ENM 3600: Data-driven Modeling

Lecture #15: Recurrent neural networks

Modeling of sequence data

RNNs

An unrolled recurrent neural network.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN limitations

- Sequential processing is slow (can't parallelize)
- Long-range dependency issues (vanishing gradients)
- Limited context window in practice

```
"The cat is on the table"
```

"The cat, who belongs to my mother, is on the table".

E.g.: when translating we need to remember "cat" is the subject even after processing many words.

- A need for better models:
 - Language translation requiring full sentence context
 - Document summarization
 - Question answering
 - Protein Structure Prediction (long amino acid sequences)
 - Molecular Property Prediction (multi-atom interactions)
 - Climate Science (long timescales)
 - Astronomical Data Analysis (vast spatial and time scales)

Key Innovation: Attention

Bahdanau, Dzmitry, Kyung Hyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." *3rd International Conference on Learning Representations, ICLR 2015*. 2015.

$$p(s_i \mid c_i, u)$$
 Probability of word s_i at output position i $[s_1, \ldots, s_i, \ldots, s_{T_s}]$ Output sentence

From Sequential to Parallel Processing

- Compare how humans read vs how RNNs process text
 - Humans: Quick glances at relevant parts
 - RNNs: Must process word by word
- Attention is "looking" at all words simultaneously

Key innovation: Attention

Think of attention as a "smart dictionary lookup"

- Keys: What you're looking for
- Values: What you get back
- Queries: What you're asking for

Simple example: Translation attention

 Each word in target language might need to "look at" multiple source words

Transformers

Encoder-Decoder Auto-regressive Models

Key Building Blocks

- Tokenization
- Token embeddings
- Position embeddings
- Self-attention & Multi-head self-attention
- MLPs
- Cross-attention

Figure 1: The Transformer - model architecture.

Tokenization in NLP

Tokenization in Vision

Tokenization in Point Clouds

Tokenization in NLP

Token Embeddings

Token Embeddings

Encoder

Encoder

Self-Attention

Updated feature
$$x_4' = \alpha_{4,1}' x_1 + \alpha_{4,2}' x_2 + \alpha_{4,3}' x_3 + \alpha_{4,4}' x_4 + \alpha_{4,5}' x_5$$

Attention Scores

Softmax

$$\alpha'_{4,i} = \frac{\exp(\alpha_{4,i})}{\sum_{j} \exp(\alpha_{4,j})}$$

Token similarity

$$\alpha_{4,1} = \mathbf{x}_{4}^{\mathsf{T}} \mathbf{x}_{1} \quad \alpha_{4,2} = \mathbf{x}_{4}^{\mathsf{T}} \mathbf{x}_{2} \quad \alpha_{4,3} = \mathbf{x}_{4}^{\mathsf{T}} \mathbf{x}_{3} \quad \alpha_{4,4} = \mathbf{x}_{4}^{\mathsf{T}} \mathbf{x}_{4} \quad \alpha_{4,5} = \mathbf{x}_{4}^{\mathsf{T}} \mathbf{x}_{5}$$

$$\mathbf{x}_{1} \in R^{d} \quad \mathbf{x}_{2} \in R^{d} \quad \mathbf{x}_{3} \in R^{d} \quad \mathbf{x}_{4} \in R^{d} \quad \mathbf{x}_{5} \in R^{d}$$

Embedded **Tokens**

$$x_1 \in R^{\alpha}$$

$$x_2 \in R^a$$

$$x_3 \in R^\alpha$$

$$\boldsymbol{x}_4 \in R^d$$

$$x_5 \in R^a$$

Self-Attention

Self-Attention

Single-head attention

Attention
$$(Q, K, V) = V \operatorname{softmax}\left(\frac{K^{\top}Q}{\sqrt{d_k}}\right)$$

$$Q = \begin{bmatrix} W^Q & x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}$$
 $K = \begin{bmatrix} W^K & x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}$
 $V = \begin{bmatrix} W^V & x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}$

MLPs

Positional Encoding

Positional Encoding

$$\mathbf{S}_i = \left[\sin(\omega_1 i), \cos(\omega_1 i), \sin(\omega_2 i), \cos(\omega_2 i), \dots, \sin(\omega_{e/2} i), \cos(\omega_{e/2} i)\right]$$

Unique identifier, unlimited length

Relative positions as linear transform

Positional Encoding

Transformer Encoder

Transformer Encoder

Decoders

Decoders

Vision Transformers

Dosovitskiy, A. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

Advantages & Limitations

- Parallel processing
- Better at capturing long-range dependencies
- No vanishing gradient problem
- Scales well with data and compute

Modality-agnostic

- Self-attention cost and memory scales quadratically with seq. length
- Needs a lot of data
- Expensive and difficult to train

Generative Pretrained Transformers

Multi-modal Transformers

Multi-modal Transformers

AlphaFold 3

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., ... & Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 1-3.

UvA Tutorial Notebooks

Build your own GPT from scratch

LET'S BUILD GPT. FROM SCRATCH. IN CODE. SPELLED OUT.

