Some results on Smarandache groupoids

H. J. Siamwalla[†] and A. S. Muktibodh[‡]

† Abeda Inamdar Senior College, Azam Campus, Pune, India ‡ Shri M. Mohota College of Science, Umred Road Nagpur, India

E-mail: siamwalla.maths@gmail.com amukti2000@yahoo.com

Abstract In this paper we prove some results towards classifying Smarandache groupoids which are in $Z^*(n)$ and not in Z(n) when n is even and n is odd.

Keywords Groupoids, Smarandache groupoids.

§1. Introduction and preliminaries

In [3] and [4], W. B. Kandasamy defined new classes of Smarandache groupoids using Z_n . In this paper we prove some theorems for construction of Smarandache groupoids according as n is even or odd.

Definition 1.1. A non-empty set of elements G is said to form a groupoid if in G is defined a binary operation called the product denoted by * such that $a*b \in G$, $\forall a, b \in G$.

Definition 1.2. Let S be a non-empty set. S is said to be a semigroup if on S is defined a binary operation * such that

- (i) for all $a, b \in S$ we have $a * b \in S$ (closure).
- (ii) for all $a, b, c \in S$ we have a * (b * c) = (a * b) * c (associative law).
- (S, *) is a semi-group.

Definition 1.3. A Smarandache groupoid G is a groupoid which has a proper subset $S \subset G$ which is a semi-group under the operation of G.

Example 1.1. Let (G, *) be a groupoid on the set of integer modulo 6, given by the following table.

*	0	1	2	3	4	5
0	0	5	0	5	0	5
1	1	3	1	3	1	3
2	2	4	2	4	2	4
3	3	1	3	1	3	1
4	4	2	4	2	4	2
5	5	0	5	0	5	0

Here, $\{0,5\},\{1,3\},\{2,4\}$ are proper subsets of G which are semigroups under *.

Definition 1.4. Let $Z_n = \{0, 1, 2, \dots, n-1\}, n \geq 3$. For $a, b \in Z_n \setminus \{0\}$ define a binary operation * on Z_n as: $a*b = ta + ub \pmod{n}$ where t, u are 2 distinct elements in $Z_n \setminus \{0\}$ and (t, u) = 1. Here "+" is the usual addition of two integers and "ta" mean the product of the two integers t and a.

Elements of Z_n form a groupied with respect to the binary operation. We denote these groupoids by $\{Z_n(t,u),*\}$ or $Z_n(t,u)$ for fixed integer n and varying $t,u \in Z_n\setminus\{0\}$ such that (t,u)=1. Thus we define a collection of groupoids Z(n) as follows

$$Z(n) = \{Z_n(t, u), * | \text{ for integers } t, u \in Z_n \setminus \{0\} \text{ such that } (t, u) = 1\}.$$

Definition 1.5. Let $Z_n = \{0, 1, 2, \dots, n-1\}, n \geq 3$. For $a, b \in Z_n \setminus \{0\}$, define a binary operation * on Z_n as: $a*b = ta + ub \pmod{n}$ where t, u are two distinct elements in $Z_n \setminus \{0\}$ and t and u need not always be relatively prime but $t \neq u$. Here "+" is usual addition of two integers and "ta" means the product of two integers t and a.

For fixed integer n and varying $t, u \in Z_n \setminus \{0\}$ s.t $t \neq u$ we get a collection of groupoids $Z^*(n)$ as: $Z^*(n) = \{Z_n(t, u), * | \text{ for integers } t, u \in Z_n \setminus \{0\} \text{ such that } t \neq u\}.$

Remarks 1.1. (i) Clearly, $Z(n) \subset Z^*(n)$.

- (ii) $Z^*(n)\backslash Z(n) = \Phi$ for n = p + 1 for prime p = 2, 3.
- (iii) $Z^*(n)\backslash Z(n) \neq \Phi$ for $n \neq p+1$ for prime p.

We are interested in Smarandache Groupoids which are in $Z^*(n)$ and not in Z(n) i.e., $Z^*(n)\backslash Z(n)$.

$\S 2$. Smarandache groupoids when n is even

Theorem 2.1. Let $Z_n(t,lt) \in Z^*(n)\backslash Z(n)$. If n is even, n>4 and for each $t=2,3,\cdots,\frac{n}{2}-1$ and $l=2,3,4,\cdots$ such that lt< n, then $Z_n(t,lt)$ is Smarandache groupoid.

Proof. Let $x = \frac{n}{2}$.

Case 1. t is even.

 $x * x = xt + ltx = (l+1)tx \equiv 0 \bmod n.$

 $x * 0 = xt \equiv 0 \bmod n.$

 $0 * x = lxt \equiv 0 \bmod n.$

 $0*0 = 0 \bmod n.$

 \therefore {0, x} is semigroup in $Z_n(t, lt)$.

 $\therefore Z_n(t, lt)$ is Smarandache groupoid when t is even.

Case 2. t is odd.

(a) If l is even.

 $x * x = xt + ltx = (l+1)tx \equiv x \mod n.$

 $\{x\}$ is semigroup in $Z_n(t, lt)$.

 $\therefore Z_n(t, lt)$ is Smarandache groupoid when t is odd and l is even.

(b) If l is odd then (l+1) is even. $x*x = xt + ltx = (l+1)tx \equiv 0 \mod n.$ $x*0 = xt \equiv x \mod n.$ $0*x = ltx \equiv x \mod n.$ $0*0 \equiv 0 \mod n.$

 $\Rightarrow \{0, x\}$ is semigroup in $Z_n(t, lt)$.

 $\therefore Z_n(t, lt)$ is Smarandache groupoid when t is odd and l is odd.

Theorem 2.2. Let $Z_n(t,u) \in Z^*(n) \setminus Z(n)$, n is even n > 4 where (t,u) = r and $r \neq t, u$ then $Z_n(t,u)$ is Smarandache groupoid.

Proof. Let $x = \frac{n}{2}$.

Case 1. Let r be even i.e t and u are even.

$$x * x = tx + ux = (t + u)x \equiv 0 \bmod n.$$

 $0 * x = ux \equiv 0 \bmod n.$

$$x * 0 = tx \equiv 0 \mod n$$
.

 $0*0=0 \bmod n.$

 $\{0, x\}$ is semigroup in $Z_n(t, lt)$.

 $\therefore Z_n(t, lt)$ is Smarandache groupoid when t is even and u is even.

Case 2. Let r be odd.

(a) when t is odd and u is odd,

$$\Rightarrow t + u$$
 is even.

$$x * x = tx + ux = (t + u)x \equiv 0 \mod n.$$

 $x * 0 = tx \equiv x \bmod n$.

 $0 * x \equiv ux \equiv x \bmod n$.

 $0*0 \equiv 0 \bmod n$.

 $\{0, x\}$ is a semigroup in $Z_n(t, u)$.

 $\therefore Z_n(t,u)$ is Smarandache groupoid when t is odd and u is odd.

(b) when t is odd and u is even,

$$\Rightarrow t + u$$
 is odd.

$$x * x = tx + ux = (t + u)x \equiv x \mod n.$$

 $\{x\}$ is a semigroup in $Z_n(t,u)$.

 $\therefore Z_n(t,u)$ is Smarandache groupoid when t is odd and u is even.

(c) when t is even and u is odd,

$$\Rightarrow t + u$$
 is odd.

$$x * x = tx + ux = (t + u)x \equiv x \mod n.$$

 $\{x\}$ is a semigroup in $Z_n(t,u)$.

 $\therefore Z_n(t,u)$ is Smarandache groupoid when t is even and u is odd.

By the above two theorems we can determine Smarandache groupoids in $Z^*(n)\backslash Z(n)$ when n is even and n>4.

We find Smarandache groupoids in $Z^*(n)\backslash Z(n)$ for n=22 by Theorem 2.1.

t	l	lt < 22	$Z_n(t,lt)$	Proper subset	Smarandache groupoid
				which is semigroup	$\mathrm{in}Z^*(n)ackslash Z(n)$
	2	4	$Z_{22}(2,4)$	{0,11}	$Z_{22}(2,4)$
	3	6	$Z_{22}(2,6)$	{0,11}	$Z_{22}(2,6)$
	4	8	$Z_{22}(2,8)$	{0,11}	$Z_{22}(2,8)$
2	5	10	$Z_{22}(2,10)$	{0,11}	$Z_{22}(2,10)$
	6	12	$Z_{22}(2,12)$	{0,11}	$Z_{22}(2,12)$
	7	14	$Z_{22}(2,14)$	{0,11}	$Z_{22}(2,14)$
	8	16	$Z_{22}(2,16)$	{0,11}	$Z_{22}(2,16)$
	9	18	$Z_{22}(2,18)$	{0,11}	$Z_{22}(2,18)$
	10	20	$Z_{22}(2,20)$	{0,11}	$Z_{22}(2,20)$
	2	6	$Z_{22}(3,6)$	{11}	$Z_{22}(3,6)$
	3	9	$Z_{22}(3,9)$	{0,11}	$Z_{22}(3,9)$
3	4	12	$Z_{22}(3,12)$	{11}	$Z_{22}(3,12)$
	5	15	$Z_{22}(3,15)$	{0,11}	$Z_{22}(3,15)$
	6	18	$Z_{22}(3,18)$	{11}	$Z_{22}(3,18)$
	7	21	$Z_{22}(3,21)$	{0,11}	$Z_{22}(3,21)$
	2	8	$Z_{22}(4,8)$	{0,11}	$Z_{22}(4,8)$
4	4 3 12	$Z_{22}(4,12)$	{0,11}	$Z_{22}(4,12)$	
	4	16	$Z_{22}(4,16)$	{0,11}	$Z_{22}(4,16)$
	5	20	$Z_{22}(4,20)$	{0,11}	$Z_{22}(4,20)$
	2	10	$Z_{22}(5,10)$	{11}	$Z_{22}(5,10)$
5	3	15	$Z_{22}(5,15)$	{0,11}	$Z_{22}(5,15)$
	4	20	$Z_{22}(5,20)$	{11}	$Z_{22}(5,20)$
	2	12	$Z_{22}(6,12)$	{0,11}	$Z_{22}(6,12)$
6	3	18	$Z_{22}(6,18)$	{0,11}	$Z_{22}(6,18)$
	2	14	$Z_{22}(7,14)$	{11}	$Z_{22}(7,14)$
7	3	21	$Z_{22}(7,21)$	{0,11}	$Z_{22}(7,21)$
8	2	16	$Z_{22}(8,16)$	{0,11}	$Z_{22}(8,16)$
9	2	18	$Z_{22}(9,18)$	{11}	$Z_{22}(9,18)$
10	2	20	$Z_{22}(10,20)$	{0,11}	$Z_{22}(10,20)$

Next, we find Smar andache groupoids in $Z^*(n)\backslash Z(n)$ for n=22 by Theorem 2.2.

t	u	(t,u)=r	$Z_n(t,u)$	Proper subset	Smarandache groupoid
		r eq t, u		which is semigroup	$\mathrm{in}Z^*(n)ackslash Z(n)$
	6	(4,6)=2	$Z_{22}(4,6)$	{0,11}	$Z_{22}(4,6)$
4	10	(4,10=2	$Z_{22}(4,10)$	{0,11}	$Z_{22}(4,10)$
	14	(4,14)=2	$Z_{22}(4,14)$	{0,11}	$Z_{22}(4,14)$
	18	(4,18)=2	$Z_{22}(4,18)$	{0,11}	$Z_{22}(4,18)$
	8	(6,8)=2	$Z_{22}(6,8)$	{0,11}	$Z_{22}(6,8)$
	9	(6,9)=3	$Z_{22}(6,9)$	{11}	$Z_{22}(6,9)$
	10	(6,10)=2	$Z_{22}(6,10)$	{0,11}	$Z_{22}(6,10)$
6	14	(6,14)=2	$Z_{22}(6,14)$	{0,11}	$Z_{22}(6,14)$
	16	(6,16)=2	$Z_{22}(6,16)$	{0,11}	$Z_{22}(6,16)$
	20	(6,20)=2	$Z_{22}(6,20)$	{0,11}	$Z_{22}(6,20)$
	21	(6,21)=3	$Z_{22}(6,21)$	{11}	$Z_{22}(6,21)$
	10	(8,10)=2	$Z_{22}(8,10)$	{0,11}	$Z_{22}(8,10)$
	12	(8,12)=4	$Z_{22}(8,12)$	{0,11}	$Z_{22}(8,12)$
8	14	(8,14)=2	$Z_{22}(8,14)$	{0,11}	$Z_{22}(8,14)$
	18	(8,18)=2	$Z_{22}(8,18)$	{0,11}	$Z_{22}(8,18)$
	20	(8,20)=4	$Z_{22}(8,20)$	{0,11}	$Z_{22}(8,20)$
9	21	(9,21)=3	$Z_{22}(9,21)$	$\{0, 11\}$	$Z_{22}(9,21)$
	12	(10,12)=2	$Z_{22}(10,12)$	$\{0, 11\}$	$Z_{22}(10,12)$
	14	(10,14)=2	$Z_{22}(10,14)$	{0,11}	$Z_{22}(10,14)$
10	16	(10,16)=2	$Z_{22}(10,16)$	{0,11}	$Z_{22}(10,16)$
	18	(10,18)=2	$Z_{22}(10,18)$	{0,11}	$Z_{22}(10,19)$
	14	(12,14)=2	$Z_{22}(12,14)$	$\{0, 11\}$	$Z_{22}(12,14)$
	15	(12,15)=3	$Z_{22}(12,15)$	{11}	$Z_{22}(12,15)$
12	16	(12,16)=4	$Z_{22}(12,16)$	{0,11}	$Z_{22}(12,16)$
	18	(12,18)=6	$Z_{22}(12,18)$	{0,11}	$Z_{22}(12,18)$
	20	(12,20)=4	$Z_{22}(12,20)$	{0,11}	$Z_{22}(12,20)$
	21	(12,21)=3	$Z_{22}(12,21)$	{11}	$Z_{22}(12,21)$
	16	(14,16)=2	$Z_{22}(14,16)$	{0,11}	$Z_{22}(14,16)$
	18	(14,18)=2	$Z_{22}(14,18)$	{0,11}	$Z_{22}(14,18)$
14	20	(14,20)=2	$Z_{22}(14,20)$	{0,11}	$Z_{22}(14,20)$
	21	(14,21)=7	$Z_{22}(14,21)$	{11}	$Z_{22}(14,21)$
15	20	(15,20)=5	$Z_{22}(15,20)$	{11}	$Z_{22}(15,20)$
	18	(16,18)=2	$Z_{22}(16, 18)$	{0,11}	$Z_{22}(16, 18)$
16	20	(16,20)=4	$Z_{22}(16,20)$	{0,11}	$Z_{22}(16,20)$
18	20	(18,20)=2	$Z_{22}(18,20)$	{0,11}	$Z_{22}(18,20)$

$\S 3.$ Smarandache groupoids when n is odd

Theorem 3.1. Let $Z_n(t,u) \in Z^*(n) \setminus Z(n)$. If n is odd, n > 4 and for each $t = 2, \dots, \frac{n-1}{2}$, and u = n - (t-1) such that (t,u) = r then $Z_n(t,u)$ is Smarandache groupoid.

Proof. Let $x \in \{0, \dots, n-1\}$.

$$x * x = xt + xu = (n+1)x \equiv x \mod n.$$

- $\therefore \{x\}$ is semigroup in Z_n .
- $\therefore Z_n(t,u)$ is Smarandanche groupoid.

By the above theorem we can determine the Smarandache groupoids in $Z^*(n)\backslash Z(n)$ when n is odd and n>4.

Also we note that all $\{x\}$ where $x \in \{0, \cdots, n-1\}$ are proper subsets which are semigroups in $Z_n(t,u)$.

Let us consider the examples when n is odd. We will find the Smarandache groupoids in $Z^*(n)\backslash Z(n)$ by Theorem 3.1.

n	t	u=n-(t-1)	(t,u)=r	$Z_n(t,u)$ Smarandache groupoid
				(S.G.) in $Z^*(n) \backslash Z(n)$
5	2	4	(2,4) = 2	$Z_5(2,4)$ is S.G. in $Z^*(5)\backslash Z(5)$
7	2	6	(2,6) = 3	$Z_7(2,6)$ is S.G. in $Z^*(7)\backslash Z(7)$
9	2	8	(2,8) = 2	$Z_9(2,8)$ is S.G. in $Z^*(9)\backslash Z(9)$
	4	6	(4,6) = 2	$Z_9(4,6)$ is S.G. in $Z^*(9)\backslash Z(9)$
	2	10	(2,10)=2	$Z_{11}(2,10)$ is S.G. in $Z^*(11)\backslash Z(11)$
11	3	9	(3,9) = 3	$Z_{11}(3,9)$ is S.G. in $Z^*(11)\backslash Z(11)$
	4	8	(4,8) = 4	$Z_{11}(4,8)$ is S.G. in $Z^*(11)\backslash Z(11)$
	2	12	(2,12)=2	$Z_{13}(2,12)$ is S.G. in $Z^*(13)\backslash Z(13)$
13	4	10	(4,10) = 2	$Z_{13}(4,10)$ is S.G. in $Z^*(13)\backslash Z(13)$
	6	8	(6,8) = 2	$Z_{13}(6,8)$ is S.G. in $Z^*(13)\backslash Z(13)$
	2	14	(2,14)=2	$Z_{15}(2,14)$ is S.G. in $Z^*(15)\backslash Z(15)$
15	4	12	(4,12) = 4	$Z_{15}(4, 12)$ is S.G. in $Z^*(15)\backslash Z(15)$
	6	10	(6,10) = 2	$Z_{15}(6, 10)$ is S.G. in $Z^*(15)\backslash Z(15)$
	2	16	(2,16)=2	$Z_{17}(2, 16)$ is S.G. in $Z^*(17)\backslash Z(17)$
	3	15	(3,15) = 3	$Z_{17}(3, 15)$ is S.G. in $Z^*(17)\backslash Z(17)$
17	4	14	(4,14) = 2	$Z_{17}(4, 14)$ is S.G. in $Z^*(17)\backslash Z(17)$
	6	12	(6,12) = 6	$Z_{17}(6, 12)$ is S.G. in $Z^*(17)\backslash Z(17)$
	8	10	(8,10) = 2	$Z_{17}(8, 10)$ is S.G. in $Z^*(17)\backslash Z(17)$

n	t	u = n - (t - 1)	(t,u)=r	$Z_n(t,u)$ Smarandache groupoid
				(S.G.) in $Z^*(n) \backslash Z(n)$
	2	18	(2,18) = 2	$Z_{19}(2,18)$ is S.G. in $Z^*(19)\backslash Z(19)$
	4	16	(4,16) = 4	$Z_{19}(4, 16)$ is S.G. in $Z^*(19)\backslash Z(19)$
19	5	15	(5,15) = 5	$Z_{19}(5,15)$ is S.G. in $Z^*(19)\backslash Z(19)$
	6	14	(6,14)=2	$Z_{19}(6,14)$ is S.G. in $Z^*(19)\backslash Z(19)$
	8	12	(8,12) = 4	$Z_{19}(8,12)$ is S.G. in $Z^*(19)\backslash Z(19)$
	2	20	(2,20)=2	$Z_{21}(2,20)$ is S.G. in $Z^*(21)\backslash Z(21)$
	4	18	(4,18) = 2	$Z_{21}(4,18)$ is S.G. in $Z^*(21)\backslash Z(21)$
21	6	16	(6,16) = 2	$Z_{21}(6,16)$ is S.G. in $Z^*(21)\backslash Z(21)$
	8	14	(8,14) = 2	$Z_{21}(8,14)$ is S.G. in $Z^*(21)\backslash Z(21)$
	10	12	(10, 12) = 2	$Z_{21}(10, 12)$ is S.G. in $Z^*(21)\backslash Z(21)$

Open Problems:

- 1. Let n be a composite number. Are all groupoids in $Z^*(n)\backslash Z(n)$ Smarandache groupoids?
- 2. Which class will have more number of Smarandache groupoids in $Z^*(n)\backslash Z(n)$?
 - (a) When n+1 is prime.
 - (b) When n is prime.

References

- [1] G. Birknoff and S. S. Maclane, A Brief Survey of Modern Algebra, New York, U.S.A., The Macmillan and Co., 1965.
 - [2] R. H. Bruck, A Survey of Binary Systems, Springer Verlag, 1958.
- [3] W. B. Vasantha Kandasamy, New Classes of Finite Groupoids using Z_n , Varahmihir Journal of Mathematical Science, $\mathbf{1}(2001)$, 135-143.
- [4] W. B. Vasantha Kandasamy, Smarandache Groupoids, http://www/gallup.unm.edu/smarandache/groupoids.pdf.