LM-115, Suites et intégrales, MIME 24.1, second semestre 2010-2011 Université Pierre et Marie Curie

Corrigé contrôle continu numéro 3

Exercice 1 Question de cours.

Tout est dans le cours.

Exercice 2

Soit $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}, \ x \mapsto 4 - \ln(x)$.

1) Montrer que $[2, e^2]$ est stable par f (rappel : $e \approx 2,71$).

f est clairement décroissante car le logarithme est croissant. Par conséquent, pour tout $2 \le x \le e^2$ on a $f(e^2) \le f(x) \le f(2)$ et donc $f([2,e^2]) \subset [f(e^2),f(2)]$. D'autre part, $[f(e^2),f(2)] \subset f([2,e^2])$ d'après le théorème de valeurs intermédiaires (f est continue). Finalement $f([2,e^2]) = [f(e^2),f(2)]$. On a $f(e^2) = 2$ et $f(2) = 4 - \ln(2) \le 4 \le e^2$. Ces deux inclusions montrent que $[f([2,e^2]) = [f(e^2),f(2)] \subset [2,e^2]$, en d'autres termes l'intervalle $[2,e^2]$ est stable par f.

- 2) Montrer que l'équation f(x) = x admet une unique solution que l'on notera l et montrer que $2 < l < e^2$.
- Posons $g: \mathbb{R}_+^* \longrightarrow \mathbb{R}$, $x \mapsto 4 \ln(x) x$. g est dérivable sur $]0, +\infty[$ et pour tout x > 0, g'(x) = -1/x x < 0. g est donc strictement décroissante sur \mathbb{R} . En outre g est continue donc, d'après le théorème de la bijection, g est une bijection de \mathbb{R}_+^* sur $g(\mathbb{R}_+^*) =]\lim_{x \mapsto 0} g(x)$, $\lim_{x \mapsto +\infty} g(x) = [-\infty, +\infty[$.
- Or $0 \in]-\infty, +\infty[$ donc il existe un unique $l \in \mathbb{R}_+^*$ tel que g(l)=0 c'est-à-dire f(l)=l. Par ailleurs on a $g(2)=2-\ln(2)>0$ donc par décroissance de g on a nécessairement l>2 et de même $l< e^2$ car $g(e^2)=2-e^2<0$.
- 3) Montrer qu'il existe une constante $c \in]0,1[$ (que l'on déterminera) telle que $\forall (x,y) \in [2,e^2]^2, |f(x)-f(y)| \leq c|x-y|.$ On applique l'inégalité des accroissements finis sur l'intervalle $[2,e^2]$. Le théorème s'applique car, sur cet intervalle, f est dérivable et sa dérivée est bornée.
- En effet, pour tout $x \in [2, e^2]$, on a f'(x) = -1/x. Donc pour tout $x \in [2, e^2]$, $|f'(x)| = 1/x \le 1/2$. Finalement on obtient le résultat cherché avec c = 1/2.
- 4) On définit la suite $(u_n)_{n\geq 0}$ par la donnée de $u_0\in [2,e^2]$ et la relation $u_{n+1}=4-\ln(u_n)$ pour tout entier naturel n.
- a) Montrer que la suite est bien définie et que $u_n \in [2, e^2]$ pour tout entier naturel n.

La suite $(u_n)_{n\geq 0}$ est bien définie car l'intervalle $[2, e^2]$ est stable et donc en particulier, aucun terme de la suite ne peut "sortir" de l'ensemble de définition de f, \mathbb{R}_+^* . Une rapide récurrence récurrence montre que pour tout $n\geq 0$, $u_n\in [2, e^2]$.

b) Montrer par récurrence (très proprement) que $\forall n \in \mathbb{N}$, $|u_n - l| \leq 7c^n$.

Pour tout entier naturel n on définit $\mathcal{P}(n)$: " $|u_n - l| \leq 7c^n$ ".

Initialisation: (au rang n=0)

On sait que $u_0 \in [2, e^2]$ et $l \in [2, e^2]$ donc $|u_0 - l| \le e^2 - 2 \le 3^2 - 2 = 7$. La proposition $\mathcal{P}(0)$ est donc vraie.

Hérédité : Soit n un entier naturel, supposons $\mathcal{P}(n)$ vraie. On a

$$|u_{n+1} - l| = |f(u_n) - f(l)|$$

 $\leq c|u_n - l|$ (d'après la question 3 et $(u_n, l) \in [2, e^2]^2$)
 $\leq c7c^n$ (d'après l'hypothèse de récurrence)
 $= 7c^{n+1}$.

Donc $\mathcal{P}(n+1)$ est vraie.

Conclusion : d'après le théorème de récurrence $\mathcal{P}(n)$ est vraie pour tout entier naturel n.

c) Etudier le comportement asymtotique de la suite $(u_n)_{n\geq 0}$. On a |c|<1 donc $7c^n\xrightarrow[n\mapsto +\infty]{}0$ et donc $u_n\xrightarrow[n\mapsto +\infty]{}l$.

Exercice 3 Calculs d'intégrales.

1. $I = \int_0^1 \frac{\ln(1+t)}{1+t} dt$. I existe car pour tout $t \in [0,1]$ l'expression $\frac{\ln(1+t)}{1+t}$ définit une fonction continue sur [0,1] donc intégrable au sens de Riemann.

$$I = \left[\frac{1}{2} (\ln(1+t))^2\right]_0^1$$
$$= \frac{1}{2} (\ln 2)^2.$$

2. On pose $J=\int_0^1 x^2 e^{-x} dx$. J existe car la fonction intégrée $f:[0,1]\to$, $x\mapsto x^2 e^{-x}$ est continue.

L'idée est de faire disparaître le terme x^2 par dérivation, l'exponentielle ne bougera pas... On effectue une première intégration par parties avec les expressions suivantes (qui définissent bien des applications C^1).

$$u' = e^{-x}, \ v = x^2 \Rightarrow u = -e^{-x}, \ v' = 2x.$$

$$J = \left[-x^2 e^{-x} \right]_0^1 - \int_0^1 (-2x e^{-x} dx)$$
$$= -e^{-1} + \int_0^1 (2x e^{-x} dx)$$

De la même manière on calcule cette nouvelle intégrale par intégration par parties.

$$u' = e^{-x}, \ v = 2x \Rightarrow u = -e^{-x}, \ v' = 2.$$

$$J = -e^{-1} + \left[-2x^2 e^{-x} \right]_0^1 - \int_0^1 (-2e^{-x} dx)$$
$$= -3e^{-1} + \left[-2e^{-x} \right]_0^1$$
$$= -5e^{-1} + 2.$$