

Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AP3 – 2º semestre de 2016 – GABARITO

(a) A rede da empresa é dada pelo endereço de rede 122.0.0.0/8, a ser dividida nas subredes R_1 (com 2500000 estações), R_2 (com 1300000 estações), R_3 (com 3000000 estações), R_4 (com 3800000 estações) e R_5 (com 3500000 estações). Mostre que é impossível realizar esta divisão.

Resposta:

O endereço de rede de cada uma das subredes deve satisfazer um valor máximo de máscara de subrede, para que elas tenham pelo menos tantos endereços quanto a quantidade de estações desejada — R_1 deve utilizar, no máximo, máscara /11 (e, por isso conter pelo menos 4194304 endereços), R_2 , no máximo máscara /11 (ao menos 2097152 endereços), R_3 , no máximo máscara /11 (ao menos 4194304 endereços) e R_5 , no máximo máscara /11 (ao menos 4194304 endereços) e R_5 , no máximo máscara /11 (ao menos 4194304 endereços). Isto significa que, em qualquer alocação que satisfaça todas as subredes, serão necessários no mínimo 18874368 endereços. No entanto, a rede principal (122.0.0.0/8) possui apenas 16777216 endereços, logo é impossível realizar essa divisão.

(b) A rede da empresa é dada pelo endereço de rede 70.144.0.0/12, a ser dividida nas subredes R_1 (com 110000 estações), R_2 (com 140000 estações), R_3 (com 60000 estações), R_4 (com 50000 estações) e R_5 (com 50000 estações). Você deixou esta tarefa com o estagiário e ele lhe apresentou as seguintes propostas de subdivisão:

	Proposta 1	Proposta 2
R_1	70.150.0.0/15	70.148.0.0/15
R_2	70.144.0.0/14	70.144.0.0/14
R_3	70.148.0.0/16	70.150.0.0/16
R_4	70.152.0.0/17	70.151.0.0/16
R_5	70.149.0.0/16	70.152.0.0/16

Determine quais destas subdivisões são válidas e quais não são, e justifique as que não estiverem de acordo.

Resposta:

A proposta 2 é válida, pois todas as subredes possuem endereços de rede válidos, suas faixas de endereços estão contidas na faixa de endereços 70.144.0.0/12 da rede principal, não se sobrepõem, e receberam pelo menos tantos endereços quanto requisitado. Já a proposta 1 não satisfaz à última destas restrições, pois associa o endereço de rede 70.152.0.0/17 para a rede R_4 , não cumprindo os requisitos de alocação apresentados para esta rede.

Na rede ilustrada a seguir, 7 sistemas autônomos, identificados por letras e cores distintas, encontram-se dispostos segundo um *backbone* circular, evidenciado pelos enlaces contínuos entre ASs. No entanto, devido à presença de tráfego intenso em rotas específicas, alguns ASs negociaram ligações diretas adicionais uns com os outros, representadas por linhas tracejadas, com uma condição de uso: cada enlace direto somente pode ser usado para tráfego direto entre os ASs em questão, sendo proibido o seu uso para trafegar dados de outros ASs. Não há restrições negociadas sobre o uso do *backbone*. Algumas das subredes presentes nestes ASs são ilustradas por letras minúsculas.

(a) Os roteadores D3 e D2 irão estabelecer alguma comunicação BGP um com o outro? Se sim, do tipo iBGP ou eBGP?

Resposta:

Haverá comunicação iBGP entre estes roteadores.

(b) O AS F conhece uma rota até a subrede j, que está em outro AS. Ele irá anunciar esta rota para o AS G? Por quê?

Resposta:

Sim, pois esta rota passa através do *backbone* da rede, que é de uso comum de todos os ASs.

(c) Considere um pacote enviado da subrede d para a subrede e. Determine o caminho que este pacote irá percorrer nesta rede, tanto em nível de sistemas autônomos quanto em nível de roteadores.

Resposta:

O pacote irá transitar através dos ASs e C, sendo encaminhado pelos roteadores C2 e C4.

Na colur	na à direita, são aprese	entadas car			
		(LS)	Troca de informações topológicas da rede e cálculo de rotas são etapas distintas e sucessi-		
		(-)	vas		
		(LS)	Cálculo centralizado de rotas		
		(\mathbf{DV})	Tabela de distâncias é utilizada pelo cálculo de rotas		
		(LS)	Cálculo de rotas baseado em algoritmos como		
		,	Prim ou Dijkstra		
(LS)	Estado de enlace	(\mathbf{DV})	Implementado no protocolo RIP		
(DV)	Vetor de distâncias	(\mathbf{LS})	Implementado nos protocolos OSPF e IS-IS		
		(LS)	Roteadores calculam as rotas de maneira independente		
		(\mathbf{DV})	Atinge melhor desempenho com a ajuda de técnicas como envenenamento reverso		
		(LS)	Exige um algoritmo de broadcast para difusão de informações topológicas		
		(LS)	Mapa topológico da rede é utilizado pelo cálculo de rotas		

(a) Suponha que ocorre a transmissão de um fluxo de quadros de s1 para h10. Por quais equipamentos (estações, servidores, hubs e switches) esse fluxo irá transitar?

Resposta:

A transmissão será vista por h2, h3, h4, h5, h6, h10, H1, H2, H3, s1, S1, S2, S3 e S4.

(b) Considere que todos os servidores e estações possuem dados a transmitir para a Internet. Qual o número máximo destes equipamentos que podem realizar essa transmissão simultaneamente, sem que ocorram colisões? Descreva um cenário em que este máximo é atingido.

Resposta:

Pode haver no máximo 12 transmissões simultâneas para a Internet, sem que haja colisão. Este máximo é atingido, por exemplo, com transmissões de h1, h7, h9, h10, h11, h12, h13, h14, h15, h16, s1 e s2.

	S-ALOHA	ALOHA	TDMA	CDMA
permite que uma estação detecte	×	×	×	×
uma colisão e interrompa sua trans-				
missão				
livre de colisões	×	×	✓	✓
requer sincronização dos relógios	✓	×	✓	×
das estações				
protocolo de partição de canal	×	×	✓	✓
a adição de uma estação adicional	×	×	✓	×
exige a reconfiguração das estações				
presentes				