线性代数方程组

浙江大学控制学院

本章内容

- 高斯消去法
- LU分解、特殊矩阵和矩阵求逆
- 误差分析、条件数
- 迭代方法

误差分析和方程组条件数

- 利用逆矩阵确定方程组是否病态的方法
 - 缩放系数矩阵A,使其每一行的最大元素为1。计算缩放后的逆矩阵,如果 A^{-1} 中有元素的值大于1几倍,则方程组是病态的。
 - 将逆矩阵与原矩阵相乘,检查结果是否接近1。如果 不接近1,则方程组是病态的。
 - 求逆矩阵的逆矩阵,与原系数矩阵对比。如果不相等,则方程组是病态的。

- 向量的范数
 - 三维欧氏空间中向量长度概念的推广
 - 定义

设对任意向量 $x \in \mathbb{R}^n$,按一定的规则有一实数与之对应,记为 $\|x\|$,若 $\|x\|$ 满足

- 1, $||x|| \ge 0$, 且||x|| = 0当且仅当x = 0; (正定)
- 2, $\|\alpha x\| = |\alpha| \cdot \|x\|$, α 为任意实数 (齐次)
- 3, $||x+y|| \le ||x|| + ||y||$, 对任意 $x, y \in R^n$

(三角不等式)

则称 $\|x\|$ 为 向量x的范数

- 几种向量范数
 - 向量的"2"范数 (欧几里德范数)
 - 向量的"1"范数

- 向量的 "∞" 范数(极大值范数或一致向量范数)
- 向量的 "p" 范数

$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

$$||x||_1 = |x_1| + \dots + |x_n| = \sum_{i=1}^n |x_i|$$

$$||x||_{\infty} = \max\{|x_1|, \dots |x_n|\} = \max_{1 \le i \le n} \{|x_i|\}$$

$$\left\|x\right\|_{p} = \left(\sum_{i=1}^{n} \left|x_{i}\right|^{p}\right)^{1/p}$$

• 矩阵的范数

定义:对任意n阶方阵A,按一定的规则有一实数与之对应,记为||A||。若||A||满足:

- 1 $||A|| \ge 0$,且||A|| = 0当且仅当A = 0; (正定)
- $2 \|\alpha A\| = |\alpha| \cdot \|A\|, \alpha$ 为任意实数; (齐次)
- 3 ||A+B|| ≤ ||A|| + ||B||, 对任意A, B两个n阶方阵; (三角不等式)
- 4 ||AB|| ≤ ||A||||B||; (矩阵乘法不等式,相容性条件)

则称 || A || 为矩阵 A 的范数

- 几种矩阵范数
 - (谱范数)
 - 矩阵的 "1" 范数 $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$ (列和范数)
 - 矩阵的 " ∞ " 范数 $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{\infty} |a_{ij}|$ (行和范数)

• 矩阵的 "2" 范数
$$||A||_2 = \left[\lambda_{\max}(A^T A)\right]^{\frac{1}{2}}$$

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

- 谱和谱半径
 - $A \in \mathbb{R}^{n \times n}$ 的特征值为 λ_1 , λ_2 , ..., λ_n ,
 - 称A的所有特征值的集合为A的谱
 - 称 $\rho(A) = \max_{1 \le i \le n} |\lambda_i|$ 为A的谱半径
- ||A|| 为A的任意一种范数,有ρ(A)≤||A||
- (按行)严格对角占优阵
 - 如果A满足条件 $|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$ $(i = 1, 2, \dots, n)$

即A的每一行对角元素的绝对值都严格大于同行其他元素绝对值 之和

病态方程组和矩阵条件数

$$\begin{bmatrix} 1 & 0.99 \\ 0.99 & 0.98 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1.99 \\ 1.97 \end{bmatrix}$$

$$x = (1,1)^T$$

若系数矩阵有微小扰动 △A=

$$\Delta A = \begin{bmatrix} 0.0001 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\tilde{x}^{(1)} = (50, -48.5)^T$$

$$\Delta b = \begin{vmatrix} -0.0001 \\ 0.0001 \end{vmatrix}$$

$$\tilde{x}^{(2)} = (2.97, -0.99)^T$$

$$\frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}} = 5 \times 10^{-5}$$

$$\frac{|\Delta x^{(2)}|_{\infty}}{\|x\|_{\infty}} = 1.99$$

● 若同时对系数矩阵和右端有扰动,则

$$\tilde{x}^{(3)} = (148.5, -148.005)^{7}$$

病态方程组和矩阵条件数

- 扰动方程 $(A + \Delta A)x = b + \Delta b$
- 如果方程组的系数或常数项有微小改变时,解会发生很大的改变,则称这种方程组为"病态"的
- 扰动方程的解与原方程的解相对误差不大,称为良态方程
- 方程组的"条件"问题
- 一般说来,在用计算机解方程组时,实际上解的都是扰动方程,这是由于计算过程中不可避免地会产生舍入误差
- 对于良态问题,只要数值方法是稳定的,就可以得到较好的结果
- 而对于病态问题,即使算法是稳定的,其计算结果有时也 会很坏

扰动方程组的误差界

 $||AB|| \le ||A|| \, ||B||$

 $||b|| \le ||A|| ||x||$

● b的扰动

$$||\Delta x|| \le ||A^{-1}|| ||\Delta b||$$

$$||b|| = ||Ax|| \le ||A|| ||x|| \Longrightarrow \frac{1}{||x||} \le \frac{||A||}{||b||}$$

• A的扰动
$$(A + \Delta A)(x + \Delta x) = b$$
 $\Longrightarrow \Delta x = -A^{-1} \Delta A(x + \Delta x)$ $\Longrightarrow \frac{\|\Delta x\|}{\|x + \Delta x\|} \le \|A\| \|A^{-1}\| \|\Delta A\|$

• 同时扰动 $(A + \Delta A)(x + \Delta x) = b + \Delta b \Longrightarrow \Delta x = (A + \Delta A)^{-1}(\Delta b - \Delta A x)$

由恒等式
$$(A + \Delta A)^{-1} = A^{-1}(I + \Delta AA^{-1})^{-1}$$
 \Longrightarrow $\Delta x = A^{-1}[I + \Delta AA^{-1}]^{-1}(\Delta b - \Delta Ax)$

假设
$$||A^{-1}|| ||\Delta A|| \le 1$$

$$\|A^{-1}[I + \Delta AA^{-1}]^{-1}\| \le \frac{\|A^{-1}\|}{1 - \|\Delta A\| \|A^{-1}\|} \Longrightarrow \frac{\|\Delta x\|}{\|x\|} \le \frac{\|A\| \|A^{-1}\|}{1 - \|A\| \|A^{-1}\| \|\Delta A\|} \left(\frac{\|\Delta b\|}{\|b\|} + \frac{\|\Delta A\|}{\|A\|}\right)$$

2022/3/13

病态方程组和矩阵条件数

条件数

- 设 $A \in \mathbb{R}^{n \times n}$,非奇异, $Cond(A) = ||A|| ||A^{-1}||$
- $K(A) = ||A||_2 ||A^{-1}||_2$ 称为谱条件数

• 条件数的性质

- 对任何非奇异矩阵A,有Cond(A)≥1。
- 对任何非奇异矩阵A,非零常数c,有 Cond(cA) = Cond(A)
- 若P为正交矩阵,则K(P) = 1,且K(PA) = K(AP) = K(A)

• 若
$$A = A^T$$
, $K(A) = \frac{\left|\lambda_{\max}(A)\right|}{\left|\lambda_{\min}(A)\right|}$

病态方程组和矩阵条件数

- 线性方程组Ax=b解的相对误差直接与A的条件数相关
- A的条件数Cond(A)相对大(>>1),称Ax=b是病态方程组/坏条件,或A是病态的;当A的条件数Cond(A)相对小,称Ax=b是良态方程组/好条件,或A是良态的。

$$A = \begin{bmatrix} 1 & 0.99 \\ 0.99 & 0.98 \end{bmatrix}$$

cond(A)₂ = K(A) =
$$\frac{|\lambda_{\text{max}}|}{|\lambda_{\text{min}}|} = \frac{1.98005}{0.00005} = 39206 >> 1$$

方程是病态方程

矩阵条件数

- Hilbert矩阵是一个著名的 病态矩阵,它是一个对称 正定矩阵,当 *n*≥3 时, Hilbert矩阵是病态矩阵
- n越大,条件数越大
- Matlab中hilb()构造hilbert
 矩阵, invhilb()可求精确
 逆

	1	$\frac{1}{2}$	$\frac{1}{3}$	•••	$\frac{1}{n}$
	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	•••	$\frac{1}{n+1}$
A =	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	•••	$\frac{1}{n+2}$
	•••	•••	•••	•••	
	1	1	1		1
	$\lfloor \frac{-}{n} \rfloor$	$\overline{n+1}$	$\overline{n+2}$	• • •	$\overline{2n-1}$

相对误差的事后估计(近似解可靠性判别)

- 设Ax=b,A为非奇异矩阵,x为精确解, \tilde{x} 为计算解,残余向量r=b-A \tilde{x}
- 则近似解的相对误差估计

$$\frac{1}{cond(A)} \frac{\parallel r(\tilde{x}) \parallel}{\parallel b \parallel} \le \frac{\parallel \Delta x \parallel}{\parallel x \parallel} \le cond(A) \frac{\parallel r(\tilde{x}) \parallel}{\parallel b \parallel}$$

- Cond(A)越小,相对误差越小
- 近似解的精度不仅依赖于残余向量*r*,也与矩阵*A*的条件数有关

相对误差的事后估计

$$A = \begin{bmatrix} 6 & 13 & -17 \\ 13 & 29 & -38 \\ -17 & -38 & 50 \end{bmatrix} \quad A^{-1} = \begin{bmatrix} 6 & -4 & -1 \\ -4 & 11 & 7 \\ -1 & 7 & 5 \end{bmatrix}$$

$$cond(A)_{\infty} = ||A||_{\infty} ||A^{-1}||_{\infty} = 105 \times 22 = 2310$$

- 假定在求解Ax=b的过程中,得到的解满足 $||r|| \le 0.001$
- 绝对误差上界 $\|\Delta x\| \le \|A^{-1}\| \|r\| \le 22 \times 0.001 = 0.022$
- 若给定||b||=4,相对误差上界

$$\frac{\|\Delta x\|}{\|x\|} \le cond(A) \frac{\|r(\tilde{x})\|}{\|b\|} = 2310 \times \frac{0.001}{4} = 0.5775$$

病态方程组的判别

- 当A的行列式值相对小,或A某些行/列近似线性相关,方程组可能病态
- 若用选主元消去法求解Ax=b,在A消去中出现小主元,方程组可能病态
- 当A元素数量级相差很大且无一定规则,方程组 可能病态
- 估计条件数,若条件数较大,则方程组病态

迭代求精技术

- 设x为精确解, \tilde{x}_1 为得到的近似解,则 $x = \tilde{x}_1 + \Delta x_1$
- 残余向量 $r_1 = b A\tilde{x}_1$ $Ax = A\tilde{x}_1 + A\Delta x_1$

$$A\Delta x_1 = r_1$$

- 通过求解上述方程,可以得到修正因子 Δx_1
- 由于舍入误差的影响, 同样 $\tilde{x}_2 = \tilde{x}_1 + \Delta x_1$ 不会是精确解, 可从 \tilde{x}_2 出发重复以上步骤
- 对于LU分解,只需计算残余向量再进行回代,LU分解的目的就是高效求解右边常数向量不同的方程组,采用迭代求精非常有效
- 当Ax=b不过分病态时,迭代求精是较成功的提高近似解

精度的方法

本章内容

- 高斯消去法
- LU分解、特殊矩阵和矩阵求逆
- 误差分析、条件数
- 迭代方法

迭代法的思想

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{aligned}$$

$$x_{1} = \frac{b_{1} - a_{12}x_{2} - a_{13}x_{3}}{a_{11}}$$

$$x_{2} = \frac{b_{2} - a_{21}x_{1} - a_{23}x_{3}}{a_{22}}$$

$$x_{3} = \frac{b_{3} - a_{31}x_{1} - a_{32}x_{2}}{a_{23}}$$

First Iteration

高斯-赛 得尔方法 (异步迭 代法)

(b)

雅可比方法(同步 迭代法)

迭代法

$$Ax = b$$
 \Longrightarrow $x = Gx + f$

• 任取初始向量 $x^{(0)}$, 作

$$\mathcal{X}^{(1)} = G\mathcal{X}^{(0)} + f$$

$$\mathcal{X}^{(k+1)} = G\mathcal{X}^{(k)} + f$$

- 构造向量序列 $\{x^{(k)}\}$ 求方程的近似解的方法,称为一阶 定常迭代法,G为该迭代法的迭代矩阵。
- 如果对任意取初始近似 $x^{(0)}$,都有 $\lim_{k\to\infty} x^{(k)} = x^*$,称迭代法为**收敛**,否则称迭代法为**发散**。若迭代法收敛,则称 $x^{(k)}$ 为第k步迭代得到方程组的近似解。

迭代法

- ●问题
 - 构造迭代方法
 - 迭代的收敛性和收敛速度

基本迭代方法

$$A = \begin{bmatrix} a_{11} & & & \\ & a_{22} & \\ & & \ddots & \\ & & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & & & \\ -a_{21} & 0 & & \\ \vdots & \vdots & \ddots & \\ -a_{n1} & -a_{n2} & \cdots & 0 \end{bmatrix} - \begin{bmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ 0 & \cdots & -a_{2n} \\ & & \ddots & \vdots \\ & & & 0 \end{bmatrix} = D - L - U$$

- A分裂为A=M-N
- 分裂阵M
 - 可选择的非奇异阵
 - Mx=d易于求解
 - M选为A的某种近似
- 迭代:
 - x⁽⁰⁾为初始向量
 - $x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b$
- 选取不同的M阵就得到不同迭代法。

雅可比(Jacobi)迭代法(同步迭代法)

- 设A为非奇异矩阵,且 $a_{ii}\neq 0$,选取 M=D 和 N=D-A=L+U
- $x^{(k+1)} = Jx^{(k)} + f$

$$J = D^{-1}(L + U)$$
 $f = D^{-1}b$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix} \\ \begin{bmatrix} a_{11} \\ a_{22} \\ \dots \\ b_n \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{22} \\ \dots \\ a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ -a_{21} & 0 & \dots & -a_{2n} \\ \dots & \dots & \dots & \dots \\ -a_{n1} & -a_{n2} & \dots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

- (1)雅可比迭代法,每迭代一次主要是计算一次矩阵乘向量,即 $Jx^{(k)}$ 。
- (2)计算过程中,原始数据A始终不变。
- (3)计算中需要**两组工作单元**来保存*x*^(k)及*x*^(k+1)。

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ \vdots \\ x_n^{(k+1)} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & \dots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \dots & -\frac{a_{2n}}{a_{22}} \\ \vdots & \vdots & & \vdots \\ -\frac{a_{n1}}{a_{nn}} & \dots & \dots & 0 \end{bmatrix} \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_n^{(k)} \end{bmatrix} + \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_n}{a_{nn}} \end{bmatrix}$$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} b_i - \sum_{\substack{j=1\\i \neq i}}^n a_{ij} x_j^{(k)}$$

高斯-赛德尔(Gauss-Seidel)迭代 法(异步迭代法)

- 选取 *M*=*D*-*L* 和 *N*=*M*-A=*U*
- $x^{(k+1)} = Gx^{(k)} + f$ $G = (D-L)^{-1}U$ $f = (D-L)^{-1}b$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right)$$

(1)G-S迭代法每迭代一次主要是计算一次矩阵乘向量。

(2)计算 $x^{(k+1)}$ 的第i个分量 $x_i^{(k+1)}$ 时,利用已计算出的最新分量 $x_i^{(k+1)}(j=1,...,i-1)$,因此,计算中只需要**一组工作单元**来保存 $x^{(k)}$ 或 $x^{(k+1)}$ 。

迭代终止准则

• 近似相对百分误差

$$\left| \mathcal{E}_{a} \right|_{i} = \left| \frac{x_{i}^{(k+1)} - x_{i}^{(k)}}{x_{i}^{(k+1)}} \right| \times 100\%$$

- 对所有的i,近似相对百分误差小于预设的 ε 。时,迭代终止
- 其他的终止准则 $\|x^{(k+1)} x^{(k)}\|$

迭代法——例

求解线性代数方程组

$$\begin{bmatrix} 10 & -2 & -1 \\ -2 & 10 & -1 \\ -1 & -2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 15 \\ 10 \end{bmatrix}$$

Jacobi迭代

$$J = \begin{vmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & 0.1 \\ 0.2 & 0.4 & 0 \end{vmatrix}$$

$$J = \begin{bmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & 0.1 \\ 0.2 & 0.4 & 0 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & 0.1 \\ 0.2 & 0.4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0.3 \\ 1.5 \\ 2 \end{bmatrix}$$

$$\begin{cases} x_1^{(k+1)} = 0.2x_2^{(k)} + 0.1x_3^{(k)} + 0.3\\ x_2^{(k+1)} = 0.2x_1^{(k)} + 0.1x_3^{(k)} + 1.5\\ x_3^{(k+1)} = 0.2x_1^{(k)} + 0.4x_2^{(k)} + 2 \end{cases}$$

G-S迭代

$$\begin{cases} x_1^{(k+1)} = 0.2x_2^{(k)} + 0.1x_3^{(k)} + 0.3\\ x_2^{(k+1)} = 0.2x_1^{(k+1)} + 0.1x_3^{(k)} + 1.5\\ x_3^{(k+1)} = 0.2x_1^{(k+1)} + 0.1x_2^{(k+1)} + 2 \end{cases}$$

迭代法——例

G-S方法比Jacobi 方法收敛快。

迭代次数	Jacobi方法					G-S方法						
数数	x_1	$ \mathcal{E}_a _1$	x_2	$ \mathcal{E}_a _2$	x_3	$ \mathcal{E}_a _3$	x_1	$ \mathcal{E}_a _1$	x_2	$ \mathcal{E}_a _2$	x_3	$ \mathcal{E}_a _3$
0	0		0		0		0		0		0	
1	0.3	100	1.5	100	2	100	0.3	100	1.56	100	2.684	100
2	0.8	62.5	1.76	14.7727	2.66	24.812	0.8804	65.9246	1.9445	19.7729	2.9539	9.1362
3	0.918	12.854	1.926	8.6189	2.864	7.1229	0.9843	10.5542	1.9922	2.3975	2.9938	1.3322
4	0.9716	5.5167	1.97	2.2335	2.954	3.0467	0.9997	1.3571	1.9989	0.335	2.9991	0.1796
5	0.9894	1.7991	1.9897	0.9911	2.9823	0.9496	1	0.1879	1.9999	0.0457	2.9999	0.0247
6	0.9962	0.6802	1.9961	0.3202	2.9938	0.3824	1	0.0257	2	0.0063	3	0.0034
7	0.9986	9.2427	1.9986	0.1251	2.9977	0.1305	1	0.0035	2	0.0009	3	0.0005
8	0.9995	0.0892	1.9995	0.0438	2.9992	0.0495						
9	0.9998	0.0324	1.9998	0.0163	2.9997	0.0176						
10	0.9999	0.0118	1.9999	0.0059	2.9999	0.0065						

2022/3/13 数值计算方法 28

- x=Gx+f $x^*=Gx^*+f$
- 迭代 $x^{(k+1)} = Gx^{(k)} + f$
- 引入误差向量*e*^(k)=*x*^(k)-*x**
- 误差向量的递推公式: $e^{(k+1)} = Ge^{(k)}$
- 于是 $e^{(k)} = Ge^{(k-1)} = G^2e^{(k-2)} = \dots = G^ke^{(0)}$ ($e^{(0)} = x^{(0)} x^*$)

$$\|e^{(k)}\| = \|G^k e^{(0)}\| \le \|G\|^k \|e^{(0)}\| = q^k \|e^{(0)}\|$$

• 定理: 设 $G \in \mathbb{R}^{n \times n}$,则 $G^k \to 0$ (零矩阵)(当 $k \to \infty$ 时)的 充要条件为G所有特征值满足 $|\lambda_i| < 1$ (i = 1, 2, ..., n)或G的 谱半径 $\rho(G) < 1$

- 一阶定常迭代法收敛性的基本定理 设有方程组x=Gx+f,有迭代法 $x^{(k+1)}=Gx^{(k)}+f$,则对任选初始向量 $x^{(0)}$,迭代法收敛的充要条件是 $\rho(G)<1$ 。
- 迭代收敛的**充分**条件 设有方程组x=Gx+f及一阶定常迭代法 $x^{(k+1)}=Gx^{(k)}+f$,如果有G的 某种范数 $||G||_{r}=q<1$,则
 - 迭代法收敛;
 - 误差估计 $\|x^* x^{(k)}\| \le \frac{q}{1-q} \|x^{(k)} x^{(k-1)}\| < \frac{1}{1-q} \|x^{(k)} x^{(k-1)}\|$ 事后估计

$$||x^* - x^{(k)}|| \le \frac{q^k}{1 - q} ||x^{(1)} - x^{(0)}||$$
 事前估计

• 当q≈1时,迭代法收敛缓慢。

q越小收敛速度越快;可以事先估计保证误差 $||x^*-x^{(k)}||_{\infty}$ < ε 所需要的迭代次数。

- 推论:
 - Jacobi迭代法收敛的充要条件是 $\rho(J)<1$ $(J=D^{-1}(L+U))$
 - G-S迭代法收敛的充要条件是 $\rho(G)<1$ $(G=(D-L)^{-1}U)$
- 例1: $\begin{bmatrix} 1 & 0.8 & 0.8 \end{bmatrix}$

$$A = \begin{vmatrix} 1 & 0.8 & 0.8 \\ 0.8 & 1 & 0.8 \\ 0.8 & 0.8 & 1 \end{vmatrix} J = \begin{vmatrix} 0 & -0.8 & -0.8 \\ -0.8 & 0 & -0.8 \\ -0.8 & -0.8 & 0 \end{vmatrix}$$

 $\rho(J)=1.6>1$ Jacobi迭代不收敛

$$G = \begin{bmatrix} 1 & 0 & 0 \\ 0.8 & 1 & 0 \\ 0.8 & 0.8 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & -0.8 & -0.8 \\ 0 & 0 & -0.8 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -0.8 & -0.8 \\ 0 & 0.64 & -0.16 \\ 0 & 0.128 & 0.768 \end{bmatrix}$$

 $\rho(G)$ <1 G-S迭代收敛

例2:

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$$

$$J = \begin{bmatrix} 0 & -2 & 2 \\ -1 & 0 & -1 \\ -2 & -2 & 0 \end{bmatrix}$$

 $\rho(J)<1$ Jacobi迭代收敛

$$G = \begin{vmatrix} 0 & -2 & 2 \\ 0 & 2 & -3 \\ 0 & 0 & 2 \end{vmatrix}$$

数值计

对于给定的线性方程组,用雅可比法和G-S 法求解时可能都收敛或都不收敛,也可能一 个收敛另一个不收敛。

- 如果A为(按行)严格对角占优阵,则Ax=b的Jacobi方法和G-S方法都收敛。
 - 实际上,如果A为严格对角占优阵,可以证明, $||J||_{\infty} < 1$ 并且 $||G||_{\infty} < 1$,因此,Jacobi方法和G-S方法都收敛。
 - G-S迭代法比Jacobi迭代法收敛得快
- 如果A为对称正定矩阵,G-S迭代收敛。
- 例:判断解Ax=b的Jacobi方法和G-S方法的收敛性

$$A = \begin{bmatrix} 10 & -2 & -1 \\ -2 & 10 & -1 \\ -1 & -2 & 5 \end{bmatrix}$$

$$|a_{11}| = 10 > |-2| + |-1|$$

$$|a_{22}| = 10 > |-2| + |-1|$$

$$|a_{33}| = 15 > |-1| + |-2|$$

A是严格对角占优矩 阵,两种方法都收敛

• 例:用G-S方法求解

$$3x_1 + 7x_2 + 13x_3 = 76$$
$$x_1 + 5x_2 + 3x_3 = 28$$
$$12x_1 + 3x_2 - 5x_3 = 1$$

不收敛!

x_1	$ \mathcal{E}_a _1$	x_2	$ \mathcal{E}_a _2$	x_3	$V \mathcal{E}_a _3$
21.000	110.71	0.80000	100.00	5.0680	98.027
-196.15	109.83	14.421	94.453	-462.30	110.96
-1995.0	109.90	-116.02	112.43	4718.1	109.80
-20149	109.89	1204.6	109.63	-47636	109.90
0364×10^5	109.90	-12140	109.92	$4.8144x10^5$	109.89
$.0579 \times 10^{5}$	1.0990	1.2272×10^5	109.89	-4.8653×10^6	109.89
	21.000 -196.15 -1995.0 -20149 0364x10 ⁵	21.000 110.71 -196.15 109.83 -1995.0 109.90 -20149 109.89 0364x10 ⁵ 109.90	21.000 110.71 0.80000 -196.15 109.83 14.421 -1995.0 109.90 -116.02 -20149 109.89 1204.6 0364x10 ⁵ 109.90 -12140	21.000 110.71 0.80000 100.00 -196.15 109.83 14.421 94.453 -1995.0 109.90 -116.02 112.43 -20149 109.89 1204.6 109.63 0364x10 ⁵ 109.90 -12140 109.92	21.000 110.71 0.80000 100.00 5.0680 -196.15 109.83 14.421 94.453 -462.30 -1995.0 109.90 -116.02 112.43 4718.1 -20149 109.89 1204.6 109.63 -47636 0364x10 ⁵ 109.90 -12140 109.92 4.8144x10 ⁵

$$[A] = \begin{bmatrix} 3 & 7 & 13 \\ 1 & 5 & 3 \\ 12 & 3 & -5 \end{bmatrix}$$

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

不是所有的矩阵都可以通过 重排变为严格对角占优阵

$$x_1 + x_2 + x_3 = 3$$
$$2x_1 + 3x_2 + 4x_3 = 9$$

2022/3/13 数值计算方法 $x_1 + 7x_2 + x_3 = 9$ **33**

逐次超松驰迭代法(SOR, Successive Over-Relaxation)

$$\tilde{x}_{i}^{(k+1)} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)} \right)$$

● 高斯-赛得尔方法的基础上进行修改

G-S方法得到的解

$$x_i^{(k+1)} = (1 - \omega)x_i^{(k)} + \omega \tilde{x}_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}}(b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k+1)} - \sum_{j=i}^{n} a_{ij}x_j^{(k)})$$

 $0<\omega<2$,称为松驰因子

- $\omega=1$, SOR方法即为G-S方法
- 0<ω<1,结果为当前迭代结果和上一次迭代结果的加权平均,称为低松弛方法。用于使得非收敛方程组收敛或者克服振荡加速收敛。
- 1<∞<2,超松弛方法
 - 隐含假设:新值沿正确方向向真实解移动,但是移动的速度慢
 - 用于加速已知是收敛的方程组的收敛速度
 - ullet 根据经验确定 ω 值

SOR——例

$$\begin{bmatrix} -4 & 1 & 1 & 1 \\ 1 & -4 & 1 & 1 \\ 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

精确解为 x^* =[-1 -1 -1 -1] T ,初始向量 $x^{(0)}$ =[0 0 0 0] T

松	弛因子	满足 $ x^{(k)}-x^* <10^{-5}$ 的迭代次数
	1.0	22
	1.1	17
	1.2	12
	1.3	11
	1.4	14
	1.5	17
	1.6	23
	1.7	33
	1.8	53
	1.9	107

最佳松弛因子

SOR——收敛性

● SOR的矩阵形式

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^{n} a_{ij} x_j^{(k)} \right)$$

$$M=(D-\omega L)/\omega$$

$$x^{(k+1)} = G\omega x^{(k)} + f$$

$$G\omega = (D - \omega L)^{-1} [(1 - \omega)D + \omega U]$$

$$f = \omega (D - \omega L)^{-1} b$$

- SOR法收敛的充要条件是 $\rho(G\omega)$ <1
- 如果A为对称正定阵,且 $0<\omega<2$,则解Ax=b的SOR法收 敛。

MATLAB中的函数

矩阵分析		线性方程组			
函数	描述	函数	描述		
cond	计算矩阵条件数	右除/和左除\	help slash		
norm	计算矩阵或向量的范数	lu	lu分解		
inv	矩阵求逆	chol	cholesky分解		
pinv	求矩阵伪逆				
det	计算行列式的值				
rank	求秩				
eig, eigs	矩阵特征值				

第三章 总结——各种方法

		-			
方法	稳定性	精度	应用范围	编程难度	备注
图解法	_	差	受限		比数值方法耗时
Cramer法则	_	受舍入误 差影响	受限		方程数多于3个时 计算复杂
列主元高斯消 去	_	受舍入误 差影响	一般,适用 于方程组系	中等,计算量较小,存储量	
LU分解			数矩阵为低 阶稠密矩阵、 带状矩阵	较大	实现消去法;进 行矩阵求逆计算
迭代法 (Jacobi和G-S)	可能不收敛	优秀	收敛时,适 用于大型稀 疏线性方程 组	较简单,计算 量有时较大, 存储量较小	

第三章 总结——重要内容

- 直接法
 - 高斯消去、LU分解
- 迭代
 - Jacobi Gauss-Seidel SOR
- 具体算法、问题及改进
- 范数、条件数、病态方程组