

ENERGY EFFICIENCY PARADOX

پارادوکس بازدهی انرژی

استاد: آقای دکتر عباس رجبی قهنویه

ارائه دهندگان: محمد شریفیان، شایان محمددینی

دانشگاه صنعتی شریف _ دانشکده مهندسی انرژی

پروژه درس تحلیل سیستمهای انرژی

پاییز _ زمستان ۱۴۰۰

فهرست مطالب

- ✓ پارادوکسهای زندگی روزمره
 - ✓ اهمیت سیاستهای انرژی
- Rebound Effect اثر بازگشتی ✓
- ✓ علت بوجود آمدن پارادوکس بازدهی انرژی
 - ✓ پارادوکس جونز و تکامل موتورهای بخار
- ✓ پارادوکس جونز در روشهای جدید آبیاری
- ✓ نحوه پاسخ به پارادوکس بازدهی انرژی (پارادوکس جونز)
 - ✓ افزایش کارایی خوب است یا بد؟
 - ✓ مدلسازی پارادوکس انرژی
- ✓ نحوه پاسخ به اثر بازگشتی و جلوگیری از ایجاد پارادوکس بازدهی انرژی
 - ✓ پارادوکس انرژی در صنعت برق ایران
 - √ نتیجه گیری
 - √ مراجع

پارادوکسهای زندگی روزمره

• پارادوکس بازدهی انرژی (پارادوکس جونز)

اهمیت سیاستهای انرژی

- انفجار جمعیت جهان
 - رشد اقتصادی
- تشدید نگرانی پیرامون محیطزیست و منابع طبیعی
 - پیک مصرف نفت
 - گرمایش زمین

اثر بازگشتی Rebound Effect

• مصرف دوباره بخشی از انرژی صرفهجویی شده، ناشی از بهبود بازدهی انرژی

• اثر بازگشتی مستقیم: اثر کاهش قیمت و افزایش تقاضا

• اثر بازگشتی غیرمستقیم: اثر افزایش در آمد و اثر جانشینی

Ref: Steve Sorrell, "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency" 2009.

اثر بازگشتی Rebound Effect

Ref: Steve Sorrell, "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency" 2009.

علت بوجود آمدن پارادوکس بازدهی انرژی

- energy efficiency measures

- monetary savings
- increased consumption (direct or indirect through production)
- backfire: total elimination of saving (or worse)

اثر بازگشتی به صورت کلی

- اثر بازگشتی منفی: صرفه جویی در مصرف بیشتر از حد انتظار ____ پارادوکس وجود ندارد.
- اثر بازگشتی معمولی: صرفه جویی در مصرف کمتر از حد انتظار 🛑 پارادوکس وجود ندارد.
- اثر بازگشتی back-fire: صرفه جویی در مصرف کمتر از افزایش مصرف 🛑 پارادوکس بازدهی انرژی بوجود میآید.

پارادوکس جونز و تکامل موتورهای بخار

• جونز از اولین افرادی بود که در مورد اثر بازگشتی و پارادوکس بازدهی انرژی صحبت کرد و سپس این اصطلاح به پارادوکس جونز معروف شد.

• جونز در مورد روندهای احتمالی مصرف آتی زغال سنگ بحث می کرد.

• جونز بیان کرد که با افزایش بازدهی به واسطه اختراع موتورهایی با کارایی بالاتر، لزوما مصرف زغال سنگ نیز کاهش پیدا نخواهد کرد.

ويليام استنلى جونز

پارادوکس جونز در روشهای جدید آبیاری

- کارل گومز و کارلوس گوترز
- افزایش بهرهوری روشهای آبیاری توسط کشاورزان مدیترانهای
 - در این مورد به دو دلیل شاهد پارادوکس جونز هستیم:
- پیشرفت تکنولوژی کاهش قیمت خدمات آبیاری کاهش تقاضا برای مصرف ک
- انتقال راحت تر آب به مناطق کم آب استرسی جمعیت جدید به آب تقاضای جدید برای آب کشاورزی کشاورزی
 - برخلاف انتظار کاهش مصرف آب به تبع افزایش بازدهی، برعکس افزایش مصرف آب داریم: پارادوکس جونز

افزایش کارایی خوب است یا بد؟

Ref: John M. Polimeni, Kozo Mayumi, Mario Giampietro, Blake Alcott, "The Jevons Paradox and the Myth of Resource Efficiency Improvements", 2008.

مدلسازی پارادوکس انرژی

$$\pi_t = \max Pq(\varphi_t, E_t, L_t) - zE_t - wL_t$$

$$q(E, L) = \theta(\varphi E)^{\alpha} L^{\beta}$$

$$f(u) = \begin{cases} \frac{1}{\bar{u}} & \text{for } 0 \le u \le \bar{u}, \\ 0 & \text{otherwise} \end{cases}$$

$$E_i^* = \left\lceil P\theta \left(\frac{\beta}{w}\right)^{\beta} \left(\frac{\alpha}{z}\right)^{1-\beta} \right\rceil^{\frac{1}{1-\alpha-\beta}} \varphi_i^{\frac{\alpha}{1-\alpha-\beta}}$$

$$L_i^* = \left\lceil P\theta \left(\frac{\beta}{w}\right)^{1-\alpha} \left(\frac{\alpha}{z}\right)^{\alpha} \right\rceil^{\frac{1}{1-\alpha-\beta}} \varphi_i^{\frac{\alpha}{1-\alpha-\beta}}$$

$$\pi_i^* = [1 - \alpha - \beta] \times \left[P\theta \left(\frac{\alpha}{z} \right)^{\alpha} \left(\frac{\beta}{w} \right)^{\beta} \right]^{\frac{1}{1 - \alpha - \beta}} \varphi_i^{\frac{\alpha}{1 - \alpha - \beta}}$$

$$\pi(\varphi_i) = \xi \varphi_i^{\gamma}, \qquad \gamma = \frac{\alpha}{1 - \alpha - \beta}$$

$$\xi = [1 - \alpha - \beta] \times \left[P\theta \left(\frac{\alpha}{z} \right)^{\alpha} \left(\frac{\beta}{w} \right)^{\beta} \right]^{\frac{1}{1 - \alpha - \beta}}$$

$$V(\varphi_i) = \int_{t=0}^{\infty} \pi(\varphi_i) e^{-rt} dt = \frac{\xi \varphi_i^{\gamma}}{r} \qquad \qquad \Omega(\varphi_i) = V(\varphi_i) - I = \frac{\xi \varphi_i^{\gamma}}{r} - I.$$

$$F(\varphi) = \pi(\varphi_0)dt + \frac{1}{1 + rdt}E[F(\varphi + d\varphi)]$$

$$E[F(\varphi + d\varphi)] - F(\varphi) = \lambda dt \left\{ \int_{u=0}^{\varphi^* - \varphi} \frac{1}{\bar{u}} F(\varphi + u) du + \int_{u=\varphi^* - \varphi}^{\bar{u}} \frac{1}{\bar{u}} (\Omega(\varphi + u)) du - F(\varphi) \right\}$$

$$F(\varphi) = \frac{\pi(\varphi_0)}{r+\lambda} + \frac{\lambda}{r+\lambda} \left[\int_{u=0}^{\varphi^* - \varphi} \frac{1}{\bar{u}} F(\varphi + u) du + \int_{u=\varphi^* - \varphi}^{\bar{u}} \frac{1}{\bar{u}} (V(\varphi + u) - I) du \right]$$

مدلسازی پارادوکس انرژی

$$F(\varphi^*) = \frac{\pi(\varphi_0)}{r+\lambda} + \frac{\lambda}{r+\lambda} \left[\int_{u=0}^{\bar{u}} \frac{1}{u} (V(\varphi+u) - I) du \right] = \frac{\xi \varphi_0^{\gamma} + \frac{\lambda \xi \left[(\varphi^* + u)^{\gamma+1} - (\varphi^*)^{\gamma-1} \right]}{r \bar{u} (\gamma+1)}}{\frac{\xi \varphi_0^{\gamma}}{r+\lambda} + \frac{\lambda \xi \left[(\varphi^* + \bar{u})^{\gamma+1} - (\varphi^*)^{\gamma+1} \right]}{r \bar{u} (r+\lambda) (\gamma+1)} - \frac{\lambda I}{r+\lambda} \right]} = \frac{\xi \varphi_0^{\gamma} + \frac{\lambda \xi \left[(\varphi^* + u)^{\gamma+1} - (\varphi^*)^{\gamma-1} \right]}{r \bar{u} (\gamma+1)}}{\frac{\xi \varphi_0^{\gamma}}{r} + \frac{\lambda \xi \left[(\varphi^* + u)^{\gamma+1} - (\varphi^*)^{\gamma-1} \right]}{r \bar{u} (\gamma+1)} - \frac{\lambda I}{r+\lambda}$$

$$E(\varphi(t)) = \varphi_0 + \frac{1}{2} \lambda \bar{u} (1 - e^{-\lambda t}) t + \frac{1}{$$

$$F(\varphi^*) = \Omega(\varphi^*)$$

$$\xi \varphi_0^{\gamma} + \frac{\lambda \xi \left[(\varphi^* + \bar{u})^{\gamma+1} - (\varphi^*)^{\gamma+1} \right]}{r \bar{u} (\gamma + 1)} - \left(\frac{r + \lambda}{r} \right) \xi (\varphi^*)^{\gamma} + rI = 0$$

$$E(\varphi(t)) = \varphi_0 + \frac{1}{2} \lambda \bar{u} (1 - e^{-\lambda t}) t$$

$$E(\varphi^*) = \varphi_0 + \frac{1}{2} \lambda T^* \bar{u} (1 - e^{-\lambda T^*})$$

Ref: DAAN P. VAN SOEST and ERWIN H. BULTE "Does the Energy-Efficiency Paradox Exist? Technological Progress and Uncertainty", March 2000.

	T^*
I	+
r	_
w	+
z	+
$arphi_0$	_

نحوه پاسخ به اثر بازگشتی و جلوگیری از ایجاد پارادوکس بازدهی انرژی

شناخت وجود اثر بازگشتی تعریف اهداف سیاست انرژی

• گام اول: دستیابی به یک هدف خاص بازده انرژی

پارادوکس انرژی در صنعت برق ایران

• یارانه صنعت برق ایران ۴۶ درصد یارانه برق کل جهان میباشد:

جدول یارانه پرداختی برق در روسیه و چین و ایران در سال ۲۰۱۹

یارانه برق (میلیارد دلار)	جمعیت	
١٣	۱۴۵ میلیون نفر	روسیه
١٢	۱.۴ میلیارد نفر	چین
۵١	۸۰ میلیون نفر	ايران

• برق ارزان در ایران به واسطه بازدهی نسبتا خوب و یارانه بالا تقاضای بالا پارادوکس بازدهی انرژی در ایران به واسطه این پارادوکس کمبود برق در پیک بار و خاموشی نارضایتی و عدم توسعه نیروگاهها به واسطه این پارادوکس

پارادوکس انرژی در صنعت برق ایران

نتيجهگيري

World

2004
10.2 billion toe

2030
15.9 bilion toe
(1.6-fold increase

Asia

2004
3.1 billion toe

2030
6.2 bilion toe
(2.0-fold increase

Ref: John M. Polimeni, Kozo Mayumi, Mario Giampietro, Blake Alcott, "The Jevons Paradox and the Myth of Resource Efficiency Improvements", 2008.

خ نظریه ژرسکو-روگن: یک فناوری مانند یک گونه زیستی قابل دوام و زنده است، اگر و تنها اگر بتواند خود را با مازاد انرژی که توسط راهاندازی همین فناوری تولید و اکنون در حال استفاده است، تکثیر کند.

نتیجهگیری

در صورت بیشتر بودن اثر بازگشتی از میزان صرفه جویی انرژی به تبع افزایش بازدهی یک سیستم؛

تمهیداتی مانند فرهنگ سازی و مالیات برای خنثی کرده این اثرات.

پارادوکس بازدهی انرژی داریم؛

پس لزوما افزایش بازدهی باعث کاهش مصرف نمی گردد؛

- [1].Steven R.Gundry, MD, "The energy pradox what to do when your get up and go has got up and gone", 2008.
- [2]. John M. Polimeni, Kozo Mayumi, Mario Giampietro, Blake Alcott, "The Jevons Paradox and the Myth of Resource Efficiency Improvements", 2008.
- [3]. Steve Sorrell, "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency" 2009.
- [4]. DAAN P. VAN SOEST and ERWIN H. BULTE "Does the Energy-Efficiency Paradox Exist? Technological Progress and Uncertainty", March 2000.
- [5]. Shannon Kehoe, Heather Yutko, "ENERGY EFFICIENCY AND CONSERVATION: A PARADOX", 2009.
- [6]. Jaume Freire-González, Ignasi Puig-Ventosa "Energy Efficiency Policies and the Jevons Paradox", November 2015
- [7]. Stephen J DeCanio, "The efciency paradox: bureaucratic and organizational barriers to profitable energy-saving investments", 1998.
- [8]. Todd D. Gerarden, Richard G. Newell, Robert N. Stavins, "Assessing the Energy-Efficiency Gap", 2015.
- [9]. Edward Tenner, "The Efficiency Paradox What big data cant do", 2018.
- [10]. William Steinhurst, Vladlena Sabodash, "The Jevons Paradox and Energy Efficiency A Brief Overview of Its Origins and Relevance to Utility Energy Efficiency Programs" February 2011.

سپاس از توجه شما

