Sequence Listing

<110> Botstein, David

Desnoyers,Luc

Ferrara, Napoleone

Fong, Sherman

Gao, Wei-Qiang

Goddard, Audrey

Gurney, Austin L.

Pan, James

Roy, Margaret Ann

Stewart, Timothy A.

Tumas, Daniel

Watanabe, Colin K.

Wood, William I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> P2930R1C11

<150> 60/095,325

<151> 1998-08-04

<150> 60/112,851

<151> 1998-12-16

<150> 60/113,145

<151> 1998-12-16

<150>60/113,511

<151> 1998-12-22

<150>60/115,558

<151>1999-01-12

<150> 60/115,565

<151>1999-01-12

<150> 60/115,733

<151> 1999-01-12

<150> 60/119,341

<151> 1999-02-09

- <151> 2000-03-03
- <150> PCT/US99/12252
- <151> 1999-06-02
- <150> PCT/US99/28634
- <151> 1999-12-01
- <150> PCT/US99/28551
- <151> 1999-12-02
- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> PCT/US00/05841
- <151> 2000 -03-02
- <150> PCT/US00/08439
- <151> 2000-03-30
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02
- <150> PCT/US00/32678
- <151> 2000-12-01
- <140> US 09/866,034
- <141> 2001-05-25
- <160> 38
- <210> 1
- <211> 1283
- <212> DNA
- <213> Homo sapiens
- <400> 1
- cggacgcgtg ggacccatac ttgctggtct gatccatgca caaggcgggg 50
- ctgctaggcc tctgtgcccg ggcttggaat tcggtgcgga tggccagctc 100
- cgggatgacc cgccgggacc cgctcgcaaa taaggtggcc ctggtaacqq 150
- cctccaccga cgggatcggc ttcgccatcg cccggcgttt ggcccaggac 200
- ggggcccatg tggtcgtcag cagccggaag cagcagaatg tggaccaggc 250
- ggtggccacg ctgcaggggg aggggctgag cgtgacgggc accgtqtqcc 300
- atgtggggaa ggcggaggac cgggagcggc tggtggccac ggctgtgaag 350

cttcatggag gtatcgatat cctagtctcc aatgctgctg tcaacccttt 400 ctttggaagc ataatggatg teactgagga ggtgtgggac aagactetgg 450 acattaatgt gaaggcccca gccctgatga caaaggcagt ggtgccagaa 500 atggagaaac gaggaggcgg ctcagtggtg atcgtgtctt ccatagcagc 550 cttcagtcca tctcctggct tcagtcctta caatgtcagt aaaacagcct 600 tgctgggcct gaccaagacc ctggccatag agctggcccc aaggaacatt 650 agggtgaact gcctagcacc tggacttatc aagactagct tcagcaggat 700 gctctggatg gacaaggaaa aagaggaaag catgaaagaa accctgcgga 750 taagaaggtt aggcgagcca gaggattgtg ctggcatcgt gtctttcctg 800 tgctctgaag atgccagcta catcactggg gaaacagtgg tggtgggtgg 850 aggaaccccg teeegeetet gaggaeeggg agacageeca caggeeagag 900 ttgggctcta getectggtg etgtteetge atteaceeae tggcetttee 950 cacctetget caccttactg tteaceteat caaatcagtt etgecetgtg 1000 aaaagatcca gccttccctg ccgtcaaggt ggcgtcttac tcgggattcc 1050 tgctgttgtt gtggccttgg gtaaaggcct cccctgagaa cacaggacag 1100 gcctgctgac aaggctgagt ctaccttggc aaagaccaag atatttttc 1150 ctgggccact ggtgaatctg aggggtgatg ggagagaagg aacctggagt 1200' ggaaggagca gagttgcaaa ttaacagctt gcaaatgagg tgcaaataaa 1250 atgcagatga ttgcgcggct ttgaaaaaaa aaa 1283

<210> 2

<211> 278

<212> PRT

<213> Homo sapiens

<400> 2

Met His Lys Ala Gly Leu Leu Gly Leu Cys Ala Arg Ala Trp Asn
1 5 10 15

Ser Val Arg Met Ala Ser Ser Gly Met Thr Arg Arg Asp Pro Leu 20 25 30

Ala Asn Lys Val Ala Leu Val Thr Ala Ser Thr Asp Gly Ile Gly
35 40 45

Phe Ala Ile Ala Arg Arg Leu Ala Gln Asp Gly Ala His Val Val
50 55 60.

Val Ser Ser Arg Lys Gln Gln Asn Val Asp Gln Ala Val Ala Thr
65 70 75

Leu Gln Gly Glu Gly Leu Ser Val Thr Gly Thr Val Cys His Val Gly Lys Ala Glu Asp Arg Glu Arg Leu Val Ala Thr Ala Val Lys Leu His Gly Gly Ile Asp Ile Leu Val Ser Asn Ala Ala Val Asn Pro Phe Phe Gly Ser Ile Met Asp Val Thr Glu Glu Val Trp Asp Lys Thr Leu Asp Ile Asn Val Lys Ala Pro Ala Leu Met Thr Lys Ala Val Val Pro Glu Met Glu Lys Arg Gly Gly Ser Val Val 155 Ile Val Ser Ser Ile Ala Ala Phe Ser Pro Ser Pro Gly Phe Ser Pro Tyr Asn Val Ser Lys Thr Ala Leu Leu Gly Leu Thr Lys Thr Leu Ala Ile Glu Leu Ala Pro Arg Asn Ile Arg Val Asn Cys Leu Ala Pro Gly Leu Ile Lys Thr Ser Phe Ser Arg Met Leu Trp Met 220 Asp Lys Glu Lys Glu Glu Ser Met Lys Glu Thr Leu Arg Ile Arg Arg Leu Gly Glu Pro Glu Asp Cys Ala Gly Ile Val Ser Phe Leu Cys Ser Glu Asp Ala Ser Tyr Ile Thr Gly Glu Thr Val Val Val 265 Gly Gly Gly Thr Pro Ser Arg Leu

<210> 3

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

275

<400> 3

gcataatgga tgtcactgag g 21

<210> 4

<211> 23

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 4
 agaacaatcc tgctgaaagc tag 23
<210> 5
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
gaaacgagga ggcggctcag tggtgatcgt gtcttccata gcagcc 46
<210> 6
<211> 3121
<212> DNA
<213> Homo sapiens
<400> 6
gegeeetgag eteegeetee gggeeegata geggeatega gagegeetee 50
 gtcgaggacc aggcggcgca gggggccggc gggcgaaagg aggatgaggg 100
 ggcgcagcag ctgctgaccc tgcagaacca ggtggcgcgg ctggaggagg 150
 agaaccgaga ctttctggct gcgctggagg acgccatgga gcagtacaaa 200
 ctgcagagcg accggctgcg tgagcagcag gaggagatgg tggaactgcg 250
gctgcggtta gagctggtgc ggccaggctg ggggggcctg cggctcctga 300
 atggeetgee teeegggtee titgtgeete gaceteatae ageeceetg 350
gggggtgccc acgcccatgt gctgggcatg gtgccgcctg cctgcctccc 400
tggagatgaa gttggctctg agcagagggg agagcaggtg acaaatggca 450
gggaggctgg agctgagttg ctgactgagg tgaacaggct gggaagtggc 500
tetteagetg etteagagga ggaagaggag gaggaggage egeceaggeg 550
gacettacae etgegeagaa ataggateag caactgeagt cagagggegg 600
gggcacgccc agggagtctg ccagagagga agggcccaga qctttqcctt 650
gaggagttgg atgcagccat tccagggtcc agagcagttg gtgggagcaa 700
ggcccgagtt caggcccgcc aggtcccccc tgccacagcc tcaqagtqqc 750
ggctggccca ggcccagcag aagatccggg agctggctat caacatccgc 800
atgaaggagg agettattgg egagetggte egeacaggaa aggeagetea 850
```

ggccctgaac cgccagcaca gccagcgtat ccgggagctg gagcaggagg 900

teetggaaat gaagatgage teeacetgge accegagett etetggetgt 2400 ccccctcac tgaggggcc ccccgcaccc gggaggagac gcgggacttg 2450 gtccacgete cgttaccett gacetggaaa cgetegagee tgtgtggtga 2500 ggagcagggg tcccccgagg aactgaggca gcgggaggcg gctgagccc 2550 tggtggggcg ggtgcttcct gtgggtgagg caggcctgcc ctggaacttt 2600 gggcctttgt ccaagccccg gcgggaactg cgacgagcca gcccggggat 2650 gattgatgtc cggaaaaacc ccctgtaagc cctcggggca gaccctgcct 2700 tggagggaga ctccgagcct gctgaaaggg gcagctgcct gttttgcttc 2750 tgtgaagggc agtccttacc gcacacccta aatccaggcc ctcatctgta 2800 ccctcactgg gatcaacaaa tttgggccat ggcccaaaag aactggaccc 2850 tcatttaaca aaataatatg caaattccca ccacttactt ccatgaagct 2900 gtggtaccca attgccgcct tgtgtcttgc tcgaatctca ggacaattct 2950 ggtttcaggc gtaaatggat gtgcttgtag ttcaggggtt tggccaagaa 3000 tcatcacgaa agggtcggtg gcaaccaggt tgtggtttaa atgqtcttat 3050 gtatataggg gaaactggga gactttagga tcttaaaaaa ccatttaata 3100 aaaaaaaatc tttgaaggga c 3121

<210> 7

<211> 830

<212> PRT

<213> Homo sapiens

<400> 7

Met Glu Gln Tyr Lys Leu Gln Ser Asp Arg Leu Arg Glu Gln Gln 1 5 10

Glu Glu Met Val Glu Leu Arg Leu Arg Leu Glu Leu Val Arg Pro
20 25 30

Gly Trp Gly Gly Leu Arg Leu Leu Asn Gly Leu Pro Pro Gly Ser

Phe Val Pro Arg Pro His Thr Ala Pro Leu Gly Gly Ala His Ala

His Val Leu Gly Met Val Pro Pro Ala Cys Leu Pro Gly Asp Glu
65 70 75

Val Gly Ser Glu Gln Arg Gly Glu Gln Val Thr Asn Gly Arg Glu 80 85 90

Ala Gly Ala Glu Leu Leu Thr Glu Val Asn Arg Leu Gly Ser Gly
95 100 105

Ser	Ser	Ala	Ala	Ser 110	Glu	Glu	Glu	Glu	Glu 115	Glu	Glu	Glu	Pro	Pro 120
Arg	Arg	Thr	Leu	His 125	Leu	Arg	Arg	Asn	Arg 130	Ile	Ser	Asn	Суѕ	Ser 135
Gln	Arg	Ala	Gly	Ala 140	Arg	Pro	Gly	Ser	Leu 145	Pro	Glu	Arg	Lys	Gly 150
Pro	Glu	Leu	Cys	Leu 155	Glu	Glu	Leu	Asp	Ala 160	Ala	Ile	Pro	Gly	Ser 165
Arg	Ala	Val	Gly	Gly 170	Ser	Lys	Ala	Arg	Val 175	Gln	Ala	Arg	Gln	Val 180
Pro	Pro	Ala	Thr	Ala 185	Ser	Glu	Trp	Arg	Leu 190	Ala	Gln	Ala	Gln	Gln 195
Lys	Ile	Arg	Glu	Leu 200	Ala	Ile	Asn	Ile	Arg 205	Met	Lys	Glu	Glu	Leu 210
Ile	Gly	Glu	Leu	Val 215	Arg	Thr	Gly	Lys	Ala 220	Ala	Gln	Ala	Leu	Asn 225
Arg	Gln	His	Ser	Gln 230	Arg	Ile	Arg	Glu	Leu 235	Glu	Gln	Glu	Ala	Glu 240
Gln	Val	Arg	Ala	Glu 245	Leu	Ser	Glu	Gly	Gln 250	Arg	Gln	Leu	Arg	Glu 255
Leu	Glu	Gly	Lys	Glu 260	Leu	Gln	Asp	Ala	Gly 265	Glu	Arg	Ser	Arg	Leu 270
Gln	Glu	Phe	Arg	Arg 275	Arg	Val	Ala	Ala	Ala 280	Gln	Ser	Gln	Val	Gln 285
Val	Leu	Lys	Glu	Lys 290	Lys	Gln	Ala	Thr	Glu 295	Arg	Leu	Val	Ser	Leu 300
Ser	Ala	Gln	Ser	Glu 305	Lys	Arg	Leu	Gln	Glu 310	Leu	Glu	Arg	Asn	Val 315
Gln	Leu	Met	Arg	Gln 320	Gln	Gln	Gly	Gln	Leu 325	Gln	Arg	Arg	Leu	Arg 330
Glu	Glu	Thr	Glu	Gln 335	Lys	Arg	Arg	Leu	Glu 340	Ala	Glu	Met	Ser	Lys 345
Arg	Gln	His	Arg	Val 350	Lys	Glu	Leu	Glu	Leu 355	Lys	His	Glu	Gln	Gln 360
Gln	Lys	Ile	Leu	Lys 365	Ile	Lys	Thr	Glu	Glu 370	Ile	Ala	Ala	Phe	Gln 375
Arg	Lys	Arg	Arg	Ser 380	Gly	Ser	Asn	Gly	Ser 385	Val	Val	Ser	Leu	Glu 390
Gln	Gln	Gln	Lys	Ile	Glu	Glu	Gln	Lys	Lys	Trp	Leu	Asp	Gln	Glu

				395					400					405
Met	Glu	Lys	Val	Leu 410		Gln	Arg	Arg	Ala 415	Leu	Glu	Glu	Leu	Gly 420
Glu	Glu	Leu	His	Lys 425	Arg	Glu	Ala	Ile	Leu 430	Ala	Lys	Lys	Glu	Ala 435
Leu	Met	Gln	Glu	Lys 440	Thr	Gly	Leu	Glu	Ser 445	Lys	Arg	Leu	Arg	Ser 450
Ser	Gln	Ala	Leu	Asn 455	Glu	Asp	Ile	Val	Arg 460	Val	Ser	Ser	Arg	Leu 465
Glu	His	Leu	Glu	Lys 470	Glu	Leu	Ser	Glu	Lys 475	Ser	Gly	Gln	Leu	Arg 480
Gln	Gly	Ser	Ala	Gln 485	Ser	Gln	Gln	Gln	Ile 490	Arg	Gly	Glu	Ile	Asp 495
Ser	Leu	Arg	Gln	Glu 500	Lys	Asp	Ser	Leu	Leu 505	Lys	Gln	Arg	Leu	Glu 510
Ile	Asp	Gly	Lys	Leu 515	Arg	Gln	Gly	Ser	Leu 520	Leu	Ser	Pro	Glu	Glu 525
Glu	Arg	Thr	Leu	Phe 530	Gln	Leu	Asp	Glu	Ala 535	Ile	Glu	Ala	Leu	Asp 540
Ala	Ala	Ile	Glu	Tyr 545	Lys	Asn	Glu	Ala	Ile 550	Thr	Cys	Arg	Gln	Arg 555
Val	Leu	Arg	Ala	Ser 560	Ala	Ser	Leu	Leu	Ser 565	Gln	Cys	Glu	Met	Asn 570
Leu	Met	Ala	Lys	Leu 575	Ser	Tyr	Leu	Ser	Ser 580	Ser	Glu	Thr	Arg	Ala 585
Leu	Leu	Cys	Lys	Tyr 590	Phe	Asp	Lys	Val	Val 595	Thr	Leu	Arg	Glu	Glu 600
Gln	His	Gln	Gln	Gln 605	Ile	Ala	Phe	Ser	Glu 610	Leu	Glu	Met	Gln	Leu 615
Glu	Glu	Gln	Gln	Arg 620	Leu	Val	Tyr	Trp	Leu 625	Glu	Val	Ala	Leu	Glu 630
Arg	Gln	Arg	Leu	Glu 635	Met	Asp	Arg	Gln	Leu 640	Thr	Leu	Gln	Gln	Lys 645
Glu	His	Glu	Gln	Asn 650	Met	Gln	Leu	Leu	Leu 655	Gln	Gln	Ser	Arg	Asp 660
His	Leu	Gly	Glu	Gly 665		Ala	Asp	Ser	Arg 670	Arg	Gln	Tyr	Glu	Ala 675
Arg	Ile	Gln	Ala	Leu 680	Glu	Lys	Glu	Leu	Gly 685	Arg	Tyr	Met	Trp	Ile 690

<210> 8 <211> 662

<212> DNA <213> Homo sapiens

attetectag ageatettig gaageatgag gecaegatge tgeatettigg 50
etettigtetig etggataaca gietteetee teeagitgite aaaaaggaace 100
acagaegete etgitggete aggaetgigg etgitgeeage egaeaceeag 150
gigtigggaac aagatetaca accetteaga geagitgetig taitgatgatg 200
ecatettate ettaaaggag accegeeget gitggeteeae etgeaecette 250
tiggeeetget tigagetetig etgiteeegag tetititiggee eccaigeagaa 300
gittettigig aagitigaggg tietigggiat gaagiteteag tigteaettat 350
eteecatete eeggagetig accaggaaca gigaggeaegi eetgitaeeea 400
taaaaaceee aggeteeaet gigeagaegge agaeaaggig agaagaacii 500
gaetteagag gigatiggetea atgaeatage tittiggagag ageeeaget 550

gggatggeca gaetteaggg gaagaatgee tteetgette ateecettte 600 cageteeett teeegetgag ageeaettte ateggeaata aaateececa 650 catttaceat et 662

<210> 9

<211> 125

<212> PRT

<213> Homo sapiens

<400> 9

Met Arg Pro Arg Cys Cys Ile Leu Ala Leu Val Cys Trp Ile Thr 1 5 10 15

Val Phe Leu Leu Gln Cys Ser Lys Gly Thr Thr Asp Ala Pro Val 20 25 30

Gly Ser Gly Leu Trp Leu Cys Gln Pro Thr Pro Arg Cys Gly Asn
35 40 45

Lys Ile Tyr Asn Pro Ser Glu Gln Cys Cys Tyr Asp Asp Ala Ile 50 55 60

Leu Ser Leu Lys Glu Thr Arg Arg Cys Gly Ser Thr Cys Thr Phe
65 70 75

Trp Pro Cys Phe Glu Leu Cys Cys Pro Glu Ser Phe Gly Pro Gln
80 85 90

Gln Lys Phe Leu Val Lys Leu Arg Val Leu Gly Met Lys Ser Gln 95 100 105

Cys His Leu Ser Pro Ile Ser Arg Ser Cys Thr Arg Asn Arg Arg

His Val Leu Tyr Pro

<210> 10

<211> 1942

<212> DNA

<213> Homo sapiens

<400> 10

 ttagtggtcc gccccacgcg ggtcgccggc cggcccagga tgggcgctgg 400 caacceggge eegegeeege egetgetace eetgegeeeg etgegageee 450 ggcgtccggc ccgcgccctg cgctcatgga cggcggctcc cggctggcgg 500 eggegegeee eegggetgtg aatgegaete qeeeeteqqe eqeqeteeee 550 gcccgcccgc ccgccgggac gtggtagggg atgcccagct ccactgcgat 600 ggcagttggc gcgctctcca gttccctcct ggtcacctgc tgcctgatgg 650 tggctctgtg cagtccgagc atcccgctgg agaagctggc ccaggcacca 700 gageageegg geeaggagaa gegtgageae geeaeteggg aeggeeeggg 750 gegggtgaac gageteggge geeeggegag ggaegaggge ggeageggee 800 gggactggaa gagcaagagc ggccgtgggc tcgccggccg tgagccgtgg 850 agcaagctga agcaggcctg ggtctcccag ggcgggggcg ccaaggccgg 900 ggatetgeag gteeggeece geggggaeae eeegeaggeg gaageeetgg 950 ecgeageege ceaggaegeg attggeeegg aactegegee caegeeegag 1000 ccaccegagg agtacgtgta cccggactac cgtggcaagg gctgcgtgga 1050 cgagagegge ttegtgtaeg egategggga gaagttegeg eegggeeeet 1100 eggeetgeee gtgeetgtge accgaggagg ggeegetgtg egegeageee 1150 gagtgeeega ggetgeacce gegetgeate caegtegaca egageeagtg 1200 ctgcccgcag tgcaaggaga ggaagaacta ctgcgagttc cggggcaaga 1250 cctatcagac tttggaggag ttcgtggtgt ctccatgcga gaggtgtcgc 1300 tgtgaagcea acggtgaggt getatgeaca gtgtcagcgt gteeccagae 1350 ggagtgtgtg gaccetgtgt acgageetga teagtgetgt eccatetgea 1400 aaaatggtee aaactgettt geagaaaceg eggtgateee tgetggeaga 1450 gaagtgaaga etgaegagtg caccatatge caetgtaett atgaggaagg 1500 cacatggaga atcgagcggc aggccatgtg cacgagacat gaatgcaggc 1550 aaatgtagac getteecaga acacaaacte tgaettttte tagaacattt 1600 tactgatgtg aacattetag atgactetgg gaactateag teaaagaaga 1650 cttttgatga ggaataatgg aaaattgttg gtacttttcc ttttcttgat 1700 aacagttact acaacagaag gaaatggata tatttcaaaa catcaacaag 1750 aactttgggc ataaaatcct tctctaaata aatgtgctat tttcacagta 1800

<210> 11

<211> 325

<212> PRT

<213> Homo sapiens

<400> 11

Met Pro Ser Ser Thr Ala Met Ala Val Gly Ala Leu Ser Ser Ser 1 10 15

Leu Leu Val Thr Cys Cys Leu Met Val Ala Leu Cys Ser Pro Ser

Ile Pro Leu Glu Lys Leu Ala Gln Ala Pro Glu Gln Pro Gly Gln
35 40 45

Glu Lys Arg Glu His Ala Thr Arg Asp Gly Pro Gly Arg Val Asn
50 55 60

Glu Leu Gly Arg Pro Ala Arg Asp Glu Gly Gly Ser Gly Arg Asp
65 70 75

Trp Lys Ser Lys Ser Gly Arg Gly Leu Ala Gly Arg Glu Pro Trp 80 85 90

Ser Lys Leu Lys Gln Ala Trp Val Ser Gln Gly Gly Ala Lys 95 100 105

Ala Gly Asp Leu Gln Val Arg Pro Arg Gly Asp Thr Pro Gln Ala 110 115 120

Glu Ala Leu Ala Ala Ala Gln Asp Ala Ile Gly Pro Glu Leu 125 130 135

Ala Pro Thr Pro Glu Pro Pro Glu Glu Tyr Val Tyr Pro Asp Tyr
140 145 150

Arg Gly Lys Gly Cys Val Asp Glu Ser Gly Phe Val Tyr Ala Ile 155 160 165

Gly Glu Lys Phe Ala Pro Gly Pro Ser Ala Cys Pro Cys Leu Cys

Thr Glu Glu Gly Pro Leu Cys Ala Gln Pro Glu Cys Pro Arg Leu 185 190 195

His Pro Arg Cys Ile His Val Asp Thr Ser Gln Cys Cys Pro Gln 200 205 210

Cys Lys Glu Arg Lys Asn Tyr Cys Glu Phe Arg Gly Lys Thr Tyr

Gln Thr Leu Glu Glu Phe Val Val Ser Pro Cys Glu Arg Cys Arg

235 230 240 Cys Glu Ala Asn Gly Glu Val Leu Cys Thr Val Ser Ala Cys Pro Gln Thr Glu Cys Val Asp Pro Val Tyr Glu Pro Asp Gln Cys Cys 260 265 Pro Ile Cys Lys Asn Gly Pro Asn Cys Phe Ala Glu Thr Ala Val Ile Pro Ala Gly Arg Glu Val Lys Thr Asp Glu Cys Thr Ile Cys 290 His Cys Thr Tyr Glu Glu Gly Thr Trp Arg Ile Glu Arg Gln Ala 310 305 Met Cys Thr Arg His Glu Cys Arg Gln Met 320 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 12 gaggtgtcgc tgtgaagcca acgg 24 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 13 cgctcgattc tccatgtgcc ttcc 24 <210> 14 <211> 45 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 14 gacggagtgt gtggaccetg tgtacgagec tgatcagtgc tgtcc 45 <210> 15 <211> 1587

<212> DNA

<213> Homo sapiens

<400> 15 cagecacaga egggteatga gegeggtatt aetgetggee eteetggggt 50 tcatcctccc actgccagga gtgcaggcgc tgctctgcca gtttgggaca 100 gttcagcatg tgtggaaggt gtccgaccta ccccggcaat ggacccctaa 150 gaacaccage tgegacageg gettggggtg ecaggacaeg ttgatgetea 200 ttgagagegg acceeaagtg ageetggtge tetecaaggg etgeaeggag 250 gccaaggace aggageeeeg egteaetgag eaceggatgg geeeeggeet 300 ctccctgatc tcctacacct tcgtgtgccg ccaggaggac ttctgcaaca 350 acctegttaa eteeeteeeg etttgggeee caeageeeee ageagaeeea 400 ggatcettga ggtgeecagt etgettgtet atggaagget gtetggaggg 450 gacaacagaa gagatetgee ecaaggggae cacacactgt tatgatqqee 500 tecteagget caggggagga ggeatettet ceaatetgag agtecaggga 550 tgcatgcccc agccaggttg caacctgctc aatgggacac aggaaattgg 600 gcccgtgggt atgactgaga actgcaatag gaaagatttt ctgacctgtc 650 ategggggae caccattatg acacaeggaa acttggetea agaacecact 700 gattggacca catcgaatac cgagatgtgc gaggtggggc aggtgtgtca 750 ggagacgetg etgeteatag atgtaggact cacateaace etggtgggga 800 caaaaggctg cagcactgtt ggggctcaaa attcccagaa gaccaccatc 850 cacteagece etectggggt gettgtggee tectatacee aettetgete 900 ctcggacctg tgcaatagtg ccagcagcag cagcgttctg ctgaactccc 950 tecetectea agetgeeect gteecaggag aeeggeagtg tectacetgt 1000 gtgcagcccc ttggaacctg ttcaagtggc tccccccgaa tgacctgccc 1050 caggggcgcc actcattgtt atgatgggta cattcatctc tcaggaggtg 1100 ggctgtccac caaaatgagc attcagggct gcgtggccca accttccagc 1150 ttettgttga accaeaccag acaaateggg atettetetg egegtgagaa 1200 gegtgatgtg cageeteetg ceteteagea tgagggaggt ggggetgagg 1250 geetggagte teteaettgg ggggtgggge tggeaetgge eecagegetg 1300 tggtggggag tggtttgccc ttcctgctaa ctctattacc cccacgattc 1350 ttcaccgctg ctgaccaccc acactcaacc tecetetgac ctcataacct 1400 aatggcettg gacaccagat tettteeeat tetgteeatg aateatette 1450

cccacacaca atcattcata tctactcacc taacagcaac actggggaga 1500 gcctggagca tccggacttg ccctatggga gaggggacgc tggaggagtg 1550 gctgcatgta tctgataata cagaccctgt cctttca 1587

<210> 16

<211> 437

<212> PRT

<213> Homo sapiens

<400> 16

Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro 1 5 10 15

Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln
20 25 30

His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys

Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met 50 55 60

Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly
65 70 75

Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg 80 85 90

Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg 95 100 105

Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp
110 115 120

Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val 125 130 135

Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile 140 145 150

Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu 155 160 165

Arg Gly Gly Gly Ile Phe Ser Asn Leu Arg Val Gln Gly Cys Met

Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly
185 190 195

Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr 200 205 210

Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln 215 220 225

Glu Pro Thr Asp Trp Thr Thr Ser Asn Thr Glu Met Cys Glu Val

•		4

				230					235					240
Gly	Gln	Val	Cys	Gln 245	Glu	Thr	Leu	Leu	Leu 250	Ile	Asp	Val	Gly	Leu 255
Thr	Ser	Thr	Leu	Val 260	Gly	Thr	Lys	Gly	Cys 265	Ser	Thr	Val	Gly	Ala 270
Gln	Asn	Ser	Gln	Lys 275	Thr	Thr	Ile	His	Ser 280	Ala	Pro	Pro	Gly	Val 285
Leu	Val	Ala	Ser	Tyr 290	Thr	His	Phe	Cys	Ser 295	Ser	Asp	Leu	Cys	Asn 300
Ser	Ala	Ser	Ser	Ser 305	Ser	Val	Leu	Leu	Asn 310	Ser	Leu	Pro	Pro	Gln 315
Ala	Ala	Pro	Val	Pro 320	Gly	Asp	Arg	Gln	Cys 325	Pro	Thr	Cys	Val	Gln 330
Pro	Leu	Gly	Thr	Cys 335	Ser	Ser	Gly	Ser	Pro 340	Arg	Met	Thr	Cys	Pro 345
Arg	Gly	Ala	Thr	His 350	Сув	Tyr	Asp	Gly	Tyr 355	Ile	His	Leu	Ser	Gly 360
Gly	Gly	Leu	Ser	Thr 365	Lys	Met	Ser	Ile	Gln 370	Gly	Cys	Val	Ala	Gln 375
Pro	Ser	Ser	Phe	Leu 380	Leu	Asn	His	Thr	Arg 385	Gln	Ile	Gly	Ile	Phe 390
Ser	Ala	Arg	Glu	Lys 395	Arg	Asp	Val	Gln	Pro 400	Pro	Ala	Ser	Gln	His 405
Glu	Gly	Gly	Gly	Ala 410	Glu	Gly	Leu	Glu	Ser 415	Leu	Thr	Trp	Gly	Val 420
Gly	Leu	Ala	Leu	Ala 425	Pro	Ala	Leu	Trp	Trp 430	Gly	Val	Val	Cys	Pro 435
~	~													

Ser Cys

<210> 17

<211> 2387

<212> DNA

<213> Homo sapiens

<400> 17

cgacgatget acgegegee ggetgeetee teeggaeete egtagegeet 50
geegeggeee tggetgegge getgeteteg tegettgege getgetetet 100
tetagageeg agggaeeegg tggeetegte geteageeee tattteggea 150
ccaagacteg etaegaggat gteaaceeeg tgetattgte gggeeeegag 200

geteegtgge gggaeeetga getgetggag gggaeetgea eeceqqtqca 250 gctggtcgcc ctcattcgcc acggcacccg ctaccccacg gtcaaacaga 300 teegeaaget gaggeagetg caegggttge tgeaggeeeg egggteeagg 350 gatggcgggg ctagtagtac cggcagccgc gacctgggtg cagcgctggc 400 cgactggcct ttgtggtacg cggactggat ggacgggcag ctagtagaga 450 agggacggca ggatatgcga cagctggcgc tgcgtctggc ctcgctcttc 500 ccggcccttt tcagccgtga gaactacggc cgcctgcggc tcatcaccag 550 ttccaagcac cgctgcatgg atagcagcgc cgccttcctg caggggctgt 600 ggcagcacta ccaccctggc ttgccgccgc cggacgtcgc agatatggag 650 tttggacctc caacagttaa tgataaacta atgagatttt ttgatcactg 700 tgagaagttt ttaactgaag tagaaaaaaa tgctacagct ctttatcacg 750 tggaagcett caaaactgga ccagaaatge agaacatttt aaaaaaagtt 800 gcagctactt tgcaagtgcc agtaaatgat ttaaatgcag atttaattca 850 agtagccttt ttcacctgtt catttgacct ggcaattaaa ggtgttaaat 900 ctccttggtg tgatgttttt gacatagatg atgcaaaggt attagaatat 950 ttaaatgatc tgaaacaata ttggaaaaga ggatatgggt atactattaa 1000 cagtegatee agetgeacet tgttteagga tatettteag eacttggaca 1050 aagcagttga acagaaacaa aggteteage caatttette teeagteate 1100 ctccagtttg gtcatgcaga gactcttctt ccactgcttt ctctcatggg 1150 ctacttcaaa gacaaggaac ccctaacagc gtacaattac aaaaaacaaa 1200 tgcatcggaa gttccgaagt ggtctcattg taccttatgc ctcgaacctg 1250 atatttgtgc tttaccactg tgaaaatgct aagactccta aagaacaatt 1300 ccgagtgcag atgttattaa atgaaaaggt gttacctttg gcttactcac 1350 aagaaactgt ttcattttat gaagatctga agaaccacta caaggacatc 1400 cttcagagtt gtcaaaccag tgaagaatgt gaattagcaa gggctaacag 1450 tacatctgat gaactatgag taactgaaga acatttttaa ttctttagga 1500 atotgoaatg agtgattaca tgottgtaat aggtaggcaa ttoottgatt 1550 acaggaagct tttatattac ttgagtattt ctgtcttttc acagaaaaac 1600 attgggtttc tctctgggtt tggacatgaa atgtaagaaa agatttttca 1650

ccctgcaaat gtttacagaa atgaaacaaat ctatttagag aaacagctgg 1700 ccctgcaaat gtttacagaa atgaaattct tcctacttat ataagaaatc 1750 tcacactgag atagaattgt gatttcataa taacacttga aaagtgctgg 1800 agtaacaaaa tatctcagtt ggaccatcct taacttgat gaactgtcta 1850 ggaactttac agattgttct gcagttctc cttctttcc tcaggtagga 1900 cagctctagc attttcttaa tcaggaatat tgtgggtaagc tgggagtatc 1950 actctggaag aaagtaacat ctccagatga gaatttgaaa caagaaacag 2000 agtgttgtaa aaggacacct tcactgaagc aagtcggaaa gtacaatgaa 2050 aataaatatt tttggtattt atttatgaaa tatttgaaca ttttttcaat 2100 aattcctttt tacttctagg aagtctcaaa agaccatct aaattattat 2150 atgtttggac aattagcaac aagtcagata gttagaatcg aagttttca 2200 aatccattgc ttagctaact ttttcattct gtcacttggc ttcgatttt 2250 atattttcct attatgaa atgtatctt tggttgttt attttctt 2300 ctttctttt aaaatatct gagttctaa aaaaaa 2387

<210> 18

<211> 487

<212> PRT

<213> Homo sapiens

<400> 18

Met Leu Arg Ala Pro Gly Cys Leu Leu Arg Thr Ser Val Ala Pro 1 5 10 15

Ala Ala Leu Ala Ala Leu Leu Ser Ser Leu Ala Arg Cys 20 25 30

Ser Leu Leu Glu Pro Arg Asp Pro Val Ala Ser Ser Leu Ser Pro
35 40 45

Tyr Phe Gly Thr Lys Thr Arg Tyr Glu Asp Val Asn Pro Val Leu
50 55 60

Leu Ser Gly Pro Glu Ala Pro Trp Arg Asp Pro Glu Leu Leu Glu
65 70 75

Gly Thr Cys Thr Pro Val Gln Leu Val Ala Leu Ile Arg His Gly 80 85 90

Thr Arg Tyr Pro Thr Val Lys Gln Ile Arg Lys Leu Arg Gln Leu 95 100 105

His Gly Leu Leu Gln Ala Arg Gly Ser Arg Asp Gly Gly Ala Ser

				110					115					120
Ser	Thr	Gly	Ser	Arg 125	Asp	Leu	Gly	Ala	Ala 130	Leu	Ala	Asp	Trp	Pro 135
Leu	Trp	Tyr	Ala	Asp 140	Trp	Met	Asp	Gly	Gln 145	Leu	Val	Glu	Lys	Gly 150
Arg	Gln	Asp	Met	Arg 155	Gln	Leu	Ala	Leu	Arg 160	Leu	Ala	Ser	Leu	Phe 165
Pro	Ala	Leu	Phe	Ser 170	Arg	Glu	Asn	Tyr	Gly 175	Arg	Leu	Arg	Leu	Ile 180
Thr	Ser	Ser	Lys	His 185	Arg	Cys	Met	Asp	Ser 190	Ser	Ala	Ala	Phe	Leu 195
Gln	Gly	Leu	Trp	Gln 200	His	Tyr	His	Pro	Gly 205	Leu	Pro	Pro	Pro	Asp 210
Val	Ala	Asp	Met	Glu 215	Phe	Gly	Pro	Pro	Thr 220	Val	Asn	Asp	Lys	Leu 225
Met	Arg	Phe	Phe	Asp 230	His	Cys	Glu	Lys	Phe 235	Leu	Thr	Glu	Val	Glu 240
Lys	Asn	Ala	Thr	Ala 245	Leu	Tyr	His	Val	Glu 250	Ala	Phe	Lys	Thr	Gly 255
Pro	Glu	Met	Gln	Asn 260	Ile	Leu	Lys	Lys	Val 265	Ala	Ala	Thr	Leu	Gln 270
Val	Pro	Val	Asn	Asp 275	Leu	Asn	Ala	Asp	Leu 280	Ile	Gln	Val	Ala	Phe 285
Phe	Thr	Cys	Ser	Phe 290	Asp	Leu	Ala	Ile	Lys 295	Gly	Val	Lys	Ser	Pro 300
Trp	Cys	Asp	Val	Phe 305	Asp	Ile	Asp	Asp	Ala 310	Lys	Val	Leu	Glu	Tyr 315
Leu	Asn	Asp	Leu	Lys 320	Gln	Tyr	Trp	Lys	Arg 325	Gly	Tyr	Gly	Tyr	Thr 330
Ile	Asn	Ser	Arg	Ser 335	Ser	Cys	Thr	Leu	Phe 340	Gln	Asp	Ile	Phe	Gln 345
His	Leu	Asp	Lys	Ala 350	Val	Glu	Gln	Lys	Gln 355	Arg	Ser	Gln	Pro	Ile 360
Ser	Ser	Pro	Val	Ile 365	Leu	Gln	Phe	Gly	His 370	Ala	Glu	Thr	Leu	Leu 375
Pro	Leu	Leu	Ser	Leu 380	Met	Gly	Tyr	Phe	Lys 385	Asp	Lys	Glu	Pro	Leu 390
Thr	Ala	Tyr	Asn	Tyr 395	Lys	Lys	Gln	Met	His 400	Arg	Lys	Phe	Arg	Ser 405

Gly Leu Ile Val Pro Tyr Ala Ser Asn Leu Ile Phe Val Leu Tyr 420

His Cys Glử Asn Ala Lys Thr Pro Lys Glu Gln Phe Arg Val Gln 435

Met Leu Leu Asn Glu Lys Val Leu Pro Leu Ala Tyr Ser Gln Glu 450

Thr Val Ser Phe Tyr Glu Asp Leu Lys Asn His Tyr Lys Asp Ile 465

Leu Gln Ser Cys Gln Thr Ser Glu Clu Cys Glu Leu Ala Arg Ala 480

Asn Ser Thr Ser Asp Glu Leu

485

<210> 19

<211> 3554 <212> DNA

<213> Homo sapiens

<400> 19 gggactacaa geogegeege getgeegetg geeeeteage aaccetegae 50 atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100 cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150 tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaá 200 ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250 gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300 ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350 aagatetgga atgtgacaeg gagagaetea gecetttate getgtgaggt 400 cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450 ctgtgcaagt gaagccagtg acceetgtet gtagagtgee gaaggetgta 500 ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550 ceggeeteae tacagetggt ategeaatga tgtaccaetg cecaeggatt 600 ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650 acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700 ctactqcatt qcttccaatq acqcaqqctc aqccaqqtqt qaqqaqcaqq 750 agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800 gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850

cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca teegeactga egaggaggge 950 gacttcagac acaagtcate gtttgtgate tgagaceege ggtgtggetg 1000 agagegeaca gagegeacgt geacataeet etgetagaaa eteetgteaa 1050 ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100 ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200 ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250 gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 agcagcgcat cccggcggga acccagaaaa ggcttcttac acagcagcct 1450 tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500 tgatcggtgt tgcagtgtcc attgtggaga agetttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttcgtct taggctaagt ctgaaatggt actgaaatat gcttttctat 1700 gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct attittitaa aaaagticaa citaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 (cacacaagtt ttagcctttt tcacaaggga actcatactg tctacacatc 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050 aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gestettest gagatgasta ggasagtetg tacccagagg csacccagaa 2150 geocteagat gtacatacae agatgeeagt eageteetgg ggttgegeea 2200 ggcgcccccg ctctagctca ctgttgcctc gctgtctgcc aggaggccct 2250 gccatccttg ggccetggca gtggctgtgt cccagtgagc tttactcacg 2300

tggcccttgc ttcatccagc acagctctca ggtgggcact gcagggacac 2350 tggtgtcttc catgtagcgt cccagctttg ggctcctgta acagacctct 2400 ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450 ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500 tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550 cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600 gtcgcatttc aaaacaaacc atgatggagt ggcggccagt ccagcctttt 2650 aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700 tgaaacgcct gaatcaaaag cagttttcta attttgactt taaatttttc 2750 atccgccgga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800 teagaageet gtgttettea agageaggtg tteteageet cacatgeeet 2850 gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900 aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950 ctttcagctt ccagtgtctt gggtttttta tactttgaca gcttttttt 3000 aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050 tgccgcaggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100 gctccctggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150 cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200 ttggggattc acgetecage etecttettg gttgtcatag tgatagggta 3250 geettattge eccetettet tataccetaa aacettetae actagtgeea 3300 tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctgggaa 3350 gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatttt 3400 aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450 gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500 caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaa 3550

ccca 3554

<210> 20 <211> 310

<212> PRT

<213> Homo sapiens

<400> 20

290 295

300

Asp Phe Arg His Lys Ser Ser Phe Val Ile 305

<210> 21 <211> 3437 <212> DNA

<213> Homo sapiens <400> 21 caggaccagg tettectacg etggagcage ggggagacag ecaccatgca 50 catectegtg gtecatgeca tggtgatect getgacgetg ggeceqeete 100 gagccgacga cagcgagttc caggcgctgc tggacatctg gtttccggag 150 gagaagccac tgcccaccgc cttcctggtg gacacatcgg aggaggcgct 200 gctgcttcct gactggctga agctgcgcat gatccgttct gaggtgctcc 250 geetggtgga egeegeetg eaggaeetgg ageegeagea getgetgetg 300 ttcgtgcagt cgtttggcat ccccgtgtcc agcatgagca aactcctcca 350 gtteetggae caggeagtgg cecaegaece ceagaetetg gageagaaca 400 tcatggacaa gaattacatg gcccacctgg tggaggtcca gcatgagcgc 450 ggcgcctccg gaggccagac tttccactcc ttgctcacag cctccctgcc 500 geceegeega gacageacag aggeaceeaa accaaagage ageecagage 550 agcccatagg ccagggccgg attcgggtgg ggacccagct ccgggtgctg 600 ggccctgagg acgacctggc tggcatgttc ctccagattt tcccgctcag 650 eceggaeeet eggtggeaga geteeagtee eegeeeegtg geeetegeee 700 tgcagcagge cetgggecag gagetggeec gegtegteca gggcageece 750 gaggtgccgg gcatcacggt gcgtgtcctg caggccctcg ccaccctqct 800

gtgcgagggg ggctcctgcg cctggccgag gccctggcct tccgtcagga 1100

cageteeeca caeggeggtg ceetggtgat gtecatgeac egtageeact 850 tectggeetg eeegetgetg egecagetet gecagtacea gegetgtgtg 900 ccacaggaca ccggcttctc ctcgctcttc ctgaaggtgc tcctgcagat 950

cctggaggtg gtcagctcca ccgtccgtgc cgtcatcgcc accctgaggt 1150

ctggggagca gtgcagcgtg gagccggacc tgatcagcaa agtcctccag 1200

gggctgatcg aggtgaggtc ccccacctg gaggagctgc tgactgcatt 1250 cttctctgcc actgcggatg ctgcctcccc gtttccagcc tgtaagcccg 1300 ttgtggtggt gageteeetg etgetgeagg aggaggagee eetggetggg 1350 gggaageegg gtgeggaegg tggeageetg gaggeegtge ggetggggee 1400 ctcgtcaggc ctcctagtgg actggctgga aatgctggac cccgaggtgg 1450 tragcagetg eccegacetg cagetragge tgetettete ceggaggaag 1500 ggcaaaggtc aggcccaggt gccctcgttc cgtccctacc tcctgaccct 1550 cttcacgcat cagtccagct ggcccacact gcaccagtgc atccgagtcc 1600 tgctgggcaa gagccgggaa cagaggttcg acccctctgc ctctctggac 1650 tteetetggg eetgeateea tgtteetege atetggeagg ggegggaeea 1700 gcgcaccccg cagaagcggc gggaggagct ggtgctgcgg gtccagggcc 1750 cggagctcat cagcetggtg gagctgatcc tggccgaggc ggagacgcgg 1800 agecaggaeg gggaeaeage egeetgeage eteateeagg eeeggetgee 1850 cctgctgctc agctgctgct gtggggacga tgagagtgtc aggaaggtga 1900 cggageaeet gteaggetge atecageagt ggggagaeag egtgetggga 1950 aggegetgee gagacettet cetgeagete tacetacage ggeeggaget 2000 gegggtgeee gtgeetgagg teetaetgea cagegaaggg getgeeagea 2050 gcagcgtetg caagetggae ggaeteatee accgetteat caegeteett 2100 geggaeacea gegaeteeeg ggegttggag aacegagggg eggatgeeag 2150 catggcctgc cggaagctgg cggtggcgca cccgctgctg ctgctcaggc 2200 acctgeceat gategeggeg etectgeaeg geegeaeeea eeteaaette 2250 caggagttee ggeageagaa eeacetgage tgetteetge aegtgetggg 2300 cctgctggag ctgctgcagc cgcacgtgtt ccgcagcgag caccaggggg 2350 cgctgtggga ctgccttctg tccttcatcc gcctgctgct gaattacagg 2400 aagtcctccc gccatctggc tgccttcatc aacaagtttg tgcagttcat 2450 ccataagtac attacctaca atgccccagc agccatctcc ttcctgcaga 2500 ageaegeega eeegeteeae gaeetgteet tegacaacag tgaeetggtg 2550 atgetgaaat eecteettge agggeteage etgeeeagea gggaegaeag 2600 gaccgaccga ggcctggacg aagagggcga ggaggagagc tcagccggct 2650

cettgeecet ggteagegte teectgttea ecectetgae egeggeegag 2700 atggccccct acatgaaacg gctttcccgg ggccaaacgg tggaggatct 2750 gctggaggtt ctgagtgaca tagacgagat gtcccggcgg agacccgaga 2800 tectgagett ettetegace aacetgeage ggetgatgag eteggeegag 2850 gagtgttgcc gcaacctcgc cttcagcctg gccctgcgct ccatgcagaa 2900 cagececage attgeageeg ettteetgee caegtteatg taetgeetgg 2950 gcagccagga ctttgaggtg gtgcagacgg ccctccggaa cctgcctgag 3000 tacgetetee tgtgeeaaga geaegegget gtgetgetee acegggeett 3050 cctggtgggc atgtacggcc agatggaccc cagcgcgcag atctccgagg 3100 ccctgaggat cctgcatatg gaggccgtga tgtgagcctg tggcagccga 3150 ccccctcca agecccggcc cgtcccgtcc ccggggatcc tcgaggcaaa 3200 gcccaggaag cgtgggcgtt gctggtctgt ccgaggaggt gagggcgccg 3250 agecetgagg ceaggeagge ceaggageaa tacteegage cetggggtgg 3300 ctccgggccg gccgctggca tcaggggccg tccagcaagc cctcattcac 3350 cttctgggcc acagccctgc cgcggagcgg cggatccccc cgggcatggc 3400 ctgggctggt tttgaatgaa acgacctgaa ctgtcaa 3437

<210> 22

<211> 1029

<212> PRT

<213> Homo sapiens

<400> 22

Met His Ile Leu Val Val His Ala Met Val Ile Leu Leu Thr Leu
1 5 10 15

Gly Pro Pro Arg Ala Asp Asp Ser Glu Phe Gln Ala Leu Leu Asp
20 25 30

Ile Trp Phe Pro Glu Glu Lys Pro Leu Pro Thr Ala Phe Leu Val

Asp Thr Ser Glu Glu Ala Leu Leu Leu Pro Asp Trp Leu Lys Leu 50 55 60

Arg Met Ile Arg Ser Glu Val Leu Arg Leu Val Asp Ala Ala Leu
65 70 70

Gln Asp Leu Glu Pro Gln Gln Leu Leu Phe Val Gln Ser Phe 80 85 90

Gly Ile Pro Val Ser Ser Met Ser Lys Leu Leu Gln Phe Leu Asp 95 100 105

				395					400					405
Thr	Ala	Asp	Ala	Ala 410	Ser	Pro	Phe	Pro	Ala 415	Cys	Lys	Pro	Val	Val 420
Val	Val	Ser	Ser	Leu 425	Leu	Leu	Gln	Glu	Glu 430	Glu	Pro	Leu	Ala	Gly 435
Gly	Lys	Pro	Gly	Ala 440	Asp	Gly	Gly	Ser	Leu 445	Glu	Ala	Val	Arg	Leu 450
Gly	Pro	Ser	Ser	Gly 455	Leu	Leu	Val	Asp	Trp 460	Leu	Glu	Met	Leu	Asp 465
Pro	Glu	Val	Val	Ser 470	Ser	Суѕ	Pro	Asp	Leu 475	Gln	Leu	Arg	Leu	Leu 480
Phe	Ser	Arg	Arg	Lys 485	Gly	Lys	Gly	Gln	Ala 490	Gln	Val	Pro	Ser	Phe 495
Arg	Pro	Tyr	Leu	Leu 500	Thr	Leu	Phe	Thr	His 505	Gln	Ser	Ser	Trp	Pro 510
Thr	Leu	His	Gln	Cys 515	Ile	Arg	Val	Leu	Leu 520	Gly	Lys	Ser	Arg	Glu 525
Gln	Arg	Phe	Asp	Pro 530	Ser	Ala	Ser	Leu	Asp 535	Phe	Leu	Trp	Ala	Суs 540
Ile	His	Val	Pro	Arg 545	Ile	Trp	Gln	Gly	Arg 550	Asp	Gln	Arg	Thr	Pro 555
Gln	Lys	Arg	Arg	Glu 560	Glu	Leu	Val	Leu	Arg 565	Val	Gln	Gly	Pro	Glu 570
Leu	Ile	Ser	Leu	Val 575	Glu	Leu	Ile	Leu	Ala 580	Glu	Ala	Glu	Thr	Arg 585
Ser	Gln	Asp	Gly	Asp 590	Thr	Ala	Ala	CAe	Ser 595	Leu	Ile	Gln	Ala	Arg 600
Leu	Pro	Leu	Leu	Leu 605	Ser	Cys	Cys	Cys	Gly 610	Asp	Asp	Glu	Ser	Val 615
Arg	Lys	Val	Thr	Glu 620	His	Leu	Ser	Gly	Cys 625	Ile	Gln	Gln	Trp	Gly 630
Asp	Ser	Val	Leu	Gly 635	Arg	Arg	Cys	Arg	Asp 640	Leu	Leu	Leu	Gln	Leu 645
Tyr	Leu	Gln	Arg	Pro 650	Glu	Leu	Arg	Val	Pro 655	Val	Pro	Glu	Val	Leu 660
Leu	His	Ser	Glu	Gly 665	Ala	Ala	Ser	Ser	Ser 670	Val	Cys	Lys	Leu	Asp 675
Gly	Leu	Ile	His	Arg 680	Phe	Ile	Thr	Leu	Leu 685	Ala	Asp	Thr	Ser	Asp 690

980 985 990

Gln Glu His Ala Ala Val Leu Leu His Arg Ala Phe Leu Val Gly
995 1000 1005

Met Tyr Gly Gln Met Asp Pro Ser Ala Gln Ile Ser Glu Ala Leu 1010 1015 1020

Arg Ile Leu His Met Glu Ala Val Met 1025

<210> 23

<211> 2186

<212> DNA

<213> Homo sapiens

<400> 23

cegggecatg cageetegge eeegegggeg eeegeegege accegaggag 50 atgaggetee geaatggeae etteetgaeg etgetgetet tetgeetgtg 100, eqectteete tegetgteet ggtaegegge acteagegge cagaaaggeg 150 acgttgtgga cgtttaccag cgggagttcc tggcgctgcg cgatcggttg 200 cacgcagctg agcaggagag ceteaagege tecaaggage teaacetggt 250 gctggacgag atcaagaggg ccgtgtcaga aaggcaggcg ctgcgagacg 300 gagacggcaa tcgcacctgg ggccgcctaa cagaggaccc ccgattgaag 350 cogtogaacq gotoacaccq goacgtgotg cacctgooca cogtottoca 400 teacetgeea eacetgetgg ceaaggagag cagtetgeag eeegeggtge 450 gegtgggeea gggeegeace ggagtgtegg tggtgatggg catecegage 500 gtgcggcgcg aggtgcactc gtacctgact gacactctgc actcgctcat 550 ctccgagctg agcccgcagg agaaggagga ctcggtcatc gtggtgctga 600 tcgccgagac tgactcacag tacacttcgg cagtgacaga gaacatcaag 650 geettgttee ceaeggagat ceattetggg eteetggagg teateteace 700 ctcccccac ttctaccctg acttctcccg cctccgagag tcctttgggg 750 accccaagga gagagtcagg tggaggacca aacagaacct cgattactgc 800 tteeteatga tgtaegegea gteeaaagge atetaetaeg tgeagetgga 850 ggatgacate gtggccaage ccaactacet gagcaccatg aagaactttg 900 cactgragea qccttcaqaq qactggatga tcctggagtt ctcccagctg 950 ggcttcattg gtaagatgtt caagtcgctg gacctgagcc tgattgtaga 1000 gtteattete atgttetace gggacaagee categactgg etectggace 1050

atattctgtg ggtgaaagtc tgcaaccccg agaaggatgc gaagcactgt 1100 gaccggcaga aagccaacct gcggatccgc ttcaaaccgt ccctcttcca 1150 qcacqtqqqc actcactcct cqctqqctqq caaqatccaq aaactqaaqq 1200 acaaagactt tggaaagcag gcgctgcgga aggagcatgt gaacccgcca 1250 geagaggtga geacgageet gaagacatac cagcacttca ceetggagaa 1300 agectacetg egegaggaet tettetggge etteacecet geegeggggg 1350 actteateeg etteegette tteeaacete taagaetgga geggttette 1400 ttccgcagtg ggaacatcga gcacccggag gacaagctct tcaacacgtc 1450 tgtggaggtg ctgcccttcg acaaccctca gtcagacaag gaggccctgc 1500 aggaggeeq caccqccacc ctccqqtacc ctcqqaqccc cqacqqctac 1550 ctccagatcg gctccttcta caagggagtg gcagagggag aggtggaccc 1600 agecttegge cetetggaag caetgegeet etegatecag aeggaeteee 1650 ctgtgtgggt gattctgage gagatcttee tgaaaaagge egactaaget 1700 gegggettet gagggtacce tgtggecage eetgaageee acatttetgg 1750 gggtgtcgtc actgccgtcc ccggagggcc agatacggcc ccgcccaaag 1800 ggttetgeet ggegteggge ttgggeegge etggggteeg eegetggeee 1850 ggaggcccta ggagctggtg ctgccccgc ccgccgggcc gcggaggagg 1900 caggeggeee ccaeactgtg cctgaggeee ggaaccgtte gcaeceggee 1950 tgccccagtc aggccgtttt agaagagett ttacttgggc gcccgccgtc 2000

<210> 24

<211> 548

<212> PRT

<213> Homo sapiens

<400> 24

Met Arg Leu Arg Asn Gly Thr Phe Leu Thr Leu Leu Leu Phe Cys 1 5 10 15

aaaaaaaaa aaaaaaaaa aaaaaaa 2186

Leu Cys Ala Phe Leu Ser Leu Ser Trp Tyr Ala Ala Leu Ser Gly
20 25 30

				320					325					330
Leu	Leu	Asp	His	Ile 335	Leu	Trp	Val	Lys	Val 340	Cys	Asn	Pro	Glu	Lys 345
Asp	Ala	Lys	His	Cys 350	Asp	Arg	Gln	Lys	Ala 355	Asn	Leu	Arg	Ile	Arg 360
Phe	Lys	Pro	Ser	Leu 365	Phe	Gln	His	Val	Gly 370	Thr	His	Ser	Ser	Leu 375
Ala	Gly	Lys	Ile	Gln 380	Lys	Leu	Lys	Asp	Lys 385	Asp	Phe	Gly	Lys	Gln 390
Ala	Leu	Arg	Lys	Glu 395	His	Val	Asn	Pro	Pro 400	Ala	Glu	Val	Ser	Thr 405
Ser	Leu	Lys	Thr	Tyr 410	Gln	His	Phe	Thr	Leu 415	Glu	Lys	Ala	Tyr	Leu 420
Arg	Glu	Asp	Phe	Phe 425	Trp	Ala	Phe	Thr	Pro 430	Ala	Ala	Gly	Asp	Phe 435
Ile	Arg	Phe	Arg	Phe 440	Phe	Gln	Pro	Leu	Arg 445	Leu	Glu	Arg	Phe	Phe 450
Phe	Arg	Ser	Gly	Asn 455	Ile	Glu	His	Pro	Glu 460	Asp	Lys	Leu	Phe	Asn 465
Thr	Ser	Val	Glu	Val 470	Leu	Pro	Phe	Asp	Asn 475	Pro	Gln	Ser	Asp	Lys 480
Glu	Ala	Leu	Gln	Glu 485	Gly	Arg	Thr	Ala	Thr 490	Leu	Arg	Tyr	Pro	Arg 495
Ser	Pro	Asp	Gly	Tyr 500	Leu	Gln	Ile	Gly	Ser 505	Phe	Tyr	Lys	Gly	Val 510
Ala	Glu	Gly	Glu	Val 515	Asp	Pro	Ala	Phe	Gly 520	Pro	Leu	Glu	Ala	Leu 525
Arg	Leu	Ser	Ile	Gln 530	Thr	Asp	Ser	Pro	Val 535	Trp	Val	Ile	Leu	Ser 540
Glu	Ile	Phe	Leu	Lys 545	Lys	Ala	Asp							
-210	. n=													
<210 <211														
~~	~ = 3													

<212> DNA

<213> Artificial Sequence

<223> Synthetic Oligonucleotide Probe

tgtaaaacga cggccagtta aatagacctg caattattaa tct 43

```
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41
<210> 27
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 27
 actcgggatt cctgctgtt 19
<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 28
 aggeetttae eeaaggeeae aac 23
<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 29
ggcctgtcct gtgttctca 19
<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 30
 teccaccact tacttecatg aa 22
<210> 31
<211> 25
<212> DNA
```


<223> Synthetic Oligonucleotide Probe

<400> 36 ccagtcaggc cgttttaga 19

<210> 37

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 37 cgggcgccca agtaaaagct c 21

<210> 38

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 38

cataaagtag tatatgcatt ccagtgtt 28