Intégration.

I. Aire sous une courbe : Intégrale d'une fonction continue et positive.

Le plan étant muni d'un repère orthogonal (O, \vec{i} , \vec{j}), on définit les points I, J, K tels que $\overrightarrow{OI} = \overrightarrow{i}$, $\overrightarrow{OJ} = \overrightarrow{j}$ et OIKJ soit un rectangle.

L'aire du rectangle OIKJ définit alors l'unité d'aire (u.a.).

Définition : Soit f une fonction continue et positive sur un intervalle [a;b] et C sa courbe représentative dans un repère (O, \vec{i} , \vec{j}).

L'intégrale de a à b de f est le réel, noté $\int\limits_{-\infty}^{v} f(x) \mathrm{d}x$, égal à l'aire, exprimée en unités d'aire, du domaine D délimité par C_f^a , l'axe des abscisses et les droites d'équation x=a et x=b.

a et b sont appelés les bornes de l'intégrale et x la variable d'intégration. x est une variable muette : elle n'intervient pas dans le résultat. On peut la remplacer par d'autres lettres. $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(u) du$.

lettres.
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(u) du$$

Exemple 1 : Déterminer les intégrales suivantes :
a.
$$\int_{1}^{2} 3 dx$$
 b. $\int_{-1}^{3} x + 2 dx$ c. $\int_{-2}^{3} |x| dx$.

Exemple 2 : Calculer l'intégrale $I = \int_0^4 E(x) dx$ où E(x) désigne la partie entière de x .

Remarque : Pour toute fonction f continue et positive, et pour tout a , on a $\int_{a}^{a} f(x) dx$.

II. Intégrale d'une fonction continue de signe quelconque.

D'une manière plus générale, l'intégrale d'une fonction f continue sur un intervalle [a; b] est l'aire algébrique du domaine compris entre la courbe représentative de f et l'axe des abscisses.

a. Intégrale d'une fonction continue positive.

Définition : Si f est une fonction continue et négative sur un intervalle [a;b], on définit l'intégrale de a à b de f par $\int\limits_a^b f(x) \mathrm{d}x = -A$ où A est l'aire du domaine D délimité par la courbe C représentant f, l'axe des abscisses et les droites d'équation x=a et x=b.

Exemple 3 : Calculer les intégrales suivantes :

$$A = \int_{0}^{2^{1}} -5 \, dx$$
$$B = \int_{1}^{3} -2x + 1 \, dx$$

b. Intégrale d'une fonction de signe quelconque :

Définition : Si f est une fonction continue changeant de signe sur [a;b], on découpe l'intervalle en intervalles partiels sur lesquels f garde un signe constant et on applique les définitions vues précédemment.

Exemple 4: Calculer l'intégrale suivante $C = \int_{0}^{6} -0.5 x + 1 dx$.

Dans le cas où a et b sont quelconques :

Soit f une fonction continue sur un intervalle I, alors pour tous réels a et b de I,

si
$$a \ge b$$
, on prendra par convention
$$\int_a^b f(x) dx = -\int_b^a f(x) dx.$$

si
$$a=b$$
, on prendra par convention $\int_{a}^{a} f(x) dx = 0$.

III. Intégrales et primitives.

Théorème : Soit f est une fonction continue un intervalle I, la fonction F définie sur I $F(x) = \hat{\int} f(t) dt$ est l'unique primitive de f sur I s'annulant en a.

Démonstration:

Preuve: Nous restreindrons cette démonstration au cas où f est strictement croissante sur l'intervalle I = [a;b].

Soit
$$x_0$$
 et $x_0 + h$ deux réels de $[a;b]$
On a $F(x_0) = \int_a^{x_0} f(t) dt$ et $F(x_0 + h) = \int_a^{x_0 + h} f(t) dt$.

1er cas : h>0.

On a alors $hf(x_0) \leq F(x_0+h) - F(x_0) \leq hf(x_0+h)$

$$\iff f(x_0) \leqslant \frac{F(x_0+h) - F(x_0)}{h} \leqslant f(x_0+h)$$

f étant continue, on a $\lim_{h\to 0, h>0} f(x_0+h)=f(x_0)$.

Donc, d'après le théorème des gendarmes, $\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$.

2éme cas : h<0.

$$\begin{array}{l} -hf\left(x_{0}+h\right) \leqslant F\left(x_{0}+h\right) - F\left(x_{0}\right) \leqslant -hf\left(x_{0}\right) \\ <=> -f\left(x_{0}+h\right) \geqslant \frac{F\left(x_{0}\right) - F\left(x_{0}+h\right)}{h} \geqslant -f\left(x_{0}\right) \\ <=> f\left(x_{0}+h\right) \leqslant \frac{F\left(x_{0}+h\right) - F_{\left(x_{0}\right)}}{h} \leqslant f\left(x_{0}\right) \end{array}$$

On obtient donc en utilisant les mêmes arguments que précédemment :

$$\lim_{h\to 0,\,h<0}\frac{F\left(x_0+h\right)-F\left(x_0\right)}{h}=f\left(x_0\right).$$

 $\text{Donc, pour tout } \ x_0 \ \in \ \left[\ a \ ; b \ \right], \ \ \lim_{h \to 0} \frac{F\left(x_0 + h\right) - F\left(x_0\right)}{h} = f\left(x_0\right).$

D'où F est dérivable sur [a;b], et pour tout $x \in [a;b]$, F'(x) = f(x).

Propriété : Soit f une fonction définie, continue, positive sur un intervalle [a;b]. Si F est une primitive de f sur [a;b], on a $\int_{a}^{b} f(x) dx = F(b) - F(a)$.

Preuve:

Soit f une fonction définie, continue et positive sur [a;b], alors d'après le théorème précédent, la fonction G définie sur [a;b] par $G(x) = \int_{a}^{x} f(t) dt$ est une primitive de fsur [a;b].

Si F est une primitive quelconque de f sur [a;b], alors il existe $k \in \mathbb{R}$ tel que G(x)=F(x)+k pour tout $x \in [a;b]$.

Or
$$G(a) = \int_{a}^{a} f(t) dt = 0$$
 donc $k = -F(a)$.

On a donc pour tout $x \in [a;b]$, $\int_{a}^{x} f(t) dt = F(x) - F(a)$.

Soit en prenant x=b, $\int_{a}^{b} f(t) dt = F(b) - F(a)$.

t étant une variable muette, on obtient $\int_{a}^{b} f(x) dx = F(b) - F(a)$.

Remarque : La quantité F(b)-F(a) se note souvent $[F(x)]_a^b$ et ainsi

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Exemple 5: Déterminer les intégrales suivantes :

$$A = \int_{0}^{4} x^{2} dx$$

$$B = \int_{-2}^{3} e^{x} dx.$$

$$C = \int_0^1 \frac{e^x}{e^x + 1} dx$$

IV. Propriétés.

a. Linéarité.

Propriété : Soient f et g deux fonctions continues sur un intervalle I et λ un nombre réel quelconque.

Pour tous nombres réels a et b appartenant à I,

•
$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
•
$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

•
$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

On parle de la linéarité de l'intégrale.

Démonstration : Soient F et G deux primitives sur I respectivement de f et g.

Alors F+G est une primitive de f+g sur I et λF est une primitive de λf sur I.

$$\int_{a}^{b} f(x) + g(x) dx = [F(b) + G(b)] - [F(a) + G(a)] = F(b) - F(a) + G(b) - G(a) = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} \lambda f(x) dx = [\lambda F(b) - \lambda F(a)] = \lambda (F(b) - F(a)) = \lambda \int_{a}^{b} f(x) dx$$

Exemple 6: On considère les intégrales A et B définies par :

$$A = \int_{0}^{\frac{\pi}{4}} \cos^{2} x \, dx \text{ et } B = \int_{0}^{\frac{\pi}{4}} \sin^{2} x \, dx.$$

Calculer A+B

b. Relation de Chasles.

Propriété : Soit f une fonction continue sur un intervalle I. Pour tous nombres réels a et b, c appartenant à I,

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

Exemple 7: Déterminer la valeur de l'intégrale suivante :

$$A = \int_{-2}^{5} |x| - 2 \, \mathrm{d} x$$

c. Positivité.

Propriété : Soit f une fonction continue sur un intervalle I. Soient a et b deux réels appartenant à I tel que $a \le b$.

1. Si
$$f(x) \ge 0$$
 pour tout $x \in [a;b]$, alors $\int_{a}^{b} f(x) dx \ge 0$.

1. Si
$$f(x) \ge 0$$
 pour tout $x \in [a;b]$, alors $\int_a^b f(x) dx \ge 0$.
2. Si $f(x) \le 0$ pour tout $x \in [a;b]$, alors $\int_a^b f(x) dx \le 0$.

Justification :Soit $f(x) \ge 0$ pour tout $x \in [a;b]$, alors $\int_a^b f(x) dx$ exprime l'aire en unités d'aire sous C_f , donc $\int_a^b f(x) dx \ge 0$.

c. Ordre.

Propriété : Soient f et g deux fonctions continues sur un intervalle I. Soient a et bdeux réels appartenant à I tel que $a \le b$.

Si
$$f(x) \le g(x)$$
 pour tout $x \in [a;b]$, alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

Démonstration : Soit ϕ une fonction définie sur [a;b] par $\phi(x)=g(x)-f(x)$.

Pour tout $x \in [a;b]$, $\phi(x) \ge 0$ d'où d'après le 1, $\int_a^b \phi(x) dx \ge 0$ donc

$$\int_{a}^{b} g(x) - f(x) dx \ge 0.$$

On a donc par linéarité de l'intégrale, $\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$.

Exemple 8:

- 1. Démontrer que pour tout réel $t \in [0;1]$, on a $\frac{t}{1+t^2} \le t$
- 2. En déduire que $\int_{0}^{1} \frac{t}{1+t^{2}} dt \le \frac{1}{2}$

d. Valeur moyenne.

Définition : Soit f une fonction continue sur un intervalle [a;b] $(a \ne b)$. La valeur moyenne de la fonction f sur [a;b] est le nombre μ défini par $\mu = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d} x$.

Interprétation dans le cas d'une fonction positive :

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx \iff \int_{a}^{b} f(x) dx = \mu(b-a).$$

La valeur moyenne de f sur [a;b] est le réel μ tel que le rectangle de dimension μ et b-a ait la même aire que le domaine D délimité par C_f , l'axe des abscisses et les droites d'équation x=a et x=b.

Exemple 8: Déterminer la valeur moyenne de la fonction sinus sur l'intervalle $[0;\pi]$. $\mu = \frac{1}{2\pi}$

e. Inégalités de la moyenne.

Propriété : Soient f et g deux fonctions continues sur un intervalle I. Soient a et b deux réels appartenant à I tel que $a \le b$.

S'il existe deux réels m et M tels que pour tout $x \in [a;b]$, $m \le f(x) \le M$, alors

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$$

Démonstration : Pour tout $x \in [a;b]$, $m \le f(x) \le M$ et donc, d'aprés la propriété de l'ordre des intégrales :

$$\int_{a}^{b} m \, \mathrm{d} \, x \leq \int_{a}^{b} f(x) \, \mathrm{d} \, x \int_{a}^{b} M \, \mathrm{d} \, x$$

Or
$$\int_{a}^{b} m dx = m(b-a)$$
 et $\int_{a}^{b} M dx = M(b-a)$, d'où l'encadrement de la moyenne.

Exemple 9: Soit f la fonction définie sur [1;2] par $f(x) = \frac{e^x}{r^2}$.

- 1. Étudier les variations de la fonction f sur l'intervalle [1;2].
- 2. Démontrer que pour tout $x \in [1;2]$, $\frac{e^2}{4} \le \frac{e^2}{2} \le e$.
- 3. En déduire un encadrement de $\int_{-\infty}^{\infty} \frac{e^x}{x^2} dx$

V. Intégration par parties.

Théorème : Soient u et v deux fonctions définies, dérivables et dont les dérivées sont continues sur un intervalle [a, b], alors :

$$\int_{a}^{b} u(x)v(x)' dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx$$

Démonstration : Soient u et v deux fonctions définies et dérivables sur un intervalle |a,b|.

La fonction uv est donc dérivable et continue et on a de plus que la fonction (uv)' est continue et dérivable sur l'intervalle [a, b]:

pour tout
$$x \in [a,b]$$
, $(uv)'(x)=u'(x)v(x)+u(x)v'(x)$

Ainsi, en passant à l'intégrale, on obtient :

Affish, en passant à l'integrale, on obtient :
$$\int_{a}^{b} u(x)v(x)dx = \int_{a}^{b} u'(x)v(x) + u(x)v'(x)dx = \int_{a}^{b} u'(x)v(x)dx + \int_{a}^{b} u(x)v'(x)dx$$

La fonction uv étant une primitive de la fonction (uv), on obtient :

$$[u(x)v(x)]_{b}^{a} = \int_{a}^{b} u'(x)v(x) dx + \int_{a}^{b} u(x)v'(x) dx$$

Et ainsi, on a
$$\int_a^b u(x)v(x)' dx = [u(x)v(x)]_a^b - \int_a^b u'(x)v(x) dx$$

Exemple 10: Calculer les intégrales suivantes :

$$A = \int_{0}^{3} x e^{x} dx \qquad B = \int_{-1}^{2} 2x(8x+2)^{2} dx \qquad C = \int_{0}^{1} 4x e^{3x-1} dx$$