Отчет по лабораторной работе №7

Эффективность рекламы

Голова Варвара Алексеевна

Содержание

1	Целі	ь работы	4		
2	Задание				
3		олнение лабораторной работы	8		
	3.1	Библиотеки	8		
	3.2	Значения	8		
	3.3	Случай 1	9		
	3.4	Вывод графика для случая 1	10		
	3.5	Случай 2	10		
	3.6	Вывод графика для случая 2	11		
	3.7	Случай 3	12		
	3.8	Вывод графика для случая 3	13		
	3.9	Максимальная скорость распространения рекламы (для случая 2)	15		
4	Выв	оды	16		

List of Figures

2.1	График решения уравнения модели Мальтуса				7
2.2	График логистической кривой	•	•	•	7
3.1	Библиотеки				8
3.2	Значения				8
3.3	Функция 1				9
3.4	Функция 2				9
3.5	Решение				9
3.6	Вывод графика №1				10
3.7	Функция 1				10
3.8	Функция 2				11
3.9					11
3.10	О Вывод графика №2				12
	1 Функция 1				12
	2 Функция 2				13
	3 Решение				13
3.14	4 Вывод графика №3				14
	5 Вывод графика №3				14
	6 Интервал				15
	7 Вывод точки				15

1 Цель работы

Ознакомиться с моделью эффективного распространения рекламы и построить графики по этой модели.

2 Задание

Вариант 28

Построить график распространения рекламы, математическая модель которой описывается следующим уравнением:

- $\begin{aligned} &1. \ \ \frac{dn}{dt} = (0.48 + 0.000081n(t))(N-n(t)) \\ &2. \ \ \frac{dn}{dt} = (0.000049 + 0.82n(t))(N-n(t)) \\ &3. \ \ \frac{dn}{dt} = (0.6t + 0.3sin(3t)n(t))(N-n(t)) \end{aligned}$

При этом объем аудитории N=1655, в начальный момент о товаре знает 18человек.

#Теоретическая справка

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг

с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $lpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает сарафанное радио). Этот вклад в рекламу описывается величиной $lpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N-n(t))$$

При $\alpha_1(t)\gg \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид (рис. 2.1).

Figure 2.1: График решения уравнения модели Мальтуса

В обратном случае, при $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой (рис. 2.2).

Figure 2.2: График логистической кривой

3 Выполнение лабораторной работы

3.1 Библиотеки

Подключаю все необходимые библиотеки(рис. 3.1).

```
import numpy as np
import math
from scipy.integrate import odeint
import matplotlib.pyplot as plt
```

Figure 3.1: Библиотеки

3.2 Значения

Ввод значений из своего варианта (28 вариант)(рис. 3.2).

```
x0=18
N=1655
t=np.arange(0,30,0.1)
```

Figure 3.2: Значения

3.3 Случай 1

Функция, отвечающая за платную рекламу (рис. 3.3).

```
def func1(t):
    g=0.48
    return g
```

Figure 3.3: Функция 1

Функция, отвечающая за "сарафанное радио" (рис. 3.4).

```
def func_1(t):
    v=0.000081
    return v
```

Figure 3.4: Функция 2

Решение 1 (рис. 3.5).

```
def func__1(x,t):
    dx=(func1(t)+func_1(t)*x)*(N-x)
    return dx

x1=odeint(func__1,x0,t)
```

Figure 3.5: Решение

3.4 Вывод графика для случая 1

График распространения рекламы (рис. 3.6).

Figure 3.6: Вывод графика №1

3.5 Случай 2

Функция, отвечающая за платную рекламу (рис. 3.7).

```
def func2(t):
g=0.000049
return g
```

Figure 3.7: Функция 1

Функция, отвечающая за "сарафанное радио" (рис. 3.8).

```
def func_2(t):
    v=0.82
    return v
```

Figure 3.8: Функция 2

Решение 2 (рис. 3.9).

```
def func__2(x,t):
    dx=(func2(t)+func_2(t)*x)*(N-x)
    return dx

x2=odeint(func__2,x0,t)
```

Figure 3.9: Решение

3.6 Вывод графика для случая 2

График распространения рекламы (рис. 3.10).

```
plt.plot(t,x2,lw=2)
plt.title('Случай 2')
plt.grid('True')
```


Figure 3.10: Вывод графика №2

3.7 Случай **3**

Функция, отвечающая за платную рекламу (рис. 3.11).

```
def func3(t):
    g=0.6*t
    return g
```

Figure 3.11: Функция 1

Функция, отвечающая за "сарафанное радио" (рис. 3.12).

```
def func_3(t):
    v=0.3 * np.sin(3*t)
    return v
```

Figure 3.12: Функция 2

Решение 3 (рис. 3.13).

```
def func__3(x,t):
    dx=(func3(t)+func_3(t)*x)*(N-x)
    return dx

x3=odeint(func__3,x0,t)
```

Figure 3.13: Решение

3.8 Вывод графика для случая 3

График распространения рекламы (рис. 3.14).

```
plt.plot(t,x3,lw=2)
plt.title('Случай 3')
plt.grid('True')
```


Figure 3.14: Вывод графика №3

График с интервалом (0,5) (рис. 3.15).

```
t1=np.arange(0,5,0.1)

plt.plot(t1,x3,lw=2)
plt.title('Случай 3')
plt.grid('True')
```


Figure 3.15: Вывод графика №3

3.9 Максимальная скорость распространения рекламы (для случая 2)

Интервал времени для определения точки (рис. 3.16).

Figure 3.16: Интервал

Момент времени, в котором скорость распространения рекламы будет иметь максимальное значение (рис. 3.17).

Figure 3.17: Вывод точки

4 Выводы

Я ознакомилась с моделью эффективного распространения рекламы и построила графики по этой модели.