	DNA325251, 2828
DNA325196, 2726	DNA325252, 2830
DNA325197, 2727	DNA325253, 2832
DNA325198, 2728	DNA325254, 2833
DNA325199, 2730	DNA325255, 2834
DNA325200, 2732	DNA325256, 2836
DNA325201, 2736	DNA325257, 2838
DNA325202, 2738	DNA325258, 2839
DNA325203, 2742	DNA325259, 2841
DNA325204, 2744	DNA325260, 2843
DNA325205, 2748	DNA325261, 2845
DNA325206, 2750	DNA325262, 2846
DNA325207, 2753	DNA325263, 2847
DNA325208, 2755	DNA325264, 2849
DNA325209, 2756	DNA325265, 2851
DNA325210, 2757	DNA325266, 2852
DNA325211, 2759	DNA325267, 2854
DNA325212, 2760	DNA325268, 2855
DNA325213, 2765	DNA325269, 2857
DNA325214, 2766	DNA325270, 2859
DNA325215, 2769	DNA325271, 2860
DNA325216, 2771	DNA325272, 2862
DNA325217, 2772	DNA325273, 2864
DNA325218, 2774	DNA325274, 2866
DNA325219, 2775	DNA325275, 2868
DNA325220, 2777	DNA325276, 2870
DNA325221, 2778	DNA325277, 2871
DNA325222, 2780	DNA325278, 2873
DNA325223, 2784	DNA325279, 2874
DNA325224, 2786	DNA325280, 2875
DNA325225, 2787	DNA325281, 2876
DNA325226, 2789	DNA325282, 2878
DNA325227, 2790	DNA325283, 2879
DNA325228, 2792	DNA325284, 2881
DNA325229, 2794	DNA325285, 2883
DNA325230, 2798	DNA325286, 2885
DNA325231, 2799	DNA325287, 2887
DNA325232, 2800	DNA325288, 2889
DNA325233, 2801	DNA325289, 2891
DNA325234, 2802	DNA325290, 2893

DNA325291, 2895	DNA325347, 3000
DNA325292, 2897	DNA325348, 3002
DNA325293, 2898	DNA325349, 3006
DNA325294, 2901	DNA325350, 3010
DNA325295, 2902	DNA325351, 3012
DNA325296, 2904	DNA325352, 3013
DNA325297, 2906	DNA325352, 3015 DNA325353, 3015
DNA325298, 2908	
DNA325299, 2909	DNA325354, 3016
DNA325300, 2910	DNA325355, 3017
•	DNA325356, 3019
DNA325301, 2911 DNA325302, 2913	DNA325357, 3020
	DNA325358, 3022
DNA325303, 2914	DNA325359, 3024
DNA325304, 2916	DNA325360, 3026
DNA325305, 2918	DNA325361, 3028
DNA325306, 2919	DNA325362, 3029
DNA325307, 2921	DNA325363, 3031
DNA325308, 2922	DNA325364, 3033
DNA325309, 2923	DNA325365, 3035
DNA325310, 2925	DNA325366, 3037
DNA325311, 2926	DNA325367, 3039
DNA325312, 2927	DNA325368, 3041
DNA325313, 2929	DNA325369, 3042
DNA325314, 2930	DNA325370, 3044
DNA325315, 2931	DNA325371, 3045
DNA325316, 2933	DNA325372, 3047
DNA325317, 2934	DNA325373, 3049
DNA325318, 2935	DNA325374, 3053
DNA325319, 2937	DNA325375, 3055
DNA325320, 2939	DNA325376, 3057
DNA325321, 2941	DNA325377, 3058
DNA325322, 2942	DNA325378, 3059
DNA325323, 2944	DNA325379, 3061
DNA325324, 2945	DNA325380, 3063
DNA325325, 2949	DNA325381, 3065
DNA325326, 2953	DNA325382, 3068
DNA325327, 2955	DNA325383, 3070
DNA325328, 2957	DNA325384, 3072
DNA325329, 2959	DNA325385, 3073
DNA325330, 2963	DNA325386, 3074
DNA325331, 2966	DNA325387, 3075
DNA325332, 2968	DNA325388, 3078
DNA325333, 2970	DNA325389, 3080
DNA325334, 2971	DNA325390, 3082
DNA325335, 2973	DNA325391, 3084
DNA325336, 2975	DNA325392, 3086
DNA325337, 2976	DNA325393, 3088
DNA325338, 2977	DNA325394, 3089
DNA325339, 2978	DNA325394, 3089 DNA325395, 3091
DNA325340, 2980	DNA325396, 3095
DNA325341, 2984	
DNA325341, 2984 DNA325342, 2988	DNA325397, 3097
	DNA325398, 3099
DNA325344, 2004	DNA325399, 3103
DNA325344, 2994	DNA325400, 3104
DNA325345, 2998	DNA325401, 3106
DNA325346, 2999	DNA325402, 3107

DNA325403, 3111	DNA325459, 3212
DNA325404, 3115	DNA325460, 3214
DNA325405, 3117	DNA325461, 3217
DNA325406, 3119	DNA325462, 3222
DNA325407, 3120	DNA325463, 3223
DNA325408, 3122	DNA325464, 3224
DNA325409, 3124	DNA325465, 3225
DNA325410, 3125	DNA325466, 3227
	DNA325467, 3228
DNA325411, 3127	DNA325468, 3230
DNA325412, 3129	
DNA325413, 3131	DNA325469, 3232
DNA325414, 3133	DNA325470, 3234
DNA325415, 3135	DNA325471, 3238
DNA325416, 3136	DNA325472, 3240
DNA325417,3137	DNA325473, 3242
DNA325418, 3139	DNA325474, 3244
DNA325419, 3141	DNA325475, 3247
DNA325420, 3142	DNA325476, 3248
DNA325421, 3144	DNA325477, 3249
DNA325422, 3146	DNA325478, 3251
DNA325423, 3148	DNA325479, 3253
DNA325424, 3149	DNA325480, 3255
DNA325425, 3151	DNA325481, 3256
DNA325426, 3152	DNA325482, 3258
DNA325427, 3153	DNA325483, 3260
DNA325428, 3155	DNA325484, 3261
DNA325429, 3157	DNA325485, 3263
DNA325430, 3159	DNA325486, 3264
DNA325431, 3161	DNA325487, 3266
DNA325432, 3163	DNA325488, 3268
DNA325432, 5165	DNA325489, 3269
DNA325434, 3167	DNA325490, 3270
	DNA325491, 3271
DNA325435, 3169	DNA325492, 3273
DNA325436, 3170	DNA325493, 3275
DNA325437, 3171	DNA325494, 3276
DNA325438, 3173	•
DNA325439, 3177	DNA325495, 3278
DNA325440, 3178	DNA325496, 3279
DNA325441, 3180	DNA325497, 3281
DNA325442, 3182	DNA325498, 3283
DNA325443, 3183	DNA325499, 3286
DNA325444, 3184	DNA325500, 3287
DNA325445, 3185	DNA325501, 3288
DNA325446, 3187	DNA325502, 3289
DNA325447, 3188	DNA325503, 3291
DNA325448, 3190	DNA325504, 3293
DNA325449, 3192	DNA325505, 3294
DNA325450, 3193	DNA325506, 3299
DNA325451, 3194	DNA325507, 3301
DNA325452, 3195	DNA325508, 3303
DNA325453, 3196	DNA325509, 3304
DNA325454,3197	DNA325510, 3306
DNA325455, 3199	DNA325511, 3308
DNA325456, 3201	DNA325512, 3310
DNA325450, 3201 DNA325457, 3202	DNA325513, 3311
DNA325458, 3210	DNA325514, 3315
, , , , , , , , , , , , , , , , , , ,	71 12 12 12 12 12 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14

DNA325515, 3316	DNA325571, 3417
DNA325516, 3318	DNA325572, 3418
DNA325517, 3320	DNA325573, 3420
DNA325518, 3322	DNA325574, 3422
DNA325519, 3324	DNA325575, 3424
DNA325520, 3325	DNA325576, 3426
DNA325521, 3326	DNA325577, 3427
DNA325522, 3328	DNA325578, 3428
DNA325523, 3331	DNA325579, 3429
DNA325524, 3335	DNA325580, 3430
DNA325525, 3336	DNA325581, 3432
DNA325526, 3337	DNA325582, 3436
DNA325527, 3339	DNA325583, 3437
DNA325528, 3341	DNA325584, 3439
DNA325529, 3342	DNA325585, 3441
DNA325530, 3344	DNA325586, 3442
DNA325531, 3346	DNA325587, 3444
DNA325532, 3348	DNA325588, 3446
DNA325533, 3349	DNA325589, 3448
DNA325534, 3350	DNA325590, 3450
DNA325535, 3352	DNA325591, 3451
DNA325536, 3353	DNA325592, 3454
	DNA325593, 3455
DNA325537, 3355	DNA325594, 3457
DNA325538, 3357 DNA325539, 3358	
•	DNA325595, 3458 DNA325596, 3460
DNA325540, 3359	•
DNA325541, 3361	DNA325597, 3462
DNA325542, 3363	DNA325598, 3463
DNA325543, 3364	DNA325599, 3465
DNA325544, 3365	DNA325600, 3470
DNA325545, 3366	DNA325601, 3472
DNA325546, 3367	DNA325602, 3475
DNA325547, 3369	DNA325603, 3482
DNA325548, 3371	DNA325604, 3483
DNA325549, 3373	DNA325605, 3485
DNA325550, 3374	DNA325606, 3486
DNA325551, 3378	DNA325607, 3488
DNA325552, 3382	DNA325608, 3491
DNA325553, 3384	DNA325609, 3493
DNA325554, 3386	DNA325610, 3494
DNA325555, 3388	DNA325611, 3495
DNA325556, 3394	DNA325612, 3496
DNA325557, 3395	DNA325613, 3500
DNA325558, 3397	DNA325614, 3501
DNA325559, 3398	DNA325615, 3503
DNA325560, 3399	DNA325616, 3504
DNA325561, 3400	DNA325617, 3506
DNA325562, 3401	DNA325618, 3507
DNA325563, 3403	DNA325619, 3509
DNA325564, 3404	DNA325620, 3513
DNA325565, 3406	DNA325621,3515
DNA325566, 3407	DNA325622, 3517
DNA325567, 3409	DNA325623, 3519
DNA325568, 3411	DNA325624, 3522
DNA325569, 3413	DNA325625, 3528
DNA325570, 3414	DNA325626, 3529

DNA325627, 3531	DNA325683, 3634
DNA325628, 3532	DNA325684, 3635
DNA325629, 3533	DNA325685, 3636
DNA325630, 3535	DNA325686, 3638
DNA325631, 3536	
DNA325632, 3538	DNA325687, 3640
	DNA325688, 3641
DNA325633, 3539	DNA325689, 3642
DNA325634, 3540	DNA325690, 3643
DNA325635, 3542	DNA325691, 3645
DNA325636, 3543	DNA325692, 3646
DNA325637, 3545	DNA325693, 3648
DNA325638, 3546	DNA325694, 3650
DNA325639, 3548	DNA325695, 3652
DNA325640, 3552	DNA325696, 3654
DNA325641, 3554	DNA325697, 3656
DNA325642, 3557	DNA325698, 3658
DNA325643, 3559	DNA325699, 3659
DNA325644, 3560	-
DNA325645, 3561	DNA325700, 3660
	DNA325701, 3662
DNA325646, 3562	DNA325702, 3663
DNA325647, 3564	DNA325703, 3665
DNA325648, 3566	DNA325704, 3669
DNA325649, 3568	DNA325705, 3671
DNA325650, 3570	DNA325706, 3672
DNA325651, 3571	DNA325707, 3674
DNA325652, 3572	DNA325708, 3676
DNA325653, 3574	DNA325709, 3680
DNA325654, 3576	DNA325710, 3681
DNA325655, 3578	DNA325711, 3683
DNA325656, 3579	DNA325712, 3685
DNA325657, 3580	DNA325713, 3687
DNA325658, 3581	DNA325714, 3689
DNA325659, 3582	DNA325715, 3691
DNA325660, 3583	DNA325716, 3693
DNA325661, 3584	DNA325710, 3695
DNA325662, 3585	
	DNA325718, 3697
DNA325663, 3586	DNA325719, 3699
DNA325664, 3590	DNA325720, 3700
DNA325665, 3595	DNA325721, 3702
DNA325666, 3596	DNA325722, 3704
DNA325667, 3598	DNA325723, 3705
DNA325668, 3599	DNA325724, 3707
DNA325669, 3602	DNA325725, 3708
DNA325670, 3604	DNA325726, 3710
DNA325671, 3606	DNA325727, 3712
DNA325672, 3608	DNA325728, 3714
DNA325673, 3610	DNA325729, 3715
DNA325674, 3612	DNA325730, 3719
DNA325675, 3614	DNA325731, 3722
DNA325676, 3616	
DNA325677, 3618	DNA325732, 3726
	DNA325733, 3731
DNA325678, 3622	DNA325734, 3732
DNA325679, 3624	DNA325736, 3734
DNA325680, 3626	DNA325737, 3736
DNA325681, 3630	DNA325738, 3737
DNA325682, 3633	DNA325739, 3739

DNA325740, 3740	DNA325797, 3841
DNA325741, 3742	DNA325798, 3843
DNA325742, 3744	DNA325799, 3845
DNA325743, 3746	DNA325800, 3847
DNA325744, 3748	DNA325801, 3849
DNA325745, 3750	DNA325802, 3851
DNA325746, 3752	DNA325803, 3853
	DNA325804, 3855
DNA325747, 3754	DNA325805, 3856
DNA325748, 3755	DNA325806, 3857
DNA325749, 3757	
DNA325750, 3759	DNA325807, 3859
DNA325751, 3761	DNA325808, 3861
DNA325752, 3765	DNA325809, 3862
DNA325753, 3766	DNA325810, 3868
DNA325754, 3767	DNA325811, 3869
DNA325755, 3769	DNA325812, 3870
DNA325756, 3771	DNA325813, 3872
DNA325757, 3772	DNA325814, 3874
DNA325758, 3773	DNA325815, 3876
DNA325759, 3774	DNA325816, 3877
DNA325760, 3775	DNA325817, 3878
DNA325761, 3779	DNA325818, 3880
DNA325762, 3781	DNA325819, 3881
DNA325763, 3783	DNA325820, 3883
DNA325764, 3785	DNA325821, 3884
DNA325765, 3787	DNA325822, 3886
DNA325766, 3788	DNA325823, 3889
DNA325767, 3790	DNA325824, 3891
DNA325768, 3792	DNA325825, 3893
DNA325769, 3794	DNA325826, 3895
DNA325770, 3796	DNA325827, 3898
DNA325771, 3797	DNA325828, 3902
DNA325771, 3797 DNA325772, 3798	DNA325829, 3903
DNA325773, 3800	DNA325830, 3904
	DNA325831, 3906
DNA325775, 3802	DNA325832, 3908
DNA325776, 3804	DNA325833, 3910
DNA325777, 3805	DNA325834, 3914
DNA325778, 3807	DNA325835, 3916
DNA325779, 3809	DNA325836, 3917
DNA325780, 3810	
DNA325781, 3812	DNA325837, 3918
DNA325782, 3814	DNA325838, 3920
DNA325783, 3816	DNA325839, 3921
DNA325784, 3818	DNA325840, 3923
DNA325785, 3819	DNA325841, 3924
DNA325786, 3821	DNA325842, 3925
DNA325787, 3825	DNA325843, 3926
DNA325788, 3826	DNA325844, 3928
DNA325789, 3829	DNA325845, 3930
DNA325790, 3831	DNA325847, 3931
DNA325791, 3833	DNA325848, 3932
DNA325792, 3834	DNA325849, 3933
DNA325793, 3835	DNA325850, 3935
DNA325794, 3836	DNA325851, 3937
DNA325795, 3837	DNA325852, 3938
DNA325796, 3839	DNA325853, 3940
TATACA (AD) 2027	

DNA325854, 3942	DNA325910, 4037
DNA325855, 3944	DNA325911, 4039
DNA325856, 3946	DNA325912, 4040
DNA325857, 3948	DNA325913, 4044
DNA325858, 3949	DNA325914, 4045
	DNA325915, 4046
DNA325859, 3950	DNA325916, 4048
DNA325860, 3951	DNA325917, 4050
DNA325861, 3953	DNA325918, 4052
DNA325862, 3955	DNA325919, 4054
DNA325863, 3957	DNA325920, 4055
DNA325864, 3958	-
DNA325865, 3959	DNA325921, 4057
DNA325866, 3960	DNA325922, 4061
DNA325867, 3964	DNA325923, 4063
DNA325868, 3966	DNA325924, 4065
DNA325869, 3967	DNA325925, 4067
DNA325870, 3968	DNA325926, 4068
DNA325871, 3969	DNA325927, 4069
DNA325872, 3971	DNA325928, 4071
DNA325873, 3973	DNA325929, 4072
DNA325874, 3975	DNA325930, 4073
DNA325875, 3978	DNA325931, 4074
DNA325876, 3980	DNA325932, 4075
DNA325877,3981	DNA325933, 4077
DNA325878, 3983	DNA325934, 4081
DNA325879, 3986	DNA325935, 4082
DNA325880, 3987	DNA325936, 4084
DNA325881, 3988	DNA325937, 4086
DNA325882, 3990	DNA325938, 4088
DNA325883, 3991	DNA325939, 4090
DNA325884, 3994	DNA325940, 4091
DNA325885, 3996	DNA325941, 4092
DNA325886, 3997	DNA325942, 4094
DNA325887, 3999	DNA325943, 4097
DNA325888, 4001	DNA325944, 4098
DNA325889, 4003	DNA325945, 4100
DNA325890, 4005	DNA325946, 4101
DNA325891, 4006	DNA325947, 4103
DNA325892, 4008	DNA325948, 4105
DNA325893, 4010	DNA325949, 4106
DNA325894, 4012	DNA325950, 4108
DNA325895, 4014	DNA325951, 4112
DNA325896, 4016	DNA325952, 4114
DNA325897, 4018	DNA325953, 4115
DNA325898, 4019	DNA325954, 4116
DNA325899, 4020	DNA325955, 4118
DNA325900, 4022	DNA325956, 4119
DNA325901, 4024	DNA325957, 4120
DNA325902, 4025	DNA325958, 4121
DNA325903, 4027	DNA325959, 4122
DNA325904, 4029	DNA325960, 4123
DNA325905, 4031	DNA325961, 4124
DNA325906, 4032	DNA325962, 4125
·	DNA325963,4127
DNA325907, 4033	DNA325964, 4129
DNA325908, 4034	DNA325965, 4130
DNA325909, 4035	D1111223703, 4130

DNA325966, 4132	DNA326022, 4239
DNA325967, 4133	DNA326023, 4241
DNA325968,4134	DNA326024, 4244
DNA325969, 4135	DNA326025, 4245
DNA325970, 4136	DNA326026, 4246
DNA325971, 4138	DNA326027, 4248
DNA325972, 4139	DNA326028, 4250
DNA325973, 4143	DNA326029, 4251
DNA325974,4145	DNA326030, 4252
DNA325975, 4147	DNA326031, 4254
DNA325976, 4148	DNA326032, 4256
DNA325977, 4150	DNA326033, 4257
DNA325978, 4152	DNA326034, 4259
•	DNA326035, 4261
DNA325979, 4154	DNA326036, 4263
DNA325980, 4156	DNA326037, 4269
DNA325981,4157	DNA326038, 4270
DNA325982, 4159	DNA326039, 4272
DNA325983, 4160	DNA326040, 4273
DNA325984, 4163	DNA326041, 4275
DNA325985, 4165	DNA326042, 4277
DNA325986, 4167	DNA326042, 4277 DNA326043, 4278
DNA325987, 4168	DNA326044, 4279
DNA325988, 4172	
DNA325989, 4174	DNA326045, 4281
DNA325990, 4176	DNA326046, 4282 DNA326047, 4283
DNA325991, 4178	
DNA325992, 4180	DNA326048, 4285
DNA325993, 4184	DNA326049, 4286
DNA325994,4186	DNA326050, 4287
DNA325995, 4187	DNA326051, 4289
DNA325996, 4189	DNA326052, 4290
DNA325997, 4191	DNA326053, 4292
DNA325998, 4193	DNA326054, 4293
DNA325999, 4195	DNA326055, 4295
DNA326000, 4197	DNA326056, 4296
DNA326001, 4199	DNA326057, 4298
DNA326002, 4200	DNA326058, 4302
DNA326003, 4202	DNA326059, 4304
DNA326004, 4203	DNA326060, 4307
DNA326005, 4205	DNA326061, 4309
DNA326006, 4207	DNA326062, 4310
DNA326007, 4210	DNA326063, 4311
DNA326008, 4211	DNA326064, 4312
DNA326009, 4213	DNA326065, 4314
DNA326010, 4216	DNA326066, 4315
DNA326011, 4218	DNA326067, 4317
DNA326012, 4220	DNA326068, 4319
DNA326013, 4221	DNA326069, 4322
DNA326014, 4222	DNA326070, 4323
DNA326015, 4226	DNA326071, 4325
DNA326016, 4228	DNA326072, 4326
DNA326017, 4230	DNA326073, 4327
DNA326018, 4232	DNA326074, 4329
DNA326019, 4234	DNA326075, 4331
DNA326020, 4236	DNA326076, 4333
DNA326021, 4237	DNA326077, 4334
,	

DNA326078, 4335	DNA326134, 4444
DNA326079, 4337	DNA326135, 4448
DNA326080, 4338	DNA326136, 4449
DNA326081, 4340	DNA326137, 4451
DNA326082, 4342	DNA326138, 4453
DNA326083, 4344	DNA326139, 4454
DNA326084, 4346	DNA326140, 4456
	DNA326141, 4458
DNA326085, 4348 DNA326086, 4350	DNA326142, 4460
	DNA326143, 4461
DNA326087, 4352	DNA326144, 4462
DNA326088, 4353	DNA326145, 4463
DNA326089, 4354	DNA326146, 4465
DNA326090, 4356	
DNA326091, 4358	DNA326147, 4467
DNA326092, 4364	DNA326148, 4468
DNA326093, 4366	DNA326149, 4470
DNA326094, 4368	DNA326150, 4472
DNA326095, 4372	DNA326151, 4474
DNA326096, 4376	DNA326152, 4478
DNA326097, 4378	DNA326153, 4479
DNA326098, 4380	DNA326154, 4480
DNA326099, 4382	DNA326155, 4482
DNA326100, 4384	DNA326156, 4483
DNA326101, 4386	DNA326157, 4484
DNA326102, 4388	DNA326158, 4485
DNA326103, 4390	DNA326159, 4489
DNA326104, 4392	DNA326160, 4490
DNA326105, 4394	DNA326161, 4491
DNA326106, 4396	DNA326162, 4493
DNA326107, 4398	DNA326163, 4495
DNA326108, 4400	DNA326164, 4497
DNA326109, 4402	DNA326165, 4498
DNA326110, 4404	DNA326166, 4500
DNA326111, 4406	DNA326167, 4502
DNA326112, 4408	DNA326168, 4504
DNA326113, 4410	DNA326169, 4505
DNA326114, 4411	DNA326170, 4509
DNA326115, 4413	DNA326171, 4511
	DNA326172, 4513
DNA326116, 4414	DNA326173, 4514
DNA326117, 4416	DNA326174, 4518
DNA326118, 4418	
DNA326119, 4420	DNA326175, 4522
DNA326120, 4423	DNA326176, 4524
DNA326121, 4425	DNA326177, 4526
DNA326122, 4426	DNA326178, 4527
DNA326123, 4427	DNA326179, 4528
DNA326124, 4429	DNA326180, 4532
DNA326125, 4430	DNA326181, 4534
DNA326126, 4431	DNA326182, 4535
DNA326127, 4432	DNA326183, 4537
DNA326128, 4434	DNA326184, 4538
DNA326129, 4435	DNA326185, 4539
DNA326130, 4436	DNA326186, 4541
DNA326131, 4438	DNA326187, 4543
DNA326132, 4440	DNA326188, 4544
DNA326133, 4442	DNA326189, 4545
, · · · · · ·	•

DNA326190, 4547	DNA326246, 4651
DNA326191, 4549	DNA326247, 4653
DNA326192, 4551	DNA326248, 4654
DNA326193, 4553	DNA326249, 4656
DNA326194, 4555	DNA326250, 4658
DNA326195, 4556	DNA326251, 4659
DNA326196, 4558	DNA326252, 4661
DNA326197, 4560	DNA326253, 4663
DNA326198, 4561	DNA326254, 4665
DNA326199, 4562	DNA326255, 4667
DNA326200, 4566	DNA326256, 4669
DNA326201,4570	DNA326257, 4671
DNA326202, 4571	DNA326258, 4672
DNA326203, 4573	DNA326259, 4674
DNA326204, 4577	DNA326260, 4675
DNA326205, 4581	DNA326261, 4677
	DNA326262, 4678
DNA326206, 4583	DNA326263, 4680
DNA326207, 4584	DNA326264, 4682
DNA326208, 4586	DNA326265, 4684
DNA326209, 4588	DNA326266, 4686
DNA326210, 4590	DNA326267, 4689
DNA326211, 4592	DNA326268, 4691
DNA326212, 4594	DNA326269, 4693
DNA326213, 4596	DNA326270, 4694
DNA326214, 4597	DNA326271, 4695
DNA326215, 4599	
DNA326216, 4600	DNA326272, 4696
DNA326217, 4602	DNA326273, 4697
DNA326218, 4604	DNA326274, 4701
DNA326219, 4606	DNA326275, 4703
DNA326220, 4608	DNA326276, 4704
DNA326221, 4610	DNA326277, 4706
DNA326222, 4612	DNA326278, 4707
DNA326223, 4614	DNA326279, 4710
DNA326224, 4616	DNA326280, 4712
DNA326225, 4617	DNA326281, 4713
DNA326226, 4619	DNA326282, 4716
DNA326227, 4621	DNA326283, 4718
DNA326228, 4622	DNA326284, 4721
DNA326229, 4624	DNA326285, 4723
DNA326230, 4628	DNA326286, 4724
DNA326231, 4630	DNA326287, 4725
DNA326232, 4632	DNA326288, 4727
DNA326233, 4633	DNA326289, 4730
DNA326234, 4635	DNA326290, 4732
DNA326235, 4637	DNA326291, 4734
DNA326236, 4638	DNA326292, 4735
DNA326237, 4640	DNA326293, 4737
DNA326238, 4641	DNA326294, 4739
DNA326239, 4642	DNA326295, 4741
DNA326240, 4644	DNA326296, 4744
DNA326241, 4645	DNA326297, 4745
DNA326242, 4646	DNA326298, 4749
DNA326243, 4647	DNA326299, 4750
DNA326244, 4648	DNA326300, 4751
DNA326245, 4650	DNA326301, 4752
	•

DNA326302, 4754	DNA326358, 4867
DNA326303, 4755	DNA326359, 4869
DNA326304, 4757	DNA326360, 4871
DNA326305, 4758	DNA326361, 4873
DNA326306, 4760	DNA326362, 4875
DNA326307, 4761	DNA326363, 4880
DNA326308, 4763	DNA326364, 4881
DNA326309, 4765	DNA326365, 4883
DNA326310, 4767	DNA326366, 4885
DNA326311,4768	DNA326367, 4893
•	DNA326368, 4895
DNA326312, 4769	DNA326369, 4897
DNA326313, 4771	DNA326370, 4902
DNA326314, 4773	DNA326371, 4905
DNA326315, 4775	DNA326372, 4906
DNA326316, 4777	
DNA326317, 4780	DNA326373, 4908
DNA326318, 4784	DNA326374, 4910
DNA326319, 4786	DNA326375, 4911
DNA326320, 4788	DNA326376, 4913
DNA326321, 4790	DNA326377, 4915
DNA326322, 4792	DNA326378, 4916
DNA326323, 4794	DNA326379, 4917
DNA326324, 4798	DNA326380, 4921
DNA326325, 4800	DNA326381, 4923
DNA326326, 4801	DNA326382, 4924
DNA326327, 4803	DNA326383, 4926
DNA326328, 4807	DNA326384, 4927
DNA326329, 4809	DNA326385, 4929
DNA326330, 4810	DNA326386, 4931
DNA326331, 4814	DNA326387, 4933
DNA326332, 4816	DNA326388, 4935
DNA326333, 4818	DNA326389, 4938
DNA326334, 4819	DNA326390, 4941
DNA326335, 4822	DNA326391, 4942
DNA326336, 4824	DNA326392, 4943
DNA326337, 4825	DNA326393, 4944
DNA326338, 4826	DNA326394, 4945
DNA326339, 4827	DNA326395, 4946
DNA326340, 4829	DNA326396, 4948
DNA326341, 4830	DNA326397, 4950
DNA326342, 4832	DNA326398, 4951
DNA326343, 4834	DNA326399, 4955
DNA326344, 4836	DNA326400, 4957
•	DNA326401, 4958
DNA326345, 4838	DNA326402, 4960
DNA326346, 4840	DNA326403, 4962
DNA326347, 4847	•
DNA326348, 4849	DNA326404, 4965
DNA326349, 4850	DNA326405, 4967
DNA326350, 4852	DNA326406, 4969
DNA326351, 4856	DNA326407, 4971
DNA326352, 4857	DNA326408, 4973
DNA326353, 4859	DNA326409, 4977
DNA326354, 4861	DNA326410, 4978
DNA326355, 4863	DNA326411, 4980
DNA326356, 4864	DNA326412, 4982
DNA326357, 4865	DNA326413, 4984

DNA326414, 4987	DNA326470, 5078
DNA326415, 4988	DNA326471, 5080
DNA326416, 4989	DNA326472, 5082
DNA326417, 4991	DNA326473, 5083
	DNA326474, 5084
DNA326418, 4992	DNA326475, 5086
DNA326419, 4994	DNA326476, 5088
DNA326420, 4995	DNA326477, 5089
DNA326421, 4996	DNA326478, 5090
DNA326422, 4998	DNA326479, 5092
DNA326423, 4999	DNA326480, 5093
DNA326424,5000	DNA326481, 5095
DNA326425, 5001	
DNA326426, 5002	DNA326482, 5097
DNA326427, 5004	DNA326483, 5098
DNA326428, 5006	DNA326484, 5100
DNA326429, 5008	DNA326485, 5102
DNA326430, 5010	DNA326486, 5104
DNA326431, 5011	DNA326487, 5106
DNA326432, 5013	DNA326488, 5108
DNA326433, 5016	DNA326489, 5109
DNA326434, 5018	DNA326490, 5110
DNA326435, 5019	DNA326491, 5112
DNA326436, 5020	DNA326492, 5113
DNA326437, 5021	DNA326493, 5114
DNA326438, 5022	DNA326494, 5117
DNA326439, 5025	DNA326495, 5119
DNA326440, 5026	DNA326496, 5120
DNA326441, 5027	DNA326497, 5122
DNA326442, 5028	DNA326498, 5124
DNA326443, 5030	DNA326499, 5126
DNA326444, 5031	DNA326500, 5128
DNA326445, 5032	DNA326501, 5130
DNA326446, 5034	DNA326502, 5131
DNA326447,5036	DNA326503, 5132
DNA326448, 5037	DNA326504, 5134
DNA326449, 5042	DNA326505, 5135
DNA326450, 5043	DNA326506, 5137
DNA326451, 5045	DNA326507, 5138
DNA326452, 5046	DNA326508, 5140
DNA326453, 5048	DNA326509, 5141
DNA326454, 5049	DNA326510, 5143
DNA326455, 5054	DNA326511, 5145
DNA326456, 5055	DNA326512, 5148
DNA326457, 5058	DNA326513, 5150
DNA326458, 5060	DNA326514, 5152
DNA326459, 5062	DNA326515, 5155
DNA326460, 5064	DNA326516, 5157
DNA326461, 5065	DNA326517, 5159
DNA326462, 5066	DNA326518, 5160
DNA326463, 5067	DNA326519, 5161
DNA326464, 5069	DNA326520, 5163
DNA326465, 5071	DNA326521, 5165
DNA326466, 5072	DNA326522, 5166
DNA326467, 5074	DNA326523, 5168
DNA326468, 5075	DNA326524, 5169
DNA326469, 5076	DNA326525, 5171

DNIA 206506 5172	DNA326583, 5270
DNA326526, 5173	DNA326584, 5274
DNA326527, 5175	DNA326585, 5276
DNA326528, 5176	DNA326586, 5281
DNA326529, 5178	DNA326587, 5283
DNA326530, 5180	
DNA326531,5181	DNA326588, 5285
DNA326532, 5183	DNA326589, 5286
DNA326533, 5184	DNA326590, 5288
DNA326534, 5186	DNA326591, 5290
DNA326535, 5188	DNA326592, 5292
DNA326536, 5190	DNA326593, 5294
DNA326537,5192	DNA326594, 5295
DNA326538, 5194	DNA326595, 5297
DNA326539, 5195	DNA326596, 5300
DNA326540, 5196	DNA326597, 5302
DNA326541, 5197	DNA326598, 5303
DNA326542, 5203	DNA326599, 5305
DNA326543, 5205	DNA326600, 5307
DNA326544, 5208	DNA326601, 5308
DNA326546, 5210	DNA326602, 5310
DNA326547, 5212	DNA326603, 5311
DNA326548, 5213	DNA326604, 5314
DNA326549, 5214	DNA326605, 5316
DNA326550, 5216	DNA326606, 5317
DNA326551, 5218	DNA326607, 5319
DNA326552, 5219	DNA326608, 5321
DNA326553, 5221	DNA326609, 5323
DNA326554, 5222	DNA326610, 5325
DNA326555, 5223	DNA326611, 5326
DNA326556, 5225	DNA326612, 5330
DNA326557, 5226	DNA326613, 5331
DNA326558, 5227	DNA326614, 5332
DNA326559, 5229	DNA326615, 5334
DNA326560, 5230	DNA326616, 5336
DNA326561, 5236	DNA326617, 5337
DNA326562, 5237	DNA326618, 5338
DNA326563, 5239	DNA326619, 5339
DNA326564, 5240	DNA326620, 5341
DNA326565, 5241	DNA326621, 5343
DNA326566, 5243	DNA326622, 5345
DNA326567, 5244	DNA326623, 5347
DNA326568, 5246	DNA326624, 5349
DNA326569, 5247	DNA326625, 5350
DNA326570, 5248	DNA326626, 5354
DNA326571, 5250	DNA326627, 5355
DNA326572, 5252	DNA326628, 5357
DNA326573, 5254	DNA326629, 5358
DNA326574, 5256	DNA326630, 5360
DNA326575, 5257	DNA326631, 5362
DNA326576, 5260	DNA326632, 5364
DNA326577, 5261	DNA326633, 5366
DNA326578, 5262.	DNA326634, 5367
	DNA326635, 5369
DNA326579, 5264	DNA326636, 5370
DNA326580, 5266	DNA326637, 5371
DNA326581, 5267	J-172J-00J-1, JJ-11
DNA326582, 5269	DNA326638, 5372

DNA326639, 5374	DNA326695, 5474
DNA326640, 5376	DNA326696, 5478
DNA326641, 5378	DNA326697, 5480
DNA326642, 5379	DNA326698, 5482
DNA326643, 5380	DNA326699, 5483
DNA326644, 5382	DNA326700, 5484
DNA326645, 5383	DNA326701, 5485
DNA326646, 5384	DNA326702, 5486
DNA326647, 5385	DNA326703, 5487
DNA326648, 5389	DNA326704, 5488
DNA326649, 5391	DNA326705, 5489
DNA326650, 5393	DNA326706, 5491
DNA326651,5395	DNA326707, 5492
DNA326652, 5396	DNA326708, 5496
DNA326653, 5398	DNA326709, 5497
DNA326654, 5399	DNA326710, 5499
DNA326655, 5401	DNA326711, 5501
DNA326656, 5403	DNA326712, 5508
DNA326657, 5404	DNA326713, 5510
DNA326658, 5406	DNA326714, 5519
DNA326659, 5408	DNA326715, 5521
DNA326660, 5409	DNA326716, 5522
DNA326661, 5411	DNA326717, 5525
DNA326662, 5413	DNA326718, 5527
DNA326663, 5415	DNA326719, 5528
DNA326664,5417	DNA326720, 5529
DNA326665, 5419	DNA326721, 5530
DNA326666, 5423	DNA326722, 5531
	DNA326723, 5532
DNA326667, 5425	DNA326724, 5534
DNA326668, 5428	DNA326725, 5536
DNA326669, 5430	DNA326726, 5537
DNA326670, 5432	DNA326727, 5539
DNA326671,5436	DNA326728, 5541
DNA326672, 5438	DNA326729, 5544
DNA326673,5439	DNA326730, 5546
DNA326674, 5440	DNA326731, 5548
DNA326675, 5443	DNA326732, 5549
DNA326676, 5444	DNA326732, 5549 DNA326733, 5552
DNA326677, 5445	DNA326734, 5554
DNA326678, 5446	DNA326735, 5556
DNA326679, 5447	DNA326736, 5558
DNA326680, 5450	DNA326737, 5560
DNA326681,5451	
DNA326682, 5453	DNA326738, 5564
DNA326683,5454	DNA326739, 5566
DNA326684, 5456	DNA326740, 5570
DNA326685, 5458	DNA326741, 5571
DNA326686, 5460	DNA326742, 5573
DNA326687, 5461	DNA326743, 5574
DNA326688, 5462	DNA326744, 5578
DNA326689, 5463	DNA326745, 5580
DNA326690, 5465	DNA326746, 5582
DNA326691, 5466	DNA326747, 5584
DNA326692, 5468	DNA326748, 5586
DNA326693, 5470	DNA326749, 5588
DNA326694, 5472	DNA326750, 5592
•	

DNA326751, 5595	DNA326807, 5712
DNA326752, 5597	DNA326808, 5713
DNA326753, 5598	DNA326809, 5715
DNA326754, 5600	DNA326810, 5717
DNA326755, 5602	DNA326811, 5719
DNA326756, 5603	DNA326812, 5723
DNA326757, 5605	DNA326813, 5725
DNA326758, 5607	DNA326814, 5727
DNA326759, 5608	DNA326815, 5728
DNA326760, 5610	DNA326816, 5729
DNA326761, 5612	DNA326817, 5731
DNA326762, 5613	DNA326818, 5733
	DNA326819, 5736
DNA326764, 5610	DNA326820, 5740
DNA326764, 5619	DNA326821, 5742
DNA326765, 5621	
DNA326766, 5623	DNA326822, 5744
DNA326767, 5629	DNA326823, 5749
DNA326768, 5631	DNA326824, 5750
DNA326769, 5633	DNA326825, 5752
DNA326770, 5635	DNA326826, 5754
DNA326771, 5636	DNA326827, 5756
DNA326772, 5642	DNA326828, 5757
DNA326773, 5644	DNA326829, 5759
DNA326774, 5646	DNA326830, 5762
DNA326775, 5647	DNA326831, 5763
DNA326776, 5648	DNA326832, 5765
DNA326777, 5650	DNA326833, 5766
DNA326778, 5652	DNA326834, 5768
DNA326779, 5656	DNA326835, 5769
DNA326780, 5658	DNA326836, 5773
DNA326781, 5660	DNA326837, 5776
DNA326782, 5661	DNA326838, 5778
DNA326783, 5663	DNA326839, 5779
DNA326784, 5665	DNA326840, 5781
DNA326785, 5667	DNA326841, 5783
DNA326786, 5670	DNA326842, 5787
DNA326787, 5671	DNA326843, 5793
DNA326788, 5673	DNA326844, 5794
DNA326789, 5674	DNA326845, 5795
DNA326790, 5675	DNA326846, 5796
DNA326791, 5678	DNA326847, 5798
DNA326792, 5683	DNA326848, 5800
DNA326793, 5687	DNA326849, 5802
DNA326794, 5688	DNA326850, 5804
DNA326795, 5689	DNA326851, 5806
DNA326796, 5691	DNA326852, 5808
DNA326797, 5693	DNA326853, 5809
DNA326798, 5695	DNA326854, 5811
DNA326799, 5696	DNA326855, 5813
DNA326800, 5698	DNA326856, 5816
DNA326801, 5700	DNA326857, 5818
	DNA326858, 5819
DNA326802, 5701	
DNA326803, 5705	DNA326859, 5821
DNA326804, 5706	DNA326860, 5823
DNA326805, 5708	DNA326861, 5824
DNA326806, 5710	DNA326862, 5826

DNA326863, 5828	DNA326919, 5945
DNA326864, 5832	DNA326920, 5946
DNA326865, 5834	DNA326921, 5949
DNA326866, 5838	DNA326922, 5950
DNA326867, 5840	DNA326923, 5951
DNA326868, 5842	DNA326924, 5953
DNA326869, 5846	DNA326925, 5954
DNA326870, 5847	DNA326926, 5958
DNA326871, 5849	DNA326927, 5960
DNA326872, 5851	DNA326928, 5961
DNA326873, 5853	DNA326929, 5963
DNA326874, 5855	DNA326930, 5964
DNA326875, 5857	DNA326931, 5967
DNA326876, 5859	DNA326932, 5968
	DNA326933, 5969
DNA326877, 5861	DNA326934, 5971
DNA326878, 5863	
DNA326879, 5865	DNA326935, 5975 DNA326936, 5977
DNA326880, 5867	•
DNA326881, 5869	DNA326937, 5979
DNA326882, 5871	DNA326938, 5981
DNA326883, 5875	DNA326939, 5983
DNA326884, 5876	DNA326940, 5985
DNA326885, 5877	DNA326941, 5986
DNA326886, 5878	DNA326942, 5987
DNA326887, 5879	DNA326943, 5991
DNA326888, 5883	DNA326944, 5993
DNA326889, 5887	DNA326945, 5996
DNA326890, 5889	DNA326946, 5998
DNA326891, 5894	DNA326947, 5999
DNA326892, 5898	DNA326948, 6001
DNA326893, 5900	DNA326949, 6007
DNA326894, 5902	DNA326950, 6009
DNA326895, 5903	DNA326951, 6013
DNA326896, 5905	DNA326952, 6014
DNA326897, 5907	DNA326953, 6015
DNA326898, 5908	DNA326954, 6017
DNA326899, 5910	DNA326955, 6019
DNA326900, 5911	DNA326956, 6022
DNA326901, 5913	DNA326957, 6024
DNA326902, 5914	DNA326958, 6025
DNA326903, 5915	DNA326959, 6029
DNA326904, 5917	DNA326960, 6031
DNA326905, 5919	DNA326961, 6032
DNA326906, 5923	DNA326962, 6036
DNA326907, 5924	DNA326963, 6040
DNA326908, 5925	DNA326964, 6042
DNA326909, 5926	DNA326965, 6043
DNA326910, 5927	DNA326966, 6047
DNA326911, 5928	DNA326967, 6049
DNA326912, 5929	DNA326968, 6051
DNA326913, 5930	DNA326969, 6052
DNA326914, 5931	DNA326970, 6054
DNA326915, 5933	DNA326971, 6056
·	DNA326972, 6058
DNA326916, 5937	DNA326973, 6060
DNA326917, 5941	
DNA326918, 5943	DNA326974, 6061

DNA326975, 6063	DNA327031, 6165
DNA326976, 6064	DNA327032, 6167
DNA326977, 6065	DNA327033, 6169
DNA326978, 6066	DNA327034, 6170
DNA326979, 6070	DNA327035, 6172
DNA326980, 6072	DNA327036, 6173
DNA326981, 6074	DNA327037, 6174
DNA326982, 6077	DNA327038, 6176
DNA326983, 6081	DNA327039, 6177
DNA326984, 6083	DNA327040, 6179
DNA326985, 6085	DNA327041, 6183
DNA326986, 6087	DNA327042, 6185
DNA326987, 6088	DNA327043, 6189
DNA326988, 6089	DNA327044, 6192
DNA326989, 6090	DNA327045, 6194
DNA326990, 6091	DNA327046, 6196
DNA326991,6093	DNA327047, 6199
DNA326992, 6094	DNA327048, 6201
DNA326993, 6095	DNA327049, 6203
DNA326994, 6097	DNA327050, 6204
DNA326995, 6099	DNA327051, 6206
DNA326996, 6103	DNA327052, 6207
DNA326997, 6106	DNA327053, 6209
DNA326998, 6108	DNA327054, 6210
DNA326999, 6109	DNA327055, 6212
DNA327000, 6111	DNA327056, 6216
DNA327001,6113	DNA327057, 6218
DNA327002, 6114	DNA327058, 6220
DNA327003, 6116	DNA327059, 6222
DNA327004,6118	DNA327060, 6224
DNA327005, 6119	DNA327061, 6226
DNA327006, 6121	DNA327062, 6227
DNA327007, 6122	DNA327063, 6228
DNA327008, 6123	DNA327064, 6229
DNA327009, 6124	DNA327065, 6232
DNA327010,6128	DNA327066, 6233
DNA327011, 6130	DNA327067, 6235
DNA327012, 6131	DNA327068, 6237
DNA327013, 6132	DNA327069, 6238
DNA327014, 6134	DNA327070, 6241
DNA327015, 6136	DNA327071, 6242
DNA327016, 6138	DNA327072, 6244
DNA327017, 6140	DNA327073, 6246
DNA327018, 6142	DNA327074, 6248
DNA327019, 6143	DNA327075, 6250
DNA327020, 6145	DNA327076, 6251
DNA327021,6146	DNA327077, 6253
DNA327022, 6151	DNA327078, 6255
DNA327023, 6152	DNA327079, 6256
DNA327024, 6153	DNA327080, 6259
DNA327025, 6155	DNA327081, 6261
DNA327026, 6157	DNA327082, 6263
DNA327027, 6158	DNA327083, 6265
DNA327028, 6159	DNA327084, 6267
DNA327029, 6161	DNA327085, 6268
DNA327029, 0101 DNA327030, 6163	DNA327086, 6269
2141221000,0100	

DNA327087, 6274
DNA327088, 6275
DNA327089, 6276
DNA327090, 6278
DNA327091, 6280
DNA327092, 6281
DNA327093, 6282
DNA327094, 6284
DNA327095, 6289
DNA327096, 6291
DNA327097, 6293
DNA327098, 6295
DNA327099, 6297
DNA327100, 6299
DNA327101, 6300
DNA327102, 6302
DNA327103, 6304
DNA327104, 6306
DNA327105, 6308
DNA327106, 6310
DNA327107, 6311
DNA327108, 6313
DNA327109, 6315
DNA327110, 6316
DNA327111, 6320
DNA327112, 6323
DNA 207112 6226
DNA327113, 6325
DNA327114, 6326
DNA327115, 6328
DNA327116, 6329
DNA327117, 6330
DNA327118, 6336
DNA327119, 6346
DNA327120, 6348
DNA327121, 6349
DNA327122, 6350
DNA327123, 6351
DNA327124, 6352
DNA327125, 6353
DNA327126, 6354
DNA327127, 6355
DNA66475, 4796
DNA75863, 3245
DNA76504, 6270
DNA79101, 3678
DNA79129, 1352
DNA79313, 3524
DNA82328, 624
DNA83020, 1671
DNA83022, 2495
DNA83046, 558
DNA83085, 173
DNA83141, 2361
DNA83154, 5590
DNA83170, 5679
DNA83170, 3679 DNA83180, 3476
1 MIN V'X I V(1 7 /1 7 /4 7 /4

DNA88051, 898 DNA88084, 5511 DNA88100, 1089 DNA88114, 3452 DNA88176, 3333 DNA88239, 5791 DNA88261,4579 DNA88281, 5050 DNA88350, 2796 DNA88378, 4845 DNA88430, 4963 DNA88457, 5040 DNA88547, 1223 DNA88554, 4903 DNA88562, 2961 DNA88569, 5789 DNA89239, 1327 DNA89242, 2695 DNA97285, 3175 DNA97290, 4887 DNA97293, 4421 DNA97298, 5734 DNA97300, 4687

PRO Index (to Figure number)

•	
PRO, 1189	PRO12520, 1025
PRO10002, 487	PRO12565, 1146
PRO10194, 2441	PRO12573, 3527
PRO10297, 1479	PRO12618, 45
PRO10360, 1923	PRO12683, 4399
PRO10400, 4928	PRO12774, 4306
PRO10404, 3952	PRO12779, 1154
PRO10485, 5127	PRO12792, 807
PRO10498, 967	PRO12797, 2035
PRO10602, 1207	PRO12800, 5503
PRO10685, 1633	PRO12806, 4954
PRO10692, 644	PRO12813, 3014
PRO10723, 6245	PRO12822, 5429
PRO10760, 211	PRO12838, 2547
PRO1077, 5094	PRO12839, 3758
PRO10824, 2652	PRO12841, 1067
PRO10838, 3657	PRO12845, 6023
PRO10849, 1709	PRO1285, 1665
PRO10935, 6279	PRO12851, 2905
PRO11048, 1285	PRO12878, 3250
PRO11077, 1571	PRO12886, 6021
PRO1108, 2532	PRO12892, 5477
PRO1112, 2003	PRO12902, 3467
PRO11139, 2981	PRO12916, 4080
PRO11197, 833	PRO1314, 1239
PRO11213, 3655	PRO1555, 2457
PRO11262, 3172	PRO1707, 625
PRO11265, 2589	PRO1720, 5782
PRO11403, 902, 4970	PRO1869, 3909
PRO11582, 556	PRO188, 530
PRO11601, 3521	PRO1910, 2835
PRO11691, 3186	PRO1927, 1847
PRO1182, 646	PRO19615, 1822
PRO119, 2229	PRO19933, 2109
PRO11982, 3915	PRO201, 5209
PRO1204, 4797	PRO20117, 3257, 3259
PRO12077, 1420	PRO20136, 49
PRO12130, 5315	PRO2018, 3246
PRO12134, 6006	PRO2042, 2496
PRO12135, 5897	PRO2054, 4066
PRO12187, 3412	PRO2065, 5780
PRO12198, 4142	PRO2066, 4049
PRO12199, 682	PRO2077, 1217
PRO12224, 3205	PRO2109, 5591
PRO12265, 4937	PRO2146, 899
PRO12324, 5704	PRO21481, 2669
PRO124, 3121	PRO2172, 1090
PRO12416, 1733	PRO21728, 5837
PRO12448, 3385	PRO21773, 3666
PRO12460, 5722	PRO21887, 4783
PRO12468, 2185	PRO21924, 3481
PRO1248, 565	PRO2198, 4639
PRO12490, 6055	PRO22196, 94
,	<u> </u>

DD 000000 - 00	
PRO22262, 168	PRO2615, 5680
PRO22304, 147	PRO26194, 82
PRO224, 5217	PRO2622, 3477
PRO22481, 6028	PRO26228, 983
PRO22613, 5284	PRO2644, 5512
PRO22637, 4569	PRO2660, 3453
PRO2267, 5051	PRO2665, 922
PRO2269, 61	PRO2672, 4550
PRO22771, 1625	PRO2685, 3334
PRO22897, 2339	PRO2711, 5792
PRO22907, 2634, 2636	PRO2718, 5282
PRO231, 329	PRO2719, 4580
PRO23123, 999	PRO2720, 4219
PRO23124, 949, 951	PRO2732, 4175
PRO23201, 2615	PRO2733, 2443
PRO23231, 6059	•
PRO23238, 5589	PRO2758, 2797
PRO23248, 2568	PRO2769, 4846
PRO23300, 586	PRO2788, 4964
•	PRO2799, 5041
PRO23362, 2194	PRO283, 3664
PRO23364, 2948	PRO2837, 1224
PRO2355, 4512	PRO2839, 4904
PRO2373, 6125	PRO2841, 3741, 3743
PRO23746, 13	PRO2842, 2962
PRO23794, 5251	PRO2846, 3661
PRO23797, 2024, 2151	PRO2851, 177
PRO23845, 5394	PRO28687, 5880
PRO23942, 429	PRO287, 1277
PRO24002, 5748	PRO2871, 3995
PRO24021, 6317	PRO2875, 2974
PRO24028, 855	PRO2906, 1328
PRO24075, 4531	PRO2907, 2696
PRO24077, 5761	PRO292, 3134
PRO24091, 978	PRO29371, 5329
PRO2420, 5790	PRO302, 4918
PRO24831, 3307	PRO303, 4409
PRO24851, 577	PRO329, 504
PRO24856, 125	PRO3344, 2484
PRO25115, 4878	PRO33679, 368
PRO25245, 6312	PRO33717, 3963
PRO25302, 5882	PRO33818, 2773
PRO2537, 6271	PRO34043, 6205
PRO2549, 3679	PRO34073, 3052
PRO2551, 1353	PRO34151, 5479
PRO2555, 3525	PRO34323, 5259
PRO2560, 5096	PRO34473, 2783
PRO2561, 1672	PRO3449, 3601
PRO2569, 559	PRO34531, 6076
PRO2570, 2477	PRO34544, 1676
PRO2583, 174	PRO34557, 4183
PRO25845, 3298	PRO34584, 6186
PRO25849, 1853	PRO36020, 1741
PRO25881, 5498	PRO36047, 1490
PRO25985, 3156	PRO36055, 1331
PRO2604, 2362	PRO36058, 1735
PRO2610, 981	PRO36093, 2768
1102010,701	11000073, 2100

PRO36094, 2175	PRO37091, 1765
PRO36095, 3474	PRO37109, 4225
PRO36112, 4043	PRO37221, 5746
PRO36118, 6339	PRO37234, 3499
PRO36134, 2507	PRO37256, 437
PRO36184, 6215	PRO37316, 3867
PRO36215, 3377	PRO37335, 1690
PRO36263, 6335	PRO37476, 6333
PRO36272, 357	PRO37518, 4940
PRO3629, 4355, 4357	PRO37534, 4890
PRO36305, 1960	PRO37535, 385
PRO36316, 1958	PRO37540, 4990
PRO3632, 3176	PRO37547, 4743
PRO36328, 3977	PRO37551, 3221
PRO3637, 4888	PRO37555, 3594
PRO36372, 1829	PRO37557, 3629
PRO36373, 1129	PRO37628, 685
PRO36382, 1447	PRO37634, 3725
PRO36383, 1512	PRO37635, 2965
PRO36384, 1516	PRO37636, 1574
PRO3640, 4422	PRO37644, 6273
PRO36417, 5948	PRO37653, 815
PRO3645, 5735	PRO37654, 3589
PRO36468, 554	PRO37667, 1887
PRO3647, 4688	PRO37669, 4171
PRO36474, 5518	PRO37675, 924
PRO36477, 3730	PRO37676, 158
PRO36491, 3490	PRO37697, 4627
PRO36543, 3207	PRO37709, 551
PRO36568, 3993	PRO37712, 5353
PRO36588, 410	PRO37730, 2513
•	PRO37731, 2243
PRO36680, 3005	PRO37743, 5233
PRO36693, 2656 PRO36723, 272	PRO37764, 4934
	PRO37770, 1166
PRO36725, 106 PRO36735, 1096	PRO37783, 1813
PRO36787, 4096	PRO37784, 3985
	PRO37791, 4793
PRO36800, 2459	PRO37806, 498
PRO36808, 2671	PRO37811, 5682
PRO36841, 1919	PRO37905, 1943
PRO36852, 4821	PRO37935, 5772
PRO36872, 5922	PRO37937, 3721
PRO36879, 2263	PRO37938, 2461
PRO36881, 1792 PRO36891, 742	PRO37951, 5164
	PRO37954, 2692
PRO36959, 2566	PRO37961, 4343
PRO36963, 5490	PRO37967, 595
PRO36970, 3456	PRO37972, 3077
PRO37010, 1109	PRO37991, 804
PRO37012, 5976	PRO37992, 347
PRO37023, 2394	PRO38008, 699
PRO37024, 5957	PRO38010, 3459
PRO37073, 2987	PRO38021, 6217
PRO37080, 5936	PRO38021, 0217
PRO37082, 475	PRO38028, 2667
PRO37083, 6160	1 KO20020, 200/

PRO38038, 1509	PRO4813, 5845
PRO38040, 375	PRO4814, 4582
PRO38066, 5810	PRO4832, 1150
PRO38070, 1962	PRO4833, 2991
PRO38101, 5565	PRO48357, 1082
PRO38119, 6286	PRO4836, 4111
PRO38152, 6148	PRO4841, 3479
PRO38227, 4892	PRO4852, 5775
PRO38258, 793	PRO4870, 3312
PRO38284, 37	PRO4872, 6082
PRO38311, 4359	PRO4873, 3684
PRO38336, 4842	PRO4884, 1950
PRO38380, 6322	PRO4885, 6345
PRO38387, 2100	PRO4900, 3050
PRO38392, 2207	PRO4904, 4064, 549
PRO38406, 6198	PRO4908, 1780
PRO38464, 4336	PRO4912, 2275
PRO38480, 4373	PRO4914, 617
PRO38496, 5133	PRO4917, 712
PRO38730, 6343	PRO4918, 765
PRO38852, 4215	PRO49182, 4705
PRO39030, 6105	PRO49209, 1371
PRO39127, 6182	PRO49256, 6004
PRO39201, 4983	PRO49262, 1628
PRO39530, 4643	PRO49278, 6069
PRO39648, 3009	PRO49298, 3330
PRO39773, 2399	PRO49310, 4720
PRO4, 2535	PRO49316, 995
PRO41882, 2366	PRO49352, 6046
PRO42022, 6225	PRO49409, 500
PRO42208, 4519	PRO49457, 604
PRO4348, 3577	PRO49639, 4488
PRO4379, 4179	PRO49642, 343
PRO4426, 3632	PRO49648, 2741
PRO44999, 579	PRO49653, 5628
PRO45014, 2183	PRO49675, 5886
PRO4544, 219	PRO49685, 1156
PRO4547, 650	PRO49722, 1317
PRO4569, 5577	PRO49726, 3469
PRO4583, 189	PRO4984, 1909
PRO4586, 6071	PRO49869, 2694
PRO4605, 1450	PRO49875, 3778
PRO4650, 5273	PRO49879, 4375
PRO4666, 3682	PRO49881, 6319
PRO4676, 1599	PRO49883, 6258
PRO4710, 1678	PRO49888, 4899
PRO4729, 4709	PRO49967, 4578
PRO47354, 5516	PRO50083, 5891
PRO4738, 4799	PRO50095, 1133
PRO4749, 2983	PRO50134, 5940
PRO4756, 5377	PRO50165, 3114
PRO4763, 458	PRO50409, 4209
PRO4789, 5995	PRO50438, 4266
PRO4793, 3848	PRO50481, 4748
PRO4798, 2071	PRO50582, 1927
PRO4801, 3314	PRO50596, 860

PRO50658, 4613	PRO58642, 3897
PRO50756, 3110	PRO58702, 5207
	PRO58784, 1100
PRO51110, 1273	PRO58837, 3592
PRO51119, 6102	PRO58875, 6240
PRO51121, 3512	
PRO51389, 2055	PRO58939, 2877
PRO51539, 200	PRO58974, 471
PRO51565, 5514	PRO58984, 1893
PRO51586, 5147	PRO58986, 1387
PRO51744, 5057	PRO58991, 5235
PRO51767, 5388	PRO58993, 1804
PRO51771, 5435	PRO59001, 3817
PRO51775, 4363	PRO59022, 6243
PRO51815, 4371	PRO59040, 1851
PRO51836, 546	PRO59042, 3824
PRO51851, 1643	PRO59043, 3056
PRO51901, 2747	PRO59061, 6012
PRO52010, 4855	PRO59074, 2372
PRO52083, 1438	PRO59084, 3296
PRO52101, 5507	PRO59099, 128
PRO52119, 5966	PRO59136, 795
PRO52449, 403	PRO59142, 5649, 5651
PRO52492, 3416	PRO59168, 6154
PRO52537, 2924	PRO59220, 5361
PRO54594, 4204	PRO59230, 2551
PRO57307, 3327	PRO59262, 3440
PRO57854, 3102	PRO59264, 5505
PRO57901, 5594	PRO59285, 6080
PRO57917, 4060	PRO59305, 4844
PRO57942, 5815	PRO59309, 4806
PRO58006, 1855	PRO59313, 959
PRO58042, 5313	PRO59321, 2663
PRO58046, 5123	PRO59328, 4912
	PRO59332, 289
PRO58092, 3899	PRO59339, 5677
PRO58140, 1106	PRO59351, 2856
PRO58140, 1196	PRO59365, 1998
PRO58155, 5874	PRO59380, 2397
PRO58177, 1257	PRO59384, 752
PRO58198, 6127	· ·
PRO58207, 3285	PRO59441, 6139
PRO58213, 1688	PRO59491, 4508
PRO58219, 1647	PRO59504, 1094
PRO58232, 5990	PRO59544, 762
PRO58259, 1271	PRO59546, 230
PRO58263, 2553	PRO59558, 704
PRO58292, 5299	PRO59579, 2674
PRO58308, 1063	PRO59629, 3381
PRO58328, 1098	PRO59647, 3551
PRO58348, 3094	PRO59669, 5904
PRO58410, 3865	PRO59717, 2105
PRO58437, 2370	PRO59721, 3272
PRO58440, 3688	PRO59725, 462
PRO58446, 5268	PRO59785, 3728
PRO58523, 3209	PRO59868, 6188
PRO58543, 747	PRO59895, 935
PRO58606, 3300	PRO59913, 1722
•	

PRO60006, 2752	PRO61502, 3067
PRO60008, 3282	PRO61575, 5449
PRO60070, 4102	PRO61638, 349
PRO60115, 2807	PRO61661, 5024
	PRO61679, 43
PRO60121, 5053	PRO61688, 2250
PRO60123, 3393	PRO61721, 2900
PRO60127, 2661	
PRO6018, 395	PRO61744, 6141
PRO60207, 1698	PRO61761, 689
PRO60261, 520	PRO61799, 4361
PRO60298, 203	PRO61812, 2237
PRO60311, 3345	PRO61824, 2247
PRO60321, 2601	PRO61870, 1183
PRO60325, 4450	PRO61897, 2795
PRO60333, 5626	PRO61938, 6191
PRO60360, 2349	PRO61948, 4477
PRO60397, 882	PRO61977, 5278
PRO60438, 1867	PRO61999, 3913
PRO60475, 2735	PRO62039, 5116
PRO60499, 4262	PRO62065, 5893
PRO60542, 1397	PRO62069, 2865
PRO60575, 4087	PRO62075, 5442
	PRO62077, 516
PRO60579, 2181	PRO62099, 4070
PRO60603, 5427	PRO62108, 2492
PRO60634, 3556	PRO62110, 4517
PRO60666, 3391	PRO62112, 5242
PRO60674, 5202	-
PRO60741, 1336	PRO62135, 1831
PRO60753, 872	PRO62153, 1171
PRO60781, 2715	PRO62212, 5524
PRO60800, 5073	PRO62225, 5179
PRO60815, 84	PRO62236, 2781
PRO60847, 3216	PRO62239, 750
PRO60860, 236	PRO62244, 2177
PRO60924, 3575	PRO62273, 3764
PRO60945, 5743	PRO62302, 5162
PRO60956, 1495	PRO62328, 6000
PRO60979, 4813	PRO62389, 181
PRO60991, 3087	PRO62466, 6327
PRO61085, 4268	PRO62500, 5407
PRO61113, 5070	PRO62518, 193
PRO61125, 195	PRO62529, 341
PRO61129, 5569	PRO62531, 5200
PRO61146, 397	PRO62574, 453
PRO61219, 4260	PRO62582, 5543
PRO61238, 3323	PRO62588, 6150
PRO61246, 5003	PRO62607, 637
	PRO62617, 2882
PRO61250, 90	PRO62760, 931
PRO61271, 6231	PRO62770, 663
PRO61308, 5575	PRO62780, 4666
PRO61325, 781	
PRO61327, 5786	PRO62786, 745
PRO61349, 5616	PRO62849, 293
PRO61458, 5422	PRO62852, 4301
PRO61470, 6288	PRO62882, 4321
PRO61498, 5739	PRO62893, 652

PRO62899, 5103	PRO70333, 541
PRO62927, 865	PRO70383, 6035
PRO62981, 4717	PRO70385, 5551
PRO63000, 2724	PRO70393, 2008
PRO63009, 2233	PRO70433, 351
PRO63052, 1972	PRO70449, 4729
•	PRO70453, 3621
PRO63068, 4565	
PRO63082, 1680	PRO70536, 1460
PRO63226, 5238	PRO70544, 2033
PRO63253, 1905	PRO70595, 2681
PRO63299, 6341	PRO70675, 991
PRO6360, 1077	PRO70694, 3786
PRO6373, 2213	PRO70703, 4976
PRO65, 848	PRO70754, 439
PRO66265, 4670	PRO70810, 5639
PRO66275, 3901	PRO70812, 4700
PRO66279, 2127	PRO70989, 3828, 3830
PRO66282, 2129	PRO70993, 1719
PRO69461, 3302	PRO71031, 3433, 3435
PRO69463, 32	PRO71057, 2997
·	PRO71085, 5563
PRO69471, 3840	PRO71088, 1947
PRO69473, 3027, 3760	
PRO69475, 2266	PRO71089, 5641
PRO69486, 5906	PRO71091, 2591
PRO69496, 2702	PRO71093, 370
PRO69506, 1953	PRO71095, 1964
PRO69513, 5015	PRO71096, 3888
PRO69518, 5280	PRO71097, 5831
PRO69521, 1901	PRO71103, 1148
PRO69523, 3011	PRO71106, 1875
PRO69528, 3237	PRO71111, 2436
PRO69531, 906	PRO71112, 221
PRO69533, 5669	PRO71120, 3718
PRO69541, 5655	PRO71125, 1985, 1987
PRO69542, 2764	PRO71130, 4576
PRO69549, 3461	PRO71133, 2255
PRO69554, 1583	PRO71136, 2309
PRO69560, 5686	PRO71141, 4715
PRO69561, 4920	PRO71142, 1913
PRO69568, 3254	PRO71145, 6039
PRO69584, 1970	PRO71146, 372
PRO69595, 4243	PRO71211, 2343
	PRO71242, 5974
PRO69617, 4521	
PRO69635, 3138	PRO7143, 4986
PRO69674, 3219	PRO730, 4274
PRO69681, 1301	PRO7427, 2239
PRO69682, 4901	PRO7445, 2594
PRO69684, 4779	PRO80480, 5
PRO70011, 2704	PRO80481,7
PRO70138, 1968	PRO80482, 9
PRO70258, 656	PRO80483, 11
PRO70276, 4447	PRO80484, 16
PRO70290, 2762	PRO80485, 18
PRO703, 380	PRO80487, 21
PRO70327, 1637, 1639	PRO80488, 23
PRO70331, 6030	PRO80489, 25
- 1.0 1.00 x 1.000 0	

WO 2004/030615

PRO80490, 27	PRO80587, 240
PRO80492, 30	PRO80588, 242
PRO80493, 35	PRO80591, 246
PRO80494, 39	PRO80592, 248
PRO80497, 47	PRO80593, 252
PRO80498, 51	PRO80595, 255
PRO80499, 53	PRO80597, 258
PRO80501, 56	PRO80599, 261
PRO80505, 63	PRO80600, 263
PRO80506, 65	PRO80602, 266
PRO80510, 70	PRO80603, 270
PRO80511, 72	PRO80604, 274
PRO80512, 74	PRO80607, 278
PRO80517, 80	PRO80611, 283
PRO80518, 86	PRO80612, 285
PRO80519, 88	PRO80613, 287
PRO80520, 92	PRO80614, 291
PRO80521,96	PRO80617, 297
PRO80524, 100	PRO80618, 299
PRO80527, 104	PRO80619, 301
PRO80528, 108	PRO80620, 303
PRO80530, 111	PRO80621, 305
PRO80533, 115	PRO80622, 307
PRO80534, 117	PRO80623, 309
PRO80535, 119	PRO80624, 311
PRO80536, 121	PRO80625, 313
PRO80537, 123	PRO80627, 316
PRO80542, 132	PRO80630, 320
PRO80547, 138	PRO80631, 322
PRO80550, 143	PRO80633, 325
PRO80553, 149	PRO80638, 333
PRO80554, 151	PRO80639, 335
PRO80555, 153	PRO80640, 337
PRO80557, 156	PRO80641, 339
PRO80558, 160	PRO80642, 345
PRO80559, 162	PRO80644, 355
PRO80560, 164	PRO80645, 359
PRO80561, 166	PRO80646, 362
PRO80562, 170	PRO80648, 365
PRO80563, 172	PRO80651, 378
PRO80565, 179	PRO80652, 382
PRO80567, 184	PRO80654, 387
PRO80568, 186	PRO80656, 390
PRO80570, 191	PRO80657, 393
PRO80571, 197	PRO80658, 399
PRO80574, 205	PRO80659, 401
PRO80575, 207	PRO80660, 405
PRO80576, 209	PRO80661, 407
PRO80579, 215	PRO80664, 413
PRO80580, 217	PRO80665, 415
PRO80581, 223	PRO80666, 417
PRO80582, 225	PRO80667, 419
PRO80583, 227	PRO80668, 421
PRO80584, 232	PRO80669, 423
PRO80585, 234	PRO80670, 425
PRO80586, 238	PRO80671, 427

PRO80672, 431			PRO80775, 666
PRO80675, 435			PRO80776, 668
PRO80676, 441			PRO80778, 671
PRO80677, 443			PRO80779, 673
PRO80678, 445			PRO80780, 675
PRO80679, 447			PRO80781, 677
			PRO80782, 679
PRO80680, 449			
PRO80684, 456			PRO80785, 687
PRO80685, 460			PRO80786, 691
PRO80686, 464			PRO80787, 693
PRO80688, 467			PRO80788, 695
PRO80689, 469	•		PRO80789, 697
PRO80693, 478			PRO80790, 702
PRO80694, 480			PRO80791,708
PRO80695, 482			PRO80792, 710
PRO80699, 489			PRO80793, 714
PRO80700, 491			PRO80796, 718
PRO80704, 496			PRO80797, 720
PRO80705, 502			PRO80798, 722
PRO80706, 506			PRO80799, 724
PRO80707, 508			PRO80802, 728
PRO80708, 510		10	PRO80803, 730
PRO80709, 512			PRO80804, 732
PRO80710, 514			PRO80806, 735
PRO80711, 518			PRO80807, 737
			PRO80808, 739
PRO80714, 526			PRO80811, 754
PRO80715, 528			· ·
PRO80717, 533			PRO80812, 756
PRO80719, 536			PRO80813, 758
PRO80720, 539			PRO80814, 760
PRO80725, 549			PRO80816, 767
PRO80730, 563			PRO80817, 769
PRO80734, 570			PRO80820, 774
PRO80735, 572			PRO80823, 778
PRO80736, 574			PRO80827, 786
PRO80740, 584			PRO80830, 790
PRO80741, 588			PRO80832, 797
PRO80742, 590			PRO80833, 799
PRO80745, 597			PRO80835, 802
PRO80752, 607			PRO80837, 809
PRO80753, 609			PRO80838, 811
PRO80754, 611			PRO80839, 813
PRO80755, 613			PRO80842, 819
PRO80756, 615			PRO80843, 821
PRO80759, 621			PRO80846, 826
PRO80760, 623			PRO80847, 828
PRO80761, 627			PRO80848, 830
PRO80762, 629			PRO80850, 835
PRO80763, 631			PRO80851, 837
PRO80764, 633			PRO80853, 840
PRO80765, 635			PRO80856, 844
			PRO80857, 846
PRO80767, 640			PRO80860, 852
PRO80770, 648			PRO80866, 863
PRO80771, 654			PRO80868, 868
PRO80772, 658			
PRO80773, 660			PRO80869, 870

	DD 000050 1065
PRO80870, 874	PRO80959, 1065
PRO80871, 876	PRO80960, 1069
PRO80873, 879	PRO80961, 1071
PRO80875, 884	PRO80962, 1073
PRO80876, 886	PRO80966, 1080
PRO80877, 888	PRO80967, 1084
PRO80878, 890	PRO80969, 1087
PRO80879, 892	PRO80970, 1092
PRO80881, 895	PRO80971, 1102
PRO80882, 897	PRO80972, 1104
PRO80883, 904	PRO80974, 1107
PRO80884, 908	PRO80975, 1111
PRO80888, 913	PRO80977, 1114
PRO80889, 915	PRO80978, 1116
PRO80890, 917	PRO80979, 1118
PRO80891, 919	PRO80983, 1124
PRO80900, 937	PRO80984, 1126
PRO80901, 939	PRO80988, 1135
PRO80903, 943	PRO80990, 1138
PRO80904, 945	PRO80993, 1142
PRO80905, 947	PRO80994, 1144
PRO80906, 953	PRO80995, 1152
PRO80908, 956	PRO80996, 1158
PRO80910, 961	PRO80997, 1160
	PRO80999, 1164
PRO80911, 963	PRO81000, 1168
PRO80915, 972	PRO81002, 1173
PRO80916, 974	PRO81003, 1175
PRO80917, 976	PRO81004, 1177
PRO80920, 987	PRO81005, 1179
PRO80921, 989	PRO81006, 1181
PRO80924, 997	PRO81007, 1185
PRO80925, 1001	PRO81010, 1191
PRO80926, 1003	PRO81012, 1194
PRO80927, 1005	PRO81015, 1200
PRO80929, 1008	PRO81022, 1210
PRO80930, 1010	PRO81022, 1210
PRO80932, 1013	PRO81025, 1212
PRO80933, 1015	PRO81025, 1215 PRO81026, 1219
PRO80934, 1017	PRO81026, 1219 PRO81028, 1222
PRO80935, 1019	·
PRO80936, 1021	PRO81029, 1226
PRO80937, 1023	PRO81030, 1228
PRO80938, 1027	PRO81031, 1230
PRO80941, 1031	PRO81033, 1233
PRO80942, 1033	PRO81034, 1236
PRO80943, 1035	PRO81036, 1241
PRO80945, 1038	PRO81040, 1247
PRO80949, 1044	PRO81041, 1249
PRO80950, 1046	PRO81042, 1251
PRO80951, 1048	PRO81043, 1253
PRO80952, 1050	PRO81046, 1259
PRO80953, 1052	PRO81047, 1261
PRO80954, 1054	PRO81053, 1269
PRO80955, 1056	PRO81056, 1279
PRO80956, 1058	PRO81057, 1281
PRO80958, 1061	PRO81058, 1283

PRO81059, 1287	PRO81174, 1498
PRO81064, 1293	PRO81176, 1501
PRO81068, 1298	PRO81177, 1503
PRO81070, 1303	PRO81178, 1505
PRO81071, 1305	PRO81179, 1507
PRO81072, 1307	PRO81181, 1514
PRO81073, 1309	PRO81182, 1518
PRO81074, 1311	PRO81184, 1521
PRO81079, 1319	PRO81185, 1523
PRO81080, 1321	PRO81188, 1527
PRO81082, 1324	PRO81189, 1529
PRO81083, 1326	PRO81195, 1536
PRO81086, 1334	PRO81196, 1538
PRO81088, 1339	PRO81199, 1542
PRO81090, 1342	PRO81202, 1546
PRO81093, 1346	PRO81213, 1558
PRO81095, 1349	PRO81214, 1560
PRO81096, 1351	PRO81216, 1563
PRO81090, 1351	PRO81219, 1566
PRO81098, 1357	PRO81221, 1569
PRO81102, 1362	PRO81223, 1576
-	PRO81224, 1578
PRO81106, 1367	PRO81225, 1580
PRO81107, 1373	PRO81227, 1585
PRO81108, 1375	PRO81230, 1589
PRO81109, 1377	PRO81234, 1594
PRO81110, 1379	PRO81238, 1601
PRO81111, 1381	PRO81239, 1603
PRO81112, 1383	PRO81240, 1605
PRO81114, 1385	PRO81241, 1607
PRO81114, 1389	PRO81246, 1613
PRO81115, 1391	PRO81248, 1616
PRO81116, 1393	PRO81248, 1010 PRO81249, 1618
PRO81117, 1395	PRO81250, 1620
PRO81118, 1399	PRO81254, 1630
PRO81119, 1401	PRO81256, 1635
PRO81120, 1403	PRO81259, 1645
PRO81121, 1405	-
PRO81122, 1407	PRO81260, 1649
PRO81123, 1409	PRO81261, 1651
PRO81124, 1411	PRO81262, 1653
PRO81127, 1415	PRO81264, 1657
PRO81131, 1422	PRO81265, 1659
PRO81134, 1426	PRO81266, 1661
PRO81135, 1428	PRO81269, 1667
PRO81137, 1431	PRO81272, 1674
PRO81141, 1436	PRO81273, 1682
PRO81146, 1444	PRO81274, 1684
PRO81148, 1454	PRO81275, 1686
PRO81150, 1458	PRO81276, 1692
PRO81151, 1462	PRO81277, 1694
PRO81156, 1467	PRO81278, 1696
PRO81163, 1475	PRO81280, 1703
PRO81166, 1481	PRO81281, 1705
PRO81169, 1486	PRO81282, 1707
PRO81170, 1488	PRO81286, 1715
PRO81171, 1492	PRO81287, 1717

PRO81289, 1725	PRO81372, 1917
PRO81290, 1727	PRO81375, 1925
PRO81291, 1729	PRO81377, 1930
PRO81292, 1731	PRO81379, 1933
PRO81293, 1737	PRO81380, 1935
PRO81294, 1739	PRO81387, 1945
PRO81295, 1743	PRO81394, 1966
PRO81296, 1745	PRO81395, 1974
PRO81297, 1747	PRO81396, 1976
PRO81298, 1749	PRO81397, 1978
PRO81299, 1751	PRO81398, 1980
PRO81300, 1753	PRO81399, 1982
	PRO81400, 1989
PRO81301, 1755	PRO81401, 1991
PRO81302, 1757	PRO81402, 1993
PRO81303, 1759	PRO81404, 1996
PRO81304, 1761	PRO81406, 2001
PRO81305, 1763	PRO81407, 2005
PRO81306, 1767	PRO81409, 2010
PRO81307, 1769	PRO81410, 2012
PRO81308, 1771	PRO81411, 2014
PRO81309, 1773	PRO81414, 2018
PRO81310, 1775	PRO81415, 2020
PRO81311, 1777	PRO81416, 2022
PRO81313, 1782	PRO81417, 2026
PRO81314, 1784	PRO81418, 2028
PRO81315, 1786	PRO81419, 2030
PRO81316, 1788	PRO81421, 2038
PRO81317, 1790	PRO81421, 2036
PRO81318, 1794	PRO81422, 2040 PRO81424, 2043
PRO81319, 1796	PRO81424, 2045
PRO81323, 1801	PRO81420, 2040 PRO81427, 2048
PRO81325, 1806	
PRO81327, 1809	PRO81429, 2051
PRO81330, 1815	PRO81430, 2053
PRO81336, 1825	PRO81435, 2061
PRO81337, 1827	PRO81436, 2063
PRO81338, 1833	PRO81441, 2073
PRO81339, 1835	PRO81441, 2073
PRO81340, 1837	PRO81443, 2076
PRO81341, 1839	PRO81444, 2078
PRO81345, 1844	PRO81446, 2082
PRO81347, 1849	PRO81447, 2084
PRO81354, 1864	PRO81448, 2086
PRO81355, 1869	PRO81449, 2088
PRO81356, 1873	PRO81453, 2093
PRO81359, 1881	PRO81454, 2095
PRO81362, 1885	PRO81455, 2097
PRO81363, 1889	PRO81457, 2102
PRO81364, 1891	PRO81462, 2112
PRO81365, 1895	PRO81464, 2115
PRO81366, 1897	PRO81465, 2117
PRO81367, 1899	PRO81467, 2120
PRO81368, 1903	PRO81471, 2125
PRO81369, 1907	PRO81474, 2133
PRO81370, 1911	PRO81476, 2136
PRO81371, 1915	PRO81477, 2138

PRO81481, 2143	PRO81579, 2345
	PRO81580, 2347
PRO81486, 2149	PRO81584, 2354
PRO81487, 2153	PRO81585, 2356
PRO81490, 2156	PRO81586, 2358
PRO81491, 2158	PRO81587, 2360
PRO81494, 2162	PRO81588, 2364
PRO81495, 2164	PRO81589, 2368
PRO81496, 2166	PRO81590, 2374
PRO81498, 2169	PRO81591, 2377
PRO81499, 2171	PRO81592, 2379
PRO81500, 2173	PRO81594, 2382
PRO81501, 2179	PRO81595, 2384
PRO81502, 2187	PRO81598, 2388
PRO81503, 2189	PRO81599, 2390
PRO81505, 2192	-
PRO81506, 2196	PRO81600, 2392
PRO81508, 2199	PRO81602, 2401
PRO81509, 2201	PRO81605, 2405
PRO81514, 2209	PRO81607, 2408
PRO81515, 2211	PRO81608, 2410
PRO81516, 2215	PRO81609, 2412
PRO81517, 2217	PRO81611, 2415
PRO81520, 2221	PRO81614, 2419
PRO81521, 2223	PRO81615, 2421
PRO81523, 2227	PRO81617, 2424
PRO81524, 2231	PRO81618, 2426
PRO81525, 2235	PRO81619, 2428
PRO81526, 2241	PRO81621, 2431
PRO81529, 2252	PRO81625, 2438
PRO81531, 2257	PRO81627, 2445
PRO81534, 2261	PRO81629, 2448
PRO81536, 2268	PRO81630, 2450
PRO81537, 2270	PRO81631, 2452
PRO81538, 2272	PRO81634, 2463
PRO81540, 2277	PRO81635, 2465
PRO81541, 2279	PRO81637, 2468
PRO81544, 2283	PRO81641, 2474
PRO81545, 2285	PRO81643, 2481
PRO81546, 2287	PRO81645, 2486
PRO81547, 2289	PRO81647, 2489
PRO81548, 2291	PRO81649, 2494
PRO81550, 2294	PRO81650, 2498
PRO81551, 2296	PRO81651, 2500
PRO81552, 2298	PRO81652, 2502
PRO81556, 2303	PRO81653, 2504
PRO81557, 2305	PRO81654, 2509
PRO81558, 2307	PRO81655, 2511
PRO81561, 2314	PRO81657, 2516
PRO81566, 2320	PRO81658, 2518
PRO81569, 2324	PRO81659, 2520
PRO81571, 2327	PRO81660, 2522
PRO81572, 2330	PRO81661, 2524
PRO81573, 2332	PRO81664, 2528
PRO81574, 2334	PRO81668, 2537
PRO81575, 2336	PRO81669, 2539
PRO81578, 2341	PRO81671, 2542

PRO81673, 2545	PRO81792, 2805
PRO81674, 2549	PRO81794, 2810
PRO81675, 2555	PRO81795, 2812
PRO81685, 2570	PRO81796, 2814
PRO81687, 2573	PRO81797, 2816
PRO81689, 2576	PRO81800, 2821
PRO81690, 2578	PRO81801, 2823
PRO81691, 2580	PRO81804, 2827
PRO81695, 2585	PRO81805, 2829
PRO81696, 2587	PRO81806, 2831
PRO81699, 2597	PRO81809, 2837
PRO81700, 2599	PRO81811, 2840
PRO81701, 2603	PRO81812, 2842
PRO81704, 2607	PRO81813, 2844
PRO81705, 2610	PRO81815, 2848
PRO81703, 2010 PRO81708, 2617	PRO81816, 2850
PRO81711, 2621	PRO81817, 2853
	PRO81819, 2858
PRO81714, 2624	PRO81821, 2861
PRO81719, 2630	PRO81822, 2863
PRO81720, 2632	PRO81823, 2867
PRO81722, 2639	PRO81824, 2869
PRO81725, 2643	PRO81826, 2872
PRO81729, 2648	PRO81820, 2872 PRO81831, 2880
PRO81730, 2650	
PRO81731, 2654	PRO81832, 2884
PRO81732, 2658	PRO81833, 2886
PRO81734, 2665	PRO81834, 2888
PRO81736, 2678	PRO81835, 2890
PRO81738, 2683	PRO81836, 2892
PRO81739, 2685	PRO81837, 2894
PRO81740, 2687	PRO81838, 2896
PRO81742, 2690	PRO81841, 2903
PRO81743, 2698	PRO81842, 2907
PRO81746, 2706	PRO81846, 2912
PRO81748, 2709	PRO81848, 2915
PRO81751, 2713	PRO81849, 2917
PRO81752, 2717	PRO81851, 2920
PRO81753, 2719	PRO81855, 2928
PRO81754, 2721	PRO81858, 2932
PRO81759, 2729	PRO81861, 2936
PRO81760, 2731	PRO81862, 2938
PRO81761, 2733	PRO81863, 2940
PRO81762, 2737	PRO81865, 2943
PRO81763, 2739	PRO81867, 2946
PRO81764, 2743	PRO81868, 2950
PRO81765, 2745	PRO81869, 2954
PRO81766, 2749	PRO81870, 2956
PRO81768, 2754	PRO81871, 2958
PRO81771, 2758	PRO81872, 2960
PRO81775, 2770	PRO81874, 2967
PRO81778, 2776	PRO81875, 2969
PRO81780, 2779	PRO81877, 2972
PRO81781, 2785	PRO81881, 2979
PRO81783, 2788	PRO81882, 2985
PRO81785, 2791	PRO81883, 2989
PRO81786, 2793	PRO81884, 2993
11001100,0170	

PRO81885, 2995	PRO81965, 3181
PRO81887, 3001	PRO81970, 3189
PRO81888, 3003	PRO81971, 3191
PRO81889, 3007	PRO81977, 3198
PRO81893, 3018	PRO81978, 3200
PRO81895, 3021	PRO81980, 3203
PRO81896, 3023	PRO81981, 3211
PRO81897, 3025	PRO81982, 3213
PRO81899, 3030	PRO81988, 3226
	PRO81990, 3229
PRO81900, 3032	PRO81991, 3231
PRO81901, 3034	PRO81992, 3233
PRO81902, 3036	PRO81993, 3235
PRO81903, 3038	PRO81994, 3239
PRO81904, 3040	PRO81995, 3241
PRO81905, 3043	PRO81996, 3243
PRO81907, 3046	PRO81999, 3252
PRO81908, 3048	
PRO81909, 3054	
PRO81912, 3060	PRO82004, 3265
PRO81913, 3062	PRO82005, 3267
PRO81914, 3064	PRO82009, 3274
PRO81916, 3069	PRO82011, 3277
PRO81917, 3071	PRO82013, 3280
PRO81922, 3079	PRO82018, 3290
PRO81923, 3081	PRO82019, 3292
PRO81924, 3083	PRO82023, 3305
PRO81925, 3085	PRO82024, 3309
PRO81926, 3090	PRO82027, 3317
PRO81927, 3092	PRO82028, 3319
PRO81928, 3096	PRO82029, 3321
PRO81929, 3098	PRO82032, 3332
PRO81930, 3100	PRO82034, 3338
PRO81932, 3105	PRO82035, 3340
PRO81934, 3108	PRO82037, 3343
PRO81935, 3112	PRO82038, 3347
PRO81936, 3116	PRO82040, 3351
PRO81937, 3118	PRO82042, 3354
PRO81939, 3123	PRO82043, 3356
PRO81941, 3126	PRO82045, 3360
PRO81942, 3128	PRO82046, 3362
PRO81943, 3130	PRO82050, 3368
PRO81944, 3132	PRO82051, 3370
PRO81945, 3140	PRO82052, 3372
PRO81946, 3143	PRO82054, 3375
PRO81947, 3145	PRO82055, 3379
PRO81947, 3147	PRO82056, 3383
PRO81950, 3150	PRO82057, 3387
	PRO82058, 3389
PRO81953, 3154	PRO82060, 3396
PRO81954, 3158	PRO82064, 3402
PRO81955, 3160	PRO82066, 3405
PRO81956, 3162	PRO82068, 3408
PRO81957, 3164	PRO82006, 3406 PRO82069, 3410
PRO81958, 3166	PRO82009, 3410 PRO82072, 3419
PRO81959, 3168	
PRO81962, 3174	PRO82073, 3421
PRO81964, 3179	PRO82074, 3423

PRO82075, 3425	PRO82188, 3670
PRO82078, 3431	PRO82190, 3673
PRO82080, 3438	PRO82191, 3675
PRO82082, 3443	PRO82192, 3677
PRO82083, 3445	PRO82194, 3686
PRO82084, 3447	PRO82195, 3690
PRO82085, 3449	PRO82196, 3692
PRO82091, 3464	PRO82197, 3694
PRO82093, 3471	PRO82198, 3696
·	PRO82199, 3698
PRO82097, 3484	PRO82201, 3701
PRO82099, 3487	PRO82202, 3703
PRO82101, 3492	PRO82204, 3706
PRO82104, 3497	PRO82206, 3709
PRO82106, 3502	
PRO82107, 3505	PRO82207, 3711
PRO82109, 3508	PRO82208, 3713
PRO82110, 3510	PRO82210, 3716
PRO82111, 3514	PRO82212, 3723
PRO82112, 3516	PRO82213, 3733
PRO82113, 3518	PRO82214, 3735
PRO82115, 3523	PRO82215, 3738
PRO82117, 3530	PRO82218, 3745
PRO82120, 3534	PRO82219, 3747
PRO82122, 3537	PRO82220, 3749
PRO82125, 3541	PRO82221, 3751
PRO82127, 3544	PRO82223, 3756
PRO82129, 3547	PRO82224, 3762
PRO82130, 3549	PRO82227, 3768
PRO82131, 3553	PRO82228, 3770
PRO82133, 3558	PRO82232, 3776
PRO82137, 3563	PRO82233, 3780
PRO82138, 3565	PRO82234, 3782
PRO82139, 3567	PRO82235, 3784
PRO82140, 3569	PRO82237, 3789
PRO82143, 3573	PRO82238, 3791
PRO82152, 3587	PRO82239, 3793
PRO82155, 3597	PRO82240, 3795
PRO82158, 3603	PRO82243, 3799
PRO82159, 3605	PRO82244, 3801
PRO82160, 3607	PRO82245, 3803
PRO82161, 3609	PRO82247, 3806
PRO82162, 3611	PRO82248, 3808
PRO82163, 3613	PRO82250, 3811
PRO82164, 3615	PRO82252, 3813
PRO82165, 3617	PRO82253, 3815
PRO82166, 3619	PRO82255, 3820
PRO82167, 3623	PRO82256, 3822
PRO82168, 3625	PRO82259, 3832
	PRO82263, 3838
PRO82169, 3627	PRO82264, 3842
PRO82174, 3637	PRO82265, 3844
PRO82175, 3639	PRO82266, 3846
PRO82179, 3644	PRO82267, 3850
PRO82181, 3647	
PRO82182, 3649	PRO82268, 3852
PRO82183, 3651	PRO82269, 3854
PRO82184, 3653	PRO82272, 3858

PRO82273, 3860	PRO82373, 4056
PRO82275, 3863	PRO82374, 4058
PRO82278, 3871	PRO82375, 4062
PRO82279, 3873	PRO82381, 4076
PRO82280, 3875	PRO82382, 4078
PRO82283, 3879	PRO82383, 4083
PRO82285, 3882	PRO82384, 4085
PRO82287, 3885	PRO82385, 4089
PRO82289, 3890	PRO82388, 4093
PRO82290, 3892	PRO82391, 4099
PRO82291, 3894	PRO82393, 4104
PRO82295, 3905	PRO82395, 4107
PRO82296, 3907	PRO82396, 4109
PRO82297, 3911	PRO82397, 4113
PRO82300, 3919	PRO82400, 4117
PRO82302, 3922	PRO82408, 4126
PRO82305, 3927	PRO82409, 4128
PRO82306, 3929	PRO82411, 4131
PRO82311, 3934	PRO82415, 4137
PRO82312, 3936	PRO82417, 4140
PRO82314, 3939	PRO82418, 4144
PRO82315, 3941	PRO82419, 4146
PRO82316, 3943	PRO82421, 4149
PRO82317, 3945	PRO82422, 4151
PRO82318, 3947	PRO82423, 4153
PRO82321, 3954	PRO82424, 4155 PRO82425, 4158
PRO82322, 3956	PRO82423, 4136 PRO82428, 4164
PRO82325, 3961	PRO82429, 4166
PRO82326, 3965	PRO82423, 4169
PRO82329, 3970	PRO82431, 4109
PRO82330, 3972	PRO82433, 4177
PRO82331, 3974	PRO82434, 4181
PRO82333, 3979	PRO82435, 4185
PRO82334, 3982	PRO82437, 4188
PRO82338, 3989	PRO82438, 4190
PRO82342, 3998	PRO82439, 4192
PRO82344, 4000	PRO82440, 4194
PRO82344, 4002	PRO82441, 4196
PRO82345, 4004 PRO82347, 4007	PRO82442, 4198
	PRO82444, 4201
PRO82348, 4009 PRO82349, 4011	PRO82446, 4206
PRO82350, 4011 PRO82350, 4013	PRO82448, 4212
PRO82351, 4015	PRO82450, 4217
PRO82352, 4017	PRO82453, 4223
PRO82355, 4017 PRO82355, 4021	PRO82454, 4227
PRO82356, 4023	PRO82455, 4229
PRO82357, 4026	PRO82456, 4231
PRO82358, 4028	PRO82457, 4233
PRO82359, 4026 PRO82359, 4030	PRO82458, 4235
PRO82364, 4036	PRO82460, 4238
PRO82365, 4038	PRO82461, 4240
PRO82367, 4041	PRO82465, 4247
PRO82369, 4047	PRO82466, 4249
PRO82309, 4047 PRO82370, 4051	PRO82469, 4253
PRO82371, 4053	PRO82470, 4255
1 10023/1, 1033	

	77.000560 4450
PRO82472, 4258	PRO82560, 4452
PRO82473, 4264	PRO82562, 4455
PRO82475, 4271	PRO82563, 4457
PRO82477, 4276	PRO82564, 4459
PRO82479, 4280	PRO82567, 4464
PRO82482, 4284	PRO82568, 4466
PRO82485, 4288	PRO82570, 4469
PRO82487, 4291	PRO82571, 4471
PRO82489, 4294	PRO82572, 4473
PRO82491, 4297	PRO82573, 4475
PRO82492, 4299	PRO82576, 4481
PRO82493, 4303	PRO82579, 4486
PRO82495, 4308	PRO82582, 4492
PRO82499, 4313	PRO82583, 4494
PRO82501, 4316	PRO82584, 4496
PRO82502, 4318	PRO82585, 4499
PRO82505, 4324	PRO82586, 4501
PRO82508, 4328	PRO82587, 4503
PRO82509, 4330	PRO82589, 4506
PRO82510, 4332	PRO82590, 4510
PRO82513, 4339	PRO82592, 4515
PRO82514, 4341	PRO82593, 4523
PRO82515, 4345	PRO82594, 4525
PRO82516, 4347	PRO82597, 4529
PRO82517, 4349	PRO82598, 4533
PRO82518, 4351	PRO82599, 4536
PRO82521, 4365	PRO82602, 4540
PRO82522, 4367	PRO82603, 4542
PRO82523, 4369	PRO82606, 4546
PRO82524, 4377	PRO82607, 4548
	PRO82608, 4552
PRO82525, 4379 PRO82526, 4381	PRO82609, 4554
	PRO82611, 4557
PRO82527, 4383	PRO82612, 4559
PRO82528, 4385	PRO82615, 4563
PRO82529, 4387	PRO82616, 4567
PRO82530, 4389	PRO82618, 4572
PRO82531, 4391	PRO82619, 4574
PRO82532, 4393	PRO82621, 4585
PRO82533, 4395	PRO82622, 4587
PRO82534, 4397	PRO82623, 4589
PRO82535, 4401	PRO82624, 4591
PRO82536, 4403	PRO82625, 4593
PRO82537, 4405	PRO82626, 4595
PRO82538, 4407	PRO82627, 4598
PRO82540, 4412	PRO82629, 4601
PRO82542, 4415	PRO82630, 4603
PRO82543, 4417	PRO82631, 4605
PRO82544, 4419	PRO82632, 4607
PRO82546, 4424	PRO82633, 4609
PRO82548, 4428	PRO82634, 4611
PRO82551, 4433	PRO82635, 4611 PRO82635, 4615
PRO82554, 4437	•
PRO82555, 4439	PRO82637, 4618
PRO82556, 4441	PRO82638, 4620
PRO82557, 4443	PRO82640, 4623
PRO82558, 4445	PRO82641, 4625

PRO82642, 4629	PRO82738, 4833
PRO82643, 4631	PRO82739, 4835
PRO82645, 4634	PRO82740, 4837
PRO82646, 4636	PRO82741, 4839
PRO82654, 4649	PRO82743, 4848
PRO82656, 4652	PRO82745, 4851
PRO82658, 4655	PRO82746, 4853
PRO82659, 4657	PRO82748, 4858
PRO82661, 4660	PRO82749, 4860
	PRO82750, 4862
PRO82662, 4664	PRO82753, 4866
PRO82663, 4664	PRO82754, 4868
PRO82664, 4668	PRO82755, 4870
PRO82665, 4673	
PRO82667, 4676	PRO82756, 4872
PRO82669, 4679	PRO82757, 4874
PRO82670, 4681	PRO82758, 4876
PRO82671, 4683	PRO82760, 4882
PRO82672, 4685	PRO82761, 4884
PRO82674, 4690	PRO82762, 4886
PRO82675, 4692	PRO82763, 4894
PRO82678, 4698	PRO82764, 4896
PRO82679, 4702	PRO82768, 4907
PRO82683, 4711	PRO82769, 4909
PRO82687, 4722	PRO82771, 4914
PRO82689, 4726	PRO82774, 4922
PRO82691, 4731	PRO82776, 4925
PRO82692, 4733	PRO82778, 4930
PRO82694, 4736	PRO82779, 4932
PRO82695, 4738	PRO82787, 4947
PRO82696, 4740	PRO82788, 4949
PRO82699, 4746	PRO82790, 4952
PRO82702, 4753	PRO82791, 4956
PRO82704, 4756	PRO82792, 4959
PRO82706, 4759	PRO82793, 4961
PRO82707, 4762	PRO82794, 4966
PRO82708, 4764	PRO82795, 4968
PRO82709, 4766	PRO82796, 4972
PRO82712, 4770	PRO82797, 4974
PRO82713, 4772	PRO82799, 4979
PRO82714, 4774	PRO82800, 4981
PRO82715, 4776	PRO82805, 4993
PRO82717, 4781	PRO82807, 4997
PRO82718, 4785	PRO82812, 5005
PRO82719, 4787	PRO82813, 5007
PRO82720, 4789	PRO82814, 5009
PRO82721, 4791	PRO82816, 5012
PRO82722, 4795	PRO82818, 5017
PRO82724, 4802	PRO82825, 5029
PRO82725, 4804	PRO82828, 5033
PRO82725, 4808	PRO82829, 5035
•	PRO82831, 5038
PRO82728, 4811	PRO82833, 5044
PRO82729, 4815	PRO82835, 5047
PRO82730, 4817	PRO82840, 5059
PRO82732, 4823	PRO82841, 5061
PRO82736, 4828	PRO82842, 5063
PRO82737, 4831	TRU02042, JU03

PRO82846, 5068	PRO82952, 5296
PRO82850, 5077	PRO82954, 5301
PRO82851, 5079	PRO82956, 5304
PRO82852, 5081	PRO82957, 5306
PRO82855, 5085	PRO82958, 5309
PRO82856, 5087	PRO82962, 5318
PRO82859, 5091	PRO82963, 5320
PRO82861, 5099	PRO82964, 5322
PRO82862, 5101	PRO82965, 5324
PRO82863, 5105	PRO82967, 5327
-	PRO82970, 5333
PRO82864, 5107	
PRO82867, 5111	PRO82971, 5335 PRO82975, 5340
PRO82871, 5118	· · · · · · · · · · · · · · · · · · ·
PRO82872, 5121	PRO82976, 5342
PRO82873, 5125	PRO82977, 5344
PRO82874, 5129	PRO82978, 5346
PRO82877, 5136	PRO82979, 5348
PRO82879, 5139	PRO82980, 5351
PRO82881, 5142	PRO82982, 5356
PRO82882, 5144	PRO82983, 5359
PRO82884, 5149	PRO82984, 5363
PRO82885, 5151	PRO82985, 5365
PRO82886, 5153	PRO82987, 5368
PRO82887, 5156	PRO82991, 5373
PRO82888, 5158	PRO82992, 5375
PRO82892, 5167	PRO82995, 5381
PRO82893, 5170	PRO82998, 5386
PRO82894, 5172	PRO82999, 5390
PRO82895, 5174	PRO83000, 5392
PRO82897, 5177	PRO83002, 5397
PRO82899, 5182	PRO83004, 5400
PRO82901, 5185	PRO83005, 5402
PRO82902, 5187	PRO83007, 5405
PRO82903, 5189	PRO83008, 5410
PRO82904, 5191	PRO83009, 5412
PRO82905, 5193	PRO83010, 5414
PRO82909, 5198	PRO83011, 5416
PRO82910, 5204	PRO83012, 5418
PRO82912, 5211	PRO83013, 5420
	PRO83014, 5424
PRO82915, 5215	PRO83016, 5431
PRO82917, 5220	PRO83010, 5431
PRO82920, 5224	PRO83017, 5433 PRO83018, 5437
PRO82923, 5228	
PRO82925, 5231	PRO83027, 5452
PRO82930, 5245	PRO83029, 5455
PRO82930, 5245 PRO82933, 5249	PRO83029, 5455 PRO83030, 5457
PRO82930, 5245 PRO82933, 5249 PRO82934, 5253	PRO83029, 5455 PRO83030, 5457 PRO83031, 5459
PRO82930, 5245 PRO82933, 5249 PRO82934, 5253 PRO82935, 5255	PRO83029, 5455 PRO83030, 5457 PRO83031, 5459 PRO83035, 5464
PRO82930, 5245 PRO82933, 5249 PRO82934, 5253 PRO82935, 5255 PRO82939, 5263	PRO83029, 5455 PRO83030, 5457 PRO83031, 5459 PRO83035, 5464 PRO83037, 5467
PRO82930, 5245 PRO82933, 5249 PRO82934, 5253 PRO82935, 5255	PRO83029, 5455 PRO83030, 5457 PRO83031, 5459 PRO83035, 5464 PRO83037, 5467 PRO83038, 5469
PRO82930, 5245 PRO82933, 5249 PRO82934, 5253 PRO82935, 5255 PRO82939, 5263	PRO83029, 5455 PRO83030, 5457 PRO83031, 5459 PRO83035, 5464 PRO83037, 5467 PRO83038, 5469 PRO83039, 5471
PRO82930, 5245 PRO82933, 5249 PRO82934, 5253 PRO82935, 5255 PRO82939, 5263 PRO82940, 5265	PRO83029, 5455 PRO83030, 5457 PRO83031, 5459 PRO83035, 5464 PRO83037, 5467 PRO83038, 5469
PRO82930, 5245 PRO82933, 5249 PRO82934, 5253 PRO82935, 5255 PRO82939, 5263 PRO82940, 5265 PRO82943, 5271	PRO83029, 5455 PRO83030, 5457 PRO83031, 5459 PRO83035, 5464 PRO83037, 5467 PRO83038, 5469 PRO83039, 5471 PRO83040, 5473 PRO83041, 5475
PRO82930, 5245 PRO82933, 5249 PRO82934, 5253 PRO82935, 5255 PRO82939, 5263 PRO82940, 5265 PRO82943, 5271 PRO82944, 5275	PRO83029, 5455 PRO83030, 5457 PRO83031, 5459 PRO83035, 5464 PRO83037, 5467 PRO83038, 5469 PRO83039, 5471 PRO83040, 5473
PRO82930, 5245 PRO82933, 5249 PRO82934, 5253 PRO82935, 5255 PRO82939, 5263 PRO82940, 5265 PRO82943, 5271 PRO82944, 5275 PRO82947, 5287 PRO82948, 5289	PRO83029, 5455 PRO83030, 5457 PRO83031, 5459 PRO83035, 5464 PRO83037, 5467 PRO83038, 5469 PRO83039, 5471 PRO83040, 5473 PRO83041, 5475
PRO82930, 5245 PRO82933, 5249 PRO82934, 5253 PRO82935, 5255 PRO82939, 5263 PRO82940, 5265 PRO82943, 5271 PRO82944, 5275 PRO82947, 5287	PRO83029, 5455 PRO83030, 5457 PRO83031, 5459 PRO83035, 5464 PRO83037, 5467 PRO83038, 5469 PRO83039, 5471 PRO83040, 5473 PRO83041, 5475 PRO83042, 5481

PRO83054, 5509	PRO83141, 5714
PRO83056, 5520	PRO83142, 5716
PRO83059, 5526	PRO83143, 5718
PRO83065, 5533	PRO83144, 5720
PRO83066, 5535	PRO83145, 5724
PRO83068, 5538	PRO83146, 5726
PRO83069, 5540	PRO83149, 5730
PRO83071, 5545	PRO83150, 5732
PRO83072, 5547	PRO83152, 5737
	PRO83153, 5741
PRO83073, 5553	PRO83155, 5751
PRO83074, 5555	PRO83156, 5753
PRO83075, 5557	PRO83157, 5755
PRO83076, 5559	PRO83159, 5758
PRO83077, 5561	PRO83161, 5764
PRO83078, 5567	PRO83163, 5767
PRO83080, 5572	PRO83165, 5770
PRO83082, 5579	PRO83167, 5777
PRO83083, 5581	PRO83169, 5784
PRO83084, 5583	PRO83170, 5788
PRO83085, 5585	PRO83174, 5797
PRO83086, 5587	PRO83175, 5799
PRO83087, 5596	PRO83176, 5801
PRO83089, 5599	PRO83177, 5803
PRO83090, 5601	PRO83177, 5805
PRO83092, 5604	PRO83178, 5805
PRO83093, 5606	PRO83179, 3807 PRO83180, 5812
PRO83095, 5609	PRO83180, 5812 PRO83182, 5817
PRO83096, 5611	
PRO83098, 5614	PRO83183, 5820
PRO83099, 5618	PRO83184, 5822
PRO83100, 5620	PRO83185, 5827
PRO83101, 5622	PRO83186, 5829
PRO83102, 5624	PRO83187, 5833
PRO83103, 5630	PRO83188, 5835
PRO83104, 5632	PRO83189, 5839
PRO83105, 5634	PRO83190, 5841
PRO83107, 5637	PRO83191, 5843
PRO83108, 5643	PRO83193, 5848
PRO83109, 5645	PRO83194, 5850
PRO83112, 5653	PRO83195, 5852
PRO83113, 5657	PRO83196, 5854
PRO83114, 5659	PRO83197, 5856
PRO83116, 5662	PRO83198, 5858
PRO83117, 5664	PRO83199, 5860
PRO83118, 5666	PRO83200, 5862
PRO83121, 5672	PRO83201, 5864
PRO83125, 5684	PRO83202, 5866
PRO83128, 5690	PRO83203, 5868
PRO83129, 5692	PRO83204, 5870
PRO83130, 5694	PRO83205, 5872
PRO83132, 5697	PRO83210, 5884
PRO83133, 5699	PRO83211, 5888
PRO83135, 5702	PRO83212, 5895
PRO83137, 5707	PRO83213, 5899
PRO83138, 5709	PRO83214, 5901
PRO83139, 5711	PRO83217, 5909

PRO83219, 5912	PRO83323, 6144
PRO83222, 5916	PRO83328, 6156
PRO83223, 5918	PRO83331, 6162
PRO83224, 5920	PRO83332, 6164
PRO83233, 5932	PRO83333, 6166
PRO83234, 5934	PRO83334, 6168
PRO83235, 5938	PRO83335, 6171
	PRO83337, 6175
PRO83236, 5942	PRO83339, 6178
PRO83237, 5944	
PRO83242, 5952	PRO83340, 6180
PRO83244, 5955	PRO83341, 6184
PRO83245, 5959	PRO83343, 6193
PRO83247, 5962	PRO83344, 6195
PRO83252, 5970	PRO83345, 6200
PRO83253, 5972	PRO83346, 6202
PRO83254, 5978	PRO83349, 6208
PRO83255, 5980	PRO83351, 6211
PRO83256, 5982	PRO83352, 6213
PRO83257, 5984	PRO83353, 6219
PRO83260, 5988	PRO83354, 6221
PRO83261, 5992	PRO83355, 6223
PRO83263, 5997	PRO83360, 6234
PRO83265, 6002	PRO83361, 6236
PRO83266, 6008	PRO83365, 6247
PRO83267, 6010	PRO83366, 6249
PRO83270, 6016	PRO83368, 6252
PRO83271, 6018	PRO83369, 6254
PRO83273, 6026	PRO83372, 6260
PRO83274, 6033	PRO83373, 6262
PRO83275, 6037	PRO83374, 6264
·	PRO83375, 6266
PRO83276, 6041	PRO83381, 6277
PRO83278, 6044	PRO83383, 6283
PRO83279, 6048	PRO83385, 6290
PRO83280, 6050	PRO83386, 6292
PRO83282, 6053	
PRO83283, 6057	PRO83387, 6294
PRO83285, 6062	PRO83388, 6296
PRO83288, 6067	PRO83389, 6298
PRO83289, 6073	PRO83391, 6301
PRO83291, 6078	PRO83392, 6303
PRO83292, 6084	PRO83393, 6305
PRO83293, 6086	PRO83394, 6307
PRO83297, 6092	PRO83395, 6309
PRO83300, 6096	PRO83397, 6314
PRO83301, 6098	PRO83400, 6324
PRO83302, 6100	PRO83403, 6331
PRO83304, 6107	PRO83404, 6337
PRO83306, 6110	PRO83405, 6347
PRO83307, 6112	PRO868, 1871
PRO83309, 6115	PRO9112, 3668
PRO83310, 6117	PRO9785, 1369
PRO83312, 6120	PRO9819, 2676
PRO83316, 6129	PRO983, 5825
	PRO9886, 706
PRO83319, 6133	PRO9902, 2952
PRO83320, 6135	PRO9902, 2932 PRO9980, 2479
PRO83321, 6137	FRU9900, 2479

PRO9984, 969 PRO9987, 3753

Accession Index (to Figure number)

NM_000018, 4669		NM_000484, 5882
NM_000026, 6068		NM_000505, 1828
NM_000029, 624		NM_000508, 1511
NM_000033,6342		NM_000509, 1515
NM_000034, 4520		NM_000516, 5830
NM_000039, 3376		NM_000517, 4354
NM_000041,5511		NM_000521, 1627
NM_000070, 4161		NM_000526, 4816
NM_000075, 3683		NM_000532, 1260
NM_000077, 2655		NM 000554, 5480
NM_000079,898		NM .000558, 4356
NM_000090,921		NM 000559, 3142
NM_000107, 3208		NM 1000569, 505
NM_000114,5836		NM_000574, 558
NM_000121,5258		NM_000576, 847
NM_000126, 4267		NM_000582, 1459
NM_000137,4300	*	NM 000592, 1957
NM 000143, 636		NM_000598, 2228
NM 000146, 5562		NM .000602, 2361
NM_000154, 4967		NM_000612, 3120
NM 000156, 5122		NM_000638,4763
NM_000165, 2099		NM_000661, 1425
NM .000177, 2796		NM_000666, 1172
NM_000178, 5738		NM .000687, 5736
NM_000179,744	•	NM_000688, 1167
NM_000182,713		NM_000700, 2695
NM_000183,711		NM_000701,312
NM_000184,3144		NM_000743, 4259
NM_000196, 4547		NM_000754, 5956
NM .000213, 4963		NM 000760, 173
NM_000221,701		NM_000785, 3687
NM_000224, 3593		NM_000787, 2830
NM_000227,5040		NM 000795, 3384
NM_000228, 553		NM_000801,5648
NM .000239, 3729		NM_000852, 3297
NM .000250, 4903		NM_000858,612
NM_000251,741		NM_000893, 1327
NM_000268, 5994		NM_000895, 3763
NM_000269, 4889		NM .000930, 2534
NM .000274, 3076		NM_000931, 2536
NM_000284, 6138		NM_000942, 4218
NM .000291, 6230		NM_000954, 2868
NM_000358, 1671	•	NM_000964, 4820
NM .000365, 3460		NM_000967, 6061
NM_000368, 2806		NM_000969, 284
NM_000385, 2262		NM_000970, 3781
NM_000386, 4843		NM_000971, 2569
NM .000396, 356		NM 000972, 2826
NM .000404, 1089		NM_000973, 2633
NM .000407, 5947		NM_000975, 87
NM .000422, 4807		NM .000976, 2780
NM_000425, 6334		NM_000977, 4633
NM _000447, 594		NM 000978, 4801

•	
NM_000979, 5571	NM_001168, 4985
NM_000980, 5334	NM_001190, 5568
NM_000981,4798	NM_001199, 2495
NM .000982, 3091	NM_001207, 1624
NM .000983, 34	NM_001211,4139
NM 000985, 5067	NM_001218, 4203
NM .000986, 1206	NM 001235, 3333
NM .000987, 4714	NM .001238, 5374
NM .000989, 2588	NM_001247, 5703
NM .000990, 3155	NM_001255, 194
NM_000991,5613	NM_001262, 229
NM .000992, 1170	NM_001273, 3468
NM .000993, 832	NM_001274, 3411
NM .000994, 1064	NM_001275, 4065
NM .000997, 1570	NM_001283, 2365
NM .000998, 966	NM_001287, 4372
NM 001000, 6278	NM_001288, 1969
NM_001002, 3827	NM_001293, 3337
NM_001003, 4228	NM_001294, 5508
NM_001005, 3331	NM_001313, 1396
NM_001006, 1506	NM_001319, 5141
NM _001007, 6224	NM_001320, 1971
NM_001009, 5633	NM_001324, 5814
NM_001010, 2651	NM_001325, 6239
NM_001011, 643	NM_001333, 2736
NM_001012,210	NM 001344, 3984 NM 001350, 1942
NM .001016, 2111	
NM_001017, 3171	NM_001363, 6318 NM_001407, 1132
NM_001018,5126	NM 001407, 1132 NM 001415, 6143
NM 001020, 5426	NM 201415, 0145 NM 201416, 4687
NM .001021, 4283	NM 201416, 4087
NM 001022, 5468	NM .001428, 31
NM_001023, 2552 NM_001024, 5847	NM_001436, 5436
NM_001024, 3847 NM_001025, 1632	NM 001444, 2575
NM .001026, 2980	NM_001450, 836
NM .001028, 3361	NM_001463, 916
NM £01029, 3656	NM_001465, 1573
NM 001030, 440	NM_001467, 3359
NM_001034, 651	NM 001469, 6081
NM_001038, 3478	NM_001494, 2891
NM_001043, 4487	NM_001500, 2052
NM .001050, 4841	NM_001517, 1997
NM 001064, 1159	NM_001521, 689
NM .001065, 3480	NM_001530, 4016
NM_001068, 1079	NM_001536, 5539
NM_001069, 2050	NM_001539, 2660
NM .001084, 2369	NM_001540, 2308
NM_001087,994	NM_001553, 1435
NM 001098, 6079	NM_001554, 269
NM_001101,2174	NM_001560, 6270
NM_001102, 4040	NM_001567, 3322
NM_001122, 2649	NM_001568, 2596
NM .001134, 1446	NM_001569, 6332
NM .001154, 1489	NM_001571, 5542
NM 001157, 2990	NM_001605, 4564

NM_001607, 1097	NM_002015, 3896
NM_001610, 3206	NM 002018, 4719
NM.001613, 3008	NM_002028, 4010
NM .001622, 1330	NM_002046, 3473
NM 001628, 2423	NM_002047, 2265
NM_001641, 3997	NM_002075, 3463
NM_001644, 3511	NM_002079, 3066
NM_001647, 1352	NM_002083, 4012
NM_001648, 5590	NM_002084, 1704
NM_001659, 3550	NM_002085, 5112
NM .001662, 2398	NM_002086, 4953
NM_001667, 3284	NM_002087, 4845
NM .001673, 2355	NM .002106, 1478
•	•
NM_001687, 5115	NM_002109, 1779
NM_001688, 308	NM_002128, 3887
NM 001696, 5941	NM .002129, 1522
NM_001697, 5892	NM 002130, 1582
NM_001710, 1959	NM .002133, 6020
NM_001734, 3452	NM.002137, 2210
NM_001743, 5494	NM_002157, 930
NM .001747, 806	NM .002161, 2716
NM .001751, 3137	NM_002168, 4293
NM .001753, 2391	NM_002178, 3600
NM .001757, 5894	NM_002211, 2919
NM_001760, 1898	NM_002212, 5742
NM.001762, 2274	NM_002229, 5272
NM .001780, 3663	NM_002265, 4834
NM .001791, 81	NM_002273, 3591
NM .001816, 5478	NM .002274, 4814
NM .001819, 5679	NM_002275, 4812
NM .001827, 2714	NM_002276, 4810
NM_001831, 2506	NM_002295, 1108
NM_001833, 2689	NM_002305, 6038
NM .001842, 2668	NM_002306, 4022
NM .001853, 5853	NM_002339, 3115
NM .001861, 4614	NM_002340, 5931
NM .001862, 827	NM_002342, 3476
NM_001878, 392	NM_002345, 3752
NM_001907, 4579	NM_002355, 3489
NM .001909, 3133	NM_002358, 1485
NM_001920, 3740	NM_002364, 6147
NM_001930, 5267	NM_002385, 5086
NM 001935, 894	NM_002386, 4626
NM .001944, 5050	NM_002388, 1866
NM_001959,950	NM_002396, 5069
NM_001961, 5178	NM_002397, 1646
NM .001964, 1689	NM_002401,4933
NM .001969, 4098	NM_002411, 3245
NM_001970,4697	NM_002413, 1494
NM .001975, 3458	NM_002414, 6124
NM .001983, 5502	NM_002415, 5979
NM .001985, 5593	NM_002453,751
NM_002003, 2834	NM_002466, 5774
NM .002004, 422	NM_002468, 1095
NM .002011, 1836	NM_002473, 6025
NM_002014, 3439	NM .002473, 3023 NM .002477, 1368
11212 DODO 179 DTJ7	14141302477, 1308

NM .002484, 4416	NM _002923, 540
NM_002486, 2734	NM_002934, 3992
NM .002489, 2193	NM_002938, 1386
NM_002492, 1297	NM_002946, 127
NM_002512, 4887	NM_002947, 2188
NM_002520, 1803	NM_002948, 1076
NM_002537, 4210	NM_002952, 4382
NM 002539, 659	NM_002954, 749
NM 002567, 3816	NM_002961, 369
NM_002568, 2593	NM_002965, 364
NM_002574, 220	NM_002979, 235
NM_002588, 1728	NM_003002, 3390
NM_002606, 5900	NM_003021, 5161
NM_002615, 4647	NM .003025, 5188
NM_002617, 12	NM_003055, 2947
NM_002632, 4052	NM_003064, 5781
NM_002634, 4939	NM_003072, 5254
NM_002638, 5779	NM £03076, 3568
NM 002654, 4242	NM_003088, 2176
NM 002660, 5771	NM .003090, 4320
NM 002668, 6185	NM .003091, 5654
NM 002689, 3289	NM .003092, 5683
NM_002691,5580	NM .003104, 4187
NM_002707,681	NM .003107, 2032
NM_002712, 1030	NM .003123, 4511
NM .002720, 4518	NM_003124, 789
NM_002727, 2961	NM .003128, 746
NM_002730, 5298	NM.003132, 50
NM .002733, 3555	NM.003137, 1916
NM .002766, 4975	NM 003143, 2435
NM .002787, 2254	NM .003145, 409
NM 002789, 4261	NM .003146, 3215
NM .002792, 5838	NM .003149, 1099
NM .002793, 2137	NM_003169, 5428
NM.002796, 346	NM_003181, 2135
NM_002802, 4059	NM .003216, 6077
NM_002803, 2378	NM .003283, 5608
NM_002809, 4805	NM_003287, 2104
NM 002810, 348	NM_003289, 2680
NM_002812, 5401	NM_003290, 5312
NM .002813, 3837	NM 003295, 3900
NM_002815, 4778	NM .003310, 649
NM_002819, 5102	NM.003316, 5896
NM .002827, 5809	NM_003334, 6167
NM . 002846, 980	NM 003349, 5804
NM_002854, 1188	NM .003350, 2546
NM.002856, 5515	NM_003365, 1134
NM_002857, 481	NM .003366, 4421
NM_002863, 4029	NM .003370, 5499
NM_002870, 438	NM £003374, 1677
NM .002878, 4784	NM 003375, 2982
NM_002883,6075	NM_003378, 2367
NM_002887, 1800	NM .003389, 2728
NM_002913, 1427	NM_003400, 761
NM_002915,3891	NM_003401, 1636
NM_002921,3002	NM_003406, 2590

NM_003418, 1250	NM_004053, 1900
NM_003453, 3864	NM_004060, 1791
NM_003461, 2440	NM_004074, 3264
NM_003472, 2034	NM_004084, 2476
NM_003516, 459	NM_004085, 6242
NM_003564, 474	NM .004092, 3099
NM_003598, 5556	NM_004111,3253
NM .003617, 497	NM .004117, 1918
NM_003624, 5214	NM.004127, 5008
NM_003626, 3316	NM .004134, 1693
NM_003646, 3197	NM_004135, 6340
NM_003662, 6149	NM.004147, 6011
NM_003680, 157	NM_004152, 5154
NM_003681,5905	NM_004159, 1952
NM _003685, 5203	NM_004175, 5983
NM_003687, 1673	NM .004176, 4742
NM_003689,71	NM_004178, 3614
NM_003712, 5093	NM_004181, 1430
NM_003714, 1812	NM .004182, 6174
NM_003720, 5898	NM_004193, 3045
NM_003721,5360	NM_004203, 4402
NM_003722, 1335	NM_004208, 6285
NM_003729, 288	NM_004217, 4699
NM_003735, 1730	NM_004219, 1795
NM_003736, 1732	NM_004240, 5206
NM_003739, 2883	NM_004247, 4879
NM_003752, 4449	NM_004261, 273
NM_003753, 6027	NM_004265, 3249
NM_003755, 5234	NM .004309, 5002
NM_003756, 2598	NM_004322, 3256
NM_003757, 148	NM_004323, 2662
NM .003765, 5288	NM .004324, 5564
NM_003766, 4865	NM_004335, 5328 NM_004339, 5921
NM .003779, 468	NM .004339, 5921 NM .004341, 692
NM_003780, 199 NM_003787, 5052	NM 004345, 1128
NM_003815, 457	NM_004343, 1128
NM_003824, 3313	NM 004398, 3392
NM_003836, 4088	NM_004401, 48
NM_003837, 2723	NM_004404, 1034
NM_003859, 5811	NM_004435, 2761
NM_003876, 4708	NM_004448, 4796
NM_003877, 3757	NM_004461, 5279
NM.003906, 5933	NM_004483, 4602
NM .003908, 5734	NM_004493, 6190
NM_003915, 5747	NM_004509, 1012
NM_003932, 6070	NM_004510, 1014
NM_003937, 881	NM_004524, 4960
NM_003938, 5148	NM_004539, 5072
NM_003971, 4891	NM_004547, 1218
NM .003973, 1110	NM_004550, 470
NM .003979, 3498	NM_004551, 3199
NM .004000, 306	NM_004555, 4586
NM_004004, 3866	NM_004573, 4141
NM_004044, 955	NM 004595, 6140
NM_004048,4178	NM_004596, 5448

NM_004599, 6085	NM 005015, 3981
NM_004618, 4716	NM_005016, 3620
NM_004632, 414	NM_005022, 4665
NM_004635, 1155	NM_005030, 4442
NM_004636, 1149	NM .005036, 6104
NM_004637, 1246	NM_005042, 3524
NM_004638, 1979	NM_005053, 5283
NM_004639, 1973	NM .005072, 4581
NM_004640, 1986	NM_005080, 5987
NM .004673, 529	NM_005109, 1093
NM_004691, 4545	NM .005110, 1854
NM_004697, 2751	NM .005112, 1421
NM_004699, 6323	NM_005115,4500
NM_004701, 4197	NM_005132, 3962
NM_004704, 1182	NM_005141, 1508
NM_004706, 5470	NM_005163,4110
NM_004714, 5434	NM_005171,3574
NM_004725, 3093	NM_005174, 2895
NM_004728, 2959	NM_005194,5808
NM_004735, 1026	NM_005217, 2478
NM_004738, 5824	NM_005220, 4946
NM_004739, 3230	NM_005224, 5104
NM.004766, 1270	NM_005243, 5989
NM_004767,576	NM_005269, 3667
NM 004772, 1650	NM_005271,3004
NM.004781, 44	NM_005291, 854
NM_004794, 6287	NM_005300, 6159
NM_004813, 3190	NM_005313,4174
NM_004821, 1787	NM_005324, 4969
NM_004844, 1066	NM_005330, 3146
NM_004846, 998	NM_005333,6126
NM_004859, 4921	NM 005345, 1963
NM_004870, 4689	NM .005346, 1961
NM .004889, 2342 NM .004893, 1685	NM_005347, 2790 NM_005348, 4092
NM .004905, 511	NM .005362, 6316
NM_004911, 2442	NM_005364, 6308
NM_004928, 5915	NM_005370, 5314
NM_004930, 69	NM_005371, 3689
NM_004933, 4638	NM_005378, 657
NM .004939, 662	NM_005389, 2126
NM_004957, 2775	NM_005432,4101
NM_004960, 4465	NM_005439, 3466
NM_004964, 150	NM_005440, 4877
NM_004973, 2039	NM_005452, 1944
NM_004982, 3526	NM .005474, 4850
NM_004990, 3669	NM_005490, 5208
NM_004992, 6330	NM_005498, 5241
NM_004994, 5791	NM .005514, 2155
NM_004995, 3976	NM .005517, 110
NM_005000, 2396	NM_005520, 1850
NM_005002, 3448	NM .005548, 4568
NM_005003, 4446	NM 005563, 105
NM_005004, 3063	NM_005566, 3175
NM.005005, 2606	NM 005572, 404
NM_005008,6083	NM 005573, 1718

NM_005581,5517	NM_006019, 3304
NM_005594, 3628	NM_006023, 2899
NM_005614, 2460	NM_006039, 4936
NM_005617, 1708	NM .006053, 3306
NM_005620, 340	NM_006058, 1702
NM 005623, 4782	NM_006066, 218
NM_005632, 4362	NM_006067, 4612
NM .005657, 4170	NM_006098, 1852
NM_005663, 1382	NM .006101, 5023
NM .005676, 6165	NM_006109, 3973
NM_005686, 550	NM_006110, 4423
NM_005692, 2458	NM .006112, 159
NM 005693, 3204	NM_006114,5513
NM .005698, 424	NM 006115, 5975
NM .005710, 6181	NM .006128, 2497
NM_005713, 1602	NM_006131, 2499
NM .005717, 517	NM .006132, 2501
NM_005718, 1055	NM_006136, 2393
NM .005720, 2348	NM_006169, 3380
NM_005724, 4273	NM_006184, 5566
NM .005726, 3695	NM .006227, 5789
-	NM_006230, 2246
NM 005729, 2986	NM .006245, 1892
NM_005731,996	NM_006247, 5497
NM .005745, 6344	NM_006250, 3522
NM_005754, 1697	NM_006253, 3831
NM .005762, 5627	NM .006262, 3546
NM_005770, 4176	NM_006265, 2600
NM .005775, 2491	NM_006271, 374
NM_005783, 829	NM_006272, 5935
NM_005787, 1316	NM_006280, 6338
NM .005796, 4575	NM_006289, 2682
NM_005806, 5887	NM_006295, 1967
NM_005826, 83	NM .006303, 2178
NM .005830, 3898	NM_006330, 2550
NM_005831, 4911	NM_006335, 571
NM_005833, 2792	NM .006339, 5171
NM_005837, 2326	NM_006342, 1374
NM_005850, 461	NM_006349, 2371
NM_005851,3301	NM_006354, 1049
NM_005855, 1024	NM_006362, 3242
NM .005866, 2670	NM_006365, 396
NM_005877, 5999	NM_006373, 4875
NM_005884, 5421	
NM_005889, 3509	NM 006384, 4305
NM_005911, 808	NM_006387, 5319 NM_006395, 1062
NM_005915, 864	NM _006397, 5277
NM_005917,764	
NM 005918, 2306	NM .006401, 2732
NM_005973, 389	NM_006427, 4106
NM_005981,3681	NM_006428, 4360
NM_005983, 1579	NM_006429, 792
NM_005985, 5802	NM_006430, 759
NM_005997, 350	NM_006432, 4048
NM_006000, 982	NM_006435, 3113
NM_006012,5201	NM_006439, 1504
NM_006013, 6326	NM_006440, 5954

NM_006453,4384	NM .006842, 3295
NM_006455, 4822	NM_006844, 5308
NM_006470, 4725	NM .006854, 2184
NM_006478, 5991	NM_006862, 344
NM_006488, 703	NM_006888, 4063
NM 006494, 5476	NM_006899, 5661
NM .006503, 5441	NM_006908, 2182
NM_006513, 298	NM_006924, 4908
NM_006516, 188	NM_006928, 3660
NM_006523, 3055	NM_006932, 6007
NM .006530, 3727	NM .006938, 5039
NM .006556, 452	NM_006941, 6049
NM .006559, 146	NM 006942, 4691
NM_006576, 3697	NM_006990, 124
NM .006585, 5885	NM_007002, 5844
NM .006586, 1894	NM_007019, 5785
NM .006589, 428	NM .007032, 6040
NM_006600, 118	NM_007034, 267
NM_006601,3636	NM_007046, 705
NM.006621, 300	NM 007047, 2029
NM_006625,93	NM_007062, 3805
NM_006636, 794	NM 007065, 5237
NM .006646, 3881	NM_007074, 4516
NM_006659, 3101	NM 007085, 1216
NM.006666, 5558	NM_007096, 2691
NM_006667, 6272	NM.007100, 1366
NM_006670, 2070	NM_007103, 3299
NM_006693, 2344	NM .007104, 1922
NM_006694, 436	NM .007158, 302
NM 006698, 5760	NM_007165,5152
NM_006708, 1904	NM_007173, 3348
NM_006711, 4392	NM_007178, 3501
NM_006746, 6134	NM_007184, 1165
NM .006761, 4642	NM_007186, 5744
NM_006763, 548	NM_007190, 3089
NM_006764, 1151	NM_007209, 2794
NM_006769, 271	NM_007242, 4566
NM_006787, 6197 NM_006791, 4279	NM .007244, 3520
• • • •	NM.007260, 89
NM 006799, 4408 NM 006801, 5576	NM_007262, 42
NM_006801, 5576 NM_006805, 1687	NM_007263, 5352
NM_006808, 2740	NM_007268, 6204
NM .006810, 1223	NM_007273, 3455
NM_006810, 1223 NM_006812, 3678	NM_007275, 1153
NM .006815, 3847	NM_007276, 2214
NM 200815, 3847 NM 206816, 1830	NM_007279, 5619
NM_006817, 3785	NM_007310, 5958
NM_006821, 4046	NM_007311,6095
NM 006824, 192	NM_007317, 4507
NM_006825, 3807	NM_007355, 1874
NM_006826, 655	NM_007364, 4277
NM .006833, 2338	NM .007372, 4931
NM .006835, 1449	NM 012068, 5525
NM_006837, 2565	NM_012098, 2782
NM_006839, 814	NM 012099, 5504 NM 012100, 977
	111/12/12/100, 9//

NM_012101, 3420		NM_014173, 5326
NM_012111, 4055		NM_014176, 578
NM_012112,5715		NM 014184, 585
NM 012116, 5519		NM_014188, 17
NM 012138, 4838		NM_014189, 1390
NM_012170, 4265		NM_014190, 1388
NM_012179, 6017		NM_014203, 5536
NM_012181, 5350		NM_014214, 5032
NM.012203, 2693		NM_014226, 4095
NM .012207, 2955		NM_014236, 626
NM_012237, 5409		NM_014248, 6072
NM_012248, 4451		NM_014255, 3631
NM_012255, 5698		NM_014267, 3173
NM_012264, 6054		NM_014275, 1846
NM_012286, 6246		NM_014285, 2820
NM .012296, 3344		NM_014294, 2567
NM_012323, 6052		NM_014303, 6003
NM .012391, 1929		NM .014306, 6015
NM_012412, 2236		NM_014311, 3606
NM_012423, 5550		NM_014320, 2116
NM_012437, 381		NM 014321, 4476
NM_012458, 5155		NM_014325, 3777
NM_012469, 5873		NM_014335, 4182
NM .012486, 596		NM_014341, 1906
NM £013237, 1834		NM_014353, 4386
NM_013247, 801		NM_014408, 167
NM_013265, 3279		NM_014413, 2180
NM .013274, 3037		NM_014426, 5685
NM.013277, 3566	•	NM_014444, 4168
NM_013296, 292		NM_014445, 1284
NM_013333, 5617		NM_014452, 1870
NM £013336, 1238		NM_014453, 5625
NM .013341, 903		NM_014481, 6199
NM .013363, 1276		NM_014501, 5615
NM_013365, 6032	·.	NM_014502, 3220
NM_013369,5911		NM_014515, 3724
NM_013375, 2027		NM_014556, 1394
NM_013393, 2165	•	NM_014571, 142
NM_013402, 3251		NM_014585, 923
NM_013403, 5492		NM_014587, 4370
NM_013406, 5269	•	NM_014610, 3232
NM_013407, 5270		NM_014624, 367
NM 013417, 2718		NM_014649, 5199
NM .013442, 2675	1	NM_014663, 202
NM_013451, 3013		NM_014670, 934
NM_014003, 4592		NM_014685, 4530
NM_014008, 6187		NM_014713, 667
NM .014033, 3576	•	NM_014736, 4214
NM_014035, 1664		NM 014737, 5676
NM_014042,3320		NM_014742, 5721
NM 014062, 4556		NM_014747, 180
NM_014063, 2251		NM_014748, 684
NM_014107, 2077		NM 014752, 3329
NM_014138,6163		NM 014773, 1721
NM_014166, 3906		NM 014776, 3792
NM_014172, 2862		NM_014778, 3878

NM_014800, 2259	NM_016085, 694
NM_014814, 1195	NM_016091, 6045
NM_014829, 1681	NM_016095, 4610
NM 014837, 519	NM_016111, 4374
NM_014847, 446	NM_016119,3912
NM_014849, 463	NM_016143, 5652
NM_014851, 36	NM_016169, 3051
NM_014868, 3823	NM_016174,2767
NM_014887, 3889	NM 016176, 26
NM_014919, 1378	NM_016183,73
NM_014931, 5610	NM .016202, 5621
NM_014933, 1457	NM_016223, 3210
NM_014941, 6005	NM_016249, 6300
NM_014972, 4628	NM D16263, 5169
NM_015043, 1843	NM_016267, 6293
NM_015062, 3042	NM D16286, 5006
NM_015064, 3430	NM .016292, 4414
NM_015068, 2319	NM D16304, 4193
NM_015129, 6276	NM.016328, 2293
NM_015140, 6097	NM £16357, 3572
NM_015179, 3024	NM 016359, 4152
NM_015322, 4226	NM_016361, 328
NM 015324, 3149	NM_016410, 2664
NM_015373, 6056	NM_016440, 5523
NM_015388, 1886	NM_016445, 4035
NM_015438, 3470	NM_016456, 564
NM_015449, 444	NM 016498, 6001
NM_015453, 1043	NM_016526, 3107
NM_015472, 1282	NM_016539, 5181
NM £015484, 99	NM_016558, 5750
NM_015511, 5752	NM_016567, 3097
NM_015533, 3225	NM_016579, 5216
NM_015544, 4780	NM D16587, 2216
NM_015584, 4761	NM_016592, 5826
NM 015629, 5600	NM_016638, 3843
NM_015636, 686	NM_016639, 4398
NM_015640, 260	NM_016641, 4335
NM_015644, 1057	NM_016645, 4302
NM_015646, 3720	NM 016647, 2614
NM_015665, 3604	NM 016732, 5733
NM_015702, 885	NM D16838, 887 NM D16839, 889
NM_015714,555	
NM_015853, 3238	NM D16930, 1400 NM D16940, 5883
NM_015920, 4205	NM 016940, 3883 NM 016941, 5432
NM_015932, 3884	NM D17443, 2753
NM_015934, 941	
NM_015937, 5783	NM D17458, 4498 NM D17491, 1419
NM_015953, 5546	NM D17441, 1419 NM D17546, 834
NM_015965, 5362	NM 017566, 4617
NM_015966, 5745	NM 1017500, 4017 NM 1017572, 5146
NM_016003, 2172	
NM_016016, 4847	NM 017595, 4871 NM 017601 1902
NM_016022, 334	NM_017601, 1902 NM_017610_4195
NM_016026, 4037	NM_017610, 4195
NM_016030, 647	NM 017613, 5890 NM 017647, 4929
NM_016059, 1908	191911111111111111111111111111111111111

NM_017668, 4327	NM 018209, 5861
NM_017670, 3266	NM_018212, 587
NM 017684, 4208	NM 018217, 5740
NM 017722, 5286	NM_018238, 2437
NM 017751, 859	NM_018242, 4747
	NM_018250, 2510
NM_017760, 2467	NM_018253,418
NM_017761,91	NM_018255, 5056
NM_017768, 262	NM 018270, 5849
NM D17777, 4906	NM 018310, 2527
NM_D17789, 825	NM 018346, 4898
NM.017797,5143	NM D18357, 4232
NM_017801, 1081	NM 018410, 1018
NM 017803, 4584	NM 018454, 4154
NM_017807, 4003	NM 018457, 3610
NM_017815,3971	
NM_017822,3552	NM_018463,3442
NM_017825, 165	NM 018464, 2951
NM_017827, 5413	NM 018468, 5387
NM 017829, 5939	NM_018486, 6222
NM D17847, 513	NM_018509, 4900
NM_017853, 4594	NM_018607,721
NM 017868, 3386	NM_018660, 2512
NM_017874, 5668	NM_018668, 4312
NM_017876, 5098	NM_018674, 973
NM 017882, 4224	NM_018686, 3513
NM 017883, 6179	NM_018912, 1734
NM_D17891,8	NM_018913, 1736
NM_017895, 5798	NM_018914, 1738
NM_017900, 22	NM_018915, 1740
NM_017901, 3810	NM_018916, 1742
NM 017910, 674	NM_018917, 1744
NM_017916, 5554	NM_018918, 1746
NM.017952, 812	NM 018919, 1748
NM_017955,4112	NM_018920, 1750
NM_017974, 1020	NM_D18921, 1752
NM_018019, 4737	NM_018922, 1754
NM_018023, 1306	NM_018923, 1756
NM_018032,4358	NM_018924, 1758
NM_018034, 1575	NM_018925, 1760
NM 018035, 5458	NM_018926, 1762
NM_018047, 1706	NM_018927, 1764
NM_018048, 3517	NM D18928, 1766
NM D18054, 4436	NM D18929, 1768
NM_018066, 116	NM_018947, 2208
NM_018070, 239	NM D18948, 41
NM_018085, 569	NM_018950, 2017
NM_018096, 4792	NM_018955, 4728
NM_D18110, 4535	NM 018957, 6034
NM_018113, 3548	NM D18977, 6214
NM D18116, 420	NM 019013, 4682
	NM_019058, 2971
NM_018122, 535	NM_019059, 2200
NM 018124, 4588	NM_019082, 2242
NM_018135, 1880	NM_019095, 5681
NM_018154,5300	NM_019099, 310
NM 018174, 5332	NM_D19554, 371
NM_018188, 10	1441717774, 311
•	

NM D19606, 2333	NM_021932, 3109
NM.019609, 5663	NM_021934, 3588
NM_D19619, 2916	NM_021948, 394
NM 019848, 6321	NM_021953, 3444
NM_019852, 3988	NM 021966, 4079
NM 019887, 3839	NM 021999, 3908
NM_020037, 4895	NM_022003, 3369
NM_020038, 4893	NM_022039, 3039
NM_020132, 5908	NM 022044, 5973
NM_020134,709	NM_022048, 4216
NM_020149, 4136	NM_022105, 5857
NM_020158, 5454	NM_022137, 4042
NM_020188, 4604	NM.022141, 6101
NM_020230, 5232	NM_022158, 5016
NM_020243, 6058	NM_022170, 2288
NM .020299, 2425	NM 022171, 1145
NM.020315, 6036	NM_022362, 3029
NM .020320, 2075	NM .022369, 4246
NM_020347, 1113	NM_022371, 527
NM.020401, 3717	NM .022442, 5806
NM_020414, 4069	NM 022453, 988
NM_020418, 1180	NM .022458, 2464
NM 020548, 871	NM_022461, 1086
NM_020675, 896	NM_022485, 1045
NM_020677, 4340	NM_022550, 1638
NM 020701, 1248	NM_022551, 1946
NM.020990, 4172	NM_022552, 717
NM_020992, 3017	NM .022566, 4296
NM 021019, 3646	NM_022727, 5961
NM_021029, 6244	NM_022744, 4468
NM_021079, 4883	NM_022747, 4084
NM_021095, 698 \	NM_022748, 2226
NM_D21103, 803 NM_D21104, 3654	NM 022752, 5474
NM_021104, 5034 NM_021107, 5415	NM 022758, 1926
NM_021121,948	NM 022770, 4539
NM_021126, 6029	NM .022778, 107 NM .022839, 4290
NM .021129, 2964	NM .022963, 1838
NM .021130, 2238	NM_023009, 152
NM_021141,958	NM_023011, 3940
NM_021154, 2701	NM_023032, 3691
NM_021158, 5638	NM .023033, 3693
NM .021177, 1965	NM_023078, 2620
NM_021178, 4006	NM_023936, 4378
NM.021195, 4400	NM .023942, 2449
NM 021213, 4919	NM_024003,6336
NM_021219, 5879	NM_024026, 3872
NM_021226, 2945	NM_024027, 645
NM 021626, 4917	NM_024029, 5250
NM_021709, 4108	NM_024031, 4458
NM_021728, 4020	NM_024033, 2427
NM_021826, 5665	NM 024040, 3047
NM_021830, 3033	NM_024045, 2957
NM_021831,707	NM_024048, 4470
NM 021870, 1517	NM_024067, 2186
NM .021871, 1513	NM_024068, 3643
	·

NM_024070, 2335	NM_025204, 6109
NM_024089, 3935	NM_025205, 1414
NM.024098, 3218	NM_025207, 455
NM_024099, 3236	NM_025226, 499
NM_024104, 5323	NM_025232, 2503
NM_024111,4148	NM_025233, 4859
NM_024294, 1924	NM_025234, 4270
NM .024297, 4672	NM_025241, 5190
NM_024299, 5865	NM_025263, 2007
NM_024319, 614	NM_030567, 1826
NM_024321,5389	NM .030573, 5965
NM_024329, 62	NM .030579, 4553
NM_024330, 379	NM .030587, 196
NM_024333, 5186	NM_030593, 5411
NM_024339, 4396	NM .030775, 3432
NM_024407, 5120	NM .030782, 1545
NM_024507, 4406	NM _030815, 5719
NM_024516, 4502	NM .030819, 4573
NM_024537, 3938	NM_030877, 5763
NM_024567, 2508	NM .030900, 2232
NM.024571, 4350	NM _030920, 332
NM.024572,719	NM .030921, 1272
NM_024586, 247	NM_030925, 3910
NM_024589, 4346	NM .030926, 1009
NM_024602, 206	NM .030935, 2331
NM_024603, 241	NM_030973, 5532
NM_024613, 2584	NM_031157, 3612
NM_024627, 5951	NM_031206, 6210
NM_024640, 137	NM_031213, 5138
NM_024653, 2373	NM_031228, 5642
NM_024658, 3960	NM_031229, 5640
NM_024664, 183	NM_031243, 2212
NM_024668, 1724	NM_031263, 2708
NM_024671, 4454	NM_031289, 3496
NM_024691, 5636	NM_031300, 1832
NM_024709, 603	NM_031417, 5506
NM_024748, 1526	NM_031434, 2456
NM_024824, 4057	NM_031443, 2234
NM_024844, 4955	NM_031453, 2902
NM_024854, 3529	NM 031459, 131
NM_024855, 5769	NM_031465, 3446
NM 024863, 6248	NM_031472, 3261
NM_024881, 5321	NM_031478, 4522
NM_024900, 1491	NM_031479, 3665
NM_024918, 5757	NM_031482, 1629
NM_024942, 3095	NM_031484, 3070
NM_025070, 2541	NM .031485, 5574
NM .025072, 2772	NM_031901, 336
NM_025108, 4411 NM_025120_5524	NM .031925, 2304 NM .031942, 905
NM .025129, 5534 NM .025150 .358	• • • • • • • • • • • • • • • • • • • •
NM .025150, 358 NM .025164 .2274	NM 031966, 1598
NM .025164, 3374 NM .025169, 1962	NM_031968, 5014
NM_025168, 1863 NM_025107_4820	NM_031989, 3622
NM_025197, 4830 NM_025202_1000	NM 031990, 5100
NM_025202, 1000 NM_025203, 679	NM .031992, 2290
NM .025203, 678	NM_032023, 2923

NM_032038, 4495	NM 032756, 222
NM_032088, 1770	NM_032792, 5631
NM_032092, 1772	NM .032799, 2763
NM_032112, 3031	NM_032814, 3812
NM .032140, 4571	NM_032822, 785
NM_032162, 4310	NM_032827, 810
NM_032164, 2340	NM_032864, 245
NM_032196, 4150	NM_032871, 3326
NM 032204, 5996	· NM_032872, 122
NM_032207, 5317	NM_032873, 3415
NM_032211, 3068	NM_032890, 606
NM .032212, 843	NM_032904, 3794
NM_032219, 1370	NM_032905, 2893
NM 032227, 6257	NM_032907, 4248
NM 032271, 4388	NM_032928, 2860
NM_032280, 1642	NM_032929, 2081
NM_032288, 1354	NM_032933, 5037
NM 032292, 412	NM_032951, 2284
NM 032299, 3395	NM_032953, 2286
NM 032313, 1437	NM_032958, 2376
NM_032322,4771	NM_032989, 3258
NM_032323, 402	NM_032997, 2949
NM 032324, 630	NM_032999, 2295
NM .032330, 4485	NM_033008, 1176
NM 032331, 1318	NM_033010, 1178
NM 032333, 2996	NM_033011, 2538
NM 032338, 3712	NM_033022, 2978
NM_032342, 2746	NM 033046, 796 NM 033070, 5937
NM_032343, 1235	NM 033161, 2828
NM_032350, 2163	NM 033197, 5729
NM_032361, 1814	NM 033219, 2730
NM_032376, 4854	NM 033251, 4635
NM_032377, 5262	NM_033296, 1404
NM 032379, 3346	NM_033301, 2635
NM 032383, 1280	NM_033316, 1348
NM 032390, 875 NM 032402, 1776	NM 033363, 5417
NM 032402, 1776 NM 032403, 1774	NM 033410, 4456
NM 032486, 4444	NM 033415, 5355
NM 032527, 5869	NM 033416, 878
NM_032565, 3914	NM_033421,5787
NM 032626, 4440	NM D33440, 60
NM_032627,5345	NM_033534, 15
NM 032635, 5393	NM D33544, 4315
NM 032636, 296	NM_033551, 1785
NM_032637, 1577	NM 052837, 426
NM 032642, 3434	NM_052848, 5451
NM 032656, 3851	NM_052859, 1157
NM_032667, 3240	NM_052862, 488
NM_032712,5588	NM_052881, 5656
NM_032726,990	NM_052886, 2602
NM_032737,5157	NM_052936, 6251
NM_032738, 503	NM 052963, 2616
NM .032747, 3061	NM_052984, 3685
NM.032750, 1174	NM_053043, 2462
NM_032753, 5173	NM_053056, 3311
•	*

NM_053275, 3829	NM_133627, 4786
NM_054012, 2822	NM 133629, 4790
NM 054013, 1848	NM_133630,4788
NM_054014, 5650	NM_133637,798
NM_054016, 95	NM 133645, 2066
NM_057089, 2363	NM_134269, 6009
NM 057161, 1890	NM 134323, 3616
NM 057169, 3790	NM_134324, 3618
NM_057174, 3188	NM 134440, 5358
NM .057182, 5376	NM_138385, 1372
NM 058164, 5230	NM_138391,545
NM_058179, 2703	NM_138427, 4739
NM .058192, 4366	NM_138434, 2451
NM 058193, 3422	NM_138443,5060
NM 058195, 2653	NM_138483, 1037
NM 058196, 2657	NM_138578, 5713
NM .058199, 2836	NM_138614, 1125
NM .078467, 1912	NM_138699, 1406
NM 079423, 3648	NM_138801,727
NM 079425, 3650	NM_138924, 5124
NM 080424, 1016	-
NM 080425, 5828	XM 001289, 524
NM .080426, 5832	XM_001299, 33
NM_D80491,3342	XM_001389, 1453
NM 080592, 696	XM .001468, 342
NM 080594, 4394	XM_001472, 250
NM 080598, 1984	XM_001482, 3658
NM D80648, 3999	XM_001589, 24
NM D80649, 4001	XM_001616, 101
NM D80670, 1726	XM_001640, 126
NM_080686, 1981	XM_001807, 135
NM_080687, 3942	XM_001812, 134
NM_080702, 1977	XM_001826,78
NM_080703, 1975	XM_001897, 486
NM D80796, 5855	XM_001914, 567
NM_080797, 5859	XM_001916, 568
NM .080820, 5693	XM_001958, 599
NM_080822, 4654	XM_002068, 523
NM_106552, 670	XM_002105, 141
NM 130398, 639	XM_002114, 113
NM_130442, 2260	XM_002217, 845
NM 130468, 4143	XM_002255, 1361
NM 130898, 434	XM_002435,700
NM_133330, 1376	XM .002447, 877
NM_133332, 1380	XM_002480, 680
NM_133373, 4885	XM_002540, 1006
NM_133375, 4222	XM_002611,823
NM 133436, 2357	XM_002636, 964
NM_133480, 1051	XM 202647, 770
NM_133481, 1053	XM 002669, 946
NM_133483, 3676	XM_002674,776
NM_133503, 3742	XM_002704, 853
NM 133504, 3744	XM_002727,788
NM_133505, 3746	XM_002739,779
NM 133506, 3750	XM_002742, 1036
NM_133507, 3748	XM_002828, 1143
	XM_002854, 1187

XM_002855, 1186	XM_006475, 3135
XM 002859, 1274	XM_006483, 3136
XM_002899, 1127	XM_006529, 3281
XM_003213, 1162	XM_006533, 3270
XM_003222, 1119	XM_006566, 3849
XM_003245, 1136	XM_006578, 3736
XM_003305, 1451	XM 006589, 3766
XM_003435, 1432	XM £006595, 3835
XM_003477, 1530	XM_006694, 3535
XM_003511, 1448	XM_006710, 3626
XM_003555, 1500	XM_006748, 3536
XM_003611, 2083	XM_006826, 3559
XM .003716, 1811	XM_006887, 3765
XM_003771, 1644	XM .006925, 3485
XM_003789, 1712	XM 006936, 3483
XM .003825, 1540	XM_006937, 5074
XM_003830, 1666	XM_006947, 3482
XM_D03841, 1699	XM_006958, 3475
XM_003869, 1572	XM_007002, 3797
XM .003896, 1581	XM_007003, 3796
XM_003937, 1710	XM_007199, 3923
XM_004009, 1565	XM 007254, 4097
XM_004098, 3704	XM_007272, 4081
XM_004151, 2065	XM_007288, 3968
XM 004256, 2114	XM_007293, 3967
XM .004297, 2113	XM_007315, 3958
XM_004330, 3194	XM_007316, 3957
	XM_007324, 4027
XM_004379, 2122 YM_004393, 2130	XM .007328, 4024
XM_004383,2130 XM_004526_2110	XM_007441, 4045
XM_004526, 2110 XM_004627, 2402	XM_007483, 4072
XM .004901, 2292	XM 007488, 4005
XM .005060, 2605	XM_007491, 3996
	XM .007531, 4167
XM_005086, 1042 XM_005100, 2908	XM 007545, 4156
XM_005180, 1332	XM_007623, 4221
XM 005305, 2485	XM_007651, 4189
XM_005348, 2755	XM_007751, 4129
	XM_007963, 4474
XM_005365, 2760 XM_005490, 2707	XM_007988, 4430
XM_005525, 2727	XM_008064, 4509
XM_005543, 2666	XM_008065, 4497
XM D05675, 3103	XM_D08106, 4463
XM 205698, 3053	XM_008126, 4353
XM .005724, 2878	XM_008150, 4800
XM D05938, 3058	XM_008231,4694
XM_005969, 3088	XM_008253, 4926
	XM.008323, 4750
XM_006139, 3127	XM_008334, 4671
XM_006170, 3201	XM_008351, 4856
XM 006212, 3167	XM_008401,4867
XM_006290, 98	XM_008402, 4869
XM_006297, 3196	XM.008432, 4902
XM_006424, 3151	XM_008441, 4686
XM_006432, 3371	XM_008459, 4915
XM_006464, 3355	XM_008462, 4777
XM_006467, 3399	ANI DUOTUZ, T / / /

	TD / 010000 (100
XM_008486, 4760	XM_010272, 6132
XM_008509, 4658	XM 010362, 6274
XM 008538, 4684	XM_010378, 6169
XM 008557, 4650	XM_010436, 6280
XM 008579, 4809	XM_010494, 3429
XM 008679,4693	XM_010615, 253
	XM_010636, 451
XM_008695, 5089	
XM_008723, 5054	XM_010664, 133
XM_008812,5083	XM_010682, 581
XM_008830, 5597	XM_010712, 182
XM_008851,5522	XM_010732, 593
XM_008854, 5325	XM_010778, 925
XM_008860, 5485	XM_010852, 938
XM 008878, 5472	XM_010858, 1004
XM_008887,5243	XM_010866, 992
XM_008912,5453	XM_010881,771
XM 008985,5531	XM_010886, 755
	XM_010938, 4641
XM_009010,5205	XM_010941, 1433
XM_009036, 5486	
XM_009063,5274	XM_010953, 1130
XM_009082,5256	XM_010978, 1290
XM_009125,5484	XM_011074, 1320
XM_009126, 5496	XM_011089, 5076
XM.009149,5406	XM_011117, 2059
XM_009180,5378	XM_011118, 4941
XM 009203, 5443	XM_011129, 1423
XM_009222, 5165	XM_011160, 1365
XM_009277,5113	XM 011548, 2411
XM_009279,5110	XM_011618, 2400
	XM_011629, 2533
XM 009293, 5338	XM_011642, 2586
XM_009303, 5310	XM_011650, 66
XM 009330, 5357	
XM_009338, 5384	XM_011657, 2592
XM_009436, 5705	XM_011749, 2798
XM_009450, 5728	XM_011752, 2786
XM_009501,5754	XM_011769, 2562
XM .009549, 5816	XM_011778, 2832
XM_009622, 5647	XM.011988, 3260
XM_009642,5759	XM_012124, 3836
XM .009671, 5823	XM_012145, 3761
XM_009672,5821	XM_012159, 3494
XM_009686,5762	XM_012162, 3598
XM_009805, 5919	XM_012179, 5337
	XM 012182, 3638
XM_009947,6022	XM_012184, 3861
XM_009967, 6031	
XM_009973,6042	XM_012219, 3759
XM_010000,6063	XM_012272, 3543
XM_010002,6064	XM_012284, 2395
XM_010024,6087	XM_012376, 3990
XM_010029, 6094	XM_012377, 3983
XM_010040,6103	XM_012398, 4133
XM_010055,6108	XM_012418, 4199
XM_010117, 6269	XM_012462, 4322
XM_010141,6216	XM_012487, 4555
XM_010156,5266	XM_012549, 4734
	XM 012569, 4461
XM_010178, 6310	Mil 112307, 4401

XM_012609, 4945	XM_016288,880
XM_012615, 4744	XM_016308, 2726
XM_012634, 4950	XM .016334, 1294
XM_012638, 3874	XM_016345, 1799
XM 012642, 4849	XM_016351, 3924
XM_012651, 4916	XM_016378, 5364
XM_012676, 4675	XM_016382, 5036
XM_012741,5031	XM_016410, 5438
XM_012798, 5212	XM_016480, 326
XM_012812, 5370	XM_016486, 4071
XM_012860, 5439	XM_016487, 4068
XM_012862, 5195	XM_016605, 3708
XM_012913, 5114	XM_016625,773
XM.012931, 5768	XM_016640, 3538
XM_012970, 5700	XM_016674, 1652
XM_013010, 6066	XM_016700, 2433
XM_013015, 6089	XM_016713,4165
XM_013029, 6118	XM_016733, 2256
XM_013042, 6207	XM_016843,766
XM_013060, 6196	XM_016857, 1941
XM_013086, 6145	XM_016871,5180
XM_013112, 2530	XM_016985, 4213
XM_013127,2577	XM_017080, 3436
XM_015234, 75	XM_017096, 4644
XM_015241, 5088	XM_017204, 5240
XM_015243, 3148	XM_017234, 4712
XM_015258, 2244	XM_017240, 4135
XM_015366, 4239	XM_017315,67
XM_015434, 547	XM_017356, 1291
XM_015462, 1208	XM_017364, 1105
XM_015468, 3596	XM_017369, 3394
XM_015476, 3585	XM_017432, 3895
XM_015481,3580	XM_017442, 2313
XM_015516, 6206	XM_017474, 1679
XM_015563, 1525	XM_017483, 2280
XM .015652, 2937	XM 017508, 3710
XM .015697, 5264	XM_017517, 2080
XM_015700, 4478	XM_017578, 4980
XM_015705, 3214	XM_017591, 1701 XM_017641, 1544
XM_015717, 257	XM_017698, 861
XM_015755,5046	XM_017816, 2581
XM_015769, 5369 XM_015835_4211	XM_017831, 2119
XM_015835, 4311 XM_015840, 3921	XM_017846, 109
•	XM_017857, 1640
XM_015842, 3932 XM_015920, 909	XM_017914, 3953
XM_015922, 911	XM_017925, 1476
XM_016047, 2604	XM_017930, 6284
	XM_017931, 2659
XM_016076, 4237 XM_016093, 2992	XM_017971, 4319
XM_016113, 2712	XM_017984, 4338
XM_016125, 6275	XM_017996, 2711
XM_016139, 3170	XM_018006, 2710
XM_016164, 276	XM_018019, 6157
XM_016170, 1554	XM_018039, 784
XM_016199, 600	XM_018041, 642
4247L-3/101775, 000	23412-01-100-11, 0-72

XM_018054, 4123	XM_028347, 4074
XM_018088,4472	XM_028358, 4073
XM_018108, 6313	XM_028398, 4667
XM_018109, 6315	XM_028417, 4678
XM.018136, 161	XM_028643, 3624
XM_018142, 6232	XM_028662, 3561
XM_018149, 1264	XM_028666, 5383
XM_018167, 3015	XM_028672, 5382
XM_018182, 2098	XM_028744, 5025
XM_018205, 64	XM_028760, 3554
XM_018241, 6161	XM_028783, 5851
XM_018279, 3057	XM_028806, 5765
XM_018287, 2595	XM_028810, 5766
XM_018301,763	XM_028834, 5863
XM_018332, 314	XM_028848, 4390
XM_018359, 2281	XM_028918, 5867
XM_018399, 3918	XM_028966, 5871
XM_018432, 4331	XM_029031, 169
XM_018473, 1658	XM_029096, 1539
XM_018515, 5354	XM_029104, 1314
XM_018523, 1359	XM_029132, 1313
XM_018534, 4840	XM_029136, 1310
XM_018539, 6014	XM_029168, 2841
XM_018540, 841	XM_029187, 6194
XM_026944, 2787	XM_029228, 2069
XM_026951, 2771	XM_029288, 4067
XM_026968, 2769	XM 029369, 1198
XM_026985, 2766	XM.029438, 4656
XM_026987, 2765	XM_029450, 5404
XM_027102, 3802	XM_029455, 5403
XM_027143, 6106	XM_029461, 6282
XM_027161, 1220	XM_029567, 2609
XM_027214, 2385	XM_029631, 3602
XM_027309, 4329	XM_029728, 3595
XM_027313, 226	XM_029746, 2128
XM_027365, 4334	XM_029805, 3507
XM_027412, 4368	XM.029810, 5776
XM_027440, 2505	XM_029822, 5778
XM_027558, 4352	XM_029842, 176
XM_027651, 2490	XM_029844, 145
XM_027679, 2488	XM_030044, 5796
XM_027825, 4661	XM_030203, 1028
XM_027904, 5548	XM_030268, 2543
XM_027916, 76	XM_030274, 2544
XM 027952, 6353	XM_030326, 3187
XM .027963, 936	XM_030373, 6233
XM_027964, 1619	XM_030417, 1112
XM_027983, 213	XM_030423, 154
XM_028034, 940	XM_030447, 3065
XM_028064, 5119	XM_030470, 68
XM_028067,5117	XM_030485, 5159
XM_028151,4562	XM_030529, 862
XM_028192, 3117	XM D30582, 883
XM_028263, 5488	XM.030621, 5818
XM 028267, 5491	XM_030699, 5834
XM .028322, 4075	XM .030714, 5145

XM_030720, 5137	XM_032588, 3457
XM_030721,5135	XM_032614, 3462
XM_030771, 1821	XM_032710, 5247
XM_030777, 1823	XM_032719, 5248
XM_030782, 1824	XM_032724, 5252
XM_030812, 1256	XM_032759, 1700
XM_030834, 952	XM_032766, 4864
•	XM_032774, 5257
XM_030895, 5465	XM_032774, 5257 XM_032782, 5261
XM_030901,5456	
XM_030914, 5450	XM_032813, 4863
XM_030920, 40	XM_032817, 4861
XM_031025, 4032	XM_032852, 4857
XM_031074, 4039	XM_032895, 1590
XM_031251,5307	XM_032902, 1588
XM_031263,5305	XM_032930, 6189
XM_031273, 5303	XM_032944, 2470
XM_031276, 5302	XM_032996, 5943
XM_031292, 4295	XM_033015,5902
XM_031320, 1445	XM_033016, 5903
XM_031345, 5292	XM_033090, 5946
XM_031354, 4292	XM 033147, 6241
XM_031404, 4285	XM_033227, 3450
XM_031415,4767	XM .033232, 6351
XM_031427, 4769	XM_033251, 3959
XM_031466, 4765	XM_033263, 3472
XM_031515, 4147	XM_033294, 1123
XM_031519,731	XM_033337, 3964
XM_031527,733	XM_033355, 2819
XM_031536, 4758	XM .033359, 2818
XM_031554, 4145	XM_033360, 2817
XM_031585,782	XM .033361, 2815
XM_031586,783	XM_033362, 2811
XM_031596,780	XM_033380, 2809
XM_031617,4138	XM_033385, 2808
XM_031626,738	XM_033391, 3969
XM_031718, 4159	XM_033424, 2774
XM_031807, 3491	XM_033435, 3975
XM_031857, 5184	XM_033445, 3980
XM_031866, 3041	XM_033457, 2777
XM_031890, 3044	XM_033460, 2778
XM_031917,5176	XM_033553, 3991
XM_031944, 5066	XM.033595, 3994
	XM 033654, 79
XM_031949, 3049	XM_033683,77
XM_031992, 3059	XM D33689, 4646
XM_032020, 5281	XM D33714, 4645
XM_032121, 2455	
XM_032201, 4836	XM 033813, 5960
XM_032216, 2454	XM 033862, 6173
XM_032269, 1221	XM 033876, 2383
XM_032285, 5399	XM 033878, 6172
XM_032391,216	XM_033884, 6170
XM_032403,4180	XM_033910, 2134
XM_032443, 3930	XM_033912, 2132
XM_032476, 2976	XM_033922, 4606
XM_032520, 2970	XM_034000, 501
XM_032553, 1626	XM_034082, 454

XM .034321, 1502	XM_036465, 4825
XM_034375, 4460	XM_036500, 573
XM_034377, 5623	XM_036507, 575
XM 034431, 3185	XM_036528, 4410
XM_034586, 4376	XM_036556, 566
	XM_036593, 2939
XM_034590, 4380	
XM_034640, 2638	XM_036659, 4707
XM .034662, 319	XM_036680, 4342
XM_034671,318	XM_036727, 4134
XM_034710, 1466	XM_036744, 433
XM_034713, 1468	XM_036755, 5927
XM_034744, 1655	XM_036785, 4982
XM_034862, 1675	XM_036829, 442
XM_034890, 4184	XM_036845, 450
XM_034897, 4256	XM_036934, 448
XM_034935, 6201	XM_036937, 5969
XM 034952, 857	XM_036938, 1197
XM 034953, 4116	XM_037002, 1668
	XM_037056, 2107
XM_035014,4119	XM_037101, 873
XM_035103, 2824	
XM_035107, 2439	XM_037108, 831
XM_035109, 2825	XM_037147, 3212
XM_035220, 800	XM_037173, 3202
XM_035368, 2626	XM_037195, 4988
XM_035370, 2631	XM_037196, 4987
XM_035373, 2629	XM.037202, 5840
XM_035465, 6123	XM_037206, 5842
XM_035485, 3571	XM_037217, 5846
XM_035490, 3564	XM_037260, 1608
XM_035497, 3562	XM_037329, 591
XM_035572, 1392	XM_037377, 1300
XM_035625, 5197	XM_037381, 1299
XM_035627,5196	XM_037423, 1163
	XM_037468,6114
XM_035636,5194	XM_037474, 6116
XM_035638,5192	XM_037565, 5106
XM_035640, 5034	
XM_035662, 2483	XM_037572, 5109
XM_035680, 2482	XM_037600, 1304
XM_035824, 1402	XM_037657, 2608
XM_035919, 5612	XM_037662,5372
XM_035986, 1456	XM .037682, 5977
XM_035999, 5907	XM_037741, 2276
XM_036002, 1440	XM_037778, 4244
XM_036011,5910	XM_037797, 5981
XM_036042,5913	XM_037808, 3263
XM_036087, 5917	XM_037875, 2045
XM_036104, 4965	XM_037945, 5993
XM_036107, 5923	XM_037971,4897
	XM_038030, 2855
XM 036115, 4971	XM_038049, 2864
XM 036118, 1262	XM_038063, 2866
XM_036175,5924	
XM.036299, 155	XM_038098, 5343
XM_036339, 3178	XM_038146, 5339
XM 036413, 2469	XM_038221, 1695
XM_036450, 664	XM_038243, 1341
XM_036462, 4827	XM_038308, 3737

XM_038371, 3902	XM_041211, 1161
XM_038391,2757	XM_041221, 1410
XM 038424, 5018	XM_041235,4008
XM_038536, 2909	XM_041248, 6111
XM_038576,734	XM_041473, 3928
XM_038584,6019	XM_041484, 3944
XM_038659,3533	XM_041507, 1147
XM_038791, 3841	XM_041583, 4957
XM_038852, 244	XM_041678, 5027
XM_038872, 5062	XM_041694, 1614
XM_038911,237	XM_041712, 1592
XM 038946, 1840	XM_041872, 5090
XM_039165, 1413	XM .041879, 353
XM_039173, 1416	XM_041884, 354
XM_039176, 1417	XM_041921, 6304
XM .039225, 4125	XM_041964, 4680
XM_039236, 6047	XM_042018, 5095
XM_039248, 6051	XM_042025, 1600
XM 039306, 4551	XM_042153, 6348
XM_039339, 6060	XM_042155, 6346
XM_039372, 6065	XM_042168, 1286
XM_039395, 3732	XM_042301, 1474
XM_039474, 4794	XM_042326, 1032
XM_039654, 2646	XM_042422, 2145
XM_039702,4200	XM_042473, 2148
XM_039712,716	XM_042618, 1229
XM_039721, 321	XM_042621, 4596
XM_039723, 5140	XM_042658, 2561
XM_039796, 1292	XM_042695, 1364
XM_039805, 1258	XM .042698, 4710
XM_039908, 5598	XM_042765, 5701
XM.039910, 4721	XM_042781, 2434
XM_039921,4732	XM_042788, 2744
XM_039952, 1213	XM_042841, 1072
XM_039975, 1783	XM_042852, 3339
XM_040009,377	XM_042860, 1070 XM_042963, 6295
XM_040066, 6088	XM_042967, 537
XM_040095,6091	XM_042968, 6297
XM_040221,3707	XM_043047, 4577
XM_040267, 2879	XM_043173, 866
XM_040272, 2876	XM_043220, 3111
XM 040321, 1524	XM_043340, 1805
XM_040498, 2417	XM_043388, 1808
XM_040623, 2074	XM_043589, 2998
XM_040644, 3734 YM_040700_315	XM_043605, 2999
XM_040709, 315 XM_040752, 1493	XM_043614, 6099
·	XM.043643, 6250
XM_040853, 2218 YM_040808_4100	XM_043771, 1568
XM	XM_044075, 416
XM_040952, 4090	XM_044077, 391
	XM_044127, 398
XM_041014, 4086 XM_041020_2607	XM_044128, 408
XM_041020, 2697 YM_041050_1670	XM_044166, 406
XM_041059, 1670 XM_041100, 3503	XM_044172, 411
XM_041100, 5505 XM_041209, 3925	XM_044334, 3859
VIAITA-1702' 2277	

XM 044354, 2968	XM 046160, 5708
XM_044367, 4938	XM_046179, 5710
XM_044372, 4943	XM .046313, 5544
XM_044376, 4935	XM .046349, 187
XM <u>.</u> 044394, 4927	XM_046401, 1085
XM_044426, 4924	XM .046419, 5578
XM_044523, 4304	XM_046450, 201
XM_044533, 4307	XM .046464, 522
XM_044565, 4269	XM_046472, 5004
XM_044569, 4272	XM_046481,4999
XM_044593, 4278	XM .046520, 5689
XM_044608, 5213	XM_046551,212
XM_044619, 5210	XM_046557, 208
XM_044627, 2563	XM_046565, 204
XM .044866, 2139	XM .046642, 3951
XM_044914, 5658	XM .046648, 3950
XM D44915, 5660	XM 046651, 3949
XM_044932, 3129	XM.046743, 3035
XM_044957, 3131	XM_046765, 5020
XM_045010, 3821	XM .046767, 5022
XM_045044, 4749	XM_046769, 5021
XM_045104, 4989	XM 046822, 5150
XM_045140, 2973	XM_046836, 2722
XM_045151, 5226	XM_046863, 2720
XM_045170, 928	XM_046918, 112
XM_045183, 4651	XM_046932, 4958
XM_045187, 3833	XM_046934, 5160
XM_045283,757	XM.047007, 5723
XM_045290, 1214	XM_047011, 5725
XM_D45296, 2759	XM .047018, 5727
XM_045401, 2403	XM .047024, 6177
XM_D45418, 5667	XM_047032, 6176
XM_045451,5671	XM_047083, 2521
XM_045460, 5674	XM 047175, 690
XM_045499, 3276	XM .047374, 5446
XM_045525, 3278	XM_047376, 5445
XM_045535, 4751	XM 047409, 5444
XM 045551,4752	XM 047436, 4624
XM .045581, 4996	XM_047477, 1429 XM_047479, 495
XM_045602, 3856 XM_045612, 3273	
XM_045613, 3271	XM_047499, 610 XM_047525, 4632
	XM_047525, 4052
XM_045642, 3269 XM_045667, 3074	XM_047545, 010
XM.045681, 4287	XM.047584, 5131
XM .045750, 3157	XM_047600, 5132
XM_045802, 3826	XM_047964, 1798
XM_045856, 2407	XM_048088, 753
XM_045901, 4852	XM_048119, 4344
XM_045952, 2413	XM_048119, 4344 XM_048258, 5385
XM .045963, 3834	XM .048286, 3255
XM_046001, 2414	XM .048351, 5218
XM_046035, 4453	XM.048364, 5219
XM_046041,3726	XM.048404, 6329
XM046057, 1443	XM .048410, 6328
XM_046090, 5423	XM_048420, 6325
AREA ANTOUNY, NTWO	22122070720, 0323

XM_048471, 5082	XM_050430, 2389
XM_048479, 2679	XM 050435, 5227
XM_D48518, 2684	XM_050506, 2583
XM_048539, 2686	XM .050534, 4348
XM_048603, 3674	XM_050552, 1234
XM_048654, 4829	XM 050589, 5603
XM_048690, 1007	XM .050638, 979
XM_048780, 57	XM_050660, 5330
XM_048859, 2881	XM_050731,2571
XM_048905, 6306	XM_050891, 984
XM 048943, 3640	XM_050962, 975
XM_048957, 3931	XM_050964, 4220
XM_048991,3642	XM_051219,4479
XM_049048, 3652	XM_051264, 1237
XM_049108, 820	XM_051298, 2612
XM_049113, 822	XM 051364, 5290
XM_049116, 818	XM_051430, 3398
XM_049141, 3586	XM .051435, 3358
XM_049148, 3581	XM_051463,4230
XM.049150, 3659	XM.051471,6238
XM_049197, 3161	XM_051476, 6237
XM_049201, 3772	XM D51489, 3367
XM_049211,3771	XM 051518, 1131
XM D49226, 2623	XM 051556, 6
XM.049237, 5391	XM 051586, 5092 XM 051712, 4025
XM_049247, 2618	XM D51716, 3373
XM_049282, 5223	XM .051763, 4727
XM.049310, 139	XM_051778, 4600
XM_049337, 6320 YM_049354_4275	XM_051860, 4298
XM_049354, 4275 XM_049372, 4317	XM 051877, 515
XM_049421, 2637	XM_052113, 3378
XM_049502, 5236	XM_052310, 1060
XM_049561, 5239	XM_052313, 1535
XM_049663, 3493	XM_052336, 1477
XM 049680, 476	XM_052460, 3714
XM_049690, 483	XM_052474, 3719
XM 049742, 14	XM_052530, 1424
XM_049795, 3082	XM_052542, 3755
XM_049899, 2121	XM_052626, 1398
XM_049904, 3937	XM_052635, 5166
XM_049920, 5482	XM_052641,3769
XM_D49931, 4995	XM 052661, 5168
XM_049934, 4994	XM 052721, 2056
XM_049937, 4818	XM_052725, 2784
XM_050074, 3528	XM_052786, 3153
XM_050101,4773	XM_052862, 3404
XM_050159, 4880	XM_052893, 3825
XM_050194, 4462	XM_052974, 608
XM_050200, 1487	XM_052989,817
XM_050215, 2525	XM_053074, 5430
XM.050236, 5602	XM_053122, 1363
XM_050265, 2278	XM 053164, 3641
XM .050278, 4103	XM_053183,58
XM_050293, 2487	XM_053206, 2875
XM_050403, 6192	XM_053245, 400

XM_056923, 521
XM_056957, 1471
XM_056963, 1793
XM_056970, 628
XM_056996, 3798
XM 057020, 4257
XM_057074,5260
XM .057150, 4619
XM.057236, 5756
XM_057374, 5793
XM 057492, 1548
XM.057664, 740
XM.057780, 2557
XM.057994, 1541
XM 058039, 1934
XM_058098, 986
XM_058116, 4526
XM_058125, 5635
XM.058210, 4018
XM_058232, 5225
XM_058240, 102
XM.058247, 466
XM_058266, 2144
XM_058267, 1278
XM_058343, 3020
XM_058361,3078
XM_058405, 552
XM_058406, 3084
XM.058414, 3159
XM_058450, 3352
XM_058505, 3125
XM 058528, 3671
XM_058556, 3773
XM 058567, 3504
XM D58574, 3454
-
XM_058602, 3022
373 C 050/11 2026
XM_058611, 3926
XM_058618, 4091
XM 058618, 4091 XM 058636, 4118
XM .058618, 4091 XM .058636, 4118 XM .058646, 3986
XM 058618, 4091 XM 058636, 4118
XM 058618, 4091 XM 058636, 4118 XM 058646, 3986 XM 058647, 3978 XM 058677, 4061
XM 058618, 4091 XM 058636, 4118 XM 058646, 3986 XM 058647, 3978
XM 058618, 4091 XM 058636, 4118 XM 058646, 3986 XM 058647, 3978 XM 058677, 4061 XM 058684, 4186 XM 058699, 4250
XM 058618, 4091 XM 058636, 4118 XM 058646, 3986 XM 058647, 3978 XM 058677, 4061 XM 058684, 4186
XM 058618, 4091 XM 058636, 4118 XM 058646, 3986 XM 058647, 3978 XM 058677, 4061 XM 058684, 4186 XM 058699, 4250
XM 058618, 4091 XM 058636, 4118 XM 058646, 3986 XM 058647, 3978 XM 058677, 4061 XM 058684, 4186 XM 058699, 4250 XM 058702, 294
XM 058618, 4091 XM 058636, 4118 XM 058646, 3986 XM 058647, 3978 XM 058677, 4061 XM 058684, 4186 XM 058699, 4250 XM 058702, 294 XM 058739, 4621
XM.058618, 4091 XM.058636, 4118 XM.058646, 3986 XM.058647, 3978 XM.058677, 4061 XM.058684, 4186 XM.058699, 4250 XM.058702, 294 XM.058739, 4621 XM.058745, 4543
XM 058618, 4091 XM 058636, 4118 XM 058646, 3986 XM 058647, 3978 XM 058677, 4061 XM 058684, 4186 XM 058699, 4250 XM 058702, 294 XM 058739, 4621 XM 058745, 4543 XM 058784, 4404
XM .058618, 4091 XM .058636, 4118 XM .058646, 3986 XM .058647, 3978 XM .058677, 4061 XM .058684, 4186 XM .058699, 4250 XM .058702, 294 XM .058739, 4621 XM .058745, 4543 XM .058784, 4404 XM .058796, 4337
XM .058618, 4091 XM .058636, 4118 XM .058646, 3986 XM .058647, 3978 XM .058677, 4061 XM .058684, 4186 XM .058699, 4250 XM .058702, 294 XM .058739, 4621 XM .058745, 4543 XM .058784, 4404 XM .058796, 4337 XM .058867, 4755
XM .058618, 4091 XM .058636, 4118 XM .058646, 3986 XM .058647, 3978 XM .058677, 4061 XM .058684, 4186 XM .058699, 4250 XM .058702, 294 XM .058739, 4621 XM .058745, 4543 XM .058784, 4404 XM .058796, 4337 XM .058830, 4803 XM .058867, 4755 XM .058900, 4730
XM .058618, 4091 XM .058636, 4118 XM .058646, 3986 XM .058647, 3978 XM .058677, 4061 XM .058684, 4186 XM .058699, 4250 XM .058702, 294 XM .058739, 4621 XM .058745, 4543 XM .058784, 4404 XM .058796, 4337 XM .058830, 4803 XM .058867, 4755 XM .058900, 4730 XM .058918, 5949
XM .058618, 4091 XM .058636, 4118 XM .058646, 3986 XM .058647, 3978 XM .058677, 4061 XM .058684, 4186 XM .058699, 4250 XM .058702, 294 XM .058739, 4621 XM .058745, 4543 XM .058784, 4404 XM .058796, 4337 XM .058830, 4803 XM .058867, 4755 XM .058900, 4730 XM .058918, 5949 XM .058927, 1441
XM .058618, 4091 XM .058636, 4118 XM .058646, 3986 XM .058647, 3978 XM .058677, 4061 XM .058684, 4186 XM .058699, 4250 XM .058702, 294 XM .058739, 4621 XM .058745, 4543 XM .058784, 4404 XM .058796, 4337 XM .058830, 4803 XM .058867, 4755 XM .058900, 4730 XM .058918, 5949

183

XM .058968, 2619	XM_059998, 2673
XM 058977, 3920	XM_060006, 2647
XM_058987,5570	XM_060012, 4115
XM .058990, 5584	XM_060030, 6146
XM.058991, 5552	XM_060042, 4281
XM_059045, 5419	XM_060067, 1499
XM_059052, 5447	XM_060331, 509
XM.059066, 114	XM_060517, 531
XM_059067, 120	XM_060976, 2885
XM_059088, 130	XM_061125, 2931
XM_059094, 465	XM_061126, 2930
XM_059117, 103	XM_062437, 3775
XM .059120, 562	XM_063639, 4234
XM_059133, 224	XM_064091, 4597
XM .059171, 171	XM_065884,777
XM_059180, 256	XM_066291, 5998
XM .059191, 492	XM_066900, 6261
XM_059201, 1	XM_067264, 1240
XM .059210, 330	XM_067325, 5030
XM_059214, 185	XM_067715, 1169
XM_059230, 55	XM_068164, 1497
XM_059268, 5675	XM_068395, 1789
XM_059321,5607	XM_068853, 1714
XM_059335, 6013	XM_068919, 2085
XM_059351, 920	XM_068963, 2072
XM_059368, 653	XM_070188, 2480
XM_059372, 1029	XM_070203, 2473
XM_059422, 968	XM_070873, 2742
XM_059461, 971	XM_071178, 2705
XM_059465, 907	XM_071580, 1557
XM_059516, 1266	XM_071605, 2381
XM_059557, 1068	XM_071623, 1439
XM_059561, 1059	XM_071801,4122
XM_059583, 1252	XM_071873, 4630
XM_059593, 1434	XM_071937, 2152
XM_059623, 1519	XM_072173, 5876
XM 059628, 1442	XM_072430, 2387
XM_059633, 1469	XM_072526, 2857
XM_059637, 2804	XM 076414, 1199
XM_059653, 1596	XM .083842, 3026
XM 059669, 1617	XM_083852, 3141
XM_059709, 1604	XM_083864, 3774
XM 059720, 2914	XM 083866, 3715
XM_059741,2118	XM_083868, 3590
XM_059745, 2131	XM_083892, 3787
XM_059773, 2141	XM_083939, 4364
XM_059776, 2062	XM .083966, 4923
XM_059801, 1939	XM_083983, 4881
XM_059839, 2430	XM_084007, 5055
XM_059876, 2282	XM_084014, 5246
XM_059933, 2531	XM_084023, 5528
XM_059945, 2838	XM_084026, 5549
XM_059961, 2859	XM_084055, 580
XM_059966, 2871	XM_084084, 6090
XM_059979, 2644	XM_084110, 1340
XM_059986, 2813	XM_084111, 1243

XM_084120, 1315	XM 084884, 3583
XM_084123, 1263	XM_084885, 3582
XM_084129, 1231	XM 084889, 3814
XM_084141, 1041	XM 084901, 3488
XM_084158, 1465	XM 084909, 3702
	XM_084912, 3705
XM_084168, 1547	XM_084918, 3500
XM_084179, 1591	XM 084922, 3495
XM_084180, 1781	XM_084941, 3788
XM_084204, 2079	XM_084946, 3800
XM_084238, 2453	XM_084948, 3804
XM_084241, 2337	XM_084982, 3870
XM_084270, 2851	XM_084997, 3933
XM_084283, 6229	XM_084998, 2142
XM_084287, 6203	XM_085017, 3893
XM_084288, 6153	XM .085044, 3916
XM_084296, 6227	XM .085065, 4044
XM_084311, 6350	-
XM_084359, 3073	XM_085066, 4033
XM_084372, 3016	XM_085068, 1480
XM 084385, 2944	XM 085106, 3987
XM_084413, 3028	XM_085125, 4031
XM_084420, 2910	XM_085127, 4014
XM_084429, 2911	XM.085141, 4019
XM_084450, 2942	XM 085151, 4050
XM_084451, 2953	XM.085162, 4054
XM_084467, 2994	XM .085166, 3955
XM_084477, 3010	XM_085203, 4130
XM_084480, 3012	XM_085204, 4132
XM_084505, 3080	XM_085215, 4282
XM_084514,3180	XM .085239, 4254
XM_084515, 3183	XM_085249, 4236
XM 084516, 3182	XM 085262, 4314
XM_084517,3184	XM .085280, 4289
XM 084522, 3424	XM_085283, 4211
XM_084525, 3428	XM_085307, 4160
XM_084527,3169	XM_085327, 4622
XM_084570, 3357	XM_085340, 4448
XM_084601,3353	XM_085393, 4480
XM_084610, 3350	XM_085395, 4482
XM_084632, 3072	XM_085408, 4637
XM_084645, 3731	XM_085434, 4524
XM_084654, 3388	XM.085442, 4513
XM_084658, 3382	XM.085445, 4425
XM_084681, 3195	XM_085452, 4435
XM_084702, 3287	XM 085471, 4558
XM_084739, 3124	XM 085475, 4561
XM 084742, 3122	XM_085483, 4616
XM_084770, 3515	XM .085525, 4323
XM_084789, 3599	XM_085531, 4977
XM_084800, 3783	XM_085545, 4741
XM .084801, 3672	XM_085548,4735
XM 084807, 3531	XM_085563,4991
XM_084808, 3818	XM.085581,472
XM_084824, 3630	XM 085589, 4948
XM_084841, 3540	XM_085613, 4724
XM_084866, 3557	XM_085627, 4951
22122010101010	·

XM .085636, 4873	XM_086328, 542
XM .085672, 4757	XM_086343, 265
XM_085687,4659	XM_086357, 85
XM_085691,4677	XM_086360, 29
XM_085716, 4992	XM_086375,97
XM_085722, 4745	XM_086378, 485
XM_085735, 5019	XM_086381,479
XM .085743, 4718	XM_086384, 178
XM .085775, 5058	XM_086389, 243
XM .085779, 5075	XM_086391, 231
XM_085788, 5049	XM_086397, 323
XM_085789, 5043	XM_086400, 366
XM_085790, 5045	XM_086428, 2161
XM 085791, 5042	XM_086431,589
XM 085856, 5501	XM 086432, 592
XM_085862, 5244	XM_086444, 136
XM_085874,5460	XM_086481, 490
XM _085875, 5461	XM_086484, 494
XM_085876, 5462	XM .086485, 493
XM .085909, 5297	XM_086494,538
XM .085916, 5285	XM_086515, 324
XM_085917, 5276	XM_086518,317
XM_085927, 5527	XM_086543, 190
XM_085928, 5489	XM_086552, 432
XM_085934, 5537	XM_086564, 388
XM_085935, 5573	XM_086567, 430
XM_085950, 5487	XM .086586, 52
XM_085971,5371	XM_086587, 54
XM_085972, 5629	XM 086648, 5819
XM_085981, 4599	XM_086701, 5687
XM_085986, 5398	XM_086710,5670
XM_086004, 5425	XM_086715, 5695 XM_086736, 5717
XM_086074,5311	XM_086745,5712
XM .086101, 5128 XM .086102, 5130	XM_086759, 5877
XM_086116,5331	XM_086760, 5878
XM_086132,304	XM_086770, 5914
XM_086138, 282	XM 086773, 5928
XM_086142, 557	XM_086777, 5930
XM_086151,46	XM_086779, 5064
XM_086164,277	XM.086805, 5963
XM_086165, 279	XM_086809, 5953
XM .086166, 281	XM_086821, 5985
XM_086167, 280	XM_086830,6043
XM_086178, 4	XM_086844,6074
XM_086180, 19	XM_086873,5964
XM_086204, 38	XM_086875, 6093
XM_086228, 1356	XM 086920, 805
XM .086244, 601	XM_086923, 849
XM.086245, 602	XM_086925, 850
XM.086257, 632	XM_086944, 933
XM .086271, 383	XM_086950, 858
XM 086278, 4434	XM_086961,926
XM_086282, 543	XM_086980,791
XM.086296, 331	XM_087028, 942
XM .086324, 214	XM_087038, 2803
•	

XM_087040, 842	XM_087686, 1543
XM_087041, 2800	XM_087710, 3247
XM_087045, 932	XM_087713, 1559
XM_087051,748	XM_087745, 1656
XM_087061,912	XM 087773, 1816
XM 087062, 914	XM_087790, 1631
XM_087068, 775	XM_087823, 1858
XM_087069, 772	XM.087834, 2123
XM_087118, 891	XM_087836, 2124
XM_087122, 839	XM_087853, 2090
XM_087151, 683	XM_087855, 2089
XM_087162, 985	XM_087939, 2000
XM_087166, 993	XM_087945, 1990
	XM D87955, 3857
XM_087181,965 XM_087193,726	XM_087960, 1883
•	XM .087990, 1936
XM_087195, 725	
XM_087206, 669	XM_087991, 2154
XM 087211, 743	XM_088009, 3106
XM_087218, 1011	XM_088020, 1621
XM_087240, 901	XM.088073, 2386
XM.087254, 1302	XM_088099, 2416
XM_087268, 1203	XM_088103, 2418
XM_087278, 1358	XM_088105, 2409
XM_087284, 1075	XM_088107, 605
XM_087289, 1323	XM.088119, 2422
XM_087295, 1322	XM_088122, 2420
XM.087297, 1360	XM_088135, 2446
XM_087322, 1312	XM_088180, 2352
XM_087331, 1211	XM_088239, 2297
XM_087341, 1267	XM_088264, 2195
XM .087342, 1265	XM_088294, 2529
XM_087346, 1115	XM_088316, 2611
XM_087349, 1106	XM_088321, 2628
XM D87359, 1343	XM_088323, 2574
XM_087370, 1101	XM .088325, 2572
XM .087392, 1333	XM_088336, 2519
XM_087410, 1347	XM_088338, 2515
XM .087448, 1184	XM_088370, 2613
XM_087480, 3000	XM_088399, 2559
XM_087498, 1463	XM_088401, 2560
XM_087514, 1483	XM_088422, 2839
XM_087527, 1455	XM_088426, 2833
XM_087583, 1418	XM 088459, 2847
XM_087588, 1120	XM_088461, 2870
XM_087597, 1549	XM_088472, 1472
XM_087599, 1551	XM_088550, 2640
XM_087600, 1553	XM_088552, 2641
XM_087601, 1550	XM_088553, 2642
XM_087610, 1597	XM_088563, 2672
XM_087611, 1595	XM 088569, 2748
XM_087614, 1564	XM .088571, 2750
XM_087621, 1711	XM_088587, 4120
XM D87635, 1660	XM D88588, 4114
•	
XM .087652, 1712	XM_088589, 4121
XM 087652, 1713 XM 087650 1527	XM_088592, 6311
XM .087659, 1537	XM_088619, 6151

XM_088622, 6152	XM_093546, 1201
XM_088630, 6209	XM_093624, 1083
XM_088637, 2700	XM .094243, 1797
XM_088638,768	XM_094440, 1561
XM_088665, 6158	XM_094741, 1862
XM 088688, 6220	XM 094855, 2060
XM_088689, 6218	XM 095146, 2432
XM_088710, 6253	XM 095371, 2475
XM 088736, 6265	XM 095545, 2514
XM_088738, 6267	XM D95667, 2554
XM_088739, 6268	XM_D96038, 3699
	XM_096060, 4241
XM_088745, 6289	XM .096146, 3539
XM_088747, 6128	XM .096149, 661
XM_088788, 338	XM .096155, 5967
XM_088863, 286	XM 096156, 5968
XM_088945,507	XM.096169, 1022
XM_089030, 622	XM .096172, 787
XM_089138, 254	XM 096195, 1190
XM_089514,3019	•
XM_089551, 3006	XM 096198, 1117
XM_090218, 3542	XM 096203, 1464
XM_090413, 3779	XM 096303, 6256
XM_090458, 3767	XM.096486, 3315
XM_090833, 638	XM_096520, 3165
XM_090914,4082	XM.096544, 3119
XM_090991,4191	XM_096566,3680
XM 091076, 1091	XM.096572, 3819
XM_091100, 4263	XM.096597, 3739
XM_091108,4124	XM 096606, 3608
XM .091159, 4157	XM_096620, 3578
XM_091270, 4483	XM_096630, 3486
XM_091399, 4590	XM_096661,3441
XM_091420, 4544	XM_096744, 4034
XM_091786, 3426	XM_096772, 3966
XM_091886, 5595	XM_096842, 4245
XM_091938, 5221	XM 096844, 4286
XM_091981,5586	XM_097043, 4984
XM_091984, 5396	XM_097193, 5001
XM_092042,5108	XM .097195, 5000
XM_092046, 5341	XM £097204, 4754
XM_092049, 5380	XM_097232, 5048
XM_092135,672	XM_097274,5510
XM_092158, 918	XM .097275, 5521
XM_092346, 944	XM_097300, 5222
XM_092489, 867	XM_097365, 5440
XM_092517,676	XM_097420, 5134
XM 092545, 970	XM_097453, 2068
XM_092760, 5696	XM .097519, 561
XM 092888, 5986	XM_097565, 249
XM 092966, 6113	XM_097639, 352
XM_093050, 6212	XM_097649, 198
XM_093130, 6226	XM_097713,5800
XM .093219, 6299	XM 097727, 5773
XM_093241, 6228	XM_097731,5795
XM_093423, 1308	XM_D97749, 5644
XM_093487, 1255	XM_097772,5731

	•
XM 097807, 5929	XM_113330, 5011
XM 097817, 5925	XM_113334, 4819
XM_097833,5950	XM_113343, 5028
XM_097886,5971	XM_113348, 5316
XM 097976,715	XM_113352, 5294
XM 098004,729	XM_113360, 386
XM_098047,962	XM_113361,598
XM .098048, 960	XM_113369, 361
XM_098109, 1345	XM_113374, 140
XM_098111,1245	XM_113379,473
XM 098154, 1232	XM_113380, 5749
XM_098158, 1103	XM_113390, 929
XM_098173, 1227	XM_113395, 1193
XM 098248, 1384	XM_113397, 1244
XM_098351, 1609	XM_113405, 1140
XM .098352, 1611	XM_113408, 1296
XM .098354, 1610	XM_113409, 1202
XM_098362, 1634	XM_113410, 1088
	XM 113417, 1254
XM .098387, 1778 XM .098405, 1534	XM_113422, 1329
•	XM_113425, 1452 XM_113425, 1452
XM_098468, 2108	XM_113423, 1432 XM_113452, 1556
XM_098599, 619	XM_113454, 1841
XM .098654, 2447	XM_113434, 1641 XM_113463, 1654
XM .098669, 2466	
XM_098747, 2582	XM_113467, 1720
XM_098761, 2564	XM_113468, 1845
XM_098913, 2843	XM_113476, 1860
XM_098943, 2725	XM_113531, 2526
XM .098995, 6302	XM_113532, 2627
XM 099467, 363	XM_113540, 2548
XM_102377, 4432	XM_113557, 2493
XM_103946, 665	XM_113564, 2846
XM_104983, 6263	XM_113585, 6122
XM_105236, 1289	XM_113615, 2927
XM_105658, 1325	XM_113702, 3862
XM_106246, 1520	XM_113712, 3635
XM_106739, 1562	XM_113719, 3560
XM 107825, 2225	XM_113726, 3584
XM_109162, 3075	XM_113730, 3519
XM_113223,3268	XM_113737, 3855
XM_113224,3275	XM_113739, 3437
XM_113226, 3400	XM_113752, 3946
XM_113229, 3366	XM_113759, 4105
XM_113230, 3363	XM_113823, 4163
XM_113238, 3152	XM_113836, 4326
XM_113266,4202	XM_113840, 4608
XM_113268, 4207	XM_113843, 4420
XM_113291,4429	XM_113845, 4418
XM_113293, 4467	XM 113853, 4570
XM_113299, 4504	XM_113855, 4560
XM_113303,5013	XM _113874, 4431
XM_113310,4723	XM_113876, 4426
XM_113315, 4944	XM_113882, 4640
XM_113324,4674	XM_113892, 4978
XM_113325,4703	XM_113901, 4653
XM_113328, 4695	XM_113919, 4905

XM_113929,4696	XM 114497, 2058
XM_113931,4706	XM_114555, 2429
XM_113938, 4824	XM_114578, 2444
XM_113943,5010	XM_114602, 2404
XM_113945,4998	XM_114613, 2625
XM_113951, 4962	XM_114617, 2517
XM_113988,5229	XM_114618, 2523
XM_114004, 5349	XM_114640, 2556
XM_114018, 5097	XM_114646, 2756
XM_114024, 5560	XM 114649, 2873
XM_114025, 5530	XM_114655, 2854
XM_114027,5366	XM_114661, 2677
XM_114030,560	XM_114662, 2688
XM_114044, 129	XM_114669, 2845
XM_114055, 384	XM_114677, 2802
XM_114062,3	XM_114678, 2801
XM_114097, 376	XM 114679, 2799
XM_114098, 360	XM_114686, 2699
XM_114109, 525	XM_114692, 6354
XM_114125, 259	XM_114708, 6291
	XM_114720, 6130
XM_114137, 634	XM_114724, 6119
XM_114153, 484	XM_114798, 233
XM_114154, 5875	XM_114862, 3104
XM_114163,5794	XM_114894, 2977
XM_114165, 5813	XM_114941, 3139
XM_114174, 5673	XM_115031, 3286
XM_114178, 5706	XM_115061, 3280 XM_115062, 3364
XM_114185, 5889	XM_15002, 3304 XM_15063, 3365
XM_114209, 6024	XM_15003, 3303 XM_15081, 3177
XM_114215, 816	
XM_114229, 838	XM_115117, 3570
XM_114247, 824	XM_115140, 3634
XM_114266, 851	XM_115197, 3809
XM_114267, 856	XM_115215, 3948
XM_114298, 957	XM_115352, 4333
XM_114301, 1225	XM_115480, 4910
XM_114309, 1242	XM_115603, 5466
XM_114323, 1141	XM_115615, 5395
XM_114328, 1344	XM_115672, 869
XM_114356, 1288	XM_115706, 1039
XM_114364, 1122	XM_115722, 1040
XM_114368, 1510	XM_115825, 1002
XM_114401, 1496	XM_115846, 5691
XM_114424, 1473	XM_115874, 6281
XM_114426, 1470	XM_115886, 6131
XM_114434, 1555	XM_115890, 6136
XM_114435, 1552	XM_115923, 6259
XM_114437, 1567	XM_115924, 6121
XM_114439, 1586	XM_116034, 1338
XM_114440, 1587	XM_116058, 1295
XM_114442, 1584	XM_116071, 1204
XM_114453, 1819	XM_116072, 1205
XM_114457, 1817	XM_116204, 1532
XM_114469, 1623	XM_116205, 1533
XM_114482, 1683	XM_116247, 1484
XM_114492, 2106	XM_116285, 1408
•	

XM_116307, 1691	XM_165451, 1268
XM_116340, 1807	XM_165465, 1531
XM_116365, 1856	XM_165470, 1528
XM_116427, 1648	XM_165473, 1482
XM_116439, 1593	XM_165483, 1818
XM_116447, 1606	XM_165484, 1820
XM_116465, 1716	XM_165488, 1615
XM_116511, 1857	XM_165499, 2057
XM_116514, 1861	XM_165514, 2579
XM_116524, 2140	XM_165530, 6355
XM_116806, 2789	XM_165533, 6235
XM_116818, 2738	XM_165551, 2913
•	XM_165555, 2889
XM_116853, 1139	
XM_116856, 1810	XM_165557, 2897
XM_116863, 2975	XM_165560, 2925
XM_116913, 3845	XM_165563, 2926
XM_116926, 3451	XM_165567, 2921
XM_117061, 4913	XM_165571, 3407
XM_117066, 4768	XM_165584, 3414
XM_117096, 5084	XM_165586, 3413
XM_117118,5379	XM_165592, 3401
XM_117122,5183	XM_165598, 3303
XM_117128,5605	XM_165600, 3310
XM_117159, 2	XM_165610, 3222
XM_17181,534	XM_165611, 3217
XM_117184, 163	XM_165612, 3223
XM_117185, 582	XM_165616, 3325
XM_117196, 641	XM_165627, 3335
XM_117209, 5688	XM_165628, 3341
XM_117264,736	XM_165631, 3328
XM_117311, 1337	XM_165636, 3903
XM_117351, 1412	XM_165639, 3917
XM 117387, 1622	XM_165645, 4534
XM_117398, 1641	XM_165647, 4528
XM_117444,2471	XM_165648, 4537
XM_117449, 2160	XM_165649, 4527
XM_117452, 2472	XM_165656, 4484
XM_117481, 2406	XM_165657, 4493
XM_117487, 2622	XM_165658, 4489
XM_117519, 2874	XM_165669, 2091
XM_117539, 6352	XM_165692, 2159
XM_117555, 6349	XM_165698, 1949
XM_117692, 28	XM_165717, 1954
XM_118637, 4251	XM_165728, 2036
XM_165390, 3427	XM_165738, 1999
XM_165410, 4583	XM_165740, 1865
XM_165411, 4413	XM_165743, 1937
XM_165418, 4713	XM_165747, 1948
XM_165421, 4701	XM_165749, 2037
XM_165422, 4704	XM_165758, 2013
XM_165432, 5541	XM_165764, 2011
XM_165438, 144	XM_165765, 1988
	XM 165770, 1986 XM 165770, 1951
XM_165439, 620	
XM_165442, 59	XM_165771, 1983 VM_165772_1876
XM_165443, 477	XM_165772, 1876
XM_165448,723	XM_165777, 2044

•	
XM_165794, 1921	XM_166177, 3406
XM_165799, 2006	XM_166181, 3403
XM_165801, 1956	XM_166196, 3308
XM_165809, 2016	
	XM_166232, 3227
XM_165836, 2350	XM_166234, 3224
XM_165839, 2346	XM_166235, 3293
XM_165841, 2197	XM_166236, 3294
XM_165860, 2167	XM_166239, 3349
XM 165867, 2249	XM_166253, 3336
XM_165870, 2245	XM_166266, 3904
XM 165872, 2253	XM 166273, 3886
XM_165876, 2258	XM_166277, 4532
XM_165877, 2240	XM_166282, 4491
XM_165882, 2248	XM_166285, 4490
XM_165888, 2934	XM_166288, 5071
XM 165890, 2929	XM_166303, 2092
, ·	·
XM_165891, 2941	XM_166310, 2101
XM_165903, 3633	XM 166327, 2157
XM_165905, 3579	XM_166333, 1932
XM_165906, 3532	XM_166336, 2021
XM 165910, 3465	XM_166340, 1882
XM_165921, 4127	XM.166349, 1872
XM_165923, 4325	XM_166353, 2002
XM_165954, 5026	XM_166357, 2049
XM 165960, 5347	XM_166360, 1938
XM 165963, 5367	XM_166361, 2009
XM_165975, 327	XM_166362, 1884
XM_165976, 373	XM_166363, 1940
XM_165977, 264	XM_166376, 2004
XM_165978, 532	XM_166381, 1992
XM_165981,290	XM_166392, 2019
XM_165983, 275	XM_166401, 1995
XM_165984, 175	XM_166402, 1896
XM_165994, 927	XM_166406, 2015
XM_165998, 893	XM_166412, 1910
XM_166007, 910	XM_166417, 1914
XM_166008, 900	XM 166419, 1920
XM_166011, 1121	XM_166425, 1888
XM_166014, 1275	XM_166446, 2042
	-
XM_166015, 1192	XM_166457, 1878
XM_166017, 1350	XM_166459, 1931
XM_166026, 1669	XM_166469, 1879
XM_166027, 1663	XM_166480, 1955
XM_166028, 1842	XM_166482, 2351
XM_166029, 1802	XM 166485, 2353
XM_166037, 1612	XM 166494, 2224
XM_166042, 2054	XM_166504, 2222
	·
XM_166049, 2147	XM_166505, 2202
XM_166063, 2540	XM_166506, 2200
XM_166064, 2558	XM_166509, 2219
XM_166078, 6142	XM 166512, 2205
XM_166081, 6255	XM 166513, 2220
XM_166093, 2984	XM_166514, 2203
XM_166125, 2966	
	-
	XM_166515, 2204
XM_166157, 2922 XM_166174, 3409	-

XM_166531, 2190
XM 166540, 2191,
XM_166541, 2168
XM_166594, 2230
XM_166599, 20
XM_166605, 3506
XM_166629, 2988
XM_166665, 2918
XM_166717, 2906
XM_166743, 3418
XM_167008, 5080
XM_167016, 2087
XM_167027, 2094
VM 167027 2006
XM.167037, 2096
XM_167046, 2150
XM_167128, 2023
XM_167161, 2025 XM_167169, 1868
XM_167169, 1868
XM 167179, 2031
XM 167196, 2041
XM_167225, 2047
XM_167339, 2264
XM_167363, 5065
XM_167366, 1209
XM 167374, 2898
XM_167395, 2963
XM_167411, 2901
XM 167414, 2904
XM_167433, 3324
XM 167437, 3192
XM_167439, 3876
XM_167453, 4538
XM_167456, 4541
XM_167476, 2321
XM_167477, 2325
XM 167483 2328
XM_167483, 2328 XM_167484, 2329
XM_167494, 2273
MINI 107474, 2273
XM_167498, 2301
XM_167500, 2299
XM_167502, 2312
XM_167504, 2300
XM_167518, 3754
XM 167530, 5529
XM 167538, 5945
XM_167558, 2645
XM_167626, 2887
XM 167626, 2887 XM 167716, 3244
XM_167726, 3248
XM 167747, 3234
XM 167748, 3228
XM_167780, 3417
XM_167804, 3291
XM_167853, 3318
XM_167892, 3883
XM_167906, 3877

XM 167911, 3868 XM 167918, 3869 XM_168054, 2103 XM 168070, 1928 XM 168104, 1994 XM 168123, 1877 XM 168181, 2322 XM 168251, 2323 XM 168354, 2271 XM 168378, 2269 XM 168435, 2316 XM_168450, 2315 XM_168454, 2302 XM_168461, 2311 XM_168464, 2317 XM 168470, 2310 XM 168548, 2375 XM 168572, 2380 XM_168586, 2360 XM 169414, 3880 XM 169540, 5078 XM_170195, 2267 XM_170427, 2318

Source Index (to Figure number)

WO 2004/030615

gen.NM_000018,4669	gen.NM_000484,5882
gen.NM_000026,6068	gen.NM_000505,1828
gen.NM_000029,624	gen.NM_000508,1511
gen.NM_000033,6342	gen.NM_000509,1515
gen.NM.000034,4520	gen.NM_000516,5830
gen.NM_000039,3376	gen.NM_000517,4354
gen.NM_000041,5511	gen.NM_000521, 1627
gen.NM_000070,4161	gen.NM_000526,4816
gen.NM_000075,3683	gen.NM_000532,1260
gen.NM_000077,2655	gen.NM_000554,5480
gen.NM_000079,898	gen.NM_000558,4356
gen.NM_000090,921	gen.NM_000559,3142
gen.NM_000107,3208	gen.NM_000569,505
gen.NM_000114,5836	gen.NM_000574,558
gen.NM_000121,5258	gen.NM_000576,847
gen.NM_000126,4267	gen.NM_000582, 1459
gen.NM_000137,4300	gen.NM_000592,1957
gen.NM_000143,636	gen.NM_000598,2228
gen.NM_000146,5562	gen.NM_000602,2361
gen.NM_000154,4967	gen.NM_000612,3120
gen.NM_000156,5122	gen.NM_000638,4763
gen.NM_000165,2099	gen.NM_000661,1425
gen.NM_000177,2796	gen.NM_000666,1172
gen.NM_000178,5738	gen.NM_000687,5736
gen.NM_000179,744	gen.NM_000688,1167
gen.NM_000182,713	gen.NM_000700,2695
gen.NM_000183,711	gen.NM_000701,312
gen.NM_000184,3144	gen.NM_000743,4259
gen.NM_000196,4547	gen.NM_000754,5956
gen.NM_000213,4963	gen.NM_000760,173
gen.NM_000221,701	gen.NM_000785,3687
gen.NM_000224,3593	gen.NM_000787,2830
gen.NM_000227,5040	gen.NM_000795,3384
gen.NM_000228,553	gen.NM_000801,5648
gen.NM_000239,3729	gen.NM_000852,3297
gen.NM_000250,4903	gen.NM_000858,612
gen.NM_000251,741	gen.NM_000893,1327
gen.NM_000268,5994	gen.NM_000895,3763
gen.NM_000269,4889	gen.NM_000930,2534
gen.NM_000274,3076	gen.NM_000931,2536
gen.NM_000284,6138	gen.NM_000942,4218
gen.NM_000291,6230	gen.NM_000954,2868
gen.NM_000358, 1671	gen.NM_000964,4820
gen.NM_000365,3460	gen.NM_000967,6061
gen.NM_000368,2806	gen.NM_000969,284
gen.NM_000385,2262	gen.NM_000970,3781
gen.NM_000386,4843	gen.NM_000971,2569
gen.NM_000396,356	gen.NM_000972,2826
gen.NM_000404,1089	gen.NM_000973,2633
gen.NM_000407,5947	gen.NM_000975,87
gen.NM_000422,4807	gen.NM_000976,2780
gen.NM_000425,6334	gen.NM_000977,4633
gen.NM_000447,594	gen.NM_000978,4801
POTEST 1717 - 000 - 111 - 177 - 1	Porrettir 2000 / 0, 4001

5	gen.NM_000979,5571	gen.NM_001168,4985
	gen.NM_000980,5334	gen.NM_001190,5568
	gen.NM_000981,4798	gen.NM_001199,2495
	gen.NM_000982,3091	gen.NM_001207,1624
	gen.NM_000983,34	gen.NM_001211,4139
	gen.NM_000985,5067	gen.NM_001218,4203
	gen.NM_000986, 1206	gen.NM_001235,3333
	gen.NM_000987,4714	gen.NM_001238,5374
	gen.NM_000989,2588	gen.NM_001247,5703
	gen.NM_000990,3155	gen.NM_001255, 194
	gen.NM_000990,5133	gen.NM_001262,229
•	gen.NM_000992,1170	gen.NM_001273,3468
		gen.NM_001274,3411
	gen.NM_000993,832	gen.NM_001275,4065
	gen.NM_000994, 1064	gen.NM_001283,2365
	gen.NM_000997, 1570	gen.NM_001283,2303
	gen.NM_000998,966	gen.NM_001288,1969
	gen.NM_001000,6278	
	gen.NM_001002,3827	gen.NM_001293,3337
	gen:NM_001003,4228	gen.NM_001294,5508
	gen.NM_001005,3331	gen.NM_001313,1396
	gen.NM_001006, 1506	gen.NM_001319,5141
	gen.NM_001007,6224	gen.NM_001320, 1971
	gen.NM_001009, 5633	gen.NM_001324,5814
	gen.NM_001010,2651	gen.NM_001325,6239
	gen.NM_001011,643	gen.NM_001333,2736
	gen.NM_001012,210	gen.NM_001344,3984
	gen.NM_001016,2111	gen.NM_001350, 1942
	gen.NM_001017,3171	gen.NM_001363,6318
	gen.NM_001018,5126	gen.NM_001407,1132
	gen.NM_001020, 5426	gen.NM_001415,6143
	gen.NM_001021,4283	gen.NM_001416,4687
	gen.NM_001022,5468	gen.NM_001418,3163
	gen.NM_001023,2552	gen.NM_001428,31
	gen.NM_001024,5847	gen.NM_001436,5436
	gen.NM_001025,1632	gen.NM_001444,2575
	gen.NM_001026,2980	gen.NM_001450,836
	gen.NM_001028,3361	gen.NM_001463,916
	gen.NM_001029, 3656	gen.NM_001465,1573
	gen.NM_001030,440	gen.NM_001467,3359
	gen.NM_001034,651	gen.NM_001469,6081
	gen.NM_001038,3478	gen.NM_001494,2891
	gen.NM_001043,4487	gen.NM_001500,2052
	gen.NM_001050,4841	gen.NM_001517,1997
	gen.NM_001064, 1159	gen.NM_001521,689
	gen.NM_001065, 3480	gen.NM_001530,4016
	gen.NM_001068, 1079	gen.NM_001536,5539
	gen.NM_001069, 2050	gen.NM_001539,2660
	gen.NM_001084,2369	gen.NM_001540,2308
	gen.NM_001087,994	gen.NM_001553,1435
	gen.NM_001098, 6079	gen.NM_001554,269
	gen.NM_001101,2174	gen.NM_001560,6270
	gen.NM_001102,4040	gen.NM_001567,3322
	gen.NM_001102,4040	gen.NM_001568,2596
	gen.NM_001134, 1446	gen.NM_001569,6332
		gen.NM_001571,5542
	gen.NM_001154,1489	gen.NM_001605,4564
	gen.NM_001157,2990	. genium:3001003,4304

gen.NM_001607,1097	gen.NM_002015,3896
gen.NM_001610,3206	gen.NM_002018,4719
gen.NM_001613,3008	gen.NM_002028,4010
gen.NM_001622,1330	gen.NM_002046,3473
gen.NM_001628,2423	gen.NM_002047,2265
gen.NM_001641,3997	gen.NM_002075,3463
gen.NM_001644,3511	gen.NM_002079,3066
gen.NM_001647,1352	gen.NM_002083,4012
gen.NM_001648,5590	gen.NM_002084,1704
gen.NM_001659,3550	gen.NM_002085,5112
gen.NM_001662,2398	gen.NM_002086,4953
gen.NM_001667,3284	gen.NM_002087,4845
gen.NM_001673,2355	gen.NM_002106, 1478
gen.NM_001687,5115	gen.NM_002109,1779
gen.NM_001688,308	gen.NM_002128,3887
gen.NM_001696,5941	gen.NM_002129,1522
gen.NM_001697,5892	gen.NM_002130,1582
gen.NM_001710, 1959	gen.NM_002133,6020
gen.NM_001734,3452	gen.NM_002137,2210
gen.NM_001743,5494	gen.NM_002157,930
gen.NM_001747,806	gen.NM_002161,2716
gen.NM_001751,3137	gen.NM_002168,4293
gen.NM_001753,2391	gen.NM_002178,3600
gen.NM_001757,5894	gen.NM_002211,2919
gen.NM_001760, 1898	gen.NM_002212,5742
gen.NM_001762,2274	gen.NM_002229,5272
gen.NM_001780,3663	gen.NM_002265,4834
gen.NM_001791,81	gen.NM_002273,3591
gen.NM_001816,5478	gen.NM_002274,4814
gen.NM_001819,5679	gen.NM_002275,4812
gen.NM_001827,2714	gen.NM_002276,4810
gen.NM_001831,2506	gen.NM_002295,1108
gen.NM_001833,2689	gen.NM_002305,6038
gen.NM_001842,2668	gen.NM_002306,4022
gen.NM_001853,5853	gen.NM_002339,3115
gen.NM_001861,4614	gen.NM_002340,5931
gen.NM_001862, 827	gen.NM_002342,3476
gen.NM_001878,392	gen.NM_002345,3752
gen.NM_001907,4579	gen.NM_002355,3489
gen.NM_001909,3133	gen.NM_002358, 1485
gen.NM_001920, 3740	gen.NM_002364,6147
gen.NM_001930, 5267	gen.NM_002385,5086
gen.NM_001935,894	gen.NM_002386,4626
gen.NM_001944,5050	
gen.NM_001959,950	gen.NM_002388,1866
	gen.NM_002396,5069
gen.NM_001961,5178	gen.NM_002396,5069 gen.NM_002397,1646
gen.NM_001961,5178 gen.NM_001964,1689	gen.NM_002396,5069 gen.NM_002397,1646 gen.NM_002401,4933
gen.NM_001961,5178 gen.NM_001964,1689 gen.NM_001969,4098	gen.NM_002396,5069 gen.NM_002397,1646 gen.NM_002401,4933 gen.NM_002411,3245
gen.NM_001961,5178 gen.NM_001964,1689 gen.NM_001969,4098 gen.NM_001970,4697	gen.NM_002396,5069 gen.NM_002397,1646 gen.NM_002401,4933 gen.NM_002411,3245 gen.NM_002413,1494
gen.NM_001961,5178 gen.NM_001964,1689 gen.NM_001969,4098 gen.NM_001970,4697 gen.NM_001975,3458	gen.NM_002396,5069 gen.NM_002397,1646 gen.NM_002401,4933 gen.NM_002411,3245 gen.NM_002413,1494 gen.NM_002414,6124
gen.NM_001961,5178 gen.NM_001964,1689 gen.NM_001969,4098 gen.NM_001970,4697 gen.NM_001975,3458 gen.NM_001983,5502	gen.NM_002396,5069 gen.NM_002397,1646 gen.NM_002401,4933 gen.NM_002411,3245 gen.NM_002413,1494 gen.NM_002414,6124 gen.NM_002415,5979
gen.NM_001961,5178 gen.NM_001964,1689 gen.NM_001969,4098 gen.NM_001970,4697 gen.NM_001975,3458 gen.NM_001983,5502 gen.NM_001985,5593	gen.NM_002396,5069 gen.NM_002397,1646 gen.NM_002401,4933 gen.NM_002411,3245 gen.NM_002413,1494 gen.NM_002414,6124 gen.NM_002415,5979 gen.NM_002453,751
gen.NM.001961,5178 gen.NM.001964,1689 gen.NM.001969,4098 gen.NM.001970,4697 gen.NM.001975,3458 gen.NM.001983,5502 gen.NM.001985,5593 gen.NM.002003,2834	gen.NM_002396,5069 gen.NM_002397,1646 gen.NM_002401,4933 gen.NM_002411,3245 gen.NM_002413,1494 gen.NM_002414,6124 gen.NM_002415,5979 gen.NM_002453,751 gen.NM_002466,5774
gen.NM_001961,5178 gen.NM_001964,1689 gen.NM_001969,4098 gen.NM_001970,4697 gen.NM_001975,3458 gen.NM_001983,5502 gen.NM_001985,5593 gen.NM_002003,2834 gen.NM_002004,422	gen.NM_002396,5069 gen.NM_002397,1646 gen.NM_002401,4933 gen.NM_002411,3245 gen.NM_002413,1494 gen.NM_002414,6124 gen.NM_002415,5979 gen.NM_002453,751 gen.NM_002466,5774 gen.NM_002468,1095
gen.NM.001961,5178 gen.NM.001964,1689 gen.NM.001969,4098 gen.NM.001970,4697 gen.NM.001975,3458 gen.NM.001983,5502 gen.NM.001985,5593 gen.NM.002003,2834	gen.NM_002396,5069 gen.NM_002397,1646 gen.NM_002401,4933 gen.NM_002411,3245 gen.NM_002413,1494 gen.NM_002414,6124 gen.NM_002415,5979 gen.NM_002453,751 gen.NM_002466,5774

gen.NM_002484,4416	gen.NM_002923,540
gen.NM_002486,2734	gen.NM_002934,3992
gen.NM_002489,2193	gen.NM_002938,1386
gen.NM_002492, 1297	gen.NM_002946,127
gen.NM_002512,4887	gen.NM_002947,2188
gen.NM_002520,1803	gen.NM_002948,1076
gen.NM_002537,4210	gen.NM_002952,4382
gen.NM_002539,659	gen.NM_002954,749
gen.NM_002567,3816	gen.NM_002961,369
gen.NM_002568,2593	gen.NM_002965,364
gen.NM_002574,220	gen.NM_002979,235
gen.NM_002588,1728	gen.NM_003002,3390
gen.NM_002606,5900	gen.NM_003021,5161
gen.NM_002615,4647	gen.NM_003025,5188
gen.NM_002617,12	gen.NM_003055,2947
gen.NM_002632,4052	gen.NM_003064,5781
gen.NM_002634,4939	gen.NM_003072,5254
gen.NM_002638,5779	gen.NM_003076,3568
gen.NM_002654,4242	gen.NM_003088,2176
gen.NM_002660,5771	gen.NM_003090,4320
gen.NM_002668,6185	gen.NM_003091,5654
gen.NM_002689,3289	gen.NM_003092,5683
gen.NM_002691,5580	gen.NM_003104,4187
gen.NM_002707,681	gen.NM_003107,2032
gen.NM_002712,1030	gen.NM_003123,4511
gen.NM_002720,4518	gen.NM_003124,789
gen.NM_002727,2961	gen.NM_003128,746
gen.NM_002730,5298	gen.NM_003132,50
gen.NM_002733,3555	gen.NM_003137,1916
gen.NM_002766,4975	gen.NM_003143,2435
gen.NM_002787,2254	gen.NM_003145,409
gen.NM_002789,4261	gen.NM_003146,3215
gen.NM_002792,5838	gen.NM_003149,1099
gen.NM_002793,2137	gen.NM_003169,5428
gen.NM_002796,346	gen.NM_003181,2135
gen.NM_002802,4059	gen.NM_003216,6077
gen.NM_002803,2378	gen.NM_003283,5608
gen.NM_002809,4805	gen.NM_003287,2104
gen.NM_002810,348	gen.NM_003289,2680
gen.NM.002812,5401	gen.NM_003290,5312
gen.NM.002813,3837	gen.NM .003295,3900
gen.NM_002815,4778	gen.NM_003310,649
gen.NM_002819,5102	gen.NM_003316,5896
gen.NM_002827,5809	gen.NM_003334,6167
gen.NM_002846,980	gen.NM_003349,5804
gen.NM_002854,1188	gen.NM_003350,2546
gen.NM_002856,5515	gen.NM_003365,1134
gen.NM_002857,481	gen.NM_003366,4421
gen.NM_002863,4029	gen.NM_003370,5499
gen.NM_002870,438	gen.NM003374,1677
gen.NM_002878,4784	gen.NM_003375,2982
gen.NM_002883,6075	gen.NM_003378,2367
gen.NM_002887,1800	gen.NM_003389,2728
gen.NM_002913,1427	gen.NM_003400,761
gen.NM_002915,3891	gen.NM_003401,1636
gen.NM_002921,3002	gen.NM_003406,2590
D	5

gen.NM_003418,1250	gen.NM_004053,1900
gen.NM_003453,3864	gen.NM_004060,1791
gen.NM_003461,2440	gen.NM_004074,3264
gen.NM_003472,2034	gen.NM_004084,2476
gen.NM_003516,459	gen.NM_004085,6242
gen.NM_003564,474	gen.NM_004092,3099
gen.NM_003598,5556	gen.NM_004111,3253
gen.NM_003617,497	gen.NM_004117,1918
gen.NM_003624,5214	gen.NM_004127,5008
gen.NM_003626,3316	gen.NM_004134,1693
gen.NM_003646,3197	gen.NM_004135,6340
gen.NM_003662,6149	gen.NM_004147,6011
gen.NM_003680,157	gen.NM_004152,5154
gen.NM_003681,5905	gen.NM_004159,1952
gen.NM_003685,5203	gen.NM_004175,5983
gen.NM_003687,1673	gen.NM_004176,4742
gen.NM_003689,71	gen.NM_004178,3614
gen.NM_003712,5093	gen.NM_004181,1430
gen.NM_003714,1812	gen.NM_004182,6174
gen.NM_003720,5898	gen.NM_004193,3045
gen.NM_003721,5360	gen.NM_004203,4402
gen.NM_003722, 1335	gen.NM_004208,6285
gen.NM_003729,288	gen.NM_004217,4699
gen.NM_003735,1730	gen.NM_004219,1795
gen.NM_003736,1732	gen.NM_004240,5206
gen.NM_003739,2883	gen.NM_004247,4879
gen.NM_003752,4449	gen.NM_004261,273
gen.NM_003753,6027	gen.NM_004265,3249
gen.NM_003755,5234	gen.NM_004309,5002
gen.NM_003756,2598	gen.NM_004322,3256
gen.NM_003757, 148	gen.NM_004323,2662
gen.NM_003765,5288	gen.NM_004324,5564
gen.NM_003766,4865	gen.NM_004335,5328
gen.NM_003779,468	gen.NM_004339,5921
gen.NM_003780, 199	gen.NM_004341,692
gen.NM_003787,5052	gen.NM_004345,1128
gen.NM_003815,457	gen.NM_004360,4549
gen.NM_003824,3313	gen.NM_004398,3392
gen.NM_003836,4088	gen.NM_004401,48
gen.NM_003837,2723	gen.NM_004404,1034
gen.NM_003859,5811	gen.NM_004435,2761
gen.NM_003876,4708	gen.NM_004448,4796
gen.NM_003877,3757	gen.NM_004461,5279
gen.NM_003906,5933	gen.NM_004483,4602
gen.NM .003908,5734	gen.NM_004493,6190
gen.NM_003915,5747	gen.NM_004509,1012
gen.NM_003932,6070	gen.NM_004510,1014
gen.NM_003937,881	gen.NM_004524,4960
gen.NM_003938,5148	gen.NM_004539,5072
gen.NM_003971,4891	gen.NM_004547,1218
gen.NM_003973,1110	gen.NM_004550,470
gen.NM_003979,3498	gen.NM_004551,3199
gen.NM_004000,306	gen.NM_004555,4586
gen.NM_004004,3866	gen.NM_004573,4141
gen.NM_004044,955	gen.NM_004595,6140
gen.NM_004048,4178	gen.NM_004596,5448

gen.NM_004599,6085	gen.NM_005015,3981
gen.NM_004618,4716	gen.NM_005016,3620
gen.NM_004632,414	gen.NM_005022,4665
gen.NM_004635, 1155	gen.NM_005030,4442
gen.NM_004636,1149	gen.NM_005036,6104
gen.NM_004637, 1246	gen.NM_005042,3524
gen.NM_004638, 1979	gen.NM_005053,5283
gen.NM_004639, 1973	gen.NM_005072,4581
gen.NM_004640, 1986	gen.NM_005080,5987
gen.NM_004673,529	gen.NM_005109,1093
gen.NM_004691,4545	gen.NM_005110,1854
gen.NM_004697,2751	gen.NM_005112,1421
gen.NM_004699,6323	gen.NM_005115,4500
gen.NM_004701,4197	gen.NM_005132,3962
gen.NM_004704, 1182	gen.NM_005141,1508
gen.NM_004706,5470	gen.NM_005163,4110
gen.NM_004714,5434	gen.NM_005171,3574
gen.NM_004725,3093	gen.NM_005174,2895
gen.NM_004728,2959	gen.NM_005194,5808
gen.NM_004735,1026	gen.NM_005217,2478
gen.NM_004738,5824	gen.NM_005220,4946
gen.NM_004739,3230	gen.NM_005224,5104
gen.NM_004766, 1270	gen.NM_005243,5989
gen.NM_004767,576	gen.NM_005269,3667
gen.NM_004772, 1650	gen.NM_005271,3004
gen.NM_004781,44	gen.NM_005291,854
gen.NM_004794,6287	gen.NM_005300,6159
gen.NM_004813,3190	gen.NM_005313,4174
gen.NM_004821,1787	gen.NM_005324,4969
gen.NM_004844,1066	gen.NM_005330,3146
gen.NM_004846,998	gen.NM_005333,6126
gen.NM_004859,4921	gen.NM_005345,1963
gen.NM_004870,4689	gen.NM_005346,1961
gen.NM_004889,2342	gen.NM_005347,2790
gen.NM_004893,1685	gen.NM_005348,4092
gen.NM_004905,511	gen.NM_005362,6316
gen.NM_004911,2442	gen.NM_005364,6308
gen.NM_004928,5915	gen.NM_005370,5314
gen.NM_004930,69	gen.NM_005371,3689
gen.NM_004933,4638	gen.NM_005378,657
gen.NM_004939,662	gen.NM_005389,2126
gen.NM_004957,2775	gen.NM_005432,4101
gen.NM_004960,4465	gen.NM_005439,3466
gen.NM_004964,150	gen.NM_005440,4877
gen.NM_004973,2039	gen.NM_005452, 1944
gen.NM_004982,3526	gen.NM_005474,4850
gen.NM_004990,3669	gen.NM_005490,5208
gen.NM_004992,6330	gen.NM_005498,5241
gen.NM_004994,5791	gen.NM_005514,2155
gen.NM_004995,3976	gen.NM_005517,110
gen.NM_005000,2396	gen.NM_005520, 1850
gen.NM_005000,2598	gen.NM_005548,4568
gen.NM_005002,3448 gen.NM_005003,4446	gen.NM_005563,105
gen.NM_005003,4446 gen.NM_005004,3063	•
gen.NM_005004,3063 gen.NM_005005,2606	gen.NM_005566,3175
	gen.NM_005572,404
gen.NM_005008,6083	gen.NM_005573,1718

gen.NM_005581,5517	gen.NM_006019,3304
gen.NM_005594,3628	gen.NM_006023,2899
gen.NM_005614,2460	gen.NM_006039,4936
gen.NM_005617,1708	gen.NM_006053,3306
gen.NM_005620,340	gen.NM_006058,1702
gen.NM_005623,4782	gen.NM_006066,218
gen.NM_005632,4362	gen.NM_006067,4612
gen.NM_005657,4170	gen.NM_006098, 1852
gen.NM_005663,1382	gen.NM.006101,5023
gen.NM_005676,6165	gen.NM_006109,3973
gen.NM_005686,550	gen.NM_006110,4423
gen.NM_005692,2458	gen.NM_006112,159
gen.NM_005693,3204	gen.NM_006114,5513
gen.NM_005698,424	gen.NM_006115,5975
gen.NM_005710,6181	gen.NM_006128,2497
gen.NM_005713,1602	gen.NM_006131,2499
gen.NM_005717,517	gen.NM_006132,2501
gen.NM_005718,1055	gen.NM_006136,2393
gen.NM_005720,2348	gen.NM_006169,3380
gen.NM_005724,4273	gen.NM_006184,5566
gen.NM_005726,3695	gen.NM_006227,5789
gen.NM_005729,2986	gen.NM_006230,2246
gen.NM_005731,996	gen.NM_006245,1892
gen.NM_005745,6344	gen.NM_006247,5497
gen.NM_005754,1697	gen.NM_006250,3522
gen.NM_005762,5627	gen.NM_006253,3831
gen.NM_005770,4176	gen.NM_006262,3546
gen.NM_005775,2491	gen.NM_006265,2600
gen.NM_005783,829	gen.NM_006271,374
gen.NM_005787,1316	gen.NM_006272,5935
gen.NM_005796,4575	gen.NM_006280,6338
gen.NM_005806,5887	gen.NM_006289,2682
gen.NM_005826,83	gen.NM_006295,1967
gen.NM_005830,3898	gen.NM_006303,2178
gen.NM_005831,4911	gen.NM_006330,2550
gen.NM_005833,2792	gen.NM_006335,571
gen.NM_005837,2326	gen.NM_006339,5171
gen.NM_005850,461	gen.NM_006342,1374
gen.NM_005851,3301	gen.NM_006349,2371
gen.NM_005855,1024	gen.NM_006354,1049
gen.NM_005866,2670	gen.NM_006362,3242
gen.NM_005877,5999	gen.NM_006365,396
gen.NM_005884,5421	gen.NM_006373,4875
gen.NM_005889,3509	gen.NM_006384,4305
gen.NM_005911,808	gen.NM_006387,5319
gen.NM_005915,864	gen.NM_006395, 1062
gen.NM_005917,764	gen.NM_006397,5277
gen.NM_005918,2306	gen.NM_006401,2732
gen.NM_005973,389	gen.NM_006427,4106
gen.NM_005981,3681	gen.NM_006428,4360
gen.NM_005983,1579	gen.NM_006429,792
gen.NM_005985,5802	gen.NM_006430,759
gen.NM_005997,350	gen.NM_006432,4048
gen.NM_006000,982	gen.NM_006435,3113
gen.NM_006012,5201	
gen.NM_006013,6326	gen.NM_006439,1504 gen.NM_006440,5954

gen.NM_006453,4384	gen.NM_006842,3295
gen.NM_006455,4822	gen.NM_006844,5308
gen.NM_006470,4725	gen.NM_006854,2184
gen.NM_006478,5991	gen.NM_006862,344
gen.NM_006488,703	gen.NM_006888,4063
gen.NM_006494,5476	gen.NM_006899,5661
gen.NM_006503,5441	gen.NM_006908,2182
gen.NM_006513,298	gen.NM_006924,4908
gen.NM_006516,188	gen.NM_006928,3660
gen.NM_006523,3055	gen.NM_006932,6007
gen.NM_006530,3727	gen.NM_006938,5039
gen.NM_006556,452	gen.NM_006941,6049
gen.NM_006559, 146	gen.NM_006942,4691
gen.NM_006576,3697	gen.NM_006990, 124
gen.NM_006585,5885	gen.NM_007002,5844
	gen.NM_007019,5785
gen.NM_006586,1894	gen.NM_007032,6040
gen.NM_006589,428	gen.NM_007034,267
gen.NM_006600,118	gen.NM_007046,705
gen.NM_006601,3636	gen.NM_007047,2029
gen:NM_006621,300	•
gen.NM_006625,93	gen.NM_007062,3805
gen.NM_006636,794	gen.NM_007065,5237
gen.NM_006646,3881	gen.NM_007074,4516
gen.NM_006659,3101	gen.NM_007085,1216
gen.NM_006666,5558	gen.NM_007096,2691
gen.NM_006667,6272	gen.NM_007100,1366
gen.NM_006670,2070	gen.NM_007103,3299
gen.NM_006693,2344	gen.NM_007104, 1922
gen.NM_006694,436	gen.NM_007158,302
gen.NM_006698,5760	gen.NM_007165,5152
gen.NM_006708, 1904	gen.NM_007173,3348
gen.NM_006711,4392	gen.NM_007178,3501
gen.NM_006746,6134	gen.NM_007184,1165
gen.NM_006761,4642	gen.NM_007186,5744
gen.NM_006763,548	gen.NM_007190,3089
gen.NM_006764,1151	gen.NM_007209,2794
gen.NM_006769,271	gen.NM_007242,4566
gen.NM_006787,6197	gen.NM_007244,3520
gen.NM_006791,4279	gen.NM_007260,89
gen.NM_006799,4408	gen.NM_007262,42
gen.NM_006801,5576	gen.NM_007263,5352
gen.NM_006805, 1687	gen.NM_007268,6204
gen.NM_006808,2740	gen.NM_007273,3455
gen.NM_006810, 1223	gen.NM_007275,1153
gen.NM_006812,3678	gen.NM_007276,2214
gen.NM_006815,3847	gen.NM_007279,5619
gen.NM_006816,1830	gen.NM_007310,5958
gen.NM_006817,3785	gen.NM_007311,6095
gen.NM_006821,4046	gen.NM.007317,4507
gen.NM_006824,192	gen.NM_007355,1874
gen.NM_006825,3807	gen.NM_007364,4277
gen.NM_006826,655	gen.NM_007372,4931
gen.NM_006833,2338	gen.NM_012068,5525
gen.NM_006835,1449	gen.NM_012098,2782
gen.NM_006837,2565	gen.NM_012099,5504
gen.NM_006839,814	gen.NM_012100,977
Entire rate for one North	0

•	
gen.NM_012101,3420	gen.NM_014173,5326
gen.NM_012111,4055	gen.NM_014176,578
gen.NM_012112,5715	gen.NM_014184,585
gen.NM_012116,5519	gen.NM_014188,17
gen.NM_012138,4838	gen.NM_014189,1390
gen.NM_012170,4265	gen.NM_014190,1388
gen.NM_012179,6017	gen.NM_014203,5536
gen.NM_012181,5350	gen.NM_014214,5032
gen.NM_012203,2693	gen.NM_014226,4095
gen.NM_012207,2955	gen.NM_014236,626
gen.NM_012237,5409	gen.NM_014248,6072
gen.NM_012248,4451	gen.NM_014255,3631
gen.NM_012255,5698	gen.NM_014267,3173
gen.NM_012264,6054	gen.NM_014275,1846
gen.NM_012286,6246	gen.NM_014285,2820
gen.NM_012296,3344	gen.NM_014294,2567
gen.NM_012323,6052	gen.NM_014303,6003
gen.NM_012391,1929	gen.NM_014306,6015
gen.NM_012412,2236	gen.NM_014311,3606
gen.NM_012423,5550	gen.NM_014320,2116
gen.NM_012425,3550	gen.NM_014321,4476
gen.NM_012458,5155	gen.NM_014325,3777
gen.NM_012469,5873	gen.NM_014325,3777
gen.NM_012486,596	gen.NM_014341,1906
gen.NM_012460,390 gen.NM_013237,1834	gen.NM_014353,4386
gen.NM_013247,801	_
	gen.NM_014408,167
gen.NM_013265,3279	gen.NM_014413,2180 gen.NM_014426,5685
gen.NM_013274,3037	
gen.NM_013277,3566	gen.NM_014444,4168
gen.NM_013296,292	gen.NM_014445,1284
gen.NM_013333,5617	gen.NM_014452,1870
gen.NM_013336,1238	gen.NM_014453,5625
gen.NM_013341,903	gen.NM_014481,6199
gen.NM_013363,1276	gen.NM_014501,5615
gen.NM_013365,6032	gen.NM_014502,3220
gen.NM_013369,5911	gen.NM_014515,3724
gen.NM_013375,2027	gen.NM_014556, 1394
gen.NM_013393,2165	gen.NM_014571,142
gen.NM_013402,3251	gen.NM_014585,923
gen.NM_013403,5492	gen.NM_014587,4370
gen.NM_013406,5269	gen.NM_014610,3232
gen.NM_013407,5270	gen.NM_014624,367
gen.NM_013417,2718	gen.NM_014649,5199
gen.NM_013442,2675	gen.NM_014663,202
gen.NM_013451,3013	gen.NM_014670,934
gen.NM_014003,4592	gen.NM_014685,4530
gen.NM_014008,6187	gen.NM_014713,667
gen.NM_014033,3576	gen.NM_014736,4214
gen.NM_014035,1664	gen.NM_014737,5676
gen.NM_014042,3320	gen.NM_014742,5721
gen.NM_014062,4556	gen.NM_014747,180
gen:NM_014063,2251	gen.NM_014748,684
gen.NM_014107,2077	gen.NM_014752,3329
gen.NM_014138,6163	gen.NM_014773,1721
gen.NM_014166,3906	gen.NM_014776,3792
gen.NM_014172,2862	gen.NM_014778,3878
•	-

gen.NM_014800,2259	gen.NM_016085,694
gen.NM_014814,1195	gen.NM_016091,6045
gen.NM_014829,1681	gen.NM_016095,4610
gen.NM_014837,519	gen.NM_016111,4374
gen.NM_014847,446	gen.NM_016119,3912
gen.NM_014849,463	gen.NM_016143,5652
gen.NM_014851,36	gen.NM_016169,3051
gen.NM_014868,3823	gen.NM_016174,2767
gen.NM_014887,3889	gen.NM_016176,26
gen.NM_014919,1378	gen.NM_016183,73
gen.NM_014931,5610	gen.NM_016202,5621
gen.NM_014933, 1457	gen.NM_016223,3210
gen.NM_014941,6005	gen.NM_016249,6300
gen.NM_014972,4628	gen.NM_016263,5169
gen.NM_015043, 1843	gen.NM_016267,6293
gen.NM_015062,3042	gen.NM_016286,5006
gen.NM_015064,3430	gen.NM_016292,4414
gen.NM_015068,2319	gen.NM_016304,4193
gen.NM_015129,6276	gen.NM_016328,2293
gen.NM_015140,6097	gen.NM_016357,3572
gen.NM_015179,3024	gen.NM_016359,4152
gen.NM_015322,4226	gen.NM_016361,328
gen.NM_015324,3149	gen.NM_016410,2664
gen.NM_015373,6056	gen.NM_016440,5523
gen.NM_015388, 1886	gen.NM_016445,4035
gen.NM_015438,3470	gen.NM_016456,564
gen.NM_015449,444	gen.NM_016498,6001
gen.NM_015453,1043	gen.NM_016526,3107
gen.NM_015472, 1282	gen.NM_016539,5181
gen.NM_015484,99	gen.NM_016558,5750
gen.NM_015511,5752	gen.NM_016567,3097
gen.NM_015533,3225	gen.NM_016579,5216
gen.NM_015544,4780	gen.NM_016587,2216
gen.NM_015584,4761	gen.NM_016592,5826
gen.NM_015629,5600	gen.NM_016638,3843
gen.NM_015636,686	gen.NM_016639,4398
gen.NM_015640,260	gen.NM_016641,4335
gen.NM_015644,1057	gen.NM_016645,4302
gen.NM_015646,3720	gen.NM_016647,2614 gen.NM_016732,5733
gen.NM_015665,3604	gen.NM_016838,887
gen.NM:015702,885	
gen.NM_015714,555	gen.NM_016839,889 gen.NM_016930,1400
gen.NM_015853,3238	gen.NM_016940,5883
gen.NM_015920,4205	gen.NM_016941,5432
gen.NM_015932,3884	gen.NM_017443,2753
gen.NM_015934,941	gen.NM_017458,4498
gen.NM_015937,5783	gen.NM_017438,4498 gen.NM_017491,1419
gen.NM_015953,5546	gen.NM_017546,834
gen.NM_015965,5362	gen.NM_017566,4617
gen.NM_015966,5745 gen.NM_016003,2172	gen.NM_017572,5146
	gen.NM_017572,5146 gen.NM_017595,4871
gen.NM_016016,4847	gen.NM_017601,1902
gen.NM_016022,334 gen.NM_016026,4037	gen.NM_017610,4195
gen.NM_016030,647	gen.NM_017613,5890
gen.NM_016059,1908	gen.NM_017647,4929
Ren'iatat or 10022' 1200	BOHT1111 TOT 1041,4323

gen.NM_017668,4327	gen.NM_018209,5861
gen.NM_017670,3266	gen.NM_018212,587
gen.NM_017684,4208	gen.NM_018217,5740
gen.NM_017722,5286	gen.NM_018238,2437
gen.NM_017751,859	gen.NM_018242,4747
gen.NM_017760,2467	gen.NM_018250,2510
gen.NM_017761,91	gen.NM_018253,418
gen.NM_017768,262	gen.NM_018255,5056
gen.NM_017777,4906	gen.NM_018270,5849
gen.NM_017789,825	gen.NM_018310,2527
gen.NM_017797,5143	gen.NM_018346,4898
	gen.NM_018357,4232
gen.NM_017801,1081	
gen.NM_017803,4584	gen.NM_018410,1018
gen.NM_017807,4003	gen.NM_018454,4154
gen.NM_017815,3971	gen.NM_018457,3610
gen.NM_017822,3552	gen.NM_018463,3442
gen.NM_017825, 165	gen.NM_018464,2951
gen.NM_017827,5413	gen.NM_018468,5387
gen.NM_017829,5939	gen.NM_018486,6222
gen.NM_017847,513	gen.NM_018509,4900
gen.NM_017853,4594	gen.NM_018607,721
gen.NM_017868,3386	gen.NM_018660,2512
gen.NM_017874,5668	gen.NM_018668,4312
gen.NM_017876,5098	gen.NM_018674,973
gen.NM_017882,4224	gen.NM_018686,3513
gen.NM_017883,6179	gen.NM_018912,1734
gen.NM_017891,8	gen.NM_018913,1736
gen.NM_017895,5798	gen.NM_018914,1738
gen.NM_017900,22	gen.NM_018915,1740
gen.NM_017901,3810	gen.NM_018916,1742
gen.NM_017910,674	gen.NM_018917,1744
gen.NM_017916,5554	gen.NM_018918,1746
gen.NM_017952,812	gen.NM_018919,1748
gen.NM_017955,4112	gen.NM_018920, 1750
gen.NM_017974, 1020	gen.NM_018921,1752
gen.NM_018019,4737	gen.NM_018922,1754
gen.NM_018023,1306	gen.NM_018923,1756
gen.NM_018032,4358	gen.NM_018924,1758
gen.NM_018034,1575	gen.NM_018925, 1760
gen.NM_018035,5458	gen.NM_018926, 1762
gen.NM_018047,1706	gen.NM_018927,1764
gen.NM_018048,3517	gen.NM_018928, 1766
gen.NM_018054,4436	gen.NM_018929,1768
gen.NM_018066, 116	gen.NM_018947,2208
gen.NM_018070,239	gen.NM_018948,41
gen.NM_018085,569	gen.NM_018950,2017
gen.NM_018096,4792	gen.NM_018955,4728
gen.NM_018110,4535	gen.NM_018957,6034
gen.NM_018113,3548	gen.NM_018977,6214
gen.NM_018116,420	gen.NM_019013,4682
gen.NM_018122,535	gen.NM_019058,2971
	gen.NM_019059,2206
gen.NM_018124,4588	gen.NM_019039,2200 gen.NM_019082,2242
gen.NM_018135,1880	•
gen.NM_018154,5300	gen.NM_019095,5681
gen.NM_018174,5332	gen.NM_019099,310
gen.NM_018188,10	gen.NM_019554,371

gen.NM_019606,2333	gen.NM_021932,3109
gen.NM_019609,5663	gen.NM_021934,3588
gen.NM_019619,2916	gen.NM_021948,394
gen.NM_019848,6321	gen.NM_021953,3444
gen.NM_019852,3988	gen.NM_021966,4079
gen.NM_019887,3839	gen.NM_021999,3908
gen.NM_020037,4895	gen.NM_022003,3369
gen.NM_020038,4893	gen.NM_022039,3039
gen.NM_020132,5908	gen.NM_022044,5973
gen.NM_020134,709	gen.NM_022048,4216
gen.NM_020149,4136	gen.NM_022105,5857
gen.NM_020158,5454	gen.NM_022137,4042
gen.NM_020188,4604	gen.NM_022141,6101
gen.NM_020230,5232	gen.NM_022158,5016
gen.NM_020243,6058	gen.NM_022170,2288
gen.NM_020299,2425	gen.NM_022171,1145
gen.NM_020315,6036	gen.NM_022362,3029
gen.NM_020320,2075	gen.NM_022369,4246
gen.NM_020347,1113	gen.NM_022371,527
gen.NM_020401,3717	gen.NM_022442,5806
gen.NM_020414,4069	gen.NM_022453,988
gen.NM_020418,1180	gen.NM_022458,2464
gen.NM_020548,871	gen.NM_022461,1086
gen.NM_020675,896	gen.NM_022485,1045
gen.NM_020677,4340	gen.NM_022550,1638
gen.NM_020701,1248	gen.NM_022551,1946
gen.NM_020990,4172	gen.NM_022552,717
gen.NM_020992,3017	gen.NM_022566,4296
gen.NM_021019,3646	gen.NM_022727,5961
gen.NM_021029,6244	gen.NM_022744,4468
gen.NM_021079,4883	gen.NM_022747,4084
gen.NM_021095,698	gen.NM_022748,2226
gen.NM_021103,803	gen.NM_022752,5474
gen.NM_021104,3654	gen.NM_022758,1926
gen.NM_021107,5415	gen.NM_022770,4539
gen.NM_021121,948	gen.NM_022778,107
gen.NM_021126,6029	gen.NM_022839,4290
gen.NM_021129,2964	gen.NM_022963,1838
gen.NM_021130,2238	gen.NM_023009,152
gen.NM_021141,958	gen.NM_023011,3940
gen.NM_021154,2701	gen.NM_023032,3691
gen.NM_021158,5638	gen.NM_023033,3693
gen.NM_021177,1965	gen.NM_023078,2620
gen.NM_021178,4006	gen.NM_023936,4378
gen.NM_021195,4400	gen.NM_023942,2449
gen.NM_021213,4919	gen.NM_024003,6336
gen.NM_021219,5879	gen.NM_024026,3872
gen.NM_021226,2945	gen.NM_024027,645
gen.NM_021626,4917	gen.NM_024029,5250
gen.NM_021709,4108	gen.NM_024031,4458
gen.NM_021728,4020	gen.NM_024033,2427
gen.NM_021826,5665	gen.NM_024040,3047
gen.NM_021830,3033	gen.NM_024045,2957
gen.NM_021831,707	gen.NM_024048,4470
gen.NM_021870,1517	gen.NM_024067,2186
gen.NM_021871,1513	gen.NM_024068,3643

gen.NM_024070,2335	gen.NM_025204,6109
gen.NM_024089,3935	gen.NM_025205,1414
gen.NM_024098,3218	gen.NM_025207,455
gen.NM_024099, 3236	gen.NM_025226,499
gen.NM_024104,5323	gen.NM_025232,2503
gen.NM_024111,4148	gen.NM_025233,4859
gen.NM_024294,1924	gen.NM_025234,4270
gen.NM_024297,4672	gen.NM_025241,5190
gen.NM_024299,5865	gen.NM_025263,2007
gen.NM_024319,614	gen.NM_030567,1826
gen.NM_024321,5389	gen.NM_030573,5965
gen.NM_024329,62	gen.NM_030579,4553
gen.NM_024330,379	gen.NM_030587,196
gen.NM_024333,5186	gen.NM_030593,5411
gen.NM_024339,4396	gen.NM_030775,3432
gen.NM_024407,5120	gen.NM_030782,1545
gen.NM_024507,4406	gen.NM_030815,5719
gen.NM_024516,4502	gen.NM_030819,4573
gen.NM_024537,3938	gen.NM_030877,5763
gen.NM_024567,2508	gen.NM_030900,2232
gen.NM_024571,4350	gen.NM_030920,332
gen.NM_024572,719	gen.NM_030921,1272
gen.NM_024586,247	gen.NM_030925,3910
gen.NM_024589,4346	gen.NM_030926, 1009
gen.NM_024602,206	gen.NM_030935,2331
gen.NM_024603,241	gen.NM_030973,5532
gen.NM_024613,2584	gen.NM_031157,3612
gen.NM_024627,5951	gen.NM_031206,6210
gen.NM_024640,137	gen.NM_031213,5138
gen.NM_024653,2373	gen.NM_031228,5642
gen.NM_024658,3960	gen.NM_031229,5640
gen.NM_024664,183	gen.NM_031243,2212
gen.NM_024668,1724	gen.NM_031263,2708
gen.NM_024671,4454	gen.NM_031289,3496
gen.NM_024691,5636	gen.NM_031300,1832
gen.NM_024709,603	gen.NM_031417,5506
gen.NM_024748,1526	gen.NM_031434,2456
gen.NM_024824,4057	gen.NM_031443,2234
gen.NM_024844,4955	gen.NM_031453,2902
gen.NM_024854,3529	gen.NM_031459,131
gen.NM_024855,5769	gen.NM_031465,3446
gen.NM_024863, 6248	gen.NM_031472,3261
gen.NM_024881,5321	gen.NM_031478,4522
gen.NM_024900,1491	gen.NM_031479,3665
gen.NM_024918,5757	gen.NM_031482, 1629
gen.NM_024942,3095	gen.NM_031484,3070
gen.NM_025070,2541	gen.NM_031485,5574
gen.NM_025072,2772	gen.NM_031901,336
gen.NM_025108,4411	gen.NM_031925,2304
gen.NM_025129,5534	gen.NM_031942,905
gen.NM_025150,358	gen.NM_031966, 1598
gen.NM_025164,3374	gen.NM_031968,5014
gen.NM_025168, 1863	gen.NM_031989,3622
gen.NM_025197,4830	gen.NM_031990,5100
gen.NM_025202, 1000	gen.NM_031992,2290
gen.NM_025203,678	gen.NM_032023,2923

gen.NM_032038,4495	gen.NM_032756,222
gen.NM_032088, 1770	gen.NM_032792,5631
gen.NM_032092,1772	gen.NM_032799,2763
gen.NM_032112,3031	gen.NM_032814,3812
gen.NM_032140,4571	gen.NM_032822,785
gen.NM_032162,4310	gen.NM_032827,810
gen.NM_032164,2340	gen.NM_032864,245
gen.NM_032196,4150	gen.NM_032871,3326
gen.NM_032204,5996	gen.NM_032872,122
gen.NM_032207,5317	gen.NM_032873,3415
gen.NM_032211,3068	gen.NM_032890,606
gen.NM_032212,843	gen.NM_032904,3794
gen.NM_032219,1370	gen.NM_032905,2893
gen.NM_032227,6257	gen.NM_032907,4248
gen.NM_032271,4388	gen.NM_032928,2860
gen.NM_032280, 1642	gen.NM_032929,2081
gen.NM_032288, 1354	gen.NM_032933,5037
gen.NM_032292,412	gen.NM_032951,2284
gen.NM_032299,3395	gen.NM_032953,2286
gen.NM_032313,1437	gen.NM_032958,2376
gen.NM_032322,4771	gen.NM_032989,3258
gen.NM_032323,402	gen.NM_032997,2949
gen.NM_032324,630	gen.NM_032999,2295
gen.NM_032330,4485	gen.NM_033008,1176
gen.NM_032331,1318	gen.NM_033010,1178
gen.NM_032333,2996	gen.NM_033011,2538
gen.NM_032338,3712	gen.NM_033022,2978
gen.NM_032342,2746	gen.NM_033046,796
gen.NM_032343, 1235	gen.NM_033070,5937
gen.NM_032350,2163	gen.NM_033161,2828
gen.NM_032361,1814	gen.NM_033197,5729
gen.NM_032376,4854	gen.NM_033219,2730
gen.NM_032377,5262	gen.NM_033251,4635
gen.NM_032379,3346	gen.NM_033296,1404
gen.NM_032383, 1280	gen.NM_033301,2635
gen.NM_032390,875	gen.NM_033316,1348
gen.NM_032402, 1776	gen.NM_033363,5417
gen.NM_032403,1774	gen.NM_033410,4456
gen.NM_032486,4444	gen.NM_033415,5355
gen.NM_032527,5869	gen.NM_033416,878
gen.NM_032565,3914	gen.NM_033421,5787
gen.NM_032626,4440	gen.NM_033440,60
gen.NM_032627,5345	gen.NM_033534,15
gen.NM_032635,5393	gen.NM_033544,4315
gen.NM_032636,296	gen.NM_033551,1785
gen.NM_032637,1577	gen.NM_052837,426
gen.NM_032642,3434	gen.NM_052848,5451
gen.NM_032656,3851	gen.NM_052859,1157
gen.NM_032667,3240	gen.NM_052862,488
gen.NM_032712,5588	gen.NM_052881,5656
gen.NM_032726,990	gen.NM_052886,2602
gen.NM_032737,5157	gen.NM_052936,6251
gen.NM_032738,503	gen.NM_052963,2616
gen.NM_032747,3061	gen.NM_052984,3685
gen.NM_032750,1174	gen.NM_053043,2462
gen.NM_032753,5173	gen.NM_053056,3311

gen.NM_053275,3829	gen.NM_133627,4786
gen.NM_054012,2822	gen.NM_133629,4790
gen.NM_054013,1848	gen.NM_133630,4788
gen.NM_054014,5650	gen.NM_133637,798
gen.NM_054016,95	gen.NM_133645,2066
gen.NM_057089,2363	gen.NM_134269,6009
gen.NM_057161,1890	gen.NM_134323,3616
gen.NM_057169,3790	gen.NM_134324,3618
gen.NM_057174,3188	gen.NM_134440,5358
gen.NM_057182,5376	gen.NM_138385,1372
gen.NM_058164,5230	gen.NM_138391,545
gen.NM_058179,2703	gen.NM_138427,4739
gen.NM_058192,4366	gen.NM_138434,2451
gen.NM_058193,3422	gen.NM_138443,5060
gen.NM_058195,2653	gen.NM_138483,1037
gen.NM_058196,2657	gen.NM_138578,5713
gen.NM_058199,2836	gen.NM_138614,1125
gen.NM_078467,1912	gen.NM_138699,1406
gen.NM_079423,3648	gen.NM_138801,727
gen.NM_079425,3650	gen.NM_138924,5124
gen.NM_080424, 1016	gen.XM_001289,524
gen.NM_080425,5828	gen.XM_001299,33
	gen.XM_001389,1453
gen.NM_080426,5832	gen.XM_001468,342
gen.NM_080491,3342	gen.XM_001472,250
gen.NM_080592,696	gen.XM_001472,250 gen.XM_001482,3658
gen.NM_080594,4394	
gen.NM_080598,1984	gen.XM_001589,24
gen.NM_080648,3999	gen.XM_001616,101
gen.NM_080649,4001	gen.XM_001640,126
gen.NM_080670,1726	gen.XM_001807,135
gen.NM_080686,1981	gen.XM_001812,134
gen.NM_080687,3942	gen.XM_001826,78
gen.NM_080702, 1977	gen.XM_001897,486
gen.NM_080703, 1975	gen.XM_001914,567
gen.NM_080796,5855	gen.XM_001916,568
gen.NM_080797,5859	gen.XM_001958,599
gen.NM_080820,5693	gen.XM_002068,523
gen.NM_080822,4654	gen.XM_002105,141
gen.NM_106552,670	gen.XM_002114,113
gen.NM_130398,639	gen.XM_002217,845
gen.NM_130442,2260	gen.XM_002255,1361
gen.NM_130468,4143	gen.XM_002435,700
gen.NM_130898,434	gen.XM_002447,877
gen.NM_133330,1376	gen.XM_002480,680
gen.NM_133332,1380	gen.XM_002540,1006
gen.NM_133373,4885	gen.XM_002611,823
gen.NM_133375,4222	gen.XM_002636,964
gen.NM_133436,2357	gen.XM_002647,770
gen.NM_133480,1051	gen.XM_002669,946
gen.NM_133481,1053	gen.XM_002674,776
gen.NM_133483,3676	gen.XM_002704,853
gen.NM_133503,3742	gen.XM_002727,788
gen.NM_133504,3744	gen.XM_002739,779
gen.NM_133505,3746	gen.XM_002742,1036
gen.NM_133506,3750	gen.XM_002828,1143
gen.NM_133507,3748	gen.XM_002854,1187
Porter respectively 140	D

WD 4 4107	XD 4 004455 0105
gen.XM_002855, 1186	gen.XM_006475,3135
gen.XM_002859,1274	gen.XM_006483,3136
gen.XM_002899,1127	gen.XM_006529,3281
gen.XM_003213,1162	gen.XM_006533,3270
gen.XM_003222,1119	gen.XM_006566,3849
gen.XM_003245,1136	gen.XM_006578,3736
gen.XM_003305, 1451	gen.XM_006589,3766
gen.XM_003435, 1432	gen.XM_006595,3835
gen.XM_003477,1530	gen.XM_006694,3535
gen.XM_003511,1448	gen.XM_006710,3626
gen.XM_003555,1500	gen.XM_006748,3536
gen.XM_003611,2083	gen.XM_006826,3559
gen.XM_003716,1811	gen.XM_006887,3765
gen.XM_003771,1644	gen.XM_006925,3485
gen.XM_003771,1044 gen.XM_003789,1712	gen.XM_006936,3483
	gen.XM_006937,5074
gen.XM_003825,1540	gen.XM_006947,3482
gen.XM_003830,1666	gen.XM_006958,3475
gen.XM_003841,1699	
gen.XM_003869, 1572	gen.XM_007002,3797
gen.XM_003896,1581	gen.XM_007003,3796
gen.XM_003937,1710	gen.XM_007199,3923
gen.XM_004009,1565	gen.XM_007254,4097
gen.XM_004098,3704	gen.XM_007272,4081
gen.XM_004151,2065	gen.XM_007288,3968
gen.XM_004256,2114	gen.XM_007293,3967
gen.XM_004297,2113	gen.XM_007315,3958
gen.XM_004330,3194	gen.XM_007316,3957
gen.XM_004379,2122	gen.XM_007324,4027
gen.XM_004383,2130	gen.XM_007328,4024
gen.XM_004526,2110	gen.XM_007441,4045
gen.XM_004627,2402	gen.XM_007483,4072
gen.XM_004901,2292	gen.XM_007488,4005
gen.XM_005060,2605	gen.XM_007491,3996
gen.XM_005086,1042	gen.XM_007531,4167
gen.XM_005100,2908	gen.XM_007545,4156
gen.XM_005180,1332	gen.XM_007623,4221
gen.XM_005305,2485	gen.XM_007651,4189
gen.XM_005348,2755	gen.XM_007751,4129
gen.XM_005365,2760	gen.XM_007963,4474
gen.XM_005490,2707	gen.XM_007988,4430
gen.XM_005525,2727	gen.XM_008064,4509
gen.XM_005543,2666	gen.XM_008065,4497
gen.XM_005675,3103	gen.XM_008106,4463
gen.XM_005698,3053	gen.XM_008126,4353
gen.XM_005098,5035 gen.XM_005724,2878	gen.XM_008150,4800
	gen.XM_008231,4694
gen.XM_005938,3058	gen.XM_008253,4926
gen.XM_005969,3088	0
gen.XM_006139,3127	gen.XM_008323,4750
gen.XM_006170,3201	gen.XM_008334,4671
gen.XM_006212,3167	gen.XM_008351,4856
gen.XM_006290,98	gen.XM_008401,4867
gen.XM_006297,3196	gen.XM_008402,4869
gen.XM_006424,3151	gen.XM_008432,4902
gen.XM_006432,3371	gen.XM_008441,4686
gen.XM_006464,3355	gen.XM_008459,4915
gen,XM_006467,3399	gen.XM_008462,4777

gen.XM_008486,4760	gen.XM_010272,6132
gen.XM_008509,4658	gen.XM_010362,6274
gen.XM_008538,4684	gen.XM_010378,6169
gen.XM_008557,4650	gen.XM_010436,6280
gen.XM_008579,4809	gen.XM_010494,3429
gen.XM_008679,4693	gen.XM_010615,253
gen.XM_008695,5089	gen.XM_010636,451
gen.XM_008723,5054	gen.XM_010664,133
gen.XM_008812,5083	gen.XM_010682,581
gen.XM_008830,5597	gen.XM_010712,182
gen.XM_008851,5522	gen.XM_010732,593
gen.XM_008854,5325	gen.XM_010778,925
gen.XM_008860,5485	gen.XM_010852,938
gen.XM_008878,5472	gen.XM_010858,1004
gen.XM_008887,5243	gen.XM_010866,992
gen.XM_008912,5453	gen.XM_010881,771
gen.XM_008985,5531	gen.XM_010886,755
gen.XM_009010,5205	gen.XM_010938,4641
gen.XM_009036,5486	gen.XM_010941,1433
gen.XM_009063,5274	gen.XM010953,1130
gen.XM_009082,5256	gen.XM_010978,1290
gen.XM_009125,5484	gen.XM_011074,1320
gen.XM_009126,5496	gen.XM_011089,5076
gen.XM_009149,5406	gen.XM_011117,2059
gen.XM_009180,5378	gen.XM_011118,4941
gen.XM_009203,5443	gen.XM_011129,1423
gen.XM_009222,5165	gen.XM_011160,1365
gen.XM_009277,5113	gen.XM_011548,2411
gen.XM_009279,5110	gen.XM_011618,2400
gen.XM_009293,5338	gen.XM_011629,2533
gen.XM_009303,5310	gen.XM_011642,2586
gen.XM_009330,5357	gen.XM_011650,66
gen.XM_009338,5384	gen.XM_011657,2592
gen.XM_009436,5705	gen.XM_011749,2798
gen.XM_009450,5728	gen.XM_011752,2786
gen.XM_009501,5754	gen.XM_011769,2562
gen.XM_009549,5816	gen.XM_011778,2832
gen.XM_009622,5647	gen.XM_011988,3260
gen.XM_009642,5759	gen.XM_012124,3836
gen.XM_009671,5823	gen.XM_012145,3761
gen.XM_009672,5821	gen.XM_012159,3494
gen.XM_009686,5762	gen.XM_012162,3598
gen.XM_009805,5919	gen.XM_012179,5337
gen.XM_009947,6022	gen.XM_012182,3638
gen.XM_009967,6031	gen.XM_012184,3861
gen.XM_009973,6042	gen.XM_012219,3759
gen.XM_010000,6063	gen.XM_012272,3543
gen.XM_010002,6064	gen.XM_012284,2395
gen.XM_010024,6087	gen.XM_012376,3990
gen.XM_010029,6094	gen.XM_012377,3983
gen.XM_010040,6103	gen.XM_012398,4133
gen.XM_010055,6108	gen.XM_012418,4199
gen.XM_010117,6269	gen.XM_012462,4322
gen.XM_010141,6216	gen.XM_012487,4555
gen.XM_010156,5266	gen.XM_012549,4734
gen.XM_010178,6310	gen.XM_012569,4461

gen.XM_012609,4945		gen.XM_016288,880
gen.XM_012615,4744		gen.XM_016308,2726
gen.XM_012634,4950		gen.XM_016334,1294
gen.XM_012638,3874		gen.XM_016345,1799
gen.XM_012642,4849		gen.XM_016351,3924
gen.XM_012651,4916		gen.XM_016378,5364
gen.XM_012676,4675		gen.XM_016382,5036
gen.XM_012741,5031	•	gen.XM_016410,5438
gen.XM_012741,5051		gen.XM_016480,326
_		gen.XM_016486,4071
gen.XM_012812,5370		gen.XM_016487,4068
gen.XM_012860,5439		gen.XM_016605,3708
gen.XM_012862,5195		
gen.XM_012913,5114		gen.XM_016625,773
gen.XM_012931,5768		gen.XM_016640,3538
gen.XM_012970,5700		gen.XM_016674,1652
gen.XM_013010,6066		gen.XM_016700,2433
gen.XM_013015,6089		gen.XM_016713,4165
gen.XM_013029,6118		gen.XM_016733,2256
gen.XM_013042,6207		gen.XM_016843,766
gen.XM_013060,6196		gen.XM_016857,1941
gen.XM_013086,6145		gen.XM_016871,5180
gen.XM_013112,2530		gen.XM_016985,4213
gen.XM_013127,2577		gen.XM_017080,3436
gen.XM_015234,75		gen.XM_017096,4644
gen.XM_015241,5088		gen.XM_017204,5240
gen.XM_015243,3148		gen.XM_017234,4712
gen.XM_015258,2244		gen.XM_017240,4135
gen.XM_015366,4239		gen.XM_017315,67
gen.XM_015434,547		gen.XM_017356,1291
gen.XM_015462,1208		gen.XM_017364,1105
gen.XM_015468,3596		gen.XM_017369,3394
gen.XM_015476,3585		gen.XM_017432,3895
gen.XM_015481,3580		gen.XM_017442,2313
gen.XM_015516,6206		gen.XM_017474,1679
gen.XM_015563,1525		gen.XM_017483,2280
gen.XM_015652,2937		gen.XM_017508,3710
gen.XM_015697,5264		gen.XM_017517,2080
gen.XM_015700,4478		gen.XM_017578,4980
gen.XM_015705,3214		gen.XM_017591,1701
gen.XM_015717,257		gen.XM_017641,1544
gen.XM_015755,5046		gen.XM_017698,861
дел.ХМ_015769,5369		gen.XM_017816,2581
gen.XM_015835,4311		gen.XM_017831,2119
-		gen.XM_017846,109
gen.XM_015840,3921		gen.XM_017857,1640
gen.XM_015842,3932		gen.XM_017914,3953
gen.XM_015920,909		
gen.XM_015922,911		gen.XM_017925,1476
gen.XM_016047,2604		gen.XM_017930,6284
gen.XM_016076,4237		gen.XM_017931,2659
gen.XM_016093,2992	•	gen.XM_017971,4319
gen.XM_016113,2712		gen.XM_017984,4338
gen.XM_016125,6275		gen.XM_017996,2711
gen.XM_016139,3170		gen.XM_018006,2710
gen.XM_016164,276		gen.XM_018019,6157
gen.XM_016170,1554		gen.XM_018039,784
gen.XM_016199,600		gen.XM_018041,642

gen.XM_018054,4123	gen.XM_028347,4074
gen.XM_018088,4472	gen.XM_028358,4073
gen.XM_018108,6313	gen.XM_028398,4667
gen.XM_018109,6315	gen.XM_028417,4678
gen.XM_018136, 161	gen.XM_028643,3624
gen.XM_018142,6232	gen.XM_028662,3561
gen.XM_018149,1264	gen.XM_028666,5383
gen.XM_018167,3015	gen.XM_028672,5382
gen.XM_018182,2098	gen.XM_028744,5025
gen.XM_018205,64	gen.XM_028760,3554
gen.XM_018241,6161	gen.XM_028783,5851
gen.XM_018279,3057	gen.XM_028806,5765
gen.XM018287,2595	gen.XM_028810,5766
gen.XM_018301,763	gen.XM_028834,5863
gen.XM_018332,314	gen.XM_028848,4390
gen.XM_018359,2281	gen.XM_028918,5867
gen.XM_018399,3918	gen.XM_028966,5871
gen.XM_018432,4331	gen.XM_029031,169
gen.XM_018473,1658	gen.XM_029096, 1539
	gen.XM_029104,1314
gen.XM_018515,5354	gen.XM_029104,1314 gen.XM_029132,1313
gen.XM_018523,1359	gen.XM_029136,1310
gen.XM_018534,4840	•
gen.XM_018539,6014	gen.XM_029168,2841
gen.XM_018540,841	gen.XM_029187,6194
gen.XM_026944,2787	gen.XM_029228,2069
gen.XM_026951,2771	gen.XM_029288,4067
gen.XM_026968,2769	gen.XM_029369,1198
gen.XM_026985,2766	gen.XM_029438,4656
gen.XM_026987,2765	gen.XM_029450,5404
gen.XM_027102,3802	gen.XM_029455,5403
gen.XM_027143,6106	gen.XM_029461,6282
gen.XM_027161,1220	gen.XM_029567,2609
gen.XM_027214,2385	gen.XM_029631,3602
gen.XM_027309,4329	gen.XM_029728,3595
gen.XM_027313,226	gen.XM_029746,2128
gen.XM_027365,4334	gen.XM_029805,3507
gen.XM_027412,4368	gen.XM_029810,5776
gen.XM_027440,2505	gen.XM_029822,5778
gen.XM_027558,4352	gen.XM_029842,176
gen.XM_027651,2490	gen.XM_029844, 145
gen.XM_027679,2488	gen.XM_030044,5796
gen.XM_027825,4661	gen.XM_030203,1028
gen.XM_027904,5548	gen.XM_030268,2543
gen.XM_027916,76	gen.XM_030274,2544
gen.XM_027952,6353	gen.XM_030326,3187
gen.XM_027963,936	gen.XM_030373,6233
gen.XM_027964,1619	gen.XM_030417,1112
gen.XM_027983,213	gen.XM_030423,154
gen.XM_028034,940	gen.XM_030447,3065
gen.XM_028064,5119	gen.XM_030470,68
gen.XM_028067,5117	gen.XM_030485,5159
gen.XM_028151,4562	gen.XM_030529,862
gen.XM_028192,3117	gen.XM_030582,883
gen.XM_028263,5488	gen.XM_030621,5818
gen.XM_028267,5491	gen.XM_030699,5834
gen.XM_028322,4075	gen.XM_030714,5145
BOILINI TOTODET, AOLD	Portrary 2020 14,2142

gen.XM_030720,5137	gen.XM_032588,3457
gen.XM_030721,5135	gen.XM_032614,3462
gen.XM_030771,1821	gen.XM_032710,5247
gen.XM_030777,1823	gen.XM_032719,5248
gen.XM_030782,1824	gen.XM_032724,5252
gen.XM_030812,1256	gen.XM_032759,1700
gen.XM_030834,952	gen.XM_032766,4864
gen.XM_030895,5465	gen.XM_032774,5257
gen.XM_030901,5456	gen.XM_032782,5261
gen.XM_030914,5450	gen.XM_032813,4863
•	•
gen.XM_030920,40	gen.XM_032817,4861
gen.XM_031025,4032	gen.XM_032852,4857
gen.XM_031074,4039	gen.XM_032895,1590
gen.XM_031251,5307	gen.XM_032902,1588
gen.XM_031263,5305	gen.XM_032930,6189
gen.XM_031273,5303	gen.XM_032944,2470
gen.XM_031276,5302	gen.XM_032996,5943
gen.XM_031292,4295	gen.XM_033015,5902
gen.XM_031320,1445	gen.XM_033016,5903
gen.XM_031345,5292	gen.XM_033090,5946
gen.XM_031354,4292	gen.XM_033147,6241
gen.XM_031404,4285	gen.XM_033227,3450
gen.XM_031415,4767	gen.XM_033232,6351
gen.XM_031427,4769	gen.XM_033251,3959
gen.XM_031466,4765	gen.XM_033263,3472
gen.XM_031515,4147	gen.XM_033294,1123
gen.XM_031519,731	gen.XM_033337,3964
gen.XM_031527,733	gen.XM_033355,2819
gen.XM_031536,4758	gen.XM_033359,2818
gen.XM_031554,4145	gen.XM_033360,2817
gen.XM_031585,782	gen.XM_033361,2815
gen.XM_031586,783	gen.XM_033362,2811
gen.XM_031596,780	gen.XM_033380,2809
gen.XM_031617,4138	gen.XM_033385,2808
gen.XM_031626,738	gen.XM_033391,3969
gen.XM_031718,4159	gen.XM_033424,2774
gen.XM_031807,3491	gen.XM_033424,2774 gen.XM_033435,3975
gen.XM_031857,5184	gen.XM_033445,3980
•	
gen.XM_031866,3041	gen.XM_033457,2777
gen.XM_031890,3044	gen.XM_033460,2778
gen.XM_031917,5176	gen.XM_033553,3991
gen.XM_031944,5066	gen.XM_033595,3994
gen.XM_031949,3049	gen.XM_033654,79
gen.XM_031992,3059	gen.XM_033683,77
gen.XM_032020,5281	gen.XM_033689,4646
gen.XM_032121,2455	gen.XM_033714,4645
gen.XM_032201,4836	gen.XM_033813,5960
gen.XM_032216,2454	gen.XM_033862,6173
gen.XM_032269,1221	gen.XM_033876,2383
gen.XM_032285,5399	gen.XM_033878,6172
gen.XM_032391,216	gen.XM_033884,6170
gen.XM_032403,4180	gen.XM_033910,2134
gen.XM_032443,3930	gen.XM_033912,2132
gen.XM_032476,2976	gen.XM_033922,4606
gen.XM_032520,2970	gen.XM_034000,501
gen.XM_032553,1626	gen.XM_034082,454
•	5 =====, 101

gen.XM_034321,1502	gen.XM_036465,4825
gen.XM_034375,4460	gen.XM_036500,573
gen.XM_034377,5623	gen.XM_036507,575
gen.XM_034431,3185	gen.XM_036528,4410
gen.XM_034586,4376	gen.XM_036556,566
gen.XM_034590,4380	gen.XM_036593,2939
gen.XM_034640,2638	gen.XM_036659,4707
gen.XM_034662,319	gen.XM_036680,4342
gen.XM_034671,318	gen.XM_036727,4134
gen.XM_034710,1466	gen.XM_036744,433
gen.XM_034713,1468	gen.XM_036755,5927
gen.XM_034744,1655	gen.XM_036785,4982
gen.XM_034862, 1675	gen.XM_036829,442
gen.XM_034890,4184	gen.XM_036845,450
gen.XM_034897,4256	gen.XM_036934,448
gen.XM_034935,6201	gen.XM_036937,5969
gen.XM_034952,857	gen.XM_036938,1197
gen.XM_034953,4116 ·	gen.XM_037002, 1668
gen.XM_035014,4119	gen.XM_037056,2107
gen.XM_035103,2824	•
gen.XM_035107,2439	gen.XM_037101,873
	gen.XM_037108,831
gen.XM_035109,2825	gen.XM_037147,3212
gen.XM_035220,800	gen.XM_037173,3202
gen.XM_035368,2626	gen.XM_037195,4988
gen.XM_035370,2631	gen.XM_037196,4987
gen.XM_035373, 2629	gen.XM_037202,5840
gen.XM_035465,6123	gen.XM_037206,5842
gen.XM_035485,3571	gen.XM_037217,5846
gen.XM_035490,3564	gen.XM_037260, 1608
gen.XM_035497,3562	gen.XM_037329,591
gen.XM_035572, 1392	gen.XM_037377,1300
gen.XM_035625,5197	gen.XM_037381,1299
gen.XM_035627,5196	gen.XM_037423,1163
gen.XM_035636,5194	gen.XM_037468,6114
gen.XM_035638,5192	gen.XM_037474,6116
gen.XM_035640,5034	gen.XM_037565,5106
gen.XM_035662,2483	gen.XM_037572,5109
gen.XM_035680,2482	gen.XM_037600, 1304
gen.XM_035824,1402	gen.XM_037657,2608
gen.XM_035919,5612	gen.XM_037662,5372
gen.XM_035986, 1456	gen.XM_037682,5977
gen.XM_035999,5907	gen.XM_037741,2276
gen.XM_036002, 1440	gen.XM_037778,4244
gen.XM_036011,5910	gen.XM_037797,5981
gen.XM_036042,5913	gen.XM_037808,3263
gen.XM_036087,5917	gen.XM_037875,2045
gen.XM_036104,4965	gen.XM_037945,5993
gen.XM_036107,5923	gen.XM_037971,4897
gen.XM_036115,4971	gen.XM_038030,2855
gen.XM_036118,1262	gen.XM_038049,2864
gen.XM_036175,5924	gen.XM_038063,2866
gen.XM_036299,155	gen.XM_038098,5343
gen.XM_036339,3178	gen.XM_038146,5339
gen.XM_036413,2469	gen.XM_038221, 1695
gen.XM_036450,664	gen.XM_038243,1341
gen.XM_036462,4827	gen.XM_038308,3737
,0	0

gen.XM_038371,3902	gen.XM_041211,1161
gen.XM_038391,2757	gen.XM_041221,1410
gen.XM_038424,5018	gen.XM_041235,4008
gen.XM_038536,2909	gen.XM_041248,6111
gen.XM_038576,734	gen.XM_041473,3928
gen.XM_038584,6019	gen.XM_041484,3944
gen.XM_038659,3533	gen.XM_041507,1147
gen.XM_038791,3841	gen.XM_041583,4957
gen.XM_038852,244	gen.XM_041678,5027
gen.XM_038872,5062	gen.XM_041694,1614
gen.XM_038911,237	gen.XM_041712,1592
gen.XM_038946,1840	gen.XM_041872,5090
gen.XM_039165, 1413	gen.XM_041879,353
gen.XM_039173,1416	gen.XM_041884,354
gen.XM_039176,1417	gen.XM_041921,6304
gen.XM_039225,4125	gen.XM_041964,4680
gen.XM_039236,6047	gen.XM_042018,5095
gen.XM_039248,6051	gen.XM_042025, 1600
gen.XM_039306,4551	gen.XM_042153,6348
gen.XM_039339,6060	gen.XM_042155,6346
gen.XM_039372,6065	gen.XM_042168, 1286
gen.XM_039395,3732	gen.XM_042301, 1474
gen.XM_039474,4794	gen.XM_042301, 1474 gen.XM_042326, 1032
	gen.XM_042422,2145
gen.XM_039654,2646	•
gen.XM_039702,4200	gen.XM_042473,2148
gen.XM_039712,716	gen.XM_042618, 1229
gen.XM_039721,321	gen.XM_042621,4596
gen.XM_039723,5140	gen.XM_042658,2561
gen.XM_039796,1292	gen.XM_042695,1364
gen.XM_039805, 1258	gen.XM_042698,4710
gen.XM_039908,5598	gen.XM_042765,5701
gen.XM_039910,4721	gen.XM_042781,2434
gen.XM_039921,4732	gen.XM_042788,2744
gen.XM_039952, 1213	gen.XM_042841,1072
gen.XM_039975, 1783	gen.XM_042852,3339
gen.XM_040009,377	gen.XM_042860,1070
gen.XM_040066,6088	gen.XM_042963,6295
gen.XM_040095,6091	gen.XM_042967,537
gen.XM_040221,3707	gen.XM_042968,6297
gen.XM_040267,2879	gen.XM_043047,4577
gen.XM_040272,2876	gen.XM_043173,866
gen.XM_040321,1524	gen.XM_043220,3111
gen.XM_040498,2417	gen.XM_043340,1805
gen.XM_040623,2074	gen.XM_043388,1808
gen.XM_040644,3734	gen.XM_043589,2998
gen.XM_040709,315	gen.XM_043605,2999
gen.XM_040752,1493	gen.XM_043614,6099
gen.XM_040853,2218	gen.XM_043643,6250
gen.XM_040898,4100	gen.XM_043771,1568
gen.XM_040942,4094	gen.XM_044075,416
gen.XM_040952,4090	gen.XM_044077,391
gen.XM_041014,4086	gen.XM_044127,398
gen.XM_041020,2697	gen.XM_044128,408
gen.XM_041059,1670	gen.XM_044166,406
gen.XM_041100,3503	gen.XM_044172,411
gen.XM_041209,3925	gen.XM_044334,3859
<u> </u>	

·	
gen.XM_044354,2968	gen.XM_046160,5708
gen.XM_044367,4938	gen.XM_046179,5710
gen.XM_044372,4943	gen.XM_046313,5544
gen.XM_044376,4935	gen.XM_046349,187
gen.XM_044394,4927	gen.XM_046401,1085
gen.XM_044426,4924	gen.XM_046419,5578
gen.XM_044523,4304	gen.XM_046450,201
gen.XM_044533,4307	gen.XM_046464,522
gen.XM_044565,4269	gen.XM_046472,5004
gen.XM_044569,4272	gen.XM_046481,4999
gen.XM_044593,4278	gen.XM_046520,5689
gen.XM_044608,5213	gen.XM_046551,212
gen.XM_044619,5210	gen.XM_046557,208
gen.XM_044627,2563	gen.XM_046565,204
gen.XM_044866,2139	gen.XM_046642,3951
gen.XM_044914,5658	gen.XM_046648,3950
gen.XM_044915,5660	gen.XM_046651,3949
gen.XM_044932,3129	gen.XM_046743,3035
gen.XM_044957,3131	gen.XM_046765,5020
gen.XM_045010,3821	gen.XM_046767,5022
gen.XM_045044,4749	gen.XM_046769,5021
gen.XM_045104,4989	gen.XM_046822,5150
gen.XM_045140,2973	gen.XM_046836,2722
gen.XM_045151,5226	gen.XM_046863,2720
gen.XM_045170.928	gen.XM_046918,112
gen.XM_045170,926 gen.XM_045183,4651	
	gen.XM_046932,4958
gen.XM_045187,3833	gen.XM_046934,5160
gen.XM_045283,757	gen.XM_047007,5723
gen.XM_045290, 1214	gen.XM_047011,5725
gen.XM_045296,2759	gen.XM_047018,5727
gen.XM_045401,2403	gen.XM_047024,6177
gen.XM_045418,5667	gen.XM_047032,6176
gen.XM_045451,5671	gen.XM_047083,2521
gen.XM_045460,5674	gen.XM_047175,690
gen.XM_045499,3276	gen.XM_047374,5446
gen.XM_045525,3278	gen.XM_047376,5445
gen.XM_045535,4751	gen.XM_047409,5444
gen,XM_045551,4752	gen.XM_047436,4624
gen.XM_045581,4996	gen.XM_047477,1429
gen.XM_045602,3856	gen.XM_047479,495
gen.XM_045612,3273	gen.XM_047499,610
gen.XM_045613,3271	gen.XM_047525,4632
gen.XM_045642,3269	gen.XM_047545,616
gen.XM_045667,3074	gen.XM_047561,1137
gen.XM_045681,4287	gen.XM_047584,5131
gen.XM_045750,3157	gen.XM_047600,5132
gen.XM_045802,3826	gen.XM_047964,1798
gen.XM_045856,2407	gen.XM_048088,753
gen.XM_045901,4852	gen.XM_048119,4344
gen.XM_045952,2413	gen.XM_048258,5385
gen.XM_045963,3834	gen.XM_048286,3255
gen.XM_046001,2414	gen.XM_048351,5218
gen.XM_046035,4453	gen.XM_048364,5219
gen.XM_046041,3726	gen.XM_048404,6329
gen.XM_046057,1443	gen.XM_048410,6328
gen.XM_046090,5423	gen.XM_048420,6325
Donnery or 10050 2000	0

gen.XM_048471,5082	gen.XM_050430,2389
gen.XM_048479, 2679	gen.XM_050435,5227
gen.XM_048518,2684	gen.XM_050506,2583
gen.XM_048539,2686	gen.XM_050534,4348
gen.XM_048603,3674	gen.XM_050552, 1234
gen.XM_048654,4829	gen.XM_050589,5603
gen.XM_048690,1007	gen.XM_050638,979
gen.XM_048780,57	gen.XM_050660,5330
gen.XM_048859,2881	gen.XM_050731,2571
gen.XM_048905,6306	gen.XM_050891,984
gen.XM_048943,3640	gen.XM_050962,975
gen.XM_048957,3931	gen.XM_050964,4220
gen.XM_048991,3642	gen.XM_051219,4479
gen.XM_049048,3652	gen.XM_051264,1237
gen.XM_049108,820	gen.XM_051298,2612
gen.XM_049113,822	gen.XM_051364,5290
gen.XM_049116,818	gen.XM_051430,3398
gen.XM_049141,3586	gen.XM_051435,3358
gen.XM_049148,3581	gen.XM_051463,4230
gen.XM_049150,3659	gen.XM_051471,6238
gen.XM_049197,3161	gen.XM_051476,6237
gen.XM_049201,3772	gen.XM_051489,3367
gen.XM_049211,3771	gen.XM_051518,1131
gen.XM_049226,2623	gen.XM_051556,6
gen.XM_049237,5391	gen.XM_051586,5092
gen.XM_049247,2618	gen.XM_051712,4025
gen.XM_049282,5223	gen.XM_051716,3373
gen.XM_049310, 139	gen.XM_051763,4727
gen.XM_049337,6320	gen.XM_051778,4600
gen.XM_049354,4275	gen.XM_051860,4298
gen.XM_049372,4317	gen.XM_051877,515
gen.XM_049421,2637	gen.XM_052113,3378
gen.XM_049502,5236	gen.XM_052310,1060
gen.XM_049561,5239	gen.XM_052313,1535
gen.XM_049663,3493	gen.XM_052336,1477
gen.XM_049680,476	•
gen.XM_049690.483	gen.XM_052460,3714 gen.XM_052474,3719
gen.XM_049742,14	
gen.XM_049795,3082	gen.XM_052530,1424
gen.XM_049899,2121	gen.XM_052542,3755 gen.XM_052626,1398
gen.XM_049904, 3937	gen.XM_052635,5166
gen.XM_049920,5482	
gen.XM_049931,4995	gen.XM_052641,3769
gen.XM_049934,4994	gen.XM_052661,5168
gen.XM_049937,4818	gen.XM_052721,2056
gen.XM_050074,3528	gen.XM_052725,2784
gen.XM_050101,4773	gen.XM_052786,3153
gen.XM_050159,4880	gen.XM_052862,3404
•	gen.XM_052893,3825
gen.XM_050194,4462	gen.XM_052974,608
gen.XM_050200, 1487	gen.XM_052989,817
gen.XM_050215,2525	gen.XM_053074,5430
gen.XM_050236,5602	gen.XM_053122,1363
gen.XM_050265,2278	gen.XM_053164,3641
gen.XM_050278,4103	gen.XM_053183,58
gen.XM_050293,2487	gen.XM_053206,2875
gen.XM_050403,6192	gen.XM_053245,400

VM 052222 1070	30M 056000 501
gen.XM_053323, 1078	gen.XM_056923,521
gen.XM_053585,4252	gen.XM_056957,1471
gen.XM_053633,544	gen.XM_056963,1793
gen.XM_053712, 1074	gen.XM_056970,628
gen.XM_053717,4663	gen.XM_056996,3798
gen.XM_053787,3283	gen.XM_057020,4257
gen.XM_053796,3288	gen.XM_057074,5260
gen.XM_053952,3722	gen.XM_057150,4619
gen.XM_053955, 1859	gen.XM_057236,5756
gen.XM_054038,4832	gen.XM_057374,5793
gen.XM_054098,6183	gen.XM_057492,1548
gen.XM_054221,6155	gen.XM_057664,740
gen.XM_054344,4973	gen.XM_057780,2557
gen.XM_054474,2933	gen.XM_057994,1541
gen.XM_054475,2935	gen.XM_058039,1934
gen.XM_054520,1047	gen.XM_058098,986
gen.XM_054566,5926	gen.XM_058116,4526
gen.XM_054706,2146	gen.XM_058125,5635
gen.XM_054752,2849	gen.XM_058210,4018
gen.XM_054763,2852	gen.XM_058232,5225
gen.XM_054705,2652	gen.XM_058240,102
gen.XM_054868,228	gen.XM_058247,466
gen.XM_054900,4309	gen.XM_058266,2144
	_
gen.XM_054978,295 gen.XM_055013,3853	gen.XM_058267,1278
- · · · · · · · · · · · · · · · · · · ·	gen.XM_058343,3020 gen.XM_058361,3078
gen.XM_055061,4826	
gen.XM_055132,4514	gen.XM_058405,552
gen.XM_055195,4427	gen.XM_058406,3084
gen.XM_055199,4942	gen.XM_058414,3159
gen.XM_055230,5336	gen.XM_058450,3352
gen.XM_055254,954	gen.XM_058505,3125
gen.XM_055369,3397	gen.XM_058528,3671
gen.XM_055481,251	gen.XM_058556,3773
gen.XM_055551,1461	gen.XM_058567,3504
gen.XM_055573,3086	gen.XM_058574,3454
gen.XM_055641,2064	gen.XM_058602,3022
gen.XM_055658,5592	gen.XM_058611,3926
gen.XM_055686,5163	gen.XM_058618,4091
gen.XM_055771,4505	gen.XM_058636,4118
gen.XM_055859,5483	gen.XM_058646,3986
gen.XM_055880,583	gen.XM_058647,3978
gen.XM_055993,5646	gen.XM_058677,4061
gen.XM_056035,5678	gen.XM_058684,4186
gen.XM_056082,4648	gen.XM_058699,4250
gen.XM_056260,4438	gen.XM_058702,294
gen.XM_056286,5582	gen.XM_058739,4621
gen.XM_056315, 1723	gen.XM_058745,4543
gen.XM_056317,4077	gen.XM_058784,4404
gen.XM_056346,3645	gen.XM_058796,4337
gen.XM_056353,3662	gen.XM_058830,4803
gen.XM_056421,5175	gen.XM_058867,4755
gen.XM_056481,3545	gen.XM_058900,4730
gen.XM_056602,5408	gen.XM_058918,5949
gen.XM_056681,3700	gen.XM_058927,1441
gen.XM_056730,4775	gen.XM_058949,5463
gen.XM_056884,618	gen.XM_058967,5295
<u> </u>	J

gen.XM_058968,2619	gen.XM_059998,2673
gen.XM_058977,3920	gen.XM_060006,2647
gen.XM_058987,5570	gen.XM_060012,4115
gen.XM_058990,5584	gen.XM_060030,6146
gen.XM_058991,5552	gen.XM_060042,4281
gen.XM_059045,5419	gen.XM_060067,1499
gen.XM_059052,5447	gen.XM_060331,509
gen.XM_059066,114	gen.XM_060517,531
gen.XM_059067,120	gen.XM_060976,2885
gen.XM_059088,130	gen.XM_061125,2931
gen.XM_059094,465	gen.XM_061126,2930
gen.XM_059117,103	gen.XM_062437,3775
gen.XM_059120,562	gen.XM_063639,4234
gen.XM_059132,302 gen.XM_059133,224	gen.XM_064091,4597
	gen.XM_065884,777
gen.XM_059171,171	gen.XM_066291,5998
gen.XM_059180,256	•
gen.XM_059191,492	gen.XM_066900,6261
gen.XM_059201,1	gen.XM_067264,1240
gen.XM_059210,330	gen.XM_067325,5030
gen:XM_059214, 185	gen.XM_067715,1169
gen.XM_059230,55	gen.XM_068164,1497
gen.XM_059268,5675	gen.XM_068395,1789
gen.XM_059321,5607	gen.XM_068853,1714
gen.XM_059335,6013	gen.XM_068919,2085
gen.XM_059351,920	gen.XM_068963,2072
gen.XM_059368,653	gen.XM_070188,2480
gen.XM_059372,1029	gen.XM_070203,2473
gen.XM_059422,968	gen.XM_070873,2742
gen.XM_059461,971	gen.XM_071178,2705
gen.XM_059465,907	gen.XM_071580,1557
gen.XM_059516, 1266	gen.XM_071605,2381
gen.XM_059557, 1068	gen.XM_071623,1439
gen.XM_059561, 1059	gen.XM_071801,4122
gen.XM_059583,1252	gen.XM_071873,4630
gen.XM_059593, 1434	gen.XM_071937,2152
gen.XM_059623,1519	gen.XM_072173,5876
gen.XM_059628,1442	gen.XM_072430,2387
gen.XM_059633,1469	gen.XM_072526,2857
gen.XM_059637,2804	gen.XM_076414,1199
gen.XM_059653,1596	gen.XM_083842,3026
gen.XM_059669, 1617	gen.XM_083852,3141
gen.XM_059709,1604	gen.XM_083864,3774
gen.XM_059720,2914	gen.XM_083866,3715
gen.XM_059741,2118	gen.XM_083868,3590
gen.XM_059741,2116	gen.XM_083892,3787
	gen.XM_083939,4364
gen.XM_059773,2141	gen.XM_083966,4923
gen.XM_059776,2062	
gen.XM_059801, 1939	gen.XM_083983,4881
gen.XM_059839,2430	gen.XM_084007,5055
gen.XM_059876,2282	gen.XM_084014,5246
gen.XM_059933,2531	gen.XM_084023,5528
gen.XM_059945,2838	gen.XM_084026,5549
gen.XM_059961,2859	gen.XM_084055,580
gen.XM_059966,2871	gen.XM_084084,6090
gen.XM_059979,2644	gen.XM_084110,1340
gen.XM_059986,2813	gen.XM_084111,1243

gen.XM_084120,1315		gen.XM_084884,3583
gen.XM_084123,1263		gen.XM_084885,3582
gen.XM_084129,1231		gen.XM_084889,3814
gen.XM_084141,1041		gen.XM_084901,3488
gen.XM_084158,1465		gen.XM_084909,3702
gen.XM_084168,1547		gen.XM_084912,3705
gen.XM_084179,1591		gen.XM_084918,3500
gen.XM_084180, 1781		gen.XM_084922,3495
gen.XM_084204,2079		gen.XM_084941,3788
gen.XM_084238,2453		gen.XM_084946,3800
gen.XM_084241,2337		gen.XM_084948,3804
gen.XM_084270,2851		gen.XM_084982,3870
gen.XM_084283,6229		gen.XM_084997,3933
gen.XM_084287,6203		gen.XM_084998,2142
gen.XM_084288,6153		gen.XM_085017,3893
gen.XM_084296,6227		gen.XM_085044,3916
gen.XM_084311,6350		-
gen.XM_084359,3073		gen.XM_085065,4044
gen.XM_084372,3016		gen.XM_085066,4033
gen.XM_084385,2944		gen.XM_085068,1480
gen.XM_084413,3028	*	gen.XM_085106,3987
gen.XM_084420,2910		gen.XM_085125,4031
		gen.XM_085127,4014
gen.XM_084429,2911	•	gen.XM_085141,4019
gen.XM_084450, 2942		gen.XM_085151,4050
gen.XM_084451,2953	•	gen.XM_085162,4054
gen.XM_084467,2994		gen.XM_085166,3955
gen.XM_084477,3010		gen.XM_085203,4130
gen.XM_084480,3012		gen.XM_085204,4132
gen.XM_084505,3080		gen.XM_085215,4282
gen.XM_084514,3180		gen.XM_085239,4254
gen.XM_084515,3183	•	gen.XM_085249,4236
gen.XM_084516,3182		gen.XM_085262,4314
gen.XM_084517,3184	•	gen.XM_085280,4289
gen.XM_084522,3424		gen.XM_085283,4211
gen.XM_084525,3428		gen.XM_085307,4160
gen.XM_084527,3169		gen.XM_085327,4622
gen.XM_084570,3357		gen.XM_085340,4448
gen.XM_084601,3353		gen.XM_085393,4480
gen.XM_084610,3350		gen.XM_085395,4482
gen.XM_084632,3072		gen.XM_085408,4637
gen.XM_084645,3731		gen.XM_085434,4524
gen.XM_084654,3388		gen.XM_085442,4513
gen.XM_084658,3382		gen.XM_085445,4425
gen.XM_084681,3195		gen.XM_085452,4435
gen.XM_084702,3287		gen.XM_085471,4558
gen.XM_084739,3124		gen.XM_085475,4561
gen.XM_084742,3122		gen.XM_085483,4616
gen.XM_084770,3515		gen.XM_085525,4323
gen.XM_084789,3599		gen.XM_085531,4977
gen.XM_084800,3783		gen.XM_085545,4741
gen.XM_084801,3672		gen.XM_085548,4735
gen.XM_084807,3531		gen.XM_085563,4991
gen.XM_084808,3818		gen.XM_085581,472
gen.XM_084824,3630		gen.XM_085589,4948
gen.XM_084841,3540		gen.XM_085613,4724
gen.XM_084866,3557		gen.XM_085627,4951
		Pommara_000001, 4001

con VM 005626 4072	gen.XM_086328,542
gen.XM_085636,4873	gen.XM_086343,265
gen.XM_085672,4757	
gen.XM_085687,4659	gen.XM_086357,85
gen.XM_085691,4677	gen.XM_086360,29
gen.XM_085716,4992	gen.XM_086375,97
gen.XM_085722,4745	gen.XM_086378,485
gen.XM_085735,5019	gen.XM_086381,479
gen.XM_085743,4718	gen.XM_086384,178
gen.XM_085775,5058	gen.XM_086389,243
gen.XM_085779,5075	gen.XM_086391,231
gen.XM_085788,5049	gen.XM_086397,323
gen.XM_085789,5043	gen.XM_086400,366
gen.XM_085790,5045	gen.XM_086428,2161
gen.XM_085791,5042	gen.XM_086431,589
-	gen.XM_086432,592
gen.XM_085856,5501	gen.XM_086444, 136
gen.XM_085862,5244	
gen.XM_085874,5460	gen.XM_086481,490
gen.XM_085875,5461	gen.XM_086484,494
gen.XM_085876,5462	gen.XM_086485,493
gen.XM_085909,5297	gen.XM_086494,538
gen.XM_085916,5285	gen.XM_086515,324
gen.XM_085917,5276	gen.XM_086518,317
gen.XM_085927,5527	gen.XM_086543,190
gen.XM_085928,5489	gen.XM_086552,432
gen.XM_085934,5537	gen.XM_086564,388
gen.XM_085935,5573	gen.XM_086567,430
gen.XM_085950,5487	gen.XM_086586,52
gen.XM_085971,5371	gen.XM_086587,54
gen.XM_085972,5629	gen.XM_086648,5819
gen.XM_085981,4599	gen.XM_086701,5687
gen.XM_085986,5398	gen.XM_086710,5670
gen.XM_086004,5425	gen.XM_086715,5695
gen.XM_086074,5311	gen.XM_086736,5717
gen.XM_086101,5128	gen.XM_086745,5712
gen.XM_086102,5130	gen.XM_086759,5877
gen.XM_086116,5331	gen.XM_086760,5878
gen.XM_086132,304	gen.XM_086770,5914
gen.XM_086138,282	gen.XM_086773,5928
gen.XM_086142,557	gen.XM_086777,5930
gen.XM_086151,46	gen.XM_086779,5064
gen.XM_086164,277	gen.XM_086805,5963
gen.XM_086165,279	gen.XM_086809,5953
	gen.XM_086821,5985
gen.XM_086166,281	gen.XM_086830,6043
gen.XM_086167,280	gen.XM_086844,6074
gen.XM_086178,4	
gen.XM_086180, 19	gen.XM_086873,5964
gen.XM_086204,38	gen.XM_086875,6093
gen.XM_086228,1356	gen.XM_086920,805
gen.XM_086244,601	gen.XM_086923,849
gen.XM_086245,602	gen.XM_086925,850
gen.XM_086257,632	gen.XM_086944,933
gen.XM_086271,383	gen.XM_086950,858
gen.XM_086278,4434	gen.XM_086961,926
gen.XM_086282,543	gen.XM_086980,791
gen.XM_086296,331	gen.XM_087028,942
gen.XM_086324,214	gen.XM_087038,2803

gen.XM_087040,842	gen.XM_087686,1543
gen.XM_087041,2800	gen.XM_087710,3247
gen.XM_087045,932	gen.XM_087713,1559
gen.XM_087051,748	gen.XM_087745,1656
gen.XM_087061,912	gen.XM_087773,1816
gen.XM_087062,914	gen.XM_087790,1631
gen.XM_087068,775	gen.XM_087823,1858
gen.XM_087069,772	gen.XM_087834,2123
gen.XM_087118,891	gen XM 087836 2124
gen.XM_087122,839	gen.XM_087853,2090
gen.XM_087151,683	gen.XM_087855,2089
gen.XM_087162,985	gen.XM_087939,2000
gen.XM_087166,993	gen.XM_087945,1990
gen.XM_087181,965	gen.XM_087955,3857
gen.XM_087193,726	gen.XM_087960,1883
gen.XM_087195,725	gen.XM_087990, 1936
gen.XM_087206,669	gen.XM_087991,2154
gen.XM_087211,743	gen.XM_088009,3106
gen.XM_087218,1011	gen.XM_088020, 1621
gen.XM_087240,901	gen.XM_088073,2386
gen.XM_087254,1302	gen.XM_088099,2416
gen.XM_087268, 1203	gen.XM_088103,2418
gen.XM_087278,1358	gen.XM_088105,2409
gen.XM_087284, 1075	gen.XM_088107,605
gen.XM_087289,1323	gen.XM_088119,2422
gen.XM_087295,1323	gen.XM_088122,2420
gen.XM_087297,1360	gen.XM_088135,2446
gen.XM_087322,1312	gen.XM_088180,2352
gen.XM_087331,1211	gen.XM_088239,2297
gen.XM_087341,1267	gen.XM_088264,2195
· ·	gen.XM_088294,2529
gen.XM_087342, 1265	gen.XM_088316,2611
gen.XM_087346,1115	gen.XM_088321,2628
gen.XM_087349,1106	gen.XM_088323,2574
gen.XM_087359, 1343	gen.XM_088325,2572
gen.XM_087370,1101	gen.XM_088336,2519
gen.XM_087392, 1333	gen.XM_088338,2515
gen.XM_087410,1347	gen.XM_088370,2613
gen.XM_087448,1184	gen.XM_088399,2559
gen.XM_087480,3000	gen.XM_088401,2560
gen.XM_087498,1463	gen.XM_088422,2839
gen.XM_087514,1483	_
gen.XM_087527, 1455	gen.XM_088426,2833 gen.XM_088459,2847
gen.XM_087583,1418	gen.XM_088461,2870
gen.XM_087588,1120	
gen.XM_087597,1549	gen.XM_088472,1472
gen.XM_087599,1551	gen.XM_088550,2640
gen.XM_087600,1553	gen.XM_088552,2641
gen.XM_087601,1550	gen.XM_088553,2642
gen.XM_087610,1597	gen.XM_088563,2672
gen.XM_087611,1595	gen.XM_088569,2748
gen.XM_087614,1564	gen.XM_088571,2750
gen.XM_087621,1711	gen.XM_088587,4120
gen.XM_087635,1660	gen.XM_088588,4114
gen.XM_087637,1662	gen.XM_088589,4121
gen.XM_087652,1713	gen.XM_088592,6311
gen.XM_087659,1537	gen.XM_088619,6151

gen.XM_088622,6152	gen.XM_093546,1201
gen.XM_088630,6209	gen.XM_093624,1083
gen.XM_088637,2700	gen.XM_094243,1797
gen.XM_088638,768	gen.XM_094440, 1561
gen.XM_088665,6158	gen.XM_094741,1862
gen.XM_088688,6220	gen.XM_094855,2060
gen.XM_088689,6218	gen.XM_095146,2432
gen.XM_088710,6253	gen.XM_095371,2475
gen.XM_088736,6265	gen.XM_095545,2514
gen.XM_088738,6267	gen.XM_095667,2554
gen.XM_088739,6268	gen.XM_096038,3699
gen.XM_088745,6289	gen.XM_096060,4241
gen.XM_088747,6128	gen.XM_096146,3539
gen.XM_088788,338	gen.XM_096149,661
gen.XM_088863,286	gen.XM_096155,5967
gen.XM_088945,507	•
gen.XM_089030,622	gen.XM_096156,5968
gen.XM_089138,254	gen.XM_096169, 1022
gen.XM_089514,3019	gen.XM_096172,787
gen.XM_089551,3006	gen.XM_096195,1190
gen.XM_090218,3542	gen.XM_096198,1117
gen.XM_090413,3779	gen.XM_096203,1464
gen.XM_090458,3767	gen.XM_096303,6256
gen.XM_090833,638	gen.XM_096486,3315
gen.XM_090914,4082	gen.XM_096520,3165
gen.XM_090991,4191	gen.XM_096544,3119
gen.XM_091076,1091	gen.XM_096566,3680
	gen.XM_096572,3819
gen.XM_091100,4263	gen.XM_096597,3739
gen.XM_091108,4124	gen.XM_096606,3608
gen.XM_091159,4157	gen.XM_096620,3578
gen.XM_091270,4483	gen.XM_096630,3486
gen.XM_091399,4590	gen.XM_096661,3441
gen.XM_091420,4544	gen.XM_096744,4034
gen.XM_091786,3426	gen.XM_096772,3966
gen.XM_091886,5595	gen.XM_096842,4245
gen.XM_091938,5221	gen.XM_096844,4286
gen.XM_091981,5586	gen.XM_097043,4984
gen.XM_091984,5396	gen.XM_097193,5001
gen.XM_092042,5108	gen.XM_097195,5000
gen.XM_092046,5341	gen.XM_097204,4754
gen.XM_092049,5380	gen.XM_097232,5048
gen.XM_092135,672	gen.XM_097274,5510
gen.XM_092158,918	gen.XM_097275,5521
gen.XM_092346,944	gen.XM_097300,5222
gen.XM_092489,867	gen.XM_097365,5440
gen.XM_092517,676	gen.XM_097420,5134
gen.XM_092545,970	gen.XM_097453,2068
gen.XM_092760,5696	gen.XM_097519,561
gen.XM_092888,5986	gen.XM_097565,249
gen.XM_092966,6113	gen.XM_097639,352
gen.XM_093050,6212	gen.XM_097649,198
gen.XM_093130,6226	gen.XM_097713,5800
gen.XM_093219,6299	gen.XM_097727,5773
gen.XM_093241,6228	gen.XM_097731,5795
gen.XM_093423, 1308	gen.XM_097749,5644
gen.XM_093487, 1255	gen.XM_097772,5731
- · · · · · · · · · · · · · · · · · · ·	Portraint 703 1 (5'2) 21

gen.XM_097807,5929	gen.XM_113330,5011
gen.XM_097817,5925	gen.XM_113334,4819
gen.XM_097833,5950	gen.XM_113343,5028
gen.XM_097886,5971	gen.XM_113348,5316
gen.XM_097976,715	gen.XM_113352,5294
gen.XM_098004,729	gen.XM_113360,386
gen.XM_098047,962	gen.XM_113361,598
gen.XM_098048,960	gen.XM_113369,361
gen.XM_098109,1345	gen.XM_113374,140
gen.XM_098111,1245	gen.XM_113379,473
gen.XM_098154,1232	gen.XM_113380,5749
gen.XM_098158,1103	gen.XM_113390,929
gen.XM_098173, 1227	gen.XM_113395,1193
gen.XM_098248, 1384	gen.XM_113397,1244
gen.XM_098351,1609	gen.XM_113405,1140
gen.XM_098352,1611	gen.XM_113408,1296
gen.XM_098354,1610	gen.XM_113409,1202
gen.XM_098362,1634	gen.XM_113410,1088
gen.XM_098387, 1778	gen.XM_113417,1254
gen.XM_098405, 1534	gen.XM_113422,1329
gen.XM_098468,2108	gen.XM_113425,1452
gen.XM_098599,619	gen.XM_113452,1556
gen.XM_098654,2447	gen.XM_113454,1841
gen.XM_098669,2466	gen.XM_113463,1654
gen.XM_098747, 2582	gen.XM_113467,1720
gen.XM_098761,2564	gen.XM_113468,1845
gen.XM_098913,2843	gen.XM_113476,1860
gen.XM_098943,2725	gen.XM_113531,2526
gen.XM_098995,6302	gen.XM_113532,2627
gen.XM_099467,363	gen.XM_113540,2548
gen.XM_102377,4432	gen.XM_113557,2493
gen.XM_103946,665	gen.XM_113564,2846
gen.XM_104983,6263	gen.XM_113585,6122
gen.XM_105236, 1289	gen.XM_113615,2927
gen.XM_105658, 1325	gen.XM_113702,3862
gen.XM_106246, 1520	gen.XM_113712,3635
gen.XM_106739, 1562	gen.XM_113719,3560
gen.XM_107825,2225	gen.XM_113726,3584
gen.XM_109162,3075	gen.XM_113730,3519
gen.XM_113223,3268	gen.XM_113737,3855
gen.XM_113224,3275	gen.XM_113739,3437
gen.XM_113226,3400	gen.XM_113752,3946
gen.XM_113229,3366	gen.XM_113759,4105
gen.XM_113230,3363	gen.XM_113823,4163
gen.XM_113238,3152	gen.XM_113836,4326
gen.XM_113266,4202	gen.XM_113840,4608
gen.XM_113268,4207	gen.XM_113843,4420
gen.XM_113291,4429	gen.XM_113845,4418
gen.XM_113293,4467	gen.XM_113853,4570 gen.XM_113855,4560
gen.XM_113299,4504	gen.XM_113835,4300 gen.XM_113874,4431
gen.XM_113303,5013	gen.XM_113876,4426
gen.XM_113310,4723	gen.XM_113882,4640
gen.XM_113315,4944	gen.XM_113882,4040 gen.XM_113892,4978
gen.XM_113324,4674	gen.XM_113992,4976 gen.XM_113901,4653
gen.XM_113325,4703	gen.XM_113919,4905
gen.XM_113328,4695	gen.Awi_113319,4903

gen.XM_113929,4696	gen.XM_114497,2058
gen.XM_113931,4706	gen.XM_114555,2429
gen.XM_113938,4824	gen.XM_114578,2444
gen.XM_113943,5010	gen.XM_114602,2404
gen.XM_113945,4998	gen.XM_114613,2625
gen.XM_113951,4962	gen.XM_114617,2517
gen.XM_113988,5229	gen.XM_114618,2523
gen.XM_114004,5349	gen.XM_114640,2556
gen.XM_114018,5097	gen.XM_114646,2756
gen.XM_114024,5560	gen.XM_114649,2873
gen.XM_114025,5530	gen.XM_114655,2854
gen.XM_114027,5366	_
	gen.XM_114661,2677
gen.XM_114030,560	gen.XM_114662,2688
gen.XM_114044,129	gen.XM_114669,2845
gen.XM_114055,384	gen.XM_114677,2802
gen.XM_114062,3	gen.XM_114678,2801
gen.XM_114097,376	gen.XM_114679,2799
gen.XM_114098,360	gen.XM_114686,2699
gen.XM_114109,525	gen.XM_114692,6354
gen.XM_114125,259	gen.XM_114708,6291
gen.XM_114137,634	gen.XM_114720,6130
gen.XM_114153,484	gen.XM_114724,6119
gen.XM_114154,5875	gen.XM_114798,233
gen.XM_114163,5794	gen.XM_114862,3104
gen.XM_114165,5813	gen.XM_114894,2977
gen.XM_114174,5673	gen.XM_114981,3139
gen.XM_114178,5706	gen.XM_115031,3286
gen.XM_114185,5889	gen.XM_115062,3364
gen.XM_114209,6024	gen.XM_115063,3365
gen.XM_114215,816	gen.XM_115081,3177
gen.XM_114229,838	gen.XM_115117,3570
gen.XM_114247,824	gen.XM_115140,3634
gen.XM_114266,851	gen.XM_115197,3809
gen.XM_114267,856	gen.XM_115215,3948
gen.XM_114298,957	gen.XM_115352,4333
gen.XM_114301,1225	gen.XM_115480,4910
gen.XM_114309,1242	gen.XM_115603,5466
gen.XM_114323,1141	gen.XM_115615,5395
gen.XM_114328,1344	gen.XM_115672,869
gen.XM_114356,1288	gen.XM_115706, 1039
gen.XM_114364,1122	gen.XM_115722, 1040
gen.XM_114368,1510	gen.XM_115825,1002
gen.XM_114401,1496	gen.XM_115846,5691
gen.XM_114424,1473	gen.XM_115874,6281
gen.XM_114426,1470	gen.XM_115886,6131
gen.XM_114434,1555	gen.XM_115890,6136
gen.XM_114435,1552	•
•	gen.XM_115923,6259
gen.XM_114437,1567	gen.XM_115924,6121
gen.XM_114439,1586	gen.XM_116034,1338
gen.XM_114440,1587	gen.XM_116058, 1295
gen.XM_114442,1584	gen.XM_116071, 1204
gen.XM_114453,1819	gen.XM_116072, 1205
gen.XM_114457,1817	gen.XM_116204,1532
gen.XM_114469,1623	gen.XM_116205,1533
gen.XM_114482,1683	gen.XM_116247, 1484
gen.XM_114492,2106	gen.XM_116285,1408

gen.XM_116307,1691	gen.XM_165451,1268
gen.XM_116340, 1807	gen.XM_165465,1531
gen.XM_116365,1856	gen.XM_165470, 1528
gen.XM_116427,1648	gen.XM_165473,1482
gen.XM_116439, 1593	gen.XM_165483,1818
gen.XM_116447, 1606	gen.XM_165484,1820
gen.XM_116465,1716	gen.XM_165488,1615
gen.XM_116511,1857	gen.XM_165499,2057
gen.XM_116514, 1861	gen.XM_165514,2579
gen.XM_116524,2140	gen.XM_165530,6355
gen.XM_116806,2789	
gen.XM_116818,2738	gen.XM_165533,6235
•	gen.XM_165551,2913
gen.XM_116853,1139	gen.XM_165555,2889
gen.XM_116856, 1810	gen.XM_165557,2897
gen.XM_116863,2975	gen.XM_165560,2925
gen.XM_116913,3845	gen.XM_165563,2926
gen.XM_116926,3451	gen.XM_165567,2921
gen.XM_117061,4913	gen.XM_165571,3407
gen.XM_117066,4768	gen.XM_165584,3414
gen.XM_117096,5084	gen.XM_165586,3413
gen.XM_117118,5379	gen.XM_165592,3401
gen.XM_117122,5183	gen.XM_165598,3303
gen.XM_117128,5605	gen.XM_165600,3310
gen.XM_117159,2	gen.XM_165610,3222
gen.XM_117181,534	gen.XM_165611,3217
gen.XM_117184, 163	gen.XM_165612,3223
gen.XM_117185,582	gen.XM_165616,3325
gen.XM_117196,641	gen.XM_165627,3335
gen.XM_117209,5688	gen.XM_165628,3341
gen.XM_117264,736	gen.XM_165631,3328
gen.XM_117311, 1337	gen.XM_165636,3903
gen.XM_117351,1412	gen.XM_165639,3917
gen.XM_117387, 1622	gen.XM_165645,4534
gen.XM_117398, 1641	gen.XM_165647,4528
gen.XM_117444,2471	gen.XM_165648,4537
gen.XM_117449,2160	gen.XM_165649,4527
gen.XM_117452,2472	gen.XM_165656,4484
gen.XM_117481,2406	gen.XM_165657,4493
gen.XM_117487,2622	gen.XM_165658,4489
gen.XM_117519,2874	gen.XM_165669,2091
gen.XM_117539,6352	gen.XM_165692,2159
gen.XM_117555,6349	gen.XM_165698, 1949
gen.XM_117692,28	gen.XM_165717, 1954
gen.XM_118637,4251	gen.XM_165728,2036
gen.XM_165390,3427	gen.XM_165738, 1999
gen.XM_165410,4583	gen.XM_165740.1865
gen.XM_165411,4413	gen.XM_165743,1937
gen.XM_165418,4713	gen.XM_165747,1948
gen.XM_165421,4701	gen.XM_165749,2037
gen.XM_165422,4704	gen.XM_165758,2013
gen.XM_165432,5541	gen.XM_165764,2011
gen.XM_165438,144	•
gen.XM_165439,620	gen.XM_165765,1988
gen.XM_165442,59	gen.XM_165770,1951
	gen.XM_165771,1983
gen.XM_165443,477	gen.XM_165772, 1876
gen.XM_165448,723	gen.XM_165777,2044

A =	XD £ 166177 2406
gen.XM_165794, 1921	gen.XM_166177,3406
gen.XM_165799,2006	gen.XM_166181,3403
gen.XM_165801,1956	gen.XM_166196,3308
gen.XM_165809,2016	gen.XM_166232,3227
gen.XM_165836,2350	gen.XM_166234,3224
gen.XM_165839,2346	gen.XM_166235,3293
gen.XM_165841,2197	gen.XM_166236,3294
gen.XM_165860,2167	gen.XM_166239,3349
gen.XM_165867,2249	gen.XM_166253,3336
gen.XM_165870,2245	gen.XM_166266,3904
gen.XM_165872,2253	gen.XM_166273,3886
	gen.XM_166277,4532
gen.XM_165876,2258	gen.XM_166282,4491
gen.XM_165877,2240	gen.XM_166285,4490
gen.XM_165882,2248	
gen.XM_165888,2934	gen.XM_166288,5071
gen.XM_165890,2929	gen.XM_166303,2092
gen.XM_165891,2941	gen.XM_166310,2101
gen.XM_165903,3633	gen.XM_166327,2157
gen.XM_165905,3579	gen.XM_166333,1932
gen.XM_165906,3532	gen.XM_166336,2021
gen.XM_165910,3465	gen.XM_166340,1882
gen.XM_165921,4127	gen.XM_166349,1872
gen.XM_165923,4325	gen.XM_166353,2002
gen.XM_165954,5026	gen.XM_166357,2049
gen.XM_165960,5347	gen.XM_166360,1938
gen.XM_165963,5367	gen.XM_166361,2009
gen.XM_165975,327	gen.XM_166362,1884
gen.XM_165976,373	gen.XM_166363,1940
gen.XM_165977,264	gen.XM_166376,2004
gen.XM_165978,532	gen.XM_166381, 1992
gen.XM_165981,290	gen.XM_166392,2019
gen.XM_165983,275	gen.XM_166401,1995
gen.XM_165984,175	gen.XM_166402,1896
gen.XM_165994,927	gen.XM_166406,2015
gen.XM_165998,893	gen.XM_166412,1910
gen.XM_166007,910	gen.XM_166417,1914
gen.XM_166008,900	gen.XM_166419,1920
gen.XM_166011,1121	gen.XM_166425,1888
gen.XM_166014,1275	gen.XM_166446,2042
gen.XM_166015,1192	gen.XM_166457,1878
gen.XM_166017,1350	gen.XM_166459,1931
gen.XM_166026,1669	gen.XM_166469,1879
gen.XM_166027,1663	gen.XM_166480, 1955
gen.XM_166028,1842	gen.XM_166482,2351
gen.XM_166029, 1802	gen.XM_166485,2353
gen.XM_166037,1612	gen.XM_166494,2224
	gen.XM_166504,2222
gen.XM_166042,2054	gen.XM_166505,2202
gen.XM_166049,2147	
gen.XM_166063,2540	gen.XM_166506,2200 gen.XM_166509,2219
gen.XM_166064,2558	gen.XM_166512,2205
gen.XM_166078,6142	
gen.XM_166081,6255	gen.XM_166513,2220
gen.XM_166093,2984	gen.XM_166514,2203
gen.XM_166125,2966	gen.XM_166515,2204
gen.XM_166157,2922	gen.XM_166521,2198
gen.XM_166174,3409	gen.XM_166523,2170

gen.XM_166531,2190
gen.XM_166540,2191
gen.XM_166541,2168
gen.XM_166594,2230
gen.XM_166599,20
gen.XM_166605,3506
gen.XM_166629,2988 gen.XM_166665,2918
gen.XM_16665,2918
gen.XM_166717,2906
gen.XM_166743,3418
gen.XM_167008,5080
gen.XM_167016,2087
gen.XM_167027,2094
gen.XM_167037,2096
gen.XM_167046,2150
gen.XM_167128,2023
gen.XM_167161,2025
gen.XM_167169, 1868
gen.XM_167179,2031
gen.XM_167196,2041
gen.XM_167225,2047
gen.XM_167339,2264
gen.XM_167363,5065
gen.XM_167366, 1209
gen.XM_167374,2898
gen.XM_167395,2963
gen.XM_167411,2901
gen.XM_167414,2904
gen.XM_167433,3324
gen.XM_167437,3192
gen.XM_167439,3876
gen.XM_167453,4538
gen.XM_167456,4541
gen.XM_167476,2321
gen.XM_167477,2325
gen.XM_167483,2328
gen XM 167484, 2329
gen.XM_167484,2329 gen.XM_167494,2273
gen.XM_167498,2301
gen.XM_167500,2299
gen.XM_167502,2312
gen.XM_167504,2300 gen.XM_167518,3754
gen.XM_167530,5529
gen.XM_167538,5945
gen.XM_167558,2645
gen.XM_167626,2887 gen.XM_167716,3244
gen.XM_167726,3248
gen.XM_167747,3234
gen.XM_167748,3228
gen.XM_167780,3417
gen.XM_167804,3291
gen.XM_167853,3318
gen.XM_167892,3883
gen.XM_167906,3877

gen.XM_167911,3868 gen.XM_167918,3869 gen.XM_168054,2103 gen.XM_168070, 1928 gen.XM_168104,1994 gen.XM_168123,1877 gen.XM_168181,2322 gen.XM_168251,2323 gen.XM_168354,2271 gen.XM_168378,2269 gen.XM_168435,2316 gen.XM_168450,2315 gen.XM_168454,2302 gen.XM_168461,2311 gen.XM_168464,2317 gen.XM_168470,2310 gen.XM_168548,2375 gen.XM_168572,2380 gen.XM_168586,2360 gen.XM_169414,3880 gen.XM_169540,5078 gen.XM_170195,2267 gen.XM_170427,2318

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. <u>Definitions</u>

5

10

15

20

25

30

35

The terms "TAT polypeptide" and "TAT" as used herein and when immediately followed by a numerical designation, refer to various polypeptides, wherein the complete designation (i.e., TAT/number) refers to specific polypeptide sequences as described herein. The terms "TAT/number polypeptide" and "TAT/number" wherein the term "number" is provided as an actual numerical designation as used herein encompass native sequence polypeptides, polypeptide variants and fragments of native sequence polypeptides and polypeptide variants (which are further defined herein). The TAT polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods. The term "TAT polypeptide" refers to each individual TAT/number polypeptide disclosed herein. All disclosures in this specification which refer to the "TAT polypeptide" refer to each of the polypeptides individually as well as jointly. For example, descriptions of the preparation of, purification of, derivation of, formation of antibodies to or against, formation of TAT binding oligopeptides to or against, formation of TAT binding organic molecules to or against, administration of, compositions containing, treatment of a disease with, etc., pertain to each polypeptide of the invention individually. The term "TAT polypeptide" also includes variants of the TAT/number polypeptides disclosed herein.

A "native sequence TAT polypeptide" comprises a polypeptide having the same amino acid sequence as the corresponding TAT polypeptide derived from nature. Such native sequence TAT polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence TAT polypeptide" specifically encompasses naturally-occurring truncated or secreted forms of the specific TAT polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In certain embodiments of the invention, the native sequence TAT polypeptides disclosed herein are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons (if indicated) are shown in bold font and underlined in the figures. Nucleic acid residues indicated as "N" in the accompanying figures are any nucleic acid residue. However, while the TAT polypeptides disclosed in the accompanying figures are shown to begin with methionine residues designated herein as amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstream or downstream from the amino acid position 1 in the figures may be employed as the starting amino acid residue for the TAT polypeptides.

The TAT polypeptide "extracellular domain" or "ECD" refers to a form of the TAT polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a TAT polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domains identified for the TAT polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein. Optionally, therefore, an

extracellular domain of a TAT polypeptide may contain from about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are contemplated by the present invention.

5

10

15

20

25

30

35

The approximate location of the "signal peptides" of the various TAT polypeptides disclosed herein may be shown in the present specification and/or the accompanying figures. It is noted, however, that the C-terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., Nielsen et al., Prot. Eng. 10:1-6 (1997) and von Heinje et al., Nucl. Acids. Res. 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention.

"TAT polypeptide variant" means a TAT polypeptide, preferably an active TAT polypeptide, as defined herein having at least about 80% amino acid sequence identity with a full-length native sequence TAT polypeptide sequence as disclosed herein, a TAT polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a TAT polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length TAT polypeptide sequence as disclosed herein (such as those encoded by a nucleic acid that represents only a portion of the complete coding sequence for a full-length TAT polypeptide). Such TAT polypeptide variants include, for instance, TAT polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a TAT polypeptide variant will have at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% amino acid sequence identity, to a full-length native sequence TAT polypeptide sequence as disclosed herein, a TAT polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a TAT polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length TAT polypeptide sequence as disclosed herein. Ordinarily, TAT variant polypeptides are at least about 10 amino acids in length, alternatively at least about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600 amino acids in length, or more. Optionally, TAT variant polypeptides will have no more than one conservative amino acid substitution as compared to the native TAT polypeptide sequence, alternatively no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitution as compared to the native TAT polypeptide sequence.

"Percent (%) amino acid sequence identity" with respect to the TAT polypeptide sequences identified

herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific TAT polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.

5

10

15

20

25

30

35

In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

100 times the fraction X/Y

where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. As examples of % amino acid sequence identity calculations using this method, Tables 2 and 3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated "Comparison Protein" to the amino acid sequence designated "TAT", wherein "TAT" represents the amino acid sequence of a hypothetical TAT polypeptide of interest, "Comparison Protein" represents the amino acid sequence of a polypeptide against which the "TAT" polypeptide of interest is being compared, and "X, "Y" and "Z" each represent different hypothetical amino acid residues. Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program.

"TAT variant polynucleotide" or "TAT variant nucleic acid sequence" means a nucleic acid molecule

which encodes a TAT polypeptide, preferably an active TAT polypeptide, as defined herein and which has at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence TAT polypeptide sequence as disclosed herein, a full-length native sequence TAT polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a TAT polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length TAT polypeptide sequence as disclosed herein (such as those encoded by a nucleic acid that represents only a portion of the complete coding sequence for a full-length TAT polypeptide). Ordinarily, a TAT variant polynucleotide will have at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence TAT polypeptide sequence as disclosed herein, an extracellular domain of a TAT polypeptide, with or without the signal peptide as disclosed herein or any other fragment of a full-length TAT polypeptide, with or without the signal sequence, as disclosed herein or any other fragment of a full-length TAT polypeptide sequence as disclosed herein. Variants do not encompass the native nucleotide sequence.

Ordinarily, TAT variant polynucleotides are at least about 5 nucleotides in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, or 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length.

"Percent (%) nucleic acid sequence identity" with respect to TAT-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the TAT nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. For purposes herein, however, % nucleic acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison

parameters are set by the ALIGN-2 program and do not vary.

In situations where ALIGN-2 is employed for nucleic acid sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:

5

10

15

100 times the fraction W/Z

where W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Tables 4 and 5, demonstrate how to calculate the % nucleic acid sequence identity of the nucleic acid sequence designated "Comparison DNA" to the nucleic acid sequence designated "TAT-DNA", wherein "TAT-DNA" represents a hypothetical TAT-encoding nucleic acid sequence of interest, "Comparison DNA" represents the nucleotide sequence of a nucleic acid molecule against which the "TAT-DNA" nucleic acid molecule of interest is being compared, and "N", "L" and "V" each represent different hypothetical nucleotides. Unless specifically stated otherwise, all % nucleic acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program.

20

In other embodiments, TAT variant polynucleotides are nucleic acid molecules that encode a TAT polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, to nucleotide sequences encoding a full-length TAT polypeptide as disclosed herein. TAT variant polypeptides may be those that are encoded by a TAT variant polynucleotide.

25

The term "full-length coding region" when used in reference to a nucleic acid encoding a TAT polypeptide refers to the sequence of nucleotides which encode the full-length TAT polypeptide of the invention (which is often shown between start and stop codons, inclusive thereof, in the accompanying figures). The term "full-length coding region" when used in reference to an ATCC deposited nucleic acid refers to the TAT polypeptide-encoding portion of the cDNA that is inserted into the vector deposited with the ATCC (which is often shown between start and stop codons, inclusive thereof, in the accompanying figures).

30

"Isolated," when used to describe the various TAT polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or,

35

preferably, silver stain. Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the TAT polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.

An "isolated" TAT polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

5

10

15

20

25

30

35

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

"Stringent conditions" or "high stringency conditions", as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium

chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) overnight hybridization in a solution that employs 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with a 10 minute wash at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) followed by a 10 minute high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C.

5

10

15

20

25

30

35

"Moderately stringent conditions" may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.

The term "epitope tagged" when used herein refers to a chimeric polypeptide comprising a TAT polypeptide or anti-TAT antibody fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).

"Active" or "activity" for the purposes herein refers to form(s) of a TAT polypeptide which retain a biological and/or an immunological activity of native or naturally-occurring TAT, wherein "biological" activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring TAT other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring TAT and an "immunological" activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring TAT.

The term "antagonist" is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native TAT polypeptide disclosed herein. In a similar manner, the term "agonist" is used in the broadest sense and includes any molecule that mimics a biological activity of a native TAT polypeptide disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native TAT polypeptides, peptides, antisense oligonucleotides, small organic molecules, etc. Methods for identifying agonists or antagonists of a TAT polypeptide may comprise contacting a TAT polypeptide with a candidate agonist or antagonist molecule and measuring a detectable change in one or more biological activities

normally associated with the TAT polypeptide.

5

10

15

20

25

30

35

"Treating" or "treatment" or "alleviation" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented. A subject or mammal is successfully "treated" for a TAT polypeptide-expressing cancer if, after receiving a therapeutic amount of an anti-TAT antibody, TAT binding oligopeptide or TAT binding organic molecule according to the methods of the present invention, the patient shows observable and/or measurable reduction in or absence of one or more of the following: reduction in the number of cancer cells or absence of the cancer cells; reduction in the tumor size; inhibition (i.e., slow to some extent and preferably stop) of cancer cell infiltration into peripheral organs including the spread of cancer into soft tissue and bone; inhibition (i.e., slow to some extent and preferably stop) of tumor metastasis; inhibition, to some extent, of tumor growth; and/or relief to some extent, one or more of the symptoms associated with the specific cancer; reduced morbidity and mortality, and improvement in quality of life issues. To the extent the anti-TAT antibody or TAT binding oligopeptide may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. Reduction of these signs or symptoms may also be felt by the patient.

The above parameters for assessing successful treatment and improvement in the disease are readily measurable by routine procedures familiar to a physician. For cancer therapy, efficacy can be measured, for example, by assessing the time to disease progression (TTP) and/or determining the response rate (RR). Metastasis can be determined by staging tests and by bone scan and tests for calcium level and other enzymes to determine spread to the bone. CT scans can also be done to look for spread to the pelvis and lymph nodes in the area. Chest X-rays and measurement of liver enzyme levels by known methods are used to look for metastasis to the lungs and liver, respectively. Other routine methods for monitoring the disease include transrectal ultrasonography (TRUS) and transrectal needle biopsy (TRNB).

For bladder cancer, which is a more localized cancer, methods to determine progress of disease include urinary cytologic evaluation by cystoscopy, monitoring for presence of blood in the urine, visualization of the urothelial tract by sonography or an intravenous pyelogram, computed tomography (CT) and magnetic resonance imaging (MRI). The presence of distant metastases can be assessed by CT of the abdomen, chest x-rays, or radionuclide imaging of the skeleton.

"Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. "Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.

"Mammal" for purposes of the treatment of, alleviating the symptoms of or diagnosis of a cancer refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.

Administration "in combination with" one or more further therapeutic agents includes simultaneous

(concurrent) and consecutive administration in any order.

5

10

15

20

25

30

35

"Carriers" as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN®, polyethylene glycol (PEG), and PLURONICS®.

By "solid phase" or "solid support" is meant a non-aqueous matrix to which an antibody, TAT binding oligopeptide or TAT binding organic molecule of the present invention can adhere or attach. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Patent No. 4,275,149.

A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a TAT polypeptide, an antibody thereto or a TAT binding oligopeptide) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.

A "small" molecule or "small" organic molecule is defined herein to have a molecular weight below about 500 Daltons.

An "effective amount" of a polypeptide, antibody, TAT binding oligopeptide, TAT binding organic molecule or an agonist or antagonist thereof as disclosed herein is an amount sufficient to carry out a specifically stated purpose. An "effective amount" may be determined empirically and in a routine manner, in relation to the stated purpose.

The term "therapeutically effective amount" refers to an amount of an antibody, polypeptide, TAT binding oligopeptide, TAT binding organic molecule or other drug effective to "treat" a disease or disorder in a subject or mammal. In the case of cancer, the therapeutically effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. See the definition herein of "treating". To the extent the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic.

A "growth inhibitory amount" of an anti-TAT antibody, TAT polypeptide, TAT binding oligopeptide

or TAT binding organic molecule is an amount capable of inhibiting the growth of a cell, especially tumor, e.g., cancer cell, either *in vitro* or *in vivo*. A "growth inhibitory amount" of an anti-TAT antibody, TAT polypeptide, TAT binding oligopeptide or TAT binding organic molecule for purposes of inhibiting neoplastic cell growth may be determined empirically and in a routine manner.

A "cytotoxic amount" of an anti-TAT antibody, TAT polypeptide, TAT binding oligopeptide or TAT binding organic molecule is an amount capable of causing the destruction of a cell, especially tumor, e.g., cancer cell, either *in vitro* or *in vivo*. A "cytotoxic amount" of an anti-TAT antibody, TAT polypeptide, TAT binding oligopeptide or TAT binding organic molecule for purposes of inhibiting neoplastic cell growth may be determined empirically and in a routine manner.

5

10

15

20

25

30

35

The term "antibody" is used in the broadest sense and specifically covers, for example, single anti-TAT monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-TAT antibody compositions with polyepitopic specificity, polyclonal antibodies, single chain anti-TAT antibodies, and fragments of anti-TAT antibodies (see below) as long as they exhibit the desired biological or immunological activity. The term "immunoglobulin" (Ig) is used interchangeable with antibody herein.

An "isolated antibody" is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

The basic 4-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) chains and two identical heavy (H) chains (an IgM antibody consists of 5 of the basic heterotetramer unit along with an additional polypeptide called J chain, and therefore contain 10 antigen binding sites, while secreted IgA antibodies can polymerize to form polyvalent assemblages comprising 2-5 of the basic 4-chain units along with J chain). In the case of IgGs, the 4-chain unit is generally about 150,000 daltons. Each L chain is linked to a H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. Each H and L chain also has regularly spaced intrachain disulfide bridges. Each H chain has at the N-terminus, a variable domain (V_H) followed by three constant domains (V_H) for each of the v_H and v_H chains and four v_H domains for v_H and v_H is aligned with the v_H and the v_H and the v_H is aligned with the first constant domain of the heavy chain (v_H). Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains. The pairing of a v_H and v_H together forms a single antigen-binding site. For the structure and properties of the

different classes of antibodies, see, e.g., <u>Basic and Clinical Immunology</u>, 8th edition, Daniel P. Stites, Abba I. Terr and Tristram G. Parslow (eds.), Appleton & Lange, Norwalk, CT, 1994, page 71 and Chapter 6.

The L chain from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains (C_H) , immunoglobulins can be assigned to different classes or isotypes. There are five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated α , δ , ϵ , γ , and μ , respectively. The γ and α classes are further divided into subclasses on the basis of relatively minor differences in C_H sequence and function, e.g., humans express the following subclasses: IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.

5

10

15

20

25

30

35

The term "variable" refers to the fact that certain segments of the variable domains differ extensively in sequence among antibodies. The V domain mediates antigen binding and define specificity of a particular antibody for its particular antigen. However, the variability is not evenly distributed across the 110-amino acid span of the variable domains. Instead, the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called "hypervariable regions" that are each 9-12 amino acids long. The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).

The term "hypervariable region" when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g. around about residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the V_L, and around about 1-35 (H1), 50-65 (H2) and 95-102 (H3) in the V_H; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)) and/or those residues from a "hypervariable loop" (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the V_L, and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the V_H; Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)).

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations which include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies.

The modifier "monoclonal" is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies useful in the present invention may be prepared by the hybridoma methodology first described by Kohler et al., Nature, 256:495 (1975), or may be made using recombinant DNA methods in bacterial, eukaryotic animal or plant cells (see, e.g., U.S. Patent No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example.

5

10

15

20

25

30

35

The monoclonal antibodies herein include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (see U.S. Patent No. 4,816,567; and Morrison et al., <u>Proc. Natl. Acad. Sci. USA.</u> 81:6851-6855 (1984)). Chimeric antibodies of interest herein include "primatized" antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g. Old World Monkey, Ape etc), and human constant region sequences.

An "intact" antibody is one which comprises an antigen-binding site as well as a C_L and at least heavy chain constant domains, C_H1 , C_H2 and C_H3 . The constant domains may be native sequence constant domains (e.g. human native sequence constant domains) or amino acid sequence variant thereof. Preferably, the intact antibody has one or more effector functions.

"Antibody fragments" comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab') 2, and Fv fragments; diabodies; linear antibodies (see U.S. Patent No. 5,641,870, Example 2; Zapata et al., <u>Protein Eng.</u> 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.

Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, and a residual "Fc" fragment, a designation reflecting the ability to crystallize readily. The Fab fragment consists of an entire L chain along with the variable region domain of the H chain (V_H) , and the first constant domain of one heavy chain (C_H1) . Each Fab fragment is monovalent with respect to antigen binding, i.e., it has a single antigen-binding site. Pepsin treatment of an antibody yields a single large F(ab') fragment which roughly corresponds to two disulfide linked Fab fragments having divalent antigen-binding activity and is still capable of cross-linking antigen. Fab' fragments differ from Fab fragments by having additional few residues at the carboxy terminus of the C_H1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. $F(ab')_2$ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

The Fc fragment comprises the carboxy-terminal portions of both H chains held together by disulfides.

The effector functions of antibodies are determined by sequences in the Fc region, which region is also the part recognized by Fc receptors (FcR) found on certain types of cells.

"Fv" is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

5

10

15

20

25

30

35

"Single-chain Fv" also abbreviated as "sFv" or "scFv" are antibody fragments that comprise the V_H and V_L antibody domains connected into a single polypeptide chain. Preferably, the sFv polypeptide further comprises a polypeptide linker between the V_H and V_L domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994); Borrebaeck 1995, infra.

The term "diabodies" refers to small antibody fragments prepared by constructing sFv fragments (see preceding paragraph) with short linkers (about 5-10 residues) between the V_H and V_L domains such that interchain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment, i.e., fragment having two antigen-binding sites. Bispecific diabodies are heterodimers of two "crossover" sFv fragments in which the V_H and V_L domains of the two antibodies are present on different polypeptide chains. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).

"Humanized" forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from the non-human antibody. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or non-human primate having the desired antibody specificity, affinity, and capability. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).

A "species-dependent antibody," e.g., a mammalian anti-human IgE antibody, is an antibody which

has a stronger binding affinity for an antigen from a first mammalian species than it has for a homologue of that antigen from a second mammalian species. Normally, the species-dependent antibody "bind specifically" to a human antigen (i.e., has a binding affinity (Kd) value of no more than about 1×10^{-7} M, preferably no more than about 1×10^{-8} and most preferably no more than about 1×10^{-9} M) but has a binding affinity for a homologue of the antigen from a second non-human mammalian species which is at least about 50 fold, or at least about 500 fold, or at least about 1000 fold, weaker than its binding affinity for the human antigen. The species-dependent antibody can be of any of the various types of antibodies as defined above, but preferably is a humanized or human antibody.

5

10

15

20

25

A "TAT binding oligopeptide" is an oligopeptide that binds, preferably specifically, to a TAT polypeptide as described herein. TAT binding oligopeptides may be chemically synthesized using known oligopeptide synthesis methodology or may be prepared and purified using recombinant technology. TAT binding oligopeptides are usually at least about 5 amino acids in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 amino acids in length or more, wherein such oligopeptides that are capable of binding, preferably specifically, to a TAT polypeptide as described herein. TAT binding oligopeptides may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening oligopeptide libraries for oligopeptides that are capable of specifically binding to a polypeptide target are well known in the art (see, e.g., U.S. Patent Nos. 5,556,762, 5,750,373, 4,708,871, 4,833,092, 5,223,409, 5,403,484, 5,571,689, 5,663,143; PCT Publication Nos. WO 84/03506 and WO84/03564; Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 81:3998-4002 (1984); Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 82:178-182 (1985); Geysen et al., in Synthetic Peptides as Antigens, 130-149 (1986); Geysen et al., J. Immunol. Meth., 102:259-274 (1987); Schoofs et al., J. Immunol., 140:611-616 (1988), Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6378; Lowman, H.B. et al. (1991) Biochemistry, 30:10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363, and Smith, G. P. (1991) Current Opin. Biotechnol., 2:668).

A "TAT binding organic molecule" is an organic molecule other than an oligopeptide or antibody as defined herein that binds, preferably specifically, to a TAT polypeptide as described herein. TAT binding organic molecules may be identified and chemically synthesized using known methodology (see, e.g., PCT Publication Nos. WO00/00823 and WO00/39585). TAT binding organic molecules are usually less than about 2000 daltons in size, alternatively less than about 1500, 750, 500, 250 or 200 daltons in size, wherein such organic molecules that are capable of binding, preferably specifically, to a TAT polypeptide as described herein may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening organic molecule libraries for molecules that are capable of binding to a polypeptide target are well known in the art (see, e.g., PCT Publication Nos. WO00/00823 and WO00/39585).

5

10

15

20

25

30

35

An antibody, oligopeptide or other organic molecule "which binds" an antigen of interest, e.g. a tumorassociated polypeptide antigen target, is one that binds the antigen with sufficient affinity such that the antibody. oligopeptide or other organic molecule is useful as a diagnostic and/or therapeutic agent in targeting a cell or tissue expressing the antigen, and does not significantly cross-react with other proteins. In such embodiments, the extent of binding of the antibody, oligopeptide or other organic molecule to a "non-target" protein will be less than about 10% of the binding of the antibody, oligopeptide or other organic molecule to its particular target protein as determined by fluorescence activated cell sorting (FACS) analysis or radioimmunoprecipitation (RIA). With regard to the binding of an antibody, oligopeptide or other organic molecule to a target molecule, the term "specific binding" or "specifically binds to" or is "specific for" a particular polypeptide or an epitope on a particular polypeptide target means binding that is measurably different from a non-specific interaction. Specific binding can be measured, for example, by determining binding of a molecule compared to binding of a control molecule, which generally is a molecule of similar structure that does not have binding activity. For example, specific binding can be determined by competition with a control molecule that is similar to the target, for example, an excess of non-labeled target. In this case, specific binding is indicated if the binding of the labeled target to a probe is competitively inhibited by excess unlabeled target. The term "specific binding" or "specifically binds to" or is "specific for" a particular polypeptide or an epitope on a particular polypeptide target as used herein can be exhibited, for example, by a molecule having a Kd for the target of at least about 10⁴ M, alternatively at least about 10⁵ M, alternatively at least about 10⁶ M, alternatively at least about 10⁷ M, alternatively at least about 10⁻⁸ M, alternatively at least about 10⁻¹⁰ M, alternatively at least about 10⁻¹⁰ M, alternatively at least about 10⁻¹¹ M, alternatively at least about 10⁻¹² M, or greater. In one embodiment, the term "specific binding" refers to binding where a molecule binds to a particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope.

An antibody, oligopeptide or other organic molecule that "inhibits the growth of tumor cells expressing a TAT polypeptide" or a "growth inhibitory" antibody, oligopeptide or other organic molecule is one which results in measurable growth inhibition of cancer cells expressing or overexpressing the appropriate TAT polypeptide. The TAT polypeptide may be a transmembrane polypeptide expressed on the surface of a cancer cell or may be a polypeptide that is produced and secreted by a cancer cell. Preferred growth inhibitory anti-TAT antibodies, oligopeptides or organic molecules inhibit growth of TAT-expressing tumor cells by greater

than 20%, preferably from about 20% to about 50%, and even more preferably, by greater than 50% (e.g., from about 50% to about 100%) as compared to the appropriate control, the control typically being tumor cells not treated with the antibody, oligopeptide or other organic molecule being tested. In one embodiment, growth inhibition can be measured at an antibody concentration of about 0.1 to 30 μ g/ml or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the tumor cells to the antibody. Growth inhibition of tumor cells in vivo can be determined in various ways such as is described in the Experimental Examples section below. The antibody is growth inhibitory in vivo if administration of the anti-TAT antibody at about 1 μ g/kg to about 100 mg/kg body weight results in reduction in tumor size or tumor cell proliferation within about 5 days to 3 months from the first administration of the antibody, preferably within about 5 to 30 days.

An antibody, oligopeptide or other organic molecule which "induces apoptosis" is one which induces programmed cell death as determined by binding of annexin V, fragmentation of DNA, cell shrinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies). The cell is usually one which overexpresses a TAT polypeptide. Preferably the cell is a tumor cell, e.g., a prostate, breast, ovarian, stomach, endometrial, lung, kidney, colon, bladder cell. Various methods are available for evaluating the cellular events associated with apoptosis. For example, phosphatidyl serine (PS) translocation can be measured by annexin binding; DNA fragmentation can be evaluated through DNA laddering; and nuclear/chromatin condensation along with DNA fragmentation can be evaluated by any increase in hypodiploid cells. Preferably, the antibody, oligopeptide or other organic molecule which induces apoptosis is one which results in about 2 to 50 fold, preferably about 5 to 50 fold, and most preferably about 10 to 50 fold, induction of annexin binding relative to untreated cell in an annexin binding assay.

Antibody "effector functions" refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: C1q binding and complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g., B cell receptor); and B cell activation.

"Antibody-dependent cell-mediated cytotoxicity" or "ADCC" refers to a form of cytotoxicity in which secreted Ig bound onto Fc receptors (FcRs) present on certain cytotoxic cells (e.g., Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The antibodies "arm" the cytotoxic cells and are absolutely required for such killing. The primary cells for mediating ADCC, NK cells, express Fc γRIII only, whereas monocytes express FcγRI, FcγRII and FcγRIII. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol. 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in US Patent No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al.

(USA) 95:652-656 (1998).

"Fc receptor" or "FcR" describes a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an "activating receptor") and FcγRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor Fc γRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain. (see review M. in Daëron, Annu. Rev. Immunol. 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., I. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term "FcR" herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994)).

"Human effector cells" are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least Fc γ RIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source, e.g., from blood.

20

5

10

15

"Complement dependent cytotoxicity" or "CDC" refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (C1q) to antibodies (of the appropriate subclass) which are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g., as described in Gazzano-Santoro et al., <u>J. Immunol. Methods</u> 202:163 (1996), may be performed.

25

The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g., epithelial squamous cell cancer), lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, cancer of the urinary tract, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, melanoma, multiple myeloma and B-cell lymphoma, brain, as well as head and neck cancer, and associated metastases.

35

30

The terms "cell proliferative disorder" and "proliferative disorder" refer to disorders that are

associated with some degree of abnormal cell proliferation. In one embodiment, the cell proliferative disorder is cancer.

"Tumor", as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.

5

10

15

20

25

30

35

An antibody, oligopeptide or other organic molecule which "induces cell death" is one which causes a viable cell to become nonviable. The cell is one which expresses a TAT polypeptide, preferably a cell that overexpresses a TAT polypeptide as compared to a normal cell of the same tissue type. The TAT polypeptide may be a transmembrane polypeptide expressed on the surface of a cancer cell or may be a polypeptide that is produced and secreted by a cancer cell. Preferably, the cell is a cancer cell, e.g., a breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, thyroid, pancreatic or bladder cell. Cell death *in vitro* may be determined in the absence of complement and immune effector cells to distinguish cell death induced by antibody-dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC). Thus, the assay for cell death may be performed using heat inactivated serum (i.e., in the absence of complement) and in the absence of immune effector cells. To determine whether the antibody, oligopeptide or other organic molecule is able to induce cell death, loss of membrane integrity as evaluated by uptake of propidium iodide (PI), trypan blue (see Moore et al. Cytotechnology 17:1-11 (1995)) or 7AAD can be assessed relative to untreated cells. Preferred cell death-inducing antibodies, oligopeptides or other organic molecules are those which induce PI uptake in the PI uptake assay in BT474 cells.

A "TAT-expressing cell" is a cell which expresses an endogenous or transfected TAT polypeptide either on the cell surface or in a secreted form. A "TAT-expressing cancer" is a cancer comprising cells that have a TAT polypeptide present on the cell surface or that produce and secrete a TAT polypeptide. A "TATexpressing cancer" optionally produces sufficient levels of TAT polypeptide on the surface of cells thereof, such that an anti-TAT antibody, oligopeptide ot other organic molecule can bind thereto and have a therapeutic effect with respect to the cancer. In another embodiment, a "TAT-expressing cancer" optionally produces and secretes sufficient levels of TAT polypeptide, such that an anti-TAT antibody, oligopeptide ot other organic molecule antagonist can bind thereto and have a therapeutic effect with respect to the cancer. With regard to the latter, the antagonist may be an antisense oligonucleotide which reduces, inhibits or prevents production and secretion of the secreted TAT polypeptide by tumor cells. A cancer which "overexpresses" a TAT polypeptide is one which has significantly higher levels of TAT polypeptide at the cell surface thereof, or produces and secretes, compared to a noncancerous cell of the same tissue type. Such overexpression may be caused by gene amplification or by increased transcription or translation. TAT polypeptide overexpression may be determined in a diagnostic or prognostic assay by evaluating increased levels of the TAT protein present on the surface of a cell, or secreted by the cell (e.g., via an immunohistochemistry assay using anti-TAT antibodies prepared against an isolated TAT polypeptide which may be prepared using recombinant DNA technology from an isolated nucleic acid encoding the TAT polypeptide; FACS analysis, etc.). Alternatively, or additionally, one may measure levels of TAT polypeptide-encoding nucleic acid or mRNA in the cell, e.g., via fluorescent in situ hybridization using a nucleic acid based probe corresponding to a TAT-encoding nucleic acid or the complement

thereof; (FISH; see WO98/45479 published October, 1998), Southern blotting, Northern blotting, or polymerase chain reaction (PCR) techniques, such as real time quantitative PCR (RT-PCR). One may also study TAT polypeptide overexpression by measuring shed antigen in a biological fluid such as serum, e.g, using antibody-based assays (see also, e.g., U.S. Patent No. 4,933,294 issued June 12, 1990; WO91/05264 published April 18, 1991; U.S. Patent 5,401,638 issued March 28, 1995; and Sias et al., J. Immunol. Methods 132:73-80 (1990)). Aside from the above assays, various in vivo assays are available to the skilled practitioner. For example, one may expose cells within the body of the patient to an antibody which is optionally labeled with a detectable label, e.g., a radioactive isotope, and binding of the antibody to cells in the patient can be evaluated, e.g., by external scanning for radioactivity or by analyzing a biopsy taken from a patient previously exposed to the antibody.

10

15

5

As used herein, the term "immunoadhesin" designates antibody-like molecules which combine the binding specificity of a heterologous protein (an "adhesin") with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., is "heterologous"), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM.

20

The word "label" when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody, oligopeptide or other organic molecule so as to generate a "labeled" antibody, oligopeptide or other organic molecule. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.

25

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., At, I¹³¹, I¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P³² and radioactive isotopes of Lu), chemotherapeutic agents e.g. methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolytic enzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, and the various antitumor or anticancer agents disclosed below. Other cytotoxic agents are described below. A tumoricidal agent causes destruction of tumor cells.

30

A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of a cell, especially a TAT-expressing cancer cell, either *in vitro* or *in vivo*. Thus, the growth inhibitory agent may be one which significantly reduces the percentage of TAT-expressing cells in S phase. Examples of growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such

35

as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13. The taxanes (paclitaxel and docetaxel) are anticancer drugs both derived from the yew tree. Docetaxel (TAXOTERE®, Rhone-Poulenc Rorer), derived from the European yew, is a semisynthetic analogue of paclitaxel (TAXOL®, Bristol-Myers Squibb). Paclitaxel and docetaxel promote the assembly of microtubules from tubulin dimers and stabilize microtubules by preventing depolymerization, which results in the inhibition of mitosis in cells.

"Doxorubicin" is an anthracycline antibiotic. The full chemical name of doxorubicin is (8S-cis)-10-[(3-amińo-2,3,6-trideoxy α -L-lyxo-hexapyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-5,12-naphthacenedione.

The term "cytokine" is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, Nmethionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-α and -β; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF-β; platelet-growth factor; transforming growth factors (TGFs) such as TGF-α and TGF-β; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon -α, -β, and -γ; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL- 1a, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12; a tumor necrosis factor such as TNF-α or TNF-B; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence cytokines.

30

5

10

15

20

25

The term "package insert" is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.

Table 1

```
/*
           * C-C increased from 12 to 15
           * Z is average of EQ
 5
           * B is average of ND
           * match with stop is _M; stop-stop = 0; J (joker) match = 0
           */
                                        /* value of a match with a stop */
          #define M
                     day[26][26] = {
10
           int
                  ABCDEFGHIJKLMNOPQRSTUVWXYZ*/
           /*
                      \{2, 0, -2, 0, 0, -4, 1, -1, -1, 0, -1, -2, -1, 0, M, 1, 0, -2, 1, 1, 0, 0, -6, 0, -3, 0\},\
           /* A */
                      { 0, 3,-4, 3, 2,-5, 0, 1,-2, 0, 0,-3,-2, 2, M,-1, 1, 0, 0, 0, 0, -2,-5, 0,-3, 1},
           /* B */
                       \{-2,-4,15,-5,-5,-4,-3,-3,-2,0,-5,-6,-5,-4,\_M,-3,-5,-4,0,-2,0,-2,-8,0,0,-5\},
           /* C */
                       {0, 3,-5, 4, 3,-6, 1, 1,-2, 0, 0,-4,-3, 2, M,-1, 2,-1, 0, 0, 0,-2,-7, 0,-4, 2}, {0, 2,-5, 3, 4,-5, 0, 1,-2, 0, 0,-3,-2, 1, M,-1, 2,-1, 0, 0, 0,-2,-7, 0,-4, 3},
           /* D */
15
           /* E */
                       {-4,-5,-4,-6,-5, 9,-5,-2, 1, 0,-5, 2, 0,-4, M,-5,-5,-4,-3,-3, 0,-1, 0, 0, 7,-5},
           /* F */
                       { 1, 0, -3, 1, 0, -5, 5, -2, -3, 0, -2, -4, -3, 0, M, -1, -1, -3, 1, 0, 0, -1, -7, 0, -5, 0},
           /* G */
                       {-1, 1,-3, 1, 1,-2,-2, 6,-2, 0, 0,-2,-2, 2, M, 0, 3, 2,-1,-1, 0,-2,-3, 0, 0, 2},
           /* H */
                       \{-1, -2, -2, -2, -2, 1, -3, -2, 5, 0, -2, 2, 2, -2, M, -2, -2, -1, 0, 0, 4, -5, 0, -1, -2\},
20
           /* I */
                       /* J */
                       {-1, 0,-5, 0, 0,-5,-2, 0,-2, 0, 5,-3, 0, 1, M,-1, 1, 3, 0, 0, 0,-2,-3, 0,-4, 0},
           /* K */
                       {-2,-3,-6,-4,-3, 2,-4,-2, 2, 0,-3, 6, 4,-3,_M,-3,-2,-3,-3,-1, 0, 2,-2, 0,-1,-2},
           /* L */
                       {-1,-2,-5,-3,-2, 0,-3,-2, 2, 0, 0, 4, 6,-2, M,-2,-1, 0,-2,-1, 0, 2,-4, 0,-2,-1},
           /* M */
                       { 0, 2, 4, 2, 1, 4, 0, 2, -2, 0, 1, -3, -2, 2, M, -1, 1, 0, 1, 0, 0, -2, -4, 0, -2, 1},
25
           /* N */
                       /*O*/
                        \begin{array}{l} \{1,\overline{1},-3,-1,\overline{1},-5,-1,\overline{0},-2,0,\overline{1},-3,-2,\overline{1},\overline{M},6,0,0,1,0,0,-1,-6,0,-5,0\},\\ \{0,1,-5,2,2,-5,-1,3,-2,0,1,-2,-1,1,\overline{M},0,4,1,-1,-1,0,-2,-5,0,-4,3\}. \end{array} 
            /* P */
            /* Q */
                       {-2, 0, 4, -1, -1, -4, -3, 2, -2, 0, 3, -3, 0, 0, M, 0, 1, 6, 0, -1, 0, -2, 2, 0, -4, 0},
            /* R */
                       { 1, 0, 0, 0, 0, -3, 1, -1, -1, 0, 0, -3, -2, 1, M, 1, -1, 0, 2, 1, 0, -1, -2, 0, -3, 0},
30
            /* S */
                        { 1, 0,-2, 0, 0,-3, 0,-1, 0, 0, 0,-1,-1, 0, M, 0,-1,-1, 1, 3, 0, 0,-5, 0,-3, 0},
            /* T */
                        /* U */
            /* V */
                        {-6,-5,-8,-7,-7, 0,-7,-3,-5, 0,-3,-2,-4,-4,_M,-6,-5, 2,-2,-5, 0,-6,17, 0, 0,-6},
            /* W */
                        {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,<u>M</u>,0,0,0,0,0,0,0,0,0,0,0,0,0},
35
            /* X */
                        {-3,-3, 0,-4,-4, 7,-5, 0,-1, 0,-4,-1,-2,-2,_M,-5,-4,-4,-3,-3, 0,-2, 0, 0,10,-4},
            /* Y */
                        { 0, 1,-5, 2, 3,-5, 0, 2,-2, 0, 0,-2,-1, 1, M, 0, 3, 0, 0, 0, 0, -2,-6, 0,-4, 4}
            /* Z */
            };
 40
```

45

50

Table 1 (cont')

```
#include <stdio.h>
           #include <ctype.h>
 5
           #define MAXJMP
                                        16
                                                 /* max jumps in a diag */
           #define MAXGAP
                                                 /* don't continue to penalize gaps larger than this */
                                        24
                                       1024
           #define JMPS
                                                 /* max jmps in an path */
           #define MX
                                        4
                                                 /* save if there's at least MX-1 bases since last jmp */
10
           #define DMAT
                                        3
                                                 /* value of matching bases */
                                       0
           #define DMIS
                                                 /* penalty for mismatched bases */
           #define DINSO
                                       8
                                                 /* penalty for a gap */
           #define DINS1
                                       1
                                                 /* penalty per base */
15
           #define PINSO
                                       8
                                                 /* penalty for a gap */
           #define PINS1
                                                 /* penalty per residue */
           struct jmp {
                                       n[MAXJMP];
                    short
                                                           /* size of jmp (neg for dely) */
20
                    unsigned short
                                       x[MAXJMP];
                                                           /* base no. of jmp in seq x */
          };
                                                           /* limits seq to 2^16 -1 */
          struct diag {
                                                           /* score at last jmp */
                    int
                                       score;
25
                    long
                                       offset;
                                                           /* offset of prev block */
                    short
                                       ijmp;
                                                           /* current jmp index */
                    struct jmp
                                       jp;
                                                           /* list of jmps */
          };
30
          struct path {
                                                 /* number of leading spaces */
                    short
                             n[JMPS]; /* size of jmp (gap) */
                    int
                             x[JMPS]; /* loc of jmp (last elem before gap) */
          };
35
          char
                             *ofile:
                                                           /* output file name */
          char
                             *namex[2];
                                                           /* seq names: getseqs() */
          char
                             *prog;
                                                           /* prog name for err msgs */
          char
                              *seqx[2];
                                                          /* seqs: getseqs() */
40
          int
                             dmax;
                                                          /* best diag: nw() */
                                                          /* final diag */
          int
                             dmax0;
          int
                             dna:
                                                          /* set if dna: main() */
                                                          /* set if penalizing end gaps */
          int
                             endgaps;
          int
                             gapx, gapy;
                                                          /* total gaps in seqs */
45
                                                          /* seq lens */
          int
                             len0, len1;
          int
                             ngapx, ngapy;
                                                          /* total size of gaps */
          int
                                                          /* max score: nw() */
                             smax;
                                                          /* bitmap for matching */
          int
                             *xbm;
          long
                             offset;
                                                          /* current offset in jmp file */
50
          struct
                   diag
                                                          /* holds diagonals */
                             *dx;
          struct
                   path
                             pp[2];
                                                          /* holds path for seqs */
          char
                             *calloc(), *malloc(), *index(), *strcpy();
                             *getseq(), *g_calloc();
          char
```

PCT/US2003/028547

```
/* Needleman-Wunsch alignment program
           * usage: progs file1 file2
              where file1 and file2 are two dna or two protein sequences.
 5
              The sequences can be in upper- or lower-case an may contain ambiguity
              Any lines beginning with ';', '>' or '<' are ignored
              Max file length is 65535 (limited by unsigned short x in the jmp struct)
              A sequence with 1/3 or more of its elements ACGTU is assumed to be DNA
               Output is in the file "align.out"
10
           * The program may create a tmp file in /tmp to hold info about traceback.
           * Original version developed under BSD 4.3 on a vax 8650
           #include "nw.h"
15
           #include "day.h"
                     _{dbval[26]} = {
           static
                     1.14.2.13.0.0.4.11,0,0,12,0,3,15,0,0,0,5,6,8,8,7,9,0,10,0
           };
20
                     _pbval[26] = {
           static
                     1, 2|(1 < < ('D'-'A'))|(1 < < ('N'-'A')), 4, 8, 16, 32, 64,
                     128, 256, 0xFFFFFFF, 1 < < 10, 1 < < 11, 1 < < 12, 1 < < 13, 1 < < 14,
                     1<<15, 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22,
                     1<<23, 1<<24, 1<<25|(1<<('E'-'A'))|(1<<('Q'-'A'))
25
           };
                                                                                                                                main
           main(ac, av)
                     int
                               ac;
30
                               *av[];
                     char
           {
                     prog = av[0];
                     if (ac! = 3) {
                               fprintf(stderr, "usage: %s file1 file2\n", prog);
fprintf(stderr, "where file1 and file2 are two dna or two protein sequences.\n");
fprintf(stderr, "The sequences can be in upper- or lower-case\n");
35
                               fprintf(stderr, "Any lines beginning with ';' or '<' are ignored\n");
                               fprintf(stderr, "Output is in the file \"align.out\"\n");
                               exit(1);
40
                     namex[0] = av[1];
                     namex[1] = av[2];
                     seqx[0] = getseq(namex[0], \&len0);
                     seqx[1] = getseq(namex[1], &len1);
                     xbm = (dna)? dbval: pbval;
45
                                                    /* 1 to penalize endgaps */
                     endgaps = 0;
                                                              /* output file */
                     ofile = "align.out";
                                         /* fill in the matrix, get the possible jmps */
50
                     nw();
                                          /* get the actual jmps */
                     readjmps();
                                          /* print stats, alignment */
                     print();
                                         /* unlink any tmp files */}
                     cleanup(0);
```

```
/* do the alignment, return best score: main()
            * dna: values in Fitch and Smith, PNAS, 80, 1382-1386, 1983
            * pro: PAM 250 values
            * When scores are equal, we prefer mismatches to any gap, prefer
            * a new gap to extending an ongoing gap, and prefer a gap in seqx
 5
            * to a gap in seq y.
            */
                                                                                                                                      nw
           nw()
           {
                                                               /* seqs and ptrs */
10
                                          *px, *py;
                     char
                                                               /* keep track of dely */
                                          *ndely, *dely;
                     int
                                                               /* keep track of delx */
                                          ndelx, delx;
                     int
                                                               /* for swapping row0, row1 */
                                          *tmp;
                     int
                                                               /* score for each type */
                     int
                                          mis;
                                                               /* insertion penalties */
15
                                          ins0, ins1;
                     int
                                          id;
                                                               /* diagonal index */
                     register
                                                               /* jmp index */
                     register
                                          ij;
                                           *col0, *col1;
                                                               /* score for curr, last row */
                     register
                      register
                                                               /* index into seqs */
                                          xx, yy;
20
                      dx = (struct diag *)g_calloc("to get diags", len0+len1+1, sizeof(struct diag));
                     ndely = (int *)g_calloc("to get ndely", len1+1, sizeof(int));
                     dely = (int *)g_calloc("to get dely", len1 + 1, sizeof(int));

col0 = (int *)g_calloc("to get col0", len1 + 1, sizeof(int));

col1 = (int *)g_calloc("to get col1", len1 + 1, sizeof(int));
25
                      ins0 = (dna)? DINS0 : PINS0;
                      ins1 = (dna)? DINS1: PINS1;
                      smax = -10000;
                      if (endgaps) {
                                for (col0[0] = dely[0] = -ins0, yy = 1; yy <= len1; yy++) {
30
                                          col0[yy] = dely[yy] = col0[yy-1] - ins1;
                                          ndely[yy] = yy;
                                                     /* Waterman Bull Math Biol 84 */
                                col0[0] = 0;
35
                      }
                      else
                                for (yy = 1; yy \le len1; yy++)
                                           dely[yy] = -ins0;
                      /* fill in match matrix
40
                      for (px = seqx[0], xx = 1; xx <= len0; px++, xx++) {
                                /* initialize first entry in col
                                if (endgaps) {
45
                                           if (xx == 1)
                                                     col1[0] = delx = -(ins0+ins1);
                                           else
                                                     col1[0] = delx = col0[0] - ins1;
                                           ndelx = xx;
 50
                                 else {
                                           coi1[0] = 0;
                                           delx = -ins0;
                                           ndelx = 0;
 55
                                 }
```

```
...nw
                            for (py = seqx[1], yy = 1; yy \le len1; py++, yy++) {
                                     mis = col0[yy-1];
                                     if (dna)
                                              mis += (xbm[*px-'A']\&xbm[*py-'A'])? DMAT : DMIS;
 5
                                     else
                                              mis += _day[*px-'A'][*py-'A'];
                                     /* update penalty for del in x seq;
                                      * favor new del over ongong del
10
                                      * ignore MAXGAP if weighting endgaps
                                      if (endgaps | | ndely[yy] < MAXGAP) {
                                               if (col0[yy] - ins0 > = dely[yy]) {
                                                        dely[yy] = col0[yy] - (ins0+ins1);
15
                                                        ndely[yy] = 1;
                                               } else {
                                                        dely[yy] -= ins1;
                                                        ndely[yy]++;
20
                                      } else {
                                               if (col0[yy] - (ins0 + ins1) > = dely[yy]) {
                                                        dely[yy] = col0[yy] - (ins0+ins1);
                                                        ndely[yy] = 1;
25
                                               } else
                                                        ndely[yy]++;
                                      }
                                      /* update penalty for del in y seq;
                                       * favor new del over ongong del
30
                                      if (endgaps | | ndelx < MAXGAP) {
                                               if (col1[yy-1] - ins0 > = delx) {
                                                         delx = col1[yy-1] - (ins0+ins1);
                                                        ndelx = 1;
35
                                               } else {
                                                         delx -= ins1;
                                                         ndelx++;
40
                                      } else {
                                               if (col1[yy-1] - (ins0+ins1) > = delx) {
                                                         delx = coll[yy-1] - (ins0 + ins1);
                                                         ndelx = 1;
                                               } else
                                                         ndelx++;
 45
                                      }
                                      /* pick the maximum score; we're favoring
                                       * mis over any del and delx over dely
 50
                                                                                                                      ...nw
                                      id = xx - yy + len1 - 1;
                                      if (mis > = delx && mis > = dely[yy])
                                                coll[yy] = mis;
 55
```

Table 1 (cont') else if (delx > = dely[yy]) { coll[yy] = delx;ij = dx[id].ijmp;if (dx[id].jp.n[0] && (!dna | | (ndelx > = MAXJMP))&& xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINS0)) { 5 dx[id].ijmp++;if (++ij > = MAXJMP) { writejmps(id); ij = dx[id].ijmp = 0;dx[id].offset = offset;10 offset += sizeof(struct jmp) + sizeof(offset); } dx[id].jp.n[ij] = ndelx;15 dx[id].jp.x[ij] = xx;dx[id].score = delx;else { coll[yy] = dely[yy];20 ij = dx(id).ijmp;if (dx[id].jp.n[0] && (!dna | | (ndely[yy]) > = MAXJMP&& xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINSO)) { dx[id].ijmp++; if (++ij >= MAXJMP) { 25 writejmps(id); ij = dx[id].ijmp = 0;dx[id].offset = offset; offset += sizeof(struct jmp) + sizeof(offset); } 30 dx[id].jp.n[ij] = -ndely[yy];dx[id].jp.x[ij] = xx;dx[id].score = dely[yy]; 35 if (xx == len0 && yy < len1) { /* last col */ if (endgaps) coll[yy] -= ins0 + ins1*(len1-yy);if (coll[yy] > smax) { 40 smax = coll[yy];dmax = id;} } 45 if (endgaps && xx < len0) col1[yy-1] -= ins0 + ins1*(len0-xx);if (coll[yy-1] > smax) { smax = coll[yy-1];dmax = id;50 tmp = col0; col0 = col1; col1 = tmp; . } (void) free((char *)ndely); (void) free((char *)dely); (void) free((char *)col0); (void) free((char *)col1); 55 }

PCT/US2003/028547

```
* print() -- only routine visible outside this module
 5
            * getmat() - trace back best path, count matches: print()
            * pr align() -- print alignment of described in array p[]: print()
            * dumpblock() - dump a block of lines with numbers, stars: pr_align()
            * nums() -- put out a number line: dumpblock()
            * putline() -- put out a line (name, [num], seq, [num]): dumpblock()
10
            * stars() - -put a line of stars: dumpblock()
            * stripname() -- strip any path and prefix from a seqname
           #include "nw.h"
15
           #define SPC
                                         /* maximum output line */
           #define P_LINE 256
                                          /* space between name or num and seq */
           #define P_SPC
20
            extern
                      _day[26][26];
                                          /* set output line length */
                     olen;
           int
                                          /* output file */
           FILE
                      *fx;
                                                                                                                                 print
25
           print()
                                                              /* overlap */
                      int
                                lx, ly, firstgap, lastgap;
                      if ((fx = fopen(ofile, "w")) == 0) {
                                fprintf(stderr, "%s: can't write %s\n", prog, ofile);
30
                                cleanup(1);
                      fprintf(fx, "<first sequence: %s (length = %d)\n", namex[0], len0); fprintf(fx, "<second sequence: %s (length = %d)\n", namex[1], len1);
35
                      olen = 60;
                      1x = 1en0;
                      ly = len1;
                      firstgap = lastgap = 0;
                      if (dmax < len1 - 1) {
                                                    /* leading gap in x */
                                pp[0].spc = firstgap = len1 - dmax - 1;
40
                                ly -= pp[0].spc;
                      else if (dmax > len1 - 1) { /* leading gap in y */
                                pp[1].spc = firstgap = dmax - (len1 - 1);
 45
                                lx -= pp[1].spc;
                      if (dmax0 < len0 - 1) {
                                                    /* trailing gap in x */
                                lastgap = len0 - dmax0 - 1;
                                lx -= lastgap;
 50
                      else if (dmax0 > len0 - 1) { /* trailing gap in y */
                                 lastgap = dmax0 - (len0 - 1);
                                ly -= lastgap;
                       getmat(lx, ly, firstgap, lastgap);
 55
                      pr_align();
```

```
* trace back the best path, count matches
            */
           static
  5
           getmat(lx, ly, firstgap, lastgap)
                                                                                                                       getmat
                    int
                                                          /* "core" (minus endgaps) */
                              lx, ly;
                                                          /* leading trailing overlap */
                    int
                              firstgap, lastgap;
           {
                    int
                                       nm, i0, i1, siz0, siz1;
10
                                       outx[32];
                    char
                     double
                                       pct;
                    register
                                       n0, n1;
                    register char
                                        *p0, *p1;
                    /* get total matches, score
15
                     */
                    i0 = i1 = siz0 = siz1 = 0;
                    p0 = seqx[0] + pp[1].spc;
p1 = seqx[1] + pp[0].spc;
                    n0 = pp[1].spc + 1;
20
                    n1 = pp[0].spc + 1;
                    nm = 0;
                    while ( *p0 && *p1 ) {
                              if (siz0) {
                                       p1++;
25
                                       n1++;
                                       siz0--;
                              else if (siz1) {
                                       p0++;
30
                                       n0++;
                                       siz1-;
                              élse {
                                       if (xbm[*p0-'A']&xbm[*p1-'A'])
35
                                                 nm++;
                                       if (n0++==pp[0].x[i0])
                                                 siz0 = pp[0].n[i0++];
                                       if (n1++==pp[1].x[i1])
                                                siz1 = pp[1].n[i1++];
40
                                       p0++;
                                       p1++;
                             }
                    }
45
                    /* pct homology:
                     * if penalizing endgaps, base is the shorter seq
                     * else, knock off overhangs and take shorter core
                    if (endgaps)
50
                             lx = (len0 < len1)? len0 : len1;
                    else
                             lx = (lx < ly)? lx : ly;
                    pct = 100.*(double)nm/(double)lx;
                    fprintf(fx, "\n");
55
                    fprintf(fx, "<%d match%s in an overlap of %d: %.2f percent similarity\n",
                             nm, (nm = = 1)? "": "es", lx, pct);
```

```
...getmat
                     fprintf(fx, "<gaps in first sequence: %d", gapx);
                     if (gapx) {
                               (void) sprintf(outx, " (%d %s%s)",
                                          ngapx, (dna)? "base": "residue", (ngapx == 1)? "": "s");
 5
                                fprintf(fx, "%s", outx);
                     fprintf(fx, ", gaps in second sequence: %d", gapy);
if (gapy) {
                               (void) sprintf(outx, " (%d %s%s)",
                                          ngapy, (dna)? "base": "residue", (ngapy == 1)? "": "s");
10
                                fprintf(fx, "%s", outx);
                     }
if (dna)
                                fprintf(fx,
                                "n < score: %d (match = %d, mismatch = %d, gap penalty = %d + %d per base)n",
15
                                smax, DMAT, DMIS, DINSO, DINS1);
                      else
                                fprintf(fx,
                                "\n < score: %d (Dayhoff PAM 250 matrix, gap penalty = %d + %d per residue)\n",
                                smax, PINSO, PINS1);
20
                      if (endgaps)
                                fprintf(fx,
                                "<endgaps penalized. left endgap: %d %s%s, right endgap: %d %s%s\n", firstgap, (dna)? "base": "residue", (firstgap == 1)? "": "s", lastgap, (dna)? "base": "residue", (lastgap == 1)? "": "s");
25
                      else
                                fprintf(fx, "<endgaps not penalized\n");
            }
                                                     /* matches in core -- for checking */
            static
                                nm;
            static
                                                     /* lengths of stripped file names */
                                lmax;
                                                     /* jmp index for a path */
30
            static
                                ij[2];
                                                     /* number at start of current line */
            static
                                nc[2];
                                                     /* current elem number -- for gapping */
            static
                                ni[2];
            static
                                siz[2];
                                                     /* ptr to current element */
            static char
                                 *ps[2];
                                                     /* ptr to next output char slot */
35
            static char
                                *po[2];
                                out[2][P_LINE];
                                                     /* output line */
            static char
                                star[P_LINE];
                                                     /* set by stars() */
            static char
             * print alignment of described in struct path pp[]
40
            static
                                                                                                                               pr_align
           pr_align()
            {
                                                     /* char count */
                      int
                                           nn;
45
                      int
                                           more;
                      register
                                           i;
                      for (i = 0, lmax = 0; i < 2; i++)
                                nn = stripname(namex[i]);
50
                                if (nn > lmax)
                                           lmax = nn;
                                 nc[i] = 1;
                                ni[i] = 1;
                                 siz[i] = ij[i] = 0;
55
                                 ps[i] = seqx[i];
                                                                          }
                                po[i] = out[i];
```

```
...pr align
                    for (nn = nm = 0, more = 1; more;)
                             for (i = more = 0; i < 2; i++) {
 5
                                        * do we have more of this sequence?
                                        */
                                       if (!*ps[i])
                                                continue;
                                       more++;
10
                                       if (pp[i].spc) { /* leading space */
                                                 *po[i]++ = ' ';
                                                pp[i].spc--;
                                       else if (siz[i]) { /* in a gap */
15
                                                 *po[i]++ = '-';
                                                siz[i]--;
                                       }
                                       else {
                                                          /* we're putting a seq element
                                                          */
20
                                                 *po[i] = *ps[i];
                                                if (islower(*ps[i]))
                                                          *ps[i] = toupper(*ps[i]);
                                                po[i]++;
                                                ps[i]++;
25
                                                 * are we at next gap for this seq?
                                                if (ni[i] == pp[i].x[ij[i]]) {
/*
30
                                                           * we need to merge all gaps
                                                           * at this location
                                                          siz[i] = pp[i].n[ij[i]++];
                                                          while (ni[i] == pp[i].x[ij[i]])

siz[i] += pp[i].n[ij[i]++];
35
                                                ni[i]++;
                                       }
40
                             if (++nn == olen \mid | !more && nn) {
                                       dumpblock();
                                       for (i = 0; i < 2; i++)
                                                po[i] = out[i];
                                       nn = 0;
45
                             }
                    }
          }
/*
           * dump a block of lines, including numbers, stars: pr_align()
50
          static
                                                                                                                dumpblock
          dumpblock()
          {
                    register i;
55
                    for (i = 0; i < 2; i++)
                             po[i] = '0';
```

Table 1 (cont')

...dumpblock

```
(void) putc('\n', fx);
                    for (i = 0; i < 2; i++)
                              if (*out[i] && (*out[i] != ' ' | | *(po[i]) != ' ')) {
 5
                                        if (i == 0)
                                                  nums(i);
                                        if (i == 0 && *out[1])
                                                  stars();
                                        putline(i);
                                        if (i == 0 && *out[1])
10
                                                   fprintf(fx, star);
                                        if (i == 1)
                                                   nums(i);
                              }
15
                    }
           * put out a number line: dumpblock()
20
           static
                                                                                                                              nums
           nums(ix)
                                         /* index in out[] holding seq line */
                     int
                              ix;
           {
                                         nline[P_LINE];
                     char
25
                     register
                                         i, j;
                                         *pn, *px, *py;
                     register char
                     for (pn = nline, i = 0; i < lmax+P_SPC; i++, pn++)
                               *pn = ' ';
                     for (i = nc[ix], py = out[ix]; *py; py++, pn++) {
    if (*py == ' ' | | *py == '-')
        *pn = ' ';
30
                               else {
                                         if (i\%10 == 0 \mid \mid (i == 1 \&\& nc[ix] != 1)) {
                                                   j = (i < 0)? -i : i;
                                                   for (px = pn; j; j /= 10, px-)
35
                                                              px = j\%10 + '0';
                                                             *px = '-';
40
                                         else
                                                    *pn = ' ';
                                         i++;
                               }
                      pn = '0';
45
                     nc[ix] = i;
                     for (pn = nline; *pn; pn++)
                               (void) putc(*pn, fx);
                     (void) putc('\n', fx);
 50
             * put out a line (name, [num], seq, [num]): dumpblock()
            static
                                                                                                                            putline
 55
            putline(ix)
                                                              {
                      int
                               ix;
```

```
...putline
                 int
                 register char
                                   *px;
5
                 for (px = namex[ix], i = 0; *px && *px != ':'; px++, i++)
                          (void) putc(*px, fx);
                 for (; i < lmax+P_SPC; i++)
                          (void) putc(' ', fx);
10
                  /* these count from 1:
                  * ni[] is current element (from 1)
                  * nc[] is number at start of current line
                  for (px = out[ix]; *px; px++)
15
                          (void) putc(*px&0x7F, fx);
                  (void) putc('\n', fx);
         }
20
          * put a line of stars (seqs always in out[0], out[1]): dumpblock()
          static
                                                                                                             stars
25
          stars()
          {
                  int
                                    *p0, *p1, cx, *px;
                  register char
                  30
                           return;
                  px = star;
                  for (i = lmax + P_SPC; i; i-)
                           *px++='';
35
                   for (p0 = out[0], p1 = out[1]; *p0 && *p1; p0++, p1++) {
                           if (isalpha(*p0) && isalpha(*p1)) {
                                    if (xbm[*p0-'A']&xbm[*p1-'A']) {
 40
                                             cx = '*';
                                             nm++;
                                    }
                                    else if (!dna && _day[*p0-'A'][*p1-'A'] > 0)
                                             cx = '.';
 45
                                    else
                                             cx = ' ';
                            else
                                    cx = ' ';
 50
                            *px++=cx;
                   *px++ = '\n';
                   *px = '0';
 55
           }
```

Table 1 (cont')

stripname

```
* cleanup() -- cleanup any tmp file
            * getseq() -- read in seq, set dna, len, maxlen
            * g_calloc() - calloc() with error checkin
           * readjmps() -- get the good jmps, from tmp file if necessary
 5
            * writejmps() -- write a filled array of jmps to a tmp file: nw()
           #include "nw.h"
           #include < sys/file.h>
10
                                                                        /* tmp file for jmps */
                     *jname = "/tmp/homgXXXXXX";
           char
           FILE
                      *fj;
                                                                        /* cleanup tmp file */
           int
                     cleanup();
                     lseek();
           long
15
            * remove any tmp file if we blow
            */
                                                                                                                              cleanup
           cleanup(i)
                                i;
                      int
20
           {
                      if (fj)
                                (void) unlink(jname);
                      exit(i);
25
            * read, return ptr to seq, set dna, len, maxlen
* skip lines starting with ';', '<', or '>'
            * seq in upper or lower case
30
            char
                                                                                                                                getseq
            getseq(file, len)
                                          /* file name */
                                *file;
                      char
                                          /* seq len */
                                *len:
                      int
35
                                          line[1024], *pseq;
                      char
                      register char
                                           *px, *py;
                                          natge, tlen;
                      int
                      FILE
                      if ((fp = fopen(file, "r")) == 0) {
                                fprintf(stderr, "%s: can't read %s\n", prog, file);
 40
                      tlen = natgc = 0;
                      while (fgets(line, 1024, fp)) {
    if (*line == ';' | | *line == '<' | | *line == '>')
 45
                                           continue;
                                 for (px = line; *px != '\n'; px++)
                                           if (isupper(*px) | | islower(*px))
                                                     tlen++;
 50
                       if ((pseq = malloc((unsigned)(tlen+6))) == 0) {
                                 fprintf(stderr, "%s: malloc() failed to get %d bytes for %s\n", prog, tlen+6, file);
                                 exit(1);
                       pseq[0] = pseq[1] = pseq[2] = pseq[3] = '\0';
 55
```

```
...getseq
                    py = pseq + 4;
                    *len = tlen;
                    rewind(fp);
                    while (fgets(line, 1024, fp)) {
    if (*line == ';' || *line == '<' || *line == '>')
 5
                                       continue;
                             for (px = line; *px != '\n'; px++) {
                                       if (isupper(*px))
10
                                                *py++ = *px;
                                       else if (islower(*px))
                                       *py++ = toupper(*px);
if (index("ATGCU",*(py-1)))
                                                natgc++;
15
                             }
                     *py++ = '\0';
                    *py = '\0';
                    (void) fclose(fp);
20
                    dna = natgc > (tlen/3);
                    return(pseq+4);
          char
                                                                                                                      g_calloc
          g_calloc(msg, nx, sz)
25
                                                 /* program, calling routine */
                    char
                             *msg;
                                                 /* number and size of elements */
                    int
                             nx, sz;
           {
                                       *px, *calloc();
                    char
                    if ((px = calloc((unsigned)nx, (unsigned)sz)) == 0) {
30
                              if (*msg) {
                                       fprintf(stderr, "%s: g_calloc() failed %s (n=%d, sz=%d)\n", prog, msg, nx, sz);
                              }
35
                    return(px);
          }
           * get final jmps from dx[] or tmp file, set pp[], reset dmax: main()
40
                                                                                                                   readjmps
          readjmps()
           {
                                       fd = -1;
                    int
                                       siz, i0, i1;
                    int
45
                    register i, j, xx;
                    if (fj) {
                              (void) fclose(fj);
                              if ((fd = open(jname, O_RDONLY, 0)) < 0) {
                                       fprintf(stderr, "%s: can't open() %s\n", prog, jname);
50
                                       cleanup(1);
                              }
                    for (i = i0 = i1 = 0, dmax0 = dmax, xx = len0; ; i++) {
                              while (1) {
55
                                       for (j = dx[dmax].ijmp; j >= 0 && dx[dmax].jp.x[j] >= xx; j--)
```

Table 1 (cont')

...readjmps

```
if (j < 0 && dx[dmax].offset && fj) {
                                                   (void) lseek(fd, dx[dmax].offset, 0);
                                                   (void) read(fd, (char *)&dx[dmax].jp, sizeof(struct jmp));
                                                   (void) read(fd, (char *)&dx[dmax].offset, sizeof(dx[dmax].offset));
 5
                                                   dx[dmax].ijmp = MAXJMP-1;
                                         else
                               if (i > = JMPS) {
                                         fprintf(stderr, "%s: too many gaps in alignment\n", prog);
10
                                         cleanup(1);
                               if (j > = 0) {
                                         siz = dx[dmax].jp.n[j];
15
                                         xx = dx[dmax].jp.x[j];
                                         dmax += siz;
                                         if (siz < 0) {
                                                                       /* gap in second seq */
                                                   pp[1].n[i1] = -siz;
                                                   xx += siz;
                                                                                                                */
20
                                                   /* id = xx - yy + len1 - 1
                                                   pp[1].x[i1] = xx - dmax + len1 - 1;
                                                   gapy++;
                                                   ngapy -= siz;
           /* ignore MAXGAP when doing endgaps */
                                                   siz = (-siz < MAXGAP | | endgaps)? -siz : MAXGAP;
25
                                         else if (siz > 0) { /* gap in first seq */
                                                   pp[0].n[i0] = siz;
                                                   pp[0].x[i0] = xx;
30
                                                   gapx++;
                                                   ngapx += siz;
           /* ignore MAXGAP when doing endgaps */
                                                   siz = (siz < MAXGAP | | endgaps)? siz : MAXGAP;
35
                                         }
                               }
                                else
                                         break;
40
                     /* reverse the order of jmps */
                     for (j = 0, i0 -; j < i0; j++, i0-) \{

i = pp[0].n[j]; pp[0].n[j] = pp[0].n[i0]; pp[0].n[i0] = i;
                                i = pp[0].x[i]; pp[0].x[i] = pp[0].x[i0]; pp[0].x[i0] = i;
45
                     for (j = 0, i1-; j < i1; j++, i1-)
                               i = pp[1].n[j]; pp[1].n[j] = pp[1].n[i1]; pp[1].n[i1] = i;

i = pp[1].x[j]; pp[1].x[j] = pp[1].x[i1]; pp[1].x[i1] = i;
50
                     if (fd >= 0)
                               (void) close(fd);
                     if (fj) {
                                (void) unlink(jname);
                                f_j = 0;
55
                                offset = 0;
                                                             }
                     }
```

PCT/US2003/028547

```
* write a filled jmp struct offset of the prev one (if any): nw()
                                                                                                                                                                      writejmps
 5
               writejmps(ix)
                                           ix;
               {
                             char
                                           *mktemp();
                             if (!fj) {
                                           if (mktemp(jname) < 0) {
          fprintf(stderr, "%s: can't mktemp() %s\n", prog, jname);
          cleanup(1);</pre>
10
                                          }
if ((fj = fopen(jname, "w")) == 0) {
    fprintf(stderr, "%s: can't write %s\n", prog, jname);
15
                                           }
                             }
(void) fwrite((char *)&dx[ix].jp, sizeof(struct jmp), 1, fj);
(void) fwrite((char *)&dx[ix].offset, sizeof(dx[ix].offset), 1, fj);
20
                }
```

Table 2

TAT XXXXXXXXXXXXXXX (Length = 15 amino acids)

5 % amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the TAT polypeptide) =

10 5 divided by 15 = 33.3%

Table 3

TAT XXXXXXXXXX (Length = 10 amino acids)

15 Comparison Protein XXXXXYYYYYYZZYZ (Length = 15 amino acids)

% amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the TAT polypeptide) =

5 divided by 10 = 50%

Table 4

25

30

TAT-DNA NNNNNNNNNNN (Length = 14 nucleotides)

Comparison DNA NNNNNLLLLLLLLL (Length = 16 nucleotides)

% nucleic acid sequence identity =

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the TAT-DNA nucleic acid sequence) = 6 divided by 14 = 42.9%

Table 5

TAT-DNA

 (Length = 12 nucleotides)
(Length = 9 nucleotides)

Comparison DNA

5 % nucleic acid sequence identity =

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the TAT-DNA nucleic acid sequence) =

10 4 divided by 12 = 33.3%

15

20

25

30

35

II. Compositions and Methods of the Invention

A. Anti-TAT Antibodies

In one embodiment, the present invention provides anti-TAT antibodies which may find use herein as therapeutic and/or diagnostic agents. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies.

1. Polyclonal Antibodies

Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen (especially when synthetic peptides are used) to a protein that is immunogenic in the species to be immunized. For example, the antigen can be conjugated to keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor, using a bifunctional or derivatizing agent, e.g., maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl₂, or R¹N=C=NR, where R and R¹ are different alkyl groups.

Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 µg or 5 µg of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later, the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later, the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune

response.

2. Monoclonal Antibodies

Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567).

In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized

as described above to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized *in vitro*. After immunization, lymphocytes are isolated and then fused with a myeloma cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).

5

The hybridoma cells thus prepared are seeded and grown in a suitable culture medium which medium preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells (also referred to as fusion partner). For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the selective culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

10

Preferred fusion partner myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a selective medium that selects against the unfused parental cells. Preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 and derivatives e.g., X63-Ag8-653 cells available from the American Type Culture Collection, Manassas, Virginia, USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); and Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).

20

15

Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA).

25

The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis described in Munson et al., <u>Anal. Biochem.</u>, 107:220 (1980).

30

Once hybridoma cells that produce antibodies of the desired specificity, affinity, and/or activity are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown *in vivo* as ascites tumors in an animal e.g., by i.p. injection of the cells into mice.

The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, affinity chromatography (e.g., using protein A or protein G-Sepharose) or ion-exchange chromatography, hydroxylapatite chromatography, gel electrophoresis, dialysis, etc.

35

DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the

heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as *E. coli* cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., <u>Curr. Opinion in Immunol.</u>, 5:256-262 (1993) and Plückthun, <u>Immunol. Revs.</u> 130:151-188 (1992).

In a further embodiment, monoclonal antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al., Bio/Technology, 10:779-783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nuc. Acids. Res. 21:2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.

15

20

10

5

The DNA that encodes the antibody may be modified to produce chimeric or fusion antibody polypeptides, for example, by substituting human heavy chain and light chain constant domain (C _H and C_L) sequences for the homologous murine sequences (U.S. Patent No. 4,816,567; and Morrison, et al., <u>Proc. Natl Acad. Sci. USA</u>, 81:6851 (1984)), or by fusing the immunoglobulin coding sequence with all or part of the coding sequence for a non-immunoglobulin polypeptide (heterologous polypeptide). The non-immunoglobulin polypeptide sequences can substitute for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.

3. Human and Humanized Antibodies

25

30

35

The anti-TAT antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab') 2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are

those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity and HAMA response (human anti-mouse antibody) when the antibody is intended for human therapeutic use. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable domain sequences. The human V domain sequence which is closest to that of the rodent is identified and the human framework region (FR) within it accepted for the humanized antibody (Sims et al., J. Immunol. 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)). Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol. 151:2623 (1993)).

It is further important that antibodies be humanized with retention of high binding affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.

Various forms of a humanized anti-TAT antibody are contemplated. For example, the humanized antibody may be an antibody fragment, such as a Fab, which is optionally conjugated with one or more cytotoxic agent(s) in order to generate an immunoconjugate. Alternatively, the humanized antibody may be an intact antibody, such as an intact IgG1 antibody.

As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (J_H) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array into such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., <u>Proc. Natl. Acad. Sci. USA</u>, 90:2551 (1993); Jakobovits et al., <u>Nature</u>, 362:255-258 (1993); Bruggemann et al., <u>Year in Immuno.</u> 7:33 (1993); U.S. Patent Nos. 5,545,806, 5,569,825, 5,591,669 (all of GenPharm); 5,545,807; and WO 97/17852.

Alternatively, phage display technology (McCafferty et al., Nature 348:552-553 [1990]) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned inframe into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats, reviewed in, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al. Nature, 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222:581-597 (1991), or Griffith et al., EMBO J. 12:725-734 (1993). See, also, U.S. Patent Nos. 5,565,332 and 5,573,905.

As discussed above, human antibodies may also be generated by *in vitro* activated B cells (see U.S. Patents 5,567,610 and 5,229,275).

4. Antibody fragments

5

10

15

20

25

30

35

In certain circumstances there are advantages of using antibody fragments, rather than whole antibodies. The smaller size of the fragments allows for rapid clearance, and may lead to improved access to solid tumors.

Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., <u>Journal of</u> Biochemical and <u>Biophysical Methods</u> 24:107-117 (1992); and Brennan et al., <u>Science</u>, 229:81 (1985)).

However, these fragments can now be produced directly by recombinant host cells. Fab, Fv and ScFv antibody fragments can all be expressed in and secreted from *E. coli*, thus allowing the facile production of large amounts of these fragments. Antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab'-SH fragments can be directly recovered from *E. coli* and chemically coupled to form F(ab')₂ fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab') 2 fragments can be isolated directly from recombinant host cell culture. Fab and F(ab') fragment with increased in vivo half-life comprising a salvage receptor binding epitope residues are described in U.S. Patent No. 5,869,046. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Patent No. 5,571,894; and U.S. Patent No. 5,587,458. Fv and sFv are the only species with intact combining sites that are devoid of constant regions; thus, they are suitable for reduced nonspecific binding during in vivo use. sFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. See Antibody Engineering, ed. Borrebaeck, supra. The antibody fragment may also be a "linear antibody", e.g., as described in U.S. Patent 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.

5. Bispecific Antibodies

5

10

15

20

25

30

35

Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of a TAT protein as described herein. Other such antibodies may combine a TAT binding site with a binding site for another protein. Alternatively, an anti-TAT arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD3), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRII (CD16), so as to focus and localize cellular defense mechanisms to the TAT-expressing cell. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express TAT. These antibodies possess a TAT-binding arm and an arm which binds the cytotoxic agent (e.g., saporin, anti-interferon-α, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g., F(ab')₂ bispecific antibodies).

WO 96/16673 describes a bispecific anti-ErbB2/anti-Fc γ RIII antibody and U.S. Patent No. 5,837,234 discloses a bispecific anti-ErbB2/anti-Fc γ RI antibody. A bispecific anti-ErbB2/Fc α antibody is shown in WO98/02463. U.S. Patent No. 5,821,337 teaches a bispecific anti-ErbB2/anti-CD3 antibody.

Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J. 10:3655-3659 (1991).

According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. Preferably, the fusion is with an Ig heavy chain constant domain, comprising at least part of the hinge, C_H2 , and C_H3 regions. It is preferred to have the first heavy-chain constant region (C_H1) containing the site necessary for light chain bonding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host cell. This provides for greater flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yield of the desired bispecific antibody. It is, however, possible to insert the coding sequences for two or all three polypeptide chains into a single expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios have no significant affect on the yield of the desired chain combination.

In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology 121:210 (1986).

20

25

5

10

15

According to another approach described in U.S. Patent No. 5,731,168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the C_H3 domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g., tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g., alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

30

Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Patent No. 4,676,980, along with a number of cross-linking techniques.

35

Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate

F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent, sodium arsenite, to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Recent progress has facilitated the direct recovery of Fab'-SH fragments from E. coli, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a V_H connected to a V_L by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., <u>J. Immunol.</u> 147:60 (1991).

6. Heteroconjugate Antibodies

5

10

15

20

25

30

35

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells [U.S. Patent No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. It is contemplated that the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

7. Multivalent Antibodies

A multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind. The antibodies of the present invention can be multivalent antibodies (which are other than of the IgM class) with three or more antigen binding sites (e.g. tetravalent antibodies), which can be readily produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody. The multivalent antibody can comprise a dimerization domain and three or more antigen binding sites. The preferred dimerization domain comprises (or consists of) an Fc region or a hinge region. In this scenario, the antibody will comprise an Fc region and three or more antigen binding sites amino-terminal to the Fc region. The preferred multivalent antibody herein comprises (or consists of) three to about eight, but preferably four, antigen binding sites. The multivalent antibody comprises at least one polypeptide chain (and preferably two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable domains. For instance, the polypeptide chain(s) may comprise VD1-(X1) _n-VD2-(X2)_n-Fc, wherein VD1 is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or polypeptide, and n is 0 or 1. For instance, the polypeptide chain(s) may comprise: VH-CH1-flexible linker-VH-CH1-Fc region chain; or VH-CH1-VH-CH1-Fc region chain. The multivalent antibody herein preferably further comprises at least two (and preferably four) light chain variable domain polypeptides. The multivalent antibody herein may, for instance, comprise from about two to about eight light chain variable domain polypeptides. The light chain variable domain polypeptides contemplated here comprise a light chain variable domain and, optionally, further comprise a CL domain.

8. Effector Function Engineering

5

10

15

20

25

30

35

as to enhance antigen-dependent cell-mediated cyotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al., Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design 3:219-230 (1989).

To increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in U.S. Patent 5,739,277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG₁, IgG₂, IgG₃, or IgG₄) that is responsible for increasing the *in vivo* serum half-life of the IgG molecule.

9. <u>Immunoconjugates</u>

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic

agent such as a chemotherapeutic agent, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconiugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 131I. ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

Conjugates of an antibody and one or more small molecule toxins, such as a calicheamicin, maytansinoids, a trichothene, and CC1065, and the derivatives of these toxins that have toxin activity, are also contemplated herein.

Maytansine and maytansinoids

5

10

15

20

25

30

35

In one preferred embodiment, an anti-TAT antibody (full length or fragments) of the invention is conjugated to one or more maytansinoid molecules.

Maytansinoids are mitototic inhibitors which act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub *Maytenus serrata* (U.S. Patent No. 3,896,111). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 maytansinol esters (U.S. Patent No. 4,151,042). Synthetic maytansinol and derivatives and analogues thereof are disclosed, for example, in U.S. Patent Nos. 4,137,230; 4,248,870; 4,256,746; 4,260,608; 4,265,814; 4,294,757; 4,307,016; 4,308,268; 4,308,269; 4,309,428; 4,313,946; 4,315,929; 4,317,821; 4,322,348; 4,331,598; 4,361,650; 4,364,866; 4,424,219; 4,450,254; 4,362,663; and 4,371,533, the disclosures of which are hereby expressly incorporated by reference.

Maytansinoid-antibody conjugates

In an attempt to improve their therapeutic index, maytansine and maytansinoids have been conjugated to antibodies specifically binding to tumor cell antigens. Immunoconjugates containing maytansinoids and their therapeutic use are disclosed, for example, in U.S. Patent Nos. 5,208,020, 5,416,064 and European Patent EP

0 425 235 B1, the disclosures of which are hereby expressly incorporated by reference. Liu et al., <u>Proc. Natl. Acad. Sci. USA</u> 93:8618-8623 (1996) described immunoconjugates comprising a maytansinoid designated DM1 linked to the monoclonal antibody C242 directed against human colorectal cancer. The conjugate was found to be highly cytotoxic towards cultured colon cancer cells, and showed antitumor activity in an *in vivo* tumor growth assay. Chari et al., <u>Cancer Research</u> 52:127-131 (1992) describe immunoconjugates in which a maytansinoid was conjugated via a disulfide linker to the murine antibody A7 binding to an antigen on human colon cancer cell lines, or to another murine monoclonal antibody TA.1 that binds the HER-2/neu oncogene. The cytotoxicity of the TA.1-maytansonoid conjugate was tested *in vitro* on the human breast cancer cell line SK-BR-3, which expresses 3 x 10⁵ HER-2 surface antigens per cell. The drug conjugate achieved a degree of cytotoxicity similar to the free maytansonid drug, which could be increased by increasing the number of maytansinoid molecules per antibody molecule. The A7-maytansinoid conjugate showed low systemic cytotoxicity in mice.

Anti-TAT polypeptide antibody-maytansinoid conjugates (immunoconjugates)

5

10

15

20

25

30

35

Anti-TAT antibody-maytansinoid conjugates are prepared by chemically linking an anti-TAT antibody to a maytansinoid molecule without significantly diminishing the biological activity of either the antibody or the maytansinoid molecule. An average of 3-4 maytansinoid molecules conjugated per antibody molecule has shown efficacy in enhancing cytotoxicity of target cells without negatively affecting the function or solubility of the antibody, although even one molecule of toxin/antibody would be expected to enhance cytotoxicity over the use of naked antibody. Maytansinoids are well known in the art and can be synthesized by known techniques or isolated from natural sources. Suitable maytansinoids are disclosed, for example, in U.S. Patent No. 5,208,020 and in the other patents and nonpatent publications referred to hereinabove. Preferred maytansinoids are maytansinol and maytansinol analogues modified in the aromatic ring or at other positions of the maytansinol molecule, such as various maytansinol esters.

There are many linking groups known in the art for making antibody-maytansinoid conjugates, including, for example, those disclosed in U.S. Patent No. 5,208,020 or EP Patent 0 425 235 B1, and Chari et al., <u>Cancer Research</u> 52:127-131 (1992). The linking groups include disufide groups, thioether groups, acid labile groups, photolabile groups, peptidase labile groups, or esterase labile groups, as disclosed in the above-identified patents, disulfide and thioether groups being preferred.

Conjugates of the antibody and maytansinoid may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). Particularly preferred coupling agents include N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP) (Carlsson et al. <u>Biochem. J.</u> 173:723-737 [1978]) and N-succinimidyl-4-(2-pyridylthio)pentanoate (SPP) to provide for a disulfide linkage.

The linker may be attached to the maytansinoid molecule at various positions, depending on the type of the link. For example, an ester linkage may be formed by reaction with a hydroxyl group using conventional coupling techniques. The reaction may occur at the C-3 position having a hydroxyl group, the C-14 position modified with hydroxymethyl, the C-15 position modified with a hydroxyl group, and the C-20 position having a hydroxyl group. In a preferred embodiment, the linkage is formed at the C-3 position of maytansinol or a maytansinol analogue.

Calicheamicin

5

10

15

20

25

30

35

Another immunoconjugate of interest comprises an anti-TAT antibody conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations. For the preparation of conjugates of the calicheamicin family, see U.S. patents 5,712,374, 5,714,586, 5,739,116, 5,767,285, 5,770,701, 5,770,710, 5,773,001, 5,877,296 (all to American Cyanamid Company). Structural analogues of calicheamicin which may be used include, but are not limited to, γ_1^I , α_2^I , α_3^I , N-acetyl- γ_1^I , PSAG and θ_1^I (Hinman et al., Cancer Research 53:3336-3342 (1993), Lode et al., Cancer Research 58:2925-2928 (1998) and the aforementioned U.S. patents to American Cyanamid). Another anti-tumor drug that the antibody can be conjugated is QFA which is an antifolate. Both calicheamicin and QFA have intracellular sites of action and do not readily cross the plasma membrane. Therefore, cellular uptake of these agents through antibody mediated internalization greatly enhances their cytotoxic effects.

Other cytotoxic agents

Other antitumor agents that can be conjugated to the anti-TAT antibodies of the invention include BCNU, streptozoicin, vincristine and 5-fluorouracil, the family of agents known collectively LL-E33288 complex described in U.S. patents 5,053,394, 5,770,710, as well as esperamicins (U.S. patent 5,877,296).

Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, WO 93/21232 published October 28, 1993.

The present invention further contemplates an immunoconjugate formed between an antibody and a compound with nucleolytic activity (e.g., a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).

For selective destruction of the tumor, the antibody may comprise a highly radioactive atom. A variety of radioactive isotopes are available for the production of radioconjugated anti-TAT antibodies. Examples include At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P³², Pb²¹² and radioactive isotopes of Lu. When the conjugate is used for diagnosis, it may comprise a radioactive atom for scintigraphic studies, for example tc^{99m} or I¹²³, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance

imaging, mri), such as iodine-123 again, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.

The radio- or other labels may be incorporated in the conjugate in known ways. For example, the peptide may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as tc^{99m} or I¹²³, .Re¹⁸⁶, Re¹⁸⁸ and In¹¹¹ can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. "Monoclonal Antibodies in Immunoscintigraphy" (Chatal, CRC Press 1989) describes other methods in detail.

Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238:1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026. The linker may be a "cleavable linker" facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al., Cancer Research 52:127-131 (1992); U.S. Patent No. 5,208,020) may be used.

Alternatively, a fusion protein comprising the anti-TAT antibody and cytotoxic agent may be made, e.g., by recombinant techniques or peptide synthesis. The length of DNA may comprise respective regions encoding the two portions of the conjugate either adjacent one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the conjugate.

In yet another embodiment, the antibody may be conjugated to a "receptor" (such streptavidin) for utilization in tumor pre-targeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) which is conjugated to a cytotoxic agent (e.g., a radionucleotide).

10. <u>Immunoliposomes</u>

5

10

15

20

25

30

35

The anti-TAT antibodies disclosed herein may also be formulated as immunoliposomes. A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545;

and WO97/38731 published October 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem. 257:286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst. 81(19):1484 (1989).

B. TAT Binding Oligopeptides

5

10

15

20

25

30

35

TAT binding oligopeptides of the present invention are oligopeptides that bind, preferably specifically, to a TAT polypeptide as described herein. TAT binding oligopeptides may be chemically synthesized using known oligopeptide synthesis methodology or may be prepared and purified using recombinant technology. TAT binding oligopeptides are usually at least about 5 amino acids in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 amino acids in length or more, wherein such oligopeptides that are capable of binding, preferably specifically, to a TAT polypeptide as described herein. TAT binding oligopeptides may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening oligopeptide libraries for oligopeptides that are capable of specifically binding to a polypeptide target are well known in the art (see, e.g., U.S. Patent Nos. 5,556,762, 5,750,373, 4,708,871, 4,833,092, 5,223,409, 5,403,484, 5,571,689, 5,663,143; PCT Publication Nos. WO 84/03506 and WO84/03564; Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 81:3998-4002 (1984); Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 82:178-182 (1985); Geysen et al., in Synthetic Peptides as Antigens, 130-149 (1986); Geysen et al., J. Immunol. Meth., 102:259-274 (1987); Schoofs et al., J. Immunol., 140:611-616 (1988), Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6378; Lowman, H.B. et al. (1991) Biochemistry, 30:10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363, and Smith, G. P. (1991) Current Opin. Biotechnol., 2:668).

In this regard, bacteriophage (phage) display is one well known technique which allows one to screen large oligopeptide libraries to identify member(s) of those libraries which are capable of specifically binding to a polypeptide target. Phage display is a technique by which variant polypeptides are displayed as fusion proteins to the coat protein on the surface of bacteriophage particles (Scott, J.K. and Smith, G. P. (1990) Science 249: 386). The utility of phage display lies in the fact that large libraries of selectively randomized protein variants (or randomly cloned cDNAs) can be rapidly and efficiently sorted for those sequences that bind to a target molecule with high affinity. Display of peptide (Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci.

USA, 87:6378) or protein (Lowman, H.B. et al. (1991) Biochemistry, 30:10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363) libraries on phage have been used for screening millions of polypeptides or oligopeptides for ones with specific binding properties (Smith, G. P. (1991) Current Opin. Biotechnol., 2:668). Sorting phage libraries of random mutants requires a strategy for constructing and propagating a large number of variants, a procedure for affinity purification using the target receptor, and a means of evaluating the results of binding enrichments. U.S. Patent Nos. 5,223,409, 5,403,484, 5,571,689, and 5,663,143.

Although most phage display methods have used filamentous phage, lambdoid phage display systems (WO 95/34683; U.S. 5,627,024), T4 phage display systems (Ren, Z-J. et al. (1998) Gene 215:439; Zhu, Z. (1997) CAN 33:534; Jiang, J. et al. (1997) can 128:44380; Ren, Z-J. et al. (1997) CAN 127:215644; Ren, Z-J. (1996) Protein Sci. 5:1833; Efimov, V. P. et al. (1995) Virus Genes 10:173) and T7 phage display systems (Smith, G. P. and Scott, J.K. (1993) Methods in Enzymology, 217, 228-257; U.S. 5,766,905) are also known.

Many other improvements and variations of the basic phage display concept have now been developed. These improvements enhance the ability of display systems to screen peptide libraries for binding to selected target molecules and to display functional proteins with the potential of screening these proteins for desired properties. Combinatorial reaction devices for phage display reactions have been developed (WO 98/14277) and phage display libraries have been used to analyze and control bimolecular interactions (WO 98/20169; WO 98/20159) and properties of constrained helical peptides (WO 98/20036). WO 97/35196 describes a method of isolating an affinity ligand in which a phage display library is contacted with one solution in which the ligand will bind to a target molecule and a second solution in which the affinity ligand will not bind to the target molecule, to selectively isolate binding ligands. WO 97/46251 describes a method of biopanning a random phage display library with an affinity purified antibody and then isolating binding phage, followed by a micropanning process using microplate wells to isolate high affinity binding phage. The use of Staphlylococcus aureus protein A as an affinity tag has also been reported (Li et al. (1998) Mol Biotech., 9:187). WO 97/47314 describes the use of substrate subtraction libraries to distinguish enzyme specificities using a combinatorial library which may be a phage display library. A method for selecting enzymes suitable for use in detergents using phage display is described in WO 97/09446. Additional methods of selecting specific binding proteins are described in U.S. Patent Nos. 5,498,538, 5,432,018, and WO 98/15833.

Methods of generating peptide libraries and screening these libraries are also disclosed in U.S. Patent Nos. 5,723,286, 5,432,018, 5,580,717, 5,427,908, 5,498,530, 5,770,434, 5,734,018, 5,698,426, 5,763,192, and 5,723,323.

C. TAT Binding Organic Molecules

5

10 -

15

20

25

30

35

TAT binding organic molecules are organic molecules other than oligopeptides or antibodies as defined herein that bind, preferably specifically, to a TAT polypeptide as described herein. TAT binding organic molecules may be identified and chemically synthesized using known methodology (see, e.g., PCT Publication Nos. WO00/00823 and WO00/39585). TAT binding organic molecules are usually less than about 2000 daltons in size, alternatively less than about 1500, 750, 500, 250 or 200 daltons in size, wherein such organic molecules

that are capable of binding, preferably specifically, to a TAT polypeptide as described herein may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening organic molecule libraries for molecules that are capable of binding to a polypeptide target are well known in the art (see, e.g., PCT Publication Nos. WO00/00823 and WO00/39585). TAT binding organic molecules may be, for example, aldehydes, ketones, oximes, hydrazones, semicarbazones, carbazides, primary amines, secondary amines, tertiary amines, N-substituted hydrazines, hydrazides, alcohols, ethers, thiols, thioethers, disulfides, carboxylic acids, esters, amides, ureas, carbamates, carbonates, ketals, thioketals, acetals, thioacetals, aryl halides, aryl sulfonates, alkyl halides, alkyl sulfonates, aromatic compounds, heterocyclic compounds, anilines, alkenes, alkynes, diols, amino alcohols, oxazolidines, oxazolines, thiazolidines, thiazolines, enamines, sulfonamides, epoxides, aziridines, isocyanates, sulfonyl chlorides, diazo compounds, acid chlorides, or the like.

5

10

15

20

25

30

35

D. <u>Screening for Anti-TAT Antibodies, TAT Binding Oligopeptides and TAT Binding Organic</u> <u>Molecules With the Desired Properties</u>

Techniques for generating antibodies, oligopeptides and organic molecules that bind to TAT polypeptides have been described above. One may further select antibodies, oligopeptides or other organic molecules with certain biological characteristics, as desired.

The growth inhibitory effects of an anti-TAT antibody, oligopeptide or other organic molecule of the invention may be assessed by methods known in the art, e.g., using cells which express a TAT polypeptide either endogenously or following transfection with the TAT gene. For example, appropriate tumor cell lines and TAT-transfected cells may treated with an anti-TAT monoclonal antibody, oligopeptide or other organic molecule of the invention at various concentrations for a few days (e.g., 2-7) days and stained with crystal violet or MTT or analyzed by some other colorimetric assay. Another method of measuring proliferation would be by comparing 3H-thymidine uptake by the cells treated in the presence or absence an anti-TAT antibody, TAT binding oligopeptide or TAT binding organic molecule of the invention. After treatment, the cells are harvested and the amount of radioactivity incorporated into the DNA quantitated in a scintillation counter. Appropriate positive controls include treatment of a selected cell line with a growth inhibitory antibody known to inhibit growth of that cell line. Growth inhibition of tumor cells in vivo can be determined in various ways known in the art. Preferably, the tumor cell is one that overexpresses a TAT polypeptide. Preferably, the anti-TAT antibody, TAT binding oligopeptide or TAT binding organic molecule will inhibit cell proliferation of a TATexpressing tumor cell in vitro or in vivo by about 25-100% compared to the untreated tumor cell, more preferably, by about 30-100%, and even more preferably by about 50-100% or 70-100%, in one embodiment, at an antibody concentration of about 0.5 to 30 µg/ml. Growth inhibition can be measured at an antibody concentration of about 0.5 to 30 µg/ml or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the tumor cells to the antibody. The antibody is growth inhibitory in vivo if administration of the anti-TAT antibody at about 1 µg/kg to about 100 mg/kg body weight results in reduction in tumor size or reduction of tumor cell proliferation within about 5 days to 3 months from the first administration of the antibody, preferably within about 5 to 30 days.

To select for an anti-TAT antibody, TAT binding oligopeptide or TAT binding organic molecule which induces cell death, loss of membrane integrity as indicated by, e.g., propidium iodide (PI), trypan blue or 7AAD uptake may be assessed relative to control. A PI uptake assay can be performed in the absence of complement and immune effector cells. TAT polypeptide-expressing tumor cells are incubated with medium alone or medium containing the appropriate anti-TAT antibody (e.g., at about 10 µg/ml), TAT binding oligopeptide or TAT binding organic molecule. The cells are incubated for a 3 day time period. Following each treatment, cells are washed and aliquoted into 35 mm strainer-capped 12 x 75 tubes (1ml per tube, 3 tubes per treatment group) for removal of cell clumps. Tubes then receive PI (10 µg/ml). Samples may be analyzed using a FACSCAN® flow cytometer and FACSCONVERT® CellQuest software (Becton Dickinson). Those anti-TAT antibodies, TAT binding oligopeptides or TAT binding organic molecules that induce statistically significant levels of cell death as determined by PI uptake may be selected as cell death-inducing anti-TAT antibodies, TAT binding organic molecules.

5

10

15

20

25

30

35

To screen for antibodies, oligopeptides or other organic molecules which bind to an epitope on a TAT polypeptide bound by an antibody of interest, a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. This assay can be used to determine if a test antibody, oligopeptide or other organic molecule binds the same site or epitope as a known anti-TAT antibody. Alternatively, or additionally, epitope mapping can be performed by methods known in the art. For example, the antibody sequence can be mutagenized such as by alanine scanning, to identify contact residues. The mutant antibody is initially tested for binding with polyclonal antibody to ensure proper folding. In a different method, peptides corresponding to different regions of a TAT polypeptide can be used in competition assays with the test antibodies or with a test antibody and an antibody with a characterized or known epitope.

E. Antibody Dependent Enzyme Mediated Prodrug Therapy (ADEPT)

The antibodies of the present invention may also be used in ADEPT by conjugating the antibody to a prodrug-activating enzyme which converts a prodrug (e.g., a peptidyl chemotherapeutic agent, see WO81/01145) to an active anti-cancer drug. See, for example, WO 88/07378 and U.S. Patent No. 4,975,278.

The enzyme component of the immunoconjugate useful for ADEPT includes any enzyme capable of acting on a prodrug in such a way so as to covert it into its more active, cytotoxic form.

Enzymes that are useful in the method of this invention include, but are not limited to, alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5-fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as β-galactosidase and neuraminidase useful for converting glycosylated prodrugs into free drugs; β-lactamase useful for converting drugs derivatized with β-lactams into free drugs; and penicillin amidases, such as penicillin V amidase or penicillin G amidase, useful

for converting drugs derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. Alternatively, antibodies with enzymatic activity, also known in the art as "abzymes", can be used to convert the prodrugs of the invention into free active drugs (see, e.g., Massey, Nature 328:457-458 (1987)). Antibody-abzyme conjugates can be prepared as described herein for delivery of the abzyme to a tumor cell population.

5

The enzymes of this invention can be covalently bound to the anti-TAT antibodies by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents discussed above. Alternatively, fusion proteins comprising at least the antigen binding region of an antibody of the invention linked to at least a functionally active portion of an enzyme of the invention can be constructed using recombinant DNA techniques well known in the art (see, e.g., Neuberger et al., Nature 312:604-608 (1984).

10

F. Full-Length TAT Polypeptides

The present invention also provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as TAT polypeptides. In particular, cDNAs (partial and full-length) encoding various TAT polypeptides have been identified and isolated, as disclosed in further detail in the Examples below.

15

As disclosed in the Examples below, various cDNA clones have been deposited with the ATCC. The actual nucleotide sequences of those clones can readily be determined by the skilled artisan by sequencing of the deposited clone using routine methods in the art. The predicted amino acid sequence can be determined from the nucleotide sequence using routine skill. For the TAT polypeptides and encoding nucleic acids described herein, in some cases, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time.

20

G. Anti-TAT Antibody and TAT Polypeptide Variants

25

In addition to the anti-TAT antibodies and full-length native sequence TAT polypeptides described herein, it is contemplated that anti-TAT antibody and TAT polypeptide variants can be prepared. Anti-TAT antibody and TAT polypeptide variants can be prepared by introducing appropriate nucleotide changes into the encoding DNA, and/or by synthesis of the desired antibody or polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the anti-TAT antibody or TAT polypeptide, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics.

30

Variations in the anti-TAT antibodies and TAT polypeptides described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Patent No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding the antibody or polypeptide that results in a change in the amino acid sequence as compared with the native sequence antibody or polypeptide. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the anti-TAT antibody or TAT polypeptide. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the anti-TAT antibody or

35

TAT polypeptide with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence.

5

10

15

20

Anti-TAT antibody and TAT polypeptide fragments are provided herein. Such fragments may be truncated at the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full length native antibody or protein. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the anti-TAT antibody or TAT polypeptide.

Anti-TAT antibody and TAT polypeptide fragments may be prepared by any of a number of conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves generating antibody or polypeptide fragments by enzymatic digestion, e.g., by treating the protein with an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired antibody or polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini of the DNA fragment are employed at the 5' and 3' primers in the PCR. Preferably, anti-TAT antibody and TAT polypeptide fragments share at least one biological and/or immunological activity with the native anti-TAT antibody or TAT polypeptide disclosed herein.

In particular embodiments, conservative substitutions of interest are shown in Table 6 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 6, or as further described below in reference to amino acid classes, are introduced and the products screened.

Table 6

	Original	Exemplary	Preferred
	Residue	Substitutions	Substitutions
	Ala (A)	val; leu; ile	val
5	Arg (R)	lys; gln; asn	lys
	Asn (N)	gln; his; lys; arg	gln
	Asp (D)	glu	glu
	Cys (C)	ser	ser
	Gln (Q)	asn	asn
10	Glu (E)	asp	asp
	Gly (G)	pro; ala	ala
	His (H)	asn; gln; lys; arg	arg
	Ile (I)	leu; val; met; ala; phe;	
		norleucine	leu
15	Leu (L)	norleucine; ile; val;	
		met; ala; phe	ile
	Lys (K)	arg; gln; asn	arg
	Met (M)	leu; phe; ile	leu
	Phe (F)	leu; val; ile; ala; tyr	leu
20	Pro (P)	ala	ala
	Ser (S)	thr	thr
	Thr (T)	ser	ser
	Trp (W)	tyr; phe	tyr
	Tyr (Y)	trp; phe; thr; ser	phe
25	Val (V)	ile; leu; met; phe;	•
		ala; norleucine	leu

Substantial modifications in function or immunological identity of the anti-TAT antibody or TAT polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:

- (1) hydrophobic: norleucine, met, ala, val, leu, ile;
- (2) neutral hydrophilic: cys, ser, thr;
- 35 (3) acidic: asp, glu;

30

40

- (4) basic: asn, gln, his, lys, arg;
- (5) residues that influence chain orientation: gly, pro; and
- (6) aromatic: trp, tyr, phe.

Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites.

The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al. <u>Nucl. Acids Res.</u>, 13:4331 (1986); Zoller et al., <u>Nucl. Acids Res.</u>, 10:6487 (1987)], cassette mutagenesis [Wells et al., <u>Gene</u>, 34:315 (1985)], restriction selection mutagenesis [Wells et al., <u>Philos. Trans. R. Soc. London SerA</u>, 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the anti-TAT antibody or TAT polypeptide variant DNA.

5

10

15

20

25

30

35

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, Science, 244:1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.

Any cysteine residue not involved in maintaining the proper conformation of the anti-TAT antibody or TAT polypeptide also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the anti-TAT antibody or TAT polypeptide to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).

A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g., a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g., 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g., binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and human TAT polypeptide. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.

Nucleic acid molecules encoding amino acid sequence variants of the anti-TAT antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-

mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the anti-TAT antibody.

H. Modifications of Anti-TAT Antibodies and TAT Polypeptides

5

10

15

20

25

30

Covalent modifications of anti-TAT antibodies and TAT polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of an anti-TAT antibody or TAT polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of the anti-TAT antibody or TAT polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking anti-TAT antibody or TAT polypeptide to a water-insoluble support matrix or surface for use in the method for purifying anti-TAT antibodies, and vice-versa. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, <u>Proteins: Structure and Molecular Properties</u>, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the anti-TAT antibody or TAT polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the antibody or polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence anti-TAT antibody or TAT polypeptide (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence anti-TAT antibody or TAT polypeptide. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.

Glycosylation of antibodies and other polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

Addition of glycosylation sites to the anti-TAT antibody or TAT polypeptide is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original anti-TAT antibody or TAT polypeptide (for O-linked glycosylation sites). The anti-TAT antibody or TAT polypeptide amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the anti-TAT antibody or TAT polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

5

10

15

20

25

30

35

Another means of increasing the number of carbohydrate moieties on the anti-TAT antibody or TAT polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, <u>CRC Crit. Rev. Biochem.</u>, pp. 259-306 (1981).

Removal of carbohydrate moieties present on the anti-TAT antibody or TAT polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

Another type of covalent modification of anti-TAT antibody or TAT polypeptide comprises linking the antibody or polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. The antibody or polypeptide also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).

The anti-TAT antibody or TAT polypeptide of the present invention may also be modified in a way to form chimeric molecules comprising an anti-TAT antibody or TAT polypeptide fused to another, heterologous polypeptide or amino acid sequence.

In one embodiment, such a chimeric molecule comprises a fusion of the anti-TAT antibody or TAT polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl- terminus of the anti-TAT antibody or TAT polypeptide. The presence of such epitope-tagged forms of the anti-TAT antibody or TAT polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the anti-TAT

antibody or TAT polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; an α-tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].

10

15

5

In an alternative embodiment, the chimeric molecule may comprise a fusion of the anti-TAT antibody or TAT polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of an anti-TAT antibody or TAT polypeptide in place of at least one variable region within an Ig molecule. In a particularly preferred embodiment, the immunoglobulin fusion includes the hinge, CH₂ and CH₃, or the hinge, CH₁, CH₂ and CH₃ regions of an IgG1 molecule. For the production of immunoglobulin fusions see also US Patent No. 5,428,130 issued June 27, 1995.

I. Preparation of Anti-TAT Antibodies and TAT Polypeptides

20

The description below relates primarily to production of anti-TAT antibodies and TAT polypeptides by culturing cells transformed or transfected with a vector containing anti-TAT antibody- and TAT polypeptide-encoding nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare anti-TAT antibodies and TAT polypeptides. For instance, the appropriate amino acid sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1969); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of the anti-TAT antibody or TAT polypeptide may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the desired anti-TAT antibody or TAT polypeptide.

30

25

1. Isolation of DNA Encoding Anti-TAT Antibody or TAT Polypeptide

DNA encoding anti-TAT antibody or TAT polypeptide may be obtained from a cDNA library prepared from tissue believed to possess the anti-TAT antibody or TAT polypeptide mRNA and to express it at a detectable level. Accordingly, human anti-TAT antibody or TAT polypeptide DNA can be conveniently obtained from a cDNA library prepared from human tissue. The anti-TAT antibody- or TAT polypeptide-encoding gene may also be obtained from a genomic library or by known synthetic procedures (e.g., automated

35

nucleic acid synthesis).

5

10

15

20

25

30

35

Libraries can be screened with probes (such as oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding anti-TAT antibody or TAT polypeptide is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].

Techniques for screening a cDNA library are well known in the art. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like ³²P-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra.

Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined using methods known in the art and as described herein.

Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., <u>supra</u>, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

2. Selection and Transformation of Host Cells

Host cells are transfected or transformed with expression or cloning vectors described herein for anti-TAT antibody or TAT polypeptide production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in <u>Mammalian Cell Biotechnology</u>: a Practical Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., suppra.

Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaCl₂, CaPO₄, liposome-mediated and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., <u>supra</u>, or electroporation is generally used for prokaryotes. Infection with *Agrobacterium tumefaciens* is used for transformation of certain plant cells, as described by Shaw et al., <u>Gene</u>, <u>23</u>:315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, <u>Virology</u>,

52:456-457 (1978) can be employed. General aspects of mammalian cell host system transfections have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537 (1990) and Mansour et al., Nature, 336:348-352 (1988).

5

10

15

20

25

30

35

Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 April 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kan'; E. coli W3110 strain 37D6, which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG karl; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.

Full length antibody, antibody fragments, and antibody fusion proteins can be produced in bacteria, in particular when glycosylation and Fc effector function are not needed, such as when the therapeutic antibody is conjugated to a cytotoxic agent (e.g., a toxin) and the immunoconjugate by itself shows effectiveness in tumor cell destruction. Full length antibodies have greater half life in circulation. Production in E. coli is faster and more cost efficient. For expression of antibody fragments and polypeptides in bacteria, see, e.g., U.S. 5,648,237 (Carter et. al.), U.S. 5,789,199 (Joly et al.), and U.S. 5,840,523 (Simmons et al.) which describes translation initiation regio (TIR) and signal sequences for optimizing expression and secretion, these patents incorporated herein by reference. After expression, the antibody is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., a protein A or G column depending on the isotype. Final purification can be carried out similar to the process for purifying antibody expressed e.g., in CHO cells.

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for anti-TAT antibody- or TAT polypeptide-encoding vectors. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Patent No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 154(2):737-742 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 October 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 January 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene, 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).

5

10

15

20

25

30

35

Suitable host cells for the expression of glycosylated anti-TAT antibody or TAT polypeptide are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells, such as cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.

However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., <u>J. Gen Virol.</u> 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., <u>Proc. Natl. Acad. Sci. USA</u>77:4216 (1980)); mouse sertoli cells (TM4, Mather, <u>Biol. Reprod.</u> 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2,

HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).

Host cells are transformed with the above-described expression or cloning vectors for anti-TAT antibody or TAT polypeptide production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

3. Selection and Use of a Replicable Vector

5

10

15

20

25

30

35

The nucleic acid (e.g., cDNA or genomic DNA) encoding anti-TAT antibody or TAT polypeptide may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan.

The TAT may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the anti-TAT antibody- or TAT polypeptide-encoding DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces α -factor leaders, the latter described in U.S. Patent No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.

Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.

Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for *Bacilli*.

An example of suitable selectable markers for mammalian cells are those that enable the identification

of cells competent to take up the anti-TAT antibody- or TAT polypeptide-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., <u>Proc. Natl. Acad. Sci. USA</u>, 77:4216 (1980). A suitable selection gene for use in yeast is the *trp1* gene present in the yeast plasmid YRp7 [Stinchcomb et al., <u>Nature</u>, 282:39 (1979); Kingsman et al., <u>Gene</u>, 7:141 (1979); Tschemper et al., <u>Gene</u>, 10:157 (1980)]. The *trp1* gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, <u>Genetics</u>, 85:12 (1977)].

5

10

15

20

25

30

35

Expression and cloning vectors usually contain a promoter operably linked to the anti-TAT antibodyor TAT polypeptide-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a
variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include theslactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544
(1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980);
EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:2125 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably
linked to the DNA encoding anti-TAT antibody or TAT polypeptide.

Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., J. Biol. Chem., 255:2073 (1980)] or other glycolytic enzymes [Hess et al., J. Adv. Enzyme Reg., 7:149 (1968); Holland, Biochemistry, 17:4900 (1978)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.

Anti-TAT antibody or TAT polypeptide transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems.

Transcription of a DNA encoding the anti-TAT antibody or TAT polypeptide by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the

late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the anti-TAT antibody or TAT polypeptide coding sequence, but is preferably located at a site 5' from the promoter.

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding anti-TAT antibody or TAT polypeptide.

Still other methods, vectors, and host cells suitable for adaptation to the synthesis of anti-TAT antibody or TAT polypeptide in recombinant vertebrate cell culture are described in Gething et al., Nature, 293:620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058.

4. Culturing the Host Cells

5

10

15

20

25

The host cells used to produce the anti-TAT antibody or TAT polypeptide of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et alMeth. Enz. 58:44 (1979), Barnes et al., Anal. Biochem.102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCINTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

5. Detecting Gene Amplification/Expression

5

10

15

20

25

30

35

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence TAT polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to TAT DNA and encoding a specific antibody epitope.

6. Purification of Anti-TAT Antibody and TAT Polypeptide

Forms of anti-TAT antibody and TAT polypeptide may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of anti-TAT antibody and TAT polypeptide can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents.

It may be desired to purify anti-TAT antibody and TAT polypeptide from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the anti-TAT antibody and TAT polypeptide. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular anti-TAT antibody or TAT polypeptide produced.

When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., <u>Bio/Technology</u> 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of *E. coli*. Briefly, cell paste is thawed in the presence of sodium

acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.

The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on human $\gamma 1$, $\gamma 2$ or $\gamma 4$ heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human y3 (Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other Mechanically stable matrices such as controlled pore glass or matrices are available. poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a C₁3 domain, the Bakerbond ABX™resin (J. T. Baker, Phillipsburg, NJ) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.

Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).

J. Pharmaceutical Formulations

5

10

15

20

25

30

35

Therapeutic formulations of the anti-TAT antibodies, TAT binding oligopeptides, TAT binding organic molecules and/or TAT polypeptides used in accordance with the present invention are prepared for storage by mixing the antibody, polypeptide, oligopeptide or organic molecule having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as acetate, Tris, phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine,

histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; tonicifiers such as trehalose and sodium chloride; sugars such as sucrose, mannitol, trehalose or sorbitol; surfactant such as polysorbate; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN®, PLURONICS® or polyethylene glycol (PEG). The antibody preferably comprises the antibody at a concentration of between 5-200 mg/ml, preferably between 10-100 mg/ml.

5

10

15

20

25

30

35

The formulations herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. For example, in addition to an anti-TAT antibody, TAT binding oligopeptide, or TAT binding organic molecule, it may be desirable to include in the one formulation, an additional antibody, e.g., a second anti-TAT antibody which binds a different epitope on the TAT polypeptide, or an antibody to some other target such as a growth factor that affects the growth of the particular cancer. Alternatively, or additionally, the composition may further comprise a chemotherapeutic agent, cytotoxic agent, cytokine, growth inhibitory agent, anti-hormonal agent, and/or cardioprotectant. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Osol, A. Ed. (1980).

Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT® (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid.

The formulations to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

K. <u>Diagnosis and Treatment with Anti-TAT Antibodies, TAT Binding Oligopeptides and TAT</u>
 Binding Organic Molecules

To determine TAT expression in the cancer, various diagnostic assays are available. In one embodiment, TAT polypeptide overexpression may be analyzed by immunohistochemistry (IHC). Parrafin embedded tissue sections from a tumor biopsy may be subjected to the IHC assay and accorded a TAT protein staining intensity criteria as follows:

Score 0 - no staining is observed or membrane staining is observed in less than 10% of tumor cells.

Score 1+ - a faint/barely perceptible membrane staining is detected in more than 10% of the tumor cells. The cells are only stained in part of their membrane.

Score 2+ - a weak to moderate complete membrane staining is observed in more than 10% of the tumor cells.

Score 3+ - a moderate to strong complete membrane staining is observed in more than 10% of the tumor cells.

. 5

10

15

20

25

30

35

Those tumors with 0 or 1+ scores for TAT polypeptide expression may be characterized as not overexpressing TAT, whereas those tumors with 2+ or 3+ scores may be characterized as overexpressing TAT.

Alternatively, or additionally, FISH assays such as the INFORM® (sold by Ventana, Arizona) or PATHVISION® (Vysis, Illinois) may be carried out on formalin-fixed, paraffin-embedded tumor tissue to determine the extent (if any) of TAT overexpression in the tumor.

TAT overexpression or amplification may be evaluated using an *in vivo* diagnostic assay, e.g., by administering a molecule (such as an antibody, oligopeptide or organic molecule) which binds the molecule to be detected and is tagged with a detectable label (e.g., a radioactive isotope or a fluorescent label) and externally scanning the patient for localization of the label.

As described above, the anti-TAT antibodies, oligopeptides and organic molecules of the invention have various non-therapeutic applications. The anti-TAT antibodies, oligopeptides and organic molecules of the present invention can be useful for diagnosis and staging of TAT polypeptide-expressing cancers (e.g., in radioimaging). The antibodies, oligopeptides and organic molecules are also useful for purification or immunoprecipitation of TAT polypeptide from cells, for detection and quantitation of TAT polypeptide in vitro, e.g., in an ELISA or a Western blot, to kill and eliminate TAT-expressing cells from a population of mixed cells as a step in the purification of other cells.

Currently, depending on the stage of the cancer, cancer treatment involves one or a combination of the following therapies: surgery to remove the cancerous tissue, radiation therapy, and chemotherapy. Anti-TAT antibody, oligopeptide or organic molecule therapy may be especially desirable in elderly patients who do not tolerate the toxicity and side effects of chemotherapy well and in metastatic disease where radiation therapy has limited usefulness. The tumor targeting anti-TAT antibodies, oligopeptides and organic molecules of the invention are useful to alleviate TAT-expressing cancers upon initial diagnosis of the disease or during relapse. For therapeutic applications, the anti-TAT antibody, oligopeptide or organic molecule can be used alone, or in combination therapy with, e.g., hormones, antiangiogens, or radiolabelled compounds, or with surgery, cryotherapy, and/or radiotherapy. Anti-TAT antibody, oligopeptide or organic molecule treatment can be administered in conjunction with other forms of conventional therapy, either consecutively with, pre- or post-conventional therapy. Chemotherapeutic drugs such as TAXOTERE® (docetaxel), TAXOL® (palictaxel), estramustine and mitoxantrone are used in treating cancer, in particular, in good risk patients. In the present method of the invention for treating or alleviating cancer, the cancer patient can be administered anti-TAT

antibody, oligopeptide or organic molecule in conjuction with treatment with the one or more of the preceding chemotherapeutic agents. In particular, combination therapy with palictaxel and modified derivatives (see, e.g., EP0600517) is contemplated. The anti-TAT antibody, oligopeptide or organic molecule will be administered with a therapeutically effective dose of the chemotherapeutic agent. In another embodiment, the anti-TAT antibody, oligopeptide or organic molecule is administered in conjunction with chemotherapy to enhance the activity and efficacy of the chemotherapeutic agent, e.g., paclitaxel. The Physicians' Desk Reference (PDR) discloses dosages of these agents that have been used in treatment of various cancers. The dosing regimen and dosages of these aforementioned chemotherapeutic drugs that are therapeutically effective will depend on the particular cancer being treated, the extent of the disease and other factors familiar to the physician of skill in the art and can be determined by the physician.

10

5

In one particular embodiment, a conjugate comprising an anti-TAT antibody, oligopeptide or organic molecule conjugated with a cytotoxic agent is administered to the patient. Preferably, the immunoconjugate bound to the TAT protein is internalized by the cell, resulting in increased therapeutic efficacy of the immunoconjugate in killing the cancer cell to which it binds. In a preferred embodiment, the cytotoxic agent targets or interferes with the nucleic acid in the cancer cell. Examples of such cytotoxic agents are described above and include maytansinoids, calicheamicins, ribonucleases and DNA endonucleases.

15

The anti-TAT antibodies, oligopeptides, organic molecules or toxin conjugates thereof are administered to a human patient, in accord with known methods, such as intravenous administration, e.g.,, as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. Intravenous or subcutaneous administration of the antibody, oligopeptide or organic molecule is preferred.

20

Other therapeutic regimens may be combined with the administration of the anti-TAT antibody, oligopeptide or organic molecule. The combined administration includes co-administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities. Preferably such combined therapy results in a synergistic therapeutic effect.

25

It may also be desirable to combine administration of the anti-TAT antibody or antibodies, oligopeptides or organic molecules, with administration of an antibody directed against another tumor antigen associated with the particular cancer.

30

In another embodiment, the therapeutic treatment methods of the present invention involves the combined administration of an anti-TAT antibody (or antibodies), oligopeptides or organic molecules and one or more chemotherapeutic agents or growth inhibitory agents, including co-administration of cocktails of different chemotherapeutic agents. Chemotherapeutic agents include estramustine phosphate, prednimustine, cisplatin, 5-fluorouracil, melphalan, cyclophosphamide, hydroxyurea and hydroxyureataxanes (such as paclitaxel and doxetaxel) and/or anthracycline antibiotics. Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers' instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in Chemotherapy

35

Service Ed., M.C. Perry, Williams & Wilkins, Baltimore, MD (1992).

5

10

15

20

25

30

35

The antibody, oligopeptide or organic molecule may be combined with an anti-hormonal compound; e.g., an anti-estrogen compound such as tamoxifen; an anti-progesterone such as onapristone (see, EP 616 812); or an anti-androgen such as flutamide, in dosages known for such molecules. Where the cancer to be treated is androgen independent cancer, the patient may previously have been subjected to anti-androgen therapy and, after the cancer becomes androgen independent, the anti-TAT antibody, oligopeptide or organic molecule (and optionally other agents as described herein) may be administered to the patient.

Sometimes, it may be beneficial to also co-administer a cardioprotectant (to prevent or reduce myocardial dysfunction associated with the therapy) or one or more cytokines to the patient. In addition to the above therapeutic regimes, the patient may be subjected to surgical removal of cancer cells and/or radiation therapy, before, simultaneously with, or post antibody, oligopeptide or organic molecule therapy. Suitable dosages for any of the above co-administered agents are those presently used and may be lowered due to the combined action (synergy) of the agent and anti-TAT antibody, oligopeptide or organic molecule.

For the prevention or treatment of disease, the dosage and mode of administration will be chosen by the physician according to known criteria. The appropriate dosage of antibody, oligopeptide or organic molecule will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the antibody, oligopeptide or organic molecule is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, oligopeptide or organic molecule, and the discretion of the attending physician. The antibody, oligopeptide or organic molecule is suitably administered to the patient at one time or over a series of treatments. Preferably, the antibody, oligopeptide or organic molecule is administered by intravenous infusion or by subcutaneous injections. Depending on the type and severity of the disease, about 1 μ g/kg to about 50 mg/kg body weight (e.g., about 0.1-15mg/kg/dose) of antibody can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A dosing regimen can comprise administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg/kg of the anti-TAT antibody. However, other dosage regimens may be useful. A typical daily dosage might range from about 1 µg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. The progress of this therapy can be readily monitored by conventional methods and assays and based on criteria known to the physician or other persons of skill in the art.

Aside from administration of the antibody protein to the patient, the present application contemplates administration of the antibody by gene therapy. Such administration of nucleic acid encoding the antibody is encompassed by the expression "administering a therapeutically effective amount of an antibody". See, for example, WO96/07321 published March 14, 1996 concerning the use of gene therapy to generate intracellular antibodies.

There are two major approaches to getting the nucleic acid (optionally contained in a vector) into the patient's cells; in vivo and ex vivo. For in vivo delivery the nucleic acid is injected directly into the patient,

usually at the site where the antibody is required. For ex vivo treatment, the patient's cells are removed, the nucleic acid is introduced into these isolated cells and the modified cells are administered to the patient either directly or, for example, encapsulated within porous membranes which are implanted into the patient (see, e.g., U.S. Patent Nos. 4,892,538 and 5,283,187). There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. A commonly used vector for ex vivo delivery of the gene is a retroviral vector.

10

5

The currently preferred *in vivo* nucleic acid transfer techniques include transfection with viral vectors (such as adenovirus, Herpes simplex I virus, or adeno-associated virus) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are DOTMA, DOPE and DC-Chol, for example). For review of the currently known gene marking and gene therapy protocols see Anderson et al., <u>Science</u> 256:808-813 (1992). See also WO 93/25673 and the references cited therein.

15

The anti-TAT antibodies of the invention can be in the different forms encompassed by the definition of "antibody" herein. Thus, the antibodies include full length or intact antibody, antibody fragments, native sequence antibody or amino acid variants, humanized, chimeric or fusion antibodies, immunoconjugates, and functional fragments thereof. In fusion antibodies an antibody sequence is fused to a heterologous polypeptide sequence. The antibodies can be modified in the Fc region to provide desired effector functions. As discussed in more detail in the sections herein, with the appropriate Fc regions, the naked antibody bound on the cell surface can induce cytotoxicity, e.g., via antibody-dependent cellular cytotoxicity (ADCC) or by recruiting complement in complement dependent cytotoxicity, or some other mechanism. Alternatively, where it is desirable to eliminate or reduce effector function, so as to minimize side effects or therapeutic complications, certain other Fc regions may be used.

25

20

In one embodiment, the antibody competes for binding or bind substantially to, the same epitope as the antibodies of the invention. Antibodies having the biological characteristics of the present anti-TAT antibodies of the invention are also contemplated, specifically including the *in vivo* tumor targeting and any cell proliferation inhibition or cytotoxic characteristics.

Methods of producing the above antibodies are described in detail herein.

30

The present anti-TAT antibodies, oligopeptides and organic molecules are useful for treating a TAT-expressing cancer or alleviating one or more symptoms of the cancer in a mammal. Such a cancer includes prostate cancer, cancer of the urinary tract, lung cancer, breast cancer, colon cancer and ovarian cancer, more specifically, prostate adenocarcinoma, renal cell carcinomas, colorectal adenocarcinomas, lung adenocarcinomas, lung squamous cell carcinomas, and pleural mesothelioma. The cancers encompass metastatic cancers of any of the preceding. The antibody, oligopeptide or organic molecule is able to bind to at least a portion of the cancer cells that express TAT polypeptide in the mammal. In a preferred embodiment, the

35

antibody, oligopeptide or organic molecule is effective to destroy or kill TAT-expressing tumor cells or inhibit

the growth of such tumor cells, in vitro or in vivo, upon binding to TAT polypeptide on the cell. Such an antibody includes a naked anti-TAT antibody (not conjugated to any agent). Naked antibodies that have cytotoxic or cell growth inhibition properties can be further harnessed with a cytotoxic agent to render them even more potent in tumor cell destruction. Cytotoxic properties can be conferred to an anti-TAT antibody by, e.g., conjugating the antibody with a cytotoxic agent, to form an immunoconjugate as described herein. The cytotoxic agent or a growth inhibitory agent is preferably a small molecule. Toxins such as calicheamicin or a maytansinoid and analogs or derivatives thereof, are preferable.

The invention provides a composition comprising an anti-TAT antibody, oligopeptide or organic molecule of the invention, and a carrier. For the purposes of treating cancer, compositions can be administered to the patient in need of such treatment, wherein the composition can comprise one or more anti-TAT antibodies present as an immunoconjugate or as the naked antibody. In a further embodiment, the compositions can comprise these antibodies, oligopeptides or organic molecules in combination with other therapeutic agents such as cytotoxic or growth inhibitory agents, including chemotherapeutic agents. The invention also provides formulations comprising an anti-TAT antibody, oligopeptide or organic molecule of the invention, and a carrier. In one embodiment, the formulation is a therapeutic formulation comprising a pharmaceutically acceptable carrier.

Another aspect of the invention is isolated nucleic acids encoding the anti-TAT antibodies. Nucleic acids encoding both the H and L chains and especially the hypervariable region residues, chains which encode the native sequence antibody as well as variants, modifications and humanized versions of the antibody, are encompassed.

The invention also provides methods useful for treating a TAT polypeptide-expressing cancer or alleviating one or more symptoms of the cancer in a mammal, comprising administering a therapeutically effective amount of an anti-TAT antibody, oligopeptide or organic molecule to the mammal. The antibody, oligopeptide or organic molecule therapeutic compositions can be administered short term (acute) or chronic, or intermittent as directed by physician. Also provided are methods of inhibiting the growth of, and killing a TAT polypeptide-expressing cell.

The invention also provides kits and articles of manufacture comprising at least one anti-TAT antibody, oligopeptide or organic molecule. Kits containing anti-TAT antibodies, oligopeptides or organic molecules find use, e.g., for TAT cell killing assays, for purification or immunoprecipitation of TAT polypeptide from cells. For example, for isolation and purification of TAT, the kit can contain an anti-TAT antibody, oligopeptide or organic molecule coupled to beads (e.g., sepharose beads). Kits can be provided which contain the antibodies, oligopeptides or organic molecules for detection and quantitation of TAT in vitro, e.g., in an ELISA or a Western blot. Such antibody, oligopeptide or organic molecule useful for detection may be provided with a label such as a fluorescent or radiolabel.

L. Articles of Manufacture and Kits

5

10

15

20

25

30

35

Another embodiment of the invention is an article of manufacture containing materials useful for the treatment of anti-TAT expressing cancer. The article of manufacture comprises a container and a label or

package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is effective for treating the cancer condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is an anti-TAT antibody, oligopeptide or organic molecule of the invention. The label or package insert indicates that the composition is used for treating cancer. The label or package insert will further comprise instructions for administering the antibody, oligopeptide or organic molecule composition to the cancer patient. Additionally, the article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.

5

10

15

20

25

30

35

Kits are also provided that are useful for various purposes, e.g., for TAT-expressing cell killing assays, for purification or immunoprecipitation of TAT polypeptide from cells. For isolation and purification of TAT polypeptide, the kit can contain an anti-TAT antibody, oligopeptide or organic molecule coupled to beads (e.g., sepharose beads). Kits can be provided which contain the antibodies, oligopeptides or organic molecules for detection and quantitation of TAT polypeptide *in vitro*, e.g., in an ELISA or a Western blot. As with the article of manufacture, the kit comprises a container and a label or package insert on or associated with the container. The container holds a composition comprising at least one anti-TAT antibody, oligopeptide or organic molecule of the invention. Additional containers may be included that contain, e.g., diluents and buffers, control antibodies. The label or package insert may provide a description of the composition as well as instructions for the intended in vitro or diagnostic use.

M. <u>Uses for TAT Polypeptides and TAT-Polypeptide Encoding Nucleic Acids</u>

Nucleotide sequences (or their complement) encoding TAT polypeptides have various applications in the art of molecular biology, including uses as hybridization probes, in chromosome and gene mapping and in the generation of anti-sense RNA and DNA probes. TAT-encoding nucleic acid will also be useful for the preparation of TAT polypeptides by the recombinant techniques described herein, wherein those TAT polypeptides may find use, for example, in the preparation of anti-TAT antibodies as described herein.

The full-length native sequence TAT gene, or portions thereof, may be used as hybridization probes for a cDNA library to isolate the full-length TAT cDNA or to isolate still other cDNAs (for instance, those encoding naturally-occurring variants of TAT or TAT from other species) which have a desired sequence identity to the native TAT sequence disclosed herein. Optionally, the length of the probes will be about 20 to about 50 bases. The hybridization probes may be derived from at least partially novel regions of the full length native nucleotide sequence wherein those regions may be determined without undue experimentation or from genomic sequences including promoters, enhancer elements and introns of native sequence TAT. By way of example, a screening method will comprise isolating the coding region of the TAT gene using the known DNA sequence to synthesize a selected probe of about 40 bases. Hybridization probes may be labeled by a variety

of labels, including radionucleotides such as ³²P or ³⁵S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems. Labeled probes having a sequence complementary to that of the TAT gene of the present invention can be used to screen libraries of human cDNA, genomic DNA or mRNA to determine which members of such libraries the probe hybridizes to. Hybridization techniques are described in further detail in the Examples below. Any EST sequences disclosed in the present application may similarly be employed as probes, using the methods disclosed herein.

.

Other useful fragments of the TAT-encoding nucleic acids include antisense or sense oligonucleotides comprising a singe-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target TAT mRNA (sense) or TAT DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment of the coding region of TAT DNA. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (BioTechniques 6:958, 1988).

Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes that block transcription or translation of the target sequence by one of several means, including enhanced degradation of the duplexes, premature termination of transcription or translation, or by other means. Such methods are encompassed by the present invention. The antisense oligonucleotides thus may be used to block expression of TAT proteins, wherein those TAT proteins may play a role in the induction of cancer in mammals. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugarphosphodiester backbones (or other sugar linkages, such as those described in WO 91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable *in vivo* (i.e., capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences.

Preferred intragenic sites for antisense binding include the region incorporating the translation initiation/start codon (5'-AUG/5'-ATG) or termination/stop codon (5'-UAA, 5'-UAG and 5-UGA/5'-TAA, 5'-TAG and 5'-TGA) of the open reading frame (ORF) of the gene. These regions refer to a portion of the mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation or termination codon. Other preferred regions for antisense binding include: introns; exons; intron-exon junctions; the open reading frame (ORF) or "coding region," which is the region between the translation initiation codon and the translation termination codon; the 5' cap of an mRNA which comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage and includes 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap; the 5' untranslated region (5'UTR), the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides between the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene.

Specific examples of preferred antisense compounds useful for inhibiting expression of TAT proteins include oligonucleotides containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotri-esters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, selenophosphates and borano-phosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Preferred oligonucleotides having inverted polarity comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage i.e. a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included. Representative United States patents that teach the preparation of phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos.: 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050, each of which is herein incorporated by reference.

5

10

15

20

25

30

35

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH.sub.2 component parts. Representative United States patents that teach the preparation of such oligonucleosides include, but are not limited to,. U.S. Pat. Nos.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, each of which is herein incorporated by reference.

In other preferred antisense oligonucleotides, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic

PCT/US2003/028547 WO 2004/030615

that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos.: 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

Preferred antisense oligonucleotides incorporate phosphorothioate backbones and/or heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N(CH₃)-O-CH₂- [known as a methylene (methylimino) or MMI backbone], -CH2-O-N(CH3)-CH2-, -CH2-N(CH3)-N(CH3)-CH2- and -O-N(CH3)-CH2- [wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] described in the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602,240. Also preferred are antisense oligonucleotides having morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.

15

20

25

5

10

Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-alkyl, S-alkyl, or N-alkyl; Oalkenyl, S-alkeynyl, or N-alkenyl; O-alkynyl, S-alkynyl or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C $_{1}$ to C_{10} alkyl or C_{2} to C_{10} alkenyl and alkynyl. Particularly preferred are O[(CH₂)_nO]_mCH₃, O(CH₂)_nOCH₃, O(CH₂)_nNH₂, O(CH₂)_nCH₃, O(CH₂)_nONH₂, and O(CH₂)_nON[(CH₂)_nCH₃)]₂, where n and m are from 1 to about 10. Other preferred antisense oligonucleotides comprise one of the following at the 2' position: C1 to C10 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2 CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2'-methoxyethoxy (2'-O-CH2CH2OCH3, also known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH 2)2ON(CH3)2 group, also known as 2'-DMAOE, as described in examples hereinbelow, and 2'-dimethylaminoethoxyethoxy (also known in the art as

30

2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-O-CH₂-O-CH₂-N(CH₂).

A further prefered modification includes Locked Nucleic Acids (LNAs) in which the 2'-hydroxyl group is linked to the 3' or 4' carbon atom of the sugar ring thereby forming a bicyclic sugar moiety. The linkage is preferably a methelyne (-CH2-)n group bridging the 2' oxygen atom and the 4' carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226.

35

Other preferred modifications include 2'-methoxy (2'-O-CH₃), 2'-aminopropoxy (2'-OCH₂CH₂CH₂

NH₂), 2'-allyl (2'-CH₂-CH=CH₂), 2'-O-allyl (2'-O-CH₂-CH=CH₂) and 2'-fluoro (2'-F). The 2'-modification may be in the arabino (up) position or ribo (down) position. A preferred 2'-arabino modification is 2'-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos.: 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, each of which is herein incorporated by reference in its entirety.

Oligonucleotides may also include nucleobase (often referred to in the art simply as "base")

10

15

20

25

30

35

5

modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C=C-CH₃ or -CH₂-C=CH) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine(1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine 9-(2-aminoethoxy)-H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3',2':4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, and those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted pyrimes, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2.degree. C. (Sanghvi et al, Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications. Representative United States patents

that teach the preparation of modified nucleobases include, but are not limited to: U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos.: 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; 5,681,941 and 5,750,692, each of which is herein incorporated by reference.

5

10

15

20

25

30

35

Another modification of antisense oligonucleotides chemically linking to the oligonucleotide one or more mojeties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. The compounds of the invention can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalators, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugates groups include cholesterols, lipids, cation lipids, phospholipids, cationic phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve oligomer uptake, enhance oligomer resistance to degradation, and/or strengthen sequence-specific hybridization with RNA. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve oligomer uptake, distribution, metabolism or excretion. Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety. Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2.3.5-triiodobenzoic acid, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic. Oligonucleotide-drug conjugates and their preparation are described in U.S. patent application Ser. No. 09/334,130 (filed Jun. 15, 1999) and United States patents Nos.: 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802;

5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025;

4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, each of which is herein incorporated by reference.

5

10

15

20

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxyoligonucleotides hybridizing to the same target region. Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Preferred chimeric antisense oligonucleotides incorporate at least one 2' modified sugar (preferably 2'-O-(CH₂)₂-O-CH₃) at the 3' terminal to confer nuclease resistance and a region with at least 4 contiguous 2'-H sugars to confer RNase H activity. Such compounds have also been referred to in the art as hybrids or gapmers. Preferred gapmers have a region of 2' modified sugars (preferably 2'-O-(CH₂)₂-O-CH₃) at the 3'-terminal and at the 5' terminal separated by at least one region having at least 4 contiguous 2'-H sugars and preferably incorporate phosphorothioate backbone linkages. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922,

30

25

The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives. The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral,

each of which is herein incorporated by reference in its entirety.

35

rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

5

10

15

20

25

30

35

Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10048, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still, intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence.

Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, CaPO 4-mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus. In a preferred procedure, an antisense or sense oligonucleotide is inserted into a suitable retroviral vector. A cell containing the target nucleic acid sequence is contacted with the recombinant retroviral vector, either *in vivo* or *ex vivo*. Suitable retroviral vectors include, but are not limited to, those derived from the murine retrovirus M-MuLV, N2 (a retrovirus derived from M-MuLV), or the double copy vectors designated DCT5A, DCT5B and DCT5C (see WO 90/13641).

Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell.

Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase.

Antisense or sense RNA or DNA molecules are generally at least about 5 nucleotides in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710,

720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, or 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length.

The probes may also be employed in PCR techniques to generate a pool of sequences for identification of closely related TAT coding sequences.

5

Nucleotide sequences encoding a TAT can also be used to construct hybridization probes for mapping the gene which encodes that TAT and for the genetic analysis of individuals with genetic disorders. The nucleotide sequences provided herein may be mapped to a chromosome and specific regions of a chromosome using known techniques, such as *in situ* hybridization, linkage analysis against known chromosomal markers, and hybridization screening with libraries.

10

15

When the coding sequences for TAT encode a protein which binds to another protein (example, where the TAT is a receptor), the TAT can be used in assays to identify the other proteins or molecules involved in the binding interaction. By such methods, inhibitors of the receptor/ligand binding interaction can be identified. Proteins involved in such binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction. Also, the receptor TAT can be used to isolate correlative ligand(s). Screening assays can be designed to find lead compounds that mimic the biological activity of a native TAT or a receptor for TAT. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates. Small molecules contemplated include synthetic organic or inorganic compounds. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell based assays, which are well characterized in the art.

20

25

30

Nucleic acids which encode TAT or its modified forms can also be used to generate either transgenic animals or "knock out" animals which, in turn, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, cDNA encoding TAT can be used to clone genomic DNA encoding TAT in accordance with established techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding TAT. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009. Typically, particular cells would be targeted for TAT transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding TAT introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding TAT. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this facet of the invention, an animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential

35

therapeutic intervention for the pathological condition.

5

10

15

20

25

30

35

Alternatively, non-human homologues of TAT can be used to construct a TAT "knock out" animal which has a defective or altered gene encoding TAT as a result of homologous recombination between the endogenous gene encoding TAT and altered genomic DNA encoding TAT introduced into an embryonic stem cell of the animal. For example, cDNA encoding TAT can be used to clone genomic DNA encoding TAT in accordance with established techniques. A portion of the genomic DNA encoding TAT can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector [see e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors]. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell, 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152]. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to defend against certain pathological conditions and for their development of pathological conditions due to absence of the TAT polypeptide.

Nucleic acid encoding the TAT polypeptides may also be used in gene therapy. In gene therapy applications, genes are introduced into cells in order to achieve *in vivo* synthesis of a therapeutically effective genetic product, for example for replacement of a defective gene. "Gene therapy" includes both conventional gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic agents, which involves the one time or repeated administration of a therapeutically effective DNA or mRNA. Antisense RNAs and DNAs can be used as therapeutic agents for blocking the expression of certain genes *in vivo*. It has already been shown that short antisense oligonucleotides can be imported into cells where they act as inhibitors, despite their low intracellular concentrations caused by their restricted uptake by the cell membrane. (Zamecnik *et al.*, Proc. Natl. Acad. Sci. USA 83:4143-4146 [1986]). The oligonucleotides can be modified to enhance their uptake, e.g. by substituting their negatively charged phosphodiester groups by uncharged groups.

There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. The currently preferred in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau

et al., <u>Trends in Biotechnology</u> 11, 205-210 [1993]). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu et al., <u>J. Biol. Chem.</u> 262, 4429-4432 (1987); and Wagner et al., <u>Proc. Natl. Acad. Sci. USA</u> 87, 3410-3414 (1990). For review of gene marking and gene therapy protocols see Anderson et al., <u>Science</u> 256, 808-813 (1992).

The nucleic acid molecules encoding the TAT polypeptides or fragments thereof described herein are useful for chromosome identification. In this regard, there exists an ongoing need to identify new chromosome markers, since relatively few chromosome marking reagents, based upon actual sequence data are presently available. Each TAT nucleic acid molecule of the present invention can be used as a chromosome marker.

The TAT polypeptides and nucleic acid molecules of the present invention may also be used diagnostically for tissue typing, wherein the TAT polypeptides of the present invention may be differentially expressed in one tissue as compared to another, preferably in a diseased tissue as compared to a normal tissue of the same tissue type. TAT nucleic acid molecules will find use for generating probes for PCR, Northern analysis, Southern analysis and Western analysis.

This invention encompasses methods of screening compounds to identify those that mimic the TAT polypeptide (agonists) or prevent the effect of the TAT polypeptide (antagonists). Screening assays for antagonist drug candidates are designed to identify compounds that bind or complex with the TAT polypeptides encoded by the genes identified herein, or otherwise interfere with the interaction of the encoded polypeptides with other cellular proteins, including e.g., inhibiting the expression of TAT polypeptide from cells. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates.

The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, and cell-based assays, which are well characterized in the art.

All assays for antagonists are common in that they call for contacting the drug candidate with a TAT polypeptide encoded by a nucleic acid identified herein under conditions and for a time sufficient to allow these two components to interact.

In binding assays, the interaction is binding and the complex formed can be isolated or detected in the reaction mixture. In a particular embodiment, the TAT polypeptide encoded by the gene identified herein or the drug candidate is immobilized on a solid phase, e.g., on a microtiter plate, by covalent or non-covalent attachments. Non-covalent attachment generally is accomplished by coating the solid surface with a solution of the TAT polypeptide and drying. Alternatively, an immobilized antibody, e.g., a monoclonal antibody, specific for the TAT polypeptide to be immobilized can be used to anchor it to a solid surface. The assay is performed by adding the non-immobilized component, which may be labeled by a detectable label, to the

10

5

15

20

25

30

35

immobilized component, e.g., the coated surface containing the anchored component. When the reaction is complete, the non-reacted components are removed, e.g., by washing, and complexes anchored on the solid surface are detected. When the originally non-immobilized component carries a detectable label, the detection of label immobilized on the surface indicates that complexing occurred. Where the originally non-immobilized component does not carry a label, complexing can be detected, for example, by using a labeled antibody specifically binding the immobilized complex.

5

10

15

20

25

30

35

If the candidate compound interacts with but does not bind to a particular TAT polypeptide encoded by a gene identified herein, its interaction with that polypeptide can be assayed by methods well known for detecting protein-protein interactions. Such assays include traditional approaches, such as, e.g., cross-linking, co-immunoprecipitation, and co-purification through gradients or chromatographic columns. In addition, protein-protein interactions can be monitored by using a yeast-based genetic system described by Fields and coworkers (Fields and Song, Nature (London), 340:245-246 (1989); Chien et al., Proc. Natl. Acad. Sci. USA, 88:9578-9582 (1991)) as disclosed by Chevray and Nathans, Proc. Natl. Acad. Sci. USA, 89: 5789-5793 (1991). Many transcriptional activators, such as yeast GALA, consist of two physically discrete modular domains, one acting as the DNA-binding domain, the other one functioning as the transcription-activation domain. The yeast expression system described in the foregoing publications (generally referred to as the "twohybrid system") takes advantage of this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GAL4, and another, in which candidate activating proteins are fused to the activation domain. The expression of a GAL1- lacZ reporter gene under control of a GAL4activated promoter depends on reconstitution of GALA activity via protein-protein interaction. Colonies containing interacting polypeptides are detected with a chromogenic substrate for \beta-galactosidase. A complete kit (MATCHMAKER™) for identifying protein-protein interactions between two specific proteins using the twohybrid technique is commercially available from Clontech. This system can also be extended to map protein domains involved in specific protein interactions as well as to pinpoint amino acid residues that are crucial for these interactions.

Compounds that interfere with the interaction of a gene encoding a TAT polypeptide identified herein and other intra- or extracellular components can be tested as follows: usually a reaction mixture is prepared containing the product of the gene and the intra- or extracellular component under conditions and for a time allowing for the interaction and binding of the two products. To test the ability of a candidate compound to inhibit binding, the reaction is run in the absence and in the presence of the test compound. In addition, a placebo may be added to a third reaction mixture, to serve as positive control. The binding (complex formation) between the test compound and the intra- or extracellular component present in the mixture is monitored as described hereinabove. The formation of a complex in the control reaction(s) but not in the reaction mixture containing the test compound indicates that the test compound interferes with the interaction of the test compound and its reaction partner.

To assay for antagonists, the TAT polypeptide may be added to a cell along with the compound to be screened for a particular activity and the ability of the compound to inhibit the activity of interest in the presence

of the TAT polypeptide indicates that the compound is an antagonist to the TAT polypeptide. Alternatively, antagonists may be detected by combining the TAT polypeptide and a potential antagonist with membrane-bound TAT polypeptide receptors or recombinant receptors under appropriate conditions for a competitive inhibition assay. The TAT polypeptide can be labeled, such as by radioactivity, such that the number of TAT polypeptide molecules bound to the receptor can be used to determine the effectiveness of the potential antagonist. The gene encoding the receptor can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting. Coligan et al., Current Protocols in Immun., 1(2): Chapter 5 (1991). Preferably, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the TAT polypeptide and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the TAT polypeptide. Transfected cells that are grown on glass slides are exposed to labeled TAT polypeptide. The TAT polypeptide can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and re-transfected using an interactive sub-pooling and re-screening process, eventually yielding a single clone that encodes the putative receptor.

15

10

5

As an alternative approach for receptor identification, labeled TAT polypeptide can be photoaffinity-linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE and exposed to X-ray film. The labeled complex containing the receptor can be excised, resolved into peptide fragments, and subjected to protein micro-sequencing. The amino acid sequence obtained from micro- sequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the gene encoding the putative receptor.

20

In another assay for antagonists, mammalian cells or a membrane preparation expressing the receptor would be incubated with labeled TAT polypeptide in the presence of the candidate compound. The ability of the compound to enhance or block this interaction could then be measured.

25

More specific examples of potential antagonists include an oligonucleotide that binds to the fusions of immunoglobulin with TAT polypeptide, and, in particular, antibodies including, without limitation, poly- and monoclonal antibodies and antibody fragments, single-chain antibodies, anti-idiotypic antibodies, and chimeric or humanized versions of such antibodies or fragments, as well as human antibodies and antibody fragments. Alternatively, a potential antagonist may be a closely related protein, for example, a mutated form of the TAT polypeptide that recognizes the receptor but imparts no effect, thereby competitively inhibiting the action of the TAT polypeptide.

30

Another potential TAT polypeptide antagonist is an antisense RNA or DNA construct prepared using antisense technology, where, e.g., an antisense RNA or DNA molecule acts to block directly the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5' coding portion of the polynucleotide sequence, which encodes the mature TAT polypeptides herein, is used to design an antisense

35

RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al., Science, 241: 456 (1988); Dervan et al., Science, 251:1360 (1991)), thereby preventing transcription and the production of the TAT polypeptide. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the TAT polypeptide (antisense - Okano, Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, FL, 1988). The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of the TAT polypeptide. When antisense DNA is used, oligodeoxyribonucleotides derived from the translation-initiation site, e.g., between about -10 and +10 positions of the target gene nucleotide sequence, are preferred.

10

5

Potential antagonists include small molecules that bind to the active site, the receptor binding site, or growth factor or other relevant binding site of the TAT polypeptide, thereby blocking the normal biological activity of the TAT polypeptide. Examples of small molecules include, but are not limited to, small peptides or peptide-like molecules, preferably soluble peptides, and synthetic non-peptidyl organic or inorganic compounds.

15

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Ribozymes act by sequence-specific hybridization to the complementary target RNA, followed by endonucleolytic cleavage. Specific ribozyme cleavage sites within a potential RNA target can be identified by known techniques. For further details see, e.g., Ross<u>Current Biology</u>, 4:469-471 (1994), and PCT publication No. WO 97/33551 (published September 18, 1997).

20

Nucleic acid molecules in triple-helix formation used to inhibit transcription should be single-stranded and composed of deoxynucleotides. The base composition of these oligonucleotides is designed such that it promotes triple-helix formation via Hoogsteen base-pairing rules, which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex. For further details see, e.g., PCT publication No. WO 97/33551, supra.

25

These small molecules can be identified by any one or more of the screening assays discussed hereinabove and/or by any other screening techniques well known for those skilled in the art.

Isolated TAT polypeptide-encoding nucleic acid can be used herein for recombinantly producing TAT polypeptide using techniques well known in the art and as described herein. In turn, the produced TAT polypeptides can be employed for generating anti-TAT antibodies using techniques well known in the art and as described herein.

30

Antibodies specifically binding a TAT polypeptide identified herein, as well as other molecules identified by the screening assays disclosed hereinbefore, can be administered for the treatment of various disorders, including cancer, in the form of pharmaceutical compositions.

If the TAT polypeptide is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, lipofections or liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993).

5

10

15

20

25

30

35

The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition may comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.

EXAMPLES

Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas, VA.

EXAMPLE 1: Analysis of Differential TAT Polypeptide Expression by GEPIS

An expressed sequence tag (EST) DNA database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA) was searched and interesting EST sequences were identified by GEPIS. Gene expression profiling in silico (GEPIS) is a bioinformatics tool developed at Genentech, Inc. that characterizes genes of interest for new cancer therapeutic targets. GEPIS takes advantage of large amounts of EST sequence and library information to determine gene expression profiles. GEPIS is capable of determining the expression profile of a gene based upon its proportional correlation with the number of its occurrences in EST databases, and it works by integrating the LIFESEQ® EST relational database and Genentech proprietary information in a stringent and statistically meaningful way. In this example, GEPIS is used to identify and cross-validate novel tumor antigens, although GEPIS can be configured to perform either very specific analyses or broad screening tasks. For the initial screen, GEPIS is used to identify EST sequences from the LIFESEQ® database that correlate

to expression in a particular tissue or tissues of interest (often a tumor tissue of interest). Then, GEPIS was employed to generate a complete tissue expression profile for the various sequences of interest. Using this type of screening bioinformatics, various TAT polypeptides (and their encoding nucleic acid molecules) were identified as being significantly overexpressed in a particular type of cancer or certain cancers as compared to other cancers and/or normal non-cancerous tissues. The rating of GEPIS hits is based upon several criteria including, for example, tissue specificity, tumor specificity and expression level in normal essential and/or normal proliferating tissues. The following is a list of molecules whose tissue expression profile as determined by GEPIS evidences significant upregulation of expression in a specific tumor or tumors as compared to other tumor(s) and/or normal tissues and optionally relatively low expression in normal essential and/or normal proliferating tissues.

10

5

Under each tissue heading shown below is a list of the cDNA sequences that are detectably overexpressed in tumor tissue of the indicated tissue type as compared to normal non-tumor tissue of the same tissue type. As such, the molecules listed below (and the polypeptides they encode) are excellent nucleic acid (and polypeptide) targets for the diagnosis and therapy of cancer in mammals.

15	PERIPHERAL NERVOUS SYSTEM							
	DNA324303	DNA324573	DNA324681	DNA325296	DNA325405	DNA325407		
	DNA325408	DNA325409	DNA325410	DNA325449	DNA325503	DNA326083		
	DNA326231	DNA188229	DNA327080	DNA327081	DNA327082			
20	BRAIN							
	DNA323721	DNA323722	DNA323723	DNA323724	DNA323726	DNA323727		
	DNA323728	DNA323729	DNA323731	DNA323732	DNA287173	DNA151148		
	DNA323740	DNA323742	DNA323743	DNA323744	DNA323751	DNA323753		
	DNA323755	DNA323757	DNA323759	DNA323764	DNA323765	DNA323778		
25	DNA323781	DNA323783	DNA323785	DNA323795	DNA323796	DNA323797		
	DNA323805	DNA323810	DNA323811	DNA323812	DNA323814	DNA83085		
	DNA323817	DNA323821	DNA273060	DNA323823	DNA323824	DNA256503		
	DNA323825	DNA323826	DNA323828	DNA323829	DNA323830	DNA323833		
	DNA103214	DNA323834	DNA323837	DNA323838	DNA323839	DNA323846		
30	DNA323856	DNA323859	DNA323863	DNA323869	DNA323871	DNA323874		
	DNA323882	DNA323887	DNA323888	DNA323892	DNA323893	DNA323897		
	DNA323898	DNA323900	DNA323901	DNA323902	DNA323908	DNA210134		
	DNA323912	DNA323918	DNA323921	DNA323922	DNA323923	DNA323924		
	DNA323925	DNA323926	DNA257916	DNA323927	DNA323931	DNA323936		
35	DNA323937	DNA323938	DNA323939	DNA323940	DNA323942	DNA226793		
	DNA294794	DNA323943	DNA323944	DNA323946	DNA323947	DNA323950		

	DNA323951	DNA103436	DNA323953	DNA323958	DNA323959	DNA323961
	DNA226619	DNA323962	DNA323964	DNA323969	DNA323970	DNA323973
	DNA323974	DNA323975	DNA323976	DNA323977	DNA323979	DNA323980
	DNA323991	DNA323992	DNA323994	DNA323995	DNA324000	DNA324001
	DNA324002	DNA324003	DNA227246	DNA324004	DNA324008	DNA324009
5	DNA324010	DNA324011	DNA324012	DNA196344	DNA193882	DNA324024
	DNA324034	DNA324037	DNA324042	DNA324046	DNA324047	DNA324048
	DNA324050	DNA324051	DNA324055	DNA275195	DNA324059	DNA324060
	DNA275049	DNA324063	DNA324065	DNA324066	DNA324067	DNA324071
	DNA324072	DNA324073	DNA227165	DNA324074	DNA324076	DNA324077
10	DNA324078	DNA324079	DNA324080	DNA271243	DNA324081	DNA324082
	DNA324084	DNA324088	DNA324090	DNA324091	DNA324092	DNA324099
	DNA324101	DNA324106	DNA324109	DNA324111	DNA324112	DNA324121
	DNA324122	DNA324123	DNA324128	DNA324129	DNA227795	DNA324130
	DNA324131	DNA324132	DNA324133	DNA227528	DNA324134	DNA150725
15	DNA324136	DNA324138	DNA324139	DNA324141	DNA324146	DNA324152
•	DNA324153	DNA324155	DNA324159	DNA324160	DNA324161	DNA324162
	DNA194740	DNA324166	DNA324175	DNA324176	DNA272127	DNA324177
	DNA324182	DNA324184	DNA324186	DNA324188	DNA324194	DNA324197
	DNA324198	DNA324203	DNA324204	DNA324207	DNA324209	DNA324210
20	DNA324216	DNA324218	DNA324220	DNA324221	DNA324222	DNA324223
	DNA324224	DNA324227	DNA324228	DNA194827	DNA324230	DNA324231
	DNA324233	DNA324234	DNA324235	DNA324237	DNA324239	DNA254204
	DNA324240	DNA189697	DNA324243	DNA324246	DNA324251	DNA324253
	DNA150884	DNA324256	DNA324258	DNA324260	DNA324262	DNA324264
25	DNA324269	DNA324270	DNA324271	DNA324274	DNA324275	DNA269910
	DNA324279	DNA324285	DNA324286	DNA324288	DNA324290	DNA270401
	DNA226547	DNA324295	DNA324296	DNA324299	DNA324300	DNA324304
	DNA324305	DNA324308	DNA324309	DNA324310	DNA324313	DNA324314
	DNA324315	DNA324316	DNA324317	DNA103505	DNA324318	DNA324319
30	DNA324320	DNA324323	DNA324327	DNA324328	DNA324329	DNA324330
	DNA324331	DNA324333	DNA324336	DNA324338	DNA324342	DNA324343
	DNA324353	DNA88547	DNA324356	DNA324358	DNA324359	DNA324361
	DNA324363	DNA324364	DNA324365	DNA324366	DNA324367	DNA324368
	DNA324369	DNA324371	DNA324377	DNA324387	DNA324388	DNA324389
35	DNA324390	DNA324397	DNA324398	DNA324410	DNA324411	DNA324412
	DNA324413	DNA254620	DNA324415	DNA324417	DNA324418	DNA89239

	DNA324420	DNA225592	DNA324422	DNA324428	DNA324429	DNA324434
	DNA324435	DNA324437	DNA324441	DNA324442	DNA324443	DNA324448
	DNA324449	DNA324457	DNA324465	DNA324466	DNA324467	DNA324472
	DNA257511	DNA324483	DNA324485	DNA324486	DNA225919	DNA324487
	DNA324491	DNA324495	DNA324496	DNA324497	DNA324498	DNA324510
5	DNA324512	DNA324513	DNA324516	DNA324518	DNA324519	DNA324521
	DNA324524	DNA324525	DNA227575	DNA324526	DNA225920	DNA324527
	DNA225921	DNA324528	DNA324531	DNA324532	DNA324533	DNA324534
	DNA324538	DNA324540	DNA324541	DNA324542	DNA324545	DNA324546
	DNA324548	DNA324558	DNA324559	DNA324564	DNA324577	DNA324578
10	DNA288259	DNA324590	DNA324591	DNA324595	DNA324596	DNA324597
	DNA324600	DNA324604	DNA324605	DNA324613	DNA324614	DNA324615
	DNA324616	DNA324618	DNA324619	DNA324620	DNA324624	DNA324625
	DNA83020	DNA324626	DNA103380	DNA226872	DNA324632	DNA324640
	DNA324642	DNA324643	DNA324645	DNA324646	DNA324647	DNA324649
15	DNA324651	DNA324652	DNA324653	DNA150679	DNA324654	DNA324655
	DNA324656	DNA324657	DNA324658	DNA324659	DNA324660	DNA324661
	DNA324662	DNA324663	DNA324664	DNA324665	DNA324666	DNA324667
	DNA324668	DNA324669	DNA324670	DNA324671	DNA324672	DNA324673
	DNA324674	DNA324675	DNA324676	DNA324678	DNA324681	DNA324682
20	DNA324685	DNA324686	DNA324691	DNA324694	DNA324696	DNA324697
	DNA324698	DNA324700	DNA324701	DNA324702	DNA324704	DNA324705
	DNA225909	DNA274206	DNA324706	DNA324707	DNA324710	DNA324711
	DNA324714	DNA324715	DNA324716	DNA270675	DNA324717	DNA269593
	DNA324718	DNA324719	DNA324720	DNA324721	DNA272171	DNA324728
25	DNA324729	DNA304680	DNA324730	DNA324734	DNA324736	DNA324737
	DNA227204	DNA324738	DNA324740	DNA287246	DNA324743	DNA324745
	DNA304716	DNA324748	DNA324749	DNA324750	DNA324751	DNA324755
	DNA324756	DNA324757	DNA324758	DNA227442	DNA324766	DNA324767
	DNA324768	DNA324769	DNA287227	DNA324771	DNA324772	DNA324773
30	DNA324774	DNA272263	DNA287319	DNA324777	DNA324778	DNA324779
	DNA324782	DNA324784	DNA324785	DNA324786	DNA324787	DNA271040
	DNA324789	DNA324791	DNA324792	DNA324794	DNA324796	DNA324797
	DNA324798	DNA324799	DNA324803	DNA324804	DNA324805	DNA324809
	DNA324810	DNA324812	DNA324817	DNA324819	DNA324820	DNA324821
35	DNA324826	DNA324830	DNA324836	DNA324837	DNA324838	DNA324840
	DNA324841	DNA324842	DNA324844	DNA324853	DNA324866	DNA324873

	DNA324876	DNA324877	DNA324878	DNA324879	DNA324884	DNA324885
•	DNA324886	DNA324889	DNA324890	DNA324891	DNA324892	DNA324894
	DNA225631	DNA274326	DNA324895	DNA324896	DNA324899	DNA324902
	DNA324903	DNA324906	DNA324907	DNA324908	DNA324916	DNA324917
	DNA324918	DNA324920	DNA324922	DNA275334	DNA324924	DNA324925
5	DNA324929	DNA273865	DNA324931	DNA324932	DNA304707	DNA324938
	DNA324944	DNA324945	DNA324947	DNA324952	DNA324953	DNA324955
	DNA324960	DNA304710	DNA324962	DNA324963	DNA324965	DNA324966
	DNA324968	DNA324969	DNA324972	DNA324973	DNA324974	DNA324977
	DNA324978	DNA324979	DNA324980	DNA324982	DNA324984	DNA272090
10	DNA324988	DNA324989	DNA324990	DNA324996	DNA324997	DNA324998
	DNA324999	DNA325002	DNA325005	DNA325006	DNA325012	DNA325013
	DNA325014	DNA325015	DNA325019	DNA325020	DNA325024	DNA325026
	DNA325027	DNA325032	DNA325033	DNA325034	DNA325035	DNA325037
	DNA325040	DNA325041	DNA325043	DNA325044	DNA325045	DNA325046
15	DNA325047	DNA325050	DNA325052	DNA325054	DNA325062	DNA325064
	DNA325065	DNA274178	DNA325069	DNA83022	DNA325070	DNA325071
	DNA325072	DNA325073	DNA225671	DNA325075	DNA325076	DNA227267
	DNA325082	DNA325083	DNA325084	DNA325085	DNA325088	DNA325102
	DNA325103	DNA325105	DNA325106	DNA325111	DNA325112	DNA325116
20	DNA325117	DNA325118	DNA325119	DNA325126	DNA325128	DNA325132
	DNA325136	DNA325137	DNA325138	DNA325139	DNA325140	DNA325141
	DNA325143	DNA325144	DNA325145	DNA325146	DNA325147	DNA325148
	DNA325150	DNA325151	DNA325152	DNA325153	DNA325155	DNA325156
	DNA325157	DNA325160	DNA325161	DNA325163	DNA325164	DNA325165
25	DNA325166	DNA325167	DNA325168	DNA325170	DNA325171	DNA226345
	DNA325173	DNA325174	DNA325181	DNA227491	DNA254771	DNA89242
	DNA325182	DNA325184	DNA325187	DNA325190	DNA272655	DNA275322
	DNA325197	DNA325199	DNA325200	DNA272213	DNA325202	DNA325203
	DNA325204	DNA257309	DNA325206	DNA325209	DNA325211	DNA325212
30	DNA289530	DNA287271	DNA325214	DNA325216	DNA325217	DNA325218
	DNA325219	DNA325220	DNA325221	DNA325222	DNA218841	DNA325223
	DNA325226	DNA325229	DNA88350	DNA325235	DNA325236	DNA325237
	DNA325240	DNA325243	DNA325246	DNA325247	DNA325249	DNA325250
	DNA325252	DNA325253	DNA325257	DNA325258	DNA325261	DNA325262
35	DNA325264	DNA325265	DNA325266	DNA325267	DNA325268	DNA325269
	DNA325270	DNA325271	DNA325273	DNA325274	DNA325275	DNA325276

	DNA325278	DNA325279	DNA325283	DNA325288	DNA325290	DNA325292
	DNA325293	DNA325296	DNA325301	DNA325302	DNA325303	DNA325304
	DNA325307	DNA325309	DNA325310	DNA325312	DNA325314	DNA325315
	DNA325316	DNA325318	DNA325319	DNA325320	DNA325322	DNA325324
	DNA193957	DNA325325	DNA325326	DNA325328	DNA325329	DNA325331
5	DNA325333	DNA325334	DNA325335	DNA325336	DNA325337	DNA325338
	DNA325341	DNA304459	DNA325342	DNA325343	DNA325344	DNA325346
	DNA325347	DNA325348	DNA325349	DNA325355	DNA325360	DNA325361
	DNA325362	DNA325363	DNA325364	DNA325365	DNA325369	DNA325372
	DNA325375	DNA325381	DNA325384	DNA325385	DNA325393	DNA325395
10	DNA269952	DNA325396	DNA325397	DNA325400	DNA325402	DNA325403
	DNA325404	DNA325405	DNA325407	DNA325408	DNA325409	DNA325410
	DNA325413	DNA325414	DNA325415	DNA325417	DNA325418	DNA325423
	DNA325425	DNA325426	DNA325430	DNA325434	DNA97285	DNA325446
	DNA325451	DNA325452	DNA325453	DNA325456	DNA325457	DNA150974
15	DNA325458	DNA287417	DNA227088	DNA325462	DNA325464	DNA325465
	DNA325466	DNA325469	DNA287254	DNA325471	DNA325474	DNA325476
	DNA325477	DNA325479	DNA325480	DNA325481	DNA325482	DNA325483
	DNA325484	DNA325489	DNA325491	DNA325492	DNA325493	DNA325495
	DNA325496	DNA325497	DNA325498	DNA269803	DNA325500	DNA325501
20	DNA325503	DNA325505	DNA270721	DNA189687	DNA325506	DNA325511
	DNA325512	DNA325513	DNA103474	DNA325514	DNA325516	DNA325517
	DNA325518	DNA325519	DNA325520	DNA325521	DNA325522	DNA325523
	DNA88176	DNA325529	DNA325530	DNA325534	DNA325535	DNA325539
	DNA325540	DNA325541	DNA325544	DNA325545	DNA325546	DNA325547
25	DNA325549	DNA225752	DNA325551	DNA325553	DNA325554	DNA325557
	DNA325561	DNA325563	DNA325566	DNA325568	DNA325571	DNA325572
	DNA325573	DNA325574	DNA325575	DNA325579	DNA325580	DNA325583
	DNA325585	DNA325586	DNA325587	DNA88114	DNA325592	DNA325593
	DNA325596	DNA325597	DNA325600	DNA325601	DNA225632	DNA83180
30	DNA325603	DNA325608	DNA325618	DNA150997	DNA325625	DNA325631
	DNA325636	DNA325638	DNA325639	DNA325642	DNA325643	DNA325649
	DNA325650	DNA325651	DNA325652	DNA325653	DNA325654	DNA325655
	DNA325656	DNA325657	DNA325658	DNA325659	DNA325660	DNA325661
	DNA325664	DNA270458	DNA227092	DNA325665	DNA325669	DNA325670
35	DNA325673	DNA325674	DNA325675	DNA325676	DNA325677	DNA325679
	DNA325680	DNA325681	DNA325683	DNA325684	DNA325687	DNA325688

	DNA325689	DNA325690	DNA325691	DNA325695	DNA325698	DNA325702
	DNA325706	DNA79101	DNA325709	DNA325711	DNA325712	DNA325717
	DNA325720	DNA325721	DNA325723	DNA325724	DNA325731	DNA226014
	DNA325733	DNA325736	DNA325739	DNA325747	DNA325750	DNA325752
	DNA325755	DNA325758	DNA325761	DNA325762	DNA325763	DNA325766
5	DNA325768	DNA325773	DNA325775	DNA325776	DNA325782	DNA325786
	DNA325787	DNA302016	DNA325789	DNA325793	DNA325794	DNA325796
	DNA325797	DNA325802	DNA325806	DNA325807	DNA325808	DNA325809
	DNA226853	DNA325811	DNA325812	DNA325814	DNA325818	DNA325819
	DNA270254	DNA281436	DNA325837	DNA325838	DNA325840	DNA325843
10	DNA325844	DNA325850	DNA325851	DNA325852	DNA325855	DNA325856
	DNA325858	DNA325859	DNA325870	DNA325875	DNA325878	DNA325885
	DNA325895	DNA325902	DNA225649	DNA325913	DNA325915	DNA325918
	DNA325919	DNA325922	DNA325924	DNA325928	DNA325932	DNA325935
	DNA325938	DNA325942	DNA325943	DNA325946	DNA325947	DNA325949
15	DNA325950	DNA325951	DNA325956	DNA325960	DNA325974	DNA325975
	DNA325976	DNA325977	DNA325980	DNA325981	DNA325985	DNA325986
	DNA325991	DNA325992	DNA325994	DNA325995	DNA325996	DNA326002
	DNA326003	DNA326005	DNA326006	DNA326007	DNA326010	DNA326011
	DNA226646	DNA326022	DNA287331	DNA326024	DNA326025	DNA326026
20	DNA326028	DNA326029	DNA326030	DNA326032	DNA326034	DNA326038
	DNA326039	DNA326040	DNA326041	DNA326042	DNA326046	DNA326047
	DNA326049	DNA326052	DNA326053	DNA326057	DNA326061	DNA326062
	DNA326064	DNA326066	DNA326068	DNA275181	DNA326069	DNA326071
	DNA326075	DNA326076	DNA326078	DNA326079	DNA326080	DNA326085
25	DNA326086	DNA326087	DNA326091	DNA273839	DNA256844	DNA326092
	DNA326093	DNA256886	DNA326095	DNA254781	DNA326096	DNA326097
	DNA326098	DNA326099	DNA326100	DNA326102	DNA326103	DNA326109
	DNA326110	DNA326111	DNA326112	DNA326113	DNA326114	DNA326115
	DNA326116	DNA326117	DNA326120	DNA326121	DNA326122	DNA326123
30	DNA326124	DNA326125	DNA326128	DNA326129	DNA326130	DNA326132
	DNA326133	DNA326136	DNA326139	DNA326140	DNA326141	DNA326144
	DNA326145	DNA326146	DNA326147	DNA326149	DNA326154	DNA326156
	DNA326157	DNA326158	DNA254532	DNA326161	DNA326162	DNA326163
	DNA326168	DNA271171	DNA326170	DNA326171	DNA326174	DNA287355
35	DNA326177	DNA326178	DNA326182	DNA326185	DNA326186	DNA326188
	DNA326189	DNA326190	DNA326195	DNA326196	DNA326197	DNA326198

	DNA326200	DNA326201	DNA326202	DNA326204	DNA88261	DNA326205
	DNA326206	DNA326207	DNA326208	DNA326209	DNA326211	DNA326213
	DNA326214	DNA326218	DNA326219	DNA326221	DNA326222	DNA326226
	DNA326228	DNA326232	DNA326233	DNA326234	DNA326238	DNA326241
		DNA326248	DNA326250	DNA326251	DNA326252	DNA326253
_	DNA326242	DNA326257	DNA326258	DNA326260	DNA326264	DNA326266
5	DNA326254 DNA97300	DNA326267	DNA326268	DNA326269	DNA326270	DNA326271
	DNA97500 DNA326273	DNA297388	DNA326274	DNA326276	DNA326277	DNA326278
	DNA326283	DNA254198	DNA326288	DNA326289	DNA326290	DNA326291
	DNA326292	DNA326294	DNA326295	DNA326296	DNA255414	DNA326298
10		DNA326300	DNA326303	DNA326307	DNA326308	DNA326311
10	DNA326299	DNA326318	DNA326319	DNA326320	DNA326321	DNA326322
	DNA326312	DNA66475	DNA270979	DNA326328	DNA326329	DNA326330
	DNA326323	DNA326331	DNA326332	DNA326333	DNA226389	DNA326335
	DNA272889	DNA326337	DNA326340	DNA326342	DNA326343	DNA326345
1.5	DNA326336 DNA326346	DNA88378	DNA326347	DNA326350	DNA257428	DNA326353
15	DNA326354	DNA326356	DNA326359	DNA326362	DNA196642	DNA270901
	DNA326363	DNA326366	DNA326367	DNA326368	DNA254791	DNA287425
	DNA326372	DNA326375	DNA326376	DNA326378	DNA326379	DNA287291
	DNA326381	DNA326382	DNA326383	DNA326384	DNA326386	DNA326387
20	DNA320361 DNA150457	DNA326389	DNA227055	DNA326392	DNA326394	DNA326396
20	DNA326397	DNA326399	DNA326401	DNA326403	DNA88430	DNA326406
	DNA326411	DNA326412	DNA326413	DNA129504	DNA326415	DNA326416
	DNA326417	DNA326418	DNA326419	DNA326425	DNA326426	DNA326427
	DNA326428	DNA326429	DNA326430	DNA326431	DNA326434	DNA326438
25	DNA273694	DNA326439	DNA326449	DNA326450	DNA326451	DNA326452
23	DNA326453	DNA326454	DNA326457	DNA326461	DNA326462	DNA326465
	DNA326470	DNA326471	DNA326478	DNA326481	DNA326482	DNA326483
	DNA326484	DNA326485	DNA326487	DNA326489	DNA326490	DNA326491
	DNA326492	DNA326493	DNA274101	DNA326494	DNA326495	DNA326496
30	DNA326499	DNA326502	DNA326505	DNA326506	DNA326509	DNA326510
50	DNA326511	DNA326514	DNA287636	DNA326515	DNA326516	DNA326518
	DNA326519	DNA326520	DNA326521	DNA326522	DNA326523	DNA326528
	DNA326529	DNA326530	DNA326531	DNA326532	DNA326533	DNA326534
	DNA326535	DNA326536	DNA326537	DNA326538	DNA326540	DNA274761
35	DNA272421	DNA326542	DNA326546	DNA326547	DNA326548	DNA326550
	DNA326552	DNA326555	DNA326557	DNA326559	DNA227280	DNA326561
	D14140202					

				2274 2275 671	DNI 4 226572	DNA326575
	DNA326563	DNA326569	DNA326570	DNA326571	DNA326572	DNA326584
	DNA218271	DNA326577	DNA326578	DNA326579	DNA103320	
	DNA326585	DNA274034	DNA326586	DNA326587	DNA326588	DNA326589
	DNA326590	DNA326591	DNA326592	DNA326595	DNA326596	DNA326597
	DNA326598	DNA326599	DNA326600	DNA326601	DNA326602	DNA326603
5	DNA269630	DNA326604	DNA326605	DNA326609	DNA326610	DNA287240
	DNA326618	DNA326622	DNA326623	DNA326624	DNA326625	DNA227249
	DNA326626	DNA326628	DNA326633	DNA326634	DNA326638	DNA326641
	DNA326642	DNA326644	DNA326645	DNA326646	DNA326647	DNA256836
	DNA326648	DNA326650	DNA326653	DNA326654	DNA326656	DNA326657
10	DNA326658	DNA326659	DNA326662	DNA326663	DNA326664	DNA272347
	DNA326669	DNA326670	DNA256840	DNA326671	DNA326672	DNA326673
	DNA326674	DNA326677	DNA326679	DNA273600	DNA326680	DNA326682
	DNA326684	DNA326685	DNA326686	DNA326687	DNA326688	DNA326689
	DNA326691	DNA326692	DNA151808	DNA326696	DNA326698	DNA326699
15	DNA326700	DNA326702	DNA326705	DNA326706	DNA326710	DNA326711
	DNA326713	DNA88084	DNA256533	DNA251057	DNA326715	DNA326716
	DNA326717	DNA326718	DNA326721	DNA326722	DNA326723	DNA326726
	DNA326727	DNA326729	DNA326730	DNA326731	DNA326734	DNA326735
	DNA326736	DNA326737	DNA326739	DNA273066	DNA326742	DNA326743
20	DNA103239	DNA326744	DNA326745	DNA326746	DNA326747	DNA326748
	DNA326749	DNA269481	DNA326751	DNA326752	DNA326754	DNA326756
	DNA326758	DNA326760	DNA326761	DNA273346	DNA326763	DNA326765
	DNA326766	DNA272062	DNA326768	DNA326769	DNA326770	DNA326771
	DNA297288	DNA304662	DNA326772	DNA326774	DNA287270	DNA326780
25	DNA326781	DNA326783	DNA326785	DNA287261	DNA326789	DNA83170
	DNA326796	DNA326798	DNA326805	DNA326806	DNA150767	DNA326812
	DNA326813	DNA326817	DNA326818	DNA326819	DNA326820	DNA326821
	DNA226758	DNA194701	DNA326823	DNA326824	DNA326828	DNA326829
	DNA326831	DNA326833	DNA326835	DNA227472	DNA326836	DNA103525
30	DNA326840	DNA326841	DNA273320	DNA326842	DNA88569	DNA326843
	DNA326848	DNA326849	DNA326852	DNA326853	DNA326856	DNA326857
	DNA326861	DNA326862	DNA326863	DNA304670	DNA326864	DNA326866
	DNA103486	DNA326869	DNA326878	DNA326879	DNA326884	DNA326886
	DNA326887	DNA326888	DNA254572	DNA326889	DNA254994	DNA326891
35	DNA326894	DNA326896	DNA326897	DNA326901	DNA226409	DNA326908
55	DNA326911	DNA326912	DNA326913	DNA326914	DNA326916	DNA255046
	D. 1. 1020711					

	DNA225954	DNA326921	DNA326922	DNA326928	DNA326929	DNA326930
	DNA257549	DNA304835	DNA326935	DNA326940	DNA269830	DNA326945
	DNA326946	DNA326948	DNA254141	DNA151882	DNA326949	DNA326950
	DNA326951	DNA326952	DNA326953	DNA326956	DNA326958	DNA188740
	DNA326959	DNA290259	DNA304719	DNA326963	DNA326964	DNA326965
5	DNA254240	DNA326970	DNA326972	DNA326973	DNA326974	DNA326976
	DNA326977	DNA326981	DNA219225	DNA270954	DNA326983	DNA326985
	DNA326988	DNA326989	DNA326990	DNA326991	DNA326992	DNA326993
	DNA256070	DNA327000	DNA327002	DNA327003	DNA327004	DNA327005
	DNA269793	DNA327011	DNA227689	DNA274829	DNA327022	DNA327023
10	DNA327024	DNA327025	DNA327028	DNA327030	DNA327034	DNA327035
	DNA327036	DNA327042	DNA271580	DNA327043	DNA273992	DNA327045
	DNA327046	DNA327047	DNA327051	DNA327054	DNA225721	DNA327058
	DNA327059	DNA327060	DNA327061	DNA327062	DNA327067	DNA327068
	DNA327075	DNA327076	DNA327077	DNA327078	DNA327085	DNA76504
15	DNA327093	DNA273487	DNA327098	DNA327099	DNA254783	DNA227917
	DNA327112	DNA327113	DNA327115	DNA327116	DNA227013	DNA225800
	DNA327118	DNA225655	DNA327119	DNA327120	DNA327126	DNA327127
	HEAD AND N	<u>IECK</u>				
20	DNA323805	DNA323843	DNA323861	DNA323883	DNA323899	DNA323907
	DNA323908	DNA323909	DNA323986	DNA324001	DNA324039	DNA270154
	DNA324139	DNA324202	DNA324258	DNA324263	DNA324325	DNA324338
	DNA324393	DNA272605	DNA324425	DNA324480	DNA324588	DNA324651
	DNA324721	DNA324751	DNA324784	DNA324812	DNA324830	DNA227924
25	DNA324874	DNA324884	DNA131588	DNA89242	DNA325196	DNA325303
	DNA325352	DNA325377	DNA325503	DNA189687	DNA325526	DNA325573
	DNA150978	DNA325624	DNA79313	DNA325655	DNA325656	DNA325657
	DNA325658	DNA325661	DNA227094	DNA254777	DNA325799	DNA325801
	DNA226853	DNA325832	DNA274058	DNA325857	DNA325917	DNA325941
30	DNA325953	DNA325968	DNA325989	DNA325991	DNA326015	DNA326048
	DNA326076	DNA326119	DNA326135	DNA326159	DNA326172	DNA287355
	DNA326316	DNA326324	DNA326329	DNA326331	DNA326332	DNA88457
	DNA88281	DNA226011	DNA326738	DNA273517	DNA326839	DNA326873
	DNA326884	DNA326958	DNA327038	DNA327078		
35					•	

PLACENTA

	DNA323721	DNA323723	DNA323728	DNA323729	DNA323734	DNA287173
	DNA323736	DNA227821	DNA323738	DNA323739	DNA273712	DNA323741
	DNA323747	DNA323750	DNA323753	DNA323756	DNA323763	DNA323765
	DNA323766	DNA323773	DNA323776	DNA323777	DNA323778	DNA323781
	DNA323782	DNA323783	DNA323784	DNA196349	DNA323789	DNA323791
5	DNA323792	DNA323793	DNA323794	DNA323800	DNA323804	DNA227213
	DNA323809	DNA323811	DNA189315	DNA323817	DNA323819	DNA323820
	DNA323822	DNA274745	DNA273060	DNA272024	DNA323829	DNA323831
	DNA323832	DNA323833	DNA304686	DNA323834	DNA323835	DNA323839
•	DNA323840	DNA323841	DNA323842	DNA323847	DNA323856	DNA323857
10	DNA323858	DNA323859	DNA226260	DNA323862	DNA323863	DNA323867
	DNA323868	DNA323869	DNA323870	DNA271003	DNA323871	DNA323872
	DNA323874	DNA323875	DNA323876	DNA323880	DNA323882	DNA323887
	DNA323888	DNA323891	DNA323892	DNA323896	DNA323900	DNA227529
	DNA323902	DNA323905	DNA323906	DNA227577	DNA323914	DNA323915
15	DNA323916	DNA323920	DNA323925	DNA323927	DNA226125	DNA323936
	DNA323940	DNA323941	DNA323944	DNA323947	DNA323952	DNA323954
	DNA323959	DNA323963	DNA323964	DNA323966	DNA323971	DNA323972
	DNA323973	DNA323974	DNA323980	DNA323981	DNA323996	DNA323999
	DNA324004	DNA324009	DNA324014	DNA324018	DNA324026	DNA324030
20	DNA324031	DNA324032	DNA324035	DNA324037	DNA324038	DNA324042
	DNA324043	DNA324044	DNA324047	DNA324048	DNA324049	DNA324054
	DNA275195	DNA324060	DNA324063	DNA324067	DNA324068	DNA324070
	DNA324072	DNA324073	DNA324089	DNA324090	DNA324091	DNA324092
	DNA324093	DNA324096	DNA324101	DNA275066	DNA324106	DNA324109
25	DNA324110	DNA324111	DNA324112	DNA324115	DNA324119	DNA227795
	DNA287167	DNA324130	DNA324133	DNA324134	DNA150725	DNA324140
	DNA324141	DNA324142	DNA324143	DNA324144	DNA324150	DNA324151
	DNA324152	DNA324153	DNA324154	DNA324156	DNA275240	DNA324169
	DNA324170	DNA324171	DNA324172	DNA324175	DNA324182	DNA324186
30	DNA304805	DNA324189	DNA324190	DNA324191	DNA324193	DNA324195
	DNA324199	DNA324200	DNA324201	DNA324203	DNA324204	DNA271608
	DNA324206	DNA324207	DNA324209	DNA324210	DNA324212	DNA324213
	DNA324214	DNA324215	DNA324218	DNA324219	DNA324224	DNA324226
	DNA324230	DNA189697	DNA324244	DNA324247	DNA324254	DNA324258
35	DNA324260	DNA324266	DNA324268	DNA324269	DNA324270	DNA324271
	DNA324272	DNA324274	DNA324276	DNA151017	DNA324277	DNA324281

	DNIA 22 4202	DNA324289	DNA271187	DNA269930	DNA324292	DNA324293
	DNA324282 DNA324294	DNA226547	DNA324295	DNA324298	DNA324302	DNA324308
	DNA324310	DNA324311	DNA324313	DNA324316	DNA150562	DNA254582
	DNA324320	DNA324322	DNA324326	DNA324337	DNA269730	DNA324338
	DNA324339	DNA324340	DNA324341	DNA324343	DNA324344	DNA324347
5	DNA324348	DNA324350	DNA324351	DNA324358	DNA324360	DNA324365
3	DNA324368	DNA324373	DNA324375	DNA324376	DNA324379	DNA324380
	DNA269858	DNA324387	DNA324390	DNA324396	DNA324398	DNA324399
	DNA324400	DNA324402	DNA324405	DNA324408	DNA324409	DNA324411
	DNA324412	DNA324416	DNA324417	DNA324418	DNA324419	DNA324423
10	DNA324430	DNA324431	DNA324432	DNA324434	DNA324436	DNA324437
••	DNA324444	DNA324445	DNA324446	DNA324447	DNA324448	DNA270615
	DNA324450	DNA324451	DNA324452	DNA324459	DNA324460	DNA324461
	DNA324463	DNA324464	DNA324468	DNA324469	DNA324472	DNA324473
	DNA324478	DNA324479	DNA257511	DNA324481	DNA324483	DNA324491
15	DNA324495	DNA324496	DNA324501	DNA324502	DNA324508	DNA324510
	DNA324512	DNA324519	DNA324520	DNA324521	DNA324525	DNA324529
	DNA324530	DNA324531	DNA324537	DNA324538	DNA324539	DNA324541
	DNA324542	DNA324543	DNA324544	DNA324545	DNA324547	DNA324549
	DNA324550	DNA324561	DNA324563	DNA324564	DNA324565	DNA227173
20	DNA324570	DNA324571	DNA324572	DNA287282	DNA324576	DNA324579
	DNA324581	DNA324582	DNA324583	DNA324584	DNA288259	DNA324586
	DNA324590	DNA324591	DNA324592	DNA324593	DNA324595	DNA324596
	DNA324597	DNA324598	DNA324599	DNA324600	DNA324601	DNA324603
	DNA324604	DNA257253	DNA324611	DNA324613	DNA324616	DNA324617
25	DNA324618	DNA324619	DNA324621	DNA324622	DNA324624	DNA103380
	DNA324629	DNA324630	DNA324631	DNA324632	DNA324633	DNA324634
	DNA324641	DNA324645	DNA324646	DNA324647	DNA302020	DNA324650
	DNA324677	DNA324678	DNA324680	DNA324682	DNA226418	DNA324685
	DNA324687	DNA324688	DNA324689	DNA324690	DNA324693	DNA227320
30	DNA324696	DNA324697	DNA324707	DNA324712	DNA324715	DNA324716
	DNA270675	DNA324717	DNA324720	DNA324722	DNA324723	DNA324725
	DNA324727	DNA304680	DNA324730	DNA324735	DNA324736	DNA324737
	DNA324741	DNA324742	DNA275630	DNA324745	DNA324746	DNA324751
	DNA324752	DNA324753	DNA324754	DNA324756	DNA324759	DNA324760
35	DNA324761	DNA324763	DNA324764	DNA324765	DNA304661	DNA324771
	DNA324775	DNA324776	DNA324777	DNA324778	DNA324779	DNA324780

	DNA324781	DNA324783	DNA304699	DNA324785	DNA271040	DNA324790
	DNA324794	DNA324796	DNA324797	DNA324806	DNA324811	DNA324818
	DNA324820	DNA324822	DNA324824	DNA324827	DNA324830	DNA324832
	DNA324833	DNA324835	DNA324840	DNA324841	DNA324844	DNA324846
	DNA271418	DNA324849	DNA324853	DNA324857	DNA324859	DNA324860
5	DNA324862	DNA324864	DNA324866	DNA324868	DNA324871	DNA324872
	DNA324889	DNA324891	DNA225631	DNA274326	DNA324895	DNA247595
	DNA324898	DNA324900	DNA324901	DNA324902	DNA324909	DNA324915
	DNA324916	DNA324917	DNA324920	DNA275334	DNA324925	DNA324926
	DNA324928	DNA324929	DNA273865	DNA324934	DNA324936	DNA324937
10	DNA287189	DNA324939	DNA324940	DNA103588	DNA324950	DNA324951
	DNA324952	DNA324961	DNA324965	DNA324966	DNA324967	DNA324968
	DNA324975	DNA324976	DNA324982	DNA324986	DNA272090	DNA324989
	DNA324990	DNA324991	DNA324992	DNA324993	DNA324994	DNA324995
	DNA270711	DNA325001	DNA325002	DNA325003	DNA325004	DNA325006
15	DNA325008	DNA325013	DNA325015	DNA325021	DNA325024	DNA325026
	DNA325027	DNA325028	DNA325030	DNA325033	DNA325034	DNA325042
	DNA325048	DNA226337	DNA325051	DNA325053	DNA325067	DNA325078
	DNA325079	DNA325080	DNA325081	DNA325087	DNA325088	DNA325095
	DNA325099	DNA325101	DNA325102	DNA325103	DNA325104	DNA325105
20	DNA325106	DNA226496	DNA325111	DNA325113	DNA325114	DNA325116
	DNA325117	DNA325118	DNA325119	DNA325123	DNA131588	DNA325126
	DNA325128	DNA325129	DNA325132	DNA325133	DNA325136	DNA325139
	DNA325140	DNA325141	DNA325144	DNA325146	DNA325150	DNA325152
	DNA325153	DNA325156	DNA325157	DNA325162	DNA325164	DNA325168
25	DNA271847	DNA270991	DNA325173	DNA325174	DNA325175	DNA325176
	DNA325179	DNA325181	DNA227491	DNA325182	DNA325183	DNA325184
	DNA325185	DNA325187	DNA325189	DNA325190	DNA325196	DNA325200
	DNA325201	DNA325202	DNA254543	DNA325206	DNA325209	DNA325213
	DNA325214	DNA325215	DNA325219	DNA325222	DNA325223	DNA325225
30	DNA325228	DNA325229	DNA325232	DNA325244	DNA325248	DNA325250
	DNA325253	DNA325259	DNA325260	DNA325263	DNA325265	DNA325272
	DNA325277	DNA325280	DNA325289	DNA325293	DNA273759	DNA325294
	DNA325301	DNA325303	DNA325305	DNA325308	DNA325311	DNA325326
	DNA325328	DNA325329	DNA325334	DNA103421	DNA325343	DNA325344
35	DNA325346	DNA325347	DNA325353	DNA325356	DNA325358	DNA325359
	DNA325360	DNA325364	DNA325366	DNA325370	DNA325375	DNA325378

			DN1 + 005000	TALA 225284	DNA325389	DNA325394
	DNA325381	DNA273521	DNA325383	DNA325384	DNA325418	DNA325424
	DNA325395	DNA269431	DNA325405	DNA325412		DNA325443
	DNA325430	DNA325431	DNA325439	DNA325441	DNA325442 DNA325451	DNA325452
	DNA325444	DNA325445	DNA325447	DNA325448		DNA287417
	DNA325454	DNA325455	DNA325456	DNA270134	DNA325460	DNA325475
5	DNA325463	DNA325464	DNA325465	DNA325468	DNA325470	
	DNA325478	DNA325479	DNA325480	DNA325483	DNA325486	DNA325487
	DNA325488	DNA325490	DNA325494	DNA325498	DNA325504	DNA270721
	DNA325506	DNA325507	DNA325508	DNA325513	DNA325522	DNA325523
	DNA325527	DNA325529	DNA325530	DNA325534	DNA325535	DNA325541
10	DNA325544	DNA271843	DNA325556	DNA325557	DNA325560	DNA325567
	DNA325570	DNA325576	DNA325582	DNA325584	DNA325587	DNA325589
	DNA325593	DNA325595	DNA325596	DNA325597	DNA254624	DNA325601
	DNA225632	DNA325602	DNA325610	DNA325611	DNA325616	DNA325618
	DNA325621	DNA325625	DNA325626	DNA325627	DNA325632	DNA325633
15	DNA271344	DNA325640	DNA325642	DNA325644	DNA325645	DNA325648
	DNA227191	DNA270458	DNA227092	DNA325666	DNA325674	DNA325680
	DNA325681	DNA304783	DNA325685	DNA325686	DNA325688	DNA325689
	DNA325695	DNA325699	DNA325700	DNA325701	DNA325704	DNA325707
	DNA325711	DNA325712	DNA325720	DNA325724	DNA325727	DNA325728
20	DNA325729	DNA304694	DNA325730	DNA227474	DNA325731	DNA227171
	DNA325732	DNA271492	DNA325733	DNA325736	DNA325737	DNA325739
	DNA325750	DNA325751	DNA325752	DNA325758	DNA325760	DNA325762
	DNA325763	DNA325772	DNA325773	DNA325775	DNA325776	DNA325782
	DNA325783	DNA325784	DNA325785	DNA325786	DNA270677	DNA325787
25	DNA302016	DNA325789	DNA325792	DNA325798	DNA325802	DNA325805
	DNA325806	DNA325809	DNA270015	DNA325810	DNA325811	DNA325812
	DNA325813	DNA325814	DNA325816	DNA325818	DNA325820	DNA304669
	DNA281436	DNA325828	DNA325829	DNA325830	DNA325833	DNA325834
	DNA325837	DNA325838	DNA325843	DNA325844	DNA325847	DNA325860
30	DNA325861	DNA325862	DNA325863	DNA325865	DNA325866	DNA325867
5.0	DNA325872	DNA325874	DNA325876	DNA325877	DNA325880	DNA325881
	DNA325882	DNA325886	DNA325887	DNA325888	DNA325889	DNA325893
	DNA325900	DNA325903	DNA325904	DNA325906	DNA325908	DNA325910
	DNA325911	DNA325912	DNA325913	DNA325921	DNA269498	DNA325922
35	DNA325925	DNA325926	DNA325927	DNA325933	DNA325935	DNA325936
,,	DNA325939	DNA325941	DNA325944	DNA325947	DNA325948	DNA325949
	D141777777					

	DNA325950	DNA103509	DNA325959	DNA325961	DNA325962	DNA325963
	DNA325965	DNA325966	DNA325972	DNA325973	DNA325980	DNA325982
	DNA325983	DNA227559	DNA325985	DNA325987	DNA325988	DNA325994
	DNA325995	DNA325997	DNA326001	DNA326002	DNA326003	DNA326010
	DNA326016	DNA326019	DNA326020	DNA326021	DNA326022	DNA326023
5	DNA287331	DNA326028	DNA326036	DNA326041	DNA326044	DNA326046
	DNA326047	DNA326050	DNA326051	DNA326056	DNA275144	DNA326058
	DNA326063	DNA326070	DNA326073	DNA326075	DNA326081	DNA326082
	DNA326084	DNA326088	DNA273839	DNA326094	DNA326097	DNA326099
	DNA326103	DNA326104	DNA326105	DNA326106	DNA326108	DNA326116
10	DNA326117	DNA326118	DNA326121	DNA326122	DNA326124	DNA326125
	DNA326128	DNA326129	DNA326134	DNA289522	DNA326136	DNA326150
	DNA326151	DNA274002	DNA326152	DNA326153	DNA326154	DNA326155
	DNA326156	DNA326157	DNA326167	DNA326168	DNA271171	DNA326173
	DNA287355	DNA326176	DNA326179	DNA194805	DNA326181	DNA326183
15	DNA326184	DNA326186	DNA326188	DNA326191	DNA326192	DNA326195
	DNA326196	DNA326197	DNA326198	DNA275408	DNA326200	DNA189703
	DNA326201	DNA326203	DNA304704	DNA326208	DNA326210	DNA326211
	DNA326212	DNA326214	DNA326217	DNA326222	DNA326223	DNA326224
	DNA326225	DNA326227	DNA227234	DNA326233	DNA326234	DNA326249
20	DNA326251	DNA326252	DNA326255	DNA326260	DNA326261	DNA326262
	DNA97300	DNA326268	DNA326272	DNA326273	DNA326278	DNA103401
	DNA326285	DNA326288	DNA290292	DNA326289	DNA326291	DNA326292
	DNA326296	DNA326305	DNA326311	DNA326313	DNA326314	DNA326315
	DNA326316	DNA287427	DNA326322	DNA326324	DNA326325	DNA326326
25	DNA326330	DNA326334	DNA326338	DNA326339	DNA326340	DNA326342
	DNA326343	DNA326344	DNA326356	DNA326361	DNA270901	DNA326364
	DNA97290	DNA227071	DNA326369	DNA287425	DNA326377	DNA326381
	DNA326384	DNA326385	DNA326387	DNA326388	DNA227055	DNA326395
	DNA326396	DNA326397	DNA150814	DNA326399	DNA326406	DNA326407
30	DNA326408	DNA326409	DNA326410	DNA326411	DNA129504	DNA326415
	DNA326421	DNA326424	DNA326427	DNA326430	DNA326435	DNA326445
	DNA326448	DNA326449	DNA326450	DNA326451	DNA326452	DNA326453
	DNA326454	DNA256813	DNA326457	DNA326459	DNA326463	DNA326464
	DNA326466	DNA326467	DNA326468	DNA326469	DNA326471	DNA326472
35	DNA326474	DNA326477	DNA326483	DNA326484	DNA326485	DNA326486
	DNA326487	DNA326488	DNA326489	DNA326490	DNA326491	DNA326495

	DNA326496	DNA326499	DNA326507	DNA326508	DNA326510	DNA326513
	DNA326514	DNA287636	DNA326515	DNA326516	DNA326518	DNA326520
	DNA326524	DNA326525	DNA326529	DNA326530	DNA326544	DNA326548
	DNA326549	DNA326551	DNA326553	DNA326557	DNA326559	DNA227280
	DNA270621	DNA326563	DNA326564	DNA326565	DNA326567	DNA326569
5	DNA326579	DNA326580	DNA326585	DNA287243	DNA326589	DNA326593
	DNA326594	DNA326595	DNA269894	DNA326596	DNA326597	DNA326603
	DNA326604	DNA326606	DNA326607	DNA326611	DNA326612	DNA326613
	DNA326616	DNA326624	DNA227249	DNA326626	DNA326627	DNA326631
	DNA326632	DNA326633	DNA326634	DNA326636	DNA326637	DNA326639
10	DNA326640	DNA326641	DNA326643	DNA326649	DNA326651	DNA326657
	DNA273474	DNA272347	DNA326669	DNA326671	DNA274139	DNA273600
	DNA326680	DNA326681	DNA326683	DNA326686	DNA326687	DNA326688
	DNA326689	DNA326690	DNA326691	DNA326695	DNA326698	DNA326702
	DNA326704	DNA326705	DNA326706	DNA326707	DNA103580	DNA256533
15	DNA326714	DNA274289	DNA326717	DNA326719	DNA326720	DNA326724
	DNA326727	DNA326728	DNA274823	DNA290260	DNA326733	DNA326736
	DNA273066	DNA326741	DNA326742	DNA326749	DNA326755	DNA326756
	DNA326757	DNA326758	DNA326760	DNA273346	DNA254548	DNA326767
	DNA326769	DNA297288	DNA326775	DNA326776	DNA326777	DNA326778
20	DNA287270	DNA326780	DNA326781 .	DNA326782	DNA326784	DNA326786
	DNA326787	DNA326788	DNA271010	DNA287290	DNA326793	DNA326794
	DNA326796	DNA326797	DNA326798	DNA326799	DNA326804	DNA326807
	DNA326808	DNA326809	DNA326812	DNA326814	DNA326815	DNA97298
	DNA326819	DNA326822	DNA194701	DNA326827	DNA326831	DNA103525
25	DNA326845	DNA326847	DNA326855	DNA326856	DNA326858	DNA326866
	DNA103486	DNA326870	DNA326871	DNA326873	DNA326877	DNA326879
	DNA326880	DNA326881	DNA269746	DNA326883	DNA326884	DNA326885
	DNA326886	DNA254572	DNA274129	DNA326895	DNA326899	DNA326900
	DNA326901	DNA326902	DNA326915	DNA226617	DNA326917	DNA326920
30	DNA326921	DNA326928	DNA326933	DNA326934	DNA326935	DNA326936
	DNA326937	DNA326938	DNA326940	DNA326941	DNA269830	DNA326943
	DNA326944	DNA103462	DNA326946	DNA326947	DNA254141	DNA270697
	DNA326952	DNA326953	DNA151752	DNA326956	DNA326957	DNA188740
	DNA326964	DNA326965	DNA254240	DNA326966	DNA326967	DNA326968
35	DNA326974	DNA326975	DNA326976	DNA326977	DNA326978	DNA254165
	DNA326980	DNA326981	DNA270954	DNA326983	DNA326984	DNA326985

	DNA326986	DNA326988	DNA326989	DNA326990	DNA326992	DNA326994
	DNA326996	DNA326997	DNA326999	DNA327003	DNA327005	DNA327015
	DNA327018	DNA327021	DNA327023	DNA327025	DNA327029	DNA327030
	DNA327031	DNA327032	DNA327037	DNA327039	DNA238039	DNA273992
	DNA327046	DNA327047	DNA327048	DNA327049	DNA327051	DNA327054
5	DNA327058	DNA327060	DNA327062	DNA327063	DNA327064	DNA327067
	DNA327068	DNA327069	DNA327070	DNA327071	DNA327073	DNA327074
	DNA327077	DNA327078	DNA327079	DNA254785	DNA327086	DNA327087
	DNA327088	DNA327094	DNA327095	DNA327096	DNA327097	DNA327103
	DNA327104	DNA327105	DNA327107	DNA327108	DNA327109	DNA327110
10	DNA254783	DNA327111	DNA327114	DNA327115	DNA327116	DNA327117
	DNA227013	DNA230792	DNA103558	DNA327122	DNA327123	
					•	
	PINEAL GLAN	<u>ND</u>				
	DNA287173	DNA323879	DNA323924	DNA273088	DNA323988	DNA324002
15	DNA324042	DNA324048	DNA324090	DNA324091	DNA324092	DNA324216
	DNA324229	DNA324246	DNA324296	DNA324340	DNA324341	DNA324521
	DNA324554	DNA324561	DNA324575	DNA324636	DNA324642	DNA324731
	DNA324737	DNA227607	DNA304668	DNA287319	DNA324784	DNA324815
	DNA324816	DNA324872	DNA324885	DNA225631	DNA324905	DNA324930
20	DNA226416	DNA324940	DNA324943	DNA325026	DNA325027	DNA225671
	DNA325208	DNA325231	DNA325234	DNA325296	DNA325475	DNA271324
	DNA325601	DNA225632	DNA325642	DNA325644	DNA325786	DNA302016
	DNA325789	DNA325803	DNA325804	DNA325883	DNA325932	DNA326099
	DNA287355	DNA326363	DNA326543	DNA326672	DNA326909	DNA326910
25	DNA327009	DNA327023	DNA327025	DNA327121		
	LYMPH NOD	<u>E</u>				DNA 202064
	DNA227213	DNA323858	DNA323859	DNA323862	DNA323863	DNA323864
	DNA323866	DNA323872	DNA323887	DNA323925	DNA226619	DNA324056
30	DNA324091	DNA324092	DNA324099	DNA324100	DNA324113	DNA324154
	DNA324155	DNA324193	DNA324204	DNA324218	DNA324417	DNA324418
	DNA324434	DNA324472	DNA324495	DNA324501	DNA324503	DNA324504
	DNA324505	DNA324521	DNA324525	DNA324551	DNA324552	DNA324554
	DNA324555	DNA324556	DNA324557	DNA324558	DNA324574	DNA324575
35	DNA324595	DNA324596	DNA324613	DNA324632	DNA324645	DNA324682
	DNA324690	DNA304680	DNA324737	DNA324756	DNA324785	DNA324790

	DNA324828	DNA324829	DNA324841	DNA324904	DNA324905	DNA324906
	DNA324907	DNA324908	DNA324981	DNA324982	DNA324989	DNA324991
	DNA324992	DNA325006	DNA325079	DNA325111	DNA325126	DNA325156
•	DNA325157	DNA325179	DNA287216	DNA288247	DNA325231	DNA325233
	DNA325234	DNA325235	DNA325236	DNA325250	DNA325326	DNA325346
5	DNA325347	DNA325360	DNA325384	DNA325389	DNA325535	DNA325576
	DNA325601	DNA225632	DNA325625	DNA325642	DNA325683	DNA325684
	DNA325750	DNA325752	DNA325758	DNA325786	DNA302016	DNA325789
	DNA325913	DNA151893	DNA325935	DNA325954	DNA325955	DNA325985
	DNA325991	DNA325994	DNA326002	DNA326022	DNA287331	DNA326041
10	DNA326046	DNA326047	DNA326075	DNA326095	DNA326099	DNA326121
	DNA326146	DNA97300	DNA270975	DNA326373	DNA326416	DNA326427
	DNA326449	DNA326457	DNA326459	DNA326463	DNA326633	DNA326742
	DNA326885	DNA326952	DNA326974	DNA327023	DNA327025	
15	COLON					
	DNA287173	DNA323865	DNA323867	DNA323871	DNA323947	DNA323964
	DNA324039	DNA324048	DNA324090	DNA324091	DNA324092	DNA324111
	DNA324112	DNA227795	DNA324155	DNA226547	DNA324417	DNA324418
	DNA324423	DNA324437	DNA324495	DNA324496	DNA324501	DNA324502
20	DNA324504	DNA324505	DNA324521	DNA324525	DNA324550	DNA324552
	DNA324556	DNA324557	DNA324558	DNA324575	DNA324604	DNA324613
	DNA324624	DNA324697	DNA324717	DNA324720	DNA304680	DNA324737
	DNA324756	DNA324785	DNA324790	DNA324828	DNA324829	DNA324865
	DNA324904	DNA324905	DNA324906	DNA324907	DNA324908	DNA324989
25	DNA325026	DNA325027	DNA325033	DNA325068	DNA325104	DNA325105
	DNA325106	DNA325116	DNA325128	DNA325129	DNA325156	DNA325157
	DNA325182	DNA325183	DNA325184	DNA325231	DNA325232	DNA325233
	DNA325234	DNA325235	DNA325236	DNA325250	DNA325326	DNA325347
	DNA325358	DNA325414	DNA325418	DNA189687	DNA325570	DNA325601
30	DNA225632	DNA325605	DNA325619	DNA256072	DNA325642	DNA325644
	DNA270458	DNA227092	DNA325731	DNA226014	DNA325786	DNA302016
	DNA325789	DNA325810	DNA325811	DNA325812	DNA325913	DNA325914
	DNA325941	DNA325985	DNA326002	DNA287331	DNA326099	DNA326121
	DNA326122	DNA326124	DNA326136	DNA326330	DNA326396	DNA326457
35	DNA326529	DNA326617	DNA326633	DNA326634	DNA326651	DNA290260
	DNA273517	DNA326886	DNA226409	DNA326958	DNA327025	DNA327029

DNA327067

	PANCREAS					
	DNA323732	DNA287173	DNA323745	DNA323778	DNA323781	DNA323783
	DNA323803	DNA323806	DNA323808	DNA323815	DNA103253	DNA304686
5	DNA323856	DNA323864	DNA323866	DNA323878	DNA323882	DNA210134
	DNA323920	DNA323923	DNA323927	DNA323951	DNA226619	DNA226005
	DNA83046	DNA324017	DNA324042	DNA324048	DNA324073	DNA324091
	DNA324092	DNA324119	DNA227795	DNA227528	DNA324139	DNA324155
	DNA324193	DNA324195	DNA324197	DNA324216	DNA324220	DNA324221
10	DNA324229	DNA324317	DNA324320	DNA324340	DNA324341	DNA324352
	DNA324364	DNA324366	DNA324367	DNA324380	DNA324398	DNA324412
	DNA324417	DNA324418	DNA324495	DNA324501	DNA324504	DNA324505
	DNA324521	DNA324536	DNA324552	DNA324557	DNA324558	DNA288259
	DNA324591	DNA83020	DNA324636	DNA324642	DNA324697	DNA324702
15	DNA324715	DNA324716	DNA324717	DNA304680	DNA324737	DNA227204
	DNA324744	DNA324756	DNA324770	DNA272263	DNA324784	DNA324790
	DNA324795	DNA324824	DNA324828	DNA324829	DNA324850	DNA324858
	DNA324880	DNA324884	DNA324885	DNA324891	DNA225631	DNA274326
	DNA324896	DNA324904	DNA324906	DNA324922	DNA324930	DNA324935
20	DNA304710	DNA324962	DNA324963	DNA324972	DNA324973	DNA324977
	DNA272090	DNA83141	DNA325009	DNA325027	DNA325033	DNA304685
	DNA325064	DNA325079	DNA325099	DNA325104	DNA325105	DNA325106
,	DNA325126	DNA325136	DNA325146	DNA325156	DNA325157	DNA290319
	DNA254771	DNA89242	DNA325184	DNA325185	DNA325202	DNA325229
25	DNA88350	DNA325233	DNA325235	DNA325236	DNA325247	DNA325254
	DNA325262	DNA325268	DNA325296	DNA325330	DNA325332	DNA325335
	DNA325336	DNA287237	DNA325355	DNA325360	DNA325384	DNA325398
	DNA325403	DNA325405	DNA325411	DNA325414	DNA325418	DNA325428
	DNA97285	DNA325450	DNA325453	DNA325475	DNA325493	DNA325506
30	DNA325532	DNA325548	DNA325596	DNA325601	DNA225632	DNA226771
	DNA325642	DNA325655	DNA325656	DNA325657	DNA325658	DNA325660
	DNA325661	DNA325663	DNA270458	DNA227092	DNA196351	DNA325680
	DNA325740	DNA325741	DNA325742	DNA325743	DNA325744	DNA325745
	DNA325746	DNA325750	DNA325752	DNA325757	DNA325758	DNA325760
35	DNA325775	DNA325776	DNA325786	DNA325788	DNA325803	DNA325804
	DNA325826	DNA325912	DNA103509	DNA325952	DNA325953	DNA326003

	DNA326016	DNA287331	DNA326047	DNA326053	DNA326055	DNA326058
	DNA150485	DNA326060	DNA326072	DNA326092	DNA326099	DNA326110
	DNA326129	DNA326157	DNA326165	DNA326166	DNA287355	DNA326210
	DNA326220	DNA326233	DNA326234	DNA97300	DNA326288	DNA326291
	DNA326292	DNA326300	DNA326328	DNA326330	DNA326331	DNA326333
5	DNA326352	DNA326370	DNA326378	DNA326397	DNA88430	DNA326410
	DNA326415	DNA326416	DNA326426	DNA326480	DNA326481	DNA326482
	DNA256555	DNA326523	DNA326563	DNA326577	DNA326603	DNA326604
	DNA326615	DNA326621	DNA326625	DNA227249	DNA326646	DNA326657
	DNA326663	DNA326664	DNA326665	DNA326666	DNA326667	DNA272347
10	DNA326668	DNA326669	DNA326671	DNA274139	DNA326675	DNA326680
	DNA326692	DNA326698	DNA326712	DNA326717	DNA304658	DNA326752
	DNA326760	DNA326762	DNA273346	DNA254548	DNA326769	DNA326776
	DNA326777	DNA287270	DNA326790	DNA326803	DNA326818	DNA326829
	DNA194807	DNA103525	DNA326860	DNA326879	DNA226409	DNA326907
15	DNA326911	DNA326912	DNA326913	DNA326952	DNA326955	DNA304719
	DNA327023	DNA327025	DNA327042	DNA273254	DNA327116	DNA227013
	DNA103558	DNA327120				
	PROSTATE					
20	DNA287173	DNA323749	DNA323774	DNA323779	DNA323780	DNA323806
	DNA323820	DNA304686	DNA323850	DNA323864	DNA323866	DNA323867
	DNA323871	DNA323877	DNA323882	DNA227529	DNA323925	DNA323927
	DNA323944	DNA226619	DNA323964	DNA323980	DNA323982	DNA271986
	DNA324001	DNA324004	DNA83046	DNA324023	DNA227504	DNA324027
25	DNA324042	DNA324048	DNA324057	DNA324058	DNA324073	DNA324090
	DNA324091	DNA324092	DNA324101	DNA324111	DNA324112	DNA324115
	DNA324116	DNA324117	DNA227795	DNA324154	DNA324155	DNA324178
	DNA324203	DNA324219	DNA324230	DNA324260	DNA324293	DNA226547
	DNA324301	DNA227307	DNA324335	DNA324340	DNA324341	DNA324354
30	DNA324406	DNA324412	DNA324417	DNA324418	DNA324437	DNA324458
	DNA324472	DNA324494	DNA324502	DNA324503	DNA324504	DNA324505
	DNA324521	DNA324525	DNA324541	DNA324550	DNA324551	DNA324552
	DNA324554	DNA324555	DNA324556	DNA324557	DNA324558	DNA324561
	DNA324566	DNA324567	DNA324575	DNA324576	DNA288259	DNA324587
35	DNA324595	DNA324596	DNA254147	DNA324604	DNA324605	DNA324613
	DNA324624	DNA324631	DNA324632	DNA324636	DNA324645	DNA324682

٠	DNA324690	DNA324712	DNA324715	DNA324716	DNA324720	DNA324722
	DNA304680	DNA324737	DNA324785	DNA324793	DNA324796	DNA324797
	DNA150772	DNA324825	DNA324828	DNA324829	DNA324830	DNA324841
	DNA324844.	DNA324847	DNA324856	DNA324866	DNA225631	DNA193955
	DNA324904	DNA324905	DNA324906	DNA227929	DNA324910	DNA324911
5	DNA324912	DNA324926	DNA103588	DNA324961	DNA325006	DNA325015
	DNA325026	DNA325027	DNA325079	DNA325086	DNA151010	DNA325098
	DNA325105	DNA325106	DNA325115	DNA325116	DNA131588	DNA325126
	DNA325127	DNA272050	DNA325129	DNA325131	DNA325156	DNA325157
	DNA325179	DNA325182	DNA325184	DNA325187	DNA325202	DNA325210
10	DNA325231	DNA325232	DNA325233	DNA325234	DNA325235	DNA325236
	DNA325250	DNA325303	DNA325326	DNA227172	DNA325335	DNA103421
	DNA325347	DNA226217	DNA325349	DNA325351	DNA325360	DNA325398
	DNA325414	DNA325432	DNA325472	DNA325475	DNA325535	DNA325558
	DNA325570	DNA325576	DNA325601	DNA225632	DNA325618	DNA325642
15	DNA325644	DNA325645	DNA325655	DNA270458	DNA325667	DNA325668
	DNA325680	DNA325681	DNA325723	DNA325731	DNA325749	DNA325750
	DNA325752	DNA325786	DNA302016	DNA325789	DNA325801	DNA325806
	DNA325811	DNA325812	DNA325814	DNA325815	DNA281436	DNA325836
	DNA325841	DNA325844	DNA325853	DNA325854	DNA325906	DNA325907
20	DNA325908	DNA325913	DNA325927	DNA325984	DNA325985	DNA325994
	DNA325998	DNA326002	DNA234442	DNA287331	DNA326041	DNA326046
	DNA326054	DNA326075	DNA326099	DNA326122	DNA326124	DNA326129
	DNA326136	DNA326155	DNA287355	DNA326194	DNA326201	DNA326233
	DNA326234	DNA326245	DNA326254	DNA97300	DNA326291	DNA326292
25	DNA326302	DNA326332	DNA326340	DNA97290	DNA326370	DNA326456
	DNA326457	DNA326459	DNA326481	DNA326482	DNA326529	DNA326599
	DNA326608	DNA326634	DNA326645	DNA326686	DNA326687	DNA326688
	DNA326692	DNA103580	DNA150784	DNA270931	DNA254548	DNA326839
	DNA326884	DNA326893	DNA326921	DNA326974	DNA327005	DNA327012
30	DNA327023	DNA327025	DNA327039	DNA273254	DNA327067	
	<u>LIVER</u>					
	DNA323720	DNA323733	DNA287173	DNA323758	DNA323767	DNA323778
	DNA323783	DNA188748	DNA323808	DNA227213	DNA323810	DNA323817
35	DNA323820	DNA273060	DNA323852	DNA269708	DNA323864	DNA323865
	DNA323866	DNA323867	DNA323871	DNA323894	DNA323895	DNA274759

	DNA323913	DNA323917	DNA323922	DNA323927	DNA323934	DNA323936
	DNA323948	DNA323960	DNA226619	DNA323964	DNA323968	DNA323971
	DNA323972	DNA323973	DNA323974	DNA323983	DNA323984	DNA323989
	DNA324019	DNA254346	DNA324039	DNA324042	DNA82328	DNA324048
	DNA324053	DNA275195	DNA324063	DNA324069	DNA324090	DNA324091
5	DNA324092	DNA324095	DNA271060	DNA324111	DNA324112	DNA324118
	DNA324124	DNA324125	DNA227795	DNA287167	DNA227528	DNA324134
	DNA324139	DNA324141	DNA324154	DNA324155	DNA324158	DNA324174
	DNA324181	DNA324195	DNA324199	DNA324200	DNA324201	DNA324203
	DNA324204	DNA324205	DNA271608	DNA324208	DNA324217	DNA324229
10	DNA324238	DNA324245	DNA324258	DNA324283	DNA252367	DNA324293
	DNA226547	DNA324312	DNA324313	DNA324320	DNA324321	DNA324326
	DNA324340	DNA324341	DNA324349	DNA324351	DNA324355	DNA324370
	DNA324378	DNA324386	DNA324414	DNA324417	DNA324418	DNA324437
	DNA324439	DNA324464	DNA324474	DNA324476	DNA324481	DNA225919
15	DNA324492	DNA324495	DNA324496	DNA324501	DNA324502	DNA324503
	DNA324504	DNA324505	DNA225584	DNA324521	DNA324525	DNA324541
	DNA324550	DNA324551	DNA324552	DNA324554	DNA324555	DNA324556
	DNA324557	DNA324558	DNA324561	DNA324569	DNA324575	DNA324576
	DNA324580	DNA324581	DNA324582	DNA288259	DNA324591	DNA324596
20	DNA324600	DNA324606	DNA324613	DNA324618	DNA103380	DNA324632
	DNA324635	DNA324636	DNA324638	DNA324648	DNA324685	DNA324687
	DNA324690	DNA324695	DNA324700	DNA324702	DNA324713	DNA324717
	DNA324722	DNA324724	DNA324726	DNA324727	DNA304680	DNA324732
	DNA324733	DNA324736	DNA324737	DNA275630	DNA324744	DNA304716
25	DNA324751	DNA324753	DNA324756	DNA287319	DNA324780	DNA324781
	DNA324783	DNA304699	DNA324785	DNA324790	DNA324802	DNA324824
	DNA324828	DNA324829	DNA324844	DNA324866	DNA324881	DNA225631
	DNA274326	DNA324902	DNA324904	DNA324905	DNA324906	DNA324907
	DNA324908	DNA324915	DNA324916	DNA324917	DNA324922	DNA324927
30	DNA324931	DNA103588	DNA324944	DNA324950	DNA324951	DNA324961
	DNA304710	DNA324962	DNA324963	DNA324968	DNA324971	DNA324974
	DNA324977	DNA272090	DNA324989	DNA324991	DNA324992	DNA325009
	DNA325013	DNA325018	DNA325026	DNA325027	DNA325033	DNA325036
	DNA325039	DNA325078	DNA325079	DNA325080	DNA325081	DNA32509
35	DNA325091	DNA325092	DNA325104	DNA325105	DNA325106	DNA325113
	DNA325117	DNA325118	DNA325119	DNA131588	DNA325126	DNA325135

	DNA325152	DNA325153	DNA325156	DNA325157	DNA325162	DNA325177
	DNA325179	DNA89242	DNA325182	DNA325184	DNA325185	DNA325188
	DNA325194	DNA325231	DNA325232	DNA325233	DNA325234	DNA325235
	DNA325236	DNA325250	DNA325280	DNA325281	DNA325282	DNA325287
	DNA325296	DNA325326	DNA325332	DNA325334	DNA325335	DNA325339
5	DNA325340	DNA103506	DNA325343	DNA325344	DNA325347	DNA325352
	DNA325358	DNA325360	DNA325368	DNA325388	DNA255696	DNA325403
	DNA325408	DNA325409	DNA325410	DNA325411	DNA325414	DNA325418
	DNA97285	DNA325456	DNA226080	DNA325471	DNA325473	DNA325475
	DNA325485	DNA270721	DNA325506	DNA325524	DNA325535	DNA325536
10	DNA325537	DNA325564	DNA325565	DNA325570	DNA325571	DNA325590
	DNA325591	DNA325596	DNA325599	DNA325601	DNA225632	DNA226771
	DNA325625	DNA325633	DNA325637	DNA325642	DNA325644	DNA325645
	DNA270458	DNA227092	DNA325674	DNA290294	DNA325678	DNA325680
	DNA325681	DNA325686	DNA325692	DNA325693	DNA325694	DNA325722
15	DNA325731	DNA325732	DNA325750	DNA325752	DNA325756	DNA325758
	DNA325778	DNA325779	DNA325780	DNA325786	DNA302016	DNA325789
	DNA325803	DNA325804	DNA325809	DNA325811	DNA325812	DNA325814
	DNA325823	DNA325837	DNA325838	DNA325842	DNA325845	DNA325849
	DNA325853	DNA325854	DNA325863	DNA325868	DNA325869	DNA325871
20	DNA325882	DNA325887	DNA325896	DNA325906	DNA325908	DNA325912
	DNA325929	DNA325931	DNA325935	DNA226324	DNA325949	DNA325971
	DNA325978	DNA325979	DNA325985	DNA325999	DNA326002	DNA326003
	DNA326006	DNA326017	DNA287331	DNA326069	DNA326099	DNA326101
	DNA326121	DNA326122	DNA326124	DNA326127	DNA326129	DNA326136
25	DNA326156	DNA326164	DNA287355	DNA326193	DNA326196	DNA189703
	DNA326220	DNA326233	DNA326234	DNA326239	DNA326242	DNA326246
	DNA326247	DNA326254	DNA326256	DNA97300	DNA326273	DNA326278
	DNA254198	DNA326289	DNA326291	DNA326292	DNA326325	DNA326330
	DNA326334	DNA326339	DNA326341	DNA88378	DNA326347	DNA326352
30	DNA326357	DNA326370	DNA326380	DNA227055	DNA326406	DNA274755
	DNA326411	DNA326416	DNA326423	DNA326426	DNA326427	DNA326430
	DNA326434	DNA326437	DNA326440	DNA326449	DNA326450	DNA326451
	DNA326452	DNA326453	DNA326454	DNA326457	DNA326476	DNA326481
	DNA326482	DNA326484	DNA326485	DNA326489	DNA326497	DNA326498
35	DNA326539	DNA326548	DNA326563	DNA326579	DNA326580	DNA326586
	DNA326625	DNA227249	DNA326626	DNA326633	DNA326634	DNA326646

	DNA326651	DNA326671	DNA326678	DNA326680	DNA326698	DNA326701			
	DNA326702	DNA326703	DNA326705	DNA326706	DNA103580	DNA326713			
	DNA88084	DNA326727	DNA290260	DNA326736	DNA326741	DNA326742			
	DNA326752	DNA326756	DNA326758	DNA326762	DNA254548	DNA326769			
	DNA304662	DNA326772	DNA326776	DNA326777	DNA227348	DNA326819			
5	DNA194701	DNA326826	DNA326831	DNA326832	DNA326850	DNA326851			
	DNA269526	DNA326867	DNA326870	DNA326871	DNA269746	DNA326885			
	DNA326886	DNA326905	DNA326923	DNA326924	DNA326939	DNA269830			
	DNA326947	DNA326958	DNA188740	DNA326964	DNA326974	DNA326977			
	DNA326981	DNA270954	DNA326983	DNA326987	DNA326992	DNA327003			
10	DNA327005	DNA327010	DNA327013	DNA327014	DNA327016	DNA327023			
	DNA327025	DNA327027	DNA327050	DNA327052	DNA327053	DNA273254			
	DNA327065	DNA327067	DNA327068	DNA327069	DNA327091	DNA227656			
	DNA327106	DNA327114	DNA327116	DNA227013					
15	BONE MARROW								
	DNA323735	DNA323762	DNA323770	DNA323771	DNA323774	DNA323775			
	DNA323784	DNA323804	DNA272748	DNA323880	DNA323903	DNA323904			
	DNA323964	DNA323982	DNA324015	DNA324023	DNA324056	DNA324057			
	DNA324076	DNA324086	DNA324100	DNA324139	DNA324154	DNA324173			
20	DNA324178	DNA324200	DNA324211	DNA324230	DNA324242	DNA324248			
	DNA324249	DNA324250	DNA324260	DNA88100	DNA324301	DNA324364			
	DNA324381	DNA324382	DNA324383	DNA324420	DNA324484	DNA324495			
	DNA324507	DNA324551	DNA324554	DNA324575	DNA324605	DNA324637			
	DNA324644	DNA324690	DNA304680	DNA324746	DNA324825	DNA324848			
25	DNA324854	DNA324856	DNA324858	DNA324905	DNA324910	DNA325011			
	DNA325031	DNA325086	DNA151010	DNA325127	DNA272050	DNA325133			
	DNA325169	DNA325184	DNA325231	DNA325234	DNA325241	DNA325242			
	DNA325299	DNA287642	DNA325345	DNA325351	DNA325354	DNA325356			
	DNA325392	DNA325399	DNA325428	DNA325461	DNA272413	DNA325576			
30	DNA325668	DNA325726	DNA325733	DNA325811	DNA325901	DNA325953			
	DNA151831	DNA325998	DNA234442	DNA326035	DNA326095	DNA326138			
	DNA326365	DNA326373	DNA326390	DNA326391	DNA326416	DNA326417			
	DNA326449	DNA326450	DNA326451	DNA326942	DNA327111				
35	<u>TESTIS</u>								
	DNA287173	DNA323761	DNA323770	DNA323771	DNA323774	DNA323775			

	DNA226262	DNA323778	DNA323790	DNA323804	DNA323817	DNA323820
	DNA323829	DNA103214	DNA304686	DNA272748	DNA323844	DNA323845
	DNA323851	DNA323856	DNA323858	DNA323859	DNA323861	DNA323864
	DNA323865	DNA323866	DNA323867	DNA323869	DNA323871	DNA323872
	DNA323877	DNA323880	DNA323922	DNA323943	DNA323947	DNA323956
5	DNA323964	DNA323967	DNA323968	DNA323973	DNA323985	DNA323993
	DNA323998	DNA324004	DNA324009	DNA324015	DNA324023	DNA324048
	DNA324054	DNA324058	DNA324063	DNA324090	DNA324091	DNA324092
	DNA324100	DNA324103	DNA324111	DNA324112	DNA324114	DNA324117
	DNA324118	DNA227795	DNA150725	DNA324147	DNA324149	DNA324154
10	DNA324155	DNA324164	DNA324165	DNA324170	DNA324173	DNA324178
	DNA324187	DNA304805	DNA324196	DNA324199	DNA324200	DNA324201
	DNA299899	DNA324204	DNA271608	DNA324207	DNA324208	DNA324210
	DNA324213	DNA324214	DNA324218	DNA324219	DNA324229	DNA324230
	DNA324276	DNA324281	DNA324282	DNA324284	DNA324285	DNA324291
15	DNA324293	DNA226547	DNA324295	DNA324301	DNA324312	DNA324313
	DNA324326	DNA324357	DNA324358	DNA324373	DNA324381	DNA324382
	DNA324383	DNA324384	DNA324385	DNA324390	DNA324395	DNA324398
	DNA324403	DNA324404	DNA324417	DNA324418	DNA324423	DNA324433
	DNA324434	DNA324436	DNA324437	DNA324438	DNA324455	DNA324468
20	DNA324469	DNA324472	DNA324478	DNA324479	DNA324481	DNA324483
	DNA324490	DNA324491	DNA324495	DNA324496	NA324499	DNA324500
	DNA324501	DNA324502	DNA324503	DNA324504	DNA324505	DNA324507
	DNA324509	DNA324511	DNA324512	DNA324514	DNA324521	DNA324522
	DNA324525	DNA324531	DNA324541	DNA324549	DNA324550	DNA324551
25	DNA324552	DNA324554	DNA324555	DNA324556	DNA324557	DNA324558
	DNA324568	DNA324574	DNA324575	DNA324576	DNA324579	DNA324583
	DNA324584	DNA324585	DNA324590	DNA324591	DNA324592	DNA324595
	DNA324596	DNA324597	DNA324598	DNA324599	DNA324600	DNA324601
	DNA324605	DNA269816	DNA324612	DNA324613	DNA324616	DNA324622
30	DNA324624	DNA324628	DNA324632	DNA271931	DNA324642	DNA324645
	DNA324682	DNA324683	DNA324684	DNA324685	DNA324687	DNA324690
	DNA324697	DNA324717	DNA324720	DNA304680	DNA324737	DNA324742
	DNA275630	DNA324746	DNA324751	DNA324785	DNA324790	DNA324800
	DNA324801	DNA324803	DNA150772	DNA324811	DNA324828	DNA324829
35	DNA324831	DNA324840	DNA324841	DNA324843	DNA324844	DNA324845
	DNA324846	DNA324855	DNA324858	DNA324866	DNA324867	DNA324882

	DNA324883	DNA225631	DNA324902	DNA324904	DNA324905	DNA324906
	DNA324907	DNA324908	DNA324909	DNA324910	DNA324913	DNA324914
	DNA324915	DNA324916	DNA324917	DNA324926	DNA324928	DNA324941
	DNA324950	DNA324951	DNA324954	DNA304710	DNA324962	DNA324963
	DNA324965	DNA324966	DNA324967	DNA324968	DNA324982	DNA324989
5	DNA325002	DNA325003	DNA325006	DNA325007	DNA226560	DNA325010
	DNA325011	DNA325025	DNA325026	DNA325027	DNA325028	DNA325034
	DNA325049	DNA325078	DNA325079	DNA325080	DNA325081	DNA325086
	DNA325095	DNA325096	DNA151010	DNA325097	DNA325098	DNA325107
	DNA325111	DNA325116	DNA325117	DNA325118	DNA325119	DNA325123
10	DNA325124	DNA325125	DNA131588	DNA325127	DNA325134	DNA325141
	DNA325146	DNA325152	DNA325153	DNA325154	DNA325155	DNA325156
	DNA325157	DNA325158	DNA325159	DNA325164	DNA325169	DNA325179
	DNA325182	DNA325183	DNA325184	DNA325196	DNA325202	DNA325206
	DNA325222	DNA325229	DNA325231	DNA325232	DNA325233	DNA325234
15	DNA325235	DNA325236	DNA325250	DNA325281	DNA325282	DNA325289
	DNA325291	DNA325297	DNA325298	DNA325301	DNA287642	DNA325326
	DNA325339	DNA325340	DNA103421	DNA325345	DNA325347	DNA325349
	DNA325351	DNA325357	DNA325358	DNA325360	DNA325376	DNA325387
	DNA325392	DNA325395	DNA269952	DNA255078	DNA325428	DNA325430
20	DNA325433	DNA325434	DNA325435	DNA325436	DNA325437	DNA325438
	DNA97285	DNA325439	DNA325445	DNA254186	DNA325523	DNA325534
	DNA325535	DNA325541	DNA325549	DNA272413	DNA325564	DNA325565
	DNA325570	DNA257965	DNA325576	DNA325589	DNA325601	DNA225632
	DNA325613	DNA325615	DNA325622	DNA325625	DNA325629	DNA325630
25	DNA325632	DNA325633	DNA325635	DNA325642	DNA325644	DNA325645
	DNA325668	DNA325672	DNA325674	DNA325680	DNA325685	DNA325697
	DNA325711	DNA325720	DNA325731	DNA325732	DNA325736	DNA325748
	DNA325750	DNA325752	DNA325753	DNA325754	DNA325758	DNA325762
	DNA325782	DNA325786	DNA302016	DNA325789	DNA325806	DNA325809
30	DNA325810	DNA325811	DNA325812	DNA325814	DNA325821	DNA304669
	DNA325824	DNA325825	DNA325827	DNA325829	DNA325831	DNA325837
	DNA325838	DNA325843	DNA325844	DNA325848	DNA325860	DNA227321
	DNA325879	DNA325882	DNA325886	DNA325887	DNA325888	DNA325897
	DNA325898	DNA325901	DNA325905	DNA325906	DNA325908	DNA325913
35	DNA325922	DNA325933	DNA325934	DNA325935	DNA325939	DNA325940
	DNA325965	DNA325969	DNA325985	DNA325991	DNA325994	DNA325998

	DNA326002	DNA326003	DNA326009	DNA234442	DNA326020	DNA326021
•	DNA326022	DNA287331	DNA326035	DNA326041	DNA326045	DNA326046
	DNA326047	DNA326070	DNA326075	DNA326099	DNA326128	DNA326129
	DNA326155	DNA326156	DNA274180	DNA326187	DNA326214	DNA326228
	DNA326233	DNA326234	DNA326251	DNA97300	DNA304715	DNA290292
5	DNA326289	DNA326291	DNA326292	DNA326311	DNA326364	DNA326373
	DNA326390	DNA326391	DNA326397	DNA326400	DNA326410	DNA326426
	DNA287234	DNA326449	DNA326450	DNA326451	DNA326452	DNA326453
	DNA326454	DNA326457	DNA326463	DNA326471	DNA326557	DNA326559
	DNA326579	DNA326580	DNA326603	DNA326633	DNA326634	DNA326642
10	DNA326651	DNA326686	DNA326687	DNA326688	DNA326691	DNA326692
	DNA326698	DNA290260	DNA304658	DNA326762	DNA326769	DNA326790
	DNA326791	DNA326792	DNA326796	DNA326798	DNA326837	DNA326854
	DNA326858	DNA326884	DNA326885	DNA326886	DNA326940	DNA326941
	DNA269830	DNA254240	DNA326974	DNA327005	DNA327019	DNA327020
15	DNA327021	DNA327025	DNA327026	DNA327027	DNA327029	DNA327039
	DNA327044	DNA327060	DNA327062	DNA273254	DNA327066	DNA327067
	DNA327072	DNA327077	DNA327078	DNA327079	DNA327083	DNA327084
	DNA327098	DNA327100	DNA327114			
20	CERVIX					
	DNA324417	DNA324418	DNA324557	DNA324828	DNA324829	DNA324904
	DNA324905	DNA324906	DNA325231	DNA325234		
	NERVOUS	,				
25	DNA287173	DNA323760	DNA103253	DNA323848	DNA323864	DNA323865
	DNA323866	DNA323867	DNA323877	DNA323878	DNA323882	DNA323887
	DNA323925	DNA323966	DNA324107	DNA227795	DNA324135	DNA227190
	DNA324155	DNA271608	DNA324219	DNA324259	DNA324320	DNA324351
	DNA324364	DNA270615	DNA324504	DNA324505	DNA324551	DNA324552
30	DNA324554	DNA324555	DNA324556	DNA324557	DNA324558	DNA324575
	DNA324756	DNA324790	DNA324828	DNA324829	DNA324904	DNA324905
	DNA324906	DNA324907	DNA324908	DNA324982	DNA325079	DNA325187
	DNA325231	DNA325232	DNA325233	DNA325234	DNA325235	DNA325236
	DNA325416	DNA325419	DNA325432	DNA325562	DNA325602	DNA325607
35	DNA226028	DNA325647	DNA325704	DNA325759	DNA287331	DNA326077
	DNA326196	DNA326198	DNA326215	DNA326362	DNA326459	DNA326752

	DNA326846	DNA226409	DNA326956	DNA326983	DNA327058.	DNA327099
	EYE					
	DNA323721	DNA287173	DNA323747	DNA323763	DNA323769	DNA226262
	DNA323778	DNA323799	DNA323807	DNA227213	DNA323817	DNA323818
5	DNA323820	DNA323829	DNA323835	DNA323839	DNA323856	DNA323858
	DNA323859	DNA323864	DNA323865	DNA323866	DNA323869	DNA323871
	DNA323872	DNA323875	DNA323887	DNA323891	DNA323892	DNA323906
	DNA323914	DNA323923	DNA323925	DNA323928	DNA323932	DNA323935
	DNA323936	DNA323947	DNA323964	DNA323971	DNA323972	DNA323973
10	DNA323974	DNA323988	DNA256905	DNA324004	DNA324009	DNA324010
	DNA247474	DNA324022	DNA324023	DNA324025	DNA324028	DNA324029
	DNA324037	DNA324048	DNA324049	DNA103217	DNA275195	DNA324059
	DNA324060	DNA324061	DNA275049	DNA324062	DNA273800	DNA324076
	DNA324083	DNA324085	DNA324087	DNA324090	DNA324091	DNA324092
15	DNA324096	DNA324100	DNA226428	DNA275066	DNA324104	DNA324106
	DNA324108	DNA324110	DNA324111	DNA324112	DNA324127	DNA227795
	DNA287167	DNA324155	DNA324157	DNA324163	DNA324164	DNA324165
	DNA324167	DNA275240	DNA324170	DNA324175	DNA324185	DNA324186
	DNA324193	DNA324199	DNA324200	DNA324201	DNA324203	DNA324204
20 .	DNA324207	DNA324209	DNA324210	DNA324212	DNA324213	DNA324214
	DNA324217	DNA324218	DNA324219	DNA324224	DNA324230	DNA324280
	DNA324281	DNA324282	DNA226547	DNA324295	DNA324306	DNA324307
	DNA324312	DNA324313	DNA324320	DNA324322	DNA324329	DNA324330
	DNA324331	DNA273919	DNA324332	DNA324334	DNA324338	DNA324344
25	DNA324345	DNA324347	DNA324358	DNA324359	DNA324365	DNA324372
	DNA324374	DNA324390	DNA324417	DNA324418	DNA324423	DNA324434
	DNA324436	DNA324437	DNA324448	DNA324458	DNA324461	DNA324463
	DNA324470	DNA324478	DNA324479	DNA324481	DNA324482	DNA324483
	DNA324491	DNA324495	DNA324496	DNA324501	DNA324504	DNA324505
30	DNA324510	DNA324512	DNA324519	DNA324521	DNA324525	DNA324535
	DNA324541	DNA324552	DNA324555	DNA324556	DNA324557	DNA324558
	DNA324575	DNA324584	DNA324589	DNA324590	DNA324591	DNA324594
	DNA324595	DNA324596	DNA324597	DNA324598	DNA324599	DNA324600
	DNA254147	DNA324607	DNA290231	DNA324608	DNA324609	DNA324613
35	DNA324623	DNA324624	DNA324625	DNA324632	DNA324645	DNA324682
	DNA324687	DNA324690	DNA324697	DNA324710	DNA324711	DNA324717

	DNA324718	DNA324720	DNA304680	DNA324737	DNA270613	DNA324742
	DNA287246	DNA324745	DNA304716	DNA324747	DNA324751	DNA324756
	DNA324766	DNA304661	DNA324777	DNA324778	DNA324779	DNA324785
	DNA324788	DNA324790	DNA324811	DNA324828	DNA324829	DNA324830
	DNA324839	DNA324841	DNA324844	DNA324866	DNA324902	DNA324904
5	DNA324906	DNA324907	DNA324908	DNA324915	DNA324916	DNA324917
	DNA324942	DNA103588	DNA324948	DNA324949	DNA324950	DNA324951
	DNA324965	DNA324966	DNA324967	DNA324968	DNA324982	DNA324989
	DNA325002	DNA325003	DNA325005	DNA325006	DNA325013	DNA325015
	DNA325024	DNA325025	DNA325026	DNA325027	DNA325034	DNA325058
10	DNA325066	DNA325078	DNA325079	DNA325080	DNA325081	DNA325093
	DNA325098	DNA325110	DNA325111	DNA325116	DNA325117	DNA325118
	DNA325119	DNA325124	DNA325127	DNA325128	DNA325130	DNA325146
	DNA325152	DNA325153	DNA325155	DNA325156	DNA325157	DNA325164
	DNA325172	DNA325179	DNA325182	DNA325183	DNA325184	DNA325190
15	DNA325191	DNA325192	DNA325193	DNA325196	DNA325198	DNA325202
	DNA325206	DNA271722	DNA325207	DNA325209	DNA325222	DNA325233
	DNA325235	DNA325236	DNA325247	DNA325256	DNA325283	DNA325289
	DNA325293	DNA325298	DNA325300	DNA325301	DNA325311	DNA325313
	DNA325317	DNA325321	DNA325323	DNA325347	DNA325351	DNA325364
20	DNA325370	DNA325376	DNA325378	DNA325382	DNA227509	DNA325389
	DNA325390	DNA325395	DNA325427	DNA325430	DNA97285	DNA325439
	DNA325442	DNA325445	DNA325451	DNA325452	DNA270134	DNA325459
	DNA272728	DNA325478	DNA325479	DNA325499	DNA270721	DNA325506
	DNA325523	DNA325526	DNA325534	DNA325535	DNA325540	DNA325542
25	DNA325543	DNA271843	DNA325559	DNA325576	DNA325577	DNA325578
	DNA325584	DNA325587	DNA325593	DNA325596	DNA325598	DNA325601
	DNA225632	DNA325607	DNA226028	DNA325612	DNA325614	DNA325625
	DNA325627	DNA325628	DNA325632	DNA325642	DNA325647	DNA325674
0.	DNA290294	DNA325678	DNA325680	DNA325682	DNA325683	DNA325684
30	DNA325685	DNA325688	DNA325690	DNA325695	DNA325713	DNA325719
	DNA325720	DNA325731	DNA325733	DNA325736	DNA274361	DNA325752
	DNA325757	DNA325762	DNA325769	DNA325773	DNA325775	DNA325776
	DNA325782	DNA325784	DNA325786	DNA302016	DNA325789	DNA325800
	DNA325810	DNA325811	DNA325812	DNA325817	DNA325818	DNA304669
35	DNA281436	DNA325835	DNA325837	DNA325838	DNA325843	DNA325844
	DNA210180	DNA325872	DNA325882	DNA325889	DNA325891	DNA325892

				•		
	DNA325899	DNA325906	DNA325908	DNA325922	DNA325924	DNA325933
	DNA325935	DNA325945	DNA325964	DNA325965	DNA325975	DNA325978
	DNA325979	DNA325985	DNA325988	DNA326000	DNA326002	DNA326004
	DNA326008	DNA234442	DNA326013	DNA326016	DNA326020	DNA326021
	DNA326022	DNA326031	DNA326033	DNA255370	DNA273014	DNA326037
5	DNA326047	DNA326050	DNA326058	DNA326061	DNA326072	DNA326097
	DNA326099	DNA326104	DNA326105	DNA326116	DNA326121	DNA326122
	DNA326124	DNA326129	DNA326133	DNA326136	DNA326156	DNA326167
	DNA326175	DNA326196	DNA326197	DNA326198	DNA326214	DNA326221
	DNA326222	DNA326229	DNA326243	DNA326244	DNA326251	DNA326260
10	DNA326264	DNA326265	DNA97300	DNA297388	DNA326288	DNA290292
	DNA326289	DNA326294	DNA326296	DNA326316	DNA326322	DNA326334
	DNA326339	DNA326343	DNA326344	DNA227873	DNA326348	DNA326360
	DNA97290	DNA227071	DNA227764	DNA326376	DNA326381	DNA326393
	DNA326394	DNA326398	DNA326402	DNA326405	DNA326406	DNA326413
15	DNA326418	DNA326420	DNA326427	DNA326435	DNA326436	DNA326445
	DNA326447	DNA274690	DNA326449	DNA326450	DNA326451	DNA326452
	DNA326453	DNA326454	DNA326455	DNA326458	DNA326459	DNA326463
	DNA326466	DNA326467	DNA326473	DNA326488	DNA326520	DNA326526
	DNA326527	DNA326534	DNA326559	DNA326560	DNA326574	DNA326576
20	DNA326579	DNA326580	DNA326615	DNA326617	DNA326633	DNA326634
	DNA326642	DNA326663	DNA326664	DNA272347	DNA326669	DNA326671
	DNA326691	DNA326694	DNA326697	DNA326705	DNA326706	DNA256533
	DNA326717	DNA326718	DNA326719	DNA326720	DNA326749	DNA326753
	DNA273346	DNA326769	DNA287270	DNA326779	DNA326780	DNA326781
25	DNA326787	DNA326795	DNA326796	DNA326798	DNA326819	DNA326830
	DNA326858	DNA254572	DNA326892	DNA326894	DNA326904	DNA326919
	DNA326931	DNA326932	DNA326935	DNA326940	DNA326941	DNA269830
	DNA326946	DNA326952	DNA326956	DNA326962	DNA254240	DNA326974
	DNA326983	DNA327005	DNA327006	DNA327007	DNA327017	DNA327019
30	DNA327021	DNA327023	DNA327025	DNA327026	DNA327027	DNA327029
	DNA327046	DNA327058	DNA327060	DNA327062	DNA273254	DNA327067
	DNA327070	DNA327072	DNA327077	DNA327078	DNA327079	DNA227181
	DNA327099	DNA327114	DNA103558	DNA327125		
35	<u>OVARY</u>					
33	DNA287173	DN 4 222045	DNIA 2220 <i>62</i>	DNIA 22 40 40	DNI 4 2041 40	DNI 4 00 400-
	DIAU701113	DNA323865	DNA323867	DNA324048	DNA324148	DNA324295

	DNA324340	DNA324341	DNA324642	DNA324694	DNA324697	DNA324737
	DNA324874	DNA325601	DNA225632			DNA287331
	DNA326099	DNA326657	DNA327025	DNA325720	DNA325786	DNA28/331
	DIVA320099	DINA320037	DNA327023			
	ADIPOSE					
5	DNA325952	DNA325957	DNIA 225050			
3	DNA323932	DINASZSEST	DNA325958			
	WHOLE BLO	OD				
	DNA323718	 DNA323719	DNA323752	DNA323754	DNA323788	DNA83085
	DNA323886	DNA323889	DNA323890	DNA323911	DNA323957	DNA323980
10	DNA324002	DNA324020	DNA324021	DNA324033	DNA324040	DNA324041
	DNA324052	DNA324240	DNA324296	DNA225910	DNA324317	DNA324320
	DNA324515	DNA324560	DNA324562	DNA324722	DNA324742	DNA324784
	DNA324861	DNA324875	DNA324884	DNA324885	DNA324887	DNA324888
	DNA324923	DNA325016	DNA325017	DNA325038	DNA325055	DNA325056
15	DNA325057	DNA325059	DNA325060	DNA325061	DNA325063	DNA325177
	DNA325255	DNA88562	DNA325335	DNA325360	DNA325401	DNA325516
	DNA325609	DNA325623	DNA325631	DNA325641	DNA290294	DNA325678
	DNA226014	DNA325750	DNA325758	DNA325764	DNA325803	DNA281436
	DNA325829	DNA226105	DNA325912	DNA326089	DNA326090	DNA326113
20	DNA326115	DNA326160	DNA326240	DNA326254	DNA88378	DNA88554
	DNA326371	DNA326479	DNA326655	DNA326802	DNA326834	DNA88239
	DNA326906	DNA326958	DNA326977	DNA327052	DNA327116	
	THYROID			•		
25	DNA323717	DNA188748	DNA323867	DNA324154	DNA324216	DNA324295
	DNA324501	DNA324503	DNA324550	DNA324551	DNA324554	DNA324565
	DNA324697	DNA324873	DNA324874	DNA324905	DNA325191	DNA325192
	DNA325232	DNA325234	DNA325335	DNA325503	DNA325720	DNA325845
	DNA326259	DNA326275	DNA326862	DNA326863	DNA304670	DNA326864
30						
	PITUITARY G	LAND				
	DNA323717	DNA323967	DNA103593	DNA324100	DNA324293	DNA324326
	DNA324610	DNA324720	DNA324801	DNA324846	DNA324874	DNA325089
	DNA325523	DNA325533	DNA325589	DNA325617	DNA325967	DNA325970
35						
	<u>SKIN</u>	. •				
35	DNA324610	DNA324720	DNA324801	DNA324846	DNA324874	DNA325089
	<u>SKIN</u>					

	DNA323717	DNA323721	DNA323730	DNA287173	DNA227821	DNA323764
	DNA323778	DNA323782	DNA323783	DNA323798	DNA323817	DNA323820
	DNA323822	DNA274745	DNA323829	DNA323833	DNA323856	DNA323858
	DNA323859	DNA323862	DNA323863	DNA323872	DNA323874	DNA323878
	DNA227529	DNA227577	DNA323925	DNA323927	DNA323947	DNA226619
5	DNA323980	DNA324004	DNA324009	DNA324042	DNA324047	DNA324048
	DNA324049	DNA324060	DNA324067	DNA324102	DNA227795	DNA324134
	DNA150725	DNA324153	DNA324178	DNA324204	DNA324207	DNA324210
	DNA324218	DNA324224	DNA324225	DNA324229	DNA254204	DNA324258
	DNA324294	DNA324316	DNA324317	DNA324334	DNA324338	DNA324339
10	DNA324340	DNA324341	DNA324358	DNA324371	DNA324372	DNA324379
	DNA324380	DNA324382	DNA324383	DNA324390	DNA324392	DNA324398
	DNA324401	DNA324407	DNA324412	DNA79129	DNA324434	DNA324472
	DNA324479	DNA324491	DNA324495	DNA324496	DNA324509	DNA324512
	DNA225584	DNA324521	DNA324525	DNA324541	DNA324564	DNA288259
15	DNA324590	DNA324591	DNA324592	DNA324595	DNA324596	DNA324597
	DNA324598	DNA324599	DNA324600	DNA324604	DNA324613	DNA324632
	DNA324645	DNA324678	DNA324682	DNA324687	DNA324690	DNA324692
	DNA324697	DNA324698	DNA324704	DNA324712	DNA324714	DNA324715
	DNA324716	DNA324717	DNA324720	DNA304680	DNA324736	DNA324737
20	DNA324751	DNA324756	DNA272263	DNA324780	DNA324781	DNA324785
	DNA324790	DNA324819	DNA324844	DNA324858	DNA324863	DNA324866
	DNA324874	DNA225631	DNA324902	DNA324907	DNA324908	DNA324919
	DNA324920	DNA324926	DNA227268	DNA103588	DNA324952	DNA324962
	DNA324965	DNA324966	DNA324967	DNA324968	DNA324982	DNA272090
25	DNA324989	DNA325006	DNA304685	DNA325078	DNA325079	DNA325080
	DNA325081	DNA325090	DNA325091	DNA325092	DNA325108	DNA325111
	DNA325116	DNA325117	DNA325118	DNA325119	DNA325126	DNA325132
	DNA325136	DNA325141	DNA325152	DNA325153	DNA325164	DNA325177
	DNA325183	DNA325206	DNA325209	DNA325222	DNA325223	DNA88350
30	DNA325230	DNA325245	DNA325250	DNA325280	DNA325293	DNA325296
	DNA325301	DNA325303	DNA325326	DNA325343	DNA325347	DNA325389
	DNA325395	DNA325403	DNA325411	DNA325412	DNA325430	DNA97285
	DNA325441	DNA325442	DNA325467	DNA325506	DNA325523	DNA325534
	DNA325535	DNA325570	DNA325576	DNA325596	DNA325601	DNA225632
35	DNA325605	DNA325606	DNA325610	DNA325625	DNA325633	DNA325642
	DNA325644	DNA325655	DNA325656	DNA325657	DNA227092	DNA325674

	DNA325680	DNA325695	DNA325700	DNA325702	DNA325711	DNA325712
	DNA325724	DNA325733	DNA325736	DNA325738	DNA325752	DNA325770
	DNA325773	DNA325775	DNA325776	DNA325777	DNA325786	DNA325805
	DNA325810	DNA325818	DNA325837	DNA325838	DNA325890	DNA325900
	DNA325906	DNA325908	DNA325909	DNA325913	DNA325920	DNA269498
5	DNA325922	DNA325925	DNA325935	DNA325941	DNA103509	DNA325965
	DNA227559	DNA325985	DNA325994	DNA326002	DNA326003	DNA326022
	DNA287331	DNA326027	DNA326036	DNA326041	DNA326046	DNA326047
	DNA326056	DNA326076	DNA273839	DNA326099	DNA326107	DNA326116
	DNA326118	DNA326121	DNA326122	DNA326124	DNA326128	DNA326129
10	DNA326133	DNA326136	DNA326142	DNA326156	DNA326168	DNA326173
	DNA287355	DNA326178	DNA326196	DNA326197	DNA275408	DNA326251
	DNA326254	DNA97300	DNA326272	DNA326273	DNA326278	DNA326288
	DNA290292	DNA326296	DNA326311	DNA326316	DNA326324	DNA326329
	DNA326343	DNA88378	DNA326354	DNA326355	DNA326358	DNA326362
15	DNA227071	DNA326384	DNA227055	DNA326396	DNA326397	DNA326406
	DNA326408	DNA326415	DNA326416	DNA326426	DNA326449	DNA326450
	DNA326451	DNA326452	DNA326453	DNA326454	DNA326457	DNA326463
	DNA326475	DNA326490	DNA326499	DNA326525	DNA326539	DNA326559
	DNA270621	DNA326562	DNA326579	DNA326580	DNA326595	DNA326597
20	DNA326599	DNA326603	DNA326651	DNA272347	DNA274139	DNA326680
	DNA326691	DNA326704	DNA326709	DNA304658	DNA326742	DNA326752
	DNA326760	DNA273346	DNA254548	DNA326769	DNA287270	DNA326780
	DNA326781	DNA326790	DNA326796	DNA326798	DNA150548	DNA326803
	DNA326819	DNA326821	DNA194701	DNA326825	DNA326872	DNA326884
25	DNA326886	DNA254572	DNA326901	DNA226617	DNA326921	DNA326935
	DNA326941	DNA326947	DNA326949	DNA326950	DNA326952	DNA326956
	DNA326963	DNA326967	DNA326974	DNA326981	DNA219225	DNA326983
	DNA326984	DNA326985	DNA326995	DNA327003	DNA327023	DNA327025
	DNA227943	DNA327056	DNA327057	DNA327060	DNA327062	DNA273254
30	DNA327068	DNA327101	DNA327107	DNA327110	DNA327114	DNA327115
	DNA227013					
	<u>THYMUS</u>					
	DNA324063	DNA324197	DNA324641	DNA324685	DNA324926	DNA325038
35	DNA325195	DNA325238	DNA324041 DNA325405	DNA324083 DNA325420	DNA324920 DNA325421	
J.J	DNA325195 DNA325506	DNA325236 DNA325645			\	DNA325422
	DIMA323300	レいハンとンじせン	DNA325809	DNA325930	DNA326089	DNA326090

DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324230 DNA324232 DNA189697 DNA324241 DNA324243 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA326243	DNA326554	DNA326563	DNA326747		
DNA171408 DNA323746 DNA323748 DNA323749 DNA323753 DNA323765 DNA323766 DNA323767 DNA323768 DNA323779 DNA323780 DNA323782 DNA323784 DNA323789 DNA323792 DNA323794 DNA323798 DNA323801 DNA323802 DNA323804 DNA227213 DNA323810 DNA323813 DNA323816 DNA323817 DNA274487 DNA323820 DNA323821 DNA323826 DNA323827 DNA323829 DNA323830 DNA323833 DNA103214 DNA323837 DNA323859 DNA323860 DNA323863 DNA323854 DNA323855 DNA323856 DNA323866 DNA323867 DNA323869 DNA323860 DNA323861 DNA323867 DNA323872 DNA323874 DNA323881 DNA323882 DNA323885 DNA323887 DNA227529 DNA323874 DNA323881 DNA323882 DNA323885 DNA323887 DNA323933 DNA323934 DNA323914 DNA323925 DNA323930 DNA323977 DNA323964 DNA323971 DNA323972 DNA323974 DNA323977 DNA323978 DNA323981 DNA323972 DNA323974 DNA3290234 DNA323978 DNA323981 DNA323987 DNA323974 DNA3290234 DNA324001 DNA256905 DNA324040 DNA324007 DNA324014 DNA324016 DNA324001 DNA256905 DNA324048 DNA324007 DNA324064 DNA324109 DNA324090 DNA324045 DNA324040 DNA324099 DNA324054 DNA324133 DNA324111 DNA324112 DNA324120 DNA324166 DNA324098 DNA324135 DNA324135 DNA324112 DNA324168 DNA324165 DNA324135 DNA324204 DNA324107 DNA324168 DNA324170 DNA324162 DNA324123 DNA324204 DNA324207 DNA324200 DNA324200 DNA324200 DNA324203 DNA324204 DNA324207 DNA324200 DNA324200 DNA324200 DNA324203 DNA324204 DNA324207 DNA324217 DNA324200 DNA324203 DNA324204 DNA324207 DNA324205 DNA324205 DNA324205 DNA324205 DNA324205 DNA324200 DNA3		MUSCLE					
5 DNA323766 DNA323767 DNA323768 DNA323778 DNA323779 DNA323780 DNA323782 DNA323784 DNA323789 DNA323792 DNA323794 DNA323798 DNA323801 DNA323802 DNA323804 DNA227213 DNA323810 DNA323813 DNA323816 DNA323817 DNA323830 DNA323820 DNA323821 DNA323821 DNA323827 DNA323829 DNA323830 DNA323833 DNA103214 DNA323853 DNA323859 DNA323860 DNA323862 DNA323863 DNA323864 DNA323865 DNA323866 DNA323867 DNA323869 DNA323870 DNA323861 DNA323867 DNA323872 DNA323874 DNA323881 DNA323882 DNA323885 DNA323887 DNA323933 DNA323894 DNA323934 DNA323934 DNA323935 DNA323947 DNA323949 DNA323977 DNA323986 DNA323981 DNA323997 DNA323997 DNA324004 DNA324007 DNA324014 DNA324016 DNA324009 DNA324058 DNA324064 DNA32		DNA323725	DNA323732	DNA287173	DNA323736	DNA323737	DNA323740
DNA323782 DNA323784 DNA323789 DNA323792 DNA323794 DNA323798 DNA323801 DNA323802 DNA323804 DNA27213 DNA323810 DNA323813 DNA323816 DNA323817 DNA274487 DNA323820 DNA323821 DNA323826 DNA323827 DNA323829 DNA323830 DNA323833 DNA103214 DNA323837 DNA323839 DNA323852 DNA323853 DNA323854 DNA323855 DNA323858 DNA323859 DNA323860 DNA323862 DNA323863 DNA323864 DNA323865 DNA323866 DNA323867 DNA323869 DNA323870 DNA323871 DNA275139 DNA323872 DNA323874 DNA323881 DNA323882 DNA323885 DNA323887 DNA227529 DNA225809 DNA323914 DNA323925 DNA323929 DNA323930 DNA323933 DNA323934 DNA323936 DNA194600 DNA323947 DNA323949 DNA323955 DNA323964 DNA323971 DNA323972 DNA323973 DNA323974 DNA323977 DNA323978 DNA323981 DNA323987 DNA323995 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 DNA3234109 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA324133 DNA324111 DNA324112 DNA324120 DNA324065 DNA324069 DNA324133 DNA324135 DNA324112 DNA324141 DNA324126 DNA324098 DNA324133 DNA324135 DNA324137 DNA324168 DNA324165 DNA324098 DNA324183 DNA324051 DNA324079 DNA324169 DNA324165 DNA324183 DNA324135 DNA324117 DNA324112 DNA324120 DNA324126 DNA324169 DNA324203 DNA324040 DNA32407 DNA324168 DNA324105 DNA324203 DNA324204 DNA324207 DNA324210 DNA324220 DNA324220 DNA324232 DNA189697 DNA324207 DNA324243 DNA324255 DNA324257 DNA324260 DNA324263 DNA324265 DNA324266		DNA171408	DNA323746	DNA323748	DNA323749	DNA323753	DNA323765
DNA323801 DNA323802 DNA323804 DNA227213 DNA323810 DNA323813 DNA323816 DNA323817 DNA274487 DNA323820 DNA323821 DNA323826 DNA323827 DNA323829 DNA323830 DNA323833 DNA103214 DNA323837 DNA323839 DNA323852 DNA323853 DNA323855 DNA323858 DNA323859 DNA323860 DNA323862 DNA323863 DNA323864 DNA323865 DNA323866 DNA323867 DNA323869 DNA323870 DNA323867 DNA323887 DNA323872 DNA323874 DNA323881 DNA323882 DNA323885 DNA323887 DNA227529 DNA225809 DNA323914 DNA323925 DNA323929 DNA323930 DNA323933 DNA323934 DNA323936 DNA194600 DNA323947 DNA323949 DNA323977 DNA323978 DNA323971 DNA323972 DNA323973 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 DNA273800 DNA324090 DNA324059 DNA324060 DNA324063 DNA324054 DNA324133 DNA324111 DNA324112 DNA324120 DNA324126 DNA324154 DNA324133 DNA324135 DNA324137 DNA324168 DNA324155 DNA324203 DNA324204 DNA324207 DNA324210 DNA324200 DNA324203 DNA324204 DNA324207 DNA324210 DNA324220 DNA324232 DNA38697 DNA324261 DNA324267 DNA324255 DNA324250 DNA324257 DNA324260 DNA324267 DNA324269 DNA324250	5	DNA323766	DNA323767	DNA323768	DNA323778	DNA323779	DNA323780
DNA323816 DNA323817 DNA274487 DNA323820 DNA323821 DNA323826 DNA323827 DNA323829 DNA323830 DNA323833 DNA103214 DNA323837 10 DNA323839 DNA323852 DNA323853 DNA323855 DNA323855 DNA323859 DNA323860 DNA323862 DNA323863 DNA323864 DNA323865 DNA323866 DNA323867 DNA323869 DNA323870 DNA323871 DNA275139 DNA323872 DNA323874 DNA323881 DNA323882 DNA323885 DNA323887 DNA227529 DNA225809 DNA323914 DNA323925 DNA323929 DNA323930 DNA323933 DNA323934 DNA323936 DNA194600 DNA323947 DNA323949 DNA323977 DNA323964 DNA323971 DNA323972 DNA323973 DNA323974 DNA323977 DNA323978 DNA323981 DNA323987 DNA323995 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 DNA273800 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324011 DNA324059 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA324058 DNA324133 DNA324135 DNA324137 DNA324140 DNA324155 DNA324133 DNA324135 DNA324137 DNA324168 DNA324170 DNA324162 DNA324203 DNA324204 DNA324207 DNA324210 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324220 DNA324220 DNA324232 DNA189697 DNA324261 DNA324267 DNA324255 DNA324250 DNA324257 DNA324260 DNA324267 DNA324269 DNA324269		DNA323782	DNA323784	DNA323789	DNA323792	DNA323794	DNA323798
DNA323827 DNA323829 DNA323830 DNA323833 DNA103214 DNA323837 DNA323827 DNA323852 DNA323853 DNA323854 DNA323855 DNA323858 DNA323859 DNA323860 DNA323862 DNA323863 DNA323864 DNA323865 DNA323866 DNA323867 DNA323869 DNA323870 DNA323871 DNA275139 DNA323872 DNA323874 DNA323881 DNA323882 DNA323885 DNA323887 DNA323933 DNA323934 DNA323914 DNA323925 DNA323929 DNA323930 DNA323955 DNA323964 DNA323971 DNA323972 DNA323973 DNA323974 DNA323977 DNA323978 DNA323981 DNA323987 DNA323995 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 DNA275195 DNA324058 DNA324059 DNA324064 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324133 DNA324111 DNA324112 DNA324120 DNA324126 DNA324154 DNA324133 DNA324135 DNA324137 DNA324141 DNA324115 DNA324154 DNA324183 DNA88051 DNA324097 DNA324168 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324200 DNA324201 DNA324232 DNA189697 DNA324263 DNA324243 DNA324255 DNA324255 DNA324257 DNA324260 DNA324266 DNA324269 DNA324269 DNA324255		DNA323801	DNA323802	DNA323804	DNA227213	DNA323810	DNA323813
DNA323839 DNA323852 DNA323853 DNA323854 DNA323855 DNA323858		DNA323816	DNA323817	DNA274487	DNA323820	DNA323821	DNA323826
DNA323859 DNA323860 DNA323862 DNA323863 DNA323864 DNA323865 DNA323866 DNA323867 DNA323869 DNA323870 DNA323871 DNA275139 DNA323872 DNA323874 DNA323881 DNA323882 DNA323885 DNA323887 DNA227529 DNA225809 DNA323914 DNA323925 DNA323929 DNA323930 DNA323933 DNA323934 DNA323936 DNA194600 DNA323947 DNA323949 DNA323955 DNA323964 DNA323971 DNA323972 DNA323973 DNA323974 DNA323977 DNA323978 DNA323981 DNA323987 DNA323995 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 DNA275195 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 DNA324203 DNA324204 DNA324207 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324220 DNA324232 DNA189697 DNA324241 DNA324243 DNA324255 DNA324250 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA323827	DNA323829	DNA323830	DNA323833	DNA103214	DNA323837
DNA323866 DNA323867 DNA323869 DNA323870 DNA323871 DNA275139 DNA323872 DNA323874 DNA323881 DNA323882 DNA323885 DNA323887 DNA227529 DNA225809 DNA323914 DNA323925 DNA323929 DNA323930 DNA323933 DNA323934 DNA323936 DNA194600 DNA323947 DNA323949 DNA323955 DNA323964 DNA323971 DNA323972 DNA323973 DNA323974 DNA323977 DNA323978 DNA323981 DNA323987 DNA323995 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 DNA275195 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324154 DNA324155 DNA2555531 DNA275240 DNA324168 DNA324170 DNA324182 DNA324203 DNA324204 DNA324207 DNA324210 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324220 DNA324201 DNA324232 DNA189697 DNA324241 DNA324243 DNA324252 DNA324250 DNA324257 DNA324260 DNA324263 DNA324266 DNA324269 DNA324250	10	DNA323839	DNA323852	DNA323853	DNA323854	DNA323855	DNA323858
DNA323872 DNA323874 DNA323881 DNA323882 DNA323885 DNA323887 DNA227529 DNA225809 DNA323914 DNA323925 DNA323929 DNA323930 15 DNA323933 DNA323934 DNA323936 DNA194600 DNA323947 DNA323949 DNA323955 DNA323964 DNA323971 DNA323972 DNA323973 DNA323974 DNA323977 DNA323978 DNA323981 DNA323987 DNA323995 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 DNA275195 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA3255531 DNA275240 DNA324168 DNA324170 DNA324182 DNA324203 DNA324204 DNA324207 DNA324210 DNA324201 DNA324201 DNA324232 DNA189697 DNA324261 DNA324267 DNA324269 DNA324270		DNA323859	DNA323860	DNA323862	DNA323863	DNA323864	DNA323865
DNA227529 DNA225809 DNA323914 DNA323925 DNA323929 DNA323930 15 DNA323933 DNA323934 DNA323936 DNA194600 DNA323947 DNA323949 DNA323955 DNA323964 DNA323971 DNA323972 DNA323973 DNA323974 DNA323977 DNA323978 DNA323981 DNA323987 DNA323995 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 DNA275195 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 25 DNA324183 DNA88051 DNA324197 DNA324168 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324201 DNA324232 DNA189697 DNA324261 DNA324243 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270	•	DNA323866	DNA323867	DNA323869	DNA323870	DNA323871	DNA275139
DNA323933 DNA323934 DNA323936 DNA194600 DNA323947 DNA323949 DNA323955 DNA323964 DNA323971 DNA323972 DNA323973 DNA323974 DNA323977 DNA323978 DNA323981 DNA323987 DNA323995 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 DNA275195 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 25 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324220 DNA324220 DNA324232 DNA189697 DNA324261 DNA324267 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA323872	DNA323874	DNA323881	DNA323882	DNA323885	DNA323887
DNA323955 DNA323964 DNA323971 DNA323972 DNA323973 DNA323974 DNA323977 DNA323978 DNA323981 DNA323987 DNA323995 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 DNA275195 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324230 DNA324232 DNA189697 DNA324261 DNA324243 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA227529	DNA225809	DNA323914	DNA323925	DNA323929	DNA323930
DNA323977 DNA323978 DNA323981 DNA323987 DNA323995 DNA323997 DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 20 DNA275195 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 25 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324201 DNA324232 DNA189697 DNA324241 DNA324243 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270	15	DNA323933	DNA323934	DNA323936	DNA194600	DNA323947	DNA323949
DNA290234 DNA324001 DNA256905 DNA324004 DNA324007 DNA324014 DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 20 DNA275195 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 25 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA3242201 DNA324232 DNA189697 DNA324241 DNA324243 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA323955	DNA323964	DNA323971	DNA323972	DNA323973	DNA323974
DNA324016 DNA324039 DNA324045 DNA324048 DNA324049 DNA324054 20 DNA275195 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 25 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324230 DNA324232 DNA189697 DNA324241 DNA324243 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA323977	DNA323978	DNA323981	DNA323987	DNA323995	DNA323997
20 DNA324058 DNA324059 DNA324060 DNA324063 DNA324064 DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 25 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324220 DNA324232 DNA189697 DNA324241 DNA324243 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA290234	DNA324001	DNA256905	DNA324004	DNA324007	DNA324014
DNA273800 DNA324090 DNA324091 DNA324092 DNA324097 DNA324098 DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324230 DNA324232 DNA189697 DNA324241 DNA324243 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA324016	DNA324039	DNA324045	DNA324048	DNA324049	DNA324054
DNA324109 DNA324111 DNA324112 DNA324120 DNA324126 DNA227795 DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324201 DNA324232 DNA189697 DNA324241 DNA324243 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270	20	DNA275195	DNA324058	DNA324059	DNA324060	DNA324063	DNA324064
DNA324133 DNA324135 DNA324137 DNA324141 DNA324145 DNA324154 DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324230 DNA324232 DNA189697 DNA324241 DNA324243 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA273800	DNA324090	DNA324091	DNA324092	DNA324097	DNA324098
DNA324155 DNA255531 DNA275240 DNA324168 DNA324170 DNA324182 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324230 DNA324232 DNA189697 DNA324241 DNA324243 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA324109	DNA324111	DNA324112	DNA324120	DNA324126	DNA227795
25 DNA324183 DNA88051 DNA324197 DNA324199 DNA324200 DNA324201 DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324230 DNA324232 DNA189697 DNA324241 DNA324243 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA324133	DNA324135	DNA324137	DNA324141	DNA324145	DNA324154
DNA324203 DNA324204 DNA324207 DNA324210 DNA324217 DNA324230 DNA324232 DNA189697 DNA324241 DNA324243 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA324155	DNA255531	DNA275240	DNA324168	DNA324170	DNA324182
DNA324232 DNA189697 DNA324241 DNA324243 DNA324252 DNA324255 DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270	25	DNA324183	DNA88051	DNA324197	DNA324199	DNA324200	DNA324201
DNA324257 DNA324260 DNA324263 DNA324267 DNA324269 DNA324270		DNA324203	DNA324204	DNA324207	DNA324210	DNA324217	DNA324230
DIVIDUALS! DIVIDUALS DIVIDUAL		DNA324232	DNA189697	DNA324241	DNA324243	DNA324252	DNA324255
DNA 324271 DNA 324278 DNA 324282 DNA 324287 DNA 324294 DNA 226547		DNA324257	DNA324260	DNA324263	DNA324267	DNA324269	DNA324270
DITE NUMBER A DITE NUMBER		DNA324271	DNA324278	DNA324282	DNA324287	DNA324294	DNA226547
30 DNA324295 DNA324297 DNA324313 DNA324318 DNA324323 DNA324324	30	DNA324295	DNA324297	DNA324313	DNA324318	DNA324323	DNA324324
DNA324329 DNA324330 DNA324331 DNA324338 DNA324340 DNA324341		DNA324329	DNA324330	DNA324331	DNA324338	DNA324340	DNA324341
DNA324358 DNA324371 DNA324390 DNA324398 DNA324400 DNA324414		DNA324358	DNA324371	DNA324390	DNA324398	DNA324400	DNA324414
DNA324417 DNA324418 DNA324421 DNA324423 DNA324434 DNA324437		DNA324417	DNA324418	DNA324421	DNA324423	DNA324434	DNA324437
DNA324440 DNA324454 DNA324456 DNA324461 DNA324462 DNA324469		DNA324440	DNA324454	DNA324456	DNA324461	DNA324462	DNA324469
35 DNA324472 DNA324478 DNA324479 DNA324483 DNA324488 DNA324493	35	DNA324472	DNA324478	DNA324479	DNA324483	DNA324488	DNA324493
DNA324495 DNA324496 DNA324501 DNA324502 DNA324503 DNA324504		DNA324495	DNA324496	DNA324501	DNA324502	DNA324503	DNA324504

	DNA324505	DNA324510	DNA324521	DNA324523	DNA324525	DNA324538
	DNA324541	DNA324550	DNA324551	DNA324552	DNA324554	DNA324556
	DNA324557	DNA324558	DNA324564	DNA324575	DNA324583	DNA324584
	DNA288259	DNA324590	DNA324591	DNA324592	DNA324595	DNA324596
	DNA324597	DNA324598	DNA324599	DNA324600	DNA324602	DNA324604
5	DNA324608	DNA324613	DNA324624	DNA324626	DNA324627	DNA269809
	DNA324632	DNA324633	DNA324634	DNA324636	DNA324645	DNA271626
	DNA324675	DNA324678	DNA324682	DNA324685	DNA324690	DNA324696
•	DNA324697	DNA274206	DNA324707	DNA324708	DNA324709	DNA324710
	DNA324711	DNA324715	DNA324716	DNA270675	DNA324717	DNA324720
10	DNA324722	DNA324723	DNA304680	DNA324737	DNA324739	DNA324744
	DNA304460	DNA324751	DNA324756	DNA324763	DNA324764	DNA324769
	DNA324770	DNA324780	DNA324781	DNA324783	DNA304699	DNA324784
	DNA324785	DNA324790	DNA324791	DNA290264	DNA324794	DNA324811
	DNA324813	DNA324815	DNA324823	DNA324827	DNA324828	DNA324829
15	DNA103471	DNA324834	DNA324840	DNA324841	DNA324844	DNA324846
	DNA324851	DNA324852	DNA324866	DNA324880	DNA324884	DNA324893
	DNA225631	DNA274326	DNA324896	DNA324897	DNA324902	DNA324904
	DNA324905	DNA324906	DNA324907	DNA324908	DNA324915	DNA324916
	DNA324917	DNA324921	DNA324926	DNA324932	DNA324933	DNA287189
20	DNA103588	DNA324950	DNA324951	DNA324952	DNA324957	DNA324958
	DNA324959	DNA324965	DNA324966	DNA324967	DNA324968	DNA324972
	DNA324973	DNA324977	DNA324982	DNA324983	DNA324985	DNA324989
	DNA324990	DNA324991	DNA324992	DNA325002	DNA325006	DNA325013
	DNA325015	DNA325021	DNA325022	DNA325023	DNA325024	DNA325026
25	DNA325027	DNA325034	DNA325039	DNA325045	DNA226337	DNA325062
	DNA325077	DNA325078	DNA325079	DNA325080	DNA325081	DNA325094
	DNA325095	DNA325100	DNA325103	DNA325109	DNA226496	DNA325111
	DNA325116	DNA325117	DNA325118	DNA325119	DNA325122	DNA131588
	DNA325152	DNA325153	DNA325156	DNA325157	DNA325164	DNA325168
30	DNA325174	DNA325178	DNA325179	DNA325182	DNA325183	DNA325184
	DNA287216	DNA288247	DNA325187	DNA325190	DNA325196	DNA325200
	DNA325202	DNA325205	DNA325206	DNA325210	DNA325214	DNA225630
	DNA325216	DNA325222	DNA325223	DNA325227	DNA325231	DNA325232
	DNA325233	DNA325234	DNA325235	DNA325236	DNA325239	DNA325245
35	DNA325247	DNA325250	DNA325295	DNA325296	DNA325301	DNA325303
	DNA325308	DNA325326	DNA325327	DNA325344	DNA304488	DNA325346

	DNA325347	DNA325358	DNA325360	DNA325362	DNA325367	DNA325371
	DNA325373	DNA144601	DNA325375	DNA325380	DNA325384	DNA325389
	DNA325406	DNA325407	DNA325408	DNA325409	DNA325410	DNA325411
	DNA325429	DNA325440	DNA325451	DNA325452	DNA325459	DNA272728
	DNA325463	DNA325469	DNA325474	DNA325478	DNA325494	DNA325498
5	DNA270721	DNA325515	DNA325523	DNA325531	DNA325534	DNA325535
	DNA325538	DNA325552	DNA325555	DNA325560	DNA325576	DNA325577
	DNA325580	DNA325581	DNA297398	DNA325582	DNA325584	DNA325585
	DNA325587	DNA325588	DNA325594	DNA325597	DNA254624	DNA325601
	DNA225632	DNA188396	DNA226028	DNA325618	DNA325620	DNA325625
10	DNA325627	DNA325633	DNA325637	DNA272379	DNA325642	DNA325644
	DNA325645	DNA325646	DNA325671	DNA325674	DNA325680	DNA227094
	DNA325695	DNA325703	DNA137231	DNA325704	DNA325705	DNA325706
	DNA325708	DNA79101	DNA325709	DNA325710	DNA325711	DNA325712
	DNA325714	DNA325715	DNA325716	DNA325718	DNA325720	DNA325724
15	DNA325725	DNA325731	DNA325733	DNA325734	DNA325750	DNA325752
	DNA325758	DNA325762	DNA325767	DNA325768	DNA325771	DNA325773
	DNA325775	DNA325776	DNA325781	DNA325784	DNA325786	DNA302016
	DNA325789	DNA325790	DNA325791	DNA325795	DNA325806	DNA325808
	DNA325809	DNA325810	DNA325811	DNA325812	DNA325814	DNA325815
20	DNA325826	DNA325830	DNA325837	DNA325838	DNA325843	DNA325844
	DNA325857	DNA325867	DNA325873	DNA325874	DNA225865	DNA325879
	DNA325882	DNA325889	DNA325891	DNA325906	DNA325908	DNA325910
	DNA325911	DNA325912	DNA325913	DNA325925	DNA325933	DNA151893
	DNA325935	DNA325937	DNA103509	DNA325954	DNA325955	DNA325965
25	DNA325966	DNA325985	DNA325994	DNA326002	DNA255340	DNA326012
	DNA326014	DNA326018	DNA326022	DNA287331	DNA326027	DNA326036
	DNA326040	DNA326041	DNA326046	DNA326047	DNA326058	DNA326059
	DNA326065	DNA326067	DNA326074	DNA326075	DNA326099	DNA326104
	DNA326105	DNA326121	DNA326122	DNA326123	NA326124	DNA326126
30	DNA326128	DNA326129	DNA326131	DNA326133	DNA326136	DNA326137
	DNA326143	DNA326147	DNA326148	DNA274002	DNA326156	DNA326157
	DNA194805	DNA326180	DNA326183	DNA326186	DNA326193	DNA326195
	DNA326196	DNA326197	DNA326199	DNA326216	DNA326235	DNA326236
	DNA326263	DNA97300	DNA297388	DNA326278	DNA326279	DNA326288
35	DNA326289	DNA326292	DNA326293	DNA326294	DNA227084	DNA326296
	DNA326298	DNA326299	DNA326301	DNA326304	DNA326305	DNA326306

	DNA326309	DNA326310	DNA326311	DNA326316	DNA326317	DNA270979
	DNA326328	DNA326333	DNA326338	DNA326343	DNA326349	DNA326351
	DNA326356	DNA326362	DNA270901	DNA326374	DNA326375	DNA326378
	DNA326381	DNA326397	DNA326406	DNA326411	DNA129504	DNA326416
	DNA326420	DNA326423	DNA326426	DNA326427	DNA326430	DNA326443
5	DNA326444	DNA326449	DNA326450	DNA326451	DNA326452	DNA326453
	DNA326454	DNA326457	DNA326460	DNA326463	DNA326469	DNA326487
	DNA326500	DNA326501	DNA326503	DNA326504	DNA326512	DNA326533
	DNA326539	DNA326548	DNA326550	DNA326556	DNA326558	DNA326566
	DNA326568	DNA326573	DNA326577	DNA326578	DNA326579	DNA326586
10	DNA326595	DNA326596	DNA326599	DNA326603	DNA269630	DNA326607
	DNA326614	DNA326621	DNA326625	DNA326629	DNA326630	DNA326633
	DNA326634	DNA326648	DNA326651	DNA326652	DNA273474	DNA326671
	DNA326676	DNA326680	DNA326691	DNA326693	DNA326695	DNA326698
	DNA32670	DNA326703	DNA326704	DNA326705	DNA326706	DNA326707
15	DNA326708	DNA326709	DNA257531	DNA256533	DNA326717	DNA326718
	DNA326725	DNA290260	DNA326740	DNA326745	DNA326749	DNA326752
	DNA326756	DNA326758	DNA273346	DNA326764	DNA297288	DNA287270
	DNA326789	DNA326790	DNA326796	DNA326800	DNA326805	DNA326808
	DNA326809	DNA326810	DNA326811	DNA326818	DNA326819	DNA326821
20	DNA194701	DNA326829	DNA326831	DNA103525	DNA326838	DNA326841
	DNA88239	DNA326845	DNA326850	DNA326851	DNA269526	DNA326868
	DNA326874	DNA326875	DNA326876	DNA326879	DNA326882	DNA326884
	DNA326886	DNA188732	DNA254572	DNA326890	DNA151898	DNA326894
٠	DNA326898	DNA326901	DNA326904	DNA226409	DNA326906	DNA326909
25	DNA326915	DNA326921	DNA326925	DNA226561	DNA326926	DNA326927
	DNA326936	DNA326937	DNA326941	DNA269830	DNA326946	DNA326952
	DNA326953	DNA326954	DNA326956	DNA326958	DNA188740	DNA326960
	DNA254240	DNA326974	DNA326977	DNA326979	DNA326981	DNA326982
	DNA326989	DNA326990	DNA237931	DNA326998	DNA327001	DNA327003
30	DNA327005	DNA327008	DNA327013	DNA327023	DNA327025	DNA327029
	DNA327031	DNA327033	DNA327041	DNA227943	DNA327051	DNA327058
	DNA327060	DNA327067	DNA327068	DNA270496	DNA327077	DNA327078
	DNA327079	DNA327086	DNA327089	DNA327093	DNA327099	DNA327102
	DNA327104	DNA227013	DNA327120	DNA327122	DNA327124	DNA327125
_						

35

ENDOCRINE

		•				
	DNA323772	DNA323943	DNA323976	DNA254298	DNA324100	DNA227528
	DNA324139	DNA324285	DNA79129	DNA324484	DNA290585	DNA324550
	DNA324642	DNA324692	DNA324910	DNA324964	DNA325350	DNA325549
	DNA325615	DNA325884	DNA325916	DNA325991	DNA326003	DNA188351
	DNA326328	DNA326619	DNA304658	DNA326790	DNA83170	
5						
	KIDNEY					
	DNA287173	DNA103253	DNA323858	DNA323859	DNA323869	DNA323871
	DNA323872	DNA323927	DNA323947	DNA226619	DNA323964	DNA324042
	DNA324048	DNA324063	DNA324090	DNA324092	DNA324111	DNA324112
10	DNA324193	DNA324210	DNA324218	DNA324294	DNA226547	DNA324338
	DNA324340	DNA324341	DNA324347	DNA324398	DNA324417	DNA324418
	DNA324424	DNA324426	DNA324427	DNA324434	DNA324437	DNA324472
	DNA324521	DNA324525	DNA324561	DNA324595	DNA324604	DNA324613
	DNA83020	DNA324639	DNA324641	DNA324645	DNA324685	DNA324715
15	DNA324716	DNA324717	DNA324720	DNA324722	DNA324727	DNA304680
	DNA324737	DNA324751	DNA304661	DNA324790	DNA324798	DNA324830
	DNA324844	DNA225631	DNA274326	DNA324922	DNA324926	DNA304710
	DNA324963	DNA324989	DNA324998	DNA325026	DNA325028	DNA325104
	DNA325105	DNA325106	DNA325111	DNA325126	DNA325152	DNA325153
20	DNA325182	DNA325184	DNA325222	DNA325296	DNA325303	DNA325326
	DNA325334	DNA325347	DNA325360	DNA325384	DNA325389	DNA325414
	DNA325446	DNA325475	DNA325523	DNA325535	DNA325601	DNA225632
	DNA325633	DNA325642	DNA325644	DNA270458	DNA325731	DNA325750
	DNA325752	DNA325758	DNA325786	DNA302016	DNA325789	DNA325804
25	DNA325809	DNA325810	DNA325811	DNA325812	DNA281436	DNA325935
	DNA325952	DNA325985	DNA326002	DNA326003	DNA326022	DNA287331
	DNA326041	DNA326046	DNA326047	DNA326099	DNA326233	DNA326234
	DNA326237	DNA97300	DNA326291	DNA326292	DNA326311	DNA326370
	DNA326397	DNA326422	DNA326463	DNA326469	DNA326559	DNA326586
30	DNA326603	DNA326633	DNA326634	DNA326692	DNA326769	DNA287270
	DNA326884	DNA326885	DNA326886	DNA326952	DNA326974	DNA327023
	DNA327025	DNA327029	DNA327067	DNA327085	DNA327116	
	<u>LUNG</u>					
35	DNA323717	DNA323718	DNA323719	DNA287173	DNA323740	DNA226262
	DNA323778	DNA323783	DNA274745	DNA323829	DNA323832	DNA323839

	DNA323841	DNA323856	DNA323858	DNA323859	DNA323862	DNA323863
	DNA323864	DNA323865	DNA323866	DNA323867	DNA323871	DNA323872
	DNA323878	DNA323887	DNA323892	DNA227529	DNA323902	DNA290284
	DNA323910	DNA304666	DNA304720	DNA323922	DNA323925	DNA323927
	DNA323936	DNA226793	DNA323944	DNA323945	DNA323947	DNA323954
5	DNA323959	DNA323964	DNA323965	DNA323995	DNA324005	DNA324006
	DNA324020	DNA324021	DNA324033	DNA324036	DNA324039	DNA324040
	DNA324041	DNA324042	DNA324044	DNA324047	DNA324048	DNA324049
	DNA324052	DNA324054	DNA324060	DNA324063	DNA324067	DNA324073
	DNA324090	DNA324091	DNA324092	DNA324094	DNA324101	DNA324105
10	DNA324109	DNA324111	DNA324112	DNA227795	DNA324134	DNA324148
	DNA324155	DNA324170	DNA324182	DNA324203	DNA324204	DNA324207
	DNA324210	DNA324218	DNA324232	DNA324261	DNA324265	DNA324273
	DNA324293	DNA324294	DNA226547	DNA324295	DNA324320	DNA324326
	DNA324338	DNA324339	DNA324340	DNA324341	DNA324358	DNA324365
15	DNA324380	DNA324412	DNA324414	DNA324416	DNA324417	DNA324418
	DNA324434	DNA324436	DNA324437	DNA324444	DNA324453	DNA324454
	DNA324472	DNA324475	DNA324483	DNA324491	DNA290585	DNA324502
	DNA324504	DNA324505	DNA324510	DNA324515	DNA324521	DNA324525
	DNA324541	DNA324549	DNA324552	DNA324557	DNA324558	DNA324561
20	DNA324564	DNA324579	DNA324584	DNA324591	DNA324592	DNA324596
	DNA324597	DNA324598	DNA324599	DNA324600	DNA324604	DNA324613
	DNA324633	DNA324641	DNA324643	DNA324685	DNA324697	DNA324699
	DNA324700	DNA324702	DNA324703	DNA324707	DNA324714	DNA324715
	DNA324716	DNA324717	DNA324720	DNA304680	DNA324736	DNA324737
25	DNA324745	DNA324749	DNA324751	DNA324755	DNA324756	DNA227442
	DNA324771	DNA324784	DNA324785	DNA324790	DNA324796	DNA324797
	DNA324803	DNA290785	DNA324814	DNA324815	DNA324816	DNA324819
	DNA324828	DNA324829	DNA324841	DNA324844	DNA324846	DNA271418
	DNA324870	DNA324873	DNA324874	DNA324875	DNA324884	DNA324885
30	DNA324887	DNA324888	DNA324889	DNA274326	DNA324896	DNA324900
	DNA324904	DNA324906	DNA324907	DNA324908	DNA275334	DNA324925
	DNA324926	DNA273865	DNA103588	DNA324945	DNA324946	DNA324956
	DNA324961	DNA304710	DNA324962	DNA324963	DNA324965	DNA324966
	DNA324967	DNA324968	DNA324982	DNA324983	DNA272090	DNA324989
35	DNA325002	DNA325015	DNA325016	DNA325017	DNA325024	DNA325026
	DNA325027	DNA325029	DNA325033	DNA325034	DNA325039	DNA325055

	DNA325056	DNA325057	DNA325078	DNA325079	DNA325080	DNA325081
	DNA325100	DNA325104	DNA325105	DNA325106	DNA226496	DNA325116
	DNA325117	DNA325118	DNA325119	DNA325128	DNA325141	DNA325146
	DNA325152	DNA325153	DNA325156	DNA325157	DNA226345	DNA325173
	DNA290319	DNA325182	DNA325183	DNA325184	DNA325190	DNA325196
5	DNA325209	DNA325214	DNA325217	DNA325222	DNA325233	DNA325235
	DNA325236	DNA325246	DNA325247	DNA325250	DNA325278	DNA325284
	DNA325285	DNA325286	DNA325303	DNA325305	DNA325326	DNA325334
	DNA304459	DNA325343	DNA325344	DNA325347	DNA325353	DNA325358
	DNA325360	DNA325379	DNA325384	DNA325389	DNA325401	DNA325414
10	DNA325418	DNA325441	DNA325451	DNA325452	DNA325456	DNA325463
	DNA325475	DNA325479	DNA325483	DNA325502	DNA325506	DNA325509
	DNA325510	DNA325516	DNA325522	DNA325523	DNA325527	DNA325534
	DNA325535	DNA325550	DNA325569	DNA325570	DNA325584	DNA325593
	DNA325595	DNA151827	DNA325601	DNA225632	DNA103514	DNA325604
15	DNA325618	DNA325625	DNA325633	DNA325634	DNA271344	DNA325642
	DNA325644	DNA325645	DNA325658	DNA325659	DNA325660	DNA325662
	DNA270458	DNA227092	DNA325674	DNA325680	DNA325686	DNA325695
	DNA325704	DNA325711	DNA325712	DNA325720	DNA325731	DNA325750
	DNA325752	DNA325755	DNA325757	DNA325758	DNA325773	DNA325775
20	DNA325776	DNA325786	DNA302016	DNA325789	DNA325806	DNA325809
	DNA325810	DNA325811	DNA325812	DNA325814	DNA325818	DNA325822
	DNA325837	DNA325838	DNA325843	DNA325844	DNA325864	DNA325891
	DNA325894	DNA325913	DNA325920	DNA269498	DNA325923	DNA325933
	DNA325935	DNA325945	DNA103509	DNA325952	DNA325953	DNA325957
25	DNA325958	DNA325965	DNA325985	DNA325988	DNA325994	DNA326002
	DNA226646	DNA326022	DNA287331	DNA326041	DNA326046	DNA326047
	DNA326099	DNA326102	DNA326116	DNA326121	DNA326122	DNA326124
	DNA326128	DNA326129	DNA326133	DNA289522	DNA326136	DNA326146
	DNA326155	DNA326156	DNA326168	DNA326169	DNA287355	DNA326177
30	DNA326186	DNA326194	DNA326214	DNA326230	DNA326233	DNA326234
	DNA326256	DNA326260	DNA97300	DNA326273	DNA326278	DNA326279
	DNA326287	DNA326288	DNA326289	DNA326291	DNA326292	DNA326296
	DNA326297	DNA326300	DNA326309	DNA326311	DNA326330	DNA272889
	DNA270975	DNA326347	DNA270901	DNA326381	DNA326384	DNA326396
35	DNA326404	DNA129504	DNA326414	DNA326415	DNA326416	DNA326426
	DNA326427	DNA326429	DNA326430	DNA326432	DNA326433	DNA326440

	DNA326441	DNA326442	DNA326446	DNA326449	DNA326450	DNA326451
	DNA326452	DNA326453	DNA326454	DNA271841	DNA326457	DNA326459
	DNA326463	DNA326479	DNA326481	DNA326482	DNA326484	DNA326485
	DNA326487	DNA326499	DNA326512	DNA287636	DNA326516	DNA326523
	DNA326559	DNA326562	DNA326573	DNA326579	DNA326581	DNA326582
5	DNA326583	DNA326584	DNA326585	DNA274034	DNA326596	DNA326597
	DNA326603	DNA326615	DNA326625	DNA326626	DNA326633	DNA326634
	DNA326642	DNA326651	DNA326657	DNA326660	DNA326661	DNA274139
	DNA326676	DNA326683	DNA326684	DNA326685	DNA326687	DNA326688
	DNA326690	DNA326691	DNA326692	DNA326698	DNA326702	DNA103580
10	DNA326726	DNA326727	DNA326731	DNA290260	DNA326736	DNA326739
	DNA326741	DNA326742	DNA326756	DNA326758	DNA326761	DNA273346
	DNA254548	DNA326769	DNA326773	DNA287270	DNA326781	DNA326782
	DNA326787	DNA326789	DNA326798	DNA326801	DNA326808	DNA326818
	DNA326819	DNA273517	DNA194701	DNA103525	DNA326844	DNA326884
15	DNA326885	DNA326886	DNA254572	DNA326901	DNA326902	DNA326921
	DNA326937	DNA269830	DNA326952	DNA326953	DNA326972	DNA326974
	DNA326981	DNA326983	DNA327005	DNA327023	DNA327025	DNA327029
	DNA327033	DNA327054	DNA327060	DNA327067	DNA327068	DNA327077
	DNA327078	DNA327079	DNA327085	DNA327111	DNA227013	
20						
	BREAST		·			
	DNA323717	DNA273712	DNA226262	DNA323778	DNA323784	DNA323804
	DNA323805	DNA323817	DNA323820	DNA323829	DNA323836	DNA323845
	DNA323858	DNA323859	DNA323862	DNA323863	DNA323867	DNA323868
25	DNA323869	DNA323870	DNA323871	DNA323872	DNA323919	DNA323922
	DNA323936	DNA323943	DNA323944	DNA323947	DNA323953	DNA323964
	DNA323980	DNA323990	DNA323998	DNA324004	DNA324009	DNA324013
	DNA324042	DNA324047	DNA324054	DNA324063	DNA324075	DNA324090
	DNA324091	DNA324092	DNA324101	DNA324103	DNA324110	DNA324111
30	DNA324112	DNA227795	DNA324134	DNA227190	DNA324149	DNA324154
	DNA324159	DNA324170	DNA324178	DNA324189	DNA324192	DNA324193
	DNA324207	DNA324210	DNA324218	DNA324224	DNA324230	DNA324236
	DNA324243	DNA324276	DNA324285	DNA226547	DNA324295	DNA150976
	DNA324320	DNA324338	DNA324340	DNA324341	DNA324346	DNA324347
35	DNA324373	DNA324390	DNA324391	DNA324394	DNA324412	DNA324417
	DNA324418	DNA324423	DNA324434	DNA324437	DNA324438	DNA139747

	DNA253804	DNA324471	DNA324472	DNA324478	DNA324479	DNA324483
	DNA324489	DNA324495	DNA324502	DNA324503	DNA324506	DNA324509
	DNA324511	DNA324512	DNA225584	DNA324517	DNA324521	DNA324525
	DNA324549	DNA324550	DNA324551	DNA324554	DNA324561	DNA324564
	DNA324565	DNA324568	DNA324574	DNA324576	DNA324577	DNA324579
5	DNA324591	DNA324592	DNA324595	DNA324596	DNA324597	DNA324599
	DNA324600	DNA324601	DNA324605	DNA324613	DNA324624	DNA103380
	DNA324632	DNA324633	DNA324641	DNA324643	DNA324645	DNA324679
	DNA324682	DNA324684	DNA324685	DNA324690	DNA324712	DNA324714
	DNA324717	DNA324720	DNA324727	DNA304680	DNA324736	DNA324737
10	DNA324746	DNA324749	DNA324751	DNA324755	DNA304661	DNA287227
	DNA324773	DNA324785	DNA324790	DNA324796	DNA324797	DNA324807
	DNA324810	DNA324811	DNA324824	DNA324827	DNA324841	DNA324844
	DNA324858	DNA324866	DNA324874	DNA324878	DNA324879	DNA225631
	DNA324902	DNA324905	DNA324910	DNA324928	DNA324945	DNA304710
15	DNA324963	DNA324966	DNA324967	DNA324968	DNA304801	DNA272090
	DNA324987	DNA324989	DNA325000	DNA325006	DNA325010	DNA325015
	DNA325024	DNA325026	DNA325027	DNA325034	DNA325078	DNA325079
	DNA325080	DNA325081	DNA325099	DNA325101	DNA325103	DNA325104
	DNA325106	DNA325111	DNA325113	DNA325116	DNA325117	DNA325118
20	DNA325119	DNA325120	DNA325121	DNA325123	DNA325127	DNA325141
	DNA325152	DNA325153	DNA325155	DNA325156	DNA325157	DNA325162
	DNA325164	DNA325179	DNA325180	DNA325182	DNA325183	DNA325184
•	DNA325190	DNA325200	DNA325202	DNA325206	DNA325209	DNA325222
	DNA325229	DNA325231	DNA325232	DNA325234	DNA325250	DNA325278
25	DNA325291	DNA325292	DNA325295	DNA325301	DNA325326	DNA325339
	DNA325340	DNA325343	DNA325344	DNA325346	DNA325347	DNA325356
	DNA325358	DNA325374	DNA325381	DNA325386	DNA325389	DNA325391
	DNA325395	DNA325428	DNA325430	DNA325431	DNA325436	DNA325437
	DNA97285	DNA325442	DNA325451	DNA325452	DNA75863	DNA325475
30	DNA325483	DNA325523	DNA325525	DNA325528	DNA325535	DNA325549
	DNA325576	DNA325584	DNA325596	DNA325601	DNA225632	DNA325618
	DNA325625	DNA325633	DNA325642	DNA325644	DNA325645	DNA325662
	DNA270458	DNA227092	DNA325674	DNA325680	DNA325696	DNA325697
	DNA325711	DNA325712	DNA325731	DNA325736	DNA325757	DNA325762
35	DNA325765	DNA325783	DNA325786	DNA302016	DNA325789	DNA325804
	DNA325806	DNA325809	DNA325810	DNA325811	DNA325812	DNA325814

	DNA325837	DNA325838	DNA325839	DNA325843	DNA325844	DNA325848
	DNA325900	DNA325906	DNA325907	DNA325908	DNA325913	DNA325922
	DNA325930	DNA325933	DNA325935	DNA325966	DNA227559	DNA325985
	DNA325986	DNA227206	DNA325990	DNA325991	DNA219233	DNA325994
	DNA325998	DNA326000	DNA326002	DNA326022	DNA326041	DNA326046
5	DNA326047	DNA326075	DNA326079	DNA326099	DNA326113	DNA326115
	DNA97293	DNA326122	DNA326124	DNA326128	DNA326129	DNA326136
	DNA326156	DNA287355	DNA326187	DNA326233	DNA326234	DNA326251
	DNA326254	DNA326260	DNA97300	DNA326273	DNA326278	DNA326280
	DNA326281	DNA304715	DNA326282	DNA326286	DNA290292	DNA326289
10	DNA326291	DNA326292	DNA66475	DNA326324	DNA326326	DNA326327
	DNA326364	DNA326378	DNA326381	DNA326396	DNA326415	DNA326449
	DNA326450	DNA326451	DNA326452	DNA326453	DNA326454	DNA326457
	DNA326463	DNA326469	DNA326499	DNA287636	DNA326529	DNA326541
	DNA270315	DNA326546	DNA326557	DNA326559	DNA326562	DNA326579
15	DNA326615	DNA326620	DNA227249	DNA326633	DNA326634	DNA326635
•	DNA326651	DNA326657	DNA272347	DNA326669	DNA326686	DNA326687
	DNA326688	DNA326698	DNA326732	DNA290260	DNA326741	DNA326742
	DNA83154	DNA326756	DNA326758	DNA326759	DNA326769	DNA326777
	DNA287270	DNA326792	DNA326796	DNA326798	DNA326799	DNA326816
20	DNA194701	DNA103525	DNA326841	DNA326862	DNA326863	DNA304670
	DNA326864	DNA326866	DNA326870	DNA326885	DNA326886	DNA326903
	DNA326921	DNA326952	DNA326969	DNA326971	DNA326974	DNA326981
	DNA327016	DNA327023	DNA327025	DNA327029	DNA273992	DNA327060
	DNA327062	DNA273254	DNA327067	DNA327068	DNA327073	DNA327085
25	DNA327087	DNA327090	DNA327092	DNA276159	DNA327127	
	STOMACH					
	DNA287173	DNA323805	DNA323849	DNA323864	DNA323865	DNA323866
	DNA323873	DNA323884	DNA323920	DNA323925	DNA323934	DNA323990
30	DNA324028	DNA324029	DNA324039	DNA324048	DNA324065	DNA227545
	DNA227795	DNA324155	DNA324179	DNA324180	DNA324216	DNA324243
	DNA324244	DNA324294	DNA324362	DNA324364	DNA324398	DNA324417
	DNA324418	DNA324471	DNA324504	DNA324541	DNA324552	DNA324555
	DNA324556	DNA324558	DNA324624	DNA324630	DNA304680	DNA324756
35	DNA324769	DNA324790	DNA324808	DNA324850	DNA225631	DNA324906
	DNA324907	DNA324908	DNA324922	DNA304710	DNA324962 ·	DNA324963

	DNA324972	DNA324973	DNA324982	DNA324997	DNA325033	DNA325074
	DNA325078	DNA325079	DNA325104	DNA325105	DNA325106	DNA325148
	DNA325149	DNA325156	DNA325157	DNA89242	DNA325186	DNA325191
	DNA325192	DNA325202	DNA325224	DNA325233	DNA325235	DNA325236
	DNA325251	DNA325262	DNA325268	DNA325306	DNA325316	DNA325318
5	DNA325320	DNA325368	DNA325418	DNA97285	DNA325441	DNA325442
	DNA325444	DNA325446	DNA325474	DNA325480	DNA325506	DNA325534
	DNA325535	DNA325570	DNA325601	DNA225632	DNA325642	DNA325644
	DNA325645	DNA270458	DNA227092	DNA325773	DNA325775	DNA325776
	DNA325803	DNA325804	DNA274058	DNA325843	DNA325873	DNA325941
10	DNA325986	DNA325993	DNA326019	DNA287331	DNA326043	DNA326133
	DNA326196	DNA326284	DNA326311	DNA326333	DNA326347	DNA326397
	DNA326427	DNA326517	DNA326603	DNA326641	DNA326642	DNA326698
	DNA326750	DNA326791	DNA326846	DNA326859	DNA326862	DNA326863
	DNA304670	DNA326864	DNA326865	DNA326918	DNA326961	DNA326977
15	DNA326983	DNA327040	DNA327042	DNA327055	DNA273254	DNA327099
	DNA327116	DNA327127				
	BONE					
1	DNA323765	DNA323817	DNA323820	DNA323829	DNA323864	DNA323867
20	DNA323869	DNA323871	DNA323914	DNA323947	DNA323964	DNA324004
	DNA324009	DNA324090	DNA324091	DNA324092	DNA324111	DNA324112
	DNA324154	DNA324155	DNA324200	DNA324201	DNA324210	DNA324230
	DNA324293	DNA226547	DNA324295	DNA324326	DNA324347	DNA324390
	DNA324417	DNA324418	DNA324423	DNA324437	DNA324472	DNA324483
25	DNA324488	DNA324501	DNA324502	DNA324503	DNA324504	DNA324505
	DNA324512	DNA324521	DNA324525	DNA324541	DNA324549	DNA324550
	DNA324551	DNA324554	DNA324555	DNA324556	DNA324557	DNA324558
	DNA324575	DNA324576	DNA324579	DNA324595	DNA324596	DNA324604
	DNA324613	DNA324624	DNA324632	DNA324641	DNA324645	DNA324682
30	DNA324687	DNA324697	DNA324717	DNA324720	DNA324737	DNA324756
	DNA304661	DNA324785	DNA324796	DNA324797	DNA150772	DNA324828
	DNA324829	DNA324844	DNA324866	DNA324902	DNA324904	DNA324905
ı	DNA324906	DNA324926	DNA324989	DNA325015	DNA325024	DNA325026
	DNA325027	DNA325034	DNA325111	DNA325116	DNA131588	DNA325156
35	DNA325157	DNA325164	DNA325179	DNA325182	DNA325183	DNA325184
	DNA325202	DNA325206	DNA325222	DNA325229	DNA325231	DNA325232

	DNA325234	DNA325236	DNA325250	DNA325301	DNA325303	DNA325326
	DNA325339	DNA325340	DNA325347	DNA325358	DNA325395	DNA325430
	DNA325437	DNA325451	DNA325452	DNA325523	DNA325558	DNA325570
	DNA325576	DNA325601	DNA225632	DNA325633	DNA325731	DNA325733
	DNA325736	DNA325762	DNA325786	DNA302016	DNA325789	DNA325806
5	DNA325810	DNA325811	DNA325812	DNA325843	DNA325844	DNA325906
	DNA325908	DNA325913	DNA325922	DNA325935	DNA325985	DNA326002
	DNA326041	DNA326046	DNA326099	DNA326233	DNA326234	DNA326251
	DNA97300	DNA304715	DNA326286	DNA326289	DNA326381	DNA326457
	DNA326580	DNA326633	DNA326634	DNA326635	DNA326651	DNA290260
10	DNA326796	DNA326884	DNA326886	DNA326974	DNA326977	DNA327005
	DNA327025	DNA327060	DNA327062	DNA327067	DNA327114	

EXAMPLE 2: Use of TAT as a hybridization probe

15

The following method describes use of a nucleotide sequence encoding TAT as a hybridization probe for, i.e., diagnosis of the presence of a tumor in a mammal.

DNA comprising the coding sequence of full-length or mature TAT as disclosed herein can also be employed as a probe to screen for homologous DNAs (such as those encoding naturally-occurring variants of TAT) in human tissue cDNA libraries or human tissue genomic libraries.

Hybridization and washing of filters containing either library DNAs is performed under the following high stringency conditions. Hybridization of radiolabeled TAT-derived probe to the filters is performed in a solution of 50% formamide, 5x SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 50 mM sodium phosphate, pH 6.8, 2x Denhardt's solution, and 10% dextran sulfate at 42°C for 20 hours. Washing of the filters is performed in an aqueous solution of 0.1x SSC and 0.1% SDS at 42°C.

5

10

15

DNAs having a desired sequence identity with the DNA encoding full-length native sequence TAT can then be identified using standard techniques known in the art.

١

EXAMPLE 3: Expression of TAT in E. coli

This example illustrates preparation of an unglycosylated form of TAT by recombinant expression in E. coli.

The DNA sequence encoding TAT is initially amplified using selected PCR primers. The primers should contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector. A variety of expression vectors may be employed. An example of a suitable vector is pBR322 (derived from *E. coli*; see Bolivar et al., Gene, 2:95 (1977)) which contains genes for amplicillin and tetracycline resistance. The vector is digested with restriction enzyme and dephosphorylated. The PCR amplified sequences are then ligated into the vector. The vector will preferably include sequences which encode for an antibiotic resistance gene, a trp promoter, a polyhis leader (including the first six STII codons, polyhis sequence, and enterokinase cleavage site), the TAT coding region, lambda transcriptional terminator, and an argU gene.

20

The ligation mixture is then used to transform a selected *E. coli* strain using the methods described in Sambrook et al., <u>supra</u>. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing.

25

Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with antibiotics. The overnight culture may subsequently be used to inoculate a larger scale culture. The cells are then grown to a desired optical density, during which the expression promoter is turned on.

30

After culturing the cells for several more hours, the cells can be harvested by centrifugation. The cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized TAT protein can then be purified using a metal chelating column under conditions that allow tight binding of the protein.

35

TAT may be expressed in *E. coli* in a poly-His tagged form, using the following procedure. The DNA encoding TAT is initially amplified using selected PCR primers. The primers will contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector, and other useful sequences providing for efficient and reliable translation initiation, rapid purification on a metal chelation column, and proteolytic removal with enterokinase. The PCR-amplified, poly-His tagged sequences are then ligated into an expression vector, which is used to transform an *E. coli* host based on strain 52 (W3110)

fuhA(tonA) lon galE rpoHts(htpRts) clpP(lacIq). Transformants are first grown in LB containing 50 mg/ml carbenicillin at 30°C with shaking until an O.D.600 of 3-5 is reached. Cultures are then diluted 50-100 fold into CRAP media (prepared by mixing 3.57 g (NH₄)₂SO₄, 0.71 g sodium citrate•2H2O, 1.07 g KCl, 5.36 g Difco yeast extract, 5.36 g Sheffield hycase SF in 500 mL water, as well as 110 mM MPOS, pH 7.3, 0.55% (w/v) glucose and 7 mM MgSO₄) and grown for approximately 20-30 hours at 30°C with shaking. Samples are removed to verify expression by SDS-PAGE analysis, and the bulk culture is centrifuged to pellet the cells. Cell pellets are frozen until purification and refolding.

5

10

15

20

25

30

35

E. coli paste from 0.5 to 1 L fermentations (6-10 g pellets) is resuspended in 10 volumes (w/v) in 7 M guanidine, 20 mM Tris, pH 8 buffer. Solid sodium sulfite and sodium tetrathionate is added to make final concentrations of 0.1M and 0.02 M, respectively, and the solution is stirred overnight at 4°C. This step results in a denatured protein with all cysteine residues blocked by sulfitolization. The solution is centrifuged at 40,000 rpm in a Beckman Ultracentifuge for 30 min. The supernatant is diluted with 3-5 volumes of metal chelate column buffer (6 M guanidine, 20 mM Tris, pH 7.4) and filtered through 0.22 micron filters to clarify. The clarified extract is loaded onto a 5 ml Qiagen Ni-NTA metal chelate column equilibrated in the metal chelate column buffer. The column is washed with additional buffer containing 50 mM imidazole (Calbiochem, Utrol grade), pH 7.4. The protein is eluted with buffer containing 250 mM imidazole. Fractions containing the desired protein are pooled and stored at 4°C. Protein concentration is estimated by its absorbance at 280 nm using the calculated extinction coefficient based on its amino acid sequence.

The proteins are refolded by diluting the sample slowly into freshly prepared refolding buffer consisting of: 20 mM Tris, pH 8.6, 0.3 M NaCl, 2.5 M urea, 5 mM cysteine, 20 mM glycine and 1 mM EDTA. Refolding volumes are chosen so that the final protein concentration is between 50 to 100 micrograms/ml. The refolding solution is stirred gently at 4°C for 12-36 hours. The refolding reaction is quenched by the addition of TFA to a final concentration of 0.4% (pH of approximately 3). Before further purification of the protein, the solution is filtered through a 0.22 micron filter and acetonitrile is added to 2-10% final concentration. The refolded protein is chromatographed on a Poros R1/H reversed phase column using a mobile buffer of 0.1% TFA with elution with a gradient of acetonitrile from 10 to 80%. Aliquots of fractions with A280 absorbance are analyzed on SDS polyacrylamide gels and fractions containing homogeneous refolded protein are pooled. Generally, the properly refolded species of most proteins are eluted at the lowest concentrations of acetonitrile since those species are the most compact with their hydrophobic interiors shielded from interaction with the reversed phase resin. Aggregated species are usually eluted at higher acetonitrile concentrations. In addition to resolving misfolded forms of proteins from the desired form, the reversed phase step also removes endotoxin from the samples.

Fractions containing the desired folded TAT polypeptide are pooled and the acetonitrile removed using a gentle stream of nitrogen directed at the solution. Proteins are formulated into 20 mM Hepes, pH 6.8 with 0.14 M sodium chloride and 4% mannitol by dialysis or by gel filtration using G25 Superfine (Pharmacia) resins equilibrated in the formulation buffer and sterile filtered.

Certain of the TAT polypeptides disclosed herein have been successfully expressed and purified using

this technique(s).

5

10

15

20

25

30

35

EXAMPLE 4: Expression of TAT in mammalian cells

This example illustrates preparation of a potentially glycosylated form of TAT by recombinant expression in mammalian cells.

The vector, pRK5 (see EP 307,247, published March 15, 1989), is employed as the expression vector. Optionally, the TAT DNA is ligated into pRK5 with selected restriction enzymes to allow insertion of the TAT DNA using ligation methods such as described in Sambrook et al., <u>supra</u>. The resulting vector is called pRK5-TAT.

In one embodiment, the selected host cells may be 293 cells. Human 293 cells (ATCC CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM supplemented with fetal calf serum and optionally, nutrient components and/or antibiotics. About 10 µg pRK5-TAT DNA is mixed with about 1 µg DNA encoding the VA RNA gene [Thimmappaya et al., Cell, 31:543 (1982)] and dissolved in 500 µl of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M CaCl₂. To this mixture is added, dropwise, 500µl of 50 mM HEPES (pH 7.35), 280 mM NaCl, 1.5 mM NaPO ₄, and a precipitate is allowed to form for 10 minutes at 25°C. The precipitate is suspended and added to the 293 cells and allowed to settle for about four hours at 37°C. The culture medium is aspirated off and 2 ml of 20% glycerol in PBS is added for 30 seconds. The 293 cells are then washed with serum free medium, fresh medium is added and the cells are incubated for about 5 days.

Approximately 24 hours after the transfections, the culture medium is removed and replaced with culture medium (alone) or culture medium containing 200 µCi/ml ³⁵S-cysteine and 200 µCi/ml ³⁵S-methionine. After a 12 hour incubation, the conditioned medium is collected, concentrated on a spin filter, and loaded onto a 15% SDS gel. The processed gel may be dried and exposed to film for a selected period of time to reveal the presence of TAT polypeptide. The cultures containing transfected cells may undergo further incubation (in serum free medium) and the medium is tested in selected bioassays.

In an alternative technique, TAT may be introduced into 293 cells transiently using the dextran sulfate method described by Somparyrac et al., <u>Proc. Natl. Acad. Sci.</u>, <u>12</u>:7575 (1981). 293 cells are grown to maximal density in a spinner flask and 700 μ g pRK5-TAT DNA is added. The cells are first concentrated from the spinner flask by centrifugation and washed with PBS. The DNA-dextran precipitate is incubated on the cell pellet for four hours. The cells are treated with 20% glycerol for 90 seconds, washed with tissue culture medium, and re-introduced into the spinner flask containing tissue culture medium, 5 μ g/ml bovine insulin and 0.1 μ g/ml bovine transferrin. After about four days, the conditioned media is centrifuged and filtered to remove cells and debris. The sample containing expressed TAT can then be concentrated and purified by any selected method, such as dialysis and/or column chromatography.

In another embodiment, TAT can be expressed in CHO cells. The pRK5-TAT can be transfected into CHO cells using known reagents such as CaPO₄ or DEAE-dextran. As described above, the cell cultures can be incubated, and the medium replaced with culture medium (alone) or medium containing a radiolabel such as ³⁵S-methionine. After determining the presence of TAT polypeptide, the culture medium may be replaced

with serum free medium. Preferably, the cultures are incubated for about 6 days, and then the conditioned medium is harvested. The medium containing the expressed TAT can then be concentrated and purified by any selected method.

Epitope-tagged TAT may also be expressed in host CHO cells. The TAT may be subcloned out of the pRK5 vector. The subclone insert can undergo PCR to fuse in frame with a selected epitope tag such as a polyhis tag into a Baculovirus expression vector. The poly-his tagged TAT insert can then be subcloned into a SV40 driven vector containing a selection marker such as DHFR for selection of stable clones. Finally, the CHO cells can be transfected (as described above) with the SV40 driven vector. Labeling may be performed, as described above, to verify expression. The culture medium containing the expressed poly-His tagged TAT can then be concentrated and purified by any selected method, such as by Ni²⁺-chelate affinity chromatography.

5

10

15

20

25

30

35

TAT may also be expressed in CHO and/or COS cells by a transient expression procedure or in CHO cells by another stable expression procedure.

Stable expression in CHO cells is performed using the following procedure. The proteins are expressed as an IgG construct (immunoadhesin), in which the coding sequences for the soluble forms (e.g. extracellular domains) of the respective proteins are fused to an IgG1 constant region sequence containing the hinge, CH2 and CH2 domains and/or is a poly-His tagged form.

Following PCR amplification, the respective DNAs are subcloned in a CHO expression vector using standard techniques as described in Ausubel et al., <u>Current Protocols of Molecular Biology</u>, Unit 3.16, John Wiley and Sons (1997). CHO expression vectors are constructed to have compatible restriction sites 5' and 3' of the DNA of interest to allow the convenient shuttling of cDNA's. The vector used expression in CHO cells is as described in Lucas et al., <u>Nucl. Acids Res.</u> 24:9 (1774-1779 (1996), and uses the SV40 early promoter/enhancer to drive expression of the cDNA of interest and dihydrofolate reductase (DHFR). DHFR expression permits selection for stable maintenance of the plasmid following transfection.

Twelve micrograms of the desired plasmid DNA is introduced into approximately 10 million CHO cells using commercially available transfection reagents Superfect[®] (Quiagen), Dosper[®] or Fugene[®] (Boehringer Mannheim). The cells are grown as described in Lucas et al., <u>supra</u>. Approximately 3 x 10⁷ cells are frozen in an ampule for further growth and production as described below.

The ampules containing the plasmid DNA are thawed by placement into water bath and mixed by vortexing. The contents are pipetted into a centrifuge tube containing 10 mLs of media and centrifuged at 1000 rpm for 5 minutes. The supernatant is aspirated and the cells are resuspended in 10 mL of selective media (0.2 μ m filtered PS20 with 5% 0.2 μ m diafiltered fetal bovine serum). The cells are then aliquoted into a 100 mL spinner containing 90 mL of selective media. After 1-2 days, the cells are transferred into a 250 mL spinner filled with 150 mL selective growth medium and incubated at 37°C. After another 2-3 days, 250 mL, 500 mL and 2000 mL spinners are seeded with 3 x 10⁵ cells/mL. The cell media is exchanged with fresh media by centrifugation and resuspension in production medium. Although any suitable CHO media may be employed, a production medium described in U.S. Patent No. 5,122,469, issued June 16, 1992 may actually be used. A 3L production spinner is seeded at 1.2 x 10⁶ cells/mL. On day 0, the cell number pH ie determined. On day

1, the spinner is sampled and sparging with filtered air is commenced. On day 2, the spinner is sampled, the temperature shifted to 33°C, and 30 mL of 500 g/L glucose and 0.6 mL of 10% antifoam (e.g., 35% polydimethylsiloxane emulsion, Dow Corning 365 Medical Grade Emulsion) taken. Throughout the production, the pH is adjusted as necessary to keep it at around 7.2. After 10 days, or until the viability dropped below 70%, the cell culture is harvested by centrifugation and filtering through a 0.22 μ m filter. The filtrate was either stored at 4°C or immediately loaded onto columns for purification.

For the poly-His tagged constructs, the proteins are purified using a Ni-NTA column (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCl and 5 mM imidazole at a flow rate of 4-5 ml/min. at 4°C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole. The highly purified protein is subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCl and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at -80°C.

Immunoadhesin (Fc-containing) constructs are purified from the conditioned media as follows. The conditioned medium is pumped onto a 5 ml Protein A column (Pharmacia) which had been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5. The eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 μ L of 1 M Tris buffer, pH 9. The highly purified protein is subsequently desalted into storage buffer as described above for the poly-His tagged proteins. The homogeneity is assessed by SDS polyacrylamide gels and by N-terminal amino acid sequencing by Edman degradation.

Certain of the TAT polypeptides disclosed herein have been successfully expressed and purified using this technique(s).

EXAMPLE 5: Expression of TAT in Yeast

5

10

15

20

25

30

35

The following method describes recombinant expression of TAT in yeast.

First, yeast expression vectors are constructed for intracellular production or secretion of TAT from the ADH2/GAPDH promoter. DNA encoding TAT and the promoter is inserted into suitable restriction enzyme sites in the selected plasmid to direct intracellular expression of TAT. For secretion, DNA encoding TAT can be cloned into the selected plasmid, together with DNA encoding the ADH2/GAPDH promoter, a native TAT signal peptide or other mammalian signal peptide, or, for example, a yeast alpha-factor or invertase secretory signal/leader sequence, and linker sequences (if needed) for expression of TAT.

Yeast cells, such as yeast strain AB110, can then be transformed with the expression plasmids described above and cultured in selected fermentation media. The transformed yeast supernatants can be analyzed by precipitation with 10% trichloroacetic acid and separation by SDS-PAGE, followed by staining of the gels with Coomassie Blue stain.

Recombinant TAT can subsequently be isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters. The

concentrate containing TAT may further be purified using selected column chromatography resins.

Certain of the TAT polypeptides disclosed herein have been successfully expressed and purified using this technique(s).

EXAMPLE 6: Expression of TAT in Baculovirus-Infected Insect Cells

5

The following method describes recombinant expression of TAT in Baculovirus-infected insect cells. The sequence coding for TAT is fused upstream of an epitope tag contained within a baculovirus expression vector. Such epitope tags include poly-his tags and immunoglobulin tags (like Fc regions of IgG). A variety of plasmids may be employed, including plasmids derived from commercially available plasmids such as pVL1393 (Novagen). Briefly, the sequence encoding TAT or the desired portion of the coding sequence of TAT such as the sequence encoding an extracellular domain of a transmembrane protein or the sequence encoding the mature protein if the protein is extracellular is amplified by PCR with primers complementary to the 5' and 3' regions. The 5' primer may incorporate flanking (selected) restriction enzyme sites. The product is then digested with those selected restriction enzymes and subcloned into the expression vector.

15

10

Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGold TM virus DNA (Pharmingen) into Spodoptera frugiperda ("Sf9") cells (ATCC CRL 1711) using lipofectin (commercially available from GIBCO-BRL). After 4 - 5 days of incubation at 28°C, the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley et al., Baculovirus expression vectors: A Laboratory Manual, Oxford: Oxford University Press (1994).

20

25

Expressed poly-his tagged TAT can then be purified, for example, by Ni ²⁺-chelate affinity chromatography as follows. Extracts are prepared from recombinant virus-infected Sf9 cells as described by Rupert et al., Nature, 362:175-179 (1993). Briefly, Sf9 cells are washed, resuspended in sonication buffer (25 mL Hepes, pH 7.9; 12.5 mM MgCl₂; 0.1 mM EDTA; 10% glycerol; 0.1% NP-40; 0.4 M KCl), and sonicated twice for 20 seconds on ice. The sonicates are cleared by centrifugation, and the supernatant is diluted 50-fold in loading buffer (50 mM phosphate, 300 mM NaCl, 10% glycerol, pH 7.8) and filtered through a 0.45 µm filter. A Ni²⁺-NTA agarose column (commercially available from Qiagen) is prepared with a bed volume of 5 mL, washed with 25 mL of water and equilibrated with 25 mL of loading buffer. The filtered cell extract is loaded onto the column at 0.5 mL per minute. The column is washed to baseline A₂₈₀ with loading buffer, at which point fraction collection is started. Next, the column is washed with a secondary wash buffer (50 mM phosphate; 300 mM NaCl, 10% glycerol, pH 6.0), which elutes nonspecifically bound protein. After reaching A₂₈₀ baseline again, the column is developed with a 0 to 500 mM Imidazole gradient in the secondary wash buffer. One mL fractions are collected and analyzed by SDS-PAGE and silver staining or Western blot with Ni²⁺-NTA-conjugated to alkaline phosphatase (Qiagen). Fractions containing the eluted His₀-tagged TAT are pooled and dialyzed against loading buffer.

30

Alternatively, purification of the IgG tagged (or Fc tagged) TAT can be performed using known chromatography techniques, including for instance, Protein A or protein G column chromatography.

35

Certain of the TAT polypeptides disclosed herein have been successfully expressed and purified using

this technique(s).

5

10

15

20

25

30

35

EXAMPLE 7: Preparation of Antibodies that Bind TAT

This example illustrates preparation of monoclonal antibodies which can specifically bind TAT.

Techniques for producing the monoclonal antibodies are known in the art and are described, for instance, in Goding, <u>supra</u>. Immunogens that may be employed include purified TAT, fusion proteins containing TAT, and cells expressing recombinant TAT on the cell surface. Selection of the immunogen can be made by the skilled artisan without undue experimentation.

Mice, such as Balb/c, are immunized with the TAT immunogen emulsified in complete Freund's adjuvant and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms. Alternatively, the immunogen is emulsified in MPL-TDM adjuvant (Ribi Immunochemical Research, Hamilton, MT) and injected into the animal's hind foot pads. The immunized mice are then boosted 10 to 12 days later with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the mice may also be boosted with additional immunization injections. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect anti-TAT antibodies.

After a suitable antibody titer has been detected, the animals "positive" for antibodies can be injected with a final intravenous injection of TAT. Three to four days later, the mice are sacrificed and the spleen cells are harvested. The spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids.

The hybridoma cells will be screened in an ELISA for reactivity against TAT. Determination of "positive" hybridoma cells secreting the desired monoclonal antibodies against TAT is within the skill in the art.

The positive hybridoma cells can be injected intraperitoneally into syngeneic Balb/c mice to produce ascites containing the anti-TAT monoclonal antibodies. Alternatively, the hybridoma cells can be grown in tissue culture flasks or roller bottles. Purification of the monoclonal antibodies produced in the ascites can be accomplished using ammonium sulfate precipitation, followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can be employed.

EXAMPLE 8: Purification of TAT Polypeptides Using Specific Antibodies

Native or recombinant TAT polypeptides may be purified by a variety of standard techniques in the art of protein purification. For example, pro-TAT polypeptide, mature TAT polypeptide, or pre-TAT polypeptide is purified by immunoaffinity chromatography using antibodies specific for the TAT polypeptide of interest. In general, an immunoaffinity column is constructed by covalently coupling the anti-TAT polypeptide antibody to an activated chromatographic resin.

Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium

sulfate or by purification on immobilized Protein A (Pharmacia LKB Biotechnology, Piscataway, N.J.). Likewise, monoclonal antibodies are prepared from mouse ascites fluid by ammonium sulfate precipitation or chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated SEPHAROSETM (Pharmacia LKB Biotechnology). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions.

Such an immunoaffinity column is utilized in the purification of TAT polypeptide by preparing a fraction from cells containing TAT polypeptide in a soluble form. This preparation is derived by solubilization of the whole cell or of a subcellular fraction obtained via differential centrifugation by the addition of detergent or by other methods well known in the art. Alternatively, soluble TAT polypeptide containing a signal sequence may be secreted in useful quantity into the medium in which the cells are grown.

A soluble TAT polypeptide-containing preparation is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of TAT polypeptide (e.g., high ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/TAT polypeptide binding (e.g., a low pH buffer such as approximately pH 2-3, or a high concentration of a chaotrope such as urea or thiocyanate ion), and TAT polypeptide is collected.

EXAMPLE 9: In Vitro Tumor Cell Killing Assay

5

10

15

20

25

30

35

Mammalian cells expressing the TAT polypeptide of interest may be obtained using standard expression vector and cloning techniques. Alternatively, many tumor cell lines expressing TAT polypeptides of interest are publicly available, for example, through the ATCC and can be routinely identified using standard ELISA or FACS analysis. Anti-TAT polypeptide monoclonal antibodies (and toxin conjugated derivatives thereof) may then be employed in assays to determine the ability of the antibody to kill TAT polypeptide expressing cells in vitro.

For example, cells expressing the TAT polypeptide of interest are obtained as described above and plated into 96 well dishes. In one analysis, the antibody/toxin conjugate (or naked antibody) is included throughout the cell incubation for a period of 4 days. In a second independent analysis, the cells are incubated for 1 hour with the antibody/toxin conjugate (or naked antibody) and then washed and incubated in the absence of antibody/toxin conjugate for a period of 4 days. Cell viability is then measured using the CellTiter-Glo Luminescent Cell Viability Assay from Promega (Cat# G7571). Untreated cells serve as a negative control.

EXAMPLE 10: In Vivo Tumor Cell Killing Assay

To test the efficacy of conjugated or unconjugated anti-TAT polypeptide monoclonal antibodies, anti-TAT antibody is injected intraperitoneally into nude mice 24 hours prior to receiving tumor promoting cells subcutaneously in the flank. Antibody injections continue twice per week for the remainder of the study. Tumor volume is then measured twice per week.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to

practice the invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

WHAT IS CLAIMED IS:

5

10

15

20

25

30

1. Isolated nucleic acid having a nucleotide sequence that has at least 80% nucleic acid sequence identity to:

- (a) a DNA molecule encoding the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) a DNA molecule encoding the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) a DNA molecule encoding an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), with its associated signal peptide;
- (d) a DNA molecule encoding an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
 - (e) the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (f) the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
 - (g) the complement of (a), (b), (c), (d), (e) or (f).
- Isolated nucleic acid having:
- (a) a nucleotide sequence that encodes the amino acid sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355);
- (b) a nucleotide sequence that encodes the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) a nucleotide sequence that encodes an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) a nucleotide sequence that encodes an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
 - (e) the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (f) the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
 - (g) the complement of (a), (b), (c), (d), (e) or (f).
 - 3. Isolated nucleic acid that hybridizes to:
- (a) a nucleic acid that encodes the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) a nucleic acid that encodes the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
 - (c) a nucleic acid that encodes an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) a nucleic acid that encodes an extracellular domain of the polypeptide shown in any one of Figures
 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;

- (e) the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (f) the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
 - (g) the complement of (a), (b), (c), (d), (e) or (f).

5

10

15

20

- 4. The nucleic acid of Claim 3, wherein the hybridization occurs under stringent conditions.
- 5. The nucleic acid of Claim 3 which is at least about 5 nucleotides in length.
- 6. An expression vector comprising the nucleic acid of Claim 1, 2 or 3.
- 7. The expression vector of Claim 6, wherein said nucleic acid is operably linked to control sequences recognized by a host cell transformed with the vector.
 - 8. A host cell comprising the expression vector of Claim 7.
 - 9. The host cell of Claim 8 which is a CHO cell, an E. coli cell or a yeast cell.
- 10. A process for producing, a polypeptide comprising culturing the host cell of Claim 8 under conditions suitable for expression of said polypeptide and recovering said polypeptide from the cell culture.
 - 11. An isolated polypeptide having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
 - 12. An isolated polypeptide having:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
 - (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
 - (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- 35 (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).

13. A chimeric polypeptide comprising the polypeptide of Claim 11 or 12 fused to a heterologous polypeptide.

- 14. The chimeric polypeptide of Claim 13, wherein said heterologous polypeptide is an epitope tag sequence or an Fc region of an immunoglobulin.
- 15. An isolated antibody that binds to a polypeptide having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);

5

10

15

20

25

- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
 - 16. An isolated antibody that binds to a polypeptide having:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
 - 17. The antibody of Claim 15 or 16 which is a monoclonal antibody.
- 18. The antibody of Claim 15 or 16 which is an antibody fragment.
 - 19. The antibody of Claim 15 or 16 which is a chimeric or a humanized antibody.
 - 20. The antibody of Claim 15 or 16 which is conjugated to a growth inhibitory agent.
 - 21. The antibody of Claim 15 or 16 which is conjugated to a cytotoxic agent.
- The antibody of Claim 21, wherein the cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 23. The antibody of Claim 21, wherein the cytotoxic agent is a toxin.

24. The antibody of Claim 23, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.

- 25. The antibody of Claim 23, wherein the toxin is a maytansinoid.
- 26. The antibody of Claim 15 or 16 which is produced in bacteria.
- 27. The antibody of Claim 15 or 16 which is produced in CHO cells.
- 28. The antibody of Claim 15 or 16 which induces death of a cell to which it binds.
- 29. The antibody of Claim 15 or 16 which is detectably labeled.

5

10

15

20

25

30

- 30. An isolated nucleic acid having a nucleotide sequence that encodes the antibody of Claim 15 or 16.
- 31. An expression vector comprising the nucleic acid of Claim 30 operably linked to control sequences recognized by a host cell transformed with the vector.
 - 32. A host cell comprising the expression vector of Claim 31.
 - 33. The host cell of Claim 32 which is a CHO cell, an E. coli cell or a yeast cell.
 - 34. A process for producing an antibody comprising culturing the host cell of Claim 32 under conditions suitable for expression of said antibody and recovering said antibody from the cell culture.
 - 35. An isolated oligopeptide that binds to a polypeptide having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
 - (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
 - (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
 - (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
 - (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
 - 36. An isolated oligopeptide that binds to a polypeptide having:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
 - (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
 - (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
 - (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355

(SEQ ID NOS:1-6355); or

5

10

15

20

25

30

(f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).

- 37. The oligopeptide of Claim 35 or 36 which is conjugated to a growth inhibitory agent.
- 38. The oligopeptide of Claim 35 or 36 which is conjugated to a cytotoxic agent.
- 39. The oligopeptide of Claim 38, wherein the cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 40. The oligopeptide of Claim 38, wherein the cytotoxic agent is a toxin.
- 41. The oligopeptide of Claim 40, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 42. The oligopeptide of Claim 40, wherein the toxin is a maytansinoid.
 - 43. The oligopeptide of Claim 35 or 36 which induces death of a cell to which it binds.
 - 44. The oligopeptide of Claim 35 or 36 which is detectably labeled.
- 45. A TAT binding organic molecule that binds to a polypeptide having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
 - 46. The organic molecule of Claim 45 that binds to a polypeptide having:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
 - (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
 - (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
 - (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown

in any one of Figures 1-6355 (SEQ ID NOS:1-6355).

- 47. The organic molecule of Claim 45 or 46 which is conjugated to a growth inhibitory agent.
- 48. The organic molecule of Claim 45 or 46 which is conjugated to a cytotoxic agent.
- 49. The organic molecule of Claim 48, wherein the cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 50. The organic molecule of Claim 48, wherein the cytotoxic agent is a toxin.
- 51. The organic molecule of Claim 50, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 52. The organic molecule of Claim 50, wherein the toxin is a maytansinoid.
 - 53. The organic molecule of Claim 45 or 46 which induces death of a cell to which it binds.
- The organic molecule of Claim 45 or 46 which is detectably labeled.
 - 55. A composition of matter comprising:
 - (a) the polypeptide of Claim 11;
 - (b) the polypeptide of Claim 12;
 - (c) the chimeric polypeptide of Claim 13;
- 15 (d) the antibody of Claim 15;

- (e) the antibody of Claim 16;
- (f) the oligopeptide of Claim 35;
- (g) the oligopeptide of Claim 36;
- (h) the TAT binding organic molecule of Claim 45; or
- 20 (i) the TAT binding organic molecule of Claim 46; in combination with a carrier.
 - 56. The composition of matter of Claim 55, wherein said carrier is a pharmaceutically acceptable carrier.
 - 57. An article of manufacture comprising:
 - (a) a container; and
- 25 (b) the composition of matter of Claim 55 contained within said container.
 - 58. The article of manufacture of Claim 57 further comprising a label affixed to said container, or a package insert included with said container, referring to the use of said composition of matter for the therapeutic treatment of or the diagnostic detection of a cancer.
- 59. A method of inhibiting the growth of a cell that expresses a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
 - (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-

6355), lacking its associated signal peptide;

5

10

15

20

25

35

(e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or

(f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising contacting said cell with an antibody, oligopeptide or organic molecule that binds to said protein, the binding of said antibody, oligopeptide or organic molecule to said protein thereby causing an inhibition of growth of said cell.

- 60. The method of Claim 59, wherein said antibody is a monoclonal antibody.
- 61. The method of Claim 59, wherein said antibody is an antibody fragment.
- 62. The method of Claim 59, wherein said antibody is a chimeric or a humanized antibody.
- 63. The method of Claim 59, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent.
 - 64. The method of Claim 59, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent.
- 65. The method of Claim 64, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 66. The method of Claim 64, wherein the cytotoxic agent is a toxin.
- 67. The method of Claim 66, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 68. The method of Claim 66, wherein the toxin is a maytansinoid.
 - 69. The method of Claim 59, wherein said antibody is produced in bacteria.
 - 70. The method of Claim 59, wherein said antibody is produced in CHO cells.
 - 71. The method of Claim 59, wherein said cell is a cancer cell.
- 72. The method of Claim 71, wherein said cancer cell is further exposed to radiation treatment or a chemotherapeutic agent.
- 73. The method of Claim 71, wherein said cancer cell is selected from the group consisting of a breast cancer cell, a colorectal cancer cell, a lung cancer cell, an ovarian cancer cell, a central nervous system cancer cell, a liver cancer cell, a bladder cancer cell, a pancreatic cancer cell, a cervical cancer cell, a melanoma cell and a leukemia cell.
- 74. The method of Claim 71, wherein said protein is more abundantly expressed by said cancer cell as compared to a normal cell of the same tissue origin.
 - 75. The method of Claim 59 which causes the death of said cell.
 - 76. The method of Claim 59, wherein said protein has:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
 - (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures

1-6355 (SEO ID NOS:1-6355), with its associated signal peptide sequence;

5

10

15

20

25

- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 77. A method of therapeutically treating a mammal having a cancerous tumor comprising cells that express a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising administering to said mammal a therapeutically effective amount of an antibody, oligopeptide or organic molecule that binds to said protein, thereby effectively treating said mammal.
 - 78. The method of Claim 77, wherein said antibody is a monoclonal antibody.
 - 79. The method of Claim 77, wherein said antibody is an antibody fragment.
 - 80. The method of Claim 77, wherein said antibody is a chimeric or a humanized antibody.
- 81. The method of Claim 77, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent.
- 82. The method of Claim 77, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent.
- 83. The method of Claim 82, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 84. The method of Claim 82, wherein the cytotoxic agent is a toxin.
 - 85. The method of Claim 84, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 86. The method of Claim 84, wherein the toxin is a maytansinoid.
- 35 87. The method of Claim 77, wherein said antibody is produced in bacteria.
 - 88. The method of Claim 77, wherein said antibody is produced in CHO cells.

89. The method of Claim 77, wherein said tumor is further exposed to radiation treatment or a chemotherapeutic agent.

- 90. The method of Claim 77, wherein said tumor is a breast tumor, a colorectal tumor, a lung tumor, an ovarian tumor, a central nervous system tumor, a liver tumor, a bladder tumor, a pancreatic tumor, or a cervical tumor.
- 91. The method of Claim 77, wherein said protein is more abundantly expressed by the cancerous cells of said tumor as compared to a normal cell of the same tissue origin.
 - 92. The method of Claim 77, wherein said protein has:

5

10

15

20

25

30

- (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 93. A method of determining the presence of a protein in a sample suspected of containing said protein, wherein said protein has at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising exposing said sample to an antibody, oligopeptide or organic molecule that binds to said protein and determining binding of said antibody, oligopeptide or organic molecule to said protein in said sample, wherein binding of the antibody, oligopeptide or organic molecule to said protein is indicative of the presence of said protein in said sample.
- 94. The method of Claim 93, wherein said sample comprises a cell suspected of expressing said protein.

- 95. The method of Claim 94, wherein said cell is a cancer cell.
- 96. The method of Claim 93, wherein said antibody, oligopeptide or organic molecule is detectably labeled.
 - 97. The method of Claim 93, wherein said protein has:

5

10

15

20

25

30

- (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 98. A method of diagnosing the presence of a tumor in a mammal, said method comprising determining the level of expression of a gene encoding a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), in a test sample of tissue cells obtained from said mammal and in a control sample of known normal cells of the same tissue origin, wherein a higher level of expression of said protein in the test sample, as compared to the control sample, is indicative of the presence of tumor in the mammal from which the test sample was obtained.
- 99. The method of Claim 98, wherein the step of determining the level of expression of a gene encoding said protein comprises employing an oligonucleotide in an *in situ* hybridization or RT-PCR analysis.
- 100. The method of Claim 98, wherein the step determining the level of expression of a gene encoding said protein comprises employing an antibody in an immunohistochemistry or Western blot analysis.
 - 101. The method of Claim 98, wherein said protein has:

- (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;

5

10

15

20

25

30

- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 102. A method of diagnosing the presence of a tumor in a mammal, said method comprising contacting a test sample of tissue cells obtained from said mammal with an antibody, oligopeptide or organic molecule that binds to a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), and detecting the formation of a complex between said antibody, oligopeptide or organic molecule and said protein in the test sample, wherein the formation of a complex is indicative of the presence of a tumor in said mammal.
- 103. The method of Claim 102, wherein said antibody, oligopeptide or organic molecule is detectably labeled.
- 104. The method of Claim 102, wherein said test sample of tissue cells is obtained from an individual suspected of having a cancerous tumor.
 - 105. The method of Claim 102, wherein said protein has:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;

(d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;

- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
 - 106. A method for treating or preventing a cell proliferative disorder associated with increased expression or activity of a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);

5

10

15

20

25

- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising administering to a subject in need of such treatment an effective amount of an antagonist of said protein, thereby effectively treating or preventing said cell proliferative disorder.
 - 107. The method of Claim 106, wherein said cell proliferative disorder is cancer.
- 108. The method of Claim 106, wherein said antagonist is an anti-TAT polypeptide antibody, TAT binding oligopeptide, TAT binding organic molecule or antisense oligonucleotide.
- 109. A method of binding an antibody, oligopeptide or organic molecule to a cell that expresses a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- 35 (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising contacting said cell with an antibody,

oligopeptide or organic molecule that binds to said protein and allowing the binding of the antibody, oligopeptide or organic molecule to said protein to occur, thereby binding said antibody, oligopeptide or organic molecule to said cell.

- 110. The method of Claim 109, wherein said antibody is a monoclonal antibody.
- 111. The method of Claim 109, wherein said antibody is an antibody fragment.

5

10

15

20

25

30

- 112. The method of Claim 109, wherein said antibody is a chimeric or a humanized antibody.
- 113. The method of Claim 109, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent.
- 114. The method of Claim 109, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent.
- 115. The method of Claim 114, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 116. The method of Claim 114, wherein the cytotoxic agent is a toxin.
- 117. The method of Claim 116, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 118. The method of Claim 116, wherein the toxin is a maytansinoid.
 - 119. The method of Claim 109, wherein said antibody is produced in bacteria.
 - 120. The method of Claim 109, wherein said antibody is produced in CHO cells.
 - 121. The method of Claim 109, wherein said cell is a cancer cell.
- 122. The method of Claim 121, wherein said cancer cell is further exposed to radiation treatment or a chemotherapeutic agent.
- 123. The method of Claim 121, wherein said cancer cell is selected from the group consisting of a breast cancer cell, a colorectal cancer cell, a lung cancer cell, an ovarian cancer cell, a central nervous system cancer cell, a liver cancer cell, a bladder cancer cell, a pancreatic cancer cell, a cervical cancer cell, a melanoma cell and a leukemia cell.
- 124. The method of Claim 123, wherein said protein is more abundantly expressed by said cancer cell as compared to a normal cell of the same tissue origin.
 - 125. The method of Claim 109 which causes the death of said cell.
- 126. Use of a nucleic acid as claimed in any of Claims 1 to 5 or 30 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 127. Use of a nucleic acid as claimed in any of Claims 1 to 5 or 30 in the preparation of a medicament for treating a tumor.
- 128. Use of a nucleic acid as claimed in any of Claims 1 to 5 or 30 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 129. Use of an expression vector as claimed in any of Claims 6, 7 or 31 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
 - 130. Use of an expression vector as claimed in any of Claims 6, 7 or 31 in the preparation of

medicament for treating a tumor.

5

131. Use of an expression vector as claimed in any of Claims 6, 7 or 31 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.

- 132. Use of a host cell as claimed in any of Claims 8, 9, 32, or 33 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 133. Use of a host cell as claimed in any of Claims 8, 9, 32 or 33 in the preparation of a medicament for treating a tumor.
- 134. Use of a host cell as claimed in any of Claims 8, 9, 32 or 33 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.

135. Use of a polypeptide as claimed in any of Claims 11 to 14 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.

- 136. Use of a polypeptide as claimed in any of Claims 11 to 14 in the preparation of a medicament for treating a tumor.
- 137. Use of a polypeptide as claimed in any of Claims 11 to 14 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.

5

10

15

20

25

- 138. Use of an antibody as claimed in any of Claims 15 to 29 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 139. Use of an antibody as claimed in any of Claims 15 to 29 in the preparation of a medicament for treating a tumor.
- 140. Use of an antibody as claimed in any of Claims 15 to 29 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 141. Use of an oligopeptide as claimed in any of Claims 35 to 44 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 142. Use of an oligopeptide as claimed in any of Claims 35 to 44 in the preparation of a medicament for treating a tumor.
- 143. Use of an oligopeptide as claimed in any of Claims 35 to 44 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 144. Use of a TAT binding organic molecule as claimed in any of Claims 45 to 54 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 145. Use of a TAT binding organic molecule as claimed in any of Claims 45 to 54 in the preparation of a medicament for treating a tumor.
- 146. Use of a TAT binding organic molecule as claimed in any of Claims 45 to 54 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 147. Use of a composition of matter as claimed in any of Claims 55 or 56 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 148. Use of a composition of matter as claimed in any of Claims 55 or 56 in the preparation of a medicament for treating a tumor.
- 149. Use of a composition of matter as claimed in any of Claims 55 or 56 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 150. Use of an article of manufacture as claimed in any of Claims 57 or 58 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 151. Use of an article of manufacture as claimed in any of Claims 57 or 58 in the preparation of a medicament for treating a tumor.

152. Use of an article of manufacture as claimed in any of Claims 57 or 58 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.

- 153. A method for inhibiting the growth of a cell, wherein the growth of said cell is at least in part dependent upon a growth potentiating effect of a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);

5

10

15

20

25

- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising contacting said protein with an antibody, oligopeptide or organic molecule that binds to said protein, there by inhibiting the growth of said cell.
 - 154. The method of Claim 153, wherein said cell is a cancer cell.
 - 155. The method of Claim 153, wherein said protein is expressed by said cell.
- 156. The method of Claim 153, wherein the binding of said antibody, oligopeptide or organic molecule to said protein antagonizes a cell growth-potentiating activity of said protein.
- 157. The method of Claim 153, wherein the binding of said antibody, oligopeptide or organic molecule to said protein induces the death of said cell.
 - 158. The method of Claim 153, wherein said antibody is a monoclonal antibody.
 - 159. The method of Claim 153, wherein said antibody is an antibody fragment.
 - 160. The method of Claim 153, wherein said antibody is a chimeric or a humanized antibody.
- 161. The method of Claim 153, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent.
 - 162. The method of Claim 153, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent.
- 163. The method of Claim 162, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 164. The method of Claim 162, wherein the cytotoxic agent is a toxin.
 - 165. The method of Claim 164, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 166. The method of Claim 164, wherein the toxin is a maytansinoid.
- 35 167. The method of Claim 153, wherein said antibody is produced in bacteria.
 - 168. The method of Claim 153, wherein said antibody is produced in CHO cells.

169. The method of Claim 153, wherein said protein has:

5

10

15

20

25

- (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 170. A method of therapeutically treating a tumor in a mammal, wherein the growth of said tumor is at least in part dependent upon a growth potentiating effect of a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising contacting said protein with an antibody, oligopeptide or organic molecule that binds to said protein, thereby effectively treating said tumor.
 - 171. The method of Claim 170, wherein said protein is expressed by cells of said tumor.
- 172. The method of Claim 170, wherein the binding of said antibody, oligopeptide or organic molecule to said protein antagonizes a cell growth-potentiating activity of said protein.
 - 173. The method of Claim 170, wherein said antibody is a monoclonal antibody.
 - 174. The method of Claim 170, wherein said antibody is an antibody fragment.
 - 175. The method of Claim 170, wherein said antibody is a chimeric or a humanized antibody.
- 176. The method of Claim 170, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent.
- The method of Claim 170, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent.

178. The method of Claim 177, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.

- 179. The method of Claim 177, wherein the cytotoxic agent is a toxin.
- 180. The method of Claim 179, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.

5

- 181. The method of Claim 179, wherein the toxin is a maytansinoid.
- 182. The method of Claim 170, wherein said antibody is produced in bacteria.
- 183. The method of Claim 170, wherein said antibody is produced in CHO cells.
- 184. The method of Claim 170, wherein said protein has:
- (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);

10

- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).

1/6881 FIGURE 1

PCT/US2003/028547

2/6881 FIGURE 2

FIGURE 3

CAAGCTCATGACTCACAATGGCCTATTTAGGCCCATACCCTACGTCACGGCAGCCTCCGCAGATGAGCCTACTGC
CTCACAACAGCCTCCACAGGCACAGCTCCATCGTTACAATGGCCTCTTTAGACCCAGCTCCTGCCTCCCAGCCTT
CTCTCCAGGCTCTGAACTTTCTCAGGTCTCCCTCTGTTGTCCAAGGCTGGAGTGTAGTAGTGCTATCGCAGCTGA
CTGCAGCCTCAACCTTCCAGGCTGAAGCGATCCTCCCACCTCCACCTCCCACGTGGCTGAGACTACAGGTGCTTG
CCACTATGCCCAACTAACATTTGGAATTTTCGTATACGTGGATTCCAGAGGGGTGACAGCGAAACGTGGGACCAT
TCAGTTGCAGGAAAACAAGCTTAACACGCCCACTAATTCTACATTATGCTCCTACCTCCCGGCAGCCTCTCCAGG
CCCAGAACTTTCTCCAGTCAGCCCTCTACAGACCAAGCTCATGACTCACAATG

4/6881 FIGURE 4

CGTCGGCCCCCGGCCCCCAGCAGCCTCCAAAGCCCTGTGACTCACAGCCCTGCTTCCACGGGGGGACCTGCCAG GGCGCCCTGTGCCGGCCTTCGAGGGCCGCTCCTTCCTGGCCTTCCCCACTCTCCGCGCCTACCACACGCTGCGC CTGGCACTGGAATTCCGGGCGCTGGAGCCTCAGGGGCTGCTGCTGCAATGGCAACGCCCGGGGCAAGGACTTC CTGGCATTGGCGCTGCTAGATGGCCGCGTGCAGCTCAGGTTTGACACAGGTTCGGGGCCGGCGGTGCTGACCAGT GCCGTGCCGGTAGAGCCGGGCCAGTGGCACCGCCTGGAGCTGTCCCGGCACTGGCGCCCGGGGCACCCTCTCGGTG GATGGTGAGACCCCTGTTCTGGGCGAGAGTCCCAGTGGCACCGACGGCCTCAACCTGGACACAGACCTCTTTGTG GGCGGCGTACCCGAGGACCAGGCTGCCGTGGCGCTGGAGCGGACCTTCGTGGGCGCCCGGCCTGAGGGGGTGCATC CGTTTGCTGGACGTCAACAACCAGCGCCTGGAGCTTGGCATTGGGCCGGGGGCTGCCACCCGAGGCTCTGGCGTG GGCAAGTGCGGGGACCACCCCTGCCCAACCCCTGCCATGGCGGGGCCCCATGCCAGAACCTGGAGGCTGGA $\verb|CCCTGCCATGGGGCGCCCCTGCCGTGTGCCCGAGGGTGGTGCTCAGTGCGAGTGCCCCTGGGGCGTGAG| \\$ $\tt CTGGAGCTGAGAGGCCTGCACACCTTTGCACGGGACCTGGGGGGAGAAGATGGCGCTGGAGGTCGTGTTCCTGGCA$ $\tt CTGGGAGCCTGGACCAGGGTCTCACTGGAGCGAAACGGCCGCAAGGGTGCCCTGCGTGTGGGCGACGGCCCCCGT$ GTGTTGGGGGGGGTCCCGGCACACCGTCCTCAACCTGAAGGAGCCGCTCTACGTAGGGGGGCGCTCCCGAC TTCAGCAAGCTGGCCCGTGCTGCCGTGTCCTCTGGCTTCGACGGTGCCATCCAGCTGGTCTCCCTCGGAGGC CGCCAGCTGCTGACCCCGGAGCACGTGCTGCGGCAGGTGGACGTCACGTCCTTTGCAGGTCACCCCTGCACCCGG GGATTCTCAGGACCGCACTGCGAGAAGGGGCTGGTGGAGAAGTCAGCGGGGGACGTGGATACCTTGGCCTTTGAC GGGCGGACCTTTGTCGAGTACCTCAACGCTGTGACCGAGAGCGAGAGGCACTGCAGAGCAACCACTTTGAACTG AGCCTGCGCACTGAGGCCACGCAGGGGCTGGTGCTCTGGAGTGGCAAGGCCACGGAGCGGGCAGACTATGTGGCA CTGGCCATTGTGGACGGCACCTGCAACTGAGCTACAACCTGGGCTCCCAGCCCGTGGTGCTGCGTTCCACCGTG GAGGCCCCTGTGACCGGCTCCCCCGCTGGGCGCCACGCAGCTGGACACTGATGGAGCCCTGTGGCTTGGGGGC CTGCCGGAGCTGCCCGTGGGCCCAGCACTGCCCAAGGCCTACGGCACAGGCTTTGTGGGCTGCTTGCGGGACGTG GTGGTGGGCCGGCACCCGCTGCACCTGGAGGAGGACGCCGTCACCAAGCCAGAGCTGCGGCCCTGCCCCACCCCA TGAGCTGGCACCAGAGCCCCGCCGCCCGCTGTAATTATTTTCTATTTTTGTAAACTTGTTGCTTTTTGATATGATT CCTAGTGCCGAGGGATGGACAGGCGAGGTGGCAGCGTGGAGGGCTCGGCGTGGATGGCAGCCTCAGGACACAC CCCTGCCTCAAGGTGCTGAGCCCCCGCCTTGCACTGCGCCCACGGTGTCCCCGCCGGGAAGCAGCCCGG CTCCTGAATCACCCTCGCTCCGTCAGGCGGGACTCGTGTCCCAGAGAGGGAAGGGGCTGCTGAGGTCTGATGGGGC $\tt CTGCCTCGGCCTCCTGCGCCAATACTGTGACTTCCAAACAATGTTACTGCTGGGCACAGCTCTGCGTTGCTCCCG$ TGCTGCCTGCGCCAGCCCCAGGCTGCTGAGGAGCCAGAGCCAGGCCCGATCTGGGTGTCCTGACCCTCAG $\tt CTGGCCCTGCCAGCCACCCTGGACATGACCGTATCCCTCTGCCACACCCCAGGCCCTGCGAGGGGCTATCGAGA$ TGTGTTGATTTTATTTGACCCCTGGAGTGGTGGGTCTCATCTTTCCCATCTCGCCTGAGAGCGGCTGAGGGCTGC GACCAAGGTCAAGGGGCAGGTGCAGAGGTGGCAGGGATGGCTCCGAAGCCAGAAATGCCTTAAACTGCAACGTCC CGTCCCTTCCCCACCCCATCCCATCCCCACCCCAGCCCAGCCCAGTCCTCCTAGGAGCAGGACCCGATGAAG CGGGCGGCGGGGGGGGGGGGGGGGGTGTTACTAACTCTAGTATGTTTCTGTGTCAATCGCTGTGAAATAAAGTCT GAAAACTTT

5/6881 FIGURE 5

MLNSSLMRITLRNLEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCKKSPCPSVVA PVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSADGLTASCLCPATCRGAPEG ${\tt TVCGSDGADYPGECQLLRRACARQENVFKKFDGPCDPCQGALPDPSRSCRVNPRTRRPEMLLRPESCPARQAPVC}$ GDDGVTYENDCVMGRSGAARGLLLQKVRSGQCQGRDQCPEPCRFNAVCLSRRGRPRCSCDRVTCDGAYRPVCAQD GRTYDSDCWRQQAECRQQRAIPSKHQGPCDQAPSPCLGVQCAFGATCAVKNGQAACECLQACSSLYDPVCGSDGV TYGSACELEATACTLGREIQVARKGPCDRCGQCRFGALCEAETGRCVCPSECVALAQPVCGSDGHTYPSECMLHV HACTHQISLHVASAGPCETCGDAVCAFGAVCSAGQCVCPRCEHPPPGPVCGSDGVTYGSACELREAACLQQTQIE EARAGPCEQAECGSGGSGSGEDGDCEQELCRQRGGIWDEDSEDGPCVCDFSCQSVPGSPVCGSDGVTYSTECELK ${\tt KARCESQRGLYVAAQGACRGPTFAPLPPVAPLHCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHGSYGGTCDP}$ $\verb|ATGQCSCRPGVGGLRCDRCEPGFWNFRGIVTDGRSGCTPCSCDPQGAVRDDCEQMTGLCSCKPGVAGPKCGQCPD| \\$ GRALGPAGCEADASAPATCAEMRCEFGARCVEESGSAHCVCPMLTCPEANATKVCGSDGVTYGNECQLKTIACRQ GLQISIQSLGPCQEAVAPSTHPTSASVTVTTPGLLLSQALPAPPGALPLAPSSTAHSQTTPPPSSRPRTTASVPR TTVWPVLTVPPTAPSPAPSLVASAFGESGSTDGSSDEELSGDQEASGGGSGGLEPLEGSSVATPGPPVERASCYN SALGCCSDGKTPSLDAEGSNCPATKVFQGVLELEGVEGQELFYTPEMADPKSELFGETARSIESTLDDLFRNSDV KKDFRSVRLRDLGPGKSVRAIVDVHFDPTTAFRAPDVARALLRQIQVSRRRSLGVRRPLQEHVRFMDFDWFPAFI TGATSGAIAAGATARATTASRLPSSAVTPRAPHPSHTSQPVAKTTAAPTTRRPPTTAPSRVPGRRPPAPQQPPKP CDSQPCFHGGTCQDWALGGGFTCSCPAGRGGAVCEKVLGAPVPAFEGRSFLAFPTLRAYHTLRLALEFRALEPQG LLLYNGNARGKDFLALALLDGRVQLRFDTGSGPAVLTSAVPVEPGQWHRLELSRHWRRGTLSVDGETPVLGESPS ${\tt GTDGLNLDTDLFVGGVPEDQAAVALERTFVGAGLRGCIRLLDVNNQRLELGIGPGAATRGSGVGKCGDHPCLPNP}$ $\verb|CHGGAPCQNLEAGRFHCQCPPGRVGPTCADEKSPCQPNPCHGAAPCRVLPEGGAQCECPLGREGTFCQTASGQDG|\\$ ${\tt SGPFLADFNGFSHLELRGLHTFARDLGEKMALEVVFLARGPSGLLLYNGQKTDGKGDFVSLALRDRRLEFRYDLG}$ KGAAVIRSREPVTLGAWTRVSLERNGRKGALRVGDGPRVLGESPVPHTVLNLKEPLYVGGAPDFSKLARAAAVSS GFDGAIQLVSLGGRQLLTPEHVLRQVDVTSFAGHPCTRASGHPCLNGASCVPREAAYVCLCPGGFSGPHCEKGLV EKSAGDVDTLAFDGRTFVEYLNAVTESEKALQSNHFELSLRTEATQGLVLWSGKATERADYVALAIVDGHLQLSY NLGSQPVVLRSTVPVNTNRWLRVVAHREQREGSLQVGNEAPVTGSSPLGATQLDTDGALWLGGLPELPVGPALPK AYGTGFVGCLRDVVVGRHPLHLLEDAVTKPELRPCPTP

PCT/US2003/028547

FIGURE 6

ACAGAGACCCCGAGTTCTACAAGTTCCTGCAGGAGAATGACCAGAGCCTGCTAAACTTCAGCGACTCGGACAGCT ${\tt AGGAAGGAGAAGATGGGGACAGAGTCCCCAGAGGGCTGAAGGGGAAGAAGAATTCTGTTCCTGTGACCGTCGCCA}$ TGGTTGAGAGTGGAAGCAGCCAAAGCAACGCCTCACTCCAAAGCTGTTCCATGAAGTGGTACAGGCGTTCC CATTCAATGCTCTGGGTTACCTTCTGCATCAGAGACCTCATTGGCTGTCTCCAGAAGCTGCTGTTTGGAAAGGTGG ${\tt CAAAGGATAGCAGCAGCAGCCGTCCAGCAGCCGCTCTGGGGGAAGCTTCGTGTGGACATCAAGGCTT}$ ACCTGGGCTCGGCCATACAGCTGGTGTCCTGTCTGTCGGAGACGACGGTGTTGGCGGCCGTGCTGCGGCACATCA GCGTGCTGGTGCCCTGCTTCCTGACCTTCCCCAAGCAGTGCCGCATGCTGCTCAAGAGAATGGTGATCGTATGGA GCACTGGGGAAGAGTCTCTGCGGGTGCTGGCTTTCCTGGTCCTCAGCAGAGTCTGCCGGCACAAGAAGGACACTT TCCTTGGCCCCGTCCTCAAGCAAATGTACATCACGTATGTGAGGAACTGCAAGTTCACCTCGCCTGGTGCCCTCC $\verb|CCTTCATCAGTTCATGCAGTGGACCTTGACGGAGCTGGTGGCCTGGAGCCGGGTGTGGCCTACCAGCACGCCT| \\$ TCCTCTACATCCGCCAGCTCGCCATACACCTGCGCAACGCCATGACCACTCGCAAGAAGGAAACATACCAGTCTG TGTACAACTGGCAGTATGTGCACTGCCTCTTCCTGTGGTGCCGGGTCCTGAGCACTGCGGGCCCCAGCGAAGCCC CGCTGCGAATGCACTCCGTGCCCTGACGCTGCTCTCGGGGGGCCTCGGGGGCCTTCATCCCGGTGCTGCCTT TCATCCTGGAGATGTTCCAGCAGGTCGACTTCAACAGGAAGCCAGGGCGCATGAGCTCCAAGCCCATCAACTTCT CCGTGATCCTGAAGCTGTCCAATGTCAACCTGCAGGAGAAGGCGTACCGGGACGGCCTGGTGGAGCAGCTGTACG ACCTCACCCTGGAGTACCTGCACAGCCAGGCACACTGCATCGGCTTCCCGGAGCTGGTGCTGCCTGTGGTCCTGC AGCTGAAGTCGTTCCTCCGGGAGTGCAAGGTGGCCAACTACTGCCGGCAGGTGCAGCAGCTGCTTGGGAAGGTTC AGGAGAACTCGGCATACATCTGCAGCCGCCAGAGGGTTTCCTTCGGCGTCTCTGAGCAGCAGCAGTGGAAG CCTGGGAGAAGCTGACCCGGGAAGAGGGGACACCCCTGACCTTGTACTACAGCCACTGGCGCAAGCTGCGTGACC TGGCTGACAGGAAGGATGAGGACAGGAAGCAATTTAAAGACCTCTTTGACCTGAACAGCTCTGAAGAGGACGACA CCGAGGGATTCTCGGAGAGAGGGGATACTGAGGCCCCTGAGCACTCGGCATGGGGTGGAAGACGATGAAGAGGACG AGGAGGAGGGCGAGGACAGCAGCAACTCGGAGGATGGAGACCCAGACGCAGAGGCGGGGCTGGCCCCTGGGG AGCTGCAGCAGCTGGCCCAGGGGCCGGAGGACGAGCTGGAGGATCTGCAGCTCTCAGAGGACGACTGAGGCAGCC CATCTGGGGGGCCTGTAGGGCTGCCGGGCTGGTGGCCAGTGTTTCCACCTCCCTGGCAGTCAGGCCTAGAGGCT CGTATCGAGAGCTGGGCTGGGCTGGTGTGGCTGCTGAAGCCCCACAGCTGTGGGCTGCTGAAGTCAGCTC CGCGGGGGAGCTGACCTGACGTCAGCAGACCGAGACCAGTCCCAGTTCCAGGGGGAGGCCTGCAGGCCCCTGGC CCCTTCCACCACCTCTGCCCTCCGTCTGCAGACCTCGTCCATCTGCACCAGGCTCTGCCTTCACTCCCCAAGTC TTTGAAAATTTTGTTCCTTTCCAAAGTCACATTTTCTTTTAAAATTTTTTGTTTTGCATCCGAAACCGAAAGA AATAAAGCGGTGGGAGGCAGGGCCATTGTGTTG

7/6881 **FIGURE 7**

MAAAGSRKRRLAELTVDEFLASGFDSESESESENSPQAETREAREAARSPDKPGGSPSASRRKGRASEHKDQLSR LKDRDPEFYKFLQENDQSLLNFSDSDSSEEEEGPFHSLPDVLEEASEEEDGAEEGEDGDRVPRGLKGKKNSVPVT VAMVERWKQAAKQRLTPKLFHEVVQAFRAAVATTRGDQESAEANKFQVTDSAAFNALVTFCIRDLIGCLQKLLFG KVAKDSSRMLQPSSSPLWGKLRVDIKAYLGSAIQLVSCLSETTVLAAVLRHISVLVPCFLTFPKQCRMLLKRMVI VWSTGEESLRVLAFLVLSRVCRHKKDTFLGPVLKQMYITYVRNCKFTSPGALPFISFMQWTLTELLALEPGVAYQ HAFLYIRQLAIHLRNAMTTRKKETYQSVYNWQYVHCLFLWCRVLSTAGPSEALQPLVYPLAQVIIGCIKLIPTAR FYPLRMHCIRALTLLSGSSGAFIPVLPFILEMFQQVDFNRKPGRMSSKPINFSVILKLSNVNLQEKAYRDGLVEQ LYDLTLEYLHSQAHCIGFPELVLPVVLQLKSFLRECKVANYCRQVQQLLGKVQENSAYICSRRQRVSFGVSEQQA VEAWEKLTREEGTPLTLYYSHWRKLRDREIQLEISGKERLEDLNFPEIKRRKMADRKDEDRKQFKDLFDLNSSEE DDTEGFSERGILRPLSTRHGVEDDEEDEEGEEDSNSEDGDPDAEAGLAPGELQQLAQGPEDELEDLQLSEDD