In this course we are interested in decision problems that have binary output where the input is a string.

** Is the given word is a palindranel ** Is the given word is a palindranel ** Is the given word even?

Notations

* a, b, c, d, ... used for symbols/letters * u,v, w, x,y,z for strings * d, P, 89 ... for patterns * A, B, C, D, ... for sets Alphabet, Z: a finite set of symbls string: a finite sequence of symbols Σ = {0013 , Σ = { a,b,c,d} ≥ = 9 09/92, 98 x=abcab Ntiw null string Tength o length of a string: [x]

length of a string: [x] [abal=3 12 =0 * concatanation of two strings: x=abc, y=ab xy = abcab |xy| = |x| + |y|x power of string: $x^0 \triangleq \varepsilon$ x' = X $X = ab \rightarrow \chi^2 = abab$ * #a(x): the total number of a in x #b(abccbbbb)=5 * prefix: we say x is a prefix of y if there exist string z such that y= XZ. x = abbca y = abb cada a x is a prefix of y. * & is a prefix of any string.

* & is a prefix of any string.

* any string is a prefix of itee.

* proper prefix: a prefix that is

not the string itself:

* ab is a prefix of ab, but

not a proper prefix of ab.

Sets of strings

* E*: the set of all strings that can be generated from 5.

* $\Sigma = \{a, b\}$ abbab $\in \Sigma^*$, $\Sigma \in \Sigma^*$, $\Sigma \in \Sigma^*$, and Σ^* ,

* p: empty set: p={3

* A={ab, a, bba3 C E*

 $X A = \{ x : Z^*, \#a(x) = 1 \}$ Where $Z = \{a,b\}$.

A={a, ab, ba, abb, bab, bba,}

A is an intinite set, but every string in it is has finite length (by definition)

* Usual operations on sets:

AUB, ANB,

AUB, MID,

$$A = Z^* \setminus A = \{x \in Z^*, x \notin A\}$$

* Concatevation of sets:

 $A = \{x \in X^*, x \in A, y \in B\}$
 $A = \{a,aa,b\}$, $B = \{a,b\}$
 $AB = \{a,aa,b\}$, $B = \{a,b\}$
 $AB = \{a,aa\}$, $B = \{a,a\}$
 $AB = \{a,aa\}$, $B = \{a,a\}$
 $AB = \{a,aa\}$, $B = \{a,a\}$
 $AB = \{a,aa\}$, $AB = \{a,aa\}$
 $AB = \{a,aa\}$

Q: is $A^{\pi} = \{x \in \{a,b\}^n, a \text{ is a pretix of } n\}$."

No, since abbbbb $\notin A^{\pi}$

 $\star \phi^{\star} \triangleq \{ \epsilon \}$: This definition makes notations cleaner.

* We say a binary operation \otimes is associative if $\forall A,B,C$, we have $(A \otimes B) \otimes C = A \otimes (B \otimes C)$

operation Associative	Commutative	identity
		Ø '
Union		5*
intersection		
concatanation	$\boldsymbol{\chi}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1		·

* A is an identity element of binary operation & if HB,

A Ø B = B Ø A = B

* BUØ = ØUB=B

