

实验报告

开课学期:	2023 年春季
课程名称:	计算机网络
实验名称:	RIP 路由配置及协议分析
实验性质:	课内实验
实验时间:	<u>4月21日</u> 地点: <u>T2507</u>
学生专业:	计算机科学与技术
学生学号:	200110619
学生姓名:	梁鑫嵘
评阅教师:	
报告成绩:	

实验与创新实践教育中心印制

2023年3月

实验四 RIP 路由配置及协议分析

1. 给出你自己的实验组网图(把你在 Cisco Packet Tracer 上的拓扑图截图即可)。

2. 在启动 RIP 协议前,在 R0 上 ping 各台计算机,看是否能够 ping 通?通过在 R0 上查看路由表,分析其原因?

在 PC0 上:

1. ping 192.168.2.1 网关 - 通

```
Packet Tracer PC Command Line 1.0
PC>
PC>ping 192.168.2.1

Pinging 192.168.2.1 with 32 bytes of data:

Reply from 192.168.2.1: bytes=32 time=1ms TTL=255
Reply from 192.168.2.1: bytes=32 time=0ms TTL=255

Ping statistics for 192.168.2.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms

PC>
PC>
```

2. ping 192.168.3.1 网关 - 不通

3. ping 192.168.3.13 PC1 - 不通

4. ping 192.168.3.14 PC2 - 不通

```
PC>ping 192.168.3.13
Pinging 192.168.3.13 with 32 bytes of data:
Reply from 192.168.2.1: Destination host unreachable.
Reply from 192.168.2.1: Destination host unreachable.
Ping statistics for 192.168.3.13:
    Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),
Control-C
^C
PC>ping 192.168.3.14
Pinging 192.168.3.14 with 32 bytes of data:
Reply from 192.168.2.1: Destination host unreachable.
Reply from 192.168.2.1: Destination host unreachable.
Ping statistics for 192.168.3.14:
    Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),
Control-C
^C
PC>
```

查看 R0 上的路由表:

实验报告

3. 在配置 RIP 协议后,比较和配置 RIP 协议前中 R0 路由表的差异;测试 R0 和各台计算机是 否能够通信,并说明原因。

配置 RIP 协议后, 查看 R0 路由表如下:

多出了一条 RIP 路由信息,即要到达 192.168.3.0/24 网段,下一个转发端口是 192.168.2.1。 此时 R1 的路由表:

同样多了 RIP 信息。

测试 PC0 与 R0 的联通:成功。

测试 PC1 与 R0 的联通性:成功。

测试 PC2 与 R0 的联通性:成功。

4. 观察你所截获的 RIP 响应报文(任选一条响应报文),填写下表:

		字段	值	含义
	IP	目的地址	224.0.0.9	RIPv2 的组播地址
1	UDP	端口号	520	RIPv2 的指定端口
RIP	头部	命令字段	0x2	是一个应答报文
		版本号	0x2	版本2

实验报告

路由信息		协议族	0x2	使用 IP 协议簇
	四十	网络地址	1.1.1.1	来源: loopback1
	网络掩码	255.255.255.255	掩码(全1)	
	活忠	下一跳	0.0.0.0	下一跳地址
		跳数	0x10	最大跳数,为不可达路由

5. 比较水平分割前后 R0 发给 R1 的 RIP 报文路由信息的不同,填写到下表中。

	IP Address	Metric
	1.1.1.1	0x1
取消水平分割前	192.168.2.0	0x1
48/13/3/ 1/33 13/3		
	1.1.1.1	0x1
取沙水亚八割丘	192.168.1.0	0x1
取消水平分割后	192.168.2.0	0x1
	192.168.3.0	0x2