Data science

"The best way to learn data science is to apply data science."

Activity 4 31/03/2021

Bochra CHEMAM

Simple Linear Regression:

For this Activity session we will:

Learn how to build model which will predict using simple linear regression

- 1. Problem statement: For this activity, we will investigate the advertising dataset that you can find on kaggle.
- 2. We will use the dataset and analyse the relationship between TV Advertising and sales using a simple linear regression model
- 3. We will be able to build a linear regression model to predict sales using an appropriate predictor variable.
- 4. Get the Data:
 - Once your Dataset is downloaded, create you project in your Jupyter notebook or related.
 - Start by downloading the data to your workplace. Download your dataset using Pandas library as seen in the previous activities
- 5. Now, let's make the Dataframe for the given data and check its head value.
- 6. Data Structure Understand your data:
 - Let's take a look at the top five rows using the DataFrames head()
 - The info() method is useful to get a quick description of the data, in particular the total number of rows, and each attribute's type and number of non-null values in the dataset,

Data science

"The best way to learn data science is to apply data science."

- Use The describe() method shows a summary of the numerical attributes
 The count, mean, min, and max rows are self-explanatory
- Checking Null values .isnull()
- 7. Let's see the correlation between different variables. Use .corr() to calculate correlation Matrix between different variables , you can use also seaborn , sns.heatmap
 - Interpret the results
- 8. let's go ahead and perform **simple linear regression** using TV as our feature variable.
- 9. Model Building:
 - X= independent variable
 - Y=dependant varaible
 - So here in our example we will explain y{sales} with x(TV advertising)
 - Train-Test Split

10. Split Data (train – test):

- You now need to split our variable into training and testing sets.
- You'll perform this by importing train_test_split from the sklearn.model selection library.
 - keep 80% of the data in your train dataset and the rest 20% in your test dataset

11. Building a linear Model

- You first need to import the **statsmodel.api** library using which you'll perform the linear regression.
- Add a constant to get an intercept (X_train_sm = sm.add_constant(X_train))
- Fit the resgression line using 'OLS' (Ir = sm.OLS(y_train, X_train_sm).fit())
- 12. Lets Print the parameters Using (Ir.params)
- 13. Performing a summary of all the different parameters of the regression line fitted Using print(lr.summary())
- 14. Let's visualize how well the model fit the data. Using scatter between x_train and y_train
- 15. let us plot the histogram of the error terms and see what it looks like.

```
y_train_pred = Ir.predict(X_train_sm)
res = (y train - y train pred)
```

• What is the distribution of the residuals? what can you conclude?

16. Predictions on the Test Set:

 Now that you have fitted a regression line on your train dataset, it's time to make some predictions on the test data.

Data science

"The best way to learn data science is to apply data science."

For this, you first need to add a constant to the X_test data like you did
for X_train and then you can simply go on and predict the y values
corresponding to X_test using the predict attribute of the fitted regression line.

X_test_sm = sm.add_constant(X_test)
y_pred = Ir.predict(X_test_sm)

17. Lets evaluate the prediction on test set:

from sklearn.metrics import mean_squared_error

from sklearn.metrics import r2 score

• Looking at the RMSE and R squared, Interpret!