International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

horses

Language: en-MDA

Horses

Lui Mansur îi place să crească cai urmând tradiția strămoșilor săi. El are acum ce mai mare herghelie din Kazakhstan. Nu așa stăteau lucrurile cu N ani în urmă. Când Mansur era doar un dzhigit (cuvântul Kazakh pentru t a n a r) el avea doar un singur cal. El visa să facă o grămadă de bani și în cele din urmă să ajungă un bai (cuvântul kazakh pentru om foarte bogat).

Să numerotăm anii de la 0 la N-1 în ordine cronologică (adică anul N-1 este cel mai recent an). Clima din fiecare an influența creșterea hergheliei. Pentru fiecare an i Mansur memorează un coeficient de creștere întreg și pozitiv X[i]. Dacă la începutul anului i aveai i cai atunci la sfârșitul acestuia aveai i cai în herghelie.

Caii puteau fi vânduți numai la sfârșitul unui an. Pentru fiecare an i, Mansur memorează un întreg pozitiv Y[i]: prețul unui cal la sfârșitul anului i. La sfârșitul fiecărui an era posibil să vinzi oricâți cai, fiecare la acelasi preț Y[i].

Mansur se întreabă care este cea mai mare sumă de bani pe care ar putea să o obțină dacă alege cele mai bune momente în care să vândă cai pe parcursul celor N ani. Tu ai onoarea să fii invitaltul lui Mansur în toi (cuvântul kazakh pentru vacanță) și să răspunzi la întrebarea lui.

Memoria lui Mansur se îmbunătățește seara, așa ca va face un șir de M modificări. Fiecare modificare va schimba fie una dintre valorile X[i], fie una dintre valorile Y[i]. După fiecare modificare el te întreabă dinnou care e suma cea mai mare pe care o poate obține din vânzarea cailor. Modificările lui Manur sunt cumulative: fiecare răspuns trebuie să țină cont de toate modificările precedente. Rețineți că oricare dintre valorile X[i] sau Y[i] ar putea fi modificată de mai multe ori.

Răspunsul lui Mansur poate fi un număr foarte mare. Pentru a evita lucrul cu numere mari se cere doar restul modulo $10^9 + 7$ al răspunsului.

Exemplu

Să presupunem că N=3 ani, cu următoarele informații:

	0	1	2
Χ	2	1	3
Y	3	4	1

Pentru valorile inițiale Mansur poate obține cel mai mult dacă vinde ambii săi cai la sfârșitul anului 1. Procesul decurge după cum urmează:

- Inițial, Mansur are un cal.
- După anul 0 el are $1 \cdot X[0] = 2$ cai.

- lacksquare După anul 1 el are $2 \cdot X[1] = 2$ cai .
- El poate acum să vândă cei doi cai. Profitul total va fi $2 \cdot Y[1] = 8$.

Să presupunem acum că există M=1 modificări: Schimbă valoarea lui Y[1] în 2.

După modificare avem:

	0	1	2
Х	2	1	3
Y	3	2	1

În acest caz, una dintre soluțiile optime este să vinzi un cal după anul 0 și apoi trei cai după anul 2. Procesul decurge după cum urmează:

- Inițial, Mansur are un cal.
- lacksquare După anul 0 el are $oldsymbol{1} \cdot oldsymbol{X}[oldsymbol{0}] = oldsymbol{2}$ cai.
- lacktriangle El poate să vândă unul dintre cai pentru Y[0]=3, și îi mai rămâne un cal.
- După anul 1 el are $1 \cdot X[1] = 1$ cal.
- După anul 2 el are $1 \cdot X[2] = 3$ cai.
- El poate acum să vândă cei trei cai pentru $3 \cdot Y[2] = 3$. Profitul total va fi 3 + 3 = 6.

Cerință

Se dau N, X, Y, și lista de modificări. Înainte de prima modificare și după fiecare modificare, calculează suma maximă pe care o poate obține Mansur pe caii săi, modulo $\mathbf{10^9} + \mathbf{7}$. Trebuie să implementezi funcțiile init, updateX și updateY.

- init (N, X, Y) Grader-ul va apela prima această funcție, exact o dată.
 - N: Numărul de ani.
 - lacktriangled X: un șir de lungime N. Pentru $0 \leq i \leq N-1, X[i]$ dă coeficientul de creștere pentru anul i
 - lacksquare Y: un șir de lungime N. Pentru $0 \leq i \leq N-1, Y[i]$ dă prețul unui cal după anul i.
 - Remarcați că atât X cât și Y specifică valorile inițiale date de Mansur (înainte de orice modificare).
 - După ce apelul init se încheie, șirurile X și Y rămân valabile, și poți modifica conținutul lor după cum dorești.
 - Această funcție trebuie să returneze suma maximă pe care o poate obține Mansur pe caii săi pentru aceste valori inițiale ale lui X și Y, modulo $10^9 + 7$.
- updateX(pos, val)
 - pos: un întreg din intervalul $0, \ldots, N-1$.

- val: noua valoare a lui X[pos].
- Această funcție trebuie să returneze suma maximă pe care o poate obține Mansur după această modificare, modulo $10^9 + 7$.
- updateY(pos, val)
 - pos: un întreg din intervalul $0, \ldots, N-1$.
 - val: noua valoare a lui Y[pos].
 - lacktriangle Această funcție trebuie să returneze suma maximă pe care o poate obține Mansur după această modificare, modulo 10^9+7 .

Se asigură că atât valorile inițiale cât și cele modificate pentru X[i] și Y[i] sunt între 1 și 10^9 inclusiv.

După init, grader-ul va apela updateX și updateY de câteva ori. Numărul total de apeluri ale funcțiilor updateX și updateY va fiM.

Subprobleme

Subproble ma	puncte	N	M	Precizări suplimentare
1	17	$1 \le N \le 10$	M=0	$X[i], Y[i] \le 10, \ X[0] \cdot X[1] \cdot \ldots \cdot X[N-1] \le 1,000$
2	17	$1 \le N \le 1,000$	$0 \le M \le 1,000$	none
3	20	$1 \leq N \leq 500,000$	$0 \leq M \leq 100,000$	$X[i] \ge 2$ și $val \ge 2$ pentru init și apelurile updateX
4	23	$1 \leq N \leq 500,000$	$0 \leq M \leq 10,000$	none
5	23	$1 \leq N \leq 500,000$	$0 \leq M \leq 100,000$	none

Grader-ul de pe calculatorul tău

Grader-ul de pe calculatorul tău citește date de intrare din fișierul horses.in în următorul format:

- linia 1: N
- linia 2: X[0] ... X[N 1]
- linia 3: Y[0] ... Y[N 1]
- linia 4: M
- liniile 5, ..., M + 4: trei numere type pos val (type=1 pentru updateX și type=2 pentru updateY).

Grader-ul de pe calculatorul tău afișează valoarea returnată de apelul init urmată de valorile returnate de toate apelurile updateX și updateY.