

# Effective Task Assignment in Mobility Prediction-Aware Spatial Crowdsourcing



Huiling Li<sup>1,2</sup>, Yafei Li<sup>1⊠</sup>, Wei Chen¹, Shuo He¹, Mingliang Xu¹, Jianliang Xu²

<sup>1</sup> Zhengzhou University <sup>2</sup> Hong Kong Baptist University

#### Introduction

• Task Assignment with Mobility Prediction

Assign tasks to workers based on their predicted mobilities

- Challenges
  - I. Pertains to the dynamic mobility patterns among workers.
  - II. Addresses the **disconnect** between the objectives of mobility prediction models and task assignment.
  - III. Involves the utilization of uncertain predicted mobility.



### Methodology

• Worker-Specific Mobility Prediction (Challenge I)

Game Theory-Based Task Adaptive Meta-Learning: train a set of initialization parameters for each learning task

- Features: distribution, spatial (POI), learning path
- Clustering learning tasks (modeled as a game)
- Train a shared parameters for each cluster
- Task-Oriented Loss Function (Challenge II)

$$\mathcal{L}_{T} = \frac{1}{|r|} \sum_{i=1}^{|r|} f_{w}(l_{i}) \cdot (l_{i} - \hat{l}_{i})^{2}$$

• Prediction-Performance-Involved Assignment (Challenge III)

Matching Rate:  $MR(r,\hat{r}) = \frac{1}{|r|} \sum_{i=1}^{|r|} match(l_i,\hat{l}_i)$ 

• Converted to the probability of a worker completing the task without violating constraints

#### General Idea of PPI:

• Prioritize tasks with higher likelihood of completion





## Experiments

Mobility Prediction

|            | v      | and the second production to the program of | WANTED TO AND THE | var activitation francos for unpublishing recoders on the | Secretarion of the second section of the | 1.0000000000 | C Design Williams |        | COTTO AT | COURT AND COR | COTT LA CO |
|------------|--------|---------------------------------------------|-------------------|-----------------------------------------------------------|------------------------------------------|--------------|-------------------|--------|----------|---------------|------------|
| $seq_{in}$ | metric | MAML                                        | CTML              | GTTAML-GT                                                 | GTTAML                                   | $seq_{out}$  | metric            | MAML   | CTML     | GTTAML-GT     | GTTAML     |
| 3          | RMSE   | 1.0332                                      | 0.9664            | 0.9317                                                    | 0.9063                                   |              | RMSE              | 0.9722 | 0.9437   | 0.9428        | 0.8937     |
| 1          | MAE    | 0.9210                                      | 0.8590            | 0.8044                                                    | 0.7793                                   | 1            | MAE               | 0.8697 | 0.8215   | 0.8369        | 0.7711     |
|            | MR     | 0.2997                                      | 0.3600            | 0.4234                                                    | 0.4396                                   |              | MR                | 0.3621 | 0.3881   | 0.4020        | 0.4446     |
|            | TT     | 1361.7                                      | 1643.8            | 1424.1                                                    | 2531.1                                   |              | TT                | 2091.4 | 2577.1   | 2277.2        | 3987.1     |
|            | RMSE   | 0.9722                                      | 0.9437            | 0.9428                                                    | 0.8937                                   |              | RMSE              | 1.1911 | 1.0517   | 1.1390        | 1.0100     |
| 5          | MAE    | 0.8697                                      | 0.8215            | 0.8369                                                    | 0.7711                                   | 2            | MAE               | 1.0422 | 0.9054   | 0.9557        | 0.8691     |
|            | MR     | 0.3621                                      | 0.3881            | 0.4020                                                    | 0.4446                                   |              | MR                | 0.0936 | 0.3209   | 0.3358        | 0.3431     |
|            | TT     | 2091.4                                      | 2577.1            | 2277.2                                                    | 3987.1                                   |              | TT                | 2090.6 | 2870.8   | 2620.4        | 4660.3     |
|            | RMSE   | 0.9466                                      | 0.9216            | 0.8991                                                    | 0.8976                                   | .0           | RMSE              | 1.1900 | 1.2082   | 1.1943        | 1.1664     |
| 10         | MAE    | 0.8436                                      | 0.7967            | 0.7805                                                    | 0.7723                                   | 3            | MAE               | 1.0162 | 1.0316   | 0.9818        | 0.9646     |
|            | MR     | 0.3858                                      | 0.4309            | 0.4325                                                    | 0.4338                                   |              | MR                | 0.2129 | 0.2552   | 0.2815        | 0.3051     |
|            | TT     | 2517.1                                      | 3718.0            | 3255.4                                                    | 5624.3                                   |              | TT                | 2404.3 | 3427.0   | 2984.3        | 5273.8     |

- GTTAML achieves the best performance in mobility prediction
  - RMSE and MAE decreased by 6% and 9% compared to CTML.
  - MR increased by 22% against CTML.

Task Assignment





(b) Rejection Rate





- PPI vs. GGPSO
  - 41% lower rejection rate.
  - 28% lower worker cost.