Plano de Ensino

Procedimento didático

- 1. Conceitos Básicos de Informática e histórico
- 2. Representações Digitais de Informações
- 3. Arquitetura de Computadores
- 4. Programação de Computadores
- 5. Noções de Sistema Operacional
- 6. Noções de Engenharia de Software
- 7. Comunicação de Dados
- 8. Noções de Redes de Computadores
- 9. Internet
- 10. Noções de Sistemas Distribuídos
- 11. Noções de Bancos de Dados

CONCEITOS BÁSICOS DE INFORMÁTICA

Roberto Willrich INE-CTC-UFSC

E-Mail: willrich@inf.ufsc.br

URL: http://www.inf.ufsc.br/~willrich

Introdução

Informática

- "Ciência do tratamento automático das informações"
 - Engloba toda atividade relacionada ao desenvolvimento e uso dos computadores
 - que permitam aprimorar e automatizar tarefas em qualquer área de atuação da sociedade

Computador

- Máquina capaz de receber, armazenar, tratar e produzir informações de forma automática, com grande rapidez e precisão
- Aparelho eletrônico capaz de efetuar operações importantes, como operações lógicas e matemáticas, sem intervenção de um operador humano durante seu funcionamento.

- Modalidades de computadores
 - Classificação de sistemas de medição ou aferição
 - Sistemas analógicos
 - velocímetro e relógios analógicos
 - converte-se a manifestação do fenômeno que se quer aferir, em algum tipo de sinalização visual que se comporte analogicamente
 - Sistemas Digitais
 - Odômetro e relógio digital
 - mede-se com determinada freqüência o estado, e os resultados são sempre traduzidos por dígitos

19:52:02

Modalidades de computadores

Computador analógico

- Dispositivo eletrônico ou hidráulico desenhado para manipular a entrada dos dados em termos de níveis de tensão ou pressões hidráulicas, em vez de dados numéricos
- realizam operações aritméticas por meio de analogia
 - as entradas se convertem em tensões que podem somar-se ou multiplicar-se empregando elementos de circuito de desenho especial
 - não trabalham com números, nem com símbolos que representam os números, eles procuram fazer analogia entre quantidades
 - As respostas são geradas continuamente para sua visualização ou para sua conversão em outra forma desejada.
 - transformam de modo a tornar reconhecível pelos seres humanos
- Teve emprego principalmente em laboratórios de pesquisa e para aplicações científicas e tecnológicas.

Modalidades de computadores

Computador analógico

Modalidades de computadores

Computador digital

- processa informações representadas por combinações de dados discretos ou descontínuos
 - dispositivo projetado para executar sequências de operações aritméticas e lógicas diretamente com números
- tem emprego mais generalizado em bancos, comércio, indústria e empresas de modo geral.

 Famílias de computadores podem ser classificadas em 5 grupos distintos

GRUPO	MÁQUINA	APLICAÇÃO
Computador pessoal	IBM Pentium	Tratamento de texto, aplicações científicas, etc
Minicomputador	PDP-11/84	Tempo real
Supermini	Sun SPARC	Pesquisa, servidor de arquivos
Mainframes	IBM 3090/300	Banco, Universidade
Supercomputador	Cray-2	Cálculo

Computador Pessoal

Minicomputador

Supermini

The Sun Blade 2000 workstation is the industry's first 1-GHz 64-bit workstation, providing leading-edge compute performance, high-end 3-D visualization capabilities, and one of the best price/performance ratios in the 64-bit workstation market.

Mainframes

Supercomputadores

Modelo de Von Neumann

- Modelo seguido pela grande maioria dos computadores existentes atualmente
 - proposto pelo matemático americano Von Neumann (1940)
- Processador segue as instruções armazenadas em uma memória de programas, para ler canais de entrada, enviar comandos sobre canais de saída e alterar as informações contidas em uma memória de dados

- Estrutura em Barramento
 - É a base dos computadores modernos
 - Memórias de dados e de programa são fundidas em uma memória única
 - Comunicações entre elementos são efetuadas através de uma via comum de alta velocidade

Evolução Histórica dos Computadores

- Início da história dos computadores
 - no momento em que o homem sentiu a necessidade de efetuar cálculos complexos de maneira automática

Evolução Histórica dos Computadores

Precursores

- Dedos de suas mãos
 - primeiro elemento com que o homem contou para fazer seus cálculos
 - daí veio a palavra digital, vindo de dígito, que significa dedo
- Ábaco (aprox. 3500 a.C.)
 - palavra CÁLCULO tem sua origem no termo latino CALCULUS

Geração Zero

- Equipamentos compostos exclusivamente por elementos mecânicos
- Caracterizavam-se por uma grande rigidez no que diz respeito aos programas a executar
 - máquinas dedicadas

- Calculadora de Pascal (1642)
 - Desenvolveu uma máquina de calcular totalmente mecânica (Pascaline)
 - baseada na existência de um disco para cada potência de 10
 - cada disco sendo dotado de 10 dígitos (de 0 a 9)
 - Realiza operações de adições e subtrações
 - outras operações, como multiplicações e divisões podiam ser realizadas através da combinação de adições e subtrações

- Calculadora de Leibnitz (1671)
 - Introduziu o conceito de realizar multiplicações e divisões através de adições e subtrações sucessivas
 - máquina foi construída e apresentava uma certa evolução em relação à Calculadora de Pascal
 - Sua operação apresentou-se muito deficiente e sujeita a erros, tendo sido, portanto, abandonada

- Arithmometer (1820)
 - Charles Xavier Thomas projetou e construiu uma máquina capaz de efetuar as 4 operações aritméticas básicas
 - primeira calculadora realmente comercializada com sucesso

- Máquina Diferencial de Babbage (1823)
 - Construída por Charles Babbage
 - Baseava-se no princípio de discos giratórios e operada por uma manivela
 - Permite calcular tabelas de funções (logaritmos, funções trigonométricas, etc.) sem a intervenção de um operador humano
 - ao operador cabia somente iniciar a cadeia de operações
 - a máquina tomava seu curso de cálculos, preparando totalmente a tabela prevista

Máquina Analítica

- Projetada por Babbage e Ada Lovelace
 - Ada criou programas para a máquina, tornando-se a primeira programadora
- Poderia ser programada para calcular várias funções diferentes
- Sua operação era governada por conjunto de cartões perfurados

- Máquina de Hollerith (1886)
 - Herman Hollerith, funcionário do Departamento de Recenseamento dos E.U.A.
 - percebeu que a realização do censo anual demorava cerca de 10 anos para ser concluído e que a maioria das perguntas tinha como resposta sim ou não

- Idealizou um cartão perfurado que guardaria as informações coletadas no censo e uma máquina capaz de tabular essas informações
 - Tabular = coordenar os dados de uma observação em uma tabela; agrupar em classes segundo valores
- Construiu então a Máquina de Recenseamento ou Máquina Tabuladora, perfurando-se cerca de 56 milhões de cartões

- Máquina de Hollerith (1886)
 - A máquina Tabuladora era composta das seguintes unidades
 - Unidade de controle: dirigiria a seqüência das operações de toda a máquina através de furos em cartões perfurados
 - Entrada de dados: utilizava cartões perfurados
 - Saída: perfuração dos resultados em cartões para uso posterior como entrada
 - Saída: impressa utilizada na apresentação dos resultados finais a partir de uma linotipo automática acoplada ao sistema

- Máquina de Hollerith (1886)
 - Foi Herman Hollerith que concebeu a idéia de processar dados a partir de cartões perfurados
 - conseguiu que o tempo de processamento dos dados do censo baixasse de 8 para 3 anos
 - Dez anos mais tarde
 - Hollerith fundou uma companhia, a Tabulating Machine Company
 - Em 1924, esta firma mudou de nome, tornando-se a International Business Machines Corporation (IBM)

- Uso de relés e válvulas eletrônicas
 - Vantagens das máquinas a relé sobre as máquinas de calcular mecânicas
 - maior velocidade de processamento
 - possibilidade de funcionamento contínuo, apresentando poucos erros de cálculo e pouco tempo de manutenção
 - Relé é um eletroímã cuja função é abrir ou fechar contatos elétricos com o intuito de interromper ou estabelecer circuito
 - Válvula é um dispositivo que conduz a corrente elétrica num só sentido

- Computadores da primeira geração
 - Normalmente quebravam após não muitas horas de uso
 - Tinham dispositivos de entrada/saída primitivos e calculavam em baixa velocidade
 - cartões perfurados foram o principal meio usado para armazenar os arquivos de dados e para ingressá-los ao computador
 - Tinham uma série de desvantagens
 - custo elevado, relativa lentidão, pouca confiabilidade, grande quantidade de energia consumida e necessitavam de grandes instalações de ar condicionado para dissipar o calor gerado por um grande número de válvulas

MARK I

- Criado entre 1937 e 1944, durante a II Guerra Mundial
- Considerado o primeiro projeto de computador
 - Uma calculadora eletromecânica muito grande
- Integrava conceitos de computadores digitais e analógicos
 - tinha sistema eletrônico e mecânico na mesma máquina
- Media 2,5 m de altura e18 m de comprimento

- ENIAC (Electronic Numeric Integrator and Calculator)
 - Criado entre 1943 e 1946
 - Foi considerado o primeiro grande computador digital
 - Programas eram introduzidos por meio de cabos
 - fazia sua preparação para cálculos demorar semanas
 - Ocupava 170 m², pesava 30 toneladas, funcionava com 18 mil válvulas e 10 mil capacitores, além de milhares de resistores a relé, consumindo uma potência de 150 Kwatts
 - Como tinha vários componentes discretos, não funcionava por muitos minutos seguidos sem que um deles quebrasse
 - Chega a ser, em algumas operações, mil vezes mais rápido que o MARK I

ENIAC (Electronic Numeric Integrator and Calculator)

ENIAC (Electronic Numeric Integrator and Calculator)

- Dados e Programas
 - entrada de dados era baseada na tecnologia de cartões perfurados
 - programas eram modificados através de reconfigurações no circuito
 - trabalho de dias para um programa relativamente simples

Conceito de programa armazenado

- Introduzido por John Von Neumann
- Inspirada na tecnologia de entrada de dados utilizada na época
- Fazendo com que os programas fossem introduzidos através de cartões perfurados como se fazia com os dados
- Desenvolveu a lógica dos circuitos, os conceitos de programa e operações com números binários
 - estes conceitos, adotados nos computadores atuais, revolucionaram o conceito de programação de computadores da época, tornando muito mais flexíveis e versáteis

- Transistor (1948)
 - Transistor: amplificador de cristal usado para substituir a válvula
 - Na década de 60 surgiram a DEC e IBM

- Memórias com anéis ferromagnéticos
 - Fitas magnéticas foram a forma dominante de armazenamento secundário
 - permitiam capacidade muito maior de armazenamento e o ingresso mais rápido de dados que as fitas perfuradas

Unidades de memória principal

- substituição do sistema de tubos de raios catódicos pelo de núcleos magnéticos
 - utilizado até hoje nos "chips" de memória RAM.

Vantagens

 Esses computadores, além de menores, eram mais rápidos e eliminavam quase que por completo o problema do desprendimento de calor, característico da geração anterior

PDP 1

Segunda geração (1955-1965)

• IBM 7090

- Marcada pela substituição dos transistores pela tecnologia dos circuitos integrados
 - Circuito integrado: circuito eletrônico constituído de elevado número de componentes arrumados em um chip de poucos centímetros ou milímetros quadrado
 - Entrou no mercado em 1961 pela Fairchild Semiconductor e pela Texas Instruments

- Marcada pela substituição dos transistores pela tecnologia dos circuitos integrados
 - Permitiu a substituição de dezenas de transistores numa única peça de silício
 - permitiu o surgimento de computadores de menores dimensões, mais rápidos e menos caros
 - Tempo passou a ser medido em nanossegundos

- Tecnologia de pequena escala de integração (SSI)
 - A tecnologia utilizada na época com a qual mil transistores podiam ser integrados no circuito de uma pastilha
 - computadores eram menores, mais confiáveis, com maior velocidade de operação e um custo bem mais baixo do que as máquinas das gerações anteriores

Discos magnéticos

- eram usados discos magnéticos para armazenamento
 - permitiu o acesso direto à arquivos muito grandes

- Exemplos de computadores desta geração
 - IBM 360
 - série que introduziu o conceito de família de computadores compatíveis
 - facilitando a migração dos sistemas quando é necessário mudar para um computador mais potente
 - estratégia permitiu que a IBM se posicionasse como líder do mercado de computadores

- Exemplos de computadores desta geração
 - Série PDP-11 (DEC)
 - Minicomputador que conheceu grande sucesso, particularmente nas universidades e centros de pesquisa

Tecnologias de Integração

- Tecnologia da alta escala de integração (LSI) 1970
 - 65 mil componentes em uma só pastilha de silício (chip)
- Tecnologia VLSI (Very Large Scale of Integration) 90's
 - 9 milhões de componentes
 - Novos computadores, menores e mais baratos

Unidade Central de Processamento (CPU)

- As máquinas de todas as gerações têm como característica comum
 - a existência de uma única CPU para executar o processamento
- Mais recentemente existem computadores com mais de uma CPU

Computadores Pessoais

- Baixa dos preços permitiu a uma pessoa ter o seu próprio computador
- Passaram então a ser utilizados de uma maneira relativamente distinta dos grandes computadores de então

Intel

- Nasceu no início dessa geração
- Intel 4004
 - criado para compor uma calculadora
 - primeiro microprocessador (de 4 bits)
 - um circuito integrado com 2250 transistores

- Intel 8008

- processador de 8 bits
- Logo substituído pelo Intel 8080

The Intel 4004, it was supposed to be the brains of a calculator. Instead, it turned into a general-purpose microprocessor as powerful as ENIAC.

Altair 8800

- Primeiro microcomputador da história
- usava o chip Intel 8088
- tornou-se padrão mundial da época para os microcomputadores de uso pessoal
 - abrindo uma nova era na história da informática

- Apple I
 - Criado em 1976
 - Apple II (1977)
 - com um novo e melhor projeto
 - primeiro microcomputador com grande sucesso comercial

- Computadores Pessoais IBM (PC) 1981
 - Microcomputador com tecnologia de 16 bits (Intel 8088)
 - Em pouco tempo se tornou um padrão
 - Várias Versões
 - PC
 - Processador 8088
 - 256 a 640 K de memória RAM
 - clock de 4,77 MHz
 - PC-XT
 - 512 a 768 K de memória RAM
 - Clock de 8,10 até 12 MHz
 - PC-XT 280
 - Processador 80280
 - três vezes mais rápido que o XT

- Computadores Pessoais IBM (PC) 1981
 - Várias Versões
 - PC-AT
 - microprocessador da Intel 80286 de 32 bits
 - memória principal de até 4 Mbytes
 - clock 16 e 20 MHz
 - desempenho duas a três vezes maior que os XT.
 - PC-386
 - PC-AT com o microprocessador 80386 de 32 bits
 - PC 486
 - microprocessador Intel 80486 (mais de 1,2 milhão de transistores)
 - co-processador aritmético embutido
 - Pentium (1993)
 - Pentium III possui cerca de nove milhões de transistores
 - Pentium 4 possui 42.000.000

Supercomputadores

- São os mais poderosos, mais rápidos e de maior custo
- História começa no final de 1975 com o Cray-1.
- Aplicações incluem laboratórios e centros de pesquisa aeroespaciais, empresas de altíssima tecnologia, previsão do tempo e a produção de efeitos e imagens computadorizadas de alta qualidade
- Utilizam o conceito de processamento paralelo e são máquinas vetoriais
 - podem executar a mesma operação em diversas variáveis simultaneamente
- Exemplos: Cray-1, Cyber 205, Fujitsu Facon-APU, Hitachi M200HIAP, Galaxy, Cray-2, Cray-3, IBM 9076 SP/2