1.(Cancelled)		
2.(Cancelled)		
3.(Cancelled)		
4.(Cancelled)		
5.(Cancelled)		
6.(Cancelled)		
7.(Cancelled)		
8.(Cancelled)		
9.(Cancelled)		
10.(Cancelled)		
11.(Cancelled)		

12.(Cancelled)			
13.(Cancelled)	·		
14.(Cancelled)			
15.(Cancelled)			
16.(Cancelled)			
17.(Cancelled)			
18.(Cancelled)			
19.(Cancelled)			
20.(Cancelled)			
21.(Cancelled)			
22.(Cancelled)			
23.(Cancelled)			

24.(Cancelled)
25.(Cancelled)
26.(Cancelled)
27.(New) Method for determining the number of receptors on a carrier, comprising:
(a) preparing a carrier;
(b) immobilizing at least one receptor on the carrier, with the receptor having the ability
to interact with a ligand and to form a receptor-ligand complex;
(c) after immobilization of at the at least one receptor on the carrier, bringing a marker in
contact with the receptor, in order to form a receptor-marker complex with separable binding
between receptor and marker; and
(d) determining the number of receptors on the carrier by detecting the receptor-marker
complexes;
wherein the receptor-marker complexes are detected independently of receptor-ligand
complexes.
28.(New) The method of claim 27, comprising:
(i) bringing the receptor in contact with a test sample that is to be examined for its content
of ligands.

- 29.(New) The method of claim 28, comprising:
 - (ii) following step (i), detecting the receptor-ligand complexes.
- 30.(New) The method of claim 27, wherein the carrier is a semiconductor with a surface of silicon, semimetal oxides, especially SiO_x, or aluminum oxide.
- 31.(New) The method of claim 27, wherein the receptor is selected from the group consisting of antibodies, especially monoclonal or polyclonal antibodies, and functional fragments thereof; proteins, oligo- and polypeptides, nucleic acids, especially DNA, RNA, cDNA, PNA, oligo- and polynucleotides; as well as saccharides, especially mono-, di-, tri-, oligo-, and polysaccharides.
- 32.(New) The method of claim 27, wherein the binding between receptor and ligand in the receptor-ligand complex is separable.
- 33.(New) The method of claim 27, wherein the binding between receptor and ligand has a half-life in the range of at least microseconds.
- 34.(New) The method of claim 27, wherein n markers or a multiple of n markers are associated with n receptors.
- 35.(New) The method of claim 27, wherein the marker has reactive groups, especially thiol groups.

- 36.(New) The method of claim 27, wherein the marker comprises a luminescent dye, a chemoluminescent, a photoluminescent dye, or a bioluminescent dye.
- 37.(New) The method of claim 27, wherein the marker comprises a fluorescent dye, preferably a fluorochrome, and with greater preference a rhodamine, especially tetramethylrhodamine isothiocyanate.
- 38.(New) The method of claim 27, wherein the receptor comprises inherent fluorescence.
- 39.(New) The method of claim 38, wherein the amino acid tryptophan provides the inherent fluorescence.
- 40.(New) The method of claim 38, wherein the binding between receptor and marker has a fluorescence half-life in the range of nanoseconds.
- 41.(New) The method of claim 27, wherein the receptor-marker complex includes fluorescence resonance energy transfer.
- 42.(New) The method of claim 41, wherein the fluorescence of the fluorescence resonance energy transfer is modified by the interaction of the ligand with the receptor.

- 43.(New) The method of claim 41, wherein the receptor has the donor and the acceptor of the fluorescence resonance energy transfer.
- 44.(New) The method of claim 41, wherein the fluorescence is produced by the donor or the fluorescence is quenched by the acceptor.
- 45.(New) The method of claim 41, wherein the ligand acts as the donor of the fluorescence resonance energy transfer.
- 46.(New) The method of claim 41, wherein the ligand brings the donor and the acceptor of the fluorescence resonance energy transfer directly into contact.
- 47.(New) The method of claim 41, wherein fluorescence-labeled ligands are used.
- 48.(New) The method of claim 42, wherein the marker is a microparticle.
- 49.(New) A method of determining the number of receptors using a biosensor, comprising:
 - (a) preparing a semiconductor carrier;
- (b) immobilizing at least one receptor on the carrier, with the receptor having the ability to interact with a ligand and to form a receptor-ligand complex;
- (c) after immobilization of at the at least one receptor on the carrier, bringing a marker in contact with the receptor, in order to form a receptor-marker complex with separable binding between receptor and marker; and

(d) determining the number of receptors on the carrier by detecting the receptor-marker complexes;

wherein the receptor-marker complexes are detected independently of receptor-ligand complexes, the marker comprises a luminescent dye, a chemoluminescent, a photoluminescent dye, or a bioluminescent dye.