物理

第1問 xy 平面内で運動する質量 m の小球を考える。小球の各時刻における位置、速度、加速度、および小球にはたらく力のベクトルをそれぞれ

$$\overrightarrow{r} = (x, y), \overrightarrow{v} = (v_x, v_y), \overrightarrow{F} = (F_x, F_y)$$

とする。また小球の各時刻における原点 O からの距離を $r=\sqrt{x^2+y^2}$ 、速度の大きさを $v=\sqrt{v_x^2+v_y^2}$ とする。以下の設問に答えよ。なお小球の大きさは無視できるものとする。

I (1) 以下の文中の ア から カ に当てはまるものを v_x, v_y, a_x, a_y から選べ。

各時刻において原点 O と小球を結ぶ線分が描く面積速度は

$$A_v = \frac{1}{2}(xv_y - yv_x)$$

で与えられる。ある時刻における位置および速度ベクトルが

$$\overrightarrow{r} = (x, y), \quad \overrightarrow{v} = (v_x, v_y)$$

であったとき、それらは微小時間 Δt たった後にそれぞれ

$$\overrightarrow{r'} = (x + \boxed{\mathcal{T}} \Delta t, y + \boxed{\mathcal{A}} \Delta t)$$

$$\overrightarrow{v'} = (v_x + \boxed{\mathcal{D}} \Delta t, v_y + \boxed{\mathcal{I}} \Delta t)$$

に変化する。このことを用いると、微小時間 Δt における面積速度の変化 分は

$$\Delta A_v = \frac{1}{2} (x \boxed{7} - y \boxed{D}) \Delta t$$

で与えられる。なお $(\Delta t)^2$ に比例した面積速度の変化分は無視する。

(2) 設問 I(1)の結果を用いて、面積速度が時間変化しないためには力 \overrightarrow{F} の成分 F_x , F_y がどのような条件を満たせばよいか答えよ。ただし小球は原点 O から離れた点にあり、力は零ベクトルではないとする。

(3) 設問 I (2)の力 \overrightarrow{F} を受けながら、小球が図 1-1 の半径 r_0 の円周上を点 A から点 B を通って点 C まで運動したとする。このとき、力 \overrightarrow{F} が点 A から点 B までに小球に行う仕事と点 A から点 C までに小球が行う仕事の大小関係を、理由を含めて答えよ。

II (1) 小球の原点 ○ からの距離 r の時間変化率は

$$v_r = \frac{xv_x + yv_y}{r}$$

で与えられる。これを動径方向速度とよぶ。このとき,小球の運動エネル ギーと

$$K_r = \frac{1}{2}m{v_r}^2$$

との差をm, r および面積速度 A_v を用いた式で表せ。

(2) 面積速度が一定になる力 \overrightarrow{F} の例として万有引力を考える。原点 O に質量 M の物体があるとする。このとき万有引力による小球の位置エネルギーは

$$U = -G\frac{mM}{r} \qquad (\sharp 1)$$

で与えられる(G は万有引力定数)。ただし物体の質量 M は小球の質量 m と比べてはるかに大きいため、物体は原点 O に静止していると考えてよい。小球の面積速度 A_v が O でないある定数値 A_O をとるとき、力学的エネルギーが最小となる運動はどのような運動になるか答えよ。また、その時の力学的エネルギーの値を m, M, A_O , G を用いて表せ。

III ボーアの水素原子模型では電子の円軌道の円周 $2\pi r$ とド・ブロイ波長 λ の間に量子条件

$$2\pi r = n\lambda \qquad (n = 1, 2, 3, \cdots)$$

が成り立つ。以下で考える小球の円運動に対しても同じ量子条件が成り立つと 仮定する。

- (1) 設問 $\Pi(2)$ の(式 1)に対応する万有引力がはたらく小球の円運動を考える。 各 n について,量子条件を満たす円軌道の半径 r_n を n, h, m, M, G を用いた式で表せ。ただし小球のド・ブロイ波長 λ は,小球の速度の大きさ v を用いて $\lambda = \frac{h}{mv}$ で与えられる(h はプランク定数)。
- (2) 宇宙には暗黒物質という物質が存在し、銀河の暗黒物質は銀河中心からおよそ $R=10^{22}\,\mathrm{m}$ の半径内に集まっていると考えられている。暗黒物質が未知の粒子によって構成されていると仮定し、設問 $\mathrm{III}(1)$ の結果を用いてその粒子の質量に下限を与えてみよう。暗黒物質の構成粒子を(式 1)に対応する万有引力を受けながら円運動する小球として近似する。設問 $\mathrm{III}(1)$ で考えたボーアの量子条件を満たす小球の軌道半径のうち n=1 としたものが $R=10^{22}\,\mathrm{m}$ と等しいとしたときの小球の質量を求めよ。

なお銀河の全質量は銀河中心に集まっていて動かないと近似し、その値を $M = 10^{42} \,\mathrm{kg}$ とする。また, $G = 10^{-10} \,\mathrm{m}^3/(\mathrm{kg}\cdot\mathrm{s}^2)$, $\frac{h}{2\pi} = 10^{-34} \,\mathrm{m}^2\cdot\mathrm{kg/s}$ と近似してよい。この設問で求めた質量が暗黒物質を構成する 1 粒子の質量のおおまかな下限となる。

第2問

I 図2—1のように、水平面上に置かれた2本の長い導線レールの上に、質量 m の導体棒が垂直に渡してある。磁束密度の大きさ B の一様な磁場が全空間 で鉛直方向(紙面に垂直方向)にかけられている。導体棒とレールの接点を X, Y と呼ぶ。また、導体棒はレール方向にのみ動けるものとし、摩擦や空気 抵抗、導体棒の両端に発生する誘導電荷、および回路を流れる電流が作る磁場 の影響は無視できるものとする。

図2—1のように、間隔 d の平行なレールの端に電池(起電力 V_0)、抵抗 (抵抗値 R)、スイッチを取り付け、導体棒を静止させる。スイッチを閉じた後 の様子について、以下の設問(1)~(5)に答えよ。

図2-1 (上から見た図)

- (2) 導体棒に電流 I が流れているとき、微小時間 Δt の間に、導体棒の速さや接点 X, Y 間の起電力はどれだけ変化するか。速さの変化量 Δs , 起電力の変化量 ΔV を、 $B,d,I,m,R,\Delta t,V_0$ のうち必要なものを使ってそれぞれ求めよ。
- (3) スイッチを閉じてから導体棒が到達速さにいたるまでの間に、導体棒を流れる電気量を、 B,d,m,R,V_0 のうち必要なものを使って求めよ。
- (4) 設問(2)、(3)より、導体棒を流れる電流や電気量と接点 X、Y の間に発生する起電力との関係が、コンデンサーを充電する際の電流や電気量と電圧の関係と類似していることがわかる。スイッチを閉じてから導体棒が到達速さにいたるまでの間に、接点 X、Y の起電力に逆らって電荷を運ぶのに要する仕事はいくらか。設問(1)で求めた到達速さを s_0 として、B,d,m,R, s_0 のうち必要なものを使って求めよ。
- (5) 設問(3)で求めた電気量を Q とすると、スイッチを閉じてから導体棒が到達速さにいたるまでに電池がした仕事は QV_0 で与えられる。この電池がした仕事は、どのようなエネルギーに変わったか。その種類と量を全て答えよ。

II 設問 I の設定のもとで、導体棒が間隔 d の平行なレール上を到達速さで右に
移動している状態から,図2 $$ 2のように,導体棒は間隔 $2d$ の平行なレール
上に移動した。以下の文の カー〜 ケ の空欄を埋めよ。
この間スイッチは閉じたままであった場合を考える。このとき,間隔 2d の
レール上での到達速さは,間隔 d のレール上での到達速さに比べて, $oldsymbol{ ext{ iny}}$ カ
倍になる。また,それぞれの到達速さで移動しているときの接点 X,Y 間の t
電力は、レール間隔が2倍になるのにともない、 キ 倍になる。
次に, 導体棒が間隔 d のレール上を到達速さで移動しているときにスイッ
チを切り,その後スイッチを切ったままの状態で,導体棒が間隔 $2d$ のレール
上に移動した場合を考える。このときは,レール間隔が2倍になるのにともな
い, 到達速さは ク 倍になり, 接点 X, Y 間の起電力は ケ 倍に
なる。

III 図2—3に示すように、間隔 d の平行なレールと間隔 2d の平行なレールを同線でつなぎ、設問 I と同様に、電池、抵抗、スイッチを取り付けた。磁場も設問 I と同じとする。スイッチを切った状態で、図2—3のように質量 m の2つの導体棒 1 、2をそれぞれ間隔 d 、間隔 2d のレール上に垂直に置き静止させたのち、スイッチを閉じたところ、導体棒 1 、2 はともに右向きに動き始めた。十分に時間が経ったのち、導体棒の速さは一定と見なせるようになった。このときの導体棒 1 、2の速さを B 、d 、m 、R 、 V_0 のうち必要なものを使ってそれぞれ求めよ。

第3問 図3—1に示すように、容器 X, Y にそれぞれ 1 モルの単原子分子理想気体が入っている。容器 X の上部は滑らかに動くピストンで閉じられており、ピストンの上にはおもりが載せられている。ピストンの質量は無視できる。容器 Y の体積は一定である。容器の外は真空であり、容器 X と、容器 Y または物体 Z が接触した場合のにみ熱のやりとりが行われ、外部の真空や床などとの熱のやりとりは常に無視できるものとする。容器の熱容量は無視できる。また、物体 Z の温度は常に $\frac{4}{5}T_A$ に保たれているものとする。

はじめ、容器 X は容器 Y と接触しており、ピストンの上には質量 a^5 (a>1) のおもりが載せられている。容器 X 内の気体の圧力は p_A である。容器 X, Y 内の気体の温度はともに T_A である。このときの容器 X 内の気体の状態を状態 A と呼ぶことにする。続いて、図 3-1 に示すように、以下の操作①~④を順番に行い、容器 X 内の気体の状態を,A \rightarrow B \rightarrow C \rightarrow D \rightarrow E と変化させた。これらの操作において、気体の状態変化はゆっくりと起こるものとする。気体定数を R とすると、状態 A~D における容器 X 内の気体の圧力、温度、体積、内部エネルギーは表 3-1 のように与えられる。

- 操作 $\mathbb{D}(A \to B)$ 容器 X を、容器 Y、物体 Z のいずれとも接触しない位置に移動させた。次に、ピストン上のおもりを質量が m になるまで徐々に減らした。
- 操作② $(B \to C)$ 容器 X を物体 Z に接触させ、容器 X 内の気体の温度が $\frac{4}{5}T_A$ になるまで放置した。
- 操作③ $(C \to D)$ 容器 X を、容器 Y、物体 Z のいずれとも接触しない位置に移動させた。次に、ピストン上のおもりを質量が a^5m になるまで徐々に増やした。この操作後の容器 X 内の気体の温度を T_D とする。
- 操作④ $(D \to E)$ 容器 X を容器 Y と接触させ、容器 X, Y 内の気体の温度が等しくなるまで放置した。このときの温度を T_E とする。

以下の設問に答えよ。

- I 操作①~③において、容器 X 内の気体がされた仕事をそれぞれ W_1, W_2, W_3 とする。 W_1, W_2, W_3 を, R, T_A, a を用いて表せ。
- II 操作④による容器 X 内の気体の状態変化 $(D \to E)$ について、以下の設問に答えよ。
 - (1) 操作④による容器 X 内の気体の内部エネルギーの変化 ΔU_4 を, $R, T_{\rm D}, T_{\rm E}$ を用いて表せ。
 - (2) 操作④において、容器 X 内の気体がされた仕事 W_4 を、 $R,T_{\rm D},T_{\rm E}$ を用いて表せ。
 - (3) 状態 E における容器 X 内の気体の温度 T_E を, T_A , T_D を用いて表せ。

表3—1

	圧力	温度	体積	内部エネルギー
状態 A	$p_{ m A}$	$T_{ m A}$	$\frac{RT_{ m A}}{p_{ m A}}$	$rac{3}{2}RT_{ m A}$
状態 B	$\frac{p_{\mathrm{A}}}{a^5}$	$\frac{T_{\mathrm{A}}}{a^2}$	$a^3 \frac{RT_{\rm A}}{p_{\rm A}}$	$\frac{3}{2a^2}RT_{\rm A}$
状態 C	$\frac{p_{\mathrm{A}}}{a^5}$	$rac{4}{5}T_{ m A}$	$\frac{4}{5}a^5\frac{RT_{\rm A}}{p_{\rm A}}$	$rac{6}{5}RT_{ m A}$
状態 D	$p_{ m A}$	$\frac{4}{5}a^2T_{\rm A}\ (=T_{\rm D})$	$\frac{4}{5}a^2\frac{RT_{\rm A}}{p_{\rm A}}$	$\frac{6}{5}a^2RT_{\rm A}$

- III a の値がある条件を満たすとき、操作①~④は、容器 X 内の気体に対して 仕事を行うことで、低温の物体 Z から容器 Y 内の高温の気体に熱を運ぶ操作 になっている。操作④による容器 Y 内の気体の内部エネルギーの変化を ΔU_Y として、以下の設問に答えよ。
 - (1) 操作④によって容器 Y 内の気体の内部エネルギーが増加する $(\Delta U_Y > 0)$ とき、操作①~④における容器 X 内の気体の圧力 p と体積 V の関係を表す 図として最も適切なものを図 3 2 のア~カの中から一つ選んで答えよ。
 - (2) $\Delta U_{\rm V} > 0$ となるための a に関する条件を答えよ。
 - (3) 操作①~④の間に容器 X 内の気体がされた仕事の総和を W,操作②において容器 X 内の気体が物体 Z から受け取る熱量を Q_2 とする。 ΔU_Y を,W と Q_2 を用いて表せ。
 - (4) 状態 E からさらに引き続き、操作①~④を何度も繰り返すと、容器 Y 内の気体の温度は、ある温度 T_F に漸近する。 T_F を、 T_A と a を用いて表せ。

図3-2