UNIVERSIDADE FEDERAL DO PAMPA

PATRICK ROGGER GARCIA

DESENVOLVIMENTO DE SOFTWARE LIVRE PARA PROCESSAMENTOS DE DADOS MAGNETOTELÚRICOS

PATRICK ROGGER GARCIA

DESENVOLVIMENTO DE SOFTWARE LIVRE PARA PROCESSAMENTOS DE DADOS MAGNETOTELÚRICOS

Trabalho de Conclusão de Curso apresentado ao curso de Bacharelado em Geofísica como requisito parcial para a obtenção do grau de Bacharel em Geofísica.

Orientador: Vinicius Abreu de Oliveira Co-orientadora: Andréa Cristina Lima dos Santos

Matos

Garcia, Patrick Rogger

Desenvolvimento de Software livre para processamentos de Dados Magnetotelúricos / Patrick Rogger Garcia. – maio, 2018.

26 f.: il.

Trabalho de Conclusão de Curso (Graduação) — Universidade Federal do Pampa, Campus Caçapava do Sul, Geofísica, 2018.

"Orientação: Vinicius Abreu de Oliveira; Coorientação: Andréa Cristina Lima dos Santos Matos".

1. Kivy. 2. Magnetotelúrico. 3. Python3. 4. Software Livre. I. Título.

PATRICK ROGGER GARCIA

DESENVOLVIMENTO DE SOFTWARE LIVRE PARA PROCESSAMENTOS DE DADOS MAGNETOTELÚRICOS

Trabalho de Conclusão de Curso apresentado ao curso de Bacharelado em Geofísica como requisito parcial para a obtenção do grau de Bacharel em Geofísica.

ANO.

Banca examinadora:

Prof. Dr. Vinicius Abreu de Oliveira
Orientador

Prof. Dr. NOME SOBRENOME
Universidade Federal do Pampa

Prof. Dr. NOME SOBRENOME

Universidade Federal do Pampa

Trabalho de Conclusão de Curso defendido e aprovado em: DIA de MÊS de

RESUMO

Escreva aqui seu resumo em português.

Palavras-chave: Kivy. Magnetotelúrico. Python3. Software Livre.

ABSTRACT

screva aqui seu resumo em língua estrangeira.

Keywords: E.

LISTA DE FIGURAS

Figura 1	Arranjo para medir a resistividade (ρ) de um material	14
Figura 2	Resistividade dos Materiais Geológicos	15
Figura 3	Modelo de Terra 2D para a resistividade variando na direção y	17
Figura 4	Exemplo Janela com Kivy implementada somente com código Python	20
Figura 5	Exemplo dos pontos interpolados usando Scipy e plotados usando Matplotli	ib22

LISTA DE TABELAS

Tabela 3.1	Distribuição de pontos com valor anômalo ao centro.	21
	3 1	
Tabela 6.1	Cronograma - 1º Semestre 2018	25
Tabela 6.2	Cronograma - 2º Semestre 2018	25

LISTA DE ABREVIATURAS E SIGLAS

SIGLA NOMECOMPLETO

SIGLA NOMECOMPLETO

LISTA DE SÍMBOLOS

ρ Resistividade

 ∇ Nabla

 $\nabla \times B$ Mag

SUMÁRIO

1 INTRODUÇÃO	11
2 OBJETIVOS	12
2.1 Objetivos Gerais	12
2.2 Objetivos Específicos	
3 MATERIAIS E MÉTODOS	13
3.1 Origem das Correntes Telúricas	13
3.2 Resistividade dos Materiais	13
3.3 Fundamentos Teóricos dos Métodos Eletromagnéticos	15
3.4 Resposta do Método Magnetotelúrico	17
3.4.1 Impedância Eletromagnética	
3.5 Modelo de Dimensões MT	
3.5.1 Terra 1D	17
3.5.2 Terra 2D	17
3.5.3 Terra 3D	18
3.6 Processamento das Series Temporais (mudar o titulo)	18
3.7 Ferramentas de Desenvolvimento do Software	18
3.7.1 Linguagem PYTHON	18
3.7.2 Módulos e Pacotes	19
3.7.2.1 Kivy	19
3.7.2.2 Scipy, MatplotLib, Numpy	20
3.7.3 Pacotes de Processamentos do grupo Geoma - INPE	22
3.8 Arquitetura do Software	22
4 ALGORITMOS E PROCESSAMENTOS	23
5 RESULTADOS ESPERADOS	24
6 CRONOGRAMA DE ATIVIDADES	25
6.1 1º Semestre	25
6.2 2º Semestre	25
	45

1 INTRODUÇÃO

Apoiado nas leis de Maxwell o método MT (Magnetotelúrico) usa a Terra como um condutor ôhmico e as variações do seu campo magnético promovido por ventos solares (PARKINSON, 1983) e tempestades equatoriais que interagem com a ionosfera para investigar as estruturas internas da Terra e litologias rasas.

No Brasil o uso do método MT é insipiente, restrito ao meio acadêmico e pouco utilizado na indústria, porém, pode ser bem aplicado na prospecção de hidrocarbonetos, sendo a sua resolução melhor que a magnetometria e gravimetria, também em estudos crustais apoiando a sismologia devido sua grande profundidade de investigação, mas o alto custo de processamento e a falta de *softwares* para trabalhar com os dados tem sido algumas das causas do fraco uso.

Esse trabalho foi pensado primeiramente para tornar o MT mais difundido, construindo um *software* com interface gráfica e distribuição livre. O *software* então nasceu com esse propósito, compreendendo o processamento de dados MT desde a coleta até a primeira visualização dos dados, como: escolha de bandas, plotagem de pseudo-secções em função de resistividade e fase também fazendo tratamentos estatísticos e processamento robusto proposto por EGBERT (1997).

O programa será construído usando a linguagem Python (PYTHON SOFTWARE FOUNDATION, 2018) e a construção da interface gráfica será desenvolvida usando a API Kivy (KIVY ORGANIZATION, 2018b) dentre outros pacotes. A escolha por essa linguagem foi a vasta quantidade de pacotes, o crescente número de pessoas implementando e a facilidade da construção do código.

2 OBJETIVOS

2.1 Objetivos Gerais

O objeto de estudo desse trabalho é o desenvolvimento de um *Software* para tratamentos e processamentos de dados magnetotelúrico, também a aplicação do programa no processamento e comparação de dados reais coletados no nordeste brasileiro, conhecida como província Borborema, região que vem sendo grandemente estudada com o magnetotelúrico e proporciona a este trabalho uma boa validação dos algoritmos de processamento.

2.2 Objetivos Específicos

O MT é um método geofísico que trabalha com propriedades eletromagnéticas, essa característica torna o processamento dos dados extremamente trabalhoso e com alto custo computacional, o trabalho então propõe a criação de novos algoritmos e otimização dos que já existem para tornar o processamento mais fácil e barato.

Tem objetivo também de obter pseudosecções de resistividades e modelos litogeofísicos de resistividade para a região de estudo com as novas rotinas comparando com trabalhos anteriores como os de Alane, andrea e outros que fizeram na região.

3 MATERIAIS E MÉTODOS

O método magnetotelúrico proposto por TIKHONOV (1950) e CAGNIARD (1953), usa as propriedades eletromagnéticas para estudar a distribuição de resistividade na crosta, podendo variar a sua investigação de dezenas de metros a dezenas de quilômetros.

3.1 Origem das Correntes Telúricas

As flutuações no campo magnético terrestre geram campos elétricos na alta atmosfera que induzem correntes magnéticas, as ondas eletromagnéticas então penetram no interior da Terra na forma de ondas planas ortogonais que induzem novas correntes chamadas de corrente telúricas que trazem informações das características físicas das litologias.

Uma das características é a modulação da frenquência, causada por diferentes tipos de rochas e estruturas, esse fenômeno é diretamente relacionado a resistividade do meio. citar

As frequências das ondas são baixas variando de 1 mHz à 10 kHz, ondas com frequências menores que 1 Hz tem origem nos ventos solares que interagem como o campo magnético terrestre, já ondas com frequências maiores de 1 Hz são provocadas por tempestades equatoriais.citar relação, e regras meio isotrpico

3.2 Resistividade dos Materiais

Para o magnetotelúrico a propriedade de contraste investigada é a condutividade[σ] ou resistividade[ρ] sendo essa o inverso da condutividade. A resistividade é uma propriedade particular de cada material, ou seja, a partir de uma resistividade podemos estimar a qual material ela pertence¹.

Em 1827, Georg Ohm verificou de forma empírica que aplicando uma diferença de potencial em um material esse gera uma resistência a passagem de corrente, essa relação

¹Para os meios geológicos essa propriedade é representada por um intervalo de valores, devido as complexidades químicas e físicas das diferentes litologias.

é chamada de lei de Ohm (equação 3.1)citar.

$$V = Ri \tag{3.1}$$

Onde V é a diferença de potencial [V], i é a corrente [A] e R é a resistência [Ω], materiais que obedecem essa lei são chamados de materiais ômicos, a Terra é considerada um material ômico, porem para a investigação geofísica a resistência não é uma propriedade viável, visto que depende muito da geometria do problema, assim foi proposto a resistividade, onde, um mesmo material terá a sua resistividade igual independente da geometria.

A resistividade então é definida pela que o material oferece para um comprimento (equação 3.2)...... mudar isso e colocar igual do livro, a figura 1 mostra um circuito para se obter a resistividade, sendo A a área (m^2), R a resistência (Ω), L o comprimento (m) e ρ a resistividade dada em Ωm .

$$\rho = \frac{RA}{L} \; ; \qquad R = \frac{V}{i} \tag{3.2}$$

Figura 1 – Arranjo para medir a resistividade (ρ) de um material

Fonte: Adaptado TELFORD, (1990)

A figura 2 mostra a distribuição de resistividade para diversos materiais geológicos. Portanto podemos identificar a partir de um contexto geológico quais litologias pertence a cada resistividade encontrada, por exemplo, uma litologia que tenha reistividade em torno de $100\,\Omega m$ e outra com $3000\,\Omega m$ pode ser caracterízada como um arenito e uma rocha ignea respectivamente.

Figura 2 – Resistividade dos Materiais Geológicos

Fonte: Adaptado PALACKY, (1987)

3.3 Fundamentos Teóricos dos Métodos Eletromagnéticos

Apoiado nas leis de Maxwell (HAYT; BUCK, 2013) podemos medir os campos elétricos e magnéticos separadamente em diferentes componentes e assim unir para obter a função de *skin-depth*.

Os campos podem ser descritos pelas equações a seguir²:

$$\nabla \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t} \tag{3.3}$$

$$\nabla \times \vec{\mathbf{H}} = \vec{\mathbf{J}} + \frac{\partial \vec{\mathbf{D}}}{\partial t} \tag{3.4}$$

$$\nabla \cdot \vec{\mathbf{B}} = 0 \tag{3.5}$$

$$\nabla \cdot \vec{\mathbf{D}} = \rho \tag{3.6}$$

 $\vec{E} \rightarrow \text{Campo Elétrico } [V/m]$

 $\vec{B} \rightarrow \text{Campo Magnético } [T]$

 $\vec{H} \rightarrow \text{Campo Magnetizante } [A/m]$

²Para cargas e correntes livres (macroscópica)

 $\vec{J} \rightarrow$ Densidade de Corrente $[A/m^2]$

 $\vec{\mathrm{D}} \to \mathrm{Campo}$ de Deslocamento Elétrico $[C/m^2]$

 $\rho \to \text{Densidade de Carga } [C/m^3]$

 $t \to \text{Tempo}[s]$

Obedecendo as relações de contorno para um meio isotrópico temos as seguintes relações (equações constitutivas):

$$\vec{\mathbf{B}} = \mu \vec{\mathbf{H}} \tag{3.7}$$

$$\vec{\mathbf{D}} = \varepsilon \vec{\mathbf{E}} \tag{3.8}$$

$$\vec{J} = \sigma \vec{E} \tag{3.9}$$

 $\mu \rightarrow$ Permeabilidade Magnética [H/m]

 $\varepsilon \to \text{Permissividade Elétrica } [F/m]$

 $\sigma \to \text{Condutividade Elétrica } [S/m]$

Cada escalar das equações anteriores são características que dependem do meio em que a onda se propaga.

Para a crosta $\mu=1,2566 \mathrm{x} 10^{-6} H/m$ e $\varepsilon=8,85 \mathrm{x} 10^{-12} F/m$ esses parâmetros funcionam como tensores em um meio anisotrópico que variam em função do tempo, já considerando para os trabalhos de investigação o meio supõe-se ser isotrópico, assim, tornando estáticos os tensores.

3.4 Resposta do Método Magnetotelúrico

3.4.1 Impedância Eletromagnética

3.5 Modelo de Dimensões MT

3.5.1 Terra 1D

3.5.2 Terra 2D

O modelo de Terra 2D é caracterizado pelo contato vertical entre dois meios de diferentes resistividades. Se o contato é paralelo ao eixo x então é definido a direção do *strike* no eixo x, a direção deve ser paralela ao plano de contato, ou seja, onde a condutividade é constante.

Figura 3 – Modelo de Terra 2D para a resistividade variando na direção y

Fonte: Adaptado (DIDANA, 2010)

Devido a essa diferença entre as resistividades polarizamos os campos em TE (Transversal Elétrico) e TM (Transversal Magnético). Para esse modelo temos o tensor impedância como:

$$Z_{2D} = \begin{pmatrix} 0 & Z_{xy} \\ Z_{yx} & 0 \end{pmatrix} \tag{3.10}$$

Assim cada polarização pode ser escrita como:

$$TE = \begin{cases} \frac{\partial E_x}{\partial y} = \frac{\partial B_z}{\partial t} = -i\omega B_z \\ \frac{\partial E_x}{\partial z} = \frac{\partial B_y}{\partial t} = i\omega B_y \\ \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} = \mu \sigma E_x \end{cases}$$
(3.11)

$$TM = \begin{cases} \frac{\partial B_x}{\partial y} = \mu \sigma E_z \\ -\frac{\partial B_x}{\partial z} = \mu \sigma E_y \\ \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = i \omega B_x \end{cases}$$
(3.12)

3.5.3 Terra 3D

3.6 Processamento das Series Temporais (mudar o titulo)

3.7 Ferramentas de Desenvolvimento do Software

O desenvolvimento do *software* foi baseado na filosofia de *Software Livre* citar onde o código fonte será liberado e distribuído para a comunidade geofísica. A linguagem base escolhida para o projeto foi o Python, visto as vastas bibliotecas para trabalhar com dados científicos procurar o termo correto em ingles e a simplicidade da implementação do código.

3.7.1 Linguagem PYTHON

Falar um pouco da historia do python

Exemplos de código Python:

Mostrar conteúdo na Tela:

Como comentado, o código tem fácil leitura, para imprimir um conteúdo na tela podemos simplesmente usar o comando print, aproximando muito da linguagem falada.

```
>>> # Comentários
>>> print ('Hello Word')
Hello World
```

Operações Matemáticas:

As variáveis no código não precisam ser declaradas para um tipo específico (Ex.: *float, int, string*), deixando assim o código mais fluido.melhorar

```
>>> a = 2
>>> b = 5
>>> print(a + b)
7
>>> print(b / a)
2.5
```

(3.7.1.2)

Importando Módulos:

Módulos são estruturas que podemos importar objetos de um código a outro, no script 3.7.1.3 importamos o valor de π que esta contido na variável pi dentro do pacote math.

```
>>> import math
>>>
>>> pi = math.pi
>>> print(pi)
3.141592653589793
```

(3.7.1.3)

3.7.2 Módulos e Pacotes

A vasta quantidade de pacotes de terceiros para Python é o que faz a linguagem tão rica, os pacotes facilitam a implementação do código, por exemplo, que for preciso calcular o espectro de frequência de um conjunto de dados não será necessário implementar todo o algoritmo para efetuar o calculo, resolver as integrais e assim por diante, mas sim podemos utilizar o pacote scipy e importarmos a função dnff() que já foi implementada e executar em nosso código, esse processo economiza tempo em desenvolvimento.

3.7.2.1 Kivy

Kivy é um *framework* criado em 2010 pela KIVY ORGANIZATION (KIVY ORGANIZATION, 2018a) e *opensource* para o desenvolvimento de interfaces gráficas, a escolha dessa interface foi a alta compatibilidade entre sistemas operacionais e todo o processamento para desenhar a tela é feita no chip gráfico liberando então mais processamento pela CPU.

Kivy também é uma linguagem de programação que permite a criação da interface de forma mais fácil, similar ao QT citar ela usa uma linguagem de marcação e indentada onde as propriedades dos *widgets* (Objetos interativos com o usuário) são adicionadas colocando-as a baixo e com espaçamento de 4 espaços do *widget*.

Exemplo do Kivy dentro do código Python:

```
>>> from kivy.app import App
>>> from kivy.uix.button import Button
>>>
>>> class Test(App):
>>> def build(self):
>>> return Button(text='Hello Word')
>>>
>>> Test().run()
(3.7.2.1.1)
```

Figura 4 – Exemplo Janela com Kivy implementada somente com código Python

Fonte: O Autor, 2018

3.7.2.2 Scipy, MatplotLib, Numpy

Scipy é um ecossistema de ferramentas para processamento de dados científicos contando com ferramentes de manipulação de matrizes, plotagem de gráficos, interpolação dentro outras ferramentas.

Desenvolvido pela achar a organização o ecossistema é de código aberto as principais ferramentas são: Numpy numpy para trabalhos com vetores e matrizes, Matplotlib matplotlib são ferramentas para plotagem de dados e o próprio Scipy para interpolação, cálculo de espectro de frequência dentre outras.

A tabela 3.1 apresenta 9 pontos distribuídos numa matriz quadrada de ordem 3, onde, a posição (2,2) possui uma anomalia, o código 3.7.2.2.1 mostra como fazer a interpolação dos pontos e como plotar o resultado (figura 5).

Tabela 3.1 – Distribuição de pontos com valor anômalo ao centro.

Ponto	X	y	Z
1	1	1	1
2	2	1	1
3	3	1	1
4	1	2	1
5	2	2	3
6	3	2	1
7	1	3	1
8	2	3	1
9	3	3	1

Fonte: O Autor, 2018

Exemplo Numpy:

```
>>> import Numpy as np
>>>
>>> x = np.array([1,2,3,1,2,3,1,2,3])
>>> y = np.array([1,1,1,2,2,2,3,3,3])
>>> z = np.array([1,1,1,1,3,1,1,1,1])
(3.7.2.2.1)
```

Exemplo Scipy:

```
>>> from scipy import interpolate
>>> from scipy.interpolate import griddata
>>>
>>> xi = np.arange(x.min(), x.max(), .01)
>>> yi = np.arange(y.min(), y.max(), .01)
>>> xi,yi = meshgrid(xi,yi)
>>>
>>> # Interpolate
>>> zi = griddata((x,y),z,(xi,yi),method='cubic')
(cont. 3.7.2.2.1)
```

Exemplo Matplotlib:

```
>>> import matplotlib.pyplot as plt
>>>
>>> plt.figure(1)
>>> plt.subplot(111)
>>>
>>> zn = np.arange(z.min(), z.max() + 0.01, .01)
>>>
>>> plt.plot(x, y, 'kx')
>>> plt.contourf(xi, yi, zi, zn)
```

```
>>> plt.colorbar()
>>> plt.grid()
>>> plt.set_cmap('jet')
>>> plt.show()
```

(cont. 3.7.2.2.1)

Figura 5 – Exemplo dos pontos interpolados usando Scipy e plotados usando Matplotlib

Fonte: O Autor, 2018

3.7.3 Pacotes de Processamentos do grupo Geoma - INPE

3.8 Arquitetura do Software

4 ALGORITMOS E PROCESSAMENTOS

5 RESULTADOS ESPERADOS

Espera-se ao final desse trabalho de conclusão de curso criar uma interface gráfica para processamento de dados MT.

Essa interface será disponibilizada para a comunidade geofísica.

6 CRONOGRAMA DE ATIVIDADES

6.1 1º Semestre

Tabela 6.1 – Cronograma - 1º Semestre 2018

Tarefa	Jan	Fev	Mar	Abr	Mai	Jun
1. Revisão Bibliográfica	X					
1.1 Magnetotelúrico	X	X	X			
1.2 Python 3.5			X	X		
1.2.1 Linguagem			X	X		
1.2.2 Kivy 1.10.0			X	X		
1.2.3 Numpy, Scipy, MatplotLib			X	X		
1.3 Pacote PROC-MT (INPE)					X	X
1.3.1 Ats2asc					X	
1.3.2 ProcessamentoZ						X
1.3.3 Tojones						X

Fonte: O autor, 2018

6.2 2º Semestre

Tabela 6.2 – Cronograma - 2º Semestre 2018

Tarefa	Jul	Ago	Set	Out	Nov	Dez
1. Construção da Interface Gráfica	X	X				
2. Desenvolvimento dos Scripts			X			
3. Fase de testes com Dados Sintéticos				X		
4. Fase de testes com Dados Reais					X	
5. Liberação do Código						X

Fonte: O autor

REFERÊNCIAS

CAGNIARD, L. Basic theory of the magneto-telluric method of geophysical prospecting. v. 18(3), p. 605–635, 1953.

DIDANA, Y. L. Multidimensional Inversion of MT data from Krýsuvík High Temperature Geothermal Field, SW Iceland, and study of how 1D and 2D Inversion can Reproduce a given 2D/3D Resistivity Structures Using Synthetic MT Data. 136 p. Dissertation (Masters Thesis) — Faculty of Earth Sciences University of Iceland, Reykjavík, Iceland, Abril 2010.

EGBERT, G. D. Robust multiple-station magnetotelluric data processing. **Geophysical Journal International**, v. 130, p. 475–496, 1997.

HAYT, W. H.; BUCK, J. A. **Eletromagnetismo**. 8. ed. Porto Alegre, Brazil: AMGH Editora Ltda., 2013.

KIVY ORGANIZATION. **Kivy**. [S.l.], 2018. Available at < https: //kivy.org/ >. Visited in May, 2018.

KIVY ORGANIZATION. **Kivy 1.10.1 documendation**. [S.l.], 2018. Available at < https://kivy.org/>. Visited in March, 2018.

PALACKY, G. J. Electromagnetic Methods in applied Geophysics. 1. ed. [S.l.]: Society of Exploration Geophysicists, 1987. 53-130 p.

PARKINSON, W. D. **Introduction to Geomagnetism**. Edinburgh: Scotish Academic Press, 1983.

PYTHON SOFTWARE FOUNDATION. **Python 3.6.5 documendation**. [S.l.], 2018. Available at $\langle https: //docs.python.org/3/ \rangle$. Visited in March, 2018.

TELFORD, W. M. **Applied Geophysics**. New York, USA: British Library Cataloguind, 1990.

TIKHONOV, A. N. On determining electrical characteristics of the deep layers of the earth's crust. **Doklady Akademii Nauk SSSR**, v. 73, p. 295–297, 1950.