QUADRATIC RESIDUES

DEFINITION: We say that an element $x \in \mathbb{Z}_n$ is a **square** or a **quadratic residue** if there is some $y \in \mathbb{Z}_n$ such that $y^2 = x$, and in this case, we call y a **square root** of x.

(1) Let n be an odd positive integer. Suppose that [a] is a unit in \mathbb{Z}_n . Show that a the solutions a to the equation a to the equation a to the elements of the form

$$x = \frac{-[b] + u}{[2a]}$$
 such that u is a square root of $[b^2 - 4ac]$.

Since we assumed [a] is a unit, we can rewrite as $x^2 + \frac{[b]}{[a]}x + \frac{[c]}{[a]} = [0]$. Since n is odd, [2] is a unit too, so we can complete the square:

$$\begin{split} [0] &= x^2 + \frac{[b]}{[a]}x + \frac{[c]}{[a]} \\ &= x^2 + [2]\frac{[b]}{[2a]}x + \left(\frac{[b]}{[2a]}\right)^2 - \left(\frac{[b]}{[2a]}\right)^2 + \frac{[c]}{[a]} \\ &= \left(x + \frac{[b]}{[2a]}\right)^2 + \frac{[4ac - b^2]}{[4a^2]}, \end{split}$$

so

$$\left(\frac{[2a]x + [b]}{[2a]}\right)^2 = \frac{[b^2 - 4ac]}{[4a^2]}.$$

Thus, x is a solution if and only if [2a]x + [b] is a square root of $[b^2 - 4ac]$. Rearranging slightly gives the form above.

(2) Let p be an odd prime and $x \in \mathbb{Z}_p^{\times}$. Show that if x is a quadratic residue, then x has exactly two square roots $y \neq y'$, and for these roots, y' = -y.

If $y^2 - x = 0$ has a solution, it has at most two since this is a polynomial of degree two over a field. If y is a solution, then y' = -y is too.

(3) Let p be a prime number and g be a primitive root of \mathbb{Z}_p . Show that $[n] \in \mathbb{Z}_p^{\times}$ is a quadratic residue if and only if the index of [n] with respect to g is even.

Write $[n] = g^k$, so the index is k. If $k = 2\ell$ is even, then $[n] = g^k = g^{2\ell} = (g^\ell)^2$, so [n] is a quadratic residue. Conversely, if $[n] = [m]^2$, write $[m] = g^\ell$, so $[n] = [m]^2 = g^{2\ell}$. If $2\ell < p-1$, this is the index of [n]; otherwise, we subtract a multiple of p-1 to get back to the index, and since p-1 is even, the result is even, so the index is even.

¹Hint: Complete the square!