MAT1830

Lecture 13: Functions

Functions - why should you care?

The concept of a function is extremely important in both computer science and maths.

- ► Functions (subroutines) in programming are closely related to functions in the mathematical sense.
- ► In the case of functional programming languages (eg. Lisp, Haskell, Rust) they are exactly functions in the mathematical sense.
- ► Functions are used to define a lot of important concepts in maths and theoretical computer science.

A function can be thought of as a "black
box" which accepts inputs and, for each input,
produces a single output.

• Each input produces exactly one output. (Always the same output for a given input.)

• Each input produces exactly one output. (Always the same output for a given input.)

A set of ordered pairs from $X \times Y$ that contains exactly one ordered pair (x, y) for each $x \in X$.

Remember: The domain and codomain are part of the function and must always be defined.

13.1 Defining functions via sets

Formally we represent a function f as a set X of possible inputs, a set Y so that every output of f is guaranteed to be in Y, and a set of (input,output) pairs from $X \times Y$. The vital property of a function is that each input gives exactly one output.

A function f consists of a domain X, a codomain Y, and a set of ordered pairs from $X \times Y$ which has exactly one ordered pair (x,y) for each $x \in X$. When (a,b) is in this set we write f(a) = b. The set of y values occurring in these pairs is the image of f.

Note that the image of a function is always a subset of its codomain but they may or may not be equal.

If the image of a function is equal to its codomain, we say the function is *onto*.

Formally, a function consists of a domain X, a codomain Y, and a set of ordered pairs from $X \times Y$ which has exactly one ordered pair (x, y) for each $x \in X$.

The set of y values occurring in these ordered pairs is called the *image* of the function.

The image is always a subset of the codomain but they may not be equal. If they are equal we say the function is *onto*.

"f is a function with domain X and codomain Y" is shortened to

$$f:X\to Y.$$

Example Let $f : \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

X	f(x)
0	0
1	2
2	4
3	6

The set of ordered pairs defining f is $\{(0,0),(1,2),(2,4),(3,6)\}$.

Example Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x.

The set of ordered pairs defining f is $\{(x,2x):x\in\mathbb{R}\}.$

Arrow diagrams

Example Let $f : \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

The image of f is $\{0, 2, 4, 6\}$. (So f is not onto.)

Why don't we always set the codomain equal to the image?

Think about $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^8 + 102x^7 - 7x^5 + 20x^4 - 100x + 7$.

We've set the codomain to $\mathbb R$ and that's fine - certainly $f(x) \in \mathbb R$.

What is image of f? Hard to find and probably ugly.

Another reason is that " $\mathbb{R} \to \mathbb{R}$ functions", for example, make a nice class to consider.

Question What set of ordered pairs does $f:\{0,1,2,3\}\to\mathbb{N}$ defined by $f(x)=x^2$ correspond to?

 $\{(0,0),(1,1),(2,4),(3,9)\}.$

Flux Exercise

Which of the following sets of ordered pairs correspond to functions from $\{0,1,2\}$ to \mathbb{R} ?

$$S = \{(0,7), (2,\pi)\}$$

$$T = \{(0,7), (1,1), (2,\pi)\}$$

$$U = \{(0,7), (1,4), (2,\pi), (2,3)\}$$

A. Just T
B. S and T

 $\mathsf{C}. \ T \ \mathsf{and} \ \mathsf{U}$

D. All of them

Answer:

Not S – it doesn't have an ordered pair with first coordinate 1.

Not U – it has two ordered pairs with first coordinate 2.

But T is fine.

So A.

Examples.

1. The squaring function square (x)= x^2 with domain $\mathbb{R},$ codomain $\mathbb{R},$ and pairs

$$\{(x, x^2) : x \in \mathbb{R}\},\$$

which form what we usually call the $\it plot$ of the squaring function.

The image of this function (the set of y values) is the set $\mathbb{R}^{\geqslant 0}$ of real numbers $\geqslant 0$.

$\operatorname{sqrt}: \mathbb{R}^{\geq 0} \to \mathbb{R}$

2. The square root function $\mathrm{sqrt}(x)=\sqrt{x}$ with domain $\mathbb{R}^{\geqslant 0},$ codomain $\mathbb{R},$ and pairs

$$\{(x,\sqrt{x})\ :\ x\in\mathbb{R}\ \mathrm{and}\ x\geqslant 0\}.$$

The image of this function (the set of y values) is the set $\mathbb{R}^{\geqslant 0}$.

3. The cubing function $\mathrm{cube}(x) = x^3$ with domain \mathbb{R} , codomain \mathbb{R} , and pairs

$$\{(x, x^3) : x \in \mathbb{R}\},\$$

The image of this function is the whole of the codomain \mathbb{R} , so it is onto.

Question 13.1 Which of the following rules define functions?

For each non-empty set S of natural numbers, let f(S) be the least member of S.

Yes.

▶ For each set X of real numbers between 0 and 1, let g(X) be the least member of X.

No - $g({x : x \in \mathbb{R} \text{ and } \frac{1}{2} < x < 1})$ is not defined.

For each circle C in the (x, y) plane, let h(C) be the minimum distance from C to the x axis.

Yes.

Question 13.1 (cont.) Which of the following rules define functions?

▶ For a pair A, B of sets of real numbers let s(A, B) be the smallest set which has both A and B as subsets.

Yes (depending on your interpretation of "smallest"). $s(A, B) = A \cup B$.

▶ For a pair A, B of sets of real numbers let t(A, B) be the largest set which is a subset of both A and B.

Yes (depending on your interpretation of "largest"). $t(A, B) = A \cap B$.

13.2 Arrow notation

If f is a function with domain A and codomain B we write $f:A\to B,$

and we say that
$$f$$
 is from A to B .

For example, we could define

square :
$$\mathbb{R} \to \mathbb{R}$$
.

We could also define

square :
$$\mathbb{R} \to \mathbb{R}^{\geqslant 0}$$
.

cube :
$$\mathbb{R} \to \mathbb{R}$$
.

However we could not define

cube :
$$\mathbb{R} \to \mathbb{R}^{\geqslant 0}$$
,

because for some $x \in \mathbb{R}$, cube(x) is negative. For example, cube(-1) = -1. **Question 13.2** Which of the following functions can be defined on the whole of \mathbb{R} , so that the function values also lie in \mathbb{R} ?

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

 x^2 Yes.

 $\frac{1}{x}$ No - undefined for x = 0.

 $\log(x)$ No - undefined for $x \leq 0$ (because $e^x > 0$ for all $x \in \mathbb{R}$).

 \sqrt{x} No - undefined for x < 0.

 $\sqrt[3]{x}$ Yes.

13.3 One-to-one functions

A function $f:X\to Y$ is one-to-one if for each y in the image of f there is only one $x\in X$ such that f(x)=y.

For example, the function $\mathrm{cube}(x)$ is one-to-one because each real number y is the cube of exactly one real number x.

The function square: $\mathbb{R} \to \mathbb{R}$ is not one-toone because the real number 1 is the square of two different real numbers, 1 and -1. (In fact each real y > 0 is the square of two different real numbers, \sqrt{y} and $-\sqrt{y}$)

On the other hand, square : $\mathbb{R}^{\geqslant 0} \to \mathbb{R}$ is one-to-one because each real number y in $\mathbb{R}^{\geqslant 0}$ is the square of only one real number in $\mathbb{R}^{\geqslant 0}$, namely

square of only one real number in $\mathbb{R}^{\geqslant 0}$, namely \sqrt{y} .

The last example shows that the domain of a function is an important part of its description, because changing the domain can change the properties of the function.

Question Is the function pictured below one-to-one?

Yes.

Question Is the function pictured below one-to-one?

No. $f(x_2) = f(x_3)$.

13.4 Proving a function is one-to-one

There is an equivalent way of phrasing the definition of one-to-one: a function $f: X \to Y$ is one-to-one when, for all $x_1, x_2 \in X$,

e when, for all
$$x_1, x_2 \in X$$
,
 $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

This can be useful for proving that some functions are or are not one-to-one.

Example. The function $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 6x + 2 is one-to-one because

$$x + 2$$
 is one-to-one because
$$f(x_1) = f(x_2)$$

$$\Rightarrow 6x_1 + 2 = 6x_2 + 2$$

$$\Rightarrow 6x_1 = 6x_2$$

$$\Rightarrow x_1 = x_2.$$

Example. The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 + 1$ is not one-to-one because f(-1) = 2 and f(1) = 2 and so

$$f(-1) = f(1).$$

To show that a function $f:X\to Y$ is one-to-one we must show that, for all $x_1,x_2\in X$,

 $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

To show that a function $f: X \to Y$ is *not* one-to-one we must show that there exist $x_1, x_2 \in X$ such that

$$f(x_1) = f(x_2)$$
 and $x_1 \neq x_2$.

Question Is $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = x^2 + 1$ one-to-one?

2 - x = 1 -

No. f(1)=2 and f(-1)=2 (and obviously $1\neq -1$)

Flux Exercise

Which of the following functions are one-to-one?

 $f: \mathbb{N} \to \mathbb{Z}$ defined by f(x) = y where y is the least even integer greater than x.

 $g: \mathbb{N} \to \mathbb{Z}$ defined by $g(x) = (x+6)^2 + 1$.

A. Neither

B. Just *f*

C. Just *g*

D. Both

Examples for
$$f$$
: $f(0) = 2$, $f(1) = 2$, $f(2) = 4$, $f(3) = 4$, $f(4) = 6$, $f(5) = 6$, ...
Examples for g : $g(0) = 37$, $g(1) = 50$, $g(2) = 65$, $g(3) = 82$, $g(4) = 101$, ...

Answer:

f isn't one-to-one because f(2) = f(3). g is one-to-one. Full proof on next slide.

So C.

Example Show $g : \mathbb{N} \to \mathbb{Z}$ defined by $g(x) = (x+6)^2 + 1$ is one-to-one.

Suppose that

$$\begin{array}{rcl} g(x_1) & = & g(x_2) & \text{for some } x_1, x_2 \in \mathbb{N}. \\ \text{Then } & (x_1+6)^2+1 & = & (x_2+6)^2+1. \\ \text{So } & (x_1+6)^2 & = & (x_2+6)^2. \\ \text{So } & x_1+6 & = & x_2+6. \\ \text{(Two positive integers with equal squares are equal.)} \\ \text{So } & x_1 & = & x_2. \end{array}$$

This shows that g is one-to-one.