

TOPICS TO BE COVERED

Chapter- 05

Designation of signals

- A. Introduction
- B. Signals for reception
- C. Signals for departure of trains
- D. Aspect sequence chart of stop signals used for departure of trains

Α

Introduction

Introduction

These signals are used for two main purposes:

- Approaching Trains: Some signals are used to manage trains that are approaching the station.
- Departing Trains: Other signals are used to manage trains that are departing from the station.
- Signals at stations are crucial for managing train movements.
- Separate signals are needed for trains arriving at and departing from stations.
- Multiple stop signals can be confusing to identify, so naming them is essential.

В

Signals for Reception

Signals Governing Train Approach and Entry into Stations

Distant Signals:

- Used to indicate the condition of the stop signal ahead.
- One distant signal is provided for sectional speeds below 120 kmph.
- Two distant signals are provided for sectional speeds 120 kmph or above:
 - Distant Signal
 - Inner Distant Signal

• Stop Signals:

- Minimum of one permissive and one stop signal are required for trains approaching a station.
- A stop signal taken 'OFF' (showing a Proceed aspect) permits the train to enter the station.
- The first stop signal a train encounters is called the "Home" signal.
- In some cases, a second stop signal called the "Routing Home" signal may be provided between the Home signal and the Reception lines of the station.

Approaching signals used in MACLS

Distant	HOME	Indication
Y	R	Train is required to stop at Home signal
YY	Y with Route	Reception on Loop Line. Stop at Starter
YY	Y	Reception on main line Stop at starters
G	G	Run through on main line

Aspects Sequence Chart of Approaching Signals used in MACL

Distant	HOME	Indication
Y	R	Train is required to stop at Home signal
YY	Y with Route	Reception on Loop Line. Stop at Starter
YY	Y	Reception on main line Stop at starters
G	G	Run through on main line

Two distant signals in approach (MACLS). (Sem 7.1.12 (b)

Distant	Inner Distant	Home	Indication
YY	Y	R	Stop at Home Signal
YY	YY	Y with Route	Enter on Loop Line. Stop at Starter if at 'ON'
G	YY	Y	Enter on Main Line. Stop at Starter
G	G	G	Run through via main line

Aspects Sequence Chart of Using two Distant Signals in approach (MACLS)

Starter Signal:

- Controls the departure of trains when only one stop signal is used.
- Placed outside all connections on the line to which it refers.
- Placed at least 400 meters in advance of the Home signal.

Advanced Starter:

- Controls the departure of trains when more than one stop signal is used.
- Placed outside all connections on the line to which it applies.
- Placed at least 120 meters in multiple aspect signaling from the outermost point on a single line and outside all point connections on a double line.
- Placed at least 400 meters in advance of the Home Signal.

Intermediate/Routing Starter:

- Placed between the starter and advanced starter when necessary.
- Placed in rear of the point it protects.

The starter referring to any line shall be placed so as to protect the first facing point or fouling mark; and shall not be less than 400 mts in advance of home signal.

Starter	Advanced Starter	Indication
R	R	Stand in rear of starter signal
Υ	R	Shunt up to adv. Starter signal
G	G	Proceed into Block section, line is clear

Departure signals in MACLS

Starter	Advanced Starter	Indication
R	R	Stand in rear of starter signal
Υ	R	Shunt up to adv. Starter signal
G	G	Proceed into Block section, line is clear

Aspects Sequence Chart of Departure signals in MACLS

Departure signals in MACLS

Starter	Advanced Starter	Indication
R	R	Stand in rear of starter signal
Y	R	Shunt up to adv. Starter signal
G	G	Proceed into Block section, line is clear

Aspects Sequence Chart of Departure signals in MACLS

E

A.C. Traction Manual

Summary

Reception Signals:

- Distant Signal: Indicates the condition of the stop signal ahead.
- Inner Distant Signal: Used when sectional speeds are 120 kmph or above if required.
- Home Signal: The first stop signal a train encounters when approaching a station.

Dispatch Signals:

- Starter Signal: Controls the departure of trains when only one stop signal is used.
- Intermediate Starter: Placed between the starter and advanced starter when necessary.
- Advanced Starter: Controls the departure of trains when more than one stop signal is used.

Aspect Sequence Charts:

- Aspect sequence charts show the different aspects of a signal and the actions a train driver should take in response to each aspect.
- They are used to ensure safe and efficient train movements.

End of Session

Qs..????.

End of Session