ВИДЕОСИСТЕМА

- Видеоадаптери
- Монитори
- Видеоинтерфейси

Т1. ВИДЕОАДАПТЕРИ

Формира информацията за всеки пиксел на екрана и му я предава в разбираеми за него сигнали:

- приема инструкции от процесора
- извършва собствени изчисления
- преобразува резултатите във видеосигнали.
- 1. Начини за реализация
 - 1.1. Видеокарта (графична карта)
 - изцяло поема функциите по формиране на изображението
 - притежава собствена видеопамет и видео (графичен) процесор
 - много висока производителност и графични възможности
 - печатна платка на PCI Express x16/x32 слот.
 - 1.2. Самостоятелен видеочип, вграден или инсталиран на дънната платка
 - включва същите ресурси и предлага същите производителност и графични възможности като видеокартата
 - по-рядко използвано решение в някои по-стари модели настолни компютри или в някои модели модерни преносими компютри.

- 1.3. Чип, интегриран в северния мост на чипсета
- ползва оперативната памет на компютъра
- има ограничена производителност и графични възможности
- икономично решение не натоварва много енергопотреблението
- решение за компютри от по-ниска ценова категория.
 - 1.4. Чип, интегриран в процесора (видеоядро)
- реализация интегриран в самия чип на процесора или като отделен чип в корпуса на процесора
- най-често се ползва оперативната памет на компютъра
- вграждането в процесора -> възможност за споделяне на ресурси
 -> по-висока производителност и подобрена енергийна ефективност (по-дълга работа на батерия)
- производителност и графични възможности -> значително подобро решение от интегрирания в чипсета видеоадаптер
- решението е реализирано в съвременните процесорни архитектури на Intel и APU на AMD (Piledriver и Steamroller серия A).

^{**} Терминът "видеоадаптер" – за всеки един от начините на реализация.

2. Графични карти

Gigabyte GV-N430-2GI

Основни компоненти:

- 2.1. Видео BIOS флаш ROM, съдържащ базовите инструкции за управление на интерфейса между видеоадаптера и софтуера.
- 2.2. Видеопроцесор/видеоускорител (видеочипсет, графичен процесор или GPU) "сърцето" на видеоадаптера; определя неговата функционалност и производителност:

- извършва всички обработки, свързани с подготовката на извежданите изображения и с ускорението на командите за 3D графика
- притежава специализирана многоядрена (до хиляди ядра) и многоконвейерна архитектура, предназначена за масовите паралелни изчисления при обработката на компютърната графика
- характеристики микроархитектура, брой транзистори, брой ядра, честота на ядрата, технологичен процес на производство, кеш памет и др.
- на един графически процесор могат да бъдат базирани множество видеокарти те имат еднакви базови възможности
- основни производители nVidia, AMD.
- 2.3. Видеопамет изпълнява ролята на кадров буфер, в който се съхранява информация за видеоизображенията (кадрите), извеждани на екрана. Съхранява още междинните, невидими на екрана елементи на изображенията и др. специфични видеоданни (текстури и др.)

Характеристики:

- Тип: GDDR2, GDDR3, GDDR4, GDDR5 SGRAM
- Капацитет: Определя максималната разделителна способност и броят на цветовете, които мониторът може да използва Например:

* при 2 D изображенията

1920×1080 = 2,073,600 пиксела × 32 бита за пиксел

= 66,355,200 бита = 8,294,400 байта = 7.91 МБ

* при 3D изображенията – много повече памет за 1 пиксел

- Бързодейстие:
 - трансферна скорост (Gb/sec или GB/sec)
 - работна честота (GHz).
- Ширина на шината "видеопроцесор видеопамет" (вътрешна шина за данни): 64, 128, 256 до 512 бита.
- 2.4. Цифрово-аналогов преобразувател (RAMDAC Random Access Memory Digital-to-Analog Converter):
 - самостоятелен чип, интегриран във видеопроцесора (MHz)
- преобразува RAM-базираното цифрово изображение в аналогови сигнали, подавани към аналоговите CRT монитори

- не се ползва от цифровите монитори.

2.5. Контролери

Контролер на външната шина за данни (PCI Express x16 2.0 или 3.0), на видеопаметта, на вътрешната шина за данни.

3. Мулти-GPU графични системи

- 3.1. Идея свързване на няколко видеокарти с цел едновременна работа по подготовка на изображението; резултат по-високо качество на изображението и/или по-висока производителност на видеосистемата.
- 3.2. Приложение геймъри и специалисти в областта на видеообработката
- 3.3. Предпоставки за реализиране поява на PC-Express -> възможност за няколко слота за видеокарти на една дънната платка.
 - 3.4. Конкурентни технологии
 - SLI (NVIDIA) 2004 година за съвместна работа на 2 карти. Днес, SLI технологията поддържа работа с 3 (3-Way SLI) и 4 карти (Quad SLI).
 - CrossFire (AMD) 2005 г. за Radeon X 800 Series. Днес, технологията се нарича AMD CrossFire X и позволява да се съчетаят в един масив до 4 видеокарти.

- HYDRA Engine (Lucid Logix) технологията позволява свързване на до 4 видеокарти от различен тип и от различни производители. Поддържа три режима на работа:
 - ✓ А-режим (видео карти AMD)
 - ✓ N-режим (видео карти NVIDIA)
 - ✓ X-режим (комбинация от NVIDIA и AMD видео карти).

3.5. Хибридни решения - NVIDIA Optimus (Hybrid SLI) и Hybrid CrossFire

- основен сегмент мобилни компютри
- същност възможност за "едновременна" работа на самостоятелен видеоадаптер (видеокарта или чип на дънната платка) и вграден видеоадаптер (в северния мост на чипсета или в процесора)
- **■** ползи:
 - √ възможност за превключване между двата видеоадаптера в зависимост от тежестта на изпълняваната задача
 - ✓ оптимално енергопотребление особено важно за преносимите компютри.

3.6. Методи за изграждане на изображението

- Разделно кадрово рендериране кадърът се разделя между картите; различните части на кадъра не е задължително да бъдат равни.
- Разделяне на подкадри кадърът се разделя на множество подкадри; картите се натоварват равно-мерно.
- Алтернативно кадрово рендериране картите последователно обработват кадрите един след друг.
- Един и същ кадър се обработва от картите с различни модели на изглаждане, след което се генерира крайното изображение.

Примери

1. Сравнителна характеристика на графични карти nVidia GeForce GTX за мобилни компютри.

Характеристика	nVidia GeForce GTX 950M	nVidia GeForce GTX 710M	
Интерфейс	PCI-e 3.0 (x16)	PCI-e 2.0 (x16)	
	Графичен процесор	•	
Конвейерни ядра	640	96	
Честота	914 - 1124 (Boost) MHz	775 - 800 (Boost) MHz	
	Памет		
Тип	DDR3/GDDR5	DDR3	
Честота	2000 - 5000 MHz	1800 MHz	
Шина	128 Bit	64 Bit	
Максимален обем	4096 MB	2048 MB	
	Други характеристики		
Технологичен процес	28 nm	28 nm	
Размер на екрана	≈ 15.4"	≈ 15.4"	
Поддържани изходи	VGA, DisplayPort , HDMI	VGA , DisplayPort , HDMI	
Дата на представяне	12.03.2015	01.04.2013	

2. nVidia Geforce GTX970 4GB DDR5 256bit PCI-E GV-N970G1

Интерфейс	PCI-Express 3.0				
Видеочипсет	GeForce GTX 970				
Бързодействие на GPU	1178/1329 MHz				
Памет					
Тип на паметта	DDR5				
Капацитет	4 GB				
Шина за достъп	256 bit				
Бързодействие	7000 MHz (7Gb/s)				
Още параметри					
Производствен процес	28 nm				
Макс. цифрова резолюция	4096 * 2160				
Макс. аналогова резолюция	2048*1536				
DirectX 12, OpenGL 4.4					
Ползвани технологии					
nVidia CUDA, nVidia PhysX, nVidia 3D Vision, Nvidia SLI					
Изходи					
Dual-link DVI-I/DVI-D, HDMI*1, DisplayPort*3					

т2. МОНИТОРИ

По начина (технологията) на формиране на пикселите на екрана, мониторите биват 3 основни вида:

- електронно-лъчеви (Cathode Ray Tube CRT)
- плазмени (Plasma Dysplay Panel PDP)
- течнокристални (Liquid Crystal Display LCD).

LCD монитори

1. Принцип на работа

Способността на течните кристали да изменят устойчиво ориентацията на молекулите си (с формата на пръчици) под въздействие на електрическо поле, в резултат на което се променя тяхната прозрачност:

- управлението на количеството преминаваща светлина се извършва от клетка с течен кристал (liquid crystal displays)
- ориентацията на клетката (ъгълът на поляризация) се извършва от 2 перпендикулярни поляризиращи филтъра
- при цветните LCD дисплеи за всеки пиксел съществува цветен филтър с по три клетки, съответно за червен, зелен и син цвят (подпиксели)

необходимост от външна подсветка (източник на светлина) - LCD екранът не излъчва, а само променя интензитета на преминаващата през него светлина.

2. Основни характеристики

```
A. Екран (Display)
   Технология (Backlight Technology/Type) — LCD/LED
   Тип на матрицата (LCD Panel Type) – TFT LCD (TN), *IPS, *VA
(PVA/MVA)
   Диагонал на екрана (Panel Size) - inch
   Разделителна способност (Resolution)
   Отношение на пикселите по X и Y (Aspect Ratio)
   Размер на пикселите (Pixel Pitch ) – mm
   Време за реакция на пикселите (Response Time) – ms
   Яркост (Brightness) – cd/m<sup>2</sup>
   Контраст (Contrast Ratio)
   Брой цветове (Color Depth или Display Colors)
   Ъгъл на видимост (Viewing Angle)
```

- Б. В/И интерфейси (Inputs/Outputs или Connectivity)
- В. Енергопотребление (Power Consumption)
- Г. Други размери, консумация, допълнителни възможности

- → Технология (подсветка)
 - LCD технология флуоресцентни лампи
 - LED (Light-Emitting Diode) технология светодиодни ленти; намалява се дебелината на корпуса на монитора; подобрява се качеството на изображението, яркостта и качеството на цветовете.
- → Диагонал на екрана (inch)

Физическият диагонал съвпада с видимата област на екрана.

→ Разделителна способност

Технологично фиксирана (native), зависеща единствено от монитора; други стойности на разделителната способност -> чрез интерполация

- → Отношение на пикселите по X и У
 - стандартни (класически) 5:4, 4:3 (<=1.5)</p>
 - широкоекранни 16:10, 16:9, 21:9 и др. (> 1.5)
- → Размер на пикселите (mm)

Всеки пиксел -> от 3 подпиксела (RGB). Геометрия на подпикселите -> с правоъгълна форма, линейно или шахматно разположени.

** Стандарт -> характеристиките диагонал на екрана, разделителна способност (брой пиксели), отношение на пикселите по X и У, размер на пикселите; т.е. монитори с близки по размер диагонали имат приблизително еднакви стойности на изброените характеристики.

	Ста	Стандарти -> Класически формат (<1.50 Ratio)						
Display Size	Designation	Native Resolution	Megapixels	Pixels Aspect Ratio	Pixel per Inch	Pitch (mm)		
15.0 in.	XGA	1024×768	0.79	1.33	85	0.298		
17.0 in.	SXGA	1280×1024	1.31	1.25	96	0.263		
19.0 in.	SXGA	1280×1024	1.31	1.25	86	0.294		
20.0 in.	UXGA	1600×1200	1.92	1.33	100	0.254		

Пример:

LG 19MB15T-В монитор

Основни характеристики: 19", 1280*1024, 5:4 (1.25), 0.294

- → Време на реакция на пикселите (ms)
 Минималното време за превключване на пиксела "черно бяло черно".
 - **→** Яркост (cd/m²)

Количеството светлина, излъчвана от екрана.

→ Контраст

Статичен - отношение между най-ярката и най-тъмната точка при зададена яркост на подсветката

Динамичен – същото отношение, постигнато при допълнителна подсветка.

→Ъгъл на видимост

Ъгълът, при който контрастът става по-малък от предварително определен.

Значението на параметрите време за реакция на пикселите, контраст, качество на цветовете и ъгъл на видимост зависи много от <u>типа на матрицата</u>:

- ✓ TFT (Thin-Film Transistor) или TN (Twisted Nematic)
 - най-ниско време за реакция на пикселите, най-ниска себестойност
 - малък ъгъл на видимост, невисока контрастност и качество на цветовете.
- ✓ IPS (In-Plane Switching) или SFT(Super Fine TFT)
 - увеличен ъгъл на видимост (до 178°), високо качество на цветовете, време за реакция на пикселите -> доближаващо се до TFT
- невисок контраст и виолетов оттенък на черния цвят, при страничен поглед. Развитие на IPS (S-IPS, AS-IPS, H-IPS, E-IPS, AH-IPS, IPS-Pro) -> в посока намаление времето за реакция на пикселите, увеличение на контраста и яркостта,

увеличение на ъгъла на видимост и намаление на размера на пикселите.

- ✓ *VA (Vertical Alignment)
 - отличен контраст и ъгъл на видимост, "дълбок" черен цвят
 - по време за реакция на пикселите -. отстъпва на TFT, а по качество на цветовете -> отстъпва на IPS.

3. Предимства/недостатъци

Предимства

- плосък екран -> 100% от размерите на екрана са видима област
- малки размери и тегло
- ниска консумация на енергия
- ниско време за реакция на пикселите
- липсва трептене на образа и рентгеново излъчване.

Недостатъци

- изображение —> ясно само при една разделителна способност (native);
- по-малък контраст и наситеност на черния цвят; повишаването на контраста —> чрез просто усилване яркостта на подсветката
- неравномерност на еднородния цвят и на яркостта
- зависимост на контраста от ъгъла на гледане
- лоша защита от механични повреди
- наличие на т. нар. "мъртви" или "горещи" пиксели червеният, зеленият или синият подпиксел е постоянно изключен/включен (стандарт – 4 класа) и др.

Примери

Характеристика	LG 22M37A-B	Dell E1715S	LG23MP67VQ-P	
Производител	LG	Dell	LG	
Технология (подсветка)	LED	LED	LED	
Тип на матрицата	TN	TN	AH-IPS	
Диагонал на екрана	21.5" (54,6 cm)	17" (43.2 cm)	23" (58.42 cm)	
Разделителна способност	1920*1080	1280 * 1024	1920x1080	
Пиксели по X и Y	16:9	5:4	16:9	
Размер на пикселите	0.248 mm	0.264mm	0.265 mm	
Време за реакция на пикселите	5 ms	5 ms	5 ms	
Яркост	200 cd/m ²	250 cd/m ²	250 cd/m2	
Контраст	1000:1	1000:1	1000:1	
Брой цветове	16.7 M	16.7 M	16.7 M	
Ъгъл на видимост	90° H / 65° V	170° H / 160° V	178° H / 178° V	
Ин				
Входове	D-sub, DVI-D	D-sub , DisplayPort	HDMI, DVI-D,D-Sub	
Енерго				
Режим на работа/ готовност	23 W/ 0.3 W	15 W/0.5 W	23 W	

ТЗ. ВИДЕО (ГРАФИЧНИ) ИНТЕРФЕЙСИ

1. Системен интерфейс – връзка между видеоадаптера и компютъра.

Развитие:

- паралелен ISA, PCI, AGP (1x, 2x, 4x, 8x)
- последователен (сериен) PCI-е (х16, х32)
- 2. Видеоинтерфейс връзка между видеоадаптера и монитора.
 - ❖ Първи стандарти (цифрови) за видеоинтерфейси (80-те г.):
 - MDA (Monochrome Display Adapter)
 - HGC (Hercules Graphics Card)
 - CGA (Color Graphics Adapter)
 - EGA (Enhanced Graphics Adapter)

- ❖ Поддържани към момента стандарти за видеоинтерфейси
- 2.1. Аналогов интерфейс VGA (Video Graphics Array) или D-sub (Subminiature)
 - създаден 1987-те г. (IBM за PS/2)
 - оригиналният VGA стандарт -> макс. разд.способност 640×480 в
 16 цвята (4-битов цвят)
 - развитие на VGA повишаване на разделителната способност (1280×1024) и броя цветове
 - основен недостатък необходимост от двойно преобразуване на сигнала (от цифрова в аналогова форма и отново в цифрова) при свързване на цифрови устройства (монитори, проектори)-> загуба на качество.

VGA (D-sub) конектор

- 2.2. Цифров интерфейс DVI (Digital Visual Interface)
- въведен през 1999 г. (Digital Display Working Group DDWG)
- разновидности:
 - ✓ DVI-D (digital) предава само цифрови сигнали
- ✓ DVI-I (integrated) предава или цифрови или аналогови сигнали
- ✓ DVI-A(analog) предава само аналогови сигнали.
- режими на работа (DVI-D и DVI-I):
 - ✓ Single link (едноканален) пропускателната способност позволява да бъде достигната максимална разделителна способност на екрана 1920х1200 и 1920х1080;
 - ✓ Dual link (двуканален) удвоена пропускателна способност -> позволява достигане на максимална разделителна способност на екрана 2560х1600 и 2048х1536 -> за монитори с диагонал над 27 инча.

DVI I конектор

^{*} Разработен е специален Mini DVI конектор за мобилни компютри.

2.3. HDMI (High-Definition Multimedia Interface)

- въведен 2002 г. като стандарт за мултимедийни устройства в бита
- мултимедиен интерфейс -> адаптация на DVI-D за битова апаратура, допълнена със цифров интерфейс за предаване на много-канални цифрови аудиосигнали по един кабел и с много висока скорост
- разширяем нови подобрени версии на HDMI, с повишена пропускателна способност, позволяваща разделителна способност до 4096×2160
- наличие на компактни конектори, в т.ч. и новият конектор микро-HDMI, със същото качество на връзката, но приложим за редица портативни устройства
- при необходимост могат да бъдат ползвани преходници от DVI на HDMI.

2.4. DisplayPort

- мултимедиен видеоинтерфейс, въведен 2006 г.; активно поддържан от производителите на видеокарти и монитори
- открит (свободен от лицензионни такси) и расширяем —> заложена възможност за увеличаване на пропускателната способност; в бъдъщите версии е планирана възможността за предаване на няколко потока видеоданни по един физически канал
- по-голяма пропускателна способност от Dual-Link DVI и HDMI и по-високо качество на изображението: при свързване на един монитор, поддържа разделителна способност до 3840 х 2400; при свързването на до два монитора - 2560х1600 и на до четири монитора − 1920х1200
- предоставя възможност не само за стандартното външно, но и за вътрешно свързване, напр. свързване на видеокартата на ноутбук към панела на вграден дисплей
- ползва малогабаритни конектори, в т.ч. новите Mini DisplayPort и Thunderbolt за свързване на външен монитор с ноутбук и даже с ултрабук

 осигурява съвместимост с DVI, HDMI и VGA интерфейсите с помощта на преходници.

DisplayPort конектор

Панел на видеокарта Gigabyte GV-N430-2GI