Chapter 3 DC Circuits

eThinking in Circuits with PSpice

Mechanical Engineering National Central University

March 12, 2017

Outlines

- Circuit Theorems
 - Equivalence
 - Source transformations
 - Circuit reductions
 - Thevenin/Norton Equivalents
- Circuits Analysis
 - Loop-current/Mesh method
 - Node-voltage method
- Superposition
 - Independent sources
 - es =
 - Dependent sources

Two electrical circuits are equivalent if they have the same v - i characteristics at the external terminals,

$$\forall R$$
, including $R = 0$ and $R = \infty$.

Circuits A and B are different in structure, but from the terminal.

eThinking ... (NCU) chap 3 toggle reset 3 / 15

Two electrical circuits are equivalent if they have the same v-i characteristics at the external terminals,

$$\forall R$$
, including $R = 0$ and $R = \infty$.

Circuits A and B are different in structure, but from the terminal.

For
$$R_1$$
, $I_{R_1}^A = I_{R_1}^B$, $V_{R_1}^A = V_{R_1}^B$, v-i are the same

eThinking ... (NCU) chap 3 toggle reset 3 / 15

Two electrical circuits are equivalent if they have the same v-i characteristics at the external terminals,

$$\forall R$$
, including $R = 0$ and $R = \infty$.

Circuits A and B are different in structure, but from the terminal.

For
$$R_1$$
, $I_{R_1}^A = I_{R_1}^B$, $V_{R_1}^A = V_{R_1}^B$, v-i are the same For R_2 , $I_{R_2}^A = I_{R_2}^B$, $V_{R_2}^A = V_{R_2}^B$, v-i are the same

eThinking ... (NCU) chap 3 toggle reset 3 / 15

Two electrical circuits are equivalent if they have the same v-i characteristics at the external terminals,

$$\forall R$$
, including $R = 0$ and $R = \infty$.

Circuits A and B are different in structure, but from the terminal.

For
$$R_1$$
, $I_{R_1}^A = I_{R_1}^B$, $V_{R_1}^A = V_{R_1}^B$, v-i are the same For R_2 , $I_{R_2}^A = I_{R_2}^B$, $V_{R_2}^A = V_{R_2}^B$, v-i are the same

eThinking ... (NCU)

Two electrical circuits are equivalent if they have the same v-icharacteristics at the external terminals,

$$\forall R$$
, including $R = 0$ and $R = \infty$.

3 / 15

Circuits A and B are different in structure, but from the terminal.

For
$$R_1$$
, $I_{R_1}^A = I_{R_1}^B$, $V_{R_1}^A = V_{R_1}^B$, v-i are the same For R_2 , $I_{R_2}^A = I_{R_2}^B$, $V_{R_2}^A = V_{R_2}^B$, v-i are the same :

including R=0 and $R=\infty$, v-i are the same

eThinking ... (NCU) chap 3

Two electrical circuits are equivalent if they have the same v-i characteristics at the external terminals,

$$\forall R$$
) including $R = 0$ and $R = \infty$.

Circuits A and B are different in structure, but from the terminal.

For
$$R_1$$
, $I_{R_1}^A = I_{R_1}^B$, $V_{R_1}^A = V_{R_1}^B$, v-i are the same For R_2 , $I_{R_2}^A = I_{R_2}^B$, $V_{R_2}^A = V_{R_2}^B$, v-i are the same

:

including R = 0 and $R = \infty$, v-i are the same

eThinking ... (NCU) chap 3

Two electrical circuits are equivalent if they have the same v-i characteristics at the external terminals,

$$\forall R$$
, including $R = 0$ and $R = \infty$.

3 / 15

Circuits A and B are different in structure, but from the terminal.

For
$$R_1$$
, $I_{R_1}^A = I_{R_1}^B$, $V_{R_1}^A = V_{R_1}^B$, v-i are the same For R_2 , $I_{R_2}^A = I_{R_2}^B$, $V_{R_2}^A = V_{R_2}^B$, v-i are the same :

:

including R=0 and $R=\infty$, v-i are the same Simply put it,

Telling no difference seen from v-i, at the output terminal.

eThinking ... (NCU) chap 3 toggle reset

hinking ... (NCU) chap 3 toggle reset 4 / 15

Open circuit $(R = \infty)$: $v_{ab} = v_s$

Open circuit : $v_{ab} = i_s R_p$

Open circuit
$$(R = \infty)$$
 : $v_{ab} = v_s$
Short circuit $(R = 0)$: $i_{ab} = \frac{v_s}{R_s}$

Open circuit : $v_{ab} = i_s R_p$ Short circuit: $i_{ab} = i_s$

Open circuit $(R = \infty)$: $v_{ab} = v_s$ Short circuit (R = 0): $i_{ab} = \frac{v_s}{R_c}$ Short circuit: $i_{ab} = i_s$ Due to Equivalence: $v_s = i_s R_p$, $\frac{v_s}{R_s} = i_s$, $R_s = R_P$

Open circuit : $v_{ab} = i_s R_p$

Open circuit $(R = \infty)$: $v_{ab} = v_s$ Open circuit : $v_{ab} = i_s R_p$ Short circuit (R = 0): $i_{ab} = \frac{v_s}{R_c}$ Short circuit: $i_{ab} = i_s$

Due to Equivalence: $v_s = i_s R_p$, $\frac{v_s}{R_s} = i_s$, $R_s = R_P$

Can you now transform between these two sources?

eThinking ... (NCU) chap 3 4 / 15

Open circuit $(R = \infty)$: $v_{ab} = v_s$ Open circuit : $v_{ab} = i_s R_p$ Short circuit (R=0): $i_{ab}=\frac{v_s}{R_s}$ Short circuit: $i_{ab}=i_s$

Due to Equivalence: $v_s = i_s R_p$, $\frac{v_s}{R_s} = i_s$, $R_s = R_P$

Open circuit $(R = \infty)$: $v_{ab} = v_s$ Open circuit : $v_{ab} = i_s R_p$ Short circuit (R=0): $i_{ab}=\frac{v_s}{R_s}$ Short circuit: $i_{ab}=i_s$

Due to Equivalence: $v_s = i_s R_p$, $\frac{v_s}{R_s} = i_s$, $R_s = R_P$

Open circuit $(R = \infty)$: $v_{ab} = v_s$ Open circuit : $v_{ab} = i_s R_p$ Short circuit (R = 0): $i_{ab} = \frac{v_s}{R_s}$ Short circuit: $i_{ab} = i_s$

Due to Equivalence: $v_s = i_s R_p$, $\frac{v_s}{R_s} = i_s$, $R_s = R_P$

Open circuit $(R = \infty)$: $v_{ab} = v_s$ Open circuit : $v_{ab} = i_s R_p$

Short circuit (R = 0): $i_{ab} = \frac{v_s}{R_s}$ Short circuit: $i_{ab} = i_s$ Due to Equivalence: $v_s = i_s R_p$, $\frac{v_s}{R_s} = i_s$, $R_s = R_p$

Open circuit $(R = \infty)$: $v_{ab} = v_s$ Open circuit : $v_{ab} = i_s R_p$ Short circuit (R = 0): $i_{ab} = \frac{v_s}{R_s}$ Short circuit: $i_{ab} = i_s$ Due to Equivalence: $v_s = i_s R_p$, $\frac{v_s}{R_s} = i_s$, $R_s = R_p$

Series

Series

Thinking ... (NCU) chap 3 toggle reset 5 / 15

Series

By equivalence

$$\frac{1}{C_{eq}}=\frac{1}{C_1}+\frac{1}{C_2}$$

Thinking ... (NCU) chap 3 toggle reset 5 / 15

Parallel

By equivalence

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Parallel

By equivalence

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$$

eThinking ... (NCU)

, 3 t

Parallel

$$C_{eq} = C_1 + C_2$$

eThinking ... (NCU) chap 3 toggle reset 6 / 15

Thevenin equivalent

Thevenin equivalent

Open circuit $(R = \infty)$: $v_{ab} = v_t = v_{oc}$

eThinking ... (NCU) chap 3 toggle reset 7 / 15

Thevenin equivalent

Open circuit
$$(R = \infty)$$
 : $v_{ab} = v_t = v_{oc}$

Short circuit
$$(R = 0)$$
 : $i_{ab} = \frac{v_t}{R_t} = i_{sc}$

7 / 15

Thevenin equivalent

Open circuit
$$(R = \infty)$$
 : $v_{ab} = v_t = v_{oc}$

Short circuit
$$(R = 0)$$
 : $i_{ab} = \frac{v_t}{R_t} = i_{sc}$

We need to solve the circuit on the left or use measurement.

eThinking ... (NCU) chap 3 toggle rese

7 / 15

Thevenin equivalent

Open circuit
$$(R = \infty)$$
 : $v_{ab} = v_t = v_{oc}$

Short circuit
$$(R = 0)$$
 : $i_{ab} = \frac{v_t}{R_t} = i_{sc}$

We need to solve the circuit on the left or use measurement. A quick way to find R_t is setting v_t to zero.

eThinking ... (NCU) chap 3

Thinking ... (NCU) chap 3 toggle reset 8 / 15

Open circuit
$$(\underline{R} = \underline{\infty})$$
 : $v_{ab} = i_n R_n = i_s R_n = \underline{v_{oc}}$

eThinking ... (NCU) chap 3 toggle reset 8 / 15

8 / 15

Open circuit $(R = \infty)$: $v_{ab} = i_n R_n = i_s R_n = v_{oc}$

Short circuit (R = 0) : $i_{ab} = i_n = i_{sc}$

Open circuit
$$(R = \infty)$$
 $v_{ab} = i_n R_n = i_s R_n = v_{oc}$
Short circuit $(R = 0)$ $i_{ab} = i_n = i_{sc}$

We need to solve the circuit on the left or use measurement

eThinking ... (NCU) chap 3 toggle reset 8 / 15

Open circuit
$$(R = \infty)$$
 : $v_{ab} = i_n R_n = i_s R_n = v_{oc}$

Short circuit
$$(R = 0)$$
 : $i_{ab} = i_n = i_{sc}$

We need to solve the circuit on the left or use measurement A quick way to find R_t is setting i_n to zero.

(a)
$$i = 0.5i + \frac{1}{10}$$
, $i = 0.2A$, $R_t = \frac{1}{0.2} = 5\Omega$.

(b) Open circuit

$$\frac{20 - V_a}{5} = 0.5i_x + \frac{V_a}{10}$$
$$\frac{V_a}{10} = i_x - 0.5i_x.$$

Solving, we have $i_x = 2A$. Thus $V_a = 10V = V_{oc}$.

(c) Short Circuit: $i_x = \frac{20}{5} = 4A$, $i_{sc} = 2A$.

eThinking ... (NCU)

(a)
$$i_{\mathbf{x}} = 0.5 i_{\mathbf{x}} + \frac{1}{10}$$
, $i_{\mathbf{x}} = 0.2 A$, $R_t = \frac{1}{0.2} = 5 \Omega$.

(b) Open circuit

$$\frac{20 - V_a}{5} = 0.5i_x + \frac{V_a}{10}$$
$$\frac{V_a}{10} = i_x - 0.5i_x.$$

Solving, we have $i_x = 2A$. Thus $V_a = 10V = V_{oc}$.

(c) Short Circuit: $i_x = \frac{20}{5} = 4A$, $i_{sc} = 2A$.

(a)
$$i = 0.5i + \frac{1}{10}$$
, $i = 0.2A$, $R_t = \frac{1}{0.2} = 5\Omega$.

(b) Open circuit

$$\frac{20 - V_a}{5} = 0.5i_x + \frac{V_a}{10}$$

$$\frac{V_a}{10} = i_x - 0.5i_x.$$

Solving, we have $i_x = 2A$. Thus $V_a = 10V = V_{oc}$.

(c) Short Circuit: $i_x = \frac{20}{5} = 4A$, $i_{sc} = 2A$.

(a)
$$i = 0.5i + \frac{1}{10}$$
, $i = 0.2A$, $R_t = \frac{1}{0.2} = 5\Omega$.

(b) Open circuit

$$\frac{20 - V_a}{5} = 0.5i_x + \frac{V_a}{10}$$
$$\frac{V_a}{10} = i_x - 0.5i_x.$$

Solving, we have $i_x = 2A$. Thus $V_a = 10V = V_{oc}$.

(c) Short Circuit:
$$i_x = \frac{20}{5} = 4A$$
, $i_{sc} = 2A$.

eThinking ... (NCU) chap 3

- Loop-current method: Adding voltage
 - Only voltage sources
 - Involve current sources
- Node-voltage method: Adding current
 - Only current sources
 - ► Involve voltage sources

$$-40 + 2i1 + 8(i1 - i2) = 0$$

-[-8(i₂ - i₁)] + 6i₂ + 6(i₂ - i₃) = 0

$$-[-6(i_3-i_2)]+4i_3+20=0$$

eThinking ... (NCU) chap 3 toggle reset 11 / 15

$$-40 + 2i_1 + 8(i_1 - i_2) = 0$$

-[-8(i_2 - i_1)] + 6i_2 + 6(i_2 - i_3) = 0
-[-8(i_2 - i_1)] + 6i_2 + 6(i_2 + i_3) = 0

$$-[-6(i_3 - i_2)] + 4i_3 + 20 = 0$$
$$6(i_3 + i_2) - [-4i_3] - 20 = 0$$

eThinking ... (NCU) chap 3 toggle reset 11 / 15

 $-[-6(i_2+i_2)] + 4i_2 + 20 = 0$

toggle

Assign leaving current to be positive

$$5 + \frac{v_a}{16} + \frac{v_a - v_b}{2} = 0$$
$$\frac{v_b}{20} + \frac{v_b}{80} - \frac{v_a - v_b}{2} - 12 = 0$$

Solving, we have $v_a = 48V$, $v_b = 64V$.

eThinking ... (NCU) chap 3 toggle reserves

12 / 15

Linear system

 $f(ax_1 + bx_2) = af(x_1) + bf(x_2), a, b \in R.$

Total response=sum of individual responses

Independent voltage source \rightarrow a short circuit

Independent current source \rightarrow an open circuit

$$i_{1} = i'_{1} + i''_{1}$$
 $i_{2} = i'_{2} + i''_{2}$

$$4 \Omega I'_{1}$$

$$+ 120 V > 8 \Omega$$

$$+ I'_{2}$$

$$i_1 = i'_1 + i''_1$$
 $i_2 = i'_2 + i''_2$

$$+ 120 \lor 8 \Omega$$

$$+ 1'_2$$

14 / 15

$$i_1 = i'_1 + i''_1$$
 $i_2 = i'_2 + i''_2$

15 / 15

$$i_1 = i_1' + i_1''$$
 $i_2 = i_2' + i_2''$

$$i_1 = i'_1 + i''_1$$
 $i_2 = i'_2 + i''_2$

$$i_1 = i_1' + i_1''$$
 $i_2 = i_2' + i_2''$

No need to disable the dependent source.

$$i_1 = i_1' + i_1'' \quad i_2 = i_2' + i_2''$$

