Postulates of Quantum Mechanics

P1: Representation of states

The state at any time *t* is represented by

Classical	Quantum
x(t): position $p(t)$: momentum	$ \psi\rangle$: a vector in a Hilbert space ('ket' ψ)

For quantum states,

Principle of superposition

If $|\psi_1\rangle \& |\psi_2\rangle$ are possible states, $\alpha |\psi_1\rangle + \beta |\psi_2\rangle$ is also a possible state.

```
('bra' \psi) ('dagger': Adjoint or Hermitian conjugate) \langle \psi | = (|\psi\rangle)^{\dagger} \text{: co-vector corresponding to } |\psi\rangle \langle \psi_2 | \psi_1 \rangle \text{: a number called inner product of } |\psi_1\rangle \& |\psi_2\rangle \sqrt{\langle \psi | \psi \rangle} \text{: norm of } |\psi\rangle
```

(Note)

In this course, I will use only normalized vectors ($\langle \psi | \psi \rangle = 1$).

Please get familiar with the rules of vectors & inner products!

P2: Representation of observables

Observables (Dynamical variables) are represented by

Classical	Quantum
x & p are independent variables.	\widehat{X} and \widehat{P} are Hermitian operators.
$\omega = \omega(x, p)$: function of $x \& p$	$[\hat{X}, \hat{P}] = i\hbar$ (Canonical commutation rule) $\widehat{\Omega}(\hat{X}, \hat{P}) = \omega(x \to \hat{X}, p \to \hat{P})$

(Ex) Harmonic oscillator

Hamiltonian

$$H(x,p) = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 x^2$$

Hamiltonian operator

$$\widehat{H}(\widehat{X},\widehat{P}) = \frac{\widehat{P}^2}{2m} + \frac{1}{2}m\omega_0^2 \widehat{X}^2$$

P2: Representation of observables

Observables (Dynamical variables) are represented by

Classical	Quantum
x & p are independent variables.	\widehat{X} and \widehat{P} are Hermitian operators.
$\omega = \omega(x, p)$: function of $x \& p$	$\left[\hat{X},\hat{P}\right]=i\hbar$ (Canonical commutation rule) $\widehat{\Omega}(\hat{X},\hat{P})=\omega(x\to\hat{X},p\to\hat{P})$

$$\widehat{\Omega}|\omega_i\rangle = \omega_i|\omega_i\rangle$$
 You get eigenvectors & eigenvalues of $\widehat{\Omega}$

- \widehat{X} , \widehat{P} and $\widehat{\Omega}$ are Hermitian operators. ($\widehat{\Omega}^{\dagger}=\widehat{\Omega}$)
- (1) Eigenvalues are real.
- (2) There exists a complete basis of orthonormal eigenvectors ($|\omega_1\rangle$, $|\omega_2\rangle$, ..., $|\omega_n\rangle$)

P2: Representation of observables

Observables (Dynamical variables) are represented by

Classical	Quantum
x & p are independent variables.	\widehat{X} and \widehat{P} are Hermitian operators.
$\omega = \omega(x, p)$: function of $x \& p$	$\left[\widehat{X},\widehat{P}\right] =i\hbar$ (Canonical commutation rule)
	$\widehat{\Omega}(\widehat{X},\widehat{P}) = \omega(x \to \widehat{X}, p \to \widehat{P})$

Representation of \hat{X} and \hat{P} in the X-basis $(\hat{X}|x) = x|x\rangle$)

$$\langle x|\hat{X}|x'\rangle = x'\langle x|x'\rangle = x'\delta(x-x')$$
 (Note on the Dirac delta function)
$$\langle x|\hat{P}|x'\rangle = -i\hbar\delta'(x-x')$$
 (Note on the Dirac delta function)
$$\langle x|\hat{P}|x'\rangle = -i\hbar\delta'(x-x')$$
 (Note on the Dirac delta function)
$$\langle x|x'\rangle = \delta(x-x') = \begin{cases} \infty, & x=x'\\ 0, & x\neq x' \end{cases}$$
 (Can you then derive the following?
$$\int \delta(x-x')dx' = 1$$

$$\langle x|\hat{X}|\psi\rangle = x\psi(x)$$

$$\langle x|\hat{P}|\psi\rangle = -i\hbar\frac{d}{dx}\psi(x)$$

$$\langle x|[\hat{X},\hat{P}]|\psi\rangle = i\hbar\psi(x)$$
 (Don't use the canonical commutation rule.)
$$\int f(x')\delta'(x-x')dx' = f'(x)$$

P3: Measurement of observables

Measurement of an observable on a state

Classical	Quantum
Measurement of ω on a state (x, p)	Measurement of Ω on a state $ \psi angle$
(1) A value $\omega(x,p)$ is obtained (2) The state remains unaffected	(1) One of the eigenvalues ω_i of $\widehat{\Omega}$ is obtained with probability $P(\omega_i) = \langle \omega_i \psi \rangle ^2$
	(2) $ \psi\rangle \rightarrow \omega_i\rangle$ (collapse of the state)

$$\begin{aligned} |\psi\rangle &= |\psi\rangle \sum_{i} |\omega_{i}\rangle \langle \omega_{i}| = \sum_{i} |\omega_{i}\rangle \langle \omega_{i}|\psi\rangle \\ &= \sum_{i} a_{i} |\omega_{i}\rangle \end{aligned}$$

$$P(\omega_i) = |a_i|^2$$
: Probability of obtaining ω_i

Continuous variables

$$|\psi\rangle = |\psi\rangle \int |x\rangle\langle x| \, dx = \int |x\rangle\langle x|\psi\rangle \, dx$$
$$= \int |x\rangle\underline{\psi(x)} \, dx$$
Wavefunction in the X basis

$$P(x) = |\psi(x)|^2$$
: probability density

$$P(x)dx$$
: probability of finding the particle in between $(x, x + dx)$

P3: Measurement of observables

Measurement of an observable on a state

Classical	Quantum
Measurement of ω on a state (x, p)	Measurement of Ω on a state $ \psi angle$
(1) A value $\omega(x,p)$ is obtained (2) The state remains unaffected	(1) One of the eigenvalues ω_i of $\widehat{\Omega}$ is obtained with probability $P(\omega_i) = \langle \omega_i \psi \rangle ^2$
	(2) $ \psi\rangle \rightarrow \omega_i\rangle$ (collapse of the state)

In terms of a projection operator $\widehat{\mathbb{P}}_{\omega} = |\omega\rangle\langle\omega|$,

$$|\psi\rangle \rightarrow |\omega\rangle = \frac{\widehat{\mathbb{P}}_{\omega}|\psi\rangle}{\sqrt{\langle\widehat{\mathbb{P}}_{\omega}\psi|\widehat{\mathbb{P}}_{\omega}\psi\rangle}}$$
 with probability $P(\omega) = \langle\psi|\widehat{\mathbb{P}}_{\omega}|\psi\rangle = \langle\widehat{\mathbb{P}}_{\omega}\psi|\widehat{\mathbb{P}}_{\omega}\psi\rangle$

P3: Measurement of observables

Measurement of an observable on a state

Classical	Quantum
Measurement of ω on a state (x, p)	Measurement of Ω on a state $ \psi angle$
(1) A value $\omega(x,p)$ is obtained (2) The state remains unaffected	(1) One of the eigenvalues ω_i of $\widehat{\Omega}$ is obtained with probability $P(\omega_i) = \langle \omega_i \psi \rangle ^2$
	(2) $ \psi\rangle \rightarrow \omega_i\rangle$ (collapse of the state)

(Example) Consider a normalized state
$$|\psi\rangle = \frac{1}{2}|\omega_1\rangle + \frac{i}{2}|\omega_2\rangle - \frac{1}{\sqrt{2}}|\omega_3\rangle$$
 ($\{|\omega_i\rangle\}$: complete orthonormal basis of $\widehat{\Omega}$)

Measurement of Ω on the state yields

$$\omega_1$$
, with probability $P(\omega_1)=|\langle\omega_1|\psi\rangle|^2=\frac{1}{4}$, the state being changed $|\psi\rangle\to|\omega_1\rangle$, or ω_2 , with probability $P(\omega_2)=|\langle\omega_2|\psi\rangle|^2=\frac{1}{4}$, the state being changed $|\psi\rangle\to|\omega_2\rangle$, or ω_3 , with probability $P(\omega_3)=|\langle\omega_3|\psi\rangle|^2=\frac{1}{2}$, the state being changed $|\psi\rangle\to|\omega_3\rangle$.

Other ω_i 's are not obtained.

We can make not an exact prediction but a statistical prediction on the measurement prior to the measurement.

Ensemble

How to test a state $|\psi\rangle = \sum_i a_i |\omega_i\rangle$ by measurement of Ω

(Example)
$$|\psi\rangle=\sqrt{\frac{1}{3}}|\omega_1\rangle+\sqrt{\frac{2}{3}}|\omega_2\rangle$$

Measurement of Ω will yield either ω_1 or ω_2 , the state being collapsed to $|\omega_1\rangle$ or $|\omega_2\rangle$.

If you have only one particle, you can not determine the coefficients.

In order to determine the coefficients precisely,

you need a set of a large # of particles all in the same state $|\psi\rangle$ and repeat the measurement.

Ensemble

Pure ensemble (↔ Mixed ensemble)

Pure ensemble of particles in the state $|\psi\rangle$

Ensemble

Statistical quantities for an ensemble regarding the measurement of Ω

Expectation value (ensemble average) (corresponding to 'mean' in statistics)

$$\langle \Omega \rangle = \sum_{i} |\langle \omega_{i} | \psi \rangle|^{2} \omega_{i} = \langle \psi | \widehat{\Omega} | \psi \rangle$$

Uncertainty (corresponding to 'standard deviation' in statistics)

$$\Delta\Omega = \left[\sum_{i} |\langle \omega_{i} | \psi \rangle|^{2} (\omega_{i} - \langle \Omega \rangle)^{2}\right]^{1/2} = \left[\langle \psi | (\widehat{\Omega} - \langle \Omega \rangle)^{2} | \psi \rangle\right]^{1/2}$$

Ensemble

$$|\psi\rangle = \sqrt{\frac{1}{2}}(|\omega_1\rangle + |\omega_2\rangle)$$

Pure ensemble

N/2 particles of $|\omega_1\rangle$

N/2 particles of $|\omega_2\rangle$

Mixed ensemble

Can you distinguish between the two ensembles by measurement of Ω ? It may fail if you are unlucky. What is the case? What is the probability that it happens?

Measurement of two observables

$$|\psi\rangle$$
 Measurement of Ω $|\omega\rangle$ $P(\omega) = |\langle\omega|\psi\rangle|^2$ The state is chang

The state is changed in general.

$$|\omega\rangle \xrightarrow{\text{Measurement of }\Omega} |\omega\rangle \qquad P(\omega) = |\langle\omega|\omega\rangle|^2 = 1$$
The eigenstate is unaffected (as in classical mechanics)

$$|\psi\rangle \xrightarrow{\text{Measurement of }\Omega} |\omega\rangle \xrightarrow{\text{Measurement of }\Lambda} |\lambda\rangle \xrightarrow{\text{Measurement of }\Omega} |\omega\rangle ??$$

No, in general.

Yes, only for the simultaneous eigenstate $|\omega,\lambda\rangle$ of $\widehat{\Omega}$ & $\widehat{\Lambda}$.

$$\widehat{\Omega}|\omega,\lambda\rangle = \omega|\omega,\lambda\rangle
\widehat{\Lambda}|\omega,\lambda\rangle = \lambda|\omega,\lambda\rangle$$

$$\longrightarrow [\widehat{\Omega},\widehat{\Lambda}]|\omega,\lambda\rangle = 0$$

(1) $\widehat{\Omega}$ and $\widehat{\Lambda}$ are compatible: $[\widehat{\Omega},\widehat{\Lambda}]=0$ (Two operators commute.)

Complete basis of simultaneous eigenvectors
$$|\omega,\lambda\rangle$$

$$\sum_{i} |\omega,\lambda\rangle\langle\omega,\lambda| = I$$
$$P(\omega,\lambda) = |\langle\omega,\lambda|\psi\rangle|^2 = P(\lambda,\omega)$$

(2)
$$\widehat{\Omega}$$
 and $\widehat{\Lambda}$ are incompatible: $[\widehat{\Omega},\widehat{\Lambda}]=$ something having no zero eigenvalue $P(\omega,\lambda)\neq P(\lambda,\omega)$ $[\widehat{X},\widehat{P}]=i\hbar$ X and P cannot be well defined simultaneously for any state (Heisenberg uncertainty principle)

Measurement of two observables

For a momentum eigenstate $\hat{P}|p\rangle=p|p\rangle$, what is $\psi_p(x)=\langle x|p\rangle$?

$$\langle x|\hat{P}|p\rangle = p\langle x|p\rangle$$

$$-i\hbar \frac{d\psi_p(x)}{dx} = p\psi_p(x)$$

$$\psi_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$

Normalized so that $\langle p|p'\rangle=\delta(p-p')$

Plane wave (constant amplitude over entire x)

For a position eigenstate $\hat{X}|x\rangle = x|x\rangle$, what is $\psi_x(p) = \langle p|x\rangle$?

$$\psi_x(p) = \psi_p^*(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{-ipx/\hbar}$$

If we know $\psi(x) = \langle x | \psi \rangle$, how can we get $\psi(p) = \langle p | \psi \rangle$?

$$\langle p|\psi\rangle = \int \langle p|x\rangle\langle x|\psi\rangle dx = \int \psi_x(p)\psi(x)dx$$

Measurement of two observables

If
$$\psi(x) = \langle x | \psi \rangle$$
 is known,

$$\psi(p) = \langle p|\psi\rangle = \int \psi_x(p)\psi(x)dx$$

(like Fourier transform)

$$\psi_{x}(p) = \psi_{p}^{*}(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{-ipx/\hbar}$$

For a Gaussian wavefunction (wavepacket)

$$\psi(x) = \frac{1}{(\pi\Delta)^{1/4}} e^{-(x-x_0)^2/2\Delta^2}$$

$$\langle X \rangle = \langle \psi | \hat{X} | \psi \rangle = \int x |\psi(x)|^2 dx = x_0$$

$$\Delta X = \left[\langle \psi | (\hat{X} - \langle X \rangle)^2 | \psi \rangle \right]^{1/2} = \Delta / \sqrt{2}$$

$$\psi(p) = \left(\frac{\Delta^2}{\pi\hbar^2}\right)^{1/4} e^{-ipx_0/\hbar} e^{-p^2\Delta^2/2\hbar^2}$$

$$\langle P \rangle = \langle \psi | \hat{P} | \psi \rangle = \int p |\psi(p)|^2 dp = 0$$

$$\Delta P = \left[\left\langle \psi \middle| (\hat{P} - \left\langle P \right\rangle)^2 \middle| \psi \right\rangle \right]^{1/2} = \hbar / \sqrt{2} \Delta$$

 $\Delta X \Delta P = \hbar/2$ for Gaussian wavefunctions

 $\Delta X \Delta P \ge \hbar/2$ (Heisenberg uncertainty relation), in general.