ANÁLISIS DE UNA VARIABLE REAL I GRADO EN FÍSICA

Límites y funciones continuas

Ejercicios de calentamiento Curso 2022-2023

- 1. Estudiar la continuidad y esbozar la gráfica de las funciones determinadas por las siguientes expresiones
 - \bullet [x].
 - \bullet x-[x].
 - $\bullet \ \sqrt{x-[x]}.$
 - $\bullet \ [x] + \sqrt{x [x]}.$
 - $\left[\frac{1}{x}\right]$.
 - $\bullet \ \frac{1}{\left[\frac{1}{r}\right]}$
 - $[\sin x]$.
 - $\frac{x^3 8}{x^2 4}$.
 - $\begin{cases} x^2 & \text{si} \quad x \in [a-1, a) \\ x+a & \text{si} \quad x \in [a, a+1] \end{cases}$
- **2.** Se consideran las funciones $f(x) = x^2$, $g(x) = e^x$ y $h(x) = \cos x$.
 - 1. Escribir la expresión analítica de las funciones $f \circ g$, $f \circ h + h \circ g$, $f \circ g \circ h$.
 - 2. Escribir en términos de operaciones con las funciones f, g y h, las expresiones siguientes:

$$y = e^{\cos x}$$
 , $y = \cos(e^x + e^{x^2})$, $y = e^{2x}$.

- **3.** Demostrar que no existe $\lim_{x \to +\infty} (x [x])$.
- 4. Decidir si las siguientes afirmaciones son ciertas o falsas. Si son ciertas hay que probarlas, si son falsas hay que dar un contraejemplo.
 - 1. Si dos funciones continuas $f, g : [0, 1] \to \mathbb{R}$ satisfacen que $f(x) < g(x), \forall x \in [0, 1]$, entonces inf(Imag (g)) < sup(Imag (f)).
 - 2. Si dos funciones continuas $f, g : [0, 1] \to \mathbb{R}$ satisfacen que $f(x) < g(x), \forall x \in [0, 1]$, entonces inf(Imag (f)) < inf(Imag (g)).
 - 3. Si dos funciones continuas $f, g:(0,1)\to\mathbb{R}$ satisfacen que $f(x)< g(x), \forall x\in(0,1),$ entonces $\sup(\operatorname{Imag}(f))<\sup(\operatorname{Imag}(g)).$
 - 4. Toda función continua en el intervalo (0,1] es acotada.
- **5.** Discutir si las siguientes afirmaciones son verdaderas o falsas, demostrándolas o dando un contraejemplo.
 - 1. Si existen los límites de f y f+g en un punto a, entonces existe el límite de g en a.
 - 2. Si no existen los límites de f y g en un punto a, entonces no existe el límite de f+g en a.

- **6.** Discutir si las siguientes afirmaciones son verdaderas o falsas, demostrándolas o dando un contraejemplo.
 - 1. Si f es una función de \mathbb{R} en \mathbb{R} que alcanza un máximo y un mínimo en todo intervalo cerrado entonces f es continua.
 - 2. Si f es una función de \mathbb{R} en \mathbb{R} que toma todos los valores comprendidos entre f(a) y f(b) en todo intervalo [a, b] entonces f es continua.
 - 3. Si f es continua en 0 y f(x+y) = f(x) + f(y) para todo $x, y \in \mathbb{R}$ entonces f es continua en todo \mathbb{R} .
- 7. i) Probar utilizando ε y δ que dada $f:(0,1)\to\mathbb{R}$ una función continua en $x_0\in(0,1)$ con $f(x_0)>0$, entonces existe $\gamma>0$ tal que

$$f(x) > 0, \quad \forall x \in (x_0 - \gamma, x_0 + \gamma).$$

ii) Sean $h, g:(0,1)\to\mathbb{R}$ dos funciones continuas positivas y distintas. Deducir que dado $x_0\in(0,1)$, existe $\rho>0$ tal que

$$\left| \frac{h(x) - g(x)}{g(x)} \right| > 0, \quad \forall x \in (x_0 - \rho, x_0 + \rho).$$

- 8. ¿Qué se puede decir de una función real continua que sólo toma valores racionales?
- 9. Supongamos que h(x) = f(x)g(x), donde f es una función con límite 0 en x_0 y g es una función acotada en un entorno de x_0 , entonces

$$\lim_{x \to x_0} h(x) = 0.$$

- **10.** Sea $f:[0,1] \to [0,1]$ una función continua. Probar que la ecuación f(x) = x tiene solución en [0,1].
- **11.** Sean $f, g : [a, b] \to \mathbb{R}$ dos funciones continuas verificando f(a) < g(a) y f(b) > g(b). Probar que la ecuación f(x) = g(x) tiene solución en [a, b].
- 12. Sea f una función real, continua y definida en el intervalo I, sean x_1, x_2, \ldots, x_n , n puntos cualesquiera del intervalo I. Probar que existe un punto $c \in I$ tal que

$$f(c) = \frac{f(x_1) + f(x_2) + \ldots + f(x_n)}{n}.$$

- 13. Demostrar que si f es una función real, continua, definida en el intervalo compacto I y verificando $f(x) > 0 \ \forall x \in I$ entonces existe una constante positiva K tal que $f(x) > K \ \forall x \in I$.
- **14.** Sea $f:[a,\infty)\to\mathbb{R}$ una función continua con $\lim_{x\to+\infty}f(x)=0$. Demostrar que f está acotada. ¿Es cierto el recíproco?.
- 15. Dar un ejemplo de una función real definida en todo \mathbb{R} y que sólo sea continua en un punto. ¿Existen funciones continuas en dos puntos?
- **16.** Probar que el polinomio $6x^3 8x^2 + x + 0.5$ tiene sus tres raíces reales y que sólo una de ellas está en el intervalo [0, 1].
- 17. Demostrar que las siguientes ecuaciones tienen solución:

1.
$$x - \sin x - 5 = 0$$
,

2.
$$x^7 + \frac{213}{2 + x^2 + \tan^2 x} = 12$$
,

3.
$$\frac{x}{4} = x - [x]$$

- 18. Consideramos la función definida por $f(x) = \sin\left(\frac{1}{x}\right)$, $x \neq 0$ y f(0) = 0.
 - 1. Estudiar la continuidad de la función f en el origen.
 - 2. Demostrar que f satisface la condici´n del teorema de los valores intermedios en el intervalo [-1, 1].
- 19. Demostrar que no existe ninguna función continua de \mathbb{R} en \mathbb{R} que tome exactamente dos veces cada valor.
- **20.** Sean a < b dos números reales y $f : [a, b] \to [a, b]$ una función tal que $\forall x, y \in [a, b], x \neq y$, se cumple |f(x) f(y)| < |x y|.
 - a) Demostrar que f es continua;
 - b) Fijado $z \in [a, b]$, se define por recurrencia la sucesión $x_1 = z$ y $x_{n+1} = f(x_n)$. Si suponemos que f es creciente, demostrar que la sucesión $(x_n)_n$ es convergente.
- **21.** Sea f una función real, definida en todo \mathbb{R} que satisface la relación f(x+y) = f(x) + f(y) para cualquier par de puntos $x, y \in \mathbb{R}$ y que además es continua en cero. Demostrar que f es continua en todo \mathbb{R} y determinar explícitamente la función f.
- 22. Estudiar la existencia de los límites (laterales) y calcular su valor cuando existan:

1.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4}$$

2.
$$\lim_{x \to 0} (2 + \sin(\frac{1}{x}))$$

$$3. \lim_{x \to 0} \frac{\sqrt{x}}{2 + \sin(\frac{1}{x})}$$

23. Calcular f(0) para que la función f sea continua en 0.

1.
$$f(x) = \frac{(1+x)^n - 1}{x}, n \in \mathbb{N}.$$

2.
$$f(x) = \frac{\ln(1+x) - \ln(1-x)}{x}$$

24. Sea f una función no nula con límite 0 en x_0 . Probar que

$$\lim_{x \to x_0} (1 + f(x))^{\frac{1}{f(x)}} = e.$$

25. Calcular "a" para que

$$\lim_{x \to +\infty} \left[\sqrt{\frac{x^2 + x + 1}{x^2}} \right]^{\frac{ax^2 + 1}{x}} = e^2.$$

26. Encontrar las constantes a y b para las cuales

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + x} - ax - b \right) = 1.$$

27. Sean $f, g : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ dos funciones definidas por $f(x) = \frac{x}{a} [\frac{b}{x}]$ y $g(x) = \frac{b}{x} [\frac{x}{a}]$ con a y b constantes positivas y donde [x] denota la parte entera de x. ¿Existen los límites de f y g en el origen?