$$P(1) = \frac{1}{6} \quad P(2) = \frac{1}{6} \quad P(3) = \frac{1}{6}$$

Dependent Event

000

00

Julian marbles?

$$P(w) = \frac{3}{5} \longrightarrow 1^{St} \text{ Event}$$

$$P(y/w) = \frac{2}{4} = \frac{1}{2} \rightarrow 2^{\text{nd}} = 6^{\text{cons}}$$

$$(\text{onditional probability})$$

$$P(A \text{ and } B) = P(B \text{ and } A)$$

$$P(A) \# P(B/A) = P(B) \# P(B/A)$$

$$P(B/A) = P(B) \# P(B/A)$$

$$P(A)$$

$$P(A)$$

$$P(A)$$

$$P(B/A) = P(B) \# P(B/A)$$

$$P(B/A)$$

$$P(A)$$

$$\frac{P(y) + P(x_{1},x_{2},x_{3},x_{4},x_{n}/y)}{P(x_{1},x_{2},x_{3},x_{4},x_{n}/y)}$$

$$= P(y) + P(x_{1}/y) + P(x_{2}/y) + P(x_{3}/y) --- + P(x_{n}/y)$$

$$= P(x_{1},x_{2},x_{3},-...x_{n})$$

$$P(Yu|X_{11},X_{2},X_{3},X_{4}) = P(Yu) + P(X_{1}|Yu) + P(X_{2}|Yu) + P(X_{3}|Yu) + P(X_{4}|Yu)$$

$$Constant \leftarrow P(X_{1}) + P(X_{2}) + P(X_{3}) + P(X_{4}|Yu) + P(X_{4}|Yu)$$

$$P(N0/X_{11},X_{21},X_{31},X_{4}) = \frac{P(N0) + P(X_{1}|N0) + P(X_{2}|N0) + P(X_{3}|N0) + P(X_{4}|N0)}{Constant} \leftarrow P(X_{1}) + P(X_{2}) + P(X_{3}) + P(X_{4}|Xu) + P(X_{4}|Xu)$$

LCB Solve this Problem

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	· Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Sunny 2 3 2/9 3/5 Overlant 4 0 4/9 0/5 V Rain 3 2 3/9

45

Outlook

$$\frac{2}{63} = 0.031$$

$$=\frac{3}{36}=0.085$$