Experiment 6: Natural circulation flat plate solar hot water system

Aim: To find out efficiency of Natural circulation water heating system.

Apparatus: Solar water heating system, pyranometer, thermocouples, selector switch and DC voltmeter.

Theory:

The laboratory set up for this experiment has a collector connected to tank. The level of tank is higher than that of collectors. The efficiency of the flat plate collector and tank system is given by,

$$\eta_{\text{sys}} = Q_{\text{u}|\text{over }\Delta t} / \left[A_{\text{c}} \left(I_{\text{T}} * \Delta t \right) \right] = M C_{\text{p}} \left(T_{\text{f}} - T_{\text{i}} \right) / \left[A_{\text{c}} \left(I_{\text{T}} * \Delta t \right) \right]$$

$$\tag{1}$$

And the characterizing equation is,

$$\eta_{\text{sys}} = A - B X_{\text{c}} \tag{2}$$

where, A and B are characteristic system constants, and X_c is given by

$$X_{c} = \frac{\sum_{i} \left[\left(\frac{\sum_{j=1}^{m} T_{sj}}{m} \right) - T_{a_{i}} \right] \Delta t_{i}}{\sum_{i} I_{T_{i}} \Delta t_{i}}$$

 $M C_p = Mass$ and specific heat product for the tank fluid

 $\eta_{sys} = \text{Efficiency over the period } \Delta t$

 T_f = Final tank temperature

 T_i = Initial tank temperature

 $I_T = Mean Solar Intensity$

 A_c = Collector area

 $\Delta t = time interval$

$$\left(\frac{\displaystyle\sum_{j=1}^{m}T_{sj}}{m}\right)_{i}$$

Mean tank temperature over the period $\Delta t_{\rm i}$

m = Number of locations

 $T_{ai} = Ambient \ temperature \ at \ i^{th} \ time \ step$

 $I_{Ti} = Solar Intensity at ith time step$

 $\Delta t_i = i^{th}$ time interval

Solar intensity,

$$I_{T} = I_{b}r_{b} + I_{d}r_{d} + r_{r} (I_{b} + I_{d})$$
 (3)

where,

 I_b = Beam radiation, I_d = Diffuse radiation, r_b , r_d , r_r = Tilt factors

Figure 1. Schematic of the Natural circulation water heating system

Procedure:

- 1. Fill the storage tank to its full capacity, measure the tank capacity.
- 2. Measure the area of the collector.
- 3. Note down the readings for inlet fluid temperature, outlet fluid temperature at collector and tank temperature at different locations.
- 4. Note down the readings for solar radiation (global and diffuse) at the same instant.
- 5. Note down all readings in interval of 15 minutes. Take about 9-10 set of readings.
- 6. Calculate the efficiency.

Solar Radiation data

Sr. No.	Time (IST) h	$\begin{array}{c} \textbf{Diffuse radiation } I_d \\ (W/m^2) \end{array}$	Global radiation I _g (W/m ²)
1.			
2.			
8.			

Readings for determining characteristic parameter

Sr.	Time	Flow rate	Inlet	Outlet	Mean tank	Ambient
No.	(h)	(LPM)	temperature	temperature	temperature	temperature
			$T_{fi}(mV)$	T _{fo} (mV)	(\mathbf{mV})	(mV)
1.						
2.						
8.						

Precautions:

- 1. Note that N sets of readings will give you N-1 sets for calculation.
- 2. Water withdrawal from tank should be stopped (i.e. close the inlet and outlet of tank) before starting the experiment.
- 3. Do not shadow collector as well as pyranometer during the experiment