Afstanden en hoeken in de ruimte Oplossing oefening 1

Geg.: Kubus
$$\begin{pmatrix} EFGH \\ ABCD \end{pmatrix}$$

 $|AB| = 8$
 $P \in [GH], |PH| = |PG|$

Gevr.: APC

Opl.:

• Berekening |AH| met stelling van Pythagoras in ΔΑΕΗ

$$|AH|^2 = |AE|^2 + |EH|^2$$
 $\Rightarrow |AH|^2 = 8^2 + 8^2 = 64 + 64 = 128$
 $\Rightarrow |AH| = \sqrt{128}$

• Daarna: berekening |AP| met stelling van Pythagoras in ΔAHP

$$|AP|^2 = |AH|^2 + |HP|^2$$
 $\Rightarrow |AH|^2 = (\sqrt{128})^2 + 4^2 = 128 + 16 = 144$
 $\Rightarrow |AH| = \sqrt{144} = 12$

• Analoog: berekening |CP| met stelling van Pythagoras in ΔCGP

$$|CP|^2 = |CG|^2 + |GP|^2$$
 $\Rightarrow |CP|^2 = 8^2 + 4^2 = 64 + 16 = 80$
 $\Rightarrow |CP| = \sqrt{80}$

• Analoog: berekening |AC| met stelling van Pythagoras in ΔABC

$$|AC|^2 = |AB|^2 + |BC|^2$$
 $\Rightarrow |AC|^2 = 8^2 + 8^2 = 64 + 64 = 128$
 $\Rightarrow |AC| = \sqrt{128}$

• Nu kunnen we A \hat{P} C berekenen met de cosinusregel in ΔAPC :

$$|AC|^{2} = |AP|^{2} + |CP|^{2} - 2.|AP|.|CP|.\cos(A \hat{P} C) \Rightarrow \cos(A\hat{P}C) = \frac{|AC|^{2} - |AP|^{2} - |CP|^{2}}{-2.|AP|.|CP|}$$
Dus $\cos(A\hat{P}C) = \frac{128 - 144 - 80}{-2.12.\sqrt{80}} = 0,44721 \Rightarrow A \hat{P} C = 63^{\circ} 26' 6''$

