CSC 3210 Computer organization and programming

Chapter 3 & Quiz3

Chunlan Gao

Multiplication-Review

no muli

immediate 12bits, not big enough.

Division

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

$$\begin{array}{c|c} & 1001_{\text{ten}} & \text{Quotient} \\ \hline \text{Divisor} \ 1000_{\text{ten}} & 1001010_{\text{ten}} & \text{Dividend} \\ \hline 10 \\ \hline 10 \\ \hline 101 \\ \hline 1010 \\ \hline -1000 \\ \hline \hline 10_{\text{ten}} & \text{Remainder} \end{array}$$

Dividend =Quotient* Divisor+ Remainder

Division Hardware

Example

division_remainder_left.docx

division_noremainder_left.docx

Example-cont

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: Rem = Rem - Div	0000	0010 0000	①110 0111
	2b: Rem $< 0 \implies +Div$, SLL Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	1: Rem = Rem - Div	0000	0001 0000	①111 0111
	2b: Rem $< 0 \implies$ +Div, SLL Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	①111 1111
	2b: Rem $< 0 \implies$ +Div, SLL Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
4	1: Rem = Rem - Div	0000	0000 0100	0000 0011
	2a: Rem $\geq 0 \implies$ SLL Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem – Div	0001	0000 0010	0000 0001
	2a: Rem $\geq 0 \Longrightarrow$ SLL Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

FIGURE 3.10 Division example using the algorithm in Figure 3.9. The bit examined to determine the next step is circled in color.

Optimized Divider

FIGURE 3.11 An improved version of the division hardware. The Divisor register, ALU, and Quotient register are all 32 bits wide. Compared to Figure 3.8, the ALU and Divisor registers are halved and the remainder is shifted left. This version also combines the Quotient register with the right half of the Remainder register. As in Figure 3.5, the Remainder register has grown to 65 bits to make sure the carry out of the adder is not lost.

One cycle per partial-remainder subtraction Looks a lot like a multiplier! Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers generate multiple quotient bits per step
 - Still require multiple steps

RISC-V Division

- Four instructions:
 - div, rem: signed divide, remainder
 - divu, remu: unsigned divide, remainder
- Overflow and division-by-zero don't produce errors
 - Just return defined results
 - Faster for the common case of no error

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 - -2.34 0753× 10⁵⁶ normalized
 +0.00256779× 10⁻⁴ unnormalized
 +987.0245664× 10⁹
- In binary
 - $\pm 1.xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating-Point Representation

Floating-point numbers are of the form $(-1)^S \times F \times 2^E$

F involves the value in the fraction field and E involves the value in the exponent field

Exponent can be positive or negative we need to check the sign number, To reduce the steps, we use a bias.

exponent = real exponent +127

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

Type(precis	ion) Sign	Exponent	Fraction
Single	1bit	8 bits	23 bits
Double	1bit	23 bits	52 bits

$$(-1)^{S} \times (1 + Fraction) \times 2^{E}$$
 $(-1)^{S} \times (1 + (s1 \times 2^{-1}) + (s2 \times 2^{-2}) + (s3 \times 2^{-3}) + (s4 \times 2^{-4}) + ...) \times 2^{E}$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 0000001 \Rightarrow actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38} \text{(ten)}$
- Largest value
 - exponent: 11111110
 ⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

geometric sequence:

$$S_n=rac{a_1\left(1-q^n
ight)}{1-q}(q
eq 1)$$

$$Sn = \frac{1/2 \left(1 - \frac{1}{2} \wedge n\right)}{1 - 1/2} = 1$$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110 ⇒ actual exponent = 2046 – 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 011111110₂
 - Double: -1 + 1023 = 1022 = 011111111110₂
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

- What number is represented by the **single-precision** float
 - 1 10000001 01000...00
 - S = 1
 - Fraction = $01000...00_2$
 - Exponent = $10000001_2 = 129$

•
$$x = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

Denormal Numbers

• Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

•
$$x = (-1)^S \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations