Arquitecturas de las computadoras

10

Intro a Transmisión digital

Codificación de línea

Codificación unipolar

Intro a Transmisión digital

Transmisión serie

Transmisión paralela

Tipos de Arquitectura

Von Neumann

Harvard

Sistema de Entrada y Salida Todos los periféricos conectados a los mismos cables Memoria **CPU Buses** (de direcciones y de datos) Sistema de **Entrada y Salida**

CPU

CPU (Resumen)

Unidad de control: Recupera Instrucciones de memoria, las decodifica, escribe en memoria

Unidad de Ejecución: Lleva a cabo la ejecución de la instrucción

Registros: Memoria interna utilizada como variable.

Flags: Indican eventos luego de ejecutar las instrucciones

Veamos el simulador

https://vonsim.github.io/

Bus de Datos (con buffer)

Registros internos de la CPU

IR: Registro de instrucción - Almacena la instrucción a analizar

ri: Almacena dirección temporal

id:Almacena dato temporal

Bus de Direcciones (con buffer) 80

48

23

45

03

11

9D

BA

Mapa de memoria

Mapa de memoria

Todas las direcciones que puede acceder una CPU

Mapa de memoria

0000.....000h

RAM ROM Periféricos

FFF.....FFh

También se lo llama "Espacio de Direcciones"

Mapa de memoria

- ☐ Supongamos un procesador que tiene 16 líneas de bus de direcciones y 8 líneas de bus de datos.
- ☐ ¿ Que cantidad de información puede acceder ?

Mapa de memoria (2)

- Y un procesador que tiene 16 líneas de bus de direcciones y 16 líneas de bus de datos ?
- ☐ ¿Y un procesador con 32 líneas de datos y 32 líneas de Direcciones ?

Para pensar

• IP: Puntero a instrucción.

¿ Cual es la primera instrucción que ejecuta el micro al encenderse ? Pista: Pensar en la demo de VonSim

¿Qué valores tiene una memoria al energizarse?

Memorias

Memorias - Clasificación

- ☐ Por el **modo** en que se accede a los datos
- ☐ Por las **operaciones** que aceptan
- ☐ Por la **duración** de los datos

<u>Memoria – Tipo ROM</u>

ROM (Read Only Memory)

PROM (Programable ROM)

EPROM (Erasable PROM)

Flash, EEPROM (Electric Erasable Programable ROM)

- Mantienen su información sin energía (no volátil)
- La escritura es **más lenta** que la RAM.

<u>Memoria – Tipo RAM</u>

RAM (Random Access Memory)

DRAM (Dinamic RAM)

SRAM (Static RAM)

• Pierde su información sin energía. (volátil)

<u>Memorias – Tipos - RAM</u>

DRAM

- Necesita refresco de valores cada *n* milisegundos
- Menos compleja. Más económica.
- Más lenta

SRAM

- No necesita refresco.
- Más compleja, más costosa.
- Más rápida
- Se suele utilizar para memoria cache.

SDRAM (Synchronous DRAM)

м

<u>Memorias – Tiempo de Acceso</u>

Es el tiempo que le toma a una memoria RAM para completar un acceso después de otro.

Se compone de:

- Latencia (tiempo que tarda en devolver el valor la memoria)
- Transferencia

Las DRAM suelen tener tiempos entre 50 y 150 ns.

Las SRAM menores a 10 ns.

Memorias - Operación

Las memorias para operar utilizan:

- ☐ Acción a realizar (lectura o escritura)
- ☐ Dirección de la palabra a acceder.
- ☐ Dato (entrante o saliente según acción)

м

Memorias – Estructura

Si el procesador, como es el caso de **Intel**, quiere mantener compatibilidad hacia atrás, permite acceder a la memoria a **nivel byte**.

Por lo tanto la decodificación cambia según el tipo de memoria

Bus de 8 líneas

Bus de 16 líneas

Bus de 32 líneas

Ejemplo de memoria de 1k x 8

0000h	
0001h	
0002h	
0003h	
• • • • •	
••••	
• • • • •	
03FFh	

Memoria Comercial (1)

Pin(s)	Function
$A_{0}^{-}A_{10}$	Address
$\mathbf{DQ_0}\text{-}\mathbf{DQ_7}$	Data In/Data Out
S (CS)	Chip Select
G (OE)	Read Enable
$\overline{\mathbf{W}}$ $\overline{\mathbf{WE}}$	Write Enable

Memoria Comercial (2)

- SDRAM 4GB
- DDR3
- 240 pines
 - 64 pines de bus de datos
 - Bus de Address dividido en buses de 16 lineas