Задание

Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака. Какие методы Вы использовали для решения задачи и почему?

Дополнительное задание

Для произвольной колонки данных построить график "Ящик с усами (boxplot)".

Решение:

1. Загрузка данных и импорт библиотек:

```
In [260]: # This Python 3 environment comes with many helpful analytics libraries
          installed
          # It is defined by the kaggle/python docker image: https://github.com/ka
          ggle/docker-python
          # For example, here's several helpful packages to load in
          import numpy as np # linear algebra
          import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
          # Input data files are available in the "../input/" directory.
          # For example, running this (by clicking run or pressing Shift+Enter) wi
          ll list all files under the input directory
          import os
          for dirname, _, filenames in os.walk('/kaggle/input'):
              for filename in filenames:
                  print(os.path.join(dirname, filename))
          # Any results you write to the current directory are saved as output.
          /kaggle/input/fifa19/data.csv
```

```
In [261]: import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

```
In [262]: # Импорт данных
data = pd.read_csv('/kaggle/input/fifa19/data.csv', sep=",")
```

1. Получение информации и наборе данных:

```
In [263]:
             # размер набора данных
              data.shape
Out[263]: (18207, 89)
In [264]:
              # типы колонок
             data.dtypes
Out[264]: Unnamed: 0
                                        int64
             TD
                                        int64
             Name
                                       object
             Aae
                                        int64
             Photo
                                       object
             GKHandling
                                      float64
             GKKicking
                                      float64
             GKPositioning
                                      float64
             GKReflexes
                                      float64
             Release Clause
                                       obiect
             Length: 89, dtype: object
In [265]:
             # Первые 5 строк датасета
              data.head()
Out[265]:
                 Unnamed:
                                ID
                                      Name Age
                                                             Photo Nationality
                                                                                            Flag Overall Potentia
                         n
                                                  https://cdn.sofifa.org
                                                                               https://cdn.sofifa.org
              0
                         0 158023
                                                                                                               9
                                    L. Messi
                                              31
                                                            /players
                                                                      Argentina
                                                                                                     94
                                                                                     /flags/52.png
                                                    /4/19/158023.png
                                                  https://cdn.sofifa.org
                                    Cristiano
                                                                               https://cdn.sofifa.org
                             20801
              1
                                              33
                                                            /players
                                                                       Portugal
                                                                                                               9
                                                                                                     94
                                    Ronaldo
                                                                                     /flags/38.png
                                                     /4/19/20801.png
                                                  https://cdn.sofifa.org
                                     Neymar
                                                                               https://cdn.sofifa.org
                         2 190871
                                              26
                                                                         Brazil
                                                            /players
                                                                                                     92
                                                                                                               9
                                                                                     /flags/54.png
                                         Jr
                                                    /4/19/190871.png
                                                  https://cdn.sofifa.org
                                                                               https://cdn.sofifa.org
              3
                         3 193080
                                              27
                                    De Gea
                                                            /players
                                                                         Spain
                                                                                                     91
                                                                                                               9
                                                                                     /flags/45.png
                                                    /4/19/193080.png
                                                  https://cdn.sofifa.org
```

5 rows × 89 columns

4 192985

In [266]: # Поиск колонок, в которых нет пропусков/недействительных значений data.columns[data.notna().all()]

/players

/4/19/192985.png

Belgium

https://cdn.sofifa.org

/flags/7.png

91

9

1. Подбор колонок для преобразования категориальных признаков в количественные

K. De

Bruvne

27

```
In [267]:
           # Поиск категориальных признаков, в которых мало уникальных значений
           uniqueObj = data.select_dtypes(include=['object']).nunique().sort_values
           ().head(5)
           print(uniqueObj)
          Preferred Foot
          Real Face
                              2
          Work Rate
                              9
           Body Type
                              10
          Height
                              21
          dtype: int64
In [268]: # Вывод категориальных признаков с указанием уникальных значений
           categoryCols = uniqueObj.index.tolist()
           for col in data[categoryCols]:
               print(col,": ",data[col].unique(),",количество пустых значений: ",d
           ata[col].isnull().sum())
           Preferred Foot : ['Left' 'Right' nan] ,количество пустых значений: 48
          Real Face : ['Yes' 'No' nan] ,количество пустых значений: 48
Work Rate : ['Medium/ Medium' 'High/ Low' 'High/ Medium' 'High/ High' '
          Medium/ High'
            'Medium/ Low' 'Low/ High' 'Low/ Medium' 'Low/ Low' nan] ,количество пуст
          ых значений: 48
          Body Type : ['Messi' 'C. Ronaldo' 'Neymar' 'Lean' 'Normal' 'Courtois' '
           Stocky'
            'PLAYER_BODY_TYPE_25' 'Shaqiri' 'Akinfenwa' nan] ,количество пустых знач
           ений: 48
                      ["5'7" "6'2" "5'9" "6'4" "5'11" "5'8" "6'0" "5'6" "5'10" "6'6"
           Height :
           "6'1" "5'4"
           "6'3" "5'5" "6'5" "6'7" "5'3" "5'2" "6'8" "5'1" "6'9" nan] ,количество п
```

устых значений: 48

In [269]: # Проверка на связь строк, в которых неопределенные значения, чтобы удал ить их из датасета data[(data[categoryCols[0]].isnull())][categoryCols]

	Preferred Foot	Real Face	Work Rate	Body Type	Height
13236	NaN	NaN	NaN	NaN	NaN
13237	NaN	NaN	NaN	NaN	NaN
13238	NaN	NaN	NaN	NaN	NaN
13239	NaN	NaN	NaN	NaN	NaN
13240	NaN	NaN	NaN	NaN	NaN
13241	NaN	NaN	NaN	NaN	NaN
13242	NaN	NaN	NaN	NaN	NaN
13243	NaN	NaN	NaN	NaN	NaN
13244	NaN	NaN	NaN	NaN	NaN
13245	NaN	NaN	NaN	NaN	NaN
13246	NaN	NaN	NaN	NaN	NaN
13247	NaN	NaN	NaN	NaN	NaN
13248	NaN	NaN	NaN	NaN	NaN
13249	NaN	NaN	NaN	NaN	NaN
13250	NaN	NaN	NaN	NaN	NaN
13251	NaN	NaN	NaN	NaN	NaN
13252	NaN	NaN	NaN	NaN	NaN
13253	NaN	NaN	NaN	NaN	NaN
13254	NaN	NaN	NaN	NaN	NaN
13255	NaN	NaN	NaN	NaN	NaN
13256	NaN	NaN	NaN	NaN	NaN
13257	NaN	NaN	NaN	NaN	NaN
13258	NaN	NaN	NaN	NaN	NaN
13259	NaN	NaN	NaN	NaN	NaN
13260	NaN	NaN	NaN	NaN	NaN
13261	NaN	NaN	NaN	NaN	NaN
13262	NaN	NaN	NaN	NaN	NaN
13263	NaN	NaN	NaN	NaN	NaN
13264	NaN	NaN	NaN	NaN	NaN
13265	NaN	NaN	NaN	NaN	NaN
13266	NaN	NaN	NaN	NaN	NaN
13267	NaN	NaN	NaN	NaN	NaN
13268	NaN	NaN	NaN	NaN	NaN
13269	NaN	NaN	NaN	NaN	NaN
13270	NaN	NaN	NaN	NaN	NaN
13271	NaN	NaN	NaN	NaN	NaN
13272	NaN	NaN	NaN	NaN	NaN
13273	NaN	NaN	NaN	NaN	NaN
13274	NaN	NaN	NaN	NaN	NaN
13275	NaN	NaN	NaN	NaN	NaN

```
In [270]: #Удаляем эти строки, так как значения не определены во всех колонках
data = data[data[categoryCols[0]].notna()]
data[(data[categoryCols[0]].isnull())][categoryCols]
```

Out[270]:

Preferred Foot Real Face Work Rate Body Type Height

1. Преобразование категориальных признаков способами label encoding и one hot encoding

```
In [271]: # импорт из библиотек
from sklearn.preprocessing import LabelEncoder

In [272]: #Label encoding для выбранной колонки Preferred Foot
le = LabelEncoder()
cat_foot_le = le.fit_transform(data["Preferred Foot"])
print("Preferred Foot,label encoded: ",cat_foot_le)
print("Preferred Foot,unique values: ",np.unique(cat_foot_le))
print("Preferred Foot,source values: ",le.inverse_transform(cat_foot_le))

Preferred Foot,label encoded: [0 1 1 ... 1 1 1]
Preferred Foot,unique values: [0 1]
Preferred Foot,source values: ['Left' 'Right' 'Right' ... 'Right' 'Right' 'Right' 'Right']

In [273]: #one-hot encoding для выбранной колонки Work Rate
pd.get_dummies(data["Work Rate"],dummy_na=True,prefix="Rate").head(n=10)

Out[273]:

Rate_High/ Rate_High/ Rate_High/ Rate_Low/ Rate_Low/ Rate_Low/ Rate_Medium/ Rate_Medium/
High Low Medium High Low Medium/ High Low
```

	Rate_High/ High	Rate_High/ Low	Rate_High/ Medium	Rate_Low/ High	Rate_Low/ Low	Rate_Low/ Medium	Rate_Medium/ High	Rate_Medium/ Low
0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0
3	0	0	0	0	0	0	0	0
4	1	0	0	0	0	0	0	0
5	0	0	1	0	0	0	0	0
6	1	0	0	0	0	0	0	0
7	0	0	1	0	0	0	0	0
8	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0

1. Поиск колонки для масштабрования данных

In [274]: #Выборка 20 количественных признаков с количеством уникальных значений м еньше 1000

quantityCols = data.select_dtypes(exclude=['object']).nunique().where(la
mbda x : x<1000).sort_values(ascending=False).head(20)</pre> print(quantityCols)

Jersey Number Dribbling Positioning Finishing Marking ShotPower LongShots HeadingAccuracy StandingTackle FKAccuracy BallControl Curve Crossing Interceptions SlidingTackle Volleys Penalties Acceleration	99.0 94.0 93.0 92.0 92.0 91.0 90.0 90.0 89.0 89.0 87.0 87.0 86.0
Penalties	87.0

In [280]: # Гистограммы для этих признаков data[quantityCols.index.tolist()].hist(figsize=(15,15))

```
/opt/conda/lib/python3.6/site-packages/pandas/plotting/ matplotlib/tools.
          pv:307: MatplotlibDeprecationWarning:
          The rowNum attribute was deprecated in Matplotlib 3.2 and will be removed
          two minor releases later. Use ax.get subplotspec().rowspan.start instead.
            layout[ax.rowNum, ax.colNum] = ax.get visible()
          /opt/conda/lib/python3.6/site-packages/pandas/plotting/ matplotlib/tools.
          py:307: MatplotlibDeprecationWarning:
          The colNum attribute was deprecated in Matplotlib 3.2 and will be removed
          two minor releases later. Use ax.get_subplotspec().colspan.start instead.
            layout[ax.rowNum, ax.colNum] = ax.get_visible()
          /opt/conda/lib/python3.6/site-packages/pandas/plotting/_matplotlib/tools.
          py:313: MatplotlibDeprecationWarning:
          The rowNum attribute was deprecated in Matplotlib 3.2 and will be removed
          two minor releases later. Use ax.get subplotspec().rowspan.start instead.
            if not layout[ax.rowNum + 1, ax.colNum]:
          /opt/conda/lib/python3.6/site-packages/pandas/plotting/ matplotlib/tools.
          py:313: MatplotlibDeprecationWarning:
          The colNum attribute was deprecated in Matplotlib 3.2 and will be removed
          two minor releases later. Use ax.get_subplotspec().colspan.start instead.
            if not layout[ax.rowNum + 1, ax.colNum]:
Out[280]: array([[<matplotlib.axes. subplots.AxesSubplot object at 0x7f3c6a781860>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a7b2710>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a75fe48>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f3c6a71b518</pre>
          >1.
                 [<matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a6cbc50>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f3c6a687400>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f3c6a6b5b70>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f3c6a66f2e8</pre>
          >],
                 [<matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a66f358>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a5da240>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a58a9b0>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a545160</pre>
          >],
                 [<matplotlib.axes. subplots.AxesSubplot object at 0x7f3c6a5748d0>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a531080>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a4de7f0>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f3c6a48df60</pre>
          >],
                 [<matplotlib.axes. subplots.AxesSubplot object at 0x7f3c6a447710>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a478e80>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a435630>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f3c6a3e4da0</pre>
          >]],
                dtype=object)
```


1. Масштабирование данных на основе Z-оценки и MinMax

In [276]: # импорт из библиотек from sklearn.preprocessing import MinMaxScaler, StandardScaler

```
In [277]:
          # Выбранная колонка - Acceleration
          # МіпМах масштабирование
          mms = MinMaxScaler()
          mms_acceleration = mms.fit_transform(data[['Acceleration']])
          # Масштабирование данных на основе Z-оценки
          sts = StandardScaler()
          sts_acceleration = sts.fit_transform(data[['Acceleration']])
          # Построение гистограмм
          plt.hist(data['Acceleration'],40)
          plt.title("Acceleration - исходный")
          plt.show()
          plt.hist(mms_acceleration,40)
          plt.title("Acceleration - MinMax")
          plt.show()
          plt.hist(sts acceleration,40)
          plt.title("Acceleration - Z-оценка")
          plt.show()
```


1. Дополнительное задание: ящик с усами

```
In [278]: sns.boxplot(x=data['Acceleration'])
```

Out[278]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3c6b8b4f28>


```
In [279]: sns.boxplot(x=data['Jersey Number'])
```

Out[279]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3c6a821ac8>

Вывод

Масштабирование данных и преобразование категориальных признаков в количественные были проведены с учетом характеристих датасета. Были подобраны признаки, которые наглядно продемонстрировали работу этих методов. Для реализации и визуализации были использованы функции из популярных библиотек: pandas, scikit-learn, seaborn, matplotlib