

ADL x MLDS

YUN-NUNG (VIVIAN) CHEN HTTP://ADL.MIULAB.TW HTTP://MLDS.MIULAB.TW

Learning ≈ Looking for a Function

Speech Recognition

Handwritten Recognition

Weather forecast

Thursday

Saturday"

Play video games

)= "move left"

Machine Learning Framework

Training is to pick the best function given the observed data Testing is to predict the label using the learned function

How to Train a Model?

Machine Learning Framework

Training is to pick the best function given the observed data Testing is to predict the label using the learned function

Training Procedure

- Q1. What is the model? (function hypothesis set)
- Q2. What does a "good" function mean?
- Q3. How do we pick the "best" function?

Training Procedure Outline

- Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

What is the Model?

Training Procedure Outline

- Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- 3 Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

Classification Task

Some cases are not easy to be formulated as classification problems

Target Function

Classification Task

$$f(x) = y$$
 $f: \mathbb{R}^N \to \mathbb{R}^M$

- *x*: input object to be classified
- y: class/label

- \rightarrow a N-dim vector
 - \rightarrow a *M*-dim vector

Assume both x and y can be represented as fixed-size vectors

Vector Representation Example

Handwriting Digit Classification

x: image

Each pixel corresponds to an element in the vector

0 1 :] 1: for ink

0: otherwise

 $16 \times 16 = 256$

dimensions

 $f:R^N\to R^M$

y: class/label

10 dimensions for digit recognition

Vector Representation Example

Sentiment Analysis

x: word

"love"

Each element in the vector corresponds to a word in the vocabulary

 $\begin{bmatrix} 0 \\ 1 \\ \vdots \end{bmatrix}$

1: indicates the word

0: otherwise

dimensions = size of vocab

$$f:R^N\to R^M$$

y: class/label

3 dimensions (positive, negative, neutral)

Target Function

Classification Task

$$f(x) = y$$
 $f: \mathbb{R}^N \to \mathbb{R}^M$

- *x*: input object to be classified
- y: class/label

- \rightarrow a N-dim vector
 - \rightarrow a *M*-dim vector

Assume both x and y can be represented as fixed-size vectors

Training Procedure Outline

- Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- 3 Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

A Single Neuron

Each neuron is a very simple function

A Single Neuron

The bias term is an "always on" feature

Why Bias?

Model Parameters of A Single Neuron

w, b are the parameters of this neuron

A Single Neuron

$$f:R^N\to R^M$$

A single neuron can only handle binary classification

A Layer of Neurons

 $f:R^N\to R^M$

A layer of neurons can handle multiple possible output, and the result depends on the max one

Training Procedure Outline

- Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- 3 Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

A Layer of Neurons – Perceptron

Output units all operate separately – no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

Expression of Perceptron

A perceptron can represent AND, OR, NOT, etc., but not XOR → linear separator

How to Implement XOR?

Input		Output
А	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

$$A \times B = AB' + A'B$$

Multiple operations can produce more complicate output

Training Procedure Outline

- Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- 3 Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

Neural Networks – Multi-Layer Perceptron

Expression of Multi-Layer Perceptron

Continuous function w/ 2 layers

Combine two opposite-facing threshold functions to make a ridge

Continuous function w/ 3 layers

Combine two perpendicular ridges to make a bump

→ Add bumps of various sizes and locations to fit any surface

→ multiple layers enhance the model expression
 → the model can approximate more complex functions

Deep Neural Networks (DNN) $f: \mathbb{R}^N \to \mathbb{R}^M$

Fully connected feedforward network

Deep NN: multiple hidden layers

 b_i^l : bias for neuron i at layer l

$$b^l = \left| egin{array}{c} dots \ b^l_i \ dots \ dots \end{array}
ight|$$

bias of all neurons at each layer→ a vector

Notation Summary

```
w_{ij}^l : a weight
a_i^l: output of a neuron
a^l : output vector of a layer \,W^l : a weight matrix
Z_i^l: input of activation function
                                      b_i^l: a bias
z^l : input vector of activation b^l : a bias vector function for a layer
```

Layer Output Relation

Layer Output Relation – from a to z

Layer Output Relation – from z to a

$$a_{i}^{l} = \sigma(z_{i}^{l})$$

$$\begin{bmatrix} a_{1}^{l} \\ a_{2}^{l} \\ \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} \sigma(z_{1}^{l}) \\ \sigma(z_{2}^{l}) \\ \vdots \\ \sigma(z_{i}^{l}) \\ \vdots \end{bmatrix}$$

Layer Output Relation

Neural Network Formulation $f: \mathbb{R}^N \to \mathbb{R}^M$

Fully connected feedforward network

Neural Network Formulation $f: \mathbb{R}^N \to \mathbb{R}^M$

Fully connected feedforward network

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

Activation Function $\sigma(\cdot)$

bounded function

Activation Function $\sigma(\cdot)$

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	-

boolean

linear

non-linear

Non-Linear Activation Function

Sigmoid

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Tanh

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Rectified Linear Unit (ReLU)

$$ReLU(x) = max(x, 0)$$

Non-linear functions are frequently used in neural net

Why Non-Linearity?

Function approximation

 Without non-linearity, deep neural networks work the same as linear transform

$$W_1(W_2 \cdot x) = (W_1 W_2)x = Wx$$

 With non-linearity, networks with more layers can approximate more complex function

What does the "Good" Function mean?

Training Procedure Outline

- ① Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- 3 Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

Training Procedure Outline

- ① Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- 3 Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

Function = Model Parameters

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

function set

different parameters W and $b \rightarrow$ different functions

Formal definition

$$f(x; \widehat{\theta})$$
 model parameter set

$$\theta = \left\{ W^1, b^1, W^2, b^2, \dots W^L, b^L \right\}$$

pick a function f = pick a set of model parameters θ

Training Procedure Outline

- ① Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- 3 Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

Model Parameter Measurement

Define a function to measure the quality of a parameter set θ

- Evaluating by a loss/cost/error function $C(\theta) \rightarrow$ how bad θ is
- Best model parameter set

$$\theta^* = \arg\min_{\theta} C(\theta)$$

- Evaluating by an objective/reward function $O(\theta) \rightarrow$ how good θ is
- Best model parameter set

$$\theta^* = \arg\max_{\theta} O(\theta)$$

Loss Function Example

Frequent Loss Function

Square loss

$$C(\theta) = (1 - \hat{y}f(x;\theta))^2$$

Hinge loss

$$C(\theta) = \max(0, 1 - \hat{y}f(x; \theta))$$

Logistic loss

$$C(\theta) = -\hat{y}\log(f(x;\theta))$$

Cross entropy loss

$$C(\theta) = -\sum \hat{y} \log(f(x; \theta))$$

Others: large margin, etc.

How can we Pick the "Best" Function?

Training Procedure Outline

- ① Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- 3 Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - Mini-Batch SGD
 - ✓ Practical Tips

Problem Statement

Given a loss function and several model parameter sets

- $^{\circ}$ Loss function: C(heta)
- $^{\circ}$ Model parameter sets: $\{ heta_1, heta_2, \cdots \}$

Find a model parameter set that minimizes $C(\theta)$

How to solve this optimization problem?

- 1) Brute force enumerate all possible θ
- 2) Calculus $\frac{\partial C(\theta)}{\partial \theta} = 0$

Issue: whole space of $C(\theta)$ is unknown

Training Procedure Outline

- ① Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

Assume that θ has only one variable

Assume that θ has only one variable

Assume that θ has two variables $\{\theta_{\it l},\,\theta_{\it 2}\}$

Assume that θ has two variables $\{\theta_1, \theta_2\}$

Assume that
$$\theta$$
 has two variables Randomly start at θ^0 : $\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$

- Compute the gradients of $C(\theta)$ at θ^0 : $\nabla_{\theta} C(\theta^0) = \begin{vmatrix} \frac{\partial C(\theta_1^0)}{\partial \theta_1} \\ \frac{\partial C(\theta_2^0)}{\partial \theta_2} \end{vmatrix}$
- Update parameters:

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta_1^0)}{\partial \theta_1} \\ \frac{\partial C(\theta_2^0)}{\partial \theta_2} \end{bmatrix} \quad \theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)$$

• Compute the gradients of
$$C(\theta)$$
 at θ^1 : $\nabla_{\theta} C(\theta^1) = \begin{bmatrix} \frac{\partial C(\theta_1^1)}{\partial \theta_1} \\ \frac{\partial C(\theta_2^1)}{\partial \theta_2} \end{bmatrix}$

Revisit Neural Network Formulation

Fully connected feedforward network

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

Gradient Descent for Neural Network

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \cdots W^L, b^L \right\}$$

$$M^l = \begin{bmatrix} w_{11}^l & w_{12}^l & \cdots \\ w_{21}^l & w_{22}^l & \cdots \\ \vdots & \ddots & \end{bmatrix}$$

$$b^l = \begin{bmatrix} \vdots \\ b_i^l \\ \vdots \end{bmatrix}$$

$$\forall C(\theta) = \begin{bmatrix} \vdots \\ \frac{\partial C(\theta)}{\partial w_{ij}^l} \\ \vdots \end{bmatrix}$$

$$\nabla C(\theta) = \begin{bmatrix} \vdots \\ \frac{\partial C(\theta)}{\partial w_{ij}^l} \\ \vdots \\ \frac{\partial C(\theta)}{\partial w_{ij}^l} \end{bmatrix}$$

Gradient Descent for Optimization Simple Case

$$y = f(x;\theta) = \sigma(Wx + b)$$

$$\theta = \{W,b\} = \{w_1, w_2, b\}$$

$$x_1 \quad w_1 \quad \text{woth } e^{(i+1)} \neq \theta^i)$$

$$x_2 \quad w_2 \quad \text{woth } e^{(i+1)} \neq \theta^i)$$

$$x_3 \quad w_4 \quad \text{compute gradient at } \theta^i \quad \text{update parameters} \quad \theta^{i+1} \leftarrow \theta^i - \eta \nabla_\theta C(\theta^i)$$

$$\nabla_\theta C(\theta) = \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_1} \\ \frac{\partial C(\theta)}{\partial w_2} \\ \frac{\partial C(\theta)}{\partial w_2} \\ \frac{\partial C(\theta)}{\partial w_2} \end{bmatrix} \quad \begin{bmatrix} w_1^{i+1} \\ w_2^{i+1} \\ b^{i+1} \end{bmatrix} \leftarrow \begin{bmatrix} w_1^i \\ w_2^i \\ b^i \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_1} \\ \frac{\partial C(\theta)}{\partial w_2} \\ \frac{\partial C(\theta)}{\partial w_2} \\ \frac{\partial C(\theta)}{\partial w_2} \end{bmatrix}$$

Gradient Descent for Optimization Simple Case – Three Parameters & Square Error Loss

Update three parameters for t-th iteration

$$\begin{aligned} w_1^{(t+1)} &= w_1^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_1} \\ w_2^{(t+1)} &= w_2^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_2} \\ b^{(t+1)} &= b^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial b} \end{aligned} \qquad \begin{bmatrix} w_1^{i+1} \\ w_2^{i+1} \\ b^{i+1} \end{bmatrix} \leftarrow \begin{bmatrix} w_1^i \\ w_2^i \\ b^i \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_1} \\ \frac{\partial C(\theta)}{\partial w_2} \\ \frac{\partial C(\theta)}{\partial b} \end{bmatrix}$$

$$\begin{bmatrix} w_1^{i+1} \\ w_2^{i+1} \\ b^{i+1} \end{bmatrix} \leftarrow \begin{bmatrix} w_1^i \\ w_2^i \\ b^i \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_1} \\ \frac{\partial C(\theta)}{\partial w_2} \\ \frac{\partial C(\theta)}{\partial b} \end{bmatrix}$$

Square error loss

$$C(\theta) = \sum_{\forall x} \|\hat{y} - f(x; \theta)\| = (\hat{y} - f(x; \theta))^2$$

Simple Case – Square Error Loss

Square Error Loss

$$\frac{\partial C(\theta)}{\partial w_1} = \frac{\partial}{\partial w_1} (f(x;\theta) - \hat{y})^2$$

$$= 2(f(x;\theta) - \hat{y}) \frac{\partial}{\partial w_1} f(x;\theta) \qquad f(x;\theta) = \sigma(Wx + b)$$

$$= 2(\sigma(Wx + b) - \hat{y}) \frac{\partial}{\partial w_1} \sigma(Wx + b)$$

Simple Case – Square Error Loss

$$\frac{\partial \sigma(Wx+b)}{\partial w_1} = \frac{\partial \sigma(Wx+b)}{\partial (Wx+b)} \frac{\partial (Wx+b)}{\partial w_1}$$

$$\frac{\partial g}{\partial x} = \frac{\partial g}{\partial f} \frac{\partial f}{\partial x} \text{ chain rule } \frac{\partial g(z)}{\partial z} = [1 - g(z)] g(z) \text{ sigmoid func } g(z) = \frac{1}{1 + e^{-x}}$$

$$= [1 - \sigma(Wx + b)]\sigma(Wx + b) \frac{\partial(Wx + b)}{\partial w_1}$$

$$\frac{\partial (Wx+b)}{\partial w_1} = \frac{\partial (w_1x_1 + w_2x_2 + b)}{\partial w_1} = x_1$$

$$\frac{\partial \sigma(Wx+b)}{\partial w_1} = [1 - \sigma(Wx+b)]\sigma(Wx+b)x_1$$

Simple Case – Square Error Loss

Square Error Loss

$$\frac{\partial C(\theta)}{\partial w_1} = \frac{\partial}{\partial w_1} (f(x;\theta) - \hat{y})^2$$

$$= 2(f(x;\theta) - \hat{y}) \frac{\partial}{\partial w_1} f(x;\theta) \qquad f(x;\theta) = \sigma(Wx + b)$$

$$= 2(\sigma(Wx + b) - \hat{y}) \frac{\partial}{\partial w_1} \sigma(Wx + b)$$

$$\frac{\partial \sigma(Wx + b)}{\partial w_1} = [1 - \sigma(Wx + b)] \sigma(Wx + b)x_1$$

$$\frac{\partial C(\theta)}{\partial w_1} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b)x_1$$

Gradient Descent for Optimization Simple Case – Three Parameters & Square Error Loss

Update three parameters for *t*-th iteration

$$w_1^{(t+1)} = w_1^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_1}$$

$$\frac{\partial C(\theta)}{\partial w_1} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b)x_1$$

$$w_2^{(t+1)} = w_2^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_2}$$

$$\frac{\partial C(\theta)}{\partial w_2} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b) x_2$$

$$b^{(t+1)} = b^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial b}$$

$$\frac{\partial C(\theta)}{\partial b} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b)$$

Optimization Algorithm

Algorithm

```
Initialization: set the parameters \theta, b at random while(stopping criteria not met)  \{ \qquad \qquad \text{for training sample } \{x, \hat{y}\} \text{, compute gradient and update parameters}   \qquad \qquad \theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)
```

$$\begin{split} w_1^{(t+1)} &= w_1^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_1} \quad \frac{\partial C(\theta)}{\partial w_1} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b)x_1 \\ w_2^{(t+1)} &= w_2^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_2} \quad \frac{\partial C(\theta)}{\partial w_2} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b)x_2 \\ b^{(t+1)} &= b^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial b} \quad \frac{\partial C(\theta)}{\partial b} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b) \end{split}$$

Gradient Descent for Neural Network

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \cdots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \cdots W^L, b^L \right\}$$

$$M^l = \begin{bmatrix} w^l_{11} & w^l_{12} & \cdots \\ w^l_{21} & w^l_{22} & \cdots \\ \vdots & \ddots & \end{bmatrix}$$

$$b^l = \begin{bmatrix} \vdots \\ b^l_i \\ \vdots \end{bmatrix}$$

$$d^l = \begin{bmatrix} \vdots \\ b^l_i \\ \vdots \end{bmatrix}$$
 Compute gradient at θ^i update parameters
$$\theta^{i+1} \leftarrow \theta^i - \eta \nabla_\theta C(\theta^i)$$

$$\theta^l = \begin{bmatrix} \frac{\partial C(\theta)}{\partial w^l_{ij}} \\ \frac{\partial C(\theta)}{\partial b^l_i} \end{bmatrix}$$
 Computing the gradient includes millions of parameters. To compute it efficiently, we use backpropagation.

Gradient Descent Issue

$$\theta^{i+1} = \theta^i - \eta \nabla C(\theta^i)$$

Training Data
$$\{(x_1, \hat{y}_1), (x_2, \hat{y}_2), \ldots\}$$

$$C(\theta) = \frac{1}{K} \sum_{k} \| f(x_k; \theta) - \hat{y}_k \| = \frac{1}{K} \sum_{k} C_k(\theta)$$

$$\nabla C(\theta^i) = \frac{1}{K} \sum_k \nabla C_k(\theta^i)$$

After seeing all training samples, the model can be updated \rightarrow slow

Training Procedure Outline

- ① Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- 3 Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

Stochastic Gradient Descent (SGD)

Gradient Descent

$$\theta^{i+1} = \theta^i - \eta \nabla C(\theta^i) \quad \nabla C(\theta^i) = \frac{1}{K} \sum_{k} \nabla C_k(\theta^i)$$

Stochastic Gradient Descent (SGD)

• Pick a training sample x_k

$$\theta^{i+1} = \theta^i - \eta \nabla C_k(\theta^i)$$

Training Data $\{(x_1, \hat{y}_1), (x_2, \hat{y}_2), ...\}$

• If all training samples have same probability to be picked

$$E[\nabla C_k(\theta^i)] = \frac{1}{K} \sum_k \nabla C_k(\theta^i)$$

The model can be updated after seeing one training sample → faster

Epoch Definition

When running SGD, the model starts θ^0

$$\begin{array}{ll} \operatorname{pick} x_1 & \theta^1 = \theta^0 - \eta \nabla C_1(\theta^0) \\ & \operatorname{pick} x_2 & \theta^2 = \theta^1 - \eta \nabla C_2(\theta^1) \\ & \vdots & \\ \operatorname{pick} x_k & \theta^k = \theta^{k-1} - \eta \nabla C_k(\theta^{k-1}) \\ & \vdots & \vdots \\ & \operatorname{pick} x_K & \theta^K = \theta^{K-1} - \eta \nabla C_K(\theta^{K-1}) \end{array} \quad \begin{array}{ll} \operatorname{see all training} \\ \operatorname{samples once} \\ \operatorname{pick} x_K & \theta^K = \theta^{K-1} - \eta \nabla C_K(\theta^{K-1}) \end{array} \quad \begin{array}{ll} \operatorname{see all training} \\ \operatorname{samples once} \\ \operatorname{pick} x_K & \theta^K = \theta^{K-1} - \eta \nabla C_K(\theta^{K-1}) \end{array} \quad \begin{array}{ll} \operatorname{pick} x_K & \operatorname{pick} x_$$

Training Data $\{(x_1, \hat{y}_1), (x_2, \hat{y}_2), \ldots\}$

> see all training samples once

$$\operatorname{pick} x_{I} \quad \theta^{K+1} = \theta^{K} - \eta \nabla C_{1}(\theta^{K})$$

Gradient Descent v.s. SGD

Gradient Descent

Update after seeing all examples

1.5 1.4 See all 1.3 examples 1.2 \mathfrak{B} 1.1 1.0 0.9 8.0 0.1 0.2 0.3 0.5 -0.10.0 0.4 0.6 0.7 b

Stochastic Gradient Descent

If there are 20 examples, update 20 times in one epoch.

SGD approaches to the target point faster than gradient descent

Training Procedure Outline

- Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

Mini-Batch SGD

Batch Gradient Descent

$$\theta^{i+1} = \theta^i - \eta \frac{1}{K} \sum_k \nabla C_k(\theta^i)$$

Use all *K* samples in each iteration

Stochastic Gradient Descent (SGD)

$$^{\circ}$$
 Pick a training sample x_k $heta^{i+1} = heta^i - \eta
abla C_k(heta^i)$

Use 1 samples in each iteration

Mini-Batch SGD

• Pick a set of
$$B$$
 training samples as a batch b B is "batch size" $\theta^{i+1} = \theta^i - \eta \frac{1}{B} \sum_{x_i \in b} \nabla C_k(\theta^i)$ Use all B samples in each iteration

Mini-Batch SGD

```
Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate \epsilon_k.

Require: Initial parameter \boldsymbol{\theta}

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)})

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}

end while
```

Batch v.s. Mini-Batch Handwritting Digit Classification

Gradient Descent v.s. SGD v.s. Mini-Batch

Training speed: mini-batch > SGD > Gradient Descent

SGD v.s. Mini-Batch

Stochastic Gradient Descent (SGD)

$$z^1 = W^1 z^1 = W^1 z^1 = W^1 z^1$$

Mini-Batch SGD

Modern computers run matrix-matrix multiplication faster than matrix-vector multiplication

Big Issue: Local Optima

Example of Complex Optimization Problem: Schwefel's Function

Neural networks has no guarantee for obtaining global optimal solution

Training Procedure Outline

- ① Model Architecture
 - ✓ A Single Layer of Neurons (Perceptron)
 - ✓ Limitation of Perceptron
 - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
 - ✓ Function = Model Parameters
 - ✓ Model Parameter Measurement
- 3 Optimization
 - ✓ Gradient Descent
 - ✓ Stochastic Gradient Descent (SGD)
 - ✓ Mini-Batch SGD
 - ✓ Practical Tips

Initialization

Different initialization parameters may result in different

Do not initialize the parameters equally → set them randomly

Tips for Mini-Batch Training

Shuffle training samples before every epoch

• the network might memorize the order you feed the samples

Use a fixed batch size for every epoch

enable to fast implement matrix multiplication for calculations

Adapt the learning rate to the batch size

○ larger batch → smaller learning rate

Testing Data

Training Data

 χ j

Validation

 \mathcal{C}

immediately know the performance

Real Testing

x y

Do not know the performance until submission

Possible reasons

- no good function exists: bad hypothesis function set
 - > reconstruct the model architecture
- cannot find a good function: local optima
 - → change the training strategy

Better performance on training but worse performance on dev \rightarrow overfitting

Overfitting

Possible solutions

- more training samples
- some tips: dropout, etc.

Concluding Remarks

Model: Hypothesis Function Set $f_1, f_2 \cdots$ Training: Pick the best function f^* "Best" Function f^*

- Q1. What is the model?
- Q2. What does a "good" function mean?
- Q3. How do we pick the "best" function?

Model Architecture

Loss Function Design

Optimization