This document explains the function of the IHU, its schematic level design, its board level design, and its functional testing

IHU

Internal Housekeeping Unit

Revision 1.0.3

Gabe Adamson

Table of Contents

1	Intr	oduct	tion3
	1.1	Fund	ction3
	1.2	Req	uirements3
2	Deta	ailed	Description
	2.1	Fund	ctional Block Diagram4
	2.1.	1	IHU Microcontroller4
	2.1.	2	C&DH SD Cards4
	2.1.	3	C&DH ADCS4
	2.2	Sche	ematic
	2.2.	1	IHU Microcontroller4
	2.2.	2	C&DH SD Cards5
	2.2.	3	ADC5
	2.2.	4	I ² C Bus5
	2.2.	5	SPI Bus5
	2.3	Boa	rd6
	2.3.	1	Layout Constraints6
3	Test	ting	6
	3.1	Befo	ore First Power-On Check7
	3.1.	1	Test Instructions
	3.1.	2	Test Data
	3.1.	3	Test Notes
	3.2	Com	nmand7
	3.2.	1	Test Instructions
	3.2.	2	Test Data
	3.2.	3	Test Notes
	3.3	IFJR	Communication8
	3.3.	1	Test Instructions8
	3.3.	2	Test Data8
	3.3.	3	Test Notes
	3.4	Com	nms Communication8

3.4.1	Test Instructions	8
3.4.2	Test Data	8
3.4.3	Test Notes	8
3.5 Sto	orage	8
3.5.1	Test Instructions	8
3.5.2	Test Data	8
3.6 Ter	mperature Monitoring	9
3.6.1	Test Instructions	g
3.6.2	Test Data	g
3.6.3	Test Notes	g
3.7 IHU	J Programming	g
3.7.1	Test Instructions	g
3.7.2	Test Data	<u>c</u>
373	Test Notes	c

1 Introduction

This document explains how the IHU will fulfil the following functions and conform to the following Requirements. This document refers to the Avionics Board version 1.1.

1.1 Function

The IHU is responsible for the following:

- Managing and processing all forms of data on the satellite
- Prepare and interpret communications to and from the ground
- Keep and distribute the satellite's time
- Enforce the current operation and mode of the satellite
- Perform periodic status inquiries on all subsystems

1.2 Requirements

The requirements and design requirements for the IHU can be found on GitHub.

2 Detailed Description

This section references the Avionics Board schematic. Page numbers will be listed and may have coordinates listed (number and letter combination found around the frame).

2.1 Functional Block Diagram

The block diagram can be found on the first page of the schematic.

2.1.1 IHU Microcontroller

The IHU is responsible for executing commands sent to the satellite from the ground¹, ensures subsystems are working properly,² processes packages from the ground, and prepares packages to be sent to the ground. The IHU also performs periodic inquiries on the status of all subsystems to ensure each subsystem is working as expected.³

2.1.2 C&DH SD Cards

The C&DH SD cards serve as redundant, non-volatile memory to store collected and processed information from all subsystems and payloads.⁴ All collected data is stored in non-volatile memory in order to buffer the data and avoid corruption.⁵

2.1.3 C&DH ADCS

The Analog to Digital Converter, or ADC, converts the analog signals from the thermistors, which monitor temperatures of the components in the ADCS subsystem.

2.2 Schematic

2.2.1 IHU Microcontroller

The IHU microcontroller⁶ (page 11) communicates with other microcontrollers and its ADCs through two I²C buses, the In-Flight JTAG Reprogrammer (IFJR) through an SPI bus, and its two SD cards through a separate SPI bus. Reprogramming in orbit is achieved by the IFJR through a JTAG bus.

¹ Requirement CDH-003

² Requirement CDH-009

³ Requirement CDH-010

⁴ Requirement CDH-006

⁵ Requirement CDH-008

⁶ STM32L476RG

2.2.2 C&DH SD Cards

The two SD Cards⁷ (page 12) serve as redundant non-volatile memory for the IHU microcontroller. The IHU microcontroller performs reads and writes through an SPI bus.

2.2.3 ADC

The Analog to Digital Converter⁸, or ADC, (page 12) communicates with the IHU microcontroller using the required I²C communication protocol. Thermistors are supplied with a reference voltage supplied by the ADC.

2.2.4 I²C Bus

The IHU has two I²C buses (page 11, B3). Both are for communicating with other microcontrollers, however the I²C1 bus also has the C&DH ADC and a GPIO expander. The microcontrollers on the I²C0 bus are ADCS and EPS. Payload uses the GPIO expander on I²C1 to receive communications. On the IHU I²C buses, the IHU microcontroller is the master.

2.2.4.1 ADC

There are two ADCs connected to the IHU microcontroller. One ADC is located on the Avionics Board, the other is off board. Its address is as follows:

ADC	l ² C Address	AS1	AS0
IHU ADC	0x23	Н	L
Camera Payload	0×22	Н	NC
Germination Payload Temperature	0x28	NC	Н

2.2.4.2 GPIO Expander

There is a GPIO expander⁹ connected to the IHU microcontroller. It is located off board.

Device	I ² C Address	A2	A1	A0
GPIO Expander	0×20		L	L

2.2.5 SPI Bus

The IHU has three SPI buses (page 11, B2, B3, B4). BUS_SPI is for communicating with the IFJR microcontroller, COM_SPI is for communicating with the Comms microcontroller, and IHU_SPI is for operating the C&DH SD cards.

⁹ TCA9535

⁷ MOLEX_5025700893

⁸ <u>AD7291</u>

2.3 Board

The board shall be double layered with 2 oz copper and ENIG finish. The board shall also conform to the dimensions specified by the <u>CougSat Module</u> Standard.

2.3.1 Layout Constraints

Unless specified in the following subsections, all signals shall use the default parameters below. Signals in the following subsections do not include their sense signals unless otherwise specified. Trace width can be broken if a trace needs to bottleneck down to a pin, the bottleneck shall be minimized.

Trace width: 0.16mm

Vias: $\emptyset 0.3mm$, unlimited count

Separation: 0.16mm Length: unlimited

Devices with specific placement and routing considerations are called out on the schematic, see "CAD Note:"

Trace width: 0.6mm

2.3.1.1 JTAG - IHU_[JTCK, JTDI, JTDO, JTMS]

Length: Each node shall be length matched $\pm 1.0mm$

Stubs: < 10.0*mm*

Length: Each node shall be length matched $\pm 1.0mm$

Stubs: < 10.0*mm*

23.1.3 SPI - BUS_SPI_[SCK, MISO, MOSI], COM_SPI_[SCK, MISO, MOSI], IHU_SPI_[SCK, MISO, MOSI],

Length: Each node shall be length matched $\pm 1.0mm$

Stubs: < 10.0mm

3 Testing

All tests shall be performed at room temperature and not under vacuum unless otherwise specified. If any modifications are performed, take note. Include enough information to understand circuit behavior and for others to replicate the results. Include any software written to execute the test and link it in the test notes section. Save all software, waveforms, etc. in a subfolder of the board's test folder for each test.

- Waveforms shall be captured whenever appropriate
- Have the event take fill the screen (for fast events, zoom in; for slow events, zoom out)
- Label each channel accurately

- Only have bandwidth limiting if necessary for the test (this applies to the oscilloscope and probe settings)
- If ringing or overshoot occurs, use a ground spring or differential probe

Common test instructions can be found on the wiki.

3.1 Before First Power-On Check

Configuration:

3.1.1 Test Instructions

Measure the resistance of various points in reference to *PGND* located at the backplane. When measuring in circuit resistances, flip the probes and take the lower value.

3.1.2 Test Data

Node	Resistance	Node	Resistance
3.3V-0		IHU_SPI_MOSI	
AVDD-1		IHU_SPI_MISO	
AVREF-2		BUS_I2C0_SCL	
BUS_SPI_SCK		BUS_I2C0_SDA	
BUS_SPI_MOSI		BUS_I2C1_SCL	
BUS_SPI_MISO		BUS_I2C1_SDA	
COM_SPI_SCK		IHU_JTCK	
COM_SPI_MOSI		IHU_JTDI	
COM_SPI_MISO		IHU_JTDO	
IHU_SPI_SCK		IHU_JTMS	

3.1.3 Test Notes

3.2 Command

Configuration:

This test evaluates the ability to command other microcontrollers.

3.2.1 Test Instructions

Request a reply from a device on both I²C buses. Check if reply is received.

3.2.2 Test Data

Check if reply is received on BUS_I ² C0						
Device	Reply Received	Passing Criteria	Pass / Fail			
ADCS microcontroller		Reply Received				

Check if reply is received on BUS_I ² C1							
Device Reply Received Passing Criteria Pass / Fail							
Reply Received							

3.2.3 Test Notes

3.3 IFJR Communication

Configuration:

This test evaluates the ability to communicate with the IFJR.

3.3.1 Test Instructions

Request a reply from a IFJR on BUS_SPI. Check if reply is received.

3.3.2 Test Data

Check if reply is received on BUS_SPI						
Device Reply Received Passing Criteria Pass / Fa						
IFJR microcontroller		Reply Received				

3.3.3 Test Notes

3.4 Comms Communication

Configuration:

This test evaluates the ability to communicate with the Comms.

3.4.1 Test Instructions

Request a reply from Comms on COM_SPI. Check if reply is received.

3.4.2 Test Data

Check if reply is received on COM_SPI						
Device Reply Received Passing Criteria Pass / Fail						
Comms microcontroller		Reply Received				

3.4.3 Test Notes

3.5 Storage

Configuration:

This test evaluates the functionality of accessing storage.

3.5.1 Test Instructions

Write test package to both SD Cards and read back both test packages.

3.5.2 Test Data

Check if package sent is received when read						
Device	Package Received	Passing Criteria	Pass / Fail			
IHU SD0		Package Received				
IHU SD1		Package Received				

3.6 Temperature Monitoring

Configuration:

This test evaluates the functionality of the temperature monitoring system.

3.6.1 Test Instructions

Heat thermistor location. Read resultant voltage through ADC.

3.6.2 Test Data

Check if te	Check if temperature read by the ADC is the same as being supplied							
Device	Temperature Applied	Temperature Read	Error	Passing Criteria	Pass / Fail			
IHU microcontroller				Error < 2°C				
IFJR microcontroller				Error < 2 ° C				
IHU SD0				Error < 2 ° C				
IHU SD1				Error < 2 ° C				
IFJR SD0				Error < 2 ° C				
IFJR SD1				Error < 2 ° C				

3.6.3 Test Notes

3.7 IHU Programming

Configuration:

This test evaluates the ability to program the IHU microcontroller

3.7.1 Test Instructions

Connect a SWD programmer to the SWD header and upload an image, validate the IHU is properly programmed. Connect a JTAG programmer to the backplane and upload an image, validate the IHU is properly programmed.

Note: Follow the programming instructions on the wiki.

3.7.2 Test Data

Program the IHU via SWD and JTAG, validate the IHU is properly programmed					
Programmer	Passing Criteria	Pass / Fail			
SWD	IHU properly programmed				
JTAG	IHU properly programmed				

3.7.3 Test Notes

