## MIDDLE EAST TECHNICAL UNIVERSITY Department of Electrical and Electronics Engineering

## **EE301 SIGNALS and SYSTEMS 1**

#### **HOMEWORK 5**

Due: 05/01/2019, 23:55

**Q1)** For the given the system below, the frequency response of the digital filter is equal to  $H(e^{j\Omega}) = 1 - e^{-j5\Omega}$ , whereas its input is equal to  $x_c(t) = 2 + 3\cos(\omega_1 t) + 4\sin(\omega_2 t)$  for  $-\infty < t < \infty$ .



- a) Given  $\omega_1 = 200\pi$  and  $\omega_2 = 440\pi$ , state and explain the Nyquist rate of this signal.
- **b)** Let the sampling rate be 1000Hz. Given  $\omega_1$ =500 $\pi$  and  $\omega_2$ =1500 $\pi$ , sketch  $|X(e^{j\Omega})|, |Y(e^{j\Omega})|$  and  $|Y_r(j\omega)|$
- c) For the same sampling rate 1000 Hz, now, let  $\omega_1$  and  $\omega_2$  be unknown and not equal to each other. Determine non-zero continuous-time frequencies  $\omega_1$  and  $\omega_2$  that cause the output signal  $y_r(t)$  to be zero for the input  $x_c(t)$ . Pick  $\omega_1$  and  $\omega_2$ , so that there is no aliasing.
- **Q2)** The transfer function of an LTI system is given as  $H(s) = \frac{1}{s(s+3)}$ .
- a) Find all possible expressions for the impulse response, h(t). Comment on the causality of each system.
- b) Is it possible to find an impulse response, h(t), corresponding to a stable system? Explain your reasoning.
- c) Suppose that H(s) is modified so as to obtain the transfer function G(s) of another LTI system,

$$G(s) = \frac{1}{(s-\alpha)(s+3)}$$

for which  $\alpha$  is real. Without evaluating the inverse Laplace transform of G(s), find the range of values for  $\alpha$ , such that G(s) corresponds to a causal and stable system. State the ROC and explain your reasoning.

- Q3) The block diagram of a <u>causal</u> LTI system, with impulse response  $h_1[n]$ , input x[n] and output y[n] is given below in Fig.1. In this block diagram, the impulse response of the particular block is equal to  $g[n] = \alpha \delta[n-1]$ , where  $\alpha > 1$  and  $\alpha$  is real. Another <u>causal</u> LTI system with impulse response  $h_2[n]$  has the transfer function  $H_2(z)$ , whose pole-zero plot is given as in Fig.2.
- a) Find  $H_1(z)$ , indicate its ROC and sketch its pole-zero plot. Determine  $h_1[n]$ . Check for the stability of the system that has the impulse response  $h_1[n]$ , while explaining its reason clearly.
- b) Determine  $H_2(z)$  (and its ROC) with all its multiplicative factors, if it is known a priori that  $H_2(1)=1$ .
- c) Calculate the magnitude of DTFT,  $|H_2(e^{j\Omega})|$ , for  $\alpha$ =2,  $\beta$ =3/2 and for frequencies:  $\Omega$ ={0,  $\pi$ /2,  $\pi$ , 3 $\pi$ /2}. Comment on this result.
- d) If the two LTI systems having the system functions  $H_1(z)$  and  $H_2(z)$  are cascaded, find the system function H(z) (and its ROC) for the overall system. What should be the relation between any  $\alpha>1$  and  $\beta$  such that the overall system is stable? Indicate the resulting ROC for H(z), if this relation is satisfied.



# MIDDLE EAST TECHNICAL UNIVERSITY Department of Electrical and Electronics Engineering

**Q4)** An LTI system with impulse response, 
$$h[n] = \left(\frac{1}{3}\right)^{(n-n_0)} u[n-n_0]$$
, where  $n_0$  is any integer, is excited by the input sequence  $x[n] = \left(-\frac{1}{2}\right)^n u[n]$ .

- a) Is the system stable? Explain by making use of the system function H(z). Is the system causal? If so, under which condition?
- **b)** Find the z-transform Y(z) of the output signal y[n]. Determine the output signal.
- c) Does the Fourier transform of y[n] exist? If so, find it. If not, explain the reason by making use of Y(z) found in part (c).

### MATLAB)

a) Read data from the audio file named 'hw5audio.wav', and obtain sampled data sequence, x[n] in MATLAB:

[xn, Fs] = audioread('hw5audio.wav');

- i. You should observe that the length of the sequence "xn" is 500. After zero-padding, compute X[k], the 512-point DFT of x[n]. Then, plot the magnitude of X[k] versus k from 0 to 511.
- ii. You should observe that the magnitude of X[k] contains peaks showing dominant frequencies. Find the indices of k corresponding to these peaks.
- b) The sequence x[n] is real-valued.
  - i. Analytically show that  $|X(e^{j\omega})| = |X(e^{-j\omega})|$ , namely the magnitude of the DTFT is an even function, for a real signal. Then, plot the magnitude of X[k] versus k from -256 to 255 by using "fftshift" command to rearrange X[k]. Are the indices of k, which correspond to dominant frequencies, symmetric with respect to k=0?
  - ii. How many dominant frequency components of this signal will be <u>heard</u>? [Hint: You may use the observation emerged from part (i).]
  - iii. We know that the sampling frequency  $f_s$ , that is the "Fs" variable given in part (a), is related to the DFT length N, and we can find the frequency  $f_k$  for an analog signal by using  $f_k = kf_s/N$ , where k is the index of the DFT. What are the values (in Hz) of the frequencies in part (ii) for this analog audio signal?