Question - 1

(a) $f(n) = 100n^3 + 8n^2 + 4n$ is $O(n^4)$. I will show this is true by specifying appropriate c and n_0 values in Big-Oh definition.

Assigning c = 100, and $n_0 = 1.4$, we see that:

$$c.f(n) = 100(100n^3 + 8n^2 + 4n) = O(n^4)$$
 for $n \ge n_0 = 1.4$

(b)
$$T(n) = 8T(n/2) + n^3$$

$$T(n) = 16T(n/4) + 2n^3$$

$$T(n) = 32T(n/8) + 3n^3$$

$$T(n) = 64T(n/16) + 4n^3$$

.

• If we assume that we have $n = 2^{10} = 1024$, then,

$$T(1024) = 8T(512) + 1024^3$$

$$T(512) = 8T(256) + 512^3$$

$$T(256) = 8T(128) + 256^3$$

 $T(128) = 8T(64) + 128^3$ and as we know that T(n) = 1 for all $n \le 100$, we have, T(64) = 1.

• By using backwards substitution, we will obtain,

 $T(1024) = T(2^{10}) = 4(2^{10}) + 25/8(2^{10})^3$, we can generalize this as follows:

$$T(n) = 4n + (25/8)n^3 = O(n^3)$$
 for $n >= 100$.

(c)