ALGEBRA LINEARE

DURATA: 45MIN

PRE-TEST

1. Calcolare il determinante della matrice

$$A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ -2 & 1 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ -1 & 2 & 1 & 0 \end{pmatrix}$$

2. Consideriamo in \mathbb{C}^3 il prodotto hermitiano definito da $\langle v,w \rangle = \bar{v}^t A w$ dove

$$A = \begin{pmatrix} 3 & i & 1 \\ -i & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix} .$$

Determinare il valore di $k \in \mathbb{C}$ tale che il vettore $v = \begin{pmatrix} k \\ 0 \\ i \end{pmatrix}$ é ortogonale a $w = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$.

- 3. Sia A una matrice 2 per 2 con traccia zero. Sia λ un autovalore di A. Per quali valori di λ la matrice A NON è diagonalizzabile?
- 4. Sia

$$A = \begin{pmatrix} 1 & -3 & 5 \\ 2 & -4 & 7 \\ -1 & -2 & 1 \end{pmatrix} .$$

Scrivere A=LU dove L è una matrice triangolare inferiore con voci diagonali uguali a 1 e U è una matrice triangolare superiore.