In the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (previously presented) A process for reducing phenol emissions from a polymer resin comprising the step of adding at least one phosphite additive of formula (I) to said resin, wherein said formula (I) comprises:

wherein

R¹ is

$$R^4$$
 C
 R^5
 $(R^6)_c$

R² is selected from the group consisting of C₈₋₁₆ alkyls;

 R^3 is selected from the group consisting of C_{1-4} alkylenes;

m is 1;

a is an integral value ranging from 1 to 4 inclusive;

b is an integral value ranging from 1 to 2 inclusive; and

 R^4 and R^5 are independently selected from the group consisting of C_{1-3} alkyls;

 R^6 is selected from the group consisting of C_{8-12} alkyls and C_{8-12} alkoxy

compounds;

c is an integral value ranging from 0 to 4 inclusive; and

d is equal to m.

2. (previously presented) The process of claim 1 wherein

 R^2 is $C_{10}H_{21}$,

R³ is selected from the group consisting of ethylene and propylene;

a is 1;

R⁴ and R⁵ are methyl;

c is 0; and

d is 1.

3. (original) The process of claim 2 wherein

R¹ is

- 4. (original) The process of claim 3 wherein said phosphite is selected from the group consisting of ethoxy-paracumylphenyl diisodecyl phosphite and propoxy-paracumylphenyl diisodecyl phosphite.
- 5. (original) The process of claim 4 wherein said polymer resin is a halogenated resin.
- 6. (original) The process of claim 5 wherein said halogenated resin is polyvinyl chloride.

7. (currently amended) A process for reducing phenol emissions from a polymer resin comprising the step of adding at least one phosphite additive of formula (II) to said resin, wherein said formula (II) comprises:

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

wherein

is $[[R^6]]$ is selected from the group consisting of C_{8-12} alkyls and C_{8-12} alkoxy compounds;

 R^2 is selected from the group consisting of C_{8-16} alkyls;

a is an integral value ranging from 1 to 4 inclusive; and

b is an integral value ranging from 1 to 2 inclusive; and _

 R^{6} is selected from the group consisting of C_{8-12} alkyls and C_{8-12} alkoxy compounds.

8. (previously presented) The process of claim 7 wherein

 R^2 is $C_{10}H_{21}$; and

a is 1.

9. (deleted).

10. (previously presented) The process of claim 7 wherein said phosphite is selected from the group consisting of nonylphenyl diisodecyl phosphite, di-nonylphenyl diisodecyl phosphite, bis(nonylphenyl)isodecyl phosphite and bis(di-nonylpnenyl)isodecyl phosphite.

11. (previously presented) The process of claim 7 wherein said polymer resin is a halogenated resin.

12. (original) The process of claim 11 wherein said halogenated resin is polyvinyl chloride.

-7-

13. (previously presented) A process for reducing phenol emissions from a polymer resin comprising the step of adding at least one phosphite additive to said resin, said at least one phosphite selected from the group consisting of formulas (I) and (II)

$$\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

wherein

R¹ is

$$\begin{array}{c}
R^4 \\
C \\
R^5
\end{array}$$

$$(R^6)_c$$

R² is selected from the group consisting of C₈₋₁₆ alkyls;

 R^3 is selected from the group consisting of C_{1-4} alkylenes;

m is 1;

a is an integral value ranging from 1 to 4 inclusive;

b is an integral value ranging from 1 to 2 inclusive;

R⁴ and R⁵ are independently selected from the group consisting of C₁₋₃ alkyls;

 R^6 is selected from the group consisting of C_{8-12} alkyls and C_{8-12} alkoxy compounds;

is an integral value ranging from 0 to 4 inclusive; and

d is equal to m.

C

-8-

14. (previously presented) The process of claim 13 wherein

 R^2 is $C_{10}H_{21}$;

R³ is selected from the group consisting of ethylene and propylene;

a is 1;

R⁴ and R⁵ are methyl;

c is 0; and

d is 1.

15. (original) The process of claim 14 wherein

 R^1 is

- 16. (previously presented) The process of claim 15 wherein said phosphite is selected from the group consisting of ethoxy-paracumylphenyl diisodecyl phosphite, and propoxy-paracumylphenyl diisodecyl phosphite.
- 17. (previously presented) The process of claim 13 wherein said polymer resin is a halogenated resin.
- 18. (original) The process of claim 17 wherein said halogenated resin is polyvinyl chloride.

19. (previously presented) A process for reducing the emission of phenol from a polymer resin which comprises replacing at least a portion of a phosphite additive which emits phenol from said resin with a phosphite composition selected from the group consisting of

formula (I)

formula (II)

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

wherein

 R^1 is

R² is selected from the group consisting of C₈₋₁₆ alkyls;

 R^3 is selected from the group consisting of C_{1-4} alkylenes;

m is 1;

a is an integral value ranging from 1 to 4 inclusive;

b is an integral value ranging from 1 to 2 inclusive;

R⁴ and R⁵ are independently selected from the group consisting of C₁₋₃ alkyls;

 R^6 is selected from the group consisting of C_{8-12} alkyls and C_{8-12} alkoxy compounds;

c is an integral value ranging from 0 to 4 inclusive; and

d is equal to m.

20. (previously presented) The process of claim 19 wherein

 R^2 is $C_{10}H_{21}$;

R³ is selected from the group consisting of ethylene and propylene;

a is 1;

R⁴ and R⁵ are methyl;

c is 0; and

d is 1.

21. (previously presented) The process of claim 20 wherein

R¹ is

22. (deleted).

- 23. (previously presented) The process of claim 21 wherein said phosphite is selected from the group consisting of ethoxy-paracumylphenyl diisodecyl phosphite.
- 24. (deleted).
- 25. (previously presented) The process of claim 19 wherein said polymer resin is a halogenated resin.
- 26. (original) The process of claim 25 wherein said halogenated resin is polyvinyl chloride.