ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 29 giugno 2017

Esercizio A

$R_1 = 50 \ \Omega$ $R_2 = 40 \ k\Omega$ $R_3 = 20 \ k\Omega$ $R_4 = 3 \ k\Omega$ $R_5 = 500 \ \Omega$ $R_6 = 50 \ \Omega$ $R_8 = 2.5 \ k\Omega$ $R_9 = 16.6 \ k\Omega$ $R_{10} = 9.7 \ k\Omega$	$R_{11} = 2 \text{ k}\Omega$ $R_{12} = 9 \text{ k}\Omega$ $R_{13} = 500 \Omega$ $R_{14} = 8.5 \text{ k}\Omega$ $C_{1} = 220 \text{ nF}$ $C_{2} = 47 \text{ nF}$ $C_{3} = 1 \text{ \mu}F$ $V_{CC} = 18 \text{ V}$	V_{cc} R_4 V_{cc} R_5 R_8 R_{11} C_3 R_8 R_{12} R_{14} R_{14} R_{15}	+ - - -
--	--	---	------------------

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=1$ V; Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₇ in modo che, in condizioni di riposo, la tensione sul collettore di Q₂ sia 14 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₁. (R: R₇ = 1628 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -2.59$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{z1} =0 Hz; f_{p1} =54 Hz; f_{z2} =2080 Hz; f_{p2} =8003 Hz; f_{z3} = f_{p3})

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = (AB + \overline{C} + D\overline{E})\overline{AB} + \overline{E}(B + D)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 1 k\Omega$	$R_6 = 1 \text{ k}\Omega$
$R_2 = 1 \text{ k}\Omega$	$R_7 = 10 \text{ k}\Omega$
$R_3 = 2.6 \text{ k}\Omega$	C = 470 nF
$R_4 = 500 \Omega$	$V_{CC} = 6 \text{ V}$
$R_5 = 2 \text{ k}\Omega$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6$ V; Q_1 ha una $R_{on} = 0$ e $V_T = 1$ V; Q_2 ha una $R_{on} = 0$ e $V_T = -1$ V e l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 2727 Hz)