Lesson18_Assignment

(nahiyanhkhan@gmail.com)

df = pd.DataFrame(data)

Using the dataframe below, answer the following questions.

Out[2]:

	Name	Age	Salary	Department
0	Alice	25	50000	HR
1	Bob	30	60000	Finance
2	Charlie	22	45000	IT
3	David	35	70000	Finance
4	Eve	28	55000	ΙΤ

1) Sort the DataFrame df by the 'Name' column in ascending order.

```
In [3]: df.sort_values('Name')
```

Out[3]:

	Name	Age	Salary	Department
0	Alice	25	50000	HR
1	Bob	30	60000	Finance
2	Charlie	22	45000	IT
3	David	35	70000	Finance
4	Eve	28	55000	IT

2) Sort the DataFrame df by the 'Salary' column in descending order.

```
In [4]: df.sort_values('Salary', ascending=False)
```

Out[4]:

	Name	Age	Salary	Department
3	David	35	70000	Finance
1	Bob	30	60000	Finance
4	Eve	28	55000	IT
0	Alice	25	50000	HR
2	Charlie	22	45000	IT

3) Create a new DataFrame that contains only the rows where 'Age' is greater than 25.

```
In [5]: df_age25 = df[df['Age']>25]
    df_age25
```

Out[5]:

	Name	Age	Salary	Department
1	Bob	30	60000	Finance
3	David	35	70000	Finance
4	Eve	28	55000	IT

4) Create a new DataFrame that contains only the rows where 'Department' is 'Finance'.

Out[6]:

	Name	Age	Salary	Department
1	Bob	30	60000	Finance
3	David	35	70000	Finance

5) Use the .where() method to create a new DataFrame where 'Salary' is greater than 55000, and replace the rest with NaN.

Out[7]:

Department	Salary	Age	Name	
NaN	NaN	NaN	NaN	0
Finance	60000.0	30.0	Bob	1
NaN	NaN	NaN	NaN	2
Finance	70000.0	35.0	David	3
NaN	NaN	NaN	NaN	4

6) Use the .filter() method to filter the columns to include only 'Name' and 'Department'.

```
In [8]: df.filter(items=['Name', 'Department'])
```

Out[8]:

Department	Name	
HR	Alice	0
Finance	Bob	1
IT	Charlie	2
Finance	David	3
IT	Eve	4

7) Calculate the mean age of employees in the DataFrame.

```
In [9]: df['Age'].mean()
Out[9]: 28.0
```

8) Calculate the maximum salary in the DataFrame.

```
In [10]: df['Salary'].max()
Out[10]: 70000
```

9) Create a DataFrame where any rows with missing values (NaN) in any column are removed.

```
In [11]: df.loc[len(df)] = ['Habib', np.nan, 44000, 'IT']
df.loc[len(df)] = ['Sakib', 25, np.nan, 'HR']
df
```

Out[11]:

	Name	Age	Salary	Department
0	Alice	25.0	50000.0	HR
1	Bob	30.0	60000.0	Finance
2	Charlie	22.0	45000.0	IT
3	David	35.0	70000.0	Finance
4	Eve	28.0	55000.0	IT
5	Habib	NaN	44000.0	IT
6	Sakib	25.0	NaN	HR

```
In [12]: df_no_nan = df.copy()
df_no_nan
```

Out[12]:

Department	Salary	Age	Name	
HR	50000.0	25.0	Alice	0
Finance	60000.0	30.0	Bob	1
IT	45000.0	22.0	Charlie	2
Finance	70000.0	35.0	David	3
IT	55000.0	28.0	Eve	4
IT	44000.0	NaN	Habib	5
HR	NaN	25.0	Sakib	6

Out[13]:

Department	Salary	Age	Name	
HR	50000.0	25.0	Alice	0
Finance	60000.0	30.0	Bob	1
IT	45000.0	22.0	Charlie	2
Finance	70000.0	35.0	David	3
ΙΤ	55000.0	28.0	Eve	4

10) Fill the missing values in the 'Salary' column with the mean salary of the remaining employees.

In [14]: df

Out[14]:

Department	Salary	Age	Name	
HR	50000.0	25.0	Alice	0
Finance	60000.0	30.0	Bob	1
IT	45000.0	22.0	Charlie	2
Finance	70000.0	35.0	David	3
IT	55000.0	28.0	Eve	4
ΙΤ	44000.0	NaN	Habib	5
HR	NaN	25.0	Sakib	6

```
In [15]: values = {'Salary':df['Salary'].mean()}
    df.fillna(value=values, inplace=True)
    df
```

Out[15]:

Department	Salary	Age	Name	
HR	50000.0	25.0	Alice	0
Finance	60000.0	30.0	Bob	1
IT	45000.0	22.0	Charlie	2
Finance	70000.0	35.0	David	3
ΙΤ	55000.0	28.0	Eve	4
ΙΤ	44000.0	NaN	Habib	5
HR	54000.0	25.0	Sakib	6