Real Analysis Homework 12

Francisco Jose Castillo Carrasco

November 13, 2017

1 Problem 5.2.4.

1. Let X be a normed vector space and $u, x \in X$.

Show: If $x^*x = x^*u$ for all $x^* \in X^*$, then x = u.

Solution:

Proof. Let us assume $x^*x = x^*u$ for all $x^* \in X^*$. Then, by Lemma 5.9, since $x - u \in X$, there exists an $x^* \in X^*$ such that

$$||x - u|| = x^*(x - u) = x^*x - x^*u = 0$$
.

Thus, by the properties of norms, ||x - u|| = 0 implies x = u.

2 Problem 6.1.2.

1. Let X and Y be metric spaces and let d denote the metric on both. Let $S \subseteq X$ and $f: S \to Y$. Let $x \in X$ be an accumulation point of S.

Then L is the limit of f at x if and only if for every sequence (s_n) in $S\setminus\{x\}$ with $s_n\to x$ also $f(s_n)\to L$ as $n\to\infty$.

Solution:

Proof. (\Rightarrow)

Let $\varepsilon > 0$. Since L is a limit point of f at x, there exists $\delta > 0$ such that for $s \in S \setminus \{x\}$,

$$0 < d(s, x) < \delta \Rightarrow d(f(s), L) < \varepsilon$$
.

Let (s_n) be a sequence in $S\setminus\{x\}$ such that $s_n\to x$ as $n\to\infty$. Then there exists an $N\in\mathbb{N}$ with N>0 such that

$$d(s_n, x) < \delta$$
 when $n > N$,

which implies

$$d(f(s_n), L) < \varepsilon \text{ for } n > N$$
.

 (\Leftarrow) By contrapositive.

Let L not be a limit of F at X. Then there exists a $\varepsilon > 0$ such that for every $\delta > 0$, there exists an $s \in S \setminus \{x\}$ such that

$$d(s,x) < \delta$$
 but $d(f(s),L) \ge \varepsilon$.

In particular, for every $n \in \mathbb{N}$ with $\delta = \frac{1}{n}$, there exists some $s_n \in S \setminus \{x\}$ such that

$$d(s_n, x) < \frac{1}{n}$$
 but $d(f(s_n), L) \ge \varepsilon$.

Thus we have a sequence $(s_n) \in S \setminus \{x\}$ with $s_n \to x$ but $f(s_n)$ does not converge to L as $n \to \infty$.

3 Problem 6.2.2.

1. (Product rule of differentiation). Let X be a normed vector space over \mathbb{K} and $f:[a,b] \to X$, $\phi:[a,b] \to \mathbb{K}$. If $t \in [a,b]$ and ϕ are differentiable at t, then ϕf , defined by $(\phi f)(t) = \phi(t)f(t)$, is differentiable at t and $(\phi f)'(t) = \phi'(t)f(t) + \phi(t)f'(t)$.

Solution:

Proof. Let $s \in (a,b)$ and $t \in [a,b]$ with f and ϕ differentiable at t. As $s \to t$,

$$\begin{split} &\|(\phi f)'(t) - (\phi'(t)f(t) + \phi(t)f'(t))\| = \|\frac{(\phi f)(s) - (\phi f)(t)}{s - t} - (\phi'(t)f(t) + \phi(t)f'(t))\| \\ &= \|\frac{\phi(s)f(s) - \phi(t)f(t) + \phi(s)f(t) - \phi(s)f(t)}{s - t} - (\phi'(t)f(t) + \phi(t)f'(t))\| \\ &= \|\phi(s)\frac{f(s) - f(t)}{s - t} + f(t)\frac{\phi(s) - \phi(t)}{s - t} - \phi'(t)f(t) - \phi(t)f'(t)\| \\ &\leq \|\phi(s)\frac{f(s) - f(t)}{s - t} - \phi(t)f'(t)\| + \|f(t)\frac{\phi(s) - \phi(t)}{s - t} - f(t)\phi'(t)\| \\ &= \|\phi(s)\frac{f(s) - f(t)}{s - t} - \phi(t)f'(t) + \phi(s)f'(t) - \phi(s)f'(t)\| + \|f(t)\frac{\phi(s) - \phi(t)}{s - t} - f(t)\phi'(t)\| \\ &\leq \|\phi(s)\frac{f(s) - f(t)}{s - t} - \phi(s)f'(t)\| + \|\phi(s)f'(t) - \phi(t)f'(t)\| + \|f(t)\frac{\phi(s) - \phi(t)}{s - t} - f(t)\phi'(t)\| \\ &= |\phi(s)|\|\frac{f(s) - f(t)}{s - t} - f'(t)\| + |f'(t)|\|\phi(s) - \phi(t)\| + |f(t)|\|\frac{\phi(s) - \phi(t)}{s - t} - \phi'(t)\| \to 0 \ , \end{split}$$

by the differentiability of f and ϕ at t and because $\|\phi(s) - \phi(t)\| \to 0$ as $s \to t$ since ϕ must be continuous in order to be differentiable. Therefore, $(\phi f)'(t) = \phi'(t)f(t) + \phi(t)f'(t)$.

4 Problem 6.3.4.

1. Let $f:[a,b]\to X$, f continuous on [a,b] and differentiable on (a,b).

Show: if f' is bounded on (a,b), then f is Lipschitz continuous and $\sup_{t\in(a,b)}\|f'(t)\|$ is a Lipschitz constant for f.

Solution:

Proof. Let f' be bounded on (a,b). Then, there exists $\sup_{t\in(a,b)} f'(t)$ and also $\sup_{t\in(a,b)} \|f'(t)\|$. Since f is a continuous function that is differentiable on (a,b), then by theorem 6.13, there exists some $t\in(a,b)$ such that

$$||f(b) - f(a)|| \le ||f'(t)||(b-a)|.$$

Then, by definition of a supremum,

$$||f(b) - f(a)|| \le \sup_{t \in (a,b)} ||f'(t)|| (b-a).$$

Therefore, f is Lipschitz continuous on [a, b] with Lipschitz constant $\sup_{t \in (a, b)} ||f'(t)||$.

Acknowledgements

The proofs in this homework assignment have been worked and written in close collaboration with Camille Moyer.