Análise Matemática I 1º Exame - 23 de Janeiro de 2004 LEAN, LEC e LET

Resolução

1. Como $\frac{3n+4}{n+2} = \frac{3+4/n}{1+2/n}$ e a função coseno é limitada,

$$\lim_{n \to \infty} \left[\frac{3n+4}{n+2} + e^{-n} + \frac{\cos n}{n} \right] = 3.$$

$$\lim_{n \to \infty} \left[\frac{e^n}{\pi^n} + \sqrt[n]{\pi} + \frac{\pi^n}{n!} + \left(1 - \frac{\sqrt{\pi}}{n^2} \right)^{n^2} \right] = 0 + 1 + 0 + e^{-\sqrt{\pi}} = 1 + e^{-\sqrt{\pi}}.$$

2.

- a) $\sum_{n=1}^{\infty} 1 = \lim_{k \to \infty} \sum_{n=1}^{k} 1 = \lim_{k \to \infty} k = +\infty$; a série é divergente. b) $\sum_{n=1}^{\infty} \arctan n = +\infty$, porque $\lim_{n \to \infty} \arctan n = \pi/2$; a série é divergente. gente.
- c) Trata-se de uma série de termos não negativos majorada por $\sum 1/n^2$, uma série de Dirichlet convergente. Pelo critério geral de comparação,
- a série $\sum_{n=1}^{\infty} \frac{n}{n^3+3}$ é convergente. d) Seja $a_n = \sin \frac{1}{n}$ e $b_n = \frac{1}{n}$. $\forall_{n \in \mathbb{N}_1} a_n, b_n > 0$. Então, $\lim a_n/b_n = \frac{1}{n}$. $\lim \frac{\sin(1/n)}{1/n} = 1 \in]0, +\infty[$. Logo, $\sum a_n \in \sum b_n$ são da mesma natureza. Como a série harmónica é divergente, a série dada é divergente. e) $\sum_{n=1}^{\infty} \frac{1}{\pi^n} = \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{1}{\pi^n} = \frac{1/\pi}{1-1/\pi} = \frac{1}{\pi-1}$.
- f) O raio de convergência da série é $\lim \frac{(n+1)2^{n+1}}{n2^n} = 2$. A série é absolutamente convergente para $|x+2| < 2 \Leftrightarrow x \in]-4, 0[$. Substituindo x por 0, obtém-se uma série divergente, a série harmónica. Substituindo x por -4, obtém-se uma série simplesmente convergente, a série harmónica alternada.

3.

- a) $\frac{d}{dx}(x^3e^x) = 3x^2e^x + x^3e^x$,
- b) $\lim_{x \to 1} \frac{x^2 1}{x + 2} = \frac{0}{3} = 0$, c) $\lim_{x \to 0} \frac{\sin x x}{x^3} = \lim_{x \to 0} \frac{\cos x 1}{3x^2} = \lim_{x \to 0} \frac{-\sin x}{6x} = -\frac{1}{6}$, d) $\frac{d}{dx} \sqrt{\ln x} = \frac{1}{2\sqrt{\ln x}} \frac{1}{x}$, e) $\frac{d}{dx} e^{x \arctan x} = e^{x \arctan x} \left(\arctan x + \frac{x}{1 + x^2}\right)$.

Esboço do gráfico de f.

b) A função f é diferenciável em $\mathbb{R} \setminus \{0, e\}$.

$$f'(x) = \begin{cases} -1 & \text{se } x < 0, \\ 1 & \text{se } 0 < x < e, \\ 1/x & \text{se } x > e. \end{cases}$$

Não é diferenciável no ponto 0 porque $f'(0^-)=-1$ e $f'(0^+)=1$. Não é diferenciável no ponto e porque $f'(e^-)=1$ e $f'(e^+)=1/e$.

Esboço do gráfico de f'.

5.

- a) A função f é periódica com periodo 2π . Como f é contínua e $[0,2\pi]$ é limitado e fechado, o Teorema de Weierstrass garante que a restrição de f a $[0,2\pi]$ tem máximo e mínimo. Sendo f periódica, estes máximo e mínimo são máximos e mínimos de f.
- b) $g(-2) = 3 > 1 \ge f(-2)$, f(0) = 0 > -1 = g(0) e $g(2) = 3 > 1 \ge f(2)$. Por outro lado, f - g é contínua. O Teorema do Valor Intermédio garante que f = g em pelo menos um ponto de]-2,0[e que f = g em pelo menos um ponto de]0,2[.

6.

a) Pode afirmar-se que $se \lim_{x\to +\infty} f(x)$ existir, então esse limite é $+\infty$. De facto, este limite pode não existir. É o que acontece, por exemplo, com a função f definida por $f(x) = x + x^2 \sin(\pi x)$.

Esboço do gráfico de $x \mapsto x + x^2 \sin(\pi x)/10$.

b) Aplicando o Teorema de Lagrange ao intervalo [n, n+1], para cada $n \in \mathbb{N}$, concluímos que existe $x_n \in]n, n+1[$ tal que $f'(x_n) = \frac{f(n+1)-f(n)}{(n+1)-n} = 1.$

7. $\frac{d}{dx}x=\lim_{h\to 0}\frac{(x+h)-x}{h}=1$. Para cada $n\in\mathbb{N}_1$, seja P(n) a proposição $\frac{d}{dx}x^n=nx^{n-1}$. Acabámos de provar que P(1) é verdadeira. Suponhamos que P(n) é verdadeira. Então, pela regra de derivação do produto, $\frac{d}{dx}x^{n+1}=\frac{d}{dx}(xx^n)=1x^n+x(nx^{n-1})=(n+1)x^n$, pelo que P(n+1) é verdadeira e $P(n)\Rightarrow P(n+1)$. O Princípio de Indução Matemática garante que P(n) é verdadeira para todo o $n\in\mathbb{N}_1$.

8.

- a) O ínfimo e o mínimo são 3.1. O supremo é π . Não existe máximo.
- **b)** A sucessão (x_n) converge para π porque $|x_n \pi| < \frac{1}{10^n}$.
- c) Como (x_n) converge, o conjunto dos seus sublimites é singular. De facto, qualquer subsucessão de (x_n) converge para o limite de (x_n) . Então, $\liminf x_n = \limsup x_n = \pi$.
- d) A sucessão (y_n) é minorada (por exemplo por 0) e majorada (por exemplo por 10). O Teorema de Bolzano-Weierstrass garante que (y_n) tem

pelo menos um sublimite. Por outro lado, sendo (y_n) limitada, o conjunto dos seus sublimites é singular see (y_n) convergir. Portanto, para concluir a prova apenas temos que verificar que (y_n) não converge. Suponhamos, por contradição, que (y_n) converge. Como π é irracional, a dízima que o representa não é periódica. Logo, há pelo menos dois dígitos entre 0 e 9 que se repetem infinitas vezes nesta dízima. Suponhamos, por exemplo, que esses dígitos são 8 e 9. (De forma semelhante se argumentaria se esses dígitos fossem outros dois.) Então, (y_n) tem um sublimite em [8,9] e uma subsucessão cujos termos são inferiores a 9, e outro sublimite em [9, 10] e uma subsucessão cujos termos são superiores a 9. Como estamos a supor que (y_n) converge, o seu limite tem que ser 9. Como (y_n) converge para $9 = 9.000 \dots e(y_n)$ tem uma subsucessão convergente para 9 por valores superiores a 9, então o dígito 0 tem também que se repetir infinitas vezes na dízima que representa π . Isto implica que (y_n) tem um sublimite em [0,1], o que contradiz o facto de (y_n) convergir para 9.

Como (y_n) não converge e é limitada, o conjunto dos seus sublimites não é singular. Conclui-se que (y_n) tem pelo menos dois sublimites.