a) Unicity distance $N_0 = H(K)/D$

$$H(K) = H(k_1, k_2, k_3) = 3$$

$$D = H_0 - H_\infty = H_0 - H(M)$$

$$H_0 = \log 3$$

$$H(M) = -\frac{1}{2} \log \frac{1}{2} - p \cdot \log p - (\frac{1}{2} - p) \log (\frac{1}{2} - p)$$

$$= \frac{1}{2} - p \log 2p - \frac{1}{2}(1 - 2p) \log (1 - 2p) + p + \frac{1}{2} - p$$

$$= 1 + \frac{1}{2}(-2p \log 2p - (1 - 2p) \log (1 - 2p)$$

$$= 1 + \frac{1}{2}h(2p)$$

$$D = \log 3 - (1 + \frac{1}{2}h(2p))$$
So, $\frac{3}{\log \frac{3}{2} - \frac{1}{2}h(2p)} > 20$, or $3 > 20 \cdot (\log \frac{3}{2}) - \frac{1}{2}h(2p)$)
hence, $h(2p) > \frac{20 \cdot \log \frac{3}{2} - 3}{20 - \frac{1}{2}} = 2 \log \frac{3}{2} - \frac{3}{10} \approx 0.58^5 \cdot 2 - 0.3 = 1.17 - 0.3 = 0.87$

$$h(2p) = 0.87 \Rightarrow 0.291 \le 2p \le 0.709 \Rightarrow 0.15 \le p \le 0.35$$

$$2p = 0.709$$

(6p)

b) When p = 0, P(M = 1) = 0.

There are only two possible plaintexts M=0 and M=2.

Let
$$\phi(M) = \begin{cases} 0, & \text{if } M = 0 \\ 1, & \text{if } M = 2 \end{cases}$$

Then $C_i = \phi(M_i) + K_{i \mod 3} \pmod{2}$ has infinite unicity distance.

(4p)

a) The sequence is s = (1, 0, 4, 3, 2, 4, 0) over \mathbf{F}_5 . To find the shortest linear feedback shift register we use Massey's algorithm:

S_N	d	$C_1(z)$	C(z) 1	L	Shift Register	$C_0(z)$	d_0	e	N
_	_	_	1	0	←-	1	1	1	0
					-4				
1	1	1	$1 + 4z^{-1}$	1		1	1	1	1
0	4	*	1	*	\leftarrow	*	*	2	2
4	4	1	$1 + z^{-2}$	2	→ → → → → → → → → → → → → → → → → → →	1	4	1	3
3	3	*	$1 + 3z^{-1} + z^{-2}$	*	1 3	*	*	2	4
2	0	*	*	*	13	*	*	3	5
4	3	$1 + 3z^{-1} + z^{-2}$	$1 + 3z^{-1} + z^{-2} + 3z^{-3}$	4	3 1 3	$1 + 3z^{-1} + z^{-2}$	3	1	6
0	3	*	$1 + 2z^{-1} + 3z^{-2} + 2z^{-3}$	*	232	*	*	2	7

So the final shift feedback register looks like that:

(6p)

b) The sequence is $s = [1, 0, 4, 3, 2, 4, 0]^{\infty}$ over \mathbf{F}_5 .

$$S(z) = \frac{P(z)}{C(z)} = \frac{1 + 4z^{-2} + 3z^{-3} + 2z^{-4} + 4z^{-5}}{1 - z^{7}}$$

Since gcd(P(z), C(z)) = 1, then the shortest linear feedback shift register is

a) The "ciphertext" is given as the plaintext and one parity check symbol t.

$$P_I = \max_{C} P(C \text{ accepted })$$

Note that a ciphertext is accepted only if

$$t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3$$

holds. Suppose $C = (m_1, m_2, m_3, t)$. Then

$$P(C \text{ accepted}) = P(t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3) = \frac{\left(\text{ Number of choices of } (k_1, k_2) \text{ such that } \right)}{t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \text{ holds}} = \frac{1}{13^2} = \frac{1}{13}$$
Total number of choices of (k_1, k_2)

Thus $P_I = \frac{1}{13}$.

(5p)

b) Suppose $C = (m_1, m_2, m_3, t)$ was sent and it is replaced by $C' = (m'_1, m'_2, m'_3, t')$. Then P(C' accepted | C observed) =

$$= \frac{\left| \left\{ (k_1, k_2) : \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \\ t' - t = k_1 + (m_1' - m_1) k_2 + (m_2' - m_2) k_2^2 + (m_3' - m_1) k_3^3 \end{array} \right\} \right|}{{}^{13}} = \frac{\left| \left\{ (k_1, k_2) : \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \\ t' - t = k_1 + (m_1' - m_1) k_2 + (m_2' - m_2) k_2^2 + (m_3' - m_1) k_3^3 \end{array} \right\} \right|}{{}^{13}} = \frac{\left| \left\{ (k_1, k_2) : \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \\ t' - t = k_1 + (m_1' - m_1) k_2 + (m_2' - m_2) k_2^2 + (m_3' - m_1) k_3^3 \end{array} \right\} \right|}{{}^{13}} = \frac{\left| \left\{ (k_1, k_2) : \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \\ t' - t = k_1 + (m_1' - m_1) k_2 + (m_2' - m_2) k_2^2 + (m_3' - m_1) k_3^3 \end{array} \right\} \right|}{{}^{13}} = \frac{\left| \left\{ (k_1, k_2) : \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \\ t' - t = k_1 + (m_1' - m_1) k_2 + (m_2' - m_2) k_2^2 + (m_3' - m_1) k_3^3 \end{array} \right\} \right|}{{}^{13}} = \frac{\left| \left\{ (k_1, k_2) : \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \\ t' - t = k_1 + (m_1' - m_1) k_2 + (m_2' - m_2) k_2^2 + (m_3' - m_1) k_3^3 \end{array} \right\} \right|}{{}^{13}} = \frac{\left| \left\{ (k_1, k_2) : \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \\ t' - t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \right\} \right|}{{}^{13}} = \frac{\left| \left\{ (k_1, k_2) : \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \\ t' - t = k_1 + m_1 k_2 + m_2 k_2^2 + m_3 k_3^3 \right\} \right|}{{}^{13}} = \frac{\left| \left\{ (k_1, k_2) : \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2 + m_3 k_3 + m_2 k_2 + m_3 k_3 + m_2 k_3 + m_3 k$$

$$=\left[egin{array}{l} ext{For each value of k_2 there is an unique value of k_1} ext{such that first equation is true} \end{array}
ight]=$$

$$= \frac{\left| \left\{ k_2 : t'' = k_2 m_1'' + k_2^2 m_2'' + k_3^3 m_3'' \right\} \right|}{13} =$$

$$= \left[\begin{array}{c} \text{According to the hint, the equation above has at most three solutions.} \\ \text{And for any } C \text{ we can select } C' \text{ such that we have three solutions.} \end{array} \right]$$

 $= \frac{3}{13}.$

Then $P_S = \sum f(C) \cdot P(C' \text{ accepted} | C \text{ observed}) = \frac{3}{13}$

(5p)

a) If p(x) is not irreducible, it must be divisible by a polynomial of degree at most two. So we check p(0) = p(1) = 1 and since $x^2 + x + 1$ is the only irreducible polynomial of degree 2 over \mathbf{F}_2 , then we check $(x^2 + x + 1) \nmid (x^5 + x^2 + 1)$.

(4p)

b) Let $p(\alpha) = 0$. We know that $\operatorname{ord}(\alpha)|(2^5 - 1)$, and since 31 is prime, then $\operatorname{ord}(\alpha) = 31$, which implies p(x) primitive.

(3p)

c) p(x) as a polynomial over \mathbf{F}_2 can be used to construct \mathbf{F}_{2^5} with $\alpha^5 = \alpha^2 + 1$. If p(x) is a polynomial over the field \mathbf{F}_{2^5} , then $p(\alpha) = \alpha^5 + \alpha^2 + 1 = 0$ and α is a root of p(x). Thus $p(x) = (x + \alpha)q(x)$ for some q(x).

(3p)

Problem 5

a) THE PRESIDENT WILL SEND THE MONEY

(5p)

b) By definition, a transposition cipher permute the order in which the letters are written. In the lecture notes, columnwise transposition is demonstrated, but this is not the case here, according to the hint.

A regular transposition cipher just permutes letters inside a block. Then let us try different block sizes $3, 4, 5, \ldots$

For block size 5 we find:

OYORT ETDNS

In the second block, SEND looks like a possible word. This gives us the blockwise map

$$(M_1M_2M_3M_4M_5) \to (M_5M_1M_4M_3M_2)$$

and the plaintext is

TO ROY SEND THE TROUPS TONIGHT

(5p)