Laboratorium 3

Rozwiązywanie układu równań liniowych metodami: największego spadku, sprzężonych gradientów

Bartosz Balawender

22.03.2021

1.Cel ćwiczenia:

Zadanie polega na rozwiązaniu układu równań liniowych Ax=b metodą największego spadku oraz metodą sprzężonych gradientów. I porównaniu obu metod.

2.Opis problemu:

Zadanie polegało na rozwiązaniu układu równań liniowych **Ax = b** metodą największego spadku oraz metodą sprzężonych gradientów. Na początku należało utworzyć macierz A o wymiarze N = 1000 i wypełnić jej elementy zgodnie z poniższą formułą:

$$A[i][j] = \frac{1}{1+|i-j|}, \quad gdy |i-j| \le m, \quad i,j=0,\dots,n-1$$

 $A[i][j] = 0, \quad gdy |i-j| > m$

Przyjęliśmy m=5

Zainicjalizowana przez nas macierz A jest macierzą wstęgową, jest to rzadka macierz, w której wszystkie są równe 0 poza diagonalą oraz "wstęgą" wokół niej.

Następnie należało zainicjalizować wektor wyrazów wolnych

$$b[i] = i, \quad i = 0, \dots, n-1$$

Dla metody sprzężonych gradientów wektor b miał postać:

$$b[i] = i + 1, \quad i = 0, \dots, n - 1$$

Za wektor startowy należało przyjąć $\overrightarrow{x_0}=0$,a następnie wykonać ponownie dla $\overrightarrow{x_0}=1$

Na sam koniec, dla każdej iteracji **(k)** należało zapisać do pliku: aktualny numer iteracji (k), wartość normy euklidesowej wektora reszt , wartość αk, wartość normy euklidesowej wektora rozwiązań. A także sporządzić wykresy:

1)wykres wartości normy euklidesowej wektora reszt w zależności od iteracji (k)

2) wykres zależności wartości normy euklidesowej wektora rozwiązań od iteracji (k)

Norma euklidesowa wektora reszt:

$$\|oldsymbol{r}_k\|_2 = \sqrt{oldsymbol{r}_k^Toldsymbol{r}_k}$$

Norma euklidesowa wektora rozwiązań:

$$\|\boldsymbol{x}_k\|_2 = \sqrt{\boldsymbol{x}_k^T \boldsymbol{x}_k}$$

3. Opis metody

3.1 Metoda największego spadku

Metoda największego spadku jest jedną z iteracyjnych metod rozwiązywania układu równań liniowych. Algorytm polega na wyszukiwaniu w każdej iteracji minimum zadanej funkcji celu, które będzie stanowiło kierunek poszukiwań.

Algorytm zaczynamy od wybrania punktu startowego. W punkcie tym obliczany jest antygradient funkcji celu $\alpha_k \nabla f(x_k)$. Następnie względem obliczonej wartości α_k dokonujemy minimalizacji kierunkowej funkcji :

$$f(\mathbf{x_k} - \alpha_k \nabla f(\mathbf{x_k})) = \min_{\alpha > 0} f(\mathbf{x_k} - \alpha \nabla f(\mathbf{x_k}))$$

Następnie otrzymane wartości wstawiamy do wzoru na x w iteracji k:

$$\mathbf{x_{k+1}} = \mathbf{x_k} - \alpha_k \nabla f(\mathbf{x_k})$$

Cały algorytm poza wyborem punktu startowego jest umieszczony w pętli **do while** i wykonuje się do momentu aż wartość normy euklidesowej wektora reszt $> 10^{-6}$, ponieważ przyjęliśmy, że obliczenia prowadzone są w podwójnej precyzji.

Poniższy pseudokod przedstawia metodę największego spadku:

$$\begin{aligned} inicjalizacja: & \pmb{b}, & \pmb{x} \\ & do \{ \\ & \pmb{r}_k = \pmb{b} - A\pmb{x}_k \\ & \alpha_k = \frac{\pmb{r}_k^T\pmb{r}_k}{\pmb{r}_k^TA\pmb{r}_k} \\ & \pmb{x}_{k+1} = \pmb{x}_k + \alpha_k\pmb{r}_k \\ & \}while(\|\pmb{r}_k\|_2 > 10^{-6}) \end{aligned}$$

gdzie: k-numer iteracji, \boldsymbol{x}_k to aktualne przybliżenie wektora rozwiązań a \boldsymbol{r}_k jest wektorem reszt

3.1 Metoda sprzeżonych gradientów

Metoda sprzężonych gradientów jest również metodą iteracyjną, pozwalającą nam na rozwiązanie układu równań liniowych dla macierzy o wielkich rozmiarach.

Zaczynamy tak samo jak w metodzie największego spadku, a mianowicie od wyboru punktu startowego. Jeżeli nie założymy , że $x_0=0$ to rozważamy układ $\mathbf{Az}=\mathbf{b}-\mathbf{Ax_0}$. Wybranie

jednak $x_0 = 0$ jako punktu startowego spowoduje, że nasze rozwiązanie minimalizuję formę kwadratową:

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} - \mathbf{x}^{\mathrm{T}}\mathbf{b}, \quad \mathbf{x} \in \mathbf{R}^{n}$$

Dzięki czemu jako pierwszy wektor bazowy wybieramy gradient f w punkcie $x_0=0$, skąd otrzymujemy $\mathbf{p_1}=\mathbf{-b}$, pozostałe wektory p_k zostaną sprzężone do gradientu. Następnie wyznaczamy rezyduum w k-tej iteracji, zgodnie ze wzorem : $r_k=b-Ax_k$. Zakładamy wzajemną sprzężoność kierunków p_k , więc wybieramy kierunek , który jest najbliższy do r_k . Co możemy wyrazić wzorem:

$$\mathbf{p}_{k+1} = \mathbf{r}_k - \frac{\mathbf{p}_k^{\mathrm{T}} \mathbf{A} \mathbf{r}_k}{\mathbf{p}_k^{\mathrm{T}} \mathbf{A} \mathbf{p}_k} \mathbf{p}_k.$$

Algorytm metody sprzężonych gradientów w pseudokodzie:

3. Wyniki

3.1 Wyniki otrzymane metodą GC przedstawilem w poniższej tabeli

iteracja (k)	r
1	482,785484
2	211,667388
3	111,34534
4	63,237122
5	38,836366
	•••
6	24,936045
59	0,000001
60	0,000001
61	0,000001
62	0,000001

iteracja (k)		x
	1	4697,722212
	2	4705,479674
	3	4717,966807
	4	4712,372628
	5	4721,366754
	6	4716,069252
	59	4720,211839
	60	4720,211839
	61	4720,211839
	62	4720,211839

Wykresy otrzymane metodą sprzężonych gradientów:

Wykres 1. Wartość normy euklidesowej wektora reszt w zależności od aktualnego numeru iteracji k

Wykres 2. Wartość normy euklidesowej wektora rozwiązań w zależności od aktualnego numeru iteracji k

3.2 Wyniki otrzymane metodą największego spadku:

iteracja (k)	r	iteracja (k)	x
1	4690,693754	1	4690,693754
2	239,657503	2	4696,812069
3	96,943347	3	4709,051661
4	58,059102	4	4702,36197
5	37,205718	5	4712,578283
6	26,774308	6	4706,304727
		•••	
140	0,0000001	140	4713,17215
141	0,0000001	141	4713,17215
142	0,0000001	142	4713,17215
143	0,0000001	143	4713,17215

Poniżej dla porównania wstawiam wyniki uzyskane od wektora startowego $x_0 = 1$

iteracja (k)	r	x
1	4663.392092	4690.744474
2	239.356339	4696.798740
3	96.803110	4709.083084
4	57.994459	4702.347150
5	37.159994	4712.595796
6	26.750907	4706.294671
•••		
140	0,0000001	4713.172150
141	0,0000001	4713.172150
142	0,0000001	4713.172150
143	0,0000001	4713.172150

Porównując otrzymane wyniki można wywnioskować, że liczba iteracji oraz otrzymane wyniki nie zależą od punktu startowego.

Wykresy otrzymane metodą największego spadku:

Wykres 3. Wartość normy euklidesowej wektora reszt w zależności od aktualnego numeru iteracji k

Wykres 4. Wartość normy euklidesowej wektora rozwiązań w zależności od aktualnego numeru iteracji k

5.Wnioski

Zarówno korzystając z metody największego spadku jak i metody sprzężonych gradientów możemy w szybkim czasie rozwiązać UARL. Spoglądając na powyższe wykresy oraz na ilość iteracji w obu tych algorytmach można wywnioskować, że metoda GC działa szybciej od metody największego spadku. Metody iteracyjne , pozwalają nam w bardzo prosty sposób na

rozwiązanie układu równań liniowych, lecz mają one jednak swoje wady. Pozwalają nam one na rozwiazywanie wyłącznie macierzy dodatnio określonych i symetrycznych.