Akaike Internship Assignment Report

Title: Email Classification for Support Team

Author: Thumula Praneeth Rao

Date: 21-04-2025

Contents

1. Introduction	2
2. PII Masking Approach	2
3. Model Selection & Training	3
4. API Development & Deployment	3
5. Challenges & Solutions	4
6. Conclusion	4
Github & Hugging Face Space Links	4

1. Introduction

This project aims to automate the classification of support emails into predefined categories like **Incident**, **Request**, **Change**, and **Problem**, while also ensuring the privacy of sensitive user data. The system masks **Personally Identifiable Information (PII)** before any processing, classifies the emails, and returns both the result and masked entities in a structured API response.

The entire pipeline has been implemented in Python, trained on real email data, and deployed as an API on **Hugging Face Spaces**.

2. PII Masking Approach

To ensure data privacy and meet compliance requirements, PII masking was implemented using a combination of Regex and SpaCy NER (non-LLM).

Entities Masked:

Entity Type	Placeholder	Method
Full Name	[full_name]	SpaCy NER
Email Address	[email]	Regex
Phone Number	[phone_number]	Regex
Date of Birth	[dob]	Regex
Aadhar Number	[aadhar_num]	Regex
Credit/Debit Number	[credit_debit_no]	Regex
CVV Number	[cvv_no]	Regex
Expiry Number	[expiry_no]	Regex

Each PII entity detected is recorded with:

- Original value
- Placeholder type
- Position in the email text

3. Model Selection & Training

A **Random Forest Classifier** was selected due to its robustness and interpretability. Email content was vectorized using **TF-IDF**, and the model was trained on a labeled dataset containing natural emails and support categories.

Final Model Pipeline:

- TfidfVectorizer(stop_words='english')
- RandomForestClassifier(n estimators=100)

Model Performance:

Category	Precision	Recall	F1-score
Incident	0.65	0.98	0.78
Request	0.86	0.92	0.89
Change	0.96	0.55	0.70
Problem	0.91	0.12	0.21
Accuracy			74%

4. API Development & Deployment

The API was built using FastAPI and follows strict JSON output format as required:

```
{
"input_email_body": "original email",
"list_of_masked_entities": [
    {
        "position": [start, end],
        "classification": "entity_type",
        "entity": "original_value"
      }
],
"masked_email": "masked version",
"category_of_the_email": "classified category"
}
```

The API was deployed to **Hugging Face Spaces** and is accessible via: https://pranee31-emailclassification.hf.space/docs

5. Challenges & Solutions

Challenge Solution

Hugging Face rejecting large files Used Git LFS for model, removed dataset

Regex inconsistencies for PII Wrote flexible, multi-format patterns

Class imbalance in dataset Adjusted training, considered oversampling

Build error (numpy vs spacy) Pinned compatible versions in requirements.txt

6. Conclusion

This assignment provided real-world experience in:

- Data privacy via PII masking
- Building and training NLP models
- API development using FastAPI
- Deployment using Hugging Face Spaces

The solution is modular, scalable, and meets all the assignment requirements.

Github & Hugging Face Space Links

- **GitHub Repository**: https://github.com/praneeth-rao/email-classifier
- **Deployment**: https://pranee31-emailclassification.hf.space/docs