

パラメータの最適化手法

mono

学習係数

- 大きすぎると発散して正しい学習が行えない
- 小さすぎると学習に時間がかかる

AdaGrad

学習係数の減衰

- 最初は学習係数を大きく、徐々に小さくして学習する
 - NN の学習ではよく使われる手法
 - パラメータ「全体」の学習係数を一括して下げる
- AdaGrad では一つ一つのパラメータに対して学習係数を調整する

AdaGrad の更新方法

$$h \leftarrow h + rac{\partial L}{\partial W} \odot rac{\partial L}{\partial W}$$

$$W \leftarrow W - \eta \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$

- ○:アダマール積(成分ごとの積)
- W:更新するパラメータ
- h: 勾配の 2 乗の値を足していったもの

AdaGrad の更新方法

- h はパラメータごとに勾配の 2 乗和を保存している
 - よく動いたパラメータの学習係数ほど小さくなる
- h は単調増加のため学習係数 $(\eta \frac{1}{\sqrt{h}})$ は小さくなる
 - 学習を進めると更新量が少なくなってほぼ 0 になってしまう
- RMSProp
 - $h \leftarrow \beta h + (1-\beta) \frac{\partial L}{\partial W} \odot \frac{\partial L}{\partial W}$
 - 新しい勾配の情報が大きく反映されるようにする
 - 「指数移動平均」とも呼ばれる

AdaGrad の更新経路

Adam

- Momentom と AdamGrad(RMSProp)を融合
- バイアス補正が行われている
 - 使われる勾配の値を調整
- 参考文献
 - https://arxiv.org/pdf/1412.6980.pdf
 - https://www.anarchive-beta.com/entry/2020/08/13/180000

Adam の更新経路

どの更新手法を用いるべき?

- 比較してみる
 - AdaGrad がよさそう
- 解く問題によって結果が変わる
- ハイパーパラメータ(学習係数)の設定値にもよる
- 多く使われている手法は?
 - 今でも SGD が多く使われている
 - 最近では Adam を好んで使っている人が多い

MNIST データセットによる比較

- 各層 100 個の五層ニューラルネットワーク
- 活性関数: ReLU

結果

結果

- SGD よりも他の手法が速く学習できている
 - AdaGrad の学習が少し速く行われている
- 解く問題によって結果が変わる
- ハイパーパラメータ(学習係数)の設定値にもよる
- 一般に SGD よりも他の 3 つの手法の方が速く学習できる
 - 時には最終的な認識性能にも差が出る