Symulacja modulacji różnicowej PSK

Maksymilian Chodacki, Wojciech Wróbel

I. WPROWADZIENIE

elem projektu było opracowanie demonstratora modulacji różnicowej DPSK, który pozwoli na symulację transmisji przez kanał AWGN. Efektem końcowym miała być aplikacja z graficznym interfejsem użytkownika, która pozwala na obejrzenie kluczowych sygnałów w modulatorze/demodulatorze oraz porównanie modulacji koherentnej z różnicową. Pełne repozytorium GIT dostępne jest na stronie internetowej: https://github.com/mcbride4/TC-DPSK.

II. INSTRUKCJA KONFIGURACJI

W celu uruchomienia aplikacji, należy uruchomić program Matlab. Po wejściu do folderu zawierającego pliki projektu, w linii komend Matlaba (*Command Window*) należy wpisać *projekt*, po czym zatwierdzić komendę, naciskając *Enter*.

III. INSTRUKCJA UŻYTKOWANIA

Po uruchmieniu programu według powyższej instrukcji zostanie otwarte nowe okno. Zostaną tutaj przdstawione i opisane jego fragmenty.

Pierwszym elementem możliwym do wyboru jest rodzaj modulacji (*BPSK* lub *DPSK*). Domyślnie jest wybrana opcja *BPSK*. Następnie możemy zaznaczyć checkbox, jeśli chcemy dodać szum do przesyłanej wiadomości. Jest to zilustrowane poniżej.

W tym miejscu także jest możliwość ustawienia parametru SNR (signal-to-noise ratio). Domyślną wartością jest tutaj 1. Możemy wybrać wartości z zakresu <-10, 30>.

Następną opcją aplikacji jest wpisanie wiadomości, którą chcemy zmodulować, a następnie zdemodulować. Wpisujemy ją w oknie *Wpisz tekst*, a następnie w celu zatwierdzenia i rozpoczędzia działania naciskamy przycisk *Wyslij wiadomosc*. Możemy wprowadzić dane binarne, np. 10101111010 lub wpisać normalny tekst, np. *Ala ma kota*.

Możliwe jest także wygenerowanie losowej wiadomości do zmodulowania. W tym celu wybieramy ilość bitów wiadomości za pomocą suwaka (dostępny zakres <1,1000>), a następnie klikamy w przycisk Wyslij wiadomośc.

Po zakończeniu modulacji odebrana wiadomość ukazuje się w polu, w którym domyślnie wpisane jest *Odebrana wiadomość*.

wiadomosc odebrana: Odebrana wiadomość

Możemy także odczytać ilość błędów, które wystąpiły podczas przesyłania danych.

Po odebraniu wiadomości mamy możliwość wyświetlenia kilku wykresów. Możemy wybrać nośną, sygnał zmodulowany, sygnał zmodulowany z szumem, wiadomość nadaną lub wiadomość odebraną, poprzez naciśnięcie na dane wyrażenie.

Wykres ukazuje się w największym fragmencie okna programu i zajmuje dolną jego połowę. W celu poprawienia widoczności, na wykresie jest przdstawionych tylko 20 pierwszych bitów wiadomości. Można jednak zobaczyć kolejne za pomocą narzędzia *pan* (*rączka*), służącego do przesuwania wykresów. Jest ono umieszczone w lewym górnym rogu okna aplikacji. Dostępne są także narzędzia przybliżania i oddalania wykresu. Aby aktywować narzędzie, należy na nie kliknąć.

Ostatnią funkcjonalnością z jakiej możemy skorzystać jest weryfikacja BER (Bit Error Rate).

W tym celu najpierw wybieramy modulację (domyślnie BPSK), potem ustawiamy ilość bitów. Na koniec klikamy w przycisk *BER*. Symulacja trwa trochę czasu, dlatego zalecane jest uzbroić się w cierpliwość przy testowaniu większej ilości bitów niż kilka tysięcy. Maksymalna możliwa ilość bitów do wybrania to 100 000. W trakcie wykonywania symulacji na ekranie widoczny jest pasek

postępu. Po jego zapełnieniu wyślwietlany jest wykres, na którym widoczny jest teoretyczny wykres BER oraz ten wygenerowany przez program. Dodatkowo w polu ilość błędów wyświetlana jest zsumowana liczba błędów dla SNR od -4 do 13 co 1.

IV. WYNIKI TESTÓW

Przeprowadziliśmy testy dotyczące prawdopodobieństw błędów dla modulacji BPSK i DPSK. Wykresy teoretyczne i obliczone przez program były całkiem do siebie zbliżone. Mniejsza ilość błędów uzyskana została w modulacji BPSK (modulacja koherentna), niż w modulacji DPSK. Jest to zgodne z teoria.

V. PODSUMOWANIE

W projekcie udało się zrealizować prawie wszystkie zamierzone funkcjonalności. Jedyne czego brakuje to układ odzyskiwania nośnej. Osoby odpowiedzialne za poszczególne funkcjonalności:

- Maksymilian Chodacki
 - implementacja modulatora oraz demodulatora BPSK,
 - implementacja modulatora oraz demodulatora DPSK,
 - implementacja układu odzyskiwania nośnej; porównanie stopy błędów przy idealnej oraz odzyskanej nośnej,
 - możliwość wyświetlenia kluczowych przebiegów w modulatorze oraz demodulatorze,
- Wojciech Wróbel
 - symulacja transmisji przez kanał AWGN,
 - weryfikacja poprawności działania, tj. oczekiwanych prawdopodobieństw błędu,
 - możliwość podania wiadomości ręcznie, bądź wygenerowania pseudo-losowo.