

Centro de Investigación de la Caña de Azúcar de Colombia

Informe final pasantía

MODELOS DEL SIMULADOR DINÁMICO DEL PROCESO DE PRODUCCIÓN DE AZÚCAR.

Autor:

GUSTAVO ADOLFO SILVA ALARCÓN

Ingeniero Electrónico

Tutor:

JOSÉ DAVID TASCÓN VIDARTE

Programa de Procesos de Fábrica

CENTRO DE INVESTIGACIÓN DE LA CAÑA DE AZÚCAR COLOMBIANA
SANTIAGO DE CALI

2017

CONTENIDO

1.	Intr	oducción	1
2.	Obj	etivos	1
3.	Mo	delado de nivel de un tanque	2
4.	Mo	delado de válvula	3
5.	Rev	risión bibliográfica sobre calentadores	5
6.	Mo	delado calentador de carcasa y tubos	13
6	5.1.	Linealización del modelo.	16
7.	Rev	risión bibliográfica sobre evaporadores	18
8.	Mo	delado para evaporador de efecto simple	27
8	3.1.	Simplificación del modelo.	32
8	3.2.	Linealización del modelo	33
8	3.3.	Representación del sistema linealizado en espacio de estados	36
9.	Mo	delado para tren de evaporadores	37
	.1. le eva	Representación en espacio de estados del modelo linealizado praporadores	
10.	Pro	yecciones	41
11.	Con	nclusiones	41
12.	Bibl	liografía	42
13.	Ane	2XOS	48

1. INTRODUCCIÓN

Bajo el marco del proyecto "Incremento de la eficiencia energética térmica en el proceso azucarero" se analizó la variabilidad de las extracciones de vapor ejercidas por los equipos consumidores de vapor y el efecto de inestabilidad que ejerce tanto en los consumidores como en los generadores.

De esta manera se realizaron los modelos de tanques, válvulas, calentadores y evaporadores, con el objetivo de ser incluidos dentro de un simulador dinámico de los procesos comunes dentro de los ingenios azucareros. Con esto es posible observar las dinámicas entre los equipos generadores de vapor y sus consumidores, así como también las dinámicas que ejercen los actuadores en estos procesos.

2. OBJETIVOS

Objetivo General:

Generar y evaluar propuestas tecnológicas y operacionales que permitan incrementar la eficiencia energética térmica, considerando mantener la calidad de las principales corrientes del proceso.

Objetivos Específicos:

- Proponer y promover la adopción indicadores de consumo energético, los cuales permitan incrementar la eficiencia energética del proceso.
- Obtener alternativas técnicas que permitan incrementar la tasa de transferencia de calor y disminuir sus efectos en las corrientes principales del proceso.
- Evaluar una propuesta de operación y control apropiada a la etapa de evaporación del proceso, a fin de incrementar la eficiencia de aprovechamiento del vapor de escape.

Para el cumplimiento de este último, se plantean los siguientes objetivos:

Objetivo General:

Desarrollar un simulador dinámico del proceso de producción de azúcar que permita un análisis completo de las interacciones entre los equipos involucrados y la evaluación de estrategias de control.

Objetivos Específicos:

 Diseñar los modelos matemáticos de los equipos involucrados en el proceso de producción de azúcar Desarrollar una interfaz gráfica de usuario que permita la simulación de los modelos matemáticos de los equipos involucrados en el proceso de producción de azúcar.

3. MODELADO DE NIVEL DE UN TANQUE.

En la Ilustración 1 se presenta un esquema simple de un tanque abierto con ingreso de fluido por la parte superior.

Ilustración 1. Esquema representativo para control de nivel en tanque abierto.

El cambio de la masa dentro del tanque se basa en el comportamiento entre flujo del fluido que entra y el que sale, así:

$$\frac{dm_{tk}}{dt} = \dot{m}_{in} - \dot{m}_{out}$$
 Ec. 1

Donde la masa en el tanque puede expresarse como:

$$m_{tk} = \rho \cdot A \cdot h$$
 Ec. 2

El nivel del tanque:

$$h = L_{tk} \cdot h_{max}$$
 Ec. 3

Donde L_e es la lectura del medidor (0 a 100%) y h_{max} es el valor máximo que representa en metros. La variación de la masa del tanque depende solo de la variación del nivel, si se considera que el área transversal de jugo en el evaporador no varía. Reemplazando la Ec. 2 y la Ec. 3 y utilizando la Ec. 1 en términos de flujo volumétrico se obtiene:

$$\rho A h_{max} \cdot \frac{dL_{tk}}{dt} = \rho F_{in} - \rho F_{out}$$
 Ec. 4

Por otro lado el flujo de salida puede expresarse respecto a la resistencia y la presión a la que es sometido el fluido, según la ecuación de Hagen—Poiseuille (Gooch 2011):

$$F_{out} = \frac{\pi (0.0127 \phi_p)^4 \Delta P_{out}}{8 \,\mu \ell_p}$$
 Ec. 5

Donde con la relación $^{\Delta P}/_{F_j}$ se encuentra la resistencia ejercida por la tubería, expresada como:

$$\Omega_p = \frac{8\mu\ell_p}{\pi(0.0127\phi_p)^4}$$
 Ec. 6

Por otro lado el diferencial de presión al que es sometido el fluido de salida es:

$$\Delta P_{out} = P_h - P_{out}$$
 Ec. 7

Y reemplazando se obtiene:

$$\rho A h_{max} \cdot \frac{dL_{tk}}{dt} = \rho F_{jin} - \frac{\rho [(P_h - P_{out})]}{\Omega_p}$$
 Ec. 8

4. MODELADO DE VÁLVULA.

La **Ilustración 2** muestra el comportamiento de los distintos tipos de válvula respecto a la apertura, según (Creus Solé 2011).

Ilustración 2. Comportamiento de varios tipos de válvula según la apertura.

Las válvulas de apertura porcentual o más específicamente las válvulas mariposa son las más utilizadas en los ingenios azucareros del Valle del Cauca. Estas válvulas

presentan una característica de caudal inherente, en el que el obturador de la válvula se comporta de manera isoporcentual, en donde cada incremento en porcentaje de apertura del obturador produce un incremento porcentual igual en el caudal (Creus Solé 2011). La ecuación que representa dicho comportamiento es:

$$\psi = C_{aux0} \left[q_{min} e^{\frac{\ln\left(\frac{q_{max}}{q_{min}}\right)A}{100}} \right]$$
 Ec. 9

Donde ψ es la relación que existe entre la apertura del obturador y el flujo del fluido, Λ es la apertura porcentual del obturador de la válvula. C_{aux0} es una constante auxiliar para hacer coincidir las unidades con las del modelo, q_{max} y q_{min} son el flujo máximo y mínimo en la válvula, dependientes del rango de caudales o rangeabilidad seleccionada para la operación de la válvula y de la ficha técnica de la válvula para cada fabricante, sea que se trabaje con valores de coeficiente de flujo Cv o Kv. El coeficiente de flujo Cv representa el caudal de agua en galones USA por minuto a la temperatura de 60 °F (15,5 °C) que pasa a través de la válvula en posición completamente abierta y con una pérdida de carga de una libra por pulgada cuadrada (psi); y el coeficiente de flujo Kv que se expresa en unidades métricas es el caudal de agua a 20 °C en m3/h que pasa a través de la válvula a una apertura dada y con una pérdida de carga de 1 bar (105 Pa) (1,02 Kg/cm2). La **Tabla 1** muestra las equivalencias para ambos casos.

Tabla 1. Valores para coeficientes de flujo.

	Tablas <i>Kv</i>	Tablas <i>Cv</i>
C_{aux0}	$9,125x10^{-7}$	$7,598x10^{-7}$
q_{min}	Kv_{min}	Cv_{min}
q_{max}	Kv_{max}	Cv_{max}

Otra forma de representar la relación que existe entre la apertura del obturador y el flujo del fluido es usando las tablas del fabricante, un ejemplo de ella, en este caso de coeficientes de flujo Cv de las válvulas Bray serie 40 clase 300 es la **Tabla 2**, con ella se realizó una regresión no lineal que representara el comportamiento del coeficiente de flujo respecto al diámetro (Dv) y la apertura de la válvula, representada por la Ec. 10.

Tabla 2. Coeficientes de flujo válvulas Bray clase 40 clase 300

	Dv		Posición del disco (en grados)										
11	mm	90°	80°	70°	60°	50°	40°	30°	20°	10°			
2,50	65	160	138	100	78	50	30	16	8	3			
3,00	80	185	178	155	123	87	56	32	14	4,80			
4,00	100	375	365	315	250	175	115	63	31	10			

5,00	125	790	675	500	360	238	146	78	41	16
6,00	150	1000	875	710	530	370	240	138	79	26
8,00	200	2000	1720	1360	950	630	405	240	121	47
10,00	250	2650	2250	1740	1200	780	510	295	150	61
12,00	300	4000	3400	2500	1690	1100	710	430	220	92
14,00	350	4100	3500	2600	1770	1200	830	490	240	100
16,00	400	7800	6540	4550	2970	1840	1160	730	420	180
18,00	450	9500	8000	6170	4530	3110	1970	1080	440	94
20,00	500	11000	9570	7300	5400	3720	2330	1250	530	110
24,00	600	18000	15100	11400	8570	5920	3700	2000	830	180
30,00	750	29000	24400	18900	13700	8500	6000	3230	1330	290
36,00	900	45000	38100	29200	21000	14800	9100	4660	1730	380
42,00	1050	60000	54000	42000	30000	19000	13000	7500	2600	450
48,00	1200	83000	74000	58000	41000	26000	17000	10000	4400	800

$$\psi = C_{aux0}(393.41.\Lambda.Dv + 42323.62.\Lambda^2.Dv^2 + 14.01.\Lambda^3)$$
 Ec. 10

Por otro lado pesar de que las válvulas predominantes en los ingenios sean las de tipo mariposa y estas tengan un comportamiento isoporcentual, se puede lograr mediante una relación entre la apertura y el coeficiente máximo de flujo, un comportamiento lineal para este tipo de válvulas, el cual se expresa de forma general como:

$$\psi = a. \Lambda + b$$
 Ec. 11

De forma explicativa, para los coeficientes de flujo Cv, la representación lineal sería:

$$\psi = (7.598054212083366 * 10^{-7}).Cv_{max}.\Lambda$$
 Ec. 12

Finalmente, cual sea el tipo de representación que se tenga de ψ , el flujo de un fluido a la salida de la válvula según (Emerson Process Management 2011) está dado por:

$$F_{out} = \psi \sqrt{\frac{P_{in} - P_{out}}{\rho_{out}/\rho_w}}$$
 Ec. 13

5. REVISIÓN BIBLIOGRÁFICA SOBRE CALENTADORES.

Para iniciar con el modelamiento de calentadores se realizó una recopilación de artículos que ilustran el estado del arte de los desarrollos en calentadores, los cuales fueron agrupados según los tres temas de interés más generales que se encuentran

en la literatura, los cuales son: Modelamiento, Control y Observadores. La recopilación de artículos referentes a modelamiento de calentadores se consignó en la Tabla 3, así como en la Tabla 4 se consignaron los artículos referentes a controladores y de la misma forma en la Tabla 5 se consignaron los artículos referentes a observadores.

Tabla 3. Revisión bibliográfica sobre modelado en calentadores.

			a or netision sisi	obranica soor	e iniouelaud en ca	arerreador es.		
	Articulo	Industria	Tipo de intercambiador de calor	Tipo de modelo	Variables de entrada.	Variables de interés.	Principios para modelar	Objetivo de proceso
	(De Jong 1996)	Leche	Placas	Sistema de ecuaciones	Temperatura de leche de entrada.	Temperatura de leche de salida.	Balance de masa	Aumentar calidad de producto y eliminar riesgos para la salud.
	(Georgiadis, Rotstein, and Macchietto 1998)	Leche	Coraza y tubos.	Sistema de ecuaciones	Temperatura de leche de entrada.	Temperatura de leche de salida.	Balance de calor.	Realizar proceso de limpieza al producto no terminado.
	(La Madrid Olivares, Delgado Ramirez, and Aldana 2014)	Panela	Abierto aleteado.	Sistema de ecuaciones	Flujo y temperatura de vapor.	Flujos de calor y coeficientes de transferencia de calor.	Balance de calor.	Aumentar temperatura de jugo.
	(Eke and Ebieto Re				Fluidos de trabajo.			Evaluar el rendimiento de
Modelado		Refinería	Coraza y tubos.	Sistema de	Propiedades físicas de fluido.	Coeficientes de transferencia de	Balance de calor.	los intercambiadores
	2012)	de crudo.	,	ecuaciones	Datos de rendimiento de fluido.	calor.		de calor para su idoneidad térmica e hidráulica.
				Ecuación	Temperatura y flujo de vapor de la mezcla.	Temperatura y flujo del producto destilado.	Balances de	Remover el calor del producto
	(Hernández González 2008)) Academica	Helicoidal enchaquetado.	de diferencia.	Temperatura y flujo del líquido	Temperatura del agua de enfriamiento.	materia, de componente y de energía.	destilado de la sustancia más ligera de la
					de enfriamiento.	Flujo de producto de retorno.		mezcla.
	(Ozudogru et al. 2015)	Energía renovable.	Geo-térmico vertical.	Modelo de Diferencia Finita.	Temperatura de entrada del fluido.	Temperatura de salida del fluido.	Balance de calor.	Aprovechar la capacidad de almacenamiento de calor de los

							suelos.
(Korobeinikov et al. 2013)	Alúmina	Espiral	Sistema de ecuaciones.	Temperatura y fuljo de fluido de entrada.	Temperatura del fluido de salida.	Balance de calor.	Mezclar dos sustancias durante el proceso Bayer.
(Córdoba Tuta and Fuentes Díaz	-	Tubos y aletas.	Software	Flujo, presión y temperatura del refrigerante de entrada.	Flujo, presión y temperatura del refrigerante de salida.	Conservación de masa y energía.	-
2016)				Flujo, presión y temperatura del aire de entrada.	Flujo, presión y temperatura del aire de salida.	Conservación del movimiento del fluido.	
				Temperatura de vapor de entrada.	Temperatura de vapor de salida.		
(Taler, Trojan, and Taler 2011)	-	Contra-flujo de tubo simple.	Sistema de ecuaciones	Temperatura de aire de combustión de entrada.	Temperatura de aire de combustión de salida.	Balance de energía.	-
(N. A. Khan and	and _	Placas.	Ecuaciones de	Flujo del fluido frio y caliente de entrada.	Temperatura del	Balance de masa, energía y	Mantener perfil de temperatura
Rahman 2012)			diferencia.	Temperatura del fluido caliente de entrada.	fluido de salida.	momento.	en calentador de múltiples canales.
(Guha and Unde			Sistema de	Temperatura de entrada del fluido caliente.	Energía		
2014)	-	Espiral.	ecuaciones.	Temperatura de entrada del fluido frio.	entregada al fluido de salida.	Balance de calor.	-
(Paredes Álvarez,				Flujo de agua.			
Barros Vargas, and Plaza Guingla 2015)	-	Coraza y tubos.	Función de transferencia.	Temperatura de vapor.	Temperatura de fluido de salida.	Balance de energía.	-

(Bracco, Faccioli, and Troilo 2007)	-	Doble tubo.	Ecuaciones de diferencia.	Temperatura y flujo de fluido frío de entrada. Temperatura y flujo de fluido caliente de entrada.	Temperatura de fluido caliente y frío de salida.	Balance de energía.	-
(Al-Dawery, Alrahawi, and Al-Zobai 2012)	-	Placas.	Ecuaciones de diferencia.	Temperatura y flujo de fluido frío de entrada. Temperatura y flujo de fluido caliente de entrada.	Temperatura de fluido caliente y frío de salida.	Balance de energía.	-

Tabla 4. Revisión bibliográfica sobre controladores en calentadores.

	Articulo	Industria	Tipo de intercambiador de calor	Estrategia de control	Variables manipuladas.	Pruebas	Comparación	Resultados
	(Forero and Diaz 2013)	-	-	PID con criterio integral de desempeño FAD.	Flujo de vapor de agua.	Perturbación en el flujo de alimentación.	Control PID sintonizado por diferentes ecuaciones de sintonía.	Bajas oscilaciones y el tiempo de estabilización es similar.
Controladores	2016) (Ortiz Mejia and Valderrama	Farmacéutica.	Coraza y tubos.	PID + Predictor de Smith no	Flujo de vapor.	Modificación de referencia.	PID clásico.	Buen rechazo ante perturbaciones. Compensación
Controladores				convencional.		Perturbación externa.	de Smith convencional.	del retardo de tiempo.
		,	Tubos	PI	Flujo de agua	Modificación	-	Respuesta rápida y bajo sobre-impulso.
		Académica.	concéntricos.	PD	caliente.	de referencia.	-	-
	Escudero 2003)			PID			PID en cascada.	Sobre-impulso nulo y correcto

								tiempo de asentamiento.
				Controlador acotado positivo.		Modificación de referencia.	-	Buena regulación de la salida controlada.
		\\Cademica		acotado positivo.		Disturbio de flujo en lado caliente.		Respuesta suave de la señal de control.
	(Hernández González 2008)					Modificación de referencia.		Presencia de oscilaciones constantes.
			Tubos concéntricos.	PI	Flujo frío.	Disturbio de flujo en lado caliente.	-	Correcto rechazo de disturbios pero con oscilaciones.
				Controlador linealizante por retro-alimentación De estados		Modificación de referencia.	-	Buena regulación de temperatura de salida del lado caliente. Respuesta suave
				De estados				de la señal de control.
						Modificación de referencia.		Sobrepaso considerable pero a diferencia de PID si llega a estado estable.
	(Diaz 2000)	Académica		Redes neuronales artificiales + Modelo interno de control.	Flujo en el túnel de viento.	Adición de disturbio.	PID	Oscilaciones se amortiguan rápidamente. Mientras que PID no es capaz de llevar el sistema a una condición de

								estado estacionario.
	(Vasičkaninová et al. 2016)	Química y de procesos.	-	Control robusto (Control H∞ y síntesis μ)	Flujo de agua.	Modificación de referencia.	PI	Respuesta rápida y sin sobrepaso, inconvenientes en vibración de señales de entrada y salida.
				PID				-
	(Dadhaa 2044)		Comments	PID + feed- forward		Modificación de referencia.		Reducción del 29,6% al 25,1% de sobrepaso
	(Padhee 2014)	-	Coraza y tubos.		Flujo de vapor.		-	respeto a PID.
				Modelo interno de control.		Adición de disturbio.		Sobrepaso prácticamente nulo y respuesta rápida.
	(Lahane and a.Khandekar 2014)	-	Contador tubular.	PID	Flujo de vapor.	Modificación de referencia.	-	Respuesta rápida con bajas oscilaciones. Retrasos y rebasamientos leves.
	(S. Khan 2014)	-	Coraza y tubos.	Controlador realimentado+ feed-forward	Flujo y temperatura de entrada.	Modificación de referencia.	PID	Mejor rapidez de respuesta. Menor tiempo de estabilización.
	(Jamal and Syahputra 2016)	-	-	Controlador realimentado+ feed-forward	Flujo de vapor.	Modificación de referencia.	Controlador realimentado.	Mejor velocidad de respuesta.

Tabla 5. Revisión bibliográfica sobre observadores en calentadores.

	Articulo	Industria	Tipo de intercambiador de calor		Pruebas	Resultados
	(Astorga-Zaragoza et al. 2008)	-	Contra-flujo de doble tubo.	Modelo matemático simplificado.	Medidas de coeficiente de transferencia de calor interpoladas.	Estimaciones convergen bien hacia los valores medidos.
	(Hernández González 2008)	Académica.	Tubos concéntricos.	Modelo en espacio de estados.	Cambios en el flujo de enfriamiento y válvula de recirculación	Precisa estimación de las salidas y buen tiempo de convergencia en los estados.
Observadores				ue estados.	Múltiples cambios en las entradas.	Estimación de las salidas en poco tiempo y con buen desempeño.
Observadores	(Suresh et al. 2014)	Petroquímica	Tubos y coraza.	Modelo en espacio de estados.	Resollesta al escalon	Correctas estimaciones de las salidas y los estados.
	(Escobar et al. 2011)	Académica.	Contra-flujo de doble tubo.	Modelo de parámetros agrupados.	Variaciones de flujo de entrada.	Observador presenta estimación cercana a los valores experimentales.
	(Cox et al. 2010)	_	Doble tubo.	Variables de	Modificación de referencia de fluido	Correcta estimación de temperatura dentro de calentador.
	(COX Et al. 2010)		bobie tubo.	estado.	caliente y frio.	Mejor estimación que correlaciones experimentales.

En la Tabla 3 se observó que según la revisión bibliográfica realizada sobre los desarrollos de modelamiento matemático de calentadores se encuentran distintos tipos de industria, en los que predomina con dos artículos, la industria láctea ((De Jong 1996) y (Georgiadis, Rotstein, and Macchietto 1998)), los otros artículos se distribuyen entre la industria panelera (La Madrid Olivares, Delgado Ramirez, and Aldana 2014), refinería de crudo (Eke and Ebieto 2012), académica (Hernández González 2008), de manejo de energía renovables y de producción de alúmina (Korobeinikov et al. 2013); así como también otros artículos realizan un desarrollo sin especificar una industria de aplicación. Respecto el tipo de modelado realizado, se observó el desarrollo de modelos mediante sistemas de ecuaciones (De Jong 1996) , (Georgiadis, Rotstein, and Macchietto 1998), (La Madrid Olivares, Delgado Ramirez, and Aldana 2014), (Eke and Ebieto 2012), (Zeng, Diao, and Fang 2003), (Taler, Trojan, and Taler 2011) y (Guha and Unde 2014), debido a la linealidad de las ecuaciones necesarias para el modelado.

En lo que concierne a las variables de entrada en los modelos, se encuentra en todos los desarrollos la temperatura del fluido que ingresa al intercambiador de calor, en otros pocos menos también se tiene en cuenta el flujo del fluido y en desarrollos como (Córdoba Tuta and Fuentes Díaz 2016) también se tiene en cuenta la presión tanto del fluido de entrada como del vapor de entrada. Por otro lado la variable de interés que más predomina es la temperatura del flujo de salida, sin embargo en desarrollos como (Eke and Ebieto 2012) interesa el coeficiente de transferencia de calor, esto debido a que el modelado está orientado a evaluar las capacidades del intercambiador de calor y en (Córdoba Tuta and Fuentes Díaz 2016) por ser un modelado para la simulación de un intercambiador de calor, interesan otras variables además de la temperatura como el flujo y la presión. Por ultimo de la Tabla 3 se concluyó que los principios para modelar que predominan son el balance de masa y de calor.

Por otro lado de la Tabla 4 se concluye en primera instancia que el área de aplicación de los desarrollos de estrategias de control es la académica, a diferencia de (Benitez Gonzales and Rivas Perez 2016) donde se realiza la aplicación en el área farmacéutica y en (Vasičkaninová et al. 2016) realizada en el área química y de procesos. En los demás artículos se realiza el desarrollo sin especificar la industria de aplicación. Por otro lado y difiriendo de la tabla de estrategias de control en evaporadores se observa como predomina la implementación de estrategias de control clásicas con alguna variación, como la adición de predictor de Smith en (Benitez Gonzales and Rivas Perez 2016) o "feed-forward" como complemento en (Padhee 2014), (S. Khan 2014) y (Jamal and Syahputra 2016).

En los artículos la variable que se manipula con más frecuencia para el control en calentadores es el flujo, ya sea de vapor o de los líquidos que proporcionan la entrega de energía, a diferencia de (S. Khan 2014) donde también se manipula la temperatura. Respecto a las pruebas a las que fueron sometidos los controladores

se pudo determinar que el rendimiento de estos era evaluado mediante la modificación de la referencia y la adición de disturbios, así como también se observó que las conclusiones a las que se llegaba con los resultados eran muy específicas para cada uno de los desarrollos.

Por ultimo de la Tabla 5 se concluyó que el desarrollo de los observadores fue orientado a la estimación de coeficiente de transferencia de calor y de los estados de interés, basándose en los valores experimentales de las variables del proceso, para los cuales se obtuvo una correcta estimación en cada uno de los observadores implementados.

6. MODELADO CALENTADOR DE CARCASA Y TUBOS.

En la **Ilustración 3**, se observan las propiedades físicas más relevantes de un calentador de carcasa y tubos, propiedades que como se observa más adelante son las que determinan el coeficiente de transferencia de calor.

Ilustración 3. Propiedades físicas de un calentador de carcasa y tubos.

El balance de energía para el calentador se expresa como:

$$E_{jc} = \dot{Q} + E_{jin} - E_{jout}$$
 Ec. 14
$$\frac{dH_{jc}}{dt} = \dot{Q} + \rho_{jin}F_{jin}Cp_{jin}T_{jin} - \rho_{jout}F_{jout}Cp_{jout}T_{jout}$$
 Ec. 15

Considerando que el flujo de jugo de entrada F_{jin} en el calentador es igual al flujo de jugo de salida F_{jout} . Además, la variación de la entalpia del jugo en el interior del calentador depende de la variación de la temperatura, por tanto resulta:

$$\frac{1}{2}m_{jc}Cp_{jc}\frac{dT_{jc}}{dt} = \dot{Q} + \rho_{jin}F_{jin}Cp_{jin}T_{jin} - \rho_{jout}F_{jin}Cp_{jout}T_{jout}$$
 Ec. 16

Dónde:

$$\dot{Q} = \dot{m_v} h_v = \rho_v F_v C p_v T_v = U A_c \Delta T_{log}$$
 Ec. 17

Y donde a su vez U es el coeficiente global de transferencia de calor, A_{osc} es el área de transferencia del calentador y ΔT_{log} es el cambio de temperaturas entre los jugos de entrada y salida. U despreciando la resistencia externa de las incrustaciones y la resistencia térmica externa del tubo, se puede expresar como (Kreith et al. 2012):

$$U = \frac{1}{\left(\frac{1}{U_{is}A_{isc}} + \frac{R_i}{A_{isc}} + \frac{1}{U_{os}A_{osc}}\right)A_{osc}}$$
 Ec. 18

Las ecuaciones que representan estos parámetros son:

Área de transferencia interna por paso:

$$A_{isc} = 0.0254\pi\phi_{isp}N_{p}\ell_{p}N_{st}$$
 Ec. 19

Área de transferencia externa por paso:

$$A_{osc} = 0.0254\pi\phi_{osp}N_p\ell_pN_{st}$$
 Ec. 20

Diámetro interno del tubo:

$$\phi_{isp} = \phi_{osp} - 2\frac{I_p}{25.4}$$
 Ec. 21

Resistencia de incrustaciones (Rein 2012):

$$R_i = ((3.5 * 10^{-6})(Op)^{\beta})(1 + {10.763}/_{v_i}^{3})$$
 Ec. 22

Velocidad del jugo (Llano-Restrepo 2005):

$$v_j = \frac{4(F_j \rho_j)}{\pi N_p \rho_j (0.0254 \phi_{isp})^2}$$
 Ec. 23

Rugosidad relativa (Kakaç et al. 2010):

$$\varepsilon_r = \frac{\varepsilon_p}{(25.4 \, \phi_{isp})}$$
 Ec. 24

Numero de Nusselt-Gnielinski (Rattner and Bohren 2008):

$$N_u = \frac{[(f/8)(R_e - 1000)P_r]}{\left[1 + 12,7(f/8)^{0.5} \left(P_r^{2/3} - 1\right)\right]}$$
 Ec. 25

Numero de Prandtl (Shankar Subramanian 2006):

$$P_r = \frac{Cp_j\mu_j}{\lambda_i}$$
 Ec. 26

Donde μ_j es la viscosidad dinámica del jugo, representada por la Ec. 114, y λ_j es la conductividad térmica del jugo, representada por la Ec. 115.

Factor de fricción (Kiijarvi 2011):

$$f = \frac{0.25}{\left(\ln\left(\frac{\varepsilon_r}{3.7} + \frac{5.74}{R_e^{0.9}}\right)\right)^2}$$
 Ec. 27

Número de Reynolds (Shankar Subramanian 2006):

$$R_e = \frac{4(F_j \rho_j / N_p)}{0.0254\pi \phi_{isp} \mu_j}$$
 Ec. 28

Coeficiente interno de transferencia de calor (Kreith et al. 2012):

$$U_{is} = \frac{N_u \lambda_j}{(0.0254 \phi_{isn})}$$
 Ec. 29

Coeficiente externo de transferencia de calor (Rein 2012):

$$U_{os} = 0.725 \left(\frac{g(\lambda_v)^3 (\rho_w)^2 H_{vw}}{0.0254 \phi_{osp} \Delta T_{vp} \mu_v} \right)^{0.25}$$
 Ec. 30

Donde λ_v es la conductividad térmica del vapor, representada por la , μ_v es la viscosidad dinámica del vapor, representada por la Ec. 103 y H_{vw} es la entalpia entregada en la evaporación, representada por la ecuación Ec. 104. Por otro lado ΔT_{vp} corresponde a la diferencia de temperatura entre el vapor que se condensa y la pared del tubo. Además ΔT_{log} para comportamiento en calentadores (Rein 2012) se expresa como:

$$\Delta T_{log} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)}$$
 Ec. 31

Remplazando \dot{Q} , tomando en consideración los valores de densidad y calor específico en el interior del calentador (valores medios), y asumiendo que el flujo de jugo de entrada permanece constante, se obtiene para la variación de la temperatura del jugo de salida:

$$\frac{1}{2}m_{jc}Cp_{jc}\frac{dT_{jout}}{dt} = UA_c\Delta T_{log} + \rho_{jc}F_{jin}Cp_{jc}T_{jin} - \rho_{jc}F_{jin}Cp_{jc}T_{jout}$$
 Ec. 32

Cabe aclarar que para este modelo las variaciones de la densidad del jugo dentro del calentador no son considerables, por este motivo se toma como una constante.

La caída de presión en el calentador, en el lado de tubos, se expresa como:

$$\Delta P = \frac{N_{st} f_m \ell_p(v_j)^2 \rho_j}{2 \phi_{isp} \left(\frac{u_j}{u_{jp}}\right)^{0.14}}$$
 Ec. 33

Donde f_m es el factor de fricción de moody y u_{jp} es la viscosidad dinámica del jugo a la temperatura de la pared del tubo.

6.1. Linealización del modelo.

La linealización de los modelos tiene como propósito desde la implementación de estrategias de control, simplificar y separar las variables manipuladas de las variables de interés y además en la simulación de los modelos matemáticos genera un menor costo computacional.

Para linealizar el modelo, se debe tener en cuenta que para una función con múltiples variables se debe cumplir:

$$f(x_1(t), x_2(t), ...) = f(\overline{x_1}, \overline{x_2}, ...) + \frac{\overline{df}}{dx_1} [x_1 - \overline{x_1}] + \frac{\overline{df}}{dx_2} [x_2 - \overline{x_2}] + ...$$
 Ec. 34

En primera instancia para la linealización de la Ec. 32 se analiza el término $UA_c\Delta T_{log}$, en donde el coeficiente global de transferencia de calor U presenta dos valores que influencian su cambio, el coeficiente interno de transferencia de calor U_{is} y la resistencia de las incrustaciones. Sin embargo, al observar el comportamiento del coeficiente global de transferencia de calor ante cambios en U_{is} , se concluye que las variaciones no son considerables, por lo que la linealización de este factor se realiza respecto a variaciones de resistencia de las incrustaciones, el cual a su vez varía ante cambios del flujo del jugo. Por otro lado ΔT_{log} es una función dependiente de la temperatura del jugo de salida, ya que $\Delta T_1 = T_v - T_{jin}$ y $\Delta T_2 = T_v - T_{jout}$.

La linealización respecto al flujo de jugo de entrada y a la temperatura del jugo de salida se expresa como:

$$f(F_{jin}, T_{jout}) = UA_{osc}\Delta T_{log} = \left(\frac{A_{isc}U_{is}U_{os}}{A_{isc}U_{is} + U_{os}A_{osc}(U_{is}Ri + 1)}\right)A_c\Delta T_{log}$$
 Ec. 35

$$\frac{dU}{dF_{jin}} = \frac{C_{aux1}(\overline{F_{jin}})^2}{\left(C_{aux3}(\overline{F_{jin}})^3 + C_{aux2}\right)^2}$$
 Ec. 36

$$\frac{d\Delta T_{log}}{dT_{jout}} = \left(\frac{1}{\ln\left(\frac{T_{jin} - T_{v}}{T_{jout} - T_{v}}\right)} + \frac{\left(\overline{T_{jout}} - T_{jin}\right)}{\left(\overline{T_{jout}} - T_{v}\right)\left(\ln\left(\frac{T_{jin} - T_{v}}{T_{jout} - T_{v}}\right)\right)^{2}}\right)$$
 Ec. 37

Dónde:

$$C_{aux1} = (1.130115 * 10^{-4}) A_{isc} A_{osc} (U_{is})^2 (U_{os})^2 (Hr_{op})^{\beta} \left(\frac{4}{\pi N_n (0.0254 \phi_{isn})^2}\right)^3$$
 Ec. 38

$$C_{aux2} = \left((3.5 * 10^{-6}) A_{osc} U_{os} U_{is} (Hr_{op})^{\beta} + U_{os} A_{osc} + A_{isc} U_{is} \right) \left(\frac{4}{\pi N_p (0.0254 \phi_{isp})^2} \right)^3$$
 Ec. 39

$$C_{aux3} = (3.7671 * 10^{-5}) A_{osc} U_{os} U_{is} (Hr_{op})^{\beta}$$
 Ec. 40

Y organizando las respectivas derivadas:

$$f(F_{jin}, T_{jout}) = \left[\overline{U} A_c \overline{\Delta T_{log}} - \frac{dU}{dF_{jin}} A_c \overline{\Delta T_{log}} F_{jin} - \frac{d\Delta T_{log}}{dT_{jout}} \overline{U} A_c \overline{T_{jout}} \right]$$

$$+ \frac{dU}{dF_{jin}} A_c \overline{\Delta T_{log}} F_{jin} + \frac{d\Delta T_{log}}{dT_{jout}} \overline{U} A_c T_{jout}$$
Ec. 41

Continuando con la linealización de la Ec. 32, se encuentra que el término $\rho_{jc} \mathbf{F}_{jin} C p_{jc} T_{jin}$ ya es lineal, por lo que no se le realiza ningún procedimiento de linealización.

Por ultimo en la Ec. 32 se encuentra el término $\rho_{jc}Cp_{jc}F_{jin}T_{jout}$, el cual no es lineal, por lo que usando la Ec. 34 para la linealización de funciones multi-variables. Realizando las respectivas derivadas parciales, se obtiene:

$$f(F_{jin}, T_{jout}) = \rho_{jc}Cp_{jc}F_{jin}T_{jout}$$
 Ec. 42

$$\frac{df}{dF_{jin}} = Cp_{jc}\overline{T_{jout}}(F_{jin} - \overline{F_{jin}})$$
 Ec. 43

$$\frac{df}{dT_{iout}} = \rho_{jc} C p_{jc} \overline{F_{jin}} (T_{jout} - \overline{T_{jout}})$$
 Ec. 44

Y organizando las respectivas derivadas:

$$f(F_{jin}, T_{jout}) = \rho_{jc}Cp_{jc}\overline{F_{jin}T_{jout}} + \rho_{jc}Cp_{jc}\overline{T_{jout}}(F_{jin} - \overline{F_{jin}}) + \rho_{ic}Cp_{jc}\overline{F_{jin}}(T_{jout} - \overline{T_{jout}})$$
 Ec. 45

$$f(F_{jin}, T_{jout}) = \rho_{ic}Cp_{ic}F_{jin}\overline{T_{jout}} + \rho_{ic}Cp_{ic}\overline{F_{jin}}(T_{jout} - \overline{T_{jout}})$$
 Ec. 46

Remplazando la Ec. 46 y la Ec. 41 en la Ec. 32, se obtiene la linealización de la variación de temperatura del jugo de salida, expresada como:

$$\frac{1}{2}m_{jc}Cp_{jc}\frac{dT_{jout}}{dt} = \left[\overline{U}A_{c}\overline{\Delta T_{log}} - \frac{dU}{dF_{jin}}A_{c}\overline{\Delta T_{log}}\overline{F_{jin}} - \rho_{jc}Cp_{jc}\overline{F_{jin}}T_{jout}\right] \\
- \frac{d\Delta T_{log}}{dT_{jout}}\overline{U}A_{c}\overline{T_{jout}}\right] + \left(\frac{dU}{dF_{jin}}A_{c}\overline{\Delta T_{log}} + \rho_{jc}Cp_{jc}T_{jin} - \rho_{jc}Cp_{jc}\overline{T_{jout}}\right)(\boldsymbol{F_{jin}}) \\
+ \left(\frac{d\Delta T_{log}}{dT_{jout}}\overline{U}A_{c} - \rho_{jc}Cp_{jc}\overline{F_{jin}}\right)(\boldsymbol{T_{jout}})$$
Ec. 47

En el Anexo 3, específicamente la **Ilustración 6** muestra la respuesta en simulación del modelo del calentador de carcasa y tubos en lazo abierto, y en la **Ilustración 7** la respuesta ante variaciones de flujo, lo que implica cambio en el coeficiente de transferencia de calor.

7. REVISIÓN BIBLIOGRÁFICA SOBRE EVAPORADORES

Para iniciar el modelamiento dinámico se realizó un estado del arte sobre evaporadores. En este estado del arte se realizó una división en los tres temas de interés más generales que se encuentran en evaporadores, los cuales son: Modelamiento, Control y Observadores. La recopilación de artículos referentes a modelamiento de evaporadores se consignó en la Tabla 6, así como en la Tabla 7 se consignaron los artículos referentes a controladores y de la misma forma en la Tabla 8 se consignaron los artículos referentes a observadores.

Tabla 6. Revisión bibliográfica sobre modelado en evaporadores.

	Articulo	Industria	Tipo de modelo	Variables de interés	Variables de entrada	Variables medidas	# efectos	Principios para modelar	Objetivo de proceso	Objetivos alternos	
	(Burke 2014)	Azúcar	Sistema de ecuaciones.	Concentración de jugo de salida.	Flujo y presión de vapor. Flujo, Brix y temperatura de jugo.	_	5	Balance de masa, energía y Brix.	Aumentar concentración de solidos solubles (al 72%)	Eficiencia energética.	
	(Simón Pérez 2001)	iro7		Ecuaciones de	Jugo endulzado.	Vapor de calefacción.			Equilibrio térmico y	Aumentar concentración	
		Azúcar.	diferencia.	Masa total. Masa del jugo.	Jugo de alimentación.	-	5	balance de masas.	de solidos solubles.	-	
Modelado	(Heluane et al. 2012)	Azúcar	Sistema de ecuaciones.	Concentración de jugo de salida.	Flujo del jugo. Brix del jugo. Vapor.	-	N	Balance de masa y energía	Concentrar el jugo clarificado antes de la etapa de cristalización.	-	
	(Cadet et al. 1999)			Temperatura del jugo de salida.	Flujo de vapor.	Flujo, Temperatura y Brix de jugo de entrada y salida.			Aumentar		
		Azúcar.	Espacio de estados.	Flujo del jugo de salida.	Temperatura de jugo.	Presión de vapor vivo y vapor vegetal.	5	Balance de masa y calor.	concentración de solidos solubles	-	
					Brix del jugo de salida.	Flujo de jugo.	Temperatura de jugo entre efectos.			(al 70%)	
	(Lissane Elhaq, Giri,			Brix del jugo de salida.	Flujo del jugo de entrada.		_	Equilibrio térmico y	Aumentar concentración	Mejora de	
	and Unbehauen 1999)	Azúcar.	móvil integrado (CARIMA).	Presión de vapor vegetal de salida.	Flujo de vapor de entrada.	-	5	balance de masas.	de solidos	consumo de energía	

	(Ordoñez, Hernández, and Pedraza 2012)	Panela	Función de transferencia.	Brix del jugo de salida.	Flujo y temperatura de jugo.	-	3	Equilibrio térmico, fluidos y balance de masas.	Aumentar concentración de solidos solubles.	-
	(López Zaraza 2016)	Panela	Espacio de estados.	Vapor vegetal de cada efecto. Concentración de producto.	Flujo del jugo Flujo de vapor Flujo de condensados	-	N	Balance de masa y energía	Concentrar los solutos de una mezcla.	Reducir el desperdicio energético.
				Flujo, concentración, y temperatura del	Flujo de vapor de entrada.	Concentración de entrada y salida del jugo.		Equilibrio		
	(Miranda and Simpson	lugo de	Ecuaciones de diferencia.	jugo de salida.	Jugo de tomate.	Flujo de vapor de alimentación.	4	térmico, balance de masas y parámetros de sensibilidad.	Aumentar concentración de tomate.	-
	2005)			Presión y flujo de vapor de salida.	Vapor no condensado	Temperatura y presión del vapor de alimentación.				
	(Yusuff et al 2015) -	_	Espacio de	Presión y temperatura de vapor de salida.	Presión y temperatura de vapor.	_	1	Conservación de masa y	-	-
			estados.	Altura en evaporador.	Presión y flujo de alimentación.			balance de energía		
				Entalpia del agua.	Flujo de vapor.					
	(Kaya and Ibrahim Sarac	-	Espacio de estados.	Flujo másico de la solución.	Presión de vapor. Flujo de	-	4	-	-	Mejora de consumo de
	2007)		estados.	Brix de la solución.	solución. Brix de la solución.				energía.	
	(Newelll and Fisher 1972)	Trietilen- glicol	Espacio de estados.	Concentración de glicol.	Flujo de vapor.	-	2	Cofre de vapor,	Aumentar la concentración	-

					Calor esp. de solución. Temperatura de solución.			transferencia de calor y balance de masa.	de glicol.	
					Flujo de solución.					
			Sistema de	Nivel,	Vapor de alimentación.				Aumentar	
	(Avalo and Varela 2008)	Jugos naturales.	ecuaciones resuelto por método Runge-Kutta.	concentración y temperatura del jugo.	Flujo, concentración y temperatura de jugo a concentrar.	-	3	Balance de masa y energía	concentración de jugos naturales.	-
	(Chawankul et al. 2001)	Jugo de naranja.	Sistema de ecuaciones.		Jugo a	Flujo de jugo de entrada y salida.				
				Concentración	concentrar.	Concentrar. Concentración de jugo de entrada y salida. Temperatura jugo de entrada Vapor de Concentración Aumentar concentración termo-físicas. naranja.				
				de jugo de salida.	Vapor de		-			
					calentamiento.	Flujo, presión y temperatura de vapor.				
	(M.Pérez, T.A.Berná, and J.Gil 2004)	Trietilen- glicol	Espacio de estados.	Masa en evaporador.	Flujo de solución de trietilen-glicol y agua.					
				Concentración de jugo.	Concentración de solución de trietilen-glicol y agua.	-	2	Balances de materia y energía.	Concentrar mezclas de trietilen-glicol en agua.	-
				Nivel en primer evaporador.	Temperatura de solución de trietilen-glicol y agua.					

				Flujo de vapor.					
(Chai at al	Sodio de alúmina.	Espacio de estados	Temperatura de salida.	Solución de aluminato sódico.	Carbonato de sodio	3	Equilibrio térmico y balance de	Aumentar concentración del aluminato sódico	Mejora de consumo de energía
(Chai et al. 2012)			Nivel de la solución	Vapor vivo.	Hidróxido de sodio				
			Concentración de salida	Vapor de otros dispositivos	Alúmina		masas.	(a 170 g/L)	

 Tabla 7. Revisión bibliográfica sobre controladores en evaporadores.

	Articulo	Industria	# efectos	Estrategia de control	Variables manipuladas.	Pruebas	Comparación	Resultados
	(Karimi, Jahanmiri, and Azarmi 2007)		3	Inferencial en cascada + Filtro Kalman.	Flujo de vapor vivo (Global para todo el tren de evaporadores).	Cambio en flujo de vapor vivo. Cambio de referencia de Brix.	Controladores P y PI.	Mejor rechazo ante disturbios y menor sobrepaso.
	(Ipanaqué et al. 2010)	Bio -Etanol	2	Algoritmo NEPSAC	Flujo de vapor de entrada del primer efecto.	Perturbación en Brix. Perturbación en flujo de vapor.	Controladores	Respuesta más rápida y menor sobrepaso.
		BIO -Etalioi	2		Flujo de jugo de entrada del primer efecto.	Cambio de referencia de Brix.	GPC y PI.	
Control	(Atuonwu et al. 2010)	Alúmina. 5		Control predictivo por modelo no lineal (NMPC)+ PID	Flujo de jugo en los primeros 4 efectos.	Incremento en caudal de entrada.		Mejora en tiempos de asentamiento.
			5			de alimentación.	Controlador PI.	Mejora en
					Flujo de vapor en el 4to efecto.	Incremento en la temperatura de alimentación.		comportamiento de servos.
	(Rangaiah, Saha, and Tadé 2002)	Allimina		Control predictivo por modelo no lineal.	Flujo de jugo en los primeros 4 efectos.	Cambio en flujo de jugo de alimentación	Controlador PI.	Mejor respuesta ante la perturbación.
				(NMPC)	primeros 4 erectos.	Cambio en densidad de entrada.		Respuesta más rápida.

					Flujo de vapor en el 4to efecto.	Cambio en temperatura de entrada. Cambio en referencia de producto de jugo		Menor rechazo a ISE.
	(Lissane Elhaq, Giri, and Unbehauen 1999)		_	Control predictivo generalizado (GPC)	Flujo de jugo de entrada del primer efecto.	Perturbación en flujo de	Control manual.	Correcto rechazo a disturbios. Correcto ahorro de energía.
		Azúcar 5	5		Flujo de vapor de entrada del primer efecto.	vapor		Mejor calidad del jugo. Menor consumo de vapor.
					Flujo de jugo de entrada en el primer efecto.	Cambio en el flujo másico de jugo de entrada.		Mejor resultado en cuanto a tiempo.
	(Blanco Ayala and Lopez Burgos 2012)	urgos Azúcar 5	_	Controlador PI	Vapor de entrada del primer efecto.	00 1080 00 0	Planta sin	cuanto a tiempo.
			5		Flujo de jugo de salida del último efecto.	Cambio en el flujo másico	controlador.	Mejor respuesta a
					Flujo de salida del último efecto.	de vapor de entrada.		estabilidad.
					Flujo de vapor de entrada del primer efecto.			
	(Pitteea, King, and Rughooputh 2004)	Δ7IICar 5	Control de lógica difusa.	Flujo de jugo de entrada del primer efecto.	Deducciones de vapor en el segundo efecto.	-	Estabilidad de referencia ante disturbios.	
					Velocidad de la bomba del condensador.			
	(Lissane Elhaq, Giri, and Unbehauen	ehauen Azúcar 5 generalizado		_	Flujo de jugo de entrada del primer	Deducciones de vapor.	Control gaussiano linear cuadrático	Mejor ahorro de energía. Mejor rechazo de
	1997)			(GPC)	efecto.		(LQG)	disturbios.

					Flujo de vapor de entrada del primer efecto.	Cancelación de la deducción de vapor.		Mejor respuesta ante parámetros de control constantes. Más rapidez para volver a estado estable.
					Flujo de jugo de entrada del primer efecto.	Modificación en la referencia.		Control de respuesta rápida.
	(Guerrero et al. 2007)	Azúcar	5	Control predictivo basado en modelo. (MBPC)	Flujo de vapor de entrada del primer efecto.	Valor estático para constante de válvula del 1er efecto.	-	Buena respuesta ante atascamientos de válvulas.
					Constantes de las válvulas dispuestas entre efectos.	Disturbios en vapor de 3er efecto.		Correcta respuesta de control ante fugas de vapor.
	(Lorenzo, Aguado, and Garcini 2006) Azúca	A TIICAR /I		Controlador de Matriz Dinámica 4 (DMC) con enfoque multivariable desacoplado.	Posición de la válvula de jugo de entrada a cada efecto.			DMC desacoplado presenta respuesta rápida, sin sobre- impulsos ni oscilaciones. DMC sin desacople presenta
			4		Posición de la válvula de jugo de salida.	Presencia de ruido en las salidas.	Controlador DMC con enfoque multivariable sin desacople.	oscilaciones no mayores al 3%.
					Posición de la			apropiada para ambos controladores.
					válvula de vapor de entrada.			Mayor carga computacional en el controlador DMC sin desacople.
	(Cardona, Hoyos, and Zapata 2007)	-	2	Linealización instantánea + redes neuronales.	Flujo de vapor de entrada (Global para todo el tren de	Modificación de referencia de 1er y 2do efecto.	Modelo sin controlador	Mejora en el tiempo de establecimiento. No supera el sobre- impulso para el que

			evaporadores).		fue diseñado (1%).

 Tabla 8. Revisión bibliográfica sobre observadores en evaporadores.

	Articulo	Industria	# efectos	Aplicado a	Pruebas	Resultados
	(Osorio Mirón, Arce Medina, and Carrillo Ahumada 2007)	Azúcar	-	Modelo dinámico reducido	Simulación asumiendo parámetros y variables.	Buenas propiedades de convergencia y capacidad de acelerarla con ganancia.
Observadores	(Xiong and Saif 2003)	-	2	Espacio de estados lineal de 5to orden.	Simulación comparativa entre estimador normal y adaptativo.	El estimador adaptativo no responde correctamente ante altas frecuencias.
	(Ahmed et al. 2012)	-	-	Modelo neuronal difuso.	·	Las salidas están tan cerca de los valores deseados y las acciones de control están cerca de los valores nominales.

A partir de los artículos de modelamiento de evaporadores consignados en la Tabla 6 se puede observar la diversidad de desarrollos sobre modelamiento matemático de evaporadores implementados en distintas industrias como la azucarera, la panelera, jugos de frutas y hortalizas, entre otros. Por otro lado debido a la disposición de este proceso en las industrias, se pudo observar que el principal objetivo es aumentar la concentración del fluido que ingresa al proceso, donde varía el porcentaje, la sustancia a concentrar y donde se observa la implementación de más de 3 efectos. Debido a esto, en la mayoría de artículos, , la principal variable de interés son los grados Brix de concentración del fluido, aunque en otros artículos como (Yusuff et al. 2015), (Avalo and Varela 2008), (M.Pérez, T.A.Berná, and J.Gil 2004),(Chai et al. 2012) se tienen también como variable de interés el nivel en un evaporador especifico , o en todo el tren de evaporadores.

El tipo de modelo que más predomina en los artículos de la tabla es el de espacio de estados ((Cadet et al. 1999), (López Zaraza 2016), (Kaya and Ibrahim Sarac 2007), (Newelll and Fisher 1972), (M.Pérez, T.A.Berná, and J.Gil 2004) y (Chai et al. 2012)), esto debido a la no-linealidad de las ecuaciones involucradas en el modelamiento, de las cuales en su mayoría resultan de balances de masa y energía. Por último se pudo observar que no existe un patrón predominante sobre las variables de entrada del proceso, esto debido a que es muy dependiente de las variables que se tomen en consideración para el modelo y de la instrumentación del mismo. La ausencia de instrumentación, así como la falta de interés en las variables medidas del proceso justifican la ausencia de este ítem en los artículos de la tabla.

En la Tabla 7 se puede observar una gran variabilidad en las estrategias de control implementadas. Para el control de evaporadores se aplican tanto estrategias clásicas como modernas, estas últimas son las más frecuentes en los desarrollos, sin embargo las estrategias clásicas sirven de comparativo para observar el mejor o peor comportamiento de los controladores modernos. Se puede observar que las variables manipuladas más frecuentes en los desarrollos son los flujos de jugo de entrada en el primer efecto y el flujo de vapor de alimentación (1er efecto), sin embargo en otros desarrollos como (Guerrero et al. 2007) y (Lorenzo, Aguado, and Garcini 2006) se manipula directamente las constante o posicionamiento de la válvula para la variación del flujo.

Respecto a las pruebas a las que son sometidos los controladores, estas varían según las propiedades del controlador que desean observar, entre estas pruebas predomina el cambio de referencia y la adición de disturbios. Por último y estrictamente ligado a las pruebas que se le realicen al controlador, están los resultados, en los cuales predomina el tiempo de establecimiento, el rechazo a los disturbios y el sobre-paso. En otros artículos se pretendió observar propiedades más puntuales como en el caso de (Lissane Elhaq, Giri, and Unbehauen 1999) en el que se

analiza la calidad del jugo, en (Lorenzo, Aguado, and Garcini 2006) se observa la carga computacional de la implementación del controlador y en (Guerrero et al. 2007) se observa la respuesta ante estancamientos de válvulas.

Por ultimo realizándole un análisis a la Tabla 8 en donde se consignan los observadores implementados al proceso de evaporación, se concluye que la documentación de estos desarrollos es poca, en los que se observa una satisfactoria estimación de parámetros como en (Osorio Mirón, Arce Medina, and Carrillo Ahumada 2007) y (Ahmed et al. 2012), aunque en (Xiong and Saif 2003) se determina que el observador implementado en este artículo presentó inconvenientes ante altas frecuencias.

8. MODELADO PARA EVAPORADOR DE EFECTO SIMPLE.

El modelado de evaporadores, es una continuación del trabajo realizado entre el ingeniero Jose David Tascon y el estudiante en práctica Leonardo Cardona López.

La Ilustración 4 muestra las corrientes de entrada y salida en un evaporador. El jugo es evaporado por contacto indirecto con el vapor de entrada. El vapor de entrada el cual cede calor es condensado en la calandria. El vapor vegetal que se genera en la evaporación del jugo es utilizado en un efecto siguiente. Con el conocimiento de las corrientes de entrada y salida se describe el balance de masas y energía.

Balances de Masa:

El balance de masa en el evaporador se expresa como:

$$\frac{dm_e}{dt} = \dot{m}_{jin} - \dot{m}_{jout} - \dot{m}_{vv}$$
 Ec. 48

Formulando la Ec. 48 en términos de flujos volumétricos:

$$\frac{dm_e}{dt} = \rho_{jin}F_{jin} - \rho_{jout}F_{jout} - \rho_{vv}F_{vv}$$
 Ec. 49

Ilustración 4. Esquemático con corrientes de entrada y salida en un evaporador. Se detallan los flujos y variables termodinámicas de proceso. En azul las variables no medidas

Para el vapor que se condensa en la calandria se cumple que:

$$\dot{m}_{vin} = \dot{m}_{con}$$
 Ec. 50

La masa acumulada de jugo en el evaporador es:

$$m_e = \rho_e \cdot A \cdot h$$
 Ec. 51

El nivel del evaporador:

$$h = L_e \cdot h_{max}$$
 Ec. 52

Donde L_e es la lectura del medidor (0 a 100%) y h_{max} es el valor máximo que representa en metros. La variación de la masa del evaporador depende solo de la variación del nivel, si se considera que el área transversal de jugo en el evaporador no varía. Por tanto, la derivada de la Ec. 51 es:

$$\frac{dm_e}{dt} = \rho_e A h_{max} \cdot \frac{dL_e}{dt}$$
 Ec. 53

Igualando la Ec. 49 y la Ec. 53, la variación del nivel resulta:

$$\frac{dL_e}{dt} = \frac{\rho_{jin}F_{jin} - \rho_{jout}F_{jout} - \rho_{vv}F_{vv}}{\rho_e A h_{max}}$$
 Ec. 54

El balance de solidos solubles:

$$\frac{dm_e B_{jout}}{dt} = \dot{m}_{jin} B_{jin} - \dot{m}_{jout} B_{jout} - \dot{m}_{vv} B_{vv}$$
 Ec. 55

Asumiendo que no hay arrastre de solidos solubles (sacarosa y no sacarosa) en el vapor vegetal, el Brix es cero. Resolviendo la derivada:

$$\frac{dm_e}{dt}B_{jout} + m_e \frac{dB_{jout}}{dt} = \dot{m}_{jin}B_{jin} - \dot{m}_{jout}B_{jout}$$
 Ec. 56

$$\frac{dB_{jout}}{dt} = \frac{\dot{m}_{jin}B_{jin} - \dot{m}_{jout}B_{jout} - \frac{dm_e}{dt}B_{jout}}{m_e}$$
 Ec. 57

Reemplazando la Ec. 48 en la Ec. 57:

$$\frac{dB_{jout}}{dt} = \frac{\dot{m}_{jin}B_{jin} - \dot{m}_{jout}B_{jout} - (\dot{m}_{jin} - \dot{m}_{jout} - \dot{m}_{vv})B_{jout}}{m_e}$$
 Ec. 58

$$\frac{dB_{jout}}{dt} = \frac{\dot{m}_{jin}B_{jin} - \dot{m}_{jin}B_{jout} + \dot{m}_{vv}B_{jout}}{m_e}$$
 Ec. 59

Balance de Energía:

El balance de energía en el evaporador se expresa como:

$$\frac{dm_e H_{m_e}}{dt} = \dot{Q} + \dot{m}_{jin} H_{jin} - \dot{m}_{jout} H_{jout} - \dot{m}_{vv} H_{vv}$$
 Ec. 60

$$H_{m_e} \frac{dm_e}{dt} + m_e \frac{dH_{m_e}}{dt} = \dot{Q} + \dot{m}_{jin} H_{jin} - \dot{m}_{jout} H_{jout} - \dot{m}_{vv} H_{vv}$$
 Ec. 61

Por definición el calor \dot{Q} entrando al evaporador es el que suministra el vapor de entrada hasta su condensación:

$$\dot{Q} = \dot{m}_{vin} H_{vin}$$
 Ec. 62

Por el proceso, se tiene que la entalpia de la masa del jugo acumulada es igual a la entalpia del jugo de salida, esto es $H_{m_e}=H_{jout}$. Adicionalmente, se puede asumir que la variación de la entalpia del jugo acumulado $\frac{dH_{m_e}}{dt}$ es igual a 0. Además, las variaciones de densidad del jugo entre evaporadores no son significativas, por lo que ρ_i se toma constante. La Ec. 61 puede ser utilizada para despejar dos variables:

Primero, la masa evaporada:

$$\dot{m}_{vv} = \frac{\dot{m}_{vin}H_{vin} + \dot{m}_{jin}H_{jin} - \dot{m}_{jin}H_{jout}}{(H_{vv} - H_{jout})}$$
 Ec. 63

Segundo, la variación de la masa acumulada:

$$\frac{dm_e}{dt} = \frac{\dot{m}_{vin}H_{vin} + \dot{m}_{jin}H_{jin} - \dot{m}_{jout}H_{jout} - \dot{m}_{vv}H_{vv}}{H_{jout}}$$
 Ec. 64

Las entalpias del jugo pueden ser expresadas por el producto de la temperatura y el calor específico:

$$H_j = Cp_j \cdot T_j$$
 Ec. 65

La entalpia del vapor es estimada para vapores saturados a partir de correlaciones de tablas de vapor, de forma funcional $H_v(T_v)$, estimación realizada mediante la Ec. 98.

El calor específico del jugo $Cp_j(B_j,Z_j,T_j)$ es estimado a partir de una correlación que depende del Brix, de la pureza y de la temperatura, estimación realizada mediante la Ec. 105.

Integración de Balance de Masa y Energía:

Usando la Ec. 63 en la Ec. 59, la variación del Brix resulta:

$$\frac{dB_{jout}}{dt} = \frac{\dot{m}_{jin}B_{jin}}{m_e} - \frac{\dot{m}_{jin}B_{jout}}{m_e} + \frac{(H_{jin} - H_{jout}) \cdot \dot{m}_{jin}B_{jout}}{(H_{vv} - H_{jout}) \cdot m_e} + \frac{H_{vin}\dot{m}_{vin}B_{jout}}{(H_{vv} - H_{jout}) \cdot m_e} \quad \text{Ec. 66}$$

Considerando la Ec. 50 y resolviendo en términos de las variables medidas (flujos volumétricos y temperaturas) resulta:

$$\frac{dB_{jout}}{dt} = \frac{1}{\rho_e A h_{max} L_e} \left[\rho_{jin} F_{jin} B_{jin} + \left(\frac{\left(C p_{jin} T_{jin} - C p_{jout} T_{jout} \right)}{\left(H_{vv} - C p_{jout} T_{jout} \right)} - 1 \right) \rho_{jin} F_{jin} B_{jout} + \frac{H_{vin}}{\left(H_{vv} - C p_{jout} T_{jout} \right)} \rho_{vin} F_{vin} B_{jout} \right]$$
Ec. 67

Para la variación del nivel se emplea la variación de la masa del evaporador, se usa la Ec. 63 en la Ec. 48:

$$\frac{dm_e}{dt} = \dot{m}_{jin} - \dot{m}_{jout} - \frac{\dot{m}_{vin}H_{vin} + \dot{m}_{jin}H_{jin} - \dot{m}_{jin}H_{jout}}{(H_{vv} - H_{jout})}$$
 Ec. 68

Reorganizando:

$$\frac{dm_e}{dt} = \frac{(1 + H_{jout} - H_{jin})}{(H_{vv} - H_{jout})} \dot{m}_{jin} - \frac{H_{vin}}{(H_{vv} - H_{jout})} \dot{m}_{vin} - \dot{m}_{jout}$$
 Ec. 69

Finalmente el nivel del evaporador en términos de las variables medidas (flujos volumétricos y temperaturas) resulta:

$$\frac{dL_e}{dt} = \frac{1}{\rho_e A h_{max}} \left[\frac{\left(1 + C p_{jout} T_{jout} - C p_{jin} T_{jin}\right)}{\left(H_{vv} - C p_{jout} T_{jout}\right)} \rho_{jin} F_{jin} - \frac{H_{vin}}{\left(H_{vv} - C p_{jout} T_{jout}\right)} \rho_{vin} F_{vin} - \rho_{jout} F_{jout} \right]$$
Ec. 70

El flujo de entrada al evaporador debido a la posibilidad de su medición y el lazo de control propio dentro de los ingenios no se manipulará, sin embargo, el flujo de salida se puede expresar según la Ec. 13.

En la **Tabla 9** se resumen las ecuaciones propuestas para determinar el Brix, el flujo de salida de jugo y el nivel. Estas variables son no medidas y resultan en términos de variables medidas. El Brix de entrada en realidad es una variable no medida aunque sus variaciones no son muy variantes en el tiempo y son reportadas cada hora por laboratorio.

Tabla 9. Resumen Modelo.

	Modelo
Variación de Brix	$\begin{split} \frac{dB_{jout}}{dt} &= \frac{1}{\rho_e A h_{max} L_e} \left[\rho_{jin} F_{jin} B_{jin} + \left(\frac{\left(C p_{jin} T_{jin} - C p_{jout} T_{jout} \right)}{\left(H_{vv} - C p_{jout} T_{jout} \right)} - 1 \right) \rho_{jin} F_{jin} B_{jout} \\ &+ \frac{H_{vin}}{\left(H_{vv} - C p_{jout} T_{jout} \right)} \rho_{vin} F_{vin} B_{jout} \end{split}$
Jugo de Salida	
Jugo de Salida	$F_{out} = \psi \sqrt{\frac{P_e + \rho_{jout}gL_eh_{max} - P_{out}}{\rho_{out}/\rho_w}}$

 $\begin{array}{c|c} \textbf{Variación de} & \frac{dL_e}{dt} = \frac{1}{\rho_e A h_{max}} \bigg[\frac{\left(1 + C p_{jout} T_{jout} - C p_{jin} T_{jin}\right)}{\left(H_{vv} - C p_{jout} T_{jout}\right)} \rho_{jin} F_{jin} - \frac{H_{vin}}{\left(H_{vv} - C p_{jout} T_{jout}\right)} \rho_{vin} F_{vin} \\ & - \rho_{jout} F_{jout} \bigg] \\ \end{array}$

8.1. Simplificación del modelo.

El flujo másico de vapor vegetal del evaporador no es medido, pero es cercano al flujo másico de vapor de entrada. Esta aproximación es variable dependiendo del equipo, las perdidas, las incrustaciones, entre otros. Por tanto, se expresa el vapor como:

$$\dot{m}_{vv} = k \cdot \dot{m}_{vin} = k \cdot \dot{m}_{con}$$
 Ec. 71

Donde 0.9 < k < 1.0

La variación del nivel a partir de la Ec. 54 y usando la Ec. 71, resulta:

$$\frac{dL_e}{dt} = \frac{\rho_{jin}F_{jin} - \rho_{jout}F_{jout} - k \cdot \rho_{vin}F_{vin}}{\rho_e Ah_{max}}$$
 Ec. 72

La variación del nivel a partir de la Ec. 64 y usando la Ec. 71, resulta:

$$\frac{dL_e}{dt} = \frac{Cp_{jin}T_{jin}\rho_{jin}F_{jin} - Cp_{jout}T_{jout}\rho_{jout}F_{jout} + (H_{vin} - k \cdot H_{vv})\rho_{vin}F_{vin}}{\rho_e Ah_{max}Cp_{jout}T_{jout}}$$
 Ec. 73

La variación del Brix a partir de la Ec. 59 y usando la Ec. 71, resulta:

$$\frac{dB_{jout}}{dt} = \frac{\dot{m}_{jin}B_{jin} - \dot{m}_{jin}B_{jout} + k \cdot \dot{m}_{vin}B_{jout}}{m_e}$$
 Ec. 74

En términos de las variables medidas (flujos volumétricos y nivel):

$$\frac{dB_{jout}}{dt} = \frac{\rho_{jin}F_{jin}B_{jin} - \rho_{jin}F_{jin}B_{jout} + k \cdot \rho_{vin}F_{vin}B_{jout}}{\rho_e Ah_{max}L_e}$$
 Ec. 75

Igualando Ec. 72 y Ec. 73 se puede obtener el valor de k:

$$k = \frac{H_{vin}\rho_{vin}F_{vin} + \left(Cp_{jin}T_{jin} - Cp_{jout}T_{jout}\right)\rho_{jin}F_{jin}}{\left(H_{vv} - Cp_{jout}T_{jout}\right)\rho_{vin}F_{vin}}$$
 Ec. 76

Asumiendo que la densidad del jugo dentro del evaporador es la misma de la densidad del jugo de salida se tiene que $\rho_e = \rho_{jout}$ y reemplazándolo en la Ec. 73 y en la Ec. 75 se obtiene:

$$\frac{dL_e}{dt} = \frac{Cp_{jin}T_{jin}\rho_{jin}F_{jin} - Cp_{jout}T_{jout}\rho_{jout}F_{jout} + (H_{vin} - k \cdot H_{vv})\rho_{vin}F_{vin}}{\rho_{jout}Ah_{max}Cp_{jout}T_{jout}}$$
 Ec. 77

$$\frac{dB_{jout}}{dt} = \frac{\rho_{jin}F_{jin}B_{jin} - \rho_{jin}F_{jin}B_{jout} + k \cdot \rho_{vin}F_{vin}B_{jout}}{\rho_{jout}Ah_{max}L_{e}}$$
 Ec. 78

El flujo de salida del evaporador expresado a partir de la Ec. 13 y usando la Ec. 11, resulta:

$$F_{jout} = (a\Lambda + b) \sqrt{\frac{P_e + \rho_{jout}gL_eh_{max} - P_{out}}{\rho_{jout}/\rho_w}}$$
 Ec. 79

En la **Tabla 10** resume las ecuaciones propuestas para determinar el Brix, la variación de masa acumulada y el flujo de jugo de salida.

	· · · · · · · · · · · · · · · · · · ·
	Modelo
Vapor Vegetal	$\dot{m}_{vv} = k \cdot \dot{m}_{vin} = k \cdot \dot{m}_{con}$ $0.9 < k < 1$
Constante	$k = \frac{H_{vin}\rho_{vin}F_{vin} + (Cp_{jin}T_{jin} - Cp_{jout}T_{jout})\rho_{jin}F_{jin}}{(H_{vv} - Cp_{jout}T_{jout})\rho_{vin}F_{vin}}$
Variación de Brix	$\frac{dB_{jout}}{dt} = \frac{\rho_{jin}F_{jin}B_{jin} - \rho_{jin}F_{jin}B_{jout} + k \cdot \rho_{vin}F_{vin}B_{jout}}{\rho_{jout}Ah_{max}L_e}$
Variación del Nivel	$\begin{split} \frac{dL_e}{dt} &= \frac{1}{\rho_{jout}Ah_{max}Cp_{jout}T_{jout}}[Cp_{jin}T_{jin}\rho_{jin}F_{jin} - Cp_{jout}T_{jout}\rho_{jout}F_{jout}\\ &+ (H_{vin} - k \cdot H_{vv})\rho_{vin}F_{vin}] \end{split}$
Jugo de Salida	$F_{jout} = (a\Lambda + b) \sqrt{\frac{P_e + \rho_{jout}gL_eh_{max} - P_{out}}{\rho_{jout}/\rho_w}}$

Tabla 10. Resumen Modelo Simplificado.

En el Anexo 3, específicamente la **Ilustración 8**, **Ilustración 9** e **Ilustración 10** muestran la respuesta en simulación del modelo del evaporador Robert en lazo abierto para sus tres variables de interés.

8.2. Linealización del modelo

Retomando la Ec. 34 para la linealización de funciones multi-variables lo primero a realizar es la derivada de la variación temporal del brix respecto a todos sus componentes, esta variación se expresa como una función dependiente así:

$$\frac{dB_{jout}}{dt} = f(B_{jout}, F_{jin}, B_{jin}, F_{vin}, L_e)$$
 Ec. 80

Se procede a calcular cada una de las derivadas parciales:

$$\frac{\partial f(t)}{\partial B_{jout}} = \frac{k \cdot \rho_{vin} \overline{F_{vin}} - \rho_{jin} \overline{F_{jin}}}{\rho_{jout} A h_{max} \overline{L_e}} (B_{jout} - \overline{B_{jout}})$$
 Ec. 81

$$\frac{\partial f(t)}{\partial F_{jin}} = \frac{\rho_{jin} \overline{B_{jin}} - \rho_{jin} \overline{B_{jout}}}{\rho_{jout} A h_{max} \overline{L_e}} (F_{jin} - \overline{F_{jin}})$$
 Ec. 82

$$\frac{\partial f(t)}{\partial B_{jin}} = \frac{\rho_{jin} \overline{F_{jin}}}{\rho_{jout} A h_{max} \overline{L_e}} (B_{jin} - \overline{B_{jin}})$$
 Ec. 83

$$\frac{\partial f(t)}{\partial F_{con}} = \frac{k \cdot \rho_{vin} \overline{B_{jout}}}{\rho_{jout} A h_{max} \overline{L_e}} (F_{vin} - \overline{F_{vin}})$$
 Ec. 84

$$\frac{\partial f(t)}{\partial L_e} = -\frac{\rho_{jin}\overline{F_{jin}B_{jin}} - \rho_{jin}\overline{F_{jin}B_{jout}} + k \cdot \rho_{vin}\overline{F_{vin}B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_e^2}}(L_e - \overline{L_e})$$
 Ec. 85

Aunque k es una función dependiente de entalpias, flujos, calores específicos, temperaturas y densidades, expresada como $k=\frac{H_{vin}\rho_{vin}F_{vin}+(Cp_{jin}T_{jin}-Cp_{jout}T_{jout})\rho_{jin}F_{jin}}{(H_{vv}-Cp_{jout}T_{jout})\rho_{vin}F_{con}}$, para la linealización, se asume como una constante, esto debido a investigaciones previas de Cenicaña donde presenta un comportamiento constante dependiente del efecto de evaporación. Luego, organizando las respectivas derivadas se obtiene:

$$\frac{dB_{jout}}{dt} = \left[\frac{\rho_{jin}\overline{F_{jin}B_{jin}} - \rho_{jin}\overline{F_{jin}B_{jout}} + k \cdot \rho_{vin}\overline{F_{vin}B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_{e}}} - \frac{k \cdot \rho_{vin}\overline{F_{vin}} - \rho_{jin}\overline{F_{jin}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}\overline{B_{jout}}\right] - \frac{\rho_{jin}\overline{F_{jin}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}\overline{B_{jout}} - \frac{\rho_{jin}\overline{F_{jin}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}\overline{B_{jin}} - \frac{\rho_{jin}\overline{F_{jin}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}\overline{B_{jout}} - \frac{k \cdot \rho_{vin}\overline{B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}\overline{F_{vin}} + \frac{\rho_{jin}\overline{F_{jin}}\overline{F_{jin}}\overline{B_{jout}} + k \cdot \rho_{vin}\overline{F_{vin}}\overline{B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}\overline{L_{e}}\right] + \frac{k \cdot \rho_{vin}\overline{F_{vin}} - \rho_{jin}\overline{F_{jin}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}(B_{jout})$$

$$= \frac{\rho_{jin}\overline{F_{jin}}\overline{B_{jout}} - \rho_{jin}\overline{B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}(F_{jin}) + \frac{\rho_{jin}\overline{F_{jin}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}(B_{jin}) + \frac{k \cdot \rho_{vin}\overline{B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}(F_{vin})$$

$$= \frac{\rho_{jin}\overline{F_{jin}}B_{jin} - \rho_{jin}\overline{F_{jin}B_{jout}} + k \cdot \rho_{vin}\overline{F_{vin}}B_{jout}}{\rho_{jout}Ah_{max}\overline{L_{e}}}(L_{e})$$

Y por último se deriva el flujo del jugo de salida. Expresándolo como una función dependiente resulta:

$$F_{jout} = f(\Lambda, L_e, P_{out})$$
 Ec. 87

Se procede a calcular cada una de las derivadas parciales:

$$\frac{\partial f(t)}{\partial \Lambda} = a \sqrt{\frac{P_e + \rho_{jout} g \overline{L_e} h_{max} - \overline{P_{out}}}{\rho_{jout} / \rho_w}} (\Lambda - \overline{\Lambda})$$
 Ec. 88

$$\frac{\partial f(t)}{\partial L_e} = \frac{(a\overline{\Lambda} + \mathbf{b})g\rho_w h_{max}}{2\sqrt{\frac{P_e + \rho_{jout}g\overline{L_e}h_{max} - \overline{P_{out}}}{\rho_{jout}/\rho_w}}} (L_e - \overline{L_e})$$
Ec. 89

$$\frac{\partial f(t)}{\partial P_{out}} = \frac{-(a\overline{\Lambda} + b)\rho_w}{2\rho_{jout}\sqrt{\frac{P_e + \rho_{jout}g\overline{L}_e h_{max} - \overline{P}_{out}}{\rho_{jout}}}}(P_{out} - \overline{P}_{out})$$
 Ec. 90

Y organizando las respectivas derivadas:

$$F_{jout} = \left[(a\bar{\Lambda} + b) \frac{P_e + \rho_{jout}g\bar{L}_eh_{max} - \bar{P}_{out}}{\rho_{jout}/\rho_w} - a \frac{P_e + \rho_{jout}g\bar{L}_eh_{max} - \bar{P}_{out}}{\rho_{jout}/\rho_w} \bar{\Lambda} \right] \\ - \frac{(a\bar{\Lambda} + b)g\rho_wh_{max}}{2\sqrt{\frac{P_e + \rho_{jout}g\bar{L}_eh_{max} - \bar{P}_{out}}{\rho_{jout}/\rho_w}}} \bar{L}_e + \frac{(a\bar{\Lambda} + b)\rho_w}{2\rho_{jout}\sqrt{\frac{P_e + \rho_{jout}g\bar{L}_eh_{max} - \bar{P}_{out}}{\rho_{jout}/\rho_w}}} \bar{P}_{out} \right] \\ + a \sqrt{\frac{P_e + \rho_{jout}g\bar{L}_eh_{max} - \bar{P}_{out}}{\rho_{jout}/\rho_w}}} (\Lambda) + \frac{(a\bar{\Lambda} + b)g\rho_wh_{max}}{2\sqrt{\frac{P_e + \rho_{jout}g\bar{L}_eh_{max} - \bar{P}_{out}}{\rho_{jout}/\rho_w}}} (L_e) \\ - \frac{(a\bar{\Lambda} + b)\rho_w}{2\rho_{jout}\sqrt{\frac{P_e + \rho_{jout}g\bar{L}_eh_{max} - \bar{P}_{out}}{\rho_{jout}/\rho_w}}}} (P_{out})$$

Tabla 11. Resumen Modelo linealizado.

	Modelo
	$\frac{dB_{jout}}{dt} = \left[\frac{\rho_{jin}\overline{F_{jin}B_{jin}} - \rho_{jin}\overline{F_{jin}B_{jout}} + k \cdot \rho_{vin}\overline{F_{vin}B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_e}} - \frac{k \cdot \rho_{vin}\overline{F_{vin}} - \rho_{jin}\overline{F_{jin}}}{\rho_{jout}Ah_{max}\overline{L_e}}\overline{B_{jout}}\right]$
	$-\frac{\rho_{jin}\overline{B_{jin}}-\rho_{jin}\overline{B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_e}}\overline{F_{jin}}-\frac{\rho_{jin}\overline{F_{jin}}}{\rho_{jout}Ah_{max}\overline{L_e}}\overline{B_{jin}}-\frac{k\cdot\rho_{vin}\overline{B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_e}}\overline{F_{vin}}$
Variación de Brix	$+\frac{\rho_{jin}\overline{F_{jin}B_{jin}}-\rho_{jin}\overline{F_{jin}B_{jout}}+k\cdot\rho_{vin}\overline{F_{vin}B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_{e}}^{2}}+\frac{k\cdot\rho_{vin}\overline{F_{vin}}-\rho_{jin}\overline{F_{jin}}}{\rho_{jout}Ah_{max}\overline{L_{e}}}(\boldsymbol{B_{jout}})$
	$+\frac{\rho_{jin}\overline{B_{jin}}-\rho_{jin}\overline{B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_e}}(F_{jin})+\frac{\rho_{jin}\overline{F_{jin}}}{\rho_{jout}Ah_{max}\overline{L_e}}(B_{jin})+\frac{k\cdot\rho_{vin}\overline{B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_e}}(F_{vin})$
	$-\frac{\rho_{jin}\overline{F_{jin}B_{jin}}-\rho_{jin}\overline{F_{jin}B_{jout}}+k\cdot\rho_{vin}\overline{F_{vin}B_{jout}}}{\rho_{jout}Ah_{max}\overline{L_{e}^{\;2}}}(\boldsymbol{L_{e}})$
Jugo de Salida	$F_{jout} = \left[(a\bar{\Lambda} + b) \sqrt{\frac{P_e + \rho_{jout}g\bar{L}_e h_{max} - \bar{P}_{out}}{\rho_{jout}/\rho_w}} - a \sqrt{\frac{P_e + \rho_{jout}g\bar{L}_e h_{max} - \bar{P}_{out}}{\rho_{jout}/\rho_w}} \bar{\Lambda} \right]$

$$\begin{array}{c} -\frac{(a\bar{\Lambda}+b)g\rho_w h_{max}}{2\sqrt{\frac{P_e+\rho_{jout}g\overline{L_e}h_{max}-\overline{P_{out}}}{\rho_{jout}}}}\overline{L_e} + \frac{(a\bar{\Lambda}+b)\rho_w}{2\rho_{jout}\sqrt{\frac{P_e+\rho_{jout}g\overline{L_e}h_{max}-\overline{P_{out}}}{\rho_{jout}}}}}P_{out}] \\ +a\sqrt{\frac{P_e+\rho_{jout}g\overline{L_e}h_{max}-\overline{P_{out}}}{\rho_{jout}}}(\Lambda) + \frac{(a\bar{\Lambda}+b)g\rho_w h_{max}}{2\sqrt{\frac{P_e+\rho_{jout}g\overline{L_e}h_{max}-\overline{P_{out}}}{\rho_{jout}}}}}(L_e) \\ -\frac{(a\bar{\Lambda}+b)\rho_w}{2\rho_{jout}\sqrt{\frac{P_e+\rho_{jout}g\overline{L_e}h_{max}-\overline{P_{out}}}{\rho_{jout}}}}(P_{out})}{\frac{P_{out}}{\rho_{jout}/\rho_w}}(P_{out}) \\ \\ -\frac{dL_e}{dt} = \frac{Cp_{jin}T_{jin}\rho_{jin}}{\rho_{jout}Ah_{max}Cp_{jout}T_{jout}}}(F_{jin}) + \frac{(H_{vin}-k\cdot H_{vv})\rho_{vin}}{\rho_{jout}Ah_{max}Cp_{jout}T_{jout}}(F_{vin}) \\ -\frac{Cp_{jout}T_{jout}\rho_{jout}}{\rho_{jout}T_{jout}}(F_{out}) \end{array}$$

8.3. Representación del sistema linealizado en espacio de estados.

La representación matricial de los sistemas de control es realizada en forma de variables de estado. La forma estándar de representar el sistema es de la siguiente forma

$$\dot{x} = Ax + Bu$$

Dónde:

$$\dot{x} = \begin{bmatrix} B_{jout} & \dot{L}_{e} & F_{jout} \end{bmatrix}^{t}, x = \begin{bmatrix} B_{jout} & L_{e} & F_{jout} \end{bmatrix}^{t}, u = \begin{bmatrix} B_{jin} & F_{jin} & \Lambda & P_{out} & F_{vin} \end{bmatrix}^{t}$$

$$A = \begin{bmatrix} K_{a11} & K_{a12} & 0 \\ 0 & 0 & K_{a23} \\ 0 & K_{a23} & 0 \end{bmatrix} y B = \begin{bmatrix} K_{b11} & K_{b12} & 0 & 0 & K_{b15} \\ 0 & K_{b22} & 0 & 0 & K_{b25} \\ 0 & 0 & K_{b23} & K_{b24} & 0 \end{bmatrix}$$

Para

$$K_{a11} = \frac{k \cdot \rho_{vin} \overline{F_{vin}} - \rho_{jin} \overline{F_{jin}}}{\rho_{jout} A h_{max} \overline{L_e}}, K_{a12} = -\frac{\rho_{jin} \overline{F_{jin}} \overline{B_{jin}} - \rho_{jin} \overline{F_{jin}} \overline{B_{jout}} + k \cdot \rho_{vin} \overline{F_{vin}} \overline{B_{jout}}}{\rho_{jout} A h_{max} \overline{L_e}^2},$$

$$K_{a23} = -\frac{C p_{jout} T_{jout} \rho_{jout}}{\rho_{jout} A h_{max} C p_{jout} T_{jout}}, K_{a32} = \frac{(a \overline{A} + b) g \rho_w h_{max}}{2 \sqrt{\frac{P_e + \rho_{jout} g \overline{L_e} h_{max} - \overline{P_{out}}}{\rho_{jout}}}}$$

$$K_{b11} = \frac{\rho_{jin} \overline{F_{jin}}}{\rho_{jout} A h_{max} \overline{L_e}}, K_{b12} = \frac{\rho_{jin} \overline{B_{jin}} - \rho_{jin} \overline{B_{jout}}}{\rho_{jout} A h_{max} \overline{L_e}}, K_{b15} = \frac{k \cdot \rho_{vin} \overline{B_{jout}}}{\rho_{jout} A h_{max} \overline{L_e}},$$

$$K_{b22} = \frac{C p_{jin} T_{jin} \rho_{jin}}{\rho_{jout} A h_{max} C p_{jout} T_{jout}}, K_{b25} = \frac{(H_{vin} - k \cdot H_{vv}) \rho_{vin}}{\rho_{jout} A h_{max} C p_{jout} T_{jout}},$$

$$,K_{b33}=a\sqrt{\frac{P_{e}+\rho_{jout}g\overline{L_{e}}h_{max}-\overline{P_{out}}}{\rho_{jout}/\rho_{w}}},K_{b34}=-\frac{(a\overline{\Lambda}+b)\rho_{w}}{2\rho_{jout}\sqrt{\frac{P_{e}+\rho_{jout}g\overline{L_{e}}h_{max}-\overline{P_{out}}}{\rho_{jout}/\rho_{w}}}}$$

Quedando de la siguiente forma

$$\begin{bmatrix} \dot{B}_{jout} \\ \dot{L}_{e} \\ F_{jout} \end{bmatrix} = \begin{bmatrix} K_{a11} & K_{a12} & 0 \\ 0 & 0 & K_{a23} \\ 0 & K_{a32} & 0 \end{bmatrix} \begin{bmatrix} B_{jout} \\ L_{e} \\ F_{jout} \end{bmatrix} + \begin{bmatrix} K_{b11} & K_{b12} & 0 & 0 & K_{b15} \\ 0 & K_{b22} & 0 & 0 & K_{b25} \\ 0 & 0 & K_{b33} & K_{b34} & 0 \end{bmatrix} \begin{bmatrix} B_{jin} \\ F_{jin} \\ \Lambda \\ P_{out} \\ F_{vin} \end{bmatrix}$$

9. MODELADO PARA TREN DE EVAPORADORES.

En un esquema de evaporación de efecto múltiple influyen más variables que en una evaporación de efecto simple y están estrechamente relacionadas con la configuración y la cantidad de cuerpos del tren, por simplicidad para este caso, se asume que se disponen de n efectos, cada efecto posee solo un cuerpo y el flujo es concurrente.

Ilustración 5. Representación gráfica conexión tren de evaporadores.

Una estación de evaporación es la interconexión de varios evaporadores de efecto simple tanto en estado estable como dinámico

El modelo desarrollado para un evaporador se puede ajustar al modelado de una estación de evaporación, ya que las salidas del modelo se transforman en las entradas del siguiente evaporador.

Tabla 12. Modelo para tren de evaporadores

Efecto	$\frac{dB_{jout1}}{dt} = \frac{\rho_{jin}F_{jin}B_{jin} - \rho_{jin}F_{jin}B_{jout1} + k_1 \cdot \rho_{vin}F_{vin}B_{jout1}}{\rho_{jout1}A_1h_{max1}L_{e1}}$
1	$\frac{dL_{e1}}{dt} = \frac{Cp_{jin}T_{jin}\rho_{jin}F_{jin} - Cp_{jout1}T_{jout1}\rho_{jout1}F_{jout1} + (H_{vin} - k_1 \cdot H_{vv1})\rho_{vin}F_{vin}}{\rho_{jout1}A_1h_{max1}Cp_{jout1}T_{jout1}}$

	$F_{jout1} = (a_1 \Lambda_1 + b_1) \sqrt{\frac{P_{e1} + \rho_{jout1} g L_{e1} h_{max1} - P_{e2} - \rho_{jout2} g L_{e2} h_{max2}}{\rho_{jout1}} / \rho_{w1}}$
	$\frac{dB_{jout2}}{dt} = \frac{\rho_{jout1}F_{jout1}B_{jout1} - \rho_{jout1}F_{jout1}B_{jout2} + \rho_{vv1}(k_1k_2F_{vin} - k_2F_{ext1})B_{jout2}}{\rho_{jout2}A_2h_{max2}L_{e2}}$
Efecto 2	$\begin{split} \frac{dL_{e2}}{dt} &= \frac{1}{\rho_{jout2}A_2h_{max2}Cp_{jout2}T_{jout1}}[Cp_{jout1}T_{jout1}\rho_{jout1}F_{jout1} - Cp_{jout2}T_{jout2}\rho_{jout2}F_{jout2}\\ &+ (H_{vv1} - k_2 \cdot H_{vv2})\rho_{vv1}(k_1F_{vin} - F_{ext1})] \end{split}$
	$F_{jout2} = (a_2 \Lambda_2 + b_2) \sqrt{\frac{P_{e2} + \rho_{jout2} g L_{e2} h_{max2} - P_{e3} - \rho_{jout3} g L_{e3} h_{max2}}{\rho_{jout2} / \rho_{w2}}}$
	$\frac{dB_{jout3}}{dt} = \frac{\rho_{jout2}F_{jout2}B_{jout2} - \rho_{jout2}F_{jout2}B_{jout3} + \rho_{vv2}(k_3k_2k_1F_{vin} - k_3k_2F_{ext1} - k_3F_{ext2})B_{jout3}}{\rho_{jout3}A_3h_{max3}L_{e3}}$
Efecto 3	$+(H_{vv2}-k_3\cdot H_{vv3})\rho_{vv2}(k_2k_1F_{vin}-k_2F_{ext1}-F_{ext2})]$
	$F_{jout3} = (a_3 \Lambda_3 + b_3) \sqrt{\frac{P_{e3} + \rho_{jout3} g L_{e3} h_{max3} - P_{e4} - \rho_{jout4} g L_{e4} h_{max4}}{\rho_{jout3} / \rho_{w3}}}$
	$\begin{split} \frac{dB_{jout4}}{dt} &= \frac{1}{\rho_{jout4}A_4h_{max4}L_{e4}} \left[\ \rho_{jout3}F_{jout3}B_{jout3} - \rho_{jout3}F_{jout3}B_{jout4} \right. \\ &+ \rho_{vv3} (k_4k_3k_2k_1F_{vin} - k_4k_3k_2F_{ext1} - k_4k_3F_{ext2} - k_4F_{ext3})B_{jout4} \ \right] \end{split}$
Efecto 4	$\frac{dL_{e4}}{dt} = \frac{1}{\rho_{jout4}A_4h_{max4}Cp_{jout4}T_{jout4}} [Cp_{jout3}T_{jout3}\rho_{jout3}F_{jout3} - Cp_{jout4}T_{jout4}\rho_{jout4}F_{jout4} + (H_{vv3} - k_4 \cdot H_{vv4})\rho_{vv3}(k_3k_2k_1F_{vin} - k_3k_2F_{ext1} - k_3F_{ext2} - F_{ext3})]$
	$F_{jout4} = (a_4 \Lambda_4 + b_4) \sqrt{\frac{P_{e4} + \rho_{jout4} g L_{e4} h_{max4} - P_{e5} - \rho_{jout5} g L_{e5} h_{max5}}{\rho_{jout4} / \rho_{w4}}}$
Efecto 5	$\begin{split} \frac{dB_{jout5}}{dt} &= \frac{1}{\rho_{jout5}A_5h_{max5}L_{e5}} [\; \rho_{jout4}F_{jout4}B_{jout4} - \rho_{jout4}F_{jout4}B_{jout5} \\ &+ \rho_{vv4}(k_5k_4k_3k_2k_1F_{vin} - k_5k_4k_3k_2F_{ext1} - k_5k_4k_3F_{ext2} - k_5k_4F_{ext3} - k_5F_{ext4})B_{jout5}] \end{split}$

$$\frac{dL_{e5}}{dt} = \frac{1}{\rho_{jout5}A_5h_{max5}Cp_{jout5}T_{jout5}} [Cp_{jout4}T_{jout4}\rho_{jout4}F_{jout4} - Cp_{jout5}T_{jout5}\rho_{jout5}F_{jout5} + (H_{vv4} - k_5 \cdot H_{vv5})\rho_{vv4}(k_4k_3k_2k_1F_{vin} - k_4k_3k_2F_{ext1} - k_4k_3F_{ext2} - k_4F_{ext3} - F_{ext4})]$$

$$F_{jout5} = (a_5\Lambda_5 + b_5) \sqrt{\frac{P_{e5} + \rho_{jout5}gL_{e5}h_{max5} - P_{out}}{\rho_{jout5}/\rho_{w5}}}$$

9.1. Representación en espacio de estados del modelo linealizado para el tren de evaporadores

La manipulación matemática de un sistema complejo y multivariable como lo es un tren de evaporadores resulta más sencilla mediante la representación de variables de estado. Para poder realizar esta representación se debe tener un sistema lineal, por lo cual se realizan las derivadas parciales de las funciones de la variación del Brix del jugo de salida, la variación del nivel en evaporador y el flujo del jugo de salida, para cada uno de los evaporadores. El resultado de esta linealización se ve representado en los coeficientes de las matrices, los cuales se encuentran dispuestos en el Anexo1.

De igual forma como se hizo con un solo efecto, se hace con el tren de evaporadores, obteniendo el sistema en variables de estado, el cual es expuesto a continuación:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Dónde:

$$\begin{split} \dot{x} = & \begin{bmatrix} \dot{B}_{jout} & \dot{L}_{e1} & F_{jout} & \dot{B}_{jout2} & \dot{L}_{e2} & F_{jout2} & \dot{B}_{jout3} & \dot{L}_{e3} & F_{jout3} & \dot{B}_{jout4} & \dot{L}_{e4} & F_{jout4} & \dot{B}_{jout5} & \dot{L}_{e5} & F_{jout5} \end{bmatrix}^{T} \\ \dot{x} = & \begin{bmatrix} B_{jout1} & L_{e1} & F_{jout1} & B_{jout2} & L_{e2} & F_{jout2} & B_{jout3} & L_{e3} & F_{jout6} & B_{jout4} & L_{e4} & F_{jout4} & B_{jout5} & L_{e5} & F_{jout5} \end{bmatrix}^{T} \\ \dot{u} = & \begin{bmatrix} B_{jin} & F_{jin} & F_{vin} & P_{out} & \Lambda_{1} & \Lambda_{2} & \Lambda_{3} & \Lambda_{4} & \Lambda_{5} & F_{ext1} & F_{ext2} & F_{ext3} & F_{ext4} \end{bmatrix}^{T}, \end{split}$$

$k_{a1,1}$	$k_{a1,2}$	0	0	0	0	0	0	0	0	0	0	0	0	0]	
0	0	$k_{a2,3}$	0	0	0	0	0	0	0	0	0	0	0	0	
0	$k_{a3,2}$	0	0	$k_{a3,5}$	0	0	0	0	0	0	0	0	0	0	
$k_{a4,1}$	0	$k_{a4,3}$	$k_{a4,4}$	$k_{a4,5}$	0	0	0	0	0	0	0	0	0	0	
0	0	$k_{a5,3}$	0	0	$k_{a5,6}$	0	0	0	0	0	0	0	0	0	
0	0	0	0	$k_{a6,5}$	0	0	$k_{a6,8}$	0	0	0	0	0	0	0	
0	0	0	$k_{a7,4}$	0	$k_{a7,6}$	$k_{a7,8}$	0	0	0	0	0	0	0	0	
0	0	0	0	0	$k_{a8,6}$	0	0	$k_{a8,9}$	0	0	0	0	0	0	
0	0	0	0	0	0	0	$k_{a9,8}$	0	0	$k_{a9,11}$	0	0	0	0	
0	0	0	0	0	0	$k_{a10,7}$	0	$k_{a10,9}$	$k_{a10,10}$	$k_{a10,11}$	0	0	0	0	
0	0	0	0	0	0	0	0	$k_{a11,9}$	0	0	$k_{a11,12}$	0	0	0	
0	0	0	0	0	0	0	0	0	0	$k_{a12,11}$	0	0	$k_{a12,14}$	0	
0	0	0	0	0	0	0	0	0	$k_{a13,10}$	0	$k_{a13,12}$	$k_{a13,13}$	$k_{a13,14}$	0	
0	0	0	0	0	0	0	0	0	0	0	$k_{a14,12}$	0	0	$k_{a14,15}$	
0	0	0	0	0	0	0	0	0	0	0	0	0	$k_{a15,14}$	0],	
Γι	k	ŀ	0)	0	0	0	0	0	0	0	0	0 7		
$\begin{pmatrix} \kappa_{b1,1} \\ 0 \end{pmatrix}$,				0	0	0	0	0	0	0		
	$\begin{bmatrix} 0 & & & & & & & & & & & & & & & & & & $	$ \begin{bmatrix} 0 & 0 \\ 0 & k_{a3,2} \\ k_{a4,1} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ - \end{bmatrix} $	$ \begin{bmatrix} 0 & 0 & k_{a2,3} \\ 0 & k_{a3,2} & 0 \\ k_{a4,1} & 0 & k_{a4,3} \\ 0 & 0 & k_{a5,3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{bmatrix} 0 & 0 & k_{a2,3} & 0 \\ 0 & k_{a3,2} & 0 & 0 \\ k_{a4,1} & 0 & k_{a4,3} & k_{a4,4} \\ 0 & 0 & k_{a5,3} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & k_{a7,4} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{bmatrix} 0 & 0 & k_{a2,3} & 0 & 0 \\ 0 & k_{a3,2} & 0 & 0 & k_{a3,5} \\ k_{a4,1} & 0 & k_{a4,3} & k_{a4,4} & k_{a4,5} \\ 0 & 0 & k_{a5,3} & 0 & 0 \\ 0 & 0 & 0 & 0 & k_{a6,5} \\ 0 & 0 & 0 & k_{a7,4} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$ \begin{bmatrix} 0 & 0 & k_{a2,3} & 0 & 0 & 0 \\ 0 & k_{a3,2} & 0 & 0 & k_{a3,5} & 0 \\ k_{a4,1} & 0 & k_{a4,3} & k_{a4,4} & k_{a4,5} & 0 \\ 0 & 0 & k_{a5,3} & 0 & 0 & k_{a5,6} \\ 0 & 0 & 0 & 0 & k_{a6,5} & 0 \\ 0 & 0 & 0 & k_{a7,4} & 0 & k_{a7,6} \\ 0 & 0 & 0 & 0 & 0 & 0 & k_{a8,6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	$ \begin{bmatrix} 0 & 0 & k_{a2,3} & 0 & 0 & 0 & 0 \\ 0 & k_{a3,2} & 0 & 0 & k_{a3,5} & 0 & 0 \\ k_{a4,1} & 0 & k_{a4,3} & k_{a4,4} & k_{a4,5} & 0 & 0 \\ 0 & 0 & k_{a5,3} & 0 & 0 & k_{a5,6} & 0 \\ 0 & 0 & 0 & 0 & k_{a6,5} & 0 & 0 \\ 0 & 0 & 0 & k_{a7,4} & 0 & k_{a7,6} & k_{a7,8} \\ 0 & 0 & 0 & 0 & 0 & 0 & k_{a8,6} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{bmatrix} 0 & 0 & k_{a2,3} & 0 & 0 & 0 & 0 & 0 \\ 0 & k_{a3,2} & 0 & 0 & k_{a3,5} & 0 & 0 & 0 \\ k_{a4,1} & 0 & k_{a4,3} & k_{a4,4} & k_{a4,5} & 0 & 0 & 0 \\ 0 & 0 & k_{a5,3} & 0 & 0 & k_{a5,6} & 0 & 0 \\ 0 & 0 & 0 & 0 & k_{a6,5} & 0 & 0 & k_{a6,8} \\ 0 & 0 & 0 & k_{a7,4} & 0 & k_{a7,6} & k_{a7,8} & 0 \\ 0 & 0 & 0 & 0 & 0 & k_{a8,6} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & k_{a9,8} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & k_{a10,7} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{bmatrix} 0 & 0 & k_{a2,3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & k_{a3,2} & 0 & 0 & k_{a3,5} & 0 & 0 & 0 & 0 \\ k_{a4,1} & 0 & k_{a4,3} & k_{a4,4} & k_{a4,5} & 0 & 0 & 0 & 0 \\ 0 & 0 & k_{a5,3} & 0 & 0 & k_{a5,6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & k_{a6,5} & 0 & 0 & k_{a6,8} & 0 \\ 0 & 0 & 0 & k_{a7,4} & 0 & k_{a7,6} & k_{a7,8} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & k_{a8,6} & 0 & 0 & k_{a8,9} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & k_{a9,8} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & k_{a10,7} & 0 & k_{a10,9} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$ \begin{bmatrix} 0 & 0 & k_{a2,3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & k_{a3,2} & 0 & 0 & k_{a3,5} & 0 & 0 & 0 & 0 & 0 \\ k_{a4,1} & 0 & k_{a4,3} & k_{a4,4} & k_{a4,5} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & k_{a5,3} & 0 & 0 & k_{a5,6} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & k_{a6,5} & 0 & 0 & k_{a6,8} & 0 & 0 \\ 0 & 0 & 0 & k_{a7,4} & 0 & k_{a7,6} & k_{a7,8} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & k_{a8,6} & 0 & 0 & k_{a8,9} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & k_{a9,8} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & k_{a10,7} & 0 & k_{a10,9} & k_{a10,10} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & k_{a11,9} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 0 & 0 & k_{a2,3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	$\begin{bmatrix} 0 & 0 & k_{a2,3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $

	$k_{b1,1}$	$k_{b1,2}$	$k_{b1,3}$	0	0	0	0	0	0	0	0	0	0	
	0	$k_{b2,2}$	$k_{b2,3}$	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	$k_{b3,5}$	0	0	0	0	0	0	0	0	
	0	0	$k_{b4,3}$	0	0	0	0	0	0	$k_{b4,10}$	0	0	0	
	0	0	$k_{b5,3}$	0	0	0	0	0	0	$k_{b5,10}$	0	0	0	
	0	0	0	0	0	$k_{b6,6}$	0	0	0	0	0	0	0	
	0	0	$k_{b7,3}$	0	0	0	0	0	0	$k_{b7,10}$	$k_{b7,11}$	0	0	
B =	0	0	$k_{b8,3}$	0	0	0	0	0	0	$k_{b8,10}$	$k_{b8,11}$	0	0	
	0	0	0	0	0	0	$k_{b9,7}$	0	0	0	0	0	0	
	0	0	$k_{b10,3}$	0	0	0	0	0	0	$k_{b10,10}$	$k_{b10,11}$	$k_{b10,12}$	0	
	0	0	$k_{b11,3}$	0	0	0	0	0	0	$k_{b11,10}$	$k_{b11,11}$	$k_{b11,12}$	0	
	0	0	0	0	0	0	0	$k_{b12,8}$	0	0	0	0	0	
	0	0	$k_{b13,3}$	0	0	0	0	0	0	$k_{b13,10}$	$k_{b13,11}$	$k_{b13,12}$	$k_{b13,13}$	
	0	0	$k_{b14,3}$	0	0	0	0	0	0	$k_{b14,10}$	$k_{b14,11}$		$k_{b14,13}$	
	0	0	0	$k_{b15,4}$	0	0	0	0	$k_{b15,9}$	0	0	0	0	

D = [0].

10. PROYECCIONES.

Como trabajo futuro se proponen las siguientes actividades:

- Continuar con la realización de los modelos de los equipos faltantes.
- Evaluar estrategias de control clásicas en un evaporador de efecto simple y en un tren de evaporadores.
- Evaluar estrategias de control avanzadas en un evaporador de efecto simple y en un tren de evaporadores.

11. CONCLUSIONES.

- Se realizó la ampliación de la revisión bibliográfica tanto para evaporadores como para calentadores.
- Se adicionaron y reorganizaron las ecuaciones para determinar las propiedades físico-químicas de agua, vapor y jugos.
- Se desarrolló un modelo matemático para un evaporador de efecto simple y un tren de evaporadores.
- Se completó el modelo matemático de calentador tipo carcasa y tubos, teniendo en cuenta coeficientes de transferencia de calor.

12. BIBLIOGRAFÍA.

- Ahmed, S, M Petrov, A Taneva, and Y Todorov. 2012. "Nonlinear Model Predictive Control of an Evaporator System Using Fuzzy-Neural Model." (January): 187–92.
- Al-Dawery, Salam K., Ayham M. Alrahawi, and Khalid M. Al-Zobai. 2012. "Dynamic Modeling and Control of Plate Heat Exchanger." *International Journal of Heat and Mass Transfer* 55(23–24): 6873–80. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.094.
- Astorga-Zaragoza, Carlos Manuel et al. 2008. "Observer-Based Monitoring of Heat Exchangers." *ISA Transactions* 47(1): 15–24.
- Atuonwu, J. C., Y. Cao, G. P. Rangaiah, and M. O. Tadé. 2010. "Identification and Predictive Control of a Multistage Evaporator." *Control Engineering Practice* 18(12): 1418–28.
- Avalo, Belkis, and Alfredo Varela. 2008. "Modelación Y Simulación de Un Evaporador de Triple Efecto Para La Concentración de Jugos Naturales." *Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia* 31(2): 151–58.
- Benitez Gonzales, Ivón Oristela, and R. Rivas Perez. 2016. "Control de La Temperatura de Un Intercambiador de Calor En La Empresa Laboratorios Farmacéuticos Aica." (June 2014).
- Blanco Ayala, Jhon Mario, and Leonel Lopez Burgos. 2012. "Modelado E Implementación de Estrategias de Control Para Evaporadores En Una Planta Azucarera Considerando Presión Variable." Universidad del Valle.
- Bracco, S., I. Faccioli, and M. Troilo. 2007. "Dynamic Simulation Model of a Two-Fluids Heat Exchanger Based on a Numerical Discretization Method." *Wseas.Us*: 285–93. http://www.wseas.us/e-library/conferences/2007venice/papers/570-314.pdf.
- Bubnik, Z, P Kadlec, D Urban, and M Bruhns. 1995. "Sugar Technologists Manual." *Bartens, Berlin* 155.
- Buck, Arden L. 1981. "New Equations for Computing Vapor Pressure and Enhancement Factor." *Journal of Applied Meteorology* 20(12): 1527–32.
- Burke, B. J. 2014. "Modelling and Multi-Objective Optimisation of a Sugar Mill Based Multi-Effect Evaporator Set." *IFAC Proceedings Volumes (IFAC-PapersOnline)* 19: 6716–21.
- Cadet, C., Y. Touré, G. Gilles, and J.P. Chabriat. 1999. "Knowledge Modeling and Nonlinear Predictive Control of Evaporators in Cane Sugar Production Plants."

 Journal of Food Engineering 40(1–2): 59–70. http://www.scopus.com/inward/record.url?eid=2-s2.0-0032627108&partnerID=tZOtx3y1.
- Cardona, Jaiber Evelio, José Gabriel Hoyos, and Jorge Hernán Zapata. 2007. "Double Effect Evaporator Control with Instantaneous Linearization and Neural Networks." *Scientia et Technica* XIII(37): 97–102.
- Chai, Q. Q., C. H. Yang, K. L. Teo, and W. H. Gui. 2012. "Optimal Control of an

- Industrial-Scale Evaporation Process: Sodium Aluminate Solution." *Control Engineering Practice* 20(6): 618–28.
- Chawankul, Nongluk, Supaporn Chuaprasert, Peter Douglas, and Wilai Luewisutthichat. 2001. "Simulation of an Agitated Thin Film Evaporator for Concentrating Orange Juice Using AspenPlusTM." *Journal of Food Engineering* 47(4): 247–53.
- Córdoba Tuta, E. J., and D. A. Fuentes Díaz. 2016. "Modelado Y Simulación Del Flujo de Intercambiadores de Calor de Tubos Y Aletas Con Cambio de Fase En El Refrigerante." Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria 32(1): 31–38. http://dx.doi.org/10.1016/j.rimni.2014.11.002.
- Cox, Vanessa K, Ruth C May, Stanley L Kroder, and a Sample. 2010. "Technological Developments in Networking, Education and Automation." *Energy* 5(2): 37–41. http://www.springerlink.com/index/10.1007/978-90-481-9151-2.
- Creus Solé, Antonio. 2011. Instrumentación Industrial. Marcombo.
- Damour, Cédric et al. 2011. "Multivariable Linearizing Control of an Industrial Sugar Crystallization Process." *Journal of Process Control* 21(1): 46–54.
- Diaz, Gerado C. 2000. "Simulation and Control of Heat Exchangers Using Artificial Neural Networks.": 1–179.
- Eke, G. B., and C. E. Ebieto. 2012. "Performance Analysis of Shell and Tube Heat Exchangers: A Case Study." *Journal of Emerging Trends in Engineering and Applied Sciences* 3(5): 899–903.
- Emerson Process Management. 2011. "Valve Sizing Calculations (Traditional Method)."
- Escobar, Ricardo F. et al. 2011. "Design and Implementation of an Observer Based Soft Sensor for a Heat Exchanger Diseño E Implementación De Un Sensor Virtual." Dyna 78: 108–18.
- Forero, Jorge Duarte, and German Amador Diaz. 2013. "Desarrollo de Ecuaciones de Sintonía Para Controladores Tipo PID Aplicados Al Control de Temperatura En Intercambiadores de Calor." 4(7): 21–28.
- Georgiadis, M C, G E Rotstein, and S Macchietto. 1998. "Modeling and Simulation of Shell and Tube Heat Exchangers under Milk Fouling." *AIChE Journal* 44(4).
- Gooch, Jan W. 2011. "Hagen–Poiseuille Equation." In *Encyclopedic Dictionary of Polymers*, , 477–477.
- Guerrero, María E. et al. 2007. "Control Tolerante a Fallas Para Un Evaporador de Múltiple Efecto En La Industria Azucarera."
- Guha, Probal, and Vaishnavi Unde. 2014. "Mathematical Modeling of Spiral Heat Exchanger." *International Journal of Engineering Research* 3(4): 226–29.
- Heluane, Humberto, Aníbal M. Blanco, María Rosa Hernández, and J. Alberto Bandoni. 2012. "Simultaneous Re-Design and Scheduling of Multiple Effect Evaporator Systems." *Computers and Operations Research* 39(5): 1173–86.
- Hernández González, Omar. 2008. "Modelado, Control Y Observadores de Estado En

- Intercambiadores de Calor.": 15-119.
- Hodgman, Charles D. 1951. 71 Handbook of Chemistry and Physics. LWW.
- Ipanaqué, William et al. 2010. "Iterative Predictive Non-Linear Control in an Evaporator to Obtain Bioethanol ."
- Jamal, Agus, and Ramadoni Syahputra. 2016. "Heat Exchanger Control Based on Artificial Intelligence Approach." 11(16): 9063–69.
- De Jong, Door Pieter. 1996. "Modelling and Optimization of Thermal Processes in the Dairy Industry." Technische Universiteit Delft.
- Kakaç, S, B Kosoy, D Li, and A Pramuanjaroenkij. 2010. *Microfluidics Based Microsystems: Fundamentals and Applications*. Springer Netherlands. https://books.google.com.co/books?id=KWi5BQAAQBAJ.
- Karimi, M., A. Jahanmiri, and M. Azarmi. 2007. "Inferential Cascade Control of Multi-Effect Falling-Film Evaporator." *Food Control* 18(9): 1036–42.
- Kaya, Durmus, and H. Ibrahim Sarac. 2007. "Mathematical Modeling of Multiple-Effect Evaporators and Energy Economy." *Energy* 32(8): 1536–42.
- Khan, Naseem Ahmad, and Wasi Rahman. 2012. "Modelling and Simulation of Plate Heat Exchanger." *IJME International Journal of Mechanical Engineering* 2(1): 22–30.
- Khan, Shanu. 2014. "Modelling and Temperature Control of Heat Exchanger Process." 2(Ii).
- Kiijarvi, Jukka. 2011. "Darcy Friction Factor Formulae in Turbulent Pipe Flow." *Lunowa Fluid Mechanics Paper*: 1–11.

 http://www.kolumbus.fi/jukka.kiijarvi/clunowa/fluid_mechanics/pdf_articles/darcy_friction_factor.pdf.
- Korobeinikov, A, J Mccarthy, E Mooney, and K Semkov. 2013. "Mathematical Modelling of Heat Exchange in Flash Tank Heat Exchanger Cascades." (January).
- Kreith, Frank, Raj M Manglik, Mark S Bohn, and S G Kandlikar. 2012. 2 Handbook of Phase Change: Boiling and Condensation *Principles of Heat Transfer*. Cengage learning.
- Lahane, Jaya S., and Meera a.Khandekar. 2014. "System Identification and Controller Design for Boiler and Heat Exchanger Set-Up." *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering* 3(7): 10708–14. http://www.ijareeie.com/upload/2014/july/31 System.pdf.
- Lissane Elhaq, S., F. Giri, and H. Unbehauen. 1999. "Modelling, Identification and Control of Sugar Evaporation Theoretical Design and Experimental Evaluation." *Control Engineering Practice* 7(8): 931–42.
- Lissane Elhaq, S., F Giri, and H Unbehauen. 1997. "The Development Of Controllers For A Multiple-Effect Evaporator in Sugar Industry." (July): 1–4.
- Llano-Restrepo, Mario. 2005. "Modeling and Simulation of Vertical Continuous Cooling Crystallizers for the Sugar Industry." *Industrial and Engineering Chemistry Research* 44(24): 9244–63.
- López Zaraza, Ricardo Andrés. 2016. "Evaluación Técnica Y Económica de La

- Implementación de Un Sistema de Evaporación de Múltiple Efecto En Los Procesos Productivos de La Panela." Universidad Nacional de Colombia.
- Lorenzo, Marlen, Alberto Aguado, and Héctor J. Garcini. 2006. "Sistema de Control Predictivo Multivariable Para Un Evaporador Cuádruple Efecto." Sobre los Derivados de la Caña de Azúcar XL(1): 40–53.
- M.Pérez, T.A.Berná, and J.Gil. 2004. "Modelado, Análisis Y Control de Un Evaporador de Doble Efecto." XXV Jornadas de Automática.
- La Madrid Olivares, Raul, Luis Delgado Ramirez, and Daniel Marcelo Aldana. 2014. "Modelacion Matematica de La Transferencia de Calor En Un Intercambiador de Calor Abierto Para Produccion de Panela Granulada.": 10–14.
- Miranda, V., and R. Simpson. 2005. "Modelling and Simulation of an Industrial Multiple Effect Evaporator: Tomato Concentrate." *Journal of Food Engineering* 66(2): 203–10.
- Newelll, Robert B, and D Grant Fisher. 1972. "Model Development, Reduction and Experimental Evaluation for an Evaporator." *Industrial & Engineering Chemistry Process Design and Development* 1(2): 213–21.
- Ordoñez, Roger A., Cesar A. Hernández, and Luis F. Pedraza. 2012. "Modelado de Un Sistema de Evaporación de Múltiple Efecto Para La Producción de Panela (Azúcar No Centrifugado)." *Informacion Tecnologica* 23(6): 105–20.
- Ortiz Mejia, Jose Luis, and Gustavo Valderrama Escudero. 2003. "Control En Cascada de Un Intercambiador de Calor." Corporación universitaria tecnológica de Bolivar.
- Osorio Mirón, Anselmo, Enrique Arce Medina, and Jose Carrillo Ahumada. 2007. "Non Linear Control Based in an Observer: Application to Sugar Evaporation." Proceedings of the 2006 International Conference Advances in Dynamics, Instrumentation and Control, CDIC 2006 2(July 2007): 295–302. http://www.scopus.com/inward/record.url?eid=2-s2.0-84903784672&partnerID=tZOtx3y1.
- Ozudogru, Tolga Y., Omid Ghasemi-Fare, C. Guney Olgun, and Prasenjit Basu. 2015. "Numerical Modeling of Vertical Geothermal Heat Exchangers Using Finite Difference and Finite Element Techniques." *Geotechnical and Geological Engineering* 33(2): 291–306.
- Padhee, Subhransu. 2014. "Controller Design for Temperature Control of Heat Exchanger System: Simulation Studies." WSEAS Transactions on Systems and Control 9(1): 485–91.
- Paredes Álvarez, Adrián André, César Andrés Barros Vargas, and Douglas Plaza Guingla. 2015. "Modelamiento Y Simulación de Un Intercambiador de Calor." (1).
- Pitteea, Arvin V, Robert T. F. Ah King, and Harry C. S. Rughooputh. 2004. "Intelligent Controller for Multiple-Effect Evaporator in the Sugar Industry.": 0–5.
- Rangaiah, G. P., P. Saha, and M. O. Tadé. 2002. "Nonlinear Model Predictive Control of an Industrial Four-Stage Evaporator System via Simulation." *Chemical*

- Engineering Journal 87(3): 285–99.
- Rattner, Alexander, and Jonathan Bohren. 2008. "Heat and Mass Correlations Boundary Layer Analogies Require Geometric Similarity.": 1–17.
- Rein, Peter. 2012. Ingeniería de La Caña de Azúcar. Bartens.
- Shankar Subramanian, R. 2006. "Heat Transfer in Flow Through Conduits." Department of Chemical and Biomolecular Engineering Clarkson University 1: 1–9.
- Simón Pérez, Esther. 2001. "Dynamic Modelling and Simulation With Ecosimpro of an Evaporator Station in The Sugar Industry." *Planta* (May): 3–4.
- Suresh, U., K. Ramkumar, G. Balasubramanian, and S. Rakesh Kumar. 2014. "Kalman Filter Based State Feedback Control of Shell and Tube Heat Exchanger." *International Journal of ChemTech Research* 6(5): 2668–75.
- Taler, Dawid, Marcin Trojan, and Jan Taler. 2011. "Mathematical Modelling of Tube Heat Exchangers with Complex Flow Arrangement." *Chemical and Process Engineering* 32(1): 7–19.
- Vasičkaninová, A., M. Bakošová, L. Čirka, and M. Kalúz. 2016. "Robust Controller Design for a Heat Exchanger." *Chemical Engineering Transactions* 52(2002): 247–52.
- Xiong, Yi, and Mehrdad Saif. 2003. "Unknown Disturbance Inputs Estimation Based on a State Functional Observer Design." *Automatica* 39(8): 1389–98.
- Yusuff, A S, A Giwa, Babalola Way, and Ekiti State. 2015. "Investigating the Effects of Some Input Variables on the Operation of an Evaporator through Dynamics." 3(1): 670–83.
- Zeng, Heyi, Nairen Diao, and Zhaohong Fang. 2003. "Heat Transfer Analysis of Boreholes in Vertical Ground Heat Exchangers." *International Journal of Heat and Mass Transfer* 46(23): 4467–81.

NOMENCLATURA:

Variable	Abreviación	Unidad
Tiempo	t	S
Longitud	ℓ	m
Masa	m	kg
Brix	В	kg/kg
Pureza	Z	kg/kg
Entalpía	Н	J/kg
Flujo (volumétrico)	F	m^3/s
Flujo (másico)	ṁ	kg/s
Temperatura	Т	°C

Presión	Р	Ра
Nivel (altura)	h	m
Nivel %	L	m/m
Área	А	m^2
Volumen	V	m^3
Densidad	ρ	kg/m^3
Coeficiente de flujo(1)	Cv	gpm/\sqrt{psi}
Coeficiente de flujo(2)	Kv	$m^3/h\sqrt{bar}$
Coeficiente de flujo(Modelo)	ψ	$m^3/_{S}\sqrt{Pa}$
Densidad relativa	SG	$\frac{kg/m^3}{kg/m^3}$
Apertura %	Λ	°/°
Gravedad	g	m/s^2
Diámetro	φ	и
Constante	С	-
Número de tubos por paso	N_p	-
Número de pasos	N_{st}	-
Coeficiente de transferencia de calor.	U	$W/(m^2.°K)$
Resistencia de incrustaciones.	Ri	m^2 .° K/W
Factor de evolución de las incrustaciones.	β	-
Horas de operación.	Ор	h
Velocidad	v	m/s
Conductividad térmica.	λ	W/(m.°K)
Viscosidad dinámica	μ	Pa.s
Calor específico.	Ср	J/(kg.°K)
Rugosidad	ε	mm
Espesor	Ι	mm
Numero de Nusselt - Gnielinski	Nu	-
Numero de Reynolds	Re	-

Numero de Prandlt	Pr	-
Factor de fricción	f	-

Subíndice	Abreviación
Sacarosa	S
Agua	w
Lado interno	is
Lado externo	os
Entrada	in
Salida	out
Evaporador	e
Calentador	С
Jugo	j
Vapor	ν
Tubo	p
Condensado	con
Vapor Vegetal	va
Extracción	ext.
mínimo	min
máximo	max
Hidrostática	h
Auxiliar	aux

13. ANEXOS.

Anexo1

COEFICIENTES - ESPACIO DE ESTADOS DEL MODELO DEL TREN DE EVAPORADORES.

$$k_{a1,1} = \frac{k_1 \cdot \rho_{vin} \overline{F_{vin}} - \rho_{jin} \overline{F_{jin}}}{\rho_{jout1} A_1 h_{max1} \overline{L_{e1}}} \,, \, k_{a1,2} = -\frac{\rho_{jin} \overline{F_{jin} B_{jin}} - \rho_{jin} \overline{F_{jin} B_{jout1}} + k_1 \cdot \rho_{vin} \overline{F_{vin} B_{jout1}}}{\rho_{jout1} A_1 h_{max1} \overline{L_{e1}}^2} \,,$$

$$k_{a2,3} = -\frac{Cp_{jout1}T_{jout1}\rho_{jout1}}{\rho_{jout1}A_1h_{max1}Cp_{jout1}T_{jout1}}, k_{a3,2} = \frac{(a_1\overline{A_1} + b_1)gh_{max1}\rho_{w1}}{2\sqrt{\frac{p_{e1} + \rho_{jout1}g\overline{L_{e1}}h_{max1} - p_{e2} - \rho_{jout2}g\overline{L_{e2}}h_{max2}}{\rho_{jout1}/\rho_{w1}}}},$$

$$k_{a3,5} = -\frac{(a_1\overline{A_1} + b_1)\rho_{jout2}gh_{max2}\rho_{w1}}{2\rho_{jout1}\sqrt{\frac{P_{e1} + \rho_{jout1}g\overline{L_{e1}}h_{max1} - P_{e2} - \rho_{jout2}g\overline{L_{e2}}h_{max2}}{\rho_{jout1}/\rho_{w1}}},$$

$$k_{b1,1} = \frac{\rho_{jin}\overline{F_{jin}}}{\rho_{jout1}A_1h_{max1}\overline{L_{e1}}}, k_{b1,2} = \frac{\rho_{jin}\overline{B_{jin}} - \rho_{jin}\overline{B_{jout1}}}{\rho_{jout1}A_1h_{max1}\overline{L_{e1}}}, k_{b1,3} = \frac{k_1 \cdot \rho_{vin}\overline{B_{jout1}}}{\rho_{jout1}A_1h_{max1}\overline{L_{e1}}}$$

$$k_{b2,2} = \frac{cp_{jin}T_{jin}\rho_{jin}}{\rho_{jout1}A_1h_{max1}cp_{jout1}T_{jout1}}, \ k_{b2,3} = \frac{(H_{vin}-k_1\cdot H_{vv1})\rho_{vin}}{\rho_{jout1}A_1h_{max1}cp_{jout1}T_{jout1}}$$

$$k_{b3,5} = (a_1) \sqrt{\frac{P_{e1} + \rho_{jout1} g \overline{L_{e1}} h_{max1} - P_{e2} - \rho_{jout2} g \overline{L_{e2}} h_{max2}}{\rho_{jout1}/\rho_{w1}}} \,.$$

$$k_{a4,1} = \frac{\rho_{jout1}\overline{F_{jout1}}}{\rho_{jout2}A_2h_{max2}\overline{L_{e2}}}, \ k_{a4,3} = \frac{\rho_{jout1}\overline{B_{jout1}} - \rho_{jout1}\overline{B_{jout2}}}{\rho_{jout2}A_2h_{max2}\overline{L_{e2}}},$$

$$k_{a4,4} = \frac{\rho_{vv1}(k_1k_2\overline{F_{vin}} - k_2\overline{F_{ext1}}) - \rho_{jout1}\overline{F_{jout1}}}{\rho_{jout2}A_2h_{max2}\overline{L_{e2}}}$$

$$k_{a4,5} = -\frac{\rho_{jout1}F_{jout1}\overline{B_{jout1}} - \rho_{jout1}\overline{F_{jout1}B_{jout2}} + \rho_{vv1}(k_1k_2\overline{F_{vun}} - k_2\overline{F_{ext1}})\overline{B_{jout2}}}{\rho_{jout2}A_2h_{max2}\overline{L_{e2}}^2},$$

$$k_{a5,3} = \frac{cp_{jout1}T_{jout1}\rho_{jout1}}{\rho_{jout2}A_2h_{max2}cp_{jout2}T_{jout2}}, k_{a5,6} = -\frac{cp_{jout2}T_{jout2}\rho_{jout2}}{\rho_{jout2}A_2h_{max2}cp_{jout2}T_{jout2}},$$

$$k_{a6,5} = \frac{(a_2\overline{A_2} + b_2)gh_{max2}\rho_{w2}}{2\sqrt{\frac{P_{e2} + \rho_{jout2}g\overline{L_{e2}}h_{max2} - P_{e3} - \rho_{jout3}g\overline{L_{e3}}h_{max3}}{\rho_{jout2}/\rho_{w2}}}},$$

$$k_{a6,8} = -\frac{(a_2 \overline{\Lambda_2} + b_2) \rho_{jout3} g h_{max3} \rho_{w2}}{2 \rho_{jout2} \sqrt{\frac{P_{e2} + \rho_{jout2} g \overline{L_{e2}} h_{max2} - P_{e3} - \rho_{jout3} g \overline{L_{e3}} h_{max3}}{\rho_{jout2} / \rho_{w2}}},$$

$$k_{b4,3} = \frac{\rho_{vv1}k_1k_2\overline{B_{Jout2}}}{\rho_{jout2}A_2h_{max2}\overline{L_{e2}}}, \ k_{b4,10} = -\frac{\rho_{vv1}k_2\overline{B_{Jout2}}}{\rho_{jout2}A_2h_{max2}\overline{L_{e2}}}$$

$$k_{b5,3} = \frac{(H_{vv1} - k_2 \cdot H_{vv2})\rho_{vv1}k_1}{\rho_{jout2}A_2h_{max2}Cp_{jout2}T_{jout2}}, k_{b5,10} = -\frac{(H_{vv1} - k_2 \cdot H_{vv2})\rho_{vv1}}{\rho_{jout2}A_2h_{max2}Cp_{jout2}T_{jout2}},$$

$$k_{b6,6} = (a_2) \sqrt{\frac{P_{e2} + \rho_{jout2}g\overline{L_{e2}}h_{max2} - P_{e3} - \rho_{jout3}g\overline{L_{e3}}h_{max3}}{\rho_{jout2}/\rho_{w2}}}.$$

Efecto3

$$k_{a7,4} = \frac{\rho_{jout2}\overline{F_{jout2}}}{\rho_{jout3}A_{3}h_{max3}\overline{L_{e3}}}, k_{a7,6} = \frac{\rho_{jout2}\overline{B_{jout2}} - \rho_{jout3}A_{3}h_{max3}\overline{L_{e3}}}{\rho_{jout3}A_{3}h_{max3}\overline{L_{e3}}},$$

$$k_{a7,7} = \frac{\rho_{vv2}(k_{3}k_{2}k_{1}\overline{F_{vin}} - k_{3}k_{2}\overline{F_{ext1}} - k_{3}\overline{F_{ext2}}) - \rho_{jout2}\overline{F_{jout2}}}{\rho_{jout3}A_{3}h_{max3}\overline{L_{e3}}},$$

$$k_{a7,8} = -\frac{\rho_{jout2}F_{jout2}B_{jout2} - \rho_{jout2}F_{jout2}B_{jout3} + \rho_{vv2}(k_{3}k_{2}k_{1}F_{vin} - k_{3}k_{2}F_{ext1} - k_{3}F_{ext2})B_{jout3}}{\rho_{jout3}A_{3}h_{max3}\overline{L_{e3}}^{2}},$$

$$k_{a8,6} = \frac{Cp_{jout2}T_{jout2}\rho_{jout2}}{\rho_{jout3}A_{3}h_{max3}Cp_{jout3}T_{jout3}}, k_{a8,9} = -\frac{Cp_{jout3}T_{jout3}\rho_{jout3}}{\rho_{jout3}A_{3}h_{max3}Cp_{jout3}T_{jout3}},$$

$$k_{a9,8} = \frac{(a_{3}\overline{A_{3}} + b_{3})gh_{max3}\rho_{w3}}{2\sqrt{\frac{P_{e3} + \rho_{jout3}g\overline{L_{e3}}h_{max3} - P_{e4} - \rho_{jout4}g\overline{L_{e4}}h_{max4}}{\rho_{jout3}}}},$$

$$k_{a9,11} = -\frac{(a_{3}\overline{A_{3}} + b_{3})\rho_{jout4}gh_{max4}\rho_{w3}}{2\rho_{jout3}\sqrt{\frac{P_{e3} + \rho_{jout3}g\overline{L_{e3}}h_{max3} - P_{e4} - \rho_{jout4}g\overline{L_{e4}}h_{max4}}{\rho_{jout3}}}},$$

$$\rho_{vv2}k_{3}k_{2}k_{1}\overline{B_{jout3}}}, \rho_{vv2}k_{3}B_{jout3}}, \rho_{vv2}k_{3}B_{jout3}, \rho_{vv2}k_{3}B_{jout3}}, \rho_{vv2}k_{3}B_{jout3}, \rho_{vv2}k_{3}B_{jout3}}, \rho_{vv2}k_{3}B_{jout3}}, \rho_{vv2}k_{3}B_{jout3}, \rho_{vv2}k_{3}B_{jout3}}, \rho_{vv2}k_{3}B_{jout3}, \rho_{vv2}k_{3}B_{jout3}, \rho_{vv2}k_{3}B_{jout3}, \rho_{vv2}k_{3}B_{jout3}}, \rho_{vv2}k_{3}B_{jout3}, \rho_{$$

$$k_{b7,3} = \frac{\rho_{vv2}k_3k_2k_1\overline{B_{jout3}}}{\rho_{jout3}A_3h_{max3}\overline{L_{e3}}}, k_{b7,10} = -\frac{\rho_{vv2}k_3k_2\overline{B_{jout3}}}{\rho_{jout3}A_3h_{max3}\overline{L_{e3}}}, k_{b7,11} = -\frac{\rho_{vv2}k_3\overline{B_{jout3}}}{\rho_{jout3}A_3h_{max3}\overline{L_{e3}}},$$

$$k_{b8,3} = \frac{(H_{vv2} - k_3 \cdot H_{vv3}) \rho_{vv2} k_2 k_1}{\rho_{jout3} A_3 h_{max3} C p_{jout3} T_{jout3}}, k_{b8,10} = -\frac{(H_{vv2} - k_3 \cdot H_{vv3}) \rho_{vv2} k_2}{\rho_{jout3} A_3 h_{max3} C p_{jout3} T_{jout3}},$$

$$k_{b8,11} = -\frac{(H_{vv2} - k_3 \cdot H_{vv3})\rho_{vv2}}{\rho_{jout3}A_3h_{max3}cp_{jout3}T_{jout3}}$$

$$k_{b9,7} = (a_3) \sqrt{\frac{P_{e3} + \rho_{jout3}g\overline{L_{e3}}h_{max3} - P_{e4} - \rho_{jout4}g\overline{L_{e4}}h_{max4}}{\rho_{jout3}/\rho_{w3}}}.$$

$$k_{a10,7} = \frac{\rho_{jout3}\overline{F_{jout3}}}{\rho_{jout4}A_4h_{max4}\overline{L_{e4}}}, k_{a10,9} = \frac{\rho_{jout3}\overline{B_{jout3}} - \rho_{jout3}\overline{B_{jout4}}}{\rho_{jout4}A_4h_{max4}\overline{L_{e4}}},$$

$$k_{a10,10} = \frac{\rho_{vv3}(k_4k_3k_2k_1\overline{F_{vin}} - k_4k_3k_2\overline{F_{ext1}} - k_4k_3\overline{F_{ext2}} - k_4\overline{F_{ext3}}) - \rho_{jout3}\overline{F_{jout3}}}{\rho_{jout4}A_4h_{max4}\overline{L_{e4}}},$$

$$k_{a10,11} = -\frac{\rho_{jout3}\overline{F_{jout3}B_{jout3}} - \rho_{jout3}\overline{F_{jout3}B_{jout4}} + \rho_{vv3}(k_4k_3k_2k_1\overline{F_{vin}} - k_4k_3k_2\overline{F_{ext1}} - k_4k_3\overline{F_{ext2}} - k_4\overline{F_{ext3}})\overline{B_{jout4}}}{\rho_{jout4}A_4h_{max4}\overline{L_{e4}}},$$

$$\begin{split} k_{a11,9} &= \frac{Cp_{jout3}T_{jout3}\rho_{jout4}}{\rho_{jout4}A_4h_{max4}Cp_{jout4}T_{jout4}}, k_{a11,12} = -\frac{Cp_{jout4}T_{jout4}\rho_{jout4}}{\rho_{jout4}A_4h_{max4}Cp_{jout4}T_{jout4}}, k_{a11,12} &= -\frac{(a_4\overline{A_4} + b_4)gh_{max4}\rho_{w4}}{\rho_{jout4}A_4h_{max4}Cp_{jout4}T_{jout4}}, k_{a12,11} &= \frac{(a_4\overline{A_4} + b_4)gh_{max4}\rho_{w4}}{2\sqrt{\frac{P_{e4} + \rho_{jout4}g\overline{L_{e4}}h_{max4} - P_{e5} - \rho_{jout5}g\overline{L_{e5}}h_{max5}}{\rho_{jout4}/\rho_{w4}}}, k_{a12,14} &= -\frac{(a_4\overline{A_4} + b_4)\rho_{jout5}gh_{max5}\rho_{w4}}{2\rho_{jout4}\sqrt{\frac{P_{e4} + \rho_{jout4}g\overline{L_{e4}}h_{max4} - P_{e5} - \rho_{jout5}g\overline{L_{e5}}h_{max5}}{\rho_{jout4}/\rho_{w4}}}, \end{split}$$

$$k_{b10,3} = \frac{\rho_{vv3}k_4k_3k_2k_1\overline{B_{jout4}}}{\rho_{jout4}A_4h_{max4}\overline{L_{e4}}}, k_{b10,10} = -\frac{\rho_{vv3}k_4k_3k_2\overline{B_{jout4}}}{\rho_{jout4}A_4h_{max4}\overline{L_{e4}}}, k_{b10,11} = -\frac{\rho_{vv3}k_4k_3\overline{B_{jout4}}}{\rho_{jout4}A_4h_{max4}\overline{L_{e4}}}$$

$$k_{b10,12} = -\frac{\rho_{vv3}k_4\overline{B_{jout4}}}{\rho_{jout4}A_4h_{max4}\overline{L_{e4}}}, k_{b11,3} = \frac{(H_{vv3} - k_4 \cdot H_{vv4})\rho_{vv3}k_3k_2k_1}{\rho_{jout4}A_4h_{max4}Cp_{jout4}T_{jout4}},$$

$$k_{b11,10} = -\frac{(H_{vv3} - k_4 \cdot H_{vv4})\rho_{vv3}k_3k_2}{\rho_{jout4}A_4h_{max4}Cp_{jout4}T_{jout4}}, k_{b11,11} = -\frac{(H_{vv3} - k_4 \cdot H_{vv4})\rho_{vv3}k_3}{\rho_{jout4}A_4h_{max4}Cp_{jout4}T_{jout4}},$$

$$k_{b11,12} = -\frac{(H_{vv3} - k_4 \cdot H_{vv4})\rho_{vv3}}{\rho_{jout4}A_4 h_{max4} C p_{jout4} T_{jout4}},$$

$$k_{b12,8} = (a_4) \sqrt{\frac{P_{e4} + \rho_{jout4}g\overline{L_{e4}}h_{max4} - P_{e5} - \rho_{jout5}g\overline{L_{e5}}h_{max5}}{\rho_{jout4}/\rho_{w4}}}.$$

$$k_{a13,10} = \frac{\rho_{jout4}\overline{F_{jout4}}}{\rho_{jout5}A_5h_{max5}\overline{L_{e5}}}, \, k_{a13,12} = \frac{\rho_{jout4}\overline{B_{jout4}} - \rho_{jout4}\overline{B_{jout5}}}{\rho_{jout5}A_5h_{max5}\overline{L_{e5}}},$$

$$k_{a13,13} = \frac{\rho_{vv4}(k_5k_4k_3k_2k_1\overline{F_{vin}} - k_5k_4k_3k_2\overline{F_{ext1}} - k_5k_4k_3\overline{F_{ext2}} - k_5k_4\overline{F_{ext3}} - k_5\overline{F_{ext4}}) - \rho_{jout4}\overline{F_{jout4}}}{\rho_{jout5}A_5h_{max5}\overline{L_{e5}}},$$

$$k_{a13,14} = \underbrace{-\frac{\rho_{jout4}\overline{F_{jout4}B_{jout4}} - \rho_{jout4}\overline{F_{jout4}B_{jout5}} + \rho_{vv4}(k_5k_4k_3k_2k_1\overline{F_{vin}} - k_5k_4k_3k_2\overline{F_{ext1}} - k_5k_4k_3\overline{F_{ext2}} - k_5k_4\overline{F_{ext3}} - k_5\overline{F_{ext4}})\overline{B_{jout5}}}_{\rho_{jout5}A_5h_{max5}\overline{L_{e5}}^2},$$

$$k_{a14,12} = \frac{cp_{jout4}T_{jout4}\rho_{jout4}}{\rho_{jout5}A_5h_{max5}cp_{jout5}T_{jout5}}, k_{a14,15} = -\frac{cp_{jout5}T_{jout5}\rho_{jout5}}{\rho_{jout5}A_5h_{max5}cp_{jout5}T_{jout5}},$$

$$k_{a15,14} = \frac{(a_5\overline{A_5} + b_5)gh_{max5}\rho_{w5}}{2\sqrt{\frac{P_{e5} + \rho_{jout5}g\overline{L_{e5}}h_{max5} - P_{out}}{\rho_{jout5}/\rho_{w5}}}},$$

$$\begin{split} k_{b13,3} &= \frac{\rho_{vv4}k_5k_4k_3k_2k_1\overline{B_{jout5}}}{\rho_{jout5}A_5h_{max5}\overline{L_{e5}}}, \, k_{b13,10} = -\frac{\rho_{vv4}k_5k_4k_3k_2\overline{B_{jout5}}}{\rho_{jout5}A_5h_{max5}\overline{L_{e5}}}, \, k_{b13,11} = -\frac{\rho_{vv4}k_5k_4k_3\overline{B_{jout5}}}{\rho_{jout5}A_5h_{max5}\overline{L_{e5}}}, \\ k_{b13,12} &= -\frac{\rho_{vv4}k_5k_4\overline{B_{jout5}}}{\rho_{jout5}A_5h_{max5}\overline{L_{e5}}}, \, k_{b13,13} = -\frac{\rho_{vv4}k_5\overline{B_{jout5}}}{\rho_{jout5}A_5h_{max5}\overline{L_{e5}}}, \, k_{b14,3} = \frac{(H_{vv4}-k_5\cdot H_{vv5})\rho_{vv4}k_4k_3k_2k_1}{\rho_{jout5}A_5h_{max5}Cp_{jout5}T_{jout5}}, \\ k_{b14,10} &= -\frac{(H_{vv4}-k_5\cdot H_{vv5})\rho_{vv4}k_4k_3k_2}{\rho_{jout5}A_5h_{max5}Cp_{jout5}T_{jout5}}, \, k_{b14,11} = -\frac{(H_{vv4}-k_5\cdot H_{vv5})\rho_{vv4}k_4k_3}{\rho_{jout5}A_5h_{max5}Cp_{jout5}T_{jout5}}, \\ k_{b14,12} &= -\frac{(H_{vv4}-k_5\cdot H_{vv5})\rho_{vv4}k_4}{\rho_{jout5}A_5h_{max5}Cp_{jout5}T_{jout5}}, \, k_{b14,13} = -\frac{(H_{vv4}-k_5\cdot H_{vv5})\rho_{vv4}}{\rho_{jout5}A_5h_{max5}Cp_{jout5}T_{jout5}}, \\ k_{b15,4} &= -\frac{(a_5\overline{A_5}+b_5)\rho_{w5}}{2\rho_{jout5}}, \, k_{b15,9} = (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}{\rho_{jout5}/\rho_{w5}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}{\rho_{jout5}/\rho_{w5}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}{\rho_{jout5}/\rho_{w5}}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}{\rho_{jout5}/\rho_{w5}}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}{\rho_{jout5}/\rho_{w5}}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}}{\rho_{jout5}/\rho_{w5}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}}{\rho_{jout5}/\rho_{w5}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}}{\rho_{jout5}/\rho_{w5}}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}}{\rho_{jout5}/\rho_{w5}}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}}{\rho_{jout5}/\rho_{w5}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}}{\rho_{jout5}/\rho_{w5}}}, \\ k_{b15,9} &= (a_5) \sqrt{\frac{P_{e5}+\rho_{jout5}g\overline{L_{e5}}h_{max5}-\overline{P_{out}}}}{\rho_{jout5}/$$

Anexo2

CORRELACIONES DE PROPIEDADES FÍSICO-QUÍMICAS.

Densidad del agua (Llano-Restrepo 2005):

$$\rho_W = \frac{q_0 + q_1 + q_2}{q_3}$$
 Ec. 92

Dónde:

$$q_0 = 999.83952 + 16.952577T_w - (7.9905127 * 10^{-3})T_w^2$$
 Ec. 93

$$q_1 = (-46.241757 * 10^{-6})T_w^3 + (105.84601 * 10^{-9})T_w^4$$
 Ec. 94

$$q_2 = (-281.03006 * 10^{-12}) T_w^5$$
 Ec. 95

$$q_3 = 1 + (16.887236 * 10^{-3})T_w$$
 Ec. 96

Entalpía del agua (Damour et al. 2011):

$$H_w = 2323.3 + 4106.7T_w$$
 Ec. 97

Entalpia de vapor (Damour et al. 2011):

$$H_v = 2499980 - 24186(10^{-5}P_v) + (1891.1 + 106.1(10^{-5}P_v))T_v$$
 Ec. 98

Temperatura de vapor (Buck 1981):

Según la ecuación de Buck:

$$P_v = 0.61121 * EXP\left(\left(18.678 - \frac{T_v}{234.5}\right)\left(\frac{T_v}{257.14 + T_v}\right)\right)$$
 Ec. 99

Resolviendo, se obtiene:

$$T_v = -117.25 \sqrt{\ln\left(\frac{1}{10^{-3}P_v}\right)^2 + 40.76\ln\left(\frac{1}{10^{-3}P_v}\right) + 328.56 - \ln\left(\frac{1}{10^{-3}P_v}\right)}$$
 Ec. 100

Densidad del vapor (Hodgman 1951):

$$\rho_v = \frac{P_v * m}{Rg * T_v}$$
 Ec. 101

Dónde:

m es la masa molar del agua= 18.01528×10^{-3} Kg/mol Rg es la constante universal de los gases= 8.31447 J/(°K . mol)

Conductividad térmica del vapor:

$$\lambda_n = -(8.7935 * 10^{-6})(T_n)^2 + (2.07297 * 10^{-3})T_n + 0.5689$$
 Ec. 102

Viscosidad dinámica del vapor:

$$\mu_v = (1.38297 * 10^{-5})(T_v)^4 - (4.9904 * 10^{-3})(T_v)^3 + 0.69149(T_v)^2 - 47.48939T_v + 1722.8465$$
 Ec. 103

Entalpia entregada en evaporación:

$$H_{vw} = H_v - H_w Ec. 104$$

Capacidad calorífica de jugos y mieles (Llano-Restrepo 2005):

$$Cp_j = 4184 - 2971B_j + 460B_jZ_J + 7.5B_jT_j$$
 Ec. 105

Densidad de jugos y mieles (Llano-Restrepo 2005):

$$\rho_j = \rho_{j,p} + \Delta \rho \qquad \qquad \text{Ec. 106}$$

Dónde:

$$\rho_{j,p} = \rho_w + p_1 + p_2 + p_3 + p_4 + p_5$$
 Ec. 107
$$\Delta \rho = -1 + e^{(1-Z_j)(6.927B_j^2 + 1.165B_j)}$$
 Ec. 108

Y:

$$p_1 = c_{1,1}B_j + c_{1,2}B_j^2 + c_{1,3}B_j^3 + c_{1,4}B_j^4 + c_{1,5}B_j^5 + c_{1,6}B_j^6$$
 Ec. 109

$$p_2 = \frac{T_j - 20}{100} \left(c_{2,1} B_j + c_{2,2} B_j^2 + c_{2,3} B_j^3 + c_{2,4} B_j^4 + c_{2,5} B_j^5 \right)$$
 Ec. 110

$$p_3 = \left(\frac{T_j - 20}{100}\right)^2 \left(c_{3,1}B_j + c_{3,2}B_j^2 + c_{3,3}B_j^3 + c_{3,4}B_j^4\right)$$
 Ec. 111

$$p_4 = \left(\frac{T_j - 20}{100}\right)^3 \left(c_{4,1}B_j + c_{4,2}B_j^2 + c_{4,3}B_j^3\right)$$
 Ec. 112

$$p_5 = \left(\frac{T_j - 20}{100}\right)^4 \left(c_{5,1}B_j + c_{5,2}B_j^2\right)$$
 Ec. 113

Tabla 13. Coeficientes para cálculo de densidad de jugos y mieles.

$C_{i,j}$	j=1	j=2	j=3	j=4	j=5	j=6
i=1	385.1761	135.3705	40.9299	-3.9643	13.4853	-17.2890
i=2	-46.2720	-7.1720	1.1597	5.1126	17.5254	
i=3	59.7712	7.2491	12.3630	-35.4791		
i=4	-47.2207	-21.6977	27.6301			
i=5	18.3184	12.3081				

Viscosidad dinámica de jugos y mieles (Bubnik et al. 1995):

$$\mu_i = 0.001 (10^{22.46x_1 - 0.114 + x_2(1.1 + 43.1x_3(x_1)^{1.25})})$$
 Ec. 114

Dónde:

$$x_1 = \frac{x_4}{1900 - 18x_4}$$

$$x_2 = \frac{30 - T_j}{91 + T_j}$$

$$x_3 = 0.85 + 0.15Z_j$$

$$x_4 = B_j [0.962 + (1 - 0.962)Z_j]$$

Conductividad térmica de jugos y mieles (Llano-Restrepo 2005):

$$\lambda_j = B_j \left(5.466 * 10^{-6} T_j^2 - 1.176 * 10^{-3} T_j - 0.3024 \right) - 7.847 * 10^{-6} T_j^2$$
 Ec. 115 +1.976 * $10^{-3} T_j + 0.56$

ANEXO 3

SIMULACIÓN DEL MODELO DE CALENTADORES (CARCASA Y TUBOS) Y DE EVAPORADORES (ROBERT).

Ilustración 6. Respuesta en lazo abierto de calentador.

Ilustración 7. Respuesta en lazo abierto de calentador con variación en el flujo del jugo de entrada.

Ilustración 8. Respuesta en lazo abierto del evaporador (Brix)

Ilustración 9. Respuesta en lazo abierto del evaporador (Flujo)

Ilustración 10. Respuesta en lazo abierto del evaporador (Nivel)