Annotations : Elementary topoics in Differential Geometry, John A. Thorpe

Jacob Antony jacobantony987@gmail.com

December 26, 2020

Chapter 1

Graphs and Level Sets

§1 pp. 1 Given a function $f:U\to\mathbb{R}$ where $U\subset\mathbb{R}^{n+1}$, its level sets are the sets $f^{-1}(c)\ldots$ The set of points in the domain of f at which f attains the value c is the level set at height c.

§1 pp. 1 The graph of a function $f:U\to\mathbb{R}$ is the subset of \mathbb{R}^{n+2} defined by \ldots The graph of function f is the set of points $\{(x_1,x_2,\cdots,x_{n+1},f(x_1,x_2,\cdots,x_{n+1}))\}$.

Chapter 2

Vector Fields

A vector at point $p \in \mathbb{R}^{n+1}$ is a pair $\bar{v} = (p, v)$ where $v \in \mathbb{R}^{n+1}$. §2 pp. 6 For example: (1,2,2,4) is a vector at (1,2) defined by v=2p. However, (1,2,2,4) is not a 4-dimensional point in this context. But, the vector (2,4)with it's tail shifted from (0,0) to (1,2).

The vectors at p form a vector space \mathbb{R}_p^{n+1} of dimension n+1 §2 pp. 6

The vector space \mathbb{R}_p^{n+1} is identical with \mathbb{R}^{n+1} .

...our rule of addition does not permit the addition of vectors §2 pp. 6 at different points of \mathbb{R}^{n+1} .

The addition of two vectors at different points is not defined.

A vector field \bar{X} on $U \subset \mathbb{R}^{n+1}$ is a function which assigns to each §2 pp. 6 point of U a vector at that point.

Consider a function $X: U \to \mathbb{R}^{n+1}$. Suppose X(p) = v and X(q) = w. Then X(p) = (p, v) and X(q) = (q, w).

A vector field \bar{X} on U is smooth if the associated function §2 pp. 7 $X:U\to\mathbb{R}^{n+1}$ is smooth.

A vector space is smooth if all partial derivatives of the component functions $X_i: U \to \mathbb{R}$ exists and are continuous.

Associated with each smooth function $f: U \to \mathbb{R}^{n+1}$ is a smooth §2 pp. 8 vector field on U called the gradient ∇f of f ...

Suppose all partial derivatives exists and are continuous for $f:U\to\mathbb{R}$. Let possible that the sample is the partial state of the possible pos

ie, ∇f assigns to the vector (1,3) a vector (9,6) at (1,3).