

1.

g.

				Sub	ject	Coc	le: F	RCA	301
Roll No:									

Printed Page: 1 of 2

MCA (SEM III) THEORY EXAMINATION 2020-21 OPERATING SYSTEM

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

What do you mean by system calls?

SECTION A

Atter	npt <i>all</i> questions in brief.	$2 \times 7 = 14$
a.	What are Multi processor systems?	
b.	What are CPU bound and I/O bound processes?	
c.	What is dispatcher?	
d.	Differentiate between process and thread.	
e.	Define graceful degradation?	
f.	What is the use of job scheduler?	

SECTION B

2.	Attempt any three of the following:	$7 \times 3 = 21$
	recempt any unice of the following.	/ A U 21

Att	ութւ աուջ	milee of th	CIUIIUWI	11g•	/ A J	4 1						
a.	Disc	uss various	operatin	g system services with example.								
b.	Find	Find the average waiting time (A.W.T) and average turnaround time (A.T.A.T)										
	for exe	ecuting the	following	g process using								
	(i) Pre	(i) Preemptive shortest-job first										
	(ii) No	on-preempt	ive shorte	est-job first?								
	Proces	s Arrival ti	me Burst	time								
	P1	0	5									
	P2	1	13									
	P3	2	8									
	P4	3	4									
	P5	4	10									
c.	Wha	t is informa	ation in th	ne PCB? Discuss it with diagram.								
d.	Defi	ne critical s	section pr	oblem. Explain Peterson's solution to s	solve crit	tical						
	section	n problem f	or three p	processes.								
e.	Wha	it is process	synchro	nization? Give the solution to reader wi	riter prol	olem						
		semaphores	-		-							

SECTION C

3.	Attempt any one part of the following:	$7 \times 1 = 7$

(a)	Differenti	ate between:										
	(i) Hard and soft real time system. (ii) Paging and segmentation.											
(b)	Suppose we have five processes and three resources, A, B, and C. A has 10											
	instances,	B has 5 instance	es and C has 7 instances. Can the system execute the									
	following	processes withou	ut deadlock occurring, if yes find safe sequence?									
	Process	Allocation	Maximum									
		ABC	ABC									
	P1	0 1 0	7 5 3									
	P2	200	3 2 2									
	P3	3 0 2	9 0 2									
	P4	2 1 1	2 2 2									
	P5	002	4 3 3									

				Sub	ject	Coc	le: F	RCA	30
Roll No:									

Printed Page: 2 of 2

	mpt any one part of the following:		1 = 7
(a)	Discuss the following storage placement strategies with suitable	exam	ples:
	(i) Best fit		
	(ii) First fit		
	(iii) Worst fit		
(b)	Consider the following page reference string:		
	1,2,3,4,2,4,5,6,3,1,2,3,4,6,4,5,2,6.		
	Calculate number of page faults using LRU and OPTIMAL Page	replac	ement
	algorithm. Assume number of frames as three.		
Atte	mpt any <i>one</i> part of the following:	7 x	1 = 7
(a)	Which allocation scheme will minimize the amount of space rec	uired	in
	Directory structure and why?	-	
(b)	Explain the concept of segmentation with proper diagram.		
Atte	mpt any <i>one</i> part of the following:	7 x	1 = 7
(a)	What is deadlock? How can we avoiding deadlocks occur? Expl	ain it.	
(b)	Given the following queue 95, 180, 34, 119, 11, 123, 62, 64	with	the Read
()	write head initially at the track 50 and the tail track being at 199		
	movement for Shortest Seek Time Fir		(SSTF)
	SCAN and Circular SCAN Algorithm.		,
Atte	mpt any <i>one</i> part of the following:	7 x	1 = 7
(a)	Discuss DMA transfer and DMA controller.		
(b)	What do you mean by cache memory? Discuss various mapping	techn	ique of
		/	