TORQUE DESIGN INFORMATION TABLES

7x7 Strand Stainless Steel Cable Tensile Strength			
D (in)	T (lbf)		
3/64	270		
1/16	480		
3/32	920		
1/8	1700		
5/32	2400		
3/16	3700		
1/4	6100		

12 Strand Spectra Tensile Strength		
D (in)	T (lbf)	
1/8	1800	
3/16	3600	
1/4	6000	

Material	7075-T6	6061-T6	Delrin	ABS PC
Elastic Modulus (GPa)	71.7	68.9	3	2.64
Tensile Yield (MPa)	462	276	66	56.4
Density (kg/m^3)	2810	2700	1410	1070

Diagram	Area Moment of Inertia
b c x	$I_x = \frac{bh^3}{12} I_y = \frac{b^3h}{12}$
b ₁ y c x h ₁	$I_x = \frac{bh^3 - b_1h_1^3}{12} I_y = \frac{b^3h - b_1^3h_1}{12}$
у г г	$I_x = I_y = \frac{\pi r^4}{4}$
У 10 х	$I_x = I_y = \frac{\pi}{4} (r^4 - r_1^4)$
c x	$I_x = I_y = \frac{5\sqrt{3}}{16}a^4$

TORQUE DESIGN FORMULA SHEET

GEARS

$$T = D[dp]$$

$$[rd] = {}^{T_1+T_2} + 0.00$$

$$[rd] = \frac{T_1 + T_2}{2[dp]} + 0.008$$

$$\omega_n = \omega_1 \prod_{i=1}^{n/2} -\frac{T_{2i-1}}{T_{2i}}$$

$$\tau_n = \tau_1 \prod_{i=1}^{n/2} -\frac{T_{2i}}{T_{2i-1}}$$

$$I_{gear} \lesssim \left(\frac{T}{28.7[dp]}\right)^4$$

$$I_{in} = \left(\frac{T_1}{T_2}\right)^2 (I_{out} + I_{G2}) + I_{G1}$$

$$I_{in} \gtrsim I_{out} \prod_{i=1}^{n/2} \left(\frac{T_{2i-1}}{T_{2i}}\right)^2$$

T = teeth

D = diameter

[dp] = diametral pitch

[cd] = center distance

[rd] = recommended distance

 ω = angular velocity

 $i = i^{th}$ gear (starts at 1)

I =moment of inertia

MOTORS

$$t_{spinup} = -\frac{I_{system}\omega_{max}}{\tau_{max}}\ln 0.01$$

$$\omega_{int} = \omega_{max} \left(1 - \frac{\tau_{load}}{\tau_{max}} \right)$$

ROPES

$$F_{T_{load}} = F_{T_{in}} e^{\mu\theta}$$
 μ = coefficient of friction between rope and bar

 θ = wrap angle in radians

BELTS

$$T = L/p$$

$$L \approx 2[cd] + \frac{\pi}{2}(D+d)$$

$$L = 2[cd] + \frac{\pi}{2}(D+d) + \frac{(D-d)^2}{4[cd]}$$

L = path length

p = pitch

D =large pulley diameter

d = small pulley diameter

ARMS

$$\Delta\theta_{\frac{wrist}{arm}} = \frac{r_{base}}{r_{wrist}} \Delta\theta_{base}$$

$$\Delta \theta_{\frac{wrist}{ground}} = \Delta \theta_{base} - \Delta \theta_{\frac{wrist}{arm}}$$

θ = angle

PROJECTILES

$$x = v_{x0}t + x_0$$

$$y = -\frac{1}{2}gt^2 + v_{y0}t + y_0$$

$$v_{y0} = v_{x0} \tan(\theta_f) + \frac{gl}{v_{x0}}$$

$$v_{x0} = \sqrt{\frac{gl^2}{2(h - \tan(\theta_f)l)}}$$

$$\omega_p = \frac{Fr}{I_{co}}$$

x =horizontal position

y =vertical position

t = time

v = velocity

g = acceleration due to gravity

 θ_f = ending angle

l =horizontal distance to target

h = height of target

 ω_p = precessional velocity

TORQUE DESIGN FORMULA SHEET

STATICS				
$V = -\int w dx$	x = dimension along the length of the beam $w =$ applied load (weight)			
$M = \int V dx$	V = shear force			
Q = area above axis of interest * distance from	M = bending moment $Q = $ first moment of area			
neutral axis to centroid of area	I = area moment of inertia			
$\sigma_V = \frac{VQ}{Ib}$	b = section width y = distance to neutral axis			
$\sigma_M = \frac{My}{I}$	y = distance to neutral data			

Cascade Elevator Torque Sequence:

$$\begin{split} \tau &= m_2 r \left(a_{n+1} \left(\frac{L_1}{L_1 + L_2 + \dots + L_n} \right) + g \right) + 2 m_3 r \left(a_{n+1} \left(\frac{L_1 + L_2}{L_1 + L_2 + \dots + L_n} \right) + g \right) + \dots \\ &\quad + 2^{n-1} m_{n+1} r \left(a_{n+1} \left(\frac{L_1 + L_2 + \dots + L_n}{L_1 + L_2 + \dots + L_n} \right) + g \right) \end{split}$$

Gearbox Inertia Sequence (n=6):

$$I_{out} = (I_{in} - I_{G1}) \left(\frac{T_2}{T_1}\right)^2 \left(\frac{T_4}{T_3}\right)^2 \left(\frac{T_6}{T_5}\right)^2 - I_{G2} \left(\frac{T_4}{T_3}\right)^2 \left(\frac{T_6}{T_5}\right)^2 - I_{G3} \left(\frac{T_4}{T_3}\right)^2 \left(\frac{T_6}{T_5}\right)^2 - I_{G4} \left(\frac{T_6}{T_5}\right)^2 - I_{G5} \left(\frac{T_6}{T_5}\right)^2 - I_{G6} \left(\frac{T_6}{T_5}\right)^2 - I_{G6}$$