Assignment-Regression Algorithm

1.Problem Statement-

Client wants to predict insurance charges based on several parameters given in the data set.

Domain Selection – Machine learning.

Learning Selection-Supervised Learning-Regression.

2.Basic info about dataset-

Parameters – Age, Sex, BMI, Children, Smoker and charges.

Independent (Input)- Age, Sex, BMI, Children and Smoker.

Dependent (Output)- Charges

Rows-1339

Columns-6

3.Pre-Processing Method-

Parameter Age and Smoker has staring values we are converting nominal data to number data Algorithm used-One hot Encoding

4. Model used and R2 score-

Machine learning algorithm used a for-insurance charges prediction and finalized model.

Algorithms used- Multilinear Regression, Random Forest, Decision Tree and Support Vendor Machine.

Finalized Model- Support Vendor Machine

R2 Score- 0.872

5.Documentation on R2scores.

Multilinear Regression- R2 Score- 0.789

```
[72]: from sklearn.metrics import r2_score r_score=r2_score(y_test,y_pred)

[73]: r_score

[73]: 0.7894790349867009

[]:
```

Random Forest - R2 score-0.854

S.NO	N_ Estimators	Random State	Criterion	R Value
1	1	0	Squared Error	0.744
2	1	0	Absolute Error	0.706
3	1	0	Friedman MSE	0.75
4	1	0	Poisson	0.76
5	10	0	Squared Error	0.833
6	10	0	Absolute Error	0.835
7	10	0	Friedman MSE	0.833
8	10	0	Poisson	0.831
9	100	0	Squared Error	0.85
10	100	0	Absolute Error	0.852
11	100	0	Friedman MSE	0.854
12	100	0	Poisson	0.852

Support Vector Machine-R2 score-0.877

	Hyper	Liner R	RBF (Non Linear)	Ploy R	SIGMOID R
S.No	Parameter	Value	R Value	Value	Value

1	C=10	0.462	-0.03	0.03	0.039
2	C=100	0.628	0.32	0.617	0.527
3	C=500	0.763	0.664	0.826	0.444
4	C=1000	0.764	0.81	0.856	0.287
5	C=5000	0.741	0.874	0.859	-7.53
6	C=10000	0.741	0.877	0.859	-34.15

Decision Tree-0.735

S.No	Criterion	Splitter	R Value
1	Squarred error	Best	0.725
2	friedman mse	best	0.735
3	absolute error	best	0.663
4	Poisson	best	0.701
5	Squarred error	random	0.652
6	friedman mse	random	0.723
7	absolute error	random	0.7
8	Poisson	random	0.754

5.Final Model -

Support Vector Machine-R2 score-0.877

Among trying all the algorithms Support vector Machine predicted the R value -0.877 which good for the dataset given.