Fabrication and Manufacturing (Basics)

- Batch processes
 - Fabrication time independent of design complexity
- Standard process
 - Customization by masks
 - Each mask defines geometry on one layer
 - Lower-level masks define transistors
 - Higher-level masks define wiring

- Silicon is neat stuff
 - Oxide protects things from impurities
 - Can be etched selectively on silicon or metal
- Can be doped
 - Add P or As impurities

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- Transistors and wires are defined by *masks*
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Basic Processing Steps

- N-diffusion created by doping regions of the substrate
- Poly and metal are laid over the substrate, with oxide to insulate them from substrate and each other
- Wires are added in layers, alternating with oxide
- Vias are cut in the oxide

Fabrication Steps

- Features are patterned on a wafer by a photolithographic process
 - Photo-light lithography, n. process of printing from a plane surface on which image to be printed is ink-receptive and the blank area is ink-repellant
- Cover the wafer with a light-sensitive, organic material called *photoresist*
- Expose to light with the proper pattern (mask)
- Patterns left by photoresist can be used to control where oxide is grown or materials are placed on surface of wafer

Fabrication Steps

- Layout contains information on what patterns have to made on the wafer
- Masks are created using the layout information provided by the designer
- Procedure involves selective removal of the oxide
 - Coat the oxide with photoresist, polymerized by UV light (applied through mask)
 - Polymerized photoresist dissolves in acid
 - Photoresist itself is acid-resistant

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

- Grow SiO₂ on top of Si wafer
 - 900 1200 C with H₂O or O₂ in oxidation furnace

SiO₂

p substrate

Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

p substrate

Photoresist SiO₂

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etch

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

p substrate

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implanatation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

n well p substrate

Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

N-diffusion cont.

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion cont.

• Strip off oxide to complete patterning step

• Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

- Sputter on aluminum (copper) over whole wafer
- Pattern to remove excess metal, leaving wires

Basic Processing Steps (Summary)

- Start with wafer at current step
- Add photoresist
- Pattern photoresist with mask
- Step-specific etch, implant, etc.
- Wash off resist

Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size f = distance between source and drain
 - Set by minimum width of polysilicon
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of $\lambda = f/2$
 - E.g. $\lambda = 0.3 \mu m$ in 0.6 μm process

Design Rules

- Design rules govern the layout of individual components: transistors, wires, contacts, vias
 - How small can the gates be, and how small can the wires be made?
- Conflicting Demands:
 - component packing: more functionality, higher speed
 - Chip yield: smaller sizes can reduce yield (fraction of good chips)
- Conservative vs aggressive design rules

Geometric Design Rules

- Resolution
 - Width and spacing of lines on one layer
- Alignment
 - make sure interacting layers overlap (or don't)
 - Contact surround
 - Poly overlap of diffusion
 - Well surround of diffusion

SCMOS Design Rules

- Scalable CMOS design rules
- Feature size λ = half the drawn gate length (poly width)
- Mentor Graphics IC tool has built-in design rule checker (DRC)

Example design rules:

Layer	Minimum Width	Separation
Metal 1	3 λ	3 λ
Metal 2	3 λ	4 λ
Poly	2λ	poly-poly: 2 λ
		poly-diff: 1 λ

Simplified Design Rules

Tub Ties and Latchup

- Substrate must be connected to power supply
- p-tub for nMOS to V_{SS} (Gnd)
- N-tub for pMOS to V_{DD}
- Connections made by special vias called tub ties
- Conservative design rule: place tub ties for every one or two transistors
- Why not place one tie in each tub that has 50 transistors?

Latchup

- Too few ties: high resistance between tub and power supply, leads to parasitic bipolar transistors inhibiting normal chip operation
- Parasitic silicon-controlled rectifier (SCR)
- When both bipolar transistors are off, SCR conducts no current
- SCR turns on: high current short-circuit between V_{DD} and Gnd.

Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Inverter Layout

- Transistor dimensions specified as Width / Length
 - Minimum size is $4\lambda / 2\lambda$, sometimes called 1 unit
 - In $f = 0.6 \mu m$ process, this is 1.2 μm wide, 0.6 μm long

Example: Inverter

Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- $32 \lambda \text{ by } 40 \lambda$

Stick Diagrams

- Stick diagrams help plan layout quickly
 - Need not be to scale

Stick Diagrams

- Designing complete layout in terms of rectangles can be overwhelming
- Stick diagram: abstraction between transistor schematic and layout
 - Cartoon of a chip layout
- Replace rectangles by lines

Stick Diagram

Wiring Tracks

- A wiring track is the space required for a wire
 - -4λ width, 4λ spacing from neighbor = 8λ pitch
- Transistors also consume one wiring track

Well spacing

- Wells must surround transistors by 6λ
 - Implies 12 λ between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation

- Estimate area by counting wiring tracks
 - Multiply by 8 to express in λ

Example: O3AI

• Sketch a stick diagram for O3AI and estimate area

$$- Y = \overline{(A+B+C)\Box D}$$

Example: O3AI

$$Y = \overline{(A+B+C)\Box D}$$

• Sketch a stick diagram for O3AI and estimate area

Example: O3AI

$$Y = \overline{(A+B+C)\Box D}$$

• Sketch a stick diagram for O3AI and estimate area

Some Layout Hints

- Plan the global structure ("big picture"), then design cells
 - Floorplan
 - Wiring strategy
 - Power and ground distribution
 - Systematic placement
 - Keep all pMOS/nMOS together
 - Place transistors in rows:
 share source/drain diffusion

- Wiring on orthogonal metal layers
 - Assign preferred directions to M1 and M2
 - Use diffusion only for devices, not for interconnect
 - Use poly only for very local interconnect

Cell Minimization

• Chip area (cell size) must be minimized carefully

Impact of die size/chip area on cost (unpackaged dies)

	Nominal		1% increase	15% increase
	Pentium die		in die size	in die size
Wafer cost	\$1,460		\$1,460	\$1,460
Die size	160.2 mm^2		161.8 mm ²	184.2 mm^2
Die cost	\$84.06		\$85 33	\$102.55
Chips		1%	increase in die size leads to 3%	
fabricated	498.1 K		rease in stock price for Intel!	
per week			482.9 K	337.5 K
Added				
annual cost			\$63.5 M	\$961 M

Minimize number of diffusion strips

- How do we order the gate inputs (poly)?
- More diffusion strips \Rightarrow more spacing, more area

- Euler path: Visit every edge *exactly* once
- Find all Euler paths for nMOS and pMOS graphs
- Find p- and n-path that have identical labeling
- For example: d, e, a, b, c
- If no such path exists, then break diffusion into strips

Summary

- MOS Transistors are stack of gate, oxide, silicon
- Can be viewed as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors
- Now you know everything necessary to start designing schematics and layout for a simple chip!