Algèbre linéaire et bilinéaire I – TD₇

Exercice 1

On suppose que a, b, c sont trois complexes tels que $a^2 + b^2 + c^2 = 1$. On pose :

$$A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix} \text{ et } B = A^2 + I_3.$$

Montrer que $A \cdot B = B \cdot A = 0_{M_3(\mathbb{C})}$ et $B^2 = B$.

Exercice 2

Soit
$$M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
.

- 1. Exprimer M^2 en fonction de M.
- 2. En déduire M^p pour tout $p \in \mathbb{N}^*$.

Exercice 3

Soit $(A, B) \in (M_n(\mathbb{R}))^2$ deux matrices telles que la somme des coefficients sur chaque colonne de A et sur chaque colonne de B vaut 1 (on dit qu'une telle matrice est une matrice stochastique). Montrer que la somme des coefficients sur chaque colonne de $A \cdot B$ vaut 1.

Exercice 4

Soient E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$ tel que $f^n = 0_{\mathcal{L}(E)}$ et $f^{n-1} \neq 0_{\mathcal{L}(E)}$. Montrer qu'il existe une base \mathcal{B} de E telle que :

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{bmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0 \end{bmatrix}$$

Exercice 5

Soient $A \in M_{3,2}(\mathbb{R})$ et $B \in M_{2,3}(\mathbb{R})$ telles que

$$A \cdot B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Calculer $B \cdot A$.

Exercice 6

Soit $n \in \mathbb{N}^*$. Soit E_n l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à n. Soit $A = [a_{i,j}]_{(i,j) \in \{1,\dots,n+1\}^2} \in \mathcal{M}_{n+1}(\mathbb{R})$ telle que :

$$\forall (i,j) \in \{1,...,n+1\}^2, \ a_{i,j} = \binom{j-1}{i-1}$$

avec la convention $\binom{j-1}{i-1} = 0$ si i > j. Pour tout $k \in \{0, ..., n\}$ on note p_k la fonction définie pour tout $x \in \mathbb{R}$ par $p_k(x) = x^k$. On rappelle que la famille $\mathcal{B} = \{p_k, k \in \{1, ..., n\}\}$ est une base de E_n (appelée base canonique de E_n).

- 1. Déterminer l'endomorphisme $\varphi \in \mathcal{L}(E_n)$ tel que : $\mathrm{Mat}_{\mathcal{B}}(\varphi) = A$
- 2. Calculer A^k pour tout $k \in \mathbb{N}$.
- 3. Montrer que A est inversible, et calculer A^{-1} . (Soit $M \in \mathcal{M}_p(\mathbb{K})$, on dit que M est inversible si : $\exists N \in \mathcal{M}_p(\mathbb{K})$, $M \cdot N = N \cdot M = I_p$, on note $M^{-1} \stackrel{\text{Not}}{=} N$)

Exercice 7

Soit $n \in \mathbb{N}^*$, et $a_1, ..., a_n \in \mathbb{K}$ deux-à-deux distincts. On note $D = \text{diag}(a_1, ..., a_n)$ la matrice de $M_n(\mathbb{K})$ diagonale dont les coefficients diagonaux sont $a_1, ..., a_n$, et on considère l'application :

$$f: \begin{cases} \mathcal{M}_n(\mathbb{K}) & \longrightarrow \mathcal{M}_n(\mathbb{K}) \\ M & \longmapsto D \cdot M - M \cdot D \end{cases}$$

- 1. Vérifier que f est un endomorphisme de $M_n(\mathbb{K})$.
- 2. Déterminer Ker(f).
- 3. Montrer que $\operatorname{Im}(f)$ est l'ensemble F des matrices de $\operatorname{M}_n(\mathbb{K})$ dont les termes diagonaux sont nuls.