

GUÍA DE ELECTRODOS PARA SOLDAR WEST ARCO

WEST ARCO, cuenta con un metal de aporte para cada necesidad; en caso de no encontrar el indicado, consulte con nuestro departamento técnico ó en **www.westarco.com**

ac : Corriente Alterna

dcep: Corriente directa electrodo al positivo dcen: Corriente directa electrodo al negativo

	IVA COMPANIA I		tecnico o en www.westarco.com							dcen: Corriente directa electrodo al negativo						
										Propiedades Mecánicas Típicas						
Especificación	Clasificación AWS	Nombre WEST ARCO	Diár mm	metro (in)	Longitud (mm)	Amperaje recomendado (A)	Posición para soldar	Tipo de Corriente	Caracteristicas y Aplicaciones	Composición Química Típica	Resistencia a la tracción ksi (MPa)	Límite de Fluencia ksi (MPa)	Elongación (%)	ranura	o Charpy en "V"	
DAR	E6010	XL 610	2.4 3.2 4.0 4.8	(3/32) (1/8) (5/32) (3/16)	350 350 350 450	50 -80 70-115 90-160 120-210	TODAS	dcep	Es un electrodo de alta penetración y rápida solidificación. Para soldar aceros de bajo carbono, lámina ordinaria y galvanizada, calderas, estructuras, tuberías de presión y acero fundido.		62 a 72 (427 - 496)	52 a 62 (359 - 427)	22 al 33	-29	27 a 100	
SOL! A5.1)	E6010	ZIP 10T	2.4 3.2 4.0 4.8	(1/8) (5/32) (3/16)	300 350 350 350	50-80 70-120 90-155 120-180	TODAS	dcep	Es un electrodo de muy buena penetración, con polvo de hierro, buena calidad radiográfica especialmente diseñado para oleoductos, gasoductos, construcciones navales, estructuras de acero y recipientes a presión principalmente.		62 a 72 (427 - 496)	52 a 62 (359 - 427)	22 al 33	-29	27 a 100	
PARA AWS	E6011	ACP 611SS	2.4 3.2 4.0 4.8	(5/32)	300 350 350 450	50-80 70-115 90-160 120-210	TODAS	ac ó dcep	Se emplea para soldar todo tipo de aceros de bajo carbono en tuberías, estructuras construcciones navales, recipientes a presión, etc., especialmente en pases de penetración Adecuado para soldar lámina galvanizada		63 a 74 (434 - 510)	52 a 60 (359 - 413)	27 al 35	-29	27 a 100	
	E6013	SUPER SW 613	2.4 2.4 3.2 4.0	(3/32) (1/8)	300 350 350 350	60-100 60-100 90-130 120-160	TODAS	ac, dcep ó dcen	Electrodo de tipo europeo de fácil manipulación, desarrollado para toda clase de soldaduras que requieran poca penetración. Se emplea para construcciones de acero en general carpinterías metálicas con lámina delgada, fabricación de puertas, ventanas, rejas, ductos ensamblaje de carrocerías y ornamentación en general.	,	60 a 74 (413 - 510)	48 a 62 (331 - 427)	22 al 28	20	40 a 110	
REVESTIDOS L CARBONO	E6013	SW 613	2.4 3.2 4.0		300 350 350 350	50-90 80-120 110-160 70 -110	TODAS	ac, dcep ó dcen	Carrocerías, muebles metálicos, ductos de aire acondicionado, rejas, ventanas y ornamentación en general. Electrodo de penetración media y alta rata de deposición. Construcción de maquinaria		60 a 74 (413 - 510)	48 a 65 (331 - 448)	22 al 29	20	50 a 110	
	E7014	ZIP 14	3.2 4.0 4.8	(1/8) (5/32) (3/16)	350 350 450	110-150 120-200 175-275	TODAS	ac, dcep ó dcen	marcos de máquinas, implementos agrícolas, trabajos de ornamentación, tubería, recipientes de presión y sus accesorios. Equipos de ferrocarril, construcciones navales y soldadura de aceros estructurales. Electrodo para soldar en posición plana y horizontal con altísima rata de deposición. Puentes		70 a 80 (483 - 552)	58 a 68 (400 - 469)	22 al 28	20	50 a 100	
TRODOS CEROS A	E7024	ZIP 24	4.0 4.8	(5/32) (3/16)	350 350 450	140-180 180-250 225-300	PLANA Y HORIZONTAL EN FILETES	ac, dcep ó dcen	y equipos pesados, equipo de construcción, implementos agrícolas, tanques de almacenamiento de petróleo y sus derivados, maquinaria de minería, carros de ferrocarril y construcción naval y en general para aceros de bajo contenido de carbono.		70 a 80 (483 - 552)	60 a 70 (414 - 483)	22 al 25	20	45 a 100	
O	E7018-1	WIZ 18	2.4 3.2 4.0 4.8	(3/16)	300 350 350 350	70-100 100-145 135-200 170-270	TODAS, excepto progresión descendente	ac ó dcep	Se utiliza para soldaduras de acero al carbono de hasta 70.000 psi de resistencia a la tracción, en aplicaciones en estructuras, tuberías y tanques a presión especialmente cuando se requiere alta resistencia al impacto a bajas temperaturas.	C: 0.05 - 0.10% Si: 0.35 - 0.50% S ≤ 0.035% Mn: 1.20 - 1.50% P ≤ 0.035%	70 a 80 (483 - 552)	58 a 70 (400 - 483)	22 al 36	-29 -46	100 60	
ELE	E7018	WIZ 18 S	2.4 3.2 4.0 4.8 6.4	(1/8) (5/32) (3/16)	300 350 350 350 450	70-100 100-145 135-200 170-270 240-400	TODAS	ac ó dcep	Se utiliza para soldaduras de acero al carbono de hasta 70.000 psi de resistencia a la tracción, en aplicaciones en estructuras, tuberías y tanques a presión, calderas, vagones de ferrocarril, etc.	C: 0.05 - 0.10% Si: 0.40 - 0.65% S ≤ 0.035% Mn: 1.00 - 1.40% P≤ 0.035%	72 a 84 (496 - 579)	62 a 72 (427 - 496)	24 al 36	-29	70	
	E7010-A1	ZIP 710 A1	2.4 3.2 4.0	(1/8) (5/32)	_	50-80 90-120 120-155	TODAS	dcep	Electrodo de alta penetración y alta rata de deposición para tubería, tanques de alta presión, calderas y aplicaciones a las temperaturas de servicio típicas de los aceros con 0.5% de molibdeno. Aceros de tipo API 5L grados X42, X46 y X52.	C: 0.05 - 0.12% Mo: 0.45 - 0.60% S ≤ 0.03% Mn: 0.30 - 0.55% Si: 0.06 - 0.20%	70 a 80 (483 - 552)	58 a 68 (400 - 469)	22 al 32	o	60 a 110	
	E8010 G	XL 810 G	3.2	(3/16) (1/8) (5/32)	350 350 350	150-180 90-120 120-155	TODAS	dcep	Electrodo de alta penetración recomendado especialmente para oleoductos y gasoductos en posición vertical descendente. Tuberías y accesorios en aceros API 5L grados X56, X60 y X65 y otros aceros de resistencia a la tracción mínima especificada de hasta 80 ksi.	P ≤ 0.035% C: 0.18% Si: 0.20% Ni: 0.82% Mn: 0.70% P: 0.016%	80 a 92	67 a 77	22 al 29	-10	62 a 100	
«			4.8	(3/16)	350 350	150-180			Electrodo de alta penetración diseñado especialmente para oleoductos y gasoductos e	S: 0.013% Mo: 0.10% Cr: 0.10%	(552 - 634)	(462 - 531)		-29	30 a 70	
	E9010 G	XL 910 G	4.8	(3/16)	350	150-180	TODAS	dcep	posición vertical descendente. Tuberías de acero API 5L -X65 o X70 y otros aceros similare de resistencia a la tracción mínima especificada de hasta 90 ksi	S Ni: 0.29% Mn: 0.76% P: 0.015% S: 0.012% Mo: 0.32% Cr: 0.10%	90 a 100 (621 - 689)	77 a 87 (531 - 600)	18 al 24	0	30 a 100	
	E7018-A1	WIZ 718 A1	3.2	(5/32)	300 350 350 350	70-100 100-145 135-200 170-270	TODAS	ac ó dcep	Se usa en soldadura de aceros ASTM A-250, A-369 grado FPI, A-336 clase F1 y otros cor contenido de molibdeno de 0.5% empleados a temperaturas de servicio intermedias.	C: 0.03 - 0.07% Mo: 0.40 - 0.60% S ≤ 0.03% Mn: 0.60 - 0.90% Si: 0.30 - 0.70% P ≤ 0.03%	77 a 85 (531 - 586)	63 a 72 (434 - 496)	27 al 33			
	E7018 G	WIZ 18 G	-	(1/8) (5/32)	350 350	90-145 120-160	TODAS	ac ó dcep	Diseñado especialmente para la soldadura de tubería API 5L grados X60 y X65 cuando se requiere alta resistencia al impacto a temperaturas del orden de - 46°C.	C: 0.05% Mo: 0.2% S: 0.012% Mn: 1.4% P: 0.013% Si: 0.42%	77 (531)	65 (448)	27 al 33	-46	75	
	E7018- W1	WIZ 718 W1		(1/8)	350 350	100-145 135-200	TODAS	ac ó dcep	Se utiliza en aplicaciones donde se requiere especial resistencia a las condiciones atmosféricas en la soldadura de aceros ASTM A709 grado 50 W, A588, A242, A441, A572 grados 42 y 50 y aceros con contenido de cobre, cuya resistencia a la tracción no supere 70 ksi.	C ≤ 0.12% Si: 0.4 - 0.7% Ni: 0.2 - 0.4% Mn: 0.4 - 0.7% P ≤ 0.013% S ≤ 0.025% Cu: 0.3 - 0.6% Cr: 0.15 - 0.3%	70 a 82 (483 - 565)	57 a 70 (393 - 483)	25 al 30	-18	30 a 140	
SOLDAR S A5.5)	E8018-B1	WIZ 818 B1	3.2	(1/8)	350	100-145	TODAS	ac ó dcep	Se utiliza para soldar aceros de 0.5% cromo y 0.5% molibdeno tales como los ASTM, A-335 Grado P2, A-369 FP2, A-426 CP2, A-213 grado T2 y A-356 grado 5. También se puede usar para soldar otros aceros de baja aleación con resistencia a la tracción en el rango de 70 a 80 ksi (485 - 550 MPa)	$\begin{array}{c} \text{C: } 0.05 \text{ - } 0.12\% \\ \text{Si} \leq 0.80\% \\ \text{Cr: } 0.40 \text{ - } 0.65\% \\ \text{Mn} \leq 0.90\% \\ \text{P} \leq 0.03\% \\ \text{S} \leq 0.04\% \\ \text{Mo: } 0.40 \text{ - } 0.65\% \\ \end{array}$	80 a 90 (552 - 621)	67 a 77 (462 - 531)	22 al 32			
PARA N (AW	E8018-B2	WIZ 818 B2	3.2	(3/32) (1/8) (5/32)	300 350 350	70-100 100-145 135-200	TODAS	ac ó dcep	Trabajos de alta resistencia, partes expuestas a medianas temperaturas, se recomienda para los aceros ASTM A-335 P12, A-369 grados FP11 y FP12, A182 grados F11 y F12, A-217 Gi WC11 y similares.	C: $0.05 - 0.12\%$ Si $\leq 0.80\%$ Cr: $1.00 - 1.50\%$ Mn $\leq 0.90\%$ P $\leq 0.03\%$ S $\leq 0.04\%$ Mo: $0.40 - 0.65\%$	80 a 90 (552 - 621)	67 a 77 (462 - 531)	22 al 28			
os CIÓ	E8018-C1	WIZ 818 C1	3.2 4.0 4.8	(5/32)	350 350 350	100-145 135-200 170-270	TODAS, excepto progresión descendente	ac ó dcep	Es ampliamente usado en tanques y tuberías que operan a bajas temperaturas (-59°F) aceros que contengan 2% de Níquel y aceros ASTM A-203 grados A y B.	C: 0.12% Ni: 2.00 - 2.75% S ≤ 0.03% Mn ≤ 1.25% P: 0.03% Si: 0.80%	80 a 90 (552 - 621)	67 a 77 (462 - 531)	22 al 34	-59	50 a 130	
5 4	E8018-C2	WIZ 818 C2	3.2	(5/32)	300 350 350 350	70-100 100-145 135-200 170-270	TODAS	ac ó dcep	Para soldar aceros con 2.5 y 3.5% de Níquel. Se emplea en la fabricación de tanques tuberías y otras piezas que van a ser sometidas a temperaturas hasta de -70°C. Para aceros tales como el ASTM A-203 grados D, E y F.	C: 0.12%	80 a 90 (552 - 621)	67 a 77 (462 - 531)	24 al 34	-73	30 a 70	
\circ	E8018-C3	WIZ 818 C3	2.4 3.2		300 350 350	70-100 100-145 135-200	TODAS, excepto progresión descendente	ac ó dcep	Puede ser usado para soldar aceros ASTM A-148 grado 80-50, ASTM A588, ASTM A709 grado 50 y similares. Se utiliza también para aceros de resistencia hasta de 80 ksi, especialmente si debe trabajar a bajas temperaturas, hasta el orden de - 40°C.	$C \le 0.12\%$ $Si \le 0.80\%$ Ni: 0.80 - 1.10% Mn: 0.40 - 1.25% $P \le 0.03\%$ $S \le 0.03\%$	80 a 90 (552 - 621)	67 a 77 (462 - 531)	24 al 32	-40	30 a 100	
30D	E9018-B3	WIZ 918 B3	2.4	(3/16) (3/32) (1/8)	350 300 350	170-270 70-100 100-145	TODAS	ac ó dcep	Electrodo aleado al cromo molibdeno, lo cual le brinda una buena resistencia al "Creep". Se recomienda en aplicaciones tales como: ASTM A-182 Grado F-22, A-213 Grado T3b y otros aceros en piezas que van a trabajar a temperaturas de servicio elevadas.	Mn ≤ 0.90% P ≤ 0.03%	90 a 100 (621 - 689)	77 a 87 (531 - 600)	20 al 30			
	E9018-G	WIZ 918 G	3.2	(5/32) (1/8) (5/32)	350 350 350	135-200 100-145 135-200	TODAS, excepto progresión	ac ó dcep	Electrodo bajamente aleado con Niquel el cual le da al depósito buenas cualidades de resistencia al impacto a baja temperatura. Se recomienda aplicar en aquellos aceros cuya resistencia a la tracción sea hasta de 90.000 psi. Se puede trabajar en aceros fundidos de alteresistencia en conseguencia en aceros puede producer en tenta producer en tenta de servicio en aceros puede producer en tenta de la conseguencia de la conseguenci	Si ≤0.60% Ni: 1.70 - 2.30% Mn: 0.90 -1.25% P < 0.03%	90 a 100 (621 - 689)	77 a 87 (531 - 600)	20 al 30	-20	40 a 160	
	E9018-D1	WIZ 918 D1		(3/16)	350 350	170-270 100-145	descendente	006	alta resistencia mecánica, en aceros para plantas nucleares, etc. Especialmente adecuado para la unión de aceros manganeso-molibdeno como el AS	S ≤ 0.03% V ≤ 0.05% Mo: 0.10 - 0.30% C ≤ 0.12% Si ≤ 0.80%				-		
			4.0	(5/32)	350	135-200	TODAS		A302 grado B y en general aceros de bajo carbono o de baja aleación con resistencia a la tracción mínima especificada hasta de 90 ksi, con requisitos de resistencia al impacto a baja temperatura.	Ni ≤ 0.90% Mn: 1.0 - 1.75% P ≤ 0.03% S ≤ 0.03% Mo: 0.25 - 0.45%	90 a 105 (621 - 724)	77 a 95 (531 - 655)	24 al 32	-51	27 a 140	
	E11018-M	WIZ 1118 M	4.0	(1/8) (5/32) (3/16)	350 350 350	100-145 135-200 170-270	TODAS, excepto progresión descendente	ac ó dcep	Especial para soldar aceros de baja aleación y alta resistencia, como el HY-80. Soldadura que brinda alta resistencia al impacto en piezas sometidas a bajas temperaturas. Se usa en carcazas de molinos, palas mecánicas, estructuras de maquinaria, etc.	$\begin{array}{l} C \leq 0.10\% \\ \text{Ni: } 1.25 - 2.50\% \\ \text{Mo: } 0.25 - 0.50\% \\ \text{Mn: } 1.30 - 1.80\% \\ \text{Cr} \leq 0.40\% \\ \text{Si} \leq 0.60\% \end{array}$	110 a 120 (758 - 827)	98 a 110 (676 - 758)	20 al 30	-51	40 a 100	
	E308L-15	CROMARCO 308L - 15	4.0	(5/32) (3/16)	350 350	100-135 130-180	TODAS	dcep	El CROMARCO 308L-15 se usa para soldar aceros de las clases AISI 304 y 304L, en todas las posiciones, en especial en vertical ascendente.	C ≤ 0.04% Ni: 9.0 - 11.0% Si ≤ 0.75% Mn: 1.0 - 2.0% Cr: 18.0 - 21.0%	75 a 90 (517 - 621)		40 al 60			
	E308L-16	CROMARCO 308L - 16	\vdash	(3/32) (1/8)	300 350	40-70 70-100	TODAS, excepto progresión descendente	ac ó dcep	El CROMARCO 308L-16 se usa para soldar aceros inoxidables de las clases AISI 304 y 304L Puede emplearse también para la soldadura de aceros AISI 204, 301, 302, 308 y 308L.	C ≤ 0.04% Ni: 9.0 - 11.0% Si ≤ 0.90% Mn: 0.5 - 2.5% Cr: 18.0 - 21.0%	75 a 90 (517 - 621)		40 al 60			
	E309-16	CROMARCO 309 - 16		(1/8)	350	70-100	TODAS, excepto progresión descendente	ac ó dcep	Está diseñado para soldadura de aleaciones tipo 309, se usa en la unión de aceros al carbono con inoxidable. Tiene propiedades de resistencia a la corrosión a temperatura ambiente. Resiste la oxidación severa a alta temperatura. Es muy usado para unir aleaciones al 12% de cromo con aceros al carbono. Otra aplicación es la soldadura de Clad Steel, tipo AISI 304.	Ni: 12.00 - 14.00% Si ≤ 1.00%	80 a 96 (393 - 662)		30 al 45			
ELECTROD	E312-16	CROMARCO 312 - 16	-	(3/32)	300 350	40-70 70-100	TODAS, excepto progresión descendente	ac ó dcep	El Cromarco 312-16 se utiliza para la unión de aceros inoxidables con aceros al carbono y otros tipos de uniones disímiles. Se usa también como colchón para recubrimientos duros. En reconstrucción de dientes de engranajes, piñones, ejes, etc.	C ≤ 0.15% Ni: 8.0 - 10.5% Si ≤ 1.00% Mn: 0.5 - 2.5%	105 a 120 (724 - 827)		22 al 30			

ación			Diámetro	Longitus	Amperaje	Posición	Tipo do		Composición	Pro Resistencia	piedades	Mecánio	Resister	ncia
spacificación	Clasificación AWS	Nombre WEST ARCO	mm (in)	(mm)	recomendado (A)	para soldar	Corriente	Caracteristicas y Aplicaciones	Química Típica	a la tracción ksi (MPa)	Límite de Fluencia ksi (MPa)	Elongación (%)	impacto ranura e T en °C	en "V"
		CROMARCO	2.4 (3/32)	300	40-70	TODAS, excepto		Para soldar aceros inoxidables AISI 316 y 316L. La resistencia al "Pitting" hace esta aleación útil en la industria textil, de papel e industrias químicas.	C ≤ 0.04% Ni: 11.00 - 14.00% Mo: 2.00 - 3.00%	70 a 90		00 -1 50		
SOLDAR 45.4)		316L- 16	3.2 (1/8)	350	70-100	progresión descendente	dcep		Mo: 2.00 - 3.00% Mn: 0.50 - 2.50% Cr: 17.00 - 20.00% Si ≤ 1.00%	(483 - 621)		30 al 50		
SOLE A5.4)	E308L-16	CROMARCO	2.4 (3/32)	300	40-80	TODAS, excepto	ac ó	El Cromarco 308L-16 se usa para soldar aceros de clase AISI 304 y 304L. Puede emplearse también para la soldadura de aceros AISI 204, 301, 302, 308 y 308L.	C ≤ 0.04% Ni: 9.0 - 11.0%	75 a 90		05 -1 60		
	E300L-10	308L-16 PREMIUM	3.2 (1/8)	350	70-110	progresión descendente	dcep		Si ≤ 1.00% Mn: 0.50 - 2.50% Cr: 18.0 - 21.0%	(517 - 621)		35 al 60		
PARA (AWS	E309L-16	CROMARCO 309L-16 PREMIUM CROMARCO	2.4 (3/32)	300	40-80	TODAS,	,	Está diseñado para soldaduras de aleaciones tipo AISI 309L y 309. Se usa en la unión de aceros al carbono con inoxidable. Tiene propiedades de resistencia a la corrosión a	Ni: 12.0 - 14.0%	75 a 88				
			2.0 (4/0)	250	70-110	excepto progresión descendente	ac ó dcep	temperatura ambiente. Resiste la oxidación severa a alta temperatura. Es muy usado para uniones disímiles entre los aceros inoxidables y aceros al carbono o de baja aleación. Otra	Si ≤1.00% Mn: 0.5 - 2.5% Cr: 22.0 - 25.0%	(517 - 607)		30 al 48		
S REVESTIDOS INOXIDABLES			3.2 (1/8)	350		TODAS,	_	aplicación es la unión de soldadura Clad Steel, Tipo AISI 304L y 304. El Cromarco 312-16 se utiliza para la unión de aceros inoxidables con aceros al carbono y	C ≤ 0.15%		-			
	E312-16	312-16	2.4 (3/32)	300	40-80	excepto progresión descendente	ac ó dcep	otros tipos de uniones disímiles. Se usa también como colchón para recubrimientos duros. En reconstrucción de dientes de engranajes, piñones, ejes, etc.	Ni: 8.0 - 10.5% Si ≤ 1.00% Mn: 0.5 - 2.5%	105 a 120 (724 - 827)		22 al 30		
		PREMIUM CROMARCO	3.2 (1/8)	350	70-110			Para soldar aceros inoxidables AISI 316 y 316L. La resistencia al "Pitting" hace esta aleación	Cr: 28 - 32.0% C ≤ 0.04%	, ,				
SIN	E316L-16	316L-16 PREMIUM WEST INOX	2.4 (3/32)	300	40-80 70-110	TODAS, excepto progresión	ac ó dcep	útil en la industria textil, de papel e industrias químicas.	Ni: 11.00 - 14.00% Mo: 2.0 - 3.0% Mn: 0.5 - 2.5%	70 a 90 (483 - 621)	8	30 al 50		
30 30 30 30 30 30 30 30 30 30 30 30 30 3			3.2 (1/8)			descendente		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mn: 0.5 - 2.5% Cr: 17.00 - 20.00% Si ≤ 1.00%	, , ,				
ELECTRODOS ACEROS I			2.4 (3/32)	300	40-80 70-110	TODAS, excepto progresión	ac ó dcep	Se usa para la unión de aceros inoxidables tipo AISI 304 y 304L.	Ni: 9.0 - 11.0% Si ≤ 0.90% Mn: 0.5 - 2.5%	75 a 85 (517 - 586)		30 al 50		
LEC		000E - 10	3.2 (1/8) 2.4 (3/32)	350	40-80	descendente		Se utiliza para la unión de aceros inoxidables tipo AISI 309 y 309L. Igual que para algunas	Cr: 18.00 - 21.0% C ≤ 0.04%	(517 - 566)				_
Ш	E309L-16	WEST INOX 309L - 16				TODAS, excepto progresión	ac ó dcep	uniones disímiles entre aceros al carbono y aceros inoxidables.	Ni: 12.0 - 14.0% Si ≤ 0.90% Mn: 0.5 - 2.5%	75 a 85 (517 - 586)		30 al 45		
LECTRODO		WEST ARCO	3.2 (1/8)	350	70-110	descendente		El Aluminio Eléctrico West Arco es un electrodo de uso general. Se utiliza para la unión y	Cr: 22.00 - 25.0%	(011 000)				
EVESTIDO AWS A5.3	E4043	ALUMINIO ELÉCTRICO	3.2 (1/8)	350	60-90	PLANA	dcep	reparación de piezas de aluminio y aleaciones tales como 1100, 1350, 3030 y aleaciones aluminio - magnesio (hasta 2.5% Mg)	Aluminio Base	14 (97)				
LAMBRE	EL 12	WA 60	2.0 (5/64)			PLANA Y		Se utiliza en la fabricación de vigas, perfiles y estructuras, tanques, cilindros, tuberías etc. La composición química y las propiedades mecánicas del depósito dependen del fundente	C: 0.04 - 0.14% Ni: 11.00 - 14.00% S < 0.030%					
PARA SAW	EL 12	WA 60	2.4 (3/32) 3.2 (1/8)			HORIZONTAL EN FILETES	dcep	utilizado.	Ni: 11.00 - 14.00% S ≤ 0.030% Mn: 0.35 - 0.60% Cu ≤ 0.35% Si ≤ 0.10%					
WS A5.17		WA 04	2.0 (5/64)			PLANA Y		Se utiliza en la fabricación de vigas, perfiles y estructuras, tanques, cilindros, tuberías etc. La composición química y las propiedades mecánicas del depósito dependen del fundente	C: 0.05 - 0.15% S ≤ 0.030 %					
A5.23	EM 12K	WA 61	2.4 (3/32) 3.2 (1/8)			HORIZONTAL EN FILETES	dcep	zado.	P ≤ 0.030 % Mn: 0.8 - 1.25% Cu ≤ 0.35% Si: 0.10 - 0.35%					
ALAMBRE		11/1	4.0 (5/32) 0.80 (0.030)		60-160			Especialmente adecuado para soldar lámina delgada. Se utiliza en la reparación de ejes,	C: 0.06 - 0.15%					
PARA MIG/MAG	ER70S-6	6 WA 86	0.90 (0.035) 1.2 (0.045)	_	80-220 100-340	TODAS	dcep	fabricación de tanques, carrocerías, implementos agrícolas, rines de automóviles, embarcaciones, estructuras, etc. Trabaja con CO ₂ y mezcla de Argón - CO ₂ opera en todas		72 a 86 (496 - 593)		22 al 30	-29	27 a 1
WS A5.18			1.6 (0.062)		250-500			as posiciones cuando se emplea transferencia por corto circuito. Se emplea para la soldadura de aceros al carbono de resistencia a la tracción hasta de 70 ks	Cu ≤ 0.50% Si: 0.80 - 1.15% C: 0.06 - 0.15%		(414 - 310)		-	
APORTE ARA SOLDAR (TIG) AWS A5.18		WA 70 S6 NÍQUEL 100	2.4 (3/32)	900		TODAS	dcen	Se utiliza con Argón como gas de protección. Las aplicaciones principales se encuentran en uniones de lámina delgada o para la ejecución del pase de raíz. Para soldaduras en hierro gris donde se requiere una muy buena maquinabilidad. Para culatas y bloques de motores y compresores. Relleno de piezas y en general para todo trabajo en hierro fundido gris. Uniones de fundición gris con aceros al carbono.	$\begin{array}{lll} \hat{S} \leq 0.035 \ \% \\ P \leq 0.025 \ \% \\ Mn : 1.40 - 1.85 \% \\ Cu \leq 0.509 \\ Si: 0.80 - 1.15 \% \\ \hline \\ C \leq 2.00\% \\ Si \leq 4.00\% \\ Ni \geq 85.00\% \\ Mn \leq 1.00\% \\ Al \leq 1.00\% \\ Al \leq 1.00\% \\ S \leq 0.03\% \\ \end{array} \qquad \begin{array}{ll} \textbf{35 a} \\ \textbf{(241 - 5.00\%)} \\ \textbf{35 a} \\ \textbf{35 a} \\ \textbf{35 a} \\ \textbf{36 a} \\ \textbf{37 a} \\ \textbf{37 a} \\ \textbf{38 b} \\ \textbf{39 a} \\ 39 $	mínimo 70	mínimo 58	mínimo 22	-29	27
			3.2 (1/8)	900						(480)	(400)			Primera
			3.2 (1/8)	350	55-100		ac,			35 a 45	32 a 42			190 a 230
	ENICI		4.0 (5/32)	050	90-150	TODAS	dcep ó dcen			(241 - 310)	(221 - 290)	3 al 6	Dureza	Segunda
ECTRODOS			4.0 (5/32)	350	90-130				Cu ≤ 2.50% Fe ≤ 8.00%					155 a 195
PARA SOLDAR INDICIONES	RO ENICI	NÍQUEL 100 BÁSICO	3.2 (1/8)	350	55-100		ac, dcep ó	El Níquel 100 Básico se utiliza para la soldadura de piezas de hierro gris.	C ≤ 2.00% Si ≤ 4.00% Ni ≥ 85.00% Mn ≤ 1.00%	35 a 45	32 a 42		Durozo	190 a 230
DE HIERRO (AWS A5.15)							dcen		Al ≤ 1.00% S ≤ 0.03% Cu ≤ 2.50% Fe ≤ 8.00%	(241 - 310)	(221 - 290)	3 al 6	Dureza	Segunda 155 a 195
	ESt	CASTINGWELD	3.2 (1/8)	350	100-130	TODAS	ac ó	Se utiliza para el relleno de defectos de fundición y para soldaduras de baja exigencia en hierro						
	WEST ARCO		3.2 (1/8)	350	100-140	PLANA	dcep	fundido gris. Para aplicaciones que no requieren maquinado. Reconstrucción de ejes, engranajes, rieles y ruedas y otras piezas sometidas a fricción					Dureza er (sobre ac	n tercera
	DUROWELD 250	250	4.0 (5/32)	350	130-190	VERTICAL en progresión ascendente	doon	especialmente cuando requieren ser maquinadas. Se utiliza también como relleno posterior a la aplicación de un recubrimiento de mayor dureza.	Si: 0.20 - 0.60% Mn: 0.50 - 0.90% Cr: 0.80 - 1.50%					300 HB
SAL	DUROWELD	DUROWELD 350	3.2 (1/8)	350	100-140	PLANA VERTICAL en progresión	ac ó dcep	Reconstrucción de ejes, eslabones, ruedas, etc. Reconstrucción de rodillos, sprokets y piezas sometidas a fricción metal-metal con abrasivos interpuestos. El depósito es maquinable.	Si: 0.20 - 0.60%				Dureza er (sobre ac	n tercera ero SAE
DA	DUROWELD 450 WEST ARCO DUROWELD	DUROWELD 450	4.0 (5/32) 3.2 (1/8)	350 350	130-190 100-140	ascendente	2006	Reconstrucción de cadenas de tractores. Rodillos de orugas, sprockets, etc. El depósito es maquinable con herramientas especiales. Posee buena resistencia al impacto y a la abrasión. Reconstrucción de arados, carcazas e impulsadores de bombas de arena y lodo. Fondo de baldes	Mn: 0.60 - 0.90% Cr: 1.50 - 3.00% C: 0.25 - 0.40%				Dureza er	400 HB
SE			4.0 (5/32)	350	130-190	VERTICAL en progresión			Si: 0.20 - 0.60% Mn: 0.60 - 0.90%				(sobre ac	ero SAE 500 HB
			4.8 (3/16)	450	160-240 100-140	ascendente PLANA			C: 2.50 - 4.00%					
REVESTIDOS PARA IEZAS SOMETIDAS SGASTE				350		VERTICAL en progresión	dcep	de dragas, bordes de cuchara. Placas laterales de retroescavadoras, etc. El depósito no es	Si: 0.20 - 0.60% Mn: 0.70 - 1.00%				Dureza er (sobre ac	
GAS	550 WEST ARCO DUROWELD 650	DUROWELD 650	4.0 (5/32)	350 350	130-190	ascendente	+	maquinable. Muy buena resistencia a la abrasión y moderada resistencia al impacto El Duroweld 650 se utiliza para la reconstrucción de labios y dientes de cucharas "almeja", excavadoras, cuchillas de niveladoras, cargadores, cuchillas de corte de materiales	Cr: 3.00 - 4.50% C: 0.75 - 0.85%					580 HE
			3.2 (1/8)		-	- PLANA VERTICAL en	ac ó		Si: 0.75 - 0.90% Mo: 0.40 - 0.60%				Dureza e (sobre ad	cero SAE
<u>د</u> م			4.0 (5/32)	350 350	130-190	progresión ascendente	dcep	medianamente abrasivos (cartón, tabaco, corcho, papel, etc.), piezas de alta dureza para embutir y conformar metales en frío, reconstruccion de ejes, etc. El depósito no es maquinable. Excelente	Mn: 0.40 - 0.50% Cr: 8.00 - 9.00%				52 a	a 62 HF
5 5	WEST DUR 600	WEST DUR 600	4.8 (3/16)		+			herramienta tales como el AlSI H13. Puede utilizarse también en dragas, excavadoras, cargadores y otras piezas sometidas a abrasión. No es maquinable, en tal caso debe usarse disco abrasivo.	V: 0.20 - 0.30% C: 0.75 - 0.85%				Dureza e	en tercer
ONS			3.2 (1/8)	350	100-140	PLANA VERTICAL en progresión	ac ó dcep		Si: 0.70 - 0.84% Mo: 0.40 - 0.55% Mn: 0.28 - 0.42%					o HBW
ELECTRODOS RECONSTRUIR P			4.0 (5/32)	350	130-190	ascendente			Cr: 7.70 - 8.30% V: 0.40 - 0.70%				300	
	WEST ARCO SOLDOMANG	SOLDOMANG	4.0 (5/32)	350	150-215		ac,	Reconstrucción de equipos para movimiento de tierra sometidos a impacto. Reconstrucción, reparación y soldadura de aceros de alto contenido de manganeso (aceros Hadfield).					Dureza re	ecién sol
			4.8 (3/16)	350	155-270	PLANA Y HORIZONTAL	Y -1 4	Reconstrucción, reparación o soldadura de trituradoras, martillos para trituradoras, cilindros de trapiche, partes de dragas, zapatas para orugas de buldózer, muelas de trituradoras, etc. Depósito					Durez	za después trabajar:
			7.0 (0/10)		.55-270			de gran resistencia al impacto y a la abrasión combinada con impacto. Adquiere dureza superficial mediante trabajo en frío						a 600 HB
ELECTRODOS PARA HACER			3.2 (1/8)	350	180-250	TODAS.		Para chaflanar, biselar y ranurar cualquier tipo de material ferroso sin empleo de equipos						
NURAS AFLANES Y	WEST ARCO CHAFLANARCO	CHAFLANARCO	4.0 (5/32)	350	220-320	MEJOR VERTICAL	R dcen	adicionales y en forma mucho más rápida que utilizando disco abrasivo. Para eliminar depósitos viejos o defectuosos de soldadura. Para eliminar rebabas y salientes. Se usa con equipo de						
ERFORACIONES			4.8 (3/16)	350	260-400			soldadura común y corriente, no necesita equipo adicional.						

Consulte en nuestra página web: Recomendaciones para soldar Acero Inoxidable, Fundiciones de Hierro y para soldar con electrodos de Bajo Hidrógeno.

SISTEMA DE CLASIFICACIÓN AWS PARA METALES APORTE

La especificación AWS A5.1, la cual se refiere a los electrodos revestidos para soldar aceros

al carbono, trabaja con la siguiente clasificación: EXXYQ - 1 H# R

- Donde: E: Indica electrodo para soldadura por arco eléctrico, el cual por definición es un conductor de la corriente eléctrica
- XX: Dos dígitos que designan la mínima resistencia a la tracción del metal de soldadura depositado, en ksi.
- Y: Este dígito designa la posición o posiciones de soldadura en que puede trabajar el electrodo: 1= todas, 2= plana y horizontal en filete y 4= todas y en vertical trabaja en progresión descendente
- Q: Este dígito designa el tipo de revestimiento y el tipo de corriente y polaridad adecuado para el electrodo: 0 y 1= revestimiento celulósico; 2, 3 y 4= revestimiento rutílico; 5, 6 y 8= revestimiento básico (bajo hidrógeno)
- Los designadores después del guión son opcionales:
- 1: Designa que el electrodo (E7016, E7018 ó E7024) cumple los requisitos de impacto mejorado y de ductilidad mejorada en el caso del E7024.
- HZ: Indica que el electrodo cumple los requisitos de la prueba de hidrógeno difusible para niveles de "Z" de 4, 8 ó 16 mL de H2 por cada 100 gramos de metal depositado (solo para electrodos revestidos de bajo hidrógeno).
- R: Indica que el electrodo cumple los requisitos de la prueba de absorción de humedad a 80° F y 80% de humedad relativa (sólo para electrodos revestidos de bajo hidrógeno).
- La especificación AWS A5.5, que trae los requisitos de los electrodos revestidos para soldar aceros de baja aleación, utiliza la misma clasificación de la AWS A5.1 con excepción de los designadores opcionales. En su lugar, utiliza sufijos que constan de una letra o de una letra y un número, (por ejemplo W, G, M, A1, B1, B2, C1, C2, C3, D1; etc.) los cuales indican la composición química del metal depositado.
- La especificación AWS A5.4, que trata los electrodos revestidos para soldar aceros inoxidables trabaja con la siguiente clasificación:

E XXX(X)- YY

- Dónde: E: Indica electrodo para soldadura de arco eléctrico.
- XXX: Indica la composición química del depósito de soldadura puro, la cual se basa en la designación AISI para los aceros inoxidables.
- (X): L (bajo contenido de carbono) ó H (alto contenido de carbono) YY: Dos dígitos que indican la posición de soldeo (el primero) y el tipo de corriente y
- polaridad (el segundo), puede ser 15, 16, 17 ó 26.
- La especificación AWS A5.15, electrodos revestidos para soldar fundiciones de hierro, utiliza el prefijo E, seguido de los símbolos químicos de los elementos considerados significativos y finalmente las letras CI (Cast Iron) que indican que el electrodo es para fundiciones de hierro. (Ejemplos: ENi-CI, ENiFe-CI, etc)
- La especificación AWS A5.17 de materiales de aporte por proceso de arco sumergido (SAW) para aceros al carbono, identifica los alambres con el prefijo E (electrodo), seguido de la letra que indica el contenido de manganeso y que puede ser L (bajo), M (medio) ó H (alto), seguido
- de uno o dos dígitos que dan el contenido nominal de carbono en centésima de porcentaje. Finalmente, algunos alambres traerán una letra K, para significar que son aceros calmados. Las propiedades mecánicas del depósito dependen del fundente que se use con cada

- La denominación completa fundente alambre puede ser por ejemplo:
- F6A2 EM12K la cual indica:
- F: Fundente. 6: 60.000 psi de resistencia a la tracción mínima.
- A: Propiedades mecánicas obtenidas sin tratamiento térmico post soldadura
- (as welded). 2: Resistencia al impacto de 27 J mínimo a - 20° C.
- E: Electrodo.
- M: Contenido medio de manganeso. 12: 0.12% de carbono (nominal).
- K: Acero calmado.

Finalmente, la especificación AWS A5.18, la cual trae los requisitos del material de aporte para procesos con protección gaseosa (MIG/MAG, TIG y plasma) clasifica los alambres de la

ER70-SX

Donde:

ER: Designa el uso como un electrodo y varilla (ER) ó sólo como un electrodo (E) 70: La resistencia a la tracción nominal del depósito de soldadura en ksi

S: Indica que el metal de aporte es sólido. Puede ser C para metales de aporte compuestos ó alambres rellenos con polvo metálicos (Metal- Cored)composición química del alambre.

PRECAUCIÓN AL ALMACENAR Y/O TRANSPORTAR SOLDADURA

NO permita que las • NO almacene cajas sobre el piso ó cerca a muros de cemento; hágalo sobre estibas de madera o similar.

NO haga arrumes de mas de 8 cajas

- NO golpee las cajas, NO se pare encima de ellas.
- una sobre otra. NO las bote, deslícelas.
 - NO almacene soldadura cerca de cemento, ácidos u
 - otros contaminantes. • NO utilice electrodos que han perdido el revestimiento.

Síguenos en f/esabsoldaduraycorte You Tube /ESAB

Edición Actualizada Veintiuno (21)

Número UNO en soldadura

Soluciones Innovadoras en Soldadura y Corte

Catálogo Resumido

Mayores informes PBX: (57 1) 417 6288 - westarco@esab.com.co www.westarco.com