Six Stage Pipelined Design Implementation

Design Report

Divycharaneeswar R P 170260018 Thoutam Shiva Teja 170260035

Instruction Fetch Stage

- 1. **PC register**: Stores the PC value of the current instruction.
- 2. **Instruction memory**: Instruction Memory from which the instruction is obtained.
- 3. ALU2 : Used to update the PC value(PC+1 / PC+Imm)
- 4. Branch Signal
 - a. 01 if BEQ, we get to know know in Execution stage

Temp_EX -- Immediate value to be added

- b. 10 if JAL , we designed such that Imm is available from RR stage Temp_RR -- Immediate value to be added
- c. 00 else
- 5. Enable read =1 always
- 6. PC_enable = 1 if no stalling in IF stage
- 7. PC_MUX --Decides the PC value when the destination register is R7(Considered that on writing in R7 register also changes the PC)
 - a. 10 if ADD/ADI/NDU and If the destination register is R7
 - b. 01 if LW/LM and If the destination register is R7
 - c. 11 if LHI/JLR and If the destination register is R7
 - d. 00 else

- PCplus1_IF is connected with input of PC
- imem_IF is connected with output of the instruction memory
- ❖ IF_ID = 1 if no stalling in IF stage

Instruction Decoder

In ID stage, the instruction is passed to the decoder from the IF_ID register. Two pipeline registers ID_RR1 and ID_RR2 are used ,where ID_RR1 takes care of the LM/SM instructions.

1. Decoder:

- a. Takes the input as the instruction and gives output in 45 bits which includes
- b. If decoder_enable is set, then mem_wr_en , c flag_en , z flag_en are set.

- 2. Rf_a3_mux : It is 1 when the instruction is LM and this mux gives the address of the register to loaded.
- 3. PE Imsm:
 - a. This block takes the address from the immediate field and gives output as the address of the register(pe_out) to be used in LM / SM instruction.
 - b. It also updates the address from the immediate field of already used register with 0 (pe_value)and when all 8 bits are zero in the address, the pc_zero is set as 1.
- 4. PE_mux :
 - a. This chooses between the address from the immediate field or the updated address from the PE_Imsm block

Register Read

- 1. This stage has the forwarding unit and the register file
- 2. FU out1 goes for alu _in1
- 3. FU out2 goes for alu_in2
- 4. FU_temp is data in for memory

Execution

- 1. **ALU**: Perform ADD, NAND operation
- 2. Comparator: Checks the equality and generates branch signal for choosing the updated PC in IF stage
- 3. Temp EX: Has the sign extended value or the content of the register depending on the instruction
- 4. ALU_out_mux: decided from the 3rd bit of controlpoint

- 1. **MEM**: Data memory from which the instruction read data or writes data.
- 2. MEM wr en block:
 - a. During the store instruction if the memory stage is needed to flushed then wr_en is made 0
 - b. In other cases the wr_en signal from the decoder is taken
- 3. The wr_en_update corresponds to the wr_en for ADC,ADZ,NDC,NDZ instructions

WriteBack

1. Enable block:

- a. If flush is active for WB stage then it doesn't write enable the zero and carry flag.
- b. If there is no flush then write enable signals for carry and zero flag received from decoder is taken .

2. Zero flag check:

- a. WB_out gets the memory output in load case and in other cases gets the alu1 output.
- b. This block checks if WB_out is zero
- 3. C_WB comes from the carry of the alu1

Control points:

- 1. Wr_en mux ⇒ 0
- 2. Rf_a3_mux ⇒ 1
- 3. Rf_a2_mux \Rightarrow 2
- 4. alu out $mux \Rightarrow 3$
- 5. Mem_out_mux \Rightarrow 4
- 6. MEM_WB_en \Rightarrow 5

Pipeline Register Contents

Pipeline Register	Components	Length(bits)
IFID	PC	16
	PCplus1	16
	instruction	16
IDRR	Alu opcode	1
	Op type(z/c)	2
	main_opcode	4
	Control points	6
	rf_a1	3
	rf_a2	3
	rf_a3	3
	pe_out	3
	sign extended values	16
	wr_en	1
	mem_wr_en	1
	carry_en	1
	zero_en	1
	рс	16
	pcplus1	16
RREX	Alu opcode	1
	Op type(z/c)	2
	main_opcode	4
	Control points	6
	Alu input 1	16
	Alu input 2	16
	Sign extended value/rf output	16
	PC	16
	mem_wr_en	1
	carry_en	1
	zero_en	1
EXMM	Op type(z/c)	2
	main_opcode	4
	Control points	6
	mem_wr_en	1

	zero_en	1
	Memory address	16
	Memory data in	16
	рс	16
MMWB	Main _opcode	4
	carry	1
	Control points	8
	Zero_en	1
	Mem output/mem address	16
	рс	16