Proyecto 3: Reemplazo de Equipos

Emily Sanchez Viviana Vargas

Curso: Investigación de Operaciones II Semestre 2025

25 de septiembre de 2025

Problema de Reemplazo de Equipos

El problema consiste en determinar el momento óptimo para reemplazar un equipo durante un período de planificación.

Fórmula del costo: $C_{t,j} = \text{Compra} + \sum_{k=1}^{j-t} \text{Mantenimiento}_k - \text{Venta}_{j-t}$ Algoritmo: Programación Dinámica hacia atrás

 $\min_{\substack{\text{min}(t+\text{vida útil},n)\\ \text{min}}} \{C_{t,j} + g(j)\} \text{ con } g(n) = 0$ Función recursiva: g(t) =

Datos del Problema

• Costo inicial (compra): \$500,00

■ Plazo del proyecto: 5 años

• Vida útil del equipo: 3 años

Cuadro 1: Datos del equipo por año de uso

Año de Uso	Mantenimiento	Valor Residual
1	\$400,00	\$30,00
2	\$300,00	\$40,00
3	\$250,00	\$60,00

Cálculo de Costos $C_{t,j}$

Cuadro 2: Cálculo detallado de costos por período

Período (t-j)	Duración	Fórmula	Costo
0-1	1 año	500 + 400 - 30	\$870,00
0-2	2 años	500 + 400 + 300 - 40	\$1160,00
0-3	3 años	500 + 400 + 300 + 250 - 60	\$1390,00
1-2	1 año	500 + 400 - 30	\$870,00
1-3	2 años	500 + 400 + 300 - 40	\$1160,00
1-4	$3 \text{ a} \tilde{\text{n}} \text{o} \text{s}$	500 + 400 + 300 + 250 - 60	\$1390,00
2-3	1 año	500 + 400 - 30	\$870,00
2-4	2 años	500 + 400 + 300 - 40	\$1160,00
2-5	$3 \text{ a} \tilde{\text{n}} \text{o} \text{s}$	500 + 400 + 300 + 250 - 60	\$1390,00
3-4	1 año	500 + 400 - 30	\$870,00
3-5	2 años	500 + 400 + 300 - 40	\$1160,00
4-5	1 año	500 + 400 - 30	\$870,00

Cálculo de g(t) (Programación Dinámica)

- g(5) = 0 (caso base)
- $g(4) = \min\{C_{4,5} + g(5) = 870, 00\} = \$870, 00$
- $g(3) = \min\{C_{3,4} + g(4) = 1740, 00, C_{3,5} + g(5) = 1160, 00\} = \$1160, 00$
- $g(2) = \min\{C_{2,3} + g(3) = 2030, 00, C_{2,4} + g(4) = 2030, 00, C_{2,5} + g(5) = 1390, 00\} = \$1390, 00$
- $g(1) = \min\{C_{1,2} + g(2) = 2260, 00, C_{1,3} + g(3) = 2320, 00, C_{1,4} + g(4) = 2260, 00\} = $2260, 00$
- $g(0) = \min\{C_{0,1} + g(1) = 3130, 00, C_{0,2} + g(2) = 2550, 00, C_{0,3} + g(3) = 2550, 00\} = \$2550, 00$

Solución Óptima

Costo mínimo total: \$2550,00 Planes óptimos encontrados: 2

Grafos de Planes Óptimos

A continuación se presentan los grafos de saltos de rana para cada plan óptimo encontrado.

Figura 1: Plan Óptimo 1: 0-2-5 (Todos los períodos mostrados) **Leyenda:** $\bullet Inicio$, $\bullet Fin$, $\bullet Usado$, $\bullet Nousado$, $\rightarrow Saltoóptimo$, Saltopotencial

Plan 1: 0-2-5

 \blacksquare Período 0-2: 2 años, Costo: \$1160,00

■ Período 2-5: 3 años, Costo: \$1390,00

Figura 2: Plan Óptimo 2: 0-3-5 (Todos los períodos mostrados) **Leyenda:** $\bullet Inicio, \bullet Fin, \bullet Usado, \bullet Nousado, \rightarrow Saltoóptimo, Saltopotencial$

Plan 2: 0-3-5

 \bullet Período 0-3: 3 años, Costo: \$1390,00

■ Período 3-5: 2 años, Costo: \$1160,00