# Airline Passenger Satisfaction Predictive Models ISOM3360 Project Group 1

CHEN, Hsuan-ching (Cathy) 20825951 NG, Wai Yan (Yanni) 20772790 OEI, Steven 20627517 PUN, Yu Tung (Wendy) 20777283

# 1. Introduction

In recent years, airline passenger satisfaction has become increasingly vital with the rise of competitors in the industry. It has become crucial for airline companies to pursue and preserve customer loyalty to differentiate themselves from other competitors. Also, correctly predicting passengers' satisfaction with their feedback makes it possible to provide remedial measures timely. In this report, we will use machine learning algorithms to predict customer satisfaction based on a variety of attributes.

The study aims to develop an accurate and reliable binary classification machine learning model that can identify essential characteristics that have an impact on customer satisfaction and forecast it. We begin by analyzing the dataset, and observing distributions in the features. Additionally, we performed feature selection by eliminating features with low correlation to the target variable. We then build four different machine learning models, including Decision Tree, Logistic Regression, Naive Bayes, and Random Forest. The performance is then evaluated based on each model's accuracy score, AUC, and False Positive Rate.

Finally, we present our results and discuss the key findings and major conclusions, including the features used and dropped, the best-performing models, and applications. This study provides insight and suggestions for airline firms to focus on specific elements that could significantly boost customer satisfaction.

# 2. Data Understanding

- 1. Link to our dataset: https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction
- 2. Number of records: 103,904
- 3. Number of attributes: 24 (including the target column)
- 4. Attribute description:
  - a. Features:
    - 1. ID: unique identifier for each passenger
    - 2. Gender: Male or Female
    - 3. Customer Type: Loyal or disloyal customer
    - 4. Age: Passenger age in years
    - 5. Type of Travel: Personal or Business
    - 6. Class: Travel class (Eco, Eco Plus, Business)
    - 7. Flight Distance: Distance traveled in miles (numerical)
    - 8. Inflight wifi service: rating (0-5)
    - 9. Departure/Arrival time convenient: rating (0-5)
    - 10. Ease of Online booking: rating (0-5)
    - 11. Gate location: rating (0-5)
    - 12. Food and drink: rating (0-5)
  - b. Target:
    - 1. satisfaction: Satisfaction level (satisfied / neutral or dissatisfied)
- The table below shows the description of each numerical and ordinal features. On the other hand, our categorical features are: 'Gender', 'Customer Type', 'Type of Travel', 'Class' with the distribution shown with the histograms below.

- 13. Online boarding: rating (0-5)
- 14. Seat comfort: rating (0-5)
- 15. Inflight entertainment: rating (0-5)
- 16. On-board service: rating (0-5)
- 17. Leg room service: rating (0-5)
- 18. Baggage handling: rating (0-5)
- 19. Checkin service: rating (0-5)
- 20. Inflight service: rating (0-5)
- 21. Cleanliness: rating (0-5)
- 22. Departure delay in minutes: minutes delayed (numerical)
- 23. Arrival delay in minutes: minutes delayed (numerical)



6. Missing values: In our training data, the only feature with missing value is "Arrival Delay in Minutes" where the entry for it is NaN and the number of missing value is 310.

7. Outliers: In this project, boxplots were used to analyze the distribution of the data and identify any outliers that may be present. From the boxplots below, we can see that "Age" doesn't have any outliers while the others have. However, this might not be the case as this can happen when the data is distributed in such a way that it has a lot of variability, but the median and quartiles are relatively close together.



8. Class imbalance: Our target class is 'Satisfaction' which indicates if the passenger is satisfied ('satisfied') or not satisfied ('neutral or dissatisfied'). There is slight imbalance in our target class where 56.67% passengers are neutral or dissatisfied and 43.33% are satisfied.



#### 9. Correlation

- a. The correlation graphs of both numerical and categorical data presented on the figures below.
- b. Departure Delay in Minutes and Arrival Delay in minutes are the only features that are highly correlated.



# 3. Model Building

We have chosen the Decision tree model, logistic regression model, Naive Bayes model, KNN model, and the Random forest model for model comparison. For each model, we keep the random state constant (42, as it is the most popular value used in general), and we use train test split to tune models separately before getting performance of our best models to do classifier selection.

## **Decision Tree**

Our first step is to test different data preparation (feature engineering) methods. Data preparation methods are summarized below:

| train_df same (after fillna)        | data preparation sorted 01      | data preparation sorted 02        | data preparation sorted 03        | data preparation sorted 04        | data preparation sorted 05    |
|-------------------------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------------------|
| 0 Gender                            | One-hot encoding                | One-hot encoding                  | One-hot encoding                  | One-hot encoding                  | One-hot encoding              |
| 1 Customer Type                     | One-hot encoding                | One-hot encoding                  | One-hot encoding                  | One-hot encoding                  | One-hot encoding              |
| 2 Age                               | standard scalar                 | standard scalar                   | standard scalar                   | minmax                            | standard scalar               |
| 3 Type of Travel                    | One-hot encoding                | One-hot encoding                  | One-hot encoding                  | One-hot encoding                  | One-hot encoding              |
| 4 Class                             | One-hot encoding                | One-hot encoding                  | One-hot encoding                  | One-hot encoding                  | One-hot encoding              |
| 5 Flight Distance                   | Discretization+One-hot encoding | Discretization + One-hot enco |
| 6 Inflight wifi service             | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| 7 Departure/Arrival time convenient | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| 8 Ease of Online booking            | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| 9 Gate location                     | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| LO Food and drink                   | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| 11 Online boarding                  | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| 2 Seat comfort                      | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| 3 Inflight entertainment            | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| L4 On-board service                 | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| L5 Leg room service                 | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| L6 Baggage handling                 | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| 17 Checkin service                  | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| L8 Inflight service                 | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| L9 Cleanliness                      | Leave it alone                  | minmax                            | One-hot encoding                  | minmax                            | standard scalar               |
| 20 Departure Delay in Minutes       | standard scalar                 | standard scalar                   | standard scalar                   | minmax                            | standard scalar               |
| 21 Arrival Delay in Minutes         | standard scalar                 | standard scalar                   | standard scalar                   | minmax                            | standard scalar               |
| 22 satisfaction                     | One-hot encoding                | One-hot encoding                  | One-hot encoding                  | One-hot encoding                  | One-hot encoding              |
|                                     | 9                               | (Used in Decision tree 02)        | Ů                                 | (used in Logistic 04)             | (used in Logistic 05)         |
|                                     |                                 | (Cathy)                           |                                   | ,                                 | ,                             |
| Decision tree model (untuned)       |                                 |                                   |                                   |                                   |                               |
| simple accuracy                     | 0.945199415                     | 0.945262499                       | 0.94519941                        | 5 0.94528656                      | 0.945454                      |

Treatment stays the same for [Gender, Customer Type, Type of Travel, Class, Flight Distance, and satisfaction (target)], others vary between methods.

We decided to fit each data preparation method into decision tree model fitting and compare their simple accuracy to find the best dataset, and both 04 and 05 performed well. We had 2 people responsible for the decision tree model fitting with each dataset in parallel.

#### Decision Tree Model Hyperparameter Tuning (yanni)

After choosing the dataset to use, we move on to hyperparameter tuning. The main trials of the tuning process have been summarized below.

- 1. Untuned model
- Tuning the ccp alpha parameter with GridSearchCV, which finds the best route along the tree.
- 3. Tuning the criterion parameter with GridSearchCV
- 4. Another 5 hyperparameter of decision tree classifier has been chosen to tune with GridSearchCV which are max\_depth, max\_leaf\_nodes, min\_impurity\_decrease, min\_samples\_leaf, min\_samples\_split

We have chosen to first tune the model with GridSearchCV and ccp\_alpha is because we think finding the best path may be a quick way to tune the best model, but we would like to explore other tuning methods to try to tune out the best model as well, so we then move on to tuning 5 of the most important parameters mentioned in class. Before putting all 5 parameters into GridSearchCV, we first find the possible best parameter range with a few tests rounds first as tuning all parameters requires huge code-running time.

The performances are summarized below.



To ensure that the high accuracy scores are not due to overfitting the training set, we check the overfittedness by comparing accuracy scores along parameter values between the sub training and testing set along max\_leaf\_nodes values, and between the whole training and testing set along ccp\_alpha value.

Check overfitting: The results show that there should be no overfitting problem.

#### Decision Tree Model Feature Selection (Yanni)

We then move on to the attempt of feature importance determination and feature selection. For the decision tree model, sklearn provides the feature-importance feature. (LHS: Untuned DT model, RHS: Tuned DT model)



#### Fitting into the hyperparameters

Dropped Dataset from feature selection 4a1 has dropped features of ['Departure/Arrival time convenient', 'Ease of Online booking', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes', 'Gender\_Male', 'Class\_Eco', 'Class\_Eco Plus', 'Flight Distance\_binned\_middle', 'Flight Distance\_binned\_short']

Dropped Dataset from feature selection 4a2 has dropped features of ['Age','Departure/Arrival time convenient', 'Ease of Online booking', 'Food and drink', 'Seat comfort','On-board service', 'Leg room service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes', 'Gender\_Male', 'Class\_Eco', 'Class\_Eco Plus', 'Flight Distance\_binned\_middle', 'Flight Distance\_binned\_short']

After getting the feature importances of each model, we have decided to try to drop 10 and 15 features and fit the two datasets into the decision tree fitting process again. We fit the dimensionally-reduced dataset into our tuned models, train them with the whole training set and evaluate against the real test set from Kaggle, and we all get higher cross validation accuracies and AUC scores.

The results show that by fitting the dataset with the 10 least important features dropped has the highest cross-validation accuracy and AUC score.

The best model from tuning and feature selection is [sep grid 4] with dataset 4a1, with parameter values: Criterion: Entropy, max\_depth: 925, max\_leaf\_nodes: 440, cv accuracy: 96.03% and cv AUC: 0.9913.

|                                            |                      |                           |                          |            | -                     |                 |                    |            |
|--------------------------------------------|----------------------|---------------------------|--------------------------|------------|-----------------------|-----------------|--------------------|------------|
| Table 3: Decision tree model 04a1          |                      | et + whole train set to t | rain + real test set to  |            |                       |                 |                    |            |
|                                            | random_state         | Criterion                 | max_depth                |            | min_impurity_decrease |                 | min_samples_split  | ccp_alpha  |
| Untuned                                    | 42                   | Default                   | Default                  | Default    | Default               | Default         | Default            | Default    |
| Pruning ccp_alpha (scoring = accuracy+AUC) | 42                   | Default                   | Default                  | Default    | Default               | Default         | Default            | 0.005      |
| Pruning criterion (scoring = accuracy)     | 42                   | Entropy                   | Default                  | Default    | Default               | Default         | Default            | Default    |
| sep grids 1                                | 42                   | Default                   | 925                      | 440        | Default               | 120             | 16                 | Default    |
| sep grids 2                                | 42                   | Default                   | 925                      | 440        | Default               | Default         | Default            | Default    |
| sep grids 3                                | 43                   | Default                   | 925                      | Default    | Default               | 120             | Default            | Default    |
| sep grids 4                                | 42                   | Entropy                   | 925                      | 440        | Default               | Default         | Default            | Default    |
| sep grids 5                                | 42                   | Entropy                   | 925                      | Default    | Default               | 120             | Default            | Default    |
| Table 4: Decision tree model 04a1          | * evaluated with sub | train and test set        |                          |            |                       |                 |                    |            |
|                                            | Simple accuracy      | Cross-val accuracy        | cross-val AUC            | tree nodes |                       |                 |                    |            |
| Untuned                                    | 0.932245             | 0.946248                  | 0.945789                 | 10129      |                       |                 |                    |            |
| Pruning ccp_alpha (scoring = accuracy+AUC) | 0.907646             | 0.908011                  | 0.952648                 | 23         |                       |                 |                    |            |
| Pruning criterion (scoring = accuracy)     | 0.929165             | 0.946951                  | 0.946367                 | 9765       |                       |                 |                    |            |
| sep grids 1                                | 0.932938             | 0.938414                  | 0.987093                 | 533        |                       |                 |                    |            |
| sep grids 2                                | 0.942870             | 0.959665                  | 0.990036                 | 879        |                       |                 |                    |            |
| sep grids 3                                | 0.932938             | 0.959665                  | 0.987103                 | 533        |                       |                 |                    |            |
| sep grids 4                                | 0.940214             | 0.960290                  | 0.991315                 | 879        |                       |                 |                    |            |
|                                            | 0.932207             | 0.941427                  | 0.987928                 | 507        |                       |                 |                    |            |
| Table 5: Decision tree model 4a2           |                      | et + whole train set to   | train + real test set to |            |                       |                 |                    |            |
|                                            | random_state         | Criterion                 | max_depth                |            | min_impurity_decrease | min_samples_lea | f min_samples_spli | t ccp_alph |
| Untuned                                    | 42                   | Default                   | Default                  | Default    | Default               | Default         | Default            | Default    |
| Pruning ccp_alpha (scoring = accuracy+AUC) |                      | Default                   | Default                  | Default    | Default               | Default         | Default            | 0.005      |
| Pruning criterion (scoring = accuracy)     | 42                   | Entropy                   | Default                  | Default    | Default               | Default         | Default            | Default    |
| sep grids 1                                | 42                   | Default                   | 925                      | 440        | Default               | 120             | 16                 | Default    |
| sep grids 2                                | 42                   | Default                   | 925                      | 440        | Default               | Default         | Default            | Defaul     |
| sep grids 3                                | 43                   | Default                   | 925                      | Default    | Default               | 120             | Default            | Default    |
| sep grids 4                                | 42                   | Entropy                   | 925                      | 440        | Default               | Default         | Default            | Default    |
| sep grids 5                                | 42                   | Entropy                   | 925                      | Default    | Default               | 120             | Default            | Default    |
| Table 6: Decision tree model 4a2           | using dropped datas  | et + whole train set to   | train + real test set to | evaluate   |                       |                 |                    |            |
|                                            | Simple accuracy      | Cross-val accuracy        | cross-val AUC            | tree nodes |                       |                 |                    |            |
| Untuned                                    | 0.940868             | 0.948972                  | 0.966574                 | 9779       |                       |                 |                    |            |
| Pruning ccp_alpha (scoring = accuracy+AUC) | 0.907646             | 0.908011                  | 0.952648                 | 23         |                       |                 |                    |            |
| Pruning criterion (scoring = accuracy)     | 0.940984             | 0.949415                  | 0.967181                 | 9447       |                       |                 |                    |            |
| sep grids 1                                | 0.929319             | 0.936393                  | 0.985766                 | 533        |                       |                 |                    |            |
| sep grids 2                                | 0.947682             | 0.955815                  | 0.989490                 | 879        |                       |                 |                    |            |
| sep grids 3                                | 0.929319             | 0.955815                  | 0.985761                 | 533        |                       |                 |                    |            |
|                                            |                      |                           |                          |            |                       |                 |                    |            |
| sep grids 4                                | 0.949415             | 0.957172                  | 0.990987                 | 879        |                       |                 |                    |            |

#### Decision Tree Model Hyperparameter Tuning (Cathy)

We chose the 05 dataset and divided it into the sub-train dataset to train the decision tree model, and evaluate the performances with the sub-test set, with cross-validation, and with AUC of cross-validation-prediction. In the following hyperparameter tuning process, we tried 3 criteria ['gini', 'entropy', 'log\_loss'] respectively. We consider 6 parameters ['max\_depth', 'max\_leaf\_nodes, 'min\_samples\_split', 'min\_samples\_leaf', 'min\_weight\_fraction\_leaf', 'min\_impurity\_decrease']. To better understand each hyperparameter, we found their optimal values when working alone in the DecisionTreeClassifier first before trying different combinations. We narrowed down the possible best range with several rounds of tests from larger steps of range. The results are as below:

|                  | criterion        | max_depth | max_leaf_nodes | min_samples_split | min_samples_leaf | min_weight_fraction_leaf | min_impurity_decrease | random_state |
|------------------|------------------|-----------|----------------|-------------------|------------------|--------------------------|-----------------------|--------------|
|                  | default = 'gini' | 13        | 375            | 58                | 10               | default = 0.0            | default = 0.0         | 42           |
| optimal<br>value | 'entropy'        | 16        | 440            | 93                | 12               | default = 0.0            | default = 0.0         | 42           |
| 74140            | 'log_loss'       | 16        | 440            | 93                | 15               | default = 0.0            | default = 0.0         | 42           |

The model performs best when min\_weight\_fraction\_leaf and min\_impurity\_decrease are at default values under all three criteria, so we will not include them in the following tables. We found that the model performs better when we only consider max\_leaf\_nodes under all three criteria. Any combination with it leads to a drop in accuracy. Both simple accuracy and cross-validation accuracy of most combinations of parameters range from 0.953 to 0.955, whereas the accuracy of considering max\_leaf\_nodes only is around 0.9570 to 0.9593. We also found that the optimal values and the performances under {'criterion': 'log\_loss'} are highly similar to that of {'criterion': 'entropy'}, and the best results are exactly the same.

| criterion     |           |                |                   |                  |                 |                    |               |            |            |
|---------------|-----------|----------------|-------------------|------------------|-----------------|--------------------|---------------|------------|------------|
|               |           |                |                   |                  |                 | Cross-val Accuracy |               |            | vs baselin |
| # 0 base line | default   | default        | default           | default          | 0.9454549829    | 0.9459982291       | 0.9452651132  | 5369       | -          |
| 1             | 13        | default        | default           | default          | 0.9541408017    | 0.9533800431       | 0.9506758063  | 1563       | risen      |
| 2             | default   | 375            | default           | default          | 0.9570761754    | 0.9584327841       | 0.9557795007  | 749        | risen      |
| 3             | default   | default        | 58                | default          | 0.9531783841    | 0.9541018633       | 0.9517856496  | 1309       | risen      |
| 4             | default   | default        | default           | 10               | 0.9533708676    | 0.9527929627       | 0.9505471243  | 1947       | risen      |
| 5             | 13        | 375            | default           | default          | 0.9553438237    | 0.9549391746       | 0.9520070889  | 749        | risen      |
| 6             | 13        | default        | 58                | default          | 0.9535392907    | 0.9532068063       | 0.9501884929  | 743        | risen      |
| 7             | 13        | default        | default           | 10               | 0.9534189885    | 0.9533415460       | 0.9504040599  | 1051       | risen      |
| 8             | default   | 375            | 58                | default          | 0.9536595929    | 0.9557668617       | 0.9530849225  | 749        | risen      |
| 9             | default   | 375            | default           | 10               | 0.9554641259    | 0.9556609948       | 0.9529679940  | 749        | risen      |
| 10            | default   | default        | 58                | 10               | 0.9529137193    | 0.9531394364       | 0.9506333482  | 1121       | risen      |
| 11            | 13        | 375            | 58                | default          | 0.9533708676    | 0.9532645519       | 0.9502472837  | 745        | risen      |
| 12            | default   | 375            | 58                | 10               | 0.9532986863    | 0.9536495226       | 0.9509710670  | 749        | risen      |
| 13            | 13        | default        | 58                | 10               | 0.9532265050    | 0.9524464891       | 0.9493791392  |            | risen      |
| 14            | 13        | 375            | default           | 10               | 0.9535392907    | 0.9533992917       | 0.9504079788  |            | risen      |
| 15            | 13        | 375            | 58                | 10               | 0.9531783841    |                    | 0.9493876312  |            | risen      |
| 15            | 10        | 373            | 30                |                  | 0.3331703041    | 0.5524501155       | 0.5455070512  | 711        | 113011     |
| criterion     |           |                |                   |                  |                 |                    |               |            |            |
| 'entropy'     | max_depth | max_leaf_nodes | min_samples_split | min_samples_leaf | Simple Accuracy | Cross-val Accuracy | Cross-val AUC | Tree Nodes | vs baselir |
| # 0 base line | default   | default        | default           | default          | 0.9475723016    | 0.9478075916       | 0.9471751616  | 4853       | -          |
| 1             | 16        | default        | default           | default          | 0.9545257687    | 0.9530143209       | 0.9507685696  | 2237       | risen      |
| 2             | default   | 440            | default           | default          | 0.9592416149    | 0.9592027256       | 0.9562811795  | 879        | risen      |
| 3             | default   | default        | 93                | default          | 0.9544535874    | 0.9545927010       | 0.9523938088  | 821        | risen      |
| 4             | default   | default        | default           | 12               | 0.9541167413    | 0.9528988297       | 0.9507581189  | 1613       |            |
| 5             | 16        | 440            | default           | default          | 0.9584716809    |                    | 0.9538165401  |            | risen      |
| 6             | 16        | default        | 93                | default          | 0.9549107358    | 0.9537746381       | 0.9514551147  |            | risen      |
| 7             | 16        | default        | default           | 12               | 0.9558731534    | 0.9527255929       |               | 1157       |            |
| 8             | default   | 440            | 93                | default          |                 | 0.9555166307       |               |            | risen      |
| 9             | default   | 440            | default           | 12               | 0.9567633896    |                    | 0.9532593347  |            | risen      |
| 10            | default   | default        | 93                | 12               | 0.9526490544    |                    | 0.9532393347  |            | risen      |
| 11            | 16        | 440            | 93                | default          |                 |                    | 0.9514440097  |            | risen      |
| 12            | default   | 440            | 93                | delault<br>12    |                 |                    |               |            | risen      |
|               |           |                | 93                |                  | 0.9526490544    |                    | 0.9516732928  |            |            |
| 13            | 16        | default        |                   | 12               | 0.9536114720    | 0.9528988297       | 0.9506144067  |            | risen      |
| 14            | 16        | 440            | default           | 12               | 0.9569799336    | 0.9543617185       | 0.9516334427  |            | risen      |
| 15            | 16        | 440            | 93                | 12               | 0.9536114720    | 0.9528218355       | 0.9505412449  | 595        | risen      |
| criterion     |           |                |                   |                  |                 |                    |               |            |            |
|               | max denth | max leaf nodes | min samples split | min samples leaf | Simple Accuracy | Cross-val Accuracy | Cross-val AUC | Tree Nodes | vs baseli  |
| # 0 base line | default   | default        | default           |                  |                 | 0.9478075916       |               |            |            |
| # 0 base line | 16        | default        | default           | default          |                 | 0.9530143209       |               |            | risen      |
| 2             | default   | 440            | default           |                  |                 | 0.9592027256       |               |            | risen      |
| 3             |           |                | 93                |                  |                 |                    |               |            |            |
|               | default   | default        |                   |                  |                 | 0.9545927010       |               |            | risen      |
| 4             | default   | default        | default           |                  |                 | 0.9534666615       |               |            | risen      |
| 5             | 16        | 440            | default           |                  |                 | 0.9566137974       |               |            | risen      |
| 6             | 16        | default        | 93                |                  |                 | 0.9537746381       |               |            | risen      |
| 7             | 16        | default        | default           |                  |                 | 0.9528603326       |               |            | risen      |
| 8             | default   | 440            | 93                | default          | 0.9542851643    | 0.9555166307       | 0.9529451321  | 821        | risen      |
| 9             | default   | 440            | default           | 15               | 0.9560415764    | 0.9554203881       | 0.9528236309  | 879        | risen      |
| 10            | default   | default        | 93                | 15               | 0.9523122083    | 0.9537650139       | 0.9514335579  | 723        | risen      |
| 11            | 16        | 440            | 93                | default          | 0.9545979501    | 0.9537650139       | 0.9514440097  | 645        | risen      |
| 12            | default   | 440            | 93                | 15               | 0.9523122083    | 0.9539574992       | 0.9515067186  | 723        | risen      |
| 13            | 16        | default        | 93                |                  |                 | 0.9527544657       |               |            | risen      |
|               |           |                |                   |                  |                 |                    |               |            |            |
| 14            | 16        | 440            | default           | 15               | 0.9557769116    | 0.9541788574       | 0.9515086762  | 879        | risen      |

# Decision Tree Model Feature Selection (Cathy)

After deciding the best model, we then move on to the feature selection process. To evaluate the importance of features with different criteria, we used the following four method:

- 1. Removing the features with low variance
- 2. Univariate feature selection
- 3. Recursive feature elimination (REF)
- 4. Tree-based estimators (impurity-based feature importances)

In the tables below, we marked the top 5 important features with yellow background, top 6-10 with orange background, and top 11-20 with purple background. The results of method 1 shown in Table 1 is more inconsistent with the others. Also, the variance for more than ten features are all 1.000010, which makes the discrimination lower, so we focused on method 2-4. In summary, the top 5 mutual important features are as below:

- 1. Inflight wifi service
- 2. Online boarding
- 3. Type of Travel Personal Travel
- 4. Class\_Business
- 5. Inflight entertainment

We then looped the number of features n of the above feature selection methods to get the optimal n for the selected model. The model performs better when trained with the top 17 features from univariate feature selection, the top 14 from RFE, and the top 19 from tree-based estimators. The best performance of methods 3 and 4 are better than without dropping any feature, and performs the best with the last method. Thus, we conclude that the best decision tree classifier is that with {'criterion': 'entropy', 'max\_leaf\_nodes': 440, 'random\_state': 42}, and trained with top 19 features ['Inflight wifi service', 'Online boarding', 'Type of Travel\_Personal Travel', 'Class\_Business', 'Class\_Eco', 'Inflight entertainment', 'Customer Type\_disloyal Customer', 'Seat comfort', 'Ease of Online booking', 'On-board service', 'Baggage handling', 'Cleanliness', 'Leg room service', 'Checkin service', 'Inflight service', 'Age', 'Departure/Arrival time convenient', 'Gate location', 'Flight Distance\_binned\_short'] generated from tree-based estimators.



# Logistic Regression

#### Logistic Regression Model Hyperparameter Tuning

For the logistic regression model, we still use the 04 dataset with train test split and random state = 42 to train, tune and test.

We first tried to use GridSearchCV to find the best parameter choice or value for each of the three parameters: C value (inverse of model complexity), solvers ('lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'), and penalty ('l1', 'l2', 'elasticnet', None). The results show that for solvers and penalty the best parameters are the default parameters, and the best C value is 110.

| Table 1: Logistic fitting 04 sub tra | ain and sub test |               |                 |              |                 |                           |                      |    |    |
|--------------------------------------|------------------|---------------|-----------------|--------------|-----------------|---------------------------|----------------------|----|----|
|                                      | random_state     | С             | solvers         | penalties    | Simple Accuracy | Cross validation accuracy | Cross validation AUC | FP | FN |
| untuned                              | 42               | Default       | Default = lbfgs | Default = I2 | 0.875433081     | 0.874951878               | 0.926735842          |    |    |
| Grid 1                               | 42               | 100           | Default = lbfgs | Default = I2 | 0.875304761     | 0.874910631               | 0.926539065          |    |    |
| Grid 2                               | 42               | 110           | Default = lbfgs | Default = I2 | 0.87517644      | 0.874910631               | 0.926778686          |    |    |
|                                      |                  | Default = 1.0 |                 |              |                 |                           |                      |    |    |
|                                      |                  |               |                 |              |                 |                           |                      |    |    |

Looking at comparison of accuracy scores along C values between the whole train and real test set, there should be no overfitting problem as well.

#### Logistic Regression Model Feature Selection

We have used RFE (Recursive Feature Selection) and SFS (Sequential Feature Selection) to select important features for the logistic regression model, then try to select 15 and 10 features to fit into the model again, with selection results summarized below:

| Dataset 04<br>0 Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Decision tree | e fitting 4b1                                                                                                                                                                | Decision  | tree fitting 4b2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | Decision Tree feat                                                                                           | ure selection                                                                                           | Feature C                                                                                          | oefficient                                                   | RFE                                                | 15 RFE 10                                                                          | RFE 5                                             | RFE 3                                      | SFS 15                                                                                                                                                               | SFS 10                            | SFS 5          | SFS 3      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|------------|
| 1 Inflight wifi service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                              |           | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | eatures\Model                                                                                                |                                                                                                         | Untuned                                                                                            | TUI                                                          | ned                                                | _                                                                                  |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
| 2 Departure/Arrival time convenient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t             | droppe                                                                                                                                                                       | d         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | nflight wifi service                                                                                         | ,                                                                                                       |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            | -                                                                                                                                                                    | -/                                | -              | /          |
| 3 Ease of Online booking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                              |           | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oped E                                               | Departure/Arrival                                                                                            | time convenient                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            | ·                                                                                                                                                                    | -                                 |                |            |
| 4 Gate location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | droppe                                                                                                                                                                       | d         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                    | ase of Online bo                                                                                             | oking                                                                                                   |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
| 5 Food and drink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | droppe                                                                                                                                                                       | d         | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | Sate location                                                                                                |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            | 1                                                                                                                                                                    | 1                                 |                |            |
| 6 Online boarding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                                                    | ood and drink                                                                                                |                                                                                                         |                                                                                                    |                                                              |                                                    | -                                                                                  | - /                                               | -                                          | _                                                                                                                                                                    | -                                 | -              | -          |
| 7 Seat comfort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | droppe                                                                                                                                                                       | d         | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | Online boarding                                                                                              |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    | -                                                 |                                            | -                                                                                                                                                                    | -                                 |                | -          |
| 8 Inflight entertainment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | droppe                                                                                                                                                                       | d         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | leat comfort                                                                                                 |                                                                                                         |                                                                                                    |                                                              |                                                    | _                                                                                  |                                                   |                                            | /                                                                                                                                                                    | -                                 | -              |            |
| 9 On-board service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | nflight entertainn<br>On-board service                                                                       | tent                                                                                                    |                                                                                                    |                                                              |                                                    |                                                                                    | -                                                 | -                                          | -                                                                                                                                                                    | -                                 |                |            |
| 0 Leg room service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                                                                                              |           | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | peu                                                  | eg room service                                                                                              |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    | -                                                 |                                            |                                                                                                                                                                      |                                   |                |            |
| 1 Baggage handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | droppe                                                                                                                                                                       | d         | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ped                                                  | leg room service<br>Baggage handling                                                                         |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            | _                                                                                                                                                                    |                                   |                |            |
| 2 Checkin service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                              |           | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | opeu c                                               | saggage nanoling<br>Checkin service                                                                          |                                                                                                         |                                                                                                    |                                                              |                                                    | -                                                                                  | -/                                                |                                            | _                                                                                                                                                                    |                                   |                |            |
| 3 Inflight service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                                                                                              |           | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | nflight service                                                                                              |                                                                                                         |                                                                                                    |                                                              |                                                    | /                                                                                  |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
| 4 Cleanliness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Cleanliness                                                                                                  |                                                                                                         |                                                                                                    |                                                              |                                                    | -                                                                                  |                                                   |                                            | -                                                                                                                                                                    | 1                                 | /              |            |
| 5 Departure Delay in Minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                              |           | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oped r                                               | Departure Delay i                                                                                            | n Minutes                                                                                               |                                                                                                    |                                                              |                                                    | -                                                                                  |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
| 6 Arrival Delay in Minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                                                                                                                                              |           | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oped a                                               | Arrival Delay in M                                                                                           | inutes                                                                                                  |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   | -                                          |                                                                                                                                                                      |                                   |                |            |
| 7 Gender_Male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | droppe                                                                                                                                                                       | d         | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oped o                                               | Sender_Male                                                                                                  |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
| 8 Customer Type_disloyal Customer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r             |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Customer Type_di                                                                                             | sloyal Customer                                                                                         |                                                                                                    |                                                              |                                                    | V                                                                                  | · /                                               |                                            | V                                                                                                                                                                    | 1                                 |                |            |
| 9 Type of Travel_Personal Travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                    | ype of Travel_Pe                                                                                             | rsonal Travel                                                                                           |                                                                                                    |                                                              |                                                    | · /                                                                                | -                                                 |                                            | · /                                                                                                                                                                  | 1                                 | · /            | /          |
| 0 Class_Business                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1             | droppe                                                                                                                                                                       | d         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                                    | Class_Business                                                                                               |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            | 1                                                                                                                                                                    | 1                                 |                |            |
| 1 Class_Eco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1             |                                                                                                                                                                              | -         | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oped C                                               | Class_Eco                                                                                                    |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
| 2 Class_Eco Plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -             |                                                                                                                                                                              |           | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | lass_Eco Plus                                                                                                |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            |                                                                                                                                                                      | -                                 | -              |            |
| Flight Distance_binned_middle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | droppe                                                                                                                                                                       |           | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | light Distance_bi                                                                                            |                                                                                                         |                                                                                                    | _                                                            |                                                    |                                                                                    |                                                   |                                            | -                                                                                                                                                                    | -                                 | -              | -          |
| Flight Distance_binned_short                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | droppe<br>15 features le                                                                                                                                                     | a .       | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | light Distance_bir                                                                                           | med_snort                                                                                               |                                                                                                    | -                                                            |                                                    | _                                                                                  |                                                   |                                            | feet it a: *                                                                                                                                                         | E and at'''                       | only 10 sele   | l<br>stool |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             | 15 features le                                                                                                                                                               | II        | 10 features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | siett                                                |                                                                                                              |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            | (ser ir as T                                                                                                                                                         | J and sun c                       | Jilly 10 Selei | rea        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                              |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
| Table 2: Logistic fitting 4b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 whole to    | rain to train                                                                                                                                                                | and rea   | il test set to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | test                                                 |                                                                                                              |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                              |           | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | solvers                                                                                                      | penalties                                                                                               | Simple Ac                                                                                          | curacy                                                       | Cross valida                                       | tion accura                                                                        | cv Cr                                             | ross valida                                | ation ALL                                                                                                                                                            | C F                               | P              | FN         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 42                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                              |                                                                                                         |                                                                                                    |                                                              | Ci Joo vailua                                      |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   |                | 114        |
| untuned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 42                                                                                                                                                                           |           | Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | ult = lbfgs                                                                                                  | Default = I2                                                                                            |                                                                                                    | 651678                                                       |                                                    | 0.873623                                                                           |                                                   |                                            | 9257012                                                                                                                                                              |                                   |                |            |
| Grid 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 42                                                                                                                                                                           |           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Defa                                                 | ult = lbfgs                                                                                                  | Default = I2                                                                                            | 0.8723                                                                                             | 112719                                                       |                                                    | 0.873681                                                                           | 48                                                | 0.9                                        | 9257536                                                                                                                                                              | 44                                |                |            |
| Grid 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 42                                                                                                                                                                           |           | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      | ult = lbfgs                                                                                                  | Default = I2                                                                                            |                                                                                                    | 151217                                                       |                                                    | 0.873691                                                                           |                                                   |                                            | 92575378                                                                                                                                                             |                                   |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                              | Dof-      | ault = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2010                                                 | 10190                                                                                                        | _ 014410 12                                                                                             | 0.072                                                                                              |                                                              |                                                    | 1.0.0001                                                                           |                                                   | 0.0                                        |                                                                                                                                                                      | _                                 |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                              | Dera      | Juit = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                              |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                              |                                                                                                         |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
| Table 3: Logistic fitting 4b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 whole       |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | umm                                                  | m accuracy                                                                                                   | keeps dropping                                                                                          | n tho                                                                                              |                                                              |                                                    |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
| tuble of Logistic fitting 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z WIIOIC      |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                              |                                                                                                         |                                                                                                    |                                                              | C                                                  |                                                                                    | C-                                                |                                            | A11                                                                                                                                                                  |                                   | -D             | ENI        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                              |           | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | solvers                                                                                                      | penalties                                                                                               |                                                                                                    |                                                              | Cross valida                                       |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   | P              | FN         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 42                                                                                                                                                                           |           | Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defa                                                 |                                                                                                              |                                                                                                         | 0.8624                                                                                             | 411457                                                       |                                                    | 0.866136                                                                           | 05                                                | 0.9                                        | 92098199                                                                                                                                                             | 99                                |                |            |
| intunea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | ult = lbfgs                                                                                                  | Default = I2                                                                                            |                                                                                                    |                                                              |                                                    |                                                                                    |                                                   |                                            |                                                                                                                                                                      |                                   |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                              |                                                                                                         |                                                                                                    | 112719                                                       |                                                    | 0.873681                                                                           | 48                                                | 0.9                                        |                                                                                                                                                                      |                                   |                |            |
| untuned<br>Grid 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 42                                                                                                                                                                           |           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Defa                                                 | ult = lbfgs                                                                                                  | Default = I2                                                                                            | 0.872                                                                                              | 112719                                                       |                                                    | 0.873681                                                                           |                                                   |                                            | 9257536                                                                                                                                                              | 44                                |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                              |           | 100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Defa                                                 |                                                                                                              |                                                                                                         | 0.872                                                                                              | 112719<br>151217                                             |                                                    | 0.873681<br>0.873691                                                               |                                                   |                                            |                                                                                                                                                                      | 44                                |                |            |
| Grid 1<br>Grid 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ot increase   | 42<br>42                                                                                                                                                                     |           | 100<br>110<br>ault = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Defa<br>Defa                                         | ault = lbfgs<br>ault = lbfgs                                                                                 | Default = I2<br>Default = I2                                                                            | 0.8721<br>0.8721                                                                                   | 151217                                                       | sion tree to                                       | 0.873691                                                                           | 10                                                |                                            | 9257536                                                                                                                                                              | 44                                |                |            |
| Grid 1<br>Grid 2<br>as the 4b2 dataset does no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 42<br>42                                                                                                                                                                     |           | 100<br>110<br>eult = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Defa<br>Defa                                         | ault = lbfgs<br>ault = lbfgs                                                                                 | Default = I2<br>Default = I2                                                                            | 0.8721<br>0.8721                                                                                   | 151217                                                       | sion tree to s                                     | 0.873691                                                                           | 10                                                |                                            | 9257536                                                                                                                                                              | 44                                |                |            |
| Grid 1<br>Grid 2<br>as the 4b2 dataset does no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 42<br>42                                                                                                                                                                     |           | 100<br>110<br>ault = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Defa<br>Defa<br>e 4a1                                | ault = lbfgs<br>ault = lbfgs                                                                                 | Default = I2<br>Default = I2                                                                            | 0.872:<br>0.872:<br>odel accruacy                                                                  | 151217<br>of deci                                            | sion tree to s                                     | 0.873691<br>see if it wor                                                          | 10<br>ks                                          | 0.9                                        | 9257536-<br>9257537                                                                                                                                                  | 44<br>89                          | -p             | FN         |
| Grid 1 Grid 2  as the 4b2 dataset does no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 42<br>42<br>model accu                                                                                                                                                       | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Defa<br>Defa<br>e 4a1 o                              | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers                                                     | Default = I2<br>Default = I2<br>th increases mo                                                         | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac                                                     | of deci                                                      | Cross valida                                       | 0.873691<br>see if it wor                                                          | 10<br>ks                                          | 0.9<br>ross valida                         | 9257536-<br>92575378<br>92575378                                                                                                                                     | 44<br>89                          | -р             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no Sple 3: Logistic fitting 4a untuned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 42<br>42<br>model accu                                                                                                                                                       | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Defa<br>Defa<br>e 4a1 d                              | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs                                     | Default = I2 Default = I2  th increases mo penalties Default = I2                                       | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.87049                                          | of deci                                                      | Cross valida<br>(                                  | 0.873691<br>see if it wor<br>tion accura                                           | ks cy Cr                                          | 0.9<br>ross valida<br>0.92                 | 9257536-<br>92575370<br>92575370<br>92575370<br>92575370                                                                                                             | 44<br>89<br>C F<br>49             | -P             | FN         |
| Grid 1<br>Grid 2<br>as the 4b2 dataset does no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 42<br>42<br>model accu                                                                                                                                                       | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Defa<br>Defa<br>e 4a1 d                              | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers                                                     | Default = I2<br>Default = I2<br>th increases mo                                                         | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac                                                     | of deci                                                      | Cross valida<br>(                                  | 0.873691<br>see if it wor                                                          | ks cy Cr                                          | 0.9<br>ross valida<br>0.92                 | 9257536-<br>92575378<br>92575378                                                                                                                                     | 44<br>89<br>C F<br>49             | -р             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no Sole 3: Logistic fitting 4a untuned Grid 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 42<br>42<br>model accu<br>42<br>42                                                                                                                                           | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Defa<br>Defa<br>e 4a1 d<br>Defa<br>Defa              | ault = lbfgs ault = lbfgs dataset whic solvers ault = lbfgs ault = lbfgs ault = lbfgs                        | Default = I2 Default = I2  th increases mo  penalties Default = I2 Default = I2                         | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.87049<br>0.87053                               | of deci<br>curacy<br>958423<br>343394                        | Cross valida<br>(                                  | 0.873691<br>see if it wor<br>tion accura<br>0.87271904<br>0.87268055               | 10<br>ks<br>cy Cr<br>84                           | 0.9<br>ross valida<br>0.92<br>0.92         | 9257536-<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370 | 44<br>89<br>C F<br>49<br>05       | -р             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no Sple 3: Logistic fitting 4a untuned Grid 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 42<br>42<br>model accu                                                                                                                                                       | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Defa<br>Defa<br>e 4a1 d<br>Defa<br>Defa              | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs                                     | Default = I2 Default = I2  th increases mo penalties Default = I2                                       | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.87049                                          | of deci<br>curacy<br>958423<br>343394                        | Cross valida<br>(                                  | 0.873691<br>see if it wor<br>tion accura                                           | 10<br>ks<br>cy Cr<br>84                           | 0.9<br>ross valida<br>0.92<br>0.92         | 9257536-<br>92575370<br>92575370<br>92575370<br>92575370                                                                                                             | 44<br>89<br>C F<br>49<br>05       | -р             | FN         |
| Grid 1  Grid 2  as the 4b2 dataset does no  Signature as Logistic fitting 4a  untuned  Grid 1  Grid 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 42<br>42<br>model accu<br>42<br>42                                                                                                                                           | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Defa<br>Defa<br>e 4a1 d<br>Defa<br>Defa              | ault = lbfgs ault = lbfgs dataset whic solvers ault = lbfgs ault = lbfgs ault = lbfgs                        | Default = I2 Default = I2  th increases mo  penalties Default = I2 Default = I2                         | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.87049<br>0.87053                               | of deci<br>curacy<br>958423<br>343394                        | Cross valida<br>(                                  | 0.873691<br>see if it wor<br>tion accura<br>0.87271904<br>0.87268055               | 10<br>ks<br>cy Cr<br>84                           | 0.9<br>ross valida<br>0.92<br>0.92         | 9257536-<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370<br>92575370 | 44<br>89<br>C F<br>49<br>05       | -P             | FN         |
| Grid 1 Srid 2 ss the 4b2 dataset does no Siple 3: Logistic fitting 4a untuned Grid 1 Srid 2 Srid 2 ogistic regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42                                                                                                                                     | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Defa<br>Defa<br>e 4a1 d<br>S<br>Defa<br>Defa<br>Defa | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs<br>ault = lbfgs<br>ault = lbfgs     | Default = I2 Default = I2  h increases mo  penalties Default = I2 Default = I2 Default = I2             | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;                    | of deci<br>curacy<br>958423<br>343394<br>343394              | Cross valida<br>(<br>(                             | 0.873691<br>see if it wor<br>tion accura<br>0.87271904<br>0.87268055<br>0.87268055 | 10 ks cy Cr 84 13 13                              | 0.9<br>ross valida<br>0.92<br>0.92         | ation AU<br>2489057-<br>2489228                                                                                                                                      | C F<br>49<br>05<br>59             |                | FN         |
| Grid 1 Sind 2 as the 4b2 dataset does no Je 3: Logistic fitting 4a untuned Grid 1 Grid 2 orgistic regression eatures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42<br>coefficient                                                                                                                      | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Defa<br>Defa<br>e 4a1 d<br>S<br>Defa<br>Defa<br>Defa | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs<br>ault = lbfgs<br>ault = lbfgs     | Default = I2 Default = I2  th increases mo  penalties Default = I2 Default = I2                         | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;                    | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida<br>(<br>(<br>(<br>(<br>res AUC        | 0.873691 see if it wor tion accura 0.87271904 0.87268055 0.87268055                | 10 ks cy Cr 84 13 13                              | 0.9<br>ross valida<br>0.92<br>0.92<br>0.92 | ation AU<br>2489057-<br>24892290<br>24892290<br>913                                                                                                                  | 44<br>89<br>C F<br>49<br>05<br>59 |                | FN         |
| Grid 1 Srid 2 Sind 2 Sind 2 Sind 3 Sind 3 Sind 3 Sind 1 Sind 2 Sind 2 Sind 2 Sind 2 Sind 3 Si | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42<br>coefficient<br>-0.1208                                                                                                           | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Defa<br>Defa<br>e 4a1 d<br>S<br>Defa<br>Defa<br>Defa | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs<br>ault = lbfgs<br>ault = lbfgs     | Default = I2 Default = I2  h increases mo  penalties Default = I2 Default = I2 Default = I2             | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;                    | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida<br>(<br>(                             | 0.873691 see if it wor tion accura 0.87271904 0.87268055 0.87268055                | 10 ks cy Cr 84 13 13                              | 0.9<br>ross valida<br>0.92<br>0.92         | ation AU<br>2489057-<br>24892290<br>24892290<br>913                                                                                                                  | 44<br>89<br>C F<br>49<br>05<br>59 | -p             | FN         |
| Grid 1 Srid 2 Sind 2 Sind 2 Sind 3 Sind 3 Sind 3 Sind 1 Sind 2 Sind 2 Sind 2 Sind 2 Sind 3 Si | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42<br>coefficient                                                                                                                      | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Defa<br>Defa<br>e 4a1 d<br>S<br>Defa<br>Defa<br>Defa | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs<br>ault = lbfgs<br>ault = lbfgs     | Default = I2 Default = I2  h increases mo  penalties Default = I2 Default = I2 Default = I2             | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;                    | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida<br>(<br>(<br>(<br>(<br>res AUC        | 0.873691 see if it wor tion accura 0.87271904 0.87268055 0.87268055                | 10 ks cy Cr 84 13 13                              | 0.9<br>ross valida<br>0.92<br>0.92<br>0.92 | ation AU<br>2489057-<br>24892290<br>24892290<br>913                                                                                                                  | 44<br>89<br>C F<br>49<br>05<br>59 | P              | FN         |
| Grid 1 Sind 2 as the 4b2 dataset does no Sile 3: Logistic fitting 4a untuned Grid 1 Grid 2 ogistic regression eatures ge light distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42<br>coefficient<br>-0.1208<br>-0.0117                                                                                                | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Defa<br>Defa<br>e 4a1 d<br>S<br>Defa<br>Defa<br>Defa | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs<br>ault = lbfgs<br>ault = lbfgs     | Default = I2 Default = I2  h increases mo  penalties Default = I2 Default = I2 Default = I2             | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;                    | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida<br>(<br>(<br>(<br>(<br>res AUC        | 0.873691 see if it wor tion accura 0.87271904 0.87268055 0.87268055                | 10 ks cy Cr 84 13 13                              | 0.9<br>ross valida<br>0.92<br>0.92<br>0.92 | ation AU<br>2489057-<br>24892290<br>24892290<br>913                                                                                                                  | 44<br>89<br>C F<br>49<br>05<br>59 | -P             | FN         |
| Grid 1  Sind 2  as the 4b2 dataset does no  Siple 3: Logistic fitting 4a  untuned  Grid 1  Grid 2  ogistic regression  eatures  ge  light distance  fillight wirli service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42<br>42<br>coefficient<br>-0.1208<br>-0.0117<br>0.3922                                                                                | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Defa<br>Defa<br>e 4a1 d<br>S<br>Defa<br>Defa<br>Defa | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs<br>ault = lbfgs<br>ault = lbfgs     | Default = I2 Default = I2  h increases mo  penalties Default = I2 Default = I2 Default = I2             | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;                    | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida<br>(<br>(<br>(<br>(<br>res AUC        | 0.873691 see if it wor tion accura 0.87271904 0.87268055 0.87268055                | 10 ks cy Cr 84 13 13                              | 0.9<br>ross valida<br>0.92<br>0.92<br>0.92 | ation AU<br>2489057-<br>24892290<br>24892290<br>913                                                                                                                  | 44<br>89<br>C F<br>49<br>05<br>59 | -P             | FN         |
| Grid 1 Srid 2 sas the 4b2 dataset does no Sile 3: Logistic fitting 4a untuned Grid 1 Srid 2 ogistic regression eatures ge light distance riftight wifi service eparture time convenient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42<br>42<br>0.1208<br>-0.0117<br>0.3922<br>-0.1238                                                                                     | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Defa<br>Defa<br>e 4a1 d<br>S<br>Defa<br>Defa<br>Defa | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs<br>ault = lbfgs<br>ault = lbfgs     | Default = I2 Default = I2  h increases mo  penalties Default = I2 Default = I2 Default = I2             | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;                    | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida<br>(<br>(<br>(<br>(<br>res AUC        | 0.873691 see if it wor tion accura 0.87271904 0.87268055 0.87268055                | 10 ks cy Cr 84 13 13                              | 0.9<br>ross valida<br>0.92<br>0.92<br>0.92 | ation AU<br>2489057-<br>24892290<br>24892290<br>913                                                                                                                  | 44<br>89<br>C F<br>49<br>05<br>59 | P              | FN         |
| Grid 1 Sind 2 sas the 4b2 dataset does no Siple 3: Logistic fitting 4a untuned Grid 1 Grid 2 ogistic regression eatures ge light distance offlight wiff service leparture time convenient ase of online booking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42<br>-0.1208<br>-0.0117<br>0.3922<br>-0.1238<br>-0.139                                                                                | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Defa<br>Defa<br>e 4a1 d<br>S<br>Defa<br>Defa<br>Defa | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs<br>ault = lbfgs<br>ault = lbfgs     | Default = I2 Default = I2  h increases mo  penalties Default = I2 Default = I2 Default = I2             | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;                    | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida<br>(<br>(<br>(<br>(<br>res AUC        | 0.873691 see if it wor tion accura 0.87271904 0.87268055 0.87268055                | 10 ks cy Cr 84 13 13                              | 0.9<br>ross valida<br>0.92<br>0.92<br>0.92 | ation AU<br>2489057-<br>24892290<br>24892290<br>913                                                                                                                  | 44<br>89<br>C F<br>49<br>05<br>59 | -P             | FN         |
| Grid 1 Sind 2 sas the 4b2 dataset does no Siple 3: Logistic fitting 4a untuned Grid 1 Grid 2 ogistic regression eatures ge light distance offlight wiff service leparture time convenient ase of online booking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42<br>42<br>0.1208<br>-0.0117<br>0.3922<br>-0.1238                                                                                     | racy, the | 100<br>110<br>ault = 1.0<br>en lets use the<br>C<br>Default<br>100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Defa<br>Defa<br>e 4a1 d<br>S<br>Defa<br>Defa<br>Defa | ault = lbfgs<br>ault = lbfgs<br>dataset which<br>solvers<br>ault = lbfgs<br>ault = lbfgs<br>ault = lbfgs     | Default = I2 Default = I2  h increases mo  penalties Default = I2 Default = I2 Default = I2             | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;                    | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida<br>(<br>(<br>(<br>(<br>res AUC        | 0.873691 see if it wor tion accura 0.87271904 0.87268055 0.87268055                | 10 ks cy Cr 84 13 13                              | 0.9<br>ross valida<br>0.92<br>0.92<br>0.92 | ation AU<br>2489057-<br>24892290<br>24892290<br>913                                                                                                                  | 44<br>89<br>C F<br>49<br>05<br>59 | -P             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no Sole 3: Logistic fitting 4a untuned Grid 1 Grid 2 ogistic regression eatures ge light distance fiftight wiff service leparture time convenient asse of online booking griate location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42<br>42<br>0-0.117<br>0.3922<br>-0.1238<br>0-0.1399<br>0.0273                                                                         | racy, the | 100 110 110 2011 = 1.0 2011 = 1.0 2012 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2013 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 2014 = 1.0 | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | nult = lbfgs uult = lbfgs dataset which solvers uult = lbfgs uult = lbfgs uult = lbfgs uult = lbfgs          | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 see if it wor tion accura 0.87271904 0.87268055 0.87268055                | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>2489057-<br>2489057-<br>2489228:<br>3 911-<br>3446                                                                                                       | 44<br>89<br>C F<br>49<br>05<br>59 | -p             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no       Insert Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 whole       | 42<br>42<br>model accu<br>42<br>42<br>42<br>-0.1208<br>-0.0117<br>-0.1238<br>-0.1339<br>-0.0273<br>-0.0244                                                                   | racy, the | 100 110 110 aut = 1.0 cn lets use the C Default 100 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | nult = lbfgs uult = lbfgs dataset which solvers uult = lbfgs uult = lbfgs uult = lbfgs uult = lbfgs          | Default = I2 Default = I2  h increases mo  penalties Default = I2 Default = I2 Default = I2             | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | -P             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no as the 4b2 dataset dataset as dataset as described booking ate location ood and drink miline boarding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 whole       | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>10.1208<br>10.117<br>0.3922<br>10.1238<br>10.1399<br>10.0273<br>10.0244<br>10.1619                                                 | rank      | 100 110 110 ault = 1.0  C Default 100 110  2 2 2 2 2 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | nult = lbfgs uult = lbfgs dataset which solvers uult = lbfgs uult = lbfgs uult = lbfgs uult = lbfgs          | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | -p             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no as the 4b2 dataset dataset as dataset as described booking ate location ood and drink miline boarding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 whole       | 42<br>42<br>42<br>42<br>42<br>42<br>-0.117<br>0.1328<br>-0.1339<br>-0.0237<br>-0.0244<br>0.6109                                                                              | rank      | 100 110 ault = 1.0  C Default 100 1110 2 2 2 2 2 2 4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | БР             | FN         |
| Grid 1 Srid 2 sas the 4b2 dataset does no Silve 3: Logistic fitting 4a untuned Grid 1 Srid 1 Srid 2 ogistic regression eatures ge light distance nfflight wifi service eparture time convenient asse of online booking atte location ood and drink unline boarding eat comfort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 whole       | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>10.1208<br>10.117<br>0.3922<br>10.1238<br>10.1399<br>10.0273<br>10.0244<br>10.1619                                                 | rank      | 100 110 110 ault = 1.0  C Default 100 110  2 2 2 2 2 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | -p             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no grid 3: Logistic fitting 4a antuned Grid 1 Grid 2 ogistic regression eatures ge gight distance flight wiff service eperture time convenient ase of online booking ate location ood and drink nline boarding eat comfort flight entertainment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 whole       | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>-0.0117<br>0.3922<br>-0.1238<br>-0.1399<br>0.0273<br>-0.0244<br>0.6109<br>0.656                                                    | rank      | 100 110 110 ault = 1.0  C Default 100 110  2 2 2 2 2 2 3 1 9 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | -P             | FN         |
| Grid 1  Sind 2  as the 4b2 dataset does no  Siple 3: Logistic fitting 4a  Intuned  Grid 1  Grid 2  Degistic regression  Beatures  Beatur | 1 whole       | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>-0.1208<br>-0.0117<br>0.3922<br>-0.1238<br>-0.0244<br>0.6109<br>0.0656<br>0.0651                                                   | rank      | 100 110 ault = 1.0  C Default 100 110 2 2 2 2 2 4 1 9 9 0 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | гр             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no gride 3: Logistic fitting 4a untuned Grid 1 Grid 2 ogistic regression autures ge light distance filight wiff service eparture time convenient ase of online booking ate location ood and drink nline boarding eat comfort filight entertainment n-board service eg room service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 whole       | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>-0.117<br>0.3922<br>-0.128<br>-0.1399<br>0.0273<br>-0.0244<br>0.6109<br>0.0655<br>0.0651                                           | rank      | 100 110 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             |                | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no gride 3: Logistic fitting 4a untuned Grid 1 Grid 2 ogistic regression autures ge light distance filight wiff service eparture time convenient ase of online booking ate location ood and drink nline boarding eat comfort filight entertainment n-board service eg room service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 whole       | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>-0.1208<br>-0.0117<br>0.3922<br>-0.1238<br>-0.0244<br>0.6109<br>0.0656<br>0.0651                                                   | rank      | 100 110 ault = 1.0  C Default 100 110 2 2 2 2 2 4 1 9 9 0 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             |                | FN         |
| Srid 1  as the 4b2 dataset does no  site of the state of online booking at location ood and drink nilne boarding eat comfort flight expression of the state of th | 1 whole       | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>-0.1208<br>-0.0117<br>0.9392<br>-0.1238<br>-0.0273<br>-0.0244<br>0.6109<br>0.0556<br>0.0655<br>0.0655                        | rank      | 100 110 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | гр             | FN         |
| Grid 1 Srid 2 sas the 4b2 dataset does no Siple 3: Logistic fitting 4a untuned Grid 1 Srid 1 Srid 2 ogistic regression eatures ge light distance fiftight wifi service eparture time convenient ase of online booking ate location ood and drink inline boarding eat comfort inlight entertainment in-board service eg groom service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 whole       | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>-0.1208<br>-0.0117<br>0.3922<br>-0.1238<br>-0.0244<br>0.6109<br>0.0655<br>0.0651<br>0.3005<br>0.2517<br>0.1328                     | rank      | 100 110 ault = 1.0  C Default 100 1110  2 2 2 2 2 4 9 0.0 4 4 5 7 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             |                | FN         |
| Srid 1 Srid 2 sis the 4b2 dataset does no solve 3 Logistic fitting 4a intuned Srid 1 Srid 2 Ogistic regression eatures ge light distance flight with service eparture time convenient ase of online booking ate location booking at location pood and drink flight exit is expected by the service end of  | 1 whole       | 42 42 42 42 42 42 42 42 42 42 42 42 42 4                                                                                                                                     | rank      | 100 110 ault = 1.0  C Default 100 110  2 2 2 1 9 9 00 4 5 5 7 3 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | гр             | FN         |
| Srid 1 Srid 2 sis the 4b2 dataset does no data dataset does no satures ge light distance flight wifi service eparture time convenient ase of online booking ate location and and drink nine boarding leat comfort flight entertainment n-board service agroom service agroem service agroem service flight service leanliness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 whole       | 42 42 42 42 42 42 42 42 42 42 42 42 42 4                                                                                                                                     | rank      | 100 110 ault = 1.0  C Default 100 1110  2 2 2 2 2 4 9 0.0 4 4 5 7 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             |                | FN         |
| Srid 1 Srid 2 sis the 4b2 dataset does no data dataset does no satures ge light distance flight wifi service eparture time convenient ase of online booking ate location and and drink nine boarding leat comfort flight entertainment n-board service agroom service agroem service agroem service flight service leanliness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 whole       | 42 42 42 42 42 42 42 42 42 42 42 42 42 4                                                                                                                                     | rank      | 100 110 ault = 1.0  C Default 100 110  2 2 2 1 9 9 00 4 5 5 7 3 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | гр             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no gride 3: Logistic fitting 4a untuned Grid 1 Grid 1 Grid 2 ogistic regression eatures ge light distance flight wiff service eparture time convenient ase of online booking ate location ood and drink nline boarding eat comfort flight entertainment n-board service egroom service egge and gride eat comfort flight entertainment n-board service egge handling heckin service flight service leanliness eparture delay in min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 whole       | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>-0.117<br>0.392<br>-0.128<br>-0.139<br>0.0273<br>-0.024<br>0.6109<br>0.055<br>0.055<br>0.051<br>0.305<br>0.251<br>0.1328<br>0.1328 | rank      | 100 110 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             |                | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no Siple 3: Logistic fitting 4a untuned Grid 1 Grid 2 orgistic regression eatures ge light distance inflight wiff service leparture time convenient asse of online booking atte location ood and drink boline boarding eat comfort inflight exit service groom service ge groom service agagage handling heckin service inflight service leparture delay in min gender_male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 whole       | 42 42 42 42 42 42 42 42 42 42 42 42 42 4                                                                                                                                     | rank      | 100 110 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | ault = lbfgs  dataset which  solvers  sult = lbfgs  uult = lbfgs  uult = lbfgs  uult = lbfgs  rfor model tra | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             |                | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no solve 3: Logistic fitting 4a untuned Grid 1 Grid 1 Grid 2 ogistic regression eatures ge light distance filight wifi service leparture time convenient asse of online booking tate location ood and drink untine boarding eat comfort filight entertainment n-board service eg room service eg room service eg room service filight service leachiners leparture delay in min ender_male ustomer Type_disloyal Custon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 whole       | 42 42 42 42 42 42 42 42 42 42 42 42 42 4                                                                                                                                     | rank      | 100 110 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | nult = lbfgs uult = lbfgs dataset which solvers uult = lbfgs uult = lbfgs uult = lbfgs uult = lbfgs          | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             |                | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no Sple 3: Logistic fitting 4a untuned Grid 1 Grid 2 ogistic regression eatures ge light distance inflight wiff service teparture time convenient asse of online booking tate location ood and drink moline boarding eat comfort inflight entratainment on-board service gegage handling heckin service inflight entratainment on-board service gegage handling heckin service inflight entration light entratainment on-board service leagingent leadings | 1 whole       | 42 42 42 42 42 42 42 42 42 42 42 42 42 4                                                                                                                                     | rank      | 100 110 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | nult = lbfgs uult = lbfgs dataset which solvers uult = lbfgs uult = lbfgs uult = lbfgs uult = lbfgs          | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | гр             | FN         |
| Grid 1 Grid 2 as the 4b2 dataset does no solve 3: Logistic fitting 4a untuned Grid 1 Grid 1 Grid 2 ogistic regression eatures ge light distance filight wifi service leparture time convenient asse of online booking tate location ood and drink untine boarding eat comfort filight entertainment n-board service eg room service eg room service eg room service filight service leachiners leparture delay in min ender_male ustomer Type_disloyal Custon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 whole       | 42 42 42 42 42 42 42 42 42 42 42 42 42 4                                                                                                                                     | rank      | 100 110 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | nult = lbfgs uult = lbfgs dataset which solvers uult = lbfgs uult = lbfgs uult = lbfgs uult = lbfgs          | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             |                | FN         |
| srid 1  Srid 2  sis the 4b2 dataset does no  solution of the s | 1 whole       | 42 42 42 42 42 42 42 42 42 42 42 42 42 4                                                                                                                                     | rank      | 100 110 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defa Defa Defa  e 4a1 o  g Defa Defa Defa Defa       | nult = lbfgs uult = lbfgs dataset which solvers uult = lbfgs uult = lbfgs uult = lbfgs uult = lbfgs          | Default = 12 Default = 12 th increases mo penalties Default = 12 Default = 12 Default = 12 Default = 12 | 0.872:<br>0.872:<br>odel accruacy<br>Simple Ac<br>0.8704;<br>0.8705;<br>0.8705;<br>ghest coefficie | of deci<br>curacy<br>958423<br>343394<br>343394<br>ent featu | Cross valida ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0.873691 tee if it wor tion accura .87271904 .87268055 .87268055 Confusion i       | ccy Cr Cr Set | 0.9 ross valida 0.92 0.92 0.92 49763 10565 | ation AU<br>24890574<br>24890574<br>24892294<br>24892284<br>34446                                                                                                    | C F<br>49<br>05<br>59             | г              | FN         |

Also, we tried to select 10 most powerful features and retrained the model (file name: Logistic regression top 10 coefficient.ipynb) again.

However, when we look at the performance after dropping features for all feature selection methods, all scores are lower. We deduce that it may be due to the fact that the logistic regression model already has penalty for features with low importance, so further dropping features would not improve model performance.

# **Naïve Bayes**

Data preparation methods without any features selection process are summarized at right:

The accuracies are generally low before carrying out any feature selection method. (file: NB\_model\_label\_encoding.ipynb)

| Data preparation method    | Multinomial Naïve Bayes | Multinomial Naïve Bayes                                     |
|----------------------------|-------------------------|-------------------------------------------------------------|
| id                         | N/A                     | N/A                                                         |
| gender                     | one-hot encoding        | label encoding                                              |
| customer type              | one-hot encoding        | label encoding                                              |
| age                        | binned                  | minmax and then binned                                      |
| type of travel             | one-hot encoding        | label encoding                                              |
| class                      | one-hot encoding        | label encoding                                              |
| flight distance            | binned                  | minmax and then binned                                      |
| inflight wifi service      | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| departure time convenient  | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| ease of online booking     | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| gate location              | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| food and drink             | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| online boarding            | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| seat comfort               | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| inflight entertainment     | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| on-board service           | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| leg room service           | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| baggage handling           | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| checkin service            | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| inflight service           | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| cleanliness                | one-hot encoding        | originally it is ordinal features, no data cleaning process |
| departure delay in minutes | drop                    | drop                                                        |
| arrival delay in minutes   | drop                    | drop                                                        |
| accuracy                   |                         | 0.51                                                        |

## Naïve Bayes Model Feature selection

Chi-squared method is adopted to select some features and fit into the Naive Bayes model.

Chi-squared method measures the features which are highly correlated/informative to the target variable. Since we have no idea the optimal number of features selected, I fitted the model by using the top 4-11 most important features and



recorded the accuracy. If we use the top 5 most important features to fit the model, it generated the highest accuracy 0.8. The models trained by selected features generally have higher accuracy. (file: Data\_preparation\_feature\_selection.ipynb, NB model label encoding feature selection.ipynb)

Feature ID is included because it does matter to the accuracy of the model, if we eliminate ID, the accuracy will become lower.

#### **Model Evaluation**

|   | Model    | AUC      |
|---|----------|----------|
| 0 | mnb_test | 0.850887 |
| 1 | mnb      | 0.852471 |

### **Random Forest Model**

We trained a random forest model on our dataset using the scikit-learn library in Python. The model was trained using "data preparation sorted 4".

#### Baseline Result

Before applying any optimizations, we evaluated the performance of the baseline model. The model achieved a cross validation accuracy of 0.96247.

#### Random Forest Model Feature Selection

In this random forest model, we used rf.feature\_importances\_which is calculated using the Mean Decrease Impurity method. For each feature, the importance score is calculated as the sum of the reduction in impurity (measured by Gini impurity or entropy) overall decision trees in the Random Forest, weighted by the number of samples that were split on that feature. We've trained models with reduced features, however, the CV accuracy is lower than the baseline result.



#### Random Forest Hyperparameter Tuning

To improve the performance of the model, we performed a grid search cross-validation to find the best hyperparameters. We searched over a range of values for the number of estimators and the minimum samples split of the trees. The grid search resulted in the following optimal hyperparameters:

Best hyperparameters: {'min samples split': 2, 'n estimators': 500}

After training the model with the optimal hyperparameters, we evaluated its performance on the training set and test set. The model achieved a cross validation accuracy of 0.96300 which is an increase of 0.053% to the baseline result. For the test set, the model that achieved the confusion matrix is shown at right.



# 4.Performance Evaluation

| Each of our best models           | Cross Validation Accuracy | FPR     | FNR     |
|-----------------------------------|---------------------------|---------|---------|
| Decision tree model (Yanni)       | 0.9584                    | 0.03027 | 0.04651 |
| Decision tree model (Cathy)       | 0.9602                    | 0.02905 | 0.04746 |
| Logistic regression model (Yanni) | 0.8750                    | 0.12970 | 0.12160 |
| Logistic regression model (Wendy) | 0.8705                    | 0.12987 | 0.12179 |
| Random Forest (Steven)            | 0.9630                    | 0.02835 | 0.04743 |
| Multinomial Naive Bayes (Wendy)   | 0.8039                    | 0.16781 | 0.23175 |

Our performance evaluation mainly uses accuracy scores as our dataset does not have class imbalance problems and accuracy does not distort model performance.

We have used simple accuracy, cross validation (cv) accuracy and cv AUC score as the performance evaluation tool when tuning hyperparameters as only one tool may not give the full picture of model performance. During the tuning process, train test split has been used to train and test models, with the train to test proportion being 0.5.

For model selection, we consider two aspects of model performance. The first aspect is the prediction accuracy, where we use cross validation accuracy to choose the best model because the Naive Bayes model does not do classification based on a decision threshold and cannot produce AUC scores.

We also consider cost benefit analysis when selecting the best model. We have identified the cost of False Positive as the cost of losing one customer per each FP point and the cost of False Negative as the cost of retaining unsatisfied customers. We believe that the cost of FP should be significantly higher than that of FN, which is close to zero, so we would choose a model with lower FPR. Therefore, the best classifier is Random Forest Classifier.

# 5.Conclusion

Our goal in data mining is to identify the determined factors of customer satisfaction in the airline industry and create a reliable binary predictive model. By pinpointing the most important features, airlines can allocate their resources, such as facilities, equipment, labor force, and time spent, more effectively to improve their services. With an accurate predictive model, airlines can quickly respond to customer feedback and take remedial actions if needed. It will increase customer retention rate, moreover, improve the efficiency of operations, allowing airlines to invest more in sustainability. After analyzing the data using four classifiers, we have concluded that the top three important features are "Online boarding", "Inflight wifi service", and "Type of Travel\_Personal Travel".

|                                   | Feature Selection     |                       |                                | Feature selection method                                                       |
|-----------------------------------|-----------------------|-----------------------|--------------------------------|--------------------------------------------------------------------------------|
|                                   | 1                     | 2                     | 3                              |                                                                                |
| Decision tree model (Yanni)       | Online boarding       | Inflight wifi service | Type of Travel_Personal Travel | Decision tree feature importance                                               |
| Decision tree model (Cathy)       | Inflight wifi service | Online boarding       | Type of Travel_Personal Travel | remove low variance + univariate feature selection+ RFE + tree-based estimator |
| Logistic regression model (Yanni) | Online boarding       | Inflight wifi service | Type of Travel_Personal Travel | SFS and RFE                                                                    |
| Logistic regression model (Wendy) | Online boarding       | Inflight wifi service | Checkin service                | Largest coefficient                                                            |
| Random Forest (Steven)            | Online boarding       | Inflight wifi service | Type of Travel_Personal Travel | Random Forest feature importance (mean decrease impurity)                      |
| Multinomial Naive Bayes (Wendy)   | ID                    | Online boarding       | Type of Travel                 | Chi-squared method                                                             |

In the future, we could explore the effectiveness of new ML models such as Gradient Boosting, Support Vector Machines (SVM), and Neural Networks. These models have shown promise in various applications and may provide superior performance for predicting customer satisfaction in the airline industry. Conducting a cost-benefit analysis would also be valuable. This analysis would assess the costs associated with developing and deploying predictive models against the potential benefits of increased customer loyalty and satisfaction. The results of this analysis could inform decision-making regarding investment in predictive models for improving customer satisfaction.

Potential problems that may arise if an airline company sticks to the conclusions we draw right now is focusing too much on improving the important features we pointed out, ignoring other features. For example, as we now see cleanliness and food and drink as less important features, their quality of cleanliness and food may decline subsequently. Therefore, we suggest airlines to do further ML and other research work to provide services with high and balanced quality, improving their reliability in providing business.