Aqueous Equilibria

Common lons & Solubility

The Common Ion Effect

- Consider the addition of C₂H₃O₂-, which is a common ion. (The source of acetate could be a strong electrolyte such as NaC₂H₃O₂.)
- Therefore, [C₂H₃O₂-] increases and the system is no longer at equilibrium.
- So, [H⁺] must decrease.

The Common Ion Effect

- The solubility of a partially soluble salt is decreased when a common ion is added.
- Consider the equilibrium established when acetic acid, HC₂H₃O₂, is added to water.
- At equilibrium H⁺ and C₂H₃O₂⁻ are constantly moving into and out of solution, but the concentrations of ions is constant and equal.

The Common-Ion Effect

- Common Ion: Two dissolved solutes that contain the same ion (cation or anion).
- The presence of a common ion suppresses the ionization of a weak acid or a weak base.
- Common-lon Effect: is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

The Solubility-Product Constant, K_{sp}

Consider

$$BaSO_4(s) \implies Ba^{2+}(aq) + SO_4^{2-}(aq)$$

· for which

$$K_{SD} = [\text{Ba}^{2+}][\text{SO}_4^{2-}]$$

• K_{sp} is the solubility product. (BaSO₄ is ignored because it is a pure solid so its concentration is constant.)

Solubility Equilibria

The Solubility-Product Constant, K_{sn}

- In general: the solubility product is the molar concentration of ions raised to their stoichiometric powers.
- Solubility is the amount (grams) of substance that dissolves to form a saturated solution.
- Molar solubility is the number of moles of solute dissolving to form a liter of saturated solution.

Solubility Equilibria

Solubility and K_{sp}

- To convert solubility to K_{sn}
- solubility needs to be converted into molar solubility (via molar mass);
- molar solubility is converted into the molar concentration of ions at equilibrium (equilibrium calculation),
- \mathbf{K}_{sp} is the product of equilibrium concentration of ions.

Solubility Equilibria - K_{sp}

- The solubility of calcium sulfate (CaSO₄) is found experimentally to be 0.67 g/L. Calculate the value of K_{sp} for calcium sulfate.
- 0.67g/L x 1mol/136.143g = 0.0049M
- CaSO₄ ≒ Ca²⁺ + SO₄²⁻
- $K_{sp} = [Ca^{2+}][SO_4^{2-}] = (0.0049M)^2$
- $K_{sp} = 2.4 \times 10^{-5} M^2$

Test Your Skills

 The solubility of lead chromate (PbCrO₄) is 4.5 x 10⁻⁵ g/L. Calculate the solubility product of this compound.

Test Your Skills

 Calculate the solubility of copper(II) hydroxide, Cu(OH)₂, in g/L. K_{sp} = 2.2 x 10⁻²⁰

The Common-Ion Effect and Solubility

- The solubility product $(K_{\rm sp})$ is an equilibrium constant; precipitation will occur when the ion product exceeds the $K_{\rm sp}$ for a compound.
- If AgNO₃ is added to saturated AgCI, the increase in [Ag⁺] will cause AgCI to precipitate.

$$Q = [Ag^+]_0 [CI^-]_0 > K_{sp}$$

• Ion Product (Q): solubility equivalent of the reaction quotient. It is used to determine whether a precipitate will form.

 $Q < K_{\rm sp}$ Unsaturated

 $Q = K_{sn}$ Saturated

 $Q > K_{sp}$ Supersaturated; precipitate forms.

The Common-Ion Effect and Solubility

- $MgF_2(s) \leftrightarrows Mg^{2+}(aq) + 2F^{-}(aq)$
- By Le Chatelier's principle, if [F-] ↑ then the reaction is driven towards the left and more MgF₂(s) is formed.
- Thus, MgF₂ solubility decreases as F⁻ is added to the solution.

Solubility Equilibria

- Exactly 200 mL of 0.0040 M BaCl₂ are added to exactly 600 mL of 0.0080 M K₂SO₄. Will a precipitate form?
- What might precipitate?
- BaCl₂ → Ba²⁺ + 2Cl⁻
- $K_2SO_4 \rightarrow 2K^+ + SO_4^{2-}$
- When the solutions are mixed all of these ions can combine in different ways to potentially form a precipitate.
- Ba²⁺(aq) + SO₄²⁻(aq) \leftrightarrows BaSO4 (s)

- Ba²⁺(aq) + SO₄²⁻(aq) ≒ BaSO4 (s)
- $M_1 \times V_1 = M_2 \times V_2$
- Thus, after mixing the concentrations are:
- $[Ba^{2+}] = (200 \text{ mL } \times 0.0040 \text{ M})/800 \text{ mL} = 0.0010 \text{ M}$
- $[SO_4^{2-}] = (600 \text{ mL } \times 0.0080 \text{ M})/800\text{mL} = 0.0060 \text{ M}$
- Q = $[Ba^{2+}][SO_a^{2-}] = (0.0010)(0.0060) = 6 \times 10^{-6}$
- $K_{sp} = 1.1 \times 10^{-10}$
- Q > K_{sp}
- Precipitate forms

Test Your Skills

 If 2.00 mL of 0.200 M NaOH are added to 1.00 L of 0.100 M CaCl₂, will precipitation occur?

Factors that Affect Solubility

The Common Ion Effect

- · Solubility is decreased when a common ion is added.
- This is an application of Le Châtelier's principle:

$$CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$$

- as F⁻ (from NaF, say) is added, the equilibrium shifts away from the increase.
- $\begin{tabular}{lll} \bullet & Therefore, & CaF_2(s) & is & formed & and & precipitation \\ & occurs. \end{tabular}$
- As NaF is added to the system, the solubility of ${\bf CaF_2}$ decreases.

Factors that Affect Solubility

Solubility and pH

• Again we apply Le Châtelier's principle:

$$CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F(aq)$$

- If the F^{\cdot} is removed, then the equilibrium shifts towards the decrease and CaF_2 dissolves.
- F can be removed by adding a strong acid:

$$F^{-}(aq) + H^{+}(aq) \Longrightarrow HF(aq)$$

- As pH decreases, [H+] increases and solubility increases.
- The effect of pH on solubility is dramatic.

Factors that Affect Solubility

Formation of Complex Ions

• A Consider the formation of Ag(NH₃)₂+:

$$Ag^+(aq) + 2NH_3(aq) \implies Ag(NH_3)_2(aq)$$

- The Ag(NH₃)₂⁺ is called a complex ion.
- NH₃ (the attached Lewis base) is called a ligand.
- The equilibrium constant for the reaction is called the formation constant, $\mathbf{K}_{\mathbf{f}}$:

$$K_f = \frac{[\text{Ag}(\text{NH}_3)_2]}{[\text{Ag}^+][\text{NH}_3]^2}$$

Factors that Affect Solubility

Formation of Complex Ions

• Consider the addition of ammonia to AgCl (white precipitate):

$$AgCl(s) \iff Ag^{+}(aq) + Cl^{-}(aq)$$
$$Ag^{+}(aq) + 2NH_{3}(aq) \iff Ag(NH_{3})_{2}(aq)$$

• The overall reaction is

$$AgCl(s) + 2NH_3(aq) \implies Ag(NH_3)_2(aq) + Cl^2(aq)$$

- Effectively, the Ag⁺(aq) has been removed from solution.
- By Le Châtelier's principle, the forward reaction (the dissolving of AgCl) is favored.

Factors that Affect Solubility

Formation of Complex Ions

TABLE 17.1 Formation Constants for Some Metal Complex Ions in Water at 25°C				
Complex Ion	K_f	Equilibrium Equation		
Ag(NH ₃) ₂ +	1.7×10^{7}	$Ag^{+}(aq) + 2NH_{3}(aq) \Longrightarrow Ag(NH_{3})_{2}^{+}(aq)$		
Ag(CN)2	1×10^{21}	$Ag^{+}(aq) + 2CN^{-}(aq) \Longrightarrow Ag(CN)_{2}^{-}(aq)$		
Ag(S ₂ O ₃) ₂ ³⁻	2.9×10^{13}	$Ag^{+}(aq) + 2S_2O_3^{2-}(aq) \Longrightarrow Ag(S_2O_3)_2^{3-}(aq)$		
CdBr ₄ ²⁻	5×10^{3}	$Cd^{2+}(aq) + 4Br^{-}(aq) \Longrightarrow CdBr_4^{2-}(aq)$		
Cr(OH) ₄	8×10^{29}	$Cr^{3+}(aq) + 4OH^{-} \rightleftharpoons Cr(OH)_{4}(aq)$		
Co(SCN) ₄ ²⁻	1×10^3	$Co^{2+}(aq) + 4SCN^{-}(aq) \Longrightarrow Co(SCN)_4^{2-}(aq)$		
$Cu(NH_3)_4^{2+}$	5×10^{12}	$Cu^{2+}(aq) + 4NH_3(aq) \Longrightarrow Cu(NH_3)_4^{2+}(aq)$		
Cu(CN) ₄ ²⁻	1×10^{25}	$Cu^{2+}(aq) + 4CN^{-}(aq) \Longrightarrow Cu(CN)_4^{2-}(aq)$		
Ni(NH ₃) ₆ ²⁺	1.2×10^{9}	$Ni^{2+}(aq) + 6NH_3(aq) \Longrightarrow Ni(NH_3)_6^{2+}(aq)$		
Fe(CN) ₆ ⁴⁻	1×10^{35}	$Fe^{2+}(aq) + 6CN^{-}(aq) \Longrightarrow Fe(CN)_6^{4-}(aq)$		
Fe(CN) ₆ ³⁻	1×10^{42}	$Fe^{3+}(aq) + 6CN^{-}(aq) \Longrightarrow Fe(CN)_6^{3-}(aq)$		

Amphoteric Species

- Amphoteric: having both acidic and basic properties
- Conjugate bases of weak polyprotic acids are amphoteric
- The hydrogen oxalate ion, HC_2O_4 , is a weak acid ($K_a = 6.4 \times 10^{-5}$)
- $HC_2O_4^- + H_2O \leftrightarrows C_2O_4^{2-} + H_3O^+$

Amphoteric Species

- $K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{6.4 \times 10^{-5}} = 1.6 \times 10^{-10}$
- Since K_a > K_b, the ion will act as a weak acid in water

Test Your Skill

 K_a for the hydrogen malonate ion, HC₃H₂O₄⁻, is 2.1 x 10⁻⁶. Is a solution of sodium hydrogen malonate acidic or basic?

Factors that Affect Solubility

Amphoterism

- Amphoteric oxides will dissolve in either a strong acid or a strong base.
- Examples: hydroxides and oxides of Al^{3+} , Cr^{3+} , Zn^{2+} , and Sn^{2+} .
- The hydroxides generally form complex ions with four hydroxide ligands attached to the metal:

$$Al(OH_3)(s) + OH^-(aq) \implies Al(OH)_4(aq)$$

Factors that Affect Solubility

Amphoterism

• Hydrated metal ions act as weak acids. Thus, the amphoterism is interrupted:

$$Al(H_2O)_6^{3+}(aq) + OH^{-}(aq) \Longrightarrow Al(H_2O)_5(OH)^{2+}(aq) + H_2O(l)$$

$$Al(H_2O)_5(OH)^{2+}(aq) + OH^{-}(aq) \Longrightarrow Al(H_2O)_4(OH)_2^{+}(aq) + H_2O(l)$$

$$Al(H_2O)_4(OH)_2^{+}(aq) + OH^{-}(aq) \Longrightarrow Al(H_2O)_3(OH)_3(s) + H_2O(l)$$

$$Al(H_2O)_3(OH)_3(s) + OH^{-}(aq) \Longrightarrow Al(H_2O)_2(OH)_4^{-}(aq) + H_2O(l)$$

Test Your Skill

 Predict whether the following solutions will be acidic, basic, or nearly neutral:

(a) NH₄I (b) CaCl₂ (c) KCN (d) Fe(NO₃)₃ Give a brief reason for your answer in each case.

Precipitation and Separation of Ions

$$BaSO_4(s) \implies Ba^{2+}(aq) + SO_4^{2-}(aq)$$

- At any instant in time, $Q = [Ba^{2+}][SO_4^{2-}]$.
 - If $Q < K_{sp}$, precipitation occurs until $Q = K_{sp}$.
 - If $Q = K_{sp}$, equilibrium exists.
 - If $Q > K_{sp}$, solid dissolves until $Q = K_{sp}$.
- Based on solubilities, ions can be selectively removed from solutions.

Precipitation and Separation of Ions

- Consider a mixture of $Zn^{2+}(aq)$ and $Cu^{2+}(aq)$. CuS $(K_{sp}=6\times 10^{-37})$ is less soluble than ZnS $(K_{sp}=2\times 10^{-25})$, CuS will be removed from solution before ZnS.
- As H₂S is added to the green solution, black CuS forms in a colorless solution of Zn²⁺(aq).
- When more H₂S is added, a second precipitate of white ZnS forms.

Precipitation and Separation of Ions

Selective Precipitation of Ions

- Ions can be separated from each other based on their salt solubilities.
- Example: if HCl is added to a solution containing Ag^+ and Cu^{2+} , the silver precipitates (K_{sp} for AgCl is 1.8×10^{-10}) while the Cu^{2+} remains in solution.
- Removal of one metal ion from a solution is called selective precipitation.

The Common-Ion Effect and Solubility

- Calculate the solubility of silver chloride (in g/L) in a 6.5 x 10⁻³ M sodium chloride solution.
- $K_{sp} = 1.6 \times 10^{-10}$
- $[Ag^+][Cl^-] = 1.6 \times 10^{-10}$
- $[Ag^{+}] = 1.6 \times 10^{-10}/6.5 \times 10^{-3} = 2.5 \times 10^{-8} M$
- 2.5 x 10⁻⁸ mole/L x 144.32g/mole = 3.6 x 10⁻⁶ g/L

The Common-Ion Effect and Solubility

- pH ↑ ⇒ [OH-] ↑ & [H+] ↓
- As [H⁺] ↓, Le Chatelier's principle says that the reaction will move towards the right, producing more CO₃²⁻
- $Ca^{2+}(aq) + CO_3^{2-}(aq) = CaCO_3(s)$
- As [CO₃²⁻] ↑, Le Chatelier's principle says that the reaction will move towards the right, producing more CaCO₃(s).
- Thus, CaCO₃ solubility decreases as the pH increases

Test Your Skills

- Calculate the solubility of AgBr (in g/L) in:
 - (a) pure water
 - (b) 0.0010 M NaBr
- $K_{so} = 7.7 \times 10^{-13}$

Complex Ion Equilibria and Solubility

- A complex ion is an ion containing a central metal cation bonded to one or more molecules or ions.
- Most metal cations are transition metals because they have more than one oxidation state.
- The formation constant (K_f) is the equilibrium constant for the complex ion formation.

Complex Ion Equilibria and Solubility

ION	K_{f}	ION	K_{f}
$Ag(NH_3)_2$ +	1.5 x 10 ⁷	HgCl ₄ ²⁻	1.7 x 10 ¹⁶
Ag(CN) ₂ -	1.0 x 10 ²¹	Hgl ₄ ²⁻	3.0×10^{30}
- · · · <u>-</u>		Hg(CN) ₄ ²⁻	2.5 x 10 ⁴¹
Cu(CN) ₄ ²⁻		Co(NH ₃) ₆ ³⁺	5.0×10^{31}
$Cu(NH_3)_4^{2+}$		$Zn(NH_3)_4^{2+}$	2.9 x 10 ⁹
$Cd(CN)_4^{2-}$	7.1 x 10 ¹⁶	I	
Cdl ₄ ²⁻	2.0 x 10 ⁶		

Complex Ion Equilibria and Solubility

- A 0.20 mole quantity of CuSO₄ is added to a liter of 1.20 M NH₃ solution. What is the concentration of Cu²⁺ ions at equilibrium?
- $K_f = [Cu(NH_3)_4^{2+}]/[Cu^{2+}][NH_3]^4 = 5.0 \times 10^{13}$
- $Cu^{2+} + 4NH_3 \Rightarrow Cu(NH_3)_4^{2+}$
- i 0.20 1.20

0

• C -x -4x

+X

• e 0.20-x 1.2-4x

Χ

• $K_f = x/(0.20-x)(1.2-4x)^4 = 5.0 \times 10^{13}$

Complex Ion Equilibria and Solubility

- $x = (0.20-x)(1.2-4x)^4 (5x10^{13}) \approx 0$
- Divide equation by 5x10¹³
- \bullet (0.20-x)(1.2-4x)⁴ = 0
- Solving this equation gives 0.3 and 0.2 M as possible answers, but 0.3 M is unreasonable since it is more than the total Cu²⁺ in the solution.
- Thus [Cu(NH₃)₄²⁺] = 0.2 M and [Cu²⁺] ≈ 0

Test Your Skills

 If 2.50 g of CuSO₄ are dissolved in 9.0 x 10² mL of 0.30 M NH₃, what are the concentrations of Cu²⁺, Cu(NH₃)₄²⁺, and NH₃ at equilibrium?

Factors That Influence Solubility

- pH affects the solubility of salts of weak acids
- Complex ion formation affects the solubility of salts of transition metal cations

Salts of Anions of Weak Acids

- The solubility of salts of anions of weak acids is enhanced by lowering the pH
- Cd(CN)₂(s) \leftrightarrows Cd²⁺(aq) + 2CN⁻(aq) $K_{sp} = 1.0 \times 10^{-8}$
- Addition of acid reduces [CN] in solution, by the reaction
- $H_3O^+(aq) + CN^-(aq) \leftrightarrows HCN(aq) + H_2O(l)$

Salts of Transition Metal Cations

- Transition metal cations form complexes with Lewis bases such as H₂O, NH₃, or OH⁻.
- Formation of complex reduces the concentration of metal ion and increases the solubility of the salt.

Solubility of Amphoteric Species

Amphoteric species, such as Be(OH)₂,
 Al(OH)₃, Sn(OH)₂, Pb(OH)₂, Cr(OH)₃,
 Ni(OH)₂, Cu(OH)₂, Zn(OH)₂, and Cd(OH)₂,
 react with acid or base to form the
 soluble metal ion or complex ions

$$M(OH)_x + xH^+ \rightarrow M^{x+} + xH_2O \ x = 2,3$$

 $M(OH)_x + yOH^- \rightarrow M(OH)_{x+y}^{y-} x = 2,3, y = 1,2$

Solubility of Amphoteric Species

• Hydrated metal ions act as weak acids. Thus, the amphoterism is interrupted:

$$Al(H_2O)_6^{3+}(aq) + OH^{-}(aq) \Longrightarrow Al(H_2O)_5(OH)^{2+}(aq) + H_2O(l)$$

$$Al(H_2O)_5(OH)^{2+}(aq) + OH^{-}(aq) \Longrightarrow Al(H_2O)_4(OH)_2^{+}(aq) + H_2O(l)$$

$$Al(H_2O)_4(OH)_2^{+}(aq) + OH^{-}(aq) \Longrightarrow Al(H_2O)_3(OH)_3(s) + H_2O(l)$$

$$Al(H_2O)_3(OH)_3(s) + OH^{-}(aq) \Longrightarrow Al(H_2O)_2(OH)_4^{-}(aq) + H_2O(l)$$