Задание 4 Параллельная сортировка слиянием Отчёт

Савельев К.М.

2022

1. Постановка задачи

Реализовать параллельную сортировку слиянием с помощью программного интерфейса *POSIX Threads*. На вход программе подаётся бинарный файл, содержащий значение числа элементов массива и массив целых чисел. Необходимо упорядочить элементы массива в порядке неубывания с помощью параллельной сортировки слиянием и записать отсортированный массив в выходной файл.

2. Формат коммандной строки

./out <имя входного файла> <имя выходного файла> <число нитей>

3. Спецификация системы

Процессор: Apple M1 Pro CPU @ 2.06GHz

Число вычислительных ядер: 8

4. Результаты выполнения

Число элементов массива: $N = 100\,000\,000$.

Для каждого числа нитей было проведено 3 эксперимента. В таблице 1 представлены усреднённое время работы программы и ускорение. На рисунке 1 представлены графики зависимости времени работы программы и ускорения от количества нитей соответственно. Как можно видеть, в многопоточном режиме решение работает быстрее функции qsort из stdlib.h.

Таблица 1 — Таблица зависимости времени работы программы ускорения от количества нитей.

Число нитей	Время работы(с)	Ускорение
1	6.05	1.00
2	3.23	1.87
3	2.47	2.45
4	1.91	3.17
5	1.74	3.48
6	1.50	4.03
7	1.38	4.38
8	1.24	4.88
qsort	2.98	-

Рисунок 1 — График зависимости времени работы программы и ускорения от количества нитей.