1 Knot 4_1

• Generators: a, b

• Relator: abbbaBAAB

• Alexander polynomial: $t^2 - 3t + 1$

Figure 1: Knot 4₁

In this section, we consider the knot 4_1 with generators a, b and the relator abbbaBAAB. The associated Alexander polynomial is $t^2 - 3t + 1$, and Figure 1 illustrates the geometric representation of this knot. We interpret each symbol in the relator abbbaBAAB as an operator: a as a multiplicator \otimes_t , b as an additor \oplus_1 , A as a divisor \otimes_t , and B as a subtractor \oplus_1 , where t is an indeterminate variable. In the arithmetic expression space H, this relator corresponds to a closed loop path, viewed as a threadlike expression.

Figure 2: Relator in the arithmetic expression space H

Applying the group action on a real number x from right to left gives:

$$(((x-1)t^{-1}t^{-1}-1)t+1+1+1)t = x,$$

which forces the Alexander polynomial t^2-3t+1 to vanish. Solving $t^2-3t+1=0$ yields $t=\frac{3\pm\sqrt{5}}{2}$. Equivalently, letting ϕ denote the golden ratio, we have $t=\phi^2$ or $t=\phi^{-2}$.

Although we have shown how applying the relator abbbaBAAB as an arithmetic operation leads to the equation $t^2-3t+1=0$, which is a vanishing Alexander polynomial for the knot 4_1 , the deeper reason behind this connection remains unclear. We conjecture that a more geometric interpretation of the Alexander polynomial—and how it encodes the knot's topological features—will illuminate why this algebraic path in H corresponds precisely to the polynomial that characterizes the knot's properties.