Практика: Класифікація рівнянь в частинних похідних

1. Теоретичні відомості

Маємо рівняння

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + F(x, y, u, u_x, u_y) = 0, (1)$$

для нього визначаємо дискримінант:

$$D \equiv a_{12}^2 - a_{11}a_{22},$$

при чому дискримінант визначаємо поточково (D = D(x, y)). Тоді тип рівняння (1) визначається в залежності від знаку D:

D > 0 — гіперболічного типу в точці (x, y);

D = 0 — параболічного типу в точці (x, y);

D < 0 — еліптичного типу в точці (x, y).

Характеристичні рівняння для (1):

$$\frac{dy}{dx} = \frac{a_{12} \pm \sqrt{D}}{a_{11}}. (2)$$

Тоді

а) $D>0,\ \phi(x,y)=C$ та $\psi(x,y)=C$ — загальні інтеграли характеристичних рівнянь (2). Якщо виконати заміну змінних

$$\xi = \phi(x, y),$$

$$\eta = \psi(x, y),$$

то зведемо рівняння (1) до першої канонічної гіперболічної форми:

$$u_{\xi\eta} = \Phi(\xi, \eta, u, u_{\xi}, u_{\eta}).$$

Якщо виконати заміну змінних

$$\alpha = \frac{\xi + \eta}{2},$$

$$\beta = \frac{\xi - \eta}{2},$$

то матимуть місце рівності:

$$u_{\xi} = \frac{1}{2}(u_{\alpha} + u_{\beta}),$$

$$u_{\eta} = \frac{1}{2}(u_{\alpha} - u_{\beta}),$$

$$u_{\xi\eta} = \frac{1}{4}(u_{\alpha\alpha} - u_{\beta\beta}),$$

і тоді зведемо рівняння (1) до другої канонічної гіперболічної форми:

$$u_{\alpha\alpha} - u_{\beta\beta} = \Phi_1(\alpha, \beta, u, u_{\alpha}, u_{\beta}).$$

б) $D=0, \ \phi(x,y)=C-\varepsilon$ диний загальний інтеграл характеристичного рівняння (2). Виконуючи заміну змінних

$$\xi = \phi(x, y),$$

$$\eta = \psi(x, y),$$

де ψ — довільна лінійно незалежна від ϕ функція, зведемо рівняння (1) до канонічної параболічної форми:

$$u_{\eta\eta} = \Phi(\xi, \eta, u, u_{\xi}, u_{\eta})$$
 чи $u_{\xi\xi} = \Phi(\xi, \eta, u, u_{\xi}, u_{\eta})$ (якщо взяти ξ і η навпаки).

в) D < 0, $\phi(x,y) = C$ та $\phi^*(x,y) = C$ — комплексно спряжені загальні інтеграли характеристичних рівнянь (2). Виконавши заміну змінних

$$\xi = \Re \phi,$$

$$\eta = \Im \phi,$$

зведемо рівняння (1) до канонічної еліптичної форми:

$$u_{\xi\xi} + u_{\eta\eta} = \Phi(\xi, \eta, u, u_{\xi}, u_{\eta}).$$

2. Приклади

Приклад 1

$$x^2 u_{xx} - y^2 u_{yy} = 0.$$

Для нього:

$$a_{11}=x^2, a_{12}=0, a_{22}=-y^2, \quad D=a_{12}^2-a_{11}a_{22}=x^2y^2, \quad D>0,$$
 якщо $x\neq 0, y\neq 0.$

Рівняння характеристик:

$$\frac{dy}{dx} = \frac{a_{12} \pm \sqrt{D}}{a_{11}} = \pm \frac{\sqrt{x^2 y^2}}{x^2} = \pm \frac{|x| \cdot |y|}{x^2} = \pm \frac{|y|}{|x|}.$$

Область гіперболічності— це об'єднання чотирьох квадрантів (без характеристичних осей), тому в кожному квадранті можна (і навіть слід) приводити рівняння окремо, розкриваючи відповідно модулі у рівнянні характеристик. Але там всюди стоїть знак "±", тому з точністю до

перестановки змінних нема різниці, якщо ці модулі взагалі зняти. Тому можемо виконати перетворення:

$$\frac{dy}{dx} = \pm \frac{y}{x} \Leftrightarrow \frac{dy}{y} = \pm \frac{dx}{x} \Leftrightarrow \ln|y| = \pm \ln|x| + C, \quad C \in \mathbb{R}.$$

Тоді

або
$$\ln|xy| = C$$
, або $\ln\left|\frac{y}{x}\right| = C$,

звідки маємо загальні інтеграли

$$xy = C$$
 Ta $\frac{y}{x} = C$.

Поклавши $\xi = xy, \ \eta = \frac{y}{x},$ маємо:

$$\begin{split} u_x &= u_\xi \xi_x + u_\eta \eta_x = u_\xi y + u_\eta (-\frac{y}{x^2}), \\ u_{xx} &= (u_\xi)_x y + u_\xi y_x + (u_\eta)_x (-\frac{y}{x^2}) + u_\eta \frac{2y}{x^3} = y(u_{\xi\xi} \xi_x + u_{\xi\eta} \eta_x) + 0 - \frac{y}{x^2} (u_{\eta\xi} \xi_x + u_{\eta\eta} \eta_x) + u_\eta \frac{2y}{x^3} = \\ &= y(u_{\xi\xi} y - u_{\xi\eta} \frac{y}{x^2}) - \frac{y}{x^2} (u_{\eta\xi} y - u_{\eta\eta} \frac{y}{x^2}) + u_\eta \frac{2y}{x^3} = u_{\xi\xi} y^2 + \frac{y^2}{x^4} u_{\eta\eta} - \frac{2y^2}{x^2} u_{\xi\eta} + u_\eta \frac{2y}{x^3}, \\ u_y &= u_\xi \xi_y + u_\eta \eta_y = u_\xi x + u_\eta \frac{1}{x}, \\ u_{yy} &= x(u_{\xi\xi} \xi_y + u_{\xi\eta} \eta_y) + \frac{1}{x} (u_{\eta\xi} \xi_y + u_{\eta\eta} \eta_y) = x(u_{\xi\xi} x + u_{\xi\eta} \frac{1}{x}) + \frac{1}{x} (u_{\eta\xi} x + u_{\eta\eta} \frac{1}{x}) = x^2 u_{\xi\xi} + 2u_{\xi\eta} + \frac{1}{x^2} u_{\eta\eta} + \frac{1}{x^2} u_{\eta$$

Тоді, виконавши підстановку у початкове рівняння, приводимо до канонічної форми:

$$x^{2}u_{xx} - y^{2}u_{yy} = 0 \iff x^{2}y^{2}u_{\xi\xi} + \frac{y^{2}}{x^{2}}u_{\eta\eta} - 2y^{2}u_{\xi\eta} + \frac{2y}{x}u_{\eta} - x^{2}y^{2}u_{\xi\xi} - 2y^{2}u_{\xi\eta} - \frac{y^{2}}{x^{2}}u_{\eta\eta} = 0 \iff -4y^{2}u_{\xi\eta} + \frac{2y}{x}u_{\eta} = 0 \iff u_{\xi\eta} - \frac{1}{2xy}u_{\eta} = 0 \iff u_{\xi\eta} - \frac{1}{2\xi}u_{\eta} = 0.$$

Можна і іншим способом. Наприклад, поклавши $\alpha=\frac{1}{2}(\xi+\eta)=\frac{1}{2}(xy+\frac{y}{x}),\ \beta=\frac{1}{2}(\xi-\eta)=\frac{1}{2}(xy+\frac{y}{x}).$ Але можна загальні інтеграли брати і в їх початковому вигляді $\ln|y|\pm \ln|x|=C.$ Тоді, поклавши $\xi=\ln|x|,\ \eta=\ln|y|,$ маємо:

$$\begin{split} u_x &= u_\xi \xi_x + u_\eta \eta_x = u_\xi \frac{1}{x} + 0, \\ u_{xx} &= -\frac{1}{x^2} u_\xi + \frac{1}{x} (u_{\xi\xi} \xi_x + u_{\xi\eta} \eta_x) = -\frac{1}{x^2} u_\xi + \frac{1}{x^2} u_{\xi\xi}, \\ u_y &= u_\eta \frac{1}{y}, \\ u_{yy} &= -\frac{1}{y^2} u_\eta + \frac{1}{y} (u_{\eta\xi} \xi_y + u_{\eta\eta} \eta_y) = -\frac{1}{y^2} u_\eta + \frac{1}{y^2} u_{\eta\eta}. \end{split}$$

Тоді, виконавши підстановку у початкове рівняння, приводимо до канонічної форми:

$$x^{2}u_{xx} - y^{2}u_{yy} = 0 \iff -u_{\xi} + u_{\xi\xi} + u_{\eta} - u_{\eta\eta} = 0 \iff u_{\xi\xi} - u_{\eta\eta} + u_{\eta} - u_{\xi} = 0.$$

 $Bi\partial noвi\partial b$: гіперболічне при $x^2y^2>0$: $u_{\xi\eta}-\frac{1}{2\xi}u_{\eta}=0$ (при $\xi=xy,\eta=\frac{y}{x}$) або $u_{\xi\xi}-u_{\eta\eta}+u_{\eta}-u_{\xi}=0$ (при $\xi=\ln|x|,\eta=\ln|y|$); параболічне при x=0 або y=0: $u_{yy}=0$ або $u_{xx}=0$ відповідно; при x=y=0: 0=0— нічого класифікувати.

Приклад 2

$$(1+x^2)u_{xx} + (1+y^2)u_{yy} + yu_y = 0.$$

Для нього:

$$a_{11}=1+x^2,\quad a_{12}=0,\quad a_{22}=1+y^2,$$
 $D=a_{12}^2-a_{11}a_{22}=-(1+x^2)(1+y^2)<0,\quad$ при $(x;y)\in\mathbb{R}.$

Рівняння всюди еліптичне. Рівняння характеристик:

$$\frac{dy}{dx} = \frac{a_{12} \pm \sqrt{D}}{a_{11}} = \frac{\pm i\sqrt{(1+x^2)(1+y^2)}}{1+x^2} = \pm i\frac{\sqrt{1+y^2}}{\sqrt{1+x^2}} \Leftrightarrow$$

$$\Leftrightarrow \frac{dy}{\sqrt{1+y^2}} = \pm i\frac{dx}{\sqrt{1+x^2}} \Rightarrow$$

$$\Rightarrow \ln\left|y + \sqrt{1+y^2}\right| = \pm i\ln\left|x + \sqrt{1+x^2}\right| + C.$$

Беремо дійсну й уявну частини загальних інтегралів:

$$\begin{cases} \xi = \ln \left| x + \sqrt{1 + x^2} \right| \\ \eta = \ln \left| y + \sqrt{1 + y^2} \right| \end{cases}$$

тоді маємо:

$$u_x = u_{\xi} \xi x + u_{\eta} \eta_x = u_{\xi} \frac{1}{\sqrt{1 + x^2}},$$

$$u_{xx} = -x(1 + x^2)^{-\frac{3}{2}} u_{\xi} + \frac{1}{\sqrt{1 + x^2}} (u_{\xi\xi} \xi_x + u_{\xi\eta} \eta_x) = -x(1 + x^2)^{-\frac{3}{2}} u_{\xi} + \frac{u_{\xi\xi}}{1 + x^2},$$

цілком аналогічно:

$$u_y = u_\eta \frac{1}{\sqrt{1+y^2}},$$

$$u_{yy} = -y(1+y^2)^{-\frac{3}{2}}u_\eta + \frac{u_{\eta\eta}}{1+y^2}.$$

Тоді, підставляючи у початкове рівняння, маємо:

$$(1+x^2)u_{xx} + (1+y^2)u_{yy} + yu_y = 0 \Leftrightarrow$$

$$\Leftrightarrow -x(1+x^2)^{-\frac{1}{2}}u_{\xi} + u_{\xi\xi} + u_{\eta\eta} - y(1+y^2)^{-\frac{1}{2}}u_{\eta} + y(1+y^2)^{-\frac{1}{2}}u_{\eta} = 0 \Leftrightarrow$$

$$\Leftrightarrow u_{\xi\xi} + u_{\eta\eta} - x(1+x^2)^{-\frac{1}{2}}u_{\xi} = 0,$$

оскільки $\xi = \ln |x + \sqrt{1 + x^2}| = \operatorname{arsh} x$, то $x = \operatorname{sh} \xi$, тоді:

$$\frac{x}{\sqrt{1+x^2}} = \frac{\operatorname{sh}\xi}{\sqrt{1+\operatorname{sh}^2\xi}} = \frac{\operatorname{sh}\xi}{\operatorname{ch}\xi} = \tanh\xi,$$

а тоді приводимо рівняння до виду:

$$u_{\xi\xi} + u_{\eta\eta} - (\tanh \xi)u_{\xi} = 0.$$

 $Bi\partial no ei\partial b$: еліптичне, $u_{\xi\xi}+u_{\eta\eta}-(\tanh\xi)u_{\xi}=0$, (при $\xi=\ln\left|x+\sqrt{1+x^2}\right|$, $\eta=\ln\left|y+\sqrt{1+y^2}\right|$).

Приклад 3

$$y^2 u_{xx} + 2y u_{xy} + u_{yy} = 0.$$

Для нього:

$$a_{11}=y^2,\quad a_{12}=y,\quad a_{22}=1,$$

$$D=a_{12}^2-a_{11}a_{22}=y^2-y^2\cdot 1=0,\quad \text{при }(x;y)\in\mathbb{R}.$$

Рівняння всюди параболічне. Його рівняння характеристики:

$$\frac{dy}{dx} = \frac{a_{12} \pm \sqrt{D}}{a_{11}} = \frac{y}{y^2} = \frac{1}{y} \quad \Leftrightarrow \quad ydy = dx,$$

а загальний інтеграл рівняння характеристики:

$$y^2 - 2x = C.$$

Взявши

$$\begin{cases} \xi = y^2 - 2x, \\ \eta = y \end{cases}$$

маємо:

$$\begin{split} u_x &= u_\xi \xi_x + u_\eta \eta_x = -2u_\xi, \\ u_{xx} &= -2(u_{\xi\xi} \xi_x + u_{\xi\eta} \eta_x) = -2(-2u_{\xi\xi}) = 4u_{\xi\xi}, \\ u_{xy} &= -2(u_{\xi\xi} \xi_y + u_{\xi\eta} \eta_y) = -2(u_{\xi\xi} \cdot 2y + u_{\xi\eta}), \\ u_y &= u_\xi \xi_y + u_\eta \eta_y = u_\xi \cdot 2y + u_\eta, \\ u_{yy} &= 2u_\xi + 2y(u_{\xi\xi} \xi_y + u_{\xi\eta} \eta_y) + u_{\eta\xi} \xi_y + u_{\eta\eta} \eta_y. \end{split}$$

Підставляючи у початкове рівняння, зводимо його до канонічного виду:

$$y^{2}u_{xx} + 2yu_{xy} + u_{yy} = 0 \Leftrightarrow$$

$$\Leftrightarrow 4y^{2}u_{\xi\xi} - 4y(u_{\xi\xi}2y + u_{\xi\eta}) + 2u_{\xi} + 2y(u_{\xi\xi}2y + u_{\xi\eta} \cdot 1) + u_{\eta\xi} \cdot 2y + u_{\eta\eta} \cdot 1 = 0 \Leftrightarrow$$

$$\Leftrightarrow 4y^{2}u_{\xi\xi} - 8y^{2}u_{\xi\xi} - 4yu_{\xi\eta} + 2u_{\xi} + 4y^{2}u_{\xi\xi} + 2yu_{\xi\eta} + 2yu_{\eta\xi} + u_{\eta\eta} = 0 \Leftrightarrow u_{\eta\eta} + 2u_{\xi} = 0.$$

 $Bi\partial noвi\partial b$: параболічне всюди, $u_{\eta\eta}+2u_{\xi}=0,$ (при $\xi=y^2-2x,\;\eta=y).$

3. Домашне завдання

- 1) $u_{xx} + 2u_{xy} 4u_{yy} + 2u_x + 3u_y = 0$;
- 2) $u_{xx} + 2u_{xy} 3u_{yy} + 2u_x + 6u_y = 0;$
- 3) $yu_{xx} xu_{yy} + u_x + yu_y = 0$;
- $4) u_{xx} + xyu_{yy} = 0;$
- 5) $u_{xx} 2\cos x \cdot u_{xy} (3 + \sin^2 x)u_{yy} yu_y = 0.$