Générateur de filtres numériques RIF

Presentation

Stagiaire: Ludovic Noury

Encadrants: Habib Mehrez, Hassan Aboushady

Remerciements: Roselyne Avot, Yannick Dumonteix, Francois Durbin

ludovic.noury@asim.lip6.fr

ASIM/LIP6

Objectif

Concevoir un générateur de filtres numériques à Réponse Impulsionnelle Finie (RIF).

À partir des coefficients déterminant le filtre le générateur crée la netlist correspondante.

Le filtre généré n'est pas reconfigurable, les coefficients sont fixés à la génération.

Plan

- Environnement de développement
- Filtre RIF Structures de filtres RIF
- Constats
- Solutions optimisées
- Étude de la dynamique
- Paramètres du générateur
- Méthodologie de validation
- Validation
- Conclusion & perspectives

Environnement de développement

- Alliance,
- Genoptim,
- Outils GNU,
- Matlab,
- SystemC,
- Tas.

Gabarit

Filtre RIF

Structures de filtres

Structure directe:

Structure transposée :

On sélectionne la structure directe (conso & optimisations).

Constat: multiplication (1/2)

1er constat : multiplication par des constantes

■ Idée :

Remplacer les multiplieurs complet par des multiplieurs par constante.

Constat: multiplication (2/2)

Constante	Surface μM^2		Délai ns		Consommation $\mu W/Mhz$	
Multiplieur classique	158 642	réf.	4.77	réf.	139	réf
0.707 107	36 939	77%	3.00	37%	29	79%
0.92388	25 836	84%	2.21	54%	21	85%
0.382683	18 417	88%	1.53	68%	13	91%
0.980785	16 838	89%	1.61	66%	14	90%
0.83147	46 387	71%	3.29	31%	35	75%
0.55 557	24 530	85%	1.93	60%	17	88%
0.19509	16811	89%	1.55	68%	12	91%

Figure 1: Performances comparées d'un multiplieur complet avec un multiplieur par constante avec encodage en base multiple (application sur la DCT).

Constat: sommation

2ème constat : plusieurs additions

■ Idée :

Remplacer l'ensemble des additionneurs par un seul opérateur de sommation.

⇒ Arithmétique redondante ou arbres de Wallace.

Solutions optimisées : redondante

Comparaison sans et avec arithmétique redondante :

Solutions optimisées: Wallace (1/2)

Avec arbres de Wallace:

On choisit cette solution.

Solutions optimisées: Wallace (2/2)

- l'utilisation de l'algorithme de Dadda assure une complexité en $O(log_{3/2}(N))$.
- $\blacksquare u_0 = 2; u_{n+1} = \left| \frac{3}{2} u_n \right|$
- Soit la suite :

$$u_0 = 2, u_1 = 3, u_2 = 4, u_3 = 6, u_4 = 9, u_5 = 13, \dots$$

Étude de la dynamique (1/2)

- 1. Entrée sur t_x bits.
- 2. Sortie mutliplieurs sur au plus $t_{mul} = t_x + t_c 1$ bits.
- 3. Sortie arbre de Wallace sur $t_{mul} + log_2(N)$ (Erreur : pas extension signe jusqu'au msb : $t_{mul} + log_2(N) 1$).
- 4. Après extension de signe sur la taille sortie max, on obtient : $t_{mul} + 2log_2(N)$.

Étude de la dynamique (2/2)

- lacktriangle Coefficients dans]-1;1[
- Échantillon max : $x_{max} = pow(2, t_x 1) 1$
- Tailles maximales de sortie :

$$y_{min} = x_{max} \cdot \sum_{a_i < 0} a_i \quad y_{max} = x_{max} \cdot \sum_{a_i > 0} a_i$$

- $\blacksquare \Rightarrow$ Extension de signe jusqu'à ty_{max} .
- Interdiction de toute croissance dans arbre de Wallace.

Méthode de Fadavi-Ardekani

Sommation à effectuer

Solution avec extention de signe :

Solution avec la méthode de Fadavi-Ardekani

Calcul de la constante de signe :

Ajout de la constante de signe et inversion des bits de signe :

Arrondi du résultat (1/3)

- t_{yf} : taille de la partie fractionnaire de la sortie.
- L'arrondi dépend du bit de signe b_s et du MSB de la partie à couper b_a . Avec r_g la partie du résultat à arrondir on a :
 - $lackbox{\bullet} b_s = 0, b_a = 0$: on garde r_g ,
 - $lackbox{1}{\hspace{-0.1cm}\blacksquare}\,b_s=0,b_a=1$: on doit arrondir à r_g+1 ,
 - $\bullet b_s = 1, b_a = 0$: on garde r_g ,
 - \bullet $b_s = 1, b_a = 1$: on doit arrondir à $r_q 1$.

Arrondi du résultat (2/3)

- II existe un additionneur 3 sorties qui rend A+B, A+B+1 et A+B+2,
- On enleve 1 (décalé) à la constante de Fadavi
 on obtient en sortie de l'arbre :

$$S0 + S1 = r_g - 1$$
 (vérification à la compilation)

Arrondi du résultat (3/3)

Structure obtenue

Paramètres du générateur

- nom
- -cf f_coeffs
- -tx t_echant
- -tc t_coeffs
- -tyf t_pf_sortie
- -nf format -pat format -eu -ds -rm (paramètres Genoptim)

Méthodologie de validation (1/2)

Méthodologie de validation (2/2)

Validation: filtre passe-bas (1/4)

Ondulation en bande-passante (2/4)

Ondulation hors bande-passante (3/4)

Validation: filtre passe-bas (4/4)

- 19 coefficients.
- Chemin critique $22421 \ pS$ (entre reg11 et Y[26]), soit $44,60 \ Mhz$ (technologie prol035).
- 56586 transistors,
- Différence d'ondulation maximum en bande passante : $0,001\ dB$.
- Différence d'ondulation maximum hors bande passante : $1,5\ dB$.

Validation: filtre passe-bande (1/6)

Ondulation en bande-passante (2/6)

Ondulation hors bande-passante 1 (3/6)

Ondulation hors bande-passante 2 (4/6)

Validation: filtre passe-bande (5/6)

Caractéristiques du filtre :

- Longueur de la réponse impulsionnelle : 51.
- Fin bande de coupure 1 : 7200 Hz.
- Début bande passante : 9600 Hz.
- Fin bande passante : 12000 Hz.
- lacksquare Début bande de coupure 2 : 14400~Hz.
- \blacksquare Ondulation maximum en bande passante : 1 dB.
- Ondulation maximum hors bande passante 2 : 60 dB.
- Ondulation maximum hors bande passante 2 : 80 dB.

Validation: filtre passe-bande (6/6)

Résultats obtenus :

- Chemin critique $26014 \ ps$ soit $38,44 \ MHz$,
- 136555 transistors,
- Différence d'ondulation maximum en bande passante : $0,01 \ dB$.
- Différence d'ondulation maximum hors bande passante 1 : $0,3\ dB$.
- Différence d'ondulation maximum hors bande passante 2 : $3,1\ dB$.

Validation: filtre passe-haut (1/5)

Ondulation en bande-passante (2/5)

Ondulation hors bande-passante (3/5)

Validation: filtre passe-haut (4/5)

Caractéristiques du filtre :

- Longueur de la réponse impulsionnelle : 67.
- Fin bande coupure : 9600 Hz.
- Début bande passante : 12000~Hz.
- \blacksquare Ondulation maximum hors bande passante : 80~dB.
- \blacksquare Ondulation maximum en bande passante : 1 dB.

Validation: filtre passe-haut (5/5)

Résultats obtenus :

- Chemin critique 26365 ps soit 37,93 Mhz.
- 178898 transistors.
- Différence d'ondulation maximum en bande passante : $0,001 \ dB$.
- Différence d'ondulation maximum hors bande passante : 7 dB.

Validation: filtre stop-bande (1/6)

Ondulation hors bande-passante (2/6)

Ondulation en bande-passante 1 (3/6)

Ondulation en bande-passante 2 (4/6)

Validation: filtre stop-bande (5/6)

Caractéristiques du filtre :

- Longueur de la réponse impulsionnelle : 47.
- Fin bande passante 1 : 7200 Hz.
- Début bande stop : $9600 \ Hz$.
- Fin bande stop : 12000 Hz.
- Début bande passante 2: 14400~Hz.
- \blacksquare Ondulation maximum hors bande passante : 60 dB.
- Ondulation maximum en bande passante 1 : 0.5 dB.
- Ondulation maximum en bande passante 2 : 1 dB.

Validation: filtre stop-bande (6/6)

Résultats obtenus :

- Chemin critique 25103 ps soit 39,84 MHz.
- 129462 transistors.
- Différence d'ondulation maximum en bande passante 1 : $0,001 \ dB$.
- Différence d'ondulation maximum en bande passante 2 : $0,01\ dB$.
- lacksquare Différence d'ondulation maximum hors bande passante : 1~dB.

Conclusion & Perspectives

- Un générateur de filtres RIF a été réalisé et validé, néanmoins il reste quelques finitions à apporter :
 - Regrouper toutes les sommes dans un seul arbre de Wallace (pas possible avec ancien Wallace),
 - En option: signal reset, valid in, valid out,
 - Comparer avec l'approche redondante,
 - Générer les informations de pré-placement,
 - Automatiser la séparation en plusieurs filtres.