COMP90051 Statistical Machine Learning

Semester 2, 2015

Lecturer: Ben Rubinstein

4: Extra – From Workshop #2 Feedback

Common Confusion

- What the "y axis" represents in linear model for logistic regression (log odds of probability label is True)
- Not realising that logistic regression is fit using MLE
- Linear regression has exact formula that data can be plugged into; logistic regression needs numerical methods
- Slides04.5
- How does λ control model complexity?
- Pros / cons of Lasso vs Ridge regression

Data is noisy

• Example:

- * given mark for Knowledge Technologies (KT)
- predict mark for Statistical Machine Learning (SML)

^{*} synthetic data:)

Types of models

$$\hat{y} = f(x)$$

KT mark was 95, SML mark is predicted to be 95

MLE for linear/logistic regression

- Both have probabilistic models relating X,Y with param w
- Use MLE to find param w that says training data likely
- Linear regression
 - Model Pr(Y|X=x) is Normal with mean w'x
 - * MLE gives us maximisation that is same as least squares
 - ★ Solution has formula → just plug in data!
- Logistic regression
 - * Model Pr(Y=True | X=x)=logistic(w'x)
 - MLE maximisation is an ugly one!!
 - Solution has no formula, use numerical approximation

How is "logistic regression" regression? What's y-axis?

Answer:

Log odds of probability of label being True

Example: x'w=1.2

$$log_e \frac{\Pr(T)}{\Pr(F)} = 1.2$$

$$\frac{\Pr(T)}{\Pr(F)} = e^{1.2} = 3.3$$

$$\Pr(T) = 3.3(1 - \Pr(T))$$

$$\Pr(T) = \frac{3.3}{4.3} = 0.77$$

Statistical Machine Learning (S2 2015)

Deck 3

Logistic Regression

- Probabilistic classification
 - * Pr(Y = true | X = x) = f(x)
 - * Could we use linear regression? $f(\mathbf{x}) = \mathbf{x}'\mathbf{w}$
- Problem: LHS in [0,1], RHS arbitrary real
- So use: $logistic(x) = \frac{1}{1 + exp(-x)}$
 - * $Pr(Y = true | X = \mathbf{x}) = logistic(\mathbf{x}'\mathbf{w})$
 - * Equivalent to linear model for "log-odds"

$$\log \frac{\Pr(Y = true | X = \mathbf{x})}{\Pr(Y = false | X = \mathbf{x})} \approx \mathbf{x}'\mathbf{w}$$

Slides04... Part I

Linear regression usually:

- Data would be spread over a plane
- Unique w

Irrelevant features:

- Data spread over a line
- Many planes intersect line
- Many w

Irrelevant Features: ...and the ugly

Ugly: computation

- Linear regression fits $\min_{\mathbf{w}} \sum_{i} (y_i \mathbf{X}_i \cdot \mathbf{w})^2$
- Solution: $\mathbf{w}^* = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$, an inverse problem
- Irrelevance

No uniqueness

→ rank deficient

i.e. some eigenvalues zero/negative

 \rightarrow no inverse $(X'X)^{-1}$

This is an ill-posed inverse problem

What can we do about it?

Slides04... Part I

Plots are top down

Pink curves are contour lines of the objective function (like a topographical map!)

Blue regions restrict where we can pick w from-regularisation!

