

CPSC 359 – Digital Logic Tutorial #1 Basic Gates

Andrew Kuipers

CPSC 359

Basic Gates

AND

$C = A \wedge B$

Α	В	A∧B
0	0	0
0	1	0
1	0	0
1	1	1

<u>OR</u>

$$C = A \vee B$$

Α	В	A∨B
0	0	0
0	1	1
1	0	1
1	1	1

NOT

$$B = \neg A$$

Α	$\neg A$
0	1
1	0

$$D = (\neg A \vee B) \wedge \neg (B \wedge \neg C)$$

А	В	С	(¬A	√ B)) ^ -	¬(B	<u> </u>	¬C)
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

$$D = (\neg A \vee B) \wedge \neg (B \wedge \neg C)$$

Α	В	С	(¬A	√ B)) ^ -	¬(B	<u> </u>	¬C)
0	0	0						1
0	0	1						0
0	1	0						1
0	1	1						0
1	0	0						1
1	0	1						0
1	1	0						1
1	1	1						0

$$D = (\neg A \lor B) \land \neg (B \land \neg C)$$

Α	В	С	(¬A	√ B)) ^ -	¬(B	<u> </u>	¬C)
0	0	0					0	1
0	0	1					0	0
0	1	0					1	1
0	1	1					0	0
1	0	0					0	1
1	0	1					0	0
1	1	0					1	1
1	1	1					0	0

$$D = (\neg A \lor B) \land \neg (B \land \neg C)$$

Α	В	С	(¬A	√ B)) ^ -	¬(B	<u> </u>	¬C)
0	0	0				1	0	1
0	0	1				1	0	0
0	1	0				0	1	1
0	1	1				1	0	0
1	0	0				1	0	1
1	0	1				1	0	0
1	1	0				0	1	1
1	1	1				1	0	0

$$D = (\neg A \vee B) \wedge \neg (B \wedge \neg C)$$

Α	В	С	(¬A	∨ B)) ^ -	¬(B	<u> </u>	¬C)
0	0	0	1			1	0	1
0	0	1	1			1	0	0
0	1	0	1			0	1	1
0	1	1	1			1	0	0
1	0	0	0			1	0	1
1	0	1	0			1	0	0
1	1	0	0			0	1	1
1	1	1	0			1	0	0

$$D = (\neg A \vee B) \wedge \neg (B \wedge \neg C)$$

А	В	С	(¬A	\ \ \ B) ^ -	¬(B	<u> </u>	¬C)
0	0	0	1	1		1	0	1
0	0	1	1	1		1	0	0
0	1	0	1	1		0	1	1
0	1	1	1	1		1	0	0
1	0	0	0	0		1	0	1
1	0	1	0	0		1	0	0
1	1	0	0	1		0	1	1
1	1	1	0	1		1	0	0

$$D = (\neg A \vee B) \wedge \neg (B \wedge \neg C)$$

Α	В	С	(¬A	√ B)) ^ -	¬(B	^ <u>_</u>	¬C)
0	0	0	1	1	1	1	0	1
0	0	1	1	1	1	1	0	0
0	1	0	1	1	0	0	1	1
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	1
1	0	1	0	0	0	1	0	0
1	1	0	0	1	0	0	1	1
1	1	1	0	1	1	1	0	0

Exercise

1. Translate to a logical formula:

2. Create a circuit for the logical formula:

$$D = \neg(A \land \neg B) \land (C \lor \neg A \lor B)$$

Other Gates

XOR

$$C = A \oplus B$$

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

NOR

$$C = \neg(A \lor B)$$

Α	В	¬(A∨B)
0	0	1
0	1	0
1	0	0
1	1	0

NAND

$$C = \neg(A \land B)$$

Α —	р— с
В —	

Α	В	¬(A ∧ B)
0	0	1
0	1	1
1	0	1
1	1	0

Transforming Circuits

De Morgan's Laws

$$\neg(A \land B) \Leftrightarrow \neg A \lor \neg B$$
$$\neg(A \lor B) \Leftrightarrow \neg A \land \neg B$$

So:
$$A \wedge B \Leftrightarrow \neg(\neg A \vee \neg B)$$
 and $A \vee B \Leftrightarrow \neg(\neg A \wedge \neg B)$

Therefore: Just need $\{ \land, \neg \}$ or $\{ \lor, \neg \}$ for any circuit

Transforming Circuits

NOR can make a NOT gate:

$$\neg A \Leftrightarrow \neg A \land \neg A \Leftrightarrow \neg (A \lor A)$$

NOR can make an OR gate:

$$A \vee B \Leftrightarrow \neg(\neg(A \vee B))$$

$$\begin{array}{c}
A \longrightarrow C \\
V \longrightarrow C
\end{array}$$

So: NOR gates alone can be used to make any circuit

* can NAND gates do the same thing?

Exercise

Translate into a circuit using only NOR gates:

* Can you optimize the number of gates used?

CPSC 359 14