Goodness-of-fit Measures to Compare Observed and Simulated Values with hydroGOF

Mauricio Zambrano-Bigiarini

Aug 2011

1 Installation

Installing hydroGOF:

> install.packages("hydroGOF")

2 Setting Up the Environment

- 1. Loading the hydroGOF library, which contains data and functions used in this analysis.
 - > library(hydroGOF)
- 2. Loading observed streamflows of the Ega River (Spain), with daily data from 1961-Jan-01 up to 1970-Dec-31
 - > require(zoo)
 > data(EgaEnEstellaQts)
 > obs <- EgaEnEstellaQts</pre>
- Generating a simulated daily time series, initially equal to the observed values (simulated values are usually read from the output files of the hydrological model)
 - > sim <- obs
- 4. Computing the numeric goodness-of-fit measures for the "best" (unattainable) case
 - > gof(sim = sim, obs = obs)

		[,1]
ME		0
MAE		0
MSE		0
RMSE		0
${\tt NRMSE}$	%	0
PBIAS	%	0

0 RSR ${\tt rSD}$ 1 NSE mNSE 1 rNSE 1 d 1 mdrd 1 ср r 1 R2 bR2 1 KGE 1

5. Randomly changing the first 2000 elements of 'sim', by using a normal distribution with mean 10 and standard deviation equal to 1 (default of 'rnorm').

```
> sim[1:2000] <- obs[1:2000] + rnorm(2000, mean = 10)
```

6. Plotting the graphical comparison of 'obs' against 'sim', along with the numeric goodness-of-fit measures for the daily and monthly time series

> ggof(sim = sim, obs = obs, ftype = "dm", FUN = mean)

3 Removing Warm-up Period

1. Using the first two years (1961-1962) as warm-up period, and removing the corresponding observed and simulated values from the computation of the goodness-of-fit measures:

> ggof(sim = sim, obs = obs, ftype = "dm", FUN = mean, cal.ini = "1963-01-01")

2. Verification of the goodness-of-fit measures for the daily values after removing the warm-up period:

```
> sim <- window(sim, start = as.Date("1963-01-01"))
> obs <- window(obs, start = as.Date("1963-01-01"))
> gof(sim, obs)
```

		[,1]
ME		4.34
MAE		4.34
MSE		43.88
RMSE		6.62
NRMSE	%	36.40
PBIAS	%	29.20
RSR		0.36
rSD		1.04
NSE		0.87
mNSE		0.63
rNSE		-0.48
d		0.97
md		0.81
rd		0.65
ср		0.44
r		0.96
R2		0.93
bR2		0.83
KGE		0.70

4 Analysis of the Residuals

1. Computing the daily residuals (even if this is a dummy example, it is enough for illustrating the capability)

- 2. Summarizing and plotting the residuals (it requires the hydroTSM package):
 - > library(hydroTSM)
 - > smry(r)

	Index	r
Min.	1963-01-01	0.0000
1st Qu.	1964-12-31	0.0000
Median	1966-12-31	0.0000
Mean	1966-12-31	4.3440
3rd Qu.	1968-12-30	9.7970
Max.	1970-12-31	13.0700
IQR	<na></na>	9.7966
sd	<na></na>	5.0023
cv	<na></na>	1.1517
Skewness	<na></na>	0.3198
Kurtosis	<na></na>	-1.8254
NA's	<na></na>	2.0000
n	<na></na>	2922.0000

> hydroplot(r, FUN = mean)

3. Seasonal plots and boxplots

> hydroplot(r, FUN = mean, pfreq = "seasonal")

This tutorial was built under:

- [1] "i386-redhat-linux-gnu (32-bit)"
- [1] "R version 2.13.1 (2011-07-08)"
- [1] "hydroGOF 0.3-0"