Semantica e tautologie

Tabella dei contenuti

lutazione	
Valutazione atomica	
Lemma	
Tautologia	
Contromodello	
Tavola di verità	

Valutazione

Una proposizione può assumere solamente due valori: vero o falso, l'azione di determinare il valore di una proposizione viene chiamata *valutazione*. Una valutazione è del tipo:

$$\mathcal{V}: PROP \rightarrow \{0,1\}$$

e deve assumere come valori:

- 1. $V(\bot) = 0$
- 2. $\mathcal{V}(\phi \wedge \psi) = 1 \iff \mathcal{V}(\phi) = 1 \text{ and } \mathcal{V}(\psi) = 1$
- 3. $\mathcal{V}(\phi \lor \psi) = 1 \iff \mathcal{V}(\phi) = 1 \text{ or } \mathcal{V}(\psi) = 1$
- 4. $V(\phi) = 1 \iff V(\neg \phi) = 0$
- 5. $\mathcal{V}(\phi \to \psi) = 1 \iff \mathcal{V}(\phi) = 0 \text{ or } \mathcal{V}(\psi) = 1$

Valutazione atomica

Una funzione v è detta valutazione atomica se $v: AT \to \{0,1\}$ e se $v(\bot) = 0$.

Data una valutazione atomica v, esiste ed è unica una valutazione $[\![\cdot]\!]_v: PROP \to \{0,1\}$ tale che $[\![\phi]\!]_v = v(\phi)$ per $\phi \in AT$.

 $Nota\ bene$

Il valore di una proposizione è univocamente identificato dal valore dei suoi atomi.

Infatti:

$$\llbracket \alpha \vee \beta \rrbracket_v = 1 \iff \llbracket \alpha \rrbracket_v = 1 \text{ or } \llbracket \beta \rrbracket t_v = 1$$

Lemma

Sia ϕ una proposizione e sia $\phi^{at} = \{p \mid p \in AT, p \in Sub(\phi)\}$, siano v_1 e v_2 due valutazioni atomiche tali che $\forall p \in \phi^{at}v_1(p) = v_2(p)$, allora possiamo affermare che: $[\![\phi]\!]_{v_1} = [\![\phi]\!]_{v_2}$.

Tautologia

La proposizione α viene chiamata tautologia se e solamente se $\forall v \llbracket \alpha \rrbracket_v = 1$, per cui scriviamo:

$$\models \alpha \iff \forall v \llbracket \alpha \rrbracket_v = 1 \tag{1}$$

Esempio Vogliamo dimostrare che $\models \alpha \to \alpha$, e cioè che $\forall v \llbracket \alpha \to \alpha \rrbracket_v = 1$, quindi:

$$\forall v \llbracket \alpha \to \alpha \rrbracket_v = 1 \iff \llbracket \alpha \rrbracket_v = 0 \text{ or } \llbracket \alpha \rrbracket = 1$$
$$\implies T$$

Esercizio Vogliamo dimostrare che $\vDash \alpha \rightarrow (\beta \rightarrow \alpha)$, quindi:

$$\forall v \llbracket \alpha \to (\beta \to \alpha) \rrbracket_v = 1 \iff \llbracket \alpha \rrbracket_v = 0 \text{ or } \llbracket \beta \to \alpha \rrbracket = 1$$
$$\iff \underline{\llbracket \alpha \rrbracket_v = 0} \text{ or } \llbracket \beta \rrbracket_v = 0 \text{ or } \underline{\llbracket \alpha \rrbracket_v = 1}$$
$$\implies T$$

Contromodello

Per dimostrare che una proposizione **non** è una tautologia occorre ricercare un'istanza di ϕ e una valutazione tali per cui:

$$\exists v, \llbracket \phi \rrbracket_v = 0$$

Esempio Data la proposizione $p_0 \to (p_0 \land p_1)$, devono esistere delle istanze di p_0, p_1 e una valutazione v tale per cui $[p_0 \to (p_0 \land p_1)]_v = 0$.

Ipotizzando [[p_0]] $_v=1,$ [[p_1]] $_v=0$ si ottiene:

In altre parole, esiste una valutazione v che grazie al valore che assume sugli atomi, fa risultare l'intera proposizione zero.

Tavola di verità

Un altro modo per esprimere questo concetto è la tavola di verità:

Tabella 1: tavola di verità.

p_0	p_1	$p_0 \wedge p_1$	$p_0 \to (p_0 \land p_1)$
0	0	0	1
0	1	0	1

p_0	p_1	$p_0 \wedge p_1$	$p_0 \to (p_0 \land p_1)$
1	0	0	0
1	1	1	1

 $Nota\ bene$

Le dimensioni di una tavola di verità aumentano al crescere del rango della proposizione che si sta esaminando, quindi in presenza di una proposizione troppo complessa, si dice che il problema è *intrattabile*.

La proposizione α è detta soddisfacibile quando:

$$\exists v \llbracket \alpha \rrbracket_v = 1 \tag{2}$$

Quindi α non è una tautologia, ma è vera per almeno una valutazione.

 $Nota\ bene$

Gli unici algoritmi noti per determinare se una proposizione è soddisfacibile sono esponenziali al numero dei simboli.