Chinese Remainder Theorem implementation

Code computes for every set of integers a_i , b_i and set of moduli m_i a unique integer x, such that $ax \equiv b_i \pmod{m_i}$ for i = 1, 2, 3, ..., k. The code supports big integers too.

The following conditions must be met:

• All m_i must be greater than 1. They may or may not be pairwise relatively prime.

Input

- First line contains the number of equations k.
- Next K lines : Three inputs a_i , b_i and m_i respectively.

Output

The output contains x, the solution set of all the input equations in the form $x = p \mod q$. Output on the terminal.

Files:

• input.txt - input file

• SNS_CRT.py - code for the CRT Algorithm

Just run the python file on any python interpreter, code will get executed

Group 1:

Darshan Dalal 020

Hardik Gandhi 030

Vaibhav Popat 086