DS 203 COURSE OVERVIEW

Semester 1 2024-2025

Course Instructor

Vinay Kulkarni

vinayk@iitb.ac.in

Preferred e-mail for communication

DS 203

ds203.2023@gmail.com

DS 203

- Course title: **Programming** for Data Science
- Course structure (L-T-P-C): 0-2-2-6
- Tutorials: Classes, typically 'show and tell'
- Practicals: Assignment based
- Guest Lectures: 1 − 2 session(s) by experienced Professionals

- Assignments: About 10 ... major and minor
- Self study : 5 hours per week

DS 203

Assignments	 8 - 10 Every submission will be reviewed for completeness and correctness There will be penalties for late / no / fraudulent submissions
Evaluation scheme	 10%: 2 surprise quiz 30%: Mid-semester test 30%: Project (Group Project, max 4 members) 30%: End-semester
Penalties	 (-1): Late / non submission of assignments (each event) (-10): Copying assignments / project (each event) (-10): Fraudulent assignment submissions (each event) The penalty will be in addition to zero credit (where applicable) for that particular submission
Attendance	 As per IITB rules for attendance (self regulated) No attendance will be taken in class, except during quiz / test / examination

Quiz / Test / Exam

- SAFE app, Forms (Google / PDF), Moodle may be used
- Paper option will always be available as a standby
- Tests and exams
 - Will involve reasoning, programming
 - Will involve application of the knowledge and skill learnt through attending classes and doing the assignments
 - Will be, most likely, open including internet access

SAFE Application

- SAFE app will be used for conducting quiz, and for marking attendance during the quiz
- All participants should compulsorily register themselves on SAFE app using the following registration code:

20FLXYSI

- You may mark your class attendance using the app (<u>for your own records</u>)
- In case of teething troubles, write to safe@iitb.ac.in and visit their office in the CC to get them resolved

Books and References

- Learning Data Science: https://learningds.org/intro.html
- Veridical Data Science : https://vdsbook.com/

Course Assets on Moodle

What is Data Science?

- Data science is a <u>broad field</u> that encompasses the overall process of <u>extracting insights</u> and <u>knowledge</u> from data. It involves <u>collecting</u>, <u>cleaning</u>, <u>organizing</u>, <u>analyzing</u>, <u>and interpreting data</u> to uncover <u>patterns</u>, <u>trends</u>, <u>and meaningful information</u>.
- Data science utilizes various techniques, methodologies, and tools to extract valuable insights from data.

Case Study Overview

Attribute	Details
The problem	Optimization of process(es) in a chemical plant
Goals	 Operating parameters' optimization Throughput prediction Breakdown prediction Predictive Maintenance of equipment
Basis	Multiple year, daily averages of operational parameters available from Data Acquisition System
Columns	132
Rows	2657 (approximately 7 years' daily averages data)

The Data ...

The Data Science Process

Preliminary analysis of the Data

- What is the data size?
- Most appropriate tools to process such data?
- What type of data items are present?
- Are there any missing observations? Their percentage?
- How to handle these missing observations?
- Are there any outlying observations?
- How to handle outlying observations?

Early analysis / decisions based on Data

- What is the **type** of the problem to be solved?
- Which columns constitute dependent data? The 'Y' data
- Which columns constitute independent data? The 'X' data
- Are there any clear dependencies / correlations among 'X'
- Is data scaling / normalization required prior to modelling?
- Do some of the columns require encoding?
- What is the modality / distribution of each variable?
- How much of the data should be used for training the model
- Can accurate analysis be done by data sampling?

Data plots to understand trends / detect outliers

Data plots after processing outliers

Modality and Distributions

Correlation between variables

Use of Linear Regression to **model** and **predict** a parameter

Training: First 750 data points

```
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                         5.592980
(Intercept) -16.209642
                                  -2.898 0.003866 **
                         0.001154 10.317 < 2e-16
              0.011909
c161
c28
             0.192089
                         0.031109
                                    6.175 1.10e-09 ***
c7
             1.762212
                         0.244322
                                    7.213 1.38e-12
c17
             -0.099812
                         0.019082
                                  -5.231 2.21e-07
c158
             0.123261
                         0.018093
                                    6.813 2.01e-11 ***
c160
             0.004787
                         0.001771
                                    2.703 0.007041 **
c39
             6.898476
                         1.100166
                                    6.270 6.18e-10 ***
c22
             -0.104352
                         0.034339
                                  -3.039 0.002460 **
c11
             -0.122940
                         0.036342
                                  -3.383 0.000756
c15
             -0.371219
                         0.056582
                                  -6.561 1.02e-10 ***
c30
                         0.337681
             1.702216
                                    5.041 5.85e-07 ***
c23
             -0.274084
                         0.039142 -7.002 5.74e-12
C35
              5.033540
                         1.451099
                                    3.469 0.000554
c16
             -0.381731
                         0.073873 -5.167 3.07e-07
c139
             -0.221037
                         0.036769
                                   -6.011 2.91e-09
c31
             0.156248
                         0.022446
                                    6.961 7.55e-12
                         0.034607
c143
             -0.236297
                                  -6.828 1.82e-11
                         0.038140
c157
             0.160972
                                    4.221 2.75e-05
c163
             0.009764
                         0.002779
                                    3.513 0.000471 ***
c9
             -0.267089
                         0.070883
                                  -3.768 0.000178 ***
c8
             -0.369612
                         0.122558
                                  -3.016 0.002652 **
c10
              3.208038
                         1.541097
                                    2.082 0.037723 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8832 on 727 degrees of freedom
Multiple R-squared: 0.6309, Adjusted R-squared: 0.6198
```

F-statistic: 56.49 on 22 and 727 DF, p-value: < 2.2e-16

Interpretation of results

```
Training: First 750 data points
 Coefficients:
              Estimate Std. Error t value Pr(>|t|)
 (Intercept) -16.209642
                          5.592980
                                    -2.898 0.003866 **
                                   10.317 < 2e-16 ***
 c161
              0.011909
                          0.001154
 c28
              0.192089
                          0.031109
                                     6.175 1.10e-09
 c7
              1.762212
                          0.244322
                                     7.213 1.38e-12
 c17
              -0.099812
                          0.019082
                                    -5.231 2.21e-07
 c158
               0.123261
                          0.018093
                                     6.813 2.01e-11
                          0.001771
 c160
              0.004787
                                     2.703 0.007041 **
 c39
               6.898476
                          1.100166
                                     6.270 6.18e-10 ***
 c22
              -0.104352
                          0.034339
                                    -3.039 0.002460 **
              -0.122940
 c11
                          0.036342
                                    -3.383 0.000756 ***
 c15
              -0.371219
                          0.056582
                                    -6.561 1.02e-10
 c30
              1.702216
                          0.337681
                                     5.041 5.85e-07 ***
 c23
              -0.274084
                          0.039142
                                    -7.002 5.74e-12 ***
 C35
               5.033540
                          1.451099
                                     3.469 0.000554
 c16
              -0.381731
                          0.073873 -5.167 3.07e-07
 c139
              -0.221037
                          0.036769
                                    -6.011 2.91e-09 ***
 c31
              0.156248
                          0.022446
                                     6.961 7.55e-12
 c143
              -0.236297
                          0.034607
                                    -6.828 1.82e-11
 c157
                          0.038140
                                     4.221 2.75e-05
              0.160972
 c163
              0.009764
                          0.002779
                                     3.513 0.000471
 c9
              -0.267089
                          0.070883
                                    -3.768 0.000178 ***
 c8
              -0.369612
                          0.122558
                                    -3.016 0.002652 **
 c10
               3.208038
                          1.541097
                                     2.082 0.037723 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
 Residual standard error: 0.8832 on 727 degrees of freedom
 Multiple R-squared: 0.6309,
                                 Adjusted R-squared: 0.6198
```

F-statistic: 56.49 on 22 and 727 DF, p-value: < 2.2e-16

Goal of Data Science: Extract Insights from Data

