PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2002-063949

(43) Date of publication of application: 28,02,2002

(51) Int. Cl.

H01M 14/00

H01L 31/04

(21) Application number : 2000-

(71) Applicant: NATIONAL INSTITUTE OF

246990

ADVANCED INDUSTRIAL &

TECHNOLOGY

(22)Date of filing:

16.08.2000 (72) Inventor : INOUE KOZO

BA ENREI

ABE HIDEKAZU NOMA HIROAKI

(54) DYE SENSITIZED SOLAR BATTERY

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a regeneration dye sensitized solar battery which can be practically used wherein porphyrin derivatives and their metal complexes are used and which has high photovoltaic conversion characteristics.

SOLUTION: In the solar battery in which an electrolyte is filled between a pair of electrodes wherein a transparent electroconductive film having a porous semiconductor film in an inner side surface is assumed as one side of electrodes and a metal film is assumed as the other side of electrodesand wherein a current circuit is formed between both electrodes by irradiate from the transparent electroconductive film sideat least one kind of pigment selected from porphyrin compounds expressed in a formula (R is hydrogen atom or acid substituted group) and their metal complexes is carried in fine pores of porous semiconductor film.

C.	LA	1	M	S

[Claim(s)]

[Claim 1] In a solar cell which uses as one electrode a transparent conducting film which has porosity semiconductor membrane in an inner surfaceinserts an electrolyte between electrode pairs which use a metal membrane as an electrode of another sideirradiates with light from the transparent conducting film sideand makes a current circuit form among two polesit is a general formula in fine pores of porosity semiconductor membrane. [Formula 1]

The dye-sensitized solar cell making at least one sort of coloring matter chosen from the porphyrin compounds expressed with (R in a formula is a hydrogen atom or acidic substituent) and those metal complexes support.

[Claim 2] The dye-sensitized solar cell according to claim 1 whose R in a general formula is a carboxyl group.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention has high photoelectric conversion efficiency and relates to the dye-sensitized solar cell which can supply photoelectric current stable moreover.

[0002]

[Description of the Prior Art] The type which a solar cell is a photoelectric cell with which the purpose of exploiting the energy of sunlight is presented is used former most widely Pn junction is made to form near the surface with the large light-receiving surface of a semiconducting crystal or an amorphous boardand the external circuit which irradiates with visible light and connects p field and n field is made to generate current toward n from p. As a semiconducting crystal in this casealthough many silicon is used the manufacturing process of silicon is an energy many consumption type intrinsically and since harmful silane gas is used a problem is also in respect of environmental protection and also there is a fault that a manufacturing cost is high. [0003] By the wayin 1991 gray TSUERU and others of Switzerland (Graezel) The electrode which made the surface of the porosity titanium dioxide thin film with large surface area absorb ruthenium bipyridine carboxylic acid coloring matter is used Since the dye-sensitized solar

cell was announced and there have been the strong pointssuch as that there is no fear of environmental pollution that a manufacturing cost is cheapand having high photoelectric conversion efficiencya reproduced type dye sensitizing photoelectric conversion cell has come to attract attention. Howeveralthough what the chlorophyll derivativethe zinc complex of porphyrinetc. made the optical-pumping center until now is proposed as this dye-sensitized solar cellthese may be satisfied in order to present practical use as a solar cellsince the photoelectric transfer characteristic is low.

[0004]

[Problem(s) to be Solved by the Invention] This invention is a basis of such a situation and is made for the purpose of providing the utilizable reproduced type dye-sensitized solar cell using the porphyrin derivatives which have a high photoelectric transfer characteristicand those metal complexes.

[0005]

[Means for Solving the Problem] A result of this invention persons having manufactured a metal complex of various porphyrin derivatives and having examined many things about the photosensitization operation New 510 and 1520 **TETORA phenylporphyrinor its derivativeOr when that metal complex is used as coloring matter of a dye-sensitized solar cellit finds out that a solar cell which shows a high photoelectric transfer characteristic and can supply stable photoelectric current is obtained and came to make this invention based on this knowledge.

[0006] That is this invention is a general formula in fine pores of porosity semiconductor membrane in a solar cell which uses as one electrode a transparent conducting film which has porosity semiconductor membrane in an inner surfaceinserts an electrolyte between electrode pairs which use a metal membrane as an electrode of another sideirradiates with light from the transparent conducting film side and makes a current circuit form among two poles. [Formula 2]

The dye-sensitized solar cell making at least one sort of coloring matter chosen from the porphyrin compounds expressed with (R in a formula is a hydrogen atom or acidic substituent) and those metal complexes support is provided.

[0007]

[Embodiment of the Invention] Nextan embodiment of the invention is described according to an accompanying drawing. <u>Drawing 1</u> is one example of the structure of this invention solar cell a sectional view for being

shownand between two glass substrates (the transparent substrate 1 and 7for exampleglass substrates) The transparent conducting film 2the porosity semiconductor membrane 3the electrolyte 5and the metal membrane 6 are arranged one by one and said semiconductor membrane 3 is formed in porosityand adsorption support of the porphyrin compound expressed with said general formula (I) in the fine pores or its metal complex is carried out. 8 is a current circuit and 9 is an ammeter. [0008] As a material of the above-mentioned transparent electric conductor 2the complex of the tin oxide and it and indium oxide is usedfor example. As a material of the semiconductor membrane 3titanium oxidea zinc oxidetantalum oxideetc. are used. This semiconductor membrane 3 needs to form as porosity. The semiconductor membrane which has such porosity semiconductor membrane on the surfaceFor examplejournal physical chemistry (J. Phys.Chem.)the 94th volumeand the method indicated to 8720 pages (1990) are referred toMelt titanium tetraisopropoxide in the mixture of 2-propanoldeionized waterand nitric acidhydrolyzeand a stable titanium oxide colloidal solution (particle diameter of about 8 nm) is preparedAfter mixing this solution with TiO, impalpable powder (the product made by Japanese Aerosila trade name "P-25") and a polyethylene glycol and carrying out spin coating of this mixture on semiconductor membraneit can manufacture by calcinating above 500 **.

[0009]Nextas a material of the metal membrane 6 used as a counter electrodealthough aluminumtinsilvercopperetc. are usedespecially a desirable thing is platinum. This metal membrane 6 can form metal chemical vacuum deposition or by carrying out a physical vapor deposition for example on a glass substrate and other transparent substrates.

[0010] In this inventionit is required to make at least one sort of coloring matter chosen from the porphyrin compound expressed with said general formula (I) in the fine pores of the aforementioned porosity semiconductor membrane 3 and its metal complex support. As a metal complex of this porphyrin compoundit is a general formula for example. [Formula 3]

The metal complex expressed with (a hydrogen atom or acidic substituentat least one sort of ligands as which X is chosen from an alkoxy groupan aryloxy groupan acyloxy groupand a halogen atomand M of R in a formula are MoCrNbor W) can be mentioned. General formula HX' (III) after making the carbonyl compound of MoCrNbor W react to the porphyrin

compound which the metal complex expressed with this general formula (II) is a new molecular entity of literature non-**for example is expressed with said general formula (I) or its derivative. It can manufacture by processing with a compound expressed with (X' in a formula is an alkoxy groupan aryloxy groupan acyloxy groupor a halogen atom) and processing by hydrogen halide further according to a request. [0011] Although R in a porphyrin compound which is this general formula (I) or (II) and is expressed its metal complex is a hydrogen atom or acidic substituentas this acidic substituent here are a carboxyl groupsulfonic acid residuesulfonate residuesulfuric acid residuesulfate residueetc. for example. M is a metal atom which can form porphyrin and a complexi. e. MoCrNbor W.

[0012]X is a basis used as a ligand of Mand Nexta methoxy groupan ethoxy basisa propoxy groupThere are an acyloxy group like an alkoxy group like a butoxy groupa phenoxy groupan aryloxy group like p **MECHIRU phenoxy groupan acetyloxy groupa propionyloxy groupand a glycyl oxy groupa fluorine atoma chlorine atoma halogen atom like a bromine atometc. [0013]A metal complex of a porphyrin compound expressed with said general formula (II)To a porphyrin compound like 5101520 **TETORA phenylporphyrin or 510 and 15and 20 **TETORA substituted phenyl porphyrinmetal carbonylFor

examplemolybdenumhexacarbonylchromiumpentacarbonylniobiumpentacarbonylAf ter making tungstenpentacarbonyl etc. reactit can manufacture easily by making alcoholphenoland carboxylic acid contactcontacting the output to hydrogen halide according to a request furtherand crystallizing. A reaction of this porphyrin compound and metal carbonyl can be performed using a solventfor exampledimethylformamideaccording to a request. This reaction is advantageous at a point that go on in a short time of 30 minutes thru/or 2 hours in a room temperaturea porphyrin metal complex is obtained with high yield of not less than 65%and moreover refining is also easy.

[0014] In order to make the porosity semiconductor membrane 3 support at least one sort of coloring matter 4 chosen from a porphyrin compound which is general formula (I) or (II) and is expressed its metal complexAfter neglecting it until it dissolves this coloring matter in a suitable solventfor exampledimethylformamideit carries out the dipping of the porosity semiconductor membrane into this solution and coloring matter fully adsorbs into fine pores of porosity semiconductor membranethis is taken out and it dries after washing if needed.

[0015] Nextin this invention solar cellalthough platinum is preferred as a material of the metal membrane 6 used as a counter electrodea thing

publicly known as a counter electrode of the conventional solar cellssuch as the other aluminumsilvertinand indiumcan also be used arbitrarily. As for these metal membranes 6it is preferred to form a physical vapor deposition or by carrying out chemical vacuum deposition on a glass substrateor indium oxide and a tin-oxide complex board. [0016]In this invention solar cellas an electrolyte inserted between two electrodesalthough conventionally used as an electrolyte of a solar cellit can choose from inside suitably and can use. An electrolyte used as such a thing with a solar cell using ruthenium bipyridine carboxylic acid coloring matter of gray TSUERU and others mentioned abovefor exampleThat isthere are some which dissolved iodine and potassium iodide in a medium which consists of a mixture of polypropylene carbonate 25 mass % and ethylene carbonate 75 mass %.

[0017]Thickness of the transparent conducting film 2 in this invention solar cell 0.4-0.6 micrometerAs for the particle sizethickness of 0.01-0.03 micrometer and the metal membrane 6 is chosen in 10-15 micrometers in and 5-30 micrometers of thickness [0.01-0.06 micrometer of / 2-20 micrometers of] of 0.5 micrometer and the porosity semiconductor membrane 3 are preferably chosen in 10-12 micrometers. A range of 8-20 micrometers of thickness of an electrolyte inserted between two electrodes is 10-12 micrometers preferably.

[0018] If a solar cell of such a structure connects between two electrodes with a leadand makes a current circuit form and it irradiates with 420-nm white light from the transparent conducting film sideit can be generated with high photoelectric conversion efficiency of not less than 2.9%. Since this photoelectric conversion efficiency is influenced by thickness of each films state of semiconductor membranethe amount of adsorption of coloring matterelectrolytic kindetc. it can be further raised by choosing these optimal conditions.

[0019]

[Example] Nextan example explains this invention still in detail. [0020] The mixture of the reference examples 1510 and 150.5 g (0.6 mmol) of 20 **TETORA (4 **KARUBOKISHI phenyl) porphyrin0.8 g (3.2 mmol) of molybdenumhexacarbonyland 100 ml of dry dimethylformamide was refluxed under a nitrogen atmosphere for 2 hours. The stages of progress of the reaction were pursued with the ultraviolet visible spectrum in the meantime. Subsequently the solvent was distilled offafter suspending heating and cooling a reaction mixture radiationally to a room temperature. Subsequently the glossy crystal was obtained with the yield of 67% by recrystallizing the solid of dark green obtained by carrying out ionic exchange column chromatography processing and refining a

residue in ethyl alcohol. An ultraviolet visible spectruman infrared absorption spectrumESRultimate analysis and when mass-spectrum analysis was conductedit was checked that it is a porphyrin metal complex (D) in which X in said general formula (II) corresponds to an ethoxy basis about this crystalM corresponds to Moand R corresponds to the structure of a hydrogen atom. It processes similarlyusing 5101520 **TETORA phenylporphyrin or 510 and 15and 20 **TETORA (4 **SURUHO phenyl) porphyrin as a raw materialThe porphyrin metal complex (E) and (F) in which X in said general formula (II) corresponds to an ethoxy basisM corresponds to Moand R corresponds to the structure of a carboxyl group or a sulfonic group was obtained.

[0021] Into 60 ml of hexane which saturated reference example 2 hydrogen chloridethe solution which melted 50 ml of porphyrin metal complexes (E) obtained by the reference example 1 in 15 ml of ethyl alcohol was dropped at the room temperature. The generated crystal was ****(ed) with the glass filter and white crystals were obtained with the yield of 82% by drying after washing by hexane. It was checked that it is a porphyrin metal complex in which X [in / for this thing / said general formula (II)] corresponds to a chlorine atom an ultraviolet visible spectruman infrared absorption spectrumESRultimate analysisand when mass-spectrum analysis is conductedM corresponds to Moand R corresponds to the structure of a carboxyl group.

[0022] Instead of the molybdenumhexacarbonyl in the reference example 3 reference example 1chromiumhexacarbonylWhen it was made to react similarly using niobium hexacarbonyl or tungstenhexacarbonylthe porphyrin metal complex in which CrNbor W corresponds [M in general formula (II)]respectively was obtained.

[0023]After dissolving 62.5 ml of example 1 titanium tetraisopropoxide into 10 ml of 2-propanoland the mixture of 380 ml of deionized waterand 3 ml of concentration 70 mass % nitric acid and making it hydrolyze in 80 ** for 8 hoursevaporation concentration was carried out and the stable titanium oxide colloidal solution was prepared. The particle diameter of this titanium oxide was about 8 nm. As a result of carrying out an X diffractionit turned out that this titanium oxide is an anatase type. On the surface of the sheet metal (25x25 nm) of a 0.5-micrometer-thick indium oxide tin-oxide complex (henceforth [ITO]). The 10-micrometer-thick porous-titanium-oxide film was made to form by carrying out spin coating of the aforementioned colloidal solution 10gand 2 g of TiO₂ impalpable powder (the product made by Japanese Aerosila trade name "P-25") and a mixture with 2 g of polyethylene glycolsand calcinating them at 500 ** for 1 hour.

[0024]5101520 **TETORA phenylporphyrin (A)510 and 1520 **TETORA (4 **KARUBOKISHI phenyl) porphyrin (B)5101520 **TETORA (4 **SURUHO phenyl) porphyrin (C)5101520 **TETORA phenylporphyrin metal complex (D) which were obtained by the reference example 15101520 **TETORA (4 **KARUBOKISHI phenyl) porphyrin metal complex (E) and 510 and 15and 20 **TETORA (4 **SURUHO phenyl) porphyrin metal complex (F) are dissolved in dimethylformamide with 5x10⁻⁴ molar concentration. After carrying out the dipping of the above-mentioned porous-titanium-oxide film into the prepared solution and neglecting it in 80 ** overnightit took out in argon atmosphereand washed and dried with methyl alcohol. [0025]As a counter electrodeusing what provided platinum membrane (10 micrometers in thickness) by sputtering process on the ITO board (22x25 mm) as an electrolyteThe solar cell of the structure which shows the iodine 0.38g and the mixture of 2.49 g of potassium iodide in drawing 1 using what was dissolved in the mixture 30g of propylene carbonate 25 mass % and ethylene carbonate 75 mass % was manufactured. Before longthe performance of the solar cell of B and C was as follows. [0026]

[0027]

[Table 1]

[Effect of the Invention] The dye-sensitized solar cell which can supply the photoelectric current which has high photoelectric conversion efficiency and was moreover stabilized by this invention is provided.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] The sectional view showing one example of the structure of the solar cell of this invention.

[Description of Notations]

- 1 and 7 Transparent substrate
- 2 Transparent conducting film
- 3 Porosity semiconductor membrane
- 4 Coloring matter
- 5 Electrolyte
- 6 Metal membrane
- 8 Current circuit

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-63949 (P2002-63949A)

(43)公開日 平成14年2月28日(2002.2.28)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
H 0 1 M 14/00		H 0 1 M 14/00	P 5F051
H01L 31/04		H O 1 L 31/04	Z 5H032

審査請求 有 請求項の数2 OL (全 5 頁)

(21)出願番号	特願2000-246990(P2000-246990)	(71)出願人 301021533 独立行政法人産業技術総合研究所
(22)出願日	平成12年8月16日(2000.8.16)	東京都千代田区霞が関1-3-1
		(72)発明者 井上 耕三
		佐賀県鳥栖市宿町字野々下807番地1 工 業技術院九州工業技術研究所内
		(72)発明者 馬 廷麗
		佐賀県鳥栖市宿町字野々下807番地1 工
		業技術院九州工業技術研究所内
		(74)復代理人 100071825
		弁理士 阿形 明

最終頁に続く

(54) 【発明の名称】 色素増感太陽電池

(57)【要約】

【課題】 高い光電変換特性を有するポルフィリン誘導 体とそれらの金属錯体を用いた、実用化可能な再生型色 素増感太陽電池を提供する。

【解決手段】 多孔質半導体膜を内側表面に有する透明 導電膜を一方の電極とし、金属膜を他方の電極とする電 極対間に電解質を介挿し、透明導電膜側から光を照射し て両極間に電流回路を形成させる太陽電池において、多 孔質半導体膜の細孔中に、一般式

【化1】

(Rは水素原子又は酸性置換基)で表わされるポルフィ リン化合物及びそれらの金属錯体の中から選ばれる少な くとも1種の色素を担持させる。

【特許請求の範囲】

【請求項1】 多孔質半導体膜を内側表面に有する透明 導電膜を一方の電極とし、金属膜を他方の電極とする電 極対間に電解質を介挿し、透明導電膜側から光を照射し て両極間に電流回路を形成させる太陽電池において、多 孔質半導体膜の細孔中に、一般式

【化1】

(式中のRは水素原子又は酸性置換基である)で表わされるポルフィリン化合物及びそれらの金属錯体の中から選ばれる少なくとも1種の色素を担持させたことを特徴とする色素増感太陽電池。

【請求項2】 一般式中のRがカルボキシル基である請求項1記載の色素増感太陽電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高い光電変換効率 を有し、しかも安定した光電流を供給することができる 色素増感太陽電池に関するものである。

[0002]

【従来の技術】太陽電池は、太陽光のエネルギーを利用する目的に供される光電池で、これまで最も広く用いられているタイプは、広い受光表面をもつ半導体結晶又はアモルファス板の表面付近にpn接合を形成させ、可視光線を照射してp領域とn領域を連結する外部回路にpからnに向って電流を発生させるものである。この際の半導体結晶としては、ケイ素が多く用いられているが、ケイ素の製造工程は本質的にエネルギー多消費型であり、かつ有害なシランガスを用いているため、環境保全の面でも問題がある上に製造コストが高いという欠点がある。

【0003】ところで、1991年にスイスのグレーツェル(Graezel)らが、表面積の大きい多孔質二酸化チタン薄膜の表面にルテニウムビピリジンカルボン酸色素を吸収させた電極を用いて、色素増感太陽電池を発表して以来、製造コストが安い、環境汚染のおそれがない、高い光電変換効率を有するなどの長所があることから、再生型色素増感光電変換セルが注目されるようになってきた。しかし、この色素増感太陽電池としては、これまでクロロフィル誘導体やポルフィリンの亜鉛錯体

などが光励起中心としたものが提案されているが、これらは光電変換特性が低いため、太陽電池として実用に供するには、満足しうるものではなかった。

[0004]

【発明が解決しようとする課題】本発明は、このような事情のもとで、高い光電変換特性を有するポルフィリン誘導体とそれらの金属錯体を用いた、実用化可能な再生型色素増感太陽電池を提供することを目的としてなされたものである。

[0005]

【課題を解決するための手段】本発明者らは、各種ポルフィリン誘導体の金属錯体を製造し、その光増感作用について種々検討した結果、新規な5,10,15,20-テトラフェニルポルフィリン又はその誘導体、或はその金属錯体を色素増感太陽電池の色素として用いた場合に、高い光電変換特性を示し、かつ安定した光電流を供給しうる太陽電池が得られることを見出し、この知見に基づいて本発明をなすに至った。

【0006】すなわち、本発明は、多孔質半導体膜を内側表面に有する透明導電膜を一方の電極とし、金属膜を他方の電極とする電極対間に電解質を介挿し、透明導電膜側から光を照射して両極間に電流回路を形成させる太陽電池において、多孔質半導体膜の細孔中に、一般式

【化2】

$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$\mathbb{R}$$

$$\mathbb{R}$$

$$\mathbb{R}$$

$$\mathbb{R}$$

$$\mathbb{R}$$

$$\mathbb{R}$$

(式中のRは水素原子又は酸性置換基である)で表わされるポルフィリン化合物及びそれらの金属錯体の中から選ばれる少なくとも1種の色素を担持させたことを特徴とする色素増感太陽電池を提供するものである。

[0007]

【発明の実施の形態】次に、添付図面に従って本発明の実施の形態を説明する。図1は、本発明太陽電池の構造の1例を示すための断面図であって、2枚の透明基板、例えばガラス基板1,7の間に、透明導電膜2、多孔質半導体膜3、電解質5及び金属膜6を順次配置し、かつ前記半導体膜3を多孔質に形成して、その細孔中に前記一般式(I)で表わされるポルフィリン化合物又はその金属錯体が吸着担持されている。また、8は電流回路、9はアンメータである。

【0008】上記の透明導電体2の材料としては、例え

ば酸化スズ、それと酸化インジウムとの複合体が用いら れる。また、半導体膜3の材料としては、酸化チタン、 酸化亜鉛、酸化タンタルなどが用いられる。この半導体 膜3は、多孔質として形成することが必要である。この ような多孔質半導体膜を表面に有する半導体膜は、例え ば、「ジャーナル・フィジカルケミストリー(J. Ph ys. Chem.)」, 第94巻, 8720ページ(1 990年) に記載されている方法を参考にして、チタン テトライソプロポキシドを2 - プロパノールと脱イオン 水と硝酸との混合物中に溶かして加水分解して安定な酸 化チタンコロイド溶液(粒子径約8 nm)を調製し、こ の溶液をTiO2微粉末(日本エアロジル社製,商品名 「P-25」)及びポリエチレングリコールと混合し、 この混合物を半導体膜上にスピンコーティングしたの ち、500℃以上で焼成することによって製造すること ができる。

【0009】次に対極として用いる金属膜6の材料としては、アルミニウム、スズ、銀、銅などが用いられるが、特に好ましいのは白金である。この金属膜6は、例えばガラス基板その他の透明基板上に金属を化学蒸着又は物理蒸着することによって形成することができる。

【0010】本発明においては、前記の多孔質半導体膜3の細孔中に、前記一般式(I)で表わされるポルフィリン化合物及びその金属錯体の中から選ばれる少なくとも1種の色素を担持させることが必要である。このポルフィリン化合物の金属錯体としては、例えば一般式【化3】

$$\begin{array}{c|c}
R \\
\hline
N \\
N \\
X
\end{array}$$

$$\begin{array}{c}
R \\
\hline
N \\
X
\end{array}$$

(式中のRは水素原子又は酸性置換基、Xはアルコキシ基、アリールオキシ基、アシルオキシ基及びハロゲン原子の中から選ばれる少なくとも1種の配位子、MはMo、Cr、Nb又はWである)で表わされる金属錯体を挙げることができる。この一般式(II)で表わされる金属錯体は文献未載の新規化合物であって、例えば前記一般式(I)で表わされるポルフィリン化合物又はその誘導体に、Mo、Cr、Nb又はWのカルボニル化合物を反応させたのち、一般式

HX' (III)

(式中のX'はアルコキシ基、アリールオキシ基、アシルオキシ基又はハロゲン原子である)で表わされる化合

物で処理し、所望に応じ、さらにハロゲン化水素で処理 することによって製造することができる。

【0011】この一般式(I)又は(II)で表わされるポルフィリン化合物又はその金属錯体中のRは水素原子又は酸性置換基であるが、この酸性置換基としては、例えばカルボキシル基、スルホン酸残基、スルホン酸塩残基、硫酸残基、硫酸塩残基などがある。また、Mはポルフィリンと錯体を形成しうる金属原子、すなわちMo、Cr、Nb又はWである。

【0012】次にXはMの配位子となる基であって、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基のようなアルコキシ基、フェノキシ基、p-メチルフェノキシ基のようなアリールオキシ基、アセチルオキシ基、プロピオニルオキシ基、グリシルオキシ基のようなアシルオキシ基、フッ素原子、塩素原子、臭素原子のようなハロゲン原子などがある。

【0013】前記一般式(II)で表わされるポルフィ リン化合物の金属錯体は、5,10,15,20-テト ラフェニルポルフィリン又は5,10,15,20-テ トラ置換フェニルポルフィリンのようなポルフィリン化 合物に金属カルボニル、例えばモリブデンヘキサカルボ ニル、クロムペンタカルボニル、ニオブペンタカルボニ ル、タングステンペンタカルボニルなどを反応させたの ち、アルコール、フェノール、カルボン酸と接触させ、 さらに所望に応じ、その生成物をハロゲン化水素と接触 させて結晶化することにより容易に製造することができ る。このポルフィリン化合物と金属カルボニルとの反応 は、所望に応じ溶媒、例えばジメチルホルムアミドを用 いて行うことができる。この反応は室温において30分 ないし2時間という短時間で進行し、65%以上の高い 収率でポルフィリン金属錯体が得られ、しかも精製も簡 単であるという点で有利である。

【0014】一般式(I)又は(II)で表わされるポルフィリン化合物及びその金属錯体の中から選ばれる少なくとも1種の色素4を多孔質半導体膜3に担持させるには、この色素を適当な溶媒、例えばジメチルホルムアミドに溶解し、この溶液中に多孔質半導体膜を浸せきし、多孔質半導体膜の細孔中に色素が十分に吸着するまで放置したのち、これを取り出し、必要に応じて洗浄後、乾燥する。

【0015】次に、本発明太陽電池において、対極として用いる金属膜6の材料としては、白金が好ましいが、それ以外のアルミニウム、銀、スズ、インジウムなど従来の太陽電池の対極として公知のものも任意に用いることができる。これらの金属膜6は、ガラス基板や酸化インジウム、酸化スズ複合体基板上に、物理蒸着又は化学蒸着することによって形成するのが好ましい。

【0016】本発明太陽電池において、両電極間に介挿される電解質としては、従来太陽電池の電解質として使用されていたものの中から適宜選択して用いることがで

きる。このようなものとしては、例えば前述したグレーツェルらのルテニウムビピリジンカルボン酸色素を用いた太陽電池で用いられている電解質、すなわちヨウ素とヨウ化カリウムを、ポリプロピレンカーボネート25質量%と炭酸エチレン75質量%との混合物からなる媒質に溶解させたものがある。

【0017】本発明太陽電池における透明導電膜2の厚さは0.4~0.6 μ m、好ましくは0.5 μ m、多孔質半導体膜3の厚さは5~30 μ m、好ましくは10~15 μ m、その微粒子サイズは0.01~0.06 μ m、好ましくは0.01~0.03 μ m、金属膜6の厚さは2~20 μ m、好ましくは10~12 μ mの範囲で選ばれる。また両電極間に介挿される電解質の厚さは8~20 μ m、好ましくは10~12 μ mの範囲である。

【0018】このような構造の太陽電池は、両電極間を 導線で接続し、電流回路を形成させ、透明導電膜側から 420nmの白色光を照射すると2.9%以上の高い光 電変換効率で発電することができる。この光電変換効率 は、各膜の厚さ、半導体薄膜の状態、色素の吸着量、電 解質の種類などに左右されるので、これらの最適条件を 選ぶことにより、さらに向上させることができる。

[0019]

【実施例】次に実施例により本発明をさらに詳細に説明 する。

【0020】参考例1

5, 10, 15, 20-テトラ(4-カルボキシフェニ ル) ポルフィリン 0. 5 g (0.6 mm o l) 、モリブ デンヘキサカルボニル O. 8 g (3.2 mm o l)、乾 燥ジメチルホルムアミド100mlの混合物を、窒素雰 囲気下で2時間還流させた。この間反応の進行状態を紫 外可視スペクトルで追跡した。次いで加熱を停止し、反 応混合物を室温まで放冷したのち、溶媒を留去した。次 いで残留物をイオン交換カラムクロマトグラフィー処理 し、精製し、得られた濃緑色の固体をエチルアルコール 中で再結晶することにより、67%の収率で光沢ある結 晶を得た。この結晶について、紫外可視スペクトル、赤 外吸収スペクトル、ESR、元素分析及び質量スペクト ル分析したところ、前記一般式(II)におけるXがエ トキシ基、MがMo、Rが水素原子の構造に該当するポ ルフィリン金属錯体(D)であることが確認された。ま た、原料として5,10,15,20-テトラフェニル ポルフィリン又は5, 10, 15, 20-テトラ (4-スルホフェニル)ポルフィリンを用い、同様に処理し て、前記一般式(II)におけるXがエトキシ基、Mが Mo、Rがカルボキシル基又はスルホ基の構造に該当す るポルフィリン金属錯体(E)及び(F)を得た。

【0021】参考例2

塩化水素を飽和させたヘキサン60ml中に、参考例1で得たポルフィリン金属錯体(E)50mlをエチルアルコール15mlに溶かした溶液を室温で滴下した。生

成した結晶をガラスフィルターでろ取し、ヘキサンで洗浄後、乾燥することにより、82%の収率で白色結晶を得た。このものを紫外可視スペクトル、赤外吸収スペクトル、ESR、元素分析及び質量スペクトル分析したところ、前記一般式(II)におけるXが塩素原子、MがMo、Rがカルボキシル基の構造に該当するポルフィリン金属錯体であることが確認された。

【0022】参考例3

参考例 1 におけるモリブデンヘキサカルボニルの代りに、クロムヘキサカルボニル、ニオビウムヘキサカルボニル又はタングステンヘキサカルボニルを用い、同じように反応させたところ、それぞれ一般式(II)におけるMがCr、Nb又はWの対応するポルフィリン金属錯体が得られた。

【0023】実施例1

チタンテトライソプロポキシド62.5mlを2-プロパノール10mlと脱イオン水380mlと濃度70質量%硝酸3mlとの混合物中に溶解し、80℃において8時間加水分解させたのち、蒸発濃縮し、安定な酸化チタンコロイド溶液を調製した。この酸化チタンの粒径は約8nmであった。また、X線回折した結果、この酸化チタンはアナターゼ型であることが分った。厚さ0.5 μ mの酸化インジウムー酸化スズ複合体(以下ITOという)の薄板($25 \times 25 nm$)の表面に、前記のコロイド溶液10 gとTiO2微粉末(日本エアロジル社製,商品名「P-25」)2 gとポリエチレングリコール2 gとの混合物をスピンコーティングし、500℃で 1時間焼成することにより、厚さ10 μ mの多孔質酸化チタン膜を形成させた。

【0024】5、10、15、20-テトラフェニルポルフィリン(A)、5、10、15、20-テトラ(4-カルボキシフェニル)ポルフィリン(B)、5、10、15、20-テトラ(4-スルホフェニル)ポルフィリン(C)、参考例1で得た5、10、15、20-テトラフェニルポルフィリン金属錯体(D)、5、10、15、20-テトラ(4-カルボキシフェニル)ポルフィリン金属錯体(E)及び5、10、15、20-テトラ(4-スルホフェニル)ポルフィリン金属錯体(F)を 5×10^{-4} モル濃度でジメチルホルムアミドに溶解して調製した溶液中に上記の多孔質酸化チタン膜を浸せきし、80 Cにおいて一夜放置したのち、アルゴン雰囲気中に取り出し、メチルアルコールで洗浄し、乾燥した。

【0025】対極として、ITO板(22×25 mm)上にスパッタリング法により白金膜(厚さ 10μ m)を設けたものを用い、また電解質として、3ウ素0.38g及びヨウ化カリウム2.49gの混合物を、プロピレンカーボネー125質量%と炭酸エチレン15質量%との混合物30gに溶解したものを用いて、図1に示す構造の太陽電池を製造した。そのうち、Bと100の太陽電池

の性能は次のとおりであった。

【表1】

[0026]

試料	短絡電流(μA)	開放電圧(V)	光電変換効率(%)
В	160	0.44	2. 9
С	7 5	0.38	1.6

[0027]

【発明の効果】本発明により、高い光電変換効率を有し、しかも安定した光電流を供給しうる色素増感太陽電池が提供される。

【図面の簡単な説明】

【図1】 本発明の太陽電池の構造の1例を示す断面

図。

【符号の説明】

- 1,7 透明基板
- 2 透明導電膜
- 3 多孔質半導体膜
- 4 色素
- 5 電解質
- 6 金属膜
- 8 電流回路
- 9 アンメータ

[図1]

フロントページの続き

(72)発明者 安部 英一

佐賀県鳥栖市宿町字野々下807番地 1 工 業技術院九州工業技術研究所内

(72)発明者 野間 弘昭

佐賀県鳥栖市宿町字野々下807番地 1 工 業技術院九州工業技術研究所内

F ターム(参考) 5F051 AA14 BA17 FA04 FA19 GA03 5H032 AA06 AS16 CC14 CC16 EE07 EE16 EE17 EE20