$$[F:\mathbb{Q}] = \phi(9) = 6$$

as F is cyclotomic extension, which means that

$$Gal(F/\mathbb{Q}) = [\mathbb{Z}/9\mathbb{Z}]^*$$

2) It is possible to write minimal polynomial $p \in \mathbb{Q}(\alpha)[X]$ as :

$$p(X) = (X - e^{2\pi i/9})(X - e^{-2\pi i/9}) = X^2 - 2\cos(2\pi/9)X + 1$$

as conjugation is a homomorphism of \mathbb{Q} - algebras and all non rational reals in F are result of conjugation of elements, which are themselves are \mathbb{Q} -linear combinations of basis elements generated by powers of ζ , which already contain conjugates. That is

$$\mathbb{Q}(\alpha) = F \cap \mathbb{R}$$

- 3) $X^9 5$ is the minimal polynomial for γ so $[L : \mathbb{Q}] = 9$. The subfield K must have degree which divides 9 but is not 1 or 9. So degree of K is 3. $\mathbb{Q}(\gamma^3)$ has degree 3 and is a subfield of L so it must, indeed, be equal to K (consider minimal polynomial $X^3 \gamma^3$ of γ over K.)
- 4) In case of nontrivial intersection $F \cap L = K$ as it must be nontrivial subextension of L. It is also know that extension F is Galois as cyclotomic extension, however K does not split any polynomials, so it is not normal and hence not Galois. And As every subextension of F must be Galois (abelean Galois group) it is clear that $F \cap L = \mathbb{Q}$.

This means that $[M:\mathbb{Q}] = [L:\mathbb{Q}][F:\mathbb{Q}] = 54$ as $M = \mathbb{Q}(\zeta,\gamma)$.

- 5) H is a subgroup inherited from L, the subgroup generated by action $\sqrt[9]{5} \mapsto \sqrt[9]{25}$. Another subgroup must be inherited from F. This soubgroup is generated by action $\zeta \mapsto \zeta^2$. so $H \cong \mathbb{Z}_9^+$ and $S \cong \mathbb{F}_6^+$. This means that |G| > 9, so the galois group is not commutative.
- 6) All subextensions of degree 2 of M must be also subextensions of F. The only such subextension I know is $\mathbb{Q}(\alpha)$
- 7) There are two subextensions of M of degree 3 but only one of them is Galois. This subextension must belong to F. So, it is $\mathbb{Q}(\xi)$ where ξ is the third primitive root of unity.