10.1. Úvod

Impedance je elektrická veličina vyjádřená komplexním číslem, která charakterizuje vlastnosti součástky při napájení střídavým proudem. Pro určení jejích parametrů musíme tedy měřit její reálnou a imaginární složku. Typickými zástupci impedancí jsou např. kondenzátor nebo cívka, ale je to i rezistor napájený střídavým proudem.

Přístroje pro měření parametrů cívek a kondenzátorů patří k běžné výbavě laboratoří. Pracují obvykle na principu převodníku $\mathbf{Z} \to \mathbf{U}$ popř. $\mathbf{Y} \to \mathbf{U}$, přičemž pro měření fázoru výstupního napětí se používá řízený usměrňovač. Principiální zapojení těchto převodníků je na obr. 10.1 a obr. 10.2.

Vzhledem k tomu, že jako referenční napětí pro řízený usměrňovač je použito napětí U_1 , je pak reálná a imaginární složka napětí U_2 , přímo úměrná reálné a imaginární složce měřené impedance, popř. admitance.

10.2. Domácí příprava

10.2.1. Odvoď te vztahy pro výpočet parametrů měřené cívky, popř. kondenzátoru z reálné a imaginární složky výstupního napětí v zapojení dle obr. 10.1, popř. 10.2 (vycházejte z rovnosti $\mathbf{I_{RN}} = -\mathbf{I_{ZX}}$ popř. $\mathbf{I_{RN}} = -\mathbf{I_{YX}}$ a oddělte reálnou a imaginární složku měřeného výstupního napětí). Při výpočtu lze napětí U1 považovat za reálné, protože slouží jako reference.

$$\mathbf{Z_{RN}} = R_N; \quad \mathbf{Z_{ZX}} = R_S + j\omega L_S; \quad \mathbf{Z_{YX}} = \frac{\frac{1}{G_P} \frac{1}{j\omega C_P}}{\frac{1}{G_P} + \frac{1}{j\omega C_P}} = \frac{\frac{1}{G_P j\omega C_P}}{\frac{G_P + j\omega C_P}{G_P j\omega C_P}} = \frac{1}{G_P + j\omega C_P}$$

$$\mathbf{I_{RN}} = -\mathbf{I_{ZX}} \sim \frac{U_1}{\mathbf{Z_{RN}}} = -\frac{\mathbf{U_2}}{\mathbf{Z_{ZX}}} \sim \frac{U_1}{R_N} = -\frac{\mathbf{U_2}}{R_S + j\omega L_S} \sim R_S + j\omega L_S = -\frac{R_N}{U_1} \mathbf{U_2}$$

$$R_S = -\frac{R_N}{U_1} \operatorname{Re}\{\mathbf{U_2}\} \quad j\omega L_S = -\frac{R_N}{U_1} j \operatorname{Im}\{\mathbf{U_2}\} \sim L_S = -\frac{R_N}{\omega U_1} \operatorname{Im}\{\mathbf{U_2}\}$$

$$\mathbf{I_{RN}} = -\mathbf{I_{YX}} \sim \frac{\mathbf{U_2}}{\mathbf{Z_{RN}}} = -\frac{U_1}{\mathbf{Z_{YX}}} \sim \frac{\mathbf{U_2}}{R_N} = -\frac{U_1}{\frac{1}{G_P + j\omega C_P}} \sim G_P + j\omega C_P = -\frac{\mathbf{U_2}}{R_N U_1}$$

$$G_P = -\frac{1}{R_N U_1} \operatorname{Re}\{\mathbf{U_2}\} \quad j\omega C_P = -\frac{1}{R_N U_1} j \operatorname{Im}\{\mathbf{U_2}\} \sim C_P = -\frac{1}{\omega R_N U_1} \operatorname{Im}\{\mathbf{U_2}\}$$

10.3. Úkol měření

10.3.1. Sestaveným LRC měřičem změřte indukčnost a ztrátový odpor předložené cívky. Použijte sériové náhradní schéma L_S , R_S , měřte při doporučených hodnotách kmitočtů a odporů R_N uvedených v tabulce.

Doporučený kmitočet f [Hz]	ω	Velikost R_N $[\Omega]$
159,2	10^{3}	100
1592	10^{4}	1000

Na dvoukanálovém generátoru nastavte na kanálu 1 sinusový průběh $U_{1ef} = 1$ V a frekvenci viz tabulka, na kanálu 2 nastavte TTL průběh (obdelník o stejné frekvenci a amplitudě 0–5 V). Zároveň nastavte fazový posun mezi kanály 90°.

- 10.3.2. Pro jedno měření zakreslete do sešitu přibližné průběhy napětí za řízeným usměrňovačem (v poloze Re i Im) a dokažte, že střední hodnota (stejnosměrná složka) tohoto napětí U_{2s} odpovídá reálné, popř. imaginární složce fázoru výstupního napětí $\mathbf{U_2}$.
- 10.3.3. RLC měřičem změřte průchozí admitanci předloženého kondenzátoru a obě parazitní kapacity vůči stínění. Použijte paralelní náhradní schéma C_P , G_P , měřte při $R_N = 100 \text{ k}\Omega$. Na dvoukanálovém generátoru nastavte na kanálu 1 sinusový průběh $U_{1ef} = 1 \text{ V}$ a frekvenci 1592 Hz, na kanálu 2 nastavte TTL průběh (obdelník o stejné prekvenci a amplitudě 0-5 V). Zároveň nastavte fazový posun mezi kanály 90°.
- **10.3.4.** Tytéž parametry změřte profesionálním RLC měřičem (pro cívku pro kmitočty 150 Hz a 1500 Hz, pro kondenzátor pro 1500 Hz).

10.4. Schéma zapojení

Obr. 10.3. Schéma zapojení přípravku pro měření impedancí a admitancí (není nakresleno napájení).

10.5. Poznámky k měření

- **10.5.1.** Volbou $\omega=10^3~{\rm s}^{-1}$ popř. $10^4~{\rm s}^{-1}$ a $U_1=1~{\rm V}$ se dosáhne toho, že hodnoty prvků náhradního schématu $(L_X,R_X$ popř. $C_X,G_X)$ se vypočtou z příslušných složek výstupního napětí pouhým vynásobením mocninami 10.
- 10.5.2. Vzhledem k tomu, že stejnosměrná složka napětí na výstupu řízeného usměrňovače je úměrná střední hodnotě měřeného napětí $(U_{2S} = U_2 \cos \varphi)$, je nutné na vstupu převodníku $\mathbf{Z} \to \mathbf{U}$ popř. $\mathbf{Y} \to \mathbf{U}$ nastavovat též střední hodnotu napětí. Protože však u vstupního napětí nastavujeme jeho efektivní hodnotu (údaj číslicového voltmetru odpovídá efektivní hodnotě měřeného napětí) a platí $U_{ef} \cong 1,11$ $U_{stř}$, je nutné nastavit hodnotu efektivní na vstupu převodníku 1,11-krát větší, než je požadovaná hodnota střední. Aby bylo možné na vstupu přípravku nastavovat napětí bez vynásobení koeficientem 1,11, je v přípravku vstupní napětí zesilováno invertujícím zesilovačem s přenosem -1,11 (záporná hodnota přenosu odpovídá znaménku ve vztazích odvozených v bodě 10.2.1).
- 10.5.3. U použitého převodníku je možné použít třísvorkové připojení měřené admitance. V případě, že stínění měřeného kondenzátoru spojíme se zemní svorkou, parazitní kapacity vůči stínění neovlivní výsledek měření tzv. průchozí admitance Y_{12} . To vyplývá z náhradního schématu na obr. 10.4. Rozprostřené kapacity (parazitní svody) mezi měřeným objektem a stíněním (a v případě použití koaxiálních kabelů pro připojení měřeného objektu i jejich kapacitu) lze nahradit parazitními kapacitami C_{10} a C_{20} . Kapacita C_{20} je připojena mezi invertující a neinvertující vstup operačního zesilovače, napětí mezi těmito body je v případě ideálního operačního zesilovače nulové (virtuální nula) a tato parazitní kapacita tedy neovlivní výsledek měření. Kapacita C_{10} je připojena paralelně k referenčnímu zdroji a pokud platí $1/(\omega C_{10}) >> R_O$ (R_O je výstupní odpor referenčního zdroje napětí), neovlivní velikost referenčního napětí a tudíž ani výsledek měření. Pro určení velikosti parazitních kapacity C_{10} popř. C_{20} je třeba spojit stínění se svorkou 2 popř. 1. V tom případě se měří paralelní kombinace měřené admitance a příslušné parazitní kapacity. Změřená hodnota kapacity je pak rovna $C_{12} + C_{10}$, popř. $C_{12} + C_{20}$, z čehož lze obě parazitní kapacity snadno určit.

Obr. 10.4. Náhradní schéma stínění měřené admitance

10.3.1

indukčnost a ztrátový odpor předložené cívky vypočítáme pomocí vztahu z přípravy:

$$R_S = -\frac{R_N}{U_1} \operatorname{Re}\{\mathbf{U_2}\}$$
 $L_S = -\frac{R_N}{\omega U_1} \operatorname{Im}\{\mathbf{U_2}\}$

T.10.1. Výsledky měření 10.3.1

f [Hz]	ω	$R_N [\Omega]$	$U_1[V]$	$Re{U_2}[V]$	$\operatorname{Im}\{\mathbf{U_2}\}\ [V]$	$R_S [\Omega]$	L_S [H]
159,2	10^{3}	100	1.0046	0.0475	0.6541	4.73	0.0651
1592	10^{4}	1000	1.0036	0.0125	0.6495	12.46	0.0647

z výsledků je patrné, že indukčnost je veličina konstantní (pro námi nastavené měření), zatímco ztrátový odpor je frekvenčně závislá veličina, při desetkrát větší frekvenci nám vyšel přibližně 2.6-krát větší odpor, pravděpodobně se ale nejedná o závislost lineární

10.3.2

Obr 10.5. Průběhy napětí zobrazené osciloskopem pro polohy Re a Im

$$U_{2SRe} = \frac{2}{T} \int_{0}^{\frac{T}{2}} U_{2m} \sin(\omega t - \varphi) dt = |x = \omega t| = \frac{2\pi}{T} t| = \frac{U_{2m}}{\pi} \int_{0}^{\pi} \sin(x - \varphi) dx = \frac{U_{2m}}{\pi} [-\cos(x - \varphi)]_{0}^{\pi}$$

$$= \frac{-U_{2m}}{\pi} [\cos(\pi) \cos(\varphi) - \cos(\varphi)] = \frac{2U_{2m}}{\pi} \cos(\varphi) = \frac{2\sqrt{2}}{\pi} U_{2ef} \cos(\varphi) = \text{Re}\{\mathbf{U_2}\}$$

$$U_{2SIm} = \frac{2}{T} \int_{\frac{T}{4}}^{\frac{3T}{4}} U_{2m} \sin(\omega t - \varphi) dt = |x = \omega t| = \frac{2\pi}{T} t| = \frac{U_{2m}}{\pi} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin(x - \varphi) dx = \frac{U_{2m}}{\pi} [-\cos(x - \varphi)]_{\frac{\pi}{2}}^{\frac{3\pi}{2}}$$

$$= \frac{-U_{2m}}{\pi} [\sin(\frac{3\pi}{2}) \sin(\varphi) - \sin(\frac{\pi}{2}) \sin(\varphi)] = \frac{2U_{2m}}{\pi} \sin(\varphi) = \frac{2\sqrt{2}}{\pi} U_{2ef} \sin(\varphi) = \text{Im}\{\mathbf{U_2}\}$$

10.3.3

parazitní kapacity kondenzátoru vůči stínění vypočítáme pomocí vztahu:

$$C_{2(1)} = C_{12} + C_{10(20)} \Rightarrow C_{10(20)} = C_{2(1)} - C_{12} = -\frac{1}{\omega R_N U_1} \text{Im} \{ \mathbf{U}_{\mathbf{2},\mathbf{2}(\mathbf{1})} - \mathbf{U}_{\mathbf{2}} \}$$

T.10.2. Výsledky měření 10.3.3.b

ω	$R_N [k\Omega]$	$U_1[V]$	$\operatorname{Im}\{\mathbf{U_2}\}\ [V]$	$\operatorname{Im}\{\mathbf{U_{2,1}}\}\ [V]$	$\operatorname{Im}\{\mathbf{U}_{2,2}\}\ [V]$	$C_{10} [F]$	$C_{20} [F]$
10^{4}	100	1.0034	0.9996	1.2375	1.1031	$1.031 \cdot 10^{-10}$	$2.371 \cdot 10^{-10}$

 G_P a C_P předloženého kondenzátoru vypočítáme pomocí vztahu z přípravy:

$$G_P = -\frac{1}{R_N U_1} \operatorname{Re}\{\mathbf{U_2}\}$$
 $C_P = -\frac{1}{\omega R_N U_1} \operatorname{Im}\{\mathbf{U_2}\}$

admitanci, která je rovna převrácené hodnotě impedance určíme ze vztahu:

$$\mathbf{Z}_{\mathbf{YX}} = \frac{\frac{1}{G_P} \frac{1}{j\omega C_P}}{\frac{1}{G_P} + \frac{1}{j\omega C_P}} = \frac{\frac{1}{G_P j\omega C_P}}{\frac{G_P + j\omega C_P}{G_P j\omega C_P}} = \frac{1}{G_P + j\omega C_P} \xrightarrow{\mathbf{Y} = \mathbf{Z}^{-1}} \mathbf{Y} = G_P + j\omega C_P$$

T.10.3. Výsledky měření 10.3.3.c

ω	$R_N [k\Omega]$	$U_1[V]$	$Re{U_2}[V]$	$\operatorname{Im}\{\mathbf{U_2}\}\ [V]$	$G_P[S]$	C_P [F]	$\mathbf{Y} [\mu S]$
10^{4}	100	1.0034	-0.0065	0.9996	$64.8 \cdot 10^{-9}$	$0.996 \cdot 10^{-9}$	0.0648 + 9.96j

10.3.4

T.10.4. Výsledky měření cívky

f [Hz]	$\mathbf{Z}\left[\Omega\right]$	$R_S [\Omega]$	$L_S [mH]$
150	$62.176 \cdot \exp\left(j85.516 \frac{2\pi}{360}\right)$	4.8655	65.769
1500	$615.39 \cdot \exp\left(j88.311\frac{2\pi}{360}\right)$	18.144	65.267

T.10.5. Výsledky měření kapacitoru

f[H]	\mathbf{z}] \mathbf{Y}_{120} [$\mu \mathbf{S}$]	G_{120} [μ S]	$C_{120} [\mathrm{nF}]$	$G_{12} [\mu S]$	$C_{12} [F]$	C_{10} [pF]	C_{20} [pF]
150	$9.4286 \cdot \exp\left(j89.996 \frac{2\pi}{360}\right)$	0.0007	1.0004	-0.0027	1.0617	289.46	328.16

převedeme-li admitanci z nepřímé metody na polární souřadnice dostáváme $\varphi(\mathbf{Y}) = 89.627^{\circ}$, $|\mathbf{Y}| = 9.96 \ \mu\text{S}$, což se podobá souřadnicím z přímého měření $\varphi(\mathbf{Y}) = 89.996^{\circ}$, $|\mathbf{Y}| = 9.4286 \ \mu\text{S}$

10.6. Seznam použitých přístrojů a obvodvých prvků

zn	přístroj/prvek	specifikace
ČV1,2	voltmetr	LG DM-441BM
OSC	osciloskop	Keysight DSOX 2002A
G	programovatelný generátor	Tektronix AGF 3022B
G(OZ)	generátor	Tesla BK 126
RLC	RLC měřič	Hameg Instrumens HM 8118
R_N	odporová dekáda	$R = 10^2, 10^3, 10^5 \ \Omega; \ \delta = \pm 0.1\%$

10.7. Závěrečné vyhodnocení

Odvodili a ukázali jsme, jak fungují převodníky napětí-impedance (napětí-admitane), vztah mezi reálnou a imaginární složkou a impedancí (admitancí) v zapojení RL (G||C); pro měření jak přímou tak nepřímou metodou byly výsledky srovnatelné; třísvorkovou metodou jsme potlačili vliv parazitních kapacit vůči stínění