CNN

👿 이미지 데이터를 처리하는 능력이 좋은 신경망 모델

📝 이미지의 공간 정보를 유지하면서 인접 이미지와의 특징을 효과적으로 인식

CNN의 특징

- ❷ 사진 및 영상의 공간적 특성을 최대한 활용
- ☑ 가중치 및 편향을 공유하여 학습시간 단축
- ☑ 사진 및 영상 구별 능력 UP

CNN의 구성요소

Fully Connected Layer

모든 유닛이 이전 층의 모든 유닛과 연결되어 있는 층

1차원 데이터를 사용하기에 데이터를 평탄화 따라서, 3차원 데이터의 공간적 정보 소실

1

Convolutional Neural Network

CNN의 구성요소

Convolutional Layer

입력 받은 이미지에 대한 특징을 Filter를 통해 추출 추출 후 평탄화 하여 기존 신경망과 같이 FC Layer를 이용해 분류

CNN

1차원 데이터를 입력 받는 FC layer에 최대한 유의미한 feature를 건네 주기 위해 Convolution layer를 통해 특징을 추출

RNN의 구조

RNN의 쓰임새

BPTT

Back-Propagation Through Time

Time Step 별로 역전파 진행

BPTT의 한계

BPTT는 모든 노드를 다 거치기 때문에 t가 커질수록 계산량도 증가 장기의존성 (feat. vanishing gradient)

Truncated BPTT

BPTT의 계산량 한계를 보완한 알고리즘
전체 time step을 일정 구간(3 or 5 등)으로 나눠 역전파
각 구간 단위로 미래의 블록과는 독립적으로 수행

BPTT의 장기의존성

Activation 함수로 tanh를 사용하므로 time step이 길어질수록 gradient가 끝까지 전달되지 못함

→ 결국 Vanishing gradient 문제에서 자유롭지 못함

실제 적용상 긴 문맥을 학습할 수 없다

ex) 나는 프랑스에서 자랐습니다. (대략 1억5천8백6십3만개 문장) 나는 OOO어를 잘합니다.

LSTM이란?

LSTM의 학습과정

'<u>과거 정보를 잊기 위한 게이트</u>': cell state에서 어떤 정보를 버릴지 결정

LSTM의 학습과정

LSTM의 학습과정

Output gate

'<u>무엇을 내보낼지 결정하는 게이트</u>': cell state의 어느 부분을 읽어서 출력해야 하는지 결정

LSTM의 학습과정

3

Long Short-Term Memory

LSTM의 학습과정

Backpropagation

"RNN과 방식은 같음"

hidden state의 gradient는 위 세 단계의 계산값의 gradient를 합쳐 만듦

Cell state와 hidden state가 재귀적으로 구해짐
-> 이 둘의 gradient는 이전 시점의 gradient에 영향 받기 때문에 이를 역전파에 반영해야 함