	Sets		
1	Set	Convex?	Proof
	$C = A \cup B$	Not always	
	$C = A \cap B$	Yes, if A and B are convex sets.	
	Functions		
	Function	Convex?	Proof
	$\mathbf{y} = \max(f_1, f_2)$	Yes, if f_1 and f_2 are convex functions	
	$\mathbf{y} = \min(f_1, f_2)$	Not always	
	$y = \mathbf{c}^T \mathbf{x}$ (linear function)	Yes (but not strictly convex)	
	$y = \ \mathbf{x}\ _p \text{ (p-norm)}$	Yes (for any $p \in \mathbb{N}_+$)	$\ \theta \mathbf{x} + (1 - \theta)\mathbf{y}\ \le \theta \ \mathbf{x}\ + (1 - \theta) \ \mathbf{y}\ $ (triangular inequality)