Solution to Exercise 0 - Model Theory (1), 80616

October 20, 2025

Let $L = \{P\}$ a language where P is unary relation. Define,

$$\varphi_n = \exists x_0 \dots \exists x_n \left(\bigwedge_{i \le n} P(x_i) \wedge \bigwedge_{i < j \le n} x_i \ne x_j \right), \quad \psi_n = \exists x_0 \dots \exists x_n \left(\bigwedge_{i \le n} \neg P(x_i) \wedge \bigwedge_{i < j \le n} x_i \ne x_j \right)$$

and let $T = \{\varphi_n, \psi_n \mid n < \omega\}.$

We will show that $\operatorname{cl}_{\vdash} T$ is ω -categoric.

Proof. Let us define the model $\mathcal{M} \models T$ such that $M = 2 \times \mathbb{N}$ and $\langle 0, n \rangle \in P^{\mathcal{M}}$ for $n < \omega$, as well $\langle 0, n \rangle \notin P^{\mathcal{M}}$. It is clear that for any n, we can choose $\langle \langle 0, i \rangle \mid i < n \rangle$ as witnesses for φ_n , and similarly choose $\langle 1, i \rangle$ for ψ_n .

Let $\mathcal{N} \models T$ be some countable model, we will show that $\mathcal{N} \cong \mathcal{M}$. For n=0, $\mathcal{N} \models \varphi_n \implies \mathcal{N} \models \exists x \ P(x)$, and let f(0,0)=x, and in similar manner f(1,0)=y for the witness of $\psi_0=\exists \neg P(x)$. We use this as a basis for recursive definition of a function $f:M\to N$, it will be required to show in induction over n that we can choose explicitly x_i in φ_n for i< n.

Let us assume the induction and recursion step, meaning that $f \upharpoonright 2 \times n$ is defined. $\mathcal{N} \models \varphi_{n+1}$, meaning that there are at lest n+1 elements of \mathcal{N} such that they are in $P^{\mathcal{N}}$, by the pigeonhole principle there is at least one element $a \in \mathcal{N}$ such that $f(0,k) \neq a$ for k < n+1, then we can define f(0,n+1) = a. This conclude our step, hence there is such function f, and by our construction it also holds that f is embedding of \mathcal{M} into \mathcal{N} , but

This is all irrelevant, I can just use the set definition of \mathcal{N} .

Let $L = \{c_n \mid n < \omega\}$ be language consists of constant symbols. Let us define the theory $T = \{c_i \neq c_j \mid i < j < \omega\}$. We will show that there are countably many non-isomorphic countable models of T, and that T is complete.

Proof. Let us define the model \mathcal{M}_n such that $M=\omega$ and,

$$c_i^{\mathcal{M}} = i + n$$

for any $i < j < \omega$,

$$c_i^{\mathcal{M}} = i + n \neq j + n = c_j^{\mathcal{M}}$$

therefore $\mathcal{M}_n \models T$. $\mathcal{M}_n \models k \neq c_i$ for all $i < \omega$, in particular $\mathcal{M}_n \models \exists x \ x \neq c_i$. It is implied that also,

$$\mathcal{M}_n \models \exists x_0 \dots \exists x_{k-1} \left(\bigwedge_{i < j < k} x_i \neq x_j \land x_i \neq c_l \right) = \varphi_l^k$$

for all $l < \omega$. Finally, $\mathcal{M}_n \not\models \varphi_l^k$ for any k > n, we deduce that $\mathcal{M}_n \not\cong \mathcal{M}_m$ for any $n \neq m$.

We move to show that T is complete. Let us assume toward a contradiction that φ is a sentence such that $\varphi \notin T$ and $T \cup \{\varphi\}$ is consistent. By construction of Henkin models we can deduce that $\mathcal{M}_0 \models \varphi$, but \mathcal{M}_0 is minimal, namely if $\mathcal{N} \models T$ then $\mathcal{M}_0 \subseteq \mathcal{N}$, then by definition $T \models \varphi$, a contradiction.

We will show that $\operatorname{Th}(\mathbb{N},+,\cdot)$ has 2^{\aleph_0} non-isomorphic countable models.

Proof. Let $f: \omega \to P$ be the map between number and its respective prime in the order induced from \mathbb{N} , namely $f(0) = 2, f(1) = 3, \ldots$ assuming that $A \subseteq \omega$ is some set, we define $\mathcal{M}_A = (\mathrm{cl}_{+,\cdot}(f(A)), +, \cdot)$.

$$\mathcal{M}_A \models \exists p \forall x \ p \cdot x = p \cdot x$$

when p acts as numerator, and $p \cdot x$ is abbreviation to $x + \cdots + x$ p times. Let us denote this sentence as φ_p , then,

$$\mathcal{M}_A \models \{\varphi_{f(a)} \mid a \in A\}$$

as well,

$$\mathcal{M}_A \not\models \{\varphi_q \mid q \notin \operatorname{cl}_+ A\}$$

Therefore if $A, B \subseteq \omega$ and $A \neq B$ then $\mathcal{M}_A \not\cong \mathcal{M}_B$, thus there are $|\mathcal{P}(\omega)|$ non-isomorphic countable models.

Let $\kappa \geq \omega$ be some cardinal and let L be some language. Let T be a κ -categorical L-theory such that it has no finite models. We will show that T is complete.

Proof. Let us assume for the sake of contradiction that T is incomplete, and let $\varphi \in \operatorname{sent}_L$ be a sentence such that $T_+ = T \cup \{\varphi\}$ is consistent. Let $T_- = T \cup \{\neg\varphi\}$ and let $\mathcal{M}_+ \models T_+, \mathcal{M}_- \models T_-$ be models witnessing the theories consistency. $|\mathcal{M}_+|, |\mathcal{M}_-| = |L|$ without loss of generality.

Why not choose $L = \{c_{\alpha} \mid \alpha < \delta\}$ for $\kappa < \delta$ and,

$$T = \{ c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \kappa \}$$

If $\mathcal{M} \models T$ then $|M| \ge \kappa$ and then let $\kappa < \epsilon < \delta$ be some ordinal, the sentence $\varphi = c_0 = c_\epsilon$ is consistent with T and $\neg \varphi$ as well.

Let $T=\operatorname{Th}(\mathbb{Q},\leq)$ be DLO.

We will show that T is not $\kappa\text{-categorical}$ for some uncountable cardinal $\kappa.$

Proof.