

## Part II: Problems - Include a logical statement or relevant equation for full credit

**Problem 1.** A charge of +10.0 nC is placed a distance of 0.050 meters above a very large, flat, grounded, conducting sheet. Calculate the surface charge density on the sheet at a position directly below the charge.



**Problem 2.** A solid ball of charge with uniform volume charge density  $\rho$  and radius R is centered at the origin.

a) Calculate the electric field inside and outside the ball.

b) Calculate the electric potential at the origin using a reference at infinity.



The figure displays an Problem 3. All components are electrical circuit. ideal.





$$\sum_{i=1}^{N} \Delta V_i = 0$$

shown.
$$\frac{N}{2} \Delta V_{i} = 0$$

b) Find the power supplied by the 25 V battery to the circuit when the switch is open.

c) Find the current measured by the ammeter with the switch closed.



**Problem 4.** For the system of capacitors shown in the figure, a potential difference of 25 V is maintained across ab

a) What is the equivalent capacitance of this system between a and b?



Pumlled
$$Ct = C_1 + C_2 + \cdots$$

$$Ct = 3.29 + 7.5 + 6.5 = 14.24 n F$$

b) How much charge is stored by this system?

$$Q = (\Delta V)$$

$$[4.24(25) = 48).75$$

$$[482.25 nC]$$

c) How much charge does the 6.5 nF capacitor store?

$$Q = (A^{V})$$

$$Q = (162.3 n A)$$

d) What is the potential difference across the 10 nF capacitor?

$$\frac{V_{c} = V_{c} + V_{c} + \dots}{5.29 \text{ nf}} = \frac{Q}{10} + \frac{Q}{30} + \frac{Q}{10}$$

$$\frac{132.25 \text{ nc}}{5.29 \text{ nf}} = \frac{Q}{10} + \frac{Q}{30} + \frac{Q}{10}$$

$$V_{c} = \frac{4Q.095 \text{ nc}}{1000} = \frac{Q}{4.408 \text{ V}}$$

$$Q = \frac{102.73}{5}$$

**Problem 5.** The electric potential with respect to infinity inside a sphere with radius R=10 m is given by the function  $V(x,y,z)=xz+y^2$ 

a) What is the electric field inside the sphere?



b) What is the volume charge density inside the sphere?





c) How much work would be required to bring a point charge +Q from  $\infty$  to (1,2,3)?