2019年度 表 定期末試験問題・解答

試験実施日 2019 年 7月 26 日 5 時限

出題者記入欄

			地名的八喇		
試 験 科 目 名 微分方程式		出題者名佐藤弘康			
試 験 時 間 <u>60</u> 分	平常授業	美日<u>金</u>曜日<u>5</u>時限			
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでくた	ごさい		
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	・ コピーも可 ₎ ・ 電卓 ・ †)	辞書		
本紙以外に必要とする用紙 解答用紙 <u>0</u> 枚 計算用紙 <u>0</u> 枚					
通信欄 p.4 に逆演算子の公式と, オイラーの公式を記載した. 必要なら参照してよい.					

受験者記入欄

学 科	学 年		学	籍	番	号		氏	名	
		1								

採点者記入欄

	3/10/11/ [2] [2] 4 [3]
採点欄	評価

問題 次の (ア)~(エ) の 2 階定数係数線形微分方程式について、1~4 の間に答えなさい.

- ($\mathbf{7}$) $y'' 4y' + 8y = e^{-2x}$
- (1) $y'' 2y' 3y = e^{3x}$
- (ウ) $y'' + 3y' + 2y = 2x^2 + x$
- (**I**) $y'' + 2y' + y = \sin 2x$
- **1** 定数係数線形微分方程式 f(D)y = F(x) に対し、定数係数線形**同次**微分方程式 f(D)y = 0 を、元の微分方程式の**同次形**とよぶことにする.

(P)~(エ) の中から 3 つ選び、その同次形の一般解を求めなさい。

(選択記号)

(選択記号)

(選択記号)

2 (ア)~(エ) の中から3つ選び,その特殊解を逆演算子法, または未定係数法を用いてそれぞれ1つ求めなさい.

(選択記号)

(選択記号)

(選択記号)

4 1 階微分方程式においては、初期条件 (x,y)=(a,b) が与えられると、それを満たす特殊解が定まった。 同様に、2 階微分方程式においては、 $\lceil x=a \text{ のとき } y=b_0$ 、および $y'=b_1$ 」が与えられると、特殊解が定まる.

(ア)~(エ)の中から1つ選び,初期条件

x=0 のとき, y=1 かつ y'=1

を満たす特殊解を求めなさい (ただし、 $\boxed{3}$ で選択したものを除く).

(選択記号)

3	(ア)~(エ) の中から 2 つ選び,	その一般解を求めなさい
	(選択記号)	

(選択記号)

参考

α を定数とする. 関数 F(x) に対し,

$$\frac{1}{D-\alpha}F(x) = e^{\alpha x} \int e^{-\alpha x} F(x) dx$$

実数 θ に対し,

$$e^{i\theta} = \cos\theta + i\sin\theta$$