Note "THE USE OF THE BACK-AND-FORTH METHOD FOR WASSERSTEIN GRADIENT FLOWS TO SOLVE PDES"

坂井幸人

2023年6月1日

1 Dual Problem

Condition

 $\mathcal{P}(\mathbb{R}^n)$: (\mathbb{R}^n) 上の確率測度, 非負の測度で質量 (mass)1

 $U: \operatorname{lsc}(\text{lower semi continuous}) \operatorname{on} \mathcal{P}(\mathbb{R}^n)$

簡単のため、積分が1となる非負の $L^1(\mathbb{R}^n)$ で考える。

JKO スキーム

JKO スキームについて考える:

$$\min_{\rho \in \mathcal{P}} U(\rho) + \frac{1}{2\tau} W_2^2(\rho, \mu),$$

古い論文 [JL] からの記号を使用すると、2-Wasserstein 距離の Kantorovich の双対公式は次のように表されます:

$$\frac{1}{2\tau}W_2^2(\rho,\mu) = \sup_{(\phi,\psi)\in\mathcal{C}} \left(\int \phi d\rho + \int \psi d\mu\right),$$

ここで、C は制約

$$C := \{ (\phi, \psi) \in C(\Omega) \times C(\Omega) : \psi(x) + \phi(y) \le \frac{1}{2\tau} |x - y|^2 \}.$$

を満たす関数 (ϕ,ψ) の集合を表します。重要な点として、集合 ${\cal C}$ は凸であることに注意してください。 [Exercise 1.1]

Exercise 1.1. C が convex set であることを示せ。(Proof 4)

よって,

$$\begin{split} \min_{\rho \in \mathcal{P}} U(\rho) + \frac{1}{2\tau} W_2^2(\rho, \mu) &= \min_{\rho \in \mathcal{P}} \left(U(\rho) + \sup_{(\varphi, \psi) \in \mathcal{C}} \left(\int \varphi \, d\rho + \int \psi \, d\mu \right) \right) \\ &= \min_{\rho \in \mathcal{P}} \sup_{(\varphi, \psi) \in \mathcal{C}} \left(U(\rho) + \int \varphi \, d\rho + \int \psi \, d\mu \right) \end{split}$$

次に、 \mathcal{P} と \mathcal{C} が凸であり、 \mathcal{U} が凸であるとすると、関数

$$L(\rho, (\varphi, \psi)) := U(\rho) + \int \varphi \, d\rho + \int \psi \, d\mu$$

は ρ に関して凸関数((φ, ψ) が固定された場合)(Proof)、および (φ, ψ) に関しては凹関数(実際には線形)です (Proof)(さらにおそらく、いくつかの condition が必要である).

このため、[ET, Ch. VI, Prop. 2.4 (p176)] のような最小最大の定理を適用して、 \min と \sup の順序を交換することができます。したがって、次のように結論付けることができます:

$$\begin{split} \min_{\rho \in \mathcal{P}} U(\rho) + \frac{1}{2\tau} W_2^2(\rho, \mu) &= \sup_{(\varphi, \psi) \in \mathcal{C}} \min_{\rho \in \mathcal{P}} \left(U(\rho) + \int \varphi \, d\rho + \int \psi \, d\mu \right), \\ &= \sup_{(\varphi, \psi) \in \mathcal{C}} \left(\min_{\rho \in \mathcal{P}} \left(U(\rho) + \int \varphi \, d\rho \right) + \int \psi \, d\mu \right), \\ &= \sup_{(\varphi, \psi) \in \mathcal{C}} \left(\int \psi \, d\mu - U^*(-\varphi) \right). \end{split}$$

ここで、 $U^*(\varphi)$ は以下のように定義している。

$$U^*(\varphi) := \sup_{\rho \in \mathcal{P}} \left(\int \varphi \, d\rho - U(\rho) \right).$$

detail:

$$\begin{split} U^*(\varphi) &= \sup_{\rho \in \mathcal{P}} \left(\int \varphi \, d\rho - U(\rho) \right). \\ U^*(-\varphi) &= \sup_{\rho \in \mathcal{P}} \left(\int -\varphi \, d\rho - U(\rho) \right), \\ &= \sup_{\rho \in \mathcal{P}} \left(-\int \varphi \, d\rho - U(\rho) \right), \\ &= \sup_{\rho \in \mathcal{P}} \left\{ -\left(\int \varphi \, d\rho + U(\rho) \right) \right\}, \\ &= -\inf_{\rho \in \mathcal{P}} \left\{ \left(\int \varphi \, d\rho + U(\rho) \right) \right\}. \end{split}$$

よって、

$$\min_{\rho \in \mathcal{P}} \left(U(\rho) + \int \varphi \, d\rho \right) + \int \psi \, d\mu = -U^*(-\varphi)$$

注意しておきますが、与えられた $(\varphi,\psi)\in C$ に対して、 $\psi^c\geq \varphi$ が成り立ちます。 ただし、

$$\psi^{c}(x) := \inf_{y} \left(\frac{1}{2\tau} |x - y|^{2} - \psi(y) \right)$$

は ψ の c-変換(c-transform)です。 なぜなら、 $\mathcal{C}:=\{(\phi,\psi)\in C(\Omega)\times C(\Omega): \psi(x)+\phi(y)\leq \frac{1}{2\tau}|x-y|^2\}.$ であり, $\varphi(x)\leq \frac{1}{2\tau}|x-y|^2-\psi(y)$ なので、 $\varphi(x)$ の中での sup が ψ^c になるためである。

また、 $\rho \ge 0$ の場合、 $-U^*(-\varphi)$ は φ に関して増加する関数です。よって、 $-U^*(\varphi) \le -U^*(\psi)^c$ である。したがって、以下のようになります。

$$\sup_{(\varphi,\psi)\in C} \left(\int \psi \, d\mu - U^*(-\varphi) \right) \le \sup_{\psi} \left(\int \psi \, d\mu - U^*(-\psi^c) \right)$$

また、 $(\varphi, \psi) \in \mathcal{C} \implies (\psi^c, \psi) \in \mathcal{C}$ であるので、

$$\sup_{(\varphi,\psi)\in C} \left(\int \psi \, d\mu - U^*(-\varphi) \right) \ge \sup_{\psi} \left(\int \psi \, d\mu - U^*(-\psi^c) \right)$$

が成立する。よって,

$$\sup_{(\varphi,\psi)\in C} \left(\int \psi \, d\mu - U^*(-\varphi) \right) = \sup_{\psi} \left(\int \psi \, d\mu - U^*(-\psi^c) \right) \tag{1.1}$$

同様に、 $\mu \ge 0$ であるため、

$$\sup_{(\varphi,\psi)\in C} \left(\int \psi \, d\mu - U^*(-\varphi) \right) = \sup_{\varphi} \left(\int \varphi^c \, d\mu - U^*(-\varphi) \right)$$
 (1.2)

となります。

正規化アルゴリズムの主要なアイデアは、上記の右辺の ϕ と ψ の 2 つの関数に対して交互に勾配上昇ステップを実行することであり、c-変換を使用して ϕ と ψ を変換します。勾配は適切な重み付き Sobolev 空間で計算されます。

2 Porous medium equation(多孔質媒体方程式)

多孔質媒体方程式(PME)は、固定された m > 1 に対して以下の偏微分方程式(PDE)のことをいう:

$$\rho_t = \frac{\partial \rho}{\partial t} = \Delta(\rho^m)$$

ここで、非負の解 $\rho \ge 0$ に興味があります。この PDE は、エネルギー関数

$$U(\rho) := \frac{1}{m-1} \int \rho^m \, dx$$

に基づく Wasserstein 勾配フローとして表現することができます。

 $ho\in\mathcal{P}(\mathbb{R}^n)\setminus L^m(\mathbb{R}^n)$ のとき、 $U(\rho)$ は $+\infty$ と定義されているとする。ただし、これは $s\mapsto s^m$ が $[0,\infty)$ 上で凸関数であるため、 $U(\rho)$ は $P(\mathbb{R}^n)$ 上で凸な汎関数です。 [JLL] のアルゴリズムでは、 δU^* を計算する必要があります。ここで、

$$U^*(\varphi) = \sup_{\rho \in P} \left(\int \varphi \, d\rho - U(\rho) \right).$$
$$= \sup_{\rho \in P} \int \left(-\frac{1}{m-1} \rho^m + \rho \varphi \right) \, dx$$

となります。 φ の前の符号が [JLL] とは異なることに注意してください、しかしこれは問題ありません。

 U^* は、実質的には U の Lagrange-Fenchel 変換を $-\varphi$ に対して行ったものですが、重要な違いとして、 $\mathcal P$ がヒルベルト空間の部分集合ではなく、測度と連続関数の間の双対性を使って内積の代わりに $\int \varphi d\rho$ の積分を扱っています。

どちらにせよ、 $\delta U^*(\varphi)$ は通常の設定における $\partial U^*(\varphi)$ に類似しており、その場合、下半連続(つまり閉じている)凸関数 f について、次の関係が成り立ちます。

$$x \in \partial f^*(y) \iff z \cdot y - f(z)$$
 が $z = x$ において最大値を取る

言い換えると、

$$\partial f^*(y) = \operatorname{argmax}_x(x \cdot y - f(x))$$

よって、 δU^* を見つけるために、以下の最大値を求める必要がある。

$$V(\rho) := \int \left(-\frac{1}{m-1} \rho^m + \rho \varphi \right) dx.$$

Lemma 2.1. $\varphi \in \mathcal{C}$ と仮定し、以下のように定義されるとする.

$$\rho_*(x) := \left(\frac{m-1}{m}(C+\varphi)_+\right)^{\frac{1}{m-1}}$$

ただし、 $C\in\mathbb{R}$ は $\int \rho_*=1$ となる。 $(s)_+:=max(s,0)$ と定義している。 この時、 ρ_* は $\mathcal{P}(\mathbb{R}^n)$ 上の関数 V の最大化関数。

Proof. C の選び方により、 $\rho_* \in \mathcal{P}(\mathbb{R}^n)$ であることがわかる。次に、以下を示す。

$$V(\rho) \leq V(\rho_*)$$
 for all $\rho \in \mathcal{P}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$.

 ρ を固定し、

$$\mu(x) := \rho(x) - \rho_*(x)$$

とします。注意点として、

$$\int \mu \, dx = 0 \tag{2.1}$$

であり、また $\mu(x) \geq 0$ は $\rho_*(x) = 0$ の場所、つまり $\varphi(x) \geq C$ の場所で成り立ちます。よって、

$$\begin{split} V(\rho) - V(\rho_*) &= V(\rho_* + \mu) - V(\rho_*) \\ &= \int \left(-\frac{1}{m-1} ((\rho_* + \mu)^m - \rho_*^m) + \mu \varphi \right) \, dx \end{split}$$

ここで、関数 $s \mapsto s^m$ は $[0, \infty)$ 上で凸であるため、 $s, t \ge 0$ に対して

$$(s+t)^m \ge s^m + ms^{m-1}t, \qquad s+t \ge 0$$

が成り立ちます。この不等式を適用することで、さらに次のように簡略化できます:

$$V(\rho) - V(\rho_*) \le \int \left(-\frac{1}{m-1} ((\rho_*^m + m\rho_*^{m-1}\mu) - \rho_*^m) + \mu\varphi \right) dx$$
$$\le \int \left(-\frac{m}{m-1} \rho_*^{m-1}\mu + \mu\varphi \right) dx$$

 ρ_* の式を利用することで、

$$\int \left(\frac{m}{m-1}\rho_*^{m-1}\mu + \mu\varphi\right) dx = \int \left(-(C+\varphi)_+\mu + \mu\varphi\right) dx$$
$$= \int \left(-(C+\varphi)_+\mu + \mu\varphi + C\mu\right) dx$$
$$= \int \left(-(C+\varphi)_+ + \varphi + C\right) \mu dx$$

ただし、(2.1)を利用する。

ここで、以下のような観察をします:

$$-(C+\varphi)_{+} + \varphi + C = -(C+\varphi)_{-} \begin{cases} = 0 & \text{if } \varphi > -C \\ \le 0 & \text{if } \varphi \le -C \end{cases}$$

また、 $\mu(x) \ge 0$ は、 $\varphi(x) \ge C$ のとき成り立ちます。したがって、

$$V(\rho) - V(\rho_*) \le \int (-(C + \varphi)_+ + \varphi + C)\mu \, dx \le 0$$

したがって、 ρ_* は V の最大化点であることがわかります。

3 GRADIENT ASCENT

関数 (1.1),(1.2) の交互に勾配上昇を行う。

$$J(\varphi) = \int \varphi^c \, d\mu - U^*(-\varphi),$$

$$I(\psi) = \int \psi \, d\mu - U^*(-\psi^c).$$

 φ, ψ が c-凹の場合、の時、H 空間での勾配は以下のようになる。

$$\nabla_H J(\varphi) = (\theta_1 I - \theta_2 \Delta)^{-1} (\delta U^*(-\varphi) - T_{\varphi \#} \mu),$$

$$\nabla_H I(\psi) = (\theta_1 I - \theta_2 \Delta)^{-1} (\mu - T_{\psi \#} \delta U^*(-\psi^c)).$$

また、以下が成り立つ。

$$T_{\varphi}(x) = x - \tau \nabla \varphi^{c}(x),$$

 $T_{\varphi}^{-1}(x) = x - \tau \nabla \varphi(x)$

[JLL] の Proposition 2.4. を参照すること。

もし μ と φ が十分に滑らかであり、 φ がc-凹関数である場合,写像の変数変換の公式を用いて、押し出し密度 (pushforward density) は以下のように求められる.

$$T_{\varphi \#} \mu(x) = \mu(T_{\varphi}^{-1}(x)) |\det \nabla T(T^{-1}(x))|^{-1},$$

= $\mu(x - \tau \nabla \varphi(x)) |\det(I - \tau D^2 \varphi(x))|.$

4 appendix

 $Proof\ of\ Exercise\ 1.1.\$ 集合 C が凸であることを示すためには、C 内の任意の 2 点 (φ_1,ψ_1) と (φ_2,ψ_2) を結ぶ線分、すなわち

$$[(t\varphi_1 + (1-t)\varphi_2, t\psi_1 + (1-t)\psi_2)]$$

がCに含まれることを示せばよい。

 \mathcal{C} 内の 2 点 (φ_1, ψ_1) と (φ_2, ψ_2) を考え、制約条件 $\varphi_1(x) + \psi_1(y) \leq \frac{1}{2\tau}|x-y|^2$ および $\varphi_2(x) + \psi_2(y) \leq \frac{1}{\tau}|x-y|^2$ をすべての $x, y \in \mathbb{R}^n$ に対して満たすとする。

線分 $[(t\varphi_1+(1-t)\varphi_2,t\psi_1+(1-t)\psi_2)]$ 上の点 (φ,ψ) を考える。この点は $t\in[0,1]$ に対して $(\varphi,\psi)=(t\varphi_1+(1-t)\varphi_2,t\psi_1+(1-t)\psi_2)$ とパラメーター化できる。

次に、 (φ,ψ) が制約条件 $\varphi(x)+\psi(y)\leq \frac{1}{2\tau}|x-y|^2$ をすべての $x,y\in\mathbb{R}^n$ に対して満たすかどうかを確認する:

$$\varphi(x) + \psi(y) = (t\varphi_1 + (1 - t)\varphi_2)(x) + (t\psi_1 + (1 - t)\psi_2)(y)$$

$$= t(\varphi_1(x) + \psi_1(y)) + (1 - t)(\varphi_2(x) + \psi_2(y))$$

$$\leq t\left(\frac{1}{2\tau}|x - y|^2\right) + (1 - t)\left(\frac{1}{2\tau}|x - y|^2\right)$$

$$= \frac{1}{2\tau}|x - y|^2$$

よって、 (φ,ψ) が制約条件を満たすことがわかり、 $(\varphi,\psi)\in C$ となります。したがって、集合 C が凸であることが示された。

 $Proof\ of\
ho\ が変数とした時\ L(
ho,(arphi,\psi)\$ が凸関数. 関数 $L(
ho,(arphi,\psi)):=U(
ho)+\int arphi\ d
ho+\int \psi\ d\mu$ が、 $ho\$ を変数 として固定された $(arphi,\psi)$ の関数として凸関数であることを証明します。

まず、 $L(\rho,(\varphi,\psi))$ が (φ,ψ) に関して線形であることを示します。つまり、

$$L(\rho, (t\varphi_1 + (1-t)\varphi_2, t\psi_1 + (1-t)\psi_2) = L(\rho, t(\varphi_1, \psi_1) + (1-t)(\varphi_2, \psi_2))$$

= $tL(\rho, (\varphi_1, \psi_1)) + (1-t)L(\rho, (\varphi_2, \psi_2))$

を示します。

$$\begin{split} L(\rho, (t\varphi_1 + (1-t)\varphi_2, t\psi_1 + (1-t)\psi_2) &= L(\rho, t(\varphi_1, \psi_1) + (1-t)(\varphi_2, \psi_2)) \\ &= U(\rho) + \int (t\varphi_1 + (1-t)\varphi_2) \, d\rho + \int (t\psi_1 + (1-t)\psi_2) \, d\mu \\ &= t(U(\rho) + \int \varphi_1 \, d\rho + \int \psi_1 \, d\mu) + (1-t)(U(\rho) + \int \varphi_2 \, d\rho + \int \psi_2 \, d\mu) \\ &= tL(\rho, (\varphi_1, \psi_1)) + (1-t)L(\rho, (\varphi_2, \psi_2)) \end{split}$$

次に、 $L(\rho,(\varphi,\psi))$ が凸関数であることを示します。つまり、 $\rho_1,\rho_2\in\mathcal{P}$ および $0\leq\lambda\leq1$ に対して、以下の不等式が成り立つことを示します:

$$L(\lambda \rho_1 + (1 - \lambda)\rho_2, (\varphi, \psi)) \le \lambda L(\rho_1, (\varphi, \psi)) + (1 - \lambda)L(\rho_2, (\varphi, \psi))$$

$$L(\lambda \rho_1 + (1 - \lambda)\rho_2, (\varphi, \psi)) = U(\lambda \rho_1 + (1 - \lambda)\rho_2) + \int \varphi \, d(\lambda \rho_1 + (1 - \lambda)\rho_2) + \int \psi \, d\mu$$

$$= \lambda (U(\rho_1) + \int \varphi \, d\rho_1 + \int \psi \, d\mu) + (1 - \lambda)(U(\rho_2) + \int \varphi \, d\rho_2 + \int \psi \, d\mu)$$

$$= \lambda L(\rho_1, (\varphi, \psi)) + (1 - \lambda)L(\rho_2, (\varphi, \psi))$$

したがって、関数 $L(\rho,(\varphi,\psi))$ は (φ,ψ) を固定した場合に凸関数。

 $Proof\ of\ (\varphi,\psi)$ に関して $L(\rho,(\varphi,\psi))$ は凹関数. 関数 $L(\rho,(\varphi,\psi)):=U(\rho)+\int\varphi\ d\rho+\int\psi\ d\mu$ が (φ,ψ) を変数として固定された ρ の関数として凹関数(実際には線形関数)であることを示します。

まず、 $L(
ho,(arphi,\psi))$ が ho に関して線形であることを示します。つまり、

$$L(t\rho_1 + (1-t)\rho_2, (\varphi, \psi)) = tL(\rho_1, (\varphi, \psi)) + (1-t)L(\rho_2, (\varphi, \psi))$$

を示す。

$$\begin{split} L(t\rho_{1}+(1-t)\rho_{2},(\varphi,\psi)) &= U(t\rho_{1}+(1-t)\rho_{2}) + \int \varphi \, d(t\rho_{1}+(1-t)\rho_{2}) + \int \psi \, d\mu \\ &= tU(\rho_{1}) + (1-t)U(\rho_{2}) + \int \varphi \, d(t\rho_{1}+(1-t)\rho_{2}) + \int \psi \, d\mu \\ &= t(U(\rho_{1}) + \int \varphi \, d\rho_{1} + \int \psi \, d\mu) + (1-t)(U(\rho_{2}) + \int \varphi \, d\rho_{2} + \int \psi \, d\mu) \\ &= tL(\rho_{1},(\varphi,\psi)) + (1-t)L(\rho_{2},(\varphi,\psi)) \end{split}$$

次に、 $L(\rho,(\varphi,\psi))$ が凹関数であることを示します。つまり、 $\rho_1,\rho_2\in\mathcal{P}$ および $0\leq\lambda\leq1$ に対して、以下の不等式が成り立つことを示す:

$$L(\lambda \rho_1 + (1 - \lambda)\rho_2, (\varphi, \psi)) \ge \lambda L(\rho_1, (\varphi, \psi)) + (1 - \lambda)L(\rho_2, (\varphi, \psi))$$

$$\begin{split} L(\lambda\rho_1 + (1-\lambda)\rho_2, (\varphi, \psi)) &= U(\lambda\rho_1 + (1-\lambda)\rho_2) + \int \varphi \, d(\lambda\rho_1 + (1-\lambda)\rho_2) + \int \psi \, d\mu \\ &= \lambda(U(\rho_1) + \int \varphi \, d\rho_1 + \int \psi \, d\mu) + (1-\lambda)(U(\rho_2) + \int \varphi \, d\rho_2 + \int \psi \, d\mu) \\ &= \lambda L(\rho_1, (\varphi, \psi)) + (1-\lambda)L(\rho_2, (\varphi, \psi)) \end{split}$$

以上より、関数 $L(\rho,(\varphi,\psi))$ は (φ,ψ) を変数として固定された ρ の関数としては凹関数(実際には線形関数) であることが示されました。

Definition 4.1. (lower limits) Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and let x' is a limit point of f. Then the lower limit of function f is defined by

$$\begin{aligned} \liminf_{x \to x'} f(x) &= \lim_{\delta \searrow 0} \left[\inf_{x \in B(x', \delta)} f(x) \right] \\ &= \sup_{\delta > 0} \left[\inf_{x \in B(x', \delta)} f(x) \right] = \sup_{V \in \mathcal{N}(x')} \left[\inf_{x \in V} f(x) \right]. \end{aligned}$$

Definition 4.2. (lower semi-continuous) Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and let x' is a limit point of f. Then f is lower semi-continuous at x' if and only if

$$\liminf_{x \to x'} f(x) \ge f(x'), \text{ or } \liminf_{x \to x'} f(x) = f(x')$$