Домашняя работа №2

по курсу «Высокоуровневое программирование» (1 семестр) «Процедуры и функции»

Цель: получить практические навыки по обработке одномерных массивов с помощью пользовательских подпрограмм на языке C++, научиться реализовывать рекурсивные функции.

Задачи:

- 1. Изучить виды подпрограмм: функции, возвращающие и не возвращающие значения.
- 2. Изучить механизм передачи параметров в подпрограммы по ссылке и значению.
- 3. Познакомиться с рекурсивными функциями.
- 4. Научиться создавать рекуррентные выражения.
- 5. Уметь определять глубину рекурсии и схематично представлять дерево вызовов рекурсии.
- 6. Закрепить полученные в ходе выполнения домашней работы навыки.

Содержание отчета:

- 1. Титульный лист.
- 2. Цель, задачи работы.
- 3. Формулировка общего задания.
- 4. Блок-схема алгоритмов пользовательских подпрограмм.
- 5. Блок-схема основной программы.
- 6. Листинги подпрограмм и основной программы.
- 7. Результаты выполнения каждого пункта общего задания.
- 8. Выводы по работе в целом.

Задание

- 1. Описать функцию для определения f(x,y) (вид функции для каждого варианта задания приведен в столбце 2 таблицы).
- 2. Задать конкретные значения s, t и вычислить a, b (формулы для определения a, b для каждого варианта задания приведены в столбце 2 таблицы).
- 3. Описать рекурсивные функции для определения p_i , h_i . Задать значение z и вычислить c (формулы для определения рекурсивных функций и для определения c приведены в столбце 3 таблицы).
- 4. Задать три последовательности случайных чисел n_i , m_j , l_k и произвести действия над каждым элементом этих последовательностей, используя процедуру (количество элементов последовательностей i, j, k и соответствующие действия для каждого варианта задания приведены в столбце 4 таблицы).

На экран необходимо последовательно вывести значения переменных $a,\,b,\,c,$ заданные и преобразованные последовательности n_i , m_j , l_k (каждую последовательность чисел вывести в одну строку).

Nº	Вид функции f(x, y). Задать s, t. Вычислить a, b.	Вид функции p_i, h_i . Задать z. Вычислить c.	Значения i, j, k. Произвести действия над элементами последовательност ей.
1	$f(x,y) = (x^2 + 2y + 3)/6$ $a = f(s,t)$ $b = f(\sqrt{s}, \sqrt{t})$	$p_{1} = \sin 0.5$ $h_{1} = \cos 0.5$ $p_{i} = zp_{i-1}^{2} + p_{i-1} + 2$ $h_{i} = 3h_{i-1}/(2z)$ $c = \sqrt{ p_{4} + h_{6} }$	$i = 10, j = 11, k = 12;$ все числа n_i умножить на а; все числа m_j умножить на b; все числа l_k умножить на с;
2	$f(x,y) = \frac{\sqrt{x^2 + y^3}}{x + y}$ $a = f(s,t) + f(s^2, t^2)$ $b = f(s,t^2)$	$p_{1} = 3$ $h_{1} = 8$ $p_{i} = zp_{i-1} + \sqrt{ p_{i-1} + 1 }$ $h_{i} = h_{i-1}/(2z) + 3h_{i-1}$ $c = (p_{5} + h_{3})^{2}$	$i = 8, j = 9, k = 10;$ все четные n_i умножить на а; все четные m_j умножить на b; все четные l_k
3	$f(x,y) = \sqrt{x} + \frac{y^2}{x}$ $a = f(\sqrt{ s },t)$ $b = t^2 + f(s,s)$	$p_{1} = \cos 1, p_{2} = -\sin 1$ $h_{1} = 0.5, h_{2} = \sin 0.5$ $p_{i} = 2p_{i-1} + p_{i-2}$ $h_{i} = zh_{i-1} + h_{i-2}$ $c = p_{9}/h_{3} + p_{4}$	$i = 9, j = 10, k = 10;$ числа n_i , кратные 3, умножить на а; числа m_j , кратные 5, умножить на b; числа l_k , кратные 2, умножить на с;
4	$f(x,y) = x + xy + y $ $a = f(s^2, \sqrt{t})$ $b = f(t, s + 4)$	$p_{1} = 1$ $h_{1} = 1$ $p_{i} = p_{i-1} + z/i^{2}$ $h_{i} = h_{i-1} + 3h_{i-1}/z$ $c = p_{8} + h_{9}$	$i = 10, j = 9, k = 8;$ все четные n_i умножить на а; все четные m_j умножить на b; все четные l_k умножить на с;

$f(x,y) = \frac{ x+y^5 }{\sqrt{x+y}}$ $a = f(s-5,t-1)$ $b = t^2 + f(\sqrt{s}, \frac{t}{2})$ $f(x,y) = \frac{x^2 + y^2}{x+y}$ $a = f(s,t) + \sqrt{s^*t}$ $b = \sqrt{s} + f(s,\sqrt{t})$ $f(x,y) = \sqrt{x+y}(x^2 + y^2)$ $a = f(s,t+5) + f(s+5,t)$ $b = f(s^2,t) + t^* f(s,t)$ $f(x,y) = \sqrt{xy}$ $a = f(s+t^2,t) + f(s,t)$ $b = f(s+t^2,t) + f(s,t)$ $f(x,y) = \sqrt{xy}$ $a = f(s+t^2,t) + f(s,t)$ $b = f(s+t^2,t) + f(s,t)$ $c = f(s+t^2,t) + f(s,t)$ $d = f(s+t^2,t) + f(s+t^2,t)$ $d = f(s+t^2,t) + f(s+t^2,t)$ $d = f(s+t^2,t) + f(s+t^2,t)$ $d = f(s+t^2,t) + f(s+$				
		$f(x,y) = \frac{\left x + y^5\right }{\sqrt{1 - \left x + y^5\right }}$,
$b = t^2 + f(\sqrt{s}, \frac{t}{2})$ $h_i = \sin^2(h_{i-1}) - h_{i-1}$ $c = p_5 + h_7$ $3, \text{ умножить на b};$ $\text{ числа } l_k, \text{ кратные 3, }$ $\text{ умножить на c};$ $a = f(s,t) + \sqrt{s*t}$ $b = \sqrt{s} + f(s, \sqrt{t})$ $p_1 = \sin z$ $h_1 = \cos z$ $p_1 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $h_i = zh_{i-1}/3$ $c = \sqrt{ p_5 }/h_8$ $p_1 = 2$ $h_1 = h_{i-1} + p^2_{i-1}/z$ $h_1 = h_{i-1} + p^2_{i-1}/z$ $h_2 = h_1 + h^2_{i-1}$ $h_3 = h_1 + h^2_{i-1}$ $h_4 = h_1 + h^2_{i-1}$ $h_5 = h_1 + h^2_{i-1}$ $h_6 = h$	5		1	
$b = t^2 + f(\sqrt{s}, \frac{t}{2})$ $c = p_5 + h_7$ $c = p_5 + h_7$ $ducna l_k, кратные 3, умножить на c; f(x, y) = \frac{x^2 + y^2}{x + y} a = f(s, t) + \sqrt{s * t} b = \sqrt{s} + f(s, \sqrt{t}) f(x, y) = \sqrt{x + y} (x^2 + y^2) a = f(s, t + 5) + f(s + 5, t) b = \frac{f(s, t^2)}{t} + f(s^2, t) f(x, y) = \sqrt{x + y} (x^2 + y^2) a = f(s, t + t) / f(s + 1, t + 1) b = f(s^2, t) + t * f(s, t) f(x, y) = \frac{\sqrt{xy}}{\sqrt{x^2 + 2xy + y}} a = f(s, t + 5) / f(s, t) f(x, y) = \frac{\sqrt{xy}}{\sqrt{x^2 + 2xy + y}} a = f(s, t + 5) / f(s, t) f(s, t + 5, t + 5) / f(s, t + 5, t + 5) / f(s, t + 5, t + 5) f(s, t + 5, t + 5) / f(s, t + 5, t + 5) / f(s, t + 5, t + 5) f(s, t + 5, t + 5) / f(s, t + 5, t + 5) / f(s, t + 5, t + 5) f(s, t + 5, t + 5) / f(s, t + 5, t + 5) / f(s, t + 5, t + 5) f(s, t + 5, t + 5) / f(s, t + 5, t + 5) / f(s, t + 5, t + 5) f(s, t + 5, t + 5) / f(s, t + 5, t + 5) / f(s, t + 5, t + 5) f(s, t + 5, t + 5) / f(s, t + 5, t + 5) / f(s, t + 5, t + 5) f(s, t + 5, t + 5) / f(s, t + 5, t + 5) / f(s, t + 5, t + 5) f(s, t + 5, t + 5) / f(s, t + 5, t + 5) / f(s, t + 5, t + 5) f(s, t + 5, t + 5) / f(s, t + 5, t + 5) / f(s, t + 5, t + 5) f(s, t + 5, t + 5) / f(s, t + 5$		a = f(s-5, t-1)	_	į
$f(x,y) = \frac{x^2 + y^2}{x + y}$ $p_1 = \sin z$ $p_1 = \sin z$ $p_1 = \cos z$ $p_2 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $p_1 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $p_2 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $p_3 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $p_4 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $p_5 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $p_6 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $p_6 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $p_6 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $p_6 = zp_{i-1}^2 + \sqrt{ p_{i-1} } + 1 $ $p_6 = zp_{i-1}^2 + zp_{i-1$		$b = t^2 + f(\sqrt{s}, \frac{t}{2})$		
$f(x,y) = \frac{x^2 + y^2}{x + y}$ $a = f(s,t) + \sqrt{s^*t}$ $b = \sqrt{s} + f(s,\sqrt{t})$ $f(x,y) = \sqrt{x + y}(x^2 + y^2)$ $a = f(s,t+5) + f(s+5,t)$ $b = \frac{f(s,t^2)}{t} + f(s^2,t)$ $a = f(s+t,t) / f(s+1,t+1)$ $b = f(s^2,t) + t^*f(s,t)$ $f(x,y) = \frac{\sqrt{xy}}{\sqrt{x^2 + 2xy + y}}$ $a = f(s,t+5) / f(s,t)$ $f(x,y) = \frac{\sqrt{xy}}{\sqrt{x^2 + 2xy + y}}$ $a = f(s+t^2,t) + f(s,t)$ $f(x,y) = \frac{\sqrt{xy}}{\sqrt{x^2 + 2xy + y}}$ $f(x,y) = \frac{\sqrt{xy}}{x^2 $		2	$c = p_5 + n_7$	
$a = f(s,t) + \sqrt{s*t}$ $b = \sqrt{s} + f(s,\sqrt{t})$ $p_i - 2p_{i-1} + \sqrt{ p_{i-1} + 1 }$ $h_i = zh_{i-1}/3$ $c = \sqrt{ p_s }/h_8$ $p_i = h_{i-1}/3$ $d = f(s,t) + \sqrt{s*t}$ $d = f(s,t) + $		2 2	$p_1 = \sin z$	
$a = f(s,t) + \sqrt{s*t}$ $b = \sqrt{s} + f(s,\sqrt{t})$ $p_i - 2p_{i-1} + \sqrt{ p_{i-1} + 1 }$ $h_i = zh_{i-1}/3$ $c = \sqrt{ p_s }/h_8$ $p_i = h_{i-1}/3$ $d = f(s,t) + \sqrt{s*t}$ $d = f(s,t) + $		$f(x,y) = \frac{x^2 + y^2}{}$	$h_1 = \cos z$	
$b = \sqrt{s} + f(s, \sqrt{t})$ $c = \sqrt{ p_{5} }/h_{8}$ $l_{k} \text{ умножить на b;}$ $l_{k} \text{ умножить на b;}$ $l_{k} \text{ умножить на b;}$ $l_{k} \text{ умножить на c;}$ $f(x, y) = \sqrt{x + y}(x^{2} + y^{2})$ $a = f(s, t + 5) + f(s + 5, t)$ $b = \frac{f(s, t^{2})}{t} + f(s^{2}, t)$ $b = \frac{f(s, t^{2})}{t} + f(s^{2}, t)$ $d = f(s + t, t)/f(s + 1, t + 1)$ $d = f(s^{2}, t) + t * f(s, t)$ $d = f(s + t^{2}, t) + f(s, t)$ $d = f(s + t^{2$	6	x + y	$p_{i} = zp_{i-1}^{2} + \sqrt{ p_{i-1} + 1 }$	
$c = \sqrt{ p_s /h_8} \qquad l_k \text{ умножить на c};$ $f(x,y) = \sqrt{x+y}(x^2+y^2)$ $a = f(s,t+5) + f(s+5,t)$ $b = \frac{f(s,t^2)}{t} + f(s^2,t)$ $a = f(s+t,t)/f(s+1,t+1)$ $b = f(s^2,t) + t * f(s,t)$ $f(x,y) = \sqrt{xy}$ $a = f(s+t^2,t) + f(s,t)$ $f(s+5,t+5)/f(s+5,t)$ $f(s+5,t+5)/f(s+5,t+5)/f(s+5,t)$ $f(s+5,t+5)/f($			$h_i = zh_{i-1}/3$	m_j умножить на b;
$f(x,y) = \sqrt{x+y}(x^2+y^2)$ $a = f(s,t+5) + f(s+5,t)$ $b = \frac{f(s,t^2)}{t} + f(s^2,t)$ $f(x,y) = \sqrt{x+y}(x^2+y^2)$ $f(x,y) = \sqrt{x+y}(x^2+y^2)$ $f(x,y) = \sqrt{x+y}(x^2+y^2)$ $f(x,y) = \sqrt{x+y}(x^2+y^2)$ $f(x,y) = f(x,y) + f(x,y)$ $f(x,y) = \frac{f(x,y)}{\sqrt{x^2+2xy+y}}$ $f(x,y) = \frac{\sqrt{xy}}{\sqrt{x^2+2xy+y}}$ $f(x,y) = \frac{\sqrt{xy}}{\sqrt{x^2+2xy+y}}$ $f(x,y) = \frac{\sqrt{xy}}{\sqrt{x^2+2xy+y}}$ $f(x,y) = \frac{f(x,y) + f(x,y)}{\sqrt{x^2+2xy+y}}$ $f(x,y) = f(x$		$b = \sqrt{s} + f(s, \sqrt{t})$	$c = \sqrt{ p_5 } / h_8$	l_k умножить на с;
$a = f(s,t+5) + f(s+5,t)$ $b = \frac{f(s,t^2)}{t} + f(s^2,t)$ $b = h_{i-1} + z/h_{i-1}$ $b = h_{i-1} + z/h_{i-1}$ $b = f(s^2,t) + t * f(s,t)$ $b = f(s^2,t) + t * f(s,t)$ $c = b_{i-1} + b_{i-1}^2$ $d = f(s+t^2,t) + f(s,t)$ $d = f(s+t^2,t) + f(s+t^2,t) + f(s,t)$ $d = f(s+t^2,t) + f(s+t^2,t) + f(s+t^2,t) + f(s$		a = f(s,t+5) + f(s+5,t)	$p_1 = 2$	
$a = f(s,t+5) + f(s+5,t)$ $p_i = p_{i-1} + p_{i-1}^2/z$ m_j умножить на b; $h_i = h_{i-1} + z/h_{i-1}$ $h_i = h_{i-1} + h_{i-1}^2$ $h_i = $			$h_1 = 2$	
$b = \frac{f(s,t^2)}{t} + f(s^2,t)$ $h_i = h_{i-1} + z/h_{i-1}$ $c = p_8 * h_4 - p_8$ $l_k \text{ умножить на c;}$ $f(x,y) = \sqrt{x+y}(x^2+y^2)$ $a = \frac{f(s+t,t)}{f(s+1,t+1)}$ $b = f(s^2,t) + t * f(s,t)$ $p_1 = 2$ $h_1 = \cos 2$ $p_1 = 2$ $h_2 = cos 2$ $h_2 = cos 2$ $h_3 = cos 2$ $h_4 = cos 2$ $h_5 = h_{i-1} + h^2_{i-1}/z$ $h_6 = h_{i-1} + h^2_{i-1}/z$ $h_7 = h_7$ $h_7 =$	7		$p_{i} = p_{i-1} + p_{i-1}^{2} / z$	
$c = p_8 * h_4 - p_8$ $f(x,y) = \sqrt{x+y}(x^2+y^2)$ $a = \frac{f(s+t,t)}{f(s+1,t+1)}$ $b = f(s^2,t) + t * f(s,t)$ $p_1 = 2$ $h_1 = \cos 2$ $p_i = zp_{i-2} + zp_{i-1} + 2$ $h_i = zh_{i-1} + h^2_{i-1}$ $c = p_5 - h_3 $ $i = 8, j = 10, k = 12;$ числа меньше 12: $n_i \text{ умножить на a};$ $m_j \text{ умножить на b};$ $l_k \text{ умножить на c};$ $l = 9, j = 10, k = 8;$ положительные числа: $h_1 = \cos 2$ $h_1 = \cos 2$ $h_2 = f(s+t^2,t) + f(s,t)$ $h_1 = h_{i-1} + h^2_{i-1}/z$ $h_2 = h_{i-1} + 2p_{i-1}/z$ $h_3 = h_{i-1} + h^2_{i-1}/z$ $h_4 = h_{i-1} + h^2_{i-1}/z$ $h_5 = h_{i-1} + h^2_{i-1}/z$ $h_6 = h_{i-1} + h^2_{i-1}/z$ $h_6 = h_{i-1} + h^2_{i-1}/z$				ľ
$f(x,y) = \sqrt{x+y}(x^2+y^2)$ $h_1 = \cos 2$ числа меньше 12: $h_1 = \cos 2$ $h_2 = \cos 2$ числа меньше 12: $h_1 = \cos 2$ $h_2 = cos 2$ $h_3 = cos 2$ $h_4 = cos 2$ $h_5 = cos 2$ $h_6 = cos 2$ $h_7 = cos 2$ $h_8 = cos 2$ $h_9 = cos 2$ $h_$		t		V _K Jamesanias and e,
$f(x,y) = \sqrt{x+y}(x^2+y^2)$ $h_1 = \cos 2$ n_i умножить на а; m_j умножить на а; m_j умножить на b; $h_i = zh_{i-1} + h^2_{i-1}$ $c = p_5 - h_3 $ $h_1 = \cos 2$ n_i умножить на а; m_j умножить на b; $h_i = zh_{i-1} + h^2_{i-1}$ $h_i = cos 2$ $h_i = cos 2$ $h_i = cos 2$ $h_i = h_i$ $h_i =$			$p_1 = 2$	-
8 $a = \frac{f(s+t,t)}{f(s+1,t+1)}$ $p_i = zp_{i-2} + zp_{i-1} + 2$ m_j умножить на b; l_k умножить на c; $c = p_5 - h_3 $ l_k умножить на c; l_k умножить на b; l_k умножить на c; l_k умн		$f(x,y) = \sqrt{x+y}(x^2+y^2)$	-	
$b=f(s^2,t)+t*f(s,t)$ $h_i=zh_{i-1}+h^2_{i-1}$ l_k умножить на с; $c= p_5-h_3 $ l_k умножить на с; $f(x,y)=\frac{\sqrt{xy}}{\sqrt{x^2+2xy+y}}$ $p_1=\sqrt{z}$ $p_1=\sqrt{z}$ $p_2=\sqrt{z}$ $p_3=10, k=8;$ $p_3=10, k=8;$ $p_4=10$ $p_5=10$	8	$a = \frac{f(s+t,t)}{f(s+1,t+1)}$	$p_{i} = zp_{i-2} + zp_{i-1} + 2$	
$f(x,y) = \frac{\sqrt{xy}}{\sqrt{x^2 + 2xy + y}}$ $p_1 = \sqrt{z}$ положительные числа: n_i разделить на а; n_j разделить на b;			$h_i = zh_{i-1} + h_{i-1}^2$	J
$f(x,y) = \frac{\sqrt{xy}}{\sqrt{x^2 + 2xy + y}}$ $p_1 = \sqrt{z}$ положительные числа: n_i разделить на а; n_j разделить на b;		$b = f(s^2, t) + t * f(s, t)$	$c = p_5 - h_3 $	t _k ymnoxiiib na c,
$f(x,y) = \frac{\sqrt{xy}}{\sqrt{x^2 + 2xy + y}}$ $a = f(s+t^2,t) + f(s,t)$ $h_i = f(s+t^2,t) + f(s,t)$ $h_i = h_{i-1} + h_{i-1}^2 / z$			_	i = 9, j = 10, k = 8:
$a = f(s+t^2,t) + f(s,t)$ $p_i = p_{i-1} + 2p_{i-1}/z$ n_i разделить на а; m_j разделить на b;	9	$f(x, y) = \frac{\sqrt{xy}}{\sqrt{xy}}$	- 1	
$a = f(s+t-,t)+f(s,t)$ $h_i = h_{i-1} + h_{i-1}^2/z$ m_j разделить на b;		$\sqrt{x^2 + 2xy + y}$		
$b = f(s+5,t+5) / t + s + f(s,t)$ $\begin{vmatrix} h_i = h_{i-1} + h_{i-1}^2 / z \\ c = p_4^2 / h_4 \end{vmatrix}$ $\begin{vmatrix} m_j \text{ разделить на b;} \\ l_k \text{ разделить на c;} \end{vmatrix}$		$a = f(s+t^2,t) + f(s,t)$	$p_i = p_{i-1} + 2p_{i-1}/z$	
$t+s$ $t+s$ $c=p^2_4/h_4$ t_k разделить на с;		b = f(s+5,t+5) / + f(s,t)	$h_{i} = h_{i-1} + h^{2}_{i-1} / z$	
		$/t+s^{-1}J^{(s,t)}$	$c = p_4^2 / h_4$	l_k разделить на с;

10	$f(x,y) = \frac{y^2 + 3xy + 5x}{x^2}$ $a = \frac{f(s,\sqrt{t})}{f(s,t)}$ $b = f(s,\sqrt{t-4}) - f(s,t)$	$p_{1} = -2$ $h_{1} = \sin 3$ $p_{i} = p_{i-1} + \sqrt{ p_{i-1} + z }$ $h_{i} = h_{i-1} - h_{i-1} - z $ $c = p_{5} + h_{9}$	$i=12, j=11, k=9;$ четные числа n_i , m_j , l_k заменить нулем.
11	$f(x,y) = \frac{y^3 + \sqrt{x^{33}}}{8}$ $a = f(s^3,t) + f(s,t)$ $b = \frac{f(t+2,\sqrt{s})}{f(s,t)} + f(t,s+1)$	$p_{1} = \cos 2$ $h_{1} = \sin 2$ $p_{i} = p_{i-1} + zp_{i-1}$ $h_{i} = h_{i-1}/(5z) + \sqrt{h_{i-1}}$ $c = \sqrt{ p_{4} * h_{6} }$	$i = 11, j = 10, k = 9;$ отрицательные числа: n_i умножить на а; m_j умножить на с; l_k заменить нулем;
12	$f(x,y) = \frac{x^2 + 9x\sqrt{y}}{\sqrt{x}}$ $a = f(t,s+2) - f(t ,s)$ $b = f(t+1,s^2) - f(s,s)$	$p_{1} = 1$ $h_{1} = 4$ $p_{i} = \frac{i-1}{i+1} p_{i-1} + \sqrt{p_{i-1}}$ $h_{i} = z h_{i-1} - h_{i-1} / i$ $c = \sqrt{ p_{4} - z } / h_{5}$	$i=9, j=8, k=10;$ числа n_i , кратные 2, разделить на а; числа m_j , кратные 5, разделить на b; числа l_k , кратные 3, разделить на c;
13	$f(x,y) = \frac{y^2 + x^3}{ x - y }$ $a = f(2,t+3) - f(s,t)$ $b = f(\sqrt{t,s}) + f(s,t)$	$p_1 = \sin 2$ $h_1 = \cos 2$ $p_i = zp_{i-2} + zp_{i-1}$ $c = e^{ p^5 } + e^{ p^7 }$	$i=10, j=8, k=7;$ все нечетные n_i разделить на а; все нечетные m_j разделить на b; все нечетные l_k разделить на c;
14	$a = f(\sqrt{s}, s+t) + f(s,t)$ $f(t+2, s+2) \neq 0$	$p_{1} = z$ $h_{1} = z + 4$ $p_{i} = p_{i-1} + p_{i-1}^{2}$ $h_{i} = \sin h_{i-1}$ $c = p_{8} + p_{7} * h_{5}$	$i = 12, j = 11, k = 10;$ числа больше 10: n_i умножить на а; m_j умножить на b; l_k умножить на c;

		1	1
		$p_1 = 8, p_2 = 12$	i = 11, j = 10, k = 9;
	$f(x, y) = 5xy + x^3 + \frac{y^3}{x}$	$h_1 = z$	числа n_i , кратные 5,
		$p_{i} = \cos p_{i-1} + p_{i-2}$	разделить на а;
15	$a = f(s^2, t+5)$		числа m_j , кратные
		$h_i = \frac{\sqrt{ h_{i-1} - 1 }}{h_{i-1}^2}$	5, разделить на b;
	$b = f(\sqrt{t+s}, s) + f(s, t^2)$	h_{i-1}^2	числа l_k , кратные 5,
		$c = p_3^2 + h_7^3$	разделить на с;
		n - 200 2	i = 8, j = 9, k = 10;
		$p_1 = \cos 2$	все четные n_i
	$f(x,y) = (2x + y^2 + 3)/6$	$h_1 = \sqrt{z}$	умножить на а;
16	a = f(s,t)	$p_{i} = p_{i-1} + p_{i-1}^{2} / z$	все четные m_i
	$b = f(\sqrt{t}, \sqrt{s})$	$h_i = h_{i-1} + 2h_{i-1}/z$	умножить на b;
	J (Vi y Vii)	$a = \frac{ \mathbf{h} }{ \mathbf{h} } / \mathbf{n} $	все четные l_k
		$c = \sqrt{ h_5 - z /p_5}$	умножить на с;
		$p_1 = \sin 3$	i = 9, j = 10, k = 11;
	$f(x,y) = \frac{\sqrt{x^3 + y^2}}{x + y}$ $a = f(t,s) + f(t^2, s^2)$	_	числа n_i , кратные 3,
		$h_1 = -2$	умножить на а;
17		$p_{i} = p_{i-1} - p_{i-1} - z $	числа m_j , кратные
		$h_i = h_{i-1} + \sqrt{ h_{i-1} + z }$	5, умножить на b;
	$b = f(t, s^2)$	$c = h_3 + h_7 * p_5$	числа l_k , кратные 2,
		$c = n_3 + n_7 - p_5$	умножить на с;
		$p_1 = \sin 2$	i = 11, j = 10, k = 9;
	$f(x,y) = \sqrt{y} + \frac{x^2}{y}$ $a = f(\sqrt{ t }, s)$ $b = s^2 + f(\sqrt{t}, s/2)$	$h_1 = \cos 2$	числа n_i , кратные 5,
			разделить на а;
18		$p_i = p_{i-1}/(5z) + \sqrt{p_{i-1}}$	числа m_j , кратные
		$h_i = h_{i-1} + zh_{i-1}$	5, разделить на b;
		$p_{i} = p_{i-1}/(5z) + \sqrt{p_{i-1}}$ $h_{i} = h_{i-1} + zh_{i-1}$ $c = h_{3}^{2} + p_{7}^{3}$	числа l_k , кратные 5,
			разделить на с;
19	$f(x,y) = \left x^3 + xy + y^3 \right $	$p_1 = \sin 2$	i = 10, j = 12, k = 8;
		$h_1 = \cos 2$	числа больше 10:
	$a = f(t^2, \sqrt{s})$	$h_{i} = zh_{i} + zh_{i}$	n_i умножить на а;
	b = f(t+4,s)	$h_{1} = \cos 2$ $h_{i} = zh_{i-2} + zh_{i-1}$ $c = e^{ h6 } + z * h_{4}$	m_j умножить на b;
		$c = e^{r} + z * h_4$	l_k умножить на с;
	•	•	

		$p_1 = 4$	i = 10, j = 11, k = 12;
	$f(x,y) = \frac{\left x^5 + y\right }{\sqrt{x+y}}$	$h_1 = 1$	все числа n_i
20		$p_i = zp_{i-1} - p_{i-1}/i$	умножить на а;
20	a = f(t-5, s-1)	i-1, $i-1$	все числа m_j
	$b = s^2 + f(\sqrt{t}, s/2)$	$h_{i} = \frac{i-1}{i+1}h_{i-1} + \sqrt{h_{i-1}}$	умножить на b;
	5 1 J (41,57 2)	$c = h_4^2 / p_4$	все числа l_k умножить на с;
			i = 10, j = 9, k = 8;
	$x^3 + y^2$	$p_1 = z + 4$	все нечетные n_i
	$f(x,y) = \frac{x+y}{x+y}$	$h_1 = z$	умножить на а;
21	$f(x,y) = \frac{x^3 + y^2}{x + y}$ $a = f(s,t) + \sqrt{s}$	$p_i = \sin p_{i-1}$	все нечетные m_j
		$h_{i} = h_{i-1} + h_{i-1}^{2}$	умножить на b;
	$b = \sqrt{t} + f(t, \sqrt{st})$	$c = \sqrt{ h_4 - p_6 }$	все нечетные l_k
			умножить на с;
		$p_1 = z$	i = 12, j = 11, k = 10;
	$f(x,y) = \sqrt{x^2 + y^2}(x+y)$	$h_1 = 8, h_2 = 12$	числа n_i , кратные 3, умножить на а;
22	a = f(t, s+5) + f(t+5, s)	$p_i = \sqrt{\frac{ p_{i-1} - 1 }{p_{i-1}^2}}$	умножить на a , числа m_j , кратные
22	$b = \frac{f(t, s^2)}{s} + f(t^2, s)$	$p_i - p_{i-1}^2$	3, умножить на b;
		$h_i = \cos h_{i-1} + h_{i-2}$	числа l_k , кратные 3,
		$c = h_9 / p_3 + h_4$	умножить на с;
	$\sqrt{x^5} + \sqrt{x^3}$	$p_1 = \cos 0.5$	i = 12, j = 11, k = 9;
23	$f(x,y) = \frac{\sqrt{x^5 + \sqrt{y^3}}}{y}$	$h_1 = \sin 0.5$	четные числа n_i ,
	a = f(s+t,s)/f(t+1,s+1)	$p_i = 3p_{i-1}/(2z)$	m_j , l_k заменить
	f(t+5 + 5)	$h_{i} = zh_{i-1}^{2} + h_{i-1} + 2$	нулем.
	$b = \frac{f(t+5, s+5)}{t+s} + f(t, s^2)$	$c = (h_5 + p_3)^2$	
24		$p_1 = 1$	i = 8, j = 10, k = 12;
	$f(x,y) = \frac{\sqrt{xy}}{\sqrt{x + 2xy + y^2}}$	$h_1 = 1$	числа меньше 12:
	$a = f(t+s^2,s) + f(t,s)$	$p_{i} = p_{i-1} + p_{i-1} / z$	n_i умножить на а;
		$\begin{vmatrix} h_i = h_{i-1} + z/i^2 \end{vmatrix}$	m_j умножить на b;
	$b = \frac{f(t+5, s+5)}{t+s} f(t, s^2)$	$\begin{vmatrix} n_i - n_{i-1} + 2/t \\ c = h_8 * p_A - h_8 \end{vmatrix}$	l_k умножить на с;
	t+s	$c - n_8 p_4 - n_8$	

25	$f(x,y) = (x^2 + 3xy + 5y)/y^2$ $a = \frac{f(t,\sqrt{s})}{f(s,t)}$ $b = f(t,\sqrt{s-4}) - f(t,s)$	$p_{1} = 8$ $h_{1} = 3$ $p_{i} = p_{i-1}/(2z) + 3p_{i-1}$ $h_{i} = zh_{i-1} + \sqrt{ h_{i-1} + 1 }$ $c = p_{9} + h_{8}$	$i = 10, j = 8, k = 7;$ все нечетные n_i разделить на а; все нечетные m_j разделить на b; все нечетные l_k разделить на с;
26	$f(x,y) = \frac{x^3 + \sqrt{y^3}}{8}$ $a = f(t^3, s) + f(s, t)$ $b = \frac{f(s+2, \sqrt{t})}{f(s, t)} + f(s, t+2)$	$p_{1} = 0.5, p_{2} = \sin 0.5$ $h_{1} = \cos 1, h_{2} = -\sin 0.5$ $p_{i} = zp_{i-1} + p_{i-2}$ $h_{i} = 2h_{i-1} - h_{i-2}$ $c = p_{7} + h_{5}$	i = 12, j = 11, k = 10; числа больше 15: n_i умножить на b; m_j разделить на 10; l_k умножить на c;
27	$f(x,y) = \frac{y^2 + 9y\sqrt{x}}{\sqrt{y}}$ $a = f(s,t+2) - f(s ,t)$ $b = f(s+1,t^2) - f(t,t)$	$p_{1} = \sin 0.2$ $h_{1} = \cos 1.2$ $p_{i} = \sin^{2} p_{i-1} - p_{i-1}$ $h_{i} = \sin h_{i-1} + h_{i-1}$ $c = \sqrt{ h_{5} } / p_{8}$	i = 9, j = 8, k = 10; числа n_i , кратные 2, разделить на а; числа m_j , кратные 5, разделить на b; числа l_k , кратные 3, разделить на c;
28	$f(x,y) = \frac{x^2 + y^3}{ y - x }$ $a = f(s + 4, s) - f(t, s)$ $b = f(\sqrt{s}, t) + f(t, s)$	$p_{1} = \cos z$ $h_{1} = \sin z$ $p_{i} = zp_{i-1}/3$ $h_{i} = zh_{i-1}^{2} + \sqrt{ h_{i-1} + 1 }$ $c = h_{5} - p_{3} $	$i = 11, j = 12, k = 9;$ положительные числа: n_i умножить на а; m_j умножить на b; l_k умножить на c;

В начало

Контрольные вопросы

- 1. Каким образом можно вернуть из функции несколько значений?
- 2. Каким образом определяется тип функции?
- 3. Как выглядит описание функции, которая возвращает указатель на заданный тип, например, char?
- 4. В каком месте программы можно определить указатель на функцию?
- 5. Имеет ли указатель на функцию прототип и определение?
- 6. Как осуществляется вызов функции с помощью указателя?
- 7. Как взаимосвязаны между собой объявление функции, ее определение и вызов функции?
- 8. Как организуются многомерные числовые массивы?
- 9. Как организуется индексирование числовых массивов?
- 10. На кого или на что возлагается контроль границ числовых массивов?
- 11. В какой очередности и как происходит заполнение многомерных числовых массивов в программах?
- 12. Для чего применяется начальная инициализация числовых массивов при дальнейшем их использовании?
- 13. Сколько потребуется операторов цикла для вывода на консоль двухмерного числового массива (матрицы чисел)?
- 14. Почему при определении размерности массива с помощью препроцессорной директивы define не используется точка с запятой после числового значения?

Список литературы

- 1. Курс лекций доцента кафедры ФН1-КФ Пчелинцевой Н.И.
- 2. Программирование на языке высокого уровня C/C++ [Электронный ресурс]: конспект лекций / Электрон. текстовые данные. М.: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2016. 140 с. Режим доступа: http://www.iprbookshop.ru/48037.

В начало