# **VERMES MIKLÓS Fizikaverseny**

2023. március 13. *Megyei szakasz* 



Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

## X. osztály

#### 1. Feladat

Képzeletben jelöljük meg egy 250 cm³ térfogatú pohár víz mindegyik molekuláját. Öntsük a vizet a tengerbe (világóceánba), és várjuk meg a megjelölt molekulák teljes elkeveredését. Ezután merítsünk vizet a tengerből ezzel a pohárral. Számítsuk ki:

- a) A pohárban található megjelölt molekulák számát!
- b) Mekkora térfogata van a Föld tengervizeinek?
- c) Mekkora a tengervizekben a megjelölt vízmolekulák részecskesűrűsége?
- d) Az előzőleg "megjelölt" molekulákból hányat találunk a kimerített vízmennyiségben? A víz sűrűsége  $\rho_{\text{víz}} = 10^3 \text{ kg/m}^3$ , az Avogadro-féle szám  $N_{\text{A}} = 6,023 \cdot 10^{26} \text{ l/kmol}$ . Tudjuk, hogy a tengerek felszíne a Föld felszínének k = 71%-át teszi ki, a tengerek átlagos mélysége h = 3688 m, a Föld átlagos sugara  $R_{\text{F}} = 6371 \text{ km}$ . (3 pont)

### 2. Feladat

Az m = 0.5 kg tömegű jégdarab kezdeti hőmérséklete  $t_0 = -12$ °C. Számítsuk ki:

- Azt a  $Q_{\text{hasznos}}$  hőt és a tüzelőanyag mennyiségét, amellyel a jeget normál nyomáson a víz forráspontjára lehet felmelegíteni  $\eta=2/3$  hatásfokú berendezéssel. Ábrázoljuk grafikusan a folyamat időbeli lefolyását!
- b) A  $\theta$  egyensúlyi hőmérsékletet egy elhanyagolható hőkapacitású kaloriméterben, amely kezdetben M=6 kg tömegű, t=50°C hőmérsékletű vizet tartalmaz, ha az m tömegű,  $t_0$  hőmérsékletű jeget belerakjuk. Ábrázoljuk grafikusan a folyamat időbeli lefolyását!
- c) Mi történne, ha a c) pontnál az M = 1 kg, és a t = 30°C.

Adott: a jég fajhője  $c_{\text{jég}} = 2090 \text{ J/kg·K}$ , a víz fajhője  $c_{\text{víz}} = 4180 \text{ J/kg·K}$ , a jég fajlagos látens olvadáshője:  $\lambda_{\text{jég}} = 330 \text{ kJ/kg}$ , a tüzelőanyag fűtőértéke q = 30 MJ/kg. (3 pont)

#### 3. Feladat

Két, egymástól adiabatikusan szigetelt, elhanyagolható hőkapacitású edény térfogatainak aránya  $V_2/V_1 = 2$ , ( $V_1 = 1 \text{ m}^3$ ). Mindkettő egyatomos gázzal van töltve  $p_0 = 10^5 \text{ N/m}^2$  nyomáson. A hőmérsékletek aránya  $T_2/T_1 = 2$ , ( $T_1 = 300 \text{ K}$ ). Összekapcsoljuk az edényeket egy elhanyagolható térfogatú csövön keresztül, melyen egy kezdetben bezárt csap található. Számítsuk ki:

- a) a gázatomok számát mindkét edényben, és határozzuk meg hány mol gáz található mindegyik edényben
- b) annak a Carnot-féle körfolyamatnak a hatásfokát, amely a fenti hőmérsékletek között működne
- c) a végső nyomást és végső hőmérsékletet a csap kinyitása után
- d) annak a hőerőgépnek a hatásfokát, amely egy olyan körfolyamat alapján működne, amelyet a c) pontnál kiszámított hőmérsékletű izoterma, egy izochor állapotváltozás ( $V_1 = 1 \text{ m}^3$ ) és egy olyan izobár állapotváltozás alkotna, amely átmegy a  $V_2 = 2 \text{ m}^3$  izochor állapotváltozás és az adott izoterma metszéspontján.
- e) a rendszer belső energiáját. (3 pont)

Hivatalból: (1p)

Munkaidő: 2 óra