

## STM32MP135A STM32MP135D

Arm<sup>®</sup> Cortex<sup>®</sup>-A7 up to 1 GHz, LCD-TFT, camera interface, 2×ETH, 2×CAN FD, 2×ADC, 24 timers, audio

Datasheet - production data

#### **Features**

# Includes ST state-of-the-art patented technology

#### Core

- 32-bit Arm<sup>®</sup> Cortex<sup>®</sup>-A7
  - L1 32-Kbyte I / 32-Kbyte D
  - 128-Kbyte unified level 2 cache
  - Arm<sup>®</sup> NEON™ and Arm<sup>®</sup> TrustZone<sup>®</sup>

#### **Memories**

- External DDR memory up to 1 Gbyte
  - up to LPDDR2/LPDDR3-1066 16-bit
  - up to DDR3/DDR3L-1066 16-bit
- 168 Kbytes of internal SRAM: 128 Kbytes of AXI SYSRAM + 32 Kbytes of AHB SRAM and 8 Kbytes of SRAM in Backup domain
- Dual Quad-SPI memory interface
- Flexible external memory controller with up to 16-bit data bus: parallel interface to connect external ICs and SLC NAND memories with up to 8-bit ECC

#### Security/safety

- TrustZone<sup>®</sup> peripherals, 12 x tamper pins including 5 x active tampers
- Temperature, voltage, frequency and 32 kHz monitoring

#### Reset and power management

- 1.71 V to 3.6 V I/Os supply (5 V-tolerant I/Os)
- · POR, PDR, PVD and BOR
- On-chip LDOs (USB 1.8 V, 1.1 V)
- Backup regulator (~0.9 V)
- Internal temperature sensors
- Low-power modes: Sleep, Stop, LPLV-Stop, LPLV-Stop2 and Standby



- · DDR retention in Standby mode
- Controls for PMIC companion chip

#### Clock management

- Internal oscillators: 64 MHz HSI oscillator, 4 MHz CSI oscillator, 32 kHz LSI oscillator
- External oscillators: 8-48 MHz HSE oscillator, 32.768 kHz LSE oscillator
- 4 × PLLs with fractional mode

#### General-purpose input/outputs

- Up to 135 secure I/O ports with interrupt capability
- · Up to 6 wakeup

#### Interconnect matrix

- · 2 bus matrices
  - 64-bit Arm<sup>®</sup> AMBA<sup>®</sup> AXI interconnect, up to 266 MHz
  - 32-bit Arm<sup>®</sup> AMBA<sup>®</sup> AHB interconnect, up to 209 MHz

#### 4 DMA controllers to unload the CPU

- 56 physical channels in total
- 1 x high-speed general-purpose master direct memory access controller (MDMA)
- 3 × dual-port DMAs with FIFO and request router capabilities for optimal peripheral management

#### Up to 30 communication peripherals

- 5 × I<sup>2</sup>C FM+ (1 Mbit/s, SMBus/PMBus™)
- 4 x UART + 4 x USART (12.5 Mbit/s, ISO7816 interface, LIN, IrDA, SPI slave)
- 5 × SPI (50 Mbit/s, including 4 with full-duplex I<sup>2</sup>S audio class accuracy via internal audio PLL or external clock)
- 2 × SAI (stereo audio: I<sup>2</sup>S, PDM, SPDIF Tx)
- · SPDIF Rx with 4 inputs
- 2 × SDMMC up to 8 bits (SD/e•MMC™/SDIO)
- 2 × CAN controllers supporting CAN FD protocol
- 2 × USB 2.0 high-speed Host
  - or 1 × USB 2.0 high-speed Host
     + 1 × USB 2.0 high-speed OTG simultaneously
- 2 x Ethernet MAC/GMAC
  - IEEE 1588v2 hardware, MII/RMII/RGMII
- 8- to 16-bit camera interface, 3 Mpix @30 fps or 5Mpix @15 fps in color or monochrome with pixel clock @120 MHz (max freq)

#### 6 analog peripherals

- 2 × ADCs with 12-bit max. resolution up to 5 Msps
- 1 x temperature sensor
- 1 x digital filter for sigma-delta modulator (DFSDM) with 4 channels and 2 filters
- Internal or external ADC reference V<sub>REF+</sub>

#### **Graphics**

- LCD-TFT controller, up to 24-bit // RGB888
  - up to WXGA (1366 × 768) @60 fps or up to Full HD (1920 x 1080) @ 30 fps
  - pixel clock up to 90 MHz
  - two layers (incl. 1 secured) with programmable color LUT

#### Up to 24 timers and 2 watchdogs

- 2 × 32-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
- 2 × 16-bit advanced timers
- 10 × 16-bit general-purpose timers (including 2 basic timers without PWM)

- 5 × 16-bit low-power timers
- Secure RTC with sub-second accuracy and hardware calendar
- 4 Cortex<sup>®</sup>-A7 system timers (secure, non-secure, virtual, hypervisor)
- 2 × independent watchdogs

#### Hardware acceleration

- ECDSA verification with SCA
- HASH (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-3), HMAC
- 1 x true random number generator (6 triple oscillators)
- 1 x CRC calculation unit

#### **Debug mode**

- Arm<sup>®</sup> CoreSight<sup>™</sup> trace and debug: SWD and JTAG interfaces usable as GPIOs
- 4-Kbyte embedded trace buffer

3072-bit fuses including 96-bit unique ID, up to 1280 bits available for user

All packages are ECOPACK2 compliant

STM32MP135A/D Contents

## **Contents**

| 1 | Intro | duction  | 1                                          | 12 |
|---|-------|----------|--------------------------------------------|----|
| 2 | Desc  | ription  |                                            | 13 |
| 3 | Fund  | tional c | overview                                   | 19 |
|   | 3.1   | Arm Co   | ortex-A7 subsystem                         | 19 |
|   |       | 3.1.1    | Features                                   | 19 |
|   |       | 3.1.2    | Overview                                   | 19 |
|   | 3.2   | Memor    | ries                                       | 21 |
|   |       | 3.2.1    | External SDRAM                             | 21 |
|   |       | 3.2.2    | Embedded SRAM                              | 21 |
|   | 3.3   | DDR3/    | DDR3L/LPDDR2/LPDDR3 controller (DDRCTRL)   | 21 |
|   | 3.4   | TrustZ   | one address space controller for DDR (TZC) | 22 |
|   | 3.5   | Boot m   | nodes                                      | 23 |
|   | 3.6   | Power    | supply management                          | 24 |
|   |       | 3.6.1    | Power supply scheme                        | 24 |
|   |       | 3.6.2    | Power supply supervisor                    | 25 |
|   | 3.7   | Low-po   | ower strategy                              | 26 |
|   | 3.8   | Reset    | and clock controller (RCC)                 | 27 |
|   |       | 3.8.1    | Clock management                           | 27 |
|   |       | 3.8.2    | System reset sources                       | 28 |
|   | 3.9   | Genera   | al-purpose input/outputs (GPIOs)           | 28 |
|   | 3.10  | TrustZ   | one protection controller (ETZPC)          | 28 |
|   | 3.11  | Bus-int  | terconnect matrix                          | 30 |
|   | 3.12  | DMA c    | ontrollers                                 | 31 |
|   | 3.13  | Extend   | ded interrupt and event controller (EXTI)  | 31 |
|   | 3.14  | Cyclic   | redundancy check calculation unit (CRC)    | 31 |
|   | 3.15  | •        | e memory controller (FMC)                  |    |
|   | 3.16  |          | Quad-SPI memory interface (QUADSPI)        |    |
|   | 3.17  |          | g-to-digital converters (ADC1, ADC2)       |    |
|   | 3.17  | _        | erature sensor                             |    |
|   |       | -        |                                            |    |
|   | 3.19  | Digital  | temperature sensor (DTS)                   | 33 |

Contents STM32MP135A/D

| 3.20 | V <sub>BAT</sub> o <sub>l</sub> | peration                                                                                                  | 33 |
|------|---------------------------------|-----------------------------------------------------------------------------------------------------------|----|
| 3.21 | Voltage                         | e reference buffer (VREFBUF)                                                                              | 34 |
| 3.22 | Digital                         | filter for sigma-delta modulator (DFSDM)                                                                  | 34 |
| 3.23 | Digital                         | camera interface pipe processing (DCMIPP)                                                                 | 36 |
| 3.24 | LCD-TI                          | FT display controller (LTDC)                                                                              | 36 |
| 3.25 | True ra                         | ndom number generator (RNG)                                                                               | 36 |
| 3.26 | Hash p                          | rocessor (HASH1)                                                                                          | 37 |
| 3.27 | Public I                        | key accelerator (PKA)                                                                                     | 37 |
| 3.28 | Boot ar                         | nd security and OTP control (BSEC)                                                                        | 37 |
| 3.29 | Timers                          | and watchdogs                                                                                             | 38 |
|      | 3.29.1                          | Advanced-control timers (TIM1, TIM8)                                                                      | 39 |
|      | 3.29.2                          | General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM12, TIM13, TIM14, TIM15, TIM16, TIM17)                 | 39 |
|      | 3.29.3                          | Basic timers (TIM6 and TIM7)                                                                              | 39 |
|      | 3.29.4                          | Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)                                                 | 40 |
|      | 3.29.5                          | Independent watchdogs (IWDG1, IWDG2)                                                                      | 40 |
|      | 3.29.6                          | Generic timers (Cortex-A7 CNT)                                                                            | 40 |
| 3.30 | System                          | n timer generation (STGEN)                                                                                | 40 |
| 3.31 | Real-tir                        | me clock (RTC)                                                                                            | 41 |
| 3.32 | Tampe                           | r and backup registers (TAMP)                                                                             | 42 |
| 3.33 | Inter-in                        | tegrated circuit interfaces (I2C1, I2C2, I2C3, I2C4, I2C5)                                                | 42 |
| 3.34 | (USAR                           | sal synchronous asynchronous receiver transmitter T1, USART2, USART3, USART6 and UART4, UART5, ', UART8)  | 43 |
| 3.35 | Serial p                        | peripheral interfaces (SPI1, SPI2, SPI3, SPI4, SPI5) integrated sound interfaces (I2S1, I2S2, I2S3, I2S4) |    |
| 3.36 | Serial a                        | audio interfaces (SAI1, SAI2)                                                                             | 44 |
| 3.37 | SPDIF                           | receiver interface (SPDIFRX)                                                                              | 45 |
| 3.38 |                                 | digital input/output MultiMediaCard interfaces                                                            | 45 |
| 3.39 | Control                         | ller area network (FDCAN1, FDCAN2)                                                                        | 46 |
| 3.40 | Univers                         | sal serial bus high-speed host (USBH)                                                                     | 47 |
| 3.41 | USB or                          | n-the-go high-speed (OTG)                                                                                 | 47 |
| 3.42 | Gigabit                         | Ethernet MAC interfaces (ETH1, ETH2)                                                                      | 48 |
| 3.43 | Debug                           | infrastructure                                                                                            | 49 |

**T** 

STM32MP135A/D Contents

| 4 | Pino | ut, pin d | description and alternate functions                         | 50  |
|---|------|-----------|-------------------------------------------------------------|-----|
| 5 | Mem  | nory ma   | pping                                                       | 100 |
| 6 | Elec | trical ch | naracteristics                                              | 101 |
|   | 6.1  | Param     | eter conditions                                             | 101 |
|   |      | 6.1.1     | Minimum and maximum values                                  | 101 |
|   |      | 6.1.2     | Typical values                                              | 101 |
|   |      | 6.1.3     | Typical curves                                              | 101 |
|   |      | 6.1.4     | Loading capacitor                                           | 101 |
|   |      | 6.1.5     | Pin input voltage                                           | 101 |
|   |      | 6.1.6     | Power supply scheme                                         | 102 |
|   |      | 6.1.7     | Current consumption measurement                             | 103 |
|   | 6.2  | Absolu    | te maximum ratings                                          | 103 |
|   | 6.3  | Operat    | ing conditions                                              | 105 |
|   |      | 6.3.1     | General operating conditions                                | 105 |
|   |      | 6.3.2     | Operating conditions at power-up / power-down               | 107 |
|   |      | 6.3.3     | Embedded reset and power control block characteristics      | 110 |
|   |      | 6.3.4     | Embedded reference voltage                                  | 112 |
|   |      | 6.3.5     | Embedded regulators characteristics                         | 113 |
|   |      | 6.3.6     | Supply current characteristics                              | 114 |
|   |      | 6.3.7     | Wakeup time from low-power modes                            | 123 |
|   |      | 6.3.8     | External clock source characteristics                       | 124 |
|   |      | 6.3.9     | External clock source security characteristics              | 130 |
|   |      | 6.3.10    | Internal clock source characteristics                       | 130 |
|   |      | 6.3.11    | PLL characteristics                                         | 132 |
|   |      | 6.3.12    | PLL spread spectrum clock generation (SSCG) characteristics | 137 |
|   |      | 6.3.13    | Memory characteristics                                      | 139 |
|   |      | 6.3.14    | EMC characteristics                                         | 140 |
|   |      | 6.3.15    | Absolute maximum ratings (electrical sensitivity)           | 142 |
|   |      | 6.3.16    | I/O current injection characteristics                       | 143 |
|   |      | 6.3.17    | I/O port characteristics                                    | 144 |
|   |      | 6.3.18    | NRST pin characteristics                                    | 154 |
|   |      | 6.3.19    | FMC characteristics                                         | 154 |
|   |      | 6.3.20    | QUADSPI interface characteristics                           | 171 |
|   |      | 6.3.21    | Delay block (DLYB) characteristics                          | 173 |
|   |      | 6.3.22    | 12-bit ADC characteristics                                  | 173 |
|   |      |           |                                                             |     |

| 10 | Revi | sion his  | tory                                                                  | <u>)</u> |
|----|------|-----------|-----------------------------------------------------------------------|----------|
| 9  | Impo | ortant se | ecurity notice221                                                     | I        |
| 8  | Orde | ering inf | ormation                                                              | )        |
|    | 7.5  | Device    | marking                                                               | )        |
|    |      | 7.4.1     | Reference documents                                                   |          |
|    | 7.4  | Therma    | al characteristics 217                                                |          |
|    | 7.3  |           | A320 package information                                              |          |
|    | 7.2  |           | A289 package information                                              |          |
|    | 7.1  |           | x289 package information                                              |          |
| 1  |      | •         | ormation                                                              |          |
| 7  | Dool | rana infi | armetic a                                                             | •        |
|    |      | 6.3.37    | JTAG/SWD interface characteristics                                    | 7        |
|    |      | 6.3.36    | USB High-Speed PHY characteristics                                    | 3        |
|    |      | 6.3.35    | USART interface characteristics                                       | 3        |
|    |      | 6.3.34    | Communications interfaces                                             | 1        |
|    |      | 6.3.33    | Timer characteristics                                                 | 1        |
|    |      | 6.3.32    | LCD-TFT controller (LTDC) characteristics                             |          |
|    |      | 6.3.31    | Camera interface (DCMIPP) characteristics                             |          |
|    |      | 6.3.30    | Digital filter for sigma-delta modulators (DFSDM) characteristics 185 |          |
|    |      | 6.3.29    | Compensation cell                                                     |          |
|    |      | 6.3.28    | Voltage booster for analog switch                                     |          |
|    |      | 6.3.27    | VDDCORE, VDDCPU, VDDQ DDR monitoring characteristics 184              |          |
|    |      | 6.3.26    | VBAT ADC monitoring characteristics and charging characteristics 184  |          |
|    |      | 6.3.25    | DTS characteristics                                                   |          |
|    |      | 6.3.24    | Temperature sensor characteristics                                    |          |
|    |      | 6.3.23    | Voltage reference buffer characteristics                              | 1        |

STM32MP135A/D List of tables

## List of tables

| Table 1.               | STM32MP135A/D features and peripheral counts                   | 15  |
|------------------------|----------------------------------------------------------------|-----|
| Table 2.               | Boot modes                                                     |     |
| Table 3.               | System versus CPU power mode                                   | 27  |
| Table 4.               | Timer feature comparison                                       | 38  |
| Table 5.               | USART features                                                 | 44  |
| Table 6.               | Legend/abbreviations used in the pinout table                  | 53  |
| Table 7.               | STM32MP135A/D ball definitions                                 |     |
| Table 8.               | Alternate function AF0 to AF7                                  | 78  |
| Table 9.               | Alternate function AF8 to AF15                                 | 87  |
| Table 10.              | Voltage characteristics                                        | 103 |
| Table 11.              | Current characteristics                                        | 104 |
| Table 12.              | Thermal characteristics                                        | 105 |
| Table 13.              | General operating conditions                                   | 105 |
| Table 14.              | Operating conditions at power-up / power-down                  | 108 |
| Table 15.              | Embedded reset and power control block characteristics         | 110 |
| Table 16.              | Embedded reference voltage                                     |     |
| Table 17.              | Embedded reference voltage calibration value                   |     |
| Table 18.              | REG1V1 embedded regulator (USB_PHY) characteristics            |     |
| Table 19.              | REG1V8 embedded regulator (USB_PHY) characteristics            |     |
| Table 20.              | Current consumption (IDDCORE) in Run mode                      |     |
| Table 21.              | Current consumption (IDDCPU) in Run mode                       |     |
| Table 22.              | Current consumption (IDD) in Run mode                          |     |
| Table 23.              | Current consumption in Stop mode                               |     |
| Table 24.              | Current consumption in LPLV-Stop mode                          |     |
| Table 25.              | Current consumption in LPLV-Stop2 mode                         |     |
| Table 26.              | Current consumption in Standby mode                            |     |
| Table 27.              | Current consumption in VBAT mode                               |     |
| Table 28.              | Low-power mode wakeup timings                                  |     |
| Table 29.              | Wakeup time using USART                                        | 124 |
| Table 30.              | High-speed external user clock characteristics                 |     |
|                        | (digital bypass)                                               | 125 |
| Table 31.              | High-speed external user clock characteristics                 | 40- |
| <del>-</del>           | (analog bypass)                                                | 125 |
| Table 32.              | Low-speed external user clock characteristics                  | 400 |
| T 11 00                | (analog bypass)                                                |     |
| Table 33.              | Low-speed external user clock characteristics (digital bypass) |     |
| Table 34.              | 8-48 MHz HSE oscillator characteristics                        |     |
| Table 35.              | Low-speed external user clock characteristics                  |     |
| Table 36.              | High-speed external user clock security system (HSE CSS)       |     |
| Table 37.              | HSI oscillator characteristics                                 |     |
| Table 38.              | CSI oscillator characteristics                                 |     |
| Table 39.              | LSI oscillator characteristics                                 |     |
| Table 40.              | PLL1 characteristics                                           |     |
| Table 41.              | PLL2 characteristics                                           |     |
| Table 42.              | PLL3, PLL4 characteristics                                     |     |
| Table 43.<br>Table 44. | USB_PLL characteristics                                        |     |
| Table 44.<br>Table 45. | SSCG parameters constraint                                     |     |
| 1 abic 45.             | OTT Grand Guerra Guerra                                        | 139 |



List of tables STM32MP135A/D

| Table 46. | DC specifications – DDR3 or DDR3L mode                                                   | 140 |
|-----------|------------------------------------------------------------------------------------------|-----|
| Table 47. | DC specifications – LPDDR2 or LPDDR3 mode                                                | 140 |
| Table 48. | EMS characteristics                                                                      | 141 |
| Table 49. | EMI characteristics for fHSE = 24 MHz and Fmpuss_ck = 650 MHz                            | 142 |
| Table 50. | EMI characteristics for fHSE = 24 MHz and Fmpuss_ck = 1 GHz                              | 142 |
| Table 51. | ESD absolute maximum ratings                                                             |     |
| Table 52. | Electrical sensitivities                                                                 | 143 |
| Table 53. | I/O current injection susceptibility                                                     | 144 |
| Table 54. | I/O static characteristics                                                               |     |
| Table 55. | Output voltage characteristics for all I/Os except PC13, PC14, PC15, PI0 PI1, PI2, PI3.  |     |
| Table 56. | Output voltage characteristics for PC13, PC14, PC15, PI0, PI1, PI2, PI3                  | 147 |
| Table 57. | Output timing characteristics (HSLV OFF)                                                 | 148 |
| Table 58. | Output timing characteristics (HSLV ON, _h IO structure)                                 |     |
| Table 59. | Output timing characteristics (HSLV OFF, _vh IO structure)                               |     |
| Table 60. | Output timing characteristics (HSLV ON, _vh IO structure)                                |     |
| Table 61. | NRST pin characteristics                                                                 |     |
| Table 62. | Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings                                 |     |
| Table 63. | Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings                         |     |
| Table 64. | Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings                                |     |
| Table 65. | Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings                        |     |
| Table 66. | Asynchronous multiplexed PSRAM/NOR read timings                                          |     |
| Table 67. | Asynchronous multiplexed PSRAM/NOR read-NWAIT timings                                    |     |
| Table 68. | Asynchronous multiplexed PSRAM/NOR write timings                                         |     |
| Table 69. | Asynchronous multiplexed PSRAM/NOR write-NWAIT timings                                   |     |
| Table 70. | Synchronous multiplexed NOR/PSRAM read timings                                           |     |
| Table 71. | Synchronous multiplexed PSRAM write timings                                              |     |
| Table 72. | Synchronous non-multiplexed NOR/PSRAM read timings                                       |     |
| Table 73. | Synchronous non-multiplexed PSRAM write timings                                          |     |
| Table 74. | Switching characteristics for NAND flash read cycles                                     |     |
| Table 75. | Switching characteristics for NAND flash write cycles                                    |     |
| Table 76. | QUADSPI characteristics in SDR mode                                                      |     |
| Table 77. | QUADSPI characteristics in DDR mode                                                      |     |
| Table 78. | Dynamics characteristics: Delay block characteristics                                    |     |
| Table 79. | 12-bit ADC characteristics                                                               |     |
| Table 80. | Minimum sampling time vs RAIN (12-bit ADC)                                               | 178 |
| Table 81. | 12-bit ADC accuracy                                                                      |     |
| Table 82. | VREFBUF characteristics                                                                  |     |
| Table 83. | Temperature sensor characteristics                                                       | 182 |
| Table 84. | Temperature sensor calibration values                                                    |     |
| Table 85. | DTS characteristics                                                                      |     |
| Table 86. | V <sub>BAT</sub> ADC monitoring characteristics                                          | 184 |
| Table 87. | V <sub>RAT</sub> charging characteristics                                                | 184 |
| Table 88. | V <sub>DDCORE,</sub> V <sub>DDCPU,</sub> V <sub>DDQ_DDR</sub> monitoring characteristics | 184 |
| Table 89. | Voltage booster for analog switch characteristics                                        | 184 |
| Table 90. | Compensation cell characteristics                                                        |     |
| Table 91. | DFSDM measured timing                                                                    | 185 |
| Table 92. | DCMIPP characteristics                                                                   |     |
| Table 93. | LTDC characteristics                                                                     | 189 |
| Table 94. | TIMx characteristics                                                                     |     |
| Table 95. | LPTIMx characteristics                                                                   |     |
| Table 96. | I2C analog filter characteristics                                                        | 192 |
| Table 97. | I2C FM+ pin characteristics                                                              |     |

DS13874 Rev 1

STM32MP135A/D List of tables

| Table 98.  | SPI dynamic characteristics                                           | 193 |
|------------|-----------------------------------------------------------------------|-----|
| Table 99.  | I2S dynamic characteristics                                           |     |
| Table 100. | SAI characteristics                                                   |     |
| Table 101. | Dynamics characteristics: SD characteristics, VDD = 1.71 V to 3.6 V   | 200 |
| Table 102. | Dynamics characteristics: e•MMC characteristics VDD = 1.71 V to 3.6 V | 201 |
| Table 103. | USB OTG_FS electrical characteristics                                 |     |
| Table 104. | Dynamics characteristics: Ethernet MAC timings for MDIO/SMA           |     |
| Table 105. | Dynamics characteristics: Ethernet MAC timings for RMII               |     |
| Table 106. | Dynamics characteristics: Ethernet MAC timings for MII                |     |
| Table 107. | Dynamics characteristics: Ethernet MAC signals for RGMII              | 205 |
| Table 108. | USART characteristics                                                 | 206 |
| Table 109. | USB High-Speed PHY characteristics                                    | 206 |
| Table 110. | Dynamics characteristics: JTAG characteristics                        | 208 |
| Table 111. | Dynamics characteristics: SWD characteristics                         | 208 |
| Table 112. | LFBGA289 - Mechanical data                                            | 211 |
| Table 113. | LFBGA289 - Recommended PCB design rules                               | 212 |
| Table 114. | TFBGA289 - Mechanical data                                            | 213 |
| Table 115. | TFBGA289 - Recommended PCB design rules                               | 214 |
| Table 116. | TFBGA320 - Mechanical data                                            | 215 |
| Table 117. | TFBGA320 - Recommended PCB design rules                               | 216 |
| Table 118. | Thermal characteristics                                               | 217 |
| Table 119. | STM32MP135A/D ordering information scheme                             | 220 |
| Tahla 120  | Document revision history                                             | 222 |



DS13874 Rev 1 9/223

List of figures STM32MP135A/D

# List of figures

| Figure 1.  | STM32MP135A/D block diagram                                         | 18  |
|------------|---------------------------------------------------------------------|-----|
| Figure 2.  | Power-up/down sequence                                              | 25  |
| Figure 3.  | STM32MP135A/D bus matrix                                            | 30  |
| Figure 4.  | Voltage reference buffer                                            |     |
| Figure 5.  | STM32MP135A/D LFBGA289 ballout                                      | 50  |
| Figure 6.  | STM32MP135A/D TFBGA289 ballout                                      | 51  |
| Figure 7.  | STM32MP135A/D TFBGA320 ballout                                      | 52  |
| Figure 8.  | Pin loading conditions                                              | 101 |
| Figure 9.  | Pin input voltage                                                   | 101 |
| Figure 10. | Power supply scheme                                                 | 102 |
| Figure 11. | Current consumption measurement scheme                              | 103 |
| Figure 12. | VDDCORE / VDDCPU rise time from reset                               | 109 |
| Figure 13. | VDDCORE / VDDCPU rise time from LPLV-Stop                           | 109 |
| Figure 14. | High-speed external clock source AC timing diagram (digital bypass) | 125 |
| Figure 15. | High-speed external clock source AC timing diagram (analog bypass)  | 126 |
| Figure 16. | Low-speed external clock source AC timing diagram (analog bypass)   | 127 |
| Figure 17. | AC timing diagram for low-speed external square clock source        | 127 |
| Figure 18. | Typical application with a 24 MHz crystal                           | 129 |
| Figure 19. | Typical application with a 32.768 kHz crystal                       | 130 |
| Figure 20. | PLL output clock waveforms in center spread mode                    | 139 |
| Figure 21. | PLL output clock waveforms in down spread mode                      | 139 |
| Figure 22. | VIL/VIH for FT I/Os                                                 | 145 |
| Figure 23. | Recommended NRST pin protection                                     | 154 |
| Figure 24. | Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms          | 155 |
| Figure 25. | Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms         | 157 |
| Figure 26. | Asynchronous multiplexed PSRAM/NOR read waveforms                   | 158 |
| Figure 27. | Asynchronous multiplexed PSRAM/NOR write waveforms                  | 160 |
| Figure 28. | Synchronous multiplexed NOR/PSRAM read timings                      | 162 |
| Figure 29. | Synchronous multiplexed PSRAM write timings                         | 164 |
| Figure 30. | Synchronous non-multiplexed NOR/PSRAM read timings                  | 166 |
| Figure 31. | Synchronous non-multiplexed PSRAM write timings                     | 167 |
| Figure 32. | NAND controller waveforms for read access                           | 169 |
| Figure 33. | NAND controller waveforms for write access                          | 169 |
| Figure 34. | NAND controller waveforms for common memory read access             | 170 |
| Figure 35. | NAND controller waveforms for common memory write access            | 170 |
| Figure 36. | QUADSPI timing diagram - SDR mode                                   |     |
| Figure 37. | QUADSPI timing diagram - DDR mode                                   | 172 |
| Figure 38. | Channel transceiver timing diagrams                                 | 187 |
| Figure 39. | DCMIPP timing diagram                                               |     |
| Figure 40. | LCD-TFT horizontal timing diagram                                   | 190 |
| Figure 41. | LCD-TFT vertical timing diagram                                     | 190 |
| Figure 42. | SPI timing diagram - slave mode and CPHA = 0                        | 194 |
| Figure 43. | SPI timing diagram - slave mode and CPHA = 1 <sup>(1)</sup>         | 195 |
| Figure 44. | SPI timing diagram - master mode <sup>(1)</sup>                     | 195 |
| Figure 45. | I2S slave timing diagram (Philips protocol) <sup>(1)</sup>          | 197 |
| Figure 46. | I2S master timing diagram (Philips protocol) <sup>(1)</sup>         |     |
| Figure 47. | SAI master timing waveforms                                         |     |
| Figure 48. | SAI slave timing waveforms                                          | 199 |



STM32MP135A/D List of figures

| Figure 49. | SD high-speed mode               | . 201 |
|------------|----------------------------------|-------|
| Figure 50. | SD default mode                  | . 201 |
| Figure 51. | SDMMC DDR mode                   | . 202 |
| Figure 52. | Ethernet MDIO/SMA timing diagram | . 203 |
| Figure 53. | Ethernet RMII timing diagram     | . 204 |
| Figure 54. | Ethernet MII timing diagram      | . 205 |
| Figure 55. | Ethernet RGMII timing diagram    | . 205 |
| Figure 56. | JTAG timing diagram              | . 209 |
| Figure 57. | SWD timing                       | . 209 |
| Figure 58. | LFBGA289 - Outline               | . 210 |
| Figure 59. | LFBGA289 - Recommended footprint | . 211 |
| Figure 60. | TFBGA289 - Outline               | . 212 |
| Figure 61. | TFBGA289 - Recommended footprint | . 214 |
| Figure 62. | TFBGA320 - Outline               | . 215 |
| Figure 63  | TERGA320 - Recommended footprint | 216   |



DS13874 Rev 1 11/223

Introduction STM32MP135A/D

## 1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32MP135A/D microprocessors.

This document should be read in conjunction with the STM32MP135 reference manual (RM0475), available from the STMicroelectronics website *www.st.com*.

For information on the Arm<sup>®(a)</sup> Cortex<sup>®</sup>-A7, refer to the Cortex<sup>®</sup>-A7 *Technical Reference Manuals*.

For information on the device errata with respect to the datasheet and reference manual, refer to the STM32MP131x/3x/5x device errata (ES0539), available on the STMicroelectronics website *www.st.com*.





a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

STM32MP135A/D Description

## 2 Description

The STM32MP135A/D devices are based on the high-performance Arm<sup>®</sup> Cortex<sup>®</sup>-A7 32-bit RISC core operating at up to 1 GHz. The Cortex<sup>®</sup>-A7 processor includes a 32-Kbyte L1 instruction cache, a 32-Kbyte L1 data cache and a 128-Kbyte level2 cache. The Cortex<sup>®</sup>-A7 processor is a very energy-efficient application processor designed to provide rich performance in high-end wearables, and other low-power embedded and consumer applications. It provides up to 20 % more single thread performance than the Cortex<sup>®</sup>-A5 and provides similar performance to the Cortex<sup>®</sup>-A9.

The Cortex<sup>®</sup>-A7 incorporates all features of the high-performance Cortex<sup>®</sup>-A15 and Cortex<sup>®</sup>-A17 processors, including virtualization support in hardware, NEON™, and 128-bit AMBA<sup>®</sup>4 AXI bus interface.

The STM32MP135A/D devices provide an external SDRAM interface supporting external memories up to 8-Gbit density (1 Gbyte), 16-bit LPDDR2/LPDDR3 or DDR3/DDR3L up to 533 MHz.

The STM32MP135A/D devices incorporate high-speed embedded memories with 168 Kbytes of internal SRAM (including 128 Kbytes of AXI SYSRAM, two banks of 8 Kbytes and one bank of 16 Kbytes securable AHB SRAM, and 8 Kbytes of SRAM in Backup domain), as well as an extensive range of enhanced I/Os and peripherals connected to APB buses, AHB buses, and a 64-bit multi-layer AXI interconnect supporting internal and external memories access.



DS13874 Rev 1 13/223

Description STM32MP135A/D

All the devices offer two ADCs, a low-power secured RTC, ten general-purpose 16-bit timers, two 32-bit timers, two PWM timers for motor control, five low-power timers, a secured true random number generator (RNG). The devices support two digital filters for external sigma-delta modulators (DFSDM). They also feature standard and advanced communication interfaces.

- Standard peripherals:
  - Five I<sup>2</sup>Cs
  - Four USARTs and four UARTs
  - Five SPIs, four I<sup>2</sup>Ss full-duplex master/slave. To achieve audio class accuracy, the I<sup>2</sup>S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
  - Two SAI serial audio interfaces (up to four audio channels each)
  - One SPDIF Rx interface
  - Two SDMMC interfaces
  - A USB OTG high-speed controller
  - A USB high-speed Host controller with two ports and two high-speed phys. The second high-speed phy can be shared between the USB high-speed Host and the USB OTG high-speed.
  - Two FDCAN interfaces
  - Two Gigabit Ethernet interfaces
- Advanced peripherals including:
  - A flexible memory control (FMC) interface
  - A Quad-SPI flash memory interface
  - A camera interface for CMOS sensors
  - An LCD-TFT display controller, including one secure and one non-secure layer

Refer to *Table 1: STM32MP135A/D features and peripheral counts* for the specificity for each package type.

A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32MP135A/D devices are proposed in three packages ranging from 289 to 320 balls, with pitch 0.5 mm to 0.8 mm.

These features make the STM32MP135A/D suitable for a wide range of consumer, industrial, white goods and medical applications.

Figure 1 shows the general block diagram of the device family.

STM32MP135A/D Description

Table 1. STM32MP135A/D features and peripheral counts

| Table 1. 51 M32MP135A/D features and peripheral counts |             |                |                                            |                                |                                |               |  |
|--------------------------------------------------------|-------------|----------------|--------------------------------------------|--------------------------------|--------------------------------|---------------|--|
| Features                                               |             |                | STM32MP135AAE<br>STM32MP135DAE             | STM32MP135DAG<br>STM32MP135DAG | STM32MP135AAF<br>STM32MP135DAF | Miscellaneous |  |
|                                                        |             | Body size (mm) | 14x14                                      | 9x9                            | 11x11                          | +             |  |
|                                                        |             | Pitch (mm)     | 0.8                                        | 0.5                            | 0.5                            |               |  |
| Packa                                                  | qe          | Ball size (mm) | 0.40                                       | 0.30                           | 0.30                           | _             |  |
|                                                        | ~           | Thickness (mm) | < 1.4                                      | < 1.2                          | < 1.2                          |               |  |
|                                                        |             | Ball count     | 289                                        | 289                            | 320                            | $\dashv$      |  |
| CPU                                                    |             | I              | Cort                                       | ı<br>ex-A7 FPU Neon Trustz     | zone                           |               |  |
|                                                        |             |                | 32-Kbyte L1 data cache                     |                                |                                |               |  |
|                                                        |             | Caches size    | 32-Kbyte L1 instruction cache              |                                |                                |               |  |
|                                                        |             |                | 128-Kbyte L2 unified coherent cache        |                                |                                |               |  |
|                                                        |             | Frequency      | STM32MP135A: 650 MHz<br>STM32MP135D: 1 GHz |                                |                                |               |  |
| ROM                                                    |             | I              | 128 Kbytes (secure)                        |                                |                                | -             |  |
|                                                        |             | System RAM     | 128 Kbytes (securable)                     |                                |                                |               |  |
| Embed<br>SRAM                                          |             | Backup         | 8 Kbytes (securable, tamper protected)     |                                |                                |               |  |
| 2                                                      |             | AHB SRAM       | 32 Kbytes                                  |                                |                                | 168 Kbytes    |  |
| SDRA                                                   | М           |                | Securable                                  |                                |                                |               |  |
|                                                        | LPDDR2/3    | 16-bit 533 MHz | Up to 1 Gbyte, single rank                 |                                | <b>]</b> -                     |               |  |
|                                                        | DDR3/3L     | 16-bit 533 MHz |                                            | p to 1 Obyte, single fall      |                                |               |  |
| Backu                                                  | p registers |                | 128 bytes (32                              | x32-bit, securable, tamı       | per protected)                 | -             |  |
|                                                        | Advanced    | 16 bits        |                                            | 2                              |                                |               |  |
|                                                        | General     | 16 bits        |                                            | 8 (6 securable)                |                                |               |  |
| ઈ                                                      | purpose     | 32 bits        |                                            | 2                              |                                | ers           |  |
| Timers                                                 | Basic       | 16 bits        |                                            | 2                              |                                | 24 timers     |  |
| _                                                      | Low power   | 16 bits        |                                            | 5 (2 securable)                |                                | 24            |  |
|                                                        | A7 timers   | 64 bits        | 4 (secure                                  | e, non-secure, virtual, hy     | pervisor)                      |               |  |
|                                                        | RTC/AWU     |                |                                            | 1 (securable)                  |                                |               |  |

Description STM32MP135A/D

Table 1. STM32MP135A/D features and peripheral counts (continued)

|                            | Ia           | DIG 1. OTHIOZIVIE                                                                                                                            | 135A/D features and                                                                                                          |                                                 | ,                                               |               |  |
|----------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------|--|
| Features                   |              |                                                                                                                                              | STM32MP135AAE<br>STM32MP135DAE                                                                                               | STM32MP135AAG<br>STM32MP135DAG<br>STM32MP135DAG | STM32MP135AAF<br>STM32MP135DAF<br>STM32MP135DAF | Miscellaneous |  |
| Watch                      | ndoas        |                                                                                                                                              | 2 (inde                                                                                                                      | pendent, independent s                          | secure)                                         | + -           |  |
| vacon                      | SPI          |                                                                                                                                              | 2 (11100                                                                                                                     | 5 (2 securable)                                 | ecurcy                                          |               |  |
|                            | 011          | Having I2S                                                                                                                                   |                                                                                                                              | 4                                               |                                                 | + _           |  |
|                            | IOC (with S  | MB/PMB support)                                                                                                                              |                                                                                                                              | 5 (3 securable)                                 |                                                 | - 1           |  |
| as                         | •            | ,                                                                                                                                            |                                                                                                                              | 5 (5 Securable)                                 |                                                 |               |  |
| ripher                     |              | nartcard, SPI,<br>+ UART (IrDA, LIN)                                                                                                         |                                                                                                                              | curable USART), some                            |                                                 | Boot          |  |
| Communication peripherals  | SAI          |                                                                                                                                              | 2 (up to 4 au                                                                                                                | dio channels), with I2S PCM input, SPDIF-TX     | master/slave,                                   | -             |  |
| cati                       | USB E        | EHCI/OHCI Host                                                                                                                               |                                                                                                                              | 2 ports                                         |                                                 |               |  |
| iu                         |              | Enci/Onci nost                                                                                                                               | Embedded HSPHY with BCD                                                                                                      |                                                 |                                                 |               |  |
| mu                         | OTG HS       |                                                                                                                                              | Embedded HS PHY                                                                                                              | with BCD (securable), o                         | can be a boot source                            | ce Boot       |  |
| ပိ                         |              | Embedded PHYs                                                                                                                                | 2 × HS                                                                                                                       | shared between Host a                           | nd OTG                                          | -             |  |
|                            | SPDIFRX      | 1                                                                                                                                            |                                                                                                                              | 4 inputs                                        |                                                 | -             |  |
|                            | FDCAN        |                                                                                                                                              | 2 (1 × TTCAN), clock calibration, 10 Kbyte shared buffer                                                                     |                                                 |                                                 |               |  |
| SDMN                       | IC (SD, SDIC | D, e•MMC)                                                                                                                                    | 2 (8 + 8 bits) (securable), e•MMC or SD can be a boot source<br>2 optional independant power supplies for SD card interfaces |                                                 |                                                 | Boot          |  |
| QUAD                       | SPI          |                                                                                                                                              | 1 (dual-quad) (securable), can be a boot source                                                                              |                                                 |                                                 | Boot (1)      |  |
|                            | Parallel add | dress/data 8/16-bit                                                                                                                          |                                                                                                                              |                                                 |                                                 |               |  |
| FMC                        | Parallel AD  | -mux 8/16-bit                                                                                                                                | 4                                                                                                                            | × CS, up to 4 × 64 Mby                          | te                                              | -             |  |
|                            | NAND 8/16    |                                                                                                                                              | Yes. 2× CS.                                                                                                                  | SLC, BCH4/8, can be a                           | boot source                                     | Boot          |  |
| 10/100                     | )M/Gigabit E |                                                                                                                                              |                                                                                                                              | RGMII) with PTP and E                           |                                                 | -             |  |
| LCD-TFT Parallel interface |              | Up to 24-bit data, 1 secure layer, YUV on 1 layer (up to 1366×768 @ 60 fps) or up to Full HD (1920 x 1080) @ 30 fps Pixel clock up to 90 MHz |                                                                                                                              | -                                               |                                                 |               |  |
| DMA                        | DMA          |                                                                                                                                              | 3 instanc                                                                                                                    | es (1 secure), 33-chann                         | el MDMA                                         | -             |  |
| Hash                       |              |                                                                                                                                              | SHA-1, SHA-224, SI                                                                                                           | HA-256, SHA-384, SHA<br>(securable)             | -512, SHA-3, HMAC                               | -             |  |
| True r                     | andom num    | ber generator                                                                                                                                |                                                                                                                              | True-RNG (securable)                            |                                                 | -             |  |
| Fuses                      | (one-time p  | programmable)                                                                                                                                | 3072 effective bits                                                                                                          | s (secure, 1280 bits ava                        | ilable for the user)                            | -             |  |
| Came                       | ra interface | Bus width                                                                                                                                    |                                                                                                                              | 16-bit                                          |                                                 | -             |  |
|                            |              | l l                                                                                                                                          |                                                                                                                              |                                                 |                                                 | 1             |  |

STM32MP135A/D **Description** 

Table 1. STM32MP135A/D features and peripheral counts (continued)

|                                             | TUDIC 1. OTHIOZINI          |                                                                                                                                                                                                      | h h (                          |                                |               |
|---------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|---------------|
| Features                                    |                             | STM32MP135AAE<br>STM32MP135DAE                                                                                                                                                                       | STM32MP135AAG<br>STM32MP135DAG | STM32MP135AAF<br>STM32MP135DAF | Miscellaneous |
|                                             |                             | LFBGA289                                                                                                                                                                                             | TFBGA289                       | TFBGA320                       |               |
| GPIOs with interrupt (total count)          |                             |                                                                                                                                                                                                      | 135 <sup>(2)</sup>             |                                |               |
| Securable GPIOs                             |                             | All                                                                                                                                                                                                  |                                |                                |               |
|                                             | Wakeup pins                 |                                                                                                                                                                                                      | 6                              |                                | _             |
|                                             | Tamper pins (active tamper) | 12 (5)                                                                                                                                                                                               |                                |                                |               |
| DFSD                                        | M                           | 4 i                                                                                                                                                                                                  | nput channels with 2 filt      | ers                            | -             |
| Up to                                       | 12-bit synchronized ADC     | 2 <sup>(3)</sup> (up to                                                                                                                                                                              | 5 Msps on 12-bit each)         | (securable)                    |               |
| 12-bit ADC channels in total <sup>(4)</sup> |                             | ADC1: 19 channels including 1x internal, 18 channels available for user including 8x differential  ADC2: 18 channels including 6x internal, 12 channels available for user including 6x differential |                                |                                | -             |
| Intern                                      | al ADC VREF                 | 1.65 V, 1.8 V, 2.048 V, 2.5 V or VREF+ input                                                                                                                                                         |                                |                                |               |
|                                             | VREF+ input pin             | Yes                                                                                                                                                                                                  |                                |                                |               |
|                                             |                             |                                                                                                                                                                                                      |                                |                                |               |

QUADSPI may boot either from dedicated GPIOs or using some FMC Nand8 boot GPIOs (PD4, PD1, PD5, PE9, PD11, PD15 (see *Table 7: STM32MP135A/D ball definitions*).

17/223

<sup>2.</sup> This total GPIO count includes four JTAG GPIOs and three BOOT GPIOs with limited usage (may conflict with external device connection during boundary scan or boot).

<sup>3.</sup> When both ADCs are used, the kernel clock should be the same for both ADCs and the embedded ADC prescalers cannot be used.

In addition, there are also internal channels:

 ADC1 internal channel: V<sub>REFINT</sub>
 ADC2 internal channels: temperature, internal voltage reference, V<sub>DDCORE</sub>, V<sub>DDCPU</sub>, V<sub>DDQ\_DDR</sub>, V<sub>BAT</sub> / 4.

Description STM32MP135A/D



Figure 1. STM32MP135A/D block diagram



#### 3 Functional overview

## 3.1 Arm Cortex-A7 subsystem

#### 3.1.1 Features

- ARMv7-A architecture
- 32-Kbyte L1 instruction cache
- 32-Kbyte L1 data cache
- 128-Kbyte level2 cache
- Arm + Thumb<sup>®</sup>-2 instruction set
- Arm TrustZone security technology
- Arm NEON advanced SIMD
- DSP and SIMD extensions
- VFPv4 floating-point
- Hardware virtualization support
- Embedded trace module (ETM)
- Integrated generic interrupt controller (GIC) with 160 shared peripheral interrupts
- Integrated generic timer (CNT)

#### 3.1.2 Overview

The Cortex-A7 processor is a very energy-efficient applications processor designed to provide rich performance in high-end wearables, and other low-power embedded and consumer applications. It provides up to 20 % more single thread performance than the Cortex-A5 and provides similar performance than the Cortex-A9.

The Cortex-A7 incorporates all features of the high-performance Cortex-A15 and Cortex-A17 processors, including virtualization support in hardware, NEON, and 128-bit AMBA 4 AXI bus interface.

The Cortex-A7 processor builds on the energy-efficient 8-stage pipeline of the Cortex-A5 processor. It also benefits from an integrated L2 cache designed for low-power, with lower transaction latencies and improved OS support for cache maintenance. On top of this, there is improved branch prediction and improved memory system performance, with 64-bit load-store path, 128-bit AMBA 4 AXI buses and increased TLB size (256 entry, up from 128 entry for Cortex-A9 and Cortex-A5), increasing performance for large workloads such as web browsing.

#### Thumb-2 technology

Delivers the peak performance of traditional Arm code while also providing up to a 30 % reduction in memory requirement for instructions storage.

#### TrustZone technology

Ensures reliable implementation of security applications ranging from digital rights management to electronic payment. Broad support from technology and industry partners.

4

DS13874 Rev 1 19/223

#### **NEON**

NEON technology can accelerate multimedia and signal processing algorithms such as video encode/decode, 2D/3D graphics, gaming, audio and speech processing, image processing, telephony, and sound synthesis. The Cortex-A7 provides an engine that offers both the performance and functionality of the Cortex-A7 floating-point unit (FPU) and an implementation of the NEON advanced SIMD instruction set for further acceleration of media and signal processing functions. The NEON extends the Cortex-A7 processor FPU to provide a quad-MAC and additional 64-bit and 128-bit register set supporting a rich set of SIMD operations over 8-, 16- and 32-bit integer and 32-bit floating-point data quantities.

#### Hardware virtualization

Highly efficient hardware support for data management and arbitration, whereby multiple software environments and their applications are able to simultaneously access the system capabilities. This enables the realization of devices that are robust, with virtual environments that are well isolated from each other.

#### **Optimized L1 caches**

Performance and power optimized L1 caches combine minimal access latency techniques to maximize performance and minimize power consumption.

#### Integrated L2 cache controller

Provides low-latency and high-bandwidth access to cached memory in high-frequency, or to reduce the power consumption associated with off-chip memory access.

#### Cortex-A7 floating-point unit (FPU)

The FPU provides high-performance single and double precision floating-point instructions compatible with the Arm VFPv4 architecture that is software compatible with previous generations of Arm floating-point coprocessor.

#### Snoop control unit (SCU)

The SCU is responsible for managing the interconnect, arbitration, communication, cache to cache and system memory transfers, cache coherence and other capabilities for the processor.

This system coherence also reduces software complexity involved in maintaining software coherence within each OS driver.

#### Generic interrupt controller (GIC)

Implementing the standardized and architected interrupt controller, the GIC provides a rich and flexible approach to inter-processor communication and the routing and prioritization of system interrupts.

Supporting up to 192 independent interrupts, under software control, hardware prioritized, and routed between the operating system and TrustZone software management layer.

This routing flexibility and the support for virtualization of interrupts into the operating system, provides one of the key features required to enhance the capabilities of a solution utilizing a hypervisor.

#### 3.2 Memories

#### 3.2.1 External SDRAM

The STM32MP135A/D devices embed a controller for external SDRAM that supports the following:

- LPDDR2 or LPDDR3, 16-bit data, up to 1 Gbyte, up to 533 MHz clock
- DDR3 or DDR3L, 16-bit data, up to 1 Gbyte, up to 533 MHz clock

#### 3.2.2 Embedded SRAM

All devices feature:

- SYSRAM: 128 Kbytes (with programmable size secure zone)
- AHB SRAM: 32 Kbytes (securable)
- BKPSRAM (backup SRAM): 8 Kbytes

The content of this area is protected against possible unwanted write accesses, and can be retained in Standby or  $V_{BAT}$  mode.

BKPSRAM can be defined (in ETZPC) as accessible by secure software only.

## 3.3 DDR3/DDR3L/LPDDR2/LPDDR3 controller (DDRCTRL)

DDRCTRL combined with DDRPHYC provides a complete memory interface solution for DDR memory subsystem.

- One 64-bit AMBA 4 AXI ports interface (XPI)
- AXI clock asynchronous to the controller
- Supported standards:
  - JEDEC DDR3 SDRAM specification, JESD79-3E for DDR3/3L with 16-bit interface
  - JEDEC LPDDR2 SDRAM specification, JESD209-2E for LPDDR2 with 16-bit interface
  - JEDEC LPDDR3 SDRAM specification, JESD209-3B for LPDDR3 with 16-bit interface
- Advanced scheduler and SDRAM command generator
- Programmable full data width (16-bit) or half data width (8-bit)
- Advanced QoS support with three traffic class on read and two traffic classes on write
- Options to avoid starvation of lower priority traffic
- Guaranteed coherency for write-after-read (WAR) and read-after-write (RAW) on AXI ports
- Programmable support for burst length options (4, 8, 16)
- Write combine to allow multiple writes to the same address to be combined into a single write
- Single rank configuration
- Support of automatic SDRAM power-down entry and exit caused by lack of transaction arrival for programmable time

DS13874 Rev 1 21/223

 Support of automatic clock stop (LPDDR2/3) entry and exit caused by lack of transaction arrival

- Support of automatic low-power mode operation caused by lack of transaction arrival for programmable time via hardware low-power interface
- Programmable paging policy
- Support of automatic or under software control self-refresh entry and exit
- Support of deep power-down entry and exit under software control (LPDDR2 and LPDDR3)
- Support of explicit SDRAM mode register updates under software control
- Flexible address mapper logic to allow application specific mapping of row, column, bank bits
- User-selectable refresh control options
- DDRPERFM associated block to help for performance monitoring and tuning

DDRCTRL and DDRPHYC can be defined (in ETZPC) as accessible by secure software only.

## 3.4 TrustZone address space controller for DDR (TZC)

TZC is used to filter read/write accesses to DDR controller according to TrustZone rights and according to non-secure master (NSAID) on up to nine programmable regions:

- · Configuration supported by trusted software only
- One filter unit
- Nine regions:
  - Region 0 is always enabled and covers the whole address range.
  - Regions 1 to 8 have programmable base-/end-address and can be assigned to any one or both filters.
- Secure and non-secure access permissions programmed per region
- Non-secure accesses filtered according to NSAID
- Regions controlled by same filter must not overlap
- Fail modes with error and/or interrupt
- Acceptance capability = 256
- Gate keeper logic to enable and disable of each filter
- Speculative accesses

#### 3.5 Boot modes

At startup, the boot source used by the internal boot ROM is selected by the BOOT pin and OTP bytes.

BOOT2 BOOT1 BOOT0 Initial boot mode Comments Wait incoming connection on: UART and USB(1) 0 0 0 - USART3/6 and UART4/5/7/8 on default pins USB high-speed device on OTG\_HS\_DP/DM pins<sup>(2)</sup> Serial NOR flash on QUADSPI(5) Serial NOR flash(3) 0 0 1 e•MMC(3) e•MMC on SDMMC2 (default)(5)(6) 0 1 0 0 1 1 NAND flash<sup>(3)</sup> SLC NAND flash on FMC Development boot (no Used to get debug access without boot from flash memory<sup>(4)</sup> 0 1 0 flash memory boot) SD card<sup>(3)</sup> SD card on SDMMC1 (default)<sup>(5)(6)</sup> 0 1 1 Wait incoming connection on: UART and USB(1)(3) 1 1 0 USART3/6 and UART4/5/7/8 on default pins USB high-speed device on OTG HS DP/DM pins<sup>(2)</sup>

Table 2. Boot modes

- 1. Can be disabled by OTP settings.
- 2. USB requires HSE clock/crystal (see AN5474 for supported frequencies with and without OTP settings).
- 3. Boot source can be changed by OTP settings (for example initial boot on SD card, then e•MMC with OTP settings).
- Cortex<sup>®</sup>-A7 core in infinite loop toggling PA13.

1

- 5. Default pins can be altered by OTP.
- 6. Alternatively, another SDMMC interface than this default can be selected by OTP.

Serial NAND flash<sup>(3)</sup>

Although low level boot is done using internal clocks, ST supplied software packages as well as major external interfaces such as DDR, USB (but not limited to) require a crystal or an external oscillator to be connected on HSE pins.

Serial NAND flash on QUADSPI(5)

See RM0475 "STM32MP13xx advanced Arm®-based 32-bit MPUs" or AN5474 "Getting started with STM32MP13xx lines hardware development" for constraints and recommendations regarding HSE pins connection and supported frequencies.

## 3.6 Power supply management

#### 3.6.1 Power supply scheme

V<sub>DD</sub> is the main supply for I/Os and internal part kept powered during Standby mode.
 Useful voltage range is 1.71 V to 3.6 V (1.8 V, 2.5 V, 3.0 V or 3.3 V typ.)

- V<sub>DD PLL</sub> and V<sub>DD ANA</sub> must be star-connected to V<sub>DD</sub>.
- V<sub>DDCPU</sub> is the Cortex-A7 CPU dedicated voltage supply, whose value depends on the desired CPU frequency. 1.22 V to 1.38 V in run mode. V<sub>DD</sub> must be present before V<sub>DDCPU</sub>.
- V<sub>DDCORE</sub> is the main digital voltage and is usually shutdown during Standby mode.
   Voltage range is 1.22 V to 1.38 V in run mode. V<sub>DD</sub> must be present before V<sub>DDCORE</sub>.
- The VBAT pin can be connected to the external battery (1.6 V < V<sub>BAT</sub> < 3.6 V). If no external battery is used, this pin must be connected to V<sub>DD</sub>.
- V<sub>DDA</sub> is the analog (ADC/VREF), supply voltage (1.62 V to 3.6 V). Using the internal V<sub>REF+</sub> requires V<sub>DDA</sub> equal to or higher than V<sub>REF+</sub> + 0.3 V.
- The VDDA1V8\_REG pin is the output of the internal regulator, connected internally to USB PHY and USB PLL. The internal V<sub>DDA1V8\_REG</sub> regulator is enabled by default and can be controlled by software. It is always shut down during Standby mode.
  - The specific BYPASS\_REG1V8 pin must never be left floating. It must be connected either to  $V_{SS}$  or to  $V_{DD}$  to activate or deactivate the voltage regulator. When  $V_{DD}$  = 1.8 V, BYPASS\_REG1V8 should be set.
- VDDA1V1\_REG pin is the output of the internal regulator, connected internally to USB PHY. The internal V<sub>DDA1V1\_REG</sub> regulator is enabled by default and can be controlled by software. It is always shut down during Standby mode.
- V<sub>DD3V3</sub> USBHS is the USB high-speed supply. Voltage range is 3.07 V to 3.6 V.

#### Caution:

 $V_{DD3V3\_USBHS}$  must not be present unless  $V_{DDA1V8\_REG}$  is present, otherwise permanent damage may occur on the STM32MP135A/D. This must be ensured by PMIC ranking order or with external component in case of discrete component power supply implementation.

- ullet V<sub>DDSD1</sub> and V<sub>DDSD2</sub> are respectively SDMMC1 and SDMMC2 SD card power supplies to support ultra-high-speed mode.
- V<sub>DDQ DDR</sub> is the DDR IO supply.
  - 1.425 V to 1.575 V for interfacing DDR3 memories (1.5 V typ.)
  - 1.283 V to 1.45 V for interfacing DDR3L memories (1.35 V typ.)
  - 1.14 V to 1.3 V for interfacing LPDDR2 or LPDDR3 memories (1.2 V typ.)

During power-up and power-down phases, the following power sequence requirements must be respected:

- When V<sub>DD</sub> is below 1 V, other power supplies (V<sub>DDCORE</sub>, V<sub>DDCPU</sub>, V<sub>DDSD1</sub>, V<sub>DDSD2</sub>, V<sub>DDA</sub>, V<sub>DDA1V8\_REG</sub>, V<sub>DDA1V1\_REG</sub>, V<sub>DD3V3\_USBHS</sub>, V<sub>DDQ\_DDR</sub>) must remain below V<sub>DD</sub> + 300 mV.
- When V<sub>DD</sub> is above 1 V, all power supplies are independent.

During the power-down phase,  $V_{DD}$  can temporarily become lower than other supplies only if the energy provided to the STM32MP135A/D remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase.





Figure 2. Power-up/down sequence

1.  $V_{DDX}$  refers to any power supply among  $V_{DDCORE}$ ,  $V_{DDCPU}$ ,  $V_{DDSD1}$ ,  $V_{DDSD2}$ ,  $V_{DDA1V8\_REG}$ ,  $V_{DDA1V1\_REG}$ ,  $V_{DD3V3\_USBHS}$ ,  $V_{DDQ\_DDR}$ .

#### 3.6.2 Power supply supervisor

The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry:

Power-on reset (POR)

The POR supervisor monitors  $V_{DD}$  power supply and compares it to a fixed threshold. The devices remain in reset mode when  $V_{DD}$  is below this threshold,

Power-down reset (PDR)

The PDR supervisor monitors  $V_{DD}$  power supply. A reset is generated when  $V_{DD}$  drops below a fixed threshold.

The PDR supervisor can be enabled/disabled through PDR\_ON pin. PDR\_ON must be connected to either  $V_{DD}$  or  $V_{SS}$  and never be left floating.

Brownout reset (BOR)

The BOR supervisor monitors  $V_{DD}$  power supply. Three BOR thresholds (from 2.1 to 2.7 V) can be configured through option bytes. A reset is generated when  $V_{DD}$  drops below this threshold.

Power-on reset V<sub>DDCORE</sub> (POR\_VDDCORE)

The POR\_VDDCORE supervisor monitors  $V_{DDCORE}$  power supply and compares it to a fixed threshold. The  $V_{DDCORE}$  domain remains in reset mode when  $V_{DDCORE}$  is below this threshold.

Power-down reset V<sub>DDCORE</sub> (PDR\_VDDCORE)

The PDR\_VDDCORE supervisor monitors  $V_{DDCORE}$  power supply. A  $V_{DDCORE}$  domain reset is generated when  $V_{DDCORE}$  drops below a fixed threshold.

The PDR\_VDDCORE supervisor can be enabled/disabled through PDR\_ON pin. PDR\_ON must be connected to either  $V_{DD}$  or  $V_{SS}$  and never be left floating.

Power-on-reset V<sub>DDCPU</sub> (POR\_VDDCPU)

The POR\_VDDCPU supervisor monitors  $V_{DDCPU}$  power supply and compares it to a fixed threshold. The  $V_{DDCPU}$  domain remains in reset mode when  $V_{DDCORE}$  is below this threshold.

## 3.7 Low-power strategy

There are several ways to reduce power consumption on STM32MP135A/D:

- Decrease dynamic power consumption by slowing down the CPU clocks and/or the bus matrix clocks and/or controlling individual peripheral clocks.
- Save power consumption when the CPU is IDLE, by selecting among the available low-power modes according to the user application needs. This allows the best compromise between short startup time, low-power consumption, as well as available wakeup sources, to be achieved.
- Use the DVFS (dynamic voltage and frequency scaling) operating points that directly controls the CPU clock frequency as well as the V<sub>DDCPU</sub> output supply.

The operating modes allow the control of the clock distribution to the different system parts and the power of the system. The system operation mode is driven by the MPU sub-system.

The MPU sub-system low-power modes are listed below:

- CSleep: The CPU clocks are stopped and the peripheral(s) clock operates as previously set in the RCC (reset and clock controller).
- CStop: The CPU peripheral(s) clocks are stopped.
- CStandby: V<sub>DDCPU</sub> OFF

CSleep and CStop low-power modes are entered by the CPU when executing the WFI (wait for interrupt) or WFE (wait for event) instructions.

The system operating modes available are the followings:

- Run (system at its full performance, V<sub>DDCORE</sub>, V<sub>DDCPU</sub> and clocks ON)
- Stop (clocks OFF)
- LP-Stop (clocks OFF)
- LPLV-Stop (clocks OFF, V<sub>DDCORE</sub> and V<sub>DDCPU</sub> supply level may be lowered)
- LPLV-Stop2 (V<sub>DDCPU</sub> OFF, V<sub>DDCORE</sub> lowered, and clocks OFF)
- Standby (V<sub>DDCPU</sub>, V<sub>DDCORE</sub>, and clocks OFF)

| ······································                         |                   |
|----------------------------------------------------------------|-------------------|
| System power mode                                              | CPU               |
| Run mode                                                       | CRun or CSleep    |
| Stop mode<br>LP-Stop mode<br>LPLV-Stop mode<br>LPLV-Stop2 mode | CStop or CStandby |
| Standby mode                                                   | CStandby          |

Table 3. System versus CPU power mode

## 3.8 Reset and clock controller (RCC)

The clock and reset controller manages the generation of all the clocks, as well as the clock gating, and the control of the system and peripheral resets.RCC provides a high flexibility in the choice of clock sources and allows application of clock ratios to improve the power consumption. In addition, on some communication peripherals that are capable to work with two different clock domains (either a bus interface clock or a kernel peripheral clock), the system frequency can be changed without modifying the baudrate.

## 3.8.1 Clock management

The devices embed four internal oscillators, two oscillators with external crystal or resonator, three internal oscillators with fast startup time and four PLLs.

The RCC receives the following clock source inputs:

- Internal oscillators:
  - 64 MHz HSI clock (1 % accuracy)
  - 4 MHz CSI clock
  - 32 kHz LSI clock
- External oscillators:
  - 8-48 MHz HSE clock
  - 32.768 kHz LSE clock

The RCC provides four PLLs:

- PLL1 dedicated to the CPU clocking
- PLL2 providing:
  - clocks for the AXI-SS (including APB4, APB5, AHB5 and AHB6 bridges)
  - clocks for the DDR interface
- · PLL3 providing:
  - clocks for the multi-Layer AHB and peripheral bus matrix (including the APB1, APB2, APB3, APB6, AHB1, AHB2, and AHB4)
  - kernel clocks for peripherals
- PLL4 dedicated to the generation of the kernel clocks for various peripherals

The system starts on the HSI clock. The user application can then select the clock configuration.

4

DS13874 Rev 1 27/223

#### 3.8.2 System reset sources

The power-on reset initializes all registers except for the debug, a part of the RCC, a part of the RTC and power controller status registers, as well as the Backup power domain.

An application reset is generated from one of the following sources:

- a reset from NRST pad
- a reset from POR and PDR signal (generally called power-on reset)
- a reset from BOR (generally called brownout)
- a reset from the independent watchdog 1
- a reset from the independent watchdog 2
- a software system reset from the Cortex-A7 (CPU)
- a failure on HSE, when the clock security system feature is activated

A system reset is generated from one of the following sources:

- an application reset
- a reset from POR VDDCORE signal
- · an exit from Standby mode to Run mode

A MPU processor reset is generated from one of the following sources:

- a system reset
- every time the MPU exits CStandby
- a software MPU reset from the Cortex-A7 (CPU)

## 3.9 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

After reset, all GPIOs are in analog mode to reduce power consumption.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

All GPIO pins can be individually set as secure, which means that software accesses to these GPIOs and associated peripherals defined as secure are restricted to secure software running on the CPU.

## 3.10 TrustZone protection controller (ETZPC)

ETZPC is used to configure TrustZone security of bus masters and slaves with programmable-security attributes (securable resources). For instance:

- On-chip SYSRAM secure region size can be programmed.
- AHB and APB peripherals can be made secure or non-secure.
- AHB SRAM can be made secure or non-secure.



Note:

By default, SYSRAM, AHB SRAMs and securable peripherals are set to secure access only, so, not accessible by non-secure masters such as DMA1/DMA2.



DS13874 Rev 1 29/223

### 3.11 Bus-interconnect matrix

The devices feature an AXI bus matrix, one main AHB bus matrix and bus bridges that allow bus masters to be interconnected with bus slaves (see the figure below, the dots represent the enabled master/slave connections).



#### 3.12 DMA controllers

The devices feature the following DMA modules to unload CPU activity:

a master direct memory access (MDMA)

The MDMA is a high-speed DMA controller, that is in charge of all types of memory transfers (peripheral-to-memory, memory-to-memory, memory-to-peripheral), without any CPU action. It features a master AXI interface.

The MDMA is able to interface with the other DMA controllers to extend the standard DMA capabilities, or can manage peripheral DMA requests directly.

Each of the 32 channels can perform block transfers, repeated block transfers and linked list transfers.

The MDMA can be set to make secure transfers to secured memories.

three DMA controllers (not secure DMA1 and DMA2, plus secure DMA3)
 Each controller has a dual-port AHB, for a total of 16 non-secure and eight secure DMA channels to perform FIFO-based block transfers.

Two DMAMUX units multiplex and route the DMA peripheral requests to the three DMA controllers, with high flexibility, maximizing the number of DMA requests that run concurrently, as well as generating DMA requests from peripheral output triggers or DMA events.

DMAMUX1 maps DMA requests from non-secure peripherals to DMA1 and DMA2 channels. DMAMUX2 maps DMA requests from secure peripherals to DMA3 channels.

## 3.13 Extended interrupt and event controller (EXTI)

The extended interrupt and event controller (EXTI) manages the CPU and system wakeup through configurable and direct event inputs. EXTI provides wakeup requests to the power control, and generates an interrupt request to the GIC, and events to the CPU event input.

The EXTI wakeup requests allow the system to be woken up from Stop mode, and the CPU to be woken up from CStop and CStandby modes.

The interrupt request and event request generation can also be used in Run mode.

The EXTI also includes the EXTI IOport selection.

Each interrupt or event can be set as secure in order to restrict access to secure software only.

## 3.14 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a programmable polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the flash memory integrity. The CRC calculation unit helps computing a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

4

DS13874 Rev 1 31/223

## 3.15 Flexible memory controller (FMC)

The FMC controller main features are the following:

- Interface with static-memory mapped devices including:
  - NOR flash memory
  - Static or pseudo-static random access memory (SRAM, PSRAM)
  - NAND flash memory with 4-bit/8-bit BCH hardware ECC
- 8-,16-bit data bus width
- Independent chip-select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO

The FMC configuration registers can be made secure.

## 3.16 Dual Quad-SPI memory interface (QUADSPI)

The QUADSPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes:

- Indirect mode: all the operations are performed using the QUADSPI registers.
- Status-polling mode: the external flash memory status register is periodically read and an interrupt can be generated in case of flag setting.
- Memory-mapped mode: the external flash memory is mapped to the address space and is seen by the system as if it was an internal memory.

Both throughput and capacity can be increased two-fold using dual-flash mode, where two Quad-SPI flash memories are accessed simultaneously.

QUADSPI is coupled with a delay block (DLYBQS) allowing the support of external data frequency above 100 MHz.

The QUADSPI configuration registers can be secure, as well as its delay block.

## 3.17 Analog-to-digital converters (ADC1, ADC2)

The devices embed two analog-to-digital converters, whose resolution can be configured to 12-, 10-, 8- or 6-bit. Each ADC shares up to 18 external channels, performing conversions in the single-shot or scan mode. In scan mode, the automatic conversion is performed on a selected group of analog inputs.

Both ADCs have securable bus interfaces.

Each ADC can be served by a DMA controller, thus allowing the automatic transfer of ADC converted values to a destination location without any software action.

In addition, an analog watchdog feature can accurately monitor the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

In order to synchronize A/D conversion and timers, the ADCs can be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, LPTIM1, LPTIM2 and LPTIM3 timers.



### 3.18 Temperature sensor

The devices embed a temperature sensor that generates a voltage ( $V_{TS}$ ) that varies linearly with the temperature. This temperature sensor is internally connected to ADC2\_INP12 and can measure the device ambient temperature ranging from -40 to +125 °C with a precision of  $\pm 2$  %.

The temperature sensor has a good linearity, but it has to be calibrated to obtain a good overall accuracy of the temperature measurement. As the temperature sensor offset varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the OTP area, that is accessible in read-only mode.

## 3.19 Digital temperature sensor (DTS)

The devices embed a frequency output temperature sensor. DTS counts the frequency based on the LSE or PCLK to provide the temperature information.

Following functions are supported:

- interrupt generation by temperature threshold
- wakeup signal generation by temperature threshold

## 3.20 V<sub>BAT</sub> operation

The V<sub>BAT</sub> power domain contains the RTC, the backup registers and the backup SRAM.

In order to optimize battery duration, this power domain is supplied by  $V_{DD}$  when available or by the voltage applied on VBAT pin (when  $V_{DD}$  supply is not present).  $V_{BAT}$  power is switched when the PDR detects that  $V_{DD}$  has dropped below the PDR level.

The voltage on the VBAT pin can be provided by an external battery, a supercapacitor or directly by  $V_{DD}$ . In the later case, VBAT mode is not functional.

V<sub>BAT</sub> operation is activated when V<sub>DD</sub> is not present.

Note:

None of these events (external interrupts, TAMP event, or RTC alarm/events) are able to directly restore the  $V_{DD}$  supply and force the device out of the  $V_{BAT}$  operation. Nevertheless, TAMP events and RTC alarm/events can be used to generate a signal to an external circuitry (typically a PMIC) that can restore the  $V_{DD}$  supply.

When the PDR\_ON pin is connected to  $V_{SS}$  (internal reset OFF), the  $V_{BAT}$  functionality is no more available and the VBAT pin must be connected to  $V_{DD}$ .

5

DS13874 Rev 1 33/223

## 3.21 Voltage reference buffer (VREFBUF)

The devices embed a voltage reference buffer that can be used as voltage reference for the ADCs, and also as voltage reference for external components through the VREF+ pin.

VREFBUF can be secure.

The internal VREFBUF supports four voltages:

- 1.65 V
- 1.8 V
- 2.048 V
- 2.5 V

An external voltage reference can be provided through the VREF+ pin when the internal VREFBUF is off.



Figure 4. Voltage reference buffer

## 3.22 Digital filter for sigma-delta modulator (DFSDM)

The devices embed one DFSDM with support for two digital filters modules and four external input serial channels (transceivers) or alternately four internal parallel inputs.

The DFSDM interfaces external  $\Sigma\Delta$  modulators to the device and performs digital filtering of the received data streams.  $\Sigma\Delta$  modulators are used to convert analog signals into digital-serial streams that constitute the inputs of the DFSDM.

The DFSDM can also interface PDM (pulse-density modulation) microphones and perform the PDM to PCM conversion and filtering (hardware accelerated). The DFSDM features optional parallel data stream inputs from the ADCs or from the device memory (through DMA/CPU transfers into DFSDM).

The DFSDM transceivers support several serial-interface formats (to support various  $\Sigma\Delta$  modulators). DFSDM digital filter modules perform digital processing according user-defined filter parameters with up to 24-bit final ADC resolution.

#### The DFSDM peripheral supports:

- Four multiplexed input digital serial channels:
  - configurable SPI interface to connect various Σ∆ modulators
  - configurable Manchester coded 1-wire interface
  - PDM (pulse-density modulation) microphone input
  - maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
  - clock output for ΣΔ modulators (0 to 20 MHz)
- Alternative inputs from four internal digital parallel channels (up to 16-bit input resolution):
  - internal sources: ADC data or memory data streams (DMA)
- Two digital filter modules with adjustable digital signal processing:
  - Sinc<sup>x</sup> filter: filter order/type (1 to 5), oversampling ratio (1 to 1024)
  - integrator: oversampling ratio (1 to 256)
- Up to 24-bit output data resolution, signed output data format
- Automatic data offset correction (offset stored in register by user)
- Continuous or single conversion
- Start-of-conversion triggered by:
  - software trigger
  - internal timers
  - external events
  - start-of-conversion synchronously with first digital filter module (DFSDM)
- Analog watchdog featuring:
  - low-value and high-value data threshold registers
  - dedicated configurable Sinc<sup>x</sup> digital filter (order = 1 to 3, oversampling ratio = 1 to 32)
  - input from final output data or from selected input digital serial channels
  - continuous monitoring independently from standard conversion
- Short-circuit detector to detect saturated analog input values (bottom and top range):
  - up to 8-bit counter to detect 1 to 256 consecutive 0's or 1's on serial data stream
  - monitoring continuously each input serial channel
- Break signal generation on analog watchdog event or on short-circuit detector event
- Extremes detector:
  - storage of minimum and maximum values of final conversion data
  - refreshed by software
- DMA capability to read the final conversion data
- Interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "Regular" or "injected" conversions:
  - "regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions
  - "injected" conversions for precise timing and with high conversion priority



DS13874 Rev 1 35/223

## 3.23 Digital camera interface pipe processing (DCMIPP)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8- to 16-bit parallel interface, to receive video data. The camera interface can achieve a data transfer rate up to 240 Mbyte/s using a 120 MHz pixel clock and 16-bit of data.

The DCMIPP main features are listed below:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12-, 14- or 16-bit
- Support of 8-bit progressive video monochrome or raw Bayer format, YC<sub>b</sub>C<sub>r</sub> 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Support of continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image
- AXI master interface
- Dedicated asynchronous processing clock allowing performance scaling
- Double-buffer mode

The DCMIPP configuration registers can be secure.

## 3.24 LCD-TFT display controller (LTDC)

The LTDC includes a 24-bit parallel digital RGB (Red, Green, Blue) controller and provides all signals to interface directly to a broad range of LCD and TFT panels with resolution up to WXGA (1366×768) @60 fps or up to Full HD (1920 x 1080) @ 30 fps, and pixel clock up to 90 MHz.

The following features are available:

- Two display layers with dedicated FIFO, including one securable layer
- Color look-up table (CLUT) up to 256 colors (256×24-bit) per layer
- Up to eight input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to four programmable interrupt events
- AXI master interface

## 3.25 True random number generator (RNG)

The devices embed one RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

The RNG can be defined (in ETZPC) as accessible by secure software only.

### 3.26 Hash processor (HASH1)

The devices embed one processor that supports the advanced algorithms usually required to ensure authentication, data integrity and non-repudiation when exchanging messages with a peer.

Universal HASH main features:

- SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-3 (secure HASH algorithms)
- HMAC

The accelerator supports DMA request generation.

HASH can be defined (in ETZPC) as accessible by secure software only.

# 3.27 Public key accelerator (PKA)

The PKA is intended for ECDSA signature generation and verification.

For a given operation, all needed computations are performed within the accelerator: no further hardware/software elaboration is needed to process inputs or outputs.

# 3.28 Boot and security and OTP control (BSEC)

The BSEC (boot and security and OTP control) is intended to control an OTP (one-time programmable) fuse box, used for embedded non-volatile storage for device configuration and security parameters. Some part of BSEC must be configured as accessible by secure software only.

DS13874 Rev 1 37/223

Functional overview STM32MP135A/D

# 3.29 Timers and watchdogs

The devices include two advanced-control timers, ten general-purpose timers (out of which seven are secured), two basic timers, five low-power timers, two watchdogs, and four system timers in each Cortex-A7.

All timer counters can be frozen in debug mode.

The table below compares the features of the advanced-control, general-purpose, basic and low-power timers.

Table 4. Timer feature comparison

| Timer<br>type     | Timer                                                                              | Counter<br>resolu-<br>tion                          | Counter<br>type         | Prescaler<br>factor                   | DMA<br>request<br>generation | Capture/<br>compare<br>channels | Comple-<br>mentary<br>output | Max<br>interface<br>clock<br>(MHz) | Max<br>timer<br>clock<br>(MHz) <sup>(1)</sup> |
|-------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|---------------------------------------|------------------------------|---------------------------------|------------------------------|------------------------------------|-----------------------------------------------|
| Advanced -control | TIM1,<br>TIM8                                                                      | 16-bit                                              | Up,<br>down,<br>up/down | Any integer<br>between 1<br>and 65536 | Yes                          | 6                               | 4                            | 104.5                              | 209                                           |
|                   | TIM2<br>TIM5                                                                       | 32-bit                                              | Up,<br>down,<br>up/down | Any integer<br>between 1<br>and 65536 | Yes                          | 4                               | No                           | 104.5                              | 209                                           |
|                   | TIM3<br>TIM4                                                                       | 1 16-hit                                            |                         | Any integer<br>between 1<br>and 65536 | Yes                          | 4                               | No                           | 104.5                              | 209                                           |
| General           | TIM12 <sup>(2)</sup> 16-bit                                                        |                                                     | Up                      | Any integer<br>between 1<br>and 65536 | No                           | 2                               | No                           | 104.5                              | 209                                           |
| purpose           | TIM13 <sup>(2)</sup><br>TIM14 <sup>(2)</sup>                                       | TIM13 <sup>(2)</sup><br>TIM14 <sup>(2)</sup> 16-bit |                         | Any integer<br>between 1<br>and 65536 | No                           | 1                               | No                           | 104.5                              | 209                                           |
|                   | TIM15 <sup>(2)</sup> 16-bit                                                        |                                                     | Up                      | Any integer<br>between 1<br>and 65536 | Yes                          | 2                               | 1                            | 104.5                              | 209                                           |
|                   | TIM16 <sup>(2)</sup><br>TIM17 <sup>(2)</sup>                                       | 16-bit                                              | Up                      | Any integer<br>between 1<br>and 65536 | Yes                          | 1                               | 1                            | 104.5                              | 209                                           |
| Basic             | TIM6,<br>TIM7                                                                      | 16-bit                                              | Up                      | Any integer<br>between 1<br>and 65536 | Yes                          | 0                               | No                           | 104.5                              | 209                                           |
| Low-<br>power     | LPTIM1,<br>LPTIM2 <sup>(2)</sup> ,<br>LPTIM3 <sup>(2)</sup> ,<br>LPTIM4,<br>LPTIM5 | 16-bit                                              | Up                      | 1, 2, 4, 8,<br>16, 32, 64,<br>128     | No                           | 1 <sup>(3)</sup>                | No                           | 104.5                              | 104.5                                         |

<sup>1.</sup> The maximum timer clock is up to 209 MHz depending on TIMGxPRE bit in the RCC.

<sup>2.</sup> Securable timer.

<sup>3.</sup> No capture channel on LPTIM.

#### 3.29.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge- or center-aligned modes)
- one-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100 %).

The advanced-control timer can work together with the general-purpose timers via the timer link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

# 3.29.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM12, TIM13, TIM14, TIM15, TIM16, TIM17)

There are ten synchronizable general-purpose timers embedded in the STM32MP135A/D devices (see *Table 4* for differences).

#### TIM2, TIM3, TIM4, TIM5

TIM 2 and TIM5 are based on a 32-bit auto-reload up/down counter and a 16-bit prescaler, while TIM3 and TIM4 are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. All timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

These general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8, via the timer link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from one to four hall-effect sensors.

#### TIM12, TIM13, TIM14, TIM15, TIM16, TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12 and TIM15 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers or used as simple timebases.

Each of these timers can be defined (in ETZPC) as accessible by secure software only.

#### 3.29.3 Basic timers (TIM6 and TIM7)

These timers are mainly used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.



DS13874 Rev 1 39/223

Functional overview STM32MP135A/D

#### 3.29.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)

Each low-power timer has an independent clock and runs also in Stop mode if it is clocked by LSE, LSI or an external clock. An LPTIMx is able to wake up the device from Stop mode.

These low-power timers support the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous/one-shot mode
- Selectable software/hardware input trigger
- Selectable clock source:
  - internal clock source: LSE, LSI, HSI or APB clock
  - external clock source over LPTIM input (working even with no internal clock source running, used by the pulse counter application)
- Programmable digital glitch filter
- Encoder mode

LPTIM2 and LPTIM3 can be defined (in ETZPC) as accessible by secure software only.

#### 3.29.5 Independent watchdogs (IWDG1, IWDG2)

An independent watchdog is based on a 12-bit downcounter and a 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and, as it operates independently from the main clock, it can operate in Stop and Standby modes. IWDG can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

IWDG1 can be defined (in ETZPC) as accessible by secure software only.

#### 3.29.6 Generic timers (Cortex-A7 CNT)

Cortex-A7 generic timers embedded inside Cortex-A7 are fed by value from system timing generation (STGEN).

The Cortex-A7 processor provides the following timers:

- physical timer for use in secure and non-secure modes
   The registers for the physical timer are banked to provide secure and non-secure copies.
- virtual timer for use in non-secure modes
- · physical timer for use in hypervisor mode

Generic timers are not memory mapped peripherals and are then accessible only by specific Cortex-A7 coprocessor instructions (cp15).

# 3.30 System timer generation (STGEN)

The system timing generation (STGEN) generates a time-count value that provides a consistent view of time for all Cortex-A7 generic timers.



The system timing generation has the following key features:

- 64-bit wide to avoid roll-over issues
- Start from zero or a programmable value
- Control APB interface (STGENC) that enables the timer to be saved and restored across powerdown events
- Read-only APB interface (STGENR) that enables the timer value to be read by nonsecure software and debug tools
- Timer value incrementing that can be stopped during system debug

STGENC can be defined (in ETZPC) as accessible by secure software only.

### 3.31 Real-time clock (RTC)

The RTC provides an automatic wakeup to manage all low-power modes.RTC is an independent BCD timer/counter and provides a time-of-day clock/calendar with programmable alarm interrupts.

The RTC includes also a periodic programmable wakeup flag with interrupt capability.

Two 32-bit registers contain the seconds, minutes, hours (12- or 24-hour format), day (day of week), date (day of month), month, and year, expressed in binary coded decimal format (BCD). The sub-seconds value is also available in binary format.

Binary mode is supported to ease software driver management.

Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed automatically. Daylight saving time compensation can also be performed.

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

A digital calibration feature is available to compensate for any deviation in crystal oscillator accuracy.

After Backup domain reset, all RTC registers are protected against possible parasitic write accesses and protected by secured access.

As long as the supply voltage remains in the operating range, the RTC never stops, regardless of the device status (Run mode, low-power mode or under reset).

The RTC main features are the following:

- Calendar with subseconds, seconds, minutes, hours (12 or 24 format), day (day of week), date (day of month), month, and year
- Daylight saving compensation programmable by software
- Programmable alarm with interrupt function. The alarm can be triggered by any combination of the calendar fields.
- Automatic wakeup unit generating a periodic flag that triggers an automatic wakeup interrupt
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Accurate synchronization with an external clock using the sub-second shift feature
- Digital calibration circuit (periodic counter correction): 0.95 ppm accuracy, obtained in a calibration window of several seconds



DS13874 Rev 1 41/223

Functional overview STM32MP135A/D

- Timestamp function for event saving
- Storage of SWKEY in RTC backup registers with direct bus access to SAE (not readable by the CPU)
- Maskable interrupts/events:
  - Alarm A
  - Alarm B
  - Wakeup interrupt
  - Timestamp
- TrustZone support:
  - RTC fully securable
  - Alarm A, alarm B, wakeup timer and timestamp individual secure or non-secure configuration
  - RTC calibration done in secure on non-secure configuration

### 3.32 Tamper and backup registers (TAMP)

32 x 32-bit backup registers are retained in all low-power modes and also in VBAT mode. They can be used to store sensitive data as their content is protected by a tamper detection circuit.

Seven tamper input pins and five tamper output pins are available for anti-tamper detection. The external tamper pins can be configured for edge detection, edge and level, level detection with filtering, or active tamper that increases the security level by auto checking that the tamper pins are not externally opened or shorted.

#### TAMP main features

- 32 backup registers (TAMP\_BKPxR) implemented in the RTC domain that remains powered-on by V<sub>BAT</sub> when the V<sub>DD</sub> power is switched off
- 12 tamper pins available (seven inputs and five outputs)
- Any tamper detection can generate a RTC timestamp event.
- Any tamper detection erases the backup registers.
- TrustZone support:
  - Tamper secure or non-secure configuration
  - Backup registers configuration in three configurable-size areas:
    - . one read/write secure area
    - . one write secure/read non-secure area
    - . one read/write non-secure area
- Monotonic counter

# 3.33 Inter-integrated circuit interfaces (I2C1, I2C2, I2C3, I2C4, I2C5)

The devices embed five I<sup>2</sup>C interfaces.

The  $I^2C$  bus interface handles communications between the STM32MP135A/D and the serial  $I^2C$  bus. It controls all  $I^2C$  bus-specific sequencing, protocol, arbitration and timing.



The I2C peripheral supports:

- I<sup>2</sup>C-bus specification and user manual rev. 5 compatibility:
  - Slave and master modes, multimaster capability
  - Standard-mode (Sm), with a bitrate up to 100 kbit/s
  - Fast-mode (Fm), with a bitrate up to 400 kbit/s
  - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
  - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
  - Programmable setup and hold times
  - Optional clock stretching
- System management bus (SMBus) specification rev 2.0 compatibility:
  - Hardware PEC (packet error checking) generation and verification with ACK control
  - Address resolution protocol (ARP) support
  - SMBus alert
- Power system management protocol (PMBus<sup>™</sup>) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I<sup>2</sup>C communication speed to be independent from the PCLK reprogramming
- Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

I2C3, I2C4 and I2C5 can be defined (in ETZPC) as accessible by secure software only.

# 3.34 Universal synchronous asynchronous receiver transmitter (USART1, USART2, USART3, USART6 and UART4, UART5, UART7, UART8)

The devices have four embedded universal synchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7 and UART8). Refer to the table below for a summary of USARTx and UARTx features.

These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN master/slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 10 Mbit/s.

USART1, USART2, USART3 and USART6 also provide Smartcard mode (ISO 7816 compliant) and SPI-like communication capability.

All USART have a clock domain independent from the CPU clock, allowing the USARTx to wake up the STM32MP135A/D from Stop mode using baudrates up to 200 Kbaud.The wakeup events from Stop mode are programmable and can be:

- start bit detection
- any received data frame
- a specific programmed data frame



DS13874 Rev 1 43/223

Functional overview STM32MP135A/D

All USART interfaces can be served by the DMA controller.

Table 5. USART features

| USART modes/features <sup>(1)</sup>              | USART1/2/3/6 | UART4/5/7/8 |
|--------------------------------------------------|--------------|-------------|
| Hardware flow control for modem                  | X            | Х           |
| Continuous communication using DMA               | Х            | Х           |
| Multiprocessor communication                     | Х            | Х           |
| Synchronous mode (master/slave)                  | Х            | -           |
| Smartcard mode                                   | Х            | -           |
| Single-wire half-duplex communication            | Х            | Х           |
| IrDA SIR ENDEC block                             | Х            | Х           |
| LIN mode                                         | Х            | Х           |
| Dual clock domain and wakeup from low power mode | Х            | Х           |
| Receiver timeout interrupt                       | Х            | Х           |
| Modbus communication                             | Х            | Х           |
| Auto baud rate detection                         | Х            | Х           |
| Driver Enable                                    | Х            | Х           |
| USART data length                                | 7, 8 an      | d 9 bits    |

<sup>1.</sup> X = supported.

USART1 and USART2 can be defined (in ETZPC) as accessible by secure software only.

# 3.35 Serial peripheral interfaces (SPI1, SPI2, SPI3, SPI4, SPI5) – inter- integrated sound interfaces (I2S1, I2S2, I2S3, I2S4)

The devices feature up to five SPIs (SPI2S1, SPI2S2, SPI2S3, SPI2S4, and SPI5) that allow communication at up to 50 Mbit/s in master and slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives eight master mode frequencies and the frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode, hardware CRC calculation and multiply of 8-bit embedded Rx and Tx FIFOs with DMA capability.

I2S1, I2S2, I2S3, and I2S4 are multiplexed with SPI1, SPI2, SPI3 and SPI4. They can be operated in master or slave mode, in full-duplex and half-duplex communication modes, and can be configured to operate with a 16- or 32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. All I<sup>2</sup>S interfaces support multiply of 8-bit embedded Rx and Tx FIFOs with DMA capability.

SPI4 and SPI5 can be defined (in ETZPC) as accessible by secure software only.

# 3.36 Serial audio interfaces (SAI1, SAI2)

The devices embed two SAIs that allow the design of many stereo or mono audio protocols



such as I<sup>2</sup>S, LSB or MSB-justified, PCM/DSP, TDM or AC'97. An SPDIF output is available when the audio block is configured as a transmitter. To bring this level of flexibility and reconfigurability, each SAI contains two independent audio sub-blocks. Each block has it own clock generator and I/O line controller.

Audio sampling frequencies up to 192 kHz are supported.

In addition, up to eight microphones can be supported thanks to an embedded PDM interface.

The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and can work synchronously or asynchronously (with respect to the other one). The SAI can be connected with other SAIs to work synchronously.

#### 3.37 SPDIF receiver interface (SPDIFRX)

The SPDIFRX is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The SPDIFRX main features are the following:

- Up to four inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Support of audio IEC-60958 and IEC-61937, consumer applications
- Parity bit management
- Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal is available, the SPDIFRX re-samples the incoming signal, decodes the Manchester stream, and recognizes frames, sub-frames and blocks elements. The SPDIFRX delivers to the CPU decoded data, and associated status flags.

The SPDIFRX also offers a signal named spdif\_frame\_sync, that toggles at the S/PDIF sub-frame rate that is used to compute the exact sample rate for clock drift algorithms.

# 3.38 Secure digital input/output MultiMediaCard interfaces (SDMMC1, SDMMC2)

Two secure digital input/output MultiMediaCard interfaces (SDMMC) provide an interface between the AHB bus and SD memory cards, SDIO cards and MMC devices.

4

DS13874 Rev 1 45/223

Functional overview STM32MP135A/D

The SDMMC features include the following:

Full compliance with MultiMediaCard System Specification Version 4.51
 Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit

- Full compatibility with previous versions of MultiMediaCards (backward compatibility)
- Full compliance with SD memory card specifications version 4.1
   (SDR104 SDMMC\_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II mode not supported)
- Full compliance with SDIO card specification version 4.0
   Card support for two different databus modes: 1-bit (default) and 4-bit
   (SDR104 SDMMC\_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II mode not supported)
- Data transfer up to 208 Mbyte/s for the 8-bit mode (depending maximum allowed I/O speed)
- Data and command output enable signals to control external bidirectional drivers
- Dedicated DMA controller embedded in the SDMMC host interface, allowing high-speed transfers between the interface and the SRAM
- IDMA linked list support
- Dedicated power supplies, V<sub>DDSD1</sub> and V<sub>DDSD2</sub> for SDMMC1 and SDMMC2 respectively, removing the need for level-shifter insertion on the SD card interface in UHS-I mode

Only some GPIOs for SDMMC1 and SDMMC2 are available on a dedicated VDDSD1 or VDDSD2 supply pin. Those are part of the default boot GPIOs for SDMMC1 and SDMMC2 (SDMMC1: PC[12:8], PD[2], SDMMC2: PB[15,14,4,3], PE3, PG6). They can be identified in the alternate function table by signals with a "\_VSD1" or "\_VSD2" suffix.

Each SDMMC is coupled with a delay block (DLYBSD) allowing support of an external data frequency above 100 MHz.

Both SDMMC interfaces have securable configuration ports.

#### 3.39 Controller area network (FDCAN1, FDCAN2)

The controller area network (CAN) subsystem consists of two CAN modules, a shared message RAM memory and a clock calibration unit.

Both CAN modules (FDCAN1 and FDCAN2) are compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.

A 10-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs and transmit buffers (plus triggers for TTCAN). This message RAM is shared between the two FDCAN1 and FDCAN2 modules.

The common clock calibration unit is optional. It can be used to generate a calibrated clock for both FDCAN1 and FDCAN2 from the HSI internal RC oscillator and the PLL, by evaluating CAN messages received by the FDCAN1.



#### 3.40 Universal serial bus high-speed host (USBH)

The devices embed one USB high-speed host (up to 480 Mbit/s) with two physical ports. USBH supports both low, full-speed (OHCI) as well as high-speed (EHCI) operations independently on each port. It integrates two transceivers that can be used for either low-speed (1.2 Mbit/s), full-speed (12 Mbit/s) or high-speed operation (480 Mbit/s). The second high-speed transceiver is shared with OTG high-speed.

The USBH is compliant with the USB 2.0 specification. The USBH controllers require dedicated clocks that are generated by a PLL inside the USB high-speed PHY.

### 3.41 USB on-the-go high-speed (OTG)

The devices embed one USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral. OTG supports both full-speed and high-speed operations. The transceiver for high-speed operation (480 Mbit/s) is shared with the USB Host second port.

The USB OTG HS is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controllers require a dedicated 48 MHz clock that is generated by a PLL inside RCC or inside the USB high-speed PHY.

The USB OTG HS main features are listed below:

- Combined Rx and Tx FIFO size of 4 Kbyte with dynamic FIFO sizing
- SRP (session request protocol) and HNP (host negotiation protocol) support
- Eight bidirectional endpoints
- 16 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (link power management) support
- Battery charging specification revision 1.2 support
- HS OTG PHY support
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected.

The USB OTG configuration port can be secure.



DS13874 Rev 1 47/223

#### 3.42 Gigabit Ethernet MAC interfaces (ETH1, ETH2)

The devices provide two IEEE-802.3-2002-compliant gigabit media access controllers (GMAC) for Ethernet LAN communications through an industry-standard medium-independent interface (MII), a reduced medium-independent interface (RMII), or a reduced gigabit medium-independent interface (RGMII).

The devices require an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device port using 17 signals for MII, 7 signals for RMII, or 13 signals for RGMII, and can be clocked using the 25 MHz (MII, RMII, RGMII) or 125 MHz (RGMII) from the STM32MP135A/D or from the PHY.

The devices include the following features:

- Operation modes and PHY interfaces
  - 10-, 100-, and 1000-Mbit/s data transfer rates
  - Support of both full-duplex and half-duplex operations
  - MII, RMII and RGMII PHY interfaces
- Processing control
  - Multi-layer Packet filtering: MAC filtering on source (SA) and destination (DA) address with perfect and hash filter, VLAN tag-based filtering with perfect and hash filter, Layer 3 filtering on IP source (SA) or destination (DA) address, Layer 4 filtering on source (SP) or destination (DP) port
  - Double VLAN processing; insertion of up to two VLAN tags in transmit path, tag filtering in receive path
  - IEEE 1588-2008/PTPv2 support
  - Supports network statistics with RMON/MIB counters (RFC2819/RFC2665)
- Hardware offload processing
  - Preamble and start-of-frame data (SFD) insertion or deletion
  - Integrity checksum offload engine for IP header and TCP/UDP/ICMP payload: transmit checksum calculation and insertion, receive checksum calculation and comparison
  - Automatic ARP request response with the device MAC address
  - TCP segmentation: automatic split of large transmit TCP packet into multiple small packets
- Low-power mode
  - Energy efficient Ethernet (standard IEEE 802.3az-2010)
  - Remote wakeup packet and AMD Magic Packet™ detection

Both ETH1 and ETH2 can be programmed as secure. When secure, transactions over the AXI interface are secure, and the configuration registers can only be modified by secure accesses.

# 3.43 Debug infrastructure

The devices offer the following debug and trace features to support software development and system integration:

- Breakpoint debugging
- Code execution tracing
- Software instrumentation
- JTAG debug port
- Serial-wire debug port
- Trigger input and output
- Trace port
- Arm CoreSight debug and trace components

The debug can be controlled via a JTAG/serial-wire debug access port, using industry standard debugging tools.

A trace port allows data to be captured for logging and analysis.

A debug access to secure areas is enabled by the authentication signals in the BSEC.

4

DS13874 Rev 1 49/223

# 4 Pinout, pin description and alternate functions

Figure 5. STM32MP135A/D LFBGA289 ballout



The above figure shows the package top view.

Figure 6. STM32MP135A/D TFBGA289 ballout



The above figure shows the package top view.

4

DS13874 Rev 1

51/223

Figure 7. STM32MP135A/D TFBGA320 ballout

|    |             |                       |                       |      | •          | igui | e 7. S      | , i ivi | <b>0214</b> 11 | 100           | ,,,,,       |              | CAC         | ,20                  | oano                | ut          |                       |              |              |               |                |
|----|-------------|-----------------------|-----------------------|------|------------|------|-------------|---------|----------------|---------------|-------------|--------------|-------------|----------------------|---------------------|-------------|-----------------------|--------------|--------------|---------------|----------------|
|    | 1_          | 2                     | 3                     | 4    | 5          | 6    | 7           | 8       | 9              | 10            | 11          | 12           | 13          | 14                   | 15                  | 16          | 17                    | 18           | 19           | 20            | 21             |
| Α  | vss         | PA9                   | PE13                  | PE12 |            | PD12 | PG0         |         | PE15           | PG7           |             | PH13         | (PF3)       |                      | PB9                 | PF0         |                       | PC10         | PC12         | PC9           | vss            |
| В  | PD0         | PE11                  | PF5                   | PA15 | PD8        | PE0  | PE9         | PH14    | PE8            | PG4           | PF1         | vss          | PB5         | PC6                  | PB15                | (PB14)      | PE3                   | PC11         | DDR_<br>DQ4  | DDR_<br>DQ1   | DDR_DQ0        |
| С  | PB6         | PD3                   | PE14                  | PD14 | PD1        | РВ7  | PD4         | PD5     | PD9            | PE10          | PB12        | PH9          | PC7         | PB3                  | VDD<br>SD2          | РВ4         | PG6                   | PC8          | PD2          | DDR_<br>DQS0P | DDR_<br>DQS0N  |
| D  | PB8         | PD6                   | PH12                  |      |            | PD10 | )           | PE7     | )              |               | PF2         |              |             | PB13                 |                     | vss         |                       |              | DDR_<br>DQ2  | DDR_<br>DQ5   | DDR_DQM0       |
| E  | ,           | PH2                   | PH8                   |      | VSS        | vss  | VDD<br>CPU  | PE1     | PD15           | (VDD<br>CPU   | vss         | VDD          | PB10        | PH10                 | VDDQ_<br>DDR        | vss         | VDD<br>SD1            | )            | DDR_<br>DQ3  | DDR_DQ6       |                |
| F  | PF8         | PG9                   | (PD11                 | PA12 | vss        | )    | ****        | *****   | *****          | *****         | *****       | *****        | *****       |                      | ****                | *****       | vss                   | vss          | DDR_<br>DQ7  | DDR_<br>A5    | vss            |
| G  | PF6         | PG10                  | PG5                   |      | VDD<br>CPU | )    | VDD<br>CPU  | vss     | VDD            | (VDD<br>CPU   | VDD<br>CORE | vss          | VDD         | vss                  | VDDQ_<br>DDR        |             | VDDQ_<br>DDR          | )            | DDR_<br>A13  | DDR_A2        | DDR_A9         |
| Н  |             | PE4                   | PF10                  | PG15 | PG8        | )    | vss         |         |                |               |             |              |             |                      | vss                 |             | DDR_<br>RESET<br>N    | DDR_<br>BA2  | DDR_<br>A3   | DDR_A0        |                |
| J  | PH7         | PD13                  | PB2                   |      | PF9        | )    | VDD         |         | VDD            | vss           | VDD<br>CORE | vss          | VDD         |                      | VDD<br>CORE         |             | DDR_<br>A7            | )            | DDR_<br>BA0  | DDR_<br>CSN   | DDR_<br>ODT    |
| K  | VSS_<br>PLL | VDD_<br>PLL           | PH11                  |      | VDD<br>CPU | )    | VDD<br>CPU  |         | vss            | vss           | vss         | vss          | vss         |                      | VDDQ_<br>DDR        |             | VDDQ_<br>DDR          | )            | DDR_<br>WEN  | DDR_<br>RASN  | vss            |
| L  |             | VBAT                  | PC15-<br>OSC32<br>OUT | PI3  | vss        | )    | VDD<br>CORE |         | VDD<br>CORE    | vss           |             | vss          | VDD<br>CORE |                      | vss                 |             | vss                   | DDR_<br>A10  | DDR_<br>CASN | DDR_<br>CLKN  |                |
| М  | vss         | PC14-<br>OSC32<br>_IN | PC13                  |      | VDD        | )    | vss         |         | vss            | vss           | vss         | vss          | vss         |                      | VDDQ_<br>DDR        |             | VDDQ_<br>DDR          | )            | DDR_<br>A12  | DDR_<br>CLKP  | DDR_<br>A15    |
| N  | PE2         | PF4                   | PH6                   |      | PI2        | )    | VDD         |         | VDD            | (VDD<br>CORE) | vss         | VDD          | VDD<br>CORE |                      | VDD<br>CORE         |             | DDR_<br>A11           | )            | DDR_<br>A14  | DDR_<br>CKE   | DDR_<br>A1     |
| Р  |             | PA8                   | PF7                   | PI1  | PI0        | )    | vss         |         |                |               |             |              |             |                      | vss                 |             | DDR_<br>DTO1          | DDR_<br>ATO  | DDR_<br>A8   | DDR_<br>BA1   |                |
| R  | PG1         | PG11                  | РНЗ                   |      | VDD        | )    | VDD         | vss     | VDD            | (VDD<br>CORE) | vss         | VDD          | VDD<br>CORE | vss                  | VDDQ_<br>DDR        |             | VDDQ_<br>DDR          | )            | DDR_<br>A4   | DDR_<br>ZQ    | DDR_A6         |
| Т  | vss         | PE6                   | PH0-<br>OSC_IN        | PA13 | vss        | )    |             |         |                |               |             |              |             |                      |                     |             | vss                   | DDR_<br>VREF | DDR_<br>DQ10 | DDR_<br>DQ8   | vss            |
| U  |             | PH1-<br>OSC_<br>OUT   | VSS_<br>ANA           |      | vss        | vss  | VDD         | VDDA    | VSSA           | PA6           | vss         | VDD<br>CORE  | vss         | VDD<br>CORE          | VDDQ_<br>DDR        | vss         | PWR_<br>ON            | )            | DDR_<br>DQ13 | DDR_<br>DQ9   |                |
| V  | PD7         | (VDD_<br>ANA          | PG2                   |      |            | PA7  | )           | VREF-   | )              |               | NJ<br>TRST  |              |             | VDDA1<br>V1_<br>REG  |                     | vss         |                       |              | PWR_<br>LP   | DDR_<br>DQS1P | DDR_<br>DQS1N  |
| W  | PG3         | PG12                  | PWR_<br>CPU_<br>ON    | PF13 | PC0        | PC3  | (VREF+)     | PB0     | PA3            | PE5           | VDD         | USB_<br>RREF | PA14        | VDD<br>3V3_<br>USBHS | VDDA1<br>V8_<br>REG | vss         | BYPAS<br>S_REG<br>1V8 | PH5          | DDR_<br>DQ12 | DDR_<br>DQ11  | DDR_DQM1       |
| Υ  | PA11        | PF14                  | PA0                   | PA2  | PA5        | PF11 | PC4         | PB1     | PC1            | PG14          | NRST        | PF15         | USB_<br>DM2 | VSS_<br>USBHS        | PI6-<br>BOOT2       | USB_<br>DP1 | PI4-<br>BOOT0         | VDD_<br>PLL2 | PH4          | DDR_<br>DQ15  | DDR_DQ14       |
| AA | vss         | (PB11                 | PA1                   | PF12 |            | PA4  | PC5         |         | PG13           | PC2           |             | PDR_<br>ON   | USB_<br>DP2 |                      | PI5-<br>BOOT1       | USB_<br>DM1 |                       | VSS_<br>PLL2 | PA10         | PI7           | vss            |
|    |             |                       |                       |      |            |      |             |         |                |               |             |              |             |                      |                     |             |                       |              |              | N             | <br>1Sv65068V5 |

The above figure shows the package top view.

Table 6. Legend/abbreviations used in the pinout table

| Name                 | Abbreviation                                                                                     | Definition                                                                       |  |  |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Pin name             | Unless otherwise name                                                                            | specified, the pin function during and after reset is the same as the actual pin |  |  |  |  |  |  |  |
|                      | S                                                                                                | Supply pin                                                                       |  |  |  |  |  |  |  |
|                      | I                                                                                                | Input only pin                                                                   |  |  |  |  |  |  |  |
| Pin type             | 0                                                                                                | Output only pin                                                                  |  |  |  |  |  |  |  |
|                      | I/O                                                                                              | Input/output pin                                                                 |  |  |  |  |  |  |  |
|                      | Α                                                                                                | Analog or special level pin                                                      |  |  |  |  |  |  |  |
|                      | FT(U/D/PD)                                                                                       | 5 V tolerant I/O (with fixed pull-up / pull-down / programmable pull-down)       |  |  |  |  |  |  |  |
|                      | DDR                                                                                              | 1.5 V, 1.35 V or 1.2 V I/O for DDR3, DDR3L, LPDDR2/LPDDR3 interface              |  |  |  |  |  |  |  |
|                      | Α                                                                                                | Analog signal                                                                    |  |  |  |  |  |  |  |
|                      | RST                                                                                              | Reset pin with weak pull-up resistor                                             |  |  |  |  |  |  |  |
|                      | Option for FT I/Os                                                                               |                                                                                  |  |  |  |  |  |  |  |
| I/O structure        | _f <sup>(1)</sup>                                                                                | I2C FM+ option                                                                   |  |  |  |  |  |  |  |
|                      | _a <sup>(2)</sup>                                                                                | Analog option (supplied by VDDA for the analog part of the I/O)                  |  |  |  |  |  |  |  |
|                      | _u <sup>(3)</sup>                                                                                | USB option (supplied by VDD3V3_USBxx for the USB part of the I/O)                |  |  |  |  |  |  |  |
|                      | _h <sup>(4)</sup>                                                                                | High-speed output for 1.8V typ. VDD (for SPI, SDMMC, QUADSPI, TRACE)             |  |  |  |  |  |  |  |
|                      | _vh <sup>(5)</sup>                                                                               | Very-high-speed option for 1.8V typ. VDD (for ETH, SPI, SDMMC, QUADSPI, TRACE)   |  |  |  |  |  |  |  |
| Notes                | Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset |                                                                                  |  |  |  |  |  |  |  |
| Alternate functions  | Functions selected through GPIOx_AFR registers                                                   |                                                                                  |  |  |  |  |  |  |  |
| Additional functions | Functions directly selected/enabled through peripheral registers                                 |                                                                                  |  |  |  |  |  |  |  |

- 1. The related I/O structures in *Table* 7 are: FT\_f, FT\_fh, FT\_fvh
- 2. The related I/O structures in Table 7 are: FT\_a, FT\_ha, FT\_vha
- 3. The related I/O structures in *Table* 7 are: FT\_u
- 4. The related I/O structures in *Table 7* are: FT\_h, FT\_fh, FT\_fvh, FT\_vh, FT\_ha, FT\_vha
- 5. The related I/O structures in *Table 7* are: FT\_vh, FT\_vha, FT\_fvh

DS13874 Rev 1 53/223

Table 7. STM32MP135A/D ball definitions

| Pi       | n Num    | ber      |                                       |          | re            |       | Ball function                                                                                                                                                        | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                                  | Additional functions |
| K10      | F6       | U14      | VDDCORE                               | S        | -             | -     | -                                                                                                                                                                    | -                    |
| A2       | D2       | A2       | PA9                                   | I/O      | FT_h          | 1     | TIM1_CH2, I2C3_SMBA, DFSDM1_DATIN0, USART1_TX, UART4_TX, FMC_NWAIT(boot), DCMIPP_D0, LCD_R6                                                                          | -                    |
| A1       | A1       | T5       | VSS                                   | S        | -             | -     | -                                                                                                                                                                    | -                    |
| M6       | F3       | U7       | VDD                                   | S        | ı             | ı     | -                                                                                                                                                                    | -                    |
| D4       | E4       | B2       | PE11                                  | I/O      | FT_vh         | -     | TIM1_CH2, USART2_CTS/USART2_NSS, SAI1_D2, SPI4_MOSI/I2S4_SDO, SAI1_FS_A, USART6_CK, LCD_R0, ETH2_MII_TX_ER, ETH1_MII_TX_ER, FMC_D8(boot)/FMC_AD8, DCMIPP_D10, LCD_R5 | -                    |
| B2       | D1       | В3       | PF5                                   | 1/0      | FT_h          | -     | TRACED12, DFSDM1_CKIN0,<br>I2C1_SMBA, LCD_G0,<br>FMC_A5, DCMIPP_D11,<br>LCD_R5                                                                                       | -                    |
| B1       | G6       | C2       | PD3                                   | I/O      | FT_f          | -     | TIM2_CH1/TIM2_ETR, USART2_CTS/USART2_NSS, DFSDM1_CKOUT, I2C1_SDA, SAI1_D3, FMC_CLK, DCMIPP_D5                                                                        | -                    |
| C3       | E2       | C3       | PE14                                  | I/O      | FT_h          | -     | TIM1_BKIN, SAI1_D4, UART8_RTS/UART8_DE, QUADSPI_BK1_NCS, QUADSPI_BK2_IO2, FMC_D11(boot)/FMC_AD11, DCMIPP_D7, LCD_G0                                                  | TAMP_IN6             |
| F6       | D4       | E7       | VDDCPU                                | S        | -             | -     | -                                                                                                                                                                    | -                    |
| E4       | E1       | B1       | PD0                                   | I/O      | FT            | -     | SAI1_MCLK_A, SAI1_CK1,<br>FDCAN1_RX,<br>FMC_D2(boot)/FMC_AD2,<br>DCMIPP_D1                                                                                           | -                    |
| C2       | G7       | D3       | PH12                                  | I/O      | FT_fh         | -     | USART2_TX, TIM5_CH3,<br>DFSDM1_CKIN1, I2C3_SCL,<br>SPI5_MOSI, SAI1_SCK_A,<br>QUADSPI_BK2_IO2,<br>SAI1_CK2, ETH1_MII_CRS,<br>FMC_A6, DCMIPP_D3                        | -                    |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | ē             |       | Ball function                                                                                                                                    | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                              | Additional functions |
| C1       | G3       | C1       | PB6                                   | I/O      | FT_h          | -     | TRACED6, TIM16_CH1N, TIM4_CH1, TIM8_CH1, USART1_TX, SAI1_CK2, LCD_B6, QUADSPI_BK1_NCS, ETH2_MDIO, FMC_NE3, DCMIPP_D5, LCD_B7, HDP6               | -                    |
| A17      | A17      | T17      | VSS                                   | S        | -             | ı     | -                                                                                                                                                | -                    |
| M7       | -        | J13      | VDD                                   | S        | -             | -     | -                                                                                                                                                | -                    |
| D2       | G9       | D2       | PD6                                   | I/O      | FT            | -     | TIM16_CH1N, SAI1_D1,<br>SAI1_SD_A,<br>UART4_TX(boot),<br>DCMIPP_D4, DCMIPP_D0                                                                    | -                    |
| F5       | F1       | E3       | PH8                                   | I/O      | FT_fh         | 1     | TRACED9, TIM5_ETR, USART2_RX, I2C3_SDA, LCD_R6, FMC_A8, DCMIPP_HSYNC, LCD_R2, HDP2                                                               | -                    |
| D1       | G4       | D1       | PB8                                   | 1/0      | FT_f          | 1     | TIM16_CH1, TIM4_CH3,<br>I2C1_SCL, I2C3_SCL,<br>DFSDM1_DATIN1,<br>UART4_RX, SAI1_D1,<br>FMC_D13(boot)/FMC_AD13,<br>DCMIPP_D6                      | -                    |
| E3       | F2       | F4       | PA12                                  | I/O      | FT_h          | 1     | TIM1_ETR, SAI2_MCLK_A, USART1_RTS/USART1_DE, ETH2_MII_RX_DV/ETH2_ RGMII_RX_CTL/ETH2_RMII_ CRS_DV, FMC_A7, DCMIPP_D1, LCD_G6                      | -                    |
| F8       | D6       | E10      | VDDCPU                                | S        | -             | -     | -                                                                                                                                                | -                    |
| F4       | G2       | E2       | PH2                                   | I/O      | FT_h          | -     | LPTIM1_IN2, DCMIPP_D9,<br>LCD_G1, UART7_TX,<br>QUADSPI_BK2_IO0(boot),<br>ETH2_MII_CRS,<br>ETH1_MII_CRS, FMC_NE4,<br>ETH2_RGMII_CLK125,<br>LCD_B0 | -                    |
| C8       | B8       | T21      | VSS                                   | S        | -             | -     | -                                                                                                                                                | -                    |



Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Numl   | ber      |                                       |          | re       |       | Ball function                                                                                                                                                  | ons                  |
|----------|----------|----------|---------------------------------------|----------|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | Pin type | Notes | Alternate functions                                                                                                                                            | Additional functions |
| E2       | G1       | F3       | PD11                                  | I/O      | FT_h     | -     | LPTIM2_IN2, I2C4_SMBA, USART3_CTS/USART3_NSS, SPDIFRX_IN0, QUADSPI_BK1_IO2, ETH2_RGMII_CLK125, LCD_R7, FMC_CLE(boot)/FMC_A16, UART7_RX, DCMIPP_D4              | -                    |
| E1       | G5       | F2       | PG9                                   | I/O      | FT_f     | -     | DBTRGO, I2C2_SDA, USART6_RX, SPDIFRX_IN3, FDCAN1_RX, FMC_NE2, FMC_NCE(boot), DCMIPP_VSYNC                                                                      | -                    |
| G5       | НЗ       | F1       | PF8                                   | I/O      | FT_h     | 1     | TIM16_CH1N, TIM4_CH3,<br>TIM8_CH3, SAI1_SCK_B,<br>USART6_TX, TIM13_CH1,<br>QUADSPI_BK1_IO0(boot),<br>DCMIPP_D15, LCD_B3                                        | WKUP1                |
| M8       | -        | M5       | VDD                                   | S        | -        | -     | -                                                                                                                                                              | -                    |
| F3       | J3       | H5       | PG8                                   | I/O      | FT_h     | -     | TIM2_CH1/TIM2_ETR, TIM8_ETR, SPI5_MISO, SAI1_MCLK_B, LCD_B1, USART3_RTS/USART3_DE, SPDIFRX_IN2, QUADSPI_BK2_IO2, QUADSPI_BK1_IO3, FMC_NE2, ETH2_CLK, DCMIPP_D6 | TAMP_IN4             |
| F9       | D8       | G5       | VDDCPU                                | S        | -        | -     | -                                                                                                                                                              | -                    |
| F2       | H1       | G3       | PG5                                   | I/O      | FT_h     | -     | TIM17_CH1, ETH2_MDC,<br>LCD_G4, FMC_A15,<br>DCMIPP_VSYNC,<br>DCMIPP_D3                                                                                         | -                    |
| G4       | G8       | H4       | PG15                                  | I/O      | FT_h     | -     | USART6_CTS/USART6_NSS,<br>UART7_CTS,<br>QUADSPI_BK1_IO1,<br>ETH2_PHY_INTN, LCD_B4,<br>DCMIPP_D10, LCD_B3                                                       | -                    |
| F1       | H2       | G2       | PG10                                  | I/O      | FT_h     | -     | SPI5_SCK, SAI1_SD_B,<br>UART8_CTS, FDCAN1_TX,<br>QUADSPI_BK2_IO1(boot),<br>FMC_NE3, DCMIPP_D2                                                                  | -                    |
| D3       | B14      | U5       | VSS                                   | S        | -        | -     | -                                                                                                                                                              | -                    |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Numl   | ber      |                                       |          | e.            |       | Ball function                                                                                                                                           | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                     | Additional functions |
| G3       | K2       | НЗ       | PF10                                  | I/O      | FT_h          | -     | TIM16_BKIN, SAI1_D3,<br>TIM8_BKIN, SPI5_NSS,<br>USART6_RTS/USART6_DE,<br>UART7_RTS/UART7_DE,<br>QUADSPI_CLK(boot),<br>DCMIPP_HSYNC, LCD_B5              | TAMP_IN1             |
| Н8       | F10      | -        | VDDCORE                               | S        | -             | -     | -                                                                                                                                                       | -                    |
| G2       | L1       | G1       | PF6                                   | I/O      | FT_vh         | -     | TIM16_CH1, SPI5_NSS,                                                                                                                                    | -                    |
| D12      | C5       | U6       | VSS                                   | S        | -             | -     | -                                                                                                                                                       | -                    |
| М9       | K4       | N7       | VDD                                   | S        | -             | 1     | -                                                                                                                                                       | -                    |
| G1       | Н9       | J5       | PF9                                   | I/O      | FT_h          | -     | TIM17_CH1N, TIM1_CH1, DFSDM1_CKIN3, SAI1_D4, UART7_CTS, UART8_RX, TIM14_CH1, QUADSPI_BK1_IO1(boot), QUADSPI_BK2_IO3, FMC_A9, LCD_B6                     | -                    |
| H5       | K1       | H2       | PE4                                   | I/O      | FT_h          | -     | SPI5_MISO, SAI1_D2, DFSDM1_DATIN3, TIM15_CH1N, I2S_CKIN, SAI1_FS_A, UART7_RTS/UART7_DE, UART8_TX, QUADSPI_BK2_NCS, FMC_NCE2, FMC_A25, DCMIPP_D3, LCD_G7 | -                    |
| H6       | E5       | G7       | VDDCPU                                | S        | -             | -     | -                                                                                                                                                       | -                    |
| H4       | КЗ       | J3       | PB2                                   | I/O      | FT_h          | -     | RTC_OUT2, SAI1_D1,<br>I2S_CKIN, SAI1_SD_A,<br>UART4_RX,<br>QUADSPI_BK1_NCS(boot),<br>ETH2_MDIO, FMC_A6,<br>LCD_B4                                       | TAMP_IN7             |
| E5       | D13      | U11      | VSS                                   | S        | -             | -     | -                                                                                                                                                       | -                    |



DS13874 Rev 1 57/223

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | re            |       | Ball function                                                                                                                                                 | ons                                                            |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                           | Additional functions                                           |
| НЗ       | L3       | J1       | PH7                                   | I/O      | FT_fh         | 1     | SAI2_FS_B, I2C3_SDA, SPI5_SCK, QUADSPI_BK2_IO3, ETH2_MII_TX_CLK, ETH1_MII_TX_CLK, QUADSPI_BK1_IO3, LCD_B2                                                     | -                                                              |
| H1       | Н7       | K3       | PH11                                  | 1/0      | FT_fh         | 1     | SPI5_NSS, TIM5_CH2, SAI2_SD_A, SPI2_NSS/I2S2_WS, I2C4_SCL, USART6_RX, QUADSPI_BK2_IO0, ETH2_MII_RX_CLK/ETH2_ RGMII_RX_CLK/ETH2_RMII_ REF_CLK, FMC_A12, LCD_G6 | -                                                              |
| J1       | N1       | J2       | PD13                                  | I/O      | FT_h          | -     | LPTIM2_ETR, TIM4_CH2,<br>TIM8_CH2, SAI1_CK1,<br>SAI1_MCLK_A, USART1_RX,<br>QUADSPI_BK1_IO3,<br>QUADSPI_BK2_IO2,<br>FMC_A18, LCD_G4                            | -                                                              |
| J5       | J1       | K2       | VDD_PLL                               | S        | -             | -     | -                                                                                                                                                             | -                                                              |
| J4       | J2       | K1       | VSS_PLL                               | S        | -             | 1     | -                                                                                                                                                             | -                                                              |
| H2       | Н8       | L4       | PI3                                   | I/O      | FT            | (1)   | SPDIFRX_IN3,<br>ETH1_MII_RX_ER                                                                                                                                | TAMP_IN4/TAMP_<br>OUT5, WKUP2                                  |
| K4       | M3       | М3       | PC13                                  | I/O      | FT            | (1)   | -                                                                                                                                                             | RTC_OUT1/RTC_TS/<br>RTC_LSCO,<br>TAMP_IN1/TAMP_<br>OUT2, WKUP3 |
| J3       | J4       | N5       | Pl2                                   | I/O      | FT            | (1)   | SPDIFRX_IN2                                                                                                                                                   | TAMP_IN3/TAMP_<br>OUT4, WKUP5                                  |
| K5       | N4       | P4       | Pl1                                   | I/O      | FT            | (1)   | SPDIFRX_IN1                                                                                                                                                   | RTC_OUT2/RTC_<br>LSCO,<br>TAMP_IN2/TAMP_<br>OUT3, WKUP4        |
| F13      | L2       | U13      | VSS                                   | S        | -             | -     | -                                                                                                                                                             | -                                                              |
| J2       | J5       | L2       | VBAT                                  | S        | -             | -     | -                                                                                                                                                             | -                                                              |
| L4       | N3       | P5       | PI0                                   | I/O      | FT            | (1)   | SPDIFRX_IN0                                                                                                                                                   | TAMP_IN8/TAMP_<br>OUT1                                         |
| K2       | M2       | L3       | PC15-<br>OSC32_OUT                    | I/O      | FT            | (1)   | -                                                                                                                                                             | OSC32_OUT                                                      |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          |               |       | Ball function                                                                                                                                                   | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                             | Additional functions |
| F15      | N2       | U16      | VSS                                   | S        | -             | -     | -                                                                                                                                                               | -                    |
| K1       | M1       | M2       | PC14-<br>OSC32_IN                     | I/O      | FT            | (1)   | -                                                                                                                                                               | OSC32_IN             |
| G7       | E3       | V16      | VSS                                   | S        | ı             | ı     | -                                                                                                                                                               | -                    |
| Н9       | K6       | N15      | VDDCORE                               | S        | -             | ı     | -                                                                                                                                                               | -                    |
| M10      | M4       | N9       | VDD                                   | S        | ı             | ı     | -                                                                                                                                                               | -                    |
| G8       | E6       | W16      | VSS                                   | S        |               | -     | -                                                                                                                                                               | -                    |
| L2       | P3       | N2       | PF4                                   | I/O      | FT_h          | -     | USART2_RX, ETH2_MII_RXD0/ETH2_ RGMII_RXD0/ETH2_RMII_ RXD0, FMC_A4, DCMIPP_D4, LCD_B6                                                                            | -                    |
| M2       | J8       | P2       | PA8                                   | I/O      | FT_fh         | -     | MCO1, SAI2_MCLK_A, TIM8_BKIN2, I2C4_SDA, SPI5_MISO, SAI2_CK1, USART1_CK, SPI2_MOSI/I2S2_SDO, OTG_HS_SOF, ETH2_MII_RXD3/ETH2_ RGMII_RXD3, FMC_A21, LCD_B7        | -                    |
| L1       | T1       | N1       | PE2                                   | I/O      | FT_fh         | -     | TRACECLK, TIM2_CH1/TIM2_ETR, I2C4_SCL, SPI5_MOSI, SAI1_FS_B, USART6_RTS/USART6_DE, SPDIFRX_IN1, ETH2_MII_RXD1/ETH2_ RGMII_RXD1/ETH2_RMII_ RXD1, FMC_A23, LCD_R1 | -                    |
| M1       | J7       | P3       | PF7                                   | I/O      | FT_vh         | -     | TIM17_CH1, UART7_TX(boot), UART4_CTS, ETH1_RGMII_CLK125, ETH2_MII_TXD0/ETH2_ RGMII_TXD0/ETH2_RMII_ TXD0, FMC_A18, LCD_G2                                        | -                    |
| M3       | R1       | R2       | PG11                                  | I/O      | FT_vh         | -     | SAI2_D3, I2S2_MCK, USART3_TX, UART4_TX, ETH2_MII_TXD1/ETH2_ RGMII_TXD1/ETH2_RMII_ TXD1, FMC_A24, DCMIPP_D14, LCD_B2                                             | -                    |



DS13874 Rev 1 59/223

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | re            |       | Ball function                                                                                                                                                    | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                              | Additional functions |
| L3       | J6       | N3       | PH6                                   | I/O      | FT_fh         | -     | TIM12_CH1, USART2_CK, I2C5_SDA, SPI2_SCK/I2S2_CK, QUADSPI_BK1_IO2, ETH1_PHY_INTN, ETH1_MII_RX_ER, ETH2_MII_RXD2/ETH2_ RGMII_RXD2, QUADSPI_BK1_NCS                | -                    |
| N2       | P4       | R1       | PG1                                   | I/O      | FT_vh         | 1     | LPTIM1_ETR, TIM4_ETR, SAI2_FS_A, I2C2_SMBA, SPI2_MISO/I2S2_SDI, SAI2_D2, FDCAN2_TX, ETH2_MII_TXD2/ETH2_ RGMII_TXD2, FMC_NBL0, LCD_G7                             | -                    |
| M11      | -        | N12      | VDD                                   | S        | -             | -     | -                                                                                                                                                                | -                    |
| N1       | R2       | T2       | PE6                                   | I/O      | FT_vh         | -     | MCO2, TIM1_BKIN2,<br>SAI2_SCK_B, TIM15_CH2,<br>I2C3_SMBA, SAI1_SCK_B,<br>UART4_RTS/UART4_DE,<br>ETH2_MII_TXD3/ETH2_<br>RGMII_TXD3, FMC_A22,<br>DCMIPP_D7, LCD_G3 | -                    |
| P1       | P1       | Т3       | PH0-OSC_IN                            | I/O      | FT            | -     | -                                                                                                                                                                | OSC_IN               |
| G9       | U1       | N11      | VSS                                   | S        | -             | -     | -                                                                                                                                                                | -                    |
| P2       | P2       | U2       | PH1-OSC_OUT                           | I/O      | FT            | -     | -                                                                                                                                                                | OSC_OUT              |
| R2       | T2       | R3       | PH3                                   | I/O      | FT_fh         | -     | I2C3_SCL, SPI5_MOSI,<br>QUADSPI_BK2_IO1,<br>ETH1_MII_COL, LCD_R5,<br>ETH2_MII_COL,<br>QUADSPI_BK1_IO0, LCD_B4                                                    | -                    |
| M5       | L5       | U3       | VSS_ANA                               | S        | -             | -     | -                                                                                                                                                                | -                    |
| L5       | U2       | W1       | PG3                                   | I/O      | FT_fvh        | -     | TIM8_BKIN2, I2C2_SDA,<br>SAI2_SD_B, FDCAN2_RX,<br>ETH2_RGMII_GTX_CLK,<br>ETH1_MDIO, FMC_A13,<br>DCMIPP_D15, DCMIPP_D12                                           | -                    |
| M4       | L4       | V2       | VDD_ANA                               | S        | -             | -     | -                                                                                                                                                                | -                    |
| R1       | U3       | V3       | PG2                                   | I/O      | FT            | -     | MCO2, TIM8_BKIN,<br>SAI2_MCLK_B, ETH1_MDC,<br>DCMIPP_D1                                                                                                          | -                    |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | re            |       | Ball function                                                                                                                     | ons                                                 |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                               | Additional functions                                |
| T1       | L6       | W2       | PG12                                  | I/O      | FT            | -     | LPTIM1_IN1, SAI2_SCK_A,                                                                                                           | -                                                   |
| F7       | P6       | R5       | VDD                                   | S        | -             | -     | -                                                                                                                                 | -                                                   |
| G10      | E8       | T1       | VSS                                   | S        | -             | -     | -                                                                                                                                 | -                                                   |
| N3       | R3       | V1       | PD7                                   | I/O      | FT_fh         | -     | MCO1, USART2_CK, I2C2_SCL, I2C3_SDA, SPDIFRX_IN0, ETH1_MII_RX_CLK/ETH1_ RGMII_RX_CLK/ETH1_RMII_ REF_CLK, QUADSPI_BK1_IO2, FMC_NE1 | -                                                   |
| P3       | K7       | T4       | PA13                                  | I/O      | FT            | -     | DBTRGO, DBTRGI, MCO1,<br>UART4_TX                                                                                                 | BOOTFAILN                                           |
| R3       | R4       | W3       | PWR_CPU_ON                            | 0        | FT            | -     | -                                                                                                                                 | -                                                   |
| Т2       | N5       | Y1       | PA11                                  | I/O      | FT_f          | -     | TIM1_CH4, I2C5_SCL, SPI2_NSS/I2S2_WS, USART1_CTS/USART1_NSS, ETH2_MII_RXD1/ETH2_ RGMII_RXD1/ETH2_RMII_ RXD1, ETH1_CLK, ETH2_CLK   | -                                                   |
| N5       | M6       | AA2      | PB11                                  | I/O      | FT_vh         | ı     | TIM2_CH4, LPTIM1_OUT, I2C5_SMBA, USART3_RX, ETH1_MII_TX_EN/ETH1_ RGMII_TX_CTL/ETH1_RMII_ TX_EN                                    | -                                                   |
| P4       | U4       | Y2       | PF14(JTCK/SW<br>CLK)                  | I/O      | FT            | (2)   | JTCK/SWCLK                                                                                                                        | -                                                   |
| U3       | L7       | Y3       | PA0                                   | I/O      | FT_a          | -     | TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, TIM15_BKIN, SAI1_SD_B, UART5_TX, ETH1_MII_CRS, ETH2_MII_CRS                                | ADC1_INP7,<br>ADC1_INN3,<br>ADC2_INP7,<br>ADC2_INN3 |



DS13874 Rev 1 61/223

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | e.            |       | Ball function                                                                                                                         | ons                                                              |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                   | Additional functions                                             |
| N6       | Т3       | W4       | PF13                                  | I/O      | FT_a          | -     | TIM2_CH1/TIM2_ETR, SAI1_MCLK_B, DFSDM1_DATIN3, USART2_TX, UART5_RX                                                                    | ADC1_INP11,<br>ADC1_INN10,<br>ADC2_INP11,<br>ADC2_INN10          |
| G11      | E10      | P7       | VSS                                   | S        | -             | -     | -                                                                                                                                     | -                                                                |
| F10      | -        | -        | VDD                                   | S        | -             | -     | -                                                                                                                                     | -                                                                |
| R4       | K8       | AA3      | PA1                                   | I/O      | FT_a          | -     | TIM2_CH2, TIM5_CH2, LPTIM3_OUT, TIM15_CH1N, DFSDM1_CKIN0, USART2_RTS/USART2_DE, ETH1_MII_RX_CLK/ETH1_ RGMII_RX_CLK/ETH1_RMII_ REF_CLK | ADC1_INP3,<br>ADC2_INP3                                          |
| P5       | R5       | Y4       | PA2                                   | I/O      | FT_a          | -     | TIM2_CH3, TIM5_CH3,<br>LPTIM4_OUT, TIM15_CH1,<br>USART2_TX, ETH1_MDIO                                                                 | ADC1_INP1,<br>ADC2_INP1                                          |
| U4       | M7       | Y5       | PA5                                   | I/O      | FT_a          | -     | TIM2_CH1/TIM2_ETR, USART2_CK, TIM8_CH1N, SAI1_D1, SPI1_NSS/I2S1_WS, SAI1_SD_A,ETH1_PPS_OUT, ETH2_PPS_OUT                              | ADC1_INP2                                                        |
| Т3       | T4       | W5       | PC0                                   | I/O      | FT_ha         | -     | SAI1_SCK_A, SAI1_CK2,<br>I2S1_MCK,<br>SPI1_MOSI/I2S1_SDO,<br>USART1_TX                                                                | ADC1_INP0,<br>ADC1_INN1,<br>ADC2_INP0,<br>ADC2_INN1,<br>TAMP_IN3 |
| T4       | J9       | AA4      | PF12                                  | I/O      | FT_vha        | -     | SPI1_NSS/I2S1_WS,<br>SAI1_SD_A, UART4_TX,<br>ETH1_MII_TX_ER,<br>ETH1_RGMII_CLK125                                                     | ADC1_INP6,<br>ADC1_INN2                                          |
| R6       | U6       | W7       | VREF+                                 | S        | -             | ı     | -                                                                                                                                     | -                                                                |
| P7       | U5       | U8       | VDDA                                  | S        | -             | -     | -                                                                                                                                     | -                                                                |
| P6       | T6       | V8       | VREF-                                 | S        | -             | ı     | -                                                                                                                                     | -                                                                |
| N7       | T5       | U9       | VSSA                                  | S        | -             | -     | -                                                                                                                                     | -                                                                |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | Pin Number |          |                                       |          | re            |       | Ball function                                                                                                                                               | ons                                                 |
|----------|------------|----------|---------------------------------------|----------|---------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| LFBGA289 | TFBGA289   | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                         | Additional functions                                |
| U2       | R6         | V6       | PA7                                   | I/O      | FT_ha         | 1     | TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SAI2_D1, SPI1_SCK/I2S1_CK, USART1_CTS/USART1_NSS, TIM14_CH1, ETH1_MII_RX_DV/ETH1_ RGMII_RX_CTL/ETH1_RMII_ CRS_DV, SAI2_SD_A | ADC1_INP16                                          |
| Т6       | L8         | Y6       | PF11                                  | I/O      | FT_a          | -     | USART2_TX, SAI1_D2,<br>DFSDM1_CKIN3, SAI1_FS_A,<br>ETH2_MII_RX_ER                                                                                           | ADC1_INP8,<br>ADC1_INN4,<br>ADC2_INP8,<br>ADC2_INN4 |
| U5       | N7         | AA6      | PA4                                   | I/O      | FT_a          | -     | TIM5_ETR, USART2_CK, SAI1_SCK_B, SPI1_NSS/I2S1_WS, DFSDM1_CKIN1, ETH1_PPS_OUT, ETH2_PPS_OUT, SAI1_SCK_A                                                     | ADC1_INP14                                          |
| U6       | K9         | Y7       | PC4                                   | I/O      | FT_a          | 1     | TIM3_ETR, DFSDM1_CKIN2,<br>SAI1_D3, I2S1_MCK,<br>UART5_RTS/UART5_DE,<br>SPDIFRX_IN2,<br>ETH1_MII_RXD0/ETH1_<br>RGMII_RXD0/ETH1_RMII_<br>RXD0, SAI2_D3       | ADC1_INP4,<br>ADC2_INP4                             |
| F11      | P9         | -        | VDD                                   | S        | -             | ı     | -                                                                                                                                                           | -                                                   |
| H7       | E12        | P15      | VSS                                   | S        | -             | -     | -                                                                                                                                                           | -                                                   |
| T5       | P7         | W6       | PC3                                   | I/O      | FT_ha         | -     | SAI1_CK1, DFSDM1_CKOUT,<br>SPI1_MISO/I2S1_SDI,<br>SPI1_SCK/I2S1_CK,<br>UART5_CTS, SAI1_MCLK_A,<br>ETH1_MII_TX_CLK,<br>ETH2_MII_TX_CLK                       | ADC1_INP13,<br>ADC1_INN12,<br>TAMP_IN5              |
| J8       | M9         | ı        | VDDCORE                               | S        | ı             | ı     | -                                                                                                                                                           | -                                                   |
| R7       | P8         | AA7      | PC5                                   | I/O      | FT_a          | -     | DFSDM1_DATIN2, SAI2_D4, I2S_CKIN, SAI1_D4, USART2_CTS/USART2_NSS, SPDIFRX_IN3, ETH1_MII_RXD1/ETH1_ RGMII_RXD1/ETH1_RMII_ RXD1                               | ADC1_INP10,<br>ADC2_INP10                           |



Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | ē             |       | Ball function                                                                                                                         | ons                                                 |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                   | Additional functions                                |
| U7       | M8       | W8       | PB0                                   | I/O      | FT_a          | -     | DBTRGI, TIM1_CH2N, TIM3_CH3, TIM8_CH2N, USART1_RX, I2S1_MCK, SAI2_FS_A, USART1_CK, UART4_CTS, SAI2_D2, ETH1_MII_RXD2/ETH1_ RGMII_RXD2 | ADC1_INP9,<br>ADC1_INN5,<br>ADC2_INP9,<br>ADC2_INN5 |
| N8       | Т7       | W9       | PA3                                   | I/O      | FT_ha         | -     | TIM2_CH4, TIM5_CH4, LPTIM5_OUT, TIM15_CH2, SPI1_MOSI/I2S1_SDO, SAI1_FS_B, USART2_RX, ETH1_MII_COL, ETH2_MII_COL                       | ADC1_INP12,<br>ADC1_INN11,<br>PVD_IN, WKUP6         |
| Т7       | N8       | Y8       | PB1                                   | I/O      | FT_ha         | -     | TIM1_CH3N, TIM3_CH4, TIM8_CH3N, SPI1_SCK/I2S1_CK, DFSDM1_DATIN1, UART4_RX, ETH1_MII_RXD3/ETH1_ RGMII_RXD3                             | ADC1_INP5,<br>ADC2_INP5                             |
| U8       | R7       | Y9       | PC1                                   | I/O      | FT_vha        | 1     | DFSDM1_DATIN0, SAI1_D3,<br>ETH1_MII_RX_DV/ETH1_<br>RMII_CRS_DV,<br>ETH1_RGMII_GTX_CLK                                                 | ADC2_INP2                                           |
| H10      | -        | R10      | VDDCORE                               | S        | -             | -     | -                                                                                                                                     | -                                                   |
| Т8       | R8       | U10      | PA6                                   | I/O      | FT_ha         | -     | TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SAI2_CK2, SPI1_MISO/I2S1_SDI, USART1_CK, UART4_RTS/UART4_DE, TIM13_CH1, SAI2_SCK_A                    | ADC1_INP17,<br>ADC1_INN16,<br>TAMP_IN2              |
| H11      | E14      | R8       | VSS                                   | S        | -             | ı     | -                                                                                                                                     | -                                                   |
| G6       | P10      | -        | VDD                                   | S        | -             | -     | -                                                                                                                                     | -                                                   |
| J10      | -        | R13      | VDDCORE                               | S        | -             | -     | -                                                                                                                                     | -                                                   |
| P8       | R9       | AA9      | PG13                                  | I/O      | FT_vha        | -     | LPTIM1_OUT, USART6_CTS/USART6_NSS, ETH1_MII_TXD0/ETH1_ RGMII_TXD0/ETH1_RMII_ TXD0                                                     | ADC2_INP6,<br>ADC2_INN2                             |
| Т9       | L9       | W10      | PE5                                   | I/O      | FT_vh         | -     | SAI2_SCK_B, TIM8_CH3,<br>TIM15_CH1, UART4_RX,<br>ETH1_MII_TXD3/ETH1_<br>RGMII_TXD3, FMC_NE1                                           | -                                                   |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | re            |       | Ball function                                                                                           | ons                              |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|---------------------------------------------------------------------------------------------------------|----------------------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                     | Additional functions             |
| P9       | Т8       | Y10      | PG14                                  | I/O      | FT_vh         | -     | LPTIM1_ETR, SAI2_D1,<br>USART6_TX, SAI2_SD_A,<br>ETH1_MII_TXD1/ETH1_<br>RGMII_TXD1/ETH1_RMII_TX<br>D1   | -                                |
| J13      | -        | U12      | VDDCORE                               | S        | -             | -     | -                                                                                                       | -                                |
| U9       | U8       | AA10     | PC2                                   | I/O      | FT_vha        | -     | SPI5_NSS, SPI1_NSS/I2S1_WS, SAI2_MCLK_A, USART1_RTS/USART1_DE, SAI2_CK1, ETH1_MII_TXD2/ETH1_ RGMII_TXD2 | ADC1_INP15                       |
| H14      | E16      | R11      | VSS                                   | S        | -             | -     | -                                                                                                       | -                                |
| R9       | J10      | W11      | VDD                                   | S        | -             | -     | -                                                                                                       | -                                |
| K8       | -        | G11      | VDDCORE                               | S        | -             | -     | -                                                                                                       | -                                |
| N9       | R10      | V11      | NJTRST                                | I        | FTU           | -     | -                                                                                                       | -                                |
| U10      | K10      | Y11      | NRST                                  | I/O      | RST           | -     | -                                                                                                       | -                                |
| T10      | U7       | AA12     | PDR_ON                                | -        | FT            | 1     | -                                                                                                       | -                                |
| U12      | M10      | W12      | USB_RREF                              | Α        | Α             | ı     | -                                                                                                       | -                                |
| P10      | U11      | W14      | VDD3V3_<br>USBHS                      | S        | -             | 1     | -                                                                                                       | -                                |
| T11      | Т9       | AA13     | USB_DP2                               | Α        | FT_u          | ı     | -                                                                                                       | USBH_HS_DP2<br>(boot), OTG_HS_DP |
| U11      | U9       | Y13      | USB_DM2                               | Α        | FT_u          | ı     | -                                                                                                       | USBH_HS_DM2<br>(boot), OTG_HS_DM |
| N10      | T11      | Y14      | VSS_USBHS                             | S        | -             | ı     | -                                                                                                       | -                                |
| R10      | L10      | Y12      | PF15<br>(JTMS/SWDIO)                  | I/O      | FT            | (3)   | JTMS/SWDIO                                                                                              | -                                |
| T12      | R11      | W13      | PA14                                  | I/O      | FT            | ı     | DBTRGO, DBTRGI, MCO2,<br>OTG_HS_SOF                                                                     | -                                |
| R12      | M11      | Y15      | PI6-BOOT2<br>(BOOT2)                  | I/O      | FT            | (4)   | BOOT2                                                                                                   | -                                |
| K6       | -        | -        | VDD                                   | S        | -             | -     | -                                                                                                       | -                                |
| L6       | -        | -        | VDD                                   | S        | -             | -     | -                                                                                                       | -                                |
| -        | -        | R7       | VDD                                   | S        | -             | -     | -                                                                                                       | -                                |



Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | ē             |       | Ball functi         | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|---------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions | Additional functions |
| R11      | J11      | W15      | VDDA1V8_<br>REG                       | S        | -             | -     | -                   | -                    |
| J7       | R12      | R14      | VSS                                   | S        | -             | -     | -                   | -                    |
| N11      | U10      | V14      | VDDA1V1_<br>REG                       | S        | -             | -     | -                   | -                    |
| J9       | T10      | -        | VSS                                   | S        | -             | -     | -                   | -                    |
| -        | -        | R9       | VDD                                   | S        | -             | -     | -                   | -                    |
| -        | -        | R12      | VDD                                   | S        | -             | -     | -                   | -                    |
| P12      | N11      | AA15     | PI5-BOOT1<br>(BOOT1)                  | I/O      | FT            | (4)   | BOOT1               | -                    |
| U14      | P11      | Y17      | PI4-BOOT0<br>(BOOT0)                  | I/O      | FT            | (4)   | воото               | -                    |
| U13      | U12      | AA16     | USB_DM1                               | Α        | FT_u          | -     | -                   | USBH_HS_DM1          |
| T13      | T12      | Y16      | USB_DP1                               | Α        | FT_u          | -     | -                   | USBH_HS_DP1          |
| U15      | J12      | AA19     | PA10                                  | I/O      | FT_u          | -     | TIM1_CH3            | OTG_HS_ID            |
| U16      | U13      | AA20     | PI7                                   | I/O      | FT_u          | -     | -                   | OTG_HS_VBUS          |
| R13      | L11      | Y18      | VDD_PLL2                              | S        | -             | -     | -                   | -                    |
| P13      | K11      | AA18     | VSS_PLL2                              | S        | -             | ı     | -                   | -                    |
| K9       | F12      | J11      | VDDCORE                               | S        | -             | -     | -                   | -                    |
| T14      | H11      | W17      | BYPASS_REG<br>1V8                     | I        | FT            | -     | -                   | -                    |
| -        | F5       | B12      | VSS                                   | S        | -             | -     | -                   | -                    |
| T15      | T13      | Y19      | PH4(JTDI)                             | I/O      | FT            | (3)   | JTDI                | -                    |
| R14      | L12      | W18      | PH5(JTDO)                             | I/O      | FT            | (3)   | JTDO                | -                    |
| N13      | U14      | V19      | PWR_LP                                | 0        | FT            | ı     | -                   | -                    |
| P14      | R13      | U17      | PWR_ON                                | 0        | FT            | ı     | -                   | PWR_ONLP             |
| -        | F13      | F17      | VSS                                   | S        | -             | ı     | -                   | -                    |
| -        | P12      | E12      | VDD                                   | S        | -             | -     | -                   | -                    |
| E12      | K14      | E15      | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| R15      | R15      | W19      | DDR_DQ12                              | I/O      | DDR           | -     | -                   | -                    |
| F12      | M14      | G15      | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| T16      | U15      | Y20      | DDR_DQ15                              | I/O      | DDR           | -     | -                   | -                    |
| -        | H5       | A1       | VSS                                   | S        | -             | -     | -                   | -                    |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          |               |       | Ball functions      | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|---------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions | Additional functions |
| T17      | T15      | Y21      | DDR_DQ14                              | I/O      | DDR           | -     | -                   | -                    |
| -        | H13      | A21      | VSS                                   | S        | -             | -     | -                   | -                    |
| P15      | R16      | W20      | DDR_DQ11                              | I/O      | DDR           | -     | -                   | -                    |
| G12      | N13      | G17      | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| N14      | R14      | W21      | DDR_DQM1                              | 0        | DDR           | -     | -                   | -                    |
| H12      | N15      | K15      | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| R17      | T16      | V20      | DDR_DQS1P                             | I/O      | DDR           | -     | -                   | -                    |
| -        | J16      | AA1      | VSS                                   | S        | -             | -     | -                   | -                    |
| R16      | T17      | V21      | DDR_DQS1N                             | I/O      | DDR           | -     | -                   | -                    |
| -        | K5       | AA21     | VSS                                   | S        | -             | -     | -                   | -                    |
| -        | K13      | G14      | VSS                                   | S        | -             | -     | -                   | -                    |
| M13      | J13      | T18      | DDR_VREF                              | Α        | Α             | -     | -                   | -                    |
| -        | H6       | J15      | VDDCORE                               | S        | -             | -     | -                   | -                    |
| J12      | P14      | K17      | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| P16      | T14      | U19      | DDR_DQ13                              | I/O      | DDR           | -     | -                   | -                    |
| K12      | -        | M15      | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| P17      | R17      | U20      | DDR_DQ9                               | I/O      | DDR           | -     | -                   | -                    |
|          | M5       | D16      | VSS                                   | S        | -             | -     | -                   | -                    |
| N15      | U16      | T19      | DDR_DQ10                              | I/O      | DDR           | -     | -                   | -                    |
| -        | M13      | E5       | VSS                                   | S        | -             | -     | -                   | -                    |
| N16      | P17      | T20      | DDR_DQ8                               | I/O      | DDR           | -     | -                   | -                    |
| L12      | -        | M17      | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| N17      | P16      | R20      | DDR_ZQ                                | Α        | Α             | -     | -                   | -                    |
| M16      | -        | P17      | DDR_DTO1                              | 0        | DDR           | -     | -                   | -                    |
| M12      | -        | R15      | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| M14      | P15      | R19      | DDR_A4                                | 0        | DDR           | -     | -                   | -                    |
| L15      | M16      | P19      | DDR_A8                                | 0        | DDR           | -     | -                   | -                    |
| M17      | M15      | R21      | DDR_A6                                | 0        | DDR           | -     | -                   | -                    |
| -        | N6       | E6       | VSS                                   | S        | -             | -     | -                   | -                    |
| L13      | N17      | P18      | DDR_ATO                               | Α        | Α             | -     | -                   | -                    |
| -        | N9       | E11      | VSS                                   | S        | -             | -     | -                   | -                    |



DS13874 Rev 1 67/223

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          |               |       | Ball function       | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|---------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions | Additional functions |
| L14      | -        | -        | DDR_DT00                              | 0        | DDR           | -     | -                   | -                    |
| N12      | -        | R17      | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| L16      | M17      | P20      | DDR_BA1                               | 0        | DDR           | -     | -                   | -                    |
| -        | -        | U15      | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| L17      | L17      | N19      | DDR_A14                               | 0        | DDR           | -     | -                   | -                    |
| -        | N10      | E16      | VSS                                   | S        | -             | -     | -                   | -                    |
| K13      | L16      | N17      | DDR_A11                               | 0        | DDR           | -     | -                   | -                    |
|          | N12      | F5       | VSS                                   | S        | -             | -     | -                   | -                    |
| L8       | N14      | K11      | VSS                                   | S        | -             | -     | -                   | -                    |
| K14      | L13      | N20      | DDR_CKE                               | 0        | DDR           | -     | -                   | -                    |
| -        | H12      | L7       | VDDCORE                               | S        | -             | -     | -                   | -                    |
| K15      | L15      | N21      | DDR_A1                                | 0        | DDR           | -     | -                   | -                    |
| K17      | L14      | M19      | DDR_A12                               | 0        | DDR           | -     | -                   | -                    |
| K16      | K15      | M21      | DDR_A15                               | 0        | DDR           | -     | -                   | -                    |
| -        | N16      | F18      | VSS                                   | S        | -             | -     | -                   | -                    |
| J16      | K16      | M20      | DDR_CLKP                              | 0        | DDR           | -     | -                   | -                    |
| -        | P5       | F21      | VSS                                   | S        | -             | -     | -                   | -                    |
| J17      | K17      | L20      | DDR_CLKN                              | 0        | DDR           | -     | -                   | -                    |
| -        | H14      | -        | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| J14      | J15      | L18      | DDR_A10                               | 0        | DDR           | -     | -                   | -                    |
| -        | P13      | G8       | VSS                                   | S        | -             | -     | -                   | -                    |
| H17      | J14      | K20      | DDR_RASN                              | 0        | DDR           | -     | -                   | -                    |
| J15      | J17      | L19      | DDR_CASN                              | 0        | DDR           | -     | -                   | -                    |
| H13      | H17      | K19      | DDR_WEN                               | 0        | DDR           | -     | -                   | -                    |
| -        | U17      | G12      | VSS                                   | S        | -             | -     | -                   | -                    |
| P11      | -        | L12      | VSS                                   | S        | -             | -     | -                   | -                    |
| -        | -        | H7       | VSS                                   | S        | -             | -     | -                   | -                    |
| -        | K12      | L9       | VDDCORE                               | S        | -             | -     | -                   | -                    |
| H16      | H16      | J20      | DDR_CSN                               | 0        | DDR           | -     | -                   | -                    |
| G17      | H15      | J19      | DDR_BA0                               | 0        | DDR           | -     | -                   | -                    |
| J11      | 1        | H15      | VSS                                   | S        | -             | 1     | -                   | -                    |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Numl   | ber      |                                       |          |               |       | Ball functions      | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|---------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions | Additional functions |
| H15      | G17      | J21      | DDR_ODT                               | 0        | DDR           | -     | -                   | -                    |
| K3       | 1        | J10      | VSS                                   | S        | -             | -     | -                   | -                    |
| G16      | G16      | H20      | DDR_A0                                | 0        | DDR           | ı     | -                   | -                    |
| G15      | G15      | H19      | DDR_A3                                | 0        | DDR           | ı     | -                   | -                    |
| G14      | F15      | J17      | DDR_A7                                | 0        | DDR           | ı     | -                   | -                    |
| -        | D14      | ı        | VDDQ_DDR                              | S        | -             | ı     | -                   | -                    |
| F17      | G13      | G20      | DDR_A2                                | 0        | DDR           | -     | -                   | -                    |
| -        | E13      | -        | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| E16      | F16      | F20      | DDR_A5                                | 0        | DDR           | -     | -                   | -                    |
| G13      | G14      | H18      | DDR_BA2                               | 0        | DDR           | -     | -                   | -                    |
| F16      | F17      | G21      | DDR_A9                                | 0        | DDR           | -     | -                   | -                    |
| K7       | -        | J12      | VSS                                   | S        | -             | -     | -                   | -                    |
| F14      | E17      | G19      | DDR_A13                               | 0        | DDR           | -     | -                   | -                    |
| K11      | -        | K9       | VSS                                   | S        | -             | -     | -                   | -                    |
| E17      | D15      | H17      | DDR_RESETN                            | 0        | DDR           | -     | -                   | -                    |
| -        | E15      | -        | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| E15      | D16      | F19      | DDR_DQ7                               | I/O      | DDR           | -     | -                   | -                    |
|          | F14      | -        | VDDQ_DDR                              | S        | -             | -     | -                   | -                    |
| E14      | D17      | E20      | DDR_DQ6                               | I/O      | DDR           | -     | -                   | -                    |
| L7       | -        | K10      | VSS                                   | S        | -             | -     | -                   | -                    |
| R5       | -        | L15      | VSS                                   | S        | -             | -     | -                   | -                    |
| L9       | -        | K12      | VSS                                   | S        | -             | -     | -                   | -                    |
| -        | M12      | L13      | VDDCORE                               | S        | -             | -     | -                   | -                    |
| D17      | C16      | E19      | DDR_DQ3                               | I/O      | DDR           | -     | -                   | -                    |
| D16      | C17      | D20      | DDR_DQ5                               | I/O      | DDR           | -     | -                   | -                    |
| C17      | B17      | C20      | DDR_DQS0P                             | I/O      | DDR           | -     | -                   | -                    |
| L10      | Ī        | K13      | VSS                                   | S        | -             | -     | -                   | -                    |
| C16      | B16      | C21      | DDR_DQS0N                             | I/O      | DDR           | -     | -                   | -                    |
| L11      | -        | K21      | VSS                                   | S        | -             | -     | -                   | -                    |
| D15      | C15      | D21      | DDR_DQM0                              | 0        | DDR           | -     | -                   | -                    |
| E13      | C14      | D19      | DDR_DQ2                               | I/O      | DDR           | -     | -                   | -                    |



DS13874 Rev 1 69/223

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | ø             |       | Ball function                                                                                                                  | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|--------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                            | Additional functions |
| C15      | B15      | B20      | DDR_DQ1                               | I/O      | DDR           | -     | -                                                                                                                              | -                    |
| M15      | -        | L5       | VSS                                   | S        | -             | -     | -                                                                                                                              | -                    |
| B17      | A16      | B21      | DDR_DQ0                               | I/O      | DDR           | -     | -                                                                                                                              | -                    |
| N4       | -        | L10      | VSS                                   | S        | -             | -     | -                                                                                                                              | -                    |
| B16      | A15      | B19      | DDR_DQ4                               | I/O      | DDR           | -     | -                                                                                                                              | -                    |
| A16      | G12      | A20      | PC9                                   | I/O      | FT_h          | (5)   | TRACED1, TIM3_CH4, TIM8_CH4, USART3_RTS, UART5_CTS, FDCAN1_TX, SDMMC1_D1, LCD_B4                                               | -                    |
| C12      | A14      | E17      | VDDSD1                                | S        | -             | ı     | -                                                                                                                              | -                    |
| R8       | ı        | L17      | VSS                                   | S        | -             | ı     | -                                                                                                                              | -                    |
| D14      | C13      | C18      | PC8                                   | I/O      | FT_h          | (5)   | TRACED0, TIM3_CH3, TIM8_CH3, SPI3_MISO/I2S3_SDI, USART6_CK, USART3_CTS, SAI2_FS_B, UART5_RTS/UART5_DE, SDMMC1_D0(boot), LCD_G7 | -                    |
| A15      | G11      | C19      | PD2                                   | I/O      | FT_h          | (5)   | TRACED4, TIM3_ETR, I2C1_SMBA, SPI3_NSS/I2S3_WS, SAI2_D1, USART3_RX, SDMMC1_CMD(boot)                                           | -                    |
| B15      | B13      | A19      | PC12                                  | I/O      | FT_h          | (5)   | TRACECLK, UART7_TX,<br>SAI2_SD_B,<br>SDMMC1_CK(boot), LCD_DE                                                                   | -                    |
| B14      | F11      | A18      | PC10                                  | I/O      | FT_fh         | (5)   | TRACED2, I2C1_SCL,<br>SPI3_SCK/I2S3_CK,<br>USART3_TX, SAI2_MCLK_B,<br>SDMMC1_D2                                                | -                    |
| C14      | C12      | B18      | PC11                                  | I/O      | FT_fh         | (5)   | TRACED3, I2C1_SDA, SPI3_MOSI/I2S3_SDO, USART3_CK, UART5_RX, SAI2_SCK_B, SDMMC1_D3                                              | -                    |
| -        | ı        | N10      | VDDCORE                               | S        | -             | -     | -                                                                                                                              | -                    |
| A14      | H10      | C17      | PG6                                   | I/O      | FT_h          | (6)   | TRACED3, TIM17_BKIN, TIM5_CH4, SAI2_D1, USART1_RX, SAI2_SD_A, SDMMC2_CMD(boot), LCD_G0, LCD_DE, LCD_R7, HDP3                   | -                    |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Numl   | ber      |                                       |          | re            |       | Ball function                                                                                                                                        | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                  | Additional functions |
| D13      | B12      | B17      | PE3                                   | I/O      | FT_h          | (6)   | TRACED11, SAI2_D4, TIM15_BKIN, SPI4_MISO/I2S4_SDI, USART3_RTS/USART3_DE, FDCAN1_RX, SDMMC2_CK(boot), LCD_R4                                          | -                    |
| B13      | E11      | C16      | PB4                                   | I/O      | FT_h          | (6)   | TRACED14, TIM16_BKIN, TIM3_CH1, SAI2_CK2, SPI4_SCK/I2S4_CK, USART3_CK, SDMMC2_D3, LCD_G1, SAI2_SCK_A, LCD_B6, LCD_R0                                 | -                    |
| A13      | A12      | B16      | PB14                                  | I/O      | FT_h          | (6)   | TRACED0, TIM1_CH2N, TIM12_CH1, TIM8_CH2N, USART1_TX, SDMMC2_D0(boot), SDMMC1_D4, LCD_R0, LCD_G5                                                      | -                    |
| -        | -        | N13      | VDDCORE                               | S        | -             | -     | -                                                                                                                                                    | -                    |
| D11      | A13      | C15      | VDDSD2                                | S        | -             | -     | -                                                                                                                                                    | -                    |
| U1       | -        | M1       | VSS                                   | S        | -             | -     | -                                                                                                                                                    | -                    |
| C11      | B11      | C14      | PB3                                   | I/O      | FT_h          | (6)   | TRACED2, TIM2_CH2, SAI2_CK1, SPI4_NSS/I2S4_WS, SDMMC1_D123DIR, SDMMC2_D2, LCD_R6, SAI2_MCLK_A, UART7_RX, LCD_B2                                      | -                    |
| B12      | D11      | B15      | PB15                                  | I/O      | FT_h          | (6)   | RTC_REFIN, TIM1_CH3N, TIM12_CH2, TIM8_CH3N, SAI2_D2, SPI4_MOSI/I2S4_SDO, DFSDM1_CKIN2, UART7_CTS, SDMMC1_CKIN, SDMMC2_D1, SAI2_FS_A, LCD_CLK, LCD_B0 | -                    |
| U17      | -        | M7       | VSS                                   | S        | -             | -     | -                                                                                                                                                    | -                    |
| C13      | A11      | A16      | PF0                                   | I/O      | FT_h          | -     | TRACED13, DFSDM1_CKOUT, USART3_CK, SDMMC2_D4, FMC_A0, LCD_R6, LCD_G0                                                                                 | -                    |



DS13874 Rev 1 71/223

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | ē             |       | Ball function                                                                                                                      | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                | Additional functions |
| E11      | C11      | E14      | PH10                                  | I/O      | FT_h          | -     | TRACED0, TIM5_CH1, SAI2_D3, DFSDM1_DATIN2, I2S3_MCK, SPI2_MOSI/I2S2_SDO, USART3_CTS/USART3_NSS, SDMMC1_D4, LCD_HSYNC, LCD_R2, HDP0 | -                    |
| A12      | C10      | A15      | PB9                                   | I/O      | FT_fh         | -     | TRACED3, TIM4_CH4, I2C4_SDA, FDCAN1_TX, SDMMC2_D5, UART5_TX, SDMMC1_CDIR(boot), LCD_DE, LCD_B1                                     | -                    |
| -        | D10      | G9       | VDD                                   | S        | -             | -     | -                                                                                                                                  | -                    |
| -        | -        | M9       | VSS                                   | S        | -             | -     | -                                                                                                                                  | -                    |
| E10      | B10      | D14      | PB13                                  | I/O      | FT_fh         | -     | TRACECLK, TIM1_CH1N, LPTIM2_OUT, SPI2_NSS/I2S2_WS, I2C4_SCL, SDMMC1_D123DIR, FDCAN2_TX, UART5_TX(boot), LCD_CLK                    | -                    |
| D10      | G10      | E13      | PB10                                  | I/O      | FT_h          | 1     | TIM2_CH3, LPTIM2_IN1,<br>I2C5_SMBA,<br>SPI4_NSS/I2S4_WS,<br>SPI2_SCK/I2S2_CK,<br>USART3_TX(boot), LCD_R3                           | -                    |
| B11      | A10      | B14      | PC6                                   | I/O      | FT_h          | -     | TRACED2, TIM3_CH1, TIM8_CH1, DFSDM1_DATIN0,                                                                                        | -                    |
| C10      | F9       | B13      | PB5                                   | I/O      | FT_h          | -     | TRACED4, TIM17_BKIN, TIM3_CH2, SPI2_MISO/I2S2_SDI, I2C4_SMBA, SDMMC1_CKIN, FDCAN2_RX, UART5_RX(boot), LCD_B6, LCD_DE               | -                    |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | e.            |   | Ball function                                                                                                               | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|---|-----------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure |   | Alternate functions                                                                                                         | Additional functions |
| A11      | A9       | C13      | PC7                                   | I/O      | FT_h          | - | TRACED4, TIM3_CH2, TIM8_CH2, I2S2_MCK, USART6_RX(boot), USART3_CTS, SDMMC2_CDIR, SDMMC2_D7, LCD_R1, SDMMC1_D7, LCD_G6, HDP4 | -                    |
| B10      | В9       | A13      | PF3                                   | I/O      | FT_fh         | - | LPTIM2_IN2, I2C5_SDA,<br>SPI4_MISO/I2S4_SDI,<br>SPI3_NSS/I2S3_WS,<br>FMC_A3, LCD_G3                                         | -                    |
| A9       | D9       | C12      | PH9                                   | I/O      | FT_h          | - | TIM1_CH4, TIM12_CH2,<br>SPI4_SCK/I2S4_CK,<br>DCMIPP_D13, LCD_B5,<br>LCD_DE, FMC_A20,<br>DCMIPP_D9, DCMIPP_D8                | -                    |
| -        | C6       | G13      | VDD                                   | S        | -             | 1 | -                                                                                                                           | -                    |
| -        | ı        | M10      | VSS                                   | S        | -             | ı | -                                                                                                                           | -                    |
| В9       | A8       | B11      | PF1                                   | I/O      | FT_fh         | - | TRACED7, I2C2_SDA,<br>SPI3_MOSI/I2S3_SDO,<br>FMC_A1, LCD_B7, LCD_G1,<br>HDP7                                                | -                    |
| A10      | E9       | A12      | PH13                                  | I/O      | FT_fh         | - | TRACED15, USART2_CK, TIM8_CH1N, I2C5_SCL, SPI3_SCK/I2S3_CK, UART4_TX, LCD_G3, LCD_G2                                        | -                    |
| C9       | C8       | A10      | PG7                                   | I/O      | FT_h          | - | TRACED8, TIM1_ETR, SPI3_MISO/I2S3_SDI, UART7_CTS, SDMMC2_CKIN, LCD_R1, LCD_R5, LCD_R2                                       | -                    |
| A8       | С9       | B10      | PG4                                   | I/O      | FT_h          | - | TRACED1, TIM1_BKIN2, DFSDM1_CKIN3, USART3_RX, SDMMC2_D123DIR, LCD_VSYNC, FMC_A14, DCMIPP_D8, DCMIPP_D13, HDP1               | -                    |



DS13874 Rev 1 73/223

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | e.            |       | Ball function                                                                                                   | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|-----------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                             | Additional functions |
| D9       | A7       | C11      | PB12                                  | I/O      | FT_h          | -     | TRACED10, I2C2_SMBA, DFSDM1_DATIN1, UART7_RTS/UART7_DE, USART3_RX(boot), UART5_RX, SDMMC1_D5, LCD_R3, LCD_VSYNC | -                    |
| E9       | В7       | D11      | PF2                                   | I/O      | FT_fh         | -     | TRACED1, I2C2_SCL, DFSDM1_CKIN1, USART6_CK, SDMMC2_D0DIR, SDMMC1_D0DIR, FMC_A2, LCD_G4, LCD_B3                  | -                    |
| -        | ı        | M11      | VSS                                   | S        | -             | -     | -                                                                                                               | -                    |
| -        | ı        | J7       | VDD                                   | S        | -             | -     | -                                                                                                               | -                    |
| J6       | F4       | G10      | VDDCPU                                | S        | ı             | -     | -                                                                                                               | -                    |
| B8       | C7       | C10      | PE10                                  | I/O      | FT            | -     | TIM1_CH2N, UART7_RX,<br>FDCAN1_TX,<br>FMC_D7(boot)/FMC_AD7                                                      | -                    |
| -        | -        | M12      | VSS                                   | S        | -             | -     | -                                                                                                               | -                    |
| D8       | A6       | А9       | PE15                                  | I/O      | FT_fh         | -     | TIM2_CH1/TIM2_ETR, TIM1_BKIN, USART2_CTS/USART2_NSS, I2C4_SCL, FMC_D12(boot)/FMC_AD12, DCMIPP_D10, LCD_B7, HDP7 | -                    |
| -        | H4       | -        | VDDCPU                                | S        | -             | -     | -                                                                                                               | -                    |
| В7       | В6       | В8       | PH14                                  | I/O      | FT_fh         | -     | DFSDM1_DATIN2, I2C3_SDA, DCMIPP_D8, UART4_RX, LCD_B4, DCMIPP_D2, DCMIPP_PIXCLK                                  | -                    |
| A7       | F8       | В9       | PE8                                   | I/O      | FT_f          | -     | TIM1_CH1N, DFSDM1_CKIN2, I2C1_SDA, UART7_TX, FMC_D5(boot)/FMC_AD5                                               | -                    |
| C7       | A5       | E9       | PD15                                  | I/O      | FT_h          | -     | USART2_RX, TIM4_CH4, DFSDM1_DATIN2, QUADSPI_BK1_IO3, FMC_D1(boot)/FMC_AD1, LCD_B5                               | -                    |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Num    | ber      |                                       |          | re            |       | Ball function                                                                                              | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                        | Additional functions |
| E8       | B5       | C9       | PD9                                   | I/O      | FT_h          | -     | TRACECLK, DFSDM1_DATIN3, SDMMC2_CDIR, LCD_B5, FMC_D14(boot)/FMC_AD14, LCD_CLK, LCD_B0                      | -                    |
| -        | -        | M13      | VSS                                   | S        | -             | -     | -                                                                                                          | -                    |
| D7       | A4       | A7       | PG0                                   | I/O      | FT_h          | -     | FDCAN2_TX, FMC_A10,<br>DCMIPP_PIXCLK, LCD_G5                                                               | -                    |
| A6       | B4       | C8       | PD5                                   | I/O      | FT_h          | -     | QUADSPI_BK1_IO0,<br>FMC_NWE(boot), LCD_B0,<br>LCD_G4                                                       | -                    |
| -        | -        | J9       | VDD                                   | S        | -             | -     | -                                                                                                          | -                    |
| В6       | А3       | В7       | PE9                                   | I/O      | FT_h          | -     | TIM1_CH1, QUADSPI_BK1_IO1, LCD_HSYNC, FMC_D6(boot)/FMC_AD6, DCMIPP_D7, LCD_R7, HDP3                        | -                    |
| A5       | C4       | D8       | PE7                                   | I/O      | FT_h          | -     | TIM1_ETR, LPTIM2_IN1,<br>UART5_TX,<br>FMC_D4(boot)/FMC_AD4,<br>LCD_B3, LCD_R5                              | -                    |
| D6       | ВЗ       | В6       | PE0                                   | I/O      | FT_h          | -     | DCMIPP_D12, UART8_RX(boot), FDCAN2_RX, LCD_B1, FMC_A11, DCMIPP_D1, LCD_B5                                  | -                    |
| C6       | D7       | A6       | PD12                                  | I/O      | FT_f          | -     | LPTIM1_IN1, TIM4_CH1, I2C1_SCL, USART3_RTS/USART3_DE, FMC_ALE(boot)/FMC_A17, DCMIPP_D6                     | -                    |
| E7       | A2       | C7       | PD4                                   | I/O      | FT_h          | -     | USART2_RTS/USART2_DE, SPI3_MISO/I2S3_SDI, DFSDM1_CKIN0, QUADSPI_CLK, LCD_R1, FMC_NOE(boot), LCD_R4, LCD_R6 | -                    |
| C5       | B2       | B5       | PD8                                   | I/O      | FT            | -     | USART2_TX, I2S4_WS,<br>USART3_TX,<br>UART4_RX(boot),<br>DCMIPP_D9, DCMIPP_D3                               | -                    |



DS13874 Rev 1 75/223

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | n Numl   | ber      |                                       |          | re            |       | Ball function                                                                                                                  | ons                  |
|----------|----------|----------|---------------------------------------|----------|---------------|-------|--------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289 | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                            | Additional functions |
| B5       | СЗ       | E8       | PE1                                   | I/O      | FT_h          | -     | LPTIM1_IN2, UART8_TX(boot), LCD_HSYNC, LCD_R4, FMC_NBL1, DCMIPP_D3, DCMIPP_D12                                                 | -                    |
| A4       | D5       | C6       | PB7                                   | I/O      | FT_f          | -     | TIM17_CH1N, TIM4_CH2,<br>I2S4_CK, I2C4_SDA,<br>FMC_NCE2, FMC_NL,<br>DCMIPP_D13,<br>DCMIPP_PIXCLK                               | -                    |
| B4       | B1       | A4       | PE12                                  | I/O      | FT_h          | 1     | TIM1_CH3N, SPI4_SCK/I2S4_CK, UART8_RTS/UART8_DE, LCD_VSYNC, LCD_G4, FMC_D9(boot)/FMC_AD9, DCMIPP_D11, LCD_G6, HDP4             | -                    |
| -        |          | K7       | VDDCPU                                | S        | -             | -     | -                                                                                                                              | -                    |
| D5       | C2       | C5       | PD1                                   | I/O      | FT_fh         | -     | I2C5_SCL, SPI4_MOSI/I2S4_SDO, UART4_TX, QUADSPI_BK1_NCS, LCD_B6, FMC_D3(boot)/FMC_AD3, DCMIPP_D13, LCD_G2                      | -                    |
| -        | ı        | K5       | VDDCPU                                | S        | -             | -     | -                                                                                                                              | -                    |
| A3       | D3       | D6       | PD10                                  | I/O      | FT_h          | -     | RTC_REFIN, I2C5_SMBA,<br>SPI4_NSS/I2S4_WS,<br>USART3_CK, LCD_G5,<br>LCD_B7,<br>FMC_D15(boot)/FMC_AD15,<br>DCMIPP_VSYNC, LCD_B2 | -                    |
| E6       | E7       | B4       | PA15                                  | I/O      | FT_h          | -     | TRACED5, TIM2_CH1/TIM2_ETR, I2S4_MCK, UART4_RTS/UART4_DE, UART4_RX, LCD_R0, LCD_G7, FMC_A9, DCMIPP_D14, DCMIPP_D5, HDP5        | -                    |
| C4       | C1       | A3       | PE13                                  | I/O      | FT_fh         | -     | TIM1_CH3, I2C5_SDA,<br>SPI4_MISO/I2S4_SDI,<br>LCD_B1,<br>FMC_D10(boot)/FMC_AD10,<br>DCMIPP_D4, LCD_R6                          | -                    |

Table 7. STM32MP135A/D ball definitions (continued)

| Pi       | Pin Number |          |                                       |          | re            |       | Ball function                                                                              | ons                  |
|----------|------------|----------|---------------------------------------|----------|---------------|-------|--------------------------------------------------------------------------------------------|----------------------|
| LFBGA289 | TFBGA289   | TFBGA320 | Pin name<br>(function after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                        | Additional functions |
| В3       | F7         | C4       | PD14                                  | I/O      | FT_fh         | -     | TIM4_CH3, I2C3_SDA,<br>USART1_RX, UART8_CTS,<br>FMC_D0(boot)/FMC_AD0,<br>DCMIPP_D8, LCD_R4 | -                    |
| -        | D12        | -        | VDD                                   | S        | -             | -     | -                                                                                          | -                    |

- 1. Power supply is  $V_{BAT}$ .
- 2. During reset and when configured as alternate function for JTAG/SWD an internal pull-down is present.
- 3. During reset and when configured as alternate function for JTAG/SWD an internal pull-up is present.
- 4. During reset an internal pull-down is present.
- 5. Power supply is  $V_{DDSD1}$ .
- 6. Power supply is  $V_{DDSD2}$ .



DS13874 Rev 1 77/223

USART1\_CTS/ USART1\_NSS

USART1\_RTS/ USART1\_DE

|        |      |            |                                                     | Table 8. Alt                            | ernate functior                                  | AF0 to AF7                                                 |                                                                 |                                                                              |                              |
|--------|------|------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
|        |      | AF0        | AF1                                                 | AF2                                     | AF3                                              | AF4                                                        | AF5                                                             | AF6                                                                          | AF7                          |
| Po     | ort  | RTC/SYS    | LPTIM1/RTC/<br>SPI5/SYS/<br>TIM1/2/16/17/<br>USART2 | SAI1/2/SYS/<br>TIM1/3/4/5/12/<br>USART2 | DFSDM1/<br>LPTIM2/3/4/5/<br>SAI2/TIM8/<br>USART2 | DFSDM1/<br>I2C1/2/3/4/5/<br>LPTIM2/SAI1/2/<br>TIM15/USART1 | I2C1/3/SPI1/<br>I2S1/SPI2/I2S2/<br>SPI3/I2S3/SPI4/<br>I2S4/SPI5 | DCMIPP/DFSD<br>M1/I2C4/SAI1/2<br>/SPI1/I2S1/SPI2<br>/I2S2/SPI3/I2S3<br>/SPI5 | LCD/UART4/7/<br>USART1/2/3/6 |
|        | PA0  | -          | TIM2_CH1/<br>TIM2_ETR                               | TIM5_CH1                                | TIM8_ETR                                         | TIM15_BKIN                                                 | -                                                               | SAI1_SD_B                                                                    | -                            |
|        | PA1  | -          | TIM2_CH2                                            | TIM5_CH2                                | LPTIM3_OUT                                       | TIM15_CH1N                                                 | -                                                               | DFSDM1_<br>CKIN0                                                             | USART2_RTS/<br>USART2_DE     |
|        | PA2  | - TIM2_CH3 |                                                     | TIM5_CH3                                | LPTIM4_OUT                                       | TIM15_CH1                                                  | -                                                               | -                                                                            | USART2_TX                    |
|        | PA3  | - TIM2_CH4 |                                                     | TIM5_CH4                                | LPTIM5_OUT                                       | TIM15_CH2                                                  | SPI1_MOSI/<br>I2S1_SDO                                          | SAI1_FS_B                                                                    | USART2_RX                    |
|        | PA4  | -          | -                                                   | TIM5_ETR                                | USART2_CK                                        | SAI1_SCK_B                                                 | SPI1_NSS/<br>I2S1_WS                                            | DFSDM1_<br>CKIN1                                                             | -                            |
|        | PA5  | -          | TIM2_CH1/<br>TIM2_ETR                               | USART2_CK                               | TIM8_CH1N                                        | SAI1_D1                                                    | SPI1_NSS/<br>I2S1_WS                                            | SAI1_SD_A                                                                    | -                            |
| Port A | PA6  | -          | TIM1_BKIN                                           | TIM3_CH1                                | TIM8_BKIN                                        | SAI2_CK2                                                   | SPI1_MISO/<br>I2S1_SDI                                          | -                                                                            | USART1_CK                    |
|        | PA7  | -          | TIM1_CH1N                                           | TIM3_CH2                                | TIM8_CH1N                                        | SAI2_D1                                                    | SPI1_SCK/<br>I2S1_CK                                            | -                                                                            | USART1_CTS/<br>USART1_NSS    |
|        | PA8  | MCO1       | -                                                   | SAI2_MCLK_A                             | TIM8_BKIN2                                       | I2C4_SDA                                                   | SPI5_MISO                                                       | SAI2_CK1                                                                     | USART1_CK                    |
|        | PA9  | -          | TIM1_CH2                                            | -                                       | -                                                | I2C3_SMBA                                                  | -                                                               | DFSDM1_<br>DATIN0                                                            | USART1_TX                    |
|        | PA10 | -          | TIM1_CH3                                            | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        |      |            |                                                     |                                         |                                                  |                                                            |                                                                 |                                                                              |                              |

SPI2\_NSS/ I2S2\_WS

I2C5\_SCL

PA11

PA12

PA13

DBTRGO

TIM1\_CH4

TIM1\_ETR

**DBTRGI** 

SAI2\_MCLK\_A

MCO1

Table 8. Alternate function AF0 to AF7 (continued)

|        |      | AF0                 | AF1                                                 | AF2                                     | AF3                                              | AF4                                                        | AF5                                                             | AF6                                                                          | AF7                          |
|--------|------|---------------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| Po     | ort  | RTC/SYS             | LPTIM1/RTC/<br>SPI5/SYS/<br>TIM1/2/16/17/<br>USART2 | SAI1/2/SYS/<br>TIM1/3/4/5/12/<br>USART2 | DFSDM1/<br>LPTIM2/3/4/5/<br>SAI2/TIM8/<br>USART2 | DFSDM1/<br>I2C1/2/3/4/5/<br>LPTIM2/SAI1/2/<br>TIM15/USART1 | I2C1/3/SPI1/<br>I2S1/SPI2/I2S2/<br>SPI3/I2S3/SPI4/<br>I2S4/SPI5 | DCMIPP/DFSD<br>M1/I2C4/SAI1/2<br>/SPI1/I2S1/SPI2<br>/I2S2/SPI3/I2S3<br>/SPI5 | LCD/UART4/7/<br>USART1/2/3/6 |
|        | PA14 | DBTRGO              | DBTRGI                                              | MCO2                                    | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
| Port A | PA15 | TRACED5             | TIM2_CH1/<br>TIM2_ETR                               | -                                       | -                                                | -                                                          | I2S4_MCK                                                        | -                                                                            | UART4_RTS/<br>UART4_DE       |
|        | PB0  | DBTRGI              | TIM1_CH2N                                           | TIM3_CH3                                | TIM8_CH2N                                        | USART1_RX                                                  | I2S1_MCK                                                        | SAI2_FS_A                                                                    | USART1_CK                    |
|        | PB1  |                     |                                                     | TIM3_CH4                                | TIM8_CH3N                                        | -                                                          | SPI1_SCK/<br>I2S1_CK                                            | DFSDM1_<br>DATIN1                                                            | UART4_RX                     |
|        | PB2  | - RTC_OUT2          |                                                     | SAI1_D1                                 | -                                                | -                                                          | I2S_CKIN                                                        | SAI1_SD_A                                                                    | -                            |
|        | PB3  | TRACED2 TIM2_CH2    |                                                     | -                                       | -                                                | SAI2_CK1                                                   | SPI4_NSS/<br>I2S4_WS                                            | -                                                                            | -                            |
|        | PB4  | TRACED14 TIM16_BKIN |                                                     | TIM3_CH1                                | -                                                | SAI2_CK2                                                   | SPI4_SCK/<br>I2S4_CK                                            | -                                                                            | USART3_CK                    |
|        | PB5  | TRACED4 TIM17_BKIN  |                                                     | TIM3_CH2                                | -                                                | -                                                          | SPI2_MISO/<br>I2S2_SDI                                          | I2C4_SMBA                                                                    | -                            |
| Port B | PB6  | TRACED6             | TIM16_CH1N                                          | TIM4_CH1                                | TIM8_CH1                                         | USART1_TX                                                  | -                                                               | SAI1_CK2                                                                     | LCD_B6                       |
|        | PB7  | -                   | TIM17_CH1N                                          | TIM4_CH2                                | -                                                | -                                                          | 12S4_CK                                                         | I2C4_SDA                                                                     | -                            |
|        | PB8  | -                   | TIM16_CH1                                           | TIM4_CH3                                | -                                                | I2C1_SCL                                                   | I2C3_SCL                                                        | DFSDM1_<br>DATIN1                                                            | -                            |
|        | PB9  | TRACED3             | -                                                   | TIM4_CH4                                | -                                                | -                                                          | -                                                               | I2C4_SDA                                                                     | -                            |
|        | PB10 | -                   | - TIM2_CH3                                          |                                         | LPTIM2_IN1                                       | I2C5_SMBA                                                  | SPI4_NSS/<br>I2S4_WS                                            | SPI2_SCK/<br>I2S2_CK                                                         | USART3_TX                    |
|        | PB11 | -                   | TIM2_CH4                                            | -                                       | LPTIM1_OUT                                       | I2C5_SMBA                                                  | -                                                               | -                                                                            | USART3_RX                    |
|        | PB12 | TRACED10            | -                                                   | -                                       | -                                                | I2C2_SMBA                                                  | -                                                               | DFSDM1_<br>DATIN1                                                            | UART7_RTS/<br>UART7_DE       |

|        |      | AF0        | AF1                                                 | AF2                                     | AF3                                              | AF4                                                        | AF5                                                             | AF6                                                                          | AF7                          |
|--------|------|------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| Po     | ort  | RTC/SYS    | LPTIM1/RTC/<br>SPI5/SYS/<br>TIM1/2/16/17/<br>USART2 | SAI1/2/SYS/<br>TIM1/3/4/5/12/<br>USART2 | DFSDM1/<br>LPTIM2/3/4/5/<br>SAI2/TIM8/<br>USART2 | DFSDM1/<br>I2C1/2/3/4/5/<br>LPTIM2/SAI1/2/<br>TIM15/USART1 | I2C1/3/SPI1/<br>I2S1/SPI2/I2S2/<br>SPI3/I2S3/SPI4/<br>I2S4/SPI5 | DCMIPP/DFSD<br>M1/I2C4/SAI1/2<br>/SPI1/I2S1/SPI2<br>/I2S2/SPI3/I2S3<br>/SPI5 | LCD/UART4/7/<br>USART1/2/3/6 |
|        | PB13 | TRACECLK   | TIM1_CH1N                                           | -                                       | -                                                | LPTIM2_OUT                                                 | SPI2_NSS/<br>I2S2_WS                                            | I2C4_SCL                                                                     | -                            |
| Port B | PB14 | TRACED0    | TIM1_CH2N                                           | TIM12_CH1                               | TIM8_CH2N                                        | USART1_TX                                                  | -                                                               | -                                                                            | -                            |
|        | PB15 | RTC_REFIN  | TIM1_CH3N                                           | TIM12_CH2                               | TIM8_CH3N                                        | SAI2_D2                                                    | SPI4_MOSI/<br>I2S4_SDO                                          | DFSDM1_<br>CKIN2                                                             | UART7_CTS                    |
|        | PC0  | -          | -                                                   | SAI1_SCK_A                              | -                                                | SAI1_CK2                                                   | I2S1_MCK                                                        | SPI1_MOSI/<br>I2S1_SDO                                                       | USART1_TX                    |
|        | PC1  | -          | -                                                   |                                         | DFSDM1_<br>DATIN0                                | -                                                          | -                                                               | SAI1_D3                                                                      | -                            |
|        | PC2  | - SPI5_NSS |                                                     | -                                       | -                                                | -                                                          | SPI1_NSS/<br>I2S1_WS                                            | SAI2_MCLK_A                                                                  | USART1_RTS/<br>USART1_DE     |
|        | PC3  | -          | -                                                   | SAI1_CK1                                | DFSDM1_<br>CKOUT                                 | -                                                          | SPI1_MISO/<br>I2S1_SDI                                          | SPI1_SCK/<br>I2S1_CK                                                         | -                            |
| Port C | PC4  | -          | -                                                   | TIM3_ETR                                | DFSDM1_<br>CKIN2                                 | SAI1_D3                                                    | I2S1_MCK                                                        | -                                                                            | -                            |
|        | PC5  | -          | -                                                   | 1                                       | DFSDM1_<br>DATIN2                                | SAI2_D4                                                    | I2S_CKIN                                                        | SAI1_D4                                                                      | USART2_CTS/<br>USART2_NSS    |
|        | PC6  | TRACED2    | -                                                   | TIM3_CH1                                | TIM8_CH1                                         | DFSDM1_<br>DATIN0                                          | I2S3_MCK                                                        | -                                                                            | USART6_TX                    |
|        | PC7  | TRACED4    | -                                                   | TIM3_CH2                                | TIM8_CH2                                         | -                                                          | -                                                               | I2S2_MCK                                                                     | USART6_RX                    |
|        | PC8  | TRACED0    | -                                                   | TIM3_CH3                                | TIM8_CH3                                         | -                                                          | SPI3_MISO/<br>I2S3_SDI                                          | -                                                                            | USART6_CK                    |
|        | PC9  | TRACED1    | -                                                   | TIM3_CH4                                | TIM8_CH4                                         | -                                                          | -                                                               | -                                                                            | USART3_RTS                   |

Table 8. Alternate function AF0 to AF7 (continued)

|        |      | AF0      | AF1                                                 | AF2                                     | AF3                                              | AF4                                                        | AF5                                                             | AF6                                                                          | AF7                          |
|--------|------|----------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| Po     | ort  | RTC/SYS  | LPTIM1/RTC/<br>SPI5/SYS/<br>TIM1/2/16/17/<br>USART2 | SAI1/2/SYS/<br>TIM1/3/4/5/12/<br>USART2 | DFSDM1/<br>LPTIM2/3/4/5/<br>SAI2/TIM8/<br>USART2 | DFSDM1/<br>I2C1/2/3/4/5/<br>LPTIM2/SAI1/2/<br>TIM15/USART1 | I2C1/3/SPI1/<br>I2S1/SPI2/I2S2/<br>SPI3/I2S3/SPI4/<br>I2S4/SPI5 | DCMIPP/DFSD<br>M1/I2C4/SAI1/2<br>/SPI1/I2S1/SPI2<br>/I2S2/SPI3/I2S3<br>/SPI5 | LCD/UART4/7/<br>USART1/2/3/6 |
|        | PC10 | TRACED2  | -                                                   | -                                       | -                                                | -                                                          | I2C1_SCL                                                        | SPI3_SCK/<br>I2S3_CK                                                         | USART3_TX                    |
|        | PC11 | TRACED3  | -                                                   | -                                       | -                                                | I2C1_SDA                                                   | -                                                               | SPI3_MOSI/<br>I2S3_SDO                                                       | USART3_CK                    |
| Port C | PC12 | TRACECLK | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PC13 | -        | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PC14 | -        | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
| l      | PC15 | -        | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PD0  | -        | -                                                   | SAI1_MCLK_A                             | -                                                | -                                                          | -                                                               | SAI1_CK1                                                                     | -                            |
|        | PD1  | -        | -                                                   | -                                       | -                                                | I2C5_SCL                                                   | SPI4_MOSI/<br>I2S4_SDO                                          | -                                                                            | -                            |
|        | PD2  | TRACED4  | -                                                   | TIM3_ETR                                | -                                                | I2C1_SMBA                                                  | SPI3_NSS/<br>I2S3_WS                                            | SAI2_D1                                                                      | USART3_RX                    |
|        | PD3  | -        | -                                                   | TIM2_CH1/<br>TIM2_ETR                   | USART2_CTS/<br>USART2_NSS                        | DFSDM1_<br>CKOUT                                           | I2C1_SDA                                                        | SAI1_D3                                                                      | -                            |
| Port D | PD4  | -        | -                                                   | -                                       | USART2_RTS/<br>USART2_DE                         | -                                                          | SPI3_MISO/<br>I2S3_SDI                                          | DFSDM1_<br>CKIN0                                                             | -                            |
|        | PD5  | -        | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PD6  | -        | TIM16_CH1N                                          | SAI1_D1                                 | -                                                | -                                                          | -                                                               | SAI1_SD_A                                                                    | -                            |
|        | PD7  | MCO1     | -                                                   | -                                       | USART2_CK                                        | I2C2_SCL                                                   | I2C3_SDA                                                        | -                                                                            | -                            |
|        | PD8  | -        | -                                                   | -                                       | USART2_TX                                        | -                                                          | 12S4_WS                                                         | -                                                                            | USART3_TX                    |
|        | PD9  | TRACECLK | -                                                   | -                                       | DFSDM1_<br>DATIN3                                | -                                                          | -                                                               | -                                                                            | -                            |

|        |      | AF0          | AF1                                                 | AF2                                     | AF3                                              | AF4                                                        | AF5                                                             | AF6                                                                          | AF7                          |
|--------|------|--------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| Po     | rt   | RTC/SYS      | LPTIM1/RTC/<br>SPI5/SYS/<br>TIM1/2/16/17/<br>USART2 | SAI1/2/SYS/<br>TIM1/3/4/5/12/<br>USART2 | DFSDM1/<br>LPTIM2/3/4/5/<br>SAI2/TIM8/<br>USART2 | DFSDM1/<br>I2C1/2/3/4/5/<br>LPTIM2/SAI1/2/<br>TIM15/USART1 | I2C1/3/SPI1/<br>I2S1/SPI2/I2S2/<br>SPI3/I2S3/SPI4/<br>I2S4/SPI5 | DCMIPP/DFSD<br>M1/I2C4/SAI1/2<br>/SPI1/I2S1/SPI2<br>/I2S2/SPI3/I2S3<br>/SPI5 | LCD/UART4/7/<br>USART1/2/3/6 |
|        | PD10 | RTC_REFIN    | -                                                   | -                                       | -                                                | I2C5_SMBA                                                  | SPI4_NSS/<br>I2S4_WS                                            | -                                                                            | USART3_CK                    |
|        | PD11 | -            | -                                                   | -                                       | LPTIM2_IN2                                       | I2C4_SMBA                                                  | -                                                               | -                                                                            | USART3_CTS/<br>USART3_NSS    |
| Port D | PD12 | -            | LPTIM1_IN1                                          | TIM4_CH1                                | -                                                | -                                                          | I2C1_SCL                                                        | -                                                                            | USART3_RTS/<br>USART3_DE     |
|        | PD13 | - LPTIM2_ETR |                                                     | TIM4_CH2                                | TIM8_CH2                                         | SAI1_CK1                                                   | -                                                               | SAI1_MCLK_A                                                                  | USART1_RX                    |
|        | PD14 |              |                                                     | TIM4_CH3                                | -                                                | I2C3_SDA                                                   | -                                                               | -                                                                            | USART1_RX                    |
|        | PD15 | -            | USART2_RX                                           | TIM4_CH4                                | DFSDM1_<br>DATIN2                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PE0  | -            | -                                                   | -                                       | -                                                | -                                                          | -                                                               | DCMIPP_D12                                                                   | -                            |
|        | PE1  | -            | LPTIM1_IN2                                          | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PE2  | TRACECLK     | TIM2_CH1/<br>TIM2_ETR                               | -                                       | -                                                | I2C4_SCL                                                   | SPI5_MOSI                                                       | SAI1_FS_B                                                                    | USART6_RTS/<br>USART6_DE     |
|        | PE3  | TRACED11     | -                                                   | SAI2_D4                                 | -                                                | TIM15_BKIN                                                 | SPI4_MISO/<br>I2S4_SDI                                          | -                                                                            | -                            |
| Port E | PE4  | -            | SPI5_MISO                                           | SAI1_D2                                 | DFSDM1_<br>DATIN3                                | TIM15_CH1N                                                 | I2S_CKIN                                                        | SAI1_FS_A                                                                    | UART7_RTS/U<br>ART7_DE       |
|        | PE5  | -            | -                                                   | SAI2_SCK_B                              | TIM8_CH3                                         | TIM15_CH1                                                  | -                                                               | -                                                                            | -                            |
|        | PE6  | MCO2         | TIM1_BKIN2                                          | SAI2_SCK_B                              | -                                                | TIM15_CH2                                                  | I2C3_SMBA                                                       | SAI1_SCK_B                                                                   | -                            |
|        | PE7  | -            | TIM1_ETR                                            | -                                       | -                                                | LPTIM2_IN1                                                 | -                                                               | -                                                                            | -                            |
|        | PE8  | -            | TIM1_CH1N                                           | -                                       | DFSDM1_<br>CKIN2                                 | -                                                          | I2C1_SDA                                                        | -                                                                            | UART7_TX                     |

Table 8. Alternate function AF0 to AF7 (continued)

|        |      | AF0      | AF1                                                 | AF2                                     | AF3                                              | AF4                                                        | AF5                                                             | AF6                                                                          | AF7                          |
|--------|------|----------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| Po     | ort  | RTC/SYS  | LPTIM1/RTC/<br>SPI5/SYS/<br>TIM1/2/16/17/<br>USART2 | SAI1/2/SYS/<br>TIM1/3/4/5/12/<br>USART2 | DFSDM1/<br>LPTIM2/3/4/5/<br>SAI2/TIM8/<br>USART2 | DFSDM1/<br>I2C1/2/3/4/5/<br>LPTIM2/SAI1/2/<br>TIM15/USART1 | I2C1/3/SPI1/<br>I2S1/SPI2/I2S2/<br>SPI3/I2S3/SPI4/<br>I2S4/SPI5 | DCMIPP/DFSD<br>M1/I2C4/SAI1/2<br>/SPI1/I2S1/SPI2<br>/I2S2/SPI3/I2S3<br>/SPI5 | LCD/UART4/7/<br>USART1/2/3/6 |
|        | PE9  | -        | TIM1_CH1                                            | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PE10 | -        | TIM1_CH2N                                           | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | UART7_RX                     |
|        | PE11 | -        | TIM1_CH2                                            | USART2_CTS/<br>USART2_NSS               | -                                                | SAI1_D2                                                    | SPI4_MOSI/<br>I2S4_SDO                                          | SAI1_FS_A                                                                    | USART6_CK                    |
| Port E | PE12 | -        | TIM1_CH3N                                           | -                                       | -                                                | -                                                          | SPI4_SCK/<br>I2S4_CK                                            | -                                                                            | -                            |
|        | PE13 | -        | TIM1_CH3                                            | -                                       | -                                                | I2C5_SDA                                                   | SPI4_MISO/<br>I2S4_SDI                                          | -                                                                            | -                            |
|        | PE14 | -        | TIM1_BKIN                                           | -                                       | -                                                | SAI1_D4                                                    | -                                                               | -                                                                            | -                            |
|        | PE15 | -        | TIM2_CH1/<br>TIM2_ETR                               | TIM1_BKIN                               | USART2_CTS/<br>USART2_NSS                        | -                                                          | -                                                               | I2C4_SCL                                                                     | -                            |
|        | PF0  | TRACED13 | -                                                   | -                                       | DFSDM1_<br>CKOUT                                 | -                                                          | -                                                               | -                                                                            | USART3_CK                    |
|        | PF1  | TRACED7  | -                                                   | -                                       | -                                                | I2C2_SDA                                                   | SPI3_MOSI/<br>I2S3_SDO                                          | -                                                                            | -                            |
|        | PF2  | TRACED1  | -                                                   | -                                       | -                                                | I2C2_SCL                                                   | -                                                               | DFSDM1_<br>CKIN1                                                             | USART6_CK                    |
| Port F | PF3  | -        | -                                                   | -                                       | LPTIM2_IN2                                       | I2C5_SDA                                                   | SPI4_MISO/<br>I2S4_SDI                                          | SPI3_NSS/<br>I2S3_WS                                                         | -                            |
|        | PF4  | -        | -                                                   | -                                       | USART2_RX                                        | -                                                          | -                                                               | -                                                                            | -                            |
|        | PF5  | TRACED12 | -                                                   | -                                       | -                                                | DFSDM1_<br>CKIN0                                           | I2C1_SMBA                                                       | -                                                                            | -                            |
|        | PF6  | -        | TIM16_CH1                                           | -                                       | -                                                | -                                                          | SPI5_NSS                                                        | -                                                                            | UART7_RX                     |

Table 8. Alternate function AF0 to AF7 (continued)

|        |      | AF0        | AF1                                                 | AF2                                     | AF3                                              | AF4                                                        | AF5                                                             | AF6                                                                          | AF7                          |
|--------|------|------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| Po     | ort  | RTC/SYS    | LPTIM1/RTC/<br>SPI5/SYS/<br>TIM1/2/16/17/<br>USART2 | SAI1/2/SYS/<br>TIM1/3/4/5/12/<br>USART2 | DFSDM1/<br>LPTIM2/3/4/5/<br>SAI2/TIM8/<br>USART2 | DFSDM1/<br>I2C1/2/3/4/5/<br>LPTIM2/SAI1/2/<br>TIM15/USART1 | I2C1/3/SPI1/<br>I2S1/SPI2/I2S2/<br>SPI3/I2S3/SPI4/<br>I2S4/SPI5 | DCMIPP/DFSD<br>M1/I2C4/SAI1/2<br>/SPI1/I2S1/SPI2<br>/I2S2/SPI3/I2S3<br>/SPI5 | LCD/UART4/7/<br>USART1/2/3/6 |
|        | PF7  | -          | TIM17_CH1                                           | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | UART7_TX                     |
|        | PF8  | -          | TIM16_CH1N                                          | TIM4_CH3                                | TIM8_CH3                                         | -                                                          | -                                                               | SAI1_SCK_B                                                                   | USART6_TX                    |
|        | PF9  | -          | TIM17_CH1N                                          | TIM1_CH1                                | DFSDM1_CKIN<br>3                                 | -                                                          | -                                                               | SAI1_D4                                                                      | UART7_CTS                    |
|        | PF10 | -          | TIM16_BKIN                                          | SAI1_D3                                 | TIM8_BKIN                                        | -                                                          | SPI5_NSS                                                        | -                                                                            | USART6_RTS/<br>USART6_DE     |
| Port F | PF11 | -          | USART2_TX                                           | SAI1_D2                                 | DFSDM1_<br>CKIN3                                 | -                                                          | -                                                               | SAI1_FS_A                                                                    | -                            |
|        | PF12 | -          | -                                                   | -                                       | -                                                | -                                                          | SPI1_NSS/<br>I2S1_WS                                            | SAI1_SD_A                                                                    | -                            |
|        | PF13 | -          | TIM2_CH1/<br>TIM2_ETR                               | SAI1_MCLK_B                             | -                                                | -                                                          | -                                                               | DFSDM1_<br>DATIN3                                                            | USART2_TX                    |
|        | PF14 | JTCK/SWCLK | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PF15 | JTMS/SWDIO | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PG0  | -          | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PG1  | -          | LPTIM1_ETR                                          | TIM4_ETR                                | SAI2_FS_A                                        | I2C2_SMBA                                                  | SPI2_MISO/<br>I2S2_SDI                                          | SAI2_D2                                                                      | -                            |
|        | PG2  | -          | MCO2                                                | -                                       | TIM8_BKIN                                        | -                                                          | -                                                               | -                                                                            | -                            |
| Port G | PG3  | -          | -                                                   | -                                       | TIM8_BKIN2                                       | I2C2_SDA                                                   | -                                                               | SAI2_SD_B                                                                    | -                            |
|        | PG4  | TRACED1    | TIM1_BKIN2                                          | -                                       | -                                                | DFSDM1_<br>CKIN3                                           | -                                                               | -                                                                            | -                            |
|        | PG5  | -          | TIM17_CH1                                           | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PG6  | TRACED3    | TIM17_BKIN                                          | TIM5_CH4                                | SAI2_D1                                          | USART1_RX                                                  | -                                                               | SAI2_SD_A                                                                    | -                            |



Table 8. Alternate function AF0 to AF7 (continued)

|        |      | AF0     | AF1                                                 | AF2                                     | AF3                                              | AF4                                                        | AF5                                                             | AF6                                                                          | AF7                          |
|--------|------|---------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| Po     | ort  | RTC/SYS | LPTIM1/RTC/<br>SPI5/SYS/<br>TIM1/2/16/17/<br>USART2 | SAI1/2/SYS/<br>TIM1/3/4/5/12/<br>USART2 | DFSDM1/<br>LPTIM2/3/4/5/<br>SAI2/TIM8/<br>USART2 | DFSDM1/<br>I2C1/2/3/4/5/<br>LPTIM2/SAI1/2/<br>TIM15/USART1 | I2C1/3/SPI1/<br>I2S1/SPI2/I2S2/<br>SPI3/I2S3/SPI4/<br>I2S4/SPI5 | DCMIPP/DFSD<br>M1/I2C4/SAI1/2<br>/SPI1/I2S1/SPI2<br>/I2S2/SPI3/I2S3<br>/SPI5 | LCD/UART4/7/<br>USART1/2/3/6 |
|        | PG7  | TRACED8 | TIM1_ETR                                            | -                                       | -                                                | -                                                          | SPI3_MISO/<br>I2S3_SDI                                          | -                                                                            | -                            |
|        | PG8  | -       | TIM2_CH1/<br>TIM2_ETR                               | -                                       | TIM8_ETR                                         | -                                                          | SPI5_MISO                                                       | SAI1_MCLK_B                                                                  | LCD_B1                       |
|        | PG9  | DBTRGO  | -                                                   | -                                       | -                                                | I2C2_SDA                                                   | -                                                               | -                                                                            | USART6_RX                    |
|        | PG10 | -       | -                                                   | -                                       | -                                                | -                                                          | SPI5_SCK                                                        | SAI1_SD_B                                                                    | -                            |
| Port G | PG11 | -       | -                                                   | -                                       | -                                                | SAI2_D3                                                    | I2S2_MCK                                                        | -                                                                            | USART3_TX                    |
|        | PG12 | -       | LPTIM1_IN1                                          | -                                       | -                                                | SAI2_SCK_A                                                 | -                                                               | SAI2_CK2                                                                     | USART6_RTS/<br>USART6_DE     |
|        | PG13 | -       | LPTIM1_OUT                                          | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | USART6_CTS/<br>USART6_NSS    |
|        | PG14 | -       | LPTIM1_ETR                                          | -                                       | -                                                | -                                                          | -                                                               | SAI2_D1                                                                      | USART6_TX                    |
|        | PG15 | -       | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | USART6_CTS/<br>USART6_NSS    |
|        | PH0  | -       | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PH1  | -       | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PH2  | -       | LPTIM1_IN2                                          | -                                       | -                                                | -                                                          | -                                                               | DCMIPP_D9                                                                    | LCD_G1                       |
|        | PH3  | -       | -                                                   | -                                       | -                                                | I2C3_SCL                                                   | SPI5_MOSI                                                       | -                                                                            | -                            |
| Port H | PH4  | JTDI    | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PH5  | JTDO    | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PH6  | -       | -                                                   | TIM12_CH1                               | USART2_CK                                        | I2C5_SDA                                                   | SPI2_SCK/<br>I2S2_CK                                            | -                                                                            | -                            |
|        | PH7  | -       | -                                                   | SAI2_FS_B                               | -                                                | -                                                          | I2C3_SDA                                                        | SPI5_SCK                                                                     | -                            |

Table 8. Alternate function AF0 to AF7 (continued)

|        |      | AF0      | AF1                                                 | AF2                                     | AF3                                              | AF4                                                        | AF5                                                             | AF6                                                                          | AF7                          |
|--------|------|----------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| Po     | ort  | RTC/SYS  | LPTIM1/RTC/<br>SPI5/SYS/<br>TIM1/2/16/17/<br>USART2 | SAI1/2/SYS/<br>TIM1/3/4/5/12/<br>USART2 | DFSDM1/<br>LPTIM2/3/4/5/<br>SAI2/TIM8/<br>USART2 | DFSDM1/<br>I2C1/2/3/4/5/<br>LPTIM2/SAI1/2/<br>TIM15/USART1 | I2C1/3/SPI1/<br>I2S1/SPI2/I2S2/<br>SPI3/I2S3/SPI4/<br>I2S4/SPI5 | DCMIPP/DFSD<br>M1/I2C4/SAI1/2<br>/SPI1/I2S1/SPI2<br>/I2S2/SPI3/I2S3<br>/SPI5 | LCD/UART4/7/<br>USART1/2/3/6 |
|        | PH8  | TRACED9  | -                                                   | TIM5_ETR                                | USART2_RX                                        | I2C3_SDA                                                   | -                                                               | -                                                                            | -                            |
|        | PH9  | -        | TIM1_CH4                                            | TIM12_CH2                               | -                                                | -                                                          | SPI4_SCK/<br>I2S4_CK                                            | DCMIPP_D13                                                                   | -                            |
|        | PH10 | TRACED0  | -                                                   | TIM5_CH1                                | SAI2_D3                                          | DFSDM1_<br>DATIN2                                          | I2S3_MCK                                                        | SPI2_MOSI/<br>I2S2_SDO                                                       | USART3_CTS/<br>USART3_NSS    |
| Port H | PH11 | -        | SPI5_NSS                                            | TIM5_CH2                                | SAI2_SD_A                                        | -                                                          | SPI2_NSS/<br>I2S2_WS                                            | I2C4_SCL                                                                     | USART6_RX                    |
|        | PH12 | -        | USART2_TX                                           | TIM5_CH3                                | DFSDM1_<br>CKIN1                                 | I2C3_SCL                                                   | SPI5_MOSI                                                       | SAI1_SCK_A                                                                   | -                            |
|        | PH13 | TRACED15 | ı                                                   | USART2_CK                               | TIM8_CH1N                                        | I2C5_SCL                                                   | -                                                               | SPI3_SCK/<br>I2S3_CK                                                         | -                            |
|        | PH14 | -        | ı                                                   | •                                       | DFSDM1_<br>DATIN2                                | I2C3_SDA                                                   | -                                                               | DCMIPP_D8                                                                    | -                            |
|        | PI0  | -        | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PI1  | -        | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PI2  | -        | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
| Port I | PI3  | -        | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
| 1 0111 | PI4  | воото    | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PI5  | BOOT1    | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PI6  | BOOT2    | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |
|        | PI7  | -        | -                                                   | -                                       | -                                                | -                                                          | -                                                               | -                                                                            | -                            |

Table 9. Alternate function AF8 to AF15

|        |      | AF8                                                         | AF9                                                          | AF10                                                    | AF11                                                                    | AF12                           | AF13                                  | AF14       | AF15    |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|---------------------------------------|------------|---------|
| Po     | ort  | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2 | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5                             | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
|        | PA0  | UART5_TX                                                    | -                                                            | -                                                       | ETH1_MII_CRS                                                            | ETH2_MII_CRS                   | -                                     | -          | -       |
|        | PA1  | -                                                           |                                                              | -                                                       | ETH1_MII_RX_<br>CLK/<br>ETH1_RGMII_<br>RX_CLK/<br>ETH1_RMII_<br>REF_CLK | -                              | -                                     | ı          | -       |
|        | PA2  | -                                                           | -                                                            | -                                                       | ETH1_MDIO                                                               | -                              | -                                     | -          | -       |
|        | PA3  | -                                                           | -                                                            | -                                                       | ETH1_MII_COL                                                            | ETH2_MII_COL                   | -                                     | -          | -       |
|        | PA4  | -                                                           | -                                                            | ETH1_PPS_<br>OUT                                        | ETH2_PPS_<br>OUT                                                        | SAI1_SCK_A                     | -                                     | -          | -       |
|        | PA5  | -                                                           | -                                                            | ETH1_PPS_<br>OUT                                        | ETH2_PPS_<br>OUT                                                        | -                              | -                                     | -          | -       |
| Port A | PA6  | UART4_RTS/<br>UART4_DE                                      | TIM13_CH1                                                    | -                                                       | -                                                                       | SAI2_SCK_A                     | -                                     | -          | -       |
|        | PA7  | -                                                           | TIM14_CH1                                                    | -                                                       | ETH1_MII_RX_<br>DV/<br>ETH1_RGMII_<br>RX_CTL/<br>ETH1_RMII_<br>CRS_DV   | SAI2_SD_A                      | -                                     | -          | -       |
|        | PA8  | SPI2_MOSI/<br>I2S2_SDO                                      | -                                                            | OTG_HS_SOF                                              | ETH2_MII_<br>RXD3/<br>ETH2_RGMII_<br>RXD3                               | FMC_A21                        | -                                     | LCD_B7     | -       |
|        | PA9  | UART4_TX                                                    | -                                                            | FMC_NWAIT                                               | -                                                                       | -                              | DCMIPP_D0                             | LCD_R6     | -       |
|        | PA10 | -                                                           | -                                                            | -                                                       | -                                                                       | -                              | -                                     | -          | -       |

|        |      | AF8                                                         | AF9                                                          | AF10                                                             | AF11                                                                  | AF12                           | AF13                                  | AF14       | AF15    |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|---------------------------------------|------------|---------|
| Po     | rt   | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2          | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5                           | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
|        | PA11 | -                                                           | -                                                            | ETH2_MII_<br>RXD1/<br>ETH2_RGMII_<br>RXD1/<br>ETH2_RMII_<br>RXD1 | ETH1_CLK                                                              | -                              | ETH2_CLK                              | -          | -       |
| Port A | PA12 | -                                                           | -                                                            | -                                                                | ETH2_MII_RX_<br>DV/<br>ETH2_RGMII_<br>RX_CTL/<br>ETH2_RMII_<br>CRS_DV | FMC_A7                         | DCMIPP_D1                             | LCD_G6     | -       |
|        | PA13 | UART4_TX                                                    | -                                                            | -                                                                | -                                                                     | -                              | -                                     | -          | -       |
|        | PA14 | -                                                           | -                                                            | OTG_HS_SOF                                                       | -                                                                     | -                              | -                                     | -          | -       |
|        | PA15 | UART4_RX                                                    | LCD_R0                                                       | -                                                                | LCD_G7                                                                | FMC_A9                         | DCMIPP_D14                            | DCMIPP_D5  | HDP5    |
|        | PB0  | UART4_CTS                                                   | -                                                            | SAI2_D2                                                          | ETH1_MII_<br>RXD2/<br>ETH1_RGMII_<br>RXD2                             | -                              | -                                     | -          | 1       |
| Port B | PB1  | -                                                           | -                                                            | -                                                                | ETH1_MII_<br>RXD3/<br>ETH1_RGMII_<br>RXD3                             | -                              | -                                     | -          | -       |
|        | PB2  | UART4_RX                                                    | QUADSPI_<br>BK1_NCS                                          | -                                                                | ETH2_MDIO                                                             | FMC_A6                         | -                                     | LCD_B4     | -       |
|        | PB3  | SDMMC1_<br>D123DIR                                          | -                                                            | SDMMC2_D2                                                        | LCD_R6                                                                | SAI2_MCLK_A                    | UART7_RX                              | LCD_B2     | -       |

Table 9. Alternate function AF8 to AF15 (continued)

Table 9. Alternate function AF8 to AF15 (continued)

|        |      | AF8                                                         | AF9                                                          | AF10                                                    | AF11                                                                 | AF12                           | AF13                                  | AF14              | AF15    |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|---------------------------------------|-------------------|---------|
| Po     | ort  | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2 | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5                          | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD        | HDP/SYS |
|        | PB4  | -                                                           | -                                                            | SDMMC2_D3                                               | LCD_G1                                                               | SAI2_SCK_A                     | LCD_B6                                | LCD_R0            | -       |
|        | PB5  | SDMMC1_<br>CKIN                                             | FDCAN2_RX                                                    | -                                                       | UART5_RX                                                             | -                              | LCD_B6                                | LCD_DE            | -       |
|        | PB6  | -                                                           | QUADSPI_<br>BK1_NCS                                          | -                                                       | ETH2_MDIO                                                            | FMC_NE3                        | DCMIPP_D5                             | LCD_B7            | HDP6    |
|        | PB7  | -                                                           | -                                                            | FMC_NCE2                                                | -                                                                    | FMC_NL                         | DCMIPP_D13                            | DCMIPP_PIXC<br>LK | -       |
|        | PB8  | UART4_RX                                                    | -                                                            | SAI1_D1                                                 | -                                                                    | FMC_D13/FMC<br>_AD13           | DCMIPP_D6                             | -                 | -       |
| Port B | PB9  | -                                                           | FDCAN1_TX                                                    | SDMMC2_D5                                               | UART5_TX                                                             | SDMMC1_<br>CDIR                | LCD_DE                                | LCD_B1            | -       |
|        | PB10 | -                                                           | -                                                            | -                                                       | -                                                                    | -                              | -                                     | LCD_R3            | -       |
|        | PB11 | -                                                           | -                                                            | -                                                       | ETH1_MII_TX_<br>EN/<br>ETH1_RGMII_<br>TX_CTL/<br>ETH1_RMII_TX<br>_EN | ļ                              | ·                                     | ı                 | ,       |
|        | PB12 | USART3_RX                                                   | -                                                            | -                                                       | UART5_RX                                                             | SDMMC1_D5                      | LCD_R3                                | LCD_VSYNC         | -       |
|        | PB13 | SDMMC1_<br>D123DIR                                          | FDCAN2_TX                                                    | -                                                       | UART5_TX                                                             | -                              | LCD_CLK                               | -                 | -       |
|        | PB14 | -                                                           | -                                                            | SDMMC2_D0                                               | SDMMC1_D4                                                            | -                              | LCD_R0                                | LCD_G5            | -       |
| Port B | PB15 | SDMMC1_<br>CKIN                                             | -                                                            | SDMMC2_D1                                               | -                                                                    | SAI2_FS_A                      | LCD_CLK                               | LCD_B0            | -       |

| SQ       |
|----------|
| <u>S</u> |
| ၼ        |
| 37       |
| 4        |

| S  |
|----|
| Η. |
| Ξ  |
| 32 |
| Š  |
| Ū  |
| 긃  |
| ξų |
|    |

|        |     |                                                             | Tal                                                          | ble 9. Alternate                                        | function AF8 t                                                   | o AF15 (contin                 | ued)                                  |            |         |
|--------|-----|-------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------|---------------------------------------|------------|---------|
|        |     | AF8                                                         | AF9                                                          | AF10                                                    | AF11                                                             | AF12                           | AF13                                  | AF14       | AF15    |
| Po     | ort | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2 | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5                      | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
|        | PC0 | -                                                           | -                                                            | -                                                       | -                                                                | -                              | -                                     | -          | -       |
|        | PC1 | -                                                           | -                                                            | ETH1_MII_RX_<br>DV/<br>ETH1_RMII_<br>CRS_DV             | ETH1_RGMII_<br>GTX_CLK                                           | -                              | -                                     | -          | -       |
|        | PC2 | -                                                           | -                                                            | SAI2_CK1                                                | ETH1_MII_<br>TXD2/<br>ETH1_RGMII_<br>TXD2                        | -                              | -                                     | -          | -       |
|        | PC3 | UART5_CTS                                                   | -                                                            | SAI1_MCLK_A                                             | ETH1_MII_TX_<br>CLK                                              | ETH2_MII_TX_<br>CLK            | -                                     | -          | -       |
| Port C | PC4 | UART5_RTS/<br>UART5_DE                                      | SPDIFRX_IN2                                                  | -                                                       | ETH1_MII_<br>RXD0/<br>ETH1_RGMII_<br>RXD0/<br>ETH1_RMII_<br>RXD0 | SAI2_D3                        | -                                     | -          | -       |
|        | PC5 | -                                                           | SPDIFRX_IN3                                                  | -                                                       | ETH1_MII_<br>RXD1/<br>ETH1_RGMII_<br>RXD1/<br>ETH1_RMII_<br>RXD1 | -                              | -                                     | -          | -       |
|        | PC6 | SDMMC1_D6                                                   | SDMMC2_<br>D0DIR                                             | SDMMC2_D6                                               | LCD_B1                                                           | FMC_A19                        | LCD_R6                                | LCD_HSYNC  | HDP2    |

Table 9. Alternate function AF8 to AF15 (continued)

|          |      | AF8                                                         | AF9                                                          | AF10                                                    | AF11                                        | AF12                           | AF13                                  | AF14       | AF15    |
|----------|------|-------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|--------------------------------|---------------------------------------|------------|---------|
| Po       | ort  | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2 | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5 | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
|          | PC7  | USART3_CTS                                                  | SDMMC2_<br>CDIR                                              | SDMMC2_D7                                               | LCD_R1                                      | SDMMC1_D7                      | -                                     | LCD_G6     | HDP4    |
|          | PC8  | USART3_CTS                                                  | -                                                            | SAI2_FS_B                                               | UART5_RTS/<br>UART5_DE                      | SDMMC1_D0                      | -                                     | LCD_G7     | -       |
|          | PC9  | UART5_CTS                                                   | FDCAN1_TX                                                    | -                                                       | -                                           | SDMMC1_D1                      | -                                     | LCD_B4     | -       |
| Port C   | PC10 | -                                                           | -                                                            | SAI2_MCLK_B                                             | -                                           | SDMMC1_D2                      | -                                     | -          | -       |
| Port C _ | PC11 | UART5_RX                                                    | -                                                            | SAI2_SCK_B                                              | -                                           | SDMMC1_D3                      | -                                     | -          | -       |
|          | PC12 | UART7_TX                                                    | -                                                            | SAI2_SD_B                                               | -                                           | SDMMC1_CK                      | -                                     | LCD_DE     | -       |
|          | PC13 | -                                                           | -                                                            | -                                                       | -                                           | -                              | -                                     | -          | -       |
|          | PC14 | -                                                           | -                                                            | -                                                       | -                                           | -                              | -                                     | -          | -       |
|          | PC15 | -                                                           | -                                                            | -                                                       | -                                           | -                              | -                                     | -          | -       |
| Port D   | PD0  | -                                                           | FDCAN1_RX                                                    | -                                                       | -                                           | FMC_D2/<br>FMC_AD2             | DCMIPP_D1                             | -          | -       |
| TOILD    | PD1  | UART4_TX                                                    | QUADSPI_BK1<br>_NCS                                          | -                                                       | LCD_B6                                      | FMC_D3/<br>FMC_AD3             | DCMIPP_D13                            | LCD_G2     | -       |

|        |      |                                                             | Tal                                                          | ble 9. Alternate                                                        | function AF8 t                              | o AF15 (contin                 | ued)                                  |            |         |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|--------------------------------|---------------------------------------|------------|---------|
|        |      | AF8                                                         | AF9                                                          | AF10                                                                    | AF11                                        | AF12                           | AF13                                  | AF14       | AF15    |
| Po     | ort  | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2                 | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5 | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
|        | PD2  | -                                                           | -                                                            | -                                                                       | -                                           | SDMMC1_CMD                     | -                                     | -          | -       |
|        | PD3  | -                                                           | -                                                            | -                                                                       | -                                           | FMC_CLK                        | DCMIPP_D5                             | -          | -       |
|        | PD4  | -                                                           | QUADSPI_CLK                                                  | -                                                                       | LCD_R1                                      | FMC_NOE                        | LCD_R4                                | LCD_R6     | -       |
|        | PD5  | -                                                           | QUADSPI_BK1<br>_IO0                                          | -                                                                       | -                                           | FMC_NWE                        | LCD_B0                                | LCD_G4     | -       |
|        | PD6  | UART4_TX                                                    | -                                                            | -                                                                       | -                                           | -                              | DCMIPP_D4                             | DCMIPP_D0  | -       |
| Port D | PD7  | -                                                           | SPDIFRX_IN0                                                  | ETH1_MII_RX_<br>CLK/<br>ETH1_RGMII_<br>RX_CLK/<br>ETH1_RMII_<br>REF_CLK | QUADSPI_BK1<br>_IO2                         | FMC_NE1                        | •                                     | -          | -       |
|        | PD8  | UART4_RX                                                    | -                                                            | -                                                                       | -                                           | -                              | DCMIPP_D9                             | DCMIPP_D3  | -       |
|        | PD9  | -                                                           | -                                                            | SDMMC2_<br>CDIR                                                         | LCD_B5                                      | FMC_D14/<br>FMC_AD14           | LCD_CLK                               | LCD_B0     | -       |
|        | PD10 | -                                                           | LCD_G5                                                       | -                                                                       | LCD_B7                                      | FMC_D15/<br>FMC_AD15           | DCMIPP_VSYN<br>C                      | LCD_B2     | -       |
|        | PD11 | SPDIFRX_IN0                                                 | QUADSPI_BK1<br>_IO2                                          | ETH2_RGMII_<br>CLK125                                                   | LCD_R7                                      | FMC_CLE/FMC<br>_A16            | UART7_RX                              | DCMIPP_D4  | -       |
|        | PD12 | -                                                           | -                                                            | -                                                                       | -                                           | FMC_ALE/FMC<br>_A17            | DCMIPP_D6                             | -          | -       |
|        | PD13 | -                                                           | QUADSPI_BK1<br>_IO3                                          | -                                                                       | QUADSPI_BK2<br>_IO2                         | FMC_A18                        | -                                     | LCD_G4     | -       |

Table 9. Alternate function AF8 to AF15 (continued)

|        |      | AF8                                                         | AF9                                                          | AF10                                                             | AF11                                        | AF12                           | AF13                                  | AF14       | AF15    |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|--------------------------------|---------------------------------------|------------|---------|
| Po     | ort  | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2          | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5 | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
| Port D | PD14 | UART8_CTS                                                   | -                                                            | -                                                                | -                                           | FMC_D0/FMC_<br>AD0             | DCMIPP_D8                             | LCD_R4     | -       |
| Poil D | PD15 | -                                                           | QUADSPI_BK1<br>_IO3                                          | -                                                                | -                                           | FMC_D1/FMC_<br>AD1             | -                                     | LCD_B5     | -       |
|        | PE0  | UART8_RX                                                    | FDCAN2_RX                                                    | -                                                                | LCD_B1                                      | FMC_A11                        | DCMIPP_D1                             | LCD_B5     | -       |
|        | PE1  | UART8_TX                                                    | LCD_HSYNC                                                    | -                                                                | LCD_R4                                      | FMC_NBL1                       | DCMIPP_D3                             | DCMIPP_D12 | -       |
|        | PE2  | -                                                           | SPDIFRX_IN1                                                  | ETH2_MII_<br>RXD1/<br>ETH2_RGMII_<br>RXD1/<br>ETH2_RMII_<br>RXD1 | -                                           | FMC_A23                        | -                                     | LCD_R1     | -       |
|        | PE3  | USART3_RTS/<br>USART3_DE                                    | FDCAN1_RX                                                    | SDMMC2_CK                                                        | -                                           | -                              | LCD_R4                                | -          | -       |
| Port E | PE4  | UART8_TX                                                    | QUADSPI_BK2<br>_NCS                                          | FMC_NCE2                                                         | -                                           | FMC_A25                        | DCMIPP_D3                             | LCD_G7     | -       |
|        | PE5  | UART4_RX                                                    | -                                                            | ETH1_MII_<br>TXD3/<br>ETH1_RGMII_<br>TXD3                        | -                                           | FMC_NE1                        | -                                     | -          | -       |
|        | PE6  | UART4_RTS/<br>UART4_DE                                      | -                                                            | -                                                                | ETH2_MII_<br>TXD3/<br>ETH2_RGMII_<br>TXD3   | FMC_A22                        | DCMIPP_D7                             | LCD_G3     | -       |
|        | PE7  | UART5_TX                                                    | -                                                            | -                                                                | -                                           | FMC_D4/<br>FMC_AD4             | LCD_B3                                | LCD_R5     | -       |

Table 9. Alternate function AF8 to AF15 (continued)

|        |      | AF8                                                         | AF9                                                          | AF10                                                    | AF11                                        | AF12                           | AF13                                  | AF14       | AF15    |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|--------------------------------|---------------------------------------|------------|---------|
| Po     | ort  | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2 | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5 | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
|        | PE8  | -                                                           | -                                                            | -                                                       | -                                           | FMC_D5/<br>FMC_AD5             | -                                     | -          | -       |
|        | PE9  | -                                                           | QUADSPI_BK1<br>_IO1                                          | -                                                       | LCD_HSYNC                                   | FMC_D6/<br>FMC_AD6             | DCMIPP_D7                             | LCD_R7     | HDP3    |
|        | PE10 | -                                                           | FDCAN1_TX                                                    | -                                                       | -                                           | FMC_D7/<br>FMC_AD7             | -                                     | -          | -       |
| Port E | PE11 | -                                                           | LCD_R0                                                       | ETH2_MII_TX_<br>ER                                      | ETH1_MII_TX_<br>ER                          | FMC_D8/<br>FMC_AD8             | DCMIPP_D10                            | LCD_R5     | -       |
| POILE  | PE12 | UART8_RTS/<br>UART8_DE                                      | LCD_VSYNC                                                    | -                                                       | LCD_G4                                      | FMC_D9/<br>FMC_AD9             | DCMIPP_D11                            | LCD_G6     | HDP4    |
|        | PE13 | -                                                           | -                                                            | -                                                       | LCD_B1                                      | FMC_D10/<br>FMC_AD10           | DCMIPP_D4                             | LCD_R6     | -       |
|        | PE14 | UART8_RTS/<br>UART8_DE                                      | QUADSPI_BK1<br>_NCS                                          | QUADSPI_BK2<br>_IO2                                     | -                                           | FMC_D11/<br>FMC_AD11           | DCMIPP_D7                             | LCD_G0     | -       |
|        | PE15 | -                                                           | -                                                            | -                                                       | -                                           | FMC_D12/<br>FMC_AD12           | DCMIPP_D10                            | LCD_B7     | HDP7    |
|        | PF0  | -                                                           | -                                                            | SDMMC2_D4                                               | -                                           | FMC_A0                         | LCD_R6                                | LCD_G0     | -       |
|        | PF1  | -                                                           | -                                                            | -                                                       | -                                           | FMC_A1                         | LCD_B7                                | LCD_G1     | HDP7    |
| Port F | PF2  | -                                                           | SDMMC2_<br>D0DIR                                             | -                                                       | SDMMC1_<br>D0DIR                            | FMC_A2                         | LCD_G4                                | LCD_B3     | -       |
|        | PF3  | -                                                           | -                                                            | -                                                       | -                                           | FMC_A3                         | -                                     | LCD_G3     | -       |

Table 9. Alternate function AF8 to AF15 (continued)

|        |      | AF8                                                         | AF9                                                          | AF10                                                    | AF11                                                                 | AF12                           | AF13                                  | AF14       | AF15    |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|---------------------------------------|------------|---------|
| Po     | ort  | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2 | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5                          | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
|        | PF4  | -                                                           | -                                                            | -                                                       | ETH2_MII_<br>RXD0/<br>ETH2_RGMII_<br>RXD0/<br>ETH2_RMII_<br>RXD0     | FMC_A4                         | DCMIPP_D4                             | LCD_B6     | ı       |
|        | PF5  | -                                                           | LCD_G0                                                       | -                                                       | -                                                                    | FMC_A5                         | DCMIPP_D11                            | LCD_R5     | -       |
|        | PF6  | -                                                           | QUADSPI_BK1<br>_IO2                                          | -                                                       | ETH2_MII_TX_<br>EN/<br>ETH2_RGMII_<br>TX_CTL/<br>ETH2_RMII_TX<br>_EN | -                              | LCD_R7                                | LCD_G4     | -       |
| Port F | PF7  | UART4_CTS                                                   | -                                                            | ETH1_RGMII_<br>CLK125                                   | ETH2_MII_<br>TXD0/<br>ETH2_RGMII_<br>TXD0/<br>ETH2_RMII_<br>TXD0     | FMC_A18                        | -                                     | LCD_G2     | -       |
|        | PF8  | -                                                           | TIM13_CH1                                                    | QUADSPI_BK1<br>_IO0                                     | -                                                                    | -                              | DCMIPP_D15                            | LCD_B3     | -       |
|        | PF9  | UART8_RX                                                    | TIM14_CH1                                                    | QUADSPI_BK1<br>_IO1                                     | QUADSPI_BK2<br>_IO3                                                  | FMC_A9                         | -                                     | LCD_B6     | -       |
|        | PF10 | UART7_RTS/<br>UART7_DE                                      | QUADSPI_CLK                                                  | -                                                       | -                                                                    | -                              | DCMIPP_HSYN<br>C                      | LCD_B5     | -       |
|        | PF11 | -                                                           | -                                                            | -                                                       | -                                                                    | ETH2_MII_RX_<br>ER             | -                                     | -          | -       |

| Ta | ble 9. Alternate | function AF8 to | o AF15 | (contin | ued) |
|----|------------------|-----------------|--------|---------|------|
|    | A E 4 O          | A E 4 4         | ٨٥     | .10     |      |

|        |      | AF8                                                         | AF9                                                          | AF10                                                    | AF11                                        | AF12                           | AF13                                  | AF14       | AF15    |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|--------------------------------|---------------------------------------|------------|---------|
| Po     | ort  | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2 | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5 | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
|        | PF12 | UART4_TX                                                    | -                                                            | ETH1_MII_TX_<br>ER                                      | ETH1_RGMII_<br>CLK125                       | -                              | -                                     | -          | -       |
| Port F | PF13 | UART5_RX                                                    | -                                                            | -                                                       | -                                           | -                              | -                                     | -          | -       |
|        | PF14 | -                                                           | -                                                            | -                                                       | -                                           | -                              | -                                     | -          | -       |
|        | PF15 | -                                                           | -                                                            | -                                                       | -                                           | -                              | -                                     | -          | -       |
|        | PG0  | -                                                           | FDCAN2_TX                                                    | -                                                       | -                                           | FMC_A10                        | DCMIPP_PIXC<br>LK                     | LCD_G5     | -       |
|        | PG1  | -                                                           | FDCAN2_TX                                                    | ETH2_MII_TXD<br>2/ETH2_RGMII<br>_TXD2                   | -                                           | FMC_NBL0                       | -                                     | LCD_G7     | -       |
|        | PG2  | -                                                           | -                                                            | SAI2_MCLK_B                                             | ETH1_MDC                                    | -                              | DCMIPP_D1                             | -          | -       |
|        | PG3  | -                                                           | FDCAN2_RX                                                    | ETH2_RGMII_<br>GTX_CLK                                  | ETH1_MDIO                                   | FMC_A13                        | DCMIPP_D15                            | DCMIPP_D12 | -       |
| Port G | PG4  | USART3_RX                                                   | -                                                            | SDMMC2_<br>D123DIR                                      | LCD_VSYNC                                   | FMC_A14                        | DCMIPP_D8                             | DCMIPP_D13 | HDP1    |
|        | PG5  | -                                                           | -                                                            | ETH2_MDC                                                | LCD_G4                                      | FMC_A15                        | DCMIPP_VSYN<br>C                      | DCMIPP_D3  | -       |
|        | PG6  | -                                                           | -                                                            | SDMMC2_CMD                                              | LCD_G0                                      | -                              | LCD_DE                                | LCD_R7     | HDP3    |
|        | PG7  | UART7_CTS                                                   | -                                                            | SDMMC2_<br>CKIN                                         | LCD_R1                                      | -                              | LCD_R5                                | LCD_R2     | -       |
|        | PG8  | USART3_RTS/<br>USART3_DE                                    | SPDIFRX_IN2                                                  | QUADSPI_BK2<br>_IO2                                     | QUADSPI_BK1<br>_IO3                         | FMC_NE2                        | ETH2_CLK                              | DCMIPP_D6  | -       |

|--|

Table 9. Alternate function AF8 to AF15 (continued)

|        |      | AF8                                                         | AF9                                                          | AF10                                                             | AF11                                                             | AF12                                                                  | AF13                                  | AF14       | AF15    |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|------------|---------|
| Po     | ort  | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2          | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5                      | ETH2/FMC/<br>SAI1/2/<br>SDMMC1                                        | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
|        | PG9  | SPDIFRX_IN3                                                 | FDCAN1_RX                                                    | FMC_NE2                                                          | -                                                                | FMC_NCE                                                               | DCMIPP_VSYN<br>C                      | -          | -       |
|        | PG10 | UART8_CTS                                                   | FDCAN1_TX                                                    | QUADSPI_BK2<br>_IO1                                              | -                                                                | FMC_NE3                                                               | DCMIPP_D2                             | -          | -       |
|        | PG11 | UART4_TX                                                    | -                                                            | ETH2_MII_<br>TXD1/<br>ETH2_RGMII_<br>TXD1/<br>ETH2_RMII_<br>TXD1 | -                                                                | FMC_A24                                                               | DCMIPP_D14                            | LCD_B2     | -       |
| Port G | PG12 | USART3_CTS                                                  | -                                                            | ETH2_PHY_<br>INTN                                                | ETH1_PHY_<br>INTN                                                | ETH2_MII_RX_<br>DV/<br>ETH2_RGMII_<br>RX_CTL/<br>ETH2_RMII_<br>CRS_DV | -                                     | -          | -       |
|        | PG13 | -                                                           | -                                                            | -                                                                | ETH1_MII_<br>TXD0/<br>ETH1_RGMII_<br>TXD0/<br>ETH1_RMII_<br>TXD0 | -                                                                     | -                                     | -          | -       |
|        | PG14 | -                                                           | -                                                            | SAI2_SD_A                                                        | ETH1_MII_<br>TXD1/<br>ETH1_RGMII_<br>TXD1/<br>ETH1_RMII_<br>TXD1 | -                                                                     | -                                     | -          | -       |

Table 9. Alternate function AF8 to AF15 (continued)

|        |      | AF8                                                         | AF9                                                          | AF10                                                    | AF11                                        | AF12                                      | AF13                                  | AF14       | AF15    |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------|------------|---------|
| Port   |      | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2 | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5 | ETH2/FMC/<br>SAI1/2/<br>SDMMC1            | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD | HDP/SYS |
| Port G | PG15 | UART7_CTS                                                   | QUADSPI_BK1<br>_IO1                                          | ETH2_PHY_<br>INTN                                       | LCD_B4                                      | -                                         | DCMIPP_D10                            | LCD_B3     | -       |
|        | PH0  | -                                                           | -                                                            | -                                                       | -                                           | -                                         | -                                     | -          | -       |
|        | PH1  | -                                                           | -                                                            | -                                                       | -                                           | -                                         | -                                     | -          | -       |
|        | PH2  | UART7_TX                                                    | QUADSPI_BK2<br>_IO0                                          | ETH2_MII_CRS                                            | ETH1_MII_CRS                                | FMC_NE4                                   | ETH2_RGMII_<br>CLK125                 | LCD_B0     | -       |
|        | PH3  | -                                                           | QUADSPI_BK2<br>_IO1                                          | ETH1_MII_COL                                            | LCD_R5                                      | ETH2_MII_COL                              | QUADSPI_BK1<br>_IO0                   | LCD_B4     | -       |
|        | PH4  | -                                                           | -                                                            | -                                                       | -                                           | -                                         | -                                     | -          | -       |
|        | PH5  | -                                                           | -                                                            | -                                                       | -                                           | -                                         | -                                     | -          | -       |
| Port H | PH6  | -                                                           | QUADSPI_BK1<br>_IO2                                          | ETH1_PHY_IN<br>TN                                       | ETH1_MII_RX_<br>ER                          | ETH2_MII_<br>RXD2/<br>ETH2_RGMII_<br>RXD2 | QUADSPI_BK1<br>_NCS                   | -          | -       |
|        | PH7  | -                                                           | QUADSPI_BK2<br>_IO3                                          | ETH2_MII_TX_<br>CLK                                     | ETH1_MII_TX_<br>CLK                         | -                                         | QUADSPI_BK1<br>_IO3                   | LCD_B2     | -       |
|        | PH8  | -                                                           | -                                                            | -                                                       | LCD_R6                                      | FMC_A8                                    | DCMIPP_HSYN<br>C                      | LCD_R2     | HDP2    |
|        | PH9  | -                                                           | LCD_B5                                                       | -                                                       | LCD_DE                                      | FMC_A20                                   | DCMIPP_D9                             | DCMIPP_D8  | -       |
|        | PH10 | SDMMC1_D4                                                   | -                                                            | -                                                       | -                                           | -                                         | LCD_HSYNC                             | LCD_R2     | HDP0    |

Table 9. Alternate function AF8 to AF15 (continued)

|        |      | AF8                                                         | AF9                                                          | AF10                                                    | AF11                                                                    | AF12                           | AF13                                  | AF14              | AF15    |
|--------|------|-------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|---------------------------------------|-------------------|---------|
| Port   |      | SDMMC1/<br>SPDIFRX/SPI2/<br>I2S2/<br>UART4/5/7/8/<br>USART3 | FDCAN1/2/LCD<br>/QUADSPI/<br>SDMMC2/<br>SPDIFRX/<br>TIM13/14 | ETH1/2/FMC/<br>OTG_HS/<br>QUADSPI/<br>SAI1/2/<br>SDMMC2 | ETH1/2/LCD/<br>QUADSPI/<br>SDMMC1/<br>UART5                             | ETH2/FMC/<br>SAI1/2/<br>SDMMC1 | DCMIPP/ETH2/<br>LCD/QUADSPI/<br>UART7 | DCMIPP/LCD        | HDP/SYS |
| Port H | PH11 | -                                                           | QUADSPI_BK2<br>_IO0                                          | -                                                       | ETH2_MII_RX_<br>CLK/<br>ETH2_RGMII_<br>RX_CLK/<br>ETH2_RMII_<br>REF_CLK | FMC_A12                        | -                                     | LCD_G6            | -       |
| Port H | PH12 | -                                                           | QUADSPI_BK2<br>_IO2                                          | SAI1_CK2                                                | ETH1_MII_CRS                                                            | FMC_A6                         | DCMIPP_D3                             | -                 | -       |
|        | PH13 | UART4_TX                                                    | -                                                            | -                                                       | -                                                                       | -                              | LCD_G3                                | LCD_G2            | -       |
|        | PH14 | UART4_RX                                                    | -                                                            | -                                                       | LCD_B4                                                                  | -                              | DCMIPP_D2                             | DCMIPP_PIXC<br>LK | -       |
|        | PI0  | SPDIFRX_IN0                                                 | -                                                            | -                                                       | -                                                                       | -                              | -                                     | -                 | -       |
|        | PI1  | SPDIFRX_IN1                                                 | -                                                            | -                                                       | -                                                                       | -                              | -                                     | -                 | -       |
|        | PI2  | SPDIFRX_IN2                                                 | -                                                            | -                                                       | -                                                                       | -                              | -                                     | -                 | -       |
| Port I | PI3  | SPDIFRX_IN3                                                 | -                                                            | -                                                       | ETH1_MII_RX_<br>ER                                                      | -                              | -                                     | -                 | -       |
|        | PI4  | -                                                           | -                                                            | -                                                       | -                                                                       | -                              | -                                     | -                 | -       |
|        | PI5  | -                                                           | -                                                            | -                                                       | -                                                                       | -                              | -                                     | -                 | -       |
|        | PI6  | -                                                           | -                                                            | -                                                       | -                                                                       | -                              | -                                     | -                 | -       |
|        | PI7  | -                                                           | -                                                            | -                                                       | -                                                                       | -                              | -                                     | -                 | -       |

Memory mapping STM32MP135A/D

# 5 Memory mapping

Refer to the product line reference manual for details on the memory mapping as well as the boundary addresses for all peripherals.

# 6 Electrical characteristics

#### 6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V<sub>SS</sub>.

#### 6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of junction temperature, supply voltage and frequencies by tests in production on 100% of the devices with an junction temperature at  $T_J = 25\,^{\circ}\text{C}$  and  $T_J = T_{Jmax}$  (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3 $\sigma$ ).

# 6.1.2 Typical values

Unless otherwise specified, typical data are based on  $T_J$  = 25 °C,  $V_{DD}$  = 3.3 V,  $V_{DDCORE}$  = 1.25 V,  $V_{DDCPU}$  = 1.25 V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$ ).

### 6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

# 6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 8.

#### 6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 9*.



Electrical characteristics STM32MP135A/D

### 6.1.6 Power supply scheme

V<sub>DDSD1</sub> V<sub>DDSD2</sub> 3V3 USB VDDSD2 V<sub>DD3V3</sub> USBHS Detector Detector V<sub>DDA1V1\_REG</sub> □ VDDSD1 Regulator V<sub>DD</sub> Detector 1V8 Regulator V<sub>DDA1V8\_REG</sub> □ **PWR** reg18en reg18rdy usb33den usb33rdy vddsd1den vddsd1rdy vddsd2den vddsd2rdy reg11en reg11rdy **RCC** rcc\_pwr\_sec BYPASS\_REG1V8 \_\_-AHB ◀ Register interface nrst\_por vddcore ok PDR ON \_\_vcore\_rdy vddcpu ok vcpu rdy NRST \_\_por\_vsw POR/PDR nrst\_bor **BOR** hclk4  $V_{DDCPU}$ Power pwrwake\_mpu V<sub>DDCORE</sub> **VBAT** managment thresholds V<sub>DD</sub> Backup pwrwake\_sys domain **TEMP** mpu cstandby thresholds **VBAT** MPU charging (gic) PWR\_ON □< **PWR** PWR\_CPU\_ON □◀ control PWR LP □◀ sys\_wakeup sys\_ds\_exit V<sub>SS</sub> □mpu\_ds\_exit c1\_wakeup V<sub>DDA</sub> □→ WAKEUP mpu\_int\_wkup V<sub>SSA</sub> □→ WKUP[6:1] \_\_\_ async\_wkup[6:1] wakeup event EXTI wakeup event pvdo PVD\_IN □-**PVD & AVD** wakeup event avdo

Figure 10. Power supply scheme

**Caution:** Each power supply pair (V<sub>DD</sub>/V<sub>SS</sub>, V<sub>DDSDx</sub>/V<sub>SS</sub>, V<sub>DDCORE</sub>/V<sub>SS</sub>, V<sub>DDCPU</sub>/V<sub>SS</sub>, V<sub>DDA</sub>/V<sub>SSA</sub> ...) must be decoupled with filtering ceramic capacitors. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure

good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

# 6.1.7 Current consumption measurement

IDD CORE
VDDCORE

IDD CPU
VDDCPU

IDD VBAT
VBAT
VDD\_ANA
VDD\_PLL

MSv66294V2

Figure 11. Current consumption measurement scheme

# 6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 10: Voltage characteristics*, *Table 11: Current characteristics*, and *Table 12: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand.

Table 10. Voltage characteristics (1)

| Symbols                                   | Ratings                                                                                                                                                                                                                              | Min  | Max  | Unit |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|
| V <sub>DDX</sub> - V <sub>SSX</sub>       | External main supply voltage (including V <sub>DD</sub> , V <sub>DDSD1</sub> , V <sub>DDSD2</sub> , V <sub>DD_ANA</sub> , V <sub>DD_PLL</sub> , V <sub>DDA</sub> , V <sub>DD3V3_USBHS</sub> , V <sub>BAT</sub> , V <sub>REF+</sub> ) | -0.3 | 3.9  | V    |
| V <sub>DDCORE</sub> - V <sub>SS</sub>     | External core supply voltage                                                                                                                                                                                                         | -0.3 | 1.5  | ٧    |
| V <sub>DDCPU</sub> -<br>V <sub>SS</sub>   | External Cortex®-A7 CPU supply voltage                                                                                                                                                                                               | -0.3 | 1.5  | ٧    |
| V <sub>DDA_DDR</sub> -<br>V <sub>SS</sub> | DDR IO supply voltage                                                                                                                                                                                                                | -0.3 | 1.98 | V    |

Electrical characteristics STM32MP135A/D

|                                          |                                                                             | ,                     |     |      |
|------------------------------------------|-----------------------------------------------------------------------------|-----------------------|-----|------|
| Symbols                                  | Ratings                                                                     | Min                   | Max | Unit |
| V <sub>DDA1V8</sub> -<br>V <sub>SS</sub> | 1.8 V supply (V <sub>DDA1V8_REG</sub> )                                     | -0.3                  | 3.9 | ٧    |
|                                          | Input voltage on FT_xxx pins                                                |                       | (3) | V    |
| V <sub>IN</sub> <sup>(2)</sup>           | Input voltage on TT_xx pins                                                 |                       | 3.9 | V    |
|                                          | Input voltage on OTG_VBUS pin                                               | V <sub>SS</sub> - 0.3 | (4) | V    |
|                                          | Input voltage on USB/OTG_HS_DP/DM pins                                      |                       | (5) | V    |
|                                          | Input voltage on any other pins                                             |                       | 3.9 | V    |
| $ \Delta V_{DDX} $                       | Variations between different V <sub>DDX</sub> power pins of the same domain | -                     | 50  | mV   |
| V <sub>SSx</sub> -V <sub>SS</sub>        | Variations between all the different ground pins                            | -                     | 50  | mV   |
| V <sub>REF+</sub> - V <sub>DDA</sub>     | Allowed voltage difference for V <sub>REF+</sub> > V <sub>DDA</sub>         | -                     | 0.4 | V    |

Table 10. Voltage characteristics (continued)<sup>(1)</sup>

- All power (V<sub>DD</sub>, V<sub>DDSD1</sub>, V<sub>DDSD2</sub>, V<sub>DDA</sub>, V<sub>DD3V3</sub> USBHS, V<sub>DDCORE</sub>, V<sub>DDCPU</sub>, V<sub>BAT</sub>) and ground (V<sub>SS</sub>, V<sub>SSA</sub>, V<sub>SSX</sub>) pins must always be connected to the external/internal power supply, in the permitted range.
- 2. V<sub>IN</sub> maximum must always be respected. Refer to *Table 53* for the maximum allowed injected current values.
- Min(6.0, V<sub>DD</sub>+3.9, V<sub>DDA</sub>+3.9, V<sub>DD3V3</sub> USBHS+3.9, V<sub>BAT</sub>+3.9).
   This formula has to be applied on power supplies related to the IO structure described by the pin definition table.
   To sustain a voltage higher than 3.9 V the internal pull-up/pull-down resistors must be disabled.
- Min(6.0, V<sub>DD</sub>+3.9, V<sub>DD3V3\_USBHS</sub>+3.9). It is recommended to not use OTG\_VBUS pin but rather any GPIO with an EXTI and external pull-up resistance in case the STM32MP13x device can be used with V<sub>DD</sub> off while plugging OTG\_VBUS > 3.9 V (see AN4879: USB hardware and PCB guidelines using STM32 MCUs for details).
- 5.  $Min(5.25, V_{DD}+3.9, V_{DD3V3\_USBHS}+3.9)$ . It is recommended to not use OTG\_VBUS pin but rather any GPIO with an EXTI and external pull-up resistance in case the STM32MP13x device can be used with  $V_{DD}$  off while plugging OTG\_VBUS > 3.9 V (see AN4879: USB hardware and PCB guidelines using STM32 MCUs for details).

| Symbols                      | Ratings                                                                         | Max | Unit |
|------------------------------|---------------------------------------------------------------------------------|-----|------|
| ΣIV <sub>DD</sub>            | Total current into sum of all V <sub>DD</sub> power lines (source)              | 440 |      |
| IV <sub>DD</sub>             | Maximum current into each V <sub>DD</sub> power pin (source)                    | 100 |      |
| IV <sub>SS</sub>             | Maximum current out of each V <sub>SS</sub> ground pin (sink)                   | 100 |      |
| I <sub>IO</sub>              | Output current sunk by any I/O and control pin                                  | 20  | mA   |
| 21                           | Total output current sunk by sum of all I/Os and control pins <sup>(2)</sup>    | 140 | IIIA |
| ΣI <sub>(PIN)</sub>          | Total output current sourced by sum of all I/Os and control pins <sup>(2)</sup> | 140 |      |
| I <sub>INJ(PIN)</sub> (3)(4) |                                                                                 |     |      |
| ΣI <sub>INJ(PIN)</sub>       | Total injected current (sum of all I/Os and control pins) <sup>(5)</sup>        | ±25 |      |

Table 11. Current characteristics<sup>(1)</sup>

- All power (V<sub>DD</sub>, V<sub>DDSD1</sub>, V<sub>DDSD2</sub>, V<sub>DD3</sub>, V<sub>DD3</sub>, V<sub>DD3</sub>, V<sub>SD3</sub>, U<sub>SBHS</sub>) and ground (V<sub>SS</sub>, V<sub>SSA</sub>, V<sub>SSX</sub>) pins must always be connected to the external/internal power supply, in the permitted range.
- 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins.
- 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.



- A positive injection is induced by V<sub>IN</sub>>V<sub>DD</sub> while a negative injection is induced by V<sub>IN</sub><V<sub>SS</sub>. I<sub>INJ(PIN)</sub> must never be exceeded. Refer also to *Table 10: Voltage characteristics* for the maximum allowed input voltage values
- 5. When several inputs are submitted to a current injection, the maximum ΣI<sub>INJ(PIN)</sub> is the absolute sum of the positive and negative injected currents (instantaneous values).

**Table 12. Thermal characteristics** 

| Symbol           | Ratings                                 | Value       | Unit |
|------------------|-----------------------------------------|-------------|------|
| T <sub>STG</sub> | Storage temperature range               | -65 to +150 |      |
| TJ               | Maximum junction temperature (suffix 7) | 105         | °C   |
|                  | Maximum junction temperature (suffix 3) | 125         |      |

# 6.3 Operating conditions

# 6.3.1 General operating conditions

Table 13. General operating conditions

| Symbol                                                             | Parameter                                                             | Operating conditions | Min.                   | Тур | Max.  | Unit |
|--------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|------------------------|-----|-------|------|
| F <sub>mpuss_ck</sub>                                              | Cortex-A7 subsystem                                                   | STM32MP135D          | 0                      | -   | 1000  |      |
|                                                                    |                                                                       | STM32MP135A          | 0                      | -   | 650   |      |
| F <sub>axiss_ck</sub> , F <sub>hclk5</sub> ,<br>F <sub>hclk6</sub> | Internal AXI, AHB5,<br>AHB6 clock<br>frequency                        | -                    | 0                      | -   | 266.5 |      |
| F <sub>ahb_ck</sub>                                                | Internal AHB clock frequency                                          | -                    | 0                      | -   | 209   |      |
| F <sub>pclk1</sub>                                                 | Internal APB1 clock frequency                                         | -                    | 0                      | -   | 104.5 |      |
| F <sub>pclk2</sub>                                                 | Internal APB2 clock frequency                                         | -                    | 0                      | -   | 104.5 | MHz  |
| F <sub>pclk3</sub>                                                 | Internal APB3 clock frequency                                         | -                    | 0                      | -   | 104.5 |      |
| F <sub>pclk4</sub>                                                 | Internal APB4 clock frequency                                         | -                    | 0                      | -   | 133   |      |
| F <sub>pclk5</sub>                                                 | Internal APB5 clock frequency                                         | -                    | 0                      | -   | 133   |      |
| F <sub>pclk6</sub>                                                 | Internal APB6 clock frequency                                         | -                    | 0                      | -   | 133   |      |
| V <sub>DD</sub>                                                    | I/Os and embedded<br>regulators (REG1V1,<br>REG1V8) supply<br>voltage | SYSCFG_HSLVENxR = 0  | 1.71 <sup>(1)(2)</sup> | -   | 3.6   |      |
|                                                                    |                                                                       | SYSCFG_HSLVENxR≠0    | 1.71                   | -   | 2.7   | V    |
| V <sub>DDSD1</sub> , V <sub>DDSD2</sub>                            | VDDSD1, VDDSD2, power section I/O's                                   | SYSCFG_HSLVENxR = 0  | 0(3)                   | -   | 3.6   | V    |
|                                                                    |                                                                       | SYSCFG_HSLVENxR ≠ 0  | 0                      | -   | 2.7   |      |



STM32MP135A/D **Electrical characteristics** 

Table 13. General operating conditions (continued)

| Symbol                                            | Parameter                                                              | Operating conditions                                                       | Min.  | Тур  | Max.                   | Unit   |
|---------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|-------|------|------------------------|--------|
| V <sub>DD_ANA</sub> <sup>(4)</sup>                | System analog supply voltage                                           | -                                                                          | 1.71  | -    | 3.6                    | ٧      |
| V <sub>DD_PLL</sub> ,<br>V <sub>DD_PLL2</sub> (5) | PLL supply voltage                                                     | -                                                                          | 1.71  | -    | 3.6                    | <      |
| _                                                 |                                                                        | Run Overdrive mode <sup>(6)</sup><br>(F <sub>mpuss_ck</sub> above 650 MHz) | 1.32  | 1.35 | 1.38                   | \<br>\ |
|                                                   |                                                                        | Run mode <sup>(6)</sup> (F <sub>mpuss_ck</sub> up to 650 MHz)              | 1.21  | 1.25 | 1.38 <sup>(7)</sup>    |        |
| V <sub>DDCPU</sub>                                | Cortex <sup>®</sup> -A7 CPU                                            | Run OppMin mode<br>(F <sub>mpuss_ck</sub> = 64 MHz)                        | 1.15  | -    | 1.38 <sup>(7)</sup>    |        |
|                                                   |                                                                        | Stop, LP-Stop mode                                                         | 1.15  | 1.25 | 1.38 <sup>(7)(8)</sup> |        |
|                                                   |                                                                        | LPLV-Stop mode on V <sub>DDCPU</sub>                                       | 0.85  | 0.9  | 1.38 <sup>(7)(8)</sup> | 1      |
|                                                   |                                                                        | LPLV-Stop2 mode                                                            | 0     | 0    | 0                      | 1      |
|                                                   |                                                                        | Run mode <sup>(6)</sup>                                                    | 1.21  | 1.25 | 1.29                   |        |
|                                                   |                                                                        | Stop, LP-Stop mode                                                         | 1.15  | 1.25 | 1.29                   |        |
| V <sub>DDCORE</sub>                               | Digital core domain supply voltage                                     | LPLV-Stop mode                                                             | 0.85  | 0.90 | 1.29 <sup>(9)</sup>    | V      |
|                                                   |                                                                        | LPLV-Stop2 mode                                                            | 0.85  | 0.90 | 1.29 <sup>(9)</sup>    | -      |
|                                                   |                                                                        | Standby mode                                                               | 0     | 0    | 0.75                   |        |
|                                                   | Analog operating voltage                                               | ADC used with V <sub>REF</sub> < 2 V <sup>(10)</sup>                       | 1.62  | -    | 2.15                   | V      |
|                                                   |                                                                        | ADC used with V <sub>REF</sub> > 2 V <sup>(10)</sup>                       | 2     | -    | 3.6                    |        |
|                                                   |                                                                        | VREFBUF with V <sub>REF</sub> = 1.65 V                                     | 1.95  | -    | 3.6                    |        |
| $V_{DDA}$                                         |                                                                        | VREFBUF with V <sub>REF</sub> = 1.8 V                                      | 2.1   | -    | 3.6                    |        |
|                                                   |                                                                        | VREFBUF with V <sub>REF</sub> = 2.048 V                                    | 2.35  | -    | 3.6                    |        |
|                                                   |                                                                        | VREFBUF with V <sub>REF</sub> = 2.5 V                                      | 2.8   | -    | 3.6                    |        |
|                                                   |                                                                        | ADC, V <sub>REF</sub> not used                                             | 0     | -    | 3.6                    |        |
| $V_{BAT}$                                         | Backup operating voltage                                               | -                                                                          | 1.6   | -    | 3.6                    | ٧      |
|                                                   | USB HS I/O supply voltage                                              | USBH or USB OTG HS used                                                    | 3.07  | 3.3  | 3.6                    | V      |
| V <sub>DD3V3_USBHS</sub> <sup>(11)</sup>          |                                                                        | USBH and USB OTG HS not used                                               | 0     | -    | 3.6                    |        |
| V <sub>DDQ_DDR</sub> <sup>(12)</sup>              | DDR PHY supply voltage                                                 | DDR3 memory                                                                | 1.425 | 1.5  | 1.575                  | V      |
|                                                   |                                                                        | DDR3L memory                                                               | 1.283 | 1.35 | 1.45                   |        |
|                                                   |                                                                        | LPDDR2 or LPDDR3                                                           | 1.14  | 1.2  | 1.3                    |        |
| V <sub>DDA1V8_REG</sub>                           | USB HS PHY voltage<br>supply with 1.8 V<br>regulator in bypass<br>mode | BYPASS_REG1V8 = V <sub>DD</sub>                                            | 1.65  | 1.8  | 1.95                   | V      |

| Symbol | Parameter                  | Operating conditions | Min. | Тур | Max.                  | Unit |
|--------|----------------------------|----------------------|------|-----|-----------------------|------|
| VIN    | I/O Input voltage          | TTxa I/O             | -0.3 | -   | V <sub>DD</sub> +0.3  |      |
|        |                            | OTG_VBUS I/O         | -0.3 | -   | 6 <sup>(13)(14)</sup> | V    |
|        |                            | DDR I/O              | -0.3 | -   | $V_{DDQ\_DDR}$        |      |
|        |                            | USB HS I/O           | -1   | -   | 5.25                  |      |
|        |                            | All I/O except TTxa  | -0.3 | -   | See <sup>(15)</sup>   |      |
| TJ     | Junction temperature range | Suffix 7 version     | -40  | -   | 105                   | °C   |
|        |                            | Suffix 3 version     | -40  | ı   | 125                   |      |

Table 13. General operating conditions (continued)

- 1. Once nRST is released functionality is guaranteed down to  $V_{\mbox{\footnotesize{BOR}}}$  falling edge max.
- 2. Min  $V_{DD}$  is 2.25 V when REG1V8 is used BYPASS\_REG1V8 = 0.
- 3. V<sub>DDSD1</sub>, V<sub>DDSD2</sub> voltages should be above Max\_Vpad 3.6V. Where Max\_Vpad is the maximum input voltage present on device I/O's.
- 4. Should be connected to same power supply voltage as  $V_{\text{DD}}$ .
- 5. It is required to connect  $V_{DD\_PLL}$  and  $V_{DD\_PLL2}$  to same power supply as  $V_{DD}$ .
- The min/typ/max values do not take into account any ripple. The values must be considered at the device power balls. It is not possible to start the device in overdrive mode since at reset the bit MPU\_RAM\_LOWSPEED = 1.
- The device is functional up to 1.38 V but using V<sub>DDCPU</sub> > 1.29 V does not guarantee life time according mission profile "Cortex®-A7 @650 MHz, -40 °C < T<sub>J</sub> < 125 °C"
  Refer also to the application note AN5438 "STM32MP1 Series lifetime estimates" available from the ST website www.st.com</li>
- 8. 1.38 V is the max allowed voltage, however LPLV-Stop mode is only relevant for V<sub>DDCPU</sub> up to 0.95 V.
- 1.29 V is the max allowed voltage, however LPLV-Stop mode is only relevant for VDDCORE up to 0.95 V. In LPLV-Stop
  mode, if VDDQ\_DDR is not shutdown, to avoid overconsumption on VDDQ\_DDR, the DDR memory must be put in
  SelfRefresh and DDR PHY must be set in retention mode (setting bit DDRRETEN: DDR retention enable of PWR control
  register 3 (PWR\_CR3)).
- 10. V<sub>DDA</sub> should always be ≥ V<sub>REF</sub>.
- 11. For operation with voltage higher than Min (V<sub>DD</sub>, V<sub>DDA</sub>) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled
- 12. Independent from any other supply
- 13.  $Min(6.0, V_{DD}+3.6, V_{DD3V3\_USBHS}+3.6)$
- 14.  $V_{DD}$  must be present to support 6 V. If  $V_{DD}$  = 0, the maximum voltage is 3.6 V.
- 15. Min(5.5, V<sub>DD</sub>+3.6, V<sub>DDA</sub>+3.6). This formula has to be applied on power supplies related to the IO structure described by the pin definition table.

#### 6.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions.

4

DS13874 Rev 1 107/223

Electrical characteristics STM32MP135A/D

Table 14. Operating conditions at power-up / power-down

| Symbol                                   | Parameter                                                                          | Min  | Max                 | Unit  |  |
|------------------------------------------|------------------------------------------------------------------------------------|------|---------------------|-------|--|
| t <sub>VDD</sub> <sup>(1)</sup>          | V <sub>DD</sub> rise time rate                                                     | 0    | 80                  |       |  |
|                                          | V <sub>DD</sub> fall time rate                                                     | 20   | 8                   |       |  |
| t <sub>VDDA</sub>                        | V <sub>DDA</sub> rise time rate                                                    | 0    | 8                   | uo^/  |  |
|                                          | V <sub>DDA</sub> fall time rate                                                    | 10   | 8                   | µs/V  |  |
| t <sub>VDD3V3_USBHS</sub> <sup>(2)</sup> | V <sub>DD3V3_USBHS</sub> rise time rate                                            | 0    | 8                   |       |  |
|                                          | V <sub>DD3V3_USBHS</sub> fall time rate                                            | 10   | ∞                   |       |  |
| t <sub>VDDCPU</sub>                      | V <sub>DDCPU</sub> rise time rate (from reset or LPLV-Stop2 mode to RUN mode)      | -    | 2000                |       |  |
|                                          | V <sub>DDCPU</sub> rise time rate (from LPLV-Stop to RUN mode)                     | -    | 1000 <sup>(3)</sup> |       |  |
|                                          | V <sub>DDCPU</sub> fall time rate                                                  | 7.33 | 8                   | ue/\/ |  |
| tVDDCORE                                 | V <sub>DDCORE</sub> rise time rate (from reset to RUN mode)                        | -    | 2000                | µs/V  |  |
|                                          | V <sub>DDCORE</sub> rise time rate (from LPLV-Stop or LPLV-Stop2 mode to RUN mode) | -    | 1000 <sup>(3)</sup> |       |  |
|                                          | V <sub>DDCORE</sub> fall time rate                                                 | 7.33 | 80                  |       |  |

<sup>1.</sup>  $V_{DD}$  must be present before  $V_{DDCORE}$  and  $V_{DDCPU}$ .

<sup>2.</sup>  $V_{DDA1V8\_REG}$  must be present before  $V_{DD3V3\_USBHS}$ .

<sup>3.</sup> In case V<sub>DDCORE</sub> or V<sub>DDCPU</sub> rise time at exit of LPLV-Stop is larger than 1 ms/V, there is a risk of unwanted reset due to V<sub>DDCORE</sub> or V<sub>DDCPU</sub> potentially not yet established after t<sub>SEL</sub> v<sub>DDCORE</sub> t<sub>A</sub> (cf. *Table 14* and *Figure 13*). In such a case, the V<sub>DDCORE</sub> or V<sub>DDCPU</sub> supply should not be decreased during LPLV-Stop mode.



Figure 12. V<sub>DDCORE</sub> / V<sub>DDCPU</sub> rise time from reset





DS13874 Rev 1 109/223

## 6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 15* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 13: General operating conditions*.

Table 15. Embedded reset and power control block characteristics

| Symbol                                    | Parameter                                                      | Conditions               | Min   | Тур  | Max   | Unit |  |
|-------------------------------------------|----------------------------------------------------------------|--------------------------|-------|------|-------|------|--|
| t <sub>RSTTEMPO</sub> <sup>(1)</sup>      | Reset delay after BOR0 released                                | -                        | -     | 377  | 550   | μs   |  |
| V <sub>BOR0</sub> <sup>(1)(2)</sup>       | Drown out root throshold 0                                     | Rising edge              | 1.62  | 1.67 | 1.71  | V    |  |
| VBOR0` /` /                               | Brown-out reset threshold 0                                    | Falling edge             | 1.58  | 1.63 | 1.67  | 7 V  |  |
| V                                         | Brown-out reset threshold 1                                    | Rising edge              | 2.055 | 2.1  | 2.145 | V    |  |
| V <sub>BOR1</sub>                         | Brown-out reset tilleshold i                                   | Falling edge             | 1.955 | 2    | 2.045 | 7    |  |
| V                                         | Drown out root throshold 2                                     | Rising edge              | 2.355 | 2.4  | 2.445 | V    |  |
| $V_{BOR2}$                                | Brown-out reset threshold 2                                    | Falling edge             | 2.255 | 2.3  | 2.345 | 7 V  |  |
| V                                         | Drown out root throshold 2                                     | Rising edge              | 2.655 | 2.7  | 2.745 | V    |  |
| $V_{BOR3}$                                | Brown-out reset threshold 3                                    | Falling edge             | 2.555 | 2.6  | 2.645 | 7 V  |  |
|                                           | Programmable Voltage                                           | Rising edge              | 1.905 | 1.95 | 1.995 | V    |  |
| $V_{PVD0}$                                | Detector threshold 0                                           | Falling edge             | 1.805 | 1.85 | 1.895 | 7 V  |  |
| V                                         | Programmable Voltage                                           | Rising edge              | 2.055 | 2.1  | 2.145 | V    |  |
| $V_{PVD1}$                                | Detector threshold 1                                           | Falling edge             | 1.955 | 2    | 2.045 | 7 V  |  |
|                                           | Programmable Voltage                                           | Rising edge              | 2.205 | 2.25 | 2.295 | V    |  |
|                                           | Detector threshold 2                                           | Falling edge             | 2.105 | 2.15 | 2.195 | 7 V  |  |
| V                                         | Programmable Voltage                                           | Rising edge              | 2.355 | 2.4  | 2.445 | V    |  |
| $V_{PVD3}$                                | Detector threshold 3                                           | Falling edge             | 2.255 | 2.3  | 2.345 | V    |  |
| V                                         | Programmable Voltage                                           | Rising edge              | 2.505 | 2.55 | 2.595 | V    |  |
| $V_{PVD4}$                                | Detector threshold 4                                           | Falling edge             | 2.405 | 2.45 | 2.495 | 7 V  |  |
| V                                         | Programmable Voltage                                           | Rising edge              | 2.655 | 2.7  | 2.745 | V    |  |
| $V_{PVD5}$                                | Detector threshold 5                                           | Falling edge             | 2.555 | 2.6  | 2.645 | 7 V  |  |
|                                           | Dragger and the Maltage                                        | Rising edge              | 2.805 | 2.85 | 2.895 |      |  |
| V <sub>PVD6</sub>                         | Programmable Voltage Detector threshold 6                      | Falling edge in RUN mode | 2.705 | 2.75 | 2.795 | V    |  |
| V <sub>hyst_BOR0</sub>                    | Hysteresis voltage of BOR0                                     | Hysteresis in RUN mode   | -     | 40   | -     | mV   |  |
| V <sub>hyst_BOR</sub>                     | Hysteresis voltage of BOR                                      | Unless BOR0              | -     | 100  | -     | mV   |  |
| V <sub>hyst_BOR_PVD</sub>                 | Hysteresis voltage of BOR (unless BOR0) and PVD <sup>(3)</sup> | Hysteresis in RUN mode   | -     | 100  | -     | mV   |  |
| I <sub>DD_BOR_PVD</sub> <sup>(1)(4)</sup> | BOR (unless BOR0) and PVD consumption from V <sub>DD</sub>     | -                        | 0.246 | -    | 0.626 | μА   |  |

Table 15. Embedded reset and power control block characteristics (continued)

| Symbol                                  | Parameter                                                                                                                                                  | Conditions      | Min   | Тур   | Max   | Unit |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-------|-------|------|--|
| V                                       | Analog voltage (V <sub>DDA</sub> ) detector                                                                                                                | Rising edge     | 1.655 | 1.7   | 1.745 | V    |  |
| V <sub>AVM_0</sub>                      | threshold 0                                                                                                                                                | Falling edge    | 1.555 | 1.6   | 1.645 | \ \  |  |
| V                                       | Analog voltage (V <sub>DDA</sub> ) detector                                                                                                                | Rising edge     | 2.055 | 2.1   | 2.145 | V    |  |
| V <sub>AVM_1</sub>                      | threshold 1                                                                                                                                                | Falling edge    | 1.955 | 2     | 2.045 | \ \  |  |
| V                                       | Analog voltage (V <sub>DDA</sub> ) detector                                                                                                                | Rising edge     | 2.455 | 2.5   | 2.545 | V    |  |
| V <sub>AVM_2</sub>                      | threshold 2                                                                                                                                                | Falling edge    | 2.355 | 2.4   | 2.445 | ]    |  |
| V                                       | Analog voltage (V <sub>DDA</sub> ) detector                                                                                                                | Rising edge     | 2.755 | 2.8   | 2.845 | _ \  |  |
| V <sub>AVM_3</sub>                      | threshold 3                                                                                                                                                | Falling edge    | 2.655 | 2.7   | 2.745 | v    |  |
| V <sub>hyst_VDDA</sub>                  | Hysteresis of analog voltage (V <sub>DDA</sub> ) detector                                                                                                  | -               | -     | 100   | -     | mV   |  |
| I <sub>VDD_AVM</sub> <sup>(1)</sup>     | Analog Voltage Monitoring (V <sub>DDA</sub> ) consumption on V <sub>DD</sub>                                                                               | -               | -     | -     | 0.248 | μA   |  |
| I <sub>VDDA_AVM</sub> <sup>(1)</sup>    | Analog Voltage Monitoring (V <sub>DDA</sub> ) consumption on V <sub>DDA</sub>                                                                              | Resistor bridge | -     | 2.12  | -     | μA   |  |
| (5)                                     | Digital core domain supply                                                                                                                                 | Rising edge     | 0.95  | 0.995 | 1.04  | .,   |  |
| V <sub>TH_VDDCORE</sub> <sup>(5)</sup>  | voltage (V <sub>DDCORE</sub> ) detector threshold 0 (Run)                                                                                                  | Falling edge    | 0.91  | 0.955 | 1     | V    |  |
| V <sub>TH_</sub> VDDCORE_1              | Digital core domain supply voltage (V <sub>DDCORE</sub> ) detector threshold 1 (LPLV_Stop)                                                                 | Falling edge    | 0.71  | 0.755 | 0.8   | ٧    |  |
| V <sub>hyst_VDDCORE</sub>               | Hysteresis of Digital core<br>domain supply voltage<br>(V <sub>DDCORE</sub> ) detector                                                                     | -               | -     | 40    | -     | mV   |  |
| tvddcore_tempo                          | Delay on V <sub>TH_VDDCORE</sub> at rising edge of V <sub>DDCORE</sub> to ensure that V <sub>DDCORE</sub> is fully established                             | -               | 200   | 340   | 550   | μs   |  |
| tsel_vddcorete<br>MPO                   | Delay on V <sub>TH_VDDCORE_1</sub> at rising edge of V <sub>DDCORE</sub> to ensure that V <sub>DDCORE</sub> is fully established on exit of LPLV-Stop mode | -               | 234   | 380   | 700   | μs   |  |
| lydd_vddcorevm                          | V <sub>DDCORE</sub> Voltage Monitoring consumption on V <sub>DD</sub>                                                                                      | -               | 1.7   | 2.6   | 4.2   | μA   |  |
| (7)                                     | Digital MPU domain supply                                                                                                                                  | Rising edge     | 0.95  | 0.995 | 1.04  | .,   |  |
| V <sub>TH_VDDCPU</sub> <sup>(7)</sup>   | voltage (V <sub>DDCPU</sub> ) detector threshold 0 (Run)                                                                                                   | Falling edge    | 0.91  | 0.955 | 1     | V    |  |
| V <sub>TH_VDDCPU_1</sub> <sup>(8)</sup> | Digital MPU domain supply voltage (V <sub>DDCPU</sub> ) detector threshold 1 (LPLV_Stop)                                                                   | Falling edge    | 0.71  | 0.755 | 0.8   | ٧    |  |
| V <sub>hyst_VDDCPU</sub>                | Hysteresis of Digital MPU<br>domain supply voltage<br>(V <sub>DDCPU</sub> ) detector                                                                       | -               | -     | 40    | -     | mV   |  |



Table 15. Embedded reset and power control block characteristics (continued)

| Symbol                      | Parameter                                                                                                                                               | Conditions | Min | Тур  | Max | Unit |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|------|-----|------|
| t <sub>VDDCPU_TEMPO</sub>   | Delay on V <sub>TH_VDDCPU</sub> at rising edge of V <sub>DDCPU</sub> to ensure that V <sub>DDCPU</sub> is fully established                             | -          | 200 | 340  | 550 | μs   |
| tseL VDDCPUTEM              | Delay on V <sub>TH_VDDCPU_1</sub> at rising edge of V <sub>DDCPU</sub> to ensure that V <sub>DDCPU</sub> is fully established on exit of LPLV-Stop mode | -          | 234 | 380  | 700 | μs   |
| IVDD_VDDCPUVM <sup>(1</sup> | V <sub>DDCPU</sub> Voltage Monitoring consumption on V <sub>DD</sub>                                                                                    | -          | 2.2 | 3.5  | 5.2 | μΑ   |
| V <sub>TH_VDDUSB</sub>      | V <sub>DD3V3_USBHS</sub> Threshold voltage                                                                                                              | -          | -   | 1.21 | -   | ٧    |
| V <sub>TH_VDDSD1</sub>      | V <sub>DDSD1</sub> Threshold voltage                                                                                                                    | -          | -   | 1.21 | -   | V    |
| V <sub>TH_VDDSD2</sub>      | V <sub>DDSD2</sub> Threshold voltage                                                                                                                    | -          | -   | 1.21 | -   | V    |

<sup>1.</sup> Specified by design, not tested in production.

- 3. No hysteresis when using PVD\_IN pin.
- 4. BOR0 is enabled in all modes and its consumption is therefore included in the supply current characteristics tables.
- During the first rising edge of V<sub>DDCORE</sub>, the slope should be less than 2 ms/V to ensure V<sub>DDCORE</sub> is fully established before the end of the t<sub>VDDCORE</sub> TEMPO.
- 6. When exiting from LPLV-Stop mode to RUN mode the rising slope for  $V_{DDCORE}$  should be less than 1 ms/V to ensure  $V_{DDCORE}$  is fully established before the end of the  $t_{VDDCORE\_TEMPO}$ .
- During the first rising edge of V<sub>DDCORE</sub>, the slope should be less than 2 ms/V to ensure V<sub>DDCORE</sub> is fully established before the end of the t<sub>VDDCORE\_TEMPO</sub>.
- 8. When exiting from LPLV-Stop mode to RUN mode the rising slope for  $V_{DDCPU}$  should be less than 1 ms/V to ensure  $V_{DDCPU}$  is fully established before the end of the  $t_{VDDCPU\_TEMPO}$ .
- t<sub>SEL\_VDDCPUTEMPO</sub> is identical to t<sub>SEL\_VDDCORETEMPO</sub> since both V<sub>DDCORE</sub> and V<sub>DDCPU</sub> are following same supply voltage increase on exit from LPLV-Stop mode.

## 6.3.4 Embedded reference voltage

The parameters given in *Table 16*, *Table 17* are derived from tests performed under ambient temperature and V<sub>DD</sub> supply voltage conditions summarized in *Table 13: General operating conditions*.

Table 16. Embedded reference voltage

| Symbol              | Parameter                   | Conditions                       | Min   | Тур   | Max   | Unit |
|---------------------|-----------------------------|----------------------------------|-------|-------|-------|------|
| V <sub>REFINT</sub> | Internal reference voltages | -40 °C < T <sub>J</sub> < 125 °C | 1.175 | 1.210 | 1.241 | V    |

VPOR (power-on reset Voltage threshold) = BOR0 rising edge value VPDR (power-down reset Voltage threshold) = BOR0 falling edge value

| Symbol                              | Parameter                                                                                   | Conditions                       | Min | Тур  | Max  | Unit   |
|-------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|-----|------|------|--------|
| t <sub>S_vrefint</sub> (1)(2)       | ADC sampling time when reading the internal reference voltage                               | -                                | 4.3 | -    | -    |        |
| t <sub>S_vbat</sub> <sup>(1)</sup>  | V <sub>BAT</sub> sampling time when reading the internal V <sub>BAT</sub> reference voltage | -                                | 9.8 | -    | -    | μs     |
| t <sub>start_vrefint</sub>          | Start time of reference voltage buffer when ADC is enable                                   | -                                | 0.8 | -    | 4.6  |        |
| I <sub>refbuf</sub> <sup>(2)</sup>  | Reference Buffer consumption for ADC                                                        | V <sub>DDA</sub> = 3.3 V         | 9.1 | 13.6 | 27.7 | μΑ     |
| ΔV <sub>REFINT</sub> <sup>(2)</sup> | Internal reference voltage spread over the temperature range                                | -40 °C < T <sub>J</sub> < 125 °C | -   | 4.3  | 15   | mV     |
| T <sub>coeff_VREFINT</sub>          | Average temperature coefficient                                                             | Average temperature coefficient  | -   | 19   | 67   | ppm/°C |
| $V_{DDcoeff}$                       | Average Voltage coefficient                                                                 | 3.0 V < V <sub>DD</sub> < 3.6 V  | -   | 10   | 1370 | ppm/V  |

Table 16. Embedded reference voltage (continued)

Table 17. Embedded reference voltage calibration value

| Symbol                 | Parameter                                                                               | Memory address                       |
|------------------------|-----------------------------------------------------------------------------------------|--------------------------------------|
| V <sub>REFIN_CAL</sub> | Raw data acquired at temperature of 30 °C, V <sub>DDA</sub> = V <sub>REF+</sub> = 3.3 V | 0x5C00 5250[31:16] <sup>(1)(2)</sup> |

<sup>1.</sup> Mandatory to read in 32-bits word and do relevant mask and shift to isolate required bits.

## 6.3.5 Embedded regulators characteristics

The parameters given in *Table 18*, *Table 19* are derived from tests performed under ambient temperature and V<sub>DD</sub> supply voltage conditions summarized in *Table 13: General operating conditions*.

## REG1V1 embedded regulator (USB\_PHY)

Table 18. REG1V1 embedded regulator (USB\_PHY) characteristics<sup>(1)</sup>

| Symbol                     | Parameter                           | Condition | Min   | Тур                | Max   | Unit |
|----------------------------|-------------------------------------|-----------|-------|--------------------|-------|------|
| V <sub>DDA1V1</sub><br>REG | Regulated output voltage            | -         | 1.045 | 1.1                | 1.155 | V    |
| C <sub>L</sub>             | Load Capacitor                      | -         | 1.1   | 2.2 <sup>(2)</sup> | 3.3   | μF   |
| esr                        | Equivalent Serial Resistor of Cload | -         | 0.1   | 25                 | 600   | mΩ   |
| I <sub>load</sub>          | Static load current <sup>(3)</sup>  | -         | 0     | ı                  | 30    | mA   |



<sup>1.</sup> The shortest sampling time for the application can be determined by multiple iterations.

<sup>2.</sup> Specified by design, not tested in production.

<sup>2.</sup> These address is inside BSEC which should be enabled in RCC to allow access.

| Table 18. REG1V1 embedded regulator (USB_ | PHY) characteristics <sup>(1)</sup> (continued) |
|-------------------------------------------|-------------------------------------------------|
|                                           | ,                                               |

| Symbol              | Parameter                                                          | Condition                                       | Min | Тур | Max | Unit |
|---------------------|--------------------------------------------------------------------|-------------------------------------------------|-----|-----|-----|------|
|                     | Start-up time. from                                                | C <sub>L</sub> =2.2uF                           | -   | 93  | -   |      |
| t <sub>START</sub>  | PWR_CR3.REG11EN = 1 to<br>PWR_CR3.REG11RDY = 1                     | C <sub>L</sub> =3.3uF                           | -   | -   | 180 | μs   |
| I <sub>INRUSH</sub> | V <sub>DD</sub> Inrush Current to load external capacitor at start | -                                               | -   | 50  | 60  | mA   |
|                     | Regulator Current consumption on                                   | Regulator Enabled and I <sub>load</sub> = 0 mA  | -   | 150 | 205 | μA   |
| IVDD                | $V_{DD}$                                                           | Regulator Enabled and I <sub>load</sub> = 30 mA | -   | 176 | 242 | μΑ   |

- 1. Specified by design, not tested in production.
- 2. For better dynamic performances a 2.2 µF typical value external capacitor is recommended.
- 3. Load is for internal STM32MP135A/D analog blocks, no additional external load is accepted unless mentioned.

Table 19. REG1V8 embedded regulator (USB\_PHY) characteristics<sup>(1)</sup>

| Symbol                       | Parameter                                                          | Condition                                       | Min  | Тур                | Max | Unit |
|------------------------------|--------------------------------------------------------------------|-------------------------------------------------|------|--------------------|-----|------|
| $V_{DD}$                     | Regulator input voltage                                            | -                                               | 2.25 | 3.3                | 3.6 | V    |
| V <sub>DDA1V8</sub> _<br>REG | Regulated output voltage                                           | after trimming                                  | 1.7  | 1.8                | 1.9 | V    |
| C <sub>L</sub>               | Load Capacitor                                                     | -                                               | 0.5  | 2.2 <sup>(2)</sup> | 3.3 | μF   |
| esr                          | Equivalent Serial Resistor of Cload                                | -                                               | 0.1  | 25                 | 600 | mΩ   |
| I <sub>load</sub>            | Static load current <sup>(3)</sup>                                 | -                                               | -    | -                  | 70  | mA   |
|                              | Start-up time. from                                                | C <sub>L</sub> =2.2uF                           | -    | 81                 | -   |      |
| t <sub>START</sub>           | PWR_CR3.REG11EN = 1 to<br>PWR_CR3.REG11RDY = 1                     | C <sub>L</sub> =3.3uF                           | -    | -                  | 150 | μs   |
| I <sub>INRUSH</sub>          | V <sub>DD</sub> Inrush Current to load external capacitor at start | -                                               | -    | 80                 | 100 | mA   |
|                              | Regulator Current consumption on                                   | Regulator Enabled and I <sub>load</sub> = 0 mA  | -    | 130                | 181 |      |
| I <sub>VDD</sub>             | $V_{DD}$                                                           | Regulator Enabled and I <sub>load</sub> = 70 mA | -    | 170                | 231 | μΑ   |

- 1. Specified by design, not tested in production.
- 2. For better dynamic performances a 2.2 µF typical value external capacitor is recommended.
- 3. Load is for internal STM32MP135A/D analog blocks, no additional external load is accepted unless mentioned.

## 6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 11: Current consumption measurement scheme*.



All the Run mode current consumption measurements given in this section are performed with a CoreMark code unless otherwise specified.

## Typical and maximum current consumption

The device is placed under the following conditions:

- All I/O pins are in analog input mode except when explicitly mentioned.
- All peripherals are disabled except when explicitly mentioned.
- The maximum values are obtained for  $V_{DD}/V_{BAT} = 3.6 \text{ V}$ ,  $V_{DDCORE} = 1.29 \text{ V}$ , and  $V_{DDCPU} = 1.29 \text{ V}$ , and the typical values for  $V_{DD}/V_{BAT} = 3.3 \text{ V}$ ,  $V_{DDCORE} = 1.25 \text{ V}$  and  $V_{DDCPU} = 1.25 \text{ V}$  unless otherwise specified.

The parameters given in *Table 22* to *Table 27* are derived from tests performed under supply voltage conditions summarized in *Table 13: General operating conditions*.



DS13874 Rev 1 115/223

|                     |                                  | -                                      | Table 20. Cu   | rrent consumption (I <sub>DI</sub> | ocore) in        | Run mo | de   |               |                |                |      |
|---------------------|----------------------------------|----------------------------------------|----------------|------------------------------------|------------------|--------|------|---------------|----------------|----------------|------|
|                     |                                  |                                        | Conditions     |                                    |                  | Тур    |      | М             | ax             |                |      |
| Symbol              | Parameter                        | -                                      | MPU SS<br>mode | Oscillator                         | AXI clk<br>(MHz) |        |      | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C | Unit |
| I <sub>DDCORE</sub> | Supply<br>current in Run<br>mode | All peripherals enabled <sup>(1)</sup> | CRun           | AHB clock = 64 MHz <sup>(2)</sup>  | 266              | 115    | 143  | 213           | 267            | 340            | mA   |
|                     |                                  |                                        |                | AHB clock = 200 MHz <sup>(3)</sup> | 266              | 82     | 99   | 172           | 224            | 301            |      |
|                     | Supply                           |                                        |                |                                    | 266              | 62     | 83.4 | 156           | 208            | 284            |      |
| I <sub>DDCORE</sub> | current in Run                   | All peripherals disabled               | CRun           | AHB clock = 64 MHz <sup>(4)</sup>  | 150              | 41     | 59.7 | 133           | 183            | 256            | mA   |
|                     | mode                             |                                        |                | AND CIUCK - 04 MINZ                | 64               | 30     | 47.6 | 121           | 171            | 244            |      |

Activity on peripherals and bus masters other than processors, could lead to additional power consumption above these values, largely dependent on the amount of initialized peripherals and their activity.

<sup>2.</sup> Peripheral clocks set at default values (see table "Peripheral clock distribution overview" in reference manual) with pll4\_r\_ck = pll4\_q\_ck = 50 MHz, pll4\_p\_ck = 125 Mhz, pclk1/2/3 = 32 MHz, pclk4 = 132 MHz, pclk5 = 66 MHz, pclk6 = 64 MHz.

<sup>3.</sup> pclk1/2/3 = 100 MHz, pclk4 = 132 MHz, pclk5 = 66 MHz, pclk6 = 104.5 MHz.

<sup>4.</sup> pclk1/2/3 = 32 MHz, pclk4 = AXI clock/2, pclk5 = AXI clock/4, pclk6 = 64 MHz.



Table 21. Current consumption (IDDCPU) in Run mode

|                            |                                   | Condit                 | ions                | Тур           |               | М             | ax             |                | Unit |
|----------------------------|-----------------------------------|------------------------|---------------------|---------------|---------------|---------------|----------------|----------------|------|
| Symbol                     | Parameter                         | MPU SS mode            | MPU clk<br>(MHz)    | Tj =<br>25 °C | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C |      |
|                            |                                   |                        | 1000 <sup>(1)</sup> | 150           | 167           | 225           | 268            | -              |      |
|                            |                                   |                        | 900 <sup>(1)</sup>  | 135           | 153           | 211           | 254            | -              |      |
|                            |                                   |                        | 780 <sup>(1)</sup>  | 115           | 135           | 194           | 235            | -              |      |
|                            |                                   |                        | 650                 | 88.5          | 104           | 153           | 188            | 239            |      |
|                            | Comply assessed in Dun made       | CD.                    | 600                 | 82            | 98            | 147           | 181            | 232            | A    |
| Supply current in Run mode | CRun -                            | 400                    | 56                  | 69            | 119           | 153           | 203            | mA             |      |
|                            |                                   |                        | 300                 | 43            | 54.7          | 105           | 139            | 188            |      |
|                            |                                   |                        | 150                 | 30            | 40.9          | 91.5          | 125            | 174            |      |
|                            |                                   |                        | 64                  | 12            | 22.5          | 73.2          | 107            | 156            |      |
|                            |                                   |                        | 24                  | 6.65          | 16.5          | 67.1          | 100.6          | 149            |      |
| I <sub>DDCPU</sub>         | Supply current in Run mode OppMin | CRun                   | 64 <sup>(2)</sup>   | 10.5          | 19.7          | 64.1          | 93.5           | 136            | mA   |
|                            |                                   |                        | 900 <sup>(1)</sup>  | 20            | 32.9          | 93.8          | 133            | -              |      |
|                            |                                   |                        | 780 <sup>(1)</sup>  | 18            | 30.8          | 91.6          | 131            | -              |      |
|                            |                                   | CSleep                 | 650                 | 13.5          | 23.9          | 74.3          | 108            | 156            |      |
| 1 .                        | Supply current in Run mode        | (MPU in<br>CSleep with | 600                 | 13            | 23.1          | 73.5          | 107            | 156            | mA   |
| I <sub>DDCPU</sub>         | Supply culterit in Rull filode    | WFI (CLK               | 300                 | 8.2           | 18.2          | 68.6          | 102.2          | 151            | IIIA |
|                            | OFF))                             | 150                    | 6.65                | 16.5          | 66.9          | 100.5         | 149            |                |      |
|                            |                                   |                        | 64                  | 4.5           | 14.3          | 64.7          | 98.2           | 147            |      |
|                            |                                   |                        | 24                  | 3.85          | 13.6          | 64.0          | 97.5           | 146            |      |

<sup>1.</sup> Typical value given with  $V_{DDCPU}$  = 1.35 V, maximum values given with  $V_{DDCPU}$  = 1.37 V.

<sup>2.</sup> Typical and maximum values given with  $V_{DDCPU}$  = 1.15 V,  $V_{DDCORE}$  = 1.25 V,  $V_{DD}$  = 3.3 V.

Table 22. Current consumption (I<sub>DD</sub>) in Run mode<sup>(1)</sup>

|                 |                            | С           | onditions                      | Тур           |               |               |                |                     |      |
|-----------------|----------------------------|-------------|--------------------------------|---------------|---------------|---------------|----------------|---------------------|------|
| Symbol          | Parameter                  | MPU SS mode | Oscillator                     | Tj =<br>25 °C | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C      | Unit |
| I <sub>DD</sub> | Supply current in Run mode | CRun        | HSE+HSI+LSI+CSI+<br>PLL1,2,3,4 | 2.75          | 2.98          | 2.95          | 2.96           | 2.61 <sup>(2)</sup> | mA   |
|                 |                            |             | HSI+PLL1,2                     | 1.95          | 2.1           | 2.1           | 2.1            | 2.1                 |      |
| I <sub>DD</sub> | Supply current in Run mode | CSleep      | HSE+HSI                        | 0.56          | 0.64          | 0.65          | 0.67           | 0.70                | mA   |
|                 |                            |             | HSI                            | 0.29          | 0.33          | 0.33          | 0.34           | 0.36                |      |

- 1. HSE = 24 MHz.
- 2. Value provided with PLL1 @648 MHz while other values on the same row are provided with PLL1 @1 GHz (not allowed at 125°C).

Table 23. Current consumption in Stop mode

|                    |                             | Condition                | Conditions     |               | Тур           |                |                | Max           |               |                |                |      |
|--------------------|-----------------------------|--------------------------|----------------|---------------|---------------|----------------|----------------|---------------|---------------|----------------|----------------|------|
| Symbol             | Parameter                   | -                        | MPU SS<br>mode | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C | Unit |
| $I_{DD}$           |                             |                          |                | 10.0          | 13.0          | 17.5           | 28             | 15.1          | 22.4          | 37.4           | 74.0           | μA   |
|                    | Supply current in Stop mode | All peripherals disabled | CStop          | 5.35          | 29            | 52.5           | 89.5           | 20.2          | 92.0          | 142            | 211            | mA   |
| I <sub>DDCPU</sub> |                             |                          |                | 3.45          | 19            | 34             | 58.5           | 12.6          | 60.2          | 92.4           | 137            | IIIA |



Table 24. Current consumption in LPLV-Stop mode

|                     |                | Condition               | s              |               | Typ <sup>(1)</sup> |                |                | Max <sup>(2)</sup> |               |                |                |      |
|---------------------|----------------|-------------------------|----------------|---------------|--------------------|----------------|----------------|--------------------|---------------|----------------|----------------|------|
| Symbol              | Parameter      | -                       | MPU SS<br>mode | Tj =<br>25 °C | Tj =<br>85 °C      | Tj =<br>105 °C | Tj =<br>125 °C | Tj =<br>25 °C      | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C | Unit |
| I <sub>DD</sub>     | Supply current |                         |                | 10.0          | 13.0               | 17.5           | 28             | 15.1               | 22.4          | 37.4           | 74.0           | μA   |
| I <sub>DDCORE</sub> | in LPLV-Stop   | All Peripheral disabled | CStop          | 1.85          | 12.0               | 21.5           | 40.0           | 6.55               | 38.2          | 62.8           | 98.9           | mA   |
| I <sub>DDCPU</sub>  | mode           |                         |                | 1.30          | 8.00               | 14.0           | 26.5           | 4.17               | 25.4          | 41.3           | 64.9           | IIIA |

<sup>1.</sup>  $V_{DDCORE} = 0.9 \text{ V}, V_{DDCPU} = 0.9 \text{ V}.$ 

Table 25. Current consumption in LPLV-Stop2 mode

|                     |                | Condition               | s              |               | Туј           | o <sup>(1)</sup> |                | Max <sup>(2)</sup> |               |                |                |      |
|---------------------|----------------|-------------------------|----------------|---------------|---------------|------------------|----------------|--------------------|---------------|----------------|----------------|------|
| Symbol              | Parameter      | -                       | MPU SS<br>mode | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C   | Tj =<br>125 °C | Tj =<br>25 °C      | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C | Unit |
| $I_{DD}$            | Supply current |                         |                | 7.50          | 10.5          | 13.5             | 21.5           | 11.5               | 17.1          | 28.3           | 54.9           | μA   |
| I <sub>DDCORE</sub> | in LPLV-Stop2  | All Peripheral disabled | CStandby       | 1.80          | 13.0          | 22.0             | 37.5           | 6.6                | 38.3          | 62.8           | 98.9           | mA   |
| I <sub>DDCPU</sub>  | mode           |                         |                | 0             | 0             | 0                | 0              | 0                  | 0             | 0              | 0              | IIIA |

<sup>1.</sup>  $V_{DDCORE} = 0.9 \text{ V}, V_{DDCPU} = 0 \text{ V}.$ 

<sup>2.</sup> V<sub>DDCORE</sub> = 0.95 VV<sub>DDCPU</sub> = 0.95 V.

<sup>2.</sup>  $V_{DDCORE} = 0.95 \text{ V}, V_{DDCPU} = 0 \text{ V}.$ 

Table 26. Current consumption in Standby mode<sup>(1)</sup>

|                 |                               | Conditions                                              | S              | Тур           |               |                | Max            |               |               |                |               |      |
|-----------------|-------------------------------|---------------------------------------------------------|----------------|---------------|---------------|----------------|----------------|---------------|---------------|----------------|---------------|------|
| Symbol          | Parameter                     | -                                                       | MPU SS<br>mode | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C | Tj=<br>125 °C | Unit |
|                 | Supply                        | Backup SRAM OFF,<br>RTC OFF, LSE OFF                    |                | 3.65          | 5.95          | 9              | 16             | 3.91          | 7.63          | 13.1           | 26.6          |      |
| I <sub>DD</sub> | current in<br>Standby<br>mode | Backup SRAM ON,<br>RTC ON, LSE ON,<br>medium_high drive | CStandby       | 8.2           | 21            | 33.5           | 56.5           | 17            | 33            | 57             | 116           | μA   |

<sup>1.</sup> IWDG OFF, LSI OFF, V<sub>DDCORE</sub> = V<sub>DDCPU</sub> = 0 V.



Table 27. Current consumption in V<sub>BAT</sub> mode

|         |                                    | Conditions                            |                      |               | Ту            | /p             |                |               | М             | ах             |                |      |
|---------|------------------------------------|---------------------------------------|----------------------|---------------|---------------|----------------|----------------|---------------|---------------|----------------|----------------|------|
| Symbol  | Parameter                          | -                                     | V <sub>BAT</sub> (V) | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C | Unit |
|         |                                    |                                       | 1.6                  | < 0.1         | 0.120         | 0.330          | 0.905          | < 0.1         | 0.726         | 2.52           | 7.24           |      |
|         |                                    | Backup SRAM OFF,<br>RTC OFF, LSE OFF, | 2.4                  | < 0.1         | 0.135         | 0.365          | 0.975          | < 0.1         | 0.937         | 2.84           | 7.82           |      |
|         |                                    | LSE CSS OFF,                          | 3                    | < 0.1         | 0.195         | 0.505          | 1.20           | < 0.1         | 1.13          | 3.12           | 8.30           |      |
|         |                                    | temperature monitoring OFF            | 3.3                  | < 0.1         | 0.515         | 1.30           | 3.30           | < 0.1         | 1.27          | 3.34           | 8.66           |      |
|         |                                    |                                       | 3.6                  | < 0.1         | 0.610         | 1.45           | 3.50           | 0.207         | 1.55          | 3.71           | 9.21           |      |
|         |                                    | Backup SRAM OFF,                      | 1.6                  | 0.915         | 1.10          | 1.35           | 1.95           | 0.378         | 1.35          | 3.17           | 7.90           |      |
|         |                                    | RTC ON, LSE ON,                       | 2.4                  | 1.25          | 1.45          | 1.70           | 2.35           | 0.985         | 2.03          | 3.95           | 8.96           |      |
|         | medium_high drive,<br>LSE CSS OFF, | 3                                     | 1.55                 | 1.80          | 2.15          | 2.95           | 1.79           | 2.79          | 4.78          | 9.95           |                |      |
|         |                                    | temperature<br>monitoring OFF         | 3.3                  | 1.70          | 2.30          | 3.15           | 5.20           | 2.32          | 3.28          | 5.32           | 10.60          |      |
| las     | Supply current                     |                                       | 3.6                  | 1.95          | 2.60          | 3.50           | 5.65           | 2.92          | 3.93          | 6.04           | 11.6           | μA   |
| IDDVBAT | in V <sub>BAT</sub> mode           | Backup SRAM ON,                       | 1.6                  | 3.20          | 12.5          | 21.0           | 35.5           | 5.22          | 23.6          | 42.3           | 74.9           |      |
|         |                                    | RTC ON,. LSE ON,                      | 2.4                  | 3.65          | 13.0          | 22.0           | 36.5           | 6.93          | 27.2          | 46.8           | 81.8           |      |
|         |                                    | medium_high drive,<br>LSE CSS OFF,    | 3                    | 4.05          | 13.5          | 22.5           | 38.5           | 8.07          | 29.4          | 49.2           | 84.8           |      |
|         |                                    | temperature                           | 3.3                  | 4.40          | 14.5          | 24.5           | 41.5           | 8.78          | 30.9          | 50.9           | 86.4           |      |
|         |                                    | monitoring OFF                        | 3.6                  | 4.70          | 15.5          | 26.0           | 43.5           | 9.59          | 32.3          | 52.9           | 88.5           |      |
|         | RTC ON high driv OFF, ter          |                                       | 1.6                  | 3.55          | 12.5          | 21.5           | 35.5           | 5.19          | 23.6          | 42.3           | 74.9           |      |
|         |                                    | Backup SRAM ON,<br>RTC ON,. LSE ON,   | 2.4                  | 3.95          | 13.5          | 22.0           | 37.0           | 5.83          | 25.6          | 45.2           | 79.7           |      |
|         |                                    | high drive, LSE CSS                   | 3                    | 4.40          | 14.0          | 23.0           | 39.0           | 8.08          | 29.5          | 49.2           | 84.7           |      |
|         |                                    | OFF, temperature monitoring OFF       | 3.3                  | 4.70          | 15.0          | 25.0           | 41.5           | 8.79          | 30.9          | 51.1           | 86.5           |      |
|         |                                    | 3 -                                   | 3.6                  | 5.05          | 16.0          | 26.0           | 43.0           | 9.60          | 33.3          | 52.9           | 88.6           |      |

Table 27. Current consumption in V<sub>BAT</sub> mode (continued)

|                     |                                         | Conditions                         | Conditions           |               | Тур           |                |                |               | Max           |                |                |      |
|---------------------|-----------------------------------------|------------------------------------|----------------------|---------------|---------------|----------------|----------------|---------------|---------------|----------------|----------------|------|
| Symbol              | Parameter                               | -                                  | V <sub>BAT</sub> (V) | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C | Tj =<br>25 °C | Tj =<br>85 °C | Tj =<br>105 °C | Tj =<br>125 °C | Unit |
|                     |                                         |                                    | 1.6                  | 3.55          | 12.5          | 21.0           | 36.0           | 7.95          | 28.0          | 47.9           | 82.3           |      |
|                     |                                         | Backup SRAM ON,<br>RTC ON, LSE ON, | 2.4                  | 3.95          | 13.5          | 22.0           | 37.0           | 8.99          | 29.6          | 49.4           | 84.3           |      |
| I <sub>DDVBAT</sub> | Supply current in V <sub>BAT</sub> mode | high drive, LSE CSS                | 3                    | 4.45          | 14.0          | 23.0           | 38.5           | 10.02         | 32.1          | 51.8           | 87.2           | μΑ   |
|                     | · BAIeae                                | ON, temperature monitoring ON      | 3.3                  | 4.65          | 15.0          | 24.5           | 41.5           | 10.7          | 33.2          | 53.6           | 89.0           |      |
|                     |                                         |                                    | 3.6                  | 5.00          | 16.0          | 26.0           | 43.5           | 11.2          | 35.9          | 55.5           | 90.8           |      |

### I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

### I/O static current consumption

All the I/Os used as inputs with pull-up generate a current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 54: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

An additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

#### Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid a current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

### I/O dynamic current consumption

The I/Os used by an application contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin.

The theoretical formula is provided below:

$$I_{SW} = V_{DDx} \times f_{SW} \times C_{L}$$

where

 $I_{SW}$  is the current sunk by a switching I/O to charge/discharge the capacitive load  $V_{DDx}$  is the MCU supply voltage

f<sub>SW</sub> is the I/O switching frequency

C<sub>I</sub> is the total capacitance seen by the I/O pin: C = CINT+ CEXT

## 6.3.7 Wakeup time from low-power modes

The wakeup times given in *Table 28* are measured starting from the wakeup event trigger up to the first instruction executed by the MPU:

- For CSleep modes:
  - the MPU goes in low-power mode after WFE (Wait For Event) instruction.
- For CStop modes:
  - the MPU goes in low-power mode after WFI (Wait For Interrupt) instruction.
- WKUPx pin is used to wakeup from low-power modes.

All timings are derived from tests performed under ambient temperature and  $V_{DD} = 3.3 \text{ V}$ .



DS13874 Rev 1 123/223

|                           | Table 201 Low power mode wanted parameter                     |                |                            |                     |                    |                              |  |  |  |
|---------------------------|---------------------------------------------------------------|----------------|----------------------------|---------------------|--------------------|------------------------------|--|--|--|
| Symbol                    | Parameter                                                     | System mode    | Conditions (after wakeup)  | Typ <sup>(1)</sup>  | Max <sup>(1)</sup> | Unit                         |  |  |  |
| MPU wakeup                |                                                               |                |                            |                     |                    |                              |  |  |  |
| twucsleep<br>_MPU         | MPU wakeup from<br>CSleep                                     | Run            | HSE 24 MHz, SYSRAM         | 31                  | 32                 | mpuss_<br>ck clock<br>cycles |  |  |  |
|                           |                                                               |                | HSI 64 MHz, SYSRAM         | 16                  | 17                 |                              |  |  |  |
| t <sub>WUCSTOP</sub>      | MPU wakeup from CStop                                         | Stop           | HSE + PLL 1000 MHz, SYSRAM | 64                  | 73                 |                              |  |  |  |
| _MPU                      |                                                               |                | HSE + PLL 650 MHz, SYSRAM  | 64                  | 73                 |                              |  |  |  |
| t <sub>WULPLV_Stop</sub>  | MPU wakeup from<br>CStop with system in<br>LPLV-Stop (LVDS=1) | LPLV-<br>Stop  | HSI 64 MHz, SYSRAM         | 410                 | 470                | μs                           |  |  |  |
| t <sub>WULPLV_Stop2</sub> | MPU wakeup from<br>CStandby with system in<br>LPLV-Stop2      | LPLV-<br>Stop2 | HSI 64 MHz, SYSRAM         | 9000 <sup>(2)</sup> | 9000(2)            |                              |  |  |  |

Table 28. Low-power mode wakeup timings

Table 29. Wakeup time using USART<sup>(1)</sup>

| Symbol   | Parameter                                                                                  | Conditions | Тур | Max                | Unit |
|----------|--------------------------------------------------------------------------------------------|------------|-----|--------------------|------|
|          | Wakeup time needed to calculate the                                                        | Stop       | -   | 6.7                | μs   |
| tWUUSART | maximum USART baud rate allowing the wakeup from stop mode when USART clock source is HSI. | LPLV-Stop  | 1   | 318 <sup>(2)</sup> | μs   |

Specified by design, not tested in production.

#### 6.3.8 External clock source characteristics

#### High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O.

Digital and analog bypass modes are available.

The external clock signal has to respect the Table 54: I/O static characteristics. However, the recommended clock input waveform is shown in Figure 14 for digital bypass mode and in Figure 15 for analog bypass mode. In analog bypass mode the clock can be a sinusoidal waveform.

Evaluated by characterization, not tested in production unless otherwise specified.

On exit from LPLV-Stop2 the boot ROM is activated and a branch is done to the address stored in the BSEC\_SCRATCH register. A system initialization is done which duration depends on the user application. Here are application dependent

parameters used for characterization:

- MMU description table size: 32 Bytes (could be up to 20 Kbytes for a Linux application)

- HSI frequency: 64 kHz (waking up with a fast PLL would significantly reduce t<sub>WULPLV\_Stop2\_MPU</sub>)

Note: branching directly to a function that toggles a GPIO would result in t<sub>WULPLV\_Stop2\_MPU</sub> ≈ 1500 μs.

Including the  $t_{SEL\ VDDCORETEMPO}$  = 234  $\mu$ s.

ai17528b

|                      | (digital bypass)                     |                     |     |                     |      |
|----------------------|--------------------------------------|---------------------|-----|---------------------|------|
| Symbol               | Parameter                            | Min                 | Тур | Max                 | Unit |
| f <sub>HSE_ext</sub> | User external clock source frequency | 8                   | 24  | 48                  | MHz  |
| V <sub>HSEH</sub>    | OSC_IN input pin high level voltage  | 0.7×V <sub>DD</sub> | -   | $V_{DD}$            | V    |
| V <sub>HSEL</sub>    | OSC_IN input pin low level voltage   | V <sub>SS</sub>     | -   | 0.3×V <sub>DD</sub> | V    |
| t <sub>W(HSE)</sub>  | OSC_IN high or low time              | 7                   | -   | -                   | ns   |

Table 30. High-speed external user clock characteristics (digital bypass)<sup>(1)</sup>

<sup>1.</sup> Specified by design, not tested in production.



Figure 14. High-speed external clock source AC timing diagram (digital bypass)

Table 31. High-speed external user clock characteristics (analog bypass)<sup>(1)</sup>

| Symbol                         | Parameter                                                                                  | Min                    | Тур                | Max                   | Unit |
|--------------------------------|--------------------------------------------------------------------------------------------|------------------------|--------------------|-----------------------|------|
|                                | User external clock source frequency                                                       | 8                      | 24                 | 48                    | MHz  |
| f <sub>HSE_ext</sub>           | duty cycle (Square wave)                                                                   | 45                     | 50                 | 55                    | %    |
|                                | duty cycle deterioration                                                                   | 0                      | ±10 <sup>(2)</sup> | ±20 <sup>(3)</sup>    | %    |
| $V_{HSE}$                      | Absolute input range                                                                       | 0                      | -                  | $V_{DD}$              | -    |
| V <sub>PP</sub>                | OSC_IN peak-to-peak amplitude                                                              | 0.2 <sup>(4)</sup>     | -                  | 0.67×V <sub>DD</sub>  | V    |
| t <sub>SU</sub> <sup>(5)</sup> | Time to start                                                                              | -                      | 1                  | 10 <sup>(6)</sup>     | μs   |
| tr/tf <sub>(HSE)</sub>         | Rise and Fall time<br>(10% to 90% threshold levels of the<br>input peak-to-peak amplitude) | 0.05 ×T <sub>HSE</sub> | -                  | 0.3 ×T <sub>HSE</sub> | ns   |
| I <sub>(HSE)</sub>             | Power consumption                                                                          | -                      | 150 <sup>(7)</sup> | 500 <sup>(8)</sup>    | μA   |

<sup>1.</sup> Specified by design, not tested in production.

57

DS13874 Rev 1 125/223

<sup>2.</sup> Specified by design, not tested in production: with a square wave signal (@25 °C,  $V_{DD}$ =3.3 V / $V_{PP}$  = 400 mV /  $V_{DC}$ =1 V) where  $V_{DC}$  is the DC component of the input signal.

3. Specified by design, not tested in production: with a square wave signal (@25 °C,  $V_{DD}$ =1.71 V / $V_{PP}$  = 200 mV /  $V_{DC}$ =0.8 V) where  $V_{DC}$  is the DC component of the input signal.

- minimum peak-to-peak amplitude (@25 °C, 0.1<V<sub>DC</sub><V<sub>DD</sub>-0.1 V) where V<sub>DC</sub> is the DC component of the input signal.
- 5. t<sub>SU(HSE)</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized analog bypass clock interface is reached. This value is measured with 200 mV peak-to-peak amplitude.
- 6. Maximum start-up time is obtained with 200 mV peak-to-peak amplitude.
- 7. with a sine wave signal ( $V_{PP}$  = 400 mV /  $V_{DC}$ =0.4 V) where  $V_{DC}$  is the DC component of the input signal.
- 8. with a sine wave signal ( $V_{DD}$  = 3.6 V /  $V_{PP}$  = 800 mV /  $V_{DC}$  = 1.8 V) where  $V_{DC}$  is the DC component of the input signal.

Figure 15. High-speed external clock source AC timing diagram (analog bypass)



Table 32. Low-speed external user clock characteristics (analog bypass)<sup>(1)</sup>

| Symbol               | Parameter                            | Min                | Тур    | Max                            | Unit |
|----------------------|--------------------------------------|--------------------|--------|--------------------------------|------|
| f <sub>LSE_ext</sub> | User external clock source frequency | -                  | 32.768 | -                              | kHz  |
| $V_{LSE}$            | Absolute input range                 | 0                  | -      | V <sub>SW</sub> <sup>(2)</sup> | -    |
| $V_{PP}$             | OSC32_IN peak-to-peak amplitude      | 0.2 <sup>(3)</sup> | 1      | -                              | ٧    |
| I <sub>(LSE)</sub>   | Power consumption                    | -                  | 120    | -                              | nA   |

- 1. Specified by design, not tested in production.
- 2.  $V_{SW}$  is equal to  $V_{DD}$  when present or  $V_{BAT}$  otherwise
- Minimum peak-to-peak amplitude (@25 °C, 0.1 < V<sub>DC</sub> < V<sub>SW</sub> 0.1 V) where V<sub>DC</sub> is the DC component of the input signal.



Figure 16. Low-speed external clock source AC timing diagram (analog bypass)

### Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 54: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 17* for digital bypass and *Figure 16* for analog bypass.

| Symbol                                       | Parameter                                         | Min | Тур    | Max                            | Unit |
|----------------------------------------------|---------------------------------------------------|-----|--------|--------------------------------|------|
| f <sub>LSE_ext</sub>                         | User external clock source frequency              | 5   | 32.768 | 40                             | kHz  |
| V <sub>LSE_ext_PP</sub>                      | OSC32_IN peak-to-peak amplitude                   | 0.3 | -      | V <sub>SW</sub> <sup>(2)</sup> | V    |
| V <sub>LSE_ext</sub>                         | OSC32_IN input range                              | 0   | -      | $V_{SW}^{(2)}$                 | V    |
| t <sub>w(LSEH)</sub><br>t <sub>w(LSEL)</sub> | OSC32_IN high or low time for square signal input | 10  | -      | -                              | ns   |

<sup>1.</sup> Specified by design. Not tested in production.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 17. AC timing diagram for low-speed external square clock source



4

DS13874 Rev 1 127/223

<sup>2.</sup>  $V_{SW} = V_{DD}$  when  $V_{DD}$  is above  $V_{BOR0}$ , and  $V_{SW} = V_{BAT}$  when  $V_{DD}$  is below  $V_{BOR0}$ .

## High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 8 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 34*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

| Symbol                         | Parameter                   | Operating conditions <sup>(2)</sup>                                                     | Min | Тур  | Max  | Unit |
|--------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|-----|------|------|------|
| F                              | Oscillator frequency        | -                                                                                       | 8   | 24   | 48   | MHz  |
| R <sub>F</sub>                 | Feedback resistor           | -                                                                                       | -   | 200  | -    | kΩ   |
|                                |                             | During startup <sup>(3)</sup>                                                           | -   | -    | 8    |      |
|                                |                             | $V_{DD}$ = 3.3 V, Rm = 150 Ω<br>$C_L$ = 12 pF at 4 MHz                                  | -   | 0.53 | -    |      |
|                                | HSE current consumption     | $V_{DD} = 3.3 \text{ V, Rm} = 120 \Omega$<br>$C_L = 10 \text{ pF at } 16 \text{ MHz}$   | -   | 0.61 | -    |      |
| I <sub>DD(HSE)</sub>           |                             | $V_{DD} = 3.3 \text{ V, Rm} = 100 \Omega$<br>$C_{L} = 10 \text{ pF at } 24 \text{ MHz}$ | -   | 0.63 | -    | mA   |
|                                |                             | $V_{DD}$ = 3.3 V, Rm = 80 $\Omega$<br>C <sub>L</sub> = 8 pF at 32 MHz                   | -   | 0.63 | -    |      |
|                                |                             | $V_{DD} = 3.3 \text{ V, Rm} = 80 \Omega$<br>$C_{L} = 8 \text{ pF at } 48 \text{ MHz}$   | -   | 0.81 | -    |      |
| Gm <sub>critmax</sub>          | Maximum critical crystal gm | Startup                                                                                 | -   | -    | 1.15 | mA/V |
| t <sub>SU</sub> <sup>(4)</sup> | Start-up time               | V <sub>DD</sub> is stabilized                                                           | -   | 2    | -    | ms   |

Table 34. 8-48 MHz HSE oscillator characteristics<sup>(1)</sup>

- 1. Specified by design, not tested in production.
- 2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- 3. This consumption level occurs during the first 2/3 of the  $t_{\mbox{\scriptsize SU(HSE)}}$  startup time.
- 4. t<sub>SU(HSE)</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For  $C_{L1}$  and  $C_{L2}$ , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typical), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 18*).  $C_{L1}$  and  $C_{L2}$  are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of  $C_{L1}$  and  $C_{L2}$ . The PCB and MCU pin capacitance must be included (4 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing  $C_{L1}$  and  $C_{L2}$ .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.



C<sub>L1</sub>
OSC\_IN
OSC\_IN
Bias
controlled
gain

STM32

MSv63062V1

Figure 18. Typical application with a 24 MHz crystal

## Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 35*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 35. Low-speed external user clock characteristics<sup>(1)</sup>

| Symbol                         | Parameter                      | Operating conditions <sup>(2)</sup>               | Min | Тур    | Max  | Unit |
|--------------------------------|--------------------------------|---------------------------------------------------|-----|--------|------|------|
| F                              | Oscillator frequency           | -                                                 | -   | 32.768 | -    | kHz  |
|                                |                                | LSEDRV[1:0] = 00,<br>Low drive capability         | -   | 303    | -    |      |
|                                | LSE current                    | LSEDRV[1:0] = 01,<br>Medium Low drive capability  | -   | 466    | -    | nA   |
| I <sub>DD</sub>                | consumption                    | LSEDRV[1:0] = 10,<br>Medium high drive capability | -   | 636    | -    | IIA  |
|                                |                                | LSEDRV[1:0] = 11,<br>High drive capability        | -   | 1028   | -    |      |
|                                | Maximum critical crystal<br>gm | LSEDRV[1:0] = 00,<br>Low drive capability         | -   | -      | 0.5  |      |
| Gm                             |                                | LSEDRV[1:0] = 01,<br>Medium Low drive capability  | -   | -      | 0.75 | μΑ/V |
| Gm <sub>critmax</sub>          |                                | LSEDRV[1:0] = 10,<br>Medium high drive capability | -   | -      | 1.7  | μΑν  |
|                                |                                | LSEDRV[1:0] = 11,<br>High drive capability        | -   | -      | 2.7  |      |
| t <sub>SU</sub> <sup>(3)</sup> | Startup time                   | V <sub>DD</sub> is stabilized                     | -   | 2      | -    | S    |

<sup>1.</sup> Specified by design, not tested in production.



DS13874 Rev 1 129/223

<sup>2.</sup> Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers

<sup>3.</sup> t<sub>SU</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 k Hz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.



Figure 19. Typical application with a 32.768 kHz crystal

1. Adding an external resistor between OSC32\_IN and OSC32\_OUT is forbidden.

## 6.3.9 External clock source security characteristics

Table 36. High-speed external user clock security system (HSE CSS)<sup>(1)</sup>

| Symbol Parameter          |                                               | Min | Тур | Max | Unit |
|---------------------------|-----------------------------------------------|-----|-----|-----|------|
| t <sub>DCM(HSE_CSS)</sub> | Time to detect clock missing                  | -   | 2   | -   | μs   |
| t <sub>DCP(HSE_CSS)</sub> | Time to detect clock presence                 | -   | -   | 250 | ns   |
| I <sub>VDD(HSE_CSS)</sub> | Power consumption (f <sub>HSE</sub> = 48 MHz) | -   | -   | 50  | μA   |

<sup>1.</sup> Specified by design, not tested in production.

## 6.3.10 Internal clock source characteristics

The parameters given in *Table 37*, *Table 38* and *Table 39* are derived from tests performed under ambient temperature and V<sub>DD</sub> supply voltage conditions summarized in *Table 13*: *General operating conditions*.

### 64 MHz high-speed internal RC oscillator (HSI)

Table 37. HSI oscillator characteristics<sup>(1)</sup>

| Symbol                          | Parameter              | Conditions                                                                          | Min  | Тур   | Max  | Unit |
|---------------------------------|------------------------|-------------------------------------------------------------------------------------|------|-------|------|------|
| f <sub>HSI</sub> <sup>(2)</sup> | HSI frequency          | V <sub>DD</sub> = 3.3 V, T <sub>J</sub> = 30 °C                                     | 63.7 | 64    | 64.3 | MHz  |
|                                 |                        | Trimming is not a multiple of 32                                                    | -    | 0.24  | 0.33 |      |
|                                 | HSI user trimming step | Trimming is 128, 256 and 384                                                        | -    | -2.43 | -    |      |
| TRIM                            |                        | Trimming is 64, 192, 320 and 448                                                    | -    | -0.70 | -    | %    |
|                                 |                        | Other trimming are a<br>multiple of 32 (not<br>including multiple of 64<br>and 128) | -    | -0.30 | -    |      |
| DuCy(HSI)                       | Duty Cycle             | -                                                                                   | 45   | -     | 55   | %    |

|                              | Table 07. Hot oscillator of                                                            | didotoriotico (continu          | <b>-</b> |      |      |      |
|------------------------------|----------------------------------------------------------------------------------------|---------------------------------|----------|------|------|------|
| Symbol                       | Parameter                                                                              | Conditions                      | Min      | Тур  | Max  | Unit |
| Δ <sub>VDD (HSI)</sub>       | HSI oscillator frequency drift over V <sub>DD</sub> (reference is 3.3 V)               | V <sub>DD</sub> = 1.71 to 3.6 V | -0.12    | -    | 0.03 | %    |
| Λ (3)                        | HSI oscillator frequency drift over                                                    | T <sub>J</sub> = -20 to 110 °C  | -1.25    | -    | 0.75 | %    |
| $\Delta_{TEMP\;(HSI)}^{(3)}$ | temperature after factory calibration                                                  | T <sub>J</sub> = -40 to 125 °C  | -1.75    | -    | 0.95 | /0   |
| t <sub>su</sub> (HSI)        | HSI oscillator start-up time (Time between Enable rising and First output clock edge.) | -                               | -        | 1.47 | 2    | μs   |
| t <sub>stab</sub> (HSI)      | HSI oscillator stabilization time                                                      | at 1% of target frequency       | -        | 3    | -    | μs   |
| I <sub>DD</sub> (HSI)        | HSI oscillator power consumption                                                       | -                               | -        | 300  | 400  | μΑ   |

Table 37. HSI oscillator characteristics<sup>(1)</sup> (continued)

- 1. Specified by design, not tested in production unless otherwise specified.
- 2. Guaranteed by testing.
- 3. Evaluated by characterization, not tested in production.

## 4 MHz low-power internal RC oscillator (CSI)

Table 38. CSI oscillator characteristics<sup>(1)</sup>

| Symbol                                                      | Parameter                                                                    | Conditions                                                     | Min  | Тур   | Max  | Unit  |
|-------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|------|-------|------|-------|
| f <sub>CSI</sub> <sup>(2)</sup>                             | CSI frequency                                                                | V <sub>DD</sub> = 3.3 V, T <sub>J</sub> = 30 °C                | 3.98 | 4     | 4.02 | MHz   |
| TRIM                                                        | Trimming aton                                                                | Trimming code is not a multiple of 16                          | -    | 0.85  | 1    | %     |
|                                                             | Trimming step                                                                | Trimming code is a multiple of 16                              | -    | -1.65 | -    | -     |
| DuCy(CSI)                                                   | Duty Cycle                                                                   | -                                                              | 45   | -     | 55   | %     |
| $\Delta_{VDD}$ (CSI) + $\Delta_{TEMP}$ (CSI) <sup>(3)</sup> | CSI oscillator frequency drift over V <sub>DD</sub> & drift over temperature | V <sub>DD</sub> = 1.71 to 3.6 V<br>T <sub>J</sub> = 0 to 85 °C | -    | ±1.43 | -    | %     |
| t <sub>su(CSI)</sub>                                        | CSI oscillator startup time                                                  | -                                                              | -    | 1.5   | 2.4  | μs    |
| t <sub>stab(CSI)</sub>                                      | CSI oscillator stabilization time (to reach ±5% of f <sub>CSI</sub> )        | T <sub>J</sub> = 0 to 85 °C                                    | -    | 5     | -    | cycle |
| I <sub>DD(CSI)</sub>                                        | CSI oscillator power consumption                                             | -                                                              | -    | 30    | -    | μA    |

- 1. Specified by design, not tested in production.
- 2. Guaranteed by testing.
- 3. Evaluated by characterization, not tested in production.

131/223

## 32 kHz low-speed internal (LSI) RC oscillator

Table 39. LSI oscillator characteristics<sup>(1)</sup>

| Symbol                 | Parameter                                                                             | Conditions                                                      | Min  | Тур | Max  | Unit  |
|------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|------|-----|------|-------|
| f <sub>LSI</sub>       | I SI fraguancy                                                                        | $T_J = 30  ^{\circ}\text{C},^{(2)}$<br>$V_{DD} = 3.3  \text{V}$ | 31.4 | 32  | 32.6 | kHz   |
|                        | LSI frequency                                                                         | $T_J$ = -40 to 125 °C,<br>$V_{DD}$ = 1.71 to 3.6 V              | 29   | 32  | 33.6 | KI IZ |
| t <sub>su(LSI)</sub>   | LSI oscillator startup time (Time between Enable rising and First output clock edge.) | -                                                               | -    | 64  | 125  | μs    |
| t <sub>stab(LSI)</sub> | LSI oscillator stabilization time (5% of final value)                                 | -                                                               | -    | 110 | 170  |       |
| I <sub>DD(LSI)</sub>   | LSI oscillator power consumption                                                      | -                                                               | -    | 120 | 230  | nA    |

<sup>1.</sup> Specified by design, not tested in production.

## 6.3.11 PLL characteristics

The parameters given in *Table 41*, *Table 42*, *Table 43* are derived from tests performed under temperature and V<sub>DD</sub> supply voltage conditions summarized in *Table 13: General operating conditions*.

#### **PLL1** characteristics

Table 40. PLL1 characteristics<sup>(1)</sup>

| Symbol                         | Parameter                               | Conditions                                | Min                        | Тур                    | Max                           | Unit |
|--------------------------------|-----------------------------------------|-------------------------------------------|----------------------------|------------------------|-------------------------------|------|
|                                | PLL input clock                         | Normal mode and Sigma delta mode          | 8                          | -                      | 16                            | MHz  |
| f <sub>PLL_IN</sub>            | PLL input clock duty cycle              | -                                         | 10                         | -                      | 90                            | %    |
|                                | PLL P,Q,R<br>multiplier output<br>clock | -                                         | 3.875                      | -                      | 1000                          | MHz  |
|                                |                                         | Division by 1                             | 47.5                       | 50                     | 52.5                          |      |
| f <sub>PLL_P_Q_R_</sub><br>OUT | PLL P,Q,R clock                         | Even divisions (N multiple of 2)          | 47.5                       | 50                     | 52.5                          | 0/   |
|                                | duty cycle                              | Odd divisions<br>(N not multiple of 2)    | [100×<br>(N+1)/<br>2N] - 5 | [100×<br>(N+1)/<br>2N] | [100×<br>(N+1)/<br>2N] +<br>5 | %    |
|                                | PLL VCO output                          |                                           | 496                        | -                      | 1000                          | MHz  |
| f <sub>VCO_OUT</sub>           | PLL VCO Duty<br>Cycle                   | Direct VCO clock after internal divider/2 | 47.5                       | 50                     | 52.5                          | %    |

<sup>2.</sup> Guaranteed by testing.

Table 40. PLL1 characteristics<sup>(1)</sup> (continued)

| Symbol                              | Parameter                                                           | Condition                                          | ıs                        | Min               | Тур                | Max   | Unit |
|-------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|---------------------------|-------------------|--------------------|-------|------|
|                                     | But to defend                                                       | Normal mode                                        |                           | -                 | 50                 | 150   |      |
| t <sub>LOCK</sub>                   | PLL lock time                                                       | Sigma-delta mode (CKIN ≥ 8                         | 3 MHz)                    | -                 | 65                 | 170   | μs   |
| A <sub>LOCK</sub>                   | Lock Accuracy (Ratio VCO frequency versus target frequency at lock) | -                                                  |                           | -                 | -                  | ±2    | %    |
|                                     |                                                                     | $f_{PLL\_P\_Q\_R\_OUT}$ division = 1 VCO = 992 MHz | -                         | 24 <sup>(3)</sup> | -                  |       |      |
|                                     |                                                                     | to 16                                              | VCO = 1066 MHz            | -                 | 24 <sup>(3)</sup>  | -     |      |
|                                     | RMS cycle-to-                                                       |                                                    | VCO = 2000 MHz            | -                 | 23 <sup>(3)</sup>  | -     | ±ps  |
|                                     | cycle jitter                                                        | f <sub>PLL_P_Q_R_OUT</sub> division = 1            | VCO = 992 MHz             | -                 | 23 <sup>(3)</sup>  | -     |      |
|                                     |                                                                     | to 16                                              | VCO = 2000 MHz            | -                 | 24 <sup>(3)</sup>  | -     |      |
|                                     | RMS period jitter                                                   | f <sub>PLL_P_Q_R_OUT</sub> division = 1            | VCO = 992 MHz             | -                 | 16 <sup>(3)</sup>  | -     | ±ps  |
|                                     |                                                                     | to 16                                              | VCO = 1066 MHz            | -                 | 16 <sup>(3)</sup>  | -     |      |
|                                     |                                                                     | Without Fractional mode                            | VCO = 2000 MHz            | -                 | 14 <sup>(3)</sup>  | -     |      |
| Jitter                              |                                                                     | 1 LL_1 _Q_1\_OO1                                   | VCO = 992 MHz             | -                 | 22 <sup>(3)</sup>  | -     | ·    |
| JILLEI                              |                                                                     | to 16 With Fractional mode                         | VCO = 2000 MHz            | -                 | 15 <sup>(3)</sup>  | -     |      |
|                                     |                                                                     | f <sub>PLL_P_Q_R_OUT</sub> division = 1 to 16      | VCO = 992 MHz             | -                 | 185 <sup>(4)</sup> | -     |      |
|                                     |                                                                     | to 16<br>f <sub>PLL IN</sub> = 8 MHz               | VCO = 1066 MHz            | -                 | 180 <sup>(4)</sup> | -     |      |
|                                     | Lana tarra iittar                                                   | Without Fractional mode                            | VCO = 2000 MHz            | -                 | 103 <sup>(4)</sup> | -     |      |
|                                     | Long term jitter                                                    | f <sub>PLL_P_Q_R_OUT</sub> division = 1            | VCO = 992 MHz             | -                 | 270 <sup>(4)</sup> | -     | ps   |
|                                     |                                                                     | to 16  <br>f <sub>PLL IN</sub> = 8 MHz             | VCO = 1066 MHz            | -                 | 260 <sup>(4)</sup> | -     |      |
|                                     |                                                                     | With Fractional mode                               | VCO = 2000 MHz            | -                 | 104 <sup>(4)</sup> | -     |      |
|                                     | Peak to Peak<br>Period Jitter                                       | fvco_out                                           | 1000 MHz                  | -30               | -                  | 30    | ps   |
| . (2)                               | PLL power                                                           | VCO freq = 2000 MHz                                |                           | -                 | 1000               | 1050  | _    |
| I <sub>VDD_PLL</sub> <sup>(2)</sup> | consumption on V <sub>DD_PLL (Analog)</sub>                         | VCO freq = 992 MHz                                 |                           | - 5               |                    | 600   | μA   |
| . (2)                               | PLL power                                                           | VCO freq = 2000 MHz (V <sub>DD0</sub>              | <sub>CORE</sub> = 1.26 V) | -                 | 4300               | 10000 | _    |
| I <sub>VDDCORE</sub> <sup>(2)</sup> | consumption on V <sub>DDCORE (Digital)</sub>                        | VCO freq = 992 MHz (V <sub>DDC</sub>               | <sub>DRE</sub> = 1.26 V)  | -                 | 2300               | 7000  | μA   |

- 1. Specified by design, not tested in production unless otherwise specified.
- 2. Evaluated by characterization, not tested in production.
- 3. Measured on DDR high speed IO.
- 4. Measured on DDR high speed IO for 10000 output clock cycles.



## **PLL2** characteristics

Table 41. PLL2 characteristics<sup>(1)</sup>

| Symbol                         | Parameter                                                                       | Conditions                                | Min                        | Тур                    | Max                           | Unit |
|--------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|----------------------------|------------------------|-------------------------------|------|
|                                | PLL input clock                                                                 | Normal mode and Sigma delta mode          | 8                          | -                      | 16                            | MHz  |
| f <sub>PLL_IN</sub>            | PLL input clock duty cycle                                                      | -                                         | 10                         | -                      | 90                            | %    |
|                                | PLL P,Q,R<br>multiplier output<br>clock                                         | -                                         | 3.125                      | -                      | 800 <sup>(2)</sup>            | MHz  |
|                                |                                                                                 | Division by 1                             | 45                         | 50                     | 55                            |      |
| f <sub>PLL_P_Q_R_</sub><br>OUT | PLL P,Q,R clock<br>duty cycle                                                   | Even divisions (N multiple of 2)          | 45                         | 50                     | 55                            | %    |
|                                |                                                                                 | Odd divisions<br>(N not multiple of 2)    | [100×<br>(N+1)/<br>2N] - 5 | [100×<br>(N+1)/<br>2N] | [100×<br>(N+1)/<br>2N] +<br>5 |      |
|                                | PLL VCO output                                                                  |                                           | 400                        | -                      | 800                           | MHz  |
| f <sub>VCO_OUT</sub>           | PLL VCO Duty<br>Cycle                                                           | Direct VCO clock after internal divider/2 | 45                         | 50                     | 55                            | %    |
| 4                              | PLL lock time                                                                   | Normal mode                               | -                          | 50                     | 150                           |      |
| t <sub>LOCK</sub>              | PLL lock time                                                                   | Sigma-delta mode (CKIN ≥ 8 MHz)           | -                          | 65                     | 170                           | μs   |
| A <sub>LOCK</sub>              | Lock Accuracy<br>(Ratio VCO<br>frequency versus<br>target frequency at<br>lock) | -                                         | -                          | -                      | ±2                            | %    |

Min **Symbol Parameter Conditions** Тур Max Unit 18<sup>(3)</sup> VCO = 800 MHz  $f_{PLL\_P\_Q\_R\_OUT}$  division = 1 to 16  $14^{(3)}$ VCO = 1066 MHz Without Fractional mode RMS cycle-to-12<sup>(3)</sup> VCO = 1600 MHz **±ps** cycle jitter VCO = 1066 MHz  $20^{(3)}$  $f_{PLL\_P\_Q\_R\_OUT}$  division = 1 to 16 VCO = 1600 MHz  $18^{(3)}$ With Fractional mode  $16^{(3)}$ VCO = 800 MHz  $f_{PLL\_P\_Q\_R\_OUT}$  division = 1 12<sup>(3)</sup> VCO = 1066 MHz to 16 Without Fractional mode 10<sup>(3)</sup> VCO = 1600 MHz RMS period jitter **±ps** Jitter 16<sup>(3)</sup>  $t_{PLL\_P\_Q\_R\_OUT}$  division = 1 VCO = 1066 MHz  $15^{(3)}$ VCO = 1600 MHz With Fractional mode  $225^{(4)}$  $f_{PLL\_P\_Q\_R\_OUT}$  division = 1 VCO = 800 MHz VCO = 1066 MHz  $200^{(4)}$  $f_{PLL\ IN} = 8\ MHz$  $100^{(4)}$ VCO = 1600 MHz Without Fractional mode Long term jitter ps 350<sup>(4)</sup>  $f_{PLL_P_Q_R_OUT}$  division = 1 VCO = 800 MHz  $250^{(4)}$ VCO = 1066 MHz  $f_{PLL\ IN} = 8\ MHz$  $150^{(4)}$ VCO = 1600 MHz With Fractional mode PLL power VCO freq = 1600 MHz 930  $I_{VDD\_PLL}^{\phantom{(2)}(2)}$ consumption on μΑ VCO freq = 800 MHz 560 V<sub>DD\_PLL</sub> (Analog) PLL power VCO freq = 1600 MHz ( $V_{DDCORE}$  = 1.26 V) 4200

Table 41. PLL2 characteristics<sup>(1)</sup> (continued)

2. Evaluated by characterization, not tested in production.

consumption on

V<sub>DDCORE</sub> (Digital)

3. Measured on DDR high speed IO.

 $I_{VDDCORE}^{(2)}$ 

4. Measured on DDR high speed IO for 10000 output clock cycles.

#### PLL3, PLL4 characteristics

Table 42. PLL3, PLL4 characteristics<sup>(1)</sup>

VCO freq = 800 MHz (V<sub>DDCORE</sub> = 1.26 V)

| Symbol              | Parameter                  | Conditions       | Min | Тур | Max | Unit    |
|---------------------|----------------------------|------------------|-----|-----|-----|---------|
|                     | PLL input clock            | Normal mode      | 4   | -   | 16  | MHz     |
| f <sub>DLL</sub> IN | -                          | Sigma delta mode | 8   | -   | 16  | IVII IZ |
| <sup>T</sup> PLL_IN | PLL input clock duty cycle | -                | 10  | -   | 90  | %       |

μΑ

2100

<sup>1.</sup> Specified by design, not tested in production unless otherwise specified.

Table 42. PLL3, PLL4 characteristics<sup>(1)</sup> (continued)

| Symbol                         | Parameter                                                           | Condition                                                                | ıs            | Min                        | Тур                    | Max                        | Unit |
|--------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|----------------------------|------------------------|----------------------------|------|
|                                | PLL P,Q,R<br>multiplier output<br>clock                             | -                                                                        |               | 3.125                      | -                      | 800 <sup>(2)</sup>         | MHz  |
| f <sub>PLL_P_Q_R_</sub><br>OUT | PLL P,Q,R clock                                                     | Even divisions (N multiple of 2)                                         |               | 45                         | 50                     | 55                         |      |
|                                | duty cycle                                                          | Odd divisions (N not multiple of 2)                                      |               | [100×<br>(N+1)/<br>2N] - 5 | [100×<br>(N+1)/<br>2N] | [100×<br>(N+1)/<br>2N] + 5 | %    |
|                                | PLL VCO output                                                      |                                                                          |               | 400                        | -                      | 800                        | MHz  |
| f <sub>VCO_OUT</sub>           | PLL VCO Duty<br>Cycle                                               | Direct VCO clock (no interna                                             | al divider/2) | 40                         | -                      | 60                         | %    |
|                                | DLL look time                                                       | Normal mode                                                              | lormal mode   |                            | 50                     | 150                        |      |
| t <sub>LOCK</sub>              | PLL lock time                                                       | Sigma-delta mode (CKIN ≥                                                 | 8 MHz)        | 25                         | 65                     | 170                        | μs   |
| A <sub>LOCK</sub>              | Lock accuracy (Ratio VCO frequency versus target frequency at lock) | -                                                                        |               | -                          | -                      | ±2                         | %    |
|                                | RMS cycle-to-<br>cycle jitter                                       | f <sub>PLL_P_Q_R_OUT</sub> division = 25 to 100  Without Fractional mode | VCO = 400 MHz | -                          | 80 <sup>(3)</sup>      | -                          |      |
|                                |                                                                     |                                                                          | VCO = 600 MHz | -                          | 50 <sup>(3)</sup>      | -                          | ±ps  |
|                                |                                                                     |                                                                          | VCO = 800 MHz | -                          | 45 <sup>(3)</sup>      | -                          |      |
|                                |                                                                     | f <sub>PLL_P_Q_R_OUT</sub> division = 25 to 100                          | VCO = 600 MHz | -                          | 65 <sup>(3)</sup>      | -                          |      |
|                                |                                                                     | With Fractional mode                                                     | VCO = 800 MHz | -                          | 60 <sup>(3)</sup>      | -                          |      |
|                                |                                                                     | f <sub>PLL_P_Q_R_OUT</sub> division =                                    | VCO = 400 MHz | -                          | 75 <sup>(3)</sup>      | -                          |      |
|                                |                                                                     | 25 to 100                                                                | VCO = 600 MHz | -                          | 38 <sup>(3)</sup>      | -                          |      |
|                                | RMS period jitter                                                   | Without Fractional mode                                                  | VCO = 800 MHz | -                          | 30 <sup>(3)</sup>      | -                          | ±ps  |
| Jitter                         |                                                                     | f <sub>PLL_P_Q_R_OUT</sub> division =                                    | VCO = 600 MHz | -                          | 55 <sup>(3)</sup>      | -                          |      |
|                                |                                                                     | 25 to 100 With Fractional mode                                           | VCO = 800 MHz | -                          | 50 <sup>(3)</sup>      | -                          |      |
|                                |                                                                     | f <sub>PLL_P_Q_R_OUT</sub> division =                                    | VCO = 400 MHz | -                          | 225 <sup>(4)</sup>     | -                          |      |
|                                |                                                                     | 25 to 100  <br>f <sub>PLL IN</sub> = 8 MHz                               | VCO = 600 MHz | -                          | 150 <sup>(4)</sup>     | -                          |      |
|                                |                                                                     | Without Fractional mode                                                  | VCO = 800 MHz | -                          | 125 <sup>(4)</sup>     | -                          | 1    |
|                                | Long term jitter                                                    | f <sub>PLL_P_Q_R_OUT</sub> division =                                    | VCO = 400 MHz | -                          | 300 <sup>(4)</sup>     | -                          | ps   |
|                                |                                                                     | 25 to 100                                                                | VCO = 600 MHz | -                          | 200 <sup>(4)</sup>     | -                          | 1    |
|                                |                                                                     | f <sub>PLL_IN</sub> = 8 MHz<br>With Fractional mode                      | VCO = 800 MHz | = 800 MHz - 1              |                        | -                          |      |
|                                | PLL power                                                           | VCO freq = 800 MHz                                                       |               | -                          | 600                    | 610                        |      |
| I <sub>VDD_PLL</sub>           | consumption on V <sub>DD_PLL</sub> (Analog)                         | VCO freq = 400 MHz                                                       |               | -                          | 320                    | 350                        | μA   |

| Table 42. PLL3 | , PLL4 characteristics <sup>(1)</sup> | (continued) |  |
|----------------|---------------------------------------|-------------|--|
|----------------|---------------------------------------|-------------|--|

| Symbol  | Parameter                                    | Conditions                                        | Min | Тур  | Max  | Unit |
|---------|----------------------------------------------|---------------------------------------------------|-----|------|------|------|
|         |                                              | VCO freq = 800 MHz (V <sub>DDCORE</sub> = 1.26 V) | -   | 2200 | 5250 |      |
| VDDCORE | consumption on V <sub>DDCORE</sub> (Digital) | VCO freq = 400 MHz (V <sub>DDCORE</sub> = 1.26 V) | -   | 1130 | 4550 | μA   |

- 1. Specified by design, not tested in production unless otherwise specified.
- 2. Evaluated by characterization, not tested in production.
- 3. Measured on GPIO.
- 4. Measured on GPIO for 10000 output clock cycles.

### PLL\_USB (2880 MHz) characteristics

Table 43. USB\_PLL characteristics<sup>(1)</sup>

| Symbol                 | Parameter                                                                 | Condition                       | Min  | Тур  | Max  | Unit |
|------------------------|---------------------------------------------------------------------------|---------------------------------|------|------|------|------|
| f <sub>PLL_IN</sub>    | PLL input clock                                                           |                                 | 19.2 | 24   | 38.4 | MHz  |
| f <sub>PLL_INFIN</sub> | PFD input clock                                                           |                                 | 19.2 | 24   | 38.4 | MHz  |
| f <sub>PLL_OUT</sub>   | PLL multiplier output clock                                               | PLL multiplier output clock     |      | 480  | -    | MHz  |
| f <sub>VCO_OUT</sub>   | PLL VCO output                                                            |                                 | -    | 2880 | -    | MHz  |
| t <sub>LOCK</sub>      | PLL lock time                                                             |                                 | -    | -    | 100  | μs   |
| t <sub>PDN</sub>       | PLL power down time                                                       |                                 | 10   | -    | -    | μs   |
| I <sub>DDA1V1 R</sub>  | PLL power consumption on                                                  | PLL in power down               | -    | 5    | 425  | μA   |
| EG(PLL)                | V <sub>DDA1V1_REG</sub> (internal connection)                             | f <sub>VCO_OUT</sub> = 2880 MHz | -    | 4.4  | 5.6  | mA   |
| I <sub>DDA1V8 R</sub>  | PLL power consumption on                                                  | PLL in power down               | -    | -    | 2    | μΑ   |
| EG(PLL)                | $V_{DDA1V8\_REG}$ (internal connection) $f_{VCO\_OUT} = 2880 \text{ MHz}$ |                                 | -    | 2    | 2.5  | mA   |

<sup>1.</sup> Specified by design, not tested in production unless otherwise specified.

# 6.3.12 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows the reduction of electromagnetic interferences (see *Table 49: EMI characteristics for fHSE = 24 MHz and Fmpuss\_ck = 650 MHz*). It is available only on the PLL1 and PLL2.

Table 44. SSCG parameters constraint

| Symbol            | Parameter             | Min  | Тур | Max <sup>(1)</sup> | Unit |
|-------------------|-----------------------|------|-----|--------------------|------|
| f <sub>Mod</sub>  | Modulation frequency  | 20   | -   | 60                 | kHz  |
| md                | Peak modulation depth | 0.25 | -   | 2                  | %    |
| MODEPER * INCSTEP | -                     | -    | -   | 2 <sup>15</sup> -1 | -    |

<sup>1.</sup> Specified by design, not tested in production.

Equation 1



The frequency modulation period (MODEPER) is given by the equation below:

$$MODEPER = round[f_{PLL \ IN} / \ (4 \times f_{Mod})]$$

f<sub>PLL IN</sub> and fMod must be expressed in Hz.

As an example:

If  $f_{PLL\_IN}$  = 8 MHz, and  $f_{MOD}$  = 40 kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round[
$$8 \times 10^6 / 4 \times 40 \times 10^3$$
] = 50

Equation 2

Equation 2 allows the increment step (INCSTEP) calculation:

INCSTEP = round[
$$((2^{15} - 1) \times md \times PLLN) / (100 \times 5 \times MODEPER)$$
]

f<sub>VCO OUT</sub> must be expressed in MHz.

With a modulation depth (md) =  $\pm 2\%$  (4% peak-to-peak), and PLLN = 240 (in MHz):

INCSTEP = round[
$$((2^{15}-1)\times 2\times 240)/(100\times 5\times 50)$$
] = 629md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}\% = (MODEPER \times INCSTEP \times 100 \times 5) / \ ((2^{15} - 1) \times PLLN)$$

As a result:

$$md_{quantized}\% = (50 \times 629 \times 100 \times 5) / ((2^{15} - 1) \times 240) = 2\%$$
(peak)

Figure 20 and Figure 21 show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f<sub>PLL OUT</sub> nominal.

 $T_{mode}$  is the modulation period.

md is the modulation depth.



Figure 20. PLL output clock waveforms in center spread mode

Figure 21. PLL output clock waveforms in down spread mode



## 6.3.13 Memory characteristics

### **OTP** characteristics

The characteristics are given at  $T_J$  = -40 to 125 °C unless otherwise specified.

**Symbol Parameter Conditions** Min Unit Max Programming 450 μΑ OTP consumption on V<sub>DDCORE</sub> Reading 490 μΑ **IVDDCORE** PowerDown 4.2 μΑ Programming 10000 μΑ 2200 OTP consumption on V<sub>DD</sub> Reading μΑ  $I_{VDD}$ PowerDown μΑ 1 F<sub>OTP</sub> (1) OTP operating Frequency 67 MHz NB CYCLE (2) Maximum number of reading cycles 500 Million

**Table 45. OTP characteristics** 

4

DS13874 Rev 1 139/223

<sup>1.</sup> Specified by design, not tested in production.

<sup>2.</sup> Evaluated by characterization, not tested in production.

#### **DDR** characteristics

### DDR3, DDR3L I/O DC specifications

The following table provides input and output DC threshold values and on-die-termination (ODT) recommended values. The conditions for the output threshold values are unterminated outputs loaded with 1 pF capacitor load. The ODT values are measured after impedance calibration.

Table 46. DC specifications - DDR3 or DDR3L mode<sup>(1)</sup>

| Symbol              | Parameter                                                 | Min                     | Тур             | Max                     | Unit |
|---------------------|-----------------------------------------------------------|-------------------------|-----------------|-------------------------|------|
| V <sub>IH(DC)</sub> | DC input voltage high                                     | V <sub>REF</sub> + 0.09 | -               | $V_{DDQ}$               | V    |
| V <sub>IL(DC)</sub> | DC input voltage low                                      | V <sub>SSQ</sub> - 0.3  | -               | V <sub>REF</sub> - 0.09 | V    |
| V <sub>OH</sub>     | DC output logic high                                      | 0.8 × V <sub>DDQ</sub>  | -               | -                       | V    |
| V <sub>OL</sub>     | DC output logic low                                       | -                       | -               | $0.2 \times V_{DDQ}$    | V    |
| R <sub>TT</sub>     | Input termination resistance (ODT) to V <sub>DDQ</sub> /2 | 100<br>54<br>36         | 120<br>60<br>40 | 140<br>66<br>44         | Ω    |
| I <sub>LS</sub>     | Input leakage current, SSTL mode, unterminated            | -                       | 0.01            | 4.8                     | μA   |

<sup>1.</sup> Specified by design, not tested in production.

#### LPDDR2, LPDDR3 I/O DC specifications

The following table provides input and output DC threshold values. The conditions for the output threshold values are un-terminated outputs loaded with 1 pF capacitor load.

Table 47. DC specifications – LPDDR2 or LPDDR3 mode<sup>(1)</sup>

| Symbol              | Parameter             | Min                     | Тур  | Max                     | Unit |
|---------------------|-----------------------|-------------------------|------|-------------------------|------|
| V <sub>IH(DC)</sub> | DC input voltage high | V <sub>REF</sub> + 0.13 | -    | $V_{DDQ}$               | V    |
| $V_{IL(DC)}$        | DC input voltage low  | $V_{SSQ}$               | -    | V <sub>REF</sub> - 0.13 | V    |
| $V_{OH}$            | DC output logic high  | 0.9 × V <sub>DDQ</sub>  | -    | -                       | V    |
| $V_{OL}$            | DC output logic low   | -                       | -    | 0.1 × V <sub>DDQ</sub>  | V    |
| ILEAK               | Input leakage current | -                       | 0.01 | 4.51                    | μΑ   |

<sup>1.</sup> Specified by design, not tested in production.

## 6.3.14 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

### Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: a burst of fast transient voltage (positive and negative) is applied to V<sub>DD</sub> and V<sub>SS</sub> through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IFC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709 available from the ST website *www.st.com*.

| Symbol            | Parameter                                                                                                                                       | Conditions                                                                                                                           | Level/<br>Class |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| V <sub>FESD</sub> | Voltage limits to be applied on any I/O pin to induce a functional disturbance                                                                  | V <sub>DD</sub> = 3.3 V, T <sub>A</sub> = +25 °C, TFBGA320,<br>F <sub>mpuss_ck</sub> = 650 or 1000 MHz,<br>conforms to IEC 61000-4-2 | 2B              |
| V <sub>FTB</sub>  | Fast transient voltage burst limits to be applied through 100 pF on V <sub>DD</sub> and V <sub>SS</sub> pins to induce a functional disturbance |                                                                                                                                      | 5A              |

Table 48. EMS characteristics

As a consequence, it is recommended to add a serial resistor (1 k $\Omega$ ), located as close as possible to the STM32MP135 device, to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

#### Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

#### Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

#### Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened



DS13874 Rev 1 141/223

to prevent unrecoverable errors occurring (see application note AN1015 available from the ST website *www.st.com.*).

## **Electromagnetic Interference (EMI)**

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Table 49. EMI characteristics for  $f_{HSE}$  = 24 MHz and  $F_{mouss\ ck}$  = 650 MHz

| Symbol           | Parameter            | Conditions                                                                                         | Monitored frequency band | Value | Unit |
|------------------|----------------------|----------------------------------------------------------------------------------------------------|--------------------------|-------|------|
|                  |                      | V <sub>DD</sub> = 3.6 V, T <sub>A</sub> = 25 °C,<br>TFBFGA320 package,<br>conforming to IEC61967-2 | 0.1 to 30 MHz            | 4     |      |
|                  | Peak <sup>(1)</sup>  |                                                                                                    | 30 to 130 MHz            | 8     | dBµV |
| S <sub>EMI</sub> |                      |                                                                                                    | 130 MHz to 1 GHz         | 21    | иБμν |
|                  |                      |                                                                                                    | 1 GHz to 2 GHz           | 16    |      |
|                  | Level <sup>(2)</sup> | -                                                                                                  | 0.1 MHz to 2 GHz         | 3.5   | -    |

- 1. Refer to AN1709 "EMI radiated test" section.
- 2. Refer to AN1709 "EMI level classification" section.

Table 50. EMI characteristics for  $f_{HSE}$  = 24 MHz and  $F_{mpuss\ ck}$  = 1 GHz

| Symbol           | Parameter            | Conditions                                                                                                             | Monitored frequency band | Value | Unit  |
|------------------|----------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|-------|
|                  |                      | V <sub>DD</sub> = 3.6 V, T <sub>A</sub> = 25 °C,<br>Peak <sup>(1)</sup> TFBFGA320 package,<br>conforming to IEC61967-2 | 0.1 to 30 MHz            | 4     |       |
|                  | Peak <sup>(1)</sup>  |                                                                                                                        | 30 to 130 MHz            | 16    | 4D17/ |
| S <sub>EMI</sub> |                      |                                                                                                                        | 130 MHz to 1 GHz         | 19    | dΒμV  |
|                  |                      |                                                                                                                        | 1 GHz to 2 GHz           | 20    |       |
|                  | Level <sup>(2)</sup> | -                                                                                                                      | 0.1 MHz to 2 GHz         | 4     | -     |

- 1. Refer to AN1709 "EMI radiated test" section.
- 2. Refer to AN1709 "EMI level classification" section.

## 6.3.15 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

#### Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse) are applied to the pins of each sample according to each pin combination. This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESDA/JEDEC JS-002 standards.

| Symbol                | Ratings                                               | Conditions                                                         | Packages | Class | Maximum<br>value <sup>(1)</sup> | Unit     |
|-----------------------|-------------------------------------------------------|--------------------------------------------------------------------|----------|-------|---------------------------------|----------|
| V <sub>ESD(HBM)</sub> | Electrostatic discharge voltage (human body model)    | T <sub>A</sub> = +25 °C conforming<br>to ANSI/ESDA/JEDEC<br>JS-001 | All      | 2     | 2000                            | ٧        |
| V <sub>ESD(CDM)</sub> | Electrostatic discharge voltage (charge device model) | T <sub>A</sub> = +25 °C conforming<br>to ANSI/ESDA/JEDEC<br>JS-002 | All      | C2a   | 500                             | <b>V</b> |

Table 51. ESD absolute maximum ratings

### Static latchup

Two complementary static tests are required on three parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with JESD78 IC latchup standard.

Table 52. Electrical sensitivities

| Symbol | Parameter            | Conditions                  | Class      |
|--------|----------------------|-----------------------------|------------|
| LU     | Static latchup class | 130 °C conforming to JESD78 | II level A |

## 6.3.16 I/O current injection characteristics

As a general rule, a current injection to the I/O pins, due to external voltage below  $V_{SS}$  or above  $V_{DD}$  (for standard, 3.3 V-capable I/O pins) should be avoided during the normal product operation. However, in order to give an indication of the robustness of the device in cases when an abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during the device characterization.

#### Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of  $-5 \mu A/+0 \mu A$  range), or other functional failure (for example reset, oscillator frequency deviation).

The following tables are the compilation of the SIC1/SIC2 and functional ESD results.

Negative induced A negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

77

143/223

<sup>1.</sup> Evaluated by characterization, not tested in production.

| Table 53. I/O current injection susceptibility <sup>(1)</sup> | Table 53. | . I/O current i | niection susce | ptibility <sup>(1)</sup> |
|---------------------------------------------------------------|-----------|-----------------|----------------|--------------------------|
|---------------------------------------------------------------|-----------|-----------------|----------------|--------------------------|

| Symbol           | Description         | Negative injection | Positive injection | Unit |  |
|------------------|---------------------|--------------------|--------------------|------|--|
| I <sub>INJ</sub> | PB5, PE13           | 0                  | NA                 | mA   |  |
|                  | All other FTxx I/Os | 5                  | NA                 | IIIA |  |

<sup>1.</sup> Evaluated by characterization, not tested in production.

## 6.3.17 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 54: I/O static characteristics* are derived from tests performed under the conditions summarized in *Table 13: General operating conditions*. All I/Os are CMOS and TTL compliant.

Table 54. I/O static characteristics

| Symbol            | Parameter                                         | Condition                                               | Min                                          | Тур                      | Max                                          | Unit |
|-------------------|---------------------------------------------------|---------------------------------------------------------|----------------------------------------------|--------------------------|----------------------------------------------|------|
| V <sub>IL</sub>   | I/O input low level voltage                       | 1.71 V < V <sub>DD</sub> < 3.6 V                        | -                                            | -                        | $0.3 \times V_{DD}^{(1)}$                    | V    |
|                   |                                                   |                                                         | -                                            | -                        | 0.39 x V <sub>DD</sub> - 0.07 <sup>(2)</sup> |      |
|                   | I/O input high level voltage                      | 1.71 V < V <sub>DD</sub> < 3.6 V                        | $0.7 \times V_{DD}^{(1)}$                    | -                        | -                                            | V    |
| V <sub>IH</sub>   |                                                   |                                                         | 0.45 × V <sub>DD</sub> + 0.35 <sup>(2)</sup> | -                        | -                                            |      |
| V <sub>HYS</sub>  | TT_xx, FT_xxx and NRST I/O input hysteresis       | 1.71 V < V <sub>DD</sub> < 3.6 V                        | -                                            | 0.1 ×<br>V <sub>DD</sub> | -                                            | mV   |
| I <sub>leak</sub> | FT_xx input leakage current                       | $0 < V_{IN} \le Max(V_{DD})^{(5)}$                      | -                                            | -                        | 250                                          | nA   |
|                   |                                                   | $Max(V_{DD}) < V_{IN} \le 5.5 \text{ V}$ (3)(4)(5)      | -                                            | -                        | 3500                                         |      |
|                   | FT 10                                             | $0 < V_{\text{IN}} \le \text{Max}(V_{\text{DD}})^{(5)}$ | -                                            | -                        | 500                                          |      |
|                   |                                                   | $Max(V_{DD}) < V_{IN} \le 5.5 \text{ V}$ (3)(4)(5)      | -                                            | -                        | 5000 <sup>(6)</sup>                          |      |
|                   | TT_xx input leakage current                       | $0 < V_{IN} \le Max(V_{DD})^{(5)}$                      | -                                            | -                        | 100                                          |      |
| R <sub>PU</sub>   | Weak pull-up equivalent resistor <sup>(7)</sup>   | V <sub>IN</sub> =V <sub>SS</sub>                        | 25                                           | 40                       | 55                                           |      |
| R <sub>PD</sub>   | Weak pull-down equivalent resistor <sup>(7)</sup> | V <sub>IN</sub> =V <sub>DD</sub> <sup>(5)</sup>         | 25                                           | 40                       | 55                                           | kΩ   |
| C <sub>IO</sub>   | I/O pin capacitance                               | -                                                       | -                                            | 5                        | -                                            | pF   |

<sup>1.</sup> Compliant with CMOS requirements.



<sup>2.</sup> Specified by Design, not tested in production.

<sup>3.</sup> All FT\_xx IO except FT\_uf, FT\_u.

<sup>4.</sup>  $V_{IN}$  must be less than  $Max(V_{DD})$  + 3.6 V.

<sup>5.</sup>  $Max(V_{DD})$  is the maximum value of all the I/O supplies.

<sup>6.</sup> To sustain a voltage higher than MIN(V<sub>DD</sub>, V<sub>DDA</sub>, V<sub>DD3V3\_USBHS</sub>) +0.3 V, the internal pull-up and pull-down resistors must

The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 22*.



Figure 22. VIL/VIH for FT I/Os

#### **Output driving current**

The GPIOs (general purpose input/outputs) can sink or source up to  $\pm 8$  mA, and sink or source up to  $\pm 20$  mA (with a relaxed  $V_{OL}/V_{OH}$ ).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*. In particular:

- The sum of the currents sourced by all the I/Os on V<sub>DD</sub>, plus the maximum Run mode consumption of the MCU sourced on V<sub>DD</sub>, cannot exceed the absolute maximum rating ∑I<sub>VDD</sub> (see *Table 11*).
- The sum of the currents sunk by all the I/Os on V<sub>SS</sub> plus the maximum Run mode consumption of the MCU sunk on V<sub>SS</sub> cannot exceed the absolute maximum rating ∑I<sub>VSS</sub> (see *Table 11*).

577

DS13874 Rev 1 145/223

#### **Output voltage levels**

Unless otherwise specified, the parameters given in *Table 55* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 13: General operating conditions*. All I/Os are CMOS and TTL compliant.

Table 55. Output voltage characteristics for all I/Os except PC13, PC14, PC15, PI0 PI1, PI2, PI3<sup>(1)</sup>

| Symbol                            | Parameter                            | Conditions <sup>(3)</sup>                                                                             | Min                   | Max  | Unit |
|-----------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------|------|------|
| V <sub>OL</sub>                   | Output low level voltage             | CMOS port <sup>(2)</sup> $I_{IO} = 8 \text{ mA}$ $2.0 \text{ V} \le V_{DD} \le 3.6 \text{ V}$         | -                     | 0.4  |      |
| V <sub>OH</sub>                   | Output high level voltage            | CMOS port <sup>(2)</sup> $I_{IO} = -8 \text{ mA}$ $2.0 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ | V <sub>DD</sub> -0.4  | -    |      |
| V <sub>OL</sub> <sup>(3)</sup>    | Output low level voltage             | TTL port <sup>(2)</sup> $I_{IO} = 8 \text{ mA}$ $2.0 \text{ V} \le V_{DD} \le 3.6 \text{ V}$          | -                     | 0.4  |      |
| V <sub>OH</sub> <sup>(3)</sup>    | Output high level voltage            | TTL port <sup>(2)</sup> $I_{IO} = -8 \text{ mA}$ $2.0 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$  | 2.4                   | -    |      |
| V <sub>OL</sub> <sup>(3)</sup>    | Output low level voltage             | $I_{IO} = 20 \text{ mA}$<br>2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                                           | -                     | 1.3  |      |
| V <sub>OH</sub> <sup>(3)</sup>    | Output high level voltage            | $I_{IO}$ = -20 mA<br>2.7 V ≤ $V_{DD}$ ≤ 3.6 V                                                         | V <sub>DD</sub> -1.3  | -    | V    |
| V (3)                             | Output law law always                | I <sub>IO</sub> = 1 mA<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V                                            | -                     | 0.2  |      |
| V <sub>OL</sub> <sup>(3)</sup>    | Output low level voltage             | I <sub>IO</sub> = 4 mA<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V                                            | -                     | 0.45 |      |
| v (3)                             | Cutaut biah laval valtara            | $I_{IO} = -1 \text{ mA}$<br>1.71 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V                                | V <sub>DD</sub> -0.2  | -    |      |
| V <sub>OH</sub> <sup>(3)</sup>    | Output high level voltage            | I <sub>IO</sub> = -4 mA<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V                                           | V <sub>DD</sub> -0.45 | -    |      |
| V (3)                             | Output low level voltage for an FT_f | $I_{IO} = 20 \text{ mA}$<br>2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V                                 | -                     | 0.4  |      |
| V <sub>OLFM+</sub> <sup>(3)</sup> | IO pin in FM+ mode                   | I <sub>IO</sub> = 10 mA<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V                                           | -                     | 0.4  |      |

The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 10:
 Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ∑IIO.

<sup>2.</sup> TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

<sup>3.</sup> Specified by design, not tested in production.

Table 56. Output voltage characteristics for PC13, PC14, PC15, PI0, PI1, PI2, PI3<sup>(1)</sup>

| Symbol                         | Parameter                 | Conditions <sup>(3)</sup>                            | Min                   | Max | Unit |
|--------------------------------|---------------------------|------------------------------------------------------|-----------------------|-----|------|
|                                |                           | CMOS port <sup>(2)</sup>                             |                       |     |      |
| $V_{OL}$                       | Output low level voltage  | $I_{IO} = 3 \text{ mA}$                              | -                     | 0.4 |      |
|                                |                           | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$  |                       |     |      |
|                                |                           | CMOS port <sup>(2)</sup>                             |                       |     |      |
| $V_{OH}$                       | Output high level voltage | $I_{IO} = -3 \text{ mA}$                             | V <sub>DD</sub> - 0.4 | -   |      |
|                                |                           | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$  |                       |     |      |
|                                |                           | TTL port <sup>(2)</sup>                              |                       |     |      |
| $V_{OL}^{(3)}$                 | Output low level voltage  | I <sub>IO</sub> = 3 mA                               | -                     | 0.4 | .,   |
|                                |                           | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$  |                       |     | V    |
|                                |                           | TTL port <sup>(2)</sup>                              |                       |     |      |
| V <sub>OH</sub> <sup>(2)</sup> | Output high level voltage | $I_{IO} = -3 \text{ mA}$                             | 2.4                   | -   |      |
|                                |                           | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$  |                       |     |      |
| v (2)                          | Output law lawal waltage  | I <sub>IO</sub> = 1.5 mA                             |                       | 0.4 |      |
| V <sub>OL</sub> <sup>(2)</sup> | Output low level voltage  | $1.71 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ | -                     | 0.4 |      |
| V <sub>OH</sub> <sup>(2)</sup> | Output high level voltage | I <sub>IO</sub> = -1.5 mA                            | V <sub>DD</sub> - 0.4 |     |      |
| VOH,                           | Output high level voltage | $1.71 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ | V <sub>DD</sub> = 0.4 | _   |      |

The I<sub>IO</sub> current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 10:
 Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO.

<sup>2.</sup> TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

<sup>3.</sup> Specified by design, not tested in production.

### Output buffer timing characteristics (HSLV option disabled)

Table 57. Output timing characteristics  $(HSLV\ OFF)^{(1)(2)}$ 

| Speed | Symbol                             | Parameter                                                                                      | conditions                                                     | Min | Max  | Unit    |
|-------|------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----|------|---------|
|       |                                    |                                                                                                | C = 50 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ | -   | 19   |         |
|       |                                    |                                                                                                | C = 30 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 21   |         |
|       |                                    |                                                                                                | C = 20 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 23   |         |
|       | F <sub>max</sub> <sup>(3)</sup>    | Maximum frequency                                                                              | C = 10 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 25   | MHz     |
|       | 「max`´                             | Maximum frequency                                                                              | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 5    | IVII IZ |
|       |                                    |                                                                                                | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 5    |         |
|       |                                    |                                                                                                | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 5    |         |
| 00    |                                    |                                                                                                | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 5    |         |
| 00    |                                    |                                                                                                | C = 50 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ | -   | 12   |         |
|       |                                    |                                                                                                | C = 30 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 10   |         |
|       |                                    |                                                                                                | C = 20 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 9    |         |
|       | $t_r/t_f^{(4)}$                    | Output high to low level                                                                       | C = 10 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 8    | ]       |
|       | ι <sub>r</sub> /ι <sub>f</sub> 、΄΄ | t <sub>r</sub> /t <sub>f</sub> <sup>(4)</sup> fall time and output low to high level rise time | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 22   | ns      |
|       |                                    |                                                                                                | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 19   |         |
|       |                                    |                                                                                                | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 17   |         |
|       |                                    |                                                                                                | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 15   |         |
|       |                                    |                                                                                                | C = 50 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 33   | -       |
|       |                                    |                                                                                                | C = 30 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 44   |         |
|       |                                    |                                                                                                | C = 20 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 55   |         |
|       | r (3)                              |                                                                                                | C = 10 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 66   |         |
|       | F <sub>max</sub> <sup>(3)</sup>    | Maximum frequency                                                                              | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 15   | - MHz   |
|       |                                    |                                                                                                | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 15   |         |
|       |                                    |                                                                                                | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 15   |         |
| 04    |                                    |                                                                                                | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 15   |         |
| 01    |                                    |                                                                                                | C = 50 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 6.2  |         |
|       |                                    |                                                                                                | C = 30 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 5.2  |         |
|       |                                    |                                                                                                | C = 20 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 4.5  |         |
|       | , <sub>14</sub> (4)                | Output high to low level                                                                       | C = 10 pF, 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                     | -   | 3.6  | Ī       |
|       | $t_r/t_f^{(4)}$                    | fall time and output low to high level rise time                                               | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 11.0 | ns      |
|       |                                    |                                                                                                | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 9.0  | 1       |
|       |                                    |                                                                                                | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 8.0  |         |
|       |                                    |                                                                                                | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                    | -   | 7.0  |         |

Table 57. Output timing characteristics (HSLV OFF)<sup>(1)(2)</sup> (continued)

| Speed | Symbol                                        | Parameter                                                                                      | conditions                                                           | Min | Max | Unit   |
|-------|-----------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----|-----|--------|
|       |                                               |                                                                                                | C = 50 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 83  |        |
|       |                                               |                                                                                                | C = 30 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 100 |        |
|       |                                               |                                                                                                | C = 20 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 133 |        |
|       | E (3)                                         | Maximum frequency                                                                              | C = 10 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 166 | MHz    |
|       | F <sub>max</sub> <sup>(3)</sup>               | Maximum frequency                                                                              | C = 50 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 32  | IVITIZ |
|       |                                               |                                                                                                | C = 30 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 37  |        |
|       |                                               |                                                                                                | C = 20 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 42  |        |
| 10    |                                               |                                                                                                | C = 10 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 50  |        |
| 10    |                                               |                                                                                                | C = 50 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 3.5 |        |
|       |                                               |                                                                                                | C = 30 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 2.7 |        |
|       |                                               |                                                                                                | C = 20 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 2.2 |        |
|       | + /+ (4)                                      | Output high to low level                                                                       | C = 10 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 1.6 | no     |
|       | t <sub>r</sub> /t <sub>f</sub> <sup>(4)</sup> | t <sub>r</sub> /t <sub>f</sub> <sup>(4)</sup> fall time and output low to high level rise time | C = 50 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 6.6 | ns     |
|       |                                               |                                                                                                | C = 30 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 5.0 |        |
|       |                                               |                                                                                                | C = 20 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 4.2 |        |
|       |                                               |                                                                                                | C = 10 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 3.3 |        |
|       |                                               |                                                                                                | C = 50 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 133 |        |
|       |                                               |                                                                                                | C = 30 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 166 |        |
|       |                                               |                                                                                                | C = 20 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 200 |        |
|       | F <sub>max</sub> <sup>(3)</sup>               | Maximum frequency                                                                              | C = 10 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 233 | MHz    |
|       | 「max`´                                        | Maximum frequency                                                                              | C = 50 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 45  | IVITIZ |
|       |                                               |                                                                                                | C = 30 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 50  |        |
|       |                                               |                                                                                                | C = 20 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 55  |        |
| 11    |                                               |                                                                                                | C = 10 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 60  |        |
| ''    |                                               |                                                                                                | C = 50 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 2.9 |        |
|       |                                               |                                                                                                | C = 30 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 2.0 |        |
|       |                                               |                                                                                                | C = 20 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 1.7 |        |
|       | $t_r/t_f^{(4)}$                               | Output high to low level                                                                       | C = 10 pF, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}^{(5)}$ | -   | 1.3 | no     |
|       | 'r' <sup>'</sup> f` ′                         | fall time and output low to high level rise time                                               | C = 50 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 5.4 | ns     |
|       |                                               |                                                                                                | C = 30 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 4.0 | 1      |
|       |                                               |                                                                                                | C = 20 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 3.3 |        |
|       |                                               |                                                                                                | C = 10 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(5)</sup> | -   | 2.5 |        |

<sup>1.</sup> Specified by design, not tested in production.

<sup>2.</sup> GPIO under VSW domain (PC13, PC14, PC15, PI0, PI1, PI2, PI3) are frequency limited. The maximum frequency is 2 MHz with a maximum load of 30 pF. Only one I/O at a time can be used as GPIO output and these I/Os must not be used as a current source (e.g to drive a LED). For theses IOs, the speed value must be kept to (default) 00.



DS13874 Rev 1 149/223

- 3. The maximum frequency is defined with the following conditions:  $(t_r + t_f) \le 2/3$ , skew  $\le 1/20$  T and 45% < duty cycle < 55%.
- 4. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
- 5. Compensation system enabled.

# Output buffer timing characteristics (IO structure with \_h, HSLV option enabled)

The HSLVEN bits of SYSCFG\_HSLVENxR register (together with OTP bit PRODUCT\_BELOW\_2V5) can be used to optimize the I/O speed when the product voltage is below 2.5 V typ. (2.7 V max.).

Table 58. Output timing characteristics (HSLV ON, \_h IO structure)<sup>(1)</sup>

| Speed | Symbol                                            | Parameter                                         | conditions                                                           | Min                                         | Max  | Unit   |
|-------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|------|--------|
|       |                                                   |                                                   | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 21   |        |
|       | F <sub>max</sub> <sup>(2)</sup>                   | Maximum frequency                                 | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 23   | MHz    |
|       | 「max`′                                            | Maximum frequency                                 | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 25   | IVITZ  |
| 00    |                                                   |                                                   | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 27   |        |
| 00    |                                                   |                                                   | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 12.5 |        |
|       | t <sub>r</sub> /t <sub>f</sub> (3)                | Output high to low level fall time and output low | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 10.5 | ]      |
|       | t <sub>r</sub> /tf <sup>x*/</sup>                 | to high level rise time                           | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 9    | ns     |
|       |                                                   |                                                   | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 7.5  |        |
|       |                                                   |                                                   | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 33   |        |
|       | F <sub>max</sub> <sup>(2)</sup> Maximum frequency | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V       | -                                                                    | 44                                          | MHz  |        |
|       |                                                   | max Waximum nequency                              | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 55   | IVIIIZ |
| 01    |                                                   |                                                   |                                                                      | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V | -    | 66     |
| 01    |                                                   |                                                   | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 7.3  |        |
|       | t <sub>r</sub> /t <sub>f</sub> (3)                | Output high to low level fall time and output low | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 5.7  | no l   |
|       | t <sub>r</sub> /tf <sup>x*/</sup>                 | to high level rise time                           | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 4.8  | ns     |
|       |                                                   |                                                   | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 3.8  |        |
|       |                                                   |                                                   | C = 50 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 66   |        |
|       | F <sub>max</sub> <sup>(2)</sup>                   | Maximum fraguancy                                 | C = 30 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 90   | MHz    |
|       | 「max`′                                            | Maximum frequency                                 | C = 20 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 110  | IVITZ  |
| 10    |                                                   |                                                   | C = 10 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 133  |        |
| 10    |                                                   |                                                   | C = 50 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 5.0  |        |
|       | £ /£ (3)                                          | Output high to low level                          | C = 30 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 3.5  | ]      |
|       | $t_r/t_f^{(3)}$                                   | fall time and output low to high level rise time  | C = 20 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 2.7  | ns     |
|       |                                                   |                                                   | C = 10 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 2.0  |        |



1.7

Speed **Parameter** conditions Min Unit **Symbol** Max C = 50 pF, 1.71 V  $\leq$  V<sub>DD</sub>  $\leq$  2.7 V<sup>(4)</sup> 100 C = 30 pF, 1.71 V  $\leq$  V<sub>DD</sub>  $\leq$  2.7 V<sup>(4)</sup> 133  $F_{max}^{(2)}$ Maximum frequency MHz C = 20 pF, 1.71 V  $\leq$  V<sub>DD</sub>  $\leq$  2.7 V<sup>(4)</sup> 166 C = 10 pF, 1.71 V  $\leq$  V<sub>DD</sub>  $\leq$  2.7 V<sup>(4)</sup> 200 11 C = 50 pF, 1.71 V  $\leq$  V<sub>DD</sub>  $\leq$  2.7 V<sup>(4)</sup> 4.6 Output high to low level C = 30 pF, 1.71 V  $\leq$  V<sub>DD</sub>  $\leq$  2.7 V<sup>(4)</sup> 3.1  $t_r/t_f^{(3)}$ fall time and output low ns C = 20 pF, 1.71 V  $\leq$  V<sub>DD</sub>  $\leq$  2.7 V<sup>(4)</sup> 2.4 to high level rise time C = 10 pF, 1.71 V  $\leq$  V<sub>DD</sub>  $\leq$  2.7 V<sup>(4)</sup>

Table 58. Output timing characteristics (HSLV ON, \_h IO structure)<sup>(1)</sup> (continued)

- 1. Specified by design, not tested in production.
- 2. The maximum frequency is defined with the following conditions:  $(t_f + t_f) \le 2/3$ , skew  $\le 1/20$  T and 45% < duty cycle < 55%.
- The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
- 4. Compensation system enabled.

#### Output buffer timing characteristics (IO structure with \_vh, HSLV option disabled)

Table 59. Output timing characteristics (HSLV OFF, \_vh IO structure)<sup>(1)</sup>

| Speed | Symbol                                        | Parameter                                                                            | conditions                                                 | Min | Max  | Unit   |  |
|-------|-----------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------|-----|------|--------|--|
|       | F <sub>max</sub> <sup>(2)</sup>               | Maximum fraguancy                                                                    | C = 10, 20, 30, 50 pF, 2.7 V ≤ V <sub>DDIOX</sub> ≤ 3.6 V  |     | 17   | MHz    |  |
|       | rmax`′                                        | Maximum frequency                                                                    | C = 10, 20, 30, 50 pF, 1.71 V ≤ V <sub>DDIOX</sub> ≤ 2.7 V | -   | 5    | IVIITZ |  |
| 00    |                                               | Output high to low                                                                   | C = 10, 20, 30, 50 pF, 2.7 V ≤ V <sub>DDIOX</sub> ≤ 3.6 V  | -   | 12   |        |  |
|       | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> | t <sub>f</sub> (3) level fall time and output low to high level rise time            | C = 10, 20, 30, 50 pF, 1.71 V ≤ V <sub>DDIOX</sub> ≤ 2.7 V | -   | 22   | ns     |  |
|       |                                               | x <sup>(2)</sup> Maximum frequency                                                   | C = 50 pF, 2.7 V ≤ V <sub>DDIOX</sub> ≤ 3.6 V              | -   | 33   |        |  |
|       |                                               |                                                                                      | C = 30 pF, 2.7 V ≤ V <sub>DDIOX</sub> ≤ 3.6 V              | -   | 44   | MHz    |  |
|       | F <sub>max</sub> <sup>(2)</sup>               |                                                                                      | C = 20 pF, 2.7 V ≤ V <sub>DDIOX</sub> ≤ 3.6 V              | -   | 55   |        |  |
|       |                                               |                                                                                      | C = 10 pF, 2.7 V ≤ V <sub>DDIOX</sub> ≤ 3.6 V              | -   | 66   |        |  |
| 01    |                                               |                                                                                      | C = 10, 20, 30, 50 pF, 1.71 V ≤ V <sub>DDIOX</sub> ≤ 2.7 V | -   | 15   |        |  |
| 01    |                                               |                                                                                      | C = 50 pF, 2.7 V ≤ V <sub>DDIOX</sub> ≤ 3.6 V              | -   | 6.2  |        |  |
|       |                                               | Output high to low                                                                   | C = 30 pF, 2.7 V ≤ V <sub>DDIOX</sub> ≤ 3.6 V              | -   | 5.2  |        |  |
|       | $t_r/t_f^{(3)}$                               | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> level fall time and output low to high | C = 20 pF, 2.7 V ≤ V <sub>DDIOX</sub> ≤ 3.6 V              | -   | 4.5  | ns     |  |
|       | level rise time                               | C = 10 pF, 2.7 V ≤ V <sub>DDIOX</sub> ≤ 3.6 V                                        | -                                                          | 3.6 |      |        |  |
|       |                                               |                                                                                      | C = 10, 20, 30, 50 pF, 1.71 V ≤ V <sub>DDIOX</sub> ≤ 2.7 V | -   | 11.0 |        |  |

Table 59. Output timing characteristics (HSLV OFF, \_vh IO structure)<sup>(1)</sup> (continued)

| Speed | Symbol                                                                                               | Parameter                                                                      | conditions                                                                          | Min | Max | Unit |
|-------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----|-----|------|
|       |                                                                                                      |                                                                                | C = 50 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 83  |      |
|       |                                                                                                      | <u> </u>                                                                       | C = 30 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 100 |      |
|       | F <sub>max</sub> <sup>(2)</sup>                                                                      |                                                                                | C = 20 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 133 | MHz  |
|       |                                                                                                      |                                                                                | C = 10 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 166 |      |
| 10    |                                                                                                      |                                                                                | C = 10, 20, 30, 50 pF, 1.71 V $\leq$ V <sub>DDIOX</sub> $\leq$ 2.0 V <sup>(4)</sup> | -   | 30  |      |
| 10    |                                                                                                      |                                                                                | C = 50 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 3.5 |      |
|       |                                                                                                      | Output high to low                                                             | C = 30 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 2.7 |      |
|       | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> level fall time and output low to high level rise time | C = 20 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$ | -                                                                                   | 2.2 | ns  |      |
|       |                                                                                                      |                                                                                | C = 10 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 1.6 |      |
|       |                                                                                                      |                                                                                | C = 10, 20, 30, 50 pF, 1.71 V $\leq$ V <sub>DDIOX</sub> $\leq$ 2.0 V <sup>(4)</sup> | -   | 6.6 |      |
|       |                                                                                                      |                                                                                | C = 50 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 133 |      |
|       |                                                                                                      |                                                                                | C = 30 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 166 |      |
|       | F <sub>max</sub> <sup>(2)</sup>                                                                      | Maximum frequency                                                              | C = 20 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 200 | MHz  |
|       |                                                                                                      |                                                                                | C = 10 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 233 |      |
| 11    |                                                                                                      |                                                                                | C = 10, 20, 30, 50 pF, 1.71 V $\leq$ V <sub>DDIOX</sub> $\leq$ 2.0 V <sup>(4)</sup> | -   | 45  |      |
|       |                                                                                                      |                                                                                | C = 50 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 2.9 |      |
|       |                                                                                                      | Output high to low                                                             | C = 30 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 2.0 |      |
|       | output low                                                                                           | level fall time and output low to high                                         | C = 20 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 1.7 | ns   |
|       |                                                                                                      | level rise time                                                                | C = 10 pF, $2.7 \text{ V} \le \text{V}_{\text{DDIOX}} \le 3.6 \text{ V}^{(4)}$      | -   | 1.3 |      |
|       |                                                                                                      |                                                                                | C = 10, 20, 30, 50 pF, 1.71 V $\leq$ V <sub>DDIOX</sub> $\leq$ 2.0 V <sup>(4)</sup> | -   | 5.4 |      |

<sup>1.</sup> Specified by design, not tested in production.

## Output buffer timing characteristics (IO structure with \_vh, HSLV option enabled)

The HSLVEN bits of SYSCFG\_HSLVENxR register (together with OTP bit PRODUCT\_BELOW\_2V5) can be used to optimize the I/O speed when the product voltage is below 2.5 V typ. (2.7 V max.).

<sup>2.</sup> The maximum frequency is defined with the following conditions:  $(tr+tf) \le 2/3$ , skew  $\le 1/20$  T and 45% < Duty cycle < 55%.

<sup>3.</sup> The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.

<sup>4.</sup> Compensation system enabled.

Table 60. Output timing characteristics (HSLV ON, \_vh IO structure)<sup>(1)</sup>

| Speed | Symbol                                          | Parameter                                        | conditions                                                           | Min                                         | Max | Unit            |    |
|-------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|-----|-----------------|----|
|       |                                                 |                                                  | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 25  |                 |    |
|       | F (2)                                           | Maximum frequency                                | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 30  | MUZ             |    |
|       | 「max`′                                          |                                                  | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 35  | MHz             |    |
| 00    |                                                 |                                                  | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 40  |                 |    |
| 00    |                                                 |                                                  | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 9.5 |                 |    |
|       | t <sub>r</sub> /t <sub>f</sub> (3)              | Output high to low level                         | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 7.7 |                 |    |
|       | l <sub>r</sub> /lf <sup>v*/</sup>               | fall time and output low to high level rise time | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 6.6 | ns              |    |
|       |                                                 |                                                  | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 5.4 |                 |    |
|       |                                                 |                                                  | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 44  |                 |    |
|       | F <sub>max</sub> <sup>(2)</sup>                 | Maximum fraguancy                                | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 55  | MHz             |    |
|       | 「max`′                                          | Maximum frequency                                | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 66  | IVITZ           |    |
| 01    |                                                 |                                                  | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 77  |                 |    |
| 01    | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup>   |                                                  | C = 50 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 6.5 |                 |    |
|       |                                                 | Output hi                                        | Output high to low level fall time and output low                    | C = 30 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V | -   | 4.9             | ns |
|       |                                                 | to high level rise time                          | C = 20 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 4.1 | TIS             |    |
|       |                                                 |                                                  | C = 10 pF, 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                          | -                                           | 3.1 |                 |    |
|       |                                                 | Mariana                                          | C = 50 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 66  | - MHz           |    |
|       | r (2)                                           |                                                  | C = 30 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 90  |                 |    |
|       | F <sub>max</sub> <sup>(2)</sup> Maximum frequen | Maximum frequency                                | C = 20 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 110 |                 |    |
| 10    |                                                 |                                                  | C = 10 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 133 |                 |    |
| 10    |                                                 |                                                  | C = 50 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 5.1 |                 |    |
|       | 4 /4 (3)                                        | Output high to low level                         | C = 30 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 3.6 | ]               |    |
|       | $t_r/t_f^{(3)}$                                 | fall time and output low to high level rise time | C = 20 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 2.8 | ns              |    |
|       |                                                 |                                                  | C = 10 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 2.1 |                 |    |
|       |                                                 |                                                  | C = 50 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 110 |                 |    |
|       | F (2)                                           | Maximum for according                            | C = 30 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 150 | ] <sub>**</sub> |    |
|       | F <sub>max</sub> <sup>(2)</sup>                 | Maximum frequency                                | C = 20 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 190 | MHz             |    |
| 44    |                                                 |                                                  | C = 10 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 233 |                 |    |
| 11    |                                                 |                                                  | C = 50 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 4.5 |                 |    |
|       | £ /£ (3)                                        | Output high to low level                         | C = 30 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 3.0 | ]               |    |
|       | $t_r/t_f^{(3)}$                                 | fall time and output low to high level rise time | C = 20 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 2.2 | - ns            |    |
|       |                                                 | _                                                | C = 10 pF, 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V <sup>(4)</sup> | -                                           | 1.5 | 1               |    |

<sup>1.</sup> Specified by design, not tested in production.

<sup>3.</sup> The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.



<sup>2.</sup> The maximum frequency is defined with the following conditions:  $(tr+tf) \le 2/3$ , skew  $\le 1/20$  T and 45% < Duty cycle < 55%.

4. Compensation system enabled.

#### 6.3.18 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R<sub>PLI</sub> (see *Table 54: I/O static characteristics*).

Unless otherwise specified, the parameters given in *Table 61* are derived from tests performed under the ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 13: General operating conditions*.

| Symbol                               | Parameter                                       | Conditions                        | Min | Тур | Max | Unit |
|--------------------------------------|-------------------------------------------------|-----------------------------------|-----|-----|-----|------|
| R <sub>PU</sub> <sup>(2)</sup>       | Weak pull-up equivalent resistor <sup>(1)</sup> | V <sub>IN</sub> = V <sub>SS</sub> | 30  | 40  | 50  | kΩ   |
| V <sub>F(NRST)</sub> <sup>(2)</sup>  | NRST input filtered pulse                       | 1.71 V < V <sub>DD</sub> < 3.6 V  | -   | -   | 50  | ns   |
| V <sub>NF(NRST)</sub> <sup>(2)</sup> | NRST input not filtered pulse                   | 1.71 V < V <sub>DD</sub> < 3.6 V  | 350 | -   | -   | 115  |

Table 61. NRST pin characteristics

2. Specified by design, not tested in production.



Figure 23. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V<sub>IL(NRST)</sub> max level specified in Table 54. Otherwise the reset is not taken into account by the device.

#### 6.3.19 FMC characteristics

Unless otherwise specified, the parameters given in *Table 62* to *Table 75* for the FMC interface are derived from tests performed under the ambient temperature,  $F_{mc\_hclk}$  ( $F_{hclk6}$ ) frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 13: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

<sup>1.</sup> The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

#### Asynchronous waveforms and timings

Figure 24 through Figure 27 represent asynchronous waveforms and Table 62 through Table 69 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- DataHoldTime = 0x1 (1×T<sub>fmc\_ker\_ck</sub> for read operations and 2×T<sub>fmc\_ker\_ck</sub> for write operations)
- ByteLaneSetup = 0x1
- BusTurnAroundDuration = 0x0
- Capacitive load C<sub>L</sub> = 30 pF

In all the timing tables, the  $T_{fmc\_ker\_ck}$  is the fmc\_ker\_ck clock period.



1. Mode 2/B, C and D only. In Mode 1, FMC\_NADV is not used.

5

Table 62. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings<sup>(1)</sup>

| Symbol                    | Parameter                             | Min                           | Max                           | Unit |
|---------------------------|---------------------------------------|-------------------------------|-------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                       | 3T <sub>fmc_ker_ck</sub> -1   | 3T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>v(NOE_NE)</sub>    | FMC_NEx low to FMC_NOE low            | 0                             | 1                             |      |
| t <sub>w(NOE)</sub>       | FMC_NOE low time                      | 2T <sub>fmc_ker_ck</sub> -1   | 2T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>h(NE_NOE)</sub>    | FMC_NOE high to FMC_NE high hold time | T <sub>fmc_ker_ck</sub> -1    | -                             |      |
| t <sub>v(A_NE)</sub>      | FMC_NEx low to FMC_A valid            | -                             | 1                             |      |
| t <sub>h(A_NOE)</sub>     | Address hold time after FMC_NOE high  | 2T <sub>fmc_ker_ck</sub> -1   | -                             | ns   |
| t <sub>su(Data_NE)</sub>  | Data to FMC_NEx high setup time       | T <sub>fmc_ker_ck</sub> +15.5 | -                             | 113  |
| t <sub>su(Data_NOE)</sub> | Data to FMC_NOEx high setup time      | 16                            | -                             |      |
| t <sub>h(Data_NOE)</sub>  | Data hold time after FMC_NOE high     | 0                             | -                             |      |
| t <sub>h(Data_NE)</sub>   | Data hold time after FMC_NEx high     | 0                             | -                             |      |
| t <sub>v(NADV_NE)</sub>   | FMC_NEx low to FMC_NADV low           | -                             | 0                             |      |
| t <sub>w(NADV)</sub>      | FMC_NADV low time                     | -                             | T <sub>fmc_ker_ck</sub> +1    |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

Table 63. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings<sup>(1)(2)</sup>

|                           | •                                         |                               | •                           |      |
|---------------------------|-------------------------------------------|-------------------------------|-----------------------------|------|
| Symbol                    | Parameter                                 | Min                           | Max                         | Unit |
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 7T <sub>fmc_ker_ck</sub> -0.5 | 7T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>w(NOE)</sub>       | FMC_NWE low time                          | 6T <sub>fmc_ker_ck</sub> -0.5 | 6T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>w(NWAIT)</sub>     | FMC_NWAIT low time                        | T <sub>fmc_ker_ck</sub>       | -                           | ns   |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 7T <sub>fmc_ker_ck</sub> +2   | -                           |      |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 5T <sub>fmc_ker_ck</sub>      | -                           |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

DS13874 Rev 1 156/223

<sup>2.</sup>  $N_{WAIT}$  pulse width is equal to 1 AHB cycle.



Figure 25. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC\_NADV is not used.

Table 64. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings<sup>(1)</sup>

| Symbol                   | Parameter                             | Min                           | Max                           | Unit |
|--------------------------|---------------------------------------|-------------------------------|-------------------------------|------|
| t <sub>w(NE)</sub>       | FMC_NE low time                       | 4T <sub>fmc_ker_ck</sub> -0.5 | 4T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>v(NWE_NE)</sub>   | FMC_NEx low to FMC_NWE low            | T <sub>fmc_ker_ck</sub> -0.5  | T <sub>fmc_ker_ck</sub> +1    |      |
| t <sub>w(NWE)</sub>      | FMC_NWE low time                      | T <sub>fmc_ker_ck</sub> -0.5  | T <sub>fmc_ker_ck</sub> +0.5  |      |
| t <sub>h(NE_NWE)</sub>   | FMC_NWE high to FMC_NE high hold time | 2T <sub>fmc_ker_ck</sub> -0.5 | -                             |      |
| t <sub>v(A_NE)</sub>     | FMC_NEx low to FMC_A valid            | -                             | 0                             |      |
| t <sub>h(A_NWE)</sub>    | Address hold time after FMC_NWE high  | 3T <sub>fmc_ker_ck</sub> -1   | -                             | ne   |
| t <sub>v(BL_NE)</sub>    | FMC_NEx low to FMC_BL valid           | -                             | 0.5                           | ns   |
| t <sub>h(BL_NWE)</sub>   | FMC_BL hold time after FMC_NWE high   | 3T <sub>fmc_ker_ck</sub> -0.5 | -                             |      |
| t <sub>v(Data_NE)</sub>  | Data to FMC_NEx low to Data valid     | -                             | 3.5                           |      |
| t <sub>h(Data_NWE)</sub> | Data hold time after FMC_NWE high     | 2T <sub>fmc_ker_ck</sub> -1   | -                             |      |
| t <sub>v(NADV_NE)</sub>  | FMC_NEx low to FMC_NADV low           | -                             | 0.5                           |      |
| t <sub>w(NADV)</sub>     | FMC_NADV low time                     | -                             | T <sub>fmc_ker_ck</sub> +1    |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.



DS13874 Rev 1 157/223

Table 65. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings<sup>(1)(2)</sup>

| Symbol                    | Parameter                                 | Min                           | Max                           | Unit |
|---------------------------|-------------------------------------------|-------------------------------|-------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 8T <sub>fmc_ker_ck</sub> -0.5 | 8T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>w(NWE)</sub>       | FMC_NWE low time                          | 5T <sub>fmc_ker_ck</sub> -0.5 | 5T <sub>fmc_ker_ck</sub> +1   | ns   |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 8T <sub>fmc_ker_ck</sub> +4   | -                             | 115  |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 6T <sub>fmc_ker_ck</sub>      | -                             |      |

- 1. Evaluated by characterization, not tested in production.
- 2.  $N_{WAIT}$  pulse width is equal to 1 AHB cycle.

Figure 26. Asynchronous multiplexed PSRAM/NOR read waveforms



Table 66. Asynchronous multiplexed PSRAM/NOR read timings<sup>(1)</sup>

| Symbol                    | Parameter                                           | Min                           | Max                          | Unit |
|---------------------------|-----------------------------------------------------|-------------------------------|------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                                     | 4T <sub>fmc_ker_ck</sub> -0.5 | 4T <sub>fmc_ker_ck</sub> +1  |      |
| t <sub>v(NOE_NE)</sub>    | FMC_NEx low to FMC_NOE low                          | 2T <sub>fmc_ker_ck</sub> -0.5 | 2T <sub>fmc_ker_ck</sub> +1  |      |
| t <sub>tw(NOE)</sub>      | FMC_NOE low time                                    | T <sub>fmc_ker_ck</sub> -0.5  | T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>h(NE_NOE)</sub>    | FMC_NOE high to FMC_NE high hold time               | T <sub>fmc_ker_ck</sub> -1    | -                            |      |
| t <sub>v(A_NE)</sub>      | FMC_NEx low to FMC_A valid                          | -                             | 4                            |      |
| t <sub>v(NADV_NE)</sub>   | FMC_NEx low to FMC_NADV low                         | 0                             | 1                            |      |
| t <sub>w(NADV)</sub>      | FMC_NADV low time                                   | T <sub>fmc_ker_ck</sub>       | T <sub>fmc_ker_ck</sub> +1   |      |
| t <sub>h(AD_NADV)</sub>   | FMC_AD(address) valid hold time after FMC_NADV high | T <sub>fmc_ker_ck</sub> -3    | -                            | ns   |
| t <sub>h(A_NOE)</sub>     |                                                     |                               | -                            |      |
| t <sub>su(Data_NE)</sub>  | Data to FMC_NEx high setup time                     | T <sub>fmc_ker_ck</sub> +15   | -                            |      |
| t <sub>su(Data_NOE)</sub> | Data to FMC_NOE high setup time                     | 16                            | -                            |      |
| t <sub>h(Data_NE)</sub>   | Data hold time after FMC_NEx high                   | 0                             | -                            |      |
| t <sub>h(Data_NOE)</sub>  | Data hold time after FMC_NOE high                   | 0                             | -                            |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

Table 67. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings<sup>(1)</sup>

| Symbol                    | Parameter                                 | Min                           | Max                         | Unit |
|---------------------------|-------------------------------------------|-------------------------------|-----------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 8T <sub>fmc_ker_ck</sub> -0.5 | 8T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>w(NOE)</sub>       | FMC_NWE low time                          | 5T <sub>fmc_ker_ck</sub> -0.5 | 5T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 7T <sub>fmc_ker_ck</sub> +2   | -                           | ns   |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 5T <sub>fmc_ker_ck</sub>      | -                           |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.



Figure 27. Asynchronous multiplexed PSRAM/NOR write waveforms



Table 68. Asynchronous multiplexed PSRAM/NOR write timings<sup>(1)</sup>

| Symbol                    | Parameter                                           | Min                           | Max                           | Unit |
|---------------------------|-----------------------------------------------------|-------------------------------|-------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                                     | 5T <sub>fmc_ker_ck</sub> -0.5 | 5T <sub>fmc_ker_ck</sub> +1   |      |
| t <sub>v(NWE_NE)</sub>    | FMC_NEx low to FMC_NWE low                          | T <sub>fmc_ker_ck</sub> -0.5  | T <sub>fmc_ker_ck</sub> +1    |      |
| t <sub>w(NWE)</sub>       | FMC_NWE low time                                    | 2T <sub>fmc_ker_ck</sub> -1   | 2T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>h(NE_NWE)</sub>    | FMC_NWE high to FMC_NE high hold time               | 2T <sub>fmc_ker_ck</sub> -0.5 | -                             |      |
| t <sub>v(A_NE)</sub>      | FMC_NEx low to FMC_A valid                          | -                             | 0.5                           |      |
| t <sub>v(NADV_NE)</sub>   | FMC_NEx low to FMC_NADV low                         | 0                             | 1                             |      |
| t <sub>w(NADV)</sub>      | FMC_NADV low time T <sub>fmc_ker_ck</sub> +0.5      |                               | T <sub>fmc_ker_ck</sub> +1.5  |      |
| t <sub>h(AD_NADV)</sub>   | FMC_AD(address) valid hold time after FMC_NADV high | T <sub>fmc_ker_ck</sub> +0.5  | -                             | ns   |
| t <sub>h(A_NWE)</sub>     | Address held                                        |                               | -                             |      |
| t <sub>h(BL_NWE)</sub>    | FMC_BL hold time after FMC_NWE high                 | 3T <sub>fmc_ker_ck</sub> -1   | -                             |      |
| t <sub>v(BL_NE)</sub>     | FMC_NEx low to FMC_BL valid                         | -                             | 0.5                           |      |
| t <sub>v(Data_NADV)</sub> | FMC_NADV high to Data valid                         | -                             | T <sub>fmc_ker_ck</sub> +5    |      |
| t <sub>h(Data_NWE)</sub>  | Data hold time after FMC_NWE high                   | 2T <sub>fmc_ker_ck</sub> +0.5 | -                             |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

Table 69. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings<sup>(1)</sup>

| Symbol                    | Parameter                                 | Min                           | Max                           | Unit |
|---------------------------|-------------------------------------------|-------------------------------|-------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 9T <sub>fmc_ker_ck</sub> -0.5 | 9T <sub>fmc_ker_ck</sub> +0.5 |      |
| t <sub>w(NWE)</sub>       | FMC_NWE low time                          | 6T <sub>fmc_ker_ck</sub> -0.5 | 6T <sub>fmc_ker_ck</sub> +1   | ns   |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 8T <sub>fmc_ker_ck</sub> +4   | -                             |      |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 6T <sub>fmc_ker_ck</sub>      | -                             |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

#### Synchronous waveforms and timings

Figure 28 through Figure 31 represent synchronous waveforms and Table 70 through Table 73 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC\_BurstAccessMode\_Enable
- MemoryType = FMC\_MemoryType\_CRAM
- WriteBurst = FMC\_WriteBurst\_Enable
- CLKDivision = 1
- DataLatency = 1 for NOR flash; DataLatency = 0 for PSRAM



DS13874 Rev 1 161/223

In all the timing tables, the  $T_{fmc\_ker\_ck}$  is the fmc\_ker\_ck clock period, with the following FMC\_CLK maximum values:

- For 2.7 V < V<sub>DD</sub> < 3.6 V, FMC\_CLK = 130 MHz at 20 pF</li>
- For 1.71 V < V<sub>DD</sub> < 1.9 V, FMC\_CLK = 78 MHz at 20 pF</li>

Figure 28. Synchronous multiplexed NOR/PSRAM read timings



Table 70. Synchronous multiplexed NOR/PSRAM read timings<sup>(1)</sup>

| Symbol                      | Parameter                                                                            | Min                                             | Max | Unit |
|-----------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------|-----|------|
| t <sub>w(CLK)</sub>         | FMC_CLK period                                                                       | R×T <sub>fmc_ker_ck</sub> -1 <sup>(2)</sup>     | -   |      |
| t <sub>d(CLKL-NExL)</sub>   | FMC_CLK low to FMC_NEx low (x=02)                                                    | -                                               | 1   |      |
| t <sub>d(CLKH_NExH)</sub>   | FMC_CLK high to FMC_NEx high (x= 02) R×T <sub>fmc_ker_ck</sub> /2+0.5 <sup>(2)</sup> |                                                 | -   |      |
| t <sub>d(CLKL-NADVL)</sub>  | FMC_CLK low to FMC_NADV low                                                          | -                                               | 1   |      |
| t <sub>d(CLKL-NADVH)</sub>  | FMC_CLK low to FMC_NADV high                                                         | 0                                               | -   |      |
| t <sub>d(CLKL-AV)</sub>     | FMC_CLK low to FMC_Ax valid (x=1625)                                                 | -                                               | 1   |      |
| t <sub>d(CLKH-AIV)</sub>    | FMC_CLK high to FMC_Ax invalid (x=1625)                                              | R×T <sub>fmc_ker_ck</sub> /2+1.5 <sup>(2)</sup> | -   |      |
| t <sub>d(CLKL-NOEL)</sub>   | FMC_CLK low to FMC_NOE low                                                           | -                                               | 2   | ns   |
| t <sub>d(CLKH-NOEH)</sub>   | FMC_CLK high to FMC_NOE high                                                         | R×T <sub>fmc_ker_ck</sub> /2 <sup>(2)</sup>     | -   |      |
| t <sub>d(CLKL-ADV)</sub>    | FMC_CLK low to FMC_AD[15:0] valid                                                    | -                                               | 3   |      |
| t <sub>d(CLKL-ADIV)</sub>   | FMC_CLK low to FMC_AD[15:0] invalid                                                  | 1                                               | -   |      |
| t <sub>su(ADV-CLKH)</sub>   | FMC_A/D[15:0] valid data before FMC_CLK high                                         | 3                                               | -   |      |
| t <sub>h(CLKH-ADV)</sub>    | FMC_A/D[15:0] valid data after FMC_CLK high                                          | 1                                               | -   |      |
| t <sub>su(NWAIT-CLKH)</sub> | FMC_NWAIT valid before FMC_CLK high                                                  | 3                                               | -   |      |
| t <sub>h(CLKH-NWAIT)</sub>  | FMC_NWAIT valid after FMC_CLK high                                                   | 1.5                                             | -   |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

<sup>2.</sup> Clock ratio R = (FMC\_CLK period / fmc\_ker\_ck period).



Figure 29. Synchronous multiplexed PSRAM write timings

Table 71. Synchronous multiplexed PSRAM write timings<sup>(1)</sup>

| Symbol                      | Parameter                                                                                   | Min                                             | Max | Unit |
|-----------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|-----|------|
| t <sub>w(CLK)</sub>         | FMC_CLK period, V <sub>DD</sub> range = 2.7 to 3.6 V                                        | R×T <sub>fmc_ker_ck</sub> -1 <sup>(2)</sup>     | -   |      |
| t <sub>d(CLKL-NExL)</sub>   | FMC_CLK low to FMC_NEx low (x=02)                                                           | -                                               | 1   |      |
| t <sub>d(CLKH-NExH)</sub>   | FMC_CLK high to FMC_NEx high (x= 02) $R \times T_{fmc\_ker\_ck}/2 + 0.5^{(2)}$              |                                                 | -   |      |
| t <sub>d(CLKL-NADVL)</sub>  | FMC_CLK low to FMC_NADV low                                                                 | -                                               | 1.5 |      |
| t <sub>d(CLKL-NADVH)</sub>  | FMC_CLK low to FMC_NADV high                                                                | 1                                               | -   |      |
| t <sub>d(CLKL-AV)</sub>     | FMC_CLK low to FMC_Ax valid (x=1625)                                                        | -                                               | 1   |      |
| t <sub>d(CLKH-AIV)</sub>    | IV) FMC_CLK high to FMC_Ax invalid (x=1625) R×T <sub>fmc_ker_ck</sub> /2+1.5 <sup>(2)</sup> |                                                 | -   |      |
| t <sub>d(CLKL-NWEL)</sub>   | FMC_CLK low to FMC_NWE low                                                                  | NWE low -                                       |     | no.  |
| t <sub>(CLKH-NWEH)</sub>    | EH) FMC_CLK high to FMC_NWE high R×T <sub>fmc_ker_ck</sub> /2+0.5 <sup>(2)</sup>            |                                                 | -   | ns   |
| t <sub>d(CLKL-ADV)</sub>    | FMC_CLK low to FMC_AD[15:0] valid                                                           | -                                               | 1.5 |      |
| t <sub>d(CLKL-ADIV)</sub>   | FMC_CLK low to FMC_AD[15:0] invalid                                                         | 1                                               | -   |      |
| t <sub>d(CLKL-DATA)</sub>   |                                                                                             |                                                 | 3   |      |
| t <sub>d(CLKL-NBLL)</sub>   | L) FMC_CLK low to FMC_NBL low 1                                                             |                                                 | -   |      |
| t <sub>d(CLKH-NBLH)</sub>   | FMC_CLK high to FMC_NBL high                                                                | R×T <sub>fmc_ker_ck</sub> /2+0.5 <sup>(2)</sup> | -   |      |
| t <sub>su(NWAIT-CLKH)</sub> | FMC_NWAIT valid before FMC_CLK high                                                         | 3                                               | -   |      |
| t <sub>h(CLKH-NWAIT)</sub>  | FMC_NWAIT valid after FMC_CLK high                                                          | 1.5                                             | -   |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

<sup>2.</sup> Clock ratio R = (FMC\_CLK period / fmc\_ker\_ck period).



Figure 30. Synchronous non-multiplexed NOR/PSRAM read timings

Table 72. Synchronous non-multiplexed NOR/PSRAM read timings<sup>(1)</sup>

| Symbol                     | Parameter                                                                               | Min                                             | Max | Unit |
|----------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------|-----|------|
| t <sub>w(CLK)</sub>        | FMC_CLK period                                                                          | R×T <sub>fmc_ker_ck</sub> -1 <sup>(2)</sup>     | -   |      |
| t <sub>(CLKL-NExL)</sub>   | FMC_CLK low to FMC_NEx low (x=02)                                                       | -                                               | 1   |      |
| t <sub>d(CLKH-NExH)</sub>  | FMC_CLK high to FMC_NEx high (x= 02) R×T <sub>fmc_ker_ck</sub> /2+0.5 <sup>(2)</sup>    |                                                 | -   |      |
| t <sub>d(CLKL-NADVL)</sub> | FMC_CLK low to FMC_NADV low                                                             |                                                 |     |      |
| t <sub>d(CLKL-NADVH)</sub> | FMC_CLK low to FMC_NADV high 1                                                          |                                                 | -   |      |
| t <sub>d(CLKL-AV)</sub>    | FMC_CLK low to FMC_Ax valid (x=1625)                                                    |                                                 | 1   |      |
| t <sub>d(CLKH-AIV)</sub>   | FMC_CLK high to FMC_Ax invalid (x=1625) R×T <sub>fmc_ker_ck</sub> /2+1.5 <sup>(2)</sup> |                                                 | -   | ns   |
| t <sub>d(CLKL-NOEL)</sub>  | FMC_CLK low to FMC_NOE low                                                              | -                                               | 2   |      |
| t <sub>d(CLKH-NOEH)</sub>  | FMC_CLK high to FMC_NOE high                                                            | R×T <sub>fmc_ker_ck</sub> /2+1.5 <sup>(2)</sup> | -   |      |
| t <sub>su(DV-CLKH)</sub>   | FMC_D[15:0] valid data before FMC_CLK high 3                                            |                                                 | -   |      |
| t <sub>h(CLKH-DV)</sub>    | FMC_D[15:0] valid data after FMC_CLK high 1                                             |                                                 | -   |      |
| t <sub>(NWAIT-CLKH)</sub>  | FMC_NWAIT valid before FMC_CLK high 3                                                   |                                                 | -   |      |
| t <sub>h(CLKH-NWAIT)</sub> | FMC_NWAIT valid after FMC_CLK high                                                      | 1.5                                             | -   |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

2. Clock ratio R = (FMC\_CLK period / fmc\_ker\_ck period).



Table 73. Synchronous non-multiplexed PSRAM write timings<sup>(1)</sup>

| Symbol                      | Parameter                                                                               | Min                                             | Max | Unit  |
|-----------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------|-----|-------|
| t <sub>(CLK)</sub>          | FMC_CLK period                                                                          | R×T <sub>fmc_ker_ck</sub> -1 <sup>(2)</sup>     | -   |       |
| t <sub>d(CLKL-NExL)</sub>   | FMC_CLK low to FMC_NEx low (x=02)                                                       | -                                               | 1   |       |
| t <sub>(CLKH-NExH)</sub>    | FMC_CLK high to FMC_NEx high (x= 02) R×T <sub>fmc_ker_ck</sub> /2+0.5 <sup>(2)</sup>    |                                                 | -   |       |
| t <sub>d(CLKL-NADVL)</sub>  | FMC_CLK low to FMC_NADV low                                                             | -                                               | 1.5 |       |
| t <sub>d(CLKL-NADVH)</sub>  | FMC_CLK low to FMC_NADV high                                                            | 1                                               | -   |       |
| t <sub>d(CLKL-AV)</sub>     | FMC_CLK low to FMC_Ax valid (x=1625)                                                    | -                                               | 1   |       |
| t <sub>d(CLKH-AIV)</sub>    | FMC_CLK high to FMC_Ax invalid (x=1625) R×T <sub>fmc_ker_ck</sub> /2+1.5 <sup>(2)</sup> |                                                 | -   | ns ns |
| t <sub>d(CLKL-NWEL)</sub>   | FMC_CLK low to FMC_NWE low -                                                            |                                                 | 1   | 113   |
| t <sub>d(CLKH-NWEH)</sub>   | FMC_CLK high to FMC_NWE high                                                            | R×T <sub>fmc_ker_ck</sub> /2+0.5 <sup>(2)</sup> | -   |       |
| t <sub>d(CLKL-Data)</sub>   | FMC_D[15:0] valid data after FMC_CLK low                                                | -                                               | 3   |       |
| t <sub>d(CLKL-NBLL)</sub>   | FMC_CLK low to FMC_NBL low 1                                                            |                                                 | -   |       |
| t <sub>d(CLKH-NBLH)</sub>   | FMC_CLK high to FMC_NBL high R×T <sub>fmc_ker_ck</sub> /2+0.5 <sup>(2)</sup>            |                                                 | -   |       |
| t <sub>su(NWAIT-CLKH)</sub> | FMC_NWAIT valid before FMC_CLK high                                                     | 3                                               | -   |       |
| t <sub>h(CLKH-NWAIT)</sub>  | FMC_NWAIT valid after FMC_CLK high                                                      | 1.5                                             | -   |       |

<sup>1.</sup> Evaluated by characterization, not tested in production.

#### NAND controller waveforms and timings

*Figure 32* through *Figure 35* represent synchronous waveforms, and *Table 74* and *Table 75* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- FMC\_SetupTime = 0x01
- FMC\_WaitSetupTime = 0x03
- FMC\_HoldSetupTime = 0x02
- FMC\_HiZSetupTime = 0x01
- Bank = FMC\_Bank\_NAND
- MemoryDataWidth = FMC\_MemoryDataWidth\_16b
- ECC = FMC ECC Enable
- ECCPageSize = FMC\_ECCPageSize\_512Bytes
- TCLRSetupTime = 0
- TARSetupTime = 0
- C<sub>L</sub> = 30 pF

In all timing tables, the  $T_{fmc\ ker\ ck}$  is the fmc\_ker\_ck clock period.

<sup>2.</sup> Clock ratio R = (FMC\_CLK period / fmc\_ker\_ck period).

FMC\_NCEX

ALE (FMC\_A17)
CLE (FMC\_A16)

FMC\_NWE

FMC\_NOE (NRE)

Told(ALE-NOE)

tsu(D-NOE)

Th(NOE-ALE)

MS32767V1

Figure 32. NAND controller waveforms for read access





ALE (FMC\_A17)
CLE (FMC\_A16)

FMC\_NWE

Tw(NOE)

Th(NOE-ALE)

FMC\_D[15:0]

MS32769V1

Figure 34. NAND controller waveforms for common memory read access

Figure 35. NAND controller waveforms for common memory write access



Table 74. Switching characteristics for NAND flash read cycles<sup>(1)</sup>

| Symbol                  | Parameter                                     | Min                           | Max                         | Unit |
|-------------------------|-----------------------------------------------|-------------------------------|-----------------------------|------|
| t <sub>w(N0E)</sub>     | FMC_NOE low width                             | 4T <sub>fmc_ker_ck</sub> -1   | 4T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>su(D-NOE)</sub>  | FMC_D[15-0] valid data before FMC_NOE high 11 |                               | -                           |      |
| t <sub>h(NOE-D)</sub>   | FMC_D[15-0] valid data after FMC_NOE high     | 0                             | -                           | ns   |
| t <sub>d(ALE-NOE)</sub> | FMC_ALE valid before FMC_NOE low              | -                             | 2T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>h(NOE-ALE)</sub> | FMC_NWE high to FMC_ALE invalid               | 3T <sub>fmc_ker_ck</sub> +0.5 | -                           |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

| Symbol                  | Parameter                             | Min                           | Max                         | Unit |
|-------------------------|---------------------------------------|-------------------------------|-----------------------------|------|
| t <sub>w(NWE)</sub>     | FMC_NWE low width                     | 4T <sub>fmc_ker_ck</sub> -1   | 4T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>v(NWE-D)</sub>   | FMC_NWE low to FMC_D[15-0] valid      | 0                             | -                           |      |
| t <sub>h(NWE-D)</sub>   | FMC_NWE high to FMC_D[15-0] invalid   | 3T <sub>fmc_ker_ck</sub>      | -                           | ns   |
| t <sub>d(D-NWE)</sub>   | FMC_D[15-0] valid before FMC_NWE high | 4T <sub>fmc_ker_ck</sub> -3.5 | -                           | 115  |
| t <sub>d(ALE-NWE)</sub> | FMC_ALE valid before FMC_NWE low      | -                             | 2T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>h(NWE-ALE)</sub> | FMC_NWE high to FMC_ALE invalid       | 3T <sub>fmc_ker_ck</sub> +0.5 | -                           |      |

Table 75. Switching characteristics for NAND flash write cycles<sup>(1)</sup>

#### 6.3.20 QUADSPI interface characteristics

Unless otherwise specified, the parameters given in *Table 76* and *Table 77* for QUADSPI are derived from tests performed under the ambient temperature,  $F_{axiss\_ck}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 13: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>
- I/O compensation cell enabled
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics.

**Symbol Parameter Conditions** Min Max Unit Тур  $2.7 \text{ V} \le \text{V}_{\text{DD}} < 3.6 \text{ V}$ 166  $C_L = 20 pF$ F<sub>ck1/t(CLK)</sub> QUADSPI clock frequency MHz  $1.71 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$ 90  $C_{L} = 15 \text{ pF}$  $t_{(CLK)}/2 - 0.5$  $t_{(CLK)}/2 + 0.5$ t<sub>w(CLKH)</sub> QUADSPI clock high and low time  $t_{(CLK)}/2 - 0.5$  $t_{(CLK)}/2 + 0.5$ tw(CLKL) Data input setup time 2.5 t<sub>s(IN)</sub> ns Data input hold time 1.5 t<sub>h(IN)</sub> Data output valid time 1 1.5  $t_{v(OUT)}$ Data output hold time 0 t<sub>h(OUT)</sub>

Table 76. QUADSPI characteristics in SDR mode

<sup>1.</sup> Evaluated by characterization, not tested in production.

Table 77. QUADSPI characteristics in DDR mode

| Symbol                                         | Parameter                  | Conditions                                   | Min                         | Тур                     | Max                       | Unit    |
|------------------------------------------------|----------------------------|----------------------------------------------|-----------------------------|-------------------------|---------------------------|---------|
| F                                              | QUADSPI clock<br>frequency | 2.7 V < V <sub>DD</sub> < 3.6 V<br>CL=20 pF  | -                           | -                       | 90                        | MHz     |
| F <sub>ck1/t(CLK)</sub>                        |                            | 1.71 V < V <sub>DD</sub> < 3.6 V<br>CL=15 pF | -                           | -                       | 90                        | IVII IZ |
| t <sub>w(CLKH)</sub>                           | QUADSPI clock high and     | -                                            | t <sub>(CLK)</sub> /2 - 0.5 | -                       | $t_{(CLK)}/2 + 0.5$       |         |
| t <sub>w(CLKL)</sub>                           | low time                   | -                                            | t <sub>(CLK)</sub> /2 - 0.5 | -                       | $t_{(CLK)}/2 + 0.5$       |         |
| t <sub>sr(IN)</sub> , t <sub>sf(IN)</sub>      | Data input setup time      | -                                            | 2                           | -                       | -                         |         |
| t <sub>hr(IN)</sub> , t <sub>hf(IN)</sub>      | Data input hold time       | -                                            | 1.5                         | -                       | -                         |         |
| _                                              |                            | DHHC = 0                                     | -                           | 1                       | 1.5                       | ns      |
| t <sub>vr(OUT)</sub> ,<br>t <sub>vf(OUT)</sub> | Data output valid time     | DHHC = 1<br>Pres = 1, 2                      | -                           | t <sub>(CLK)</sub> /4+1 | t <sub>(CLK)</sub> /4+1.5 |         |
| t <sub>hr(OUT)</sub> ,<br>t <sub>hf(OUT)</sub> |                            | DHHC = 0                                     | 0                           | -                       | -                         |         |
|                                                | Data output hold time      | DHHC = 1<br>Pres = 1, 2                      | t <sub>(CLK)</sub> /4       | -                       | -                         |         |

Figure 36. QUADSPI timing diagram - SDR mode



Figure 37. QUADSPI timing diagram - DDR mode



#### 6.3.21 Delay block (DLYB) characteristics

Unless otherwise specified, the parameters given in *Table 78* for the delay block are derived from tests performed under the ambient temperature, f<sub>rcc\_c\_ck</sub> frequency and V<sub>DD</sub> supply voltage summarized in *Table 13: General operating conditions*.

Table 78. Dynamics characteristics: Delay block characteristics

| Symbol            | Parameter     | Conditions | Min | Тур | Max | Unit |
|-------------------|---------------|------------|-----|-----|-----|------|
| t <sub>init</sub> | Initial delay | -          | 350 | 500 | 800 | ne   |
| $t_\Delta$        | Unit Delay    | -          | 37  | 40  | 43  | ps   |

#### 6.3.22 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 79*, *Table 80* and *Table 81* are derived from tests performed under the ambient temperature and  $V_{DDA}$  supply voltage conditions summarized in *Table 13: General operating conditions*. In *Table 79*, *Table 80* and *Table 81*,  $f_{ADC}$  refers to  $f_{adc\_ker\_ck}$ .

Note:

When both ADCs are used, the kernel clock should be the same for both ADCs and the embedded ADC prescalers cannot be used.

173/223

**Electrical characteristics** 

### Table 79. 12-bit ADC characteristics<sup>(1)(2)</sup>

| Symbol            | Parameter                                  | Conditions                                                                                |                                    |                                                                                                 | Min              | Тур | Max       | Unit     |  |  |  |
|-------------------|--------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------|------------------|-----|-----------|----------|--|--|--|
| $V_{DDA}$         | Analog power supply for ADC ON             |                                                                                           | -                                  |                                                                                                 | 1.62             | -   | 3.6       |          |  |  |  |
| V <sub>REF+</sub> | Positive reference voltage                 | V <sub>DDA</sub> ≥ V <sub>REF+</sub>                                                      | $V_{DDA} \ge V_{REF+}$             |                                                                                                 |                  | -   | $V_{DDA}$ | V        |  |  |  |
| V <sub>REF-</sub> | Negative reference voltage                 |                                                                                           | -                                  |                                                                                                 | V <sub>SSA</sub> | -   | -         |          |  |  |  |
| f <sub>ADC</sub>  | ADC clock frequency                        | 1,62 V ≤ V <sub>DDA</sub> ≤ 3.6 V                                                         | ,                                  |                                                                                                 | 1.5              | -   | 75        | MHz      |  |  |  |
|                   |                                            |                                                                                           | Continuous                         | 1.8 V $\leq$ V <sub>DDA</sub> $\leq$ 3.6 V<br>f <sub>ADC</sub> = 75 MHz                         | -                | -   | 5.00      |          |  |  |  |
|                   | Sampling rate for fast channels (VIN[0:5]) | Resolution = 12 bits                                                                      | mode <sup>(3)</sup>                | 1.62 V $\leq$ V <sub>DDA</sub> $\leq$ 3.6 V<br>f <sub>ADC</sub> = 70 MHz                        | -                | -   | 4.66      |          |  |  |  |
|                   |                                            | $-40 \text{ °C} \le T_{\text{J}} \le 125 \text{ °C}$<br>SMP = 2.5                         | Single or<br>Discontinuous<br>mode | $2.4 \text{ V} \le \text{V}_{DDA} \le 3.6 \text{ V}$<br>$f_{ADC} = 60 \text{ MHz}^{(4)}$        | -                | -   | 4.00      |          |  |  |  |
|                   |                                            |                                                                                           |                                    | 1.62 V $\leq$ V <sub>DDA</sub> $\leq$ 3.6V<br>$f_{ADC} = 50 \text{ MHz}^{(4)}$                  | -                | -   | 3.33      |          |  |  |  |
| $f_S$             |                                            | Resolution = 10 bits<br>$-40 \text{ °C} \le T_{\text{J}} \le 125 \text{ °C}$<br>SMP = 2.5 | Continuous mode <sup>(3)</sup>     | $1.62 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{V}$ $f_{\text{ADC}} = 75 \text{ MHz}$   | -                | -   | 5.77      | MSPS     |  |  |  |
| 'S                |                                            |                                                                                           | Single or<br>Discontinuous<br>mode | $2.4 \text{ V} \le \text{V}_{DDA} \le 3.6 \text{ V}$<br>$f_{ADC} = 75 \text{ MHz}^{(4)}$        | -                | -   | 5.77      | I WIOI O |  |  |  |
|                   |                                            |                                                                                           |                                    | 1.62 V $\leq$ V <sub>DDA</sub> $\leq$ 3.6V<br>f <sub>ADC</sub> = 65 MHz <sup>(4)</sup>          | -                | -   | 5.00      |          |  |  |  |
|                   |                                            | Resolution = 8 bits<br>$-40 \text{ °C} \le T_J \le 125 \text{ °C}$<br>SMP = 2.5           | All modes <sup>(3)</sup>           | $1.62 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{V}$ $f_{\text{ADC}} = 75 \text{ MHz}$ | -                | -   | 6.82      |          |  |  |  |
|                   |                                            | Resolution = 6 bits<br>$-40 \text{ °C} \le T_J \le 125 \text{ °C}$<br>SMP = 2.5           | All modes <sup>(3)</sup>           | $1.62 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{V}$ $f_{\text{ADC}} = 75 \text{ MHz}$ | -                | -   | 8.33      |          |  |  |  |

|   | 1 |
|---|---|
| y |   |
|   |   |

## Table 79. 12-bit ADC characteristics<sup>(1)(2)</sup> (continued)

| Symbol                            | Parameter                          | Conditions                                                                                                   |   |                                          | Min                      | Тур                 | Max                      | Unit                     |
|-----------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------|---|------------------------------------------|--------------------------|---------------------|--------------------------|--------------------------|
|                                   | Sampling rate for slow channels    | Resolution = 12 bits<br>$-40 ^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125 ^{\circ}\text{C}$<br>SMP = 2.5 |   | f - 25 MU7(4)                            | -                        | -                   | 2.3                      |                          |
| f <sub>S</sub>                    |                                    | Resolution = 10 bits<br>$-40 ^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125 ^{\circ}\text{C}$<br>SMP = 2.5 |   | f <sub>ADC</sub> = 35 MHz <sup>(4)</sup> | -                        | -                   | 2.7                      | -                        |
|                                   |                                    | Resolution = 8 bits<br>$-40 ^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125 ^{\circ}\text{C}$<br>SMP = 2.5  | - | f <sub>ADC</sub> = 50 MHz <sup>(4)</sup> | -                        | -                   | 4.5                      | MSPS                     |
|                                   |                                    | Resolution = 6 bits<br>$-40 ^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125 ^{\circ}\text{C}$<br>SMP = 2.5  |   |                                          | -                        | -                   | 5.5                      |                          |
| t <sub>TRIG</sub>                 | External trigger period            | Resolution = 12 bits                                                                                         |   |                                          | -                        | -                   | 15                       | 1/f <sub>ADC</sub>       |
| V <sub>AIN</sub>                  | Conversion voltage range           | -                                                                                                            |   |                                          | 0                        | -                   | V <sub>REF+</sub>        | V                        |
| V <sub>CMIV</sub>                 | Common mode input voltage          | Differential mode                                                                                            |   |                                          | V <sub>REF</sub> /2- 10% | V <sub>REF</sub> /2 | V <sub>REF</sub> /2+ 10% | V                        |
|                                   | External input impedance           | Resolution = 12 bits, T <sub>J</sub> = 125 °C                                                                |   | -                                        | -                        | 220                 | - Ω                      |                          |
| R <sub>AIN</sub> <sup>(5)</sup>   |                                    | Resolution = 10 bits, T <sub>J</sub> = 125 °C                                                                |   | -                                        | -                        | 2100                |                          |                          |
| 'AIN'                             |                                    | Resolution = 8 bits, T <sub>J</sub> = 125 °C                                                                 |   | -                                        | -                        | 12000               |                          |                          |
|                                   |                                    | Resolution = 6 bits, T <sub>J</sub> = 125 °C                                                                 |   | -                                        | -                        | 80000               |                          |                          |
| C <sub>ADC</sub>                  | Internal sample and hold capacitor | -                                                                                                            |   |                                          | -                        | 3                   | -                        | pF                       |
| t <sub>ADC</sub><br>VREG_<br>STUP | ADC LDO startup time               | -                                                                                                            |   |                                          | -                        | 5                   | 10                       | μs                       |
| t <sub>STAB</sub>                 | ADC power-up time                  | LDO already started                                                                                          |   |                                          | 1                        | -                   | -                        | con-<br>version<br>cycle |

Electrical characteristics

| Table 79. 12-bit ADC c | haracteristics(1)(2) | (continued) |
|------------------------|----------------------|-------------|
|------------------------|----------------------|-------------|

| Symbol              | Parameter                                                                    | Conditions                   | Min                      | Тур | Max   | Unit               |
|---------------------|------------------------------------------------------------------------------|------------------------------|--------------------------|-----|-------|--------------------|
| t <sub>OFF</sub> _  | Offset calibration time                                                      | -                            | 135                      |     |       |                    |
|                     |                                                                              | CKMODE = 00                  | 1.5                      | 2   | 2.5   |                    |
|                     | Trigger conversion latency for regular and injected channels                 | CKMODE = 01                  | -                        | -   | 2.5   |                    |
| t <sub>LATR</sub>   | without aborting the conversion                                              | CKMODE = 10                  | -                        | -   | 2.5   |                    |
|                     |                                                                              | CKMODE = 11                  | -                        | -   | 2.25  |                    |
|                     | Triangue con version later over for                                          | CKMODE = 00                  | 2.5                      | 3   | 3.5   | 1/f <sub>ADC</sub> |
| t <sub>LATR</sub>   | Trigger conversion latency for regular and injected channels                 | CKMODE = 01                  | -                        | -   | 3.5   |                    |
| INJ                 | when a regular conversion is aborted                                         | CKMODE = 10                  | -                        | -   | 3.5   |                    |
|                     | aborted                                                                      | CKMODE = 11                  | -                        | -   | 3.25  |                    |
| t <sub>S</sub>      | Sampling time <sup>(6)</sup>                                                 | -                            | 2.5                      | -   | 640.5 |                    |
| t <sub>CONV</sub>   | Total conversion time (including sampling time)                              | N-bits resolution            | t <sub>S</sub> + 0.5 + N | -   | -     |                    |
|                     | ADC consumption on $V_{DDA}$ and $V_{REF}$ , Differential mode               | f <sub>S</sub> = 5 MSPS      | -                        | 540 | -     |                    |
| I <sub>DDA_D</sub>  |                                                                              | f <sub>S</sub> = 1 MSPS      | -                        | 190 | -     |                    |
| (ADC)               |                                                                              | f <sub>S</sub> =0.1 MSPS     | -                        | 49  | -     |                    |
|                     |                                                                              | f <sub>S</sub> = 5 MSPS      | -                        | 416 | -     | μA                 |
| I <sub>DDA_SE</sub> | ADC consumption on V <sub>DDA</sub> and V <sub>RFF</sub> , Single-ended mode | f <sub>S</sub> = 1 MSPS      | -                        | 153 | -     |                    |
| (ADC)               | V <sub>REF</sub> , Single-ended mode                                         | f <sub>S</sub> = 0.1 MSPS    | -                        | 46  | -     | 7 !                |
|                     |                                                                              | f <sub>ADC</sub> = 75 MHz    | -                        | 180 | -     | μΑ                 |
|                     |                                                                              | f <sub>ADC</sub> = 50 MHz    | -                        | 135 | -     |                    |
| I <sub>DD</sub>     | ADO                                                                          | f <sub>ADC</sub> = 25 MHz    | -                        | 90  | -     |                    |
| (ADC)               | ADC consumption on V <sub>DD</sub>                                           | f <sub>ADC</sub> = 12.5 MHz  | -                        | 45  | -     |                    |
|                     |                                                                              | f <sub>ADC</sub> = 6.25 MHz  | -                        | 22  | -     |                    |
|                     |                                                                              | f <sub>ADC</sub> = 3.125 MHz | -                        | 11  | -     |                    |







- 2. The voltage booster on ADC switches must be used for  $V_{DDA}$  < 2.4 V (embedded I/O switches).
- 3. The conversion of the first element in the group is excluded.
- 4. f<sub>ADC</sub> value corresponds to the maximum frequency that can be reached considering a 2.5 sampling period. For other SMPy sampling periods, the maximum frequency is f<sub>ADC</sub> value \* SMPy / 2.5 with a limitation to 75 MHz.
- 5. The tolerance is 2 LSBs for 12-bit, 10-bit and 8-bit resolutions. It is otherwise specified.
- 6. The sampling time can vary depending on the condition with ±0.5 clock cycles. Resulting in minimum of 2.0 cycles and maximum of 641 cycles. Refer to the detailed description in the reference manual.

DS13874 Rev 1

Table 80. Minimum sampling time vs R<sub>AIN</sub> (12-bit ADC)<sup>(1)(2)</sup>

|            | DAM (2)  |                              | npling time (s)              |
|------------|----------|------------------------------|------------------------------|
| Resolution | RAIN (Ω) | Fast channels <sup>(3)</sup> | Slow channels <sup>(4)</sup> |
|            | 47       | 3.75E-08                     | 6.12E-08                     |
|            | 68       | 3.94E-08                     | 6.25E-08                     |
|            | 100      | 4.36E-08                     | 6.51E-08                     |
| 12 bits    | 150      | 5.11E-08                     | 7.00E-08                     |
| 12 Dits    | 220      | 6.54E-08                     | 7.86E-08                     |
|            | 330      | 8.80E-08                     | 9.57E-08                     |
|            | 470      | 1.17E-07                     | 1.23E-07                     |
|            | 680      | 1.60E-07                     | 1.65E-07                     |
|            | 47       | 3.19E-08                     | 5.17E-08                     |
|            | 68       | 3.35E-08                     | 5.28E-08                     |
|            | 100      | 3.66E-08                     | 5.45E-08                     |
|            | 150      | 4.35E-08                     | 5.83E-08                     |
|            | 220      | 5.43E-08                     | 6.50E-08                     |
| 10 bits    | 330      | 7.18E-08                     | 7.89E-08                     |
| TO DIES    | 470      | 9.46E-08                     | 1.00E-07                     |
|            | 680      | 1.28E-07                     | 1.33E-07                     |
|            | 1000     | 1.81E-07                     | 1.83E-07                     |
|            | 1500     | 2.63E-07                     | 2.63E-07                     |
|            | 2200     | 3.79E-07                     | 3.76E-07                     |
|            | 3300     | 5.57E-07                     | 5.52E-07                     |
|            | 47       | 2.64E-08                     | 4.17E-08                     |
|            | 68       | 2.76E-08                     | 4.24E-08                     |
|            | 100      | 3.02E-08                     | 4.39E-08                     |
|            | 150      | 3.51E-08                     | 4.66E-08                     |
|            | 220      | 4.27E-08                     | 5.13E-08                     |
|            | 330      | 5.52E-08                     | 6.19E-08                     |
| 8 bits     | 470      | 7.17E-08                     | 7.72E-08                     |
|            | 680      | 9.68E-08                     | 1.00E-07                     |
|            | 1000     | 1.34E-07                     | 1.37E-07                     |
|            | 1500     | 1.93E-07                     | 1.94E-07                     |
|            | 2200     | 2.76E-07                     | 2.74E-07                     |
|            | 3300     | 4.06E-07                     | 4.01E-07                     |
|            | 4700     | 5.73E-07                     | 5.62E-07                     |

Table 80. Minimum sampling time vs  $R_{AIN}$  (12-bit ADC)<sup>(1)(2)</sup> (continued)

| Decelution         |          | Minimum san                  | npling time (s)              |
|--------------------|----------|------------------------------|------------------------------|
| Resolution         | RAIN (Ω) | Fast channels <sup>(3)</sup> | Slow channels <sup>(4)</sup> |
| 0.1.11             | 6800     | 8.21E-07                     | 7.99E-07                     |
| 8 bits (continued) | 10000    | 1.20E-06                     | 1.17E-06                     |
| (continued)        | 15000    | 1.79E-06                     | 1.74E-06                     |
|                    | 47       | 2.14E-08                     | 3.16E-08                     |
|                    | 68       | 2.23E-08                     | 3.21E-08                     |
|                    | 100      | 2.40E-08                     | 3.31E-08                     |
|                    | 150      | 2.68E-08                     | 3.52E-08                     |
|                    | 220      | 3.13E-08                     | 3.87E-08                     |
|                    | 330      | 3.89E-08                     | 4.51E-08                     |
|                    | 470      | 4.88E-08                     | 5.39E-08                     |
| 6 bits             | 680      | 6.38E-08                     | 6.79E-08                     |
| O DILS             | 1000     | 8.70E-08                     | 8.97E-08                     |
|                    | 1500     | 1.23E-07                     | 1.24E-07                     |
|                    | 2200     | 1.73E-07                     | 1.73E-07                     |
|                    | 3300     | 2.53E-07                     | 2.49E-07                     |
|                    | 4700     | 3.53E-07                     | 3.45E-07                     |
|                    | 6800     | 5.04E-07                     | 4.90E-07                     |
|                    | 10000    | 7.34E-07                     | 7.11E-07                     |
|                    | 15000    | 1.09E-06                     | 1.05E-06                     |

<sup>1.</sup> Specified by design, not tested in production.

<sup>2.</sup> Data valid up to 130 °C, with a 22 pF PCB capacitor and  $V_{DDA}$  = 1.62 V.

<sup>3.</sup> Fast channels correspond to ADCx\_INx[0:5].

<sup>4.</sup> Slow channels correspond to all ADC inputs except for the Fast channels.

Table 81. 12-bit ADC accuracy<sup>(1)(2)</sup>

| Symbol | Parameter                     | Cond          | itions       | Min | Тур   | Max     | Unit |
|--------|-------------------------------|---------------|--------------|-----|-------|---------|------|
| ET     | Total unadjusted error        | Fast and slow | Single ended | -   | ±3.5  | ±12     |      |
|        | Total urlaujusteu error       | channel       | Differential | -   | ±2.5  | ±5      |      |
| EO     | Offset error                  | Single ended  |              | -   | ±3    | ±5.5    |      |
|        | Oliset error                  | Differential  |              | -   | ±2    | ±3.5    |      |
| EG     | Gain error                    | Single ended  |              | -   | ±3.5  | ±11     | ±LSB |
| EG     | Gain enoi                     | Differential  |              | -   | ±2.5  | ±5      | ILOD |
| ED     | Differential linearity error  | Single ended  |              | -   | ±0.75 | +1.5/-1 | •    |
|        | Differential fifteatity error | Differential  |              | -   | ±0.75 | +2.5/-1 |      |
| EL     | Integral linearity error      | Fast and slow | Single ended | -   | ±2    | ±4.5    |      |
|        |                               | channel       | Differential | -   | ±1    | ±2      |      |
| ENOB   | Effective number of bits      | Single ended  |              | -   | 10.8  | -       | bits |
| LINOB  |                               | Differential  |              | -   | 11.5  | -       | טונס |
| SINAD  | Signal-to-noise and           | Single ended  |              | -   | 68    | -       |      |
| SINAD  | distortion ratio              | Differential  |              | -   | 71    | -       |      |
| SNR    | Signal to poise ratio         | Single ended  |              | -   | 70    | -       | dB   |
| SINK   | Signal-to-noise ratio         | Differential  |              | -   | 72    | -       | иь   |
| THD    | Total harmonic distortion     | Single ended  | Single ended |     | -70   | -       |      |
| טחו    | Total Harmonic distortion     | Differential  | Differential |     |       | -       |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

<sup>2.</sup> ADC DC accuracy values are measured after internal calibration in Continuous mode.

# 6.3.23 Voltage reference buffer characteristics

Table 82. VREFBUF characteristics<sup>(1)</sup>

| Symbol                      | Parameter                                       | Condition                            | ons                        | Min                                           | Тур   | Max   | Unit       |
|-----------------------------|-------------------------------------------------|--------------------------------------|----------------------------|-----------------------------------------------|-------|-------|------------|
|                             |                                                 |                                      | VSCALE = 000               | 2.8                                           | 3.3   | 3.6   |            |
|                             |                                                 | Nameda                               | VSCALE = 001               | 2.4                                           | -     | 3.6   |            |
|                             |                                                 | Normal mode                          | VSCALE = 010               | 2.1                                           | -     | 3.6   |            |
| .,                          | Analag ayanlı valtaga                           |                                      | VSCALE = 011               | 1.95                                          | -     | 3.6   |            |
| $V_{DDA}$                   | Analog supply voltage                           |                                      | VSCALE = 000               | 1.62                                          | -     | 2.80  |            |
|                             |                                                 | Degraded mode <sup>(2)</sup>         | VSCALE = 001               | 1.62                                          | -     | 2.40  |            |
|                             |                                                 | Degraded mode.                       | VSCALE = 010               | 1.62                                          | -     | 2.10  |            |
|                             |                                                 |                                      | VSCALE = 011               | 1.62                                          | -     | 1.95  |            |
|                             |                                                 | Nameda                               | VSCALE = 000               | 2.497                                         | 2.5   | 2.503 |            |
|                             |                                                 | Normal mode<br>@30 °C                | VSCALE = 001               | 2.045                                         | 2.048 | 2.051 |            |
|                             | @I <sub>loa</sub><br>V <sub>DDA</sub>           | @I <sub>load</sub> = 10 uA           | VSCALE = 010               | 1.798                                         | 1.8   | 1.802 |            |
|                             |                                                 | $V_{DDA} = 3$                        | V <sub>DDA</sub> = 3.3 V   | VSCALE = 011                                  | 1.648 | 1.65  | 1.652      |
|                             |                                                 | uffer Output                         | VSCALE = 000               | Min<br>(V <sub>DDA</sub> -<br>0.22,<br>2.498) | -     | 2.502 |            |
| V <sub>REFBUF</sub><br>_OUT |                                                 |                                      | VSCALE = 001               | Min<br>(V <sub>DDA</sub> -<br>0.22,<br>2.047) | -     | 2.051 |            |
|                             |                                                 | Degraded mode <sup>(2)</sup>         | VSCALE = 010               | Min<br>(V <sub>DDA</sub> -<br>0.22,<br>1.800) | -     | 1.807 |            |
|                             |                                                 |                                      | VSCALE = 011               | Min<br>(V <sub>DDA</sub> -<br>0.22,<br>1.65)  | -     | 1.657 |            |
| TRIM                        | Trim step resolution                            | -                                    | -                          | -                                             | ±0.05 | 1     | %          |
| C <sub>L</sub>              | Load capacitor                                  | -                                    | -                          | 0.5                                           | 1     | 1.50  | uF         |
| esr                         | Equivalent Serial<br>Resistor of C <sub>L</sub> | -                                    | -                          | -                                             | -     | 2     | Ω          |
| I <sub>load</sub>           | Static load current                             | -                                    | -                          | -                                             | -     | 4     | mA         |
|                             | Line regulation                                 | 201/21/ /261/                        | I <sub>load</sub> = 500 μA | -                                             | 200   | -     | nnm^/      |
| I <sub>line_reg</sub>       | Line regulation                                 | 2.8 V ≤ V <sub>DDA</sub> ≤ 3.6 V     | I <sub>load</sub> = 4 mA   | -                                             | 100   | -     | ppm/V      |
| I <sub>load_reg</sub>       | Load regulation                                 | 500 μA ≤ I <sub>LOAD</sub> ≤<br>4 mA | Normal Mode                | -                                             | 50    | -     | ppm/<br>mA |

181/223

Table 82. VREFBUF characteristics<sup>(1)</sup> (continued)

| Symbol                          | Parameter                                                                                          | Conditio                          | ns | Min | Тур                                        | Max  | Unit       |
|---------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------|----|-----|--------------------------------------------|------|------------|
| T <sub>coeff</sub>              | Temperature coefficient                                                                            | -40 °C < T <sub>J</sub> < +125 °C | -  | -   | T <sub>coeff</sub> _<br>VREF<br>INT<br>+75 | -    | ppm/<br>°C |
| PSRR                            | Power supply rejection                                                                             | DC                                | -  | -   | 60                                         | -    | dB         |
| FORK                            | rower supply rejection                                                                             | 100 kHz                           | -  | -   | 40                                         | -    | uБ         |
|                                 |                                                                                                    | $C_L = 0.5  \mu F$                | -  | -   | 300                                        | 350  |            |
| t <sub>START</sub>              | Start-up time <sup>(3)</sup>                                                                       | C <sub>L</sub> = 1 μF             | -  | -   | 500                                        | 650  | μs         |
|                                 |                                                                                                    | C <sub>L</sub> = 1.5 μF           | -  | -   | 650                                        | 800  |            |
| I <sub>INRUSH</sub>             | Control of maximum DC current drive on V <sub>REFBUF_OUT</sub> during startup phase <sup>(4)</sup> | -                                 |    | -   | 8                                          | 13.5 | mA         |
|                                 | VREFBUF                                                                                            | $I_{LOAD} = 0 \mu A$              | -  | -   | 15                                         | 16   |            |
| I <sub>DDA(VRE</sub><br>FBUF)   | consumption from                                                                                   | I <sub>LOAD</sub> = 500 μA        | -  | -   | 16                                         | 21   | μΑ         |
| 1 501 )                         | $V_{DDA}$                                                                                          | I <sub>LOAD</sub> = 4 mA          | -  | -   | 32                                         | 41   |            |
| R <sub>VREF</sub> BUF_PullD own | Pull-down resistor<br>when ENVR = HIZ = 0                                                          | -                                 |    | -   | 100                                        | -    | Ω          |

- 1. Specified by design, not tested in production.
- $2. \quad \text{In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage ($V_{DDA}$-drop voltage)}.$
- 3. if VREF+ pin has residual voltage when VREFBUF is enabled (VREFBUF\_CSR.ENVR=1), this might create an overshoot on VREFBUF output longer than t<sub>START</sub>. To avoid this, it is necessary that VREF+ pin is correctly discharged before being enabled (below VREFBUF\_OUT minus 1 V, for example below 1.5 V for VSCALE = 000)
  This could be achieved by ensuring VREFBUF is in OFF mode (VREFBUF\_CSR.ENVR=0 and VREFBUF\_CSR.HIZ=0) for sufficient time to discharge C<sub>L</sub> through VREFBUF pull-down.
- 4. To properly control VREFBUF I<sub>INRUSH</sub> current during the startup phase and the change of scaling, V<sub>DDA</sub> voltage should be in the range of 1.95 V-3.6 V, 2.1 V-3.6 V and 2.8 V-3.6 V for VSCALE = 011, 010, 001 and 000, respectively.

### 6.3.24 Temperature sensor characteristics

Table 83. Temperature sensor characteristics

| Symbol                             | Parameter                                                |     | Тур  | Max  | Unit    |
|------------------------------------|----------------------------------------------------------|-----|------|------|---------|
| T <sub>L</sub> <sup>(1)</sup>      | VSENSE linearity with temperature (from Vsensor voltage) | -   | -    | ±3   | °C      |
|                                    | VSENSE linearity with temperature (from ADC counter)     | -   | -    | ±3   |         |
| Avg_Slope <sup>(2)</sup>           | Average slope (from Vsensor voltage)                     | -   | 2    | -    | mV/°C   |
| Avg_Slope · /                      | Average slope (from ADC counter)                         | -   | 2    | -    | IIIV/ C |
| V <sub>30</sub> <sup>(3)</sup>     | Voltage at 30 °C ± 5 °C                                  | -   | 0.62 | -    | V       |
| t <sub>start_run</sub> (1)         | Startup time in Run mode (buffer startup)                | 5.3 | -    | 40.5 | 116     |
| t <sub>S_temp</sub> <sup>(1)</sup> | ADC sampling time when reading the temperature           | 9.8 | -    | -    | μs      |



| Table 83. | <b>Temperature</b> | sensor | characteristics | (continued) |
|-----------|--------------------|--------|-----------------|-------------|
|-----------|--------------------|--------|-----------------|-------------|

| Symbol                              | Parameter                 | Min  | Тур  | Max  | Unit |
|-------------------------------------|---------------------------|------|------|------|------|
| I <sub>sens</sub> <sup>(1)</sup>    | Sensor consumption        | 0.11 | 0.18 | 0.31 |      |
| I <sub>sensbuf</sub> <sup>(1)</sup> | Sensor buffer consumption | 2.3  | 3.8  | 6.1  | μΑ   |

- 1. Specified by design, not tested in production.
- 2. Evaluated by characterization, not tested in production.
- 3. Measured at  $V_{DDA}$  = 3.3 V  $\pm$  10 mV. The  $V_{30}$  ADC conversion result is stored in the TS\_CAL1 byte.

Table 84. Temperature sensor calibration values

| Symbol  | Parameter                                                                                                  | Memory address                       |
|---------|------------------------------------------------------------------------------------------------------------|--------------------------------------|
| TS_CAL1 | TS ADC raw data acquired at temperature of 30 °C ±5 °C V <sub>DDA</sub> = V <sub>REF+</sub> = 3.3 V ±10 mV | 0x5C00 525C[15:0] <sup>(1)(2)</sup>  |
| TS_CAL2 | TS ADC raw data acquired at temperature of 130 °C ±2 °C VDDA = VREF+ = 3.3 V ±10 mV                        | 0x5C00 525C[31:16] <sup>(1)(2)</sup> |

- 1. It is mandatory to read a 32-bit word and to do relevant masking and shifting to isolate the required bits.
- 2. This address is located inside the BSEC and the access is allowed after being enabled in the RCC.

#### 6.3.25 DTS characteristics

Table 85. DTS characteristics<sup>(1)</sup>

| Symbol                      | Parameter                                                 | Conditions                    | Min | Тур  | Max  | Unit  |
|-----------------------------|-----------------------------------------------------------|-------------------------------|-----|------|------|-------|
| f <sub>DTS</sub>            | Output Clock frequency (PTAT clock)                       | -                             | -   | 500  |      | kHz   |
| T <sub>SLOPE</sub>          | Average slope                                             | -                             | -   | 1600 | -    | Hz/°C |
| T <sub>L</sub>              | Linearity with temperature (from Output clock frequency). | V <sub>DDCORE</sub> = 1.25 V  | -   | -    | ±3.8 | °C    |
| T <sub>TOTAL</sub><br>ERROR | Temperature measurement error                             | Temperature:<br>-40 to 125 °C | -5  | -    | +5   | ů     |
| T <sub>VDD</sub><br>CORE    | Additional error due to V <sub>DDCORE</sub> variation     | -                             | -   | 10   | ı    | °C/V  |
| t <sub>TRIM</sub>           | Calibration time                                          | -                             | 2   | -    | -    | ms    |
| t <sub>WAKE_UP</sub>        | Wake-up time from off state until DTS ready signal = 1    | -                             | -   | 50   | ı    | μs    |
| I <sub>DDCORE_DTS</sub>     | DTS consumption on V <sub>DDCORE</sub>                    | -                             | -   | 20   | -    | μΑ    |

<sup>1.</sup> Specified by design, not tested in production.



DS13874 Rev 1 183/223

# 6.3.26 V<sub>BAT</sub> ADC monitoring characteristics and charging characteristics

Table 86. V<sub>BAT</sub> ADC monitoring characteristics<sup>(1)</sup>

| Symbol                             | Parameter                                             |     | Тур  | Max | Unit |
|------------------------------------|-------------------------------------------------------|-----|------|-----|------|
| R                                  | Resistor bridge for V <sub>BAT</sub>                  | -   | 4×26 | -   | kΩ   |
| Q                                  | Ratio on V <sub>BAT</sub> measurement                 | -   | 4    | -   | -    |
| Er <sup>(2)</sup>                  | Error on Q                                            | -10 | -    | +10 | %    |
| t <sub>S_vbat</sub> <sup>(2)</sup> | ADC sampling time when reading V <sub>BAT</sub> input | 9.8 | -    | -   | μs   |

<sup>1.</sup>  $1.20 \text{ V} \le \text{V}_{BAT} \le 3.6 \text{ V}$ 

Table 87. V<sub>BAT</sub> charging characteristics

| Symbol              | Parameter                 | Condition          | Min | Тур | Max | Unit |  |
|---------------------|---------------------------|--------------------|-----|-----|-----|------|--|
| P                   | Battery charging resistor | VBRS in PWR_CR3= 0 | -   | 5   | -   | kO   |  |
| R <sub>BC</sub> Bat | Battery charging resistor | VBRS in PWR_CR3= 1 | -   | 1.5 | -   | kΩ   |  |

# 6.3.27 V<sub>DDCORE</sub>, V<sub>DDCPU</sub>, V<sub>DDQ</sub> DDR monitoring characteristics

Table 88.  $V_{DDCORE}$ ,  $V_{DDCPU}$ ,  $V_{DDQ\_DDR}$  monitoring characteristics

| Symbol                               | Parameter                                                              | Min | Тур | Max | Unit |
|--------------------------------------|------------------------------------------------------------------------|-----|-----|-----|------|
| t <sub>S_vddcore</sub> (1)           | ADC sampling time when reading $V_{\ensuremath{DDCORE}}$ input         | 1   | -   | -   | μs   |
| t <sub>S_vddcpu</sub> <sup>(1)</sup> | ADC sampling time when reading $V_{\mbox{\scriptsize DDCPU}}$ input    | 1   | -   | -   | μs   |
| t <sub>S_vddq_ddr</sub> (1)          | ADC sampling time when reading $V_{\mbox{\scriptsize DDQ\_DDR}}$ input | 1   | 1   | 1   | μs   |

<sup>1.</sup> Specified by design, not tested in production.

### 6.3.28 Voltage booster for analog switch

Table 89. Voltage booster for analog switch characteristics

| Symbol                 | Parameter            | Condition                        | Min  | Тур | Max | Unit |
|------------------------|----------------------|----------------------------------|------|-----|-----|------|
| $V_{DD}$               | Supply voltage       | -                                | 1.71 | -   | 3.6 | V    |
| t <sub>SU(BOOST)</sub> | Booster startup time | -                                | -    | -   | 50  | μs   |
| 1                      | Docator consumption  | 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V | -    | -   | 125 | uА   |
| IDD(BOOST)             | Booster consumption  | 2.7 V < V <sub>DD</sub> < 3.6 V  | -    | -   | 250 | μΑ   |



<sup>2.</sup> Specified by design, not tested in production.

### 6.3.29 Compensation cell

Table 90. Compensation cell characteristics

| Symbol             | Parameter                                                   | Condition                                            | Min | Тур | Max | Unit |
|--------------------|-------------------------------------------------------------|------------------------------------------------------|-----|-----|-----|------|
|                    | V <sub>DD</sub> current consumption during code calculation | $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$ | -   | -   | 3.5 | mA   |
| COMPCELL           |                                                             | 2.7 V < V <sub>DD</sub> < 3.6 V                      | -   | -   | 10  | ША   |
| T <sub>READY</sub> | Time needed for code                                        | 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                     | -   | -   | 300 | 116  |
|                    | calculation                                                 | 2.7 V < V <sub>DD</sub> < 3.6 V                      | -   | -   | 250 | μs   |

### 6.3.30 Digital filter for sigma-delta modulators (DFSDM) characteristics

Unless otherwise specified, the parameters given in *Table 91* for DFSDM are derived from tests performed under the ambient temperature,  $f_{pclkx}$  frequency and  $V_{DD}$  supply voltage summarized in *Table 13: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (DFSDMx\_CKINx, DFSDMx\_DATINx, DFSDMx\_CKOUT for DFSDMx).

Table 91. DFSDM measured timing

| Symbol                 | Parameter                         | Conditions                                                                                                 | Min | Тур | Max                 | Unit |
|------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------|-----|-----|---------------------|------|
| f <sub>DFSDMCLK</sub>  | DFSDM clock                       | 1.71 V < V <sub>DD</sub> < 3.6 V                                                                           | -   | -   | f <sub>SYSCLK</sub> |      |
| f <sub>CKIN</sub>      |                                   | SPI mode (SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.71 V < V <sub>DD</sub> < 3.6 V | -   | -   | 33                  |      |
|                        | Input clock                       | SPI mode (SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>2.7 < V <sub>DD</sub> < 3.6 V    | -   | -   | 33                  |      |
| (1/T <sub>CKIN</sub> ) | frequency                         | SPI mode (SITP[1:0]=0,1),<br>Internal clock mode<br>(SPICKSEL[1:0]≠0),<br>1.71 < V <sub>DD</sub> < 3.6 V   | -   | -   | 33                  | MHz  |
|                        |                                   | SPI mode (SITP[1:0]=0,1),<br>Internal clock mode<br>(SPICKSEL[1:0] $\neq$ 0),<br>2.7 < $V_{DD}$ < 3.6 V    | -   | -   | 33                  |      |
| f <sub>CKOUT</sub>     | Output clock frequency            | 1.71 < V <sub>DD</sub> < 3.6 V                                                                             | -   | -   | 33                  |      |
| DuCy <sub>CKOUT</sub>  | Output clock frequency duty cycle | 1.71 < V <sub>DD</sub> < 3.6 V                                                                             | 45  | 50  | 55                  | %    |



Table 91. DFSDM measured timing (continued)

| Symbol                  | Parameter                                             | Conditions                                                                                                         | Min                                                   | Тур                  | Max                                                    | Unit |
|-------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------|--------------------------------------------------------|------|
| t <sub>wh(CKIN)</sub>   | Input clock high and low time                         | SPI mode (SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.71 < V <sub>DD</sub> < 3.6 V           | T <sub>CKIN</sub> /2 - 0.5                            | T <sub>CKIN</sub> /2 | -                                                      |      |
| t <sub>su</sub>         | Data input setup time                                 | SPI mode (SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.71 < V <sub>DD</sub> < 3.6 V           | 1                                                     | -                    | -                                                      |      |
| t <sub>h</sub>          | Data input hold time                                  | SPI mode (SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.71 < V <sub>DD</sub> < 3.6 V           | 1                                                     | -                    | -                                                      | ns   |
| T <sub>Manchester</sub> | Manchester data<br>period (recovered<br>clock period) | Manchester mode<br>(SITP[1:0]=2,3),<br>Internal clock mode<br>(SPICKSEL[1:0]≠0),<br>1.71 < V <sub>DD</sub> < 3.6 V | (CKOUTDIV+1)<br>×T <sub>DFSDMCLK</sub> <sup>(1)</sup> | -                    | (2×CKOUTDIV)<br>× T <sub>DFSDMCLK</sub> <sup>(1)</sup> |      |

<sup>1.</sup> See DFSDM section in Reference manual for definition of CKOUTDIV.



Figure 38. Channel transceiver timing diagrams

### 6.3.31 Camera interface (DCMIPP) characteristics

Unless otherwise specified, the parameters given in *Table 92* for DCMIPP are derived from tests performed under the ambient temperature,  $F_{mcu\_ck}$  frequency and  $V_{DD}$  supply voltage summarized in *Table 13: General operating conditions*, with the following configuration:

• DCMIPP\_PIXCLK polarity: falling

• DCMIPP\_VSYNC and DCMIPP\_HSYNC polarity: high

Data formats: 16 bits

Capacitive load C = 30 pF

Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>

Table 92. DCMIPP characteristics<sup>(1)</sup>

| Symbol                                                                                       | Parameter                                         | Min | Max | Unit |
|----------------------------------------------------------------------------------------------|---------------------------------------------------|-----|-----|------|
| -                                                                                            | Frequency ratio DCMIPP_PIXCLK/F <sub>mcu_ck</sub> | -   | 0.4 | -    |
| DCMIPP_PIXCLK                                                                                | Pixel clock input                                 | -   | 120 | MHz  |
| D <sub>Pixel</sub>                                                                           | Pixel clock input duty cycle                      | 30  | 70  | %    |
| t <sub>su(DATA)</sub>                                                                        | Data input setup time                             | 1.5 | -   |      |
| t <sub>h(DATA)</sub>                                                                         | Data input hold time                              | 2.5 | -   |      |
| $\begin{aligned} &t_{\text{su}(\text{HSYNC})} \\ &t_{\text{su}(\text{VSYNC})} \end{aligned}$ | DCMIPP_HSYNC/DCMIPP_VSYNC input setup time        | 1.5 | -   | ns   |
| t <sub>h(HSYNC)</sub> t <sub>h(VSYNC)</sub>                                                  | DCMIPP_HSYNC/DCMIPP_VSYNC input hold time         | 2   | -   |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

DCMI\_PIXCLK

DCMI\_PIXCLK

t<sub>su(HSYNC)</sub>

th(HSYNC)

DCMI\_VSYNC

t<sub>su(DATA)</sub>

t<sub>h(DATA)</sub>

DATA[0:13]

MS32414V2

Figure 39. DCMIPP timing diagram

### 6.3.32 LCD-TFT controller (LTDC) characteristics

Unless otherwise specified, the parameters given in *Table 93* for LCD-TFT are derived from tests performed under the ambient temperature,  $F_{pclk4}$  frequency and  $V_{DD}$  supply voltage summarized in *Table 13: General operating conditions*, with the following configuration:

- LCD\_CLK polarity: high
- LCD\_DE polarity: low
- LCD\_VSYNC and LCD\_HSYNC polarity: high
- Pixel formats: 24 bits
- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>
- I/O compensation cell enabled
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V

Table 93. LTDC characteristics (1)

| Symbol                                                                                          | Parameter                        | Conditions                       | Min                          | Max                          | Unit |
|-------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|------------------------------|------------------------------|------|
| f <sub>CLK</sub>                                                                                | LTDC clock output frequency      |                                  | -                            | 90                           | MHz  |
| D <sub>CLK</sub>                                                                                | LTDC clock output duty cycle     |                                  | 45                           | 55                           | %    |
| t <sub>w(CLKH),</sub> t <sub>w(CLKL)</sub>                                                      | Clock High time, low time        |                                  | t <sub>w(CLK)</sub> /2 - 0.5 | t <sub>w(CLK)</sub> /2 + 0.5 |      |
| t <sub>v(DATA)</sub>                                                                            | Data output valid time           |                                  | -                            | 3.5                          |      |
| t <sub>h(DATA)</sub>                                                                            | Data output hold time            | 1.71 V < V <sub>DD</sub> < 3.6 V | 0                            | -                            |      |
| $\begin{array}{c} t_{\text{V(HSYNC)},} \\ t_{\text{V(VSYNC)},} \\ t_{\text{V(DE)}} \end{array}$ | HSYNC/VSYNC/DE output valid time |                                  | -                            | 3                            | ns   |
| t <sub>h(HSYNC)</sub> ,<br>t <sub>h(VSYNC)</sub> ,<br>t <sub>h(DE)</sub>                        | HSYNC/VSYNC/DE output hold time  |                                  | 0                            | -                            |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.



Figure 40. LCD-TFT horizontal timing diagram





#### 6.3.33 Timer characteristics

The parameters given in *Table 94* are specified by design, not tested in production.

Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 94. TIMx characteristics<sup>(1)(2)</sup>

| Symbol                 | Parameter                                               | Min | Max                     | Unit                 |
|------------------------|---------------------------------------------------------|-----|-------------------------|----------------------|
| t <sub>res(TIM)</sub>  | Timer resolution time                                   | 1   | -                       | t <sub>TIMxCLK</sub> |
| f <sub>TIMxCLK</sub>   | Timer kernel clock                                      | 0   | 209                     | MHz                  |
| f <sub>EXT</sub>       | Timer external clock frequency on CH1 to CH4            | 0   | f <sub>TIMxCLK</sub> /2 | IVII IZ              |
| Res <sub>TIM</sub>     | Timer resolution                                        | -   | 16/32                   | bit                  |
|                        | Maximum possible count with 16-bit counters             |     | 65536                   |                      |
| t <sub>MAX_COUNT</sub> | Maximum possible count with 32-bit counter (TIM2, TIM5) | -   | 65536 ×<br>65536        | t <sub>TIMxCLK</sub> |

<sup>1.</sup> TIMx is used as a general term to refer to the TIM1 to TIM17 timers.

Table 95. LPTIMx characteristics<sup>(1)(2)</sup>

| Symbol                 | Parameter                                           | Min | Max                      | Unit                 |
|------------------------|-----------------------------------------------------|-----|--------------------------|----------------------|
| t <sub>res(TIM)</sub>  | Timer resolution time                               | 1   | -                        | t <sub>TIMxCLK</sub> |
| f <sub>LPTIMxCLK</sub> | Timer kernel clock                                  | 0   | 104.5                    |                      |
| f <sub>EXT</sub>       | Timer external clock frequency on Input1 and Input2 | 0   | f <sub>LPTIMxCLK</sub> / | MHz                  |
| Res <sub>TIM</sub>     | Timer resolution                                    | -   | 16                       | bit                  |
| t <sub>MAX_COUNT</sub> | Maximum possible count                              | -   | 65536                    | t <sub>TIMxCLK</sub> |

<sup>1.</sup> LPTIMx is used as a general term to refer to the LPTIM1 to LPTIM5 timers.

#### 6.3.34 Communications interfaces

#### **I2C** interface characteristics

The I2C interface meets the timings requirements of the I<sup>2</sup>C-bus specification for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I<sup>2</sup>C timings requirements are specified by design, not tested in production, when the I2C peripheral is properly configured and when the i2c\_ker\_ck frequency is greater than the minimum shown in the table below:

4

<sup>2.</sup> Specified by design, not tested in production.

<sup>2.</sup> Specified by design, not tested in production.

The SDA and SCL I/O requirements are met with the following restrictions:

- The SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V<sub>DD</sub> is disabled, but is still present.
- The 20 mA output drive requirement in Fast-mode Plus is not supported. This limits the maximum load C<sub>load</sub> supported in Fm+, which is given by these formulas:

 $t_{r(SDA/SCL)} = 0.8473 \times R_p \times C_{load}$ 

 $R_{p(min)} = (V_{DD} - V_{OL(max)})/I_{OL(max)}$ 

Where R<sub>p</sub> is the I2C lines pull-up. Refer to Section 6.3.17: I/O port characteristics for the I2C I/Os characteristics

All I2C SDA and SCL I/Os embed an analog filter. Refer to *Table 96* for the analog filter characteristics:

Table 96. I2C analog filter characteristics<sup>(1)</sup>

| Symbol          | Symbol Parameter                                                       |                   | Max                | Unit |
|-----------------|------------------------------------------------------------------------|-------------------|--------------------|------|
| t <sub>AF</sub> | Maximum pulse width of spikes that are suppressed by the analog filter | 50 <sup>(2)</sup> | 120 <sup>(3)</sup> | ns   |

- 1. Specified by design, not tested in production.
- 2. Spikes with widths below  $t_{AF(min)}$  are filtered. At -40 °C it is possible to have 40 ns instead of 50 ns as minimum pulse width.
- 3. Spikes with widths above t<sub>AF(max)</sub> are not filtered.

The I2C pins can be set in FM+ mode in SYSCFG PMCR register.

Unless otherwise specified, the parameters given in Table 55 are derived from tests performed under the ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 13: General operating conditions*.

Table 97. I2C FM+ pin characteristics

| Symbol                          | Parameter                          | Conditions                          | Min | Max | Unit |
|---------------------------------|------------------------------------|-------------------------------------|-----|-----|------|
| F <sub>max</sub> <sup>(1)</sup> | Maximum frequency                  | C = 50 pF                           | -   | 1   | MHz  |
| T <sub>f</sub> <sup>(2)</sup>   | Output high to low level fall time | $1.71 \le V_{DD} \le 3.6 \text{ V}$ | -   | 5   | ns   |

- 1. The maximum frequency is defined with the following conditions:
  - (Tr + Tf) ≤ <sup>2</sup>/<sub>3</sub>T
  - 45% < duty cycle < 55%.
- The fall time is defined between 70% and 30% of the output waveform accordingl to I<sup>2</sup>C specification NXP UM10204 rev- Oct 2012.

#### **SPI** interface characteristics

Unless otherwise specified, the parameters given in *Table 98* for the SPI interface are derived from tests performed under the ambient temperature,  $f_{pclkx}$  frequency and  $V_{DD}$ 



supply voltage conditions summarized in *Table 13: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>
- I/O compensation cell enabled
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Table 98. SPI dynamic characteristics<sup>(1)</sup>

| Symbol                                                                  | Parameter             | Conditions                                                                          | Min                   | Тур        | Max                   | Unit |    |  |
|-------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------|-----------------------|------------|-----------------------|------|----|--|
| f <sub>SCK</sub>                                                        | SPI clock frequency   | Master mode<br>$1.71 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$<br>SPI1,2,3,4 |                       |            | 100                   |      |    |  |
|                                                                         |                       | Master mode<br>1.71 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V<br>SPI5                   |                       |            |                       |      | 52 |  |
|                                                                         |                       | Slave receiver mode<br>1.71 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V<br>SPI1,2,3,4     | 1   -                 |            | 100                   | MHz  |    |  |
|                                                                         |                       | Slave receiver mode<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V<br>SPI5                     |                       |            | 52                    |      |    |  |
|                                                                         |                       | Slave mode transmitter/full duplex 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                  |                       |            | 38 <sup>(2)</sup>     |      |    |  |
|                                                                         |                       | Slave mode transmitter/full duplex 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V       |                       |            | 35 <sup>(2)</sup>     |      |    |  |
| t <sub>su(NSS)</sub>                                                    | NSS setup time        | - Slave mode                                                                        | 2                     | -          | -                     |      |    |  |
| t <sub>h(NSS)</sub>                                                     | NSS hold time         | Jave Houe                                                                           | 2                     | -          | -                     | ns   |    |  |
| $\begin{matrix} t_{w(\text{SCKH})}, \\ t_{w(\text{SCKL})} \end{matrix}$ | SCK high and low time | Master mode                                                                         | T <sub>pclk</sub> - 1 | $T_{pclk}$ | T <sub>pclk</sub> + 1 |      |    |  |



Table 98. SPI dynamic characteristics<sup>(1)</sup> (continued)

| Symbol               | Parameter                | Conditions                                     | Min | Тур | Max | Unit |
|----------------------|--------------------------|------------------------------------------------|-----|-----|-----|------|
| t <sub>su(MI)</sub>  | Data input setup time    | Master mode                                    | 4   | -   | -   |      |
| t <sub>su(SI)</sub>  | Data input setup time    | Slave mode                                     | 1   | -   | -   |      |
| t <sub>h(MI)</sub>   | Data input hold time     | Master mode                                    | 1.5 | -   | -   |      |
| t <sub>h(SI)</sub>   | Data input hold time     | Slave mode                                     | 1.5 | -   | -   |      |
| t <sub>a(SO)</sub>   | Data output access time  | Slave mode                                     | 8.5 | 10  | 16  |      |
| t <sub>dis(SO)</sub> | Data output disable time | Slave mode                                     | 4.5 | 5   | 7.5 |      |
|                      |                          | Slave mode<br>2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V  | -   | 10  | 13  | ns   |
| t <sub>v(SO)</sub>   | Data output valid time   | Slave mode<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V | -   | 11  | 14  |      |
| t <sub>v(MO)</sub>   |                          | Master mode                                    | -   | 1.5 | 2   |      |
| t <sub>h(SO)</sub>   | Data output hold time    | Slave mode<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V | 8   | -   | -   |      |
| t <sub>h(MO)</sub>   |                          | Master mode                                    | 1   | -   | -   |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

NSS input  $t_{c(SCK)}$ ·t<sub>h(NSS)</sub>  $\leftarrow$ t<sub>w(SCKH)</sub> $\rightarrow$  $-t_{r(SCK)}$ ←t<sub>su(NSS)</sub>→ CPHA=0 SCK input CPOL=0 CPHA=0 CPOL=1 MISO output -First bit OUT Next bits OUT Last bit OUT t<sub>h(SI)</sub> First bit IN MOSI input Last bit IN Next bits IN

Figure 42. SPI timing diagram - slave mode and CPHA = 0

194/223 DS13874 Rev 1

MSv41658V1

Maximum frequency in slave transmitter mode is determined by the sum of t<sub>v(SO)</sub> and t<sub>su(MI)</sub> which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having t<sub>su(MI)</sub> = 0 while Duty(SCK) = 50%.



Figure 43. SPI timing diagram - slave mode and CPHA =  $1^{(1)}$ 

1. Measurement points are done at  $0.5 \times V_{DD}$  and with external  $C_L$  = 30 pF.



Figure 44. SPI timing diagram - master mode<sup>(1)</sup>

1. Measurement points are done at  $0.5 \times V_{DD}$  and with external  $C_L$  = 30 pF.

#### **I2S** interface characteristics

Unless otherwise specified, the parameters given in *Table 99* for the I2S interface are derived from tests performed under the ambient temperature,  $f_{pclkx}$  frequency and  $V_{DD}$ 

4

DS13874 Rev 1 195/223

supply voltage conditions summarized in *Table 13: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>
- I/O compensation cell enabled
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Table 99. I2S dynamic characteristics<sup>(1)</sup>

| Symbol                 | Parameter              | Conditions                             | Min    | Max    | Unit   |
|------------------------|------------------------|----------------------------------------|--------|--------|--------|
| f <sub>MCK</sub>       | I2S main clock output  | -                                      | 256×8K | 256×Fs | MHz    |
| f                      | 125 alook froguenay    | Master data                            | -      | 64×Fs  | MHz    |
| f <sub>CK</sub>        | I2S clock frequency    | Slave data                             | -      | 64×Fs  | IVIITZ |
| t <sub>v(WS)</sub>     | WS valid time          | Master mode                            | -      | 2      |        |
| t <sub>h(WS)</sub>     | WS hold time           | Master mode                            | 1      | -      |        |
| t <sub>su(WS)</sub>    | WS setup time          | Slave mode                             | 3.5    | -      |        |
| t <sub>h(WS)</sub>     | WS hold time           | Slave mode                             | 1      | -      |        |
| t <sub>su(SD_MR)</sub> | Data input actus time  | Master receiver                        | 3.5    | -      |        |
| t <sub>su(SD_SR)</sub> | Data input setup time  | Slave receiver                         | 2      | -      |        |
| t <sub>h(SD_MR)</sub>  | Data input hold time   | Master receiver                        | 1      | -      | ns     |
| t <sub>h(SD_SR)</sub>  | Data input hold time   | Slave receiver                         | 1      | -      |        |
| t <sub>v(SD_ST)</sub>  | Data output valid time | Slave transmitter (after enable edge)  | -      | 10     |        |
| t <sub>v(SD_MT)</sub>  | Data output valid time | Master transmitter (after enable edge) | -      | 1      |        |
| t <sub>h(SD_ST)</sub>  | Data output hold time  | Slave transmitter (after enable edge)  | 1      | -      |        |
| t <sub>h(SD_MT)</sub>  | Data output hold time  | Master transmitter (after enable edge) | 0.5    | -      |        |

<sup>1.</sup> Evaluated by characterization, not tested in production.



Figure 45. I2S slave timing diagram (Philips protocol)<sup>(1)</sup>

 LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.



Figure 46. I2S master timing diagram (Philips protocol)<sup>(1)</sup>

 LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

#### **SAI** characteristics

Unless otherwise specified, the parameters given in *Table 100* for SAI are derived from tests performed under the ambient temperature,  $F_{pclk2}$  frequency and  $V_{DD}$  supply voltage

DS13874 Rev 1 197/223

conditions summarized in *Table 13: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are performed at CMOS levels: 0.5×V<sub>DD</sub>

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

Table 100. SAI characteristics<sup>(1)</sup>

| Symbol                   | Parameter                | Conditions                                                      | Min | Max | Unit    |
|--------------------------|--------------------------|-----------------------------------------------------------------|-----|-----|---------|
| f <sub>MCK</sub>         | SAI Main clock output    | -                                                               | -   | 50  | MHz     |
|                          |                          | Master transmitter<br>2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V           | -   | 45  |         |
|                          |                          | Master transmitter<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V          | -   | 27  |         |
| F                        | SAI bit clock            | Master receiver<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V             | -   | 27  | MHz     |
| F <sub>CK</sub>          | frequency <sup>(2)</sup> | Slave transmitter 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V     | -   | 43  | IVII IZ |
|                          |                          | Slave transmitter<br>1.71 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V | -   | 30  |         |
|                          |                          | Slave receiver<br>1.71 ≤ V <sub>DD</sub> ≤ 3.6 V                | -   | 50  |         |
|                          | F0                       | Master mode<br>2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                  | -   | 11  |         |
| t <sub>v(FS)</sub>       | FS valid time            | Master mode<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V                 | -   | 18  |         |
| t <sub>su(FS)</sub>      | FS setup time            | Slave mode                                                      | 6.5 | -   |         |
|                          | FS hold time             | Master mode                                                     | 2   | -   | ns      |
| t <sub>h(FS)</sub>       | rs noid time             | Slave mode                                                      | 2   | -   | 1       |
| t <sub>su(SD_A_MR)</sub> | Data input setup time    | Master receiver                                                 | 3.5 | -   | ]       |
| t <sub>su(SD_B_SR)</sub> |                          | Slave receiver                                                  | 2   | -   |         |
| t <sub>h(SD_A_MR)</sub>  | Data input hold time     | Master receiver                                                 | 1   | -   |         |
| t <sub>h(SD_B_SR)</sub>  |                          | Slave receiver                                                  | 0.5 | -   |         |

| Symbol                    | Parameter              | Conditions                                                                           | Min | Max  | Unit |
|---------------------------|------------------------|--------------------------------------------------------------------------------------|-----|------|------|
| <b>.</b>                  | Data output valid time | Slave transmitter (after enable edge)<br>2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V             | -   | 11.5 |      |
| t <sub>v(SD_B_ST)</sub> L | Data output valid time | Slave transmitter (after enable edge)<br>1.71 V ≤ V <sub>DD</sub> ≤ 3.6 V            | -   | 16.5 |      |
| t <sub>h(SD_B_ST)</sub>   | Data output hold time  | Data output hold time Slave transmitter (after enable edge)                          |     | -    | no   |
|                           | Data output valid time | Master transmitter (after enable edge) 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V     | -   | 10   | ns   |
| t <sub>v(SD_A_MT)</sub>   | Data output valid time | Master transmitter (after enable edge)<br>1.71 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V | -   | 18   |      |
| t <sub>h(SD_A_MT)</sub>   | Data output hold time  | Master transmitter (after enable edge)                                               | 6.5 | -    |      |

Table 100. SAI characteristics<sup>(1)</sup> (continued)

- 1. Evaluated by characterization, not tested in production.
- 2. APB clock frequency must be at least twice SAI clock frequency.

Figure 47. SAI master timing waveforms 1/fSCK SAI\_SCK\_X **♦** th(FS) SAI\_FS\_X (output) <sup>t</sup>v(SD\_MT)**∢ →**¦ <sup>t</sup>h(SD\_MT) t<sub>v</sub>(FS) SAI\_SD\_X Slot n Slot n+2 (transmit) <sup>t</sup>su(SD\_MR) ₩ **→**¦ <sup>t</sup>h(SD\_MR) SAI\_SD\_X Slot n (receive) MS32771V1



#### SD/SDIO MMC card host interface (SDMMC) characteristics

Unless otherwise specified, the parameters given in *Table 101* for the SDIO/MMC interface are derived from tests performed under the ambient temperature,  $F_{hclk6}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 13: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>
- I/O compensation cell enabled
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V
- Delay block disabled

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Table 101. Dynamics characteristics: SD characteristics,  $V_{DD} = 1.71 \text{ V}$  to 3.6  $V^{(1)(2)}$ 

| Symbol                          | Parameter                                            | Conditions                     | Min | Тур | Max | Unit   |  |
|---------------------------------|------------------------------------------------------|--------------------------------|-----|-----|-----|--------|--|
| f                               | Clock frequency in data transfer                     | 2.7 < V <sub>DD</sub> < 3.6 V  | -   | -   | 130 | MHz    |  |
| f <sub>PP</sub>                 | mode                                                 | 1.71 < V <sub>DD</sub> < 1.9 V | -   | -   | 105 | IVITIZ |  |
| -                               | SDIO_CK/f <sub>PCLK2</sub> frequency ratio           | -                              | -   | -   | 8/3 | -      |  |
| t <sub>W(CKL)</sub>             | Clock low time                                       | f <sub>PP</sub> =52 MHz        | 8.5 | 9.5 | -   | no     |  |
| t <sub>W(CKH)</sub>             | Clock high time                                      | f <sub>PP</sub> =52 MHz        | 8.5 | 9.5 | -   | ns     |  |
| CMD, D ir                       | nputs (referenced to CK) in SD HS/SI                 | DR/DDR mode                    |     |     |     |        |  |
| t <sub>ISU</sub>                | Input setup time HS                                  | -                              | 2.5 | -   | -   |        |  |
| t <sub>IHD</sub>                | Input hold time HS                                   | -                              | 0.5 | -   | -   | ns     |  |
| T <sub>idw</sub> <sup>(3)</sup> | Input valid window (variable window)                 | -                              | 2.5 | -   | -   |        |  |
| CMD, D o                        | utputs (referenced to CK) in SD HS/S                 | SDR/DDR mode                   |     |     |     |        |  |
| t <sub>OV</sub>                 | Output valid time HS                                 | -                              | -   | 5   | 6   | no     |  |
| t <sub>OH</sub>                 | Output hold time HS                                  | -                              | 4.5 | -   | -   | ns     |  |
| CMD, D ir                       | nputs (referenced to CK) in SD defau                 | It mode                        |     |     |     |        |  |
| t <sub>ISUD</sub>               | Input setup time SD                                  | -                              | 2.5 | -   | -   | 20     |  |
| t <sub>IHD</sub>                | Input hold time SD                                   | -                              | 0.5 | -   | -   | ns     |  |
| CMD, D o                        | CMD, D outputs (referenced to CK) in SD default mode |                                |     |     |     |        |  |
| t <sub>OVD</sub>                | Output valid default time SD                         | -                              | -   | 0.5 | 1   | ns     |  |
| t <sub>OHD</sub>                | Output hold default time SD                          | -                              | 0   | -   | -   |        |  |

- 1. Data based on characterization results, not tested in production.
- 2. Above 100 MHz, CL applied is 20 pF.
- 3. The minimum window of time where the data need to be stable for proper sampling in tuning mode.

Table 102. Dynamics characteristics: e•MMC characteristics  $V_{DD}$  = 1.71 V to 3.6  $V^{(1)(2)}$ 

| Symbol               | Parameter                                       | Conditions                     | Min | Тур | Max | Unit    |  |  |
|----------------------|-------------------------------------------------|--------------------------------|-----|-----|-----|---------|--|--|
| f                    | Clock frequency in data transfer                | 2.7 < V <sub>DD</sub> < 3.6 V  | -   | -   | 130 | MHz     |  |  |
| f <sub>PP</sub>      | mode                                            | 1.71 < V <sub>DD</sub> < 1.9 V | -   | -   | 105 | IVII IZ |  |  |
| -                    | SDIO_CK/f <sub>PCLK2</sub> frequency ratio      | -                              | -   | -   | 8/3 | -       |  |  |
| t <sub>W(CKL)</sub>  | Clock low time                                  | f <sub>PP</sub> =52 MHz        | 8.5 | 9.5 | -   | ns      |  |  |
| t <sub>W(CKH)</sub>  | Clock high time                                 | f <sub>PP</sub> =52 MHz        | 8.5 | 9.5 | -   | 115     |  |  |
| CMD, D in            | puts (referenced to CK) in e•MMC m              | ode                            |     |     |     |         |  |  |
| t <sub>ISU</sub>     | Input setup time HS                             | -                              | 2.5 | -   | -   |         |  |  |
| t <sub>IH</sub>      | Input hold time HS                              | -                              | 0.5 | -   | -   | ns      |  |  |
| T <sub>idw</sub> (3) | Input valid window (variable window)            | -                              | 2.5 | -   | -   |         |  |  |
| CMD, D o             | CMD, D outputs (referenced to CK) in e•MMC mode |                                |     |     |     |         |  |  |
| t <sub>OV</sub>      | Output valid time HS                            | -                              | -   | 5   | 6   | ne      |  |  |
| t <sub>OH</sub>      | Output hold time HS                             | -                              | 4   | -   | -   | ns      |  |  |

- 1. ata based on characterization results, not tested in production.
- 2.  $C_{LOAD} = 20 pF$ .
- 3. The minimum window of time where the data need to be stable for proper sampling in tuning mode.

Figure 49. SD high-speed mode



Figure 50. SD default mode





Figure 51. SDMMC DDR mode

#### FDCAN (controller area network) interface

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (FDCANx TX and FDCANx RX).

#### **USB OTG\_FS characteristics**

The USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

| Symbol               | Parameter                                      | Condition           | Min                | Тур  | Max  | Unit |
|----------------------|------------------------------------------------|---------------------|--------------------|------|------|------|
| V <sub>DD33USB</sub> | USB transceiver operating voltage              | -                   | 3.0 <sup>(1)</sup> | -    | 3.6  | V    |
| R <sub>PUI</sub>     | Embedded USB_DP pull-up value during idle      | -                   | 900                | 1250 | 1600 |      |
| R <sub>PUR</sub>     | Embedded USB_DP pull-up value during reception | -                   | 1400               | 2300 | 3200 | Ω    |
| Z <sub>DRV</sub>     | Output driver impedance <sup>(2)</sup>         | Driver high and low | 28                 | 36   | 44   |      |

Table 103. USB OTG\_FS electrical characteristics

When VBUS sensing feature is enabled, a typical 200 μA input current (required to determine the different sessions validity according to USB standard) can be observed.

#### **Ethernet (ETH) characteristics**

Unless otherwise specified, the parameters given in *Table 104*, *Table 105*, *Table 106* and *Table 107* for MDIO/SMA, RMII, RGMII and MII are derived from tests performed under the



The USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7 to 3.0 V voltage range.

<sup>2.</sup> No external termination series resistors are required on USB\_DP (D+) and USB\_DM (D-); the matching impedance is already included in the embedded driver.

ambient temperature, F<sub>axiss\_ck</sub> frequency summarized in *Table 13: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>.
- HSLV activated when V<sub>DD</sub> ≤ 2.7 V

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

*Table 104* gives the list of Ethernet MAC timings for the MDIO/SMA and *Figure 52* shows the corresponding timing diagram.

Table 104. Dynamics characteristics: Ethernet MAC timings for MDIO/SMA<sup>(1)</sup>

|                       | •                       | <u> </u> |     |     |      |
|-----------------------|-------------------------|----------|-----|-----|------|
| Symbol                | Parameter               | Min      | Тур | Max | Unit |
| t <sub>MDC</sub>      | MDC cycle time(2.5 MHz) | 399      | 400 | 401 |      |
| T <sub>d(MDIO)</sub>  | Write data valid time   | 0.5      | 1   | 3.5 | 200  |
| t <sub>su(MDIO)</sub> | Read data setup time    | 17.5     | -   | -   | ns   |
| t <sub>h(MDIO)</sub>  | Read data hold time     | 0        | -   | -   |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

Figure 52. Ethernet MDIO/SMA timing diagram



*Table 105* gives the list of Ethernet MAC timings for the RMII and *Figure 53* shows the corresponding timing diagram.

Table 105. Dynamics characteristics: Ethernet MAC timings for RMII<sup>(1)</sup>

| Symbol               | Parameter                        | Min | Тур | Max  | Unit |
|----------------------|----------------------------------|-----|-----|------|------|
| t <sub>su(RXD)</sub> | Receive data setup time          | 2   | -   | -    |      |
| t <sub>ih(RXD)</sub> | Receive data hold time           | 1.5 | -   | -    |      |
| t <sub>su(CRS)</sub> | Carrier sense setup time         | 1.5 | -   | -    | ns   |
| t <sub>ih(CRS)</sub> | Carrier sense hold time          | 1.5 | -   | -    | 113  |
| t <sub>d(TXEN)</sub> | Transmit enable valid delay time | 5.5 | 8.5 | 10.5 |      |
| $t_{d(TXD)}$         | Transmit data valid delay time   | 6   | 8.5 | 11   |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.

DS13874 Rev 1 203/223



Figure 53. Ethernet RMII timing diagram

*Table 106* gives the list of Ethernet MAC timings for MII and *Figure 54* shows the corresponding timing diagram.

Table 106. Dynamics characteristics: Ethernet MAC timings for MII<sup>(1)</sup>

| Symbol               | Parameter                        | Min | Тур | Max | Unit |
|----------------------|----------------------------------|-----|-----|-----|------|
| t <sub>su(RXD)</sub> | Receive data setup time          | 1.5 | -   | -   |      |
| t <sub>ih(RXD)</sub> | Receive data hold time           | 1.5 | -   | -   |      |
| t <sub>su(DV)</sub>  | Data valid setup time            | 1   | -   | -   |      |
| t <sub>ih(DV)</sub>  | Data valid hold time             | 1.5 | -   | -   |      |
| t <sub>su(ER)</sub>  | Error setup time                 | 1.5 | -   | -   | ns   |
| t <sub>ih(ER)</sub>  | Error hold time                  | 1   | -   | -   |      |
| t <sub>d(TXEN)</sub> | Transmit enable valid delay time | 7   | 9   | 12  |      |
| t <sub>d(TXD)</sub>  | Transmit data valid delay time   | 7   | 9   | 12  |      |

<sup>1.</sup> Evaluated by characterization, not tested in production.



Figure 54. Ethernet MII timing diagram

Table 107. Dynamics characteristics: Ethernet MAC signals for RGMII (1)

| Table 107. Dynamics characteristics. Ethernet MAG signals for Normi |                                   |       |      |     |      |  |  |
|---------------------------------------------------------------------|-----------------------------------|-------|------|-----|------|--|--|
| Symbol                                                              | Rating                            | Min   | Тур  | Max | Unit |  |  |
| t <sub>su(RXD)</sub>                                                | Receive data setup time           | 1     | -    | -   |      |  |  |
| t <sub>ih(RXD)</sub>                                                | Receive data hold time            | 1.5   | -    | -   |      |  |  |
| t <sub>su(RX_CTL)</sub>                                             | Receive control valid setup time  | 1     | -    | -   | ne   |  |  |
| t <sub>ih(RX_CTL)</sub>                                             | Receive control valid hold time   | 1.5   | -    | -   | ns   |  |  |
| T <sub>skewT(TX_CTL)</sub>                                          | Transmit control valid delay time | -0.25 | 0.25 | 0.5 |      |  |  |
| T <sub>skewT(TXD)</sub>                                             | Transmit data valid delay time    | -0.25 | 0.25 | 0.5 |      |  |  |

<sup>1.</sup> Evaluated by characterization, not tested in production.

Figure 55. Ethernet RGMII timing diagram



#### 6.3.35 USART interface characteristics

Unless otherwise specified, the parameters given in *Table 108* for USART are derived from tests performed under the ambient temperature,  $f_{HCLK}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 108*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, CK, TX, RX for USART).

Table 108. USART characteristics<sup>(1)</sup>

| Symbol                                   | Parameter              | Conditions  | Min                      | Тур     | Max                      | Unit |
|------------------------------------------|------------------------|-------------|--------------------------|---------|--------------------------|------|
| £                                        | LICADT aloge fraguency | Master mode | -                        | -       | 13                       | MU-  |
| f <sub>CK</sub>                          | USART clock frequency  | Slave mode  | -                        | -       | 27                       | MHz  |
| t <sub>su(NSS)</sub>                     | NSS setup time         | Slave mode  | t <sub>ker</sub> +2      | -       | -                        | ns   |
| t <sub>h(NSS)</sub>                      | NSS hold time          | Slave mode  | 2                        | -       | -                        | ns   |
| t <sub>w(CKH),</sub> t <sub>w(CKL)</sub> | CK high and low time   | Master mode | 1/f <sub>CK</sub> /2 - 1 | 1/fck/2 | 1/f <sub>CK</sub> /2 + 1 | ns   |
|                                          | Data input setup time  | Master mode | 16                       | -       | -                        | ns   |
| t <sub>su(RX)</sub>                      |                        | Slave mode  | 2.5                      | -       | -                        | 115  |
| +                                        | Data input hold time   | Master mode | 0.5                      | -       | -                        | 20   |
| t <sub>hRX)</sub>                        | Data input hold time   | Slave mode  | 1                        | -       | -                        | ns   |
| 4                                        | Data output valid time | Slave mode  | -                        | 10      | 18                       | 20   |
| $t_{V(TX)}$                              | Data output valid time | Master mode | -                        | 1.5     | 2.5                      | ns   |
| th(TX)                                   | Data output hold time  | Slave mode  | 8                        | -       | -                        | 20   |
|                                          | Data output hold time  | Master mode | 0                        | -       | -                        | ns   |

<sup>1. 1.</sup>Evaluated by characterization, not tested in production.

### 6.3.36 USB High-Speed PHY characteristics

Table 109. USB High-Speed PHY characteristics<sup>(1)</sup>

| Symbol                       | Parameter                           | Conditions    | Min  | Тур     | Max  | Unit |
|------------------------------|-------------------------------------|---------------|------|---------|------|------|
| R <sub>REF</sub>             | Reference resistor on USB_RREF pin  | -             | 2.97 | 3.00    | 3.03 | kΩ   |
|                              | High-Speed TX <sup>(2)</sup>        | One USB port  | -    | 1.4     | -    |      |
|                              | Trigh-Speed TX                      | Two USB ports | -    | - 2.4 - |      |      |
| I <sub>DDA1V1_REG(PHY)</sub> | High-Speed RX <sup>(3)</sup> / Idle | One USB port  | -    | 5.4     | -    | mA   |
|                              | Inigh-Speed KXV7 Idle               | Two USB ports | -    | 10.4    | -    |      |
|                              | Ful-Speed and Low-Speed mode (Suspe | nd, TX or RX) | -    | 0       | -    |      |



| Symbol                       | Parameter                            | Conditions     | Min | Тур  | Max | Unit |
|------------------------------|--------------------------------------|----------------|-----|------|-----|------|
|                              | High-Speed TX <sup>(2)</sup>         | One USB port   | -   | 25.5 | -   |      |
|                              | Tright-Speed TX                      | Two USB ports  | -   | 50.5 | -   |      |
| I <sub>DDA1V8_REG(PHY)</sub> | High-Speed RX <sup>(3)</sup> / Idle  | One USB port   | -   | 2.5  | -   | mA   |
|                              | Tiigii-Speed KX* / Idie              | Two USB ports  | -   | 5.5  | -   |      |
|                              | Ful-Speed and Low-Speed mode (Suspe  | end, TX or RX) | -   | 0    | -   |      |
|                              | High-Speed TX <sup>(2)</sup>         | One USB port   | -   | 5    | -   |      |
|                              | nigh-speed 1X.7                      | Two USB ports  | -   | 7    | -   |      |
|                              | High-Speed RX <sup>(3)</sup> / Idle  | One USB port   | -   | 6    | -   |      |
|                              | nigh-speed KX 7 fule                 | Two USB ports  | -   | 10   | -   |      |
|                              | Full-Speed Suspend (host mode)       | One USB port   | -   | 0    | -   |      |
|                              | ruii-Speed Suspend (nost mode)       | Two USB ports  | -   | 0    | -   |      |
|                              | Full-Speed Suspend (peripheral mode) | One USB port   | -   | 0.2  | -   |      |
|                              |                                      | Two USB ports  | -   | 0.4  | -   | mA   |
| IDDA3V3_USBHS(PHY)           | Full-Speed TX <sup>(2)</sup>         | One USB port   | -   | 6.5  | -   | IIIA |
|                              | ruii-Speed 1XV                       | Two USB ports  | -   | 10.5 | -   |      |
|                              | Full-Speed RX <sup>(3)</sup>         | One USB port   | -   | 6.5  | -   |      |
|                              | ruii-Speed RX                        | Two USB ports  | -   | 11.5 | -   |      |
|                              | Low-Speed TX <sup>(2)</sup>          | One USB port   | -   | 7    | -   |      |
|                              | Low-Speed IA.                        | Two USB ports  | -   | 11.5 | -   |      |
|                              | Low-Speed RX <sup>(3)</sup>          | One USB port   | -   | 4.3  | -   |      |
|                              | Low-opeed RA                         | Two USB ports  | -   | 6.1  | -   |      |

Table 109. USB High-Speed PHY characteristics<sup>(1)</sup> (continued)

### 6.3.37 JTAG/SWD interface characteristics

Unless otherwise specified, the parameters given in *Table 110* and *Table 111* for JTAG/SWD are derived from tests performed under the ambient temperature,  $f_{rcc\_c\_ck}$  frequency and  $V_{DD}$  supply voltage summarized in *Table 13: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 0x10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5×V<sub>DD</sub>

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

<sup>1.</sup> Specified by design, not tested in production unless otherwise specified.

<sup>2.</sup> USB link 100% of the time in transmission

<sup>3.</sup> USB link 100% of the time in reception

Table 110. Dynamics characteristics: JTAG characteristics

| Symbol                | Parameter             | Conditions                       | Min | Тур | Max | Unit    |
|-----------------------|-----------------------|----------------------------------|-----|-----|-----|---------|
| F <sub>pp</sub>       | T <sub>CK</sub> clock | 2.7 V < V <sub>DD</sub> < 3.6 V  | -   | -   | 35  | MHz     |
| 1/t <sub>c(TCK)</sub> | frequency             | 1.71 V < V <sub>DD</sub> < 3.6 V | -   | -   | 27  | IVII IZ |
| ti <sub>su(TMS)</sub> | TMS input setup time  | -                                | 2.5 | -   | -   |         |
| ti <sub>h(TMS)</sub>  | TMS input hold time   | -                                | 1   | -   | -   |         |
| ti <sub>su(TDI)</sub> | TDI input setup time  | -                                | 2   | -   | -   |         |
| ti <sub>h(TDI)</sub>  | TDI input hold time   | -                                | 1   | -   | -   | ns      |
| +                     | TDO output            | 2.7 V < V <sub>DD</sub> < 3.6 V  | -   | 9.5 | 14  |         |
| t <sub>ov (TDO)</sub> | valid time            | 1.71 V < V <sub>DD</sub> < 3.6 V | -   | 9.5 | 18  |         |
| t <sub>oh(TDO)</sub>  | TDO output hold time  | -                                | 8   | -   | -   |         |

Table 111. Dynamics characteristics: SWD characteristics

| Symbol                  | Parameter                    | Conditions                       | Min | Тур  | Max | Unit |
|-------------------------|------------------------------|----------------------------------|-----|------|-----|------|
| F <sub>pp</sub>         | SWCLK                        | 2.7 V < V <sub>DD</sub> < 3.6 V  | -   | -    | 71  |      |
| 1/t <sub>c(SWCLK)</sub> | clock<br>frequency           | 1.71 V < V <sub>DD</sub> < 3.6 V | -   | -    | 55  | MHz  |
| ti <sub>su(SWDIO)</sub> | SWDIO input setup time       |                                  | 2.5 | -    | -   |      |
| ti <sub>h(SWDIO)</sub>  | SWDIO input hold time        | -                                | 1   | -    | -   |      |
|                         | SWDIO                        | 2.7 V < V <sub>DD</sub> < 3.6 V  | -   | 10.5 | 14  | ns   |
| t <sub>ov</sub> (SWDIO) | output valid time            | 1.71 V < V <sub>DD</sub> < 3.6 V | -   | 10.5 | 18  |      |
| t <sub>oh(SWDIO)</sub>  | SWDIO<br>output hold<br>time | -                                | 9   | -    | -   |      |

Figure 56. JTAG timing diagram  $t_{\text{c}(\text{TCK})}$ TCK t<sub>h(TMS/TDI)</sub>  $t_{\text{su}(\text{TMS/TDI})}$  $t_{w(TCKL)}$   $t_{w(TCKH)}$ TDI/TMS t<sub>ov(TDO)</sub> ♦ t<sub>oh(TDO)</sub> TDO

MSv40458V1



Package information STM32MP135A/D

# 7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: <a href="https://www.st.com">www.st.com</a>. ECOPACK is an ST trademark.

## 7.1 LFBGA289 package information

This LFBGA is a 289 ball, 14x14 mm, 0.8 mm pitch, low profile fine pitch ball grid array package.



Figure 58. LFBGA289 - Outline

- Drawing is not to scale.
- 2. The tolerance of position controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball must lie simultaneously in both tolerance zones.

Table 112. LFBGA289 - Mechanical data

| Symbol             | millimeters |        |        | inches <sup>(1)</sup> |         |        |  |
|--------------------|-------------|--------|--------|-----------------------|---------|--------|--|
| Symbol             | Min         | Тур    | Max    | Min                   | Тур     | Max    |  |
| A <sup>(2)</sup>   | -           | -      | 1.700  | -                     | -       | 0.0669 |  |
| A1                 | 0.210       | 0.290  | -      | 0.0083                | 0.0114  | -      |  |
| A2                 | -           | 0.816  | -      | -                     | 32.1260 | -      |  |
| b <sup>(3)</sup>   | 0.350       | 0.400  | 0.450  | 0.0138                | 0.0157  | 0.0177 |  |
| D                  | 13.850      | 14.000 | 14.150 | 0.5453                | 0.5512  | 0.5571 |  |
| D1                 | -           | 12.800 | -      | -                     | 0.5039  | -      |  |
| E                  | 13.850      | 14.000 | 14.150 | 0.5453                | 0.5512  | 0.5571 |  |
| E1                 | -           | 12.800 | -      | -                     | 0.5039  | -      |  |
| е                  | -           | 0.800  | -      | -                     | 0.0315  | -      |  |
| М                  | -           | 0.530  | -      | -                     | 0.0209  | -      |  |
| S                  | -           | 0.286  | -      | -                     | 0.0113  | -      |  |
| ddd <sup>(4)</sup> | -           | 0.120  | -      | -                     | 0.0047  | -      |  |
| eee <sup>(5)</sup> | -           | 0.150  | -      | -                     | 0.0059  | -      |  |
| fff                | -           | 0.080  | -      | -                     | 0.0031  | -      |  |

- 1. Values in inches are converted from mm and rounded to 4 decimal digits.
- 2. LFBGA stands for low profile fine pitch ball grid array. The total profile height (Dim A) is measured from the seating plane to the top of the component.
- 3. Initial ball equal 0.400 mm
- 4. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
- 5. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball must lie simultaneously in both tolerance zones

Figure 59. LFBGA289 - Recommended footprint



DS13874 Rev 1 211/223

Package information STM32MP135A/D

| Dimension       | Recommended values |
|-----------------|--------------------|
| Pitch           | 0.8 mm             |
| Dpad            | 0.320 mm           |
| Dsm             | 0.420 mm typ.      |
| Stencil opening | 0.320 mm           |

Table 113. LFBGA289 - Recommended PCB design rules

# 7.2 TFBGA289 package information

Stencil thickness

This TFBGA is a 289 ball, 9x9 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package.

0.125 mm to 0.100 mm



Figure 60. TFBGA289 - Outline

- 1. Drawing is not to scale.
- The tolerance of position controls the location of the pattern of balls with respect to datums A and B. For
  each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position
  with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie
  within this tolerance zone.

Table 114. TFBGA289 - Mechanical data

| Symbol             | millimeters |       |       | inches <sup>(1)</sup> |         |        |  |
|--------------------|-------------|-------|-------|-----------------------|---------|--------|--|
| Symbol             | Min         | Тур   | Max   | Min                   | Тур     | Max    |  |
| A <sup>(2)</sup>   | -           | -     | 1.200 | -                     | -       | 0.0472 |  |
| A1                 | 0.140       | 0.210 | -     | 0.0055                | 0.0083  | -      |  |
| A2                 | -           | 0.716 | -     | -                     | 28.1890 | -      |  |
| b <sup>(3)</sup>   | 0.250       | 0.300 | 0.350 | 0.0098                | 0.0118  | 0.0138 |  |
| D                  | 8.850       | 9.000 | 9.150 | 0.3484                | 0.3543  | 0.3602 |  |
| D1                 | -           | 8.000 | -     | -                     | 0.3150  | -      |  |
| E                  | 8.850       | 9.000 | 9.150 | 0.3484                | 0.3543  | 0.3602 |  |
| E1                 | -           | 8.000 | -     | -                     | 0.3150  | -      |  |
| е                  | -           | 0.500 | -     | -                     | 0.0197  | -      |  |
| М                  | -           | 0.530 | -     | -                     | 0.0209  | -      |  |
| S                  | -           | 0.186 | -     | -                     | 0.0073  | -      |  |
| ddd <sup>(4)</sup> | -           | 0.080 | -     | -                     | 0.0031  | -      |  |
| eee <sup>(5)</sup> | -           | 0.150 | -     | -                     | 0.0059  | -      |  |
| fff                | -           | 0.080 | -     | -                     | 0.0031  | -      |  |

- 1. Values in inches are converted from mm and rounded to 4 decimal digits.
- 2. TFBGA stands for thin profile fine pitch ball grid array. The total profile height (dim A) is measured from the seating plane to the top of the component.
- 3. Initial ball equal 0.300 mm.
- 4. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
- 5. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball must lie simultaneously in both tolerance zones



Package information STM32MP135A/D

Dpad Dsm BGA\_WLCSP\_FT\_V1

Figure 61. TFBGA289 - Recommended footprint

Table 115. TFBGA289 - Recommended PCB design rules

| Dimension         | Recommended values   |
|-------------------|----------------------|
| Pitch             | 0.5 mm               |
| Dpad              | 0.230 mm             |
| Dsm               | 0.330 mm typ.        |
| Stencil opening   | 0.230 mm             |
| Stencil thickness | 0.125 mm to 0.100 mm |

STM32MP135A/D Package information

## 7.3 TFBGA320 package information

This TFBGA is a 320 ball, 11x11 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package.



Figure 62. TFBGA320 - Outline

Drawing is not to scale.

E1

The tolerance of position controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.

inches<sup>(1)</sup> millimeters **Symbol** Min Typ Max Min Typ Max  $A^{(2)}$ 1.200 0.0472 Α1 0.140 0.210 0.0055 0.0083 0.0282 A2 0.716  $b^{(3)}$ 0.250 0.300 0.350 0.0098 0.0118 0.0138 D 10.850 11.000 11.150 0.4272 0.4331 0.4390 D1 10.000 0.3937 Ε 11.000 0.4331 10.850 11.150 0.4272 0.4390

10.000

Table 116. TFBGA320 - Mechanical data

0.3937

Package information STM32MP135A/D

| Symbol             | millimeters |       |     | inches <sup>(1)</sup> |        |     |
|--------------------|-------------|-------|-----|-----------------------|--------|-----|
| Symbol             | Min         | Тур   | Max | Min                   | Тур    | Max |
| е                  | -           | 0.500 | -   | -                     | 0.0197 | -   |
| М                  | -           | 0.530 | -   | -                     | 0.0209 | -   |
| S                  | -           | 0.186 | -   | -                     | 0.0073 | -   |
| ddd <sup>(4)</sup> | -           | 0.080 | -   | -                     | 0.0031 | -   |
| eee <sup>(5)</sup> | -           | 0.150 | -   | -                     | 0.0059 | -   |
| fff                | -           | 0.080 | -   | -                     | 0.0031 | -   |

Table 116. TFBGA320 - Mechanical data (continued)

- 1. Values in inches are converted from mm and rounded to 4 decimal digits.
- 2. TFBGA stands for thin profile fine pitch ball grid array. The total profile height (dim A) is measured from the seating plane to the top of the component.
- 3. Initial ball equal 0.300 mm.
- 4. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
- 5. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball must lie simultaneously in both tolerance zones



Figure 63. TFBGA320 - Recommended footprint

Table 117. TFBGA320 - Recommended PCB design rules

| Dimension         | Recommended values   |
|-------------------|----------------------|
| Pitch             | 0.5 mm               |
| Dpad              | 0.230 mm             |
| Dsm               | 0.330 mm typ.        |
| Stencil opening   | 0.230 mm             |
| Stencil thickness | 0.125 mm to 0.100 mm |

STM32MP135A/D Package information

### 7.4 Thermal characteristics

Package thermal characteristics in *Table 118* are specified with conditions as per JEDEC JESD51-6, JESD51-8, JESD51-9, and JESD51-12. These typical values will vary in function of board thermal characteristics and other components on the board.

 $\begin{array}{lll} \Theta_{JA}\colon & \text{Thermal resistance junction-ambient.} \\ \Theta_{JB}\colon & \text{Thermal resistance junction-board.} \\ \Theta_{JC}\colon & \text{Thermal resistance junction-top-case.} \\ \Thetajb\colon & \text{Thermal parameter junction-board.} \\ \Psijt\colon & \text{Thermal parameter junction-top-case.} \\ \text{Motherboard type: four layers, JEDEC 2S2P} \end{array}$ 

Table 118. Thermal characteristics

| Cumbal                                     | Barranatar                                 | Value              |                  |        |
|--------------------------------------------|--------------------------------------------|--------------------|------------------|--------|
| Symbol                                     | Parameter                                  | Natural convection | 1m/s (200 ft/mn) | - Unit |
|                                            | LFBGA289 - 289-ball 14x14 mm 0.80 mm pitch | 31.7               | 29.2             |        |
| $\Theta_{JA}^{(1)}$                        | TFBGA289 - 289-ball 9x9 mm 0.50 mm pitch   | 29.3               | 27               | °C/W   |
|                                            | TFBGA320 - 320-ball 11x11 mm 0.50 mm pitch | 29                 | 26.6             |        |
|                                            | LFBGA289 - 289-ball 14x14 mm 0.80 mm pitch | 21                 | .2               |        |
| $\Theta_{JB}^{(2)}$                        | TFBGA289 - 289-ball 9x9 mm 0.50 mm pitch   | 15.9               |                  | °C/W   |
|                                            | TFBGA320 - 320-ball 11x11 mm 0.50 mm pitch | 16.9               |                  |        |
|                                            | LFBGA289 - 289-ball 14x14 mm 0.80 mm pitch | 8.                 | 9                |        |
| $\Theta_{JC}^{(3)}$                        | TFBGA289 - 289-ball 9x9 mm 0.50 mm pitch   | 8.6                |                  | °C/W   |
| TFBGA320 - 320-ball 11x11 mm 0.50 mm pitch |                                            | 8.5                |                  |        |
|                                            | LFBGA289 - 289-ball 14x14 mm 0.80 mm pitch | 21.1               | 20.9             |        |
| Ψjb <sup>(4)</sup>                         | TFBGA289 - 289-ball 9x9 mm 0.50 mm pitch   | 15.9               | 15.8             | °C/W   |
|                                            | TFBGA320 - 320-ball 11x11 mm 0.50 mm pitch | 16.9               | 16.8             |        |
|                                            | LFBGA289 - 289-ball 14x14 mm 0.80 mm pitch | 0.21               | 0.29             |        |
| Ψjt <sup>(5)</sup>                         | TFBGA289 - 289-ball 9x9 mm 0.50 mm pitch   | 0.18               | 0.26             | °C/W   |
|                                            | TFBGA320 - 320-ball 11x11 mm 0.50 mm pitch | 0.18               | 0.26             |        |

<sup>1.</sup> Per JEDEC JESD51-9

#### 7.4.1 Reference documents

JESD51-6 Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air). Available from www.jedec.org.

JESD51-8 Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board. Available from www.jedec.org.

JESD51-9 Test Boards for Area Array Surface. Mount Package Thermal. Measurements.



DS13874 Rev 1 217/223

<sup>2.</sup> Per JEDEC JESD51-8

<sup>3.</sup> Per JEDEC JESD51-12 best practice guidelines

<sup>4.</sup> Per JEDEC JESD51-12.

<sup>5.</sup> Per JEDEC JESD51-12.

Package information STM32MP135A/D

Available from www.jedec.org.

JESD51-12 Guidelines for Reporting and Using Electronic Package Thermal Information. Available from www.jedec.org.

STM32MP135A/D Package information

# 7.5 Device marking

Refer to technical note "Reference device marking schematics for STM32 microcontrollers and microprocessors" (TN1433) available on *www.st.com*, for the location of ball A1 as well as the location and orientation of the marking areas versus ball A1.

Parts marked as "ES", "E" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.



DS13874 Rev 1 219/223

Ordering information STM32MP135A/D

#### **Ordering information** 8

Table 119. STM32MP135A/D ordering information scheme



No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DS13874 Rev 1 220/223

<sup>1.</sup> Refer also to the application note AN5438 "STM32MP1 Series lifetime estimates" available from the ST

# 9 Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security, which is why the ST product(s) identified in this documentation may be certified by various security certification bodies and/or may implement our own security measures as set forth herein. However, no level of security certification and/or built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the customer needs both in relation to the ST product alone, as well as when combined with other components and/or software for the customer end product or application. In particular, take note that:

- ST products may have been certified by one or more security certification bodies, such as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received security certification along with the level and current status of such certification, either visit the relevant certification standards website or go to the relevant product page on www.st.com for the most up to date information. As the status and/or level of security certification for an ST product can change from time to time, customers should re-check security certification status/level as needed. If an ST product is not shown to be certified under a particular security standard, customers should not assume it is certified.
- Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST products. These certification bodies are therefore independently responsible for granting or revoking security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations, assessments, testing, or other activity carried out by the certification body with respect to any ST product.
- Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies which may be used in conjunction with an ST product are based on standards which were not developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or technologies.
- While robust security testing may be done, no level of certification can absolutely guarantee protections against all attacks, including, for example, against advanced attacks which have not been tested for, against new or unidentified forms of attack, or against any form of attack when using an ST product outside of its specification or intended use, or in conjunction with other components or software which are used by customer to create their end product or application. ST is not responsible for resistance against such attacks. As such, regardless of the incorporated security features and/or any information or support that may be provided by ST, each customer is solely responsible for determining if the level of attacks tested for meets their needs, both in relation to the ST product alone and when incorporated into a customer end product or application.
- All security features of ST products (inclusive of any hardware, software, documentation, and the like), including but not limited to any enhanced security features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and signed contract terms specifically provide otherwise.



DS13874 Rev 1 221/223

Revision history STM32MP135A/D

# 10 Revision history

Table 120. Document revision history

| Date        | Revision | Changes          |
|-------------|----------|------------------|
| 16-Feb-2023 | 1        | Initial release. |

#### **IMPORTANT NOTICE - READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to <a href="https://www.st.com/trademarks">www.st.com/trademarks</a>. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved



DS13874 Rev 1 223/223

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# STMicroelectronics:

<u>STM32MP135AAE3 STM32MP135AAF3 STM32MP135AAG3 STM32MP135DAE7 STM32MP135DAF7 STM32MP135DAFT STM32MP135DAFT STM32MP135DAFT STM32MP135DAFT STM32MP135DAFT STM32MP135DAFT STM32MP135DAFT STM32</u>