Lecture 4: AC Circuits and Impedance

Prof. Ben Varcoe

Room: Bragg 3.16E

https://calendly.com/b-varcoe/student-meetings

October 24, 2024

Introduction to AC Circuits

In Alternating Current (AC) circuits, the current and voltage vary sinusoidally over time. A typical AC voltage source can be expressed as:

$$V(t) = V_0 \sin(\omega t)$$

where:

- \triangleright V_0 is the peak voltage (maximum amplitude),
- \triangleright ω is the angular frequency in radians per second ($\omega=2\pi f$, where f is the frequency in Hz),
- t is the time in seconds.

how do we calculate the power wast in the resistant

Introduction to AC Circuits

In Alternating Current (AC) circuits, the current and voltage vary sinusoidally over time. A typical AC voltage source can be expressed as:

$$V(t) = V_0 \sin(\omega t)$$

where:

- $ightharpoonup V_0$ is the peak voltage (maximum amplitude),
- \blacktriangleright ω is the angular frequency in radians per second ($\omega=2\pi f$, where f is the frequency in Hz),
- t is the time in seconds.

The root-mean-square (RMS) value of the voltage is given by:

$$V_{\mathsf{RMS}} = rac{V_0}{\sqrt{2}}$$

Do it Yourself: AC Voltage and Frequency

Exercise:

Given an AC source with a peak-to-peak voltage of 680V and a frequency of 50Hz:

- 1. Write the equation for $V(t) = \sqrt{sin(\omega t)}$
- 2. Calculate the RMS voltage. $= \frac{690}{2} \sin(1007) + \cos(1007) = 240$

Key Concepts:

- Inductors oppose changes in **current**.
- ► Capacitors oppose changes in **voltage**.

Key Concepts:

- Inductors oppose changes in current.
- Capacitors oppose changes in voltage.

Capacitor	Inductor
$i = C \frac{dV}{dt}$	$V = L \frac{di}{dt}$
Constant voltage \Rightarrow Zero current	Constant current \Rightarrow Zero voltage
Vol TVR TVC	Vo II VR 3VL
	←□ ←□ ←□ ←□
V _e = V _c	V 0
$ \begin{array}{ccc} V_{e} = V_{c} \\ V_{R} = 0 \end{array} $ $ \begin{array}{ccc} 1 = 0 \end{array} $	VR = Ve
$\mathcal{I} = 0$	$I = \frac{V_0}{R}$
)—————————————————————————————————————	VAC (Vay)

Key Concepts:

- Inductors oppose changes in **current**.
- Capacitors oppose changes in voltage.

Inductor
$v=Lrac{di}{dt}$
Constant current \Rightarrow Zero voltage
Blocks High Frequency

Key Concepts:

- Inductors oppose changes in current.
- Capacitors oppose changes in voltage.

Capacitor	Inductor
$i = C \frac{dV}{dt}$	$v = L \frac{di}{dt}$
Constant voltage \Rightarrow Zero current	Constant current \Rightarrow Zero voltage
Passes High Frequency	Blocks High Frequency
reactance: $X_c = \frac{1}{j\omega C} = \left(\frac{-j}{\omega C}\right)$	reactance: $X_L = j\omega L$

Impedance in RLC Circuits

reactance:
$$X_c = \frac{1}{j\omega C} = \frac{-j}{\omega C}, X_L = (j\omega L)$$

$$Z = \frac{1}{2} \times C = \frac{1}{2} \times$$

Impedance in RLC Circuits

reactance:
$$X_{c}=\frac{1}{j\omega C}=\frac{-j}{\omega C}$$
 reactance: $X_{L}=j\omega L$

Impedance in RLC Circuits

reactance:
$$X_{c}=\frac{1}{j\omega C}=\frac{-j}{\omega C}$$
 reactance: $X_{L}=j\omega L$

Impedance, denoted by Z, is the total opposition to current flow in an AC circuit. The impedance of a series RLC circuit is given by:

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

where:

- ightharpoonup R is the resistance in ohms (Ω) ,
- L is the inductance in henrys (H),
- C is the capacitance in farads (F),
- $ightharpoonup \omega$ is the angular frequency of the AC source.

Do it Yourself: Impedance Calculation

Exercise:

For a series RLC circuit with:

$$R = 50 \,\Omega, \quad L = 0.2 \,\mathrm{H}, \quad C = 20 \,\mu\mathrm{F}, \quad f = 60 \,\mathrm{Hz}$$

- 1. Calculate inductive reactance X_L and capacitive reactance X_C .
- 2. Determine the total impedance Z.

Resonance and Bandwidth

Resonance and Bandwidth

Resonance occurs when the inductive reactance X_L and capacitive reactance X_C cancel each other out, i.e.,

$$\omega L = \frac{1}{\omega C}$$

At resonance, the impedance of the circuit is purely resistive (Z=R) and the resonant frequency is given by:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Do it Yourself: Resonant Frequency

Exercise:

For a series RLC circuit with:

$$L = 1 \, \text{H}, \quad C = 100 \, \mu \text{F}$$

Calculate the resonant frequency f_0 .

Example 1: Series RLC Circuit with Sinusoidal Input

Consider a series RLC circuit with:

$$R = 10 \,\Omega, \quad L = 0.1 \,H, \quad C = 100 \,\mu F$$

The circuit is driven by a sinusoidal voltage source

$$V(t) = 50\sin(1000t).$$

Task:

- Calculate the total impedance.
- Find the current in the circuit.

Reactance of each component:

Reactance of each component:

$$Z_R = 10 \,\Omega, \quad X_L = j100 \,\Omega, \quad X_C = -j10 \,\Omega$$

Total reactance:

Reactance of each component:

$$Z_R = 10 \,\Omega, \quad X_L = j100 \,\Omega, \quad X_C = -j10 \,\Omega$$

Total reactance:

$$Z_{\mathsf{total}} = Z_R + X_L + X_C = 10 + j90\,\Omega$$

Magnitude of impedance:

Reactance of each component:

$$Z_R = 10 \,\Omega, \quad X_L = j100 \,\Omega, \quad X_C = -j10 \,\Omega$$

Total reactance:

$$Z_{\mathsf{total}} = Z_R + X_L + X_C = 10 + j90\,\Omega$$

Magnitude of impedance:

$$|Z_{\text{total}}| = \sqrt{10^2 + 90^2} = 90.55\,\Omega$$

Current in the circuit:

Reactance of each component:

$$Z_R = 10 \,\Omega, \quad X_L = j100 \,\Omega, \quad X_C = -j10 \,\Omega$$

Total reactance:

$$Z_{\mathsf{total}} = Z_R + X_L + X_C = 10 + j90\,\Omega$$

Magnitude of impedance:

$$|Z_{\text{total}}| = \sqrt{10^2 + 90^2} = 90.55\,\Omega$$

Current in the circuit:

$$I(t) = \frac{V(t)}{|Z_{\text{total}}|} = 0.552 \sin(1000t) \,\text{A}$$

Applications of AC Circuits

- ▶ **Power Distribution:** AC is used in power systems for ease of voltage transformation.
- ► Tuned Circuits: RLC circuits are used in communication systems for tuning to specific frequencies.
- ► **Filters:** AC circuits with capacitors and inductors filter unwanted frequencies in signal processing.