Теорема о художественной галерее

Сколько сторожей надо расставить в углах произвольного *п*-угольника, чтобы каждую внутреннюю точку видел кто-то из них?

Теорема 6 (Хватал, 1975)

Для всякого $n \ge 3$ в любом n-угольнике достаточно $\lfloor \frac{n}{3} \rfloor$ сторожей, расставленных в вершинах.

Существует n-угольник, для которого необходимо не менее $\lfloor \frac{n}{3} \rfloor$ сторожей, даже если разрешить их расстановку в произвольных точках.

Нижняя оценка — гребенка Хватала: n=3k, минимум k сторожей.

Лемма 3

Всякий многоугольник можно диагоналями разбить на треугольники, причем полученный граф раскрашивается в 3 цвета.

Доказательство. Индукция по числу сторон n.

Базис: n = 3, треугольник — уже разбит. Раскрашивается.

Переход: находим угол меньше 180° , он есть.

- Если отрезок между соседними с ним вершинами лежит внутри многоугольника:
 - Отрезаем треугольник.
 - По индукции, все остальное разбивается и раскрашивается.
 - Отрезанная вершина раскрашивается в свободный цвет.

- ▶ Если этот отрезок пересекает какие-то другие отрезки:
 - Проводим отрезок из вершины угла к концу одного из мешающих отрезков (можно выбрать, например, вершину внутри угла, лежащую на прямой, параллельной АВ, и ближайшей к вершине), разбиваем многоугольник на два.
 - Каждая половина разбивается и раскрашивается
 - Цвета в одной из половин переименовываются,
 чтобы на общем отрезке были те же два цвета.

Лемма доказана.

Доказательство теоремы о художественной галерее

Доказательство теоремы.

По лемме строим разбиение на треугольники так, что полученный граф раскрашивается в три цвета.

Из этих цветов выбираем тот, который используется не чаще других; им раскрашено вершин $\lfloor \frac{n}{3} \rfloor$.

Расставляем сторожей в вершинах, раскрашенных этим цветом.