Chip – Seq Peak Calling in Galaxy

Lisa Stubbs

Introduction

This goals of the lab are as follows:

- 1. Gain experience using Galaxy.
- 2. Teach how to map next generation (NSG) reads to a reference genome using **Bowtie**.
- 3. Demonstrate how to call peaks from Chip-Seq data.

Step 1A: Logging into Galaxy

Step 1B: Galaxy Start Screen

The resulting screen should look like the figure below:

Step 2A: Importing the Data

In this step, we will import the following data files:

Filename	Meaning				
G1E_ER4_CTCF_(chr19).fastqsanger	A sample ChIP-seq dataset on CTCF in G1E_ER4 cells, reads have been reduced to those mapping to chr19 for demonstration use.				
G1E_ER4_input_(chr19).fastqsanger	Control DNA taken from chr19.				
G1E_CTCF.fastqsanger	CTCF Chip for G1E line.				
G1E_input.fastqsanger	Control for G1E line.				

Note: G1E cell lines are erythroid, red blood cell, cell lines missing the GATA-1 gene.

GATA-1 is crucial for the maturation of erythroid cells.

G1E_E4R cell lines conditionally express GATA-1 in the presence of estradiol, enabling erythdoi maturation.

Step 2B: Import Data in Galaxy

0

0

3: G1E CTCF.fastgsanger

4: G1E input.fastqsanger

Go to https://galaxy.illinois.edu/galaxy/u/instr04/h/compgenchip1

Click Import History and on the next page click Start Using History.

Published Histories | class45 | CompGenChIP1

Galaxy History ' CompGenChIP1'

Annotation:

Dataset

Annotation

1: G1E ER4 CTCF (chr9).fastqsanger
2: G1E ER4 input (chr19).fastqsanger

Thistory "imported: chip_seq_peak_call" has been imported. You can start using this history or return to the previous page.

2: G1E ER4 input (chr19).fastqsanger

Thistory "imported: chip_seq_peak_call" has been imported. You can start using this history or return to the previous page.

Thistory "imported: chip_seq_peak_call" has been imported. You can start using this history or return to the previous page.

Step 2C: Import Data into Galaxy

Your Galaxy page should look like the following now:

Tools Pane Main Pane History Pane

Read Mapping and Peak Calling

In this exercise, we will map ChIP Reads to a reference genome and call peaks among the mapped reads using MACs.

Step 3A: Summary Statistics

In this step, we will gather summary statistics of ChIP data for quality control.

Click NGS: QC and manipulation from the Tools pane.

Then click FASTQ Summary Statistics.

Statistics

<u>Graph/Display Data</u>

Regional Variation

Multiple regression

Multivariate Analysis

Multiple Alignments

Metagenomic analyses

FASTA manipulation

NGS: QC and manipulation

NGS: QC and manipulation

FASTQC: FASTQ/SAM/BAM

 <u>FastQC:Read QC</u> reports using FastQC

ILLUMINA FASTQ

- <u>FASTQ Groomer</u> convert between various FASTQ quality formats
- FASTQ splitter on joined paired end reads
- <u>FASTQ joiner</u> on paired end reads
- FASTQ Summary Statistics by column

Step 3B: FASTQ Summary Statistics

On the next page, make sure 1: G1E_ER4_CTCF_(chr..fastqsanger) is selected.

Step 3C: FASTQ Summary Statistics

The summary file will be the 5^{th} file in the History pane.

Click 💿 to display the file in the **Main** pane.

#column	count	min	max	sum	mean	Q1	med	Q3	IQR	lw	rW
1	270631	2	33	8498504	31.4025518141	32.0	33.0	33.0	1.0	31	33
2	270631	2	34	8324960	30.7612948997	30.0	33.0	33.0	3.0	26	34
3	270631	2	34	8181664	30.231806408	29.0	32.0	33.0	4.0	23	34
4	270631	2	34	8184981	30.2440629492	29.0	32.0	33.0	4.0	23	34
5	270631	2	34	8161333	30.1566819766	29.0	32.0	33.0	4.0	23	34
36	270631	2	34	7244057	26.7672846052	25.0	30.0	32.0	7.0	17	34

Discussion

How long are these reads?

What is the median quality at the last position?

Step 4A: Map ChIP-Seq Reads to MM9 Genome

Next, we will map the reads in **G1E_E4R_CTCF_(chr9).fastqsanger** to the mouse genome.

Select NGS: Mapping — · — · — · — · →

Then select Map with Bowtie for Illumina

FASTA manipulation

NGS: QC and manipulation

Picard Tools

NGS: Mapping

- <u>Lastz paired reads</u> map short paired reads against reference sequence
- <u>Lastz</u> map short reads against reference sequence
- Map with Bowtie for SOLiD
- Map with Bowtie for Illumina
- Map with BWA for Illumina
- Map with BWA for SOLiD

Step 4B: Map ChIP-Seq Reads to MM9 Genome

Make sure to select **mm9** as the reference genome.

Make sure 1: G1E_ER4_CTCF_(chr..fastqsanger) is selected.

Hit Execute.

It will take a few moments to complete.

When done, click the view icon.

Step 4C: Map ChIP-Seq Reads to MM9 Genome

Your Main pane and History pane should look like the following:

```
@SQ SN:chr8 LN:131738871
                                                                                        6: Map with Bowtie f
                                                                                        or Illumina on data 1
@SO SN:chr9 LN:124076172
                                                                                        : mapped reads
@SQ SN:chr10 LN:129993255
                                                                                        ~270,000 lines, 24 comments
@SQ SN:chr11 LN:121843856
                                                                                        format: sam, database: mm9
@SO SN:chr12 LN:121257530
@SQ SN:chr13 LN:120284312
                                                                                        Sequence file aligned.
@SQ SN:chr14 LN:125194864
                                                                                         B 6 2 111
@SQ SN:chr15 LN:103494974
@SO SN:chr16 LN:98319150
                                                                                        1.QNAME 2.FLAG 3.RNAME 4.POS 5.MAPQ 6.CIG
@SO SN:chr17 LN:95272651
                                                                                              VN:1.0 SO:unsorted
@SQ SN:chr18 LN:90772031
                                                                                              SN:chr1 LN:197195432
@SO SN:chr19 LN:61342430
                                                                                              SN:chr2 LN:181748087
@SQ SN:chrX LN:166650296
                                                                                              SN:chr3 LN:159599783
@SQ SN:chrY LN:15902555
                                                                                              SN:chr4 LN:155630120
                                                                                              SN:chr5 LN:152537259
@SO SN:chrM LN:16299
@PG ID:Bowtie VN:0.12.7 CL:"bowtie -q -p 1 -S --phred33-quals /home/a-m/galaxy/bioindice
HWUSI-EAS610_0001:3:1:4:1405#0/1
                                        16 chr19
                                                     60874227
                                                                  255
                                                                        36M
                                                                                        5: FASTQ Summary
HWUSI-EAS610 0001:3:1:5:1490#0/1
                                             chr19
                                                     32960373
                                                                        36M
                                                                  255
                                                                                        Statistics on data 1
HWUSI-EAS610_0001:3:1:6:388#0/1
                                                    18177553
                                         16 chr19
                                                                  255
                                                                        36M
```

Step 5A: Calling Peaks with MACs

With our mapped ChiP-Seq reads, we now want to call peaks.

Step 5B: Calling Peaks with MACs

Run MACs with the default parameters.

Step 5C: Calling Peaks with MACs

When done, MACs will create two files.

8: Macs on data 6 (html report) is an html document with information on the peak calling process.

7: MACs on data 6 (peaks:bed) is a BED file with coordinates and scores of ChiP-Seq peaks in chr19.

```
track name="MACS peaks for MACS in Galaxy"
chr19
                             MACS peak 1
                                               54.24
        3100129
                   3100373
chr19
        3204496
                   3204775
                             MACS_peak_2
                                               77.98
chr19
                   3208631 MACS_peak_3
                                              127.67
        3208309
chr19
        3291585
                   3292811
                            MACS peak 4
                                              124.30
chr19
        3347631
                             MACS_peak_5
                                               76.32
                   3348358
chr19
        3355095
                   3355575
                             MACS_peak_6
                                              111.02
chr19
        3450738
                   3451989
                             MACS_peak_7
                                              177.92
```


Step 5D: Calling Peaks with MACs

In the 7: MACs on data 6 (peaks:bed) section in the History pane click main next to display at UCSC browser.

The result should look similar to below:

Discussion

1. Look at the BED file. How many peaks were found?

Call Chip-Seq Peaks with a Control Sample

We will perform the same procedure we did in the previous exercise. This time though, we will work with a control sample instead of an experimental one.

Step 6A: Map Control ChIP-Seq Reads to MM9 Genome

Let's map the reads in G1E_E4R_input_(chr19).fastqsanger to the mouse genome.

Select NGS: Mapping — · — · — · — · →

Then select Map with Bowtie for Illumina

FASTA manipulation

NGS: QC and manipulation

Picard Tools

NGS: Mapping

- <u>Lastz paired reads</u> map short paired reads against reference sequence
- <u>Lastz</u> map short reads against reference sequence
- Map with Bowtie for SOLiD
- Map with Bowtie for Illumina
- Map with BWA for Illumina
- Map with BWA for SOLiD

Step 6B: Map Control ChIP-Seq Reads to MM9 Genome

Make sure to select mm9 as the reference genome.

Make sure 2: G1E_ER4_input_(chr..fastqsanger) is selected.

Click Execute.

It will take a few moments to complete.

When done, click the view icon.

Step 6C: Map Control ChIP-Seq Reads to MM9 Genome

Your **Main** pane and **History** pane should look like the following:

Step 7A: Calling Peaks with MACs on Control Chip-Seq Reads

Like before, we want to call peaks in our mapped Control ChiP-Seq reads.

Step 7B: Calling Peaks with MACs on Control Chip-Seq Reads

Select Map with Bowtie for Illumina on data 1 (the experimental aligned reads) for the Chip-Seq Tag File.

Select Map with Bowtie for Illumina on data 2 (the control aligned reads) for the Chip-Seq

Control File.

Click Execute

Step 7C: Calling Peaks with MACs on Control Chip-Seq Reads

Once again, MACs creates a **BED** file containing the peak coordinates and an **HTML** file containing information on the peak calling process.

Discussion

- Examine the BED track.
- 2. How many peaks are called when using a control sample?
- 3. How does this compare to the previous situation where we only had experimental Chip-Seq reads?

Workflow Extraction

In this exercise, we will automate the Bowtie runs of our other 2 datasets.

Step 1A: Workflow Extraction

Click the located in the **History** pane.

From the drop down menu, select **Extract Workflow**.

Step 1B: Workflow Extraction

In the resulting window, give the workflow a new name.

Click Uncheck All.

Ensure the following are checked and press Create Workflow.

Step 1C: Workflow Extraction

Select All Workflows at the bottom of the Tool pane.

Select chipseq2

On the next page, ensure the following settings and click **Run**.

Step 1D: Workflow Extraction

Identifying Differential Binding Sites

In this exercise, we will identify binding sites exclusive to undifferentiated and differentiated cell lines as well as those common to both.

Step 1: Subtract Peaks Between Cell Lines

Select Operate on Genomic Intervals and Subtract.

Choose your G1E MACS peaks as your 2nd dataset and your G1E-ER4 peaks as your 1st dataset.

Click Execute.

Operate on Genomic Intervals Intersect the intervals of two datasets Subtract the intervals of two datasets

Step 2: Subtract Peaks Between Cell Lines.

The resulting **BED** file contains peaks exclusive to the **differentiated** cell line (G1E-ER4).

Discussion

1. How many peaks are exclusive to G1E-ER4?

Redo Step1 only **SWITCH** the input order.

Choose your G1E MACS peaks as your 1st dataset and your G1E-ER4 peaks as your 2nd dataset.

Step 3: Intersect Peaks Between Cell Lines

Select Operate on Genomic Intervals and Intersect.

Choose your G1E-ER4 MACS peaks as your 1st dataset and your G1E peaks as your 2nd dataset.

Click Execute.

Operate on Genomic Intervals Intersect the intervals of two datasets Subtract the intervals of two datasets

