Technical Notes for Research Project Summary

Viet-Anh Le^{1,2}

 $^{1}{\rm University}~{\rm of}~{\rm Delaware}\\ ^{2}{\rm Cornell}~{\rm University}$

October 14, 2024

Distributed Optimization

 Consider an optimization problem involving N agents with separable objectives and coupling constraints:

$$\min_{m{x}_i \in \mathcal{X}_i^{ ext{MI}}} \quad \sum_{i=1}^N \ f_i(m{x}_i),$$
 subject to $\sum_{i=1}^N m{A}_i m{x}_i = m{b},$

where $\mathcal{X}_{i}^{\text{MI}}$ is the mixed-integer-valued set for \mathbf{x}_{i} ,

$$f_i(\mathbf{x}_i) = \mathbf{x}_i^{\top} \mathbf{Q}_i \mathbf{x}_i + \mathbf{q}_i^{\top} \mathbf{x}_i,$$

is the local objective function of each agent–i, Q_i , q_i , A_i , and b are the matrices and vectors of coefficients. Let $\mathbf{x}^\top = [\mathbf{x}_1^\top, \dots, \mathbf{x}_N^\top]$ be the concatenated vector of optimization variables, and let $\mathbf{A} = [\mathbf{A}_1, \dots, \mathbf{A}_N]$.

Viet-Anh Le (UD) Research October 14, 2024

Distributed Optimization

Overview

- We combine proximal ADMM with sequential convexification of the integrality constraints.
- At each iteration t, we keep a mixed-integer-valued vector $\mathbf{x}_i^{(t)} \in \mathcal{X}_i^{\mathrm{MI}}$ and an real-valued solution of the relaxed problem $\tilde{\mathbf{x}}_i^{(t)} \in \tilde{\mathcal{X}}_i$ where $\tilde{\mathcal{X}}_i$ is formed from \mathcal{X}_i by relaxing the integrality constraints.

Augmented Lagrangian

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \sum_{i=1}^{N} f_i(\mathbf{x}_i) + \boldsymbol{\lambda}^{\top} \left(\sum_{i=1}^{N} \mathbf{A}_i \mathbf{x}_i - \mathbf{b} \right) + \frac{\rho}{2} \left\| \sum_{i=1}^{N} \mathbf{A}_i \mathbf{x}_i - \mathbf{b} \right\|_{2}^{2},$$
(2)

where λ are the dual variables (Lagrangian multipliers), and $\rho > 0$ is a positive constant.

Viet-Anh Le (UD) Research October 14, 2024

Algorithm

• Agent–*i* solves the local problem (3).

$$\mathbf{x}_{i}^{(t+1)} = \underset{\mathbf{x}_{i} \in \tilde{\mathcal{X}}_{i}}{\operatorname{arg \, min}} \, \mathcal{L}(\mathbf{x}_{i}, \tilde{\mathbf{x}}_{-i}^{(t)}, \boldsymbol{\lambda}^{(t)}) + \beta_{i} \left\| \mathbf{x}_{i} - \tilde{\mathbf{x}}_{i}^{(t)} \right\|_{2}^{2}, \tag{3}$$

where $\beta_i \in \mathbb{R}^+$ is a penalty weight.

ullet Update the dual variables $oldsymbol{\lambda}$ by

$$\boldsymbol{\lambda}^{(t+1)} = \boldsymbol{\lambda}^{(t)} + \gamma \rho \bigg(\sum_{i=1}^{N} \boldsymbol{A}_{i} \boldsymbol{x}_{i} - \boldsymbol{b} \bigg). \tag{4}$$

• Compute $\tilde{\mathbf{x}}_i^{(t+1)}$ from $\mathbf{x}_i^{(t+1)}$ by rounding operator (transform a real-valued solution into an integer one). In other words,

$$\tilde{\mathbf{x}}_{i}^{(t+1)} = \underset{\mathbf{x}_{i} \in \mathcal{X}_{i}^{\text{MI}}}{\min} \left\| \mathbf{x}_{i} - \mathbf{x}_{i}^{(t+1)} \right\|_{2}^{2},$$
 (5)

Convergence Analysis

Overview

- For nonconvex and nonsmooth optimization, to prove convergence, we need to (1) identify a so-called sufficiently decreasing Lyapunov function; and (2) establish the lower boundness property of the Lyapunov function^a.
- Let (x^*, λ^*) be a saddle point that satisfies the KKT conditions of the relaxed problem (QP)

$$\mathbf{A}_{i}^{\top} \mathbf{\lambda}^{*} \in \partial f_{i}(\mathbf{x}_{i}^{*}), \ \forall i = 1, \dots, N,$$

$$\sum_{i=1}^{N} \mathbf{A}_{i} \mathbf{x}_{i}^{*} = \mathbf{b}$$
(6)

where $\partial f_i(\mathbf{x}_i)$ denotes subdifferential of f_i at \mathbf{x}_i .

We consider the following Lyapunov function

$$\Phi^{(t)} = \left\| \mathbf{x}^{(t)} - \mathbf{x}^* \right\|_{P}^2 + \frac{1}{\gamma \rho} \left\| \boldsymbol{\lambda}^{(t)} - \boldsymbol{\lambda}^* \right\|_{2}^2 + \eta \left\| \tilde{\mathbf{x}}^{(t)} - \mathbf{x}^{(t)} \right\|_{2}^2$$
 (7)

where $\eta > 0$.

^aYang et al., "Proximal admm for nonconvex and nonsmooth optimization".

Lemma 1

For t > 1, we have

$$\left(\left\|\mathbf{x}^{(t)} - \mathbf{x}^*\right\|_{\boldsymbol{P}}^2 + \frac{1}{\gamma\rho} \left\|\boldsymbol{\lambda}^{(t)} - \boldsymbol{\lambda}^*\right\|_2^2\right) - \left(\left\|\mathbf{x}^{(t+1)} - \mathbf{x}^*\right\|_{\boldsymbol{P}}^2 + \frac{1}{\gamma\rho} \left\|\boldsymbol{\lambda}^{(t+1)} - \boldsymbol{\lambda}^*\right\|_2^2\right) \\
\geq \left\|\tilde{\mathbf{x}}^{(t)} - \mathbf{x}^{(t+1)}\right\|_{\boldsymbol{P}}^2 + \frac{2-\gamma}{\rho\gamma^2} \left\|\boldsymbol{\lambda}^{(t)} - \boldsymbol{\lambda}^{(t+1)}\right\|_2^2 + \frac{2}{\gamma} (\boldsymbol{\lambda}^{(t)} - \boldsymbol{\lambda}^{(t+1)})^{\top} \boldsymbol{A}(\tilde{\mathbf{x}}^{(t)} - \mathbf{x}^{(t+1)}). \tag{8}$$

Viet-Anh Le (UD) Research October 14, 2024 6

Lemma 2

For t > 1, we have

$$\Phi^{(t)} - \Phi^{(t+1)} \ge \left\| \tilde{\mathbf{x}}^{(t)} - \mathbf{x}^{(t+1)} \right\|_{P-\eta\mathbb{I}}^{2} + \frac{2-\gamma}{\rho\gamma^{2}} \left\| \boldsymbol{\lambda}^{(t)} - \boldsymbol{\lambda}^{(t+1)} \right\|_{2}^{2} + \frac{2}{\gamma} (\boldsymbol{\lambda}^{(t)} - \boldsymbol{\lambda}^{(t+1)})^{\top} \boldsymbol{A} (\tilde{\mathbf{x}}^{(t)} - \mathbf{x}^{(t+1)}) + \eta \left\| \tilde{\mathbf{x}}^{(t)} - \mathbf{x}^{(t)} \right\|_{2}^{2}$$
(9)

As a result, if the matrix

$$\mathbf{R} = \begin{pmatrix} \mathbf{P} - \eta \mathbb{I} & \frac{1}{\rho} \mathbf{A}^{\top} \\ \frac{1}{\rho} \mathbf{A} & \frac{2 - \gamma}{\rho \gamma^{2}} \mathbb{I} \end{pmatrix}$$
(10)

is positive definite, then $\{\Phi^{(t)}\}$ sufficiently decrease.

Viet-Anh Le (UD) Research October 14, 2024 7

Convergence Analysis

Theorem

If the parameters ho, γ , and eta are chosen such that the following conditions are satisfied

$$\beta_{i} > \eta + \rho \left(1/\epsilon - 1 \right) e_{i},$$

$$2 - \gamma > N\epsilon,$$
(11)

where e_i is the maximum eigenvalue of $\mathbf{A}_i^{\top} \mathbf{A}_i$, $\epsilon > 0$ is a positive constant, then $\{\mathbf{x}^{(t)} - \tilde{\mathbf{x}}^{(t)}\}$ converge to 0, and the sequence $\{\mathbf{x}^{(t)}, \boldsymbol{\lambda}^{(t)}\}$ converges.

Viet-Anh Le (UD) Research October 14, 2024