Análise exploratória de dados

Parte 7

Prof.: Eduardo Vargas Ferreira

Medidas de posição e dispersão

Medidas de posição

Medidas de dispersão

Medidas de Dispersão

Medidas de Dispersão

 O resumo de um conjunto de dados por medidas de posição esconde toda a informação sobre a variabilidade das observações.

► Um critério freqüentemente usado para esse fim é aquele que mede a dispersão dos dados em torno de sua média. O mais usado é a variância amostral:

$$Var(X) = \sum_{i=1}^{d} \frac{n_i \cdot (x_i - \bar{x})^2}{n}$$

Exemplo: número de filhos

ightharpoonup Voltando ao exemplo sobre a frequência dos funcionários segundo o nº de filhos, vimos que $\bar{x}=1,65$.

$\mathbf{N}^{\mathbf{o}}$ de filhos x_i	Frequência n_i	Proporção f_i
0	4	0.20
1	5	0.25
2	7	0.35
3	3	0.15
5	1	0.05
Total	20	1.00

$$Var(X) = \sum_{i=1}^{d} \frac{n_i \cdot (x_i - \bar{x})^2}{n} = \frac{4}{20} \cdot (0 - 1, 65)^2 + \frac{5}{20} \cdot (1 - 1, 65)^2 + \dots + \frac{1}{20} \cdot (5 - 1, 65)^2$$
$$= \sum_{i=1}^{d} f_i \cdot (x_i - \bar{x})^2 = 1, 52$$

Eduardo Vargas Ferreira - UFPR Análise exploratória de dados

Exemplo: número de filhos

Voltando ao exemplo sobre a frequência dos funcionários segundo o nº de filhos, vimos que $\bar{x} = 1,65$.

$\mathbf{N}^{\mathbf{o}}$ de filhos x_i	Frequência n_i	$egin{aligned} \mathbf{Proporç\~ao} \ f_i \end{aligned}$
0	4	0.20
1	5	0.25
2	7	0.35
3	3	0.15
5	1	0.05
Total	20	1.00

Variância amostral

$$Var(X) = \sum_{i=1}^{d} f_i \cdot (x_i - \bar{x})^2$$
$$= 1,52 \text{ filhos}^2$$

Desvio padrão

$$dp(X) = \sqrt{Var(X)}$$

= 1,23 filhos

Exemplo: vendas semanais

Os dados representam as vendas semanais de vendedores de gêneros alimentícios:

Vendas semanais	${f N^{\underline{o}}}$ de vendedores
$30 \vdash 35$	2
$35 \vdash 40$	10
$40 \vdash 45$	18
$45 \vdash 50$	50
$50 \vdash 55$	70
55 ⊢ 60	30
$60 \vdash 65$	18
$65 \vdash 70$	2

1. Calcule o desvio padrão da amostra?

$$Var(X) = \frac{2 \cdot (32.5 - 51, 2)^2 + 10 \cdot (37.5 - 51, 2)^2 + \dots + 2 \cdot (67.5 - 51, 2)^2}{200}$$

$$= 43.81.$$

$$dp(X) = \sqrt{43.81} = 6.61.$$

Medidas complementares

Coeficiente de variação (CV)

▶ O CV é uma medida de **dispersão relativa** definida como a razão entre o desvio padrão e a média. Um valor superior a 50% sugere alta dispersão, o que indica heterogeneidade dos dados.

$$CV = \frac{dp}{\bar{x}}$$

Quanto mais próximo de zero, mais homogêneo são os dados e mais representativa será a média.

Grupo	Valores	Média	Desvio padrão
\mathbf{A}	10, 20, 30	20	10
В	10000, 10010, 10020	10010	10

$$CV_A = \frac{10}{20} = 0.5$$
 $CV_B = \frac{10}{10010} \approx 0.0009$

Exemplo: valores agrupados

Se os dados estiverem agrupados em classes, podemos obter os quantis usando o histograma. P. ex.:

Mediana

$$\frac{q(0,50) - 8,00}{22\%} = \frac{12,00 - 8,00}{33\%}$$

$$q(0,50) = 8,00 + 2,67 = 10,67.$$

3º quartil

$$\frac{q(0,75) - 12,00}{14\%} = \frac{16,00 - 12,00}{22\%}$$
$$q(0,75) = 14,55.$$

Esquema dos cinco números

▶ Os valores $x_{(1)}, q_1, q_2, q_3$ e $x_{(n)}$ formam o **esquema dos cinco números**.

As informações contida neste esquema pode ser traduzida através do box-plot.

- Intervalo Interquartil:

$$d_q = q_3 - q_1$$

- Limite superior:

$$LS = q_3 + (1,5) \cdot d_q$$

Limite inferior:

$$LI = q_1 - (1,5) \cdot d_q$$

Esquema dos cinco números

▶ Os valores $x_{(1)}, q_1, q_2, q_3$ e $x_{(n)}$ formam o **esquema dos cinco números**.

As informações contida neste esquema pode ser traduzida através do box-plot.

- Intervalo Interquartil:

$$d_q = q_3 - q_1$$

- Limite superior:

$$LS = q_3 + (1,5) \cdot d_q$$

Limite inferior:

$$LI = q_1 - (1,5) \cdot d_q$$

Esquema dos cinco números

▶ Os valores $x_{(1)}, q_1, q_2, q_3$ e $x_{(n)}$ formam o **esquema dos cinco números**.

As informações contida neste esquema pode ser traduzida através do box-plot.

- Intervalo Interquartil:

$$d_q = q_3 - q_1$$

- Limite superior:

$$LS = q_3 + (1,5) \cdot d_q$$

- Limite inferior:

$$LI = q_1 - (1,5) \cdot d_q$$

Exemplo: salário dos empregados

▶ Os dados abaixo referem-se ao salário de 36 funcionário de uma empresa.

Classe de salários	Frequência
$4,00 \vdash 8,00$	10
$8,00 \vdash 12,00$	12
$12,00 \vdash 16,00$	8
$16,00 \vdash 20,00$	5
$20,00 \vdash 24,00$	1
Total	36

▶ Neste caso, observa-se uma distribuição assimétrica à direita.

Exemplo: salário dos empregados

▶ Os dados abaixo referem-se ao salário de 36 funcionário de uma empresa.

Exemplo: comparação de algoritmos de Machine Learning

Fonte: An Introduction to Statistical Learning.

Outliers

Para entendermos os motivos de se utilizar os limites **LI** e **LS** para definir as observações atípicas (outliers), considere a distribuição abaixo:

▶ A área entre LI e LS representa 99,3% da distribuição.

Outliers

Para entendermos os motivos de se utilizar os limites **LI** e **LS** para definir as observações atípicas (outliers), considere a distribuição abaixo:

▶ A área entre LI e LS representa 99,3% da distribuição.

Referências

- ▶ Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- ▶ Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

