

Включил камеру - спас занятие!

Не забыть включить запись!

Коллекции

Что такое коллекция?

Типы коллекций

Массив

Список

Связный список

Что такое массив

Массив — это **структура данных** фиксированной длины для хранения упорядоченного набора элементов. Элементы при этом должны относиться к одному типу данных.

Элементы массива физически хранятся в соседних ячейках памяти.

каждому из них можно обратиться по индексу.

Элементы массива идут друг за другом в памяти.

Массив как объект .NET

Особенности массивов в рамках .net:

- 1. Любой массив это ссылочный тип данных.
- 2. Любой массив унаследован от Array.
- 3. Все массивы реализуют <u>List</u>. Для получения доступа к элементу по индексу.
- 4. Все массивы реализуют <u>IEnumerable</u>. Предоставляет перечислитель по коллекции.

Виды массивов

Одномерный массив

Одномерный массив int[5]

Многомерные массивы

Двухмерный массив int[3,6]

Tрехмерный массив int[3,6,2]

Зубчатый массив

Зубчатый массив int[4][]

Класс Array

Описание класса Array:

https://learn.microsoft.com/en-us/dotnet/api/system.array?view=net-8.0

Работа со статическими методами класса Array:

- 1. Возвращаемый тип: может быть коллекция, квантификатор и пр.
- 2. Экземпляр переменной.
- 3. Ключевое слово Array.
- 4. Статический метод: ForEach(), Sort() etc.
- 5. Экземпляр массива, над которым будет выполняться операция из п.4.
- 6. Делегат-обработчик массива.

Вычислительная сложность в массивах

Вычислительная сложность массива:

- 1. Индексация О(1). (см. рисунок ниже)
- Пояснение: address = array[0] + n*sizeof(object)
- 2. Поиск O(n). Требуется перебрать все элементы.
- 3. Вставка не применимо.
- 4. Удаление не применимо.

Вопросы для самопроверки

- 1. Сколько элементов имеет массив? int[,,] numbers = new int[3, 2, 3]
- 2. Сколько измерений (размерность) имеет следующий массив? int[,,] numbers = new int[3, 2, 3]
- 3. Что будет выведено на консоль в результате выполнения следующего кода:

Дан следующий массив:

```
int[][] nums = new int [3][];
nums[0] = new int [2] { 1, 2 };
nums[1] = new int [3] { 3, 4, 5 };
nums[2] = new int [5] { 6, 7, 8, 9, 10 };
Console.WriteLine(nums[3][2]);
```

4. Каким образом мы можем обратиться к числу 7 в массиве выше?

Типы коллекций

Массив

Список

Связный список

Что такое список(List) и как он устроен?

Объект класса List<T> представляет строго типизированный список объектов, к которым можно получить доступ по индексу.

- 1. List хранит данные как обычный массив.
- 2. List более удобен в использовании, потому что:
 - і. Нет необходимости заранее задавать размер.
 - іі. Имеет место заранее описанный методов для работы с коллекцией.
 - ііі. Добавление элемента в список происходит интуитивно понятным способом.

Добавление элемента

Для добавления нового элемента необходимо сначала выделить новую область памяти в приложения, соответствующей объему массива, а потом скопировать элемент.

??	??	??	??	??	??	??	??	??	??	??	??	??	??	??
??	??	??	??	??	??	??	??	??	??	??	??	??	??	??
??		12	34	56	78	90		??	??	??	??	??	??	??
		1	1	??			-		1	1				
??	??	??	??	??	??	??	??	27	??	??	??	??	??	??
??	??	??	??	??	??	??	12	34	56	78	90	98	??	??
??	??	??	??	??	??	??	??	??	??	??	??	??	??	??
??	??	??	??	??	??	??	??	??	??	??	??	??	??	??

Класс List

Описание класса List:

https://learn.microsoft.com/ru-ru/dotnet/api/system.collections.generic.list-1?view=net-8.0

Методы класса List:

- Добавление элемента в список
- Поиск элемента в списке
- Вставка элемента в список
- Удаление элемента списка
- Сортировка элементов

Вычислительная сложность в списке

Вычислительная сложность массива:

- Индексация O(1).
- 2. Поиск O(n).
- 3. Вставка O(n).
- 4. Удаление O(n).

Типы коллекций

Массив

Список

Связный список

Что такое связный список и как он устроен?

Связный список — базовая динамическая структура данных в информатике, состоящая из узлов, содержащих данные и ссылки («связки») на следующий и/или предыдущий узел списка.

В двусвязном списке ссылки в каждом узле указывают на предыдущий и на последующий узел в списке.

Представление данных в памяти приложения

Приведенная в примере с List последовательность будет выглядеть примерно следующим образом. Это дает преимущество у LinekedList по сравнению с массивами – LinekedList может заполнить практически всю память доступную приложению.

??	??	??	??	??	??	??	??	??	??	??
??	??	??	??	??	??	??	??	??	??	??
??	??	12	??	??	??	??	??	??	??	??
	??						1			
78	??	??	??	??	??	34	??	??	??	??
??	??	??	??	??	??	??	??	??	??	??
??	??	56	??	??	??	??	??	??	??	??
??	??	??	??	??	??	??	??	??	??	??

Область применения LinkedList

- 1. Реализация стеков и очередей.
- 2. Менеджеры памяти и аллокаторы.
- 3. Реализация системы отмены действий (undo/redo).

Недостатки:

- 1. Медленный доступ на чтение.
- 2. Достаточно простое добавление.
- 3. Расход памяти на указатели.

Класс LinkedList

Описание класса LinkedList:

https://learn.microsoft.com/ru-ru/dotnet/api/system.collections.generic.linkedlist-1?view=net-8.0

Методы класса LinkedList:

- Добавление элемента в связный список
- Вставка элемента в связный список
- Удаление элемента связного списка
- Получение следующего/предыдущего элемента

Вычислительная сложность в связных списках

Вычислительная сложность массива:

- Индексация не применимо.
- 2. Поиск O(n).
- 3. Вставка O(1).
- 4. Удаление O(1).

