Problema 1

Amb el model lineal normal

$$3.98 = 3\alpha - \beta + 2\gamma + \epsilon_1$$

$$-3.95 = \alpha - \beta + \epsilon_2$$

$$4.03 = \alpha + \gamma + \epsilon_3$$

$$7.94 = \beta + \gamma + \epsilon_4$$

contesteu les següents questions:

- (a) Quina condició ha de verificar una funció paramètrica per a que sigui estimable en aquest model?
- (b) Indiqueu si les funcions paramètriques següents són estimables i calculeu l'estimador MQ quan sigui possible:

(i)
$$5\alpha - 2\beta + 3\gamma$$
 (ii) $\alpha + \beta \cdot \gamma$

- (c) Calculeu l'estimació de la covariància entre els estimadors lineals òptims de $\alpha \beta$ i $\beta + \gamma$ i la variància de l'estimador lineal òptim de $2\alpha \beta + \gamma$.
- (d) Feu el contrast de la hipòtesi $H_0: 2\alpha \beta + \gamma = 0$.

Problema 2

Ajusteu una recta de regressió als següents punts:

Es demana:

- (a) Obteniu l'estimació dels paràmetres del model $(\beta_0, \beta_1, \sigma^2)$ i calculeu el coeficient de determinació.
- (b) Contrasteu les hipòtesis $H_0: \beta_0 = 0$ i $H_0: \beta_1 = 1$. Utilitzeu un nivell de significació $\alpha = 0.05$.
- (c) Doneu els intervals de confiança al 95% de la resposta mitjana i d'una resposta concreta per a un valor $x_0 = 8$. De què depèn que aquests intervals siguin més o menys amples?
- (d) Doneu l'interval de confiança al 95% de $\beta_1 \beta_0$.

Recordeu que la variància de la suma, o la diferència, de dos estimadors NO és la suma simple de les variàncies respectives.