RELAX(ed selection test)

results summary

INPUT DATA

AlphaDeltaSpike.fas

133 sequences

1273 sites

Test for selection intensification (K = 1.31) was not significant (p = 0.558, LR = 0.34).

See here for more information about this method.

Please cite PMID 123456789 if you use this result in a publication, presentation, or other scientific work.

Model fits

Model	log L	#. params	AICc	Branch set	ω ₁	ω2	ω ₃
General descriptive	-8790.1	367	18315.9	Shared	0.00 (11.36%)	0.86 (88.62%)	1288.13 (0.02%)
RELAX alternative	-8876.3	199	18151.1	Reference	1.00 (97.76%)	1.00 (2.24%)	1450.96 (0.00%)
				Test	1.00 (97.76%)	1.00 (2.24%)	13744.44 (0.00%
RELAX null	-8876.5	198	18149.4	Reference	1.00 (98.05%)	1.00 (1.95%)	11625.16 (0.00%
				Test	1.00 (98.05%)	1.00 (1.95%)	11625.16 (0.00%

Which sites are evolving differentially?

- We have established that in the HIV example, donor, recipient, and transmission branches evolve differently.
- Can we identify specific sites where this may be occurring?
 - Why is this of interest?
- More generally, given a tree with N sets of branches, we fish to find sites where evolution is different between these N sets, with a degree of statistical significance.
- Solution: use a fixed effects method (Contrast-FEL)
 - For each branch set i, estimate a dN/dS ration (N total ratios)
 - Test whether or not any of the ratios are different (group test)

- For each pair of ratios, test if they are different [up to N (N-1) / 2 tests]
- Can identify subtle differences among selective pressures.