Hypernet 框架

(Towards Accurate Region Proposal Generation and Joint Object Detection.) [1]

1.Abstract

Hypernet 整体框架和 Faster 类似,先通过堆积的卷基层提取特征,再把特征传到 Region Proposal Generation 网络产生 Proposal,接着提供 Proposal 给 Detection Net 做进一步地回归和分类。所不同的是,Hypernet 选取了多个 Feature Map 组合成更具有表现力的特征,叫做 Hyper Feature。

2.Analysis

Hyper Feature

图 12 Framework of Hypernet

如上图所示,框架采取了三个特征图,由于经过多次卷积,各个 Feature Map 的 resolution 不一样,无法直接把它们 concatenate 起来,作者的方法是把 lower layer 做 2*2 的 Max pooling,Middle layer 保持不变,Higher layer 做 Deconvolution,这样最后三类特征图的大小一致,就可以 concatenate 起来。

相比 SSD,这种做法让人感觉是比较好的。SSD 也涉及到多 resolution Feature Map 的处理,它所采取的方法是把特征图 flatten 成向量再 concat,这种方法是很粗糙的,会丧失特征的对应关系,所以 SSD 最终的训练结果也不好。

Joint Training

Algorithm 1 HyperNet training process. After 6 steps, the proposal and detection modules form a unified network.

Step 1: Pre-train a deep CNN model for initializing basic layers in **Step 2** and **Step 3**.

Step 2: Train HyperNet for region proposal generation.

Step 3: Train HyperNet for object detection using region proposals obtained from **Step 2**.

Step 4: Fine-tune HyperNet for region proposal generation sharing Hyper Feature layers trained in **Step 3**.

Step 5: Fine-tune HyperNet for object detection using region proposals obtained from **Step 4**, with shared Hyper Feature layers fixed.

Step 6: Output the unified HyperNet jointly trained in **Step 4** and **Step 5** as the final model.

Method to train Hypernet

训练方法和 Faster 类似。

Speed Up

图 13 Speed up the network

在测试的时候,由于需要产生大约 30K 个 roi,每个 roi 都通过后续的 3*3*4 的卷积层很耗费时间,所以可以将该卷积层提前到 ROipooling 之前,这样后面的 roi 就不需要再做 3*3*4 的卷积,测试 mAP 并没有损失太多。

3.Result

Table1 Result on Pascal_voc 2007

Approach	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	perso	n plant	sheep	sofa	train	tv
Fast R-CNN	70.0	77.0	78.1	69.3	59.4	38.3	81.6	78.6	86.7	42.8	78.8	68.9	84.7	82.0	76.6	69.9	31.8	70.1	74.8	80.4	70.4
Faster R-CNN	73.2	76.5	79.0	70.9	65.5	52.1	83.1	84.7	86.4	52.0	81.9	65.7	84.8	84.6	77.5	76.7	38.8	73.6	73.9	83.0	72.6
HyperNet(AlexNet)	65.9	70.8	75.2	58.2	57.7	40.5	77.6	76.9	74.9	41.3	71.8	66.9	73.7	79.8	75.9	70.9	35.2	62.4	69.2	74.9	63.6
HyperNet	76.3	77.4	83.3	75.0	69.1	62.4	83.1	87.4	87.4	57.1	79.8	71.4	85.1	85.1	80.0	79.1	51.2	79.1	75.7	80.9	76.5
HyperNet-SP	74.8	77.3	82.0	75.4	64.1	63.5	82.5	87.4	86.6	55.1	79.3	71.5	81.4	84.2	77.6	78.4	45.5	77.4	73.2	78.7	74.8

Table2 Result on Pascal_voc 2012

Approach	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
Fast R-CNN	68.4	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	65.7	80.4	64.2
Faster R-CNN	70.4	84.9	79.8	74.3	53.9	49.8	77.5	75.9	88.5	45.6	77.1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5
NoC	68.8	82.8	79.0	71.6	52.3	53.7	74.1	69.0	84.9	46.9	74.3	53.1	85.0	81.3	79.5	72.2	38.9	72.4	59.5	76.7	68.1
HyperNet	71.4	84.2	78.5	73.6	55.6	53.7	78.7	79.8	87.7	49.6	74.9	52.1	86.0	81.7	83.3	81.8	48.6	73.5	59.4	79.9	65.7
HyperNet-SP	71.3	84.1	78.3	73.3	55.5	53.6	78.6	79.6	87.5	49.5	74.9	52.1	85.6	81.6	83.2	81.6	48.4	73.2	59.3	79.7	65.6