Simulación de N Partículas en una Caja

Dinámica Molecular con Colisiones Elásticas

Jorge Garzón Norman Romero

Física Computacional 2 Profesor: John Hernán Díaz

Octubre 2025

Objetivos del Proyecto

Objetivo General

Implementar una simulación computacional de N partículas con colisiones elásticas para validar la teoría cinética de gases.

Objetivos Específicos:

- Simular movimiento de N partículas
- Implementar colisiones elásticas
- Comparar métodos de integración
- Validar conservación de energía

Análisis Físico:

- Distribución Maxwell-Boltzmann
- Presión cinética
- Equilibrio térmico
- Gas diluido vs denso

Diseño del Software - Arquitectura POO

Clase Bola:

- Atributos: (x, y), (v_x, v_y) , masa, radio
- Métodos:
 - MoverseVerlet(dt)
 - RebotePared(W, H)
 - Choque(Bola&)

Clase Caja:

- Vector de N bolas
- Métodos:
 - EvolucionarVerlet(dt)
 - DetectarColisiones()
 - SimularCompleto()

Figura: Diagrama de clases UML

Métodos Numéricos - Euler vs Velocity-Verlet

Euler:

$$ec{r}(t+\Delta t) = ec{r}(t) + ec{v}(t)\Delta t$$

 $ec{v}(t+\Delta t) = ec{v}(t) + ec{a}(t)\Delta t$

Velocity-Verlet:

$$ec{r}(t+\Delta t) = ec{r}(t) + ec{v}(t)\Delta t \\ + rac{1}{2}ec{a}(t)\Delta t^2 \\ ec{v}(t+\Delta t) = ec{v}(t) + ec{a}(t)\Delta t$$

Cuadro: Comparación de métodos

Método	Error E
Euler	2-5 %
Verlet	<0.1%

Conclusión

Velocity-Verlet es superior para conservación de energía

Resultados - Comparación de Métodos

Figura: Conservación de energía: Euler vs Velocity-Verlet

- Euler: Acumula error sistemático (2-5 %)
- **Verlet:** Conserva energía con error < 0.1 %

Resultados - Distribución de Velocidades

Figura: Distribución de velocidades para 200 partículas

Validación

La distribución de rapideces ajusta **excelentemente** con Maxwell-Boltzmann 2D, confirmando equilibrio térmico.

Validación del Modelo

Conservación de Energía:

- Error < 0,1 % con Verlet
- Gas diluido: 25 partículas
- Gas denso: 100 partículas
- Experimento largo: 200 partículas

Distribución de Velocidades:

- Ajuste con Maxwell-Boltzmann 2D
- Temperatura efectiva: $T_{\it eff} = \langle v^2 \rangle / 2$
- Componentes v_x , v_y gaussianas

Figura: Conservación de energía

Presión Cinética

Tasa de colisiones $\propto 1/V$ \checkmark

Conclusiones

- Simulación exitosa: Implementamos dinámica molecular de N partículas con colisiones elásticas en C++ usando POO.
- **Métodos numéricos:** Velocity-Verlet demostró ser significativamente superior a Euler (error < 0.1 % vs 2-5 %).
- 3 Validación física: Los resultados confirman:
 - Conservación de energía
 - Distribución Maxwell-Boltzmann
 - Ley de gases: $P \propto 1/V$
- Software: Código modular, documentado y reproducible.

Repositorio: github.com/georgfis/exa1Comp2

¿Preguntas?

Gracias por su atención

github.com/georgfis/exa1Comp2