線形性

1.
$$f(cx) = cf(x)$$

2.
$$f(a+a) = f(a) + f(b)$$

ヤコビアン

$$J = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

非線形状態方程式

$$x_{t/t-1} = f(x_{t-1/t-1}, u_{t-1})$$

非線形観測方程式

$$z_{t/t-1} = h(x_{t/t-1})$$

状態方程式 (推定誤差)

$$\Delta x_{t/t-1} = F\Delta x_{t-1/t-1} + G\Delta u_{t-1}$$

観測方程式 (観測誤差)

$$\Delta z_{t/t-1} = H \Delta x_{t/t-1}$$

$$f(x) \simeq f(x_0) + J(x)(x - x_0)$$

$$f(x) - f(x_0) \simeq J(x)(x - x_0)$$

$$\Delta y = J(x)\Delta x$$

ヤコビアン

$$F = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$

$$G = \begin{pmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} & \dots & \frac{\partial f_1}{\partial u_m} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} & \dots & \frac{\partial f_2}{\partial u_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \frac{\partial f_n}{\partial u_2} & \dots & \frac{\partial f_n}{\partial u_m} \end{pmatrix}$$

$$H = \begin{pmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \dots & \frac{\partial h_1}{\partial x_n} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \dots & \frac{\partial h_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_n}{\partial x_1} & \frac{\partial h_n}{\partial x_2} & \dots & \frac{\partial h_n}{\partial x_n} \end{pmatrix}$$