Pontificia Universidad Católica del Perú - FCI

Xie Xie Lucas Notebook - Froz/Phibrain/Ands

November 9, 2017

Contents			$4.6 \\ 4.7$	Number Theory	
1	Data Structures	1	4.1	Simplex Method	
_	1.1 Fenwick Tree	_	4.9	Teorema de Lucas	
	1.2 Heavy Light Decomposition		4.3	Teorema de Lucas	4
	1.3 LCA Tree		Mis	c	2
	1.4 Lazy Propagation Segment Tree	4	5.1	Centroid Decomposition	2
	1.5 Link Cut Tree	-	5.2	Closest Pair	
	1.6 Persistent Segment Tree	6	5.3	Convex Hull Trick	
	1.7 Segment Tree	6	5.4	Dates	
	1.8 Wavelet Tree	7	5.5	Divide and Conquer Trick	
	1.6 Wavelet free	'	5.6	Fractions	
2	Geometry	8	5.7	Longest Increasing Subsequence	
	2.1 Convex Hull	8	5.8	Matrix Structure	
	2.2 Delaunay Triangulation	ŭ	5.9	Ordered Set	
	2.3 Geometry		0.0	Parallel Binary Search	
	2.4 Minkowski Sum	19		·	
	2.4 Willikowski Sulii	12	5.11	Unordered Map	4
3	Graphs	12 6	Net	work Flows	2
	3.1 2SAT	12	6.1	Bipartite Matching	2
	3.2 Biconnected Components	14	6.2	Dinic Flow	
	3.3 Bridges and Articulation Points		6.3	Edmonds Blossom	
	3.4 Eulerian Path		6.4	Min Cost Max Flow	
	3.5 Maximal Cliques	16	6.5	Push Relabel Max Flow	3
	3.6 Tarjan Strongly Connected Components				
	,	7	Stri	ngs	3
4	Math	17	7.1	Aho Corasick + Compression	3
	4.1 Chinese Remainder Theorem	17	7.2	Aho Corasick	
	4.2 Cribas	17	7.3	Knuth Morris Pratt	3
	4.3 Euler Totient	18	7.4	Manacher Algorithm	3
	4.4 Inverso Modular	18	7.5	Palindromic Tree	

	7.7	Suffix Automaton)
	7.8	Z-Algorithm)
3	Ten	aplates 39)
	8.1	Header Template)
	8.2	Makefile)
	8.3	Stack Size)
	8.4	Vim Configuration (vimrc))
9	Uti	40 40 40 40 40 40 40 40 40 40 40 40 40 4)
	9.1	MinXOR)
	9.2	Offline Less K-Counting	L
	9.3	Online Less K-Counting	2

1 Data Structures

1.1 Fenwick Tree

```
// Fenwick tree: O(\log(n)) accumulated sum queries.
11 bitadd[N] ;
11 bitsub[N] ;
int n ;
void update( int idx, 11 val1, 11 val2 ){
       while( idx <=n ) {</pre>
              bitadd[idx] += val1 ;
              bitsub[idx] += val2 ;
              idx += idx & -idx ;
       }
}
void updaterange( int 1 , int r , 11 val ){
       update( 1 , val , (1-1)*val ) ;
       update( r+1 , -val , -r*val) ;
}
11 get( int idx ){
       ll add = 0 , sub = 0, aux = idx ;
       while (idx > 0){
              add += bitadd[idx] ;
              sub += bitsub[idx] ;
              idx -= idx & -idx ;
```

```
}
return aux*add - sub ;
}
```

1.2 Heavy Light Decomposition

```
//Heavy-Light Decomposition Tree for Commutative Operations
//Phibrain
inline 11 ma(11 a, 11 b){return ((a-b>0)? a:b);}
inline 11 mi(11 a, 11 b){return ((a-b>0)? b:a);}
struct ST{
   11 n:
   ll t[2*N];
   11 Op(11 &u, 11 &v){ return ma(u,v); }
   inline void build(){
       RREP(i,n-1,1) t[i]=0p(t[i<<1], t[i<<1|1]);
   inline void modify(ll p, ll val){
       for(t[p+=n] = val; p >>= 1;) t[p] = Op(t[p<<1], t[p<<1|1]);
   inline ll que(ll l, ll r){
       11 ansl=min. ansr=min:
       for(1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1){
          if(1\&1) ansl = Op(ansl, t[1++]);
          if(r\&1) ansr = Op(t[--r], ansr);
       return Op(ansl, ansr);
};
struct HLDES{
   11 n;
   ST st;
   vi adj[N];
   11 p[N],d[N],tsz[N],id[N],rt[N];
   inline 11 Op(11 val1, 11 val2) {return ma(val1,val2);}
   inline ll make1(ll u,ll par,ll depth){
       p[u]=par; d[u]=depth; tsz[u]=1;
       for(auto v:adj[u])if(v!=p[u]) tsz[u]+=make1(v,u,depth+1);
       return tsz[u];
```

```
inline void make(){
       11 \text{ val=make1}(0,-1,0);
   }
   inline void dfs(ll u, ll root){
       id[u]=gid++; rt[u]=root;
       11 w=0 , wsz=min;
       for(auto v: adj[u]) if(v!=p[u]){
           if(tsz[v]>wsz) {w=v; wsz=tsz[v];}
       if(w) dfs(w,root);
       for(auto v:adj[u]) if(v!=p[u]) if(v!=w) dfs(v,v);
   }
   inline void upd(ll u, ll val){
       11 a=id[u];
       st.modify(a,val);
   }
   11 que(11 u, 11 v){
       11 ans=0;// neutro?
       while (u!=-1)
           if(rt[u]==rt[v]){
              11 a=id[u], b=id[v];
              if(a>b) swap(a,b);
              ans=Op(ans,st.que(a,b+1));
              u=-1:
          }
           else{
              if(d[rt[u]]>d[rt[v]]) swap(u,v);
              ans=Op(ans,st.que(id[rt[v]],id[v]+1));
              v=p[rt[v]];
          }
       }
       return ans;
   inline void build(){
       gid=0; st.n=n;
       make(); dfs(0,0);
       REP(i,0,n) st.t[i+n]=0;//val de cada t[i]
       st.build();
   }
};
//Heavy Light Decomposition General
struct HLDES{
```

```
11 n:
ST st1,st2;
vi adj[N];
vector<ii> ver[N];
11 p[N],d[N],tsz[N],id[N],rt[N],ar[N],val[N],id1[N];
ll gid,k;
inline T Op(T &val1, T &val2){
  T ty;
 //Operacion del Heavy Light
  return ty;
inline ll make1(ll u,ll par,ll depth){
  p[u]=par; d[u]=depth; tsz[u]=1;
 for(auto v:adj[u])if(v!=p[u]) tsz[u]+=make1(v,u,depth+1);
  return tsz[u];
inline void make(){
  11 val=make1(0,-1,0);
inline void dfs(ll u, ll root){
  ar[gid]=val[u];
  id[u]=gid++; rt[u]=root;
  11 w=OLL , wsz=min;
  for(auto v: adj[u]) if(v!=p[u]){
   if(tsz[v]>wsz) {w=v: wsz=tsz[v]:}
  if(w) dfs(w,root);
  for(auto v:adj[u]) if(v!=p[u]) if(v!=w) dfs(v,v);
inline void solve(){
 11 ta:
  REP(i,0,n) ver[rt[i]].pb(mp(id[i],i));
  REP(i,0,n){
   if(ver[i].size()!=0){
     sort(all(ver[i]));
     ta=ver[i].size();
     ta=ver[i][ta-1].fst;
     for(auto j: ver[i]) id1[j.snd]=ta--;
 }
inline 11 LCA(11 u, 11 v){
  while(rt[u]!=rt[v]){
```

```
if(d[rt[u]] < d[rt[v]]) v = p[rt[v]];</pre>
     else u=p[rt[u]];
   return d[u]>d[v]? v:u;
 inline void upd(ll u, ll v, ll val){
   11 1, r, a, b;
   //Update del Heavy Light
  inline 11 que(11 u, 11 v){
   //Query del HLD
 inline void build(){
   REP(i,0,n) cin>>val[i];
   REP(i,0,n-1) {
     ll a,b; cin>>a>>b;
     a--;b--;
     adj[a].pb(b); adj[b].pb(a);
   gid=0LL; k=0LL; st1.n=n; //st2.n=n;//st.made();
   make();
   dfs(0,0);
   REP(i,0,n) st1.ar[i]=ar[i];
   st1.build();
 }
} hld:
```

1.3 LCA Tree

```
const int MAX = 1e4;
const int LGMAX = 15;
//LCA construction in O(n*log(n)) with O(log(n)) queries.
struct LCATree{
    int n;
    vector<int> adj[MAX];
    int p[MAX][LGMAX]; // 2^j ancestor of node i
    int L[MAX]; // Depth of node i
    int q[MAX]; // (Queue used internally).

    LCATree(int N):n(N){}

    void dfs(int u, int h){
        L[u] = h;
```

```
REP(i,0,sz(adj[u])){
              int v = adj[u][i];
              if (v != p[u][0]) {
                  p[v][0] = u;
                  dfs(v, h+1);
          }
       }
       void buildlca(int r){
              REP(i,0,n) REP(pw,0,LGMAX) p[i][pw] = -1;
              for (int pw = 1; (1<<pw) < n; pw++){</pre>
              REP(i,0,n) if (p[i][pw-1] != -1) p[i][pw] = p[p[i][pw-1]][
                   pw-1];
              }
       }
       int lca(int u, int v){
              if (L[u] < L[v]) swap(u,v);
              for (int pw = LGMAX-1; pw >= 0; pw--)
                      if (L[u] - (1 << pw) >= L[v])
                             u = p[u][pw];
              if (u == v) return u;
              for (int pw = LGMAX-1; pw >= 0; pw--){
                      if (p[u][pw] != p[v][pw]) {
                             u = p[u][pw];
                             v = p[v][pw];
                      }
              return p[u][0];
       }
};
int main() {
       int n = 1e3:
   LCATree T(n);
   //Initialize n and the adj[] list
       T.buildlca(0); //Place the root instead of 0
       //Ready to answer queries
       return 0;
}
```

1.4 Lazy Propagation Segment Tree

```
// lazy propagation con propagacion y el update
//ejemplo de update en [1,r> la serie de fibonaci con a y b como primeros
    numeros (f[1]=a,f[2]=b)
//notar la forma de updatepro y proh;
//made preprocess y find el fib de posicion n con a y b como primeros
    numeros
inline 11 ss(11 val) {return val%MOD:}
11 dpf[N];
inline void made(){
 dpf[1]=1; dpf[2]=1;
 REP(i,3,N) dpf[i]=ss(dpf[i-1]+dpf[i-2]);
inline ll find(ll a, ll b, ll n) {
 if (n<3) return n==1? a:b;
 return ss(a*dpf[n-2]+b*dpf[n-1]);
}
struct ST{
 ii lazy[4*N];
 11 tree[4*N], ar[N];
 11 n:
 inline void updatepro(ii laz,ll id, ll l,ll r){
   11 ta=r-1, sum=(find(laz.fst,laz.snd,ta+2)-laz.snd+MOD)%MOD;
   tree[id]=ss(tree[id]+sum):
   lazv[id].fst=ss(lazv[id].fst+laz.fst);
   lazy[id].snd=ss(lazy[id].snd+laz.snd);
 }
  inline void proh(ll id, ll l,ll r){
   11 mid=(1+r)>>1, ta=mid-1;
   updatepro(lazy[id],2*id,1,mid);
   ii laz:
   laz.fst=find(lazy[id].fst,lazy[id].snd,ta+1);
   laz.snd=find(lazy[id].fst,lazy[id].snd,ta+2);
   updatepro(laz,2*id+1,mid,r);
   lazy[id]={OLL,OLL};
 }
  inline void updateRange(ll x, ll y, ll a, ll b, ll id, ll l, ll r){
   if(x>=r || y<=l) return;</pre>
   if(x<=1 && r<=y){</pre>
     ll ta=l-x; ii laz;
     laz.fst=find(a,b,ta+1); laz.snd=find(a,b,ta+2);
     updatepro(laz,id,l,r);
```

```
return;
   proh(id,1,r); ll mid=(1+r)>>1;
   updateRange(x,y,a,b,2*id,1,mid);
   updateRange(x,y,a,b,2*id+1,mid,r);
   tree[id]=ss(tree[2*id]+tree[2*id+1]);
  inline ll getSum(ll x,ll y,ll id,ll l,ll r){
   if(x>=r || 1>=y) return 0;
   if(x<=1 && r<=y) return tree[id];</pre>
   proh(id,1,r);ll mid=(l+r)>>1;
   ll ez,ez1,ez2;
   ez1=getSum(x,y,2*id,1,mid);
   ez2=getSum(x,y,2*id+1,mid,r);ez=ss(ez1+ez2);
   return ez;
  inline void build1( ll id, ll l, ll r){
   if (1 > r) return;
   if (r-1<2){tree[id] = ar[1];return;}</pre>
   11 \text{ mid} = (1 + r) >> 1;
   build1(2*id, 1,mid); build1(2*id+1, mid, r);
   tree[id] = ss(tree[id*2] + tree[id*2 + 1]);
  inline void upd(ll x, ll y, ll a, ll b){
   updateRange(x,y,a,b,1,0,n);
  inline void build(){
   build1(1,0,n);
  inline 11 que(11 x, 11 y){
   return getSum(x,y,1,0,n);
 }
};
```

1.5 Link Cut Tree

```
//Link cut tree

const int N = 1e5 + 2;

struct Node {
   Node *left, *right, *parent;
   bool revert;
```

```
Node() : left(0), right(0), parent(0), revert(false) {}
   bool isRoot() {
       return parent == NULL | |
           (parent->left != this && parent->right != this);
   }
   void push() {
       if (revert) {
           revert = false;
           Node *t = left;
           left = right;
           right = t;
           if (left != NULL) left->revert = !left->revert;
           if (right != NULL) right->revert = !right->revert;
       }
   }
};
struct LinkCutTree{
   Node nos[N];
   LinkCutTree(){
       REP(i,0,N) nos[i] = Node();
   }
   void connect(Node *ch, Node *p, bool isLeftChild) {
       if (ch != NULL) ch->parent = p;
       if (isLeftChild) p->left = ch;
       else p->right = ch;
   }
   void rotate(Node *x){
       Node* p = x->parent;
       Node* g = p->parent;
       bool isRoot = p->isRoot();
       bool leftChild = x == p->left;
       connect(leftChild ? x->right : x->left, p, leftChild);
       connect(p, x, !leftChild);
       if (!isRoot) connect(x, g, p == g->left);
       else x->parent = g;
   }
   void splay(Node *x){
       while (!x->isRoot()) {
           Node *p = x->parent;
```

```
Node *g = p->parent;
       if (!p->isRoot()) g->push();
       p->push();
       x->push();
       if (!p->isRoot()) {
           rotate((x == p -> left) == (p == g -> left) ? p : x);
       }
       rotate(x);
   }
   x->push();
Node *expose(Node *x) {
   Node *last = NULL, *y;
   for (y = x; y != NULL; y = y->parent) {
       splay(y);
       y->left = last;
       last = y;
   }
   splay(x);
   return last;
void makeRoot(Node *x) {
   expose(x);
   x->revert = !x->revert;
}
bool connected(Node *x, Node *y) {
   if (x == y) return true;
   expose(x);
   expose(y);
   return x->parent != NULL;
}
bool link(Node *x, Node *y) {
   if (connected(x, y)) return false;
   makeRoot(x);
   x->parent = y;
   return true;
bool cut(Node *x, Node *y) {
   makeRoot(x);
   expose(y);
```

1.6 Persistent Segment Tree

```
// Persistent segment tree implemented with pointers.
// Consider using a map<int, node*> which represents
// the segment tree at time t.
const int MAX = 1e6;
typedef int T;
T arr[MAX]:
struct node {
       T val;
       node *1, *r;
       node(T val) : val(val), 1(NULL), r(NULL) {}
       node(T val, node* 1, node* r) : val(val), l(1), r(r) {}
};
// Identity element of Op()
const T OpId = 0;
// Associative query operation
T Op(T val1, T val2){
       return val1 + val2;
node* build(int a, int b) {
       if (a+1 == b) return new node(arr[a]);
       node* l = build(a, (a+b)/2);
       node* r = build((a+b)/2, b);
       return new node(Op(1->val, r->val), 1, r);
// Branch and increment position p by val
node* update(node* u, int a, int b, int p, T val) {
       if (a > p || b <= p) return u;</pre>
       if (a+1 == b) return new node(Op(u->val, val));
       node* l = update(u->l, a, (a+b)/2, p, val);
       node* r = update(u->r, (a+b)/2, b, p, val);
       return new node(Op(1->val, r->val), l, r);
}
// Query t to get sum of values in range [i, j)
```

```
T query(node* u, int a, int b, int i, int j) {
       if (a >= j || b <= i) return OpId;</pre>
       if (a >= i && b <= j) return u->val;
       T q1 = query(u->1, a, (a+b)/2, i, j);
       T q2 = query(u->r, (a+b)/2, b, i, j);
       return Op(q1, q2);
map<int, node*> m;
node* st:
T val;
int n, p;
int main() {
       REP(i,0,n) arr[i] = 0; // Any starting values
       m.clear();
       st = build(0,n);
       m[0] = st;
       REP(i,0,n){
              // Modify position p with value val at time t
              st = update(st, 0, n, p, val);
              m[i] = st;
       }
       // Consider for example rectangular queries:
       // Sum of all nodes in [a,b]x[c,d] using one
       // coordinate as time and another as values
}
```

1.7 Segment Tree

```
// Iterative, fast, non-conmutative segment tree.
typedef int T;
const int MAX = 1e6;

// Identity element of the operation
const T OpId = 0;
// Associative internal operation
T Op(T& val1, T& val2){
   return val1 + val2;
}

// The user should fill t[n, 2*n)
T t[2*MAX];
int n;
```

```
void build(){
   for( int i = n-1; i > 0; i--) t[i] = Op(t[i << 1], t[i << 1|1]);
}
void modify( int p , T val ){
   for( t[p+=n] = val ; p >>= 1 ; ) t[p] = Op(t[p<<1], t[p<<1|1]);
}
T get( int 1 , int r ) { //[1,r)
   T ansl, ansr;
   ansl = ansr = OpId; //Initialize operation at Identity
   for( 1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1){
          if(l\&1) ansl = Op(ansl, t[l++]);
          if(r\&1) ansr = Op(t[--r], ansr);
   }
   return Op(ansl, ansr);
}
int main(){
       // Read into t[n,2*n)
   build();
   // Answer queries
}
```

1.8 Wavelet Tree

```
/*
    Wavelet Tree Implementation
    Construction in O(nlogn)
    Queries in O(log(MAX))

1 - based array!
*/

typedef vector<int> vi;

struct WT{
    int lo, hi;
    WT *1, *r; vi b;
    WT(int *from, int *to, int x, int y){
```

```
lo = x, hi = y;
   if(lo == hi or from >= to) return;
   int mid = (lo+hi)/2:
   auto f = [mid](int x){
     return x <= mid;</pre>
   };
   b.reserve(to-from+1);
   b.pb(0);
   for(auto it = from; it != to; it++) b.pb(b.back() + f(*it));
   auto pivot = stable_partition(from, to, f);
   1 = new WT(from, pivot, lo, mid);
   r = new WT(pivot, to, mid+1, hi);
  //kth en [1,r]
  int kth(int 1, int r, int k){
   if(1 > r) return 0;
   if(lo == hi) return lo;
   int inLeft = b[r] - b[1-1]; //cantidad en los a primeros b[a]
   int lb = b[1-1]:
   int rb = b[r];
   if(k <= inLeft) return this->l->kth(lb+1, rb , k);
   return this->r->kth(l-lb, r-rb, k-inLeft);
  //cantidad de numeros menoes a K en [1,r]
  int LTE(int 1, int r, int k) {
   if(1 > r \text{ or } k < 10) \text{ return } 0:
   if(hi <= k) return r - 1 + 1;</pre>
   int lb = b[l-1], rb = b[r];
   return this->l->LTE(lb+1, rb, k) + this->r->LTE(l-lb, r-rb, k);
  //cantidad de numeros en [l,r] iguales a k
  int count(int 1, int r, int k) {
   if(1 > r \text{ or } k < 10 \text{ or } k > hi) \text{ return } 0;
   if(lo == hi) return r - l + 1;
   int 1b = b[1-1], rb = b[r], mid = (1o+hi)/2;
   if(k <= mid) return this->l->count(lb+1, rb, k);
   return this->r->count(1-lb, r-rb, k);
  ~WT(){
   delete 1:
   delete r;
};
```

2 Geometry

2.1 Convex Hull

```
// INPUT: a vector of input points, unordered.
    OUTPUT: a vector of points in the convex hull,
              counterclockwise, starting with bottom left
#define REMOVE REDUNDANT
typedef double T;
const T EPS = 1e-7;
struct PT {
       T x, y;
       PT() {}
       PT(T x, T y) : x(x), y(y) {}
       bool operator<(const PT &rhs) const {</pre>
              return mp(y,x) < mp(rhs.y,rhs.x);</pre>
       }
       bool operator==(const PT &rhs) const {
              return mp(y,x) == mp(rhs.y,rhs.x);
       }
};
T cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
T area2(PT a, PT b, PT c) {
       return cross(a,b) + cross(b,c) + cross(c,a);
}
#ifdef REMOVE_REDUNDANT
bool between(const PT &a, const PT &b, const PT &c) {
 return (fabs(area2(a,b,c)) < EPS &&
                       (a.x-b.x)*(c.x-b.x) <= 0 &&
                       (a.v-b.v)*(c.v-b.v) <= 0);
}
#endif
void ConvexHull(vector<PT> &pts) {
       sort(pts.begin(), pts.end());
       pts.erase(unique(pts.begin(), pts.end()), pts.end());
       vector<PT> up, dn;
       for (int i = 0; i < pts.size(); i++) {</pre>
              while (up.size() > 1 &&
                      area2(up[up.size()-2], up.back(), pts[i]) >= 0)
```

```
up.pop_back();
               while (dn.size() > 1 &&
                      area2(dn[dn.size()-2], dn.back(), pts[i]) <= 0)
                             dn.pop_back();
              up.push_back(pts[i]);
              dn.push_back(pts[i]);
       }
       pts = dn:
       for (int i = (int) up.size() - 2; i >= 1; i--)
              pts.push_back(up[i]);
#ifdef REMOVE_REDUNDANT
       if (pts.size() <= 2) return;</pre>
       dn.clear();
       dn.push_back(pts[0]);
       dn.push_back(pts[1]);
       for (int i = 2; i < pts.size(); i++) {</pre>
              if (between(dn[dn.size()-2], dn[dn.size()-1], pts[i]))
                      dn.pop_back();
              dn.push_back(pts[i]);
       if (dn.size() >= 3 && between(dn.back(), dn[0], dn[1])) {
              dn[0] = dn.back();
              dn.pop_back();
       }
 pts = dn;
#endif
```

2.2 Delaunay Triangulation

```
// Slow but simple Delaunay triangulation. Does not handle
// degenerate cases (from O'Rourke, Computational Geometry in C)
//
// Running time: O(n^4)
//
// INPUT: x[] = x-coordinates
//
// UUTPUT: triples = a vector containing m triples of indices
//
// Courresponding to triangle vertices
#include<vector>
```

```
using namespace std;
typedef double T;
struct triple {
   int i, j, k;
   triple() {}
   triple(int i, int j, int k) : i(i), j(j), k(k) {}
};
vector<triple> delaunayTriangulation(vector<T>& x, vector<T>& y) {
       int n = x.size();
       vector<T> z(n);
       vector<triple> ret;
       for (int i = 0: i < n: i++)
           z[i] = x[i] * x[i] + y[i] * y[i];
       for (int i = 0: i < n-2: i++) {
           for (int j = i+1; j < n; j++) {</pre>
               for (int k = i+1; k < n; k++) {
                  if (j == k) continue;
                  double xn = (y[j]-y[i])*(z[k]-z[i]) - (y[k]-y[i])*(z[j]-
                  double yn = (x[k]-x[i])*(z[j]-z[i]) - (x[j]-x[i])*(z[k]-
                  double zn = (x[j]-x[i])*(y[k]-y[i]) - (x[k]-x[i])*(y[j]-
                       v[i]);
                  bool flag = zn < 0;</pre>
                  for (int m = 0; flag && m < n; m++)</pre>
                      flag = flag && ((x[m]-x[i])*xn +
                                     (y[m]-y[i])*yn +
                                     (z[m]-z[i])*zn <= 0);
                  if (flag) ret.push_back(triple(i, j, k));
              }
           }
       }
       return ret;
}
int main(){
   T xs[]={0, 0, 1, 0.9};
   T vs[]={0, 1, 0, 0.9};
   vector<T> x(\&xs[0], \&xs[4]), y(\&ys[0], \&ys[4]);
   vector<triple> tri = delaunayTriangulation(x, y);
```

```
//expected: 0 1 3
// 0 3 2

int i;
for(i = 0; i < tri.size(); i++)
    printf("%d %d %d\n", tri[i].i, tri[i].j, tri[i].k);
return 0;
}</pre>
```

2.3 Geometry

```
// C++ routines for computational geometry.
const double INF = 1e100;
const double EPS = 1e-12;
const double PI = acos(-1);
struct PT {
 double x, v;
 PT() {}
  PT(double x, double y) : x(x), y(y) {}
  PT(const PT &p) : x(p.x), y(p.y) {}
 PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }
  PT operator - (const PT &p) const { return PT(x-p.x, y-p.y); }
 PT operator * (double c) const { return PT(x*c, y*c ); }
 PT operator / (double c) const { return PT(x/c, y/c); }
};
double dot(PT p, PT q) { return p.x*q.x+p.y*q.y; }
double norm(PT p) { return sqrt(dot(p,p)); }
double dist2(PT p, PT q) { return dot(p-q,p-q); }
double cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
ostream &operator<<(ostream &os, const PT &p) {
 os << "(" << p.x << "," << p.y << ")";
double angle(PT p){
   double res = acos(p.x / norm(p));
   if (p.y > 0) return res;
   else return 2*PI - res:
}
```

```
// rotate a point CCW or CW around the origin
PT RotateCCW90(PT p) { return PT(-p.v,p.x); }
PT RotateCW90(PT p) { return PT(p.y,-p.x); }
PT RotateCCW(PT p, double t) {
 return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
// project point c onto line through a and b
// assuming a != b
PT ProjectPointLine(PT a, PT b, PT c) {
 return a + (b-a)*dot(c-a, b-a)/dot(b-a, b-a);
}
// project point c onto line segment through a and b
PT ProjectPointSegment(PT a, PT b, PT c) {
 double r = dot(b-a,b-a);
 if (fabs(r) < EPS) return a;</pre>
 r = dot(c-a, b-a)/r;
 if (r < 0) return a:
 if (r > 1) return b;
 return a + (b-a)*r;
}
// distance from c to segment between a and b
double DistancePointSegment(PT a, PT b, PT c) {
 return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
// distance between point (x,y,z) and plane ax+by+cz=d
double DistancePointPlane(double x, double y, double z,
              double a, double b, double c, double d)
 return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
}
// Whethes lines (a,b), (c,d) are parallel/collinear
bool LinesParallel(PT a, PT b, PT c, PT d) {
 return fabs(cross(b-a, c-d)) < EPS;</pre>
}
bool LinesCollinear(PT a, PT b, PT c, PT d) {
 return LinesParallel(a, b, c, d)
     && fabs(cross(a-b, a-c)) < EPS
     && fabs(cross(c-d, c-a)) < EPS;
}
```

```
// determine if line segment from a to b intersects with
// line segment from c to d
bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
       if (LinesCollinear(a, b, c, d)) {
              if (dist2(a, c) < EPS || dist2(a, d) < EPS ||</pre>
                      dist2(b, c) < EPS || dist2(b, d) < EPS) return true;</pre>
              if (dot(c-a, c-b) > 0 \&\& dot(d-a, d-b) > 0 \&\&
                       dot(c-b, d-b) > 0) return false;
              return true;
 if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
  if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
 return true:
// compute intersection of line passing through a and b
// with line passing through c and d, assuming that unique
// intersection exists; for segment intersection, check if
// segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
 b=b-a; d=c-d; c=c-a;
 assert(dot(b, b) > EPS && dot(d, d) > EPS);
 return a + b*cross(c, d)/cross(b, d);
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
 b=(a+b)/2;
 c=(a+c)/2;
 return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90(a-c
      ));
}
// determine if point is in a possibly non-convex polygon
// (by William Randolph Franklin); returns 1 for strictly
// interior points, 0 for strictly exterior points, and 0 or 1
// for the remaining points. Note that it is possible to
// convert this into an *exact* test using integer arithmetic
// by taking care of the division appropriately (making sure
// to deal with signs properly) and then by writing exact
// tests for checking point on polygon boundary
bool PointInPolygon(const vector<PT> &p, PT q) {
 bool c = 0;
 for (int i = 0; i < p.size(); i++){</pre>
   int j = (i+1)%p.size();
```

```
if ((p[i].y <= q.y && q.y < p[j].y ||</pre>
     p[i].v \le q.v && q.v \le p[i].v) &&
     q.x < p[i].x + (p[j].x - p[i].x) *(q.y - p[i].y) /
               (p[i] - v - p[i] - v)
     c = !c;
 }
 return c;
}
// determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector<PT> &p, PT q) {
 for (int i = 0; i < p.size(); i++)</pre>
   if (dist2(ProjectPointSegment(p[i], p[(i+1)%p.size()], q), q) < EPS)</pre>
     return true:
   return false;
}
// compute intersection of line through points a and b with
// circle centered at c with radius r > 0
vector<PT> CircleLineIntersection(PT a, PT b, PT c, double r) {
 vector<PT> ret;
 b = b-a:
 a = a-c;
 double A = dot(b, b);
 double B = dot(a, b);
 double C = dot(a, a) - r*r;
 double D = B*B - A*C:
 if (D < -EPS) return ret;</pre>
 ret.push_back(c+a+b*(-B+sqrt(D+EPS))/A);
 if (D > EPS)
   ret.push_back(c+a+b*(-B-sqrt(D))/A);
 return ret:
}
// compute intersection of circle centered at a with radius r
// with circle centered at b with radius R
vector<PT> CircleCircleInter(PT a, PT b, double r, double R) {
 vector<PT> ret;
 double d = sqrt(dist2(a, b));
 if (d > r+R || d+min(r, R) < max(r, R)) return ret;</pre>
 double x = (d*d-R*R+r*r)/(2*d);
 double y = sqrt(r*r-x*x);
 PT v = (b-a)/d;
 ret.push_back(a+v*x + RotateCCW90(v)*y);
 if (y > 0)
```

```
ret.push_back(a+v*x - RotateCCW90(v)*y);
 return ret;
}
// Area or centroid of a (possibly nonconvex) polygon,
// assuming the coordinates are listed in a clockwise or
// counterclockwise order. Note that the centroid is often
// known as the "center of gravity" or "center of mass".
double ComputeSignedArea(const vector<PT> &p) {
 double area = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
   int j = (i+1) % p.size();
   area += p[i].x*p[j].y - p[j].x*p[i].y;
 return area / 2.0;
double ComputeArea(const vector<PT> &p) {
 return fabs(ComputeSignedArea(p));
PT ComputeCentroid(const vector<PT> &p) {
 PT c(0,0);
  double scale = 6.0 * ComputeSignedArea(p);
 for (int i = 0; i < p.size(); i++){</pre>
   int j = (i+1) % p.size();
   c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
 return c / scale;
}
// Whether or not a given (CW or CCW) polygon is simple
bool IsSimple(const vector<PT> &p) {
 for (int i = 0; i < p.size(); i++) {</pre>
   for (int k = i+1; k < p.size(); k++) {</pre>
     int j = (i+1) % p.size();
     int 1 = (k+1) % p.size();
     if (i == 1 || j == k) continue;
     if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
       return false;
   }
 }
 return true;
```

```
// Computes the circumcenter of a Triangle PQR
PT circumcenter(PT p, PT q, PT r) {
       PT a = p-r, b = q-r;
       PT c = PT(dot(a, (p + r)) / 2, dot(b, (q + r)) / 2);
       return PT(dot(c, RotateCW90(PT(a.v, b.v))),
              dot(PT(a.x, b.x), RotateCW90(c))) / dot(a, RotateCW90(b));
}
//Check if a polygon is convex
bool isConvex(const vector<point> &P) {
       int sz = (int)P.size();
       if (sz <= 3) return false;</pre>
       bool isLeft = ccw(P[0], P[1], P[2]);
       for (int i = 1; i < sz-1; i++)</pre>
              if (ccw(P[i], P[i+1], P[(i+2) == sz ? 1 : i+2]) != isLeft)
                   return false;
       return true;
```

2.4 Minkowski Sum

```
//Calcula suma de Minkowski en O(n + m)
//A y B deben estar en sentido antihorario
inline bool compare(PT a, PT b){
       // mas abajo, mas a la izquierda
       if(a.v < b.v) return 1;
       if(a.y == b.y) return a.x < b.x;</pre>
       return 0;
}
vector<PT> minkow_sum(const vector<PT>& a, const vector<PT>& b){
       vector< PT > out;
       out.clear():
       int lena = int(a.size());
       int lenb = int(b.size());
       int i = 0, j = 0;
       for(int q = 0; q < lena; ++q) if(compare(a[q], a[i])) i = q;</pre>
       for(int q = 0; q < lenb; ++q) if(compare(b[q], b[j])) j = q;
       ll pr;
       int nxti, nxtj;
       do{
              out.pb(a[i] + b[j]);
```

```
nxti = (i + 1) % lena;
nxtj = (j + 1) % lenb;
pr = cross(a[nxti] - a[i], b[nxtj] - b[j]);
if(pr > 0) i = nxti;
else if(pr < 0) j = nxtj;
else i = nxti, j = nxtj; // paralelas, subo en ambas
}while((a[i] + b[j]) != out[0]);
return out;
}
```

3 Graphs

3.1 2SAT

```
//2-SAT
//Conditions from 0 to 2*number of nodes, i and i^1 are reciprocal
//That means, ~0 is 1, ~1 is 0, ~2 is 3, ~3 is 2, etc
//When adding an edge, make sure to fix values
//For example, node from a to b (a,b \ge 1)
//aa = (a-1)*2, bb = (b-1)*2, then a has "aa" as true and aa^1 as false
//To return to the main state, divide by 2 and sum 1
struct TwoSAT{
  int n;
  vector< vi> g, adj;
  vi d, low, scc, ans, lev;
  vector<bool> stacked, ok;
  stack<int> s;
  int ticks, current_scc;
  TwoSAT(int N):
     n(N), ticks(0), current_scc(0), g(N), adj(N), d(N), low(N), scc(N),
          ans(N), lev(N),
     stacked(N), ok(N){}
  void initialize(){
     REP(i,0,n){
        stacked[i] = false;
        d[i] = -1:
        scc[i] = -1;
        ok[i] = false;
```

```
current_scc = ticks = 0;
  }
}
void addEdge(int a, int b){
  g[a].pb(b);
void tarjan(int u){
 d[u] = low[u] = ticks++;
  s.push(u);
  stacked[u] = true;
  const vector<int> &out = g[u];
 for (int k=0, m=out.size(); k<m; ++k){</pre>
   const int &v = out[k];
   if (d[v] == -1){
     tarjan(v);
     low[u] = min(low[u], low[v]);
   }else if (stacked[v]){
     low[u] = min(low[u], low[v]);
   }
 }
 if (d[u] == low[u]){
   int v:
   do{
     v = s.top();
     s.pop();
     stacked[v] = false;
     scc[v] = current_scc;
   }while (u != v);
   current_scc++;
 }
}
bool consistent(){
  for(int i = 0; i < n; i+=2){</pre>
     if(scc[i] == scc[i^1]){
        return false;
     }
  return true;
void build(){
  REP(i,0,n){
```

```
REP(j,0,sz(g[i])){
        int v = g[i][j];
        if(scc[i] != scc[v]){
           adj[i].pb(v); lev[v]++;
     }
  }
void toposort(){
   queue<int> q;
  REP(i,0,current_scc){
     if(lev[i] == 0) q.push(i);
  int x = 1;
   while(!q.empty()){
     int u = q.front(); q.pop();
     ans[u] = x ++;
     REP(i,0,sz(adj[u])){
        int v = adj[u][i];
        lev[v]--;
        if(lev[v] == 0) q.push(v);
     }
  }
void solve(){
  for(int i = 0; i<n; i+=2){</pre>
     if(ans[scc[i]] < ans[scc[i^1]]){</pre>
        ok[i] = false; ok[i^1] = true;
     }
      else{
        ok[i] = true; ok[i^1] = false;
}
bool go(){
   REP(i,0,n){
     if(scc[i] == -1) tarjan(i);
   if(!consistent()) return false;
   else{
     build();
     toposort();
```

```
solve();
        return true;
  }
};
int main(){
  fastio;
  int n,m; cin >> n >> m;
  TwoSAT TS = TwoSAT(2*n):
  TS.initialize();
  //TO DO: ADD EDGES
  bool res = TS.go();
  if(!res) cout << "Impossible" << endl;</pre>
  elsef
     for(int i = 0; i < 2*n; i+=2){</pre>
        int state = i/2 + 1;
        if(TS.ok[i]) //state is true
        else //state is false
     }
  return 0;
```

3.2 Biconnected Components

```
//Finds Biconnected Components
bool usd[1005];
int low[1005], d[1005], prev[1005], cnt;
vector <int> adj[1005];
stack <ii>> S;

void Outcomp( int u , int v ){
        printf("New Component\n");
        ii e;
        do{
            e = S.top(); S.pop();
            cout << e.fst << " " << e.snd << endl;
        } while( e != mp( u , v ) );
}</pre>
```

```
void dfs( int u ){
       usd[u] = 1; cnt++;
       low[u] = d[u] = cnt;
       REP(i,0,sz(adj[u])){
              int v = adj[u][i];
              if( !usd[v] ){
                      S.push( mp( u , v ) );
                      prev[v] = u; dfs( v );
                      if( low[v] >= d[u] ) Outcomp( u , v );
                      low[u] = min( low[u] , low[v] );
              else if( prev[u] != v and d[v] < d[u] ){</pre>
                      S.push( mp( u , v ) );
                      low[u] = min( low[u] , d[v] );
              }
       }
}
int main(){
       int n, m;
       cin >> n >> m;
       REP(i,0,m){
              int a , b;
              cin >> a >> b;
              adj[a].pb(b);
              adj[b].pb(a);
       }
       cnt = 0:
       memset(usd,0,sizeof(usd));
       memset(prev,-1,sizeof(prev));
       REP(i,0,n){
              if( !usd[i] ) dfs(i);
       }
       return 0;
```

3.3 Bridges and Articulation Points

```
//Finding bridges and articulation points
int low[N],id[N],parent[N];
bool art[N];
```

```
vi adj[N];
vi bridge[N];
int curr_id =0;
int root, rootchild;
void dfs(int u) {
       low[u] = id[u] = curr_id++;
       REP(j,0,sz(adj[u])) {
              int v = adj[u][j];
              if (id[v] == -1) {
                      parent[v] = u:
                      if (u == root) rootchild++;
                      dfs(v);
                      if (low[v] >= id[u]) art[u] = true;
                      if (low[v] > id[u]){
                             bridge[u].pb(v);
                             bridge[v].pb(u); //store bridges in a sub
                      low[u] = min(low[u], low[v]);
              }
              else if (v != parent[u]) low[u] = min(low[u], id[v]);
       }
}
//inside int main()
REP(i,0,n){
       if (id[i] == -1) {
              root = i; rootchild = 0; dfs(i);
              art[root] = (rootchild > 1);
       }
```

3.4 Eulerian Path

```
// Finds Eulerian Path (visits every edge exactly once)
// CYCLE exists iff all edges even degree, all edges in
// same connected component.
// PATH exists iff cycle exists and once edge removed
// [ Hamiltonian (all vertices) is NP complete ]
struct Edge;
typedef list<Edge>::iterator iter;
struct Edge
```

```
int next_vertex;
       iter reverse_edge;
       Edge(int next_vertex) :next_vertex(next_vertex) { }
const int max_vertices = ;
int num_vertices;
list<Edge> adj[max_vertices];
                                    // adjacency list
vector<int> path;
void find_path(int v)
{
       while(adj[v].size() > 0)
              int vn = adj[v].front().next_vertex;
              adj[vn].erase(adj[v].front().reverse_edge);
              adj[v].pop_front();
              find_path(vn);
       path.push_back(v);
}
void add_edge(int a, int b)
       adj[a].push_front(Edge(b));
       iter ita = adj[a].begin();
       adj[b].push_front(Edge(a));
       iter itb = adj[b].begin();
       ita->reverse_edge = itb;
       itb->reverse_edge = ita;
```

3.5 Maximal Cliques

```
// Bron-Kerbosch algorithm for finding all the

// maximal cliques of a graph in O(3^(n/3))

// 3 ^ 13 = 1.6e6

// Call them using clique(0, (1LL << n) - 1, 0)

// n vertexs
11 adj[65];

// This algorithm finds all the maximal cliques containing an edge

// The cliques are found explicitly (the vertex of the cliques)

void clique(11 r, 11 p, 11 x) {
```

```
if (p == 0 \&\& x == 0) {
       /* r is a maximal clique */
       /* Every 1 in r is a vertex of the clique
       Then, __builtin_popcountll(r) is the size of the clique*/
       }
    int pivot = -1;
    int menor = INF;
    for (int i = 0; i < n; i++) {</pre>
       if ( ((1LL << i) & p) || ((1LL << i) & x) ) {</pre>
           int x = __builtin_popcountll(p & (~(adj[i])));
           if (x < menor) {</pre>
               pivot = i;
               menor = x;
           }
       }
    }
    for (int i = 0; i < n; i++) {</pre>
       if ((1LL << i) & p) {</pre>
           if (pivot != -1 && adj[pivot] & (1LL << i)) continue;</pre>
           clique(r | (1LL << i), p & adj[i], x & adj[i]);</pre>
           p = p^{(1LL << i)};
           x = x \mid (1LL \ll i);
       }
    }
}
// This one has the same idea, but is faster
// However, it only finds the size of the cliques
void clique2(int r, ll p, ll x){
    if(p == 0 \&\& x == 0){
       // r is the size of the clique
    }
    if(p == 0) return;
    int u = __builtin__ctzll(p | x);
    11 c = p & ~ adj[u];
    while(c){
       int v = __builint_ctzll(c); //Number of trailing zeros
       clique(r + 1, p & adj[v], x & adj[v]);
       p ^= (1LL << v);
       x = (1LL << v);
       c = (1LL << v);
   }
```

3.6 Tarjan Strongly Connected Components

```
/* Complexity: O(E + V)
Tarjan's algorithm for finding strongly connected
components.
*d[i] = Discovery time of node i. (Initialize to -1)
*low[i] = Lowest discovery time reachable from node
i. (Doesn't need to be initialized)
*scc[i] = Strongly connected component of node i. (Doesn't
need to be initialized)
*s = Stack used by the algorithm (Initialize to an empty
stack)
*stacked[i] = True if i was pushed into s. (Initialize to
false)
*ticks = Clock used for discovery times (Initialize to 0)
*current_scc = ID of the current_scc being discovered
(Initialize to 0)
//DON'T FORGET TO INITIALIZE d[MAXN] TO -1 !!!!
vector<int> g[MAXN];
int d[MAXN], low[MAXN], scc[MAXN];
bool stacked[MAXN];
stack<int> s;
int ticks, current_scc;
void tarjan(int u){
 d[u] = low[u] = ticks++;
 s.push(u);
 stacked[u] = true;
 const vector<int> &out = g[u];
 for (int k=0, m=out.size(); k<m; ++k){</pre>
   const int &v = out[k];
   if (d[v] == -1){
     tarjan(v);
     low[u] = min(low[u], low[v]);
   }else if (stacked[v]){
     low[u] = min(low[u], low[v]);
 if (d[u] == low[u]){
   int v;
   do{
     v = s.top();
     s.pop();
     stacked[v] = false;
```

```
scc[v] = current_scc;
}while (u != v);
current_scc++;
}
```

4 Math

4.1 Chinese Remainder Theorem

```
/**
 * Chinese remainder theorem.
 * Find z such that z % x[i] = a[i] for all i.
 * */
long long crt(vector<long long> &a, vector<long long> &x) {
  long long z = 0;
  long long n = 1;
  for (int i = 0; i < x.size(); ++i)
    n *= x[i];

  for (int i = 0; i < a.size(); ++i) {
    long long tmp = (a[i] * (n / x[i])) % n;
    tmp = (tmp * mod_inv(n / x[i], x[i])) % n;
    z = (z + tmp) % n;
}

  return (z + n) % n;
}</pre>
```

4.2 Cribas

```
// Criba en O(n)
// p[i] indica el valor del primo i-esimo
// A[i] indica que el menor factor primo de i
// es el primo A[i] - esimo
#define MAXN 100000
int A[MAXN + 1], p[MAXN + 1], pc = 0;
void sieve()
```

```
for(int i=2; i<=MAXN; i++){</pre>
       if(!A[i]) p[A[i] = ++pc] = i;
       for(int j=1; j<=A[i] && i*p[j]<=MAXN; j++)</pre>
           A[i*p[j]] = j;
   }
}
//Criba para phi
int phi[MAX];
void CribaEuler(){
       REP(i,0, MAX) primo[i] = 1, phi[i] = 1;
       primo[0] = primo[1] = false;
       REP(i,2,MAX){
              if(primo[i]){
                      phi[i] = i - 1;
                      for(int j = i+i; j < MAX; j += i){
                              primo[j] = false;
                              int pot = 1, aux = j/i;
                              while( aux % i == 0 ){
                                     aux /= i, pot *= i;
                             phi[j] *= (i-1)*pot;
              }
       }
```

4.3 Euler Totient

```
if (n > 1) res -= res/n;
return res;
}
```

4.4 Inverso Modular

```
/** Inverso Modular **/
#define MAX 100
#define MOD 1000000009

long long inverso[MAX];

void inv(){
        inverso[1] = 1;
        REP(i,2,MAX) inverso[i] = ( (MOD-MOD/i) * inverso[MOD%i] ) % MOD;
}
```

4.5 Miller Rabin

```
//Miller-Rabin primality test
11 pow(ll a, ll b, ll c){
   ll ans = 1;
   while(b){
       if(b\&1) ans = (1LL*ans*a)%c;
       a = (1LL*a*a)%c;
       b >>=1;
   }
   return ans;
}
bool miller(ll p, ll it = 10){
   if(p<2) return 0;</pre>
   if(p!=2 && (p&1) == 0) return 0;
   ll s=p-1;
   while((s\&1) == 0) s>>=1;
   while(it--){
       ll a = rand()\%(p-1)+1, temp = s;
       11 mod = pow(a,temp,p);
       while(temp!= p-1 && mod!=1 && mod!=p-1){
           mod = (1LL*mod*mod)%p;
```

```
temp<<=1;
}
if(mod!=p-1 && (temp&1) == 0) return 0;
}
return 1;
}</pre>
```

4.6 Number Theory

```
// Encuentra el menor positivo de la forma ax+ b , my+ n
// ( x,y enteros no necesariamente postivos)
// Si son positivos, hallar los coeficientes y sumar lo
// que falta para que de positivo
// d: mcd(a,b) (d > 0)
// x,y enteros tales que a*x + b*y = d
// las demas soluciones son ( x + (b/d)t , y - (a/d)t )
void gcdextend(ll a, ll b, ll &x, ll &y, ll &d){
   if(b == 0){
      if(a>0) x = 1, y = 0, d = a;
      else x = -1 , y = 0 , d = -a ;
      return :
   gcdextend(b,a%b,x,y,d);
   11 x1 = y , y1 = x - (a/b)*y ;
   x = x1, y = y1;
}
// menor positivo que es u modulo modPos
inline 11 ADDTOPOSITIVE(11 u, 11 modPOS){
   if(modPOS < 0) modPOS = -modPOS ;</pre>
   if(u >= 0) return u%modPOS;
   u = -u:
   if(u%modPOS == 0) return 0;
   return modPOS*((u/modPOS)+1) - u ;
// Encuentra el menor positivo que es
// de la forma ax + b , my + n
// los demas son de la forma ans + ((a/d)*m)*t
// retorna -1 si no hay solucion ( mcd(a,m) no divide a n - b )
inline 11 FINDmenorLCS(11 a,11 b,11 m,11 n){
```

```
//Cuidado con el caso a = 0 , m = 0 ,
          //porque es solo verificar b = n
    a = abs(a) ; m = abs(m) ;
    if( a == 0 ) {
       swap(a,m);
       swap(b,n);
    if(m == 0){
       if (n-b) % a == 0) return n;
       else return -1;
    }
    ll x , y , d ;
    gcdextend(a,m,x,y,d) ;
    if((n-b)\%d != 0) return -1;
    11 temp = a*x*((n-b)/d) + b;
    temp = ADDTOPOSITIVE(temp,a*(m/d)) ;
    return temp ;
}
//Finds partition of n (number of ways to obtain n as a sum of positive
    numbers)
int partition(int n) {
 int[] dp = new int[n + 1];
 dp[0] = 1;
 for (int i = 1: i <= n: i++) {
   for (int j = 1, r = 1; i - (3 * j * j - j) / 2 >= 0; j++, r *= -1) {
     dp[i] += dp[i - (3 * j * j - j) / 2] * r;
     if (i - (3 * j * j + j) / 2 >= 0) {
       dp[i] += dp[i - (3 * j * j + j) / 2] * r;
   }
 }
 return dp[n];
```

4.7 Pollard Rho

```
#define MAXL (50000>>5)+1
#define GET(x) (mark[x>>5]>>(x&31)&1)
#define SET(x) (mark[x>>5] |= 1<<(x&31))</pre>
```

```
int mark[MAXL];
int P[50000], Pt = 0;
void sieve() {
   register int i, j, k;
   SET(1);
   int n = 46340;
   for (i = 2; i <= n; i++) {</pre>
       if (!GET(i)) {
           for (k = n/i, j = i*k; k >= i; k--, j -= i)
               SET(i);
           P[Pt++] = i:
       }
   }
}
ll mul(unsigned ll a, unsigned ll b, unsigned ll mod) {
   for (a %= mod, b %= mod; b != 0; b >>= 1, a <<= 1, a = a >= mod ? a -
        mod : a) {
       if (b&1) {
           ret += a;
           if (ret >= mod) ret -= mod;
       }
   return ret;
void exgcd(ll x, ll y, ll &g, ll &a, ll &b) {
   if (v == 0)
       g = x, a = 1, b = 0;
   else
       exgcd(y, x\%y, g, b, a), b = (x/y) * a;
}
ll inverse(ll x, ll p) {
   ll g, b, r;
   exgcd(x, p, g, r, b);
   if (g < 0) r = -r;
   return (r\%p + p)\%p;
ll mpow(ll x, ll y, ll mod) { // \mod < 2^32
   ll ret = 1;
   while (y) {
       if (v&1)
           ret = (ret * x) \% mod;
       v >>= 1, x = (x * x) \text{/mod};
```

```
}
   return ret % mod;
}
11 mpow2(11 x, 11 y, 11 mod) {
   ll ret = 1;
   while (y) {
       if (y&1)
           ret = mul(ret, x, mod);
       y \gg 1, x = mul(x, x, mod);
   return ret % mod;
}
int isPrime(ll p) { // implements by miller-babin
   if (p < 2 || !(p&1))</pre>
                             return 0;
   if (p == 2)
                                     return 1;
   11 q = p-1, a, t;
   int k = 0, b = 0;
   while (!(q&1)) q >>= 1, k++;
   for (int it = 0; it < 2; it++) {</pre>
       a = rand()\%(p-4) + 2;
       t = mpow2(a, q, p);
       b = (t == 1) \mid \mid (t == p-1);
       for (int i = 1; i < k && !b; i++) {</pre>
           t = mul(t, t, p);
          if (t == p-1)
              b = 1;
       }
       if (b == 0)
           return 0;
   }
   return 1;
}
11 pollard_rho(ll n, ll c) {
   11 x = 2, y = 2, i = 1, k = 2, d;
   while (true) {
       x = (mul(x, x, n) + c);
       if (x \ge n) x = n;
       d = \_gcd(x - y, n);
       if (d > 1) return d;
       if (++i == k) v = x, k <<= 1;
   }
   return n;
```

```
void factorize(int n, vector<ll> &f) {
   for (int i = 0; i < Pt && P[i]*P[i] <= n; i++) {</pre>
       if (n%P[i] == 0) {
              while (n\%P[i] == 0)
                      f.push_back(P[i]), n /= P[i];
       }
   if (n != 1) f.push_back(n);
void llfactorize(ll n, vector<ll> &f) {
   if (n == 1)
       return ;
   if (n < 1e+9) {
       factorize(n, f);
       return ;
   if (isPrime(n)) {
       f.push_back(n);
       return ;
   }
   11 d = n;
   for (int i = 2; d == n; i++)
       d = pollard_rho(n, i);
   llfactorize(d, f);
   llfactorize(n/d, f);
}
vector<ll> f;
map<ll, int> r;
int main() {
   sieve();
   11 n;
   scanf("%11d", &n);
   llfactorize(n, f);
   for (auto &x : f) r[x]++;
   ll last;
   for (auto it = r.begin(); it != r.end(); it++) {
       if (it != r.begin()) printf(" ");
       last = it -> first;
       printf("%11d", last);
```

4.8 Simplex Method

```
// Two-phase simplex algorithm for solving linear programs:
      maximize c^T x
      subject to Ax <= b
                  x >= 0
// INPUT: A -- an m x n matrix
        b -- an m-dimensional vector
        c -- an n-dimensional vector
         x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution (infinity if unbounded
         above, nan if infeasible)
// To use this code, create an LPSolver object with A, b, and c as
// arguments. Then, call Solve(x).
typedef long double DOUBLE;
typedef vector<DOUBLE> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
const DOUBLE EPS = 1e-9;
struct LPSolver {
 int m, n;
 VI B, N;
 VVD D:
       LPSolver(const VVD &A, const VD &b, const VD &c) :
              m(b.size()), n(c.size()), N(n+1), B(m), D(m+2, VD(n+2)) {
              for (int i = 0; i < m; i++) for (int j = 0; j < n; j++)
                      D[i][j] = A[i][j];
              for (int i = 0; i < m; i++)</pre>
                      B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];
              for (int j = 0; j < n; j++)</pre>
                     N[i] = i; D[m][i] = -c[i];
```

```
N[n] = -1; D[m+1][n] = 1;
}
void Pivot(int r, int s) {
       for (int i = 0; i < m+2; i++) if (i != r)
              for (int j = 0; j < n+2; j++) if (j != s)
                      D[i][j] = D[r][j] * D[i][s] / D[r][s];
       for (int j = 0; j < n+2; j++) if (j != s)
              D[r][j] /= D[r][s];
       for (int i = 0; i < m+2; i++) if (i != r)
              D[i][s] /= -D[r][s]:
       D[r][s] = 1.0 / D[r][s];
       swap(B[r], N[s]);
}
bool Simplex(int phase) {
       int x = phase == 1 ? m+1 : m;
       while (true) {
              int s = -1;
              for (int j = 0; j <= n; j++) {</pre>
                      if (phase == 2 && N[j] == -1) continue;
                      if (s == -1 || D[x][j] < D[x][s] ||</pre>
                              D[x][j] == D[x][s] && N[j] < N[s]) s
              if (D[x][s] >= -EPS) return true;
              int r = -1:
              for (int i = 0; i < m; i++) {</pre>
                      if (D[i][s] <= 0) continue;</pre>
                      if (r == -1)
                              D[i][n+1] / D[i][s] < D[r][n+1] / D[r]
                                   ll [s] [
                       D[i][n+1] / D[i][s] == D[r][n+1] / D[r][s
                           1 &&
                              B[i] < B[r]) r = i;
}
               if (r == -1) return false;
              Pivot(r, s);
       }
}
DOUBLE Solve(VD &x) {
       int r = 0;
       for (int i = 1; i < m; i++) if (D[i][n+1] < D[r][n+1]) r =
```

```
if (D[r][n+1] <= -EPS) {</pre>
                       Pivot(r, n);
                       if (!Simplex(1) || D[m+1][n+1] < -EPS)</pre>
                               return -numeric_limits<DOUBLE>::infinity();
                       for (int i = 0; i < m; i++) if (B[i] == -1) {</pre>
                              int s = -1:
                              for (int j = 0; j \le n; j++)
                                      if (s == -1 || D[i][j] < D[i][s] ||</pre>
                                               D[i][j] == D[i][s] && N[j] < N
                                                   [s]) s = j;
                              Pivot(i, s);
                       }
               }
               if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity();
               x = VD(n);
               for (int i = 0; i < m; i++) if (B[i] < n)</pre>
                       x[B[i]] = D[i][n+1];
               return D[m][n+1];
       }
};
int main() {
  const int m = 4;
  const int n = 3;
 DOUBLE A[m][n] = {
   \{ 6, -1, 0 \},
   \{-1, -5, 0\},\
   { 1, 5, 1 },
   \{-1, -5, -1\}
 };
 DOUBLE _b[m] = \{ 10, -4, 5, -5 \};
 DOUBLE _c[n] = { 1, -1, 0 };
 VVD A(m);
 VD b(_b, _b + m);
 VD c(_c, _c + n);
 for (int i = 0; i < m; i++) A[i] = VD(_A[i], _A[i] + n);</pre>
 LPSolver solver(A, b, c);
  VD x;
 DOUBLE value = solver.Solve(x);
  cerr << "VALUE: "<< value << endl;</pre>
  cerr << "SOLUTION:";</pre>
```

```
for (size_t i = 0; i < x.size(); i++) cerr << " " << x[i];
  cerr << endl;
  return 0;
}</pre>
```

4.9 Teorema de Lucas

```
ll comb[105][105];
//Devuleve la comb(n,k) % m para n,k grandes y m pequeno
11 lucas( ll n , ll k , ll m ){
       //Se puede precalcular la combinatoria afuera
       REP(i,0,52) REP(j,0,52){
              if(j == 0) comb[i][0] = 1;
              else if(j > i) comb[i][j] = 0;
              else comb[i][j] = ( comb[i-1][j] + comb[i-1][j-1] ) % m;
       }
       ll ans = 1, x, y;
       while( n ){
              x = n \% m, y = k \% m;
              ans = (ans * comb[x][v]) \% m;
              n \neq m, k \neq m;
       }
       return ans;
```

5 Misc

5.1 Centroid Decomposition

```
#define N 100002

inline ll ma(ll a, ll b){ return ((a-b>0)? a:b);}
inline ll mi(ll a, ll b){return ((a-b>0)? b:a);}

struct CD{
    vector< int > graph[N];
```

```
int sub[N],p[N];
//sub[i]: size del nodo i luego de descomponer el tree
//p[i]: padre del nodo i luego de descomponer el tree
//notar que el padre del centroid es -2
// el tree esó 1 0 base
//para inicializar addEddge(a,b);
//para construir el centroid tree, solo llamar init(root); root:
    root del tree
void addEdge(int &a, int &b){
       graph[a].pb(b);
       graph[b].pb(a);
inline void dfs(int cur, int parent){
       sub[cur] = 1;
       for(int i = 0; i < sz(graph[cur]); ++i){</pre>
              int to = graph[cur][i];
              if(to != parent && p[to] == -1){
                      dfs(to, cur);
                      sub[cur] += sub[to];
              }
       }
inline void decompose(int cur, int parent, int sb, int prevc){
       for(int i = 0; i < sz(graph[cur]); ++i){</pre>
              int to = graph[cur][i];
              if(to != parent && p[to] == -1 && (2 * sub[to] > sb)
                      decompose(to, cur, sb, prevc);
                      return;
              }
       }
       p[cur] = prevc;
       for(int i = 0; i < sz(graph[cur]); ++i){</pre>
              int to = graph[cur][i];
              if(p[to] == -1){
                      dfs(to, - 1);
                      decompose(to, cur, sub[to], cur);
              }
       }
inline void init(int start){
       for(int i = 0; i < N; ++i) p[i] = -1;
       dfs(start, - 1);
       decompose(start, -1, sub[start], -2);
}
```

```
};
int cnt=1;
vi adj[N];
int d[N];
inline void make(int &u, int x, int depth){
       d[u]=depth;
       for(auto v :adj[u]) if(v!=x) make(v,u,depth+1);
}
int main() {
       fastio;
       int n; cin>>n;
       CD cd; //cd.n=n;
       REP(i,0,n-1) {
              ll a,b; cin>>a>>b;
              cd.addEdge(a,b);
       }
       cd.init(1);
       int pa, root;
       REP(i,1,n+1) {
              pa=cd.p[i];
              if(pa==-2) root=i;
              if(pa!=-2) {
                      adj[i].pb(pa);
                      adj[pa].pb(i);
              }
       }
       make(root,0,1);
       char is;map<int, string> m;int k=1,flag=1;
       for(is='A'; is<='Z'; is++) m[k++]=is;</pre>
       REP(i,1,n+1) if(d[i]>26) flag=0;
       if(flag==0) cout<<"Impossible!"<<endl;</pre>
       if(flag==1) {
              REP(i,1,n+1) cout<<m[d[i]]<<endl;</pre>
       }
       return 0;
```

5.2 Closest Pair

```
//Closest Pair Algorithm with Sweep
//Complexity: O(nlogn)
#define MAX_N 100000
```

```
#define px second
#define py first
typedef pair < long long, long long > point;
int N;
point P[MAX_N];
set<point> box;
bool compare_x(point a, point b){ return a.px<b.px; }</pre>
inline double dist(point a, point b){
       return sqrt((a.px-b.px)*(a.px-b.px)+(a.py-b.py)*(a.py-b.py));
double closest_pair(){
       if(N<=1) return -1;</pre>
       sort(P,P+N,compare_x);
       double ret = dist(P[0],P[1]);
       box.insert(P[0]):
       set<point> :: iterator it;
       for(int i = 1,left = 0;i<N;++i){</pre>
              while(left<i && P[i].px-P[left].px>ret) box.erase(P[left
                   ++1):
              for(it = box.lower_bound(make_pair(P[i].py-ret,P[i].px-ret)
              it!=box.end() && P[i].py+ret>=(*it).py;++it)
              ret = min(ret, dist(P[i],*it));
              box.insert(P[i]):
       return ret;
```

5.3 Convex Hull Trick

```
// Simple Hull
struct HullSimple { // Upper envelope for Maximum.
    // Special case: strictly increasing slope in insertions,
    // increasing value in queries.
    deque<pair<11, 11> > dq;
    ld cross(pair<11, 11> 11, pair<11, 11> 12){
        return (ld)(12.snd - l1.snd) / (ld)(11.fst - l2.fst);
    }
    void insert_line(ll m, ll b){
        pair<11,ll> line = mp(m,b);
}
```

```
while (sz(dq) > 1 \&\& cross(line, dq[sz(dq)-1]) \le
              cross(dq[sz(dq)-1], dq[sz(dq)-2])) dq.pop_back();
       dq.pb(mp(m,b));
    ll eval(pair<ll, ll> line, ll x){
       return line.fst * x + line.snd;
    ll eval(ll x){
       while (sz(dq) > 1 \&\& eval(dq[0], x) < eval(dq[1],x))
           dq.pop_front();
       return eval(dq[0],x);
};
// Dynamic Hull
// Compile with g++ -std=c++11 file.cpp -o file
typedef long double ld;
const ll is_query = -(1LL<<62);</pre>
struct Line {
    ll m, b;
    mutable function<const Line*()> succ;
    bool operator<(const Line& rhs) const {</pre>
       if (rhs.b != is_query) return m < rhs.m;</pre>
       const Line* s = succ();
       if (!s) return 0:
       11 x = rhs.m;
       return b - s \rightarrow b < (s \rightarrow m - m) * x;
};
// Upper envelope for Maximum
struct HullDynamic : public multiset<Line> {
    bool bad(iterator y) {
       auto z = next(y);
       if (y == begin()) {
           if (z == end()) return 0;
           return y->m == z->m && y->b <= z->b;
       }
       auto x = prev(y);
       if (z == end()) return y->m == x->m && y->b <= x->b;
       return (x->b - y->b)*(z->m - y->m) >=
                                      (y->b - z->b)*(y->m - x->m);
    void insert_line(ll m, ll b) {
```

```
auto y = insert({ m, b });
    y->succ = [=] { return next(y) == end() ? 0: &*next(y); };
    if (bad(y)) { erase(y); return; }
    while (next(y) != end() && bad(next(y))) erase(next(y));
    while (y != begin() && bad(prev(y))) erase(prev(y));
}
ll eval(ll x) {
    auto 1 = *lower_bound((Line) { x, is_query });
    return l.m * x + l.b;
}
};
```

5.4 Dates

```
//
// Time - Leap years
// A[i] has the accumulated number of days from months previous to i
const int A
    [13] = \{ 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 \};
// same as A, but for a leap year
const int B
    [13] = \{ 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 \};
// returns number of leap years up to, and including, y
int leap_years(int y) { return y / 4 - y / 100 + y / 400; }
bool is_leap(int y) { return y % 400 == 0 || (y % 4 == 0 && y % 100 != 0)
    ; }
// number of days in blocks of years
const int p400 = 400*365 + leap_years(400);
const int p100 = 100*365 + leap_years(100);
const int p4 = 4*365 + 1;
const int p1 = 365;
int date_to_days(int d, int m, int y)
 return (y - 1) * 365 + leap_years(y - 1) + (is_leap(y) ? B[m] : A[m]) +
      d;
void days_to_date(int days, int &d, int &m, int &y)
 bool top100; // are we in the top 100 years of a 400 block?
 bool top4; // are we in the top 4 years of a 100 block?
 bool top1; // are we in the top year of a 4 block?
```

```
y = 1;
top100 = top4 = top1 = false;

y += ((days-1) / p400) * 400;
d = (days-1) % p400 + 1;

if (d > p100*3) top100 = true, d -= 3*p100, y += 300;
else y += ((d-1) / p100) * 100, d = (d-1) % p100 + 1;

if (d > p4*24) top4 = true, d -= 24*p4, y += 24*4;
else y += ((d-1) / p4) * 4, d = (d-1) % p4 + 1;

if (d > p1*3) top1 = true, d -= p1*3, y += 3;
else y += (d-1) / p1, d = (d-1) % p1 + 1;

const int *ac = top1 && (!top4 || top100) ? B : A;
for (m = 1; m < 12; ++m) if (d <= ac[m + 1]) break;
d -= ac[m];
}</pre>
```

5.5 Divide and Conquer Trick

```
// Divide and Conquer DP optimization.
// Problem: dp[i][j] = min\{k>j\} (func(j,k) + dp[i-1][k]).
// (That is, split n objects into k buckets with cost
// func per bucket). Necessary condition: argmin(dp[i][j]) <=</pre>
// argmin(dp[i][j+1]) (this is "opt")
// Naive complexity: 0(kn^2)
// Improved complexity: O(knlog(n))
// Consider checking if opt[i+1][j] <= opt[i][j] <= opt[i][j+1]</pre>
// and using a knuth-like O(n^2) loop
const 11 INF = 1e18:
int n, k;
ll c[8100];
ll s[8100];
ll dp[810][8100];
11 func(int i, int j){ return (s[j] - s[i])*(j-i); }
void go(int i, int l, int r, int optl, int optr){
```

```
if (1 >= r) return;
       int m = (1+r)/2;
       int opt = n;
       dp[i][m] = INF;
       for(int u = optr; u>= optl; u--){
              ll curr = dp[i-1][u] + func(m,u);
              if(curr < dp[i][m]){</pre>
                      dp[i][m] = curr;
                      opt = u;
              }
       }
       go(i,1,m,optl, opt);
       go(i,m+1,r,opt,optr);
}
int main(){
       fastio;
       cin >> n >> k;
       REP(i,0,n) cin >> c[i];
       s[0] = 0;
       REP(i,0,n+1) s[i] = s[i-1] + c[i-1];
       REP(i,1,k+1) dp[i][n] = INF;
       REP(i,0,n) dp[0][i] = INF;
       dp[0][n] = 0;
       REP(i,1,k+1) go(i,0,n,0,n);
       cout << dp[k][0] << endl;</pre>
       return 0:
}
//Divide and Conquer Trick by Ands
void compute(int cnt, int 1, int r, int optl, int optr){
       if(l > r) return ;
       int mid = ( 1 + r ) >> 1 ;
       int opt = -1;
       11 value = 1e18 ;
       int last = cnt^1 ;
       for(int idx = optl ; idx <= min(mid-1,optr); ++idx){</pre>
              11 tmp = dp[last][idx] + C[idx][mid] ;
              if(tmp < value){</pre>
                      value = tmp ;
                      opt = idx ;
              }
       dp[cnt&1][mid] = value ;
```

```
compute(cnt, 1, mid-1, optl, opt);
    compute(cnt, mid+1, r, opt, optr);
}
int main(){
    //casos base
    for(int cnt = 2; cnt <= m; ++cnt) compute(cnt&1, 0, n-1, 0, n-1);
}</pre>
```

5.6 Fractions

```
struct Frac{
   int num, den;
   Frac(){
       num = 0; den = 1;
   Frac(int a, int b): num(a), den(b){}
   Frac(int a):num(a), den(1){}
   void normalize(){
       if(num == 0){
          den = 1;
       }
       if(den < 0){
          den = -den:
          num = -num;
       }
   }
   Frac fix(int a, int b){
      if(!a) return Frac(0,1);
       if(!b) return Frac(oo,1);
      int foo = gcd(abs(a),abs(b));
       Frac ret = Frac(a/foo, b/foo);
       ret.normalize();
      return ret;
   Frac operator + (const Frac& other){
       int num2 = num*other.den + den*other.num, den2 = den*other.den;
       return fix(num2.den2);
```

```
Frac operator - (const Frac& other){
       int num2 = num*other.den - den*other.num, den2 = den*other.den;
       return fix(num2,den2);
   }
   Frac operator * (int c){
       int num2 = num*c, den2 = den;
       return fix(num2,den2);
   }
   Frac operator * (const Frac& other){
       int num2 = num*other.num, den2 = den*other.den;
       return fix(num2,den2);
   }
   Frac operator / (int c){
       int num2 = num, den2 = den * c;
       return fix(num2.den2);
   }
   Frac operator / (const Frac& other){
       int num2 = num*other.den, den2 = den*other.num;
       return fix(num2,den2);
   }
   bool operator < (const Frac& other) const{</pre>
       if(num * other.den < other.num*den) return true;</pre>
       return false;
   }
   bool operator == (const Frac& other) const{
       if(num == other.num && den == other.den) return true;
       return false;
   }
};
```

5.7 Longest Increasing Subsequence

```
// Simple O( nlogn ) Longest Increasing Subsequence
// Answer is stored in array b[N]
int LIS( vi &a ){
```

```
int b[N];
int sz = 0;
REP(i,0,a.size()){
    int j = lower_bound( b , b + sz , a[ i ] ) - b;
    // (lower) a < b < c
    // (upper) a <= b <= c
    b[ j ] = a[ i ];
    if( j == sz ) sz++;
}
return sz;
}</pre>
```

5.8 Matrix Structure

```
const int MN = 111;
const int mod = 10000;
struct matrix {
 int r, c;
 int m[MN][MN];
 matrix (int _r, int _c) : r (_r), c (_c) {
   memset(m, 0, sizeof m);
 void print() {
   for (int i = 0; i < r; ++i) {</pre>
     for (int j = 0; j < c; ++j)
       cout << m[i][j] << " ";
     cout << endl;</pre>
   }
 }
 int x[MN][MN];
 matrix & operator *= (const matrix &o) {
   memset(x, 0, sizeof x);
   for (int i = 0; i < r; ++i)</pre>
     for (int k = 0; k < c; ++k)
       if (m[i][k] != 0)
        for (int j = 0; j < c; ++j) {
           x[i][j] = (x[i][j] + ((m[i][k] * o.m[k][j]) % mod)) % mod;
   memcpy(m, x, sizeof(m));
```

```
return *this;
}
};

void matrix_pow(matrix b, long long e, matrix &res) {
    memset(res.m, 0, sizeof res.m);
    for (int i = 0; i < b.r; ++i)
        res.m[i][i] = 1;

    if (e == 0) return;
    while (true) {
        if (e & 1) res *= b;
        if ((e >>= 1) == 0) break;
        b *= b;
}
```

5.9 Ordered Set

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef
tree<
       int.
       null_type,
       less<int>,
       rb_tree_tag,
       tree_order_statistics_node_update
>ordered_set;
// ordered_set
// X.find_by_order(k) returns an iterator to the k-th largest element (
    counting from zero)
// X.order_of_key(v) returns the number of items in a set that are
    strictly smaller than v
int main() {
       int N;
       ordered_set Y;
       Y.insert(5);
       trace (*Y.find_by_order(0));
```

5.10 Parallel Binary Search

```
//Cada query esta en (low[i], high[i]]
//Tocheck tiene los valores acutales a verificar
//en el bsearch
//Solved puede tener 1, -1
//1: el unico valor posible cumple
//-1: no hay respuesta
int low[MAXN];
int high[MAXN];
char solved[MAXN];
vector< int > tocheck[MAXN];
int main(){
       // Leer n, m
       // Leer a[i], b[i] (i en [1, m])
       // Leer q: queries
       // Leer x[i], y[i], z[i] (i en [0, q])
       for(int i = 0; i < q; ++i)
       low[i] = 0, high[i] = m;
       bool done = 0;
       DSU uf(n); // DSU structure
       int curvis;
       while(!done){
              done = 1;
              for(int i = 0; i < q; ++i){
                      int mid = (low[i] + high[i]) >> 1;
                      tocheck[mid].pb(i);
              uf.clear(n);
              int last = -1;
              for(int value = 0; value <= m; ++value){</pre>
                      if(tocheck[value].empty()) continue;
                      for(int i = last + 1; i <= value; ++i)</pre>
                             uf.join(a[i], b[i]);
                      last = value;
                      while(!tocheck[value].empty()){
                             int id = tocheck[value].back();
                             tocheck[value].pop_back();
                             int u = x[id], v = y[id];
                             int visited = z[id];
```

```
if(low[id] + 1 == high[id]) solved[id] = 1;
    if(uf.connected(u, v)) curvis = uf.size(u);
    else curvis = uf.size(u) + uf.size(v);
    if(curvis >= visited) high[id] = value;
    else low[id] = value;
    if(low[id] == high[id]) solved[id] = -1;
    }
}
for(int i = 0; i < q; ++i)
    if(solved[i] == 0) done = 0;
}
for(int i = 0; i < q; ++i)
    if(solved[i] == -1) cout << -1 << endl;
else cout << high[i] << endl;</pre>
```

5.11 Unordered Map

```
unordered_map<int,int> mp;
mp.reserve(1024); // power of 2 is better
mp.max_load_factor(0.25); // 0.75 used in java
```

6 Network Flows

6.1 Bipartite Matching

6.2 Dinic Flow

```
// Adjacency list implementation of Dinic's blocking flow algorithm.
// This is very fast in practice, and only loses to push-relabel flow.
// Running time:
      O(|V|^2 |E|)
      - graph, constructed using AddEdge()
      - source and sink
11
// OUTPUT:
      - maximum flow value
11
      - To obtain actual flow values, look at edges with capacity > 0
        (zero capacity edges are residual edges).
typedef long long LL;
struct Edge {
 int u, v;
 LL cap, flow;
 Edge() {}
 Edge(int u, int v, LL cap): u(u), v(v), cap(cap), flow(0) {}
```

```
struct Dinic {
 int N:
 vector<Edge> E;
 vector<vector<int>> g;
 vector<int> d, pt;
 Dinic(int N): N(N), E(O), g(N), d(N), pt(N) {}
 void AddEdge(int u, int v, LL cap) {
   if (u != v) {
     E.emplace_back(Edge(u, v, cap));
     g[u].emplace_back(E.size() - 1);
     E.emplace_back(Edge(v, u, 0));
     g[v].emplace_back(E.size() - 1);
   }
 }
 bool BFS(int S, int T) {
   queue<int> q({S});
   fill(d.begin(), d.end(), N + 1);
   d[S] = 0;
   while(!q.empty()) {
     int u = q.front(); q.pop();
     if (u == T) break;
     for (int k: g[u]) {
       Edge &e = E[k];
       if (e.flow < e.cap && d[e.v] > d[e.u] + 1) {
        d[e.v] = d[e.u] + 1;
        q.emplace(e.v);
       }
     }
   }
   return d[T] != N + 1;
 }
 LL DFS(int u, int T, LL flow = -1) {
   if (u == T || flow == 0) return flow;
   for (int &i = pt[u]; i < g[u].size(); ++i) {</pre>
     Edge &e = E[g[u][i]];
     Edge &oe = E[g[u][i]^1];
     if (d[e.v] == d[e.u] + 1) {
      LL amt = e.cap - e.flow;
      if (flow != -1 && amt > flow) amt = flow;
       if (LL pushed = DFS(e.v, T, amt)) {
```

```
e.flow += pushed;
    oe.flow -= pushed;
    return pushed;
}

return 0;
}

LL MaxFlow(int S, int T) {
    LL total = 0;
    while (BFS(S, T)) {
      fill(pt.begin(), pt.end(), 0);
      while (LL flow = DFS(S, T))
        total += flow;
    }
    return total;
}
```

6.3 Edmonds Blossom

```
// Maximum general matching (not necessarily bipartite)
// Make sure to set N in main()
// Claimed O(N^4) running time
int N; // the number of vertices in the graph
typedef vector<int> vi;
typedef vector< vector<int> > vvi;
vi match;
vi vis:
void couple(int n, int m) { match[n]=m; match[m]=n; }
// True if augmenting path or a blossom (if blossom is non-empty).
// the dfs returns true from the moment the stem of the flower is
// reached and thus the base of the blossom is an unmatched node.
// blossom should be empty when dfs is called and
// contains the nodes of the blossom when a blossom is found.
bool dfs(int n, vvi &conn, vi &blossom) {
 vis[n]=0:
 REP(i, 0, N) if(conn[n][i]) {
   if(vis[i]==-1) {
```

```
vis[i]=1:
     if(match[i] == -1 || dfs(match[i], conn, blossom)) {
                      couple(n,i);
                     return true;
              }
   }
   if(vis[i]==0 || SZ(blossom)) { // found flower
     blossom.pb(i); blossom.pb(n);
     if(n==blossom[0]) { match[n]=-1; return true; }
     return false:
   }
 return false;
}
// search for an augmenting path.
// if a blossom is found build a new graph (newconn) where the
// (free) blossom is shrunken to a single node and recurse.
// if a augmenting path is found it has already been augmented
// except if the augmented path ended on the shrunken blossom.
// in this case the matching should be updated along the
// appropriate direction of the blossom.
bool augment(vvi &conn) {
       REP(m, 0, N) if(match[m]==-1) {
              vi blossom:
              vis=vi(N.-1):
              if(!dfs(m, conn, blossom)) continue;
              if(SZ(blossom)==0) return true; // augmenting path found
// blossom is found so build shrunken graph
              int base=blossom[0], S=SZ(blossom);
              vvi newconn=conn:
              REP(i, 1, S-1) REP(j, 0, N)
                     newconn[base][j]=newconn[j][base]|=conn[blossom[i]][
                          i];
              REP(i, 1, S-1) REP(j, 0, N)
                     newconn[blossom[i]][j]=newconn[j][blossom[i]]=0;
              newconn[base][base]=0; // is now the new graph
              if(!augment(newconn)) return false;
              int n=match[base];
// if n!=-1 the augmenting path ended on this blossom
   if(n!=-1) REP(i, 0, S) if(conn[blossom[i]][n]) {
     couple(blossom[i], n);
     if(i&1) for(int j=i+1; j<S; j+=2)</pre>
```

```
couple(blossom[j],blossom[j+1]);
     else for(int j=0; j<i; j+=2)</pre>
                    couple(blossom[j],blossom[j+1]);
     break:
   return true;
 return false;
// conn is the NxN adjacency matrix
// returns the number of edges in a max matching.
int edmonds(vvi &conn) {
 int res=0:
 match=vi(N,-1);
 while(augment(conn)) res++;
 return res;
}
set<pair<int,int> > used;
int main(){
 int n;
  cin >> n:
 N = n;
 vvi conn;
 vi tmp;
  tmp.assign(n,0);
  REP(i, 0, n) conn.push_back(tmp);
  int u, v;
  while(cin >> u >> v){
   u--: v--:
   if(u > v) swap(u,v);
   if(used.count(make_pair(u,v))) continue;
   used.insert(make_pair(u,v));
   conn[u][v] = conn[v][u] = 1;
  int res = edmonds(conn);
  cout<<res*2<<endl;</pre>
 REP(i, 0, n) {
   if(match[i] > i){
     cout<<i+1<<" "<<match[i] + 1<<endl;</pre>
 }
 return 0;
```

}

6.4 Min Cost Max Flow

```
const int MAXN = 5010;
const ll INF = 1e15;
struct edge { int dest;ll origcap, cap; ll cost; int rev; };
struct MinCostMaxFlow {
   vector<edge> adj[MAXN];
   11 dis[MAXN], cost;
   int source, target, iter;
   ll cap;
   edge* pre[MAXN];
   int queued[MAXN];
   MinCostMaxFlow (){}
   void AddEdge(int from, int to, ll cap, ll cost) {
       adj[from].push_back(edge {to, cap, cap, cost, (int)adj[to].size()})
       adj[to].push_back(edge {from,0, 0, -cost, (int)adj[from].size()
            - 1}):
   }
   bool spfa() {
       REP(i,0,MAXN) queued[i] = 0;
       fill(dis, dis + MAXN, INF);
       queue<int> q;
       pre[source] = pre[target] = 0;
       dis[source] = 0;
       q.emplace(source);
       queued[source] = 1;
       while (!q.empty()) {
          int x = q.front();
          ll d = dis[x];
          q.pop();
          queued[x] = 0;
          for (auto& e : adj[x]) {
              int y = e.dest;
              ll w = d + e.cost:
              if (e.cap < 1 || dis[v] <= w) continue;</pre>
```

```
dis[y] = w;
               pre[v] = &e;
               if(!queued[y]){
                      q.push(y);
                      queued[v] = 1;
           }
       }
       edge* e = pre[target];
       if (!e) return 0:
       while (e) {
           edge& rev = adj[e->dest][e->rev];
           e \rightarrow cap -= cap;
           rev.cap += cap;
           cost += cap * e->cost;
           e = pre[rev.dest];
       }
       return 1:
   }
   pair<11,11> GetMaxFlow(int S, int T) {
       cap = 1, source = S, target = T, cost = 0;
       while(spfa()) {}
       11 totflow = 0;
       for(auto e: adj[source]){
           totflow += (e.origcap - e.cap);
       return make_pair(totflow, cost);
};
```

6.5 Push Relabel Max Flow

```
// Fast 0(|V|^3) flow, works for n ~ 5000 with no problem
// Actual flow values in edges with cap > 0 (0 cap = residual)

typedef long long LL;

struct Edge {
  int from, to, cap, flow, index;
  Edge(int from, int to, int cap, int flow, int index) :
    from(from), to(to), cap(cap), flow(flow), index(index) {}
```

```
};
struct PushRelabel {
 int N;
 vector<vector<Edge> > G;
 vector<LL> excess;
 vector<int> dist, active, count;
 queue<int> Q;
 PushRelabel(int N) :
       N(N), G(N), excess(N), dist(N), active(N), count(2*N) {}
 void AddEdge(int from, int to, int cap) {
   G[from].push_back(Edge(from, to, cap, 0, G[to].size()));
   if (from == to) G[from].back().index++;
   G[to].push_back(Edge(to, from, 0, 0, G[from].size() - 1));
       void Enqueue(int v) {
              if (!active[v] && excess[v] > 0) {
                      active[v] = true; Q.push(v);
              }
       }
  void Push(Edge &e) {
   int amt = int(min(excess[e.from], LL(e.cap - e.flow)));
   if (dist[e.from] <= dist[e.to] || amt == 0) return;</pre>
   e.flow += amt;
   G[e.to][e.index].flow -= amt;
   excess[e.to] += amt:
   excess[e.from] -= amt;
   Enqueue(e.to);
 }
 void Gap(int k) {
   for (int v = 0; v < N; v++) {
     if (dist[v] < k) continue;</pre>
     count[dist[v]]--;
     dist[v] = max(dist[v], N+1);
     count[dist[v]]++;
     Enqueue(v);
   }
 }
 void Relabel(int v) {
```

```
count[dist[v]]--;
   dist[v] = 2*N;
   for (int i = 0: i < G[v].size(): i++)</pre>
     if (G[v][i].cap - G[v][i].flow > 0)
       dist[v] = min(dist[v], dist[G[v][i].to] + 1);
   count[dist[v]]++:
   Enqueue(v);
       void Discharge(int v) {
       for (int i = 0; excess[v] > 0 && i < G[v].size(); i++)
               Push(G[v][i]);
       if (excess[v] > 0) {
                 if (count[dist[v]] == 1) Gap(dist[v]);
                 else Relabel(v);
              }
       }
  LL GetMaxFlow(int s. int t) {
   count[0] = N-1;
   count[N] = 1;
   dist[s] = N;
   active[s] = active[t] = true;
   for (int i = 0; i < G[s].size(); i++) {</pre>
     excess[s] += G[s][i].cap;
     Push(G[s][i]);
   }
   while (!Q.empty()) {
     int v = Q.front();
     Q.pop();
     active[v] = false;
     Discharge(v);
   LL totflow = 0;
   for (int i = 0; i < G[s].size(); i++) totflow += G[s][i].flow;</pre>
   return totflow;
 }
};
```

7 Strings

7.1 Aho Corasick + Compression

```
// Aho Corasick automaton. O(n) in size of Trie.
// Allows searching for a dictionary of patterns in a string.
// Consider using DP[u, pos], for instance.
const int MAXN = 500000; // Sum of words*length
const int SZA = 26;
                             // Alphabet size
map<int,int> adj[MAXN]; // Trie
int isEnd[MAXN];
                     // Example: How many words end at node u
int gid;
                                   // Id of last node set
int f[MAXN];
                     // Aho Corasick failure function
void init(int id){
       isEnd[id] = 0;
       adj[id].clear();
}
void add(string s){
       int u = 0;
                     // Current node
       REP(p,0,sz(s)){
              int id = s[p] - 'a';
              if (!adj[u].count(id)){
                     adj[u][id] = ++gid; // Lazy initialization
                     init(gid);
              u = adj[u][id];
       isEnd[u]++;
}
void build(){
  // BFS-DP Aho Corasick construction
       queue<int> q;
       f[0] = 0;
       REPIT(it, adj[0]){
              int u = it->snd;
              q.push(u);
              f[u] = 0;
       }
       while (!q.empty()){
```

```
int e = q.front();
              q.pop();
              REPIT(it, adj[e]){
                      int i = it->fst;
                      int u = it->snd;
                      q.push(u);
                      int v = f[e];
                      while (v && !adj[v].count(i)) v = f[v];
                      f[u] = (adj[v].count(i) ? adj[v][i] : 0);
                      // Aggregate necessary information here
                      // In general, S[u] += S[f[u]]
                      isEnd[u] += isEnd[f[u]];
              }
       }
}
// Search string s for all strings in trie
11 search(string s){
       11 \text{ ans} = 0:
       int u = 0;
       REP(p,0,sz(s)){
              int id = s[p] - 'a';
              while (u && !adj[u].count(id)) u = f[u];
              if (adj[u].count(id)) u = adj[u][id];
              ans += isEnd[u];
       }
       return ans:
}
int main(){
       gid = 0;
       init(0):
       // Ready for add(s), build(), search(t)
       return 0;
```

7.2 Aho Corasick

```
// -----aho corasick-----
// cantidad de repeticiones de cada string sobre un text en O(M+N)

#define N 100000 // ñtamao del text
#define M 1005 //ñtamao de cada string a buscar
```

```
11 n;
char text[N];// string donde buscar
char buf[N]; // string a buscar
ll cnt[M]; // cnt[i]: cantidad de ocurrencias del string i
ll root, nodes;
// nodes: cantidad de nodos en el trie.
//root: que nodo del trie estoy
struct trieNode{
   bool seen:
   11 matchFail,fail;
   vi matches;
   map< char, 11 > next;
   trieNode(){}
   trieNode(bool seen, 11 &matchFail, 11 &fail, vi & matches, map<char,
   seen(seen), matchFail(matchFail), fail(fail), matches(matches), next(
       next){}
} trie[N];
// antes de insertar, notar que root=0 y nodes=1
inline void insert(char * s, ll wordId){ //
   //wordId: id del string
   11 x = root, ta=strlen(s);
   REP(i,0,ta){
       11 &nxt = trie[x].next[ s[i] ];
       if (!nxt) nxt = ++nodes:
       x = nxt;
   }
   trie[x].matches.push_back(wordId);
}
inline ll find(ll x, char ch){
   while (x && !trie[x].next.count(ch)) x = trie[x].fail;
   return x ? trie[x].next[ch] : root;
}
inline void bfs(){
   trie[root].fail = 0;
   queue< 11 > q;
   q.push(root);
   while(q.empty()){
       11 u = q.front(), v; q.pop();
       char ch;
       for (auto &it: trie[u].next){
```

```
ch = it.fst, v = it.snd;
          11 f = find(trie[u].fail, ch);
           trie[v].fail = f;
           trie[v].matchFail = trie[f].matches.empty() ? trie[f].matchFail
          q.push(v);
       }
   }
inline void search(){
   11 x = root:
   11 ta=strlen(text);
   REP(i,0,ta){
       x = find(x, text[i]);
       for (ll t = x; t && !trie[t].seen; t = trie[t].matchFail){
           trie[t].seen = true:
          REP(j,0, sz(trie[t].matches)) cnt[trie[t].matches[j]] ++;
       }
   }
}
int main(){
   root = ++nodes;//inicializacion
   scanf( "%s", &text );
   scanf( "%d", &n );
   REP(i,0, n){
       scanf( "%s", &buf );
       insert(buf, i);
   bfs(); search();
   REP(i,0,n) printf( "%s\n", cnt[i]>0 ? "Y" : "N" );
   return 0;
}
```

7.3 Knuth Morris Pratt

```
// KMP algorithm for finding a pattern in a string in O(n+m).
const int MAX = 1000000;
int b[MAX]; // Fail function
char p[MAX]; // Pattern string
```

```
char t[MAX]; // Text string
int n; // Text string length
int m; // Pattern string length
void kmpPreprocess(){
    int i=0, j=-1;
    b[i]=j;
    while (i<m){</pre>
       while (j>=0 && p[i]!=p[j]) j=b[j];
       i++; j++;
       b[i]=j;
   }
}
void report(int x){
       cout << "Found on: " << x << endl;</pre>
}
void kmpSearch(){
    int i=0, j=0;
    while (i<n){</pre>
       while (j>=0 && t[i]!=p[j]) j=b[j];
       i++; j++;
       if (j==m){
           report(i-j);
           j=b[j];
       }
    }
```

7.4 Manacher Algorithm

```
// Manacher's algorithm for finding all palindromes
// in a string in O(n).
int n;
char s[200200];
char aux[100100];
int p[200200];
int main(){
        scanf("%s%n", aux, &n);
```

```
s[0] = '^{:}:
s[1] = '#';
REP(i,0,n){
       s[2*i+2] = aux[i];
       s[2*i+3] = '#';
}
s[2*n+2] = '\0';
int c = 0, r = 0;
REP(i,0,2*n+2){
       if (i > r) p[i] = 0;
       else p[i] = min(r-i, p[2*c-i]);
       while (s[i+p[i]+1] == s[i-p[i]-1]) p[i]++;
       if (i + p[i] > r){
              c = i;
              r = i + p[i];
       }
}
printf("%s\n", s);
REP(i,0,2*n+2) {
       printf("%d", p[i]);
printf("\n");
return 0;
```

7.5 Palindromic Tree

```
// adamant's palindromic tree online O(n*log(|E|)) construction
// Tutorial: http://adilet.org/blog/25-09-14/
// Add/Delete operation can be supported in O(logn) by doing
// check(link[v]), v = slink[v] in get_link
// (periodicity -> same initial char)
const int maxn = 5e5, sigma = 26, INF = 1e9;
int s[maxn], len[maxn], link[maxn], to[maxn][sigma];
int n, last, sz;
// All these optional (palindromic factoring)
int d[maxn], slink[maxn], dpe[maxn], dpo[maxn];
int anse[maxn], anso[maxn], prve[maxn], prvo[maxn];
void init(){ // Call with n=0
    s[n++] = -1;
    link[0] = 1;
```

```
len[1] = -1:
       sz = 2;
       anse[0] = 0;
       anso[0] = INF;
}
int get_link(int v){
       while(s[n - len[v] - 2] != s[n - 1]) v = link[v]:
       return v:
}
ii getmin(int v, int* ans, int* dp, int* prv){
       dp[v] = ans[n - (len[slink[v]] + d[v]) - 1];
       int best = n - (len[slink[v]] + d[v]) - 1;
       if (d[v] == d[link[v]]){
              if (dp[v] > dp[link[v]]){
                      dp[v] = dp[link[v]];
                     best = prv[n-1-d[v]];
              }
       }
       return mp(dp[v] + 1, best);
}
void add letter(int c){
       s[n++] = c;
       last = get_link(last);
       if(!to[last][c]) {
              len [sz] = len[last] + 2;
              link[sz] = to[get_link(link[last])][c];
              d[sz] = len[sz] - len[link[sz]];
              if (d[sz] == d[link[sz]]) slink[sz] = slink[link[sz]];
              else slink[sz] = link[sz];
              to[last][c] = sz++:
       last = to[last][c];
       anse[n-1] = INF;
       for (int v = last; len[v] > 0; v = slink[v]){
              ii acte = getmin(v, anso, dpe, prve);
              if (act.fst < anse[n-1]){</pre>
                      anse[n-1] = act.fst;
                      prve[n-1] = act.snd;
              }
       }
```

```
anso[n-1] = INF;
for (int v = last; len[v] > 0; v = slink[v]){
      ii act = getmin(v, anse, dpo, prvo);
      if (act.fst <= anso[n-1]){
            anso[n-1] = act.fst;
            prvo[n-1] = act.snd;
      }
}</pre>
```

7.6 Suffix Array

```
// -----Suffix array------
// construccion en nlog^2(n)
//usa lcp(x,y)=mi[lcp(x,x+1),lcp(x+1,x+2)....lcp(y-1,y)]
//construye el lcp(x,y) con sparce table, notar que los indices son 0 base
//s=ababa
//s1[0]=ababa,s1[1]=baba,s1[2]=aba, s1[3]=ba,s1[4]=a, s1[5]='$'
//s2={\$,a,aba,ababa,ba,baba}={5,4,2,0,3,1}=r
//r[i] lista de los sufijos ordenados en 0 base
//indice de s1=\{ababa,baba,aba,aa,a,s\}=\{3,5,2,4,1,0\}=p
//p[i] posicion del i substring en el suffix array (s1) en 0 base
#define N 100010
#define M 20
inline 11 ma(11 a, 11 b){ return ((a-b>0)? a:b);}
inline 11 mi(11 a, 11 b){return ((a-b>0)? b:a);}
struct SA{
 //asignar s:string(char), n ñtamao del string
 11 n.t:
 ll p[N],r[N],h[N];
  char s[N];
 11 rmq[M][N];
 ll flog2[N];
  inline void fix_index(ll b, ll e){
   ll lastpk, pk, d;
   lastpk = p[r[b]+t];
   d = b;
   REP(i,b,e){
     if (((pk = p[r[i]+t]) != lastpk) && (b > lastpk || pk >= e)){
      lastpk = pk;
       d = i;
```

```
}
   p[r[i]]= d;
//calculo de r v p
inline void suff_arr(){
  s[n++] = '$';
  11 bc[256];
  REP(i,0,256) bc[i]=0;
  REP(i,0,n) bc[(ll)s[i]]++;
  REP(i,1,256) bc[i] += bc[i-1];
  RREP(i,n-1,0) r[--bc[(11)s[i]]] = i;
  RREP(i,n-1,0) p[i] = bc[(11)s[i]];
  for (t = 1; t < n; t <<=1){</pre>
   for (11 i = 0, j = 1; i < n; i = j++){
     while (j < n \&\& p[r[j]] == p[r[i]]) ++j;
     if (j-i > 1){
       sort(r+i, r+j, [&](const ll &i, const ll &j){return p[i+t] < p[j+</pre>
           tl:}):
       fix_index(i, j);
   }
 }
//calcula h[i] en O(n) usando Kasai algorithm
inline void initlcp(){
 11 tam = 0, j;
  REP(i,0,n-1){
   j = r[p[i]-1];
   while(s[i+tam] == s[j+tam]) ++tam;
   h[p[i]-1] = tam;
   if (tam > 0) --tam;
  }
}
//construccion del RMQ para hallar lcp en un rango
inline void makelcp(){
  initlcp();
  REP(i,0,n-1) rmq[0][i] = h[i];
  11 lg = 0, pw = 1;
  do{
   REP(i,pw,pw*2) flog2[i] = lg;
   lg++; pw*=2;
   REP(i,0,n-1){
     if (i+pw/2 < n-1) rmq[lg][i] = mi(rmq[lg-1][i], rmq[lg-1][i+pw/2]);</pre>
     else rmq[lg][i] = rmq[lg-1][i];
```

```
} while(pw < n);</pre>
  //calcula el lcp en [i,j] de s1(suffix array);
  inline 11 lcp(ll i, ll j){
   if (i == j) return n - r[i] - 1;
   11 lg = flog2[j-i], pw = (1 << lg);
   return mi(rmq[lg][i], rmq[lg][j-pw]);
  //limpia v construve
  inline void build(){
   memset(p,0,sizeof(p));
   memset(r,0,sizeof(r));
   memset(h,0,sizeof(h));
   memset(rmq,0,sizeof(rmq));
   memset(flog2,0,sizeof(flog2));
   suff_arr();
   makelcp();
 }
};
int main(){
 //ejemplo, hallar la cantidad de diferentes substrings para t1 strings;
 11 t1; scanf("%11d", &t1);
 REP(ik,0,t1){
   SA sa; scanf("%s", &sa.s);
   11 ta=strlen(sa.s):
   sa.n=ta; sa.build();
   11 ans=0;
   REP(i,1,ta){
       ans+=sa.lcp(i,i+1);
   11 xd=(ta*(ta+1)/2)-ans;
   printf("%lld\n",xd);
 return 0;
```

7.7 Suffix Automaton

```
// O(n) Online suffix automaton construction
// len[u]: Max length of a string accepted by u
// link[u]: Suffix link of u
// Link edges give the suffix tree of reverse(s)
```

```
// Terminal nodes can be obtained by
       traversing last's links
const int MAX = 1000000;
int len[MAX*2];
int link[MAX*2];
map<char,int> adj[MAX*2];
int sz, last;
// To reuse, clear adj[]
void sa init() {
       sz = last = 0;
       len[0] = 0;
       link[0] = -1;
       sz++;
}
void sa_extend (char c) {
       int cur = sz++:
       len[cur] = len[last] + 1;
       int p;
       for (p=last; p!=-1 && !adj[p].count(c); p = link[p])
              adj[p][c] = cur;
       if (p == -1)
              link[cur] = 0;
       else {
              int q = adj[p][c];
              if (len[p] + 1 == len[q])
                      link[cur] = q;
              else {
                      int clone = sz++;
                      len[clone] = len[p] + 1;
                      adj[clone] = adj[q];
                      link[clone] = link[q];
                      for (; p != -1 && adj[p][c] == q; p = link[p])
                             adi[p][c] = clone;
                      link[q] = link[cur] = clone;
              }
       }
       last = cur;
```

7.8 Z-Algorithm

```
//Zfun(i) devuelve la longitud del maximo prefijo que empieza en i
vi Zfun(string s){
    vi Z(s.sz,0);
    int l = 0, r = 0;
    REP(i,1,sz(s)){
        if ( i<=r ) Z[i] = min(Z[i-1], r-i+1);
        while ( i+Z[i]<s.sz and s[i+Z[i]]==s[Z[i]] ) Z[i]++;
        if ( i+Z[i]-1>r ) l = i, r = i+Z[i]-1;
    }
    return Z;
}
```

8 Templates

8.1 Header Template

```
#include <bits/stdc++.h>
#include <sstream>
using namespace std;
#define fastio ios_base::sync_with_stdio(0);cin.tie(0);
#define trace(x) cerr << #x << ": " << x << '\n'</pre>
#define trace2(x,y) cerr << #x << ": " << x << " | " << #y << ": " << y</pre>
#define trace3(x,y,z) cerr << #x << ": " << x << " | " << #y << ": " << y</pre>
     << " | " << #z << ": " << z << '\n':
#define all(v) (v).begin(),(v).end()
#define pb push_back
#define sz(v) ((int)v.size())
#define REP(i,x,y) for(int (i)=(x);(i)<(y);(i)++)
#define RREP(i,x,y) for(int (i)=(x);(i)>=(y);(i)--)
#define mp make_pair
#define fst first
#define snd second
typedef long long 11;
typedef pair<ll, ll> ii;
const int MOD = 1e9 + 7;
const int oo = 1e9;
const ll INF = 1e18;
const long double EPS = 1e-11;
```

8.2 Makefile

```
CXX = g++
CXXFLAGS = -std=c++11 -Wall -Wextra -Wno-sign-compare -02 -g
all: %
%: %.cpp
$(CXX) $(CXXFLAGS) -0 $@ $@.cpp
```

8.3 Stack Size

```
#include <sys/resource.h>
int main (int argc, char **argv){
   const rlim_t kStackSize = 64L * 1024L * 1024L; // min stack size = 64
   struct rlimit rl;
   int result;
   result = getrlimit(RLIMIT_STACK, &rl);
   if (result == 0)
       if (rl.rlim_cur < kStackSize)</pre>
           rl.rlim_cur = kStackSize;
           result = setrlimit(RLIMIT_STACK, &rl);
           if (result != 0)
              fprintf(stderr, "setrlimit returned result = %d\n", result)
           }
       }
   // ...
   return 0;
```

8.4 Vim Configuration (vimrc)

```
set number
set autoindent
set showmode
set backspace=indent,eol,start
set mouse=a
set ts=3
set shiftwidth=3
set pastetoggle=<F10>
colorscheme chroma
syntax on

nmap ,c <Esc>i<Home>//<Esc>
nmap ,d <Esc><Home>i<Del><Esc>
```

9 Utils

9.1 MinXOR

```
/*
     Mininum XOR-Pair on an array in O(n)
     Trie-based Implementation
*/

#define INT_SIZE 32

struct TrieNode{
    int value;
     TrieNode * Child[2];
};

TrieNode * getNode(){
     TrieNode * newNode = new TrieNode;
     newNode->value = 0;
     newNode->Child[0] = newNode->Child[1] = NULL;
     return newNode;
}

void insert(TrieNode *root, int key){
     TrieNode *temp = root;
     for (int i = INT_SIZE-1; i >= 0; i--){
```

```
bool current_bit = (key & (1<<i));</pre>
       if (temp->Child[current_bit] == NULL)
           temp->Child[current_bit] = getNode();
       temp = temp->Child[current_bit];
   }
   temp->value = key ;
}
int minXORUtil(TrieNode * root, int key){
   TrieNode * temp = root;
   for (int i=INT_SIZE-1; i >= 0; i--){
       bool current_bit = ( key & ( 1<<i) );</pre>
       if (temp->Child[current_bit] != NULL)
           temp = temp->Child[current_bit];
       else if(temp->Child[1-current_bit] !=NULL)
           temp = temp->Child[1-current_bit];
   }
   return key ^ temp->value;
}
int minXOR(int arr[], int n){
   int min_xor = INT_MAX;
   TrieNode *root = getNode();
   insert(root, arr[0]);
   for (int i = 1; i < n; i++){
       min_xor = min(min_xor, minXORUtil(root, arr[i]));
       insert(root, arr[i]);
   }
   return min_xor;
}
int main(){
   int arr[] = \{9, 5, 3\};
   int n = sizeof(arr)/sizeof(arr[0]);
   cout << minXOR(arr, n) << endl;</pre>
   return 0;
```

}

9.2 Offline Less K-Counting

```
//----inversiones en un rango (offline)-----
// ar[]: arreglo, queries=queri.pb(1,r,valor)
//assignar n,q; ez[i] respuesta para la querie i
//hacer read y make;
struct ST{
 11 n,q;
 vector<tri> querie;
 11 t[2*N],ar[N];
 11 poar[N],pok[N],ark[N],ez[N];
 vii v,v1;
 inline 11 Op(11 &a,11 &b){ return a+b;}
 inline void build (){
   RREP(i,n-1,1) t[i]=0p(t[i<<1],t[i<<1|1]);
 inline void modify (ll p, ll val){
   for(t[p+=n]=val;p>1;p>>=1) t[p>>1]=Op(t[p],t[p^1]);
 inline ll que(ll l, ll r){
   ll res=0:
   for(l+=n,r+=n;l<r;l>>=1,r>>=1){
     if(1&1) res+=t[1++];
     if(r&1) res+=t[--r];
   return res;
 ll p1=0, p2=0,po=0;
 inline void read(){
   REP(i,0,n) v.push_back({ar[i],i});
   sort(all(v));
   REP(i,0,n) poar[p1++]=v[i].snd;
   REP(u,0,q){
    11 k=querie[u].itm3;
     ark[u]=k;
     v1.push_back({k,u});
   sort(all(v1)):
   REP(i,0,q) pok[p2++]=v1[i].snd;
```

```
inline void make(){
   REP(i,0,n) t[i+n]=0; build();
   REP(i,0,q){
     11 x=pok[i];
     // < k, <= k en l,r(despues del &&)
     //inversa , hacer t[i+n]=1;
     while(po<n && ar[poar[po]] <= ark[x]) modify(poar[po++],1);</pre>
     ez[x]=que(querie[x].itm1-1,querie[x].itm2);
 }
}st:
int main(){fastio;
 ll n; cin>>n;
 st.n=n;
 REP(i,0,n) cin>>st.ar[i];
 11 q; cin>>q;
 st.q=q;
 REP(i,0,q){
   ll l,r,k; cin>>l>>r>>k;
   st.querie.push_back({1,{r,k}});
 }
 st.read(); st.make();
 REP(i,0,q) cout<<st.ez[i]<<endl;</pre>
 return 0;
}
```

9.3 Online Less K-Counting

```
/*-----inversiones en un rango (online)-----

construccion amortizada a nlog(n);
cada querie en log^2(n);*/

struct T{
    vi v;
    T () {}
    T (vi v): v(v){}
};
struct ST{
    ll n,ans;
    T t[2*N];
    inline T Op(T &val1, T &val2 ){
        vi v;
        vi v;
```

```
REP(i,0,val1.v.size()) v.pb(val1.v[i]);
   REP(i,0,val2.v.size()) v.pb(val2.v[i]);
   sort(all(v));
   T ty;
   tv.v=v;
   return ty;
  inline 11 Op1( T &val1,11 &k){
   ans=0:
   //usar upper_bound para valores mayores a k
   //usar quitar el val1.v.size() para valores menores o iguales a k
   // usar lower_bound para valores estrictamente menoes a k(sin el val1.
       v.size())
   ans+=val1.v.size()-(upper_bound(all (val1.v),k)-val1.v.begin());
   return ans;
 inline void build(){
   RREP(i,n-1,1) t[i]=Op(t[i<<1],t[i<<1|1]);
 inline 11 que(11 1, 11 r, 11 k){
   ll ans=0;
   for(l+=n,r+=n;l<r;l>>=1,r>>=1){
     if(l&1) ans+=Op1(t[l++],k);
     if(r\&1) ans+=0p1(t[--r],k);
   return ans;
}st;
int main(){fastio;
 ll n; cin>>n;
 st.n=n:
 REP(i,0,n) {
   11 x; cin>>x;
   st.t[i+n].v.push_back(x);
 st.build();
 11 q,ans=0,1,r,k; cin>>q;
 REP(i,0,q){
   cin>>l>>r>>k;// queries 1 base
   ans=st.que(l-1,r,k);
   cout << ans << end 1:
 return 0;
```