Московский физико-технический институт

Лабораторная работа

Фотоэлектрический способ преобразования энергии солнечного излучения

выполнила студентка 653 группы ФФКЭ Карпова Татьяна

1 Цель работы

- 1. Ознакомиться с принципом работы фотопреобразователя.
- 2. Получить вольт-амперную характеристику предложенного фотоэлемента (темновую и световую).
- 3. Найти следующие параметры фотопреобразователя: последовательное и шунтирующее сопротивления, ток насыщения и параметр A, оптимальное значение R, соответствующее максимальной мощности P, и соответствующий КПД η
- 4. Выяснить влияние мощности падающего излучения на параметры фотопреобразователя.

2 Экспериментальные данные

Таблица 1: Темновая вольт-амперная характеристика фотоэлемента, обратная ветвы

V, B	-0,01	-0,02	-0,03	-0,04	-0,05	-0,06	-0,07	-0,08	-0,09	-0,1
$I, \mu A$	0,7	1,7	2,3	3	3,7	4,4	4,9	5,6	6,3	6,8

Таблица 2: Темновая вольт-амперная характеристика фотоэлемента, прямая ветвы

V, B	0,02	0,04	0,06	0,08	0,1	0,12	0,14	0,16	0,18	0,2	0,22	0,24
I, μA	0,1	3,5	7,6	13	17	24	33	46	64	86	130	170
V, B	0,26	0,28	0,3	0,35	0,4	0,45	0,5	0,55	0,6	0,65	0,7	
I, mA	0,23	0,31	0,43	0,81	1,6	3,3	5,3	9,3	13,6	17,2	21	

Таблица 3: Световая вольт-амперная характеристика фотоэлемента

V, мВ	110	130	150	170	190	210	230	250	270	290
I, mA	14	14,2	14,1	14,2	14,1	14	13,9	13,9	13,7	13,6
V, мВ	310	330	350	370	390	410	430	450	470	490
I, mA	13,4	13,0	12,7	12,3	11,4	10,2	9,0	7,0	4,4	0,3

Таблица 4: Зависимость тока короткого замыкания и напряжения холостого хода от освещённости

Фильтр	Ікз, тА	U_{xx} , mV
1 (самый светлый)	11.3	480
2 (средний)	6.7	460
3 (самый темный)	3.8	430
4 (все вместе)	1.5	370

3 Экспериментальные графики и вычисление параметров фотоэлемента

1. Построим график обратной ветви теневой вольт-амперной характеристики (рис. 1). По этому графику определим шунтирующее сопротивление фотоэлемента:

$$R{\bf m}=\frac{dU_{rev}}{dI_{rev}}=15$$
к
Ом

2. Построим график прямой ветви теневой вольт-амперной характеристики (рис. 2). По этому графику определим последовательное сопротивление фотоэлемента:

$$R\Pi = \frac{dU_{str}}{dI_{str}} = 13.6 \text{ Om}$$

3. Построим график зависимости $\ln(I)$ от U для прямой ветви теневой вольт-амперной характеристики (рис. 3). По нему определим параметр A и ток I_s (угол наклона b=14,441, точка пересечения с осью ординат a=-12.227):

$$b = \frac{e}{Ak_BT}$$
; $A = \frac{1}{14,44 \cdot 0.0259} = 2,67$

$$I_s = \exp a = 4.9 \mu A$$

4. Построим график световой вольт-амперной характеристики фотоэлемента (рис. 4). Найдя прямоугольник под графиком с максимальной площадью, определим Rопт:

$$R$$
опт= $\frac{U}{R} = \frac{350mV}{12.7mA} = 27.5 \ \mathrm{Om}$

Мощность фотоэлемента:

$$P = IU = 4.45 \text{ MBT}$$

Зная, что мощность излучения источника составляет $550~{\rm Br/m^2}$, площадь фотоэлемента примерно равна $10~{\rm cm^2}$ определим КПД фотоэлемента:

$$\eta = 0.008 = 0.8\%$$

5. Построим график зависимости $\ln(I$ кз) = $f(U_{xx})$ (при разных мощностях освещения) (рис. 5). С его помощью определим параметр A и ток I_s (угол наклона b=17,919, точка пересечения с осью ординат a=-13,156):

$$b = \frac{e}{Ak_BT}$$
; $A = \frac{1}{17,919 \cdot 0.0259} = 2,15$

$$I_s = \exp a = 1.9 \mu A$$

По порядка величины эти значения сходятся с полученными в п.2 (прямая ветвь теневой характеристики - $A=2.67,~I_s=4.9\mu\mathrm{A})$

4 Вывод

В ходе работы было изучено явление фотоэффекта в (p-n)-переходе, определены теневая и световая вольтамперные характеристики исследуемого фотоэлемента. Также с использованием этих вольт-амперных характеристик были определены такие параметры, как шунтирующее и последовательное напряжение, ток насыщения и параметр A фотоэлемента, а также его мощность и КПД

Рис. 1: Темновая вольт-амперная характеристика, обратная ветвь

Рис. 2: Темновая вольт-амперная характеристика, прямая ветвь

Рис. 3: Зависимость $\ln(I)=f(U)$ для прямой ветви темновой характеристики фотоэлемента

Рис. 4: Световая вольт-амперная характеристика фотоэлемента

Рис. 5: Зависимость $\ln(I$ кз) = $f(U_{xx})$ для разных освещённостей