NAME: Jaideep.Ch

REG.NO: 20BCE7213

ADS Assignment 2

Titanic Ship Case Study

Problem Description: On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. Translated 32% survival rate.

- One of the reasons that the shipwreck led to such loss of life was that there were not
 enough lifeboats for the passengers and crew,
- Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upperclass.

The problem associated with the Titanic dataset is to predict whether a passenger survived the disaster or not. The dataset contains various features such as passenger class, age, gender, cabin, fare, and whether the passenger had any siblings or spouses on board. These features can be used to build a predictive model to determine the likelihood of a passenger surviving the disaster. The dataset offers opportunities for feature engineering, data visualization, and model selection, making it a valuable resource for developing and testing data analysis and machine learning skills.

Perform Below Tasks to complete the assignment:-

- 1. Download the dataset: Dataset
- 2. Load the dataset.
- 3. Perform Below Visualizations.
 - Univariate Analysis
 - Bi Variate Analysis
 - Multi Variate Analysis
- 4. Perform descriptive statistics on the dataset.
- 5. Handle the Missing values.
- 6. Find the outliers and replace the outliers
- 7. Check for Categorical columns and perform encoding.
- 8. Split the data into dependent and independent variables.
- 9. Scale the independent variables
- 10. Split the data into training and testing

```
#1
# Download the dataset: Dataset

import numpy as np
import pandas as pd
import seaborn as sns
```



```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
# Column Non-Null Count Dtype
                          891 non-null
                          891 non-null
891 non-null
                                                   int64
 2 sex
                                                  object
                                                  float64
 4 sibsp
                                                   int64
                                                   int64
       parch
5 parch 891 non-null 7 embarked 889 non-null 8 class 891 non-null 9 who 891 non-null 10 adult_male 891 non-null 293 non-null 293 non-null
                                                  float64
                                                  object
                                                  object
                                                   object
                                                  bool
 11 deck
                         203 non-null
                                                  object
 12 embark_town 889 non-null
13 alive 891 non-null
14 alone 891 non-null
                                                  object
object
                          891 non-null
                                                 bool
dtypes: bool(2), float64(2), int64(4), object(7)
memory usage: 92.4+ KB
```

3) □Univariate

Analysis

bivariate analysis

mul**G**ariate analysis

	survived	pclass	age	sibsp	parch	fare	%
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

4)

```
df.isnull().sum()
survived
                 0
pclass
                 Ð
                 0
sibsp
                 0
                 ø
parch
fare
                 0
embarked
                 0
class
who
                 8
adult_male
deck
               688
embark_town
alive
                 0
alone
                 θ
dtype: int64
```



```
# Check for Categorical columns and perform encoding.

from sklwarm.preprocessing import OneHotEncoder encoding = pd.get_dummies(df, columns = ['sex', 'emburked', 'class', 'who', 'adult_eale', 'emburket town', 'alone'])

swrvived pclass age sibsp parch fare alive sex_female sex_male embarked_C ... who_child who_man who_woman as 0 0 3 22.0 1 0 7.2500 no 0 1 0 0 0 1 0

1 1 1 38.0 1 0 712833 yes 1 0 1 0 0 0 1

2 1 3 25.0 0 0 7.9250 yes 1 0 0 0 0 0 1

3 1 1 35.0 1 0 53.1000 yes 1 0 0 0 0 0 1

4 0 3 35.0 0 0 8.0500 no 0 1 0 0 0 1 0

5 rows × 25 columns
```

7)

9)