Politechnika Wrocławska

Platformy programistyczne .Net i Java **Dokumentacja programu wyświetlającego pogodę z API**

Prowadzący: Mgr. inż. Michał Jaroszczuk Grupa Środa, 18:55-20:40

Jan Klisowski 263485

27.03.2024

Spis treści

1	Opis Projektu
2	Opis Klas i Metod
	2.1 Klasa Program
	2.2 Klasa Form1
	2.2.1 Metoda getWeather
	2.2.2 Metoda convertDateTime
	2.3 Klasa WeatherInfo
3	Repozytorium
4	Zdjęcia
	4.1 Interfejs Graficzny Aplikacji
5	Zdjęcia
	5.1 Drzewo Projektu
	5.2 Kluczowy Fragment Programu

1. Opis Projektu

Projekt dotyczy implementacji aplikacji pogodowej, która umożliwia użytkownikowi sprawdzenie aktualnej pogody na podstawie danych z zewnętrznego API. Aplikacja została napisana w języku C# z wykorzystaniem platformy .NET Framework.

2. Opis Klas i Metod

2.1. Klasa Program

Klasa Program zawiera główny punkt wejścia dla aplikacji, czyli metodę Main. Metoda ta inicjuje interfejs graficzny aplikacji.

2.2. Klasa Form1

Klasa Form1 reprezentuje główne okno aplikacji. Umożliwia użytkownikowi wprowadzenie nazwy miasta i uzyskanie informacji o pogodzie w tym miejscu. Wyświetla pobrane dane, takie jak warunki pogodowe, temperatura, wschód i zachód słońca, ciśnienie oraz prędkość wiatru.

2.2.1. Metoda getWeather

Metoda getWeather jest odpowiedzialna za pobranie danych o pogodzie z zewnętrznego API na podstawie nazwy miasta wprowadzonej przez użytkownika. Następnie deserializuje otrzymaną odpowiedź JSON i wyświetla informacje w interfejsie użytkownika.

2.2.2. Metoda convertDateTime

Metoda convertDateTime służy do konwersji czasu z formatu UNIX na lokalny czas użytkownika.

2.3. Klasa WeatherInfo

Klasa WeatherInfo zawiera definicję struktury danych używanej do deserializacji odpowiedzi z API pogodowego. Zawiera informacje o warunkach pogodowych, temperaturze, wschodzie i zachodzie słońca, prędkości wiatru i ciśnieniu.

3. Repozytorium

Link do repozytorium projektu: https://github.com/jachoofrachoo/netjavaKlis

4. Zdjęcia

4.1. Interfejs Graficzny Aplikacji

Rys. 1: Interfejs Graficzny Aplikacji

5. Zdjęcia

5.1. Drzewo Projektu

Rys. 2: Drzewo Projektu

5.2. Kluczowy Fragment Programu

Rys. 3: Kluczowy Fragment Programu

```
void getWeather()
{
    using (WebClient web = new WebClient())
}

string url = string.Format("https://api.openweathermap.org/data/2.5/weather2q={0}&APPID={1}", TBCity.Text, APIKey);

var json = web.DownloadString(url);
WeatherInfo.root Info = JsonConvert.DeserializeObject<WeatherInfo.root>(json);

picIcon.ImageLocation = "https://openweathermap.org/img/w/" + Info.weather[0].icon + ".png";
    labCondition.Text = Info.weather[0].main;
    double tempKelvin = Info.main.temp;
    double tempKelvin = Info.main.temp;
    double tempKelvin = Info.main.temp;
    double tempKelvin = Info.main.temp;
    double tempKelvin = Info.sys.sunset).ToShortTimeString();
    labSunset.Text = "Deservation (Info.sys.sunset).ToShortTimeString();
    labSunsis.Text = Info.main.pressure.ToString() + " hPa";

    labPressure.Text = Info.main.pressure.ToString() + " hPa";
}

Odwolania 2

DateTime day = new DateTime(1970, 1 , 1, 0, 0, 0, 0, System.DateTimeKind.Utc).ToLocalTime();
    day = day.AddSeconds(sec).TolocalTime();
    return day;
}
```

Rys. 4: Kluczowy Fragment Programu