1 Adjoint

Theorem 1.1. Show that the hom-functor preserves limit, that is, for any $Y \in \mathcal{C}$ and diagram \mathcal{D} , we have:

$$\operatorname{Lim}(\mathcal{C}(Y, \mathcal{D}_{-})) \cong \mathcal{C}(Y, \operatorname{Lim} \mathcal{D})$$

Proof. The idea comes from *The Dao of FP* and nlab. We may consider the cone with singleton set as vertex:

where const_{p_i} is the function that takes a morphism $p_i \in C(Y, \mathcal{D}_i)$.

We know there is a one-to-one corresponding between u and the pair $\langle \operatorname{const}_{p_i}, \operatorname{const}_{p_i} \rangle$:

$$[\mathcal{J}, \mathbf{Set}](\Delta_1, \mathcal{C}(Y, \mathcal{D}_-)) \cong \mathbf{Set}(1, \operatorname{Lim}(\mathcal{C}(Y, \mathcal{D}_-)))$$

or we can simplify the equation by defining $F_j = \mathcal{C}(Y, \mathcal{D}_-) : \mathcal{J} \to \mathbf{Set}$.

$$[\mathcal{J}, \mathbf{Set}](\Delta_1, F) \cong \mathbf{Set}(1, \operatorname{Lim} F)$$

We may recall that the hom-set maps out from 1 is isomorphic to the target, that is:

$$\mathbf{Set}(1, \operatorname{Lim} F) \cong \operatorname{Lim} F$$

Similarly, the cone with 1 as vertex is a pair of selection of $C(Y, \mathcal{D}_i)$, it

forms a cone with Y as vertex:

the diagram is indeed commute since

Also we can make a pair of selection of $\mathcal{C}(Y, \mathcal{D}_{-})$ from a cone with Y as vertex.

Then the cone of $\mathcal{C}(Y, \mathcal{D}_{-})$ with vertex 1, is isomorphic to the cone of \mathcal{D}_{-} with vertex Y:

$$[\mathcal{J}, \mathbf{Set}](\Delta_1, F) \cong [\mathcal{J}, \mathcal{C}](\Delta_Y, D)$$

While the later one is naturally isomorphic to the limit of \mathcal{J}_{\bullet} :

$$[\mathcal{J},\mathcal{C}](\Delta_Y,D)\cong\mathcal{C}(Y,\operatorname{Lim} D)$$

Finally, we have:

$$\begin{array}{c}
\operatorname{Lim} F \\
\cong \\
\mathbf{Set}(1, \operatorname{Lim} F) \\
\cong \\
[\mathcal{J}, \mathbf{Set}](\Delta_1, F) \\
\cong \\
[\mathcal{J}, \mathcal{C}](\Delta_Y, D) \\
\cong \\
\mathcal{C}(Y, \operatorname{Lim} D)
\end{array}$$

Dually, we also have:

$$\operatorname{Lim}(\mathcal{C}(\mathcal{D}_{-},Y)) \cong \mathcal{C}(\operatorname{Colim} \mathcal{D},Y)$$