Math 32B, Calculus of Several Variables

-TA/Instructor Siveys

Lecture 26

due saluday et 8 am

Richard Wong

- (A grovey linn

or Carval.

Spring 2023, UCLA

de Tetroday of Som

Slides can be found on Canvas.

Final erun Thursday 6/8 4-4 pm 20 700m

· End of Q-oto reflector assignment

de before

frol exm.

L: 15 3-3 163 diversace Thm w is a solid resur in IR?

ow surface that excluses w. SF. ds = (SS div FdV is surface is sold reion h R3 W/ Mare! vector puty any from w.

How do we keep track of all of these theorems?

How do we keep track of all of these theorems?

Question

How does Stoke's theorem relate to the curl of a vector field in \mathbb{R}^3 ?

Corollary

Suppose \mathbf{F} is a vector field in \mathbb{R}^3 , and consider a plane through $X \in \mathbb{R}^3$ with unit normal vector \mathbf{n} . Let C be a small circle of radius ε in the plane, centered at \mathbf{X} , which encloses a disk D in the plane.

Corollary

Suppose \mathbf{F} is a vector field in \mathbb{R}^3 , and consider a plane through $X \in \mathbb{R}^3$ with unit normal vector \mathbf{n} . Let C be a small circle of radius ε in the plane, centered at P, which encloses a disk D in the plane. Then

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \, dS \approx \left(\operatorname{curl} \mathbf{F} \cdot \mathbf{n} \right) \operatorname{cnea} \mathbf{D}$$
we see the curling fix integral.

If we much \mathbf{D} very small

Corollary

Suppose \mathbf{F} is a vector field in \mathbb{R}^3 , and consider a plane through $X \in \mathbb{R}^3$ with unit normal vector \mathbf{n} . Let C be a small circle of radius ε in the plane, centered at P, which encloses a disk D in the plane. Then

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \, dS \approx (\operatorname{curl}(\mathbf{F})(P) \cdot \mathbf{n}) \operatorname{area}(D)$$

$$\operatorname{curl} \mathbf{F}(p) \cdot \vec{n} \approx \oint_{D} \mathbf{F} \cdot d\mathbf{r} \qquad \operatorname{appraxmale} \qquad \operatorname{curl} \mathbf{F}(p) \cdot \vec{n} = 0$$

$$\operatorname{curl} \mathbf{F}(p) \cdot \vec{n} \approx \oint_{D} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \, dS \approx (\operatorname{curl}(\mathbf{F})(P) \cdot \mathbf{n}) \operatorname{area}(D)$$

Corollary

Suppose \mathbf{F} is a vector field in \mathbb{R}^3 , and consider a plane through $X \in \mathbb{R}^3$ with unit normal vector \mathbf{n} . Let C be a small circle of radius ε in the plane, centered at P, which encloses a disk D in the plane. Then

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \ dS \approx (\operatorname{curl}(\mathbf{F})(P) \cdot \mathbf{n}) \operatorname{area}(D)$$

$$\text{Thus,}$$

$$(\operatorname{curl}(\mathbf{F})(P) \cdot \mathbf{n}) \approx \frac{1}{\operatorname{area}(D)} \oint_{\partial D} \mathbf{F} \cdot d\mathbf{r}$$

$$\text{along C}$$

Therefore, the **circulation** of \mathbf{F} in a given plane X depends on the angle between curl(\mathbf{F}) and \mathbf{n} .

Rogawski et al., *Calculus*, 4e, © 2019 W. H. Freeman and Company

Question

How does the divergence theorem relate to the divergence of a vector field in \mathbb{R}^3 ?

Rogawski et al., *Calculus*, 4e, © 2019 W. H. Freeman and Company

Interpreting divergence in \mathbb{R}^3

Corollary

Recall that $\iint_S \mathbf{F} \cdot d\mathbf{S}$ can be interpreted as the <u>flow rate</u> across S. Suppose \mathbf{F} is a vector field in \mathbb{R}^3 , and consider a small sphere S around the point $P \in \mathbb{R}^3$ with outward-pointing normal. Then

Interpreting divergence in \mathbb{R}^3

Corollary

Recall that $\iint_S \mathbf{F} \cdot d\mathbf{S}$ can be intepreted as the <u>flow rate</u> across S. Suppose \mathbf{F} is a vector field in \mathbb{R}^3 , and consider a small sphere S around the point $P \in \mathbb{R}^3$ with outward-pointing normal. Then

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{W} div(\mathbf{F}) \ dV \approx div(\mathbf{F})(P) \ vol(W)$$

Interpreting divergence in \mathbb{R}^3

Corollary

Recall that $\iint_S \mathbf{F} \cdot d\mathbf{S}$ can be intepreted as the <u>flow rate</u> across S. Suppose \mathbf{F} is a vector field in \mathbb{R}^3 , and consider a small sphere S around the point $P \in \mathbb{R}^3$ with outward-pointing normal. Then

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{W} div(\mathbf{F}) \ dV \approx div(\mathbf{F})(P) \ vol(W)$$

Thus,

$$div(\mathbf{F})(P) \approx \frac{1}{\operatorname{vol}(W)} \iint_{S} \mathbf{F} \cdot d\mathbf{S}$$

Therefore, the **divergence** of \mathbf{F} at a point P can be interpreted as the outward flux of \mathbf{F} near P.

divF(p)=0

SF. ISCO have duction co

Rogawski et al., Calculus, 4e, © 2019 W. H. Freeman and Company The work

P hern a str source of F

(A)

P beng a shuof F. free amount

ree amount

Please