Results

Descriptives

Descriptives

	Training	Dance
N	200	200
Missing	0	0

Frequencies

Frequencies of Training

Levels	Counts	% of Total	Cumulative %
Food as Reward	38	19.0 %	19.0 %
Affection as Reward	162	81.0 %	100.0 %

Frequencies of Dance

Levels	Counts	% of Total	Cumulative %
No	124	62.0 %	62.0 %
Yes	76	38.0 %	100.0 %

Plots

Training

Dance

Relationships, Prediction, and Group Comparisons

You have entered a dichotomous variable for Variable 1 / Dependent Variable and a dichotomous variable for Variable 2 / Independent Variables. Hence, the <u>chi-squared test of association</u> seems to be a good option for you! In order to run this test in jamovi, go to: Frequencies > Independent Samples - χ^2 test of association

• Put one of your two categorical variables in the box below Rows, and the other categorical variable in the box below Columns

Click on the link to learn more about this test! Note: since your categorical variables each consist of only two groups, the p value resulting from the chi-squared test is equivalent to the (two sided) p value that would have resulted form the z test for the difference between two proportions.

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Proportion Test (N Outcomes)

Level		Count	Proportion
Food as Reward	Observed	38	0.190
	Expected	100	0.500
Affection as Reward	Observed	162	0.810
	Expected	100	0.500

 χ^2 Goodness of Fit

χ²	df	р
76.9	1	< .001

Contingency Tables

Contingency Tables

		Total
Total		

χ² Tests

	Value	df	р
χ²			
Ν			

Contingency Tables

Contingency Tables

		Dar	nce	_
Training		No	Yes	Total
Food as Reward	Observed	10	28	38
	Expected	23.6	14.4	38.0
Affection as Reward	Observed	114	48	162
	Expected	100.4	61.6	162.0
Total	Observed	124	76	200
	Expected	124.0	76.0	200.0

χ² Tests

	Value	df	р
χ²	25.4	1	< .001
Ν	200		

Nominal

	Value
Phi-coefficient	0.356
Cramer's V	0.356

Plots

References

[1] The jamovi project (2021). jamovi. (Version 2.2) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). *R: A Language and environment for statistical computing*. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2021-04-01).