Operations Research

Homework 2

Notes:

- 1. Please submit a hardcopy of the solution, with clear writing.
- 2. Homework 2 is due on Nov. 18. Each homework will be collected at the beginning of the class it is due.

Q1 (Textbook 4.1-8)

Label each of the following statements about linear programming problems as true or false.

- (a) For minimization problems, if the objective function evaluated at a CPF solution is no larger than its value at every adjacent CPF solution, then that solution is optimal.
- **(b)** Only CPF solutions can be optimal, so the number of optimal solutions cannot exceed the number of CPF solutions.
- (c) If multiple optimal solutions exist, then an optimal CPF solution may have an adjacent CPF solution that also is optimal (the same value of Z).

Q2 (Textbook 4.4-7)

Solve the following problem by the simplex method in tabular form.

Maximize
$$Z = 2x_1 - x_2 + x_3$$
,

subject to

$$3x_1 + x_2 + x_3 \le 6$$

$$x_1 - x_2 + 2x_3 \le 1$$

$$x_1 + x_2 - x_3 \le 2$$

and

$$x_1 \ge 0, \qquad x_2 \ge 0, \qquad x_3 \ge 0.$$

Q3 (Textbook 4.6-3)

Consider the following problem.

Minimize
$$Z = 2x_1 + 3x_2 + x_3$$
,

subject to

$$\begin{array}{l} x_1 + 4x_2 + 2x_3 \ge 8 \\ 3x_1 + 2x_2 \ge 6 \end{array}$$

and

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_3 \ge 0$.

Using the Big M method, work through the simplex method step by step to solve the

problem.

Q4 (Textbook 4.6-7)

Consider the following problem.

Maximize
$$Z = 2x_1 + 5x_2 + 3x_3$$
,

subject to

$$x_1 - 2x_2 + x_3 \ge 20$$

$$2x_1 + 4x_2 + x_3 = 50$$

and

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_3 \ge 0$.

Using the two-phase method, work through the simplex method step by step to solve the problem.

Q5 (Textbook 5.2-4)

Work through the matrix form of the simplex method step by step to solve the following model.

Maximize
$$Z = x_1 + 2x_2$$
,

subject to

$$x_1 + 3x_2 \le 8$$

$$x_1 + x_2 \le 4$$

and

$$x_1 \ge 0$$
, $x_2 \ge 0$.

Q6 (Textbook 5.3-2)

Consider the following problem.

Maximize
$$Z = 4x_1 + 3x_2 + x_3 + 2x_4$$
,

subject to

$$4x_1 + 2x_2 + x_3 + x_4 \le 5$$

$$3x_1 + x_2 + 2x_3 + x_4 \le 4$$

and

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0$.

Let x_5 and x_6 denote the slack variables for the respective constraints. After you apply the simplex method, a portion of the final simplex tableau is as follows:

Basic Variable		Coefficient of:							Pight
	Eq.	z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>x</i> ₄	X5	<i>x</i> ₆	Right Side
Z	(0)	1					1	1	
x ₂ x ₄	(1) (2)	0					1 -1	-1 2	

(a) Use the fundamental insight presented in Topic 3 to identify the missing numbers in the final simplex tableau. Show your calculations.

(Hint: You can refer to Table 5.8 on Slide 101.)

(b) Identify the defining equations of the CPF solution corresponding to the optimal CPF solution in the final simplex tableau.