13.1	Compact Intervals
	- A set $S \subseteq \mathbb{R}$ is said to be sequentially compact if every sequence of points in S has a subsequence converging to
	a point in S
	Sequential Compactness Theorem:
	- A compact interval [a,b] is sequentially compact
13.2	Bounded Continuous Functions
	Boundedness Theorem:
	- If $f(x)$ is confinuous on a compact interval I , then $f(x)$ is bounded on I
13,3	External Points of Continuous Functions
	Maximum Theorem:
	-Let $f(x)$ be continuous on the compact interval I . Then $f(x)$ has a maximum and minimum on I , that is, there
	exist points \overline{x} , $x \in I$ such that $f(\overline{x}) = \sup_{x \in I} f(x)$, $f(\underline{x}) = \inf_{x \in I} f(x)$
13,4	The Mapping Viewpoint
	Continuous Mapping Theorem:
	- If $f(x)$ is defined and continuous on the compact interval I , then $f(I)$ is a compact interval.
13.5	Uniform Continuity
	- We say $f(x)$ is uniformly continuous on the interval I if , given $\varepsilon>0$, there is a $\delta>0$ such that
	$f(x') \approx f(x'')$ if $x' \approx x''$, $x', x'' \in I$
	Uniform continuity on I Given $\epsilon > 0$, there is a $\delta > 0$ (depending only on ϵ) such that
	$f(x) \underset{\epsilon}{pprox} f(a) \text{for} x \underset{\delta}{pprox} a, x, a \in I \; .$ Ordinary continuity on I
	Given $\epsilon > 0$, there is a $\delta > 0$ (depending on ϵ and a) such that $f(x) \underset{\epsilon}{\approx} f(a) \text{for} x \underset{\delta}{\approx} a, x, a \in I \ .$
	Uniform Continuity Theorem:
	- If I is a compact interval, $f(x)$ continuous on $I \Rightarrow f(x)$ uniformly confinuous on I