Deep Learning Mechanics

Qiyang Hu
UCLA Office of Advanced Research Computing
Nov 10, 2021

Simplified workflow for a deep learning project

Step 1. Data Preparation and Processing

- The most time-consuming but the most *creative* job
 - Take > 80% time
 - Require experience
 - May need domain expertise
- Determines the upper limit for the goodness of DL
 - Models/Algorithms: just approach the upper limit

Survey from Forbes in 2017 (<u>Data Source</u>)

Copyright @ MachineLearningMastery.com

Special deep learning tasks in data prep step

- Image Data Processing
 - Pixel scaling
 - Train-Time Augmentation
 - Test-Time Augmentation
 - Convolution and Flattening

- Data Tokenization
 - Breaking the sequence data into units
 - Mapping units to vectors
 - Aligning & padding sequences

Data Embedding

- Map data to lower-dim vectors
 - Sparse to dense
 - Merging diverse data
 - Preserve relationship
- Techniques
 - Std Dimensionality Reduction
 - Word2Vec
 - Be part of the model training
- Representation Learning

Embedding Dims $\approx \sqrt[4]{\text{Possible Values}}$

Workflow for a deep learning project

Recap: artificial neuron vs. biological neuron

(Deep) Neural Networks ~ piling/stacking logistic-regression classifiers

Why deep?

- Shallow network can fit any function
 - Has less number of hidden layers
 - Has to be really "fat"

- Deep network is more efficient.
 - Exponentially fewer parameters (<u>2017</u>)
 - It can extract/build better features

Types of Deep Learning Architectures

A simpler classification of neural network types

- Feed forward neural networks (No cycle in node connections)
 - Fully connected network
 - Convolutional networks (CNNs)
- Recurrent networks (w/ directed cycle in node connections)
 - Fully recurrent NN
 - Recursive NN
 - Long short-term memory (LSTM)
 - Hopfield network (w/o hidden nodes)
- Symmetric networks (no directions in node connections)
 - Boltzmann Machines
 - RBM, DBM, SOM

Activation Function

$$\sigma(z) = rac{1}{1 + \exp(-z)}$$

$$tanh(z) = rac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$$

Rectified linear unit (ReLU)

$$f(x)=x^+=\max(0,x)$$

- Leaky ReLU
- Exponential LU (ELUs)
- o GELU
- Dynamic ReLU

$$y_i = rac{e^{z^{(i)}}}{\sum_{j=0}^K e^{z^{(j)}}}$$

- Maxout Network:
 - Learnable activation function

How to choose activation functions?

From Machine Learning Mastery Blog Post

Workflow for a deep learning project

How to measure the performance of the model?

- General name: objective function
- Measure the misfit of the model as a function of parameters
 - Criterion is to *minimize* the error functions
 - Loss Function, Cost Function: a penalty on difference between predictions and labels
- Evaluate the probability of generating training set
 - Criterion is to *maximize* the distribution likelihood as a function of parameters
 - o <u>Maximum (log)-likelihood estimation</u>: minimize the divergence of distributions
- Regression losses and classification losses

Loss functions

Generative/Predictive:

- Regression Loss
 - Mean Square Error / Quadratic Loss / L2 Loss:
 - Mean Absolute Error / L1 Loss:
- "Physics-informed" residuals
- Cross-Entropy Loss and variations
 - Softmax Loss / Log Loss / Negative Log Likelihood
 - Weighted CE / Balanced CE / Focal Loss
 - Dice Loss / IOU Loss / Tversky Loss

$$L_{MSE} = rac{1}{n} \sum_{\cdot}^n (t_i - s_i)^2$$

$$L_{MSE} = rac{1}{n} \sum_{i}^{n} (t_i - s_i)^2 \ L_{MAE} = rac{1}{n} \sum_{i}^{n} |t_i - s_i|$$

$$L_{CE} = -\sum_{i}^{C} t_{i} \log(s_{i})$$

Contrastive:

Ranking Loss/Margin Loss/Contrastive Loss/Triplet Loss

Workflow for a deep learning project

Training a DNN is an optimization problem

- We know how to compute $L(\theta)$, analytically or numerically.
- Start from an arbitrary initialization of θ_0 , and get an initial $L_0(\theta)$
- Apply optimization algorithm to minimize $L(\theta)$

DL Optimization Algorithm

- Gradient Descent (a 1st-order approach) $heta \leftarrow heta \eta
 abla L(heta)$
 - Most popular algorithm
 - Pros: simple and fast
 - Cons: sometimes hard to tune

Source Link

Gradient-Descent Optimizers

- Stochastic GD / Mini-Batch GD
- Adding momentum:
 - Classical Momentum (CM)
 - Nesterov's Accelerated Gradient (NAG)
- Adaptive learning rate:
 - AdaGrad, AdaDelta, ...
 - RMSprop
- Combining the two
 - ADAM (as default in many libs)
- Beyond Adam:
 - Lookahead (2019), RAdam (2019)
 - AdaBound/AmsBound (<u>ICLR 2019</u>)
 - o Range (2019)
 - AdaBelief (<u>NeurIPS 2020 Spotlight</u>)

Gradient descent vs Momentum vs AdaGrad vs RMSProp vs Adam

(Source)

Higher Order Optimization Algorithms

Newton-like methods (2nd-order methods)

$$heta \longleftarrow heta - rac{\ell'(heta)}{\ell''(heta)}$$

- Prons: fewer iterations, fewer hyperparameters
- Cons: much more costly in each iteration, more storing
- DFP/Broyden/BFGS/L-BFGS: a quasi-newton one
 - Good for low dimensional models
- Conjugate gradient (CG): between GD and Newton
 - moderately high dimensional models

Figure from Wikipedia

- Natural gradient descent methods $\nabla_{\theta} L(\theta) = F^{-1} \nabla_{\theta} L(\theta)$
 - K-FAC (Martens and Grosse, 2015)
 - Shampoo (Gupta, et al., 2018)
 - K-BFGS (Goldfarb, et al., NeurlPS 2020)

Using Gradient Descent to train DNN

Millions of parameters!

$$egin{aligned} heta_0 &
ightarrow
abla L(heta_0)
ightarrow heta_1
ightarrow
abla L(heta_1)
ightarrow heta_2
ightarrow \cdots \ heta_1 &= heta_0 - \eta
abla L(heta_0) \ heta_2 &= heta_1 - \eta
abla L(heta_1) \ dots &dots \end{aligned}$$

$$abla L(heta) = \sum_{n=1}^{N} egin{array}{c} rac{\partial C^{\langle n
angle}(heta)}{\partial w_2} \ dots \ rac{\partial C^{\langle n
angle}(heta)}{\partial b_1} \end{array}$$

How to compute the gradient vector with millions of elements efficiently?

Backpropagation: a game of chain rule

(1) Forward Pass

$$\dfrac{\partial z_1}{\partial w_1} = x_1$$
 $\dfrac{\partial z_2}{\partial w_2} = a_1$ $\dfrac{\partial z_{L-1}}{\partial w_{L-1}} = a_{L-2}$ $\dfrac{\partial z_L}{\partial w_L} = a_{L-1}$

② Backward Pass

$$\left| rac{\partial C}{\partial z_1} = \sigma_1' \left[w_2 rac{\partial C}{\partial z_2}
ight]$$

Gradient vanishing/exploding in DL training

Causes

- Gradients in initial layers = Multiplication of Gradients at prior layers
- Small variation around 1 results in vanishing/exploding

Techniques to resolve:

- General: adjusting learning rate, dropout, batch normalization, layer normalization
- o For gradient exploding: gradient clipping, weight regularization
- For gradient vanishing: activation function, proper initialization parameters, LSTM, skip connections

Backprop Beyond Deep Learning

- A different way to calculate the differentiation of iterative math expressions
 - Not approximate, unlike numerical differentiation
 - Exact, like manual or symbolic differentiation, but with constant overhead
- Automatic differentiation (algorithmic differentiation)
 - Problems constructed by differentiable directed graphs (e.g. NN)
 - General functional blocks (FF, conv, recurrent blocks, etc)
 - Modularized optimization: differentiable optimizations in layer levels
- Differentiable physics
 - Physics problems represented by a sequence of differentiable operators
 - Differentiable programming
 - Enables classical numerical algorithms
 - Beyond simple chained transformations to include more complex control structures

Workflow for a deep learning project

Step 1 Step 2 Step 3 Step 4 Step 5

Qiyang Hu

Underfitting and Overfitting

- Underfitting: model too simple:
 - Diagnose:
 - cannot even fit the training data
 - training error ~ testing error
 - Ignore the variance in training data
 - Higher prediction bias
- Overfitting: model too complex
 - Diagnose:
 - well-fit for training data
 - large error for testing data
 - Over-interpret training data
 - More deviation from new data

How to prevent underfitting?

- Redesign the model
- Increase model's complexity
- Add more features as input
- Training longer
- More data will <u>not</u> help

How to prevent overfitting?

- Get more data
 - Collect more data
 - Data augmentation
- Reduce the model's complexity
- Regularization
 - Weight Regularization to make the model smoother (L1, L2, Elastic net)

$$\hat{L}(x,y) = L(x,y) + \lambda \sum_{i=1}^n heta_i^2$$

Early stopping

Model Selection: K-fold Cross Validation

Errors/scores in practice

			Public		Private	
Training Set	Validation Set		Testing Set		Testing Set	
Error:	$oldsymbol{E}^{val}$	<	E^{Pub}	<	E^{Pri}	
Score:	S^{val}	>	S^{Pub}	>	S^{Pri}	

OARC Workshop Survey

https://forms.gle/nbWgNP45qCwZhLRh9