

Generating Functions 3 - Extraction & Recurrences

We continue to work with rational generating functions A(x), so we have

$$A(x) = \frac{p(x)}{q(x)} = \sum_{n=0}^{\infty} a_n x^n$$

Our primary interest will be in going back and forth between expressing A(x) as a quotient of polynomials and in terms of its coefficients.

Coefficient Extraction

Recall: For a generating function A(x) we let $[x^k]A(x)$ denote the coefficient of x^k in A(x).

Coefficient extraction is the process of determining the coefficients of a generating function. The key to coefficient extraction for rational generating functions is **partial fractions**

Example: Find values for A,B,C so that the expression below is true, then use this to determine $[x^n]D(x)$

$$D(x) = \frac{1}{(x-3)(x-2)^2} = \frac{A}{x-3} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

$$| -A(x-2)^2 + B(x-3)(x-2) + C(x-3)$$

$$= A x^2 - 4Ax + 4A + Bx^2 - 5Bx + 6B + Cx - 3C$$

$$= (A+B)x^2 + (-4A-5B+C)x + (4A+6B-3C)$$

$$0$$

$$C = -(A=1)B = -1$$

This process works in general.

Partial Fractions. Let q(x) be a polynomial which can be factored as $q(x) = (x - r_1)^{d_1} (x - r_2)^{d_2} \dots (x - r_k)^{d_k}$ then there exist constants so that

$$\frac{1}{q(x)} = \frac{A_{1,1}}{x - r_1} + \frac{A_{1,2}}{(x - r_1)^2} + \dots + \frac{A_{1,d_1}}{(x - r_1)^{d_1}} + \dots + \dots + \frac{A_{k,d_k}}{(x - r_k)^{d_k}}$$

Example: Although we will not solve it, there exist constants A, B, C, D, E, F so that the following expression is valid:

$$\frac{1}{(x-1)(x-2)^2(x-3)^3} = \frac{A}{(x-1)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2} + \frac{D}{(x-3)} + \frac{E}{(x-3)^2} + \frac{F}{(x-3)^3}$$

Note: We can use this together with the formula

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{n} x^n$$

To do coefficient extraction whenever we have a rational function and we have factored the denominator.

Recurrences

Generating functions also provide a natural setting to work with and solve recurrence relations.

Example: Consider the recurrence relation

$$a_0 = 0$$
 and $a_1 = 1$ $a_n - 5a_{n-1} + 6a_{n-2} = 0$ for $n \ge 2$

Define the generating function $A(x) = \sum_{n=0}^{\infty} a_n x^n$ What is

$$A(x) - 5xA(x) + 6x^2A(x)?$$

Use the above expression to express A(x) as a rational function

Use coefficient extraction to find the coefficients of A(x).