22 – Reprezentace znalostí a inference pomocí neuronových sítí

- Biologická inspirace
- klasifikace, regrese, predikce časových řad

Perceptron

- Nejjednoduší model, který se skládá z 1 umělého neuronu
- Funguje jen pro lineárně separovatelná data (najde pouze lineární fci)
 - Selže například pro XOR
- Výstup neuronu se získá aplikací nelineární **aktivační funkce f** na hodnotu **vnitřního potenciálu** ξ daného součtem vstupů $x_1, ..., x_n$ pronásobených příslušnýmivahami $w_1, ..., w_n$ a interceptu w_0 (**bias**).

Vniřní potenciál

- Vstupy $x = (x_1, ..., x_n)^T$, váhy $w = (w_1, ..., w_n)^T$, w_0 je bias

$$\xi = w_0 + \sum_{i=1}^n w_i x_i = \boldsymbol{w}^T \boldsymbol{x} + w_0,$$

Výstup perceptronu

- Tento výpočet se nazývá forward pass

$$\hat{Y} = f(\xi) = f(\boldsymbol{w}^T \boldsymbol{x} + w_0),$$

Inkrementální update vah

- Označuje se jako backward pass
- \hat{Y} je predikce, Y je ground truth, μ je learning rate, x_i je jeden sample

$$\delta w_i = \eta (Y - \hat{Y}) x_i,
w_i \leftarrow w_i + \delta w_i,$$

Multi Layer Perceptron

- Výstupy neuronů z jedné vrstvy tvoří vstupy neuronů do další vrstvy
- V problému XOR dokáže skrytá vrstva zajistit transformaci do souřadného systému, kde jsou již body separabilní.

- Třívrstvá NN se dá rozložit jako $g(x) = g^{(3)} \left(g^{(2)} \left(g^{(1)}(x) \right) \right)$

Trénování MLP

- K učení lze využít i black-box metody (genetické algoritmy)
- Revoluce v učení NN: back-propagation (zpětné šíření chyby)
- Vyžaduje, aby byla celá NN diferencovatelná podle parametrů sítě (vah w) podle kterých minimalizujeme loss funkci:

$$J(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2 = \frac{1}{N} \sum_{i=1}^{N} (Y_i - g(\boldsymbol{x}_i))^2$$

- Gradient descend iterativě upravujeme parametry sítě (váhy) a minimalizujeme tak chybu sítě. Než upravíme váhy, můžeme využít různá množství dat (**batch size**)
 - Batch training (chyba se napočítá z celé trénovací množiny)
 - Minibatches (chyba se napočítá z části trénovací množiny)
 - Online training (chyba se napočítá z 1 samplu)

- Aktivační funkce

- cílem je dodat nelinearitu do sítě (bez ní je NN lineární regrese bez ohledu na počet vrstev)
- o pro multiclass klasifikaci SoftMax (predikce psti, že vstup náleží do třídy)

Matematický model vícevrstvé neuronové sítě

- Uvažujme l vrstvou neuronovou síť a označme n_1,\ldots,n_l počty neuronů v jednotlivých vrstvách. Dále označně počet vstupních proměnných jako n_0 .
- Uvažujme itou vrstvu této sítě. Výstup j-tého neuronu může reprezentovat funkcí $g_j^{(i)}:\mathbb{R}^{n_{i-1}}\to\mathbb{R}$, která má na vstupu výstupy n_{i-1} neuronů z předchozí vrstvy.
- Interně se $g_j^{(i)}(x)$ opět počítá jako $f(w^Tx + w_0)$, kde f je aktivační funkce daného neuronu a $w_0, w_1 \dots, w_n$ jsou jeho váhy.
- *i*-tou vrstvu této neuronové sítě jako celek pak můžeme chápat jako vícehodnotovou funkci $g^{(i)}: \mathbb{R}^{n_{i-1}} \to \mathbb{R}^{n_i}$, kde $g^{(i)} = \left(g_1^{(i)}, \dots, g_{n_i}^{(i)}\right)^T$.
- Celá neuronová síť při dopředném chodu je tedy reprezentována funkcí $g: \mathbb{R}^{n_0} \to \mathbb{R}^{n_l}$, která vznikne složením jednotlivých vrstev

$$\boldsymbol{g} = \boldsymbol{g}^{(1)} \circ \boldsymbol{g}^{(2)} \circ \ldots \circ \boldsymbol{g}^{(l-1)} \circ \boldsymbol{g}^{(l)}.$$

• Např. pro l=3 tak máme

$$m{g}(m{x}) = m{g}^{(3)}ig(m{g}^{(2)}ig(m{g}^{(1)}(m{x})ig)ig).$$

BI-VZD přednáška 1	11			10 / 25
Úvod	Vícevrstvá neuronová síť	Učení neuronových sítí	Příklady speciálních architektur	Literatura
000000	00000	0000	0000000	0
Dáyková užaní nauronová sítě				

• Máme neuronovou síť s parametry $\boldsymbol{w}=(w_1,\ldots,w_m)^T$ a trénovací data $(Y_1,\boldsymbol{x}_1),\ldots,(Y_N,\boldsymbol{x}_N).$

- Inicializujeme všechny váhy $m{w}$ jako malá náhodná čísla.
- Opakujeme dokud nejsou splněna kritéria zastavení:
 - Položme $J(\boldsymbol{w}) = 0$.
 - Pro každou trénovací dvojici (Y_i, x_i) :
 - lacksquare Spočteme \hat{Y}_i v bodě x_i .
 - Provedeme přepočet celkové chyby,

$$J(\boldsymbol{w}) \leftarrow J(\boldsymbol{w}) + \frac{1}{N} \left(Y_i - \hat{Y}_i \right)^2.$$

Spočteme gradient

$$\nabla_{\boldsymbol{w}} J = \left(\frac{\partial J}{\partial w_1}, \dots, \frac{\partial J}{\partial w_m}\right)^T.$$

Provedeme přepočet vah

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} J.$$

BI-VZD přednáška 11 15 / 25