Aplicaciones de transductores

Clase 13

IIC 2223

Prof. Cristian Riveros

Transductores

Outline

Análisis léxico

Pattern matching

Outline

Análisis léxico

Pattern matching

Sintaxis y semántica de un lenguaje de programación

Definición

1. La sintaxis de una lenguaje es un conjunto de reglas que describen los programas válidos que tienen significado.

¿cuáles son programas válidos en Python?

- myint = 7
 print myint
- mystring = 'hello"
 print(mystring)

Sintaxis y semántica de un lenguaje de programación

Definición

- 1. La sintaxis de una lenguaje es un conjunto de reglas que describen los programas válidos que tienen significado.
- 2. La semántica de un lenguaje define el significado de un programa correcto según la sintaxis.

¿cuál es la semántica de este programa en Python?

```
mylist = []
mylist.append(1)
mylist.append(2)
for x in mylist:
    print(x)
```

La estructura de un compilador

Verificación de sintaxis

En este proceso se busca:

- verificar la sintaxis de un programa.
- entregar la estructura de un programa (árbol de parsing).

Consta de tres etapas:

- 1. Análisis léxico (Lexer).
- 2. Análisis sintáctico (Parser).
- 3. Análisis semántico.

Por ahora, solo nos interesará el Lexer.

(el funcionamiento del Parser lo veremos cuando veamos gramáticas)

Análisis léxico (Lexer)

- El análisis léxico consta en dividir el programa en una sec. de tokens.
- Un token (o lexema) es un substring (válido) dentro de un programa.
- Un token esta compuesto por:
 - tipo.
 - valor (el valor mismo del substring).

Análisis léxico (Lexer)

Tipos usuales de tokens en lenguajes de programación:

- **number** (constante): 2, 345, 495, ...
- **string** (constante): 'hello', 'iloveTDA', ...
- **keywords**: if, for, ...
- identificadores: pos, init, rate ...
- **delimitadores**: '{', '}', '(', ')', ',', ...
- operadores: '=', '+, '<', '<=', ...

Análisis léxico (Lexer)

```
Ejemplo
pos = init + rate * 60
                         Tipo
                                Valor
                          id
                                 pos
                         EQ
                                  =
                          id
                                 init
                        PLUS
                          id
                               rate
                        MULT
                        number
                                 60
```

- Un generador de análisis léxico es un software que, a través de un programa fuente, crea el código necesario para hacer el análisis léxico.
- El más conocido es Lex para lenguaje C:
 - Versión moderna es Flex.
 - Para Java existe JFlex.
 - Para Python existe PLY.

El formato de un programa en Lex es de la forma:

Las reglas de traducción tienen la siguiente forma:

```
Patrón { Acción }
```

- Patrón esta definido por una expresión regular.
- Acción es código C embebido.

```
Ejemplo de lex.1
 %{
 #include "misconstantes.h" \ def de IF, ELSE, ID, NUMBER *\
 %}
 delim [ \t \]
          {delim}+
 WS
 id [A-Za-z]([A-Za-z0-9])*
 number [0-9]+
 %%
 \{ws\} \{\* sin accion *\}
 if {return(IF);}
 else {return(ELSE);}
 {id} {printID(); return(ID);}
 {number} {printNumber(); return(NUMBER);}
 %%
 void printID(){printf("Id: %s\n",yytext);}
 void printNumer(){printf("Number: %s\n",yytext);}
```

Resolución de conflictos en Lex

Si varios prefijos del input satisfacen uno o más patrones:

- 1. Se prefiere el prefijo más largo por sobre el prefijo más corto.
- 2. Si el prefijo más corto satisface uno o más patrones, se prefiere el patrón listado primero en el programa lex.1.

Para efectos del ejemplo, desde ahora supondremos que cada patrón esta separado por un símbolo especial ""...".

¿cómo evaluamos los patrones en lex.1?

Sea $T_1, ..., T_k$ los patrones y $C_1, ..., C_k$ las acciones en el programa "lex.1", respectivamente.

Primer paso

Para cada patrón T_i construimos un NFA $A_i = (Q_i, \Sigma, \Delta_i, I_i, F_i)$.

¿cómo evaluamos los autómatas A_1, \ldots, A_k en paralelo, encontrando todos los tokens del input?

¿cómo evaluamos los patrones en lex.1?

- $A_i = (Q_i, \Sigma, \Delta_i, I_i, F_i)$ el NFA para el patrón T_i .
- lacksquare C_i la acción de T_i .

Construimos el transductor determinista:

$$\mathcal{T} = (Q, \Sigma, \{C_i\}_{i \leq k}, \Delta, \{q_0\}, F)$$

- $Q = 2^{\left(\bigcup_{i=1}^k Q_i\right)}$
- $q_0 = \bigcup_{i=1}^k I_i$
- $(S, a, \epsilon, S') \in \Delta \quad \text{ssi} \quad S' = \{q \mid \exists i. \exists p \in S. (p, a, q) \in \Delta_i\}.$
- $(S, \cup, C_i, q_0) \in \Delta \text{ ssi } S \cap F_i \neq \emptyset \text{ y } (S, \cup, \epsilon, q_0) \in \Delta \text{ ssi } S \cap \bigcup_{i=1}^k F_i = \emptyset.$
- $F = \{S \mid \exists i. \ S \cap F_i \neq \emptyset\}$

Conclusión: el análisis léxico es equivalente a ejecutar un transductor.

Outline

Análisis léxico

Pattern matching

Problema de pattern matching de una palabra

Problema

Dado un **patrón** $w = w_1 \dots w_m$ y un **documento** $d = d_1 \dots d_n$, encontrar todos las posiciones donde aparece w en d, o sea, enumerar:

$$\{(i,j) \mid w = d_i d_{i+1} \dots d_j\}$$

Solución ingenua

¿es posible hacerlo mejor?

Autómata de un patrón

Definición

Dado un palabra $w = w_1 \dots w_m$, sea el NFA $A_w = (Q, \Sigma, \Delta, I, F)$ tal que:

- $Q = \{0, 1, \ldots, m\}$
- $\Delta = \{(0, a, 0) \mid a \in \Sigma\} \cup \{(i, w_{i+1}, i+1) \mid i < m\}$
- $I = \{0\} \text{ y } F = \{m\}.$

Ejemplo: palabra w = nano

¿cómo podemos usar A_w para encontrar todas las apariciones de w en d?

Determinización de A_w

Sea $\mathcal{A}_{w}^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{0\}, F^{\text{det}})$ la determinización de \mathcal{A}_{w} tal que Q^{det} contiene solo los estados alcanzables desde $\{0\}$.

Recordatorio

Para un autómata no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$, se define el autómata determinista (determinización de \mathcal{A}):

$$\mathcal{A}^{\mathsf{det}} = (Q^{\mathsf{det}}, \Sigma, \delta^{\mathsf{det}}, q_0^{\mathsf{det}}, F^{\mathsf{det}})$$

- $Q^{\text{det}} = 2^Q = \{ S \mid S \subseteq Q \}$
- $q_0^{\text{det}} = I.$
- $\delta^{\det}: 2^Q \times \Sigma \to 2^Q \text{ tal que:}$

$$\delta^{\text{det}}(S, a) = \{ q \in Q \mid \exists p \in S. (p, a, q) \in \Delta \}$$

$$F^{\text{det}} = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}.$$

Determinización de A_w

Sea $\mathcal{A}_{w}^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{0\}, F^{\text{det}})$ la determinización de \mathcal{A}_{w} tal que Q^{det} contiene solo los estados alcanzables desde $\{0\}$.

¿cuál es el problema de construir $\mathcal{A}_w^{\text{det}}$?

¿cómo utilizamos A_w^{det} para encontrar todos los matches?

¿cuál es el tiempo de este algoritmo una vez construido $\mathcal{A}_{w}^{\text{det}}$?

Sea
$$w = w_1 \dots w_m$$
 y $\mathcal{A}_w^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{0\}, F^{\text{det}})$ la determ. de \mathcal{A}_w .

Teorema

Para todo $S \in Q^{\text{det}}$ y $i \in \{0, 1, ..., m\}$ se cumple que:

$$i \in S$$
 si, y solo si, $w_1 \dots w_i$ es un sufijo de $w_1 \dots w_{\max(S)}$.

Corolarios

- Para todo $S_1, S_2 \in Q^{\text{det}}$, si $\max(S_1) = \max(S_2)$, entonces $S_1 = S_2$.
- $\mathcal{A}_{w}^{\text{det}}$ tiene |w| + 1 estados y $\mathcal{O}(|w|^2)$ transiciones.

Por lo tanto, encontrar todos los substrings de w en d toma tiempo $\mathcal{O}(|d| + |w|^2)$

Demostración teorema

Sea $S \in Q^{\text{det}}$ un conjunto de estados cualquiera alcanzable desde $\{0\}$.

Entonces existe una palabra $u = a_1 \dots a_k$ tal que $\hat{\delta}^{\det}(\{0\}, u) = S$.

Por la demostración que $\mathcal{L}(\mathcal{A}^{\text{det}}) = \mathcal{L}(\mathcal{A})$ para todo NFA \mathcal{A} (Clase 03), sabemos que $j \in S$ si, y solo si, existe una ejecución de \mathcal{A}_w sobre u:

$$0=q_0\stackrel{a_1}{\to}q_1\stackrel{a_2}{\to}\ldots\stackrel{a_k}{\to}q_k=j.$$

Por la definición de A_w esta ejecución es de la forma:

$$0\stackrel{a_1}{\rightarrow}0\stackrel{a_2}{\rightarrow}\dots\stackrel{a_{k-j}}{\rightarrow}0\stackrel{a_{k-j+1}}{\longrightarrow}1\stackrel{a_{k-j+2}}{\rightarrow}2\dots\stackrel{a_k}{\rightarrow}j.$$

Por lo tanto, $w_1 w_2 \dots w_j$ es sufijo de $a_1 \dots a_k$.

Usaremos este último hecho para demostrar ambas direcciones.

Propiedad

Para toda $u = a_1 \dots a_k$ tal que $\hat{\delta}^{\text{det}}(\{0\}, u) = S$, y para todo $j \leq m$:

$$j \in S$$
 si, y solo si, $w_1 \dots w_j$ es sufijo de $a_1 \dots a_k$

Demostración teorema (⇒)

Como S es alcanzable desde $\{0\}$,

entonces existe $u = a_1 \dots a_k$ tal que $\hat{\delta}^{\text{det}}(\{0\}, u) = S$.

Como $\max(S) \in S$, entonces $w_1 \dots w_{\max(S)}$ es sufijo de $a_1 \dots a_k$.

Suponga que $i \in S$. Entonces $w_1 \dots w_i$ es sufijo de $a_1 \dots a_k$.

Como $i \leq \max(S)$, entonces:

$$a_1 a_2 \dots a_{k-\max(S)} \overbrace{a_{k-\max(S)+1} \dots a_{k-i}}^{w_1 \dots w_{\max(S)}} \underbrace{a_{k-i+1} \dots a_k}_{w_1 \dots w_1 \dots w_1}$$

Por lo tanto, $w_1 ldots w_i$ es sufijo de $w_1 ldots w_{\max(S)}$.

Propiedad

Para toda $u = a_1 \dots a_k$ tal que $\hat{\delta}^{\text{det}}(\{0\}, u) = S$, y para todo $j \leq m$:

$$j \in S$$
 si, y solo si, $w_1 \dots w_j$ es sufijo de $a_1 \dots a_k$

Demostración teorema (←)

Como S es alcanzable desde $\{0\}$,

entonces existe $u = a_1 \dots a_k$ tal que $\hat{\delta}^{\text{det}}(\{0\}, u) = S$.

Como $\max(S) \in S$, entonces $w_1 \dots w_{\max(S)}$ es sufijo de $a_1 \dots a_k$.

Suponga que $w_1 \dots w_i$ es sufijo de $w_1 \dots w_{\max(S)}$.

Como $w_1 \dots w_i$ es sufijo de $w_1 \dots w_{\max(S)}$ y $w_1 \dots w_{\max(S)}$ es sufijo de u, entonces $w_1 \dots w_i$ es sufijo de $u = a_1 \dots a_k$.

Por la "Propiedad", concluimos que $i \in S$.

Sea $w = w_1 \dots w_m$ y $\mathcal{A}_w^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{0\}, F^{\text{det}})$ la determ. de \mathcal{A}_w .

Teorema

Para todo $S \in Q^{\text{det}}$ y $i \in \{0, 1, ..., m\}$ se cumple que:

 $i \in S$ si, y solo si, $w_1 \dots w_i$ es un sufijo de $w_1 \dots w_{\max(S)}$.

Corolarios

 $\mathcal{A}_{w}^{\text{det}}$ tiene |w| + 1 estados y $\mathcal{O}(|w|^2)$ transiciones.

Por lo tanto, encontrar todos los substrings de w en d toma tiempo $\mathcal{O}(|d|+|w|^2)$

¿es posible hacerlo mejor?