Suites : activité d'introduction

Une société produit des bactéries pour l'industrie. En laboratoire, il a été mesuré que, dans un milieu nutritif approprié, la masse de ces bactéries, mesurée en grammes, augmente de 20 % en un jour.

La société met en place le dispositif industriel suivant.

Dans une cuve de milieu nutritif, on introduit initialement 1 kg de bactéries. Ensuite, chaque jour, à heure fixe, on remplace le milieu nutritif contenu dans la cuve. Durant cette opération, 100 g de bactéries sont perdus.

L'entreprise se fixe pour objectif de produire 30 kg de bactéries.

- **1. a.** En utilisant les informations de l'énoncé, donner une expression de la suite u_{n+1} en fonction de u_n pour $n \ge 0$.
 - **b.** L'entreprise souhaite savoir au bout de combien de jours la masse de bactéries dépassera 30 kg. À l'aide de la calculatrice, donner la réponse à ce problème.
 - **c.** On peut également utiliser l'algorithme suivant pour répondre au problème posé dans la question précédente. Recopier et compléter cet algorithme.

Variables	u et n sont des nombres
Traitement	u prend la valeur 1000 n prend la valeur 0 Tant que faire u prend la valeur n prend la valeur $n+1$ Fin Tant que
Sortie	Afficher

- **2.** On définit la suite (v_n) par : pour tout entier naturel n, $v_n = u_n 500$.
 - **a.** Démontrer que la suite (v_n) est une suite géométrique.
 - **b.** Exprimer v_n , puis u_n , en fonction de n.
 - **c.** Montrer que $u_n \ge 1000$, $\forall n \ge 0$.
 - **d.** Démontrer que la suite (u_n) est croissante.
 - **e.** Déterminer la limite de la suite (u_n) .
- 3. On va démontrer deux résultats obtenus précédemment d'une autre manière, en utilisant le raisonnement par récurrence
 - **a.** Montrer que $u_n = 500 + 500 \times 1.2^n$, $\forall n \ge 0$.
 - **b.** Montrer que $u_n \ge 1000$, $\forall n \ge 0$.