Dimensionality Reduction

1. Background

In many fields of applications, we have to collect a huge amount of data with multi-variables, which is called high-dimensional dataset. Some of these variables may note be important or relative to our analysis. Some may have a lot of noises. In order to speed the analysis and get rid of useless information, we have to reduce dimension of dataset.

2. Dimensionality Reduction Methods

2.1 Feature Selection

Find major variables.

- Lasso
- Elastic Net

2.2 Linear Dimensionality Reduction

Variables are always linear correlated, transform data from the high-dimensional space to lower-dimensional space through projection.

- PCA
- Kernel PCA
- LDA
- MDS

2.3 Non-linear Dimensionality Reduction

Manifold learning

3. Matrix Form

3.1 Data in matrix form

Normally, a single sample is a column vector.

$$X = (x_1, x_2, \dots, x_N)_{N \times P}^T, \ x_i \in \mathbb{R}^P, \ i = 1, 2, \dots, N$$

3.2 Sample Mean Matrix

We define a vector called \mathbb{I}_N :

$$\mathbb{I}_N = \left(egin{array}{ccc} 1 \\ 1 \\ & \ddots \\ 1 \end{array}
ight)_{N imes 1}$$

Iterate all samples to get P means:

$$\bar{X}_{P\times 1} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$=\frac{1}{N}\underbrace{(x_1 \quad x_2 \quad \dots \quad x_N)}_{X^T} \begin{pmatrix} & 1 \\ & 1 \\ & & \\ & & \\ & &$$

3.3 Sample Covariance Matrix

In 1–D space, the variance is:

$$S = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

While in higher dimension, the covariance matrix is:

$$S_{P \times P} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T$$

$$=rac{1}{N}(x_1-ar{x}\quad x_2-ar{x}\quad \dots\quad x_N-ar{x}) egin{pmatrix} (x_1-ar{x})^T \ (x_2-ar{x})^T \ \dots \ (x_N-ar{x})^T \end{pmatrix}$$

$$A. \ (x_1 - \bar{x} \quad x_2 - \bar{x} \quad \dots \quad x_N - \bar{x}) = (x_1 \quad x_2 \quad \dots \quad x_N) - (\bar{x} \quad \bar{x} \quad \dots \quad \bar{x})$$

$$= X^T - \bar{X}(1 \quad 1 \quad \dots \quad 1)$$

$$= X^T - \bar{X}\mathbb{I}_N^T$$

$$= X^T - \frac{1}{N}X^T\mathbb{I}_N\mathbb{I}_N^T$$

$$= X^T (I_N - \frac{1}{N}\mathbb{I}_N\mathbb{I}_N^T)$$

$$B. \begin{pmatrix} (x_1 - \bar{x})^T \\ (x_2 - \bar{x})^T \\ \dots \\ (x_N - \bar{x})^T \end{pmatrix} = \begin{pmatrix} x_1^T \\ x_2^T \\ \dots \\ x_N^T \end{pmatrix} - \begin{pmatrix} \bar{x}^T \\ \bar{x}^T \\ \dots \\ \bar{x}^T \end{pmatrix}$$
$$= (X^T (I_N - \frac{1}{N} \mathbb{I}_N \mathbb{I}_N^T))^T$$
$$= (I_N - \frac{1}{N} \mathbb{I}_N \mathbb{I}_N^T)^T X$$

Set Centering Matrix $H_N = I_N - \frac{1}{N} \mathbb{I}_N \mathbb{I}_N^T$,

$$\begin{split} Then \ S_{P\times P} &= \frac{1}{N}AB \\ &= \frac{1}{N}X^T(I_N - \frac{1}{N}\mathbb{I}_N\mathbb{I}_N^T)(I_N - \frac{1}{N}\mathbb{I}_N\mathbb{I}_N^T)^TX \\ &= \frac{1}{N}X^TH_NH_N^TX \\ &= \frac{1}{N}X^THX \end{split}$$

3.4 Centering Matrix

Zero-centering, subtract from mean.

$$\begin{split} H_N &= H_N^T = I_N - \frac{1}{N} \mathbb{I}_N \mathbb{I}_N^T \\ H_N^2 &= H^T \cdot H \\ &= (I_N - \frac{1}{N} \mathbb{I}_N \mathbb{I}_N^T) (I_N - \frac{1}{N} \mathbb{I}_N \mathbb{I}_N^T) \\ &= I_N - \frac{2}{N} \mathbb{I}_N \mathbb{I}_N^T - \frac{1}{N^2} \mathbb{I}_N \mathbb{I}_N^T \mathbb{I}_N \mathbb{I}_N^T \\ &= I_N - \frac{1}{N} \mathbb{I}_N \mathbb{I}_N^T \\ &= H \\ H^n &= H \end{split}$$