

Wavelet Transform

Wavelet Transform

Comparison of a Wavelet with a Sine Wave of Same Frequency

Wavelet Transform

Continuous Wavelet Transform

Discrete Wavelet Transform

JON T Louis

Example: Wavelet Decomposition of EEG

Credits: (Hinterberger et al., 2003)

Filters

High Pass Filter:

• Blocks dc offset in high gain amplifiers or single supply circuits. Filters can be used to separate signals, passing those of interest, and attenuating the unwanted frequencies.

Low Pass Filter:

• Stabilizes amplifiers by rolling off the gain at higher frequencies where excessive phase shift may cause oscillations

Filters

Band Pass Filter:

- If a high-pass filter and a low-pass filter are cascaded, a band pass filter is created. The band pass filter passes a band of frequencies between a lower cutoff frequency, f_L, and an upper cutoff frequency, f_h
- Notch (Band Reject Filter):
 - The pass bands include frequencies below f_L and above f_h . The band from f_L to f_h is in the stop band.

TIME DOMAIN ANALYSIS 1) Hjorth Parameters [1970s] (EET) L> Mean Power Lorms fra. spraad 13 Complexity @ Motility a Adivity C= [Q4] $M = \sqrt{a2}$ $\sqrt{a0}$ Ao: Variance of signal en Une spoch under measure -Sment Oz= voniance of d 2(d)

2 Autoregressive Modeling (AR) Ne = 5 92 26-8 + 50 - 6=1 T Ep - Some white noise P:- Order of All model Adaptine Anto Regressive (AAR) Mode! It = Saint Reit Eet

Nort Statistical Standard over time