3	RegDst	RegWrite	ALUSrc	ALUCtr	MemtoReg	MemWrite	Branch	Jump
	1	1	0	add/sub/or/and/slt	0	0	0	0
							,	JY OF SCIENCE

名	RegDst	RegWrite	ALUSrc	ALUCtr	MemtoReg	MemWrite	Branch	Jump
4	0	1	1	add	1	0	0	0
					•		•	PROTTY OF SCIENCE

名	RegDst	RegWrite	ALUSrc	ALUCtr	MemtoReg	MemWrite	Branch	Jump
4	Х	0	1	add	X	1	0	0
	•		•		•	•		FD WEEK

名	RegDst	RegWrite	ALUSrc	ALUCtr	MemtoReg	MemWrite	Branch	Jump
23	Х	0	X	Х	X	0	0	1

③ 取指令阶段T1的数据通路

并行执行: M[PC]→IR PC+4→PC

④ 译码/取数阶段T2的数据通路

■ 指令译码;

并行执行:
✓ 取寄存器操作数→A、B
✓提前计算分支目标地址

⑤ R型指令执行阶段T3~T4的数据通路

⑦ Beq指令执行阶段T3的数据通路

⑥ LW指令执行阶段T3~T5的数据通路

		表 5.	7 MIPS 寄存器功能说明
编号	助记符	英文全称	功能描述
\$0	\$zero	zero	恒零值,可用 0 号寄存器参与的加法指令实现 MOV 指令
\$1	\$at	Assembler Temp	汇编器保留寄存器,常用作伪指令的中间变量
\$2 ~ 3	\$v0 ~ \$v1	Value	存储子程序的非浮点返回值
\$4 ~ 7	\$a0 ~ \$a3	Argument	用于存储子程序调用的前 4 个非浮点参数
\$8 ~ 15	\$t0 ~ \$t7	Temporaies	临时变量,调用者保存寄存器,在子程序中可直接使用
\$16 ~ 23	\$s0 ~ \$s7	Saved Registers	通用寄存器,被调用者保存寄存器,在子程序中使用时必须先压栈
ψ10 2 5	Ψ30 Ψ37	Saved Registers	保存原值,使用后应出栈恢复原值
\$24 ~ 25	\$t8 ~ \$t9	Temporaies	临时变量,属性同 \$t0 ~ \$t7
\$26 ~ 27	\$k0 ∼ \$k1	Kernel Reserved	操作系统内核保留寄存器,用于进行中断处理
\$28	\$gp	Global Pointer	全局指针
\$29	\$sp	Stack Pointer	栈指针,指向栈顶
\$30	\$fp/\$s8	Frame Pointer	帧指针,用于过程调用,也可以当作 \$s8 使用
\$31	\$ra	Return Address	子程序返回地址

funct	指令助记符	指令功能描述	备注
00	sll rd,rt,shamt	R[rd]=R[rt]< <shamt< td=""><td>逻辑左移,注意rs字段未使用</td></shamt<>	逻辑左移,注意rs字段未使用
02	srl rd,rt,shamt	R[rd]=R[rt]>>shamt	逻辑右移,注意rs字段未使用
03	sra rd,rt,shamt	R[rd]=R[rt]>>shamt	算术右移,注意 rs 字段未使用
04	sllv rd,rt,rs	R[rd]=R[rt] << R[rs]	可变左移
08	jr rs	PC=R[rs]	R[rs] 值应是 4 的倍数,字对齐
09	jalr rs	R[31]=PC+8 PC=R[rs]	子程序调用
12	syscall	系统调用	无操作数
16	mfhi rd	R[rd]=HI	取 HI 寄存器的值,mflo 取 LO
17	mthi rs	HI=R[rs]	存 HI 寄存器的值,mtlo 存 LO
24	mult rs,rt	{HI,LO}=R[rs]*R[rt]	有符号乘, 64 位结果送入 HI、LO 寄存器
32	add rd,rs,rt	R[rd]=R[rs]+R[rt]	溢出时发生异常,且不修改 R[rd]
34	sub rd,rs,rt	R[rd]=R[rs]-R[rt]	溢出时发生异常,且不修改 R[rd]
36	and rd,rs,rt	R[rd]=R[rs]&R[rt]	逻辑与
37	or rd,rs,rt	R[rd]=R[rs] R[rt]	逻辑或
42	slt rd.rs.rt	R[rd]=(R[rs] <r[rt])?1:0< td=""><td>小于置位指令,有符号比较</td></r[rt])?1:0<>	小于置位指令,有符号比较
04	beq rs,rt,imm	if(R[rs]==R[rt]) PC=PC+4+imm<<2	条件分支(相等跳转)
05	bne rs,rt,imm	if(R[rs]!=R[rt]) PC=PC+4+imm<<2	条件分支 (不等跳转)
08	addi rt,rs,imm	R[rt]=R[rs]+imm	立即数加,溢出发生异常
10	slti rt,rs,imm	R[rt]=(R[rs] <imm)?1:0< td=""><td>小于置位指令,有符号比较</td></imm)?1:0<>	小于置位指令,有符号比较
12	andi rt,rs,imm	R[rt]=R[rs]&imm	立即数逻辑与指令
15	lui rt,imm	R[rt]=imm<<16	加载立即数指令
35	lw rt,imm(rs)	R[rt]=M[R[rs]+imm]	取数指令,类似指令还有 lb、lh、lbu等
43	sw rt,imm(\$rs)	M[R[rs]+imm]=R[rt]	存数指令,类似指令还有 sb、sh

02	j address	$PC \leftarrow \{(PC+4)_{31:28}, address, 00\}$	无条件分支
03	jal address	R[31] ← PC+8 (无延迟槽 +4) PC ← {(PC+4) _{31:28} ,address,00}	子程序调用指令

指令在 BTB 中	预测情况	下条指令地址	实际情况	预测情况	流水停顿周期
命中	预测跳转	分支目标地址	跳转	预测成功	0
命中	预测跳转	分支目标地址	未跳转	预测失败	2
命中	预测不跳转	顺序地址	跳转	预测失败	2
命中	预测不跳转	顺序地址	未跳转	预测成功	0
缺失	\$ 55 EST R DO	顺序地址	跳转	AHE CONTRA	2
缺失	HARTS ARTERIES	顺序地址	未跳转		0

 $T_{\min_clk} = \max\left(T_{if_max}, T_{id_max}, T_{ex_max}, T_{ex_max}, T_{mem_max}, T_{wb_max}\right)$

About and		表 7.6 流水线各功能段关键效	近迟
功能段	标识	功能段延迟	65nm CMOS 工艺实际值
IF	$T_{ m if_max}$	$T_{\mathrm{clk_to_q}} + T_{\mathrm{mem}} + T_{\mathrm{setup}}$	300ps = 30 + 250 + 20
ID	$T_{ m id_max}$	$2(T_{\text{clk_to_q}} + T_{\text{RF_read}} + T_{\text{setup}})$	$400ps = 2 \times (30 + 150 + 20)$
EX	$T_{ m ex_max}$	$T_{\text{clk_to_q}} + 2T_{\text{mux}} + T_{\text{alu}} + T_{\text{setup}}$	$300ps = 30 + 2 \times 25 + 200 + 20$
MEM	$T_{ m mem_max}$	$T_{\rm clk_to_q} + T_{\rm mem} + T_{\rm setup}$	300ps = 30 + 250 + 20
WB	$T_{ m wb_max}$	$T_{ m clk_to_q} + T_{ m mux} + T_{ m setup}$	75ps = 30 + 25 + 20

