שרון מלטר, אתגר 17 2024 בספטמבר 13

תוכן עניינים

3																																										ָהי				1
3	•	٠	•	•	•	•	•	•	 		٠	•		 	•	•	•	(co	n_s	se	qu	ei	ic	e	r	ele	at	io	n,	,	$(\epsilon$	rs	s))	ī	ער	בי) ל	יחכ	, -	דיר	להג	י כ	כיו	٦Ŧ	2
3									 					 																										ī	זקו	הי	ות	נרכ	מע	3
3																																									•	זגד			3.1	
3																																										רוגנ			3.2	
4																																										אעו			3.3	
4																																						גדו		_		3.3.1				
4																																						שנ				3.3.2				
4																																						רג			_	3.3.3	_			
5																																						תר תר			_	3.3.4				
																																					,				_					
5																																						סר			_	3.3.5				
5															 		٠					٠														2	יל	רג	ת		3	3.3.6	,			
6															 																						ון	תר	פו		3	3.3.7	7			
6																															ī	ייו	-آلا	רוי	7	ה	Ó	שנ	מ		3	3.3.8	3			
6																																						שנ			3	3.3.9)			
7															 												ה	צי	קו	דו	7	ה	۲	יפו	צע	3	אר	וכו	ה		3.	3.10)			
8															 													ת	תו	אוו	K)	ה	۲	יפו	צע	2	חר	וכו	ה		3.	3.11	L			

1 בפרקים הקודמים, של מבוא ללוגיקה

למדנו מהי לוגיקה־ שפה פורמלית ופונקציות מוגדרות היטב הבונות אותה. תחשיב הפסוקים (propositional logic) - סינטקס וסמנטיקה. בהרצאה האחרונה למדנו גם על שלמות פונקציונלית.

כעת נחזור למושג ישן־חדש, ונראה את שתי הדרכים להגדיר יחס נביעה.

(consequence relation, (crs)) דרכים להגדיר יחס נביעה

הדרכים:

1. סמנטית ⁻

 $\Gamma \vdash_S \psi \ if \ every \ "model" \ of \ \Gamma \ is \ a \ "model" \ of \ \psi \ in \ the \ semantics \ S$.S הפסוק ψ נובע מקבוצת הפסוקים Γ אם כל מודל של Γ הוא גם מודל של בסמנטיקה כלומר, הפסוק ψ נובע מקבוצת הפסוקים Γ

2. סינטקטית

 $\Gamma \vdash_D \psi \ if \ \psi \ has \ a \ proof \ from \ \Gamma \ in \ the \ deduction \ system \ D$

כלומר, הפסוק ענובע מקבוצת הפסוקים היימת לו הוכחה אם קיימת הפסוקים במערכת ההסקה ענובע לו נובע מקבוצת הפסוקים אם קיימת לו הוכחה מאותה קבוצת מקבוצת הפסוקים במערכת ההסקה \mathcal{D}

כמו כן, נלמד גם את ההגדרה הפורמלית לעוד כלי שכבר השתמשנו בו רבות, מערכת הוכחות.

מערכות הסקה 3

3.1 הגדרה

מערכת הסקה D עבור שפה פורמלית $\mathcal L$ מורכבת מ־

- $(\mathcal{L}$ סט של λ אקסיומות (נוסאות של 1
- \mathcal{L} של חוקי הסקה / גזירה ($inference\ rules$), אשר מראים כיצד ניתן להסיק נוסחאות חדשות ל־ $(inference\ rules)$, אד, מה לגבי ההוכחות עצמן!

הגדרה:

הוכחה של פסוק ψ במערכת הוכחה D היא סדרה סופית של פורמולות כאשר הפורמולה האחרונה היא ψ וכל פורמולה היא אקסיומה של D, או שניתן להגיע דרך פורמולות קודמות בסדרה ע"י הפעלת חוק הסקה של D. נבין זאת יותר בעזרת דוגמה.

3.2 דוגמה

s חרוזת מעל $\{a,b,c\}$ ותהי קבוצת אקסיומות $\{a,b,c\}$ קבוצת חוקי ההסקה לכל מחרוזת $\{a,b,c\}$ שפת המחרוזות מעל

$$\frac{as}{bas}$$
, $\frac{os}{abs}$

3.3 מערכת ההוכחה 3.3

3.3.1 הגדרה

מערכת ההוכחה הראשונה שנלמד, והאחת שעל שמה קרויה ההרצאה. HPC סכמת האקסיומות של המערכת

 $A \to (B \to A)$

 $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$

 $(\neg B \to \neg A) \to (A \to B)$

וחוק ההסקה שלה הוא:

 $\frac{A, A \to B}{B}MP \ (Modus \ Ponens)$

אז B אז א גורר את A מתקיים אום A מתקיים אומר אום פשוט, הוא רק אומר אום אום אוור זהו

HPC משפטים ב**־ 3.3.2**

HPC נלמד קצת על משפטים שבמערכת

HPC מר איט ל־ A ל ל- HPC אם ל־ A שמקיימת $A \in F_{cl}$ היא משפט ב־ HPC, ומסומנת ב־ $A \in F_{cl}$ אם ל־ A שמקיימת (הגדרנו הוכחה מקודם) קבוצת כל המשפטים של HPC נקראת קבוצת כל המשפטים של

;HPC כמו כן, כפי שניתן להבין אינטואיטיבית, ישנה גם הגדרה אינדוקטיבית למשפט של

:הגדרה

 $\overline{Thm_{HPC}}$ כל אקסיומה A נמצאת ב־

 $B\in Thm_{HPC}$ איי איז $A,A\to B\in Thm_{HPC}$ אינדוקציה: אם אינדוקציה: אם $A\in Thm_{HPC}$ ומתקיים A ומתקיים $A\in Thm_{HPC}$ איי

כעת נסדר את המידע החדש בראש בעזרת תרגיל.

1 תרגיל 3.3.3

 $\vdash_{HPC} p \rightarrow p$ שי

פתרון בעמוד הבא.

3.3.4 פתרון

בסך הכל מדובר במספר גרירות;

.1

$$(p \to ((p \to p) \to p))$$

- מהאקסיומה הראשונה.

.2

$$(p \to ((p \to p) \to p)) \to ((p \to (p \to p)) \to (p \to p))$$

מהאקסיומה השנייה.

.3

$$((p \to (p \to p)) \to (p \to p))$$

MP(1,2) -

.4

$$(p \to (p \to p))$$

מאקסיומה 1.

.5

$$(p \to p)$$

MP(3,4) -

HPC יחס הנביעה 3.3.5

הגדרה:

 Γ מר Γ ל Γ אם קיימת קבוצה סופית רוכחה בי Γ על לי אם קיימת קבוצה סופית רוכחה בי Γ אם קיימת קבוצה סופית

 $B \in Thm_{HPC}(T)$ אזי $A \rightarrow (B \in Thm_{HPC}(T))$ ר בלל היסק: אם א

אם כבר משעמם לכם, בואו נעבור לתרגיל :)

2 תרגיל 3.3.6

 $\alpha \to \beta, \ \beta \to \gamma \vdash_{HPC} \alpha \to \gamma$ הוכיחו ש־ פתרון בעמ' הבא.

3.3.7 פתרון

להלן סדרת הוכחה לטענה;

.2

.3

.4

.5

.6

.7

$$\alpha \to \beta$$

- מהנחה.

$$\beta \to \gamma$$

- מהנחה.

$$(\beta \to \gamma) \to (\alpha \to (\beta \to \gamma))$$

1 מאקסיומה -

$$\alpha \to (\beta \to \gamma)$$

MP(2,3) -

$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$

2 מאקסיומה 2

$$(\alpha \to \beta) \to (\alpha \to \gamma)$$

MP(4,5)

 $\alpha \rightarrow \gamma$

MP(1,6)

מ.ש.ל

כעת נכיר עוד שני חברים שיעזרו לנו מאוד בהוכחות, משפט הדדוקציה ומשפט הנאותות והשלמות.

3.3.8 משפט הדדוקציה

<u>משפט:</u>

$$T \vdash_{HPC} A \to B \ iff \ T \cup \{A\} \vdash_{HPC} B$$

A
ightarrow B ביחס הנביעה A
ightarrow B מר אם"ם נובע מר ד ביחס הנביעה T מר א מר כלומר, נובע

3.3.9 משפט הנאותות והשלמות

משפט:

$$T_{CPL}A \ iff \ T \vdash_{HPC} A$$

כלומר, A נובע מ־ T באופן סמנטי אם"ם A נובע מ־ T במודל הסינטקטי.

3.3.10 הוכחת משפט הדדוקציה

נוכיח את שני כיווני המשפט.

כיוון ראשון:

 $T \cup \{A\} \vdash_{HPC} B$ נניח ש־ $T \vdash_{HPC} A \rightarrow B$ ונוכיח עם סדרת ההוכחה הבאה;

- $T \cup \{A\}$.1 מההנחה.
 - $A \rightarrow B$.2

לכך. HPC לכך.

В .3

MP(1,2)

כיוון שני:

 $T \vdash_{HPC} A \to B$ נניח כי $B \in Thm_{HPC}(T \cup \{A\})$ כך ש־ $T \cup \{A\} \vdash_{HPC} B$ נניח כי $T \cup \{A\} \vdash_{HPC} B$ נניח באינדוקציית בנייה, על n, אורך סדרת הוכחה כלשהי לכך ש־

n=1 צעד הבסיס: 1

. מספקת מספקת הוכחה היא $T \cup \{A\}$ שמתקיים שמתקיים כלומר, ההנחה

אם B הוא אקסיומה או $B \in T$, אזי ההוכחה ל־ A o B ב־ A o B כאשר מתקיים T היא:

- B (N)
- ההוכחה קיימת.
 - $B \to (A \to B)$ (2)
 - מאקסיומה 1.
 - $A \rightarrow B$ (λ) MP(1,2)

ארת, מתקיים B=B איננה מספקת להוכיח אחרת ההנחה כי מתקיים אA=B איננה מספקת אחרת, $T\cup\{A\}\vdash_{HPC}B$

אזי הטענה נכונה בשני מקרי הבסיס.

n+1 געד אינדוקציה: נניח את נכונות הטענה עבור מספר טבעי וווכיח אותה עבור אינדוקציה: נניח את נכוות הטענה עבור מספר מבעד מספר $B\in Thm_{HPC}(T\cup\{A\})$ של הוכחת בעעד האחרון את B בצעד הגוררת את C בעדים כלומר, מתקיים בעדים הפרומות בעדים המכוות בעדים אונדים בעדים בעדים

לפי הנחת האינדוקציה, מתקיים C הינו (n לפי הנחת לא הוכחנו את C במקרה של חוכמו כן C אחרת מ־ C לא היינו מקבלים את C

 $T \vdash_{HPC} A \to B$ נשתמש במה שלמדנו עד כה ונציג הוכחה לכך ש

- $A \to C$ (N)
- ביססנו כי קיימת הוכחה.
 - $A \to (C \to B)$ (2)
- ביססנו כי קיימת הוכחה.
- $A \rightarrow (C \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow B))$ (ג) .2 מאקסיומה

$$((A \rightarrow C) \rightarrow (A \rightarrow B))$$
 (T) $MP(2,3)$

$$A \rightarrow B$$
 (n) $MP(1,4)$

מ.ש.ל

3.3.11 הוכחת משפט הנאותות

 $T \vdash_{HPC} A \Rightarrow T \vdash_{CPL} A$ כלומר נוכיח כיוון אחד של המשפט (הכיוון הנאות), כלומר נוכיח של המשפט הכיוון אחד של המשפט הכיוון אחד אחד בכך שנוכיח באינדוקציה שי $T \vdash_{CPL} A$ גורר אור בכך שנוכיח באינדוקציה שי

- $A\in T$. בסיס: A הינה אקסיומה או T הינה אקסיומה או T בסיס: CPL א האקסיומות הן טאוטולוגיות, לכן במקרה זה מתקיים T במקרה אם T במקרה ע־ ψ במקרה ע־ ψ מאחר ש־ T מאחר ש־ ψ במקרה א מתקיים T כנדרש.