

Scalable Human-Guided Data Integration

Student:

Jaouhara Chanchaf

Advisor:

Karima Echihabi, UM6P

Pre-doctoral program 2022-2023

24 November 2022

Summary

- 1 Introduction
- 2 Problem Statement
- 3 Literature Review
- 4 Progress
- 5 Future work

Introduction

Scalable Human-Guided Data Integration

- Data Integration
 Combine data from disparate sources.
- Related Dataset Discovery Find relevant related dataset.

Dataset Discovery Challenges

1 Data Modality:

Data is available in different formats, structured (e.g. datasets found in relational databases) semi-structured (e.g. XML, CSV and JSON files) and unstructured (e.g. social media data such as text documents, images, audio files etc.)

2 Data Volume:

Data is available in massive collection of dataset that could reach Hundreds of Terra-bytes.

3 Data Locality:

Data is available across different separate repositories (e.g. open data portals, data marketplaces and data lakes)

Problem Statement: Related Dataset Search

Given a data repository \mathcal{D} and a query dataset D_Q characterized with a domain Q. Find all datasets in \mathcal{D} that contains at least one domain S similar to Q.

Example:

- Dataset : Relational Table
- Domain : Column
- Relatedness measure : Joinability

Problem Statement : Joinable Tables Search

Given a data repository $\mathcal D$ and a query column Q in a query table T_Q . find all tables in $\mathcal D$ that can join with T_Q on Q.

Problem Statement

Example of Joinable Tables

Ouery column Feedstock Capacity (MW) Company Plant Location Wheelabrator Technologies Inc Wheelahrator Anderson - CA Logging Shasta Energy Mill and Co. Inc. Residue/Ag Residue Greenleaf Power LLC Desert View Mecca - CA Ag Residue/Urban Wood Waste Greenleaf Power LLC Honey Lake Wendel - CA Mill and 30 Logging Residue/Forest Thinning/Urban Woodwaste Covanta Covanta Delano - CA Orchard and 58 Delano Vinevard Prunings/Nut Shells/Stone Fruit Pits

Table 1: U.S. Biomass Power Plants

Figure – Joinable Tables Example from WDC 2015 English Corpus

└Problem Statement

Example of Joinable Tables

Query column

Plant

L	Plant
Ī	Whe elabrator
	Shasta Energy
	Co. Inc.
	Desert View
	Honey Lake
Γ	Covanta
	Delano
Γ	

Candidate column

		1					
Plant ID	Plant Name	Unit	Status	Start Date	Retire Date	Prime mover ID	Prime Mover Description
E0027	Desert View Power (Mecca Plant)	GEN1	OP	1991/11/1	-	ST	Steam Tur- bine
E0041	HL Power Company (Honey Lake)	GEN 1	OP	1989/7/26	-	ST	Steam Tur- bine
E0029	Covanta Delano, Inc	Delano 1-2	OP	1990/6/12	-	ST	Steam Tur- bine
E0086		Units 1-3	OP	1987/1/1	-	ST	Steam Tur- bine

Table 2: Annual Generation - Plant Unit

Figure – Joinable Tables Example from WDC 2015 English Corpus

└Problem Statement

Example of Joinable Tables

Query column

Plant	
Wheelabrator Shasta Energy Co. Inc.	
Desert View	
Honey Lake	
Covanta Delano	

Candidate column			New information					_
Plant ID	Plant Name	Unit	Status	Start Date	Retire Date	Prime mover ID	Prime Mover Description	Ī
E0027	Desert View Power (Mecca Plant)	GEN1	OP	1991/11/1	-	ST	Steam Tur- bine	ŀ
E0041	HL Power Company (Honey Lake)	GEN 1	OP	1989/7/26	-	ST	Steam Tur- bine	Ī
E0029	Covanta Delano, Inc	Delano 1-2	OP	1990/6/12	-	ST	Steam Tur- bine	I
E0086	Wheelabrator Shasta	Units 13	OP	1987/1/1	-	ST	Steam Tur- bine	
		14						ſ

Table 2: Annual Generation - Plant Unit

 $Figure-Joinable\ Tables\ Example\ from\ WDC\ 2015\ English\ Corpus$

Literature Review

Progress

- \hookrightarrow Review the literature and identify point of similarity and dissimilarity between proposed frameworks.
- \hookrightarrow Identify the key factors that influence the effectiveness and efficiency of a dataset discovery framework.
- \hookrightarrow Implement a dataset discovery framework using DSTree (Y. Wang et al., 2013) an existing data structure designed for efficient storage and retrieval of data series.

Kashif: Incremental Joinable Table Search

Incremental Joinable Table Search using Parallel kNN Search

- Data Type: Text data in tabular datasets.
- Query Type: Join
- Data Representation : FastText Word Embeddings
- Data Representation: DSTree (Y. Wang et al., 2013)

Kashif: Incremental Joinable Table Search

Choosing k

- \blacksquare A larger k values yield a higher recall.
- \blacksquare The larger is k the longer it takes to answer the query.
- lacksquare The optimal k value is data dependent.

Figure – Kashif Mean query time and avg. recall [25M vectors, 10 queries, query size = 50 - 100]

Kashif: Incremental Joinable Table Search

Choosing k

- \blacksquare A larger k values yield a higher recall.
- lacktriangle The larger is k the longer it takes to answer the query.
- \blacksquare The optimal k value is data dependent.

 \rightarrow Solution : Set a very high value for k and return results incrementally.

Figure – Kashif Mean query time and avg. recall [25M vectors, 10 queries, query size = 50 - 100]

Kashif: Performance

Figure – Kashif Mean Query time [25M vectors, 10 queries, query size = 50 - 100]

Thesis Goals and Future Work

- $\circ~$ Provide a systematic literature review of all proposed data discovery frameworks.
- Compare Kashif performance against other frameworks in the literature.
- Extend our work to support search over other data modalities (e.g. Images, Audio files etc.).

Future work

Thank you for your attention

References

- [1] E. Zhu, D. Deng, F. Nargesian, and R. J. Miller, "Josie: Overlap set similarity search for finding joinable tables in data lakes," *Proceedings of the 2019 International Conference on Management of Data*, p. 847–864, 2019.
- [2] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller, "Lsh ensemble: Internet-scale domain search," VLDB Endowment, vol. 9, no. 12, p. 1185–1196, 2016.
- [3] Y. Zhang and Z. G. Ives, "Finding related tables in data lakes for interactive data science," *Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data*, pp. 1951–1966, 2020.
- [4] Y. Dong, K. Takeoka, C. Xiao, and M. Oyamada, "Efficient joinable table discovery in data lakes: A high-dimensional similarity-based approach," 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 456–467, 2021.
- [5] A. Santos, A. Bessa, C. Musco, and J. Freire, "A sketch-based index for correlated dataset search," 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 2928–2941, 2022.