# Subsegmental language detection in Celtic language text



Akshay Minocha

IIIT Hyderabad Hyderabad, India akshay.minocha@students.iiit.ac.in

# Francis M. Tyers

UiT Norgga Árktalaš Universitehta Romsa, Norway francis.tyers@uit.no Special thanks to Kevin Scannell

### Introduction

We aim to perform language identification on sub segmental basis:

- Typical case is to detect the language of documents and sentences.
- We are focussing on cases where A single sentence may have different code switching points

#### Dataset

- Simplifying the task by taking into account Celtic languages and a corresponding majority language.
- Manual annotation of about 40-50 tweets for each of the three language pairs.

| Languago | Statistics (%)               |                                                             |  |
|----------|------------------------------|-------------------------------------------------------------|--|
| Language | Tokens                       | Segments                                                    |  |
| Irish    | 332                          | 40                                                          |  |
| English  | 379                          | 42                                                          |  |
| Welsh    | 419                          | 64                                                          |  |
| English  | 378                          | 66                                                          |  |
| Breton   | 388                          | 54                                                          |  |
| French   | 379                          | 53                                                          |  |
|          | English Welsh English Breton | LanguageTokensIrish332English379Welsh419English378Breton388 |  |

## Methodology

#### ..... Alphabet n-gram approach .....

- Character Language model
- Using IRSTLM we build a language model for the five languages
- For English and French Europarl
- Breton, Welsh and Irish Corpora of text crawled from the web
- Size of the corpus from which this language model was built 1.5 million tokens
- Example the word 'sláinte!' would be broken down into a sequence of {'\_ s', 's l', 'l á', 'á i', 'i n', 'n t', 't e', 'e!', '! \_'}.

## ...... Word based prediction .....

- Generate word lists for the languages using aspell which is widely used on Unix systems.
- Word are labeled according to their presence in the particular word list.
- In case of a confusion the word is added to the previous segment

## .. Word-based prediction with character backoff..

• Same as Word-based prediction, but in case of confusion this falls back to the Alphabet bi-gram approach.

### ..... Baseline .....

• Using *langid.py* labeled all the lines in a particular dataset according to the majority classification

# ......Langid character trigram prediction.....

- Trigram probabilities from *langid* were taken into account.
- All other heuristics and chunking algorithm are same as for other methods.

# Examples of code-switching segmentation

[en You're a] [ga Meiriceánach, cén fáth] [en are you] [ga foghlaim Gaeilge?!]
@afaltomkins [cy gorfod cael bach o tan] [en though init]
en omg[cy mar cwn bach yn] [en black and tan] [cy a popeth,] [en even cuter!!]

## Example

Code switching: You're a [Meiriceánach, cén fáth] are you [foghlaim Gaeilge?!]

Quotations: The anthem starts with the words ['Mae hen wlad fy nhadau...']

Named entities: [Dr Jekyll] ha [Mr Hyde] embannet gant [Éditions Aber]

**Interjections**: Hey, that's great, [diolch yn fawr!]

**Translations**: Bloavezh mat d'an holl! [Bonne anné à tous!]

# Chunking algorithm

# Algorithm 1 \*

```
Require: s: sentence to chunk

1: buffer = [] /*Undecided expan
```

1: buffer = []/\*Undecided expanding window of chunk\*/

2: chunks = [] /\*Decided labelled segment\*/

3: buffer\_language  $\leftarrow$  LANGPREDICT(s[0]) /\* Language of first word \*/

4:  $\operatorname{flag} \leftarrow 0$ 

10:

11:

13:

15:

17:

18:

5: for all  $w \in s$  do

6: **if** Langerenerge then

7: if flag = 1 then

 $buffer \leftarrow buffer + [word\_buffer, w]$ 

 $\mathbf{else} \leftarrow 0$ 

buffer  $\leftarrow$  buffer + [w]

2: **if** Language **then** 

if flag= 0 then

 $\operatorname{flag} \leftarrow 1$ 

 $word\_buffer \leftarrow w$ 

continue

else

 $chunks \leftarrow chunks + [(buffer,buffer\_language)]$ 

 $\text{buffer} \leftarrow [\text{word\_buffer}, w]$ 

 $buffer\_language \leftarrow LangPredict(w)$ 

21:  $\operatorname{flag} \leftarrow 0$ 

22: **if** length(buffer)  $\neq 0$  **then** 

 $: chunks \leftarrow chunks + [(buffer\_language)]$ 

### Results

| System                                      | Irish—English  |       | Welsh—English |       | Breton—French |              |        |
|---------------------------------------------|----------------|-------|---------------|-------|---------------|--------------|--------|
| System                                      |                | Irish | English       | Welsh | English       | Breton       | French |
| baseline $rac{p}{r}$                       | $\overline{p}$ | 2.50  | 0.0           | 0.0   | 0.0           | 0.0          | 0.0    |
|                                             | $\bar{r}$      | 2.56  | 0.0           | 0.0   | 0.0           | 0.0          | 0.0    |
| langid-3character $rac{p}{r}$              | $\overline{p}$ | 5.00  | 14.29         | 0.0   | 21.21         | 1.85         | 20.75  |
|                                             | $\bar{r}$      | 5.41  | 8.45          | 0.0   | 14.58         | 1.92         | 12.36  |
| - WOTOLIST                                  | $\overline{p}$ | 32.50 | 28.57         | 26.69 | 40.91         | 57.41        | 33.96  |
|                                             | $\tilde{r}$    | 23.64 | 26.09         | 26.03 | 33.75         | 47.69        | 33.33  |
| character bigram $rac{p}{r}$               | $\overline{p}$ | 32.50 | 35.71         | 23.44 | 19.70         | 57.41        | 52.83  |
|                                             | $\bar{r}$      | 22.41 | 26.79         | 15.31 | 16.67         | 41.33        | 37.84  |
| wordlist+character bigram $\stackrel{p}{r}$ | p              | 52.50 | 50.00         | 32.81 | 31.82         | 70.37        | 67.92  |
|                                             |                | 38.18 | 43.75         | 24.14 | 25.61         | <b>57.58</b> | 57.14  |

| System                    | Accuracy (%)  |               |               |  |
|---------------------------|---------------|---------------|---------------|--|
|                           | Irish—English | Welsh—English | Breton—French |  |
| baseline                  | 42.76         | 42.16         | 44.07         |  |
| <i>langid-</i> 3character | 57.24         | 45.92         | 43.16         |  |
| wordlist                  | 79.75         | 74.28         | 83.96         |  |
| character bigram          | 81.29         | 65.62         | 76.79         |  |
| wordlist+character bigram | 85.79         | 72.40         | 88.79         |  |

### Evaluation

- We followed the footsteps of **CoNLL 2000** shared task on language independent named entity recognition.
- Divide the text into non-overlapping segments.
- **Precision** percentage of correctly detected phrases.
- **Recall** number of phrases in the data that were found by the chunker.

### Conclusions

- A very preliminary investigation into subsegment language identification in Celtic language texts.
- We would like to include supervised methods and features talked about by King and Abney (2013)
- We would also like to check our methods with higher order n-grams and more options in backoff.
- Explore a lattice technique where each word is a lattice node and the inclusions of the words are done using probability.