Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki

Programowanie Komputerów

TEMAT PROJEKTU: GRA KÓŁKO I KRZYŻYK

Autor: Kamil Niedziela

Prowadzący: dr inż. Mirosław Skrzewski

Rok Akademicki: 2019/2020

Kierunek: informatyka

Rodzaj studiów: SSI

Semestr: 2

Termin laboratorium: środa, 15:30 – 17:00

Sekcja: 51

Termin oddania sprawozdania 2020-07-29

1. Treść zadania

Napisać grę typu kółko i krzyżyk rozgrywaną na dużej planszy. Zadaniem użytkownika i komputera jest naprzemienne umieszczanie symboli w taki sposób, aby utworzyć ciąg pięciu symboli w rzędzie, kolumnie lub na ukos. Program powinien obejmować implementację prostego algorytmu sztucznej inteligencji. Historia wyników powinna być przechowywana w pliku binarnym. Uwagi techniczne Strukturą danych reprezentującą planszę może być dynamiczna tablica dwuwymiarowa o ograniczonym rozmiarze. Historia powinna być zapisana w liście jednokierunkowej.

2. Analiza zadania

Zrealizowany przeze mnie program jest grą w kółko i krzyżyk rozgrywaną na planszy 5x5. Gra zawiera prosty algorytm sztucznej inteligencji oraz historię rozgrywanych gier.

2.1 Struktury danych

Program oparty jest liście jednokierunkowej. Lista przechowuje rezultat rozgrywki z wszystkich rozgrywanych gier.

2.2 Algorytmy

W programie obecny jest jeden algorytm który odpowiada za ruch komputera. Funkcja realizująca sztuczną inteligencję układa znaki na planszy w sposób losowy do momentu, gdy zaczyna robić się niebezpiecznie (gracz ułoży 3 znaki pod rząd). W takim momencie komputer blokuję gracza uniemożliwiając mu zwycięstwo. Blokowanie gracza przez komputer jest uzależnione od poziomu trudności jaki wybierzemy (łatwy-50% szans na zablokowanie gracza, średni-70% szans na zablokowanie gracza, trudny-90% szans na zablokowanie gracza). W przypadku gdy komputer ułoży cztery znaki pod rząd lub koło siebie w jednej linii, wtedy wychodzi z inicjatywą i poddaje gracza dokładając ostatnie brakujące puste pole.

3. Specyfikacja wewnętrzna

Program został zrealizowany zgodnie z paradygmatem strukturalnym.

3.1 Ogólna struktura programu

W funkcji głównej program tworzy plik binarny (HistoriaGry.bin) który zawiera historię rozgrywek . Następnie w pętli alokowana jest dynamiczna tablica jednowymiarowa służąca za planszę do gry. Gra pyta o kolejność oraz poziom trudności. W przypadku wybrania poziomu innego do łatwego, średniego lub trudnego program automatycznie dobiera poziom średni. Następnie w pętli wykonywane są naprzemienne ruchy komputera i gracza, aż do wypełnienia całej planszy. Po skończonej rozgrywce program wyświetla wynik gry oraz zapisuje rezultat do pliku binarnego: (HistoriaGry.bin). W tym momencie usuwana jest niepotrzebna już plansza. Jeżeli gracz chcę kontynuować grę, musi wcisnąć "Y" lub "y", powtarza to pętle i ponownie alokuję tablicę do gry. Ostatnim wywołaniem programu są funkcje fclose która zamyka plik oraz usunHistorieRozgrywek która dba o pozbycie się wycieków pamięci.

4. Testowanie

Aplikacja została przetestowana względem każdej sytuacji na planszy. Program został sprawdzony pod kątem wycieków pamięci.

5. Wnioski

Program który stworzyłem wymaga samodzielnego zarządzania pamięcią oraz wymyślenia algorytmu odpowiadającego za sztuczną inteligencję w grze. Należało pamiętać o usunięciu wycieków pamięci. Szczególną trudnością dla mnie okazało się stworzenie algorytmu sztucznej inteligencji odpowiadającej za ruch komputera. Mimo wszystko poradziłem sobie z problemem czego wynikiem jest gotowy program.

Literatura i źródła:

https://forum.pasja-informatyki.pl/

https://stackoverflow.com/

https://4programmers.net/