SPLATT Efficient and Parallel Sparse Tensor-Matrix Multiplication

Shaden Smith¹ Niranjay Ravindran Nicholas D. Sidiropoulos George Karypis

University of Minnesota ¹shaden@cs.umn.edu

Tensor Introduction

Tensors are matrices extended to higher dimensions.

Example

We can model an item tagging system with a $\textit{user} \times \textit{item} \times \textit{tag}$ tensor.

• Very sparse!

Canonical Polyadic Decomposition (CPD)

- Extension of the singular value decomposition.
- ullet Rank-F decomposition with $F\sim 10$
- Compute $\mathbf{A} \in \mathbb{R}^{I \times F}$, $\mathbf{B} \in \mathbb{R}^{J \times F}$, and $\mathbf{C} \in \mathbb{R}^{K \times F}$

Khatri-Rao Product

- Column-wise Kronecker product
- $(I \times F) \odot (J \times F) = (IJ \times F)$

$$\mathbf{A} \odot \mathbf{B} = [a_1 \otimes b_1, a_2 \otimes b_2, \dots, a_n \otimes b_n]$$

CPD with Alternating Least Squares

Computing the CPD

- We use alternating least squares.
- We operate on $\mathbf{X}_{(1)}$, the tensor flattened to a matrix along the first dimension.

$$\mathbf{A} = \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B}) (\mathbf{C}^{\mathsf{T}}\mathbf{C} * \mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1}$$

Matricized Tensor times Khatri-Rao Product (MTTKRP)

- MTTKRP is the bottleneck of CPD
- ullet Explicitly forming ${f C} \odot {f B}$ is infeasible, so we do it in place.

Related Work

Related Work

Sparse Tensor-Vector Products

Tensor Toolbox

- Popular Matlab code today for sparse tensor work
- ullet MTTKRP uses $nnz(\mathcal{X})$ space and $3F \cdot nnz(\mathcal{X})$ FLOPs
- Parallelism is difficult during "shrinking" stage

GigaTensor

- GigaTensor is a recent algorithm developed for Hadoop
- Uses $O(nnz(\mathcal{X}))$ space but $5F \cdot nnz(\mathcal{X})$ FLOPs
- Computes a column at a time

DFacTo

- Two sparse matrix-vector multiplications per column
- Requires an auxiliary sparse matrix with as many nonzeros as there are non-empty fibers
- 2F(nnz(X) + P) FLOPs, with P non-empty fibers

SPLATT

The Surprisingly ParalleL spArse Tensor Toolkit

Contributions

- \bullet Fast algorithm and data structure for MTTKRP
- Cache friendly tensor reordering
- Cache blocking for temporal locality

SPLATT- Optimized Algorithm

$$\mathbf{M}(i,f) = \sum_{k=1}^{K} \mathbf{C}(k,f) \sum_{j=1}^{J} \mathcal{X}(i,j,k) \mathbf{B}(j,f)$$

$$\mathbf{M}(i,:) = \sum_{k=1}^{K} \mathbf{C}(k,:) * \sum_{j=1}^{J} \mathcal{X}(i,j,k) \mathbf{B}(j,:)$$

SPLATT- Brief Analysis

- We compute rows at a time instead of columns
- Access patterns much better
- Same complexity as DFacTo!
- Only F extra memory for MTTKRP

Tensor Reordering

We reorder the tensor to improve the access patterns of **B** and **C**

Tensor Reordering – Mode Independent

$$\left[\begin{array}{c|cc} \alpha & \beta & 0 & 0 \\ 0 & \gamma & 0 & \delta \end{array}\right]$$

Graph Partitioning

- ullet We model the sparsity structure of $oldsymbol{\mathcal{X}}$ with a tripartite graph
 - Slices are vertices, nonzeros connect slices with a triangle
- Partitioning the graph finds regions with shared indices
- We reorder the tensor to group indices in the same partition

Tensor Reordering - Mode Dependent

$$\left[\begin{array}{cc|c}
\alpha & \beta & 0 & 0 \\
0 & \gamma & 0 & \delta
\end{array}\right]$$

Hypergraph Partitioning

- Instead, create a new reordering for each mode of computation
- Fibers are now vertices and slices are hyperedges
- Overheads?

Cache Blocking over Tensors

Sparsity is Hard

- Tiling lets us schedule nonzeros to reuse indices already in cache
- Cost: more fibers
- Tensor sparsity forces us to grow tiles

Experimental Evaluation

Experimental Evaluation

Summary of Datasets

Dataset	ı	J	K	nnz	density
NELL-2	15K	15K	30K	77M	1.3e-05
Netflix	480K	18K	2K	100M	5.4e-06
Delicious	532K	17M	2.5M	140M	6.1e-12
NELL-1	4M	4M	25M	144M	3.1e-13

Effects of Tensor Reordering

	Time (Speedup)				
Dataset	Random	Mode-Independent	Mode-Dependent		
NELL-2	2.78	2.61 (1.06×)	2.60 (1.06×)		
Netflix	6.02	5.26 (1.14×)	5.43 (1.10×)		
Delicious	15.61	13.10 (1.19×)	12.51 (1.24×)		
NELL-1	19.83	17.83 (1.11×)	17.55 (1.12×)		

- Small effect on serial performance
- Without cache blocking, a dense fiber can hurt cache reuse

Effects of Cache Blocking

	Time (Speedup)					
Thds	SPLATT	tiled	MI+tiled	MD+tiled		
1	8.14 (1.0×)	8.90 (0.9×)	8.70 (1.0×)	9.18 (0.9×)		
2	4.73 (1.7×)	4.88 (1.7×)	4.37 (1.9×)	4.52 (1.8×)		
4	2.54 (3.2×)	2.58 (3.2×)	2.29 (3.6×)	2.35 (3.5×)		
8	1.42 (5.7×)	1.41 (5.8×)	1.26 (6.5×)	1.26 (6.4×)		
16	0.90 (9.0×)	0.85 (9.5×)	0.74 (11.0×)	0.75 (10.8×)		

MI and **MD** are mode-independent and mode-dependent reorderings, respectively.

- Cache blocking on its own is also not enough
- MI and MD are very competitive with tiling enabled

Scaling: Average Speedup vs TVec

Scaling: NELL-2, Speedup vs TVec

Conclusions

Results

- SPLATT uses less memory than the state of the art
- \bullet Compared to DFacTo, we average 2.8× faster serially and 4.8× faster with 16 threads
- How?
 - Fast algorithm
 - Tensor reordering
 - Cache blocking

SPLATT

- Released as a C library
- cs.umn.edu/~shaden/software/