Real Analysis: Homework #2

Due on Mar 12, 2024 at $10{:}00\mathrm{am}$

 $Professor\ Yakun\ Xi\ Tuesday$

Shuang Hu

Problem 1

Complete the proof of Theorem 1.9.

Proof. First, we show that $\bar{\mu}$ be a complete measure on $\bar{\mathcal{M}}$. We divide this proof in the following three steps. First, $\forall \mathcal{S} \in \bar{\mathcal{M}}$, \mathcal{S} can be divided to $\mathcal{S} = \mathcal{E} \cup \mathcal{F}$, where $\mathcal{E} \in \mathcal{M}$, $\mathcal{F} \subset N$ for $\mu(N) = 0$. By the definition of $\bar{\mu}$, $\bar{\mu}(\mathcal{S}) = \mu(\mathcal{E}) \geq 0$. So $\bar{\mu} : \bar{\mathcal{M}} \to [0, \infty]$.

Second, we show the additive. Choose $\{S_i\}_{i=1}^{\infty} \subset \overline{\mathcal{M}}$ with disjoint sets S_i , i.e. $S_i = \mathcal{E}_i \cup \mathcal{F}_i$ and $\mathcal{E}_i \cap \mathcal{F}_i = \emptyset$, $\{\mathcal{E}_i\}$ disjoint, $\mathcal{F}_i \subset N_i$ with $\mu(N_i) = 0$. Then:

$$\bar{\mu}\left(\cup_{i=1}^{\infty} \mathcal{S}_i\right) = \bar{\mu}\left(\left(\cup_{i=1}^{\infty} \mathcal{E}_i\right) \cup \left(\cup_{i=1}^{\infty} \mathcal{F}_i\right)\right).$$

As $\mathcal{F}_i \subset N_i$ with $\mu(N_i) = 0$, $\bigcup_{i=1}^{\infty} \mathcal{F}_i \subset \bigcup_{i=1}^{\infty} N_i$ with $\mu(\bigcup_{i=1}^{\infty} N_i) = 0$. So:

$$\bar{\mu}(\cup_{i=1}^{\infty} \mathcal{S}_i) = \mu(\cup_{i=1}^{\infty} \mathcal{E}_i) = \sum_{i=1}^{\infty} \mu(\mathcal{E}_i) = \sum_{i=1}^{\infty} \bar{\mu}(\mathcal{E}_i \cup \mathcal{F}_i) = \sum_{i=1}^{\infty} \bar{\mu}(\mathcal{S}_i).$$

Third, by the definition, $\bar{\mu}(\emptyset) = \mu(\emptyset) = 0$. So $\bar{\mu}$ is a measure. And for N s.t. $\bar{\mu}(N) = 0$, i.e. $\exists \tilde{N}$ s.t. $N \subset \tilde{N}$, $\mu(\tilde{N}) = 0$, we have: $\forall \mathcal{F} \subset N$, $\mathcal{F} \subset \tilde{N}$, i.e. $\bar{\mu}(\mathcal{F}) = \bar{\mu}(\emptyset \cup \mathcal{F}) = 0$. So $\bar{\mu}$ is complete.

Then we show the uniqueness. Assume $\tilde{\mu}$ is a complete measure on $\bar{\mathcal{M}}$, then:

$$\tilde{\mu}(\mathcal{E}) \leq \tilde{\mu}(\mathcal{E} \cup \mathcal{F}) \leq \tilde{\mu}(\mathcal{E}) + \tilde{\mu}(\mathcal{F}).$$

As $\forall \mathcal{F} \subset N$ s.t. $\mu(N) = 0$, $\tilde{\mu}(\mathcal{F}) = 0$, we can see $\tilde{\mu}(\mathcal{E} \cup \mathcal{F}) = \tilde{\mu}(\mathcal{E})$, it means $\tilde{\mu} = \bar{\mu}$.

Problem 2

A finitely additive measure μ is a measure iff it is continuous from below. If $\mu(X) < \infty$, μ is a measure iff it is continuous from above.

Proof. If μ is a measure, Theorem 1.8 shows the continuity from below, and the continuity from above in the case $\mu(X) < \infty$. So it suffices to show the opposite direction.

If μ be finitely additive and continuous from below, choose disjoint sets $\{\mathcal{E}_i\}_{i=1}^{\infty}$, mark $\mathcal{F}_i := \bigcup_{i=1}^{i} \mathcal{E}_i$, then

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_n \subset \cdots$$
.

 μ is continuous from below, i.e.

$$\mu(\bigcup_{i=1}^{\infty} \mathcal{E}_i) = \mu(\bigcup_{i=1}^{\infty} \mathcal{F}_i) = \lim_{n \to \infty} \mu(\mathcal{F}_n).$$

By the finitely additivity,

$$\lim_{n\to\infty}\mu(\mathcal{F}_n)=\lim_{n\to\infty}\sum_{i=1}^n\mu(\mathcal{E}_i)=\sum_{i=1}^\infty\mu(\mathcal{E}_i).$$

It means μ is additive.

If μ be finitely additive and continuous from above, $\mu(X) < \infty$, choose disjoint sets $\{\mathcal{E}_i\}_{i=1}^{\infty}$, $\mathcal{F}_i := \bigcup_{j=1}^{i} \mathcal{E}_i$, then:

$$\mathcal{F}_1^c \supset \mathcal{F}_2^c \supset \cdots \supset \mathcal{F}_n^c \supset \cdots$$

and $\mu(\mathcal{F}_1^c) \leq \mu(X) < \infty$. Then:

$$\mu(\cap_{i=1}^{\infty}\mathcal{E}_i^c) = \mu(\cap_{i=1}^{\infty}\mathcal{F}_i^c) = \lim_{n \to \infty} \mu(\mathcal{F}_n^c) = \mu(X) - \lim_{n \to \infty} \mu(\mathcal{F}_n) = \mu(X) - \sum_{n=1}^{\infty} \mu(\mathcal{E}_n).$$

The second step is derived by the continuity from above, and the final step from the finitely additivity. So:

$$\sum_{n=1}^{\infty} \mu(\mathcal{E}_n) = \mu(X) - \mu(\bigcap_{i=1}^{\infty} \mathcal{F}_i^c) = \mu((\bigcap_{i=1}^{\infty} \mathcal{F}_i^c)^c) = \mu(\bigcup_{i=1}^{\infty} \mathcal{F}_i) = \mu(\bigcup_{i=1}^{\infty} \mathcal{E}_i).$$

It means μ is additive.

Problem 3

Every σ -finite measure is semifinite.

Proof. $\forall \mathcal{E} \subset \mathcal{M}$ and $\mu(\mathcal{E}) = \infty$, we should construct $\mathcal{F} \subset \mathcal{E}$ s.t. $0 < \mu(\mathcal{F}) < \infty$. As μ be σ -finite, $\exists \{\mathcal{E}_i\}_{i=1}^{\infty} \subset \mathcal{M}$ s.t. $\bigcup_{i=1}^{\infty} \mathcal{E}_i = X$, $\mu(\mathcal{E}_i) < \infty$, then $\mathcal{E} = \bigcup_{i=1}^{\infty} (\mathcal{E}_i \cap \mathcal{E})$. Mark $\mathcal{F}_i := \mathcal{E}_i \cap \mathcal{E}$, as $\mu(\mathcal{E}_i) < \infty$, $\forall i$, $\mu(\mathcal{F}_i) < \infty$. If $\forall i$, $\mu(\mathcal{F}_i) = 0$, as $\mathcal{E} = \bigcup_{i=1}^{\infty} \mathcal{F}_i$, $\mu(\mathcal{E}) = 0$, contradict! So $\exists j \in \mathbb{N}$ s.t. $\mu(\mathcal{F}_j) > 0$, $\mathcal{F}_j \subset \mathcal{E}$ and $0 < \mu(\mathcal{F}_j) < \infty$.

Problem 4

If μ is a semifinite measure and $\mu(E) = \infty$, for any C > 0 there exists $F \subset E$ with $C < \mu(F) < \infty$.

Proof. Proof by contradiction. Assume $\exists C_0 > 0$ s.t. $\forall F \subset E$ with $\mu(F) < \infty$, $\mu(F) < C_0$. Mark

$$\mathcal{F} := \{ F | F \subset E, \mu(F) < C_0 \},\$$

 \mathcal{F} is an ordered set with relation \subset . By Zorn's Lemma, there exists a maximum element \bar{F} in \mathcal{F} , and $\mu(\bar{F}) < C_0$.

As $\mu(E) = \infty$ and $\mu(\bar{F}) < C_0$, $\mu(E \setminus \bar{F}) = \infty$. μ be semifinite means $\exists S \subset E \setminus \bar{F}$, $\mu(S) < \infty$. So $\mu(\bar{F} \cup S) < C_0 + \mu(S) < \infty$.

On the other hand, by assumption, $\mu(\bar{F} \cup S) < \infty$ means $\mu(\bar{F} \cup S) < C_0$, i.e. $\bar{F} \cup S \in \mathcal{F}$. However, \bar{F} is the maximum element in \mathcal{F} , this leads to a contradiction, Q.E.D.

Problem 5

If μ^* is an outer measure on X and $\{A_j\}_1^{\infty}$ is a sequence of disjoint μ^* -measurable sets, then $\mu^*(E \cap (\bigcup_{j=1}^{\infty} A_j)) = \sum_{j=1}^{\infty} \mu^*(E \cap A_j)$ for any $E \subset X$.

Proof. By Caratheodory Theorem, μ^* -measurable sets form a σ -algebra. Mark $B_n := \bigcup_{j=1}^n A_j$, it suffices to show:

$$\forall n \in \mathbb{N}, \ \mu^*(E \cap B_n) = \sum_{j=1}^n \mu^*(E \cap A_j). \tag{1}$$

Proof by induction. For n = 1, $B_1 = A_1$, so (1) holds. Assume (1) holds for n = k, consider n = k + 1. By the definition of μ^* -measurable,

$$\mu^{*}(E) = \mu^{*}(E \cap B_{n+1}) + \mu^{*}(E \cap B_{n+1}^{c})$$

$$= \mu^{*}(E \cap B_{n+1}) + \mu^{*}(E \cap B_{n}^{c} \cap A_{n+1}^{c})$$

$$= \mu^{*}(E \cap B_{n+1}) + \mu^{*}(E \cap B_{n}^{c}) - \mu^{*}(E \cap B_{n}^{c} \cap A_{n+1})$$

$$= \mu^{*}(E \cap B_{n+1}) + \mu^{*}(E \cap B_{n}^{c}) - \mu^{*}(E \cap A_{n+1}),$$
(2)

the final step from the fact that $\{A_i\}$ disjoint. By (2) and the assumption,

$$\mu^*(E \cap B_{n+1}) = \mu^*(E) - \mu^*(E \cap B_n^c) + \mu^*(E \cap A_{n+1})$$

$$= \mu^*(E \cap B_n) + \mu^*(E \cap A_{n+1})$$

$$= \sum_{j=1}^{n+1} \mu^*(E \cap A_j).$$
(3)

So, by induction, (1) holds for all $n \in \mathbb{N}$.

If $\forall n \in \mathbb{N}$, $\mu^*(E \cap B_n) < \infty$, the proof is completed just by setting $n \to \infty$ in (1). If $\exists N_0 \in \mathbb{N}$ s.t. $\mu^*(E \cap B_{N_0}) = \infty$, as $B_{N_0} \subset \bigcup_{i=1}^{\infty} A_i$, $\mu^*(E \cap (\bigcup_{i=1}^{\infty} A_i)) \geq \mu^*(E \cap B_{N_0}) = \infty$, and $\sum_{j=1}^{\infty} \mu^*(E \cap A_j) \geq \sum_{i=1}^{N_0} (E \cap A_j) = \infty$. Now we complete the proof.

Problem 6

Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A} , and $\mathcal{A}_{\sigma\delta}$ the collection of countable intersections of sets in \mathcal{A}_{σ} . Let μ_0 be a premeasure on \mathcal{A} and μ^* the induced outer measure.

- 1. For any $E \subset X$ and $\epsilon > 0$ there exists $A \in \mathcal{A}_{\sigma}$ with $E \subset A$ and $\mu^*(A) \leq \mu^*(E) + \epsilon$.
- 2. If $\mu^*(E) < \infty$, then E is μ^* -measurable iff there exists $B \in \mathcal{A}_{\sigma\delta}$ with $E \subset B$ and $\mu^*(B \setminus E) = 0$.
- 3. If μ_0 is σ -finite, the restriction $\mu^*(E) < \infty$ in (b) is superfluous.

Proof. (1) If $\mu^*(E) = \infty$, just set $A = \bigcup_{S \in \mathcal{A}} S$. So we only need to check the case $\mu^*(E) < \infty$. By the definition of outer measure derived by premeasure,

$$\mu^*(E) = \inf_{(\bigcup_{i=1}^{\infty} A_i) \supset E} \sum \mu_0(A_i),$$

where $\{A_i\}$ are disjoint. It means that $\forall \epsilon > 0$, $\exists \{A_i\} \subset \mathcal{A}$, s.t. $E \subset \bigcup_{i=1}^{\infty} A_i$ and $\mu^*(E) + \epsilon \geq \sum_{i=1}^{\infty} \mu_0(A_i)$. Set $A := \bigcup_{i=1}^{\infty} A_i$, we can see $A \in \mathcal{A}_{\sigma}$, and $\mu^*(A) = \sum_{i=1}^{\infty} \mu_0(A_i)$. It completes the proof. \Box (2) Before the proof, we introduce the following three lemmas first.

Lemma 1. $A_{\sigma\delta}$ is a σ -algebra generated by elements in A.

Proof. By the definition of $\mathcal{A}_{\sigma\delta}$, we can see $\mathcal{A} \subset \mathcal{A}_{\sigma\delta}$ and $\mathcal{A}_{\sigma\delta}$ be closed under countable union. For complements, choose $A \in \mathcal{A}_{\sigma\delta}$, $\exists \{A_{ij}\} \subset \mathcal{A}$, s.t.

$$A = \bigcap_{i=1}^{\infty} \cup_{j=1}^{\infty} A_{ij}.$$

Then

$$A^c = \bigcup_{i=1}^{\infty} \cap_{j=1}^{\infty} A_{ij}^c = \bigcap_{j=1}^{\infty} \bigcup_{i=1}^{\infty} A_{ij}^c \in \mathcal{A}_{\sigma\delta}.$$

So $\mathcal{A}_{\sigma\delta}$ is a σ -algebra. On the other hand, for a σ -algebra $\tilde{\mathcal{A}} \supset \mathcal{A}$, σ -algebra is closed under countable unions and intersections, so $\mathcal{A}_{\sigma\delta} \subset \tilde{\mathcal{A}}$, i.e. $\mathcal{A}_{\sigma\delta} = \mathcal{M}(\mathcal{A})$.

Lemma 2. $\forall S \in A_{\sigma\delta}, S \text{ is a } \mu^*\text{-measurable set.}$

Proof. By Caratheodory's Theorem, the μ^* -measurable sets form a σ -algebra. On the other hand, by Proposition 1.13, $\forall A \in \mathcal{A}$, A is μ^* -measurable. Choose $\mathcal{T} := \{\mathcal{S} : \mathcal{S} \text{ is } \mu^*\text{-measurable}\}$, by Lemma 1, $\mathcal{A}_{\sigma\delta} \subset \mathcal{T}$. Q.E.D.

Lemma 3. $\mu^*(A) = 0$ means A is μ^* -measurable.

Proof. It suffices to show that $\forall S \in \mathcal{P}(X)$, $\mu^*(S) = \mu^*(S \cap A^c)$. \forall disjoint sets $\{A_i\} \subset A$ satisfies $\bigcup_{i=1}^{\infty} A_i \supset S$, choose $\tilde{A}_i := A_i \setminus A$, it means that $\bigcup_{i=1}^{\infty} \tilde{A}_i \supset S \cap A^c$, and $\sum_{i=1}^{\infty} \mu_0(A_i) = \sum_{i=1}^{\infty} \mu_0(\tilde{A}_i)$. It completes the proof.

Now we continue the proof.

" \Rightarrow ": As $\mu^*(E) < \infty$, by (1), we can choose a sequence of sets $A_n \in \mathcal{A}_{\sigma}$, s.t.

- $E \subset A_n$.
- $\mu^*(A_n) \le \mu^*(E) + \frac{1}{n}$.

Choose $B := \bigcap_{n=1}^{\infty} A_n$, it's clear that $B \in \mathcal{A}_{\sigma\delta}$, $E \subset B$. WLOG, we assume the sequence $\{A_n\}$ is decreasing. Then:

$$0 \le \mu^*(B \setminus E) = \mu^*(\bigcap_{n=1}^{\infty} A_n \setminus E) = \lim_{n \to \infty} \mu^*(A_n \setminus E) \le \lim_{n \to \infty} \frac{1}{n} = 0.$$

It completes the proof.

" \Leftarrow ": Choose $F \in \mathcal{P}(X)$. By the monotony of μ^* ,

$$\mu^*(F \cap E) + \mu^*(F \cap E^c) \le \mu^*(F \cap B) + \mu^*(F \cap E^c).$$

By Lemma 2, B is μ^* -measurable, i.e. $\mu^*(F) = \mu^*(F \cap B) + \mu^*(F \cap B^c)$. So it suffices to show $\mu^*(F \cap E^c) = \mu^*(F \cap B^c)$. We have:

$$\mu^*(F \cap B^c) = \mu^*(F \cap E^c \cap (B \setminus E)^c)$$
$$= \mu^*(F \cap E^c) + \mu^*(F \cap E^c \cap (B \setminus E))$$
$$= \mu^*(F \cap E^c).$$

The first step is from $B = E \cup B \setminus E$, The second from the fact that $\mu^*(B \setminus E) = 0$ and Lemma 3, and the third from the monotony of μ^* .

This completes the proof.

- (3) μ_0 be σ -finite means $\exists \{A_i\} \subset \mathcal{A}$ s.t.
 - $X = \bigcup_{i=1}^{\infty} A_i$.
 - $\mu_0(A_i) < \infty$.

" \Rightarrow ": E is μ^* -measurable means $A_i \cap E$ is μ^* -measurable. By (2), $\exists B_i \in \mathcal{A}_{\sigma\delta}$ with $X_i \cap E \subset B_i$ and $\mu^*(B_i \setminus (X_i \cap E)) = 0$. Mark $B := \bigcup_{i=1}^{\infty} B_i$, it's clear that $E \subset \bigcup_{i=1}^{\infty} B_i = B$ and

$$\mu^*(B \setminus E) \le \sum_{i=1}^{\infty} \mu^*(B_i \setminus (X_i \cap E)) = 0.$$

" \Leftarrow ": $E \subset B$ means $A_i \cap E \subset A_i \cap B$, then

$$\mu^*((A_i \cap B) \setminus (A_i \cap E)) \le \mu^*(B \cap E) = 0.$$

On the other hand, for $B \in \mathcal{A}_{\sigma\delta}$, $A_i \cap B \in \mathcal{A}_{\sigma\delta}$. By (2), $X_i \cap E$ is μ^* -measurable. By Caratheodory's Theorem, $\bigcup_{i=1}^{\infty} (X_i \cap E) = E$ is μ^* -measurable.

Problem 7

Let μ^* be an outer measure on X induced from a finite premeasure μ_0 . If $E \subset X$, define the **inner measure** of E to be $\mu_*(E) = \mu_0(X) - \mu^*(E^c)$. Then E is μ^* -measurable iff $\mu^*(E) = \mu_*(E)$.

Proof. " \Rightarrow ": If E is μ^* -measurable and μ_0 be finite, by Problem 6(3), $\exists B \in \mathcal{A}_{\sigma\delta}$ s.t. $\mu^*(B \setminus E) = 0$. By Lemma 2, B is μ^* -measurable, i.e. $\mu_0(X) = \mu^*(B) + \mu^*(B^c)$. On the other hand, we have:

- $\mu^*(E) \le \mu^*(B) = \mu^*(E \cup (B \setminus E)) \le \mu^*(E) + \mu^*(B \setminus E) = \mu^*(E)$.
- $\mu^*(B^c) = \mu^*(E^c \cap (B \setminus E)^c) = \mu^*(E^c) \mu^*(E^c \cap (B \setminus E)) = \mu^*(E^c)$, this equality is derived from Lemma 3.

So $\mu_0(X) = \mu^*(E) + \mu^*(E^c) = \mu^*(E) + \mu_*(E)$. \square " \Leftarrow ": Since μ^* be finite, $\mu^*(E) < \infty$. Then by Problem 6(1), $\exists \{A_n\} \subset \mathcal{A}_\sigma$ s.t.

- $E \subset A_n$.
- $\mu^*(A_n) \le \mu^*(E) + \frac{1}{n}$.

Mark $B := \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}_{\sigma\delta}$, by Lemma 2, B is μ^* -measurable and $E^c \supset B^c$, so:

$$\mu^*(E^c) = \mu^*(E^c \cap B) + \mu^*(B^c).$$

It means:

$$\mu^*(B \setminus E) = \mu_0(X) - \mu^*(E) - \mu^*(B^c)$$

$$\leq \frac{1}{n} + \mu_0(X) - \mu^*(A_n) - \mu^*(B^c)$$

$$\leq \frac{1}{n} + \mu_0(X) - \mu^*(A_n \cup B^c)$$

$$= \frac{1}{n}.$$

Choose $n \to \infty$, $\mu^*(B \setminus E) = 0$. By Problem 6(3), E is μ^* -measurable.