

Resistant Fit Regression Normalization for Single-cell RNA Sequencing Data

Da Kuang, Junhyong Kim

1 Introduction

- Motivation
- Current Methods
- Potential Issues

1-1 Motivation

- scRNA-seq is used to estimates the molecular counts of all the mRNA types in a cell.
- Many factors can affect the measurement.
 - Technical variations: noise, reduced sensitivities, etc.
 - Biological variations: different cell types, life cycles, etc.
- Normalization corrects variations and makes measurements of two or more samples comparable.

1-2 Current Methods

Three types of normalization methods

- Estimate scaling factors
 - Log-scale norm, SCRAN
- Approximate probabilistic model
 - scVI, DCA
- Normalize to matched distribution
 - SCNorm, SCTransform

1-3 Potential Issues

All three classes of methods are focused on technical variations but that is not enough for transcriptome analysis.

1-3 Potential Issues: Example

Example

Suppose we have 101 genes in two cells, $g_1 \sim g_{101}$.

- In Cell₁, all gene counts are 100 except $g_{101} = 0$.
- In Cell₂, all gene counts are 80 except $g_{101} = 2000$.

Two cell have the same sum of counts.

Discussion

The measured molecular numbers of g_1 to g_{100} are different in two cells.

- But it is not necessary to mean different expression levels.
- The variations are caused by the highly differential expression of g_{101} .

Correct the first normalized cell by a 0.8 size factor, making genes g_1 to g_{101} equivalent in both datasets.

	Measured	Normalized	Better Normalized
Cell	(100,100,,100, <mark>0</mark>)	(0.01,, 0.01, <mark>0</mark>)	(0.008,, 0.008, <mark>0</mark>)
Cell ₂	(80, 80,, 80, <mark>2000</mark>)	(0.008,, 0.008, <mark>0.2</mark>)	(0.008,, 0.008, <mark>0.2</mark>)

2 Normalization Framework

- Overview
- Two Transcriptomes
- Multi-transcriptomes

2-1 Overview

Here we propose

- For a given cell, ϕ_i is the same among all the genes.
- For different cells, ϕ_i are only differed by a scalar size factor.

If we estimate the size factor based on all the genes, then it makes no difference with count per million (CPM).

Biological Feature Set (S)

Inspired by example, to estimate size factor, we will only use a subset of genes that did not experience localized large deviation.

Schematic of Framework

If
$$x_1 = x_2$$
 in biology space,
then $\phi_1(f_1(x_1)) = \phi_2(f_2(x_2))$.

2-2 Two Transcriptomes

Object

To find the normalizing function, we set ϕ_i to an identical function and ϕ_i to some function ω with parameter λ .

- Suppose we have two observations of two cells, $x = \{x_1, ..., x_q\}$ and $y = \{y_1, ..., y_q\}$.
- We find a normalizing function by minimizing $O(\lambda) = \|x \omega_{\lambda}(y)\|^{2}$
- For simplicity, we only consider ω_{λ} as a two-parameter linear function.

Schematic of Framework

If
$$x_1 = x_2$$
 in biology space,
then $\phi_1(f_1(x_1)) = \phi_2(f_2(x_2))$.

2-3 Two Transcriptomes

Optimization

We use robust regression to fit the normalizing function ω_{λ} while excluding extremely distorted data.

- Regress on the biological feature set S with p genes.
- By default $p = 0.7 \times n$, where n is the number of genes .
- The types of genes in S can be different from cell to cell.

Expectation-maximization (EM) algorithm for optimization

- [Init E step] Linear fit on all genes.
- [M step] Rank genes by squared residual. Put top p genes in S.
- [E step] Liner regression on S. Repeat M, E steps until converge.

Schematic of Framework

If
$$x_1 = x_2$$
 in biology space,
then $\phi_1(f_1(x_1)) = \phi_2(f_2(x_2))$.

2-4 Multi-transcriptomes

For more than two transcriptomes, we suggest an iterated normalization to match all the measurements to a centroid transcriptome.

Let $T_1, T_2, ..., T_n$ be n different transcriptomes for normalization and T_c is defined as the centroid transcriptome.

Algorithm 1 Normalizing Multiple Transcriptomes

```
1: for j in epoch do
2: T_c = \text{arithmetic average } (T_1, T_2, \cdots, T_n)
3: for i in 1:n do
4: Normalize T_i to T_c
5: end for
6: end for
```

In our experiment, usually 1 to 3 epoch would be sufficient to normalize a dataset.

Schematic of Framework

If
$$x_1 = x_2$$
 in biology space,
then $\phi_1(f_1(x_1)) = \phi_2(f_2(x_2))$.

3 Result

- Biological Application
- Differential Expression
- Biological Sense

3-1 Biological Application

Normalize a single-cell RNA sequencing dataset of 33,148 peripheral blood mononuclear cells.

- Four major types
- Fourteen sub-cell types.

3-2 Differential Expression

False Positives in Differential Expression Test

For each sub-cell, cells were evenly separated into two groups.

- In one group, gene counts were randomly down sampled to 50% of the original expression level.
- Therefore, ideally, we expect no DE genes between groups since they are biologically identical.

Resistant Fit Norm has the smallest number of false positives.

Number of False Positives

l Cells		Normalizat	ion Method	-		
Cens		Normalization Methods				
IN Cells	RF Norm	Log-scale	SCRAN	SCT	scVI	
5961	0	0	0	0	1	
4431	0	0	0	0	1	
5551	0	0	0	0	0	
2886	0	0	0	0	1	
2067	0	0	0	0	1	
1917	0	0	0	0	2	
1655	3	0	0	0	1	
1475	2	0	1	0	1	
1453	0	0	0	0	4	
953	0	1	1	0	0	
204	6	57	27	1	1	
217	4	59	14	2	0	
140	16	119	74	9	0	
96	18	203	116	30	8	
	4431 5551 2886 2067 1917 1655 1475 1453 953 204 217 140	4431 0 5551 0 2886 0 2067 0 1917 0 1655 3 1475 2 1453 0 953 0 204 6 217 4 140 16	4431 0 0 5551 0 0 2886 0 0 2067 0 0 1917 0 0 1655 3 0 1475 2 0 1453 0 0 953 0 1 204 6 57 217 4 59 140 16 119	4431 0 0 0 5551 0 0 0 2886 0 0 0 2067 0 0 0 1917 0 0 0 1655 3 0 0 1475 2 0 1 1453 0 0 0 953 0 1 1 204 6 57 27 217 4 59 14 140 16 119 74	4431 0 0 0 0 5551 0 0 0 0 2886 0 0 0 0 2067 0 0 0 0 1917 0 0 0 0 1655 3 0 0 0 1475 2 0 1 0 1453 0 0 0 0 953 0 1 1 0 204 6 57 27 1 217 4 59 14 2 140 16 119 74 9	

RF Norm = Resistant Fit Normalization

Log-scale = log(I + CPM)

SCT = SCTransform

3-3 Biological Sense

Biological Meaning Between Cell Types

Normalize the CD4 and CD8 T cells followed by differential expression test.

The number of differentially expressed genes (DEs) are in the table.

- RF Norm DEs form a subset of Log-scale and SCRAN DEs.
- RF Norm Down DEs form a subset of SCTransform Down DEs .
 - RF Norm Down DEs are enriched in "MHC class I protein binding".
 - SCTransform Down DEs are enriched in "MHC class II protein binding".
 - The result of RF Norm is more consistent with the function of CD8 T cells.

CD4 Memory vs. CD8 Effector								
Method	Total	Down	Up					
Log-scale	724	161	563					
SCRAN	210	70	140					
SCTransform	86	45	41					
SCVI	87	60	27					
Resistant Fit	105	32	73					
Shared with Log-scale	104	24	69					
Shared with SCRAN	105	32	73					
Shared with SCT	61	32	29					
Shared with SCVI	29	19	10					

Up refers to increased expression in CD4 cells.

Down refers to decreased expression in CD4 cells.

All genes:

Down genes:

4 Conclusion

4 Conclusion

We present a new framework for normalization while making the samples biologically comparable.

Our Resistant Fit Normalization shows the less false-positive rate and better biological meaning, demonstrating an effective discovery of a differentially expressed list of genes.

Acknowledgment

This project is funded by the Pennsylvania Commonwealth Health Research Formula Funding.

