Math 617 - Assignment 2 - Spring 2019.

For a 5% bonus, submit by Sunday June 2 at 23:59. Otherwise due Sunday June 9 at 23:59. Submit directly to your D2L dropbox.

Rules and Regulations:

- 1. You are to provide full solutions to the following problems.
- 2. Solutions must be typeset in a pdf file.
- 3. You may submit the assignment on your own or in pairs. A 5% bonus will be assigned to individual submissions.
- 4. If you work closely with another individual, please submit in a group with that individual (in other words, do not attempt to gain the benefit of single submission while working in a group).
- 5. Any sources must be cited including textbooks, people and online resources.
- 6. The student must demonstrate that they understand a third-party solution completely, or else the grader will assign them a zero on the question.
- 7. Direct copying of all or part of another solution (with or without citation) is academic misconduct.

Last name:	First name:	
Student number:		

Each part of each problem will be graded out of 3. A '3' represents a complete or near-complete solution. A '2' represents an otherwise correct solution with moderate logical gaps. A '1' represents demonstration of some insight into the problem.

- 1. Consider the space V of continuous functions on [0,1] with the 2-norm $||f||_2^2 = \int_0^1 |f|^2$. We saw in class that V is an incomplete normed linear space.
 - (a) For a continuous function φ on [0,1], define a linear map $M_{\varphi}: V \to V$ by $M_{\varphi}f = \varphi f$. Show that M_{φ} is bounded and calculate its norm.
 - (b) Is $\mathcal{A} = \{M_{\varphi} | \varphi \in C([0,1])\}$ a Banach algebra? Note that B(V) is necessarily incomplete, so it is not enough to prove that \mathcal{A} is closed.
- 2. Let X be a compact Hausdorff space and Y a subset of X. Let J_Y be the ideal of functions in C(X) vanishing on Y.
 - (a) Show that, in general, $\frac{C(X)}{J_Y}$ may not be isomorphic to C(Y).
 - (b) Prove or disprove the following statement: If Y is closed in X then $\frac{C(X)}{J_Y}$ is isomorphic to C(Y). If you answer true, is this isomorphism also isometric?
- 3. Show that any two (Hilbert space) bases of a Hilbert space \mathcal{H} have the same cardinality.
- 4. Let \mathcal{H} be a Hilbert space with basis \mathcal{E} . Show that the set of functionals

$$\operatorname{span}\{\varphi_e|e\in\mathcal{E}\}$$

where $\varphi_e(h) = \langle h, e \rangle$ is dense in \mathcal{H}^* (which we identity with \mathcal{H} by the Riesz representation theorem).

- 5. Show that the closed unit ball in a Hilbert space \mathcal{H} is compact if and only if \mathcal{H} is finite dimensional. HINT: The closed unit ball must contain any basis.
- 6. Let \mathcal{H} be a separable Hilbert space with basis $\{e_n\}_{n\in\mathbb{N}}$ and define P_n as the orthogonal projection onto span $\{e_1,\ldots,e_n\}$.
 - (a) A sequence of operators $T_n \in B(H)$ is said to converge strongly to T if $||Th-T_nh||$ converges to 0 for all $h \in \mathcal{H}$ (note that strong convergence is actually weaker than operator norm convergence—think of this as the difference between pointwise and uniform convergence). Show that, for any $T \in B(\mathcal{H})$, the sequence P_nTP_n converges strongly to T.
 - (b) An operator $F \in B(\mathcal{H})$ is said to be of finite rank if $\operatorname{rank} F := \dim(\operatorname{im} F)$ is finite. If $\operatorname{rank} F = 1$, show that $F(h) = \langle h, g \rangle k$ for some $g, k \in H$ (HINT: Riesz representation theorem).
 - (c) Show that the linear span of rank 1 operators is strongly dense in $B(\mathcal{H})$.