Kinematics

Kinematics

- The branch of mechanics concerned with the motions of objects without regard to the forces that cause the motion
- Why kinematics?
 - Hierarchical articulated model
 - Posing a character

Degrees of Freedom (DOF)

 The minimum number of coordinates required to specify completely the motion of an object

6 DOF: x, y, z, raw, pitch, yaw

Degrees of Freedom in Human Model

- Root: 3 translational DOF + 3 rotational DOF
- Rotational joints are commonly used
- Each joint can have up to 3 DOF
 - Shoulder: 3 DOF
 - Wrist: 2 DOF
 - Knee: 1 DOF

Revolute Joints

- 3 DOF joint
 - gimbal
 - ball and socket

- 2 DOF joint
 - universal

Hierarchical Articulated Model

- Represent an articulated figure as a series of links connected by joints
- Enforce limb connectivity in a tree-like structure

Joint Space vs. Cartesian Space

- Joint space
 - space formed by joint angles
 - position all joints—fine level control
- Cartesian space
 - -3D space
 - specify environment interactions

Forward and Inverse Kinematics

- Forward kinematics
 - mapping from joint space to cartesian space
- Inverse kinematics
 - mapping from cartesian space to joint space

Forward Kinematics

$$P = f(\theta_1, \theta_2)$$

Inverse Kinematics

$$\theta_1, \theta_2 = f^{-1}(P)$$

Forward and Inverse Kinematics (cont.)

- Forward kinematics
 - rendering
- Inverse kinematics
 - good for specifying environment interaction
 - good for controlling a character—fewer parameters

Notations

- $ullet V_i$: vector represented in coordinate frame i
- iT: global position of the origin of coordinate frame i (global position of the ith joint)
- ${}^{i}R$: rotation matrix that transforms a vector from coordinate frame i to coordinate frame j, i.e.,

$$V_j = {}_j^i R V_i$$

Forward Kinematics

$$_{i+1}T = {}_{0}^{1}R\{{}_{1}^{2}R \cdots {}_{i-2}^{i-1}R({}_{i-1}^{i}RV_{i} + V_{i-1}) + V_{i-2}] \cdots] + V_{1}\}$$

$$_{i+1}T = {}_{0}^{i}RV_{i} + {}_{i}T$$

Forward Kinematics by Composing Transformations

Relative rotation from the local coordinate of parent link to the local coordinate of the child link

With simplified notations

$$x = l_1 \cos(\theta_1) + l_2 \cos(\theta_2) + l_3 \cos(\theta_3)$$
$$y = l_1 \sin(\theta_1) + l_2 \sin(\theta_2) + l_3 \sin(\theta_3)$$

Acclaim Format

- Skeletal animation file format including
 - .ASF: Skeleton file
 - .AMC: Motion file

 All information in ASF file is specified with respect to the global coordinate, while all information in AMC file is specified with respect to the local coordinate.

ASF File

 Describes the local frame of each bone of a neutral (zero) pose in the global coordinate, e.g. Euler angle in xyz order,

$$_{0}^{i}R=_{0}^{i}R_{z}\cdot_{0}^{i}R_{y}\cdot_{0}^{i}R_{x}$$

 We need to compute the relative transformation and the unit-length bone direction vector in local coordinate

$$_{i}R_{asf} = _{i}^{i+1}R = _{i}^{0}R \cdot _{0}^{i+1}R \qquad \hat{V}_{i} = _{i}^{0}R\hat{V}_{0}$$

begin id 2 name Ifemur direction 0.342 -0.939 0 length 7.113 axis 0 0 20 XYZ dof rx ry rz limits (-160.0 20.0) (-70.0 70.0) (-60.070.0)end

AMC File

$_{i}R_{amc} = _{i}R_{z} \cdot _{i}R_{y} \cdot _{i}R_{x}$

```
#!OML:ASF F:\VICON\USERDATA\INSTALL\rory3\rory3.ASF
:FULLY-SPECIFIED
:DEGREES
root 3.1294 17.6906 0.576147 -69.7364 88.7134 -68.7451
lowerback 5.37529 -0.419929 3.55267
upperback -1.47894 -0.3644 -1.32457
thorax -4.58452 -0.299522 -3.33877
lowerneck -3.64552 -5.65816 -4.72229
upperneck 4.19034 -7.74441 9.40555
head 2.64463 -3.6745 3.67041
rclavicle 1.2921e-015 1.55052e-014
rhumerus -39,2113 -25,8219 -71,2854
rradius 20.028
rwrist 28.2698
rhand -0.838087 16.263
rfingers 7.12502
rthumb 24.7874 -12.1506
```

ILE5030 Computer Animation and Special Effects 24S

1Clavicle 1 2021e-015 1 55052e-014

Forward Kinematics in ASF/AMC

$$i^{i+1}R = {}_{i}R = {}_{i}R \underset{asf}{sf} \cdot {}_{i}R \underset{amc}{amc}$$

$$id 2$$

$$nan \underset{o}{dire}$$

$$iR = {}_{0}^{1}R {}_{1}^{2}R \cdots {}_{i-1}^{i}R$$

$$V_{i} = \hat{V_{i}} \cdot l_{i}$$

$$iT = {}^{i-1}R V_{i-1} + {}_{i-1}T$$
end

```
id 2
name Ifemur
direction 0.342 -0.939 0
length 7.113
axis 0 0 20 XYZ
dof rx ry rz
limits (-160.0 20.0)
(-70.0 70.0)
(-60.0 70.0)
end
```


Inverse Kinematics

$$\theta_1, \theta_2, \theta_3 = f^{-1}(P)$$

Redundancy in IK

- Our example
 - 2 equations (constraints)
 - -3 unknowns

$$x = l_1 \cos(\theta_1) + l_2 \cos(\theta_2) + l_3 \cos(\theta_3)$$
$$y = l_1 \sin(\theta_1) + l_2 \sin(\theta_2) + l_3 \sin(\theta_3)$$

- Multiple solutions exist!
- This is not uncommon!
 - see how you can move your elbow while keeping your finger touching your nose

Other problems in IK

Infinite solutions

Other problems in IK

No solutions

Why Is IK hard?

- Redundancy
- Natural motion
 - joint limits
 - minimum jerk
 - style?
- Singularities
 - ill-conditioned matrix
 - shown later

Solving Inverse Kinematics

- Analytic method
- Inverse-Jacobian method
- Optimization-based method
- Example-based method

Analytic Method

Analytic Method (cont.)

Cosine Law

$$\cos(\alpha) = \frac{A^2 + B^2 - C^2}{2AB}$$

Analytic Method

$$\cos(\theta_T) = \frac{X}{\sqrt{X^2 + Y^2}}$$

$$\theta_T = \cos^{-1} \left(\frac{X}{\sqrt{X^2 + Y^2}} \right)$$

$$\cos(\theta_1 - \theta_T) = \frac{L_1^2 + X^2 + Y^2 - L_2^2}{2L_1\sqrt{X^2 + Y^2}}$$

$$\cos(180 - \theta_2) = \frac{L_1^2 + L_2^2 - (X^2 + Y^2)}{2L_1L_2}$$

$$\cos(180 - \theta_2) = \frac{L_1^2 + L_2^2 - (X^2 + Y^2)}{2L_1 L_2}$$

$$\theta_2 = 180 - \cos^{-1} \left(\frac{L_1^2 + L_2^2 - (X^2 + Y^2)}{2L_1 L_2} \right)$$

$$\theta_2 = 180 - \cos^{-1} \left(\frac{L_1^2 + L_2^2 - (X^2 + Y^2)}{2L_1 L_2} \right)$$

$$\theta_1 = \cos^{-1}\left(\frac{L_1^2 + X^2 + Y^2 - L_2^2}{2L_1\sqrt{X^2 + Y^2}}\right) + \theta_T$$

Inverse-Jacobian method

When linkage is complicated

 Iteratively change the joint angles to approach the goal position and orientation

Jacobian

$$f(\mathbf{\theta}) = \mathbf{p}$$
 $\mathbf{p} \in \mathbb{R}^n \ (n = 6 \text{ usually})$
 $\mathbf{\theta} \in \mathbb{R}^m (m = \text{DOFs})$

• Jacobian is the n by m matrix relating differential changes of θ to differential changes of \mathbf{p} ($d\mathbf{p}$)

$$\frac{d\mathbf{p}}{dt} = \frac{\partial f(\mathbf{\theta})}{\partial \mathbf{\theta}} \frac{d\mathbf{\theta}}{dt} = J(\mathbf{\theta}) \frac{d\mathbf{\theta}}{dt} \qquad J_{ij} = \frac{\partial f_i}{\partial \theta_j}$$

• Jacobian maps velocities in joint space to velocities in cartesian space $J(\theta)\dot{\theta} = V$

Kinematic Interpretation of Jacobian

Example: Jacobian for a 2D arm

 Let's say we have a simple 2D robot arm with two 1-DOF rotational joints:

Jacobian for a 2D arm

• The Jacobian matrix J(θ) shows how each component of **p** varies with respect to each joint angle

$$J(\mathbf{\theta}) = \begin{bmatrix} \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \\ \frac{\partial p_y}{\partial \theta_1} & \frac{\partial p_y}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{p}}{\partial \theta_1} & \frac{\partial \mathbf{p}}{\partial \theta_2} \end{bmatrix}$$

Jacobian for a 2D arm

• Consider what would happen if we increased θ_1 by a small amount. What would happen to $\bf p$?

Jacobian for a 2D arm

• What if we increased θ_2 by a small amount?

Jacobian for a 2D arm

$$J(\mathbf{p}, \boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \\ \frac{\partial p_y}{\partial \theta_1} & \frac{\partial p_y}{\partial \theta_2} \end{bmatrix}$$

$$\theta_2$$

Computing Jacobian analytically

A simple example:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f_1(\mathbf{\theta}) \\ f_2(\mathbf{\theta}) \end{bmatrix} = \begin{bmatrix} l_1 \cos \theta_1 + l_2 \cos \theta_2 + l_3 \cos \theta_3 \\ l_1 \sin \theta_1 + l_2 \sin \theta_2 + l_3 \sin \theta_3 \end{bmatrix} \quad \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \mathbf{J} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{bmatrix}$$

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1(\mathbf{\theta})}{\partial \theta_1} & \frac{\partial f_1(\mathbf{\theta})}{\partial \theta_2} & \frac{\partial f_1(\mathbf{\theta})}{\partial \theta_3} \\ \frac{\partial f_2(\mathbf{\theta})}{\partial \theta_1} & \frac{\partial f_2(\mathbf{\theta})}{\partial \theta_2} & \frac{\partial f_2(\mathbf{\theta})}{\partial \theta_3} \end{bmatrix} = \begin{bmatrix} -l_1 \sin \theta_1 & -l_2 \sin \theta_2 & -l_3 \sin \theta_3 \\ l_1 \cos \theta_1 & l_2 \cos \theta_2 & l_3 \cos \theta_3 \end{bmatrix}$$

You can imagine how computing Jacobian gets ugly when there are multiple joints!

Computing Jacobian geometrically

- Instead of computing Jacobian analytically, we can take a geometric approach to compute it
- Let's say we are just concerned with the end effector position p for now.
 - This also implies that the Jacobian will be an $3\times N$ matrix where N is the number of DOFs
 - For each DOF of a joint, we analyze how p would change if the DOF changes

Rotational DOFs

- Let's consider a 1-DOF rotational joint first
- We want to know how the global position p
 will change if we rotate around the axis.

$$\mathbf{v} = \mathbf{\omega} \times \mathbf{r}$$

$$\frac{d\mathbf{p}}{dt} = |\mathbf{\omega}| \frac{\mathbf{\omega}}{|\mathbf{\omega}|} \times \mathbf{r} = \frac{d\theta}{dt} \mathbf{a} \times \mathbf{r}$$

$$\frac{\partial \mathbf{p}}{\partial \theta_1} = \begin{bmatrix} \frac{\partial p_x}{\partial \theta_1} \\ \frac{\partial p_y}{\partial \theta_1} \end{bmatrix} = \mathbf{a}_1 \times (\mathbf{p} - \mathbf{r}_1)$$

$$\mathbf{a}_1 = \frac{\mathbf{\omega}_1}{|\mathbf{\omega}_1|}$$

$$\mathbf{a}_1 = \frac{\mathbf{\omega}_1}{|\mathbf{\omega}_1|}$$

Rotational DOFs

$$\frac{\partial \mathbf{p}}{\partial \theta_i} = \mathbf{a}_i \times (\mathbf{p} - \mathbf{r}_i)$$

a: unit length rotation axis in world space

r_i: position of joint pivot in world space

p: end effector position in world space

3-DOF Rotational Joints

- Once we have each axis in world space, each one will get a column in the Jacobian matrix
- At this point, it is essentially handled as three 1-DOF joints, so we can use the same formula for computing the derivative as we did earlier:

$$\frac{\partial \mathbf{p}}{\partial \theta_i} = \mathbf{a}_i \times (\mathbf{p} - \mathbf{r}_i)$$

Iterative IK Using Inverse Jacobian

$$\theta = f^{-1}(P)$$

$$V = J(\theta)\dot{\theta}$$

$$\dot{\theta} = J^{-1}(\theta)V$$

$$\theta_{k+1} = \theta_k + \Delta t J^{-1}(\theta_k) V$$

- Linearize about θ_k locally
- Small increments

Jacobian may not be invertible!

- Non-square matrix
 - pseudo inverse
- Singularity
 - causes infinite joint velocities
 - occurs when any $\dot{ heta}$ cannot achieve V that is not perpendicular to the arm

44

Remedy to Singularity Problem

- Add redundancy
 - add more joints to the original joint chain (more DOFs are added)
 - Jacobian matrix is not square

Use pseudo inverse of Jacobian!

Pseudo Inverse of the Jacobian

Adding more control to IK

- Pseudo inverse computes one of many possible solutions that minimize joint angle velocities
- IK using pseudo inverse Jacobian may not provide natural poses
- A control term can be added to the pseudo inverse Jacobian solution
- The control term should not add anything to the velocities, that is $J\dot{\theta} = V$ control term

Control Term Adds Zero Linear Velocities

A solution of this form
$$\longrightarrow$$
 $C = (J^+J - I)z$

When put into this formula \longrightarrow $V = JC$

Like this \longrightarrow $V = J(J^+J - I)z$

After some manipulation, you can show that ...

 $V = (JJ^+J - J)z$
 $V = (JJ^+J - J)z$
 $V = (J-J)z$

...it doesn't affect the desired configuration $V = 0$

But it can be used to bias
The solution vector

Null space

The control term C is in the null space of J

$$C = (J^+J - I)z$$

The null space of J is the set of vectors
 which have no influence on the constraints

$$\theta \in nullspace(J) \iff J\theta = 0$$

Utility of Null Space

 The null space can be used to reach secondary goals

$$\dot{\theta} = J^{+}V + (J^{+}J - I)z$$

$$\min_{z} G(\theta)$$

Or to find natural pose / control stiffness of joints

$$G(\theta) = \sum_{i} \alpha_{i} (\theta_{natural}(i) - \theta(i))^{2}$$

Optimization-based Method

- Formulate IK as an nonlinear optimization problem
 - Example

minimize
$$x^2(y+1) + \sin(x+y)$$

subject to $x \ge 0, y \ge 0$

- Objective function
- Constraint
- Iterative algorithm
- Nonlinear programming method by Zhao & Badler, TOG 1994

Objective Function

"distance" from the end effector to the goal position/orientation

Objective Function

Position Goal

$$\left\|\mathbf{p_g} - \mathbf{p_e}\right\|^2$$

Orientation Goal

$$\left\|\mathbf{r}_{\mathbf{x}}^{\mathbf{g}} - \mathbf{r}_{\mathbf{x}}^{\mathbf{e}}\right\|^{2} + \left\|\mathbf{r}_{\mathbf{y}}^{\mathbf{g}} - \mathbf{r}_{\mathbf{y}}^{\mathbf{e}}\right\|^{2}$$

Position/Orientation Goal

$$w \|\mathbf{p}_{\mathbf{g}} - \mathbf{p}_{\mathbf{e}}\|^{2} + (1 - w)(\|\mathbf{r}_{\mathbf{x}}^{\mathbf{g}} - \mathbf{r}_{\mathbf{x}}^{\mathbf{e}}\|^{2} + \|\mathbf{r}_{\mathbf{y}}^{\mathbf{g}} - \mathbf{r}_{\mathbf{y}}^{\mathbf{e}}\|^{2})$$

weighted sum

Nonlinear Optimization

Constrained nonlinear optimization problem

$$\begin{cases} \text{minimize} & G(\mathbf{\theta}) \\ \text{subject to} & \mathbf{a}^{T}\mathbf{\theta} = \mathbf{b}_{1} \\ \mathbf{a}^{T}\mathbf{\theta} \leq \mathbf{b}_{2} \end{cases} \quad \text{limb coordination}$$

- Solution
 - standard numerical techniques
 - MATLAB or other optimization packages
 - usually a local minimum
 - depends on initial condition

Example-based Method

- Utilize motion database to assist IK solving
- IK using interpolation
 - Rose et al., "Artist-directed IK using radial basis function interpolation," Eurographics'01

Example-based Method (cont.)

- IK using constructed statistical model
 - Grochow et al., "Style-based inverse kinematics," SIGGRAPH'04
 - Provide the most likely pose based on given constraints

Example-based Method (cont.)

Constructed pose space (training, extrapolated)

Videos

References

- Zhao and Badler, "Inverse kinematics positioning using nonlinear programming for highly articulated figures," ACM TOG 1994.
- Rose et al., "<u>Artist-directed IK using radial basis</u> function interpolation," Eurographics'01
- Keith Grochow, Steven L. Martin, Aaron Hertzmann and Zoran Popovic, "Style-based inverse kinematics," SIGGRAPH'04.
- Aristidou et al., "Inverse Kinematics Techniques in Computer Graphics: A Survey," EG 2018