

The debiased Lasso

Sara van de Geer

August, 2018

Linear model:

$$Y = X\beta^0 + \epsilon,$$

 $Y \in \mathbb{R}^n$ response, $X \in \mathbb{R}^{n \times p}$ design matrix $\beta^0 \in \mathbb{R}^p$ unknown coefficients $\epsilon \in \mathbb{R}^n$ noise $p \gg n$: high-dimensional case Parameter of interest: $\beta_1^0 \in \mathbb{R}$

Assumptions

- ∘ The rows of $(X, Y) \in \mathbb{R}^{n \times (p+1)}$ are i.i.d.~ $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{p+1}$
- \circ (x, y) is Gaussian with mean zero
- $\circ \mathbb{E}(\mathbf{y}|\mathbf{x}) = \mathbf{x}\beta^{\mathbf{0}}$
- $\circ \Sigma := \mathbb{E} \mathbf{x}^T \mathbf{x}$ has inverse Θ .
- $\circ \|\Sigma\|_{\infty} = \mathcal{O}(1)$, say diag $(\Sigma) = I$
- $\circ~\Lambda_{min}^2 \gg 0$ where Λ_{min}^2 is the smallest eigenvalue of Σ

The Lasso [Tibshirani, 1996] is

$$\hat{eta} := rg\min_{oldsymbol{b} \in \mathbb{R}^{oldsymbol{
ho}}} \left\{ \| oldsymbol{Y} - oldsymbol{X} oldsymbol{b} \|_2^2/n + 2\lambda \| oldsymbol{b} \|_1
ight\}$$

with $\lambda > 0$ a tuning parameter

A debiased Lasso is

$$\hat{b}_1 = \hat{\beta}_1 + \tilde{\Theta}_1^T X^T (Y - X \hat{\beta}) / n$$

where $\tilde{\Theta}_1 \in \mathbb{R}^p$ is soem estimate of the first column Θ_1 of Θ .

[Zhang & Zhang, 2014], [Javanmard & Montenari, 2014], [Belloni, Chernozhukov, & Kato, 2015] ...

Lemma

Suppose
$$\|\hat{\beta} - \beta^0\|_1 = o_{\mathbb{P}_{\beta^0}}(1/\sqrt{\log p})$$
 and that Σ is known. Take

$$\tilde{\Theta}_1 = \Theta_1$$
. Then

$$\frac{\sqrt{\textit{n}}(\hat{\textit{b}}_{1} - \textit{\beta}_{1}^{0})}{\sqrt{\Theta_{1,1}}} \xrightarrow{\mathcal{D}_{\textit{\beta}^{0}}} \mathcal{N}(0,1)$$

Proof.

$$\hat{b}_{1} - \beta_{1}^{0} = \hat{\beta}_{1} - \beta_{1}^{0} + \Theta_{1}^{T} X^{T} (Y - X \hat{\beta}) / n
= \hat{\beta}_{1} - \beta_{1}^{0} + \Theta_{1}^{T} X^{T} (\underbrace{\epsilon + X \beta^{0}}_{=Y} - X \hat{\beta})) / n
= \underbrace{\hat{\beta}_{1} - \beta_{1}^{0}}_{=e_{1}^{T} (\hat{\beta} - \beta^{0})} + \Theta_{1}^{T} X^{T} \epsilon / n - \Theta_{1}^{T} \underbrace{X^{T} X / n}_{=\hat{\Sigma}} (\hat{\beta} - \beta^{0})
= \underbrace{\Theta_{1}^{T} X^{T} \epsilon / n + (\underbrace{e_{1} - \hat{\Sigma} \Theta_{1}}_{=(\hat{\Sigma} - \hat{\Sigma}) \Theta_{1}})^{T} (\hat{\beta} - \beta^{0})}_{=(\hat{\Sigma} - \hat{\Sigma}) \Theta_{1}}$$

We have

$$\Theta_1^T X^T \epsilon / \sqrt{n\Theta_{1,1}} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1)$$

where we use $\Theta_1^T \Sigma \Theta_1 = \Theta_1^T e_1 = \Theta_{1,1}$. Moreover

$$|((\Sigma - \hat{\Sigma})\Theta_1)^T (\hat{\beta} - \beta^0)| \leq \underbrace{\|(\Sigma - \hat{\Sigma})\Theta_1\|_{\infty}}_{=\mathcal{O}_{\mathbb{P}}(\sqrt{\log p/n})} \underbrace{\|\hat{\beta} - \beta^0\|_{1}}_{=o_{\mathbb{P}}(1/\sqrt{\log p})} = o_{\mathbb{P}}(1/\sqrt{n})$$

The asymptotic Cramér Rao lower bound

Model: $\beta^0 \in \mathcal{B}$.

Model directions: $\mathcal{H}_{\beta^0} := \{ h \in \mathbb{R}^p : \beta^0 + h/\sqrt{n} \in \mathcal{B} \}.$

Definition An estimator T is called regular at β^0 if for all fixed $\rho > 0$ and R > 0 and all sequences $h \in \mathcal{H}_{\beta^0}$ with $|h_1| \ge \rho$ and $h^T \Sigma h \le R^2$, it holds that

$$\sqrt{n} \left(\frac{T - (\beta_1^0 + h_1/\sqrt{n})}{V_{\beta^0}} \right)^{\mathcal{D}_{\beta^0 + h/\sqrt{n}}} \mathcal{N}(0, 1)$$

where $V_{\beta^0}^2=\mathcal{O}(1)$ is some constant called the asymptotic variance.

Proposition Suppose T is asymptotically linear at β^0 with influence function $\mathbf{i}_{\beta^0}: \mathbb{R}^{p+1} \to \mathbb{R}$:

$$T - \beta_1^0 = \frac{1}{n} \sum_{i=1}^n \mathbf{i}_{\beta^0}(X_i, Y_i) + o_{\mathbb{P}_{\beta^0}}(1/\sqrt{n})$$

where $\mathbb{E}_{\beta^0}\mathbf{i}_{\beta^0}(\mathbf{x},\mathbf{y})=0$ and $V_{\beta^0}^2:=\mathbb{E}_{\beta^0}\mathbf{i}_{\beta^0}^2(\mathbf{x},\mathbf{y})=\mathcal{O}(1)$. Assume the Lindeberg condition

$$\lim_{n\to\infty}\mathbb{E}_{\beta^0}\textbf{i}_{\beta^0}^2(\textbf{x},\textbf{y})\mathrm{l}\bigg\{\textbf{i}_{\beta^0}^2(\textbf{x},\textbf{y})>\eta nV_{\beta^0}^2\bigg\}=0\ \forall\ \eta>0.$$

Assume further that T is regular at β^0 . Then for all fixed $\rho > 0$ and R > 0

$$V_{\beta^0}^2 + o(1) \geq \max_{h \in \mathcal{H}_{\beta^0}: \ |h_1| \geq \rho, \ h^T \Sigma h \leq R^2} \frac{h_1^2}{h^T \Sigma h}.$$

Corollary Assume the conditions of the proposition and that for some fixed $\rho > 0$ and R > 0 and some sequence $h \in \mathcal{H}_{\beta^0}$, with $|h_1| \geq \rho$ and $h^T \Sigma h \leq R^2$, it is true that

$$V_{\beta^0}^2 = \frac{h_1^2}{h^T \Sigma h} + o(1).$$

Then T is asymptotically efficient.

$$\mathcal{B}:=\{b\in\mathbb{R}^p:\underbrace{\|b\|_0^0}_{:=\#b_j\neq 0}\leq s\}.$$

Let $S_0 := \{\beta_j^0 \neq 0\}$ be the set of active coefficients in β^0 and $s_0 = |S_0|$.

Some special cases

- a) If $\|\Theta_1\|_0^0 \le s s_0$, then $V_{\beta^0}^2 + o(1) = \Theta_{1,1}$.
- b) Suppose $\{1\} \in S_0$, $s=s_0$ and that the following "betamin" condition holds: $|\beta_j^0| > m_n/\sqrt{n}$ for all $j \in S_0$, where $m_n \to \infty$. Then

$$V_{\beta^0}^2 + o(1) \geq (\Sigma_{S_0,S_0}^{-1})_{1,1}.$$

c) More generally, if $\{1\} \in S_0$ and $|\beta_j^0| > m_n/\sqrt{n}$ for all $j \in S_0$, then the lower bound corresponds to knowing the set S_0 up to $s - s_0$ additional variables.

$$\mathcal{B} := \{ b \in \mathbb{R}^p : \|b\|_1 \le \sqrt{s} \}.$$

Suppose β^0 stays away from the boundary of the parameter space, i.e., for a fixed $0 < \eta < 1$ it holds that $\|\beta^0\|_1 \le (1-\eta)\sqrt{s}$. Then for all M>0 fixed

$$V_{\beta^0}^2 + o(1) \ge \left(\min_{c \in \mathbb{R}^{p-1}: \ \|c\|_1 \le M\sqrt{ns}} \mathbb{E}(\mathbf{x}_1 - \mathbf{x}_{-1}c)^2 \right)^{-1}$$

where $\mathbf{x}_{-1} := (\mathbf{x}_2, \dots, \mathbf{x}_p)$. To improve over $\Theta_{1,1}$ we must have that Θ_1 is rather non-sparse: $\|\Theta_1\|_1$ should be of larger order than \sqrt{ns} .

$$\mathcal{B} := \{ b \in \mathbb{R}^p : \|b\|_r^r \le \sqrt{s^{2-r}} \}.$$

If β^0 stays away from the boundary, then for all M > 0 fixed

$$V_{\beta^0}^2 + o(1) \ge \left(\min_{c \in \mathbb{R}^{p-1}: \ \|c\|_1 \le M\sqrt{n^r s^{2-r}}} \mathbb{E}(\mathbf{x}_1 - \mathbf{x}_{-1}c)^2 \right)^{-1}.$$

To improve over $\Theta_{1,1}$ we must have that $\|\Theta_1\|_1$ is of larger order than $\sqrt{n^r s^{2-r}}$.

Definition Let \mathcal{B} be the model for β^0 . Let $\{\mathbf{Z}_n\}$ be a sequence of real-valued random variables depending on (X,Y) and $\{r_n\}$ a sequence of positive numbers. We say that $\{\mathbf{Z}_n\}$ is $\mathcal{O}_{\mathbb{P}_{\beta^0}}(r_n)$ uniformly in $\beta^0 \in \mathcal{B}$ if

$$\lim_{M\to\infty}\limsup_{n\to\infty}\sup_{\beta^0\in\mathcal{B}}\mathbb{P}_{\beta^0}(|\mathbf{Z}_n|>Mr_n)=0.$$

We say that $\mathbf{Z}_n = o_{\mathbb{P}_{\beta^0}}(r_n)$ uniformly in $\beta^0 \in \mathcal{B}$ if

$$\lim_{n\to\infty}\sup_{\beta_0\in\mathcal{B}}\mathbb{P}_{\beta^0}\bigg(|\mathbf{Z}_n|>\eta r_n\bigg)=0,\ \forall\ \eta>0.$$

Notation

$$\gamma^0 := \arg\min_{\boldsymbol{c} \in \mathbb{R}^{p-1}} \mathbb{E} (\mathbf{x}_1 - \mathbf{x}_{-1} \boldsymbol{c})^2.$$

Remark Thus

$$\gamma^0 = \Sigma_{-1,-1}^{-1} \mathbb{E} \mathbf{x}_{-1}^T \mathbf{x}_1$$

where $\Sigma_{-1,-1} := \mathbb{E} \mathbf{x}_{-1}^T \mathbf{x}_{-1}$, and $\mathbb{E}(\mathbf{x}_1 | \mathbf{x}_{-1}) = \mathbf{x}_{-1} \gamma^0$. We say that $\mathbf{x}_{-1} \gamma^0$ is the projection of \mathbf{x}_1 on \mathbf{x}_{-1} .

The case Σ known

Definition Let $\gamma^{\sharp} \in \mathbb{R}^{p-1}$ and $\lambda^{\sharp} > 0$. We say that the pair $(\gamma^{\sharp}, \lambda^{\sharp})$ is eligible if

$$\|\Sigma_{-1,-1}(\gamma^{\sharp} - \gamma^{0})\|_{\infty} \le \lambda^{\sharp} \tag{1}$$

and

$$\lambda^{\sharp} \| \gamma^{\sharp} \|_1 \to 0. \tag{2}$$

We then define

$$\Theta_1^{\sharp} := \begin{pmatrix} 1 \\ -\gamma^{\sharp} \end{pmatrix} / (1 - \gamma^{0T} \Sigma_{-1, -1} \gamma^{\sharp}). \tag{3}$$

Sample splitting

Assume the sample size *n* is even. Define the matrices

$$(X_I, Y_I) := \{X_{i,1}, \dots, X_{i,p}, Y_i\}_{1 \le i \le n/2} \in \mathbb{R}^{n/2 \times (p+1)},$$

$$(X_{II}, Y_{II}) := \{X_{i,1}, \dots, X_{i,p}, Y_i\}_{n/2 < i \le n} \in \mathbb{R}^{n/2 \times (p+1)}.$$

Let $\hat{\beta}_l$ be an estimator of β^0 based on the first half (X_l, Y_l) of the sample.

Let $\hat{\beta}_{II}$ be an estimator of β^0 based on the second half (X_{II}, Y_{II}) of the sample.

Define the two debiased estimators

$$\hat{b}_{I,1}^{\sharp} := \hat{\beta}_{II,1} + 2\Theta_{1}^{\sharp T} X_{I}^{T} \left(Y_{I} - X_{I} \hat{\beta}_{II} \right) / n
\hat{b}_{II,1}^{\sharp} := \hat{\beta}_{I,1} + 2\Theta_{1}^{\sharp T} X_{II}^{T} \left(Y_{II} - X_{II} \hat{\beta}_{I} \right) / n$$

and let

$$\hat{b}_{1}^{\sharp} := \frac{\hat{b}_{l,1}^{\sharp} + \hat{b}_{ll,1}^{\sharp}}{2}. \tag{4}$$

Theorem Let $(\gamma^{\sharp}, \lambda^{\sharp})$ be an eligible pair, Suppose that uniformly in $\beta^{0} \in \mathcal{B}$

$$\|\Sigma^{1/2}(\hat{\beta}_I - \beta^0)\|_2 = o_{\mathbb{P}_{\beta^0}}(1), \ \|\Sigma^{1/2}(\hat{\beta}_{II} - \beta^0)\|_2 = o_{\mathbb{P}_{\beta^0}}(1) \quad (5)$$

and

$$\sqrt{n}\lambda^{\sharp}\|\hat{\beta}_{I} - \beta^{0}\|_{1} = o_{\mathbb{P}_{\beta^{0}}}(1), \ \sqrt{n}\lambda^{\sharp}\|\hat{\beta}_{II} - \beta^{0}\|_{1} = o_{\mathbb{P}_{\beta^{0}}}(1).$$
 (6)

Then, uniformly in $\beta^0 \in \mathcal{B}$,

$$\hat{b}_1^{\sharp} - \beta_1^0 = \Theta_1^{\sharp T} X^T \epsilon / n + o_{\mathbb{P}_{\beta^0}} (1/\sqrt{n}),$$

and

$$\lim_{n\to\infty}\sup_{\beta^0\in\mathcal{B}}\mathbb{P}_{\beta^0}\bigg(\frac{\sqrt{n}(\hat{b}_1^{\sharp}-\beta_1^0)}{\Theta_{1,1}^{\sharp}}\leq z\bigg)=\Phi(z),\ \forall\ z\in\mathbb{R}.$$

Corollary The theorem shows that under its conditions the estimator \hat{b}_1^{\sharp} is uniformly asymptotically linear and regular. It means that for this estimator the Cramér Rao lower bound is relevant.

Example

Suppose

$$\mathcal{B} = \{\|b\|_0^0 \le s\}, \ s = o(n/\log p).$$

For the Lasso estimator $\hat{\beta}$ uniformly in $\beta^0 \in \mathcal{B}$

$$\|\Sigma^{1/2}(\hat{\beta}-\beta^0)\|_2^2 = \mathcal{O}_{\mathbb{P}_{\beta^0}}(\operatorname{slog} p/n), \ \|\hat{\beta}-\beta^0\|_1 = \mathcal{O}_{\mathbb{P}_{\beta^0}}(s\sqrt{\log p/n}).$$

So a suitable requirement on λ^{\sharp} is then

$$\lambda^{\sharp} s \sqrt{\log p} = o(1).$$

$$\mathcal{B} = \{\|b\|_1 \le \sqrt{s}\}, \ s = o(n/\log p).$$

Then uniformly in $\beta^0 \in \mathcal{B}$ it is true that

$$\|\Sigma^{1/2}(\hat{\beta}-\beta^0)\|_2 = o_{\mathbb{P}_{\beta^0}}(1), \ \|\hat{\beta}-\beta^0\|_1 = \mathcal{O}_{\mathbb{P}_{\beta^0}}(\sqrt{s}).$$

So we need

$$\lambda^{\sharp}\sqrt{ns}=o(1).$$

Then for $\|\gamma^{\sharp}\|_{1} = \mathcal{O}(\sqrt{ns})$ we get an eligible pair $(\gamma^{\sharp}, \lambda^{\sharp})$ and the Cramér Rao lower bound is achieved. In order to be able to improve over $\Theta_{1,1}$ we must have $\|\gamma^{0}\|_{1}$ of order larger than \sqrt{ns} .

$$\mathcal{B} = \{\|b\|_r^r \le \sqrt{s^{2-r}}\}, \ s = o(n/\log p).$$

For the Lasso $\hat{\beta}$, uniformly in $\beta^0 \in \mathcal{B}$

$$\|\Sigma^{1/2}(\hat{\beta}-\beta^0)\|_2^2 = \mathcal{O}_{\mathbb{P}_{\beta^0}}(s\log p/n)^{\frac{2-r}{2}},$$

$$\|\hat{\beta} - \beta^0\|_1 = \mathcal{O}_{\mathbb{P}_{\beta^0}}((\log p/n)^{\frac{1-r}{2}}s^{\frac{2-r}{2}}).$$

Thus we need

$$\lambda^{\sharp}(\log p)^{\frac{1-r}{2}}\sqrt{n^{r}s^{2-r}}=o(1).$$

If $\|\gamma^{\sharp}\|_r^r = \mathcal{O}(\sqrt{n^r s^{2-r}})$ then $(\gamma^{\sharp}, \lambda^{\sharp})$ is an eligible pair and the Cramér Rao lower bound is achieved. In order to be able to improve over $\Theta_{1,1}$ we now need $\|\gamma^0\|_r^r$ of larger order $\sqrt{n^r s^{2-r}}$.

	$ \begin{array}{c c} & \Sigma \\ & \text{known} \\ \mathcal{B} = \{\ b\ _0^0 \le s\} \end{array} $	Σ known $\mathcal{B} = \{\ b\ _1 \leq \sqrt{s}\}$
asymp-	$s = o(\frac{n}{\log p})$	$s = O(\frac{n}{\log p})$
totic	$\lambda^{\sharp} s \log^{\frac{1}{2}} p = o(1)$	$\lambda^{\sharp}\sqrt{ns}=o(1)$
norma-		
lity	$ \lambda^{\sharp} \gamma^{\sharp} _{1}=o(1)$	$\lambda^{\sharp} \ \gamma^{\sharp} \ _{1} = o(1)$
asymp-		
totic	yes	yes
linearity		
asymp- totic efficiency	$\ \gamma^{\sharp}\ _{0}^{0}=\mathcal{O}(s)$	$\ \gamma^{\sharp}\ _{1}=\mathcal{O}(\sqrt{ns})$

Table: Throughout, $(\gamma^{\sharp}, \lambda^{\sharp})$ is required to be an eligible pair, i.e. $\|\Sigma_{-1,-1}(\gamma^{\sharp}-\gamma^{0})\|_{\infty} \leq \lambda^{\sharp}$ (and $\lambda^{\sharp}\|\gamma^{\sharp}\|_{1} \to 0$). Asymptotic efficiency is established when β^{0} stays away from the boundary of \mathcal{B} . In the case $\mathcal{B}=\{\|b\|_{0}^{0}\leq s\}$ the conditions on γ^{\sharp} for asymptotic efficiency depend on β^{0} .

	Σ	Σ
	known	known
	$\mathcal{B} = \{\ b\ _0^0 \le s\}$	$\mathcal{B} = \{\ oldsymbol{b}\ _r^r \leq \sqrt{oldsymbol{s}^{2-r}}\}$
asymp-	$s = o(\frac{n}{\log p})$	$S = O(\frac{n}{\log p})$
totic	$\lambda^{\sharp} s \log^{\frac{1}{2}} p = o(1)$	$\lambda^{\sharp} n^{\frac{r}{2}} s^{\frac{2-r}{2}} \log^{\frac{1-r}{2}} p = o(1)$
norma-		
lity	$ \lambda^{\sharp} \gamma^{\sharp} _{1}=o(1)$	$\lambda^{\sharp} \ \gamma^{\sharp} \ _{1} = o(1)$
asymp-		
totic	yes	yes
linearity		
asymp-		
totic	$\ \gamma^{\sharp}\ _{0}^{0}=\mathcal{O}(s)$	$\ \gamma^{\sharp}\ _{r}^{r}=\mathcal{O}(n^{rac{r}{2}}s^{rac{2-r}{2}})$
efficiency		11 / 111 ()

Table: Throughout, $(\gamma^{\sharp}, \lambda^{\sharp})$ is required to be an eligible pair i.e. $\|\Sigma_{-1,-1}(\gamma^{\sharp}-\gamma^{0})\|_{\infty} \leq \lambda^{\sharp}$ (and $\lambda^{\sharp}\|\gamma^{\sharp}\|_{1} \to 0$). Asymptotic efficiency is established when β^{0} stays away from the boundary of \mathcal{B} . In the case $\mathcal{B}=\{\|b\|_{0}^{0}\leq s\}$ the conditions on γ^{\sharp} for asymptotic efficiency depend on β^{0} .

Finding eligible pairs

Remark The pair $(\gamma^{\sharp}, \lambda^{\sharp})$ is eligible iff

$$\mathbf{X}_{-1}\gamma^{0} = \mathbf{X}_{-1}\gamma^{\sharp} + \varepsilon^{0},$$

where $|\text{cov}(\mathbf{x}_j, \varepsilon^0)| \leq \lambda^{\sharp}$ and $\lambda^{\sharp} \|\gamma^{\sharp}\|_1 \to 0$.

Moreover, $\Theta_{1,1}\gg\Theta_{1,1}^{\sharp}$ iff $\mathbb{E}(\varepsilon^{0})^{2}\gg0$.

Lemma Suppose there exists a vector $z \in \mathbb{R}^{p-1}$ with

$$||z||_{\infty} \leq 1$$
,

and

$$1-\lambda^{\sharp 2}\|\Sigma_{-1,-1}^{-1/2}z\|_2^2\gg 0,\ \lambda^{\sharp 2}\|\Sigma_{-1,-1}^{-1/2}z\|_2^2\gg 0.$$

Let γ^{\sharp} be a vector in \mathbb{R}^{p-1} with $\gamma_{-S}^{\sharp}=0$ (i.e. $\gamma^{\sharp}=\gamma_{S}^{\sharp}$) and

$$1 - \lambda^{\sharp 2} \| \Sigma_{-1,-1}^{-1/2} z \|_2^2 - \| \Sigma_{-1,-1}^{1/2} \gamma_{\mathcal{S}}^{\sharp} \|_2^2 \gg 0.$$

Define

$$\gamma^0 := \gamma^{\sharp} + \lambda^{\sharp} \Sigma_{-1,-1}^{-1} Z.$$

Then, if $\lambda^{\sharp}\sqrt{|\mathcal{S}|} \to 0$, the pair $(\gamma^{\sharp},\lambda^{\sharp})$ is an eligible pair. Moreover, γ^{0} is eventually allowed, $\lambda^{\sharp}\|\gamma^{0}\|_{1} \not\to 0$ and in fact

$$\Theta_{1,1}-\Theta_{1,1}^{\sharp}\gg 0.$$

The case Σ unknown

We use the noisy Lasso

$$\hat{\gamma} \in \arg\min_{c \in \mathbb{R}^{p-1}} \left\{ \|X_{-1} - X_{-1}c\|_2^2 / n + 2\lambda^{\text{Lasso}} \|c\|_1 \right\}.$$
 (7)

Then in the debiased Lasso we apply

$$\tilde{\Theta}_1 := \hat{\Theta}_1$$

where

$$\hat{\Theta}_{1} := \begin{pmatrix} 1 \\ -\hat{\gamma} \end{pmatrix} / (\|X_{1} - X_{-1}\hat{\gamma}\|_{2}^{2} / n + \lambda^{\text{Lasso}} \|\hat{\gamma}\|_{1}). \tag{8}$$

Theorem Let \hat{b}_1 be the debiased Lasso

$$\hat{b}_1 := \hat{\beta}_1 + \hat{\Theta}_1 X^T (Y - X \hat{\beta})/n.$$

Assume that uniformly in $\beta^0 \in \mathcal{B}$

$$\|\hat{\beta} - \beta^0\|_1 = o_{\mathbb{P}_{\beta^0}}(1/\sqrt{\log p}).$$
 (9)

Let $(\gamma^{\sharp}, \lambda^{\sharp})$ be an eligible pair, with $\lambda^{\sharp} = \mathcal{O}(\sqrt{\log p/n})$ and $\sqrt{\log p/n} \|\gamma^{\sharp}\|_1 = o(1)$. Then for suitable $\lambda^{\mathrm{Lasso}} \asymp \sqrt{\log p/n}$ uniformly in $\beta^0 \in \mathcal{B}$

$$\hat{b}_1 - \beta_1^0 = \hat{\Theta}_1^T X^T \epsilon / n + o_{\mathbb{P}_{\beta^0}} (1/\sqrt{n}).$$

Moreover,

$$\lim_{n\to\infty} \sup_{\beta^0\in\mathcal{B}} \mathbb{P}\bigg(\sqrt{n}\frac{(\hat{b}_1-\beta_1^0)}{\sqrt{\hat{\Theta}_1^T\hat{\Sigma}\hat{\Theta}_1}} \leq z\bigg) = \Phi(z) \ \forall \ z\in\mathbb{R},$$

and

$$\hat{\Theta}_1^T \hat{\Sigma} \hat{\Theta}_1 = \Theta_{1,1}^{\sharp} + o_{\mathbb{P}}(1).$$

Remark By Slutsky's Theorem we conclude that the asymptotic variance of \hat{b}_1 is (up to smaller order terms) equal to $\Theta_{1,1}^{\sharp}$.

Remark Assume that in fact

$$\|\hat{\gamma} - \gamma^{\sharp}\|_{1} = o_{\mathbb{P}}(1/\sqrt{\log p}). \tag{10}$$

Then

$$\hat{\Theta}_1 X^T \epsilon / n = \Theta_1^{\sharp} X^T \epsilon / n + o_{\mathbb{P}} (1 / \sqrt{n}).$$

Thus, then the estimator \hat{b}_1 is asymptotically linear, uniformly in $\beta^0 \in \mathcal{B}$. The asymptotic linearity of \hat{b}_1 implies in turn that the Cramér Rao lower bound applies.

$$\mathcal{B} = \{b \in \mathbb{R}^p : \|b\|_0^0 \le s\}, \ s = o(\sqrt{n}/\log p).$$

For the Lasso estimator $\hat{\beta}$ with appropriate choice of the tuning parameter $\lambda \asymp \sqrt{\log p/n}$, one has uniformly in $\beta^0 \in \mathcal{B}$

$$\|\hat{\beta} - \beta^0\|_1 = O_{\mathbb{P}_{\beta^0}}\left(s\sqrt{\log p/n}\right) = o_{\mathbb{P}_{\beta^0}}(1/\sqrt{\log p}).$$

Suppose $\|\gamma^{\sharp}\|_{0}^{0} = \mathcal{O}(s)$. Then

$$\|\hat{\gamma} - \gamma^{\sharp}\|_1 = O_{\mathbb{P}}\bigg(s\sqrt{\log p/n}\bigg) = o_{\mathbb{P}}(1/\sqrt{\log p}).$$

Thus then we have asymptotic linearity. It means that the Cramér Rao lower bound applies and is achieved.

$$\mathcal{B} = \{b \in \mathbb{R}^p : \|b\|_r^r \le \sqrt{s^{2-r}}\}, \ s = o(n^{\frac{1-r}{2-r}}/\log p).$$

Then for the Lasso $\hat{\beta}$

$$\|\hat{\beta} - \beta^0\|_1 = o_{\mathbb{P}}((\log p/n)^{\frac{1-r}{2}}s^{\frac{2-r}{2}}) = o_{\mathbb{P}_{\beta^0}}(1/\sqrt{\log p}).$$

	Σ unknown $\mathcal{B} = \{\ b\ _0 \leq s\}$	Σ unknown $\mathcal{B} = \{\ b\ _r^r \leq \sqrt{s^{2-r}}\}$ $0 \leq r < 1$
asymp-	$s = o(rac{\sqrt{n}}{\log p}) \ \lambda^\sharp = \mathcal{O}(\sqrt{rac{\log p}{n}})$	$s = o(n^{\frac{1-r}{2-r}}/\log p)$
totic	$\lambda^{\sharp} = \mathcal{O}(\sqrt{rac{\log p}{n}})$	$\lambda^{\sharp} = \mathcal{O}(\sqrt{rac{\log p}{n}})$
norma-	·	·
lity	$\sqrt{rac{\log p}{n}} \ \gamma^{\sharp}\ _{1} = o(1)$	$\sqrt{rac{\log p}{n}} \ \gamma^{\sharp}\ _1 = o(1)$
asymp-		
totic	$\ \gamma^{\sharp}\ _{\mathbf{r}}^{\mathbf{r}} = o(n^{\frac{1-\mathbf{r}}{2}}/\log^{\frac{2-\mathbf{r}}{2}}p)$	$\ \gamma^\sharp\ _{\operatorname{r}}^{\operatorname{r}} = o(n^{rac{1-\operatorname{r}}{2}}/\log^{rac{2-\operatorname{r}}{2}} p)$
linearity		
asymp-		
totic	$\ \gamma^{\sharp}\ _{0}^{0}=\mathcal{O}(s)$	$\ \gamma^{\sharp}\ _{r}^{r}=\mathcal{O}(n^{rac{r}{2}}s^{rac{2-r}{2}})$
efficiency		

Some simulations ...

Acknowledgement: Francesco Ortelli

$$\Theta_{1,1} = 5.26, \, \Theta_{1,1}^{\sharp} = 1, \, \, \beta_1^0 = 1$$

$$\Theta_{1,1}=5.26,\,\Theta_{1,1}^{\sharp}=1,\,\,\beta_{1}^{0}=0$$

