Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-226. Вариант 30

1. Пусть
$$z=2-2\sqrt{3}i$$
. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\frac{1}{2}+\frac{\sqrt{3}i}{2}}$ имеет аргумент $-\frac{16\pi}{21}$.

2. Решить систему уравнений:

$$\begin{cases} x(4-7i) + y(-13+5i) = 6+95i \\ x(4+11i) + y(-1-4i) = -96-37i \end{cases}$$

- 3. Найти корни многочлена $x^6 + 9x^5 + 26x^4 + 16x^3 65x^2 233x 170$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = -4 + i$, $x_2 = -1 + 2i$, $x_3 = -1$.
- 4. Даны 3 комплексных числа: -21-3i, -24+2i, 4+9i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 1 + \sqrt{3}i$, $z_2 = 2i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 2 + 2i| < 1 \\ |arg(z - 2 - 4i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (6, 0, 0), b = (1, 7, -5), c = (3, 4, -3). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(7,3,-2) и плоскость P:10x+14y+24z+372=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(12, -2, -7), $M_1(-3, 15, -5)$, $M_2(-21, -3, -5)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -15y - 9z + 159 = 0 \\ 4x - 2y + 8z - 146 = 0 \end{cases}$$

$$L_2: \begin{cases} -4x - 13y - 17z + 3623 = 0 \\ -9x + y - 10z + 1555 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .