D.	1.6	\ /.	(00	v aa	-22-	7	117	15
D.	ເພ	· v	loo.	ナーひフ	-22-	٠.	U/	J

Reg. No.				

B. Tech. Degree V Semester Special Supplementary Examination September 2022

CS 19-202-0504 COMPUTER GRAPHICS

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcomes

On successful completion of the course, the students will be able to:

- CO1: Explain the organization of an interactive computer graphics system.
- CO2: Generate 2D and 3D geometrical objects.
- CO3: Explain the important transformations on graphical objects.
- CO4: Fill a region given boundary and clip lines and polygons against a rectangular boundary.
- CO5: Describe the different types of curves and generate curves.
- CO6: Apply the operations like projections and rendering for 3D picture generation.
- CO7: Design graphical objects.
- CO8: Design interactive graphics systems and animation systems.

Bloom's Taxonomy Levels (BL): L1 – Remember, L2 – Understand, L3 – Apply, L4 – Analyze,

L5 – Evaluate, L6 – Create

PO – Programme Outcome

PART A (Answer ALL questions)

		$(8 \times 3 = 24)$	Marks	BL	, CO	PO
I.	(a)	Explain the working of shadow mask crt.	3	L2	1	1,2,3
	(b)	Explain dda line drawing algorithm. Generate the intermediate points	3	L3	2	1,2,3
		for the line whose end points are at (10,10) and (20,30).				
	(c)	Explain B spline Curves.	3	L2	5	1,2,3
	(d)	Prove that successive scaling is multiplicative.	3	L3	3	1,2,3
	(e)	Explain octree method in hidden surface elimination.	3	L2	6	1,2,3
	(f)	Explain painters algorithm.	3	L1	6	1,2,3
	(g)	Explain constant intensity shading.	3	L2	6	1,2,3
	(h)	Explain RGB colour system.	3	L2	7	1,2,3
		n i nan				
		PART B				
		$(4 \times 12 = 48)$				
II.		Explain Bresenhams circle drawing algorithm. Generate the	12	L3	2	1,2,3
		intermediate points for the circle whose Centre is at (0,3) and radius 3. OR				
Ш.		Explain midpoint circle drawing algorithm. Generate the intermediate	12	L3	2	1,2,3
		points for the circle whose centre is at (0,3) and radius 3.				
IV.		Explain Cohen Sutherland line clipping and also apply the algorithm	12	L3	4	1,2,3
1 , .		for a suitable example.	12	כם	- ਜਾ	1,2,5
		OR				***
V.		Explain reflection of an object about the line $y = x$ and $y = -x$.	12	L2	3	1,2,3
					a	точ
					(ı	P.T.O.)

BTS-V(SS)-09-22-1075

VI.	$(8 \times 3 = 24)$ Explain three-dimensional rotation of an object about arbitrary axis	Marks 12	BL L2	CO 3	PO 1,2,3
VII.	in three-dimensional space. OR Explain 7 buffer elements What are 45 15 4 4 5 6 1 66	10			1.0.0
VII.	Explain z buffer algorithm. What are the limitations of z buffer algorithm? Mention any two methods by which the limitations can be rectified.	12	L3	6	1,2,3
VIII.	Explain Gouraud shading and Phong Shading. OR	12	L2	6	1,2,3
IX.	Explain the steps involved in designing an animation sequence. Explain how the motions of objects can be specified in an animation system.	12	L2	8	1,2,3

Bloom's Taxonomy Levels L1 = 6.25%, L2 = 56.25%, L3 = 37.5%.
