

Markscheme

November 2020

Physics

Standard level

Paper 2

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse suivante : https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales— no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Qı	Question		Answers	Notes	Total
1.	а	i	zero ✓		1
1	а	ii	Blades exert a downward force on the air ✓	Downward direction required for MP1 .	
			air exerts an equal and opposite force on the blades «by Newton's third law» OR air exerts a reaction force on the blades «by Newton's third law» ✓		2
1	а	iii	«lift force/change of momentum in one second» = 1.7 V \checkmark $1.7 \text{ V} = (0.95 + 0.45) \times 9.81 \checkmark$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	Allow 8.2 from $g = 10 \text{ ms}^{-2}$.	3
1	b		vertical force= lift force – weight $\mathbf{OR} = 0.45 \times 9.81$ $\mathbf{OR} = 4.4$ «N» \checkmark acceleration = $\frac{0.45 \times 9.81}{0.95} = 4.6$ « ms ⁻² » \checkmark		2

Qı	Question		Answers	Notes	Total
2.	а		arrow downwards labelled weight/W/mg and arrow upwards labelled friction/F ✓ arrow horizontally to the left labelled «normal» reaction/N ✓	Ignore point of application of the forces but do not allow arrows that do not touch the object. Do not allow horizontal force to be labelled 'centripetal' or R.	2
2	b		See $F = \mu N \textbf{AND} N = mR\omega^2 \checkmark$		2
			«substituting for N» $\mu m\omega^2 R = mg$ \checkmark		

Question	Answers	Notes	Total
2 C	minimum required angular velocity $= \sqrt{\frac{9.81}{0.40 \times 3.5}} = 2.6 \text{ « rad s}^{-1} \text{ » }\checkmark$ actual angular velocity $= \frac{2\pi}{\left(\frac{60}{28}\right)} = 2.9 \text{ « rad s}^{-1} \text{ » }\checkmark$ actual angular velocity is greater than the minimum, so the person does not slide \checkmark ALTERNATIVE 2 Minimum friction force $= mg = \text{«} 9.81 \text{m} \text{»} \checkmark$ Actual friction force $= \mu mR\omega^2 = 0.40 \text{ m} \times 3.5 \left(2\pi \frac{28}{60}\right)^2 = 12.0 \text{ m} \checkmark$ Actual friction force is greater than the minimum frictional force so the person does not slide \checkmark	Allow 2.7 from $g = 10 \text{ ms}^{-2}$.	3

Qı	uesti	ion	Answers	Notes	Total
3.	а	i	«15×30×60» = 27000 «J» ✓		1
3	а	ii	$27 \times 10^{3} = 0.32 \times c \times (290 - 250)$ OR $2100 \checkmark$ J kg ⁻¹ K ⁻¹ OR J kg ⁻¹ ${}^{\circ}$ C ⁻¹ \checkmark	Allow any appropriate unit that is energy mass × temperature	2
3	b		«intermolecular» bonds are formed during freezing ✓		
			bond-forming process releases energy OR «intermolecular» PE decreases «and the difference is transferred as heat» ✓		3 max
			«average random» KE of the molecules does not decrease/change ✓ temperature is related to «average» KE of the molecules «hence unchanged» ✓	To award MP3 or MP4 molecules/particles/atoms must be mentioned.	
3	С		mass of frozen oil $=$ $\frac{27 \times 10^3}{130 \times 10^3}$ $=$ 0.21 «kg» \checkmark unfrozen mass $=$ 0.32 – 0.21 $=$ 0.11 «kg» \checkmark		2

Q	uestic	on	Answers	Notes	Total
4.	а		wavelength = $\frac{340}{850}$ = 0.40 «m» \checkmark path difference = 1.8 «m» \checkmark 1.8 «m» = 4.5 λ OR $\frac{1.8}{0.20}$ = 9 «half-wavelengths» \checkmark waves meet in antiphase «at P» OR	Allow approach where path length is calculated in terms of number of wavelengths; along path A (56.25) and path B (60.75) for MP2, hence path difference 4.5 wavelengths for MP3	4
			destructive interference/superposition «at P» ✓		
4	b		«equally spaced» maxima and minima ✓ a maximum at Q ✓ four «additional» maxima «between P and Q» ✓		2 max
4	С		the amplitude of sound at Q is halved \checkmark «intensity is proportional to amplitude squared hence» $\frac{I_A}{I_0} = \frac{1}{4}$		2

Qı	uesti	ion	Answers	Notes	Total
5.	а		current is not «directly» proportional to the potential difference OR resistance of X is not constant OR resistance of X changes «with current/voltage» ✓		1
5	b	i	voltage across X = 2.3 «V» \checkmark voltage across R «= $4.0-2.3$ » = 1.7 «V» \checkmark resistance of variable resistor «= $\frac{1.7}{0.020}$ » = 85 « Ω » \checkmark ALTERNATIVE 2 overall resistance «= $\frac{4.0}{0.020}$ » = 200 « Ω » \checkmark resistance of X «= $\frac{2.3}{0.020}$ » = 115 « Ω » \checkmark resistance of variable resistor «= $200-115$ » = 85 « Ω » \checkmark		3
5	b	ii	power «= 4.0×0.020» = 0.080 « W » ✓		1

Question		on	Answers	Notes	Total
5	С	i	from 0 to 60 mA ✓		1
5	С		allows zero current through component X / potential divider arrangement ✓ provides greater range «of current through component X» ✓		2

Qu	estic	on	Answers	Total
6.	а	i	energy required to «completely» separate the nucleons OR energy released when a nucleus is formed from its constituent nucleons ✓ Allow protons AND neutrons.	1
6	а	ii	the values «in SI units» would be very small ✓	1
6	а	iii	140×8.29 + 94×8.59 − 235×7.59 OR 184 «MeV » ✓	1
6	b	i	See « energy =»180×10 ⁶ ×1.60×10 ⁻¹⁹ AND « mass =» 235×1.66×10 ⁻²⁷ ✓ 7.4×10 ¹³ « J kg ⁻¹ » ✓	2
6	b	ii	energy produced in one day = $\frac{1.2 \times 10^9 \times 24 \times 3600}{0.36}$ = 2.9×10^{14} « J» \checkmark mass = $\frac{2.9 \times 10^{14}}{7.4 \times 10^{13}}$ = 3.9 « kg» \checkmark	2
6	С	i	Do not allow ⁹⁴ ₃₉ X unless the proton number is indicated.	1
6	С	ii	75 «s» ✓	1

Qu	Question		Answers	Notes	Total
6	С	iii	ALTERNATIVE 1		
			10 min = 8 $t_{1/2}$ \checkmark		
			mass remaining = $1.0 \times \left(\frac{1}{2}\right)^8 = 3.9 \times 10^{-3} \text{ «kg» } \checkmark$		
			ALTERNATIVE 2		2
			decay constant = « $\frac{\ln 2}{75}$ = » 9.24 × 10 ⁻³ « s ⁻¹ » ✓		
			mass remaining = $1.0 \times e^{-9.24 \times 10^{-3} \times 600} = 3.9 \times 10^{-3} \text{ w kg } \checkmark$		