Extended modularity arising from the deformation of Riemann surfaces

Gabriele Bogo (TU Darmstadt)

Classical uniformization theory

$$X = \mathbb{P}^1 \setminus \{a_1, a_2, \dots, a_n = \infty\}$$

$$P(t) := \prod_{i=0}^{n-1} (t - a_i)$$

Associated family of Fuchsian differential equations

$$L_X: \frac{d}{dt}\left(P(t)\frac{d}{dt}y(t)\right) + \left(\sum_{i=0}^{n-3} \rho_i t^i\right)y(t) = 0$$

The coefficients $\rho_0,...,\rho_{n-4}\in\mathbb{C}$ are called accessory parameters (the choice $\rho_{n-4}=(n/2-1)^2$ is fixed)

Let y_1, y_1 be linearly independent solutions $L_X y_j = 0$ j = 1,2.

The multivalued function
$$\eta := \frac{y_2}{y_1} \colon X \to \mathbb{C}$$

lifts to the universal covering $\widetilde{\eta}\colon \widetilde{X} \to \mathbb{C}$

Accessory parameter problem

There exists a unique choice of the accessory parameters such that $\widetilde{\eta}\colon \widetilde{X} \to \mathbb{H}$ is a biholomorphism.

In this case n can be used to construct a covering map

The accessory paramter problem is hard!

The uniformization theorem (1907) "proves" the existence of the Fuchsian parameter ρ_F . More direct approaches:

- o Poincaré (around 1882) Statement and uniqueness
- o Smirnov (1910) Case (0,4) with real punctures (proved existence)
- o Keen, Rauch, Vasquez (1971) Case (1,1)
- o Chudnovsky²2 (mostly 1980s) Case (1,1)
- o Hoffmann, van Straten (2012) Case (1,e)
- o Bogo (2019) Case (0,4)
- o Anselmo et Al. (2019) Case (0,4)

Modular forms enter the picture

When $\widetilde{\eta}\colon\widetilde{X}\to\mathbb{H}$ is a biholomorphism, the monodromy group is a Fuchsian group $\Gamma\in\mathrm{SL}_2(\mathbb{R}).$

Let y be a holomorphic solution of the uniformizing differential equation. There exist $f\in M_2(\Gamma)$ and a Hauptmodul $t\in M_0^!(\Gamma)$ such that

$$y(t(\tau)) = \sqrt{f(\tau)}$$

locally for $\tau \in \mathbb{H}$.

We can construct the q-expansion of f and t from the uniformizing differential equation.

Construction of q-expansions

Using Frobenius method at the Fuchsian singularity t=0

$$y(\rho, t) = \sum_{n \ge 0} y_n(\rho) t^n, \quad \hat{y}(\rho, t) = \log(t) y(\rho, t) + \sum_{n \ge 0} \hat{y}_n(\rho) t^n \quad \rho = (\rho_0, ..., \rho_{n-4})$$

$$Q(\rho, t) := \exp(\hat{y}(\rho, t)/y(\rho, t)) = \sum_{n \ge 1} Q_n(\rho)t^n$$

$$T(\rho, Q) := Q(\rho, t)^{-1} = \sum_{n \ge 1} T_n(\rho) Q^n$$

$$F(\rho, Q) := y(\rho, T(\rho, Q)) = \sum_{n \ge 0} F_n(\rho)Q^n$$

When $\rho = \rho_F$

$$Q(\rho_F, t) = ce^{2\pi i\tau} = cq, \tau \in \mathbb{H}.$$

$$t(\tau) = \sum_{n\geq 1} t_n q^n := \sum_{n\geq 1} T_n(\rho_F) c^n q^n$$

$$f(\tau) = \sum_{n\geq 0} f_n q^n := \sum_{n\geq 0} F_n(\rho_F) c^n q^n$$

Some examples

- * Apéry's irrationality proof of $\zeta(2)$ (and $\zeta(3)$) (Beukers)
- Zagier's study of differential equations with integral solutions
- Chudnovskys/Thompson's study of the algebraicity of the Fuchsian parameters
- Bouw-Moeller/Moeller-Zagier's works on uniformization of Teichmueller curves (twisted modular forms)

The accessory parameter problem is hard (reprise)

To determine the Fuchsian parameter from the surface X

To describe explicitly modular forms on Fuchsian groups

Deformation of accessory parameters

The differential equation $L_X y = 0$ leads to the power series:

$$F(\rho, Q) = \sum_{n \ge 0} F_n(\rho) Q^n$$

The object of our study is the "deformation" of modular forms around the Fuchsian value.

$$\hat{f}(\rho,\tau) := \sum_{m\geq 0} \hat{f}_m(\tau)(\rho - \rho_F)^m, \quad \hat{f}_m(\tau) := \frac{\partial^m F(\rho,Q)}{\partial \rho^m} \bigg|_{\rho = \rho_F}$$

The function $\hat{f}_0(\tau) = f(\tau)$ is a modular form. What is $\hat{f}_m(\tau)$ for $m \geq 1$?

Idea: study $\hat{f}_1(\tau)$ by introducing a differential operator on (quasi)modular forms

For f and t as before and for every i = 0, ..., n-4 define

$$\partial_i f := \frac{\partial F(\rho, Q(\rho))}{\partial \rho_i} \Big|_{\rho = \rho_F}, \quad \partial_i t := \frac{\partial T(\rho, Q(\rho))}{\partial \rho_i} \Big|_{\rho = \rho_F}.$$

Let $g \in M_k(\Gamma)$ and write $g = f^k R(t)$ for some rational function R(t)

Define the i-th deformation operator by

$$\partial_i g := \partial_i f^k R(t)$$
.

Quasimodular forms

Recall that $g_0\in \widetilde{M}_k(\Gamma)^{(\leq p)}$ if there exist holomorphic functions $g_1,...,g_p\colon \mathbb{H} o\mathbb{C}$ such that

$$g_0(\tau)|_k \gamma = \sum_{r=0}^p g_r(\tau) \left(\frac{c}{c\tau+d}\right)^r$$
 for every $\gamma \in \Gamma$.

Derivations on $\widetilde{M}_*(\Gamma)$: $Dg_0:=(2\pi i)^{-1}\frac{dg_0(\tau)}{d\tau}, \quad Wg_0:=kg_0, \quad \delta g_o:=g_1$.

 $\mathfrak{Sl}_2(\mathbb{C})$ -module structure: $[W,D]=2D, \quad [W,\delta]=-2\delta, \quad [D,\delta]=W.$

Structure over modular forms: $\widetilde{M}_k(\Gamma)^{(\leq p)} = \bigoplus_{r=0}^p M_{k-2r}(\Gamma) \cdot \phi^r$,

for some $\phi \in \widetilde{M}_2(\Gamma)$ holomorphic and non modular.

Deformation on quasimodular forms

Define $\varphi:=\dfrac{Df}{f}\in \widetilde{M}_2(\Gamma)$. It is not modular and holomorphic, so we can extend the i-th deformation operator to $\widetilde{M}_*(\Gamma)$ by

$$\partial_i \varphi := \partial_i \frac{Df}{f}$$

Eichler integrals of cusp forms

Let $h\in S_k(\Gamma),\ h(\tau)=\sum_{m\geq 0}h_mq^m.$ By \widetilde{h} we denote its Eichler integral

$$\widetilde{h}(\tau) := \sum_{m\geq 1} \frac{h_m}{m^{k-1}} q^k$$
.

Theorem (B., 2020)

Let $X=\mathbb{P}^1\simeq \mathbb{H}/\Gamma$ be a n-punctured sphere. There exist a basis $\{h_0(\tau),\ldots,h_{n-4}(\tau)\}$ of $S_4(\Gamma)$ such that for every $g_0\in \widetilde{M}_*(\Gamma)$

$$\partial_i g_0 = 2\widetilde{h_i} Dg_0 + \widetilde{h_i}' Wg_0 + \widetilde{h_i}'' \delta g_0$$
 $_{i=0,...,n-4}.$

When g_0 is modular, the i-th deformation is given by a Rankin-Cohen bracket

$$\partial_i g = [g, \widetilde{h_i}]_1, \quad g \in M_*(\Gamma).$$

Proof

By definition
$$\partial_i f = \frac{\partial y(\rho, T(\rho, Q))}{\partial \rho_i} \bigg|_{\rho = \rho_F}$$
.

- We have $L_X\Big(\frac{\partial y(\rho,t)}{\partial \rho_i}\Big)=t^iy(\rho,t).$ It follows that $\frac{\partial y(\rho,t)}{\partial \rho_i}$ satisfies a Fuchsian ODE $M_i\Big(\frac{\partial y(\rho,t)}{\partial \rho_i}\Big)=0$ of the form $M_i=L_i\circ L_X.$
- We can write $\frac{\partial y(\rho,t)}{\partial \rho_i} = y(\rho,t) \int_0^t \frac{\int_0^{t_1} t_2^i y(\rho,t_2) \, dt_2}{y(\rho,t_1)^2 P(t_1)} \, dt_1 \,,$

where $P(t) = \prod_{j=1}^{n-1} (t - a_j)$ is determined by the punctures of X.

Proof

Using the relation
$$\frac{dQ}{Q} = \frac{\prod_{j=0}^{n-2} (-a_j)^n}{P(T) y^2(\rho, T)} dT \text{ we can write}$$

$$\left. \frac{\partial y(\rho, t(\tau))}{\partial \rho_i} \right|_{\rho = \rho_F} = f(\tau) \int_{\tau}^{\infty} \int_{\tau_1}^{\infty} h_i(\tau) d\tau_2 d\tau_1$$

where $h_i(\tau) = f^4(\tau)t^i(\tau)P(t(\tau))$.

One can prove that $h_i \in S_4(\Gamma)$ for every $i=0,\ldots,n-4$.

This and a similar calculation for $\frac{\partial I(\rho,Q)}{\partial \rho_i}$ prove the statement

for f and t. The generalization to modular and quasimodular forms is straigtforward.

Teichmueller theory

Teichmueller space

Let Γ be a Fuchsian group of finite type. A measurable function $\mu\colon \mathbb{H} \to \mathbb{C}$ is called a Beltrami differential if, for every $\gamma \in \Gamma$,

$$\mu(\gamma\tau)\overline{\gamma'(\tau)} = \mu(\tau)\gamma'(\tau) \qquad (\mu \in B(\Gamma)).$$

For every $\mu \in B(\Gamma)_1$ the differential equation

$$g_z = \mu(z)g_{\bar{z}}, \quad z \in \mathbb{C},$$

has a solution g^{μ} which restricts to a homeomorphism of \mathbb{H} .

Then the group $\Gamma^{\mu}:=g^{\mu}\Gamma(g^{\mu})^{-1}$ is Fuchsian.

The Teichmueller space of Γ is the space of representations

$$T(\Gamma) := \{ p_{\mu} \colon \Gamma \to \Gamma^{\mu} \in \mathbb{P}\mathrm{SL}_{2}(\mathbb{R}) \} / \sim .$$

The map $\Phi\colon B_1(\Gamma)\to T(\Gamma), \mu\mapsto p_\mu$, is holomorphic and defines a coordinate on $T(\Gamma)$.

The cotangent space of $T(\Gamma)$ at $\Phi(0)$ is the space $Q(\Gamma)$ of quadratic differentials on Γ (weight four cusp forms). There exists a linear map $Q(\Gamma)\to B(\Gamma)$ given by

$$h(\tau) \mapsto \overline{h(\tau)} \mathfrak{T}(\tau)^2$$

Weight four cusp forms give Beltrami differentials, but in general not "small enough"

Deformations from the uniformizing ODE

Let $\{h_0,\ldots,h_{n-4}\}$ be the basis of $S_4(\Gamma)=Q(\Gamma)$ considered in Theorem 1. Define

$$v_i(\tau) := \overline{h_i(\tau)}\mathfrak{F}(\tau)^2 \in B(\Gamma) \qquad i = 0, ..., n-4.$$

Let $\epsilon>0$ be such that $\epsilon v_i\in B_1(\Gamma)$ and let $g^{\epsilon v_i}$ be the homeomorphic solutions of the associated differential equation.

t and $t^{\epsilon v_i}$ are Hauphmodules, $G^{\epsilon v_i}$ is holomorphic in ϵ , $g^{\epsilon v_i}$ and $t^{\epsilon v_i}$ are real-analytic in ϵ .

Theorem 2 (B., 2020)

Let $t: \mathbb{H} \to X$ and $t^{\epsilon v_i}: \mathbb{H} \to X^{\epsilon v_i}$ be modular functions. Then

$$\partial_i t = \frac{\partial t^{\epsilon v_i}}{\partial \bar{\epsilon}} \bigg|_{\bar{\epsilon}=0}$$
 $i = 0, ..., n-4.$

Corollary (Ahlfors)

Let h_i and $g^{\epsilon v_i}$ be as above and denote $g^{\epsilon v_i}_{\tau} := \frac{dg^{\epsilon v_i}}{d\tau}$. Then

$$\frac{\partial f^{\epsilon v_i}}{\partial \bar{\epsilon}} \Big|_{\bar{\epsilon}=0} = -\frac{h_i}{2}$$

Proof

- Let $m_0, ..., m_{n-4}$ and $m_0^{\epsilon v_i}, ..., m_{n-4}^{\epsilon v_i}$ be the accessory parameters related to t and $t^{\epsilon v_i}$ respectively. We have $m_i = m_i(\rho)$ for every i = 0, ..., n-4.
- The theorem reduces to proving $\left. \frac{\partial m_j(\rho)}{\partial \rho_i} \right|_{\rho=\rho_F} = \left. \frac{\partial m_j^{\epsilon v_i}}{\partial \bar{\epsilon}} \right|_{\bar{\epsilon}=0}$.
- There is a linear isomorphism $J\colon Q(\Gamma)\to D_2(X)$ between quadratic differentials and a space of rational functions with poles at the punctures of X.
- One finds $\left. \frac{\partial m_j^{ev_i}}{\partial \bar{e}} \right|_{\bar{e}=0} = \mathrm{Res}_{t=a_j} J(h_i) = \mathrm{Res}_{t=a_j} \left(\frac{t^i}{P(t)} \right) = \left. \frac{\partial m_j(\rho)}{\partial \rho_i} \right|_{\rho=\rho_F}.$

Extended modular forms (work in progress)

Vector-valued modular forms

Recall that $\partial_i f = [f, \widetilde{h_i}]$ for every $f \in M_k(\Gamma)$.

Let $p_{h_i}(\gamma;\tau)=r_{i,2}(\gamma)\tau^2+r_{i,1}(\gamma)\tau+r_{i,0}(\gamma)$ be the period polynomial of h attached to $\gamma\in\Gamma$. Then

$$\begin{pmatrix} \partial_{\rho} f \\ \tau^{2} f' + 2\tau f \\ \tau f' + f \\ f' \end{pmatrix} (\gamma \tau) = \begin{pmatrix} 1 & r_{i,2}(\gamma) & r_{i,1}(\gamma) & r_{i,0}(\gamma) \\ 0 & a^{2} & 2ab & b^{2} \\ 0 & ac & ad + bc & bd \\ 0 & c^{2} & 2cd & d^{2} \end{pmatrix} \begin{pmatrix} \partial_{\rho} f \\ \tau^{2} f' + 2\tau f \\ \tau f' + f \\ f' \end{pmatrix} (c\tau + d)^{k}, \qquad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

This can be proved by a direct computation or (better) via monodromy considerations.

Representations and quasimodular forms

 $V_s:=\mathrm{Sym}^s(\mathbb{C}),\ \mathrm{sym}^s\colon\Gamma o V_s,$ the symmetric tensor representation is the restriction of the irreducible representation $\mathrm{SL}_2(\mathbb{R}) o V_s$.

$$\operatorname{sym}^{0}(\gamma) = 1 \qquad \operatorname{sym}^{1}(\gamma) = \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \operatorname{sym}^{2}(\gamma) = \begin{pmatrix} a^{2} & 2ab & b^{2} \\ ac & ad + bc & bd \\ c^{2} & 2cd & d^{2} \end{pmatrix}$$

 $M_k(\Gamma, V_s), S_k(\Gamma, V_s)$ spaces of weight k vunf with respect to sym^s .

Theorem (Kuga-Shimura, Choie-Lee)

There is a bijection $M_k(\Gamma, V_s) \stackrel{\sim}{\to} \widetilde{M}_{k+s}(\Gamma)^{(\leq s)}$

Theorem (B., 2020)

The following short sequence is exact

$$0 \longrightarrow M_{r+2}(\Gamma, V_s) \longrightarrow \operatorname{Ext}^1_{\Gamma}(V_s, V_r) \longrightarrow S_{r+2}(\Gamma, V_s) \longrightarrow 0.$$

By the Choie-Lee theorem, this means that equivalence classes of extensions of symmetric tensor representations are induced by quasimodular forms.

Proof (not the best one)

- \bullet Identify $\operatorname{Ext}^1_{\Gamma}(V_s,V_r) \simeq H^1(\Gamma,V_r \otimes V_s)$
- $\bullet H^1(\Gamma, V_r \otimes V_s) \simeq \bigoplus H^1(\Gamma, V_i)$
- ullet Use Eichler-Shimura for $H^1(\Gamma,V_i)$ and identify the spaces with vvmf

Idea: use the previous result to construct a space of homolorphic functions on $\mathbb H$ associated to (the periods of) a given quasimodular form.

Let $g_0 \in \widetilde{M}_k(\Gamma)^{(\leq p)}$. Several extensions are induced by g_0 , namely:

$$0 \longrightarrow M_{r+2}(\Gamma, V_s) \longrightarrow \operatorname{Ext}_{\Gamma}^1(V_s, V_r) \longrightarrow S_{r+2}(\Gamma, V_s) \longrightarrow 0.$$

$$\uparrow \qquad \qquad \widetilde{M}_{r+s+2}(\Gamma)^{(\leq s)}$$

The quasimodular form g_0 induces representations classes $[V_{s,r}(g_0)]\in \operatorname{Ext}^1_\Gamma(V_s,V_r)$ where r,s are positive integers such that r+s+2=k and $s\geq p$.

Extended modular forms

Let $g_0 \in \widetilde{M}_k(\Gamma)^{(\leq p)}$ and let $V_{r,s}(g_0)$ be a representation induced by g_0 .

$$\begin{pmatrix} h_s \\ \vdots \\ h_0 \\ f_r \\ \vdots \\ f_0 \end{pmatrix} (\gamma(\tau)) = \begin{pmatrix} \text{sym}^s(\gamma) & B(\gamma) \\ 0 & \text{sym}^r(\gamma) \end{pmatrix} \begin{pmatrix} h_s \\ \vdots \\ h_0 \\ f_r \\ \vdots \\ f_0 \end{pmatrix} (c\tau + d)^l$$

Call h_0 extended modular form of weight s+l associated to $V_{s,r}(g_0)$.

Denote by $\operatorname{Ext}_{s+1}\!\left(\Gamma,V_{s,r}(g_0)\right)$ the vector space of such functions

Theorem (B., 202?)

Let $g_0 \in \widetilde{M}_k(\Gamma)^{(\leq p)}$ and consider all the representations $V_{s,r}(g_0)$ induced by g_0 . Define $\operatorname{Ext}_l(\Gamma,g_0):=\bigoplus_{(r,s)}\operatorname{Ext}_l(\Gamma,V_{s,r}(g_0))$. The space $\operatorname{Ext}_*(\Gamma,g_0):=\bigoplus_{l\geq l_0}\operatorname{Ext}(\Gamma,g_0)$ is closed under differentiation, and has a $\operatorname{\mathfrak{Sl}}_2(\mathbb{C})$ -module structure.

Examples

- o Quasimodular forms (trivial extensions)
- o Eichler integrals and their derivatives
- o Deformations of accessory parameters (previous example)
- ullet Depth one elliptic multiple zeta values ($\Gamma=\operatorname{SL}_2(\mathbb{Z})$)

Elliptic multiple zeta values

Consider the Jacobi theta function

$$\theta_{\tau}(u) := \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{1}{2}(n+1/2)^2} e^{(n+1/2)u}$$

and the Kronecker function

$$F(u,\alpha,\tau) := \frac{\theta_{\tau}'(0)\,\theta_{\tau}(u+\alpha)}{\theta_{\tau}(u)\,\theta_{\tau}(\alpha)} = \sum_{n\geq 0} f_n(u,\tau)(2\pi i\alpha)^{n-1}$$

A depth one elliptic multiple zeta value is a linear combination of the following functions (suitably normalized)

$$A_{n,r}(\tau) = \int_0^1 \frac{(2\pi i)^{r-1}}{(r-1)!} f_n(u,\tau) du$$

Extended modular forms for \mathbb{E}_4'

Let \mathbb{E}_4 denote the Eisenstein series of weight 4 on $\mathrm{SL}_2(\mathbb{Z})$ The quasimodular form \mathbb{E}_4' induces four extensions $V_{4,0},V_{3,1},V_{2,2},V_{1,3}$. For instance, $V_{1,3}$ is given by

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & -4 & -6 & -4 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 0 & -1 & 1 & 0 & -5 & 0 \\ 1 & 0 & 0 & 5 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Proposition (Zerbini, 2017)

The elliptic multiple zeta values $\hat{A}_{1,4}, A_{2,3}, A_{3,2}, A_{4,1} \in \operatorname{Ext}_*(\operatorname{SL}_2(Z), \mathbb{E}_4')$

Extended modular forms for E'₄ II

We can use this knowledge to reinterpret some known relations for elliptic MZV in terms of extensions

$$\mathscr{A}(X,Y;\tau) := \sum_{n \geq 0, r \geq 1} \frac{A_{n,r(\tau)}}{(2\pi i)^{r-1}} X^{n-1} Y^{r-1} \qquad \mathscr{G}(X;\tau) := \sum_{n \geq -1} n c_n \mathbb{E}_n(\tau) X^{n-1}$$

The formula (Zerbini)

$$\frac{\partial}{\partial \tau} \mathcal{A}(X, Y; \tau) = (1 - e^{Y}) \mathcal{G}(X; \tau) - Y \frac{\partial}{\partial X} \mathcal{A}(X, Y; \tau)$$

can be explained using the fact that the space of extended modular forms attached to \mathbb{E}_4' is closed under differentiation and that to a quasimodular form correspond finitely many extensions.

THANK YOU!