Modelação e Física Estatística Conceitos de probabilidade e teoria da informação¹

António Luís Ferreira

March 8, 2021

¹slides baseados no Cap. 1 de Information, Physics and Computation, Oxford University press, 2009

Temas

- Variáveis aleatórias
- Teoria dos grandes desvios
- 3 Processos Estocásticos e Cadeias de Markov
- 4 Introdução à teoria de informação
 - compressão de dados
 - transmissão de Dados

variáveis aleatórias

- X variável aleatória discreta
- \mathscr{X} conjunto de valores tomado pela variável, $0 \leq p_X(x) = prob(X = x) \leq 1$, Normalização $\sum_{x \in \mathscr{X}} p_X(x) = 1$
- Valor médio $\overline{X} = \sum_{x \in \mathcal{X}} x \, p_X(x)$. $\underbrace{f(x)}_{x \in \mathcal{X}} = \sum_{x \in \mathcal{X}} f(x) \, P_X(x)$
- Variancia $Var X = (X \overline{X})^2 = \overline{X^2} \overline{X}^2 = \sum_{x \in \mathcal{X}} (x \overline{X})^2 p_X(x)$
- Acontecimento $\mathscr{A} \subseteq \mathscr{X}$ (contido em \mathscr{X}) tem probabilidade $prob(\mathscr{A}) = \sum_{x \in \mathscr{A}} p(x)$

$$\begin{aligned}
f + g &= \overline{f} + \overline{g} \\
(x - \overline{x})^2 = x^2 - 2x \overline{x} + \overline{x}^2 \\
\overline{(x - \overline{x})^2} &= \overline{x^2} - 2\overline{x} \times + \overline{x}^2
\end{aligned}$$

$$= \overline{x^2} - 2\overline{x} \times + \overline{x}^2$$

$$= \overline{x^2} - \overline{x} \times - \overline{x}^2$$

exemplos de variáveis aleatórias

$$P(x) = dev \text{ i.d. de de de probabilidade}$$

$$Variáveis contínuas - P(x) dx = probabilidade de x \in [x, x+dx]$$

$$P(x) = dev \text{ i.d. de de de probabilidade} de x \in [x, x+dx]$$

$$P(x) = probabilidade de x \in [x, x+dx]$$

$$P(x) = probabilidade de probabilidade de que está normalizada:
$$P(x) = probabilidade de probabilidade de que está normalizada:
$$P(x) = probabilidade de probabilidade de probabilidade de probabilidade que está normalizada:
$$P(x) = probabilidade de prob$$$$$$$$

• Exemplos:

- distribuição uniforme $x \in \mathcal{X} = [0,1]$, $p_X(x) = 1$.
- distribuição discreta uniforme: $x \in \mathcal{X} = \{1, 2, ..., M\}$, $p_X(x) = 1/M$
- distribuição Gaussiana-

$$x \in \mathcal{X} = [-\infty, \infty], p_X(x) = \frac{1}{\sqrt{2\pi\sigma}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right); \ \overline{X} = \mu;$$

$$Var \ X = \sigma^2 \qquad \qquad p_X = 0 \qquad p_X \text{ and } m \text{ ()}$$

$$G = 1$$

mais exemplos

- distribuição exponencial $x \in \mathcal{X} = [0, \infty], p_X(x) = \lambda \exp(-\lambda x).$ ver exercicio 2
- distribuição Bernoulli $x \in \mathcal{X} = \{0,1\}$, $p_X(1) = p$, $p_X(0) = 1 p$; $\overline{X} = p$; Var X = p(1 p)
- distribuição Binomial: $k \in \mathcal{X} = \{0,1,...,N\}$, $p_X(k) = \frac{N!}{k!(N-k)!} p^k (1-p^k)^k$. ver exercicio 11
- distribuição Poisson: $k \in \mathcal{X} = \{0, 1, 2, ..., \infty\}$, $p_X(k) = \exp(-\lambda)\frac{\lambda^k}{k!}$ ver exercicio 9

> dt = probabilidade de decamento

$$k^{2} = \sum_{k=0}^{\infty} k^{2} \lambda = \sum_{k=0}^{\infty} k$$

$$= e^{\lambda} \sum_{k=0}^{\infty} k = \sum_{k=0}^{\infty} \lambda = \sum_{k=$$

Van
$$k = K^2 - K^2 = \lambda + \lambda^2 - \lambda^2 = \lambda$$

Histograma

 $k = 0, 1, 2, ... 00$
 $k = numer de muleor$

que decairan

 $o(x) = \lambda t$
 $o(x) = \lambda t$

métodos numéricos para gerar números aleatórios

- ullet efeito de uma transformação de variáveis Y=f(X)
 - $p_Y(y) = \left| \frac{dx}{df} \right| p_X(x)$. Qual a função f(x) que devemos usar para produzir $p_Y(y)$ desejado?
- método da transformação de variáveis $\mathcal{L}^{(z)}$
 - Definido a distribuição de probabilidade cumulativa, $F(y) = \operatorname{prob}(X \leq y) = \int_{-\infty}^{y} p_X(x) \, dx$, calcula-se $y = F^{-1}(u)$ com U com distribuição uniforme $u \in \mathcal{U} = [0,1]$ e obtém-se Y com distribuição $p_X(y)$.
 - demonstração: Fazendo u=F(y) temos $p_U(u)du=p_Y(y)dy$ e portanto $p_Y(y)=\left|\frac{du}{dy}\right|p_U(u)$. Dado que $\left|\frac{du}{dy}\right|=\left|\frac{d}{dy}F(y)\right|$, $p_U(u)=1$ e $F(y)=\int_{-\infty}^y p_X(x)\,dx$ obtém-se $p_Y(y)=p_X(y)$ como se pretendia.

métodos numéricos para gerar números aleatórios

método da aceitação / rejeição

Figure 7.3.2. Rejection method for generating a random deviate x from a known probability distribution p(x) that is everywhere less than some other function f(x). The transformation method is first used to generate a random deviate x of the distribution f (compare Figure 7.3.1). A second uniform deviate is used to decide whether to accept or reject that x. If it is rejected, a new deviate of f is found, and so on. The ratio of accepted to rejected points is the ratio of the area under p to the area between p and f.

métodos numéricos para gerar números aleatórios

- método da aceitação / rejeição
 - se gerarmos um ponto com distribuição uniforme sob a curva $p_X(x)$, então a coordenada x desse ponto tem distribuição $p_X(x)$. Para fazer isso podemos gerar pontos uniformemente no retângulo mas é bastante ineficiente porque os pontos acima da curva seriam rejeitados. É mais eficiente encontrar uma função, f(x), tal que $p_X(x) \le f(x)$, calcular $F(x_0) = \int_{-\infty}^{x_0} f(x) \, dx$ e obter $x_0 = F^{-1}(u_1)$, com u_1 , uniforme em $[0, F(\infty)]$. A seguir geramos u_2 uniforme em $[0, f(x_0)]$. Os pontos (u_2, x_0) têm distribuição uniforme sob a curva f(x). Se rejeitarmos os x_0 tais que $u_2 > p_X(x_0)$ ficamos com valores de x_0 com a distribuição pretendida.