A Methodology for Using Crowdsourced Data to Measure Uncertainty in Natural Speech

Lara Martin¹, Matthew Stone², Florian Metze¹, and Jack Mostow¹ IEEE Spoken Language Technologies Workshop, December 7th-10th 2014 ¹Carnegie Mellon University, ²Rutgers University

Introduction

Prosody: the melodic structure of speech \rightarrow meaning in speech

Our focus: uncertainty in prosody → entropy

Question: Does the amount of uncertainty a person expresses correlate with the ambiguity of the color one is trying to describe? Hypothesis: If so, there will be prosodic information that distinguishes utterances in low-entropy contexts from utterances in highentropy contexts.

Methods

 XKCD color internet survey 222,500 participants typed

color names

60 RGB colors (30 high and 30 low entropy)

 Presented one at a time in random order in a 2x2-inch square

 18 American native-English speakers (10 female, 8 male)

- Not colorblind
- Given 6 seconds to verbally state the name of the color (while being recorded)
- 488 low-entropy recordings
- 468 high-entropy recordings

Classification:

- Data:

http://imgs.xkcd.com/blag/satfaces_map_1024.png

Features of Uncertainty

of syllables, # of pauses (\geq 0.3 s), total duration, length of phonation, speech rate, articulation rate, ASD (phonation length/ # syllables) (Wempe & de Jong 2008)

ToBI final tones (L-L%, H-L%, L-H%, H-H%)

filled-pauses (words like "um" and "uh") Gender of participant

Classes

Low Entropy Color

High Entropy Color

Details

Binary Classification

collection

- 10-fold CV using Weka
- Naïve Bayes classification tree

Questions for Future Work

- Were these prosodic cues really measuring uncertainty or just the difficulty of the task?
- Why didn't intonation play a bigger role? Why were people mostly using H-L% monotone or L-H%? Could we make the task more like a conversation?
- Why was there a gender difference? Cultural? Biological?
- Can this be used in applications? For example, if people used more uncertainty while using voice search, would it improve precision and/or recall?
- Will this work with other media besides color?
- Are these features cross-lingual?

Conclusions

- Entropy can correlate with prosodic cues thought to predict uncertainty in speech
- We can use crowdsourced data to calculate entropy values, despite being from a non-verbal task

Results

65.27% accuracy with gender 62.34% accuracy without gender P < 0.0001

	Hyp-Low	Hyp-High	Total
Ref-Low	346	142	488
Ref-High	190	278	468
Total	536	420	

Confusion matrix of high & low entropy classifications produced from Naïve Bayes Tree

Example:

Participant saying "dark green" with try tone (H-H%).