2.2.11

1

AI25BTECH11019 - MENAVATH SAI SANJANA

Question:

The plane 2x - 3y + 6z - 11 = 0 makes an angle $\sin^{-1}(\alpha)$ with the x-axis. The value of α is equal to

Solution:

Normal vector of the plane be
$$\overrightarrow{n} = \begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix}$$

Direction vector of x-axis
$$\overrightarrow{d} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

 θ is the angle between normal and x-axis

$$\cos \theta = \frac{\overrightarrow{n} \cdot \overrightarrow{a}}{\|\overrightarrow{n}\| \|\overrightarrow{a}\|} = \frac{2}{\sqrt{2^2 + (-3)^2 + 6^2}} = \frac{2}{7}$$

Angle between plane and x-axis = $90^{\circ} - \theta$.

$$\alpha = \sin(90^\circ - \theta) = \cos \theta = \frac{2}{7}$$

$$\alpha = 2/7$$

Plane 2x - 3y + 6z - 11 = 0, x-axis, a vector in the plane and the normal (arc shows angle between x-axis and the plane)

Fig. 0.1