Internship Program

ReportBy

Sai kumar Dharmavarapu-19485A0245

In association with

Contents

Introduction
Program organiser
Courtesy
Program details
Internship program
3 rd May2021: Introduction to EPC Industry
4 th May2021: Engineering documentation for EPC projects
5 th May2021: Engineering documentation for commands and formulae
7 th May2021: Engineering documentation for Electrical system design
10 th May2021: Engineering documentation for Typical diagrams
11th May2021: Classification of Transformers and Generators
12th May2021: Classification of Switchgare construction and power factor improvement10
17 th May2021: Detailing about UPS system and Busducts
18 th May2021: Detailing about Motor Starters and Sizing of motors
19th May2021: Discribing about Earthing system and Lighting Protection
20 th May2021: Lighting or illumination systems and calculations
21th May2021: Lighting or illumination systems using DIALUX software
24 th May2021: Cabling and their calculations and types
25 th May2021: Cabling calculations and Cable gland selection
28 th May2021: Load calculations and Transformer sizing calculations
29th May2021: DG set calculations
2nd june2021: Caluculations of Earthing and Lighting protection
5 th june 2021: Cable sizing and cable tray sizing calculations
Conclusion

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Au

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. G. Srinivasa Rao – Internship

coordinatorMr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth - Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through

ZOOMPresenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical	Engineering	Types of Engineering
	Detailed Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineerrole at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical	Engineering Deliverables list	Sequence of deliverables
	Design	Detailed Engineering work flow	Detailed engineering process
	Documentation	Document transmission	Document submission and info
			exchange
		Deliverables types	Different types of deliverables

2

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

5 th May2021: Engineering documentation for commands and formulae

B Document &	MS Word	Report / Calculations formats
Drawingtools	MS Excel	Basic excel commands
•		25

3C. AUTOCAD BASIC COMMANDS

AUTOCAD BASIC KEYS							
STAND	ARD	DRA	W	MODI	FY	FORM	AT
NEW	Ctrl+N	LINE	L	ERASE	E	PROPERTIES	MO
OPEN	Ctrl+O	RAY	RAY	COPY	СО	SELECT COLOR	COL
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN. STYLE	D
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX		
		POINT	PO	BRAKE	BR		
		HATCH	Н	CHAMFER	CHA		
		GRADIENT	GD	FILLET	F		
		REGION	REG	EXPLODE	Χ		
		BOUNDARY	ВО				
		DONUT	DO				

	EXTRA				TING	PAPER SIZE
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID 🖟	F7, Ctrl+G	A1=594*841
ALL	Α	OBJECT SNAP	OB	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

(Q) (000)

Topic details:

Here we need to learn the basis of the autocadbasic keys like standard, modify,draw,format,papersize etc..

7 th May2021: Engineering documentation for Electrical system design

4	Electrical system	Overall plant description
	design for a small	Sequence of approach
	small project	Approach to detailed design

Topic details:

Internz **1C. DETAILED ENGINEERING** IFR/IFD/IFA IFC/IFP Engineering Engineering Report to PM and Report to PM Deliverable from Deliverable from Lead Engineer Lead Engineer Posting in project Document Control Index Posting in Project Document Control Index Inter-discipline check through DC Action by Lead Engineer Action by Lead Engineer Quality Quality Assurance Accepted Assurance _ - - - Accepted Finalization by Lead Engineer Finalization by Lead Engineer Submission to Client / Consultant by DC Submission to Client / Consultant by DC Review by Client Review by Client Approved Input to other disciplines / AFC issue Distribution to Client / Consultant Procurement & Construction through DMS

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5	Electrical system design for typical diagrams		
		Load lists shedule	Power flow diagram
		Single line diagram	Typical schematic
			diagram

Topic details:

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

6	Classification of		
	Transformers and Generators	Different types of Transformers	Different types of Generators

Topic details:

Classification of Transformers and Generators

12th May2021: Classification of Switchgare construction and power factor improvement

7	Classification of Switchgare construction and power factor improvement	Different types of Switchgare assembles	Power factor improvement	
---	--	---	--------------------------	--

Topic details:

Classification of Switchgare contruction and Power Factor Improvement

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	-

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about Motor	Motor starters and drives	Sizing and selection of
	Starters and Sizing of		motors
	motors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Discribing	Plant Earthing system	Lighting Protection materials
	about Earthing		
	system and		
	Lighting		
	Protection.		

Topic details: Discribing about Earthing system and Lighting Protection.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

11	Lighting		
	or	Lighting or illumination systems	Lighting calculations
	Illuminatio		
	n systems		
	and		
	Calculation		
	S		

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon,

CG Lux Applicable Standards: IS 6665: Code of practice for industrial

lighting, IS 3646: Code

of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12	Lighting or Illumination using DIALUX software	Lighting or illumination systems	Operation software	of	dialux
----	--	----------------------------------	--------------------	----	--------

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

24th May2021: Cabling and their calculations and types.

13	Cabling and their				
	types and claculations	Cabling calculations	Types materials	of	cabling
			inatchais		

Topic details: Cabling and their types and claculations .

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling claculations and cable gland selection	Cabling calculations	Cable gland selection
----	---	----------------------	-----------------------

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point. Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table
Refer to illustration at the top of the page.

Cable Gland Size	Available Entry Threads "C" (Alternate Metric Thread Lengths Available)		Cable Bedding Diameter "A"	Overall Cable Diameter "B"	Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion Length "F"
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length F
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	88.0	49.8
755	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	80.0	90.4	3.15	4.0	114.3	125.7	66.6

28 th May2021: Load calculations and Transformer sizing calculations

15	Load calcul	ations		
	and	TR	Load calculations	TR calculations
	calculations			

Topic details:

List of electrical load calculations.

T/F calculation:

29th May2021: DG set calculations

16	DG set
	calculations

Topic details:

Transformer and DG set calculations, types, sizing or selections

2nd june2021: Caluculations of Earthing and Lighting protection.

17	Calculation of		
	Earthing and	Earthing calculations	Lighting protection
	Lighting		calculation
	protection		
	calculations		

Topic details:

Calculation of Earthing and Lighting protection calculations

5 th june 2021: Cable sizing and cable tray sizing calculations.

18	Cable sizing and		
	cable tray	Cable sizing calculations	Cable tray calculation
	sizing	_	
	calculations		

Topic details:

Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

Assignment-1 ELECTRICAL LOAD CALCULATIONS LV MCC

												kW = [A] / [D]		Consumed Lo	oad	kVAR = kW	x tan φ	
Sl. Equipment No. No.	Equipment Description		Breaker Type	Breaker No. of Poles	ELCB Rating	Absorbed Load	Motor / Load Rating	Load Factor [A] / [B]	Ef iciency f Load atctor [C] Fa	Power Factor at Load Factor [C]	Continuo	ous	Intermi	ttent	Stand-b	у	Rem	
			A			mA	[A] kW	[B] kW	[C] decimal	[D] decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
十							11.11	11.11	acciniai	000111101	του φ	11 11	11,111	Α,,	II VIII	11.11	11,111	
	PU2315	Silica filter feed pump					101.41	110.00	0.92	0.93	0.82	109.04	76.11					
	PU 2314-A	Absorbesnt/Neutral oil pump (W)					29.46	30.00	0.98	0.91	0.78	32.4	26.0					
	PU 2314 -B	Absorbesnt/Neutral oil pump (S)					25.33	30.00	0.84	0.91	0.78					27.8	22.3	
	PU2305	Feed Pump (Seperator)					102.42	110.00	0.93	0.93	0.82	110.1	76.9					
	MX2305	MIXER (W)					103.21	110.00	0.94	0.93	0.82	111.0	77.5					
;	MX 2308	MIXER (S)					103.21	110.00	0.94	0.93	0.82					111.0	77.5	
'	BW2313	Blower					44.31	45.00	0.98	0.91	0.78	48.7	39.1					
	Rotary valve	TK 2313B (I)					4.30	4.70	0.91	0.85	0.73			5.1	4.7			
	SC2314	Screw conveyor (I)					9.95		0.90	0.85	0.73			11.71	10.96			
О	AG 2324A	Citric acid tan agitator (W)					7.48	7.50	1.00	0.85	0.73	8.80	8.24					
1	AG 2324B	Citric acid tank agitator (S)					7.48	7.50	1.00	0.85	0.73					8.8	8.2	
2	AG 2305	Citric oil rection vessol agitator					27.17	30.00	0.91	0.91	0.73	29.86	27.95					
3	AG 2309	Lye oil reaction vessel agitator					9.89	11.00	0.90	0.85	0.73	11.64	10.89					
4	AG 2310	Lye oil reaction vessel agitator					9.89	11.00	0.90	0.85	0.73	11.64	10.89					
5	AG 2314	Soap Adsorbant Tank Agitator					17.30	18.50	0.94	0.85	0.73	20.35	19.06					
4																		
4																		
1																		
+																		
	Maximum of norn (Est. x%E + y%F)	nal running plant load : 498.5 kW		377.2	2 kVAR		sqrt (l	$(k^2 + kVAR^2) =$	625.2	kVA	TOTAL	493.50	372.52	16.76	15.70	147.61	108.03	
	Peak Load : (Est. x%E + y%F -	513.3 kW + z%G)		388.0) kVAR		sqrt (l	$kW^2 + kVAR^2) =$	643.5	kVA	kVA	618.3	1	22.9	97	182.92	2	

Assumptions
1) Load factor, Efficiency and Power factor.

Load Rating (kW)	Efficiency	Power facto
<= 20	0.85	0.73
> 20 - <= 45	0.91	0.78
> 45 - < 150	0.93	0.82
>= 150	0.94	0.91

2) Coincidence factors x = 1.0, y = 0.3, and z = 0.1 considered for continuous, intermittent and standby load.

Assignment - 2

Calculation for Transformer Capacity

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	kW	kVar	kVA	
a. Continuous load	493.5	372.5	618.31	(i)
b. Intermittent load / Diversity Factor	16.76	15.7	22.96	(ii)
c. Stand-by load required as consumed load	147.61	108.0	182.92	(iii)
May Consumed lead = $((i) + 200/((ii) + 100/((iii))) =$	512.2	200 0	612 16	

 Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =
 513.3
 388.0
 643.46

 Future expansion load (20% capacity)
 102.7
 77.6
 128.69

 Total Load =
 615.9
 465.6
 772.15

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 =
 643.5 kVA

 Spare capacity
 =
 128.7 kVA

 Required capacity
 =
 772.1 kVA

 Transformer rated capacity
 =
 750 kVA

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows: $P_T = \frac{1}{2} \left(\frac{1}{$

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx.

6.5%, which meets the criteria to maintain less than 15% voltage regulation.

1.4 Selection of rated capacity

750 kVA transformer selected.

Assignment 3				
	DG SIZING CALCULATIONS			
	Design Data			
	Rated Volatge	415	KV	
	Power factor (CosØ)	0.764	Avg	
	Efficiency	0.88	Avg	
	Total operating load on DG set in kVA at 0.764 power factor	625.2		
	Largest motor to start in the sequence - load in KW	115	KW	
	Running kVA of last motor (CosØ= 0.91)	171	KVA	
	Starting current ratio of motor	6	(Considering starting method as Soft starter)	
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)	1026	KVA	
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	454	KVA	
Α (Continous operation under load -P1			
	Capacity of DG set based on continuous operation under load P1	454	KVA	
ВТ	Fransient Voltage dip during starting of Last motor P2			
	Total momentary load in KVA	1480	KVA	
	(Starting KVA of the last motor+Base load of DG set in KVA			
	Subtransient Reactance of Generator (Xd'')	7.91%	(Assumed)	
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)	
	$Xd^{"} = (Xd^{"} + Xd^{"})/2$	0.089875		
	Transient Voltage Dip	15%	(Max)	
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd'" x (1-Transient Voltage Dip) (Transient Voltage Dip)	754	KVA	
С	Overload capacityP3			
	Capacity of DG set required considering overload capacity			
	Total momentary load in KVA	1480	KVA	
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%		
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA overcurrent capacity of DG (K)	987	KVA	
	Considering the last value amongst P1, P2 and P3			
	Continous operation under load -P1	454	KVA	
	Transient Voltage dip during Soft starter starting of Last motor P2	754	KVA	
	Overload capacity P3	987	KVA	
	Considering the last value amongst P1, P2 and P3	987	KVA	
	Hence, Existing Generator 987 KVA is adequate to cater the loads as per re-scheduled loads NOTE:VOLTAGE DIP CONSIDERED - 15%			

Assignment 4 2 Earthing 17 Maximum line-to-ground fault in kA for 1 sec Earthing material (Earth rod & earth strip) GI Depth of earth flat burrial in meter 0.5 Average depth / length of Earth rod in meters 4.5 Soil resistivity Ω -meter 7.5 Ambient temperature in deg C 55 140 Plot dimensions (earth grid) L x B in meters 80 Number of earth rods in nos. 6

Earth electrode sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
ρr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{1-g} - RMS fault current in $kA = 50 \text{ KA}$	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
K0 - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114
Earth rod dia in mm	12
Earth rod dia (including 25% corrosion allowance) in mm	15

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{l-g} - RMS fault current in $kA = 50 \text{ KA}$	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
K0 - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac	* 0.123

Ac - Required conductor cross section in sq.mm	114
Earth flat area in mm	12
Earth flat area (including 25% corrosion allowance) in mm	
Selected flat size W * Thk in sq mm	20

Rg - Grid resistance

Grid resistance can be calculated using Eq. 52 of IEEE 80

ρ - Soil resistivity in Ω -meter=	7.5
L - Total buried length of ground conductor in meter	440
h - Depth of burial in meter	0.5
A - Grid area in sq. meter	11200
1	

Rg - Grid resistance 0.048

Rr - Earth Electrode resistance

ρ - Soil resistivity in Ω-meter, 16.96	7.5
<i>n</i> - No of earth electrodes	6
<i>Lr</i> - Length of earth electrode in meter	4.5
b - Diameter of earth electrode in meter	0.020
k1 - co-efficient	1
A - Area of grid in square metre	11200

Rr - Earth Electrode resistance 2.75561

Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows: $R_s \sqsupset \frac{g}{R_g} \sqsupset \frac{2}{R_2} \sqsupset \frac{m}{2}$

$$R_{s} \supseteq \frac{g \qquad 2 - m}{R_{g} \supseteq R_{2} \supseteq 2R_{m}}$$

 $R_{\rm m}$ - Mutual ground resistance between the group of ground conductors, $R_{\rm g}$ and group of electrodes, R_r in Ω . Neglected R_m , since this is for homogenous soil

Rs - Total earthing system resistance

0.048 Ohms

The calculated resistance grounding system is less than the allowable 1 Ω value.

	1
Location	Khammam
Building	Concrete, Industrial
Type of Building	Flat Roofs (a)
Building Length (L)	11
Building breadth (W)	7
Building Height (H)	9

Risk Factor

Calculation1 Collection

Area (Ac)

$A_{\rm c}$	=	(L*W) + (2*L*H) + (2*W*H) + (3.14*H*H) 655.34
2 Probability of Being Struck(P)		
P	=	A _c * N _g *10 ⁻⁶ 0.001245146

			0.001273170
3 Overall weighing factor			
a) Use of structure (A)		=	1.0
b) Type of construction (B)		=	1.4
c) Contents or consequential effects (C)		=	0.8
d) Degree of isolation (D)		=	1.0
e) Type of country (E)		=	0.3
Wo - Overall weighing factor		=	A * B * C * D *E
		=	0.336
4 Overall Risk Factor	Po	=	P * Wo
	Po	=	0.000418369
	Pa		104

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

Perimeter of the building	= =	2(L+W) 36	Mts.
6 Down Conductors			
Perimeter of building	=	36	Mts.
No. of down conductors based on perimeter	=	2	Nos.

Hence 2 nos. of Down conductors have been selected.

Size of Down conductor 20 X 2.5 mm Galvanized Steel

Strip(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - $20 \text{mm} \times 2.5 \text{ mm}$ Galvanized Steel Strip) Assignment -6

																Assignment -u																	
S.NO.	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)	of C	Full Monday Statement Current (A)	rting Lo			Iotor P.F Staring	SIN Φ Staring	Гуре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)	Cable Length R (M) (C		Cable Reactance (Ohms/kM)	Voltage drop (Running) (V)	Voltage drop (Running) (%)	Voltage drop (Starting) (V)	Voltage drop (starting) (%)	Cable size result	OD of Cable (mm)	Gland size
3	PU2315	Silica filter feed pump	101.41	1 110.00	415	3	76.4 10:	58.15	0.8	0.6	0.8	0.5	2	1	4.0	70	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
4	PU 2314-A	Absorbesnt/Neutral oil pump (W)	29.46	30.00	415	3	51.2 30	07.40	0.8	0.6	0.8	0.5	2	1	4.0	16	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
5	PU 2314 -B	Absorbesnt/Neutral oil pump (S)	25.33	30.00	415	3	44.1 26	54.30	0.8	0.6	0.8	0.5	2	1	4.0	10	#REF!	0.98	0.9	1	1	0.882	#REF!	60	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
6	PU2305	Feed Pump (Seperator)	102.42	110.00	415	3	78.1 100	68.69	0.8	0.6	0.8	0.5	2	1	4.0	70	#REF!	0.98	0.9	1	1	0.882	#REF!	85	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
7	MX2305	MIXER (W)	103.21	110.00	415	3	79.5 10	76.93	0.8	0.6	0.8	0.5	2	1	4.0	50	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
8	MX 2308	MIXER (S)	103.21	1 110.00	415	3	79.5 10	76.93	0.8	0.6	0.8	0.5	2	1	4.0	70	#REF!	0.98	0.9	1	1	0.882	#REF!	105	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
9	BW2313	Blower	44.31	45.00	415	3	77.1 46	52.35	0.8	0.6	0.8	0.5	2	1	4.0	35	#REF!	0.98	0.9	1	1	0.882	#REF!	100	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
10	Rotary valve	TK 2313B (I)	4.30	4.70	415	3	7.5 4	4.87	0.8	0.6	0.8	0.5	2	1	4.0	4	# <u>R</u> EF!	0.98	0.9	1	1	0.882	#REF!	100	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
11	SC2314	Screw conveyor (I)	9.95	11.00	415	3	17.3 10	03.82	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
12	AG 2324A	Citric acid tan agitator (W)	7.48	7.50	415	3	13.0 78	8.05	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	110	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
13	AG 2324B	Citric acid tank agitator (S)	7.48	7.50	415	3	13.0 78	8.05	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
14	AG 2305	Citric oil rection vessol agitator	27.17	7 30.00	415	3	47.3 28	33.50	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	105	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
15	AG 2309	Lye oil reaction vessel agitator	9.89	11.00	415	3	17.2 10)3.20	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	85	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	32
16	AG 2310	Lye oil reaction vessel agitator	9.89	11.00	415	3	17.2 10)3.20	0.8	0.6	0.8	0.5	2	1	4.0	35	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
17	AG 2314	Soap Adsorbant Tank Agitator	17.30	18.50	415	3	30.1 18	30.51	0.8	0.6	0.8	0.5	2	1	4.0	10	#REF!	0.98	0.9	1	1	0.882	#REF!	65	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
																																	-
				-																				+ +									$\overline{}$
															-																		

Basis:

1. Overall derating factor k = k1 x k2 x k3 x k4

K1=Rating factor for variation in air/ground temperature

K2=Rating factor for depth of laying

K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil

2. LT Motors: Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed TYPE 2:

Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation \pm 5%

5. Combined Effect of Voltage & Frequency Variation $\pm 10\%$

T (CABLES										
ABI	LE TRAY: FROM	LT-4		TO	I.	.T-5					
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks		
1	PU2315	4.0	70	1	29	29	3.25	3.25			
2	PU 2314-A	4.0	16	1	21	21	1	1			
3	PU 2314 -B	4.0	10	1	18	18	0.9	0.9			
4	PU2305	4.0	70	1	29	29	3.25	3.25			
5	MX2305	4.0	50	1	26	26	2.3	2.3			
6	MX 2308	4.0	70	1	29	29	3.25	3.25			
7	BW2313	4.0	35	1	24	24	1.8	1.8			
8	Rotary valve	4.0	4	1	17	17	0.6	0.6			
9	SC2314	4.0	6	1	18	18	0.7	0.7			
10	AG 2324A	4.0	6	1	18	18	0.7	0.7			
11	AG 2324B	4.0	6	1	18	18	0.7	0.7			
12	AG 2305	4.0	25	1	22	22	1.4	1.4			
13	AG 2309	4.0	25	1	22	22	1.4	1.4			
14	AG 2310	4.0	35	1	24	24	1.8	1.8			
15	AG 2314	4.0	10	1	18	18	0.9	0.9			
16											
17											
18											
19 20											
20			1	1		-		+	+		
	Total	1		1				+	+		
	ulation num Cable Diameter:		T 70	mm	I	Result Selected Cable Tray	y width:	O.K	<u> </u>		
Consid	ler Spare Capacity of Cable Tray:		30%			Selected Cable Tra		O.K			
	ce between each Cable:		0	mm		Selectrd Cable Trag		O.K	Including Spare Capacity		
	ated Width of Cable Tray:		0	mm		Selected Cable Trag	y Size:	O.K	Including Spare Capacity		
	ated Area of Cable Tray:		0	Sq.mm		Dominal Cable To	on Ciana	600 100			
	Layer of Cables in Cable Tray: ed No of Cable Tray:		1	Nos.		Required Cable Tra Required Nos of Ca		600 x 100 1	mm No		
	ed No of Cable Tray: ed Cable Tray Width:		600	mm		Required Cable Tra		90.00	No Kg/Meter/Tray		
	ed Cable Tray Depth:		100	mm		Type of Cable Tray		Ladder			
	ed Cable Tray Weight Capacity:		90	Kg/Meter							
	of Cable Tray:		Ladder	_		Cable Tray Width	Area Remaning	100%			
Total A	Area of Cable Tray:		60000	Sq.mm		Cable Tray Area R	emaning:	100%			