Wylosowany zbiór

Krzywe ROC

Część klasyfikatorów nie posiada metody *predict_proba*, stąd dokładne narysowanie krzywych było niemożliwe.

Powierzchnie dyskryminacyjne

Posortowane estymatory według pola pod ROC

	fit_time	pred_time	асс	rec	prec	f1	roc
function							
ovr == SVC(probability=True)	0.107711	0.034904	0.910667	0.910667	0.912988	0.911033	0.940156
ovo == SVC(probability=True)	0.038219	0.048873	0.900000	0.900000	0.903230	0.900681	0.932998
ovo == SVC(kernel='linear', probability=True)	0.026927	0.012964	0.894667	0.894667	0.905290	0.896164	0.931745
ovo == LogisticRegression()	0.026927	0.001000	0.884000	0.884000	0.885181	0.884307	0.922544
ovo == Perceptron()	0.032913	0.002992	0.853333	0.853333	0.879084	0.856655	0.903089
ovr == SVC(kernel='linear', probability=True)	0.099732	0.013963	0.846667	0.846667	0.850004	0.847514	0.897727
ovr == LogisticRegression()	0.015960	0.000000	0.833333	0.833333	0.837274	0.834386	0.888514
ovr == Perceptron()	0.007977	0.000000	0.645333	0.645333	0.523168	0.571796	0.759168

Wnioski:

Klasyfikatory, w których użyto strategii OvO, wyróżniają się średnio większą wartością AUC, wyjątkiem jest klasyfikator SVC. Dla tych samych klasyfikatorów użycie strategii OvO w porównaniu do OvR powoduje więcej załamań prostych wyznaczających granice na wykresach powierzchni dyskryminacji. Powodem tego może być użycie większej liczby estymatorów w procesie klasyfikacji(każda klasa z każdą). Klasyfikatory, które wyraźnie tworzą liniowe granice decyzyjne to: SVC z jądrem liniowym, LogisticRegression i Perceptron(tylko dla OvR).