WHAT IS CLAIMED IS:

1	1. A method for real time determination the of mineral scale deposition rate from
2	a formation fluid comprising:
3	A) placing an optical probe having a probe surface which can measure
4	changes in refractive index at the probe surface, into contact with a
5	formation fluid produced or being produced from an oil well;
6	B) measuring the changes in refractive index at the probe surface; and
7	C) determining the on-set and rate, if any, of mineral scale deposition from
8	the formation fluid as a function of the changes in refractive index at the
9	probe surface;
10	wherein:
11	i) the probe surface which can be monitored for changes in refractive index is
12	in contact with the formation fluid;
13	ii) the probe, including the probe surface which can be monitored for changes
14	in refractive index, is composed of a material which can withstand an
15	extended period of contact with the formation fluid at the temperatures and
16	pressures present in oil wells; and
17	iii) the determination of on-set of mineral scale deposition and the mineral
18	scale deposition rate from the formation fluid takes place in real time.
1	2. The method of Claim 1 wherein the optical probe having a probe surface
2	which can measure changes in refractive index at the probe surface is an ATR
3	probe.

The method of Claim 2 wherein the ATR probe includes a means of
measuring the refractive index change associated with a material in contact with the
probe which is a photometer.

194-27668-US 17

- 1 4. The method of Claim 3 wherein the photometer measures light in a
- 2 wavelength range of from 400 to 1500 nanometers.
- 1 5. The method of Claim 4 wherein the photometer measures light in a
- 2 wavelength range of from 500 to 700 nanometers.
- 1 6. The method of Claim 5 wherein the photometer measures light in a
- 2 wavelength range of from 630 to 690 nanometers.
- 1 7. The method of Claim 4 wherein the photometer measures light in a
- 2 wavelength range of from 800 to 900 nanometers.
- 1 8. The method of Claim 7 wherein the photometer measures light in a
- 2 wavelength range of from 850 to 900 nanometers.
- 1 9. The method of Claim 8 wherein the photometer measures light in a
- wavelength range of from 870 to 890 nanometers.
- 1 10. The method of Claim 1 additionally comprising using an automated probe
- 2 cleaning device to clean, calibrate, insert and extract the probe surface.
- 1 11. A method for controlling mineral scale deposition from a formation fluid
- 2 comprising:
- A) placing an optical probe having a probe surface which can measure
- 4 changes in refractive index at the probe surface, into contact with a
- formation fluid produced or being produced from an oil well;
- B) measuring the changes in refractive index at the probe surface;
- 7 C) determining the on-set and rate, if any, of mineral scale deposition from
- 8 the formation fluid as a function of the changes in refractive index at the
- 9 probe surface;

194-15717-US 18

3

probe.

10	D) comparing the rate, if any, of mineral scale deposition, to a predetermined
11	range of acceptable mineral scale deposition; and
12	E) effecting a change in the rate of addition, if any, to the formation fluid of ar
13	additive effective for preventing mineral scale deposition from a formation
14	fluid ;
15	wherein:
16	i) the probe surface which can be monitored for changes in refractive index is
17	in contact with the formation fluid;
18	ii) the probe, including the probe surface which can be monitored for changes
19	in refractive index, is composed of a material which can withstand an
20	extended period of contact with the formation fluid at the temperatures and
21	pressures present in oil wells;
22	iii) the determination of the mineral scale deposition rate from the formation
23	fluid takes place in real time; and
24	iv) the rate of addition, if any, to the formation fluid of the additive effective fo
25	preventing mineral scale deposition from a formation fluid is:
26	(1) increased when on-set of mineral scale deposition is detected or
27	the mineral scale deposition rate is greater than the range of
28	acceptable mineral scale deposition;
29	(2) decreased when no mineral scale deposition is detected or the
30	mineral scale deposition rate is less than the range of acceptable
31	mineral scale deposition; and
32	(3) unchanged when no mineral scale deposition is detected or the
33	mineral scale rate deposition is within the range of acceptable
34	mineral scale deposition.
1	12. The method of Claim 11 wherein the optical probe having a probe surface
2	which can measure changes in refractive index at the probe surface is an ATR

194-27668-US 19

1

- 1 13. The method of Claim 12 wherein the ATR probe includes a means of
- 2 measuring the refractance of a material in contact with the probe which is a
- 3 photometer.
- 1 14. The method of Claim 13 wherein the photometer measures light in a
- 2 wavelength range of from 400 to 1500 nanometers.
- 1 15. The method of Claim 14 wherein the photometer measures light in a
- 2 wavelength range of from 500 to 700 nanometers.
- 1 16. The method of Claim 15 wherein the photometer measures light in a
- 2 wavelength range of from 630 to 690 nanometers.
- 1 17. The method of Claim 14 wherein the photometer measures light in a
- 2 wavelength range of from 800 to 900 nanometers.
- 1 18. The method of Claim 17 wherein the photometer measures light in a
- 2 wavelength range of from 850 to 900 nanometers.
- 1 19. The method of Claim 18 wherein the photometer measures light in a
- wavelength range of from 870 to 890 nanometers.
- 1 20. The method of Claim 11 additionally comprising using an automated probe
- 2 cleaning device to clean, calibrate, extract and insert the probe surface.
- 1 21. A system for controlling mineral scale deposition from a formation fluid
- 2 comprising a fluid flow path for flowing formation fluid recovered from a subsurface
- 3 formation; an optical probe having a probe surface which can measure changes in
- 4 refractive index at the probe surface, associated with the formation fluid in the fluid
- 5 flow path providing data corresponding to the rate of deposition of mineral scale from

20

194-27668-US

- 6 the formation fluid in the fluid flow path; and a processor for determining from the
- 7 data the rate of deposition of mineral scale from the formation fluid.

194-27668-US

21