

交互网络 - 相关性散点图 - 联合 miRNA

网址: https://www.xiantao.love

更新时间: 2023.02.28

目录
基本概念
应用场景
分析过程
结果解读
数据格式
参数说明
特殊参数
主要参数
主要参数
统计
样式
点 1
拟合线 1
<mark>标题文本</mark>
风格
图片1
结果说明1
主要结果 1
补充结果 - 统计描述1
补充结果 - 异常值分析1
补充结果 - 正态性检验1
补充结果 - 相关性分析1
方法学
如何引用 2
常见问题

基本概念

▶ 散点图:通过点的形式来展示数据的分布情况

▶ 相关性散点图:分析 1 个分子和 1 个 miRNA 之间的相关性

应用场景

基于云端数据 通过点、线的形式来<mark>展示变量与变量之间的相关性</mark>

分析过程

云端数据 — 数据处理(清洗) — 相关性分析 — 可视化

- 云端数据:提供预清洗好的云端数据,不同平台的云端数据集的分子可能会有不同。注意:选择了不同的平台,搜索出来的分子可能是不一样的数
- ▶ 分析
 - 数据准备
 - ◆ 通过特殊参数[主分子]、[miRNA 分子]选择云端数据中需要进行分析的主要分子/变量和 miRNA 分子,将主分子分别与 miRNA 进行相应分析

4	А	В	С	D
1	sample_id	id_mirna-seq	ERBB2	hsa-let-7a-3p
2	TCGA-2H-A9	TCGA-2H-A90	12.16014207	3.639029987
3	TCGA-2H-A90	TCGA-2H-A90	2.855630972	3.133068624
4	TCGA-2H-A90	TCGA-2H-A90	6.509850996	3.903428979
5	TCGA-2H-A90	TCGA-2H-A90	8.122366776	4.309334683
6	TCGA-2H-A90	TCGA-2H-A90	6.953466634	4.685062438
7	TCGA-2H-A90	TCGA-2H-A90	5.585824854	4.348076298
8	TCGA-2H-A90	TCGA-2H-A90	3.562620987	4.132525517
9	TCGA-2H-A90	TCGA-2H-A90	5.816671379	4.850601174
10	TCGA-2H-A90	TCGA-2H-A90	5.96972841	4.815844475
11	TCGA-2H-A90	TCGA-2H-A90	5.270794284	4.698149009

● <u>主分子</u>:表示主要分子/变量 [ERBB2]

● miRNA 分子: 表示其他分子/变量 [hsa-let-7a-3p]

- ◆ 统计描述
 - 对主分子和补充分子进行常见统计描述指标统计分析

- ◆ 正态性检验
 - 对主分子和补充分子列进行正态性检验

◆ 异常值分析

● 对变量进行异常值分析

- ◆ 相关性分析:将主分子和补充分子进行两两间相关性分析
 - 相关性分析表
 - 包含不同方法(Pearson、Spearman)计算的相关性系数值与 统计学 p 值等

▶ 将分析后得到的相关性系数与 p 值进行后续的相关性散点图可视化

结果解读

- 横坐标表示主要分子的表达水平
- > 纵坐标表示补充分子的表达水平
- > 图中的线为拟合线,拟合线周围的阴影部分为置信区间
- ▶ 图中右下角
 - "Spearman"表示主分子与补充分子间进行相关性分析的方法
 - "R"表示主分子与补充分子间的相关性系数
 - "P"表示主分子与补充分子间的统计学 p 值

数据格式

提供预清洗好的云端数据,不同平台的云端数据集的分子可能会有不同。 注意: 选择了不同的平台,搜索出来的分子可能是不一样的

参数说明

(说明:标注了颜色的为常用参数。)

特殊参数

- ▶ 主分子: 可以选择当前云端数据的主要分子
- ▶ miRNA 分子: 可以选择云端数据中对应 miRNA seq 数据中的 miRNA 分子

主要参数

▶ 主要参数为分析以及可视化相关参数,如下[主要参数]

主要参数

统计

- ▶ 统计方法: 可以选择主要分子与其他分子间进行相关性分析的方法
 - spearman: Spearman(默认)为非参数检验方法,数据可以不需要满足正态性

■ pearson: Pearson 为参数检验方法,数据需要满足双正态

标注位置:可以修改图中相关性分析方法(Spearman)、相关性系数(R),统计 学 p 值的位置,默认在图形的右下,还可以选择左下、左上、右上、无(不进 行标注),如下:左侧为右上,右侧为无

Spearman R = -0.198 P = 0.011

12.5

标注颜色: 当图形中进行标注的时候,可以修改标注的颜色,如下:

样式

样式:可以选择图形的样式,默认为经典,还可以选择如下:

■ 经典:表示经典相关性散点图

■ 加分布竖线:表示以竖线的形式加在坐标轴两侧

■ 两侧加分布图:表示以数据分布图的形式加在坐标轴两侧

点

▶ 填充色:可以修改图中各点的填充颜色

▶ 描边色: 可以修改图中各点的描边颜色

样式:可以修改图中各点的样式(形状),默认为圆形,还可以选择正方形、 菱形、三角形、倒三角形,如下:

▶ 大小: 可以修改图中个点的大小比例, 默认为1

▶ 不透明度:可以修改图中各点不的透明度,1表示完全不透明,0表示完全透明

拟合线

- ▶ 展示: 可以选择是否进行展示拟合线的操作, 默认为展示
- ▶ 拟合方法: 可以修改图中拟合部分的拟合方法(类型), 默认为直线, 还可以 选择曲线的形式, 如下:

- ▶ 拟合线颜色: 可以修改图中拟合线的颜色
- ▶ 拟合线样式:可以修改图中拟合线的样式,默认为实线,还可以选择虚线
- > 线条粗细:可以选择修改图中拟合线的线条粗细
- ▶ 置信区间展示:可以选择是否展示拟合线的置信区间(阴影部分),默认为展示,还可以选择不展示,如下:

➤ 不透明度:可以修改拟合线线条的不透明度,1表示完全不透明,0表示完全透明

标题文本

大标题: 大标题文本

▶ x轴标题: x轴标题文本

➤ y轴标题: y轴标题文本

补充: 在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的大括号括住,比如 {{2}};如果需要下标,可以用两个英文输入法下的中括号括住,比如 [[2]]

风格

风格		~
边框		
网格		
文字大小	7pt	~

▶ 边框:可以选择是否展示图片边框,默认展示

▶ 网格:可以选择是否展示网格,默认不展示

》 文字大小:控制整体文字大小,默认为 7pt

图片

图片		~
宽度 (cm)	5	
高度 (cm)	5	
字体	Arial	~

》 宽度: 图片横向长度, 单位为 cm

▶ 高度: 图片纵向长度,单位为 cm

▶ 字体:可以选择图片中文字的字体

结果说明

主要结果

补充结果 - 统计描述

统计描述										
各个组对应常见	「统计描述	指标」								
組别	数目	最小值	最大值	中位数(Median)	四分位距(IQR)	下四分位	上四分位	均值(Mean)	标准差(SD)	标准误(\$
ERBB2	162	2.8556	12.878	5.9361	1.4486	5.2507	6.6992	6.236	1.6466	0.1293
hsa-let-7a-3p	162	3.0143	6.702	5.0148	1.1056	4.4964	5.602	5.0092	0.784	0.06159

这里提供各个分子对应常见「统计描述指标」:最小值、最大值、中位数、标准 差等

补充结果 - 异常值分析

= Q1(下四分位) - 1.5*IQR(四分	分位间距) 或者 Q3(上四分位) + 1.5*IQR(四分位间距)	
= Q1(下四分位) - 3.0*IQR(四分	分位间距) 或者 Q3(上四分位) + 3.0°IQR(四分位间距)	
组别	离群值	异常值
ERBB2	12.160142068914,	12.160142068914,

这里统计各分子的离群值、异常值情况

- ▶ 离群值 = Q1(下四分位) 1.5*IQR(四分位间距) 或者 Q3(上四分位) + 1.5*IQR(四分位间距)
- ▶ 异常值 = Q1(下四分位) 3.0*IQR(四分位间距) 或者 Q3(上四分位) + 3.0*IQR(四分位间距)

补充结果 - 正态性检验

组别	自由度(df)	统计量	p值
ERBB2	161	0.84069	5.37e-1
hsa-let-7a-3p	161	0.98926	0.2556

这里提供各分子的正态性检验

▶ 分子接近正态分布(P > 0.05),建议选择用参数检验方法(Pearson)

补充结果 - 相关性分析

方法	组别I	组别J	自由度(df)	统计量	相关系数	置信区间(95%CI)	p值
Pearson	ERBB2	hsa-let-7a-3p	160	-2.0467	-0.15973	-0.306380.0056698	0.0423
Spearman	ERBB2	hsa-let-7a-3p		8.491e+05	-0.1984		0.0115

这里提供相关性分析表:可以查看第 1 列 (分子) 与第 2 列(第 2、3 列)之间的相关系数与其对应的统计学 p 值

- 相关系数为正数,说明两个分子(主要分子与其他分子)之间可能存在正相 关关系;相关系数为负数,说明两个分子可能存在负相关关系
 - 相关系数绝对值在 0.8-1.0 之间,说明两个分子之间强相关
 - 相关系数绝对值在 0.5-0.8 之间,说明两个分子之间中等程度相关

- 相关系数绝对值在 0.3-0.5 之间,说明两个分子之间相关程度一般
- 相关系数绝对值在 0.0-0.3 之间,说明两个分子之间弱相关或者不相关
- ▶ 相关是否有统计学意义还需要结合 p 值来查看

方法学

统计分析和可视化均在 R 4.2.1 版本中进行

涉及的 R 包: ggplot2 包 (用于可视化)

处理过程:

(1) 对数据中主分子和补充分子之间进行相关性分析

(2) 分析结果用 ggplot2 包进行棒棒糖图可视化

如何引用

生信工具分析和可视化用的是 R 语言,<mark>可以直接写自己用 R 来进行分析和可视化即可</mark>,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 方法里面的 Spearman 和 Pearson 方法, 应该选择哪一个?

答: 两种方法均可以选择。Pearson 会要求数据是满足正态性,Spearman 因为是非参数的方法,可以不需要满足。可以先选择非参数的 Spearman 相关进行尝试。

2. 相关系数多少为好?

答: 这个没有很统一的标准, 可以参考以下:

- ▶ 相关系数强弱:
 - 绝对值在 0.8 以上: 强相关
 - 绝对值在 0.5-0.8: 中等程度相关
 - 绝对值在 0.3-0.5: 相关程度一般
 - 绝对值在 0.3 以下: 弱或者不相关