Sto: 4. Hausaufgabe(15.11.23)-Till Billerbeck(G3), Cora Zeitler(G1)

Mittwoch, 8. November 2023 11:01

Aufgabe 5 🇥

(2 Punkte)

Richtig oder falsch? Korrekte Antworten geben einen Punkt, inkorrekte einen Minuspunkt. Die minimale Punktzahl ist trotzdem 0.

- a) Sei $\mathcal A$ eine Ereignismenge über $\Omega \neq \varnothing$ und Ω unendlich. Dann ist auch $\mathcal A$ unendlich.
- b) Es sei $\mathcal A$ eine Ereignismenge über $\Omega \neq \varnothing, \Omega$ abzählbar und P_1, P_2 zwei Wahrscheinlichkeitsmaße mit $P_1(\{\omega\}) = P_2(\{\omega\})$ für alle $\omega \in \Omega$. Dann ist $P_1 = P_2$.

5a) => falsche Aussage

Aufgabe 4

(6 Punkte)

Es sei Pein Wahrscheinlichkeitsmaß auf einer Ereignismenge $\mathcal{A}.$ Zeigen Sie: für alle $A,B,C\in\mathcal{A}$

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$

Satz 3.2 (Eigenschaften von WM). Sei A eine EM über $\Omega \neq \emptyset$ und $P: A \rightarrow [0,1]$ eine Abbildung mit den Eigenschaften (W1) und (W2). Dann gilt:

- (1) $P(\emptyset) = 0$,
- (2) Sind A und B disjunkte Ereignisse in A, dann gilt

$$P(A \cup B) = P(A) + P(B).$$

(endliche Additivität)

(3) Monotonie:

$$A \subset B \Longrightarrow P(A) \le P(B)$$
,

- (4) $P(A^c) = 1 P(A)$,
- (5) $P(A \setminus B) = P(A) P(A \cap B)$,
- (6) $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- (7) Sub-Additivität: Sind A und B beliebige Ereignisse, so gilt

$$P(A \cup B) \le P(A) + P(B),$$

und für beliebige Folgen von Ereignissen A_1,A_2,\dots gilt

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} P(A_i)$$

4) Wir benutzen Satz 3.2. aus dur Vorlesung / Skript

- = P(A) + P(BUC) P(An(BUC)) / (6)
- = P(A) + P(BUC) P((A n B) U P(A n C)) / Distributividad
- = P(A) + P(BUC) (P(An8) + P(Anc) P((An8) (Anc))) /(6)
- = P(A) + P(BUC) (P(AnB) + P(AnC) P(AnBnC)) / durch Associatività : (AnBnC) = ((AnB) a(AnC))
- = P(A) + P(BUC) P(AAB) P(AAC) + P(AABAC) / Vorzeichen ungekehrt dusch Klammer
- = P(A) + P(B) + P(C) P(BnC) P(AnB) P(AnC) + P(AnBnC) / (6)
- = P(A) + P(B) + P(C) P(A n B) P(A n C) P(B n C) + P(A n B n C) / Kommulativität