Проекция в латентное пространство

Московский Физико-Технический Институт

2022

Метод главных компонент

$$\boldsymbol{W} = \operatorname{arg\,max} Var(\boldsymbol{X} \boldsymbol{W})$$

Bayesian PCA

Автокодировщик

Автокодировщик — модель снижения размерности:

$$m{H} = m{\sigma}(m{W}_em{X}),$$
 $||m{\sigma}(m{W}_dm{H}) - m{X}||_2^2
ightarrow ext{min} \,.$

Многообразие

Определение, wiki

Многообразие — пространство, локально сходное с евклидовым.

Figure 2. A manifold \mathcal{M} and the vector space $T_{\mathcal{X}}\mathcal{M}$ (in this case $\cong \mathbb{R}^2$) tangent at the point \mathcal{X} , and a convenient side-cut. The velocity element, $\dot{\mathcal{X}} = \partial \mathcal{X}/\partial t$, does not belong to the manifold \mathcal{M} but to the tangent space $T_{\mathcal{X}}\mathcal{M}$.

Многообразие: зачем нужно?

Автокодировщик: порождающая модель?

(Alain, Bengio 2012): рассмотрим модель автокодировщика с регуляризацией:

$$||\mathbf{f}(\mathbf{x},\sigma)-\mathbf{x}||^2,$$

где σ — уровень шума, подаваемого на вход модели кодирования. Тогда

$$rac{\partial {\log p(x)}}{\partial x} = rac{||m{f(x,\sigma)} - m{x}||^2}{\sigma^2} + o(1)$$
 при $\sigma o 0.$

Векторное поле, индуцированное ошибкой реконструкции автокодировщика

Вариационный автокодировщик

Пусть объекты выборки $m{X}$ порождены при условии скрытой переменной $m{h} \sim \mathcal{N}(0, m{I})$:

$$x \sim p(x|h, w).$$

 $p(\pmb{h}|\pmb{x},\pmb{w})$ — неизвестно. Будем максимизировать вариационную оценку правдоподобия выборки:

$$\log p(\pmb{x}|\pmb{w}) \geq \mathsf{E}_{q_{\phi}(\pmb{h}|\pmb{x})} \! \log p(\pmb{x}|\pmb{h},\pmb{w}) \! - \! D_{\mathsf{KL}}(q_{\phi}(\pmb{h}|\pmb{x})||p(\pmb{h})) o \mathsf{max} \,.$$

Распределения $q_{\phi}(\pmb{h}|\pmb{x})$ и $p(\pmb{x}|\pmb{h},\pmb{w})$ моделируются нейросетью:

$$q_{\phi}(m{h}|m{x}) \sim \mathcal{N}(m{\mu}_{\phi}(m{x}), m{\sigma}_{\phi}^2(m{x})),$$
 $p(m{x}|m{h},m{w}) \sim \mathcal{N}(m{\mu}_{w}(m{h}), m{\sigma}_{w}^2(m{h})),$

Вариационный автокодировщик: процесс порождения

Процесс порождения заключается в сэмплировании скрытой переменной из априорного расспределения: $\mathbf{z} \sim p(\mathbf{z})$ и действии на него декодером.

(b) Learned MNIST manifold

Несколько пространств

Заданы два пространства $\boldsymbol{X},\,\boldsymbol{Y}.$ Как построить общее латнетное пространство между ними?

Несколько пространств

Заданы два пространства $\boldsymbol{X},\,\boldsymbol{Y}.$ Как построить общее латнетное пространство между ними?

Наивный метод: $||f(\boldsymbol{X}) - f(\boldsymbol{Y})|| \to \min$ не работает, нужна регуляризация.

Сиамские сети

Обучение метрики

$$D(\boldsymbol{x}_1, \boldsymbol{x}_2) = \sqrt{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^\mathsf{T} \boldsymbol{M} (\boldsymbol{x}_1 - \boldsymbol{x}_2)}$$

Триплетные ограничения

The loss function for each sample in the mini-batch is:

$$L(a,p,n) = \max\{d(a_i,p_i) - d(a_i,n_i) + \operatorname{margin}, 0\}$$

where

$$d(x_i,y_i) = \left\|\mathbf{x}_i - \mathbf{y}_i
ight\|_p$$

Триплетные ограничения

Bayesian representation learning with oracle constraints

$$p(t_{i,j,l}) = \int\limits_{z} p(t_{i,j,l}|z_i,z_j,z_l) p(oldsymbol{z}_i) p(oldsymbol{z}_j) p(oldsymbol{z}_k) dz_i dz_j dz_k,$$

this gives the following likelihood:

$$p(t_{i,j,l}) = Ber(t_{i,j,l}) = \frac{e^{-D_{i,j}}}{e^{-D_{i,j}} + e^{-D_{i,l}}}$$

with

$$D_{a,b} = \sum_{h=1}^H D_{a,b}^h = -\sum_{h=1}^H \left[ext{JS} \Big(p(oldsymbol{z}_a^h) || p(oldsymbol{z}_b^h) \Big)
ight].$$

Bayesian representation learning with oracle constraints

Variational learning across domains with triplet information

Figure 1: VBTA generative process

Variational learning across domains with triplet information

$$\mathcal{L}_{VBTA} = \mathbb{E}_{q_{\phi_{x}}(\mathbf{z}_{x}|\mathbf{x})} \log \frac{p_{\theta_{x}}(\mathbf{x}, \mathbf{y}, \mathbf{t}, \mathbf{z}_{x})}{q_{\phi_{x}}(\mathbf{z}_{x}|\mathbf{x})} + \mathbb{E}_{q_{\phi_{y}}(\mathbf{z}_{y}|\mathbf{y})} \log \frac{p_{\theta_{y}}(\mathbf{x}, \mathbf{y}, \mathbf{t}, \mathbf{z}_{y})}{q_{\phi_{y}}(\mathbf{z}_{y}|\mathbf{y})} = \\ = \underbrace{-\left[KL\left(q_{\phi_{\mathbf{x}}(\mathbf{z}_{x}|\mathbf{x})}(\mathbf{z}_{x}|\mathbf{x}) \parallel p_{\theta_{\mathbf{x}}}(\mathbf{z}_{x})\right) + KL\left(q_{\phi_{\mathbf{y}}(\mathbf{z}_{y}|\mathbf{y})}(\mathbf{z}_{y}|\mathbf{y}) \parallel p_{\theta_{\mathbf{y}}}(\mathbf{z}_{y})\right)\right]}_{\text{Penalty}} + \underbrace{\left[\mathbb{E}_{q_{\phi_{\mathbf{x}}}(\mathbf{z}_{x}|\mathbf{x})}\left[\log p_{\theta_{\mathbf{x}}}(\mathbf{x}|\mathbf{z}_{x})\right] + \mathbb{E}_{q_{\phi_{\mathbf{y}}}(\mathbf{z}_{y}|\mathbf{y})}\left[\log p_{\theta_{\mathbf{y}}}(\mathbf{y}|\mathbf{z}_{y})\right]\right]}_{\text{Reconstruction}} + \underbrace{\left[\mathbb{E}_{q_{\phi_{\mathbf{x}}}(\mathbf{z}_{x}|\mathbf{x})}\left[\log p_{\theta_{\mathbf{x}}}(\mathbf{y}|\mathbf{z}_{x})\right] + \mathbb{E}_{q_{\phi_{\mathbf{y}}}(\mathbf{z}_{y}|\mathbf{y})}\left[\log p_{\theta_{\mathbf{y}}}(\mathbf{x}|\mathbf{z}_{y})\right]\right]}_{\text{Cycle-consistency}} + \underbrace{\mathbb{E}_{q_{\phi_{\mathbf{y}}}(\mathbf{z}_{x}|\mathbf{x})}\left[\log p(\mathbf{t}|\mathbf{z}_{x})\right] + \mathbb{E}_{q_{\phi_{\mathbf{y}}}(\mathbf{z}_{y}|\mathbf{x})}\left[\log p(\mathbf{t}|\mathbf{z}_{y})\right]}_{\text{Triplet likelihood}}$$

Differentiable Neural Architecture Search in Equivalent Space with Exploration Enhancement

- Для представления структуры используется графовый supervised-автокодировщик
- Оптимизация структуры: DARTS + поощрение новых структур

Table 1: Comparison results with state-of-the-art NAS approaches on NAS-Bench-201.

Method	CIFAR-10		CIFAR-100		ImageNet-16-120		
	Valid(%)	Test(%)	Valid(%)	Test(%)	Valid(%)	Test(%)	
ENAS	37.51 ± 3.19	53.89 ± 0.58	$13.37{\pm}2.35$	13.96 ± 2.33	15.06 ± 1.95	14.84 ± 2.10	
RandomNAS*	85.63 ± 0.44	88.58 ± 0.21	60.99 ± 2.79	61.45 ± 2.24	31.63 ± 2.15	31.37 ± 2.51	
DARTS (1st)	39.77 ± 0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	16.43 ± 0.00	16.32 ± 0.00	
DARTS (2nd)	39.77 ± 0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	16.43 ± 0.00	16.32 ± 0.00	
SETN	84.04 ± 0.28	87.64 ± 0.00	58.86 ± 0.06	59.05 ± 0.24	33.06 ± 0.02	32.52 ± 0.21	
NAO*	82.04 ± 0.21	85.74 ± 0.31	56.36 ± 3.14	59.64 ± 2.24	30.14 ± 2.02	31.35 ± 2.21	
GDAS*	90.03 ± 0.13	93.37 ± 0.42	70.79 ± 0.83	70.35 ± 0.80	40.90 ± 0.33	41.11 ± 0.13	
E ² NAS	$90.94{\pm}0.83$	93.89 ± 0.47	71.83 ± 1.84	$72.05{\pm}1.58$	$45.44{\pm}1.24$	45.77±1.00	

Neural Architecture Optimization, 2019

• Для представления структуры используется LSTM

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?, 2020

- Для представления структуры используется графовый вариационный автокодировщик
- Оптимизация в ддва этапа: unsupervised для представлений моделей, затем supervised (RL + BO)

Figure 4: Latent space 2D visualization [65] comparison between *arch2vec* (left) and supervised architecture representation learning (right) on NAS-Bench-101. Color encodes test accuracy. We randomly sample 10,000 points and average the accuracy in each small area.

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?, 2020

NAS Methods	CIFAR-10		CIFAR-100		ImageNet-16-120	
TAS Methods	validation	test	validation	test	validation	test
RE [44]	91.08 ± 0.43	93.84 ± 0.43	73.02 ± 0.46	72.86 ± 0.55	45.78 ± 0.56	45.63 ± 0.64
RS [66]	90.94 ± 0.38	93.75 ± 0.37	72.17 ± 0.64	72.05 ± 0.77	45.47 ± 0.65	45.33 ± 0.79
REINFORCE [10]	91.03 ± 0.33	93.82 ± 0.31	72.35 ± 0.63	72.13 ± 0.79	45.58 ± 0.62	45.30 ± 0.86
BOHB [12]	90.82±0.53	93.61 ± 0.52	72.59 ± 0.82	72.37±0.90	45.44±0.70	45.26 ± 0.83
arch2vec-RL	91.32±0.42	94.12±0.42	73.13 ± 0.72	73.15 ± 0.78	46.22 ± 0.30	46.16±0.38
arch2vec-BO	91.41±0.22	94.18 ± 0.24	73.35 ± 0.32	73.37 ± 0.30	46.34 ± 0.18	46.27 ± 0.37

Table 3: The mean and standard deviation of the validation and test accuracy of different algorithms under three datasets in NAS-Bench-201. The results are calculated over 500 independent runs.

	Test Error		Params (M)	Search Cost				
NAS Methods	Avg	Best		Stage 1	Stage 2	Total	Encoding	Search Method
Random Search [15]	3.29±0.15	-	3.2	-	-	4	-	Random
ENAS 68	-	2.89	4.6	0.5	-	-	Supervised	REINFORCE
ASHA 69	3.03 ± 0.13	2.85	2.2	-	-	9	-	Random
RS WS 69	2.85 ± 0.08	2.71	4.3	2.7	6	8.7		Random
SNAS [16]	2.85 ± 0.02	-	2.8	1.5	-	-	Supervised	GD
DARTS [15]	2.76 ± 0.09	-	3.3	4	1	5	Supervised	GD
BANANAS 49	2.64	2.57	3.6	100 (queries)	-	11.8	Supervised	BO
Random Search (ours)	3.1±0.18	2.71	3.2		-	4	-	Random
DARTS (ours)	2.71 ± 0.08	2.63	3.3	4	1.2	5.2	Supervised	GD
BANANAS (ours)	2.67 ± 0.07	2.61	3.6	100 (queries)	1.3	11.5	Supervised	BO
arch2vec-RL	2.65 ± 0.05	2.60	3.3	100 (queries)	1.2	9.5	Unsupervised	REINFORCE
arch2vec-BO	2.56±0.05	2.48	3.6	100 (queries)	1.3	10.5	Unsupervised	BO

Table 4: Comparison with state-of-the-art cell-based NAS methods on DARTS search space using CIFAR-10. The test error is averaged over 5 seeds. Stage 1 shows the GPU days (or number of queries) for model search and Stage 2 shows the GPU days for model evaluation.

Литература

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. №. 9.
- Bishop C. Bayesian pca //Advances in neural information processing systems. 1998. T. 11.
- Sola J., Deray J., Atchuthan D. A micro Lie theory for state estimation in robotics //arXiv preprint arXiv:1812.01537. 2018.
- Brehmer J., Cranmer K. Flows for simultaneous manifold learning and density estimation //Advances in Neural Information Processing Systems. – 2020. – T. 33. – C. 442-453.
- Alain G., Bengio Y. What regularized auto-encoders learn from the data-generating distribution //The Journal of Machine Learning Research. – 2014. – T. 15. – №. 1. – C. 3563-3593.
- Kingma D. P., Welling M. Auto-encoding variational bayes //arXiv preprint arXiv:1312.6114. 2013.
- Ranasinghe T., Orăsan C., Mitkov R. Semantic textual similarity with siamese neural networks //Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019). 2019. C. 1004-1011.
- https://russianblogs.com/article/5172713037/
- Karaletsos T., Belongie S., Rätsch G. Bayesian representation learning with oracle constraints //arXiv preprint arXiv:1506.05011. 2015.
- Kuznetsova R., Bakhteev O., Ogaltsov A. Variational learning across domains with triplet information //arXiv preprint arXiv:1806.08672. –
 2018.
- Zhang M. et al. Differentiable neural architecture search in equivalent space with exploration enhancement //Advances in Neural Information Processing Systems. – 2020. – T. 33. – C. 13341-13351.
- Luo R. et al. Neural architecture optimization //Advances in neural information processing systems. 2018. T. 31.
- Yan S. et al. Does unsupervised architecture representation learning help neural architecture search? //Advances in Neural Information Processing Systems. – 2020. – T. 33. – C. 12486-12498.