

Пример 11. Определите вес P тела массой m на географической широте φ . Ускорение свободного падения g,

Землю считайте однородным шаром радиуса
$$R$$
.

1) $\vec{P} = -\vec{N} - no$ 3-иу 3-иу f_{loop} ол no

2) \vec{S} олишен $2 - \vec{u}$ f_{loop} ол no

1) $\vec{P} = -\vec{N} - no$ 3-иу f_{loop} f_{loop} ол no

2) \vec{S} олишен $2 - \vec{u}$ f_{loop} f_{lo

(24e r= Ros4, R=6400 KM, W= 1cy)

Пример 12. Маленький деревянный шарик прикреплён с помощью нерастяжимой нити длиной $l=30\,\mathrm{cm}$ ко дну цилиндрического сосуда с водой. Расстояние от центра дна до точки закрепления нити $r=20\,\mathrm{cm}$. Сосуд раскручивают вокруг вертикальной оси, проходящей через центр дна. При какой угловой скорости вращения нить отклонится от вертикали на угол $\alpha=30^{\circ}$? Ускорение свободного падения $g=10\,\mathrm{m/c^2}$.

1) To obecnesubaet KOPM. YCKOPEKUE?

Tozery эта Сила позвиется?

1) Toobs найти Силья Архимеда

Уберем Шарик и найдем Силы, действ

Ка воду:

$$F_{A,2} = GVg - 7.K.$$
 Слой воды сверту ке изм

 $F_{A,r} = GVW^2(r - l\sin d) - 7.K.$ кусоги воды двих.

С ускоргением

3) Три помещении шарик в вюду Силы будут такие же

Заришем 2-й закая Ньюгоха

 $GV = GVW^2(r - l\sin d) - T\cos d = D$
 $GWW^2(r - l\sin d) = GVW^2(r - l\sin d) - T\sin d$

$$= > \omega = \sqrt{\frac{g + g \lambda}{V - \ell \sin \lambda}} \approx 10.7 e^{-1}$$

Пример 15. Гладкий жёлоб состоит из горизонтальной части AB и дуги окружности BD радиуса $R=5\,\mathrm{m}$ (рис. 16). Шайба скользит по горизонтальной части со скоростью $v_0=10\,\mathrm{m/c}$. Определите модуль a ускорения шайбы в точке C и угол β , который вектор \vec{a} ускорения шайбы в этот момент составляет с нормалью к траектории в точке C. Радиус OC образует с вертикалью угол $\alpha=60^\circ$. Ускорение свободного падения $g=10\,\mathrm{m/c}^2$.

· Hyrs nor. In. - AB

$$\frac{mv^{2}}{s^{2}} + mqR(1-cosd) = \frac{mv^{2}}{2}$$

$$v^{2} + qR = v^{2} = v^{2} = \sqrt{v^{2}} \cdot qR$$

$$\Rightarrow a_{n} = v^{2}$$

На горизонтальной поверхности лежит полусфера массой M=140 г. Из верхней точки полусферы, стартовав одновременно, в противоположных направлениях с пренебрежимо малыми начальными скоростями, скользят без трения две шайбы. Массы шайб $m_1=80$ г и $m_2=30$ г. Из-за трения между полусферой и горизонтальной поверхностью движение полусферы начинается в тот момент, когда одна из шайб пройдет $\delta=1/12$ длины окружности большого круга. Найдите коэффициент μ трения скольжения полусферы по поверхности.

4) Thorga:
$$N_i = m_i \cos(q(g - \frac{v^2}{R}))$$

 $N_2 = m_2 \cos \varphi \left(q - \frac{y^2}{R} \right)$

5) Haigen 22 uj 3 C. 2 gne 1 maison: · Har. nonoxenue - bepx · Konerne. ronga maiste npann l= ER · Enor = 0 Nobepxy $O = -mgR(1-coc\varphi) + \frac{mv^2}{2}$ $=>\frac{v}{R}=2g(f-cos(f))$ 6) Dance, sea nonycopepy generbysot taxue xe no mogyno censo, nou этом в этот момект F-p= Non -> janucolaer 2 npoempus 2-20 j-na flororona -> orber.

Брусок установлен вплотную к вертикальной стенке (см. рис.). На бруске закреплено кольцо радиуса R=1 м, на которое надет шарик. Массы бруска и шарика одинаковы. Кольцо и держатель легкие. Трения нет. Из верхней точки кольца шарик скользит с пренебрежимо малой начальной скоростью.

1) Найдите ускорение \overrightarrow{a} шарика в тот момент, когда сила, с которой брусок действует на вертикальную стенку, обращается в ноль. В ответе укажите модуль и направление вектора \overrightarrow{a}

2) Найдите вертикальное перемещение h шарика к этому моменту времени.

3) Найдите наибольшую скорость $oldsymbol{v}$ бруска.

Все перемещения происходят в одной вертикальной плоскости. В процессе движения брусок не отрывается от гладкой горизонтальной плоскости.

2)
$$f_0$$
 2-му g_1 му f_0 могона g_1 0 марика

 $m \vec{a} = m \vec{g} + \vec{N}$ (*)

3) g_1 монент, когда g_1 0 g_2 0 g_2 0 g_3 0 марика

4) g_2 0 g_3 0 монент, когда g_4 0 g_4 0 g_5 0 g_7 0 g_7 0 g_8 0 марикае g_8 1 марикае g_8 2 g_8 2 марикае g_8 2 марикае g_8 2 марикае g_8 3 марикае g_8 4 марикае g_8 5 марикае g_8 6 марикае g_8 6 марикае g_8 7 марикае g_8 8 марикае g_8 9 марикае $g_$

Banamen 3.C.U u 3.C.) gre cucreno doycox Spun $\frac{2}{3}$ $\frac{\sqrt{2}}{3}$ $\frac{\sqrt{2}}{2}$ $\frac{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}$ $\lim_{x \to \infty} 2R = \frac{m \sqrt{1}}{2} + \frac{m \sqrt{2}}{2} \times \frac{2}{2}$ Cuapur $(v_0 = qR(1-\frac{2}{3}) =)v_0 = \sqrt{\frac{2}{3}gR}$ yan 3CO, $=> \sqrt[3]{x} - \frac{\sqrt{2} + \sqrt{52}}{3\sqrt{3}} \sqrt[3]{9}$ y cucrerbi Сделан кв. ур-е