\star Spé - St Joseph/ICAM Toulouse \star

Math. - CC 2 - S1 - Analyse

vendredi 22 novembre 2019 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

1. a. Démontrer que le rayon de convergence de $\sum z^n$ vaut 1.

b. Démontrer que le rayon de convergence de $\sum \frac{z^n}{n}$ vaut 1.

c. Pour tout $x \in]-1,1[$, exprimer

$$S_1(x) = \sum_{n=0}^{+\infty} x^n$$
 et $S_2(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n}$

en fonction de x.

2. a. Justifier que pour tout $x \in]-1,1[$,

$$\frac{\ln(1-x)}{x-1} = \sum_{n=1}^{+\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) x^n$$

b. Déterminer le rayon de convergence de la série entière

$$\sum \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) x^n$$

3. On note pour $x \in]-1,1[$,

$$f(x) = \sum_{n=1}^{+\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) x^n$$

a. Démontrer que pour tout $x \in]-1,1[,$

$$f(x) - xf(x) = S_2(x)$$

b. Retrouver le résultat de la question **2.a**)

4. Soit (a_n) une suite de réels strictement positifs. On pose

$$\forall n \in \mathbb{N}, \ b_n = \sum_{k=0}^n a_k$$

On note alors R_a et R_b les rayons de convergence respectifs de $\sum a_n z^n$ et $\sum b_n z^n$.

a. Montrer que

$$R_b \ge \min(R_a, 1)$$

b. Montrer que si (a_n) converge vers 0 et $\sum a_n$ diverge alors

$$R_a = 1$$
 puis $R_b = 1$

5. On pose, pour tout $x \in]-1,1[$,

$$g(x) = \sum_{n=0}^{+\infty} a_n x^n$$

où (a_n) est une suite de réels strictement positifs telle que (a_n) converge vers 0 et $\sum a_n$ diverge. Démontrer que pour tout $x \in]-1,1[$,

$$\sum_{n=0}^{+\infty} b_n x^n = \frac{g(x)}{1-x}$$