Image Noise Reduction

† † †

- Noise in digital images can result from image acquisition (digitization) and transmission
 - Imaging sensors can be affected by ambient conditions
 - ▶ Interference can be added to an image during transmission

- Noise in digital images can result from image acquisition (digitization) and transmission
 - Imaging sensors can be affected by ambient conditions
 - Interference can be added to an image during transmission
- Common types of image noise include:
 - ▶ Salt and pepper noise: contains random occurrences of black & white pixels

- Noise in digital images can result from image acquisition (digitization) and transmission
 - Imaging sensors can be affected by ambient conditions
 - Interference can be added to an image during transmission
- Common types of image noise include:
 - ▶ Salt and pepper noise: contains random occurrences of black & white pixels
 - ▶ Impulse noise: contains random occurrences of white pixels
 - ▶ Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Noise Model

▶ We can consider a noisy image to be modelled as follows:

$$g(x, y) = f(x, y) + \eta(x, y)$$

where f(x, y) is the original image pixel, $\eta(x, y)$ is the noise term and g(x, y) is the resulting noisy pixel

Noise Model

▶ We can consider a noisy image to be modelled as follows:

$$g(x, y) = f(x, y) + \eta(x, y)$$

where f(x, y) is the original image pixel, $\eta(x, y)$ is the noise term and g(x, y) is the resulting noisy pixel

If we can estimate the noise model we can figure out how to restore the image

Filtering to Remove Noise

► We can use spatial filters of different kinds to remove different kinds of noise The *arithmetic mean* filter is a very simple one and is calculated as follows:

1

Filtering to Remove Noise

We can use spatial filters of different kinds to remove different kinds of noise The arithmetic mean filter is a very simple one and is calculated as follows:

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Filtering to Remove Noise

We can use spatial filters of different kinds to remove different kinds of noise The *arithmetic mean* filter is a very simple one and is calculated as follows:

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

This is implemented as the simple smoothing filter

It blurs the image.

Median Filter

Median Filter:

1

Median Filter

Median Filter:

$$\hat{f}(x, y) = \underset{(s,t) \in S_{xy}}{median} \{g(s,t)\}$$

4

Median Filter

Median Filter:

$$\hat{f}(x,y) = \underset{(s,t) \in S_{xy}}{median} \{g(s,t)\}$$

- Excellent at noise removal, without the smoothing effects that can occur with other smoothing filters
- Particularly good when salt and pepper noise is present

Comparison: Gaussian noise

Comparison: Gaussian noise

Comparison: Salt & Pepper Noise

Comparison: Salt & Pepper Noise

↓

↓

↓

- Typically arises due to electrical or electromagnetic interference
- Gives rise to regular noise patterns in an image

- Typically arises due to electrical or electromagnetic interference
- Gives rise to regular noise patterns in an image

- Typically arises due to electrical or electromagnetic interference
- Gives rise to regular noise patterns in an image
- Frequency domain techniques in the Fourier domain are most effective at removing periodic noise

Remove periodic noise form an image involves removing a particular range of frequencies from that image

1

Remove periodic noise form an image involves removing a particular range of frequencies from that image

Band reject filters can be used for this purpose

- Remove periodic noise form an image involves removing a particular range of frequencies from that image
- Band reject filters can be used for this purpose
- An ideal band reject filter is given as follows:

- Remove periodic noise form an image involves removing a particular range of frequencies from that image
- Band reject filters can be used for this purpose
- An ideal band reject filter is given as follows:

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) < D_0 - \frac{W}{2} \\ 0 & \text{if } D_0 - \frac{W}{2} \le D(u,v) \le D_0 + \frac{W}{2} \\ 1 & \text{if } D(u,v) > D_0 + \frac{W}{2} \end{cases}$$

Band Reject Filter Example

Image corrupted by sinusoidal noise

Fourier spectrum of corrupted image

Butterworth band reject filter

Filtered image