Linear Algebra-A

Assignments - Week 13

Assignments from the Textbook (Hardcover)

Section 5.6: 17,20,24,30,36,39,41,43,44.

#36 Hint: What is $(I^2)^2$?

Section 6.1: 13,16.

Supplementary Problem Set

1. Suppose there exist a 3×3 matrix A and a 3-dimensional column vector x such that the set of vectors x, Ax, A^2x are linearly independent, and

$$A^3x = 3Ax - 2A^2x$$

- (1) Let $P = [x, Ax, A^2x]$. Find a matrix B, such that $A = PBP^{-1}$.
- (2) Compute the determinant $|A^2 + A + I|$.

[Hint: You may use the following fact:

Please show that if $P^{-1}AP = B$, then $P^{-1}f(A)P = f(B)$, i.e., if A is similar to B, then f(A) is similar to f(B), where f(x) is a polynomial of degree n: $f(x) = a_n x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$, where $a_n, a_{n-1}, \cdots a_1, a_0$ are constants.

Please prove it before applying it.

- 2. If \mathbf{A} is a 3×3 real symmetric matrix and has eigenvalues $\lambda_1 = -1, \lambda_2 = \lambda_3 = 1$, and $\alpha_1 = (0,1,1)^{\mathrm{T}}$ is an eigenvector corresponding to $\lambda_1 = -1$. Please find the matrix \mathbf{A} .
- 3. (1) Find an orthogonal matrix Q (and a unitary matrix U) to diagonalize the following matrix A (and B):

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & -i & 0 \\ i & 1 & i \\ 0 & -i & 0 \end{bmatrix}.$$

(2) Find all the eigenvalues of the matrix $\mathbf{C} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$, and a unitary matrix to diagonalize \mathbf{C} .

[Hint: You may use the following fact:

For a block matrix

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_{11} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{C}_{21} & \mathbf{C}_{22} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}_{m1} & \mathbf{C}_{m2} & \cdots & \mathbf{C}_{mm} \end{bmatrix}, \text{ (the block } \mathbf{C}_{ii} \text{ is a matrix of order } r_i)$$

the eigenvalues of C come from the union set of the eigenvalues of C_{ii} ($i = 1, 2, \dots, m$). Please prove it before applying it.

- 4. Let $A = [a_{ij}]$ be a square matrix of degree $n(n \ge 2)$, and λ is an eigenvalue of A. Please show that:
 - (1) There exists $1 \le k \le n$ such that $|\lambda a_{kk}| \le \sum_{j=1, j \ne k}^n |a_{kj}|$. **[Hint**: Denote $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T$ as one of the eigenvectors of \mathbf{A} corresponding to the eigenvalue λ , we let $\max_{1 \le j \le n} |x_j| = |x_k|$, then ... **]**
 - (2) If the matrix \mathbf{A} satisfies $|a_{ii}| > \sum_{j=1,j\neq i}^{n} |a_{ij}|$, $i=1,2,\cdots,n$ (\mathbf{A} is called a <u>strictly diagonally dominant matrix</u>, or "严格对角占优矩阵" in Chinese), then \mathbf{A} must be invertible.
- 5. Let $\mathbb{R}^{2\times 2}$ be the vector space of all 2×2 matrices, and define $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ by $T(X) = AX, \forall X \in \mathbb{R}^{2\times 2}$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - (1) Show that T is a linear transformation.
 - (2) Find its representing matrix with respect to the basis $\mathbf{e}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\mathbf{e}_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\mathbf{e}_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
 - (3) If $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, find a basis for $\mathbb{R}^{2\times 2}$ with the property that the representation matrix for T is a diagonal matrix and find the diagonal matrix.