Homework 3

Andrew Tindall Analysis I

September 27, 2019

Problem 1. Prove that every metric space is paracompact; that is, every open covering admits a locally finite refinement.

Proof. This was proven first by A.H. Stone in 1948, in [3]. The following proof follows a 2010 proof by Akhil Mathew, from [1], which in turn adapts a 1968 proof by M. H. Rudin in [2].

Let (E,d) be a metric space, and let $\{U_i\}_{i\in I}$ be an open covering of E in the metric topology. We show that there is a covering $\{V_j\}_{j\in J}$, such that

- $\bullet \bigcup_{j \in J} V_j = E$
- For each $j \in J$, there is some $i \in I$ such that $V_j \subset U_i$
- For each $x \in E$, the collection of all V_j such that $x \in V_j$ is finite.

Our open cover $\{U_i\}_{i\in I}$ is not necessarily countable, as our metric space is not necessarily second countable (on a metric space, this is equivalent with being separable). However, by taking the axiom of choice, we may assume that the set I is well-ordered.

Now, for each U_i we define a sequence of sets $V_i^n = \{x \in U_i \mid d(x, E \setminus U_i) \ge 2^- n\}$. A point in V_i^n is a point of U_i which is not too close to the boundary of U_i . Taking the union of V_i^n over all $n \in \mathbb{N}$ gives us U_i again.

Now, for each $i \in I$, define the set

$$W_i^n = V_i^n - \bigcup_{j < i} V_j^{n+1}$$

This gets rid of redundancies while still covering E: For each point x, there is some U_i which contains x. Because U_i is open, the distance from x to the exterior of U_i must be positive, so it must be greater than some 2^{-n} . Therefore, x is contained in V_i^m for all $m \ge n$, and not in any V_j^{m+1} for any j < i. Therefore, $x \in W_i^m$ for all $m \ge n$. It is also not in any W_k^m for k > i, $m \ge n$.

However, the W_i^m are not necessarily open. We can take a small neighborhood of each;

$$Z_i^n = \left\{ x \in E \mid d(x, W_i^n) < 2^{-n-3} \right\}$$

These are open sets, and like the W_i^n s, each x is contained in only one Z_i^n for large enough n. Further, because the radius 2^{-n-3} around W_i^n is strictly smaller than 2^{-n} , each Z_i^n is contained in U_i , so the collection $\{\{Z_i^n\}_{i\in I}\}_{n=1}^{\infty}$ is a refinement of $\{U_i\}$.

Now, it is in fact true that this cover is locally finite - this construction follows closely the construction done by M. E. Rudin in [2]. The proof, which I do not understand well enough to reproduce here, shows that for any x, after choosing some $Z_i^n \ni x$, and j such that the open ball $B_{2^{-j}}(x) \subset Z_i^n$, there are no $Z_i^k \supset B_{2^{-j}}(x)$ for $k \ge n+j$, and that for k < n+j, there is only one such Z_i^k ; therefore any open ball around x is contained in finitely many of the open sets Z_i^n , and it is a locally finite cover.

Problem 2. Recall that a metric space Y is an extensor, if for every continuous function $f: A \to Y$ defined on a close dsubset A of a metric space Z, there exists a continuous function $\tilde{f}: X \to Y$ such that $\tilde{f}(x) = f(x)$ for every $x \in A$. Prove that:

- (i) A space homeomorphic to an extensor is also an extensor.
- (ii) A retract of an extensor is an extensor.
- (iii) if Y_1 and Y_2 are extensors, then $Y_1 \times Y_2$ is an extensor.
- *Proof.* (i) Let Y be an extensor, and let Z be homeomorphism $\varphi: Y \to Z$. Now, take some closed subspace A of a metric space X, and let $f: A \to Z$ be a continuous function.

We see then that $\varphi^{-1} \circ f$ is a continuous function $A \to Y$, and thus that there is a continuous function $\varphi^{-1} \circ f : X \to Y$ which agrees with $\varphi^{-1} \circ f$ on A. Composing with φ , we see that $\varphi \circ \varphi^{-1} \circ f$ is a continuous function $X \to Z$, such that for any $x \in A$,

$$\varphi \circ \varphi^{-1} \circ f(x) = \varphi \circ \varphi^{-1} \circ f(x)$$
$$= f(x),$$

as desired.

(ii) Let Y be an extensor, and let $Z \subset Y$ be a retract of Y, with $\iota : Z \to Y$ be the inclusion map, and $\pi : Y \to Z$ a continuous projection such that $\pi \circ \iota = \mathrm{id}_Z$. Let A be a closed subset of a metric space X, and let $f : A \to Z$ be a continuous map.

Then $\iota \circ f$ is a continuous map $A \to Y$, and there exists some map $\iota \circ f : X \to Y$ which agrees with $\iota \circ f$ on A. Then, composing with π , we see that for any $x \in A$,

$$\pi \circ \iota \circ f(x) = \pi \circ \iota \circ f(x)$$
$$= f(x)$$

So Z is an extensor.

(iii) Let Y_1 , Y_2 be extensors, and let A be a closed subset of a metric space X, with map $f: A \to Y_1 \times Y_2$. By the universal property of the product, f is determined by two continuous maps $f_1: A \to Y_1$, and $f_2: A \to Y_2$. Because these two target spaces are

extensors, we have two maps $\tilde{f}_1: X \to Y_1$, and $\tilde{f}_2: X \to Y_2$, which agree with f_1 and f_2 , respectively, on A. Again, by the mapping property of the product, together these give us a map $\tilde{f}_1 \times \tilde{f}_2$, such that for any $x \in A$,

$$\tilde{f}_1 \times \tilde{f}_2(x) = (\tilde{f}_1(x), \tilde{f}_2(x))$$

= $(f_1(x), f_2(x))$
= $f(x)$

So the product space is also an extensor.

Problem 3. Find the norms of the following linear functionals on $\mathcal{C}[-1,1]$:

- (i) $T(f) := \int_0^1 f(x) dx$,
- (ii) $T(f) := \int_{-1}^{1} (\operatorname{sgn}(x)) f(x) dx$,
- (iii) $T(f) := \int_{-1}^{1} f(x)dx f(0),$
- (iv) $T(f) := \frac{f(\varepsilon) + f(-\varepsilon) 2f(x)}{\varepsilon^2}$,
- (v) $T(f) := \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} f(1/n)$

Proof. (i) We show that ||T|| = 1. It is clear that it is at most one, as for any f with $\sup\{|f(x)|; x \in [-1, 1]\} = 1$, the value of |T(f)| is at most 1:

$$|T(f)| = \left| \int_0^1 f(x) dx \right|$$

$$\leq \int_0^1 |f(x)| dx$$

$$\leq \int_0^1 dx$$

$$= 1$$

This bound is attained, at for example the function

$$f(x) = \begin{cases} -\text{erf}(1/x) & 1 \le x < 0\\ 1 & 0 \le x \le 1. \end{cases}$$

Where erf is the real error function, $\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$. ¹

¹I'm kidding - just take f(x) = 1.

(ii) The value of ||T|| is bounded above in this case by 2, as for any f such that |f| = 1, the value of $|\operatorname{sgn}(f(x))|$ is bounded by 1, giving us

$$|T(f)| = \left| \int_{-1}^{1} \operatorname{sgn}(f(x)) dx \right|$$

$$\leq \int_{-1}^{1} |\operatorname{sgn}(f(x))| dx$$

$$\leq \int_{-1}^{1} 2 dx$$

$$= 2$$

This bound is not attained, but we may approach it with a sequence such as $\{f_n\}_{n\geq 1}$, where f_n is defined as:

$$f_n(x) = \begin{cases} -1 & x < -\frac{1}{n} \\ nx & -\frac{1}{n} \le x \le \frac{1}{n} \\ 1 & \frac{1}{n} < x \end{cases}$$

The integral on the region $\left[-\frac{1}{n}, \frac{1}{n}\right]$ is 0, so the value of $|T(f_n)|$ is $2-\frac{2}{n}$, which approaches 2 as $n \to \infty$. Therefore the value of |T| is 2.

(iii) The value of ||T|| in this case is 3. It is bounded above by this value; for f such that |f| = 1, it is true that $|f(x)| \le 1$, and that $|f(0)| \le 1$, so

$$|T(f)| = \left| \int_{-1}^{1} f(x)dx - f(0) \right|$$

$$\leq \int_{-1}^{1} |f(x)|dx + |f(x)|$$

$$\leq 2 + 1$$

This value is not attained at any function in C[-1,1], but we may approach it with a sequence of functions $\{f_n\}$ like the following:

$$f_n(x) = \begin{cases} 1 & -1 \le x < -\frac{1}{n} \\ -2nx - 1 & -\frac{1}{n} \le x \le 0 \\ 2nx - 1 & 0 < x \le \frac{1}{n} \\ 1 & \frac{1}{n} < x \end{cases}$$

Again, the integral of such a function is 0 on $[-\frac{1}{n}, \frac{1}{n}]$. The value of $|T(f_n)|$ is $2 - \frac{2}{n} + 1$, which approaches 3 as $n \to \infty$.

(iv) The value of ||T|| can be bounded above by $4/\varepsilon^2$, since $|f(\varepsilon)| \le 1$, and the same for $|f(-\varepsilon)|$ and |f(0)|. In fact, the value $|T(f)| = 4/\varepsilon^2$ is attained, at any function where

 $f(\varepsilon)=f(-\varepsilon)=-f(0)=1,$ or at the negative of such a function. A continuous, norm-1 example is

$$f(x) = \begin{cases} 1 & -1 \le x \le -\varepsilon \\ -2x/\varepsilon - 1 & -\varepsilon < x \le 0 \\ 2x/\varepsilon - 1 & 0 < x \le \varepsilon \\ 1 & \varepsilon < x \le 1 \end{cases}$$

The value of $f(\varepsilon)$ and $f(-\varepsilon)$ is 1, and the value of f(0) is -1, so $|T(f)| = (1+1-(-2))/\varepsilon^2 = 4/\varepsilon^2$.

(v) The value of ||T|| is $\pi^2/6$. We can bound by this value, because, given some f such that |f| = 1,

$$|T(f)| = \left| \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} f(1/n) \right|$$

$$\leq \sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^2} f(1/n) \right|$$

$$\leq \sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$= \frac{\pi^2}{6}$$

This value is not attained, as f would need to oscillate infinitely often between -1 and 1 as $1/n \to 0$. However, we can approximate such a function with the following sequence $\{f_m\}$:

$$f_m(x) = \begin{cases} 0 & -1 \le x < \frac{2}{2m+1} \\ \cos(\pi/x) & \frac{2}{2m+1} \le x \le 1 \end{cases}$$

This function is continuous, since $f(2/(2m+1)) = \cos((2m+1)\pi/2) = 0$, and also $\cos(1/x)$ is continuous away from 0. For any $n \le m$,

$$f_m(1/n) = \cos(n\pi)$$
$$= (-1)^n$$

And, for any $n \ge m+1$, $f_m(1/n)=0$. Therefore, the value of $|T(f_m)|$ is $\sum_{n=1}^m \frac{1}{n^2}$, which approaches $\frac{\pi^2}{6}$ as $m \to \infty$.

Problem 4. Prove that the space $C_b(\mathbb{R}^N)$ of bounded continuous functions on \mathbb{R}^N , with the supremum norm $\|\cdot\|_{\infty}$, is not separable.

Proof. We exhibit an uncountable set Ω of elements of $C_b(\mathbb{R}^N)$, such that each element of Ω is distance 1 from each other element. Let $\Omega' = 2^{\mathbb{N}}$, the uncountable power set of the natural numbers, and let $\Omega = \{f_U\}_{U \in \Omega'}$ be the set of functions f_U indexed by subsets U of the naturals, defined as follows.

Let B_n , for $n \in \mathbb{N}$, be the following bump function on \mathbb{R} :

$$B_n(x) = \begin{cases} 0 & x \notin [n, n+1] \\ 1 - 2|(x - n - 1/2)| & x \in [n, n+1] \end{cases}$$

The maximum value of $B_n(x)$ on [n, n+1] is 1, it is 0 elsewhere, and it is continuous. Then, for any subset U of \mathbb{N} , let $f'_U : \mathbb{R} \to \mathbb{R}$ be defined as follows:

$$f'_{U}(x) = \begin{cases} 0 & \lfloor x \rfloor \notin U \\ B_{\lfloor x \rfloor}(x) & \lfloor x \rfloor \in U \end{cases}$$

So, if the nearest integer below x is in U, we take x to a bump function; otherwise, to zero. This is like the sum of the bump functions B_n over $n \in U$, but U might be infinite.

This defines an uncountable set of functions f'_U on \mathbb{R} ; we now define $\{f_U\}$ as the function sending $\{x_1,...x_N\}$ to $f'_U(x_1)$. This set $\{f_U\}_{U\in 2^{\mathbb{N}}}$ is an uncountable set of functions which are all distance 1 from each other.

The fact that two f_U , $f_{U'}$ are distance 1 apart for distinct U, U' follows from the fact that there must be some $n \in U \setminus U' \cup U' \setminus U$. Assume without loss of generality that $n \in U \setminus U'$; then

$$|f_U(n+1/2,0,\ldots 0) - f_{U'}(n+1/2,0,\ldots 0)| = |1-0|$$

= 1

This contradicts separability, because any countable subset could only intersect a countable number of balls of radius $\frac{1}{2}$ around these elements, meaning it could not be dense.

Problem L. et (X, d) be a metric space. Fix a reference point $x_0 \in X$ and let E be the vector space of all the Lipschitz continuous functions $f: X \to \mathbb{R}$ such that $f(x_0) = 0$. Define ||f|| to be the smallest Lipschitz constant of f, that is:

$$||f|| = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)}.$$

Prove that $(E, \|\cdot\|)$ is a Banach space.

Proof. We first show that $\|\cdot\|$ is a norm.

- $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0:
 - It is clear that the norm of x is nonnegative, because it is the supremum of a set of ratios of nonnegative numbers |f(x) f(y)| with positive numbers d(x, y). Now, if ||x|| = 0, then the value of
 - frac|f(x) f(y)|d(x,y) must be zero for each pair $y \neq x$, meaning |f(x) f(y)| is always zero, and that f is constant. Because $f(x_0)$ is required to be zero, this implies that f can only be the zero function.
- $\|\alpha f\| = |\alpha| \|f\|$: This follows from the fact that $|\alpha f(x) \alpha f(y)| = |\alpha| |f(x) f(y)|$, and that a nonnegative constant can be factored out of a supremum.

• $||f+g|| \le ||f|| + ||g||$: Pointwise, we see that

$$\frac{|(f+g)(x) - (f+g)(y)|}{d(x,y)} = \frac{|f(x) - f(y) + g(x) - g(y)|}{d(x,y)}$$
$$\leq \frac{|f(x) - f(y)|}{d(x,y)} + \frac{|g(x) - g(y)|}{d(x,y)}$$

Taking the supremum over all $x \neq y$, we see that indeed $||f + g|| \leq ||f|| + ||g||$.

We now need to show that the space is Banach with respect to the norm $\|\cdot\|$. Let f^k be a Cauchy sequence in this space; we need to construct a function f and then show that it lies in E and that it is the limit of the f^k s with respect to $\|\cdot\|$.

We first see that the Lipschitz constants of f^k must converge, as in any normed space the convergence of a sequence in $\|\cdot\|$ implies that the norms of the elements $\|f^k\|$ themselves converge, say to a value $L \in \mathbb{R}$.

Fix $x \neq x_0 \in X$; we wish to calculate f(x). We will see that the values $f^k(x)$ themselves converge as $k \to \infty$: Let $\varepsilon > 0$. By convergence of $||f^k||$ to L, we can find $n \in \mathbb{N}$ such that, for $k, l \geq n$, $\sup_{z \neq y} \frac{\left|(f^k - f^j)(z) - (f^k - f^j)(y)\right|}{d(z,y)} < \varepsilon/d(x,x_0)$. In particular,

$$\frac{\left| (f^k - f^j)(x) - (f^k - f^j)(x_0) \right|}{d(x, x_0)} < \frac{\varepsilon}{d(x, x_0)}$$

Since $f^k(x_0) = f^j(x_0) = 0$, this shows that $f^j(x) - f^k(x)$ converges to 0 as j and k go to ∞ , so this is a Cauchy sequence of real numbers and has a limit in \mathbb{R} , which we call f(x). If $x = x_0$, define f(x) = 0.

We now show that the function $x \mapsto f(x)$ is Lipschitz. Since the Lipschitz constants of the f^k converge to L, and the value of $f^k(x)$ converges pointwise to f(x), this means that we may bound the Lipschitz constant of f as follows:

$$\sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)} = \sup_{x \neq y} \frac{|\lim_{n \to \infty} (f^n(x)) - \lim_{m \to \infty} (f^m(y))|}{d(x, y)}$$

$$= \sup_{x \neq y} \frac{|\lim_{n \to \infty} (f^n(x) - f^n(y))|}{d(x, y)}$$

$$= \sup_{x \neq y} \lim_{n \to \infty} \frac{|f^n(x) - f^n(y)|}{d(x, y)}$$

$$\leq \lim_{n \to \infty} \sup_{x \neq y} \frac{|f^n(x) - f^n(y)|}{d(x, y)}$$

$$= L$$

Thus f is Lipschitz, with Lipschitz constant no greater than L.

Finally, we show that the functions f^n converge in Lipschitz norm to f - we wish to show that, as n goes to ∞ , the quantity

$$\sup_{x \neq y} \frac{|(f^n(x) - f(x)) - (f^n(y) - f(y))|}{d(x, y)}$$

goes to 0. Calculating:

$$\begin{split} \lim_{n \to \infty} \sup_{x \neq y} \frac{|(f^n(x) - f(x)) - (f^n(y) - f(y))|}{d(x,y)} &= \lim_{n \to \infty} \sup_{x \neq y} \lim_{m \to \infty} \frac{|(f^n(x) - f^m(x)) - (f^n(y) - f^m(y))|}{d(x,y)} \\ &\leq \lim_{n \to \infty} \lim_{m \to \infty} \sup_{x \neq y} \frac{|(f^n(x) - f^m(x)) - (f^n(y) - f^m(y))|}{d(x,y)} \end{split}$$

By Cauchy-ness of the sequence f^n in this norm, the last limit is equal to 0; therefore, the sequence converges to the limit f.

References

- [1] Mathew, Akhil. A Metric Space is Paracompact. Climbing Mount Bourbaki https://amathew.wordpress.com/2010/08/19/a-metric-space-is-paracompact/ August 19, 2010.
- [2] Rudin, Mary Ellen. A new proof that metric spaces are paracompact. Proceedings of the American Mathematical Society, Vol. 20, No. 2. (Feb., 1969), p. 603.
- [3] Stone, A.H. Paracompactness and Product Spaces. Bulletin of the AMS, Vol 54, Number 10, 1948.