

Computing

Tutor: Kevin O'Brien

Tutorial: Maths for Computing

Online Tutorial: Number Two:

- Session Three: Logic
 - Propositions, Symbolic Statements and Truth Tables
 - Conditional Connectives
 - Laws of Logic
 - Logic Gates
- Session Four : Functions
 - What Is A Functions
 - Functions with Special Properties
 - Exponential and Logarithmic Functions
 - Comparing the Size of Functions

Logic: Symbolic Statements and Truth Tables

Propositions

- Tautologies and Contradictions
- Negation of a proposition
- Compound statements
- Truth Tables

Logic: Symbolic Statements and Truth Tables

(2008 Q3a)

Let p and q be the following propositions about an object

p: "this objects is a triangle"

q: "this object is blue"

Express each of the following compound propositions symbolically by using p, q and appropriate logic symbols

- 1) This object is a blue triangle
- 2) If this object is blue, then it is a triangle
- 3) This object is not blue, but it is a triangle.

Logic: The Conditional Connectives

The Conditional Connectives

- The Conditional Connectives are
 - If
 - Only If
 - If and Only If
- Truth Tables
- The Contrapositive

Logic: The Laws of Logic

The Laws of Logic

- The Commutative Laws
- The Associative Laws
- Distributive Laws
- De Morgan's Laws
- Identity Laws
- Asborption and Complement Laws

Logic: The Laws of Logic

(2012 Zone B Question 2 c) Use Truth Tables to prove that

Logic: Logic Gates

(2008 Q3b)

Construct a logic network that accepts as inputs p and q, which may independently have value 0 or 1, and give as final output (FINISH)

Logic: Logic Gates

- Designing Logic Gates
- Output of a given Network

Functions

- Introduction and Definitions
- Arrow Diagram of a Function
- Boolean Functions and ordered n-tuples
- Absolute Value Functions
- Floor and Ceiling Functions
- Polynomial Functions
- Equality of Functions

Arrow Diagrams (2010 Zone B Q4 a)

A function f: X->Y, where $X = \{p,q,r,s\}$ and $Y = \{1,2,3,4,5\}$ is given by the subset of X x Y. $\{(q,3),(r,3),(p,5),(s,2)\}$

i. Show f as an arrow diagram

Arrow Diagrams (2010 Zone B Q4 a)

A function f: X->Y, where $X = \{p,q,r,s\}$ and $Y = \{1,2,3,4,5\}$ is given by the subset of X x Y. $\{(q,3),(r,3),(p,5),(s,2)\}$

ii. State the domain, co-domain and range of f.

Arrow Diagrams (2010 Zone B Q4 a)

A function f: X->Y, where $X = \{p,q,r,s\}$ and $Y = \{1,2,3,4,5\}$ is given by the subset of X x Y. $\{(q,3),(r,3),(p,5),(s,2)\}$

iii. Say why f does not have the one-to-one property and why f does not have the onto property, giving a specific counter example in each case.

Functions

- Introduction and Definitions
- Arrow Diagram of a Function
- Boolean Functions and ordered n-tuples
- Absolute Value Functions
- Floor and Ceiling Functions
- Polynomial Functions
- Equality of Functions

Functions: Floor and Ceiling Functions

Page 67 Q5: Find the floor and ceiling of the following numbers.

Number	Floor	Ceiling
-1.4		
2.3		
7/9		
-16/3		
0		

Functions: Functions with Special Properties

Functions

- Encoding and Decoding Function
- Onto Functions
- One-to-One Functions
- Inverse Functions
- One to One Correspondence

Functions: Functions with Special Properties

Inverse of Functions (2010 Zone B Question 4).

State the condition to be satisfied in order for an function to have an inverse.

Functions: Exponential and Logarithmic Functions

Exponential and Logarithmic Functions

- Exponential Functions
- Laws of Exponents
- Logarithmic Functions
- Laws of Logarithms

Functions: Exponential and Logarithmic Functions

(Page 67 Q 10) Without using your calculator, find the value of the following numbers.

Number	Workings 1	Workings 2	Answers
Log 2128			
Log ₂ (42)			
Log ₂ (1/8)			
Log ₂ (2/16)			

Functions: Comparing Functions

Comparing Functions

- O-notation
- Power Functions
- Orders of Polynomial Functions
- Comparison of Algorithms