Trajectory Sensitivities and Parametric Uncertainty in Power System Dynamics

IEEE CDC 2021 Workshop: Uncertainty Management in Power System Dynamics

Daniel Adrian Maldonado

Mathematics and Computing Science Argonne National Laboratory

December 11, 2021

Motivation

- Renewable generation will change how we manage the grid.
 - Uncertainty. Weather fluctuations. Higher complexity! (uDERs)
 - Dynamics. Inverter resources. Ancillary services.
- Uncertainty Quantification (UQ) in dynamics is challenging but exciting area of research.
- However. The problem needs better definition. What role does uncertainty play in power system dynamics? What are desirable properties of UQ techniques?
- I will present some two methods:
 - 1. Method of Moments.
 - 2. Worst-case trajectory via optimization.

Sensitivities are a great technique to have in your research tool belt.

About me

My bias:

- I was trained as an Electrical Engineer. Using high performance computing techniques to simulate large-scale power system dynamics.
- Conversations with industry partners. Parameters not known accurately. Especially load models and now, distributed energy resources.
- Focused on statistical techniques, inverse problems, etc.
- Joined Argonne's MCS. Work alongside mathematicians and statisticians. Optimization and Data Assimilation group. Adjoints, AD, etc. Focus on leveraging HPC.

Acknowledgements

Mihai Anitescu (ANL), Emil Constantinescu (ANL), Vivak Patel (UWisconsin), Hong Zhang (ANL), Michel Schanen (ANL), Vishwas Rao (ANL), François Pacaud(ANL), Tyler Maltba (UCBerkeley), Junbo Zhao (UConn)

Power System Dynamics

- The electrical power system is a complex machine that transforms energy from diverse sources into electrical energy and then distributes it to end users.
- Transitory processes occur due to normal operations or perturbances. Power system dynamics studies are concerned with:
 - 1. The stability of the system after such process.
 - 2. The mitigation of the transient regime.
 - 3. The quality of the transition between steady-state regimes.
- A widely-used power system dynamics model uses a DAE:

$$\dot{x} = f(t, x, y, \theta),$$

$$0 = g(t, x, y, \theta).$$

• Owing to control mechanisms and physical constraints, functions *f* often present nonlinearities such as saturation, state limiters, switches.

Uncertainty in Dynamics

Let $\dot{x} = f(t, x, \theta)$ be the diff. equation that represents our dynamics.

• When parameters vary with time stochastically. We might use a forcing s. process

$$\dot{x} = f(t, x, \theta) + (x(t), t)dW(t).$$

When parameters do not vary with time but they have a known p.d.f

$$\theta \sim \pi()$$
.

When parameters do not vary with time and do not have known p.d.f

$$\theta \in [\theta_m, \theta_M].$$

Different methods depending on: nature of uncertainty, problem, requirements.

Sensitivities

- I will introduce MoM.
- Before that, we will survey the sensitivity equations.

Sensitivities

We consider an ODE for simplicity:

$$\frac{dx}{dt} = f(t, x, \theta), \quad t_0 \leq t \leq t_F, \quad x(t_0) = x_0(\theta).$$

where $x \in \mathbf{R}^n, \theta \in \mathbf{R}^p$. Sensitivity with respect to θ_k , $u_k(t) = \frac{dx(t)}{d\theta_k}$

$$egin{aligned} rac{du_k}{dt} &= f_x(t,x, heta)u_k + f_{ heta}(t,x, heta)e_k\,, \ u_k(t_0) &= rac{dx(0)}{d heta_k}\,. \end{aligned}$$

with $f_x \in \mathbf{R}^{n \times n}$ and $f_\theta \in \mathbf{R}^{n \times p}$.

Sensitivity equation, tangent linear model, variational equation.

Sensitivities II

For a DAE:

$$\dot{x} = f(x, y, \theta),$$

$$0 = g(x, y, \theta).$$

Define $\alpha = \theta_k$, $f_{\alpha} = f_{\theta} e_k$, $u_{x}^{\alpha} = \begin{bmatrix} \frac{\partial x_1}{\partial \alpha} & \dots \end{bmatrix}$. Then, we have:

$$\begin{bmatrix} \dot{u}_{x}^{\alpha} \\ 0 \end{bmatrix} = \begin{bmatrix} f_{x} & f_{y} \\ g_{x} & g_{y} \end{bmatrix} \begin{bmatrix} u_{x}^{\alpha} \\ u_{y}^{\alpha} \end{bmatrix} + \begin{bmatrix} f_{\alpha} \\ g_{\alpha} \end{bmatrix}.$$

Integrating this with backward Euler:

$$\begin{bmatrix} \Delta t f_{x} - I & \Delta t f_{y} \\ g_{x} & g_{y} \end{bmatrix} \begin{bmatrix} \{u_{x}^{\alpha}\}^{t} \\ \{u_{y}^{\alpha}\}^{t} \end{bmatrix} = \begin{bmatrix} -\Delta t (f_{\alpha}) - \{u^{\alpha}\}^{t-1}x \\ -g_{\alpha} \end{bmatrix}.$$

Hybrid systems, discrete events [Hiskens and Pai, 2000].

Sensitivities III

2nd-order ([Choi et al., 2017], [Geng and Hiskens, 2019]). Define $\alpha = \theta_k$, $\beta = \theta_i$, $\mathbf{v}^{\alpha\beta} = \begin{bmatrix} \frac{\partial \mathbf{x}_1}{\partial \alpha\beta} & \cdots \end{bmatrix}$.

$$\begin{bmatrix} \dot{\mathbf{v}}_{x}^{\alpha\beta} \\ 0 \end{bmatrix} = \begin{bmatrix} f_{x} & f_{y} \\ g_{x} & g_{y} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{x}^{\alpha\beta} \\ \mathbf{v}_{y}^{\alpha\beta} \end{bmatrix} + \xi(x, y, u),$$

where the forcing term, ξ , is:

$$\begin{bmatrix} f_{\alpha\beta} \\ g_{\alpha\beta} \end{bmatrix} + \begin{bmatrix} f_{\alpha\chi} & f_{\alpha y} \\ g_{\alpha\chi} & g_{\alpha y} \end{bmatrix} \begin{bmatrix} u_{\chi}^{\alpha} \\ u_{y}^{\alpha} \end{bmatrix} \\ + \begin{bmatrix} f_{\beta\chi} & f_{\beta y} \\ g_{\beta\chi} & g_{\beta y} \end{bmatrix} \begin{bmatrix} u_{\chi}^{\beta} \\ u_{y}^{\beta} \end{bmatrix} + (I_{m} \otimes (u^{\alpha})^{T}) \mathcal{H} u^{\beta}.$$

For $\theta \in \mathbf{R}^p$, we will have p n-dimensional vectors of first-order sensitivities, p n-dimensional vectors of second-order self-sensitivities, and $\frac{p^2-p}{2}$ n-dimensional vectors of second-order mixed sensitivities. Notice, however, that we only need to factorize one matrix.

Sensitivities

Canonical form. Some times useful to see parameters as initial conditions:

$$\frac{d}{dt} \begin{bmatrix} x \\ u \end{bmatrix} = \begin{bmatrix} f(t, x, u) \\ 0 \end{bmatrix}, \quad \begin{bmatrix} x(t_0) \\ u(t_0) \end{bmatrix} = \begin{bmatrix} x_0 \\ \theta \end{bmatrix}$$

Method of Moments

Method of Moments

Motivation

- We would like to obtain p(x(t)) given $x(0) \sim \pi_0(x_0)$.
- Obtaining the whole density can be challenging and costly.
- What if we look at first two moments of p(x(t)).

The evolution of such density is determined by the map of the diff. eq:

$$\mathsf{x}_{k+1} = \phi(\mathsf{x}_k)$$

Hence, we seek the moments of

$$\mathbb{E}[x_{k+1}] = \mathbb{E}[\phi(x_k)]$$

$$\mathbb{V}[x_{k+1}] = \mathbb{V}[(\phi(x_k) - \mu_k)^2]$$

Old idea ([Pugachev, 1965]): $\mathbb{E}[g(x)] \approx g(\mathbb{E}[x])$.

Approximation of Moments via Taylor series

Given x a r.v. with known moments we want to obtain $\mathbb{E}[g(x)]$. We Taylor expand g(x) around μ and take expectations:

$$\mathbb{E}[g(x)] = g(\mu) + \frac{1}{2!} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}g}{\partial x_{i} \partial x_{j}} \mathbb{E}\left[(x_{i} - \mu_{x_{i}})(x_{j} - \mu_{x_{j}})\right]$$

$$+ \frac{1}{3!} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{3}g}{\partial x_{i} \partial x_{j} \partial x_{k}} \mathbb{E}\left[(x_{i} - \mu_{x_{i}})(x_{j} - \mu_{x_{j}})(x_{k} - \mu_{x_{k}})\right]$$

$$+ \frac{1}{4!} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{\partial^{4}g}{\partial x_{i} \partial x_{j} \partial x_{k} \partial x_{l}} \mathbb{E}\left[(x_{i} - \mu_{x_{i}})(x_{j} - \mu_{x_{j}})(x_{k} - \mu_{x_{k}})(x_{l} - \mu_{x_{l}})\right],$$

- In the case of the map $\phi()$, the derivatives are the sensitivities (also, [Hiskens and Alseddiqui, 2006])!
- If we start with known pdf for x_0 , we can do this for $x_1 = \phi(x_0)$, but what about $x_2 = \phi(\phi(x_0))$?
- Closure problem.

Gaussian Closure

We assume that x_0 has a normal distribution and that x_i remains Gaussian. This has two consequences:

- Odd moments are zero.
- Isserlis theorem. Higher-order even moments determined with first two moments.

For instance, taking $c_{ij} = \mathbb{E}\left[(x_i - \mu_i)(x_j - \mu_j)\right]$, we have:

$$\mathbb{E}\left[(x_{i}-\mu_{i})(x_{j}-\mu_{j})(x_{k}-\mu_{k})(x_{l}-\mu_{l})\right]=c_{ij}c_{kl}+c_{il}c_{jk}+c_{ik}c_{lj}$$

Higher-order moment terms in the expansions can be computed with first and second-order moments.

Gaussian Closure Expressions

Propagation of the mean and covariance:

$$\mathbb{E}\left[g(x)\right] = g(\mu) + \frac{1}{2!} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} g}{\partial x_{i} \partial x_{j}} c_{ij} + \frac{1}{4!} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{\partial^{4} g}{\partial x_{i} \partial x_{j} \partial x_{k} \partial x_{l}} (c_{ij} c_{kl} + c_{il} c_{jk} + c_{ik} c_{lj}),$$

$$c_{pq}^{g} = \frac{1}{2!} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial g_{p}}{\partial x_{j}} \frac{\partial g_{q}}{\partial x_{i}} + \frac{\partial g_{q}}{\partial x_{j}} \frac{\partial g_{p}}{\partial x_{i}} \right) c_{ij} + \frac{1}{3!} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \left(\frac{\partial g_{p}}{\partial x_{k}} \frac{\partial^{2} g_{q}}{\partial x_{k} x_{j}} + \frac{\partial g_{p}}{\partial x_{k}} \frac{\partial^{2} g_{q}}{\partial x_{j} x_{k}} + \frac{\partial g_{q}}{\partial x_{k}} \frac{\partial^{2} g_{p}}{\partial x_{j} x_{k}} + \frac{\partial g_{q}}{\partial x_{j}} \frac{\partial^{2} g_{p}}{\partial x_{j} x_{k}} + \frac{\partial g_{q}}{\partial x_{j}} \frac{\partial^{2} g_{p}}{\partial x_{i} x_{k}} + \frac{\partial g_{q}}{\partial x_{k}} \frac{\partial^{2} g_{p}}{\partial x_{j} x_{k}} + \frac{\partial g_{q}}{\partial x_{j}} \frac{\partial^{2} g_{q}}{\partial x_{j} x_{k}} + \frac{\partial g_{p}}{\partial x_{j}} \frac{\partial^{2} g_{q}}{\partial x_{j} x_{k}} + \frac{\partial^{2} g_{p}}{\partial x_{j} x_{k}} \frac{\partial^{2} g_{q}}{\partial x_{j}} + \frac{\partial^{2} g_{p}}{\partial x_{j} x_{k}} \frac{\partial^{2} g_{q}}{\partial x_{j}} \frac{\partial^{2} g_{q}}{\partial x_{j}} + \frac{\partial^{2} g_{p}}{\partial x_{j} x_{k}} \frac{\partial^{2} g_{q}}{\partial x_{j}} \frac{\partial^{2} g_{q}}{\partial x_{j}} + \frac{\partial^{2} g_{p}}{\partial x_{j} x_{k}} \frac{\partial^{2} g_{q}}{\partial x_{j}} \frac{\partial^{2} g_{q}}{\partial x_{j}} + \frac{\partial^{2} g_{p}}{\partial x_{j} x_{k}} \frac{\partial^{2} g_{q}}{\partial x_{j}} \frac{\partial$$

Contribution of second-order sensitivities can be substantial.

Case Study I

OMIB, 14 states. Gaussian approximation and normal deviation. Tails.

Case Study II

Plotting the uncertainty ellipsoid for $\Delta\omega$, δ .

Case Study III

Monte Carlo convergence.

Case Study IV

Table: Approximation errors using higher order degree derivatives in the Method of Moments (MM). Comparison with Monte Carlo experiment using 10,000 samples. We show the approximated mean at t=0.6 sec.

Method	Mean	Error
Monte Carlo	0.004860	-
MM, 1st order derivatives	0.005822	19,796%
MM, 2nd order derivatives	0.004918	1,211%
MM, 3rd order derivatives	0.004864	0,098%

Approximation is quite good. Second order sensitivities have a significant impact on accuracy.

Case Study VI

Same set-up with a 9 bus system. Mean of $\Delta\omega_1$.

Case Study VII

Same set-up with a 9 bus system.

Thoughts

Challenges

- Gaussian hypothesis. What about other distributions?
- Does not capture tails.
- Misleading if distribution is bimodal (e.g. bifurcation)
- Closure. Common approach but no guarantees. Approximation may degrade over time (good performance might depend on system being dissipative).

Thoughts

Advantages and extension

- Second-order give us increased accuracy.
- No sampling involved. Potential to scale to large systems.
- Moments can be used with Chebyshev's inequality to determine probability of x_k exceeding value.
- Complex distributions can be approximated by Gaussian mixtures: $p(x) = \sum_{i=0}^{n} w_i N(x; \sigma_i, P_i)$ with $\sum w_i = 0$.
- It can be combined with sampling techniques (think control variates in MC).

Depending on application, this could be a good tool. It can also serve as an ingredient to more general approaches. We leverage sensitivities.

Trust Region Optimization

Approximation of Trajectory Extremes with Trust Region Optimization

Motivation

- Requirements for system performance (e.g. voltage and frequency within bounds).
- Parameters not known but we have ranges (unknown-but-bounded [Schweppe, 1973])
- Consider the DAE $M\dot{z} = h(z, \theta, t)$. Find the extremes given a bounded set for θ .
- Reachability, interval analysis, etc.
- One idea:

$$z_i(p_m+s,t) \approx z_i(p_m,t) + s^T \left. \frac{\partial z_i}{\partial p} \right|_{(p_m,t)} + \left. \frac{1}{2} s^T \left. \frac{\partial^2 z_i}{\partial p^2} \right|_{(p_m,t)} s.$$

[Hiskens and Alseddiqui, 2006] (1st order), and [Choi et al., 2017] (2nd).

An optimization problem

Formulation:

$$\begin{array}{ll} \underset{\theta}{\mathsf{maximize}} & z_i(\theta,t) \\ \mathsf{subject to} & \theta \in \Theta \end{array}$$

- We are using a **surrogate** of z_i
- Nonlinear optimization problem

Trust Region

Find $\{x_k\}$ that converge to a point x_* , where $\nabla f(x_*) = 0$. We use a quadratic surrogate model - Taylor expansion at x_k :

$$m_k(x_k + s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla^2 f(x_k) s$$

We need to ensure surrogate is *suitable* approximation in a given region \mathcal{B}_k , where

$$\mathcal{B}_k = \left\{ x \in \mathbf{R}^n \mid ||x - x_k|| \le \Delta_k \right\}.$$

We seek s that minimizes $m_k()$ and $||s_k||_2 \le \Delta_k$ (the subproblem). Then, we check agreement:

$$\rho_k = \frac{\textit{actual reduction}}{\textit{predicted reduction}} = \frac{f_i(x_k) - f_i(x_k + s_k)}{m_k(x_k) - m_k(x_k + s_k)}$$

If ρ_k is small: reject and reduce trust region radius. If accepted, set x_{k+1} and create new surrogate.

```
Algorithm 1 Trust Region
  1: procedure Trust Region
          Given \hat{\Delta} > 0, initialize \Delta_0 \in (0, \hat{\Delta}), and n \in [0, n_1)
          for k = 0, 1, 2, \cdots do
               obtain s_k by reducing m_k(x)
               evaluate or from (8)
               if \rho_k < \eta_1 then
                     \Delta_{k+1} = \frac{1}{4}\Delta_k
                else
                    if \rho_k > \eta_2 and ||s_k|| = \Delta_k then
                          \Delta_{k+1} = \min(2\Delta_k, \hat{\Delta})
10:
11:
                     else
                          \Delta_{k+1} = \frac{1}{4}\Delta_k
               if \rho_k > \eta then
13:
                     x_{\nu+1} = x_{\nu} + s_{\nu}
15.
                else
                    x_{k+1} = x_k
```

Constants η_1 and η_2 typically set to $\frac{1}{4}$ and $\frac{3}{4}$.

Trust Region II. Extreme trajectories

Again, consider $M\dot{z} = h(z, \theta, t)$ and $\theta \in \Theta$. To approximate the extreme trajectories we:

- Choose a point on the parameter interval. Usually the center.
- Integrate the DAE and its sensitivity equations from t_0 to t_i .
- Construct surrogate and solve Trust Region:

$$\min_{d} \quad m_k(p_k + s) = z_i + u_i^T s + \frac{1}{2} s^T V_i s, \quad \text{s.t } ||s|| \leq \Delta_k,$$

- Optimization problem is solved for each time step.
- We can "hot start" but no guarantee optimal p is close.

Trust Region III. Uncertainty Model

We set up a system with a generator, governor, exciter with saturation. The uncertainty comes from the load composition, α .

$$egin{aligned} P_{inj}(V_0,t_0) &= lpha P_z + (1-lpha) P_{mot}\,, \ Q_{inj}(V_0,t_0) &= lpha Q_z + (1-lpha) Q_{mot}\,. \end{aligned}$$

where $P_z = \left(\frac{V_i}{V_0}\right)^2 P_0$ and the motor:

$$\dot{e'_d} = -\frac{1}{T_p} (e'_d + (x_0 - x')i_q) + s\omega_s e'_q,
\dot{e'_q} = -\frac{1}{T_p} (e'_q - (x_0 - x')i_d) - s\omega_s e'_d,
\dot{s} = \frac{1}{2H} (\tau_m - e'_d i_d - e'_q i_q)$$

$$0 = r_{a}i_{d} - x'i_{q} + e'_{d} + Vsin(\theta),$$

$$0 = r_{a}i_{q} - x'i_{d} + e'_{q} - Vcos(\theta),$$

$$P_{mot} = -Vsin(\theta)i_{d} + Vcos(\theta)i_{q},$$

$$Q_{mot} = Vcos(\theta)i_{d} + Vsin(\theta)i_{q}.$$

Trust Region III

Fault applied from t=0.25 to t=0.45. In red, Trust Region. In blue, optimize for the Taylor expansion around nominal point. Compared with grid-sampling, we observe very small errors (e.g. for minimum trajectory, relative error is $1.406e^{-6}$ over whole trajectory)

Note corners not necessarily correspond to extremes.

Thoughts

- We tried this on New England case (19 parameters). Good performance.
- Small number of TR iterations (average 5-10).
- This is still an approximation. Problems might arise with local minima.
- But the field of NLOpt is very mature. Lots of room for better performance.
- We might turn to global optimization techniques (sampling might be involved)
- Trust-region can be used to accelerate global optimization techniques

UQGrid

```
# load data
psys = load_psse(raw_filename="IEEE39_v33.raw")
add_dyr(psys, "IEEE39.dyr")
# add fault and create initial data structures
v, Sinj = runpf(psys, verbose=True)
psys.add_busfault(1, zfault, 0.01)
# set up parameters
pmax = np.ones(psvs.nloads)
pmin = np.zeros(psvs.nloads)
pnom = pmin + 0.5*(pmax - pmin)
psys.set_load_parameters(pnom)
# integrate
results = integrate_system(psys, verbose=True,
    comp_sens=True, dt=dt, tend=10.0)
```

- Trajectory sensitivities useful tool in UQ.
- Implementation barrier.
- Achieving performance might be challenging.
- We are developing a new library, UQGrid.
- PETSc. Discrete sensitivities and adjoints.
- AD for f_{θ} .
- Parallelization (GPU).
- High performance and flexibility.

We look for users, collaborators.

Thank You

References I

[Choi et al., 2017] Choi, H., Seiler, P. J., and Dhople, S. V. (2017). Propagating Uncertainty in Power-System DAE Models with Semidefinite Programming. *IEEE Transactions on Power Systems*, 32(4):3146–3156.

[Geng and Hiskens, 2019] Geng, S. and Hiskens, I. A. (2019).

Second-order trajectory sensitivity analysis of hybrid systems.

IEEE Transactions on Circuits and Systems I: Regular Papers, 66(5):1922–1934.

[Hiskens and Pai, 2000] Hiskens, I. and Pai, M. (2000).

Trajectory sensitivity analysis of hybrid systems.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(2):204–220.

References II

[Hiskens and Alseddiqui, 2006] Hiskens, I. A. and Alseddiqui, J. (2006).

Sensitivity, approximation, and uncertainty in power system dynamic simulation.

IEEE Transactions on Power Systems, 21(4):1808–1820.

[Pugachev, 1965] Pugachev, V. (1965).

Theory of random functions and its applications to control problems.

International series of monographs on automation and automatic control. Addison Wesley.

[Schweppe, 1973] Schweppe, F. C. (1973).

Uncertain dynamic systems.

Prentice-Hall. hardcover edition.

Sensitivities

Let $f: S \to \mathbf{R}^m, S \subseteq \mathbf{R}^n$ be a vector function, and let z be an interior point of S the second-degree Taylor expansion:

$$f(z+d) = f(z) + \mathcal{J}d + \frac{1}{2}(I_m \otimes d^T)\mathcal{H}d + \mathbf{O}(\|d\|^3)$$

Here $\mathcal J$ is the Jacobian matrix, $\mathcal H$ is the Hessian matrix. The quadratic term:

$$(I_m \otimes d^T)\mathcal{H}d = egin{bmatrix} d^T\mathcal{H}_1d \ d^T\mathcal{H}_2d \ dots \ d^T\mathcal{H}_md \end{bmatrix}^T$$

Often, we are interested in sensitivities with respect to a vector parameter. For instance, given $f(t, x, \theta)$, then $f_{\theta}(t, x, \theta) = \frac{\partial f(t, x, \theta)}{\partial \theta}$.