

Numerisches Programmieren Übung #05

geheimtippmuenchen.de/content/uploads/2023/02/geheimtipp-muenchen-thiersch-turm-1.jpg

Frequenzanalyse

Komplexe Zahlen

Beispiel: Gleichungen ohne reelle Lösung

•
$$x^2 = -1 \Leftrightarrow x = \sqrt{-1}$$

- → Einführung imaginäre Zahl i
- Imaginäre Zahl: $i = \sqrt{-1} \in \mathbb{C}$
 - Menge komplexer Zahlen ©
- $i \cdot i = -1$; $(-1) \cdot i = -i$; $(-i) \cdot i = 1$

$$\rightarrow i^2 = -1; i^3 = -i; i^4 = 1; i^5 = i^1; ...$$

Discovering something, that doesn't exist

img-9gag-fun.9cache.com/photo/a8oLPnQ_460s.jpg

Komplexe Zahlen

Komplexe Zahl:

$$z = x + y \cdot i \in \mathbb{C}$$

• Real- & Imaginärteil:

$$Re(z) = x$$
; $Im(z) = y$

• Beispiel:

$$z_1 = 6 + 9i \rightarrow Re(z_1) = 6; Im(z_1) = 9$$

• Addition:

- $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$
- (Subtraktion analog)
- Multiplikation:

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$

• Darstellung auf Komplexebene

Komplexebene:

upload.wikimedia.org/wikipedia/commons/thumb/5/50/A_plus_bi.svg/1200px-A_plus_bi.svg.png

Komplexe Zahlen

- Konjugiert Komplexes: $\overline{z} = x iy$
- $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- Betrag: $|z| = \sqrt{Re(z)^2 + Im(z)^2}$ (Abstand zum Ursprung (0,0))
- Eulersche Formel: $e^{it} = cos(t) + i \cdot sin(t)$
 - e^{it} (t in Bogenmaß) durchläuft Einheitskreis gegen Uhrzeigersinn (beginnend bei (1,0))
 - 2π -Periodizität: $e^{i \cdot 0} = e^{i \cdot 2k\pi} = 1$
 - $e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos(y) + i \cdot \sin(y))$

Aufgabe 0)

Aufgabe:

wie viele Lösungen hat die Gleichung

$$\omega^3 = 1$$

- a) wenn $\omega \in \mathbb{R}$?
- b) wenn $\omega \in \mathbb{C}$?

Frequenzanalyse

 Zerlegung eines periodischen Signals in ihre Grundfrequenzen

$$f(x) = \sum_{k=0}^{\infty} c_k \cdot \cos(kx)$$

• Einzelne Grundfrequenzen mit Frequenz k und Amplitude c_k

Ein Signal (links) & das dazugeh. Frequenzspektrum (rechts):

Aufgabe 1)

Aufgabe 1)

Ordnen Sie den Signalen s_1 bis s_3 (Abbildung 1) die Frequenzspektren f_1 bis f_3 (Abbildung 2) zu! Begründen Sie darüber hinaus Ihre Entscheidung!

Dabei sind die Signale zum besseren Verständnis kontinuierlich dargestellt (z.B. $s_1 = e^{3it}$, $t \in [0; 2\pi]$), wohingegen die Frequenzspektren den Betrag der (komplexen) Koeffizienten der DFT mit n = 21 gesampelten Werten des jeweiligen Signals beschreiben.

Diskrete Fourier-Transformation

- Transformation eines diskreten Signals ins Frequenzspektrum
- Eingabe: Komplexe Stützwerte $v = (v_0, v_1, ..., v_{n-1})^T$ eines Signals
 - Stützstellen äquidistant über Intervall $[0,2\pi)$
- Ausgabe: Amplituden der Frequenzspektren $c = (c_0, c_1, ..., c_{n-1})^T$

 "Interpolation mit trigonometrischen Basisfunktionen im komplexen Bereich"

Diskrete Fourier-Transformation

•
$$\omega = e^{i \cdot 2\pi/n}$$

Eigenschaften

•
$$\overline{\omega} = \omega^{-1}$$

• Symmetrie:
$$\omega^{a(n-b)} = \omega^{-ab}$$

• Periodik:
$$\omega^{ab} = \omega^{a(b+n)}$$

Beispiel (n = 3):

$$\overline{\omega}^4 = \omega^2 = \overline{\omega}$$

$$\omega^4 = \overline{\omega}^2 = \omega$$

Diskrete Fourier-Transformation (DFT):

$$DFT(v) \coloneqq \frac{c_k}{c_k} = \frac{1}{n} \sum_{j=0}^{n-1} v_j \cdot \overline{\omega}^{jk}$$

 Inverse Diskrete Fourier-Transformation (IDFT):

$$IDFT(c) := v_j = \sum_{k=0}^{n-1} c_k \cdot \omega^{jk}$$

Diskrete Fourier-Transformation

Matrix-Vektor Schreibweise:

• DFT:

$$\begin{pmatrix} c_0 \\ c_1 \\ \dots \\ c_{n-1} \end{pmatrix} = c = M_{\mathrm{DFT},n} \cdot v = \frac{1}{n} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \overline{\omega}^1 & \overline{\omega}^2 & \dots & \overline{\omega}^{(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \overline{\omega}^{n-1} & \overline{\omega}^{2(n-1)} & \dots & \overline{\omega}^{(n-1)(n-1)} \end{pmatrix} \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{n-1} \end{pmatrix}$$

• IDFT:

$$\begin{pmatrix} v_0 \\ v_1 \\ \dots \\ v_{n-1} \end{pmatrix} = v = M_{\text{IDFT},n} \cdot c = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^1 & \omega^2 & \dots & \omega^{(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{pmatrix} \cdot \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{pmatrix}$$

 \rightarrow Laufzeit $\mathcal{O}(n^2)$

Aufgabe 2)

- a) Berechnen Sie DFT $(\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}^T)!$
- b) Zeigen Sie, dass $\omega^n = 1$.
- c) Zeigen Sie, dass gilt: $DFT(v) = \frac{1}{n} \overline{IDFT(\bar{v})}$.
- d) Zeigen Sie, dass gilt: DFT(v + u) = DFT(v) + DFT(u).

Schnelle inverse Fourier-Transformation

Schnellere Implementierung der Fourier-Transformation

Algorithmus:

1. Sortier-Phase:

- Eingabevektor nach Einträgen mit geraden/ungeraden Indizes aufteilen
- Anhand der Indizes in 2 gleich lange Teilvektoren aufteilen
- Rekursiv wiederholen, bis Teilvektoren je Länge 1 haben

Schnelle inverse Fourier-Transformation

2. Kombinationsphase

- Zusammenführung der Teilvektoren
- Butterfly Operator

cdn.vox-cdn.com/thumbor/8rF2keXrhL8sYlEbVbtaJplC4qs=/0x10:500x291/1600x900/cdn.vox-cdn.com/uploads/chorus_image/image/59741997/n4scgse21iuz.0.jpg

 \rightarrow Laufzeit $\mathcal{O}(n \cdot log(n))$

Schnelle inverse Fourier-Transformation

Abbildung 13: Typische Skizze einer Fast Fourier Transformation mit 8 Einträgen.

Aufgabe 3)

Der Einfachheit halber soll nun n = 4 sein, d.h. wir wollen mit der IDFT aus den vier Koeffizienten c_0, c_1, c_2, c_3 die zugehörigen vier Funktionswerte v_0, v_1, v_2, v_3 berechnen.

- a) Berechnen Sie die v_j zunächst nach der direkten Formel IDFT(c)!
- b) Verwenden Sie nun den IFFT-Algorithmus, um zu zeigen, dass man damit tatsächlich dasselbe Ergebnis wie in a) erhält!

Danke fürs Kommen! Bis nächste Woche!