Aula de hoje

Aula sobre

Propriedades de

Esperança e Variância

considerando

combinação linear entre

variáveis aleatórias

1º: uso do notebook Aula17_Atividade

2º: uso do notebook

Aula17_Exercício

3°: uso do notebook

Aula17_Exercício_APS

Para resolver APS9

- Reconhecer variáveis aleatórias de interesse em um problema qualquer
- Aplicar propriedades de esperança e variância quando se tem combinação linear entre variáveis aleatórias

Propriedades para X + d e cX

Seja X uma variável aleatória qualquer e c e d constantes. As esperanças e variâncias de X+d e cX são dadas por:

Esperança:

$$E(X+d) = E(X) + d$$

$$E(cX) = cE(X)$$

Combinando as expressões acima:

$$E(cX+d) = cE(X) + d$$

Variância:

$$Var(X + d) = Var(X)$$

$$Var(cX) = c^2 Var(X)$$

Combinando as expressões acima:

$$Var(cX + d) = c^2 Var(X)$$

Propriedades para X + Y e X - Y

5

Sejam X e Y variáveis aleatórias quaisquer.

As esperanças e variâncias de X + Y e X - Y são dadas por:

Esperança:

$$E(X+Y)=$$
?

$$E(X-Y)=$$
?

Estes resultados são sempre válidos, sejam X e Y dependentes ou independentes

Variância:

$$Var(X+Y)=$$
?

$$Var(X-Y) = ?$$

Propriedades para X + Y e X - Y

(6)

Sejam X e Y variáveis aleatórias quaisquer.

As esperanças e variâncias de X + Y e X - Y são dadas por:

Esperança:

$$E(X+Y) = E(X) + E(Y)$$

$$E(X - Y) = E(X) - E(Y)$$

Estes resultados são sempre válidos, sejam X e Y dependentes ou independentes

Variância:

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y)$$

Sejam X e Y variáveis aleatórias <u>INDEPENDENTES</u> entre si. As variâncias de X+Y e X-Y são dadas por:

Variáveis independentes

Se X e Y são independentes $\Rightarrow Cov(X,Y) = 0$.

Entretanto, vale lembrar que se $Cov(X, Y) = 0 \Rightarrow X$ e Y sejam independentes.

Se as variáveis X e Y forem independentes, então as variâncias simplificam para:

$$Var(X + Y) = Var(X) + Var(Y)$$

$$Var(X - Y) = Var(X) + Var(Y)$$

Exemplo

Um processo industrial pode ser executado em duas etapas independentes.

O tempo gasto em cada etapa segue uma distribuição com média de 5 horas e desviopadrão de 10 horas.

Um engenheiro resolveu modificar o processo de produção fazendo com que seja executado numa única fase, cujo tempo de execução é o dobro da primeira etapa do processo atual.

Vale a pena adotar o processo proposto pelo engenheiro?

R: Atual: E(T) = 10 e DP(T) = 14,14

Novo: E(T) = 10 e DP(T) = 20

Propriedades para aX + bY e aX - bY

Sejam X e Y variáveis aleatórias quaisquer e a e b constantes.

As esperanças e variâncias de aX + bY e aX - bY são dadas por:

Esperança:

$$E(aX + bY) = aE(X) + bE(Y)$$

$$E(aX - bY) = aE(X) - bE(Y)$$

Estes resultados são sempre válidos, sejam X e Y dependentes ou independentes

Variância:

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

$$Var(aX - bY) = a^{2}Var(X) + b^{2}Var(Y) - 2abCov(X, Y)$$

Propriedades para aX + bY e aX - bY

Sejam X e Y variáveis aleatórias <u>INDEPENDENTES</u> entre si.

As variâncias de aX + bY e aX - bY são dadas por:

Variáveis independentes

Se X e Y são independentes $\Rightarrow Cov(X, Y) = 0$.

Entretanto, vale lembrar que se $Cov(X, Y) = 0 \Rightarrow X$ e Y sejam independentes.

Se as variáveis X e Y forem independentes, então as variâncias anteriores simplificam para:

$$Var(a^2X + b^2Y) = a^2Var(X) + b^2Var(Y)$$

$$Var(a^2X - b^2Y) = a^2Var(X) + b^2Var(Y)$$

Propriedades para $X_1 + X_2 + X_3$

Sejam X_1 , X_2 e X_3 variáveis aleatórias quaisquer.

A esperança e variância de $X_1 + X_2 + X_3$ são dadas por:

Esperança:

$$E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3)$$

Este resultado é sempre válido, sejam X_i 's dependentes ou independentes entre si.

Variância:

$$Var(X_1 + X_2 + X_3) = Var(X_1) + Var(X_2) + Var(X_3) +$$

 $+2Cov(X_1, X_2) + 2Cov(X_1, X_3) + 2Cov(X_2, X_3)$

Propriedades em soma de v.a.'s

Sejam $X_1, X_2, ..., X_n$ variáveis aleatórias INDEPENDENTES.

Considere que $E(X_i) = \mu_i$ e $Var(X_i) = \sigma_i^2$, para todo i = 1, ..., n. Ainda, $c_1, c_2, ..., c_n$ são constantes.

Definindo a soma de variáveis independentes:

$$Y = c_1 X_1 + c_2 X_2 + ... + c_n X_n$$

então a esperança e a variância de $oldsymbol{Y}$ são dadas por:

$$E(Y) = c_1 \mu_1 + c_2 \mu_2 + ... + c_n \mu_n$$

$$Var(Y) = c_1^2 \sigma_1^2 + c_2^2 \sigma_2^2 + \dots + c_n^2 \sigma_n^2$$

Resultado importante:

Se X_i 's são normais independentes, então Y será uma variável aleatória normalmente distribuída, com E(Y) e Var(Y) definidas conforme acima.

Propriedades em média de v.a.'s

Sejam $X_1, X_2, ..., X_n$ variáveis aleatórias INDEPENDENTES.

Considere que
$$\mathrm{E}(X_i) = \mu$$
 e $\mathrm{Var}(X_i) = \sigma^2$, para todo $i = 1, ..., n$.

Definindo a média dessas variáveis independentes por:

$$\overline{X} = \frac{(X_1 + X_2 + \dots + X_n)}{n}$$

então a esperança e a variância de \overline{X} são dadas por:

$$E(\overline{X}) = \mu$$

$$Var(\overline{X}) = \frac{\sigma^2}{n}$$

Resultado importante:

Se X_i 's são independentes e identicamente distribuídas a normal, então \overline{X} será uma variável aleatória normalmente distribuída, com $E(\overline{X})$ e $Var(\overline{X})$ definidas conforme acima.

Exercícios

Atividade

- Download do notebook
- Fazer individual e discutir em grupo
- Usar arquivo

Aula17_Atividade_...ipynb

Exercício

- Download do notebook
- Fazer individual e discutir em grupo
- Usar arquivo:

```
Aula17_Exercicio_...ipynb
```

- Download do notebook
- Fazer individual e discutir em grupo
- Usar arquivo:

Aula17_Exercicio_APS_...ipynb