Gabarito dos Exercícios

Derivadas de Ordem Superior

Exercício 1:

a)
$$f'(x) = 15x^2 + 16x - 7$$
 $f''(x) = 30x + 16$

a)
$$f'(x) = 15x^2 + 16x - 7$$
 $f''(x) = 30x + 16$ b) $f'(x) = 24x^7 + 20x^3$ $f''(x) = 168x^6 + 60x^2$

c)
$$f'(x) = \frac{1}{3\sqrt[3]{x^2}} - \frac{4}{x^3}$$
 $f''(x) = -\frac{2}{9\sqrt[3]{x^5}} + \frac{12}{x^4}$ d) $f'(x) = \frac{3}{2\sqrt{3x+1}}$ $f''(x) = \frac{-9}{4\sqrt{(3x+1)^3}}$

d)
$$f'(x) = \frac{3}{2\sqrt{3x+1}}$$
 $f''(x) = \frac{-9}{4\sqrt{(3x+1)^3}}$

e)
$$f'(x) = \frac{1}{\sqrt{(x^2+1)^3}}$$
 $f''(x) = -\frac{3x}{\sqrt{(x^2+1)^5}}$ f) $f'(x) = \frac{2}{\sqrt[5]{(10x+7)^4}}$ $f''(x) = \frac{-16}{\sqrt[5]{(10x+7)^9}}$

f)
$$f'(x) = \frac{2}{\sqrt[5]{(10x+7)^4}}$$
 $f''(x) = \frac{-16}{\sqrt[5]{(10x+7)^9}}$

g)
$$f'(x) = 2xe^{(x^2)}$$
 $f''(x) = 2e^{(x^2)}(1+2x^2)$ h) $f'(x) = 2\operatorname{sen} x \cos x$ $f''(x) = 2(1-2\operatorname{sen}^2 x)$

h)
$$f'(x) = 2 \operatorname{sen} x \cos x$$
 $f''(x) = 2(1 - 2 \operatorname{sen}^2 x)$

i)
$$f'(x) = \frac{1}{\sqrt{4+x^2}}$$
 $f''(x) = \frac{-x}{\sqrt{(4+x^2)^3}}$

Exercício 2:

b) e c) Não existe
$$t>0$$
 tal que $a(t)=0$ d) 1,5s; $\frac{2\sqrt{6}}{3}$ m/s; $\frac{4\sqrt{6}}{3}$ m

Funções Crescentes e Decrescentes

Exercício 1:

a)
$$f'(x) = 0 \Leftrightarrow x = \frac{-7}{8}$$
; Crescente em $(-\infty, \frac{-7}{8})$; Decrescente em $(\frac{-7}{8}, \infty)$

b)
$$f'(x) = 0 \Leftrightarrow x = \frac{16}{5}$$
; Crescente em $(0, \frac{16}{5})$; Decrescente em $(-\infty, 0)$ e $(\frac{16}{5}, \infty)$

c)
$$f'(x) = 0 \Leftrightarrow x = 2$$
 ou $x = \frac{5}{3}$; Crescente em $(-\infty, -2)$ e $(\frac{5}{3}, \infty)$; Decrescente em $(-2, \frac{5}{3})$

d)
$$f'(x) = 0 \Leftrightarrow x = \frac{3}{4}$$
; Crescente em $(\frac{3}{4}, \infty)$; Decrescente em $(-\infty, \frac{3}{4})$

e)
$$f'(x) = 0 \Leftrightarrow x = \sqrt{3}, x = -\sqrt{3}$$
 ou $x = 0$; Crescente em $(-\sqrt{3}, 0)$ e $(\sqrt{3}, \infty)$; Decrescente em $(-\infty, -\sqrt{3})$ e $(0, \sqrt{3})$

f)
$$f'(x) = 0 \Leftrightarrow x = 1$$
 ou $x = -1$; Crescente em $(-\infty, -1)$ e $(1, \infty)$; Decrescente em $(-1, 0)$ e $(0, 1)$

Exercício 2:

a)
$$-\sqrt{3} e \sqrt{3}$$
 b) 0 c) $\nexists x$

Exercício 3:

a)
$$-\frac{\sqrt{2}}{2} e^{\frac{\sqrt{2}}{2}}$$
 b) 2 c) $\nexists x$

Concavidade e Pontos de Inflexão

CB: Concavidade para baixo

CC: Concavidade para cima

PI: Ponto de Inflexão.

Exercício 1:

- a) CB em $(-\infty, \frac{2}{3})$; CC em $(\frac{2}{3}, \infty)$; PI: $x = \frac{2}{3}$
- b) CB em $(-\infty, \frac{-10}{3})$; CC em $(\frac{-10}{3}, \infty)$; PI: $x = \frac{-10}{3}$
- c) CB em $(0, \frac{2}{3})$; CC em $(-\infty, 0)$ e $(\frac{2}{3}, \infty)$; PI: x = 0 e $x = \frac{2}{3}$
- d) CB em $(-\infty, \frac{-\sqrt{2}}{6})$ e $(\frac{\sqrt{2}}{6}, \infty)$; CC em $(-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6})$; PI: $x = -\frac{\sqrt{2}}{6}$ e $\frac{\sqrt{2}}{6}$
- e) CB em $(12, \infty)$; CC em (0, 12); PI: x = 12
- f) CB em $(-\infty, -\sqrt{3})$ e $0, \sqrt{3}$; CC em $(-\sqrt{3}, 0)$ e $(\sqrt{3}, \infty)$; PI: $x = 0, x = \sqrt{3}$ e $x = -\sqrt{3}$.

Máximos e Mínimos

Exercício 1:

a) 5; -3 b) 20;
$$\frac{-4}{2}$$
 c) 1; -3 d) 4; $\frac{-9}{4}$

b)
$$20; \frac{-4}{3}$$

c)
$$1; -3$$

d)
$$4; \frac{-9}{4}$$

Exercício 5:

a)
$$\frac{3}{8}$$

b) Não existe c)
$$\frac{5}{3}$$
 e -2 d) $\frac{3}{2}$ e $\frac{-7}{3}$ e)4 e -4 f) Não existe

c)
$$\frac{5}{3}$$
 e - 5

d)
$$\frac{3}{2}$$
 e $\frac{-7}{3}$

Exercício: teste da segunda derivada

a)CB em
$$(-\infty, \frac{2}{3})$$
; CC em $(\frac{2}{3}, \infty)$; PI: $x = \frac{2}{3}$; máximo: $f(\frac{1}{3}) = \frac{31}{27}$; mínimo: $f(1) = 1$

- b) Não há extremos relativos; CB em $(0,\infty)$; CC em $(-\infty,0)$; PI: x=0
- c) máximo: $f(\frac{-4}{3}) = 7,27$; mínimo: f(0) = 0; CB em $(-\infty,0)$ e $(0,\frac{2}{3})$; CC em $(\frac{2}{3},\infty)$; PI: $x = \frac{2}{3}$
- d) mínimo: f(4) = 4; CB em $(12, \infty)$; CC em (0, 12); PI: x = 12
- e) mínimo: f(-2)=-7,55; CB em (0,4); CC em $(-\infty,0)$ e $(4,\infty)$; PI: x=0 e x=4
- f) mínimo: f(3) = -17; CB em (0,2); CC em $(-\infty,0)$ e $(2,\infty)$; PI: x = 0 e x = 2.