Ashkenazi, Avi <110> Baker Kevin P. Botstein, David Desnoyers, Luc Eaton, Dan Ferrara, Napoleon Filvaroff, Ellen Fong, Sherman Gao, Wei-Qiang Gerber, Hanspeter Gerritsen, Mary E. Goddard, Audrey Godowski, Paul J. Grimaldi, J. Christopher Gurney, Austin L. Hillan, Kenneth J Kljavin, Ivar J. Kuo, Sophia S. Napier, Mary A. Pan, James; Paoni, Nicholas F. Roy, Margaret Ann Shelton, David L. Stewart, Timothy A. Tumas, Daniel Williams, P. Mickey Wood, William I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> P2630P1C7

<150> 09/918585

<151> 2001-07-30

<150> 60/062250

<151> 1997-10-17

<150> 60/064249 <151> 1997-11-03

<150> 60/065311 <151> 1997-11-13

<150> 60/066364

<151> 1997-11-21

<150> 60/077450

<151> 1998-03-10

<150> 60/077632 <151> 1998-03-11

<150> 60/077641 <151> 1998-03-11

1

- <150> 60/077649 <151> 1998-03-11
- <150> 60/077791
- <151> 1998-03-12
- <150> 60/078004
- <151> 1998-03-13
- <150> 60/078886
- <151> 1998-03-20
- <150> 60/078936
- <151> 1998-03-20
- <150> 60/078910
- <151> 1998-03-20
- <150> 60/078939
- <151> 1998-03-20
- <150> 60/079294
- <151> 1998-03-25
- <150> 60/079656
 - <151> 1998-03-26
 - <150> 60/079664
 - <151> 1998-03-27
 - <150> 60/079689
 - <151> 1998-03-27
 - <150> 60/079663
 - <151> 1998-03-27
 - <150> 60/079728
 - <151> 1998-03-27
 - <150> 60/079786
 - <151> 1998-03-27

 - <150> 60/079920 <151> 1998-03-30
 - (131) 1990-03-30
 - <150> 60/079923
 - <151> 1998-03-30
 - <150> 60/080105
 - <151> 1998-03-31
 - <150> 60/080107
 - <151> 1998-03-31
 - <150> 60/080165
 - <151> 1998-03-31
 - <150> 60/080194

- <151> 1998-03-31
- <150> 60/080327
- <151> 1998-04-01
- <150> 60/080328
- <151> 1998-04-01
- <150> 60/080333
- <151> 1998-04-01
- <150> 60/080334
- <151> 1998-04-01
- <150> 60/081070
- <151> 1998-04-08
- <150> 60/081049
- <151> 1998-04-08
- <150> 60/081071
- <151> 1998-04-08
- <150> 60/081195
- <151> 1998-04-08
- <150> 60/081203
- <151> 1998-04-09
- <150> 60/081229
- <151> 1998-04-09
- <150> 60/081955
- <151> 1998-04-15
- <150> 60/081817
- <151> 1998-04-15
- <150> 60/081819
- <151> 1998-04-15
- <150> 60/081952
- <151> 1998-04-15
- <150> 60/081838
- <151> 1998-04-15
- <150> 60/082568
- <151> 1998-04-21
- <150> 60/082569
- <151> 1998-04-21
- <150> 60/082704
- <151> 1998-04-22
- <150> 60/082804
- <151> 1998-04-22

- <150> 60/082700
- <151> 1998-04-22
- <150> 60/082797
- <151> 1998-04-22
- <150> 60/082796
- <151> 1998-04-23
- <150> 60/083336
- <151> 1998-04-27
- <150> 60/083322
- <151> 1998-04-28
- <150> 60/083392
- <151> 1998-04-29
- <150> 60/083495
- <151> 1998-04-29
- <150> 60/083496
- <151> 1998-04-29
- <150> 60/083499
 - <151> 1998-04-29
 - <150> 60/083545

 - <151> 1998-04-29
 - <150> 60/083554
 - <151> 1998-04-29
 - <150> 60/083558
 - <151> 1998-04-29
 - <150> 60/083559
 - <151> 1998-04-29
 - <150> 60/083500
 - <151> 1998-04-29
 - <150> 60/083742
 - <151> 1998-04-30
 - <150> 60/084366
 - <151> 1998-05-05
 - <150> 60/084414
 - <151> 1998-05-06
 - <150> 60/084441
 - <151> 1998-05-06
 - <150> 60/084637
 - <151> 1998-05-07
 - <150> 60/084639

- <151> 1998-05-07
- <150> 60/084640
- <151> 1998-05-07
- <150> 60/084598
- <151> 1998-05-07
- <150> 60/084600
- <151> 1998-5-07
- <150> 60/084627
- <151> 1998-05-07
- <150> 60/084643
- <151> 1998-05-07
- <150> 60/085339
- <151> 1998-05-13
- <150> 60/085338
- <151> 1998-05-13
- <150> 60/085323
- <151> 1998-05-13
- <150> 60/085582
- <151> 1998-05-15
- <150> 60/085700
- <151> 1998-05-15
- <150> 60/085689
- <151> 1998-05-15
- <150> 60/085579
- <151> 1998-05-15
- <150> 60/085580
- <151> 1998-05-15
- <150> 60/085573
- <151> 1998-05-15
- <150> 60/085704
- <151> 1998-05-15
- <150> 60/085697
- <151> 1998-05-15
- <150> 60/086023
- <151> 1998-05-18
- <150> 60/086430 <151> 1998-05-22
- <150> 60/086392 <151> 1998-05-22

- <150> 60/086486
- <151> 1998-05-22
- <150> 60/086414
- <151> 1998-05-22
- <150> 60/087208
- <151> 1998-05-28
- <150> 60/087106
- <151> 1998-05-28
- <150> 60/087098
- <151> 1998-05-28
- <150> 60/091010
- <151> 1998-06-26
- <150> 60/090863
- <151> 1998-06-26
- <150> 60/091359
- <151> 1998-07-01
- <150> 60/094651
- <151> 1998-07-30
- <150> 60/100038
- <151> 1998-09-11
- <150> 60/109304
- <151> 1998-11-20
- <150> 60/113296
- <151> 1998-12-22
- <150> 60/113621
- <151> 1998-12-23
- <150> 60/123957
- <151> 1999-03-12
- <150> 60/126773
- <151> 1999-03-29
- <150> 60/130232
- <151> 1999-04-21
- <150> 60/131022
- <151> 1999-04-26
- <150> 60/131445
- <151> 1999-04-28
- <150> 60/134287
- <151> 1999-05-14
- <150> 60/139557

- <151> 1999-06-16
- <150> 60/141037
- <151> 1999-06-23
- <150> 60/142680
- <151> 1999-07-07
- <150> 60/145698
- <151> 1999-07-26
- <150> 60/146222
- <151> 1999-07-28
- <150> 60/162506
- <151> 1999-10-29
- <150> 09/040220
- <151> 1998- 03-17
- <150> 09/105413
- <151> 1998-06-26
- <150> 09/168978
- <151> 1998-10-07
- <150> 09/184216
- <151> 1998-11-02
- <150> 09/187368
- <151> 1998-11-06
- <150> 09/202054
- <151> 1998-12-07
- <150> 09/218517
- <151> 1998-12-22
- <150> 09/254465
- <151> 1999-03-05
- <150> 09/265686
- <151> 1999-03-10
- <150> 09/267213
- <151> 1999-03-12
- <150> 09/284291
- <151> 1999-04-12
- <150> 09/311832
- <151> 1999-05-14
- <150> 09/380137
- <151> 1999-08-25
- <150> 09/380138
- <151> 1999-08-25

- <150> 09/380142
- <151> 1999-08-25
- <150> 09/709238
- <151> 2000-11-08
- <150> 09/723749
- <151> 2000-11-27
- <150> 09/747259
- <151> 2000-12-20
- <150> 09/816744
- <151> 2001-03-22
- <150> 09/816920
- <151> 2001-03-22
- <150> 09/854280
- <151> 2001-05-10
- <150> 09/854208
- <151> 2001-05-10
- <150> 09/872035
- <151> 2001-06-01
- <150> 09/874503
- <151> 2001-06-05
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/886342
- <151> 2001- 06-19
- <150> PCT/US98/21141
- <151> 1998-10-07
- <150> PCT/US98/24855
- <151> 1998-11-20
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/05028
- <151> 1999-03-08
- <150> PCT/US99/05190
- <151> 1999-03-10
- <150> PCT/US99/10733
- <151> 1999-05-14
- <150> PCT/US99/12252
- <151> 1999-06-02
- <150> PCT/US99/28313

- <151> 1999-11-30
- <150> PCT/US99/28551
- <151> 1999-12-02
- <150> PCT/US99/28565
- <151> 1999-12-02
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US99/31243
- <151> 1999-12-30
- <150> PCT/US99/31274
- <151> 1999-12-30
- <150> PCT/US00/00219
- <151> 2000-05-01
- <150> PCT/US00/00277
- <151> 2000-01-06
- <150> PCT/US00/00376
- <151> 2000-01-06
- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04341
- <151> 2000-02-18
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/07532
- <151> 2000-03-21
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/06319
- <151> 2000-03-10
- <150> PCT/US00/08439
- <151> 2000-03-30
- <150> PCT/US00/13705
- <151> 2000-05-17
- <150> PCT/US00/14042
- <151> 2000-05-22
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02

- <150> PCT/US00/20710
- <151> 2000-07-28
- <150> PCT/US00/23328
- <151> 2000-08-24
- <150> PCT/US00/32678
- <151> 2000-12-01
- <150> PCT/US00/34956
- <151> 2000-12-20
- <150> PCT/US01/06520
- <151> 2001-02-28
- <150> PCT/US01/09552
- <151> 2001-03-22
- <150> PCT/US01/17092
- <151> 2001-05-25
- <150> PCT/US01/17800
- <151> 2001-06-01
- <150> PCT/US01/19692
- <151> 2001-06-20
- <150> PCT/US01/21066
- <151> 2001-06-29
- <150> PCT/US01/21735
- <151> 2001-07-09
- <160> 624
- <210> 1
- <211> 1743
- <212> DNA
- <213> Homo sapiens
- <400> 1
- ccaggtccaa ctgcacctcg gttctatcga ttgaattccc cggggatcct 50
- ctagagatcc ctcgacctcg acccacgcgt ccgccaagct ggccctgcac 100
- ggctgcaagg gaggctcctg tggacaggcc aggcaggtgg gcctcaggag 150
- gtgcctccag gcggccagtg ggcctgaggc cccagcaagg gctagggtcc 200
- atctccagtc ccaggacaca gcagcggcca ccatggccac gcctgggctc 250
- cagcagcatc agcagccccc aggaccgggg gaggcacagg tggcccccac 300
- cacceggagg ageagetect geeeetgtee gggggatgae tgatteteet 350
- ccgccaggcc acccagagga gaaggccacc ccgcctggag gcacaggcca 400
- tgaggggctc tcaggaggtg ctgctgatgt ggcttctggt gttggcagtg 450

ggcggcacag agcacgccta ccggcccggc cgttagggtg tgtgctgtcc 500 cgggctcacg gggaccctgt ctccgagtcg ttcgtgcagc gtgtgtacca 550 gcccttcctc accacctgcg acgggcaccg ggcctgcagc acctaccgaa 600 ccatttatag gaccgcctac cgccgcagcc ctgggctggc ccctgccagg 650 cctcgctacg cgtgctgccc cggctggaag aggaccagcg ggcttcctgg 700 ggcctgtgga gcagcaatat gccagccgcc atgccggaac ggagggagct 750 gtgtccagcc tggccgctgc cgctgccctg caggatggcg gggtgacact 800 tgccagtcag atgtggatga atgcagtgct aggaggggcg gctgtcccca 850 gcgctgcatc aacaccgccg gcagttactg gtgccagtgt tgggaggggc 900 acagcctgtc tgcagacggt acactctgtg tgcccaaggg agggcccccc 950 agggtggccc ccaacccgac aggagtggac agtgcaatga aggaagaagt 1000 gcagaggctg cagtccaggg tggacctgct ggaggagaag ctgcagctgg 1050 tgctggcccc actgcacagc ctggcctcgc aggcactgga gcatgggctc 1100 ccggaccccg gcagcctcct ggtgcactcc ttccagcagc tcggccgcat 1150 cgactccctg agcgagcaga tttccttcct ggaggagcag ctggggtcct 1200 gctcctgcaa gaaagactcg tgactgccca gcgccccagg ctggactgag 1250 cccctcacgc cgccctgcag cccccatgcc cctgcccaac atgctggggg 1300 tccagaagcc acctcggggt gactgagcgg aaggccaggc agggccttcc 1350 teetttteet eeteeette eeteggagg gteeceagae eetggeatgg 1400 gatgggctgg gattttttt gtgaatccac ccctggctac ccccaccctg 1450 gttaccccaa cggcatccca aggccaggtg ggccctcagc tgagggaagg 1500 tacgagttcc cctgctggag cctgggaccc atggcacagg ccaggcagcc 1550 cggaggctgg gtggggcctc agtgggggct gctgcctgac ccccagcaca 1600 aaaaaaaagg gcggccgcga ctctagagtc gacctgcaga agcttggccg 1700 ccatggccca acttgtttat tgcagcttat aatggttaca aat 1743

<210> 2

<211> 295

<212> PRT

<213> Homo sapiens

<400> 2

Met Thr Asp Ser Pro Pro Pro Gly His Pro Glu Glu Lys Ala Thr Pro Pro Gly Gly Thr Gly His Glu Gly Leu Ser Gly Gly Ala Ala Asp Val Ala Ser Gly Val Gly Ser Gly Arg His Arg Ala Arg Leu Pro Ala Arg Pro Leu Gly Cys Val Leu Ser Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro Gly Arg Cys Arg Cys Pro Ala Gly 150 140 Trp Arg Gly Asp Thr Cys Gln Ser Asp Val Asp Glu Cys Ser Ala 160 155 Arg Arg Gly Gly Cys Pro Gln Arg Cys Ile Asn Thr Ala Gly Ser 170 Tyr Trp Cys Gln Cys Trp Glu Gly His Ser Leu Ser Ala Asp Gly 190 Thr Leu Cys Val Pro Lys Gly Gly Pro Pro Arg Val Ala Pro Asn 210 200 Pro Thr Gly Val Asp Ser Ala Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu Glu Glu Lys Leu Gln Leu Val Leu 240 230 Ala Pro Leu His Ser Leu Ala Ser Gln Ala Leu Glu His Gly Leu 250 Pro Asp Pro Gly Ser Leu Leu Val His Ser Phe Gln Gln Leu Gly 270 260 Arg Ile Asp Ser Leu Ser Glu Gln Ile Ser Phe Leu Glu Glu Gln 285 Leu Gly Ser Cys Ser Cys Lys Lys Asp Ser

290

<210> 3

<211> 21 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 3

tggagcagca atatgccagc c 21

<210> 4

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 4

ttttccactc ctgtcgggtt gg 22

<210> 5

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

Ů.

W.

ii kal

ja.

ķ.

<223> Synthetic oligonucleotide probe

<400> 5

ggtgacactt gccagtcaga tgtggatgaa tgcagtgcta ggaggg 46

<210> 6

<211> 2945

<212> DNA

<213> Homo sapiens

<400> 6

cgctcgcccc gtcgcccctc gcctccccgc agagtcccct cgcggcagca 50

gatgtgtgtg gggtcagccc acggcgggga ctatggtgaa attcccggcg 100

ctcacgcact actggcccct gatccggttc ttggtgcccc tgggcatcac 150

caacatagcc atcgacttcg gggagcaggc cttgaaccgg ggcattgctg 200

ctgtcaagga ggatgcagtc gagatgctgg ccagctacgg gctggcgtac 250

tccctcatga agttcttcac gggtcccatg agtgacttca aaaatgtggg 300

cctggtgttt gtgaacagca agagagacag gaccaaagcc gtcctgtgta 350

tggtggtggc aggggccatc gctgccgtct ttcacacact gatagcttat 400

agtgatttag gatactacat tatcaataaa ctgcaccatg tggacgagtc 450

ggtggggagc aagacgagaa gggccttcct gtacctcgcc gcctttcctt 500 tcatggacgc aatggcatgg acccatgctg gcattctctt aaaacacaaa 550 tacagtttcc tggtgggatg tgcctcaatc tcagatgtca tagctcaggt 600 tgtttttgta gccattttgc ttcacagtca cctggaatgc cgggagcccc 650 tgctcatccc gatcctctcc ttgtacatgg gcgcacttgt gcgctgcacc 700 accetgtgcc tgggctacta caagaacatt cacgacatca tccctgacag 750 aagtggcccg gagctggggg gagatgcaac aataagaaag atgctgagct 800 tctggtggcc tttggctcta attctggcca cacagagaat cagtcggcct 850 attgtcaacc tctttgtttc ccgggacctt ggtggcagtt ctgcagccac 900 agaggcagtg gcgattttga cagccacata ccctgtgggt cacatgccat 950 acggctggtt gacggaaatc cgtgctgtgt atcctgcttt cgacaagaat 1000 aaccccagca acaaactggt gagcacgagc aacacagtca cggcagccca 1050 catcaagaag ttcaccttcg tctgcatggc tctgtcactc acgctctgtt 1100 tcgtgatgtt ttggacaccc aacgtgtctg agaaaatctt gatagacatc 1150 atcggagtgg actttgcctt tgcagaactc tgtgttgttc ctttgcggat 1200 cttctccttc ttcccagttc cagtcacagt gagggcgcat ctcaccgggt 1250 ggctgatgac actgaagaaa accttcgtcc ttgcccccag ctctgtgctg 1300 cggatcatcg tecteatege cagectegtg gteetaeeet acetgggggt 1350 gcacggtgcg accetgggcg tgggctccct cctggcgggc tttgtgggag 1400 aatccaccat ggtcgccatc gctgcgtgct atgtctaccg gaagcagaaa 1450 aagaagatgg agaatgagtc ggccacggag ggggaagact ctgccatgac 1500 agacatgcct ccgacagagg aggtgacaga catcgtggaa atgagagagg 1550 agaatgaata aggcacggga cgccatgggc actgcaggga cggtcagtca 1600 ggatgacact teggeateat etetteeete teecategta ttttgtteee 1650 ttttttttgt tttgttttgg taatgaaaga ggccttgatt taaaggtttc 1700 gtgtcaattc tctagcatac tgggtatgct cacactgacg gggggaccta 1750 gtgaatggtc tttactgttg ctatgtaaaa acaaacgaaa caactgactt 1800 catacccctg cctcacgaaa acccaaaaga cacagctgcc tcacggttga 1850 cqttqtqtcc tcctccctq gacaatctcc tcttqgaacc aaaggactqc 1900 agetgtgcca tegegeeteg gteaccetge acageaggee acagactete 1950 ctgtccccct tcatcgctct taagaatcaa caggttaaaa ctcggcttcc 2000 tttgatttgc ttcccagtca catggccgta caaagagatg gagccccggt 2050 ggcctcttaa atttcccttc tgccacggag ttcgaaacca tctactccac 2100 acatgcagga ggcgggtggc acgctgcagc ccggagtccc cgttcacact 2150 gaggaacgga gacctgtgac cacagcaggc tgacagatgg acagaatctc 2200 ccgtagaaag gtttggtttg aaatgccccg ggggcagcaa actgacatgg 2250 ttgaatgata gcatttcact ctgcgttctc ctagatctga gcaagctgtc 2300 agttctcacc cccaccgtgt atatacatga gctaactttt ttaaattgtc 2350 acaaaagcgc atctccagat tccagaccct gccgcatgac ttttcctgaa 2400 ggcttgcttt tccctcgcct ttcctgaagg tcgcattaga gcgagtcaca 2450 tggagcatcc taactttgca ttttagtttt tacagtgaac tgaagcttta 2500 agtctcatcc agcattctaa tgccaggttg ctgtagggta acttttgaag 2550 tagatatatt acctggttct gctatcctta gtcataactc tgcggtacag 2600 gtaattgaga atgtactacg gtacttccct cccacaccat acgataaagc 2650 aaqacatttt ataacqatac cagagtcact atgtggtcct ccctgaaata 2700 acqcattcga aatccatgca gtgcagtata tttttctaag ttttggaaag 2750 caggtttttt cctttaaaaa aattatagac acggttcact aaattgattt 2800 agtcagaatt cctagactga aagaacctaa acaaaaaaat attttaaaga 2850 tataaatata tgctgtatat gttatgtaat ttattttagg ctataataca 2900 tttcctattt tcgcattttc aataaaatgt ctctaataca aaaaa 2945

<210> 7

<211> 492

<212> PRT

<213> Homo sapiens

<400> 7

Met Val Lys Phe Pro Ala Leu Thr His Tyr Trp Pro Leu Ile Arg
1 5 10 15

Phe Leu Val Pro Leu Gly Ile Thr Asn Ile Ala Ile Asp Phe Gly 20 25 30

Glu Gln Ala Leu Asn Arg Gly Ile Ala Ala Val Lys Glu Asp Ala 35 40 45

Val Glu Met Leu Ala Ser Tyr Gly Leu Ala Tyr Ser Leu Met Lys

				50					55					60
Phe	e Phe	Thr	Gly	Pro 65	Met	Ser	Asp	Phe	Lys 70	Asn	Val	Gly	Leu	Val 75
Phe	e Val	Asn	Ser	Lys 80	Arg	Asp	Arg	Thr	Lys 85	Ala	Val	Leu	Cys	Met 90
Va.	l Val	Ala	Gly	Ala 95	Ile	Ala	Ala	Val	Phe 100	His	Thr	Leu	Ile	Ala 105
Ту	r Ser	Asp	Leu	Gly 110	Tyr	Tyr	Ile	Ile	Asn 115	Lys	Leu	His	His	Val 120
As	o Glu	Ser	Val	Gly 125	Ser	Lys	Thr	Arg	Arg 130	Ala	Phe	Leu	Tyr	Leu 135
Al	a Ala	Phe	Pro	Phe 140	Met	Asp	Ala	Met	Ala 145	Trp	Thr	His	Ala	Gly 150
I1	e Leu	Leu	Lys	His 155	Lys	Tyr	Ser	Phe	Leu 160	Val	Gly	Cys	Ala	Ser 165
Il	e Ser	Asp	Val	Ile 170	Ala	Gln	Val	Val	Phe 175	Val	Ala	Ile	Leu	Leu 180
Hi	s Ser	His	Leu	Glu 185	Cys	Arg	Glu	Pro	Leu 190	Leu	Ile	Pro	Ile	Leu 195
Se	r Leu	Tyr	Met	Gly 200	Ala	Leu	Val	Arg	Cys 205	Thr	Thr	Leu	Cys	Leu 210
Gl	y Tyr	Tyr	Lys	Asn 215	Ile	His	Asp	Ile	Ile 220	Pro	Asp	Arg	Ser	Gly 225
Pr	o Glu	Leu	Gly	Gly 230	Asp	Ala	Thr	Ile	Arg 235	Lys	Met	Leu	Ser	Phe 240
Tr	p Trp	Pro	Leu	Ala 245	Leu	Ile	Leu	Ala	Thr 250	Gln	Arg	Ile	Ser	Arg 255
Pr	o Ile	Val	Asn	Leu 260	Phe	Val	Ser	Arg	Asp 265	Leu	Gly	Gly	Ser	Ser 270
Al	a Ala	Thr	Glu	Ala 275	Val	Ala	Ile	Leu	Thr 280	Ala	Thr	Tyr	Pro	Val 285
Gl	y His	Met	Pro	Tyr 290	Gly	Trp	Leu	Thr	Glu 295		Arg	Ala	Val	Tyr 300
Pr	o Ala	Phe	Asp	Lys 305	Asn	Asn	Pro	Ser	Asn 310	Lys	Leu	Val	Ser	Thr 315
Se	r Asn	Thr	Val	Thr	Ala	Ala	His	Ile	Lys	Lys	Phe	Thr	Phe	Val

Cys Met Ala Leu Ser Leu Thr Leu Cys Phe Val Met Phe Trp Thr

```
Pro Asn Val Ser Glu Lys Ile Leu Ile Asp Ile Ile Gly Val Asp
                350
                                    355
Phe Ala Phe Ala Glu Leu Cys Val Val Pro Leu Arg Ile Phe Ser
                                    370
Phe Phe Pro Val Pro Val Thr Val Arg Ala His Leu Thr Gly Trp
                                    385
                380
Leu Met Thr Leu Lys Lys Thr Phe Val Leu Ala Pro Ser Ser Val
Leu Arg Ile Ile Val Leu Ile Ala Ser Leu Val Val Leu Pro Tyr
                                    415
                                                         420
                410
Leu Gly Val His Gly Ala Thr Leu Gly Val Gly Ser Leu Leu Ala
                                     430
Gly Phe Val Gly Glu Ser Thr Met Val Ala Ile Ala Ala Cys Tyr
                                                         450
                                     445
Val Tyr Arg Lys Gln Lys Lys Met Glu Asn Glu Ser Ala Thr
Glu Gly Glu Asp Ser Ala Met Thr Asp Met Pro Pro Thr Glu Glu
                470
                                     475
```

Val Thr Asp Ile Val Glu Met Arg Glu Glu Asn Glu
485 490

<210> 8 <211> 535

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 33, 66, 96, 387

<223> unknown base

<400> 8

cctgacagaa gtgccccgga gctgggggag atncaacatt aagaagatgc 50
tgagcttctg gtgccntttg gctctaattc tggccacaca gagaancagt 100
cggcctattg tcaacctctt tgtttcccgg gaccttggtg gcagttctgc 150
agccacagag gcagtggcga ttttgacagc cacataccct gtgggtcaca 200
tgccatacgg ctggttgacg gaaatccgtg ctgtgtatcc tgctttcgac 250
aagaataacc ccagcaacaa actggtgagc acgagcaaca cagtcacggc 300
ggcccacatc aagaagttca ccttcgtctg catggctctg tcactcacgc 350
tctgtttcgt gatgttttgg acacccaacg tgtctgngaa aatcttgata 400
gacatcatcg gagtggactt tgcctttgca gaactctgtg ttgttccttt 450

```
geggatette teettettee eagtteeagt caeagtgagg gegeatetea 500
 ccgggtggct gatgacactg aagaaaacct tcgtc 535
<210> 9
<211> 434
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 32, 54, 80, 111, 117, 122, 139, 193, 205, 221, 226, 228, 273,
      293, 296, 305, 336, 358, 361
<223> unknown base
<400> 9
 tgacggaatc ccgggctggg tatcctggtt tngacaagat aaacccccag 50
 caanaaattg gggagcaggg caaaacagtn acgggcagcc cacatcaaga 100
 agttcacctt ngtttqnatg gntctgtcaa ctcacgctnt gtttcgtgat 150
 qttttqqaca cccaaaqtqt ttqaqaaaat tttqataqac atnatcgqag 200
 tggantttgc ctttgcagaa ntttgngntg ttcctttgcg gattttctcc 250
 tttttcccag ttccagtcac agngagggcg catctcaccg ggnggntgat 300
 gacantgaag aaaacctttg tccttgcccc cagctntttg gtgcggatca 350
 ttqtcctnat ngccagcctt gtggtcctac cctacctggg ggtgcacggt 400
 gcgaccctgg gcgtgggttc cctcctggcg ggca 434
<210> 10
<211> 154
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 33, 49, 68, 83, 90, 98, 119
<223> unknown base
<400> 10
 tattcccagt tccggtcacg gggagggcgc atntcaccgg gtggctgang 50
 acactgaaga aaaccttngt ccttgccccc agntttgtgn tgcggatnat 100
 cgtcctcatc gccagcctng tggtcctacc ctacctgggg gtgcacggtg 150
 agac 154
<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
   <223> Synthetic oligonucleotide probe
   <400> 11
    ctgatccggt tcttggtgcc cctg 24
   <210> 12
   <211> 18
    <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 12
    gctctgtcac tcacgctc 18
   <210> 13
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 13
    tcatctcttc cctctccc 18
   <210> 14
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
<400> 14
    ccttccgcca cggagttc 18
   <210> 15
   <211> 24
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 15
    ggcaaagtcc actccgatga tgtc 24
   <210> 16
   <211> 24
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
```

AL THE

A. A.

al.

1

jeá.

```
<400> 16
gcctgctgtg gtcacaggtc tccg 24
<210> 17
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 17
tcggggagca ggccttgaac cggggcattg ctgctgtcaa ggagg 45
<210> 18
<211> 1901
<212> DNA
<213> Homo sapiens
<400> 18
qcccqcqcc cqqcqcqqq cqcccqaagc cqgqagccac cgccatgggg 50
qcctgcctgg gagcctgctc cctgctcagc tgcgcgtcct gcctctgcgg 100
ctctgccccc tgcatcctgt gcagctgctg ccccgccagc cgcaactcca 150
 ccqtqaqccq cctcatcttc acqttcttcc tcttcctggg ggtgctggtg 200
 tccatcatta tgctgagccc gggcgtggag agtcagctct acaagctgcc 250
 ctgggtgtgt gaggagggg ccgggatccc caccgtcctg cagggccaca 300
 tcgactgtgg ctccctgctt ggctaccgcg ctgtctaccg catgtgcttc 350
 gccacggcgg ccttcttctt cttctttttc accctgctca tgctctgcgt 400
 gagcagcagc cgggaccccc gggctgccat ccagaatggg ttttggttct 450
 ttaagtteet gateetggtg ggeeteaceg tgggtgeett etacateeet 500
 gacggctcct tcaccaacat ctggttctac ttcggcgtcg tgggctcctt 550
 cetetteate eteateeage tggtgetget categaettt gegeaeteet 600
 ggaaccagcg gtggctgggc aaggccgagg agtgcgattc ccgtgcctgg 650
 tacgcaggcc tcttcttctt cactctcctc ttctacttgc 'tgtcgatcgc 700
 ggccgtggcg ctgatgttca tgtactacac tgagcccagc ggctgccacg 750
 agggcaaggt cttcatcagc ctcaacctca ccttctgtgt ctgcgtgtcc 800
 getgeaggee teggteatea ecetetaeae catgtttgte acetggteag 900
```

ccctatccag tatccctgaa cagaaatgca acccccattt gccaacccag 950

ctgggcaacg agacagttgt ggcaggcccc gagggctatg agacccagtg 1000 gtgggatgcc ccgagcattg tgggcctcat catcttcctc ctgtgcaccc 1050 tetteateag tetgegetee teagaceace ggeaggtgaa eageetgatg 1100 cagaccgagg agtgcccacc tatgctagac gccacacagc agcagcagca 1150 gcaggtggca gcctgtgagg gccgggcctt tgacaacgag caggacggcg 1200 teacctacag ctacteette tteeacttet geetggtget ggeeteactg 1250 cacqtcatqa tgacqctcac caactggtac aagcccggtg agacccggaa 1300 gatgatcagc acgtggaccg ccgtgtgggt gaagatctgt gccagctggg 1350 cagggetget cetetacetg tggaccetgg tagececaet ceteetgege 1400 aaccgcgact tcagctgagg cagcctcaca gcctgccatc tggtgcctcc 1450 tgccacctgg tgcctctcgg ctcggtgaca gccaacctgc ccctcccca 1500 caccaatcag ccaggetgag ccccaccc tgccccaget ccaggacetg 1550 cccctqaqcc qqqccttcta qtcqtaqtqc cttcaqggtc cgaggagcat 1600 caggetectg cagageeeca teeeceegee acaceeacae ggtggagetg 1650 cetetteett eccetectee etgttgeeca tacteageat eteggatgaa 1700 agggeteet tgteeteagg etecaeggga geggggetge tggagagage 1750 ggggaactcc caccacagtg gggcatccgg cactgaagcc ctggtgttcc 1800 tggtcacgtc ccccagggga ccctgccccc ttcctggact tcgtgcctta 1850 ctgagtctct aagacttttt ctaataaaca agccagtgcg tgtaaaaaaa 1900 a 1901

<210> 19

<211> 457

<212> PRT

<213> Homo sapiens

<400> 19

Met Gly Ala Cys Leu Gly Ala Cys Ser Leu Leu Ser Cys Ala Ser 1 5 10 15

Cys Leu Cys Gly Ser Ala Pro Cys Ile Leu Cys Ser Cys Cys Pro 20 25 30

Ala Ser Arg Asn Ser Thr Val Ser Arg Leu Ile Phe Thr Phe Phe 35 40 45

Leu Phe Leu Gly Val Leu Val Ser Ile Ile Met Leu Ser Pro Gly 50 55 60

Val Glu Ser Gln Leu Tyr Lys Leu Pro Trp Val Cys Glu Glu Gly Ala Gly Ile Pro Thr Val Leu Gln Gly His Ile Asp Cys Gly Ser Leu Leu Gly Tyr Arg Ala Val Tyr Arg Met Cys Phe Ala Thr Ala Ala Phe Phe Phe Phe Phe Thr Leu Leu Met Leu Cys Val Ser Ser Ser Arg Asp Pro Arg Ala Ala Ile Gln Asn Gly Phe Trp Phe 125 Phe Lys Phe Leu Ile Leu Val Gly Leu Thr Val Gly Ala Phe Tyr 140 Ile Pro Asp Gly Ser Phe Thr Asn Ile Trp Phe Tyr Phe Gly Val 155 Val Gly Ser Phe Leu Phe Ile Leu Ile Gln Leu Val Leu Leu Ile 170 175 180 Asp Phe Ala His Ser Trp Asn Gln Arg Trp Leu Gly Lys Ala Glu 190 Glu Cys Asp Ser Arg Ala Trp Tyr Ala Gly Leu Phe Phe Phe Thr 210 Leu Leu Phe Tyr Leu Leu Ser Ile Ala Ala Val Ala Leu Met Phe Met Tyr Tyr Thr Glu Pro Ser Gly Cys His Glu Gly Lys Val Phe 230 Ile Ser Leu Asn Leu Thr Phe Cys Val Cys Val Ser Ile Ala Ala Val Leu Pro Lys Val Gln Asp Ala Gln Pro Asn Ser Gly Leu Leu 270 260 Gln Ala Ser Val Ile Thr Leu Tyr Thr Met Phe Val Thr Trp Ser 275 Ala Leu Ser Ser Ile Pro Glu Gln Lys Cys Asn Pro His Leu Pro 290 Thr Gln Leu Gly Asn Glu Thr Val Val Ala Gly Pro Glu Gly Tyr Glu Thr Gln Trp Trp Asp Ala Pro Ser Ile Val Gly Leu Ile Ile 330 320 Phe Leu Leu Cys Thr Leu Phe Ile Ser Leu Arg Ser Ser Asp His 335 Arg Gln Val Asn Ser Leu Met Gln Thr Glu Glu Cys Pro Pro Met Leu Asp Ala Thr Gln Gln Gln Gln Gln Gln Val Ala Ala Cys Glu 365 370 375

Gly Arg Ala Phe Asp Asn Glu Gln Asp Gly Val Thr Tyr Ser Tyr 380 385 390

Ser Phe Phe His Phe Cys Leu Val Leu Ala Ser Leu His Val Met 395 400 405

Met Thr Leu Thr Asn Trp Tyr Lys Pro Gly Glu Thr Arg Lys Met 410 415 420

Ile Ser Thr Trp Thr Ala Val Trp Val Lys Ile Cys Ala Ser Trp
425 430 435

Ala Gly Leu Leu Tyr Leu Trp Thr Leu Val Ala Pro Leu Leu 440 445 450

Leu Arg Asn Arg Asp Phe Ser 455

<210> 20

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

ik is

Culting and a second

<223> Synthetic oligonucleotide probe

<400> 20 gccgcctcat cttcacgttc ttcc 24

<210> 21

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 21

tcatccagct ggtgctgctc 20

<210> 22

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 22

cttcttccac ttctgcctgg 20

<210> 23

<211> 18

```
M.
i bişi
**
i de
Es.S.
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 23
 cctgggcaaa aatgcaac 18
<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 24
 caggaatgta gaaggcaccc acgg 24
<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 25
 tggcacagat cttcacccac acgg 24
<210> 26
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 26
 tgtccatcat tatgctgagc ccgggcgtgg agagtcagct ctacaagctg 50
<210> 27
<211> 1351
<212> DNA
<213> Homo sapiens
<400> 27
 gagcgaggcc ggggactgaa ggtgtgggtg tcgagccctc tggcagaggg 50
ttaacctggg tcaaatgcac ggattctcac ctcgtacagt tacgctctcc 100
 cgcggcacgt ccgcgaggac ttgaagtcct qaqcqctcaa qtttqtccqt 150
 aggtcgagag aaggccatgg aggtgccgcc accggcaccg cggagctttc 200
tctgtagagc attgtgccta tttccccgag tctttgctgc cgaagctgtg 250
```

actgccgatt cggaagtcct tgaggagcgt cagaagcggc ttccctacgt 300 cccagagccc tattacccgg aatctggatg ggaccgcctc cgggagctgt 350 ttggcaaaga tgaacagcag agaatttcaa aggaccttgc taatatctgt 400 aagacggcag ctacagcagg catcattggc tgggtgtatg ggggaatacc 450 agcttttatt catgctaaac aacaatacat tgagcagagc caggcagaaa 500 tttatcataa ccggtttgat gctgtgcaat ctgcacatcg tgctgccaca 550 cgaggcttca ttcgttatgg ctggcgctgg ggttggagaa ctgcagtgtt 600 tgtgactata ttcaacacag tgaacactag tctgaatgta taccgaaata 650 aagatgcctt aagccatttt gtaattgcag gagctgtcac gggaagtctt 700 tttaggataa acgtaggcct gcqtggcctg gtggctggtg gcataattgg 750 agccttgctg ggcactcctg taggaggcct gctgatggca tttcagaagt 800 acgctggtga gactgttcag gaaagaaaac agaaggatcg aaaggcactc 850 catgagctaa aactggaaga gtggaaaggc agactacaag ttactgagca 900 cctccctgag aaaattgaaa gtagtttacg ggaagatgaa cctgagaatg 950 atgctaagaa aattgaagca ctgctaaacc ttcctagaaa cccttcagta 1000 atagataaac aagacaagga ctgaaagtgc tctgaacttg aaactcactg 1050 gagagetgaa gggagetgee atgteegatg aatgeeaaca gacaggeeac 1100 tctttggtca gcctgctgac aaatttaagt gctggtacct gtggtggcag 1150 tggcttgctc ttgtcttttt cttttctttt taactaagaa tggggctgtt 1200 ttaatctatc aatatatgca tacatggata tatccaccca cctagatttt 1300 aagcagtaaa taaaacattt cgcaaaagat taaagttgaa ttttacagtt 1350 t 1351

<210> 28

<211> 285

<212> PRT

<213> Homo sapiens

<400> 28

Met Glu Val Pro Pro Pro Ala Pro Arg Ser Phe Leu Cys Arg Ala 1 5 10 15

Leu Cys Leu Phe Pro Arg Val Phe Ala Ala Glu Ala Val Thr Ala 20 25 30

Asp Ser Glu Val Leu Glu Glu Arg Gln Lys Arg Leu Pro Tyr Val Pro Glu Pro Tyr Tyr Pro Glu Ser Gly Trp Asp Arg Leu Arg Glu Leu Phe Gly Lys Asp Glu Gln Gln Arg Ile Ser Lys Asp Leu Ala Asn Ile Cys Lys Thr Ala Ala Thr Ala Gly Ile Ile Gly Trp Val Tyr Gly Gly Ile Pro Ala Phe Ile His Ala Lys Gln Gln Tyr Ile Glu Gln Ser Gln Ala Glu Ile Tyr His Asn Arg Phe Asp Ala Val 110 Gln Ser Ala His Arg Ala Ala Thr Arg Gly Phe Ile Arg Tyr Gly Trp Arg Trp Gly Trp Arg Thr Ala Val Phe Val Thr Ile Phe Asn Thr Val Asn Thr Ser Leu Asn Val Tyr Arg Asn Lys Asp Ala Leu 155 Ser His Phe Val Ile Ala Gly Ala Val Thr Gly Ser Leu Phe Arg 180 170 Ile Asn Val Gly Leu Arg Gly Leu Val Ala Gly Gly Ile Ile Gly Ala Leu Leu Gly Thr Pro Val Gly Gly Leu Leu Met Ala Phe Gln 200 Lys Tyr Ala Gly Glu Thr Val Gln Glu Arg Lys Gln Lys Asp Arg 215 Lys Ala Leu His Glu Leu Lys Leu Glu Glu Trp Lys Gly Arg Leu 235 240 230 Gln Val Thr Glu His Leu Pro Glu Lys Ile Glu Ser Ser Leu Arg 245 Glu Asp Glu Pro Glu Asn Asp Ala Lys Lys Ile Glu Ala Leu Leu 270 260 Asn Leu Pro Arg Asn Pro Ser Val Ile Asp Lys Gln Asp Lys Asp 275

<210> 29

<211> 324

<212> DNA

<213> Homo sapiens

<400> 29

cggaagtccc ttgaggagcg tcagaagcgg cttccctacg tcccagagcc 50

ctattacccg gaatctggat gggaccgctc cgggagctgt ttggcaaaga 100
tgaacagcag agaatttcaa aggaccttgc taatatctgt aagacggcag 150
ctacagcagg catcattggc tgggtgtatg ggggaatacc agcttttatt 200
catgctaaac aacaatacat tgagcagagc caggcagaaa tttatcataa 250
ccggtttgat gctgtgcaat ctgcacatcg tgctgccaca cgaggcttca 300
ttcgttcatg gctggcgccg aacc 324

<211> 377 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 262, 330, 371 <223> unknown base

<210> 30

<210> 31

<400> 30
 tcaagtttgt ccgtaggtcg agagaaggcc atggaggtgc cgccaccggc 50
 accgcggagc ttttttctgt agagcattgt gcctatttcc ccgagttttt 100
 gctgccgaag ctgtgactgc cgattcggaa gtccttgagg agcgtcagaa 150
 gcggcttccc tacgtcccag agccctatta cccggaattt ggatgggacc 200
 gcctccggga gctgtttggc aaagatgaac agcagagaat ttcaaaggac 250
 cttgctgata tntgtaagac ggcagctaca gcaggcatca ttggctgggt 300
 gtatgggga ataccagctt ttattcatgn taaacaacaa tacattgagc 350
 agagccaggc agaaatttat nataacc 377

<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 31
 tcgtacagtt acgctctccc 20
<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence

<220> <223> Synthetic oligonucleotide probe

```
<400> 32
cttgaggagc gtcagaagcg 20
<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 33
ataacgaatg aagcctcgtg 20
<210> 34
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 34
gctaatatct gtaagacggc agctacagca ggcatcattg 40
<210> 35
<211> 1819
<212> DNA
<213> Homo sapiens
<400> 35
gagccgccgc cgcgcgcgc ccgcgcactg cagccccagg ccccggcccc 50
ccacccacgt ctgcgttgct gccccgcctg ggccaggccc caaaggcaag 100
gacaaagcag ctgtcaggga acctccgccg gagtcgaatt tacgtgcagc 150
tgccggcaac cacaggttcc aagatggttt gcgggggctt cgcgtgttcc 200
aagaactgcc tgtgcgccct caacctgctt tacaccttgg ttagtctgct 250
gctaattgga attgctgcgt ggggcattgg cttcgggctg atttccagtc 300
 tccgagtggt cggcgtggtc attgcagtgg gcatcttctt gttcctgatt 350
gctttagtgg gtctgattgg agctgtaaaa catcatcagg tgttgctatt 400
tttttatatg attattctgt tacttgtatt tattgttcag ttttctgtat 450
cttgcgcttg tttagccctg aaccaggagc aacagggtca gcttctggag 500
gttggttgga acaatacggc aagtgctcga aatgacatcc agagaaatct 550
aaactgctgt gggttccgaa gtgttaaccc aaatgacacc tgtctggcta 600
gctgtgttaa aagtgaccac tcgtgctcgc catgtgctcc aatcatagga 650
gaatatgctg gagaggtttt gagatttgtt ggtggcattg gcctgttctt 700
```

cagttttaca gagatcctgg gtgtttggct gacctacaga tacaggaacc 750 agaaagaccc ccgcgcgaat cctagtgcat tcctttgatg agaaaacaag 800 gaagatttcc tttcgtatta tgatcttgtt cactttctgt aattttctgt 850 taagctccat ttgccagttt aaggaaggaa acactatctg gaaaagtacc 900 ttattgatag tggaattata tatttttact ctatgtttct ctacatgttt 950 ttttctttcc gttgctgaaa aatatttgaa acttgtggtc tctgaagctc 1000 ggtggcacct ggaatttact gtattcattg tcgggcactg tccactgtgg 1050 cctttcttag catttttacc tgcagaaaaa ctttgtatgg taccactgtg 1100 ttggttatat ggtgaatctg aacgtacatc tcactggtat aattatatgt 1150 agcactgtgc tgtgtagata gttcctactg gaaaaagagt ggaaatttat 1200 taaaatcaga aagtatgaga tootgttatg ttaagggaaa tooaaattoo 1250 caattttttt tggtcttttt aggaaagatt gttgtggtaa aaagtgttag 1300 tataaaaaatg ataatttact tgtagtcttt tatgattaca ccaatgtatt 1350 ctagaaatag ttatgtctta ggaaattgtg gtttaatttt tgacttttac 1400 aggtaagtgc aaaggagaag tggtttcatg aaatgttcta atgtataata 1450 acatttacct tcagcctcca tcagaatgga acgagttttg agtaatcagg 1500 aagtatatct atatgatctt gatattgttt tataataatt tgaagtctaa 1550 aagactgcat ttttaaacaa gttagtatta atgcgttggc ccacgtagca 1600 aaaagatatt tgattatctt aaaaattgtt aaataccgtt ttcatgaaat 1650 ttctcagtat tgtaacagca acttgtcaaa cctaagcata tttgaatatg 1700 atctcccata atttgaaatt gaaatcgtat tgtgtggctc tgtatattct 1750 gttaaaaaat taaaggacag aaacctttct ttgtgtatgc atgtttgaat 1800 taaaagaaag taatggaag 1819

```
<210> 36
```

Leu Asn Leu Leu Tyr Thr Leu Val Ser Leu Leu Leu Ile Gly Ile 20 25 30

<211> 204

<212> PRT

<213> Homo sapiens

<400> 36

Met Val Cys Gly Gly Phe Ala Cys Ser Lys Asn Cys Leu Cys Ala 1 5 10 15

```
Ala Ala Trp Gly Ile Gly Phe Gly Leu Ile Ser Ser Leu Arg Val
Val Gly Val Val Ile Ala Val Gly Ile Phe Leu Phe Leu Ile Ala
Leu Val Gly Leu Ile Gly Ala Val Lys His His Gln Val Leu Leu
                 65
                                     70
Phe Phe Tyr Met Ile Ile Leu Leu Val Phe Ile Val Gln Phe
Ser Val Ser Cys Ala Cys Leu Ala Leu Asn Gln Glu Gln Gly
Gln Leu Leu Glu Val Gly Trp Asn Asn Thr Ala Ser Ala Arg Asn
                110
                                    115
Asp Ile Gln Arg Asn Leu Asn Cys Cys Gly Phe Arg Ser Val Asn
Pro Asn Asp Thr Cys Leu Ala Ser Cys Val Lys Ser Asp His Ser
Cys Ser Pro Cys Ala Pro Ile Ile Gly Glu Tyr Ala Gly Glu Val
                155
Leu Arg Phe Val Gly Gly Ile Gly Leu Phe Phe Ser Phe Thr Glu
                                                        180
                170
Ile Leu Gly Val Trp Leu Thr Tyr Arg Tyr Arg Asn Gln Lys Asp
                185
```

Pro Arg Ala Asn Pro Ser Ala Phe Leu 200

<210> 37

<211> 390

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 20, 35, 61, 83, 106, 130, 133, 187, 232, 260, 336

<223> unknown base

<400> 37

tgattggagc tgtaaaaaan tcttcaggtg ttgtnatttt tttatatgat 50 tattctgtaa nttgtatta ttgttcagtt ttntgtatct tgcgcttgtt 100 tagccntgaa ccaggagcaa cagggtcagn ttntggaggt tggttggaac 150 aatacggcaa gtgctcgaaa tgacatccag agaaatntaa actgctgtgg 200 gttccgaagt gttaacccaa atgacacctg tntggctagc tgtgttaaaa 250 gtgaccactn gtgctcgcaa tgtgctccaa tcataggaga atatgctgga 300

gaggttttga gatttgttgg tggcattggc ctgttnttca gttttacaga 350 gatcctgggt gtttggctga cctacagata caggaaccag 390 <210> 38 <211> 566 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 27 <223> unknown base <400> 38 aatcccaaat tccccaattt ttttggnctt tttagggaaa gatgtgttgt 50 ggtaaaaagt gttagtataa aaatgataat ttacttgtag tcttttatga 100 ttacaccaat gtattctaga atagttatgt cttaggaaat tgtggtttaa 150 tttttgactt ttacaggtaa gtgcaaagga gaagtggttt catgaaatgt 200 tctaatgtat aataacattt accttcagcc tcccatcaga atggaacgag 250 ttttgagtaa tccaggaagt atatctatat gatcttgata ttgttttata 300 taatttgaag totaaaagac tgcattttta aacaagttag tattaatgcg 350 ttggcccacg tagcaaaaag atatttgatt atcttaaaaa ttgttaaata 400 ccgttttcat gaaagttctc agtattgtaa cagcaacttg tcaaacctaa 450 gcatatttga atatgatctc ccataatttg aaattgaaat cgtattgtgt 500 ggaggaaatg gcaatcttat gtgtgctgaa ggacacagta agagcaccaa 550 gttgtgcccc acttgc 566 <210> 39 <211> 264 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 84-85, 206 <223> unknown base <400> 39 atgattattc tgttacttgt atttattgtt cagttttatg gtatcttgcg 50

atgattattc tgttacttgt atttattgtt cagttttatg gtatcttgcg 50 cttgtttagc ccctgaaacc aggagcaaca gggnncagct tcctggaggt 100 tggttggcaa caatcacggc caagtgactc cgcaaatgac atcccagaga 150 aatcctaaac tgctgtgggt tccgaagtgt taacccaaat gacacctgtc 200

```
tggctngctg tgttaaaagt gaccactcgt gctcgccatg tgctccaatc 250
 ataggagaat atgc 264
<210> 40
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 40
 acccacgtct gcgttgctgc c 21
<210> 41
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 41
 gagaatatgc tggagagg 18
<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 42
aggaatgcac taggattcgc gcgg 24
<210> 43
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 43
 ggccccaaag gcaaggacaa agcagctgtc agggaacctc cgccg 45
<210> 44
<211> 2061
<212> DNA
<213> Homo sapiens
<400> 44
 cagtcaccat gaagctgggc tgtgtcctca tggcctgggc cctctacctt 50
```

ge da

tecettggtg tgetetgggt ggeceagatg etactggetg ecagttttga 100

gacgctgcag tgtgagggac ctgtctgcac tgaggagagc agctgccaca 150 cggaggatga cttgactgat gcaagggaag ctggcttcca ggtcaaggcc 200 tacactttca gtgaaccctt ccacctgatt gtgtcctatg actggctgat 250 cctccaaggt ccagccaagc cagtttttga aggggacctg ctggttctgc 300 getgecagge etggeaagae tggecaetga eteaggtgae ettetaeega 350 gatggctcag ctctgggtcc ccccgggcct aacagggaat tctccatcac 400 cgtggtacaa aaggcagaca gcgggcacta ccactgcagt ggcatcttcc 450 agagecetgg teetgggate ceagaaacag catetgttgt ggetateaca 500 gtccaagaac tgtttccagc gccaattctc agagctgtac cctcagctga 550 accccaaqca qqaaqcccca tqaccctqaq ttqtcaqaca aaqttgcccc 600 tgcagaggtc agctgcccgc ctcctcttct ccttctacaa ggatggaagg 650 ataqtqcaaa qcaqqqqqt ctcctcaqaa ttccaqatcc ccacaqcttc 700 agaagatcac teegggteat actggtgtga ggeageeact gaggacaace 750 aagtttggaa acagagccc cagctagaga tcagagtgca gggtgcttcc 800 agetetgetg caceteccae attgaateca getecteaga aateagetge 850 tccaggaact gctcctgagg aggcccctgg gcctctgcct ccgccgccaa 900 ccccatcttc tgaggatcca ggcttttctt ctcctctggg gatgccagat 950 cctcatctgt atcaccagat gggccttctt ctcaaacaca tgcaggatgt 1000 gagagteete eteggteace tgeteatgga gttgagggaa ttatetggee 1050 accagaagcc tgggaccaca aaggctactg ctgaatagaa gtaaacagtt 1100 catccatgat ctcacttaac caccccaata aatctgattc tttattttct 1150 cttcctgtcc tgcacatatg cataagtact tttacaagtt gtcccagtgt 1200 agaattagag tttagctata attgtgtatt ctctcttaac acaacagaat 1300 tctgctgtct agatcaggaa tttctatctg ttatatcgac cagaatgttg 1350 tgatttaaag agaactaatg gaagtggatt gaatacagca gtctcaactg 1400 ggggcaattt tgcccccag aggacattgg gcaatgtttg gagacatttt 1450 ggtcattata cttggggggt tggggatgg tgggatgtgt gtctactggc 1500 atccagtaaa tagaagccag gggtgccgct aaacatccta taatgcacag 1550

ggcagtacce cacaacgaaa aataatctgg cccaaaatgt cagttgtact 1600 gagtttgaga aaccccagce taatgaaacc ctaggtgttg ggctctggaa 1650 tgggactttg teeettetaa ttattatete tttecagcet cattcageta 1700 ttettactga cataccagte tttagetggt gctatggtet gttetttagt 1750 tetagtttgt atcccetcaa aagccattat gttgaaatce taatccccaa 1800 ggtgatggca ttaagaagtg ggcetttggg aagtgattag atcaggagtg 1850 cagageeete atgattagga ttagtgeeet tatttaaaaa ggceccagag 1900 agctaactca ecettecace atagtgagee gtggcaagaa gatgacatgt 1950 atgagaacca aaaaacaget gtegccaaac accgactetg tegttgeett 2000 gatettgaac ttecageete cagaactatg agaaataaaa ttetggttgt 2050 ttgtageeta a 2061

<210> 45 <211> 359 <212> PRT <213> Homo sapiens

<400> 45

95 100 105

Pro Leu Thr Gln Val Thr Phe Tyr Arg Asp Gly Ser Ala Leu Gly 110 115 120

Glu Gly Asp Leu Leu Val Leu Arg Cys Gln Ala Trp Gln Asp Trp

Pro Pro Gly Pro Asn Arg Glu Phe Ser Ile Thr Val Val Gln Lys 125 130 135

Ala Asp Ser Gly His Tyr His Cys Ser Gly Ile Phe Gln Ser Pro 140 145 150

```
Gly Pro Gly Ile Pro Glu Thr Ala Ser Val Val Ala Ile Thr Val
                155
Gln Glu Leu Phe Pro Ala Pro Ile Leu Arg Ala Val Pro Ser Ala
                                     175
                 170
Glu Pro Gln Ala Gly Ser Pro Met Thr Leu Ser Cys Gln Thr Lys
                                     190
                 185
Leu Pro Leu Gln Arg Ser Ala Ala Arg Leu Leu Phe Ser Phe Tyr
                                     205
Lys Asp Gly Arg Ile Val Gln Ser Arg Gly Leu Ser Ser Glu Phe
                                     220
                 215
Gln Ile Pro Thr Ala Ser Glu Asp His Ser Gly Ser Tyr Trp Cys
Glu Ala Ala Thr Glu Asp Asn Gln Val Trp Lys Gln Ser Pro Gln
Leu Glu Ile Arg Val Gln Gly Ala Ser Ser Ser Ala Ala Pro Pro
                 260
Thr Leu Asn Pro Ala Pro Gln Lys Ser Ala Ala Pro Gly Thr Ala
                 275
Pro Glu Glu Ala Pro Gly Pro Leu Pro Pro Pro Pro Thr Pro Ser
                                     295
                 290
Ser Glu Asp Pro Gly Phe Ser Ser Pro Leu Gly Met Pro Asp Pro
His Leu Tyr His Gln Met Gly Leu Leu Leu Lys His Met Gln Asp
                                     325
                 320
Val Arg Val Leu Leu Gly His Leu Leu Met Glu Leu Arg Glu Leu
 Ser Gly His Gln Lys Pro Gly Thr Thr Lys Ala Thr Ala Glu
                 350
<210> 46
<211> 18
<212> DNA
```

- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 46
- tgggctgtgt cctcatgg 18
- <210> 47
- <211> 18
- <212> DNA
- <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 47
tttccagcgc caattctc 18
<210> 48
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 48
agttcttgga ctgtgatagc cac 23
<210> 49
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 49
 aaacttggtt gtcctcagtg gctg 24
<210> 50
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 gtgagggacc tgtctgcact gaggagagca gctgccacac ggagg 45
<210> 51
<211> 2181
<212> DNA
<213> Homo sapiens
<400> 51
 cccacgcgtc cgcccacgcg tccgcccacg ggtccgccca cgcgtccggg 50
 ccaccagaag tttgagcctc tttggtagca ggaggctgga agaaaggaca 100
 gaagtagete tggetgtgat ggggatetta etgggeetge taeteetggg 150
 gcacctaaca gtggacactt atggccgtcc catcctggaa gtgccagaga 200
 gtgtaacagg accttggaaa ggggatgtga atcttccctg cacctatgac 250
 cccctgcaag gctacaccca agtcttggtg aagtggctgg tacaacgtgg 300
 ctcagaccct gtcaccatct ttctacgtga ctcttctgga gaccatatcc 350
```

ij

į į

23

1

k.k

agcaggcaaa gtaccagggc cgcctgcatg tgagccacaa ggttccagga 400 gatgtatccc tccaattgag caccetggag atggatgacc ggagccacta 450 cacgtgtgaa gtcacctggc agactcctga tggcaaccaa gtcgtgagag 500 ataagattac tgagctccgt gtccagaaac tctctgtctc caagcccaca 550 gtgacaactg gcagcggtta tggcttcacg gtgccccagg gaatgaggat 600 tagcetteaa tgeeaggete ggggttetee teecateagt tatatttggt 650 ataagcaaca gactaataac caggaaccca tcaaagtagc aaccctaagt 700 accttactct tcaagcctgc ggtgatagcc gactcaggct cctatttctg 750 cactgccaag ggccaggttg gctctgagca gcacagcgac attgtgaagt 800 ttgtggtcaa agactcctca aagctactca agaccaagac tgaggcacct 850 acaaccatga catacccctt gaaagcaaca tctacagtga agcagtcctg 900 ggactggacc actgacatgg atggctacct tggagagacc agtgctgggc 950 caggaaagag cctgcctgtc tttgccatca tcctcatcat ctccttgtgc 1000 tgtatggtgg tttttaccat ggcctatatc atgctctgtc ggaagacatc 1050 ccaacaagag catgtctacg aagcagccag gtaagaaagt ctctcctctt 1100 ccatttttga ccccgtccct gccctcaatt ttgattactg gcaggaaatg 1150 tggaggaagg ggggtgtggc acagacccaa tcctaaggcc ggaggccttc 1200 agggtcagga catagctgcc ttccctctct caggcacctt ctgaggttgt 1250 tttggccctc tgaacacaaa ggataattta gatccatctg ccttctgctt 1300 ccagaatccc tgggtggtag gatcctgata attaattggc aagaattgag 1350 qcagaagggt gggaaaccag gaccacagcc ccaagtccct tcttatgggt 1400 ggtgggctct tgggccatag ggcacatgcc agagaggcca acgactctgg 1450 agaaaccatg agggtggcca tcttcgcaag tggctgctcc agtgatgagc 1500 caacttccca gaatctgggc aacaactact ctgatgagcc ctgcatagga 1550 caggagtacc agateatege ecagateaat ggeaactacg ecegeetget 1600 ggacacagtt cctctggatt atgagtttct ggccactgag ggcaaaagtg 1650 tctgttaaaa atgccccatt aggccaggat ctgctgacat aattgcctag 1700 teagteettg cettetgeat ggeettette cetgetacet etetteetgg 1750 atageceaaa gtgteegeet accaacactg gageegetgg gagteactgg 1800

ctttgccctg gaatttgcca gatgcatctc aagtaagcca gctgctggat 1850 ttggctctgg gcccttctag tatctctgcc gggggcttct ggtactcctc 1900 tctaaatacc agagggaaga tgcccatagc actaggactt ggtcatcatg 1950 cctacagaca ctattcaact ttggcatctt gccaccagaa gacccgaggg 2000 aggctcagct ctgccagctc agaggaccag ctatatccag gatcatttct 2050 ctttcttcag ggccagacag cttttaattg aaattgttat ttcacaggcc 2100 agggttcagt tctgctcctc cactataagt ctaatgttct gactctctcc 2150 tggtgctcaa taaatacta atcataacag c 2181

<210> 52

<211> 321

<212> PRT

<213> Homo sapiens

<400> 52

Met Gly Ile Leu Leu Gly Leu Leu Leu Gly His Leu Thr Val 1 5 10 15

Asp Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr 20 25 30

Gly Pro Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro
35 40 45

Leu Gln Gly Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg
50 55 60

Gly Ser Asp Pro Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp 65 70 75

His Ile Gln Gln Ala Lys Tyr Gln Gly Arg Leu His Val Ser His
80 85 90

Lys Val Pro Gly Asp Val Ser Leu Gln Leu Ser Thr Leu Glu Met 95 100 105

Asp Asp Arg Ser His Tyr Thr Cys Glu Val Thr Trp Gln Thr Pro 110 115 120

Asp Gly Asn Gln Val Val Arg Asp Lys Ile Thr Glu Leu Arg Val 125 130 135

Gln Lys Leu Ser Val Ser Lys Pro Thr Val Thr Thr Gly Ser Gly 140 145 150

Tyr Gly Phe Thr Val Pro Gln Gly Met Arg Ile Ser Leu Gln Cys 155 160 165

Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile Trp Tyr Lys Gln 170 175 180

```
Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr Leu Ser Thr
                 185
                                     190
 Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser Tyr Phe
                 200
 Cys Thr Ala Lys Gly Gln Val Gly Ser Glu Gln His Ser Asp Ile
                 215
 Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys
                 230
                                      235
 Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser
                 245
 Thr Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr
 Leu Gly Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe
                 275
 Ala Ile Ile Leu Ile Ile Ser Leu Cys Cys Met Val Val Phe Thr
Met Ala Tyr Ile Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His
 Val Tyr Glu Ala Ala Arg
                 320
<210> 53
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 53
tatccctcca attgagcacc ctgg 24
<210> 54
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 54
gtcggaagac atcccaacaa g 21
<210> 55
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Synthetic oligonucleotide probe <400> 55 cttcacaatg tcgctgtgct gctc 24 <210> 56 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 56 agccaaatcc agcagctggc ttac 24 <210> 57 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 57 tggatgaccg gagccactac acgtgtgaag tcacctggca gactcctgat 50 <210> 58 <211> 2458 <212> DNA <213> Homo sapiens gcgccgggag cccatctgcc cccaggggca cggggcgcgg ggccggctcc 50 cgcccggcac atggctgcag ccacctcgcg cgcaccccga ggcgccgcgc 100 ccaqctcqcc cqaqqtccqt cqqaqqcqcc cqqccqcccc ggagccaagc 150 agcaactgag cggggaagcg cccgcgtccg gggatcggga tgtccctcct 200 cetteteete ttgetagttt cetaetatgt tggaacettg gggacteaca 250 ctgagatcaa gagagtggca gaggaaaagg tcactttgcc ctgccaccat 300 caactggggc ttccagaaaa agacactctg gatattgaat ggctgctcac 350 cgataatgaa gggaaccaaa aagtggtgat cacttactcc agtcgtcatg 400 tctacaataa cttgactgag gaacagaagg gccgagtggc ctttgcttcc 450 aatttcctgg caggagatgc ctccttgcag attgaacctc tgaagcccag 500 tgatgagggc cggtacacct gtaaggttaa gaattcaggg cgctacgtgt 550 ggagccatgt catcttaaaa gtcttagtga gaccatccaa gcccaagtgt 600 qaqttqqaaq qaqaqctqac aqaaqqaaqt qacctqactt tqcaqtqtga 650

gtcatcctct ggcacagagc ccattgtgta ttactggcag cgaatccgag 700 agaaagaggg agaggatgaa cgtctgcctc ccaaatctag gattgactac 750 aaccaccctg gacgagttct gctgcagaat cttaccatgt cctactctgg 800 actgtaccag tgcacagcag gcaacgaagc tgggaaggaa agctgtgtgg 850 tgcgagtaac tgtacagtat gtacaaagca tcggcatggt tgcaggagca 900 gtgacaggca tagtggctgg agccctgctg attttcctct tggtgtggct 950 gctaatccga aggaaagaca aagaaagata tgaggaagaa gagagaccta 1000 atgaaattcg agaagatgct gaagctccaa aagcccgtct tgtgaaaccc 1050 agetectett ceteaggete teggagetea egetetggtt etteeteeae 1100 tegetecaea geaaatagtg ceteaegeag ceageggaea etgteaaetg 1150 acgcagcacc ccagccaggg ctggccaccc aggcatacag cctagtgggg 1200 ccagaggtga gaggttctga accaaagaaa gtccaccatg ctaatctgac 1250 caaagcagaa accacacca gcatgatccc cagccagagc agagccttcc 1300 aaacggtctg aattacaatg gacttgactc ccacgctttc ctaggagtca 1350 gggtctttgg actcttctcg tcattggagc tcaagtcacc agccacacaa 1400 ccagatgaga ggtcatctaa gtagcagtga gcattgcacg gaacagattc 1450 agatgagcat tttccttata caataccaaa caagcaaaag gatgtaagct 1500 gattcatctg taaaaaggca tcttattgtg cctttagacc agagtaaggg 1550 aaagcaggag tccaaatcta tttgttgacc aggacctgtg gtgagaaggt 1600 tggggaaagg tgaggtgaat atacctaaaa cttttaatgt gggatatttt 1650 gtatcagtgc tttgattcac aattttcaag aggaaatggg atgctgtttg 1700 taaattttct atgcatttct gcaaacttat tggattatta gttattcaga 1750 cagtcaagca gaacccacag cottattaca cotgtotaca coatgtactg 1800 agctaaccac ttctaagaaa ctccaaaaaa ggaaacatgt gtcttctatt 1850 ctgacttaac ttcatttgtc ataaggtttg gatattaatt tcaaggggag 1900 ttgaaatagt gggagatgga gaagagtgaa tgagtttctc ccactctata 1950 ctaatctcac tatttgtatt gagcccaaaa taactatgaa aggagacaaa 2000 aatttgtgac aaaggattgt gaagagcttt ccatcttcat gatgttatga 2050 ggattgttga caaacattag aaatatataa tggagcaatt gtggatttcc 2100

cctcaaatca gatgcctcta aggactttcc tgctagatat ttctggaagg 2150 agaaaataca acatgtcatt tatcaacgtc cttagaaaga attcttctag 2200 agaaaaaaggg atctaggaat gctgaaagat tacccaacat accattatag 2250 tctcttcttt ctgagaaaat gtgaaaccag aattgcaaga ctgggtggac 2300 tagaaaggga gattagatca gttttctctt aatatgtcaa ggaaggtagc 2350 cgggcatggt gccaggcacc tgtaggaaaa tccagcaggt ggaggttgca 2400 gtgagccgag attatgccat tgcactccag cctgggtgac agagcggac 2450 tccgtctc 2458

<210> 59

<211> 373

<212> PRT

<213> Homo sapiens

<400> 59

Met Ser Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly
1 5 10 15

Thr Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys
20 25 30

Val Thr Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp 35 40 45

Thr Leu Asp Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln 50 55 60

Lys Val Val Ile Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu
65 70 75

Thr Glu Glu Gln Lys Gly Arg Val Ala Phe Ala Ser Asn Phe Leu 80 85 90

Ala Gly Asp Ala Ser Leu Gln Ile Glu Pro Leu Lys Pro Ser Asp 95 100 105

Glu Gly Arg Tyr Thr Cys Lys Val Lys Asn Ser Gly Arg Tyr Val 110 115 120

Trp Ser His Val Ile Leu Lys Val Leu Val Arg Pro Ser Lys Pro 125 130 135

Lys Cys Glu Leu Glu Gly Glu Leu Thr Glu Gly Ser Asp Leu Thr 140 145 150

Leu Gln Cys Glu Ser Ser Ser Gly Thr Glu Pro Ile Val Tyr Tyr
155 160 165

Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu Asp Glu Arg Leu Pro 170 175 180

```
Pro Lys Ser Arg Ile Asp Tyr Asn His Pro Gly Arg Val Leu Leu
                185
Gln Asn Leu Thr Met Ser Tyr Ser Gly Leu Tyr Gln Cys Thr Ala
                                     205
Gly Asn Glu Ala Gly Lys Glu Ser Cys Val Val Arg Val Thr Val
                                     220
Gln Tyr Val Gln Ser Ile Gly Met Val Ala Gly Ala Val Thr Gly
Ile Val Ala Gly Ala Leu Leu Ile Phe Leu Leu Val Trp Leu Leu
                                     250
                245
Ile Arg Arg Lys Asp Lys Glu Arg Tyr Glu Glu Glu Arg Pro
Asn Glu Ile Arg Glu Asp Ala Glu Ala Pro Lys Ala Arg Leu Val
Lys Pro Ser Ser Ser Ser Gly Ser Arg Ser Ser Arg Ser Gly
                 290
Ser Ser Ser Thr Arg Ser Thr Ala Asn Ser Ala Ser Arg Ser Gln
                 305
Arg Thr Leu Ser Thr Asp Ala Ala Pro Gln Pro Gly Leu Ala Thr
                 320
Gln Ala Tyr Ser Leu Val Gly Pro Glu Val Arg Gly Ser Glu Pro
                 335
Lys Lys Val His His Ala Asn Leu Thr Lys Ala Glu Thr Thr Pro
                 350
Ser Met Ile Pro Ser Gln Ser Arg Ala Phe Gln Thr Val
                 365
<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 60
 ccaqtqcaca gcaqqcaacg aagc 24
<210> 61
<211> 24
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

```
<400> 61
 actaggetgt atgeetgggt ggge 24
<210> 62
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 62
 gtatgtacaa agcatcggca tggttgcagg agcagtgaca ggc 43
<210> 63
<211> 3534
<212> DNA
<213> Homo sapiens
<400> 63
 gtcgttcctt tgctctctcg cgcccagtcc tcctccctgg ttctcctcag 50
 ccgctgtcgg aggagagcac ccggagacgc gggctgcagt cgcggcggct 100
 tctccccgcc tgggcggcct cgccgctggg caggtgctga gcgcccctag 150
 agectecett geogeeteee teetetgeee ggeogeagea gtgcacatgg 200
 ggtgttggag gtagatgggc tcccggcccg ggaggcggcg gtggatgcgg 250
 cgctgggcag aagcagccgc cgattccagc tgccccgcgc gccccgggcg 300
 cccctgcgag tccccggttc agccatgggg acctctccga gcagcagcac 350
 cgccctcgcc tcctgcagcc gcatcgcccg ccgagccaca gccacgatga 400
 tegegggete cetteteetg ettggattee ttagcaccae cacageteag 450
 ccagaacaga aggcctcgaa tctcattggc acataccgcc atgttgaccg 500
 tgccaccggc caggtgctaa cctgtgacaa gtgtccagca ggaacctatg 550
 tctctgagca ttgtaccaac acaagcctgc gcgtctgcag cagttgccct 600
 gtggggacct ttaccaggca tgagaatggc atagagaaat gccatgactg 650
 tagtcagcca tgcccatggc caatgattga gaaattacct tgtgctgcct 700
 tgactgaccg agaatgcact tgcccacctg gcatgttcca gtctaacgct 750
 acctgtgccc cccatacggt gtgtcctgtg ggttggggtg tgcggaagaa 800
 agggacagag actgaggatg tgcggtgtaa gcagtgtgct cggggtacct 850
```

tctcagatgt gccttctagt gtgatgaaat gcaaagcata cacagactgt 900

ctgagtcaga acctggtggt gatcaagccg gggaccaagg agacagacaa 950

cgtctgtggc acactcccgt ccttctccag ctccacctca ccttcccctg 1000 gcacagccat ctttccacgc cctgagcaca tggaaaccca tgaagtccct 1050 tcctccactt atgttcccaa aggcatgaac tcaacagaat ccaactcttc 1100 tgcctctgtt agaccaaagg tactgagtag catccaggaa gggacagtcc 1150 ctgacaacac aagctcagca agggggaagg aagacgtgaa caagaccctc 1200 ccaaaccttc aggtagtcaa ccaccagcaa ggcccccacc acagacacat 1250 cctgaagctg ctgccgtcca tggaggccac tgggggcgag aagtccagca 1300 cgcccatcaa gggccccaag aggggacatc ctagacagaa cctacacaag 1350 cattttgaca tcaatgagca tttgccctgg atgattgtgc ttttcctgct 1400 gctggtgctt gtggtgattg tggtgtgcag tatccggaaa agctcgagga 1450 ctctgaaaaa ggggccccgg caggatccca gtgccattgt ggaaaaggca 1500 gggctgaaga aatccatgac tccaacccag aaccgggaga aatggatcta 1550 ctactgcaat ggccatggta tcgatatcct gaagcttgta gcagcccaag 1600 tgggaagcca gtggaaagat atctatcagt ttctttgcaa tgccagtgag 1650 agggaggttg ctgctttctc caatgggtac acagccgacc acgagcgggc 1700 ctacgcagct ctgcagcact ggaccatccg gggccccgag gccagcctcg 1750 cccagctaat tagcgccctg cgccagcacc ggagaaacga tgttgtggag 1800 aagattcgtg ggctgatgga agacaccacc cagctggaaa ctgacaaact 1850 ageteteceg atgagececa geoegettag ecegagecee atececagee 1900 ccaacgcgaa acttgagaat tccgctctcc tgacggtgga gccttcccca 1950 caggacaaga acaagggctt cttcgtggat gagtcggagc cccttctccg 2000 ctgtgactct acatccagcg gctcctccgc gctgagcagg aacggttcct 2050 ttattaccaa agaaaagaag gacacagtgt tgcggcaggt acgcctggac 2100 ccctgtgact tgcagcctat ctttgatgac atgctccact ttctaaatcc 2150 tgaggagctg cgggtgattg aagagattcc ccaggctgag gacaaactag 2200 accggctatt cgaaattatt ggagtcaaga gccaggaagc cagccagacc 2250 ctcctggact ctgtttatag ccatcttcct gacctgctgt agaacatagg 2300 gatactgcat tctggaaatt actcaattta gtggcagggt ggttttttaa 2350 ttttcttctg tttctgattt ttgttgtttg gggtgtgtgt gtgtgtttgt 2400 gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtttaacaga gaatatggcc 2450 agtgcttgag ttctttctcc ttctctctct ctctttttt tttaaataac 2500 tcttctggga agttggttta taagcctttg ccaggtgtaa ctgttgtgaa 2550 atacccacca ctaaagtttt ttaagttcca tattttctcc attttgcctt 2600 cttatgtatt ttcaagatta ttctgtgcac tttaaattta cttaacttac 2650 cataaatgca gtgtgacttt tcccacacac tggattgtga ggctcttaac 2700 ttcttaaaag tataatggca tcttgtgaat cctataagca gtctttatgt 2750 ctcttaacat tcacacctac tttttaaaaa caaatattat tactattttt 2800 attattgttt gtcctttata aattttctta aagattaaga aaatttaaga 2850 ccccattgag ttactgtaat gcaattcaac tttgagttat cttttaaata 2900 tgtcttgtat agttcatatt catggctgaa acttgaccac actattgctg 2950 attgtatggt tttcacctgg acaccgtgta gaatgcttga ttacttgtac 3000 tcaggatttg ctatttaagt ggcttgacaa ctgggccacc aaagaacttg 3100 aacttcacct tttaggattt gagctgttct ggaacacatt gctgcacttt 3150 ggaaagtcaa aatcaagtgc cagtggcgcc ctttccatag agaatttgcc 3200 cagctttgct ttaaaagatg tcttgttttt tatatacaca taatcaatag 3250 gtccaatctg ctctcaaggc cttggtcctg gtgggattcc ttcaccaatt 3300 actttaatta aaaatggctg caactgtaag aacccttgtc tgatatattt 3350 gcaactatgc tcccatttac aaatgtacct tctaatgctc agttgccagg 3400 ttccaatgca aaggtggcgt ggactccctt tgtgtgggtg gggtttgtgg 3450 gtagtggtga aggaccgata tcagaaaaat gccttcaagt gtactaattt 3500 attaataaac attaggtgtt tgttaaaaaa aaaa 3534

<210> 64

<211> 655

<212> PRT

<213> Homo sapiens

<400> 64

Met Gly Thr Ser Pro Ser Ser Ser Thr Ala Leu Ala Ser Cys Ser

1 5 10 15

Arg Ile Ala Arg Arg Ala Thr Ala Thr Met Ile Ala Gly Ser Leu 20 25 30 Leu Leu Leu Gly Phe Leu Ser Thr Thr Thr Ala Gln Pro Glu Gln Lys Ala Ser Asn Leu Ile Gly Thr Tyr Arg His Val Asp Arg Ala Thr Gly Gln Val Leu Thr Cys Asp Lys Cys Pro Ala Gly Thr Tyr Val Ser Glu His Cys Thr Asn Thr Ser Leu Arg Val Cys Ser Ser Cys Pro Val Gly Thr Phe Thr Arg His Glu Asn Gly Ile Glu Lys Cys His Asp Cys Ser Gln Pro Cys Pro Trp Pro Met Ile Glu Lys Leu Pro Cys Ala Ala Leu Thr Asp Arg Glu Cys Thr Cys Pro Pro 130 Gly Met Phe Gln Ser Asn Ala Thr Cys Ala Pro His Thr Val Cys Pro Val Gly Trp Gly Val Arg Lys Lys Gly Thr Glu Thr Glu Asp Val Arg Cys Lys Gln Cys Ala Arg Gly Thr Phe Ser Asp Val Pro 170 Ser Ser Val Met Lys Cys Lys Ala Tyr Thr Asp Cys Leu Ser Gln Asn Leu Val Val Ile Lys Pro Gly Thr Lys Glu Thr Asp Asn Val 200 Cys Gly Thr Leu Pro Ser Phe Ser Ser Ser Thr Ser Pro Ser Pro 220 215 Gly Thr Ala Ile Phe Pro Arg Pro Glu His Met Glu Thr His Glu 235 230 Val Pro Ser Ser Thr Tyr Val Pro Lys Gly Met Asn Ser Thr Glu 250 245 Ser Asn Ser Ser Ala Ser Val Arg Pro Lys Val Leu Ser Ser Ile 260 Gln Glu Gly Thr Val Pro Asp Asn Thr Ser Ser Ala Arg Gly Lys 280 Glu Asp Val Asn Lys Thr Leu Pro Asn Leu Gln Val Val Asn His 295 290 Gln Gln Gly Pro His His Arg His Ile Leu Lys Leu Leu Pro Ser Met Glu Ala Thr Gly Gly Glu Lys Ser Ser Thr Pro Ile Lys Gly

				320					325					330
Pro	Lys	Arg	Gly	His 335	Pro	Arg	Gln	Asn	Leu 340	His	Lys	His	Phe	Asp 345
Ile	Asn	Glu	His	Leu 350	Pro	Trp	Met	Ile	Val 355	Leu	Phe	Leu	Leu	Leu 360
Val	Leu	Val	Val	Ile 365	Val	Val	Cys	Ser	Ile 370	Arg	Lys	Ser	Ser	Arg 375
Thr	Leu	Lys	Lys	Gly 380	Pro	Arg	Gln	Asp	Pro 385	Ser	Ala	Ile	Val	Glu 390
Lys	Ala	Gly	Leu	Lys 395	Lys	Ser	Met	Thr	Pro 400	Thr	Gln	Asn	Arg	Glu 405
Lys	Trp	Ile	Tyr	Tyr 410	Суз	Asn	Gly	His	Gly 415	Ile	Asp	Ile	Leu	Lys 420
Leu	Val	Ala	Ala	Gln 425	Val	Gly	Ser	Gln	Trp 430	Lys	Asp	Ile	Tyr	Gln 435
Phe	Leu	Суѕ	Asn	Ala 440	Ser	Glu	Arg	Glu	Val 445	Ala	Ala	Phe	Ser	Asn 450
Gly	Tyr	Thr	Ala	Asp 455	His	Glu	Arg	Ala	Tyr 460	Ala	Ala	Leu	Gln	His 465
Trp	Thr	Ile	Arg	Gly 470	Pro	Glu	Ala	Ser	Leu 475	Ala	Gln	Leu	Ile	Ser 480
Ala	Leu	Arg	Gln	His 485	Arg	Arg	Asn	Asp	Val 490	Val	Glu	Lys	Ile	Arg 495
Gly	Leu	Met	Glu	Asp 500	Thr	Thr	Gln	Leu	Glu 505	Thr	Asp	Lys	Leu	Ala 510
Leu	Pro	Met	Ser	Pro 515	Ser	Pro	Leu	Ser	Pro 520	Ser	Pro	Ile	Pro	Ser 525
Pro	Asn	Ala	Lys	Leu 530	Glu	Asn	Ser	Ala	Leu 535	Leu	Thr	Val	Glu	Pro 540
Ser	Pro	Gln	Asp	Lys 545	Asn	Lys	Gly	Phe	Phe 550	Val	Asp	Glu	Ser	Glu 555
Pro	Leu	Leu	Arg	Cys 560	Asp	Ser	Thr	Ser	Ser 565	Gly	Ser	Ser	Ala	Leu 570
Ser	Arg	Asn	Gly	Ser 575	Phe	Ile	Thr	Lys	Glu 580	Lys	Lys	Asp	Thr	Val 585
				Arg 590					595					600
Asp	Asp	Met	Leu	His 605	Phe	Leu	Asn	Pro	Glu 610	Glu	Leu	Arg	Val	Ile 615

```
Glu Glu Ile Pro Gln Ala Glu Asp Lys Leu Asp Arg Leu Phe Glu
                     620
    Ile Ile Gly Val Lys Ser Gln Glu Ala Ser Gln Thr Leu Leu Asp
                                         640
                     635
    Ser Val Tyr Ser His Leu Pro Asp Leu Leu
                                         655
   <210> 65
   <211> 24
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 65
    gtagcagtgc acatggggtg ttgg 24
   <210> 66
   <211> 24
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 66
    accgcacatc ctcagtctct gtcc 24
   <210> 67
   <211> 50
   <212> DNA
   <213> Artificial Sequence
<220>
   <223> Synthetic oligonucleotide probe
14
   <400> 67
    acgatgateg egggeteect teteetgett ggatteetta geaceaceae 50
   <210> 68
   <211> 2412
   <212> DNA
   <213> Homo sapiens
   <400> 68
    atgggaagcc agtaacactg tggcctacta tctcttccgt ggtgccatct 50
    acatttttgg gactcgggaa ttatgaggta gaggtggagg cggagccgga 100
    tgtcagaggt cctgaaatag tcaccatggg ggaaaatgat ccgcctgctg 150
    ttgaagcccc cttctcattc cgatcgcttt ttggccttga tgatttgaaa 200
```

A.

je da

NJ.

218

ataagtcctg ttgcaccaga tgcagatgct gttgctgcac agatcctgtc 250

actgctgcca ttgaagtttt ttccaatcat cgtcattggg atcattgcat 300 tgatattagc actggccatt ggtctgggca tccacttcga ctgctcaggg 350 aagtacagat gtcgctcatc ctttaagtgt atcgagctga tagctcgatg 400 tgacggagtc tcggattgca aagacgggga ggacgagtac cgctgtgtcc 450 gggtgggtgg tcagaatgcc gtgctccagg tgttcacagc tgcttcgtgg 500 aagaccatgt gctccgatga ctggaagggt cactacgcaa atgttgcctg 550 tgcccaactg ggtttcccaa gctatgtgag ttcagataac ctcagagtga 600 gctcgctgga ggggcagttc cgggaggagt ttgtgtccat cgatcacctc 650 ttgccagatg acaaggtgac tgcattacac cactcagtat atgtgaggga 700 gggatgtgcc tctggccacg tggttacctt gcagtgcaca gcctgtggtc 750 atagaagggg ctacagctca cgcatcgtgg gtggaaacat gtccttgctc 800 togcagtggc cotggcaggc cagoottcag ttocagggot accacotgtg 850 cgggggctct gtcatcacgc ccctgtggat catcactgct gcacactgtg 900 tttatgactt gtacctcccc aagtcatgga ccatccaggt gggtctagtt 950 tccctgttgg acaatccagc cccatcccac ttggtggaga agattgtcta 1000 ccacagcaag tacaagccaa agaggctggg caatgacatc gcccttatga 1050 agctggccgg gccactcacg ttcaatgaaa tgatccagcc tgtgtgcctg 1100 cccaactctg aagagaactt ccccgatgga aaagtgtgct ggacgtcagg 1150 atggggggcc acagaggatg gaggtgacgc ctcccctgtc ctgaaccacg 1200 cggccgtccc tttgatttcc aacaagatct gcaaccacag ggacgtgtac 1250 ggtggcatca teteceete catgetetge gegggetace tgaegggtgg 1300 cgtggacagc tgccaggggg acagcggggg gcccctggtg tgtcaagaga 1350 ggaggctgtg gaagttagtg ggagcgacca gctttggcat cggctgcgca 1400 gaggtgaaca agcctggggt gtacacccgt gtcacctcct tcctggactg 1450 gatccacgag cagatggaga gagacctaaa aacctgaaga ggaaggggac 1500 aagtagccac ctgagttcct gaggtgatga agacagcccg atcctcccct 1550 ggactcccgt gtaggaacct gcacacgagc agacaccctt ggagctctga 1600 gttccggcac cagtagcagg cccgaaagag gcacccttcc atctgattcc 1650 agcacaacct tcaagctgct ttttgttttt tgttttttg aggtggagtc 1700 tegetetgtt geceaggetg gagtgeagtg gegaaateee tgeteactge 1750
ageeteeget teeetggtte aagegattet ettgeeteag etteeecagt 1800
agetgggace acaggtgeee gecaceacae ecaactaatt tttgtattt 1850
tagtagagac agggtteae catgttggee aggetgetet caaaceectg 1900
aceteaaatg atgtgeetge tteageetee cacagtgetg ggattacagg 1950
catgggeeae cacgcetage eteacgetee ttteetgatet teactaagaa 2000
caaaagaage ageaacttge aagggeggee ttteecaetg gteeatetgg 2050
tttteetee agggtettge aaaatteetg acgagataag cagttatgtg 2100
aceteacgtg caaageeaee aacageeaet cagaaaagae gcaceageee 2150
agaagtgeag aactgeagte actgeacgt tteateteta gggaceagaa 2200
ccaaaceeae eetttetaet teeaagaett attteaeat gtgggaggt 2250
taatetagga atgaetegt taaggeetat tteeatgatt teettgtage 2300
atttggtget tgaegtatta ttgteetttg atteeaaata atatgttee 2350
tteeeteatt gtetggegtg tetgegtgga etggtgaegt gaateaaaat 2400
catecaetga aa 2412

<210> 69 <211> 453 <212> PRT <213> Homo sapiens

(210) Homo Bapion

Adol of Met Gly Glu Asn Asp Met Gly Glu Asn Asp Ser Pro Pro Ala Val Glu Ala Pro Phe Ser Phe 15Arg Ser Leu Phe Gly Leu Asp Asp Leu Lys Ile Ser Pro Val Ala 30Pro Asp Ala Asp Ala Val Ala Ala Gln Ile Leu Ser Leu Leu Pro 45Leu Lys Phe Phe Pro Ile Ile Val Ile Gly Ile Ile Ala Leu Ile 60Leu Ala Leu Ala Ile Gly Leu Gly Ile His Phe Asp Cys Ser Gly 75Lys Tyr Arg Cys Asp Gly Val Ser Asp Cys Lys Asp Gly Glu Asp Glu Tyr 105

Arg Cys Val Arg Val Gly Gly Gln Asn Ala Val Leu Gln Val Phe

				110					115					120
Thr	Ala	Ala	Ser	Trp 125	Lys	Thr	Met	Cys	Ser 130	Asp	Asp	Trp	Lys	Gly 135
His	Tyr	Ala	Asn	Val 140	Ala	Cys	Ala	Gln	Leu 145	Gly	Phe	Pro	Ser	Tyr 150
Val	Ser	Ser	Asp	Asn 155	Leu	Arg	Val	Ser	Ser 160	Leu	Glu	Gly	Gln	Phe 165
Arg	Glu	Glu	Phe	Val 170	Ser	Ile	Asp	His	Leu 175	Leu	Pro	Asp	Asp	Lys 180
Val	Thr	Ala	Leu	His 185	His	Ser	Val	Tyr	Val 190	Arg	Glu	Gly	Cys	Ala 195
Ser	Gly	His	Val	Val 200	Thr	Leu	Gln	Суз	Thr 205	Ala	Cys	Gly	His	Arg 210
Arg	Gly	Tyr	Ser	Ser 215	Arg	Ile	Val	Gly	Gly 220	Asn	Met	Ser	Leu	Leu 225
Ser	Gln	Trp	Pro	Trp 230	Gln	Ala	Ser	Leu	Gln 235	Phe	Gln	Gly	Tyr	His 240
Leu	Cys	Gly	Gly	Ser 245	Val	Ile	Thr	Pro	Leu 250	Trp	Ile	Ile	Thr	Ala 255
Ala	His	Cys	Val	Tyr 260	Asp	Leu	Tyr	Leu	Pro 265	Lys	Ser	Trp	Thr	Ile 270
Gln	Val	Gly	Leu	Val 275	Ser	Leu	Leu	Asp	Asn 280	Pro	Ala	Pro	Ser	His 285
Leu	Val	Glu	Lys	Ile 290	Val	Tyr	His	Ser	Lys 295	Tyr	Lys	Pro	Lys	Arc 300
Leu	Gly	Asn	Asp	Ile 305		Leu	Met	Lys	Leu 310	Ala	Gly	Pro	Leu	Thr 315
Phe	Asn	Glu	Met	Ile 320		Pro	Val	Cys	Leu 325	Pro	Asn	Ser	Glu	Glu 330
Asn	Phe	Pro	Asp	Gly 335		Val	Cys	Trp	Thr 340	Ser	Gly	Trp	Gly	Ala 345
Thr	Glu	Asp	Gly	Gly 350		Ala	Ser	Pro	Val 355	Leu	Asn	His	Ala	Ala 360
Val	Pro	Leu	Ile	Ser 365		Lys	Ile	Cys	Asn 370	His	Arg	Asp	Val	Туз 375
Gly	Gly	Ile	Ile	Ser 380		Ser	Met	Leu	Cys 385		Gly	Tyr	Leu	Th:
Gly	Gly	Val	Asp	Ser	Cys	Gln	Gly	Asp	Ser		Gly	Pro	Leu	Val

Cys Gln Glu Arg Arg Leu Trp Lys Leu Val Gly Ala Thr Ser Phe 415 Gly Ile Gly Cys Ala Glu Val Asn Lys Pro Gly Val Tyr Thr Arg 430 Val Thr Ser Phe Leu Asp Trp Ile His Glu Gln Met Glu Arg Asp 445 Leu Lys Thr <210> 70 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 70 tgacatcgcc cttatgaagc tggc 24 <210> 71 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 71 tacacgtccc tgtggttgca gatc 24 <210> 72 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 72 cgttcaatgc agaaatgatc cagcctgtgt gcctgcccaa ctctgaagag 50 <210> 73 <211> 3305 <212> DNA <213> Homo sapiens <400> 73 cccacqcqtc cqtcctagtc cccqggccaa ctcggacagt ttgctcattt 50 attgcaacgg tcaaggctgg cttgtgccag aacggcgcgc gcgcgcgcac 100 gcacgcacac acacgggggg aaactttttt aaaaatgaaa ggctagaaga 150

14

**

1

gctcagcggc ggcgcgggcg ctgcgcgagg gctccggagc tgactcgccg 200

aggcaggaaa tccctccggt cgcgacgccc ggccccggct cggcgcccgc 250 gtgggatggt gcagcgctcg ccgccgggcc cgagagctgc tgcactgaag 300 geoggegacg atggeagege geoegetgee egtgteecee geoegegeee 350 tcctgctcgc cctggccggt gctctgctcg cgccctgcga ggcccgaggg 400 gtgagcttat ggaaccaagg aagagctgat gaagttgtca gtgcctctgt 450 tcggagtggg gacctctgga tcccagtgaa gagcttcgac tccaagaatc 500 atccagaagt gctgaatatt cgactacaac gggaaagcaa agaactgatc 550 ataaatctgg aaagaaatga aggtctcatt gccagcagtt tcacggaaac 600 ccactatctg caagacggta ctgatgtctc cctcgctcga aattacacgg 650 gtcactgtta ctaccatgga catgtacggg gatattctga ttcagcagtc 700 agtotoagoa ogtgttotgg totoagggga ottattgtgt ttgaaaatga 750 aagctatgtc ttagaaccaa tgaaaagtgc aaccaacaga tacaaactct 800 aacacaccaa acctcgctgc aaagaatgtg tttccaccac cctctcagac 900 atgggcaaga aggcataaaa gagagaccct caaggcaact aagtatgtgg 950 agctggtgat cgtggcagac aaccgagagt ttcagaggca aggaaaagat 1000 ctggaaaaag ttaagcagcg attaatagag attgctaatc acgttgacaa 1050 gttttacaga ccactgaaca ttcggatcgt gttggtaggc gtggaagtgt 1100 qqaatqacat ggacaaatgc tctgtaagtc aggacccatt caccagcctc 1150 catgaatttc tggactggag gaagatgaag cttctacctc gcaaatccca 1200 tgacaatgcg cagcttgtca gtggggttta tttccaaggg accaccatcg 1250 gcatggcccc aatcatgagc atgtgcacgg cagaccagtc tgggggaatt 1300 gtcatggacc attcagacaa tccccttggt gcagccgtga ccctggcaca 1350 tgagctgggc cacaatttcg ggatgaatca tgacacactg gacaggggct 1400 gtagetgtea aatggeggtt gagaaaggag getgeateat gaaegettee 1450 accgggtacc catttcccat ggtgttcagc agttgcagca ggaaggactt 1500 ggagaccagc ctggagaaag gaatgggggt gtgcctgttt aacctgccgg 1550 aagtcaggga gtctttcggg ggccagaagt gtgggaacag atttgtggaa 1600 gaaggagagg agtgtgactg tggggagcca gaggaatgta tgaatcgctg 1650

ctgcaatgcc accacctgta ccctgaagcc ggacgctgtg tgcgcacatg 1700 ggctgtgctg tgaagactgc cagctgaagc ctgcaggaac agcgtgcagg 1750 gactccagca actcctgtga cctcccagag ttctgcacag gggccagccc 1800 tcactgccca gccaatgtgt acctgcacga tgggcactca tgtcaggatg 1850 tggacggcta ctgctacaat ggcatctgcc agactcacga gcagcagtgt 1900 gtcacgctct ggggaccagg tgctaaacct gcccctggga tctgctttga 1950 gagagtcaat tctgcaggtg atccttatgg caactgtggc aaagtctcga 2000 agagttcctt tgccaaatgc gagatgagag atgctaaatg tggaaaaatc 2050 cagtgtcaag gaggtgccag ccggccagtc attggtacca atgccgtttc 2100 catagaaaca aacatccctc tgcagcaagg aggccggatt ctgtgccggg 2150 ggacccacgt gtacttgggc gatgacatgc cggacccagg gcttgtgctt 2200 gcaggcacaa agtgtgcaga tggaaaaatc tgcctgaatc gtcaatgtca 2250 aaatattagt gtctttgggg ttcacgagtg tgcaatgcag tgccacggca 2300 gaggggtgtg caacaacagg aagaactgcc actgcgaggc ccactgggca 2350 cctccttct gtgacaagtt tggctttgga ggaagcacag acagcggccc 2400 catccggcaa gcagaagcaa ggcaggaagc tgcagagtcc aacagggagc 2450 gcggccaggg ccaggagccc gtgggatcgc aggagcatgc gtctactgcc 2500 tcactgacac tcatctgagc cctcccatga catggagacc gtgaccagtg 2550 ctgctgcaga ggaggtcacg cgtccccaag gcctcctgtg actggcagca 2600 ttgactctgt ggctttgcca tcgtttccat gacaacagac acaacacagt 2650 tctcggggct caggagggga agtccagcct accaggcacg tctgcagaaa 2700 cagtgcaagg aagggcagcg acttcctggt tgagcttctg ctaaaacatg 2750 gacatgcttc agtgctgctc ctgagagagt agcaggttac cactctggca 2800 ggccccagcc ctgcagcaag gaggaagagg actcaaaagt ctggcctttc 2850 actgagcctc cacagcagtg ggggagaagc aagggttggg cccagtgtcc 2900 cctttcccca gtgacacctc agccttggca gccctgatga ctggtctctg 2950 gctgcaactt aatgctctga tatggctttt agcatttatt atatgaaaat 3000 agcagggttt tagtttttaa tttatcagag accctgccac ccattccatc 3050 tccatccaag caaactgaat ggcaatgaaa caaactggag aagaaggtag 3100 gagaaagggc ggtgaactet ggctetttgc tgtggacatg cgtgaccage 3150 agtactcagg tttgagggtt tgcagaaagc cagggaaccc acagagtcac 3200 caaccettca tttaacaagt aagaatgtta aaaagtgaaa acaatgtaag 3250 agcetaacte catccccgt ggccattact gcataaaata gagtgcattt 3300 gaaat 3305

<210> 74

<211> 735

<212> PRT

<213> Homo sapiens

<400> 74

Met Ala Ala Arg Pro Leu Pro Val Ser Pro Ala Arg Ala Leu Leu 1 5 10 15

Leu Ala Leu Ala Gly Ala Leu Leu Ala Pro Cys Glu Ala Arg Gly 20 25 30

Val Ser Leu Trp Asn Gln Gly Arg Ala Asp Glu Val Val Ser Ala 35 40 45

Ser Val Arg Ser Gly Asp Leu Trp Ile Pro Val Lys Ser Phe Asp 50 55 60

Ser Lys Asn His Pro Glu Val Leu Asn Ile Arg Leu Gln Arg Glu 65 70 75

Ser Lys Glu Leu Ile Ile Asn Leu Glu Arg Asn Glu Gly Leu Ile 80 85 90

Ala Ser Ser Phe Thr Glu Thr His Tyr Leu Gln Asp Gly Thr Asp 95 100 105

Val Ser Leu Ala Arg Asn Tyr Thr Gly His Cys Tyr Tyr His Gly
110 115 120

His Val Arg Gly Tyr Ser Asp Ser Ala Val Ser Leu Ser Thr Cys 125 130 135

Ser Gly Leu Arg Gly Leu Ile Val Phe Glu Asn Glu Ser Tyr Val 140 145 150

Leu Glu Pro Met Lys Ser Ala Thr Asn Arg Tyr Lys Leu Phe Pro 155 160 165

Ala Lys Lys Leu Lys Ser Val Arg Gly Ser Cys Gly Ser His His 170 175 180

Asn Thr Pro Asn Leu Ala Ala Lys Asn Val Phe Pro Pro Pro Ser 185 190 195

Gln Thr Trp Ala Arg Arg His Lys Arg Glu Thr Leu Lys Ala Thr 200 205 210

Lys Tyr Val Glu Leu Val Ile Val Ala Asp Asn Arg Glu Phe Gln Arg Gln Gly Lys Asp Leu Glu Lys Val Lys Gln Arg Leu Ile Glu Ile Ala Asn His Val Asp Lys Phe Tyr Arg Pro Leu Asn Ile Arg 250 Ile Val Leu Val Gly Val Glu Val Trp Asn Asp Met Asp Lys Cys Ser Val Ser Gln Asp Pro Phe Thr Ser Leu His Glu Phe Leu Asp Trp Arg Lys Met Lys Leu Leu Pro Arg Lys Ser His Asp Asn Ala 295 Gln Leu Val Ser Gly Val Tyr Phe Gln Gly Thr Thr Ile Gly Met Ala Pro Ile Met Ser Met Cys Thr Ala Asp Gln Ser Gly Gly Ile 320 Val Met Asp His Ser Asp Asn Pro Leu Gly Ala Ala Val Thr Leu 335 Ala His Glu Leu Gly His Asn Phe Gly Met Asn His Asp Thr Leu 355 350 Asp Arg Gly Cys Ser Cys Gln Met Ala Val Glu Lys Gly Gly Cys Ile Met Asn Ala Ser Thr Gly Tyr Pro Phe Pro Met Val Phe Ser 385 380 Ser Cys Ser Arg Lys Asp Leu Glu Thr Ser Leu Glu Lys Gly Met 395 Gly Val Cys Leu Phe Asn Leu Pro Glu Val Arg Glu Ser Phe Gly 415 420 410 Gly Gln Lys Cys Gly Asn Arg Phe Val Glu Glu Glu Glu Cys 425 430 Asp Cys Gly Glu Pro Glu Glu Cys Met Asn Arg Cys Cys Asn Ala 450 445 440 Thr Thr Cys Thr Leu Lys Pro Asp Ala Val Cys Ala His Gly Leu 455 460 Cys Cys Glu Asp Cys Gln Leu Lys Pro Ala Gly Thr Ala Cys Arg 480 475 470 Asp Ser Ser Asn Ser Cys Asp Leu Pro Glu Phe Cys Thr Gly Ala 490 Ser Pro His Cys Pro Ala Asn Val Tyr Leu His Asp Gly His Ser

<400> 75

505 510 500 Cys Gln Asp Val Asp Gly Tyr Cys Tyr Asn Gly Ile Cys Gln Thr 520 His Glu Gln Gln Cys Val Thr Leu Trp Gly Pro Gly Ala Lys Pro Ala Pro Gly Ile Cys Phe Glu Arg Val Asn Ser Ala Gly Asp Pro Tyr Gly Asn Cys Gly Lys Val Ser Lys Ser Ser Phe Ala Lys Cys 560 Glu Met Arg Asp Ala Lys Cys Gly Lys Ile Gln Cys Gln Gly Gly 580 575 Ala Ser Arg Pro Val Ile Gly Thr Asn Ala Val Ser Ile Glu Thr 595 590 Asn Ile Pro Leu Gln Gln Gly Gly Arg Ile Leu Cys Arg Gly Thr 610 His Val Tyr Leu Gly Asp Asp Met Pro Asp Pro Gly Leu Val Leu 630 Ala Gly Thr Lys Cys Ala Asp Gly Lys Ile Cys Leu Asn Arg Gln Cys Gln Asn Ile Ser Val Phe Gly Val His Glu Cys Ala Met Gln 660 650 Cys His Gly Arg Gly Val Cys Asn Asn Arg Lys Asn Cys His Cys Glu Ala His Trp Ala Pro Pro Phe Cys Asp Lys Phe Gly Phe Gly 680 Gly Ser Thr Asp Ser Gly Pro Ile Arg Gln Ala Glu Ala Arg Gln Glu Ala Ala Glu Ser Asn Arg Glu Arg Gly Gln Gly Gln Glu Pro 720 710 Val Gly Ser Gln Glu His Ala Ser Thr Ala Ser Leu Thr Leu Ile 730 725 <210> 75 <211> 483 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 30, 94, 143, 156, 163, 179, 193, 369, 371, 381, 390, 473 <223> unknown base

<211> 18 <212> DNA

<213> Artificial Sequence

```
tcccaaggct tcttggatgg cagatgattn tggggttttg cattgtttcc 50
 ctgacaacga aaacaaaaca gttttggggg ttcaggaggg gaantccagc 100
 ctacccagga agtttgcaga aacagtgcaa ggaagggcag ganttcctgg 150
 ttqaqntttt tgntaaaaca tggacatgnt tcagtgctgc tcntgagaga 200
 gtagcaggtt accacttttg gcaggcccca gccctgcagc aaggaggaag 250
 aggactcaaa agtttggcct ttcactgagc ctccacagca gtgggggaga 300
 agcaagggtt gggcccagtg tcccctttcc ccagtgacac ctcagccttg 350
 gcagccctga taactggtnt ntggctgcaa nttaatgctn tgatatggct 400
 tttagcattt attatatgaa aatagcaggg ttttagtttt taatttatca 450
 gagaccetge cacceattee atntecatee aag 483
<210> 76
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
gtctcagcac gtgttctggt ctcaggg 27
```

<400> 76 <210> 77 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 77 catgagcatg tgcacggc 18 <210> 78 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 78 tacctgcacg atgggcac 18 <210> 79

```
<220>
<223> Synthetic oligonucleotide probe
<400> 79
cactgggcac ctcccttc 18
<210> 80
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 80
ctccaggctg gtctccaagt ccttcc 26
<210> 81
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 81
tccctgttgg actctgcagc ttcc 24
<210> 82
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 82
cttcgctggg aagagtttg 19
<210> 83
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 83
 gtgcaaccaa cagatacaaa ctcttcccag cgaagaagct gaaaagcgtc 50
<210> 84
<211> 1714
<212> DNA
<213> Homo sapiens
<400> 84
 catcctgcaa catggtgaaa ccacgcctgg ctaattttgt tgtatttttg 50
```

ļa ik

草

ij.

#1

**

gtagagatgg gatttcaccg tgttagccag gattgtctca atctgacctc 100 atgatctgcc cgcctcggcc tcccaaagtg ctgggattac aggcgagtgc 150 aaccacaccc ggccacaaac tttttaagaa gttaatgaaa ccataccttt 200 tacattttta atgacaggaa aatgctcaca ataattgtta acccaaaatt 250 ctggatacaa aagtacaatc tttactgtgt aaatacatgt atatgtacta 300 tatgaaaata taccaaatat caataatact tatctctggg taaaaacctc 350 ttctcatacc ctgtgctaac aacttttaac aaaaaatttg catcactttt 400 aagaatcaag aaaaatttct gaaggtcata tgggacagaa aaaaaaacca 450 agggaaaaat cacgccactt gggaaaaaaa gattcgaaat ctgccttttt 500 atagatttgt aattaataag gtccaggctt tctaagcaac ttaaatgttt 550 tgtttcgaaa caaagtactt gtctggatgt aggaggaaag ggagtgatgt 600 cactgccatt atgatgcccc ttgaatataa gaccctactt gctatctccc 650 ctgcaccagc caggagccac ccatcctcca gcacactgag cagcaagctg 700 gacacacggc acactgatcc aaatgggtaa ggggatggtg gcgatgctca 750 ttctgggtct gctacttctg gcgctgctcc tacccgtgca ggtttcttca 800 tttgttcctt taaccagtat gccggaagct actgcagccg aaaccacaaa 850 gccctccaac agtgccctac agcctacagc cggtctcctt gtggtcttgc 900 ttgcccttct acatctctac cattaagagg caggtcaaga aacagctaca 950 gttctccaac ccatacacta aaaccgaatc caaatggtgc ctagaagttc 1000 aatgtggcaa ggaaaaaaac caggtcttca tcaaatctac taatttcact 1050 ccttattaac agagaaacgc ttgagagtct caaactggac tggtttaaag 1100 agcatctgaa ggatttgact agatgataaa tgcctgtact cccagtactt 1150 tgggaggct aggccggcgg atcacctgag gtcaggagtt tgagactaac 1200 ctggccaaaa tggtgaaacc ccatctgtac taaaaaataca aatattgact 1250 gggcgtggtg gtgagtgcct gtgatcccag ctactcaggt ggctgaagca 1300 ggacaatcac ttgaactcag gaggcagagg ttgcagtgag ctgagatcgc 1350 gctactgcac tctagcctag cctgggcaac agagtgagac ttcgtctcaa 1400 aaaaaaaaaa gccaagtgca gtggctcacg cctgtaatcc cggcactttg 1450 ggaggccgag gtgggcggat cacgaggtca ggagatcaag accatcctgg 1500

```
HE.
14
38
la.
k.L
```

ctaatacagt gaaaccctgt ctctactaaa aatacaaaaa attagccggg 1550 gatggtggca ggcacctgga gtcccagcta ctcgggaggc tgaggcagga 1600 gaatagcgtg aactcaggag gcggagcttg cagtgagccg agattgcgct 1650 aaaaaaaaa aaaa 1714 <210> 85 <211> 67 <212> PRT <213> Homo sapiens <400> 85 Met Gly Lys Gly Met Val Ala Met Leu Ile Leu Gly Leu Leu Leu Leu Ala Leu Leu Pro Val Gln Val Ser Ser Phe Val Pro Leu Thr Ser Met Pro Glu Ala Thr Ala Ala Glu Thr Thr Lys Pro Ser 35 Asn Ser Ala Leu Gln Pro Thr Ala Gly Leu Leu Val Val Leu Leu 50 Ala Leu Leu His Leu Tyr His 65 <210> 86 <211> 23 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 86 acgggcacac tggatcccaa atg 23 <210> 87 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe

<400> 87

ggtagagatg tagaagggca agcaagacc 29

<210> 88

<211> 50

<212> DNA

<213> Artificial Sequence

- <220> <223> Synthetic oligonucleotide probe
- <400> 88 gctccctacc cgtgcaggtt tcttcatttg ttcctttaac cagtatgccg 50
- <210> 89
- <211> 2956
- <212> DNA
- <213> Homo sapiens
- <400> 89 geogeggega gagegegeee ageceegeeg egatgeeege gegeeeagga 50 cgcctcctcc cgctgctggc ccggccggcg gccctgactg cgctgctgct 100 gctgctgctg ggccatggcg gcggcgggcg ctggggcgcc cgggcccagg 150 aggeggegge ggeggegge gaegggeeee eegeggeaga eggegaggae 200 ggacaggacc cgcacagcaa gcacctgtac acggccgaca tgttcacgca 250 cgggatccag agcgccgcgc acttcgtcat gttcttcgcg ccctggtgtg 300 gacactgcca gcggctgcag ccgacttgga atgacctggg agacaaatac 350 aacagcatgg aagatgccaa agtctatgtg gctaaagtgg actgcacggc 400 ccactccgac gtgtgctccg cccagggggt gcgaggatac cccaccttaa 450 agettttcaa gecaggecaa gaagetgtga agtaceaggg teetegggae 500 ttccagacac tggaaaactg gatgctgcag acactgaacg aggagccagt 550 gacaccagag ccggaagtgg aaccgcccag tgcccccgag ctcaagcaag 600 ggctgtatga gctctcagca agcaactttg agctgcacgt tgcacaaggc 650 gaccacttta tcaagttctt cgctccgtgg tgtggtcact gcaaagccct 700 ggctccaacc tgggagcagc tggctctggg ccttgaacat tccgaaactg 750 tcaagattgg caaggttgat tgtacacagc actatgaact ctgctccgga 800 aaccaggttc gtggctatcc cactcttctc tggttccgag atgggaaaaa 850 ggtggatcag tacaagggaa agcgggattt ggagtcactg agggagtacg 900 tggagtcgca gctgcagcgc acagagactg gagcgacgga gaccgtcacg 950 ccctcagagg ccccggtgct ggcagctgag cccgaggctg acaagggcac 1000 tgtgttggca ctcactgaaa ataacttcga tgacaccatt gcagaaggaa 1050 taaccttcat caagttttat gctccatggt gtggtcattg taagactctg 1100 gctcctactt gggaggaact ctctaaaaag gaattccctg gtctggcggg 1150

ggtcaagatc gccgaagtag actgcactgc tgaacggaat atctgcagca 1200 agtattcggt acgaggctac cccacgttat tgcttttccg aggagggaag 1250 aaagtcagtg agcacagtgg aggcagagac cttgactcgt tacaccgctt 1300 tgtcctgagc caagcgaaag acgaacttta ggaacacagt tggaggtcac 1350 ctctcctgcc cagctcccgc accctgcgtt taggagttca gtcccacaga 1400 ggccactggg ttcccagtgg tggctgttca gaaagcagaa catactaagc 1450 gtgaggtatc ttctttgtgt gtgtgttttc caagccaaca cactctacag 1500 attctttatt aagttaagtt tctctaagta aatgtgtaac tcatggtcac 1550 tgtgtaaaca ttttcagtgg cgatatatcc cctttgacct tctcttgatg 1600 aaatttacat ggtttccttt gagactaaaa tagcgttgag ggaaatgaaa 1650 ttgctggact atttgtggct cctgagttga gtgattttgg tgaaagaaag 1700 cacatccaaa qcataqttta cctqcccacq agttctqgaa aggtqgcctt 1750 gtggcagtat tgacgttcct ctgatcttaa ggtcacagtt gactcaatac 1800 tgtgttggtc cgtagcatgg agcagattga aatgcaaaaa cccacacctc 1850 tggaagatac cttcacggcc gctgctggag cttctgttgc tgtgaatact 1900 tctctcagtg tgagaggtta gccgtgatga aagcagcgtt acttctgacc 1950 gtgcctgagt aagagaatgc tgatgccata actttatgtg tcgatacttg 2000 tcaaatcagt tactgttcag gggatccttc tgtttctcac ggggtgaaac 2050 atgtctttag ttcctcatgt taacacgaag ccagagccca catgaactgt 2100 tggatgtctt ccttagaaag ggtaggcatg gaaaattcca cgaggctcat 2150 tctcagtatc tcattaactc attgaaagat tccagttgta tttgtcacct 2200 ggggtgacaa gaccagacag gctttcccag gcctgggtat ccagggaggc 2250 tctgcagccc tgctgaaggg ccctaactag agttctagag tttctgattc 2300 tgtttctcag tagtcctttt agaggcttgc tatacttggt ctgcttcaag 2350 gaggtcgacc ttctaatgta tgaagaatgg gatgcatttg atctcaagac 2400 caaagacaga tgtcagtggg ctgctctggc cctggtgtgc acggctgtgg 2450 cagctgttga tgccagtgtc ctctaactca tgctgtcctt gtgattaaac 2500 acctctatct cccttgggaa taagcacata caggcttaag ctctaagata 2550 gataggtgtt tgtcctttta ccatcgagct acttcccata ataaccactt 2600 tgcatccaac actcttcacc cacctccat acgcaagggg atgtggatac 2650
ttggcccaaa gtaactggtg gtaggaatct tagaaacaag accacttata 2700
ctgtctgtct gaggcagaag ataacagcag catctcgacc agcctctgcc 2750
ttaaaggaaa tctttattaa tcacgtatgg ttcacagata attcttttt 2800
taaaaaaacc caacctccta gagaagcaca actgtcaaga gtcttgtaca 2850
cacaacttca gctttgcatc acgagtcttg tattccaaga aaatcaaagt 2900
ggtacaattt gtttgtttac actatgatac tttctaaata aactcttttt 2950
ttttaa 2956

<210> 90

<211> 432

<212> PRT

<213> Homo sapiens

<400> 90

Met Pro Ala Arg Pro Gly Arg Leu Leu Pro Leu Leu Ala Arg Pro 1 5 10 15

Ala Ala Leu Thr Ala Leu Leu Leu Leu Leu Leu Gly His Gly Gly 20 25 30

Gly Gly Arg Trp Gly Ala Arg Ala Gln Glu Ala Ala Ala Ala Ala 35 40 45

Ala Asp Gly Pro Pro Ala Ala Asp Gly Glu Asp Gly Gln Asp Pro 50 55 60

His Ser Lys His Leu Tyr Thr Ala Asp Met Phe Thr His Gly Ile
65 70 75

Gln Ser Ala Ala His Phe Val Met Phe Phe Ala Pro Trp Cys Gly 80 85 90

His Cys Gln Arg Leu Gln Pro Thr Trp Asn Asp Leu Gly Asp Lys 95 100 105

Tyr Asn Ser Met Glu Asp Ala Lys Val Tyr Val Ala Lys Val Asp 110 115 120

Cys Thr Ala His Ser Asp Val Cys Ser Ala Gln Gly Val Arg Gly
125 130 135

Tyr Pro Thr Leu Lys Leu Phe Lys Pro Gly Gln Glu Ala Val Lys 140 145 150

Tyr Gln Gly Pro Arg Asp Phe Gln Thr Leu Glu Asn Trp Met Leu 155 160 165

Gln Thr Leu Asn Glu Glu Pro Val Thr Pro Glu Pro Glu Val Glu 170 175 180

```
Pro Pro Ser Ala Pro Glu Leu Lys Gln Gly Leu Tyr Glu Leu Ser
                185
Ala Ser Asn Phe Glu Leu His Val Ala Gln Gly Asp His Phe Ile
                200
Lys Phe Phe Ala Pro Trp Cys Gly His Cys Lys Ala Leu Ala Pro
                215
Thr Trp Glu Gln Leu Ala Leu Gly Leu Glu His Ser Glu Thr Val
Lys Ile Gly Lys Val Asp Cys Thr Gln His Tyr Glu Leu Cys Ser
Gly Asn Gln Val Arg Gly Tyr Pro Thr Leu Leu Trp Phe Arg Asp
                                    265
Gly Lys Lys Val Asp Gln Tyr Lys Gly Lys Arg Asp Leu Glu Ser
Leu Arg Glu Tyr Val Glu Ser Gln Leu Gln Arg Thr Glu Thr Gly
                290
Ala Thr Glu Thr Val Thr Pro Ser Glu Ala Pro Val Leu Ala Ala
                305
Glu Pro Glu Ala Asp Lys Gly Thr Val Leu Ala Leu Thr Glu Asn
Asn Phe Asp Asp Thr Ile Ala Glu Gly Ile Thr Phe Ile Lys Phe
                335
Tyr Ala Pro Trp Cys Gly His Cys Lys Thr Leu Ala Pro Thr Trp
                                                         360
                350
                                     355
Glu Glu Leu Ser Lys Lys Glu Phe Pro Gly Leu Ala Gly Val Lys
Ile Ala Glu Val Asp Cys Thr Ala Glu Arg Asn Ile Cys Ser Lys
                                     385
                380
Tyr Ser Val Arg Gly Tyr Pro Thr Leu Leu Leu Phe Arg Gly Gly
                395
Lys Lys Val Ser Glu His Ser Gly Gly Arg Asp Leu Asp Ser Leu
                410
His Arg Phe Val Leu Ser Gln Ala Lys Asp Glu Leu
                425
```

<210> 91

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 91
atgttcttcg cgccctggtg 20
<210> 92
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 92
ccaagccaac acactctaca g 21
<210> 93
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 93
aagtggtcgc cttgtgcaac gtgc 24
<210> 94
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 94
 ggtcaaaggg gatatatcgc cac 23
<210> 95
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 gcatggaaga tgccaaagtc tatgtggcta aagtggactg cacggccca 49
<210> 96
<211> 1016
<212> DNA
<213> Homo sapiens
<400> 96
 cttttctgag gaaccacagc aatgaatggc tttgcatcct tgcttcgaag 50
 aaaccaattt atcctcctgg tactatttct tttgcaaatt cagagtctgg 100
 gtctggatat tgatagccgt cctaccgctg aagtctgtgc cacacacaca 150
```

M.

full full

ä

-

la.

atttcaccag gacccaaagg agatgatggt gaaaaaggag atccaggaga 200 agagggaaag catggcaaag tgggacgcat ggggccgaaa ggaattaaag 250 gagaactggg tgatatggga gatcagggca atattggcaa gactgggccc 300 attgggaaga agggtgacaa aggggaaaaa ggtttgcttg gaatacctgg 350 agaaaaaggc aaagcaggta ctgtctgtga ttgtggaaga taccggaaat 400 ttgttggaca actggatatt agtattgctc ggctcaagac atctatgaag 450 tttgtcaaga atgtgatagc agggattagg gaaactgaag agaaattcta 500 ctacatcgtg caggaagaga agaactacag ggaatcccta acccactgca 550 ggattcgggg tggaatgcta gccatgccca aggatgaagc tgccaacaca 600 ctcatcgctg actatgttgc caagagtggc ttctttcggg tgttcattgg 650 cgtgaatgac cttgaaaggg agggacagta catgtccaca gacaacactc 700 cactgcagaa ctatagcaac tqqaatqagg gggaacccag cgacccctat 750 ggtcatgagg actgtgtgga gatgctgagc tctggcagat ggaatgacac 800 agagtgccat cttaccatgt actttgtctg tgagttcatc aagaagaaaa 850 agtaacttcc ctcatcctac gtatttgcta ttttcctgtg accgtcatta 900 cagttattgt tatccatcct ttttttcctg attgtactac atttgatctg 950 agtcaacata gctagaaaat gctaaactga ggtatggagc ctccatcatc 1000 aaaaaaaaa aaaaaa 1016

<210> 97

<211> 277

<212> PRT

<213> Homo sapiens

<400> 97

Met Asn Gly Phe Ala Ser Leu Leu Arg Arg Asn Gln Phe Ile Leu 1 5 10 15

Leu Val Leu Phe Leu Gln Ile Gln Ser Leu Gly Leu Asp Ile 20 25 30

Asp Ser Arg Pro Thr Ala Glu Val Cys Ala Thr His Thr Ile Ser

Pro Gly Pro Lys Gly Asp Asp Gly Glu Lys Gly Asp Pro Gly Glu
50 55 60

Glu Gly Lys His Gly Lys Val Gly Arg Met Gly Pro Lys Gly Ile 65 70 75

Lys Gly Glu Leu Gly Asp Met Gly Asp Gln Gly Asn Ile Gly Lys

90 80 85 Thr Gly Pro Ile Gly Lys Lys Gly Asp Lys Gly Glu Lys Gly Leu Leu Gly Ile Pro Gly Glu Lys Gly Lys Ala Gly Thr Val Cys Asp 115 Cys Gly Arg Tyr Arg Lys Phe Val Gly Gln Leu Asp Ile Ser Ile 130 Ala Arg Leu Lys Thr Ser Met Lys Phe Val Lys Asn Val Ile Ala Gly Ile Arg Glu Thr Glu Glu Lys Phe Tyr Tyr Ile Val Gln Glu Glu Lys Asn Tyr Arg Glu Ser Leu Thr His Cys Arg Ile Arg Gly 175 Gly Met Leu Ala Met Pro Lys Asp Glu Ala Ala Asn Thr Leu Ile 185 Ala Asp Tyr Val Ala Lys Ser Gly Phe Phe Arg Val Phe Ile Gly 200 Val Asn Asp Leu Glu Arg Glu Gly Gln Tyr Met Ser Thr Asp Asn 215 Thr Pro Leu Gln Asn Tyr Ser Asn Trp Asn Glu Gly Glu Pro Ser 230 Asp Pro Tyr Gly His Glu Asp Cys Val Glu Met Leu Ser Ser Gly 245 Arg Trp Asn Asp Thr Glu Cys His Leu Thr Met Tyr Phe Val Cys 260 Glu Phe Ile Lys Lys Lys 275 <210> 98 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe

<400> 98

cqctqactat gttgccaaga gtgg 24

<210> 99

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

```
<223> Synthetic oligonucleotide probe
<400> 99
gatgatggag gctccatacc tcag 24
<210> 100
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 100
 gtgttcattg gcgtgaatga ccttgaaagg gagggacagt acatgttcac 50
<210> 101
<211> 2574
<212> DNA
<213> Homo sapiens
<400> 101
 ggttctatcg attcgaattc ggccacactg gccggatcct ctagagatcc 50
 ctcgacctcg acccacgcgt ccgctgctct ccgcccgtgt ggagtggtgg 100
 gggcctgggt gggaatgggc gtgtgccagc gcacgcgcgc tccctggaag 150
 gagaagtete agetagaacg ageggeeeta ggttttegga agggaggate 200
 agggatgttt gcgagcggct ggaaccagac ggtgccgata gaggaagcgg 250
 getecatgge tgecetectg etgetgeece tgetgetgtt getacegetg 300
 ctgctgctga agctacacct ctggccgcag ttgcgctggc ttccggcgga 350
 cttggccttt gcggtgcgag ctctgtgctg caaaagggct cttcgagctc 400
 gcgccctggc cgcggctgcc gccgacccgg aaggtcccga ggggggctgc 450
 agcctggcct ggcgcctcgc ggaactggcc cagcagcgcg ccgcgcacac 500
 ctttctcatt cacggctcgc ggcgctttag ctactcagag gcggagcgcg 550
 agagtaacag ggctgcacgc gccttcctac gtgcgctagg ctgggactgg 600
 ggacccgacg gcggcgacag cggcgagggg agcgctggag aaggcgagcg 650
 ggcagcgccg ggagccggag atgcagcggc cggaagcggc gcggagtttg 700
 ccggagggga cggtgccgcc agaggtggag gagccgccgc ccctctgtca 750
 cctggagcaa ctgtggcgct gctcctcccc gctggcccag agtttctgtg 800
 gctctggttc gggctggcca aggccggcct gcgcactgcc tttgtgccca 850
```

ccgccctgcg ccggggcccc ctgctgcact gcctccgcag ctgcggcgcg 900

cgcgcgctgg tgctggcgcc agagtttctg gagtccctgg agccggacct 950 gcccgccctg agagccatgg ggctccacct gtgggctgca ggcccaggaa 1000 cccaccctgc tggaattagc gatttgctgg ctgaagtgtc cgctgaagtg 1050 gatgggccag tgccaggata cctctcttcc ccccagagca taacagacac 1100 gtgcctgtac atcttcacct ctggcaccac gggcctcccc aaggctgctc 1150 ggatcagtca tctgaagatc ctgcaatgcc agggcttcta tcagctgtgt 1200 ggtgtccacc aggaagatgt gatctacctc gccctcccac tctaccacat 1250 gtccggttcc ctgctgggca tcgtgggctg catgggcatt ggggccacag 1300 tggtgctgaa atccaagttc tcggctggtc agttctggga agattgccag 1350 cagcacaggg tgacggtgtt ccagtacatt ggggagctgt gccgatacct 1400 tgtcaaccag cccccgagca aggcagaacg tggccataag gtccggctgg 1450 caqtqqqcaq cgggctgcgc ccagatacct gggagcgttt tgtqcggcgc 1500 ttcgggcccc tgcaggtgct ggagacatat ggactgacag agggcaacgt 1550 ggccaccatc aactacacag gacagcgggg cgctgtgggg cgtgcttcct 1600 ggctttacaa gcatatcttc cccttctcct tgattcgcta tgatgtcacc 1650 acaggagage caatteggga ecceeagggg caetgtatgg ceaeatetee 1700 aggtgageca gggetgetgg tggccccggt aagccagcag tccccattcc 1750 tgggctatgc tggcgggcca gagctggccc aggggaagtt gctaaaggat 1800 gtcttccggc ctggggatgt tttcttcaac actggggacc tgctggtctg 1850 cqatqaccaa qqttttctcc qcttccatga tcgtactgga gacaccttca 1900 ggtggaaggg ggagaatgtg gccacaaccg aggtggcaga ggtcttcgag 1950 gccctagatt ttcttcagga ggtgaacgtc tatggagtca ctgtgccagg 2000 gcatgaaggc agggctggaa tggcagccct agttctgcgt ccccccacg 2050 ctttggacct tatgcagctc tacacccacg tgtctgagaa cttgccacct 2100 tatgcccggc cccgattcct caggctccag gagtctttgg ccaccacaga 2150 gaccttcaaa cagcagaaag ttcggatggc aaatgagggc ttcgacccca 2200 qcaccetqte tgacceaetg tacgttetgg accaggetgt aggtgeetae 2250 ctgccctca caactgcccg gtacagcgcc ctcctggcag gaaaccttcg 2300 aatctgagaa cttccacacc tgaggcacct gagagaggaa ctctgtgggg 2350 tgggggccgt tgcaggtgta ctgggctgtc agggatcttt tctataccag 2400 aactgcggtc actatttgt aataaatgtg gctggagctg atccagctgt 2450 ctctgaccta aaaaaaaaaa aaaaaaaaaa aaaaaaaaa ggcggccgcg 2500 actctagagt cgacctgcag tagggataac agggtaataa gcttggccgc 2550 catggcccaa cttgtttatt gcag 2574

<210> 102

<211> 730

<212> PRT

<213> Homo sapiens

<400> 102

Met Gly Val Cys Gln Arg Thr Arg Ala Pro Trp Lys Glu Lys Ser 1 5 10 15

Gln Leu Glu Arg Ala Ala Leu Gly Phe Arg Lys Gly Gly Ser Gly 20 25 30

Met Phe Ala Ser Gly Trp Asn Gln Thr Val Pro Ile Glu Glu Ala 35 40 45

Gly Ser Met Ala Ala Leu Leu Leu Leu Pro Leu Leu Leu Leu Leu 50 55 60

Pro Leu Leu Leu Lys Leu His Leu Trp Pro Gln Leu Arg Trp
65 70 75

Leu Pro Ala Asp Leu Ala Phe Ala Val Arg Ala Leu Cys Cys Lys 80 85 90

Arg Ala Leu Arg Ala Arg Ala Leu Ala Ala Ala Ala Asp Pro 95 100 105

Glu Gly Pro Glu Gly Gly Cys Ser Leu Ala Trp Arg Leu Ala Glu 110 115 120

Leu Ala Gln Gln Arg Ala Ala His Thr Phe Leu Ile His Gly Ser 125 130 135

Arg Arg Phe Ser Tyr Ser Glu Ala Glu Arg Glu Ser Asn Arg Ala 140 145 150

Ala Arg Ala Phe Leu Arg Ala Leu Gly Trp Asp Trp Gly Pro Asp 155 160 165

Gly Gly Asp Ser Gly Glu Gly Ser Ala Gly Glu Gly Glu Arg Ala 170 175 180

Ala Pro Gly Ala Gly Asp Ala Ala Ala Gly Ser Gly Ala Glu Phe 185 190 195

Ala Gly Gly Asp Gly Ala Ala Arg Gly Gly Gly Ala Ala Pro 200 205 210 Leu Ser Pro Gly Ala Thr Val Ala Leu Leu Leu Pro Ala Gly Pro 220 Glu Phe Leu Trp Leu Trp Phe Gly Leu Ala Lys Ala Gly Leu Arg 235 230 Thr Ala Phe Val Pro Thr Ala Leu Arg Arg Gly Pro Leu Leu His 250 245 Cys Leu Arg Ser Cys Gly Ala Arg Ala Leu Val Leu Ala Pro Glu 265 Phe Leu Glu Ser Leu Glu Pro Asp Leu Pro Ala Leu Arg Ala Met 285 275 Gly Leu His Leu Trp Ala Ala Gly Pro Gly Thr His Pro Ala Gly Ile Ser Asp Leu Leu Ala Glu Val Ser Ala Glu Val Asp Gly Pro Val Pro Gly Tyr Leu Ser Ser Pro Gln Ser Ile Thr Asp Thr Cys Leu Tyr Ile Phe Thr Ser Gly Thr Thr Gly Leu Pro Lys Ala Ala Arg Ile Ser His Leu Lys Ile Leu Gln Cys Gln Gly Phe Tyr Gln 350 Leu Cys Gly Val His Gln Glu Asp Val Ile Tyr Leu Ala Leu Pro 365 Leu Tyr His Met Ser Gly Ser Leu Leu Gly Ile Val Gly Cys Met 380 Gly Ile Gly Ala Thr Val Val Leu Lys Ser Lys Phe Ser Ala Gly Gln Phe Trp Glu Asp Cys Gln Gln His Arg Val Thr Val Phe Gln 410 Tyr Ile Gly Glu Leu Cys Arg Tyr Leu Val Asn Gln Pro Pro Ser Lys Ala Glu Arg Gly His Lys Val Arg Leu Ala Val Gly Ser Gly Leu Arg Pro Asp Thr Trp Glu Arg Phe Val Arg Arg Phe Gly Pro 455 Leu Gln Val Leu Glu Thr Tyr Gly Leu Thr Glu Gly Asn Val Ala 470 Thr Ile Asn Tyr Thr Gly Gln Arg Gly Ala Val Gly Arg Ala Ser 490 Trp Leu Tyr Lys His Ile Phe Pro Phe Ser Leu Ile Arg Tyr Asp

500 505 510 Val Thr Thr Gly Glu Pro Ile Arg Asp Pro Gln Gly His Cys Met 515 520 Ala Thr Ser Pro Gly Glu Pro Gly Leu Leu Val Ala Pro Val Ser Gln Gln Ser Pro Phe Leu Gly Tyr Ala Gly Gly Pro Glu Leu Ala Gln Gly Lys Leu Leu Lys Asp Val Phe Arg Pro Gly Asp Val Phe Phe Asn Thr Gly Asp Leu Leu Val Cys Asp Asp Gln Gly Phe Leu 575 Arg Phe His Asp Arg Thr Gly Asp Thr Phe Arg Trp Lys Gly Glu 595 590 Asn Val Ala Thr Thr Glu Val Ala Glu Val Phe Glu Ala Leu Asp 605 610 Phe Leu Gln Glu Val Asn Val Tyr Gly Val Thr Val Pro Gly His 620 Glu Gly Arg Ala Gly Met Ala Ala Leu Val Leu Arg Pro Pro His Ala Leu Asp Leu Met Gln Leu Tyr Thr His Val Ser Glu Asn Leu 650 Pro Pro Tyr Ala Arg Pro Arg Phe Leu Arg Leu Gln Glu Ser Leu Ala Thr Thr Glu Thr Phe Lys Gln Gln Lys Val Arg Met Ala Asn Glu Gly Phe Asp Pro Ser Thr Leu Ser Asp Pro Leu Tyr Val Leu 695 Asp Gln Ala Val Gly Ala Tyr Leu Pro Leu Thr Thr Ala Arg Tyr Ser Ala Leu Leu Ala Gly Asn Leu Arg Ile <210> 103 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 103

gagagecatg gggetecace tg 22

```
<210> 104
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 104
 ggagaatgtg gccacaac 18
<210> 105
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 105
 gccctggcac agtgactcca tagacg 26
<210> 106
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 106
 atccacttca gcggacac 18
<210> 107
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 107
 ccagtgccag gatacctctc ttccccccag agcataacag acacg 45
<210> 108
<211> 2579
<212> DNA
<213> Homo sapiens
<400> 108
 cctgtgttaa gctgaggttt cccctagatc tcgtatatcc ccaacacata 50
 cetecacgea cacacatece caagaacete gageteacae caacagacae 100
 acqcqcqcat acacactcgc tctcgcttgt ccatctccct cccgggggag 150
 ccggcgcgcg ctcccacctt tgccgcacac tccggcgagc cgagcccgca 200
```

W.

ja.

4J

THE PERSON NAMED IN

曼

je da

gcgctccagg attctgcggc tcggaactcg gattgcagct ctgaaccccc 250 atggtggttt tttaaacact tcttttcctt ctcttcctcg ttttgattgc 300 accgtttcca tctgggggct agaggagcaa ggcagcagcc ttcccagcca 350 gcccttgttg gcttgccatc gtccatctgg cttataaaag tttgctgagc 400 gcagtccaga gggctgcgct gctcgtcccc tcggctggca gaagggggtg 450 acgetgggca geggegagga gegegeeget geetetggeg ggetttegge 500 ttgaggggca aggtgaagag cgcaccggcc gtggggttta ccgagctgga 550 tttgtatgtt gcaccatgcc ttcttggatc ggggctgtga ttcttcccct 600 cttggggctg ctgctctccc tccccgccgg ggcggatgtg aaggctcgga 650 gctgcggaga ggtccgccag gcgtacggtg ccaagggatt cagcctggcg 700 gacatcccct accaggagat cgcaggggaa cacttaagaa tctgtcctca 750 ggaatataca tgctgcacca cagaaatgga agacaagtta agccaacaaa 800 gcaaactcga atttgaaaac cttgtggaag agacaagcca ttttgtgcgc 850 accacttttg tgtccaggca taagaaattt gacgaatttt tccgagagct 900 cctggagaat gcagaaaagt cactaaatga tatgtttgta cggacctatg 950 gcatgctgta catgcagaat tcagaagtct tccaggacct cttcacagag 1000 ctgaaaaggt actacactgg gggtaatgtg aatctggagg aaatgctcaa 1050 tgacttttgg gctcggctcc tggaacggat gtttcagctg ataaaccctc 1100 agtatcactt cagtgaagac tacctggaat gtgtgagcaa atacactgac 1150 cageteaage catttggaga egtgeeegg aaactgaaga tteaggttae 1200 ccgcgccttc attgctgcca ggacctttgt ccaggggctg actgtgggca 1250 gagaagttgc aaaccgagtt tccaaggtca gcccaacccc agggtgtatc 1300 cgtgccctca tgaagatgct gtactgccca tactgtcggg ggcttcccac 1350 tgtgaggccc tgcaacaact actgtctcaa cgtcatgaag ggctgcttgg 1400 caaatcaggc tgacctcgac acagagtgga atctgtttat agatgcaatg 1450 ctcttggtgg cagagcgact ggaggggcca ttcaacattg agtcggtcat 1500 ggacccgata gatgtcaaga tttctgaagc cattatgaac atgcaagaaa 1550 acagcatgca ggtgtctgca aaggtctttc agggatgtgg tcagcccaaa 1600 cctgctccag ccctcagatc tgcccgctca gctcctgaaa attttaatac 1650

acgtttcagg ccctacaatc ctgaggaaag accaacaact gctgcaggca 1700 caagcttgga ccggctggtc acagacataa aagagaaatt gaagctctct 1750 aaaaaggtct ggtcagcatt accctacact atctgcaagg acgagagcgt 1800 gacagcgggc acgtccaacg aggaggaatg ctggaacggg cacagcaaag 1850 ccagatactt gcctgagatc atgaatgatg ggctcaccaa ccagatcaac 1900 aatcccgagg tggatgtgga catcactcgg cctgacactt tcatcagaca 1950 gcagattatg gctctccgtg tgatgaccaa caaactaaaa aacgcctaca 2000 atggcaatga tgtcaatttc caggacacaa gtgatgaatc cagtggctca 2050 gggagtggca gtgggtgcat ggatgacgtg tgtcccacgg agtttgagtt 2100 tgtcaccaca gaggcccccg cagtggatcc cgaccggaga gaggtggact 2150 cttctgcagc ccagcgtggc cactccctgc tctcctggtc tctcacctgc 2200 attgtcctgg cactgcagag actgtgcaga taatcttggg tttttggtca 2250 gatgaaactg cattttagct atctgaatgg ccaactcact tcttttctta 2300 cactettgga caatggacca tgccacaaaa acttaccgtt ttctatgaga 2350 agagagcagt aatgcaatct gcctcccttt ttgttttccc aaagagtacc 2400 gggtgccaga ctgaactgct tcctctttcc ttcagctatc tgtggggacc 2450 ttgtttattc tagagagaat tcttactcaa atttttcgta ccaggagatt 2500 ttcttacctt catttgcttt tatgctgcag aagtaaagga atctcacgtt 2550 gtgagggttt tttttttctc atttaaaat 2579

<210> 109

<211> 555

<212> PRT

<213> Homo sapiens

<400> 109

Met Pro Ser Trp Ile Gly Ala Val Ile Leu Pro Leu Leu Gly Leu
1 5 10 15

Leu Leu Ser Leu Pro Ala Gly Ala Asp Val Lys Ala Arg Ser Cys 20 25 30

Gly Glu Val Arg Gln Ala Tyr Gly Ala Lys Gly Phe Ser Leu Ala 35 40 45

Asp Ile Pro Tyr Gln Glu Ile Ala Gly Glu His Leu Arg Ile Cys
50 55 60

Pro Gln Glu Tyr Thr Cys Cys Thr Thr Glu Met Glu Asp Lys Leu 65 70 75

Ser Gln Gln Ser Lys Leu Glu Phe Glu Asn Leu Val Glu Glu Thr Ser His Phe Val Arg Thr Thr Phe Val Ser Arg His Lys Lys Phe Asp Glu Phe Phe Arg Glu Leu Leu Glu Asn Ala Glu Lys Ser Leu 115 Asn Asp Met Phe Val Arg Thr Tyr Gly Met Leu Tyr Met Gln Asn Ser Glu Val Phe Gln Asp Leu Phe Thr Glu Leu Lys Arg Tyr Tyr Thr Gly Gly Asn Val Asn Leu Glu Glu Met Leu Asn Asp Phe Trp 160 155 Ala Arg Leu Leu Glu Arg Met Phe Gln Leu Ile Asn Pro Gln Tyr 170 175 His Phe Ser Glu Asp Tyr Leu Glu Cys Val Ser Lys Tyr Thr Asp 185 Gln Leu Lys Pro Phe Gly Asp Val Pro Arg Lys Leu Lys Ile Gln 200 Val Thr Arg Ala Phe Ile Ala Ala Arg Thr Phe Val Gln Gly Leu 220 215 Thr Val Gly Arg Glu Val Ala Asn Arg Val Ser Lys Val Ser Pro 230 Thr Pro Gly Cys Ile Arg Ala Leu Met Lys Met Leu Tyr Cys Pro 245 Tyr Cys Arg Gly Leu Pro Thr Val Arg Pro Cys Asn Asn Tyr Cys 260 Leu Asn Val Met Lys Gly Cys Leu Ala Asn Gln Ala Asp Leu Asp 275 Thr Glu Trp Asn Leu Phe Ile Asp Ala Met Leu Leu Val Ala Glu 290 Arg Leu Glu Gly Pro Phe Asn Ile Glu Ser Val Met Asp Pro Ile 310 305 Asp Val Lys Ile Ser Glu Ala Ile Met Asn Met Gln Glu Asn Ser 325 320 Met Gln Val Ser Ala Lys Val Phe Gln Gly Cys Gly Gln Pro Lys 335 Pro Ala Pro Ala Leu Arg Ser Ala Arg Ser Ala Pro Glu Asn Phe 355 Asn Thr Arg Phe Arg Pro Tyr Asn Pro Glu Glu Arg Pro Thr Thr

<400> 111

375 365 370 Ala Ala Gly Thr Ser Leu Asp Arg Leu Val Thr Asp Ile Lys Glu 380 Lys Leu Lys Leu Ser Lys Lys Val Trp Ser Ala Leu Pro Tyr Thr 400 Ile Cys Lys Asp Glu Ser Val Thr Ala Gly Thr Ser Asn Glu Glu 410 Glu Cys Trp Asn Gly His Ser Lys Ala Arg Tyr Leu Pro Glu Ile Met Asn Asp Gly Leu Thr Asn Gln Ile Asn Asn Pro Glu Val Asp 440 Val Asp Ile Thr Arg Pro Asp Thr Phe Ile Arg Gln Gln Ile Met 455 Ala Leu Arg Val Met Thr Asn Lys Leu Lys Asn Ala Tyr Asn Gly 470 Asn Asp Val Asn Phe Gln Asp Thr Ser Asp Glu Ser Ser Gly Ser 485 Gly Ser Gly Ser Gly Cys Met Asp Asp Val Cys Pro Thr Glu Phe 500 Glu Phe Val Thr Thr Glu Ala Pro Ala Val Asp Pro Asp Arg Arg 515 Glu Val Asp Ser Ser Ala Ala Gln Arg Gly His Ser Leu Leu Ser 530 Trp Ser Leu Thr Cys Ile Val Leu Ala Leu Gln Arg Leu Cys Arg 545 <210> 110 <211> 21 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 110 aagcgtgaca gcgggcacgt c 21 <210> 111 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe

tgcacagtct ctgcagtgcc cagg 24

- <210> 112
- <211> 40
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 112

gaatgctgga acgggcacag caaagccaga tacttgcctg 40

- <210> 113
- <211> 4649
- <212> DNA
- <213> Homo sapiens
- <400> 113
 - cggacgcgtg ggcggacgcg tgggcaaaag aactcggagt gccaaagcta 50 aataagttag ctgagaaaac gcacgcagtt tgcagcgcct gcgccgggtg 100 cgccaactac gcaaagacca agcgggctcc gcgcggaccg gccgcggggc 150 tagggacccg gctttggcct tcaggctccc tagcagcggg gaaaaggaat 200 tgctgcccgg agtttctgcg gaggtggagg gagatcagga aacggcttct 250 tcctcacttc gccgcctggt gagtgtcggg gagattggca aacgcctagg 300 aaaggactgg ggaaaatagc cctgggaaag tggagaaggt gatcaggagg 350 tccacttcgc agttctttcc aggtgtgggg accgcaggac agacggccga 450 tecegeegee etecgtacea geacteceag gagagteage etegeteece 500 aacgtcgagg gcgctctggc cacgaaaagt tcctgtccac tgtgattctc 550 aattccttgc ttggtttttt tctccagaga acttttgggt ggagatatta 600 acttttttct ttttttttt ccttggtgga agctgctcta gggagggggg 650 aggaggagga gaaagtgaaa tgtgctggag aagagcgagc cctccttgtt 700 cttccggagt cccatccatt aagccatcac ttctggaaga ttaaagttgt 750 cggacatggt gacagctgag aggagaggag gatttcttgc caggtggaga 800 gtcttcaccg tctgttgggt gcatgtgtgc gcccgcagcg gcgcggggcg 850 cgtggttctc cgcgtggagt ctcacctggg acctgagtga atggctccca 900 ggggctgtgc ggggcatccg cctccgcctt ctccacaggc ctgtgtctgt 950 cctggaaaga tgctagcaat gggggcgctg gcaggattct ggatcctctg 1000

cctcctcact tatggttacc tgtcctgggg ccaggcctta gaagaggagg 1050 aagaaggggc cttactagct caagctggag agaaactaga gcccagcaca 1100 acttccacct cccagcccca tctcattttc atcctagcgg atgatcaggg 1150 atttagagat gtgggttacc acggatctga gattaaaaca cctactcttg 1200 acaagetege tgeegaagga gttaaaetgg agaaetaeta tgteeageet 1250 atttgcacac catccaggag tcagtttatt actggaaagt atcagataca 1300 caccggactt caacattcta tcataagacc tacccaaccc aactgtttac 1350 ctctggacaa tgccacccta cctcagaaac tgaaggaggt tggatattca 1400 acqcatatgg tcggaaaatg gcacttgggt tttaacagaa aagaatgcat 1450 gcccaccaga agaggatttg ataccttttt tggttccctt ttgggaagtg 1500 gggattacta tacacactac aaatgtgaca gtcctgggat gtgtggctat 1550 gacttgtatg aaaacgacaa tgctgcctgg gactatgaca atggcatata 1600 ctccacacag atgtacactc agagagtaca gcaaatctta gcttcccata 1650 accccacaaa gcctatattt ttatatactg cctatcaagc tgttcattca 1700 ccactgcaag ctcctggcag gtatttcgaa cactaccgat ccattatcaa 1750 cataaacagg agaagatatg ctgccatgct ttcctgctta gatgaagcaa 1800 tcaacaacgt gacattggct ctaaagactt atggtttcta taacaacagc 1850 attatcattt actcttcaga taatggtggc cagcctacgg caggagggag 1900 taactggcct ctcagaggta gcaaaggaac atattgggaa ggagggatcc 1950 gggctgtagg ctttgtgcat agcccacttc tgaaaaacaa gggaacagtg 2000 tgtaaggaac ttgtgcacat cactgactgg taccccactc tcatttcact 2050 ggctgaagga cagattgatg aggacattca actagatggc tatgatatct 2100 gggagaccat aagtgagggt cttcgctcac cccgagtaga tattttgcat 2150 aacattgacc cctatacacc aaggcaaaaa atggctcctg ggcagcaggc 2200 tatgggatct ggaacactgc aatccagtca gccatcagag tgcagcactg 2250 gaaattgctt acaggaaatc ctggctacag cgactgggtc ccccctcagt 2300 ctttcagcaa cctgggaccg aaccggtggc acaatgaacg gatcaccttg 2350 tcaactggca aaagtgtatg gcttttcaac atcacagccg acccatatga 2400 gagggtggac ctatctaaca ggtatccagg aatcgtgaag aagctcctac 2450 ggaggetete acagtteaac aaaactgeag tgeeggteag gtateeece 2500 aaagacccca gaagtaaccc taggctcaat ggaggggtct ggggaccatg 2550 gtataaagag gaaaccaaga aaaagaagcc aagcaaaaat caggctgaga 2600 aaaagcaaaa gaaaagcaaa aaaaagaaga agaaacagca gaaagcagtc 2650 tcaggtaaac cagcaaattt ggctcgataa tatcgctggc ctaagcgtca 2700 ggcttgtttt catgctgtgc cactccagag acttctgcca cctggccgcc 2750 acactgaaaa ctgtcctgct cagtgccaag gtgctactct tgcaagccac 2800 acttagagag agtggagatg tttatttctc tcgctccttt agaaaacgtg 2850 gtgagtcctg agttccactg ctgtgcttca gtcaactgac caaacactgc 2900 tttgaattat aggaggagaa caataaccta ccatccgcaa gcatgctaat 2950 ttgatggaag ttacagggta gcatgattaa aactaccttt gataaattac 3000 agtcaaagat tgtgtcacct caaaggcctt gaagaatata ttttcttggt 3050 gaatttttgt atgtctgtca tatgacactt gggtttttta attaattcta 3100 ttttatatat ataaatatat gtttcttttc ctgtgaaaag ctgtttttct 3150 cacatgtgaa cagcttgcac ctcattttac catgcgtgag ggaatggcaa 3200 ataagaatgt ttgagcacac tgcccacaat gaatgtaact attttctaaa 3250 cactttacta gaagaacatt tcagtataaa aaacctaatt tatttttaca 3300 gaaaaatatt ttgttgtttt tataaaaagt tatgcaaatg acttttattt 3350 caagcactgt aatactataa attaatgtaa tactgtgtga attcagacta 3450 taaaaaacat cattcagaaa actttataat cgtcattgtt caatcaagat 3500 tttgaatgta ataagatgaa tatattoott acaaattact tggaaattca 3550 atgtttgtgc agagttgaga caactttatt gtttctatca taaactattt 3600 atgtatctta attattaaaa tgatttactt tatggcacta gaaaatttac 3650 tgtggctttt ctgatctaac ttctagctaa aattgtatca ttggtcctaa 3700 aaaataaaaa totttactaa taggcaattg aaggaatggt ttgctaacaa 3750 ccacagtaat ataatatgat tttacagata gatgcttccc cttggctatg 3800 acatggagaa agattttccc ataataataa ctaatattta tattaggttg 3850 gtgcaaaact agttgcggtt tttcccatta aaagtaataa ccttactctt 3900 <210> 114

<211> 515

<212> PRT

<213> Homo sapiens

<400> 114

Met Ala Pro Arg Gly Cys Ala Gly His Pro Pro Pro Pro Ser Pro 1 5 10 15

Gln Ala Cys Val Cys Pro Gly Lys Met Leu Ala Met Gly Ala Leu 20 25 30

Ala Gly Phe Trp Ile Leu Cys Leu Leu Thr Tyr Gly Tyr Leu Ser 35 40 45

Trp Gly Gln Ala Leu Glu Glu Glu Glu Glu Gly Ala Leu Leu Ala 50 55 60

Gln Ala Gly Glu Lys Leu Glu Pro Ser Thr Thr Ser Thr Ser Gln
65 70 75

Pro His Leu Ile Phe Ile Leu Ala Asp Asp Gln Gly Phe Arg Asp 80 85 90

Val Gly Tyr His Gly Ser Glu Ile Lys Thr Pro Thr Leu Asp Lys 95 100 105

Leu Ala Ala Glu Gly Val Lys Leu Glu Asn Tyr Tyr Val Gln Pro

				110					115					120
Ile	Cys	Thr	Pro	Ser 125	Arg	Ser	Gln	Phe	Ile 130	Thr	Gly	Lys	Tyr	Gln 135
Ile	His	Thr	Gly	Leu 140	Gln	His	Ser	Ile	Ile 145	Arg	Pro	Thr	Gln	Pro 150
Asn	Cys	Leu	Pro	Leu 155	Asp	Asn	Ala	Thr	Leu 160	Pro	Gln	Lys	Leu	Lys 165
Glu	Val	Gly	Tyr	Ser 170	Thr	His	Met	Val	Gly 175	Lys	Trp	His	Leu	Gly 180
Phe	Asn	Arg	Lys	Glu 185	Cys	Met	Pro	Thr	Arg 190	Arg	Gly	Phe	Asp	Thr 195
Phe	Phe	Gly	Ser	Leu 200	Leu	Gly	Ser	Gly	Asp 205	Tyr	Tyr	Thr	His	Tyr 210
Lys	Cys	Asp	Ser	Pro 215	Gly	Met	Суз	Gly	Tyr 220	Asp	Leu	Tyr	Glu	Asn 225
Asp	Asn	Ala	Ala	Trp 230	Asp	Tyr	Asp	Asn	Gly 235	Ile	Tyr	Ser	Thr	Gln 240
Met	Tyr	Thr	Gln	Arg 245	Val	Gln	Gln	Ile	Leu 250	Ala	Ser	His	Asn	Pro 255
Thr	Lys	Pro	Ile	Phe 260	Leu	Tyr	Thr	Ala	Tyr 265	Gln	Ala	Val	His	Ser 270
Pro	Leu	Gln	Ala	Pro 275	Gly	Arg	Tyr	Phe	Glu 280	His	Tyr	Arg	Ser	Ile 285
Ile	Asn	Ile	Asn	Arg 290	Arg	Arg	Tyr	Ala	Ala 295	Met	Leu	Ser	Cys	Leu 300
Asp	Glu	Ala	Ile	Asn 305	Asn	Val	Thr	Leu	Ala 310	Leu	Lys	Thr	Tyr	Gly 315
Phe	Tyr	Asn	Asn	Ser 320	Ile	Ile	Ile	Tyr	Ser 325	Ser	Asp	Asn	Gly	Gly 330
Gln	Pro	Thr	Ala	Gly 335	Gly	Ser	Asn	Trp	Pro 340	Leu	Arg	Gly	Ser	Lys 345
Gly	Thr	Tyr	Trp	Glu 350	Gly	Gly	Ile	Arg	Ala 355	Val	Gly	Phe	Val	His 360
Ser	Pro	Leu	Leu	Lys 365	Asn	Lys	Gly	Thr	Val 370	Cys	Lys	Glu	Leu	Val 375
His	Ile	Thr	Asp	Trp 380	Tyr	Pro	Thr	Leu	Ile 385	Ser	Leu	Ala	Glu	Gly 390
Gln	Ile	Asp	Glu	Asp 395	Ile	Gln	Leu	Asp	Gly 400	Tyr	Asp	Ile	Trp	Glu 405

```
Ů.
    <220>
le-f
W.
W.
78
W
```

```
Thr Ile Ser Glu Gly Leu Arg Ser Pro Arg Val Asp Ile Leu His
                                     415
Asn Ile Asp Pro Tyr Thr Pro Arg Gln Lys Met Ala Pro Gly Gln
                                     430
                 425
Gln Ala Met Gly Ser Gly Thr Leu Gln Ser Ser Gln Pro Ser Glu
                                     445
                 440
Cys Ser Thr Gly Asn Cys Leu Gln Glu Ile Leu Ala Thr Ala Thr
                                     460
Gly Ser Pro Leu Ser Leu Ser Ala Thr Trp Asp Arg Thr Gly Gly
                 470
Thr Met Asn Gly Ser Pro Cys Gln Leu Ala Lys Val Tyr Gly Phe
 Ser Thr Ser Gln Pro Thr His Met Arg Gly Trp Thr Tyr Leu Thr
                                     505
Gly Ile Gln Glu Ser
<210> 115
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 115
cccaacccaa ctgtttacct ctgg 24
<210> 116
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 116
 ctctctgagt gtacatctgt gtgg 24
<210> 117
<211> 53
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<220>
<221> unsure
<222> 33
<223> unknown base
```

```
<400> 117
 gccaccctac ctcagaaact gaaggaggtt ggntattcaa cgcatatggt 50
cqq 53
<210> 118
<211> 2260
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 2009, 2026, 2033, 2055, 2074, 2078, 2086
<223> unknown base
<400> 118
 cggacgcgtg ggtgcgagtg gagcggagga cccgagcggc tgaggagaga 50
 ggaggcggcg gcttagctgc tacggggtcc ggccggcgcc ctcccgaggg 100
 gggctcagga ggaggaagga ggacccgtgc gagaatgcct ctgccctgga 150
 gccttgcqct cccqctqctq ctctcctggg tggcaggtgg tttcgggaac 200
 gcggccagtg caaggcatca cgggttgtta gcatcggcac gtcagcctgg 250
 ggtctgtcac tatggaacta aactggcctg ctgctacggc tggagaagaa 300
 acagcaaggg agtctgtgaa gctacatgcg aacctggatg taagtttggt 350
 gagtgcgtgg gaccaaacaa atgcagatgc tttccaggat acaccgggaa 400
 aacctgcagt caagatgtga atgagtgtgg aatgaaaccc cggccatgcc 450
 aacacagatg tgtgaataca cacggaagct acaagtgctt ttgcctcagt 500
 ggccacatgc tcatgccaga tgctacgtgt gtgaactcta ggacatgtgc 550
 catgataaac tgtcagtaca gctgtgaaga cacagaagaa gggccacagt 600
 gcctgtgtcc atcctcagga ctccgcctgg ccccaaatgg aagagactgt 650
 ctagatattg atgaatgtgc ctctggtaaa gtcatctgtc cctacaatcg 700
 aagatgtgtg aacacatttg gaagctacta ctgcaaatgt cacattggtt 750
 tcqaactqca atatatcaqt qqacqatatq actgtataga tataaatgaa 800
 tgtactatgg atagccatac gtgcagccac catgccaatt gcttcaatac 850
 ccaagggtcc ttcaagtgta aatgcaagca gggatataaa ggcaatggac 900
 ttcggtgttc tgctatccct gaaaattctg tgaaggaagt cctcagagca 950
 cctggtacca tcaaagacag aatcaagaag ttgcttgctc acaaaaacag 1000
```

catgaaaaag aaggcaaaaa ttaaaaatgt taccccagaa cccaccagga 1050

ctcctacccc taaggtgaac ttgcagccct tcaactatga agagatagtt 1100 tccagaggcg ggaactctca tggaggtaaa aaagggaatg aagagaaatg 1150 aaagaggggc ttgaggatga gaaaagagaa gagaaagccc tgaagaatga 1200 catagaggag cgaagcctgc gaggagatgt gtttttccct aaggtgaatg 1250 aagcaggtga attcggcctg attctggtcc aaaggaaagc gctaacttcc 1300 aaactggaac ataaagattt aaatatctcg gttgactgca gcttcaatca 1350 tgggatctgt gactggaaac aggatagaga agatgatttt gactggaatc 1400 ctgctgatcg agataatgct attggcttct atatggcagt tccggccttg 1450 gcaggtcaca agaaagacat tggccgattg aaacttctcc tacctgacct 1500 gcaaccccaa agcaacttct gtttgctctt tgattaccgg ctggccggag 1550 acaaaqtcqq qaaacttcqa qtgtttgtga aaaacagtaa caatgccctg 1600 gcatgggaga agaccacgag tgaggatgaa aagtggaaga cagggaaaat 1650 tcagttgtat caaggaactg atgctaccaa aagcatcatt tttgaagcag 1700 aacgtggcaa gggcaaaacc ggcgaaatcg cagtggatgg cgtcttgctt 1750 gtttcaggct tatgtccaga tagcctttta tctgtggatg actgaatgtt 1800 actatcttta tatttgactt tgtatgtcag ttccctggtt tttttgatat 1850 tgcatcataq qacctctggc attttagaat tactagctga aaaattgtaa 1900 tgtaccaaca gaaatattat tgtaagatgc ctttcttgta taagatatgc 1950 caatatttqc tttaaatatc atatcactqt atcttctcag tcatttctga 2000 atctttccnc attatattat aaaatntgga aangtcagtt tatctcccct 2050 cctcngtata tctgatttgt atangtangt tgatgngctt ctctctacaa 2100 catttctaga aaatagaaaa aaaagcacag agaaatgttt aactgtttga 2150 ctcttatgat acttcttgga aactatgaca tcaaagatag acttttgcct 2200 aagtggctta gctgggtctt tcatagccaa acttgtatat ttaattcttt 2250 gtaataataa 2260

<210> 119

<211> 338

<212> PRT

<213> Homo sapiens

<400> 119

Met Pro Leu Pro Trp Ser Leu Ala Leu Pro Leu Leu Ser Trp
1 5 10 15

Val Ala Gly Gly Phe Gly Asn Ala Ala Ser Ala Arg His His Gly 20 Leu Leu Ala Ser Ala Arg Gln Pro Gly Val Cys His Tyr Gly Thr Lys Leu Ala Cys Cys Tyr Gly Trp Arg Arg Asn Ser Lys Gly Val Cys Glu Ala Thr Cys Glu Pro Gly Cys Lys Phe Gly Glu Cys Val Gly Pro Asn Lys Cys Arg Cys Phe Pro Gly Tyr Thr Gly Lys Thr Cys Ser Gln Asp Val Asn Glu Cys Gly Met Lys Pro Arg Pro Cys Gln His Arg Cys Val Asn Thr His Gly Ser Tyr Lys Cys Phe Cys 110 Leu Ser Gly His Met Leu Met Pro Asp Ala Thr Cys Val Asn Ser 135 130 125 Arg Thr Cys Ala Met Ile Asn Cys Gln Tyr Ser Cys Glu Asp Thr Glu Glu Gly Pro Gln Cys Leu Cys Pro Ser Ser Gly Leu Arg Leu 165 Ala Pro Asn Gly Arg Asp Cys Leu Asp Ile Asp Glu Cys Ala Ser 170 175 Gly Lys Val Ile Cys Pro Tyr Asn Arg Arg Cys Val Asn Thr Phe 185 195 Gly Ser Tyr Tyr Cys Lys Cys His Ile Gly Phe Glu Leu Gln Tyr Ile Ser Gly Arg Tyr Asp Cys Ile Asp Ile Asn Glu Cys Thr Met Asp Ser His Thr Cys Ser His His Ala Asn Cys Phe Asn Thr Gln Gly Ser Phe Lys Cys Lys Cys Lys Gln Gly Tyr Lys Gly Asn Gly Leu Arg Cys Ser Al'a Ile Pro Glu Asn Ser Val Lys Glu Val Leu Arg Ala Pro Gly Thr Ile Lys Asp Arg Ile Lys Lys Leu Leu Ala 285 275 His Lys Asn Ser Met Lys Lys Lys Ala Lys Ile Lys Asn Val Thr Pro Glu Pro Thr Arg Thr Pro Thr Pro Lys Val Asn Leu Gln Pro Phe Asn Tyr Glu Glu Ile Val Ser Arg Gly Gly Asn Ser His Gly 320 325 330

Gly Lys Lys Gly Asn Glu Glu Lys 335

<210> 120

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 120

cctcagtggc cacatgctca tg 22

<210> 121

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 121

ggctgcacgt atggctatcc atag 24

<210> 122

<211> 50

<212> DNA

<213> Artificial Sequence

~<220>

ile ja

W.

<223> Synthetic oligonucleotide probe

<400> 122

gataaactgt cagtacagct gtgaagacac agaagaaggg ccacagtgcc 50

<210> 123

<211> 1199

<212> DNA

<213> Homo sapiens

<400> 123

gggagctgct gctgtggctg ctggtgctgt gcgcgctgct cctgctcttg 50 gtgcagctgc tgcgcttcct gagggctgac ggcgacctga cgctactatg 100 ggccgagtgg cagggacgac gcccagaatg ggagctgact gatatggtgg 150 tgtgggtgac tggagcctcg agtggaattg gtgaggagct ggcttaccag 200 ttgtctaaac taggagttc tcttgtgctg tcagccagaa gagtgcatga 250 gctggaaagg gtgaaaagaa gatgcctaga gaatggcaat ttaaaagaaa 300

aagatatact tgttttgccc cttgacctga ccgacactgg ttcccatgaa 350 gcggctacca aagctgttct ccaggagttt ggtagaatcg acattctggt 400 caacaatggt ggaatgtccc agcgttctct gtgcatggat accagcttgg 450 atgtctacag aaagctaata gagcttaact acttagggac ggtgtccttg 500 acaaaatgtg ttctgcctca catgatcgag aggaagcaag gaaagattgt 550 tactgtgaat agcatcctgg gtatcatatc tgtacctctt tccattggat 600 actgtgctag caagcatgct ctccggggtt tttttaatgg ccttcgaaca 650 gaacttgcca catacccagg tataatagtt tctaacattt gcccaggacc 700 tgtgcaatca aatattgtgg agaattccct agctggagaa gtcacaaaga 750 ctataggcaa taatggagac cagtcccaca agatgacaac cagtcgttgt 800 gtgcggctga tgttaatcag catggccaat gatttgaaag aagtttggat 850 ctcagaacaa cctttcttgt tagtaacata tttgtggcaa tacatgccaa 900 cctgggcctg gtggataacc aacaagatgg ggaagaaaag gattgagaac 950 tttaagagtg gtgtggatgc agactcttct tattttaaaa tctttaagac 1000 aaaacatgac tgaaaagagc acctgtactt ttcaagccac tggagggaga 1050 aatqqaaaac atqaaaacag caatcttctt atgcttctga ataatcaaag 1100 actaatttqt qattttactt tttaatagat atgactttgc ttccaacatg 1150 gaatgaaata aaaaataaat aataaaagat tgccatgaat cttgcaaaa 1199

<210> 124

<211> 289

<212> PRT

<213> Homo sapiens

<400> 124

Met Val Val Trp Val Thr Gly Ala Ser Ser Gly Ile Gly Glu

1 5 10 15

Leu Ala Tyr Gln Leu Ser Lys Leu Gly Val Ser Leu Val Leu Ser 20 25 30

Ala Arg Arg Val His Glu Leu Glu Arg Val Lys Arg Arg Cys Leu

Glu Asn Gly Asn Leu Lys Glu Lys Asp Ile Leu Val Leu Pro Leu
50 55 60

Asp Leu Thr Asp Thr Gly Ser His Glu Ala Ala Thr Lys Ala Val 65 70 75

Leu Gln Glu Phe Gly Arg Ile Asp Ile Leu Val Asn Asn Gly Gly

80 85 90

Met Ser Gln Arg Ser Leu Cys Met Asp Thr Ser Leu Asp Val Tyr 95 100 105

Arg Lys Leu Ile Glu Leu Asn Tyr Leu Gly Thr Val Ser Leu Thr 110 115 120

Lys Cys Val Leu Pro His Met Ile Glu Arg Lys Gln Gly Lys Ile 125 130 135

Val Thr Val Asn Ser Ile Leu Gly Ile Ile Ser Val Pro Leu Ser $140 \hspace{1.5cm} 145 \hspace{1.5cm} 150 \hspace{1.5cm}$

Ile Gly Tyr Cys Ala Ser Lys His Ala Leu Arg Gly Phe Phe Asn 155 160 165

Gly Leu Arg Thr Glu Leu Ala Thr Tyr Pro Gly Ile Ile Val Ser 170 175 180

Asn Ile Cys Pro Gly Pro Val Gln Ser Asn Ile Val Glu Asn Ser 185 190 195

Leu Ala Gly Glu Val Thr Lys Thr Ile Gly Asn Asn Gly Asp Gln 200 205 210

Ser His Lys Met Thr Thr Ser Arg Cys Val Arg Leu Met Leu Ile 215 220 225

Ser Met Ala Asn Asp Leu Lys Glu Val Trp Ile Ser Glu Gln Pro 230 235 240

Phe Leu Leu Val Thr Tyr Leu Trp Gln Tyr Met Pro Thr Trp Ala 245 250 255

Trp Trp Ile Thr Asn Lys Met Gly Lys Lys Arg Ile Glu Asn Phe 260 265 270

Lys Ser Gly Val Asp Ala Asp Ser Ser Tyr Phe Lys Ile Phe Lys 275 280 285

Thr Lys His Asp

<210> 125

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 125

gcaatgaact gggagctgc 19

<210> 126

<211> 19

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 126
ctgtgaatag catcctggg 19
<210> 127
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 127
cttttcaagc cactggaggg 20
<210> 128
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 128
 ctgtagacat ccaagctggt atcc 24
<210> 129
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 129
 aagagtctgc atccacacca ctc 23
<210> 130
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 130
 acctgacgct actatgggcc gagtggcagg gacgacgccc agaatg 46
<210> 131
<211> 2365
<212> DNA
<213> Homo sapiens
<400> 131
```

--

1.4

gcgacgtggg caccgccatc agctgttcgc gcgtcttctc ctccaggtgg 50 ggcaggggtt tcgggctggt ggagcatgtg ctgggacagg acagcatcct 100 caatcaatcc aacagcatat tcggttgcat cttctacaca ctacagctat 150 tgttaggttg cctgcggaca cgctgggcct ctgtcctgat gctgctgagc 200 tccctggtgt ctctcgctgg ttctgtctac ctggcctgga tcctgttctt 250 cgtgctctat gatttctgca ttgtttgtat caccacctat gctatcaacg 300 tgagcctgat gtggctcagt ttccggaagg tccaagaacc ccagggcaag 350 gctaagaggc actgagccct caacccaagc caggctgacc tcatctgctt 400 tgctttggtc ttcaagccgc tcagcgtgcc tgtggacagc gtggccccgg 450 ccccccaag cctcaggagg gcaacacagt ccctggcgag tggccctggc 500 aggccagtgt gaggaggcaa ggagcccaca tctgcagcgg ctccctggtg 550 gcagacacct gggtcctcac tgctgcccac tgctttgaaa aggcagcagc 600 aacagaactg aattootggt cagtggtoot gggttototg cagcgtgagg 650 gactcagccc tggggccgaa gaggtggggg tggctgccct gcagttgccc 700 agggcctata accactacag ccagggctca gacctggccc tgctgcagct 750 cgcccaccc acgacccaca cacccctctg cctgccccag cccgcccatc 800 getteceett tggageetee tgetgggeea etggetggga teaggaeace 850 agtgatgete etgggaceet aegeaatetg egeetgegte teateagteg 900 ccccacatgt aactgtatct acaaccagct gcaccagcga cacctgtcca 950 accoggocog gootgggatg ctatgtgggg goocccagoo tggggtgcag 1000 ggcccctgtc agggagattc cgggggccct gtgctgtgcc tcgagcctga 1050 cggacactgg gttcaggctg gcatcatcag ctttgcatca agctgtgccc 1100 aggaggacgc tcctgtgctg ctgaccaaca cagctgctca cagttcctgg 1150 ctgcaggctc gagttcaggg ggcagctttc ctggcccaga gcccagagac 1200 cccggagatg agtgatgagg acagctgtgt agcctgtgga tccttgagga 1250 cagcaggtcc ccaggcagga gcaccctccc catggccctg ggaggccagg 1300 ctgatgcacc agggacagct ggcctgtggc ggagccctgg tgtcagagga 1350 ggcggtgcta actgctgccc actgcttcat tgggcgccag gccccagagg 1400 aatggagcgt agggctgggg accagaccgg aggagtgggg cctgaagcag 1450

ctcatcctgc atggagccta cacccaccct gaggggggct acgacatggc 1500 cctcctqctq ctqqcccaqc ctqtqacact gggagccagc ctgcggcccc 1550 tctgcctgcc ctatcctgac caccacctgc ctgatgggga gcgtggctgg 1600 gttctgggac gggccgccc aggagcaggc atcagctccc tccagacagt 1650 gcccgtgacc ctcctggggc ctagggcctg cagccggctg catgcagctc 1700 ctgggggtga tggcagccct attctgccgg ggatggtgtg taccagtgct 1750 gtgggtgagc tgcccagctg tgagggcctg tctggggcac cactggtgca 1800 tgaggtgagg ggcacatggt tcctggccgg gctgcacagc ttcggagatg 1850 cttgccaagg cccgccagg ccggcggtct tcaccgcgct ccctgcctat 1900 gaggactggg tcagcagttt ggactggcag gtctacttcg ccgaggaacc 1950 agagcccgag gctgagcctg gaagctgcct ggccaacata agccaaccaa 2000 ccaqctqctq acaqqqqacc tggccattct caggacaaga gaatgcaggc 2050 aggcaaatgg cattactgcc cctgtcctcc ccaccctgtc atgtgtgatt 2100 ccaggcacca gggcaggccc agaagcccag cagctgtggg aaggaacctg 2150 cctggggcca caggtgccca ctccccaccc tgcaggacag gggtgtctgt 2200 ggacactccc acacccaact ctgctaccaa gcaggcgtct cagctttcct 2250 cctcctttac tctttcagat acaatcacgc cagccacgtt gttttgaaaa 2300 tttctttttt tggggggcag cagttttcct ttttttaaac ttaaataaat 2350 tgttacaaaa taaaa 2365

<210> 132

<211> 571

<212> PRT

<213> Homo sapiens

<400> 132

Met Leu Leu Ser Ser Leu Val Ser Leu Ala Gly Ser Val Tyr Leu
1 5 10 15

Ala Trp Ile Leu Phe Phe Val Leu Tyr Asp Phe Cys Ile Val Cys 20 25 30

Ile Thr Thr Tyr Ala Ile Asn Val Ser Leu Met Trp Leu Ser Phe 35 40 45

Arg Lys Val Gln Glu Pro Gln Gly Lys Ala Lys Arg His Gly Asn 50 55 60

Thr Val Pro Gly Glu Trp Pro Trp Gln Ala Ser Val Arg Arg Gln 65 70 75

Gly Ala His Ile Cys Ser Gly Ser Leu Val Ala Asp Thr Trp Val Leu Thr Ala Ala His Cys Phe Glu Lys Ala Ala Ala Thr Glu Leu 100 Asn Ser Trp Ser Val Val Leu Gly Ser Leu Gln Arg Glu Gly Leu 120 110 115 Ser Pro Gly Ala Glu Glu Val Gly Val Ala Ala Leu Gln Leu Pro Arg Ala Tyr Asn His Tyr Ser Gln Gly Ser Asp Leu Ala Leu Leu Gln Leu Ala His Pro Thr Thr His Thr Pro Leu Cys Leu Pro Gln Pro Ala His Arg Phe Pro Phe Gly Ala Ser Cys Trp Ala Thr Gly Trp Asp Gln Asp Thr Ser Asp Ala Pro Gly Thr Leu Arg Asn Leu 185 Arg Leu Arg Leu Ile Ser Arg Pro Thr Cys Asn Cys Ile Tyr Asn 200 Gln Leu His Gln Arg His Leu Ser Asn Pro Ala Arg Pro Gly Met 225 215 Leu Cys Gly Gly Pro Gln Pro Gly Val Gln Gly Pro Cys Gln Gly Asp Ser Gly Gly Pro Val Leu Cys Leu Glu Pro Asp Gly His Trp 245 Val Gln Ala Gly Ile Ile Ser Phe Ala Ser Ser Cys Ala Gln Glu 260 Asp Ala Pro Val Leu Leu Thr Asn Thr Ala Ala His Ser Ser Trp 285 275 Leu Gln Ala Arg Val Gln Gly Ala Ala Phe Leu Ala Gln Ser Pro 290 Glu Thr Pro Glu Met Ser Asp Glu Asp Ser Cys Val Ala Cys Gly 315 305 Ser Leu Arg Thr Ala Gly Pro Gln Ala Gly Ala Pro Ser Pro Trp 330 Pro Trp Glu Ala Arg Leu Met His Gln Gly Gln Leu Ala Cys Gly 345 Gly Ala Leu Val Ser Glu Glu Ala Val Leu Thr Ala Ala His Cys Phe Ile Gly Arg Gln Ala Pro Glu Glu Trp Ser Val Gly Leu Gly

				365					370					375
Thr	Arg	Pro	Glu	Glu 380	Trp	Gly	Leu	Lys	Gln 385	Leu	Ile	Leu	His	Gly 390
Ala	Tyr	Thr	His	Pro 395	Glu	Gly	Gly	Tyr	Asp 400	Met	Ala	Leu	Leu	Leu 405
Leu	Ala	Gln	Pro	Val 410	Thr	Leu	Gly	Ala	Ser 415	Leu	Arg	Pro	Leu	Cys 420
Leu	Pro	Tyr	Pro	Asp 425	His	His	Leu	Pro	Asp 430	Gly	Glu	Arg	Gly	Trp 435
Val	Leu	Gly	Arg	Ala 440	Arg	Pro	Gly	Ala	Gly 445	Ile	Ser	Ser	Leu	Gln 450
Thr	Val	Pro	Val	Thr 455	Leu	Leu	Gly	Pro	Arg 460	Ala	Cys	Ser	Arg	Leu 465
His	Ala	Ala	Pro	Gly 470	Gly	Asp	Gly	Ser	Pro 475	Ile	Leu	Pro	Gly	Met 480
Val	Cys	Thr	Ser	Ala 485	Val	Gly	Glu	Leu	Pro 490	Ser	Cys	Glu	Gly	Leu 495
Ser	Gly	Ala	Pro	Leu 500	Val	His	Glu	Val	Arg 505	Gly	Thr	Trp	Phe	Leu 510
Ala	Gly	Leu	His	Ser 515	Phe	Gly	Asp	Ala	Cys 520	Gln	Gly	Pro	Ala	Arg 525
Pro	Ala	Val	Phe	Thr 530	Ala	Leu	Pro	Ala	Tyr 535	Glu	Asp	Trp	Val	Ser 540
Ser	Leu	Asp	Trp	Gln 545	Val	Tyr	Phe	Ala	Glu 550	Glu	Pro	Glu	Pro	Glu 555
Ala	Glu	Pro	Gly	Ser 560	Cys	Leu	Ala	Asn	Ile 565	Ser	Gln	Pro	Thr	Ser 570
Cys														

<210> 133

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 133

cctgtgctgt gcctcgagcc tgac 24

<210> 134 <211> 24 <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 134
gtgggcagca gttagcaccg cctc 24
<210> 135
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
ggctggcatc atcagctttg catcaagctg tgcccaggag gacgc 45
<210> 136
<211> 1998
<212> DNA
<213> Homo sapiens
<400> 136
 cgggccgccc ccggccccca ttcgggccgg gcctcgctgc ggcggcgact 50
 gagecagget gggecgegte cetgagtece agagteggeg eggegeggea 100
 ggggcagcct tccaccacgg ggagcccagc tgtcagccgc ctcacaggaa 150
 gatgctgcgt cggcggggca gccctggcat gggtgtgcat gtgggtgcag 200
 ccctgggagc actgtggttc tgcctcacag gagccctgga ggtccaggtc 250
 cctgaagacc cagtggtggc actggtgggc accgatgcca ccctgtgctg 300
 ctccttctcc cctgagcctg gcttcagcct ggcacagctc aacctcatct 350
 ggcagctgac agataccaaa cagctggtgc acagctttgc tgagggccag 400
 gaccagggca gcgcctatgc caaccgcacg gccctcttcc cggacctgct 450
 ggcacagggc aacgcatccc tgaggctgca gcgcgtgcgt gtggcggacg 500
 agggcagett cacetgette gtgageatee gggatttegg cagegetgee 550
 qtcaqcctqc aggtggccgc tccctactcg aagcccagca tgaccctgga 600
 gcccaacaag gacctgcggc caggggacac ggtgaccatc acgtgctcca 650
 gctaccaggg ctaccctgag gctgaggtgt tctggcagga tgggcagggt 700
 gtgcccctga ctggcaacgt gaccacgtcg cagatggcca acgagcaggg 750
 cttgtttgat gtgcacagcg tcctgcgggt ggtgctgggt gcgaatggca 800
```

cctacagetg cctggtgcgc aaccccgtgc tgcagcagga tgcgcacrgc 850

tctgtcacca tcacagggca gcctatgaca ttccccccag aggccctgtg 900 ggtgaccgtg gggctgtctg tctgtctcat tgcactgctg gtggccctgg 950 ctttcgtgtg ctggagaaag atcaaacaga gctgtgagga ggagaatgca 1000 ggagctgagg accaggatgg ggagggagaa ggctccaaga cagccctgca 1050 gcctctgaaa cactctgaca gcaaagaaga tgatggacaa gaaatagcct 1100 gaccatgagg accagggage tgctacccct ccctacaget cctaccctct 1150 ggctgcaatg gggctgcact gtgagccctg cccccaacag atgcatcctg 1200 ctctgacagg tgggctcctt ctccaaagga tgcgatacac agaccactgt 1250 gcagccttat ttctccaatg gacatgattc ccaagtcatc ctgctgcctt 1300 ttttcttata gacacaatga acagaccacc cacaacctta gttctctaag 1350 tcatcctgcc tgctgcctta tttcacagta catacatttc ttagggacac 1400 agtacactga ccacatcacc accetettet tecagtgetg egtggaceat 1450 ctggctgcct tttttctcca aaagatgcaa tattcagact gactgacccc 1500 ctgccttatt tcaccaaaga cacgatgcat agtcaccccg gccttgtttc 1550 tccaatggcc gtgatacact agtgatcatg ttcagccctg cttccacctg 1600 catagaatct tttcttctca gacagggaca gtgcggcctc aacatctcct 1650 ggagtctaga agctgtttcc tttcccctcc ttcctccctg ccccaagtga 1700 agacagggca gggccaggaa tgctttgggg acaccgaggg gactgccccc 1750 caccccacc atggtgctat tctggggctg gggcagtctt ttcctggctt 1800 gcctctggcc agctcctggc ctctggtaga gtgagacttc agacgttctg 1850 atgccttccg gatgtcatct ctccctgccc caggaatgga agatgtgagg 1900 acttctaatt taaatgtggg actcggaggg attttgtaaa ctgggggtat 1950 attttgggga aaataaatgt ctttgtaaaa aaaaaaaaa aaaaaaaa 1998

<210> 137

<211> 316

<212> PRT

<213> Homo sapiens

<220>

<221> unsure

<222> 233

<223> unknown amino acid

<400> 137

Met Leu Arg Arg Gly Ser Pro Gly Met Gly Val His Val Gly

, 1				5					10					15
Ala	Ala	Leu	Gly	Ala 20	Leu	Trp	Phe	Cys	Leu 25	Thr	Gly	Ala	Leu	Glu 30
Val	Gln	Val	Pro	Glu 35	Asp	Pro	Val	Val	Ala 40	Leu	Val	Gly	Thr	Asp 45
Ala	Thr	Leu	Cys	Cys 50	Ser	Phe	Ser	Pro	Glu 55	Pro	Gly	Phe	Ser	Leu 60
Ala	Gln	Leu	Asn	Leu 65	Ile	Trp	Gln	Leu	Thr 70	Asp	Thr	Lys	Gln	Leu 75
Val	His	Ser	Phe	Ala 80	Glu	Gly	Gln	Asp	Gln 85	Gly	Ser	Ala	Tyr	Ala 90
Asn	Arg	Thr	Ala	Leu 95	Phe	Pro	Asp	Leu	Leu 100	Ala	Gln	Gly	Asn	Ala 105
Ser	Leu	Arg	Leu	Gln 110	Arg	Val	Arg	Val	Ala 115	Asp	Glu	Gly	Ser	Phe 120
Thr	Cys	Phe	Val	Ser 125	Ile	Arg	Asp	Phe	Gly 130	Ser	Ala	Ala	Val	Ser 135
Leu	Gln	Val	Ala	Ala 140	Pro	Tyr	Ser	Lys	Pro 145	Ser	Met	Thr	Leu	Glu 150
Pro	Asn	Lys	Asp	Leu 155	Arg	Pro	Gly	Asp	Thr 160	Val	Thr	Ile	Thr	Cys 165
Ser	Ser	Tyr	Gln	Gly 170	Tyr	Pro	Glu	Ala	Glu 175	Val	Phe	Trp	Gln	Asp 180
Gly	Gln	Gly	Val	Pro 185	Leu	Thr	Gly	Asn	Val 190	Thr	Thr	Ser	Gln	Met 195
Ala	Asn	Glu	Gln	Gly 200	Leu	Phe	Asp	Val	His 205	Ser	Val	Leu	Arg	Val 210
Val	Leu ,	Gly	Ala	Asn 215	Gly	Thr	Tyr	Ser	Cys 220	Leu	Val	Arg	Asn	Pro 225
Val	Leu	Gln	Gln	Asp 230	Ala	His	Xaa	Ser	Val 235		Ile	Thr	Gly	Gln 240
Pro	Met	Thr	Phe	Pro 245	Pro	Glu	Ala	Leu	Trp 250		Thr	Val	Gly	Leu 255
Ser	Val	Суз	Leu	Ile 260	Ala	Leu	Leu	Val	Ala 265		Ala	Phe	Val	Cys 270
Trp	Arg	Lys	Ile	Lys 275	Gln	Ser	Суз	Glu	Glu 280		Asn	Ala	Gly	Ala 285
Glu	Asp	Gln	Asp	Gly 290	Glu	Gly	Glu	Gly	Ser 295		Thr	Ala	Leu	Gln 300

```
Pro Leu Lys His Ser Asp Ser Lys Glu Asp Asp Gly Gln Glu Ile
                                      310
                 305
Ala
<210> 138
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 138
 ctggcacagc tcaacctcat ctgg 24
<210> 139
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 139
 gctgtctgtc tgtctcattg 20
<210> 140
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 140
 ggacacagta tactgaccac 20
<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 141
 tgcgaaccag gcagctgtaa gtgc 24
<210> 142
<211> 24
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

į į

A ANT

```
<400> 142
tggaagaaga gggtggtgat gtgg 24
<210> 143
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 143
 cagctgacag acaccaaaca gctggtgcac agtttcaccg aaggc 45
<210> 144
<211> 2336
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1620, 1673
<223> unknown base
<400> 144
 ttcgtgaccc ttgagaaaag agttggtggt aaatgtgcca cgtcttctaa 50
 gaagggggag tcctgaactt gtctgaagcc cttgtccgta agccttgaac 100
 tacgttctta aatctatgaa gtcgagggac ctttcgctgc ttttgtaggg 150
 acttetttee ttgetteage aacatgagge ttttettgtg gaacgeggte 200
 ttgactctgt tcgtcacttc tttgattggg gctttgatcc ctgaaccaga 250
 agtgaaaatt gaagttctcc agaagccatt catctgccat cgcaagacca 300
 aaggaggga tttgatgttg gtccactatg aaggctactt agaaaaggac 350
 ggctccttat ttcactccac tcacaaacat aacaatggtc agcccatttg 400
 gtttaccctg ggcatcctgg aggctctcaa aggttgggac cagggcttga 450
 aaggaatgtg tgtaggagag aagagaaagc tcatcattcc tcctgctctg 500
 ggctatggaa aagaaggaaa aggtaaaatt cccccagaaa gtacactgat 550
 atttaatatt gatctcctgg agattcgaaa tggaccaaga tcccatgaat 600
 cattccaaga aatggatctt aatgatgact ggaaactctc taaagatgag 650
 gttaaagcat atttaaagaa ggagtttgaa aaacatggtg cggtggtgaa 700
 tgaaagtcat catgatgctt tggtggagga tatttttgat aaagaagatg 750
 aagacaaaga tgggtttata tctgccagag aatttacata taaacacgat 800
```

gagttataga gatacatcta cccttttaat atagcactca tctttcaaga 850

gagggcagtc atctttaaag aacattttat ttttatacaa tgttctttct 900 tgctttgttt tttattttta tatattttt ctgactccta tttaaagaac 950 cccttaggtt tctaagtacc catttctttc tgataagtta ttgggaagaa 1000 aaagctaatt ggtctttgaa tagaagactt ctggacaatt tttcactttc 1050 acagatatga agctttgttt tactttctca cttataaatt taaaatgttg 1100 caactgggaa tataccacga catgagacca ggttatagca caaattagca 1150 ccctatattt ctgcttccct ctattttctc caagttagag gtcaacattt 1200 gaaaagcctt ttgcaatagc ccaaggcttg ctattttcat gttataatga 1250 aatagtttat gtgtaactgg ctctgagtct ctgcttgagg accagaggaa 1300 aatggttgtt ggacctgact tgttaatggc tactgcttta ctaaggagat 1350 gtgcaatgct gaagttagaa acaaggttaa tagccaggca tggtggctca 1400 tgcctgtaat cccagcactt tgggaggctg aggcgggcgg atcacctgag 1450 gttgggagtt cgagaccagc ctgaccaaca cggagaaacc ctatctctac 1500 taaaaataca aagtagcccg gcgtggtgat gcgtgcctgt aatcccagct 1550 acccaggaag gctgaggcgg cagaatcact tgaacccgag gccgaggttg 1600 cggtaagccg agatcacctn cagcctggac actctgtctc gaaaaaagaa 1650 aagaacacgg ttaataccat atnaatatgt atgcattgag acatgctacc 1700 taggacttaa gctgatgaag cttggctcct agtgattggt ggcctattat 1750 gataaatagg acaaatcatt tatgtgtgag tttctttgta ataaaatgta 1800 tcaatatgtt atagatgagg tagaaagtta tatttatatt caatatttac 1850 ttcttaaggc tagcggaata tccttcctgg ttctttaatg ggtagtctat 1900 agtatattat actacaataa cattgtatca taagataaag tagtaaacca 1950 gtctacattt tcccatttct gtctcatcaa aaactgaagt tagctgggtg 2000 tggtggctca tgcctgtaat cccagcactt tgggggccaa ggagggtgga 2050 tcacttgaga tcaggagttc aagaccagcc tggccaacat ggtgaaacct 2100 tgtctctact aaaaatacaa aaattagcca ggcgtggtgg tgcacacctg 2150 tagtcccagc tactcgggag gctgagacag gagatttgct tgaacccggg 2200 aggeggaggt tgcagtgagc caagattgtg ccactgcact ccagcctggg 2250 tgacagagca agactccatc tcaaaaaaaa aaaaaagaag cagacctaca 2300

```
gcagctacta ttgaataaat acctatcctg gatttt 2336
```

```
<210> 145
<211> 211
```

<212> PRT

<213> Homo sapiens

<400> 145

Met Arg Leu Phe Leu Trp Asn Ala Val Leu Thr Leu Phe Val Thr 1 5 10 15

Ser Leu Ile Gly Ala Leu Ile Pro Glu Pro Glu Val Lys Ile Glu
20 25 30

Val Leu Gln Lys Pro Phe Ile Cys His Arg Lys Thr Lys Gly Gly 35 40 45

Asp Leu Met Leu Val His Tyr Glu Gly Tyr Leu Glu Lys Asp Gly 50 55 60

Ser Leu Phe His Ser Thr His Lys His Asn Asn Gly Gln Pro Ile 65 70 75

Trp Phe Thr Leu Gly Ile Leu Glu Ala Leu Lys Gly Trp Asp Gln 80 85 90

Gly Leu Lys Gly Met Cys Val Gly Glu Lys Arg Lys Leu Ile Ile 95 100 105

Pro Pro Ala Leu Gly Tyr Gly Lys Glu Gly Lys Gly Lys Ile Pro 110 115 120

Pro Glu Ser Thr Leu Ile Phe Asn Ile Asp Leu Leu Glu Ile Arg 125 130 135

Asn Gly Pro Arg Ser His Glu Ser Phe Gln Glu Met Asp Leu Asn 140 145 150

Asp Asp Trp Lys Leu Ser Lys Asp Glu Val Lys Ala Tyr Leu Lys 155 160 165

Lys Glu Phe Glu Lys His Gly Ala Val Val Asn Glu Ser His His 170 175 180

Asp Ala Leu Val Glu Asp Ile Phe Asp Lys Glu Asp Glu Asp Lys 185 190 195

Asp Gly Phe Ile Ser Ala Arg Glu Phe Thr Tyr Lys His Asp Glu 200 205 210

Leu

<210> 146

<211> 26

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 146
ctttccttgc ttcagcaaca tgaggc 26
<210> 147
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 147
 gcccagagca ggaggaatga tgagc 25
<210> 148
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 148
 gtggaacgcg gtcttgactc tgttcgtcac ttctttgatt ggggctttg 49
<210> 149
<211> 2196
<212> DNA
<213> Homo sapiens
<400> 149
 aataaagctt ccttaatgtt gtatatgtct ttgaagtaca tccgtgcatt 50
 tttttttagc atccaaccat tcctcccttg tagttctcgc cccctcaaat 100
 caccetetee egtageeeac eegactaaca teteagtete tgaaaatgea 150
 cagagatgcc tggctacctc gccctgcctt cagcctcacg gggctcagtc 200
 tctttttctc tttggtgcca ccaggacgga gcatggaggt cacagtacct 250
 gccaccctca acgtcctcaa tggctctgac gcccgcctgc cctgcacctt 300
 caactcctgc tacacagtga accacaaaca gttctccctg aactggactt 350
 accaggagtg caacaactgc tctgaggaga tgttcctcca gttccgcatg 400
 aagatcatta acctgaagct ggagcggttt caagaccgcg tggagttctc 450
 agggaacccc agcaagtacg atgtgtcggt gatgctgaga aacgtgcagc 500
 cggaggatga ggggatttac aactgctaca tcatgaaccc ccctgaccgc 550
 caccqtqqcc atqqcaagat ccatctqcag gtcctcatgg aagagccccc 600
```

tgagcgggac tccacggtgg ccgtgattgt gggtgcctcc gtcgggggct 650 tcctggctgt ggtcatcttg gtgctgatgg tggtcaagtg tgtgaggaga 700 aaaaaagagc agaagctgag cacagatgac ctgaagaccg aggaggaggg 750 caagacggac ggtgaaggca acccggatga tggcgccaag tagtgggtgg 800 ccggccctgc agcctcccgt gtcccgtctc ctcccctctc cgccctgtac 850 agtgaccctg cctgctcgct cttggtgtgc ttcccgtgac ctaggacccc 900 agggcccacc tggggcctcc tgaacccccg acttcgtatc tcccaccctg 950 caccaagagt gacccactct cttccatccg agaaacctgc catgctctgg 1000 gacgtgtggg ccctggggag aggagagaaa gggctcccac ctgccagtcc 1050 ctggggggag gcaggaggca catgtgaggg tccccagaga gaagggagtg 1100 ggtgggcagg ggtagaggag gggccgctgt cacctgccca gtgcttgcct 1150 ggcagtggct tcagagagga cctggtgggg agggagggct ttcctgtgct 1200 gacagcgctc cctcaggagg gccttggcct ggcacggctg tgctcctccc 1250 ctgctcccag cccagagcag ccatcaggct ggaggtgacg atgagttcct 1300 gaaacttgga ggggcatgtt aaagggatga ctgtgcattc cagggcactg 1350 acggaaagcc agggctgcag gcaaagctgg acatgtgccc tggcccagga 1400 ggccatgttg ggccctcgtt tccattgcta gtggcctcct tggggctcct 1450 gttggctcct aatcccttag gactgtggat gaggccagac tggaagagca 1500 gctccaggta gggggccatg tttcccagcg gggacccacc aacagaggcc 1550 agtttcaaag tcagctgagg ggctgagggg tggggctcca tggtgaatgc 1600 aggttgctgc aggctctgcc ttctccatgg ggtaaccacc ctcgcctggg 1650 caggggcagc caaggctggg aaatgaggag gccatgcaca gggtggggca 1700 getttetttg gggetteagt gagaactete ceagttgeee ttggtggggt 1750 ttccacctgg cttttggcta cagagaggga agggaaagcc tgaggccggc 1800 ataaggggag gccttggaac ctgagctgcc aatgccagcc ctgtcccatc 1850 tgcggccacg ctactcgctc ctctcccaac aactcccttc gtggggacaa 1900 aagtgacaat tgtaggccag gcacagtggc tcacgcctgt aatcccagca 1950 ctttgggagg ccaaggcggg tggattacct ccatctgttt agtagaaatg 2000 ggcaaaaccc catctctact aaaaatacaa gaattagctg ggcgtggtgg 2050 cgtgtgcctg taatcccagc tatttgggag gctgaggcag gagaatcgct 2100 tgagcccggg aagcagaggt tgcagtgaac tgagatagtg atagtgccac 2150 tgcaattcag cctgggtgac atagagagac tccatctcaa aaaaaa 2196

<210> 150

<211> 215

<212> PRT

<213> Homo sapiens

<400> 150

Met His Arg Asp Ala Trp Leu Pro Arg Pro Ala Phe Ser Leu Thr
1 5 10 15

Gly Leu Ser Leu Phe Phe Ser Leu Val Pro Pro Gly Arg Ser Met
20 25 30

Glu Val Thr Val Pro Ala Thr Leu Asn Val Leu Asn Gly Ser Asp 35 40 45

Ala Arg Leu Pro Cys Thr Phe Asn Ser Cys Tyr Thr Val Asn His 50 55 60

Lys Gln Phe Ser Leu Asn Trp Thr Tyr Gln Glu Cys Asn Asn Cys $65 \hspace{1cm} 70 \hspace{1cm} 75$

Ser Glu Glu Met Phe Leu Gln Phe Arg Met Lys Ile Ile Asn Leu 80 85 90

Lys Leu Glu Arg Phe Gln Asp Arg Val Glu Phe Ser Gly Asn Pro $95 \hspace{1cm} 100 \hspace{1cm} 105 \hspace{1cm}$

Ser Lys Tyr Asp Val Ser Val Met Leu Arg Asn Val Gln Pro Glu 110 115 120

Asp Glu Gly Ile Tyr Asn Cys Tyr Ile Met Asn Pro Pro Asp Arg 125 130 135

His Arg Gly His Gly Lys Ile His Leu Gln Val Leu Met Glu Glu 140 145

Pro Pro Glu Arg Asp Ser Thr Val Ala Val Ile Val Gly Ala Ser 155 160 165

Val Gly Gly Phe Leu Ala Val Val Ile Leu Val Leu Met Val Val 170 175 180

Lys Cys Val Arg Arg Lys Lys Glu Gln Lys Leu Ser Thr Asp Asp 185 190 190

Leu Lys Thr Glu Glu Glu Gly Lys Thr Asp Gly Glu Gly Asn Pro 200 205

Asp Asp Gly Ala Lys 215

<210> 151

```
<211> 524
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 103, 233
```

<223> unknown base

<400> 151
gttgtatatg tcctgaagta catccgtgca ttttttttag catccaacca 50
tcctcccttg tagttctcgc cccctcaaat caccttctcc cttagcccac 100
ccnactaaca tctcagtctc tgaaaatgca cagagatgcc tggctacctc 150
gccctgcctt cagcctcacg gggctcagtc tctttttctc tttggtgcca 200
ccaggacgga gcatggaggt ccacagtacc tgnccaccct caacgtcctc 250
aatggctctg acgcccgcct gccctgccct tcaactcctg ctacacagtg 300
aaccacaaac agttctccct gaactggact taccaggagt gcaacaactg 350
ctctgaggag atgttcctcc agttccgcat gaagatcatt aacctgaagc 400
tggagcggtt tcaagaccgc gtggagttct cagggaaccc cagcaagtac 450
gatgtgtcgg tgatgctgag aaacgtgcag ccggaggatg aggggattta 500
caactgctac atcatgaacc cccc 524

```
<210> 152
<211> 368
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 56, 123
<223> unknown base
```

<400> 152
 tcacgggct catctcttt tctctttgt gcccaccagg acggagcatg 50

gaggtncaca tacctgccac cctcaacgtc ctcaatggct ttgacgcccg 100
 cctgccctgc accttcaact ccngctacac agtgaaccac aaacagttct 150
 ccctgaactg gatttaccag gagtgcaaca actggctctg aggagatgtt 200
 cctccagttc ccgcatggaa gatcatttaa cctgaaagct ggaagcggtt 250
 ttcaagaacc gcgtggaagt ttctcaggga accccagcaa gtacgatgtg 300
 tcggtgatgc tgagaaacgt gcagccggag gatgagggga tttacaactg 350
 ctacatcatg aaccccc 368

```
<210> 153
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 153
acggagcatg gaggtccaca gtac 24
<210> 154
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 154
gcacqtttct cagcatcacc gac 23
<210> 155
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 cgcctgccct gcaccttcaa ctcctgctac acagtgaacc acaaacagtt 50
<210> 156
<211> 2680
<212> DNA
<213> Homo sapiens
<400> 156
 tgcggcgacc gtcgtacacc atgggcctcc acctccgccc ctaccgtgtg 50
 gggctgctcc cggatggcct cctgttcctc ttgctgctgc taatgctgct 100
 cgcggaccca gcgctcccgg ccggacgtca cccccagtg gtgctggtcc 150
 ctggtgattt gggtaaccaa ctggaagcca agctggacaa gccgacagtg 200
 gtgcactacc tctgctccaa gaagaccgaa agctacttca caatctggct 250
 gaacctggaa ctgctgctgc ctgtcatcat tgactgctgg attgacaata 300
 tcaggctggt ttacaacaaa acatccaggg ccacccagtt tcctgatggt 350
 gtggatgtac gtgtccctgg ctttgggaag accttctcac tggagttcct 400
 ggaccccagc aaaagcagcg tgggttccta tttccacacc atggtggaga 450
 gccttgtggg ctggggctac acacggggtg aggatgtccg aggggctccc 500
```

tatgactggc gccgagcccc aaatgaaaac gggccctact tcctggccct 550 ccgcgagatg atcgaggaga tgtaccagct gtatgggggc cccgtggtgc 600 tggttgccca cagtatgggc aacatgtaca cgctctactt tctgcagcgg 650 cageegeagg cetggaagga caagtatate egggeetteg tgteaetggg 700 tgcgccctgg gggggcgtgg ccaagaccct gcgcgtcctg gcttcaggag 750 acaacaaccg gatcccagtc atcgggcccc tgaagatccg ggagcagcag 800 cggtcagctg tctccaccag ctggctgctg ccctacaact acacatggtc 850 acctgagaag gtgttcgtgc agacacccac aatcaactac acactgcggg 900 actaccgcaa gttcttccag gacatcggct ttgaagatgg ctggctcatg 950 cggcaggaca cagaagggct ggtggaagcc acgatgccac ctggcgtgca 1000 gctgcactgc ctctatggta ctggcgtccc cacaccagac tccttctact 1050 atgagagett eeetgaeegt gaeectaaaa tetgetttgg tgaeggegat 1100 ggtactgtga acttgaagag tgccctgcag tgccaggcct ggcagagccg 1150 ccaggagcac caagtgttgc tgcaggagct gccaggcagc gagcacatcg 1200 agatgctggc caacgccacc accetggcct atctgaaacg tgtgctcctt 1250 gggccctgac tcctgtgcca caggactcct gtggctcggc cgtggacctg 1300 ctgttggcct ctggggctgt catggcccac gcgttttgca aagtttgtga 1350 ctcaccattc aaggececga gtettggact gtgaagcatc tgccatgggg 1400 aagtgctgtt tgttatcctt tctctgtggc agtgaagaag gaagaaatga 1450 gagtctagac tcaagggaca ctggatggca agaatgctgc tgatggtgga 1500 actgctgtga ccttaggact ggctccacag ggtggactgg ctgggccctg 1550 gtcccagtcc ctgcctgggg ccatgtgtcc ccctattcct gtgggctttt 1600 catacttgcc tactgggccc tggccccgca gccttcctat gagggatgtt 1650 actgggctgt ggtcctgtac ccagaggtcc cagggatcgg ctcctggccc 1700 ctcgggtgac ccttcccaca caccagccac agataggcct gccactggtc 1750 atgggtaget agagetgetg gettecetgt ggettagetg gtggeeagee 1800 tgactggctt cctgggcgag cctagtagct cctgcaggca ggggcagttt 1850 gttgcgttct tcgtggttcc caggccctgg gacatctcac tccactccta 1900 cctcccttac caccaggage attcaagete tggattggge ageagatgtg 1950

cccccagtcc cgcaggctgt gttecagggg ccctgatttc ctcggatgtg 2000 ctattggccc caggactgaa gctgcctccc ttcaccctgg gactgtggtt 2050 ccaaggatga gagcaggggt tggagccatg gccttctggg aacctatgga 2100 gaaagggaat ccaaggaagc agccaaggct gctcgcagct tccctgagct 2150 gcacctcttg ctaaccccac catcacactg ccaccctgcc ctagggtctc 2200 actagtacca agtgggtcag cacagggctg aggatggggc tcctatccac 2250 cctggccagc acccagctta gtgctgggac tagcccagaa acttgaatgg 2300 gaccctgaga gagccagggg tcccctgagg ccccctagg ggctttctgt 2350 ctgccccagg gtgctccatg gatctccctg tggcagcagg catggagagt 2400 cagggctgcc ttcatggcag taggctctaa gtggtgact ggccacaggc 2450 cgagaaaagg gtacagcctc taggtgggt tcccaaagac gccttcaggc 2500 tggactgagc tgctccca cagggtttct gtgcagctgg atttctctg 2550 ttgcatcat gcctgcatc tgtccccct tgttcctgag tggcccaca 2600 tggggctctg agcaggctgt atctggattc tggcaataaa agtactctgg 2650 atgctgtaaa aaaaaaaaa aaaaaaaaa 2680

<210> 157

<211> 412

<212> PRT

<213> Artificial

<400> 157

Met Gly Leu His Leu Arg Pro Tyr Arg Val Gly Leu Leu Pro Asp 1 5 10 15

Gly Leu Leu Phe Leu Leu Leu Leu Leu Met Leu Leu Ala Asp Pro 20 25 30

Ala Leu Pro Ala Gly Arg His Pro Pro Val Val Leu Val Pro Gly 35 40 45

Asp Leu Gly Asn Gln Leu Glu Ala Lys Leu Asp Lys Pro Thr Val 50 55 60

Val His Tyr Leu Cys Ser Lys Lys Thr Glu Ser Tyr Phe Thr Ile
65 70 75

Trp Leu Asn Leu Glu Leu Leu Leu Pro Val Ile Ile Asp Cys Trp 80 85 90

Ile Asp Asn Ile Arg Leu Val Tyr Asn Lys Thr Ser Arg Ala Thr $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Gln Phe Pro Asp Gly Val Asp Val Arg Val Pro Gly Phe Gly Lys

				110					115					120
Thr	Phe	Ser	Leu	Glu 125	Phe	Leu	Asp	Pro	Ser 130	Lys	Ser	Ser	Val	Gly 135
Ser	Tyr	Phe	His	Thr 140	Met	Val	Glu	Ser	Leu 145	Val	Gly	Trp	Gly	Tyr 150
Thr	Arg	Gly	Glu	Asp 155	Val	Arg	Gly	Ala	Pro 160	Tyr	Asp	Trp	Arg	Arg 165
Ala	Pro	Asn	Glu	Asn 170	Gly	Pro	Tyr	Phe	Leu 175	Ala	Leu	Arg	Glu	Met 180
Ile	Glu	Glu	Met	Tyr 185	Gln	Leu	Tyr	Gly	Gly 190	Pro	Val	Val	Leu	Val 195
Ala	His	Ser	Met	Gly 200	Asn	Met	Tyr	Thr	Leu 205	Tyr	Phe	Leu	Gln	Arg 210
Gln	Pro	Gln	Ala	Trp 215	Lys	Asp	Lys	Tyr	Ile 220	Arg	Ala	Phe	Val	Ser 225
Leu	Gly	Ala	Pro	Trp 230	Gly	Gly	Val	Ala	Lys 235	Thr	Leu	Arg	Val	Leu 240
Ala	Ser	Gly	Asp	Asn 245	Asn	Arg	Ile	Pro	Val 250	Ile	Gly	Pro	Leu	Lys 255
Ile	Arg	Glu	Gln	Gln 260	Arg	Ser	Ala	Val	Ser 265	Thr	Ser	Trp	Leu	Leu 270
Pro	Tyr	Asn	Tyr	Thr 275	Trp	Ser	Pro	Glu	Lys 280	Val	Phe	Val	Gln	Thr 285
Pro	Thr	Ile	Asn	Tyr 290	Thr	Leu	Arg	Asp	Tyr 295	Arg	Lys	Phe	Phe	Gln 300
Asp	Ile	Gly	Phe	Glu 305	Asp	Gly	Trp	Leu	Met 310	Arg	Gln	Asp	Thr	Glu 315
Gly	Leu	Val	Glu	Ala 320	Thr	Met	Pro	Pro	Gly 325	Val	Gln	Leu	His	Cys 330
Leu	Tyr	Gly	Thr	Gly 335	Val	Pro	Thr	Pro	Asp 340	Ser	Phe	Tyr	Tyr	Glu 345
Ser	Phe	Pro	Asp	Arg 350	Asp	Pro	Lys	Ile	Cys 355	Phe	Gly	Asp	Gly	Asp 360
Gly	Thr	Val	Asn	Leu 365	Lys	Ser	Ala	Leu	Gln 370	Cys	Gln	Ala	Trp	Gln 375
Ser	Arg	Gln	Glu	His 380	Gln	Val	Leu	Leu	Gln 385	Glu	Leu	Pro	Gly	Ser 390
Glu	His	Ile	Glu	Met 395	Leu	Ala	Asn	Ala	Thr 400	Thr	Leu	Ala	Tyr	Leu 405

```
Lys Arg Val Leu Leu Gly Pro
                 410
<210> 158
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 158
ctggggctac acacggggtg agg 23
<210> 159
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 159
 ggtgccgctg cagaaagtag agcg 24
<210> 160
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 160
 gccccaaatg aaaacgggcc ctacttcctg gccctccgcg agatg 45
<210> 161
<211> 1512
<212> DNA
<213> Homo sapiens
<400> 161
 cggacgcgtg ggcggacgcg tggggcggcg gcagcggcgg cgacggcgac 50
 atggagagcg gggcctacgg cgcggccaag gcgggcggct ccttcgacct 100
 gcggcgcttc ctgacgcagc cgcaggtggt ggcgcgcgcc gtgtgcttgg 150
 tcttcgcctt gatcgtgttc tcctgcatct atggtgaggg ctacagcaat 200
 gcccacgagt ctaagcagat gtactgcgtg ttcaaccgca acgaggatgc 250
 ctgccgctat ggcagtgcca tcggggtgct ggccttcctg gcctcggcct 300
 tcttcttggt ggtcgacgcg tatttccccc agatcagcaa cgccactgac 350
```

iki.

and A

£13.

ile.i.

cgcaagtacc tggtcattgg tgacctgctc ttctcagctc tctggacctt 400

cctgtggttt gttggtttct gcttcctcac caaccagtgg gcagtcacca 450 accegaagga cgtgctggtg ggggccgact ctgtgagggc agccatcacc 500 ttcagcttct tttccatctt ctcctggggt gtgctggcct ccctggccta 550 ccagcgctac aaggctggcg tggacgactt catccagaat tacgttgacc 600 ccactccgga ccccaacact gcctacgcct cctacccagg tgcatctgtg 650 gacaactacc aacagccacc cttcacccag aacgcggaga ccaccgaggg 700 ctaccagccg cccctgtgt actgagtggc ggttagcgtg ggaaggggga 750 cagagaggc cctccctct gccctggact ttcccatcag cctcctggaa 800 ctgccagccc ctctctttca cctgttccat cctgtgcagc tgacacacag 850 ctaaggagcc tcatagcctg gcgggggctg gcagagccac accccaagtg 900 cctgtgccca gagggcttca gtcagccgct cactcctcca gggcactttt 950 aggaaagggt tittagctag tgtttttcct cgcttttaat gacctcagcc 1000 ccgcctgcag tggctagaag ccagcaggtg cccatgtgct actgacaagt 1050 gcctcagctt cccccggcc cgggtcaggc cgtgggagcc gctattatct 1100 gcgttctctg ccaaagactc gtgggggcca tcacacctgc cctgtgcagc 1150 ggagccggac caggetettg tgteeteact caggtttqct teceetgtgc 1200 ccactgctgt atgatctggg ggccaccacc ctgtgccggt ggcctctggg 1250 ctgcctcccg tggtgtgagg gcggggctgg tgctcatggc acttcctcct 1300 tgctcccacc cctggcagca gggaagggct ttgcctgaca acacccagct 1350 ttatgtaaat attctgcagt tgttacttag gaagcctggg gagggcaggg 1400 gtgccccatg gctcccagac tctgtctgtg ccgagtgtat tataaaatcg 1450 tgggggagat gcccggcctg ggatgctgtt tggagacgga ataaatgttt 1500 tctcattcaa ag 1512

<210> 162

<211> 224

<212> PRT

<213> Homo sapiens

<400> 162

Met Glu Ser Gly Ala Tyr Gly Ala Ala Lys Ala Gly Gly Ser Phe
1 5 10 15

Asp Leu Arg Arg Phe Leu Thr Gln Pro Gln Val Val Ala Arg Ala 20 25 30

```
Val Cys Leu Val Phe Ala Leu Ile Val Phe Ser Cys Ile Tyr Gly
 Glu Gly Tyr Ser Asn Ala His Glu Ser Lys Gln Met Tyr Cys Val
 Phe Asn Arg Asn Glu Asp Ala Cys Arg Tyr Gly Ser Ala Ile Gly
 Val Leu Ala Phe Leu Ala Ser Ala Phe Phe Leu Val Val Asp Ala
 Tyr Phe Pro Gln Ile Ser Asn Ala Thr Asp Arg Lys Tyr Leu Val
 Ile Gly Asp Leu Leu Phe Ser Ala Leu Trp Thr Phe Leu Trp Phe
                 110
 Val Gly Phe Cys Phe Leu Thr Asn Gln Trp Ala Val Thr Asn Pro
 Lys Asp Val Leu Val Gly Ala Asp Ser Val Arg Ala Ala Ile Thr
                                                          150
 Phe Ser Phe Phe Ser Ile Phe Ser Trp Gly Val Leu Ala Ser Leu
 Ala Tyr Gln Arg Tyr Lys Ala Gly Val Asp Asp Phe Ile Gln Asn
                                                          180
 Tyr Val Asp Pro Thr Pro Asp Pro Asn Thr Ala Tyr Ala Ser Tyr
                 185
                                      190
                                                          195
 Pro Gly Ala Ser Val Asp Asn Tyr Gln Gln Pro Pro Phe Thr Gln
                                      205
                                                          210
 Asn Ala Glu Thr Thr Glu Gly Tyr Gln Pro Pro Pro Val Tyr
<210> 163
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 163
 tggtcttcgc cttgatcgtg ttct 24
<210> 164
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 164
 gtgtactgag cggcggttag 20
<210> 165
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 165
 ctgaaggtga tggctgccct cac 23
<210> 166
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 166
 ccaggaggct catgggaaag tcc 23
<210> 167
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 167
 ccacgagtct aagcagatgt actgcgtgtt caaccgcaac gaggatgcct 50
<210> 168
<211> 3143
<212> DNA
<213> Homo sapiens
<400> 168
 gagecaceta ecetgeteeg aggecaggee tgeagggeet categgecag 50
 agggtgatca gtgagcagaa ggatgcccgt ggccgaggcc ccccaggtgg 100
 ctggcgggca gggggacgga ggtgatggcg aggaagcgga gccagagggg 150
 atgttcaagg cctgtgagga ctccaagaga aaagcccggg gctacctccg 200
 cctggtgccc ctgtttgtgc tgctggccct gctcgtgctg gcttcggcgg 250
 gggtgctact ctggtatttc ctagggtaca aggcggaggt gatggtcagc 300
 caggtgtact caggcagtct gcgtgtactc aatcgccact tctcccagga 350
```

tettaceege egggaateta gtgeetteeg eagtgaaace geeaaageee 400

agaagatgct caaggagctc atcaccagca cccgcctggg aacttactac 450 aactccagct ccgtctattc ctttggggag ggacccctca cctgcttctt 500 ctggttcatt ctccaaatcc ccgagcaccg ccggctgatg ctgagccccg 550 aggtggtgca ggcactgctg gtggaggagc tgctgtccac agtcaacagc 600 teggetgeeg teceetacag ggeegagtae gaagtggaee eegagggeet 650 agtgatcctg gaagccagtg tgaaagacat agctgcattg aattccacgc 700 tgggttgtta ccgctacagc tacgtgggcc agggccaggt cctccggctg 750 aaggggcctg accacctggc ctccagctgc ctgtggcacc tgcagggccc 800 caaggacctc atgctcaaac tccggctgga gtggacgctg gcagagtgcc 850 gggaccgact ggccatgtat gacgtggccg ggcccctgga gaagaggctc 900 atcacctcgg tgtacggctg cagccgccag gagcccgtgg tggaggttct 950 ggcgtcgggg gccatcatgg cggtcgtctg gaagaagggc ctgcacagct 1000 actacgaccc cttcgtgctc tccgtgcagc cggtggtctt ccaggcctgt 1050 gaagtgaacc tgacgctgga caacaggctc gactcccagg gcgtcctcag 1100 caccccgtac ttccccagct actactcgcc ccaaacccac tgctcctggc 1150 acctcacggt gccctctctg gactacggct tggccctctg gtttgatgcc 1200 tatgcactga ggaggcagaa gtatgatttg ccgtgcaccc agggccagtg 1250 gacgatccag aacaggaggc tgtgtggctt gcgcatcctg cagccctacg 1300 ccgagaggat ccccgtggtg gccacggccg ggatcaccat caacttcacc 1350 teccagatet eecteacegg geeeggtgtg egggtgeact atggettgta 1400 caaccagtcg gacccctgcc ctggagagtt cctctgttct gtgaatggac 1450 tetgtgteec tgeetgtgat ggggteaagg actgeeceaa eggeetggat 1500 gagagaaact gcgtttgcag agccacattc cagtgcaaag aggacagcac 1550 atgcatctca ctgcccaagg tctgtgatgg gcagcctgat tgtctcaacg 1600 gcagcgatga agagcagtgc caggaagggg tgccatgtgg gacattcacc 1650 ttccagtgtg aggaccggag ctgcgtgaag aagcccaacc cgcagtgtga 1700 tgggcggccc gactgcaggg acggctcgga tgaggagcac tgtgactgtg 1750 gcctccaggg cccctccagc cgcattgttg gtggagctgt gtcctccgag 1800 ggtgagtggc catggcaggc cagcetecag gtteggggte gacacatetg 1850

tggggggcc ctcatcgctg accgctgggt gataacagct gcccactgct 1900 tccaggagga cagcatggcc tccacggtgc tgtggaccgt gttcctgggc 1950 aaggtgtggc agaactcgcg ctggcctgga gaggtgtcct tcaaggtgag 2000 ccgcctgctc ctgcacccgt accacgaaga ggacagccat gactacgacg 2050 tggegetget geagetegae cacceggtgg tgegetegge egeegtgege 2100 cocqtctqcc tqcccqcqcq ctcccacttc ttcgaqcccq gcctgcactg 2150 ctggattacg ggctggggcg ccttgcgcga gggcggcccc atcagcaacg 2200 ctctgcagaa agtggatgtg cagttgatcc cacaggacct gtgcagcgag 2250 qcctatcqct accaqqtqac qccacqcatq ctgtqtqccg gctaccgcaa 2300 qqqcaaqaaq gatqcctqtc agggtgactc aggtggtccg ctggtgtgca 2350 aggcactcag tggccgctgg ttcctggcgg ggctggtcag ctggggcctg 2400 ggctgtggcc ggcctaacta cttcggcgtc tacacccgca tcacaggtgt 2450 gatcagctgg atccagcaag tggtgacctg aggaactgcc cccctgcaaa 2500 gcagggccca cctcctggac tcagagagcc cagggcaact gccaagcagg 2550 gggacaagta ttctggcggg gggtggggga gagagcaggc cctgtggtgg 2600 caggaggtgg catcttgtct cgtccctgat gtctgctcca gtgatggcag 2650 gaggatggag aagtgccagc agctgggggt caagacgtcc cctgaggacc 2700 caggeceaea eccagecett etgeeteeca attetetete eteegteece 2750 ttcctccact gctqcctaat gcaaggcagt ggctcagcag caagaatgct 2800 ggttctacat cccgaggagt gtctgaggtg cgccccactc tgtacagagg 2850 ctgtttgggc agccttgcct ccagagagca gattccagct tcggaagccc 2900 ctggtctaac ttgggatctg ggaatggaag gtgctcccat cggaggggac 2950 cctcagagcc ctggagactg ccaggtgggc ctgctgccac tgtaagccaa 3000 aaggtgggga agtcctgact ccagggtcct tgccccaccc ctgcctgcca 3050 cctgggccct cacagcccag accctcactg ggaggtgagc tcagctgccc 3100 tttggaataa agctgcctga tcaaaaaaaa aaaaaaaaa aaa 3143

<210> 169

<211> 802

<212> PRT

<213> Homo sapiens

<400> 169

Met Pro Val Ala Glu Ala Pro Gln Val Ala Gly Gly Gln Gly Asp Gly Gly Asp Gly Glu Glu Ala Glu Pro Glu Gly Met Phe Lys Ala Cys Glu Asp Ser Lys Arg Lys Ala Arg Gly Tyr Leu Arg Leu Val Pro Leu Phe Val Leu Leu Ala Leu Leu Val Leu Ala Ser Ala Gly Val Leu Leu Trp Tyr Phe Leu Gly Tyr Lys Ala Glu Val Met Val Ser Gln Val Tyr Ser Gly Ser Leu Arg Val Leu Asn Arg His Phe Ser Gln Asp Leu Thr Arg Arg Glu Ser Ser Ala Phe Arg Ser Glu Thr Ala Lys Ala Gln Lys Met Leu Lys Glu Leu Ile Thr Ser Thr 115 110 120 Arg Leu Gly Thr Tyr Tyr Asn Ser Ser Ser Val Tyr Ser Phe Gly 125 Glu Gly Pro Leu Thr Cys Phe Phe Trp Phe Ile Leu Gln Ile Pro 140 145 150 Glu His Arg Arg Leu Met Leu Ser Pro Glu Val Val Gln Ala Leu 155 Leu Val Glu Glu Leu Leu Ser Thr Val Asn Ser Ser Ala Ala Val 170 180 Pro Tyr Arg Ala Glu Tyr Glu Val Asp Pro Glu Gly Leu Val Ile 185 190 Leu Glu Ala Ser Val Lys Asp Ile Ala Ala Leu Asn Ser Thr Leu 200 Gly Cys Tyr Arg Tyr Ser Tyr Val Gly Gln Gly Gln Val Leu Arg Leu Lys Gly Pro Asp His Leu Ala Ser Ser Cys Leu Trp His Leu 230 Gln Gly Pro Lys Asp Leu Met Leu Lys Leu Arg Leu Glu Trp Thr Leu Ala Glu Cys Arg Asp Arg Leu Ala Met Tyr Asp Val Ala Gly 260 Pro Leu Glu Lys Arg Leu Ile Thr Ser Val Tyr Gly Cys Ser Arg Gln Glu Pro Val Val Glu Val Leu Ala Ser Gly Ala Ile Met Ala

				290					295					300
Val	Val	Trp	Lys	Lys 305	Gly	Leu	His	Ser	Tyr 310	Tyr	Asp	Pro	Phe	Val 315
Leu	Ser	Val	Gln	Pro 320	Val	Val	Phe	Gln	Ala 325	Cys	Glu	Val	Asn	Leu 330
Thr	Leu	Asp	Asn	Arg 335	Leu	Asp	Ser	Gln	Gly 340	Val	Leu	Ser	Thr	Pro 345
Tyr	Phe	Pro	Ser	Tyr 350	Tyr	Ser	Pro	Gln	Thr 355	His	Cys	Ser	Trp	His 360
Leu	Thr	Val	Pro	Ser 365	Leu	Asp	Tyr	Gly	Leu 370	Ala	Leu	Trp	Phe	Asp 375
Ala	Tyr	Ala	Leu	Arg 380	Arg	Gln	Lys	Tyr	Asp 385	Leu	Pro	Cys	Thr	Gln 390
Gly	Gln	Trp	Thr	Ile 395	Gln	Asn	Arg	Arg	Leu 400	Суз	Gly	Leu	Arg	Ile 405
Leu	Gln	Pro	Tyr	Ala 410	Glu	Arg	Ile	Pro	Val 415	Val	Ala	Thr	Ala	Gly 420
Ile	Thr	Ile	Asn	Phe 425	Thr	Ser	Gln	Ile	Ser 430	Leu	Thr	Gly	Pro	Gly 435
Val	Arg	Val	His	Tyr 440	Gly	Leu	Tyr	Asn	Gln 445	Ser	Asp	Pro	Cys	Pro 450
Gly	Glu	Phe	Leu	Cys 455	Ser	Val	Asn	Gly	Leu 460	Cys	Val	Pro	Ala	Cys 465
Asp	Gly	Val	Lys	Asp 470	Cys	Pro	Asn	Gly	Leu 475	Asp	Glu	Arg	Asn	Cys 480
Val	Cys	Arg	Ala	Thr 485	Phe	Gln	Cys	Lys	Glu 490	Asp	Ser	Thr	Cys	Ile 495
Ser	Leu	Pro	Lys	Val 500	Суз	Asp	Gly	Gln	Pro 505	Asp	Суз	Leu	Asn	Gly 510
Ser	Asp	Glu	Glu	Gln 515	Cys	Gln	Glu	Gly	Val 520	Pro	Суз	Gly	Thr	Phe 525
Thr	Phe	Gln	Cys	Glu 530	Asp	Arg	Ser	Cys	Val 535	Lys	Lys	Pro	Asn	Pro 540
Gln	Cys	Asp	Gly	Arg 545	Pro	Asp	Cys	Arg	Asp 550	Gly	Ser	Asp	Glu	Glu 555
				560			Gly		565					570
Gly	Ala	Val	Ser	Ser 575	Glu	Gly	Glu	Trp	Pro 580	Trp	Gln	Ala	Ser	Leu 585

Gln Val Arg Gly Arg His Ile Cys Gly Gly Ala Leu Ile Ala Asp 590 Arg Trp Val Ile Thr Ala Ala His Cys Phe Gln Glu Asp Ser Met 605 610 Ala Ser Thr Val Leu Trp Thr Val Phe Leu Gly Lys Val Trp Gln Asn Ser Arg Trp Pro Gly Glu Val Ser Phe Lys Val Ser Arg Leu Leu Leu His Pro Tyr His Glu Glu Asp Ser His Asp Tyr Asp Val 650 Ala Leu Leu Gln Leu Asp His Pro Val Val Arg Ser Ala Ala Val Arg Pro Val Cys Leu Pro Ala Arg Ser His Phe Phe Glu Pro Gly 690 Leu His Cys Trp Ile Thr Gly Trp Gly Ala Leu Arg Glu Gly Gly 695 705 Pro Ile Ser Asn Ala Leu Gln Lys Val Asp Val Gln Leu Ile Pro 710 Gln Asp Leu Cys Ser Glu Ala Tyr Arg Tyr Gln Val Thr Pro Arg 725 735 Met Leu Cys Ala Gly Tyr Arg Lys Gly Lys Lys Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Lys Ala Leu Ser Gly Arg 765 Trp Phe Leu Ala Gly Leu Val Ser Trp Gly Leu Gly Cys Gly Arg Pro Asn Tyr Phe Gly Val Tyr Thr Arg Ile Thr Gly Val Ile Ser 795

Trp Ile Gln Gln Val Val Thr 800

<210> 170

<211> 1327

<212> DNA

<213> Homo sapiens

<400> 170

gcaccaggg ccagtggacg atccagaaca ggaggctgtg tggcttgcgc 50 atcctgcagc cctacgccga gaggatcccc gtggtggcca cggccgggat 100 caccatcaac ttcacctccc agatctccct caccgggccc ggtgtgcggg 150 tgcactatgg cttgtacaac cagtcggacc cctgccctgg agagttcctc 200

tgttctgtga atggactctg tgtccctgcc tgtgatgggg tcaaggactg 250 ccccaacggc ctggatgaga gaaactgcgt ttgcagagcc acattccagt 300 gcaaagagga cagcacatgc atctcactgc ccaaggtctg tgatgggcag 350 cctgattqtc tcaacggcag cgatgaagag cagtgccagg aaggggtgcc 400 atgtgggaca ttcaccttcc agtgtgagga ccggagctgc gtgaagaagc 450 ccaacccgca gtgtgatggg cggcccgact gcagggacgg ctcggatgag 500 gagcactgtg actgtggcct ccagggcccc tccagccgca ttgttggtgg 550 agctgtgtcc tccgagggtg agtggccatg gcaggccagc ctccaggttc 600 ggggtcgaca catctgtggg ggggccctca tcgctgaccg ctgggtgata 650 acagetgeec actgetteea ggaggaeage atggeeteea eggtgetgtg 700 qaccqtqttc ctgggcaagg tgtggcagaa ctcgcgctgg cctggagagg 750 tgtccttcaa ggtgagccgc ctgctcctgc acccqtacca cgaaqaggac 800 agccatgact acgacgtggc gctgctgcag ctcgaccacc cggtggtgcg 850 ctcggccgcc gtgcgccccg tctgcctgcc cgcgcgctcc cacttcttcg 900 agcccggcct gcactgctgg attacgggct ggggcgcctt gcgcgagggc 950 ggccccatca gcaacgctct gcagaaagtg gatgtgcagt tgatcccaca 1000 ggacetgtgc agegaggeet ategetacea ggtgaegeea egeatgetgt 1050 gtgccggcta ccgcaagggc aagaaggatg cctgtcaggg tgactcaggt 1100 ggtccgctgg tgtgcaaggc actcagtggc cgctggttcc tggcggggct 1150 ggtcagctgg ggcctgggct gtggccggcc taactacttc ggcgtctaca 1200 cccgcatcac aggtgtgatc agctggatcc agcaagtggt gacctgagga 1250 actgccccc tgcaaagcag ggcccacctc ctggactcag agagcccagg 1300 gcaactgcca agcagggga caagtat 1327

<210> 171

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 171

taacagctgc ccactgcttc cagg 24

<210> 172

```
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 172
 taatccagca gtgcaggccg gg 22
<210> 173
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 173
 atggcctcca cggtgctgtg gaccgtgttc ctgggcaagg tgtggcagaa 50
<210> 174
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 174
tgcctatgca ctgaggaggc agaag 25
<210> 175
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 175
 aggcagggac acagagtcca ttcac 25
<210> 176
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 176
agtatgattt gccgtgcacc cagggccagt ggacgatcca gaacaggagg 50
<210> 177
<211> 1510
<212> DNA
<213> Homo sapiens
```

Ť.

28

ile.il

<400> 177 ggacgagggc agatetegtt etggggcaag eegttgacae tegeteeetg 50 ccaccgcccg ggctccgtgc cgccaagttt tcattttcca ccttctctgc 100 ctccagtccc ccagcccctg gccgagagaa gggtcttacc ggccgggatt 150 gctggaaaca ccaagaggtg gtttttgttt tttaaaactt ctgtttcttg 200 ggagggggtg tggcggggca ggatgagcaa ctccgttcct ctgctctgtt 250 tctggagcct ctgctattgc tttgctgcgg ggagccccgt accttttggt 300 ccagagggac ggctggaaga taagctccac aaacccaaag ctacacagac 350 tgaggtcaaa ccatctgtga ggtttaacct ccgcacctcc aaggacccag 400 agcatgaagg atgctacctc tccgtcggcc acagccagcc cttagaagac 450 tgcagtttca acatgacagc taaaaccttt ttcatcattc acggatggac 500 gatgageggt atetttgaaa actggetgea caaactegtg teagecetge 550 acacaagaga gaaagacgcc aatgtagttg tggttgactg gctcccctg 600 gcccaccagc tttacacgga tgcggtcaat aataccaggg tggtgggaca 650 cagcattgcc aggatgctcg actggctgca ggagaaggac gatttttctc 700 tegggaatgt ceaettgate ggetaeagee teggagegea egtggeeggg 750 tatgcaggca acttcgtgaa aggaacggtg ggccgaatca caggtttgga 800 tcctgccggg cccatgtttg aaggggccga catccacaag aggctctctc 850 cggacgatgc agattttgtg gatgtcctcc acacctacac gcgttccttc 900 ggcttgagca ttggtattca gatgcctgtg ggccacattg acatctaccc 950 caatgggggt gacttccagc caggctgtgg actcaacgat gtcttgggat 1000 caattgcata tggaacaatc acagaggtgg taaaatgtga gcatgagcga 1050 gccgtccacc tctttgttga ctctctggtg aatcaggaca agccgagttt 1100 tgccttccag tgcactgact ccaatcgctt caaaaagggg atctgtctga 1150 gctgccgcaa gaaccgttgt aatagcattg gctacaatgc caagaaaatg 1200 aggaacaaga ggaacagcaa aatgtaccta aaaacccggg caggcatgcc 1250 tttcagaggt aaccttcagt ccctggagtg tccctgagga aggcccttaa 1300 tacctccttc ttaataccat gctgcagagc agggcacatc ctagcccagg 1350 agaagtggcc agcacaatcc aatcaaatcg ttgcaaatca gattacactg 1400 tgcatgtcct aggaaaggga atctttacaa aataaacagt gtggacccct 1450 <210> 178

<211> 354

<212> PRT

<213> Homo sapiens

<400> 178

Met Ser Asn Ser Val Pro Leu Leu Cys Phe Trp Ser Leu Cys Tyr 1 5 10 15

Cys Phe Ala Ala Gly Ser Pro Val Pro Phe Gly Pro Glu Gly Arg
20 25 30

Leu Glu Asp Lys Leu His Lys Pro Lys Ala Thr Gln Thr Glu Val
35 40 45

Lys Pro Ser Val Arg Phe Asn Leu Arg Thr Ser Lys Asp Pro Glu
50 55 60

His Glu Gly Cys Tyr Leu Ser Val Gly His Ser Gln Pro Leu Glu
65 70 75

Asp Cys Ser Phe Asn Met Thr Ala Lys Thr Phe Phe Ile Ile His 80 85 90

Gly Trp Thr Met Ser Gly Ile Phe Glu Asn Trp Leu His Lys Leu 95 100 105

Val Ser Ala Leu His Thr Arg Glu Lys Asp Ala Asn Val Val Val 110 115 120

Val Asp Trp Leu Pro Leu Ala His Gln Leu Tyr Thr Asp Ala Val 125 130 135

Asn Asn Thr Arg Val Val Gly His Ser Ile Ala Arg Met Leu Asp 140 145 150

Trp Leu Gln Glu Lys Asp Asp Phe Ser Leu Gly Asn Val His Leu 155 160 165

Ile Gly Tyr Ser Leu Gly Ala His Val Ala Gly Tyr Ala Gly Asn 170 175 180

Phe Val Lys Gly Thr Val Gly Arg Ile Thr Gly Leu Asp Pro Ala 185 190 195

Gly Pro Met Phe Glu Gly Ala Asp Ile His Lys Arg Leu Ser Pro 200 205 210

Asp Asp Ala Asp Phe Val Asp Val Leu His Thr Tyr Thr Arg Ser 215 220 225

Phe Gly Leu Ser Ile Gly Ile Gln Met Pro Val Gly His Ile Asp 230 235 240

```
Ile Tyr Pro Asn Gly Gly Asp Phe Gln Pro Gly Cys Gly Leu Asn
                 245
 Asp Val Leu Gly Ser Ile Ala Tyr Gly Thr Ile Thr Glu Val Val
                 260
 Lys Cys Glu His Glu Arg Ala Val His Leu Phe Val Asp Ser Leu
                 275
                                      280
 Val Asn Gln Asp Lys Pro Ser Phe Ala Phe Gln Cys Thr Asp Ser
                 290
 Asn Arg Phe Lys Lys Gly Ile Cys Leu Ser Cys Arg Lys Asn Arg
                 305
 Cys Asn Ser Ile Gly Tyr Asn Ala Lys Lys Met Arg Asn Lys Arg
 Asn Ser Lys Met Tyr Leu Lys Thr Arg Ala Gly Met Pro Phe Arg
                                      340
                 335
 Gly Asn Leu Gln Ser Leu Glu Cys Pro
                 350
<210> 179
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 179
 gtgagcatga gcgagccgtc cac 23
<210> 180
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 180
 gctattacaa cggttcttgc ggcagc 26
<210> 181
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 181
```

ttgactctct ggtgaatcag gacaagccga gttttgcctt ccag 44

i.

** Ú.

W.

43 kā

...

<210> 182

300

315

<211> 3240 <212> DNA

<213> Homo sapiens

<400> 182 cggacgcgtg ggcggacgcg tgggcctggg caagggccgg ggcgccgggc 50 acgcgctgga ggagtggagc agcacccggc cggccctggg ggctgacagt 150 cggcaaagtt tggcccgaag aggaagtggt ctcaaacccc ggcaggtggc 200 gaccaggcca gaccaggggc gctcgctgcc tgcgggcggg ctgtaggcga 250 gggcgcgccc cagtgccgag acceggggct tcaggagccg gccccgggag 300 agaagagtge ggeggeggae ggagaaaaca acteeaaagt tggegaaagg 350 caccqccct actcccqqqc tqccqccqcc tccccqccc caqccctqgc 400 atccagagta egggtegage eegggeeatg gageeeect ggggaggegg 450 caccagggag cctgggcgcc cggggctccg ccgcgacccc atcgggtaga 500 ccacagaagc teegggaccc tteeggcacc tetggacagc ccaggatget 550 gttggccacc ctcctcctcc tcctccttgg aggcgctctg gcccatccag 600 accggattat ttttccaaat catgcttgtg aggacccccc agcagtgctc 650 ttagaagtgc agggcacctt acagaggccc ctggtccggg acagccgcac 700 ctcccctgcc aactgcacct ggctcatcct gggcagcaag gaacagactg 750 tcaccatcag gttccagaag ctacacctgg cctgtggctc agagcgctta 800 accetacget ecceteteca gecactgate tecetgtgtg aggeacetee 850 cagccctctg cagctgcccg ggggcaacgt caccatcact tacagctatg 900 ctggggccag agcacccatg ggccagggct tcctgctctc ctacagccaa 950 gattggctga tgtgcctgca ggaagagttt cagtgcctga accaccgctg 1000 tgtatctgct gtccagcgct gtgatggggt tgatgcctgt ggcgatggct 1050 ctgatgaagc aggttgcagc tcagacccct tccctggcct gaccccaaga 1100 eccgteceet ecctgeettg caatgteace ttggaggaet tetatggggt 1150 cttctcctct cctggatata cacacctagc ctcagtctcc cacccccagt 1200 cctgccattg gctgctggac ccccatgatg gccggcggct ggccgtgcgc 1250 ttcacagccc tggacttggg ctttggagat gcagtgcatg tgtatgacgg 1300 ccctgggccc cctgagagct cccgactact gcgtagtctc acccacttca 1350

gcaatggcaa ggctgtcact gtggagacac tgtctggcca ggctgttgtg 1400 tcctaccaca cagttgcttg gagcaatggt cgtggcttca atgccaccta 1450 ccatgtgcgg ggctattgct tgccttggga cagaccctgt ggcttaggct 1500 ctggcctggg agctggcgaa ggcctaggtg agcgctgcta cagtgaggca 1550 cagcgctgtg acggctcatg ggactgtgct gacggcacag atgaggagga 1600 ctgcccaggc tgcccacctg gacacttccc ctgtggggct gctggcacct 1650 ctggtgccac agcctgctac ctgcctgctg accgctgcaa ctaccagact 1700 ttctgtgctg atggagcaga tgagagacgc tgtcggcatt gccagcctgg 1750 caatttccga tgccgggacg agaagtgcgt gtatgagacg tgggtgtgcg 1800 atgggcagcc agactgtgcg gacggcagtg atgagtggga ctgctcctat 1850 gttctgcccc gcaaggtcat tacagctgca gtcattggca gcctagtgtg 1900 eggeetgete etggteateg ecetgggetg cacetgeaag etetatgeea 1950 ttcgcaccca ggagtacagc atctttgccc ccctctcccg gatggaggct 2000 gagattgtgc agcagcaggc acccccttcc tacgggcagc tcattgccca 2050 gggtgccatc ccacctgtag aagactttcc tacagagaat cctaatgata 2100 actcagtgct gggcaacctg cgttctctgc tacagatctt acgccaggat 2150 atgactccag gaggtggccc aggtgcccgc cgtcgtcagc ggggccgctt 2200 gatgcgacgc ctggtacgcc gtctccgccg ctggggcttg ctccctcgaa 2250 ccaacacccc ggctcgggcc tctgaggcca gatcccaggt cacaccttct 2300 gctgctcccc ttgaggccct agatggtggc acaggtccag cccgtgaggg 2350 cggggcagtg ggtgggcaag atggggagca ggcaccccca ctgcccatca 2400 aggeteect eccatetget ageaegtete eageeceeae taetgteeet 2450 gaagececag ggecactgee etcactgeee ctagagecat cactattgte 2500 tggagtggtg caggccctgc gaggccgcct gttgcccagc ctggggcccc 2550 caggaccaac ccggagccc cctggaccc acacagcagt cctggccctg 2600 gaagatgagg acgatgtgct actggtgcca ctggctgagc cgggggtgtg 2650 ggtagctgag gcagaggatg agccactgct tacctgaggg gacctggggg 2700 ctctactgag gcctctcccc tgggggctct actcatagtg gcacaacctt 2750 ttagaggtgg gtcagcctcc cctccaccac ttccttccct gtccctggat 2800

ttcagggact tggtgggcct cccgttgacc ctatgtagct gctataaagt 2850
taagtgtccc tcaggcaggg agagggctca cagagtctcc tctgtacgtg 2900
gccatggcca gacaccccag tcccttcacc accacctgct ccccacgcca 2950
ccaccatttg ggtggctgtt tttaaaaagt aaagttctta gaggatcata 3000
ggtctggaca ctccatcctt gccaaacctc tacccaaaag tggccttaag 3050
caccggaatg ccaattaact agagaccctc cagcccccaa ggggaggatt 3100
tgggcagaac ctgaggtttt gccatccaca atccctccta cagggcctgg 3150
ctcacaaaaa gagtgcaaca aatgcttcta ttccatagct acggcattgc 3200
tcagtaagtt gaggtcaaaa ataaaggaat catacatctc 3240

<210> 183

<211> 713

<212> PRT

<213> Homo sapiens

<400> 183

Met Leu Leu Ala Thr Leu Leu Leu Leu Leu Gly Gly Ala Leu 1 5 10 15

Ala His Pro Asp Arg Ile Ile Phe Pro Asn His Ala Cys Glu Asp 20 25 30

Pro Pro Ala Val Leu Leu Glu Val Gln Gly Thr Leu Gln Arg Pro
35 40 45

Leu Val Arg Asp Ser Arg Thr Ser Pro Ala Asn Cys Thr Trp Leu 50 55 60

Ile Leu Gly Ser Lys Glu Gln Thr Val Thr Ile Arg Phe Gln Lys
65 70 75

Leu His Leu Ala Cys Gly Ser Glu Arg Leu Thr Leu Arg Ser Pro 80 85 90

Leu Gln Pro Leu Ile Ser Leu Cys Glu Ala Pro Pro Ser Pro Leu 95 100 105

Gln Leu Pro Gly Gly Asn Val Thr Ile Thr Tyr Ser Tyr Ala Gly
110 115 120

Ala Arg Ala Pro Met Gly Gln Gly Phe Leu Leu Ser Tyr Ser Gln
125 130 135

Asp Trp Leu Met Cys Leu Gln Glu Glu Phe Gln Cys Leu Asn His 140 145 150

Arg Cys Val Ser Ala Val Gln Arg Cys Asp Gly Val Asp Ala Cys 155 160 165

Gly Asp Gly Ser Asp Glu Ala Gly Cys Ser Ser Asp Pro Phe Pro

170 175 180 Gly Leu Thr Pro Arg Pro Val Pro Ser Leu Pro Cys Asn Val Thr Leu Glu Asp Phe Tyr Gly Val Phe Ser Ser Pro Gly Tyr Thr His 200 Leu Ala Ser Val Ser His Pro Gln Ser Cys His Trp Leu Leu Asp 215 220 225 Pro His Asp Gly Arg Arg Leu Ala Val Arg Phe Thr Ala Leu Asp Leu Gly Phe Gly Asp Ala Val His Val Tyr Asp Gly Pro Gly Pro Pro Glu Ser Ser Arg Leu Leu Arg Ser Leu Thr His Phe Ser Asn Gly Lys Ala Val Thr Val Glu Thr Leu Ser Gly Gln Ala Val Val Ser Tyr His Thr Val Ala Trp Ser Asn Gly Arg Gly Phe Asn Ala 290 Thr Tyr His Val Arg Gly Tyr Cys Leu Pro Trp Asp Arg Pro Cys Gly Leu Gly Ser Gly Leu Gly Ala Gly Glu Gly Leu Gly Glu Arg Cys Tyr Ser Glu Ala Gln Arg Cys Asp Gly Ser Trp Asp Cys Ala Asp Gly Thr Asp Glu Glu Asp Cys Pro Gly Cys Pro Pro Gly His 350 Phe Pro Cys Gly Ala Ala Gly Thr Ser Gly Ala Thr Ala Cys Tyr 365 Leu Pro Ala Asp Arg Cys Asn Tyr Gln Thr Phe Cys Ala Asp Gly 390 380 Ala Asp Glu Arg Arg Cys Arg His Cys Gln Pro Gly Asn Phe Arg Cys Arg Asp Glu Lys Cys Val Tyr Glu Thr Trp Val Cys Asp Gly 420 415 410 Gln Pro Asp Cys Ala Asp Gly Ser Asp Glu Trp Asp Cys Ser Tyr 435 430 Val Leu Pro Arg Lys Val Ile Thr Ala Ala Val Ile Gly Ser Leu 450 440 Val Cys Gly Leu Leu Val Ile Ala Leu Gly Cys Thr Cys Lys 460 465

Leu Tyr Ala Ile Arg Thr Gln Glu Tyr Ser Ile Phe Ala Pro Leu 470 475 Ser Arg Met Glu Ala Glu Ile Val Gln Gln Ala Pro Pro Ser 485 490 Tyr Gly Gln Leu Ile Ala Gln Gly Ala Ile Pro Pro Val Glu Asp Phe Pro Thr Glu Asn Pro Asn Asp Asn Ser Val Leu Gly Asn Leu 515 Arg Ser Leu Leu Gln Ile Leu Arg Gln Asp Met Thr Pro Gly Gly Gly Pro Gly Ala Arg Arg Arg Gln Arg Gly Arg Leu Met Arg Arg 545 Leu Val Arg Arg Leu Arg Arg Trp Gly Leu Leu Pro Arg Thr Asn 560 Thr Pro Ala Arg Ala Ser Glu Ala Arg Ser Gln Val Thr Pro Ser 585 575 Ala Ala Pro Leu Glu Ala Leu Asp Gly Gly Thr Gly Pro Ala Arg 590 Glu Gly Gly Ala Val Gly Gly Gln Asp Gly Glu Gln Ala Pro Pro 605 Leu Pro Ile Lys Ala Pro Leu Pro Ser Ala Ser Thr Ser Pro Ala 625 Pro Thr Thr Val Pro Glu Ala Pro Gly Pro Leu Pro Ser Leu Pro 635 640 645 Leu Glu Pro Ser Leu Leu Ser Gly Val Val Gln Ala Leu Arg Gly Arg Leu Pro Ser Leu Gly Pro Pro Gly Pro Thr Arg Ser Pro Pro Gly Pro His Thr Ala Val Leu Ala Leu Glu Asp Glu Asp Asp Val Leu Leu Val Pro Leu Ala Glu Pro Gly Val Trp Val Ala Glu 695 705 Ala Glu Asp Glu Pro Leu Leu Thr <210> 184

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 184
 ggctgtcact gtggagacac 20
<210> 185
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 185
 gcaaggtcat tacagctg 18
<210> 186
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 186
 agaacatagg agcagtccca ctc 23
<210> 187
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 187
 tgcctgctgc tgcacaatct cag 23
<210> 188
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 188
 ggctattgct tgccttggga cagaccctgt ggcttaggct ctggc 45
<210> 189
<211> 663
<212> DNA
<213> Homo sapiens
<400> 189
 cgagctgggc gagaagtagg ggagggcggt gctccgccqc ggtggcgqtt 50
 gctatcgctt cgcagaacct actcaggcag ccagctgaga agagttgagg 100
```

14

ij.

#

į.

Both.

gaaagtgctg ctgctgggtc tgcagacgcg atggataacg tgcagccgaa 150

aataaaacat cgccccttct gcttcagtgt gaaaggccac gtgaagatgc 200
tgcggctggc actaactgtg acatctatga cctttttat catcgcacaa 250
gcccctgaac catatattgt tatcactgga tttgaagtca ccgttatctt 300
atttttcata cttttatatg tactcagact tgatcgatta atgaagtggt 350
tattttggcc tttgcttgat attatcaact cactggtaac aacagtattc 400
atgctcatcg tatctgtgtt ggcactgata ccagaaacca caacattgac 450
agttggtgga ggggtgtttg cacttgtgac agcagtatgc tgtcttgccg 500
acggggccct tatttaccgg aagcttctgt tcaatcccag cggtccttac 550
cagaaaaagc ctgtgcatga aaaaaaagaa gttttgtaat tttatattac 600
tttttagttt gatactaagt attaaacata tttctgtatt cttccaaaaa 650
aaaaaaaaaaa aaa 663

<210> 190

<211> 152

<212> PRT

<213> Homo sapiens

<400> 190

Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe 1 5 10 15

Ser Val Lys Gly His Val Lys Met Leu Arg Leu Ala Leu Thr Val 20 25 30

Thr Ser Met Thr Phe Phe Ile Ile Ala Gln Ala Pro Glu Pro Tyr
35 40 45

Ile Val Ile Thr Gly Phe Glu Val Thr Val Ile Leu Phe Phe Ile
50 55 60

Leu Leu Tyr Val Leu Arg Leu Asp Arg Leu Met Lys Trp Leu Phe 65 70 75

Trp Pro Leu Leu Asp Ile Ile Asn Ser Leu Val Thr Thr Val Phe 80 85 90

Met Leu Ile Val Ser Val Leu Ala Leu Ile Pro Glu Thr Thr 95 100 105

Leu Thr Val Gly Gly Gly Val Phe Ala Leu Val Thr Ala Val Cys 110 115 120

Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn 125 130 135

Pro Ser Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu 140 145 150

<211> 40

Val Leu

```
<210> 191
<211> 495
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 78, 212, 234, 487
<223> unknown base
<400> 191
 gggcgagaag taggggaggg cgtgttccgc cgcggtggcg gttgctatcg 50
 ttttgcaqaa cctactcagg cagccagntg agaagagttg agggaaagtg 100
 ctgctgctgg gtctgcagac gcgatggata acgtgcagcc gaaaataaaa 150
 categecect tetgetteag tgtgaaagge caegtgaaga tgetgegget 200
 ggcactaact gngacatcta tgaccttttt tatnatcgca caagcccctg 250
 aaccatatat tgttatcact ggatttgaag tcaccgttat cttatttttc 300
 atacttttat atgtactcag acttgatcga ttaatgaagt ggttattttg 350
 gcctttgctt gatattatca actcactggt aacaacagta ttcatgctca 400
 tcgtatctgt gttggcactg ataccagaaa ccacaacatt gacagttggt 450
 ggaggggtgt ttgcacttgt gacagcagta tgctgtnttg ccgac 495
<210> 192
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 192
 cgttttgcag aacctactca ggcag 25
<210> 193
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 193
cctccaccaa ctgtcaatgt tgtgg 25
<210> 194
```

- <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic oligonucleotide probe

 <400> 194
 aaagtgctgc tgctgggtct gcagacgcga tggataacgt 40

 <210> 195
 <211> 1879
 <212> DNA
 <213> Homo sapien
- <400> 195 ggaccggcta ggctgggcgc gcccccggg ccccgccgtg ggcatgggcg 100 cactggcccg ggcgctgctg ctgcctctgc tggcccagtg gctcctgcgc 150 geogeocogg agetggeece egegeeette aegetgeece teegggtgge 200 cgcggccacg aaccgcgtag ttgcgcccac cccgggaccc gggacccctg 250 ccgagcgcca cgccgacggc ttggcgctcg ccctggagcc tgccctggcg 300 tcccccgcgg gcgccgccaa cttcttggcc atggtagaca acctgcaggg 350 ggactctggc cgcggctact acctggagat gctgatcggg acccccccgc 400 agaagctaca gattctcgtt gacactggaa gcagtaactt tgccgtggca 450 ggaaccccgc actcctacat agacacgtac tttgacacag agaggtctag 500 cacataccgc tccaagggct ttgacgtcac agtgaagtac acacaaggaa 550 gctggacggg cttcgttggg gaagacctcg tcaccatccc caaaggcttc 600 aatacttctt ttcttgtcaa cattgccact atttttgaat cagagaattt 650 ctttttgcct gggattaaat ggaatggaat acttggccta gcttatgcca 700 cacttgccaa gccatcaagt tctctggaga ccttcttcga ctccctggtg 750 acacaagcaa acatccccaa cgttttctcc atgcagatgt gtggagccgg 800 cttgcccgtt gctggatctg ggaccaacgg aggtagtctt gtcttgggtg 850 gaattgaacc aagtttgtat aaaggagaca tctggtatac ccctattaag 900 gaagagtggt actaccagat agaaattctg aaattggaaa ttggaggcca 950 aagcettaat etggaetgea gagagtataa egeagaeaag geeategtgg 1000 acagtggcac cacgctgctg cgcctgcccc agaaggtgtt tgatgcggtg 1050 gtggaagetg tggeeegege atetetgatt ceagaattet etgatggttt 1100

ctggactggg tcccagctgg cgtgctggac gaattcggaa acaccttggt 1150 cttacttccc taaaatctcc atctacctga gagacgagaa ctccagcagg 1200 tcattccgta tcacaatcct gcctcagctt tacattcagc ccatgatggg 1250 ggccggcctg aattatgaat gttaccgatt cggcatttcc ccatccacaa 1300 atgcgctggt gatcggtgcc acggtgatgg agggcttcta cgtcatcttc 1350 gacagagccc agaagaggt gggcttcgca gcgagcccct gtgcagaaat 1400 tgcaggtgct gcagtgtctg aaatttccgg gcctttctca acagaggatg 1450 tagccagcaa ctgtgtcccc gctcagtctt tgagcgagcc cattttgtgg 1500 attgtgtcct atgcgctcat gagcgtctgt ggagccatcc tccttgtctt 1550 aatcqtcctq ctqctqctqc cqttccqqtq tcaqcqtcqc ccccqtgacc 1600 ctgaggtcgt caatgatgag tcctctctgg tcagacatcg ctggaaatga 1650 atagccagge ctgaceteaa gcaaccatga acteagetat taagaaaate 1700 acatttccag qqcaqcaqcc qqqatcqatq qtqqcqcttt ctcctqtqcc 1750 caccegtett caatetetgt tetgeteeca gatgeettet agatteaetg 1800 tottttgatt cttgattttc aagctttcaa atcctcccta cttccaagaa 1850 aaataattaa aaaaaaaact tcattctaa 1879

<210> 196

<211> 518

<212> PRT

<213> Homo sapien

<400> 196

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln 1 5 10 15

Trp Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr 20 25 30

Leu Pro Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro
35 40 45

Thr Pro Gly Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu 50 55 60

Ala Leu Ala Leu Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala 65 70 75

Asn Phe Leu Ala Met Val Asp Asn Leu Gln Gly Asp Ser Gly Arg 80 85 90

Gly Tyr Tyr Leu Glu Met Leu Ile Gly Thr Pro Pro Gln Lys Leu 95 100 105

Gln Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Ala Gly 110 115 Thr Pro His Ser Tyr Ile Asp Thr Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn Ile Ala Thr Ile 170 Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser Ser Ser 200 Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile Pro 220 215 Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala 230 Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu 255 245 Pro Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu 260 Glu Trp Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly 275 Gln Ser Leu Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala 290 Ile Val Asp Ser Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val 305 310 Phe Asp Ala Val Val Glu Ala Val Ala Arg Ala Ser Leu Ile Pro 320 Glu Phe Ser Asp Gly Phe Trp Thr Gly Ser Gln Leu Ala Cys Trp 335 345 Thr Asn Ser Glu Thr Pro Trp Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser Arg Ser Phe Arg Ile Thr Ile 365 375 Leu Pro Gln Leu Tyr Ile Gln Pro Met Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro Ser Thr Asn Ala Leu

ALL REPORT

äŧ

k.

<400> 199

ggatgtagcc agcaactgtg 20

395 400 405 Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro Cys Ala Glu 430 Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe Ser Thr 445 Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser Glu Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Pro Phe Arg Cys Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu Val Arg His Arg Trp Lys 515 <210> 197 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 197 cgcagaagct acagattctc g 21 <210> 198 <211> 19 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 198 ggaaattgga ggccaaagc 19 <210> 199 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe

```
<210> 200
    <211> 19
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 200
     gccttggctc gttctcttc 19
    <210> 201
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 201
     ggtcctgtgc ctggatgg 18
    <210> 202
    <211> 22
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 202
    gacaagacta cctccgttgg tc 22
    <210> 203
    <211> 24
is is
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 203
     tgatgcacag ttcagcacct gttg 24
    <210> 204
    <211> 47
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 204
     cgctccaagg gctttgacgt cacagtgaag tacacacaag gaagctg 47
    <210> 205
    <211> 1939
    <212> DNA
```

**

ų

æ

ti.

<400> 205 cgcctccgcc ttcggaggct gacgccccg ggcgccgttc caggcctgtg 50 cagggcggat cggcagccgc ctggcggcga tccagggcgg tgcggggcct 100 gggcgggagc cgggaggcgc ggccggcatg gaggcgctgc tgctgggcgc 150 ggggttgctg ctgggcgctt acgtgcttgt ctactacaac ctggtgaagg 200 ccccgccgtg cggcggcatg ggcaacctgc ggggccgcac ggccgtggtc 250 acgggcgcca acagcggcat cggaaagatg acggcgctgg agctggcgcg 300 ccggggagcg cgcgtggtgc tggcctgccg cagccaggag cgcggggagg 350 cggctgcctt cgacctccgc caggagagtg ggaacaatga ggtcatcttc 400 atggccttgg acttggccag tetggcctcg gtgcgggcct ttgccactgc 450 ctttctqaqc tctqaqccac qqttqqacat cctcatccac aatgccgqta 500 tcaqttcctq tggccggacc cgtgaggcgt ttaacctgct gcttcgggtg 550 aaccatatcg gtccctttct gctgacacat ctgctgctgc cttgcctgaa 600 ggcatgtgcc cctagccgcg tggtggtggt agcctcagct gcccactgtc 650 ggggacgtct tgacttcaaa cgcctggacc gcccagtggt gggctggcgg 700 caggagetge gggeatatge tgacactaag etggetaatg tactgtttge 750 ccqqqaqctc qccaaccaqc ttqaqqccac tqgcqtcacc tgctatgcag 800 cccacccagg gcctgtgaac tcggagctgt tcctgcgcca tgttcctgga 850 tggctgcgcc cacttttgcg cccattggct tggctggtgc tccgggcacc 900 aagaggggt gcccagacac ccctgtattg tgctctacaa gagggcatcg 950 agcccctcag tgggagatat tttgccaact gccatgtgga agaggtgcct 1000 ccagctgccc gagacgaccg ggcagcccat cggctatggg aggccagcaa 1050 gaggctggca gggcttgggc ctggggagga tgctgaaccc gatgaagacc 1100 cccagtctga ggactcagag gccccatctt ctctaagcac ccccaccct 1150 gaggagecea cagtttetea acettacece ageceteaga geteaceaga 1200 tttgtctaag atgacgcacc gaattcaggc taaagttgag cctgagatcc 1250 agetetecta acceteagge caggatgett gecatggeae tteatggtee 1300 ttgaaaacct cggatgtgtg tgaggccatg ccctggacac tgacgggttt 1350 gtgatcttga cctccgtggt tactttctgg ggccccaagc tgtgccctgg 1400 acatetett teetggttga aggaataatg ggtgattatt tetteetgag 1450 agtgacagta acceccagatg gagagatagg ggtatgetag acactgtget 1500 teteggaaat ttggatgtag tatttteagg ecceaecett attgattetg 1550 ateagetetg gageagagge agggagtttg caatgtgatg eactgeeaae 1600 attgagaatt agtgaaetga teeetttgea acegtetage taggtagtta 1650 aattaeeee atgttaatga ageggaatta ggeteeegag etaagggaet 1700 egeetagggt eteaeagtga gtaggaggag ggeetgggat etgaaeeeaa 1750 gggtetgagg ecagggeega etgeegtaag atgggtgetg agaagtgagt 1800 eagggeaggg eagetggtat egaggteee eatgggagta aggggaegee 1850 tteegggegg atgeagget ggggteatet gtatetgaag eeeeteggaa 1900 taaageeget tgaeegeaa aaaaaaaaa aaaaaaaa 1939

<210> 206

<211> 377

<212> PRT

<213> Homo sapiens

<400> 206

Met Glu Ala Leu Leu Gly Ala Gly Leu Leu Gly Ala Tyr 1 5 10 15

Val Leu Val Tyr Tyr Asn Leu Val Lys Ala Pro Pro Cys Gly Gly 20 25 30

Met Gly Asn Leu Arg Gly Arg Thr Ala Val Val Thr Gly Ala Asn
35 40 45

Ser Gly Ile Gly Lys Met Thr Ala Leu Glu Leu Ala Arg Arg Gly 50 55 60

Ala Arg Val Val Leu Ala Cys Arg Ser Gln Glu Arg Gly Glu Ala 65 70 75

Ala Ala Phe Asp Leu Arg Gln Glu Ser Gly Asn Asn Glu Val Ile $80 \\ 85 \\ 90$

Phe Met Ala Leu Asp Leu Ala Ser Leu Ala Ser Val Arg Ala Phe 95 100 105

Ala Thr Ala Phe Leu Ser Ser Glu Pro Arg Leu Asp Ile Leu Ile 110 115 120

His Asn Ala Gly Ile Ser Ser Cys Gly Arg Thr Arg Glu Ala Phe 125 130 135

Asn Leu Leu Arg Val Asn His Ile Gly Pro Phe Leu Leu Thr 140 145 150 His Leu Leu Pro Cys Leu Lys Ala Cys Ala Pro Ser Arg Val 155 Val Val Val Ala Ser Ala Ala His Cys Arg Gly Arg Leu Asp Phe 170 Lys Arg Leu Asp Arg Pro Val Val Gly Trp Arg Gln Glu Leu Arg 185 Ala Tyr Ala Asp Thr Lys Leu Ala Asn Val Leu Phe Ala Arg Glu Leu Ala Asn Gln Leu Glu Ala Thr Gly Val Thr Cys Tyr Ala Ala His Pro Gly Pro Val Asn Ser Glu Leu Phe Leu Arg His Val Pro Gly Trp Leu Arg Pro Leu Leu Arg Pro Leu Ala Trp Leu Val Leu 245 Arg Ala Pro Arg Gly Gly Ala Gln Thr Pro Leu Tyr Cys Ala Leu 265 260 Gln Glu Gly Ile Glu Pro Leu Ser Gly Arg Tyr Phe Ala Asn Cys 280 275 His Val Glu Glu Val Pro Pro Ala Ala Arg Asp Asp Arg Ala Ala 290 His Arg Leu Trp Glu Ala Ser Lys Arg Leu Ala Gly Leu Gly Pro 305 Gly Glu Asp Ala Glu Pro Asp Glu Asp Pro Gln Ser Glu Asp Ser 325 330 320 Glu Ala Pro Ser Ser Leu Ser Thr Pro His Pro Glu Glu Pro Thr 340 335 Val Ser Gln Pro Tyr Pro Ser Pro Gln Ser Ser Pro Asp Leu Ser 360 350 355 Lys Met Thr His Arg Ile Gln Ala Lys Val Glu Pro Glu Ile Gln 365 370

Leu Ser

<210> 207

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 207

cttcatggcc ttggacttgg ccag 24

```
<210> 208
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 208
acgccagtgg cctcaagctg gttg 24
<210> 209
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 209
 ctttctgagc tctgagccac ggttggacat cctcatccac aatgc 45
<210> 210
<211> 3716
<212> DNA
<213> Homo sapiens
<400> 210
 ggaggagaca gcctcctggg gggcaggggt tccctgcctc tgctgctcct 50
 gctcatcatg ggaggcatgg ctcaggactc cccgccccag atcctagtcc 100
 acceccagga ccaqetgtte cagggeeetg geeetgeeag gatgagetge 150
 caageeteag gecageeace teccaecate egetggttge tgaatgggea 200
 gcccctgagc atggtgcccc cagacccaca ccacctcctg cctgatggga 250
 cccttctgct gctacagccc cctgcccggg gacatgccca cgatggccag 300
 gccctgtcca cagacctggg tgtctacaca tgtgaggcca gcaaccggct 350
 tggcacggca gtcagcagag gcgctcggct gtctgtggct gtcctccggg 400
 aggatttcca gatccagcct cgggacatgg tggctgtggt gggtgagcag 450
 tttactctgg aatgtgggcc gccctggggc cacccagagc ccacagtctc 500
 atggtggaaa gatgggaaac ccctggccct ccagcccgga aggcacacag 550
 tgtccggggg gtccctgctg atggcaagag cagagaagag tgacgaaggg 600
 acctacatqt qtgtqqccac caacaqcqca ggacataqqq agaqccqcqc 650
 agecegggtt tecatecagg agececagga etacaeggag cetgtggage 700
```

ttctggctgt gcgaattcag ctggaaaatg tgacactgct gaacccggat 750

cctgcagagg gccccaagcc tagaccggcg gtgtggctca gctggaaggt 800 cagtggccct gctgcgcctg cccaatctta cacggccttg ttcaggaccc 850 agactgcccc gggaggccag ggagctccgt gggcagagga gctgctggcc 900 ggctggcaga gcgcagagct tggaggcctc cactggggcc aagactacga 950 gttcaaagtg agaccatcct ctggccgggc tcgaggccct gacagcaacg 1000 tgctgctcct gaggctgccg gaaaaagtgc ccagtgcccc acctcaggaa 1050 gtgactctaa agcctggcaa tggcactgtc tttgtgagct gggtcccacc 1100 acctgctgaa aaccacaatg gcatcatccg tggctaccag gtctggagcc 1150 tgggcaacac atcactgcca ccagccaact ggactgtagt tggtgagcag 1200 acccagctgg aaatcgccac ccatatgcca ggctcctact gcgtgcaagt 1250 ggctgcagtc actggtgctg gagctgggga gcccagtaga cctgtctgcc 1300 teettttaga geaggeeatg gagegageea eecaagaace eagtgageat 1350 ggtccctgga ccctggagca gctgagggct accttgaagc ggcctgaggt 1400 cattgccacc tgcggtgttg cactctggct gctgcttctg ggcaccgccg 1450 tgtgtatcca ccgccggcgc cgagctaggg tgcacctggg cccaggtctg 1500 tacagatata ccagtgagga tgccatccta aaacacagga tggatcacag 1550 tgactcccag tggttggcag acacttggcg ttccacctct ggctctcggg 1600 acctgagcag cagcagcagc ctcagcagtc ggctgggggc ggatgcccgg 1650 gacccactag actgtcgtcg ctccttgctc tcctgggact cccgaagccc 1700 eggegtgeee etgetteeag acaceageae tttttatgge teeeteateg 1750 ctgagctgcc ctccagtacc ccagccaggc caagtcccca ggtcccagct 1800 gtcaggcgcc tcccacccca gctggcccag ctctccagcc cctgttccag 1850 ctcagacage ctctgcagee gcaggggact ctcttctccc cgcttgtctc 1900 tggcccctgc agaggcttgg aaggccaaaa agaagcagga gctgcagcat 1950 gccaacagtt ccccactgct ccggggcagc cactccttgg agctccgggc 2000 ctgtgagtta ggaaatagag gttccaagaa cctttcccaa agcccaggag 2050 ctgtgcccca agctctggtt gcctggcggg ccctgggacc gaaactcctc 2100 agctcctcaa atgagctggt tactcgtcat ctccctccag cacccctctt 2150 tcctcatgaa actcccccaa ctcagagtca acagacccag cctccggtgg 2200

caccacagge teectectee atcetgetge cagcageece catececate 2250 ettageceet geagteeeee tageceeeag geetetteee tetetggeee 2300 cageceaget tecagtegee tgtecagete etcaetgtea tecetggggg 2350 aggatcaaga cagcgtgctg acccctgagg aggtagccct gtgcttggaa 2400 ctcagtgagg gtgaggagac tcccaggaac agcgtctctc ccatgccaag 2450 ggctccttca ccccccacca cctatgggta catcagcgtc ccaacagcct 2500 cagagttcac ggacatgggc aggactggag gaggggtggg gcccaagggg 2550 ggagtettge tgtgeecace teggeeetge eteaceecea eececagega 2600 gggctcctta gccaatggtt ggggctcagc ctctgaggac aatgccgcca 2650 qcqccaqaqc caqccttqtc agctcctccq atggctcctt cctcgctgat 2700 gctcactttg cccgggccct ggcagtggct gtggatagct ttggtttcgg 2750 tctagagccc agggaggcag actgcgtctt catagatgcc tcatcacctc 2800 cctccccacg ggatgagatc ttcctgaccc ccaacctctc cctgcccctg 2850 tgggagtgga ggccagactg gttggaagac atggaggtca gccacaccca 2900 gcggctggga agggggatgc ctccctggcc ccctgactct cagatctctt 2950 cccagagaag tcagctccac tgtcgtatgc ccaaggctgg tgcttctcct 3000 gtagattact cctgaaccgt gtccctgaga cttcccagac gggaatcaga 3050 accaettete etgteeacce acaagacetg ggetgtggtg tgtgggtett 3100 ggcctgtgtt tctctgcagc tggggtccac cttcccaagc ctccagagag 3150 ttctccctcc acgattgtga aaacaaatga aaacaaaatt agagcaaagc 3200 tgacctggag ccctcaggga gcaaaacatc atctccacct gactcctagc 3250 cactgettte teetetgtge catecactee caccaccagg ttgttttgge 3300 ctgaggagca geectgeetg etgetettee eccaecattt ggateaeagg 3350 aagtggagga gccagaggtg cctttgtgga ggacagcagt ggctgctggg 3400 agagggctgt ggaggaagga gcttctcgga gccccctctc agccttacct 3450 gggcccctcc tctagagaag agctcaactc tctcccaacc tcaccatgga 3500 aagaaaataa ttatgaatgc cactgaggca ctgaggccct acctcatgcc 3550 aaacaaaggg ttcaaggctg ggtctagcga ggatgctgaa ggaagggagg 3600 tatgagaccg taggtcaaaa gcaccatcct cgtactgttg tcactatgag 3650

cttaagaaat ttgataccat aaaatggtaa aaaaaaaaa aaaaaaaaa 3700 aaaaaaaaaa aaaaaa 3716

<210> 211

<211> 985

<212> PRT

<213> Homo sapiens

<400> 211

Met Gly Gly Met Ala Gln Asp Ser Pro Pro Gln Ile Leu Val His 1 10 15

Pro Gln Asp Gln Leu Phe Gln Gly Pro Gly Pro Ala Arg Met Ser 20 25 30

Cys Gln Ala Ser Gly Gln Pro Pro Pro Thr Ile Arg Trp Leu Leu
35 40 45

Asn Gly Gln Pro Leu Ser Met Val Pro Pro Asp Pro His His Leu 50 55 60

Leu Pro Asp Gly Thr Leu Leu Leu Gln Pro Pro Ala Arg Gly 65 70 75

His Ala His Asp Gly Gln Ala Leu Ser Thr Asp Leu Gly Val Tyr 80 85 90

Thr Cys Glu Ala Ser Asn Arg Leu Gly Thr Ala Val Ser Arg Gly $95 \hspace{1cm} 100 \hspace{1cm} 105 \hspace{1cm}$

Ala Arg Leu Ser Val Ala Val Leu Arg Glu Asp Phe Gln Ile Gln 110 115 120

Pro Arg Asp Met Val Ala Val Val Gly Glu Gln Phe Thr Leu Glu 125 130 135

Cys Gly Pro Pro Trp Gly His Pro Glu Pro Thr Val Ser Trp Trp 140 145 150

Lys Asp Gly Lys Pro Leu Ala Leu Gln Pro Gly Arg His Thr Val 155 160 165

Ser Gly Gly Ser Leu Leu Met Ala Arg Ala Glu Lys Ser Asp Glu 170 175 180

Gly Thr Tyr Met Cys Val Ala Thr Asn Ser Ala Gly His Arg Glu 185 190 195

Ser Arg Ala Ala Arg Val Ser Ile Gln Glu Pro Gln Asp Tyr Thr 200 205 210

Glu Pro Val Glu Leu Leu Ala Val Arg Ile Gln Leu Glu Asn Val 215 220 225

Thr Leu Leu Asn Pro Asp Pro Ala Glu Gly Pro Lys Pro Arg Pro 230 235 240

Ala Val Trp Leu Ser Trp Lys Val Ser Gly Pro Ala Ala Pro Ala Gln Ser Tyr Thr Ala Leu Phe Arg Thr Gln Thr Ala Pro Gly Gly 260 Gln Gly Ala Pro Trp Ala Glu Glu Leu Leu Ala Gly Trp Gln Ser 280 285 275 Ala Glu Leu Gly Gly Leu His Trp Gly Gln Asp Tyr Glu Phe Lys Val Arg Pro Ser Ser Gly Arg Ala Arg Gly Pro Asp Ser Asn Val Leu Leu Leu Arg Leu Pro Glu Lys Val Pro Ser Ala Pro Pro Gln Glu Val Thr Leu Lys Pro Gly Asn Gly Thr Val Phe Val Ser Trp 335 Val Pro Pro Pro Ala Glu Asn His Asn Gly Ile Ile Arg Gly Tyr Gln Val Trp Ser Leu Gly Asn Thr Ser Leu Pro Pro Ala Asn Trp 365 Thr Val Val Gly Glu Gln Thr Gln Leu Glu Ile Ala Thr His Met 380 Pro Gly Ser Tyr Cys Val Gln Val Ala Ala Val Thr Gly Ala Gly 395 Ala Gly Glu Pro Ser Arg Pro Val Cys Leu Leu Glu Gln Ala 410 Met Glu Arg Ala Thr Gln Glu Pro Ser Glu His Gly Pro Trp Thr 425 Leu Glu Gln Leu Arg Ala Thr Leu Lys Arg Pro Glu Val Ile Ala Thr Cys Gly Val Ala Leu Trp Leu Leu Leu Gly Thr Ala Val 455 Cys Ile His Arg Arg Arg Arg Ala Arg Val His Leu Gly Pro Gly 475 470 Leu Tyr Arg Tyr Thr Ser Glu Asp Ala Ile Leu Lys His Arg Met 485 Asp His Ser Asp Ser Gln Trp Leu Ala Asp Thr Trp Arg Ser Thr 510 500 Ser Gly Ser Arg Asp Leu Ser Ser Ser Ser Ser Leu Ser Ser Arg Leu Gly Ala Asp Ala Arg Asp Pro Leu Asp Cys Arg Arg Ser Leu

				530					535					540
Leu	Ser	Trp	Asp	Ser 545	Arg	Ser	Pro	Gly	Val 550	Pro	Leu	Leu	Pro	Asp 555
Thr	Ser	Thr	Phe	Tyr 560	Gly	Ser	Leu	Ile	Ala 565	Glu	Leu	Pro	Ser	Ser 570
Thr	Pro	Ala	Arg	Pro 575	Ser	Pro	Gln	Val	Pro 580	Ala	Val	Arg	Arg	Leu 585
Pro	Pro	Gln	Leu	Ala 590	Gln	Leu	Ser	Ser	Pro 595	Cys	Ser	Ser	Ser	Asp 600
Ser	Leu	Суз	Ser	Arg 605	Arg	Gly	Leu	Ser	Ser 610	Pro	Arg	Leu	Ser	Leu 615
Ala	Pro	Ala	Glu	Ala 620	Trp	Lys	Ala	Lys	Lys 625	Lys	Gln	Glu	Leu	Gln 630
His	Ala	Asn	Ser	Ser 635	Pro	Leu	Leu	Arg	Gly 640	Ser	His	Ser	Leu	Glu 645
Leu	Arg	Ala	Суз	Glu 650	Leu	Gly	Asn	Arg	Gly 655	Ser	Lys	Asn	Leu	Ser 660
Gln	Ser	Pro	Gly	Ala 665	Val	Pro	Gln	Ala	Leu 670	Val	Ala	Trp	Arg	Ala 675
Leu	Gly	Pro	Lys	Leu 680	Leu	Ser	Ser	Ser	Asn 685	Glu	Leu	Val	Thr	Arg 690
His	Leu	Pro	Pro	Ala 695	Pro	Leu	Phe	Pro	His 700	Glu	Thr	Pro	Pro	Thr 705
Gln	Ser	Gln	Gln	Thr 710	Gln	Pro	Pro	Val	Ala 715	Pro	Gln	Ala	Pro	Ser 720
Ser	Ile	Leu	Leu	Pro 725	Ala	Ala	Pro	Ile	Pro 730	Ile	Leu	Ser	Pro	Cys 735
Ser	Pro	Pro	Ser	Pro 740	Gln	Ala	Ser	Ser	Leu 745	Ser	Gly	Pro	Ser	Pro 750
Ala	Ser	Ser	Arg	Leu 755	Ser	Ser	Ser	Ser	Leu 760	Ser	Ser	Leu	Gly	Glu 765
Asp	Gln	Asp	Ser	Val 770	Leu	Thr	Pro	Glu	Glu 775	Val	Ala	Leu	Cys	Leu 780
Glu	Leu	Ser	Glu	Gly 785	Glu	Glu	Thr	Pro	Arg 790	Asn	Ser	Val	Ser	Pro 795
Met	Pro	Arg	Ala	Pro 800	Ser	Pro	Pro	Thr	Thr 805	Tyr	Gly	Tyr	Ile	Ser 810
Val	Pro	Thr	Ala	Ser 815	Glu	Phe	Thr	Asp	Met 820	Gly	Arg	Thr	Gly	Gly 825

```
Gly Val Gly Pro Lys Gly Gly Val Leu Leu Cys Pro Pro Arg Pro
                 830
                                      835
 Cys Leu Thr Pro Thr Pro Ser Glu Gly Ser Leu Ala Asn Gly Trp
                 845
 Gly Ser Ala Ser Glu Asp Asn Ala Ala Ser Ala Arg Ala Ser Leu
                 860
 Val Ser Ser Ser Asp Gly Ser Phe Leu Ala Asp Ala His Phe Ala
 Arg Ala Leu Ala Val Ala Val Asp Ser Phe Gly Phe Gly Leu Glu
 Pro Arg Glu Ala Asp Cys Val Phe Ile Asp Ala Ser Ser Pro Pro
 Ser Pro Arg Asp Glu Ile Phe Leu Thr Pro Asn Leu Ser Leu Pro
                 920
                                      925
 Leu Trp Glu Trp Arg Pro Asp Trp Leu Glu Asp Met Glu Val Ser
                 935
 His Thr Gln Arg Leu Gly Arg Gly Met Pro Pro Trp Pro Pro Asp
                 950
                                      955
 Ser Gln Ile Ser Ser Gln Arg Ser Gln Leu His Cys Arg Met Pro
                 965
                                      970
                                                          975
 Lys Ala Gly Ala Ser Pro Val Asp Tyr Ser
                 980
<210> 212
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 212
 gaagggacct acatgtgtgt ggcc 24
<210> 213
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 213
actgaccttc cagctgagcc acac 24
<210> 214
<211> 50
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 214
 aggactacac ggagcctgtg gagcttctgg ctgtgcgaat tcagctggaa 50
<210> 215
<211> 2749
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1869, 1887
<223> unknown base
<400> 215
 ctcccacggt gtccagcgcc cagaatgcgg cttctggtcc tgctatgggg 50
 ttgcctgctg ctcccaggtt atgaagccct ggagggccca gaggaaatca 100
 gcgggttcga aggggacact gtgtccctgc agtgcaccta cagggaagag 150
 ctgagggacc accggaagta ctggtgcagg aagggtggga tcctcttctc 200
 tcgctgctct ggcaccatct atgcagaaga agaaggccag gagacaatga 250
 agggcagggt gtccatccgt gacagccgcc aggagctctc gctcattgtg 300
 accetgtgga acctcaccet gcaagacget ggggagtact ggtgtggggt 350
 cgaaaaacgg ggccccgatg agtctttact gatctctctg ttcgtctttc 400
 caggaccctg ctgtcctccc tccccttctc ccaccttcca gcctctggct 450
 acaacacgcc tgcagcccaa ggcaaaagct cagcaaaccc agcccccagg 500
attgacttct cctgggctct acccggcagc caccacagcc aagcagggga 550
 agacaggggc tgaggcccct ccattgccag ggacttccca gtacgggcac 600
gaaaggactt ctcagtacac aggaacctct cctcacccag cgacctctcc 650
 tectgeaggg agetecegee eececatgea getggaetee aceteageag 700
aggacaccag tecagetete ageagtggea getetaagee cagggtgtee 750
atcccgatgg tccgcatact ggccccagtc ctggtgctgc tgagccttct 800
gtcagccgca ggcctgatcg ccttctgcag ccacctgctc ctgtggagaa 850
aggaagctca acaggccacg gagacacaga ggaacgagaa gttctggctc 900
tcacgcttga ctgcggagga aaaggaagcc ccttcccagg cccctgaggg 950
```

ggacgtgatc tcgatgcctc ccctccacac atctgaggag gagctgggct 1000

cagtgaagca gtatggctgg ctggatcagc accgattccc gaaagctttc 1100 cacctcagcc tcagagtcca gctgcccgga ctccagggct ctccccaccc 1150 tccccaggct ctcctcttgc atgttccagc ctgacctaga agcgtttgtc 1200 agccctggag cccagagcgg tggccttgct cttccggctg gagactggga 1250 catccctgat aggttcacat ccctgggcag agtaccaggc tgctgaccct 1300 cagcagggcc agacaaggct cagtggatct ggtctgagtt tcaatctgcc 1350 aggaactcct gggcctcatg cccagtgtcg gaccctgcct tcctcccact 1400 ccagacccca cettgtette cetecetgge gteetcagae ttagteecae 1450 ggtctcctgc atcagctggt gatgaagagg agcatgctgg ggtgagactg 1500 ggattctggc ttctctttga accacctgca tccagccctt caggaagcct 1550 gtgaaaaacg tgattcctgg ccccaccaag acccaccaaa accatctctg 1600 ggcttggtgc aggactctga attctaacaa tgcccagtga ctgtcgcact 1650 tgagtttgag ggccagtggg cctgatgaac gctcacaccc cttcagctta 1700 gagtctgcat ttgggctgtg acgtctccac ctgccccaat agatctgctc 1750 tgtctgcgac accagatcca cgtggggact cccctgaggc ctgctaagtc 1800 caggecttgg teaggteagg tgeacattge aggataagee caggacegge 1850 acagaagtgg ttgcctttnc catttgccct ccctggncca tgccttcttg 1900 cctttggaaa aaatgatgaa gaaaaccttg gctccttcct tgtctggaaa 1950 gggttacttg cctatgggtt ctggtggcta gagagaaaag tagaaaacca 2000 gagtgcacgt aggtgtctaa cacagaggag agtaggaaca gggcggatac 2050 ctgaaggtga ctccgagtcc agccccctgg agaaggggtc gggggtggtg 2100 gtaaagtagc acaactacta ttttttttct ttttccatta ttattgtttt 2150 ttaagacaga atctcgtgct gctgcccagg ctggagtgca gtggcacgat 2200 etgeaaacte egeeteetgg gtteaagtga ttettetgee teageeteee 2250 gagtagctgg gattacaggc acgcaccacc acacctggct aattittgta 2300 cttttagtag agatggggtt tcaccatgtt ggccaggctg gtcttgaact 2350 cctgacctca aatgagcctc ctgcttcagt ctcccaaatt gccgggatta 2400 caggcatgag ccactgtgtc tggccctatt tcctttaaaa agtgaaatta 2450 <210> 216

<211> 332

<212> PRT

<213> Homo sapiens

<400> 216

Met Arg Leu Leu Val Leu Leu Trp Gly Cys Leu Leu Leu Pro Gly 1 5 10 15

Tyr Glu Ala Leu Glu Gly Pro Glu Glu Ile Ser Gly Phe Glu Gly 20 25 30

Asp Thr Val Ser Leu Gln Cys Thr Tyr Arg Glu Glu Leu Arg Asp 35 40 45

His Arg Lys Tyr Trp Cys Arg Lys Gly Gly Ile Leu Phe Ser Arg
50 55 60

Cys Ser Gly Thr Ile Tyr Ala Glu Glu Glu Gly Gln Glu Thr Met
65 70 75

Lys Gly Arg Val Ser Ile Arg Asp Ser Arg Gln Glu Leu Ser Leu 80 85 90

Ile Val Thr Leu Trp Asn Leu Thr Leu Gln Asp Ala Gly Glu Tyr 95 100 105

Trp Cys Gly Val Glu Lys Arg Gly Pro Asp Glu Ser Leu Leu Ile 110 115 120

Ser Leu Phe Val Phe Pro Gly Pro Cys Cys Pro Pro Ser Pro Ser 125 130 135

Pro Thr Phe Gln Pro Leu Ala Thr Thr Arg Leu Gln Pro Lys Ala 140 145 150

Lys Ala Gln Gln Thr Gln Pro Pro Gly Leu Thr Ser Pro Gly Leu
155 160 165

Tyr Pro Ala Ala Thr Thr Ala Lys Gln Gly Lys Thr Gly Ala Glu 170 175 180

Ala Pro Pro Leu Pro Gly Thr Ser Gln Tyr Gly His Glu Arg Thr 185 190 195

Ser Gln Tyr Thr Gly Thr Ser Pro His Pro Ala Thr Ser Pro Pro

<223> Synthetic oligonucleotide probe

Mile Property

Marine.

14.4

*3

No. **32** 1.4

iki

and the same

200 205 210 Ala Gly Ser Ser Arg Pro Pro Met Gln Leu Asp Ser Thr Ser Ala 215 Glu Asp Thr Ser Pro Ala Leu Ser Ser Gly Ser Ser Lys Pro Arg 230 235 Val Ser Ile Pro Met Val Arg Ile Leu Ala Pro Val Leu Val Leu Leu Ser Leu Leu Ser Ala Ala Gly Leu Ile Ala Phe Cys Ser His Leu Leu Trp Arg Lys Glu Ala Gln Gln Ala Thr Glu Thr Gln 280 Arg Asn Glu Lys Phe Trp Leu Ser Arg Leu Thr Ala Glu Glu Lys Glu Ala Pro Ser Gln Ala Pro Glu Gly Asp Val Ile Ser Met Pro Pro Leu His Thr Ser Glu Glu Glu Leu Gly Phe Ser Lys Phe Val <223> Synthetic oligonucleotide probe ccctgcagtg cacctacagg gaag 24 <210> 218 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 218 ctgtcttccc ctgcttggct gtgg 24 <210> 219 <211> 47 <212> DNA <213> Artificial Sequence

```
<400> 219
 ggtgcaggaa gggtgggatc ctcttctctc gctgctctgg ccacatc 47
<210> 220
<211> 950
<212> DNA
<213> Homo sapiens
<400> 220
 ttgtgactaa aagctggcct agcaggccag ggagtgcagc tgcaggcgtg 50
 ggggtggcag gagccgcaga gccagagcag acagccgaga aacaggtgga 100
 cagtgtgaaa gaaccagtgg tctcgctctg ttgcccaggc tagagtgtac 150
 tggcgtgatc atagctcact gcagcctcag actcctggac ttgagaaatc 200
 ctcctgcctt agcctcctgc atatctggga ctccaggggt gcactcaagc 250
 cctgtttctt ctccttctgt gagtggacca cggaggctgg tgagctgcct 300
 gtcatcccaa agctcagctc tgagccagag tggtggtggc tccacctctg 350
 ccgccggcat agaagccagg agcagggctc tcagaaggcg gtggtgccca 400
 gctgggatca tgttgttggc cctggtctgt ctgctcagct gcctgctacc 450
 ctccagtgag gccaagctct acggtcgttg tgaactggcc agagtgctac 500
 atgacttcgg gctggacgga taccggggat acagcctggc tgactgggtc 550
 tgccttgctt atttcacaag cggtttcaac gcagctgctt tggactacga 600
 ggctgatggg agcaccaaca acgggatctt ccagatcaac agccggaggt 650
 ggtgcagcaa cctcaccccg aacgtcccca acgtgtgccg gatgtactgc 700
 tcagatttgt tgaatcctaa tctcaaggat accgttatct gtgccatgaa 750
 gataacccaa gagcctcagg gtctgggtta ctgggaggcc tggaggcatc 800
 actgccaggg aaaagacctc actgaatggg tggatggctg tgacttctag 850
 gatggacgga accatgcaca gcaggctggg aaatgtggtt tggttcctga 900
 cctaggcttg ggaagacaag ccagcgaata aaggatggtt gaacgtgaaa 950
<210> 221
<211> 146
<212> PRT
<213> Homo sapiens
<400> 221
Met Leu Leu Ala Leu Val Cys Leu Leu Ser Cys Leu Leu Pro Ser
  1
Ser Glu Ala Lys Leu Tyr Gly Arg Cys Glu Leu Ala Arg Val Leu
```

25

```
Lys Asp Thr Val Ile Cys Ala Met Lys Ile Thr Gln Glu Pro Gln
                            Gly Leu Gly Tyr Trp Glu Ala Trp Arg His His Cys Gln Gly Lys
                                                                                                                     125
                            Asp Leu Thr Glu Trp Val Asp Gly Cys Asp Phe
                       <210> 222
                       <211> 24
Series Series
                       <212> DNA
                       <213> Artificial Sequence
Strang.
                       <220>
ikih.
                       <223> Synthetic oligonucleotide probe
##
                       <400> 222
THE PERSON NAMED IN
                            gggatcatgt tgttggccct ggtc 24
群
<210> 223
                       <211> 23
                       <212> DNA
                       <213> Artificial Sequence
THE STATE OF THE S
                      <223> Synthetic oligonucleotide probe
                       <400> 223
                           gcaaggcaga cccagtcagc cag 23
                       <210> 224
                       <211> 45
```

<213> Artificial Sequence

<212> DNA

<400> 224

<210> 225

<220>

His Asp Phe Gly Leu Asp Gly Tyr Arg Gly Tyr Ser Leu Ala Asp

Trp Val Cys Leu Ala Tyr Phe Thr Ser Gly Phe Asn Ala Ala Ala

Leu Asp Tyr Glu Ala Asp Gly Ser Thr Asn Asn Gly Ile Phe Gln

Ile Asn Ser Arg Arg Trp Cys Ser Asn Leu Thr Pro Asn Val Pro

Asn Val Cys Arg Met Tyr Cys Ser Asp Leu Leu Asn Pro Asn Leu

130

135

<223> Synthetic oligonucleotide probe ctgcctgcta ccctccaagt gaggccaagc tctacggtcg ttgtg 45 154

<211> 2049 <212> DNA

<213> Homo sapiens

<400> 225 agccgctgcc ccgggccggg cgcccgcggc ggcaccatga gtccccgctc 50 gtgcctgcgt tcgctgcgcc tcctcgtctt cgccgtcttc tcagccgccg 100 cgagcaactg gctgtacctg gccaagctgt cgtcggtggg gagcatctca 150 gaggaggaga cgtgcgagaa actcaagggc ctgatccaga ggcaggtgca 200 gatgtgcaag cggaacctgg aagtcatgga ctcggtgcgc cgcggtgccc 250 agctggccat tgaggagtgc cagtaccagt tccggaaccg gcgctggaac 300 tgctccacac tcgactcctt gcccgtcttc ggcaaggtgg tgacgcaagg 350 gactcgggag gcggccttcg tgtacgccat ctcttcggca ggtgtggcct 400 ttgcagtgac gcgggcgtgc agcagtgggg agctggagaa gtgcggctgt 450 gacaggacag tgcatggggt cagcccacag ggcttccagt ggtcaggatg 500 ctctgacaac atcgcctacg gtgtggcctt ctcacagtcg tttgtggatg 550 tgcgggagag aagcaagggg gcctcgtcca gcagagccct catgaacctc 600 cacaacaatg aggccggcag gaaggccatc ctgacacaca tgcgggtgga 650 atgcaagtgc cacggggtgt caggctcctg tgaggtaaag acgtgctggc 700 gagccgtgcc gcccttccgc caggtgggtc acgcactgaa ggagaagttt 750 gatggtgcca ctgaggtgga gccacgccgc gtgggctcct ccagggcact 800 ggtaccacgc aacgcacagt tcaagccgca cacagatgag gacctggtgt 850 acttggagcc tagccccgac ttctgtgagc aggacatgcg cagcggcgtg 900 ctgggcacga ggggccgcac atgcaacaag acgtccaagg ccatcgacgg 950 ctgtgagctg ctgtgctgtg gccgcggctt ccacacggcg caggtggagc 1000 tggctgaacg ctgcagctgc aaattccact ggtgctgctt cgtcaagtgc 1050 cggcagtgcc agcggctcgt ggagttgcac acgtgccgat gaccgcctgc 1100 ctagccctgc gccggcaacc acctagtggc ccagggaagg ccgataattt 1150 aaacagtctc ccaccaccta ccccaagaga tactggttgt attttttgtt 1200 ctggtttggt ttttgggtcc tcatgttatt tattgccgaa accaggcagg 1250 caaccccaag ggcaccaacc agggcctccc caaagcctgg gcctttgtgg 1300

ctgccactga ccaaagggac cttgctcgtg ccgctggctg cccgcatgtg 1350

getgecacty accaetcagt typitatety georgithm etactigeag 1400 acctaaggty gagtaacaag gagtattace accaetagge tactgacegt 1450 gteategggg aagagggge ettatggeag ggaaaatagg tacegactty 1500 atggaagtea caccetetgg aaaaaagaac tettaactet eeageacaca 1550 tacaetagga eteetggeag ettaggeeta gaageeatgt eteteaaatg 1600 eeetgagaaa gggaacaage agataceagg teaagggeae eaggteatt 1650 teageeetta eatggacage tagaggteg ataetggg gteetteeag 1700 geaagaagag ggagatgaga geaagagaeg actgaagtee eaceetagaa 1750 eeeageetge eeeageetge eeetggaaag aggaaactta accaeteee 1800 agaeeeacet aggeaggeat ataggetgee ateetggaee agggateeeg 1850 getgtgeett tgeagteatg eeegagteae ettteaeage getgtteete 1900 eatgaaactg aaaaacacae acaecacae acaecacae acaecacae 1950 acaecacaea ggacacacae acaecaecae gaggaggaggg gaggaaaggg 2000 etgtgeettt geagteatge eegagteaee ttteaeage etgtteete 2049

<210> 226

<211> 351

<212> PRT

<213> Homo sapiens

<400> 226

Met Ser Pro Arg Ser Cys Leu Arg Ser Leu Arg Leu Leu Val Phe
1 5 10 15

Ala Val Phe Ser Ala Ala Ala Ser Asn Trp Leu Tyr Leu Ala Lys
20 25 30

Leu Ser Ser Val Gly Ser Ile Ser Glu Glu Glu Thr Cys Glu Lys 35 40 45

Leu Lys Gly Leu Ile Gln Arg Gln Val Gln Met Cys Lys Arg Asn 50 55 60

Leu Glu Val Met Asp Ser Val Arg Arg Gly Ala Gln Leu Ala Ile
65 70 75

Glu Glu Cys Gln Tyr Gln Phe Arg Asn Arg Arg Trp Asn Cys Ser

Thr Leu Asp Ser Leu Pro Val Phe Gly Lys Val Val Thr Gln Gly
95 100 105

Thr Arg Glu Ala Ala Phe Val Tyr Ala Ile Ser Ser Ala Gly Val 110 115 120 Ala Phe Ala Val Thr Arg Ala Cys Ser Ser Gly Glu Leu Glu Lys 125 Cys Gly Cys Asp Arg Thr Val His Gly Val Ser Pro Gln Gly Phe Gln Trp Ser Gly Cys Ser Asp Asn Ile Ala Tyr Gly Val Ala Phe 155 165 Ser Gln Ser Phe Val Asp Val Arg Glu Arg Ser Lys Gly Ala Ser 170 175 Ser Ser Arg Ala Leu Met Asn Leu His Asn Asn Glu Ala Gly Arg 185 Lys Ala Ile Leu Thr His Met Arg Val Glu Cys Lys Cys His Gly Val Ser Gly Ser Cys Glu Val Lys Thr Cys Trp Arg Ala Val Pro 215 Pro Phe Arg Gln Val Gly His Ala Leu Lys Glu Lys Phe Asp Gly Ala Thr Glu Val Glu Pro Arg Arg Val Gly Ser Ser Arg Ala Leu Val Pro Arg Asn Ala Gln Phe Lys Pro His Thr Asp Glu Asp Leu Val Tyr Leu Glu Pro Ser Pro Asp Phe Cys Glu Gln Asp Met Arg Ser Gly Val Leu Gly Thr Arg Gly Arg Thr Cys Asn Lys Thr Ser Lys Ala Ile Asp Gly Cys Glu Leu Leu Cys Cys Gly Arg Gly Phe His Thr Ala Gln Val Glu Leu Ala Glu Arg Cys Ser Cys Lys Phe 320 330 His Trp Cys Cys Phe Val Lys Cys Arg Gln Cys Gln Arg Leu Val 335 Glu Leu His Thr Cys Arg 350

<210> 227

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 227

gctgcagctg caaattccac tgg 23

```
<210> 228
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 228
tggtgggaga ctgtttaaat tatcggcc 28
<210> 229
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 229
tgcttcgtca agtgccggca gtgccagcgg ctcgtggagt t 41
<210> 230
<211> 1355
<212> DNA
<213> Homo sapiens
<400> 230
 cggacgcgtg ggcggacgcg tgggcggacg cgtgggcgga cgcgtgggct 50
gggtgcctgc atcgccatgg acaccaccag gtacagcaag tggggcggca 100
gctccgagga ggtccccgga gggccctggg gacgctgggt gcactggagc 150
aggagacccc tcttcttggc cctggctgtc ctggtcacca cagtcctttg 200
ggctgtgatt ctgagtatcc tattgtccaa ggcctccacg gagcgcgcgg 250
 cgctgcttga cggccacgac ctgctgagga caaacgcctc gaagcagacg 300
gcggcgctgg gtgccctgaa ggaggaggtc ggagactgcc acagctgctg 350
 ctcggggacg caggcgcagc tgcagaccac gcgcgcggag cttggggagg 400
cgcaggcgaa gctgatggag caggagagcg ccctgcggga actgcgtgag 450
cgcgtgaccc agggcttggc tgaagccggc aggggccgtg aggacgtccg 500
cactgagetg ttccgggcgc tggaggccgt gaggctccag aacaactcct 550
gcgagccgtg ccccacgtcg tggctgtcct tcgagggctc ctgctacttt 600
ttctctgtgc caaagacgac gtgggcggcg gcgcaggatc actgcgcaga 650
tgccagcgcg cacctggtga tcgttggggg cctggatgag cagggcttcc 700
```

tcactcggaa cacgcgtggc cgtggttact ggctgggcct gagggctgtg 750

cagetteage geaaggttea gggetaceag tgggtggaeg gagtetetet 800
cagetteage caetggaace agggagagee caatgaeget tgggggegeg 850
agaactgtgt catgatgetg cacaegggge tgtggaacga egeacegtgt 900
gacagegaga aggaeggetg gatetgtgag aaaaggeaca actgetgaee 950
cegeecagtg eeetggagee gegeecattg cageatgteg tateetgggg 1000
getgeteace teeetggete etggagetga ttgeeaaaga gttttttet 1050
teeteateea eegetgetga gteteagaaa eaettggeee aacatageee 1100
tgteeageee agtgeetggg etetgggaee teeatgeega eeteateeta 1150
acteeacea egeagaeeea acetaaeete eaetagetee aaaateeetg 1200
cteetggte eeeggaat geeteeact eteeteetaa eeaaggttag 1250
gtgaetgagg aetggagetg tttggttte tegeattte eaecaaaetg 1300
gaagetgtt ttgeageetg aggaageate aataaatat tgagaaatga 1350
aaaaa 1355

<210> 231

<211> 293

<212> PRT

<213> Homo sapiens

<400> 231

Met Asp Thr Thr Arg Tyr Ser Lys Trp Gly Gly Ser Ser Glu Glu
1 10 15

Val Pro Gly Gly Pro Trp Gly Arg Trp Val His Trp Ser Arg Arg 20 25 30

Pro Leu Phe Leu Ala Leu Ala Val Leu Val Thr Thr Val Leu Trp 35 40 45

Ala Val Ile Leu Ser Ile Leu Leu Ser Lys Ala Ser Thr Glu Arg
50 55 60

Ala Ala Leu Leu Asp Gly His Asp Leu Leu Arg Thr Asn Ala Ser 65 70 75

Lys Gln Thr Ala Ala Leu Gly Ala Leu Lys Glu Glu Val Gly Asp 80 85 90

Cys His Ser Cys Cys Ser Gly Thr Gln Ala Gln Leu Gln Thr Thr 95 100 105

Arg Ala Glu Leu Gly Glu Ala Gln Ala Lys Leu Met Glu Gln Glu 110 115 120

Ser Ala Leu Arg Glu Leu Arg Glu Arg Val Thr Gln Gly Leu Ala 125 130 135

```
Glu Ala Gly Arg Gly Arg Glu Asp Val Arg Thr Glu Leu Phe Arg
                 140
                                                          150
 Ala Leu Glu Ala Val Arg Leu Gln Asn Asn Ser Cys Glu Pro Cys
                                      160
 Pro Thr Ser Trp Leu Ser Phe Glu Gly Ser Cys Tyr Phe Phe Ser
                 170
                                                          180
 Val Pro Lys Thr Trp Ala Ala Ala Gln Asp His Cys Ala Asp
 Ala Ser Ala His Leu Val Ile Val Gly Gly Leu Asp Glu Gln Gly
 Phe Leu Thr Arg Asn Thr Arg Gly Arg Gly Tyr Trp Leu Gly Leu
 Arg Ala Val Arg His Leu Gly Lys Val Gln Gly Tyr Gln Trp Val
                 230
 Asp Gly Val Ser Leu Ser Phe Ser His Trp Asn Gln Gly Glu Pro
                 245
 Asn Asp Ala Trp Gly Arg Glu Asn Cys Val Met Met Leu His Thr
                                      265
                 260
 Gly Leu Trp Asn Asp Ala Pro Cys Asp Ser Glu Lys Asp Gly Trp
                                      280
                                                          285
                 275
 Ile Cys Glu Lys Arg His Asn Cys
                 290
<210> 232
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 232
 gcgagaactg tgtcatgatg ctgc 24
<210> 233
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 233
gtttctgaga ctcagcagcg gtgg 24
<210> 234
<211> 50
<212> DNA
```

- <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 234
 caccgtgtga cagcgagaag gacggctgga tctgtgagaa aaggcacaac 50
 <210> 235
 <211> 1847
 <212> DNA
 <213> Homo sapiens
 <400> 235
 gccaggggaa gagggtgatc cgacccgggg aaggtcgctg ggcagggcga 50
 gttgggaaag cggcagccc cgccgcccc gcagccctt ctcctcttt 100
 ctcccacgtc ctatctgcct ctcgctggag gccaggccgt gcagcatcga 150
 agacaggagg aactggagcc tcattggccg gcccggggcg ccggcctcgg 200
 gcttaaatag gagctccggg ctctggctgg gacccgaccg ctgccggccg 250
 cgctcccgct gctcctgccg ggtgatggaa aaccccagcc cggccgccgc 300
- gttgggaaag cggcagcccc cgccgccccc gcagcccctt ctcctccttt 100 ctcccacgtc ctatctgcct ctcgctggag gccaggccgt qcaqcatcga 150 agacaggagg aactggagcc tcattggccg gcccggggcg ccggcctcgg 200 gcttaaatag gagctccggg ctctggctgg gacccgaccg ctgccggccg 250 cgctcccgct gctcctgccg ggtgatggaa aaccccagcc cggccgccgc 300 cctgggcaag gccctctgcg ctctcctcct ggccactctc ggcgccgccg 350 gccagcctct tgggggagag tccatctgtt ccgccagagc cccggccaaa 400 tacagcatca ccttcacggg caagtggagc cagacggcct tccccaagca 450 gtaccccctg ttccgccccc ctgcgcagtg gtcttcgctg ctgggggccg 500 cgcatagctc cgactacagc atgtggagga agaaccagta cgtcagtaac 550 gggctgcgcg actttgcgga gcgcggcgag gcctgggcgc tgatgaagga 600 gatcgaggcg gcgggggagg cgctgcagag cgtgcacgag gtgttttcqg 650 cgcccgccgt ccccagcggc accgggcaga cgtcggcgga gctggaggtg 700 cagcgcaggc actcgctggt ctcgtttgtg gtgcgcatcg tgcccagccc 750 cgactggttc gtgggcgtgg acagcctgga cctgtgcgac ggggaccgtt 800 ggcgggaaca ggcggcgctg gacctgtacc cctacgacgc cgqqacggac 850 ageggettea cetteteete ecceaactte gecaceatee egeaggacae 900 ggtgaccgag ataacgtcct cctctcccag ccacccggcc aactccttct 950 actaccogcg gctgaaggcc ctgcctccca tcgccaggqt gacactgctg 1000 cggctgcgac agagccccag ggccttcatc cctcccgccc cagtcctgcc 1050 cagcagggac aatgagattg tagacagcgc ctcagttcca gaaacqccqc 1100

<210> 236

<211> 331

<212> PRT

<213> Homo sapiens

<400> 236

Met Glu Asn Pro Ser Pro Ala Ala Ala Leu Gly Lys Ala Leu Cys 1 5 10 15

Ala Leu Leu Leu Ala Thr Leu Gly Ala Ala Gly Gln Pro Leu Gly
20 25 30

Gly Glu Ser Ile Cys Ser Ala Arg Ala Pro Ala Lys Tyr Ser Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Phe Thr Gly Lys Trp Ser Gln Thr Ala Phe Pro Lys Gln Tyr 50 55 60

Pro Leu Phe Arg Pro Pro Ala Gln Trp Ser Ser Leu Leu Gly Ala 65 70 75

Ala His Ser Ser Asp Tyr Ser Met Trp Arg Lys Asn Gln Tyr Val

Ser Asn Gly Leu Arg Asp Phe Ala Glu Arg Gly Glu Ala Trp Ala 95 100 105

Leu Met Lys Glu Ile Glu Ala Ala Gly Glu Ala Leu Gln Ser Val

110 115 120 His Glu Val Phe Ser Ala Pro Ala Val Pro Ser Gly Thr Gly Gln 125 Thr Ser Ala Glu Leu Glu Val Gln Arg Arg His Ser Leu Val Ser Phe Val Val Arg Ile Val Pro Ser Pro Asp Trp Phe Val Gly Val 155 160 Asp Ser Leu Asp Leu Cys Asp Gly Asp Arg Trp Arg Glu Gln Ala Ala Leu Asp Leu Tyr Pro Tyr Asp Ala Gly Thr Asp Ser Gly Phe 185 190 Thr Phe Ser Ser Pro Asn Phe Ala Thr Ile Pro Gln Asp Thr Val Thr Glu Ile Thr Ser Ser Pro Ser His Pro Ala Asn Ser Phe 215 Tyr Tyr Pro Arg Leu Lys Ala Leu Pro Pro Ile Ala Arg Val Thr Leu Leu Arg Leu Arg Gln Ser Pro Arg Ala Phe Ile Pro Pro Ala Pro Val Leu Pro Ser Arg Asp Asn Glu Ile Val Asp Ser Ala Ser Val Pro Glu Thr Pro Leu Asp Cys Glu Val Ser Leu Trp Ser Ser Trp Gly Leu Cys Gly Gly His Cys Gly Arg Leu Gly Thr Lys Ser Arg Thr Arg Tyr Val Arg Val Gln Pro Ala Asn Asn Gly Ser Pro 310 Cys Pro Glu Leu Glu Glu Glu Ala Glu Cys Val Pro Asp Asn Cys 320 330

Val

<210> 237

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 237

cagcactgcc aggggaagag gg 22

```
<210> 238
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 238
caggactcgc tacgtccg 18
<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 239
cageceette teeteette teee 24
<210> 240
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 240
gcagttatca gggacgcact cagcc 25
<210> 241
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 241
ccagcgagag gcagatag 18
<210> 242
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 242
cggtcaccgt gtcctgcggg atg 23
<210> 243
<211> 42
<212> DNA
```

W.

識

1.5

ļeš.

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 243

cagoccotto toctootto toccaogtoo tatotgooto to 42

<210> 244

<211> 1894

<212> DNA

<213> Homo sapiens

<400> 244

ggcggcgtcc gtgaggggct cctttgggca ggggtagtgt ttggtgtccc 50 tgtcttgcgt gatattgaca aactgaagct ttcctgcacc actggactta 100 aggaagagtg tactcgtagg cggacagctt tagtggccgg ccggccgctc 150 tcatcccccg taaggagcag agtcctttgt actgaccaag atgagcaaca 200 tctacatcca ggagcctccc acgaatggga aggttttatt gaaaactaca 250 gctggagata ttgacataga gttgtggtcc aaagaagctc ctaaagcttg 300 cagaaatttt atccaacttt gtttggaagc ttattatgac aataccattt 350 ttcatagagt tgtgcctggt ttcatagtcc aaggcggaga tcctactggc 400 acagggagtg gtggagagtc tatctatgga gcgccattca aagatgaatt 450 tcattcacgg ttgcgtttta atcggagagg actggttgcc atggcaaatg 500 ctggttctca tgataatggc agccagtttt tcttcacact gggtcgagca 550 gatgaactta acaataagca taccatcttt ggaaaggtta caggggatac 600 agtatataac atgttgcgac tgtcagaagt agacattgat gatgacgaaa 650 gaccacataa tccacacaaa ataaaaagct gtgaggtttt gtttaatcct 700 tttgatgaca tcattccaag ggaaattaaa aggctgaaaa aagagaaacc 750 agaggaggaa gtaaagaaat tgaaacccaa aggcacaaaa aattttagtt 800 tactttcatt tggagaggaa gctgaggaag aagaggagga agtaaatcga 850 gttagtcaga gcatgaaggg caaaagcaaa agtagtcatg acttgcttaa 900 ggatgatcca catctcagtt ctgttccagt tgtagaaagt gaaaaaggtg 950 atgcaccaga tttagttgat gatggagaag atgaaagtgc agagcatgat 1000 gaatatattg atggtgatga aaagaacctg atgagagaaa gaattgccaa 1050 aaaattaaaa aaggacacaa gtgcgaatgt taaatcagct ggagaaggag 1100

aagtgqaqaa qaaatcagtc agccgcagtg aagagctcag aaaagaagca 1150 agacaattaa aacgggaact cttagcagca aaacaaaaaa aagtagaaaa 1200 tgcagcaaaa caagcagaaa aaagaagtga agaggaagaa gcccctccag 1250 atggtgctgt tgccgaatac agaagagaaa agcaaaagta tgaagctttg 1300 aggaagcaac agtcaaagaa gggaacttcc cgggaagatc agacccttgc 1350 actgctgaac cagtttaaat ctaaactcac tcaagcaatt gctgaaacac 1400 ctgaaaatga cattcctgaa acagaagtag aagatgatga aggatggatg 1450 tcacatgtac ttcagtttga ggataaaagc agaaaagtga aagatgcaag 1500 catqcaaqac tcaqatacat ttgaaatcta tgatcctcgg aatccagtga 1550 ataaaagaag gagggaagaa agcaaaaagc tgatgagaga gaaaaaagaa 1600 agaaqataaa atqaqaataa tgataaccag aacttgctgg aaatgtgcct 1650 acaatggcct tgtaacagcc attgttccca acagcatcac ttaggggtgt 1700 qaaaaqaaqt atttttqaac ctgttgtctg gttttgaaaa acaattatct 1750 tgttttgcaa attgtggaat gatgtaagca aatgcttttg gttactggta 1800 catgtgtttt ttcctagctg accttttata ttgctaaatc tgaaataaaa 1850

<210> 245

<211> 472

<212> PRT

<213> Homo sapiens

<400> 245

Met Ser Asn Ile Tyr Ile Gln Glu Pro Pro Thr Asn Gly Lys Val 1 5 10 15

Leu Leu Lys Thr Thr Ala Gly Asp Ile Asp Ile Glu Leu Trp Ser 20 25 30

Lys Glu Ala Pro Lys Ala Cys Arg Asn Phe Ile Gln Leu Cys Leu
35 40 45

Glu Ala Tyr Tyr Asp Asn Thr Ile Phe His Arg Val Val Pro Gly
50 55 60

Phe Ile Val Gln Gly Gly Asp Pro Thr Gly Thr Gly Ser Gly Gly 65 70 75

Glu Ser Ile Tyr Gly Ala Pro Phe Lys Asp Glu Phe His Ser Arg 80 85 90

Leu Arg Phe Asn Arg Arg Gly Leu Val Ala Met Ala Asn Ala Gly 95 100 105

Ser His Asp Asn Gly Ser Gln Phe Phe Phe Thr Leu Gly Arg Ala 115 Asp Glu Leu Asn Asn Lys His Thr Ile Phe Gly Lys Val Thr Gly 125 Asp Thr Val Tyr Asn Met Leu Arg Leu Ser Glu Val Asp Ile Asp 140 Asp Asp Glu Arg Pro His Asn Pro His Lys Ile Lys Ser Cys Glu 160 Val Leu Phe Asn Pro Phe Asp Asp Ile Ile Pro Arg Glu Ile Lys 180 170 Arg Leu Lys Lys Glu Lys Pro Glu Glu Glu Val Lys Lys Leu Lys 185 Pro Lys Gly Thr Lys Asn Phe Ser Leu Leu Ser Phe Gly Glu Glu 200 Ala Glu Glu Glu Glu Glu Val Asn Arg Val Ser Gln Ser Met Lys Gly Lys Ser Lys Ser Ser His Asp Leu Leu Lys Asp Asp Pro 230 His Leu Ser Ser Val Pro Val Val Glu Ser Glu Lys Gly Asp Ala 245 Pro Asp Leu Val Asp Asp Gly Glu Asp Glu Ser Ala Glu His Asp Glu Tyr Ile Asp Gly Asp Glu Lys Asn Leu Met Arg Glu Arg Ile Ala Lys Lys Leu Lys Lys Asp Thr Ser Ala Asn Val Lys Ser Ala Gly Glu Gly Glu Val Glu Lys Lys Ser Val Ser Arg Ser Glu Glu 305 Leu Arg Lys Glu Ala Arg Gln Leu Lys Arg Glu Leu Leu Ala Ala Lys Gln Lys Lys Val Glu Asn Ala Ala Lys Gln Ala Glu Lys Arg 335 Ser Glu Glu Glu Glu Ala Pro Pro Asp Gly Ala Val Ala Glu Tyr 350 Arg Arg Glu Lys Gln Lys Tyr Glu Ala Leu Arg Lys Gln Gln Ser 365 Lys Lys Gly Thr Ser Arg Glu Asp Gln Thr Leu Ala Leu Leu Asn 380 Gln Phe Lys Ser Lys Leu Thr Gln Ala Ile Ala Glu Thr Pro Glu Asn Asp Ile Pro Glu Thr Glu Val Glu Asp Asp Glu Gly Trp Met 410 415 420

Ser His Val Leu Gln Phe Glu Asp Lys Ser Arg Lys Val Lys Asp 425 430 435

Ala Ser Met Gln Asp Ser Asp Thr Phe Glu Ile Tyr Asp Pro Arg
440 445 450

Asn Pro Val Asn Lys Arg Arg Arg Glu Glu Ser Lys Lys Leu Met 455 460 465

Arg Glu Lys Lys Glu Arg Arg 470

<210> 246

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

W.

H.

ħĀ.

Æ.

Ħ

1

<223> Synthetic oligonucleotide probe

<400> 246

tgcggagatc ctactggcac aggg 24

<210> 247

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 247

cgagttagtc agagcatg 18

<210> 248

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 248

cagatggtgc tgttgccg 18

<210> 249

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 249
 caactggaac aggaactgag atgtggatc 29
<210> 250
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 250
ctggttcagc agtgcaaggg tctg 24
<210> 251
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 251
 cctctccgat taaaacgc 18
<210> 252
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 252
 gagaggactg gttgccatgg caaatgctgg ttctcatgat aatgg 45
<210> 253
<211> 2456
<212> DNA
<213> Homo sapiens
<400> 253
 cgccgccgtt ggggctggaa gttcccgcca ggtccgtgcc gggcgagaga 50
 gatgctgccc ggcccgcctc ggctttgagg cgagagaagt gtcccagacc 100
 catttcgcct tgctgacggc gtcgagccct ggccagacat gtccacaggg 150
 ttctccttcg ggtccgggac tctgggctcc accaccgtgg ccgccggcgg 200
 gaccagcaca ggcggcgttt tctccttcgg aacgggaacg tctagcaacc 250
 cttctgtggg gctcaatttt ggaaatcttg gaagtacttc aactccagca 300
 actacatctg ctccttcaag tggttttgga accgggctct ttggatctaa 350
```

acctgccact gggttcactc taggaggaac aaatacaggt gccttgcaca 400

ccaagaggcc tcaagtggtc accaaatatg gaaccctgca aggaaaacag 450 atgcatgtgg ggaagacacc catccaagtc tttttaggag tccccttctc 500 cagacetect etaggtatee teaggtttge acetecagaa eeeeeggage 550 cctggaaagg aatcagagat gctaccacct acccgcctgg atggagtctc 600 gctctgtcgc caggctggag tgcagtggca cgatctcggc tcactgcaac 650 ctccgcctcc cgggttcaag cgagtctcct gcctcagcct ctgagtgtct 700 ggggctacag gtgcctgcag gagtcctggg gccagctggc ctcgatgtac 750 gtcagcacgc gggaacggta caagtggctg cgcttcagcg aggactgtct 800 gtacctgaac gtgtacgcgc cggcgcgcgc gcccggggat ccccagctgc 850 cagtgatggt ctggttcccg ggaggcgcct tcatcgtggg cgctgcttct 900 tcgtacgagg gctctgactt ggccgcccgc gagaaagtgg tgctggtgtt 950 tetgcagcae aggeteggea tetteggett eetgagcaeg gaegaeagee 1000 acgcgcgcgg gaactggggg ctgctggacc agatggcggc tctgcgctgg 1050 gtgcaggaga acatcgcagc cttcggggga gacccaggaa atgtgaccct 1100 gttcggccag tcggcgggg ccatgagcat ctcaggactg atgatgtcac 1150 ccctagcete gggtetette categggeea ttteceagag tggcacegeg 1200 ttattcagac ttttcatcac tagtaaccca ctgaaagtgg ccaagaaggt 1250 tgcccacctg gctggatgca accacaacag cacacagatc ctggtaaact 1300 gcctgagggc actatcaggg accaaggtga tgcgtgtgtc caacaagatg 1350 agattcctcc aactgaactt ccagagagac ccggaagaga ttatctggtc 1400 catgagecet gtggtggatg gtgtggtgat eccagatgae eetttggtge 1450 tcctgaccca ggggaaggtt tcatctgtgc cctaccttct aggtgtcaac 1500 aacctggaat tcaattggct cttgccttat aatatcacca aggagcaggt 1550 accacttgtg gtggaggagt acctggacaa tgtcaatgag catgactgga 1600 agatgctacg aaaccgtatg atggacatag ttcaagatgc cactttcgtg 1650 tatgccacac tgcagactgc tcactaccac cgagaaaccc caatgatggg 1700 aatotgccct gctggccacg ctacaacaag gatgaaaagt acctgcagct 1750 ggattttacc acaagagtgg gcatgaagct caaggagaag aagatggctt 1800 tttggatgag tctgtaccag tctcaaagac ctgagaagca gaggcaattc 1850

<210> 254

<211> 545

<212> PRT

<213> Homo sapiens

<400> 254

Met Ser Thr Gly Phe Ser Phe Gly Ser Gly Thr Leu Gly Ser Thr 1 5 10 15

Thr Val Ala Ala Gly Gly Thr Ser Thr Gly Gly Val Phe Ser Phe 20 25 30

Gly Thr Gly Thr Ser Ser Asn Pro Ser Val Gly Leu Asn Phe Gly 35 40 45

Asn Leu Gly Ser Thr Ser Thr Pro Ala Thr Thr Ser Ala Pro Ser 50 55 60

Ser Gly Phe Gly Thr Gly Leu Phe Gly Ser Lys Pro Ala Thr Gly
65 70 75

Phe Thr Leu Gly Gly Thr Asn Thr Gly Ala Leu His Thr Lys Arg 80 85 90

Pro Gln Val Val Thr Lys Tyr Gly Thr Leu Gln Gly Lys Gln Met 95 100 105

His Val Gly Lys Thr Pro Ile Gln Val Phe Leu Gly Val Pro Phe 110 115 120

Ser Arg Pro Pro Leu Gly Ile Leu Arg Phe Ala Pro Pro Glu Pro 125 130 135 Pro Glu Pro Trp Lys Gly Ile Arg Asp Ala Thr Thr Tyr Pro Pro 140 145 Gly Trp Ser Leu Ala Leu Ser Pro Gly Trp Ser Ala Val Ala Arg 160 Ser Arg Leu Thr Ala Thr Ser Ala Ser Arg Val Gln Ala Ser Leu 170 Leu Pro Gln Pro Leu Ser Val Trp Gly Tyr Arg Cys Leu Gln Glu 185 Ser Trp Gly Gln Leu Ala Ser Met Tyr Val Ser Thr Arg Glu Arg Tyr Lys Trp Leu Arg Phe Ser Glu Asp Cys Leu Tyr Leu Asn Val 215 Tyr Ala Pro Ala Arg Ala Pro Gly Asp Pro Gln Leu Pro Val Met 230 Val Trp Phe Pro Gly Gly Ala Phe Ile Val Gly Ala Ala Ser Ser 250 245 Tyr Glu Gly Ser Asp Leu Ala Ala Arg Glu Lys Val Val Leu Val 265 260 Phe Leu Gln His Arg Leu Gly Ile Phe Gly Phe Leu Ser Thr Asp 275 Asp Ser His Ala Arg Gly Asn Trp Gly Leu Leu Asp Gln Met Ala 290 Ala Leu Arg Trp Val Gln Glu Asn Ile Ala Ala Phe Gly Gly Asp 305 310 Pro Gly Asn Val Thr Leu Phe Gly Gln Ser Ala Gly Ala Met Ser 320 Ile Ser Gly Leu Met Met Ser Pro Leu Ala Ser Gly Leu Phe His 345 335 Arg Ala Ile Ser Gln Ser Gly Thr Ala Leu Phe Arg Leu Phe Ile Thr Ser Asn Pro Leu Lys Val Ala Lys Lys Val Ala His Leu Ala 375 Gly Cys Asn His Asn Ser Thr Gln Ile Leu Val Asn Cys Leu Arg Ala Leu Ser Gly Thr Lys Val Met Arg Val Ser Asn Lys Met Arg 395 405 Phe Leu Gln Leu Asn Phe Gln Arg Asp Pro Glu Glu Ile Ile Trp Ser Met Ser Pro Val Val Asp Gly Val Val Ile Pro Asp Asp Pro

435 425 430 Leu Val Leu Leu Thr Gln Gly Lys Val Ser Ser Val Pro Tyr Leu 440 Leu Gly Val Asn Asn Leu Glu Phe Asn Trp Leu Leu Pro Tyr Asn 455 460 Ile Thr Lys Glu Gln Val Pro Leu Val Val Glu Glu Tyr Leu Asp 470 480 Asn Val Asn Glu His Asp Trp Lys Met Leu Arg Asn Arg Met Met Asp Ile Val Gln Asp Ala Thr Phe Val Tyr Ala Thr Leu Gln Thr 500 505 Ala His Tyr His Arg Glu Thr Pro Met Met Gly Ile Cys Pro Ala 515 Gly His Ala Thr Thr Arg Met Lys Ser Thr Cys Ser Trp Ile Leu 530 Pro Gln Glu Trp Ala 545 <210> 255 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 255 aggtgcctgc aggagtcctg ggg 23 <210> 256 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 256 ccacctcagg aagccgaaga tgcc 24 <210> 257 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 257 gaacggtaca agtggctgcg cttcagcgag gactgtctgt acctg 45

<210> 258 <211> 2764 <212> DNA <213> Homo sapiens

<400> 258 gagaacaggc ctgtctcagg caggccctgc gcctcctatg cggagatgct 50 actgccactg ctgctgtcct cgctgctggg cgggtcccag gctatggatg 100 ggagattctg gatacgagtg caggagtcag tgatggtgcc ggagggcctg 150 tgcatctctg tgccctgctc tttctcctac ccccgacaag actggacagg 200 gtctacccca gcttatggct actggttcaa agcagtgact gagacaacca 250 agggtgctcc tgtggccaca aaccaccaga gtcgagaggt ggaaatgagc 300 acceggggcc gattecaget caetggggat ceegceaagg ggaactgete 350 cttggtgatc agagacgcgc agatgcagga tgagtcacag tacttctttc 400 gggtggagag aggaagctat gtgacatata atttcatgaa cgatgggttc 450 tttctaaaag taacagtgct cagcttcacg cccagacccc aggaccacaa 500 caccgacete acetgecatg tggacttete cagaaagggt gtgagegeae 550 agaggaccgt ccgactccgt gtggcctatg cccccagaga ccttgttatc 600 agcatttcac gtgacaacac gccagccctg gagccccagc cccagggaaa 650 tgtcccatac ctggaagccc aaaaaggcca gttcctgcgg ctcctctgtg 700 ctgctgacag ccagcccct gccacactga gctgggtcct gcagaacaga 750 gtectetect egteceatee etggggeeet agaceetgg ggetggaget 800 gcccggggtg aaggctgggg attcagggcg ctacacctgc cgagcggaga 850 acaggettgg etcecageag egageeetgg acetetetgt geagtateet 900 ccagagaacc tgagagtgat ggtttcccaa gcaaacagga cagtcctgga 950 aaaccttggg aacggcacgt ctctcccagt actggagggc caaagcctgt 1000 qcctqqtctq tqtcacacac agcagccccc cagccaggct gagctggacc 1050 cagaggggac aggttctgag ccctcccag ccctcagacc ccggggtcct 1100 ggagctgcct cgggttcaag tggagcacga aggagagttc acctgccacg 1150 ctcggcaccc actgggctcc cagcacgtct ctctcagcct ctccgtgcac 1200 tataagaagg gactcatctc aacggcattc tccaacggag cgtttctggg 1250 aatcggcatc acggetette tttteetetg cetggeeetg atcatcatga 1300 agattctacc gaagagacgg actcagacag aaaccccgag gcccaggttc 1350 teceggeaca geacgatest ggattacate aatgtggtee egacggetgg 1400 ccccctggct cagaagcgga atcagaaagc cacaccaaac agtcctcgga 1450 cccctcctcc accaggtgct ccctccccag aatcaaagaa gaaccagaaa 1500 aagcagtatc agttgcccag tttcccagaa cccaaatcat ccactcaagc 1550 cccagaatcc caggagagcc aagaggagct ccattatgcc acgctcaact 1600 tcccaggcgt cagacccagg cctgaggccc ggatgcccaa gggcacccag 1650 gcggattatg cagaagtcaa gttccaatga gggtctctta ggctttagga 1700 ctgggacttc ggctagggag gaaggtagag taagaggttg aagataacag 1750 agtgcaaagt ttccttctct ccctctctct ctctctttct ctctctctct 1800 ctctttctct ctcttttaaa aaaacatctg gccagggcac agtggctcac 1850 gcctgtaatc ccagcacttt gggaggttga ggtgggcaga tcgcctgagg 1900 tcgggagttc gagaccagcc tggccaactt ggtgaaaccc cgtctctact 1950 aaaaatacaa aaattagctg ggcatggtgg caggcgcctg taatcctacc 2000 tacttgggaa gctgaggcag gagaatcact tgaacctggg agacggaggt 2050 tgcagtgagc caagatcaca ccattgcacg ccagcctggg caacaaagcg 2100 agactccatc tcaaaaaaaa aatcctccaa atgggttggg tgtctgtaat 2150 cccaqcactt tgggaggcta aggtgggtgg attgcttgag cccaggagtt 2200 cgagaccago ctgggcaaca tggtgaaacc ccatctctac aaaaaataca 2250 aaacatagct gggcttggtg gtgtgtgcct gtagtcccag ctgtcagaca 2300 tttaaaccag agcaactcca tctggaatag gagctgaata aaatgaggct 2350 gagacctact gggctgcatt ctcagacagt ggaggcattc taagtcacag 2400 gatgagacag gaggtccgta caagatacag gtcataaaga ctttgctgat 2450 aaaacagatt gcagtaaaga agccaaccaa atcccaccaa aaccaagttg 2500 gccacgagag tgacctctgg tcgtcctcac tgctacactc ctgacagcac 2550 catgacagtt tacaaatgcc atggcaacat caggaagtta cccgatatgt 2600 cccaaaaggg ggaggaatga ataatccacc ccttgtttag caaataagca 2650 agaaataacc ataaaagtgg gcaaccagca gctctaggcg ctgctcttgt 2700 ctatggagta gccattcttt tgttccttta ctttcttaat aaacttgctt 2750

tcaccttaaa aaaa 2764

<210> 259

<211> 544

<212> PRT

<213> Homo sapiens

<400> 259

Met Leu Leu Pro Leu Leu Ser Ser Leu Leu Gly Gly Ser Gln
1 10 15

Ala Met Asp Gly Arg Phe Trp Ile Arg Val Gln Glu Ser Val Met 20 25 30

Val Pro Glu Gly Leu Cys Ile Ser Val Pro Cys Ser Phe Ser Tyr 35 40 45

Pro Arg Gln Asp Trp Thr Gly Ser Thr Pro Ala Tyr Gly Tyr Trp 50 55 60

Phe Lys Ala Val Thr Glu Thr Thr Lys Gly Ala Pro Val Ala Thr 65 70 75

Asn His Gln Ser Arg Glu Val Glu Met Ser Thr Arg Gly Arg Phe 80 85 90

Gln Leu Thr Gly Asp Pro Ala Lys Gly Asn Cys Ser Leu Val Ile 95 100 105

Glu Arg Gly Ser Tyr Val Thr Tyr Asn Phe Met Asn Asp Gly Phe 125 130 135

Phe Leu Lys Val Thr Val Leu Ser Phe Thr Pro Arg Pro Gln Asp 140 145 150

His Asn Thr Asp Leu Thr Cys His Val Asp Phe Ser Arg Lys Gly
155 160 165

Val Ser Ala Gln Arg Thr Val Arg Leu Arg Val Ala Tyr Ala Pro 170 175 180

Arg Asp Leu Val Ile Ser Ile Ser Arg Asp Asn Thr Pro Ala Leu 185 190 195

Glu Pro Gln Pro Gln Gly Asn Val Pro Tyr Leu Glu Ala Gln Lys 200 205 210

Gly Gln Phe Leu Arg Leu Leu Cys Ala Ala Asp Ser Gln Pro Pro 215 220 225

Ala Thr Leu Ser Trp Val Leu Gln Asn Arg Val Leu Ser Ser Ser 230 235 240

His Pro Trp Gly Pro Arg Pro Leu Gly Leu Glu Leu Pro Gly Val 245 250 255

Lys Ala Gly Asp Ser Gly Arg Tyr Thr Cys Arg Ala Glu Asn Arg Leu Gly Ser Gln Gln Arg Ala Leu Asp Leu Ser Val Gln Tyr Pro Pro Glu Asn Leu Arg Val Met Val Ser Gln Ala Asn Arg Thr Val 295 290 Leu Glu Asn Leu Gly Asn Gly Thr Ser Leu Pro Val Leu Glu Gly 310 Gln Ser Leu Cys Leu Val Cys Val Thr His Ser Ser Pro Pro Ala 330 320 Arg Leu Ser Trp Thr Gln Arg Gly Gln Val Leu Ser Pro Ser Gln 335 Pro Ser Asp Pro Gly Val Leu Glu Leu Pro Arg Val Gln Val Glu 350 His Glu Gly Glu Phe Thr Cys His Ala Arg His Pro Leu Gly Ser Gln His Val Ser Leu Ser Leu Ser Val His Tyr Lys Lys Gly Leu 380 Ile Ser Thr Ala Phe Ser Asn Gly Ala Phe Leu Gly Ile Gly Ile Thr Ala Leu Leu Phe Leu Cys Leu Ala Leu Ile Ile Met Lys Ile Leu Pro Lys Arg Arg Thr Gln Thr Glu Thr Pro Arg Pro Arg Phe Ser Arg His Ser Thr Ile Leu Asp Tyr Ile Asn Val Val Pro Thr Ala Gly Pro Leu Ala Gln Lys Arg Asn Gln Lys Ala Thr Pro Asn Ser Pro Arg Thr Pro Pro Pro Pro Gly Ala Pro Ser Pro Glu Ser Lys Lys Asn Gln Lys Lys Gln Tyr Gln Leu Pro Ser Phe Pro Glu Pro Lys Ser Ser Thr Gln Ala Pro Glu Ser Gln Glu Ser Gln Glu Glu Leu His Tyr Ala Thr Leu Asn Phe Pro Gly Val Arg Pro Arg 525 515 Pro Glu Ala Arg Met Pro Lys Gly Thr Gln Ala Asp Tyr Ala Glu 530 Val Lys Phe Gln

```
i.
W.
38
in the
ik ik
State
State
```

```
<210> 260
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 260
 caaagcctgc gcctggtctg tg 22
<210> 261
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 261
 ttctggagcc cagagggtgc tgag 24
<210> 262
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 262
 ggagctgcca cccattcaaa tggagcacga aggagagttc acctg 45
<210> 263
<211> 2857
<212> DNA
<213> Homo sapiens
<400> 263
 tgaagagtaa tagttggaat caaaagagtc aacgcaatga actgttattt 50
 actgctgcgt tttatgttgg gaattcctct cctatggcct tgtcttggag 100
 caacagaaaa ctctcaaaca aagaaagtca agcagccagt gcgatctcat 150
 ttgagagtga agcgtggctg ggtgtggaac caattttttg taccagagga 200
 aatgaatacg actagtcatc acatcggcca gctaagatct gatttagaca 250
 atggaaacaa ttctttccag tacaagcttt tgggagctgg agctggaagt 300
 acttttatca ttgatgaaag aacaggtgac atatatgcca tacagaagct 350
 tgatagagag gagcgatccc tctacatctt aagagcccag gtaatagaca 400
```

tcgctactgg aagggctgtg gaacctgagt ctgagtttgt catcaaagtt 450

toggatatca atgacaatga accaaaattc ctagatgaac cttatgaggc 500 cattgtacca gagatgtctc cagaaggaac attagttatc caggtgacag 550 caagtgatgc tgacgatccc tcaagtggta ataatgctcg tctcctctac 600 agettacttc aaggecagec atattttet gttgaaccaa caacaggagt 650 cataagaata tcttctaaaa tggatagaga actgcaagat gagtattggg 700 taatcattca agccaaggac atgattggtc agccaggagc gttgtctgga 750 acaacaagtg tattaattaa actttcagat gttaatgaca ataagcctat 800 atttaaagaa agtttatacc gcttgactgt ctctgaatct gcacccactg 850 ggacttctat aggaacaatc atggcatatg ataatgacat aggagagaat 900 gcagaaatgg attacagcat tgaagaggat gattcgcaaa catttgacat 950 tattactaat catgaaactc aagaaggaat agttatatta aaaaagaaag 1000 tggattttga gcaccagaac cactacggta ttagagcaaa agttaaaaac 1050 catcatgttc ctgagcagct catgaagtac cacactgagg cttccaccac 1100 tttcattaag atccaggtgg aagatgttga tgagcctcct cttttcctcc 1150 ttccatatta tgtatttgaa gtttttgaag aaaccccaca gggatcattt 1200 gtaggcgtgg tgtctgccac agacccagac aataggaaat ctcctatcag 1250 qtattctatt actaggagca aagtgttcaa tatcaatgat aatggtacaa 1300 tcactacaaq taactcactq qatcqtqaaa tcagtqcttq gtacaaccta 1350 aqtattacaq ccacaqaaaa atacaatata gaacagatct cttcgatccc 1400 actgtatgtg caagttetta acateaatga teatgeteet gagttetete 1450 aatactatga gacttatgtt tgtgaaaatg caggctctgg tcaggtaatt 1500 cagactatca gtgcagtgga tagagatgaa tccatagaag agcaccattt 1550 ttactttaat ctatctgtag aagacactaa caattcaagt tttacaatca 1600 tagataatca agataacaca gctgtcattt tgactaatag aactggtttt 1650 aaccttcaag aagaacctgt cttctacatc tccatcttaa ttgccgacaa 1700 tggaatcccq tcacttacaa gtacaaacac ccttaccatc catgtctgtg 1750 actgtggtga cagtgggagc acacagacct gccagtacca ggagcttgtg 1800 ctttccatgg gattcaagac agaagttatc attgctattc tcatttgcat 1850 tatgatcata tttgggttta tttttttgac tttgggttta aaacaacgga 1900

gaaaacagat totatttoot gagaaaagtg aagatttoag agagaatata 1950 ttccaatatg atgatgaagg gggtggagaa gaagatacag aggcctttga 2000 tatagcagag ctgaggagta gtaccataat gcgggaacgc aagactcgga 2050 aaaccacaag cgctgagatc aggagcctat acaggcagtc tttgcaagtt 2100 ggccccgaca gtgccatatt caggaaattc attctggaaa agctcgaaga 2150 agctaatact gatccgtgtg cccctccttt tgattccctc cagacctacg 2200 cttttgaggg aacagggtca ttagctggat ccctgagctc cttagaatca 2250 gcagtctctg atcaggatga aagctatgat taccttaatg agttgggacc 2300 tcgctttaaa agattagcat gcatgtttgg ttctgcagtg cagtcaaata 2350 attagggctt tttaccatca aaatttttaa aagtgctaat gtgtattcga 2400 acceaatqqt aqtcttaaaq agttttgtgc cctggctcta tggcggggaa 2450 agccctagtc tatggagttt tctgatttcc ctggagtaaa tactccatgg 2500 ttattttaag ctacctacat gctgtcattg aacagagatg tggggagaaa 2550 tgtaaacaat cagctcacag gcatcaatac aaccagattt gaagtaaaat 2600 aatqtaqqaa qatattaaaa gtagatgaga ggacacaaga tgtagtcgat 2650 ccttatqcqa ttatatcatt atttacttag gaaagagtaa aaataccaaa 2700 cgagaaaatt taaaggagca aaaatttgca agtcaaatag aaatgtacaa 2750 atcgagataa catttacatt tctatcatat tgacatgaaa attgaaaatg 2800 tatagtcaga gaaattttca tgaattattc catgaagtat tgtttccttt 2850 atttaaa 2857

<210> 264

<211> 772

<212> PRT

<213> Homo sapiens

<400> 264

Met Asn Cys Tyr Leu Leu Leu Arg Phe Met Leu Gly Ile Pro Leu
1 5 10 15

Leu Trp Pro Cys Leu Gly Ala Thr Glu Asn Ser Gln Thr Lys Lys
20 25 30

Val Lys Gln Pro Val Arg Ser His Leu Arg Val Lys Arg Gly Trp 35 40 45

Val Trp Asn Gln Phe Phe Val Pro Glu Glu Met Asn Thr Thr Ser 50 55 60

His His Ile Gly Gln Leu Arg Ser Asp Leu Asp Asn Gly Asn Asn Ser Phe Gln Tyr Lys Leu Leu Gly Ala Gly Ala Gly Ser Thr Phe Ile Ile Asp Glu Arg Thr Gly Asp Ile Tyr Ala Ile Gln Lys Leu 100 Asp Arg Glu Glu Arg Ser Leu Tyr Ile Leu Arg Ala Gln Val Ile Asp Ile Ala Thr Gly Arg Ala Val Glu Pro Glu Ser Glu Phe Val 130 125 Ile Lys Val Ser Asp Ile Asn Asp Asn Glu Pro Lys Phe Leu Asp Glu Pro Tyr Glu Ala Ile Val Pro Glu Met Ser Pro Glu Gly Thr Leu Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Ser Ser 170 Gly Asn Asn Ala Arg Leu Leu Tyr Ser Leu Leu Gln Gly Gln Pro 185 Tyr Phe Ser Val Glu Pro Thr Thr Gly Val Ile Arg Ile Ser Ser 200 Lys Met Asp Arg Glu Leu Gln Asp Glu Tyr Trp Val Ile Ile Gln 215 Ala Lys Asp Met Ile Gly Gln Pro Gly Ala Leu Ser Gly Thr Thr 230 Ser Val Leu Ile Lys Leu Ser Asp Val Asn Asp Asn Lys Pro Ile Phe Lys Glu Ser Leu Tyr Arg Leu Thr Val Ser Glu Ser Ala Pro 270 265 260 Thr Gly Thr Ser Ile Gly Thr Ile Met Ala Tyr Asp Asn Asp Ile 275 Gly Glu Asn Ala Glu Met Asp Tyr Ser Ile Glu Glu Asp Asp Ser 290 Gln Thr Phe Asp Ile Ile Thr Asn His Glu Thr Gln Glu Gly Ile 305 Val Ile Leu Lys Lys Lys Val Asp Phe Glu His Gln Asn His Tyr 330 Gly Ile Arg Ala Lys Val Lys Asn His His Val Pro Glu Gln Leu 340 Met Lys Tyr His Thr Glu Ala Ser Thr Thr Phe Ile Lys Ile Gln

				350					355					360
Val	Glu	Asp	Val	Asp 365	Glu	Pro	Pro	Leu	Phe 370	Leu	Leu	Pro	Tyr	Tyr 375
Val	Phe	Glu	Val	Phe 380	Glu	Glu	Thr	Pro	Gln 385	Gly	Ser	Phe	Val	Gly 390
Val	Val	Ser	Ala	Thr 395	Asp	Pro	Asp	Asn	Arg 400	Lys	Ser	Pro	Ile	Arg 405
Tyr	Ser	Ile	Thr	Arg 410	Ser	Lys	Val	Phe	Asn 415	Ile	Asn	Asp	Asn	Gly 420
Thr	Ile	Thr	Thr	Ser 425	Asn	Ser	Leu	Asp	Arg 430	Glu	Ile	Ser	Ala	Trp 435
Tyr	Asn	Leu	Ser	Ile 440	Thr	Ala	Thr	Glu	Lys 445	Tyr	Asn	Ile	Glu	Gln 450
Ile	Ser	Ser	Ile	Pro 455	Leu	Tyr	Val	Gln	Val 460	Leu	Asn	Ile	Asn	Asp 465
His	Ala	Pro	Glu	Phe 470	Ser	Gln	Tyr	Tyr	Glu 475	Thr	Tyr	Val	Cys	Glu 480
Asn	Ala	Gly	Ser	Gly 485	Gln	Val	Ile	Gln	Thr 490	Ile	Ser	Ala	Val	Asp 495
Arg	Asp	Glu	Ser	Ile 500	Glu	Glu	His	His	Phe 505	Tyr	Phe	Asn	Leu	Ser 510
Val	Glu	Asp	Thr	Asn 515	Asn	Ser	Ser	Phe	Thr 520	Ile	Ile	Asp	Asn	Gln 525
Asp	Asn	Thr	Ala	Val 530	Ile	Leu	Thr	Asn	Arg 535	Thr	Gly	Phe	Asn	Leu 540
Gln	Glu	Glu	Pro	Val 545	Phe	Tyr	Ile	Ser	Ile 550	Leu	Ile	Ala	Asp	Asn 555
Gly	Ile	Pro	Ser	Leu 560	Thr	Ser	Thr	Asn	Thr 565	Leu	Thr	Ile	His	Val 570
Суз	Asp	Cys	Gly	Asp 575	Ser	Gly	Ser	Thr	Gln 580	Thr	Cys	Gln	Tyr	Gln 585
Glu	Leu	Val	Leu	Ser 590	Met	Gly	Phe	Lys	Thr 595	Glu	Val	Ile	Ile	Ala 600
Ile	Leu	Ile	Cys	Ile 605	Met	Ile	Ile	Phe	Gly 610	Phe	Ile	Phe	Leu	Thr 615
Leu	Gly	Leu	Lys	Gln 620	Arg	Arg	Lys	Gln	Ile 625	Leu	Phe	Pro	Glu	Lys 630
Ser	Glu	Asp	Phe	Arg 635	Glu	Asn	Ile	Phe	Gln 640	Tyr	Asp	Asp	Glu	Gly 645

```
Gly Gly Glu Glu Asp Thr Glu Ala Phe Asp Ile Ala Glu Leu Arg
                                     655
                650
Ser Ser Thr Ile Met Arg Glu Arg Lys Thr Arg Lys Thr Thr Ser
                                    670
Ala Glu Ile Arg Ser Leu Tyr Arg Gln Ser Leu Gln Val Gly Pro
                680
Asp Ser Ala Ile Phe Arg Lys Phe Ile Leu Glu Lys Leu Glu Glu
Ala Asn Thr Asp Pro Cys Ala Pro Pro Phe Asp Ser Leu Gln Thr
                                     715
                710
Tyr Ala Phe Glu Gly Thr Gly Ser Leu Ala Gly Ser Leu Ser Ser
Leu Glu Ser Ala Val Ser Asp Gln Asp Glu Ser Tyr Asp Tyr Leu
                                                         750
Asn Glu Leu Gly Pro Arg Phe Lys Arg Leu Ala Cys Met Phe Gly
                                                         765
```

Ser Ala Val Gln Ser Asn Asn 770

<210> 265 <211> 349

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 24, 60, 141, 226, 228, 249, 252

<223> unknown base

<400> 265

attcaaggc cagccatatt tttntgttga accaacaaca ggagtcataa 50 gaatatttn taaaatggat agagaactgc aagatgagta ttgggtaatc 100 attcaagcca aggacatgat tggtcagcca ggagcgttgt ntggaacaac 150 aagtgtatta attaaacttt cagatgttaa tgacaataag cctatattta 200 aagaaagttt ataccgcttg actgtntntg aatctgcacc cactgggant 250 tntataggaa caatcatggc atatgataat gacataggag agaatgcaga 300 aatggattac agcattgaag aggatgattc gcaaacattt gacattatt 349

<210> 266

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe <400> 266 cttgactgtc tctgaatctg caccc 25 <210> 267 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 267 aagtggtgga agcctccagt gtgg 24 <210> 268 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 268 ccactacqqt attaqaqcaa aaqttaaaaa ccatcatqqt tcctqqaqca 50 qc 52 <210> 269 <211> 2747 <212> DNA <213> Homo sapiens <400> 269 gcaaceteag ettetagtat ecagaeteea gegeegeece gggegeggae 50 cccaaccccq acccagaget tetecagegg eggegeageg ageagggete 100 cccqccttaa cttcctccqc qqqqcccaqc caccttcggg agtccgggtt 150 gcccacctgc aaactctccg ccttctgcac ctgccacccc tgagccagcg 200 cgggcccccg agcgagtcat ggccaacgcg gggctgcagc tgttgggctt 250 cattetegee tteetgggat ggateggege categteage aetgeeetge 300 cccagtggag gatttactcc tatgccggcg acaacatcgt gaccgcccag 350 gccatgtacg aggggctgtg gatgtcctgc gtgtcgcaga gcaccgggca 400 gatccagtgc aaagtctttg actccttgct gaatctgagc agcacattgc 450 aagcaacccg tgccttgatg gtggttggca tcctcctggg agtgatagca 500 atctttgtgg ccaccgttgg catgaagtgt atgaagtgct tggaagacga 550 tgaggtgcag aagatgagga tggctgtcat tgggggtgcg atatttcttc 600 ttgcaggtct ggctatttta gttgccacag catggtatgg caatagaatc 650 gttcaagaat tctatgaccc tatgacccca gtcaatgcca ggtacgaatt 700 tggtcaggct ctcttcactg gctgggctgc tgcttctctc tgccttctgg 750 gaggtgccct actttgctgt tcctgtcccc gaaaaacaac ctcttaccca 800 acaccaaggc cctatccaaa acctgcacct tccagcggga aagactacgt 850 gtgacacaga ggcaaaagga gaaaatcatg ttgaaacaaa ccgaaaatgg 900 acattgagat actatcatta acattaggac cttagaattt tgggtattgt 950 aatctgaagt atggtattac aaaacaaaca aacaaacaaa aaacccatgt 1000 gttaaaatac tcagtgctaa acatggctta atcttatttt atcttctttc 1050 ctcaatatag gagggaagat ttttccattt gtattactgc ttcccattga 1100 gtaatcatac tcaaatgggg gaaggggtgc tccttaaata tatatagata 1150 tgtatatata catgtttttc tattaaaaat agacagtaaa atactattct 1200 cattatgttg atactagcat acttaaaata tctctaaaat aggtaaatgt 1250 atttaattcc atattgatga agatgtttat tggtatattt tctttttcgt 1300 ccttatatac atatgtaaca gtcaaatatc atttactctt cttcattagc 1350 tttgggtgcc tttgccacaa gacctagcct aatttaccaa ggatgaattc 1400 tttcaattct tcatgcgtgc ccttttcata tacttatttt attttttacc 1450 ataatcttat agcacttgca tcgttattaa gcccttattt gttttgtgtt 1500 tcattggtct ctatctcctg aatctaacac atttcatagc ctacatttta 1550 gtttctaaag ccaagaagaa tttattacaa atcagaactt tggaggcaaa 1600 tctttctgca tgaccaaagt gataaattcc tgttgacctt cccacacaat 1650 ccctgtactc tgacccatag cactcttgtt tgctttgaaa atatttgtcc 1700 aattgagtag ctgcatgctg ttcccccagg tgttgtaaca caactttatt 1750 gattgaattt ttaagctact tattcatagt tttatatccc cctaaactac 1800 ctttttgttc cccattcctt aattgtattg ttttcccaag tgtaattatc 1850 atgcqtttta tatcttccta ataaggtgtg gtctgtttgt ctgaacaaag 1900 tgctagactt tctggagtga taatctggtg acaaatattc tctctgtagc 1950 tgtaagcaag tcacttaatc tttctacctc ttttttctat ctgccaaatt 2000 gagataatga tacttaacca gttagaagag gtagtgtgaa tattaattag 2050 tttatattac tettattett tgaacatgaa etatgeetat gtagtgetet 2100 tatttgetea getggetgag acactgaaga agteactgaa caaaacetac 2150 acacgtacet teatgtgatt cactgeette eteteteae eagtetattt 2200 eeactgaaca aaacetacac acatacette atgtggttea gtgeetteet 2250 etetetacea gtetatttee actgaacaaa acetacgac atacetteat 2300 gtggeteagt geetteetet etetaceagt etattteeat tettteaget 2350 gtgtetgaca tgtttgtget etgtteeatt ttaacaactg etettacett 2400 tecagtetgt acagaatget attteacttg ageaagatga tgtaatggaa 2450 agggtgttgg cactggtget tggagacetg gatttgagte ttggtgetat 2500 eaateacegt etgtgttga geaaggeatt tggetgetgt aagettattg 2550 etteatetgt aageggtggt ttgtaattee tgatettee aceteacagt 2600 gatgttgtg ggatecagtg agatagaata catgtaagtg tggttttgta 2650 atttaaaaag tgetatacta agggaaagaa ttgaggaatt aactgcatac 2700 gttttggtgt tgetttteaa atgtttgaaa ataaaaaaa tgttaag 2747

<210> 270

<211> 211

<212> PRT

<213> Homo sapiens

<400> 270

Met Ala Asn Ala Gly Leu Gln Leu Leu Gly Phe Ile Leu Ala Phe 1 5 10 15

Leu Gly Trp Ile Gly Ala Ile Val Ser Thr Ala Leu Pro Gln Trp
20 25 30

Arg Ile Tyr Ser Tyr Ala Gly Asp Asn Ile Val Thr Ala Gln Ala 35 40 45

Met Tyr Glu Gly Leu Trp Met Ser Cys Val Ser Gln Ser Thr Gly
50 55 60

Gln Ile Gln Cys Lys Val Phe Asp Ser Leu Leu Asn Leu Ser Ser
65 70 75

Thr Leu Gln Ala Thr Arg Ala Leu Met Val Val Gly Ile Leu Leu 80 85 90

Gly Val Ile Ala Ile Phe Val Ala Thr Val Gly Met Lys Cys Met 95 100 105

Lys Cys Leu Glu Asp Asp Glu Val Gln Lys Met Arg Met Ala Val 110 115 120

```
Ile Gly Gly Ala Ile Phe Leu Leu Ala Gly Leu Ala Ile Leu Val
                125
                                     130
Ala Thr Ala Trp Tyr Gly Asn Arg Ile Val Gln Glu Phe Tyr Asp
                140
Pro Met Thr Pro Val Asn Ala Arg Tyr Glu Phe Gly Gln Ala Leu
                155
                                     160
Phe Thr Gly Trp Ala Ala Ala Ser Leu Cys Leu Leu Gly Gly Ala
                170
                                     175
Leu Leu Cys Cys Ser Cys Pro Arg Lys Thr Thr Ser Tyr Pro Thr
                                     190
                                                         195
                185
Pro Arg Pro Tyr Pro Lys Pro Ala Pro Ser Ser Gly Lys Asp Tyr
                                                         210
```

Val

<210> 271 <211> 564 <212> DNA <213> Homo sapiens

<220>

<221> unsure <222> 21, 69, 163, 434, 436, 444

<223> unknown base

<400> 271

ttetggeeaa acceggget neagetgttg ggetteatet egeetteetg 50 ggatggateg gegeeatent cacactgeee tteeceagtg gaggattta 100 etecetatge tggegacaac ategtgaceg eccageecat gtaegagggg 150 etgtggatgt eengegtgte geagageace gggeagatee agtgeaaagt 200 etttgaetee ttgetgaate tgageageac attgeaagea accegtgeet 250 tgatggtggt tggeateete etgggagtga tageaatett tgtggeeace 300 gttggeatga agtgtatgaa gtgettggaa gaegatgagg tgeagaagat 350 gaggatgget gteattgggg gegegatatt tettettgea ggtetggeta 400 ttttagttge eacageatgg tatggeaata gaanenttea acanttetat 450 gaeceetatga ecceagteat teetetgeet aggetetett 500 eactggetgg getgetgett etetetgeet tetgggaggt geeetaettt 550 getgtteetg teee 564

<210> 272 <211> 498

```
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 30, 49, 102, 141, 147, 171, 324-325, 339-341
<223> unknown base
<400> 272
 accettgace caacgeggee eccegacegn tteatggeea aacgegggne 50
 tccagctgtt gggcttcatt ctccccttcc tgggatggac cggcgcccat 100
 cntcagcact gccctgcccc agtggaggat ttactcctat nccggcnaca 150
 acatcgtgac cgcccaggcc ntgtacgagg ggctgtggat gtcctgcgtg 200
 tcgcagagca ccgggcagat ccagtgcaaa gtctttgact cccttgctga 250
 atctgagcag cacattgcaa gcaacccgtg ccttgatggt ggttggcatc 300
 ctcctgggag tgatagcaat cttnntggcc accgttgtnn ntgaagtgta 350
 tqaaqtqctt qqaaqacqat qaqqtqcaga agatgaggat ggctgtcatt 400
 gggggcgcga tatttcttct tgcaggtctg gctattttag ttgccacagc 450
 atggtatggc aatagaatcg ttcaagaatt ctatgaccct atgaccga 498
<210> 273
<211> 552
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 25, 57, 67, 94-95, 116, 152, 165, 212, 233, 392-394
<223> unknown base
<400> 273
 gggcccgacc attatccaac cgggntcact gttggctcat ctccctcctg 50
 gatgaancgc gccatcntca gactccctgc cccatggaga tttnncctat 100
 gctggcgaca acatentgac ceceageeat gtacgagggg ctttgaacgt 150
 cngcgtgtcg cagancaccg ggcagatcca gtgcaaagtc tttgactcct 200
 tgctgaatct gngcagcaca ttgcagcaac ccntgccctg atggtggttg 250
 gcatcctcct gggagtgata gcaatctttg tggccaccgt tggcatgaag 300
 tgtatgaagt gcttggaaga cgatgaggtg cagaagatga ggatggctgt 350
 cattgggggc gcgatatttc ttcttgcagg tctggctatt tnnngttgcc 400
```

acagcatggt atggcaatag aatcgttcaa gaattctatg accctatgac 450

```
cccaqtcaat qccaqqtacq aatttggtca ggctctcttc actggctggg 500
ctgctgcttc tctctgcctt ctgggaggtg ccctactttg ctgttcctgc 550
ga 552
<210> 274
<211> 526
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 25, 50, 60, 123, 127, 370, 395, 397-398, 402-403, 405-407
<223> unknown base
<400> 274
 attctcccct cctggatgga tcgcnccacc gtcacattgc cttcccccan 50
 tggaggattn actcctatgc tggcgacaac atcgtgaccc cccaggccat 100
 ttaccqaqqq qctttqqatq tcntqcntqt cgcaqagcac cgggcagatc 150
 ccaqtqcaaa qtctttqact ccttqctqaa tctqaqcaqc acattqcaag 200
 caacccgtgc cttgatgggg ttggcatcct cctgggagtg atagcaacct 250
 ttqtqqccac cqttqqcatg aagtqtatga agtqcttgga agacgatgag 300
 gtgccagaag atgaggatgg ctgtcattgg gggcgcgata tttcttgttg 350
 caggtctggc tattttagtn gccacagcat ggtatggcaa tagantnntt 400
 cnngnnntct atgaccctat gaccccagtc aatgccaggt acgaatttgg 450
 tcaggctctc ttcactggct gggctgctgc ttctctctgc cttctgggag 500
 gtgccctact ttgctgttcc tgtccc 526
<210> 275
<211> 398
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 22, 61, 91, 144, 238-239, 262, 265-266, 271, 274
<223> unknown base
<400> 275
 agagcaccgg cagatcccag tncaaagtct ttgacccttg ctgaatctga 50
 gcagcacatt ncaagcaacc ccttgccttg aaggtggttg ncatcccccc 100
 tgggagtgaa tagcaatctt tgtggccacc gttggcatga agtntatgaa 150
 gtgcttggaa gacgatgagg tgcagaagat gaggatggct gtcattgggg 200
```

gegegatatt tettettgea ggtetggeta ttttagtnne cacageatgg 250 tatggeaata gnatnntteg nggnttetat gaccetatga ecceagteaa 300 tgeeaggtae gaatttggte aggetetett eactggetgg getgetgett 350 etetetgeet tetgggaggt geeetaettt getgtteetg teecegaa 398

<210> 276

<211> 495

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 39, 58, 130, 234, 314, 364, 427, 450, 461, 476

<223> unknown base

<400> 276

agcaatgccc tgccccagt ggaggattaa ttcctatgnt ggggacaaca 50
ttgtgacngc ccaggccatg tacgggggc tgtggatgtc ctgcgtgtcg 100
cagagcaccg ggcagatcca gtgcaaagtn tttgactcct tgctgaattt 150
gagcagcaca ttgcaagcaa cccgtgcctt gatggtggtt ggcatcttcc 200
tgggagtgat agcaatcttt gtggccaccg tggnaatgaa gtgtatgaag 250
tgcttggaag acgatgaggt gcagaagatg aggatggctg tcattggggg 300
cgcgatattt cttnttgcag gtctggctat tttagttgcc acagcatggt 350
atggcaatag aatngttcaa gaattttatg accctatgac cccagtcaat 400
gccaggtacg aatttggtca ggcttnttc actggctgg ctgctgcttn 450
tttctgcctt ntgggaggtg ccctantttg ctgttcctgc gaacc 495

<210> 277

<211> 200

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 34, 87, 138, 147, 163, 165-166, 172

<223> unknown base

<400> 277

tcataggggg gcgcgatatt ttttcttgca ggtntggtta ttttagttgc 50 cacagcatgg tatggcaata gaatcgttca agaattntat gaccctatga 100 ccccagtcaa tgccaggtac gaatttggtc aggctctntt cactggntgg 150 gctgctgctt ctntnngcct tntgggaggt gccctacttt gctgttcctg 200

```
<210> 278
<211> 542
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 26, 43, 55, 77, 198, 361-362, 391-392, 396
<223> unknown base
<400> 278
 tteetqqqat qqateeqeee ceatenteae atgeeetgee centggagat 50
 ttacncctat gctggcgaac aacatcntga ccgcccaggc catgtacgag 100
 gggctgtgga atgtcctgcg tgtcccagag caccgggcag atccagtgca 150
 aagtetttga eteettgetg aatetgagea geacattgea ageaacentg 200
 ccttgatggt ggttggcatc ctcctgggag tgatagcaat ctttgtggcc 250
 accqttqqca tqaaaqtqta tqaaqtqctt qgaaqacqat gaggtqcaga 300
 agatgaggat ggctgtcatt gggggcgcga tatttcttct tgcaggtctg 350
 gctattttag nngccacagc atggtatggc aatcagaccc nntcanaaac 400
 tctatgaccc tatgacccca gtcaatgcca ggtacgaatt tggtcaggct 450
 ctcttcactg gctgggctgc tgcttctctc tgccttctgg gaggtgccct 500
 actttgctgt tcctgtcccc gaaaaacaac ctcttaccca cg 542
<210> 279
<211> 548
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 90, 115, 147, 228, 387
<223> unknown base
<400> 279
 cggggctgca gctgttgggc ttcatctcgc ttcctgggat ggaatcggcg 50
 ccatcgtcag cactgccctg ccccatggag gatttactcn tatgctggcg 100
 acaacatcgt gaccncccag gccatgtacg aggggctgtg gatgtcngcg 150
 tqtcqcaqaq caccqqqcaq atccaqtqca aagtctttga ctccttgctg 200
 aatctgagca gcacattgca agcaaccntg ccttgatggt ggttggcatc 250
```

ctcctgggag tgatagcaat ctttgtggcc accgttggca tgaagtgtat 300

gaagtgcttg gaagacgatg aggtgcagaa gatgaggatg gctgtcattg 350

```
ggggcgcgat atttcttctt gcaggtctgg ctatttntag ttgccacagc 400
atggtatggc aatagaatcg ttcaagaatt ctatgaccct atgaccccag 450
tcaatgccag gtacgaattt ggtcaggctc tcttcactgg ctgggctgct 500
gettetetet geettetggg aggtgeeeta etttgetgtt eetgegaa 548
<210> 280
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 280
cgagcgagtc atggccaacg c 21
<210> 281
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 281
gtgtcacacg tagtctttcc cgctgg 26
<210> 282
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 282
ctgcagctgt tgggcttcat tctcgccttc ctgggatgga tcg 43
<210> 283
<211> 2285
<212> DNA
<213> Homo sapiens
<400> 283
 gcgtgccgtc agctcgccgg gcaccgcggc ctcgccctcg ccctccgccc 50
 ctgcgcctgc accgcgtaga ccgaccccc cctccagcgc gcccacccgg 100
 tagaggaccc ccgcccgtgc cccgaccggt ccccgccttt ttgtaaaact 150
 taaagcgggc gcagcattaa cgcttcccgc cccggtgacc tctcaggggt 200
 ctccccgcca aaggtgctcc gccgctaagg aacatggcga aggtggagca 250
```

ggtcctgagc ctcgagccgc agcacgagct caaattccga ggtcccttca 300

ccgatgttgt caccaccaac ctaaagcttg gcaacccgac agaccgaaat 350 gtgtgtttta aggtgaagac tacagcacca cgtaggtact gtgtgaggcc 400 caacagcgga atcatcgatg caggggcctc aattaatgta tctgtgatgt 450 tacagccttt cgattatgat cccaatgaga aaagtaaaca caagtttatg 500 gttcagtcta tgtttgctcc aactgacact tcagatatgg aagcagtatg 550 gaaggaggca aaaccggaag accttatgga ttcaaaactt agatgtgtgt 600 ttgaattgcc agcagagaat gataaaccac atgatgtaga aataaataaa 650 attatatcca caactgcatc aaagacagaa acaccaatag tgtctaagtc 700 tctgagttct tctttggatg acaccgaagt taagaaggtt atggaagaat 750 gtaagaggct gcaaggtgaa gttcagaggc tacgggagga gaacaagcag 800 ttcaaggaag aagatggact gcggatgagg aagacagtgc agagcaacag 850 ccccatttca gcattagccc caactgggaa ggaagaaggc cttagcaccc 900 ggctcttggc tctggtggtt ttgttcttta tcgttggtgt aattattggg 950 aagattgcct tgtagaggta gcatgcacag gatggtaaat tggattggtg 1000 gatccaccat atcatgggat ttaaatttat cataaccatg tgtaaaaaga 1050 aattaatgta tgatgacatc tcacaggtct tgcctttaaa ttacccctcc 1100 ctgcacacac atacacagat acacacaca aaatataatg taacgatctt 1150 ttagaaagtt aaaaatgtat agtaactgat tgagggggaa aaagaatgat 1200 ctttattaat gacaagggaa accatgagta atgccacaat ggcatattgt 1250 aaatgtcatt ttaaacattg gtaggccttg gtacatgatg ctggattacc 1300 tctcttaaaa tgacaccctt cctcgcctgt tggtgctggc ccttggggag 1350 ctggagccca gcatgctggg gagtgcggtc agctccacac agtagtcccc 1400 acgtggccca ctcccggccc aggctgcttt ccgtgtcttc agttctgtcc 1450 aagccatcag ctccttggga ctgatgaaca gagtcagaag cccaaaggaa 1500 ttgcactgtg gcagcatcag acgtactcgt cataagtgag aggcgtgtgt 1550 tgactgattg acccagcgct ttggaaataa atggcagtgc tttgttcact 1600 taaagggacc aagctaaatt tgtattggtt catgtagtga agtcaaactg 1650 ttattcagag atgtttaatg catatttaac ttatttaatg tatttcatct 1700 catgttttct tattgtcaca agagtacagt taatgctgcg tgctgctgaa 1750

ctctgttggg tgaactggta ttgctgctgg agggctgtgg gctcctctgt 1800 ctctggagag tctggtcatg tggaggtggg gtttattggg atgctggaga 1850 agagctgcca ggaagtgtt tttctgggtc agtaaataac aactgtcata 1900 gggagggaaa ttctcagtag tgacagtcaa ctctaggtta cctttttaa 1950 tgaagagtag tcagtcttct agattgttct tataccacct ctcaaccatt 2000 actcacactt ccagcgcca ggtccaagtc tgagcctgac ctccccttgg 2050 ggacctagcc tggagtcagg acaaatggat cgggctgcag agggttagaa 2100 gcgagggcac cagcagttgt gggtgggag caagggaaga gagaaactct 2150 tcagcgaatc cttctagtac tagttgagag tttgactgtg aattaatttt 2200 atgccataaa agaccaaccc agttctgtt gactatgtag catcttgaaa 2250 agaaaaatta taataaagcc ccaaaattaa gaaaa 2285

<210> 284

<211> 243

<212> PRT

<213> Homo sapiens

<400> 284

Met Ala Lys Val Glu Gln Val Leu Ser Leu Glu Pro Gln His Glu
1 5 10 15

Leu Lys Phe Arg Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu 20 25 30

Lys Leu Gly Asn Pro Thr Asp Arg Asn Val Cys Phe Lys Val Lys 35 40 45

Thr Thr Ala Pro Arg Arg Tyr Cys Val Arg Pro Asn Ser Gly Ile $50\,$

Ile Asp Ala Gly Ala Ser Ile Asn Val Ser Val Met Leu Gln Pro 65 70 75

Phe Asp Tyr Asp Pro Asn Glu Lys Ser Lys His Lys Phe Met Val 80 85 90

Gln Ser Met Phe Ala Pro Thr Asp Thr Ser Asp Met Glu Ala Val 95 100 105

Trp Lys Glu Ala Lys Pro Glu Asp Leu Met Asp Ser Lys Leu Arg 110 115 120

Cys Val Phe Glu Leu Pro Ala Glu Asn Asp Lys Pro His Asp Val 125 130 135

Glu Ile Asn Lys Ile Ile Ser Thr Thr Ala Ser Lys Thr Glu Thr 140 145 150

```
Pro Ile Val Ser Lys Ser Leu Ser Ser Ser Leu Asp Asp Thr Glu
                155
Val Lys Lys Val Met Glu Glu Cys Lys Arg Leu Gln Gly Glu Val
                                    175
                170
Gln Arg Leu Arg Glu Glu Asn Lys Gln Phe Lys Glu Glu Asp Gly
                185
                                    190
Leu Arg Met Arg Lys Thr Val Gln Ser Asn Ser Pro Ile Ser Ala
                200
Leu Ala Pro Thr Gly Lys Glu Glu Gly Leu Ser Thr Arg Leu Leu
                215
Ala Leu Val Val Leu Phe Phe Ile Val Gly Val Ile Ile Gly Lys
```

Ile Ala Leu

<210> 285 <211> 418 <212> DNA <213> Homo sapiens

<220> <221> unsure <222> 40, 53, 68, 119, 134, 177-178, 255 <223> unknown base

<400> 285 gtcagtcttc tagattgtcc ttatcccacc tttcaaccan tactcacatt 50 tcnagcgccc aggtccangt ctgagcctga cttccccttg gggacctagc 100 ctggagtcag gacaatggnt cgggctgcag aggnttagaa gcgagggcac 150 cagcagtttt gggtggggag caagggnnga gagaaactct tcagcgaatc 200 cttctagtac tagttgagag tttgactgtg aattaatttt atgccataaa 250 agacnaaccc agttctgttt gactatgtag catcttgaaa agaaaaatta 300 taataaagcc ccaaaattaa gaattctttt gtcattttgt cacatttgct 350 ctatgggggg aattattatt ttatcatttt tattattttg ccattggaag 400 gttaacttta aaatgagc 418

<210> 286 <211> 543 <212> DNA <213> Homo sapiens <220>

<221> unsure <222> 73, 97

<223> unknown base

<400> 286
tattgtaaag gccattttaa accattggta ggccttggta catgatgctg 50
gattacetce ttaaatgaca centteeteg cetgttggtg etggcenttg 100
gggagetgga gccccagcat gctggggagt gcggtcagct ccacacagta 150
gtcccacgt ggcccactce cggcccagge tgctttccgt gtcttcagtt 200
ctgtccaage catcagetce ttgggactga tgaacagagt cagaagecca 250
aaggaattge cactgtggca gcatcagacg tactcgtcat aagtgagagg 300
cgtgtgttga ctgattgace cagegetttg gaaataaatg gcagtgcttt 350
gttcacttaa agggaccaag ctaaattgta ttggttcatg tagtgaagte 400
aaactgttat tcagagatgt ttaatgcata tttaacttat ttaatgtatt 450
tcatctcatg ttttcttatt gtcacaagag tacagttaat gctgcgtgct 500
gctgaactct gttgggtgaa ctggtattge tgctggaggg ctg 543

```
<210> 287
```

<400> 287

ccctggtggt tttgttcttt aattcgttgg tgtaattntt gggaagattg 50 cttgtagagg tagnatgcac cnggctggta aattggattg gtggatccac 100 catatccatg ggatttaaat ttatcataac catgtgtaaa aagaaattaa 150 tgtatgatga catntcacag gtattgcctt taaattaccc atccctgnan 200 acacatacac agatacacan anacaaatnt aatgtaacga tnttttagaa 250 agttaaaaat gtatagtaac 270

<211> 270

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 38, 64, 72, 164, 198, 200, 220, 222, 229, 242

<223> unknown base

<210> 288

<211> 428

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 35, 116, 129, 197, 278, 294, 297, 349, 351

<223> unknown base

```
<400> 288
 ggtggcccat tcccggccca ggctgctttc cggtnttcag ttctgtccaa 50
 gccatcagct ccttgggact gatgaacaga gtcagaagcc caaaggaatt 100
 gcactgtggc agcatnagac gtacttgtna taagtgagag gcgtgtgttg 150
 actgattgac ccagcgcttt ggaaataaat ggcagtgctt tgttcantta 200
 aaqqqaccaa qctaaatttq tattqqttca tgtagtgaag tcaaactgtt 250
 attcagagat gtttaatgca tatttaantt atttaatgta tttnatntca 300
 tgttttctta ttgtcacaag agtacagtta atgctgcgtg ctgctgaant 350
 ntgttgggtg aactggtatt gctgctggag ggctgtgggc tcctctgtct 400
 ttggagagtc tggtcatgtg gaggtggg 428
<210> 289
<211> 320
<212> DNA
<213> Homo sapiens
<400> 289
 tgctttccgt gtcttcagtt ctgtccaagc catcagctcc ttgggacttg 50
 atgaacagag tcagaagccc aaaggaattg cactgtggca gcatcagacg 100
 tactcgtcat aagtgagagg cgtgtgttga ctgattgacc cagcgctttg 150
 gaaataaatg gcagtgcttt gttcacttaa agggaccaag ctaaatttgt 200
 attggttcat gtagtgaagt caaactgtta ttcagagatg tttaatgcat 250
 atttaactta tttaatgtat ttcatctcat gttttcttat tgtcacaaga 300
 gtacagttaa tgctgcgtgc 320
<210> 290
<211> 609
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 57, 60, 186, 235, 244, 304, 339, 355, 359, 361, 387, 432, 441,
      447, 481, 513, 532, 584, 598
<223> unknown base
<400> 290
 aaacctttaa aagttgaggg gaaaagaatg atcctttatt aatgacaagg 50
 gaaaccntgn gtaatgccac aatggcatat tgtaaatgtc attttaaaca 100
 ttggtaggcc ttggtacatg atgctggatt acctctctta aaatgacacc 150
```

cttcctcgcc tgttggtgct ggcccttggg gagctngagc ccagcatgct 200

ggggagtgcg gtctgctcca cacagtagtc cccangtggc ccantcccgg 250 cccaggctgc tttccgtgtc ttcagttctg tccaagccat cagctccttg 300 ggantgatga acagagtcag aagcccaaag gaattgcant gtggcagcat 350 cagangtant ngtcataagt gagaggcgtg tgttgantga ttgacccagc 400 gctttggaaa taaatggcag tgctttgttc anttaaaggg nccaagntaa 450 atttgtattg gttcatgtag tgaagtcaaa ntgttattca gagatgttta 500 atgcatattt aanttatta atgtattca tntcatgttt tcttattgtc 550 acaagggtac agttaatgct gcgtgctgct gaantctgtt gggtgaantg 600 gtattgctg 609

- <210> 291
- <211> 493
- <212> DNA
- <213> Homo sapiens
- <400> 291
 ggcccttggg gagctggagc ccagcatgct ggggagtgcg gtcagctcca 50
 cacagtagtc cccacgtggc ccactcccgg cccaggctgc tttccgtgtc 100
 ttcagttctg tccaagccat cagctccttg ggactgatga acagagtcag 150
 aagcccaaag gaattgcact gtggcagcat cagacgtact cgtcataagt 200
 gagaggcgtg tgttgactga ttgacccagc gctttggaaa taaatggcag 250
 tgctttgttc acttaaaggg accaagctaa atttgtattg gttcatgtag 300
 tgaagtcaaa ctgttattca gagatgtta atgcatattt aacttatta 350
 atgtattca tctcatgttt tcttattgtc acaagagtac agttaatgct 400
 gcgtgctgct gaactctgtt gggtgaactg gtattgctgc tggagggctg 450
 tgggctcctc tgtctctgga gagtctggtc atgtggaggt ggg 493
- <210> 292
- <211> 27
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 292
- gcaccaccgt aggtacttgt gtgaggc 27
- <210> 293
- <211> 23
- <212> DNA

<213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 293 aaccaccaga gccaagagcc ggg 23 <210> 294 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 294 cagcggaatc atcgatgcag gggcctcaat taatgtatct gtgatgttac 50 <210> 295 <211> 2530 <212> DNA <213> Homo sapiens <400> 295 gcgagctccg ggtgctgtgg cccggccttg gcggggcggc ctccggctca 50 ggctggctga gaggctccca gctgcagcgt ccccgcccgc ctcctcggga 100 gctctgatct cagctgacag tgccctcggg gaccaaacaa gcctggcagg 150 qtctcacttt qttqcccaqq ctqqaqttca qtqccatqat catqqtttac 200 tgcagccttg acctcctggg ttcaagcgat cctgctgagt agctgggact 250 acaggacaaa attagaagat caaaatggaa aatatgctgc tttggttgat 300 atttttcacc cctgggtgga ccctcattga tggatctgaa atggaatggg 350 attttatgtg gcacttgaga aaggtacccc ggattgtcag tgaaaggact 400 ttccatctca ccagccccgc atttgaggca gatgctaaga tgatggtaaa 450 tacagtgtgt ggcatcgaat gccagaaaga actcccaact cccagccttt 500 ctgaattgga ggattatctt tcctatgaga ctgtctttga gaatggcacc 550 cgaaccttaa ccagggtgaa agttcaagat ttggttcttg agccgactca 600 aaatatcacc acaaagggag tatctgttag gagaaagaga caggtgtatg 650 gcaccgacag caggttcagc atcttggaca aaaggttctt aaccaatttc 700 cctttcagca cagctgtgaa gctttccacg ggctgtagtg gcattctcat 750 ttcccctcag catgttctaa ctgctgccca ctgtgttcat gatggaaagg 800

actatgtcaa agggagtaaa aagctaaggg tagggttgtt gaagatgagg 850

aataaaagtg gaggcaagaa acgtcgaggt tctaagagga gcaggagaga 900 agctagtggt ggtgaccaaa gagagggtac cagagagcat ctgcaggaga 950 gagcgaaggg tgggagaaga agaaaaaaat ctggccgggg tcagaggatt 1000 gccgaaggga ggccttcctt tcagtggacc cgggtcaaga atacccacat 1050 tccgaagggc tgggcacgag gaggcatggg ggacgctacc ttggactatg 1100 actatgctct tctggagctg aagcgtgctc acaaaaagaa atacatggaa 1150 cttggaatca gcccaacgat caagaaaatg cctggtggaa tgatccactt 1200 ctcaggattt gataacgata gggctgatca gttggtctat cggttttgca 1250 gtgtgtccga cgaatccaat gatctccttt accaatactg cgatgctgag 1300 tegggeteca eeggtteggg ggtetatetg egtetgaaag atecagacaa 1350 aaagaattgg aagcgcaaaa tcattgcggt ctactcaggg caccagtggg 1400 tggatgtcca cggggttcag aaggactaca acgttgctgt tcgcatcact 1450 cccctaaaat acgcccagat ttgcctctgg attcacggga acgatgccaa 1500 ttgtgcttac ggctaacaga gacctgaaac agggcggtgt atcatctaaa 1550 tcacagagaa aaccagctct gcttaccgta gtgagatcac ttcataggtt 1600 atgcctggac ttgaactctg tcaatagcat ttcaacattt ttcaaaatca 1650 ggagattttc qtccatttaa aaaatgtata qqtqcaqata ttqaaactag 1700 gtgggcactt caatgccaaq tatatactct tctttacatg gtgatgagtt 1750 tcatttgtag aaaaattttg ttgccttctt aaaaattaga cacactttaa 1800 accttcaaac aggtattata aataacatgt gactccttaa tggacttatt 1850 ctcagggtcc tactctaaga agaatctaat aggatgctgg ttgtgtatta 1900 aatgtgaaat tgcatagata aaggtagatg gtaaagcaat tagtatcaga 1950 atagagacag aaagttacaa cacagtttgt actactctga gatggatcca 2000 ttcagctcat gccctcaatg tttatattgt gttatctgtt gggtctggga 2050 catttagttt agtttttttg aagaattaca aatcagaaga aaaagcaagc 2100 attataaaca aaactaataa ctgttttact gctttaagaa ataacaatta 2150 caatgtgtat tatttaaaaa tgggagaaat agtttgttct atgaaataaa 2200 cctagtttag aaatagggaa gctgagacat tttaagatct caagttttta 2250 tttaactaat actcaaaata tggacttttc atgtatgcat agggaagaca 2300 cttcacaaat tatgaatgat catgtgttga aagccacatt attttatgct 2350 atacattcta tgtatgaggt gctacatttt taggacaaag aattctgtaa 2400 tctttttcaa gaaagagtct ttttctcctt gacaaaatcc agcttttgta 2450 tgaggactat agggtgaatt ctctgattag taattttaga tatgtccttt 2500 cctaaaaatg aataaaattt atgaatatga 2530

<210> 296

<211> 413

<212> PRT

<213> Homo sapiens

<400> 296

Met Glu Asn Met Leu Leu Trp Leu Ile Phe Phe Thr Pro Gly Trp 1 5 10 15

Thr Leu Ile Asp Gly Ser Glu Met Glu Trp Asp Phe Met Trp His 20 25 30

Leu Arg Lys Val Pro Arg Ile Val Ser Glu Arg Thr Phe His Leu 35 40 45

Thr Ser Pro Ala Phe Glu Ala Asp Ala Lys Met Met Val Asn Thr 50 55 60

Val Cys Gly Ile Glu Cys Gln Lys Glu Leu Pro Thr Pro Ser Leu 65 70 75

Gly Thr Arg Thr Leu Thr Arg Val Lys Val Gln Asp Leu Val Leu 95 100 105

Glu Pro Thr Gln Asn Ile Thr Thr Lys Gly Val Ser Val Arg Arg
110 115 120

Lys Arg Gln Val Tyr Gly Thr Asp Ser Arg Phe Ser Ile Leu Asp 125 130 135

Lys Arg Phe Leu Thr Asn Phe Pro Phe Ser Thr Ala Val Lys Leu 140 145 150

Ser Thr Gly Cys Ser Gly Ile Leu Ile Ser Pro Gln His Val Leu 155 160 165

Thr Ala Ala His Cys Val His Asp Gly Lys Asp Tyr Val Lys Gly 170 175 180

Ser Lys Leu Arg Val Gly Leu Leu Lys Met Arg Asn Lys Ser 185 190 195

Gly Gly Lys Lys Arg Arg Gly Ser Lys Arg Ser Arg Arg Glu Ala 200 205 210

```
Ser Gly Gly Asp Gln Arg Glu Gly Thr Arg Glu His Leu Gln Glu
                 215
Arg Ala Lys Gly Gly Arg Arg Lys Lys Ser Gly Arg Gly Gln
Arg Ile Ala Glu Gly Arg Pro Ser Phe Gln Trp Thr Arg Val Lys
                 245
                                                         255
Asn Thr His Ile Pro Lys Gly Trp Ala Arg Gly Gly Met Gly Asp
Ala Thr Leu Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Arg Ala
His Lys Lys Tyr Met Glu Leu Gly Ile Ser Pro Thr Ile Lys
Lys Met Pro Gly Gly Met Ile His Phe Ser Gly Phe Asp Asn Asp
                 305
Arg Ala Asp Gln Leu Val Tyr Arg Phe Cys Ser Val Ser Asp Glu
Ser Asn Asp Leu Leu Tyr Gln Tyr Cys Asp Ala Glu Ser Gly Ser
Thr Gly Ser Gly Val Tyr Leu Arg Leu Lys Asp Pro Asp Lys Lys
Asn Trp Lys Arg Lys Ile Ile Ala Val Tyr Ser Gly His Gln Trp
Val Asp Val His Gly Val Gln Lys Asp Tyr Asn Val Ala Val Arg
Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Leu Trp Ile His Gly
Asn Asp Ala Asn Cys Ala Tyr Gly
<210> 297
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 297
```

- <210> 298
- <211> 24
- <212> DNA
- <213> Artificial Sequence

gcatctgcag gagagagcga aggg 24

```
<220>
<223> Synthetic oligonucleotide probe
<400> 298
catcgttccc gtgaatccag aggc 24
<210> 299
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 299
gaagggaggc cttcctttca gtggacccgg gtcaagaata cccac 45
<210> 300
<211> 1869
<212> DNA
<213> Homo sapiens
<400> 300
 aatgtgagag gggctgatgg aagctgatag gcaggactgg agtgttagca 50
 ccagtactgg atgtgacagc aggcagagga gcacttagca gcttattcag 100
 tgtccgattc tgattccggc aaggatccaa gcatggaatg ctgccgtcgg 150
 gcaactcctg gcacactgct cctctttctg gctttcctgc tcctgagttc 200
 caggaccgca cgctccgagg aggaccggga cggcctatgg gatgcctggg 250
 gcccatggag tgaatgctca cgcacctgcg ggggaggggc ctcctactct 300
 ctgaggcgct gcctgagcag caagagctgt gaaggaagaa atatccgata 350
 cagaacatgc agtaatgtgg actgcccacc agaagcaggt gatttccgag 400
 ctcagcaatg ctcagctcat aatgatgtca agcaccatgg ccagttttat 450
 gaatggcttc ctgtgtctaa tgaccctgac aacccatgtt cactcaagtg 500
 ccaagccaaa ggaacaaccc tggttgttga actagcacct aaggtcttag 550
 atggtacgcg ttgctataca gaatctttgg atatgtgcat cagtggttta 600
 tgccaaattg ttggctgcga tcaccagctg ggaagcaccg tcaaggaaga 650
 taactgtggg gtctgcaacg gagatgggtc cacctgccgg ctggtccgag 700
 ggcagtataa atcccagctc tccgcaacca aatcggatga tactgtggtt 750
 gcacttccct atggaagtag acatattcgc cttgtcttaa aaggtcctga 800
 tcacttatat ctggaaacca aaaccctcca ggggactaaa ggtgaaaaca 850
```

gtctcagctc cacaggaact ttccttgtgg acaattctag tgtggacttc 900

cagaaatttc cagacaaaga gatactgaga atggctggac cactcacagc 950 agatttcatt gtcaagattc gtaactcggg ctccgctgac agtacagtcc 1000 agttcatctt ctatcaaccc atcatccacc gatggaggga gacggatttc 1050 tttccttgct cagcaacctg tggaggaggt tatcagctga catcggctga 1100 gtgctacgat ctgaggagca accgtgtggt tgctgaccaa tactgtcact 1150 attacccaga gaacatcaaa cccaaaccca agcttcagga gtgcaacttg 1200 gatecttgte cagecagtga eggatacaag eagateatge ettatgaeet 1250 ctaccatccc cttcctcqqt qggaqgccac cccatggacc gcgtgctcct 1300 cctcqtqtqq qqqqqqcatc cagaqccqqq cagtttcctq tqtqqaqqaq 1350 gacatccagg ggcatgtcac ttcagtggaa gagtggaaat gcatgtacac 1400 ccctaagatg cccatcgcgc agccctgcaa catttttgac tgccctaaat 1450 ggctggcaca ggagtggtct ccgtgcacag tgacatgtgg ccagggcctc 1500 agataccgtg tggtcctctg catcgaccat cgaggaatgc acacaggagg 1550 ctgtagccca aaaacaaagc cccacataaa agaggaatgc atcgtaccca 1600 ctccctqcta taaacccaaa gagaaacttc cagtcgaggc caagttgcca 1650 tggttcaaac aagctcaaga gctagaagaa ggagctgctg tgtcagagga 1700 qccctcqtaa qttqtaaaaq cacaqactqt tctatatttq aaactqtttt 1750 gtttaaagaa agcagtgtct cactggttgt agctttcatg ggttctgaac 1800 taagtgtaat catctcacca aagctttttg gctctcaaat taaagattga 1850 ttagtttcaa aaaaaaaaa 1869

<210> 301

<211> 525

<212> PRT

<213> Homo sapiens

<400> 301

Met Glu Cys Cys Arg Arg Ala Thr Pro Gly Thr Leu Leu Phe 1 5 10 15

Leu Ala Phe Leu Leu Ser Ser Arg Thr Ala Arg Ser Glu Glu 20 25 30

Asp Arg Asp Gly Leu Trp Asp Ala Trp Gly Pro Trp Ser Glu Cys
35 40 45

Ser Arg Thr Cys Gly Gly Gly Ala Ser Tyr Ser Leu Arg Arg Cys 50 55 60

Leu Ser Ser Lys Ser Cys Glu Gly Arg Asn Ile Arg Tyr Arg Thr Cys Ser Asn Val Asp Cys Pro Pro Glu Ala Gly Asp Phe Arg Ala Gln Gln Cys Ser Ala His Asn Asp Val Lys His His Gly Gln Phe Tyr Glu Trp Leu Pro Val Ser Asn Asp Pro Asp Asn Pro Cys Ser 115 Leu Lys Cys Gln Ala Lys Gly Thr Thr Leu Val Val Glu Leu Ala Pro Lys Val Leu Asp Gly Thr Arg Cys Tyr Thr Glu Ser Leu Asp Met Cys Ile Ser Gly Leu Cys Gln Ile Val Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Leu Pro Tyr Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser 230 Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp Phe Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro Leu Thr Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala Asp Ser Thr Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu Thr Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly Gly Tyr Gln Leu Thr Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn 320 330 Arg Val Val Ala Asp Gln Tyr Cys His Tyr Tyr Pro Glu Asn Ile Lys Pro Lys Pro Lys Leu Gln Glu Cys Asn Leu Asp Pro Cys Pro

350 360 355 Ala Ser Asp Gly Tyr Lys Gln Ile Met Pro Tyr Asp Leu Tyr His 365 Pro Leu Pro Arg Trp Glu Ala Thr Pro Trp Thr Ala Cys Ser Ser 380 Ser Cys Gly Gly Gly Ile Gln Ser Arg Ala Val Ser Cys Val Glu 395 405 Glu Asp Ile Gln Gly His Val Thr Ser Val Glu Glu Trp Lys Cys 410 Met Tyr Thr Pro Lys Met Pro Ile Ala Gln Pro Cys Asn Ile Phe 425 435 Asp Cys Pro Lys Trp Leu Ala Gln Glu Trp Ser Pro Cys Thr Val Thr Cys Gly Gln Gly Leu Arq Tyr Arg Val Val Leu Cys Ile Asp His Arg Gly Met His Thr Gly Gly Cys Ser Pro Lys Thr Lys Pro His Ile Lys Glu Glu Cys Ile Val Pro Thr Pro Cys Tyr Lys Pro Lys Glu Lys Leu Pro Val Glu Ala Lys Leu Pro Trp Phe Lys Gln 500 510 Ala Gln Glu Leu Glu Glu Gly Ala Ala Val Ser Glu Glu Pro Ser

<210> 302

<211>-1533

<212> DNA

<213> Homo sapiens

<400> 302

cggacgcgtg ggcggggtt gcggaactcc cgtggagggg ccggtgggcc 50 ctcgggcctg acagatggca gtggccactg cggcggcagt actggccgct 100 ctgggcgggg cgctgtggct ggcggcccgc cggttcgtgg ggcccagggt 150 ccagcggctg cgcagaggcg gggaccccgg cctcatgcac gggaagactg 200 tgctgatcac cggggcgaac agcggcctgg gccgccac ggccgccag 250 ctactgcgc tgggagcgcg ggtgatcatg ggctgccgg accgcgcgg 300 cgccgaggag gcggcgggtc agctccgcc caggcccgcg caggccgcg 350 agtgcggcc agagctggc gtcagcggg tgggcgact catagtccg 400 gagctggacc tcgcctcgct gcgctcggtg cgcgccttct gccaggaaat 450

gctccaggaa gagcctaggc tggatgtctt gatcaataac gcagggatct 500 tccagtgccc ttacatgaag actgaagatg ggtttgagat gcagttcgga 550 gtgaaccatc tggggcactt tctactcacc aatcttctcc ttggactcct 600 caaaagttca gctcccagca ggattgtggt agtttcttcc aaactttata 650 aatacggaga catcaatttt gatgacttga acagtgaaca aagctataat 700 aaaagctttt gttatagccg gagcaaactg gctaacattc tttttaccag 750 ggaactagcc cgccgcttag aaggcacaaa tgtcaccgtc aatgtgttgc 800 atcctggtat tgtacggaca aatctgggga ggcacataca cattccactg 850 ttggtcaaac cactcttcaa tttggtgtca tgggcttttt tcaaaactcc 900 agtagaaggt gcccagactt ccatttattt ggcctcttca cctgaggtag 950 aaggagtgtc aggaagatac tttggggatt gtaaagagga agaactgttg 1000 cccaaagcta tggatgaatc tgttgcaaga aaactctggg atatcagtga 1050 agtgatggtt ggcctgctaa aataggaaca aggagtaaaa gagctgttta 1100 taaaactgca tatcagttat atctgtgatc aggaatggtg tggattgaga 1150 acttgttact tgaagaaaaa gaattttgat attggaatag cctgctaaga 1200 qqtacatqtq qqtattttqq agttactgaa aaattatttt tgggataaga 1250 gaatttcagc aaagatgttt taaatatata tagtaagtat aatgaataat 1300 aagtacaatg aaaaatacaa ttatattgta aaattataac tgggcaagca 1350 tggatgacat attaatattt gtcagaatta agtgactcaa agtgctatcg 1400 agaggttttt caagtatctt tgagtttcat ggccaaagtg ttaactagtt 1450 ttactacaat gtttggtgtt tgtgtggaaa ttatctgcct ggtgtgtgca 1500 cacaagtctt acttggaata aatttactgg tac 1533

<210> 303

<211> 336

<212> PRT

<213> Homo sapiens

<400> 303

Met Ala Val Ala Thr Ala Ala Ala Val Leu Ala Ala Leu Gly Gly
1 5 10 15

Ala Leu Trp Leu Ala Ala Arg Arg Phe Val Gly Pro Arg Val Gln 20 25 30

Arg Leu Arg Arg Gly Gly Asp Pro Gly Leu Met His Gly Lys Thr 35 40 45

Val Leu Ile Thr Gly Ala Asn Ser Gly Leu Gly Arg Ala Thr Ala Ala Glu Leu Leu Arg Leu Gly Ala Arg Val Ile Met Gly Cys Arg Asp Arg Ala Arg Ala Glu Glu Ala Ala Gly Gln Leu Arg Arg Glu Leu Arg Gln Ala Ala Glu Cys Gly Pro Glu Pro Gly Val Ser Gly Val Gly Glu Leu Ile Val Arg Glu Leu Asp Leu Ala Ser Leu Arg 120 115 Ser Val Arg Ala Phe Cys Gln Glu Met Leu Gln Glu Glu Pro Arg Leu Asp Val Leu Ile Asn Asn Ala Gly Ile Phe Gln Cys Pro Tyr 150 Met Lys Thr Glu Asp Gly Phe Glu Met Gln Phe Gly Val Asn His Leu Gly His Phe Leu Leu Thr Asn Leu Leu Gly Leu Leu Lys 170 Ser Ser Ala Pro Ser Arg Ile Val Val Val Ser Ser Lys Leu Tyr Lys Tyr Gly Asp Ile Asn Phe Asp Asp Leu Asn Ser Glu Gln Ser Tyr Asn Lys Ser Phe Cys Tyr Ser Arg Ser Lys Leu Ala Asn Ile Leu Phe Thr Arg Glu Leu Ala Arg Arg Leu Glu Gly Thr Asn Val Thr Val Asn Val Leu His Pro Gly Ile Val Arg Thr Asn Leu Gly Arg His Ile His Ile Pro Leu Leu Val Lys Pro Leu Phe Asn Leu Val Ser Trp Ala Phe Phe Lys Thr Pro Val Glu Gly Ala Gln Thr Ser Ile Tyr Leu Ala Ser Ser Pro Glu Val Glu Gly Val Ser Gly Arg Tyr Phe Gly Asp Cys Lys Glu Glu Glu Leu Leu Pro Lys Ala Met Asp Glu Ser Val Ala Arg Lys Leu Trp Asp Ile Ser Glu Val Met Val Gly Leu Leu Lys

```
<210> 304
<211> 521
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 20, 34, 62, 87, 221, 229
<223> unknown base
<400> 304
 ggggattgta aagaggaagn actgtgccca aagntatgga tgaatctgtt 50
 gcaagaaaat tntgggatat cagtgaagtg atggttngcc tgctaaaata 100
 ggaacaagga gtaaaagagc tgtttataaa actgcatatc agttatatct 150
 gtgatcagga atggtgtgga ttgagaactt gttacttgaa gaaaaagaat 200
 tttgatattg gaatagcctg ntaagaggna catgtgggta ttttggagtt 250
 actgaaaaat tatttttggg ataagagaat ttcagcaaag atgttttaaa 300
 tatatatagt aagtataatg aataataagt acaatgaaaa atacaattat 350
 attgtaaaat tataactggg caagcatgga tgacatatta atatttgtca 400
 gaattaagtg actcaaagtg ctatcgagag gtttttcaag tatctttgag 450
 tttcatggcc aaagtgttaa ctagttttac tacaatgttt ggtgtttgtg 500
 tggaaattat ctgcctggct t 521
<210> 305
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 305
 ccaggaaatg ctccaggaag agcc 24
<210> 306
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 306
gcccatgaca ccaaattgaa gagtgg 26
<210> 307
```

```
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 307
    aacgcaggga tcttccagtg cccttacatg aagactgaag atggg 45
<210> 308
<211> 1523
<212> DNA
<213> Homo sapiens
<400> 308
    gagaggacga ggtgccgctg cctggagaat cctccgctgc cgtcggctcc 50
    cggagcccag ccctttccta acccaacca acctagcca gtcccagccg 100
    ccagcgcctg tccctgtcac ggacccagc gttaccatgc atcctgcgt 150
    cttcctatcc ttacccgacc tcagatgct ccttctgctc ctggtaactt 200
    gggtttttac tcctgtaaca actgaaataa caagtcttgc tacagagaat 250
    atagatgaaa ttttaaacaa tgctgatgtt gctttagtaa atttttatgc 300
    tgactggtgt cgtttcagtc aggatgttgca tccaattttt gaggaaggett 350
    tgactggtgt cgtttcagtc aggatgttgca tccaattttt gaggaaggett 350
    tgactggtgt cgtttcagtc aggatgttgca tccaattttt gaggaaggett 350
```

cggageccag ecettteeta acecaaceca acetagecca gteccagecg 100 ccaqcqcctq tccctqtcac qqaccccaqc gttaccatgc atcctqccgt 150 cttcctatcc ttacccgacc tcagatgctc ccttctgctc ctggtaactt 200 qqqtttttac tcctqtaaca actgaaataa caagtcttqc tacagagaat 250 atagatgaaa ttttaaacaa tgctgatgtt gctttagtaa atttttatgc 300 tgactggtgt cgtttcagtc agatgttgca tccaattttt gaggaagctt 350 ccgatgtcat taaggaagaa tttccaaatg aaaatcaagt agtgtttgcc 400 agagttgatt gtgatcagca ctctgacata gcccagagat acaggataag 450 caaataccca acctcaaat tgtttcgtaa tgggatgatg atgaagagag 500 aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggcaa 550 caaaaaagtq accccattca agaaattcgg gacttagcag aaatcaccac 600 tcttgatcgc agcaaaagaa atatcattgg atattttgag caaaaggact 650 cggacaacta tagagttttt gaacgagtag cgaatatttt gcatgatgac 700 tgtgcctttc tttctgcatt tggggatgtt tcaaaaccgg aaagatatag 750 tggcgacaac ataatctaca aaccaccagg gcattctgct ccggatatgg 800 tgtacttggg agctatgaca aattttgatg tgacttacaa ttggattcaa 850 gataaatgtg ttcctcttgt ccgagaaata acatttgaaa atggagagga 900 attgacagaa gaaggactgc cttttctcat actctttcac atgaaagaag 950 atacagaaag tttagaaata ttccagaatg aagtagctcg gcaattaata 1000 agtgaaaaag gtacaataaa ctttttacat gccgattgtg acaaatttag 1050 <210> 309 <211> 406

<212> PRT

<213> Homo sapiens

<400> 309

Met His Pro Ala Val Phe Leu Ser Leu Pro Asp Leu Arg Cys Ser 1 5 10 15

Leu Leu Leu Val Thr Trp Val Phe Thr Pro Val Thr Thr Glu 20 25 30

Ile Thr Ser Leu Ala Thr Glu Asn Ile Asp Glu Ile Leu Asn Asn 35 40 45

Ala Asp Val Ala Leu Val Asn Phe Tyr Ala Asp Trp Cys Arg Phe 50 55 60

Ser Gln Met Leu His Pro Ile Phe Glu Glu Ala Ser Asp Val Ile 65 70 75

Lys Glu Glu Phe Pro Asn Glu Asn Gln Val Val Phe Ala Arg Val 80 85 90

Asp Cys Asp Gln His Ser Asp Ile Ala Gln Arg Tyr Arg Ile Ser 95 100 105

Lys Tyr Pro Thr Leu Lys Leu Phe Arg Asn Gly Met Met Lys 110 115 120

Arg Glu Tyr Arg Gly Gln Arg Ser Val Lys Ala Leu Ala Asp Tyr 125 130 135

Ile Arg Gln Gln Lys Ser Asp Pro Ile Gln Glu Ile Arg Asp Leu
140 145 150

Ala Glu Ile Thr Thr Leu Asp Arg Ser Lys Arg Asn Ile Ile Gly 155 160 165

Tyr Phe Glu Gln Lys Asp Ser Asp Asn Tyr Arg Val Phe Glu Arg 170 Val Ala Asn Ile Leu His Asp Asp Cys Ala Phe Leu Ser Ala Phe 190 185 Gly Asp Val Ser Lys Pro Glu Arg Tyr Ser Gly Asp Asn Ile Ile 200 205 210 Tyr Lys Pro Pro Gly His Ser Ala Pro Asp Met Val Tyr Leu Gly Ala Met Thr Asn Phe Asp Val Thr Tyr Asn Trp Ile Gln Asp Lys Cys Val Pro Leu Val Arg Glu Ile Thr Phe Glu Asn Gly Glu Glu Leu Thr Glu Glu Gly Leu Pro Phe Leu Ile Leu Phe His Met Lys Glu Asp Thr Glu Ser Leu Glu Ile Phe Gln Asn Glu Val Ala Arg 275 Gln Leu Ile Ser Glu Lys Gly Thr Ile Asn Phe Leu His Ala Asp 290 Cys Asp Lys Phe Arg His Pro Leu Leu His Ile Gln Lys Thr Pro 310 315 305 Ala Asp Cys Pro Val Ile Ala Ile Asp Ser Phe Arg His Met Tyr 320 325 330 Val Phe Gly Asp Phe Lys Asp Val Leu Ile Pro Gly Lys Leu Lys 335 Gln Phe Val Phe Asp Leu His Ser Gly Lys Leu His Arg Glu Phe His His Gly Pro Asp Pro Thr Asp Thr Ala Pro Gly Glu Gln Ala 365 370 375 Gln Asp Val Ala Ser Ser Pro Pro Glu Ser Ser Phe Gln Lys Leu 380 385 Ala Pro Ser Glu Tyr Arg Tyr Thr Leu Leu Arg Asp Arg Asp Glu 395 405 400

Leu

<210> 310

<211> 182

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

```
<222> 36, 48
<223> unknown base
<400> 310
 attaaggaag aatttccaaa tgaaaatcaa gtagtntttg ccagagtnga 50
 ttgtgatcag cactctgaca tagcccagag atacaggata agcaaatacc 100
 caaccctcaa attgtttcgt aatgggatga tgatgaagag agaatacagg 150
 ggtcagcgat cagtgaaagc attggcagat ta 182
<210> 311
<211> 598
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 38, 59, 140, 169, 174, 183, 282-283, 294-295, 319, 396
<223> unknown base
<400> 311
 agaggeetet etggaagttg teeegggtgt tegeegengg ageeegggte 50
 gagaggacna ggtgccgctg cctggagaat cctccgctgc cgtcggctcc 100
 cggagcccag ccctttccta acccaaccca acctagcccn gtcccagccg 150
 ccagcgcctg tccctgtcnc ggancccagc gtnaccatgc atcctgccgt 200
 cttcctatcc ttacccgacc tcagatgctc ccttctgctc ctggtaactt 250
 qqqtttttac tcctqtaaca actgaaataa cnnqtcttga tacnnagaat 300
 atagatgaaa ttttaaacna tgctgatgtg gctttagtca atttttatgc 350
 tgactggtgt cgtttcagtc agatgtggca tccaattttt gaggangctt 400
 ccgatgtcat taaggaagaa tttccaaatg aaaatcaagt agtgtttgcc 450
 agagttgatt gtgatcagca ctctgacata gcccagagat acaggataag 500
 caaataccca accctcaaat tgtttcgtaa tgggatgatg atgaagagag 550
 aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggc 598
<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence
```

<212> bhA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 312
 tgagaggcct ctctggaagt tg 22

```
<210> 313
    <211> 19
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 313
     gtcagcgatc agtgaaagc 19
    <210> 314
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 314
     ccagaatgaa gtagctcggc 20
    <210> 315
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
<400> 315
1
    ccgactcaaa atgcattgtc 20
ų.
    <210> 316
    <211> 19
k is
    <212> DNA
    <213> Artificial Sequence
ļķ.
    <223> Synthetic oligonucleotide probe
    <400> 316
     catttggcag gaattgtcc 19
    <210> 317
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 317
     ggtgctatag gccaaggg 18
    <210> 318
    <211> 24
    <212> DNA
```

64

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 318
ctgtatctct gggctatgtc agag 24
<210> 319
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 319
ctacatataa tggcacatgt cagcc 25
<210> 320
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 320
cgtcttccta tccttacccg acctcagatg ctcccttctg ctcctg 46
<210> 321
<211> 1333
<212> DNA
<213> Homo sapiens
<400> 321
 gcccacgcgt ccgatggcgt tcacgttcgc ggccttctgc tacatgctgg 50
 cgctgctgct cactgccgcg ctcatcttct tcgccatttg gcacattata 100
 gcatttgatg agctgaagac tgattacaag aatcctatag accagtgtaa 150
 taccctgaat ccccttgtac tcccagagta cctcatccac gctttcttct 200
 gtgtcatgtt tctttgtgca gcagagtggc ttacactggg tctcaatatg 250
 cccctcttgg catatcatat ttggaggtat atgagtagac cagtgatgag 300
 tggcccagga ctctatgacc ctacaaccat catgaatgca gatattctag 350
 catattgtca gaaggaagga tggtgcaaat tagcttttta tcttctagca 400
 tttttttact acctatatgg catgatctat gttttggtga gctcttagaa 450
 caacacacag aagaattggt ccagttaagt gcatgcaaaa agccaccaaa 500
tgaagggatt ctatccagca agatcctgtc caagagtagc ctgtggaatc 550
```

tgatcagtta ctttaaaaaa tgactcctta ttttttaaat gtttccacat 600 ttttgcttgt ggaaagactg ttttcatatg ttatactcag ataaagattt 650 taaatggtat tacgtataaa ttaatataaa atgattacct ctggtgttga 700 caggtttgaa cttgcacttc ttaaggaaca gccataatcc tctgaatgat 750 gcattaatta ctgactgtcc tagtacattg gaagcttttg tttataggaa 800 cttgtagggc tcattttggt ttcattgaaa cagtatctaa ttataaatta 850 gctgtagata tcaggtgctt ctgatgaagt gaaaatgtat atctgactag 900 tgggaaactt catgggtttc ctcatctgtc atgtcgatga ttatatatgg 950 atacatttac aaaaataaaa agcgggaatt ttcccttcgc ttgaatatta 1000 tccctgtata ttgcatgaat gagagatttc ccatatttcc atcagagtaa 1050 taaatatact tgctttaatt cttaagcata agtaaacatg atataaaaat 1100 atatgctgaa ttacttgtga agaatgcatt taaagctatt ttaaatgtgt 1150 ttttatttgt aagacattac ttattaagaa attggttatt atgcttactg 1200 ttctaatctg gtggtaaagg tattcttaag aatttgcagg tactacagat 1250 tttcaaaact gaatgagaga aaattgtata accatcctgc tgttccttta 1300 gtgcaataca ataaaactct gaaattaaga ctc 1333

<210> 322

<211> 144

<212> PRT

<213> Homo sapiens

<400> 322

Met Ala Phe Thr Phe Ala Ala Phe Cys Tyr Met Leu Ala Leu Leu 1 5 10 15

Leu Thr Ala Ala Leu Ile Phe Phe Ala Ile Trp His Ile Ile Ala 20 25 30

Phe Asp Glu Leu Lys Thr Asp Tyr Lys Asn Pro Ile Asp Gln Cys 35 40 45

Asn Thr Leu Asn Pro Leu Val Leu Pro Glu Tyr Leu Ile His Ala
50 55 60

Phe Phe Cys Val Met Phe Leu Cys Ala Ala Glu Trp Leu Thr Leu 65 70 75

Gly Leu Asn Met Pro Leu Leu Ala Tyr His Ile Trp Arg Tyr Met 80 85 90

Ser Arg Pro Val Met Ser Gly Pro Gly Leu Tyr Asp Pro Thr Thr 95 100 105

<210> 326

```
Ile Met Asn Ala Asp Ile Leu Ala Tyr Cys Gln Lys Glu Gly Trp
                 110
 Cys Lys Leu Ala Phe Tyr Leu Leu Ala Phe Phe Tyr Tyr Leu Tyr
                                     130
Gly Met Ile Tyr Val Leu Val Ser Ser
                 140
<210> 323
<211> 477
<212> DNA
<213> Homo sapiens
<400> 323
 attatagcat ttgatgagct gaagactgat tacaagatcc tatagaccag 50
 tgtaataccc tgaatcccct tgtactccca gagtacctca tccacgcttt 100
 cttctgtgtc atgtttcttt gtgcagcaga gtggcttaca ctgggtctca 150
 atatgcccct cttggcatat catatttgga ggtatatgag tagaccagtg 200
 atgagtggcc caggactcta tgaccctaca accatcatga atgcagatat 250
 tctagcatat tgtcagaagg aaggatggtg caaattagct ttttatcttc 300
 tagcattttt ttactaccta tatggcatga tctatgtttt ggtgagctct 350
 taqaacaaca cacaqaaqaa ttggtccagt taagtgcatg caaaaagcca 400
 ccaaatgaag ggattctatc cagcaagatc ctgtccaaga gtagcctgtg 450
 gaatctgatc agttacttta aaaaatg 477
<210> 324
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 324
tgtaaaacga cggccagtta aatagacctg caattattaa tct 43
<210> 325
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41

217

```
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 326
gtgcagcaga gtggcttaca 20
<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 327
actggaccaa ttcttctgtg 20
<210> 328
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 328
 qatattctag catattgtca gaaggaagga tggtgcaaat tagct 45
<210> 329
<211> 1174
<212> DNA
<213> Homo sapiens
<400> 329
 cggacgcgtg ggggaaaccc ttccgagaaa acagcaacaa gctgagctgc 50
 tgtgacagag gggaacaaga tggcggcgcc gaaggggagc ctctgggtga 100
 ggacccaact ggggctcccg ccgctgctgc tgctgaccat ggccttggcc 150
 ggaggttcgg ggaccgcttc ggctgaagca tttgactcgg tcttgggtga 200
 tacggcgtct tgccaccggg cctgtcagtt gacctacccc ttgcacacct 250
 accctaagga agaggagttg tacgcatgtc agagaggttg caggctgttt 300
 tcaatttgtc agtttgtgga tgatggaatt gacttaaatc gaactaaatt 350
 ggaatgtgaa tctgcatgta cagaagcata ttcccaatct gatgagcaat 400
 atgcttgcca tcttggttgc cagaatcagc tgccattcgc tgaactgaga 450
```

caagaacaac ttatgtccct gatgccaaaa atgcacctac tctttcctct 500

aactottggtg aggtcattot ggagtgacat gatggactoc gcacagagct 550 toataacoto ttoatggact tittatotto aagcogatga oggaaaaata 600 gttatattoc agtotaagoo agaaatocag tacgcaccac atttggagca 650 ggagcotaca aatttgagag aatcatotot aagcaaaatg tootatotgo 700 aaatgagaaa ttoacaagog cacaggaatt ttottgaaga tggagaaagt 750 gatggottit taagatgoot otototaac totgggtgga tittaactac 800 aactottgto ototoggtga tggtattgot ttggatttgt tgtgcaactg 850 ttgotacago tgtggagcag tatgttoot otgagaagot gagtatotat 900 ggtgacttgg agttatgaa tgaacaaaag otaaacagat atccagotto 950 ttootottgtg gttgttagat otaaaactga agatcatgaa gaagcagggo 1000 ototacotac aaaagtgaat ottgotoat otgaaatta agcatttto 1050 ttttaaaaag caagtgtaat agacatotaa aattocacto otcatagago 1100 ttttaaaatg gtttcattgg atataggoot taagaaatca otataaaatg 1150 caaataaagt tactcaaatc tgtg 1174

<210> 330

<211> 323

<212> PRT

<213> Homo sapiens

<400> 330

Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr Gln Leu Gly
1 5 10 15

Leu Pro Pro Leu Leu Leu Thr Met Ala Leu Ala Gly Gly Ser 20 25 30

Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp Thr 35 40 45

Ala Ser Cys His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr 50 55 60

Tyr Pro Lys Glu Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg
65 70 75

Leu Phe Ser Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn 80 85 90

Arg Thr Lys Leu Glu Cys Glu Ser Ala Cys Thr Glu Ala Tyr Ser 95 100 105

Gln Ser Asp Glu Gln Tyr Ala Cys His Leu Gly Cys Gln Asn Gln 110 115 120 Leu Pro Phe Ala Glu Leu Arg Gln Glu Gln Leu Met Ser Leu Met 135 125 Pro Lys Met His Leu Leu Phe Pro Leu Thr Leu Val Arg Ser Phe Trp Ser Asp Met Met Asp Ser Ala Gln Ser Phe Ile Thr Ser Ser 155 Trp Thr Phe Tyr Leu Gln Ala Asp Asp Gly Lys Ile Val Ile Phe 170 Gln Ser Lys Pro Glu Ile Gln Tyr Ala Pro His Leu Glu Gln Glu 185 190 195 Pro Thr Asn Leu Arg Glu Ser Ser Leu Ser Lys Met Ser Tyr Leu Gln Met Arg Asn Ser Gln Ala His Arg Asn Phe Leu Glu Asp Gly 225 Glu Ser Asp Gly Phe Leu Arg Cys Leu Ser Leu Asn Ser Gly Trp Ile Leu Thr Thr Leu Val Leu Ser Val Met Val Leu Leu Trp Ile Cys Cys Ala Thr Val Ala Thr Ala Val Glu Gln Tyr Val Pro Ser Glu Lys Leu Ser Ile Tyr Gly Asp Leu Glu Phe Met Asn Glu Gln Lys Leu Asn Arg Tyr Pro Ala Ser Ser Leu Val Val Val Arg Ser Lys Thr Glu Asp His Glu Glu Ala Gly Pro Leu Pro Thr Lys 315 Val Asn Leu Ala His Ser Glu Ile

<210> 331

<211> 350

<212> DNA

<213> Homo sapiens

<400> 331

ttgggtgata cggcgtcttg ccaccgggcc tgtcagttga cctacccctt 50 gcacacctac cctaaggaag aggagttgta cgcatgtcag agaggttgca 100 ggctgtttc aatttgtcag tttgtggatg atggaattga cttaaatcga 150 actaaattgg aatgtgaatc tgcatgtaca gaagcatatt cccaatctga 200 tgagcaatat gcttgccatc ttggttgcca gaatcagctg ccattcgctg 250

```
aactgagaca agaacaactt atgtccctga tgccaaaaat gcacctactc 300
 tttcctctaa ctctggtgag gtcattctgg agtgacatga tggactccgc 350
<210> 332
<211> 562
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 47
<223> unknown base
<400> 332
 cacactggcc ggatctttta gagtcctttg accttgacca agggtcngga 50
 aaacagcaac aagctgagct gctgtgacag agggaacaag atggcggcgc 100
 cgaaqqqaqc ctttqqqtqa qgacccaact ggggctcccg ccgctgctgc 150
 tgctgaccat ggccttggcc ggaggttcgg ggaccgcttc ggctgaagca 200
 tttgactcgg tcttgggtga tacggcgtct tgccaccggg cctgtcagtt 250
 gacctacccc ttgcacacct accctaagga agaggagttg tacgcatgtc 300
 agagaggttg caggctgttt tcaatttgtc agtttgtgga tgatggaatt 350
 qacttaaatc gaactaaatt ggaatgtgaa tctgcatgta cagaagcata 400
 ttcccaatct gatgagcaat atgcttgcca tcttggttgc cagaatcagc 450
 tgccattcgc tgaactgaga caagaacaac ttatgtccct gatgccaaaa 500
 atgcacctac tctttcctct aactctggtg aggtcattct ggagtgacat 550
 gatggactcc gc 562
<210> 333
<211> 22
<212> DNA
<213> Artificial Sequence
<<223> Synthetic oligonucleotide probe
<400> 333
 acaagctgag ctgctgtgac ag 22
<210> 334
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 334
tgattctggc aaccaagatg gc 22
<210> 335
<211> 40
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 335
 atggccttgg ccggaggttc ggggaccgct tcggctgaag 40
<210> 336
<211> 1885
<212> DNA
<213> Homo sapiens
<400> 336
 gcgaggtggc gatcgctgag aggcaggagg gccgaggcgg gcctgggagg 50
 cggcccggag gtggggcgc gctggggccg gcccgcacgg gcttcatctg 100
 agggcgcacg gcccgcgacc gagcgtgcgg actggcctcc caagcgtggg 150
 gcgacaagct gccggagctg caatgggccg cggctgggga ttcttgtttg 200
 gcctcctgqg cgccgtgtgg ctgctcagct cgggccacgg agaggagcag 250
 cccccggaga cagcggcaca gaggtgcttc tgccaggtta gtggttactt 300
 ggatgattgt acctgtgatg ttgaaaccat tgatagattt aataactaca 350
 ggcttttccc aagactacaa aaacttcttg aaagtgacta ctttaggtat 400
 tacaaggtaa acctgaagag gccgtgtcct ttctggaatg acatcagcca 450
 gtgtggaaga agggactgtg ctgtcaaacc atgtcaatct gatgaagttc 500
 ctgatggaat taaatctgcg agctacaagt attctgaaga agccaataat 550
 ctcattgaag aatgtgaaca agctgaacga cttggagcag tggatgaatc 600
 tctqaqtqaq qaaacacaga aggctgttct tcagtggacc aagcatgatg 650
 attetteaga taaettetgt gaagetgatg acatteagte ceetgaaget 700
 gaatatgtag atttgcttct taatcctgag cgctacactg gttacaaggg 750
 accagatgct tggaaaatat ggaatgtcat ctacgaagaa aactgtttta 800
 agccacagac aattaaaaga cctttaaatc ctttggcttc tggtcaaggg 850
 acaagtgaag agaacacttt ttacagttgg ctagaaggtc tctgtgtaga 900
```

aaaaagaqca ttctacaqac ttatatctgg cctacatgca agcattaatg 950

tggggacaca acattacaga atttcaacag cgatttgatg gaattttgac 1050 tgaaggagaa ggtccaagaa ggcttaagaa cttgtatttt ctctacttaa 1100 tagaactaag ggctttatcc aaagtgttac cattcttcga gcqcccagat 1150 tttcaactct ttactggaaa taaaattcag gatgaggaaa acaaaatgtt 1200 acttctggaa atacttcatg aaatcaagtc atttcctttg cattttgatg 1250 agaattcatt ttttgctggg gataaaaaag aagcacacaa actaaaggag 1300 gactttcgac tgcattttag aaatatttca agaattatgg attgtgttgg 1350 ttgttttaaa tgtcgtctgt ggggaaagct tcagactcag ggtttgggca 1400 ctgctctgaa gatcttattt tctgagaaat tgatagcaaa tatgccagaa 1450 agtggaccta gttatgaatt ccatctaacc agacaagaaa tagtatcatt 1500 attcaacgca tttggaagaa tttctacaag tgtgaaagaa ttagaaaact 1550 tcaggaactt gttacagaat attcattaaa gaaaacaagc tgatatgtgc 1600 ctgtttctgg acaatggagg cgaaagagtg gaatttcatt caaaggcata 1650 atagcaatga cagtettaag ecaaacattt tatataaagt tgettttgta 1700 aaggagaatt atattgtttt aagtaaacac atttttaaaa attgtgttaa 1750 gtctatgtat aatactactg tgagtaaaag taatacttta ataatgtggt 1800 acaaatttta aagtttaata ttgaataaaa ggaggattat caaattaaaa 1850 aaaaaaaaa aaaaaaaaa aaaaaa 1885

<210> 337

<211> 468

<212> PRT

<213> Homo sapiens

<400> 337

Met Gly Arg Gly Trp Gly Phe Leu Phe Gly Leu Leu Gly Ala Val $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Trp Leu Leu Ser Ser Gly His Gly Glu Glu Gln Pro Pro Glu Thr 20 25 30

Ala Ala Gln Arg Cys Phe Cys Gln Val Ser Gly Tyr Leu Asp Asp 35 40 45

Cys Thr Cys Asp Val Glu Thr Ile Asp Arg Phe Asn Asn Tyr Arg
50 55 60

Leu Phe Pro Arg Leu Gln Lys Leu Leu Glu Ser Asp Tyr Phe Arg
65 70 75

Tyr Tyr Lys Val Asn Leu Lys Arg Pro Cys Pro Phe Trp Asn Asp Ile Ser Gln Cys Gly Arg Arg Asp Cys Ala Val Lys Pro Cys Gln Ser Asp Glu Val Pro Asp Gly Ile Lys Ser Ala Ser Tyr Lys Tyr 120 Ser Glu Glu Ala Asn Asn Leu Ile Glu Glu Cys Glu Gln Ala Glu 125 Arg Leu Gly Ala Val Asp Glu Ser Leu Ser Glu Glu Thr Gln Lys 140 Ala Val Leu Gln Trp Thr Lys His Asp Asp Ser Ser Asp Asn Phe Cys Glu Ala Asp Asp Ile Gln Ser Pro Glu Ala Glu Tyr Val Asp 170 Leu Leu Leu Asn Pro Glu Arg Tyr Thr Gly Tyr Lys Gly Pro Asp Ala Trp Lys Ile Trp Asn Val Ile Tyr Glu Glu Asn Cys Phe Lys Pro Gln Thr Ile Lys Arg Pro Leu Asn Pro Leu Ala Ser Gly Gln Gly Thr Ser Glu Glu Asn Thr Phe Tyr Ser Trp Leu Glu Gly Leu Cys Val Glu Lys Arg Ala Phe Tyr Arg Leu Ile Ser Gly Leu His Ala Ser Ile Asn Val His Leu Ser Ala Arg Tyr Leu Leu Gln Glu Thr Trp Leu Glu Lys Lys Trp Gly His Asn Ile Thr Glu Phe Gln 285 Gln Arg Phe Asp Gly Ile Leu Thr Glu Gly Glu Gly Pro Arg Arg Leu Lys Asn Leu Tyr Phe Leu Tyr Leu Ile Glu Leu Arg Ala Leu Ser Lys Val Leu Pro Phe Phe Glu Arg Pro Asp Phe Gln Leu Phe Thr Gly Asn Lys Ile Gln Asp Glu Glu Asn Lys Met Leu Leu Leu 335 340 345 Glu Ile Leu His Glu Ile Lys Ser Phe Pro Leu His Phe Asp Glu Asn Ser Phe Phe Ala Gly Asp Lys Lys Glu Ala His Lys Leu Lys

Mr. William

23

ja ja

365 370 375

Glu Asp Phe Arg Leu His Phe Arg Asn Ile Ser Arg Ile Met Asp 380 385 390

Cys Val Gly Cys Phe Lys Cys Arg Leu Trp Gly Lys Leu Gln Thr 395 400 405

Gln Gly Leu Gly Thr Ala Leu Lys Ile Leu Phe Ser Glu Lys Leu 410 415 420

Ile Ala Asn Met Pro Glu Ser Gly Pro Ser Tyr Glu Phe His Leu 425 430 435

Thr Arg Gln Glu Ile Val Ser Leu Phe Asn Ala Phe Gly Arg Ile 440 445 450

Ser Thr Ser Val Lys Glu Leu Glu Asn Phe Arg Asn Leu Leu Gln 455 460 465

Asn Ile His

<210> 338

<211> 507

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 101, 263, 376, 397, 426

<223> unknown base

<400> 338

gctggaaata tggatgtcat ctacgagaaa ctgttttaag ccacagacaa 50 ttaaaagacc tttaaatcct ttggcttctg gtcaagggac aagtgaagag 100 nacacttttt acagttggct agaaggtctc tgtgtagaaa aaagagcatt 150 ctacagactt atatctggcc tacatgcaag cattaatgtg catttgagtg 200 caagatatct tttacaagag acctggttag aaaagaaatg gggacacaac 250 attacagaat ttnaacagcg atttgatgga attttgactg aaggagaagg 300 tccaagaagg cttaagaact tgtatttct ctacttaata gaactaaggg 350 ctttatccaa agtgttacca ttcttngagc gcccagattt tcaactnttt 400 actggaaata aaattcagga tgaggnaaac aaaatgttac ttttggaaat 450 acttcatgaa atcaagtcat ttccttgca ttttgatgag aattcatttt 500 tttgctg 507

<210> 339

<211> 20

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 339
aagctgccgg agctgcaatg 20
<210> 340
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 340
ttgcttctta atcctgagcg c 21
<210> 341
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 341
aaaggaggac tttcgactgc 20
<210> 342
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 342
agagattcat ccactgctcc aagtcg 26
<210> 343
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 343
tgtccagaaa caggcacata tcagc 25
<210> 344
<211> 50
<212> DNA
```

<213> Artificial Sequence

144

<220>
<223> Synthetic oligonucleotide probe
<400> 344
 agacagcggc acagaggtgc ttctgccagg ttagtggtta cttggatgat 50
<210> 345
<211> 1486
<212> DNA
<213> Homo sapiens
<400> 345
 cggacgcgtg ggcggacgcg tgggcggacg cgtgggttgg gaggggcag 50
 gatgggaggg aaagtgaaga aaacagaaaa ggagagggac agaggccaga 100

gatqqqaqqq aaaqtqaaqa aaacaqaaaa ggagagggac agaggccaga 100 ggacttctca tactggacag aaaccgatca ggcatggaac tccccttcgt 150 cactcacctg ttcttgcccc tggtgttcct gacaggtctc tgctccccct 200 ttaacctgga tgaacatcac ccacgcctat tcccagggcc accagaagct 250 gaatttggat acagtgtctt acaacatgtt gggggtggac agcgatggat 300 gctggtgggc gccccctggg atgggccttc aggcgaccgg aggggggacg 350 tttatcgctg ccctgtaggg ggggcccaca atgccccatg tgccaagggc 400 cacttaggtg actaccaact gggaaattca tctcatcctg ctgtgaatat 450 gcacctgggg atgtctctgt tagagacaga tggtgatggg ggattcatgg 500 tgagctaagg agagggtggt ggcagtgtct ctgaaggtcc ataaaagaaa 550 aaagagaagt gtggtaaggg aaaatggtct gtgtggaggg gtcaaggagt 600 taaaaaccct agaaagcaaa aggtaggtaa tgtcagggag tagtcttcat 650 gcctccttca actgggagca tgttctgagg gtgccctccc aagcctggga 700 gtaactattt cccccatccc caggcctgtg cccctctctg gtctcgtgct 750 tgtggcagct ctgtcttcag ttctgggata tgtgcccgtg tggatgcttc 800 attocageet cagggaagee tggcacccae tgcccaacgt gagccagagg 850 aaggctgagt acttggttcc cagaaggaga tactgggtgg gaaaaagatg 900 gggcaaagcg gtatgatgcc tggcaaaggg cctgcatggc tatcctcatt 950 gctacctaat gtgcttgcaa aagctccatg tttcctaaca gattcagact 1000 cctggccagg tgtggtggcc cacacctgta attctagcac tttgggaggc 1050 caaggtgggc agatcacttg aggtcaggag ttcaagacca gcctggccaa 1100 catggtgaaa ctccatctct actaaaaaaa aaaaaataca aaaattagct 1150 gggtgcgcta gtgcatgcct gtaatctcat ctactcggga ggctaagaca 1200 ggagactctc acttcaaccc aggaggtgga ggttgcggtg agccaagatt 1250 gtgcctctgc actctagcgt gggtgacaga gtaagcgaga ctccatctca 1300 aaaataataa taataataat tcagactcct tatcaggagt ccatgatctg 1350 gcctggcaca gtaactcatg cctgtaatcc caacattttg ggaggccaac 1400 gcaggaggat tgcttgaggt ctggaggttt gagaccagcc tgggcaacat 1450 agaaagaccc catctctaaa taaatgtttt aaaaat 1486

<210> 346

<211> 124

<212> PRT

<213> Homo sapiens

<400> 346

Met Glu Leu Pro Phe Val Thr His Leu Phe Leu Pro Leu Val Phe 1 5 10 15

Leu Thr Gly Leu Cys Ser Pro Phe Asn Leu Asp Glu His His Pro 20 25 30

Arg Leu Phe Pro Gly Pro Pro Glu Ala Glu Phe Gly Tyr Ser Val 35 40 45

Leu Gln His Val Gly Gly Gln Arg Trp Met Leu Val Gly Ala
50 55 60

Pro Trp Asp Gly Pro Ser Gly Asp Arg Arg Gly Asp Val Tyr Arg 65 70 75

Cys Pro Val Gly Gly Ala His Asn Ala Pro Cys Ala Lys Gly His 80 85 90

Leu Gly Asp Tyr Gln Leu Gly Asn Ser Ser His Pro Ala Val Asn 95 100 105

Met His Leu Gly Met Ser Leu Leu Glu Thr Asp Gly Asp Gly Gly 110 115 120

Phe Met Val Ser

<210> 347

<211> 509

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 22

<223> unknown base

<400> 347

```
cacagttccc caccatcact cntcccattc cttccaactt tatttttagc 50
 ttgccattgg gaggggcag gatgggaggg aaagtgaaga aaacagaaaa 100
 ggagagggac agaggccaga ggacttctca tactggacag aaaccgatca 150
 ggcatggaac tccccttcgt cactcacctg ttcttgcccc tggtgttcct 200
 gacaggtete tgetececet ttaacetgga tgaacateae ceaegcetat 250
 tcccagggcc accagaagct gaatttggat acagtgtctt acaacatgtt 300
 gggggtggac agcgatggat gctggtgggc gccccctggg atgggccttc 350
 aggcgaccgg agggggacg tttatcgctg ccctgtaggg ggggcccaca 400
 atgccccatg tgccaagggc cacttaggtg actaccaact gggaaattca 450
 tctcatcctg ctgtgaatat gcacctgggg atgtctctgt tagagacaga 500
 tggtgatgg 509
<210> 348
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 348
 agggacagag gccagaggac ttc 23
<210> 349
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 349
 caggtgcata ttcacagcag gatg 24
<210> 350
```

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 350

ggaactcccc ttcgtcactc acctgttctt gcccctggtg ttcct 45

<210> 351

<211> 2056

<212> DNA

<400> 351 aaagttacat tttctctgga actctcctag gccactccct gctgatgcaa 50 catctgggtt tgggcagaaa ggagggtgct tcggagcccg ccctttctga 100 gcttcctggg ccggctctag aacaattcag gcttcgctgc gactcagacc 150 tcagctccaa catatgcatt ctgaagaaag atggctgaga tggacagaat 200 gctttatttt ggaaagaaac aatgttctag gtcaaactga gtctaccaaa 250 tgcagacttt cacaatggtt ctagaagaaa tctggacaag tcttttcatg 300 tggtttttct acqcattgat tccatgtttg ctcacagatg aagtggccat 350 tetgeetgee ceteagaace tetetgtact eteaaceaac atgaageate 400 tcttqatgtg gagcccagtg atcgcgcctg gagaaacagt gtactattct 450 gtcgaatacc agggggagta cgagagcctg tacacgagcc acatctggat 500 ccccagcagc tggtgctcac tcactgaagg tcctgagtgt gatgtcactg 550 atgacatcac ggccactgtg ccatacaacc ttcgtgtcag ggccacattg 600 ggctcacaga cctcagcctg gagcatcctg aagcatccct ttaatagaaa 650 ctcaaccatc cttacccgac ctgggatgga gatcaccaaa gatggcttcc 700 acctggttat tgagctggag gacctggggc cccagtttga gttccttgtg 750 gcctactgga ggagggagcc tggtgccgag gaacatgtca aaatggtgag 800 gagtgggggt attccagtgc acctagaaac catggagcca ggggctgcat 850 actgtgtgaa ggcccagaca ttcgtgaagg ccattgggag gtacagcgcc 900 ttcagccaga cagaatgtgt ggaggtgcaa ggagaggcca ttcccctggt 950 actggccctg tttgcctttg ttggcttcat gctgatcctt gtggtcgtgc 1000 cactgttcgt ctggaaaatg ggccggctgc tccagtactc ctgttgcccc 1050 qtggtqgtcc tcccaqacac cttgaaaata accaattcac cccaqaaqtt 1100 aatcagctgc agaagggagg aggtggatgc ctgtgccacg gctgtgatgt 1150 ctcctgagga actcctcagg gcctggatct cataggtttg cggaagggcc 1200 caggtgaagc cgagaacctg gtctgcatga catggaaacc atgaggggac 1250 aagttgtgtt tctgttttcc gccacggaca agggatgaga gaagtaggaa 1300 gagectgttg tetacaagte tagaageaac cateagagge agggtggttt 1350 gtctaacaga acactgactg aggcttaggg gatgtgacct ctagactggg 1400

<210> 352

<211> 311

<212> PRT

<213> Homo sapiens

<400> 352

Met Gln Thr Phe Thr Met Val Leu Glu Glu Ile Trp Thr Ser Leu 1 5 10 15

Phe Met Trp Phe Phe Tyr Ala Leu Ile Pro Cys Leu Leu Thr Asp 20 25 30

Glu Val Ala Ile Leu Pro Ala Pro Gln Asn Leu Ser Val Leu Ser 35 40 45

Thr Asn Met Lys His Leu Leu Met Trp Ser Pro Val Ile Ala Pro 50 55 60

Gly Glu Thr Val Tyr Tyr Ser Val Glu Tyr Gln Gly Glu Tyr Glu
65 70 75

Ser Leu Tyr Thr Ser His Ile Trp Ile Pro Ser Ser Trp Cys Ser 80 85 90

Thr Val Pro Tyr Asn Leu Arg Val Arg Ala Thr Leu Gly Ser Gln 110 115 120

```
Thr Ser Ala Trp Ser Ile Leu Lys His Pro Phe Asn Arg Asn Ser
                125
                                                         135
Thr Ile Leu Thr Arg Pro Gly Met Glu Ile Thr Lys Asp Gly Phe
His Leu Val Ile Glu Leu Glu Asp Leu Gly Pro Gln Phe Glu Phe
                155
                                    160
Leu Val Ala Tyr Trp Arg Arg Glu Pro Gly Ala Glu Glu His Val
Lys Met Val Arg Ser Gly Gly Ile Pro Val His Leu Glu Thr Met
Glu Pro Gly Ala Ala Tyr Cys Val Lys Ala Gln Thr Phe Val Lys
Ala Ile Gly Arg Tyr Ser Ala Phe Ser Gln Thr Glu Cys Val Glu
Val Gln Gly Glu Ala Ile Pro Leu Val Leu Ala Leu Phe Ala Phe
Val Gly Phe Met Leu Ile Leu Val Val Pro Leu Phe Val Trp
                245
                                                        255
Lys Met Gly Arg Leu Leu Gln Tyr Ser Cys Cys Pro Val Val Val
                260
                                                        270
Leu Pro Asp Thr Leu Lys Ile Thr Asn Ser Pro Gln Lys Leu Ile
Ser Cys Arg Arg Glu Glu Val Asp Ala Cys Ala Thr Ala Val Met
                290
                                                        300
Ser Pro Glu Glu Leu Leu Arg Ala Trp Ile Ser
                305
```

<210> 353

<211> 864

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 654, 711, 748, 827

<223> unknown base

<400> 353

tcctgctgat gcacatctgg gtttggcaaa aggaggttgc ttcgagccgc 50 cctttctagc ttcctggccg gctctagaac aattcaggct tcgctgcgac 100 tagacctcag ctccaacata tgcattctga agaaagatgg ctgagatgac 150 agaatgcttt attttggaaa gaaacaatgt tctaggtcaa actgagtcta 200

```
ccaaatgcag actttcacaa tggttctaga agaaatctgg acaagtcttt 250
 tcatgtggtt tttctacgca ttgattccat gtttgctcac agatgaagtg 300
 gccattctgc ctgcccctca gaacctctct gtactctcaa ccaacatgaa 350
 gcatctcttq atqtqqaqcc caqtqatcqc qcctgqagaa acagtqtact 400
 attetgtega ataccagggg gagtacgaga geetgtacac gagecacate 450
 tggatcccca gcagctggtg ctcactcact gaaggtcctg agtgtgatgt 500
 cactgatgac atcacggcca ctgtgccata caacctttgt gtcagggcca 550
 cattgggctc acagacctca gcctggagca tcctgaagca tccctttaat 600
 agaaactcaa ccatccttac ccgacctggg atggagatca ccaaagatgg 650
 cttncacctq gttattgagc tggaggacct ggggccccag tttgagttcc 700
 ttgtggccta ntggaggagg ggcgaacccc ttgcggcgca aggggttngc 750
 gaaccccttg cggccgctgg ggtatctctc gagaaaagag aggcccaata 800
 tgacccacat actcaatatg gacgaantgc tattgtccac ctgtttgagt 850
 ggcgctgggt tgat 864
<210> 354
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 354
aggetteget gegactagae etc 23
<210> 355
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 355
ccaggtcggg taaggatggt tgag 24
<210> 356
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

<400> 356 tttctacgca ttgattccat gtttgctcac agatgaagtg gccattctgc 50

<210> 357

<211> 1670

<212> DNA <213> Homo sapiens <400> 357 cccacgcgtc cgcccacgcg tccgagggac aagagagaag agagactgaa 50 acagggagaa gaggcaggag aggaggaggt ggggagagca cgaagctgga 100 ggccgacact gagggaggc gggaggaggt gaagaaggag agaggggaga 150 agaggcagga gctggaaagg agagagggag gaggaggagg agatgcggga 200 tggagacctg gagttaggtg gcttgggaga gcttaatgaa aagagaacgg 250 agaggaggtg tgggttagga accaagaggt agccctgtgg gcagcagaag 300 gctgagagga gtaggaagat caggagctag agggagactg gagggttccg 350 aagagtgggt ttgaagggcg gatctcagtc cctggctgct ttggcatttg 450 gggaactggg actccctgtg gggaggagag gaaagctgga agtcctggag 500 ggacagggtc ccagaaggag gggacagagg agctgagaga gggggcagg 550 gcgttgggca ggggtccctc ggaggcctcc tggggatggg ggctgcagct 600 cgtctgagcg cccctcgagc gctggtactc tgggctgcac tgggggcagc 650 agctcacatc ggaccagcac ctgaccccga ggactggtgg agctacaagg 700 ataatctcca gggaaacttc gtgccagggc ctcctttctg gggcctggtg 750 aatgcagcgt ggagtctgtg tgctgtgggg aagcggcaga gccccgtgga 800

tcccctcctt tacagccacc gactcagtga actgcggctg ctgtttggag 1000

tgtggagctg aagagggttc tttatgaccc ctttctgccc ccattaaggc 850

tcagcactgg aggagagaag ctccggggaa ccttgtacaa caccggccga 900

catgtctcct tcctgcctgc accccgacct gtggtcaatg tgtctggagg 950

ctcgcgacgg agccggctcg gaacatcaga tcaaccacca gggcttctct 1050 gctgaggtgc agctcattca cttcaaccag qaactctacg ggaatttcag 1100

cgctgcctcc cgcggcccca atggcctggc cattctcagc ctctttgtca 1150

acgttgccag tacctctaac ccattcctca gtcgcctcct taaccgcgac 1200

accatcactc gcatctccta caagaatgat gcctactttc ttcaagacct 1250

gagcctggag ctcctgttcc ctgaatcctt cggcttcatc acctatcagg 1300 gctctctcag caccccgccc tgctccgaga ctgtcacctg gatcctcatt 1350 gaccgggccc tcaatatcac ctcccttcag atgcactccc tgagactcct 1400 gagccagaat cctccatctc agatcttcca gagcctcagc ggtaacagcc 1450 ggcccctgca gcccttggcc cacagggcac tgaggggcaa cagggacccc 1500 cggcaccccg agaggcgctg ccgaggcccc aactaccgcc tgcatgtgga 1550 tggtgtcccc catggtcgct gagactcccc ttcgaggatt gcacccgccc 1600 gtcctaagcc tcccacaag gcgaggggag ttacccctaa aacaaagcta 1650 ttaaagggac agaatactta 1670

<210> 358

<211> 328

<212> PRT

<213> Homo sapiens

<400> 358

Met Gly Ala Ala Ala Arg Leu Ser Ala Pro Arg Ala Leu Val Leu 1 5 10 15

Trp Ala Ala Leu Gly Ala Ala Ala His Ile Gly Pro Ala Pro Asp 20 25 30

Pro Glu Asp Trp Trp Ser Tyr Lys Asp Asn Leu Gln Gly Asn Phe 35 40 45

Val Pro Gly Pro Pro Phe Trp Gly Leu Val Asn Ala Ala Trp Ser 50 55 60

Leu Cys Ala Val Gly Lys Arg Gln Ser Pro Val Asp Val Glu Leu 65 70 75

Lys Arg Val Leu Tyr Asp Pro Phe Leu Pro Pro Leu Arg Leu Ser 80 85 90

Thr Gly Gly Glu Lys Leu Arg Gly Thr Leu Tyr Asn Thr Gly Arg 95 100 105

His Val Ser Phe Leu Pro Ala Pro Arg Pro Val Val Asn Val Ser 110 115 120

Gly Gly Pro Leu Leu Tyr Ser His Arg Leu Ser Glu Leu Arg Leu 125

Leu Phe Gly Ala Arg Asp Gly Ala Gly Ser Glu His Gln Ile Asn

His Gln Gly Phe Ser Ala Glu Val Gln Leu Ile His Phe Asn Gln 155 160 165

Glu Leu Tyr Gly Asn Phe Ser Ala Ala Ser Arg Gly Pro Asn Gly

170 175 180 Leu Ala Ile Leu Ser Leu Phe Val Asn Val Ala Ser Thr Ser Asn 185 190 Pro Phe Leu Ser Arg Leu Leu Asn Arg Asp Thr Ile Thr Arg Ile 200 Ser Tyr Lys Asn Asp Ala Tyr Phe Leu Gln Asp Leu Ser Leu Glu Leu Leu Phe Pro Glu Ser Phe Gly Phe Ile Thr Tyr Gln Gly Ser 230 235 Leu Ser Thr Pro Pro Cys Ser Glu Thr Val Thr Trp Ile Leu Ile 245 250 Asp Arg Ala Leu Asn Ile Thr Ser Leu Gln Met His Ser Leu Arg Leu Leu Ser Gln Asn Pro Pro Ser Gln Ile Phe Gln Ser Leu Ser Gly Asn Ser Arg Pro Leu Gln Pro Leu Ala His Arg Ala Leu Arg Gly Asn Arg Asp Pro Arg His Pro Glu Arg Arg Cys Arg Gly Pro Asn Tyr Arg Leu His Val Asp Gly Val Pro His Gly Arg <210> 359 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 359 tctgctgagg tgcagctcat tcac 24 <210> 360 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 360 gaggctctgg aagatctgag atgg 24 <210> 361 <211> 50 <212> DNA <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 361
  gcctctttgt caacgttgcc agtacctcta acccattcct cagtcgcctc 50
<210> 362
<211> 3038
<212> DNA
<213> Homo sapiens
<400> 362
  ggcgcctggt tctgcgcgta ctggctgtac ggagcaggag caagaggtcg 50
  ccgccagcct ccgccgcga gcctcgttcg tgtccccgcc cctcgctcct 100
  gcagctactg ctcagaaacg ctgggggcc caccctggca gactaacgaa 150
  gcagctccct tcccacccca actgcaggtc taattttgga cgctttgcct 200
```

ggcgcctggt tctgcgcgta ctggctgtac ggagcaggag caagaggtcg 50 ccgccagcct ccgccgccga gcctcgttcg tgtccccgcc cctcgctcct 100 gcagctactg ctcagaaacg ctggggcgcc caccctggca gactaacgaa 150 gcagetecet teccaeecea actgeaggte taattttgga egetttgeet 200 gccatttctt ccaggttgag ggagccgcag aggcggaggc tcgcgtattc 250 ctgcagtcag cacccacgtc gcccccggac gctcggtgct caggcccttc 300 gcgagcgggg ctctccgtct gcggtccctt gtgaaggctc tgggcggctg 350 cagaggccgg ccgtccggtt tggctcacct ctcccaggaa acttcacact 400 ggagagccaa aaggagtgga agagcctgtc ttggagattt tcctggggaa 450 atcctgaggt cattcattat gaagtgtacc gcgcgggagt ggctcagagt 500 aaccacagtg ctgttcatgg ctagagcaat tccagccatg gtggttccca 550 atgccacttt attggagaaa cttttggaaa aatacatgga tgaggatggt 600 gagtggtgga tagccaaaca acgagggaaa agggccatca cagacaatga 650 catgcagagt attttggacc ttcataataa attacgaagt caggtgtatc 700 caacagcctc taatatggag tatatgacat gggatgtaga gctggaaaga 750 tctgcagaat cctgggctga aagttgcttg tgggaacatg gacctgcaag 800 cttgcttcca tcaattggac agaatttggg agcacactgg ggaagatata 850 ggcccccgac gtttcatgta caatcgtggt atgatgaagt gaaagacttt 900 agctacccat atgaacatga atgcaaccca tattgtccat tcaggtgttc 950 tggccctgta tgtacacatt atacacaggt cgtgtgggca actagtaaca 1000 gaatcggttg tgccattaat ttgtgtcata acatgaacat ctgggggcag 1050 atatggccca aagctgtcta cctggtgtgc aattactccc caaagggaaa 1100 ctggtggggc catgcccctt acaaacatgg gcggccctgt tctgcttgcc 1150 cacctagttt tggaggggc tgtagagaaa atctgtgcta caaagaaggg 1200 tcagacaggt attatccccc tcgagaagag gaaacaaatg aaatagaacg 1250 acagcaqtca caaqtccatq acacccatqt ccqqacaaqa tcaqatqata 1300 gtagcagaaa tgaagtcata agcgcacagc aaatgtccca aattgtttct 1350 tgtgaagtaa gattaagaga tcagtgcaaa ggaacaacct gcaataggta 1400 cgaatgtcct gctggctgtt tggatagtaa agctaaagtt attggcagtg 1450 tacattatga aatgcaatcc agcatctgta gagctgcaat tcattatggt 1500 ataatagaca atgatggtgg ctgggtagat atcactagac aaggaagaaa 1550 gcattatttc atcaagtcca atagaaatgg tattcaaaca attggcaaat 1600 atcagtctgc taattccttc acagtctcta aagtaacagt tcaggctgtg 1650 acttqtqaaa caactqtqga acagctctqt ccatttcata agcctqcttc 1700 acattgccca agagtatact gtcctcgtaa ctgtatgcaa gcaaatccac 1750 attatgctcg tgtaattgga actcgagttt attctgatct gtccagtatc 1800 tgcagagcag cagtacatgc tggagtggtt cgaaatcacg gtggttatgt 1850 tgatgtaatg cctgtggaca aaagaaagac ctacattgct tcttttcaga 1900 atggaatett eteagaaagt ttacagaate etecaggagg aaaggeatte 1950 agagtgtttg ctgttgtgtg aaactgaata cttggaagag gaccataaag 2000 actattccaa atgcaatatt tctgaatttt gtataaaact gtaacattac 2050 tgtacagagt acatcaacta ttttcagccc aaaaaggtgc caaatgcata 2100 taaatcttga taaacaaagt ctataaaata aaacatggga cattagcttt 2150 gggaaaagta atgaaaatat aatggtttta gaaatcctgt gttaaatatt 2200 gctatatttt cttagcagtt atttctacag ttaattacat agtcatgatt 2250 gttctacgtt tcatatatta tatggtgctt tgtatatgcc actaataaaa 2300 tgaatctaaa cattgaatgt gaatggccct cagaaaatca tctagtgcat 2350 ttaaaaataa tcgactctaa aactgaaaga aaccttatca cattttcccc 2400 agttcaatgc tatgccatta ccaactccaa ataatctcaa ataattttcc 2450 acttaataac tgtaaagttt ttttctgtta atttaggcat atagaatatt 2500 aaattotgat attgcactto ttattttata taaaataato otttaatato 2550 caaatgaatc tgttaaaatg tttgattcct tgggaatggc cttaaaaata 2600

aatgtaataa agtcagagtg gtggtatgaa aacattccta gtgatcatgt 2650 agtaaatgta gggttaagca tggacagcca gagctttcta tgtactgtta 2700 aaattgaggt cacatattt cttttgtatc ctggcaaata ctcctgcagg 2750 ccaggaagta taatagcaaa aagttgaaca aagatgaact aatgtattac 2800 attaccattg ccactgattt tttttaaatg gtaaatgacc ttgtatataa 2850 atattgccat atcatggtac ctataatggt gatatatttg tttctatgaa 2900 aaatgtattg tgctttgata ctaaaaaatct gtaaaatgtt agttttggta 2950 atttttttc tgctggtgga tttacatatt aaatttttc tgctggtgga 3000 taaacattaa aattaatcat gtttcaaaaa aaaaaaaa 3038

<210> 363

<211> 500

<212> PRT

<213> Homo sapiens

<400> 363

Met Lys Cys Thr Ala Arg Glu Trp Leu Arg Val Thr Thr Val Leu 1 5 10 15

Phe Met Ala Arg Ala Ile Pro Ala Met Val Val Pro Asn Ala Thr 20 25 30

Leu Leu Glu Lys Leu Glu Lys Tyr Met Asp Glu Asp Gly Glu 35 40 45

Trp Trp Ile Ala Lys Gln Arg Gly Lys Arg Ala Ile Thr Asp Asn 50 55 60

Asp Met Gln Ser Ile Leu Asp Leu His Asn Lys Leu Arg Ser Gln 65 70 75

Val Tyr Pro Thr Ala Ser Asn Met Glu Tyr Met Thr Trp Asp Val 80 85 90

Glu Leu Glu Arg Ser Ala Glu Ser Trp Ala Glu Ser Cys Leu Trp 95 100 105

Glu His Gly Pro Ala Ser Leu Leu Pro Ser Ile Gly Gln Asn Leu 110 115 120

Gly Ala His Trp Gly Arg Tyr Arg Pro Pro Thr Phe His Val Gln
125 130 135

Ser Trp Tyr Asp Glu Val Lys Asp Phe Ser Tyr Pro Tyr Glu His 140 145 150

Glu Cys Asn Pro Tyr Cys Pro Phe Arg Cys Ser Gly Pro Val Cys 155 160 165

Thr His Tyr Thr Gln Val Val Trp Ala Thr Ser Asn Arg Ile Gly

				170					175					180
Cys	Ala	Ile	Asn	Leu 185	Cys	His	Asn	Met	Asn 190	Ile	Trp	Gly	Gln	Ile 195
Trp	Pro	Lys	Ala	Val 200	Tyr	Leu	Val	Cys	Asn 205	Tyr	Ser	Pro	Lys	Gly 210
Asn	Trp	Trp	Gly	His 215	Ala	Pro	Tyr	Lys	His 220	Gly	Arg	Pro	Cys	Ser 225
Ala	Cys	Pro	Pro	Ser 230	Phe	Gly	Gly	Gly	Cys 235	Arg	Glu	Asn	Leu	Cys 240
Tyr	Lys	Glu	Gly	Ser 245	Asp	Arg	Tyr	Tyr	Pro 250	Pro	Arg	Glu	Glu	Glu 255
Thr	Asn	Glu	Ile	Glu 260	Arg	Gln	Gln	Ser	Gln 265	Val	His	Asp	Thr	His 270
Val	Arg	Thr	Arg	Ser 275	Asp	Asp	Ser	Ser	Arg 280	Asn	Glu	Val	Ile	Ser 285
Ala	Gln	Gln	Met	Ser 290	Gln	Ile	Val	Ser	Cys 295	Glu	Val	Arg	Leu	Arg 300
Asp	Gln	Cys	Lys	Gly 305	Thr	Thr	Cys	Asn	Arg 310	Tyr	Glu	Cys	Pro	Ala 315
Gly	Cys	Leu	Asp	Ser 320	Lys	Ala	Lys	Val	Ile 325	Gly	Ser	Val	His	Tyr 330
Glu	Met	Gln	Ser	Ser 335	Ile	Cys	Arg	Ala	Ala 340	Ile	His	Tyr	Gly	Ile 345
Ile	Asp	Asn	Asp	Gly 350	Gly	Trp	Val	Asp	Ile 355	Thr	Arg	Gln	Gly	Arg 360
Lys	His	Tyr	Phe	Ile 365	Lys	Ser	Asn	Arg	Asn 370	Gly	Ile	Gln	Thr	Ile 375
Gly	Lys	Tyr	Gln	Ser 380	Ala	Asn	Ser	Phe	Thr 385	Val	Ser	Lys	Val	Thr 390
Val	Gln	Ala	Val	Thr 395	Cys	Glu	Thr	Thr	Val 400	Glu	Gln	Leu	Cys	Pro 405
Phe	His	Lys	Pro	Ala 410	Ser	His	Cys	Pro	Arg 415	Val	Tyr	Cys	Pro	Arg 420
Asn	Cys	Met	Gln	Ala 425	Asn	Pro	His	Tyr	Ala 430	Arg	Val	Ile	Gly	Thr 435
Arg	Val	Tyr	Ser	Asp 440	Leu	Ser	Ser	Ile	Cys 445	Arg	Ala	Ala	Val	His 450
Ala	Gly	Val	Val	Arg 455	Asn	His	Gly	Gly	Tyr 460	Val	Asp	Val	Met	Pro

```
Val Asp Lys Arg Lys Thr Tyr Ile Ala Ser Phe Gln Asn Gly Ile
                 470
Phe Ser Glu Ser Leu Gln Asn Pro Pro Gly Gly Lys Ala Phe Arg
Val Phe Ala Val Val
                 500
<210> 364
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 364
ggacagaatt tgggagcaca ctgg 24
<210> 365
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 365
ccaagagtat actgtcctcg 20
<210> 366
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 366
agcacagatt ttctctacag ccccc 25
<210> 367
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 367
 aaccactcca gcatgtactg ctgc 24
<210> 368
```

With the purp

W. W

To the first the prince

<211> 50 <212> DNA

<213> Artificial Sequence

- - ccaccgacgg cgcagccgga gccagcagag ccggaaggcg cgccccgggc 100 agagaaagcc gagcagagct gggtggcgtc tccgggccgc cgctccgacg 150 ggccagcgcc ctccccatgt ccctgctccc acgccgcgcc cctccggtca 200 qcatqaqqct cctqqcqqcc gcqctqctcc tqctqctqct ggcqctqtac 250 accgcgcgtg tggacgggtc caaatgcaag tgctcccgga agggacccaa 300 gatccgctac agcgacgtga agaagctgga aatgaagcca aagtacccgc 350 actgcgagga gaagatggtt atcatcacca ccaagagcgt gtccaggtac 400 cgaggtcagg agcactgcct gcaccccaag ctgcagagca ccaagcgctt 450 catcaagtgg tacaacqcct ggaacgagaa gcgcagggtc tacgaagaat 500 agggtgaaaa acctcaqaag ggaaaactcc aaaccagttg ggagacttgt 550 aaaaaaaaaa aaagcctttc tttctcacag gcataagaca caaattatat 650 attgttatga agcacttttt accaacggtc agtttttaca ttttatagct 700 gcgtgcgaaa ggcttccaga tgggagaccc atctctcttg tgctccagac 750 ttcatcacag gctgcttttt atcaaaaagg ggaaaactca tgcctttcct 800 ttttaaaaaa tgcttttttg tatttgtcca tacgtcacta tacatctgag 850 ctttataagc gcccgggagg aacaatgagc ttggtggaca catttcattg 900 cagtqttqct ccattcctaq cttqqqaaqc ttccqcttag aggtcctqgc 950 gcctcggcac agctgccacg ggctctcctg ggcttatggc cggtcacagc 1000 ctcagtgtga ctccacagtg gcccctgtag ccgggcaagc aggagcaggt 1050 ctctctgcat ctgttctctg aggaactcaa gtttggttgc cagaaaaatg 1100 tgcttcattc ccccctggtt aatttttaca caccctagga aacatttcca 1150

agatectgtg atggegagae aaatgateet taaagaaggt gtggggtett 1200 teecaacetg aggatteetg aaaggtteae aggtteaata tetaatgett 1250 cagaageatg tgaggtteee aacaetgtea geaaaaacet taggagaaaa 1300 ettaaaaata tatgaataea tgegeaatae acagetaeag acaeacatte 1350 tgttgacaag ggaaaacett caaageatgt teetteeet eaceacaaca 1400 gaacatgeag tactaaagea atatatttgt gatteeecat gtaattette 1450 aatgttaaae agtgeagtee teettegaaa getaagatga ecatgegeee 1500 teeteetgt acatataeee ttaagaaege eeeeteeae eactgeeeee 1550 cagtatatge egeattgtae tgetgtta tatgetatgt acatgteaga 1600 aaceattage attgeatgea ggttteatat teettetaag atggaaagta 1650 ataaaatata tttgaaatgt aaaaaaaaaa aaaaa 1685

<210> 370

<211> 111

<212> PRT

<213> Homo sapiens

<400> 370

Met Ser Leu Leu Pro Arg Arg Ala Pro Pro Val Ser Met Arg Leu
1 5 10 15

Leu Ala Ala Leu Leu Leu Leu Leu Leu Ala Leu Tyr Thr Ala 20 25 30

Arg Val Asp Gly Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro Lys 35 40 45

Ile Arg Tyr Ser Asp Val Lys Lys Leu Glu Met Lys Pro Lys Tyr 50 55 60

Pro His Cys Glu Glu Lys Met Val Ile Ile Thr Thr Lys Ser Val 65 70 75

Ser Arg Tyr Arg Gly Gln Glu His Cys Leu His Pro Lys Leu Gln 80 85 90

Ser Thr Lys Arg Phe Ile Lys Trp Tyr Asn Ala Trp Asn Glu Lys $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Arg Arg Val Tyr Glu Glu

<210> 371

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe <400> 371 cagegeeete eccatgteee tg 22 <210> 372 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 372 tcccaactgg tttggagttt tccc 24 <210> 373 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 373 ctccggtcag catgaggctc ctggcggccg ctgctcctgc tgctg 45 <210> 374 <211> 3113 <212> DNA <213> Homo sapiens <400> 374 gccccaggga ctgctatggc ttcctttgtt gttcaccccg gtctgcgtca 50 tgttaaactc caatgtcctc ctgtggttaa ctgctcttgc catcaagttc 100 acceteattg acagecaage acagtateca gttgteaaca caaattatgg 150 caaaatccgg ggcctaagaa caccgttacc caatgagatc ttgggtccag 200 tggagcagta cttaggggtc ccctatgcct cacccccac tggagagagg 250 cggtttcagc ccccagaacc cccgtcctcc tggactggca tccgaaatac 300 tactcagttt gctgctgtgt gcccccagca cctggatgag agatccttac 350 tgcatgacat gctgcccatc tggtttaccg ccaatttgga tactttgatg 400 acctatgttc aagatcaaaa tgaagactgc ctttacttaa acatctacgt 450 gcccacggaa gatggagcca acacaaagaa aaacgcagat gatataacga 500 gtaatgaccg tggtgaagac gaagatattc atgatcagaa cagtaagaag 550 cccgtcatgg tctatatcca tgggggatct tacatggagg gcaccggcaa 600 catgattgac ggcagcattt tggcaagcta cggaaacgtc atcgtgatca 650

ccattaacta ccgtctggga atactagggt ttttaagtac cggtgaccag 700 gcagcaaaag gcaactatgg gctcctggat cagattcaag cactgcggtg 750 gattgaggag aatgtgggag cctttggcgg ggaccccaag agagtgacca 800 tctttggctc gggggctggg gcctcctgtg tcagcctgtt gaccctgtcc 850 cactactcag aaggtctctt ccagaaggcc atcattcaga gcggcaccgc 900 cctgtccagc tgggcagtga actaccagcc ggccaagtac actcggatat 950 tggcagacaa ggtcggctgc aacatgctgg acaccacgga catggtagaa 1000 tgcctgcqqa acaaqaacta caaggagctc atccagcaga ccatcacccc 1050 ggccacctac cacatagcct tcgggccggt gatcgacggc gacgtcatcc 1100 cagacgaece ecagateetg atggageaag gegagtteet caactaegae 1150 atcatgctgg gcgtcaacca aggggaaggc ctgaagttcg tggacggcat 1200 cgtggataac gaggacggtg tgacgcccaa cgactttgac ttctccgtgt 1250 ccaacttcgt ggacaacctt tacggctacc ctgaagggaa agacactttg 1300 cgggagacta tcaagttcat gtacacagac tgggccgata aggaaaaccc 1350 ggagacgcgg cggaaaaccc tggtggctct ctttactgac caccagtggg 1400 tggcccccgc cgtggccgcc gacctgcacg cgcagtacgg ctcccccacc 1450 tacttctatg ccttctatca tcactgccaa agcgaaatga agcccagctg 1500 ggcagattcg gcccatggtg atgaggtccc ctatgtcttc ggcatcccca 1550 tgatcggtcc caccgagctc ttcagttgta acttttccaa gaacgacgtc 1600 atgctcagcg ccgtggtcat gacctactgg acgaacttcg ccaaaactgg 1650 tgatccaaat caaccagttc ctcaggatac caagttcatt cacacaaaac 1700 ccaaccgctt tgaagaagtg gcctggtcca agtataatcc caaagaccag 1750 ctctatctgc atattggctt gaaacccaga gtgagagatc actaccgggc 1800 aacgaaagtg gctttctggt tggaactcgt tcctcatttg cacaacttga 1850 acgagatatt ccagtatgtt tcaacaacca caaaggttcc tccaccagac 1900 atgacatcat ttccctatgg cacceggega tetecegeca agatatggee 1950 aaccaccaaa cgcccagcaa tcactcctgc caacaatccc aaacactcta 2000 aggaccetea caaaacaggg cetgaggaca caactgteet cattgaaace 2050 aaacgagatt attccaccga attaagtgtc accattgccg tcggggcgtc 2100

gctcctcttc ctcaacatct tagcttttgc ggcgctgtac tacaaaaaagg 2150 acaaqaqqcq ccatqaqact cacaqqcqcc ccaqtcccca gagaaacacc 2200 acaaatgata tcgctcacat ccagaacgaa gagatcatgt ctctgcagat 2250 qaaqcaqetq qaacacqatc acqaqtqtqa qtcqctqcaq qcacacqaca 2300 cactgagget cacetgeeeg ceagactaca ceeteaeget gegeeggteg 2350 ccagatgaca tcccacttat gacgccaaac accatcacca tgattccaaa 2400 cacactgacg gggatgcagc ctttgcacac ttttaacacc ttcagtggag 2450 gacaaaacag tacaaattta ccccacqqac attccaccac tagagtatag 2500 ctttgcccta tttcccttcc tatccctctg ccctacccgc tcagcaacat 2550 agaagaggga aggaaagaga gaaggaaaga gagagagaaa gaaagtctcc 2600 aqaccaqqaa tqtttttqtc ccactgactt aagacaaaaa tgcaaaaagg 2650 cagtcatccc atcccggcag accettatcg ttggtgtttt ccagtattac 2700 aagatcaact totgaccotg tgaaatgtga gaagtacaca tttotgttaa 2750 aataactgct ttaagatctc taccactcca atcaatgttt agtgtgatag 2800 qacatcacca tttcaaqqcc ccqqqtqttt ccaacqtcat qgaaqcaqct 2850 gacacttctg aaactcagcc aaggacactt gatattttt aattacaatg 2900 gaagtttaaa catttctttc tgtgccacac aatggatggc tctccttaag 2950 tgaagaaaga gtcaatgaga ttttgcccag cacatggagc tgtaatccag 3000 agagaaggaa acgtagaaat ttattattaa aagaatggac tgtgcagcga 3050 aatctgtacg gttctgtgca aagaggtgtt ttgccagcct gaactatatt 3100 taagagactt tgt 3113

<210> 375

<211> 816

<212> PRT

<213> Homo sapiens

<400> 375

Met Leu Asn Ser Asn Val Leu Leu Trp Leu Thr Ala Leu Ala Ile 1 5 10

Lys Phe Thr Leu Ile Asp Ser Gln Ala Gln Tyr Pro Val Val Asn 20 25 30

Thr Asn Tyr Gly Lys Ile Arg Gly Leu Arg Thr Pro Leu Pro Asn 35 40 45

Glu Ile Leu Gly Pro Val Glu Gln Tyr Leu Gly Val Pro Tyr Ala

60 50 55 Ser Pro Pro Thr Gly Glu Arg Arg Phe Gln Pro Pro Glu Pro Pro Ser Ser Trp Thr Gly Ile Arg Asn Thr Thr Gln Phe Ala Ala Val Cys Pro Gln His Leu Asp Glu Arg Ser Leu Leu His Asp Met Leu Pro Ile Trp Phe Thr Ala Asn Leu Asp Thr Leu Met Thr Tyr Val 115 110 Gln Asp Gln Asn Glu Asp Cys Leu Tyr Leu Asn Ile Tyr Val Pro 130 Thr Glu Asp Gly Ala Asn Thr Lys Lys Asn Ala Asp Asp Ile Thr Ser Asn Asp Arg Gly Glu Asp Glu Asp Ile His Asp Gln Asn Ser Lys Lys Pro Val Met Val Tyr Ile His Gly Gly Ser Tyr Met Glu Gly Thr Gly Asn Met Ile Asp Gly Ser Ile Leu Ala Ser Tyr Gly 185 Asn Val Ile Val Ile Thr Ile Asn Tyr Arg Leu Gly Ile Leu Gly Phe Leu Ser Thr Gly Asp Gln Ala Ala Lys Gly Asn Tyr Gly Leu Leu Asp Gln Ile Gln Ala Leu Arg Trp Ile Glu Glu Asn Val Gly 230 Ala Phe Gly Gly Asp Pro Lys Arg Val Thr Ile Phe Gly Ser Gly Ala Gly Ala Ser Cys Val Ser Leu Leu Thr Leu Ser His Tyr Ser Glu Gly Leu Phe Gln Lys Ala Ile Ile Gln Ser Gly Thr Ala Leu Ser Ser Trp Ala Val Asn Tyr Gln Pro Ala Lys Tyr Thr Arg Ile 300 Leu Ala Asp Lys Val Gly Cys Asn Met Leu Asp Thr Thr Asp Met

Val Glu Cys Leu Arg Asn Lys Asn Tyr Lys Glu Leu Ile Gln Gln 320 325 330

Thr Ile Thr Pro Ala Thr Tyr His Ile Ala Phe Gly Pro Val Ile 335 340 345

Asp Gly Asp Val Ile Pro Asp Asp Pro Gln Ile Leu Met Glu Gln 350 Gly Glu Phe Leu Asn Tyr Asp Ile Met Leu Gly Val Asn Gln Gly Glu Gly Leu Lys Phe Val Asp Gly Ile Val Asp Asn Glu Asp Gly Val Thr Pro Asn Asp Phe Asp Phe Ser Val Ser Asn Phe Val Asp Asn Leu Tyr Gly Tyr Pro Glu Gly Lys Asp Thr Leu Arg Glu Thr 410 Ile Lys Phe Met Tyr Thr Asp Trp Ala Asp Lys Glu Asn Pro Glu 430 Thr Arg Arg Lys Thr Leu Val Ala Leu Phe Thr Asp His Gln Trp Val Ala Pro Ala Val Ala Ala Asp Leu His Ala Gln Tyr Gly Ser Pro Thr Tyr Phe Tyr Ala Phe Tyr His His Cys Gln Ser Glu Met Lys Pro Ser Trp Ala Asp Ser Ala His Gly Asp Glu Val Pro Tyr Val Phe Gly Ile Pro Met Ile Gly Pro Thr Glu Leu Phe Ser Cys Asn Phe Ser Lys Asn Asp Val Met Leu Ser Ala Val Val Met Thr Tyr Trp Thr Asn Phe Ala Lys Thr Gly Asp Pro Asn Gln Pro Val Pro Gln Asp Thr Lys Phe Ile His Thr Lys Pro Asn Arg Phe Glu Glu Val Ala Trp Ser Lys Tyr Asn Pro Lys Asp Gln Leu Tyr Leu His Ile Gly Leu Lys Pro Arg Val Arg Asp His Tyr Arg Ala Thr Lys Val Ala Phe Trp Leu Glu Leu Val Pro His Leu His Asn Leu Asn Glu Ile Phe Gln Tyr Val Ser Thr Thr Lys Val Pro Pro Pro Asp Met Thr Ser Phe Pro Tyr Gly Thr Arg Arg Ser Pro Ala Lys Ile Trp Pro Thr Thr Lys Arg Pro Ala Ile Thr Pro Ala Asn Asn Pro Lys His Ser Lys Asp Pro His Lys Thr Gly Pro Glu Asp 650

Thr Thr Val Leu Ile Glu Thr Lys Arg Asp Tyr Ser Thr Glu Leu 675

Ser Val Thr Ile Ala Val Gly Ala Ser Leu Leu Phe Leu Asn Ile 680 685 690

Leu Ala Phe Ala Ala Leu Tyr Tyr Lys Lys Asp Lys Arg Arg His $695 \hspace{1.5cm} 700 \hspace{1.5cm} 705$

Glu Thr His Arg Arg Pro Ser Pro Gln Arg Asn Thr Thr Asn Asp 710 715 720

Ile Ala His Ile Gln Asn Glu Glu Ile Met Ser Leu Gln Met Lys 725 730 735

Gln Leu Glu His Asp His Glu Cys Glu Ser Leu Gln Ala His Asp 740 745 750

Thr Leu Arg Leu Thr Cys Pro Pro Asp Tyr Thr Leu Thr Leu Arg
755 760 765

Arg Ser Pro Asp Asp Ile Pro Leu Met Thr Pro Asn Thr Ile Thr 770 780

Met Ile Pro Asn Thr Leu Thr Gly Met Gln Pro Leu His Thr Phe 785 790 795

Asn Thr Phe Ser Gly Gly Gln Asn Ser Thr Asn Leu Pro His Gly 800 805 810

His Ser Thr Thr Arg Val 815

<210> 376

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 376

ggcaagctac ggaaacgtca tcgtg 25

<210> 377

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 377

aacccccgag ccaaaagatg gtcac 25

- <210> 378
- <211> 47
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 378
- gtaccggtga ccaggcagca aaaggcaact atgggctcct ggatcag 47
- <210> 379
- <211> 2461
- <212> DNA
- <213> Homo sapiens
- <400> 379
- gggaaagatg gcggcgactc tgggacccct tgggtcgtgg cagcagtggc 50 ggcgatgttt gtcggctcgg gatgggtcca ggatgttact ccttcttctt 100 ttgttggggt ctgggcaggg gccacagcaa gtcggggcgg gtcaaacgtt 150 cgagtacttg aaacgggagc actcgctgtc gaagccctac cagggtgtgg 200 gcacaggcag ttcctcactg tggaatctga tgggcaatgc catggtgatg 250 acccagtata tecgeettae eccagatatg caaagtaaac agggtgeett 300 gtggaaccgg gtgccatgtt tcctgagaga ctgggagttg caggtgcact 350 tcaaaatcca tggacaagga aagaagaatc tgcatgggga tggcttggca 400 atctggtaca caaaggatcg gatgcagcca gggcctgtgt ttggaaacat 450 ggacaaattt gtggggctgg gagtatttgt agacacctac cccaatgagg 500 agaagcagca agagcgggta ttcccctaca tctcagccat ggtgaacaac 550 ggctccctca gctatgatca tgagcgggat gggcggccta cagagctggg 600 aggetgeaca gecattgtcc geaatettea ttacgacace tteetggtga 650 ttcqctacqt caaqaqgcat ttqacqataa tgatggatat tgatggcaag 700 catgagtgga gggactgcat tgaagtgccc ggagtccgcc tgccccgcgg 750 ctactacttc ggcacctcct ccatcactgg ggatctctca gataatcatg 800 atgtcatttc cttgaagttg tttgaactga cagtggagag aaccccagaa 850 gaggaaaagc tccatcgaga tgtgttcttg ccctcagtgg acaatatgaa 900 gctgcctgag atgacagctc cactgccgcc cctgagtggc ctggccctct 950 teeteategt ettttetee etggtgtttt etgtatttge catagteatt 1000

ggtatcatac tctacaacaa atggcaggaa cagagccgaa agcgcttcta 1050 ctgagccctc ctgctgccac cacttttgtg actgtcaccc atgaggtatg 1100 gaaggagcag gcactggcct gagcatgcag cctggagagt gttcttgtct 1150 ctagcagctg gttggggact atattctgtc actggagttt tgaatgcagg 1200 gaccccgcat tcccatggtt gtgcatgggg acatctaact ctggtctggg 1250 aagccaccca ccccagggca atgctgctgt gatgtgcctt tccctgcagt 1300 ccttccatgt gggagcagag gtgtgaagag aatttacgtg gttgtgatgc 1350 caaaatcaca gaacagaatt tcatagccca ggctgccgtg ttgtttgact 1400 cagaaggccc ttctacttca gttttgaatc cacaaagaat taaaaactgg 1450 taacaccaca ggctttctga ccatccattc gttgggtttt gcatttgacc 1500 caaccetetg cetacetgag gagetttett tggaaaccag gatggaaact 1550 tettecetge ettacettee ttteacteea tteattgtee tetetgtgtg 1600 caacctgagc tgggaaaggc atttggatgc ctctctgttg gggcctgggg 1650 ctgcagaaca cacctgcgtt tcactggcct tcattaggtg gccctaggga 1700 qatqqctttc tgctttggat cactgttccc tagcatgggt cttgggtcta 1750 ttqqcatqtc catqqccttc ccaatcaagt ctcttcaggc cctcagtgaa 1800 gtttggctaa aggttggtgt aaaaatcaag agaagcctgg aagacatcat 1850 ggatgccatg gattagctgt gcaactgacc agctccaggt ttgatcaaac 1900 caaaagcaac atttgtcatg tggtctgacc atgtggagat gtttctggac 1950 ttgctagagc ctgcttagct gcatgttttg tagttacgat ttttggaatc 2000 ccactttgag tgctgaaagt gtaaggaagc tttcttctta caccttgggc 2050 ttggatattg cccagagaag aaatttggct ttttttttct taatggacaa 2100 gagacagttg ctgttctcat gttccaagtc tgagagcaac agaccctcat 2150 catctqtqcc tqqaaqaqtt cactqtcatt gagcagcaca gcctgagtgc 2200 tggcctctgt caacccttat tccactgcct tatttgacaa ggggttacat 2250 gctgctcacc ttactgccct gggattaaat cagttacagg ccagagtctc 2300 cttggagggc ctggaactct gagtcctcct atgaacctct gtagcctaaa 2350 qccqcqactc taqaqtcqac ctqcaqtaqq qataacaqgg taataagctt 2450

ggccgccatg g 2461

<210> 380

<211> 348

<212> PRT

<213> Homo sapiens

<400> 380

Met Ala Ala Thr Leu Gly Pro Leu Gly Ser Trp Gln Gln Trp Arg
1 5 10 15

Arg Cys Leu Ser Ala Arg Asp Gly Ser Arg Met Leu Leu Leu 20 25 30

Leu Leu Gly Ser Gly Gln Gly Pro Gln Gln Val Gly Ala Gly 35 40 45

Gln Thr Phe Glu Tyr Leu Lys Arg Glu His Ser Leu Ser Lys Pro 50 55 60

Tyr Gln Gly Val Gly Thr Gly Ser Ser Leu Trp Asn Leu Met
65 70 75

Gly Asn Ala Met Val Met Thr Gln Tyr Ile Arg Leu Thr Pro Asp 80 85 90

Met Gln Ser Lys Gln Gly Ala Leu Trp Asn Arg Val Pro Cys Phe 95 100 105

Leu Arg Asp Trp Glu Leu Gln Val His Phe Lys Ile His Gly Gln
110 115 120

Gly Lys Lys Asn Leu His Gly Asp Gly Leu Ala Ile Trp Tyr Thr 125 130 135

Lys Asp Arg Met Gln Pro Gly Pro Val Phe Gly Asn Met Asp Lys 140 145 150

Phe Val Gly Leu Gly Val Phe Val Asp Thr Tyr Pro Asn Glu Glu 155 160 165

Lys Gln Gln Glu Arg Val Phe Pro Tyr Ile Ser Ala Met Val Asn 170 175 180

Asn Gly Ser Leu Ser Tyr Asp His Glu Arg Asp Gly Arg Pro Thr 185 190 195

Glu Leu Gly Gly Cys Thr Ala Ile Val Arg Asn Leu His Tyr Asp 200 205 210

Thr Phe Leu Val Ile Arg Tyr Val Lys Arg His Leu Thr Ile Met 215 220 225

Met Asp Ile Asp Gly Lys His Glu Trp Arg Asp Cys Ile Glu Val 230 235 240

Pro Gly Val Arg Leu Pro Arg Gly Tyr Tyr Phe Gly Thr Ser Ser 245 250 255

```
Ile Thr Gly Asp Leu Ser Asp Asn His Asp Val Ile Ser Leu Lys
                 260
Leu Phe Glu Leu Thr Val Glu Arg Thr Pro Glu Glu Glu Lys Leu
                 275
His Arg Asp Val Phe Leu Pro Ser Val Asp Asn Met Lys Leu Pro
                 290
Glu Met Thr Ala Pro Leu Pro Pro Leu Ser Gly Leu Ala Leu Phe
Leu Ile Val Phe Phe Ser Leu Val Phe Ser Val Phe Ala Ile Val
                 320
Ile Gly Ile Ile Leu Tyr Asn Lys Trp Gln Glu Gln Ser Arg Lys
                                                          345
Arg Phe Tyr
<210> 381
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 381
ccttgggtcg tggcagcagt gg 22
<210> 382
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 382
cactetecag getgeatget cagg 24
<210> 383
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
gtcaaacgtt cgagtacttg aaacgggagc actcgctgtc gaagc 45
<210> 384
<211> 3150
<212> DNA
<213> Homo sapiens
```

<400> 384 ccgagccggg cgcgcagcga cggagctggg gccggcctgg gaccatgggc 50 gtgagtgcaa tctacggatc agtctctgat ggtgggtcgt taacctcagt 100 ggggactcca agatttccat gaagaaaatc agttgtcttc attcaagaat 150 tggggtctgg ctcagaattc ctgcagctgg tgaaaatctg ttttctagaa 200 qaqqtttaat taatqcctqc aqtctqacat gttcccgatt tgaggtgaaa 250 ccatgaagag aaaatagaat acttaataat gcttttccgc aaccgcttct 300 tgctgctgct ggcctggct gcgctgctgg cctttgtgag cctcagcctg 350 cagttettee acctgatece ggtgtegaet cetaagaatg gaatgagtag 400 caaqaqtcqa aaqaqaatca tqcccgaccc tqtgacggag ccccctgtga 450 cagaccccqt ttatgaagct cttttgtact gcaacatccc cagtgtggcc 500 gagcgcagca tggaaggtca tgccccgcat cattttaagc tggtctcagt 550 gcatgtgttc attcgccacg gagacaggta cccactgtat gtcattccca 600 aaacaaagcg accagaaatt gactgcactc tggtggctaa caggaaaccg 650 tatcacccaa aactggaagc tttcattagt cacatgtcaa aaggatccgg 700 agoctottto gaaagoccot tgaactoott goototttac ccaaatcacc 750 cattgtgtga gatgggagag ctcacacaga caggagttgt gcagcatttg 800 cagaacggtc agctgctgag ggatatctat ctaaagaaac acaaactcct 850 gcccaatgat tggtctgcag accagctcta tttagagacc actgggaaaa 900 gccggaccct acaaagtggg ctggccttgc tttatggctt tctcccagat 950 tttgactgga agaagattta tttcaggcac cagccaagtg cgctgttctg 1000 ctctggaagc tgctattgcc cggtaagaaa ccagtatctg gaaaaggagc 1050 agogtogtoa gtacotocta ogtttgaaaa acagocagot ggagaagaco 1100 tacggggaga tggccaagat cgtggatgtc cccaccaagc agcttagagc 1150 tgccaacccc atagactcca tgctctgcca cttctgccac aatgtcagct 1200 ttccctgtac cagaaatggc tgtgttgaca tggagcactt caaggtaatt 1250 aagacccatc agatcgagga tgaaagggaa agacgggaga agaaattgta 1300 cttcgggtat tctctcctgg gtgcccaccc catcctgaac caaaccatcg 1350 gccggatgca gcgtgccacc gagggcagga aagaagagct ctttgccctc 1400 tactctgctc atgatgtcac tctgtcacca gttctcagtg ccttgggcct 1450

ttcagaagcc aggttcccaa ggtttgcagc caggttgatc tttgagcttt 1500 ggcaagacag agaaaagccc agtgaacatt ccgtccggat tctttacaat 1550 ggcgtcgatg tcacattcca cacctctttc tgccaagacc accacaagcg 1600 ttctcccaag cccatgtgcc cgcttgaaaa cttggtccgc tttgtgaaaa 1650 qqqacatqtt tgtagccctg ggtggcagtg gtacaaatta ttatgatgca 1700 tgtcacaggg aaggattcta aaaggtatgc agtacagcag tatagaatcc 1750 atgccaatac agagcatagg gaaaggtcca cttctagttt tgtctgttac 1800 taagggtaga agattattgc tttttaaagg ctaaatattg tttgtgggaa 1850 ccacagatgg ttggggttga acagtaagca cattgctgca atgtggtacg 1900 tgaattgctt ggtacaaaat ggccagttca cagaggaata gaaggtactt 1950 tatcatagee agaetteget tagaatgeea gaataatata gtteaagaee 2000 tgaagttgcc aatccaagtt tgcactcttc tggcctgccc catgttacta 2050 tgtgatggaa ccagcacacc tcaaccaaaa tttttttaat cttagacatt 2100 tttaccttgt ccttgttaag aatttcttga agtgatttat ctaaaataaa 2150 ggttggcaaa ctttttctgt aaagggccag attgtaaata tttcagactg 2200 tgtggaccaa aaggccacat acagtctctg tcataactac tcaactctgt 2250 ttctgaagca ggaaagccac cacagacagt acataaagga atatgtgtag 2300 ctgggttccc aggccagaca aaacagatgg tgaccagact tggcccctgg 2350 gctgtagttt gctgacccct catctaaaaa ataggctata ctacaattgc 2400 acttccagca ctttgagaac gagttgaata ccaagaatta ttcaatggtt 2450 cctccagtaa cttctgctag aaacacagaa tttggtctgt atctgacact 2500 agaacaaaac ttgagggtaa ataaacattg aattagaatg aatcatagaa 2550 aactgattag aagaatactt gatgtttatg atgattgtgg tacaagatag 2600 ttttaaqtat gttctaaata tttgtctgct gtagtctatt tgctgtatat 2650 qctqaaattt ttgtatgcca tttagtattt ttatagttta ggaaaatatt 2700 ttctaagacc agttttagat gactcttatt cctgtagtaa tattcaattt 2750 gctgtacctg cttggtggtt agaaggaggc tagaagatga attcaggcac 2800 tttcttccaa taaaactaat tatggctcat tccctttgac aagctgtaga 2850 actggattca tttttaaacc attttcatca gtttcaaatg gtaaattctg 2900

attgatttt aaatgcgttt ttggaagaac tttgctatta ggtagtttac 2950 agatctttat aaggtgttt atatattaga agcaattata attacatctg 3000 tgattctctga actaatggtg ctaattcaga gaaatggaaa gtgaaagtga 3050 gattctctgt tgtcatcggc attccaactt tttctctttg tttttgtcca 3100 gtgttgcatt tgaatatgtc tgtttctata aataaattt ttaagaataa 3150

<210> 385

<211> 480

<212> PRT

<213> Homo sapiens

<400> 385

Met Leu Phe Arg Asn Arg Phe Leu Leu Leu Leu Ala Leu Ala Ala 1 5 10 15

Leu Leu Ala Phe Val Ser Leu Ser Leu Gln Phe Phe His Leu Ile
20 25 30

Pro Val Ser Thr Pro Lys Asn Gly Met Ser Ser Lys Ser Arg Lys
35 40 45

Arg Ile Met Pro Asp Pro Val Thr Glu Pro Pro Val Thr Asp Pro 50 55 60

Val Tyr Glu Ala Leu Leu Tyr Cys Asn Ile Pro Ser Val Ala Glu 65 70 75

Arg Ser Met Glu Gly His Ala Pro His His Phe Lys Leu Val Ser 80 85 90

Val His Val Phe Ile Arg His Gly Asp Arg Tyr Pro Leu Tyr Val 95 100 105

Ile Pro Lys Thr Lys Arg Pro Glu Ile Asp Cys Thr Leu Val Ala 110 115 120

Asn Arg Lys Pro Tyr His Pro Lys Leu Glu Ala Phe Ile Ser His 125 130 135

Met Ser Lys Gly Ser Gly Ala Ser Phe Glu Ser Pro Leu Asn Ser 140 145 150

Leu Pro Leu Tyr Pro Asn His Pro Leu Cys Glu Met Gly Glu Leu 155 160 165

Thr Gln Thr Gly Val Val Gln His Leu Gln Asn Gly Gln Leu Leu 170 175 180

Arg Asp Ile Tyr Leu Lys Lys His Lys Leu Leu Pro Asn Asp Trp
185 190 195

Ser Ala Asp Gln Leu Tyr Leu Glu Thr Thr Gly Lys Ser Arg Thr 200 205 210

Leu	Gln	Ser	Gly	Leu 215	Ala	Leu	Leu	Tyr	Gly 220	Phe	Leu	Pro	Asp	Phe 225
Asp	Trp	Lys	Lys	Ile 230	Tyr	Phe	Arg	His	Gln 235	Pro	Ser	Ala	Leu	Phe 240
Cys	Ser	Gly	Ser	Cys 245	Tyr	Cys	Pro	Val	Arg 250	Asn	Gln	Tyr	Leu	Glu 255
Lys	Glu	Gln	Arg	Arg 260	Gln	Tyr	Leu	Leu	Arg 265	Leu	Lys	Asn	Ser	Gln 270
Leu	Glu	Lys	Thr	Tyr 275	Gly	Glu	Met	Ala	Lys 280	Ile	Val	Asp	Val	Pro 285
Thr	Lys	Gln	Leu	Arg 290	Ala	Ala	Asn	Pro	Ile 295	Asp	Ser	Met	Leu	Cys 300
His	Phe	Суз	His	Asn 305	Val	Ser	Phe	Pro	Cys 310	Thr	Arg	Asn	Gly	Cys 315
Val	Asp	Met	Glu	His 320	Phe	Lys	Val	Ile	Lys 325	Thr	His	Gln	Ile	Glu 330
Asp	Glu	Arg	Glu	Arg 335	Arg	Glu	Lys	Lys	Leu 340	Tyr	Phe	Gly	Tyr	Ser 345
Leu	Leu	Gly	Ala	His 350	Pro	Ile	Leu	Asn	Gln 355	Thr	Ile	Gly	Arg	Met 360
Gln	Arg	Ala	Thr	Glu 365	Gly	Arg	Lys	Glu	Glu 370	Leu	Phe	Ala	Leu	Tyr 375
Ser	Ala	His	Asp	Val 380	Thr	Leu	Ser	Pro	Val 385	Leu	Ser	Ala	Leu	Gly 390
Leu	Ser	Glu	Ala	Arg 395	Phe	Pro	Arg	Phe	Ala 400	Ala	Arg	Leu	Ile	Phe 405
Glu	Leu	Trp	Gln	Asp 410	Arg	Glu	Lys	Pro	Ser 415	Glu	His	Ser	Val	Arg 420
Ile	Leu	Tyr	Asn	Gly 425	Val	Asp	Val	Thr	Phe 430	His	Thr	Ser	Phe	Cys 435
Gln	Asp	His	His	Lys 440	Arg	Ser	Pro	Lys	Pro 445	Met	Cys	Pro	Leu	Glu 450
Asn	Leu	Val	Arg	Phe 455	Val	Lys	Arg	Asp	Met 460	Phe	Val	Ala	Leu	Gly 465
Gly	Ser	Gly	Thr	Asn 470	Tyr	Tyr	Asp	Ala	Cys 475	His	Arg	Glu	Gly	Phe 480
<210>	> 386	6												

<210> 386 <211> 24 <212> DNA <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 386
 ccaagcagct tagagctcca gacc 24
<210> 387
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 387
 ttccctatgc tctgtattgg catgg 25
<210> 388
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 388
 gccacttctg ccacaatgtc agctttccct gtaccagaaa tggctgtgtt 50
<210> 389
<211> 3313
<212> DNA
<213> Homo sapiens
<400> 389
 aaaaaaagctc actaaagttt ctattagagc gaatacggta gatttccatc 50
 cccttttgaa gaacagtact gtggagctat ttaagagata aaaacgaaat 100
 atcctttctg ggagttcaag attgtgcagt aattggttag gactctgagc 150
 gccgctgttc accaatcggg gagagaaaag cggagatcct gctcgccttg 200
 cacgcgcctg aagcacaaag cagatagcta ggaatgaacc atccctggga 250
 gtatgtggaa acaacggagg agctctgact tcccaactgt cccattctat 300
 gggcgaagga actgctcctg acttcagtgg ttaagggcag aattgaaaat 350
 aattctqqaq qaaqataaqa atgattcctg cgcgactgca ccgggactac 400
 aaagggcttg tcctgctggg aatcctcctg gggactctgt gggagaccgg 450
 atgcacccag atacgctatt cagttccgga agagctggag aaaggctcta 500
 gggtgggcga catctccagg gacctggggc tggagccccg ggagctcgcg 550
 gagegeggag teegcateat eeccagaggt aggacgeage ttttegeeet 600
```

gaatccgcgc agcggcagct tggtcacggc gggcaggata gaccgggagg 650 agetetgtat gggggeeate aagtgteaat taaatetaga cattetgatg 700 gaggataaag tgaaaatata tggagtagaa gtagaagtaa gggacattaa 750 cgacaatgcg ccttactttc gtgaaagtga attagaaata aaaattagtg 800 aaaatgcagc cactgagatg cggttccctc taccccacgc ctgggatccg 850 gatateggga agaactetet geagagetae gageteagee egaacaetea 900 cttctccctc atcgtgcaaa atggagccga cggtagtaag taccccgaat 950 tggtgctgaa acgcgccctg gaccgcgaag aaaaggctgc tcaccacctg 1000 gtccttacgg cctccgacgg gggcgacccg gtgcgcacag gcaccgcgcg 1050 catecgegtg atggttetgg atgegaacga caacgeacca gegtttgete 1100 agecegagta eegegegage gtteeggaga atetggeett gggeaegeag 1150 ctgcttgtag tcaacgctac cgaccctgac gaaggagtca atgcggaagt 1200 gaggtattcc ttccggtatg tggacgacaa ggcggcccaa gttttcaaac 1250 taqattqtaa ttcaggqaca atatcaacaa taggggagtt ggaccacgag 1300 gagtcaggat tctaccagat ggaagtgcaa gcaatggata atgcaggata 1350 ttctgcgcga gccaaagtcc tgatcactgt tctggacgtg aacgacaatg 1400 ccccagaagt ggtcctcacc tctctcgcca gctcggttcc cgaaaactct 1450 cccagaggga cattaattgc ccttttaaat gtaaatgacc aagattctga 1500 ggaaaacgga caggtgatct gtttcatcca aggaaatctg ccctttaaat 1550 tagaaaaatc ttacggaaat tactatagtt tagtcacaga catagtcttg 1600 gatagggaac aggttcctag ctacaacatc acagtgaccg ccactgaccg 1650 gggaaccccg ccctatcca cggaaactca tatctcgctg aacgtggcag 1700 acaccaacga caacccgccg gtcttccctc aggcctccta ttccgcttat 1750 atcccagaga acaatcccag aggagtttcc ctcgtctctg tgaccgccca 1800 cgaccccgac tgtgaagaga acgcccagat cacttattcc ctggctgaga 1850 acaccatcca aggggcaagc ctatcgtcct acgtgtccat caactccgac 1900 actggggtac tgtatgcgct gagctccttc gactacgagc agttccgaga 1950 cttgcaagtg aaagtgatgg cgcgggacaa cgggcacccg ccctcagca 2000 gcaacgtgtc gttgagcctg ttcgtgctgg accagaacga caatgcgccc 2050

gagatectgt accoegeet ceecaeggae ggttecaetg gegtggaget 2100 ggctccccgc tccgcagagc ccggctacct ggtgaccaag gtggtggcgg 2150 tggacagaga ctccggccag aacgcctggc tgtcctaccg tctgctcaag 2200 gccagcgagc cgggactctt ctcggtgggt ctgcacacgg gcgaggtgcg 2250 cacggcgcga gccctgctgg acagagacgc gctcaagcag agcctcgtag 2300 tggccgtcca ggaccacggc cagccccctc tctccgccac tgtcacgctc 2350 accgtggccg tggccgacag catcccccaa gtcctggcgg acctcggcag 2400 cctcgagtct ccagctaact ctgaaacctc agacctcact ctgtacctgg 2450 tggtagcggt ggccgcggtc tcctgcgtct tcctggcctt cgtcatcttg 2500 ctgctggcgc tcaggctgcg gcgctggcac aagtcacgcc tgctgcaggc 2550 ttcaqqaqqc qqcttqacaq qaqcqccgqc gtcgcacttt gtgggcgtgg 2600 acggggtgca ggctttcctg cagacctatt cccacgaggt ttccctcacc 2650 acggactege ggaagagtea cetgatette ecceageeea aetatgeaga 2700 catgctcgtc agccaggaga gctttgaaaa aagcgagccc cttttgctgt 2750 caggtgattc ggtattttct aaagacagtc atgggttaat tgaggtgagt 2800 ttatatcaaa tottotttot ttttttttt aattgototg totoccaage 2850 tggagtgcag cggtacgatc atagctcact gcggcctcaa actcctaggc 2900 tcaagcaatt atcccacctt tgcctccggt gtaacaggga ctacaggtgc 2950 aagccaccta ctgtctgcct atctatctat ctatctatct atctatctat 3000 ctatctatct atctatctat tactttcttg tacagacggg agtctcacgc 3050 ctgtaatccc agtactttgg gaggccgagg cgggtggatc acctgaggtt 3100 gggagtttga gaccagcctg accaacatgg agaaaccccg tctatactaa 3150 aaaaatacaa aattageegg gegtggtggt geatgtetgt aateeeaget 3200 acttgggagg ctgagtcagg agaattgctt taacctggga ggtggaggtt 3250 gcaatgagct qagattgtgc cattgcactc cagcctgggc aacaagagtg 3300 aaactctatc tca 3313

<210> 390

<211> 916

<212> PRT

<213> Homo sapiens

<400> 390

Met Ile Pro Ala Arg Leu His Arg Asp Tyr Lys Gly Leu Val Leu Leu Gly Ile Leu Leu Gly Thr Leu Trp Glu Thr Gly Cys Thr Gln Ile Arq Tyr Ser Val Pro Glu Glu Leu Glu Lys Gly Ser Arg Val Gly Asp Ile Ser Arg Asp Leu Gly Leu Glu Pro Arg Glu Leu Ala Glu Arg Gly Val Arg Ile Ile Pro Arg Gly Arg Thr Gln Leu Phe 70 Ala Leu Asn Pro Arg Ser Gly Ser Leu Val Thr Ala Gly Arg Ile Asp Arg Glu Glu Leu Cys Met Gly Ala Ile Lys Cys Gln Leu Asn Leu Asp Ile Leu Met Glu Asp Lys Val Lys Ile Tyr Gly Val Glu Val Glu Val Arg Asp Ile Asn Asp Asn Ala Pro Tyr Phe Arg Glu Ser Glu Leu Glu Ile Lys Ile Ser Glu Asn Ala Ala Thr Glu Met Arg Phe Pro Leu Pro His Ala Trp Asp Pro Asp Ile Gly Lys Asn Ser Leu Gln Ser Tyr Glu Leu Ser Pro Asn Thr His Phe Ser Leu Ile Val Gln Asn Gly Ala Asp Gly Ser Lys Tyr Pro Glu Leu Val Leu Lys Arg Ala Leu Asp Arg Glu Glu Lys Ala Ala His His Leu Val Leu Thr Ala Ser Asp Gly Gly Asp Pro Val Arg Thr Gly Thr Ala Arq Ile Arq Val Met Val Leu Asp Ala Asn Asp Asn Ala Pro Ala Phe Ala Gln Pro Glu Tyr Arg Ala Ser Val Pro Glu Asn Leu Ala Leu Gly Thr Gln Leu Leu Val Val Asn Ala Thr Asp Pro Asp 270 260 265 Glu Gly Val Asn Ala Glu Val Arg Tyr Ser Phe Arg Tyr Val Asp Asp Lys Ala Ala Gln Val Phe Lys Leu Asp Cys Asn Ser Gly Thr

300 290 295 Ile Ser Thr Ile Gly Glu Leu Asp His Glu Glu Ser Gly Phe Tyr 305 Gln Met Glu Val Gln Ala Met Asp Asn Ala Gly Tyr Ser Ala Arg Ala Lys Val Leu Ile Thr Val Leu Asp Val Asn Asp Asn Ala Pro Glu Val Val Leu Thr Ser Leu Ala Ser Ser Val Pro Glu Asn Ser Pro Arg Gly Thr Leu Ile Ala Leu Leu Asn Val Asn Asp Gln Asp 365 Ser Glu Glu Asn Gly Gln Val Ile Cys Phe Ile Gln Gly Asn Leu Pro Phe Lys Leu Glu Lys Ser Tyr Gly Asn Tyr Tyr Ser Leu Val Thr Asp Ile Val Leu Asp Arg Glu Gln Val Pro Ser Tyr Asn Ile 410 Thr Val Thr Ala Thr Asp Arg Gly Thr Pro Pro Leu Ser Thr Glu 425 Thr His Ile Ser Leu Asn Val Ala Asp Thr Asn Asp Asn Pro Pro 440 Val Phe Pro Gln Ala Ser Tyr Ser Ala Tyr Ile Pro Glu Asn Asn 455 Pro Arg Gly Val Ser Leu Val Ser Val Thr Ala His Asp Pro Asp 475 470 Cys Glu Glu Asn Ala Gln Ile Thr Tyr Ser Leu Ala Glu Asn Thr 485 Ile Gln Gly Ala Ser Leu Ser Ser Tyr Val Ser Ile Asn Ser Asp 500 505 510 Thr Gly Val Leu Tyr Ala Leu Ser Ser Phe Asp Tyr Glu Gln Phe 515 Arg Asp Leu Gln Val Lys Val Met Ala Arg Asp Asn Gly His Pro 540 530 535 Pro Leu Ser Ser Asn Val Ser Leu Ser Leu Phe Val Leu Asp Gln Asn Asp Asn Ala Pro Glu Ile Leu Tyr Pro Ala Leu Pro Thr Asp 560 565 570 Gly Ser Thr Gly Val Glu Leu Ala Pro Arg Ser Ala Glu Pro Gly 580 585

Tyr Leu Val Thr Lys Val Val Ala Val Asp Arg Asp Ser Gly Gln Asn Ala Trp Leu Ser Tyr Arg Leu Leu Lys Ala Ser Glu Pro Gly 605 Leu Phe Ser Val Gly Leu His Thr Gly Glu Val Arg Thr Ala Arg Ala Leu Leu Asp Arg Asp Ala Leu Lys Gln Ser Leu Val Val Ala Val Gln Asp His Gly Gln Pro Pro Leu Ser Ala Thr Val Thr Leu 650 Thr Val Ala Val Ala Asp Ser Ile Pro Gln Val Leu Ala Asp Leu Gly Ser Leu Glu Ser Pro Ala Asn Ser Glu Thr Ser Asp Leu Thr Leu Tyr Leu Val Val Ala Val Ala Val Ser Cys Val Phe Leu Ala Phe Val Ile Leu Leu Ala Leu Arg Leu Arg Trp His Lys Ser Arg Leu Leu Gln Ala Ser Gly Gly Leu Thr Gly Ala Pro Ala Ser His Phe Val Gly Val Asp Gly Val Gln Ala Phe Leu Gln Thr Tyr Ser His Glu Val Ser Leu Thr Thr Asp Ser Arg Lys Ser His Leu Ile Phe Pro Gln Pro Asn Tyr Ala Asp Met Leu Val Ser Gln Glu Ser Phe Glu Lys Ser Glu Pro Leu Leu Ser Gly Asp Ser Val Phe Ser Lys Asp Ser His Gly Leu Ile Glu Val Ser Leu Tyr Gln Ile Phe Phe Leu Phe Phe Phe Asn Cys Ser Val Ser Gln Ala Gly Val Gln Arg Tyr Asp His Ser Ser Leu Arg Pro Gln Thr Pro Arg Leu Lys Gln Leu Ser His Leu Cys Leu Arg Cys Asn Arg Asp Tyr Arg Cys Lys Pro Pro Thr Val Cys Leu Ser Ile Tyr Leu Ser Ile Tyr Leu Ser Ile Tyr Leu Ser Ile Tyr Leu Leu Ser Cys Thr Asp Gly Ser Leu Thr Pro Val Ile Pro Val Leu Trp 890 895 900

Glu Ala Glu Ala Gly Gly Ser Pro Glu Val Gly Ser Leu Arg Pro 905 910 915

Ala

<210> 391

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 391

tccgtctctg tgaaccgccc cac 23

<210> 392

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

1

M. 4.14.

器

14

<223> Synthetic oligonucleotide probe

<400> 392

ctcgggcgca ttgtcgttct ggtc 24

<210> 393

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 393

ccgactgtga aagagaacgc cccagatcca cttgttcccc 40

<210> 394

<211> 999

<212> DNA

<213> Homo sapiens

<400> 394

cccaggetet agtgeaggag gagaaggagg aggageagga ggtggagatt 50 cccagttaaa aggeteeaga ategtgtace aggeagagaa etgaagtact 100 ggggeeteet eeactgggte egaateagta ggtgaeeeeg eeeetggatt 150 etggaagace teaceatggg aegeeeeega eetegtgegg ceaagaegtg 200

gatgttcctg ctcttgctgg ggggagcctg ggcaggacac tccagggcac 250 aggaggacaa ggtgctgggg ggtcatgagt gccaacccca ttcgcagcct 300 tggcaggcgg ccttgttcca gggccagcaa ctactctgtg gcggtgtcct 350 tgtaggtggc aactgggtcc ttacagctgc ccactgtaaa aaaccgaaat 400 acacagtacg cctgggagac cacagcctac agaataaaga tggcccagag 450 caagaaatac ctgtggttca gtccatccca cacccctgct acaacagcag 500 cgatgtggag gaccacaacc atgatctgat gcttcttcaa ctgcgtgacc 550 aggeatect ggggtecaaa gtgaageeca teageetgge agateattge 600 acccagacty gacagaagty caccetatea ggatggggaa atgteaccag 650 tccccgagag aattttcctg acactctcaa ctgtgcagaa gtaaaaatct 700 ttccccagaa gaagtgtgag gatgcttacc cggggcagat cacagatggc 750 atggtctgtg caggcagcag caaaggggct gacacgtgcc agggcgattc 800 tggaggcccc ctggtgtgt atggtgcact ccagggcatc acatcctggg 850 gctcagaccc ctgtgggagg tccgacaaac ctggcgtcta taccaacatc 900 tgccgctacc tggactggat caagaagatc ataggcagca agggctgatt 950 ctaggataag cactagatct cccttaataa actcacaact ctctggttc 999

<210> 395

<211> 260

<212> PRT

<213> Homo sapiens

<400> 395

Met Gly Arg Pro Arg Pro Arg Ala Ala Lys Thr Trp Met Phe Leu

1 5 10 15

Leu Leu Gly Gly Ala Trp Ala Gly His Ser Arg Ala Gln Glu 20 25 30

Asp Lys Val Leu Gly Gly His Glu Cys Gln Pro His Ser Gln Pro 35 40 45

Trp Gln Ala Ala Leu Phe Gln Gly Gln Gln Leu Cys Gly Gly 50 55 60

Val Leu Val Gly Gly Asn Trp Val Leu Thr Ala Ala His Cys Lys
65 70 75

Lys Pro Lys Tyr Thr Val Arg Leu Gly Asp His Ser Leu Gln Asn 80 85 90

Lys Asp Gly Pro Glu Gln Glu Ile Pro Val Val Gln Ser Ile Pro 95 100 105

```
His Pro Cys Tyr Asn Ser Ser Asp Val Glu Asp His Asn His Asp
                 110
                                      115
 Leu Met Leu Leu Gln Leu Arg Asp Gln Ala Ser Leu Gly Ser Lys
                 125
                                      130
 Val Lys Pro Ile Ser Leu Ala Asp His Cys Thr Gln Pro Gly Gln
 Lys Cys Thr Val Ser Gly Trp Gly Thr Val Thr Ser Pro Arg Glu
                                      160
 Asn Phe Pro Asp Thr Leu Asn Cys Ala Glu Val Lys Ile Phe Pro
                 170
                                      175
                                                          180
 Gln Lys Lys Cys Glu Asp Ala Tyr Pro Gly Gln Ile Thr Asp Gly
                                                           195
                 185
 Met Val Cys Ala Gly Ser Ser Lys Gly Ala Asp Thr Cys Gln Gly
                 200
                                                           210
 Asp Ser Gly Gly Pro Leu Val Cys Asp Gly Ala Leu Gln Gly Ile
 Thr Ser Trp Gly Ser Asp Pro Cys Gly Arg Ser Asp Lys Pro Gly
                 230
 Val Tyr Thr Asn Ile Cys Arg Tyr Leu Asp Trp Ile Lys Lys Ile
                 245
 Ile Gly Ser Lys Gly
                 260
<210> 396
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 396
 cagcctacag aataaagatg gccc 24
<210> 397
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 397
ggtgcaatga tctgccaggc tgat 24
<210> 398
<211> 48
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 398
agaaatacct gtggttcagt ccatcccaaa cccctgctac aacagcag 48
<210> 399
<211> 2236
<212> DNA
<213> Homo sapiens
<400> 399
 ggcgccggtg caccgggcgg gctgagcgcc tcctgcggcc cggcctgcgc 50
 geoecggeec geogegeege ceaegeecea acceeggeec gegeececta 100
 gececegeee gggeeegege eegegeeege geceaggtga gegeteegee 150
 egeogegagg eccegeeee geeegeeee geeegeeee ggeeggeggg 200
 ggaaccgggc ggattcctcg cgcgtcaaac cacctgatcc cataaaacat 250
 tcatcctccc ggcggcccgc gctgcgagcg ccccgccagt ccgcgccgcc 300
 geogeocteg ceetgtgege cetgegege etgegeacce geggeeegag 350
```

cgccttccgt gggctgcaca gcctcgaccg tctcctactg caccagaacc 1150 gcqtqqccca tqtqcacccq catgccttcc gtgaccttgg ccgcctcatg 1200 acactctatc tgtttgccaa caatctatca gcgctgccca ctgaggccct 1250 ggccccctg cgtgccctgc agtacctgag gctcaacgac aacccctggg 1300 tgtgtgactg ccgggcacgc ccactctggg cctggctgca gaagttccgc 1350 ggctcctcct ccgaggtgcc ctgcagcctc ccgcaacgcc tggctggccg 1400 tgacctcaaa cgcctagctg ccaatgacct gcagggctgc gctgtggcca 1450 ccqqccctta ccatcccatc tggaccggca gggccaccga tgaggagccg 1500 ctggggcttc ccaagtgctg ccagccagat gccgctgaca aggcctcagt 1550 actggagect ggaagaccag cttcggcagg caatgcgctg aagggacgcg 1600 tgccgcccgg tgacagcccg ccgggcaacg gctctggccc acggcacatc 1650 aatgactcac cetttgggac tetgeetgge tetgetgage eecegeteac 1700 tgcaqtgcgg cccgagggct ccgagccacc agggttcccc acctcgggcc 1750 ctcgccggag gccaggctgt tcacgcaaga accgcacccg cagccactgc 1800 cgtctgggcc aggcaggcag cgggggtggc gggactggtg actcagaagg 1850 ctcaggtgcc ctacccagcc tcacctgcag cctcaccccc ctgggcctgg 1900 cqctqqtqct qtqqacagtq cttqgqccct gctgaccccc agcggacaca 1950 agagcgtgct cagcagccag gtgtgtgtac atacggggtc tctctccacg 2000 ccqccaaqcc aqccqqqcq ccqacccqtq qggcaqgcca ggccaggtcc 2050 tecetgatgg acgcetgecg eccgccacce ccatetecac eccateatgt 2100 ttacagggtt cggcggcagc gtttgttcca gaacgccgcc tcccacccag 2150 atcgcggtat atagagatat gcattttatt ttacttgtgt aaaaatatcg 2200 gacgacgtgg aataaagagc tcttttctta aaaaaa 2236

<210> 400

<211> 473

<212> PRT

<213> Homo sapiens

<400> 400

Met Lys Arg Ala Ser Ala Gly Gly Ser Arg Leu Leu Ala Trp Val 1 5 10 15

Leu Trp Leu Gln Ala Trp Gln Val Ala Ala Pro Cys Pro Gly Ala 20 25 30

Cys Val Cys Tyr Asn Glu Pro Lys Val Thr Thr Ser Cys Pro Gln Gln Gly Leu Gln Ala Val Pro Val Gly Ile Pro Ala Ala Ser Gln Arg Ile Phe Leu His Gly Asn Arg Ile Ser His Val Pro Ala Ala Ser Phe Arg Ala Cys Arg Asn Leu Thr Ile Leu Trp Leu His Ser Asn Val Leu Ala Arg Ile Asp Ala Ala Phe Thr Gly Leu Ala Leu Leu Glu Gln Leu Asp Leu Ser Asp Asn Ala Gln Leu Arg Ser 110 115 Val Asp Pro Ala Thr Phe His Gly Leu Gly Arg Leu His Thr Leu 125 His Leu Asp Arg Cys Gly Leu Gln Glu Leu Gly Pro Gly Leu Phe Arg Gly Leu Ala Ala Leu Gln Tyr Leu Tyr Leu Gln Asp Asn Ala Leu Gln Ala Leu Pro Asp Asp Thr Phe Arg Asp Leu Gly Asn Leu Thr His Leu Phe Leu His Gly Asn Arg Ile Ser Ser Val Pro Glu Arg Ala Phe Arg Gly Leu His Ser Leu Asp Arg Leu Leu Leu His Gln Asn Arg Val Ala His Val His Pro His Ala Phe Arg Asp Leu Gly Arg Leu Met Thr Leu Tyr Leu Phe Ala Asn Asn Leu Ser Ala 235 Leu Pro Thr Glu Ala Leu Ala Pro Leu Arg Ala Leu Gln Tyr Leu Arg Leu Asn Asp Asn Pro Trp Val Cys Asp Cys Arg Ala Arg Pro Leu Trp Ala Trp Leu Gln Lys Phe Arg Gly Ser Ser Ser Glu Val Pro Cys Ser Leu Pro Gln Arg Leu Ala Gly Arg Asp Leu Lys Arg Leu Ala Ala Asn Asp Leu Gln Gly Cys Ala Val Ala Thr Gly Pro Tyr His Pro Ile Trp Thr Gly Arg Ala Thr Asp Glu Glu Pro Leu

320

The state of AND THE And Ame offer they water the Gly Leu Pro Lys Cys Cys Gln Pro Asp Ala Ala Asp Lys Ala Ser

Val Leu Glu Pro Gly Arg Pro Ala Ser Ala Gly Asn Ala Leu Lys 350

Gly Arg Val Pro Pro Gly Asp Ser Pro Pro Gly Asn Gly Ser Gly

Pro Arg His Ile Asn Asp Ser Pro Phe Gly Thr Leu Pro Gly Ser 380

Ala Glu Pro Pro Leu Thr Ala Val Arg Pro Glu Gly Ser Glu Pro 395

Pro Gly Phe Pro Thr Ser Gly Pro Arg Arg Pro Gly Cys Ser 415 410

Arg Lys Asn Arg Thr Arg Ser His Cys Arg Leu Gly Gln Ala Gly 435 425 430

Ser Gly Gly Gly Thr Gly Asp Ser Glu Gly Ser Gly Ala Leu

Pro Ser Leu Thr Cys Ser Leu Thr Pro Leu Gly Leu Ala Leu Val 465 455

Leu Trp Thr Val Leu Gly Pro Cys 470

<210> 401

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 401

tggctgccct gcagtacctc tacc 24

<210> 402

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 402

ccctgcaggt cattggcagc tagg 24

<210> 403

<211> 45

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 403
 aggcactgcc tgatgacacc ttccgcgacc tgggcaacct cacac 45
<210> 404
<211> 2738
<212> DNA
<213> Homo sapiens

<400> 404 ggaagtccac ggggagcttg gatgccaaag ggaggacggc tgggtcctct 50 ggagaggact actcactggc atatttctga ggtatctgta gaataaccac 100 agceteagat actggggaet ttacagtece acagaacegt ceteceagga 150 agctgaatcc agcaagaaca atggaggcca gcgggaagct catttgcaga 200 caaaqqcaaq teetttttte ettteteett ttgggettat etetggeggg 250 cgcggcggaa cctagaagct attctgtggt ggaggaaact gagggcagct 300 cctttgtcac caatttagca aaggacctgg gtctggagca gagggaattc 350 tccaggcggg gggttagggt tgtttccaga gggaacaaac tacatttgca 400 gctcaatcag gagaccgcgg atttgttgct aaatgagaaa ttggaccgtg 450 aggatctgtg cggtcacaca gagccctgtg tgctacgttt ccaagtgttg 500 ctagagagtc ccttcgagtt ttttcaagct gagctgcaag taatagacat 550 aaacgaccac tctccagtat ttctggacaa acaaatgttg gtgaaagtat 600 cagagagcag tcctcctggg actacgtttc ctctgaagaa tgccgaagac 650 ttagatgtag gccaaaacaa tattgagaac tatataatca gccccaactc 700 ctattttcgg gtcctcaccc gcaaacgcag tgatggcagg aaatacccag 750 agctggtgct ggacaaaqcg ctggaccgag aggaagaagc tgagctcagg 800 ttaacactca cagcactgga tggtggctct ccgcccagat ctggcactgc 850 tcaggtctac atcgaagtcc tggatgtcaa cgataatgcc cctgaatttg 900 agcagccttt ctatagagtg cagatctctg aggacagtcc ggtaggcttc 950 ctggttgtga aggtctctgc cacggatgta gacacaggag tcaacggaga 1000 qatttcctat tcacttttcc aagcttcaga agagattggc aaaaccttta 1050 agatcaatcc cttgacagga gaaattgaac taaaaaaaca actcgatttc 1100 qaaaaacttc agtcctatga agtcaatatt gaggcaagag atgctggaac 1150

cttttctgga aaatgcaccg ttctgattca agtgatagat gtgaacgacc 1200 atgccccaga agttaccatg tctgcattta ccagcccaat acctgagaac 1250 gcgcctgaaa ctgtggttgc acttttcagt gtttcagatc ttgattcagg 1300 agaaaatggg aaaattagtt gctccattca ggaggatcta cccttcctcc 1350 tgaaatccgc ggaaaacttt tacaccctac taacggagag accactagac 1400 agagaaagca gagcggaata caacatcact atcactgtca ctgacttggg 1450 gacccctatg ctgataacac agctcaatat gaccgtgctg atcgccgatg 1500 tcaatgacaa cgctcccgcc ttcacccaaa cctcctacac cctgttcgtc 1550 cgcgagaaca acagccccgc cctgcacatc cgcagcgtca gcgctacaga 1600 cagagactca ggcaccaacg cccaggtcac ctactcgctg ctgccgcccc 1650 aggaccegea ectgececte acatecetgg tetecateaa egeggacaae 1700 ggccacctgt tcgccctcag gtctctggac tacgaggccc tgcaggggtt 1750 ccagttccgc gtgggcgctt cagaccacgg ctccccggcg ctgagcagcg 1800 aggegetggt gegegtggtg gtgetggaeg ceaacgaeaa etegeeette 1850 gtgctgtacc cgctgcagaa cggctccgcg ccctgcaccg agctggtgcc 1900 ccgggcggcc gagccgggct acctggtgac caaggtggtg gcggtggacg 1950 gcgactcggg ccagaacgcc tggctgtcgt accagctgct caaggccacg 2000 gageteggte tgtteggegt gtgggegeae aatggegagg tgegeaeege 2050 caggetgetg agegagegeg acgeggeeaa geacaggetg gtggtgetgg 2100 tcaaggacaa tggcgagcct ccgcgctcgg ccaccgccac gctgcacgtg 2150 ctcctggtgg acggcttctc ccagccctac ctgcctctcc cggaggcggc 2200 cccgacccag gcccaggccg acttgctcac cgtctacctg gtggtggcgt 2250 tggcctcggt gtcttcgctc ttcctctttt cggtgctcct gttcgtggcg 2300 gtgcggctgt gtaggaggag cagggcggcc tcggtgggtc gctgcttggt 2350 gcccgagggc ccccttccag ggcatcttgt ggacatgagc ggcaccagga 2400 ccctatccca gagctaccag tatgaggtgt gtctggcagg aggctcaggg 2450 accaatgagt tcaagttcct gaagccgatt atccccaact tccctcccca 2500 gtgccctggg aaagaaatac aaggaaattc taccttcccc aataactttg 2550 ggttcaatat tcagtgacca tagttgactt ttacattcca taggtatttt 2600

attttgtggc atttccatgc caatgtttat ttcccccaat ttgtgtgtat 2650 gtaatattgt acggatttac tcttgatttt tctcatgttc tttctccctt 2700 tgttttaaag tgaacattta cctttattcc tggttctt 2738

<210> 405

<211> 798

<212> PRT

<213> Homo sapiens

<400> 405

Met Glu Ala Ser Gly Lys Leu Ile Cys Arg Gln Arg Gln Val Leu 1 5 10 15

Phe Ser Phe Leu Leu Gly Leu Ser Leu Ala Gly Ala Ala Glu 20 25 30

Pro Arg Ser Tyr Ser Val Val Glu Glu Thr Glu Gly Ser Ser Phe 35 40 45

Val Thr Asn Leu Ala Lys Asp Leu Gly Leu Glu Gln Arg Glu Phe 50 55 60

Ser Arg Arg Gly Val Arg Val Val Ser Arg Gly Asn Lys Leu His
65 70 75

Leu Gln Leu Asn Gln Glu Thr Ala Asp Leu Leu Leu Asn Glu Lys
80 85 90

Leu Asp Arg Glu Asp Leu Cys Gly His Thr Glu Pro Cys Val Leu 95 100 105

Arg Phe Gln Val Leu Leu Glu Ser Pro Phe Glu Phe Phe Gln Ala 110 115 120

Glu Leu Gln Val Ile Asp Ile Asn Asp His Ser Pro Val Phe Leu 125 130 135

Asp Lys Gln Met Leu Val Lys Val Ser Glu Ser Ser Pro Pro Gly 140 145 150

Thr Thr Phe Pro Leu Lys Asn Ala Glu Asp Leu Asp Val Gly Gln
155 160 165

Asn Asn Ile Glu Asn Tyr Ile Ile Ser Pro Asn Ser Tyr Phe Arg

Val Leu Thr Arg Lys Arg Ser Asp Gly Arg Lys Tyr Pro Glu Leu
185

Val Leu Asp Lys Ala Leu Asp Arg Glu Glu Glu Ala Glu Leu Arg 200 205 210

Leu Thr Leu Thr Ala Leu Asp Gly Gly Ser Pro Pro Arg Ser Gly 215 220 225

Thr Ala Gln Val Tyr Ile Glu Val Leu Asp Val Asn Asp Asn Ala

230 235 240 Pro Glu Phe Glu Gln Pro Phe Tyr Arg Val Gln Ile Ser Glu Asp 245 Ser Pro Val Gly Phe Leu Val Val Lys Val Ser Ala Thr Asp Val Asp Thr Gly Val Asn Gly Glu Ile Ser Tyr Ser Leu Phe Gln Ala 275 280 Ser Glu Glu Ile Gly Lys Thr Phe Lys Ile Asn Pro Leu Thr Gly Glu Ile Glu Leu Lys Lys Gln Leu Asp Phe Glu Lys Leu Gln Ser 305 Tyr Glu Val Asn Ile Glu Ala Arg Asp Ala Gly Thr Phe Ser Gly Lys Cys Thr Val Leu Ile Gln Val Ile Asp Val Asn Asp His Ala 335 Pro Glu Val Thr Met Ser Ala Phe Thr Ser Pro Ile Pro Glu Asn 350 Ala Pro Glu Thr Val Val Ala Leu Phe Ser Val Ser Asp Leu Asp Ser Gly Glu Asn Gly Lys Ile Ser Cys Ser Ile Gln Glu Asp Leu Pro Phe Leu Leu Lys Ser Ala Glu Asn Phe Tyr Thr Leu Leu Thr Glu Arg Pro Leu Asp Arg Glu Ser Arg Ala Glu Tyr Asn Ile Thr Ile Thr Val Thr Asp Leu Gly Thr Pro Met Leu Ile Thr Gln Leu Asn Met Thr Val Leu Ile Ala Asp Val Asn Asp Asn Ala Pro Ala 440 Phe Thr Gln Thr Ser Tyr Thr Leu Phe Val Arg Glu Asn Asn Ser Pro Ala Leu His Ile Arg Ser Val Ser Ala Thr Asp Arg Asp Ser Gly Thr Asn Ala Gln Val Thr Tyr Ser Leu Leu Pro Pro Gln Asp Pro His Leu Pro Leu Thr Ser Leu Val Ser Ile Asn Ala Asp Asn 505 510 500 Gly His Leu Phe Ala Leu Arg Ser Leu Asp Tyr Glu Ala Leu Gln

520

515

Gly Phe Gln Phe Arg Val Gly Ala Ser Asp His Gly Ser Pro Ala Leu Ser Ser Glu Ala Leu Val Arg Val Val Leu Asp Ala Asn 545 Asp Asn Ser Pro Phe Val Leu Tyr Pro Leu Gln Asn Gly Ser Ala 560 Pro Cys Thr Glu Leu Val Pro Arg Ala Ala Glu Pro Gly Tyr Leu Val Thr Lys Val Val Ala Val Asp Gly Asp Ser Gly Gln Asn Ala 590 Trp Leu Ser Tyr Gln Leu Leu Lys Ala Thr Glu Leu Gly Leu Phe 605 Gly Val Trp Ala His Asn Gly Glu Val Arg Thr Ala Arg Leu Leu Ser Glu Arg Asp Ala Ala Lys His Arg Leu Val Val Leu Val Lys Asp Asn Gly Glu Pro Pro Arg Ser Ala Thr Ala Thr Leu His Val Leu Leu Val Asp Gly Phe Ser Gln Pro Tyr Leu Pro Leu Pro Glu Ala Ala Pro Thr Gln Ala Gln Ala Asp Leu Leu Thr Val Tyr Leu Val Val Ala Leu Ala Ser Val Ser Ser Leu Phe Leu Phe Ser Val Leu Leu Phe Val Ala Val Arg Leu Cys Arg Arg Ser Arg Ala Ala Ser Val Gly Arg Cys Leu Val Pro Glu Gly Pro Leu Pro Gly His Leu Val Asp Met Ser Gly Thr Arg Thr Leu Ser Gln Ser Tyr Gln Tyr Glu Val Cys Leu Ala Gly Gly Ser Gly Thr Asn Glu Phe Lys Phe Leu Lys Pro Ile Ile Pro Asn Phe Pro Pro Gln Cys Pro Gly Lys Glu Ile Gln Gly Asn Ser Thr Phe Pro Asn Asn Phe Gly Phe Asn Ile Gln

```
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 406
 ctgagaacgc gcctgaaact gtg 23
<210> 407
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 407
 agcgttgtca ttgacatcgg cg 22
<210> 408
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 408
ttagttqctc cattcaggag gatctaccct tcctcctgaa atccgcggaa 50
<210> 409
<211> 1379
<212> DNA
<213> Homo sapiens
<400> 409
 acccaegegt eegeceaege gteegeceae gegteegee aegegteege 50
 gcgtagccgt gcgccgattg cctctcggcc tgggcaatgg tcccggctgc 100
 cggtcgacga ccgccccgcg tcatgcggct cctcggctgg tggcaagtat 150
 tgctgtgggt gctgggactt cccgtccgcg gcgtggaggt tgcagaggaa 200
 agtggtcgct tatggtcaga ggagcagcct gctcaccctc tccaggtggg 250
 ggctgtgtac ctgggtgagg aggagctcct gcatgacccg atgggccagg 300
 acagggcagc agaagaggcc aatgcggtgc tggggctgga cacccaaggc 350
 gatcacatgg tgatgctgtc tgtgattcct ggggaagctg aggacaaagt 400
 qaqttcaqaq cctaqcqqcq tcacctqtgq tgctggagga gcggaggact 450
 caaggtgcaa cgtccgagag agccttttct ctctggatgg cgctggagca 500
```

cactteectg acagagaaga ggagtattac acagagecag aagtggegga 550 atctgacgca gccccgacag aggactccaa taacactgaa agtctgaaat 600 ccccaaaggt gaactgtgag gagagaaaca ttacaggatt agaaaatttc 650 actctgaaaa ttttaaatat gtcacaggac cttatggatt ttctgaaccc 700 aaacggtagt gactgtactc tagtcctgtt ttacaccccg tggtgccqct 750 tttctgccag tttggcccct cactttaact ctctgccccg ggcatttcca 800 caggtttggc accgtagctg ttcctaatat tttattattt caaggagcta 900 aaccaatggc cagatttaat catacagatc gaacactgga aacactgaaa 950 atcttcattt ttaatcagac aggtatagaa gccaagaaga atgtggtggt 1000 aactcaagcc gaccaaatag gccctcttcc cagcactttg ataaaaagtg 1050 tggactggtt gcttgtattt tccttattct ttttaattag ttttattatg 1100 tatgctacca ttcgaactga gagtattcgg tggctaattc caggacaaga 1150 gcaggaacat gtggagtagt gatggtctga aagaagttgg aaagaggaac 1200 ttcaatcctt cgtttcagaa attagtgcta cagtttcata cattttctcc 1250 agtgacgtgt tgacttgaaa cttcaggcag attaaaagaa tcatttgttg 1300 aacaactgaa tgtataaaaa aattataaac tggtgtttta actagtattg 1350 caataagcaa atgcaaaaat attcaatag 1379

<210> 410

<211> 360

<212> PRT

<213> Homo sapiens

<400> 410

Met Val Pro Ala Ala Gly Arg Arg Pro Pro Arg Val Met Arg Leu
1 5 10 15

Leu Gly Trp Trp Gln Val Leu Leu Trp Val Leu Gly Leu Pro Val 20 25 30

Arg Gly Val Glu Val Ala Glu Glu Ser Gly Arg Leu Trp Ser Glu
35 40 45

Glu Gln Pro Ala His Pro Leu Gln Val Gly Ala Val Tyr Leu Gly
50 55 60

Glu Glu Glu Leu Leu His Asp Pro Met Gly Gln Asp Arg Ala Ala 65 70 75

Glu Glu Ala Asn Ala Val Leu Gly Leu Asp Thr Gln Gly Asp His

90 80 85 Met Val Met Leu Ser Val Ile Pro Gly Glu Ala Glu Asp Lys Val Ser Ser Glu Pro Ser Gly Val Thr Cys Gly Ala Gly Gly Ala Glu Asp Ser Arg Cys Asn Val Arg Glu Ser Leu Phe Ser Leu Asp Gly 125 Ala Gly Ala His Phe Pro Asp Arg Glu Glu Glu Tyr Tyr Thr Glu 140 Pro Glu Val Ala Glu Ser Asp Ala Ala Pro Thr Glu Asp Ser Asn 155 160 Asn Thr Glu Ser Leu Lys Ser Pro Lys Val Asn Cys Glu Glu Arg 175 170 Asn Ile Thr Gly Leu Glu Asn Phe Thr Leu Lys Ile Leu Asn Met 185 Ser Gln Asp Leu Met Asp Phe Leu Asn Pro Asn Gly Ser Asp Cys Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser Leu Ala Pro His Phe Asn Ser Leu Pro Arg Ala Phe Pro Ala Leu His Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu

Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu

Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu

350

<210> 411 <211> 24 360

```
The party will be have been the second and the second and the second are second and the second are second and the second are second
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
 cacagagcca gaagtggcgg aatc 24
<210> 412
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 412
ccacatgttc ctgctcttgt cctgg 25
<210> 413
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 413
 cggtagtgac tgtactctag tcctgtttta caccccgtgg tgccg 45
<210> 414
<211> 1196
<212> DNA
<213> Homo sapiens
<400> 414
 coeggeteeg etecetetge eccetegggg tegegegeec acgatgetge 50
 agggeeetgg etegetgetg etgetettee tegeetegea etgetgeetg 100
 ggctcggcgc gcgggctctt cctctttggc cagcccgact tctcctacaa 150
 gcgcagcaat tgcaagccca tcccggtcaa cctgcagctg tgccacggca 200
 togaatacca gaacatgogg ctgcccaacc tgctgggcca cgagaccatg 250
 aaggaggtgc tggagcaggc cggcgcttgg atcccgctgg tcatgaagca 300
 gtgccacccg gacaccaaga agttcctgtg ctcgctcttc gcccccgtct 350
 gcctcgatga cctagacgag accatccagc catgccactc gctctgcgtg 400
 caggtgaagg accgctgcgc cccggtcatg tccgccttcg gcttcccctg 450
 gcccgacatg cttgagtgcg accgtttccc ccaggacaac gacctttgca 500
 tececetege tageagegae caceteetge cagecacega ggaageteea 550
```

aaggtatgtg aagcetgcaa aaataaaaat gatgatgaca acgacataat 600 ggaaacgctt tgtaaaaatg attttgcact gaaaataaaa gtgaaggaga 650 taacctacat caaccgagat accaaaatca tcctggagac caagagcaag 700 accatttaca agctgaacgg tgtgtccgaa agggacctga agaaatcggt 750 gctgtggctc aaagacagct tgcagtgcac ctgtgaggag atgaacgaca 800 tcaacgcgcc ctatctggtc atgggacaga aacagggtgg ggagctggtg 850 atcacctcgg tgaagcggtg gcagaagggg cagagaggt tcaagcgcat 900 ctcccgcagc atccgcaagc tgcagtgcta gtcccggcat cctgatggct 950 ccgacaggcc tgctccagac acccctagct gcacgctgac catttctgct ccgggatctc 1000 agctcccgtt ccccaagcac actcctagct gctccagtct cagcctggc 1050 agcttccccc tgccttttgc acgttttca cccaaggaa aagcccaccc 1150 gaatcttgta gaaatattca aactaataaa atcatgaata ttttaa 1196

<210> 415

<211> 295

<212> PRT

<213> Homo sapiens

<400> 415

Met Leu Gln Gly Pro Gly Ser Leu Leu Leu Leu Phe Leu Ala Ser
1 5 10 15

His Cys Cys Leu Gly Ser Ala Arg Gly Leu Phe Leu Phe Gly Gln $20 \\ 25 \\ 30$

Pro Asp Phe Ser Tyr Lys Arg Ser Asn Cys Lys Pro Ile Pro Val 35 40 45

Asn Leu Gln Leu Cys His Gly Ile Glu Tyr Gln Asn Met Arg Leu 50 55 60

Pro Asn Leu Gly His Glu Thr Met Lys Glu Val Leu Glu Gln 65 70 75

Ala Gly Ala Trp Ile Pro Leu Val Met Lys Gln Cys His Pro Asp 80 85 90

Thr Lys Lys Phe Leu Cys Ser Leu Phe Ala Pro Val Cys Leu Asp 95 100 105

Asp Leu Asp Glu Thr Ile Gln Pro Cys His Ser Leu Cys Val Gln 110 115 120

Val Lys Asp Arg Cys Ala Pro Val Met Ser Ala Phe Gly Phe Pro 125 130 135

```
Trp Pro Asp Met Leu Glu Cys Asp Arg Phe Pro Gln Asp Asn Asp
                 140
Leu Cys Ile Pro Leu Ala Ser Ser Asp His Leu Leu Pro Ala Thr
                 155
Glu Glu Ala Pro Lys Val Cys Glu Ala Cys Lys Asn Lys Asn Asp
                 170
Asp Asp Asn Asp Ile Met Glu Thr Leu Cys Lys Asn Asp Phe Ala
                 185
Leu Lys Ile Lys Val Lys Glu Ile Thr Tyr Ile Asn Arg Asp Thr
                                                          210
                 200
Lys Ile Ile Leu Glu Thr Lys Ser Lys Thr Ile Tyr Lys Leu Asn
Gly Val Ser Glu Arg Asp Leu Lys Lys Ser Val Leu Trp Leu Lys
                 230
Asp Ser Leu Gln Cys Thr Cys Glu Glu Met Asn Asp Ile Asn Ala
Pro Tyr Leu Val Met Gly Gln Lys Gln Gly Glu Leu Val Ile
Thr Ser Val Lys Arg Trp Gln Lys Gly Gln Arg Glu Phe Lys Arg
 Ile Ser Arg Ser Ile Arg Lys Leu Gln Cys
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 416
cctggctcgc tgctgctgct c 21
<210> 417
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
cctcacaggt gcactgcaag ctgtc 25
<210> 418
<211> 47
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 418
ctcttcctct ttggccagcc cgacttctcc tacaagcgca gaattgc 47
<210> 419
<211> 1830
<212> DNA
<213> Homo sapiens
<400> 419
 gtggaggccg ccgacgatgg cggggccgac ggaggccgag acggggttgg 50
 ccgaqcccq qqcctqtqc qcqcaqcqqq qccaccqcac ctacqcqcqc 100
 cgctgggtgt tcctgctcgc gatcagcctg ctcaactgct ccaacgccac 150
 gctgtggctc agctttgcac ctgtggctga cgtcattgct gaggacttgg 200
 tcctgtccat ggagcagatc aactggctgt cactggtcta cctcgtggta 250
 tocaccccat ttggcgtggc ggccatctgg atcctggact ccgtcgggct 300
 ccgtgcggcg accatcctgg gtgcgtggct gaactttgcc gggagtgtgc 350
 tacgcatggt gccctgcatg gttgttggga cccaaaaccc atttgccttc 400
 ctcatgggtg gccagagcct ctgtgccctt gcccagagcc tggtcatctt 450
 ctctccagcc aagctggctg ccttgtggtt cccagagcac cagcgagcca 500
 cggccaacat gctcgccacc atgtcgaacc ctctgggcgt ccttgtggcc 550
 aatgtgctgt cccctgtgct ggtcaagaag ggtgaggaca ttccgttaat 600
 gctcggtgtc tataccatcc ctgctggcgt cgtctgcctg ctgtccacca 650
 tetgeetgtg ggagagtgtg eeceecacce egeettetge eggggetgee 700
 agetecacet cagagaagtt cetggatggg etcaagetge ageteatgtg 750
 qaacaaqqcc tatqtcatcc tqqctqtqtq cttqqqqqqa atqatcqqqa 800
 tetetgecag etteteagee etcetggage agateetetg tgeaagegge 850
 cactccagtg ggttttccgg cctctgtggc gctctcttca tcacgtttgg 900
 gatcctgggg gcactggctc tcggccccta tgtggaccgg accaagcact 950
 tcactgaggc caccaagatt ggcctgtgcc tgttctctct ggcctgcgtg 1000
 ccctttgccc tggtgtccca gctgcaggga cagacccttg ccctggctgc 1050
```

cacctgctcg ctgctcgggc tgtttggctt ctcggtgggc cccgtggcca 1100

<210> 420

<211> 560

<212> PRT

<213> Homo sapiens

<400> 420

Met Ala Gly Pro Thr Glu Ala Glu Thr Gly Leu Ala Glu Pro Arg
1 5 10 15

Ala Leu Cys Ala Gln Arg Gly His Arg Thr Tyr Ala Arg Arg Trp
20 25 30

Val Phe Leu Leu Ala Ile Ser Leu Leu Asn Cys Ser Asn Ala Thr 35 40 45

Leu Trp Leu Ser Phe Ala Pro Val Ala Asp Val Ile Ala Glu Asp 50 55 60

Leu Val Leu Ser Met Glu Gln Ile Asn Trp Leu Ser Leu Val Tyr
65 70 75

Leu Val Val Ser Thr Pro Phe Gly Val Ala Ala Ile Trp Ile Leu
80 85 90

Asp Ser Val Gly Leu Arg Ala Ala Thr Ile Leu Gly Ala Trp Leu 95 100 105

Asn Phe Ala Gly Ser Val Leu Arg Met Val Pro Cys Met Val Val

				110					115					120
Gly	Thr	Gln	Asn	Pro 125	Phe	Ala	Phe	Leu	Met 130	Gly	Gly	Gln	Ser	Leu 135
Суз	Ala	Leu	Ala	Gln 140	Ser	Leu	Val	Ile	Phe 145	Ser	Pro	Ala	Lys	Leu 150
Ala	Ala	Leu	Trp	Phe 155	Pro	Glu	His	Gln	Arg 160	Ala	Thr	Ala	Asn	Met 165
Leu	Ala	Thr	Met	Ser 170	Asn	Pro	Leu	Gly	Val 175	Leu	Val	Ala	Asn	Val 180
Leu	Ser	Pro	Val	Leu 185	Val	Lys	Lys	Gly	Glu 190	Asp	Ile	Pro	Leu	Met 195
Leu	Gly	Val	Tyr	Thr 200	Ile	Pro	Ala	Gly	Val 205	Val	Cys	Leu	Leu	Ser 210
Thr	Ile	Cys	Leu	Trp 215	Glu	Ser	Val	Pro	Pro 220	Thr	Pro	Pro	Ser	Ala 225
Gly	Ala	Ala	Ser	Ser 230	Thr	Ser	Glu	Lys	Phe 235	Leu	Asp	Gly	Leu	Lys 240
Leu	Gln	Leu	Met	Trp 245	Asn	Lys	Ala	Tyr	Val 250	Ile	Leu	Ala	Val	Cys 255
Leu	Gly	Gly	Met	Ile 260	Gly	Ile	Ser	Ala	Ser 265	Phe	Ser	Ala	Leu	Leu 270
Glu	Gln	Ile	Leu	Cys 275	Ala	Ser	Gly	His	Ser 280	Ser	Gly	Phe	Ser	Gly 285
Leu	Суз	Gly	Ala	Leu 290	Phe	Ile	Thr	Phe	Gly 295	Ile	Leu	Gly	Ala	100 300
Ala	Leu	Gly	Pro	Tyr 305	Val	Asp	Arg	Thr	Lys 310	His	Phe	Thr	Glu	Ala 315
Thr	Lys	Ile	Gly	Leu 320	Cys	Leu	Phe	Ser	Leu 325	Ala	Cys	Val	Pro	Phe 330
				335					340				Ala	345
				350					355				Pro	360
Ala	Met	Glu	Leu	Ala 365	Val	Glu	Cys	Ser	Phe 370	Pro	Val	Gly	Glu	Gl ₃ 375
			_	380					385				Gly	390
Leu	Ile	Met	Leu	Ala 395	Met	Thr	Ala	Leu	Thr 400	Val	Arg	Arg	Ser	Glu 405

```
Pro Ser Leu Ser Thr Cys Gln Gln Gly Glu Asp Pro Leu Asp Trp
                 410
Thr Val Ser Leu Leu Met Ala Gly Leu Cys Thr Phe Phe Ser
                 425
                                     430
Cys Ile Leu Ala Val Phe Phe His Thr Pro Tyr Arg Arg Leu Gln
Ala Glu Ser Gly Glu Pro Pro Ser Thr Arg Asn Ala Val Gly Gly
                 455
Ala Asp Ser Gly Pro Gly Val Asp Arg Gly Gly Ala Gly Arg Ala
                 470
Gly Val Leu Gly Pro Ser Thr Ala Thr Pro Glu Cys Thr Ala Arg
                                     490
Gly Ala Ser Leu Glu Asp Pro Arg Gly Pro Gly Ser Pro His Pro
                                                          510
                                     505
Ala Cys His Arg Ala Thr Pro Arg Ala Gln Gly Pro Ala Ala Thr
                 515
Asp Ala Pro Ser Arg Pro Gly Arg Leu Ala Gly Arg Val Gln Ala
                 530
Ser Arg Phe Ile Asp Pro Ala Gly Ser His Ser Ser Phe Ser Ser
                                     550
Pro Trp Val Ile Thr
<210> 421
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 421
agetteteag eceteetgga geag 24
<210> 422
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 422
cgggtcaata aacctggacg cttgg 25
<210> 423
<211> 43
<212> DNA
```

<213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 423 tatgtggacc ggaccaagca cttcactgag gccaccaaga ttg 43 <210> 424 <211> 4313 <212> DNA <213> Homo sapiens <400> 424 qtcccacatc ctqctcaact qqqtcaqqtc cctcttagac cagctcttgt 50 ccatcatttg ctgaagtgga ccaactagtt ccccagtagg gggtctcccc 100 tggcaattct tgatcggcgt ttggacatct cagatcgctt ccaatgaaga 150 tggccttgcc ttggggtcct gcttgtttca taatcatcta actatgggac 200 aaggttgtgc cggcagctct gggggaagga gcacggggct gatcaagcca 250 tccaggaaac actggaggac ttgtccagcc ttgaaagaac tctagtggtt 300 tctgaatcta gcccacttgg cggtaagcat gatgcaactt ctgcaacttc 350 tgctggggct tttggggcca ggtggctact tatttctttt aggggattgt 400 caggaggtga ccactctcac ggtgaaatac caagtgtcag aggaagtgcc 450 atctggtaca gtgatcggga agctgtccca ggaactgggc cgggaggaga 500 ggcggaggca agctggggcc gccttccagg tgttgcagct gcctcaggcg 550 ctccccattc aggtggactc tgaggaaggc ttgctcagca caggcaggcg 600 gctggatcga gagcagctgt gccgacagtg ggatccctgc ctggtttcct 650 ttgatgtgct tgccacaggg gatttggctc tgatccatgt ggagatccaa 700 gtgctggaca tcaatgacca ccagccacgg tttcccaaag gcgagcagga 750 gctggaaatc tctgagagcg cctctctgcg aacccggatc cccctggaca 800 gagetettga eccagacaca ggeeetaaca ecctgeacac etacactetg 850 tctcccagtg agcactttgc cttggatgtc attgtgggcc ctgatgagac 900 caaacatgca gaactcatag tggtgaagga gctggacagg gaaatccatt 950 cattttttga tctggtgtta actgcctatg acaatgggaa ccccccaag 1000

tcaggtacca gcttqqtcaa ggtcaacgtc ttggactcca atgacaatag 1050

ccctqcqttt qctqaqaqtt cactqqcact qqaaatccaa gaagatgctg 1100

cacctggtac gcttctcata aaactgaccg ccacagaccc tgaccaaggc 1150 cccaatgggg aggtggagtt cttcctcagt aagcacatgc ctccagaggt 1200 gctggacacc ttcagtattg atgccaagac aggccaggtc attctgcgtc 1250 gacctctaga ctatgaaaag aaccctgcct acgaggtgga tgttcaggca 1300 agggacctgg gtcccaatcc tatcccagcc cattgcaaag ttctcatcaa 1350 ggttctggat gtcaatgaca acatcccaag catccacgtc acatgggcct 1400 cccagccatc actggtgtca gaagctcttc ccaaggacag ttttattgct 1450 cttgtcatgg cagatgactt ggattcagga cacaatggtt tggtccactg 1500 ctggctgagc caagagctgg gccacttcag gctgaaaaga actaatggca 1550 acacatacat gttgctaacc aatgccacac tggacagaga gcagtggccc 1600 aaatataccc tcactctgtt agcccaagac caaggactcc agcccttatc 1650 agccaagaaa cagctcagca ttcagatcag tgacatcaac gacaatgcac 1700 ctgtgtttga gaaaagcagg tatgaagtct ccacgcggga aaacaactta 1750 ccctctcttc acctcattac catcaaggct catgatgcag acttgggcat 1800 taatggaaaa gtctcatacc gcatccagga ctccccagtt gctcacttag 1850 tagctattga ctccaacaca ggagaggtca ctgctcagag gtcactgaac 1900 tatgaagaga tggccggctt tgagttccag gtgatcgcag aggacagcgg 1950 gcaacccatg cttgcatcca gtgtctctgt gtgggtcagc ctcttggatg 2000 ccaatgataa tgccccagag gtggtccagc ctgtgctcag cgatggaaaa 2050 gccagcctct ccgtgcttgt gaatgcctcc acaggccacc tgctggtgcc 2100 categagact cecaatgget tgggeecage gggeactgae acacetecae 2150 tggccactca cagctcccgg ccattccttt tgacaaccat tgtggcaaga 2200 gatgcagact cgggggcaaa tggagagccc ctctacagca tccgcaatgg 2250 aaatgaagcc cacctcttca tcctcaaccc tcatacgggg cagctgttcg 2300 tcaatgtcac caatgccagc agcctcattg ggagtgagtg ggagctggag 2350 atagtagtag aggaccaggg aagcccccc ttacagaccc gagccctgtt 2400 gagggtcatg tttgtcacca gtgtggacca cctgagggac tcagcccgca 2450 agcctggggc cttgagcatg tcgatgctga cggtgatctg cctggctgta 2500 ctgttgggca tcttcgggtt gatcctggct ttgttcatgt ccatctgccg 2550 gacagaaaag aaggacaaca gggcctacaa ctgtcgggag gccgagtcca 2600 cctaccgcca gcagcccaag aggccccaga aacacattca gaaggcagac 2650 atccacctcg tgcctgtgct caggggtcag gcaggtgagc cttgtgaagt 2700 cgggcagtcc cacaaagatg tggacaagga ggcgatgatg gaagcaggct 2750 gggacccctg cctgcaggcc cccttccacc tcaccccgac cctgtacagg 2800 acgctgcgta atcaaggcaa ccagggagca ccggcggaga gccgagaggt 2850 gctgcaagac acggtcaacc tccttttcaa ccatcccagg cagaggaatg 2900 cctcccggga gaacctgaac cttcccgagc cccagcctgc cacaggccag 2950 ccacgttcca ggcctctgaa ggttgcaggc agccccacag ggaggctggc 3000 tggagaccag ggcagtgagg aagccccaca gaggccacca gcctcctctg 3050 caaccctgag acggcagcga catctcaatg gcaaagtgtc ccctgagaaa 3100 gaatcagggc cccgtcagat cctgcggagc ctggtccggc tgtctgtggc 3150 tgccttcgcc gagcggaacc ccgtggagga gctcactgtg gattctcctc 3200 ctgttcagca aatctcccag ctgctgtcct tgctgcatca gggccaattc 3250 cagcccaaac caaaccaccg aggaaataag tacttggcca agccaggagg 3300 cagcaggagt gcaatcccag acacagatgg cccaagtgca agggctggag 3350 gccagacaga cccagaacag gaggaagggc ctttggatcc tgaagaggac 3400 ctctctgtga agcaactgct agaagaagag ctgtcaagtc tgctggaccc 3450 cagcacaggt ctggccctgg accggctgag cgcccctgac ccggcctgga 3500 tggcgagact ctctttgccc ctcaccacca actaccgtga caatgtgatc 3550 tecceggatg etgeageeac ggaggageeg aggaeettee agaegttegg 3600 caaggcagag gcaccagagc tgagcccaac aggcacgagg ctggccagca 3650 cetttgtete ggagatgage teactgetgg agatgetget ggaacagege 3700 tocagcatgo cogtggaggo cgcctccgag gcgctgcggc ggctctcggt 3750 ctgcgggagg accctcagtt tagacttggc caccagtgca gcctcaggca 3800 tgaaagtgca aggggaccca ggtggaaaga cggggactga gggcaagagc 3850 agaggcagca gcagcagcag caggtgcctg tgaacatacc tcagacgcct 3900 ctggatccaa gaaccagggg cctgaggatc tgtggacaag agctggtttc 3950 taaaatcttg taactcacta gctagcggcg gcctgagaac tttagggtga 4000 ctgatgctac ceccacagag gaggcaagag ceccaggact aacagetgac 4050 tgaccaaagc ageeettgt aageagetet gagtettttg gaggacaggg 4100 aeggtttgtg getgagataa gtgttteetg geaaaacata tgtggagcac 4150 aaagggteag teetetggea gaacagatge caeggagtat caeaggeagg 4200 aaagggtgge ettettgggt ageaggagte agggggetgt aeeetgggg 4250 tgecaggaaa tgetetetga cetateaata aaggaaaage agtaaaaaaa 4300 aaaaaaaaaa aaa 4313

<210> 425

<211> 1184

<212> PRT

<213> Homo sapiens

<400> 425

Met Met Gln Leu Leu Gln Leu Leu Gly Leu Leu Gly Pro Gly 1 5 10 15

Gly Tyr Leu Phe Leu Leu Gly Asp Cys Gln Glu Val Thr Thr Leu 20 25 30

Thr Val Lys Tyr Gln Val Ser Glu Glu Val Pro Ser Gly Thr Val
35 40 45

Ile Gly Lys Leu Ser Gln Glu Leu Gly Arg Glu Glu Arg Arg Arg 50 55 60

Gln Ala Gly Ala Ala Phe Gln Val Leu Gln Leu Pro Gln Ala Leu
65 70 75

Pro Ile Gln Val Asp Ser Glu Glu Gly Leu Leu Ser Thr Gly Arg 80 85 90

Arg Leu Asp Arg Glu Gln Leu Cys Arg Gln Trp Asp Pro Cys Leu
95 100 105

Val Ser Phe Asp Val Leu Ala Thr Gly Asp Leu Ala Leu Ile His
110 115 120

Val Glu Ile Gln Val Leu Asp Ile Asn Asp His Gln Pro Arg Phe 125 130 135

Pro Lys Gly Glu Glu Leu Glu Ile Ser Glu Ser Ala Ser Leu 140 145 150

Arg Thr Arg Ile Pro Leu Asp Arg Ala Leu Asp Pro Asp Thr Gly
155 160 165

Pro Asn Thr Leu His Thr Tyr Thr Leu Ser Pro Ser Glu His Phe

Ala Leu Asp Val Ile Val Gly Pro Asp Glu Thr Lys His Ala Glu 185 190 195

Leu	Ile	Val	Val	Lys 200	Glu	Leu	Asp	Arg	Glu 205	Ile	His	Ser	Phe	Phe 210
Asp	Leu	Val	Leu	Thr 215	Ala	Tyr	Asp	Asn	Gly 220	Asn	Pro	Pro	Lys	Ser 225
Gly	Thr	Ser	Leu	Val 230	Lys	Val	Asn	Val	Leu 235	Asp	Ser	Asn	Asp	Asn 240
Ser	Pro	Ala	Phe	Ala 245	Glu	Ser	Ser	Leu	Ala 250	Leu	Glu	Ile	Gln	Glu 255
Asp	Ala	Ala	Pro	Gly 260	Thr	Leu	Leu	Ile	Lys 265	Leu	Thr	Ala	Thr	Asp 270
Pro	Asp	Gln	Gly	Pro 275	Asn	Gly	Glu	Val	Glu 280	Phe	Phe	Leu	Ser	Lys 285
His	Met	Pro	Pro	Glu 290	Val	Leu	Asp	Thr	Phe 295	Ser	Ile	Asp	Ala	Lys 300
Thr	Gly	Gln	Val	Ile 305	Leu	Arg	Arg	Pro	Leu 310	Asp	Tyr	Glu	Lys	Asn 315
Pro	Ala	Tyr	Glu	Val 320	Asp	Val	Gln	Ala	Arg 325	Asp	Leu	Gly	Pro	Asn 330
Pro	Ile	Pro	Ala	His 335	Cys	Lys	Val	Leu	Ile 340	Lys	Val	Leu	Asp	Val 345
Asn	Asp	Asn	Ile	Pro 350	Ser	Ile	His	Val	Thr 355	Trp	Ala	Ser	Gln	Pro 360
Ser	Leu	Val	Ser	Glu 365	Ala	Leu	Pro	Lys	Asp 370	Ser	Phe	Ile	Ala	Leu 375
Val	Met	Ala	Asp	Asp 380	Leu	Asp	Ser	Gly	His 385	Asn	Gly	Leu	Val	His 390
Cys	Trp	Leu	Ser	Gln 395	Glu	Leu	Gly	His	Phe 400	Arg	Leu	Lys	Arg	Thr 405
Asn	Gly	Asn	Thr	Tyr 410	Met	Leu	Leu	Thr	Asn 415	Ala	Thr	Leu	Asp	Arg 420
Glu	Gln	Trp	Pro	Lys 425	Tyr	Thr	Leu	Thr	Leu 430	Leu	Ala	Gln	Asp	Gln 435
Gly	Leu	Gln	Pro	Leu 440	Ser	Ala	Lys	Lys	Gln 445	Leu	Ser	Ile	Gln	Ile 450
Ser	Asp	Ile	Asn	Asp 455	Asn	Ala	Pro	Val	Phe 460	Glu	Lys	Ser	Arg	Tyr 465
Glu	Val	Ser	Thr	Arg 470	Glu	Asn	Asn	Leu	Pro 475	Ser	Leu	His	Leu	Ile 480
Thr	Ile	Lys	Ala	His	Asp	Ala	Asp	Leu	Gly	Ile	Asn	Gly	Lys	Val

490 495 485 Ser Tyr Arg Ile Gln Asp Ser Pro Val Ala His Leu Val Ala Ile 500 505 Asp Ser Asn Thr Gly Glu Val Thr Ala Gln Arg Ser Leu Asn Tyr Glu Glu Met Ala Gly Phe Glu Phe Gln Val Ile Ala Glu Asp Ser 530 Gly Gln Pro Met Leu Ala Ser Ser Val Ser Val Trp Val Ser Leu 545 Leu Asp Ala Asn Asp Asn Ala Pro Glu Val Val Gln Pro Val Leu 560 565 570 Ser Asp Gly Lys Ala Ser Leu Ser Val Leu Val Asn Ala Ser Thr Gly His Leu Leu Val Pro Ile Glu Thr Pro Asn Gly Leu Gly Pro Ala Gly Thr Asp Thr Pro Pro Leu Ala Thr His Ser Ser Arg Pro Phe Leu Leu Thr Thr Ile Val Ala Arg Asp Ala Asp Ser Gly Ala Asn Gly Glu Pro Leu Tyr Ser Ile Arg Asn Gly Asn Glu Ala His Leu Phe Ile Leu Asn Pro His Thr Gly Gln Leu Phe Val Asn Val Thr Asn Ala Ser Ser Leu Ile Gly Ser Glu Trp Glu Leu Glu Ile Val Val Glu Asp Gln Gly Ser Pro Pro Leu Gln Thr Arg Ala Leu Leu Arg Val Met Phe Val Thr Ser Val Asp His Leu Arg Asp Ser Ala Arg Lys Pro Gly Ala Leu Ser Met Ser Met Leu Thr Val Ile Cys Leu Ala Val Leu Leu Gly Ile Phe Gly Leu Ile Leu Ala Leu Phe Met Ser Ile Cys Arg Thr Glu Lys Lys Asp Asn Arg Ala Tyr Asn Cys Arg Glu Ala Glu Ser Thr Tyr Arg Gln Gln Pro Lys Arg Pro Gln Lys His Ile Gln Lys Ala Asp Ile His Leu Val Pro Val 775

Leu Arg Gly Gln Ala Gly Glu Pro Cys Glu Val Gly Gln Ser His Lys Asp Val Asp Lys Glu Ala Met Met Glu Ala Gly Trp Asp Pro 800 Cys Leu Gln Ala Pro Phe His Leu Thr Pro Thr Leu Tyr Arg Thr Leu Arg Asn Gln Gly Asn Gln Gly Ala Pro Ala Glu Ser Arg Glu Val Leu Gln Asp Thr Val Asn Leu Leu Phe Asn His Pro Arg Gln 845 Arg Asn Ala Ser Arg Glu Asn Leu Asn Leu Pro Glu Pro Gln Pro Ala Thr Gly Gln Pro Arg Ser Arg Pro Leu Lys Val Ala Gly Ser 885 Pro Thr Gly Arg Leu Ala Gly Asp Gln Gly Ser Glu Glu Ala Pro Gln Arg Pro Pro Ala Ser Ser Ala Thr Leu Arg Arg Gln Arg His 915 905 Leu Asn Gly Lys Val Ser Pro Glu Lys Glu Ser Gly Pro Arg Gln Ile Leu Arg Ser Leu Val Arg Leu Ser Val Ala Ala Phe Ala Glu 935 Arg Asn Pro Val Glu Glu Leu Thr Val Asp Ser Pro Pro Val Gln Gln Ile Ser Gln Leu Leu Ser Leu Leu His Gln Gly Gln Phe Gln 975 Pro Lys Pro Asn His Arg Gly Asn Lys Tyr Leu Ala Lys Pro Gly Gly Ser Arg Ser Ala Ile Pro Asp Thr Asp Gly Pro Ser Ala Arg 1000 Ala Gly Gly Gln Thr Asp Pro Glu Glu Glu Gly Pro Leu Asp 1015 1010 Pro Glu Glu Asp Leu Ser Val Lys Gln Leu Leu Glu Glu Glu Leu 1025 Ser Ser Leu Leu Asp Pro Ser Thr Gly Leu Ala Leu Asp Arg Leu 1045 Ser Ala Pro Asp Pro Ala Trp Met Ala Arg Leu Ser Leu Pro Leu Thr Thr Asn Tyr Arg Asp Asn Val Ile Ser Pro Asp Ala Ala Ala

Thr Glu Glu Pro Arg Thr Phe Gln Thr Phe Gly Lys Ala Glu Ala 1085 1090 1095

Pro Glu Leu Ser Pro Thr Gly Thr Arg Leu Ala Ser Thr Phe Val 1100 1105 1110

Ser Glu Met Ser Ser Leu Leu Glu Met Leu Glu Glu Gln Arg Ser 1115 1120 1125

Ser Met Pro Val Glu Ala Ala Ser Glu Ala Leu Arg Arg Leu Ser 1130 1135 1140

Val Cys Gly Arg Thr Leu Ser Leu Asp Leu Ala Thr Ser Ala Ala 1145 1150 1155

Ser Gly Met Lys Val Gln Gly Asp Pro Gly Gly Lys Thr Gly Thr 1160 1165 1170

Glu Gly Lys Ser Arg Gly Ser Ser Ser Ser Ser Arg Cys Leu 1175 1180

<210> 426

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

A 44.

þ.

<223> Synthetic oligonucleotide probe

<400> 426 gtaagcacat gcctccagag gtgc 24

<210> 427

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 427

gtgacgtgga tgcttgggat gttg 24

<210> 428

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 428

tggacacctt cagtattgat gccaagacag gccaggtcat tctgcgtcga 50

<210> 429

<211> 2037

<212> DNA <213> Homo sapiens

<400> 429 cggacgcgtg ggcggacgcg tggggggagag ccgcagtccc ggctgcagca 50 cctgggagaa ggcagaccgt gtgagggggc ctgtggcccc agcgtgctgt 100 ggcctcgggg agtgggaagt ggaggcagga gccttcctta cacttcgcca 150 tgagtttcct catcgactcc agcatcatga ttacctccca gatactattt 200 tttggatttg ggtggctttt cttcatgcgc caattgttta aagactatga 250 gatacgtcag tatgttgtac aggtgatctt ctccgtgacg tttgcatttt 300 cttgcaccat gtttgagctc atcatctttg aaatcttagg agtattgaat 350 agcagetece gttattttea etggaaaatg aacetgtgtg taattetget 400 gatcctggtt ttcatggtgc ctttttacat tggctatttt attgtgagca 450 atatccgact actgcataaa caacgactgc ttttttcctg tctcttatgg 500 ctgaccttta tgtatttctt ctggaaacta ggagatccct ttcccattct 550 cagcccaaaa catgggatct tatccataga acagctcatc agccgggttg 600 gtgtgattgg agtgactctc atggctcttc tttctggatt tggtgctgtc 650 aactgcccat acacttacat gtcttacttc ctcaggaatg tgactgacac 700 ggatattcta gccctggaac ggcgactgct gcaaaccatg gatatgatca 750 taagcaaaaa gaaaaggatg gcaatggcac ggagaacaat gttccagaag 800 ggggaagtgc ataacaaacc atcaggtttc tggggaatga taaaaagtgt 850 taccacttca gcatcaggaa gtgaaaatct tactcttatt caacaggaag 900 tggatgcttt ggaagaatta agcaggcagc tttttctgga aacagctgat 950 ctatatgcta ccaaggagag aatagaatac tccaaaacct tcaaggggaa 1000 atattttaat tttcttqqtt actttttctc tatttactgt gtttggaaaa 1050 ttttcatggc taccatcaat attgtttttg atcgagttgg gaaaacggat 1100 cctqtcacaa qaqqcattqa qatcactqtg aattatctgg gaatccaatt 1150 tgatgtgaag ttttggtccc aacacatttc cttcattctt gttggaataa 1200 tcatcqtcac atccatcaga ggattgctga tcactcttac caagttcttt 1250 tatgccatct ctagcagtaa gtcctccaat gtcattgtcc tgctattagc 1300 acagataatg ggcatgtact ttgtctcctc tgtgctgctg atccgaatga 1350

gtatgccttt agaataccgc accataatca ctgaagtcct tggagaactg 1400 cagttcaact tctatcaccg ttggtttgat gtgatcttcc tggtcagcgc 1450 tctctctagc atactcttcc tctatttggc tcacaaacag gcaccagaga 1500 agcaaatggc accttgaact taagcctact acagactgtt agaggccagt 1550 ggtttcaaaa tttagatata agagggggga aaaatggaac cagggcctga 1600 cattttataa acaaacaaaa tgctatggta gcattttca ccttcatagc 1650 atactccttc cccgtcaggt gatactatga ccatgagtag catcagccag 1700 aacatgagag ggagaactaa ctcaagacaa tactcagcag agagcatccc 1750 gtgtggatat gaggctggt tagaggcgga gaggagccaa gaaactaaag 1800 gtgaaaaata cactggaact ctggggcaag acatgtctat ggtagctgag 1850 ccaaacacgt aggatttccg ttttaaggtt cacatggaaa aggttatagc 1900 tttgccttga gattgactca ttaaaatcag agactgtaac aaaaaaaaa 1950 aaaaaaaaaa agggcggccg cgactctaga gtcgacctgc agaagcttgg 2000 ccgccatggc ccaacttgtt tattgcagct tataatg 2037

<210> 430

<211> 455

<212> PRT

<213> Homo sapiens

<400> 430

Met Ser Phe Leu Ile Asp Ser Ser Ile Met Ile Thr Ser Gln Ile 1 5 10 15

Leu Phe Phe Gly Phe Gly Trp Leu Phe Phe Met Arg Gln Leu Phe 20 25 30

Lys Asp Tyr Glu Ile Arg Gln Tyr Val Val Gln Val Ile Phe Ser 35 40 45

Val Thr Phe Ala Phe Ser Cys Thr Met Phe Glu Leu Ile Ile Phe 50 55 60

Glu Ile Leu Gly Val Leu Asn Ser Ser Ser Arg Tyr Phe His Trp 65 70 75

Lys Met Asn Leu Cys Val Ile Leu Leu Ile Leu Val Phe Met Val 80 85 90

Pro Phe Tyr Ile Gly Tyr Phe Ile Val Ser Asn Ile Arg Leu Leu 95 100 105

His Lys Gln Arg Leu Leu Phe Ser Cys Leu Leu Trp Leu Thr Phe 110 115 120 Met Tyr Phe Phe Trp Lys Leu Gly Asp Pro Phe Pro Ile Leu Ser 130 Pro Lys His Gly Ile Leu Ser Ile Glu Gln Leu Ile Ser Arg Val 140 Gly Val Ile Gly Val Thr Leu Met Ala Leu Leu Ser Gly Phe Gly Ala Val Asn Cys Pro Tyr Thr Tyr Met Ser Tyr Phe Leu Arg Asn Val Thr Asp Thr Asp Ile Leu Ala Leu Glu Arg Arg Leu Leu Gln 185 Thr Met Asp Met Ile Ile Ser Lys Lys Lys Arg Met Ala Met Ala Arg Arg Thr Met Phe Gln Lys Gly Glu Val His Asn Lys Pro Ser Gly Phe Trp Gly Met Ile Lys Ser Val Thr Thr Ser Ala Ser Gly Ser Glu Asn Leu Thr Leu Ile Gln Gln Glu Val Asp Ala Leu Glu Glu Leu Ser Arg Gln Leu Phe Leu Glu Thr Ala Asp Leu Tyr Ala Thr Lys Glu Arg Ile Glu Tyr Ser Lys Thr Phe Lys Gly Lys Tyr Phe Asn Phe Leu Gly Tyr Phe Phe Ser Ile Tyr Cys Val Trp Lys Ile Phe Met Ala Thr Ile Asn Ile Val Phe Asp Arg Val Gly Lys Thr Asp Pro Val Thr Arg Gly Ile Glu Ile Thr Val Asn Tyr Leu Gly Ile Gln Phe Asp Val Lys Phe Trp Ser Gln His Ile Ser Phe 335 Ile Leu Val Gly Ile Ile Ile Val Thr Ser Ile Arq Gly Leu Leu Ile Thr Leu Thr Lys Phe Phe Tyr Ala Ile Ser Ser Lys Ser Ser Asn Val Ile Val Leu Leu Ala Gln Ile Met Gly Met Tyr 390 Phe Val Ser Ser Val Leu Leu Ile Arg Met Ser Met Pro Leu Glu Tyr Arg Thr Ile Ile Thr Glu Val Leu Gly Glu Leu Gln Phe Asn

W. State

A 40.

W.

18

Ë

Phe Tyr His Arg Trp Phe Asp Val Ile Phe Leu Val Ser Ala Leu 425 430 435

Ser Ser Ile Leu Phe Leu Tyr Leu Ala His Lys Gln Ala Pro Glu 440 445 450

Lys Gln Met Ala Pro 455

<210> 431

<211> 407

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 78, 81, 113, 157, 224, 297

<223> unknown base

<400> 431

catgggaagt ggagccggag ccttccttac actcgccatg agtttcctca 50 tcgactccag catcatgatt acctcccnga nactatttt tggatttggg 100 tggctttct tcngcgccaa tgtttaaaga ctatgagata cgtcagtatg 150 ttgtacnggt gatcttctcc gtgacgtttg ccatttcttg caccatgttt 200 gagctcatca tctttgaaat cttnggagta ttgaatagca gctcccgtta 250 ttttcactgg aaaatgaacc tgtgtgtaat tctgctgatc ctggttntca 300 tggtgccttt ttacattggc tattttattg tgagcaatat ccgactactg 350 cataaacaac gactgcttt ttcctgtctc ttatggctga cctttatgta 400

tttccag 407

<210> 432 <211> 457

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 31, 66, 81-82, 84, 122, 184, 187, 232, 241, 400, 424, 427, 434

<223> unknown base

<400> 432

gtgttgccct tggggaggg aaggggagcc nggccctttc ctaaaatttg 50 gccaagggtt tctttnttga attccgggtt nngnatacct tcccagaaaa 100 tattttttgg atttggggta gnttttttc atgcgccaat tgtttaaaga 150 ctatgagata cgtcagtatg ttgtacaggt gatnttntcc gtgacgtttg 200

```
cattttcttg caccatgttt gagctcatca tntttgaaat nttaggagta 250
 ttgaatagca gctcccgtta ttttcactgg aaaatgaacc tgtgtgtaat 300
 tctqctqatc ctgqttttca tggtgccttt ttacattggc tattttattg 350
 tgagcaatat ccgactactg cataaacaac gactgctttt ttcctgtctn 400
 ttatggctga cctttatgta tttnttntgg aaantaggag atccctttcc 450
 cattctc 457
<210> 433
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 433
aagtggagcc ggagccttcc 20
<210> 434
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 434
tcgttgttta tgcagtagtc gg 22
<210> 435
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 435
attqtttaaa qactatqaqa tacqtcagta tgttgtacag g 41
<210> 436
<211> 3951
<212> DNA
<213> Homo sapiens
<400> 436
 ctcgcgcagg gatcgtccca tggccggggc tcggagccgc gacccttggg 50
 gggcctccgg gatttgctac ctttttggct ccctgctcgt cgaactgctc 100
```

wī

4

14.4

13

and and

1

ttctcacggg ctgtcgcctt caatctggac gtgatgggtg ccttgcgcaa 150

ggagggcgag ccaggcagcc tcttcggctt ctctgtggcc ctgcaccggc 200

agttgcagcc ccgaccccag agctggctgc tggtgggtgc tccccaggcc 250 ctggctcttc ctgggcagca ggcgaatcgc actggaggcc tcttcgcttg 300 cccgttgagc ctggaggaga ctgactgcta cagagtggac atcgaccagg 350 gagctgatat gcaaaaggaa agcaaggaga accagtggtt gggagtcagt 400 gttcggagcc aggggcctgg gggcaagatt gttacctgtg cacaccgata 450 tgaggcaagg cagcgagtgg accagatcct ggagacgcgg gatatgattg 500 gtcgctgctt tgtgctcagc caggacctgg ccatccggga tgagttggat 550 ggtggggaat ggaagttctg tgagggacgc ccccaaggcc atgaacaatt 600 tgggttctgc cagcagggca cagctgccgc cttctcccct gatagccact 650 acctcctctt tggggcccca ggaacctata attggaaggg cacggccagg 700 gtggagetet gtgcacaggg etcageggae etggcacace tggaegaegg 750 tccctacgag gcgggggag agaaggagca ggacccccgc ctcatcccgg 800 tccctgccaa cagctacttt ggcttctcta ttgactcggg gaaaggtctg 850 gtgcgtgcag aagagctgag ctttgtggct ggagcccccc gcgccaacca 900 caagggtgct gtggtcatcc tgcgcaagga cagcgccagt cgcctggtgc 950 ccgaggttat gctgtctggg gagcgcctga cctccggctt tggctactca 1000 ctggctgtgg ctgacctcaa cagtgatggc tggccagacc tgatagtggg 1050 tgccccctac ttctttgagc gccaagaaga gctggggggt gctgtgtatg 1100 tgtacttgaa ccagggggt cactgggctg ggatctcccc tctccggctc 1150 tgcggctccc ctgactccat gttcgggatc agcctggctg tcctggggga 1200 cctcaaccaa gatggctttc cagatattgc agtgggtgcc ccctttgatg 1250 gtgatgggaa agtcttcatc taccatggga gcagcctggg ggttgtcgcc 1300 aaaccttcac aggtgctgga gggcgaggct gtgggcatca agagcttcgg 1350 ctactccctg tcaggcagct tggatatgga tgggaaccaa taccctgacc 1400 tgctggtggg ctccctggct gacaccgcag tgctcttcag ggccagaccc 1450 atcctccatg tctcccatga ggtctctatt gctccacgaa gcatcgacct 1500 ggagcagccc aactgtgctg gcggccactc ggtctgtgtg gacctaaggg 1550 tctgtttcag ctacattgca gtccccagca gctatagccc tactgtggcc 1600 ctggactatg tgttagatgc ggacacagac cggaggctcc ggggccaggt 1650

teccegtgtg aegttectga geegtaacet ggaagaacee aageaceagg 1700 cctcqqqcac cqtqtqqctq aaqcaccaqc atqaccqaqt ctgtgqagac 1750 gccatgttcc agctccagga aaatgtcaaa gacaagcttc gggccattgt 1800 aqtqaccttq tcctacaqtc tccaqacccc tcggctccgg cgacaggctc 1850 ctqqccaqqq qctqcctcca qtqqccccca tcctcaatgc ccaccagccc 1900 agcacccage gggcagagat ccaetteetg aagcaagget gtggtgaaga 1950 caagatctgc cagagcaatc tgcagctggt ccacgcccgc ttctgtaccc 2000 qqqtcaqcqa cacqqaattc caacctctqc ccatqqatqt ggatqqaaca 2050 acagecetgt ttgeactgag tgggcageca gteattggee tggagetgat 2100 ggtcaccaac ctgccatcgg acccagccca gccccaggct gatggggatg 2150 atgeceatga ageceagete etggteatge tteetgaete aetgeaetae 2200 tcaggggtcc gggccctgga ccctgcggag aagccactct gcctgtccaa 2250 tgagaatgcc tcccatgttg agtgtgagct ggggaacccc atgaagagag 2300 qtqcccaqqt caccttctac ctcatcctta qcacctccqq gatcagcatt 2350 qaqaccacqq aactqqaqqt aqaqctqctq ttqqccacqa tcaqtqaqca 2400 ggagetgeat ceagtetetg caegageeeg tgtetteatt gagetgeeac 2450 tgtccattgc aggaatggcc attccccagc aactcttctt ctctggtgtg 2500 gtgaggggcg agagagccat gcagtctgag cgggatgtgg gcagcaaggt 2550 caagtatgag gtcacggttt ccaaccaagg ccagtcgctc agaaccctgg 2600 gctctgcctt cctcaacatc atgtggcctc atgagattgc caatgggaag 2650 tggttgctgt acccaatgca ggttgagctg gagggcgggc aggggcctgg 2700 gcagaaaggg ctttgctctc ccaggcccaa catcctccac ctggatgtgg 2750 acagtaggga taggaggcgg cgggagctgg agccacctga gcagcaggag 2800 cctggtgagc ggcaggagcc cagcatgtcc tggtggccag tgtcctctgc 2850 tgagaagaag aaaaacatca ccctggactg cgcccggggc acggccaact 2900 gtgtggtgtt cagctgccca ctctacagct ttgaccgcgc ggctgtgctg 2950 catqtctqqq qccqtctctq qaacaqcacc tttctqqaqq agtactcaqc 3000 tgtgaagtcc ctggaagtga ttgtccgggc caacatcaca gtgaagtcct 3050 ccataaagaa cttgatgctc cgagatgcct ccacagtgat cccagtgatg 3100

gtatacttgg accccatggc tgtggtggca gaaggagtgc cctggtgggt 3150 catectectg getgtactgg etgggetget ggtgetagea etgetggtge 3200 tgctcctgtg gaagatggga ttcttcaaac gggcgaagca ccccgaggcc 3250 accgtgcccc agtaccatgc ggtgaagatt cctcgggaag accgacagca 3300 gttcaaggag gagaagacgg gcaccatcct gaggaacaac tggggcagcc 3350 cccqqcqqqa qqqcccqqat qcacacccca tcctqqctqc tqacqqqcat 3400 cccqaqctqq qccccqatqq qcatccaqqq ccaqqcaccq cctaqqttcc 3450 catgtcccag cctggcctgt ggctgccctc catcccttcc ccagagatgg 3500 ctccttggga tgaagaggt agagtgggct gctggtgtcg catcaagatt 3550 tggcaggatc ggcttcctca ggggcacaga cctctcccac ccacaagaac 3600 tecteceace caactteece ttagagtget gtgagatgag agtgggtaaa 3650 tcagggacag ggccatgggg tagggtgaga agggcagggg tgtcctgatg 3700 caaaggtggg gagaagggat cctaatccct tcctctccca ttcaccctgt 3750 gtaacaggac cccaaggacc tgcctccccg gaagtgcctt aacctagagg 3800 gtcggggagg aggttgtgtc actgactcag gctgctcctt ctctagtttc 3850 ccctctcatc tgaccttagt ttgctgccat cagtctagtg gtttcgtggt 3900 ttcgtctatt tattaaaaaa tatttgagaa caaaaaaaaa aaaaaaaaa 3950 a 3951

<210> 437

<211> 1141

<212> PRT

<213> Homo sapiens

<400> 437

Met Ala Gly Ala Arg Ser Arg Asp Pro Trp Gly Ala Ser Gly Ile 1 5 10 15

Cys Tyr Leu Phe Gly Ser Leu Leu Val Glu Leu Leu Phe Ser Arg
20 25 30

Ala Val Ala Phe Asn Leu Asp Val Met Gly Ala Leu Arg Lys Glu 35 40 45

Gly Glu Pro Gly Ser Leu Phe Gly Phe Ser Val Ala Leu His Arg
50 55 60

Gln Leu Gln Pro Arg Pro Gln Ser Trp Leu Leu Val Gly Ala Pro $65 \hspace{1cm} 70 \hspace{1cm} 75$

Gln Ala Leu Ala Leu Pro Gly Gln Gln Ala Asn Arg Thr Gly Gly

80 85 90 Leu Phe Ala Cys Pro Leu Ser Leu Glu Glu Thr Asp Cys Tyr Arg Val Asp Ile Asp Gln Gly Ala Asp Met Gln Lys Glu Ser Lys Glu 110 Asn Gln Trp Leu Gly Val Ser Val Arg Ser Gln Gly Pro Gly Gly 135 Lys Ile Val Thr Cys Ala His Arg Tyr Glu Ala Arg Gln Arg Val Asp Gln Ile Leu Glu Thr Arg Asp Met Ile Gly Arg Cys Phe Val 160 165 155 Leu Ser Gln Asp Leu Ala Ile Arg Asp Glu Leu Asp Gly Glu 170 175 Trp Lys Phe Cys Glu Gly Arg Pro Gln Gly His Glu Gln Phe Gly 195 185 190 Phe Cys Gln Gln Gly Thr Ala Ala Phe Ser Pro Asp Ser His Tyr Leu Leu Phe Gly Ala Pro Gly Thr Tyr Asn Trp Lys Gly Thr Ala Arg Val Glu Leu Cys Ala Gln Gly Ser Ala Asp Leu Ala His Leu Asp Asp Gly Pro Tyr Glu Ala Gly Gly Glu Lys Glu Gln Asp Pro Arg Leu Ile Pro Val Pro Ala Asn Ser Tyr Phe Gly Phe Ser Ile Asp Ser Gly Lys Gly Leu Val Arg Ala Glu Glu Leu Ser Phe Val Ala Gly Ala Pro Arg Ala Asn His Lys Gly Ala Val Ile Leu Arg Lys Asp Ser Ala Ser Arg Leu Val Pro Glu Val Met Leu Ser Gly Glu Arg Leu Thr Ser Gly Phe Gly Tyr Ser Leu Ala Val

Leu Arg Lys Asp Ser Ala Ser Arg Leu Val Pro Glu Val Met Leu 305

Ser Gly Glu Arg Leu Thr Ser Gly Phe Gly Tyr Ser Leu Ala Val 325

Ala Asp Leu Asn Ser Asp Gly Trp Pro Asp Leu Ile Val Gly Ala 345

Pro Tyr Phe Phe Glu Arg Gln Glu Glu Leu Gly Gly Ala Val Tyr 350

Val Tyr Leu Asn Gln Gly Gly His Trp Ala Gly Ile Ser Pro Leu 375

Arg Leu Cys Gly Ser Pro Asp Ser Met Phe Gly Ile Ser Leu Ala 380 Val Leu Gly Asp Leu Asn Gln Asp Gly Phe Pro Asp Ile Ala Val 395 Gly Ala Pro Phe Asp Gly Asp Gly Lys Val Phe Ile Tyr His Gly 420 Ser Ser Leu Gly Val Val Ala Lys Pro Ser Gln Val Leu Glu Gly 425 Glu Ala Val Gly Ile Lys Ser Phe Gly Tyr Ser Leu Ser Gly Ser 450 Leu Asp Met Asp Gly Asn Gln Tyr Pro Asp Leu Leu Val Gly Ser Leu Ala Asp Thr Ala Val Leu Phe Arg Ala Arg Pro Ile Leu His Val Ser His Glu Val Ser Ile Ala Pro Arg Ser Ile Asp Leu Glu 490 Gln Pro Asn Cys Ala Gly Gly His Ser Val Cys Val Asp Leu Arg Val Cys Phe Ser Tyr Ile Ala Val Pro Ser Ser Tyr Ser Pro Thr 515 Val Ala Leu Asp Tyr Val Leu Asp Ala Asp Thr Asp Arg Arg Leu Arg Gly Gln Val Pro Arg Val Thr Phe Leu Ser Arg Asn Leu Glu Glu Pro Lys His Gln Ala Ser Gly Thr Val Trp Leu Lys His Gln His Asp Arg Val Cys Gly Asp Ala Met Phe Gln Leu Gln Glu Asn Val Lys Asp Lys Leu Arg Ala Ile Val Val Thr Leu Ser Tyr Ser Leu Gln Thr Pro Arg Leu Arg Arg Gln Ala Pro Gly Gln Gly Leu Pro Pro Val Ala Pro Ile Leu Asn Ala His Gln Pro Ser Thr Gln Arg Ala Glu Ile His Phe Leu Lys Gln Gly Cys Gly Glu Asp Lys Ile Cys Gln Ser Asn Leu Gln Leu Val His Ala Arg Phe Cys Thr Arg Val Ser Asp Thr Glu Phe Gln Pro Leu Pro Met Asp Val Asp

665 670 675 Gly Thr Thr Ala Leu Phe Ala Leu Ser Gly Gln Pro Val Ile Gly 680 Leu Glu Leu Met Val Thr Asn Leu Pro Ser Asp Pro Ala Gln Pro Gln Ala Asp Gly Asp Asp Ala His Glu Ala Gln Leu Leu Val Met Leu Pro Asp Ser Leu His Tyr Ser Gly Val Arg Ala Leu Asp Pro Ala Glu Lys Pro Leu Cys Leu Ser Asn Glu Asn Ala Ser His Val 750 740 Glu Cys Glu Leu Gly Asn Pro Met Lys Arg Gly Ala Gln Val Thr Phe Tyr Leu Ile Leu Ser Thr Ser Gly Ile Ser Ile Glu Thr Thr 775 780 Glu Leu Glu Val Glu Leu Leu Leu Ala Thr Ile Ser Glu Gln Glu Leu His Pro Val Ser Ala Arg Ala Arg Val Phe Ile Glu Leu Pro Leu Ser Ile Ala Gly Met Ala Ile Pro Gln Gln Leu Phe Phe Ser Gly Val Val Arg Gly Glu Arg Ala Met Gln Ser Glu Arg Asp Val Gly Ser Lys Val Lys Tyr Glu Val Thr Val Ser Asn Gln Gly Gln Ser Leu Arg Thr Leu Gly Ser Ala Phe Leu Asn Ile Met Trp Pro His Glu Ile Ala Asn Gly Lys Trp Leu Leu Tyr Pro Met Gln Val Glu Leu Glu Gly Gln Gly Pro Gly Gln Lys Gly Leu Cys Ser Pro Arg Pro Asn Ile Leu His Leu Asp Val Asp Ser Arg Asp Arg Arg Arg Glu Leu Glu Pro Pro Glu Gln Gln Glu Pro Gly Glu Arg Gln Glu Pro Ser Met Ser Trp Trp Pro Val Ser Ser Ala Glu Lys Lys Lys Asn Ile Thr Leu Asp Cys Ala Arg Gly Thr Ala Asn 955

<220>

<223> Synthetic oligonucleotide probe

Cys Val Val Phe Ser Cys Pro Leu Tyr Ser Phe Asp Arg Ala Ala 970 Val Leu His Val Trp Gly Arg Leu Trp Asn Ser Thr Phe Leu Glu 980 Glu Tyr Ser Ala Val Lys Ser Leu Glu Val Ile Val Arg Ala Asn 1000 995 Ile Thr Val Lys Ser Ser Ile Lys Asn Leu Met Leu Arg Asp Ala 1015 Ser Thr Val Ile Pro Val Met Val Tyr Leu Asp Pro Met Ala Val 1030 1025 Val Ala Glu Gly Val Pro Trp Trp Val Ile Leu Leu Ala Val Leu 1045 Ala Gly Leu Leu Val Leu Ala Leu Leu Val Leu Leu Trp Lys 1055 1060 Met Gly Phe Phe Lys Arg Ala Lys His Pro Glu Ala Thr Val Pro 1075 Gln Tyr His Ala Val Lys Ile Pro Arg Glu Asp Arg Gln Gln Phe 1090 Lys Glu Glu Lys Thr Gly Thr Ile Leu Arg Asn Asn Trp Gly Ser 1100 Pro Arg Arg Glu Gly Pro Asp Ala His Pro Ile Leu Ala Ala Asp 1115 Gly His Pro Glu Leu Gly Pro Asp Gly His Pro Gly Pro Gly Thr 1130 1135 Ala <210> 438 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 438 ggctgacacc gcagtgctct tcag 24 <210> 439 <211> 24 <212> DNA <213> Artificial Sequence

```
<400> 439
gctgctgggg actgcaatgt agct 24
<210> 440
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 440
catcctccat gtctcccatg aggtctctat tgctccacga agcatc 46
<210> 441
<211> 1964
<212> DNA
<213> Homo sapiens
<400> 441
cgcgccgggc gcagggagct gagtggacgg ctcgagacgg cggcgcgtgc 50
agcageteca gaaagcageg agttggeaga geagggetge atttecagea 100
ggagctgcga gcacagtgct ggctcacaac aagatgctca aggtgtcagc 150
 cqtactqtqt qtqtqtqcaq ccqcttqqtq caqtcaqtct ctcqcaqctq 200
 ccgcggcggt ggctgcagcc ggggggcggt cggacggcgg taattttctg 250
 gatgataaac aatggctcac cacaatctct cagtatgaca aggaagtcgg 300
 acagtggaac aaattccgag acgaagtaga ggatgattat ttccgcactt 350
ggagtccagg aaaacccttc gatcaggctt tagatccagc taaggatcca 400
 tgcttaaaga tgaaatgtag tcgccataaa gtatgcattg ctcaagattc 450
 tcagactgca gtctgcatta gtcaccggag gcttacacac aggatgaaag 500
aagcaggagt agaccatagg cagtggaggg gtcccatatt atccacctgc 550
 aagcagtgcc cagtggtcta tcccagccct gtttgtggtt cagatggtca 600
 tacctactct tttcagtgca aactagaata tcaggcatgt gtcttaggaa 650
aacagatctc agtcaaatgt gaaggacatt gcccatgtcc ttcagataag 700
cccaccagta caagcagaaa tgttaagaga gcatgcagtg acctggagtt 750
cagggaagtg gcaaacagat tgcgggactg gttcaaggcc cttcatgaaa 800
gtggaagtca aaacaagaag acaaaaacat tgctgaggcc tgagagaagc 850
agattcgata ccagcatctt gccaatttgc aaggactcac ttggctggat 900
```

gtttaacaga cttgatacaa actatgacct gctattggac cagtcagagc 950

tcagaagcat ttaccttgat aagaatgaac agtgtaccaa ggcattcttc 1000 aattottgtg acacatacaa ggacagttta atatotaata atgagtggtg 1050 ctactgcttc cagagacagc aagacccacc ttgccagact gagctcagca 1100 atattcagaa gcggcaaggg gtaaagaagc tcctaggaca gtatatcccc 1150 ctgtgtgatg aagatggtta ctacaagcca acacaatgtc atggcagtgt 1200 tggacagtgc tggtgtttg acagatatgg aaatgaagtc atgggatcca 1250 gaataaatgg tgttgcagat tgtgctatag attttgagat ctccggagat 1300 tttgctagtg gcgattttca tgaatggact gatgatgagg atgatgaaga 1350 cgatattatg aatgatgaag atgaaattga agatgatgat gaagatgaag 1400 gggatgatga tgatggtggt gatgaccatg atgtatacat ttgattgatg 1450 acagttgaaa tcaataaatt ctacatttct aatatttaca aaaatgatag 1500 cctatttaaa attatcttct tccccaataa caaaatgatt ctaaacctca 1550 catatatttt gtataattat ttgaaaaatt gcagctaaag ttatagaact 1600 ttatgtttaa ataagaatca tttgctttga gtttttatat tccttacaca 1650 aaaaqaaaat acatatqcaq tctaqtcaqa caaaataaaq ttttqaaqtg 1700 ctactataat aaatttttca cgagaacaaa ctttgtaaat cttccataag 1750 caaaatgaca gctagtgctt gggatcgtac atgttaattt tttgaaagat 1800 aattctaagt gaaatttaaa ataaataaat ttttaatgac ctgggtctta 1850 aggatttagg aaaaatatgc atgctttaat tgcatttcca aagtagcatc 1900 ttgctagacc tagatgagtc aggataacag agagatacca catgactcca 1950 aaaaaaaaa aaaa 1964

<210> 442

<211> 436

<212> PRT

<213> Homo sapiens

<400> 442

Met Leu Lys Val Ser Ala Val Leu Cys Val Cys Ala Ala Ala Trp
1 5 10 15

Cys Ser Gln Ser Leu Ala Ala Ala Ala Ala Val Ala Ala Gly
20 25 30

Gly Arg Ser Asp Gly Gly Asn Phe Leu Asp Asp Lys Gln Trp Leu 35 40 45

Thr Thr Ile Ser Gln Tyr Asp Lys Glu Val Gly Gln Trp Asn Lys

55 60 50 Phe Arg Asp Glu Val Glu Asp Asp Tyr Phe Arg Thr Trp Ser Pro Gly Lys Pro Phe Asp Gln Ala Leu Asp Pro Ala Lys Asp Pro Cys Leu Lys Met Lys Cys Ser Arg His Lys Val Cys Ile Ala Gln Asp 105 Ser Gln Thr Ala Val Cys Ile Ser His Arg Arg Leu Thr His Arg Met Lys Glu Ala Gly Val Asp His Arg Gln Trp Arg Gly Pro Ile 135 Leu Ser Thr Cys Lys Gln Cys Pro Val Val Tyr Pro Ser Pro Val Cys Gly Ser Asp Gly His Thr Tyr Ser Phe Gln Cys Lys Leu Glu 155 165 Tyr Gln Ala Cys Val Leu Gly Lys Gln Ile Ser Val Lys Cys Glu 170 Gly His Cys Pro Cys Pro Ser Asp Lys Pro Thr Ser Thr Ser Arg 195 185 190 Asn Val Lys Arq Ala Cys Ser Asp Leu Glu Phe Arg Glu Val Ala Asn Arg Leu Arg Asp Trp Phe Lys Ala Leu His Glu Ser Gly Ser 225 Gln Asn Lys Lys Thr Lys Thr Leu Leu Arg Pro Glu Arg Ser Arg Phe Asp Thr Ser Ile Leu Pro Ile Cys Lys Asp Ser Leu Gly Trp 255 250 Met Phe Asn Arg Leu Asp Thr Asn Tyr Asp Leu Leu Asp Gln Ser Glu Leu Arg Ser Ile Tyr Leu Asp Lys Asn Glu Gln Cys Thr 280 285 Lys Ala Phe Phe Asn Ser Cys Asp Thr Tyr Lys Asp Ser Leu Ile Ser Asn Asn Glu Trp Cys Tyr Cys Phe Gln Arg Gln Gln Asp Pro 315 Pro Cys Gln Thr Glu Leu Ser Asn Ile Gln Lys Arg Gln Gly Val

Lys Lys Leu Leu Gly Gln Tyr Ile Pro Leu Cys Asp Glu Asp Gly

```
Tyr Tyr Lys Pro Thr Gln Cys His Gly Ser Val Gly Gln Cys Trp
 Cys Val Asp Arg Tyr Gly Asn Glu Val Met Gly Ser Arg Ile Asn
 Gly Val Ala Asp Cys Ala Ile Asp Phe Glu Ile Ser Gly Asp Phe
 Ala Ser Gly Asp Phe His Glu Trp Thr Asp Asp Glu Asp Asp Glu
 Asp Asp Ile Met Asn Asp Glu Asp Glu Ile Glu Asp Asp Asp Glu
 Asp Glu Gly Asp Asp Asp Asp Gly Gly Asp Asp His Asp Val Tyr
 Ile
<210> 443
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 443
cagcaatatt cagaagcggc aaggg 25
<210> 444
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 444
catcatggtc atcaccacca tcatcatc 28
<210> 445
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 445
ggttactaca agccaacaca atgtcatggc agtgttggac agtgctgg 48
<210> 446
<211> 3617
```

W. W.

14.4

W.

践

14

<212> DNA

<213> Homo sapiens

<400> 446 cagactccag atttccctgt caaccacgag gagtccagag aggaaacgcg 50 gagcggagac aacagtacct gacgcctctt tcagcccggg atcgccccag 100 cagggatggg cgacaagatc tggctgccct tccccgtgct ccttctggcc 150 getetgeete eggtgetget geetggggeg geeggettea eacetteeet 200 cgatagcgac ttcaccttta cccttcccgc cggccagaag gagtgcttct 250 accageceat geceetgaag geetegetgg agategagta ceaagtttta 300 gatggagcag gattagatat tgatttccat cttgcctctc cagaaggcaa 350 aaccttagtt tttgaacaaa gaaaatcaga tggagttcac actgtagaga 400 ctgaagttgg tgattacatg ttctgctttg acaatacatt cagcaccatt 450 tctgagaagg tgattttctt tgaattaatc ctggataata tgggagaaca 500 ggcacaagaa caagaagatt ggaagaaata tattactggc acagatatat 550 tggatatgaa actggaagac atcctggaat ccatcaacag catcaagtcc 600 agactaagca aaagtgggca catacaaatt ctgcttagag catttgaagc 650 tcgtgatcga aacatacaag aaagcaactt tgatagagtc aatttctggt 700 ctatggttaa tttagtggtc atggtggtgg tgtcagccat tcaagtttat 750 atgctgaaga gtctgtttga agataagagg aaaagtagaa cttaaaactc 800 caaactagag tacgtaacat tgaaaaatga ggcataaaaa tgcaataaac 850 tgttacagtc aagaccatta atggtcttct ccaaaatatt ttgagatata 900 aaagtaggaa acaggtataa ttttaatgtg aaaattaagt cttcactttc 950 tgtgcaagta atcctgctga tccagttgta cttaagtgtg taacaggaat 1000 attttgcaga atataggttt aactgaatga agccatatta ataactgcat 1050 tttcctaact ttqaaaaatt ttqcaaatqt cttaggtgat ttaaataaat 1100 gagtattggg cctaattgca acaccagtct gtttttaaca ggttctatta 1150 cccagaactt ttttgtaaat gcggcagtta caaattaact gtggaagttt 1200 tcagttttaa gttataaatc acctgagaat tacctaatga tggattgaat 1250 aaatctttag actacaaaag cccaactttt ctctatttac atatgcatct 1300 ctcctataat gtaaatagaa taatagcttt gaaatacaat taggtttttg 1350 agatttttat aaccaaatac atttcagtgt aacatattag cagaaagcat 1400 tagtctttgt actttgctta cattcccaaa agctgacatt ttcacgattc 1450

ttaaaaacac aaagttacac ttactaaaat taggacatgt tttctctttg 1500 aaatgaagaa tatagtttaa aagcttcctc ctccataggg acacattttc 1550 tctaaccctt aactaaaqtq taqqatttta aaattaaatq tqaqqtaaaa 1600 taagtttatt tttaatagta tctgtcaagt taatatctgt caacagttaa 1650 taatcatgtt atgttaattt taacatgatt gctgacttgg ataattcatt 1700 attaccagca gttatgaagg aaatattgct aaaatgatct gggcctacca 1750 taaataaata totootttto tgagototaa gaattatoag aaaacaggaa 1800 agaatttaga aaaacttgag aaaacctaat ccaaaataaa attcacttaa 1850 gtagaactat aaataaatat ctagaatctg actggctcat catgacatcc 1900 tactcataac ataaatcaaa ggagatgatt aatttccagt tagctggaag 1950 aaactttggc tgtaggtttt tattttctac aagaattctg gtttgaatta 2000 tttttgtaag caggtacatt ttataaaatg taagccctac tgtaaggttt 2050 agcactgggt gtacatattt attaaaaatt tttattataa caacttttat 2100 taaaatggcc tttctgaaca ctttatttat tgatgttgaa gtaaggatta 2150 gaaacataga ctcccaagtt ttaaacacct aaatgtgaat aacccatata 2200 tacaacaaag tttctgccat ctagcttttt gaagtctatg ggggtcttac 2250 tcaagtacta gtaatttaac ttcatcatga atgaactata atttttaagt 2300 tatgcccatt tataacgttg tttatgacta cattgtgagt tagaaacaaa 2350 cttaaaaattt ggggtataga acccctcaac aggttagtaa tgctggaatt 2400 cttgatgagc aataatgata accagagagt gatttcattt acactcatag 2450 tagtataaaa agagatacat ttccctctta ggcccctggg agaagagcag 2500 cttagatttc cctactggca aggtttttaa aaatgaggta aatgccgtat 2550 atgatcaatt accttaattg gccaagaaaa tgcttcaggt gtctaggggt 2600 atcctctgca acacttgcag aacaaaggtc aataagatcc ttgcctatga 2650 atacccctcc cttttgcgct gttaaatttg caatgagaag caaatttaca 2700 gtaccataac taataaagca gggtacagat ataaactact gcatcttttc 2750 tataaaactg tgattaagaa ttctacctct cctgtatggc tgttactgta 2800 ctgtactctc tgactcctta cctaacaatg aatttgttac ataatcttct 2850 acatgtatga tttgtgccac tgatcttaaa cctatgattc agtaacttct 2900

taccatataa aaacgataat tgctttattt ggaaaagaat ttaggaatac 2950
taaggacaat tattttata gacaaagtaa aaagacagat atttaagagg 3000
cataaccaaa aaagcaaaac ttgtaaacag agtaaaaatc tttaatattt 3050
ctaaagacat actgtttatc tgcttcatat gctttttta atttcactat 3100
tccatttcta aattaaagtt atgctaaatt gagtaagctg tttatcactt 3150
aacagctcat tttgtctttt tcaatataca aattttaaaa atactacaat 3200
atttaactaa ggcccaaccg atttccataa tgtagcagtt accgtgttca 3250
cctcacacta aggcctagag tttgctctga tatgcatttg gatgattaat 3300
gttatgctgt tcttcatgt gaatgtcaag acatggaggg tgtttgtaat 3350
tttatggtaa aattaatcct tcttacacat aatggtgtct taaaattgac 3400
aaaaaatgag cacttacaat tgtatgtctc ctcaaatgaa gattctttat 3450
gtgaaatttt aaaagcaat gattccgcat gtaaggattt ttcatctgaa 3500
gtacaataat gcacaatcag tgttgctcaa actgctttat acttataaac 3550
agccatctta aataagcaac gtattgtgag tactgatatg tatataataa 3600
aaattatcaa aggaaaa 3617

<210> 447

<211> 229

<212> PRT

<213> Homo sapiens

<400> 447

Met Gly Asp Lys Ile Trp Leu Pro Phe Pro Val Leu Leu Leu Ala
1 5 10 15

Ala Leu Pro Pro Val Leu Leu Pro Gly Ala Ala Gly Phe Thr Pro 20 25 30

Ser Leu Asp Ser Asp Phe Thr Phe Thr Leu Pro Ala Gly Gln Lys 35 40 45

Glu Cys Phe Tyr Gln Pro Met Pro Leu Lys Ala Ser Leu Glu Ile 50 55 60

Glu Tyr Gln Val Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His
65 70 75

Leu Ala Ser Pro Glu Gly Lys Thr Leu Val Phe Glu Gln Arg Lys 80 85 90

Ser Asp Gly Val His Thr Val Glu Thr Glu Val Gly Asp Tyr Met 95 100 105

Phe Cys Phe Asp Asn Thr Phe Ser Thr Ile Ser Glu Lys Val Ile

ccagaaggag cacggggaag ggcagccaga tcttgtcgcc cat 43

April 1

34

1

<400> 450

120

```
<210> 451
<211> 859
<212> DNA
<213> Homo sapiens
```

<400> 451 ccatccctga gatcttttta taaaaaaccc agtctttgct gaccagacaa 50 agcataccag atctcaccag agagtcgcag acactatgct gcctcccatg 100 gccctgccca gtgtgtcctg gatgctgctt tcctgcctca ttctcctgtg 150 tcaggttcaa ggtgaagaaa cccagaagga actgccctct ccacggatca 200 gctgtcccaa aggctccaag gcctatggct ccccctgcta tgccttgttt 250 ttgtcaccaa aatcctggat ggatgcagat ctggcttgcc agaagcggcc 300 ctctggaaaa ctggtgtctg tgctcagtgg ggctgaggga tccttcgtgt 350 cctccctggt gaggagcatt agtaacagct actcatacat ctggattggg 400 ctccatgacc ccacacaggg ctctgagcct gatggagatg gatgggagtg 450 gagtagcact gatgtgatga attactttgc atgggagaaa aatccctcca 500 ccatcttaaa ccctggccac tgtgggagcc tgtcaagaag cacaggattt 550 ctgaagtgga aagattataa ctgtgatgca aagttaccct atgtctgcaa 600 gttcaaggac tagggcaggt gggaagtcag cagcctcagc ttggcgtgca 650 gctcatcatg gacatgagac cagtgtgaag actcaccctg gaagagaata 700 ttctccccaa actgccctac ctgactacct tgtcatgatc ctccttcttt 750 ttcctttttc ttcaccttca tttcaggctt ttctctgtct tccatgtctt 800 gagatctcag agaataataa taaaaatgtt actttataaa aaaaaaaaa 850 aaaaaaaaa 859

```
<210> 452
<211> 175
<212> PRT
<213> Homo sapiens
```

The test of the test to the

10 Miles

Trp Met Asp Ala Asp Leu Ala Cys Gln Lys Arg Pro Ser Gly Lys 65 Leu Val Ser Val Leu Ser Gly Ala Glu Gly Ser Phe Val Ser Ser Leu Val Arg Ser Ile Ser Asn Ser Tyr Ser Tyr Ile Trp Ile Gly 95 Leu His Asp Pro Thr Gln Gly Ser Glu Pro Asp Gly Asp Gly Trp 110 Glu Trp Ser Ser Thr Asp Val Met Asn Tyr Phe Ala Trp Glu Lys 135 125 130 Asn Pro Ser Thr Ile Leu Asn Pro Gly His Cys Gly Ser Leu Ser 140 Arg Ser Thr Gly Phe Leu Lys Trp Lys Asp Tyr Asn Cys Asp Ala 165 155

Lys Leu Pro Tyr Val Cys Lys Phe Lys Asp 170 175

<210> 453

<211> 550

<212> DNA

<213> Homo sapiens

<400> 453
ccagtctgtc gccacctcac ttggtgtctg ctgtccccgc caggcaagcc 50

tggggtgaga gcacagagga gtgggccggg accatgcggg ggacgcggct 100
ggcgctcctg gcgctggtgc tggctgcctg cggagagctg gcgccggccc 150
tgcgctgcta cgtctgtccg gagcccacag gagtgtcgga ctgtgtcacc 200
atcgccacct gcaccacaa cgaaaccatg tgcaagacca cactctactc 250
ccgggagata gtgtacccct tccaggggga ctccacggtg accaagtcct 300
gtgccagcaa gtgtaagccc tcggatgtgg atggcatcgg ccagaccctg 350
cccgtgtcct gctgcaatac tgagctgtgc aatgtagacg gggcgccgc 400
tctgaacagc ctccactgcg gggccctcac gctcctcca ctcttgagcc 450
tccgactgta gagtccccgc ccaccccat ggccctatgc ggcccagccc 500
cgaatgcctt gaagaagtgc cccctgcacc aggaaaaaaa aaaaaaaaa 550

<210> 454

<211> 125

<212> PRT

<213> Homo sapiens

<400> 454 Met Arg Gly Thr Arg Leu Ala Leu Leu Ala Leu Val Leu Ala Ala Cys Gly Glu Leu Ala Pro Ala Leu Arg Cys Tyr Val Cys Pro Glu Pro Thr Gly Val Ser Asp Cys Val Thr Ile Ala Thr Cys Thr Thr Asn Glu Thr Met Cys Lys Thr Thr Leu Tyr Ser Arg Glu Ile Val 55 Tyr Pro Phe Gln Gly Asp Ser Thr Val Thr Lys Ser Cys Ala Ser Lys Cys Lys Pro Ser Asp Val Asp Gly Ile Gly Gln Thr Leu Pro Val Ser Cys Cys Asn Thr Glu Leu Cys Asn Val Asp Gly Ala Pro

Ala Leu Asn Ser Leu His Cys Gly Ala Leu Thr Leu Leu Pro Leu

Leu Ser Leu Arg Leu

125

<210> 455 <211> 1518 <212> DNA

<400> 455

<213> Homo sapiens

ctgcagtcag gactctggga ccgcaggggg ctcccggacc ctgactctgc 50

agccgaaccg gcacggtttc gtggggaccc aggcttgcaa agtgacggtc 100 attttctctt tctttctccc tcttgagtcc ttctgagatg atggctctgg 150 gcgcagcggg agctacccgg gtctttgtcg cgatggtagc ggcggctctc 200 ggcggccacc ctctgctggg agtgagcgcc accttgaact cggttctcaa 250 ttccaacgct atcaagaacc tgcccccacc gctgggcggc gctgcggggc 300 acccaggete tgcagtcage geogegeegg gaateetgta eeegggeggg 350 aataagtacc agaccattga caactaccag ccgtacccgt gcgcagagga 400 cgaggagtgc ggcactgatg agtactgcgc tagtcccacc cgcggagggg 450 acgcaggcgt gcaaatctgt ctcgcctgca ggaagcgccg aaaacgctgc 500 atgcgtcacg ctatgtgctg ccccgggaat tactgcaaaa atggaatatg 550 tgtgtcttct gatcaaaatc atttccgagg agaaattgag gaaaccatca 600

ctgaaagctt tggtaatgat catagcacct tggatgggta ttccagaaga 650 accaccttgt cttcaaaaat gtatcacacc aaaggacaag aaggttctgt 700 ttgtctccgg tcatcagact gtgcctcagg attgtgttgt gctagacact 750 tctggtccaa gatctgtaaa cctgtcctga aagaaggtca agtgtgtacc 800 aagcatagga gaaaaggctc tcatggacta gaaatattcc agcgttgtta 850 ctgtggagaa ggtctgtctt gccggataca gaaagatcac catcaagcca 900 gtaattcttc taggcttcac acttgtcaga gacactaaac cagctatcca 950 aatgcagtga actcctttta tataatagat gctatgaaaa ccttttatga 1000 ccttcatcaa ctcaatccta aggatataca agttctgtgg tttcagttaa 1050 gcattccaat aacaccttcc aaaaacctgg agtgtaagag ctttgtttct 1100 ttatqqaact cccctgtgat tgcagtaaat tactgtattg taaattctca 1150 gtgtggcact tacctgtaaa tgcaatgaaa cttttaatta tttttctaaa 1200 ggtgctgcac tgcctatttt tcctcttgtt atgtaaattt ttgtacacat 1250 tgattgttat cttgactgac aaatattcta tattgaactg aagtaaatca 1300 tttcagctta tagttcttaa aagcataacc ctttacccca tttaattcta 1350 gagtctagaa cgcaaggatc tcttggaatg acaaatgata ggtacctaaa 1400 atgtaacatg aaaatactag cttattttct gaaatgtact atcttaatgc 1450 ttaaattata tttcccttta qqctqtgata gtttttgaaa taaaatttaa 1500 catttaaaaa aaaaaaaa 1518

<210> 456

<211> 266

<212> PRT

<213> Homo sapiens

<400> 456

Met Met Ala Leu Gly Ala Ala Gly Ala Thr Arg Val Phe Val Ala 1 5 10 15

Met Val Ala Ala Leu Gly Gly His Pro Leu Leu Gly Val Ser 20 25 30

Ala Thr Leu Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu 35 40 45

Pro Pro Pro Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val 50 55 60

Ser Ala Ala Pro Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln
65 70 75

```
Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu
Cys Gly Thr Asp Glu Tyr Cys Ala Ser Pro Thr Arg Gly Gly Asp
                                                          105
Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Lys Arg
                                                          120
                 110
Cys Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn
Gly Ile Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile
                 140
Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu
                                     160
                 155
Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His
                                                          180
                 170
                                     175
Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys
                                     190
Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys
                 200
                                     205
                                                          210
Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg
                                                          225
Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly
                 230
                                     235
                                                          240
Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser
                                     250
                                                          255
Asn Ser Ser Arg Leu His Thr Cys Gln Arg His
<210> 457
<211> 638
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 30, 123, 133, 139, 180, 214, 259, 282, 308, 452, 467, 471, 473,
      509, 556
<223> unknown base
<400> 457
tgtgtttccc tgcagtcaga atttgggacn gcaggggttc ccggacctga 50
ttttgcagcg gaacgggaag gttttgtggg acccaggttg aaatgacggt 100
cattttttt tcttctcct tcnggagtcc ttntgagang atggttttgg 150
```

gcgcagcggg agctaacccg gttttttgtn gcgatggtag cggcggtttt 200

cggcggcac cttntgctgg gagtgagcgc caccttgaat cggttttcaa 250 ttccaacgnt atcaagaacc tgccccacc gntgggcggc gctgcggggc 300 acccaggntt tgcagtcagc gccgcgcgg gaatcctgta cccgggcggg 350 aataagtacc agaccattga caattaccag ccgtacccgt gcgcagagga 400 cgaggagtgc ggcactgatg agtactgcgc tagtcccacc cgcggagggg 450 angcgggcgt gcaaatntgt ntngcctgca ggaagcgccg aaaacgctgc 500 atgcgtcang ctatgtgctg ccccgggaat tactgcaaaa atggaatatg 550 tgtgtnttct gatcaaaatc atttccgagg agaaattgag gaaaccatca 600 ctgaaagctt tggtaatgat catagcacct tggatggg 638

<210> 458

<211> 4040

<212> DNA

<213> Homo sapiens

<400> 458 gaggaaceta ceggtacegg eegegegetg gtagtegeeg gtgtggetge 50 acctcaccaa tecegtgege egeggetggg eegteggaga gtgegtgtge 100 tteteteetg caegeggtge ttgggetegg ceaggegggg teegeegea 150 gggtttgagg atgggggagt agctacagga agcgaccccg cgatggcaag 200 gtatattttt gtggaatgaa aaggaagtat tagaaatgag ctgaagacca 250 ttcacagatt aatatttttg gggacagatt tgtgatgctt gattcaccct 300 tgaagtaatg tagacagaag ttctcaaatt tgcatattac atcaactgga 350 accagcagtg aatcttaatg ttcacttaaa tcagaacttg cataagaaag 400 agaatgggag tctggttaaa taaagatgac tatatcagag acttgaaaag 450 gatcattctc tgttttctga tagtgtatat ggccatttta gtgggcacag 500 atcaggattt ttacagttta cttggagtgt ccaaaactgc aagcagtaga 550 gaaataagac aagctttcaa gaaattggca ttgaagttac atcctgataa 600 aaacccgaat aacccaaatg cacatggcga ttttttaaaa ataaatagag 650 catatgaagt actcaaagat gaagatctac ggaaaaagta tgacaaatat 700 ggagaaaagg gacttgagga taatcaaggt ggccagtatg aaagctggaa 750 ctattatcgt tatgattttg gtatttatga tgatgatcct gaaatcataa 800 cattggaaag aagagaattt gatgctgctg ttaattctgg agaactgtgg 850

tttgtaaatt tttactcccc aggctgttca cactgccatg atttagctcc 900 cacatggaga gactttgcta aagaagtgga tgggttactt cgaattggag 950 ctgttaactg tggtgatgat agaatgcttt gccgaatgaa aggagtcaac 1000 agctatccca gtctcttcat ttttcggtct ggaatggccc cagtgaaata 1050 tcatggagac agatcaaagg agagtttagt gagttttgca atgcagcatg 1100 ttagaagtac agtgacagaa ctttggacag gaaattttgt caactccata 1150 caaactgctt ttgctgctgg tattggctgg ctgatcactt tttgttcaaa 1200 aggaggagat tgtttgactt cacagacacg actcaggctt agtggcatgt 1250 tgtttctcaa ctcattggat gctaaagaaa tatatttgga agtaatacat 1300 aatcttccag attttgaact actttcggca aacacactag aggatcgttt 1350 ggctcatcat cggtggctgt tattttttca ttttggaaaa aatgaaaatt 1400 caaatgatcc tgagctgaaa aaactaaaaa ctctacttaa aaatgatcat 1450 attcaagttg gcaggtttga ctgttcctct gcaccagaca tctgtagtaa 1500 tctgtatgtt tttcagccgt ctctagcagt atttaaagga caaggaacca 1550 aagaatatga aattcatcat ggaaagaaga ttctatatga tatacttgcc 1600 tttgccaaag aaagtgtgaa ttctcatgtt accacgcttg gacctcaaaa 1650 ttttcctgcc aatgacaaag aaccatggct tgttgatttc tttgccccct 1700 ggtgtccacc atgtcgagct ttactaccag agttacgaag agcatcaaat 1750 cttctttatg gtcagcttaa gtttggtaca ctagattgta cagttcatga 1800 gggactctgt aacatgtata acattcaggc ttatccaaca acagtggtat 1850 tcaaccagtc caacattcat gagtatgaag gacatcactc tgctgaacaa 1900 atcttggagt tcatagagga tcttatgaat ccttcagtgg tctcccttac 1950 acccaccacc ttcaacqaac taqttacaca aaqaaaacac aacqaaqtct 2000 ggatggttga tttctattct ccgtggtgtc atccttgcca agtcttaatg 2050 ccagaatgga aaagaatggc ccggacatta actggactga tcaacgtggg 2100 cagtatagat tgccaacagt atcattcttt ttgtgcccag gaaaacgttc 2150 aaagataccc tgagataaga ttttttcccc caaaatcaaa taaagcttat 2200 cagtatcaca gttacaatgg ttggaatagg gatgcttatt ccctgagaat 2250 ctggggtcta ggatttttac ctcaagtatc cacagatcta acacctcaga 2300 ctttcagtga aaaagttcta caagggaaaa atcattgggt gattgatttc 2350 tatgctcctt ggtgtggacc ttgccagaat tttgctccag aatttgagct 2400 cttqqctaqq atqattaaaq gaaaaqtgaa agctggaaaa gtagactgtc 2450 aggettatge teagacatge eagaaagetg ggateaggge etateeaact 2500 qttaaqtttt atttctacga aagagcaaag agaaattttc aagaagagca 2550 gataaatacc agagatgcaa aagcaatcgc tgccttaata agtgaaaaat 2600 tggaaactct ccgaaatcaa ggcaagagga ataaggatga actttgataa 2650 tgttgaagat gaagaaaaag tttaaaaagaa attctgacag atgacatcag 2700 aaqacaccta tttaqaatgt tacatttatg atgggaatga atgaacatta 2750 tcttagactt gcagttgtac tgccagaatt atctacagca ctggtgtaaa 2800 agaagggtct qcaaactttt tctgtaaagg qccggtttat aaatatttta 2850 gactttgcag gctataatat atggttcaca catgagaaca agaatagagt 2900 catcatgtat tctttgttat ttgcttttaa caacctttaa aaaatattaa 2950 aacgattctt agctcagagc catacaaaag taggctggat tcagtccatg 3000 gaccatagat tgctgtcccc ctcgacggac ttataatgtt tcaggtggct 3050 ggcttgaaca tgagtctgct gtgctatcta cataaatgtc taagttgtat 3100 aaagtccact ttcccttcac gttttttggc tgacctgaaa agaggtaact 3150 tagtttttgg tcacttgttc tcctaaaaat gctatcccta accatatatt 3200 tatatttcqt tttaaaaaca cccatgatgt ggcacagtaa acaaaccctg 3250 ttatgctgta ttattatgag gagattcttc attgttttct ttccttctca 3300 aaggttgaaa aaatgctttt aatttttcac agccgagaaa cagtgcagca 3350 gtatatgtgc acacagtaag tacacaaatt tgagcaacag taagtgcaca 3400 aattotgtag tttgctgtat catccaggaa aacctgaggg aaaaaaatta 3450 tagcaattaa ctgggcattg tagagtatcc taaatatgtt atcaagtatt 3500 tagagttcta tattttaaag atatatgtgt tcatgtattt tctgaaattg 3550 ctttcataga aattttccca ctgatagttg atttttgagg catctaatat 3600 ttacatattt gccttctgaa ctttgttttg acctgtatcc tttatttaca 3650 ttgggttttt ctttcatagt tttggttttt cactcctgtc cagtctattt 3700 attattcaaa taggaaaaat tactttacag gttgttttac tgtagcttat 3750

aatgatactg tagttattcc agttactagt ttactgtcag agggctgcct 3800 ttttcagata aatattgaca taataactga agttatttt ataagaaaat 3850 caagtatata aatctaggaa agggatcttc tagtttctgt gttgtttaga 3900 ctcaaagaat cacaaatttg tcagtaacat gtagttgttt agttataatt 3950 cagagtgtac agaatggtaa aaattccaat cagtcaaaag aggtcaatga 4000 attaaaaggc ttgcaacttt ttcaaaaaaaa aaaaaaaaa 4040

<210> 459

<211> 747

<212> PRT

<213> Homo sapiens

<400> 459

Met Gly Val Trp Leu Asn Lys Asp Asp Tyr Ile Arg Asp Leu Lys 1 5 10 15

Arg Ile Ile Leu Cys Phe Leu Ile Val Tyr Met Ala Ile Leu Val 20 25 30

Gly Thr Asp Gln Asp Phe Tyr Ser Leu Leu Gly Val Ser Lys Thr 35 40 45

Ala Ser Ser Arg Glu Ile Arg Gln Ala Phe Lys Lys Leu Ala Leu
50 55 60

Lys Leu His Pro Asp Lys Asn Pro Asn Asn Pro Asn Ala His Gly 65 70 75

Asp Phe Leu Lys Ile Asn Arg Ala Tyr Glu Val Leu Lys Asp Glu 80 85 90

Asp Leu Arg Lys Lys Tyr Asp Lys Tyr Gly Glu Lys Gly Leu Glu
95 100 105

Asp Asn Gln Gly Gly Gln Tyr Glu Ser Trp Asn Tyr Tyr Arg Tyr 110 115 120

Asp Phe Gly Ile Tyr Asp Asp Pro Glu Ile Ile Thr Leu Glu 125 130 135

Arg Arg Glu Phe Asp Ala Ala Val Asn Ser Gly Glu Leu Trp Phe 140 145 150

Val Asn Phe Tyr Ser Pro Gly Cys Ser His Cys His Asp Leu Ala 155 160 165

Pro Thr Trp Arg Asp Phe Ala Lys Glu Val Asp Gly Leu Leu Arg 170 175 180

Ile Gly Ala Val Asn Cys Gly Asp Asp Arg Met Leu Cys Arg Met 185 190 195

Lys Gly Val Asn Ser Tyr Pro Ser Leu Phe Ile Phe Arg Ser Gly

200 205 210 Met Ala Pro Val Lys Tyr His Gly Asp Arg Ser Lys Glu Ser Leu 215 Val Ser Phe Ala Met Gln His Val Arg Ser Thr Val Thr Glu Leu 235 Trp Thr Gly Asn Phe Val Asn Ser Ile Gln Thr Ala Phe Ala Ala Gly Ile Gly Trp Leu Ile Thr Phe Cys Ser Lys Gly Gly Asp Cys 260 Leu Thr Ser Gln Thr Arg Leu Arg Leu Ser Gly Met Leu Phe Leu 275 Asn Ser Leu Asp Ala Lys Glu Ile Tyr Leu Glu Val Ile His Asn Leu Pro Asp Phe Glu Leu Leu Ser Ala Asn Thr Leu Glu Asp Arg Leu Ala His His Arg Trp Leu Leu Phe Phe His Phe Gly Lys Asn Glu Asn Ser Asn Asp Pro Glu Leu Lys Lys Leu Lys Thr Leu Leu 335 Lys Asn Asp His Ile Gln Val Gly Arg Phe Asp Cys Ser Ser Ala Pro Asp Ile Cys Ser Asn Leu Tyr Val Phe Gln Pro Ser Leu Ala 365 Val Phe Lys Gly Gln Gly Thr Lys Glu Tyr Glu Ile His His Gly Lys Lys Ile Leu Tyr Asp Ile Leu Ala Phe Ala Lys Glu Ser Val 395 Asn Ser His Val Thr Thr Leu Gly Pro Gln Asn Phe Pro Ala Asn Asp Lys Glu Pro Trp Leu Val Asp Phe Phe Ala Pro Trp Cys Pro Pro Cys Arg Ala Leu Leu Pro Glu Leu Arg Arg Ala Ser Asn Leu Leu Tyr Gly Gln Leu Lys Phe Gly Thr Leu Asp Cys Thr Val His Glu Gly Leu Cys Asn Met Tyr Asn Ile Gln Ala Tyr Pro Thr Thr Val Val Phe Asn Gln Ser Asn Ile His Glu Tyr Glu Gly His His

```
Ser Ala Glu Gln Ile Leu Glu Phe Ile Glu Asp Leu Met Asn Pro
                500
Ser Val Val Ser Leu Thr Pro Thr Thr Phe Asn Glu Leu Val Thr
                515
Gln Arg Lys His Asn Glu Val Trp Met Val Asp Phe Tyr Ser Pro
                530
Trp Cys His Pro Cys Gln Val Leu Met Pro Glu Trp Lys Arg Met
Ala Arg Thr Leu Thr Gly Leu Ile Asn Val Gly Ser Ile Asp Cys
                                    565
                560
Gln Gln Tyr His Ser Phe Cys Ala Gln Glu Asn Val Gln Arg Tyr
                575
                                    580
Pro Glu Ile Arg Phe Phe Pro Pro Lys Ser Asn Lys Ala Tyr Gln
                590
                                    595
Tyr His Ser Tyr Asn Gly Trp Asn Arg Asp Ala Tyr Ser Leu Arg
Ile Trp Gly Leu Gly Phe Leu Pro Gln Val Ser Thr Asp Leu Thr
Pro Gln Thr Phe Ser Glu Lys Val Leu Gln Gly Lys Asn His Trp
Val Ile Asp Phe Tyr Ala Pro Trp Cys Gly Pro Cys Gln Asn Phe
Ala Pro Glu Phe Glu Leu Leu Ala Arg Met Ile Lys Gly Lys Val
Lys Ala Gly Lys Val Asp Cys Gln Ala Tyr Ala Gln Thr Cys Gln
Lys Ala Gly Ile Arg Ala Tyr Pro Thr Val Lys Phe Tyr Phe Tyr
Glu Arg Ala Lys Arg Asn Phe Gln Glu Gln Ile Asn Thr Arg
Asp Ala Lys Ala Ile Ala Ala Leu Ile Ser Glu Lys Leu Glu Thr
Leu Arg Asn Gln Gly Lys Arg Asn Lys Asp Glu Leu
```

<210> 460

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 460
 actccccagg ctgttcacac tgcc 24
<210> 461
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 461
 gatcagccag ccaataccag cagc 24
<210> 462
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 462
 gtggtgatga tagaatgctt tgccgaatga aaggagtcaa cagctatccc 50
<210> 463
<211> 1818
<212> DNA
<213> Homo sapiens
<400> 463
 agacagtacc tcctccctag gactacacaa ggactgaacc agaaggaaga 50
 ggacagagca aagccatgaa catcatccta gaaatccttc tgcttctgat 100
 caccatcatc tactcctact tggagtcgtt ggtgaagttt ttcattcctc 150
 agaggagaaa atctgtggct ggggagattg ttctcattac tggagctggg 200
 catggaatag gcaggcagac tacttatgaa tttgcaaaac gacagagcat 250
 attggttctg tgggatatta ataagcgcgg tgtggaggaa actgcagctg 300
 agtgccgaaa actaggcgtc actgcgcatg cgtatgtggt agactgcagc 350
 aacagagaag agatctatcg ctctctaaat caggtgaaga aagaagtggg 400
 tgatgtaaca atcgtggtga ataatgctgg gacagtatat ccagccgatc 450
 ttctcagcac caaggatgaa gagattacca agacatttga ggtcaacatc 500
 ctaggacatt tttggatcac aaaagcactt cttccatcga tgatggagag 550
 aaatcatggc cacatcgtca cagtggcttc agtgtgcggc cacgaaggga 600
 ttccttacct catcccatat tgttccagca aatttgccgc tgttggcttt 650
```

cacagaggtc tgacatcaga acttcaggcc ttgggaaaaa ctggtatcaa 700

aacctcatgt ctctgcccag tttttgtgaa tactgggttc accaaaaatc 750 caagcacaag attatggcct gtattggaga cagatgaagt cgtaagaagt 800 ctgatagatg gaatacttac caataagaaa atgatttttg ttccatcgta 850 tatcaatatc tttctgagac tacagaagtt tcttcctgaa cgcgcctcag 900 cgattttaaa tcgtatgcag aatattcaat ttgaagcagt ggttggccac 950 aaaatcaaaa tgaaatgaat aaataagctc cagccagaga tgtatgcatg 1000 ataatgatat gaatagtttc gaatcaatgc tgcaaagctt tatttcacat 1050 tttttcagtc ctgataatat taaaaacatt ggtttggcac tagcagcagt 1100 caaacgaaca agattaatta cctgtcttcc tgtttctcaa gaatatttac 1150 gtagtttttc ataggtctgt ttttcctttc atgcctctta aaaacttctg 1200 tgcttacata aacatactta aaaggttttc tttaagatat tttatttttc 1250 catttaaagg tggacaaaag ctacctccct aaaagtaaat acaaagagaa 1300 cttatttaca cagggaaggt ttaagactgt tcaagtagca ttccaatctg 1350 tagccatgcc acagaatatc aacaagaaca cagaatgagt gcacagctaa 1400 gagatcaagt ttcagcaggc agctttatct caacctggac atattttaag 1450 attcagcatt tgaaagattt ccctagcctc ttcctttttc attagcccaa 1500 aacggtgcaa ctctattctg gactttatta cttgattctg tcttctgtat 1550 aactctgaag tccaccaaaa gtggaccctc tatatttcct ccctttttat 1600 agtcttataa gatacattat gaaaggtgac cgactctatt ttaaatctca 1650 gaattttaag ttctagcccc atgataacct ttttctttgt aatttatgct 1700 ttcatatatc cttggtccca gagatgttta gacaatttta ggctcaaaaa 1750 ttaaagctaa cacaggaaaa ggaactgtac tggctattac ataagaaaca 1800 atggacccaa gagaagaa 1818

<210> 464

<211> 300

<212> PRT

<213> Homo sapiens

<400> 464

Met Asn Ile Ile Leu Glu Ile Leu Leu Leu Leu Ile Thr Ile Ile 1 5 10 15

Tyr Ser Tyr Leu Glu Ser Leu Val Lys Phe Phe Ile Pro Gln Arg
20 25 30

Arg Lys Ser Val Ala Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile Gly Arg Gln Thr Thr Tyr Glu Phe Ala Lys Arg Gln Ser Ile Leu Val Leu Trp Asp Ile Asn Lys Arg Gly Val Glu Glu Thr Ala Ala Glu Cys Arg Lys Leu Gly Val Thr Ala His Ala Tyr Val Val Asp Cys Ser Asn Arg Glu Glu Ile Tyr Arg Ser Leu Asn Gln Val Lys Lys Glu Val Gly Asp Val Thr Ile Val Val Asn Asn Ala Gly Thr Val Tyr Pro Ala Asp Leu Leu Ser Thr Lys Asp Glu Glu Ile Thr Lys Thr Phe Glu Val Asn Ile Leu Gly His Phe Trp Ile Thr Lys Ala Leu Leu Pro Ser Met Met Glu Arg Asn His Gly His Ile Val Thr Val Ala Ser Val Cys Gly His Glu Gly Ile Pro Tyr Leu Ile Pro Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe His Arg Gly Leu Thr Ser Glu Leu Gln Ala Leu Gly Lys Thr Gly Ile Lys Thr Ser Cys Leu Cys Pro Val Phe Val Asn Thr Gly Phe Thr Lys Asn Pro Ser Thr Arg Leu Trp Pro Val Leu Glu Thr Asp Glu Val Val Arg Ser Leu Ile Asp Gly Ile Leu Thr Asn Lys Lys Met Ile Phe Val Pro Ser Tyr Ile Asn Ile Phe Leu Arg Leu Gln 260 Lys Phe Leu Pro Glu Arg Ala Ser Ala Ile Leu Asn Arg Met Gln Asn Ile Gln Phe Glu Ala Val Val Gly His Lys Ile Lys Met Lys

290

300

<210> 465

<211> 1547

<212> DNA

<213> Homo sapiens

<400> 465 cggcggcggc tgcgggcgcg aggtgagggg cgcgaggtga ggggcgcgag 50 gttcccagca ggatgccccg gctctgcagg aagctgaagt gagaggcccg 100 gagagggccc agcccgcccg gggcaggatg accaaggccc ggctgttccg 150 gctgtggctg gtgctggggt cggtgttcat gatcctgctg atcatcgtgt 200 actgggacag cgcaggcgcc gcgcacttct acttgcacac gtccttctct 250 aggccgcaca cggggccgcc gctgcccacg cccgggccgg acagggacag 300 ggageteacg geogaeteeg atgtegaega gtttetggae aagtttetea 350 gtgctggcgt gaagcagagc gaccttccca gaaaggagac ggagcagccg 400 cctgcgccgg ggagcatgga ggagagcgtg agaggctacg actggtcccc 450 ggagcqtqct gcgqggcttc tgcgccaact ccagcctggc cttccccacc 550 aaggagegeg cattegaega cateeccaae teggagetga gecaeetgat 600 cgtggacgac cggcacgggg ccatctactg ctacgtgccc aaggtggcct 650 gcaccaactg gaagcgcgtg atgatcgtgc tgagcggaag cctgctgcac 700 cgcggtgcgc cctaccgcga cccgctgcgc atcccgcgcg agcacgtgca 750 caacgccagc gcgcacctga ccttcaacaa gttctggcgc cgctacggga 800 agctctcccg ccacctcatg aaggtcaagc tcaagaagta caccaagttc 850 ctcttcgtgc gcgacccctt cgtgcgcctg atctccgcct tccgcagcaa 900 gttcgagctg gagaacgagg agttctaccg caagttcgcc gtgcccatgc 950 tgcggctgta cgccaaccac accagcctgc ccgcctcggc gcgcgaggcc 1000 ttccgcgctg gcctcaaggt gtccttcgcc aacttcatcc agtacctgct 1050 ggacccgcac acggagaagc tggcgccctt caacgagcac tggcggcagg 1100 tgtaccgcct ctgccacccg tgccagatcg actacgactt cgtggggaag 1150 ctggagactc tggacgagga cgccgcgcag ctgctgcagc tactccaggt 1200 ggaccggcag ctccgcttcc ccccgagcta ccggaacagg accgccagca 1250 gctgggagga ggactggttc gccaagatcc ccctggcctg gaggcagcag 1300 ctgtataaac tctacgaggc cgactttgtt ctcttcggct accccaagcc 1350 cgaaaacctc ctccgagact gaaagctttc gcgttgcttt ttctcgcgtg 1400 cctggaacct gacgcacgcg cactccagtt tttttatgac ctacgatttt 1450 gcaatctggg cttcttgttc actccactgc ctctatccat tgagtactgt 1500 atcgatattg ttttttaaga ttaatatatt tcaggtattt aatacga 1547

<210> 466

<211> 414

<212> PRT

<213> Homo sapiens

<400> 466

Met Thr Lys Ala Arg Leu Phe Arg Leu Trp Leu Val Leu Gly Ser
1 10 15

Val Phe Met Ile Leu Leu Ile Ile Val Tyr Trp Asp Ser Ala Gly
20 25 30

Ala Ala His Phe Tyr Leu His Thr Ser Phe Ser Arg Pro His Thr
35 40 45

Gly Pro Pro Leu Pro Thr Pro Gly Pro Asp Arg Asp Arg Glu Leu
50 55 60

Thr Ala Asp Ser Asp Val Asp Glu Phe Leu Asp Lys Phe Leu Ser 65 70 75

Ala Gly Val Lys Gln Ser Asp Leu Pro Arg Lys Glu Thr Glu Gln
80 85 90

Pro Pro Ala Pro Gly Ser Met Glu Glu Ser Val Arg Gly Tyr Asp 95 100 105

Trp Ser Pro Arg Asp Ala Arg Arg Ser Pro Asp Gln Gly Arg Gln 110 115 120

Gln Ala Glu Arg Arg Ser Val Leu Arg Gly Phe Cys Ala Asn Ser 125 130 135

Ser Leu Ala Phe Pro Thr Lys Glu Arg Ala Phe Asp Asp Ile Pro 140 145 150

Asn Ser Glu Leu Ser His Leu Ile Val Asp Asp Arg His Gly Ala 155 160 165

Ile Tyr Cys Tyr Val Pro Lys Val Ala Cys Thr Asn Trp Lys Arg 170 175 180

Val Met Ile Val Leu Ser Gly Ser Leu Leu His Arg Gly Ala Pro 185 190 195

Tyr Arg Asp Pro Leu Arg Ile Pro Arg Glu His Val His Asn Ala 200 205 210

Ser Ala His Leu Thr Phe Asn Lys Phe Trp Arg Arg Tyr Gly Lys 215 220 225

Leu Ser Arg His Leu Met Lys Val Lys Leu Lys Lys Tyr Thr Lys 230 235 240

Phe Leu Phe Val Arg Asp Pro Phe Val Arg Leu Ile Ser Ala Phe Arg Ser Lys Phe Glu Leu Glu Asn Glu Glu Phe Tyr Arg Lys Phe Ala Val Pro Met Leu Arg Leu Tyr Ala Asn His Thr Ser Leu Pro 275 Ala Ser Ala Arg Glu Ala Phe Arg Ala Gly Leu Lys Val Ser Phe Ala Asn Phe Ile Gln Tyr Leu Leu Asp Pro His Thr Glu Lys Leu 305 315 Ala Pro Phe Asn Glu His Trp Arg Gln Val Tyr Arg Leu Cys His 320 Pro Cys Gln Ile Asp Tyr Asp Phe Val Gly Lys Leu Glu Thr Leu 335 340 Asp Glu Asp Ala Ala Gln Leu Leu Gln Leu Leu Gln Val Asp Arg Gln Leu Arg Phe Pro Pro Ser Tyr Arg Asn Arg Thr Ala Ser Ser Trp Glu Glu Asp Trp Phe Ala Lys Ile Pro Leu Ala Trp Arg Gln 380 Gln Leu Tyr Lys Leu Tyr Glu Ala Asp Phe Val Leu Phe Gly Tyr 405

Pro Lys Pro Glu Asn Leu Leu Arg Asp 410

<210> 467

<211> 1071

<212> DNA

<213> Homo sapiens

<400> 467

tegggecaga atteggeacg aggeggeacg agggegaegg ceteaegggg 50 ctttggaggt gaaagaggee cagagtagag agaagagag accgaegtae 100 acgggatgge tacgggaacg egetatgeeg ggaaggtggt ggtegtgaee 150 ggggggegge geggeategg agetgggate gtgegegeet tegtgaaeag 200 eggggeeega gtggttatet gegaeaagga tgagtetggg ggeegggeee 250 tggageagga geteeetgga getgtetta teetetgtga tgtgaeteag 300 gaagatgatg tgaagaeeet ggtteetga accateegee gatttggeeg 350 eetggattg gttgteaaea aegetggeea eeaeeeeee eeaeaggee 400

ctgaggagac ctctgccag ggattccgc agetgctgga gctgaaccta 450 ctggggacgt acaccttgac caagctcgc ctcccctacc tgcggaagag 500 tcaagggaat gtcatcaaca tctccagcct ggtgggggca atcggccagg 550 cccaggcagt tccctatgtg gccaccaagg gggcagtaac agccatgacc 600 aaagctttgg ccctggatga aagtccatat ggtgtccgag tcaactgtat 650 ctcccagga aacatctgga ccccgctgtg ggaggagctg gcagccttaa 700 tgccagaccc tagggccaca atccgagagg gcatgctggc ccagccactg 750 ggccgcatgg gccagcccgc tgaggtcggg gctgcggcag tgttcctggc 800 ctccgaagcc aacttctgca cgggcattga actgctcgtg acggggggtg 850 cagagctggg gtacgggtg aaggccagtc ggagcaccc cgtggacgcc 900 cccgatatcc cttcctgatt tctctcattt ctacttgggg ccccctaagc 1000 ccttagactc taagcccagt tagcaaggtg ccgggtcacc ctgcaggttc 1050 ccataaaaac gatttgcagc c 1071

<210> 468

<211> 270

<212> PRT

<213> Homo sapiens

<400> 468

Met Ala Thr Gly Thr Arg Tyr Ala Gly Lys Val Val Val Thr 1 5 10 15

Gly Gly Gly Arg Gly Ile Gly Ala Gly Ile Val Arg Ala Phe Val 20 25 30

Asn Ser Gly Ala Arg Val Val Ile Cys Asp Lys Asp Glu Ser Gly
35 40 45

Gly Arg Ala Leu Glu Glu Leu Pro Gly Ala Val Phe Ile Leu
50 55 60

Cys Asp Val Thr Gln Glu Asp Asp Val Lys Thr Leu Val Ser Glu 65 70 75

Thr Ile Arg Arg Phe Gly Arg Leu Asp Cys Val Val Asn Asn Ala 80 85 90

Gly His His Pro Pro Pro Gln Arg Pro Glu Glu Thr Ser Ala Gln
95 100 105

Gly Phe Arg Gln Leu Leu Glu Leu Asn Leu Leu Gly Thr Tyr Thr 110 115 120

- Leu Thr Lys Leu Ala Leu Pro Tyr Leu Arg Lys Ser Gln Gly Asn 125 Val Ile Asn Ile Ser Ser Leu Val Gly Ala Ile Gly Gln Ala Gln 140 145 Ala Val Pro Tyr Val Ala Thr Lys Gly Ala Val Thr Ala Met Thr 155 Lys Ala Leu Ala Leu Asp Glu Ser Pro Tyr Gly Val Arg Val Asn 170 Cys Ile Ser Pro Gly Asn Ile Trp Thr Pro Leu Trp Glu Glu Leu 185 190 195 Ala Ala Leu Met Pro Asp Pro Arg Ala Thr Ile Arg Glu Gly Met 200 Leu Ala Gln Pro Leu Gly Arg Met Gly Gln Pro Ala Glu Val Gly 225 Ala Ala Ala Val Phe Leu Ala Ser Glu Ala Asn Phe Cys Thr Gly 230 Ile Glu Leu Leu Val Thr Gly Gly Ala Glu Leu Gly Tyr Gly Cys 255 245
- Lys Ala Ser Arg Ser Thr Pro Val Asp Ala Pro Asp Ile Pro Ser 260 <210> 469

<211> 687

<212> DNA

<213> Homo sapiens

<400> 469

aggcgggcag cagctgcagg ctgaccttgc agcttggcgg aatggactgg 50 cctcacaacc tgctgtttct tcttaccatt tccatcttcc tggggctggg 100 ccagcccagg agccccaaaa gcaagaggaa ggggcaaggg cggcctgggc 150 ccetggccc tggccctcac caggtgccac tggacctggt gtcacggatg 200 aaaccgtatg cccgcatgga ggagtatgag aggaacatcg aggagatggt 250 ggcccagctg aggaacagct cagagctggc ccagagaaag tgtgaggtca 300 acttqcagct gtggatgtcc aacaagagga gcctgtctcc ctggggctac 350 agcatcaacc acgaccccag ccgtatcccc gtggacctgc cggaggcacg 400 gtgcctgtgt ctgggctgtg tgaacccctt caccatgcag gaggaccgca 450 gcatggtgag cgtgccggtg ttcagccagg ttcctgtgcg ccgccgcctc 500 tgcccgccac cgccccgcac agggccttgc cgccagcgcg cagtcatgga 550

270

gaccatcgct gtgggctgca cctgcatctt ctgaatcacc tggcccagaa 600 gccaggccag cagcccgaga ccatcctcct tgcacctttg tgccaagaaa 650 ggcctatgaa aagtaaacac tgacttttga aagcaag 687

<210> 470

<211> 180

<212> PRT

<213> Homo sapiens

<400> 470

Met Asp Trp Pro His Asn Leu Leu Phe Leu Leu Thr Ile Ser Ile

1 5 10 15

Phe Leu Gly Leu Gly Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys 20 25 30

Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln Val
35 40 45

Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu
50 55 60

Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn
65 70 75

Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu 80 85 90

Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile 95 100 105

Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg 110 115 120

Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp 125 130 135

Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg 140 145 150

Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln
155 160 165

Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 170 175 180

<210> 471

<211> 2368

<212> DNA

<213> Homo sapiens

<400> 471

gcgccgccag gcgtaggcgg ggtggccctt gcgtctcccg cttccttgaa 50 aaacccggcg ggcgagcgag gctgcgggcc ggccgctgcc cttccccaca 100

ctccccgccg agaagcctcg ctcggcgccc aacatggcgg gtgggcgctg 150 cggcccgcag ctaacggcgc tcctggccgc ctggatcgcg gctgtggcgg 200 cgacggcagg cecegaggag geegegetge egeeggagea gageegggte 250 cagcccatga ccgcctccaa ctggacgctg gtgatggagg gcgagtggat 300 gctgaaattt tacgccccat ggtgtccatc ctgccagcag actgattcag 350 aatgggaggc ttttgcaaag aatggtgaaa tacttcagat cagtgtgggg 400 aaggtagatg tcattcaaga accaggtttg agtggccgct tctttgtcac 450 cactetecea geattitte atgeaaagga tgggatatte egeegttate 500 gtggcccagg aatcttcgaa gacctgcaga attatatctt agagaagaaa 550 tggcaatcag tcgagcctct gactggctgg aaatccccag cttctctaac 600 gatgtctgga atggctggtc tttttagcat ctctggcaag atatggcatc 650 ttcacaacta tttcacagtg actcttggaa ttcctgcttg gtgttcttat 700 gtgtttttcg tcatagccac cttggttttt ggccttttta tgggtctggt 750 cttggtggta atatcagaat gtttctatgt gccacttcca aggcatttat 800 ctgagcgttc tgagcagaat cggagatcag aggaggctca tagagctgaa 850 cagttgcagg atgcggagga ggaaaaagat gattcaaatg aagaagaaaa 900 caaagacagc cttgtagatg atgaagaaga gaaagaagat cttggcgatg 950 aggatgaagc agaggaagaa gaggaggagg acaacttggc tgctggtgtg 1000 gatgaggaga gaagtgaggc caatgatcag gggcccccag gagaggacgg 1050 tgtgacccgg gaggaagtag agcctgagga ggctgaagaa ggcatctctg 1100 agcaaccctg cccagctgac acagaggtgg tggaagactc cttgaggcag 1150 cgtaaaagtc agcatgctga caagggactg tagatttaat gatgcgtttt 1200 caagaataca caccaaaaca atatgtcagc ttccctttgg cctgcagttt 1250 gtaccaaatc cttaattttt cctgaatgag caagcttctc ttaaaagatg 1300 ctctctagtc atttggtctc atggcagtaa gcctcatgta tactaaggag 1350 agtettecag gtgtgacaat caggatatag aaaaacaaac gtagtgttgg 1400 gatctgtttg gagactggga tgggaacaag ttcatttact taggggtcag 1450 agagtetega ecagaggagg ceatteceag tectaateag eacetteeag 1500 agacaaggct gcaggccctg tgaaatgaaa gccaagcagg agccttggct 1550

cctgagcatc cccaaagtgt aacgtagaag ccttqcatcc ttttcttqtq 1600 taaagtattt atttttgtca aattgcagga aacatcaggc accacagtgc 1650 atgaaaaatc tttcacagct agaaattgaa agggccttgg gtatagagag 1700 cageteagaa gteateecag eeetetgaat eteetgtget atgttttatt 1750 tettacettt aattitteea geattteeae eatgggeatt eaggetetee 1800 acactettea etattatete ttggteagag gaeteeaata acageeaggt 1850 ttacatgaac tgtgtttgtt cattctgacc taaggggttt agataatcag 1900 taaccataac ccctqaaqct qtqactqcca aacatctcaa atqaaatqtt 1950 gtggccatca gagactcaaa aggaagtaag gattttacaa gacagattaa 2000 aaaaaaattg ttttgtccaa aatatagttg ttgttgattt ttttttaagt 2050 tttctaagca atattttca agccagaagt cctctaagtc ttgccagtac 2100 gggttccctg ggtcttgaac tactttaata ataactaaaa aaccacttct 2200 gattttcctt cagtgatgtg cttttggtga aagaattaat gaactccagt 2250 acctgaaagt gaaagatttg attttgtttc catcttctgt aatcttccaa 2300 agaattatat ctttgtaaat ctctcaatac tcaatctact gtaagtaccc 2350 agggaggcta atttcttt 2368

<210> 472

<211> 349

<212> PRT

<213> Homo sapiens

<400> 472

Met Ala Gly Gly Arg Cys Gly Pro Gln Leu Thr Ala Leu Leu Ala 1 5 10 15

Ala Trp Ile Ala Ala Val Ala Ala Thr Ala Gly Pro Glu Glu Ala 20 25 30

Ala Leu Pro Pro Glu Gln Ser Arg Val Gln Pro Met Thr Ala Ser 35 40 45

Asn Trp Thr Leu Val Met Glu Gly Glu Trp Met Leu Lys Phe Tyr
50 55 60

Ala Pro Trp Cys Pro Ser Cys Gln Gln Thr Asp Ser Glu Trp Glu 65 70 75

Ala Phe Ala Lys Asn Gly Glu Ile Leu Gln Ile Ser Val Gly Lys 80 85 90

```
Val Asp Val Ile Gln Glu Pro Gly Leu Ser Gly Arg Phe Phe Val
                 95
Thr Thr Leu Pro Ala Phe Phe His Ala Lys Asp Gly Ile Phe Arg
Arg Tyr Arg Gly Pro Gly Ile Phe Glu Asp Leu Gln Asn Tyr Ile
Leu Glu Lys Lys Trp Gln Ser Val Glu Pro Leu Thr Gly Trp Lys
Ser Pro Ala Ser Leu Thr Met Ser Gly Met Ala Gly Leu Phe Ser
Ile Ser Gly Lys Ile Trp His Leu His Asn Tyr Phe Thr Val Thr
Leu Gly Ile Pro Ala Trp Cys Ser Tyr Val Phe Phe Val Ile Ala
                185
                                    190
Thr Leu Val Phe Gly Leu Phe Met Gly Leu Val Leu Val Val Ile
Ser Glu Cys Phe Tyr Val Pro Leu Pro Arg His Leu Ser Glu Arg
                215
Ser Glu Gln Asn Arg Arg Ser Glu Glu Ala His Arg Ala Glu Gln
Leu Gln Asp Ala Glu Glu Glu Lys Asp Asp Ser Asn Glu Glu Glu
Asn Lys Asp Ser Leu Val Asp Asp Glu Glu Glu Lys Glu Asp Leu
Gly Asp Glu Asp Glu Ala Glu Glu Glu Glu Glu Glu Asp Asn Leu
Ala Ala Gly Val Asp Glu Glu Arg Ser Glu Ala Asn Asp Gln Gly
Pro Pro Gly Glu Asp Gly Val Thr Arg Glu Glu Val Glu Pro Glu
Glu Ala Glu Glu Gly Ile Ser Glu Gln Pro Cys Pro Ala Asp Thr
Glu Val Val Glu Asp Ser Leu Arg Gln Arg Lys Ser Gln His Ala
```

Asp Lys Gly Leu

<210> 473

<211> 24

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 473
 gtccagccca tgaccgcctc caac 24
<210> 474
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 474
 ctctcctcat ccacaccagc agcc 24
<210> 475
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 475
 gtggatgctg aaattttacg ccccatggtg tccatcctgc cagc 44
<210> 476
<211> 2478
<212> DNA
<213> Homo sapiens
<400> 476
 atctggttga actacttaag cttaatttgt taaactccgg taagtaccta 50
 gcccacatga tttgactcag agattctctt ttgtccacag acagtcatct 100
 caggggcaga aagaaaagag ctcccaaatg ctatatctat tcaggggctc 150
 tcaagaacaa tggaatatca tcctgattta gaaaatttgg atgaagatgg 200
 atatactcaa ttacacttcg actctcaaag caataccagg atagctgttg 250
 tttcagagaa aggatcgtgt gctgcatctc ctccttggcg cctcattgct 300
 gtaattttgg gaatcctatg cttggtaata ctggtgatag ctgtggtcct 350
 gggtaccatg ggggttcttt ccagcccttg tcctcctaat tggattatat 400
atgagaagag ctgttatcta ttcagcatgt cactaaattc ctgggatgga 450
agtaaaagac aatgctggca actgggctct aatctcctaa agatagacag 500
ctcaaatgaa ttgggattta tagtaaaaca agtgtcttcc caacctgata 550
atteattttg gataggeett teteggeece agaetgaggt accatggete 600
```

tgggaggatg gatcaacatt ctcttctaac ttatttcaga tcagaaccac 650 agctacccaa gaaaacccat ctccaaattg tgtatggatt cacgtgtcag 700 tcatttatga ccaactgtgt agtgtgccct catatagtat ttgtgagaag 750 aagttttcaa tgtaagagga agggtggaga aggagagaga aatatgtgag 800 qtaqtaaqqa qqacaqaaaa caqaacaqaa aaqaqtaaca qctqaqqtca 850 agataaatgc agaaaatgtt tagagagctt ggccaactgt aatcttaacc 900 aagaaattga agggagaggc tgtgatttct gtatttgtcg acctacaggt 950 aggctagtat tatttttcta gttagtagat ccctagacat ggaatcaggg 1000 cagccaagct tgagttttta ttttttattt atttatttt ttgagatagg 1050 gtctcacttt gttacccagg ctggagtgca gtggcacaat ctcgactcac 1100 tgcagctatc tctcgcctca gcccctcaag tagctgggac tacaggtgca 1150 tgccaccatg ccaggctaat ttttggtgtt ttttgtagag actgggtttt 1200 gccatgttga ccaagctggt ctctaactcc tgggcttaag tgatctgccc 1250 gccttggcct cccaaagtgc tgggattaca gatgtgagcc accacactg 1300 gccccaagct tgaattttca ttctgccatt gacttggcat ttaccttggg 1350 taagccataa gcgaatctta atttctggct ctatcagagt tgtttcatgc 1400 tcaacaatgc cattgaagtg cacggtgtgt tgccacgatt tgaccctcaa 1450 cttctagcag tatatcagtt atgaactgag ggtgaaatat atttctgaat 1500 agctaaatga agaaatggga aaaaatcttc accacagtca gagcaatttt 1550 attattttca tcagtatgat cataattatg attatcatct tagtaaaaag 1600 caggaactcc tactttttct ttatcaatta aatagctcag agagtacatc 1650 tgccatatct ctaatagaat cttttttttt ttttttttt tttgagacag 1700 agtttcgctc ttgttqccca qgctggagtg caacggcacg atctcggctc 1750 accgcaacct ccgcccctg ggttcaagca attctcctgc ctcagcctcc 1800 caagtagctg ggattacagt caggcaccac cacacccggc taattttgta 1850 tttttttagt agagacaggg tttctccatg tcggtcaggg tagtcccgaa 1900 ctcctgacct caagtgatct gcctgcctcg gcctcccaag tgctgggatt 1950 acaggegtga gecaetgeae ceageetaga atettgtata atatgtaatt 2000 gtagggaaac tgctctcata ggaaagtttt ctgcttttta aatacaaaaa 2050

<210> 477

<211> 201

<212> PRT

<213> Homo sapiens

<400> 477

Met Glu Tyr His Pro Asp Leu Glu Asn Leu Asp Glu Asp Gly Tyr
1 5 10 15

Thr Gln Leu His Phe Asp Ser Gln Ser Asn Thr Arg Ile Ala Val 20 25 30

Val Ser Glu Lys Gly Ser Cys Ala Ala Ser Pro Pro Trp Arg Leu 35 40 45

Ile Ala Val Ile Leu Gly Ile Leu Cys Leu Val Ile Leu Val Ile 50 55 60

Ala Val Val Leu Gly Thr Met Gly Val Leu Ser Ser Pro Cys Pro 65 70 75

Pro Asn Trp Ile Ile Tyr Glu Lys Ser Cys Tyr Leu Phe Ser Met 80 85 90

Ser Leu Asn Ser Trp Asp Gly Ser Lys Arg Gln Cys Trp Gln Leu 95 100 105

Gly Ser Asn Leu Leu Lys Ile Asp Ser Ser Asn Glu Leu Gly Phe 110 115 120

Ile Val Lys Gln Val Ser Ser Gln Pro Asp Asn Ser Phe Trp Ile 125 130 135

Gly Leu Ser Arg Pro Gln Thr Glu Val Pro Trp Leu Trp Glu Asp 140 145 150

Gly Ser Thr Phe Ser Ser Asn Leu Phe Gln Ile Arg Thr Thr Ala 155 160 165

Thr Gln Glu Asn Pro Ser Pro Asn Cys Val Trp Ile His Val Ser

180

Val Ile Tyr Asp Gln Leu Cys Ser Val Pro Ser Tyr Ser Ile Cys 185 190 195

Glu Lys Lys Phe Ser Met 200

<210> 478

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 478

gtccacagac agtcatctca ggagcag 27

<210> 479

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

W.

£ 5

il de

<223> Synthetic oligonucleotide probe

<400> 479

acaagtgtct tcccaacctg 20

<210> 480

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 480

atcctcccag agccatggta cctc 24

<210> 481

<211> 51

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 481

ccaaggatag ctgttgtttc agagaaagga tcgtgtgctg catctcctcc 50

t 51

<210> 482

<211> 3819

<212> DNA

<213> Homo sapiens

<400> 482 ggaaggggag gagcaggcca cacaggcaca ggccggtgag ggacctgccc 50 agacctggag ggtctcgctc tgtcacacag gctggagtgc agtggtgtga 100 tettggetea tegtaacete eaceteeegg gtteaagtga tteteatgee 150 tcagcctccc gagtagctgg gattacaggt ggtgacttcc aagagtgact 200 ccgtcggagg aaaatgactc cccagtcgct gctgcagacg acactgttcc 250 tgctgagtct gctcttcctg gtccaaggtg cccacggcag gggccacagg 300 gaagactttc qcttctqcaq ccaqcqqaac caqacacaca qqaqcaqcct 350 ccactacaaa cccacaccag acctgcgcat ctccatcgag aactccgaag 400 aggeeetcae agteeatgee cettteeetg cageecacee tgetteeega 450 teetteeetg acceeagggg cetetaceae ttetgeetet actggaaceg 500 acatgctggg agattacatc ttctctatgg caagcgtgac ttcttgctga 550 gtgacaaagc ctctagcctc ctctgcttcc agcaccagga ggagagcctg 600 gctcagggcc ccccgctgtt agccacttct gtcacctcct ggtggagccc 650 tcagaacatc agcctgccca gtgccgccag cttcaccttc tccttccaca 700 gtcctcccca cacggccgct cacaatgcct cggtggacat gtgcgagctc 750 aaaagggacc tccagctgct cagccagttc ctgaagcatc cccagaaggc 800 ctcaaggagg ccctcggctg ccccgccag ccagcagttg cagagcctgg 850 agtcgaaact gacctctgtg agattcatgg gggacatggt gtccttcgag 900 gaggaccgga tcaacgccac ggtgtggaag ctccagccca cagccggcct 950 ccaggacctg cacatccact cccggcagga ggaggagcag agcgagatca 1000 tggagtactc ggtgctgctg cctcgaacac tcttccagag gacgaaaggc 1050 cggagcgggg aggctgagaa gagactcctc ctggtggact tcagcagcca 1100 agccctgttc caggacaaga attccagcca agtcctgggt gagaaggtct 1150 tggggattgt ggtacagaac accaaagtag ccaacctcac ggagcccgtg 1200 gtgctcactt tccagcacca gctacagccg aagaatgtga ctctgcaatg 1250 tgtgttctgg gttgaagacc ccacattgag cagcccgggg cattggagca 1300 gtgctgggtg tgagaccgtc aggagagaaa cccaaacatc ctgcttctgc 1350 aaccacttga cctactttgc agtgctgatg gtctcctcgg tggaggtgga 1400 cgccgtgcac aagcactacc tgagcctcct ctcctacgtg ggctgtgtcg 1450

tetetgeeet ggeetgeett gteaceattg cegeetacet etgeteeagg 1500 gtgcccctgc cgtgcaggag gaaacctcgg gactacacca tcaaggtgca 1550 catgaacctg ctgctggccg tcttcctgct ggacacgagc ttcctgctca 1600 gcgagccggt ggccctgaca ggctctgagg ctggctgccg agccagtgcc 1650 atcttcctgc acttctccct gctcacctgc ctttcctgga tgggcctcga 1700 ggggtacaac ctctaccgac tcgtggtgga ggtctttggc acctatgtcc 1750 ctggctacct actcaagctg agcgccatgg gctggggctt ccccatcttt 1800 ctggtgacgc tggtggccct ggtggatgtg gacaactatg gccccatcat 1850 cttggctgtg cataggactc cagagggcgt catctaccct tccatgtgct 1900 ggatccggga ctccctggtc agctacatca ccaacctggg cctcttcagc 1950 ctggtgtttc tgttcaacat ggccatgcta gccaccatgg tggtgcagat 2000 cctgcggctg cgccccaca cccaaaagtg gtcacatgtg ctgacactgc 2050 tgggcctcag cctggtcctt ggcctgccct gggccttgat cttcttctcc 2100 tttgcttctg gcaccttcca gcttgtcgtc ctctaccttt tcagcatcat 2150 cacctccttc caaggettcc tcatcttcat ctggtactgg tccatgcggc 2200 tgcaggcccg gggtggcccc tcccctctga agagcaactc agacagcgcc 2250 aggeteecca teageteggg cageaceteg tecageegea tetaggeete 2300 cageceaect geceatgtga tgaageagag atgeggeete gtegeaeact 2350 gcctgtggcc cccgagccag gcccagccc aggccagtca gccgcagact 2400 ttggaaagcc caacgaccat ggagagatgg gccgttgcca tggtggacgg 2450 actcccgggc tgggcttttg aattggcctt ggggactact cggctctcac 2500 teageteeca egggaeteag aagtgegeeg ceatgetgee tagggtaetg 2550 tecceacate tgteccaace cagetggagg cetggtetet cettacaace 2600 cctgggccca gccctcattg ctgggggcca ggccttggat cttgagggtc 2650 tggcacatcc ttaatcctgt gccctgcct gggacagaaa tgtggctcca 2700 gttgctctgt ctctcgtggt caccctgagg gcactctgca tcctctgtca 2750 ttttaacctc aggtggcacc cagggcgaat ggggcccagg gcagaccttc 2800 agggccagag ccctggcgga ggagaggccc tttgccagga gcacagcagc 2850 agetegeeta cetetgagee eaggeeeect eeeteeetea geeeeeagt 2900

ceteceteca tettecetgg ggtteteete eteteceagg geeteettge 2950 teettegtte acagetgggg gteecegatt ceaatgetgt tttttgggga 3000 gtggtttcca ggagctgcct ggtgtctgct gtaaatgttt gtctactqca 3050 caagectegg cetgeecetg agecaggete ggtacegatg eqtgggetgg 3100 gctaggtccc tctgtccatc tgggcctttg tatgagctqc attgcccttq 3150 ctcaccctga ccaagcacac gcctcagagg ggccctcagc ctctcctgaa 3200 gccctcttgt ggcaagaact gtggaccatg ccagtcccgt ctggtttcca 3250 teccaecaet ceaaggaetg agaetgaeet eetetggtga caetggeeta 3300 gageetgaea eteteetaag aggttetete caageeeea aatageteea 3350 ggcgccctcg gccgcccatc atggttaatt ctgtccaaca aacacacacg 3400 ggtagattgc tggcctgttg taggtggtag ggacacagat gaccgacctg 3450 gtcactcctc ctgccaacat tcagtctggt atgtgaggcg tgcgtgaagc 3500 aagaactcct ggagctacag ggacagggag ccatcattcc tgcctgggaa 3550 tcctggaaga cttcctgcag gagtcagcgt tcaatcttga ccttgaagat 3600 gggaaggatg ttcttttac gtaccaattc ttttgtcttt tgatattaaa 3650 aagaagtaca tgttcattgt agagaatttg gaaactgtag aagagaatca 3700 aaaaaaaaaa 3819

<210> 483

<211> 693

<212> PRT

<213> Homo sapiens

<400> 483

Met Thr Pro Gln Ser Leu Leu Gln Thr Thr Leu Phe Leu Leu Ser 1 5 10 15

Leu Leu Phe Leu Val Gln Gly Ala His Gly Arg Gly His Arg Glu
20 25 30

Asp Phe Arg Phe Cys Ser Gln Arg Asn Gln Thr His Arg Ser Ser 35 40 45

Leu His Tyr Lys Pro Thr Pro Asp Leu Arg Ile Ser Ile Glu Asn 50 55 60

Ser Glu Glu Ala Leu Thr Val His Ala Pro Phe Pro Ala Ala His
65 70 75

Pro Ala Ser Arg Ser Phe Pro Asp Pro Arg Gly Leu Tyr His Phe Cys Leu Tyr Trp Asn Arg His Ala Gly Arg Leu His Leu Leu Tyr Gly Lys Arg Asp Phe Leu Leu Ser Asp Lys Ala Ser Ser Leu Leu 110 Cys Phe Gln His Gln Glu Glu Ser Leu Ala Gln Gly Pro Pro Leu Leu Ala Thr Ser Val Thr Ser Trp Trp Ser Pro Gln Asn Ile Ser 140 145 150 Leu Pro Ser Ala Ala Ser Phe Thr Phe Ser Phe His Ser Pro Pro 155 His Thr Ala Ala His Asn Ala Ser Val Asp Met Cys Glu Leu Lys 170 175 Arg Asp Leu Gln Leu Leu Ser Gln Phe Leu Lys His Pro Gln Lys Ala Ser Arg Arg Pro Ser Ala Ala Pro Ala Ser Gln Gln Leu Gln Ser Leu Glu Ser Lys Leu Thr Ser Val Arg Phe Met Gly Asp Met Val Ser Phe Glu Glu Asp Arg Ile Asn Ala Thr Val Trp Lys Leu Gln Pro Thr Ala Gly Leu Gln Asp Leu His Ile His Ser Arg Gln Glu Glu Glu Gln Ser Glu Ile Met Glu Tyr Ser Val Leu Leu Pro Arg Thr Leu Phe Gln Arg Thr Lys Gly Arg Ser Gly Glu Ala Glu Lys Arg Leu Leu Val Asp Phe Ser Ser Gln Ala Leu Phe Gln Asp Lys Asn Ser Ser Gln Val Leu Gly Glu Lys Val Leu Gly Ile Val Val Gln Asn Thr Lys Val Ala Asn Leu Thr Glu Pro Val Val Leu Thr Phe Gln His Gln Leu Gln Pro Lys Asn Val Thr Leu Gln 335 345 Cys Val Phe Trp Val Glu Asp Pro Thr Leu Ser Ser Pro Gly His 350 Trp Ser Ser Ala Gly Cys Glu Thr Val Arg Arg Glu Thr Gln Thr

365 375 370 Ser Cys Phe Cys Asn His Leu Thr Tyr Phe Ala Val Leu Met Val 380 Ser Ser Val Glu Val Asp Ala Val His Lys His Tyr Leu Ser Leu Leu Ser Tyr Val Gly Cys Val Val Ser Ala Leu Ala Cys Leu Val Thr Ile Ala Ala Tyr Leu Cys Ser Arg Val Pro Leu Pro Cys Arg Arg Lys Pro Arg Asp Tyr Thr Ile Lys Val His Met Asn Leu Leu Leu Ala Val Phe Leu Leu Asp Thr Ser Phe Leu Leu Ser Glu Pro 455 Val Ala Leu Thr Gly Ser Glu Ala Gly Cys Arg Ala Ser Ala Ile 470 Phe Leu His Phe Ser Leu Leu Thr Cys Leu Ser Trp Met Gly Leu Glu Gly Tyr Asn Leu Tyr Arg Leu Val Val Glu Val Phe Gly Thr 500 Tyr Val Pro Gly Tyr Leu Leu Lys Leu Ser Ala Met Gly Trp Gly Phe Pro Ile Phe Leu Val Thr Leu Val Ala Leu Val Asp Val Asp Asn Tyr Gly Pro Ile Ile Leu Ala Val His Arg Thr Pro Glu Gly Val Ile Tyr Pro Ser Met Cys Trp Ile Arg Asp Ser Leu Val Ser Tyr Ile Thr Asn Leu Gly Leu Phe Ser Leu Val Phe Leu Phe Asn Met Ala Met Leu Ala Thr Met Val Val Gln Ile Leu Arg Leu Arg Pro His Thr Gln Lys Trp Ser His Val Leu Thr Leu Leu Gly Leu Ser Leu Val Leu Gly Leu Pro Trp Ala Leu Ile Phe Phe Ser Phe Ala Ser Gly Thr Phe Gln Leu Val Val Leu Tyr Leu Phe Ser Ile Ile Thr Ser Phe Gln Gly Phe Leu Ile Phe Ile Trp Tyr Trp Ser 655

<212> DNA

<213> Artificial Sequence

```
Met Arg Leu Gln Ala Arg Gly Gly Pro Ser Pro Leu Lys Ser Asn
Ser Asp Ser Ala Arg Leu Pro Ile Ser Ser Gly Ser Thr Ser Ser
Ser Arg Ile
<210> 484
<211> 516
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 68, 70, 84, 147
<223> unknown base
<400> 484
 tgcctggcct gccttgtcaa caatgccgct tactctgctt ccaggttgcc 50
 ctgccttgca gaggaaancn tcgggactac accntcaagt gcacatgaac 100
 ctgctgctgg ccgtcttcct gctggacacg agcttcctgc tcagcgnagc 150
 cggtggccct gacaggctct gaaggctggc tgccgagcca gtgccatctt 200
 cctgcacttc tcctgctcac ctgcctttcc tggatgggcc tcgaggggta 250
 caacctctac cgactcgtgg tggaggtctt tggcacctat gtccctggct 300
 acctactcaa gctgagcgcc atgggctggg gcttccccat ctttctggtg 350
 acgctggtgg ccctggtgga tgtggacaac tatggcccca tcatcttggc 400
 tgtgcatagg actccagagg gcgtcatcta cccttccatg tgctggatcc 450
 gggactccct ggtcagctac atcaccaacc tgggcctctt cagcctggtg 500
 tttctgttca acatgg 516
<210> 485
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 485
ggcattggag cagtgctggg tg 22
<210> 486
<211> 24
```

346

```
<220>
<223> Synthetic oligonucleotide probe
<400> 486
tggaggccta gatgcggctg gacg 24
<210> 487
<211> 2849
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 2715
<223> unknown base
<400> 487
cggacgcgtg ggcggacgcg tgggcggacg cgtgggcgga cgcgtgggct 50
ggttcaggtc caggttttgc tttgatcctt ttcaaaaact ggagacacag 100
aagagggctc taggaaaaag ttttggatgg gattatgtgg aaactaccct 150
gcgattctct gctgccagag caggctcggc gcttccaccc cagtgcagcc 200
ttcccctggc ggtggtgaaa gagactcggg agtcgctgct tccaaagtgc 250
ccgccgtgag tgagctctca ccccagtcag ccaaatgagc ctcttcgggc 300
ttctcctgct gacatctgcc ctggccggcc agagacaggg gactcaggcg 350
gaatccaacc tgagtagtaa attccagttt tccagcaaca aggaacagaa 400
cggagtacaa gatcctcagc atgagagaat tattactgtg tctactaatg 450
gaagtattca cagcccaagg tttcctcata cttatccaag aaatacggtc 500
ttggtatgga gattagtagc agtagaggaa aatgtatgga tacaacttac 550
gtttgatgaa agatttgggc ttgaagaccc agaagatgac atatgcaagt 600
atgattttgt agaagttgag gaacccagtg atggaactat attagggcgc 650
tggtgtggtt ctggtactgt accaggaaaa cagatttcta aaggaaatca 700
aattaggata agatttgtat ctgatgaata ttttccttct gaaccagggt 750
tctgcatcca ctacaacatt gtcatgccac aattcacaga agctgtgagt 800
ccttcagtgc tacccccttc agctttgcca ctggacctgc ttaataatgc 850
tataactgcc tttagtacct tggaagacct tattcgatat cttgaaccag 900
agagatggca gttggactta gaagatctat ataggccaac ttggcaactt 950
cttggcaagg cttttgtttt tggaagaaaa tccaqaqtqq tqqatctqaa 1000
```

ccttctaaca gaggaggtaa gattatacag ctgcacacct cgtaacttct 1050

cagtgtccat aagggaagaa ctaaagagaa ccgataccat tttctggcca 1100 ggttgtctcc tggttaaacg ctgtggtggg aactgtgcct gttgtctcca 1150 caattgcaat gaatgtcaat gtgtcccaag caaagttact aaaaaatacc 1200 acgaggteet teagttgaga ceaaagaceg gtgteagggg attgcacaaa 1250 tcactcaccq acgtggccct qgagcaccat qagqagtgtq actgtgtgtg 1300 cagagggagc acaggaggat agecgcatca ecaceageag etettgeeca 1350 gagetgtgca gtgcagtggc tgattctatt agagaacgta tgcgttatct 1400 ccatccttaa tctcagttgt ttgcttcaag gacctttcat cttcaggatt 1450 tacagtgcat tctgaaagag gagacatcaa acagaattag gagttgtgca 1500 acagctcttt tgagaggagg cctaaaggac aggagaaaag gtcttcaatc 1550 gtggaaagaa aattaaatgt tgtattaaat agatcaccag ctagtttcag 1600 agttaccatg tacgtattcc actagctggg ttctgtattt cagttctttc 1650 gatacggctt agggtaatgt cagtacagga aaaaaactgt gcaagtgagc 1700 acctgattcc gttgccttgc ttaactctaa agctccatgt cctgggccta 1750 aaatcgtata aaatctggat tttttttttt ttttttgctc atattcacat 1800 atgtaaacca gaacattcta tgtactacaa acctggtttt taaaaaqqaa 1850 ctatgttgct atgaattaaa cttgtgtcat gctgatagga cagactggat 1900 ttttcatatt tcttattaaa atttctgcca tttagaagaa gagaactaca 1950 ttcatggttt ggaagagata aacctgaaaa gaagagtggc cttatcttca 2000 ctttatcgat aagtcagttt atttgtttca ttgtgtacat ttttatattc 2050 tccttttgac attataactg ttggcttttc taatcttgtt aaatatatct 2100 atttttacca aaggtattta atattctttt ttatgacaac ttagatcaac 2150 tatttttagc ttggtaaatt tttctaaaca caattgttat agccagagga 2200 acaaagatga tataaaatat tgttgctctg acaaaaatac atgtatttca 2250 ttctcgtatg gtgctagagt tagattaatc tgcattttaa aaaactgaat 2300 tggaatagaa ttggtaagtt gcaaagactt tttgaaaata attaaattat 2350 catatcttcc attcctgtta ttggagatga aaataaaaag caacttatga 2400 aagtagacat tcagatccag ccattactaa cctattcctt ttttggggaa 2450 atctgagcct agctcagaaa aacataaagc accttgaaaa agacttggca 2500

gcttcctgat aaagcgtgct gtgctgtgca gtaggaacac atcctattta 2550 ttgtgatgtt gtggtttat tatcttaaac tctgttccat acacttgtat 2600 aaatacatgg atattttat gtacagaagt atgtctctta accagttcac 2650 ttattgtact ctggcaattt aaaagaaaat cagtaaaata ttttgcttgt 2700 aaaatgctta atatngtgcc taggttatgt ggtgactatt tgaatcaaaa 2750 atgtattgaa tcatcaaata aaagaatgtg gctattttgg ggagaaaatt 2800 aaaaaaaaaa aaaaaaaaa aggtttaggg ataacagggt aatgcggcc 2849

<210> 488

<211> 345

<212> PRT

<213> Homo sapiens

<400> 488

Met Ser Leu Phe Gly Leu Leu Leu Thr Ser Ala Leu Ala Gly 1 5 10 15

Gln Arg Gln Gly Thr Gln Ala Glu Ser Asn Leu Ser Ser Lys Phe
20 25 30

Gln Phe Ser Ser Asn Lys Glu Gln Asn Gly Val Gln Asp Pro Gln 35 40 45

His Glu Arg Ile Ile Thr Val Ser Thr Asn Gly Ser Ile His Ser 50 55 60

Pro Arg Phe Pro His Thr Tyr Pro Arg Asn Thr Val Leu Val Trp 65 70 75

Arg Leu Val Ala Val Glu Glu Asn Val Trp Ile Gln Leu Thr Phe 80 85 90

Asp Glu Arg Phe Gly Leu Glu Asp Pro Glu Asp Asp Ile Cys Lys 95 100 105

Tyr Asp Phe Val Glu Val Glu Glu Pro Ser Asp Gly Thr Ile Leu 110 115 120

Gly Arg Trp Cys Gly Ser Gly Thr Val Pro Gly Lys Gln Ile Ser 125 130 135

Lys Gly Asn Gln Ile Arg Ile Arg Phe Val Ser Asp Glu Tyr Phe 140 145 150

Pro Ser Glu Pro Gly Phe Cys Ile His Tyr Asn Ile Val Met Pro 155 160 165

Gln Phe Thr Glu Ala Val Ser Pro Ser Val Leu Pro Pro Ser Ala

Leu Pro Leu Asp Leu Leu Asn Asn Ala Ile Thr Ala Phe Ser Thr
185 190 195

```
Leu Glu Asp Leu Ile Arg Tyr Leu Glu Pro Glu Arg Trp Gln Leu
                 200
 Asp Leu Glu Asp Leu Tyr Arg Pro Thr Trp Gln Leu Leu Gly Lys
                 215
 Ala Phe Val Phe Gly Arg Lys Ser Arg Val Val Asp Leu Asn Leu
                 230
 Leu Thr Glu Glu Val Arg Leu Tyr Ser Cys Thr Pro Arg Asn Phe
                 245
 Ser Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe
                 260
                                      265
 Trp Pro Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala
                 275
 Cys Cys Leu His Asn Cys Asn Glu Cys Gln Cys Val Pro Ser Lys
                 290
                                                          300
 Val Thr Lys Lys Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr
                 305
 Gly Val Arg Gly Leu His Lys Ser Leu Thr Asp Val Ala Leu Glu
 His His Glu Glu Cys Asp Cys Val Cys Arg Gly Ser Thr Gly Gly
                 335
<210> 489
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 489
acttctcagt gtccataagg g 21
<210> 490
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 490
gaactaaaga gaaccgatac cattttctgg ccaggttgtc 40
<210> 491
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Synthetic oligonucleotide probe <400> 491 caccacagcg tttaaccagg 20 <210> 492 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 492 acaacaggca cagttcccac 20 <210> 493 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 493 ggcggaatcc aacctgagta g 21 <210> 494 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 494 gcggctatcc tcctgtgctc 20 <210> 495 <211> 3283 <212> DNA <213> Homo sapiens <400> 495 gacctctaca ttccattttg gaagaagact aaaaatggtg tttccaatgt 100 ggacactgaa gagacaaatt cttatccttt ttaacataat cctaatttcc 150 aaactccttg gggctagatg gtttcctaaa actctgccct gtgatgtcac 200 tctggatgtt ccaaagaacc atgtgatcgt ggactgcaca gacaagcatt 250 tgacagaaat tcctggaggt attcccacga acaccacgaa cctcaccctc 300

W. W.

ik.

**

Š.Ž.

accattaacc acataccaga catctcccca gcgtcctttc acagactgga 350

ccatctggta gagatcgatt tcagatgcaa ctgtgtacct attccactgg 400 ggtcaaaaaa caacatgtgc atcaagaggc tgcagattaa acccagaagc 450 tttaqtqqac tcacttattt aaaatccctt tacctqqatq qaaaccaqct 500 actagagata ccgcagggcc tcccgcctag cttacagctt ctcagccttg 550 aggocaacaa catottttoo atcagaaaag agaatotaac agaactggcc 600 aacatagaaa tactctacct gggccaaaac tgttattatc gaaatccttg 650 ttatgtttca tattcaatag agaaagatgc cttcctaaac ttgacaaagt 700 taaaagtgct ctccctgaaa gataacaatg tcacagccgt ccctactgtt 750 ttgccatcta ctttaacaga actatatctc tacaacaaca tgattgcaaa 800 aatccaagaa gatgatttta ataacctcaa ccaattacaa attcttgacc 850 taagtggaaa ttgccctcgt tgttataatg ccccatttcc ttgtgcgccg 900 tgtaaaaata attctcccct acagatccct gtaaatgctt ttgatgcgct 950 gacagaatta aaagttttac gtctacacag taactctctt cagcatgtgc 1000 ccccaagatg gtttaagaac atcaacaaac tccaggaact ggatctgtcc 1050 caaaacttct tggccaaaga aattggggat gctaaatttc tgcattttct 1100 ccccaqcctc atccaattgg atctgtcttt caattttgaa cttcaggtct 1150 atcgtgcatc tatgaatcta tcacaagcat tttcttcact gaaaagcctg 1200 aaaattctgc ggatcagagg atatgtcttt aaagagttga aaagctttaa 1250 cctctcgcca ttacataatc ttcaaaatct tgaagttctt gatcttggca 1300 ctaactttat aaaaattgct aacctcagca tgtttaaaca atttaaaaga 1350 ctgaaagtca tagatctttc agtgaataaa atatcacctt caggagattc 1400 aagtgaagtt ggcttctgct caaatgccag aacttctgta gaaagttatg 1450 aaccccaggt cctggaacaa ttacattatt tcagatatga taagtatgca 1500 aggagttqca qattcaaaaa caaaqagqct tctttcatqt ctqttaatqa 1550 aagctqctac aagtatqqqc aqaccttqqa tctaaqtaaa aataqtatat 1600 tttttgtcaa gtcctctgat tttcagcatc tttctttcct caaatgcctg 1650 aatctgtcag gaaatctcat tagccaaact cttaatggca gtgaattcca 1700 acctttagca gagctgagat atttggactt ctccaacaac cggcttgatt 1750 tactccattc aacagcattt gaagagcttc acaaactgga agttctggat 1800

ataagcagta atagccatta ttttcaatca gaaggaatta ctcatatqct 1850 aaactttacc aagaacctaa aggttctgca gaaactgatg atgaacgaca 1900 atgacatete tteeteeace ageaggacea tggagagtga gtetettaga 1950 actctggaat tcagaggaaa tcacttagat gttttatgga gagaaggtga 2000 taacagatac ttacaattat tcaagaatct gctaaaatta gaggaattag 2050 acatetetaa aaatteeeta agtttettge ettetggagt ttttgatggt 2100 atgeeteeaa atetaaagaa tetetetttg geeaaaaatg ggeteaaate 2150 tttcagttgg aagaaactcc agtgtctaaa gaacctggaa actttggacc 2200 tcagccacaa ccaactgacc actgtccctg agagattatc caactgttcc 2250 gaagtatttt ctacaagatg ccttccagtt gcgatatctg gatctcagct 2350 caaataaaat ccagatgatc caaaagacca gcttcccaga aaatgtcctc 2400 aacaatctga agatgttgct tttgcatcat aatcggtttc tgtgcacctg 2450 tgatgctgtg tggtttgtct ggtgggttaa ccatacggag gtgactattc 2500 cttacctggc cacagatgtg acttgtgtgg ggccaggagc acacaagggc 2550 caaagtgtga tctccctgga tctgtacacc tgtgagttag atctgactaa 2600 cctgattctg ttctcacttt ccatatctgt atctctcttt ctcatggtga 2650 tgatgacagc aagtcacctc tatttctggg atgtgtggta tatttaccat 2700 ttctgtaagg ccaagataaa ggggtatcag cgtctaatat caccagactg 2750 ttgctatgat gcttttattg tgtatgacac taaagaccca gctgtgaccg 2800 agtgggtttt ggctgagctg gtggccaaac tggaagaccc aagagagaaa 2850 cattttaatt tatgtctcga ggaaagggac tggttaccag ggcagccagt 2900 tctggaaaac ctttcccaga gcatacagct tagcaaaaag acagtgtttg 2950 tgatgacaga caagtatgca aagactgaaa attttaagat agcattttac 3000 ttgtcccatc agaggctcat ggatgaaaaa gttgatgtga ttatcttgat 3050 atttcttgag aagccctttc agaagtccaa gttcctccag ctccggaaaa 3100 ggctctgtgg gagttctgtc cttgagtggc caacaaaccc gcaagctcac 3150 ccatacttct ggcagtgtct aaagaacgcc ctggccacag acaatcatgt 3200 ggcctatagt caggtgttca aggaaacggt ctagcccttc tttgcaaaac 3250

acaactgcct agtttaccaa ggagaggcct ggc 3283

<210> 496

<211> 1049

<212> PRT

<213> Homo sapiens

<400> 496

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu 1 5 10 15

Phe Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe 20 25 30

Pro Lys Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn
35

His Val Ile Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro
50 55 60

Gly Gly Ile Pro Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn 65 70 75

His Ile Pro Asp Ile Ser Pro Ala Ser Phe His Arg Leu Asp His 80 85 90

Leu Val Glu Ile Asp Phe Arg Cys Asn Cys Val Pro Ile Pro Leu 95 100 105

Gly Ser Lys Asn Asn Met Cys Ile Lys Arg Leu Gln Ile Lys Pro 110 115 120

Arg Ser Phe Ser Gly Leu Thr Tyr Leu Lys Ser Leu Tyr Leu Asp 125 130 135

Gly Asn Gln Leu Leu Glu Ile Pro Gln Gly Leu Pro Pro Ser Leu
140 145 150

Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile Phe Ser Ile Arg Lys 155 160 165

Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile Leu Tyr Leu Gly
170 175 180

Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser Tyr Ser Ile 185 190 195

Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val Leu Ser 200 205 210

Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro Ser

Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile 230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp 245 250 255

Leu Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala 275 Phe Asp Ala Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn 290 Ser Leu Gln His Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile 320 330 Gly Asp Ala Lys Phe Leu His Phe Leu Pro Ser Leu Ile Gln Leu 335 Asp Leu Ser Phe Asn Phe Glu Leu Gln Val Tyr Arg Ala Ser Met 350 Asn Leu Ser Gln Ala Phe Ser Ser Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met Phe Lys Gln Phe 410 Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser 515 Gly Asn Leu Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp

545 550 555 Leu Leu His Ser Thr Ala Phe Glu Glu Leu His Lys Leu Glu Val 560 Leu Asp Ile Ser Ser Asn Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr Lys Asn Leu Lys Val Leu Gln Lys 590 Leu Met Met Asn Asp Asn Asp Ile Ser Ser Ser Thr Ser Arg Thr 605 Met Glu Ser Glu Ser Leu Arg Thr Leu Glu Phe Arg Gly Asn His 620 Leu Asp Val Leu Trp Arg Glu Gly Asp Asn Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn 710 Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu His His Asn Arg Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr Cys Glu Leu Asp Leu Thr Asn Leu

Ile Leu Phe Ser Leu Ser Ile Ser Val Ser Leu Phe Leu Met Val 845 850 Met Met Thr Ala Ser His Leu Tyr Phe Trp Asp Val Trp Tyr Ile 860 865 Tyr His Phe Cys Lys Ala Lys Ile Lys Gly Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu Val Ala Lys 905 910 915 Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys 1000 1005 Arg Leu Cys Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln 1010 1015 Ala His Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr 1030

Asp Asn His Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 497

<211> 4199

<212> DNA

<213> Homo sapiens

<400> 497

gggtaccatt ctgcgctgct gcaagttacg gaatgaaaaa ttagaacaac 50 agaaacatgg aaaacatgtt ccttcagtcg tcaatgctga cctgcatttt 100 cctgctaata tctggttcct gtgagttatg cgccgaagaa aattttcta 150 gaagctatcc ttgtgatgag aaaaagcaaa atgactcagt tattgcagag 200 tgcagcaatc gtcgactaca ggaagttccc caaacggtgg gcaaatatgt 250

gacagaacta gacctgtctg ataatttcat cacacacata acgaatgaat 300 catttcaagg gctgcaaaat ctcactaaaa taaatctaaa ccacaacccc 350 aatgtacagc accagaacgg aaatcccggt atacaatcaa atggcttgaa 400 tatcacagac ggggcattcc tcaacctaaa aaacctaagg gagttactgc 450 ttgaagacaa ccagttaccc caaataccct ctggtttgcc agagtctttg 500 acagaactta gtctaattca aaacaatata tacaacataa ctaaagaggg 550 catttcaaga cttataaact tgaaaaatct ctatttggcc tggaactgct 600 attttaacaa agtttgcgag aaaactaaca tagaagatgg agtatttgaa 650 acgctgacaa atttggagtt gctatcacta tctttcaatt ctctttcaca 700 cgtgccaccc aaactgccaa gctccctacg caaacttttt ctgagcaaca 750 cccagatcaa atacattagt gaagaagatt tcaagggatt gataaattta 800 acattactag atttaagcgg gaactgtccg aggtgcttca atgccccatt 850 tccatgcgtg ccttgtgatg gtggtgcttc aattaatata gatcgttttg 900 cttttcaaaa cttgacccaa cttcgatacc taaacctctc tagcacttcc 950 ctcaggaaga ttaatgctgc ctggtttaaa aatatgcctc atctgaaggt 1000 gctggatctt gaattcaact atttagtggg agaaatagtc tctggggcat 1050 ttttaacgat getgeeege ttagaaatae ttgaettgte ttttaactat 1100 ataaagggga gttatccaca gcatattaat atttccagaa acttctctaa 1150 actittgtct ctacgggcat tgcatttaag aggttatgtg ttccaggaac 1200 tcagagaaga tgatttccag cccctgatgc agcttccaaa cttatcgact 1250 atcaacttgg gtattaattt tattaagcaa atcgatttca aacttttcca 1300 aaatttctcc aatctggaaa ttatttactt gtcagaaaac agaatatcac 1350 cgttggtaaa agatacccgg cagagttatg caaatagttc ctcttttcaa 1400 cgtcatatcc ggaaacgacg ctcaacagat tttgagtttg acccacattc 1450 gaacttttat catttcaccc qtcctttaat aaaqccacaa tqtqctqctt 1500 atggaaaagc cttagattta agcctcaaca qtattttctt cattqqqcca 1550 aaccaatttg aaaatcttcc tgacattgcc tgtttaaatc tgtctgcaaa 1600 tagcaatgct caagtgttaa gtggaactga attttcagcc attcctcatg 1650 tcaaatattt ggatttgaca aacaatagac tagactttga taatgctagt 1700

gctcttactg aattgtccga cttggaagtt ctagatctca gctataattc 1750 acactatttc agaatagcag gcgtaacaca tcatctagaa tttattcaaa 1800 atttcacaaa tctaaaagtt ttaaacttga gccacaacaa catttatact 1850 ttaacagata agtataacct ggaaagcaag tccctggtag aattagtttt 1900 cagtggcaat cgccttgaca ttttgtggaa tgatgatgac aacaggtata 1950 tctccatttt caaaggtctc aagaatctga cacgtctgga tttatccctt 2000 aataggctga agcacatccc aaatgaagca ttccttaatt tgccagcgag 2050 tctcactgaa ctacatataa atgataatat gttaaagttt tttaactgga 2100 cattactcca gcagtttcct cgtctcgagt tgcttgactt acgtggaaac 2150 aaactactct ttttaactga tagcctatct gactttacat cttcccttcg 2200 gacactgctg ctgagtcata acaggatttc ccacctaccc tctggctttc 2250 tttctgaagt cagtagtctg aagcacctcg atttaagttc caatctgcta 2300 aaaacaatca acaaatccgc acttgaaact aagaccacca ccaaattatc 2350 tatgttggaa ctacacggaa acccctttga atgcacctgt gacattggag 2400 atttccgaag atggatggat gaacatctga atgtcaaaat tcccagactg 2450 gtagatgtca tttgtgccag tcctggggat caaagaggga agagtattgt 2500 gagtctggag ctaacaactt gtgtttcaga tgtcactgca gtgatattat 2550 ttttcttcac gttctttatc accaccatgg ttatgttggc tgccctggct 2600 caccatttgt tttactggga tgtttggttt atatataatg tgtgtttagc 2650 taaggtaaaa ggctacaggt ctctttccac atcccaaact ttctatgatg 2700 cttacatttc ttatgacacc aaagatgcct ctgttactga ctgggtgata 2750 aatgagetge getaceacet tqaaqagage eqagacaaaa aegtteteet 2800 ttgtctagag gagagggatt gggacccggg attggccatc atcgacaacc 2850 tcatgcagag catcaaccaa agcaagaaaa cagtatttgt tttaaccaaa 2900 aaatatgcaa aaagctggaa ctttaaaaca gctttttact tggctttgca 2950 gaggctaatg gatgagaaca tggatgtgat tatatttatc ctgctggagc 3000 cagtgttaca gcattctcag tatttgaggc tacggcagcg gatctgtaaq 3050 agctccatcc tccagtggcc tgacaacccg aaggcagaag gcttgttttg 3100 gcaaactctg agaaatgtgg tcttgactga aaatgattca cggtataaca 3150

atatgtatgt cgattccatt aagcaatact aactgacgtt aagtcatgat 3200 ttcgcgccat aataaagatg caaaggaatg acatttctgt attagttatc 3250 tattgctatg taacaaatta tcccaaaact tagtggttta aaacaacaca 3300 tttgctggcc cacagttttt gagggtcagg agtccaggcc cagcataact 3350 gggtcctctg ctcagggtgt ctcagaggct gcaatgtagg tgttcaccag 3400 agacataggc atcactgggg tcacactcat gtggttgttt tctggattca 3450 attectectg ggetattgge caaaggetat acteatgtaa gecatgegag 3500 cctctcccac aaggcagctt gcttcatcag agctagcaaa aaagagaggt 3550 tgctagcaag atgaagtcac aatcttttgt aatcgaatca aaaaagtgat 3600 atctcatcac tttggccata ttctatttgt tagaagtaaa ccacaggtcc 3650 caccagetee atgggagtga ecaceteagt ecagggaaaa eagetgaaga 3700 ccaagatggt gagctctgat tgcttcagtt ggtcatcaac tattttccct 3750 tgactgctgt cctgggatgg cctgctatct tgatgataga ttgtgaatat 3800 caggaggcag ggatcactgt ggaccatctt agcagttgac ctaacacatc 3850 ttcttttcaa tatctaagaa cttttgccac tgtgactaat ggtcctaata 3900 ttaagctgtt gtttatattt atcatatatc tatggctaca tggttatatt 3950 atgctgtggt tgcgttcggt tttatttaca gttgctttta caaatatttg 4000 ctgtaacatt tgacttctaa qgtttaqatq ccatttaaqa actqaqatqq 4050 atagctttta aagcatcttt tacttcttac cattttttaa aagtatgcag 4100 ctaaattcga agcttttggt ctatattgtt aattgccatt gctgtaaatc 4150 ttaaaatgaa tgaataaaaa tgtttcattt tacaaaaaaa aaaaaaaaa 4199

<210> 498

<211> 1041

<212> PRT

<213> Homo sapiens

<400> 498

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe 1 5 10 15

Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe 20 25 30

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val 35 40 45

Ile Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr

50 55 60

Val Gly Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His Asn Pro Asn Val Gln His Gln Asn Gly 100 105 Asn Pro Gly Ile Gln Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala 110 115 Phe Leu Asn Leu Lys Asn Leu Arg Glu Leu Leu Glu Asp Asn 125 Gln Leu Pro Gln Ile Pro Ser Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr Leu Ala Trp Asn 170 Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu Ser Phe 200 Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu Arg 215 Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu 230 Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys 260 Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg 300 Lys Ile Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe Asn Tyr Leu Val Gly Glu Ile Val Ser Gly 330

Ala Phe Leu Thr Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser

Phe Asn Tyr Ile Lys Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu Asp Asp Phe Gln Pro Leu 380 390 Met Gln Leu Pro Asn Leu Ser Thr Ile Asn Leu Gly Ile Asn Phe 395 Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe 495 Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp 555 Leu Glu Val Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn 580 585 Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys Ser Leu Val Glu Leu Val Phe 605 615 Ser Gly Asn Arg Leu Asp Ile Leu Trp Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp

				635					640					645
Leu	Ser	Leu	Asn	Arg 650	Leu	Lys	His	Ile	Pro 655	Asn	Glu	Ala	Phe	Leu 660
Asn	Leu	Pro	Ala	Ser 665	Leu	Thr	Glu	Leu	His 670	Ile	Asn	Asp	Asn	Met 675
Leu	Lys	Phe	Phe	Asn 680	Trp	Thr	Leu	Leu	Gln 685	Gln	Phe	Pro	Arg	Leu 690
Glu	Leu	Leu	Asp	Leu 695	Arg	Gly	Asn	Lys	Leu 700	Leu	Phe	Leu	Thr	Asp 705
Ser	Leu	Ser	Asp	Phe 710	Thr	Ser	Ser	Leu	Arg 715	Thr	Leu	Leu	Leu	Ser 720
His	Asn	Arg	Ile	Ser 725	His	Leu	Pro	Ser	Gly 730	Phe	Leu	Ser	Glu	Val 735
Ser	Ser	Leu	Lys	His 740	Leu	Asp	Leu	Ser	Ser 745	Asn	Leu	Leu	Lys	Thr 750
Ile	Asn	Lys	Ser	Ala 755	Leu	Glu	Thr	Lys	Thr 760	Thr	Thr	Lys	Leu	Ser 765
Met	Leu	Glu	Leu	His 770	Gly	Asn	Pro	Phe	Glu 775	Cys	Thr	Cys	Asp	Ile 780
Gly	Asp	Phe	Arg	Arg 785	Trp	Met	Asp	Glu	His 790	Leu	Asn	Val	Lys	Ile 795
Pro	Arg	Leu	Val	Asp 800	Val	Ile	Cys	Ala	Ser 805	Pro	Gly	Asp	Gln	Arg 810
Glý	Lys	Ser	Ile	Val 815	Ser	Leu	Glu	Leu	Thr 820	Thr	Cys	Val	Ser	Asp 825
Val	Thr	Ala	Val	Ile 830	Leu	Phe	Phe	Phe	Thr 835	Phe	Phe	Ile	Thr	Thr 840
Met	Val	Met	Leu	Ala 845	Ala	Leu	Ala	His	His 850	Leu	Phe	Tyr	Trp	Asp 855
Val	Trp	Phe	Ile	Tyr 860	Asn	Val	Cys	Leu	Ala 865	Lys	Val	Lys	Gly	Tyr 870
Arg	Ser	Leu	Ser	Thr 875	Ser	Gln	Thr	Phe	Tyr 880	Asp	Ala	Tyr	Ile	Ser 885
Tyr	Asp	Thr	Lys	Asp 890	Ala	Ser	Val	Thr	Asp 895	Trp	Val	Ile	Asn	Glu 900
Leu	Arg	Tyr	His	Leu 905	Glu	Glu	Ser	Arg	Asp 910	Lys	Asn	Val	Leu	Leu 915
Cys	Leu	Glu	Glu	Arg 920	Asp	Trp	Asp	Pro	Gly 925	Leu	Ala	Ile	Ile	Asp 930

```
Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val
                 935
                                      940
 Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe
                  950
                                      955
 Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile
                                      970
 Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu
 Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro
                 995
                                     1000
 Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn
 Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val
                1025
                                     1030
                                                         1035
 Asp Ser Ile Lys Gln Tyr
                1040
<210> 499
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 499
 taaagaccca gctgtgaccg 20
<210> 500
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 500
atccatgagc ctctgatggg 20
<210> 501
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 501
```

atttatgtct cgaggaaagg gactggttac cagggcagcc agttc 45

A. H.

ļ.

47

W.

1

<210> 502

```
The spirit, state of the large of the spirit of the spirit
```

```
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 502
 gccgagacaa aaacgttctc c 21
<210> 503
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 503
catccatgtt ctcatccatt agcc 24
<210> 504
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 504
tcgacaacct catgcagagc atcaaccaaa gcaagaaaac agtatt 46
<210> 505
<211> 1738
<212> DNA
<213> Homo sapiens
<400> 505
 ccaggtccaa ctgcacctcg gttctatcga ttgaattccc cggggatcct 50
 ctagagatcc ctcgacctcg acccacgcgt ccgccaagct ggccctgcac 100
 ggctgcaagg gaggctcctg tggacaggcc aggcaggtgg gcctcaggag 150
 gtgcctccag gcggccagtg ggcctgaggc cccagcaagg gctagggtcc 200
 atctccagtc ccaggacaca gcagcggcca ccatggccac gcctgggctc 250
 cagcagcatc agcagccccc aggaccgggg aggcacaggt ggcccccacc 300
 acceggagga geageteetg eccetgteeg ggggatgaet gatteteete 350
 cgccaggcca cccagaggag aaggccaccc cgcctggagg cacaggccat 400
 gaggggctct caggaggtgc tgctgatgtg gcttctggtg ttggcagtgg 450
gcggcacaga gcacgcctac cggcccggcc gtagggtgtg tgctgtccgg 500
```

gctcacgggg accctgtctc cgagtcgttc gtgcagcgtg tgtaccagcc 550 cttcctcacc acctgcgacg ggcaccgggc ctgcagcacc taccgaacca 600 tctataggac cgcctaccgc cgcagccctg ggctggcccc tgccaggcct 650 cgctacgcgt gctgccccgg ctggaagagg accagcgggc ttcctqgqqc 700 ctgtggagca gcaatatgcc agccgccatg ccggaacgga gggagctgtg 750 tccagcctgg ccgctgccgc tgccctgcag gatggcgggg tgacacttgc 800 cagtcagatg tggatgaatg cagtgctagg agggggggct gtccccagcg 850 ctgcatcaac accgccggca gttactggtg ccagtgttgg gaggggcaca 900 gcctgtctgc agacggtaca ctctgtgtgc ccaagggagg gccccccagg 950 gtggccccca acccgacagg agtggacagt gcaatgaagg aagaagtgca 1000 gaggetgeag tecagggtgg acetgetgga ggagaagetg cagetggtge 1050 tggccccact gcacagectg gcctcgcagg cactggagca tgggctcccg 1100 gaccceggca gcctcctggt gcactccttc cagcagctcg gccgcatcga 1150 ctccctgagc gagcagattt ccttcctgga ggagcagctg gggtcctgct 1200 cctgcaagaa agactcgtga ctgcccagcg ccccaggctg gactgagccc 1250 ctcacgccgc cctgcagccc ccatgcccct gcccaacatg ctgqqqqtcc 1300 agaagccacc tcggggtgac tgagcggaag gccaggcagg gccttcctcc 1350 tetteeteet eccetteete gggaggetee ceagaceetg geatgggatg 1400 ggctgggatc ttctctgtga atccaccct ggctaccccc accctggcta 1450 ccccaacggc atcccaaggc caggtgggcc ctcagctgag ggaaggtacg 1500 agetecetge tggageetgg gacceatgge acaggeeagg cageeeggag 1550 gctgggtggg gcctcagtgg gggctgctgc ctgaccccca gcacaataaa 1600 aaagggcggc cgcgactcta gagtcgacct gcagaagctt gqccqccatq 1700 gcccaacttg tttattgcag cttataatgg ttacaaat 1738

<210> 506

<211> 273

<212> PRT

<213> Homo sapiens

<400> 506

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu
1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln Arg Cys Ile Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu 165 Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala 220 Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu 250 Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys

Lys Asp Ser

<210> 507

<211> 1700

<212> DNA

<213> Homo sapiens

<400> 507 gccaggcagg tgggcctcag gaggtgcctc caggcggcca gtgggcctga 50 ggccccagca agggctaggg tccatctcca gtcccaggac acagcagcgg 100 ccaccatggc cacgcctggg ctccagcagc atcagagcag cccctgtggt 150 tggcagcaaa gttcagcttg gctgggcccg ctgtgagggg cttcgcgcta 200 cgccctgcgg tgtcccgagg gctgaggtct cctcatcttc tccctagcag 250 tggatgagca acccaacggg ggcccgggga ggggaactgg ccccgaggga 300 gaggaacccc aaagccacat ctgtagccag gatgagcagt gtgaatccag 350 gcagccccca ggaccgggga ggcacaggtg gcccccacca cccggaggag 400 cagctcctgc ccctgtccgg gggatgactg attctcctcc gccaggccac 450 ccagaggaga aggccacccc gcctggaggc acaggccatg aggggctctc 500 aggaggtgct gctgatgtgg cttctggtgt tggcagtggg cggcacagag 550 cacgcctacc ggcccggccg tagggtgtgt gctgtccggg ctcacgggga 600 ccctgtctcc gagtcgttcg tgcagcgtgt gtaccagccc ttcctcacca 650 cctgcgacgg gcaccgggcc tgcagcacct accgaaccat ctataggacc 700 gcctaccgcc gcagccctgg gctggcccct gccaggcctc gctacgcgtg 750 ctgccccggc tggaagagga ccagcgggct tcctggggcc tgtggagcag 800 caatatgcca gccgccatgc cggaacggag ggagctgtgt ccagcctggc 850 cgctgccgct gccctgcagg atggcggggt gacacttgcc agtcagatgt 900 ggatgaatgc agtgctagga ggggcggctg tccccagcgc tgcatcaaca 950 ccgccggcag ttactggtgc cagtgttggg aggggcacag cctgtctgca 1000 gacggtacac tetgtgtgcc caagggaggg ccccccaggg tggcccccaa 1050 cccgacagga gtggacagtg caatgaagga agaagtgcag aggctgcagt 1100 ccagggtgga cctgctggag gagaagctgc agctggtgct ggccccactg 1150 cacageetgg ectegeagge aetggageat gggeteeegg aeeeeggeag 1200 cctcctggtg cactccttcc agcagetegg cegeategae tecetgageg 1250 agcagatttc cttcctggag gagcagctgg ggtcctgctc ctgcaagaaa 1300 gactcgtgac tgcccagcgc tccaggctgg actgagcccc tcacgccgcc 1350 ctgcagcccc catgcccctg cccaacatgc tgggggtcca gaagccacct 1400 cggggtgact gagcggaagg ccaggcaggg ccttcctcct cttcctcctc 1450

cccttcctcg ggaggctcc cagaccctgg catgggatgg gctgggatct 1500 tctctgtgaa tccaccctg gctacccca ccctggctac cccaacggca 1550 tcccaaggcc aggtggaccc tcagctgagg gaaggtacga gctccctgct 1600 ggagcctggg acccatggca caggccaggc agcccggagg ctgggtgggg 1650 cctcagtggg ggctgctgcc tgacccccag cacaataaaa atgaaacgtg 1700

<210> 508

<211> 273

<212> PRT

<213> Homo sapiens

<400> 508

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu 1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val 20 25 30

Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val
35 40 45

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg
50 55 60

Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg 65 70 75

Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro 80 85 90

Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala 95 100 105

Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro 110 115 120

Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln 125 130 135

Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln 140 145 150

Arg Cys Ile Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu 155 160 165

Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly
170 175 180

Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala 185 190 195

Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu 200 205 210

Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala 215 220 225

Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu 230 235 240

Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu 245 250 255

Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys 260 265 270

Lys Asp Ser

<210> 509

<211> 1538

<212> DNA

<213> Homo sapiens

<400> 509

cccacgcgtc cgaagctggc cctgcacggc tgcaagggag gctcctgtgg 50 acaggccagg caggtgggcc tcaggaggtg cctccaggcg gccagtgggc 100 ctgaggcccc agcaagggct agggtccatc tccagtccca ggacacagca 150 gcggccacca tggccacgcc tgggctccag cagcatcagc agcccccagg 200 accggggagg cacaggtggc ccccaccacc cggaggagca qctcctgccc 250 ctgtccgggg gatgactgat tctcctccgc caggccaccc agaggagaag 300 gccaccccgc ctggaggcac aggccatgag gggctctcag gaggtgctgc 350 tgatgtggct tctggtgttg gcagtgggcg gcacagagca cgcctaccgg 400 cccggccgta gggtgtgtgc tgtccgggct cacggggacc ctgtctccga 450 gtcgttcgtg cagcgtgtgt accagccctt cctcaccacc tgcgacggc 500 accgggcctg cagcacctac cqaaccatct ataqqaccqc ctaccgccgc 550 agccctgggc tggcccctgc caggcctcgc tacgcgtgct gccccggctg 600 gaagaggacc agcgggcttc ctggggcctg tggagcagca atatgccagc 650 cgccatgccg gaacggaggg agctgtgtcc agcctggccg ctgccgctgc 700 cctgcaggat ggcggggtga cacttgccag tcagatgtgg atgaatgcag 750 tgctaggagg ggcggctgtc cccagcgctg cgtcaacacc qccqqcaqtt 800 actggtgcca gtgttgggag gggcacagcc tgtctgcaga cggtacactc 850 tgtgtgccca agggaggcc ccccagggtg gcccccaacc cgacaggagt 900 ggacagtgca atgaaggaag aagtgcagag gctgcagtcc agggtggacc 950

tgctggagga gaagetgcag etggtgetgg ecceaetgca eageetggee 1000
tegeaggeae tggageatgg geteeeggae ecceggagee teetggtgea 1050
eteetteeag eageteggee geategaete eetgagegag eagatteet 1100
teetggagga geagetgggg teetgeteet geaagaaaga etegtgaetg 1150
ecceagegeee eaggetggae tgageeete aegeegeeet geageeeea 1200
tgeeeetgee eaacatgetg ggggteeaga ageeaeeteg gggtgaetga 1250
geggaaggee aggeagggee tteeteetet teeteetee etteeteggg 1300
aggeteeea gaeeetggea tgggatgge tgggatette tetgtgaate 1350
eaeceetgge taeeeeeaee etggetaeee eaaeggeate ecaaggeeag 1400
gtgggeeete agetgagga aggtaegage teeetgetgg ageetgggae 1450
ecatggeaea ggeeaggeag eeeggagget gggtgggee teagtgggg 1500
etgetgeetg aeeeeeagea eaataaaaat gaaaegtg 1538

<210> 510

<211> 273

<212> PRT

<213> Homo sapiens

<400> 510

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu 1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val 20 25 30

Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val 35 40 45

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg 50 55 60

Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg
65 70 75

Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro 80 85 90

Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala 95 100 105

Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro 110 115 120

Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln 125 130 135

Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln

Mr. And And And

The proof of the first of the second of the

140 145 150

Arg Cys Val Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu 155 160 165

Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly 170 175 180

Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala 185 190

Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu 200 205 210

Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala 215 220 225

Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu 230 235 240

Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu 245 250 255

Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys 260 265 270

Lys Asp Ser

<210> 511

<211> 21

<212> DNA <213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 511

tggagcagca atatgccagc c 21

<210> 512

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 512

ttttccactc ctgtcgggtt gg 22

<210> 513

<211> 46

<212> DNA

<213> Artificial Sequence

<220N

<223> Synthetic oligonucleotide probe

```
<400> 513
 ggtgacactt gccagtcaga tgtggatgaa tgcagtgcta qqaqqq 46
<210> 514
<211> 2690
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 2039-2065
<223> unknown base
<400> 514
 ggttgccaca gctggtttag ggccccgacc actggggccc cttgtcagga 50
 ggagacagcc teceggeeeg gggaggacaa gtegetgeea cetttggetg 100
 ccgacgtgat tccctgggac ggtccgtttc ctgccgtcag ctgccgqccq 150
 agttgggtct ccqtqtttca qqccqqctcc cccttcctqq tctcccttct 200
 cccgctgggc cggtttatcg ggaggagatt gtcttccagg gctagcaatt 250
 ggacttttga tgatgtttga cccagcggca ggaatagcag gcaacgtgat 300
 ttcaaagctg ggctcagcct ctgtttcttc tctcgtgtaa tcgcaaaacc 350
 cattttggag caggaattcc aatcatgtct gtgatggtgg tgagaaagaa 400
 ggtgacacgg aaatgggaga aactcccagg caggaacacc ttttgctgtg 450
 atggccgcgt catgatggcc cggcaaaagg gcattttcta cctgaccctt 500
 ttcctcatcc tggggacatg tacactcttc ttcgcctttg agtgccgcta 550
 cctggctgtt cagctgtctc ctgccatccc tgtatttgct gccatgctct 600
 tccttttctc catggctaca ctgttgagga ccagcttcag tgaccctgga 650
 gtgattcctc gggcgctacc agatgaagca gctttcatag aaatggagat 700
 agaagctacc aatggtgcgg tgccccaggg ccagcgacca ccgcctcgta 750
 tcaagaattt ccagataaac aaccagattg tgaaactgaa atactgttac 800
 acatgcaaga tcttccggcc tccccgggcc tcccattgca gcatctgtga 850
 caactgtgtg gagcgcttcg accatcactg cccctgggtg gggaattgtg 900
 ttggaaagag gaactaccgc tacttctacc tcttcatcct ttctctctcc 950
ctcctcacaa tctatgtctt cgccttcaac atcgtctatg tggccctcaa 1000
```

atctttgaaa attggcttct tggagacatt gaaagaaact cctggaactg 1050

ttctagaagt cctcatttgc ttctttacac tctggtccgt cgtgggactg 1100

actggatttc atactttcct cgtggctctc aaccagacaa ccaatgaaga 1150 catcaaagga tcatggacag ggaagaatcg cgtccagaat ccctacagcc 1200 atggcaatat tgtgaagaac tgctgtgaag tgctgtgtgg ccccttgccc 1250 cccagtgtgc tggatcgaag gggtattttg ccactggagg aaagtggaag 1300 tcgacctccc agtactcaag agaccagtag cagcctcttg ccacagagcc 1350 cagcccccac agaacacctg aactcaaatg agatgccgga ggacagcagc 1400 actoccgaag agatgccacc tocagagccc ccagagccac cacaggaggc 1450 agctgaagct gagaagtagc ctatctatgg aagagacttt tgtttgtgtt 1500 taattagggc tatgagagat ttcaggtgag aagttaaacc tgagacagag 1550 agcaagtaag ctgtcccttt taactgtttt tctttggtct ttagtcaccc 1600 agttgcacac tggcattttc ttgctgcaag cttttttaaa tttctgaact 1650 caaggcagtg gcagaagatg tcagtcacct ctgataactg gaaaaatggg 1700 tetettggge cetggeactg gttetecatg geeteageea cagggteece 1750 ttggaccccc tctcttccct ccagatccca gccctcctgc ttggggtcac 1800 tggtctcatt ctggggctaa aagtttttga gactggctca aatcctccca 1850 agctgctgca cgtgctgagt ccagaggcag tcacagagac ctctggccag 1900 gggatcctaa ctgggttctt ggggtcttca ggactgaaga ggagggagag 1950 tggggtcaga agatteteet ggceaceaag tgeeageatt geecacaaat 2000 ccttttagga atgggacagg taccttccac ttgttgtann nnnnnnnnn 2050 nnnnnnnnn nnnnttgtt tttccttttg actcctgctc ccattaggag 2100 caggaatggc agtaataaaa qtctqcactt tqqtcatttc ttttcctcaq 2150 aggaageceg agtgeteaet taaacaetat eeceteagae teeetgtgtg 2200 aggcctgcag aggccctgaa tgcacaaatg ggaaaccaag gcacagagag 2250 gctctcctct cctctctct cccccgatgt accctcaaaa aaaaaaaaat 2300 gctaaccagt tcttccatta agcctcggct gagtgaggga aagcccagca 2350 ctgctgccct ctcgggtaac tcaccctaag gcctcggccc acctctgqct 2400 atggtaacca cactgggggc ttcctccaag ccccgctctt ccaqcacttc 2450 caccggcaga gtcccagagc cacttcaccc tqqqqqtqqq ctqtqqcccc 2500 cagtcagctc tgctcaggac ctgctctatt tcagggaaga agatttatgt 2550

attatatgtg gctatatttc ctagagcacc tgtgttttcc tctttctaag 2600 ccagggtcct gtctggatga cttatgcggt gggggagtgt aaaccggaac 2650 ttttcatcta tttgaaggcg attaaactgt gtctaatgca 2690

<210> 515

<211> 364

<212> PRT

<213> Homo sapiens

<400> 515

Met Ser Val Met Val Val Arg Lys Lys Val Thr Arg Lys Trp Glu

1 10 15

Lys Leu Pro Gly Arg Asn Thr Phe Cys Cys Asp Gly Arg Val Met 20 25 30

Met Ala Arg Gln Lys Gly Ile Phe Tyr Leu Thr Leu Phe Leu Ile 35 40 45

Leu Gly Thr Cys Thr Leu Phe Phe Ala Phe Glu Cys Arg Tyr Leu
50 55 60

Ala Val Gln Leu Ser Pro Ala Ile Pro Val Phe Ala Ala Met Leu 65 70 75

Phe Leu Phe Ser Met Ala Thr Leu Leu Arg Thr Ser Phe Ser Asp 80 85 90

Pro Gly Val Ile Pro Arg Ala Leu Pro Asp Glu Ala Ala Phe Ile 95 100 105

Glu Met Glu Ile Glu Ala Thr Asn Gly Ala Val Pro Gln Gly Gln
110 115 120

Arg Pro Pro Pro Arg Ile Lys Asn Phe Gln Ile Asn Asn Gln Ile 125 130 135

Val Lys Leu Lys Tyr Cys Tyr Thr Cys Lys Ile Phe Arg Pro Pro 140 145 150

Arg Ala Ser His Cys Ser Ile Cys Asp Asn Cys Val Glu Arg Phe 155 160 165

Asp His His Cys Pro Trp Val Gly Asn Cys Val Gly Lys Arg Asn 170 175 180

Tyr Arg Tyr Phe Tyr Leu Phe Ile Leu Ser Leu Ser Leu Leu Thr 185 190 195

Ile Tyr Val Phe Ala Phe Asn Ile Val Tyr Val Ala Leu Lys Ser 200 205 210

Leu Lys Ile Gly Phe Leu Glu Thr Leu Lys Glu Thr Pro Gly Thr 215 220 225

Val Leu Glu Val Leu Ile Cys Phe Phe Thr Leu Trp Ser Val Val

230 235 240

Gly Leu Thr Gly Phe His Thr Phe Leu Val Ala Leu Asn Gln Thr 245 250 255

Thr Asn Glu Asp Ile Lys Gly Ser Trp Thr Gly Lys Asn Arg Val 260 265 270

Gln Asn Pro Tyr Ser His Gly Asn Ile Val Lys Asn Cys Cys Glu 275 280 285

Val Leu Cys Gly Pro Leu Pro Pro Ser Val Leu Asp Arg Gly 290 295 300

Ile Leu Pro Leu Glu Glu Ser Gly Ser Arg Pro Pro Ser Thr Gln 305 310 315

Glu Thr Ser Ser Ser Leu Leu Pro Gln Ser Pro Ala Pro Thr Glu 320 325 330

His Leu Asn Ser Asn Glu Met Pro Glu Asp Ser Ser Thr Pro Glu 335 340 345

Glu Met Pro Pro Pro Glu Pro Pro Glu Pro Pro Gln Glu Ala Ala 350 355 360

Glu Ala Glu Lys

<210> 516

<211> 255

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 36, 38, 88, 118, 135, 193, 213, 222

<223> unknown base

<400> 516

aaaaccctgt attittaca atgcaaatag acaatnancc tggaggtctt 50
tgaattaggt attataggga tggtggggtt gattittntt cctggaggct 100
tttggctttg gactctcnct ttctcccaca gagcncttcg accatcactg 150
cccctgggtg gggaattgtg ttggaaagag gaactaccgc tantictacc 200
tcttcatcct ttntctctcc cncctcacaa tctatgtctt cgccttcaac 250

<210> 517

atcgt 255

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

```
<223> Synthetic oligonucleotide probe
<400> 517
 caacgtgatt tcaaagctgg gctc 24
<210> 518
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 518
gcctcgtatc aagaatttcc 20
<210> 519
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 519
agtggaagtc gacctccc 18
<210> 520
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 520
ctcacctgaa atctctcata gccc 24
<210> 521
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 521
 cgcaaaaccc attttgggag caggaattcc aatcatgtct gtgatggtgg 50
<210> 522
<211> 1679
<212> DNA
<213> Homo sapiens
<400> 522
 gttgtgtcct tcagcaaaac agtggattta aatctccttg cacaagcttg 50
 agagcaacac aatctatcag gaaagaaaga aagaaaaaaa ccgaacctga 100
```

A Part

14.2

Ţ,

caaaaaagaa gaaaaagaag aagaaaaaaa atcatgaaaa ccatccagcc 150 aaaaatgcac aattctatct cttgggcaat cttcacgggg ctggctgctc 200 tgtgtctctt ccaaggagtg cccgtgcgca gcggagatgc caccttcccc 250 aaagctatgg acaacgtgac ggtccggcag ggggagagcg ccaccctcag 300 gtgcactatt gacaaccggg tcacccgggt ggcctggcta aaccgcagca 350 ccatcctcta tgctgggaat gacaagtggt gcctggatcc tcgcgtggtc 400 cttctgagca acacccaaac gcagtacagc atcgagatcc agaacgtgga 450 tgtgtatgac gagggccctt acacctgctc ggtgcagaca gacaaccacc 500 caaagacctc tagggtccac ctcattgtgc aagtatctcc caaaattgta 550 gagatttctt cagatatctc cattaatgaa gggaacaata ttagcctcac 600 ctgcatagca actggtagac cagagcctac ggttacttgg agacacatct 650 ctcccaaagc ggttggcttt gtgagtgaag acgaatactt ggaaattcag 700 ggcatcaccc gggagcagtc aggggactac gagtgcagtg cctccaatga 750 cgtggccgcg cccgtggtac ggagagtaaa ggtcaccgtg aactatccac 800 catacatttc agaagccaag ggtacaggtg tccccgtggg acaaaagggg 850 acactgcagt gtgaagcctc agcagtcccc tcagcagaat tccagtggta 900 caaggatgac aaaagactga ttgaaggaaa gaaaggggtg aaagtggaaa 950 acagacettt ceteteaaaa eteatettet teaatgtete tgaacatgae 1000 tatgggaact acacttgcgt ggcctccaac aagctgggcc acaccaatgc 1050 cagcatcatg ctatttggtc caggcgccgt cagcgaggtg agcaacggca 1100 cgtcgaggag ggcaggctgc gtctggctgc tgcctcttct ggtcttgcac 1150 ctgcttctca aattttgatg tgagtgccac ttccccaccc gggaaaggct 1200 gccgccacca ccaccaccaa cacaacagca atggcaacac cgacagcaac 1250 caatcagata tatacaaatg aaattagaag aaacacagcc tcatgggaca 1300 gaaatttgag ggaggggaac aaagaatact ttgggggggaa aagagtttta 1350 aaaaagaaat tgaaaattgc cttgcagata tttaggtaca atggagtttt 1400 cttttcccaa acgggaagaa cacagcacac ccggcttgga cccactgcaa 1450 gctgcatcgt gcaacctctt tggtgccagt gtgggcaagg gctcagcctc 1500 tetgcccaca gagtgccccc acgtggaaca ttctggagct ggccatccca 1550

aattcaatca gtccatagag acgaacagaa tgagaccttc cggcccaagc 1600 gtggcgctgc gggcactttg gtagactgtg ccaccacggc gtgtgttgtg 1650 aaacgtgaaa taaaaagagc aaaaaaaaa 1679

<210> 523

<211> 344

<212> PRT

<213> Homo sapiens

<400> 523

Met Lys Thr Ile Gln Pro Lys Met His Asn Ser Ile Ser Trp Ala 1 5 10 15

Ile Phe Thr Gly Leu Ala Ala Leu Cys Leu Phe Gln Gly Val Pro
20 25 30

Val Arg Ser Gly Asp Ala Thr Phe Pro Lys Ala Met Asp Asn Val 35 40 45

Thr Val Arg Gln Gly Glu Ser Ala Thr Leu Arg Cys Thr Ile Asp
50 55 60

Asn Arg Val Thr Arg Val Ala Trp Leu Asn Arg Ser Thr Ile Leu 65 70 75

Tyr Ala Gly Asn Asp Lys Trp Cys Leu Asp Pro Arg Val Val Leu 80 85 90

Leu Ser Asn Thr Gln Thr Gln Tyr Ser Ile Glu Ile Gln Asn Val 95 100 105

Asp Val Tyr Asp Glu Gly Pro Tyr Thr Cys Ser Val Gln Thr Asp 110 115 120

Asn His Pro Lys Thr Ser Arg Val His Leu Ile Val Gln Val Ser 125 130 135

Pro Lys Ile Val Glu Ile Ser Ser Asp Ile Ser Ile Asn Glu Gly 140 145 150

Asn Asn Ile Ser Leu Thr Cys Ile Ala Thr Gly Arg Pro Glu Pro
155 160 165

Thr Val Thr Trp Arg His Ile Ser Pro Lys Ala Val Gly Phe Val 170 175 180

Ser Glu Asp Glu Tyr Leu Glu Ile Gln Gly Ile Thr Arg Glu Gln 185 190 195

Ser Gly Asp Tyr Glu Cys Ser Ala Ser Asn Asp Val Ala Ala Pro 200 205 210

Val Val Arg Arg Val Lys Val Thr Val Asn Tyr Pro Pro Tyr Ile 215 220 225

Ser Glu Ala Lys Gly Thr Gly Val Pro Val Gly Gln Lys Gly Thr

230 235 240

Leu Gln Cys Glu Ala Ser Ala Val Pro Ser Ala Glu Phe Gln Trp
245 250 255

Tyr Lys Asp Asp Lys Arg Leu Ile Glu Gly Lys Lys Gly Val Lys 260 265 270

Val Glu Asn Arg Pro Phe Leu Ser Lys Leu Ile Phe Phe Asn Val 275 280 285

Ser Glu His Asp Tyr Gly Asn Tyr Thr Cys Val Ala Ser Asn Lys 290 295 300

Leu Gly His Thr Asn Ala Ser Ile Met Leu Phe Gly Pro Gly Ala 305 310

Val Ser Glu Val Ser Asn Gly Thr Ser Arg Arg Ala Gly Cys Val 320 325 330

Trp Leu Leu Pro Leu Leu Val Leu His Leu Leu Leu Lys Phe 335 340

<210> 524

<211> 503

<212> DNA

<213> Homo sapiens

<400> 524

gaaaaaaat catgaaaacc atccagccaa aaatgcacaa ttctatctct 50
tgggcaatct tcacggggct ggctgctctg tgtctcttcc aaggagtgcc 100
cgtgcgcagc ggagatgcca ccttccccaa agctatggac aacgtgacgg 150
tccggcaggg ggagagcgcc accctcaggt gcactattga caaccgggtc 200
acccgggtgg cctggctaaa ccgcagcacc atcctctatg ctgggaatga 250
caagtggtgc ctggatcctc gcgtggtcct tctgagcaac acccaaacgc 300
agtacagcat cgagatccag aacgtggatg tgtatgacga gggcccttac 350
acctgctcgg tgcagacaga caaccacca aagacctcta gggtccacct 400
cattgtgcaa gtatctcca aaattgtaga gatttcttca gatatctcca 450
ttaatgaagg gaacaatatt agcctcacct gcatagcaac tggtagacca 500
gag 503

<210> 525

<211> 2602

<212> DNA

<213> Homo sapiens

<400> 525

atggctggtg acggcggggc cgggcagggg accggggccg cggcccggga 50

gegggecage tgeegggage cetgaateae egeetggeee gaeteeacea 100 tgaacgtcgc gctgcaggag ctgggagctg gcagcaacgt gggattccag 150 aaggggacaa gacagctgtt aggctcacgc acgcagctgg agctggtctt 200 agcaggtgcc tetetactgc tggctgcact gettetgggc tgccttgtgg 250 ccctaggggt ccagtaccac agagacccat cccacagcac ctgccttaca 300 gaggcctgca ttcgagtggc tggaaaaatc ctggagtccc tggaccgagg 350 ggtgagcccc tgtgaggact tttaccagtt ctcctgtggg ggctggattc 400 ggaggaaccc cctgcccgat gggcgttctc gctggaacac cttcaacagc 450 ctctgggacc aaaaccaggc catactgaag cacctgcttg aaaacaccac 500 cttcaactcc agcagtgaag ctgagcagaa gacacagcgc ttctacctat 550 cttgcctaca ggtggagcgc attgaggagc tgggagccca gccactgaga 600 gacctcattg agaagattgg tggttggaac attacggggc cctgggacca 650 ggacaacttt atggaggtgt tgaaggcagt agcagggacc tacagggcca 700 ccccattctt caccgtctac atcagtgccg actctaagag ttccaacagc 750 aatgttatcc aggtggacca gtctgggctc tttctgccct ctcgggatta 800 ctacttaaac agaactgcca atgagaaagt gctcactgcc tatctggatt 850 acatggagga actggggatg ctgctgggtg ggcggcccac ctccacgagg 900 gagcagatgc agcaggtgct ggagttggag atacagctgg ccaacatcac 950 agtgccccag gaccagcggc gcgacgagga gaagatctac cacaagatga 1000 gcatttcgga gctgcaggct ctggcgccct ccatggactg gcttgagttc 1050 ctgtctttct tgctgtcacc attggagttg agtgactctg agcctgtggt 1100 ggtgtatggg atggattatt tgcagcaggt gtcagagctc atcaaccgca 1150 cggaaccaag catcctgaac aattacctga tctggaacct ggtgcaaaag 1200 acaacctcaa gcctggaccg acgctttgag tctgcacaag agaagctgct 1250 ggagaccete tatggeacta agaagteetg tgtgeegagg tggeagacet 1300 gcatctccaa cacggatgac gcccttggct ttgctttggg gtcactcttc 1350 gtgaaggcca cgtttgaccg gcaaagcaaa gaaattgcag aggggatgat 1400 cagcgaaatc cggaccgcat ttgaggaggc cctgggacag ctggtttgga 1450 tggatgagaa gacccgccag gcagccaagg agaaagcaga tgccatctat 1500 gatatgattg gtttcccaga ctttatcctg gagcccaaag agctggatqa 1550 tgtttatgac gggtacgaaa tttctgaaga ttctttcttc caaaacatgt 1600 tqaatttqta caacttctct qccaaggtta tggctgacca gctccgcaag 1650 cctcccaqcc gagaccaqtq gagcatgacc ccccagacag tgaatgccta 1700 ctaccttcca actaagaatg agatcgtctt ccccgctggc atcctgcagg 1750 ccccttcta tqcccqcaac cacccaaqg ccctgaactt cggtggcatc 1800 qqtqtqqtca tqqqccatqa qttqacqcat gcctttgatg accaagggcg 1850 cqaqtatqac aaaqaaqqqa acctqcqqcc ctqqtqqcaq aatqaqtccc 1900 tggcagcett ceggaaceae aeggeetgea tggaggaaca gtacaateaa 1950 taccaggtca atggggagag gctcaacggc cgccagacgc tgggggagaa 2000 cattactgac aacggggggc tgaaggctgc ctacaatgct tacaaagcat 2050 ggctgagaaa gcatggggag gagcagcaac tgccagccgt ggggctcacc 2100 aaccaccage tettettegt gggatttgcc caggtgtggt geteggteeg 2150 cacaccagag agcteteacg aggggetggt gaccgacccc cacagccetg 2200 eccgetteeg egtgetggge acteteteea acteeegtga etteetgegg 2250 cacttogget geoetgtegg etececeatg aacceaggge agetgtgtga 2300 qqtqtqqtaq acctqqatca qgqqagaaat ggccagctgt caccagacct 2350 ggggcagctc tcctgacaaa gctgtttgct cttgggttgg gaggaagcaa 2400 atgcaagetg ggetgggtet agteceteee eeceacaggt gacatgagta 2450 cagaccctcc tcaatcacca cattgtgcct ctgctttggg ggtgcccctg 2500 cctccaqcaq aqcccccacc attcactgtg acatctttcc gtgtcaccct 2550 gcctggaaga ggtctgggtg gggaggccag ttcccatagg aaggagtctg 2600 cc 2602

<210> 526

<211> 736

<212> PRT

<213> Homo sapiens

<400> 526

Met Asn Val Ala Leu Gln Glu Leu Gly Ala Gly Ser Asn Val Gly 1 5 10 15

Phe Gln Lys Gly Thr Arg Gln Leu Leu Gly Ser Arg Thr Gln Leu
20 25 30

Glu Leu Val Leu Ala Gly Ala Ser Leu Leu Leu Ala Ala Leu Leu Leu Gly Cys Leu Val Ala Leu Gly Val Gln Tyr His Arg Asp Pro Ser His Ser Thr Cys Leu Thr Glu Ala Cys Ile Arg Val Ala Gly Lys Ile Leu Glu Ser Leu Asp Arg Gly Val Ser Pro Cys Glu Asp Phe Tyr Gln Phe Ser Cys Gly Gly Trp Ile Arg Arg Asn Pro Leu Pro Asp Gly Arg Ser Arg Trp Asn Thr Phe Asn Ser Leu Trp Asp Gln Asn Gln Ala Ile Leu Lys His Leu Leu Glu Asn Thr Thr Phe 125 135 Asn Ser Ser Glu Ala Glu Gln Lys Thr Gln Arg Phe Tyr Leu Ser Cys Leu Gln Val Glu Arg Ile Glu Glu Leu Gly Ala Gln Pro 155 Leu Arg Asp Leu Ile Glu Lys Ile Gly Gly Trp Asn Ile Thr Gly 170 Pro Trp Asp Gln Asp Asn Phe Met Glu Val Leu Lys Ala Val Ala 185 Gly Thr Tyr Arg Ala Thr Pro Phe Phe Thr Val Tyr Ile Ser Ala Asp Ser Lys Ser Ser Asn Ser Asn Val Ile Gln Val Asp Gln Ser 215 Gly Leu Phe Leu Pro Ser Arg Asp Tyr Tyr Leu Asn Arg Thr Ala Asn Glu Lys Val Leu Thr Ala Tyr Leu Asp Tyr Met Glu Glu Leu Gly Met Leu Leu Gly Gly Arg Pro Thr Ser Thr Arg Glu Gln Met Gln Gln Val Leu Glu Leu Glu Ile Gln Leu Ala Asn Ile Thr Val Pro Gln Asp Gln Arg Asp Glu Glu Lys Ile Tyr His Lys Met Ser Ile Ser Glu Leu Gln Ala Leu Ala Pro Ser Met Asp Trp Leu Glu Phe Leu Ser Phe Leu Leu Ser Pro Leu Glu Leu Ser Asp Ser

320 325 330 Glu Pro Val Val Tyr Gly Met Asp Tyr Leu Gln Gln Val Ser Glu Leu Ile Asn Arg Thr Glu Pro Ser Ile Leu Asn Asn Tyr Leu Ile Trp Asn Leu Val Gln Lys Thr Thr Ser Ser Leu Asp Arg Arg 365 Phe Glu Ser Ala Gln Glu Lys Leu Glu Thr Leu Tyr Gly Thr Lys Lys Ser Cys Val Pro Arg Trp Gln Thr Cys Ile Ser Asn Thr Asp Asp Ala Leu Gly Phe Ala Leu Gly Ser Leu Phe Val Lys Ala 410 415 Thr Phe Asp Arg Gln Ser Lys Glu Ile Ala Glu Gly Met Ile Ser 425 430 Glu Ile Arg Thr Ala Phe Glu Glu Ala Leu Gly Gln Leu Val Trp Met Asp Glu Lys Thr Arg Gln Ala Ala Lys Glu Lys Ala Asp Ala Ile Tyr Asp Met Ile Gly Phe Pro Asp Phe Ile Leu Glu Pro Lys Glu Leu Asp Asp Val Tyr Asp Gly Tyr Glu Ile Ser Glu Asp Ser Phe Phe Gln Asn Met Leu Asn Leu Tyr Asn Phe Ser Ala Lys Val Met Ala Asp Gln Leu Arg Lys Pro Pro Ser Arg Asp Gln Trp Ser Met Thr Pro Gln Thr Val Asn Ala Tyr Tyr Leu Pro Thr Lys Asn 530 Glu Ile Val Phe Pro Ala Gly Ile Leu Gln Ala Pro Phe Tyr Ala Arg Asn His Pro Lys Ala Leu Asn Phe Gly Gly Ile Gly Val Val Met Gly His Glu Leu Thr His Ala Phe Asp Asp Gln Gly Arg Glu 575 Tyr Asp Lys Glu Gly Asn Leu Arg Pro Trp Trp Gln Asn Glu Ser 590 Leu Ala Ala Phe Arg Asn His Thr Ala Cys Met Glu Glu Gln Tyr 605 610

```
Asn Gln Tyr Gln Val Asn Gly Glu Arg Leu Asn Gly Arg Gln Thr 630

Leu Gly Glu Asn Ile Thr Asp Asn Gly Gly Leu Lys Ala Ala Tyr 645

Asn Ala Tyr Lys Ala Trp Leu Arg Lys His Gly Glu Glu Gln Gln 660

Leu Pro Ala Val Gly Leu Thr Asn His Gln Leu Phe Phe Val Gly 675

Phe Ala Gln Val Trp Cys Ser Val Arg Thr Pro Glu Ser Ser His 690

Glu Gly Leu Val Thr Asp Pro His Ser Pro Ala Arg Phe Arg Val 705

Leu Gly Thr Leu Ser Asn Ser Arg Asp Phe Leu Arg His Phe Gly 720

Cys Pro Val Gly Ser Pro Met Asn Pro Gly Gln Leu Cys Glu Val
```

730

735

Trp

<210> 527

<211> 4308 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 1478, 3978, 4057-4058, 4070

725

<223> unknown base

<400> 527

geceggeet cegecteeg cacteegee teecteete egecegetee 50

cgegeetee teecteete eteecaget gteeegtteg egteatgeeg 100

ageeteeegg eeeggeegge eeeggtgetg eteeteggee tgetgetget 150

cggeteeegg eeggeegge gegeeggee agageeeee gtgetgeea 200

teegttetga gaaggageeg etgeeegtte ggggagegge aggtaggtgg 250

gegeeegggg gaggegggg eggggagteg ggetegggge gagteagege 300

cageeeggag ggggeeggg gegeaggtg etegggge egggeggee 350

ggagggtggg eggggeaga agggeeggt geetgggaee egggeegee 350

ggagggtggg eggggeaga agggeeggt geetgggaee egggeeee 400

gggeageeee egggeegge eaeggeegg getgggeage ggeeteeage 450

caageeegte eeegeagget geaeetteeg egggaaggte tatgeettgg 500

acgagacgtg gcacccggac ctaggggagc cattcggggt gatgcgctgc 550 gtgctgtgcg cctgcgaggc gcagtggggt cgccgtacca ggggccctgg 600 cagggtcagc tgcaagaaca tcaaaccaga gtgcccaacc ccggcctgtg 650 ggcagccgcg ccagctgccg ggacactgct gccagacctg cccccaggac 700 ttcgtggcgc tgctgacagg gccgaggtcg caggcggtgg cacgagcccg 750 agtotogotg otgogotota gootoogott ototatotoo tacaggoggo 800 tggaccgccc taccaggatc cgcttctcag actccaatgg cagtgtcctg 850 tttgagcacc ctgcagcccc cacccaagat ggcctggtct gtggggtgtg 900 gcgggcagtg cctcggttgt ctctgcggct ccttagggca gaacagctgc 950 atgtggcact tgtgacactc actcaccett caggggaggt ctgggggcct 1000 ctcatccggc accgggccct gtccccagag accttcagtg ccatcctgac 1050 tctagaaggc ccccaccagc agggcgtagg gggcatcacc ctgctcactc 1100 tcagtgacac agaggactcc ttgcattttt tgctgctctt ccgaggcctt 1150 gcaggactaa cccaggttcc cttgaggctc cagattctac accaggggca 1200 gctactgcga gaacttcagg ccaatgtctc agcccaggaa ccaggctttg 1250 ctgaggtgct gcccaacctg acagtccagg agatggactg gctggtgctg 1300 ggggagctgc agatggccct ggagtgggca ggcaggccag ggctgcgcat 1350 cagtggacac attgctgcca ggaagagctg cgacgtcctg caaagtgtcc 1400 tttgtggggc taatgccctg atcccagtcc aaacgggtgc tgccggctca 1450 gccagcctca ctctgctagg aaatggcncc ctgatcctcc aggtgcaatt 1500 ggtagggaca accagtgagg tggtggccat gacactggaa accaagcctc 1550 ageggaggga teageceact gteetgtgee acatggetgg cetatectee 1600 cctgcccca ggccgtgggt atctgccctg ggctggggtg cccgaggggc 1650 tcatatgctg ctgcagaatg agctcttcct gaacgtgggc accaaggact 1700 teccagaegg agagettegg gggcaaegtg getgeeetge eetaetgtgg 1750 ggcatagcgc ccgccctgcc cgtgccccta gcaggagccc tggtgctacc 1800 ccctgtgaag agccaagcag cagggcacgc ctggctttcc ttggataccc 1850 actgtcacct gcactatgaa gtgctgctgg ctgggcttgg tggctcagaa 1900 caaggcactg tcactgccca cctccttggg cctcctggaa cgccagggcc 1950 tcggcggctg ctgaagggat tctatggctc agaggcccag ggtgtggtga 2000 aggacctgga geeggaactg etgeggeace tggcaaaagg catggettee 2050 ctgatgatca ccaccaaggt agccccagag gggagctccg agggcagcct 2100 ctcctcccag gtgcacatag ccaaccaatg tgaggttggc ggactgcgcc 2150 tggaggcggc cggggccgag ggggtgcggg cgctgggggc tccggataca 2200 geetetgetg egeegeetgt ggtgeetggt eteeeggeee tagegeeege 2250 caaacctggt ggtcctgggc ggccccgaga ccccaacaca tgcttcttcg 2300 aggggcagca gcgcccccac ggggctcgct gggcgcccaa ctacgacccg 2350 ctctgctcac tctgcacctg ccagagacga acggtgatct gtgacccggt 2400 ggtgtgccca ccgcccagct gcccacaccc ggtgcaggct cccgaccagt 2450 gctgccctgt ttgccctggc tgctattttg atggtgaccg gagctggcgg 2500 gcagcgggta cgcggtggca ccccgttgtg cccccctttg gcttaattaa 2550 gtgtgctgtc tgcacctgca agcagggggg cactggagag gtgcactgtg 2600 agaaggtgca gtgtccccgg ctggcctgtg cccagcctgt gcgtgtcaac 2650 cccaccgact gctgcaaaca gtgtccaggt gaggcccacc cccagctggg 2700 qqaccccatg caggetgatg ggccccgggg ctgccgtttt gctgggcagt 2750 ggttcccaga gagtcagagc tggcacccct cagtgccccc gtttggagag 2800 atgagetgta teacetgeag atgtggggta agtggggage agaggettgt 2850 gtgaggtggg tactgggagc ctggtctgga gtagggagac cttcccaggg 2900 aggtccctga agaagctgaa ggtcactgtg tcccagtgcc tctgggggac 2950 actcagtgtc tgctctgtct tgtaccaggc aggggtgcct cactgtgagc 3000 gggatgactg ttcactgcca ctgtcctgtg gctcggggaa ggagagtcga 3050 tgctgttccc gctgcacggc ccaccggcgg cgtaagtgag ggagtccagg 3100 qtcagcagct gtgagtggag ggctcacctg cctgtgggac tcctgatcag 3150 ggaagggagc actcactgtg tgcaggaaca gtgcagcctg cctcacaagt 3200 gccattccaa tccaccctca cagcaacctg gtggaattgt tatttatgac 3250 cttttcttta caaatgagat ttctgaagct cagagaaatt aagcaacgag 3300 atgaaggtca cccagctgtg tgcactgacc tgtttagaaa atactggcct 3350 ttctgggacc aaggcaggga tgctttgccc tgccctctat gcctctctgt 3400

agcagcccca gagaccagaa ctgatccaga gctggagaaa gaagccgaag 3500 gctcttaggg agcagccaga gggccaagtg accaagagga tggggcctga 3550 gctggggaag gggtggcatc gaggaccttc ttgcattctc ctgtgggaag 3600 cccaqtqcct ttqctcctct gtcctgcctc tactcccacc cccactacct 3650 ctgggaacca cagctccaca agggggagag gcagctgggc cagaccgagg 3700 tcacaqccac tccaaqtcct qccctqccac cctcqqcctc tqtcctqqaa 3750 gcccacccc tttcttcctg tacataatgt cactggcttg ttgggatttt 3800 taatttatct tcactcagca ccaagggccc cggacactcc actcctgctg 3850 cccctgagct gagcagagtc attattggag agttttgtat ttattaaaac 3900 atttcttttt caqtctttqq qcatqaqqtt ggctctttgt ggccaggaac 3950 ctgagtgggg cctggtggag aaggggcnga gagtaggagg tgagagagag 4000 gagctctgac acttggggag ctgaaagaga cctggagagg cagaggatag 4050 cgtggcnntt ggctggcatn cctgggttcc gcagaggggc tggggatggt 4100 tcttgagatg gtctagagac tcaagaattt agggaagtag aagcaggatt 4150 ttgactcaag tttagtttcc cacatcgctg gcctgtttgc tgacttcatg 4200 tttgaagttg ctccagagag agaatcaaag gtgtcaccag cccctctctc 4250 cetecttece tteetteec ttettteec teceeteece teceeteece 4300 tcccctcc 4308

<210> 528

<211> 1285

<212> DNA

<213> Homo sapiens

<400> 528
 ggccgagcgg gggtgctgcg cggcggccgt gatggctggt gacggcgggg 50
 ccgggcaggg gaccggggcc gcggcccggg agcgggccag ctgccgggag 100
 ccctgaatca ccgcctggcc cgactccacc atgaacgtcg cgctgcagga 150
 gctgggagct ggcagcaacg tgggattcca gaaggggaca agacagctgt 200
 taggctcacg cacgcagctg gagctggtct tagcaggtgc ctctctactg 250
 ctggctgcac tgcttctggg ctgccttgtg gccctagggg tccagtacca 300
 cagagaccca tcccacagca cctgccttac agaggcctgc attcgagtgg 350

ctggaaaaat cctggagtcc ctggaccgag gggtgagccc ctgtgaggac 400 ttttaccagt tctcctgtgg gggctggatt cggaggaacc ccctgcccga 450 tqqqcqttct cqctqqaaca ccttcaacag cctctgggac caaaaccagg 500 ccatactgaa gcacctgctt gaaaacacca ccttcaactc cagcagtgaa 550 gctgagcaga agacacagcg cttctaccta tcttgcctac aggtggagcg 600 cattgaggag ctgggagccc agccactgag agacctcatt gagaagattg 650 gtggttggaa cattacgggg ccctgggacc aggacaactt tatggaggtg 700 ttgaaggcag tagcagggac ctacagggcc accccattct tcaccgtcta 750 catcagtgcc gactctaaga gttccaacag caatgttatc caggtggacc 800 agtctgggct ctttctgccc tctcgggatt actacttaaa cagaactgcc 850 aatgagaaag taaggaacat cttccgaacc cccatcccta cccctggctg 900 agctgggctg atccctgttg acttttccct ttgccaaggg tcagagcagg 950 gaaggtgagc ctatcctgtc acctagtgaa caaactgccc ctcctttctt 1000 tettettte tteeteete eeteeette tteeeettt eetteettee 1050 ttcctcttat tcttctagta ggtttcatag acacctactg tgtgccaggt 1100 ccagtggggg aattcggaga tataagtttc cgagccattg ccacaggaag 1150 cgttcagtgt cgatgggttc atggacctag ataggctgat aacaaagctc 1200 acaagagggt cctgaggatt caggagagac ttatggagcc agcaaagtct 1250 tcctgaagag attgcatttg agccaggtcc tgtag 1285

<210> 529

<211> 1380

<212> DNA

<213> Homo sapiens

<400> 529

atgcctacta ccttccaact aagaatgaga tcgtcttccc cgctggcatc 50 ctgcaggccc ccttctatgc ccgcaaccac cccaaggccc tgaacttcgg 100 tggcatcggt gtggtcatgg gccatgagtt gacgcatgcc tttgatgacc 150 aagggcgcga gtatgacaaa gaagggaacc tgcggccctg gtggcagaat 200 gagtccctgg cagccttccg gaaccacacg gcctgcatgg aggaacagta 250 caatcaatac caggtcaatg gggagagct caacggccgc cagacgctgg 300 gggagaacat tgctgacaac ggggggctga aggctgccta caatgcttac 350

aaagcatggc tgagaaagca tggggaggag cagcaactgc cagccgtggg 400 gctcaccaac caccagctct tcttcgtggg atttgcccag gtgtggtgct 450 cqqtccqcac accagagagc tctcacgagg ggctggtgac cgaccccac 500 agccctgccc gcttccgcgt gctgggcact ctctccaact cccgtgactt 550 cctgcggcac ttcggctgcc ctgtcggctc ccccatgaac ccagggcagc 600 tgtgtgaggt gtggtagacc tggatcaggg gagaaatggc cagctgtcac 650 cagacctggg gcagctctcc tgacaaagct gtttgctctt gggttgggag 700 gaagcaaatg caagctgggc tgggtctagt ccctccccc cacaggtgac 750 atgagtacag accetectea ateaceaeat tgtgcetetg etttgggggt 800 qcccctqcct ccaqcagagc ccccaccatt cactgtgaca tctttccgtg 850 tcaccctgcc tggaagaggt ctgggtgggg aggccagttc ccataggaag 900 gagtctgcct cttctgtccc caggctcact cagcctggcg gccatggggc 950 ctgccgtgcc tgcccactg tgacccacag gcctgggtgg tgtacctcct 1000 ggacttctcc ccaggctcac tcagtgcgca cttaggggtg gactcagctc 1050 tgtctggctc accctcacgg gctaccccca cctcaccctg tgctccttgt 1100 gccactgctc ccagtgctgc tgctgacctt cactgacagc tcctagtgga 1150 ageccaaggg cetetgaaag ceteetgetg eccaetgttt eeetgggetg 1200 agaggggaag tgcatatgtg tagcgggtac tggttcctgt gtcttagggc 1250 acaagcctta gcaaatgatt gattctccct ggacaaagca ggaaagcaga 1300 tagagcaggg aaaaggaaga acagagttta tttttacaga aaagagggtg 1350 ggagggtgtg gtcttggccc ttataggacc 1380 <210> 530

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

gaagcagtgc agccagcagt agagaggcac ctgctaaga 39

<210> 531

<211> 24

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 531
acgcagctgg agctggtctt agca 24
<210> 532
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 532
 ggtactggac ccctagggcc acaa 24
<210> 533
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 533
cctcccagcc gagaccagtg g 21
<210> 534
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 534
ggtcctataa gggccaagac c 21
<210> 535
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 535
 <210> 536
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

T.

the state of

```
<400> 536
 cggacgcgtg ggtcga 16
<210> 537
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 537
 cggccgtgat ggctggtgac g 21
<210> 538
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 538
 ggcagactcc ttcctatggg 20
<210> 539
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 539
 ggcacttcat ggtccttgaa a 21
<210> 540
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 540
cggatgtgtg tgaggccatg cc 22
<210> 541
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 541
 gaaagtaacc acggaggtca agat 24
```

4 44

W.

繇

```
<210> 542
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 542
 cctcctccga gactgaaagc t 21
<210> 543
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 543
tcgcgttgct ttttctcgcg tg 22
<210> 544
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 544
 gcgtgcgtca ggttcca 17
<210> 545
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 545
 cgttcgtgca gcgtgtgta 19
<210> 546
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 546
cttcctcacc acctgcgacg gg 22
<210> 547
<211> 23
<212> DNA
```

THE PERSON

轉

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 547
ggtaggcggt cctatagatg gtt 23
<210> 548
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 548
agatgtggat gaatgcagtg cta 23
<210> 549
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 549
 atcaacaccg ccggcagtta ctgg 24
<210> 550
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 550
 acagagtgta ccgtctgcag aca 23
<210> 551
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 551
 agcctcctgg tgcactcct 19
<210> 552
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
```

W. W.

j.

William .

```
<223> Synthetic oligonucleotide probe
<400> 552
 cgactccctg agcgagcaga tttcc 25
<210> 553
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 553
gctgggcagt cacgagtctt 20
<210> 554
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 554
aatcctccat ctcagatctt ccag 24
<210> 555
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 555
cctcagcggt aacagccggc c 21
<210> 556
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 556
tgggccaagg gctgc 15
<210> 557
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

W.

444

4Ž

<400> 557

```
tggtggataa ccaacaagat gg 22
<210> 558
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 558
gagtctgcat ccacaccact cttaaagttc tcaa 34
<210> 559
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 559
caggtgctct tttcagtcat gttt 24
<210> 560
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 560
 tggccattct caggacaaga g 21
<210> 561
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide probe
<400> 561
 cagtaatgcc atttgcctgc ctgcat 26
<210> 562
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 562
 tgcctggaat cacatgaca 19
<210> 563
```

ųĮ

ķė

M.

```
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide probe
<400> 563
 tgtggcacag acccaatcct 20
<210> 564
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 564
 gaccctgaag gcctccggcc t 21
<210> 565
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 565
gagagagga aggcagctat gtc 23
<210> 566
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 566
cagcccctct ctttcacctg t 21
<210> 567
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 567
ccatcctgtg cagctgacac acagc 25
<210> 568
<211> 20
<212> DNA
<213> Artificial Sequence
```

W

Ú.

<u> 25</u>

The state of the state of

```
<220>
    <223> Synthetic oligonucleotide probe
    <400> 568
     gccaggctat gaggctcctt 20
    <210> 569
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 569
    ttcaagttcc tgaagccgat tat 23
    <210> 570
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 570
     ccaacttccc tccccagtgc cct 23
    <210> 571
    <211> 26
1
    <212> DNA
    <213> Artificial Sequence
S.J
    <220>
    <223> Synthetic oligonucleotide probe
į.
    <400> 571
    ttggggaagg tagaatttcc ttgtat 26
<210> 572
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 572
     cccttctgcc tcccaattct 20
    <210> 573
    <211> 24
    <212> DNA
    <213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

34:

```
<400> 573
tctcctccgt ccccttcctc cact 24
<210> 574
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 574
tgagccactg ccttgcatta 20
<210> 575
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 575
tctgcagacg cgatggataa 20
<210> 576
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 576
 ccgaaaataa aacatcgccc cttctg 26
<210> 577
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 577
 cacgtggcct ttcacactga 20
<210> 578
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

47

28

<400> 578

acttgtgaca gcagtatgct gtctt 25

```
<210> 579
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 579
 aagcttctgt tcaatcccag cggtcc 26
<210> 580
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 580
 atgcacaggc tttttctggt aa 22
<210> 581
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 581
 gcaggaaacc ttcgaatctg ag 22
<210> 582
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 582
 acacctgagg cacctgagag aggaactct 29
<210> 583
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 583
 gacageceag tacacetgea a 21
<210> 584
<211> 21
```

4

THE THE

维

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 584
 gacggctgga tctgtgagaa a 21
<210> 585
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 585
cacaactgct gaccccgccc a 21
<210> 586
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 586
 ccaggatacg acatgctgca 20
<210> 587
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 587
 aaactccaac ctgtatcaga tgca 24
<210> 588
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 588
 cccccaagcc cttagactct aagcc 25
<210> 589
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
```

The state of the s

100

```
<223> Synthetic oligonucleotide probe
<400> 589
 gacccggcac cttgctaac 19
<210> 590
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 590
 ggacggtcag tcaggatgac a 21
<210> 591
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 591
ttcggcatca tctcttccct ctccc 25
<210> 592
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 592
 acaaaaaaa gggaacaaaa tacga 25
<210> 593
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 593
 ctttgaatag aagacttctg gacaattt 28
<210> 594
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 594
```

W. K.

A 474 TV

He da

```
ttgcaactgg gaatatacca cgacatgaga 30
<210> 595
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 595
 tagggtgcta atttgtgcta taacct 26
<210> 596
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 596
 ggctctgagt ctctgcttga 20
<210> 597
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 597
 tccaacaacc attttcctct ggtcc 25
<210> 598
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 598
 aagcagtagc cattaacaag tca 23
<210> 599
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 599
 caagcgtcca ggtttattga 20
```

ALL ALL

<210> 600

```
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 600
gactacaagg cgctcagcta 20
<210> 601
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 601
ccggctgggt ctcactcctc c 21
<210> 602
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 602
cgttcgtgca gcgtgtgta 19
<210> 603
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 603
cttcctcacc acctgcgacg gg 22
<210> 604
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 604
 ggtaggcggt cctatagatg gtt 23
<210> 605
<211> 23
<212> DNA
```

<213> Artificial Sequence

Ų.

1

58

į,

```
<220>
<223> Synthetic oligonucleotide probe
<400> 605
agatgtggat gaatgcagtg cta 23
<210> 606
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 606
atcaacaccg ccggcagtta ctgg 24
<210> 607
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 607
 acagagtgta ccgtctgcag aca 23
<210> 608
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 608
agcctcctgg tgcactcct 19
<210> 609
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 609
 cgactccctg agcgagcaga tttcc 25
<210> 610
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

Party.

Û

W.

₹\$

44

ige de

<400> 610 gctgggcagt cacgagtctt 20

<210> 611

<211> 2840

<212> DNA

<213> Homo Sapien

<400> 611 cccacgcgtc cgagccgccc gagaattaga cacactccgg acgcggccaa 50 aagcaaccga gaggagggga ggcaaaaaca ccgaaaaaca aaaagagaga 100 aacaacaccc aacaactggg gtggggggaa gaaagaaaga aaagaaaccc 150 ctgtggcgcg ccgcctggtt cccgggaaga ctcgccagca ccagggggtg 250 qqqqaqtqcq aqctqaaagc tqctqgagag tgagcagccc tagcagggat 300 ggacatgatg ctgttggtgc agggtgcttg ttgctcgaac cagtggctgg 350 cggcggtgct cctcagcctg tgctgcctgc taccctcctg cctcccggct 400 ggacagagtg tggacttccc ctgggcggcc gtggacaaca tgatggtcag 450 aaaaggggac acggcggtgc ttaggtgtta tttggaagat ggagcttcaa 500 agggtgcctg gctgaaccgg tcaagtatta tttttgcggg aggtgataag 550 tggtcagtgg atcctcgagt ttcaatttca acattgaata aaagggacta 600 cagoctccag atacagaatg tagatgtgac agatgatggc ccatacacgt 650 gttctgttca gactcaacat acacccagaa caatgcaggt gcatctaact 700 gtgcaagttc ctcctaagat atatgacatc tcaaatgata tgaccgtcaa 750 tgaaggaacc aacgtcactc ttacttgttt ggccactggg aaaccagagc 800 cttccatttc ttggcgacac atctccccat cagcaaaacc atttgaaaat 850 ggacaatatt tggacattta tggaattaca agggaccagg ctggggaata 900 tgaatgcagt gcggaaaatg ctgtgtcatt cccagatgtg aggaaagtaa 950 aagttgttgt caactttgct cctactattc aggaaattaa atctggcacc 1000 gtgacccccg gacgcagtgg cctgataaga tgtgaaggtg caggtgtgcc 1050 gcctccagcc tttgaatggt acaaaggaga gaagaagctc ttcaatggcc 1100 aacaaqqaat tattattcaa aattttaqca caaqatccat tctcactqtt 1150 accaacgtga cacaggagca cttcggcaat tatacctgtg tggctgccaa 1200 caagctaggc acaaccaatg cgagcctgcc tcttaaccct ccaagtacag 1250

cccagtatgg aattaccggg agcgctgatg ttcttttctc ctgctggtac 1300 cttgtgttga cactgtcctc tttcaccagc atattctacc tgaagaatgc 1350 cattctacaa taaattcaaa gacccataaa aggcttttaa ggattctctg 1400 aaagtgctga tggctggatc caatctggta cagtttgtta aaagcagcgt 1450 qqqatataat caqcaqtqct tacatgggga tgatcqcctt ctgtagaatt 1500 gctcattatg taaatacttt aattctactc ttttttgatt agctacatta 1550 ccttqtqaaq caqtacacat tqtccttttt ttaagacgtg aaagctctga 1600 aattactttt agaggatatt aattgtgatt tcatgtttgt aatctacaac 1650 ttttcaaaaq cattcaqtca tqqtctqcta ggttgcaggc tgtagtttac 1700 aaaaacgaat attgcagtga atatgtgatt ctttaaggct gcaatacaag 1750 cattcaqttc cctqtttcaa taagagtcaa tccacattta caaagatgca 1800 tttttttctt ttttgataaa aaagcaaata atattgcctt cagattattt 1850 cttcaaaata taacacatat ctagattttt ctgcttgcat gatattcagg 1900 tttcaggaat gagccttgta atataactgg ctgtgcagct ctgcttctct 1950 ttcctgtaag ttcagcatgg gtgtgccttc atacaataat atttttctct 2000 ttgtctccaa ctaatataaa atgttttgct aaatcttaca atttgaaagt 2050 aaaaataaac cagagtgatc aagttaaacc atacactatc tctaagtaac 2100 qaaqqaqcta ttqqactqta aaaatctctt cctgcactga caatggggtt 2150 tqaqaatttt qccccacact aactcaqttc ttgtgatgag agacaattta 2200 ataacagtat agtaaatata ccatatgatt tctttagttg tagctaaatg 2250 ttagatccac cgtgggaaat cattcccttt aaaatgacag cacagtccac 2300 tcaaaggatt gcctagcaat acagcatctt ttcctttcac tagtccaagc 2350 caaaaatttt aagatgattt gtcagaaagg gcacaaagtc ctatcaccta 2400 atattacaag agttggtaag cgctcatcat taattttatt ttgtggcagg 2450 tattatgaca gtcgacctgg agggtatgga tatggatatg gacgttccag 2500 agactataat ggcagaaacc agggtggtta tgaccgctac tcaggaggaa 2550 attacagaga caattatgac aactgaaatg agacatgcac ataatataga 2600 tacacaagga ataatttctg atccaggatc gtccttccaa atggctgtat 2650 ttataaaggt ttttggagct gcactgaagc atcttatttt atagtatatc 2700 aaccttttgt ttttaaattg acctgccaag gtagctgaag accttttaga 2750 cagttccatc ttttttttta aattttttct gcctatttaa agacaaatta 2800 tgggacgttt gtcaaaaaaa aaaaaaaaaa aaaaaaaaa 2840

<210> 612

<211> 352

<212> PRT

<213> Homo Sapien

<400> 612

Met Met Leu Leu Val Gln Gly Ala Cys Cys Ser Asn Gln Trp Leu 1 5 10 15

Ala Ala Val Leu Leu Ser Leu Cys Cys Leu Leu Pro Ser Cys Leu 20 25 30

Pro Ala Gly Gln Ser Val Asp Phe Pro Trp Ala Ala Val Asp Asn 35 40 45

Met Met Val Arg Lys Gly Asp Thr Ala Val Leu Arg Cys Tyr Leu 50 55 60

Glu Asp Gly Ala Ser Lys Gly Ala Trp Leu Asn Arg Ser Ser Ile 65 70 75

Ile Phe Ala Gly Gly Asp Lys Trp Ser Val Asp Pro Arg Val Ser 80 85 90

Ile Ser Thr Leu Asn Lys Arg Asp Tyr Ser Leu Gln Ile Gln Asn 95 $$ 100 $$ 105

Val Asp Val Thr Asp Asp Gly Pro Tyr Thr Cys Ser Val Gln Thr 110 115 120

Gln His Thr Pro Arg Thr Met Gln Val His Leu Thr Val Gln Val 125 130 135

Pro Pro Lys Ile Tyr Asp Ile Ser Asn Asp Met Thr Val Asn Glu 140 145 150

Gly Thr Asn Val Thr Leu Thr Cys Leu Ala Thr Gly Lys Pro Glu 155 160 165

Pro Ser Ile Ser Trp Arg His Ile Ser Pro Ser Ala Lys Pro Phe 170 175 180

Glu Asn Gly Gln Tyr Leu Asp Ile Tyr Gly Ile Thr Arg Asp Gln 185 190 195

Ala Gly Glu Tyr Glu Cys Ser Ala Glu Asn Ala Val Ser Phe Pro 200 205 210

Asp Val Arg Lys Val Lys Val Val Val Asn Phe Ala Pro Thr Ile 215 220 225

Gln Glu Ile Lys Ser Gly Thr Val Thr Pro Gly Arg Ser Gly Leu

230 235 240

Ile Arg Cys Glu Gly Ala Gly Val Pro Pro Pro Ala Phe Glu Trp 245 250 255

Tyr Lys Gly Glu Lys Lys Leu Phe Asn Gly Gln Gln Gly Ile Ile 260 265 270

Ile Gln Asn Phe Ser Thr Arg Ser Ile Leu Thr Val Thr Asn Val 275 280 285

Thr Gln Glu His Phe Gly Asn Tyr Thr Cys Val Ala Ala Asn Lys 290 295 300

Leu Gly Thr Thr Asn Ala Ser Leu Pro Leu Asn Pro Pro Ser Thr 305 310 315

Ala Gln Tyr Gly Ile Thr Gly Ser Ala Asp Val Leu Phe Ser Cys 320 325 330

Trp Tyr Leu Val Leu Thr Leu Ser Ser Phe Thr Ser Ile Phe Tyr 335 340 345

Leu Lys Asn Ala Ile Leu Gln 350

<210> 613

<211> 1797

<212> DNA

<213> Homo Sapien

<400> 613

agtggttcga tgggaaggat ctttctccaa gtggttcctc ttgagggag 50 catttctgct ggctccagga ctttggccat ctataaagct tggcaatgag 100 aaataagaaa attctcaagg aggacgagct cttgagtgag acccaacaag 150 ctgcttttca ccaaattgca atggagcctt tcgaaatcaa tgttccaaag 200 cccaagagga gaaatggggt gaacttctcc ctagctgtgg tggtcatcta 250 cctgatcctg ctcaccgctg gcgctgggct gctggtgct caagttctga 300 atctgcaggc gcggctccgg gtcctggaga tgtattcct caatgacact 350 ctggcggctg aggacagccc gtccttctcc ttgctgcagt cagcacaccc 400 tggagaacac ctggctcagg gtgcatcgag gctgcaagtc ctgcaggccc 450 aactcacct ggtccggct agccatgagc acttgctga acttgctgca gcgggtagac 500 aacttcactc agaacccagg gatgttcaga atcaaaggtg aacaaggcgc 550 cccaggtctt caaggtcaca agggggccat gggcatgcct ggtgccctg 600 gcccgccgg accacctgct gagaagggag ccaaggggc tatggacga 650

gatggagcaa caggcccctc gggaccccaa ggcccaccgg gagtcaaggg 700 agaggcgggc ctccaaggac cccagggtgc tccagggaag caaggagcca 750 ctggcacccc aggaccccaa ggagagaagg gcagcaaagg cgatgggggt 800 ctcattggcc caaaagggga aactggaact aagggagaga aaggagacct 850 gggtctccca ggaagcaaag gggacagggg catgaaagga gatgcagggg 900 tcatggggcc tcctggagcc caggggagta aaggtgactt cgggaggcca 950 ggcccaccag gtttggctgg ttttcctgga gctaaaggag atcaaggaca 1000 acctggactg cagggtgttc cgggccctcc tggtgcagtg ggacacccag 1050 gtgccaaggg tgagcctggc agtgctggct cccctgggcg agcaggactt 1100 ccagggagcc ccgggagtcc aggagccaca ggcctgaaag gaagcaaagg 1150 qqacacaqqa cttcaaqqac aqcaaqqaaq aaaaggagaa tcaggagttc 1200 caggccctgc aggtgtgaag ggagaacagg ggagcccagg gctggcaggt 1250 cccaagggag cccctggaca agctggccag aagggagacc agggagtgaa 1300 aggatettet qqqqaqcaaq qagtaaaggg agaaaaaggt gaaagaggtg 1350 aaaactcaqt qtccqtcaqq attqtcqqca gtaqtaaccq aggccqgqct 1400 qaaqtttact acaqtqqtac ctgggggaca atttgcgatg acgagtggca 1450 aaattctqat qccattqtct tctqccqcat gctgggttac tccaaaggaa 1500 gggccctgta caaagtggga gctggcactg ggcagatctg gctggataat 1550 gttcagtgtc ggggcacgga gagtaccctg tggagctgca ccaagaatag 1600 ctggggccat catgactgca gccacgagga ggacgcaggc gtggagtgca 1650 gcgtctgacc cggaaaccct ttcacttctc tgctcccgag gtgtcctcgg 1700 gctcatatgt gggaaggcag aggatctctg aggagttccc tggggacaac 1750 tgagcagcct ctggagaggg gccattaata aagctcaaca tcattga 1797

<210> 614

<211> 520

<212> PRT

<213> Homo Sapien

<400> 614

Met Arg Asn Lys Lys Ile Leu Lys Glu Asp Glu Leu Leu Ser Glu
1 5 10 15

Thr Gln Gln Ala Ala Phe His Gln Ile Ala Met Glu Pro Phe Glu 20 25 30

Ile Asn Val Pro Lys Pro Lys Arg Arg Asn Gly Val Asn Phe Ser Leu Ala Val Val Ile Tyr Leu Ile Leu Leu Thr Ala Gly Ala Gly Leu Leu Val Val Gln Val Leu Asn Leu Gln Ala Arg Leu Arg Val Leu Glu Met Tyr Phe Leu Asn Asp Thr Leu Ala Ala Glu Asp Ser Pro Ser Phe Ser Leu Leu Gln Ser Ala His Pro Gly Glu His Leu Ala Gln Gly Ala Ser Arg Leu Gln Val Leu Gln Ala Gln Leu 120 110 Thr Trp Val Arg Val Ser His Glu His Leu Leu Gln Arg Val Asp 135 Asn Phe Thr Gln Asn Pro Gly Met Phe Arg Ile Lys Gly Glu Gln 140 Gly Ala Pro Gly Leu Gln Gly His Lys Gly Ala Met Gly Met Pro 155 Gly Ala Pro Gly Pro Pro Gly Pro Pro Ala Glu Lys Gly Ala Lys 170 Gly Ala Met Gly Arg Asp Gly Ala Thr Gly Pro Ser Gly Pro Gln Gly Pro Pro Gly Val Lys Gly Glu Ala Gly Leu Gln Gly Pro Gln 200 Gly Ala Pro Gly Lys Gln Gly Ala Thr Gly Thr Pro Gly Pro Gln Gly Glu Lys Gly Ser Lys Gly Asp Gly Gly Leu Ile Gly Pro Lys 230 Gly Glu Thr Gly Thr Lys Gly Glu Lys Gly Asp Leu Gly Leu Pro Gly Ser Lys Gly Asp Arg Gly Met Lys Gly Asp Ala Gly Val Met Gly Pro Pro Gly Ala Gln Gly Ser Lys Gly Asp Phe Gly Arg Pro Gly Pro Pro Gly Leu Ala Gly Phe Pro Gly Ala Lys Gly Asp Gln 300 Gly Gln Pro Gly Leu Gln Gly Val Pro Gly Pro Pro Gly Ala Val Gly His Pro Gly Ala Lys Gly Glu Pro Gly Ser Ala Gly Ser Pro

330 320 325 Gly Arg Ala Gly Leu Pro Gly Ser Pro Gly Ser Pro Gly Ala Thr 335 Gly Leu Lys Gly Ser Lys Gly Asp Thr Gly Leu Gln Gly Gln Gln 350 Gly Arg Lys Gly Glu Ser Gly Val Pro Gly Pro Ala Gly Val Lys 365 375 Gly Glu Gln Gly Ser Pro Gly Leu Ala Gly Pro Lys Gly Ala Pro Gly Gln Ala Gly Gln Lys Gly Asp Gln Gly Val Lys Gly Ser Ser 395 Gly Glu Gln Gly Val Lys Gly Glu Lys Gly Glu Arg Gly Glu Asn Ser Val Ser Val Arg Ile Val Gly Ser Ser Asn Arg Gly Arg Ala Glu Val Tyr Tyr Ser Gly Thr Trp Gly Thr Ile Cys Asp Asp Glu Trp Gln Asn Ser Asp Ala Ile Val Phe Cys Arg Met Leu Gly Tyr 455 Ser Lys Gly Arg Ala Leu Tyr Lys Val Gly Ala Gly Thr Gly Gln 470 Ile Trp Leu Asp Asn Val Gln Cys Arg Gly Thr Glu Ser Thr Leu 485 Trp Ser Cys Thr Lys Asn Ser Trp Gly His His Asp Cys Ser His 510 500 Glu Glu Asp Ala Gly Val Glu Cys Ser Val

<210> 615

<211> 647

<212> DNA

<213> Homo Sapien

515

<400> 615
 cccacgcgtc cgaaggcaga caaaggttca tttgtaaaga agctccttcc 50
 agcacctcct ctcttctcct tttgcccaaa ctcacccagt gagtgtgagc 100
 atttaagaag catcctctgc caagaccaaa aggaaagaag aaaaagggcc 150
 aaaagccaaa atgaaactga tggtacttgt tttcaccatt gggctaactt 200
 tgctgctagg agttcaagcc atgcctgcaa atcgcctctc ttgctacaga 250
 aagatactaa aagatcacaa ctgtcacaac cttccggaag gagtagctga 300

cctgacacag attgatgtca atgtccagga tcatttctgg gatgggaagg 350 gatgtgagat gatctgttac tgcaacttca gcgaattgct ctgctgccca 400 aaagacgttt tctttggacc aaagatctct ttcgtgattc cttgcaacaa 450 tcaatgagaa tcttcatgta ttctggagaa caccattcct gatttcccac 500 aaactgcact acatcagtat aactgcatt ctagtttcta tatagtgcaa 550 tagagcatag attctataaa ttcttacttg tctaagacaa gtaaatctgt 600 gttaaacaag tagtaataaa agttaattca atctaaaaaa aaaaaaa 647

<210> 616

<211> 98

<212> PRT

<213> Homo Sapien

<400> 616

Met Lys Leu Met Val Leu Val Phe Thr Ile Gly Leu Thr Leu Leu 1 5 10 15

Leu Gly Val Gln Ala Met Pro Ala Asn Arg Leu Ser Cys Tyr Arg
20 25 30

Lys Ile Leu Lys Asp His Asn Cys His Asn Leu Pro Glu Gly Val 35 40 45

Ala Asp Leu Thr Gln Ile Asp Val Asn Val Gln Asp His Phe Trp 50 55 60

Asp Gly Lys Gly Cys Glu Met Ile Cys Tyr Cys Asn Phe Ser Glu 65 70 75

Phe Val Ile Pro Cys Asn Asn Gln 95

<210> 617

<211> 2558

<212> DNA

<213> Homo Sapien

<400> 617
 cccacgcgtc cgcggacgcg tgggctggac cccaggtctg gagcgaattc 50
 cagcctgcag ggctgataag cgaggcatta gtgagattga gagagacttt 100
 accccgccgt ggtggttgga gggcgcag tagagcagca gcacaggcgc 150
 gggtcccggg aggccggctc tgctcgcgcc gagatgtgga atctccttca 200
 cgaaaccgac tcggctgtgg ccaccgcgcg ccgcccgcgc tggctgtgcg 250
 ctggggcgct ggtgctggcg ggtggcttct ttctcctcgg cttcctcttc 300

gggtggttta taaaatcctc caatgaagct actaacatta ctccaaagca 350 taatatgaaa gcatttttgg atgaattgaa agctgagaac atcaagaagt 400 tcttacataa ttttacacag ataccacatt tagcaggaac agaacaaaac 450 tttcagcttg caaagcaaat tcaatcccag tggaaagaat ttggcctgga 500 ttctgttgag ctagctcatt atgatgtcct gttgtcctac ccaaataaga 550 ctcatcccaa ctacatctca ataattaatg aagatggaaa tgagattttc 600 aacacatcat tatttgaacc acctcctcca ggatatgaaa atgtttcgga 650 tattqtacca cctttcagtq ctttctctcc tcaaggaatg ccagagggcg 700 atctagtgta tgttaactat gcacgaactg aagacttctt taaattggaa 750 cgggacatga aaatcaattg ctctgggaaa attgtaattg ccagatatgg 800 qaaagttttc agaggaaata aggttaaaaa tgcccagctg gcaggggcca 850 aaggagtcat tototactoo gaccotgotg actactttgc tootggggtg 900 aagtcctatc cagacggttg gaatcttcct ggaggtggtg tccagcgtgg 950 aaatateeta aatetgaatg gtgeaggaga eeeteteaca eeaggttaee 1000 cagcaaatga atatgcttat aggcgtggaa ttgcagaggc tgttggtctt 1050 ccaagtattc ctgttcatcc aattggatac tatgatgcac agaagctcct 1100 agaaaaaatg ggtggctcag caccaccaga tagcagctgg agaggaagtc 1150 tcaaagtgcc ctacaatgtt ggacctggct ttactggaaa cttttctaca 1200 caaaaagtca agatgcacat ccactctacc aatgaagtga cgagaattta 1250 caatgtgata ggtactctca gaggagcagt ggaaccagac agatatgtca 1300 ttctqqqaqq tcaccqqqac tcatqqqtqt ttqgtqqtat tgaccctcag 1350 agtggagcag ctgttgttca tgaaattgtg aggagctttg gaacactgaa 1400 aaaggaaggg tggagaccta gaagaacaat tttgtttgca agctgggatg 1450 cagaagaatt tggtcttctt ggttctactg agtgggcaga ggagaattca 1500 agactccttc aagagcgtgg cgtggcttat attaatgctg actcatctat 1550 agaaggaaac tacactctga gagttgattg tacaccgctg atgtacagct 1600 tggtacacaa cctaacaaaa qagctgaaaa gccctgatga aggctttgaa 1650 ggcaaatctc tttatgaaag ttggactaaa aaaagtcctt ccccagagtt 1700 cagtggcatg cccaggataa gcaaattggg atctggaaat gattttgagg 1750

tgttcttcca acgacttgga attgcttcag gcagagcacg gtatactaaa 1800 aattgggaaa caaacaaatt cagcggctat ccactgtatc acagtgtcta 1850 tgaaacatat gagttggtgg aaaagtttta tgatccaatg tttaaatatc 1900 acctcactgt ggcccaggtt cgaggaggga tggtgtttga gctagccaat 1950 tccatagtgc tcccttttga ttgtcgagat tatgctgtag ttttaagaaa 2000 gtatgctgac aaaatctaca gtatttctat gaaacatcca caggaaatga 2050 agacatacag tgtatcattt gattcacttt tttctgcagt aaagaatttt 2100 acagaaattg cttccaagtt cagtgagaga ctccaggact ttgacaaaag 2150 caacccaata gtattaagaa tgatgaatga tcaactcatg tttctggaaa 2200 gagcatttat tgatccatta gggttaccag acaggccttt ttataggcat 2250 gtcatctatg ctccaagcag ccacaacaag tatgcagggg agtcattccc 2300 aggaatttat gatgetetgt ttgatattga aagcaaagtg gaccetteca 2350 aggcctgggg agaagtgaag agacagattt atgttgcagc cttcacagtg 2400 caggcagctg cagagacttt gagtgaagta gcctaagagg attttttaga 2450 gaatccgtat tgaatttgtg tggtatgtca ctcagaaaga atcgtaatgg 2500 gtatattgat aaattttaaa attggtatat ttgaaataaa gttgaatatt 2550 atatataa 2558

<210> 618

<211> 750

<212> PRT

<213> Homo Sapien

<400> 618

Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala 1 5 10 15

Arg Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly
20 25 30

Gly Phe Phe Leu Cly Phe Leu Phe Gly Trp Phe Ile Lys Ser 35 40 45

Ser Asn Glu Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala

Phe Leu Asp Glu Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu His 65 70 75

Asn Phe Thr Gln Ile Pro His Leu Ala Gly Thr Glu Gln Asn Phe 80 85 90

Gln Leu Ala Lys Gln Ile Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile Ser Ile Ile Asn Glu Asp Gly 125 130 Asn Glu Ile Phe Asn Thr Ser Leu Phe Glu Pro Pro Pro Gly 145 Tyr Glu Asn Val Ser Asp Ile Val Pro Pro Phe Ser Ala Phe Ser 165 Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr Val Asn Tyr Ala Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met Lys Ile Asn Cys Ser Gly Lys Ile Val Ile Ala Arg Tyr Gly Lys Val Phe Arg Gly Asn Lys Val Lys Asn Ala Gln Leu Ala Gly Ala Lys Gly Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val Lys 230 Ser Tyr Pro Asp Gly Trp Asn Leu Pro Gly Gly Gly Val Gln Arg Gly Asn Ile Leu Asn Leu Asn Gly Ala Gly Asp Pro Leu Thr Pro 260 Gly Tyr Pro Ala Asn Glu Tyr Ala Tyr Arg Arg Gly Ile Ala Glu Ala Val Gly Leu Pro Ser Ile Pro Val His Pro Ile Gly Tyr Tyr 290 Asp Ala Gln Lys Leu Leu Glu Lys Met Gly Gly Ser Ala Pro Pro 305 Asp Ser Ser Trp Arg Gly Ser Leu Lys Val Pro Tyr Asn Val Gly 320 Pro Gly Phe Thr Gly Asn Phe Ser Thr Gln Lys Val Lys Met His Ile His Ser Thr Asn Glu Val Thr Arg Ile Tyr Asn Val Ile Gly 355 360 350 Thr Leu Arg Gly Ala Val Glu Pro Asp Arg Tyr Val Ile Leu Gly Gly His Arq Asp Ser Trp Val Phe Gly Gly Ile Asp Pro Gln Ser

				380					385					390
Gly	Ala	Ala	Val	Val 395	His	Glu	Ile	Val	Arg 400	Ser	Phe	Gly	Thr	Leu 405
Lys	Lys	Glu	Gly	Trp 410	Arg	Pro	Arg	Arg	Thr 415	Ile	Leu	Phe	Ala	Ser 420
Trp	Asp	Ala	Glu	Glu 425	Phe	Gly	Leu	Leu	Gly 430	Ser	Thr	Glu	Trp	Ala 435
Glu	Glu	Asn	Ser	Arg 440	Leu	Leu	Gln	Glu	Arg 445	Gly	Val	Ala	Tyr	Ile 450
Asn	Ala	Asp	Ser	Ser 455	Ile	Glu	Gly	Asn	Tyr 460	Thr	Leu	Arg	Val	Asp 465
Cys	Thr	Pro	Leu	Met 470	Tyr	Ser	Leu	Val	His 475	Asn	Leu	Thr	Lys	Glu 480
Leu	Lys	Ser	Pro	Asp 485	Glu	Gly	Phe	Glu	Gly 490	Lys	Ser	Leu	Tyr	Glu 495
Ser	Trp	Thr	Lys	Lys 500	Ser	Pro	Ser	Pro	Glu 505	Phe	Ser	Gly	Met	Pro 510
Arg	Ile	Ser	Lys	Leu 515	Gly	Ser	Gly	Asn	Asp 520	Phe	Glu	Val	Phe	Phe 525
Gln	Arg	Leu	Gly	Ile 530	Ala	Ser	Gly	Arg	Ala 535	Arg	Tyr	Thr	Lys	Asn 540
Trp	Glu	Thr	Asn	Lys 545	Phe	Ser	Gly	Tyr	Pro 550	Leu	Tyr	His	Ser	Val 555
Tyr	Glu	Thr	Tyr	Glu 560	Leu	Val	Glu	Lys	Phe 565	Tyr	Asp	Pro	Met	Phe 570
Lys	Tyr	His	Leu	Thr 575	Val	Ala	Gln	Val	Arg 580	Gly	Gly	Met	Val	Phe 585
Glu	Leu	Ala	Asn	Ser 590		Val	Leu	Pro	Phe 595	Asp	Суѕ	Arg	Asp	Tyr 600
		Val		605					610					615
		His		620					625					630
Ser	Leu	Phe	Ser	Ala 635		Lys	Asn	Phe	Thr 640		Ile	Ala	Ser	Lys 645
		Glu		650					655					660
Leu	Arg	Met	Met	Asn 665		Gln	Leu	Met	Phe 670		Glu	Arg	Ala	Phe 675

```
Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser Phe
                 695
Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
                                     715
                 710
Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala
Ala Phe Thr Val Gln Ala Ala Glu Thr Leu Ser Glu Val Ala
                                     745
                 740
<210> 619
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 619
agatgtgaag gtgcaggtgt gccg 24
<210> 620
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 620
gaacatcagc gctcccggta attcc 25
<210> 621
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 621
 ccagcetttg aatggtacaa aggagagaag aagetettea atggee 46
<210> 622
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

W

hĀ

4 3

A.

A TO

*

<400> 622

ccaaactcac ccagtgagtg tgagc 25

Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg His Val

720

680

```
<210> 623
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 623
tgggaaatca ggaatggtgt tctcc 25
<210> 624
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide probe
<400> 624
cttgttttca ccattgggct aactttgctg ctaggagttc aagccatgcc 50
```