

Technische Unterlage

VTC-CD151

UTS-Nr.:

999

QUELLE

Best.Nr.:

0370213/01

Ger.Bez.:

UNIV. POWER-PACK

GKz: WGT: G GERAET

KD-Sektor:

652 POWERPACK

R RUNDFUNK

BaumNr.:

00 KEIN DIAGNOSEBAUM VORHANDEN

Klassierung:

STK STEREOKOMBINATION

IFW-FehlerGru.: 205 RDF., VERST., TB., PHONO, CD, CB

Type/Privileg/Universum.Nr VTC-CD151

Beschreibung

VK-Preis: 1099.00

Serviceart:

01 QUELLE-TKD

Garantie fuer Kunden 06 Monate

Sondervereinbarungen: 0 SIEHE SERVICEART

kat. 952 datum 14.03.95 seiten 20

■ BLOCK DIAGRAM

(SUB)

■ SCHEMATIC DIAGRAM

■ WIRING DIAGRAM

MEASUREMENTS AND ADJUSTMENTS

MW/FM

TUNING FREQUENCY RANGE ADJUSTMENT

- 1. Test equipment connection is shown in figure 1.
- 2. Set the unit to the desired band(FM, MW)
- 3. Place the radio frequency to 108MHz for FM, 600KHz for MW.
- 4. Adjust L7 for FM, L103 for MW so that the DC voltage is 8.0V for FM, 1.2V for MW.

MW RF ADJUSTMENT

- 1. Test equipment connection is shown in figure 2.
- 2. Set the unit to "MW" position.
- 3. Place the radio frequency display and signal generator setting to 612KHz for MW.
- 4. Adjust L104 for maximum output
- 5. Place the radio frequency display and signal generator setting to 1500KHz for MW.
- 6 Adjust CT02 for maximum output.
- 7. Repeat steps 3 6.
- 8. Adjust LF01 for maximum output.

Note: Antenna input level must be as low as possible being free from AGC.

MW SIGNAL GENERATOR CONDITION Modulation Modulation frequency 400Hz AC EVM OSCILLOSCOPE MW-SG (FIG.2)

FM MONO DISTORTION ADJUSTMENT

- 1. Test equipment connection is shown in figure 3. 2. Set the unit to "FM" position.
- 3. Place the radio frequency display and signal generator setting to 100.10MHz.
- 4. Adjust T102 core so that voltage measured in signal mode is $0mV(0\pm30mV)$ in range.
- 5. Adjust T101 so that the distortion factor of L-ch is minimized
- 6. Repeat steps 4 and 5 a few times.
- 7. Make sure that the distortion factors of L-ch and Rch nearly the same with each other to minimum.

Note: The adjusting screwdriver used should be made of ceramic.

FM STEREO SPERATION ADJUSTMENT

1. Test equipment connection in shown in figure 4.

- 2. Set the unit to "FM" position.
- 3. Place the radio frequency display and signal gere ator setting to 100.1 MHz.
- 4. STEREO MODULATION setting MODE "STEREO"
- 5. Adjust VR 03 for Leh and Reh speration maxium.

FM SIGNAL GENERATOR CONDITION Modulation · · · · · L CH or "R" CH 45%, Pilot 10% Modulation frequency · · · · · · IKHz, Pilot (19KHz) 66dB Output level -

(FIG.4)

*CASSETTE

MEASUREMENT CONDITION:

- Make sure heads are clean.
- Make sure capstan and pressure roller are clean.

TEST TAPE:

- . Head azimuth adjustment(10KHz, -10dB): TCC-153
- . Tape speed adjustment(3KHz, -10dB): TCC-112
- · Normal reference blank . TCC-103A
- · Dolby level adjustment (330Hz, 0dB) : MTT-150

HEAD AZIMUTH ADJUSTMENT(TAPE [, I)

- 1. Test equipment connection is shown in figure.
- 2. Playback the azimuth adjusted part(10KHz, -10dB) of the test tape(TCC-153) and regulate the angle adjusting screw so that the outputs of L-ch and R-ch are maximized.
 - (When the adjusting positions are different with Lch and R-ch, find and position where are the outputs of L-ch and R-ch are balanced, and then mark the adjustment.)
- 3. At the same time, draw a lissajous waveform and eliminate phase deflection.
- 4. After the adjustment, apply screw-lock to the angle adjusting value.

TEST SPEED ADJUSTMENT(TAPE [, I)

- 1. Test equipment connection is shown in figure
- 2. Place unit into "TAPE" position.
- 3. Playback the test tape TCC-112.
- 4. Adjust first VR98(VR96) (TAPE [,]) for high speed (6000 ± 120Hz) and then VR97(VR95) (TAPE | , | |) for Normal speed (3000 ± 60Hz)

BIAS OSCILLATION ADJUSTMENT (TAPE II)

- 1. Test equipment connection is shown in figure.
- 2. Set the unit to "TAPE" position.
- 3. Insert a CrO2 tape and then press the record and pause
- 4. Adjust L510 for 105KHz on frequency counter reading.

RECORDING BIAS ADJUSTMENT

- 1. Test equipment connection is shown in figure.
- 2. Set the unit to "TAPE" Position.
- 3. Insert a Metal tape and set the cassette deck to "REC" mode
- 4. Adjust SVR 8(L-ch) and SVR7(R-ch) for recording bias so that voltage in signal is 1400µA
- 5. At the same time, check CrO2 tape(800µA) and Normal tane (600uA)

PLAYBACK GAIN ADJUSTMENT

- 1. Playback the playback gain adjust part (400Hz, 200nWb) of the test tape (MTT-150)
- 2. DECK | LCH Adj point : SVR2 R-CH Adj point : SVR1

DECK | L-CH Adj point . SVR4 R CH Adj point : SVR3

So that AC mV meter will become 580mV.

■ PRINTED CIRCUIT BOARDS

MEASUREMENTS AND ADJUSTMENTS

- 1. FOCUS OFF SET ADJUSTMENT
 - 1. Test equipment connection is shown is Fig 1.1.
 - 2. Play the test disc.
 - 3. Adjust VR91 so that the eye pattern of RF Signal is open widest. (Fig 1.2)

(Fig 1.2)

2. FOCUS GAIN ADJUSTMENT

- 1. Test equipment connection is shown is Fig 2.
- 2. Play the test disc.
- Adjust VR93 until monitor level at VTVM becomes 400mV (AC).

■ WAVE FORMS

(TEST POINT : IC31-PIN16) Sled drive output

© C.COUT
(TEST POINT : IC31-PIN23)
Track number count signal output.

(TEST POINT : IC41-PIN3)
Output for spindle motor servo control.

P P MAX MIN RMS	5 28V 5 44V 160mV 3 12V	AVG UNDSHT OVRSHT RISE	2 88V 6% 106% 100mS	FALL 0mS FREQ 1666KHz PERIOD 600mS + WIDTH 500mS WIDTH 100mS
--------------------------	----------------------------------	---------------------------------	------------------------------	--

(TEST POINT : IC41-PIN27) Indicates the frame sync lock status

② CLOCK(TEST POINT : IC41- PIN53)
Input serial data transfer clock from CPU.

■ CLOCK

р.р	1 44V	AVG	2 32V	FALL	52mS
MAX	2 96V	UNDSHT	15%	-WIDTH	232mS
MIN	1 52V	OVRSHT	23%		
RMS	2 40V	RISE	244mS		
- 01	v .				

P-P MAX MIN RMS	5 28V 5 84V 560mV 5 72V	AVG UNDSHT OVRSHT RISE	5 60V 2% 2% 2mS	FALL FREQ 25 PERIOD + WIDTH -WIDTH	40m5
COK				-WIDIH	2mS

Р-Р	80mV	AVG	2 72V	FALL	0mS
MAX	2 80V	UNDSHT	0%	FREO	500 OH
MIN	2 72V	OVRSHT	0%	PERIO	
RMS	2 76V	RISE	1mS	+ WID	TH 1mS
				- WIDT	H 2ms

(TEST POINT : IC41-PIN34)

(TEST POINT : IC31-PIN13) Tracking drive output

(TEST POINT : IC31-PIN20) Latch input from CPU

P.P MAX MIN RMS	5 28V 5 84V 560mV 4 56V	AVG UNDSHI OVRSHT RISE	3 76V 0% 0% 5mS		5mS 030Hz 970mS 80mS 890mS	
--------------------------	----------------------------------	---------------------------------	--------------------------	--	--	--

0 (TEST POINT : IC31-PIN29) Mirror comparator non-Inversed input

P-P MAX MIN RMS	160mV 2 72V 2 56V 2 68V	AVG UNDSHT OVRSHT RISE	2 64V 0% 100% 5mS	FALL 5mS FREQ 8 333MHz PEHIOD 120mS • WIDTH 110mS WIDTH 10mS
--------------------------	----------------------------------	---------------------------------	----------------------------	--

(TEST POINT : IC41-PIN16) Asymmetry Comparator circ

P.P	160mV	AVG	2.56V	FALL 0mS
MAX	2 72V	UNDSHT	0%	FREQ 25 00MHz
MIN	2 56V	OVRSHT	100%	PERIOD 40mS
RMS	2 60V	RISE	20mS	WIDTH 20mS

(TEST POINT : IC41-PIN51) Input serial data from CPU

			1	
P-P MAX MIN RMS	5 44V 5 20V -240mV 2 16V	AVG UNDSHT OVRSHT RISE	1 28V 8% 2% 1 5mS	FALL 1 5mS FREO 90 90KH2 PERIOD 11 0mS WIDTH 5 0mS WIDTH 6 0mS

◆ SL-P (TEST POINT : IC31-PIN14) Inverse input pin for the sled Amplifier.

② DATA (TEST POINT : IC31-PIN21) Serial date input from CPU.

P-P MAX MIN RMS	5 36V 5.84V 480mV 1 92V	AVG UNDSHT OVRSHT RISE	1 04V 2% 2% 2mS	FALL 5mS FREQ 31 25Hz PERIOD 34mS WIDTH 16mS WIDTH 18mS
--------------------------	----------------------------------	---------------------------------	--------------------------	---

(TEST POINT IC41-PIN33) APC amplifier output

P-P 160mV AVG MAX 3 36V UNDSH MIN 3 20V OVRSH RMS 3 24V RISE		PERIOD	H 20m5
---	--	--------	--------

(TEST POINT : IC41-PIN17) EFM full-swing output

			·		
P-P	5 20V	AVG	2 96V	FALL	20mS
MAX	5 20V	UNDSHT	2%	FREQ 7	35 2KH2
MIN	0mV	OVRSHT	2%	PERIOD	
PMS	3 88V	RISE	40mS	WIDTH	

② XLAT (TEST POINT : IC41-PIN52) Latch input from CPU

MAX 5	20V AVG 36V UNDS 50mV OVRS 00V RISE	4 80V HT 2% HT 3% 1 8mS	FALL FREQ 13 PERIOD • WIDTH	70 0mS
-------	--	----------------------------------	--------------------------------------	--------

BLOCK DIAGRAM

