

CCDC: Centre for Crop Disease Control

Team name: NEUON Al

Members: Chang Yang Loong, Sophia Chulif, Heng Kiat Jing, Danish Ezwan

Our focus

Agriculture

Introduction

Crops make up the vast majority of agricultural production Farmers depend on healthy crop yield Crop diseases result in the loss of crop yield and income

Problem statement

- 1. How can we create a sustainable farming solution?
- 2. How can we empower rural farmers to utilize data mining to improve their farm's efficiency while at the same time lowering their farm operating cost?

Importance of crop disease recognition

- Enable curative measures
- Prevent spread of disease

Reduce crop loss

Prevent recurring outbreaks in the future

Existing problems

Unavailability of human expertise

e.g. plant pathologist in rural farm

Outbreak and spreading of disease from slow crop disease detection

Solution

Plant expert knowledge

Machine

Crop disease recognition assistant

How it will solve

Introduce a collaborative platform

Assist smallholder farmers without research infrastructure or support

Enable timely control response

Technical challenges

Existing plant disease data is not region invariant

Data required for deep learning task is large

Data needs to be diverse in terms of capturing condition, disease stages and image quality

Centre for Crop Disease Control

Methodology

AI & model database

Machine learning Recognition **Artificial** neural network/ Disease Machine recognition learning algorithms Feedback from Training data farmers or researchers

Images of crop diseases

Features

Recognise disease

- Using AI model
- Deploy on app

Manage disease data

- Annotate
- Store

Sharing / community platform

- Share diseases detected
- Help to identify cause

- Predict spreading magnitude
- Enable timely response from authorities

Prototype

Automated tomato plant disease recognition system

Prototype UI (Android App)

Prototype UI (Windows PC)

• A reliable and continuously learning AI for crop disease

Reduce the cost of data collection by crowdsourcing the community

- Early detection of crop disease
 - Increase of production quality & quantity
 - Increase of farmer and State income

 Study, analyse, detect and control crop disease outbreak with the collaboration of agricultural authority within the community

• Light-weight and independent AI model for offline disease detection

Conclusion

Sustain for research purposes & future generations

Increase quality yield

Reduce crop loss

Adopt timely response

Practical

Trained model results

Accuracy	Model	
	1 (Mobile Net v2)	2 (Inception Resnet v2)
Training (Top 1)	88.13 %	96.88 %
Validation (Leaf Scan - Top 1)	97.94 %	99.75 %
Validation (Non-leaf Scan - Top 1)	64.44 %	78.89 %
Validation (Leaf Scan - Top 3)	99.92 %	100.00 %
Validation (Non-leaf Scan - Top 3)	93.33 %	91.11 %