

Czym jest głębokie uczenie?

(ang. deep learning)

Historia

Trzy fale popularności sieci neuronowych

Pierwsza fala (1943-1969)

- 1943 pierwszy model neuronu (McCulloch i Pitts)
 - dwie kategorie obiektów,
 - sprawdzał, czy funkcja f(x,w) jest dodatnia, czy ujemna,
 - wagi były ustawiane ręcznie,
- 1958-1962 pierwsze modele uczące się wag na podstawie danych (Rosenblatt, Widrow i Hoff),
- krytyka tego podejścia ze względu na brak możliwości nauczenia się funkcji XOR
 - f(0, 0) = f(1, 1) = 0
 - f(1, 0) = f(0, 1) = 1
- sieci neuronowe zostały porzucone na ponad dekadę.

Druga fala (1986-1999)

- 1986 udane zastosowanie wstecznej propagacji w uczeniu się sieci neuronowych (Rumelhart, Hinton, Williams),
- 1986 pojęcie rozproszonej reprezentacji (Hinton),
 - dane wejściowe powinny być reprezentowane przez wiele cech,
 - każda cecha powinna reprezentować możliwie wiele danych wejściowych,
- 1997 sieć z długą pamięcią krótkoterminową (**LSTM**) do modelowania danych sekwencyjnych (Hochreiter i Schmidhuber),
- koniec lat 90-tych XX wieku spadek zainteresowania
 - ograniczenia technologiczne w uczeniu sieci o bardziej złożonej architekturze głębokie sieci,
 - sukcesy innych metod uczących się maszyny oparte na jądrze oraz modele graficzne.

Trzecia fala (od 2006)

- w 2006 Geffrey Hinton zaproponował sieć neuronową, która mogą być skutecznie uczona za pomocą strategii zachłannego wstępnego szkolenia opartego na warstwach,
- skuteczne metody uczenia sieci neuronowych (w tym wykorzystanie GPU)
 przyczyniły się do powrotu ich popularności:
 - wykorzystanie dużych zbiorów danych,
 - bardziej złożone architektury sieci,
- trzecia fala głębokie sieci neuronowe.

Z czego wynika "głębokość" sieci?

Liczba warstw ukrytych

Liczba neuronów w warstwach

Liczba parametrów sieci

Przykłady głębokich sieci neuronowych

	Model	Liczba parametrów sieci
• 2013	word2vec	3 miliony (300, słownik 10k słów)
2018, luty2018, październik	ELMo BERT base BERT large	94 milionów 110 milionów 340 milionów
2019, luty2020, czerwiec	GPT-2 GPT-3	1,5 miliarda 175 miliardów

Trend wielkości sieci neuronowych

Trend wielkości sieci neuronowych

"Tradycyjne" uczenie się sieci

Głębokie sieci neuronowe

Warstwy ukryte jako cechy

Warstwy ukryte jako cechy

BERT jako model języka

- Model BERT był uczony przewidywać brakujące słowo w sekwencji.
 - "Ala ma kota."
- 4 x GPU czas uczenia ok. 34 dni
- Warstwy ukryte BERT-a zostały z powodzeniem wykorzystane jako reprezentacja danych w innych zadaniach NLP, np. tagowanie, NER, itd.
- Uczenie nowego modelu (fine-tuning)
 wykorzystującego reprezentacje z BERT-a jest dużo szybszy i na pojedynczym GPU zajmuje od kilku do kilkudziesięciu minut.

https://github.com/stefan-it/flair-experiments/tree/master/ud-german

Problemy związane z uczeniem głębokich sieci

sages

Zanikający gradient

- strata (loss) propagowana z warstwy wyjściowej w górę sieci w miarę przechodzenia przez kolejne warstwy stopniowo zanika,
- początkowo wagi ustawione są na losowe wartości,
- aby uczenie sieci było skuteczne, to wagi pierwszej warstwy muszą możliwie szybko zbliżyć się do optymalnych wartości,
- funkcje ograniczone (f. sigmoidalna, tanges) nasycają się i ich gradient jest niezerowy w wąskim przedziale aktywacji (blisko zera).

Aglaé Bassens and Grant Bevleveld (2019), Training Deep Networks

ReLU — Rectified linear unit

zalety

- dla aktywnego neuronu gradient nie zanika, co rozwiązuje problem zanikającego gradientu,
- fragmentami liniowa, dzięki czemu optymalizacja metodami gradientowymi jest skuteczniejsza,
- efektywna obliczeniowo,

wady

- problem umierających neuronów jak neuron znajdzie się w stanie "0", to nie jest możliwa jego ponowna reaktywacja (gradient wyniesie 0).
- LeakyReLU, ELU potencjalne alternatywy dla ReLU.

sages

Przeuczenie

- duża liczba parametrów (każda waga neuronu to parametr) sprzyja przetrenowaniu — dostosowanie do danych uczących i zbyt mała generalizacja modelu,
- sposoby radzenia sobie z problemem przeuczenia sieci:
 - zbiór walidacyjny zatrzymanie procesu uczenia, gdy błąd na zbiorze walidacyjnym zacznie rosnąć,
 - regularyzacja (L₁, L₂) modyfikacja funkcji kosztu w taki sposób, aby wagi były uczone w bardziej uporządkowany sposób, m.in. poprzez wymuszenie wyszukiwania mniejszych wag,
 - dropout tymczasowe usunięcie losowo wybranych neuronów podczas uczenia się sieci. W kolejnych iteracjach usuwany jest inny losowy zestaw neuronów.

Dalsza lektura

Goodfellow Ian, Bengio Yoshua, Courville Aaron.
 Deep learning

darmowa książka on-line:
 http://neuralnetworksanddeeplearning.com/