Dr. Gebhard Martin Dr. Yajnaseni Dutta

Exercises, Algebraic Geometry I – Week 10

Exercise 53. Invertible sheaves (4 points)

Let $\varphi \colon \mathcal{L} \to \mathcal{M}$ be a homomorphism of invertible sheaves on a scheme (X, \mathcal{O}_X) .

- (i) Show that φ is an isomorphism if φ is surjective.
- (ii) Give an example where φ is injective but not an isomorphism.

Exercise 54. Blowing up points in affine space (4 points)

Let k be a field. Let $\mathbb{A}^n_k = \operatorname{Spec} k[x_1, \dots, x_n], \mathbb{P}^{n-1}_k = \operatorname{Proj} k[y_1, \dots, y_n], \text{ and } O = (0, \dots, 0) \in \mathbb{A}^n_k(k)$. The blow-up of \mathbb{A}^n_k in O is the closed subscheme $X \subseteq \mathbb{P}^{n-1}_k \times_{\operatorname{Spec} k} \mathbb{A}^n_k = \mathbb{P}^{n-1}_{\mathbb{A}^n_k}$ determined by the homogeneous ideal

$$I = (\{x_i y_j - x_j y_i\}_{i,j=1}^n).$$

Note that X comes with two projections $\pi_1: X \to \mathbb{A}^n_k$ and $\pi_2: X \to \mathbb{P}^{n-1}_k$.

- (i) Show that π_1 is an isomorphism over $\mathbb{A}^n_k \setminus \{O\}$.
- (ii) Show that the fiber $\pi_1^{-1}(O)$ is isomorphic to \mathbb{P}_k^{n-1} .
- (iii) Show that the fiber of π_2 over a k-rational point of \mathbb{P}_k^{n-1} is isomorphic to \mathbb{A}_k^1 .

Exercise 55. The standard Cremona involution (4 points)

Let k be a field and let

$$\sigma: \mathbb{P}^2_k \setminus \{[0:0:1], [0:1:0], [1:0:0]\} \rightarrow \mathbb{P}^2_k$$
$$[a_0:a_1:a_2] \mapsto [a_1a_2:a_0a_2:a_0a_1]$$

be the morphism determined by the global sections $x_1x_2, x_0x_2, x_0x_1 \in \Gamma(\mathbb{P}^2_k, \mathcal{O}_{\mathbb{P}^2_k}(2))$.

- (i) Show that $\sigma(V_+(x_i))$ is a point for all i.
- (ii) Show that σ^2 is well-defined on $\mathbb{P}^2_k \setminus (\cup_{i=1}^3 V_+(x_i))$ and that it extends to the identity on \mathbb{P}^2_k . Conclude that there is no morphism $\mathbb{P}^2 \to \mathbb{P}^2$ that restricts to σ on $\mathbb{P}^2_k \setminus \{[0:0:1], [0:1:0], [1:0:0]\}$.
- (iii) Show that σ induces a morphism $X \to X$, where X is the blow-up of \mathbb{P}^2 at [1:0:0], [0:1:0], and [0:0:1], i.e., the scheme obtained by glueing the blow-ups of the three affine planes $\mathbb{A}^2_k \cong D_+(x_i) \subseteq \mathbb{P}^2_k$ in (0,0). Conclude that σ defines an automorphism of X.

Exercise 56. Some examples of curves and surfaces (4 points) Let k be an algebraically closed field.

- (i) Let $\mathcal{L} = \mathcal{O}_{\mathbb{P}^2}(2)$. Show that the morphism $\mathbb{P}^2 \to \mathbb{P}^5_k$ induced by the global sections $x_0^2, x_1^2, x_2^2, x_0 x_1, x_0 x_2, x_1 x_2 \in \Gamma(X, \mathcal{L})$ is the Veronese map of Exercise 48. In general, for integers $n, k \geq 0$ think about what kind of map $\mathcal{O}_{\mathbb{P}^n}(k)$ induces on \mathbb{P}^n .
- (ii) Assume that $\operatorname{char}(k) \neq 2$. Show that the sections $x_0^2, x_1^2, x_2^2, x_1(x_0 x_2), (x_0 x_1)x_2 \in \Gamma(X, \mathcal{L})$ induce a closed immersion $X \hookrightarrow \mathbb{P}_k^4$.
- (iii) Consider the subspace $V \subseteq \Gamma(X, \mathcal{L})$ in (i) spanned by those of the chosen basis above that vanish at the point [0:0:1] and consider the morphism $\mathbb{P}^2 \setminus [0:0:1] \to \mathbb{P}^4$ induced by V. Describe the closure of the image in \mathbb{P}^4 of the cuspidal cubic curve given by $x_1^2x_2 = x_0^3$ in \mathbb{P}^2 under this morphism.

Exercise 57. Ramified coverings (4 points)

Let k be an algebraically closed field of characteristic $\operatorname{char}(k) = p \geq 0$. Consider a homogeneous polynomial $f \in k[x_0, \ldots, x_n]$ of degree d and the two closed subschemes $X = V_+(f) \subseteq \mathbb{P}^n_k$ and $Y = V_+(f - x_{n+1}^d) \subseteq \mathbb{P}^{n+1}_k$. Show that the projection $g \colon Y \to \mathbb{P}^n_k$ from $[0 \colon \ldots \colon 0 \colon 1]$ satisfies the following properties:

- (i) Restricted to the intersection $Y \cap V_+(x_{n+1}) = V_+(f x_{n+1}^d, x_{n+1}) \subseteq \mathbb{P}_k^{n+1}$, the morphism q yields an isomorphism with X.
- (ii) If $p \nmid d$, then for every closed point in the complement of $X \subseteq \mathbb{P}_k^n$ the fiber of g is a reduced scheme consisting of exactly d k-rational points.
- (iii) If $p \mid d$, then the fiber of g over every closed point of \mathbb{P}^n_k is non-reduced.

The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 58. Closed points exist on quasi-compact schemes (+ 2 extra points) Let X be a quasi-compact scheme. Show that for every $x \in X$, there exists a closed point in $\overline{\{x\}} \subseteq X$.