# Trustly Case Study

Dealing with unbalanced classification

### Outline

### **Exploratory Data Analisis**

First we briefly present the description of the data:

- Summary
- Data Types
- Missing Values

### Methods

Here we describe what technique we used to handle missing values, cross validation, class unbalance, and key algorithm performance metrics

### Results

Finally we present and discuss the results for 3 simple models

### Summary

Geolocation variable -> convert to lat-long



**Binary Target** 

Temporal variable

Missing Data

### Summary

|       | SAFRA         | V1           | V2           | V3           | V4           | V5           | V6           | V7            | V8           | V9           | V10          | CEP          | TARGET       |
|-------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|
| count | 11169.000000  | 10437.000000 | 10942.000000 | 11169.000000 | 11169.000000 | 10263.000000 | 11169.000000 | 11008.000000  | 10821.000000 | 11057.000000 | 11169.000000 | 1.116900e+04 | 11169.000000 |
| mean  | 201906.522339 | 0.106448     | 19.750658    | 531.046901   | 1396.048438  | 0.186982     | 0.177903     | 4345.434375   | 0.397468     | 0.008592     | 0.030531     | 2.006559e+07 | 0.010744     |
| std   | 3.447787      | 0.308425     | 25.442371    | 906.626021   | 1736.590512  | 0.640979     | 0.382448     | 11527.310213  | 0.489397     | 0.092297     | 0.172051     | 1.019638e+07 | 0.103100     |
| min   | 201901.000000 | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000      | 0.000000     | 0.000000     | 0.000000     | 7.050301e+06 | 0.000000     |
| 25%   | 201904.000000 | 0.000000     | 2.800000     | 37.520000    | 30.000000    | 0.000000     | 0.000000     | 77.865000     | 0.000000     | 0.000000     | 0.000000     | 8.412006e+06 | 0.000000     |
| 50%   | 201907.000000 | 0.000000     | 10.000000    | 135.000000   | 1321.000000  | 0.000000     | 0.000000     | 415.185000    | 0.000000     | 0.000000     | 0.000000     | 2.132109e+07 | 0.000000     |
| 75%   | 201910.000000 | 0.000000     | 25.300000    | 520.000000   | 1988.000000  | 0.000000     | 0.000000     | 2804.085000   | 1.000000     | 0.000000     | 0.000000     | 2.918217e+07 | 0.000000     |
| max   | 201912.000000 | 1.000000     | 100.000000   | 8540.000000  | 15616.000000 | 11.000000    | 1.000000     | 143268.550000 | 1.000000     | 1.000000     | 1.000000     | 3.808006e+07 | 1.000000     |

1 year sample

df.TARGET.value counts()

High class unbalance 1% not zero

0 11049 1 120

Name: TARGET, dtype: int64

### Summary

Missing data Fraction

df.isna().mean() SAFRA 0.000000 V1 0.065539 V2 0.020324 V3 0.000000 V4 0.000000 V5 0.081117 V6 0.000000 V7 0.014415 **V8** 0.031158 V9 0.010028 V10 0.000000 V11 0.000000 V12 0.000000 CEP 0.000000 TARGET 0.000000

6 variables with missing data

### Imputing strategy:

- Similarity imputing
- By Most frequent value

**Add Geolocation** 

Plot Data Distribution

#### Latitude



We can observe that the 11k data points are concentrated to only 100 locations (CEPS).

TARGET =1 are the red crosses. Few locations where theses stand out.

longitude

**Add Geolocation** 

Plot Data Distribution



There are 5 main centers which the data is distributed and we can see qualitative differences for the Target Variable

### Methods

#### **Data Treatment**

We use **smote** to generate new samples based on the minority class group to balance class from 1:100 to 1:1.

We <u>imput</u> the using the most frequent strategy

Since all selected columns are numeric we <u>scale</u> and center the data.

### Cross Validation

We use 80% of the data to train the model and let 20% for validation.

We perform a 5 fold cross validation in the remaining 80%.

The validation data preserves the original class ratio 1:100

#### Metrics & Models

#### **Metrics**

- Precision
- Recall
- AVG Precision

#### Models

- LDA
- QDA
- XGBOOST

# Results

Metrics

QDA seems to have the best performance without overfitting the data. We should conduct a grid search for XBoostedTrees to avoid the overfitting. This overfitting comes from the SMOTE process and the higher complexity of XGB model.

|   | name | avg_precision | avg_precision_std | avg_precision_val | precision_validation | recall_validation |
|---|------|---------------|-------------------|-------------------|----------------------|-------------------|
| 0 | LDA  | 0.797409      | 0.006623          | 0.038239          | 0.019481             | 0.500000          |
| 1 | QDA  | 0.816682      | 0.006435          | 0.041235          | 0.041667             | 0.500000          |
| 2 | xgb  | 0.910095      | 0.004440          | 0.014324          | 0.027933             | 0.208333          |

# Thank you

Repository: git@github.com:marceloosg/testcase.git