Inhaltsverzeichnis

Vorwort		5
1	Beispiele normierter Räume	7
2	Funktionale und Operatoren	21
3	Dualräume und ihre Darstellungen	31
4	Kompakte Operatoren	37
5	Der Satz von Hahn-Banach	45
6	Schwache Konvergenz und Reflexivität	57
7	Hauptsätze für Operatoren auf Banachräumen	61
8	Projektionen auf Banachräumen	73
9	Hilberträume	75

9

Hilberträume

{satz9.1}

Satz 9.1 Parallelogrammgleichung

Ein normierter Raum X ist genau dann ein Prähilbertraum, wenn

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2) \forall x, y \in X$$

gilt.

Beweis:

'⇒ *'*:

$$||x + y||^{2} + ||x - y||^{2} = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle$$

$$= ||x||^{2} + \langle x, y \rangle + \langle y, x \rangle + ||y||^{2} + ||x||^{2} - \langle y, x \rangle - \langle x, y \rangle + ||y||^{2}$$

$$= 2(||x||^{2} + ||y||^{2})$$

 $' \Leftarrow '$: Sei zunächst $\mathbb{K} = \mathbb{R}$. Wir definieren:

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) \Rightarrow \|x\| = \langle x, x \rangle^{\frac{1}{2}}$$

Wir müssen noch die Eigenschaften des Skalarproduktes nachweisen:

i) $\forall x_1, x_2, y \in X$ folgt aus der Parallelogrammgleichung

$$||x_1 + x_2 + y||^2 = 2||x_1 + y||^2 + 2||x_2||^2 - ||x_1 + y - x_2||^2 =: \alpha$$

$$||x_1 + x_2 + y||^2 = 2||x_2 + y||^2 + 2||x_1||^2 - ||-x_1 + x_2 + y||^2 =: \beta$$

Also:

$$\|x_1 + x_2 + y\|^2 = \frac{\alpha + \beta}{2} = \|x_1 + y\|^2 + \|x_2\|^2 + \|x_2 + y\|^2 + \|x_1\|^2 - \frac{1}{2}(\|x_1 + y - x_2\|^2 + \|-x_1 + x_2 + y\|^2)$$

Analog gilt:

$$||x_1 + x_2 - y||^2 = ||x_1 - y||^2 + ||x_2||^2 + ||x_2 - y||^2 + ||x_1||^2 - \frac{1}{2}(||x_1 - y - x_2||^2 + ||-x_1 + x_2 - y||^2)$$

$$\langle x_1 + x_2, y \rangle = \frac{1}{4} (\|x_1 + x_2 + y\|^2 - \|x_1 + x_2 - y\|^2)$$

$$= \frac{1}{4} (\|x_1 + y\|^2 - \|x_1 - y\|^2 + \|x_2 + y\|^2 - \|x_2 - y\|^2)$$

$$= \langle x_1, y \rangle + \langle x_2, y \rangle$$

ii) Nach i) gilt ii) für $\lambda \in \mathbb{N}$ und nach Konstruktion auch für $\lambda = 0$ und $\lambda = -1$. Somit gilt ii) für $\lambda \in \mathbb{Z}$.

Sei
$$\lambda = \frac{m}{n} \in \mathbb{Q}$$
.

$$n\langle \lambda x, y \rangle = n\langle m\frac{x}{n}, y \rangle = \langle mx, y \rangle = m\langle x, y \rangle = n\lambda\langle x, y \rangle$$

Also gilt ii) für $\lambda \in \mathbb{Q}$.

Die stetigen Funktionen ($\|\cdot\|$ ist stetig) $\lambda \mapsto \langle \lambda x, y \rangle$ und $\lambda \mapsto \lambda \langle x, y \rangle$ stimmen auf \mathbb{Q} überein und sind daher gleich. Dies zeigt ii).

- iii) √
- iv) und v) folgt aus $\langle x, x \rangle = ||x||^2$.

Für $\mathbb{K} = \mathbb{C}$ ist die Argumentation ähnlich.

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i \|x + iy\|^2 - y \|x - iy\|^2)$$

{def9.2}

Definition 9.2

Sei X ein Prähilbertraum. Zwei Vektoren $x, y \in X$ heißen orthogonal, in Zeichen $x \perp y$, falls $\langle x, y \rangle = 0$ gilt.

zwei Teilmengen $A, B \subseteq X$ heißen orthogonal, in Zeichen $A \perp B$, falls $x \perp y$ für alle $x \in A$ und $y \in B$ gilt.

Die Menge $A^{\perp} := \{ y \in X \mid x \perp y \forall x \in A \}$ heißt orthogonales Komplement von A.

Beispiel

$$\mathbb{R}^2$$
, $x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $y = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. $\langle x, y \rangle = 0 \Rightarrow x \perp y$. //

Bemerkung

- i) $x \perp y \Rightarrow ||x + y||^2 = ||x||^2 + ||y||^2$ (Satz von Pythagoras).
- ii) A^{\perp} ist stets ein abgeschlossener Untervektorraum von X.
- iii) $A \subseteq (A^{\perp})^{\perp}$.
- iv) $A^{\perp} = (\overline{\ln A})^{\perp}$.

{satz9.3}

Satz 9.3 Projektionssatz

Sei H ein Hilbertraum, $K \subseteq H$ sei abgeschlossen, nichtleer und konvex und es sei $x_0 \in H$. Dann existiert genau ein $x \in K$ mit

$$||x - x_0|| = \inf_{y \in K} ||y - x_0||$$

Beweis: Für $x_0 \in K$ wähle $x = x_0$. Sei also $x_0 \notin K$ und o.B.d.A. $x_0 = 0$.

Existenz: Setze $d := \inf_{y \in K} ||y||$. Es existiert $(y_n)_n \subset K$ mit $||y_n|| \to d$. Wir zeigen zunächst: $(y_n)_n$ ist eine Cauchyfolge. Aus der Parallelogrammgleichung folgt:

$$\underbrace{\left\|\frac{y_n + y_m}{2}\right\|^2}_{>d^2} + \underbrace{\left\|\frac{y_n - y_m}{2}\right\|^2}_{\to 0} = \underbrace{\frac{1}{2}(\|y_n\|^2 + \|y_m\|^2)}_{>d^2} \to d^2$$

Also ist $(y_n)_n$ eine Cauchyfolge. Da H vollständig, existiert ein $x \in H$ mit $x = \lim y_n$. Da K abgeschlossen, ist $x \in K$. Aus $||y_n|| \to d$ folgt ||x|| = d. Hieraus folgt die Existenz.

Eindeutigkeit: Seien $x, \tilde{x} \in K, x \neq \tilde{x}$ mit

$$\|x\|=\|\tilde{x}\|=\inf_{y\in K}\|y\|=d$$

Dann folgt:

$$\underbrace{\left\|\frac{x+\tilde{x}}{2}\right\|^{2}}_{SK} < \left\|\frac{x+\tilde{x}}{2}\right\|^{2} + \left\|\frac{x-\tilde{x}}{2}\right\|^{2} = \frac{1}{2}(\|x\|^{2} + \|\tilde{x}\|^{2}) = d^{2} 4$$

{lemm

Lemma 9.4

Sei K eine abgeschlossene konvexe Teilmenge des Hilbertraumes H und $x_0 \in H$. Dann sind für ein $x \in K$ äquivalent:

i)

$$||x_0 - x|| = \inf_{y \in K} ||x_0 - y||$$

ii)

$$\operatorname{Re}\langle x_0-x,y-x\rangle\leq 0\,\forall\,y\in K$$

Beweis:

 $ii) \Rightarrow i$: Folgt aus

$$\|x_0 - y\|^2 = \|x_0 - x + x - y\|^2 = \|x_0 - x\|^2 + 2\underbrace{\operatorname{Re}\langle x_0 - x, x - y\rangle}_{\geq 0} + \|x - y\|^2 \leq \|x_0 - x\|^2$$

 $i)\Rightarrow ii)$: Zu $t\in[0,1]$ setze

$$y_t = (1 - t)x + ty \in K$$
 falls $y \in K$

Dann folgt aus i):

$$\|x_0 - x\|^2 \le \|x_0 - y_t\|^2 = \langle x_0 - x + t(x - y), x_0 - x + t(x - y)\rangle = \|x_0 - x\|^2 + 2\operatorname{Re}\langle x_0 - x, t(x - y)\rangle + t^2\|x - y\|^2$$

Also:

$$\operatorname{Re}\langle x_0 - x, y - x \rangle \le \frac{t}{2} \|x - y\|^2 \, \forall t \in [0, 1]$$

{thm9.5}

Theorem 9.5 Satz von der Orthogonalprojektion

Sei $U \neq \{0\}$ ein abgeschlossener Unterraum des Hilbertraumes H. Dann existiert eine lineare stetige Projektion p_U von H auf U mit $||p_U|| = 1$ und $\ker p_U = U^{\perp}$.

 $I-p_U$ ist eine Projektion von H auf U^{\perp} mit $||I-p_U||=1$ (es sei denn U=H) und es gilt $H=U\oplus_2 U^{\perp}$.

p_U wird Orthogonalprojektion genannt,

Beweis: Zu $x_0 \in H$ bezeichne $p_U x_0 \in U$ das eindeutig bestimmte Element aus ??. Mit ??:

$$\operatorname{Re}\langle x_0 - p_{IJ}, y - p_{IJ}x_0 \rangle \leq 0 \, \forall y \in U$$

Da mit y auch $y - p_U x_0$ den Unterraum U durchläuft, gilt

$$\operatorname{Re}\langle x_0 - p_U x_0, y \rangle \le 0 \,\forall y \in U$$

Betrachte -y und gegebenenfalls iy (falls $\mathbb{K} = \mathbb{C}$). Dann folgt

$$\langle x_0 - p_U x_0, y \rangle = 0 \,\forall \, y \in U \qquad (*)$$

(*) ist sogar äquivalent zu ii) aus ??. Somit ist $p_U x_0$ das eindeutig bestimmte Element $x \in U$ mit

$$x_0 - x \in U^{\perp} \qquad (**)$$

Da U^{\perp} ein Unterraum ist, folgt

$$\lambda_1 x_1 - \lambda_1 p_U x_1 + (\lambda_2 x_2 - \lambda_2 p_U x_2) \in U^{\perp} \forall x_1, x_2 \in H \forall \lambda_1, \lambda_2 \in \mathbb{K}$$

und

$$p_U(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 p_U x_1 + \lambda_2 p_U x_2$$

Also is p_U linear.

Nach Konstruktion ist ran $p_U = U$ und es gilt ker $p_U = U^{\perp}$, denn

$$p_U x_0 = 0 \Leftrightarrow x_0 \in U^{\perp}$$

 $I-p_U$ ist eine Projektion mit ran $I-p_U=U^\perp$ und ker $I-p_U=U$. Aus dem Satz von Pythagoras folgt

$$\|x_0\|^2 = \|p_Ux_0 + (x_0 - p_Ux_0)\|^2 = \|p_Ux_0\|^2 + \|(I - p_U)x_0\|^2$$

Also ist $H = U \oplus_2 U^{\perp}$ und $||p_U|| \le 1$ (da $||x_0||^2 \ge ||p_U x_0||^2$), $||I - p_U|| \le 1$. Da für Projektionen $p = ||p|| \ge 1$ gilt, folgt

$$||p_{II}|| = 1 = ||I - p_{II}||$$

(falls $U \neq \{0\}$ und $U \neq H$).

{kor9.6}

Korollar 9.6

Für einen Unterraum U eines Hilbertraumes H gilt

$$\bar{U} = (U^{\perp})^{\perp}$$

Beweis: Aus **??** folgt $I - p_V$ für beliebige abgeschlossene Unterräume V. Sei $V = \bar{U}$. Dann ist $U^{\perp} = V^{\perp}$ sowie $I - p_{V^{\perp}} = p_{(V^{\perp})^{\perp}}$. Also $p_V = p_{(V^{\perp})^{\perp}}$ und somit $\bar{U} = V = (V^{\perp})^{\perp}$.

{thm9

Theorem 9.7 Darstellungssatz von Fréchet-Riesz

Sei H ein Hilbertraum. Dann ist die Abbildung $\Phi: H \to H', y \mapsto \langle \cdot, y \rangle$ bijektiv, isometrisch und konjugiert linear (d.h. $\Phi(\lambda y) = \bar{\lambda}\Phi(y)$). D.h. zu $x' \in H'$ existiert genau ein $y \in H$ mit

$$x'(x) = \langle x, y \rangle \forall x \in H$$

mit ||x'|| = ||y||.

Beweis: Offensichtlich ist Φ konjugiert linear. Aus der Cauchy-Schwarz-Ungleichung folgt

$$\|\Phi y\| = \sup_{\substack{x \in H \\ \|x\| = 1}} |\langle x, y \rangle| \le \|y\|$$

und für $x = \frac{y}{\|y\|}$ (y = 0 ist trivial) ist

$$\Phi(y)(x) = \frac{\langle y, y \rangle}{\|y\|} = \|y\|$$

Φ ist also isometrisch und folglich injektiv.

Es bleibt zu zeigen: Φ ist surjektiv. Sei also $x' \in H'$. O.B.d.A. ||x'|| = 1. Sei $U = \ker x'$. Nach ?? ist dann $H = U \oplus U^{\perp}$, wobei U^{\perp} eindimensional ist. Dann existiert ein $y \in H$ mit $U^{\perp} = \lim\{y\}$ und x'(y) = 1.

Für $x = u + \lambda y \in U \oplus_2 U^{\perp}$ gilt

$$x'(x) = x'(u) + \lambda x'(y) = \lambda$$

sowie

$$\{x, y\} = \lambda \langle y, y \rangle = \lambda \|y\|^{2}$$

$$\Phi\left(\frac{y}{\|y\|^{2}}\right)(x) = \left\langle x, \frac{y}{\|y\|^{2}} \right\rangle = \lambda = x'(x) \forall x \in H$$

Also $\Phi\left(\frac{y}{\|y\|^2}\right) = x'$ und somit ist Φ surjektiv.

{kor9.8}

Korollar 9.8

Sei H ein Hilbertraum.

i) Eine Folge $(x_n)_n$ konvergiert in H schwach gegen x genau dann wenn

$$\langle x_n - x, y \rangle \to 0 \,\forall \, y \in H$$

- ii) *H* ist reflexiv.
- iii) Jede beschränkte Folge in H besitzt eine schwach konvergente Teilfolge.

Beweis:

- i) Folgt aus dem Darstellungssatz von Fréchet-Riesz.
- iii) Folgt aus ii), da in reflexiven Räumen jede beschränkte Folge eine schwach konvergente Teilfolge besitzt.
- ii) Sei $\Phi: H \to H'$ die Abbildung aus **??**. Insbesondere ist Φ bijektiv und isometrisch. Es gilt: H' mit dem Skalarprodukt

$$\langle \Phi(x), \Phi(y) \rangle_{H'} := \langle y, x \rangle_H$$

ist ein Hilbertraum. Wir wenden nun Fréchet-Riesz auf H' an und bezeichnen die kanonische Abbildung von H' nach H'' mit ψ . $\psi \circ \Phi \colon H \to H''$ ist dann bijektiv.

$$((\psi \circ \Phi)(x))(x') = \langle x', \Phi(x) \rangle_{H'} = \langle \Phi(y), \Phi(x) \rangle_{H'} = \langle x, y \rangle_{H} = (Pgi(y))(x) = x'(x) = (i_H(x))(x')$$

Also $i_H = \psi \circ \Phi$ und i_H ist surjektiv.

Im Folgenden sei H ein Hilbertraum.

{def9.9}

Definition 9.9

Eine Teilmenge $S \subseteq H$ heißt Orthonormalsystem, falls ||e|| = 1 und $\langle e, f \rangle = 0 \forall e, f \in S$ mit $e \neq f$.

Ein Orthonormalsystem S heißt Orthonormalbasis, falls gilt: $S \subseteq T$ und T Orthonormalsystem $\Rightarrow T = S$.

Beispiel

 $H=\ell^2$ und $S=\{e_n\}_{n\in\mathbb{N}}$ Menge der Einheitsvektoren. S ist eine Orthonomalbasis. $/\!\!/$

{satz9.10}

Satz 9.10 Gram-Schmidt-Verfahren

Sei $\{x_n\}_n$ eine linear unabhängige Teilmenge von H. Dann existiert ein Orthonormalsystem S mit

$$\overline{\lim\{x_n\}_n} = \overline{\lim S}$$

Beweis: Setze $e_1 = \frac{x_1}{\|x_1\|}$. Betrachte

$$f_2 := x_2 - \langle x_2, e_1 \rangle e_1, \quad e_2 := \frac{f_2}{\|f_2\|}$$

Es gilt: $f_2 \neq 0$, da $\{x_1, x_2\}$ linear unabhängig und

$$\langle e_1, e_2 \rangle = \frac{1}{\|x_1\|} \frac{1}{\|f_2\|} \left\langle x_1, x_2 - \left\langle x_2, \frac{x_1}{\|x_1\|} \right\rangle \frac{x_1}{\|x_1\|} \right\rangle = \frac{1}{\|x_1\| \|f_2\|} \left(\langle x_1, x_2 \rangle - \overline{\langle x_2, x_2 \rangle} \frac{\|x_1\|^2}{\|x_1\|^2} \right) = 0$$

d.h. $e_1 \perp e_2$.

Durch die Vorschrift

$$f_{k+1} := x_{k+1} - \sum_{i=1}^{k} \langle x_{k+1}, e_i \rangle e_i$$

und $e_{k+1} \coloneqq \frac{f_{k+1}}{\|f_{k+1}\|}$ wird so eine Folge $\{e_k\}_{k \in \mathbb{N}}$ definiert. Nach Konstruktion ist $S = \{e_k\}_{k \in \mathbb{N}}$ ein Orthonormalsystem mit $x_n \in \text{lin } S$ und $e_n \in \text{lin}\{x_k\}_k$ für alle $k \in \mathbb{N}$.

{satz9.11}

Satz 9.11 Besselsche Ungleichung

Ist $\{e_n\}_{n\in\mathbb{N}}$ ein Orthonormalsystem und $x\in H$, so ist

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \le ||x||^2$$

Beweis: Sei $N \in \mathbb{N}$ beliebig. Setze

$$x_N = x - \sum_{n=1}^{N} \langle x, e_n \rangle e_n$$

Dann ist $e_N \perp x_k$ für k = 1,...,N, da

$$\langle x_N, e_k \rangle = \langle x, e_k \rangle - \sum_{n=1}^N \langle x, e_n \rangle \underbrace{\langle e_n, e_k \rangle}_{\delta_{n,k}} = 0$$

Aus dem Satz von Pythagoras:

$$||x||^{2} + \left\| \sum_{n=1}^{N} \langle x, e_{n} \rangle e_{n} \right\|^{2} = ||x_{N}||^{2} \sum_{n=1}^{N} |\langle x, e_{n} \rangle|^{2} \ge \sum_{n=1}^{N} |\langle x, e_{n} \rangle|^{2}$$

9.12}

Lemma 9.12

Sei $\{e_n\}$ ein Orthonormalsystem, $x, y \in H$. Dann gilt:

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle \langle e_n, y \rangle| < \infty$$

Beweis: Höldersche Ungleichung für Folgen $\{\langle x, e_n \rangle\}_n$, $\{\langle e_n, y \rangle\}_n$.

{lemma9.13}

Lemma 9.13

Sei $S \subseteq H$ ein Orthonormalsystem und sei $x \in H$. Dann ist

$$S_x \coloneqq \{e \in S \mid \langle x, e \rangle \neq 0\}$$

höchstens abzählbar.

Beweis: Besselsche Ungleichung besagt, dass

$$S_{x,n} := \left\{ e \in S \middle| |\langle x, e \rangle \ge \frac{1}{n} \right\}$$

endlich ist und daher ist

$$S_x = \bigcup_{n \in \mathbb{N}} S_{x,n}$$

abzählbar oder endlich.

{def9.14}

Definition 9.14

Sei X ein normierter Raum, I Indexmenge, $x_i \in X$, $i \in I$. Die Reihe $\sum_{i \in I} x_i$ konvergiert unbedingt gegen $x \in X$, falls

- i) $I_0 = \{i \in I \mid x_i \neq 0\}$ höchstens abzählbar.
- ii) Für jede Aufzählung $I_0 = \{i_1, i_2, ...\}$ gilt die Gleichung

$$\sum_{n=1}^{\infty} x_{i_n} = x$$

(Der Wert der Reihe $\sum x_{i_n}$ hängt also nicht von der Reihenfolge der x_{i_n} s ab). Schreibweise:

$$x = \sum_{i \in I} x_i$$

Bemerkung

- i) In diesem Abschnitt unterscheiden wir zwischen $\sum_{n\in\mathbb{N}}$ und $\sum_{n=1}^{\infty}$.
- ii) Ist $X = \mathbb{K}^n$, so gilt: Absolute und unbedingt Konvergenz sind äquivalent.
- iii) Allgemein gilt der Satz von Dvoretzky-Rogers: In jedem unendlichdimensionalen Banachraum existiert eine unbedingt konvergente Reihe, die nicht absolut konvergiert.

{kor9.15}

Korollar 9.15 Allgemeine Besselsche Ungleichung für Orthonormalsysteme Ist $S \subseteq H$ ein Orthonormalsystem und $x \in H$, so ist

$$\sum_{e \in S} |\langle x, e \rangle|^2 \le ||x||^2$$

{satz9.16}

Satz 9.16

Sei $S \subseteq H$ ein Orthonormalsystem.

- i) Für alle $x \in H$ konvergiert $\sum_{e \in S} \langle x, e \rangle e$ unbedingt.
- ii)

$$p: x \mapsto \sum_{e \in S} \langle x, e \rangle e$$

ist eine Orthonomalprojektion aus $\lim S$.

Beweis:

i) Sei $\{e_1, e_2, ...\}$ eine Aufzählung von $\{e \in S \mid \langle x, e \rangle \neq 0\}$. Wir zeigen, dass $\sum \langle x, e_n \rangle e_n$ eine Cauchyreihe ist. Aus dem Satz von Pythagoras folgt:

$$\left\| \sum_{n=N}^{M} \langle x, e \rangle e_n \right\|^2 = \sum_{n=N}^{M} |\langle x, e_n \rangle|^2 \xrightarrow{N, M \to \infty} 0$$

Dann existiert $y := \sum \langle x, e_n \rangle e_n$ in H und analog konvergiert für eine Permutation $\pi : \mathbb{N} \to \mathbb{N}$ die umgeordnete Reihe $y_{\pi} = \sum \langle x, e_{\pi(n)} \rangle e_{\pi(n)}$. Es bleibt zu zeigen: $y = y_{\pi}$. Sei $z \in H$ beliebig. Aus

$$\langle y,z\rangle = \sum_{n=1}^{\infty} \langle x,e_n\rangle \langle e_n,z\rangle = \sum_{n=1}^{\infty} \langle x,e_{\pi(n)}\rangle \langle e_{\pi(n)},y\rangle = \langle y_\pi,z\rangle$$

folgt $y - y_{\pi} \in H^{\perp} = \{0\}.$

ii) Wegen ?? (insbesondere (**)) genügt es zu zeigen, dass

$$\left\langle x - \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n, e \right\rangle = 0 \,\forall x \in S$$

Für $\langle x,e\rangle=0 \,\forall e\in S$ ist dies klar. Sei also $\langle x,e\rangle\neq 0$ für ein $e\in S$. Dann ist $e=e_{n_0}$ für ein $n_0\in\mathbb{N}$. Hieraus folgt die Behauptung.

{satz9.17}

Satz 9.17

Sei $S \subseteq H$ ein Orthonormalsystem.

- i) Es existiert eine Orthonormalbasis S' mit $S \subseteq S'$.
- ii) Folgende Aussagen sind äquivalent:
 - a) S ist eine Orthonormalbasis.
 - b) Ist $x \in H$ und $x \perp S$, so ist x = 0.
 - c) Es gilt $H = \overline{\lim S}$.

d)

$$x = \sum_{e \in S} \langle x, e \rangle e \, \forall x \in H$$

e)

$$\langle x, y \rangle = \sum_{e \in S} \langle x, e \rangle \langle e, x \rangle \forall x, y \in H$$

f) Parsevalsche Gleichung:

$$||x||^2 = \sum_{e \in S} |\langle x, e \rangle|^2 \forall x \in H$$

Beweis:

i) Folgt aus dem Zornschen Lemma.

ii) a) \Rightarrow b): Wäre $x \neq 0$, $x \perp S$, so wäre $S \cup \left\{ \frac{x}{\|x\|} \right\}$ ein Orthonormalsystem. \nleq

b) \Rightarrow c): Folgt aus $\bar{U} = (U^{\perp})^{\perp}$.

 $c)\Rightarrow d$): Dies ist ??.

d)⇒e): Einsetzen unter Beachtung von ?? und ??.

 $e)\Rightarrow f$): Setze x=y.

 $f)\Rightarrow a$): Angenommen, es gäbe x mit ||x||=1, so dass $S\cup\{x\}$ ein Orthonomalsystem ist.

$$||x||^2 = \sum_{e \in S} |\langle x, e \rangle|^2 = 0$$

{satz9.18}

Satz 9.18

Ist S eine Orthonormalbasis von H, so ist $H \cong \ell^2(S)$. Hierbei ist

$$\ell^{2}(S) := \left\{ f : S \to \mathbb{K} \left| \sum_{i \in S} |f(i)|^{2} < \infty \right. \right\}$$

ein Hilbertraum mit Skalarprodukt

$$\langle f, g \rangle = \sum_{i \in S} f(i) \overline{g(i)}$$

Beweis: Zu $x \in H$ definiere $Tx \in \ell^2(S)$ durch

$$(Tx)(e) = \{x, e\}$$

 $Tx \in \ell^2(S)$ (folgt aus der Besselschen Ungleichung). $T: H \to \ell^2(S)$ ist linear und mit der Parsevalschen Gleichung isometrisch.

Ist umgekehrt $(f_e)_e \in \ell^2(S)$, so definiert $x = \sum_{e \in S} f_e e$ ein Element von H (siehe Beweis von **??**i)). Es gilt: $Tx = (f_e)_{e \in S}$. hieraus folgt die Behauptung.

9.19}

Korollar 9.19

Ist H separabel und $\dim H = \infty$, so ist $H \cong \ell^2$.

Beweis: Sei S eine Orthonormalbasis von H. Aus $||e-f|| = \sqrt{2}$ ($\forall e, f \in S, e \neq f$) folgt: S kann nicht überabzählbar sein (vergleiche Beweis der Inseparabilität von ℓ^2). ?? liefert die Behauptung.