Let S be a set of real numbers.

- A number b is an **upper bound** for S provided for all $x \in S$ we have $b \ge x$.
- \bullet The set S is **bounded above** provided there exists at least one upper bound for S.
- ullet A number m is the **maximum** of S provided
 - (1) $m \in S$, and
 - (2) m is an upper bound of S.
- ullet A number ℓ is a **supremum** of S provided
 - (1) ℓ is an upper bound of S, and
 - (2) for any upper bound b for S, we have $\ell \leq b$.
- (1) Write, in simplified form, the negation of the statement "b is an upper bound for S".
- (2) Write, in simplified form, the negation of the statement "S is bounded above".
- (3) Let S be a set of real numbers and suppose that $\ell = \sup(S)$.
 - (a) If $x > \ell$, what is the most concrete thing you can say about x and S?
 - (b) If $x < \ell$, what is the most concrete thing you can say about x and S?
- (4) Let $S = \{x \in \mathbb{R} \mid x^3 + x < 5\}$. Use the definition of supremum to answer the following:
 - (a) Is 1 the supremum of S? Why or why not?
 - (b) Is 2 the supremum of S? Why or why not?
- (5) Consider the open interval $(0,1) = \{x \in \mathbb{R} \mid 0 < x < 1\}.$
 - (a) Prove² that (0, 1) has no maximum element.
 - (b) Prove that $\sup((0,1)) = 1$.
- (6) Let S be a set of real numbers, and let $T = \{2s \mid s \in S\}$. Prove that if S is bounded above, then T is bounded above.
- (7) Let S be a set of real numbers. Show that if S has a supremum, then it is unique.

¹Hint: Use one of the previous problems.

²Hint: Try a proof by contradiction!

³For example, if $S = \{-1, 1, 2\}$, then $T = \{-2, 2, 4\}$.

⁴First, before all else, this is an if then statement: start by assuming the "if" part. We now need to show the "then" part, which is about the existence of an upper bound. Use your assumption about S to find an upper bound for T (and prove that it is indeed an upper bound for T).

Well-Ordering Axiom: Every nonempty subset of $\mathbb N$ has a minimum.

COMPLETENESS AXIOM: Every nonempty bounded above set of real numbers has a supremum.

(1) Prove the following:

THEOREM: For every⁵ real number r, there exists a unique integer n such that $n-1 \le r < n$.

(2) Prove the following:

THEOREM: For every real number r, there is some natural number n such that n > r.

⁵Hint: First deal with the case $r \ge 0$.