ATENÇAO: Não é permitido destacar as folhas

Exame Qualificação Fevereiro 2018 Topologia Geral.

NOME:	RA:

Incluir na prova todas as contas feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Bom Trabalho!

4

(1) Sejam X e Y dois espa
os topológicos e $\mathcal F$ o conjunto de todas funções $f:X\to Y$. Dado um subconjunto compacto A de X e um subconjunto aberto B de Y, seja $(A, B) = \{f; f(A) \subset B\}$. A interseção finita de conjuntos (A, B) pode ser tomada como uma base para uma topologia τ e o espao topológico correspondente (\mathcal{F}, τ) é chamado espaço de funções, e denotado por Y^X .

(a) Se Y é Hausdorff então Y^X é Hausdorff.

- (b) Se X é métrico e compacto e Y possui base enumerável, então Y^X possui base enumerável.
- (2) Seja X um conjunto e τ_1, τ_2 duas topologias em X. Seja $i: (X, \tau_1) \to (X, \tau_2)$ a função identidade.
 - (a) Mostre que i é contínua $\Leftrightarrow \tau_1$ é mais fina que τ_2 .

(b) Mostre que i é homeomorfismo $\Leftrightarrow \tau_1 = \tau_2$.

(c) Seja $n \in \mathbb{Z}_+$. Defina a topologia τ_n em \mathbb{R} adicionando à base usual de abertos o conjunto $\{n\}$. Mostre que (\mathbb{R}, τ_1) e (\mathbb{R}, τ_2) são homeomorfos, mas que $\tau_1 \neq \tau_2$.

(3) (a) Mostre que se U é um aberto conexo de \mathbb{R}^2 , ento U é conexo por caminhos.

(b) Dê exemplo de um espaço topológico X e um subconjunto $C \in X$ tal que C é conexo, mas não conexo por caminhos.

(4) Mostre que para um espaço X, as seguintes condições são equivalentes:

- (a) toda aplicação $S^1 \to X$ é homotópica a uma aplicação constante, com a imagem sendo um
- (b) toda aplicação $S^1 \to X$ se estende a uma aplicação $D^2 \to X$.

(c) $\pi_1(X, x_0) = 0$, para todo $x_0 \in X$.

Observação sobre a topologia do espaço X no ex.4: você pode assumir que X possui todas propriedades "boas" (por exemplo: Hausdorff, base enumerável, conexo por caminhos, etc...). Você não pode assumir que X é simplesmente conexo.

(5) Calcule o grupo fundamental dos seguintes espaços (S^2 denota a 2-esfera):

(a) $S^2 - \{p\}$. (b) $S^2 - \{p, q\}, p \neq q$.

(c) $S^2 = \{p, q, r\}$, onde p, q, r são 3 pontos distintos de S^2 .

IMECC/Unicamp – Programa de Pós-Graduação em Matemática

Exame de Qualificação ao Mestrado (fevereiro de 2018)

Disciplina: MM720 - Análise no \mathbb{R}^n

Nome: _

1. (2 pontos) (a) Enuncie detalhadamente o Teorema da Função Implícita e o Teorema da Função Inversa (nos contextos mais gerais que você souber).

(b) Seja $g:\mathbb{R}^n \to \mathbb{R}^n$ uma função de classe C^1 e suponha que exista M>0 tal que

$$||g(\mathbf{x}) - \mathbf{x}|| \le M||\mathbf{x}||^2$$

para todo $\mathbf{x} \in \mathbb{R}^n$. Mostre que g é localmente invertível perto da origem e calcule $Dg(\mathbf{0})$.

2. (3 pontos) Seja $S(\mathbf{0}, r) = \{\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3; x_1^2 + x_2^2 + x_3^2 = r^2\}$ a esfera centrada na origem e de raio r.

(a) Calcule o maior valor da função $f(\mathbf{x}) = x_1^2 x_2^2 x_3^2$ com $\mathbf{x} = (x_1, x_2, x_3) \in S(\mathbf{0}, r)$.

(b) Mostre que se a,b,c são números reais não-negativos então $(abc)^{1/3} \leq \frac{a+b+c}{3}$.

3. (3 pontos) Decida se cada afirmação é verdadeira ou falsa, apresentando uma breve demonstração ou um contra-exemplo, conforme o caso.

(a) O sistema de equações diferenciais

$$\begin{cases}
\frac{d}{dt}x(t) = x(t) + (x(t))^3, \\
\frac{d}{dt}y(t) = -y(t) + (y(t))^3,
\end{cases}$$
(1)

definido em \mathbb{R}^2 admite soluções periódicas com período T>0.

(b) Se $Q: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ é dada por $Q(A) = A^2$ então DQ(A)B = AB + BA.

(c) A função $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por f(0,0) = 0 e

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}, (x,y) \neq (0,0),$$

é de classe C^2 em \mathbb{R}^2 .

4. (2 pontos) (a) Enuncie detalhadamente o Teorema de Stokes no contexto mais geral que você souber.

(b) Seja B(n,r) a bola de raio r em \mathbb{R}^n . Note que vol $B(2,r)=\pi r^2$ e vol $B(3,r)=\frac{4}{3}\pi r^3$, como aprendemos no colégio. Mostre que vol $B(4,r)=\frac{1}{2}\pi^2 r^4$.

Dica: Sabemos que vol $B(4,r) = \int_{B(4,r)} dx \wedge dy \wedge dz \wedge dt$. Parametrize a bola B(4,r) por

 $(x,y,z,t) = F(\sigma,\psi,\theta,\phi) = (\sigma\sin\psi\sin\phi\cos\theta,\sigma\sin\psi\sin\phi\sin\theta,\sigma\sin\psi\cos\phi,\sigma\cos\psi),$ com $(\sigma,\psi,\theta,\phi) \in [0,r] \times [0,\pi] \times [0,2\pi] \times [0,\pi].$ Use o Teorema de Stokes.

Observação: É verdade, mas você não precisa provar, que fixado um raio qualquer r > 0 temos vol $B(n,r) \to 0$ quando $n \to \infty$. Reflita!

Justifique todas as suas respostas. Boa prova!