

planetmath.org

Math for the people, by the people.

p-morphism

Canonical name Pmorphism

Date of creation 2013-03-22 19:34:54 Last modified on 2013-03-22 19:34:54

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771)
Entry type Definition
Classification msc 03B45
Related topic Bisimulation

Let $\mathcal{F}_1 = (W_1, R_1)$ and $\mathcal{F}_2 = (W_2, R_2)$ be Kripke frames. A *p-morphism* from \mathcal{F}_1 to \mathcal{F}_2 is a function $f: W_1 \to W_2$ such that

- if uR_1w , then $f(u)R_2f(w)$,
- if sR_2t and s = f(u) for some $u \in W_1$, then uR_1w and t = f(w) for some $w \in W_1$,

We write $f: \mathcal{F}_1 \to \mathcal{F}_2$ to denote that f is a p-morphism from \mathcal{F}_1 to \mathcal{F}_2 . Let $M_1 = (\mathcal{F}_1, V_1)$ and $M_2 = (\mathcal{F}_2, V_2)$ be Kripke models of modal propositional logic PL_M . A *p-morphism* from M_1 to M_2 is a p-morphism $f: \mathcal{F}_1 \to \mathcal{F}_2$ such that

• $M_1 \models_w p$ iff $M_2 \models_{f(w)} p$ for any propositional variable p.

Proposition 1. For any wff A, $M_1 \models_w A$ iff $M_2 \models_{f(w)} A$.

Proof. Induct on the number n of logical connectives in A. When n=0, A is either \bot or a propositional variable. The case when A is \bot is obvious, and the other case is definition. Next, suppose A is $B \to C$, then $M_1 \models_w A$ iff $M_1 \not\models_w B$ or $M_1 \models_w C$ iff $M_2 \not\models_{f(w)} B$ or $M_2 \models_{f(w)} C$ iff $M_2 \models_{f(w)} A$. Finally, suppose A is $\Box B$, and $M_1 \models_w A$. To show $M_2 \models_{f(w)} A$, let t be such that $f(w)R_2t$. Then there is a u such that t=f(u) and wR_1u , so that $M_1 \models_u B$. By induction, $M_2 \models_{f(u)} B$, or $M_2 \models_t B$. Hence $M_2 \models_{f(w)} A$. Conversely, suppose $M_2 \models_{f(w)} A$. To show $M_1 \models_w A$, let u be such that wR_1u . So $f(w)R_2f(u)$, and therefore $M_2 \models_{f(u)} B$. By induction, $M_1 \models_u B$, whence $M_1 \models_w A$.

Proposition 2. If a p-morphism $f : \mathcal{F}_1 \to \mathcal{F}_2$ is one-to-one, then $\mathcal{F}_2 \models A$ implies $\mathcal{F}_1 \models A$ for any wff A.

Proof. Suppose $\mathcal{F}_2 \models A$. Let $M = (W_1, R_1, V_1)$ be any model based on \mathcal{F}_1 and w any world in W_1 . We want to show that $M \models_w A$.

Define a Kripke model $M' := (W_2, R_2, V_2)$ as follows: for any propositional variable p, let $V_2(p) := \{s \in W_2 \mid f^{-1}(s) \cap V_1(p) \neq \emptyset\}$. Then $M \models_w p$ iff $w \in V_1(p)$ iff $f^{-1}(f(w)) = \{w\} \subseteq V_1(p)$ (since f is one-to-one) iff $f^{-1}(f(w)) \cap V_1(p) \neq \emptyset$ iff $f(w) \in V_2(p)$ iff $M' \models_{f(w)} p$. This shows that f is a p-morphism from M to M'.

Now, let $w \in W_1$. Then $M' \models_{f(w)} A$ by assumption. By the last proposition, $M \models_w A$.

Proposition 3. If a p-morphism $f : \mathcal{F}_1 \to \mathcal{F}_2$ is onto, then $\mathcal{F}_1 \models A$ implies $\mathcal{F}_2 \models A$ for any wff A.

Proof. Suppose $\mathcal{F}_1 \models A$. Let $M = (W_2, R_2, V_2)$ be any model based on \mathcal{F}_2 and s any world in W_2 . We want to show that $M \models_s A$.

Define a Kripke model $M' := (W_1, R_1, V_1)$ as follows: for any propositional variable p, let $V_1(p) := \{w \in W_1 \mid f(w) \in V_2(p)\}$. Then $w \in V_1(p)$ iff $f(w) \in V_2(p)$, so f is a p-morphism from M' to M, and by assumption $M' \models A$ for any wff A.

Now, let $w \in W_1$ be a world such that f(w) = s. Since $M' \models A$, $M' \models_w A$ in particular, and therefore $M \models_{f(w)} A$ or $M \models_s A$ by the last proposition.

Corollary 1. If $f: \mathcal{F}_1 \to \mathcal{F}_2$ is bijective, then $\mathcal{F}_1 \models A$ iff $\mathcal{F}_2 \models A$ for any wff A.

A frame \mathcal{F}' is said to be a p-morphic image of a frame \mathcal{F} if there is an onto p-morphism $f: \mathcal{F} \to \mathcal{F}'$. Let \mathcal{C} be the class of all frames validating a wff. Then by the third proposition above, \mathcal{C} is closed under p-morphic images: if a frame is in \mathcal{C} , so is any of its p-morphic images. Using this property, we can show the following: if \mathcal{C} is the class of all frames validating a wff A, then \mathcal{C} can not be

- the class of all irreflexive frames
- the class of all asymetric frames
- the class of all anti-symmetric frames

Proof. Let $\mathcal{F}_1 = (\mathbb{N}, <)$ and $\mathcal{F}_2 = (\{0\}, R)$, where 0R0. Notice that \mathcal{F}_1 is in both the class of irreflexive frames and the class of asymetric frames, but \mathcal{F}_2 is in neither. Let $f: \mathbb{N} \to \{0\}$ be the obvious surjection. Clearly, m < n implies f(m)Rf(n). Also, if f(m)R0, then f(m)Rf(m+1). So f is a p-morphism. Suppose \mathcal{C} is either the class of all irreflexive frames or the class of all asymetric frames. If A is validated by \mathcal{C} , A is validated by \mathcal{F}_1 in particular (since \mathcal{F}_1 is in \mathcal{C}), so that A is validated by \mathcal{F}_2 as well, which means \mathcal{F}_2 is \mathcal{C} too, a contradiction. Therefore, no such an A exists.

Next, let $\mathcal{F}_3 = (\mathbb{N}, S)$, where nS(n+1) for all $n \in \mathbb{N}$ and $\mathcal{F}_4 = (\{0,1\}, R)$, where $R = \{(0,1), (1,0)\}$. Let \mathcal{C} be the class of all anti-symmetric frames. Then \mathcal{F}_3 is in \mathcal{C} but \mathcal{F}_4 is not. Let $f : \mathcal{F}_3 \to \mathcal{F}_4$ be given by f(n) = 0 if $n \in \mathbb{N}$

is even and f(n) = 1 if n is odd. If aSb, then f(a) and f(b) differ by 1, so f(a)Rf(b). On the other hand, if f(a)Rx, then x is either 0 or 1, depending on whether a odd or even. Pick b = a + 1, so aSb and f(b) = x. This shows that f is a p-morphism. By the same argument as in the last paragraph, no wff A is validated by precisely the members of C.