AULA 16

Teorema de Stone Weierstrass

Teorema 16.1. Seja Ω um espaço topológico compacto Hausdorff. Seja $\mathscr{A} \subset C(\Omega,\mathbb{R})$ uma classe de funções satisfazendo as seguintes condições:

- a) A é uma álgebra;
- b) A função ${\bf 1}$ (função constante igual a 1) pertence a ${\mathscr A}$;
- b) A separa pontos, i.e, para cada par de pontos $x \neq y$ existe $f \in tal$ que $f(x) \neq f(y)$

então temos que $\overline{\mathscr{A}}^{\|\cdot\|_0} = C(\Omega, \mathbb{R})$

1. Exercícios

- 1. Seja Ω um espaço topológico compacto Hausdorff. Mostre que o subespaço $C^{\gamma}(\Omega, \mathbb{R})$ das funções γ -Hölder contínuas é denso em $C(\Omega, \mathbb{R})$.
- 2. Seja $f:[a,b]\to\mathbb{R}$ uma função contínua tal que $\int x^n f(x) dx = 0$ para todo $n\in\mathbb{R}$. Mostre que $f\equiv 0$.
- 3. Mostre que o o conjunto dos polinômios trigonométricos é denso em $C([0, 2\pi], \mathbb{R})$.