Big Data

Assignment 5

Gruppe 5 November 19, 2017

Task 1

i)

Kreuzprodukt von Vektoren aus \mathbb{R}^3 is nicht assoziativ.

Gegenbeispiel:

$$a = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, c = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$a \times (b \times c) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

Aber

$$(a \times b) \times c = \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$\implies a \times (b \times c) \neq (a \times b) \times c$$

ii)

Addition von Matrizen aus $\mathbb{R}^{m \times n}$ ist eine Gruppe, also auch ein Monoid. $(\mathbb{R}^{m \times n}, +, 0)$, wobei 0 die Nullmatrix (Matrix mit allen Einträgen Null) ist iii)

Bestimmung des größten gemeinsamen Teilers ganzer Zahlen ist ein Monoid.

Neutrales Element e = 0, denn ggT(a,0) = a, $\forall a \in \mathbb{Z}$

Assoziativität: ggT(a,b,c) = ggT(a,ggT(b,c)) = ggT(ggT(a,b),c) (muss man das noch beweisen??)

 $(\mathbb{Z}, ggT, 0)$

iv)

Binäre XOR-Verknüpfung Boolescher Werte ist ein Monoid.

Neutrales element e = false, denn $a \oplus false = a, \forall a \in \{true, false\}$

Assoziativität: $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

Beweis:

DCWCIS.				
a	b	c	$a \oplus (b \oplus c)$	$(a \oplus b) \oplus c$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1
			'	

 $(\{true,false\}, \oplus,false)$

v)

Vereinigung von Mengen is ein Monoid.

Neutrales Element $e = \emptyset$ denn $A \cup \emptyset = A$

Assoziativität: $A \cup (B \cup C) = (A \cup B) \cup C$

Beweis: CLICKME

 (S, \cup, \emptyset) , wobei S die Menge ist