October 15, 2019

Problem 2

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} \tag{1}$$

- 1. Defining inner product as $\langle X, Y \rangle = E[XY]$ and using cauchy-schwarz inequality that $|\langle X, Y \rangle|^2 \leq \langle X, X \rangle \langle Y, Y \rangle$, we get $|Cov(X, Y)|^2 \leq Var(X)Var(Y)$. The inequality $|\rho_{X,Y}| \leq 1$ follows.
- 2. If X and Y are independent, then Cov(X,Y) = E[XY] E[X]E[Y] = 0. Hence $\rho_{X,Y} = 0$.
- 3. Given Y = aX + b. So, $\sigma_Y^2 = a^2 \sigma_X^2$ and Cov(X,Y) = E[(X E[X])(Y E[Y])]. Using E[Y] = aE[X] + b, we get $Cov(X,Y) = a\sigma_X^2$. $\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{a\sigma_X^2}{|a|\sigma_X^2} = 1, \text{if } a > 0 \text{ and is equal to -1 when } a \text{ is negative as } \sigma_X \text{ and } \sigma_Y \text{ are positive.}$
- 4. Cov(X,Y) = E(XY) E(X)E(Y). Using $Y = X^2$ where X is uniformly distributed in [-1,1], we get $E(XY) = E(X^3) = 0$. Also, E(X) = 0. So we get Cov(X,Y) = 0. Hence, $\rho_{X,Y} = 0$.