Masaryk University Faculty of Informatics

«title»

Bachelor's Thesis

«author»

Brno, Fall 2020

Replace this page with a copy of the official signed thesis assignment and a copy of the Statement of an Author.

Declaration

Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source.

«author»

Advisor: «advisor»

Abstract

«abstract»

Keywords

«keywords»

Contents

1	Intr	oduction	1
2	Prel	iminaries	3
	2.1	Büchi Automaton	3
	2.2	Markov Decision Processes	4
		to be defined	4
			4
	2.4	Algorithms	4
3	Imp	lementation	5
	3.1	Technologies	5
	3.2	Implementation inside Seminator	5
4	Eva	luation	7
	4.1	Alternative Algorithm	7
	4.2	Different Implementation - ePMC	7
	4.3	Semi-deterministic Automata	7
5	Con	clusion	9

List of Tables

List of Figures

1 Introduction

2 Preliminaries

2.1 Büchi Automaton

A nondeterministic Büchi automaton (BA) is a tuple $A = (\Sigma, Q, q_0, \Delta, \Gamma)$, where

- Σ is a finite alphabet
- *Q* is finite set of states
- $q_0 \in Q$ is the initial state
- $\Delta \subseteq Q \times \Sigma \times Q$ are transitions
- $\Gamma \subseteq \Delta$ is the transition-based acceptance condition

run A run r of A on $w \in \Sigma^{\omega}$ is an ω -word $r_0, w_0, r_1, w_1, ...$ in $(Q \times \Sigma)^{\omega}$ such that $r_0 = q_0 \wedge \forall i > 0, (r_{i-1}, w_{i-1}, r_i) \in \Delta$ $o\omega o$

 $\inf(\mathbf{r})$ We write $\inf(r) \subseteq \Delta$ for the set of transitions that appear infinitely often in the run r.

accepting run A run *r* is accepting if $inf(r) \cap \Gamma \neq \emptyset$

language The language $L_A \subseteq \Sigma^{\omega}$ is recognized by A. $\forall w \in L_A \exists r \text{ on } w \text{ such that } r \text{ is accepting.}$

 ω -regular language A language is ω -regular if it is accepted by BA.

deterministic automaton
$$A = (\Sigma, Q, q_0, \Delta, \Gamma)$$
 is deterministic if $(q, \rho, q'), (q, \rho, q'') \in \Delta \implies q' = q''$

complete automaton *A* is complete if, $\forall w \in \Sigma, \forall q \in Q, \exists (q, w, q') \in \Delta$. A word in Σ^{ω} has exactly one run in a deterministic, complete automaton.

2.2 Markov Decision Processes

A Markov decision process (MDP) M is a tuple (S, A, T, Σ , L), where

- *S* is a finite set of states
- *A* is a finite set of actions
- $T: S \times A \rightarrow D(S)$, where D(S) is set of probability distributions over S, is the probabilistic transition (partial) function
- Σ is an alphabet
- $L: S \times A \times S \rightarrow \Sigma$ is the labeling function of the set of transitions. For a state $s \in S$, A(s) denotes the set of actions available in s.

run A run of M is an ω -word $s_0, a_1, ... \in A = S \times (A \times S)^{\omega}$ such that $Pr(s_{i+1}|s_i, a_{i+1}) > 0$ for all i >= 0. A finite run is a finite such sequence.

labeled run We define labeled run as $L(r) = L(s_0, a_1, s_1), L(s_1, a_2, s_2), ... \in \Sigma^{\omega}$.

2.3 to be defined

 ω -word?,

2.3.1 xd

GF MDP, model checking

2.4 Algorithms

BP + both slim

- 3 Implementation
- 3.1 Technologies
- 3.2 Implementation inside Seminator

4 Evaluation

- 4.1 Alternative Algorithm
- 4.2 Different Implementation ePMC
- 4.3 Semi-deterministic Automata

Conclusion