1.POCHODNA FUNKCJI

 $f:D \rightarrow \mathbf{R}$, $D \subset \mathbf{R}$ – przedział otwarty

x₀ – przyrost argumentu (dodatni lub ujemny)

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - \text{iloraz r\'oznicowy}$$

Jeżeli istnieje i jest skończona granica:

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

to granicę tę nazywamy pochodną funkcji f w punkcie x_0

W takiej sytuacji mówimy, że funkcja f jest różniczkowalna w punkcie x_0

$$f(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Inne oznaczenia:

$$\frac{df}{dx}|_{x=x_0}$$
, $\frac{df}{dx}(x_0)$, $\frac{dy}{dx}|_{x=x_0}$, $\frac{dy}{dx}(x_0)$, $Df(x_0)$, $Df|_{x=x_0}$

2.Interpretacja geometryczna

Jeżeli f jest różniczkowalna w punkcie \mathbf{x}_{o} , to prostą o równaniu

$$\frac{y - f(x_0)}{x - x_0} = f'(x_0)$$

$$y = x * f'(x_0) - x_0 * f'(x_0) + f(x_0)$$

nazywamy styczną do krzywej y = f(x) w punkcie odciętej $x = x_0$

Współczynnik kierunkowy stycznej jest równy pochodnej funkcji.

Pochodna funkcji jest równa tangensowi kąta nachylenia stycznej do krzywej do dodatniego kierunku osi *OX*

Jeżeli funkcja $f:D \to R$ jest różniczkowalna w każdym punkcie dziedziny to mówimy, że f jest różniczkowalna a funkcje:

$$D \ni x \mapsto f^{'}(x)$$

nazywamy funkcją pochodną i oznaczamy y = f'(x)

3.Interpretacja mechaniczna

Jeżeli S(t) to funkcja drogi od czasu to:

$$S'(t) = \frac{ds}{dt}$$

jest prędkością.

$$S(t) = \frac{gt^2}{2} \qquad \qquad S(t + \Delta t) = \frac{g(t + \Delta t)^2}{2}$$

$$V_{\acute{s}r} = \frac{S(t+\Delta t) - S(t)}{\Delta t} = \frac{\frac{1}{2}(g(t+\Delta t)^2 - gt^2)}{\Delta t} = \frac{1}{2}g\frac{t^2 + 2t\Delta t + \Delta t^2 - t^2}{\Delta t} = \frac{1}{2}g\frac{\Delta t(2t+\Delta t)}{\Delta t} = \frac{1}{2}g(2t+\Delta t)$$

$$\xrightarrow{\Delta t \to \infty} gt = v(t)$$

4. Przedziały monotoniczności

Niech $f[a,b] \rightarrow R$ (na przedziale (a,b)) będzie funkcją różniczkowalną, wtedy

- (a) Jeżeli $\forall_{x \in (a,b)} f'(x) = 0$ to f jest stała na (a,b)
- (b) Jeżeli $\forall_{x \in (a,b)} f'(x) > 0$ to f jest rosnąca na (a,b)
- (c) Jeżeli $\forall_{x \in (a,b)} f'(x) < 0$ to f jest malejąca na (a,b)

Dowód:

Twierdzenie Lagrange'a

 $f:[a,b] \rightarrow \mathbf{R}$ ciągła na [a,b] i różniczkowalna. Wówczas istnieje $c \in (a,b)$ takie, że

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

a) Niech $x_1, x_2 \in (a,b)$ i takie że $x_1 < x_2$ wówczas na mocy tw. Lagrange'a istnieje $x_0 \in (x_1, x_2)$ takie, że

$$0 = f'(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Rightarrow f(x_1) = f(x_2)$$

b) Niech $x_1, x_2 \in (a,b)$ i takie że $x_1 < x_2$ wówczas na mocy tw. Lagrange'a istnieje $x_0 \in (x_1, x_2)$ takie, że

$$0 < f'(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Rightarrow f(x_2) > f(x_1)$$

c) Niech $x_1, x_2 \in (a,b)$ i takie że $x_1 < x_2$ wówczas na mocy tw. Lagrange'a istnieje $x_0 \in (x_1, x_2)$ takie, że

$$0 > f'(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Rightarrow f(x_2) < f(x_1)$$

5. Pochodna funkcji a badanie ekstremum

5.1 Warunek konieczny

Warunkiem koniecznym ekstremum w pewnym punkcie jest zerowanie się pochodnej w tym punkcie

Niech $f:D \rightarrow \mathbf{R}$ będzie różniczkowalna, D – przedział otwarty, $x_0 \in D$

Jeżeli f ma w x_0 ekstremum lokalne, to $f'(x_0) = 0$

Warunek konieczny nie jest warunkiem wystarczającym (np. dla x³)

5.2 Warunek dostateczny

Warunki dostateczne istnienia ekstremum

- a) Niech $f:D \to \mathbb{R}$ będzie różniczkowalna , D przedział otwarty, $x_0 \in D$ takie, że $f'(x_0) = 0$ wówczas, jeżeli f' zmienia znak w x_0 to f ma ekstremum lokalne w x_0
 - z na + (minimum)
 - z + na (maksimum)
- b) Niech $f:D \to \mathbb{R}$ będzie dwukrotnie różniczkowalna , D przedział otwarty, $x_0 \in D$ takie, że $f'(x_0) = 0$ wówczas
 - i) Jeżeli $f''(x_0) > 0$ to f ma w x_0 minimum lokalne
 - ii) Jeżeli $f''(x_0) < 0$ to f ma w x_0 maksimum lokalne
- c) Niech $f:D\to \mathbf{R}$ będzie n-krotnie różniczkowalna , D przedział otwarty, $\mathbf{x}_0\in D$. Załóżmy, że $f'(\mathbf{x}_0)=f''(\mathbf{x}_0)=...=f^{n-1}(\mathbf{x}_0)=0$ i $f''(\mathbf{x}_0)\neq 0$
 - i) Jeżeli n jest liczbą parzystą to f ma ekstremum lokalne w x_0 . Dokładniej $f^{(n)}(x_0) = 0$ $\Rightarrow minimum f^{(n)}(x_0) < 0 \Rightarrow maksimum$
 - ii) Jeżeli n jest liczbą nieparzystą, to f nie ma ekstremum w x_0

6. Pochodna funkcji a badanie punktów przegięcia i wypukłości

6.1 Wypukłość

Niech $f[a,b] \rightarrow \mathbf{R}$

Jeżeli

$$\forall_{x_1, x_2 \in [a, b]} \forall_{\lambda \in [0, 1]} f((1 - \lambda)x_1 + \lambda x_2) \le (1 - \lambda)f(x_1) + \lambda f(x_2)$$

to powiemy, że funkcja jest wypukła (wypukła w dół).

Jeżeli

$$\forall_{x_1, x_2 \in [a,b]} \forall_{\lambda \in [0,1]} f((1-\lambda)x_1 + \lambda x_2) \ge (1-\lambda)f(x_1) + \lambda f(x_2)$$

to powiemy, że funkcja jest wklęsła (wypukła w górę).

6.2 Zależność wypukłości od pochodnej

Niech D będzie przedziałem i niech $f:D \rightarrow R$ będzie dwukrotnie różniczkowalna:

Jeżeli $\forall_{x \in D} f^{''}(x) > 0$, to f jest w D wypukła w dół.

Jeżeli $\forall_{x \in D} f^{''}(x) < 0$, to f jest w D wypukła w górę.

6.3 Zależność punktów przegięcia od pochodnej

Jeżeli f zmienia w punkcie x_0 rodzaj wypukłości, to mówimy ,że x_0 jest punktem przegięcia funkcji f

Niech $f:D\to \mathbf{R}$ będzie dwukrotnie różniczkowalna i niech $x_0\in D$ ma tę własność, że $f''(x_0)=0$

Wówczas, jeżeli $f^{\prime\prime}$ zmienia znak w \mathbf{x}_0 to \mathbf{x}_0 jest punktem przegięcia funkcji f