index

April 21, 2018

0.1 Introduction to Finite Element Methods

0.1.1 Gauss quadrature rules

0.1.2 Yerlan Amanbek

yerlan@utexas.edu

1 Objective

- Revisit numerical intergration methods
- Gauss integration(optimal)

1.1 Set-up

The notebook relies on Python code. To initialize the notebook, select Cell->Run All Below

1.2 Introduction

In general, case a mapping between elements and reference(master) elements is used to simplify the integration domain.

We need to compute the definite integral a lot in the FEM computations.

$$I := \int_a^b f(x) \, dx$$

The integral can be viewed graphically as the area between the x-axis and the curve y = f(x) in the region of the limits of integration. Thus, we can interpret numerical integration as an approximation of that area.

interactive(children=(Text(value='exp(-x**2)', description='\$f(x)=\$'), Text(value='-1.0', description='\$f(x)=\$')

Some quick explanations of how the notebook works:

The meaning of the variables are as follows: - "a": the left endpoint of the integration interval - "b": the right endpoint of the integration interval - "n" the number of sub-intervals to use for approximating the integral - "f(x)": the function to integrate.

How to define the function: - $x^{**}p$ means x^p . For example, $x^{**}0.5$ means \sqrt{x} - for a constant function f(x) = c use c * (x * *0) (every function definition needs an x in it!) - for e^p use $\exp(p)$ (so for e use $\exp(1)$) - for π use pi - type trig functions the way you would on your calculator($\sin(x)$, $\cos(x)$, etc)

Some functions you might want to try: $-4-x^{**}2 - \cos(x) - \sin(x^{**}2) - \exp(x^{**}2) - \exp(x^{**}2)/\operatorname{sqrt}(2.*pi)$ (this is the famous "normal curve") $-\exp(x)/x$ (make sure that 0 is not part of your interval!)

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} w_{i} f(x_{i})$$

The trapezoidal rule of numerical integration simply approximates the area by the sum of several equally spaced trapezoids under the curve between the limits of a and b.

The height of a trapezoid is found from the integrand, $y_j = y(x_j)$, evaluated at equally spaced points, x_j and x_{j+1} . Thus, a typical contribution is $Area = h\frac{y_j + y_{j+1}}{2}$, where $h = x_{j+1} x_j$ is the spacing. Thus, for n points (and n1 spaces), the well-known approximation is

$$I \approx h \left(\frac{1}{2} y_1 + y_2 + y_3 + \dots + y_{n-1} + \frac{1}{2} y_n \right)$$

where $w_j = h$, except $w_1 = w_n = \frac{h}{2}$.

interactive(children=(Text(value='exp(-x**2)', description='\$f(x)=\$'), Text(value='-1.0', description='\$f(x)=\$')

Gauss integration

The famous mathematician Gauss posed this question:

- What is the minimum number of points, *n*, required to exactly integrate a polynomial?
- What are the corresponding function values and weights?

Example:

Let [a, b] = [-1, 1] and n = 2

We want to choose x_1, x_2, w_1 and w_2 so that

$$\int_{-1}^{1} f(x) dx \approx w_1 f(x_1) + w_2 f(x_2)$$

The approximation should be exact for any polynomial of degree 3 or less.

Let
$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$$

$$\int_{-1}^{1} f(x) dx = a_0 \int_{-1}^{1} 1 dx + a_1 \int_{-1}^{1} x dx + a_2 \int_{-1}^{1} x^2 dx + a_3 \int_{-1}^{1} x^3 dx$$

 $\int_{-1}^{1} f(x) dx = a_0 \int_{-1}^{1} 1 dx + a_1 \int_{-1}^{1} x dx + a_2 \int_{-1}^{1} x^2 dx + a_3 \int_{-1}^{1} x^3 dx$ Each of the definite integrals on the right-hand side has an integrand of degree 3 or less. Gaussian Quadrature should be exact for each of these.

Applying Gaussian Quadrature to each remaining integral yields:

$$\int_{-1}^{1} 1 \, dx = 2 = w_1 + w_2$$

$$\int_{-1}^{1} x \, dx = 0 = w_1 x_1 + w_2 x_2$$

$$\int_{-1}^{1} x^2 \, dx = \frac{2}{3} = w_1 x_1^2 + w_2 x_2^2$$

$$\int_{-1}^{1} x^3 \, dx = 0 = w_1 x_1^3 + w_2 x_2^3$$

$$w_1 + w_2 = 2$$

$$w_1x_1 + w_2x_2 = 0$$
 we obtain $w_1 = \frac{2x_2}{x_2 - x_1}$ and $w_2 = \frac{2x_1}{x_1 - x_2}$

 $w_1x_1 + w_2x_2 = 0$ we obtain $w_1 = \frac{2x_2}{x_2 - x_1}$ and $w_2 = \frac{2x_1}{x_1 - x_2}$ Using these values for 3^{rd} equation $x_1x_2 = -\frac{1}{3}$ and 4^{th} equation $x_1 = -x_2$.

Solving the nonlinear system gives us

$$w_1 = 1, w_2 = 1, x_1 = -\frac{\sqrt{3}}{3}, x_2 = \frac{\sqrt{3}}{3}$$

Therefore,

$$\int_{-1}^{1} f(x) dx \approx f\left(\frac{-\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$

Above Gauss quadrature integral has degree of precision 3. Trapezoidal rule has degree of precision 1.

Number of points, <i>n</i>	Weights, w_i	Points, x_i
1	2	0
2	1	$\pm \frac{1}{\sqrt{3}}$
3	0	8 9
	$\pm\sqrt{rac{3}{5}}$	5 9
4	$\pm\sqrt{\frac{3}{5}}$ $\frac{18+\sqrt{30}}{36}$	$\pm\sqrt{rac{3}{7}-rac{2}{7}\sqrt{rac{6}{5}}}$
	$\frac{18-\sqrt{30}}{36}$	$\pm\sqrt{\tfrac{3}{7}+\tfrac{2}{7}\sqrt{\tfrac{6}{5}}}$

4 Example

```
\int_{-1}^{1} \left( x^2 + \cos x \right) dx = \frac{x^3}{3} \Big|_{-1}^{1} + \sin x \Big|_{-1}^{1} = \frac{2}{3} + 2\sin(1)
   Trapezoidal rule:
   \int_{-1}^{1} (x^2 + \cos x) dx \approx \frac{2}{2} (f(-1) + f(1))
Gauss quadrature: \int_{-1}^{1} (x^2 + \cos x) dx \approx f\left(\frac{-\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)
In [22]: from scipy.integrate import quad
           from numpy import sqrt, sin, cos, pi
           def f(x):
                return x**2 + cos(x) #integrant
In [23]: I_actual =2/3 + 2*sin(1) #computed integral
           print("Analytical computation of integral is %1.10f" % I_actual)
           #Trapezoidal rule for integral computation
           h=2
           I_{trapezoidal} = h*(f(-1)+f(1))/2
           error_trapezoidal = abs(I_actual - I_trapezoidal)
           print("Trapezoidal rule computation of integral is %1.10f and error is %1.10f" % (I_t
Analytical computation of integral
                                                  is 2.3496086363
Trapezoidal rule computation of integral is 3.0806046117 and error is 0.7309959755
In [24]: #Gauss quadrature rule for integral computation
           I_Gauss_Quadrature = f(-sqrt(3)/3)+f(sqrt(3)/3)
           error_gauss = abs(I_actual - I_Gauss_Quadrature)
           print("Analytical computation of integral
                                                                     is %1.10f" % I_actual)
           print("Gauss quadrature computation of integral is %1.10f and error is %1.10f" % (I_G
```