

Objective

To predict the likelihood of a patient getting a heart attack from patient attributes and medical data

Purpose

Quickly note a patient's susceptibility to a heart attack

Dataset Contents

Target Variable = Output(Heart attack or not)

Features:

- Age
- Sex(Male=1, Female=0)
- Chest pain type
- Resting blood pressure
- Cholesterol level
- Fasting blood sugar

- Resting ECG results
- Maximum heart rate achieved
- Old peak
- Slope
- Number of major vessels
- Thallium stress test result
- Exercised induced angina

Data Cleaning

- Started with 3500+ rows & 15 columns
- Dropped o2Saturation column as it made dataset irregular
- Clean data had 303 rows with 14 column

Output: 1= high chance of heart attack, 0= low chance of heart attack Sex: 1= Male, 0= Female

Chances of heart attack according to sex and age

Insights

FEMALES:

- Less likely to have heart attack
- Median age of 54 to experience heart attack
- Heart attack more likely in later years

MALES:

- More likely to have heart attack
- Median age of 52 to experience heart attack
- Heart attack occurence more likely in earlier years

More Insights

More Insights

- Resting blood pressure between 120 - 140 had higher heart attack chances
 - Increased cholesterol rates also increased the chances of a heart attack

ML Models Fitted

XGBOOST MODEL

- Accuracy of 85.5%
- Higher recall of 86% for high chance of heart attack
- High True Positive and true negative predictions in the confusion matrix

Model Interpretation using SHAP values(Patient 1) - 50% chance of Heart attack

Features that increase heart attack chances for patient 1

- Chest pain
- Number of major vessels
- Old peak
- Resting blood pressure

IMPORTANT FEATURES NOTED

- Chest pain type
- Sex of the patient
- Thallium stress test result
- Number of major vessels

Deployment

 Create a web app using the FLASK framework

- Because of data size, store on github all dependencies and deploy on Heroku
- Test and monitor model performance using New Relic add-on on Heroku platform

Next Steps

- Sample deployed app :
 http://ds-heart-attack.herokuapp.com/
- For larger datasets, I would opt for cloud platform options such as GCP with TensorFlow Extended(TFX) or AWS Sagemaker with the help and contributions of software engineers and UX manager on the team

Custom Question

- With 10 minutes of continuous ECG data, there won't be change in my model prediction as ECG doesn't contribute to prediction. I will either change my model to a Logistic regression model which included ECG feature as a prediction contributor
- Or retrain my model with more patient data as the previous train set is too small

Thank You

Github repo:

https://github.com/audreyemeri be/Heart-Attack-NB

