Machine Learning

Lecture 01-1: Basics of Probability Theory

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering The Hong Kong University of Science and Technology

Outline

- 1 Basic Concepts in Probability Theory
- 2 Interpretation of Probability
- 3 Bayes' Theorem
- 4 Parameter Estimation

Random Experiments

- Probability associated with a random experiment a process with uncertain outcomes
- Often kept implicit

Tail

Head

Random Experiments

- Probability associated with a random experiment a process with uncertain outcomes
- Often kept implicit

Tail

In machine learning, we often assume that data are generated by a hypothetical process (or a model), and task is to determine the structure and parameters of the model from data.

Sample Space

- **Sample space (aka population)** Ω : Set of possible outcomes and a random experiment.
- Example: Rolling two dice.

Ω

Sample Space

- **Sample space (aka population)** Ω : Set of possible outcomes and a random experiment.
- Example: Rolling two dice.

Elements in a sample space are outcomes.

Events

Event: A subset of the sample space.

Example: The two results add to 4.

Probability Weight Function

■ A **probability weight** $P(\omega)$ is assigned to each outcome.

Probability of each outcome

1/36

Probability Weight Function

■ A **probability weight** $P(\omega)$ is assigned to each outcome.

In Machine Learning, we often need to determine the probability weights, or related parameters, from data.

Probability Weight Function

■ A **probability weight** $P(\omega)$ is assigned to each outcome.

In Machine Learning, we often need to determine the probability weights, or related parameters, from data. This task is called **parameter learning**.

■ Probability P(E) of an event E: $P(E) = \sum_{\omega \in F} P(\omega)$

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

1
$$P(\Omega) = 1$$
.

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

- **1** $P(\Omega) = 1$.
- $P(A) \geq 0 \ \forall A \subseteq \Omega$

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

- **1** $P(\Omega) = 1$.
- $P(A) \geq 0 \ \forall A \subseteq \Omega$
- **3** Additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

- **1** $P(\Omega) = 1$.
- $P(A) \geq 0 \ \forall A \subseteq \Omega$
- **3** Additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in F} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

that satisfies Kolmogorov's axioms:

- **1** $P(\Omega) = 1$.
- $P(A) \geq 0 \ \forall A \subseteq \Omega$
- **3** Additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.

In a more advanced treatment of Probability Theory, we would start with the concept of probability measure, instead of probability weights.

Random Variables

- A random variable is a function over the sample space.
 - Example: X = sum of the two results. X((2,5)) = 7; X((3,1)) = 4)

■ Why is it random?

Random Variables

- A random variable is a function over the sample space.
 - **Example:** X = sum of the two results. X((2,5)) = 7; X((3,1)) = 4)

■ Why is it random? The experiment.

Random Variables

- A random variable is a function over the sample space.
 - **Example:** X = sum of the two results. X((2,5)) = 7; X((3,1)) = 4)

- Why is it random? The experiment.
- **Domain** of a random variable: Set of all its possible values.

$$\Omega_X = \{2, 3, \dots, 12\}$$

Random Variables and Event

A random variable X taking a specific value x is an event:

$$\Omega_{X=x} = \{\omega \in \Omega | X(\omega) = x\}$$

Probability Mass Function (Distribution)

■ Probability mass function P(X): $\Omega_X \to [0,1]$

$$P(X = x) = P(\Omega_{X = x})$$

Probability Mass Function (Distribution)

■ Probability mass function P(X): $\Omega_X \to [0,1]$

$$P(X = x) = P(\Omega_{X=x})$$

 $P(X=4) = P(\{(1,3),(2,2,)(3,1)\}) = \frac{3}{36}.$

Probability Mass Function (Distribution)

■ Probability mass function P(X): $\Omega_X \to [0,1]$

$$P(X = x) = P(\Omega_{X=x})$$

- $P(X = 4) = P(\{(1,3),(2,2,)(3,1)\}) = \frac{3}{36}.$
- If X is continuous, we have a **density function** p(X).

Outline

- 1 Basic Concepts in Probability Theory
- 2 Interpretation of Probability
- 3 Bayes' Theorem
- 4 Parameter Estimation

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.
 - Justified by the Law of Large Numbers:

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.
 - Justified by the Law of Large Numbers:
 - X_i : result of the i-th tossing; 1 H, 0 T

- Probabilities are long term relative frequencies.
- Example:
 - X is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.
 - Justified by the Law of Large Numbers:
 - X_i : result of the i-th tossing; 1 H, 0 T
 - Law of Large Numbers:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{n} = \frac{1}{2} \quad \text{with probability 1}$$

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.
 - Justified by the Law of Large Numbers:
 - X_i : result of the i-th tossing; 1 H, 0 T
 - Law of Large Numbers:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{n} = \frac{1}{2}$$
 with probability 1

■ The frequentist interpretation is meaningful only when experiment can be repeated under the same condition.

Bayesian interpretation

Probabilities are logically consistent degrees of beliefs.

Bayesian interpretation

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.

Bayesian interpretation

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.
- Example: "probability that Suez canal is longer than the Panama canal".

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.
- Example: "probability that Suez canal is longer than the Panama canal".
 - Doesn't make sense under frequentist interpretation.

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.
- Example: "probability that Suez canal is longer than the Panama canal".
 - Doesn't make sense under frequentist interpretation.
 - Subjectivist: degree of belief based on state of knowledge

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.
- Example: "probability that Suez canal is longer than the Panama canal".
 - Doesn't make sense under frequentist interpretation.
 - Subjectivist: degree of belief based on state of knowledge
 - Primary school student: 0.5
 - Me: 0.8
 - Geographer: 1 or 0
- Arguments such as **Dutch book** are used to explain why one's probability beliefs must satisfy Kolmogorov's axioms.

Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.
 - As more and more data become available, we rely less and less on subjective beliefs.

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.
 - As more and more data become available, we rely less and less on subjective beliefs.
 - Often, we also use **prior probabilities** to impose some **bias** on the kind of results we want from a machine learning algorithm.

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.
 - As more and more data become available, we rely less and less on subjective beliefs.
 - Often, we also use **prior probabilities** to impose some **bias** on the kind of results we want from a machine learning algorithm.

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.
 - As more and more data become available, we rely less and less on subjective beliefs.
 - Often, we also use **prior probabilities** to impose some **bias** on the kind of results we want from a machine learning algorithm.
- The subjectivist interpretation makes concepts such as conditional independence easy to understand.

Outline

- 1 Basic Concepts in Probability Theory
- 2 Interpretation of Probability
- 3 Bayes' Theorem
- 4 Parameter Estimation

■ Three important concepts in Bayesian inference.

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: *E*

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: *E*
- **Prior probability** P(H):

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: E
- **Prior probability** P(H): belief about a hypothesis before observing evidence.

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: E
- **Prior probability** P(H): belief about a hypothesis before observing evidence.
 - Example: Suppose 10% of people suffer from Hepatitis B. A doctor's prior probability about a new patient suffering from Hepatitis B is 0.1.
- **Posterior probability** P(H|E):

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: E
- **Prior probability** P(H): belief about a hypothesis before observing evidence.
 - Example: Suppose 10% of people suffer from Hepatitis B. A doctor's prior probability about a new patient suffering from Hepatitis B is 0.1.
- **Posterior probability** P(H|E): belief about a hypothesis after obtaining the evidence.

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: E
- **Prior probability** P(H): belief about a hypothesis before observing evidence.
 - Example: Suppose 10% of people suffer from Hepatitis B. A doctor's prior probability about a new patient suffering from Hepatitis B is 0.1.
- **Posterior probability** P(H|E): belief about a hypothesis after obtaining the evidence.
 - If the doctor finds that the eyes of the patient are yellow, his belief about patient suffering from Hepatitis B would be > 0.1.

■ Suppose a patient is observed to have yellow eyes (E).

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - 2 The patient does not have Hepatitis B (H_2)
- \blacksquare Obviously, H_1 is a better explanation because

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - 2 The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$.

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*.

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*. Mathematically, it is

$$L(H|E) = P(E|H)$$

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*. Mathematically, it is

$$L(H|E) = P(E|H)$$

■ In Machine Learning, we often talk about the likelihood of a model *M* given data *D*.

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - **1** The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*. Mathematically, it is

$$L(H|E) = P(E|H)$$

■ In Machine Learning, we often talk about the likelihood of a model M given data D. It is a measure of how well the model M explains the data D.

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - **1** The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*. Mathematically, it is

$$L(H|E) = P(E|H)$$

■ In Machine Learning, we often talk about the likelihood of a model M given data D. It is a measure of how well the model M explains the data D. Mathematically, it is

$$L(M|D) = P(D|M)$$

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - **1** The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*. Mathematically, it is

$$L(H|E) = P(E|H)$$

■ In Machine Learning, we often talk about the likelihood of a model M given data D. It is a measure of how well the model M explains the data D. Mathematically, it is

$$L(M|D) = P(D|M)$$

■ Bayes' Theorem:

Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H|E) = \frac{P(H)P(E|H)}{P(E)}$$

Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H|E) = \frac{P(H)P(E|H)}{P(E)} \propto P(H)L(H|E)$$

Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H|E) = \frac{P(H)P(E|H)}{P(E)} \propto P(H)L(H|E)$$

where P(E) is normalization constant to ensure $\sum_{h \in \Omega_H} P(H = h|E) = 1$.

Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H|E) = \frac{P(H)P(E|H)}{P(E)} \propto P(H)L(H|E)$$

where P(E) is normalization constant to ensure $\sum_{h \in \Omega_H} P(H = h|E) = 1$.

Bayes' Theorem/Bayes Rule

Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H|E) = \frac{P(H)P(E|H)}{P(E)} \propto P(H)L(H|E)$$

where P(E) is normalization constant to ensure $\sum_{h \in \Omega_H} P(H = h|E) = 1$.

That is: posterior \propto prior \times likelihood

Outline

- 1 Basic Concepts in Probability Theory
- 2 Interpretation of Probability
- 3 Bayes' Theorem
- 4 Parameter Estimation

■ Let X be the result of tossing a thumbtack and $\Omega_X = \{H, T\}$.

- Let X be the result of tossing a thumbtack and $\Omega_X = \{H, T\}$.
- Data instances:

$$D_1 = H, D_2 = T, D_3 = H, ..., D_m = H$$

- Let X be the result of tossing a thumbtack and $\Omega_X = \{H, T\}$.
- Data instances:

$$D_1 = H, D_2 = T, D_3 = H, ..., D_m = H$$

■ Data set: $\mathcal{D} = \{D_1, D_2, D_3, \dots, D_m\}$

- Let X be the result of tossing a thumbtack and $\Omega_X = \{H, T\}$.
- Data instances:

$$D_1 = H, D_2 = T, D_3 = H, ..., D_m = H$$

- Data set: $\mathcal{D} = \{D_1, D_2, D_3, \dots, D_m\}$
- Task: To estimate parameter $\theta = P(X=H)$.

X: result of tossing a thumbtack

■ Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$

- Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$
- As possible values of θ , which of the following is the most likely? Why?
 - $\theta = 0$
 - $\theta = 0.01$
 - $\theta = 0.5$
- $\theta = 0$ contradicts data because $P(\mathcal{D}|\theta = 0) = 0$.

- Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$
- As possible values of θ , which of the following is the most likely? Why?
 - $\theta = 0$
 - $\theta = 0.01$
 - $\theta = 0.5$
- $m{\theta}=0$ contradicts data because $P(\mathcal{D}|m{\theta}=0)=0.$ It cannot explain the data at all.

- Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$
- As possible values of θ , which of the following is the most likely? Why?
 - $\theta = 0$
 - $\theta = 0.01$
 - $\theta = 0.5$
- $m{\theta}=0$ contradicts data because $P(\mathcal{D}|\theta=0)=0.$ It cannot explain the data at all.
- $\theta = 0.01$ almost contradicts with the data. It does not explain the data well.

However, it is more consistent with the data than $\theta = 0$ because $P(\mathcal{D}|\theta = 0.01) > P(\mathcal{D}|\theta = 0)$.

- Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$
- As possible values of θ , which of the following is the most likely? Why?
 - $\theta = 0$
 - $\theta = 0.01$
 - $\theta = 0.5$
- $m{\theta}=0$ contradicts data because $P(\mathcal{D}|\theta=0)=0.$ It cannot explain the data at all.
- $\theta = 0.01$ almost contradicts with the data. It does not explain the data well.
 - However, it is more consistent with the data than $\theta = 0$ because $P(\mathcal{D}|\theta = 0.01) > P(\mathcal{D}|\theta = 0)$.
- So $\theta = 0.5$ is more consistent with the data than $\theta = 0.01$ because

- Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$
- As possible values of θ , which of the following is the most likely? Why?
 - $\theta = 0$
 - $\theta = 0.01$
 - $\theta = 0.5$
- $m{\theta}=0$ contradicts data because $P(\mathcal{D}|\theta=0)=0.$ It cannot explain the data at all.
- $\theta = 0.01$ almost contradicts with the data. It does not explain the data well.
 - However, it is more consistent with the data than $\theta = 0$ because $P(\mathcal{D}|\theta = 0.01) > P(\mathcal{D}|\theta = 0)$.
- So $\theta=0.5$ is more consistent with the data than $\theta=0.01$ because $P(\mathcal{D}|\theta=0.5)>P(\mathcal{D}|\theta=0.01)$ It explains the data the best, and is hence the most likely.

■ In general, the larger $P(\mathcal{D}|\theta)$ is,

■ In general, the larger $P(\mathcal{D}|\theta)$ is, the more likely the value θ is.

- In general, the larger $P(\mathcal{D}|\theta)$ is, the more likely the value θ is.
- Likelihood of parameter θ given data set:

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

- In general, the larger $P(\mathcal{D}|\theta)$ is, the more likely the value θ is.
- Likelihood of parameter θ given data set:

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

■ The maximum likelihood estimation (MLE) θ^* is

- In general, the larger $P(\mathcal{D}|\theta)$ is, the more likely the value θ is.
- Likelihood of parameter θ given data set:

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

■ The maximum likelihood estimation (MLE) θ^* is

$$L(\theta^*|\mathcal{D}) = \arg\max_{\theta} L(\theta|\mathcal{D}).$$

- In general, the larger $P(\mathcal{D}|\theta)$ is, the more likely the value θ is.
- Likelihood of parameter θ given data set:

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

■ The maximum likelihood estimation (MLE) θ^* is

$$L(\theta^*|\mathcal{D}) = \arg\max_{\theta} L(\theta|\mathcal{D}).$$

MLE best explains data or best fits data.

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

Then

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

Then

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta) = P(D_1, \dots, D_m|\theta)$$

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

Then

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta) = P(D_1, \dots, D_m|\theta)$$
$$= \prod_{i=1}^m P(D_i|\theta)$$

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

Then

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta) = P(D_1, \dots, D_m|\theta)$$

$$= \prod_{i=1}^m P(D_i|\theta) = \theta^{m_h} (1-\theta)^{m_t}$$
(1)

where m_h is the number of heads and m_t is the number of tail.

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

Then

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta) = P(D_1, \dots, D_m|\theta)$$

$$= \prod_{i=1}^m P(D_i|\theta) = \theta^{m_h} (1-\theta)^{m_t}$$
(1)

where m_h is the number of heads and m_t is the number of tail. Binomial likelihood.

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

= $P(D_1 = H|\theta)P(D_2 = T|\theta)P(D_3 = H|\theta)P(D_4 = H|\theta)P(D_5 = T|\theta)$

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

$$= P(D_1 = H|\theta)P(D_2 = T|\theta)P(D_3 = H|\theta)P(D_4 = H|\theta)P(D_5 = T|\theta)$$

$$= \theta(1-\theta)\theta\theta(1-\theta)$$

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

$$= P(D_1 = H|\theta)P(D_2 = T|\theta)P(D_3 = H|\theta)P(D_4 = H|\theta)P(D_5 = T|\theta)$$

$$= \theta(1 - \theta)\theta\theta(1 - \theta)$$

$$= \theta^3(1 - \theta)^2.$$

■ A sufficient statistic is a function $s(\mathcal{D})$ of data that summarizing the relevant information for computing the likelihood.

■ A sufficient statistic is a function $s(\mathcal{D})$ of data that summarizing the relevant information for computing the likelihood. That is

$$s(\mathcal{D}) = s(\mathcal{D}') \Rightarrow L(\theta|\mathcal{D}) = L(\theta|\mathcal{D}')$$

■ A sufficient statistic is a function $s(\mathcal{D})$ of data that summarizing the relevant information for computing the likelihood. That is

$$s(\mathcal{D}) = s(\mathcal{D}') \Rightarrow L(\theta|\mathcal{D}) = L(\theta|\mathcal{D}')$$

Sufficient statistics tell us all there is to know about data.

■ A sufficient statistic is a function $s(\mathcal{D})$ of data that summarizing the relevant information for computing the likelihood. That is

$$s(\mathcal{D}) = s(\mathcal{D}') \Rightarrow L(\theta|\mathcal{D}) = L(\theta|\mathcal{D}')$$

- Sufficient statistics tell us all there is to know about data.
- Since $L(\theta|\mathcal{D}) = \theta^{m_h}(1-\theta)^{m_t}$,

■ A sufficient statistic is a function $s(\mathcal{D})$ of data that summarizing the relevant information for computing the likelihood. That is

$$s(\mathcal{D}) = s(\mathcal{D}') \Rightarrow L(\theta|\mathcal{D}) = L(\theta|\mathcal{D}')$$

- Sufficient statistics tell us all there is to know about data.
- Since $L(\theta|\mathcal{D}) = \theta^{m_h} (1-\theta)^{m_t}$, the pair (m_h, m_t) is a sufficient statistic.

■ Loglikelihood:

$$I(\theta|\mathcal{D}) = logL(\theta|\mathcal{D})$$

■ Loglikelihood:

$$I(\theta|\mathcal{D}) = logL(\theta|\mathcal{D}) = log\theta^{m_h}(1-\theta)^{m_t}$$

■ Loglikelihood:

$$\textit{I}(\theta|\mathcal{D}) = \textit{logL}(\theta|\mathcal{D}) = \textit{log}\theta^{\textit{m}_{\textit{h}}}(1-\theta)^{\textit{m}_{\textit{t}}} = \textit{m}_{\textit{h}}\textit{log}\theta + \textit{m}_{\textit{t}}\textit{log}(1-\theta)$$

Loglikelihood:

$$I(\theta|\mathcal{D}) = logL(\theta|\mathcal{D}) = log\theta^{m_h}(1-\theta)^{m_t} = m_h log\theta + m_t log(1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

■ Taking the derivative of $\frac{dI(\theta|\mathcal{D})}{d\theta}$ and setting it to zero, we get

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

■ Taking the derivative of $\frac{dI(\theta|\mathcal{D})}{d\theta}$ and setting it to zero, we get

$$\theta^* = \frac{m_h}{m_h + m_t} = \frac{m_h}{m}$$

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

■ Taking the derivative of $\frac{dl(\theta|\mathcal{D})}{d\theta}$ and setting it to zero, we get

$$\theta^* = \frac{m_h}{m_h + m_t} = \frac{m_h}{m}$$

MLE is intuitive.

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

■ Taking the derivative of $\frac{dl(\theta|\mathcal{D})}{d\theta}$ and setting it to zero, we get

$$\theta^* = \frac{m_h}{m_h + m_t} = \frac{m_h}{m}$$

- MLE is intuitive.
- It also has nice properties:

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

■ Taking the derivative of $\frac{dl(\theta|\mathcal{D})}{d\theta}$ and setting it to zero, we get

$$\theta^* = \frac{m_h}{m_h + m_t} = \frac{m_h}{m}$$

- MLE is intuitive.
- It also has nice properties:
 - E.g. Consistence:

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

■ Taking the derivative of $\frac{dl(\theta|\mathcal{D})}{d\theta}$ and setting it to zero, we get

$$\theta^* = \frac{m_h}{m_h + m_t} = \frac{m_h}{m}$$

- MLE is intuitive.
- It also has nice properties:
 - E.g. Consistence: θ^* approaches the true value of θ with probability 1 as m goes to infinity.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.

- Thumbtack tossing:
 - $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.

- Thumbtack tossing:
 - $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.

- Thumbtack tossing:
 - $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.
 - The fact that we get (3, 7) instead of (5, 5) is probably due to randomness
 - Case 2: $(m_h, m_t) = (30,000,70,000)$. MLE: $\theta = 0.3$.

- Thumbtack tossing:
 - $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.
 - The fact that we get (3, 7) instead of (5, 5) is probably due to randomness
 - Case 2: $(m_h, m_t) = (30,000,70,000)$. MLE: $\theta = 0.3$.
 - Reasonable.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.
 - The fact that we get (3, 7) instead of (5, 5) is probably due to randomness.
 - Case 2: $(m_h, m_t) = (30,000,70,000)$. MLE: $\theta = 0.3$.
 - Reasonable.
 - Data suggest that the coin is after all biased, overshadowing our prior.

- Thumbtack tossing:
 - $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.
 - The fact that we get (3, 7) instead of (5, 5) is probably due to randomness
 - Case 2: $(m_h, m_t) = (30,000,70,000)$. MLE: $\theta = 0.3$.
 - Reasonable.
 - Data suggest that the coin is after all biased, overshadowing our prior.
 - MLE does not differentiate between those two instances.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.
 - The fact that we get (3, 7) instead of (5, 5) is probably due to randomness
 - Case 2: $(m_h, m_t) = (30,000,70,000)$. MLE: $\theta = 0.3$.
 - Reasonable.
 - Data suggest that the coin is after all biased, overshadowing our prior.
 - MLE does not differentiate between those two instances. It doe not take prior information into account.

MLE:

MLE:

lacksquare Assumes that heta is unknown but fixed parameter.

MLE:

- Assumes that θ is unknown but fixed parameter.
- lacktriangle Estimates it using θ^* , the value that maximizes the likelihood function

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- Estimates it using θ^* , the value that maximizes the likelihood function
- lacksquare Makes prediction based on the estimation: $P(D_{m+1}=H|\mathcal{D})= heta^*$

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- **E**stimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- **E**stimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

Bayesian Estimation:

 \blacksquare Treats θ as a random variable.

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- **E**stimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

- \blacksquare Treats θ as a random variable.
- Assumes a prior probability of θ : $p(\theta)$

MLE:

- lacktriangle Assumes that heta is unknown but fixed parameter.
- **E**stimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

- \blacksquare Treats θ as a random variable.
- Assumes a prior probability of θ : $p(\theta)$
- Uses data to get posterior probability of θ : $p(\theta|\mathcal{D})$

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- **E**stimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

- \blacksquare Treats θ as a random variable.
- Assumes a prior probability of θ : $p(\theta)$
- Uses data to get posterior probability of θ : $p(\theta|\mathcal{D})$

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$
$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta)p(\theta|\mathcal{D})d\theta$$

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta)p(\theta|\mathcal{D})d\theta$$

$$= \int \theta p(\theta|\mathcal{D})d\theta.$$

Full Bayesian: Take expectation over θ .

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta)p(\theta|\mathcal{D})d\theta$$

$$= \int \theta p(\theta|\mathcal{D})d\theta.$$

Full Bayesian: Take expectation over θ .

Two Views on Parameter Estimation

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta)p(\theta|\mathcal{D})d\theta$$

$$= \int \theta p(\theta|\mathcal{D})d\theta.$$

Full Bayesian: Take expectation over θ .

■ Bayesian MAP:

Two Views on Parameter Estimation

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta)p(\theta|\mathcal{D})d\theta$$

$$= \int \theta p(\theta|\mathcal{D})d\theta.$$

Full Bayesian: Take expectation over θ .

■ Bayesian MAP:

$$P(D_{m+1} = H|\mathcal{D}) = \theta^* = \arg\max p(\theta|\mathcal{D})$$

Posterior distribution:

$$p(\theta|\mathcal{D}) \propto p(\theta)L(\theta|\mathcal{D})$$

Posterior distribution:

$$p(\theta|\mathcal{D}) \propto p(\theta)L(\theta|\mathcal{D})$$

= $\theta^{m_h}(1-\theta)^{m_t}p(\theta)$

where the equation follows from (1)

Posterior distribution:

$$p(\theta|\mathcal{D}) \propto p(\theta)L(\theta|\mathcal{D})$$

= $\theta^{m_h}(1-\theta)^{m_t}p(\theta)$

where the equation follows from (1)

■ To facilitate analysis, assume prior has **Beta distribution** $B(\alpha_h, \alpha_t)$

$$p(\theta) \propto \theta^{\alpha_h-1} (1-\theta)^{\alpha_t-1}$$

Posterior distribution:

$$p(\theta|\mathcal{D}) \propto p(\theta)L(\theta|\mathcal{D})$$

= $\theta^{m_h}(1-\theta)^{m_t}p(\theta)$

where the equation follows from (1)

■ To facilitate analysis, assume prior has **Beta distribution** $B(\alpha_h, \alpha_t)$

$$p(\theta) \propto \theta^{\alpha_h-1} (1-\theta)^{\alpha_t-1}$$

Then

$$p(\theta|\mathcal{D}) \propto \theta^{m_h + \alpha_h - 1} (1 - \theta)^{m_t + \alpha_t - 1} \tag{2}$$

■ The normalization constant for the Beta distribution $B(\alpha_h, \alpha_t)$

$$\frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)}$$

where $\Gamma(.)$ is the **Gamma** function. For any integer α , $\Gamma(\alpha) = (\alpha - 1)!$. It is also defined for non-integers.

■ The normalization constant for the Beta distribution $B(\alpha_h, \alpha_t)$

$$\frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)}$$

where $\Gamma(.)$ is the **Gamma** function. For any integer α , $\Gamma(\alpha) = (\alpha - 1)!$. It is also defined for non-integers.

■ Density function of prior Beta distribution $B(\alpha_h, \alpha_t)$,

$$p(\theta) = \frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_h}$$

■ The normalization constant for the Beta distribution $B(\alpha_h, \alpha_t)$

$$\frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)}$$

where $\Gamma(.)$ is the **Gamma** function. For any integer α , $\Gamma(\alpha) = (\alpha - 1)!$. It is also defined for non-integers.

■ Density function of prior Beta distribution $B(\alpha_h, \alpha_t)$,

$$p(\theta) = \frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_h}$$

The hyperparameters α_h and α_t can be thought of as "imaginary" counts from our prior experiences.

■ The normalization constant for the Beta distribution $B(\alpha_h, \alpha_t)$

$$\frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)}$$

where $\Gamma(.)$ is the **Gamma** function. For any integer α , $\Gamma(\alpha) = (\alpha - 1)!$. It is also defined for non-integers.

■ Density function of prior Beta distribution $B(\alpha_h, \alpha_t)$,

$$p(\theta) = \frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_h}$$

- The **hyperparameters** α_h and α_t can be thought of as "imaginary" counts from our prior experiences.
- Their sum $\alpha = \alpha_h + \alpha_t$ is called equivalent sample size.

■ The normalization constant for the Beta distribution $B(\alpha_h, \alpha_t)$

$$\frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)}$$

where $\Gamma(.)$ is the **Gamma** function. For any integer α , $\Gamma(\alpha) = (\alpha - 1)!$. It is also defined for non-integers.

■ Density function of prior Beta distribution $B(\alpha_h, \alpha_t)$,

$$p(\theta) = \frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_h}$$

- The **hyperparameters** α_h and α_t can be thought of as "imaginary" counts from our prior experiences.
- Their sum $\alpha = \alpha_h + \alpha_t$ is called equivalent sample size.
- The larger the equivalent sample size, the more confident we are in our prior.

■ Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$

- Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$
- Beta Prior: $\theta^{\alpha_h-1}(1-\theta)^{\alpha_t-1}$

- Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$
- Beta Prior: $\theta^{\alpha_h-1}(1-\theta)^{\alpha_t-1}$

- Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$
- Beta Prior: $\theta^{\alpha_h-1}(1-\theta)^{\alpha_t-1}$
- Beta Posterior: $\theta^{m_h+\alpha_h-1}(1-\theta)^{m_t+\alpha_t-1}$.

- Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$
- Beta Prior: $\theta^{\alpha_h-1}(1-\theta)^{\alpha_t-1}$
- Beta Posterior: $\theta^{m_h+\alpha_h-1}(1-\theta)^{m_t+\alpha_t-1}$.
- Beta distributions are hence called a conjugate family for Binomial likelihood.

- Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$
- Beta Prior: $\theta^{\alpha_h-1}(1-\theta)^{\alpha_t-1}$
- Beta Posterior: $\theta^{m_h+\alpha_h-1}(1-\theta)^{m_t+\alpha_t-1}$.
- Beta distributions are hence called a conjugate family for Binomial likelihood.
- Conjugate families allow closed-form for posterior distribution of parameters and closed-form solution for prediction.

■ We have

We have

$$P(D_{m+1} = H|\mathcal{D}) = \int \theta p(\theta|\mathcal{D}) d\theta$$

We have

$$P(D_{m+1} = H|\mathcal{D}) = \int \theta p(\theta|\mathcal{D})d\theta$$

= $c \int \theta \theta^{m_h + \alpha_h - 1} (1 - \theta)^{m_t + \alpha_t - 1} d\theta$

We have

$$P(D_{m+1} = H|\mathcal{D}) = \int \theta p(\theta|\mathcal{D}) d\theta$$

$$= c \int \theta \theta^{m_h + \alpha_h - 1} (1 - \theta)^{m_t + \alpha_t - 1} d\theta$$

$$= \frac{m_h + \alpha_h}{m + \alpha}$$

where c is the normalization constant, $m=m_h+m_t$, $\alpha=\alpha_h+\alpha_t$.

We have

$$P(D_{m+1} = H|\mathcal{D}) = \int \theta p(\theta|\mathcal{D}) d\theta$$

$$= c \int \theta \theta^{m_h + \alpha_h - 1} (1 - \theta)^{m_t + \alpha_t - 1} d\theta$$

$$= \frac{m_h + \alpha_h}{m + \alpha}$$

where c is the normalization constant, $m=m_h+m_t$, $\alpha=\alpha_h+\alpha_t$.

Consequently,

$$P(D_{m+1} = T|\mathcal{D}) = \frac{m_t + \alpha_t}{m + \alpha}$$

We have

$$P(D_{m+1} = H|\mathcal{D}) = \int \theta p(\theta|\mathcal{D}) d\theta$$

$$= c \int \theta \theta^{m_h + \alpha_h - 1} (1 - \theta)^{m_t + \alpha_t - 1} d\theta$$

$$= \frac{m_h + \alpha_h}{m + \alpha}$$

where c is the normalization constant, $m=m_h+m_t$, $\alpha=\alpha_h+\alpha_t$.

Consequently,

$$P(D_{m+1} = T|\mathcal{D}) = \frac{m_t + \alpha_t}{m + \alpha}$$

■ After taking data \mathcal{D} into consideration, now our **updated belief** on X = T is $\frac{m_t + \alpha_t}{m_t + \alpha_t}$.

• As m goes to infinity, $P(D_{m+1}=H|\mathcal{D})$ approaches the MLE $\frac{m_h}{m_h+m_t}$,

■ As m goes to infinity, $P(D_{m+1} = H | \mathcal{D})$ approaches the MLE $\frac{m_h}{m_h + m_t}$, which approaches the true value of θ with probability 1.

- As m goes to infinity, $P(D_{m+1} = H | \mathcal{D})$ approaches the MLE $\frac{m_h}{m_h + m_t}$, which approaches the true value of θ with probability 1.
- Coin tossing example revisited:

- As m goes to infinity, $P(D_{m+1} = H | \mathcal{D})$ approaches the MLE $\frac{m_h}{m_h + m_t}$, which approaches the true value of θ with probability 1.
- Coin tossing example revisited:
 - Suppose $\alpha_h = \alpha_t = 100$. Equivalent sample size: 200

- As m goes to infinity, $P(D_{m+1} = H|\mathcal{D})$ approaches the MLE $\frac{m_h}{m_h+m_t}$, which approaches the true value of θ with probability 1.
- Coin tossing example revisited:
 - Suppose $\alpha_h = \alpha_t = 100$. Equivalent sample size: 200
 - In case 1,

$$P(D_{m+1} = H|\mathcal{D}) = \frac{3+100}{10+100+100} \approx 0.5$$

Our prior prevails.

- As m goes to infinity, $P(D_{m+1} = H|\mathcal{D})$ approaches the MLE $\frac{m_h}{m_h + m_t}$, which approaches the true value of θ with probability 1.
- Coin tossing example revisited:
 - Suppose $\alpha_h = \alpha_t = 100$. Equivalent sample size: 200
 - In case 1,

$$P(D_{m+1} = H|\mathcal{D}) = \frac{3+100}{10+100+100} \approx 0.5$$

Our prior prevails.

■ In case 2,

$$P(D_{m+1} = H|\mathcal{D}) = \frac{30,000 + 100}{100,0000 + 100 + 100} \approx 0.3$$

Data prevail.

MLE vs Bayesian Estimation

Much of Machine Learning is about parameter estimation.

MLE vs Bayesian Estimation

- Much of Machine Learning is about parameter estimation.
- In all case, both MLE and Bayesian estimations can used, although the latter is harder mathematically.

MLE vs Bayesian Estimation

- Much of Machine Learning is about parameter estimation.
- In all case, both MLE and Bayesian estimations can used, although the latter is harder mathematically.
- In this course, we will focus on MLE.