

Middle East Technical University Department of Physics

PHYS307 Applied Modern Physics

Oğuzhan ÖZCAN 1852334

Exp. MP-SA The Energy Spectra of Alpha Particles

Group Members: Cem MADEN, İrem KÜL, Deniz AKYÜREK

Experiment Date: November 27, 2015 Report Submit Date: December 4, 2015

Peak (channel no)	Source of α -particles	Energy (in keV)
76	226 Ra	4780
118	$^{222}\mathrm{Rn}$	5551
146	²¹⁸ Po	6065
234	²¹⁴ Po	7680

Table 1: The resolved peaks in the spectrum of $^{226}\mathrm{Ra}$ in the vacuum

Peak (channel no)	Energy (in keV)
52	4340
100	5221
140	5954
230	7606

Table 2: The resolved peaks in the spectrum of 226 Ra in the air

Peak (channel no)	Total Pulses	Energy (in keV)	Source of α -particle
151	4280	6156	$^{244}\mathrm{Cm}$

Table 3: Data for unknown α -source in the vacuum

1. Calculate the activity of the unknown α -source.

$$Activity(\alpha/s) = \left(\frac{\sum \alpha}{t}\right)\left(\frac{4\pi S^2}{A}\right) \tag{1}$$

where S=0.02 m, A= 4.0×10^{-6} m², $\Sigma \alpha = 4280$ and t=300 secs.

$$Activity(\alpha/s) = (\frac{4280}{300})(\frac{4 \cdot \pi \cdot 0.02^2}{4.0 \times 10^{-6}})$$
(2)

$$Activity(\alpha/s) = 17928 decay/s \tag{3}$$

$$Activity(\alpha/s) = 0.48\mu Ci \tag{4}$$

- 2. Write at least five different reasons for observing only a few peaks rather than nine peaks in the spectrum of ²²⁶Ra in the vacuum and make suggestions to improve the resolving of the peaks in the spectrum with the present system.
- 1- We could not vacuumed the detector 100%.
- 2- Noise and vibration
- 3- 216 At, 218 Rn, 210 Tl and 206 Tl in the decay sequence of 226 Ra only occur with very low activities.
- 4- Loss of radon daughters [1].
- 5- The detector does not have high sensivity.
- 6- In the experiment we used five different experimental setups and each one have it's own calculation error.

To be more accurate in the experiment my suggestion is splitting vacuum chamber and other experiment setups because noise and vibration are very effective to distort the data. Using an high tech detector will give more accurate solutions. In laboratory, other radioactive decays may cause to distortion in data. Some researchers state that a calibration before the experiment may reduce to error in experiment. ²¹⁰Po, ²³⁸U, ²³⁸Pu, ²³⁹Pu and ²⁴¹Am is strongly preferred over pulser-calibration techniques [2].

3. Describe the physical significance of any peak on energy spectra of α -particles.

Each peak is a α decay of 226 Ra. In each peak 226 Ra is turned to his isotopes in the order of as stated in Table 1. By using these peaks we can calculate the energy of α decays, we can detect the type of radioactive isotopes.

Discussion and Conclusion

In this experiment we observe the α decay of $^{226}\mathrm{Ra}$ in both vacuum and air. After this experiment we can realize the behaviour of α decays in different environment. Another significant observation in this experiment is the decays of unknown sample. By using decay rate of unknown sample we tried to predict that name of radioactive isotope. In this experiment we have very low percantage error. For instance for $^{222}\mathrm{Rn}$ which is took in vacuumed chamber:

$$Per.Error = \frac{|5480 - 5550|}{5480} \times 100\% \tag{5}$$

$$Per.Error = 1.3\%$$
 (6)

References

- [1] Alpha-, Beta-, and Gamma-Ray Spectroscopy, Ed.: Kai Siegbahn, Vol. 1, North-Holland Publ. Co., Amsterdam, New York (1968)
- [2] Nuclear Spectroscopy and Reactions, Ed.: J. Cerny, Academic Press, New York and London (1974)