

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AN ANALYSIS OF ESTIMATING ERRORS ON GOVERNMENT CONTRACTS

Captain David L. Diedrich HQDA, MILPERCEN (DAPC-OPA-E) 200 Stovall Street Alexandria, VA 22332

Final Report 22 March 85

Approved for public release; distribution unlimited.

A thesis submitted to The Ohio State University, Columbus, Ohio in partial fulfillment of the requirements for the Degree of Master of Science.

THE FILE COP

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSIONO.	40-1157°617
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
An Analysis of Estimating Errors on	Final Report
Government Contracts	22 March 85
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
Captain David L. Diedrich	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Student HQDA, MILPERCEN (DAPC-OPA-E)	
200 Stovall Street	
Alexandria, Virginia 22332	12. REPORT DATE
11. CONTROLLING OFFICE NAME AND ADDRESS	22 March 85
MILPERCEN, ATTN: DAPC-OPA-E 200 Stovall Straet	13. NUMBER OF PAGES
Alexandria, Virginia 22332	107
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Thesis submitted in partial fulfillment for the Degree of Master of Science at the Ohio State University, Columbus, Ohio.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Estimating errors, regression analysis, U.S. Army Corps of Engineers Data, Cumulative distribution function

20. ABSTRACT (Continue on reverse stde M necessary and identify by block number)

This thesis considers what measures should be used to evaluate estimating errors of government estimates on competitively bid construction contracts. A data set from the U.S. Army Corps of Engineers was subjected to analysis using two measures of accuracy.

- over -

One objective of this research is to develop mathematical models and find cumulative distributions which may describe estimating practices within the Corps of Engineers. Other objectives are to offer large scale adjustments to compensate for any error present and to give a baseline for future studies and/or attempts to improve estimating accuracy.

It is found that there were significant estimating errors in the Corps of Engineer estimates. The variability of these errors is more than expected.

The principal conclusions are:
to retain as a measure of error, the standard percentage form, i.e.,

ERROR = ((OBSERVED - PREDICTED)/PREDICTED)*100; and

large scale adjustments are not useful.

Baselines were established for further research and study of estimating errors.

THESIS ABJTRACT

THE CHIC STATE UNIVERSITY GRADUATE SCHCCL (Please type.)

NAME: David L. Diedrich

QUARTER/YEAR: Winter 1985

DEPARTMENT: Civil Engineering

DEGREE: Master of Science

TITLE CF THESIS: An Analysis of Estimating Errors on Government Contracts

Summarize in the space below the purpose and principal conclusions of your thesis.

This thesis considers what measures should be used to evaluate estimating errors of government estimates on competitively bid construction contracts. A data set from the U.S. Army Corps of Engineers was subjected to analysis using two measures of accuracy.

One objective of this research is to develop mathematical models and find cumulative distributions which may describe estimating practices within the Corps of Engineers. Other objectives are to offer large scale adjustments to compensate for any error present and to give a baseline for future studies and/or attempts to improve estimating accuracy.

It is found that there were significant estimating errors in the Corps of Engineer estimates. The variability of these errors is more than expected.

The principal conclusions are:

to retain as a measure of error, the standard percentage form, i.e.,

ERROR = ((OBSERVED - PREDICTED)/PREDICTED)*100; and

large scale adjustments are not useful. Baselines were established for further research and study of estimating errors.

Adviser's Signature

AN ANALYSIS OF ESTIMATING ERRORS ON GOVERNMENT CONTRACTS

A Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science

Ву

David L. Diedrich, BS

The Ohio State University 1985

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

Ey
Distribution/
Availability Codes

Avail and/or
Dist Special

Approved By

Adviser Department of Civil Engineering

ACKNOWLEDGEMENTS

For the support and guidance provided on this thesis and throughout the period of graduate study, the writer thanks Dr. Richard E. Larew. Thanks are also expressed to Dr. Fabian Hadipriono and Dr. Paul Thompson. I would like to thank my wife, Lin, for her loving support and my children, Scott, John, and Mike, for being there when I needed them and understanding when I was not there when they needed me.

TABLE OF CONTENTS

ACKNO								•									•			•		•	•			•	•	•	,	. i
LIST							•					-	_			-	-		-	-							•			•
LIST	0F	FIG	Ué	RE	: S		•		•		•	•		•			•					•	•			•	•	•		. v
CHAPT	TER.				,	•	•	•								•	•		•	•		•		,			•		•	. <u>Pag</u>
I .	IN	rro	U	CT	Ί	ON		•	•		•	•	•	•			•		•	•	•		•		•	•	•		,	
		Ge	en	er	` a	1	Ва	ack	(q	rc) u	n d																		, ,
		R€	2 S	e a	ır	ch	. () b :	i e	сt	i	νe	S !																	
		Si	i q	n i	f	iс	ar	106	3	o f	-	th	ı i	S	S	tι	ıd	У												
		LI	ım	11	a	t١	01) () †	1	th	1 S		St	u	d y	/		•											,
		0 r	^ g	ar	ı i	z a	t	i o r	า	o f	F	Tr	e	s i	S						•		•			•	•			
II.	RE:	SEAF	₹C	Н	Α	PP	RO) A (CH																		•			. !
		_																												
								or		•	•	•	•	•		•	•		•	•	•	•	٠		•	•	•	•		•
		υa	t	a	Ŗ	as	ė	•	•		٠,	•	٠	. •		•	•		•	•	•	•	٠		•	•	•	•		,
																											•			
									D																		t a			_
		1 1	a a	n s	5 1	ti	01	1	•	٠	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	. 14
III.	PRE	ESEN	łΤ	A٦	Ι	ON	(F	R	ES	U	L T	S			•	•		•	•	•	•	•		•	•	•	•	,	. 19
								i o r																					,	. 1
		Re	_					f 8	Ēr	r	JI,	M	lo	d e	1	ir	ı g		Us	i n	g	a	וו	(o f		the	5		
		_						•	•	•		•	•	•		•	•		•	•	•	•	•		•	٠	•	•		. 19
		Re	5 S	u l	١t	S	01	f [Di	۷Ì	S	10	n	a l		Μ¢) d	e	li	n g	! .	•	•		•	•	•	•		. 2!
																											•			. 3
		l r	^ a	n s	. 1	ti	01	1	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	. 4!
IV.	SUI	MMAF	R Y	ļ	۱N	D	C) N C	CL	US	S I	ON	S			•	•			•	•	•	•		•	•	•	•		. 50
		Sι	ı m	m a	ar	у	01	f	٩n	a l	Ìу	s i	s																	. 50
			аj	o r	•	Co	n (:10	ıs	i	'n	S	W	i t	h	F	₹e	g	ar	ds	1	to	R	e s	s e	aı	rch	1		
			_			0 b	je	e c t	t i	v e	S							_							,		•			. 50
				Q١	ı a	n t	i 1	tat	ίi	v e	3	De	S	cr	i	p 1	ij	0	n	of	(Cui	r	e١	١t					
						Es	t	ma	at	i r	١q	P	'n	аc	t	1 (e:										•			. 5.
				Lá	r	ge	:	S C a	a i	e	Α	đј	u	s t	m	er	1 t	S	t	0	Co	m	э е	n s	a	t	e 1	0	r	
						Ér	r	r	•			•				•	•					•				•	•	•		. 5
				Βá	s	еl	ir	ı e	f	o r	•	Fυ	t	ur	e	(s t	u	d y	•					,		•			. 50
		Μá	Эj	o r	•	Rе	C	omn	ne	n c	d a	t i	0	n s		f	r		Fu	tu	re	ا د	₹e	S 6	? a	r	c h	•	•	. 54
BIBLI	OGI	RAPI	1 Y					•			•																•			. 5!

TABLE OF CONTENTS (Continued)

APPE	NDIX	Page
Α.	LIST OF ORIGINAL DATA	5 7
В.	SINUSOIDAL FUNCTION	75
С.	PROGRESSIVE MODEL BUILDING	82
D.	CUMULATIVE DENSITY FUNCTION	83
Ε.	CDF OF DIVISIONAL MODELS FOR DELTA AND DELTA1	86
F.	CDF OF POOLED RESIDUALS AND OVERALL MODEL	109

LIST OF TABLES

TABLE								Page
2.1.	Data Summary		•	•			•	9
2.2.	Divisional Data Summary						•	10
3.1.	Descriptive Statistics		•			•		15
3.2.	Post Modeling Statistics		•				•	22
3.3.	Final Model for DELTA		•	•				23
3.4.	Final Model for DELTA1		•		•		•	24
3.5.	DELTA and Rescaled DELTA1 Compared						•	26
3.6.	DELTA Summary by Division		•	•			•	30
3.7.	DELTA1 Summary by Division		•	•	•	•	•	31
3.8.	Final Model for DELTA		•	•				34
3.9.	Final Model for DELTA1					•	•	38
3.10.	Post Modeling Summary for DELTA .		•	•		•	•	42
3.11.	Post Modeling Summary for DELTA1 .		•				•	43
3.12.	DELTA and Rescaled DELTA1 Compared Division	for	E 8	ach •		•	•	44
3.13.	Pooled VS Single Model Results for	DEL.	TΑ				•	46
3.14.	Pooled VS Single Model Results for	DEL.	T A I	l	•			47
A.1.	Original Data		•		•	•		57

LIST OF FIGURES

FIGURE		<u>Page</u>
2.1.	Bid Experience Report	6
3.1.	CDF of DELTA Before Modeling	17
3.2.	CDF of DELTA1 Before Modeling	18
3.3.	Residuals VS DATE1	20
3.4.	CDF of DELTA Before and After Modeling	27
3.5.	CDF of DELTA1 Before and After Modeling	28
3.6.	CDF of DELTA Overlaid	48
3.7.	CDF of DELTA Overlaid	49
B.1.	General Sinusoidal Function	75
B.2.	Y=SIN(X)	78
B.3.	Y=SIN(X+D)	78
B.4.	Y = S I N (X - D)	79
B.5.	Y=SIN(2*X)	79
B.6.	Y=SIN(.5*X)	80
B.7.	Y=2*SIN(X)	80
B.8.	Y=.5*SIN(X)	81
0.1.	Rank Ordered Delta VS Prob	84
D.2.	Fitted Curve Overlay on Rank Ordered Delta	85
Ε.1.	DELTA Before and After ModelingEUR	87
E.2.	DELTA Before and After ModelingMRD	88
E.3.	DELTA Before and After ModelingNAD	89
E.4.	DELTA Before and After ModelingNPD	90
F.5.	DELTA Before and After ModelingOHR	91

LIST OF FIGURES (Continued)

FIGURE	(Conti	nued)										<u>Page</u>
E.6.	DELTA	Before	an d	After	Modeli	n g P O D						92
E.7.	DELTA	Before	an d	After	Modeli	n g S A D	•	•		•		93
E.8.	DELTA	Before	an d	After	Modeli	n g = - S P D			•		•	94
E.9.	DELTA	Before	an d	After	Modeli	ngSWD		•		•	•	95
E.10.	DEL TA1	Before	an d	After	Model	ingEUR					•	96
Ε.11.	DELTA1	Before	an d	After	Model	ingMRD				•		97
E.12.	DELTAI	Before	an d	After	Model	ingNAD			•		•	98
E.13.	DELTA1	Before	an d	After	Model	ingNPD		•		•	•	99
E.14.	DELTA1	Before	an d	After	Model	ingOHR				•	•	100
Ε.15.	DEL TA1	Before	an d	After	Model	ingPOD				•	•	101
E.16.	DEL TA1	Before	an d	After	Model	ingSAD				•	•	102
E.17.	DELTA1	Before	an d	After	Model	ingSPD				•	•	103
E.18.	DELTA1	Before	an d	After	Model	ingSWD				•	•	104
F.1.	Pooled	Residu	als	and Ov	verall	Mode? D	ELT	Α				106
F.2.	Pooled	Residu	als	and Ov	verall	ModelD	ELT	A 1	l			107

CHAPTER I

INTRODUCTION

1.1 GENERAL BACKGROUND

The United States Army Corps of Engineers is responsible for the management of the construction program for the Department of the Army, for determining the most advantageous bid on each project and awarding the contract to that low responsible bidder. Most contracts for construction are awarded, where it is feasible and practical, on the basis of the competitive bid process.

The U.S. Army Corps of Engineers is also responsible for making an independent estimate of the cost of each project, using the same plans and specifications as the bidders. This estimate is open at the same time the rest of the bids are opened and becomes the basis for screening the rest of the bids.

At the Ohio State University, in the Civil Engineering Department's Construction Engineering and Management Program, there has been recent research conducted by graduate students on the analysis of government estimates and the low bids received on public construction projects. Veselenak (12) performed analysis on data from the Naval

CHAPTER III

PRESENTATION OF RESULTS

3.1 INTRODUCTION

This chapter will present the results of each investigation performed. Some background information on the method will also be provided. The observed findings or apparent trends will be discussed.

3.2 RESULTS OF ERROR MODELING USING ALL OF THE DATA

Descriptive statistics for the initial examination of the two measures of estimating error, DELTA and DELTA1, are given in Table 3.1.

TABLE 3.1 Descriptive Statistics

VAR	ME AN	STD.DEV	MIN	MAX	SKEWNESS	KURTOSIS
DELTA	-14.6%	19.4%	-82.9%	133.3%	.30	8.28
DEL TA1	- 9.1%	12.1%	-70.8%	40.0%	-1.30	7.20

Plots of the cumulative density function of DELTA and DELTA1 are shows in Figures 3.1 and 3.2. These plots and statistics show the current estimating error before modeling. The modeling procedure will attempt to account for this variability of the error present.

2.5 TRANSITION

Results of this study presented in Chapter 3 will be presented as cumulative distribution functions (cdfs) of the residuals. Appendix D gives more information on how these curves are constructed. SAS Graph procedures were used in making the cdf plots in this thesis. (9)

In the next chapter, results of grand modeling of the data will be presented, the results of Divisional modeling will be presented and discussed and finally the results of pooling the results of regional compared to grand modeling will be presented and discussed.

subjected to further analysis, entertaining non-linear models or seasonal effects models.

Appendix C covers this sequential model building process in more detail. This second model will be used and a second set of residual error terms will be generated. This second set of error terms will be subjected to further models as appropriate. Following these steps, one final overall model will be arrived at with final coefficients for our parameters and a final set of residuals (error terms). Descriptive statistics of the estimating error before and after modeling for both measures of error, DELTA and DELTA1 will be presented. An approximation of the data will be made using the Ramburg/Schmeiser(R/S) distribution. (3.44-49)

Following this modeling of the estimating error on all data will be partitioned by Engineer data, the Division, and a separate analysis will be done for each Division. The same methodology will be applied to these applied to the complete data set. was data sets as Descriptive statistics will be presented on the error term, before and after modeling. The residuals from the regional modeling will be pooled and compared with the residual terms from the overall modeling to determine if modeling by Division significantly reduces the variability o f estimating error.

Time was used by setting 1 January 1982 as zero time. Thus, a data value of 1.2 represents 14 March 1983.

Two measures of estimating error will be examined in this study:

```
DELTA = ((LOWBID-GOVEST)/GOVEST)*100 (1.1)

DELTA1 = ((LOWBID-GOVEST)/(LOWBID+GOVEST))*100 (1.2)
```

Equation 1.1 is the standard form for estimating error in percentage form, and is widely used in industry to measure error. Equation 1.2 was suggested (but not investigated) by Veselenak (12,47) as an alternative measure of estimating error that may be more responsive to the modeling effort. A negative value for either equation 1.1 or equation 1.2 will indicate that the government is overestimating the project cost.

Following the creation of the qualitative variables, the rescaling of DATE in terms of DATE1 and defining the response variables, a general linear model will be introduced to attempt to model the estimating error term with the variables in the data set. SAS Linear Stepwise Procedure will be used, at varying levels of significance to determine the best linear model. (8) A linear regression will then be performed on that model. The difference between the errors before and after modeling will be obtained. The residual error terms from this model

2.4 ANALYSIS TO BE PERFORMED ON ACCEPTED DATA

To meet the research objectives of this study, each data set will be quantitatively analyzed in terms of its estimating error. Once this error is quantitatively described, it will be presented in a manner that will enable grand adjustments to be recommended to compensate for this error. Regression will be used to give a baseline for evaluating future attempts to correct and improve the estimating practice of the Corps of Engineers or any one of it's Engineering Divisions.

In the data, there are three qualitative variables--DESCRIP, LOC, and NUMBID. The creation of N-1 levels of qualitative variables is required for the inclusion of these variables into the analysis. NUMBID is a qualitative variable to consider the distinction between negotiated and competitively bid projects. When NUMBID=0, a contract is negotiated, and a 1 level qualitative variable will be used to account for negotiated/bid project effects. An 8 level qualitative variable will be created to account for locational effects. DESCRIP will not be used in this analysis, as there are too many types of work in the data set to classify them into specific type of projects. Also, the full scope of the work cannot be determined from the information given. (It is noted that previous research by Veselenak (12) indicated that type of work significantly account for the estimating error.)

TABLE 2.2

Divisional Data Summary

		M E	EANS		NUMBE	R OF C	۸۶۳۶	
	AMOUNTS	IN MILI DOLLARS	IONS OF	NUMBER OF	NUMBE	K OF C		
DIV	PROGAMT	GOVEST	LOWBID	BIDDERS	FY82	FY83	FY84	TOTAL
EUR	2.22	1.35	1.14	10.20	175	107	25	307
MR D	3.02	2.34	2.06	7.86	13	21	18	52
NAD	2.39	2.09	1.57	10.10	69	35	14	118
NPD	2.28	1.60	1.25	9.67	9	22	3	34
OHR	2.02	1.48	1.23	7.76	21	9	9	39
POD	2.09	1.64	1.42	4.15	5	12	29	46
SAD	4.30	3.52	2.93	8.48	38	37	18	83
SPD	2.40	1.70	1.69	11.20	22	15	9	46
SWD	4.11	3.50	2.95	8.75	35	4 3	15	93

the data set. These projects are 20-40 times the magnitude of the mean project size and \$10,000,000 over the next highest value-1/2 the range of the remaining values for project size. The elimination of these two projects on the basis as not representative of the true population reduces the usable data to 818 points.

2.3 DESCRIPTIVE STATISTICS OF THE DATA

Table 2.1 shows the overall range and mean for several variables in the data set. The earliest project recorded occurred on 17 November 1981 and the latest date was 25 June 1984. Table 2.2 shows the data by Division. The mean programmed amount, mean government estimate, mean low bid, and the mean number of bidders are given for each Division. The number of projects per fiscal year for each Division are also given.

TABLE 2.1

Data Summary

	ME AN · VAL UE	MINIMUM VALUE	MAXIMUM VALUE
PROGAMT	\$2,727,892	\$ 8,000	\$31,000,000
GOVEST	\$2,045,400	\$19,000	\$25,299,000
LOWBID	\$1,707,529	\$ 7,000	\$17,117,000
NUMBID	9.8	0	49

- 4. NUMBID--The number of bidders that submitted bids for that project. A value of zero indicates that the project was negotiated work, rather than competitively bid upon.
- 5. PROGAMT--The program amount budgeted for that project, recorded in millions of dollars.
- 6. GOVEST--The government estimate of the cost of the project, in millions of dollars. This estimate is done internally by the Corps of Engineer Division responsible for the project, or by an architect-engineer design firm. It is prepared using the same detailed plans and specifications as the bidders have at their disposal. This independent estimate is opened and read at the bid opening.
- 7. LOWBID--The lowest responsible bid received for that project. This figure is recorded in millions of dollars.

In the original data set, there were 7 projects--(Appendix A, line numbers 6, 17, 19, 20, 21, 74, and 541) that did not have government estimates. These projects were eliminated as they had incomplete information. This reduced the usable data to 820 points. Two projects (Appendix A line numbers 161 and 481) are size outliers to

the continental United States, or the world. These Divisions are:

- 1. European Division (EUR);
- 2. Missouri River Division (MRD);
- 3. North Atlantic Division (NAD);
- 4. North Pacific Division (NPD):
- 5. Ohio River Division (OHR);
- 6. Pacific Ocean Division (POD);
- 7. South Atlantic Division (SAD);
- 8. South Pacific Division (SPD); and
- 9. South West Division (SWD).

シャングランス (10) マグラングをおり (10) シップラング (10) できる (10)

The projects used in this study represent Military Construction Projects. These projects involve new construction, renovation or remodeling on Army installations located within the jurisdiction of the nine Engineering Divisions.

For each project there were seven variables:

- LOC-----The Division that the installation was assigned to for project control purposes. For example, the Army installation of Fort Knox, Kentucky is assigned to the Ohio River Division (OHR) for project control purposes.
- DATE----The date that the bids were opened for that project.
- 3. DESCRIP-A general description of the nature of the project.

Z	LOCATION	PLOUD'T TOUD'T	BIES	NO OF BIDDERS	FULL SCOPE COVT EST (SOO)	(0003)	7 0000 7 1 1 00 (2000)	v/S PERCENT CONTINCENCY CAR CAR	DESCRIPTION SCOPE REDUCTION A ANT (SOUD)	HISCELLANGOUS REALANGOUS (A) - AMAREE
29%	Pt Miley	Berrachs Nod	24Feb 62	n	295	21.5	289	239		(A) 25 May 82
1654	Pt Irvia	Tracked Web Hitor Shades 2 2 ar 22	27.45 62	29	297	111	349	7 87		(A) 10 PAE 82
1554	Pt Homsouth	Correct Fire Code	Zlar81	•	252	22	225	248		(A) 12 Mar 82
27.78	re Polk	Observe Fire Tower	Mark	••	268	225	286	549		(A) 16 Mar 82
, eic	Ft Eustia	Ship to Shorm Waste Coll Phar62	Star 52	•	257	179	3.80	203		(A) 30 Mar 82
4228	Fe Stagg	Electronic Maint Shop	10% r 82	•	291	320	322	356		(A) 24 Mar 82
16.	. It bood	Co Admin & Supply	18tar82	01	410	349	430	388		(A) 15 Jun 82
101	Anataton	Misl Zlec & Bydr Maint	244r 62	=	613	357	411	395		(A) 21 Apr 82
422	Je delvote	Install Ext Sup Postvide 2 War62	2442582	•	178	* **1	207	161		(Y) 6 Apr 82
301	Jt Campbell	Steam Plant Mod	Sapre	•	111	122	300	137		(A) 21 May 82
1534	Pt Cordon	lit-lac ing fac	1 34pr 82	•	191	37.7	667	418		(A) 22 Apr 82
13%	Ft Greely	Renor Bealth Cl	13Apr 62	•	***	\$07	443	455		(A) 22 Apr 82
21698	Cp loca, C	Mai Cyme	14Apr 82	≛ .	22	\$3	118	110	•	(A) 18 Jun 82
21705	Haingrues, C. Mai Cyns	Mai Cyne	14Apr 62	*	9	\$\$	118	•01		(A) 18 Jun 82
21712	Lites, G	Mai Cyns	1 44 pr 82	1	83	×	118	109		58 aut 81 (A)
21,728	Veiden, G	Mind Gyme	· 14Apr 62	*	\$	\$	118	101		(A) 18 Jus 82
21738	Schneeberg, G Pini (yas	2 Mail Cyms	14Apr 82	=	ឆ្ន	\$	129	108		28 auc 81 (A)

FIGURE 2.1: Recent Bid Experience Reports

CHAPTER II

RESEARCH APPROACH

2.1 INTRODUCTION

Regression analysis is the fitting of a probabilistic model to a data set to describe a response variable, in terms of a predictor variables. (5,62) Regression analysis to model construction data is widely used in the Construction Engineering and Management Program at the Ohio State University. This method will be the general approach used in the analysis of the data set from the U.S. Army Corps of Engineers.

2.2 DATA BASE

The data used in this study came from the Office of the Chief of Engineers, U.S. Army Corps of Engineers, Washington D.C.(11). Figure 2.1 is a copy of one sheet of this report. A list of the 827 contracts contained in this report is given in Appendix A. These 827 projects cover a two and one half fiscal year period, October, 1981 through June, 1984.

The Corps of Engineers has nine Engineering Divisions that are responsible for the management of construction for the Department of the Army. Each Division covers a part of

Chapter 2 discusses the data to be studied and the general research approach to the problem.

Chapter 3 presents the results of the analysis of the data set.

Chapter 4 contains a summary, major conclusions and recommendations on the evaluation of estimates within the U.S. Army Corps of Engineers.

and/or to be awarded. Underestimation of the cost of the project will complicate matters in the form of change orders, cost overruns and request for more funds. Any improvement in the accuracy of estimate prepared by the Corps of Engineers can have a great impact of the fiscal performance of the Corps of Engineers or any one of its Divisions.

1.4 LIMITATION OF THIS STUDY

It is beyond the scope of the thesis to attempt to tell the Corps of Engineers how to proceed to improve their estimates or change their estimating procedure. The data used in this study came from the U.S. Army Corps of Engineers Recent Bid Experience-Military Construction Activities Report. (11) It is assumed the government estimate and the lowbid contained in that report are the final figures on which the contract award was made.

1.5 ORGANIZATION OF THESIS

This thesis contains four chapters. A list of references follows the last chapter. Appendices comprise the last portion of the text.

Chapter 1 outlines the background of the Corps of Engineers functions, the study objectives and significance of the study.

Facilities Engineering Command (NAVFAC) and Selim (10) studied General Services Administration (GSA) data along with NAVFAC Data.

This thesis reports a study, done on data obtained from the U.S. Army Corps of Engineers, in which the government estimating accuracy was evaluated.

1.2 RESEARCH OBJECTIVES

This study focuses on three main objectives: The first objective is to quantitatively describe the current estimating practice within the U.S. Army Corps of Engineers Military Construction Program, to determine if improvement is needed in this area. The second objective is to offer a few simple adjustments that may be useful to help correct for any error that may exist within the estimating activity. The third objective is to give a baseline for future attempts to improve estimating accuracy by the Corps of Engineers, or any one of its Divisions.

1.3 SIGNIFICANCE OF THIS STUDY

A good accurate estimate of the cost of the project is a critical management tool. Overestimation on a project, saying it will cost more than it will, can cause an overcommitment of funds. This can prevent this fund from being available for other projects, either to be planned

The negative means for DELTA and DELTA1 indicate that the government is overestimating the cost of the project, on average. The range and variability of estimating error are much larger than expected by this author.

The Linear Stepwise Regression Procedure in SAS was used to initially explore the appropriateness of a linear model, for DELTA and DELTA1. Initially, the Stepwise Procedure was run, for both DELTA and DELTA1, with alpha=.15. This yielded the Models 3.1 and 3.2

$$DELTA = -12.39 - (.002*GOVEST) - (.34*NUMBID) + (2.25*DATE1)$$

$$-(6.22*NAD)-(5.46*OHR)$$
 (3.1)

$$DELTA1 = -8.25 - (.21*NUMBID) + (1.52*DATE1) - (4.05*NAD)$$
 (3.2)

Next, the Stepwise Procedure was run using a smaller alpha level. It was decided to use alpha=.05, as this is a commonly accepted level for alpha. This yielded equations 3.3 and 3.4.

$$DELTA = -12.92 - (3.66*NUMBID) + (2.30*DATE1) - (5.82*NAD)$$
 (3.3)

$$DELTA1 = -8.25 - (.21*NUMBID) + (1.52*DATE1) - (4.05*NAD)$$
 (3.4)

FIGURE 3.1: CDF Of DELTA Before Modeling

FIGURE 3.2: CDF of DELTA1 Before Modeling

These two equations had a value for the coefficient of determination 1 R^2 of .0449 and .0466 respectively. This model was useful in accounting for a very small proportion of the variance in the data. These two equations were used to find the first generation of residuals for further modeling. Once these residuals were created, they were plotted against all the variables in the model as well as those not in the model. Trends were noted and an appropriate model was decided upon to model this residual error. Figure 3.3 is a plot of the residual error term, RESID, versus DATE1.

The plot of RESID vs DATE1, showed promise of seasonal, or cyclical effects in the data, for both DELTA and DELTA1. This was not unexpected as the research done by Veselenak (12) and Selim (10) at the Ohio State University, also indicated presence of seasonal effects in similar data sets. One procedure to fit a seasonal model is to use a sinusoidal function to model the response variable. Appendix B gives the general approach taken for fitting the data with a sinusoidal function. Previous

R², the coefficient of determination, represents the proportion of the sum of squares of deviations of the response variable observations about their mean that can be attributed to a linear relation between the response and independent variables. R is always between 0 and 1. A value of 1 indicates that the linear model accounts for all variability of the response variable. A value of 0 indicates that the model accounts for none of the variability (5, 83-84).

FIGURE 3.3: Residuals vs DATE1

research, as well as the plot of this data set, indicate that a cycle length of one year is an appropriate initial estimate. The general model:

RESID 1 =
$$A(+B*SIN((C*DATE1)+D))$$
 (3.5)

was used to initially fit the residual error terms. A range for each parameter was specified and input into PROC NLIN, the SAS Non-Linear Procedure. Equations 3.6 and 3.7 were found.

DELTA RESID1 =
$$.11+(1.56*SIN((2\pi DATE1)+2.1813))$$
 (3.6)

DELTA1 RESID1 =
$$.05+(1.25*SIN((2\pi DATE1)+1.7751))$$
 (3.7)

The phase shift parameter, D, shifted the wave so that the low point in the wave, where the largest overestimation occurs to April 27 for DELTA and May 20 for DELTAl.

These values correspond to previous studies that indicate early spring as a time where construction jobs are scarce and hence there is more competition for each job, possibly indicating a cheaper price on each project.

The parameter estimates from the above model, indicate that there is evidence of seasonal effect in the data. The models account for 3% to 4% of the estimating error. This seasonal model may be confounded by the data, and Divisional modeling may allow this trend to show more clearly.

The residual errors from these models were plotted against all variables in the model and those not in the model to look for trends that may indicate alternative models that should be considered. Analysis of these plots showed no apparent trends in the data, and it was decided that the best model for both DELTA and DELTAl is as given in equation 3.8:

DELTA = A+(B*NUMBID)+(C*DATE1)+(D*NAD)+(E*TIME) (3.8)

where TIME=SIN*((2TT*DATE1)+F), and F has the value of 2.1813 for DELTA and 1.7751 for DELTA1. Final regression run results are listed in Tables 3.3 and 3.4.

TABLE 3.2
Post Modeling Statistics

VARIABLE	ME AN	STD DEV	RANGE	SKEWNESS	KURTOSIS
DELTA	0	18.82	218.24	. 4 4	9.44
DELTA1	0	11.78	112.39	-1.25	7.72

Although these models do not account for much of the variability of the data, they may be useful to future attempts in improving the estimating accuracy of the Corps of Engineers. Following modeling, the error could be characterized by the statistics in Table 3.2. The modeling

TABLE 3.3
Final Model for DELTA

MODEL

DEPARTMENT VARIABLE DELTA

 $R^2 = .06$

F = 12.60

P ≤ .9999

INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р
INTERCEP	-10.08	1.87	-5.36	.0001
NUMBID	63	.13	-4.95	.0001
DATE1	1.95	.90	-2.15	.0314
NAD	- 5.76	1.89	-3.04	.0024
TIME	1.59	.99	1.61	.1076
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

TABLE 3.4
Final Model for DELTA1

MODEL

DEPARTMENT VARIABLE DELTA

 $R^2 = .06$

F = 13.61

P <u>4</u>.9999

INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р
INTERCEP	-6.29	1.17	-5.35	.0001
NUMBID	39	.08	-4.92	.0001
DATE 1	1.25	. 56	2.22	.0270
NAD	-4.02	1.18	-3.41	.0007
TIME	1.29	.59	2.18	.0294

effort showed a slight decrease in standard deviation, but these models do not significantly reduce the ranges of estimating errors.

Overlays of the cumulative density functions before and after modeling are shown in Figures 3.4 and 3.5. Comparisons of the means and standard deviations of DELTA and DELTA1, indicate that DELTA is equivalent to a factor times DELTA1. Table 3.5 demonstrates this fact. Divisional models were next considered to improve upon what was achieved with modeling the entire data set.

3.3 RESULTS OF DIVISIONAL MODELING

Nine new data sets were created from our original set, one for each Division. The estimating error for each Division was modeled and described quantitatively. The loss of degrees of freedom in each data set, will hopefully be offset by the more accurate models, that will be derived for each Division. These models may be useful to each Division in setting a baseline for future attempts in improving their estimating accuracy.

Initial examination of the estimating error of each Division, as measured by DELTA and DELTA1, yielded the following information. The European Division (EUR) had the largest number of projects, 307, as well as the largest range of estimating error, 216%. The North Atlantic

TABLE 3.5

DELTA and Rescaled DELTA 1 Compared

	DELTA	RESCALED DELTA1	RESCALE FACTOR (F)	DEL TA1
ME AN	-14.61	-14.58	1.6	-9.73
STD.DEV	19.39	19.39	1.6	12.12
			$\overline{F} = \sum_{i=1}^{2} \frac{F_i}{2}$	= 1.60

FIGURE 3.4: CDF of DELTA Before and After Modeling

FIGURE 3.5: CDF of DELTA1 Before and After Modeling

Division NA restricted largest mean estimating error, -20.6%, as we have the largest standard deviation, 22.5%. The North et act in a condition (NAD) had the largest mean estimating error to -15.7% (using DELTAI). The European Division (E)% had the largest range of error, 110.8%, as well as the largest standard deviation in the error of 14.2%. Tables 3.6 and 3.7 summarize the statistics of DELTA and DELTA1 for each Division.

Linear stepwise regression was applied to each data set, with the level of significance (alpha) equal to .05. The coefficient of determination (R²) ranged from .019 to .652 for DELTA and DELTA1. The South Pacific Division (SPD) had no linear model that was significant at alpha=.05 for DELTA or DELTA1. The Missouri River Division (MRD) and the Pacific Ocean Division (POD) had no linear model for DELTA1 which was significant at alpha=.05.

As the results of the overall modeling of the Corps of Engineer data indicated that seasonality was a factor in the explanation of error, this was the next model applied to the first generation residuals from linear modeling. This procedure proceeded as the fitting of of the model did to all the combined data in Section 3.2 of this thesis.

For the modeling DELTA's residuals, some Divisions exhibited a stronger tendency than others toward seasonality. The low point of the sinusoidal function (the

<u>TABLE 3.11</u>

Post Modeling Summary for DELTA1

VID	#	CASES	ME AN (%)	STANDARD DEVIATION (%)	RANGE(%)	SKEWNESS	KURTOSIS
EUR		307	0	14.01	114.52	-1.46	7.66
MRD	-	52	0	7.28	41.22	.05	4.70
NAD		118	0	13.31	73.09	14	3.61
NPD		34	0	7.06	34.23	56	3.56
OHR		39	0	8.94	37.47	75	3.20
POD		46	0	5.53	27.45	.72	4.36
SAD		93	0	10.31	66.07	-1.65	8.26
SPD		46	0	9.00	38.68	31	2.72
SWD	,	83	0	6.77	38.38	55	4.01

TABLE 3.10

Post Modeling Summary for DELTA

			STANDARI	 D		
DIV	# CASES	ME AN (%)		(%) RANGE(%)	SKEWNESS	KURTOSIS
EUR	307	0	21.96	219.06	.72	11.28
MRD	52	0	12.14	60.65	24	3.63
NAD	118	0	21.47	130.57	.82	5.32
NPD	34	0	9.25	44.04	.93	4.43
OHR	39	0	13.98	62.62	44	2.97
POD	46	0	13.02	72.86	. 05	4.58
SAD	93	0	15.95	85.13	81	4.14
SPD	46	0	15.26	68.32	09	2.78
SWD	83	0	11.51	62.31	02	3.28

TABLE 3.9

Final Model for DELTA1 (Continued)

MODEL SPD		DEPARTMENT R ² = .1; F = 5.6 P \(\frac{4}{2} \) .9	81	DELTA1
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	P
INTERCEP	-10.01	1.48	-6.75	.0001
TIME	4.50	1.87	2.41	.0201
MODEL SWD		DEPARTMENT R ² = .27 F = 11 P 4 .99	. 76	DELTA1
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р
INTERCEP	-1.30	1.81	72	.4746
NUMBID	67	.19	-3.57	.0006
TIME	-2.61	1.01	-2.58	.0115

TABLE 3.9

Final Model for DELTA1 (Continued)

MODEL OHR		DEPARTMENT	VARIABLE	DELTA1	
		$R^2 = .11$ $F = 2.4$ $P = .90$	8		
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р	
INTERCEP	-5.81	2.89	-2.01	.0519	
NUMBID	70	.32	-2.19	.0348	
MODEL POD		DEPARTMENT	VARIABLE	DELTA1	
		$R^2 = .03$ $F = 1.60$ $P \leq .7871$			
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р	
INTERCEP	-4.96	1.55	-3.20	.0025	
TIME	-2.57	2.03	1.26	.2128	
MODEL SAD		DEPARTMENT	VARIABLE	DELTA1	
		R ² = .12 F = 12.74 P ≤ .9994			
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р	
INTERCEP	-1.80	2.09	86	.3910	
NUMBID	74	.21	-3.57	.0006	

TABLE 3.9 Final Model for DELTA1 (Continued)

MODEL NAD		DEPARTMEN	T VARIABLE	DEL TA1	
		R ² = .10 F = 13.92 P ∠ .9997			
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р	
INTERCEP	-4.551	2.62	-1.74	.0855	
NUMBID	851	.23	3.73	.0003	
MODEL NPD		·	T VARIABLE	DEL TA1	
		R ² = .68 F = 12.28 P 4 .9999			
INDEPENDENT VAR	PARAMETER ESTIMATE		t	Р	
INTERCEP	-2.76	3.06	90	.3752	
NUMBID	76	.20	-3.71	.0009	
PROGAMT	-3.40	1.32	2.58	.0155	
GOVEST	-7.99	2.02	-3.15	.0005	
DATE 1	5.88		3.53		
TIME	-2.98	1.90	-1.57		

TABLE 3.9
Final Model for DELTA1

MODEL EUR		DEPARTMENT	T VARIABLE	DELTA1
		$R^2 = .07$ F = 3.7 P $\leq .99$	18	
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р
INTERCEP	- 6.13	1.75	-3.51	.0005
NUMBID	26	.15	-1.79	.0749
TIME	- 2.44	1.13	-2.15	.0321
MODEL MRD			T VARIABLE	DELTA1
		R ² = .08 F = 4.6 P <u>4</u> .99	42	
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	р
INTERCEP	-5.73	1.09	-5.25	.0001
NUMBID	3.05	1.45	2.10	.0405

TABLE 3.8

Final Model for DELTA (Continued)

MODEL SWD		DEPARTMENT VARIABLE DELTA		
		R ² = .22 F = 11. P 4 .99	. 65	
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р
INTERCEP	- 2.27	3.09	73	.4645
NUMBID	- 1.16	.32	-3.62	.0005
TIME	4.26	1.72	2.48	.0154

TABLE 3.8

Final Model for DELTA (Continued)

	DEPARTMEN	T VARIABLE	DELTA	
	F = 4.	4 1		
		t	Р	
-14.01	2.42	-5.78	.0001	
72	. 34	2.10	.0416	
		T VARIABLE	DELTA	
	R ² = .13 F = 14.90 P .9998			
PARAMETER ESTIMATE	STANDARD ERROR	t	Р	
- 2.81	3.20	88	.3820	
- 1.24	.32	-3.86	.0002	
	DEPARTMEN	T VARIABLE	DELTA	
	R ² = .11 F = 5.60 P .9775			
PARAMETER ESTIMATE	STANDARD ERROR	t	Р	
-16.78	2.51	-6.68	.0001	
7.49	3.17	2.36	.0225	
	PARAMETER ESTIMATE - 2.81 - 1.24 PARAMETER ESTIMATE - 1.24 PARAMETER ESTIMATE - 1.49	R ² = .09 F = 4.4 P	F = 4.41 P	

TABLE 3.8

Final Model for DELTA (Continued)

MODEL NPD			T VARIABLE	DELTA
		R ² = .6 F = 12 P <u>4</u> .9	.42	
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р
INTERCEP	- 6.85	5.12	-1.34	.1916
NUMBID	30	.33	-3.93	.0005
PROGAMT	5.70	2.18	2.61	.0143
GOVEST	-13.45	3.36	-4.00	.0004
DATE 1	11.34	2.88	3.93	.0005
TIME	5.41	2.97	1.82	.0788
MODEL OHR		DEPARTMEN	T VARIABLE	DELTA
		R ² = .1 F = 5. P <u>∠</u> .9	30	
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р
INTERCEP	-10.06	4.51	-2.23	.0317
NUMBID	- 1.15	.50	-2.30	.0270

TABLE 3.8
Final Model for DELTA

MODEL EUR		DEPARTMEN	T VARIABLE	DELTA
		$R^2 = .0$ $F = 6.$ $P \le .9$	34.	
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р
INTERCEP	-7.47	2.70	-2.76	.0061
NUMBIO	59	.23	-2.57	.0104
TIME	5.44	1.85	2.94	.0354
MODEL MRD			T VARIABLE	DELTA
		R ² = .1 F = 3. P \(\lefta \) .9		
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р
INTERCEP	-4.25	4.32	98	.3296
NUMBID	75	.05	-1.41	.1651
TIME	4.11	2.84	1.45	.1549
MODEL NAD		DEPARTMEN	T VARIABLE	DELTA
		R ² = .0 F = 10 P <u>4</u> .9	. 78	
INDEPENDENT VAR	PARAMETER ESTIMATE	STANDARD ERROR	t	Р
INTERCEP	-8.31	4.23	-1.96	.0519
NUMBID	-1.21	.37	-3.28	.0014

rescaled values for the mean and standard deviation are shown in Table 3.12. From this table it is observed that there is no significant difference in the mean and standard deviation of these two measures of error.

3.4 POOLED RESULTS OF REGIONAL MODELS

Once the final models for each Division were determined, the residual errors from these models were pooled. These pooled results were compared with the results from the single models. These statistics are summarized and presented in Table 3.13 and 3.14.

There is a slight reduction in variability of the error, standard deviation, for both DELTA and DELTA1, with the Divisional model. The mean of the estimating error is the same for both models. The plots of the cumulative density function of the pooled results and the overall model for both DELTA and DELTA1 are presented in Appendix F. The reduction of variability for both DELTA and DELTA1 is so slight that it is almost non-existent. The difference in reduction in variability for DELTA compared to DELTA1 is likewise insignificant.

Figures 3.6 and 3.7 show the cdf curves of DELTA before modeling for all Divisions overlaid on one another. These plots indicate that approximately 85% to 90% of the bids received are less than 10% over the government

point of maximum government overestimation) varies from Division. No real pattern can be determined. For DELTAl's residuals, the same was found to exist.

The residual error terms from this seasonal modeling were examined and plotted against all variables in the model and those not yet included in the model. No further trends could be deduced from these plots and "best" models were decided on for the final models for each Division. These final models are presented in Tables 3.8 and 3.9.

Following the acceptance of the final models, final regressions were run on these models. Final estimates of the parameters were found, and descriptive statistics were calculated. These statistics are summarized and presented in Tables 3.10 and 3.11. In most cases, 13 of 18, the range of the estimating error reduced after modeling. There appears to be no significant difference between DELTA1 and DELTA models.

Appendix E contains plots of the cumulative density functions of the before and after modeling errors for each Division. For each Division there are two plots, one for DELTA and one for DELTA1. On each plot there are two functions, before modeling error and after modeling error. To compare the mean and standard deviation of DELTA and DELTA1 there is a need to rescale one or the other. This author choose to rescale DELTA1 (equation 1.2). The

TABLE 3.7

DELTA1 Summary by Division

DIV #	CASES	MEAN(%)	STD. DEV(%)	RANGE(%)	SKEWNESS	KURTOSIS
EUR	307	- 9.11	14.15	110.84	-1.51	7.57
MR D	52	- 6.69	7.37	32.11	27	2.99
NAD	118	-13.19	14.10	80.64	39	3.42
NPD	34	- 8.41	9.89	35.29	42	2.31
OHR	39	-11.28	9.54	41.05	62	2.75
POD	46	- 6.35	7.41	40.31	.32	4.69
SAD	93	- 8.17	11.11	69.16	61	7.89
SPD	46	- 8.49	9.57	40.71	37	2.87
SWD	83	- 7.05	7.69	46.33	71	4.75

TABLE 3.6

DELTA Summary by Division

DIV #	CASES	MEAN(%)	STD DEV(%)	RANGE(%)	SKEWNESS	KURTOSIS
EUR	307	-13.92	22.41	216.10	. 5 4	10.04
MRD	52	-11.67	12.94	56.80	.09	2.87
NAD	118	-20.58	22.48	136.71	. 54	4.42
NPD	34	-14.05	16.58	60.18	10	2.29
OHR	39	-19.03	14.96	66.23	27	2.65
POD	46	-11.02	13.79	75.06	1.04	5.73
SAD	93	-13.39	17.22	92.17	74	3.82
SPD	46	-14.26	16.20	70.61	.10	3.05
SWD	83	-12.24	13.13	76.77	10	3.77

TABLE 3.12

DELTA and Rescaled DELTA1 Compared for Each Division

MEAN

D	ELTA	RESCALED DELTA1	DELTA1	RESCALE FACTOR (F)
EUR	-13.92	-15.13	- 9.12	$ \begin{array}{r} 1.53 \\ 1.74 \\ 1.56 \\ 1.67 \\ 1.63 \\ 1.63 \\ 1.63 \\ 1.68 \\ 1.73 \\ \hline F = \underbrace{\Sigma, Fi}_{q} = 1.66 \end{array} $
MRD	-11.67	-11.11	- 6.69	
NAD	-20.58	-21.70	-13.19	
NPD	-14.05	-13.96	- 8.41	
OHR	-19.03	-18.72	-11.28	
POD	-11.02	-10.55	- 6.36	
SAD	-13.39	-13.57	- 8.17	
SPD	-14.26	-14.08	- 8.49	
SWD	-12.24	-11.70	- 7.05	

STANDARD DEVIATION

DELTA		RESCALED DELTA1	DELTA1	RESCALE FACTOR (F)
EUR MRD NAD NPD OHR POD SAD SPD SWD	22.41 12.94 22.48 16.58 14.96 13.79 17.22 16.20 13.13	23.50 12.23 23.40 16.42 15.84 12.30 18.45 15.90 12.78	14.15 7.37 14.10 9.89 9.54 7.41 11.11 9.57 7.69	$ \begin{array}{c} 1.58 \\ 1.75 \\ 1.59 \\ 1.67 \\ 1.56 \\ 1.86 \\ 1.55 \\ 1.61 \\ 1.71 \\ \hline F = \sum_{i=1}^{4} F_{i} = 1.66 \end{array} $
				9

estimate. If the government were to reject bids that are 10% or more above their estimate, this would mean that they would reject approximately 10% to 15% of the bids. This is an area that Larew's theory of socially acceptable biasing could apply (4). With the type of analysis performed, it would be possible for the Corps of Engineers or any of its Divisions to formulate their objectives, in terms of a socially acceptable percentage of bids to be rejected (for being too high). This could be done by the use of a factor applied to the government estimate, without a change in estimating procedure.

3.5 TRANSITION

In the next chapter the results will be summarized and conclusions drawn on those results. Recommendations will be presented for consideration for future research.

TABLE 3.13

Pooled VS Single Model Results for DELTA

MODEL	MEAN(%)	STD(%)	RANGE(%)	SKEWNESS	KURTOSIS
Single	0	18.78	218.24	. 44	9.43
Pooled	0	18.23	219.06	.58	10.75

TABLE 3.14

Pooled VS Single Model Results for DELTA1

MODEL	ME AN (%)	STD(%)	RANGE(%)	SKEWNESS	KURTOSIS
Single	0	11.73	112.39	- 1.2	7.72
Pooled	0	11.44	114.52	-1.20	8.12

FIGURE 3.6: CDF OF DELTA OVERLAID

FIGURE 3.7: CDF OF DELTA OVERLAID

CHAPTER IV

SUMMARY AND CONCLUSIONS

4.1 SUMMARY OF ANALYSIS

As reported in Section 3.2 and 3.3, descriptive statistics for DELTA and DELTA1 were calculated and compared for all the data combined, and for each Engineer Division. The error was characterized before and after modeling with descriptive statistics. The plots of the cumulative density functions of the estimating error before and after modeling support the notion of slight improvement. Divisional Modeling also supported the notion of slight improvement in the variation of the estimating error. Pooling the residuals of Divisional Modeling and comparing them with the residuals of grand modeling, indicate a slight reduction in the variance of estimating error as measured by DELTA and DELTA1.

4.2 MAJOR CONCLUSIONS WITH REGARDS TO RESEARCH OBJECTIVES

The major conclusions on each research objective will be presented in this section.

4.2.1 QUANTITATIVE DESCRIPTION OF CURRENT ESTIMATING PRACTICE

There appears to be more variation in the estimating error of the Corps of Engineers than originally expected by this author. Prior to this study, any variation in excess of plus or minus 30% would have been thought to be excessive. The range of the error in the data set, 216%, before modeling, is extremely large and indicates a problem area that needs to be researched and improved upon. Of great concern is the inconsistency of the error, as there appears to be no pattern of consistent under or overestimating. The estimating error present in each Division is also excessive. Some of the Engineer Divisions have smaller variations of error than others, but all would benefit from study of current methods and practice to reduce this severe variability of estimating error.

Comparison of both DELTA and DELTA1, before and after modeling, indicate that there is a difference in the mean error before and after modeling, as would be expected. Comparison of the mean and standard deviation of DELTA and DELTA1, fail to indicate a change in the mean error of these two measures of error, either before or after modeling. This author concludes that there is no significant benefit in the use of DELTA1 as a measure of estimating error as compared to the more

conventional measure DELTA. Use of DELTA as a measure of estimating error should not be abandoned in favor or DELTA1.

4.2.2 LARGE SCALE ADJUSTMENTS TO COMPENSATE FOR ERROR

The overall mean error in each Engineer Division Corps-wide is measure of the bias of the estimating effort. In all cases, the bias was overestimation bias. If this bias had a small variability associated with it (and this was consistently over or under the final estimate) a large scale adjustment could be used to correct the estimate. However, in the Corps of Engineer Data, such consistency of error is not found. With a range of error that is present, any large scale adjustment would help our estimating error average to zero error, but would not help much with individual projects. A significant reduction in the range or spread of estimating error is needed. Consistency in estimating is needed, regardless of direction. Once a consistent pattern is developed and the range of error large scale adjustments an d unbiasing reduced, then techniques can be applied. At this point, there is too much variance in the data even after our modeling effort, to effect much change by unbiasing the estimating error.

4.2.3 BASELINE FOR FUTURE STUDY

The models presented in this thesis, for both individual Engineer Division and Corps-wide, give a starting position analyze any improvement techniques implemented correct the variation and bias of estimating error. This can be linked with the quantitative description of error, form a "before improvement" picture of estimating practice. This characterization of the estimation effort can be compared to an "after improvement implemented" to see if results were significant. Ideally, information would be collected and analyzed up until the time of implementation of the new techniques. This information would be compared with the post-improvement information, to see if the estimating accuracy improved. The techniques and methodology of quantitatively describing the data and modeling would be useful to the Corps of Engineers or any of its Divisions, attempting to improve in this area.

4.3 MAJOR RECOMMENDATIONS FOR FUTURE RESEARCH

- Examine and explore methods to aid in the standardization of estimating procedure, to improve estimating accuracy.
- Explore changes of error over time, as in Kossuth
 (2) and Baswari (1).
- 3. Consider and explore statistical packages available for use on a microcomputer, so as to enable this methodology to be useful to industry.
- 4. Gather more specific data on each project.
- 5. Develop a specific coding scheme to classify projects into type of work, for entrance of that variable into the model.
- 6. Obtain similar data from private industry to validate both the methodology and the models in this study, for use with private industry needs.
- 7. Explore Larew's theory of social biasing of estimates with this and other data sets more fully.

BIBLIOGRAPHY

- Baswari, Mohammed. "Investigation of the Schechtman-Wolfe Multi- Changepoint Procedure in Detecting SIV Changepoints in Construction Cost Indices". M.S. Thesis, The Ohio State University, 1983.
- 2. Kossuth, Craig L. "Non-Parametric Technique for Identifying a Change in Performance". M.S. Thesis, The Ohio State University, 1982.
- 3. Larew, Richard E. "Cost Estimating and Pricing in a Construction Company, Volume 2, Initial Stochastic Studies". Construction Engineering and Management, Department of Civil Engineering, The Ohio State University, 1976.
- 4. ----- Lecture Notes. Civil Engineering 882: Stochastic Construction Estimating. The Ohio State University, Spring Quarter, 1984.
- 5. Mendenhall, William and McClave, James T. A Second Course in Business Statistics: Regression Analysis. San Francisco: Dellan Publishing Company, 1981.
- 6. Ricer, T.L. "Accounting for Non-Normality and Sampling Error in the Analysis of Variance of Construction Data". M.S. Thesis, The Ohio State University, 1980.
- 7. SAS User's Guide: Basics. Raleigh, North Carolina: SAS Institute Inc., 1982.
- 8. SAS User's Guide: Statistics. Raleigh, North Carolina: SAS Institute Inc., 1981.
- 9. SAS Graph User's Guide. Raleigh, North Carolina: SAS Institute Inc., 1981.
- 10. Selim, Mohammed Y. "Assessment of Current Methods for Evaluating Estimating Accuracy". M.S. Thesis: The Ohio State University, Columbus, Ohio, 1982.
- 11. U.S. Army Corps of Engineers Recent Bid Experience-Military Construction Activity Report.
 Office of the U.S. Army Chief of Engineers, Washington, D.C.

12. Veselnak, John. "An analysis of Estimating Accuracy of Government Construction Contracts." M.S. Thesis: The Ohio State University, 1981.

APPENDIX A

LIST OF ORIGINAL DATA

Table A.1 gives the original data used in this study.

TABLE A.1 - ORIGINAL DATA (Continued)

					- LOW	
LOC	DESCRIP	DATE	<u> BI</u>	D EST	BID	GAMI
638 EUR #	ALTER BLDG	29NOV83	6	0.237	9-219	0.49
639 SAD P	PHYSICAL FITNESS ON		5	1.975	1.818	2.80
	RNG SUPPORT WHSE	01DEC83	9	0.536	0.443	0.60
641 NAD S	ATELLITE FERM FAC	01DEC83	12	1.230	1.075	1.25
642 gur B	BARRACKS W/DINING	01DEC83	10	1.414	1.279	2.37
643 EUR F	ACS NOD	01DEC83	15	1-549	1.366	2.30
644 EUR D	INING BKZ CONV	01DEC83	9	2-561	2.364	4-35
645 EUR T	ACT EQUIP SHOP	06DEC83	19	9.354	8.941	13.80
	UTO CTRLS-ECIP	08DEC83	9	0.438	0.349	0.76
647 OHR 8	EARN CONSOL MAN	08DEC83		13.598		22.00
	EAPONS MAINT FAC	13DEC83		8-168	4-792	8.30
	RIGADE HO	13DEC83	15	0.805	0.906	1-50
651 CLD #	ECREATION CENTER	13DEC83	15	0.923	0.893	1- 15
452 DOD D	ISSLE SYS SOFTWARE	14 DEC 8 3	8	11-262		16.00
	OL TANK RELOCATION BARRACKS-MLRS		17	0.844	1. 132	1_40
	AC MUDERNIZATION	16 DEC83	13	1.402	1-283	1.74
655 NAD C	ONN CTR ADD/ALT	16DEC83	14	3.742	3.539	5.40
656 NAD P	OOD SERVICE TRNG	20 DEC83	6 13	1.512 4.190	1.122 3.576	1.65 5.30
	IN HQ & CLASSROOM	20 DEC 8 3	15	1_159	0.965	1-45
	HILD CARE CENTER	21DEC83	5	3.049	3.009	4.40
659 NPD T	ACT EQUIP SHOP	21DEC83	9	3.101	3.199	7.80
660 NAD M	AINT FAC	21DEC83	5	6.754	5.999	7-20
661 SAD M	ETROLOGY/CALIB LAB	21DEC83	6	1.630	1. 194	2.60
662 POD T	ACT EQUIP SHOP		16	2.525	2.489	5-10
663 MRD P	HYSICAL FITNESS CN	23DEC83	10	3.128	3-000	3.55
664 SAD P	INK WATER SYS	04 JA N84	8	3.661	3.051	4.25
665 EUR P	HYSICAL FITNESS CN	16JAN84	5	1.687	1-650	2.65
666 POD T	ACT EQUIP SHOP	17 JA N84	2	4.384	4-290	6-20
667 NAD R	ENOVATE BLDG	18JAN84	10	0.958	0-918	0.91
668 MRD U	TILITIES-MUSAAF	19 JA N84	7	5.122	4.652	5.40
669 EUR B	N HO W/CLASSROOM	19JAN 84	14	1-010	0-786	1.75
670 EUR A	TTIC INSUL	4 BN AL C1	5	0.589	0.562	0.92
671 OHR P	LIGHT SIMULATOR	24JAN84	8	2.786	1-790	5.50
6/2 NAU 5	TEAN DIST SYS	24 JA N84	12	5.025	4-344	3.95
673 MRD 3 674 SPD C	EWAGE TRAT PLANT	25JAN84	11	1_243	1.072	1.15
675 BUD D	QUASHOIT ADINUMMO	30 JA N84	7	1.453	1.074	1.90
676 EUR P	HYS FITNESS CTR	31JAN84	10	1.630	1.500	2-45
677 BUR P	HYS FITNESS CTR HYS FITNESS CTR	31 JA N84	7	0.405	0.353	0-76
678 SPD C		01F2B84	. 8	0.989	0-973	1.55
679 NPD C		01FEB84	11 10	0.897	1.087	1.75
680 NAD R		02FEB84 03PEB84	12	0.883 7.042	1.035 5.448	2.65 8.10
		07FE884	14	3.823	3.163	4.55
		07 FEB 84	12	1.713	1.484	1. 25
683 EUR PI	HYS FITNESS CTR	14 F E U 8 4	19	1.386	1. 264	2.55
		16FEB84	10	1-177	1. 153	1.60
685 EUR B.	ARRACKS	16 FEB84	13	2.366	1992	3.25
686 NPD R	ANGE & TRNG PAC IP	21PEB84	10	0.831	0.938	0_94

TABLE A.1 - ORIGINAL DATA (Continued)

		2566012				LOW-	
	LOC	DESCRIP	DATE	BID	EST	BID	GAMI
589	SPD	BDS GROUND SIMUL FC	28JUL83	6	0.350	0.123	0.290
590		CEILING INSUL	04AUG83	21	0-177	0.059	0-212
591		RIPPLE CONTROL	16AUG83	9	0.335	0.421	0-292
592	EUR	HTG BLDG 4172	31AUG83	2	0.314	0.373	0-303
593	EUR	HELIPADS	06 SEP8 3	11	0.411	0-344	0.403
594	SPD	E BLOCK DRAINAGE	12S EP 83	3	1.026	0.612	0.726
595	OHR	ANNE PACLILTY	13SEP83	13	0.326	0.213	0-354
596	NAD	COMPUTER FAC	165 EP 8 3	8	0.370	0.270	0.337
597	EUR	GDAAC BLDG	19SEP83	4	0.155	0.146	0.258
598	NAD	CHEE CHANGEHOUSE	02NOV82	7	0.676	0.568	0.703
599	EUR	WASTE BURNING FAC	16DEC82	2	0.130	0.165	0-120
600	EU R	CHANG EIIOUS E	17DEC82	9	0.496	0-401	0.481
601	EUR	TOXIC CHEM PAC	27DEC82	9	0.560	0.453	0-555
602		CHEM CHANGEHOUSE	08MAR83	8	0.565	0.535	0.629
603		ENGINE TEST CELLS	23 HA Y83	6	0.273	0.305	0.370
604	SAD	ECCS EXTENSION	23JUN83	5	0.048	0.044	0-053
605		GEN INST BLDG	30JUN83	6	0.328	0.270	0.429
606		INDOOR PIRING RANGE	02SEP83	3	0.190	0.209	0.327
607		PACK SHIP BEC FAC	12SEP83	4	0.298	0.324	0.390
608		TOXIC MUN CAG HOUSE	195 EP 8 3	5	0.394	0.397	0_481
609		CO ADMIN & SUPPLY	02SEP83	3	0.607	0.550	1-500
610		FLIGHT SIMULATOR	200CT83	14	5.011	2-984	8.000
611		WEAPONS TRAINING PC	2700183	11	2.095	1.450	2. 150
612	EUR	ADMIN BLDG MLRS	0810083	11	0-453	0.361	0.750
613		BARRACKS	0.06483	13	1.282	1_161	2-350
614	EUR	BARRACKS	0 P 4 O A 9 3	13	3_036	3.394	6-300
615		TACT EQUIP SHOP	08 NOA83	10	1.385	1.161	2-150
616	NAD	WEATHERSTRIPPING	EBNON80	10	0.335	0.119	0.450
6 17		TACT EQUIP SHOP	10 NOV83	9	2.847	2.781	3. 100
618 619	EU R Syd	PACILITIES MOD TRNG PAC-JSTARS	1000763	16	3-951 U-4/4	3_222 0.392	5.700 0.650
620			15 80 803	1 Z 1 2	1.489	1.447	1-500
621		RECREATION CTR FLIGHT SIMULATOR	17NOV83	3	1.773	1.352	3-050
622	SAD	ELEC DIST SYS	1780783	11	2.063	0.486	3-000
623		AMMO STORAGE-DIVAD	1780783	ii	1. 183	0.865	2.550
624	EU R	PIN/PERSONNEL CTR	1800183	12	1.014	0.833	1.800
625		ATC EQUIP SHOP	EBYCH BI	15	6_844	5.626	11.800
626	EU R	TACT EQUIP SHOP MOD	22NOV83	17	2-614	2.105	2.550
6 2 7	EUR	HARDSTAND	22 NOVB3	18	0.226	0.227	0-340
628	POD	UPGRADE POL STORAGE	2200783	11	0.999	0.590	2-000
629	NAD	ENERGY EFFICIENT LT	22 NOV8 J	10	0-200	0.119	0.360
630	MPD	CO ADMIN & SUPPLY	23NOV83	13	2.993	2.133	4.250
631	MPD	BN HQ & CLASSROOM	23 NOV83	13	2-449	1.722	2.800
632	EU R	BARRACKS MOD	24NOV83	17	6.849	5.842	6.600
633	EUR	ABRRACKS W/DINING	25 NOV83	16	4.245	3.801	7-100
634	SWD	CO ADMIN & SUPPLY	29NOV83	10	1_804	1.633	2.200
635	SWD	BN CLASSROOM	29 NOV8 3	10	0.474	0.426	0.530
636	SAD	DINING PACS MOD	29NOV83	6	1-271	1.471	1.800
637	SAD	STARM DIST SYS	29 NO V 8 3	16	4-686	4_313	6-500

	LOC	DESCRIP	DATE	NUM BID		LOW- BID	PRO- GAMI
540	EUB	WADS	30AUG83	13	2.852	2-299	5.000
541	ARD	ENCS	Q15E283	ь	. •	1.902	1-37?
542	EUR	FAC HOD	09SE283	10	3.962	3.557	6-000
543	NAD	EMCS	15SEP83	9	1-213	0.560	1-035
544	POD	A/C FUEL STG	23SEP82	14	0.470	0.598	0-492
545	NAD	ADDN TO MAIN GATE	180CT 82	11	0.088	0.145	0.168
546	SAD	WEAPONS TRNG FAC	03 NOV82	7	0.348	0.265	0_321
547	SWD	MOVING TGT	J0110V82	11	0.439	0-471	0-391
548	POD	STANDBY GEN	03DEC82	2	0.187	0.146	0.187
549	SWD	CONSEC SPT DET PAC	08DEC82	9	0.360	0.340	0.387
550 551	SED	VET FACILITY	16DEC82	4	0.399 0.456	0.448 0.467	0-266 0-485
552	MRD	NEO-NATAL ICU	20 DEC 8 2	•		0.262	0.465
553	EUR Eur	HANGAR EXPANSION EOUIP MAINT CTR	21DEC82	6 3	0.278 0.478	0.544	0.819
554			23DEC82		0.388	0.261	0.393
555	NAD	RANGE IMPROVEMENT TACT EQUIP SHOP	18JAN83	16 21	0.326	0.233	0.300
556	EUR	READY BUILDING	04JAN83 19JAN83	12	0.160	0.164	0.323
557	MPD	LINEAR ACCELERATION	01FE883	15	0. 382	0.334	0-495
558	SPD	TSFO CLASSROOM	01FEB83	9	0.246	0.270	0.301
559	EUR	READY BUILDING	16MAR83	12	0.117	0.131	0.271
560	EUR	READY BUILDING	16MAB83	12	0.092	0.111	0.281
561	EU R	EP MESS FACILITY	17MAR83	7	0.373	0.160	0.200
562	MRD	ADD TO ADP BLDG 30	30MARO3	15	0.461	0.473	0.543
563	SWD	ALT VET CLINIC	12APR83	9	0.303	0.280	0-357
564	NAD	SIT PREP POR EQ IN	26APR83	Ź	0.279	0.172	0.313
565	POD	TSFO FAC	29APR83	ż	0-423	0.369	0.598
566	NAD	COM SUPPORT CTR	EBYANEO	12	0.585	0.518	0.646
567	SAD	VEHICLE MECH COURSE	10MAY 83	14	0.691	0.736	0.734
568	SWD	ENT CLINIC ALT	CELVER	8	0.201	0.192	0.288
569	NAD	INITIAL OPS PAC	12MAY 83	19	0.613	0.172	0.565
570	POD	MILES WAREHOUSE	128AY93	17	0.438	J. 389	0-607
571	NAD	AD FUNCTIONAL PIRE	17dAY83	11	0.756	0.614	0.834
572	SPD	AD ASARS FAC	17 MA Y83	14	U.526	0.438	0.363
573	SWD	WATER PUMP STATION	19MAY 83	7	0 575	0.535	0.760
574	S¥D	BULK STORAGE	25 MA 183	14	0.467	0.419	0.413
575	SPD	FIRING RANGE	26MAY83	.7	0-455	0.436	0.989
576	MRD	BKS IMPROVEASNI	01JUN83	8	0.429	0.419	0-501
577	SWD	PARACHUTE RIGGING	02JUN83	13	0_401	0.379	0.496
578	NAD	SUPPLY & EQUIP ADDN	02JUN83	13	0.276	0.200	0.298
579	EUR	APPLIED INSTRUCT BD	68MUL80	6	0-117	0.150	0.214
580	BRD	CARDIAC CATHETER LB	10JUN83	2	0.368	0.387	0.425
581	NAD	LAUNDRY BULLER PLNT	15JUN83	13	0.249	0.365	0.279
582	MAD	HOT METAL FAC	21JUN83	9	0.478	0.413	0.500
583	HRD	USDA SEC	23711833	6	0.773	0.094	0.992
584	SWD	RANGE	30JUN83	9	0.623	0.475	0.796
585	SWD	WATER TREAT FAC	07JUL83	8	0.445	0.460	0.425
586	EUR	COMMUNICATIONS CTR	1230183	5	0.455	0.174	0.579
587	SAD	BFSS-1233 SPT FAC	19JUL83	17	0.326	0.250	0.480
588	RYD	MAINT TRAIN FAC	22JUL83	7	0.547	0.642	0.867

				NU		- LOW- PRO-
LO	C	DESCRIP	DATE	BI	D EST	BID GAML
402	ARD	TACT EQUIP SHOP TANK DRIVING COURSE IBAINEE BKS EM BKS BOQ GYM	A 10 E BU 2	4 8 16	2.333 2.475 17.678	2.040 2.950 1.948 2.900 15.298 20.000
494	SAD	En aks	0 2S EP83	3	4.600	4-900 5-800
495	EUR	BOQ	065EP83	6	1.490	0.701 2.300
496	EUR	GYM	06SEP83	6	1.375	0.540 2.200
497	EUB	WATER SUPPLY	07SEPU3	5	0-240	0.186 0.610
498	OHR	SANITARY LANDFILL	048EP83	12	1.711	1.656 3.000
499	MRD	WATER SUPPLY SANITARY LANDFILL RADIO THERAPY ALTER BLDG 500 TRAINING AREA	12SEP83	6		0.526 0.595
500	MRD	ALTER BLDG 500	12S EP 83	4		0-525 0-534
501	EUR	TRAINING AREA ELECTRIC SHOP				
			145 EP83		0-457	0.350 0.390
		MAINT FAC & HARDSTD			0.754	
		COMPUTER FAC	155EP83 165EP83	4	0.553	0-479 0-658 1-325 2-100
505	FOR	TACT EQUIP SHOP	165EP83		1_408 10_226	
507	OND	TACT TOUR DO	21SEP83		2.383	
508	SPD	OSHA DEFICIENCIES	21SEP83			1.515 2.100
509	MPD	TACT EQUIP SHOP DIVISION HQ TACT EQUIP SHOP OSHA DEFICIENCIES RANGE & FAC LAPRY BARRACKS	215EP83	3		1.189 1.350
510	EUR	BARRACKS	22S EP83		1_498	1.498 3.650
511	CDD	TACT FOULD CHOD	2265083	7	2-300	2.125 3.200
512	OHR	EXT STEAM DIST SEP	050CT82	12	0.869	
513	EUR	HEALTH CLINIC	1810182	10	0.035	
514	EUR	EXT STEAM DIST SEP HEALTH CLINIC HW CONVERSION AUTO HTG SYS HEATING PLANT	02DEC82	5	0-102	0.111 0.410
515	EGB	AUTO HTG SYS	15DEC82	8	1.813	1-475 2-400
516	EU B	HEATING PLANT	12JAN83	17	4-228	3.985 4.342
21/	EUK	STEAM CONVERSION	20JA NG 3	,	0_119	
518	EUR	ACRPT MAINT HANGAR	20JAN83	22	2-205	1.741 2.372
5 19	EUR	RANGE UPGRADE	25JA N83	9		0.457 1.211
520	EUR	RANGE UPGRADE REHAB DEQ AMMO IGLOOS TACT EQUIP SHOP	582 W N B 3	18	3 330	
521	EUR	ANNO IGLOOS	02FEB83	14	0.317	0.281 0.300
522	EUR	TACT EQUIP SHOP ECIP CONTROLS	24FEB83	19	2-441	
323	LUA	PUTE CONTROLS	CONKRCI	10	0.126	0.069 0.717
524	NAD	UPGRD SCTY SYS PHYSICAL DVLPMNT CT	15MARU3	2 16	3-116	2.689 4.300 15.763 17.960
525	SDD	MOD SEWAGE TR PLANT	10UVR03	13	1_941	1.749 2.100
527	EUR	ACCESS ROAD	05MA Y83	6	0.153	0.168 0.500
520	NAD	PATCUTAN CUPBL BATT	4 4 4 4 4 6 3	10	2-012	1.382 1.900
529	EUR	MAINT SHOP	17MAY83	6	0.906	
530	EUR	AUTO CONTROLS	25MAY83	4	0.061	
531	EOR	TACT EQUIP SHOP	26 MA Y83	15	4-659	
532	MRD	HYDROLOGICAL BARR	22JUN83	6	3_146	2.642 5.100
533	SAD	REGIONAL SEWER	20JUN83	17	6-942	6.505 5.503
534	EUR	DRAIN & SEWER	20JUL83	16	0.450	0.183 0.800
535	EUR	INCIMERATOR	28JUL83	6	0-468	
536	NAD	PK. SHIP REC PAC	0 9 A U G B 3	6	0.912	0.454 0.540
537	EUR	WATER PUR PLT	15AUG83	7	1.805	1.889 2.550
538	EUR	FAC NOD	19AUG83	.7	7.227	5.784 6.767
539	EUR	MAINT SHOP AUTO CONTROLS TACT EQUIP SHOP HYDROLOGICAL BARR REGIONAL SEWER DRAIN & SEWER INCIDERATOR PR. SHIP REC PAC WATER PUR PLT FAC NOD WADS	3 0Y nC 8 3	13	3.954	3.340 5.000

		2550212		NUM			
LOC		DESCRIP	DATE	RID	EST	BID	GAMI
442	SAD	SIGNAL SCHOOL	1630883	14	5.699	4.859	9-200
		POWER UPGRADE	1630 N83		0.470	0.544	0.800
		INSTALL ECONOMIZER			0.270	0.244	0.300
		HEATING SYSTEM CONV			0-417	0.432	0.440
446		BKS W/ADMIN	21JUN33	10	1.045	0-972	2-200
447	SAD	BARRACKS	23JUN83	15	11.554	10-454	15~470
448	SAD	CO ADMIN & SUPPLY	23JUN83	15	1.143	1.000	2.050
		TACT EQUIP SHOP	28JUN83		1. 189	1.248	1.550
	SWD	TACT EQUIP SHOP	0870183		1-617	1.680	1-640
		TACT EQUIO SHOP	0840193		3.502	3.588	5.500
452		UPGRD CUSTODIAL FAC			0.348	0.124	0.570
		UPGRD CUSTODIAL FAC			0.266	0-048	0.350
454		BKS & BOQ	12JUL83		0.999	u.568	1.450
455		ADMIN BLDG	12JUL83		0.995	0.238	1.100
456		HOSPITAL UPGRADE	1338193		9-314	7.947	13.600
		MAINT SHOP	21JUL83		0-208	0.485 5.761	0-593 8-400
458 459	SHD	TACT EQUIP SHOP	21JUL83		6-894 4-732	3-761	6-200
_	_	TACT EQUIP SHOP	21JUL83		4-028	3.311	7-600
	-	SEWAGE TRMT EXT	21JUL83 21JUL83		0-940	0.511	1.250
		WATER DIST SYSTEM	21JUL63		0.940	0.831	1.000
463		ROAD NET & DRAIN	21JUL83		6-419	5.858	8.300
		COAL FIRED HTG PLNT			1.045	0.815	0.601
		TACT EQUIP SHOP	26JUL83		3.189	2-809	4.100
		COMBINED RANGE	27JUL83		2.399	1.955	2.500
		DECON TRNG FAC	03AUG83		13.561	9.029	7-500
468		TACT EQUIP SHOP	05AUG83		1. 162	1.011	2,300
		CONS COM CTR	09AUG83		3.021	3-426	4.100
470	EUR	MAINT PAC	09AUG83	9	0-687	0-680	1.200
471	SAD	RANGE UPGRADE	10AUG83	4	1_520	1.636	1.950
472	SWD	CONTAIN HAZ CHEM	1140683	y	0.596	0.444	0.500
473		CO ADMIN & SUPPLY	11AUG83		0.527	0.497	0.550
		GORGAS HOSPITAL	12AUG83		2.211	2.199	2-650
		IITG PLANT	16AUG83		0.160	0.143	1-015
476		HTG PLANT	16 A UG 8 3		0.026	0-026	0.203
		ELECTRIC SUBSTA	1640383		0.060	0.056	0.232
478		SECURE PARKING	18AUG83		0.287	0.499	0.613
		SECURE PARKING	18AUG83		0.287	0-400	0.648
480	SYD	TRAINEL BKS W/DININ			7.396	7.115	9_700
481 482		COMMAND & CTRL HO MOTOR REPAIR SHOP	18AUG83	11 6	34.100 0.349	0.201	0.830
		BARRACKS	18AUG83 19AUG83	-	5.482		12.200
		PATRIOT IRP	1940683	7	0.524	0-307	0.400
		TACT EQUIP SHOP	23AUG83		3-097	2.736	3-200
		POST OFFICE	24AUG83	-	0.213	0-117	0.270
		HEALTH CLINIC	24AUG33		0.667	0.644	1.050
488		IPV RANGES	25AUG83	9	12.567	13.067	15.500
	SAD		25AUG83	7	3.984	3.509	5.700
490	SYD	DINING PAC MUD	25AUG83	8	0.799	0_687	0.980

		NIIM COV	/- LOW- PRO-
LOC DESCRIP	DATE		
	DATE	RID F21	BID GAMI
393 OHR PLIGHT SIMULATOR	15MAR83	11 2.234	1.925 2.85
394 SAD BARRACKS	15MAR83	14 9_287	6-523 11.70
395 SAD CO ADMIN & SUPPLY	15M AR83	14 1.331	
393 OHR PLIGHT SIMULATOR 394 SAD EARRACKS 395 SAD CO ADMIN & SUPPLY 396 SAD DINING FAC 397 SWD MAINT MOD 398 SPD SATELLITE CTRL FAC 399 WAD OBS PIRE TR FAC 400 NAD GYM ADDITION 401 BUR BARRACKS 402 EUR SQUAD QUAL RANGE	15HAR83	14 1.316	0.826 1.65
397 SWD HAINT HOD	16 MAR83	15 23-634	18.430 29.00
398 SPD SATELLITE CTRL FAC	EBNALSF	11 2.052	
399 NAD OBS PIRE TR FAC	18JAN83	16 0.295	
400 NAD GYM ADDITION	19JAN83	18 0.444	
401 BUR BARRACKS	19JAN83	12 2.800	2.380 5.10
402 EUR SQUAD QUAL HANGE	25JAN83	9 0.101	0.093 0.50
403 EUR PLT QUAL RANGE	25 JA N83	9 0-135	U_159 1.50
404 POD AIRCRAFT HANGAR	01FEB83	8 18.903	12-802 20-00
405 EUR HOSPITAL RENOVATE	02FEB83	12 13.486	10-110 29-00
406 SPD BARRACKS	03PEB33	13 1.770	1-978 2-20
407 NAD COMM SYS FAC	10FEB83	12 1.580	0.926 1.70
408 EUR BARRACKS	10 FEB#3	21 1_130	1-032 2-05
402 EUR SQUAD QUAL HANGE 403 EUR PLT QUAL RANGE 404 POD AIRCRAFT HANGAR 405 EUR HOSPITAL RENOVATE 406 SPD BARRACKS 407 NAD COMM SYS FAC 408 EUR BARRACKS 409 SWD CO ADMIN & SUPPLY 410 SWD BN HO & CLASSBOOM	10FEB83	10 4.005	3-684 4-30
TIO, SND BN HQ & CLASSROOM	10 FEB83	10 2.322	2-183 2-45
400 SWD CO ADMIN & SUPPLY 410 SWD BN HQ & CLASSROOM 411 BUB DEF COM SYS 412 MRD ENERGY CONS 413 BUB TACT EQUIP SHOP	16 PRB83	10 1.444	1-610 3-95
412 MRD ENERGY CONS	23FE383	3 0.488	0.305 0.85
413 BUR TACT EQUIP SHOP	23FEB83	9 1.922	1.764 3.35
414 OHR ADDN ELEC PHE BLDG	23FEB83	8 0-544	0-492 0-63
415 EUR BARRACKS	2382883	9 5-146	4-272 10-40
415 BUR BARRACKS 416 SAD BARRACKS HOD 417 SAD BARRACKS MOD 418 SWD ELECTROMAG TEST PAC 419 WPD BN AC PARK APRON	16MAR83	5 1.937	1-863 2-80
417 SAD BARRACKS MOD	17 MAR 93	3 1.134	0-989 1-35
418 SWD ELECTROMAG TEST PAC	24MAR83	15 3.393	2-395 4-95
419 MPD BH AC PARK APRON	24 MAR83		
420 MRD GENERAL INST BLDG	31MAR83	8 4.701	4-830 4-20
421 EUR FAC HOD	27APR83	8 3.462	
422 EUR AUTO CTRLS-ECIP	0488883	6 0909	0.869 1.25
423 SPD THAINING HANGES	COLVEGO	20 1-13/	
124 SPD TACT EQUIP SHOP	10MAY 83	8 0.411	0.424 0.99
425 EUR AUTO CONTROLS-ECIP	EBYAKUL	15 1.059	0.891 1.85
421 EUR FAC MOD 422 EUR AUTO CTRLS-ECIP 423 SPD TRAINING RANGES 424 SPD TACT EQUIP SHOP 425 EUR AUTO CONTROLS-ECIP 426 MRD RE LOADING AREA 427 MRD ACCESS ROAD 428 MPD COBBA PIRING RANGE 429 SWD CHILD CARE CENTER	12MAY83	7 2.850	2.533 2.80
427 dRD ACCESS RUAD	12 MA Y83	7 0.768	. 0-668 1-85
420 SED CODEN FIRING RANGE	17MAY83	11 1.024	0-965 1-25
429 SED CHILD CASE CENTER	19 MA Y83	12 2.132	
#11 NDD CONTROL TOURS	19MAY83	19 1.836	1.549 2.93
432 MED COBIRDO TO PORTER	26 MA Y8 J	6 1_381	1-334 1-67
429 SWD CHILD CAJE CENTER 430 POD TACT EQUIP SHOP 431 MPD CONTROL TOWER 432 MRD MAINT DIV COMPLEX 433 EUR DINING PAC-ECIP 434 EUR TACT EQUIP SHOP 435 EUR TACT EQUIP SHOP 436 NAD INSULATE MOZGOG AR	LUTATUS	8 8_660	6-577 11.00
434 EUR TACT FOUTE Shop	40 MA 183	3 0.383	0.351 0.44
435 EUR TACT EOUIP SHOP	O I JUNE 2	25 2.929	2-286 5-00
436 NAD INSULATE 300/400 AR	CINCIO Y	25 3.950	
4.17 Buo Bandana	14 JUN83	19 1-1/0	
	14JUN83	9 0_242	
439 BUR ANNO STGE IGLOOS	14JUN83	13 0.668	0.243 1.25 0.632 0.68
440 POD CONTROL ELEC SUBSTA	15.10 N R 3	8 0.574	0.402 0.63
441 EUR HVAC UPGRADE	16JUN83	7 0.283	0.328 0.95

				ΝL	JM GOV	- LOW- PRO-
L0	C	DESCRIP	DATE		D EST	
		NBC DECON THE CTH	020CT82		0.991	
345	EUR	BARRACKS	16NOV82			1.268 3.45
346	EUR	TRAINING FAC	16 NOV82		3.482	2.828 8.70
347	EU R	BARRACKS-DIVAD	1680782			1.605 3.95
348	EUR	STGE MAINT	16 NOV82		1. 0.4 1	0.711 1.10
349	EU B	TACT EQUIP SHOP	23NOV82			3.841 7.10
350	EUR	MAINT SPT FAC	24 NOV8 2		3_191	2-631 6.30
351	EU B	TACT EQUIP SHOP	24KOV82	15	0-652	0-577 0-92
352	EUR	BARRACKS	24 nov8 2		0.973	0.745 2.10
353	EU R	BARBACKS	2480782	21	2-368	1.872 5.80
354	ard	INSULATE BLDGS	02DEC82	6	0387	0-341 0-55
355	EU R	ATTIC INSULATION	02DEC82	9		0.739 1.85
350	25.0	VEH MAINT FAC	09DEC82		1.349	1-151 2-10
337	PUD	PLT SIM BLDG	10 DEC8 2		3.224	2.700 7.30
350	RUA	BARRACKS W/DINING ANNO STORAGE	10DEC82		0-597	0.684 1.10
337	707	#1 TRUG PAC	14DEC82		1.113	0.962 2.15
361	NAD	AVIATION THE PAC	15DEC82 15DEC82		7.831	3.795 9.40
	SWD	BU HQ W/CLASSROOM	15DEC82	9	3.639	3.024 6.40
363	SWD	CO ADMINESUPPLY	15DEC82	9	1.176 1.733	1.150 1.50 1.547 2.35
364	EUR	AUTO TEMP CTRLS	16DEC82	4	0344	0.365 0.72
365	E U R	WASTE OIL BURN FAC	16DEC82	2	0.130	0.164 0.12
366	MAD	BARRACKS W/DIBING	16DEC82		9.948	8.479 13.80
367	SWD	HANGAR W/SHOPS	16DEC82			10.154 15.50
368	SPD	TROOP MED CLINIC		14	3.384	3.333 5.80
369	eu R	UPGRADE RANGE	21DEC82	4		0.218 0.26
370	EUR	BARRACKS	21DEC82	26		1.163 4.05
371	SAD	TACT EQUIP SHOP	21DEC82	5	0-290	0-322 0-57
372	NAD	SATELLITE CTRL FAC	21DEC82		2-282	1.070 2.50
3/3	SAD	TACTICAL EQUIP SHP VEHICLE HARDSTAND	11JAN83	3		0-305 0.72
374	EUK	VEHICLE HARDSTAND	12 JANU J	1/	0.405	0.207 0.52
376	SAD	CO ADMIN & SUPPLY DINING FAC MOD		17	0-319	0.261 0.44
377	EUR	NITE SETBACK CTRL	17JAH83 17JAH83	7	0.265 0.109	0.205 0.30
378	NAD	TRAINING AREA	24 FEB83		2.875	0.108 0.16 2.343 3.20
379	NPD	HELICPOPER HANGAR		10	5.111	3-201 7-40
380	MBD	UNIT MAINT HANGAR	Olmars3		5-193	3.244 7.50
38 1	NPD	TACE EQUIP SHOP	02MARU3		2.348	1.339 2.90
382	MPD	TACT EQUIP SHOP	02 MAR8 3		0.890	0.508 1.10
383	MRD	BN HQ W/CLASSROOM	U2MARB3	12	1.256	1_039 1_45
384	MRD	CO ADMIN & SUPPLY	02MARU2	12	1.236	1-023 1-75
		GYMNASIUM	03MAR83	8		0.886 1.70
386	25.0	BOAD INPROVEMENTS		20	9-830	
30 / 30 a	SHD FILD	MAINT MOD	OJMARUJ		10-145	7-192 10-00
380	MPD	ENERGY CONSERVATION BARRACKS		9	0.604	0.497 1.15
300	NAD	RENOA HAYC ZAZ	U9MARB3		3-047	2.479 3.60
391	SAD		TUMAR83	7	5.712 3.980	3.097 9.80 2.403 2.67
39 2	EUR	PACILITY MUD	10MARS3		1.319	2-403 2-67 1-031 2-45
		-				

				NUN		- LOW-	- PRO-
	LOC	DESCRIP	DATE	BIC) EST	BID	GAMT
295	SWD	SCIT	11AUG82	6	0.477	0.409	0.483
296	EUR	MSL MAINT PAC	20AUG82	4	0.195	0.194	0.251
297	OHR	MECH VENT-SAFETY DV	24 A UG8 2	4	0.019	0.022	0.015
i 298	OH R	MECH VENT-SAFETY DV	25AUG82	6	0.192	0.178	0.161
299	OHR	ALT OIL FIRED HEAT	25AUG82	5	0-301	0.248	0.306
1300	BU R	ALT SAN SEWER SYS	26AUG82	10	0.210	0.201	0-482
30 1	OHR	HECH VENT-SAFETY DV	31AUG82	6	0.099	0.089	0-083
302	BRD	CONT ABOVE GND TKS	01SEP82	6	0.255	0.158	0-290
- 303	QHR	MECH VEHT-SAFETY DV	01SEP82	3	0.059	0.032	0.049
304	MAD	INSUL/STORM WINDOW	08SEP82	8	0.135	0.144	0.360
305	OHR	OPERATIONS CENTER	09 SEP8 2	2	0.198	0.181	0.200
306	BAD	COLLECTION METHANE	20SEP82	2	0.210	0.170	0.269
307	EUR	HARDSTAUD	105EP82	3	0.271	0-329	0-357
308	EUR	HARDSTAND	145 EP 82	6	0.166	0.143	0-321
309	OHE	AC ENG TEST PAC	14 SEP82	5	0.459	0.373	0.463
310	EU R	BORDER OBS POST	165 EP 82	4	0.095	0.113	0.121
311	EUR	BORDER OBS POST	16SEP82	4	0.088	0.105	0-113
312	EU R	BORDER OBS POST	16S EP 82	4	0.098	0.120	0.184
313	EUR	BORDER OBS POST	16SEP82	4	0.198	0.218	0.246
314	SAD	OBS FIRE TRAINER	20SEP82	5	0.232	0.300	0-469
315	RAD	ALT FOR EDPC SYS	21SEP82	3	0.447	0.302	0.379
316	EUR	TNG SPT BLDG	21SEP82	1.3	0-249	0.266	0.462
317	MAD	WTR RECYCLE & VEH	22SEP82	6	0.134	0.146	0.161
318	MAD	CONV BLDG 320	17NOV81	9	0.138	0-125	0.158
319	MRD	ALTER MED INT CARE	30NOV81	6	0.368	0.327	0.464
320	₽OD	COMV BLDG 104	22DEC81	3	0.375	0.290	0.465
321	SAD	K.D. SNIPER RANGE	23DEC81	18	0.169	0.129	0 196
322	SAD	REN COSCON PAN FAC	29 DEC 8 1	11	0.145	0.141	0-191
323	SWD	WASTE WATER THNT	12 JA N8 2	2	U.369	0.318	0-369
324	OH R	ADJ PRESH AIR QUANT	21JAN82	4	0-150	0.096	0-200
325	RYD	TEMP LACY FAC	28JA N82	12	0.443	0-372	0-462
326	SPD	FIRE STATION ADDN	17FEB82	15	0.187	0.132	0-204
327	NAD	CHURUCVILLE TEST C	18FEB82	16	0.361	0.180	0-361
328	OH B	THDE FAC	23FEB82	9	0.258	0-226	0-207
329	OHR	WATER MONITORING ST	25 MAR82	7	0.171	0.159	0.220
330	EU R	HAINT FAC	04MAY82	9	0.296	0.273	0.381
331	EUR	GEN PURPOSE WHSE	1284482	12	0.400	0.380	0-475
332	SWD	ADDN WASHER/DRYER	18H AY 82	8	0.315	0.274	0.341
333	WED	ADDN/ALT LAB	03AUG82	3	0.278	0.309	0-265
334	NAD	BEL MIL CLOTH STORE	03AUG82	9	0-149	0.097	0-200
335	ORB	ALT OIL PIRED HEAT	25AUG82	5	0.301	0-248	0.306
336	NYD	TROOP TEST HODULES	26AUG82	8	0.267	0.227	0-322
337 338	SAD	ROADWAY IMP	01SEP82	3	0.397	0.402	0.485.
339		INTERIM A/C REFUEL	03SEP82	4	0-045	0.056	0-056
340	EUR	TRAILER PARKING	07SEP82	16	0.256	0.195	0.491
341	eur Eur	INSTALL HEAT CTRL	085EP82	3	0.331	0.332	0.487
342	EU R	PARKING OF M-1 WATER SUPPLY SYS	145E282	6	0.166	0.143	0.321
343	SWD		16SEP82	3	C- 290	0.349	0.413
747	310	MOD SHIP & REC BLDG	21SEP82	4	0_424	0.340	0.467

				NUM	GOV-	LOW-	PRO-
	LOC.	DESCRIP	DATE	BID	EST	BID	GAMï
246	NAD	BOQ FIRE ALARM SYS	15APRd2	10	0.069	0.029	0.139
247	SAD	PENCING HAWK-I	15APRU2	.3	0.030	0.022	0-400
248	NAD	VEHICLE STORAGE BLD	20APB82	ź	0.317	0.322	0.350
249	MAD	AC VENT BLDG	20APR82	16	269	0.298	0.310
250	MAD	INSTALL EXT LGHTNG	22APE82	13	0.271	0.124	0.260
251	MAD	HEATED ANG CLASSRA	29APB82	15	0.292	0.149	0-422
252	MAD	PIRING RANGE KOD	06 MA Y82	6	0.109	0.089	0.134
253	eu r	READY BLDG	13NAY82	5	0.215	0.197	0-464
254	MAD	PERIMETER SCTY FNC	26 MA 782	7	0.265	0.221	0-243
255	NYD	CSH STG & MNT FAC	27MAY 82	6	0.447	0.469	0_487
256	NYD	COURTS & FIELDS	01JUN82	2	0.304	0.243	0-420
257	RYD	SAB TERM ADDN	0370885	13	0.342	0.250	0-435 0-450
258	SED	CO ADMIN & SUPP	G7JUN62	7	0.392 0.399	0.302 0.336	0.330
259	NAD	TACT EQUIP SHOPS	07JUN82	6 8	0.202	0.336	0.350
260 261	SWD	ALTER BLDG 421 AMMO SURV BLDG	10JUN82 15JUN82	15	0.202	0.222	0.283
262	SPD	TR VEH ROUGH WASHER	08DEC81	22	0.448	0.336	0.460
263	SPD	RANGE CONTROL DLDG	29 DEC 8 1	10	0.199	0.184	0-220
264	SWD	PIRE TRNG CLASSROOM	05 JA N8 2	8	0.467	0.361	0.485
265	SWD	LASER ENGAGEMENT VH	05JAN82	8	0.498	0.355	0-473
266	OHR	SLUDGE DRYING FAC	06 JA NB 2	13	0.368	0.242	0-340
267	SAD	NIGHT FIRE RANGE	06JAN82	9	0.251	0.131	0.227
268	MAD	ALT TO 4 BLDG	12JAN82	6	0.223	0_170	0-152
269	OH B	FIRE SAPETY IMPH	12JAN 82	11	0.222	0.110	0-189
270	OHE	ONNI DIR APP LTG SY	19 JA 182	13	0.092	0.087	0.103
271	SPD	EXT FNCNG UTIL PAV	28JAN82	13	0.336	0.286	0.371
272	SPD	MBD FAC UPGD	26 JA H82	16	0.383	0.314	0.400 0.290
273	SWD	BOILER CONTROL	03FEB82	13	0.193 0.127	0.092 0.124	0-290
274 275	MAD	OSHA DEFIENCIES EVAL COOLING	03FEB82	24	0-127	U.142	0.200
276	MPD	PHYSICAL SECURITY	09FEB82	3	0.249	0.199	0.368
277	EUR	EUD OFC ANNEX	10FEB82	14	0.410	0.378	0.499
278	MAD	BLDG 814 TO DENTAL	17FEB82	14	0.444	0.277	0-477
279	MED	MOD DINING PAC	16JUN82	6	0-298	0-354	0-360
280	EUR	PATRIOT FAC	16JUN82	9	0.330	0.267	0-471
281	NAD	SEWAGE PUMPING FAC	17JUN82	4	0_140	0.121	0-125
282	MED	RANGE BU INF HQ	22JUN82	12	0.113	0.104	0.133
283	MAD	IMPR SEWAGE TRAT PL	24JUN82	9	0.340	0.188	0.302
284	EUR	INSTALL LOOP LINE	22JUN82	3	0.132	0.120	0-222 0-195
285 286	OH R	HQ MEPCOM ALT V COUPS BATTLE CTR	29JUN82	4	0-451 0-369	0.309	0-193
287	EUR	HEAVY DROP RIG FAC	08JUL82	5	0. 257	0.202	0.432
288	MPD	VOLTAGE REGULATOR	15JUL82	2	0.192	0.1/3	0-130
289	SWD	ADDN HEALTH CLINIC	20JUL82	5	0.403	0.300	0.456
290	SWD	TARGET LAUNCH CAMP	27JUL82	1 a	0.407	0.380	0.483
291	DAB	ALTER BLDG 59	29JUL82	7	0.140	0.091	0.212
292	EUR	SECURITY PENCE	03AUG82	2	0.182	0.203	0.353
293	RBD	RELOC YUCON RFL RNG	06AUG82	5	0-447	0.422	0.426
294	N A D	ADD/ALT BLDG 665	06 A UG 8 2	9	0.133	0-120	0. 188

	C	OCCONTO	0.4.7.5				- PRO-
L0	L .	DESCRIP	DATE	D I	D EST	BID	GAM I
198 199 200	NAD SAD SWD	INSTRUCTIONAL BLDG GUIDED MSL MAINT HOSPITAL ADD/ALT DS/GS MAINT FAC	23FEB82 25FEB82 04MAR82	24 6 12	0.339 8.588 20.220 0.698	5.487 17.117 0.613	27.590 0.970
201	EUR	POL POLLUTION CTRL	25MARB2	15	0.775	0.649	0.997
202	SAD	ABERDEEN THE PAC SUPPORT & MAINT	13APR82	10	4-819	4.240	6-130
203	PAD	MOD IND FAC III	13APE82	10		3.286	5.138
205	FILE	IMP POL HANDITNE	20APR82	10	11-096		10_800 1_500
206	EUR	IMP POL HANDLING RANGE UPGRADE	20APR82	8		0_884	1.300
		PCL POLLUTION CTRL			0.607	0.389	0.500
208	SAD	INS, SIM WNDW WEATH	29JUNB2	16	0.516	0.326	0.676
209	EUR	POL POLLUTION CTRL	08JUN82		1.413	1-012	0.752
210	EUR	HOSPITAL PHASEIII	20JUL82	6	5_901	5-611	5.401
211	SAD	ELEC/MECH UPGD HOSP	03AUG82	9	14.850	12-387	16.500
212	EUR	TACT EQUIP SHOP	10AUG82	14	1_650	1-546	2.600
213	EUR	ECIP TEMP HEAT REC	10AUG82	4	1.211	1_140	2.270
214	SAD	UPGRD SENAGE PLANT			0.268	0.270	0_300
		ANNO IGLOOS	12AUG82		1.379	1.468	1-800
		BN HQ & CLASSROOM			0.527	0.381	1-050
217	EUK	BARRACKS	17AUG82		2.407	2-144	5.550
210	PUR	TEMP HEAT BCVRY AUTO HEATING SYSTEM	18AUG82	6	1.149	0.874	2-300
		REC CENTER	25AUG82		3.003 1.730	2.875 1.660	5.500 2.250
221	SPD	WATER SUP IMP	25AUG82		0.623	0.338	0.397
222	EUR	BKS. WASH/POL POINT	3 1 1 11 G 12	8	0.761		0-800
223	SAD	ADMIN AREA IMP	03SEP82		1.412	1.539	1-800
224	EUR	AUTO HTG SYSTEM	02SEP82	4	3-576	2.062	2.500
225	EUR	IMPR POL-MAINT PAC	07SEP82	10	1.577	1.121	1. 360
226	SAD	STORAGE TANK	15S EP 82	8	0- 47 3	2.321	0.563
227	EUR	AUTO HEATING SYSTEM	22SEP82	12	0.944	O-728	2.400
228	HRD	EHCS COMPUTER RM	30S EP 82	5	0.067	0.066	0.080
229	MRD	BARRACKS MOD	24FEB82	17	0.295	0 215	0.289
230	SPD	BARRACKS MOD TRACKED VEH MAINT CORRECT FIRE CODE	0 2M AR 8 2	20	0.297	0.277	0.349
231	NAD	OBSERVE PIRE TOWER	UZMAR82	6	0.252	0-223	0. 226
232	A N D	SHIP TO SHORE WASTE	0344887	8 8	0.268	U-225	0.286
233	SAD	ELECTRONIC MAINT SH	10MADA2	9	0.257 0.291	0.179 0.320	0.350 0.322
235	SHD	CO ADBIN & SUPPLY	1HMARH2		0-410	0.349	0.430
236	SAD	MSL ELEC & HYDR MN	24MAR82		0-413	0.357	0.477
		INSTALL EXT SUP PW	24MA882	5	0.178	0. 144	0.207
238	OH R	STEAM PLANT MOD	08APRB2	6	0.177	0.122	0.300
239	SAD	TRI-TAC TNG PAC	1JAPR82	B	0.464	0.377	0.499
240	NPD	BENOV HEALTH CLIN	13AP882	6	0_446	u_405	0.443
241	EUR	MINI GYM	14APB82	14	0-052	U-053	0. 118
		MINI GYA	14A2R82				0.118
243	EUR	MINIGYM MINIGYM	14A2RU2		0.059		0.118
244	EU R	ni bigy n	14APR82				
245	EUR	MINI GYA	15APR32	14	0.129	0_049	0_129

			NUI	M GOV-	LOW-	PRO-
LOC	DESCRIP	DATE		D EST		
148 EUR	CHILD CARE CENTER	23JUL82	10	1-277	0.941	1.407
	ADMIN BLDG	27JUL82		0.619		1.150
150 EUR		27JUL82	4	0.205	0.203	0.410
151 EUR		29JUL82	6	0.197	0.115	0-305
	AUTO HEAT PLANT	03AUG82	4	0-228	0.241	0.264
153 EUR	BARRACKS SEWER LINE	03AUG82	7	1_024	0886	0.455
154 SAD	BOILERS	03AUG82	5	22.500		19-000
155 NAD	GP MAGAZINES	04AUG82	10	0.689	0-524	0.760
156 EUR	TACT EQUIP SHOP	05AUG82	5	0.165	0 155	1.286
157 EUR	ANNO IGLOOS	05AUG82	5	0.156	0.129	
158 EU2	AMMO IGLOOS AMMO IGLOOS BARRACKS W/ DINING	05AUG82	3	0.142	0.061	0.154
159 EUR	AMMO IGLOOS	0 23 EP 8 2		0.176	0-123	0.265
160 EUR	BARRACKS W/ DINING	05AUG82	5	7.092		13.068
161 SWD	HOSPITAL PHASE II	05AUG82	13	66.285		
162 EUR	MISSLE MNT PAC	10AUG82	15	3.120	2.697	5-500
163 EUR	BARRACKS	10AUG82	16	2-092	2-003	4_800
164 NAD	BARRACKS HOD	11AUG82	7			18-600
165 EUR	HOSPITAL PHASE II MISSLE ANT PAC BARRACKS BARRACKS HOD TACT EQUIP SHOP	12AUG82	10	2.679		3-940
166 EUR	HARDSIAND TACT PAC	12AUG82	11	0-475		0.800
	AMMO SURV BLDG	13AUG82		0.736		0-965
168 EUR	BARRACKS MLRS	17AUG82		1.377	1-253	3-485
169 EUR	BARRACKS MLBS TACT EQUIP SHOP INSULATION	17AUG82	6		1.433	2.050
170 SPD	INSULATION	18AUG82	8	0.502	0.302	0-520
I/I COR	OTITITES SOS-GERS	1040002		8-070	6-351	7-400
	UTILITIES-PX CMMSRY		8	2.641	2-399	2-573
	CHILD CARE CENTER			2.141	2-055	2.050
	MIS & TAC EQUIP SHP RECEPT & PROCESS CN			4-031 3-023	3-451 2-649	5-100 3-800
				0.967	0.860	1. 175
175 EUR	RELOC BARRACKS	25AUG82 25AUG82		1.535	1,370	2.340
170 508	AMMO IGLOOS	25AUG82		0.634		0-965
170 EUR	MAINT HARDSTAND			5-058	4-013	7-100
	TRAINING FAC-ROLAND			3.020		3.700
	FAC MOD II	27AUG82		3.579		5-226
	WINDOW TRMT INSUL		6	3.345	2.343	3.600
183 SAD	ADMIN AREA IMP	02SEP82		1.412	1-537	1.850
184 SWD	ADMIN AREA IMP OSHA DEFICIENCIES HEATING PLANT-BEQ INCINERATOR PLANT	03SEP82	7	0.670	0_741	0.770
185 ZUR	HEATING PLANT-BEO	07SEPU2	6	1-054	1.173	1-266
186 MRD	INCINERATOR PLANT	085EP82		3.515	3.035	3.750
187 SAD	EXP TRUCK ACESSROAD	105 EP 82	6	0-627	0-450	0.880
	BRIGADE MAINT PAC	13SEP82	11	2.694	2-063	2.929
	AMMO IGLOUS	145 EP82	6	0-920	0.973	0.884
	VEH MAINT BLDG	070CT81	12	0.850	0.831	0-960
			2	0.348	0.234	0.375
192 SPD	LIQUID WASTE DISP	160CT81	10	2.215	1.341	1.800
193 SAD	CHEM SEC UPGRADE LIQUID WASTE DISP CONDENSATE MET LN BATTERY REPAIR-OSUA INSULATE BLDG	210CT81	12	0-864	0.711	1-450
194 S#D	BATTERY REPAIR-OSUA	210CT81	4	0.527	0-534	0.609
			12	0-998	0.986	1-550
196 NPD	PERSUING IL	02FEB82	12	1.850	1.529	3.900

				NU	M GOV	- LOW	- PRO-
L00	;	DESCRIP	DATE	BI	D EST	BID	GAMT
		ANNO STORAGE IGLOO STORAGE	188AY82 188AY82	8	0.169 0.039	0. 153 0. 028	0.245 0.055
		IGLOO STORAGE	18MA Y82	8	0-045	0-033	0.068
		IGLOO STORAGE	18MAY82	8	0.056	0.042	0-082
		IGLOO STORAGE	18MA Y82	8 8	0-117 4-533	0-039 2-427	0-049 3-550
		UTILITIES EXPANSION GEN INST BLDG	27MAY82	11	2.487	1.989	3.250
		ALTER BO FAC-PK II		10	2.747	2-467	4.000
		IGLOO STORAGE	01JUN82	3	0.041	0-007	0.008
		TACT EQUIP SHOP	0 1 0 1 0 1 8 2	6	0.732	0.531	1.809
		BARRACKS MODERN	02JUN82	16	1.691	1.347	1.568
110	EUR	BARRACKS	02JUN82	8	3. 132	2.511	5.708
111 1	EUR	IGLOO STORAGE	02JUN82	3	0.068	0.080	0.055
		BED BLDG MOD	0370885	6	25-299		26-000
		PACILITIES MODERN	03JUK82	11	5-396	3.994	6.432
		STEAM LINE INC .		19	3.019	1-368	4-750
		BN HQ AND CLASSROOM ALT HOSPITAL	08JUN82	8 7	1-178 10-687	0.843 7.828	1-300 26-532
		ECIP HEAT PLANT	08JUN82	12	0.525	0.395	0.630
		TRAINEE BARRACKS	10JUN82	15	14.225		19.850
		PAVE ROADS	15JUN82		0.401	0_249	0.635
		BARRACKS COMPLEX 2	16JUN82	7	0.633	0.453	0.633
		EMCS	17JUN82	8	0.745	0.820	0.840
122	NAD	RZFUSE FIRED INCIN	17JUN82	10	2-170	2.146	2.150
		TEMP HEAT RECOVERY	22JUN82	10	1.467	1.261	2.500
		PHYSICAL PITNESS	22JUN82	7	3.882	2-864	5-200
		CHAPEL/REL ED CTB	30JUN82	11	1.925	1.462	2.050
		BASIC LOAD SITE	30JUN82	5	1.598	1.513	2_090 1_166
		TACT EQUIP SHOP OSHA DEFICIENCIES	06JUL82	12	0.638	C_447	0-700
		MISC PLO ABATMENT	13JUL82	7	0.917	0_744	0.790
		ANNO IGLOO	13JUL82	5	0.149	0_166	0.210
		HEAVY EQUIP MNT PAC		8	5-042	4.296	5.754
132	NAD	ENCS	14JUL82	11	1_400	1.148	2.800
		HEAT RECOVERY	15JUL82	13	5.398	5.387	4-100
		PACS HOD, SEWER UGD		10	1.927	2_033	2.806
		BKS W/ DINING	16JUL82	10	2.772	1.586	6-550
		ADMIN BLDG SUPPLY OFC AND WHSE	16JUL82	10	1.417 0.839	0-434	3.150 1.300
		CHATY ACT FAC	16JUL82	10	0.320	0-088	0-590
139 1			16JUL82	8	1.898	1. 110	2-900
		COMMIY ACTS PAC	20JUL82	8	0.384	0.147	0.650
			20JUL82	8	1.888	1.061	2.500
			20JUL92	8	0.519	u_ 135	1_050
143 1	BUB	ADMIN BLDG CMMIT BLDG	20JUL82	8	0.496	U. 172	0.960
144 1	FOR	FLT SIM BLDG	20JUL82	7	4.892	3.281	8.000
		WINDOW TRAT INSUL	20JUL82		0.510	0-369	0.620
		ECIP	22JUL82	5	D-582	0_453	0.699
147 5	SWD	BARRACKS	26JUL82	7	2.800	2.640	3.142

	LOC	DESCRIP	DATE	NUM BID		LOW-	PRO- GAMI
50 51 52 53 54	EUR SPD EUR EUR SPD	RANGE UPGRD IFV UPGRADE PWR LINE MAJOR TNG AREA UPGD BARRACKS-SOTAS CO ADMIN AND SUPPLY	04 MAR 82 04 MAR 82 04 MAR 82 04 MAR 82 11 MAR 82	19 18 20	0.091 0.586 0.175 1.067 2.166	0-086 0-496 0-216 0-934 1-238	0.241 1.500 0.400 2.211 2.400
55 56	SWD SPD SAD	ADV PWS THE TEST IC EMERGENCY GENERATOR	11MAR82 16 MAR82	5 13	2.203 1.012	2.495 1.094 2.673	2.350 0.810 3.700
57 58 59	EUR S PD	INCIN W/HEAT BECVRY FAC MODERN MAINT FC BARRACKS	16MAR82 18MAR82 18MAR82	13 14	3.347 2.929 7.788	2.178 7.257	4-800 9-000
60 61 62	SPD SPD NAD	CO ADMIN AND SUPPLY BN HQ AND CLASSROOM MED ADMIN AND SPT	16MAR82 18MAR82 23MAR82	14	3.223 2.417 5.856	2.875 2.293 3.056	3-600 2-600 6-250
63 64 65	SPD SAD POD	DINING FAC BN HQ AND CLASSROOM AMMO STORAGE	24MAR82 25MAR82 31MAR82	14	2.956 0.901 1.826	3.691 0.825 2.065	3.850 1.200 1.950
66 67 68	EUR EUR POD	TANK MAINT FAC AMMO STRG-MLRS DENTAL CLINIC	23 MAR82 30 MAR82 30 MAR82	14 12	3.551 0.401 2.988	3.311 0.290 2.877	5.869 0.501 3.800
69 70	eur Mad	IGLOO STORAGE Imprve util sys	30MAR82 01APR82	7 13	0.063 2.809	0.063 1.575 0.573	0.080 3.100 0.925
71 72 73	EUR Med Eur	TACT EQUIP SHOP CORRECT OSHA DEF BARRACKS W/ DINING	01APR82 07APR82 07APR82	13	0.538 0.772 6.896	0.565 6.893	0.670 12.804
74 75 76	eur Eur Eur	IGLOO STORAGE IGLOO STORAGE IGLOO STORAGE	08APR82 08APR82 08APR82	4	0.059 0.061	0.045 0.032 0.035	0-096 0-068 0-068
77 78 79	NAD OHR NPD	BARRACKS MODERN CONTAN WASTE PROCES PHYSICAL FITNESS CN	13AP#82 14APR82 20AP#82	7	1,354 0,603 5,015	1.060 0.517 4.462	1.450 1.450 6.700
80 81 82	EUR Sad Spd	RANGE UPGRADE CONV BLDG C1 LAB CONTAN WASTE PROCES	20APH82 21APH82 22APH82	12	0.961 2.863 0.493	0.884 2.177 0.404	1.300 2.600 1.500
83 84 85	EUR EUR Nad	IGLOO STORAGE IGLOO STORAGE TACT EQUIP SHOP	23APR82 24APR82 27APR82	8 7	0.042 0.050 4.474	0.040 0.034 2.968	0.055 0.055 5.100
86 87 88	SPD NAD BUR	SECURITY IMPRIVAMENT OSHA DEFICIECCIES	28APH82 28APR82	6	0.530 0.305 0.169	0.369 0.317 0.143	1. 150 0.820 0. 245
89 90	NAD EUR	AMMO IGLOOS WINDOW TRMT INSUL TACT EQUIP SHOP	11 MAY82 18 MAY82 18 MAY82	11 10	2.671 1.942	3.069 1.81ช	3-550 4-520
91 92 93	EUR EUR	IGLOO STORAGE IGLOO STORAGE IGLOO STORAGE	18MAY 82 18MAY 82 18MAY 82	8 10	0.053 0.042 0.042	0.032 0.029 0.031	0.058 0.047 0.053
94 95 96	eur Eur Eur	IGLOO STORAGE IGLOO STORAGE IGLOO STORAGE	18MA Y82 28 YA M81 18MA Y82	8	0.058 0.094 0.051	0.043 0.071 0.039	0.082 0.123 0.082
97 98	eu r Eur	IGLOO STORAGE	18MAY82 18MAY82		0.055 0.043	0.041	0-06 d 0-055

TABLE A.1 - ORIGINAL DATA

				NUM	GOV -	LOW-	PRO-
	LOC	DESCRIP	DATE	BID	EST	BID	GAMT
1	EUR	PORKLIPT CHARGING	1740481	4	0.543	0.534	0.501
2	EUR	TACTICAL EQUIPMT SH	1700781	8	1.937	1.313	1.970
3	NAD	SPRINKLER SYS OSHA	24 NO V8 1	3	0-472	0.484	0-510
4	EUR	BARRACKS	2440481	23	1.523	1.104	2.332
5	EUR	STINGER TGT SIMUL	24110781	11	0.611	0.551	1_ 126
6	EUR	BARRACKS	2410481	23	.•	3-972	3-522
7	NAD	LANDHILL CLOSURE	25NOV81	12	1.671	0.821	1.800
8	HAD	ADV HK ENER LAUNCH	25NOV81	20	2-135	1.5.3	2.800
9	EUR	BATTALION HQ	01DEC81	16	1.261	0.890	1.688
10	EUR	BARRACKS	0 2DEC81	18	2.787	2.056	4_824
11	EUR	STINGER TGT SIMUL	04DEC81		0.551	0.454	1_ 126
12	EUR	TACTICAL EQUIP SHOP	09DEC81	13	2-266	1_712	3.940
13	EUR	HELIPADS	14DEC81	27	0.759	0.304	0.711
14	SAD	WASHRACK UPGRADE	16DEC81	16	0.584	0.435	0.760
15	SAD	AMNO SUPPLY POINT	16DEC81	30	7.753	5.356	11-60.0
16	MYD	SURVEILLANCE WKSHP	17DEC81	13	1.921	1.438	2.200
17	SAD	PIRE STATION	17DEC81	2	0 0 2 0	0.868	1-350 1-566
18	EUR	OPER BLDG	18DEC81	20	0.828	0-720	11-600
19	SPD	TACTICAL EQUIP SHOP	14JAN82	18	•	3.867 4.176	6.300
20 21	SPD	SUPPORT MAINT FAC	14JAN82	18 18	-	6.808	7.000
22	SPD	GEN SPT MAINT PAC	14 JA N8 2	7	1.557	1.111	1_200
	N P D S W D	VEH EXHAUST SYS	21JAN82	10	1.985	1.874	2.200
23 24	SWD	BN HQ AND CLASSROOM CO ADNIN AND SUPPLY	21JAN82 21JAN82	10	3. 161	2.757	3.900
25	NPD	VEH EXHAUST SYS	21JAN82	7	1. 296	0.864	1. 150
26	SWD	DIV SUP-SI FAC	26JAN82	8	0.497	0.386	0.630
27	HAD	WINDOW TRMT INSUL	27JAN82		2.095	2. 176	2.750
28	SWD	TACT EOULP SHOP	02PEB82	15	5.438	4-350	8-000
29	HAD	ENERGY IMPROVEMENT	02FEB82	8	1. 165	1. 172	1.500
30	SAD	WASTE PROCESS INCIN	03FEB82	8	0.959	0.898	0-959
31	SAD	NON-DIV MAINT FAC	03FEB82	-	0.245	0.168	1- 100
32	EJR	MAINT FAC	09FEB82	8	1.834	1.578	3.136
33	SPD	ELECT TGT MAINT PAC	09PEB82	10	0-594	0.489	0.600
34	EUR	BARRACKS MODERNIZA	09FEB82	9	0.683	0.569	1.246
35	EUR	PACILITIES MOD	15FEB82	23	2.415	2.151	4-663
36	NAD	GUID MSL MYN FAC AD	23FEB82	24	8.588	5-487	9.250
37	SWD	TACT EQUIP SHOP	23FEB82	11	0.519	0.452	0.060
38	SWD	TACT EQULP SHOP	23FEB82	7	3.820	3.215	4-250
39	MAD	OSHA DEFICIENCIES	25F£882		0.409	0-214	0.640
40	EUR	BKS W/ ADMIN	25FEB82	26	1.121	0.853	2-090
41	RYD	UPGRADE A/C	25FEB82		1_469	0.860	1-600
42	EUR	SCHAEBISCH HALL	0 2M AR 8 2		0-429	0.336	0_881
43	OHR	GIN R/ 50 MTR POOL	02MAR82		3-900	2.547	3.900
44	EUR	IGLOO STORAGE	0 2M AR 8 2		0.036	0.042	0.053
45	NYD	ENCS	03MAR82		0.535	0.259	1-200
46	SAD	BARRACKS	04MAR82		6.054	5-884	9_000
47	OHR	CIDC FIELD OPS BLDG	04 MAR8 2	15	1. 194	0.893	1-500
48	EUR	XM1 BANGE 4, 10, 20	0484882	18	1. 223	1.348	2.000
49	SAD	CO ADMIN AND SUPPLY	04 MAR8 2	8	1.340	1.413	0.950

1.00	DECCRIO	DATE			- LOW	
LOC	DESCRIP	DATE	BIU	1 [2]	810	GAMI
687 EUR	PHYS FITNESS CTR	21FEB84	10	0.156	0.145	0-410
	MAINT HANGAR ADD	22FEB34	8	0.489	0.418	1.200
689 SWD			6	8.501	5.790	9.600
	CO ADMIN & SUPPLY	23FED84	10	1.41.	1.101	1.700
	CO ADMIN & SUPPLY	2 JFEB84	10	1.725	1.354	2- 150
692 HRD		23FEB84	10	1.412	1.122	1.500
					0.865	1-400
	BRIGADE HQ	23FEB84 23FEB84	10	1.098	0.890	1.200
694 MRD 695 MRD	BN HQ & CLASSROOM	23FBB84	10	1-098	0.897	1. 20.0
696 MRD	-	2055504	10	7745	5.776	8-100
697 EUR	FIRE PROTECTION SYS	29FEB84	11	2.054	1.325	2-550
	WATER WELLS		13	5.769	3_490	3.200
699 EUR	BARRACK S-CEWI	OSHAR84	8	1.890	1.807	3-100
	MULTI-PPOSE REC CN	15MAR84	6	2.642	2.192	2-500
	MISSLE ASSY FAC	158AR84	6	0.640	0.483	0.830
	EXPLOSIVE STGE FAC	153AR84	6	0-573	0.494	0-710
	PHOTO LAB WASTE WTR		6	0.216	0.205	0.530
	TACT EQUIP SHOP	158AR84	11	1.529	1-478	2.200
	DINING FAC MOD	19MAR84	5	0.898	0.894	0.700
_	SEWAGE TRAT PLAT	21MAR84	5	0-416	0.424	0.490
	BARRACKS W/DINING	21MARU4		12.903	11.997	
	TACT EQUIP SHOP	2 2M AR84	10	1.443	1.288	1-700
		27MAR44	8	9-378	9-117	12.600
710 SWD	MAINT HANGAR/CENT	28M AR84	12	9. 987	8-645	13.200
	MAINT COMLPEX PH2 MAINT HANGAR/CEWI CSM MEDICAL RECRUI	29MAR84	13	3.243	2.918	3-650
	MG GUN TRNG RNGE	29MAR84	8	1.151	0.747	0-440
	PAC MOD SHOP	30MAR84	14	1.526	1.241	2.200
	COAL STG RUNOFF	05APH84	11	0.851	0.516	0.550
	ELEC DIST SYS	09APR84	6	0.898	0.880	0-760
716 MRD		O IMAYB4	8	6.583	4~590	7.200
	PHYS PITNESS CTR	JIMAY84	11	2.056	1.747	3.400
	MUTI-PROSE TRNG RG	02MAYB4	7	15 184	12-173	31-000
	BARRACKS	03MAY84	8	6.969	7. 162	12.000
720 BBD	TACT EQUIP SHOP	09MAY84	7	4-691	4-504	5.000
721 OHR	UPGRADE WATER SUPP	10MAY84	14	2.223	1-913	2-850
722 SWD	MULTI-PPOSE TRNG RG	24MAY84	7	2.778	2.518	2.800
723 SWD	MULTI-PPOSE TRNG BG	24 MA Y84	7	3.427	3-616	5-200
724 SPD	OUTDOOR COURTS & FD	05JUN84	3	1.227	0.815	1_000
725 SAD	WPNS MAINT TRNG FAC	12JUN84	10	5.331	3-960	5.700
726 SAD	CHEM AGENT DISP FAC	14JUN84	6	7-856	5.938	10.200
727 SWD	DINING FAC MOD	19JUN84	7	4-105	3.500	4.350
728 SAD	ATC EQUIP SHOP	21JUN84	6	4.527	3.549	6.300
729 OHR	TANK INST FAC-M1	21301184	12	3_516	2.060	4.200
730 OUR	ENERGY MONITOR CTRL	25JUN84	10	2.218	1.161	3-600
	EDUCATION CTR	27MARd4	11	3-914	3.403	5-200
732 SWD	TRAINEE BARRACKS	05APR84		21.919	17.891	
733 MRD	ELEC SUBSTATION	18APR84	9	1.066	0.660	1-400
734 SPD	BBIGADE HQ	25APR84	1.1	0-938	0-786	1.500
735 SWD	VEHICLE/TEAM CBT BG	24 MA Y84	7	2.524	2.663	3.350

						- LOW-	
	LOC	DESCRIP	DATE	BID	EST	BID	GAMT
736 737	OIIB	PHYS FITNESS CTR RENOV BRIDGE	484UL20 484UL41	5 6	1.545 3.000	1.607	1-500 4-500
738 739	NAD	ALTER BLDG 61	225EP83	12	0.804	0.469	0.532
740	EU R NPD	TEST EQUIP PWR SPLY	22SEP83	5	0.145	0.120	0-219
741	NED	RANGE SUPPORT BLDG MACHINEGUN HANGE	26SEP83	9	0.420	0.397	0.473
742	SPD	AVIATION LAB FAC	265 EP 83 285 EP 83	2 2	0.890 0.551	0.872	0-842
743	NPD	SOCOM BARRACKS/AD	060CT83	5	0.445	0-425	0.460
744	NPD	UPGRD HOSPITAL	250CT83		0.475	0.528	0-495 0-510
745	EUR	UPGRD ELEC DIST SYS	0880883		0.235	0.328	0-477
746	SWD	ELEC MAINT SHOP ADD	15 NOV83		0.209	0_158	0.229
747	EUR	TRNG BLDGS	15NOV 83		0.436	0.383	0-622
748	SWD	MAINT FAC MG RANGE	16 NOV83		0.848	0.778	0.346
749	SWD	ADAT ELEC EQUIP BLD	1780483		0.809	0.556	0.739
750	EUR	READY BLDG	17 NOV83	_	0.386	0.290	0.577
751	EUR	SIGNAL INTELL	07DEC83		0.297	0.243	0.319
752	EUR	EXT/INT LIGHTING	15DEC83		0.195	0.143	0.229
753	ARD	COLD STRG WISE	28 DEC 83		0.429	0.393	0.549
754	SWD	SENSITIVE INFO FAC	04 JA N84	_	0.468	0.388	0.544
755	SAD	AUTONATED THE CMD	05JAN84		0-241	0.275	0.250
756	SAD	UPGRD ARR/DEP APLD	17 JA N84		0.732	0.812	0.806
757	EU R	COAL HTG PLT	24JAN84		0.860	0.889	0.996
758	OHR	REHAB APPLIED INST	25JA N84	22	0.884	0.555	0.957
759	EUR	HTR MALAT SHOP	08FEB84	8	0.818	0.691	0.915
760	HAD	EXP MOBIL SPT PAC	14FEB84	8	0.479	0.505	0.547
761	NAD	ACRET OF CALIB LAB	16FEB84	14	0.697	0.599	0-587
762	EUR	MCU HDST SUPPLY	28FEB84	В	0.340	0.334	0-422
763	BRD.	TRACKED VEH AASHRAC	12MAR84	6	0.520	0.460	0.637
764	SAD	RELUCATE USABN	15MAR84		0.908	0.954	0.968
765	SPD	ACADENIC BLDG	27MAR84		0-762	0.658	0-970
766	EUR	MAINT HGR ADDITION	05 A PH84		0.390	0.378	0.702
767	NAD	PIRE PROTCTION SYS	25APR84		0.231	0.105	0-470
768	RYD	PIRE STATION	25 A PR84		0.527	0.523	0.643
769	MAD	THDE CALIBYRPR PAC	26APR84		0.383	0.337	0.342
770	EUR	SECURITY FENCE	09 MA Y84		0.186	0.181	0.446
771	SWD	SECURITY PARK/AREA	22MAY84		0298	0.271	0-400
772 773	SMD	TOXIC CHEM MAINT PA	J1MAY84		0-474	0.381	0.508
774		CALIB/REPAIR FAC	05JUN84		0_376	0.316	0-269
775	SWD	ITC EXPANSION FAC DASS TENG FAC	13JUN84		753	0.610	0.738
776	EUR	PATRIOT 1RP	26JUN 84 22 NOV 83		0-378 0-205	0.343	0-294
777	SWD	BINARY MUNITIONS	01DEC83		8.008	0.142	0.288
778	SWD	CONTAIN HAZ WASTE	01DEC83		2.285	4.666 1.330	7.845 0.850
779	EUR	EDUCATION FAC	07FEB84		0.324	0.307	0.650
780	MRD	CORREC FAC MESS	22FEB84		1 289	4-011	5-400
781	EUR	SECURE PARKING	17MAR84		1.678	1.393	4_039
782	NAD	INSULATION ETHRSEP	24 NOV8 J		153	0.146	0. 250
783	SAD	MPNS MAINT TRNG FAC	28DEC83		952	0.966	1.100
784	NAD	WATER WELLS	02FEB84		3.485	3.485	3.900

				NUM	GOV	- LOW-	PRO-
	LOC	DESCRIP	DATE	BID	EST	BID	GAMI
785 786	OHR	BM HQ & CLASSROOM	09 FEB84	0	1.215	1.215 0.959	1.300
785 787	SAD	INTELLIGENCE TRNG PHYSCIAL FITNESS CN	167EB84 21FEB84		1.578	1.578	1-200 1-800
788	OHR	DINING PAC MOD	23FEB84		2-127	2.119	2-050
789	SAD	CO ADMIN & SUPPLY	24 PEB84		0.355	0.345	0.430.
790	SWD	REPLACE EXT LIGHT	13MAR84		0-823	0.711	1-150
791	SPD	UNACC OFFICER OTRS	14MAR84		5-900	5.800	5.400
792	NPD	TEMP CONTROLS	14MAR84		1.492	1.473	1-450
793	SAD	HARDSTAND	19APR84		0.263	0.293	0.370
794	OHB	ENERGY EFFICIENT LT	20APR84		0.237	0.229	0-270
795	SAD	CIDC FIELD OPER BLD	26APR84		2-060	2.122	2.600
796	SAD	IRETS RANGES	30APR84	Ö	2.550	2-441	3.500
797	SPD	FIRE STATION	10MA Y84		0.902	0.831	0.850
798	BRD	BULK FUEL STG FAC	29MAY84		2.937	2.925	3-000
799	SWD	PHYSICAL PLINESS CN	31MAY84		0.306	0.305	0_310
800	SWD	PIELD LIGHTING ECIP	25JUN84		0.644	0.671	0.700
801	PQD	COVERED STORAGE	2002083		0.434	0.341	0.630
802	POD	CO ADMLH SUPPLY	20DEC83		0.374	0.339	0.450
803	POD	COMMO/ELECT MAINT	20DEC83		0.170	0-152	0.200
804	PQD	A/C LIBRARY	26JAN84		0.330	0.225	0-620
805	POD	PHYSICAL FITNESS CN	11FEB84	0	0.322	0.269	0.360
806	POD	TACT EQUIP SHOP	16FEB84	O	0-554	0.480	0.610
807	POD	CHAPEL/CKTY CTE	25FEB84	0	0.715	0_614	1_200
808	POD	SECURITY LIGHTING	27FEB84	D	0.313	0.295	0-400
809	POD	CO ADMIN & SUPPLY	27FEB84	a	0.423	0-363	0.470
810	POD	GEN PURP AUDIT	28FEB84		0-459	0.435	0.690
811	PUD	PHYSICAL FITNESS CN	14 MAR84		1-212	1.205	1.550
812	POD	TACT EQUIP SHOP	14MAR34		4.043	3 - 407	4.750
813	POD	TECH SUPPLY FAC	19 MA 884		1.047	0.888	1-650
814	POD	TACT EQUIP SHOP	211141101		0-002	v.333	1-000
815	POD	PHYSICAL FITNESS CN	25APR84		1-517	1_410	1-950
816	POD	GEN PURP AUDIT	25APR84		0.312	0.289	0.500
817	POD	WAREHOUSE	05 JU N84		0.635	0-558	0.750
818	POD	TACT EQUIP SHOP	24JUN84		0.703	0.562	0-840
819	POD	DIAG EQUIP FAC	31JA N83	-	0.393	0.334	0.449
820	POD	TEST DIAGN EQUIP	02FEB84		0-307	0.271	0.336
821	POD	TEST MEASUREMENT PA	15FEB84		0.374	0.333	0-417
822	QOQ	UPGR HOSP POWER	15FEB84		0.742	0.671	0.846
823	POD	TROOP AID STATION	22FEB84		0-626	0.495	0.863
824	POD	TROOP AID STATION	22FEB84		0.726	0.539	0.905
825	POD	APKN RELAY TRANS	16 MA Y 84		0.361	0.357	0.452
826	EUR	PAC MODERNIZATION	1434884		0-250	0.210	0.315
827	NAD	INTER-AKER COLL MOD	1830 184	O	0-825	0.849	0.769

APPENDIX B

SINUSOIDAL FUNCTION

The sinusoidal function takes the general form:

Figure B.1: General Sinusoidal Function

Where:

A = The shift above or below the X-axis.

B = The amplitude of the sinusoidal wave. The maximum variation of the wave function, above or below the mean value.

2*17/C = Cycle length of wave. In our case cycle length equals 1 year, so 2*17/C=1 year, therefore, C=2*17.

D/C = Phase shift of the wave. In our case in time units of years.

A normal sine function has values for the variables:

A = 0;

B = 1;

C = 1; and

D = 0.

reduces the general sinusoidal function Y=SINX, with an amplitude of 1, and a cycle length of 2*11. This function is shown on Figure B-2. The addition of a phase shift οf D = 11/2changes the equation Y=SIN(X+TT/2). This causes the function to shift to the left of the origin by 17/2 units, as shown on Figure B-3. Similarly, the subtraction of D=117/2 will cause the function to shift to the right by TT/2 units, as shown on Figure B-4. Changes in the C parameter will cause the period of the function to increase or decrease. C=2 will half the cycle length. 2*11/C=cycle length with C=2 yields cycle length=;TT. This is shown on Figure B-5. Setting C=1/2 will double the cycle length, $2*17/.5=4\pi$ for a cycle length. This is shown on Figure B-6. Changes in the B parameter will cause the amplitude of the function to increase or decrease. Setting B=2, will cause the function to double it's amplitude. This is shown on Figure B-7. Setting B=1/2, will cause the function to half the amplitude of the function. This is shown on Figure B-8.

By varying the three parameters of the sinusoidal function, it is possible to fit the sinusoidal function to the data for seasonal model. In the analysis performed in this thesis, the cycle length was set to one year initially, as previous research indicated that an annual cycle was appropriate to the data. PROC NLIN (Non-Linear model fitting) was used to find estimates for amplitude, B, and phase shift, D/C.

FIGURE B.2: Y=SIN(X)

FIGURE B.3: Y=SIN(X+D)

FIGURE B.4: Y=SIN(X-D)

FIGURE B.5: Y=SIN(2*X)
- 79 -

FIGURE B.6: Y=SIN(.5*X)

FIGURE B.7: Y=2*SIN(X)

FIGURE B.8: Y=.5*SIN(X)
- 81 -

APPENDIX C

PROGRESSIVE MODEL BUILDING

The method of progressive model building was used in this study. This method involves building a model, obtaining residual error terms from that model, building a model to explain these residuals, obtaining a next set of error terms, and so on until no further models are appropriate in explanation of error. Once a final model is decided upon, all terms are put into one final model, and new values for the parameters are obtained, as well as a final set of residual error terms. This procedure is shown below in equations C.1 to C.3.

$$DELTA = A+(B*X)+RESID1 (linear model)$$
 (C.1)

$$RESID1 = C+(D*SIN(TIME))+RESID2 (seasonal model)$$
 (C.2)

RESID2 = E+(F*(X**3))+RESID3 (other appropriate model)(C.3)

The final Model with Revised Parameter Estimates is given in equation C.4.

$$DELTA = A1 + (B1 * X) + (D1 * SIN(TIME)) + (F1 * (X * * 3)) + RESID31$$
 (C.4)

APPENDIX D

CUMULATIVE DENSITY FUNCTION

This is a relatively simple method to construct a cumulative distribution for data.

- Calculate your response variable, in this case
 DELTA or DELTAL. Sort the variable from
 lowest value to highest value.
- 2. Number each observation, I=1, 2, 3....N.
- 3. Create the variable PROB = (I .5)/N.
- 4. Plot PROB on the Y-Axis and DELTA on the X-Axis.

Figure D.1 was produced by this method. The cumulative distribution is then overlaid the R/S distribution, as shown in Figure D.2. This method is described by Larew in his text (3) and further studied by Ricer (6).

FIGURE D.1: Rank Ordered DELTA vs PROB

FIGURE D.2: Fitted Curve Overlay on Rank Ordered DELTA

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

APPENDIX E

CDF OF DIVISIONAL MODELS FOR DELTA AND DELTA1

FIGURE E.1: DELTA Before and After Modeling--EUR

FIGURE E.2: DELTA Before and After Modeling--MRD

FIGURE E.3: DELTA Before and After Modeling--NAD

FIGURE E.4: DELTA Before and After Modeling--NPD

FIGURE E.5: DELTA Before and After Modeling--OHR

FIGURE E.6: DELTA Before and After Modeling--POD

FIGURE E.7: DELTA Before and After Modeling--SAD

FIGURE E.8: DELTA Before and After Modeling--SPD

FIGURE E.9: DELTA Before and After Modeling--SWD

FIGURE E.10: DELTA1 Before and After Modeling--EUR

FIGURE E.11: DELTA1 Before and After Modeling--MRD

FIGURE E.12: DELTA1 Before and After Modeling--NAD

FIGURE E.13: DELTA1 Before and After Modeling--NPD

FIGURE E.14: DELTA1 Before and After Modeling--OHR
- 100 -

FIGURE E.15: DELTA1 Before and After Modeling--POD - 101 -

FIGURE E.16: DELTA1 Before and After Modeling--SAD - 102 -

FIGURE E.17: DELTA1 Before and After Modeling--SPD - 103 -

FIGURE E.18: DELTA1 Before and After Modeling--SWD - 104 -

APPENDIX F CDF OF POOLED RESIDUALS AND OVERALL MODEL

FIGURE F.1: Pooled Residuals and Overall Model--DELTA
- 106 -

FIGURE F.2: Pooled Residuals and Overall Model--DELTA1
- 107 -

END

FILMED

9-85

DTIC