Projet 4 : Anticipez les besoins en consommation électrique de bâtiments

Sommaire

- 1. Problématique
- 2. Exploration des données
- 3. Modélisation
- 4. Conclusion

Problématique

- Des relevés de données de consommation ont été effectués pour les années 2015 et 2016 pour la ville de Seattle.
- Coût important et obtention fastidieuse

- Mission :
 - Prédire les émissions de CO2 et la consommation d'énergie
 - Évaluer l'intérêt de l'« ENERGY STAR Score » pour la prédiction d'émissions

Exploration des données

- 2 datasets pour les années 2015 et 2016 :
- 53 variables réparties comme suit :
 - 16 variables catégorielles
 - 36 variables numériques
 - 1 variable booléenne
 - Data2015 : 3340L, 47C / Data2016 : 3376 L, 46C
 - Certaines variables différentes
 - Données quasi-identiques et nom qui diffère pour certaines
 - filtration des bâtiments habitables

Exploration des données :

 Suppression des variables et individus ayant trop de valeurs manquantes et non intéressantes pour l'étude

Exploration des données :

- Suppression des valeurs aberrantes
- Exemple avec la variable TotalGHGEmissions :

Exploration des données:

Transformation de la distribution pour nos variables cibles :

Exploration des données :

Transformation de la distribution pour nos variables cibles :

Exploration des données :

Matrice de Corrélation:

Modélisation

- Démarche :
 - Préparation du jeu de données
 - Construction des features
 - Entraînement des modèles
 - Optimisation des hyperparamètres
 - Évaluation du modèle
 - Sélection du meilleur modèle
 - Intérêt de la variable EnergyStarScore

Modélisation : Préparation du jeu de donnée

- Pour chaque variable cible :
 - Séparation des données en sous-ensembles d'entraînement et de test dans notre cas :
 - SiteEnergyUse ou TotalGHGEmissions
 - Nous prendrons 70 % du jeu de données pour l'entraînement et 30 % pour le test

Modélisation: Construction des features

- Passage au logarithme pour les variables cibles
- Modification des autres variables :
 - Standardisation des variables numériques
 - Encodage des variables catégorielles

Modélisation: Les différents modèles

Linear Regressor	Pas d'hyperparamètre
Ridge Regressor	alpha : [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
Random Forest Regressor	n_estimators : [800, 1200] max_depth : [15, 30, None] max_features : ['auto', 'sqrt', 'log2'] min_samples_leaf : [1, 2] min_samples_split : [2, 5]

Modélisation : Optimisation des hyperparamètres

- Pour chaque modèle, après avoir séparé nos données en jeu d'entraînement et en jeu de test :
 - Recherche des meilleurs paramètres avec la méthode de recherche par grille
 - Optimisation des meilleurs paramètres en utilisant la crossvalidation et en minimisant la fonction de coût (dans notre cas Erreur absolue moyenne négative).

Les différents modèles testés

Impact variable:

Régression linéaire:

Régression linéaire:

Régression linéaire:

Random Forest Regressor :

Random Forest Regressor :

Modélisation

 Comparaison des performances des 3 modèles pour la prédiction de la consommation d'énergie :

Meilleur Modèle:

- Random Forest Regressor
- RMSE: 0,06971

Combinaison des hyperparamètres :

- max_depth : 15
- max features: auto
- min_samples_leaf: 1
- min_samples_split : 2
- n_estimators: 1200

Impact variable:

• Régression linéaire:

• Régression linéaire:

• Régression linéaire:

Random Forest Regressor:

Random Forest Regressor:

Modélisation

Comparaison des performances des 3 modèles pour la prédiction d'émission de CO2:

Meilleur Modèle:

- Random Forest Regressor
- RMSE: 0,07320

Combinaison des hyperparamètres :

- max_depth : None
- max features: auto
- min_samples_leaf: 1
- min_samples_split: 2
- n estimators: 1200

Modélisation: Intérêt EnergyStarScore

Random Forest Regressor:

Modélisation: Intérêt EnergyStarScore

Random Forest Regressor:

Modélisation

 Intérêt de la variable EnergyStarScore :

Conclusion

- Random Forest Regressor est le meilleur modèle pour notre problème
- Intérêt négligeable de EnergyStarScore

Merci de votre attention