Nayak's Tutorials

Year: 2024-25 Std:- X ICSE

Practice Paper - 3 Physics

Marks - 80 Duration :- 2 Hrs

Attempt all questions from Section A and any four questions from Section B. The intended marks for question or parts of questions are given in brackets [].

Section A (40 marks)

Multiple Choice Q	uestions			15
1. For a given mas	s if kinetic ene	rgy increases 1	6 times the momentum:	
(a) increases fo	our times (b)	increases twice	e (c) decreases four times	(d) decreases twice
2. The relationship	o to evaluate th	e velocity ratio	is:	
(a) velocity of	effort / velocity	of load	(b) displacement of effort / di	isplacement of load
(c) Mechanica	l advantage / ef	fficiency	(d) all of the above	
3. State which of t	he following st	atements are tr	ue.	
(a) Efficiency (of an ideal macl	nine is equal to	one	
(b) Efficiency	of a practical m	achine is less t	han one	
(c) Efficiency i	s always expres	ses in fraction		
(d) both (a) an	d (b)			
4. Select the corre	ct reason for th	e cause that is	responsible for mirage in dese	rts:
(a) It has a lov	v critical angle			
(b) Due to tota	al internal refle	ction.		
(c) Due to tota	al internal reflec	ction followed b	by successive refraction of light	
(d) Due to diff	raction			
5. In our houses,	point of liquid a	appliances are o	connected in with the i	mains.
(a) Series	(b) Parallel	(c) Any o	f the Series and Parallel	
(d) It only depe	nds upon the v	oltage supply a	at the mains	
6. What is the ene	rgy required to	raise the temp	erature of 5 kg of water from 1	0 K to 50 K?
[Specific heat	capacity of wat	er is 4184 J.kg [.]	-1. K-1.]	
(a) 836.8 J	(b) 836.8 kJ	(c) 242.k J	(d) 242.4 J	
7. What is the max	kimum number	of electrons ar	atom can contain in its fourth	orbit ?
(a) 4	(b) 16	(c) 24	(d) 32	
8. Lenz's law is ba	sed on convers	ation of	··· •	
(a) mass	(b) current	(c) angular	momentum (d) energy	
9. In linear motior	the acceleration	on is :		
(a) Positive	(b) Negative	(c) Zero (d)	Constant	
10. The force whi	ch is not a real	force :		
(a) Force of t	ension (b) C	Centripetal force	e (c) Centrifugal force (d) (Gravitational force

- 11. The internal resistance of a 2.1 V cell which generates a current of 0.2 A through a resistance of 10Ω is :
 - (a) 5 Ω (b) 10 Ω (c) 0.5 Ω (d) 50 Ω
- 12. Choose the correct statement with respect to force:
 - (a) The CGS unit of momentum of force is Newton \times meter
 - (b) The turning effect on a body by a force depends on momentum of force.
 - (c) 1 gf \times cm = 980 dyne cm
 - (d) $1 \text{ kgf} \times \text{m} = 10^7 \text{ dyne cm}$
- 13. Refractive index of diamond with respect to air is 2.4 and speed of light in vacuum is

 3×10^8 ms⁻¹. Hence speed of light in diamond is :

- (a) $2.5 \times 10^8 \text{ ms}^{-1}$
- (b) $2.25 \times 10^8 \text{ ms}^{-1}$
- (c) $1.25 \times 10^8 \text{ ms}^{-1}$
- (d) $1.5 \times 10^8 \text{ ms}^{-1}$

- 14. Force is positive when:
 - (a) displacement and force are in same direction
- (b) when $\theta = 90^{\circ}$
- (c) when displacement and force are in opposite direction (d) $\theta = 180^{\circ}$
- 15. Four pendulums A, B, C, and D are suspended from a piece of rubber string XY, as shown in figure. Pendulums A and D have same lengths of I. Pendulums B and C have lengths of

1 and 2 respectively.

Four pendulum A, B, C, and D

Which of the following will experience resonance when pendulum A is brought into vibration by setting its bob to one side normal to the length of XY?

- (a) B
- (b) C
- (c) D
- (d) Both (b) and (c)

Q2

A. An engine can pump 30,000 litres of water to a vertical height of 45 metre in 10 minutes. Calculate the work done by the machine and the power.

(Density of water = 10^3 kg/m^3 , $1000 \text{ litre} = 1 \text{ m}^3$, $q = 9.8 \text{ ms}^{-2}$)

B. (a) Define one kilowatt hour. How is it related to the joule?

2

2

(b) How can the work done be measured when force is applied at an angle to the direction of displacement?

C.

3

- (a) Copy and complete the ray diagram to show the formation of the image of the object AB.
- (b) Name the lens LL.'
- (c) Name a device in which this principle is used.
- **D.** State the use of echo in medical field.

2

E. A man is standing at a distance of 12 m from a cliff. Will he be able to hear a clear echo of this sound? Give a reason for your answer.

2

F. Calculate the equivalent resistance between P an Q from the following diagram.

2

G. State the two ways by which the magnetic field of a solenoid can be made stronger.

C. (a) Specific heat capacity of water is more compared to ice. Correct or Wrong? Why?

2

Q3. A. The refractive index of glass is 1.5. What is meant by this statement?

2

B. (a) What is meant by the term critical angle?

2

(b) How is it related to the refractive index of the medium?

2

(b) State the principle of Calorimetry.

D. (a) Write two differences between a chemical change and a nuclear change.

2

(b) Mention the beneficial and harmful effects of radiations.

- 2
- E. (a) The refractive index of water with respect to air is . What is the refractive index of air with respect to water?
- (b) A ray of light is incident as a normal ray on the surface of separation of two different mediums. What is the value of the angle of incidence in this case?

Section B (40 marks) (Attempt any 4 questions)

Q4. A. A uniform metre scale balances at 50 cm mark such that two weighs 20 gf and 50 gf are suspended at 12 cm mark and X cm mark on either sides of the fulcrum. Find the value of X for the scale to be in equilibrium.

3

B. (a) A boy uses a single fixed pulley to lift a load of 50 kgf to some height. Another boy uses a single movable pulley to lift the same load to the same height. Compare the effort applied by them. Give a reason to support your Answer.

2

(b) How does uniform circular motion differ from uniform linear motion?

4

- C. A pulley system with V.R. = 4 is used to lift a load of 175 kgf through a vertical height of 15 m.
 - The effort required is 50 kgf in the downward direction. ($g = 10 \text{ N kg}^{-1}$) Calculate :
 - (a) Distance moved by the effort
- (b) Work done by the effort.
- (c) M.A. of the pulley system
- (d) Efficiency of the pulley system.
- Q.5 A. Copy the given figure and complete it to show the formation of the image of the object AB.

B. (a) With the help of a diagram, show that the apparent depth of an object, such as a coin, in water is less than its real depth.

2

(b) How is the refractive index of water related to the real depth and the apparent depth of a column of water?

1

C. Copy and complete the following diagrams. Mark the angles, wherever necessary. (Critical angle for glass with respect to air $= 42^{\circ}$).

4

Q.6 A. State any four factors on which intensity of sound depends.

3

B. Define the law of vibrating strings.

3

C. A person standing between two vertical cliffs hears two sounds one after 3 seconds and another after 6 second. Find the distance between the two cliffs if velocity of sound is 340 ms⁻¹.

4

Q.7 A. State three factors on which a current induced in a conductor depends when placed in a Magnetic field.

3

B. (a) What are superconductors?

3

- (b) Calculate the current drawn by an appliance rated 110 W, 220 V when connected across 220 V supply.
- (c) Name a substance whose resistance decreases with the increase in temperature.
- C. The diagram above shows three resistors connected across a cell of e.m.f. 1.8 V
- and internal resistance r. Calculate : (a) Current through 3 Ω resistor.
- (b) The internal resistance r.

4

(a) What is the polarity at end A?				
^ []]]]B				
(b) Give one advantage of an electromagnet over a permanent magnet.	1			
B. (a) What is isotope?				
(b) Write any two isotopes of Carbon. Is there a radioactive isotope of carbon?				
C. (a) Define Quality of a sound.				
(b) Present two differences between Music and Noise.				
(c) When a tuning fork is allowed to vibrate in the air, what type of vibration does				
it produce ?	1			
 Q.9 A. A certain nucleus X has a mass number 14 and atomic number 6. The nucleus X changes to after the loss of a particle. (a) Name the particle emitted. (b) Represent this change in the form of an equation. (c) A radioactivity substance is oxidized. What change would you expect to take place in the nature of its radioactivity? Give a reason for your answer. B. State, giving reasons, whether the following nuclear decays are allowed or no? (i) (ii) (iii) 3 	3			
C. An imaginary radioactive element $_{92}X^{235}$ decays to form X_1 , X_2 , X_3 , X_4 , X_5 and X_6 nuclides by ejecting two β - particles followed by an α - particle and again two β - particles and an α - particle. Represent the various nuclear changes in the form of an equation. State the mass number and atomic number of X_6 . Also, list the isotopes and isobars in the above nuclear equation.	4			

Q.8 A. You have been provided with a solenoid AB.
