Wärmelehre

Gruppe C14 Julián Häck, **Martin Koytek**, Lars Wenning, Erik Zimmermann

4. April 2016

Messung der Verdampfungsenthalpie

$$\frac{dp}{dT} = \frac{\nu\Lambda}{T(V_1 - V_2)}$$

$$\ln(p) = -\frac{\Lambda}{R} \cdot \frac{1}{T} + c \text{ mit } c = const$$

Rauschmessung

	Gruppe 1	Gruppe 2
T_M in K	297.26	296.17
$\sigma_{\mathcal{T}}$ in K	0.054	0.069

	Gruppe 1	Gruppe 2
P_M in hPa	981.443	1006.265
σ_P in hPa	0.370	0.348

Temperaturkalibrierung

$$T_R = aT_C + b$$

$$T_R = a_1(T_C - \bar{T}) + b_1$$

T_R	T_C
273.16K	274.277
372.50 K	372.227

$$a_1 = 1.015,$$
 $\sigma_{a_1} = 2.955 \cdot 10^{-5}$ $b_1 = 322.86K,$ $\sigma_{b_1} = 0.013K$

$$\sigma_{T_R} = \sqrt{((T_C - \bar{T})\sigma_a)^2 + \sigma_b^2} = 0.0137$$

$$\sigma_{\lambda_T} = \frac{\sigma_T}{T} \cdot \Lambda \approx 0.002 \frac{kJ}{mol}$$

Tabelle: Systematische Fehler aus Herstellerangaben: Druck

Linearitätsfehler	$\pm 1\%$
Sensor	±1%
Verstärkungsfehler	$\pm 1\%$

Tabelle: Systematische Fehler aus Herstellerangaben: Temperatur

Sensor	±2.5 <i>K</i>
Konverter	$\pm 1\%$

Druckkalibrierung

	p _{Cassy}	p _{Wetterstation}	Δρ
Gruppe 1	981.54 hPa	985 hPa	3.46 hPa
Gruppe 2	1006.5 hPa	984 hPa	22.5 hPa

kein Beitrag zur Steigung.

∟ Aufbau

Dichtigkeitsmessung

Abbildung: Leckmessung Gruppe 1

Abbildung: Leckmessung Gruppe 2

Abbildung: Lineare Regression Gruppe 1^{2} $\frac{\chi^{2}}{4} = 0.638$

Transformation der Rohdaten

Transformation der Rohdaten

Abbildung: Lineare Regression Gruppe 2: $\frac{\chi^2}{4} = 0.804$

Transformation der Rohdaten

Messung der Verdampfungsenthalpie

$$\frac{dp}{dT} = \frac{\nu\Lambda}{T(V_1 - V_2)}$$

$$\ln(p) = -\frac{\Lambda}{R} \cdot \frac{1}{T} + c \text{ mit } c = const$$

Rohdaten

Rohdaten

___Transformation der Rohdaten

___Transformation der Rohdaten

 \bot Ergebnisse

$$ln(p) = -\frac{\Lambda}{R} \cdot \frac{1}{T} + c \text{ mit } c = const$$

Abschnitt	T in K	Λ in $\frac{kJ}{mol}$	$\sigma_{\Lambda_{stat}}$ in $\frac{kJ}{mol}$	$\sigma_{\Lambda_{sys}}$ in $\frac{kJ}{mol}$
1	367.93	42.18	0.273	0.518
2	364.13	41.17	0.156	0.508
3	360.76	41.96	0.102	0.518
4	357.71	40.97	0.1	0.508
5	355.03	41.8	0.12	0.519
6	352.6	42.24	0.117	0.525
7	350.38	42.31	0.136	0.527
8	348.4	43.03	0.141	0.537
9	346.54	42.79	0.162	0.535
10	344.83	40.84	0.175	0.512

zum Vergleich - $\Lambda_{Lit} = 40.6 \frac{kJ}{mol}$

- Messung der Verdampfungsenthalpie von Wasser
 - └Verdampfungswärme gg Temperatur

- Werte für Λ zwischen 1 und 10 σ um Literaturwert
- fallende Verdampfungsenthalpie bei steigender Temperatur konnte verifiziert werden