QUESTION 1

Theorem $(\exists m \in \mathbb{N})(\exists n \in \mathbb{N})(3m + 5n = 12)$ is false.

proof: By contradiction.

Assume there exist some $m, n \in \mathbb{N}$ that satisfy 3m + 5n = 12.

Rearranging and grouping the terms, 5n = 12 - 3m = 3(4 - m), i.e. 3|5n. By Euclid's Lemma, since 3 and 5 are coprime, n is divisible by 3.

Let n=3q where $q\in\mathbb{N}.$ Substituting 3q into n then rearranging the terms,

$$5(3q) = 12 - 3m$$

$$5q = 4 - m$$

$$m = 4 - 5q$$

Since $q \in \mathbb{N}$, so $q \ge 1$, so $m \le -1$. But that contradicts the fact that $m \in \mathbb{N}$.

Hence there do not exist $m, n \in \mathbb{N}$ that satisfy 3m + 5n = 12.

 $(\exists m \in \mathbb{N})(\exists n \in \mathbb{N})(3m + 5n = 12)$ is false. The proof is complete.