Problem 1.

Calculate the threshold for the following photonuclear reactions:

- $^{12}C(\gamma, n^0)^{11}C$
- $^{53}Cr(\gamma, n^0)^{52}Cr$
- ${}^{105}\mathrm{Pd}(\gamma, n^0){}^{104}\mathrm{Pd}$
- $^{183}W(\gamma, n^0)^{182}W$
- How do these thresholds compare with what you would expect for a typical binding energy of a nucleon in a nucleus?

Problem 2. Anderson 7.4

Suppose a 140 keV photon undergoes photoelectric effect in a lead sheet with a K-shell electron.

- What is the kinetic energy liberated?
- If it is assumed that this is all photoelectron kinetic energy, calculate the electron momentum and the photon momentum and compare the two.

Problem 3. Anderson 7.11

Given that the mass attenuation coefficient for 63 Cu is $0.474\,\mathrm{m^2/kg}$ at $40\,\mathrm{keV}$ (photoelectron dominates) and $0.0042\,\mathrm{m^2/kg}$ at $2\,\mathrm{MeV}$ (incoherent scatter dominates), estimate the coefficient for 56 Fe at these energies.

Problem 4.

Go to the NIST XCOM webpage and find the photon energies where the photoelectric effect and Compton scattering (incoherent scattering) have the same magnitudes for:

- Carbon
- Aluminum
- Copper
- Tungsten
- Uranium