This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) World Intellectual Property Organization International Bureau

1831 MARIA KANTAN MARIA MA

(43) International Publication Date 28 June 2001 (28.06.2001)

(10) International Publication Number WO 01/46697 A2

3/574

Winchester, MA 01890 (US). ELIAS, Josh; 1471 Beacon Street, #4, Brookline, MA 2246 (US).

(21) International Application Number: PCT/US00/35214

(74) Agents: SMITH, DeAnn, F. et al.; Lahive & Cockfield, LLP, 28 State Street, Boston, MA 02109 (US).

(22) International Filing Date:

21 December 2000 (21.12.2000)

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

(26) Publication Language:

English English

NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(30) Priority Data:

(25) Filing Language:

60/171,406 21 December 1999 (21.12.1999) US 60/176,423 14 January 2000 (14.01.2000) US 60/190,471 17 March 2000 (17.03.2000) US US 60/193,482 29 March 2000 (29.03.2000) 60/205,231 15 May 2000 (15.05.2000) US 60/213,236 20 June 2000 (20.06.2000) US HS 60/219,865 20 July 2000 (20.07.2000)

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

PREDICTIVE (71) Applicant: MILLENNIUM MEDICINE, INC. [US/US]; One Kendall Square Bldg. 700, Cambridge, MA 02139 (US).

Published:

(72) Inventors: LILLIE, James; 3 Wild Meadow Lane, Natick, MA 01760 (US). PALERMO, Adam; 42 Holyoke Road. Somerville, MA 02144 (US). WANG, Youzhen; 53 Brookdale Road, Newton, MA 02460 (US). STEIN-MANN, Kathleen; 115 Washington Street, Unit 3B, Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS, KITS, AND METHODS FOR IDENTIFICATION, ASSESSMENT, PREVENTION, AND THER-APY OF BREAST CANCER

(57) Abstract: The invention relates to compositions, kits and methods for detecting, characterizing, preventing, and treating human breast cancers. A variety of markers are provided, wherein changes in the levels of expression of one or more of the markers is correlated with the presence of breast cancer.

- 1 -

COMPOSITIONS, KITS, AND METHODS FOR IDENTIFICATION, ASSESSMENT, PREVENTION, AND THERAPY OF BREAST CANCER

5 RELATED APPLICATIONS

15

20

25

The present application claims priority to U.S. provisional application serial no. 60/171,406, filed on December 21, 1999, U.S. provisional application serial no. 60/176,423, filed on January 14, 2000, U.S. provisional application serial no. 60/190,471, filed on March 17, 2000, U.S. provisional application serial no. 60/193,482, filed on March 29, 2000, U.S. provisional application serial no. 60/205,231, filed on May 15, 2000, U.S. provisional application serial no. 60/213,236, filed on June 20, 2000, U.S. provisional application serial no. 60/219,865, filed on July 20, 2000, all of which are expressly incorporated by reference.

FIELD OF THE INVENTION

The field of the invention is breast cancer, including diagnosis, characterization, management, and therapy of breast cancer.

BACKGROUND OF THE INVENTION

The increased number of cancer cases reported in the United States, and, indeed, around the world, is a major concern. Currently there are only a handful of treatments available for specific types of cancer, and these provide no absolute guarantee of success. In order to be most effective, these treatments require not only an early detection of the malignancy, but a reliable assessment of the severity of the malignancy.

The incidence of breast cancer, a leading cause of death in women, has been gradually increasing in the United States over the last thirty years. In 1997, it was estimated that 181,000 new cases were reported in the U.S., and that 44,000 people would die of breast cancer (Parker et al, 1997, CA Cancer J. Clin. 47:5-27; Chu et al, 1996, J. Nat. Cancer Inst. 88:1571-1579). While the pathogenesis of breast cancer is unclear, transformation of normal breast epithelium to a malignant phenotype may be the result of genetic factors, especially in women under 30 (Miki et al., 1994, Science,

- 2 -

266:66-71). The discovery and characterization of *BRCA1* and *BRCA2* has recently expanded our knowledge of genetic factors which can contribute to familial breast cancer. Germ-line mutations within these two loci are associated with a 50 to 85% lifetime risk of breast and/or ovarian cancer (Casey, 1997, *Curr. Opin. Oncol.* 9:88-93;

Marcus et al, 1996, Cancer 77:697-709). However, it is likely that other, non-genetic factors also have a significant effect on the etiology of the disease. Regardless of its origin, breast cancer morbidity and mortality increases significantly if it is not detected early in its progression. Thus, considerable effort has focused on the early detection of cellular transformation and tumor formation in breast tissue.

10

30

Currently, the principal manner of identifying breast cancer is through detection of the presence of dense tumorous tissue. This may be accomplished to varying degrees of effectiveness by direct examination of the outside of the breast, or through mammography or other X-ray imaging methods (Jatoi, 1999, Am. J. Surg. 177:518-524). The latter approach is not without considerable cost, however. Every time a mammogram is taken, the patient incurs a small risk of having a breast tumor induced by the ionizing properties of the radiation used during the test. In addition, the process is expensive and the subjective interpretations of a technician can lead to imprecision, e.g., one study showed major clinical disagreements for about one-third of a set of mammograms that were interpreted individually by a surveyed group of radiologists. Moreover, many women find that undergoing a mammogram is a painful experience. Accordingly, the National Cancer Institute has not recommended mammograms for women under fifty years of age, since this group is not as likely to develop breast cancers as are older women. It is compelling to note, however, that while only about 22% of breast cancers occur in women under fifty, data suggests that breast cancer is more aggressive in pre-menopausal women.

It would therefore be beneficial to provide specific methods and reagents for the diagnosis, staging, prognosis, monitoring, and treatment of diseases associated with breast cancer, or to indicate a predisposition to such for preventative measures.

SUMMARY OF THE INVENTION

The invention relates to a method of assessing whether a patient is afflicted with breast cancer. This method comprises the step of comparing the level of expression of a

marker in a patient sample, wherein the marker is listed in Tables 1-21 and the normal level of expression of the marker in a control, e.g., a sample from a patient without breast cancer. A significant difference between the level of expression of the marker in the patient sample and the normal level is an indication that the patient is afflicted with breast cancer. In a preferred embodiment, the marker is listed in Tables 2-5 and 8-9. Preferably, a protein corresponding to the marker is a secreted protein or is predicted to correspond to a secreted protein (see, e.g. Tables 6 and 7) Alternatively, the marker can correspond to a protein having an extracellular portion, to one which is normally expressed in breast tissue at a detectable level, or both.

In one method, the marker(s) are preferably selected such that the positive predictive value of the method is at least about 10%. Also preferred are embodiments of the method wherein the marker is over- or under-expressed by at least two-fold in at least about 20% of stage 0 breast cancer patients, stage I breast cancer patients, stage IIA breast cancer patients, stage IIIB breast cancer patients, stage IIIB breast cancer patients, grade I breast cancer patients, grade I breast cancer patients, grade II breast cancer patients, malignant breast cancer patients, ductal carcinoma breast cancer patients, and lobular carcinoma breast cancer patients.

10

30

In one embodiment of the methods of the present invention, the patient sample is a breast tissue-associated body fluid. Such fluids include, for example, blood fluids, lymph and cystic fluids, as well as nipple aspirates. In another embodiment, the sample comprises cells obtained from the patient. In another embodiment, the patient sample is in vivo.

In accordance with the methods of the present invention, the level of expression of the marker in a sample can be assessed, for example, by detecting the presence in the sample of:

- o a protein corresponding to the marker or a fragment of the protein (e.g. using a reagent, such as an antibody, an antibody derivative, or an antibody fragment, which binds specifically with the protein or fragment)
- a metabolite which is produced directly (i.e., catalyzed) or indirectly by a protein corresponding to the marker

5

30

-4-

o a transcribed polynucleotide (e.g. an mRNA or a cDNA), or fragment thereof, having at least a portion with which the marker is substantially homologous (e.g. by contacting a mixture of transcribed polynucleotides obtained from the sample with a substrate having one or more of the markers listed in Table 1-21 fixed thereto at selected positions)

 a transcribed polynucleotide or fragment thereof, wherein the polynucleotide anneals with the marker under stringent hybridization conditions.

The methods of the present invention are particularly useful for patients with an identified breast mass or symptoms associated with breast cancer. The methods of the present invention can also be of particular use with patients having an enhanced risk of developing breast cancer (e.g., patients having a familial history of breast cancer, patients identified as having a mutant oncogene, and patients at least about 50 years of age). The methods of the present invention may further be of particular use in monitoring the efficacy of treatment of a breast cancer patient (e.g. the efficacy of chemotherapy).

The methods of the present invention may be performed using a plurality (e.g. 2, 3, 5, or 10 or more) of markers. According to a method involving a plurality of markers, the level of expression in the sample of each of a plurality of markers independently selected from the markers listed in Tables 1-21 is compared with the normal level of expression of each of the plurality of markers in samples of the same type obtained from control humans not afflicted with breast cancer. A significantly altered level of expression of one or more of the markers listed in Tables 1-21 in the sample, relative to the corresponding normal levels, is an indication that the patient is afflicted with breast cancer. The markers of Tables 1-21 may also be used in combination with known breast cancer markers in the methods of the present invention.

In a preferred method of assessing whether a patient is afflicted with breast cancer (e.g., new detection ("screening"), detection of recurrence, reflex testing), the method comprises comparing:

a) the level of expression of a marker in a patient sample, wherein at least one marker is selected from the markers of Tables 1-21, and

WO 01/46697

5

10

25

30

b) the normal level of expression of the marker in a control non-breast cancer sample.

A significant difference between the level of expression of the marker in the patient sample and the normal level is an indication that the patient is afflicted with breast cancer.

The methods of the present invention further include a method of assessing the efficacy of a test compound for inhibiting breast cancer in a patient. This method comprises comparing:

a) expression of a marker in a first sample obtained from the patient and maintained in the presence of the test compound, wherein the marker is selected from the group consisting of the markers listed Tables 1-21, and b) expression of the marker in a second sample obtained from the patient and maintained in the absence of the test compound.

A significantly altered level of expression of the marker in the first sample, relative to the second sample, is an indication that the test compound is efficacious for inhibiting breast cancer in the patient. For example, the first and second samples can be portions of a single sample obtained from the patient or portions of pooled samples obtained from the patient.

The invention further relates to a method of assessing the efficacy of a therapy for inhibiting breast cancer in a patient. This method comprises comparing:

- a) expression of a marker in a first sample obtained from the patient prior to providing at least a portion of the therapy to the patient, wherein the marker is selected from the group consisting of the markers listed in Tables 1-21, and
- b) expression of the marker in a second sample obtained from the patient following provision of the portion of the therapy.

A significantly altered level of expression of the marker in the second sample, relative to the first sample, is an indication that the therapy is efficacious for inhibiting breast cancer in the patient.

It will be appreciated that in these methods the "therapy" may be any therapy for treating breast cancer including, but not limited to, chemotherapy, radiation therapy and surgical removal of tissue, e.g., a breast tumor. Thus, the methods of the invention may

WO 01/46697

5

15

20

25

30

be used to evaluate a patient before, during and after therapy, for example, to evaluate the reduction in tumor burden.

The present invention therefore further comprises a method for monitoring the progression of breast cancer in a patient, the method comprising:

- a) detecting in a patient sample at a first time point, the expression of a marker, wherein the marker is selected from the group consisting of the markers listed in Tables 1-21;
 - b) repeating step a) at a subsequent time point; and
- c) comparing the level of expression detected in steps a) and b), and therefrom
 monitoring the progression of breast cancer in the patient.

The invention also includes a method of selecting a composition for inhibiting breast cancer in a patient. This method comprises the steps of:

- a) obtaining a sample comprising cancer cells from the patient;
 - b) separately maintaining aliquots of the sample in the presence of a plurality of test compositions,
 - c) comparing expression of a marker listed in Tables 1-21 in each of the aliquots; and
 - d) selecting one of the test compositions which alters a lower level of expression of the marker in the aliquot containing that test composition, relative to other test compositions.

In addition, the invention includes a method of inhibiting breast cancer in a patient. This method comprises the steps of:

- a) obtaining a sample comprising cancer cells from the patient;
 - b) separately maintaining aliquots of the sample in the presence of a plurality of test compositions;
 - c) comparing expression of a marker listed in Tables 1-21 in each of the aliquots; and
 - d) administering to the patient at least one of the test compositions which induces an altered level of expression of the marker in the aliquot containing that test composition, relative to other test compositions.

- 7 -

The invention also includes a kit for assessing whether a patient is afflicted with breast cancer. This kit comprises reagents for assessing expression of a marker listed in Tables 1-21.

In another aspect, the invention relates to a kit for assessing the suitability of each of a plurality of compounds for inhibiting breast cancer in a patient. The kit comprises a reagent for assessing expression of a marker listed in Tables 1-21, and may also comprise a plurality of compounds.

In another aspect, the invention relates to a kit for assessing the presence of breast cancer cells. This kit comprises an antibody, wherein the antibody binds specifically with a protein corresponding to a marker listed in Tables 1-21. The kit may also comprise a plurality of antibodies, wherein the plurality binds specifically with a protein corresponding to a different marker which is also listed in Tables 1-21.

The invention also includes a kit for assessing the presence of breast cancer cells, wherein the kit comprises a nucleic acid probe. The probe binds specifically with a transcribed polynucleotide corresponding to a marker listed in Tables 1-21. The kit may also comprise a plurality of probes, wherein each of the probes binds specifically with a transcribed polynucleotide corresponding to a different marker listed in Tables 1-21.

The invention further relates to a method of making an isolated hybridoma which produces an antibody useful for assessing whether a patient is afflicted with breast cancer. The method comprises isolating a protein or protein fragment corresponding to a marker listed in Tables 1-21, immunizing a mammal using the isolated protein or protein fragment, isolating splenocytes from the immunized mammal, fusing the isolated splenocytes with an immortalized cell line to form hybridomas, and screening individual hybridomas for production of an antibody which specifically binds with the protein or protein fragment to isolate the hybridoma. The invention also includes an antibody produced by this method.

The invention further includes a method of assessing the breast carcinogenic or irregular growth promoting potential of a test compound. This method comprises the steps of:

- a) maintaining separate aliquots of breast cells in the presence and absence of the test compound; and
- b) comparing expression of a marker in each of the aliquots.

25

30

- 8 -

The marker is selected from those listed in Tables 1-21. A significantly altered level of expression of the marker in the aliquot maintained in the presence of (or exposed to) the test compound, relative to the aliquot maintained in the absence of the test compound, is an indication that the test compound possesses breast carcinogenic or irregular growth promoting potential.

Additionally, the invention includes a kit for assessing the breast carcinogenic potential of a test compound. The kit comprises breast cells and a reagent for assessing expression of a marker in each of the aliquots. The marker is selected from those listed in Tables 1-21.

The invention further includes a method of treating a patient afflicted with breast cancer, comprising providing to cells of the patient an antisense oligonucleotide complementary to a polynucleotide corresponding to a marker listed in Tables 1-21.

10

20

25

30

The invention includes a method of inhibiting breast cancer in a patient at risk for developing breast cancer. This method comprises inhibiting or increasing expression or overexpression of a gene corresponding to a marker listed in Tables 1-21 (depending on whether the gene is over-expressed or under-expressed in breast cancer cells).

It will be appreciated that the methods and kits of the present invention may also include known cancer markers including known breast cancer markers. It will further be appreciated that the methods and kits may be used to identify cancers other than breast cancer.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to newly discovered correlation between expression of certain markers and the cancerous state of breast cells. It has been discovered that the level of expression of individual markers and combinations of markers described herein correlates with the presence of breast cancer in a patient. Methods are provided for detecting the presence of breast cancer in a sample, the absence of breast cancer in a sample, the stage of breast cancer, and other characteristics of breast cancer that are relevant to prevention, diagnosis, characterization, and therapy of breast cancer in a patient.

- 9 -

Definitions

As used herein, each of the following terms has the meaning associated with it in this section.

The articles "a" and "an" are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.

A "marker" is a naturally-occurring polymer corresponding to at least one of the nucleic acids listed in Tables 1-21. For example, markers include, without limitation, sense and anti-sense strands of genomic DNA (*i.e.* including any introns occurring therein), RNA generated by transcription of genomic DNA (*i.e.* prior to splicing), RNA generated by splicing of RNA transcribed from genomic DNA, and proteins generated by translation of spliced RNA (*e.g.* including proteins both before and after cleavage of normally cleaved regions such as transmembrane signal sequences). As used herein, "marker" may also include a cDNA made by reverse transcription of an RNA generated by transcription of genomic DNA (including spliced RNA).

As used herein a "polynucleotide corresponds to" another (a first) polynucleotide if it is related to the first polynucleotide by any of the following relationships: 1) The second polynucleotide comprises the first polynucleotide and the second polynucleotide encodes a gene product. 2) The second polynucleotide is 5' or 3' to the first polynucleotide in cDNA, RNA, genomic DNA, or fragment of any of these polynucleotides. For example, a second polynucleotide may be fragment of a gene that includes the first and second polynucleotides. The first and second polynucleotides are related in that they are components of the gene coding for a gene product, such as a protein or antibody. However, it is not necessary that the second polynucleotide comprises or overlaps with the first polynucleotide to be encompassed within the definition of "corresponding to" as used herein. For example, the first polynucleotide may be a fragment of a 3' untranslated region of the second polynucleotide. The first and second polynucleotide may be fragments of a gene coding for a gene product. The second polynucleotide may be an exon of the gene while the first polynucleotide may be an intron of the gene. 3) The second polynucleotide is the complement of the first polynucleotide.

The term "probe" refers to any molecule which is capable of selectively binding to a specifically intended target molecule, for example a marker of the invention. Probes can be either synthesized by one skilled in the art, or derived from appropriate biological preparations. For purposes of detection of the target molecule, probes may be specifically designed to be labeled, as described herein. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic monomers.

A "breast-associated" body fluid is a fluid which, when in the body of a patient, contacts or passes through breast cells or into which cells, nucleic acids or proteins shed from breast cells are capable of passing. Exemplary breast-associated body fluids include blood fluids, lymph, cystic fluid, urine and nipple aspirates.

10

20

The "normal" level of expression of a marker is the level of expression of the marker in breast cells of a patient, e.g. a human, not afflicted with breast cancer.

"Over-expression" and "under-expression" of a marker refer to expression of the marker of a patient at a greater or lesser level, respectively, than normal level of expression of the marker (e.g. at least two-fold greater or lesser level).

As used herein, the term "promoter/regulatory sequence" means a nucleic acid sequence which is required for expression of a gene product operably linked to the promoter/regulatory sequence. In some instances, this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements which are required for expression of the gene product. The promoter/regulatory sequence may, for example, be one which expresses the gene product in a tissue-specific manner.

A "constitutive" promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a living human cell under most or all physiological conditions of the cell.

An "inducible" promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a living human cell substantially only when an inducer which corresponds to the promoter is present in the cell.

5

10

20

25

- 11 -

A "tissue-specific" promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a living human cell substantially only if the cell is a cell of the tissue type corresponding to the promoter.

A "transcribed polynucleotide" is a polynucleotide (e.g. an RNA, a cDNA, or an analog of one of an RNA or cDNA) which is complementary to or homologous with all or a portion of a mature RNA made by transcription of a genomic DNA corresponding to a marker of the invention and normal post-transcriptional processing (e.g. splicing), if any, of the transcript.

"Complementary" refers to the broad concept of sequence complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. It is known that an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds ("base pairing") with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil. Similarly, it is known that a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparallel to the first strand if the residue is guanine. A first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion. More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.

"Homologous" as used herein, refers to nucleotide sequence similarity between two regions of the same nucleic acid strand or between regions of two different nucleic acid strands. When a nucleotide residue position in both regions is occupied by the same nucleotide residue, then the regions are homologous at that position. A first region is homologous to a second region if at least one nucleotide residue position of each region is occupied by the same residue. Homology between two regions is expressed in

terms of the proportion of nucleotide residue positions of the two regions that are occupied by the same nucleotide residue. By way of example, a region having the nucleotide sequence 5'-ATTGCC-3' and a region having the nucleotide sequence 5'-TATGGC-3' share 50% homology. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residue positions of each of the portions are occupied by the same nucleotide residue. More preferably, all nucleotide residue positions of each of the portions are occupied by the same nucleotide residue.

A marker is "fixed" to a substrate if it is covalently or non-covalently associated with the substrate such the substrate can be rinsed with a fluid (e.g. standard saline citrate, pH 7.4) without a substantial fraction of the marker dissociating from the substrate.

10

25

As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g. encodes a natural protein).

Expression of a marker in a patient is "significantly" higher or lower than the normal level of expression of a marker if the level of expression of the marker is greater or less, respectively, than the normal level by an amount greater than the standard error of the assay employed to assess expression, and preferably at least twice, and more preferably three, four, five or ten times that amount. Alternately, expression of the marker in the patient can be considered "significantly" higher or lower than the normal level of expression if the level of expression is at least about two, and preferably at least about three, four, or five times, higher or lower, respectively, than the normal level of expression of the marker.

Breast cancer is "inhibited" if at least one symptom of the cancer is alleviated, terminated, slowed, or prevented. As used herein, breast cancer is also "inhibited" if recurrence or metastasis of the cancer is reduced, slowed, delayed, or prevented.

A kit is any manufacture (e.g. a package or container) comprising at least one reagent, e.g. a probe, for specifically detecting a marker of the invention, the manufacture being promoted, distributed, or sold as a unit for performing the methods of the present invention.

Description

15

The present invention is based, in part, on identification of markers which are expressed at a different level in breast cancer cells than they are in normal (i.e. non-cancerous) breast cells. The markers of the invention correspond to DNA, RNA, and polypeptide molecules which can be detected in one or both of normal and cancerous breast cells. The presence, absence, or level of expression of one or more of these markers in breast cells is herein correlated with the cancerous state of the tissue. The invention thus includes compositions, kits, and methods for assessing the cancerous state of breast cells (e.g. cells obtained from a human, cultured human cells, archived or preserved human cells and in vivo cells).

- 13 -

The compositions, kits, and methods of the invention have the following uses, among others:

- 1) assessing whether a patient is afflicted with breast cancer;
- assessing the stage of breast cancer in a human patient;
 - 3) assessing the grade of breast cancer in a patient,
 - 4) assessing the benign or malignant nature of breast cancer in a patient;
 - 5) assessing the histological type of neoplasm (e.g. ductal, lobular, etc.) associated with breast cancer in a patient;
- 20 6) making an isolated hybridoma which produces an antibody useful for assessing whether a patient is afflicted with breast cancer;
 - 7) assessing the presence of breast cancer cells;
 - assessing the efficacy of one or more test compounds for inhibiting breast cancer in a patient;
- assessing the efficacy of a therapy for inhibiting breast cancer in a patient;
 - 10) monitoring the progression of breast cancer in a patient;
 - 11) selecting a composition or therapy for inhibiting breast cancer in a patient;
- 30 12) treating a patient afflicted with breast cancer;
 - 13) inhibiting breast cancer in a patient;
 - 14) assessing the carcinogenic potential of a test compound; and

- 14 -

15) inhibiting breast cancer in a patient at risk for developing breast cancer.

The invention thus includes a method of assessing whether a patient is afflicted with breast cancer. This method comprises comparing the level of expression of a marker in a patient sample and the normal level of expression of the marker in a control, e.g., a non-breast cancer sample. A significant difference between the level of expression of the marker in the patient sample and the normal level is an indication that the patient is afflicted with breast cancer. The marker is selected from the group consisting of the markers listed in Tables 1-21, which are differentially expressed in breast cancer cells. Although one or more molecules corresponding to the markers listed in Tables 1-21 may have been described by others, the significance of the level of expression of these markers with regard to the cancerous state of breast cells has not previously been recognized.

15

30

The invention also encompasses polynucleotides which differ from that of the polynucleotides described above, but which produce the same phenotypic effect, e.g. allelic variants. These altered, but phenotypically equivalent polynucleotides are referred to "equivalent nucleic acids." This invention also encompasses polynucleotides characterized by changes in non-coding regions that do not alter the polypeptide produced therefrom when compared to the polynucleotide herein. This invention further encompasses polynucleotides, which hybridize to the polynucleotides of the subject invention under conditions of moderate or high stringency. Alternatively, the polynucleotides are at least 85%, or at least 90%, or more preferably, greater or equal to 95% identical as determined by a sequence alignment program when run under default parameters.

Table 1 lists markers, expression of which was increased by at least five-fold in at least:

- (a) one of eleven breast cancer cell cultures tested, relative to its expression in six normal (i.e. non-cancerous) human epithelial mammary cell lines (HMEC); or
- (b) one of fifteen different breast cancer tissue samples relative to expression in seven normal breast tissue samples.

(c) The fifteen cancer tissue samples include: (i) five invasive lobular carcinomas (ILC), (ii) five invasive ductal carcinomas (IDC), and (iii) five ductal carcinoma in situ (DCIS).

Table 2 lists markers, expression of which was increased by at least 5-fold in at least 3 of the 11 breast cancer cell cultures relative to its expression in normal (i.e. non-cancerous) mammary epithelial cell lines.

Table 3 lists markers, expression of which was increased by at least 2-fold in at least 3 of the 5 ILC breast cancer tissue samples relative to its expression in seven non-cancerous breast tissue samples.

Table 4 lists markers, expression of which was increased by at least 2-fold in at least 3 of the 5 IDC breast cancer tissue samples relative to its expression in seven non-cancerous breast tissue samples.

Table 5 lists markers, expression of which was increased by at least 2-fold in at least 3 of the 5 DCIS breast cancer tissue samples relative to its expression in seven non-cancerous breast tissue samples.

Table 6 lists a set of markers, expression of which was

10

15

20

25

30

- (a) increased by at least 10-fold in at least 1 of the 11 breast cancer cell cultures and which are predicted or known to code for products that are secreted based upon protein profiling analysis, sequence analysis and/or literature references, or
- (b) expression of which was increased at least 5-fold in 1 of the 15 breast cancer tissue samples and which are predicted or known to code for products that are secreted based upon protein profiling analysis, sequence analysis and/or literature references.

Table 7 lists a set of preferred markers, expression of which was increased by at least 4.5 fold at least one of each of the three types of breast cancer tissue samples used (ILC, IDC, and DCIS), and which are predicted or known to code for products that are secreted based upon proteomic studies, sequence analysis and/or literature references.

Table 8 lists markers (SEQ ID NOS 1-6540) identified through subtracted library experiments described herein. The library source for SEQ ID NOS: 1-1773 was breast cancer cell cultures (ascites and pleural fluid cultures) versus HMEC. The library

5

10

15

25

30

source for SEQ ID NOS: 1774-3012 was breast cancer tissue (ILC) versus breast normal tissue. The library source for SEQ ID NOS: 3013-4982 was breast cancer tissue (IDC) versus breast normal tissue. The library source for SEQ ID NOS: 4983-6540 was breast cancer tissue (DCIS) versus breast normal tissue.

Markers of the present invention were also identified from cells obtained from breast cancer tissues exhibiting varying clinical outcomes and degrees of aggressiveness. Table 9 lists the markers that were identified by subtractive library experiments. Table 9-1 is a key for the sequences of Table 9 which indicates in which databases the sequences of Table 9 were identified. Tables 10-17 lists the markers that were identified through transcriptional profiling experiments.

Table 18 and Table 19 list markers which were identified based on a correlation between the transcription profiles of the markers and the transcription profiles of one or more of 29 previously known markers in cancer cell lines or tumors. These 29 known cancer markers represent markers which are indicative of cancer in general and/or breast cancer in particular.

The markers listed in Table 18 have a correlation coefficient which is greater than 0.8 or less than -0.8 and the markers listed in Table 19 have a correlation coefficient of at least 0.64. The correlation coefficients were determined by comparing the transcription profiles (expression patterns) of the known cancer markers in the cancer cell lines to the transcription profiles (expression patterns) of the marker genes in the cancer cell lines. The greater the correlation coefficient's magnitude (positive or negative), the stronger the likelihood that the two markers (e.g., the marker of the present invention and the known cancer marker) are similarly regulated (e.g., in the same metabolic or signaling pathways, or located on the same region of a chromosome). Therefore, based on the correlation coefficients, it is predicted that the markers listed in Table 18 and Table 19 and the known cancer markers are similarly regulated.

Table 20 correlates IMAGE clone ID numbers from the tables of the present invention with corresponding GenBank accession numbers. Table 21 correlates the GenBank accession numbers with GenBank GI numbers.

Any marker or combination of markers listed in Tables 1-21, as well as any known markers in combination with the markers set forth in Tables 1-21, may be used in the compositions, kits, and methods of the present invention. Use of markers listed in

WO 01/46697

20

Tables 2-5 and 8-9 are preferred, as well as the use of the markers listed in Tables 6 and 7. In general, it is preferable to use markers for which the difference between the level of expression of the marker in breast cancer cells and the level of expression of the same marker in normal breast cells is as great as possible. Although this difference can be as small as the limit of detection of the method for assessing expression of the marker, it is preferred that the difference be at least greater than the standard error of the assessment method, and preferably a difference of at least 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, 20-, 25-, 100-, 500-, 1000-fold or greater.

It is recognized that certain markers correspond to proteins which are secreted from breast cells (i.e. one or both of normal and cancerous cells) to the extracellular space surrounding the cells (see, e.g. Tables 6 and 7). These markers are preferably used in certain embodiments of the compositions, kits, and methods of the invention, owing to the fact that the protein corresponding to each of these markers can be detected in a breast-associated body fluid sample, which may be more easily collected from a human patient than a tissue biopsy sample. In addition, preferred *in vivo* techniques for detection of a protein corresponding to a marker of the invention include introducing into a subject a labeled antibody directed against the protein. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

Although not every marker corresponding to a secreted protein is indicated as such in the Tables herein, it is a simple matter for the skilled artisan to determine whether any particular marker corresponds to a secreted protein. In order to make this determination, the protein corresponding to a marker is expressed in a test cell (e.g. a cell of a breast cell line), extracellular fluid is collected, and the presence or absence of the protein in the extracellular fluid is assessed (e.g. using a labeled antibody which binds specifically with the protein).

The following is an example of a method which can be used to detect secretion of a protein corresponding to a marker of the invention. About 8 x 10⁵ 293T cells are incubated at 37°C in wells containing growth medium (Dulbecco's modified Eagle's medium {DMEM} supplemented with 10% fetal bovine serum) under a 5% (v/v) CO₂, 95% air atmosphere to about 60-70% confluence. The cells are then transfected using a standard transfection mixture comprising 2 micrograms of DNA comprising an

expression vector encoding the protein and 10 microliters of LipofectAMINETM (GIBCO/BRL Catalog no. 18342-012) per well. The transfection mixture is maintained for about 5 hours, and then replaced with fresh growth medium and maintained in an air atmosphere. Each well is gently rinsed twice with DMEM which does not contain methionine or cysteine (DMEM-MC; ICN Catalog no. 16-424-54). About 1 milliliter of DMEM-MC and about 50 microcuries of Trans-³⁵STM reagent (ICN Catalog no. 51006) are added to each well. The wells are maintained under the 5% CO₂ atmosphere described above and incubated at 37°C for a selected period. Following incubation, 150 microliters of conditioned medium is removed and centrifuged to remove floating cells and debris. The presence of the protein in the supernatant is an indication that the protein is secreted.

Examples of breast-associated body fluids include blood fluids (e.g. whole blood, blood serum, blood having platelets removed therefrom, etc.), lymph, ascitic fluid, cystic fluid, urine and nipple aspirates. In these embodiments, the level of expression of the marker can be assessed by assessing the amount (e.g. absolute amount or concentration) of the marker in a breast-associated body fluid obtained from a patient. The fluid can, of course, be subjected to a variety of well-known post-collection preparative and storage techniques (e.g. storage, freezing, ultrafiltration, concentration, evaporation, centrifugation, etc.) prior to assessing the amount of the marker in the fluid.

20

Many breast-associated body fluids (*i.e.* usually excluding urine) can have breast cells therein, particularly when the breast cells are cancerous, and, more particularly, when the breast cancer is metastasizing. Thus, the compositions, kits, and methods of the invention can be used to detect expression of markers corresponding to proteins having at least one portion which is displayed on the surface of cells which express it. Although not every protein having at least one cell-surface portion is indicated in the Tables, it is a simple matter for the skilled artisan to determine whether the protein corresponding to any particular marker comprises a cell-surface protein. For example, immunological methods may be used to detect such proteins on whole cells, or well known computer-based sequence analysis methods (*e.g.* the SIGNALP program; Nielsen *et al.*, 1997, *Protein Engineering* 10:1-6) may be used to predict the presence of at least one extracellular domain (*i.e.* including both secreted proteins and proteins having at least one cell-surface domain). Expression of a marker corresponding to a protein

having at least one portion which is displayed on the surface of a cell which expresses it may be detected without necessarily lysing the cell (e.g. using a labeled antibody which binds specifically with a cell-surface domain of the protein).

Expression of a marker of the invention may be assessed by any of a wide variety of well known methods for detecting expression of a transcribed molecule or protein. Non-limiting examples of such methods include immunological methods for detection of secreted, cell-surface, cytoplasmic, or nuclear proteins, protein purification methods, protein function or activity assays, nucleic acid hybridization methods, nucleic acid reverse transcription methods, and nucleic acid amplification methods.

10

20

In a preferred embodiment, expression of a marker is assessed using an antibody (e.g. a radio-labeled, chromophore-labeled, fluorophore-labeled, or enzyme-labeled antibody), an antibody derivative (e.g. an antibody conjugated with a substrate or with the protein or ligand of a protein-ligand pair {e.g. biotin-streptavidin}), or an antibody fragment (e.g. a single-chain antibody, an isolated antibody hypervariable domain, etc.) which binds specifically with a protein corresponding to the marker, such as the protein encoded by the open reading frame corresponding to the marker or such a protein which has undergone all or a portion of its normal post-translational modification.

In another preferred embodiment, expression of a marker is assessed by preparing mRNA/cDNA (i.e. a transcribed polynucleotide) from cells in a patient sample, and by hybridizing the mRNA/cDNA with a reference polynucleotide which is a complement of a polynucleotide comprising the marker, and fragments thereof. cDNA can, optionally, be amplified using any of a variety of polymerase chain reaction methods prior to hybridization with the reference polynucleotide; preferably, it is not amplified. Expression of one or more markers can likewise be detected using quantitative PCR to assess the level of expression of the marker(s). Alternatively, any of the many known methods of detecting mutations or variants (e.g. single nucleotide polymorphisms, deletions, etc.) of a marker of the invention may be used to detect occurrence of a marker in a patient.

In a related embodiment, a mixture of transcribed polynucleotides obtained from the sample is contacted with a substrate having fixed thereto a polynucleotide complementary to or homologous with at least a portion (e.g. at least 7, 10, 15, 20, 25, 30, 40, 50, 100, 500, or more nucleotide residues) of a marker of the invention. If

polynucleotides complementary to or homologous with are differentially detectable on the substrate (e.g. detectable using different chromophores or fluorophores, or fixed to different selected positions), then the levels of expression of a plurality of markers can be assessed simultaneously using a single substrate (e.g. a "gene chip" microarray of polynucleotides fixed at selected positions). When a method of assessing marker expression is used which involves hybridization of one nucleic acid with another, it is preferred that the hybridization be performed under stringent hybridization conditions.

Because the compositions, kits, and methods of the invention rely on detection of a difference in expression levels of one or more markers of the invention, it is preferable that the level of expression of the marker is significantly greater than the minimum detection limit of the method used to assess expression in at least one of normal breast cells and cancerous breast cells.

It is understood that by routine screening of additional patient samples using one or more of the markers of the invention, it will be realized that certain of the markers are over- or under-expressed in cancers of various types, including specific breast cancers, as well as other cancers such as ovarian cancer, cervical cancer, etc. For example, it will be confirmed that some of the markers of the invention are over- or under-expressed in most (i.e. 50% or more) or substantially all (i.e. 80% or more) of breast cancer. Furthermore, it will be confirmed that certain of the markers of the invention are associated with breast cancer of various stages (i.e. stage 0, I, II, II, and IV breast cancers, as well as subclassifications IIA, IIB, IIIA, and IIIB, using the FIGO Stage Grouping system for primary carcinoma of the breast; (see Breast, In: American Joint Committee on Cancer: AJCC Cancer Staging Manual. Lippincott-Raven Publishers, 5th ed., 1997, pp 171-180), of various histologic subtypes (e.g. serous, mucinous, endometroid, and clear cell subtypes, as well as subclassifications and alternate classifications adenocarcinoma, papillary adenocarcinoma, papillary cystadenocarcinoma, surface papillary carcinoma, malignant adenofibroma, cystadenofibroma, adenocarcinoma, cystadenocarcinoma, adenoacanthoma, endometrioid stromal sarcoma, mesodermal (Müllerian) mixed tumor, mesonephroid tumor, malignant carcinoma, Brenner tumor, mixed epithelial tumor, and undifferentiated carcinoma, using the WHO/FIGO system for classification of malignant breast tumors; Scully, Atlas of Tumor Pathology, 3d series, Washington DC), and

- 21 -

various grades (i.e. grade I {well differentiated}, grade II {moderately well differentiated}, and grade III {poorly differentiated from surrounding normal tissue})). In addition, as a greater number of patient samples are assessed for expression of the markers of the invention and the outcomes of the individual patients from whom the samples were obtained are correlated, it will also be confirmed that altered expression of certain of the markers of the invention are strongly correlated with malignant cancers and that altered expression of other markers of the invention are strongly correlated with benign tumors. The compositions, kits, and methods of the invention are thus useful for characterizing one or more of the stage, grade, histological type, and benign/malignant nature of breast cancer in patients. In addition, these compositions, kits, and methods can be used to detect and differentiate lobular and ductal carcinoma breast cancers.

When the compositions, kits, and methods of the invention are used for characterizing one or more of the stage, grade, histological type, and benign/malignant nature of breast cancer in a patient, it is preferred that the marker or panel of markers of the invention is selected such that a positive result is obtained in at least about 20%, and preferably at least about 40%, 60%, or 80%, and more preferably in substantially all patients afflicted with an breast cancer of the corresponding stage, grade, histological type, or benign/malignant nature. Preferably, the marker or panel of markers of the invention is selected such that a PPV of greater than about 10% is obtained for the general population (more preferably coupled with an assay specificity greater than 99.5%).

When a plurality of markers of the invention are used in the compositions, kits, and methods of the invention, the level of expression of each marker in a patient sample can be compared with the normal level of expression of each of the plurality of markers in non-cancerous samples of the same type, either in a single reaction mixture (*i.e.* using reagents, such as different fluorescent probes, for each marker) or in individual reaction mixtures corresponding to one or more of the markers. In one embodiment, a significantly enhanced level of expression of more than one of the plurality of markers in the sample, relative to the corresponding normal levels, is an indication that the patient is afflicted with breast cancer. In another embodiment, a significantly lower level of expression in the sample of each of the plurality of markers, relative to the corresponding normal levels, is an indication that the patient is afflicted with breast

25

cancer. In yet another embodiment, a significantly enhanced level of expression of one or more markers and a significantly lower level of expression of one or more markers in a sample relative to the corresponding normal levels, is an indication that the patient is afflicted with breast cancer. When a plurality of markers is used, it is preferred that 2, 3, 4, 5, 8, 10, 12, 15, 20, 30, or 50 or more individual markers be used, wherein fewer markers are preferred.

In order to maximize the sensitivity of the compositions, kits, and methods of the invention (i.e. by interference attributable to cells of non-breast origin in a patient sample), it is preferable that the marker of the invention used therein be a marker which has a restricted tissue distribution, e.g., normally not expressed in a non-breast tissue.

10

20

Only a small number of markers are known to be associated with breast cancers (e.g. BRCA1 and BRCA2). These markers are not, of course, included among the markers of the invention, although they may be used together with one or more markers of the invention in a panel of markers, for example. It is well known that certain types of genes, such as oncogenes, tumor suppressor genes, growth factor-like genes, protease-like genes, and protein kinase-like genes are often involved with development of cancers of various types. Thus, among the markers of the invention, use of those which correspond to proteins which resemble known proteins encoded by known oncogenes and tumor suppressor genes, and those which correspond to proteins which resemble growth factors, proteases, and protein kinases are preferred.

Known oncogenes and tumor suppressor genes include, for example, abl, abr, akt2, apc, bcl2α, bcl2β, bcl3, bcr, brca1, brca2, cbl, ccnd1, cdc42, cdk4, crk-II, csf1r/fms, dbl, dcc, dpc4/smad4, e-cad, e2f1/rbap, egfr/erbb-1, elk1, elk3, eph, erg, ets1, ets2, fer, fgr/src2, fli1/ergb2, fos, fps/fes, fra1, fra2, fyn, hck, hek, her2/erbb-2/neu, her3/erbb-3, her4/erbb-4, hras1, hst2, hstf1, igfbp2, ink4a, ink4b, int2/fgf3, jun, junb, jund, kip2, kit, kras2a, kras2b, lck, lyn, mas, max, mcc, mdm2, met, mlh1, mmp10, mos, msh2, msh3, msh6, myb, myba, mybb, myc, mycl1, mycn, nf1, nf2, nme2, nras, p53, pdgfb, phb, pim1, pms1, pms2, ptc, pten, raf1, rap1a, rb1, rel, ret, ros1, ski, src1, tal1, tgfbr2, tgfb3, tgfbr3, thra1, thrb, tiam1, timp3, tjp1, tp53, trk, vav, vhl, vil2, waf1, wnt1, wnt2, wt1, and yes1 (Hesketh, 1997, In: The Oncogene and Tumour Suppressor Gene Facts Book, 2nd Ed., Academic Press; Fishel et al., 1994, Science 266:1403-1405).

Known growth factors include platelet-derived growth factor alpha, plateletderived growth factor beta (simian sarcoma viral {v-sis} oncogene homolog), thrombopoietin (myeloproliferative leukemia virus oncogene ligand, megakaryocyte growth and development factor), erythropoietin, B cell growth factor, macrophage stimulating factor 1 (hepatocyte growth factor-like protein), hepatocyte growth factor (hepapoietin A), insulin-like growth factor 1 (somatomedia C), hepatoma-derived growth factor, amphiregulin (schwannoma-derived growth factor), bone morphogenetic proteins 1, 2, 3, 3 beta, and 4, bone morphogenetic protein 7 (osteogenic protein 1), bone morphogenetic protein 8 (osteogenic protein 2), connective tissue growth factor, connective tissue activation peptide 3, epidermal growth factor (EGF), teratocarcinomaderived growth factor 1, endothelin, endothelin 2, endothelin 3, stromal cell-derived factor 1, vascular endothelial growth factor (VEGF), VEGF-B, VEGF-C, placental growth factor (vascular endothelial growth factor-related protein), transforming growth factor alpha, transforming growth factor beta 1 and its precursors, transforming growth factor beta 2 and its precursors, fibroblast growth factor 1 (acidic), fibroblast growth factor 2 (basic), fibroblast growth factor 5 and its precursors, fibroblast growth factor 6 and its precursors, fibroblast growth factor 7 (keratinocyte growth factor), fibroblast growth factor 8 (androgen-induced), fibroblast growth factor 9 (glia-activating factor), pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor 1), brain-derived neurotrophic factor, and recombinant glial growth factor 2.

10

20

25

Known proteases include interleukin-1 beta convertase and its precursors, Mch6 and its precursors, Mch2 isoform alpha, Mch4, Cpp32 isoform alpha, Lice2 gamma cysteine protease, Ich-1S, Ich-1L, Ich-2 and its precursors, TY protease, matrix metalloproteinase 1 (interstitial collagenase), matrix metalloproteinase 2 (gelatinase A, 72kD gelatinase, 72kD type IV collagenase), matrix metalloproteinase 7 (matrilysin), matrix metalloproteinase 8 (neutrophil collagenase), matrix metalloproteinase 12 (macrophage elastase), matrix metalloproteinase 13 (collagenase 3), metallopeptidase 1, cysteine-rich metalloprotease (disintegrin) and its precursors, subtilisin-like protease Pc8 and its precursors, chymotrypsin, snake venom-like protease, cathepsin l, cathepsin D (lysosomal aspartyl protease), stromelysin, aminopeptidase N, plasminogen, tissue plasminogen activator, plasminogen activator inhibitor type II, and urokinase-type plasminogen activator.

Known protein kinases include DAP kinase, serine/threonine protein kinases NIK, PK428, Krs-2, SAK, and EMK, interferon-inducible double stranded RNA dependent protein kinase, FAST kinase, AIM1, IPL1-like midbody-associated protein kinase-1, NIMA-like protein kinase 1 (NLK1), the cyclin-dependent kinases (cdk1-10), checkpoint kinase Chk1, Nek3 protein kinase, BMK1 beta kinase, Clk1, Clk2, Clk3, extracellular signal-regulated kinases 1, 3, and 6, cdc28 protein kinase 1, cdc28 protein kinase 2, pLK, Myt1, c-Jun N-terminal kinase 2, Cam kinase 1, the MAP kinases, insulin-stimulated protein kinase 1, beta-adrenergic receptor kinase 2, ribosomal protein S6 kinase, kinase suppressor of ras-1 (KSR1), putative serine/threonine protein kinase Prk, PkB kinase, cAMP-dependent protein kinase, cGMP-dependent protein kinase, type II cGMP-dependent protein kinase, protein kinases Dyrk2, Dyrk3, and Dyrk4, Rhoassociated coiled-coil containing protein kinase p160ROCK, protein tyrosine kinase t-Ror1, Ste20-related kinases, cell adhesion kinase beta, protein kinase 3, stress-activated protein kinase 4, protein kinase Zpk, serine kinase hPAK65, dual specificity mitogenactivated protein kinases 1 and 2, casein kinase I gamma 2, p21-activated protein kinase Pak1, lipid-activated protein kinase PRK2, focal adhesion kinase, dual-specificity tyrosine-phosphorylation regulated kinase, myosin light chain kinase, serine kinases SRPK2, TESK1, and VRK2, B lymphocyte serine/threonine protein kinase, stressactivated protein kinases JNK1 and JNK2, phosphorylase kinase, protein tyrosine kinase Tec, Jak2 kinase, protein kinase Ndr, MEK kinase 3, SHB adaptor protein (a Src homology 2 protein), agammaglobulinaemia protein-tyrosine kinase (Atk), protein kinase ATR, guanylate kinase 1, thrombopoeitin receptor and its precursors, DAG kinase epsilon, and kinases encoded by oncogenes or viral oncogenes such as v-fgr (Gardner-Rasheed), v-abl (Abelson murine leukemia viral oncogene homolog 1), v-arg (Abelson murine leukemia viral oncogene homolog, Abelson-related gene), v-fes and vfps (feline sarcoma viral oncogene and Fujinami avian sarcoma viral oncogene homologs), proto-oncogene c-cot, oncogene pim-1, and oncogene mas1.

It is recognized that the compositions, kits, and methods of the invention will be of particular utility to patients having an enhanced risk of developing breast cancer and their medical advisors. Patients recognized as having an enhanced risk of developing breast cancer include, for example, patients having a familial history of breast cancer,

- 25 -

patients identified as having a mutant oncogene (i.e. at least one allele), and patients of advancing age (i.e. women older than about 50 or 60 years).

The level of expression of a marker in normal (i.e. non-cancerous) human breast tissue can be assessed in a variety of ways. In one embodiment, this normal level of expression is assessed by assessing the level of expression of the marker in a portion of breast cells which appears to be non-cancerous and by comparing this normal level of expression with the level of expression in a portion of the breast cells which is suspected of being cancerous. For example, when mammogrophy or other medical procedure, reveals the presence of a lump in a patient's breast, the normal level of expression of a marker may be assessed using the non-affected breast tissue, and this normal level of expression may be compared with the level of expression of the same marker in an affected portion (i.e. the lump) of the affected breast. Alternately, and particularly as further information becomes available as a result of routine performance of the methods described herein, population-average values for normal expression of the markers of the invention may be used. In other embodiments, the 'normal' level of expression of a marker may be determined by assessing expression of the marker in a patient sample obtained from a non-cancer-afflicted patient, from a patient sample obtained from a patient before the suspected onset of breast cancer in the patient, from archived patient samples, and the like.

The invention includes compositions, kits, and methods for assessing the presence of breast cancer cells in a sample (e.g. an archived tissue sample or a sample obtained from a patient). These compositions, kits, and methods are substantially the same as those described above, except that, where necessary, the compositions, kits, and methods are adapted for use with samples other than patient samples. For example, when the sample to be used is a parafinized, archived human tissue sample, it can be necessary to adjust the ratio of compounds in the compositions of the invention, in the kits of the invention, or the methods used to assess levels of marker expression in the sample. Such methods are well known in the art and within the skill of the ordinary artisan.

20

30

The invention includes a kit for assessing the presence of breast cancer cells (e.g. in a sample such as a patient sample). The kit comprises a plurality of reagents, each of which is capable of binding specifically with a nucleic acid or polypeptide

corresponding to a marker of the invention. Suitable reagents for binding with a polypeptide corresponding to a marker of the invention include antibodies, antibody derivatives, antibody fragments, and the like. Suitable reagents for binding with a nucleic acid (e.g. a genomic DNA, an mRNA, a spliced mRNA, a cDNA, or the like) include complementary nucleic acids. For example, the nucleic acid reagents may include oligonucleotides (labeled or non-labeled) fixed to a substrate, labeled oligonucleotides not bound with a substrate, pairs of PCR primers, molecular beacon probes, and the like.

The kit of the invention may optionally comprise additional components useful for performing the methods of the invention. By way of example, the kit may comprise fluids (e.g. SSC buffer) suitable for annealing complementary nucleic acids or for binding an antibody with a protein with which it specifically binds, one or more sample compartments, an instructional material which describes performance of a method of the invention, a sample of normal breast cells, a sample of breast cancer cells, and the like.

15

30

The invention also includes a method of making an isolated hybridoma which produces an antibody useful for assessing whether patient is afflicted with breast cancer. In this method, a protein corresponding to a marker of the invention or a fragment of the protein is is isolated (e.g. by purification from a cell in which it is expressed or by transcription and translation of a nucleic acid encoding the protein in vivo or in vitro using known methods). A vertebrate, preferably a mammal such as a mouse, rat, rabbit, or sheep, is immunized using the isolated protein or fragment thereof. The vertebrate may optionally (and preferably) be immunized at least one additional time with the isolated protein or fragment, so that the vertebrate exhibits a robust immune response to the protein. Splenocytes are isolated from the immunized vertebrate and fused with an immortalized cell line to form hybridomas, using any of a variety of methods well known in the art. Hybridomas formed in this manner are then screened using standard methods to identify one or more hybridomas which produce an antibody which specifically binds with the protein. The invention also includes hybridomas made by this method and antibodies made using such hybridomas.

The invention also includes a method of assessing the efficacy of a test compound for inhibiting breast cancer cells. As described above, differences in the level of expression of the markers of the invention correlate with the cancerous state of breast

cells. Although it is recognized that changes in the levels of expression of certain of the markers of the invention likely result from the cancerous state of breast cells, it is likewise recognized that changes in the levels of expression of other of the markers of the invention induce, maintain, and promote the cancerous state of those cells. Thus, compounds which inhibit breast cancer in a patient will cause the level of expression of one or more of the markers of the invention to change to a level nearer the normal level of expression for that marker (i.e. the level of expression for the marker in non-cancerous breast cells).

This method thus comprises comparing expression of a marker in a first breast cell sample and maintained in the presence of the test compound and expression of the marker in a second breast cell sample and maintained in the absence of the test compound. A significant alteration in the level of expression of a marker listed in one or all of Tables 1-21, is an indication that the test compound inhibits breast cancer. The breast cell samples may, for example, be aliquots of a single sample of normal breast cells obtained from a patient, pooled samples of normal breast cells obtained from a patient, cells of a normal breast cell line, aliquots of a single sample of breast cancer cells obtained from a patient, pooled samples of breast cancer cells obtained from a patient, cells of a breast cancer cell line, or the like. In one embodiment, the samples are breast cancer cells obtained from a patient and a plurality of compounds known to be effective for inhibiting various breast cancers are tested in order to identify the compound which is likely to best inhibit the breast cancer in the patient.

This method may likewise be used to assess the efficacy of a therapy for inhibiting breast cancer in a patient. In this method, the level of expression of one or more markers of the invention in a pair of samples (one subjected to the therapy, the other not subjected to the therapy) is assessed. As with the method of assessing the efficacy of test compounds, if the therapy induces a significant alteration in the level of expression of a marker listed in Tables 1-21 (e.g. decreases expression in those markers that are over-expressed in breast cancer cells or increases expression in those markers that are under-expressed in breast cancer cells decreases expression in those markers that are over-expressed in more aggressive breast cancer cells and breast cancer cells from patients with poor clinical outcome or increases expression in those markers that are under-expressed in more aggressive breast cancer cells and in breast cancer cells

from patients with poor clinical outcome), or blocks induction of a marker listed in Tables 1-21, then the therapy is efficacious for inhibiting breast cancer. As above, if samples from a selected patient are used in this method, then alternative therapies can be assessed *in vitro* in order to select a therapy most likely to be efficacious for inhibiting breast cancer in the patient.

As described herein, breast cancer in patients is associated with an increase in the level of expression of one or more markers listed in Tables 1-21. While, as discussed above, some of these changes in expression level result from occurrence of the breast cancer, others of these changes induce, maintain, and promote the cancerous state of breast cancer cells. Thus, breast cancer characterized by an increase in the level of expression of one or more markers listed in Tables 1-21 can be inhibited by hampering expression of those markers.

Expression of a marker listed in Table 1-7 can be inhibited in a number of ways generally known in the art. For example, an antisense oligonucleotide can be provided to the breast cancer cells in order to inhibit transcription, translation, or both, of the marker(s). Alternately, a polynucleotide encoding an antibody, an antibody derivative, or an antibody fragment, and operably linked with an appropriate promoter/regulator region, can be provided to the cell in order to generate intracellular antibodies which will inhibit the function or activity of the protein corresponding to the marker(s). Using the methods described herein, a variety of molecules, particularly including molecules sufficiently small that they are able to cross the cell membrane, can be screened in order to identify molecules which inhibit expression of the marker(s). The compound so identified can be provided to the patient in order to inhibit expression of the marker(s) in the breast cancer cells of the patient.

As described above, the cancerous state of human breast cells is correlated with changes in the levels of expression of the markers of the invention. Thus, compounds which induce increased or decreased expression of one or more of the markers listed in Tables 1-21, can induce breast cell carcinogenesis. The invention includes a method for assessing the human breast cell carcinogenic potential of a test compound. This method comprises maintaining separate aliquots of human breast cells in the presence and absence of the test compound. Expression of a marker of the invention in each of the aliquots is compared. A significant alteration in the level of expression of a marker

25

- 29 -

listed in Tables 1-21 in the aliquot maintained in the presence of the test compound (relative to the aliquot maintained in the absence of the test compound) may be an indication that the test compound possesses human breast cell carcinogenic potential. The relative carcinogenic potentials of various test compounds can be assessed by comparing the degree of enhancement or inhibition of the level of expression of the relevant markers, by comparing the number of markers for which the level of expression is enhanced or inhibited, or by comparing both.

Various aspects of the invention are described in further detail in the following subsections.

10

25

I. Isolated Nucleic Acid Molecules

One aspect of the invention pertains to isolated nucleic acid molecules that correspond to a marker of the invention, including nucleic acids which encode a polypeptide corresponding to a marker of the invention or a portion of such a polypeptide. Isolated nucleic acids of the invention also include nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules that correspond to a marker of the invention, including nucleic acids which encode a polypeptide corresponding to a marker of the invention, and fragments of such nucleic acid molecules, e.g., those suitable for use as PCR primers for the amplification or mutation of nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule. Preferably, an "isolated" nucleic acid molecule is free of sequences (preferably protein-encoding sequences) which naturally flank the nucleic acid (*i.e.*, sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kB, 4 kB, 3 kB, 2 kB, 1 kB, 0.5 kB or 0.1 kB of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA-

5

20

of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid encoding a protein corresponding to a marker listed in one or more of Tables 1-21, can be isolated using standard molecular biology techniques and the sequence information in the database records described herein. Using all or a portion of such nucleic acid sequences, nucleic acid molecules of the invention can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., ed., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

A process for identifying a larger fragment or the full-length coding sequence of a marker of the present invention is thus also provided. Any conventional recombinant DNA techniques applicable for isolating polynucleotides may also be employed. One such method involves the 5'-RACE-PCR technique, in which the poly-A mRNA that contains the coding sequence of particular interest is first reverse transcribed with a 3'-primer comprising a sequence disclosed herein. The newly synthesized cDNA strand is then tagged with an anchor primer with a known sequence, which preferably contains a convenient cloning restriction site attached at the 5' end. The tagged cDNA is then amplified with the 3'-primer (or a nested primer sharing sequence homology to the internal sequences of the coding region) and the 5'-anchor primer. The amplification may be conducted under conditions of various levels of stringency to optimize the amplification specificity. 5'-RACE-PCR can be readily performed using commercial kits (available from, e.g., BRL Life Technologies Inc., Clotech) according to the manufacturer's instructions.

Isolating the complete coding sequence of a gene can also be carried out in a hybridization assay using a suitable probe. The probe preferably comprises at least 10 nucleotides, and more preferably exhibits sequence homology to the polynucleotides of the markers of the present invention. Other high throughput screens for cDNAs, such as those involving gene chip technology, can also be employed in obtaining the complete cDNA sequence.

- 31 -

In addition, databases exist that reduce the complexity of ESTs by assembling contiguous EST sequences into tentative genes. For example, TIGR has assembled human ESTs into a datable called THC for tentative human consensus sequences. The THC database allows for a more definitive assignment compared to ESTs alone. Software programs exist (TIGR assembler and TIGEM EST assembly machine and

Software programs exist (TIGR assembler and TIGEM EST assembly machine and contig assembly program (see Huang, X., 1996, *Genomes* 33:21-23)) that allow for assembling ESTs into contiguous sequences from any organism.

Alternatively, mRNA from a sample preparation is used to construct cDNA library in the ZAP Express vector following the procedure described in Velculescu *et al.*, 1997, *Science* 270:484. The ZAP Express cDNA synthesis kit (Stratagene) is used accordingly to the manufacturer's protocol. Plates containing 250 to 2000 plaques are hybridized as described in Rupert *et al.*, 1988, *Mol. Cell. Bio.* 8:3104 to oligonucleotide probes with the same conditions previously described for standard probes except that the hybridization temperature is reduced to a room temperature. Washes are performed in 6X standard-saline-citrate 0.1% SDS for 30 minutes at room temperature. The probes are labeled with ³²P-ATP trough use of T4 polynucleotide kinase.

A partial cDNA (3' fragment) can be isolated by 3' directed PCR reaction. This procedure is a modification of the protocol described in Polyak *et al.*, 1997, *Nature* 389:300. Briefly, the procedure uses SAGE tags in PCR reaction such that the resultant PCR product contains the SAGE tag of interest as well as additional cDNA, the length of which is defined by the position of the tag with respect to the 3' end of the cDNA. The cDNA product derived from such a transcript driven PCR reaction can be used for many applications.

RNA from a source to express the cDNA corresponding to a given tag is first converted to double-stranded cDNA using any standard cDNA protocol. Similar conditions used to generate cDNA for SAGE library construction can be employed except that a modified oligo-dT primer is used to derive the first strand synthesis. For example, the oligonucleotide of composition 5'-B-TCC GGC GCG CCG TTT TCC CAG TCA CGA(30)- 3', contains a poly-T stretch at the 3' end for hybridization and priming from poly-A tails, an M13 priming site for use in subsequent PCR steps, a 5' Biotin label (B) for capture to strepavidin-coated magnetic beads, and an AscI restriction endonuclease site for releasing the cDNA from the strepavidin-coated magnetic beads.

25

- 32 -

Theoretically, any sufficiently-sized DNA region capable of hybridizing to a PCR primer can be used as well as any other 8 base pair recognizing endonuclease.

cDNA constructed utilizing this or similar modified oligo-dT primer is then processed exactly as described in U.S. Patent No. 5,695,937 up until adapter ligation where only one adapter is ligated to the cDNA pool. After Adapter ligation, the cDNA is released from the streptavidin-coated magnetic beads and is then used as a template for cDNA amplification.

Various PCR protocols can be employed using PCR priming sites within the 3' modified oligo-dT primer and the SAGE tag. The SAGE tag-derived PCR primer employed can be of varying length dictated by 5' extension of the tag into the adaptor sequence. cDNA products are now available for a variety of applications.

10

15

This technique can be further modified by: (1) altering the length and/or content of the modified oligo-dT primer; (2) ligating adaptors other than that previously employed within the SAGE protocol; (3) performing PCR from template retained on the streptavidin-coated magnetic beads; and (4) priming first strand cDNA synthesis with non-oligo-dT based primers.

Gene trapper technology can also be used. The reagents and manufacturer's instructions for this technology are commercially available from Life Technologies, Inc., Gaithsburg, Maryland. Briefly, a complex population of single-stranded phagemid DNA containing directional cDNA inserts is enriched for the target sequence by hybridization in solution to a biotinylated oligonucleotide probe complementary to the target sequence. The hybrids are captured on streptavidin-coated paramagnetic beads. A magnet retrieves the paramagnetic beads from the solution, leaving nonhybridized single-stranded DNAs behind. Subsequently, the captured single-stranded DNA target is released from the biotinylated oligonucleotide. After release, the cDNA clone is further enriched by using a nonbiotinylated target oligonucleotide to specifically prime conversion of the single-stranded DNA. Following transformation and plating, typically 20% to 100% of the colonies represent the cDNA clone of interest. To identify the desired cDNA clone, the colonies may be screened by colony hybridization using the ³²P-labeled oligonucleotide as described above for solution hybridization, or alternatively by DNA sequencing and alignment of all sequences obtained from numerous clones to determine a consensus sequence.

A nucleic acid molecule of the invention can be amplified using cDNA, mRNA, or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to all or a portion of a nucleic acid molecule of the invention can be prepared by standard synthetic techniques, *e.g.*, using an automated DNA synthesizer.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which has a nucleotide sequence complementary to the nucleotide sequence of a nucleic acid corresponding to a marker of the invention or to the nucleotide sequence of a nucleic acid encoding a protein which corresponds to a marker of the invention. A nucleic acid molecule which is complementary to a given nucleotide sequence is one which is sufficiently complementary to the given nucleotide sequence that it can hybridize to the given nucleotide sequence thereby forming a stable duplex.

15

20

25

Moreover, a nucleic acid molecule of the invention can comprise only a portion of a nucleic acid sequence, wherein the full length nucleic acid sequence comprises a marker of the invention or which encodes a polypeptide corresponding to a marker of the invention. Such nucleic acids can be used, for example, as a probe or primer. The probe/primer typically is used as one or more substantially purified oligonucleotides. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 7, preferably about 15, more preferably about 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or 400 or more consecutive nucleotides of a nucleic acid of the invention.

Probes based on the sequence of a nucleic acid molecule of the invention can be used to detect transcripts or genomic sequences corresponding to one or more markers of the invention. The probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as part of a diagnostic test kit for identifying cells or tissues which misexpress the protein, such as by measuring levels of a nucleic acid molecule encoding the protein in a sample of cells from a subject, e.g., detecting mRNA levels or determining whether a gene encoding the protein has been mutated or deleted.

5

15

25

The invention further encompasses nucleic acid molecules that differ, due to degeneracy of the genetic code, from the nucleotide sequence of nucleic acids encoding a protein which corresponds to a marker of the invention, and thus encode the same protein.

In addition to the nucleotide sequences described in the GenBank and IMAGE Consortium database records described herein and in Tables 1-21, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequence can exist within a population (e.g., the human population). Such genetic polymorphisms can exist among individuals within a population due to natural allelic variation. An allele is one of a group of genes which occur alternatively at a given genetic locus. In addition, it will be appreciated that DNA polymorphisms that affect RNA expression levels can also exist that may affect the overall expression level of that gene (e.g., by affecting regulation or degradation).

As used herein, the phrase "allelic variant" refers to a nucleotide sequence which occurs at a given locus or to a polypeptide encoded by the nucleotide sequence.

As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide corresponding to a marker of the invention. Such natural allelic variations can typically result in 0.1-0.5% variance in the nucleotide sequence of a given gene. Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within the scope of the invention.

In another embodiment, an isolated nucleic acid molecule of the invention is at least 7, 15, 20, 25, 30, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3500, 4000, 4500, or more nucleotides in length and hybridizes under stringent conditions to a nucleic acid corresponding to a marker of the invention or to a nucleic acid encoding a protein corresponding to a marker of the invention. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 75% (80%, 85%, preferably 90%)

identical to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in sections 6.3.1-6.3.6 of *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989). A preferred, non-limiting example of stringent hybridization conditions for annealing two single-stranded DNA each of which is at least about 100 bases in length and/or for annealing a single-stranded DNA and a single-stranded RNA each of which is at least about 100 bases in length, are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50-65°C. Further preferred hybridization conditions are taught in Lockhart, *et al.*, Nature Biotechnology, Volume 14, 1996 August:1675-1680; Breslauer, *et al.*, Proc. Natl. Acad. Sci. USA, Volume 83, 1986 June: 3746-3750; Van Ness, *et al.*, Nucleic Acids Research, Volume 19, No. 19, 1991 September: 5143-5151; McGraw, *et al.*, BioTechniques, Volume 8, No. 6 1990: 674-678; and Milner, *et al.*, Nature Biotechnology, Volume 15, 1997 June: 537-541, all expressly incorporated by reference.

15

In addition to naturally-occurring allelic variants of a nucleic acid molecule of the invention that can exist in the population, the skilled artisan will further appreciate that sequence changes can be introduced by mutation thereby leading to changes in the amino acid sequence of the encoded protein, without altering the biological activity of the protein encoded thereby. For example, one can make nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. For example, amino acid residues that are not conserved or only semi-conserved among homologs of various species may be non-essential for activity and thus would be likely targets for alteration. Alternatively, amino acid residues that are conserved among the homologs of various species (e.g., murine and human) may be essential for activity and thus would not be likely targets for alteration.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from the naturally-occurring proteins which correspond to the markers of the invention, yet retain

5

20

25

biological activity. In one embodiment, such a protein has an amino acid sequence that is at least about 40% identical, 50%, 60%, 70%, 80%, 90%, 95%, or 98% identical to the amino acid sequence of one of the proteins which correspond to the markers of the invention.

An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of nucleic acids of the invention, such that one or more amino acid residue substitutions, additions, or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), non-polar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.

The present invention encompasses antisense nucleic acid molecules, *i.e.*, molecules which are complementary to a sense nucleic acid of the invention, *e.g.*, complementary to the coding strand of a double-stranded cDNA molecule corresponding to a marker of the invention or complementary to an mRNA sequence corresponding to a marker of the invention. Accordingly, an antisense nucleic acid of the invention can hydrogen bond to (*i.e.* anneal with) a sense nucleic acid of the invention. The antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, *e.g.*, all or part of the protein coding region (or open reading

WO 01/46697

5

20

30

- 37 -

PCT/US00/35214

frame). An antisense nucleic acid molecule can also be antisense to all or part of a noncoding region of the coding strand of a nucleotide sequence encoding a polypeptide of the invention. The non-coding regions ("5' and 3' untranslated regions") are the 5' and 3' sequences which flank the coding region and are not translated into amino acids.

An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or 10 variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5methyluracil. uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been sub-cloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a polypeptide corresponding to a selected marker of the invention to thereby inhibit expression of the marker, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. Examples of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site or infusion of the antisense nucleic acid into an breast-associated body fluid. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

An antisense nucleic acid molecule of the invention can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual α-units, the strands run parallel to each other (Gaultier *et al.*, 1987, *Nucleic Acids Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.*, 1987, *Nucleic Acids Res.* 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue *et al.*, 1987, *FEBS Lett.* 215:327-330).

20

The invention also encompasses ribozymes. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach, 1988, Nature 334:585-591) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity

for a nucleic acid molecule encoding a polypeptide corresponding to a marker of the invention can be designed based upon the nucleotide sequence of a cDNA corresponding to the marker. For example, a derivative of a *Tetrahymena* L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved (see Cech *et al.* U.S. Patent No. 4,987,071; and Cech *et al.* U.S. Patent No. 5,116,742). Alternatively, an mRNA encoding a polypeptide of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (see, *e.g.*, Bartel and Szostak, 1993, *Science* 261:1411-1418).

The invention also encompasses nucleic acid molecules which form triple helical structures. For example, expression of a polypeptide of the invention can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene (1991) Anticancer Drug Des. 6(6):569-84; Helene (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14(12):807-15.

10

30

In various embodiments, the nucleic acid molecules of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al., 1996, Bioorganic & Medicinal Chemistry 4(1): 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93:14670-675.

PNAs can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting

replication. PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup (1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup, 1996, supra; Perry-O'Keefe et al., 1996, Proc. Natl. Acad. Sci. USA 93:14670-675).

In another embodiment, PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which can combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNASE H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup, 1996, supra). The synthesis of PNA-DNA chimeras can be performed as described in 15 Hyrup (1996), supra, and Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5' end of DNA (Mag et al., 1989, Nucleic Acids Res. 20 17:5973-88). PNA monomers are then coupled in a step-wise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al., 1996, Nucleic Acids Res. 24(17):3357-63). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al., 1975, Bioorganic Med. Chem. Lett. 5:1119-11124).

In other embodiments, the oligonucleotide can include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. WO 88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al., 1988, Bio/Techniques

6:958-976) or intercalating agents (see, e.g., Zon, 1988, *Pharm. Res.* 5:539-549). To this end, the oligonucleotide can be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

The invention also includes molecular beacon nucleic acids having at least one region which is complementary to a nucleic acid of the invention, such that the molecular beacon is useful for quantitating the presence of the nucleic acid of the invention in a sample. A "molecular beacon" nucleic acid is a nucleic acid comprising a pair of complementary regions and having a fluorophore and a fluorescent quencher associated therewith. The fluorophore and quencher are associated with different portions of the nucleic acid in such an orientation that when the complementary regions are annealed with one another, fluorescence of the fluorophore is quenched by the quencher. When the complementary regions of the nucleic acid are not annealed with one another, fluorescence of the fluorophore is quenched to a lesser degree. Molecular beacon nucleic acids are described, for example, in U.S. Patent 5,876,930.

II. Isolated Proteins and Antibodies

5

One aspect of the invention pertains to isolated proteins which correspond to individual markers of the invention, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise antibodies directed against a polypeptide corresponding to a marker of the invention. In one embodiment, the native polypeptide corresponding to a marker can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, polypeptides corresponding to a marker of the invention are produced by recombinant DNA techniques. Alternative to recombinant expression, a polypeptide corresponding to a marker of the invention can be synthesized chemically using standard peptide synthesis techniques.

An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of protein in which the

- 42 -

protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. Thus, protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein").

When the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, *i.e.*, culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation. When the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, *i.e.*, it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.

Biologically active portions of a polypeptide corresponding to a marker of the invention include polypeptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of the protein corresponding to the marker (e.g., the amino acid sequence listed in the GenBank and IMAGE Consortium database records described herein), which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the corresponding protein. A biologically active portion of a protein of the invention can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of a polypeptide of the invention.

15

25

30

Preferred polypeptides have the amino acid sequence listed in the one of the GenBank and IMAGE Consortium database records described herein. Other useful proteins are substantially identical (e.g., at least about 40%, preferably 50%, 60%, 70%, 80%, 90%, 95%, or 99%) to one of these sequences and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.

- 43 -

To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical positions/total # of positions (e.g., overlapping positions) x100). In one embodiment the two sequences are the same length.

The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of 15 Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J. Mol. Biol. 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules. When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov. Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) CABIOS 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a

- 44 -

PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Yet another useful algorithm for identifying regions of local sequence similarity and alignment is the FASTA algorithm as described in Pearson and Lipman (1988) *Proc. Natl. Acad. Sci. USA* 85:2444-2448. When using the FASTA algorithm for comparing nucleotide or amino acid sequences, a PAM120 weight residue table can, for example, be used with a k-tuple value of 2.

The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.

10

20

The invention also provides chimeric or fusion proteins corresponding to a marker of the invention. As used herein, a "chimeric protein" or "fusion protein" comprises all or part (preferably a biologically active part) of a polypeptide corresponding to a marker of the invention operably linked to a heterologous polypeptide (i.e., a polypeptide other than the polypeptide corresponding to the marker). Within the fusion protein, the term "operably linked" is intended to indicate that the polypeptide of the invention and the heterologous polypeptide are fused in-frame to each other. The heterologous polypeptide can be fused to the amino-terminus or the carboxyl-terminus of the polypeptide of the invention.

One useful fusion protein is a GST fusion protein in which a polypeptide corresponding to a marker of the invention is fused to the carboxyl terminus of GST sequences. Such fusion proteins can facilitate the purification of a recombinant polypeptide of the invention.

In another embodiment, the fusion protein contains a heterologous signal sequence at its amino terminus. For example, the native signal sequence of a polypeptide corresponding to a marker of the invention can be removed and replaced with a signal sequence from another protein. For example, the gp67 secretory sequence of the baculovirus envelope protein can be used as a heterologous signal sequence (Ausubel *et al.*, ed., *Current Protocols in Molecular Biology*, John Wiley & Sons, NY, 1992). Other examples of eukaryotic heterologous signal sequences include the secretory sequences of melittin and human placental alkaline phosphatase (Stratagene; La Jolla, California). In yet another example, useful prokaryotic heterologous signal

- 45 -

sequences include the phoA secretory signal (Sambrook et al., supra) and the protein A secretory signal (Pharmacia Biotech; Piscataway, New Jersey).

In yet another embodiment, the fusion protein is an immunoglobulin fusion protein in which all or part of a polypeptide corresponding to a marker of the invention is fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand (soluble or membrane-bound) and a protein on the surface of a cell (receptor), to thereby suppress signal transduction *in vivo*. The immunoglobulin fusion protein can be used to affect the bioavailability of a cognate ligand of a polypeptide of the invention. Inhibition of ligand/receptor interaction can be useful therapeutically, both for treating proliferative and differentiative disorders and for modulating (e.g. promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodics directed against a polypeptide of the invention in a subject, to purify ligands and in screening assays to identify molecules which inhibit the interaction of receptors with ligands.

Chimeric and fusion proteins of the invention can be produced by standard recombinant DNA techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., supra). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide of the invention.

25

A signal sequence can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest. Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein during secretion in one or more cleavage events. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as

they pass through the secretory pathway. Thus, the invention pertains to the described polypeptides having a signal sequence, as well as to polypeptides from which the signal sequence has been proteolytically cleaved (*i.e.*, the cleavage products). In one embodiment, a nucleic acid sequence encoding a signal sequence can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate. The signal sequence directs secretion of the protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved. The protein can then be readily purified from the extracellular medium by art recognized methods. Alternatively, the signal sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.

The present invention also pertains to variants of the polypeptides corresponding to individual markers of the invention. Such variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists. Variants can be generated by mutagenesis, e.g., discrete point mutation or truncation. An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein. An antagonist of a protein can inhibit one or more of the activities of the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest. Thus, specific biological effects can be elicited by treatment with a variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the protein.

Variants of a protein of the invention which function as either agonists (mimetics) or as antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the protein of the invention for agonist or antagonist activity. In one embodiment, a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential protein sequences is expressible as individual polypeptides,

25

- 47 -

or alternatively, as a set of larger fusion proteins (e.g., for phage display). There are a variety of methods which can be used to produce libraries of potential variants of the polypeptides of the invention from a degenerate oligonucleotide sequence. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, 1983, Tetrahedron 39:3; Itakura et al., 1984, Annu. Rev. Biochem. 53:323; Itakura et al., 1984, Science 198:1056; Ike et al., 1983 Nucleic Acid Res. 11:477).

In addition, libraries of fragments of the coding sequence of a polypeptide corresponding to a marker of the invention can be used to generate a variegated population of polypeptides for screening and subsequent selection of variants. For example, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of the coding sequence of interest with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes amino terminal and internal fragments of various sizes of the protein of interest.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify variants of a protein of the invention (Arkin and Yourvan, 1992, *Proc. Natl. Acad. Sci.*

USA 89:7811-7815; Delgrave et al., 1993, Protein Engineering 6(3):327-331).

20

25

- 48 -

An isolated polypeptide corresponding to a marker of the invention, or a fragment thereof, can be used as an immunogen to generate antibodies using standard techniques for polyclonal and monoclonal antibody preparation. The full-length polypeptide or protein can be used or, alternatively, the invention provides antigenic peptide fragments for use as immunogens. The antigenic peptide of a protein of the invention comprises at least 8 (preferably 10, 15, 20, or 30 or more) amino acid residues of the amino acid sequence of one of the polypeptides of the invention, and encompasses an epitope of the protein such that an antibody raised against the peptide forms a specific immune complex with a marker of the invention to which the protein corresponds. Preferred epitopes encompassed by the antigenic peptide are regions that are located on the surface of the protein, *e.g.*, hydrophilic regions. Hydrophobicity sequence analysis, hydrophilicity sequence analysis, or similar analyses can be used to identify hydrophilic regions.

An immunogen typically is used to prepare antibodies by immunizing a suitable (i.e. immunocompetent) subject such as a rabbit, goat, mouse, or other mammal or vertebrate. An appropriate immunogenic preparation can contain, for example, recombinantly-expressed or chemically-synthesized polypeptide. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or a similar immunostimulatory agent.

15

20

Accordingly, another aspect of the invention pertains to antibodies directed against a polypeptide of the invention. The terms "antibody" and "antibody substance" as used interchangeably herein refer to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, *i.e.*, molecules that contain an antigen binding site which specifically binds an antigen, such as a polypeptide of the invention, e.g., an epitope of a polypeptide of the invention. A molecule which specifically binds to a given polypeptide of the invention is a molecule which binds the polypeptide, but does not substantially bind other molecules in a sample, *e.g.*, a biological sample, which naturally contains the polypeptide. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab')₂ fragments which can be generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal and monoclonal antibodies. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody

molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope.

15

20

25

Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide of the invention as an immunogen. Preferred polyclonal antibody compositions are ones that have been selected for antibodies directed against a polypeptide or polypeptides of the invention. Particularly preferred polyclonal antibody preparations are ones that contain only antibodies directed against a polypeptide or polypeptides of the invention. Particularly preferred immunogen compositions are those that contain no other human proteins such as, for example, immunogen compositions made using a non-human host cell for recombinant expression of a polypeptide of the invention. In such a manner, the only human epitope or epitopes recognized by the resulting antibody compositions raised against this immunogen will be present as part of a polypeptide or polypeptides of the invention.

The antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody molecules can be harvested or isolated from the subject (e.g., from the blood or serum of the subject) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction. Alternatively, antibodies specific for a protein or polypeptide of the invention can be selected or (e.g., partially purified) or purified by, e.g., affinity chromatography. For example, a recombinantly expressed and purified (or partially purified) protein of the invention is produced as described herein, and covalently or non-covalently coupled to a solid support such as, for example, a chromatography column. The column can then be used to affinity purify antibodies specific for the proteins of the invention from a sample containing antibodies directed against a large number of different epitopes, thereby generating a substantially purified antibody composition, i.e., one that is substantially free of contaminating antibodies. By a substantially purified antibody composition is meant, in this context, that the antibody sample contains at most only 30% (by dry weight) of contaminating antibodies directed against epitopes other than those of the desired protein or polypeptide of the invention, and preferably at most 20%, yet more preferably at most 10%, and most preferably at most 5% (by dry weight) of the sample is contaminating antibodies. A purified antibody composition means that at least

99% of the antibodies in the composition are directed against the desired protein or polypeptide of the invention.

At an appropriate time after immunization, e.g., when the specific antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (see Kozbor et al., 1983, Immunol. Today 4:72), the EBV-hybridoma technique (see Cole et al., pp. 77-96 In Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., 1985) or trioma techniques. The technology for producing hybridomas is well known (see generally Current Protocols in Immunology, Coligan et al. ed., John Wiley & Sons, New York, 1994). Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind the polypeptide of interest, e.g., using a standard ELISA assay.

15

30

Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal antibody directed against a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide of interest. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAP Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047, PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffiths et al. (1993) EMBO J. 12:725-734.

Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the

invention. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. (See, e.g., Cabilly et al., U.S. Patent No. 4,816,567; and Boss et al., U.S. Patent No. 4,816,397, which are 5 incorporated herein by reference in their entirety.) Humanized antibodies are antibody molecules from non-human species having one or more complementarily determining regions (CDRs) from the non-human species and a framework region from a human immunoglobulin molecule. (See, e.g., Queen, U.S. Patent No. 5,585,089, which is incorporated herein by reference in its entirety.) Such chimeric and humanized 10 monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication No. WO 87/02671; European Patent Application 184,187; European Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al. (1988) Science 240:1041-15 1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Cancer Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; and Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison (1985) Science 229:1202-1207; Oi et al. (1986) Bio/Techniques 4:214; U.S. Patent 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol. 141:4053-4060.

Antibodies of the invention may be used as therapeutic agents in treating cancers. In a preferred embodiment, completely human antibodies of the invention are used for therapeutic treatment of human cancer patients, particularly those having breast cancer. Such antibodies can be produced, for example, using transgenic mice which are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide corresponding to a marker of the invention. Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation.

- 52 -

Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995) *Int. Rev. Immunol.* 13:65-93). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, *e.g.*, U.S. Patent 5,625,126; U.S. Patent 5,633,425; U.S. Patent 5,569,825; U.S. Patent 5,661,016; and U.S. Patent 5,545,806. In addition, companies such as Abgenix, Inc. (Freemont, CA), can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a murine antibody, is used to guide the selection of a completely human antibody recognizing the same epitope (Jespers et al., 1994, Bio/technology 12:899-903).

10

15

20

An antibody directed against a polypeptide corresponding to a marker of the invention (e.g., a monoclonal antibody) can be used to isolate the polypeptide by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, such an antibody can be used to detect the marker (e.g., in a cellular lysate or cell supernatant) in order to evaluate the level and pattern of expression of the marker. The antibodies can also be used diagnostically to monitor protein levels in tissues or body fluids (e.g. in an ovary-associated body fluid) as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin, an example of a luminescent material includes luminol; examples of bioluminescent

materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

Further, an antibody (or fragment thereof) can be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive metal ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

The conjugates of the invention can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, alpha.-interferon, beta.-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophase colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.

20

Techniques for conjugating such therapeutic moiety to antibodies are well known, see, e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug

- 54 -

Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev., 62:119-58 (1982).

Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980.

10

Accordingly, in one aspect, the invention provides substantially purified antibodies or fragments thereof, and non-human antibodies or fragments thereof, which antibodies or fragments specifically bind to a polypeptide comprising an amino acid sequence selected from the group consisting of the amino acid sequences of the present invention, an amino acid sequence encoded by the cDNA of the present invention, a fragment of at least 15 amino acid residues of an amino acid sequence of the present invention, an amino acid sequence which is at least 95% identical to the amino acid sequence of the present invention (wherein the percent identity is determined using the ALIGN program of the GCG software package with a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4) and an amino acid sequence which is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule consisting of the nucleic acid molecules of the present invention, or a complement thereof, under conditions of hybridization of 6X SSC at 45°C and washing in 0.2 X SSC, 0.1% SDS at 65°C. In various embodiments, the substantially purified antibodies of the invention, or fragments thereof, can be human, non-human, chimeric and/or humanized antibodies.

In another aspect, the invention provides non-human antibodies or fragments thereof, which antibodies or fragments specifically bind to a polypeptide comprising an amino acid sequence selected from the group consisting of: the amino acid sequence of the present invention, an amino acid sequence encoded by the cDNA of the present invention, a fragment of at least 15 amino acid residues of the amino acid sequence of the present invention, an amino acid sequence which is at least 95% identical to the

amino acid sequence of the present invention (wherein the percent identity is determined using the ALIGN program of the GCG software package with a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4) and an amino acid sequence which is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule consisting of the nucleic acid molecules of the present invention, or a complement thereof, under conditions of hybridization of 6X SSC at 45°C and washing in 0.2 X SSC, 0.1% SDS at 65°C. Such non-human antibodies can be goat, mouse, sheep, horse, chicken, rabbit, or rat antibodies. Alternatively, the non-human antibodies of the invention can be chimeric and/or humanized antibodies. In addition, the non-human antibodies of the invention can be polyclonal antibodies or monoclonal antibodies.

10

15

25

In still a further aspect, the invention provides monoclonal antibodies or fragments thereof, which antibodies or fragments specifically bind to a polypeptide comprising an amino acid sequence selected from the group consisting of the amino acid sequences of the present invention, an amino acid sequence encoded by the cDNA of the present invention, a fragment of at least 15 amino acid residues of an amino acid sequence of the present invention, an amino acid sequence which is at least 95% identical to an amino acid sequence of the present invention (wherein the percent identity is determined using the ALIGN program of the GCG software package with a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4) and an amino acid sequence which is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule consisting of the nucleic acid molecules of the present invention, or a complement thereof, under conditions of hybridization of 6X SSC at 45°C and washing in 0.2 X SSC, 0.1% SDS at 65°C. The monoclonal antibodies can be human, humanized, chimeric and/or non-human antibodies.

The substantially purified antibodies or fragments thereof may specifically bind to a signal peptide, a secreted sequence, an extracellular domain, a transmembrane or a cytoplasmic domain or cytoplasmic membrane of a polypeptide of the invention. In a particularly preferred embodiment, the substantially purified antibodies or fragments thereof, the non-human antibodies or fragments thereof, and/or the monoclonal antibodies or fragments thereof, of the invention specifically bind to a secreted sequence or an extracellular domain of the amino acid sequences of the present invention.

5

25

Any of the antibodies of the invention can be conjugated to a therapeutic moiety or to a detectable substance. Non-limiting examples of detectable substances that can be conjugated to the antibodies of the invention are an enzyme, a prosthetic group, a fluorescent material, a luminescent material, a bioluminescent material, and a radioactive material.

The invention also provides a kit containing an antibody of the invention conjugated to a detectable substance, and instructions for use. Still another aspect of the invention is a pharmaceutical composition comprising an antibody of the invention and a pharmaceutically acceptable carrier. In preferred embodiments, the pharmaceutical composition contains an antibody of the invention, a therapeutic moiety, and a pharmaceutically acceptable carrier.

Still another aspect of the invention is a method of making an antibody that specifically recognizes a polypeptide of the present invention, the method comprising immunizing a mammal with a polypeptide. The polypeptide used as an immungen comprises an amino acid sequence selected from the group consisting of the amino acid sequence of the present invention, an amino acid sequence encoded by the cDNA of the nucleic acid molecules of the present invention, a fragment of at least 15 amino acid residues of the amino acid sequence of the present invention, an amino acid sequence which is at least 95% identical to the amino acid sequence of the present invention (wherein the percent identity is determined using the ALIGN program of the GCG software package with a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4) and an amino acid sequence which is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule consisting of the nucleic acid molecules of the present invention, or a complement thereof, under conditions of hybridization of 6X SSC at 45°C and washing in 0.2 X SSC, 0.1% SDS at 65°C.

After immunization, a sample is collected from the mammal that contains an antibody that specifically recognizes the polypeptide. Preferably, the polypeptide is recombinantly produced using a non-human host cell. Optionally, the antibodies can be further purified from the sample using techniques well known to those of skill in the art. The method can further comprise producing a monoclonal antibody- producing cell from the cells of the mammal. Optionally, antibodies are collected from the antibody-producing cell.

- 57 -

III. Recombinant Expression Vectors and Host Cells

20

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a polypeptide corresponding to a marker of the invention (or a portion of such a polypeptide). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, namely expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Methods in Enzymology: Gene Expression Technology vol.185,

- 58 -

Academic Press, San Diego, CA (1991). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.

The recombinant expression vectors of the invention can be designed for expression of a polypeptide corresponding to a marker of the invention in prokaryotic (e.g., E. coli) or eukaryotic cells (e.g., insect cells {using baculovirus expression vectors}, yeast cells or mammalian cells). Suitable host cells are discussed further in Goeddel, supra. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

10

15

20

Expression of proteins in prokaryotes is most often carried out in *E. coli* with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988, *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann *et al.*, 1988, *Gene* 69:301-315) and pET 11d (Studier *et al.*, p. 60-89, In *Gene Expression Technology: Methods in Enzymology* vol.185, Academic Press, San Diego, CA, 1991). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a co-expressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

One strategy to maximize recombinant protein expression in *E. coli* is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, p. 119-128, In *Gene Expression Technology: Methods in Enzymology* vol. 185, Academic Press, San Diego, CA, 1990. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in *E. coli* (Wada *et al.*, 1992, *Nucleic Acids Res.* 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

10

20

25

30

In another embodiment, the expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYepSec1 (Baldari *et al.*, 1987, *EMBO J.* 6:229-234), pMFa (Kurjan and Herskowitz, 1982, *Cell* 30:933-943), pJRY88 (Schultz *et al.*, 1987, *Gene* 54:113-123), pYES2 (Invitrogen Corporation, San Diego, CA), and pPicZ (Invitrogen Corp, San Diego, CA).

Alternatively, the expression vector is a baculovirus expression vector. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., 1983, Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers, 1989, Virology 170:31-39).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987, *Nature* 329:840) and pMT2PC (Kaufman *et al.*, 1987, *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements.

PCT/US00/35214 WO 01/46697

For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al., supra.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissuespecific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al., 1987. Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton, 1988, 10 Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989, EMBO J. 8:729-733) and immunoglobulins (Banerji et al., 1983, Cell 33:729-740; Queen and Baltimore, 1983, Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989, Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific promoters (Edlund et al., 1985, Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentallyregulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss, 1990, Science 249:374-379) and the α-fetoprotein promoter (Camper and Tilghman, 1989, Genes Dev. 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the mRNA encoding a polypeptide of the invention. Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue-specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the 30 form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a

20

- 61 -

discussion of the regulation of gene expression using antisense genes see Weintraub et al., 1986, Trends in Genetics, Vol. 1(1).

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic (e.g., E. coli) or eukaryotic cell (e.g., insect cells, yeast or mammalian cells).

10

15

20

30

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce a polypeptide corresponding to a marker of the invention. Accordingly, the invention further provides methods for producing a polypeptide corresponding to a marker of the invention using the host cells of the

- 62 -

invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the marker is produced. In another embodiment, the method further comprises isolating the marker polypeptide from the medium or the host cell.

The host cells of the invention can also be used to produce nonhuman transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a sequences encoding a polypeptide corresponding to a marker of the invention have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous sequences encoding a marker protein of the invention have been introduced into their genome or homologous recombinant animals in which endogenous gene(s) encoding a polypeptide corresponding to a marker of the invention sequences have been altered. Such animals are useful for studying the function and/or activity of the polypeptide corresponding to the marker and for identifying and/or evaluating modulators of polypeptide activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, an "homologous recombinant animal" is a nonhuman animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by introducing a nucleic acid encoding a polypeptide corresponding to a marker of the invention into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency

- 63 -

of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the polypeptide of the invention to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, U.S. Patent No. 4,873,191 and in Hogan, *Manipulating the Mouse Embryo*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of mRNA encoding the transgene in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying the transgene can further be bred to other transgenic animals carrying other transgenes.

To create an homologous recombinant animal, a vector is prepared which contains at least a portion of a gene encoding a polypeptide corresponding to a marker of the invention into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the gene. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous protein). In the homologous recombination vector, the altered portion of the gene is flanked at its 5' and 3' ends by additional nucleic acid of the gene to allow for homologous recombination to occur between the exogenous gene carried by the vector and an endogenous gene in an embryonic stem cell. The additional flanking nucleic acid sequences are of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see, e.g., Thomas and Capecchi, 1987, Cell 51:503 for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced gene has homologously

20

recombined with the endogenous gene are selected (see, e.g., Li et al., 1992, Cell 69:915). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see, e.g., Bradley, Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, Ed., IRL, Oxford, 1987, pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley (1991) Current Opinion in Bio/Technology 2:823-829 and in PCT Publication NOS. WO 90/11354, WO 91/01140, WO 92/0968, and WO 93/04169.

In another embodiment, transgenic non-human animals can be produced which contain selected systems which allow for regulated expression of the transgene. One example of such a system is the *cre/loxP* recombinase system of bacteriophage P1. For a description of the *cre/loxP* recombinase system, see, *e.g.*, Lakso *et al.* (1992) *Proc.*Natl. Acad. Sci. USA 89:6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman *et al.*, 1991, Science 251:1351-1355). If a *cre/loxP* recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, *e.g.*, by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut *et al.* (1997) *Nature* 385:810-813 and PCT Publication NOS. WO 97/07668 and WO 97/07669.

IV. Pharmaceutical Compositions

25

30

The nucleic acid molecules, polypeptides, and antibodies (also referred to herein as "active compounds") corresponding to a marker of the invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions

- 65 -

typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

The invention includes methods for preparing pharmaceutical compositions for modulating the expression or activity of a polypeptide or nucleic acid corresponding to a marker of the invention. Such methods comprise formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid corresponding to a marker of the invention. Such compositions can further include additional active agents. Thus, the invention further includes methods for preparing a pharmaceutical composition by formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid corresponding to a marker of the invention and one or more additional active compounds.

10

15

20

30

The invention also provides methods (also referred to herein as "screening assays") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, peptoids, small molecules or other drugs) which (a) bind to the marker, or (b) have a modulatory (e.g., stimulatory or inhibitory) effect on the activity of the marker or, more specifically, (c) have a modulatory effect on the 25 interactions of the marker with one or more of its natural substrates (e.g., peptide, protein, hormone, co-factor, or nucleic acid), or (d) have a modulatory effect on the expression of the marker. Such assays typically comprise a reaction between the marker and one or more assay components. The other components may be either the test compound itself, or a combination of test compound and a natural binding partner of the marker.

The test compounds of the present invention may be obtained from any available source, including systematic libraries of natural and/or synthetic compounds. Test compounds may also be obtained by any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, nonpeptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive; see, e.g., Zuckermann et al., 1994, J. Med. Chem. 37:2678-85); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection. The biological library and peptoid library approaches are limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam. 1997, Anticancer Drug Des. 12:145).

Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91:11422; Zuckermann et al. (1994). J. Med. Chem. 37:2678; Cho et al. (1993) Science 261:1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and in Gallop et al. (1994) J. Med. Chem. 37:1233.

15

20

Libraries of compounds may be presented in solution (e.g., Houghten, 1992, Biotechniques 13:412-421), or on beads (Lam, 1991, Nature 354:82-84), chips (Fodor, 1993, Nature 364:555-556), bacteria and/or spores, (Ladner, USP 5,223,409), plasmids (Cull et al, 1992, Proc Natl Acad Sci USA 89:1865-1869) or on phage (Scott and Smith, 1990, Science 249:386-390, Devlin, 1990, Science 249:404-406, Cwirla et al, 1990, 25 Proc. Natl. Acad. Sci. 87:6378-6382; Felici, 1991, J. Mol. Biol. 222:301-310; Ladner, supra.).

In one embodiment, the invention provides assays for screening candidate or test compounds which are substrates of a marker or biologically active portion thereof. In another embodiment, the invention provides assays for screening candidate or test compounds which bind to a marker or biologically active portion thereof. Determining the ability of the test compound to directly bind to a marker can be accomplished, for example, by coupling the compound with a radioisotope or enzymatic label such that

- 67 -

binding of the compound to the marker can be determined by detecting the labeled marker compound in a complex. For example, compounds (e.g., marker substrates) can be labeled with ¹²⁵I, ³⁵S, ¹⁴C, or ³H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, assay components can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.

In another embodiment, the invention provides assays for screening candidate or test compounds which modulate the activity of a marker or a biologically active portion thereof. In all likelihood, the marker can, *in vivo*, interact with one or more molecules, such as but not limited to, peptides, proteins, hormones, cofactors and nucleic acids. For the purposes of this discussion, such cellular and extracellular molecules are referred to herein as "binding partners" or marker "substrate".

One necessary embodiment of the invention in order to facilitate such screening is the use of the marker to identify its natural *in vivo* binding partners. There are many ways to accomplish this which are known to one skilled in the art. One example is the use of the marker protein as "bait protein" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al, 1993, Cell 72:223-232; Madura et al, 1993, J. Biol. Chem. 268:12046-12054; Bartel et al, 1993, Biotechniques 14:920-924; Iwabuchi et al, 1993 Oncogene 8:1693-1796; Brent WO94/10300) in order to identify other proteins which bind to or interact with the marker (binding partners) and, therefore, are possibly involved in the natural function of the marker. Such marker binding partners are also likely to be involved in the propagation of signals by the marker or downstream elements of a marker-mediated signaling pathway. Alternatively, such marker binding partners may also be found to be inhibitors of the marker.

15

25

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that encodes a marker protein fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If

PCT/US00/35214 WO 01/46697

- 68 -

the "bait" and the "prey" proteins are able to interact, in vivo, forming a markerdependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be readily detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the marker protein.

In a further embodiment, assays may be devised through the use of the invention for the purpose of identifying compounds which modulate (e.g., affect either positively or negatively) interactions between a marker and its substrates and/or binding partners. Such compounds can include, but are not limited to, molecules such as antibodies, peptides, hormones, oligonucleotides, nucleic acids, and analogs thereof. Such compounds may also be obtained from any available source, including systematic libraries of natural and/or synthetic compounds. The preferred assay components for use in this embodiment is an breast cancer marker identified herein, the known binding partner and/or substrate of same, and the test compound. Test compounds can be supplied from any source.

The basic principle of the assay systems used to identify compounds that interfere with the interaction between the marker and its binding partner involves preparing a reaction mixture containing the marker and its binding partner under conditions and for a time sufficient to allow the two products to interact and bind, thus forming a complex. In order to test an agent for inhibitory activity, the reaction mixture is prepared in the presence and absence of the test compound. The test compound can be initially included in the reaction mixture, or can be added at a time subsequent to the addition of the marker and its binding partner. Control reaction mixtures are incubated without the test compound or with a placebo. The formation of any complexes between the marker and its binding partner is then detected. The formation of a complex in the control reaction, but less or no such formation in the reaction mixture containing the test compound, indicates that the compound interferes with the interaction of the marker and 30 its binding partner. Conversely, the formation of more complex in the presence of compound than in the control reaction indicates that the compound may enhance interaction of the marker and its binding partner.

20

The assay for compounds that interfere with the interaction of the marker with its binding partner may be conducted in a heterogeneous or homogeneous format.

Heterogeneous assays involve anchoring either the marker or its binding partner onto a solid phase and detecting complexes anchored to the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested. For example, test compounds that interfere with the interaction between the markers and the binding partners (e.g., by competition) can be identified by conducting the reaction in the presence of the test substance, i.e., by adding the test substance to the reaction mixture prior to or simultaneously with the marker and its interactive binding partner. Alternatively, test compounds that disrupt preformed complexes, e.g., compounds with higher binding constants that displace one of the components from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed. The various formats are briefly described below.

In a heterogeneous assay system, either the marker or its binding partner is anchored onto a solid surface or matrix, while the other corresponding non-anchored component may be labeled, either directly or indirectly. In practice, microtitre plates are often utilized for this approach. The anchored species can be immobilized by a number of methods, either non-covalent or covalent, that are typically well known to one who practices the art. Non-covalent attachment can often be accomplished simply by coating the solid surface with a solution of the marker or its binding partner and drying. Alternatively, an immobilized antibody specific for the assay component to be anchored can be used for this purpose. Such surfaces can often be prepared in advance and stored.

20

25

In related embodiments, a fusion protein can be provided which adds a domain that allows one or both of the assay components to be anchored to a matrix. For example, glutathione-S-transferase/marker fusion proteins or glutathione-S-transferase/binding partner can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and either the non-adsorbed marker or its binding partner, and the mixture incubated under conditions conducive to complex formation (e.g., physiological conditions). Following incubation, the beads or

5

25

- 70 -

microtiter plate wells are washed to remove any unbound assay components, the immobilized complex assessed either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of marker binding or activity determined using standard techniques.

Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either a marker or a marker binding partner can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated marker protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). In certain embodiments, the protein-immobilized surfaces can be prepared in advance and stored.

In order to conduct the assay, the corresponding partner of the immobilized assay component is exposed to the coated surface with or without the test compound. After the reaction is complete, unreacted assay components are removed (e.g., by washing) and any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the non-immobilized component is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the non-immobilized component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the initially non-immobilized species (the antibody, in turn, can be directly labeled or indirectly labeled with, e.g., a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds which modulate (inhibit or enhance) complex formation or which disrupt preformed complexes can be detected.

In an alternate embodiment of the invention, a homogeneous assay may be used. This is typically a reaction, analogous to those mentioned above, which is conducted in a liquid phase in the presence or absence of the test compound. The formed complexes are then separated from unreacted components, and the amount of complex formed is determined. As mentioned for heterogeneous assay systems, the order of addition of reactants to the liquid phase can yield information about which test compounds

modulate (inhibit or enhance) complex formation and which disrupt preformed complexes.

In such a homogeneous assay, the reaction products may be separated from unreacted assay components by any of a number of standard techniques, including but not limited to: differential centrifugation, chromatography, electrophoresis and immunoprecipitation. In differential centrifugation, complexes of molecules may be separated from uncomplexed molecules through a series of centrifugal steps, due to the different sedimentation equilibria of complexes based on their different sizes and densities (see, for example, Rivas, G., and Minton, A.P., Trends Biochem Sci 1993 Aug;18(8):284-7). Standard chromatographic techniques may also be utilized to separate complexed molecules from uncomplexed ones. For example, gel filtration chromatography separates molecules based on size, and through the utilization of an appropriate gel filtration resin in a column format, for example, the relatively larger complex may be separated from the relatively smaller uncomplexed components. Similarly, the relatively different charge properties of the complex as compared to the uncomplexed molecules may be exploited to differentially separate the complex from the remaining individual reactants, for example through the use of ion-exchange chromatography resins. Such resins and chromatographic techniques are well known to one skilled in the art (see, e.g., Heegaard, 1998, J Mol. Recognit. 11:141-148; Hage and Tweed, 1997, J. Chromatogr. B. Biomed. Sci. Appl., 699:499-525). Gel electrophoresis may also be employed to separate complexed molecules from unbound species (see, e.g., Ausubel et al (eds.), In: Current Protocols in Molecular Biology, J. Wiley & Sons, New York. 1999). In this technique, protein or nucleic acid complexes are separated based on size or charge, for example. In order to maintain the binding interaction during the electrophoretic process, non-denaturing gels in the absence of reducing agent are 25 typically preferred, but conditions appropriate to the particular interactants will be well known to one skilled in the art. Immunoprecipitation is another common technique utilized for the isolation of a protein-protein complex from solution (see, e.g., Ausubel et al (eds.), In: Current Protocols in Molecular Biology, J. Wiley & Sons, New York. 30 1999). In this technique, all proteins binding to an antibody specific to one of the binding molecules are precipitated from solution by conjugating the antibody to a polymer bead that may be readily collected by centrifugation. The bound assay

PCT/US00/35214 WO 01/46697

- 72 -

components are released from the beads (through a specific proteolysis event or other technique well known in the art which will not disturb the protein-protein interaction in the complex), and a second immunoprecipitation step is performed, this time utilizing antibodies specific for the correspondingly different interacting assay component. In this manner, only formed complexes should remain attached to the beads. Variations in complex formation in both the presence and the absence of a test compound can be compared, thus offering information about the ability of the compound to modulate interactions between the marker and its binding partner.

Also within the scope of the present invention are methods for direct detection of interactions between the marker and its natural binding partner and/or a test compound in a homogeneous or heterogeneous assay system without further sample manipulation. For example, the technique of fluorescence energy transfer may be utilized (see, e.g., Lakowicz et al, U.S. Patent No. 5,631,169; Stavrianopoulos et al, U.S. Patent No. 4,868,103). Generally, this technique involves the addition of a fluorophore label on a 15 first 'donor' molecule (e.g., marker or test compound) such that its emitted fluorescent energy will be absorbed by a fluorescent label on a second, 'acceptor' molecule (e.g., marker or test compound), which in turn is able to fluoresce due to the absorbed energy. Alternately, the 'donor' protein molecule may simply utilize the natural fluorescent energy of tryptophan residues. Labels are chosen that emit different wavelengths of light, such that the 'acceptor' molecule label may be differentiated from that of the 'donor'. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, spatial relationships between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the 'acceptor' molecule label in the assay should be maximal. An FET binding event can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter). A test substance which either enhances or hinders participation of one of the species in the preformed complex will result in the generation of a signal variant to that of background. In this way, test substances that modulate interactions between a marker and its binding partner can be identified in controlled assays.

20

PCT/US00/35214 WO 01/46697

In another embodiment, modulators of marker expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA or protein, corresponding to a marker in the cell, is determined. The level of expression of mRNA or protein in the presence of the candidate compound is compared 5 to the level of expression of mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of marker expression based on this comparison. For example, when expression of marker mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of marker mRNA or protein expression. Conversely, when expression of marker mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of marker mRNA or protein expression. The level of marker mRNA or protein expression in the cells can be determined by methods described herein for detecting marker mRNA or protein.

In another aspect, the invention pertains to a combination of two or more of the assays described herein. For example, a modulating agent can be identified using a cellbased or a cell free assay, and the ability of the agent to modulate the activity of a marker protein can be further confirmed in vivo, e.g., in a whole animal model for cellular transformation and/or tumorigenesis.

15

20

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., an marker modulating agent, an antisense 25 marker nucleic acid molecule, an marker-specific antibody, or an marker-binding partner) can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

It is understood that appropriate doses of small molecule agents and protein or polypeptide agents depends upon a number of factors within the knowledge of the ordinarily skilled physician, veterinarian, or researcher. The dose(s) of these agents will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the agent to have upon the nucleic acid or polypeptide of the invention. Exemplary doses of a small molecule include milligram or microgram amounts per kilogram of subject or sample weight (e.g. about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram). Exemplary doses of a protein or polypeptide include gram, milligram or microgram amounts per kilogram of subject or sample weight (e.g. about 1 microgram per kilogram to about 5 grams per kilogram, about 100 micrograms per kilogram to about 500 milligrams per kilogram, or about 1 milligram per kilogram to about 50 milligrams per kilogram). It is furthermore understood that appropriate doses of one of these agents depend upon the potency of the agent with respect to the expression or activity to be modulated. Such appropriate doses can be determined using the assays described herein. When one or more of these agents is to be administered to an animal (e.g. a human) in order to modulate expression or activity of a polypeptide or nucleic acid of the invention, a physician, veterinarian, or researcher can, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific agent employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.

20

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following

PCT/US00/35214 WO 01/46697

- 75 -

components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediamine-tetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous 10 solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL (BASF; Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active 30 compound (e.g., a polypeptide or antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating

25

the active compound into a sterile vehicle which contains a basic dispersion medium, and then incorporating the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed.

Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches, and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

15

20

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from a pressurized container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

- 77 -

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.

Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid.

Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes having monoclonal antibodies incorporated therein or thereon) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

15

20

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

For antibodies, the preferred dosage is 0.1 mg/kg to 100 mg/kg of body weight

(generally 10 mg/kg to 20 mg/kg). If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is usually appropriate. Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible. Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the breast epithelium). A method for lipidation of antibodies is described by Cruikshank et al. (1997) J. Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193.

- 78 -

The nucleic acid molecules corresponding to a marker of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Patent 5,328,470), or by stereotactic injection (see, e.g., Chen et al., 1994, Proc. Natl. Acad. Sci. USA 91:3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g. retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

V. Electronic Apparatus Readable Media and Arrays

15

25

Electronic apparatus readable media comprising a breast cancer marker of the present invention is also provided. As used herein, "electronic apparatus readable media" refers to any suitable medium for storing, holding or containing data or information that can be read and accessed directly by an electronic apparatus. Such media can include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as compact disc; electronic storage media such as RAM, ROM, EPROM, EEPROM and the like; general hard disks and hybrids of these categories such as magnetic/optical storage media. The medium is adapted or configured for having recorded thereon a marker of the present invention.

As used herein, the term "electronic apparatus" is intended to include any suitable computing or processing apparatus or other device configured or adapted for storing data or information. Examples of electronic apparatus suitable for use with the present invention include stand-alone computing apparatus; networks, including a local area network (LAN), a wide area network (WAN) Internet, Intranet, and Extranet; electronic appliances such as a personal digital assistants (PDAs), cellular phone, pager and the like; and local and distributed processing systems.

As used herein, "recorded" refers to a process for storing or encoding information on the electronic apparatus readable medium. Those skilled in the art can readily adopt any of the presently known methods for recording information on known media to generate manufactures comprising the markers of the present invention.

5

A variety of software programs and formats can be used to store the marker information of the present invention on the electronic apparatus readable medium. For example, the nucleic acid sequence corresponding to the markers can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like, as well as in other forms. Any number of dataprocessor structuring formats (e.g., text file or database) may be employed in order to obtain or create a medium having recorded thereon the markers of the present invention.

By providing the markers of the invention in readable form, one can routinely access the marker sequence information for a variety of purposes. For example, one skilled in the art can use the nucleotide or amino acid sequences of the present invention in readable form to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the sequences of the invention which match a particular target sequence or target motif.

The present invention therefore provides a medium for holding instructions for performing a method for determining whether a subject has breast cancer or a predisposition to breast cancer, wherein the method comprises the steps of determining the presence or absence of a breast cancer marker and based on the presence or absence of the breast cancer marker, determining whether the subject has breast cancer or a predisposition to breast cancer and/or recommending a particular treatment for the breast cancer or pre- breast cancer condition.

The present invention further provides in an electronic system and/or in a network, a method for determining whether a subject has breast cancer or a pre-disposition to breast cancer associated with a breast cancer marker wherein the method comprises the steps of determining the presence or absence of the breast cancer marker, and based on the presence or absence of the breast cancer marker, determining whether

the subject has breast cancer or a pre-disposition to breast cancer, and/or recommending a particular treatment for the breast cancer or pre- breast cancer condition. The method may further comprise the step of receiving phenotypic information associated with the subject and/or acquiring from a network phenotypic information associated with the subject.

5

25

The present invention also provides in a network, a method for determining whether a subject has breast cancer or a pre-disposition to breast cancer associated with a breast cancer marker, said method comprising the steps of receiving information associated with the breast cancer marker receiving phenotypic information associated with the subject, acquiring information from the network corresponding to the breast cancer marker and/or breast cancer, and based on one or more of the phenotypic information, the breast cancer marker, and the acquired information, determining whether the subject has breast cancer or a pre-disposition to breast cancer. The method may further comprise the step of recommending a particular treatment for the breast cancer or pre- breast cancer condition.

The present invention also provides a business method for determining whether a subject has breast cancer or a pre-disposition to breast cancer, said method comprising the steps of receiving information associated with the breast cancer marker, receiving phenotypic information associated with the subject, acquiring information from the network corresponding to the breast cancer marker and/or breast cancer, and based on one or more of the phenotypic information, the breast cancer marker, and the acquired information, determining whether the subject has breast cancer or a pre-disposition to breast cancer. The method may further comprise the step of recommending a particular treatment for the breast cancer or pre- breast cancer condition.

The invention also includes an array comprising a breast cancer marker of the present invention. The array can be used to assay expression of one or more genes in the array. In one embodiment, the array can be used to assay gene expression in a tissue to ascertain tissue specificity of genes in the array. In this manner, up to about 7600 genes can be simultaneously assayed for expression. This allows a profile to be developed showing a battery of genes specifically expressed in one or more tissues.

- 81 -

In addition to such qualitative determination, the invention allows the quantitation of gene expression. Thus, not only tissue specificity, but also the level of expression of a battery of genes in the tissue is ascertainable. Thus, genes can be grouped on the basis of their tissue expression per se and level of expression in that tissue. This is useful, for example, in ascertaining the relationship of gene expression between or among tissues. Thus, one tissue can be perturbed and the effect on gene expression in a second tissue can be determined. In this context, the effect of one cell type on another cell type in response to a biological stimulus can be determined. Such a determination is useful, for example, to know the effect of cell-cell interaction at the level of gene expression. If an agent is administered therapeutically to treat one cell type but has an undesirable effect on another cell type, the invention provides an assay to determine the molecular basis of the undesirable effect and thus provides the opportunity to co-administer a counteracting agent or otherwise treat the undesired effect. Similarly, even within a single cell type, undesirable biological effects can be determined at the molecular level. Thus, the effects of an agent on expression of other than the target gene can be ascertained and counteracted.

In another embodiment, the array can be used to monitor the time course of expression of one or more genes in the array. This can occur in various biological contexts, as disclosed herein, for example development of breast cancer, progression of breast cancer, and processes, such a cellular transformation associated with breast cancer.

The array is also useful for ascertaining the effect of the expression of a gene on the expression of other genes in the same cell or in different cells. This provides, for example, for a selection of alternate molecular targets for therapeutic intervention if the ultimate or downstream target cannot be regulated.

The array is also useful for ascertaining differential expression patterns of one or more genes in normal and abnormal cells. This provides a battery of genes that could serve as a molecular target for diagnosis or therapeutic intervention.

30 VI. Predictive Medicine

20

The present invention pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trails

WO 01/46697

PCT/US00/35214

are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining the level of expression of polypeptides or nucleic acids corresponding to one or more markers of the invention, in order to determine whether an individual is at risk of developing breast cancer. Such assays can be used for prognostic or predictive purposes to thereby prophylactically treat an individual prior to the onset of the cancer.

Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs or other compounds administered either to inhibit breast cancer or to treat or prevent any other disorder {i.e. in order to understand any breast carcinogenic effects that such treatment may have}) on the expression or activity of a marker of the invention in clinical trials. These and other agents are described in further detail in the following sections.

A. Diagnostic Assays

15

An exemplary method for detecting the presence or absence of a polypeptide or nucleic acid corresponding to a marker of the invention in a biological sample involves obtaining a biological sample (e.g. a breast-associated body fluid) from a test subject and contacting the biological sample with a compound or an agent capable of detecting the polypeptide or nucleic acid (e.g., mRNA, genomic DNA, or cDNA). The detection methods of the invention can thus be used to detect mRNA, protein, cDNA, or genomic DNA, for example, in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of a polypeptide corresponding to a marker of the invention include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. In vitro techniques for detection of genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of a polypeptide corresponding to a marker of the invention include introducing into a subject a labeled antibody directed against the polypeptide. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

A general principle of such diagnostic and prognostic assays involves preparing a sample or reaction mixture that may contain a marker, and a probe, under appropriate conditions and for a time sufficient to allow the marker and probe to interact and bind, thus forming a complex that can be removed and/or detected in the reaction mixture.

5 These assays can be conducted in a variety of ways.

For example, one method to conduct such an assay would involve anchoring the marker or probe onto a solid phase support, also referred to as a substrate, and detecting target marker/probe complexes anchored on the solid phase at the end of the reaction. In one embodiment of such a method, a sample from a subject, which is to be assayed for presence and/or concentration of marker, can be anchored onto a carrier or solid phase support. In another embodiment, the reverse situation is possible, in which the probe can be anchored to a solid phase and a sample from a subject can be allowed to react as an unanchored component of the assay.

There are many established methods for anchoring assay components to a solid phase. These include, without limitation, marker or probe molecules which are immobilized through conjugation of biotin and streptavidin. Such biotinylated assay components can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). In certain embodiments, the surfaces with immobilized assay components can be prepared in advance and stored.

Other suitable carriers or solid phase supports for such assays include any material capable of binding the class of molecule to which the marker or probe belongs. Well-known supports or carriers include, but are not limited to, glass, polystyrene, nylon, polypropylene, nylon, polyethylene, dextran, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite.

In order to conduct assays with the above mentioned approaches, the non-immobilized component is added to the solid phase upon which the second component is anchored. After the reaction is complete, uncomplexed components may be removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized upon the solid phase. The detection of marker/probe complexes anchored to the solid phase can be accomplished in a number of methods outlined herein.

5

20

In a preferred embodiment, the probe, when it is the unanchored assay component, can be labeled for the purpose of detection and readout of the assay, either directly or indirectly, with detectable labels discussed herein and which are well-known to one skilled in the art.

It is also possible to directly detect marker/probe complex formation without further manipulation or labeling of either component (marker or probe), for example by utilizing the technique of fluorescence energy transfer (see, for example, Lakowicz et al., U.S. Patent No. 5,631,169; Stavrianopoulos, et al., U.S. Patent No. 4,868,103). A fluorophore label on the first, 'donor' molecule is selected such that, upon excitation with incident light of appropriate wavelength, its emitted fluorescent energy will be absorbed by a fluorescent label on a second 'acceptor' molecule, which in turn is able to fluoresce due to the absorbed energy. Alternately, the 'donor' protein molecule may simply utilize the natural fluorescent energy of tryptophan residues. Labels are chosen that emit different wavelengths of light, such that the 'acceptor' molecule label may be differentiated from that of the 'donor'. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, spatial relationships between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the 'acceptor' molecule label in the assay should be maximal. An FET binding event can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter).

In another embodiment, determination of the ability of a probe to recognize a marker can be accomplished without labeling either assay component (probe or marker) by utilizing a technology such as real-time Biomolecular Interaction Analysis (BIA) (see, e.g., Sjolander, S. and Urbaniczky, C., 1991, Anal. Chem. 63:2338-2345 and Szabo et al., 1995, Curr. Opin. Struct. Biol. 5:699-705). As used herein, "BIA" or "surface plasmon resonance" is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the mass at the binding surface (indicative of a binding event) result in alterations of the refractive index of light near the surface (the optical phenomenon of surface plasmon resonance (SPR)), resulting in a detectable signal which can be used as an indication of real-time reactions between biological molecules.

Alternatively, in another embodiment, analogous diagnostic and prognostic assays can be conducted with marker and probe as solutes in a liquid phase. In such an assay, the complexed marker and probe are separated from uncomplexed components by any of a number of standard techniques, including but not limited to: differential centrifugation, chromatography, electrophoresis and immunoprecipitation. In differential centrifugation, marker/probe complexes may be separated from uncomplexed assay components through a series of centrifugal steps, due to the different sedimentation equilibria of complexes based on their different sizes and densities (see, for example, Rivas, G., and Minton, A.P., 1993, Trends Biochem Sci. 18(8):284-7). Standard chromatographic techniques may also be utilized to separate complexed 10 molecules from uncomplexed ones. For example, gel filtration chromatography separates molecules based on size, and through the utilization of an appropriate gel filtration resin in a column format, for example, the relatively larger complex may be separated from the relatively smaller uncomplexed components. Similarly, the relatively different charge properties of the marker/probe complex as compared to the uncomplexed components may be exploited to differentiate the complex from uncomplexed components, for example through the utilization of ion-exchange chromatography resins. Such resins and chromatographic techniques are well known to one skilled in the art (see, e.g., Heegaard, N.H., 1998, J. Mol. Recognit. Winter 11(1-6):141-8; Hage, D.S., and Tweed, S.A. J Chromatogr B Biomed Sci Appl 1997 Oct 10;699(1-2):499-525). Gel electrophoresis may also be employed to separate complexed assay components from unbound components (see, e.g., Ausubel et al., ed., Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1987-1999). In this technique, protein or nucleic acid complexes are separated based on size or charge, for example. In order to maintain the binding interaction during the 25 electrophoretic process, non-denaturing gel matrix materials and conditions in the absence of reducing agent are typically preferred. Appropriate conditions to the particular assay and components thereof will be well known to one skilled in the art.

In a particular embodiment, the level of mRNA corresponding to the marker can
be determined both by *in situ* and by *in vitro* formats in a biological sample using
methods known in the art. The term "biological sample" is intended to include tissues,
cells, biological fluids and isolates thereof, isolated from a subject, as well as tissues,

PCT/US00/35214 WO 01/46697

cells and fluids present within a subject. Many expression detection methods use isolated RNA. For in vitro methods, any RNA isolation technique that does not select against the isolation of mRNA can be utilized for the purification of RNA from breast cells (see, e.g., Ausubel et al., ed., Current Protocols in Molecular Biology, John Wiley & Sons, New York 1987-1999). Additionally, large numbers of tissue samples can readily be processed using techniques well known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomczynski (1989, U.S. Patent No. 4,843,155).

The isolated mRNA can be used in hybridization or amplification assays that 10 include, but are not limited to, Southern or Northern analyses, polymerase chain reaction analyses and probe arrays. One preferred diagnostic method for the detection of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to the mRNA encoded by the gene being detected. The nucleic acid probe can be, for example, a full-length cDNA, or a portion thereof, such as an oligonucleotide of at least 7, 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding a marker of the present invention. Other suitable probes for use in the diagnostic assays of the invention are described herein. Hybridization of an mRNA with the probe indicates that the marker in question is being expressed.

15

20

In one format, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative format, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in an Affymetrix gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in detecting the level of mRNA encoded by the markers of the present invention.

An alternative method for determining the level of mRNA corresponding to a marker of the present invention in a sample involves the process of nucleic acid amplification, e.g., by rtPCR (the experimental embodiment set forth in Mullis, 1987, 30 U.S. Patent No. 4,683,202), ligase chain reaction (Barany, 1991, Proc. Natl. Acad. Sci. USA, 88:189-193), self sustained sequence replication (Guatelli et al., 1990, Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al., 1989,

Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al., 1988, Bio/Technology 6:1197), rolling circle replication (Lizardi et al., U.S. Patent No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. As used herein, amplification primers are defined as being a pair of nucleic acid molecules that can anneal to 5' or 3' regions of a gene (plus and minus strands, respectively, or vice-versa) and contain a short region in between. In general, amplification primers are from about 10 to 30 nucleotides in length and flank a region from about 50 to 200 nucleotides in length. Under appropriate conditions and with appropriate reagents, such primers permit the amplification of a nucleic acid molecule comprising the nucleotide sequence flanked by the primers.

For *in situ* methods, mRNA does not need to be isolated from the breast cells prior to detection. In such methods, a cell or tissue sample is prepared/processed using known histological methods. The sample is then immobilized on a support, typically a glass slide, and then contacted with a probe that can hybridize to mRNA that encodes the marker.

As an alternative to making determinations based on the absolute expression level of the marker, determinations may be based on the normalized expression level of the marker. Expression levels are normalized by correcting the absolute expression level of a marker by comparing its expression to the expression of a gene that is not a marker, e.g., a housekeeping gene that is constitutively expressed. Suitable genes for normalization include housekeeping genes such as the actin gene, or epithelial cell-specific genes. This normalization allows the comparison of the expression level in one sample, e.g., a patient sample, to another sample, e.g., a non-breast cancer sample, or between samples from different sources.

Alternatively, the expression level can be provided as a relative expression level. To determine a relative expression level of a marker, the level of expression of the marker is determined for 10 or more samples of normal versus cancer cell isolates, preferably 50 or more samples, prior to the determination of the expression level for the sample in question. The mean expression level of each of the genes assayed in the larger number of samples is determined and this is used as a baseline expression level

for the marker. The expression level of the marker determined for the test sample (absolute level of expression) is then divided by the mean expression value obtained for that marker. This provides a relative expression level.

Preferably, the samples used in the baseline determination will be from breast cancer or from non-breast cancer cells of breast tissue. The choice of the cell source is dependent on the use of the relative expression level. Using expression found in normal tissues as a mean expression score aids in validating whether the marker assayed is breast specific (versus normal cells). In addition, as more data is accumulated, the mean expression value can be revised, providing improved relative expression values based on accumulated data. Expression data from breast cells provides a means for grading the severity of the breast cancer state.

In another embodiment of the present invention, a polypeptide corresponding to a marker is detected. A preferred agent for detecting a polypeptide of the invention is an antibody capable of binding to a polypeptide corresponding to a marker of the invention, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')₂) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.

Proteins from breast cells can be isolated using techniques that are well known to those of skill in the art. The protein isolation methods employed can, for example, be such as those described in Harlow and Lane (Harlow and Lane, 1988, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).

A variety of formats can be employed to determine whether a sample contains a protein that binds to a given antibody. Examples of such formats include, but are not limited to, enzyme immunoassay (EIA), radioimmunoassay (RIA), Western blot analysis and enzyme linked immunoabsorbant assay (ELISA). A skilled artisan can

readily adapt known protein/antibody detection methods for use in determining whether breast cells express a marker of the present invention.

In one format, antibodies, or antibody fragments, can be used in methods such as Western blots or immunofluorescence techniques to detect the expressed proteins. In such uses, it is generally preferable to immobilize either the antibody or proteins on a solid support. Suitable solid phase supports or carriers include any support capable of binding an antigen or an antibody. Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite.

One skilled in the art will know many other suitable carriers for binding antibody or antigen, and will be able to adapt such support for use with the present invention. For example, protein isolated from breast cells can be run on a polyacrylamide gel electrophoresis and immobilized onto a solid phase support such as nitrocellulose. The support can then be washed with suitable buffers followed by treatment with the detectably labeled antibody. The solid phase support can then be washed with the buffer a second time to remove unbound antibody. The amount of bound label on the solid support can then be detected by conventional means.

10

30

The invention also encompasses kits for detecting the presence of a polypeptide or nucleic acid corresponding to a marker of the invention in a biological sample (e.g. an breast-associated body fluid). Such kits can be used to determine if a subject is suffering from or is at increased risk of developing breast cancer. For example, the kit can comprise a labeled compound or agent capable of detecting a polypeptide or an mRNA encoding a polypeptide corresponding to a marker of the invention in a biological sample and means for determining the amount of the polypeptide or mRNA in the sample (e.g., an antibody which binds the polypeptide or an oligonucleotide probe which binds to DNA or mRNA encoding the polypeptide). Kits can also include instructions for interpreting the results obtained using the kit.

For antibody-based kits, the kit can comprise, for example: (1) a first antibody (e.g., attached to a solid support) which binds to a polypeptide corresponding to a marker of the invention; and, optionally, (2) a second, different antibody which binds to either the polypeptide or the first antibody and is conjugated to a detectable label.

For oligonucleotide-based kits, the kit can comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a polypeptide corresponding to a marker of the invention or (2) a pair of primers useful for amplifying a nucleic acid molecule corresponding to a marker of the invention. The kit can also comprise, e.g., a buffering agent, a preservative, or a protein stabilizing agent. The kit can further comprise components necessary for detecting the detectable label (e.g., an enzyme or a substrate). The kit can also contain a control sample or a series of control samples which can be assayed and compared to the test sample. Each component of the kit can be enclosed within an individual container and all of the various containers can be within a single package, along with instructions for interpreting the results of the assays performed using the kit.

B. Pharmacogenomics

Agents or modulators which have a stimulatory or inhibitory effect on expression of a marker of the invention can be administered to individuals to treat (prophylactically or therapeutically) breast cancer in the patient. In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens.

25 Accordingly, the level of expression of a marker of the invention in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.

Pharmacogenomics deals with clinically significant variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Linder (1997) Clin. Chem. 43(2):254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body are referred to as "altered drug action." Genetic

- 91 -

conditions transmitted as single factors altering the way the body acts on drugs are referred to as "altered drug metabolism". These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.

As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, a PM will show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6formed metabolite morphine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.

Thus, the level of expression of a marker of the invention in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a modulator of expression of a marker of the invention.

25

- 92 -

This invention also provides a process for preparing a database comprising at least one of the markers set forth in Tables 1-21. For example, the polynucleotide sequences are stored in a digital storage medium such that a data processing system for standardized representation of the genes that identify a breast cancer cell is compiled.

The data processing system is useful to analyze gene expression between two cells by first selecting a cell suspected of being of a neoplastic phenotype or genotype and then isolating polynucleotides from the cell. The isolated polynucleotides are sequenced. The sequences from the sample are compared with the sequence(s) present in the database using homology search techniques. Greater than 90%, more preferably greater than 95% and more preferably, greater than or equal to 97% sequence identity between the test sequence and the polynucleotides of the present invention is a positive indication that the polynucleotide has been isolated from a breast cancer cell as defined above.

In an alternative embodiment, the polynucleotides of this invention are sequenced and the information regarding sequence and in some embodiments, relative expression, is stored in any functionally relevant program, e.g., in Compare Report using the SAGE software (available though Dr. Ken Kinzler at John Hopkins University). The Compare Report provides a tabulation of the polynucleotide sequences and their abundance for the samples normalized to a defined number of polynucleotides per library (say 25,000). This is then imported into MS-ACCESS either directly or via copying the data into an Excel spreadsheet first and then from there into MS-ACCESS for additional manipulations. Other programs such as SYBASE or Oracle that permit the comparison of polynucleotide numbers could be used as alternatives to MS-ACCESS. Enhancements to the software can be designed to incorporate these additional functions. These functions consist in standard Boolean, algebraic, and text search operations, applied in various combinations to reduce a large input set of polynucleotides to a manageable subset of a polynucleotide of specifically defined interest.

One skilled in the art may create groups containing one or more project(s) by combining the counts of specific polynucleotides within a group (e.g., GroupNormal = Normal1 + Normal2, GroupTumor1 + TumorCellLine). Additional characteristic values are also calculated for each tag in the group (e.g., average count, minimum count, maximum count). One skilled in the art may calculate individual tag count ratios

between groups, for example the ratio of the average GroupNormal count to the average GroupTumor count for each polynucleotide. A statistical measure of the significance of observed differences in tag counts between groups may be calculated.

5 C. Monitoring Clinical Trials

Monitoring the influence of agents (e.g., drug compounds) on the level of expression of a marker of the invention can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent to affect marker expression can be monitored in clinical trials of subjects receiving treatment for breast cancer. In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of one or more selected markers of the invention in the pre-administration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression of the marker(s) in the post-administration samples; (v) comparing the level of expression of the marker(s) in the pre-administration sample with the level of expression of the marker(s) in the post-administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent can be desirable to increase expression of the marker(s) to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent can be desirable to decrease expression of the marker(s) to lower levels than detected, i.e., to decrease the effectiveness of the agent.

D. Surrogate Markers

20

The markers of the invention may serve as surrogate markers for one or more disorders or disease states or for conditions leading up to disease states, and in particular, breast cancer. As used herein, a "surrogate marker" is an objective biochemical marker which correlates with the absence or presence of a disease or disorder, or with the progression of a disease or disorder (e.g., with the presence or

absence of a tumor). The presence or quantity of such markers is independent of the disease. Therefore, these markers may serve to indicate whether a particular course of treatment is effective in lessening a disease state or disorder. Surrogate markers are of particular use when the presence or extent of a disease state or disorder is difficult to assess through standard methodologies (e.g., early stage tumors), or when an assessment of disease progression is desired before a potentially dangerous clinical endpoint is reached (e.g., an assessment of cardiovascular disease may be made using cholesterol levels as a surrogate marker, and an analysis of HIV infection may be made using HIV RNA levels as a surrogate marker, well in advance of the undesirable clinical outcomes of myocardial infarction or fully-developed AIDS). Examples of the use of surrogate markers in the art include: Koomen et al. (2000) J. Mass. Spectrom. 35: 258-264; and James (1994) AIDS Treatment News Archive 209.

The markers of the invention are also useful as pharmacodynamic markers. As used herein, a "pharmacodynamic marker" is an objective biochemical marker which correlates specifically with drug effects. The presence or quantity of a pharmacodynamic marker is not related to the disease state or disorder for which the drug is being administered; therefore, the presence or quantity of the marker is indicative of the presence or activity of the drug in a subject. For example, a pharmacodynamic marker may be indicative of the concentration of the drug in a biological tissue, in that the marker is either expressed or transcribed or not expressed or transcribed in that tissue in relationship to the level of the drug. In this fashion, the distribution or uptake of the drug may be monitored by the pharmacodynamic marker. Similarly, the presence or quantity of the pharmacodynamic marker may be related to the presence or quantity of the metabolic product of a drug, such that the presence or quantity of the marker is indicative of the relative breakdown rate of the drug in vivo. Pharmacodynamic markers are of particular use in increasing the sensitivity of detection of drug effects, particularly when the drug is administered in low doses. Since even a small amount of a drug may be sufficient to activate multiple rounds of marker transcription or expression, the amplified marker may be in a quantity which is more readily detectable than the drug itself. Also, the marker may be more easily detected due to the nature of the marker itself; for example, using the methods described herein, antibodies may be employed in an immune-based detection system for a protein marker,

- 95 -

or marker-specific radiolabeled probes may be used to detect a mRNA marker. Furthermore, the use of a pharmacodynamic marker may offer mechanism-based prediction of risk due to drug treatment beyond the range of possible direct observations. Examples of the use of pharmacodynamic markers in the art include: Matsuda et al. US 6,033,862; Hattis et al. (1991) Env. Health Perspect. 90: 229-238; Schentag (1999) Am. J. Health-Syst. Pharm. 56 Suppl. 3: S21-S24; and Nicolau (1999) Am, J. Health-Syst. Pharm. 56 Suppl. 3: S16-S20.

The markers of the invention are also useful as pharmacogenomic markers. As used herein, a "pharmacogenomic marker" is an objective biochemical marker which correlates with a specific clinical drug response or susceptibility in a subject (see, e.g., McLeod et al. (1999) Eur. J. Cancer 35(12): 1650-1652). The presence or quantity of the pharmacogenomic marker is related to the predicted response of the subject to a specific drug or class of drugs prior to administration of the drug. By assessing the presence or quantity of one or more pharmacogenomic markers in a subject, a drug therapy which is most appropriate for the subject, or which is predicted to have a greater degree of success, may be selected. For example, based on the presence or quantity of RNA or protein for specific tumor markers in a subject, a drug or course of treatment may be selected that is optimized for the treatment of the specific tumor likely to be present in the subject. Similarly, the presence or absence of a specific sequence mutation in marker DNA may correlate with drug response. The use of pharmacogenomic markers therefore permits the application of the most appropriate treatment for each subject without having to administer the therapy.

VII. Experimental Protocol

25

20

A. Subtracted Libraries and Transcript Profiling

Subtracted libraries are generated using a PCR based method that allows the isolation of clones expressed at higher levels in one population of mRNA (tester) compared to another population (driver). Both tester and driver mRNA populations are converted into cDNA by reverse transcription, and then PCR amplified using the SMART PCR kit from Clontech. Tester and driver cDNAs are then hybridized using the PCR-Select cDNA subtraction kit from Clontech. This technique results in both

WO 01/46697

- 96 -

PCT/US00/35214

subtraction and normalization, which is an equalization of copy number of low-abundance and high-abundance sequences. After generation of the subtractive libraries, a group of 96 or more clones from each library is tested to confirm differential expression by reverse Southern hybridization.

For the markers of the invention identified through the above-described subtractive library hybridization technique, the "tester" source for the subtracted libraries was comprised of cDNA generated from either tissue samples from three types of breast cancer (obtained from human patients), or from breast cancer cell lines. The "driver" source for the subtracted libraries was comprised of cDNA generated from non-cancerous breast tissue cells.

For transcript profiling, nylon arrays are prepared by spotting purified PCR product onto a nylon membrane using a robotic gridding system linked to a sample database. Several thousand clones are spotted on each nylon filter.

RNA or DNA from clinical samples (tumor and normal) and cell lines are used for hybridization against the nylon arrays. The RNA or DNA is labeled utilizing an *in vitro* reverse transcription reaction that contains a radiolabeled nucleotide that is incorporated during the reaction. Alternatively, mRNA is converted into cDNA by reverse transcription, and then PCR amplified using the SMART PCR kit from Clontech. Hybridization experiments are carried out by combining labeled RNA or DNA samples with nylon filters in a hybridization chamber. Duplicate, independent hybridization experiments are performed to generate transcriptional profiling data. See, *Nature Genetics*, 21 (1999). Amplified cDNA is then radiolabelled using random priming with PRIME IT from Stratagene.

B. Proteomics

5

10

15

20

Proteins that are secreted by normal and transformed cells in culture are analyzed to identify those proteins that are likely to be secreted by cancerous cells into body fluids. Supernatants are isolated and MWT-CO filters are used to simplify the mixture of proteins. The proteins are then digested with trypsin. The tryptic peptides are loaded onto a microcapillary HPLC column where they are separated, and eluted directly into an ion trap mass spectrometer, through a custom-made electrospray ionization source. Throughout the gradient, sequence data is acquired through fragmentation of the four

PCT/US00/35214 WO 01/46697

- 97 -

most intense ions (peptides) that elute off the column, while dynamically excluding those that have already been fragmented. In this way, approximately 2000 scans worth of sequence data are obtained, corresponding to approximately 50 to 200 different proteins in the sample. These data are searched against databases using correlation analysis tools, such as MS-Tag, to identify the proteins in the supernatants.

VIII. Summary Of The Data Provided In The Tables

15

20

25

30

The level of expression of numerous potential markers (i.e. "the markers of the invention") was measured in cells obtained from breast cancer tissue samples obtained 10 from fifteen patients afflicted with breast cancer and from eleven breast cancer cell cultures. The fifteen cancer tissue samples include: (i) five invasive lobular carcinomas (ILC), (ii) five invasive ductal carcinomas (IDC), and (iii) five samples of ductal carcinoma in situ (DCIS). These tissue and cell line measurements were assessed based on comparison with expression levels of each marker in corresponding non-cancerous breast tissue and cell cultures. Markers which display significantly higher levels of expression in cancer-related samples than in non-cancerous samples are listed in Tables 1-8. As an additional evaluation of ability to indicate breast cancer, individual markers that were identified by transcriptional profiling criteria mentioned above were also tested in six different subtracted library experiments. These subtracted libraries consisted of:

- a pool of metastatic cells harvested from the ascites or (i) pleural fluid of three breast cancer patients subtracted against a pool of non-cancerous HMECs (human mammary epithelial cells) from three healthy donors,
- a pool of metastatic cells harvested from the ascites or (ii) pleural fluid of two patients subtracted against a noncancerous HMECs from one healthy donor,
- (iii) a pool of five ILC tissue samples subtracted against a pool of five normal breast epithelia,
- the breast cancer cell line ZR-75 subtracted against a (iv) single HMEC sample,

- 98 -

(v) the breast cancer cell line MCF7 subtracted against a single HMEC sample, and

(vi) the breast cancer cell line MDA-MB-231 subtracted against a single HMEC sample.

5

Table 8 lists the markers identified by the above-described subtractive library experiments.

Markers of the present invention were also identified from cells obtained from breast cancer tissues exhibiting varying clinical outcomes and degrees of aggressiveness. Table 9 lists the markers that were identified by subtractive library experiments and Tables 10-17 lists the markers that were identified through transcriptional profiling experiments.

In addition, protein profiling experiments were undertaken to assess whether the proteins associated with the expression of individual markers of the

invention are secreted. Transcriptional profiling experiments were performed on fractions of RNA that were obtained from either (a) endoplasmic reticulum-associated (ER-associated) ribosomes, or (b) free ribosomes. Eukaryotic RNA which is isolated from ER-associated ribosomes tends to encode secreted and membrane bound proteins rather than intracellular proteins. Accordingly, markers of the invention which exhibit significantly enhanced expression in fractions of RNA from ER-associated ribosomes (in comparison with RNA from free ribosomes) are predicted to be associated with secreted proteins.

Table 1 lists 2072 markers, expression of which was increased by at least fivefold in at least:

25

- (i) one of eleven breast cancer cell cultures tested, relative to its expression in six normal (i.e. non-cancerous) human epithelial mammary cell lines (HMEC); or
- (ii) one of fifteen different breast cancer tissue samples relative to expression in seven normal breast tissue samples.

30

The fifteen cancer tissue samples include: (i) five invasive lobular carcinomas (ILC), (ii) five invasive ductal carcinomas (IDC), and (iii) five samples of ductal carcinoma in situ (DCIS).

Table 2 lists 214 markers, expression of which was increased by at least 5-fold in at least 3 of the 11 breast cancer cell cultures relative to its expression in normal (i.e. non-cancerous) mammary epithelial cell lines.

Table 3 lists 207 markers, expression of which was increased by at least 2-fold in at least 3 of the 5 ILC breast cancer tissue samples relative to its expression in seven non-cancerous breast tissue samples.

Table 4 lists 672 markers, expression of which was increased by at least 2-fold in at least 3 of the 5 IDC breast cancer tissue samples relative to its expression in seven non-cancerous breast tissue samples.

Table 5 lists 794 markers, expression of which was increased by at least 2-fold in at least 3 of the 5 DCIS breast cancer tissue samples relative to its expression in seven non-cancerous breast tissue samples.

Table 6 lists 478 markers, expression of which was

10

15

20

25

- (i) increased by at least 10-fold in at least 1 of the 11 breast cancer cell cultures and which are predicted or known to code for products that are secreted based upon protein profiling analysis, sequence analysis and/or literature references, or
- (ii) expression of which was increased at least 5-fold in 1 of the 15 breast cancer tissue samples and which are predicted or known to code for products that are secreted based upon protein profiling analysis, sequence analysis and/or literature references.

Table 7 lists 8 preferred markers, expression of which was increased by at least 4.5 fold in one of the three types of breast cancer tissue samples used (ILC, IDC, and DCIS), and which are predicted or known to code for products that are secreted based upon protein profiling analysis, sequence analysis and/or literature references.

- 100 -

Table 8 lists markers (SEQ ID NOS 1-6540) identified through a subtracted library experiment described herein. The library source for SEQ ID NOS: 1-1773 was breast cancer cell cultures (ascites and pleural fluid cultures) versus HMEC. The library source for SEQ ID NOS: 1774-3012 was breast cancer tissue (ILC) versus breast normal tissue. The library source for SEQ ID NOS: 3013-4982 was breast cancer tissue (IDC) versus breast normal tissue. The library source for SEQ ID NOS: 4983-6540 was breast cancer tissue (DCIS) versus breast normal tissue.

Table 9 lists markers (corresponding to SEQ ID NOS: 1-9340) identified through subtractive library experiments described herein. SEQ ID NOS: 1-6557 and 7958-9185 are preferred. The tester source for SEQ ID NOS: 1-1019, 6558-6596, 7958-7999, and 9186-9187 was aggressive breast tumor cell lines (SKBR-3, HS578T, BT549, MDA321, MDA435) and the driver source was indolent breast tumor cell lines (MCF-7, T47D, ZR75). Markers corresponding to these sequences are upregulated in more aggressive tumors.

The tester source for SEQ ID NOS: 1020-1836, 6597-6635, 8000-8241, and 9188-9200 was indolent breast tumor cell lines (MCF-7, T47D, ZR75) and the driver source was aggressive breast tumor cell lines (SKBR-3, HS578T, BT549, MDA321, MDA435). Markers corresponding to these sequences are upregulated in more indolent tumors.

15

20

The tester source for SEQ ID NOS: 1837-3023, 6636-7011, 8242-8317, and 9201-9237 was poor clinical outcome breast tumors and the driver source was good clinical outcome breast tumors. Markers corresponding to these sequences are upregulated in more aggressive tumors. "Poor clinical outcome" is defined as the patient suffering disease recurrence following surgery within a period of less than five years. "Good clinical outcome" is defined as the patient remaining disease free for at least five years or more following surgery.

The tester source for SEQ ID NOS: 3023-3403, 7012-7387, 8318-8329, and 9238-9262 was good clinical outcome breast tumors and the driver source was poor clinical outcome breast tumors. Markers corresponding to these sequences are upregulated in more indolent tumors.

The tester source for SEQ ID NOS 3404-4368, 7388-7617, 8330-8382, and 9263-9289 was breast tumor lymph node metastasis and the driver source was indolent (colloid and tubular) breast tumor samples. Markers corresponding to these sequences are upregulated in more aggressive tumors.

The tester source for SEQ ID NOS 4369-5300, 7618-7847, 8383-8430, and 9290-9315. was indolent (colloid and tubular) breast tumor samples and the driver source was breast tumor lymph node metastasis. Markers corresponding to these sequences are upregulated in more indolent tumors.

5

15

20

The tester source for SEQ ID NOS: 5301-5918, 7848-7902, 8431-8846, and 9316-9330 was T1N1 breast tumors (tumors 2.0 cm or less in greatest dimension with regional lymph node metastasis) and the driver source was T1N0 breast tumors (tumors 2.0 cm or less in greatest dimension with no regional lymph node metastasis), good clinical outcome. Markers corresponding to these sequences are upregulated in more aggressive tumors.

The tester source for SEQ ID NOS: 5919-6557, 7903-7957, 8847-9185, and 9331-9340 was T1N0 breast tumors with good clinical outcome and the driver source was T1N1 breast tumors. Markers corresponding to these sequences are upregulated in more indolent tumors.

Table 9-1 is a key to the sequences of Table 9 and indicates which sequences were identified from the GenBank, dbEST (a division of GenBank), or NUCPATENT (a GENESEQ database, available through Derwent).

Tables 10-17 list markers of the present invention that were identified through transcriptional profiling experiments. All markers listed in Tables 10-16 were differentially expressed at least two-fold in at least 25% of the aggressive samples or at least five-fold in at least one aggressive sample.

Table 10 shows markers differentially expressed in ductal carcinoma in situ samples (DCIS: localized to the duct, more unaggressive) versus infiltrating ductal carcinoma (IDC: infiltrating, more aggressive). Table 11 shows markers differentially expressed in DCIS samples versus infiltrating lobular carcinoma (ILC: infiltrating, more aggressive) samples. Table 12 shows markers differentially expressed in unaggressive cell lines (MCF-7, T47D, ZR75) versus aggressive cell lines (SKBR-3, HS578T, BT549, MDA321, MDA435). Table 13 shows markers differentially expressed in

- 102 -

indolent (colloid and tubular) breast tumor samples versus distant breast tumor metastasis. Table 14 shows markers differentially expressed in indolent (colloid and tubular) breast tumor samples versus lymph node metastasis. Table 15 shows markers differentially expressed in T1N0 breast tumors versus T1N1 breast tumors. Table 16 shows markers differentially expressed in breast tumors with good clinical outcome versus breast tumors with bad clinical outcome. Table 17 shows 26 markers, expression of which was increased by at least five-fold in at least three of fifteen different breast cancer tissue samples relative to expression in seven normal breast tissue samples. The fifteen cancer tissue samples include: (i) five invasive lobular carcinomas (ILC), (ii) five invasive ductal carcinomas (IDC), and (iii) five samples of ductal carcinoma in situ (DCIS).

Table 18 lists 9,429 markers which were identified based on a correlation between the transcription profile of each marker and the transcription profile of one or more of 29 known cancer markers (see Table B, below) which represent genes indicative of cancer in general and/or breast cancer in particular. The transcription profiles of the markers and the known cancer markers were determined in eight cancer cell lines of varying aggressiveness. The correlation coefficients were determined by comparing the transcription profiles (expression patterns) of the known cancer clones in the cancer cell lines to the transcription profiles (expression patterns) of the marker genes in the cancer cell lines. The markers listed in Table 18 are those markers found to have a correlation coefficient which is greater than 0.8 or less than -0.8. The cancer cell lines used in the experiment include the following (listed in order of increasing aggressiveness): MCF-7, T37D, ZR-75, SKBR-3, MDA-435, Hs578-T, BT-549, MDA-231.

Table 19 lists 3,717 markers which were also identified based on a correlation between the transcription profile of the markers and the transcription profile of one or more of the same 29 known cancer markers (see Table B, below). The transcription profiles of each marker and each known cancer marker were determined in one or more samples of 17 different tumors and cancer cell lines, for a total of 68 samples. The correlation coefficients were determined by comparing the transcription profile (expression pattern) of the known cancer markers in the cancer cell lines and tumor samples to the transcription profiles (expression patterns) of the markers in the cancer

25

cell lines and tumor samples. The cancer cell lines, tumors, and number of samples analyzed of each are listed below in Table A.

Table A:

Sample type	Number of Samples
Aggressive Breast Cell Line	2
Control RNA (Cell line mix)	2
DCIS	4
Cultured HMEC	3
Cultured HMVEC	1
IDC: no outcome data	6
IDC: > 5 years Disease free survival	5
IDC: < 5 years Disease free survival	5
ILC	5
Indolent Cell Line	5
Indolent tumor: Colloid	4
Indolent turnor:Tubular	3
Distal metastasis from primary breast tumor	4
Matastasis to lymph nodes	6
Normal	7
Cultured normal breast stroma cells	1
TIN1 tumor	5

The markers listed in Table 19 are those markers found to have a correlation coefficient of at least 0.64.

- 104 -

Table B lists the Clone ID numbers of the 29 known markers.

TABLE B

Clone ID

Table 20 correlates IMAGE clone ID numbers ("IMAGE ID") from the tables of
the present invention, with GenBank accession numbers ("Accession #'s"). Table 21
correlates GenBank accession numbers ("Accession #") with GenBank GI numbers ("GI

WO 01/46697

- 105 -

PCT/US00/35214

#'s"). One skilled in the art may thus obtain from the Tables, IMAGE clone ID numbers, GenBank accession numbers, as well as the GenBank GI numbers (which are preferred), for a marker of the present invention, thereby identifying the nucleotide and/or polypeptide sequence of that marker.

In the Tables, the following definitions apply.

5

10

15

25

"Accession No." corresponds to the accession number assigned the particular sequence (see, for example http://www.ncbi.nlm.nih.gov/Entrez/nucleotide.html for GenBank and www.derwent.com for GENESEQ). All referenced database sequences are expressly incorporated herein by reference.

"ID Number" is an arbitrary designation assigned to the marker.

"Image Clone ID", "Clone ID", "Clone", or "Image ID" is the identification number assigned to the marker by the IMAGE Consortium (Lennon *et al.*, 1996, *Genomics* 33:152; see, *e.g.*, "http://www-bio.llnl.gov/bbrp/image/image.html" for further information). All referenced Image Clone sequences are expressly incorporated by reference.

"GenBank Accession No.", "Accession #'s", or "Accession #" is the identification number assigned to the marker in the GenBank database (see, e.g. "http://www.ncbi.nlm.nih.gov/genbank/ query_form.html" for further information). "GI #" is the GI identification number assigned to the marker in the GenBank database (see <u>supra</u>). All referenced database sequences are expressly incorporated herein by reference.

"Cluster ID" corresponds to the cluster that the particular sequence has been assigned according to the UniGene database at NCBI (see, for example http://www.ncbi.nlm.nih.gov/UniGene/index.html).

"Secretion Predicted?" indicates whether the protein corresponding to the marker is predicted to be secreted or membrane bound based on protein profiling analysis.

"Known Secretion?" indicates whether the protein corresponding to the marker is known to be secreted based on information from literature, the GenBank entry, the UniGene database, and/or the IMAGE consortium database.

"Number of Subtracted Libraries (out of 6) where clone was found" indicates the number of subtracted library experiments (out of the six described above) where a particular marker of the invention was also found.

- 106 -

"Expression Ratio (Cancer/Normal)" indicates the ratio (or "fold-induction") of elevated expression for a particular marker in a breast cancer sample or cell culture, over the background in non-cancerous sample or cell line.

"% Tumors" refers to the percentage of tumors in which the markers were found to be expressed.

"Up/Down" refers to whether the marker was up-regulated or down-regulated.

"Max Fold # Tumors": "Max Fold" refers to the maximum fold change in expression observed in at least one tumor sample compared to unaggressive. "# Tumors" refers to the number of tumors that meet this maximum fold expression threshold.

"Fold Max # Tumors": "Fold" refers to the maximum fold change in expression that is consistent across all tumors that meet the selection criteria. "Max # Tumors" refers to the number of tumors that meet the selection criteria. The selection criteria are that a marker must be differentially expressed at least two-fold ("Fold" must be greater than or equal to two) in at least 25% of the aggressive tumors. ("Max # Tumors" must be greater than or equal to 25% of the number of aggressive tumors).

The contents of all references, patents, published patent applications, and GenBank and IMAGE consortium database records cited throughout this application are hereby incorporated by reference.

20

25

10

Other Embodiments

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

- 107 -

What is claimed is:

Claims

- 1. A method of assessing whether a patient is afflicted with breast cancer, the method comprising comparing:
 - a) the level of expression of a marker in a patient sample, wherein the marker is selected from the group consisting of the markers listed in Tables 1-21, and
 - b) the normal level of expression of the marker in a control non-breast cancer sample,
- wherein a significant difference between the level of expression of the marker in the patient sample and the normal level is an indication that the patient is afflicted with breast cancer.
- 2. The method of claim 1, wherein the marker is selected from the group consisting of the markers listed in Tables 2-5 and 8-9.
 - 3. The method of claim 1, wherein the marker is selected from the group consisting of the markers listed in Tables 6 and 7.
- 20 4. The method of either of claims 1 or 3, wherein the marker corresponds to a secreted protein.
- 5. The method of claim 1, wherein the marker corresponds to a transcribed polynucleotide or portion thereof, wherein the polynucleotide comprises the
 25 marker.
 - 6. The method of claim 1, wherein at least one tissue corresponding to the marker in the Tables is a breast tissue.
- 7. The method of claim 1, wherein the marker is not significantly expressed in non-breast tissues.

- 108 -

8. The method of claim 1, wherein the patient sample is a breast-associated body fluid.

- 9. The method of claim 8, wherein the breast-associated body fluid is selected from the group consisting of blood fluid, lymph, ascitic fluid, cystic fluid, urine, a breast exudate and a nipple aspirate.
 - 10. The method of claim 1, wherein the sample comprises cells obtained from the patient.
- 11. The method of claim 10, wherein the cells are in a fluid selected from the group consisting of a uterine fluid, a cystic fluid, breast exudate and a nipple aspirate.

- 15 12. The method of either of claims 1 or 3, wherein the level of expression of the marker in the sample is assessed by detecting the presence in the sample of a protein corresponding to the marker.
 - 13. The method of claim 12, wherein the presence of the protein isdetected using a reagent which specifically binds with the protein.
 - 14. The method of claim 13, wherein the reagent is selected from the group consisting of an antibody, an antibody derivative, and an antibody fragment.
- 25 15. The method of claim 1, wherein the level of expression of the marker in the sample is assessed by detecting the presence in the sample of a transcribed polynucleotide or portion thereof, wherein the transcribed polynucleotide comprises the marker.
- 30 16. The method of claim 15, wherein the transcribed polynucleotide is an mRNA.

- 109 -

17. The method of claim 15, wherein the transcribed polynucleotide is a cDNA.

- 18. The method of claim 15, wherein the step of detecting furthercomprises amplifying the transcribed polynucleotide.
 - 19. The method of claim 1, wherein the level of expression of the marker in the sample is assessed by detecting the presence in the sample of a transcribed polynucleotide which anneals with the marker or anneals with a portion of a polynucleotide wherein the polynucleotide comprises the marker, under stringent hybridization conditions.
- 20. The method of claim 1, wherein the level of expression of the marker in the sample differs from the normal level of expression of the marker in a patient not
 afflicted with breast cancer by a factor of at least about 2.
 - 21. The method of claim 1, wherein the level of expression of the marker in the sample differs from the normal level of expression of the marker in a patient not afflicted with breast cancer by a factor of at least about 5.

20

25

- 22. The method of claim 1, comprising comparing:
- a) the level of expression in the sample of each of a plurality of markers independently selected from the markers listed in Tables 1-21, and
- b) the normal level of expression of each of the plurality of markers in samples of the same type obtained from control humans not afflicted with breast cancer, wherein the level of expression of more than one of the markers is significantly altered, relative to the corresponding normal levels of expression of the markers, is an indication that the patient is afflicted with breast cancer.
- 23. The method of claim 22, wherein the level of expression of each of the markers is significantly altered, relative to the corresponding normal levels of expression of the markers, is an indication that the patient is afflicted with breast cancer.

- 110 -

24. The method of claim 22, wherein the plurality comprises at least three of the markers.

- 25. The method of claim 22, wherein the plurality comprises at least fiveof the markers.
 - 26. A method for monitoring the progression of breast cancer in a patient, the method comprising:
- a) detecting in a patient sample at a first point in time, the expression of a
 marker, wherein the marker is selected from the group consisting of the markers listed in
 Tables 1-21;
 - b) repeating step a) at a subsequent point in time; and
 - c) comparing the level of expression detected in steps a) and b), and therefrom monitoring the progression of breast cancer in the patient.

- 27. The method of claim 26, wherein the marker is selected from the group consisting of the markers listed in Tables 2-5 and 8-9.
- 28. The method of claim 26, wherein the marker is selected from the group consisting of the markers listed in Tables 6 and 7.
 - 29. The method of claim 26, wherein the marker corresponds to a secreted protein.
- 25 30. The method of claim 26, wherein marker corresponds to a transcribed polynucleotide or portion thereof, wherein the polynucleotide comprises the marker.
- 31. The method of claim 26, wherein the patient sample is an breast-30 associated body fluid.

- 111 -

- 32. The method of claim 26, wherein the sample comprises cells obtained from the patient.
- 33. The method of claim 26, wherein between the first point in time andthe subsequent point in time, the patient has undergone surgery to remove a tumor.
 - 34. A method of assessing the efficacy of a test compound for inhibiting an breast cancer in a patient, the method comprising comparing:
- a) expression of a marker in a first sample obtained from the patient and maintained in the presence of the test compound, wherein the marker is selected from the group consisting of the markers listed in Tables 1-21, and
 - b) expression of the marker in a second sample obtained from the patient and maintained in the absence of the test compound,

wherein a significantly altered level of expression of the marker in the first sample, relative to the second sample, is an indication that the test compound is efficacious for inhibiting breast cancer in the patient.

35. The method of claim 34, wherein the first and second samples are portions of a single sample obtained from the patient.

20

36. A method of assessing the efficacy of a therapy for inhibiting breast cancer in a patient, the method comprising comparing:

- a) expression of a marker in the first sample obtained from the patient prior to providing at least a portion of the therapy to the patient, wherein the marker is selected from the group consisting of the markers listed in Tables 1-21, and
- b) expression of the marker in a second sample obtained from the patient following provision of the portion of the therapy,

wherein a significantly altered level of expression of the marker in the second sample, relative to the first sample, is an indication that the therapy is efficacious for inhibiting breast cancer in the patient.

- 112 -

37. A method of selecting a composition for inhibiting breast cancer in a patient, the method comprising:

- a) obtaining a sample comprising cancer cells from the patient;
- b) separately maintaining aliquots of the sample in the presence of a
 plurality of test compositions;
 - c) comparing expression of a marker in each of the aliquots, wherein the marker is selected from the group consisting of the markers listed in Tables 1-21; and
 - d) selecting one of the test compositions which induces an altered level of expression of the marker in the aliquot containing that test composition, relative to other test compositions.
 - 38. A method of inhibiting breast cancer in a patient, the method comprising:

10

- a) obtaining a sample comprising cancer cells from the patient;
- b) separately maintaining aliquots of the sample in the presence of a plurality of test compositions;
 - c) comparing expression of a marker in each of the aliquots, wherein the marker is selected from the group consisting of the markers listed in Tables 1-21; and
- d) administering to the patient at least one of the test compositions which
 induces an altered level of expression of the marker in the aliquot containing that test composition, relative to other test compositions.
 - 39. A kit for assessing the suitability of each of a plurality of compounds for inhibiting breast cancer in a patient, the kit comprising:
 - a) the plurality of compounds; and
 - b) a reagent for assessing expression of a marker selected from the group consisting of the markers listed in Tables 1-21.
- 40. A kit for assessing whether a patient is afflicted with breast cancer,
 the kit comprising reagents for assessing expression of a marker selected from the group
 consisting of the markers listed in Tables 1-21.

WO 01/46697

- 113 -

PCT/US00/35214

41. A method of making an isolated hybridoma which produces an antibody useful for assessing whether a patient is afflicted with breast cancer, the method comprising:

isolating a protein corresponding to a marker selected from the group consisting of the markers listed in Tables 1-21;

immunizing a mammal using the isolated protein;

isolating splenocytes from the immunized mammal;

fusing the isolated splenocytes with an immortalized cell line to form hybridomas; and

screening individual hybridomas for production of an antibody which specifically binds with the protein to isolate the hybridoma.

42. An antibody produced by a hybridoma made by the method of claim

15

41.

43. A kit for assessing the presence of human breast cancer cells, the kit comprising an antibody, wherein the antibody specifically binds with a protein corresponding to a marker selected from the group consisting of the markers listed in Tables 1-21.

20

44. A kit for assessing the presence of breast cancer cells, the kit comprising a nucleic acid probe wherein the probe specifically binds with a transcribed polynucleotide corresponding to a marker selected from the group consisting of the markers listed in Tables 1-21.

- 45. A method of assessing the breast cell carcinogenic potential of a test compound, the method comprising:
- a) maintaining separate aliquots of breast cells in the presence and absence of the test compound; and
- 30 b) comparing expression of a marker in each of the aliquots, wherein the marker is selected from the group consisting of the markers listed in Tables 1-21,

wherein a significantly altered level of expression of the marker in the aliquot maintained in the presence of the test compound, relative to the aliquot maintained in the absence of the test compound, is an indication that the test compound possesses human breast cell carcinogenic potential.

5

46. A kit for assessing the breast cell carcinogenic potential of a test compound, the kit comprising breast cells and a reagent for assessing expression of a marker, wherein the marker is selected from the group consisting of the markers listed in Tables 1-21.

10

- 47. A method of treating a patient afflicted with breast cancer, the method comprising providing to cells of the cancer a protein corresponding to a marker selected from the markers listed in Tables 1-21.
- 15 48. The method of claim 47, wherein the protein is provided to the cells by providing a vector comprising a polynucleotide encoding the protein to the cells.
- 49. A method of treating a patient afflicted with breast cancer, the
 method comprising providing to cells of the patient an antisense oligonucleotide
 complementary to a polynucleotide corresponding to a marker selected from the markers listed in Tables 1-8.
- 50. A method of inhibiting breast cancer in a patient at risk for developing breast cancer, the method comprising inhibiting expression of a gene
 corresponding to a marker selected from the markers listed in Tables 1-8.
 - 51. A system for identifying selected polynucleotide records that identify a breast cancer cell, the system comprising:
 - a digital computer;
 - a database coupled to the computer;

- 115 -

a database coupled to the database server having data stored therein, the data comprising records of data comprising a polynucleotide corresponding to a marker from the markers in Table 1-21, and

- a code mechanism for applying queries based upon a desired selection 5 criteria to the data file in the database to produce reports of polynucleotide records which match the desired selection criteria.
- 52. A method for detecting a breast cancer cell, using a computer having a processor, memory, display, and input/output devices, the method comprising the steps of:
 - a) providing a sequence of a polynucleotide isolated from a sample suspected of containing a breast cancer cell;
 - b) providing a database comprising records of data comprising a polynucleotide corresponding to a marker from the markers in Tables 1-21; and
- 15 c) using a code mechanism for applying queries based upon a desired selection criteria to the data file in the database to produce reports of polynucleotide records of step a) which provide a match of the desired selection criteria of the sequences in the database of step b), the presence of a match being a positive indication that the polynucleotide of step 1) has been isolated from a cell that is a breast cancer cell.

_	í
4	•
4	ì
3	ţ
_	ŧ

Image Clone ID	GenBank Accession No.	Cluster Number	subtracted libraries (out of six) where clone was found	Secretion Predicted?	Known Secretion?	Expression Ratio (Cancer / Normal)
205633	D13236	He 75703	c	>-	>	5.605327066
759551	012500	Hs 340		>-		286.4926191
129865	D84212	Hs 199147	ന			7,404433446
123730	Y11215	Hs.19126	0			5.173052086
206994	AJ001306	Hs.151310	0			9.696957923
159455	U60644	Hs.74573	0	> -		8.619687807
79629	P30991	Hs.89414	o			6.897477556
183337	P28067	Hs.77522	വ	⊁		67.28736124
789369		Hs.34853	0			13,39881394
564803	U74612	Hs.239	0			5.696796066
82991	P22413	Hs.11951	0	>		6.79625083
768638		Hs.182575	0	>		137.7559104
125134	P09326	Hs.901	0			8.374341771
191664		Hs.108623	•	>	≻	31.32956579
725677	Q07002	Hs.2994	0	>		9.679493665
630013	P43246	Hs.78934				5.696529233
341706		Hs.16236	0			7,450811067
309894	AB000520	Hs.15744	0	>		5.225584561
296444		Hs.18376		>		5.448550496
141768	P04626	Hs.173664	0	> -		67.98243565
269815	P08476	Hs.197458	0		>	8.799295204
795159	Q15293	Hs.194848	0			7.138068702
327676	P19012	Hs.74070	7			5.381450419
133273	Q01453	Hs.103724	2			11.20134388
768324	Q15008	Hs.23488	ო			6.104575025
753313	Q13571	Hs.79356	0			9.846487163
770088	40000	100000	c	>		5 745037051

_
e
$\overline{}$
7
`c2
_

5.982933487	7.161048322	6.41499208	228.6434285	5.246080598	6.527069074	5.301379945	5.886773946	45.81922715	8,445358441	76.52720667	7.214091912	5.70016821	8.110219031	8.134691562	6,483289986	9.996598663	7.410820487	5.82002932	14.53747016	5,389585793	77.41943316	6.547398047	8.282465815	8.545202242	8.99083932	17.12400225	5.682727113	5.618194512	11.29235381	6.693252657	6.641096436	8.501334909	38.41555764	8.294893701
												•	> -	> -		> -		>			>-	>		>			>-	>						
0	o	Ψ	ო	-	0	0	0	0	0	5	0	0	0	0	0	-	0	0	0	-	2	7	0	0	5	o	0	7	0	•	0	0	ۍ.	· νο
Hs.82141	Hs.1192	Hs.20315	Hs.76807	Hs. 199136	Hs.147097	Hs.89543	Hs.7644	Hs.83384	Hs.104640	Hs. 109225	Hs.33384	Hs.137476	Hs.21798	Hs.52463	Hs.191254	Hs.154050	Hs.13684	Hs.141883	Hs.198106	Hs.13094 ·	Hs.74615	Hs.21922	Hs.167927	Hs.92071	Hs.17466	Hs.9795	Hs.41380	Hs.72805	Hs.155191	Hs 27590	Hs.93183	Hs.11689	Hs.109225	Hs.172670
Q13009	:	P09914	P01903	P21580		P10911	P16403	P04271	AF000561	P19320				AB023183		AC004131						A27270	Q05084		AF060228	X95190			P15311			U89336	P19320	P37023
210415	244767	823696	153411	770670	256664	44351	68317	759948	231574	49164	243638	193892	127486	295973	196860	321580	233349	141230	768344	503737	52096	782718	824659	247635	324225	85450	240674	299815	755145	381166	753418	752557	44477	182661

able	7	_
م		
		C

767765	P55040	Hs. 79022	0			8.73828928
727026		Hs.27916	0			5.133248289
135221	P25815	Hs.2962	2			31.68559333
796646	P11926	Hs.75212	τ-			6.17301436
66322	P09693	Hs.2259	0	>		5.696943207
770212	P36222	Hs.75184	-			17.94005964
841332	P52566	Hs.83656	7			25.03392513
86220	P48775	Hs.183671	0			7.757138374
150466	P29474	Hs.166373	0			41.73178316
262231	P27797		-	>		5.278271439
33045	P25929	Hs.154837	-	>-		82.16345161
83231		Hs. 1360	-	>		6.228863979
546600	U40992	Hs.7602	0			7.190537279
140337		Hs.22370	0			10.14956178
121625		Hs.188497	0	> -		9.048182508
293569		Hs.16769	0		•	5.21014495
122364		Hs.200538	0	>		5.451155544
33096	D50406	Hs.29640	က			6.294360543
96148		Hs.14478	0	>		6.043204827
54312		Hs.168386	0			6.486743084
33303		Hs.27695	0			8.514560176
306806		Hs.7988	0			5.143095714
245986		Hs.221197		>		5.308896673
782217	U82535	Hs.227511	0	>		5.431569582
219976	P00519	Hs.143336	0	>		12.94003585
121621	Q00839	Hs.103804	-			5.869028905
795498	P08910	Hs.99364	0	≻		5.654170394
811740		Hs.1142	0	>		6.93413084
120189	P06731	Hs.173609	0	>	>	28.12068798
265680	Y07593	Hs.199112	7	≻		5.706307428
823851	AF053944	Hs.118397	0			13.43023004
363086	P12532	Hs.153998				5.594294294
289818	Q02252	Hs.170008	0			12.80394098
119882	P02679	Hs.75431	0	>-	> -	10.00142899
843321	P05787	Hs.23881	0	>		5.097161034

•			7
	4	1	١
•	•		ì
	(3	5
ı	•		ı

825577	X80198	Hs.77628	0			5.287371988
781510	U65092	Hs.40403	0	> -		6.051012987
325070		Hs.94667	0	>		7.812486846
783729	P04626	Hs.173664	0			35.06733254
526184	D42087	Hs.184627	0			18,45949352
811870	043237	Hs.194625	-			5.363436212
825296	014746	Hs.82399	0	>-		5.720995286
7.14106		Hs.77274	-	>	>-	8.060136216
503617	Q07325	Hs.77367	0	>	>	18,16657553
263200	D29810	Hs.153445	0	>		5.318935359
782811	P10910	Hs.139800	0			5.310337192
786675	Q14508	Hs.2719	0	>-		8.628533382
342640	Q14012	Hs.81892	73	•		8.847051707
244147	P49241	Hs.821	ო			6.360387191
126522		Hs.33063	0	>-		7.039165523
140301		Hs.28792	-	>-		13.7812527
110582		Hs.15061	0	>		14.20501468
144951	P51522	Hs.23240	0	> -		5.097229032
139354		Hs. 15093	0	>-		11.02125306
110198	AF129112	Hs.13820	0			21.05672654
137885		Hs.159797	0	>-		7.756496817
294221		Hs.221392	0			5.044082219
39874	U89916	Hs.26126	0			5.887922113
418185		Hs.96413	0			5.826781586
193938		Hs.207865	0	> -		13,00174721
274578		Hs.51957	0			6.373840842
365665		Hs.61311	0		> -	10.47087894
265694			0	> -		9.459083855
795229		Hs.13991	0	> -		6.201581243
67067		Hs.94795	0	>-		11.67949642
429466	AJ002305	Hs.6139	0	> -		13.21937668
795803		Hs.109706	-			7.097982079
782766	AF155110	Hs.5624	·			15.76076853
811028		Hs.9946	ო	> -		15.9619503
628529	P55851	Hs.76640	ო			6.961564807

		1	3	
ı			ä	
		4	r	
Į	,	•	٠	
		1	c	į
	Ľ	٠	_	
	l	•	•	

6.711546256	9.076617429	15.24643713	9.407543118	5.337941756	5.185275951	6.236742998	5.196662142	8.230988019	8.919540898	5.212952527	5.286097891	7.18937028	12.96372889	5.868647142	7.910926494	12.07339227	5.598294935	12.90952191	6.973317573	6.373063965	14.44248323	5.532693724	5.358869508	7.56273939	5.144570146	6.021510207	7.5466765	5.532826885	5.09061999	5.446167192	5.880432924	6.119518234	5.173966823	7 244 47 4104
												>				≻																		
	>:	>		≻					>	<u>></u>								> -			≻	>		>	>	>				⊁	>		•	>
0	0	٥	2	0	0	0	τ-	0	0	0	0	-	0	0	0	က	0		0		ო	0	-	0	0	4	0	0	0	0	0	0	Ģ	Ç
Hs.7912	Hs.173464	Hs.75619	Hs.75879	Hs.195770	Hs.89666	Hs.166096	Hs.198479	Hs.76461	Hs.154654	Hs.82932	Hs.56023	Hs.53875	Hs.943	Hs.102267	Hs.85053	Hs.821	Hs.926	Hs.21205	Hs.76391	Hs.150930	Hs.75511	Hs.158295	Hs.7885	Hs.8230	Hs.18653	Hs.214410	Hs.170047	Hs.13197	Hs.18747	Hs.35372	Hs.17155	Hs.102004	Hs.26770	10,40,40,40,4
AB002341	L37033	U03056	P14118		AB002309	U66894	P27707	P02753		P24385	P23560	P01908	P24001	P28300		P21810	P20592		P20591	U40622	P29279	P05976	U45976						U94316		U88323			
35271	308588	810391	549101	753770	40844	770910	43198	85805	782760	841641	668851	80109	810859	789069	51899	144786	701481	782513	815542	26811	898092	628336	774071	144797	240199	120162	134719	62069	214577	275634	256895	198104	279195	07070

9
3
4

21.28283813	6.738232461	7.22303107	6 070034000	6.07.0554022	8.717450883	16.51151344	6.839756064	70.96205767	6.272860131	7.251440522	13.0331251	25,4445697	8.901115907	5.030963085	13.33282025	17.19452023	6.619110349	5.271012952	19.56105286	9.132979649	5.335753263	8.063679428	20.37404042	11.18343977	8.24434447	8.231155193	5.170216547	7.252806668	5.587195707	9.714066169	17.69891502	7.063004021	5.30962779	
								>																										
> -			;	> -				>-				>-	>		>				≻			-	>-	> -		>-		> -	>-	>-		>		
το ←	0	0	•	τ-	a	0	4	-	-	0	-	ιΩ	8	0	0	-	0	0	~		0	0	0	0	0	0	0	0	0	7	0	0	· -	
Hs.204354 Hs.181366	Hs.157441	Hs.71891	Hs.107325	Hs.90061	Hs.155418	Hs.170177	Hs. 198351	Hs.73848	Hs.78452	Hs.1581	Hs.2006	Hs.79136	Hs. 198902	Hs.811	Hs.56045	Hs.86858	Hs.82432	Hs.11000	Hs.180532	Hs.2025	Hs.10445	Hs.22026	Hs.6189	Hs.203656	Hs.113029	Hs.29106	Hs.10109	Hs.78264	Hs.24341	Hs 170121	Hs 41972	Hs.228019	Hs 18003	2
P01121	P17947	Q16832	Q13636	Y12711	D87119	Q99687			L20859	P30712	P21266	U41060	P08236		D86640	P23443		AF063605						P05538				002083						
277305	278808	668442	120881	295798	813426	361943	810213	509823	325062	823928	137940	52933	276449	898138	470379	773319	840333	66594	382773	486208	296702	129610	321706	121275	141314	240748	809552	324342	797676	R00710	243088	244850	20170	201470

٦	_
	٠
	9
	d
ı	_

503083		Hs.104105	-			8.613935808
363600		Hs 6111	0			15.57601614
202230		Le 80220				9.43886132
43/43		13.00220		,	٠	6 313271325
341328	P09483	HS. / / 889	5 (42 74571441
246786	P25106	Hs.23016	0	:		12.7 137 1441
841357	000273	Hs.155344	_	>		5.210129447
813675		Hs.37616	0			8.261436288
206217	U22662	Hs.81336	0			5.206819424
51737	U72066	Hs.29287	7			8.951415571
754355			0			7.347317899
755663	P10826	Hs. 171495	0			25.74791974
175103		Hs.57652	0	>		9.947540835
204214	AF022109	Hs.69563	0		٠	5.779628383
190887	U84408	Hs.82116	0	>		6.791876715
68103	P14649	Hs.90318	-			5.169850834
810444		Hs.101382	-	>		5.22539726
196189	P00167	Hs.83834	-			7.473333022
740457	P35226	Hs.431	-			16.39142393
85634	P09871	Hs. 169756	7			19.36763157
669435		Hs.91161	-			7.034473896
840687	P15941	Hs.89603	-	>	>	35.37538975
142788		Hs.9930	0	>-		13.70500256
839991		Hs. 179573	7	> -	>	270.1338126
824704	P34949	Hs.75694	O			5.611040575
159608	P05090	Hs.75736	Ψ-	>-		165.8381654
29063		Hs.90797	0	>-		5.778002318
141854		Hs.107159	0	>-		7.671204418
154654		Hs.3321	0			6.325678569
294881		Hs. 17713	-	>-		7.375616084
127120		Hs.81086	4	>		36.89438299
167076		Hs.27788	0			7,943582595
366966		Hs.27865	0	· ≻		5.012109674
214205		Hs.28149	0	>		6.808373208
115408	P35226	Hs.431	۴-			20.11390959
366971	P11388	Hs.203779	9			15.48121947
	, , , , ,					

¢	د
3	5
•	Q
۴	-

357373	Q15398	Hs.77695	-		5.46953874
271050	AF114165	Hs.82002	0	>	11.15214427
246652		Hs. 194050	0	>	5.251121236
143661		Hs.102541	0	>-	6.316575205
813410	P53803	Hs.150675	ო		5.098047387
488436		Hs.62790	0	>-	6.634136626
293331		Hs.49047	0		6.21562608
115443	P49454	Hs.13525	0	>-	5.1001998
753775	P36959	Hs.1435	0		5.934021576
45542		Hs.103391	0	>-	178,4295261
768246		Hs,80206	0		5.954556651
24642	L46720	Hs.174185	0		20.08185023
292219	P05156	Hs.36602	0	>-	5.138076027
813149		Hs.2178	S		8.802085332
243741	Y12653	Hs.44532	0	>	6.143305425
823859	P29033	Hs.81795	0		6.454494201
135083	P30101	Hs.110029	0	>-	5.623140978
700527	P35754	Hs.28988	-	•	7,998602126
526657	147345	Hs.155202	0	>-	11.48223754
842846	P16035	Hs.6441	0	>-	5.135760452
22731	P06905	Hs.1787	0		5.745294211
199628		Hs.138514	0	>	6.177610005
703581	P10124	Hs.1908	2	>	27.92802338
814054		Hs,158282	0		5.93345226
108658		Hs. 4084	0		5.502051614
758266	P35443	Hs.75774	0	> -	9.821274672
789376	Q16881	Hs.13046	5		5.289723984
201288		Hs.36137	-		6.841122098
296155		Hs 23044	0		5.178209358
130057		Hs.23057	2	> -	8.637192391
191978	P56134	Hs.155751	-		5.273865487
144905		Hs.29494	0	>-	6.313885817
245401		Hs.141542	0	>	6.479638858
233419		Hs. 102657	0	>-	7.009822251
234080		Hs.38772	0	> -	5.31426711
11111					

	ď
	2
ı	٥.

5.881465442	5.838042138	9.208209297	5.904499849	5.249369407	7.600567454	5.730216768	13.68364683	8.565835361	24.80178683	14.81885772	9.206537459	5.540513991	6.075303366	6.950404155	200.3235451	43.7456556	6.130708697	6.819699161	7.944266115	7.291946946	6.520046153	6.699174001	5.336146503	6.253005238	8.40920037	5.447009074	12.66197619	17.20960259	18.5073495	5.057151629	8.452245206	12.28065748	6.76273197	7.879084852
															>																	>-		
		>						>	>			>			>-					>						> -	>-				•			
2	0	0	0	~	Ψ-	0	0	-	0	~	~	-	0	•	0	0	0	-	9	0	0	0	~	0	ო	0	0	0	0	0	0	•	0	Υ-
Hs.213632	Hs.28523	Hs.93961	Hs.11383	Hs.184693	Hs.81548	Hs.3068	Hs.814	Hs.26395	Hs.587	Hs. 169965	Hs.2384	Hs.107573	Hs.924	Hs.183650	Hs.1305	Hs.157319	Hs.124027	Hs.53875	Hs.184572	Hs.44898	Hs.153752	Hs.24510	Hs.28309	Hs.85195	Hs.4963	Hs.118684	Hs.56045	Hs.19054	Hs.10784	Hs.28367	Hs.183576	Hs.1584	Hs.103395	Hs.103834
AC002544			U46767	L34587	Q16698	Z46606	P04232		P22760	P15882		U14550	Q14894		P05154	P80098	P49903	P01908	P06493	P55289	P30305				P15923	D50645	D86640					P49747		
810754	214331	132140	80146	347373	213890	810974	840942	155575	487118	898258	814306	823590	42373	897770	240518	485989	840702	80109	898286	767345	786067	134856	139835	340722	123255	35191	470379	244062	142944	138974	143169	309515	131887	121251

,	-	-	
	<	1	
•	7		
,			
c	٠	_	١

5.003380586	5.74495155	5.681582605	5.539595618		6.296979458	12.05681414	10.82446855	6.373388389	7.447813001	7.02807318	9.481127436	31.13002274	15.81363572	5.97165513	9.568859601	31.64527968	31,52609898	5.272468588	8.096710975	7.993916806	5.47566508	7.055181311	8.368906952	47.58014679	7.056016613	5.885117759	10.82235567	15.12296587	8.058745854	5.060138615	11,68516409	25.67539869	9.431766892	5.60429728
				>													>																	
	> -								>		>	>-	>-		>			>	>	>-				>		>				> -				
0	0	0		0	4	-	ო	5	0	0	8	0	2	S	-	2	7	0	-	0	0	•	0	0	0	0	0	0	0	0	. 2	0	0	0
	Hs.78943	Hs.24385	Hs.79351	Hs,153595	Hs.178452	Hs.8265	Hs.169946	Hs.82771	Hs.193897	Hs.8122	Hs.195136	Hs.3314	Hs.79295	Hs.155291	Hs.170279	Hs.111676	Hs.154737	Hs.7753	Hs.174050	Hs.34262	Hs.150826	Hs.14355	Hs.20191	Hs. 94037	Hs.6349	Hs.42586	Hs.6829	Hs.56105	Hs.222252	Hs.11732	Hs.32943	Hs.56105	Hs.43905	Hs.89472
P10242	Q13867		U33632	U33837	P46060	P21980	P23771	AB000450		X73608	Q15392		Q12849	D13630			AF015287	U67280					Y15268		U95740	,			AF129756		P49788			P30556
416280	752732	134270	288896	143846	366558	199945	214068	824117	841278	754358	840878	530814	840384	773922	71116	205049	143887	144881	262920	242011	308989	297439	470061	132871	299197	121727	490755	325247	795735	429799	309583	503051	366085	210687

509731	P19075	Hs.84072	0	>-		8.309317528
360213	L47665	Hs.172471	0			8.507838492
357031	P98066	Hs.29352	ιO			12.35574709
813591	X86032	Hs.69575	O	>-		6.319976186
768370	AF048693	Hs.93468	ψ)			19.82693486
289337	P01859	Hs.140	യ		>	49.42575483
813714	AF010127	Hs.195175	0	>		17.24536061
359982	U15174	Hs.79428	0			5.99234609
130843	U62317	Hs.80545	0			7.451005956
809901	P39059	Hs.83164	0	· ≻		6.504408908
134783	P12107	Hs.82772				29.62594764
839101		Hs.74471	0	>		12.76050466
46916		Hs.90800	0			9.807054746
143523	P20908	Hs.146428	4			13.72872152
83605	P31327	Hs.50966	0	> -		11.91904261
825085	AF118224	Hs.56937	0	>		5.788422695
840818	AF043045	Hs.81008	-	>		7.930414097
589352	P10909	Hs.75106	2			8.351843398
277015			0			7.081090823
122159	P02461	Hs.119571	0	> -		216.8717592
712341	U85625	Hs.8297	0	> -		13.08487403
203132	P50591	Hs.83429		>-		6.887165996
40751	P55286	Hs.79133	0			5.891680288
700792	016667	Hs.84113	0			15.09562152
135058		Hs.169836	0			5.246818308
137989		Hs.28392	0			8.68580656
214858	AF052389	Hs.4980	-			14.24555006
140197		Hs.103291	0			9.402417083
141209		Hs.28403	0	>-		10.82330231
233688		Hs.8850	-			12.88132406
207107		Hs.117774	0	>-		6.372074439
739625	AD000092	Hs.227489	0	>-		5.156391269
204688		Hs.37424	0	> -		6.952375556
1048810		Hs.76285	Ψ-			39.42923893
66437	P18428	Hs.154078	0	>-		13.0466819

_
ø
☲
≅
Ë

35,38007638	12.47770808	15.70016215	6.839914573	17.69591789	6.964971519	5.274953682	8.875738161	6.161011097	23.5753603	5.58364564	9.277690775	7.838777522	16.73483678	6.475054459	6.635840501	23.31215417	11.53678406	6.112692073	12.28419437	8.269661947	6.048797364	51.30738036	22.54385839	9.110779502	6.641839697	12.2879167	8.469439213	5.507144578	612.5888811	22.52864326	8.813636224	8.68047442	6.571461531
							>																>										
>		> -	>-							>				>-		> -	>		>			> -	≻			> -							
0	0	0	0	-	o	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	τ	,	-	-	 O	0	7	2	0	τ-	0	0	0
Hs.102267	Hs.35992	Hs.29190	Hs.92323	Hs.50924	Hs.151738	Hs.172674	Hs.1695	Hs.61796	Hs.83169	Hs.14894	Hs.32965	Hs.18212	Hs.29279	Hs.578	Hs.80395	Hs.81071	Hs.37682	Hs.75268	Hs.73769	Hs.73952	Hs.196209	Hs.198862	Hs.118162	Hs.96334	Hs.6721	Hs.1501	Hs.56066	Hs.76768	Hs.119571	Hs.44	Hs.34371	Hs.31841	Hs 34399
P28300			U28249	092908	P14780	AC004531	P39900	X95693	P03956	AF027516	Q16706	014657	000167	P04066			U77594	011206	P15328	P02810	P78406	P98095	P02751	AF151881	U67963	P34741		P13674	P02461	P21246	!		
1341680	206882	155072	511428	234736	22040	727192	196612	725680	589115	198815	212496	754046	741139	308437	667482	301122	756372	813751	131839	840654	825224	789012	139009	358468	81394	210717	23073	838802	122159	361974	195052	470348	105130

_
نو
云
ដ្ឋ

347038		Hs.44865	0	>-		6.435900536
800488		Hs.7252	0			5.275559284
795499		Hs.169829	0	>-		5.873622007
225008		Hs 182874	0	>		6.161054393
243878		Hs 44970	0	>		8.771785931
24444	CAROO	Hs 139	. 0	>		6.362291388
206679	P55289	Hs 44898	0			6.812214184
592243	P20061	Hs.2012	0		>	34.61466719
713685	P07478	Hs.2003	0		>-	19.62960245
812105) :	Hs.75823	-			5.107665381
123561		Hs.75621	0	>	>	9.656723542
27104		Hs.76986	-			5.131627263
753211		Hs.170917	0			13.61085298
282996		Hs.198674	0			10.38622934
357220	D84361	Hs.151123	0			5.669547224
43977		Hs:75909	0	>		14.29246916
301504	092832	Hs.21602	0			6.087063486
143287	P06731	Hs.169980	0	> -	> -	13.18777642
49860	015119	Hs.92261	0			8.979366803
138991		Hs.80988	7			116.7535149
A38568	P09669	Hs.74649	ო			10.13435781
51814	P04080	Hs.695	τ-			6.285448388
897910	D13665	Hs.136348	4			12.82287649
814378	U78095	Hs.31439	ო	>	> -	8.057095833
605059	P28845	Hs.37012	0			8.531988696
771196		Hs.138860	0		,	6.113734783
787938		Hs.5462	0	>		5.54111412
788566	P48539	Hs.80296	0			5.204708993
897956		Hs.30743	0			12.21865363
796398	090336	Hs.139033	0			10.77738406
47043	U58514	Hs.9973	0			7.856108049
140830		Hs.170131	0			5,452337248
141298		Hs.28441	0	>		5.990011741
123087		Hs.118910	0			38.85281017
203931		Hs.6006	0	>		5,402111146

۲	-		
	¢		
•	ć		
	¢	,	
1			

139957		Hs.28472	0			34.14162559
810928	060568	Hs.153357	0	> -		6.606923131
200838		Hs.159890	0	>		8.292638254
295483		Hs.49853	0	>-		5.543835471
127400		Hs.155414	0	>		8.852547662
345616	Q14956	Hs.82226	-			10.84238576
416567	P05154	Hs.76353	ıcı	> -	>	5.036661434
251019		Hs.181312	2	> -		5.481281242
139009	P02751	Hs.118162	-	> -	>	20.95842364
547247	P52823	Hs.197382	٠	> -	>-	5.628837395
811162	Q06828	Hs.230	-	>		17.16580599
752631		Hs.1420	0	> -		5.558598018
121722		Hs.79432	0			7.416994349
769921	000762	Hs.93002	0	> -		6.443805607
292213	P11016	Hs.91299	-			5.77239187
767851	P35555	Hs.750	2			14.32868763
823590	U14550	Hs.107573	~	> -		6.095493793
813823	P51884	Hs.79914	0	>-		56.90851978
306901	Q16612	Hs.142827	4	> -		11.55069819
70692	P05120	Hs.75716	2	>		10.54856455
789091	P28001	Hs.28777	0	>-		8.218881948
789147	P09104	Hs.196837	2			10.75631475
82976		Hs.170218	2	>		5.068546421
813410	P53803	Hs.150675	ო			5.542666904
231675	P22794	Hs.41846	-			5.553998675
265494	D29810	Hs.153445	0	>		8.258641604
138861	AL050071	Hs.21201	0			5.683930872
196005	Q92482	Hs.174024	-	>-		9.215082922
209167		Hs.32391	0	>		6.632843771
293579		Hs.49636	0	>		8.834449222
202740		Hs.32407	0	>		5.531315004
109316	P01011	Hs.107325	0	>	>	38.03045471
109309		Hs.23767	0			6.714521241
201757	AF033026	Hs.173739	ო			12.9230754
195820		Hs.34558	0	>		9.696837718

_
ä
æ
[-

5.864940789	5.354239633	16.26931789	11.31882773	7.735217217	7.382499202	8.107732196	9.910138102	8.845534314	8.153086081		Y 8.961018602	12.00688438	7.210116014	5.428196363	5,433545065	6.067975027	5.178533144	5.50344557	5.356942465	Y 6.859788221	38.4159728	6.257650998	Y 6.765251703	13.37409486	7.731377723	27.61155653	9.882585473	22.7418879	11.96143272	20.38430063	21.39481592	5.781976787	5.915392436	7.600632902
>-		> -		> -	>-		> -	>							≻	>-		>					>	>			>-		>-		•			>-
0	0	-	-	0	0	0	-	~	~	O	τ-	0	o	-	0	o	0	0	τ	0	0	0	-	0	0	0	0	ო	0	0	0	0	0	0
Hs.34560	Hs.89474	Hs.84084	Hs.7358	Hs.46853	Hs.8859	Hs 90790	Hs.182793	Hs.96125	Hs.22554	Hs.127428	Hs.173736	Hs.82085	Hs.114215	Hs.2794	Hs.170222	Hs.94395	Hs.33084	Hs.181243	Hs.178137	Hs.82914	Hs.155097	Hs.83916	Hs.10247	Hs.12451	Hs.154443	Hs.74427	Hs.21205	Hs.75929	Hs.823	Hs.118397	Hs.37189	Hs.183858	Hs.19404	Hs.179882
-	P26438								P09067	U82759		P05121	P42323	P37088		AF009746	P22732		P50616	P02751	P00918		Q13740	U97018	P33991			P55287	P05981	AF053944	P53816	015164		
195821	360885	782161	782306	213871	257011	130895	811582	130835	160702	897497	813841	244307	171936	810873	812227	124753	190732	347434	823940	897531	51865	950578	26617	784360	843049	48285	782513	251685	208413	823851	785293	137535	124071	201483

۲	-	
	Q	١
	2	١
	3	į
Ş		

6.400043535 11.74171549 6.066421899 73.32139838	5.62728967 8.58345833 10.58051614 6.859214786 11.21256643	36.22837049 8.69034486 5.523286128 Y 7.851063469 9.617604814	5.213667091 5.768154927 44.286613 5.001675119	6,98732007 14,04390147 Y 9,671627118 6,612048305 6,947873136 7,554706001	5.526499000 5.448282937 7.714620977 25.87427247 5.105001604 5.115680405 6.020948984	5.018905531 5.372234362 5.942862501 16.08905795
>	>	>	· > >	>>> :	≻	> >
		w o o + o	0 0 2 +	0000-	0-040	-000
HS.28646 HS.32043 HS.19236 HS.102670	HS. 107203 HS. 21851 HS. 50382 HS. 760 HS. 74615	Hs. 75929 Hs. 226039 Hs. 2250 Hs. 38991 Hs. 30956	Hs.214962 Hs.125862 Hs.78672 Hs.763	Hs. 80306 Hs. 73932 Hs. 71816 Hs. 79085 Hs. 2554 Hs. 84084	Hs. 180612 Hs. 25155 Hs. 16940 Hs. 77326 Hs. 21486 Hs. 80712	Hs.115907 Hs.24025 Hs.109052 Hs.169330
043674	·	P55287 P15018 P29034	P11047 AL031230 Q16363 P08637	P01919 L42379 P.15907	P28328 U02081 P17936 P42224 D86957 O92598	Q16760 P56378
140103 159725 307933 246377	144880 212542 296668 135688 284592	491113 124232 153025 810813 46356	160723 44505 32609 51447	142122 809598 810331 41591 897906 380057	788518 131867 120138 898218 840691 783721	133084 110772 325160

۲	-
	يە
-	č
	d
Ę	-

	Hs.159769	0	> -	5.343700855
AL050107	Hs.24341	0		7.575679482
	Hs.23027	0		5.220342115
	Hs.26903	0	> -	5.395281943
Q99784	Hs.74376	0		28.18625488
	Hs.11217	0		9.58226556
	Hs.7416	0	>-	7.296327768
	Hs.26979	0	> -	11,15659791
	Hs.106794	0		9.726687092
	Hs.25922	0	> -	5.862271029
	Hs.35198	0	> -	12.13492492
	Hs.179573	a		13.02527724
AF151849	Hs.20776	0		5.16518066
	Hs.11260	0	> -	9.05366843
	Hs.47099	•	> -	9.256299821
	Hs.20851	0	>-	7.036175721
	Hs.47125		>-	5.76826066
	Hs.10491	2	>-	7.643267218
P01913	Hs.181366	-	> -	233.6544879
	Hs.148493	0	>-	78.71974577
P01919	Hs.73931	0		11.15231696
	Hs.77961	0	> -	5.243247016
	Hs.153954	2	>-	8.925860455
008116	Hs.75256	0	>-	25.29907608
X99226	Hs.86297	•	>-	5.008023574
	Hs.12902	0	> -	6.851286087
	Hs.21245	0	> -	6.420878801
P46527	Hs.3561	0		5.421332328
	Hs.104036	0		6.537787898
X97324	Hs.3416	0	> -	24.4675747
	Hs.59889	-		26.94940047
P49848	Hs.78865	. 0		5.852519644
	Hs.169482	0	>	13.22709571
AF062733	Hs.6164	0	>	9.062970521
P35658	Hs.170285	0		5.158415616

_
٥
0
<u>_</u>

22374		Hs.13207	0	>-		20.02031122
154172		Hs.111732	0	>		7.462207974
725321		Hs.198564	0			36.07492569
47359	P05305	Hs.2271	0	>		17.03837375
51631		Hs.6278	0			6.505608277
401751	1188964	Hs.183487	7			10.92941711
726658	U29656	Hs.81687	0			10.3823093
266732	014188	Hs.19131	0			5.935679099
51547	,	Hs.6391	0	>-		6.487145928
52021		Hs.30098	0	> -		7.13254404
32991	014416	Hs.106356	0	> -		9.645445128
811324		Hs.214783	7	>-		5.069002121
841610		Hs.7904	0			5.455621444
706775		Hs.244	0	>-		6.078208334
272646		Hs.44792	0	> -		6.34708317
129020		Hs 6649	0	>-		50.7602342
40338		Hs 217489	0			6.360674636
98035		Hs.110080	0			5.062539701
32440	AED08051	Hs 194720	0	>		7.13125524
007602		Hs 6728	0	>		16,29208625
2002		Hs 12150	,	>		6.990883295
275472		He 8035	. 0			5.456251356
74730		Hs 80449	. 0	>-		5.747720845
2205		Hs 108842	-	>-		112.9771019
280724		Hs.27818	0	>		5.012139718
322175		Hs.132146	0			8.680042829
2230RB		Hs.199041	0			6.119660592
810224	A1049946	Hs 72157	2	> -	>	6.441162754
201024	75010	Hs 123650	0	>		5.21952746
358680		Hs.83705	τ-	>-		6.467199817
215000		Hs. 198726	0	> -		28.89457421
224000		He 136482	0			20.62232218
178050		Hs 75099	. 0			5.204060159
345034	AF073957	Hs.24395	20		>	8.820505907
50531	2	Hs.138447	0	>		5.437103427

_
a
豆
্ব
Ξ

68636		Hs.9061	•	>-	5.213216159
344430	P18075	Hs.170195	-	>-	72.23448317
347031	Q12767	Hs.80540	0	>	5.148702815
179083		Hs.176977	0		8.755329465
1031552	D83492	Hs.3796	0	>-	7.055273511
70152		Hs.108740	0	>-	5.185971458
259591	P06731	Hs.173609			6.499873817
77193		Hs.9115	0		5.857874681
154472		Hs.748	0	>	24.32459398
415191		Hs.78894	0	>-	5.295594499
71763		Hs.27258	0	\	5.312092442
853066		Hs.5719	0	\	7.128213443
342349	Y10256	Hs.47007	0	>	7.093631526
40108		Hs.25935	0	≻	6.948292414
773649		Hs.177425	0	>	5.409288841
51939		Hs.7888	0		11.06267732
882510	P52292	Hs.181043	2		7.262064754
46617		Hs.27222	0	>	6.545194847
51103		Hs.27358	0		11.34719096
324122		Hs.41716	.5		26.64984269
1048696		Hs.112449	0		6.74961639
34462		Hs.26309	0		7.037294193
68605	S75725	Hs.119206	0	>	8.983540681
855523	P22352	Hs.172153	က		13.72717076
624360	Q03518	Hs.180062	က	•	8,489196814
61638		Hs. 129368	0		5.051601047
323603	Q99798	Hs.31702	0		5.078618258
502664		Hs.35861	0		22.21407619
289057		Hs.47166	0		6.209651336
502155		Hs.199001	-		13,13928921
271280		Hs.107854	0	> -	5.909771082
283089		Hs.47209	0		5.127654574
418262		Hs.119571	0	> -	7.429690367
855547		Hs.181365	₹~	>	96.21944165
272038		Hs.93605	0		26.39012357

e	
3	
d	

293925	P00695	Hs 177746	-	>-	6.814069916
344589	P13796	Hs.76506	0		14.67382749
138788	P16471	Hs.1906	0	>-	99.56356145
854701	P38571	Hs.85226	0	>	5.89352095
273168	AJ010842	Hs.18259	0	>	7.192133395
257162		Hs.173609	0	≻	6.082496596
22355	P49798	Hs.13251	0		12.12041288
51344		Hs.6434	0	>-	12.99416248
417424		Hs.86185	0	>-	7.198732424
47459		Hs.125087	0	> -	6.899388471
50898	X86032	Hs.6511	0		8.899323806
131091	Q92685	Hs.153591	0	>-	8.193972671
384015		Hs.150403	0		6.767676055
797025		Hs.100071	0	>-	5.726608725
52684		Hs.6554	0		8.623719944
140574		Hs.80420		> -	5.716782582
81203	Q15166	Hs.107966	0	>-	8.242381168
435076	P49454	Hs.77204	7		6.222777722
343987	P27487	Hs. 44926	0	>-	34.07603082
291057	P42773	Hs.4854	0		19,86930718
854746	P50290	Hs.146409	0	>	5.473485638
49654		Hs.6659	0		5.509579934
773108		Hs.22142	2		10.03390279
50080		Hs.70230	0	>-	7,474948966
795198	AF151829	Hs.7854	r,	> -	6.119863758
67187		Hs.93476	0	>-	5.589204654
629916	AJ005895	Hs.19105	0	>	6.104729404
84211		Hs.107055	0		5.798913906
609155		Hs.109528	0	>-	5.552974965
340811		Hs.182307	0	>	5.316440083
810996		Hs.24375	2		5.408432086
33603	AC004131	Hs.154050	~~	>-	7.285731634
265853		Hs.42927	5	>-	5.554228891
257329	D86324	Hs.24697	0	> -	5.773105439
324690		Hs.40098	ო	>	28.88536226
:					

7	~
_	<u>و</u>
	ō
Ì	a
F	

501989		Hs.50115	0			5.187728442
417867	P17861	Hs.149923	ιΩ		,	7.654168129
741977	P00751	Hs.69771	4	>-		46.69762637
131268		Hs.83070	0			17.2281832
62226		Hs.26971	0			16.92856749
41358		Hs.104105	-	>		5.313362511
79739		Hs.168005	-			5.097078511
243159		Hs.171952	0	≻		5.071117862
71863		Hs.5944	0			5.183569778
50383		Hs.23740	0			6.180394684
34014		Hs.23751	0			6.316869888
45501		Hs.23961	0	>-		16.58986515
78736		Hs.3964	0			13.77782302
46177		Hs.30897	0	>		6.567525716
1056198		Hs.22333	0	>		9.598220056
51020		Hs.28096	0	>		6.472603247
46461		Hs.30957	0			5.839769926
773446		Hs.17481	-			5.044670911
430231		Hs.47269	0	>		6.807556298
358936		Hs.21452	0			5.35626744
357278		Hs.47343	4	>-		13.03891137
488140		Hs.44883	0	>		6.259378009
491184		Hs.44892	0	> -		8.847324803
430319		Hs.18799	0	>		7.010278407
503581		Hs.21594	0			35,593756
415828	X68280	Hs.75874	0			51.45505723
325641	M73713	Hs.169980	0		>-	23.13308057
454822	P19827	Hs.2777	0		>-	29.80347335
460487	P02788	Hs.347	0		>	25.77672661
418150		Hs.59075	0			5.510841438
1035889		Hs.3235	0	>		193.8382308
586796	P35900	Hs.84905	0			6.401903738
50582		Hs.6667	0	>-		9.210681587
76221		Hs.222566	-			6.773869348
52704		Hs.21902	0	> -		6.877621544

52974		Hs. 108894	0	>	5.327392617
52086 52086		Hs 107374	0		6.092402372
49963		Hs.91813	-	>	5,182891626
878449		Hs.82503	-	· > -	8.970858897
742565		Hs.15760	0		5.474400582
460666	AC000115	Hs.9030	0		37.21514086
77651	A.1011972	Hs.6764	0	> -	10.97623394
34114	1	Hs.107331	0	>	6.133673932
856434	AF002163	Hs.75056	0	>	21.40958612
789803	P53365	Hs.75139	0	> -	9,14593855
85609	P38117	Hs.74047	0		7.547206526
41424		Hs.106576	0		10.39469183
487327		Hs.110453	0	>	91.56101705
52618	٠	Hs.226039	0	> -	6.561480564
951068		Hs.7921	0		11.77737413
41525		Hs. 108074	0		6.782923051
770885		Hs.5566	0		6.492441556
282838	AB011141	Hs.34871	0		8.063786701
51015		Hs.108507	0		. 48,90304741
46584		Hs.90363	0	>	7.442551155
773073		Hs.84461	0		5.141272194
280125		Hs.177812	0	>	8.624949589
54185		Hs. 125019	62	>-	6.335111867
588053		Hs.135344	0	>	5.81606434
625764		Hs.110454	0		5.628181363
346861		Hs.23756	0		5.953317042
301995		Hs.25248	0		7.643078074
782547	AF015287	Hs.25338	2	> -	
811048	AB002313	Hs. 105958	0		6.755158785
324665		Hs.143809	0	>-	14.38677986
234955		Hs.187523	0	>	5.083565319
324951		Hs.40098	ဗ		55.20731233
490023		Hs. 173902	0		9.18440604
810446		Hs.109631	0		5.680708264
430186		Hs.103305	0		11.11267231

_
<u>e</u>
Ā
Ta

153355	P16619	Hs 73817	25	>		5.668142175
68207)	Hs.9521	0			7.383978559
249603	AFOGGGG	Hs 199263	0			5.289760882
781089	AF062649	Hs.159626	0	>	>-	5,476719985
744917		Hs.11342	0			8.350532719
770388	AB000712	Hs.5372	0	>		12.4326427
79766	AB018301	Hs.22039	4	> -		5.688752172
773286	AF036241	Hs.184276	•			20.31985919
454672	U13616	Hs.75893	0			9.920533538
84586		Hs.12211	0			8,488982927
725877	P10909	Hs.75106	0	>-		35.41286983
853687		Hs.904	0			5.587857721
197520		Hs.199041	0			11.94698509
491565		Hs.82071	0			20.62901687
795321		Hs.182923	0	>-		6.992906891
772912		Hs.25598	0	>		6.74934209
46694		Hs.103720	0	>-		6.343807487
49275		Hs.225695	0	>-		7.271679582
484874	P05106	Hs.85296	-			5.029986859
796287	P06753	Hs.31239	0	>		16,45982273
76605		Hs.226499	0			6.222484996
50227		Hs.31444	0			12.51715149
47225		Hs.12183	0	>		6.914473127
76182		Hs.107253	0			5.233439037
51542		Hs.31771	0	>		6.045077082
25194		Hs.25318				5.62352979
52303		Hs.30484	0			6.759787198
742569		Hs.29128	0	>		5.313036022
80338	U29091	Hs.7833	2			94.33886612
509564	AC004520	Hs.22900	0	> -		17,40521425
811581		Hs.21835	0			12.47896302
321859		Hs.37282	0			8.39278717
200656		Hs.21851	2			8.583871849
488431		Hs.21894	-	> -		5.000188503
415229		Hs.37331	0	> -		18.62795199

7	-
_	<u>e</u>
	5
	ದ
1	_

809357		Hs.21970	0	>		5.116566909
307337	AB018301	Hs.22039	-			19.04300451
345081		Hs.33106	o			9.409896515
549933	P10145	Hs.624	0			64.20702098
283315	P15259	Hs.46039	0	>		10.14511823
310406	P05231	Hs.93913	-			15.54855402
358752	AJ222967	Hs.64837	0	> -		6.502640654
272951		Hs.15767	0			7.579337121
795907		Hs.99101	0			8.472933614
342008	P19012	Hs.74070	2			6.532912307
145112	P05362	Hs.168383	2	>-		6.680474894
293950		Hs.149255				13.68701348
295843	Q02318	Hs.82568	0			30.12850953
45587		Hs.107614	0	>		8.528602815
1031940	P49913	Hs.51120	0			5.836143383
125187	P18074	Hs.99987	-			6.690516007
78525	AF044221	Hs.173091	2	>-		5.065422583
46166	P51589	Hs.152096	0	> -		6.667614073
47005		Hs.6818	0	> -		5,463461437
51210	AB022918	Hs.34578	0	>-		20.72332967
45493		Hs.22195	0	>-		5.98262676
32325		Hs.22223	0	> -		7.754409488
46105		Hs.22226	0	> -		21.60106246
725395	AF143807	Hs.169895	-		>	6.014355031
47597		Hs.6946	0	>-		6.171006199
415388	P07311	Hs.18573	0	>		6.457203113
436062	Z34531	Hs.89866	0	>		5.754645734
46647		Hs.22245	0			13.53856188
79567		Hs.57549	0			8.472117249
261745		Hs.57079	Υ-			5,357538369
743182		Hs.5790	0	>		7.013376952
509516		Hs.8694	0	>		6.006799215
345032	U85625	Hs.8297	0	>		5.991732224
772437	AB014538	Hs.77864	0	>		6.31425587
840777		Hs.6298	0			5.995325831

841645		Hs 84359	8	>	10.44648036
73953		Hs.75257	0	>-	5.518393301
50007		Hs.91627	0		7.981299243
743739	P13861	Hs.198340	•		15.7369702
32576		Hs.91723	. 0		23.28957214
25843		Hs.110746	0	>-	7.249752102
504308		Hs.14559	0		7,209509861
489373		Hs.25557	0	>-	5.302056878
366887		Hs.170195	•	>-	22.59027147
278729		Hs.29088	0		6.180919455
271165		Hs.231544	0	>-	5.726901338
769686		Hs. 125359	0	>-	11.06083918
282500	U52111	Hs. 198897	0	>-	5.77101937
257422	Q10588	Hs.169998	, -		16.64614394
80186	P01850		0		14.08652358
809682	U80744	Hs. 56828	0	>-	7.464558659
241432		Hs.142827	4		26.58875419
415089	P51955	Hs.153704	0		6.353473137
855395	P22307	Hs.75760	4		5.359611178
259996		Hs,102500	0	>-	7.816184855
503824		Hs.29353	0		6.843401644
742798	U63743	Hs.69360	0		5.362387189
23903		Hs. 12526	0	>-	5.487550276
814798	P47895	Hs.75746	0		5.052416159
811024	Q10589	Hs.118110	0	≻	7.398087651
971212	P31629	Hs.75063	0	,	40.85841786
33028		Hs. 12332	0		8.593434467
868332		Hs.914	0	>-	60.66165226
46294		Hs.12364	0	4	5.279094208
45645	014775	Hs.25409	0	>-	5.672358707
741831	P55058	Hs.154854	0	>	15.00257155
79217		Hs.10263	0	>-	5.934086964
50354	P32243	Hs.30837		>-	26.20981668
50403		Hs.25748	o		54.07308037
45728		Hs.30853	0	>-	5.867396451

		ï	Table 1		
511096		Hs.19322	0		8.595328161
345680	U96750	Hs.194695	0		211.0315809
46506		Hs.30901	0	> -	8.297453119
346321		Hs.182471	0		26.68506315
357298		Hs.22483	0		11.93811558
283919		Hs.795	0		8.960230115
240663		Hs.75621	0	> -	6.164797551
192086		Hs.93337	0	>-	5.381492455
782688	AF006386	Hs.33846	0		5.158613823
207826		Hs.120969	0	· >	5.748096299
68049		Hs.103391	0	>	5.169048171
269997	AJ222967	Hs.64837	0	>	5.18967631
359009		Hs.64867	0	>	5.523597508
257523	P36915	Hs.83147	a		5.558364334
212347		Hs.107924	0		6.146782839
782730		Hs.197419	0		5.858897789
502721	P08183	Hs.21330	0	>-	6.447410131
795744	Q02252	Hs.99524	0		9.934072306
298417	Q07654	Hs.82961	-	>	8.59608543
755599	P13164	Hs.146360	-		11.80574958
279970	P29274	Hs.1613	0		17,4755295
83549	P00736	Hs.1279	0	>-	6.119305502
725176		Hs.118721	0	>	5.682833639
460470	P20851	Hs.99886	0		19,22903067
109863	P54851	Hs.29191	0	>	6.941511469
49858		Hs.3840	0		6.830153615
47378		Hs.22265	0	>-	12.96650517
278242	Q15120	Hs.54148	0		5.489885635
46862		Hs.15767	0		5.75063037
52730		Hs.7130	0	>	6.928764877
83506		Hs.4188	0	-	7.596827117
287745	U38847	Hs.151518	0	≻.	5.887933475
243882	U78305	Hs.100980	0	>-	28.02648834
344759	Q05048	Hs.172865		;	6.785795225
33293		Hs.7189	0	>-	8.504850482

1	_	
	9	
•	ć	
•	Č	
۱	į.	

46933		Hs.22469	0			5.261768311
586725	L42374	Hs.75199				5.898559117
52996		Hs. 155553	0			6.579777236
33523		Hs,22590	0			6.477881903
45500	•	Hs.91791	0			13.6898485
366167	Q14739	Hs.11114	0			5.264382321
627055		Hs.9850	0			9.413512945
877664		Hs.3763	0.	>		10.26951837
47306	Q05655	Hs.155342	0	>-		7.226888208
46561		Hs.93605	0			15.10919754
949988		Hs.180320	-	>		10.70867341
772880		Hs.11500	-	>		6.465170777
32683		Hs.100912	0			8.048072476
50879		Hs.94790	0			16.77986137
838639		Hs. 169358	0			5.509071145
341641		Hs.7949	0	> -		31.05273383
810981		Hs.15125	0	> -		5.082549906
321800		Hs.42226	0			57.55009761
275798	AB018356	Hs.198934	τ-			8.174619724
729964	P17405	Hs.77813	-	≻		5.052319923
345332		Hs.57836	0			9.721602889
133041		Hs.22370	0			13,84855815
364510	Q01826	Hs. 198822	0			7.74330775
433350		Hs.878	0			7.424141232
347213	P49903	Hs.124027	0			6.598065639
758347		Hs.178603	5	>		9.772759095
345849	P28300	Hs.102267	0			128.5003128
460398	P10147	Hs.73817	Ω.	>	>	6.561562252
343736	P51671	Hs.54460	7		>	5.906869601
305538	AF078860	Hs.44162	-			5.633590696
51231		Hs.12382	0			5.078395893
472095	Q15842	Hs.102308	0	>		15.6681957
772890		Hs.172108	0	> -		5.316748565
770337		Hs.111065	0			8.945428441
868304	P03996	Hs.195851	0	>		16.0581775

	q
	2
ı	2
	-

80643	U70312	Hs.10283	-		21.86427732
80672	AF090988	Hs.10290	0		7.093281839
505491	P53801	Hs.111126	-	>-	6.29836663
121406	P55347	Hs.158225	0	>-	5.687712863
461759	D89050	Hs.77729	0		7.071815341
795526	AF019085	Hs.198045	0		7.263466132
72526		Hs.6385	0	>	6.52403379
364141	P42262	Hs.89582	0		6.141247918
79817		Hs.11371	0	>-	5.842540331
81229		Hs.11712	-	> -	5.837225764
40150		Hs.26028	0	>	6.097032979
40038		Hs.26039	0		13.04947066
41391		Hs.26040	0	>-	19.4498269
566106		Hs.5175	-		7.214244137
39959		Hs.26052	0		12.12040502
32092		Hs.13308	0		6.786833156
41825		Hs.26096	0	>	12.07841314
842879		Hs.5299	4	>	6.898051065
366663		Hs.48353	0	>	7.169825492
280375		Hs.46677	-		6.30459616
126739		Hs.135256	0	>	7.371204349
742132	P05161	Hs.833	-	>	5.756444852
287687		Hs.1513	0	>	7.961147081
452374	P19652	Hs.572	0	> -	6.46522421
428434		Hs.184532	0	>-	5.766696374
588915	P04844	Hs.2867	က		6.220314318
504279		Hs.76536	0		5.44457698
755578	AC003007	Hs.184601	τ-	>	5.273247548
415145		Hs.196726	0	> -	6.095615909
491644		Hs.107139	-		51.82689988
293893		Hs.107968	0		5.264612381
884655	D30658	Hs.75280	0		7.249665372
531319	AF004022	Hs.180655			5.552673508
45877		Hs.4302	٥	>-	8.964790206
50619		Hs.7258	0		6.018275831

46367	P35790	Hs.77221	0	>-	20.43673254
854338	U58514	Hs.154138	0		5.100091365
32962		Hs.22545	0	> -	15.77948436
430968	AF005632	Hs.118410	0		5.841526461
223350	P00450	Hs.111461	0		6.519234227
461727	P00439	Hs.1870	0		6.273367292
49227		Hs.22588	0		7.521839466
429349	P49798	Hs.227571	0		149.4309013
49987		Hs.89582	0		37.10075526
47264		Hs.4892	0		12.61045835
25838		Hs.227226	0	>-	9.634409108
739193		Hs.7678	0		9.326169777
34466		Hs.16704	Ö	>-	7.700522079
593223	D87684	Hs.181368	ო	> -	7.267478081
46195		Hs.173134	0		10.12841951
46411		Hs.92414	0		5.587512132
796148		Hs.7122	0	>-	12.5006982
505225	AF049884	Hs.98,17	0		5.743624702
269029		Hs.166436	0	` ≻	12.26750596
796876		Hs.9625	.2		6.975530911
509570	U66063	Hs.12436	0	>	5.968590833
950429		Hs.26549	0	>	7.458661016
51986		Hs.24379	0		5.069041169
415329		Hs.124814	0		7.045337282
491367		Hs.42392	0	>	11.7617619
324345	AB018353	Hs.44074	0		6.906623272
782446		Hs.17894	-		8.511445593
196543		Hs.194901	0		57.01680952
878836		Hs.2265	-		28.08761274
811166	P29312	Hs.191717	0	>	8.30480114
771240	AF046888	Hs.54673	0		6.372908372
310138		Hs.44481	0	>-	6.027393836
320455		Hs. 16520	-	>-	5.036904945
309826	Q16363	Hs.78672	7		48.67546535
742064	P26368	Hs.7655	0		5.161728555

	11.85920838	12.98924051	5.49512842	33.65617251	38.39164348	7.427025569	6.576587407	21.23649758	5.046205502	5.740879055	12.50924719	Y 7.111913141	5.3595869 68	6.992353257	7.159112893	17.92470742	13.2879885	6.593209987	5.707570015	5.182574146	8.739959421	5.34495821	5.916167547	11.68124618	5.214475751	18.05731096	246.6733879	6.174819183	8.370828402	5.069099383	14.85184114	5.775197673	9.975683746	5.04508497	5.280980752
			>			≻	>	>			> -		>		<u>`</u>		>-	>		> -	> -	>-	> -	> -	≻	>	> -				> -				· > -
Table 1	-	÷	0	~	-	0		0	-	0	0	-	-	0	-	0	- -	. 0	0	0	0	0	0	0	0	0	0	0	0	0		.	0	2	0
	Hs.431	Hs.111779	Hs.54946	Hs.112259	Hs.75426	Hs.12496	Hs.83341	Hs.2003	Hs.195409	Hs.12537	Hs.26630	Hs.418	Hs.166125	Hs.89399	Hs.26102	Hs.222260	Hs.79339	Hs.59319	Hs.31446	Hs.5472	Hs.26244	Hs.18910	Hs.26058	Hs.26322	Hs.228546	Hs.34578	Hs.20188	Hs.4789	Hs.38449	Hs.48756	Hs.82226	Hs.29748	Hs.167086	Hs.3352	Hs.170285
	P35226				P13521		P30530	P01850	P05062		X97187	U09278	Q14202	Q08055			L13210					AF045584		AF035013		AB022918					Q14956	L54057	Q04726	Q92769	P35658
	418004	250654	307249	281003	174627	52071	49318	306841	897950	46278	52741	772425	739191	809876	41822	41824	811000	418198	50562	897924	40364	85800	512103	50484	26196	272706	415204	127458	429642	490730	773330	144849	755751	502669	743188

365149	P22830	Hs.26	0			5.185634963
756502	P36639	Hs.388	0			5.028747668
868368		Hs.75968	-			5.162880351
362409	Q99259	Hs.75668	0			5.292251368
81449		Hs.4932	0	≻		11.05760557
49465		Hs.20914	0			12.72036767
49842		Hs.7908	0	>-		17.17163598
52865		Hs.226352	0	>		5.334464835
288663	P08034	Hs.2679	0			14.48402377
50114		Hs. 167399	-	>		6.013769204
52339	AF053455	Hs.8037	-			5.343164352
345935	U76622	Hs.198008	0			5.336438537
454908	P01215	Hs.119689	—	>	>-	77.50252108
124575	AJ003147	Hs.88219	0	>		8.837261526
470122	Q16558	Hs.93841	0	>		5.125739148
856447	P13284	Hs.14623	-	>		5.306007822
51284		Hs.124023	0			6.579705902
841057		Hs.7457	-			5.087800009
51083	U52351	Hs.80220	0			6.47243897
838889		Hs.12372	0	>-		5.645365241
773573		Hs.10338	0			5.508913538
841624		Hs.179669	0	> -		6.256306795
26203		Hs.21379	0	>		8.22045399
810367		Hs.16236	0	>		5.520319664
277163	AF078860	Hs.44162				5.368750128
428371		Hs.18160	0			5.633487881
562729	P05109	Hs.100000	ო			78.54341245
377441	P33764	Hs.2961	0	>		48.23843238
344126		Hs.58330	0	>		17.42654997
756595	P08206	Hs.119301	0			17.12511884
365826		Hs.65029	0			6.009851646
970590		Hs.179779	ო	>		6.452042986
624627	P31350	Hs.75319	-			5.422294494
725533	P50225	Hs.181327	-	>		6.581375428
741795		Hs.170307	0	>		7.238545848

,	_
	e
•	Š
٠	ᇤ
1	

68500	D18440	Hs 155956	-			64.53273632
78921	2	Hs.10760	0			17.23201614
0000	055800	Hs 160741	C	>-		7.879580932
240667	66000	He 25105	v 4			5,467151689
340007	AEGEOOGE	Us 166204	· c			5,909777425
450566	Aruszeus 702647	DS. 100204	· •			9.933425555
200263	F02647	18.35.34 18.45.44	- c			7,875729231
45557.5		Hs 171495	o c			11.47008376
479463	014957	Hs.36451	0			17.05264608
503579	U59111	Hs. 169993	0		>	8.170006532
22389		Hs.13222	0	>		11.70513283
591699	P31271	Hs.71814	0			6.644869771
26387		Hs.21151	0			5.149660255
51548		Hs.31783	0	>		5.149773425
32050		Hs.21380	0	>		14.80307244
51672		Hs.112278	0	≻		17.00164688
82903		Hs.179600	0			5.66432432
743146		Hs. 16281	0	>-		6.216097782
51378		Hs.31924	0	>		6.120468805
47451		Hs.26490	0			5.595747335
41192		Hs.26507	0	> -		6.582399434
51992		Hs.22481	0	>-		5.829668533
52329		Hs.26537	0			8.110973084
757197		Hs.105377	0			5.904347172
46827	AF118887	Hs.37331	0			25.39073352
33122		Hs.22646	0	> -		7.646906559
840974		Hs.3376	0			6.658948178
758360		Hs.97848	0	> -		7.856617204
1049033		Hs.86368	0	> -		5.552950164
491405		Hs.5807	2	·		6,619016389
340864		Hs.23822	0	> -		5.350584259
288807		Hs.20450	0			9.213236093
197067		Hs.35124	0			5.42674479
417075		Hs.49272	o			10.619156 6
462953		Hs.82163	0			6.339768975

<u>e</u>
_
7
⊱

236059	014451	Hs.86859	0	>		15.93583732
488579	·	Hs. 165216	0	> -		10.69122819
504461	AF140242	Hs.107318	۰٫۰	>-		6.287887033
432564	015427	Hs.25797	0			6.401879882
290091		Hs.78518	0			6.6214947
124447		Hs.100747	0			22.18565682
291880	P55001	Hs.83551	7		>-	5.113603275
502333		Hs. 199041	0			8,703567953
501890		Hs.227182	0			9.832207792
770789		Hs.71124	-			5.669411118
811020		Hs.157068	0			5.095156191
856135	U09564	Hs.75761	~	>-		6.537364852
590264	P08493	Hs.75742	-	>-		319.2297619
46931		Hs.22856	0	>-		6.33836443
73659		Hs.5510	0			7.825357622
51511		Hs.21035	0	>		7.883186234
50602		Hs.21051	0	>-		6.331189338
252515	Q16719	Hs.81771	0	>		30.45481813
433253	P09467	Hs.574	-	>-		6.646462351
325182	P19022	Hs. 161	0	>-		54.23107451
39885		Hs. 106642	~-			5.108561755
724888	P13584	Hs.687	-	> -		15.85153056
770394	P55899	Hs.160741	0	>-		5.545828637
51700		Hs.5740	0	> -		7.120940176
855745	P01859	Hs.140	ဖ			44.06651214
365515	P21781	Hs.164568	4			17.45452637
45391		Hs.21192	0	>		5.671072219
34442		Hs.22920	0	> -		26.77227609
745019	AF001434	Hs.155119	o			13.4306222
47428		Hs.5921	-	>		7.701448877
40100		Hs.54865	0	> -		10.66470798
345626		Hs.26770	0			7.03684739
530185		Hs.79197	0	>		10.21794823
79565		Hs.178470	0	>-		9.577243426
739155		Hs.32963	0			14.04671992

_
<u>_</u>
ڡ
<u>ہ</u> ⊟

78844		Hs.8503	0		19.23873936
83358		Hs.76704	بن	>	5.066144758
841663		Hs.10624	0		5.670593904
796079		Hs.107755	0	· > -	13.33337423
47461		Hs.91627	0		9,463326962
842946		Hs.172405	2	> -	5.43627614
509688	AF006622	Hs.74466	0	> -	32.77384818
22759		Hs.110454	0		6,107318818
51800	P49750	Hs.26956	-	>	12.67426159
612809	AF144477	Hs.55205	0		7,139710582
838774		Hs.81946	0		22.57928794
796712		Hs.193180	2	>-	5.969629989
23116		Hs.92096	0	>	6.924312928
46715	P49961	Hs.226063	0		6.980774523
308368		Hs.157029	0	>	7.314794435
260170		Hs.184476	0		5.157790852
951305		Hs.21400	0	>	10.61201098
286608		Hs.50152	0		6.256586507
262061		Hs.42622	0	>	12.74380124
950594		Hs.170313	0	>	8.691899152
781401		Hs.6295	0		6.299838826
743309		Hs.97814	0	>	11.7569098
489794		Hs.69298	0		6,47202049
323251		Hs.141707	0	· >-	11,71472861
768260		Hs.96055	0	>	6.352064687
1031966		Hs.112765	0		7.141764946
26884		Hs.176977	0	· ~	10.83093523
286404		Hs.50141	0		5.081841412
665356	U94332	Hs.81791	. 7		7.083580279
754393		Hs.29645	0		9.618169025
754400		Hs.98866	0	>	5.223046119
787706		Hs.5944	0	>-	7.174663252
43966		Hs.30495	0	> -	6.853431198
271744		Hs.115263	0	>-	9.365329325
1472775		Hs.114599	-		7.623108683

767775		Hs,12101	0	>	7.65459267
785542		Hs.22269	0		5.074303537
289645	P51693	Hs.74565	0	>-	20.30305918
767806		Hs.219907	0	>-	5.389327002
726508		Hs.49725	0	→	6.22633869
281565		Hs.46798	0	> -	5.936175611
604959		Hs.32405	a	> -	15.81647508
838296		Hs.57877	0	>-	6.040409697
282100		Hs.33062	0		5.56242391
241424	AF077048	Hs.33713	0	> -	5.845939838
730346	AF117615	Hs.108675	0		5.761633984
758271		Hs.98380	0		27.46446372
365085		Hs.26102	-		8.323401071
773152		Hs.98434	0	>	5.168000064
122782		Hs.129586	0		5.615074649
838611	P05090	Hs.75736	-	>-	192.3342175
823856		Hs.43658	0		8.177377109
281625		Hs.153022	0	>-	6.513746023
666451		Hs.6763	0	>-	7.084388697
1408509		Hs.73980	₩	> -	23.56420483
1161564		Hs.10587	0		15.43770328
626390		Hs.202949	τ-		12.32690192
262968		Hs.42721	0	>-	8.315119488
731240		Hs.6763	-		7.806915887
796266		Hs.22260	Υ-		6.903797979
950450		Hs.188006	4		118.2281602
951241		Hs.62273	က		10.93298468
418318		Hs.103239	0		9.166602147
784065		Hs. 180532	,		7.997173789
510088		Hs.29088	0		7.691501332
43865	AF063228	Hs.65248	0		10.77433867
593929		Hs.72865	0		10.47907121
753248		Hs.100113	0	> -	17.21478312
823925		Hs.173380	0		7,502731465
32551	P00558	Hs.101230	0	>	8.444090673

	Hs.7004	00	> >	19.62705961
	Hs.161675 Hs.2248	O 19	> -	5.14905806
	Hs.21492	0	>-	7.528344801
	Hs.187655	0		5.610203468
	Hs.194327	0	>	11.03712751
	Hs.93082	0		24.39256245
	Hs.30504	0		11.52123475
Q13636	Hs.107325			14.36222132
	Hs.136253	0		13.38234153
	Hs.173059	0		5.628045886
	Hs.1327	0		6.267875851
	Hs.21896	0	>-	14.46547098
	Hs.119014	0		10.13465348
	Hs.101282	0	>-	9.474806165
	Hs.55220	0		6.245607438
	Hs.23606	0		9.046088367
AF020352	Hs.80595	9	> -	7.070955341
	Hs.58086	0		6.904414625
	Hs.58093	0	>	14.79546631
	Hs.59548	0	>	5.308317705
	Hs.177482	0		6.801650593
	Hs.46901	-		10.47684232
	Hs.46832	0		16.63799168
	Hs.34549	0		8.628998553
	Hs.27260	0		6.378714279
	Hs.46967	0		6.193985413
	Hs.58213	۲-		70.53882307
	Hs.108901	0		6.086765784
	Hs.110069	0		5.468821158
	Hs.108923	0		7.060332693
	Hs.72639	0		5.373366277
	Hs.114062	a		6.303206042
	Hs.112863	0	>-	7,163345551
	Hs.74947	Υ-		6.416120214

13.71313979 5.083289775 5.084523466 5.854120138	5.2226347 5.22226347 5.867931305 6.019150865 15.66548710734	5.0 lož 10734 7.478763274 8.010667351 7.214357894 5.200851932	5.265993784 9.611947841 5.041740362 6.91159879 6.700127027 7.500075813	6.62927821 7.612524669 17.10930111 5.09348396 5.097730563 5.759226089 6.681682597	6.53/024499 7.626199448 8.890649289 10.32631108 7.930686207 27.01835295
`>	· ·	> >	>> >	>> > >	> >
0000	> o o o o 1	-0-00	0-0000-	000000-0	- 400 - 0
Hs. 112949 Hs. 104106 Hs. 44268 Hs. 106650	Hs.68877 Hs.22112 Hs.6641 Hs.22298 Hs.99291	Hs. 191337 Hs. 21288 Hs. 99433 Hs. 37636 Hs. 13268	Hs.32125 Hs.32125 Hs.99410 Hs.107318 Hs.111867 Hs.16578	Hs.62651 Hs.112083 Hs.62716 Hs.194691 Hs.98004 Hs.103378 Hs.112196 Hs.225695	Hs.750 Hs.5101 Hs.31498 Hs.6338 Hs.41846
		P33991	P08254 L10333 AF140242	AF095448	P35555 AF044588. P22794
\$44367 665148 898195 753320	1161830 31486 278430 31652 788524	813490 788558 811953 788575 813518	324492 788617 813543 858450 34526 298903 796170	487035 255285 488683 595037 743027 781505 731231 267864	124567 785707 754563 754581 754582

Lable

1	_	4
	4	2
•	3	
Ī		d
1		

785795		Hs.15929	2			35.18082892
768111		Hs.98314	-			15.97680371
754594		Hs.170057	0	>		6.394967547
754628		Hs.25933	0	>		5.244927389
431397	010472	Hs.80120	-	>-		5.869100283
41905		Hs.26679	0	>-		24.03863291
434768	P19883	Hs.9914	0		>	5.974791662
1416502		Hs.76828	0			8.573276556
625616	AB005659	Hs.34744	-	> -		7.514554559
285049		Hs.27413	0			5.003639494
840726		Hs.47026	0	> -	>	9.980084697
784178		Hs.27860	0	> -		17.94202511
344505		Hs.58314	0	>-		16.51741389
595606		Hs. 130435	0			20.32933127
781447		Hs.98610	0			5.230028362
291947		Hs.81230	0			5,435591108
595623		Hs.72651	0			9.315426329
609209		Hs. 189991	0			14.26772375
73147		Hs.86211	0			6.611724559
243410		Hs.222293	0	>-		5.011093355
730741	AF151841	Hs.118554	0			7.52913803
359610		Hs.110248	2	•		8.271734766
781339	Q04984	Hs.1197	0			7.355756664
199635	P11464	Hs.173609	0	>		22.19509456
752802		Hs.6314	0	>-		14.84556402
753411	AF092051	Hs.48730	0	> -		5.879304595
813408		Hs.6314	0	>-		5.088411732
753417	AF035528	Hs.153863	ó	> -		11.26569657
811891		Hs.26129	-	>		5.974811435
812008		Hs.26243	0	>-		6.53110551
665674		Hs.25021	0			6.692663303
767853		Hs.100926		>		5,103780315
34901		Hs.78006	0			77.83451556
35010		Hs.106604	0			73.70144488
34832		Hs.22823	0			7.585085578

_
9
3
Ta

Hs.313 Hs.55468
Hs.170042
Hs.182356
Hs.23084
Hs.62905
Hs.20117
Hs.431
Hs.93692
Hs.89404
Hs.12549
Hs.12554
Hs.3972
Hs.12581
Hs.49349
Hs.173724
Hs.101174
Hs.57729
Hs.78276
Hs.58367
Hs.60006
Hs.39093
Hs.48950
Hs.47234
Hs.199647
Hs.73239
Hs.5672
Hs.106552
Hs. 16869
Hs.99621
Hs.48008
Hs.206778
Hs.48094
Hs.105641

đ
7
_
Ľ
_

796505		Hs.12680	τ		5,420851401
768271	AF044310	Hs.29692	•		11.87322067
796388	Q92664	Hs.75113	2	>-	8.510749465
796613		Hs. 82985	0	>-	13.73184471
415613		Hs.14896	0		6.01108203
35147		Hs.23882	0	>-	6.20402449
1410444		Hs.1257	0	>-	35.08042366
768356		Hs.173319	o	>-	6.578179839
108864		Hs.13456	0		14.19518223
35484		Hs.23892	0	>-	8.697444715
813697	AB018289	Hs.49500	က	>-	8.523022451
768432		Hs.103316	0	> -	20.88536119
813737		Hs.96908	0		15.82439139
1469234		Hs.74124	0		9.346425417
796643		Hs.5025	-		5.946270589
593431	Q16739	Hs.23703	ব	>-	7.757041113
742685	P98082	Hs.23786	0		5.287667475
773443		Hs.23871	-		8.052503677
321693		Hs.112347	0		14.17518833
730971		Hs.178098	0		13.731113
503699		Hs.103823	0		7.17089341
742672		Hs.97722	0	>	6.478973955
726571		Hs.8203	0	> -	5.270588844
287705	Q14123	Hs.48324	0	>-	6.30565246
767181		Hs.6909	0		7.684385469
786265	AB018293	Hs.173416	2		7.51429759
42415	AB011156	Hs.26835	0		14.23783714
487297	P40123	Hs.227526	0		5,10248449
277226		Hs.40183	0 .		8.178828759
346997	AB024518	Hs.58589	ო		74.13137017
488390	AB015343	Hs.40342	0		5.701206312
629944		Hs.26941	0		6.612496103
897656		Hs.183738	0	>-	7.106962713
1049185		Hs.112208	-		44.95042878
1056172		Hs.112242	0	>	12.22112635

٦		۰	۰
	<	1	į
•	•		
	4	5	
ſ	٠		

757143		Hs.76277	0			5.731472727
753946		Hs.19015	o			8.469795109
753982		Hs.7882	rs	> -		17.35990848
666159		Hs.23756	0			5.782940233
726645	AF077345	Hs.226711	0			15,13928252
35681		Hs.75305	0	>-		6.456128986
35575	AF151854	Hs.185057	-	>-		13.33335871
813838		Hs.93135	0	> -		9.818139199
1475633		Hs.118796	_			14.59889317
813843		Hs.8917	0			5.086473262
1475659		Hs.75799	0	> -		5.844968911
27277	٠	Hs.22627	0	-		5.640063746
1476065		Hs.81915	0			5.875822696
757435		Hs.55999	0			16.90169008
325220		Hs.56027	0	> -		8.517509377
340566		Hs.56147	Ψ-			10.41205349
629839		Hs.64039	0	>-		5,256134099
595001		Hs.182364	0			7.602474642
627039		Hs.8850	-			23.32282164
201213		Hs.36125	0	> -		6.037428651
43733		Hs.58589	0			8.428409686
415769	AF004327	Hs.2463	0	> -		9.140271642
122241	P49721	Hs.1390	τ-			5.747988249
53081		Hs.13989	0	> -		9.094381421
1474149		Hs.152345	0			11.77114663
898227		Hs.174203	-	> -		9.286585718
1371759	٠	Hs.227764	0			20.14892145
726874		Hs.97624	0			6.331983316
110226	AF014794	Hs.119684	ຜ	>		5.741804453
37980		Hs.171740	0			18.49920542
897518		Hs.29640	0			9.895871648
347345		Hs.58632	0	>		11.54990087
252314		Hs.41011	0	>		7.069480501
510576		Hs.91011	ო	>	>	92.89335475
1031698	P48059	Hs.112378	0			6.301334607

•		7
	d	١
1	ć	
•		3
1	_	

6.804538762	25.5689756	5.255589141	9.089348983	5.541888783	6.775934776	29.73746332	11.05433707	8.315718097	6.775535988	25.71610616	5.203623497	5.404503859	6.384116312	11.72281138	33.17981206	45.63536839	5.91681239	7.758862071	5.874257083	6.277285679	8.454174796	6.304797892	5.63294217	8.119183684	8.564045749	6.066650028	6.379263149	6.041943958	15.42398129	7.574568517	7.951340421	9.480935051	7.659605772	00000
	>			•																														
>-	>			>-			>-		> -	>	>	>-					> -		>		>-	> -			>		>-	>-						
0	ო	0	0	0	0	τ-	0	0	0	0	0	0	0	0	4	τ-	~ -	5	0	0	0	0	0	-	0	0	0	0	₩-	0	0	0	0	,
Hs.110771	Hs.100686	Hs.77978	Hs.101590	Hs.112608	Hs.23972	Hs.202949	Hs.66999	Hs. 76550	Hs.32215	Hs.98874	Hs.11217	Hs. 106620	Hs.61233	Hs.34806	Hs.194272	Hs.88253	Hs.17409	Hs.76353	Hs.19221	Hs.54709	Hs.24872	Hs.184567	Hs.46626	Hs.20072	Hs.179902	Hs.104627	Hs.104705	Hs.107376	Hs.71730	Hs.71738	Hs.67317	Hs.97774	Hs.203411	
		AB015330							AB015982				S67069		P08603							P23634												
626208	841621	742977	594600	1048603	897587	131452	682479	813730	F52701	753076	754111	53385	687625	754126	450060	812954	1323448	1323591	841146	306052	729924	839592	279224	595181	838689	840968	743290	742783	505158	505227	529302	742596	296556	

	1	
	-	-
	٢	
	c	ζ
r	_	

754378		Hs.146688	0	>	8.488984508
53319		Hs.20988	0		5.060038533
898288		Hs.8042	0	>-	7.257817428
1321598		Hs.1183	0		5.822383156
37901		Hs.26640	0	>-	6.0090261
38015		Hs.21527	0	>-	11.59223967
786657		Hs.99258	0	> -	8.033080482
1343468		Hs.177691	0	>-	5.983281755
786663		Hs.9932	0		7.154441226
787860		Hs.45057	0		7.004981591
767419		Hs.63970	0		5.917940203
357056		Hs.30528	0	>-	5.19305244
289480		Hs.48344	0	>-	5.327966622
278809		Hs.161496	0		14.3304358
253246		Hs.41228	0		5.706656583
488246		Hs.172870	2	>-	5.71875413
773605		Hs.30654	0		5.484153429
253314		Hs.141376		>	5,403061544
251435		Hs.42146	0		8.021864836
257808		Hs.102465	0		6.562807493
276412		Hs.102550	0	>	5.823009508
627687		Hs.20303	. 0	>-	5.845381527
785866	D89052	Hs.31386	-	>-	8.192959579
752640		Hs.104800	0		10,42971126
897641	Q00839	Hs.103804	-		6.088517875
813721		Hs.227716	0	> -	6.481889937
279504		Hs.46882	0		5.633081677
171916	U87223	Hs.31622	0	>	5.868409798
450777	P56270	Hs.7647	-	>	6.719588185
53384	P31644	Hs.91343	0		5.210190835
823688	P33908	Hs.25253	7	>-	13.70799286
1456160		Hs.71	0	>-	Y 5.577389547
38347		Hs.106309	0		57.61484702
823771		Hs.112196	Ψ-		5.073444827
1473274		Hs.9615	0		8.753194705

_
<u>e</u>
回
್ಹ
Η

30275		Hs.100866	0	>	10.55620586
280799		Hs.46727	0	>-	6.5/0359/2/
488301		Hs.26142	-		5.17092538
143380		Hs. 185695	0	>-	6.730398763
951108		Hs.67928	0		12.94303055
_	P28300	Hs.102267	0		114,1903856
	٠	Hs.114005	0	≻	5.983242743
773423		Hs.104866	0	>-	5.216563287
272694		Hs.108636	0	>-	6.27358973
48404		Hs. 106619	0	>-	12.58241074
C)	P32391	Hs. 12887	0	>	6.516761159
		Hs.42738	0	> -	6.166457232
27769		Hs. 167406	5		6.849454026
785930		Hs.77637	0	>-	36.89827693
41569		Hs.4243	0	>-	6.778788549
	X89576	Hs. 159581	0		6.0479446
490779		Hs.49169	-		6.967357731
327306	P43320	Hs. 169286		>-	5.738033416
73527	P09603	Hs.173894	0	>-	5.159037961
	Z68747	Hs.154655	0		5.479716085
	•	Hs.188757	0	>-	6.042417699
785368		Hs.10474.1	0		20,26025719
788234		Hs.34853	0		12.04314737
838446		Hs.31297	7		5.743473622
366901		Hs.61389	0		9.105694536
841220		Hs.31500	0.		9.901759766
418159		Hs.6139	0	>-	10.70338043
366801		Hs.61557	0	>	5.266056688
782804		Hs.99158	0	>-	10.81862606
843054		Hs.83575	0		5.30978647
796711		Hs.82772	0		8.638006261
1031791		Hs.112742	0		6.440237118
1031516		Hs.112671	0	>-	8.186561158
752754		Hs.141269	0		5.564201186
1031548		Hs.112678	0		5.244301439
)					

۲	_	4
	c	
•	c	1
	¢	1
ĭ	_	=

112143		Hs 14146	0	>		5.592159568
1031595		Hs.112715	0	>-		5.136658767
813187		Hs.75866	-	>-		6.738536294
145556		Hs.258	O			6.196064309
1455835		Hs. 17958	0	>		25.99784944
38740	P35219	Hs.79029	0	>		6.819669593
30428		Hs.22517	0	>-		5,439335297
1472689		Hs.182778		>-		31,71914518
470092	AJ007583	Hs.25220	-	>-		14.18721241
156043		Hs.27268	0	>-		18.42944168
205327		Hs.15806	-			5.895612301
701625	D83243	Hs.89385	0			5.633328161
712401	AB020718	Hs. 162808	2	٠		5.268120549
713213	AC004410	Hs.19399	0	>-		19.57239207
160532		Hs.176588	0	>-		33.66388374
713263	Q13519	Hs.89040	0	>		10.49952302
1240283		Hs.122363	0			6.212028406
1240538		Hs.164679	-	>		6.361859303
435736		Hs.114941	0			5.25455401
416374	AF120265	Hs.11663	5	>-		74.44793889
502286		Hs.25431	0			6.312661476
824792		Hs.8750	0			5.209992017
132636	Q16651	Hs.75799	0	>	>	6.737262483
191546		Hs.213207	0			5.295586039
191787		Hs.13640	0	>		7.831734003
222157		Hs.21894	-			5.914213423
191950		Hs.117815	0			11.11171333
361587		Hs.30446	0	>		5.258270559
451546		Hs.183639	0	>		5.466869055
431425	D28482	Hs.221594	0			5.8320294
289499		Hs.118113	0			5.486625855
431505		Hs.18948	0	>-		7.3996939
451587		Hs.7962	0			18.8447337
281449		Hs.30154	0	>		7.269877335
431553		Hs.163610	0	>	ý	7.168833618

3

•
a
3
-
-

45605		Hs.17537	0			8.45769109
49485		Hs.7133	0			6.868539608
206172		Hs.14743	0			7.331060389
746148	AB011421	Hs.120996	0	>		6.427990108
746232		Hs.194035	0	>		6.743711299
489631	P13611	Hs.81800	0	>-	>	5.789645367
160192		Hs.84630	0			11.05538312
489755		Hs.8850	_			20.8955182
506032	Q99595	Hs.20716	ო			8.522416133
206779		Hs.27902	0			5.186164654
395625		Hs.172646	ო	>-		6.009647075
290866		Hs.85181	-	>-		5.147879987
450398		Hs.227459	0	>		7.188236607
278496		Hs.28731	-			6.175790152
416479		Hs.14977	0	>		11.18111615
744905		Hs.19641	0	>-		6.617072132
361653		Hs.125056	0			9.272073353
223043			0	> -		22.3169845
149735		Hs.30164				10.51469781
135253		Hs.111223	0			9.737607355
195557		Hs.46541	0			13.10395761
149544		Hs.25155	,	>		7.422799854
194717		Hs.34333	0	>		11.30160113
194811		Hs.20526	0			42.92560997
770380		Hs.112023	Ö			5.922204549
289759		Hs.21368	0	>-		6.144495783
281605		Hs.100217	0	>		7.696575035
451707		Hs.19978	0	>-		6.287471852
257666		Hs.22891	0			5.007874299
451753	U40282	Hs.46531	ო	≻		14.28682569
281737		Hs.54037	0	>		5.720716404
814992		Hs.178331	0			5.41469248
684277		Hs.87507	0			8.507193903
815036		Hs.72402	0			5,476426926
506369	P14543	Hs.62041	-			7.620583677

•	
	٥
	c
_	ď
I	-

815794	P80303	Hs.3164	-	>-	6.3323457
757500	P28001	Hs. 121017		>	5.212288677
824109	AB011141	Hs.34871	0	> -	39.27799786
824479		Hs.177926	0	>-	5.721291741
824530	AB011097	Hs.226067	-	>-	5.223824505
190692		Hs. 169531	2		6.54853753
435890		Hs.189299	0	> -	8.820463809
395902	AF072505	Hs.71233	0	>-	7.289110857
395941		Hs.121231	0		6.004992652
278531	P09669	Hs.82758	7		5.787364435
417777		Hs.118371	0	>-	12.15004989
395967		Hs.192903	0		9.093372841
450515		Hs.64193	0		5.104920389
324513		Hs.40098	ო		66.5807336
324543		Hs.118513	0		5.644193296
435992		Hs.21126	0		16.60389136
325111		Hs.55950	0	>-	20.06930485
704023		Hs.96561	0	>-	97.02449466
825547		Hs.56966	0	> -	7.882424626
825597		Hs.10590	0		7.381467073
293924	P22303	Hs.154495	0		19.60727934
231903		Hs.41045.	.0		5.593738765
1046495	•	Hs. 168554	0		6.725362918
150003		Hs.29724	٥		5.577887563
383199		Hs.129056	0	>-	7.869955829
770875		Hs.119387	-	>-	8.26393191
281908		Hs.41271	ო	>	10.97038738
703384		Hs.55356		>	8.641759348
712292		Hs.62661	φ	≻	5.752992708
854897		Hs.28284	0		14.56408964
855422		Hs.8175		>	6.8250316
855610		Hs.5307	-		18.65001543
1292432		Hs.198132	0		5.531810431
190762		Hs.32856	0		5.089826814
191015		Hs.32763	0		7.412516095

۵
2
≟

825606	P52732	Hs.8878	0		5.063263663	3663
825726	P54277	Hs.111749	-		6.165887656	9592
294578		Hs.75621	0	>	180.1662123	2123
191107		Hs.79532	O	>	8.068253174	3174
436097		Hs.163796	0	>-	8.280499254	3254
725841	AB014562	Hs.56966	0		5.374041152	1152
739123	Q16739	Hs.23703	4	>	6.564097933	7933
450754		Hs.12913	0		5.099634843	1843
449034		Hs.122631	0	>	6.000589924	3924
825781		Hs.29417	ιΩ	>	5.070677448	7448
1049006		Hs.71746	~ -	>	5.504628285	3285
826194		Hs.118739	- -		5.58188398	398
826273		Hs.30464	0	>	7.015268541	3541
1049287		Hs.72026	0	>	5.30104167	167
151240		Hs.25248	0		6.481824382	4382
150897	AB015630	Hs.69009	0		5.204174014	4014
155806	P29728	Hs.172285	-		11.20424913	4913
363007		Hs.106576	0	>	5.032173895	3895
196577		Hs.29549	0		5.991962606	5606
269300		Hs.75866	-		6.058361403	1403
249784		Hs.16580	0		Y 8.178950224	0224
269751		Hs.125230	0	>-	6.42952003	203
283191		Hs.70337	0	>	5.072740493	0493
452016		Hs.92030	0	>-	6.041476064	3064
269425		Hs.114362	0		88.5441592	592
298045		Hs.18705	o		18.35126743	6743
858396		Hs.7745	-		9.78339654	654
824886		Hs.32425	0		6.987059635	9635
685516		Hs.97101	0	> -	8.42028572	5721
686226		Hs.104415		>-	7.054503787	3787
645259		Hs.58350	0		6,395701033	1033
166616		Hs.182859	0		10.02291767	1767
788269	P35265	Hs.1948	-	> -	7.564262159	2159
220069		Hs.30029	0	> -	5.697906347	6347
897720	U04811	Hs.76313	ഗ	>	6.798908281	8281

٩	
_	
_	
G	
드	

	HS. 110379	၁့	> >	9.184224987
	Hs.11950 Hs 17184) C	> -	6.352858202
AB012917	Hs.57771	· ~-	>	15.55643658
	Hs.191901	0		5.620786232
	Hs.48026	0	>-	13.30971522
AC005954	Hs.25527	0	>-	8.11191836
	Hs.16726	-	>-	8.551959356
	Hs.70604	ო	>-	12.91269072
	Hs.163719	0		5.996233303
P29728	Hs.172285	τ		11.46587025
	Hs.30343	0	>-	6.248219431
	Hs.106106	0		16.817179
	Hs.29397	0		5.025678297
	Hs.42189	0	>-	6.250029612
	Hs.4257	0		9.794909542
	Hs.28556	-	>	38.94166722
AF049895	Hs.197827	0		5.515460441
	Hs.9071	-		28.02091043
AF031588	Hs.24143	2	>-	8.677794207
	Hs.181022	-		6.618472948
AF026852	Hs.14511	٥		19.01916708
X99135	Hs.108885	0	>-	5.819472832
	Hs.92683	0	> _	5.174331293
AC002126	Hs.20707	0	>-	6.246540374
	· Hs.169476	0	>-	5.815778814
	Hs.117872	0		5.302895047
	Hs.9280	0	>-	5.19482144
	Hs.155244	-		7.552549966
•	Hs.97266	0		39.51814097
	Hs.172844	0		10.24068912
	Hs.203492	2	>-	5.212739753
AB007930	Hs.107088	0	>-	5.887144586
	Hs.86429	0	>-	5.845137158
	Hs.23247	0		16,40998267

	24.33949266	7.884702339	5.144014857	7.210309807	5.131208887	5.204070993	8.929586948	7.294741593	20.17231124	8.057546476	12.4199679	5.129048502	15.69533886	5,835759537	20.92615171	5.075146571	9.301127644	12.8177236	7.099767471	12.66212374	5.576233484	8.263649308	5.494877227	14.57156641	6.860979711	5.15451404	5.828313072	13.17442605	5.051108502	5.020009469	11.10872909	6.765763792	37.40561117	11.11817289	8.147535847
	>	>-	>-			>-						>-								>-							> -	>-	>	>-					>
Table 1	5	0	0	0	0	0	0	0	0	0	0	o	0	0	0	-	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0
	Hs.221202	Hs.8630	Hs.54580	Hs.24907	Hs. 193213	Hs.3542	Hs. 167742	Hs.213952	Hs.9029	Hs.3828	Hs.124979	Hs.169825	Hs.111301	Hs.196349	Hs.91299	Hs.75968	Hs.53996	Hs.117261	Hs.181357	Hs.29005	Hs. 100623	Hs. 75922	Hs.130847	Hs.25469	Hs.63063	Hs.30443	Hs.104266	Hs.227459	Hs.59773	Hs.127310	Hs.29403	Hs.122359	Hs.26358	Hs.82321	Hs.37262
							AF018157			P53602				U33017	L33799						AC002073	AF106966													
	137704	270826	302885	303199	432611	825176	700668	897807	454970	280934	192401	470001	1474174	814251	878652	755444	280528	431215	277173	878605	878631	878846	380883	154173	380884	199505	140018	381036	381062	262542	263883	452676	263341	435573	815051

-
ble
La
_

288705		Hs.158213			91.71402828
700967		Hs.41068	-		6.545263029
825615		Hs.70258	0		5.338540282
460002		Hs.55968	0		29.84236311
701256		Hs.30514	0		16.42742399
174311		Hs.31696	0	>	6.552059648
825411	P52272	Hs.79024	. 2	>-	5.849596697
684879	P06280	Hs.69089	0	≻	13.18203513
741880	P40424	Hs.155691	2		6.266278518
132015		Hs.9238	2	>-	7.915166589
814780	Q16566	Hs.348	0		8.976924552
360743		Hs.25726	- -	> -	7.122573491
450025		Hs.187616	0		12.16324086
280699		Hs.46721	-		20.70537663
431231	AJ132819	Hs.6059	0	>-	17.33060408
431245	AF151841	Hs.118554	0		8.46272442
413292		Hs.62604	0	>-	20,19877455
413080		Hs.220567	0	>-	12.08883896
451557		Hs.18160	0	>	16.22081248
415589		Hs.91668	0	>-	9.758358543
897276		Hs.110443	0	>-	6.74771359
25664		Hs.78006	0	> -	41.96780379
824358		Hs.102248	0		5.451531148
490789		Hs.7393	0	>-	8.618104244
824376		Hs.180703	0	>	7.538784111
129032	P05154	Hs.76353	5	> -	7.828374081
129125		Hs.124601	0		8.709811846
392630		Hs.120910		>-	51.14700519
204790		Hs.24248	2		10.17127063
392647		Hs.43307	0		15.90531046
322192		Hs.24248	2		11.5766456
815835	AC005594	Hs.10927	0	> -	8.351245876
288959		Hs.26339	0		5.754083623
265668		Hs.21861	0		6.169324732
266135	P48681	Hs.127356	0	>	13.73276849

_
<u>e</u>
9
2

825742	P43005	Hs.91139	0	>-		12.50695469
460395		Hs 106534	0	>		5.012459231
825857		Hs.22301	0			17.56505194
926403		He 22701	0			8.366723174
050103	1125776	Ho 6850) C			6.285392108
009007	0000	119.0000) C	>		20.46308344
601020		Valor of	o c	•		10,1354516
400000 000000		US 100315	o 	>		24.12164595
943470 447478		Hs 40368	· •-			5.279360401
257472	AE059244	Hs 121602	. 0			5.50741009
121857	P14798	Hs 16244		>		7.675934078
815127	-	Hs 57572	0			13.80192408
824111	AF153603	Hs 193823	ς.			5.362017963
845432		Hs.26168	0			5.598830854
122321	P13611	Hs.81800	0	> -	>	8.167873554
453710		Hs.39957	0			10.25335097
824421		Hs.11817	Ģ			9.067261273
878417		Hs.96413	0			7.31949918
449487		Hs.121979				13.89784468
505361		Hs. 16726	•			5.886521389
1456405		Hs.81771	0			59.47796478
1472928		Hs 188817	Ó			6.097038394
1458490		Hs 127699	0	>-		7.252151733
1473146		Hs 3454	0			5,117723997
1473257		Hs 22120	0			8.604690205
1631132	•	Hs.11388	2	> -		6.41281225
488964		Hs.795	0			6.383082124
50869		Hs 87597	-			5.455903487
1049143		Hs.182859	0			48.31247981
1556056		Hs.37044	0			5.561718291
1556526		Hs.127032	0			11.59792923
731180		Hs.31895	0			12.28837987
1558151		Hs.41691	0			16.23350733
50764		Hs.101174	0			10.05162341
1558855		Hs.6139	0	<i>.</i> ≻		6,123222941

į
į

50772	AC006033	Hs.13467	2		>-	6.062768709
48183		Hs.31141	-	>		9.719778158
868770		Hs.32295	0			35.79811566
448117		Hs.114124	0	>-		5.228165331
858567		Hs.180391	-			7.114037446
51773	AC005154	Hs.12770	-			28.69862593
361526		Hs.59788	0			5.27916223
971279		Hs.198023	-			5.183050258
395573		Hs.22954	0			5.224192797
1020251		Hs.117209	₩.			9.000881382
1519013		Hs.13580	0	≻		10.58288826
701115		Hs.105088	0			8.775913536
461284		Hs.48243	0			8.795646133
193518	Y13153	Hs.107318	0			15,26707307
361539	X98248	Hs.104247	0			7.826576251
461592	•	Hs.2178	ທ			14.80108909
345487		Hs.5163	0	>		6.131834446
461864		Hs.8123	0			5.755671479
462939		Hs.191915	0	> -		6.671782615
24838		Hs.188536	0	> -		5.444150866
450278		Hs.119773	0			6.10298027
1456701		Hs.122607	0			8.206503274
1474156		Hs.118867	0	> -		8.376639082
1456776		Hs.5372	0	>		8.275141287
474331		Hs.128757	0	> -		6.436015465
474424		Hs.69476	0			5.055447843
186767	P01912	Hs.180255	0			197.7255015
31344		Hs.7055	•	> -		8.079122383
293191		Hs.117229	0			5.514082664
251555	P23760	Hs.198	2	> -		7.971641309
1055719		Hs.116198	0			9.241196155
1573251		Hs.75437	0			7.628890121
49796		Hs.21948	0			23.01221961
852995		Hs.116629	0	> -		5.057198244
448409		Hs.113427	0	> -		6.9817393

٩
2
্ব
F

50541		Hs.13254	0	· -	5.370881242
448489		Hs.184640	-	> -	47.16025386
32226		Hs.19487	0		5.640754751
454317	P25311	Hs.228711	0	≻	84.11664063
167205		Hs.7833	0		53.08435322
859592		Hs.187807	0		6.427881546
363003		Hs.127833	0		37.91296312
397604		Hs.103184	0	>	6.031781991
32598	AB022317	Hs.6462	0		5.790012459
1020519		Hs.122371	0	>	5.685698166
32661		Hs.26312	0	>	8.32647517
171973		Hs.117663	0		5.526172623
173145		Hs.7357	0	>-	6.457967194
1500162		Hs.130853	0		8.612591234
745283		Hs.112094	0		7.359379677
746217		Hs.119424			5.375359776
712600		Hs.110099	0	>	13.10215532
32887		Hs.22941	-	>	5.132335154
845780		Hs.121663	. 0		6.188727561
489533		Hs.5825	-	>-	5.080593165
462977		Hs.22333	0	>	9.842269072
32812		Hs.22960	-		6.965535855
233687	AF055581	Hs.13131	0		5.849791476
878640	-	Hs.19114	0		6.002569349
469296		Hs.114777	0		8.495966962
347351	AF098915	Hs.201671	0		7.327684002
33821		Hs.21929	0	>	5.942782502
884430		Hs.179902	0	>	5.034268893
562318		Hs.48928	0	> -	6.310035183
266500		Hs.8236	-	> -	13.77109613
110298		Hs.82171	-		6.199336199
1457276		Hs.154737	2	>	17.99979744
1474987		Hs.71520	0	≻	15.56939368
1600281		Hs.198793	0		5.383648409
1574594		Hs.82045	0	>	15.18681826

12.94345602		Y 23.00159789	14.05499285	5.095352541	11,40774744		7.595751869	7.595751869 11.0793017	7.595751869 11.0793017 8.552932316	7.595751869 11.0793017 8.552932316 12.12374384	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393 7.269437488	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393 7.269437488 5.332403548	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393 7.269437488 5.332403548	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393 7.269437488 6.332403548 7.123888718	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393 7.269437488 6.469901899	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393 7.269437488 6.469901899 6.469901899 6.032392322	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393 7.269437488 6.469901899 6.469901899 6.032392322 5.784630739	7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393 7.269437488 6.469901899 6.469901899 6.032392322 5.784630739	7.595751869 7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393 7.269437488 6.422336393 7.123888718 6.469901899 6.032392322 5.784630739	7.595751869 7.595751869 11.0793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 34.77026468 5.422336393 7.269437488 6.469901899 6.032392322 5.784630739 5.369870172 30.40105787	7.595751869 7.595751869 7.10793017 8.552932316 12.12374384 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 3.4.77026468 5.422336393 7.269437488 6.469901899 6.032392322 5.784630739 5.369870172 30.40105787 7.420006216 5.185276052	7.595751869 7.595751869 7.10793017 8.552932316 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 3.4.77026468 5.422336393 7.269437488 5.332403548 6.469901899 6.032392322 5.784630739 5.369870172 30.40105787 7.420006216 5.185276052	7.595751869 7.595751869 7.10793017 8.552932316 7.754741355 9.832714569 5.911340504 18.23984859 6.489013345 5.501794062 12.62385442 6.844791965 3.4.77026468 5.422336393 7.269437488 6.469901899 6.032392322 5.784630739 5.369870172 30.40105787 7.420006216 6.18576065
7 0	≻	0	≻	0	-	-	0	0	-	≻	-	≻	0	≻	_	0	~	, 0	0	0	0	. ✓	≻ 0	≻	0	2	0	-	>	0	0	>	<i>≻</i>
Hs.74019 Hs.40342	Hs.16420	Hs.222038	Hs.20166	Hs.146428	Hs.193307	Hs. 180952	Hs.111461	Hs.121554	Hs.36980	Hs.86263	Hs.2537	Hs.65119	Hs.116160	Hs.91622	Hs.108106	Hs.164502	Hs.109706	Hs.95594	Hs.15921	Hs.85529	Hs.30898	Hs.36563	Hs.117955	Hs.165464	Hs.186607	Hs.125079	Hs.12243	Hs.158213	Hs.27189	Hs.102737	Hs. 16936	Hs.30085	Hs.9398
	AF118023				٠			•										AC005162										AF079363					
1580342 882588	586742	447173	856115	378271	461933	867606	1536240	1048592	1505360	645181	1526789	1555427	745097	40014	366414	39824	471568	39833	435750	624490	725117	725143	1475195	1420830	1475308	1421061	1276665	744024	1034465	884836	26736	462237	179212

	۵	
	2	
Ī	c	
١	_	

482325		Hs 11638	0	>-	16.45544402
379484		Hs.174188	0		20.99391799
1501546		Hs.123066	0		5.081006369
239568		Hs.3346	0		6.550279833
753428		Hs.99769			12.12815709
897219		Hs.180895	ഗ		26.72251445
240896		Hs.108118	0		5.107153231
377573		Hs.124134	0	>-	5.842023308
754541	AJ224901	Hs.109526	7		13.05897037
451357		Hs.119985			6.914966414
447208		Hs.47504	0	>-	5.011813612
1603583		Hs.14368	-		5.373659761
1635874		Hs.8693	0	>-	6.299540768
1605426		Hs.22972	0	>-	6.652996237
1606080		Hs.166351	0		7.313928324
1636156		Hs.10888	0	> -	5.170112087
1470195		Hs.127074	0		5.422430219
1470220		Hs.127286	0		5.074077471
1420527		Hs.102482	0		5.982393692
1591599		Hs.89497	٥		12.022342
502198		Hs.12112	0		5,730410439
1034445		Hs.122110	0	٠	5.531363069
1435870		Hs.184507	0		5.661424301
1459376		Hs.112405	ო		30.84969845
1467799		Hs.22599	0		9.950709034
1489249		Hs.57691	2		7.447232733
744918		Hs.116080	0	>-	6.339484513
1470657		Hs.154424	0		7.563416595
854831		Hs. 128685	-		15.84699608
855079		Hs.16622	٥	> -	5.017783002
30673		Hs.12696	0	>-	9.22099304
460039		Hs.117366	0		5.585599307
145743		Hs.120249	0		6.654265488
183281		Hs.32043	0		10.94333193
146882	000762	Hs.93002	0		6.774016895

a	,
3	3
¢	J
۲	

147826		Hs.171965	•		13.37547298
1558642		Hs.11365	-	>-	32.68449022
1558655		Hs.7331	0		5.183468959
1593897		Hs.130227	വ	>-	6.04402003
824212		Hs.105276	0	· ~	5.328480478
41295	P49903	Hs.124027	0		9.001146296
377898		Hs.121866	0		5.071870039
377987		Hs.64859	τ-	> -	11.87868467
743868		Hs.115696	0		6.360477741
743878		Hs.228707	0		12.8878423
124064	AC004410	Hs.19399	0	>-	5.888562551
1470278		Hs.29076	0		13.66920686
1636812		Hs.12369	0		6.197863546
1435624		Hs.81800	0	>-	7.277512266
1034644		Hs. 105431	0	>-	6.819865186
1474284		Hs.194110	0		6.89440299
1606557		Hs.8302	0.		6.020586268
1475476		Hs.37107	0		15.63363856
1492468		Hs.125783	0	>-	22.0879966
1499940		Hs.200007	ო		13.51182449
745001		Hs.116118	0	>-	10.08320816
878617		Hs.4750	0.	>-	7.069745851
34063		Hs.6932	0		7.805239009
855563		Hs.179941	0	>-	9.949852117
148740		Hs.16798	0		5.918304716
190059	•	Hs.127828	0	>	5.390965
192306	Q14168	Hs.23205	0		6.851199883
470049		Hs.173824	0.	>-	5.665601162
192419		Hs.7991	0	>-	9.375400952
470121		Hs.6706	0		5.319846265
153646		Hs.172928	-		18,10404951
1468160		Hs.4896	0	>-	5.578163857
1468260		Hs.181131	0		22.49196423
1505173		Hs. 105272	0	>-	8.39146578
323599		Hs.1735	-	>-	35.3679555

۲	÷	
	4	
•	c	
	3	
I	_	

9,996755193	14.94855486	6.703761336	9,486559689	6.888914457	8.540439824	5.654321084	19,56927996	5.213186193	21,17185403	7.155548413	11.93545235	5.127488587	8.11526289	7.276155082	6.406203085	5.671442656	6.059028988	48.77051201	65.41961431	8.767438722	9.739470998	9.228071782	13.47659646	5.757333009	5.81197647	5.19358417	5.097864313	7.05667734	13.06130819	6.604265623	66.21666121	10.51500612	5.328677685	5.733974845
				>-						>-	>	•	> -	>-															⊁		>-			
•	- c	o c	, 0	ı c	o c	o c	o c) (*)	o c	0	-	0	0	0	0	τ-	0	0	0	0		0	0	0	0	0	0	0	0	~	ν-	0		0
22,70	Hs 97684	Hs 2056	He 104315	Hs 90020	10.001	18. 10 133 1 10 6324	Hs 29076	Hs 43397	He 8464	Hs 22660	Hs.165615	Hs 120858	Hs.25252	Hs.73933	Hs.97220	Hs.184339	Hs.41714	Hs.83381	Hs.118910	Hs.5025	Hs.172035	Hs.106419	Hs. 117719	Hs.107318	Hs.3232	Hs.155800	Hs.13234	Hs 34578	Hs.110379	Hs.31900	Hs.11638	Hs.44017	Hs.6427	Hs.25691
		038500	A EOS 49.29	71024046			D/8881																	AF140242		P06899								AJ001016
6	74556	04078	4425	748672	74001	04467	24181	250870	4403369	1492200	1505534	1292121	506128	1631863	1507713	1517595	1636251	1636447	506504	645332	855723	40083	180239	486710	1292142	201125	1569876	1468364	461336	486626	814053	1031727	26149	345663

11.92935005	7.294909526	Y 7.006039821	6.244342562	5.142348961	6.75989739	6.626712973	5.340252412	9,155736415	8.440629012	5.664205026	5.999353338	8.023453706	Y 5.18345556	5.100479448	
0	> 0		0	0	0	0	-	0	0	0	≻	\ 0	0	0	
Hs.99638	Hs.5470		Hs.16365	Hs.116808	Hs.12338	Hs.87729	Hs.16229	Hs.10319	Hs.169003	Hs.5415	Hs.196177	Hs.118739	Hs.13405	Hs.22586	
											P15735				
814236	429376	449275	22500	858375	23005	1455603	1627705	1636606	1525691	399463	32407	487932	49229	970391	

•	4
4	υ
	-
4	◒
į	a
6	-

Image Clons ID	GenBank Accession Number	Cluster Number	subtracted libraries (out of six) where clone was found	Secretion Predicted?	Known Secretion?	Expression Ratio (Cancer / Normal)
788561	P13500	Hs.340	0	*		52.2485542
183337	P28067	Hs.77622	IO I	> -		9.393875457
789369		Hs.34853	00	>		24.53982213
768638		Hs.1825/b) ~	- >-	>	6.073315437
191664	001453	Hs.103724	- 2			4.361540598
49164	P19320	Hs.109225	ω	:		8.660075969
321580	AC004131	Hs.154050	┯ (> >		11 07017175
52096		Hs.74615	7	-		19.17801122
135221	P25815	Hs.2962	40	>		6,135265461
429466	AJ002305	Hs.6139	» د	- >-		3.270427393
898092	P29279	HS./3511	, c	•		3.778182599
361943	(18808/	Hs 180532	· 	>		5.903538944
486208		Hs.2025	-			2.809757479
755663	P10826	Hs.171495	0			6.289018861
85634	P09871	Hs.169756	2	:	;	4.458283780
840687	P15941	Hs.89603	₩ (>	>-	9.800045085
142788		Hs.9930	0 (- >	>	55 20752219
839991		Hs.179573	. 2	≻ >	-	24 20477249
159608	P05090	Hs.75736	.	->		3 870972708
294881		Hs.17713	r- •	- >		7.63584474
127120		Hs.81086	4 C	- >		45,22705846
45542		HS.103391	o c			3.135448465
768246		HS.80200) -			8.705069289
897770		HS. 105000	- c			7.034329975
485989	P80098	HS.757.8H	> 6			4.33196737
123255	P15923	Hs.4963	?			

6.666771971	CELC33778 F	4.04/502/5	4.445679893	4.075648624	29.16863995			5.419280074	2 88701628		2013313313 20133090407		13 62225865	00000000000000000000000000000000000000	24,030024 24,030024 24,030024	0.2.000 1.2.0 0.2.000 1.2.0 0.2.000 1.2.0		3.469644815		4.284891656	6.47716512	5.976658677	3.616197948	5.248119241	18,30895615	10.64965808	3.192661259		11 2050859	2.88330145		2,78966827	4.08622518	7.035267948	
0	7	رۍ		• ₹		- <i>/</i>	.	- 0	.	0	-	0 (0	2	4	0	o	0 (> (71 (7 6	~ C	5 (~ •	5 6	.		> (თ (7	ი -	4 (·	5 •	_
Hs.8122	Hs.111676	Hs.93468	00000	15.80000	HS.140420	Hs.119571	Hs.102267	Hs.50924	Hs.18212	Hs.81071	Hs.198862	Hs.119571	Hs.75909	Hs.80988	Hs.136348	Hs.30743	Hs.118910	Hs.159890	Hs.155414	Hs.750	Hs.196837	Hs.173739	Hs.74427	Hs.75929	Hs.37189	Hs.102670	Hs.21851	Hs.50382	Hs.75929	Hs.78672	Hs.71816	Hs.77326	Hs.108502	Hs.33532	Hs.79015
X73608		AE048693	2000		P20908	P02461	P28300	Q 92808	Q14657		P98095	P02461			D13665					P35555	P09104	AF033026		P55287	P53816				P55287	Q16363	L42379	P17936		Q13105	P41217
754358	205049	160970	0/200/	46916	143523	122159	341680	234736	754046	301122	789012	122159	43977	138991	897910	897956	123087	200838	127400	767851	789147	201757	48285	251685	785293	246377	212542	296568	401113	32609	810331	898218	32223	755373	51363

	29.08361672	700047000	10001 10001 1	5.520324078	6.376224311	4.549714522	5.007252448	4 078155684	44 70370303	20712711 207177711	5.2234 14000	9.01040710	2.976216272	5.018157727	3.34278498	4.273390944	10.71776564	4 416560272	2.1200011.	1.0401-009	7.002,020,0	1.0000001	4.45239017	4.308485548	3.857517247	4.954622718	9.857681737	7.205870622	7.593327821	3.806152268	7,170113029	2.690800434	8 A2720A015	E 68340330	7.000 A A A A A A A A A A A A A A A A A A	4:00400400 4:00400400	0717000	10.24111701	3.390113913
		;	> -		>-	- >	-	>	- >	> -	:	>-	>-		>-		>	-		;	> -	;	>-		> -					>	-		>)- -					>
Table 2	(က	0	0			- (o (0	0	D	0	0	2	ı c	> <	,	,- ,	0	0	O	0	ന	Ö	0	· C	o c	oc	יי פ) C	۰ د	- (>	o .	0	0	2	7	0
		Hs.80658	Hs.11067	He 74376	201011	Hs.3416	Hs. 169482	Hs. 198564	Hs.6728	Hs.198726	Hs.136482	Hs 748	He 77772	Ue 44746	11-440006	HS. 119200	Hs.35861	Hs.181366	Hs.76506	Hs.13251	Hs.44926	Hs.4854	Hs.40098	Hs 28971	He 44897	140.04504	18.6.1034	HS./30/4	HS.100307	HS.40050	HS.03/2	Hs.184276	Hs.75893	Hs.75106	Hs.82071	Hs.31444	Hs.7833	Hs.21851	Hs.37331
		P55851		70000	\$ 10.50 M	X97324				٠						S75725			P13796	P49798	P27487	P42773						X68280		1	AB000712	AF036241	U13616	P10909			U29091		
		235034	70726	2100	97079	435036	51320	725321	897593	215000	321908	45.4473	7/800	4551/	324122	68605	502664	855547	344589	22355	343987	291057	324690	50006	27770	491184	503581	415828	51015	324951	770388	773286	454672	725877	491565	50227	80338	200658	415229

	5.583310047	2.673292284	4.518680449	18.63938798	3,153163187	3.794013135	42.61514255	2,900989444	2,466968054	8.076928757	6.066903669	20.98185144	9,394115655	4.870105703	4.413445282	28.47153325	5,73497612	3.665535604	4 021467352	9.575860587	B.862549463	4,186038001	5,424767798	3.693009803	3.534580555	30.59961426	3.471623415	3.658797671	3.806969465	4,056763848	4.762913929	5.82434915	33.29872488	8.782686019	16.52405348
		>		>					>	-	>	-		>	- >	-		>	- >	-		>	- >	-	>	· >	· > -	>		>	٠ >	•	>	٠ >	- >-
Table 2		0	-	. С	,	, c	> <	> «	-	5 (יכ	ი (O +	- c	.	5 6	> 0	> (-	> (7 -	- 0) 1	- c	→	- c	o -	- c	o c		o c	> <	> +	- c	→
	Hs.93913	Hs 125359	He 169998	15.10000	118.3.10	MS.12332	Hs. 19322	Hs. 194695	Hs. 107924	Hs.1279	Hs.42226	Hs.178603	Hs.102267	HS. 10283	Hs.4302	Hs.77221	Hs.227571	Hs.4892	Hs.227226	Hs.42392	Hs.78572	Hs.75426	Hs.26630	Hs.26102	HS.222260	HS. 78339	HS.20100	15.02220	15.7800 11.74.00	HS.17.1483	HS.13222	HS.112278	HS.37331	HS.75/42	HS.81771 HS.574
	D05234	1070	0000	0000	Q10589			U967 50		P00736			P28300	U70312		P35790	P49798				Q16363	P13521	X97187			L13210		Q14936					AF118887	P08493	Q16719 D09467
	340408	200000	000001	724/07	811024	33028	511096	345680	212347	83549	321900	758347	345849	80643	45877	46367	429349	47264	25838	491367	309826	174627	52741	41822	41824	811000	415204	773330	49842	46180	22389	51672	46827	590264	252515

Table 2	17,86342178	- >	- ;	Hs.32405 0 148.32405	>	He 10587 0	₹	HS.166000 4.024403017	Hs.30504 V 4.044257475	- -	5	0 4	>	- - -	5 (>		0		, m	96	Hs.8850	· >- ·		· •	P08603 HS.194272 V 17.69484734	-	74 0 4.		.	· ·	- >		>	10 Hs.19399 U	- >
		P19022			060500									AF035528						AB024518						P08603					P28300			D83243	AC00441	013519
		325182	798079	F04959	028844	10000	1161554	950450	44387	39442	488683	41869	768111	753417	34901	53122	796613	108864	796643	346997	1475633	627039	510576	841621	131452	450060	1323448	742596	1456160	38347	262060	785930	418159	701625	713213	742263

rable.

	10.544097	3.077897094	2.189197539	5.370615608	3.085244527	8.089855613	8.606736997	10.79556324	5.561894022	4.506753644	3.292981642	3.378577727	11.29720467	3.434789977	3.321004228	6,489269439	2.863984767	3.123023340	3.463253326	3.27.3203333	2 92821 10000 2 928281923	2 037281169	5 970121477	4.862998117	3.883879495	7.153225537	3.984475248	11.08330086	8.81922855	4.212469806	19.06777101	13.35681636	6.200258143	4.883265909
			•		>	•	> -			>	·>-			>-	>-		> -				>	-			>	· >-		>-		>	}		> -	· ≻
Table 2	•	c	o c	۰ -	- c	o c	> C	, e	0	0	0	-	0	0		0	0	-	0	0 (o ,	 (o 7	- •	c	o c	, 6	٠ -	· C	0	0	0	, 4	₹-
	Hs 21894	Un 447845	13.1.20	18.7.25 2000 - 1	HS.8830	118.04555 119.00536	HS.20320	13.3401	Hs.40036	Hs 55950	Hs 56966	Hs.5307	Hs 114362	Hs.97101	Hs.24143	Hs.14511	Hs.20707	Hs.155244	Hs.172844	Hs.111301	Hs.117261	Hs.29005	Hs.130847	Hs.26358	HS.40127	HS.10100	18.76000 10.24248	He 400345	HS. 103013	He 5372	He 228711	He 7833	Ha 8236	Hs.2537
							2004444	ABOLLIA						,	AF031588	AF026852	AC002126														175244	1,562,1		
	737457	/61777	191950	49485	489755	194717	194811	824109	324513	450892	026011	955640	20000	685516	700299	646657	362402	277537	741962	1474174	431215	878605	380883	263341	280699	451557	22664	322192	0/7679	07/000	1400770	10404	366500	1526789

		Table 2		
				1007001700
	110 2552	C	>-	72.45284351
725143		• •		6.761307575
147826	CORL/L'SH	- ,	>	13.4400202
1558642	Hs.11365	_	- 3	E 137735033
377987	Hs.64859	-	>- :	0.101.0010
00110	Le 179941	0	>-	8.507 104078
855563		•	>	9.082105677
323599	HS.1/35	- (· `>	26.58192957
606128	Hs.25252	o (_	13 93546317
1636447	Hs.83381	0		2 62220403
645332	Hs.5025	0	•	000000000000000000000000000000000000000
	Ve 11638	•	> -	14.8/203333
814053	113:11	•		4,152182514
1000	/ LUVV 97	>		

<u>e</u>
٩
_04
-

			Mumberof			
Image Clone ID	GenBank Accession Number	Cluster Number	subtracted Ilbraries (out of stx) where clone was found	Secretion Predicted?	Known Secretion?	Expression Ratio (Cancer / Normal)
						4.58841973
129865	D84212	Hs.199147	n (>		2.979877903
296444		Hs.18376	> (•	>	2.578710848
269815	P08476	Hs.197458	> •		•	2.156072766
162211	P28288	Hs.76781	- c	>		2.351793598
÷1532	Q15041	Hs.75249	m (- >		2.335866208
280750		Hs.24512	> (- >		2.29869536
782718	A27270	Hs.21922	л ^Т с	- >		3.571901076
247635		Hs.92071	- 4	-		2.030503199
324225	AF060228	Hs.17466	മ			4.256878504
755145	P15311	Hs.155191	-			2,298288485
342378	Q16690	Hs.2128	- (2,415701989
135221	P25815	Hs.2962	7 7			1.893332538
363575	AB007191	Hs.78221	- c			3.388261876
86220	P48775	Hs.1835/1	o' o	>		1.961173117
813830	P08574	Hs.697	.	•		2,869302533
111006		Hs.168212	V 1 (>	>	6.765422277
503617	Q07325	Hs.77367	> (•		3.124513198
342640	Q14012	Hs.81892	4 ¢			1.685838523
108265		Hs.13/40) 1	, >		3.422080524
140301		Hs.28792	- c	•		2.260169693
126650		Hs.132959) ,		•	3.319782733
795803		HS.109/UD	- •		>	2.678218529
80109	P01908	HS.03670	- 🕶			2,214355336
120881	Q13636	Hs.107325	- u	>		10.7372262
52933	U41060	Hs.79135	ņ			2.647856813
788654	P29354	Hs.6289	.	>		5.55937843
321708		Hs.6189	> (-		2,191391292
202500		Hs.6111	>			

	2,289303272	5.386675558	2.8/1391655	2.5501£5£11	4 684326592	2 687838488	1.972086645	2.507530116	4.975588669	3.776178311	2.577132769	3.344683275	4,557576525	1,887291117	2 594660894	3,49512297	3.057606587	3,300520248	11.19327269	2,28012055	3.358002441	2,183682248	2,114601452	2.80471972	4.076328566	3.051560082	2,262379088	3.31552675	3.497040804	2.522543333	3.740585902	2.812979324	1.686789426	3.441566487
						>	-									>	•		,	· >	- >-	•						>	•			>	-	
														>	-		>	-			>	-						>	- >-	. >	-	>	-	
Table 3	0	ဖ	-	0	က	0 (0 1	- •	- 4	- u	o r	o c) c	າ (ν,	- (٧,٠	r· ,	- (ه م	> •	- ر	N (o c	,	, c	n c) T	- c) 1	- (າ () r	- 0
	Hs.3321	Hs.203779	Hs.77695	Hs.83758	Hs.150675	Hs.76038	Hs.44532	Hs.155751	Hs.184593	Hs.2384	HS.1845/2	Hs.4963	Hs.103808	Hs. 169946	Hs. 195136	Hs.77695	Hs.154737	Hs.174050	Hs.14355	Hs.140	Hs.1695	Hs.118162	Hs.23352	Hs.179774	Hs.20830	Hs.74649	Hs.75871	Hs.80296	Hs.118162	Hs.93002	Hs.93832	Hs.150675	Hs.107325	HS 83758
		D44388	G15398	P33552	P53803	X17025	Y12653	P56134	L34587		P06493	P15923		P23771	Q15392	Q15398	AF015287			P01859	P39900	P02751		D45248		P09669	Q92503	P48539	P02751	000762	AF070626	P53803	P01011	033553
	7	154654	357373	359119	813410	44975	243741	191978	347373	814306	898286	123255	132066	214068	840878	686172	143887	262920	297439	289337	196612	139009	137456	210405	292933	838558	814595	788566	139009	769921	122077	813410	109316	28823

,	2.824366302	> 2.327024534		2 213564335	70000 F	#C70000RA'L	4.902918015	y 2.167321514		3.262683451	2.186017028	2,404966354	12.16443808	3,739393897	2,32039004	3,698945562		3.86903419	4,43746778	2.531300769	2.056993039	y 5.554540513	1.919967882	2.433804389	2.94420626	2.081012933	y 2.585034716	2.35418091	Y 3.237540056	4.208520985	3,25868426	y 2.672058597	>	2.89574434	y 2.878499906	
Table	•	- ,	- (0	0	0		.	> (5 (> (⊃. ₹	- c	5 () T	- (> ()	ν (71 4	o c	> -	1 C	4 C	o c	o c		ຸທ	· c) (- c	4 -		- c	v C	> 0
		Hs.86905	Hs.763	Hs.16940	Hs.82292	U. 76913	US./0815	Hs.179808	Hs.118338	Hs.14838	Hs.1578	Hs.14838	Hs.110857	Hs.198564	Hs.81687	Hs.155572	Hs.30098	Hs.75621	Hs.181043	Hs.77204	Hs.149923	Hs.103238	Hs.69771	Hs.81848	Hs.118638	HS.5807.5	HS.184950	HS. 107.30	13.4.17 11- 450676	HS.159520	Hs.1842/6	Hs.21851	Hs.21894	Hs.169895	Hs.23352	Hs.25557
		P21283	P08637		086969	20000	P28066			P06576	126245	P06576			U29658			P01009	P52292	P49454	P17861	Ť	P00751	X98294	P15531		ĺ	0000	P06899	AF062849	AF036241	, 4		AF143807		
		43826	51447	120138	40447		897952	111389	416049	758293	796694	839904	511632	725321	726658	360240	52021	86160	882510	435076	.417867	417908	741977	970613	845363	418150	432581	784212	430235	781089	773286	200556	488431	725395	70500	489373

	2,221454344	2.046701915	1.996412487	2.554300385	3.266083191	2.490367516	3,078518374	2.202559306	Y 2.944850517	3.159610698	3,189238122	1,709311194	1,706324766	2.120123701	2.013919541	2.115212862	2.01819123	2.925866678	3.052523408	12.66753899	2.309779259	2.871445378	2.416935104	6,136331434	2.03060119	2.208014236	14.26552538	1.96200992	4.810066059	4.352058465	6.708798681	2.871524938	2.704665188	3.022715381	11,83417348
	>	•		>	-			>	-					>	•	>	-	>	- >	-		>	- >	- >-	-	>-	>-					>			
ranie	c	o c) (o (> () v	→ C	.	n c	v C	> +	÷ C	o c	> r	·	4 (.	> •	- ,	- •	- 0	> 4	- c	.	o c	o c	· -	- տ) et	0	er,	o c		۰ د	1 (1
		Hs.29191	Hs.15/6/	Hs.3066	Hs. 100980	Hs.75199	Hs.46677	Hs.878	Hs.178603	Hs.54460	Hs.77729	Hs.465//	Hs.10/968	Hs.1/2551	Hs.181368	Hs.75258	Hs.54946	Hs.22564	Hs.26102	Hs.14623	Hs.155956	Hs.146409	Hs.574	Hs.5740	HS.22920	HS.145525	18.0404 11.0404	TS./3800	HS:20410	Us 72865	13,7200	US.2240	10.101.67	HS.112848	Hs.15929
		P54851		P49863	U78305	L42374				P51671	D 89050				D87684	Q02874		090236		P13284	P18440	P25763	P09467						Posse						AF044588
		109863	46862	428412	243882	586725	204483	433350	758347	343736	461759	280375	293893	46896	593223	843075	307249	744944	41822	856447	66599	365531	433253	61700	34442	838829	788205	1409509	290841	951241	583828	1493160	39453	744367	785707

			I able 5			
			c	>		2.57992219
754594		Hs.17005/		. >		2.725288748
754628		Hs.25933	> 7	- >		1.66632895
625616	AB005659	Hs.34744	· c	-		23.50384687
35010		Hs.105504	.		>-	3.069436155
378461	P10451	Hs.313	>			8.648577202
694693		Hs.55468	> C	>		1.884627225
489109		HS.103485	> <			3.57835403
283142		Hs.47234	> 0	>		2,578672811
35147		Hs.23882	o c	- >-		3.412605613
35484		Hs.23892) ,	- >-		3.393622435
593431	Q16739	Hs.23703	† u	-		2.422280854
292399	P31327	Hs.50956	o c			3.159591874
1476065		Hs.81915	.	>	>	21.89509113
510576		Hs.91011	י כ	· >	>	11.57728682
841621		Hs.100686	n c	•		3,778529601
813730		Hs.76550	o r			14.25355823
812954		Hs.88253	- c			2.518611541
296556		Hs.203411	> •	>		3,441022585
450777	P56270	Hs.7647	- c	-		3.141727189
29967		Hs.30098	,	>		2,177021191
730554	Q99536	Hs.54960	- c	- >-		2.207614979
272694		Hs. 108635	,	-		2.55457736
1455566		HS.258		>		3.293344299
160532		Hs.1/6588	5 4	· >		17.91538953
416374	AF120265	Hs.11663	, 0	-		2.750645961
491524		HS.43840	4 0			3.959712932
506032	Q99595	HS.20/10	, (1.793397977
208779		Hs.27902	> <	>		2.23238898
231802		Hs.109643	o c	- >-		2.181223694
435890		HS.189299	, c	-		2.858033608
278531	P09669	Hs.82/58	۷ ۳	>		3.302651455
739123	Q16739	Hs.23/03	† C	- >-		3.227009973
826273	•	Hs.30464	o c	-		2.662081811
250678		Hs.24743) C	> -		2,212256687
			>			

			Table 3		
		00000	c	>	3.335976685
397488		HS.203492	4 C	-	1.819754286
815556	P46783	Hs.6823			2.689636359
814528		Hs,75497	D T		2.497767477
132328		Hs.63931	- c	· >	16.48229102
392630		HS.120910	o c	- >-	3.621254078
121857	P14798	HS.10244	, c	•	2.055037746
1472797		15.42024	o c		1.797002833
1416085	7	HS./845/) (-		3.4225676
51773	AC005154	HS, 12770	· c	>-	2.711489039
146152B		US. 120200) C		2.396575092
1474424		18.044.0) C		2.333712316
745283		HS.112094) -	. >-	2.106802529
878688		TS. / 55/	· •	· >-	2.689094466
266500		HS.0230	-·c	· >-	5.275868415
457276		HS.134/3/	4 C	> -	6.16306702
447173		Hs.222038	o +		4.848743585
461933		HS.195507	- c		5.845300949
745097		Hs.116760) t		2.754245944
471568		Hs.109/05	- c		1.96295302
284261		HS.181365	o · c	>-	2.326905439
1420830		HS.103404	o c	· >-	2.466205953
1602209		HS.14285	o c	-	2,218138258
1501546		HS, 123000) -		2.957854634
1603583		HS.14500	- •	>	2.399028312
1805178		HS.102/2	- ç		3,553945522
146882	29/000	18.83002 11.70034			2.020449132
1468070		HS./0221) +	>-	3.84774744
1558642		116.11.500	- c	>-	2.541048484
1492468		HS.143705	, c		2.719650824
1500000		HS.160779	· •	>-	2.134880551
1610448		HS./3/44	- c		3.618195572
447715		HS:83/00	o c	>-	3.173922513
855553		15.17.004.) - -		3.023753485
814769		115.20175	. c	> -	2.350909479
1623328		HS.2.12/3	>	•	

2.053469746 2.167714685 3.233732273 3.040435583

>

Table 3

506128 855723 40063 201125

4
<u>e</u>
豆
್ಷದ

Image Clone ID	GenBank Accession Number	Cluster Number	Number of subtracted libraries (out of stx) where clone was found	Secretion Predicted?	Known Secretion?	Expression Ratio (Cancer / Normai)
		-	c			1.931653639
666425	AF067730	Hs.317	.	>		2,458128039
296444		Hs.18376	- •	- >		5279583706
141768	P04626	Hs.173664	5 (-		2,158098743
38763	X82654	Hs.119007	ാ് (>	4.545171972
269815	P08476	Hs. 197458	.		-	2.933924688
162211	P28288	Hs.76781	- •	>		2,648051188
755037	P78552	Hs.67878	- c	•		2.185004016
210415	Q13009	Hs.82141	o c			2,539401737
810986	U53588	Hs.82887	> •			3,156320745
823696	P09914	Hs.20315	- (2.072101242
144834	X73882	Hs.146388) (•		2.64275943
68317	P16403	Hs.7644	-			2.297549435
788511	L07597	Hs.14995/) (2.624635835
112906		Hs.106019	N C	>		2.166294974
280750		HS.24512	> (· >		3,557161475
782718	A27270	Hs.21922	7 4	-		2.819322938
324225	AF060228	Hs.17450	o c			2.731331022
487929		15.0103 11.0406	o c			5.238824094
85450	X95190	HS.8783	o c			1.99544001
342378	Q16590	HS.2126	, c			10.03600539
135221	P25815	HS.2902	4 +			2.589533801
950445	P05323	H8.917/3	- 0	>		2,466487129
813830	P08574	Hs.697	> •	- >		2.670123565
135083	P30101	Hs.110029	•	-		3,480918546
293569		Hs. 16769	> (2.24985165
415215	AF151803	Hs.5298	7 (>		2.046826541
197776	AF083255	Hs.168904	۷ ،	- >		2 078185344
782217	U82535	Hs.227511	>	-		

•	7	r
	4	D
•	3	5
	٥	V

3.078325805	2.847049482	2,468064057	2,15248541	2,469003861	3.302859048	2.999514833	3.37634683	2 334391842	3.673598586	2 537662849	4.384953836	2.52000702	2.326185746	3,30808346	2.16950514	2.146478589	2.210333532	2 234285178	4.631407273	7.263701601	3.417067548	2,496331341	5.104047245	8.525090579	2.073804283	2.101359062	13.12449404	2 807542184	2.824843113	2 14520AB71	1 862056232	2 202622001	8 350344055	0.0000000000000000000000000000000000000	6.000005147	
				>	· >	•					>	-							>	•				>	-											
> -		>	-	>	- >	-	>	-	>	· >	- -			>	•	>	-				-			>	-		>	- >	_							
c	, c	,	.	o •	- •	5 (5 (.	, C.	.	0 (.	- •	- +			- (۰ د	.	וני	5 (<u>۔</u>	۰ د	- •	- (.	.	<u>،</u> ۵	۷ (۰ د	- (0	0	0	₩	
11. 4443	13.1.42	HS.1/5004	Hs.82399	Hs.7884	Hs.77274	Hs.77367	Hs.102824	Hs.2719	Hs.821	Hs.28792	Hs.21293	Hs.61311	Hs.109/05	Hs.5624	HS.180426	Hs. 180686	Hs.118778	Hs.5716	Hs.154672	Hs.824	Hs.21205	Hs.76391	Hs.184488	Hs.107325	Hs.73848	Hs.66776	Hs.75285	Hs.79136	Hs.198902	Hs.2055	Hs. 16003	Hs.18387	Hs.183171	Hs.6111	Hs.75243	
	•	P04628	Q14746			Q07325		Q14508	P49241		S73498			AF155110		Q05086		015027	P13995	P21810		P20591	M60922	Q13636		AL031228	P19823	U41060	P08236	P22314	Q09028				P25440	
	811740	783729	825296	208531	714106	503617	202919	786675	244147	140301	292515	365665	795803	782768	810846	180520	123117	809944	814615	144786	782513	815542	156385	120881	509823	592359	(126413	52933	276449	898262	773599	137387	153779	363590	214133	

6.962550781	1.843341892	2.468335343	10.5797577	3.302347788	2.676846591	3,426789946	2.227898801	3.327215288	2.347697318	5,548577581	3.624208427	2.791041215	2.78168736	2.055367929	4.338662544	3.188580171	5.351266089	3.304517641	3 526317072	2 152218484	43 95009017	3 928932119	3 28800403	1 91398535	4 02037986	3.247869711	2.896880491	3.369767665	4.08633132	6.707293591	2 194250491	2 770429043	4.0040046	0.0000/088.	2.54061354
			>															•			>	-				>	-		>	•					
>-	>-	· >	· > -	· >	•				>	-	>	· >				>	. >	•	>	-	>	-		>									;	> -	
c		• •) T	- c	.	> c	> C	o c	o c	. 4) C	o 	- c	, c	o c	o c	1 C	O +	- ,	- (5 (.	- (n (5 ,	> •	- c	o c	o 0	o (7 (э.		o	ന
Un 67662	Us 82148	01.50.21.10	HS.807.51	18.09005	HS.80787	HS.3321	HS.3459	HS.02554	HS. / 0223	Hs.155968	HS.2176	HS.110028	15.114300	13.130131	18.74500	HS. 138262	HS.2305/	Hs.93961	HS.2384	Hs.107573	Hs. 196458	Hs. 1305	Hs.28309	Hs.4963	Hs.118684	HS.1835/0	Hs.1584		H3.24380	H8.103083	HS.159940	Hs.178574	Hs.91773	Hs.69743	Hs.89718
	007701	084408	P26442	P15841					P13/88	D76444		P30101	P54885	. 6	X69910					U14550	P07814	P05154		P15923	D50645	!	P49747	P10242	1	U33837	P23771	00000	P05323		P52788
67	5016/1	190887	763897	840687	29063	154654	293901	376516	813279	768562	813149	135083	588500	773215	898073	814054	130057	132140	814306	823590	949914	240518	139835	123255	35191	143169	309515	416280	134270	143846	214068	898098	950445	795173	565235

	2.014049291	5 378443037	0 200002740	4 070825777	1.020010.1	11.00444623	0.405017920	2.567598804	2.077809891	2.659696758	3.555963002	3.826185574	4.667507984	2.571803904	3.685268937	2.423695279	2 185772964	3.631918207	2 465629233	3.581635884	2.712152042	4 37271796	2.046482952	2.683662945	2.430363992	2.193723628	12.33699028	3.086554877	2397002532	2.006967573	3.593330033	1.958507205			2 800703804	2.086163001	1000
						-					<i>_</i>											,	•				_						>				
			,																																		
	>	- >	-										>	- >	- >	- >	-	>	-			>	- >	-	>	- >	-						>	-			
4																	•																				
Table 4	•	Э	7	ro C	0	7	0	0	2	C	שכ	,	o (.	D 4	- (o (o (o (D (.	, co	- (.	> (> (o (> •	- (> •	- (m =	4 (m (m -	o (0
	•	Hs.118684	Hs.195136	Hs.155291	Hs.93164	Hs.154737	Hs 20191	Hs 172084	Lo 5158	13.0100	HS.1/06	HS.140	Hs.82772	Hs.74471	Hs. 155550	Hs.81008	Hs.75737	Hs. 7910	Hs.92323	Hs.75074	Hs. 18212	Hs.9629	Hs.118162	Hs.209119	Hs.14637	Hs.84640	C/R9/SH	Hs.2012	Hs.1390	Hs.179774	Hs.76986	Hs.74649	Hs.82911	Hs.31439	Hs.75871	Hs.75724	Hs.106283
		D50645	Q15392	D13630	P16519	AF015287	V45768	201	4 10007060	ABUU/009	Q00978	P01859	P12107		P27824	AF043045	127841		U28249	P49137	Q14657	Q92733	P02751	Q99943	AB013094			P20061	P49721	D45248		P09669	U14603	U78095	Q92503	P35606	
		35191	840878	773922	282654	143887	170064	47000	292//0	813818	724588	289337	134783	839101	611521	840818	594743	345751	511428	812251	754046	877644	139009	814409	247660	357120	139573	592243	246549	210405	27104	838568	825442	814378	814595	77805	243546

2 854412912	2.705860077	1,959749964	4.468718779	2.035872238	2.12579115	2.016745359	3,053381858	2,39675518	3,99596805	2.051134582	2.947660028	2.0214461	14 55222204	4.300410656	4.963004033	2 246993147	2.811809847	2.161734986	5.863760726	2.038460827	2.2644044	2.894076466	2.330520993	2.342923667	3,224519998	4.794115692	1,996691035	1.963438505	2.900215817	3.994133788	4 215618126	2 21075935	4 124412091	2.273755792	
>	-		>	•									>	•					>	-		>						•		>	- >	-			
	≻ >	-	>	- >	- >	- >	- >	-	>	-	>	-	>	.	>	-	>	_				>	-		>	. >	-	-			.>	- >	-		
	ഗ ഗ	7 6	5 1	- c	> 0	ɔ ˙ c	> •	- (-)	N •	o (>	- 1	- (0 (o (7 '		4 (.	- (۰ د	d 1	n c	5 6	> 1	- (7 -	⊢ \	Ω,	- (0 (n
	Hs.76353	Hs.181312	Hs. 153910	Hs.118162	Hs.1420	Hs.93002	Hs.75093	Hs.107573	Hs.76283	Hs.28777	Hs.227940	Hs.170218	Hs.24734	Hs.107325	Hs.7358	Hs.182793	Hs.127428	Hs.89525	Hs.74568	Hs.173736	Hs.150580	Hs.2340	Hs.10247	Hs. 154443	Hs.76288	Hs.155560	Hs.21205	Hs,118625	Hs.172207	Hs.21851	Hs.38991	Hs.71816	Hs.118778	Hs.16940	Hs, 195183
	P05154			P02751		000762		U14550	U53225	P28001	AB015344			P01011	,		U82759	124521			P31949	P14923	Q13740	P33991	P17666	P27824		P19367	P05114	,	P29034	L 4 2379			Q93075
	416567	251019	471266	139009	762631	769921	771323	823590	785574	789091	292882	82976	360245	109316	782306	811582	897497	813673	47647	813841	810612	126320	26617	843049	549728	511521	782513	840158	138139	212542	810813	810331	843140	120138	49404

4
<u>o</u>
7
ď
-

3.011769838	1.988192273	2.722733308	2.585403277	3.556635949	2.286196249	2.443847304	2.500633633	5.841988865	2.411063926	1.855749714	2.400507322	1.922403099	1.912489138	2.414493212	2.018634425	1.980426271	5.65406872	3.051877619	2.60312898	2.005074102	1,721938303	20,51400812	6.327977795	3.580123322	2.37398429	2.374365025	3.265905408	2.252763583	2.5961353	2.836503669	2.630506055	5.666452355	15.3735302	4 500477000	502141260
								>-	>-	>	>						>-	>-						>-			>-		>-	>-	>-		>-	•	
ю	0	0	-	-	0	0			• •	0	o	0	0	-	4	0	0	0		7	-	0	0	0	ئىد	0	0	,74	ĸ	0	0	· LC	• 4	•	9
Hs.7957	Hs.82292	Hs.21488	Hs.80712	Hs.36927	Hs 152925	He 179808	13.119000 Us 40004	Hs 8154	Hs 108805	Hs. 108502	Hs 118338	Hs.27131	Hs.14838	Hs,110857	Hs.112318	Hs.30819	Hs.35198	Hs.77961	Hs.30692	Hs.182215	Hs.59889	Hs.198564	Hs 81687	Hs.30098	Hs.90061	Hs.215725	Hs 181244	Hs.77204	He 7854	Hs 8859	Hs 108981	He 149923	U. 60774	18.0ar	Hs.5944
	086980	P42224	D86957	00250 00250R	2000				AE464867	20010			P06576						043477	P36405	2		1120656	0,000	V42741	-		DAGAEA	AE464820	2007		100710	10071	P00751	
050367	40447	840604	103734	045704	01370	000.0	886 T F.	240537	/8533/	144002	322223	420243	758293	511632	643251	782450	322461	840142	472584	17 3331	75722	10122	120321	52020	14000	41030	05300R	435076	15500	02020	008740	6/0000	41/80/	741977	71863

2.731387546	2.63700768	3,123726222	2,208501657	1.843263742	2.470435755	2,170943501	2 002884328	447766456	4.112/00403 2.403600338	4 825707584	1.0537.0531	7.10203017	10.75818524	2,292095652	3.964191053	2.810759019	2.81149243	3 726834282	2 242529252	3 27089901	2 663404238	2.003404230	7.17.330347	1.980684655	1.955985569	2.021065521	2.199354123	2,224296866	2,292985058	2.981588275	2,10573765	8 811085257	2 361872484	0.001012404	706661716.7	2.584823583	2.34406013
								>	-																										:	>	
	>			>	•	>	- >	>								>	-		>	- >	-								>	- >	-			;	- :	> -	
0	4		, c	5 0	> •	- (၁	0	7	0	0	0	-	o) T	- «)	o (7 .	o	0	7		7	ı C		- •	- c	.	- (o. c	5 (.	0	0	0	0
He 23740	113.437.43	75.47.540	13.74F	Hs. 76366	Hs.10756	Hs.184786	Hs.90363	Hs.16603	Hs.25338	Hs. 109631	Hs.81469	Hs 199263	Hs 184276	Uo 404025	78.104920	Hs.25318	Hs.21701	Hs.21835	Hs.21851	Hs.37331	Hs.21970	Hs.22191	Hs.86347	113.000 H	113.44660	8000 ME	HS.10403	HS.25554	Hs. 102398	Hs.60002	Hs. 118110	Hs.19388	Hs.182471	Hs.795	Hs.89584	Hs.103391	Hs.107767
				Q92934					AF015287		P53384	AEDOOGRO	AE036244	ATU30241																U77180	Q10589	U69263					
	50383	357278	277187	795729	784212	50905	46584	503682	782547	RIDAAB	431908	20000	249003	1/32/80	213651	25194	795909	811581	200656	415229	809357	32083	0100	950768	70500	504308	503889	E10429	271989	430465	811024	366100	346321	283919	22805	68049	503602

	Y 3.616914728	3.423526643	2.200811613	2.548477674	2 503578782	2 822841 51 SE	303011385 A 303011385	4:09200	0470C40R1.7	2.3583/2104	3.864443001	3.946919362	3.402288343	2.680337813	3,207656279	3.149946922	2.772266002	2.034548152	2.205884885	2.125370381	2.365137592	2.022114596	2.684104002	3 626119629	2 125588131	2 535033368	2.145689943	2 138790159	2.1001.001	2,440000,45	2.010501103	1,00000000 1,00000000000000000000000000	2.109504671	2.796822903	2.280277066	4.155484026	2.40229448	
	>-	>	- >-	- >	- >	-	>	- ;	>- ;	>-	>-	>-		>	>-	>	•		>-		>	· >	•		>	-			>	-				> -		>		
2011	,	- c	> C	. .	ი (o (0 (νΩ	τ	0	0	0	7	ı -	· c	o c	״ מ) -	٠ -	- c	o c	o c	o c	-	4 •	- c	ν τ	4 (ɔ (o ;	0	0	2	0	0	0	7	
	10000	HS.02801	Hs.29191	HS.108812	Hs.43579	Hs.155266	Hs.878	Hs.178803	Hs.214198	Hs.4783	Hs.26040	Hs.48353	He 187531	He 833	13.030	113,07£	TS.104054	HS.400/	115. 194000	HS. 104601	HS.01.70	TS. (90/20	HS.1/070	Hs.6763	Hs.75258	Hs.182885	Hs.71968	H3.8625	Hs.17757	Hs.17767	Hs.91539	Hs.8325	Hs.5321	Hs.84999	He 108884	He 26244	Hs.29748	
		400/00	P54851		P27824	M80629			X57398				80000014	ALU/ 9230	F05101	70814		P04844	100000	ACDU3007			297184		Q02874		P40189					P45984	P32391				L54057	
	ļ	298417	109863	261219	268178	271662	433350	758347	884673	511634	74304	41081 28663	3000	2593/4	(42132	452374	429434	588915	365041	755578	810089	415145	741891	561916	843075	250699	78041	796876	305253	810326	366481	590544	271568	00000	2003 12	70007	144849	

2:23738434	1.916128851	2.313508447	2.641193675	2 844128616	2 092157788	2 444505867	200000141.7	2.403704224	2.517955058	2.494062316	48,7751543	2.170955022	2 077872556	2 323828875	2 03008333	0.0000000000000000000000000000000000000	3.013414002	7,910985092	2.316840335	3,170442615	3,017470958	2.735955693	4,090131217	6.778384568	2,777735778	2.334851139	2.803697826	2.632583855	2.00452416	2.383114508	3 220922384	8.685362454	2 280283209	2,30020020	C7'C083'C' C	2.33588243	2.21186021
	>	-	>	 ·				>-		>	•			>	- ;	-		> -					>	- >	- >	- >	-				>	- >	- :	>-	:	>-	> -
•		> (7 -	_	-	7	0	-	. c		> •	- (7 (7 (0	0	7	0	-	· c	> 0	5 (> •	- (> •	- (- (⊃ (> ·	.	- - (o (0	Ψ-	0	0	0
	Hs.3352	Hs.107205	Hs.74861	Hs.167399	Hs.8037	Hs.144477	Hs. 8185	He 103857	13. 10003	HS.95	Hs.119687	Hs.155956	Hs.5796	Hs.22587	Hs.22604	Hs.86368	Hs.5807	He 107318	Uc 75016	18,73810	HS.25/8/	Hs.78518	Hs.2707	Hs.574	Hs.222920	Hs.76704	Hs.7727	Hs.143323	Hs.110454	Hs.9456	Hs.21331	Hs.110029	Hs.32405	Hs.167399	Hs.32690	Hs. 108646	Hs.181244
	Q92769		P53999		AF053455	P48729					U77494	P18440				•		AE440242	Ar 140242	5455	015427		P15170	P09467						AB010882		P30101			P51669		
	502669	143450	489664	50114	52339	745402	1000	09000	840783	814353	129387	66599	262804	46091	33611	1049033	104705	201.00	504451	857661	432564	290091	842825	433253	34442	83358	798765	838829	22769	897761	842767	511459	504959	610883	803164	430101	241774

Lable

	2.350305394	2.186855656	4.616335533	2.453855865	1.985016044	2.348168711	2.137896697	2.287920482	2,462533751	4.700023173	4.019876423	2.217559315	3,700869208	2.029414206	2.325808809	3.343449786	5,576121289	3.677555827	3,517869381	5.624864993	2,262688591	2,585751049	2.379977841	3,189629641	6.055094403	3.201202362	2.495953602	1,956200642	2.527104172	4.943113368	2.480623506	2.661128512	2 984016971	3 185334026	2,10000100 2,627144912	
			>-	>	· >	•		>	>-	•										>	•	>	· > -	•		>	- >-	· >	-	>	-		>	- >	- >	-
Table 4	γ		· c	, c	o c	o c) T	- c	o c	» -	- +	- r) c		D (*	, c	>	> 4	- c	o c	,	.	, (۷ ۵	o c	òè	o c	,) 1	- (> 0	74 (ν.	.	₹- (>
	Le 10822	115, 13066	HS.45000	18:0/03 11: 001644	HS.22/511	HS.100623	Hs.23/29	Hs.90011	HS. 10500	HS.42/00	Hs.6/03	Hs.22200	HS:022/3	HS.10553	HS. 72800	HS.2246	HS.99214	HS.30504	HS.10/325	HS.135253	HS.101282	HS.24880	HS.54548	Hs.93008	HS.123201	HS.112348	H3.8884/	73.10/310	HS.69235	Hs.20709	Hs.112806	Hs.5101	Hs.15929	Hs.170057	Hs.34744	Hs.58314
								P30520											Q13636				1	P13667			L10333	AF140242		AF053455		AF044588			AB005659	
		785840	823656	666451	1160618	1160723	669359	782406	840698	262834	731240	796268	951241	418318	593929	1493160	785693	44387	785701	785703	89453	\$9577	657985	769926	279720	744367	858450	34526	566466	812967	1032056	785707	785795	754594	625616	344505

	5.039759156	2.16152278	10.5075599	1.70969202	Y 9.890912597	3.198552765	1.7759635	2.121491378	2.27368959	3.92312174	3.869131289	3.471983515	2.193011543	3,306489043	2.164400204	3.133607704	4.894664753	3.040612467	3.715574198	9.751422112	1.921268611	1.779259587	2 173158443	2 550020812	2.00000000	2 430004073	Z.100801818 Z.17365514	+ 1000+101:0	1.9432518/1	4.007530168	3.187349576	2.612066723	3.328031619	10.50473501	4.516896053	2.520479029
4	>	>							>-		>-	>			>		>	· > -	>-	٠ >	•			>	-	>	-	;	>-				>		>-	>-
Table 4	0	0	0	-	0	· c) C	· c) C) -	· с	0	0			· c	o c	> C) C	o c) 1	- ()	o (o (ɔ +	0 (0	0	0	0	0	0	0	•	0
	Hs.6314	Hs. 167399	Hs. 106604	He 87773	He 243	U. EEABB	NS.33400	TS. 138300	HS.43410	HS. 105485	US 404474	13.1011/1 Le 58367	18.0000 Us 180481	10-1001-611	HS.47234	13.174104	15.33041	HS.205/70	13.02302	HS.23862	HS.125/	Hs.5025	Hs.43627	Hs.111974	Hs.97722	Hs.77318	Hs.198071	Hs.26835	Hs.104871	Hs.40183	Hs.26941	Hs. 191428	Hs.183738	Hs 226711	Hs 185057	Hs 75799
				D22604	742034	5																					Y10523	AB011156						AE077345	AE151854	
	752802	70707	35010	100.00	780447	378461	594693	118078	742695	489109	785694	647397	35821/	626861	283142	7313/6	810235	752625	796613	35147	1410444	796643	1469425	280845	742672	767180	462007	42415	788570	277226	620044	627288	807656	725E45	25575	4475650

	5.56681387	2.18831793	2.1503717	2.804189281	2.14547727	2.162566956	5,713333876	1.918106752	2.201755109	2.580124145	Y 36.7610458	2.285247047	Y 11.22005262	2.705540304	2.360222764	2.591058853	3.322357712	2.274035965	2.632601271	5.750453353	2.489180512	3.28315972	2.209733335	2.850205218	2.410730207	2.655162767	2.72439205	Y 3.131883412	2.260826527	1.601934384	1.934404037	2.143794124	2.24736993	1.834404697	2.058381722	
4					>	>	- >	-		>-	· >-	· > -	>-						>	•	> -	· > -				>-	>-	>-							>	
Table 4		. 0	: «	- د	, -	- •	4	- c	o c	o c) (r	, c) ल) C) C	o c	o c	o c	, ,	- ι ς			o. v	ı c	o a	ď	·c	0	o c	. 0	٥	0	•	. 0	. 0	,
	He 55999	He 112712	Us 74475	Us 71577	10.1.00	2010	Hs.104702	H5.174205	HS.87.330	18.900g	HS. 109500	HS.STOTE	13.7.7090 10.4.00688	HS. 100000	115.112000	HS./8524	HS./8855	H8./0000	H8.17.1000	HS.17409	110.402040	MS. 1032 12	HS.178902	H3. 191350	HE 41228	Ue 444376	Lo 81224	Hs 71	13.7.1 10.000	He 142258	Ha 20555	Le 28110	Le 28142	He 113919	Hs. 10315 He 408507	110, 1 < < < *
							P14866		1	AB015344			F31146											P52/88						040769	20.04					
	367.52	74950	4500B	593520	731198	785571	726846	898227	726858	898229	292531	510576	126455	841621	1048599	364324	357238	813730	448386	1323448	1323591	841140	838689	731290	742580	253240	255514	7 3330	14551	79887	04/07/	07706	01.2477	488301	20000	230000

2.197783747	3 44658892	2,734738559	2 178494559	2 64748408	2.31.40430	650505057	2.122885292	2.060538508	1.97866914	2,119413234	2.056720597	3.074863596	3.350500857	4 615169299	7 225454803	2010101011	2.153942484	2.957995893	2.772374961	2,122315201	2.766177189	2.817896489	2,350205777	3.621788593	1,515455525	1.859357831	2.246092139	2,197876049	2.255613448	2.904074201	3,54580558	2.215706287	2 547381633	2 699344742	3.462885465	2 773131654	
>	- >	-	>	-			> -			>	•	>	-	>	- >	> -	>-	>÷				>-	-	>	· >	-				>	-		>	- >	-		
•	5 (D (Э (0	0	0	•	· c	oc	o c	5 ¥	- ₹	- ‹	Э (o	9	-	ო	•	- с	c	o c	o c	o c		o c	. c	o c	oc	o c	o () v	- ,	,- ,	⊢ (27 (2
j	Hs.114005	Hs.108635	Hs.76719	Hs.107767	Hs.170226	Hs.111742	Us 75868	13.13000	13.75000	HS.12460	Hs.21560	Hs.111334	HS.25220	Hs.12648	Hs.176588	Hs.11663	Hs.5811	He 28980	195058	18.133030	100111111111111111111111111111111111111	HS.27902	TS.4388	HS.4105	HS.183900	HS 14877	HS. 13011	18.88.40 1.004.50	18.88.50 1.004.11	78.100t :	HS. JSB/O	Hs.22891	HS.182865	Hs.3804	Hs.3164	Hs. 169531	Hs.82758
									P0723/			,	AJ007583			AF120265					P08621									AF151830				AF131760	P80303		P09669
	201931	272694	50175	773138	342685	900704	10,070	813187	769542	454459	30221	461327	470092	205497	160532	446374	4 4 5 3 3 3	014232	133341	178805	206370	206779	714437	725405	725364	416479	703732	814340	814427	382451	451707	267666	770346	770766	815794	190692	278531

Fable 4

•	V	۲
	9	٥
	Z	
•	C	į
1	L	

2 417522719	3.909102421	1 988080662	2 709889101	4 03330346	0.0000000000000000000000000000000000000	47.59759092	1,985030467	2.742779543	3 112756609	4 306040697	2.571835534	2 612027762	2,717270252	4.428400301	3.091604311	1 955033681	2 424470787	4 028053852	4.52035300£ o 663758368	4.9848EE008	4.804030000	Z.33004Z 193	2.115//8208	2.547708743	3.029128471	2.53364466	1.896634567	2.758995512	2.250509711	4.712373478	2 003829407	2.064442855	2 28627603	2 158084727	2.100004121	3 434374565	0.40706.000
						> -	>	- >	-			>	- >	- >	- >	-		>-		-	>-			>-	· > -	•								>	>-	>	-
	0 (> (o •	0	0	c	> <	o 'c	.	•	,	- (o ,	(-	o .	τ	0	-	0	.	0	•		4 (> 0	> (> (- (> (.	ъ,	-	0	0	0
	Hs.193516	Hs. 10590	Hs.14570	Hs.29724	He 28242	10.2521	HS./5021	Hs,78532	Hs.30029	Hs.118739	Hs.172285	Hs.75866	Hs.30029	Hs.12921	Hs.110379	Hs.48026	Hs.23296	Hs.6544	Hs.172285	Hs.106106	Hs.28555	Hs.184430	Le 82171	115.0217	85.108B	H3.86428	Hs.7579	Hs.77823	Hs.76698	Hs.13775	Hs.124979	Hs.23193	Hs.61790	Hs.193535	Hs.227459	Hs.59821	Hs.59773
	AF082283										P29728							AF129756	P29728											•							
	703916	825697	745495	150003	707770	101118	294578	191107	428184	826194	155806	269300	220069	344073	739450	278963	827171	878231	136508	15228B	770558	21000g	C68479	49249	815563	815740	878550	815800	302955	825223	192401	130103	471835	392366	381036	381058	281052

1.920065227	2.280622031	2.58430259	2,022597387	2.91853311	10 27763878	0.2000112:01	2.171841103	1.78820963	7.212875144	2.784189011	2.558354952	3.071031432	2,099235141	3.968694292	2.165728392	2.071233978	2.164902736	3.043012253	2.92827111	2.505378218	2.052946552	1.8262149	3.85232572	2.286962822	2.281244621	3.287489694	1.984985885	2.824422007	3,417584826	2.753971191	Y 5.219315985	Y 5.141479659	3 087022453	15 10707391	7306773827	10001
>	>	· >	•				>										>	-	>	-	>	- >	- >	-					>					>	- >	-
c	· c	o c		.	Э,	0	0	0		o c			> C	o c	o c	.		5 (>	> •	- (o •	> v	- c	.	D <u>C</u>	o c		o ç	> 0	> 0	D 14	n (-	- (5
11-447804	TS. 11/094	H8.13/032	HS,12/310	Hs.87432	Hs.70258	Hs.55968	Hs.17667	We A6693	Hs.20025	HS.30314	167077.51	HS.159/6	HS.100404	HS.10239	70761.SH	HS,21/39	Hs.23490	HS.23445	Hs.32501	Hs.60684	Hs.63931	Hs.40905	Hs.92660	HS.25726	HS.105189	Hs.8325	HS.24/55	HS.102340	HS.44131	HS. / 393	Hs.168487	Hs.180703	Hs.76353	Hs.26815	Hs.120910	Hs.181781
											122343			AJ010842												P45984		U17032					P05154			014610
	190291	392399	262542	814988	825615	460002	500145	0000	825554	701256	825715	460164	825719	624785	£22736	701371	131099	131308	175533	360724	132326	360732	175767	360743	824329	26185	487488	824354	32134	490789	32621	824376	129032	190305	392630	190321

	2.167218335	9.747070124	2.183023853	1.974715689	2.73247753	2.129567627	5.205034548	3,173116318	7,233720619	2.872432682	1,929000998	2.59379817	4,053709946	13.31239619	2.073794505	2.117819878	2.260469148	2.194858016	2,004985519	2.038013743	Y 3.059276558	1.776820509	2.685228381	1,956656655	2.281538129	2.751873534	2.975457548	2.13778556	3.051829847	3.859298534	2.250173863	2.558932503	8.923942045	1.880255718	2.909349846	
	>-		> -			>	- >	- >	-	>	-			>	•			>	· >	-	>	-				>	•				>	-				
Table 4	•	· C) C	· +	- 'c	.	-	- ())	o (- (N (- (o 0	> 0	> (۷ -	- c	o c) - -	- c	o •	4 C	.	o c	>	, c	,	.	> 4	- c	.	o i	n	> 0	>
	He 32539	110.04000	18.4550	H8.22005	Hs.23/65	Hs.26339	Hs.179516	Hs.91139	Hs.11923	Hs.22301	Hs.41287	Hs.79516	Hs.88269	Hs.6650	Hs.41371	HS.27763	Hs.183302	Hs,227622	Hs.10522/	Hs.82689	Hs.13201	Hs.81800	Hs.100350	Hs.3454	Hs.26089	HS.54470	Hs.107014	Hs.1011/4	Hs.6000	Hs.186810	Hs.12770	Hs.125283	Hs.105088	Hs.2178	Hs.3239	Hs.8852
							AF151867	P43005				P80723	Q14330	U35246			Q00537			P14625		P13611	P46379				AC003108				AC005154					
	1000	180325	392847	288999	265103	288959	858152	825742	825822	825857	826072	701690	461509	859832	826109	489539	700500	745174	745192	26519	455256	122321	24382	1473146	1630942	1558108	155838	50764	788273	436455	51773	1461528	701115	461692	878461	32864

	2,548079636	2.119043227	3.698739854	1,903752662	2.101577716	2.649371499	2.308050376	8.13221261	2.275535006	ሃ 2.61880073 ¹	4.273288431	1.81314234	2.693681244	2.457307548	2.935189718	2.368315564	2.483905988	4.347087428	2.841556723	1.852854413	3.291655308	2.951386876	2.211170355	2,577960446	1.877753202	2.715826342	2.107176398	4:027275842	2.695599136	3.675556987	2.53343477	2.625350357	2.323464669	2.532324381	
Table 4	>	-								>-			>-	>-	· >-	· >-	>-	· >-			>-		>	>-				>	•	>-	· >-	•			
Ta	Hs.184786	Hs.16206	Hs.84009	Hs.12260/ 0	Hs.25999	Hs.16734/ 0	HS.5845	Hs.20644	HS.21948	HS.49303	Hs.228/11	•	HS./UDGD	HS.5825	Hs.116328	WS.21929	HS.179902	•	Hs.8235	HS.8217.1		HS.154737		HS.192130	TS: 0452	H\$.25120	HS.195507	Hs.180952				Hs.153951		D	Hs.16390
	631031	1473796	1631634	1456701	1632141	759181	769184	1573108	49796	1291971	454317 P25311	745283	486641	489533	.743699	33821	884430	562318	266500	110298	814222	1457276	1580874	868188	854122	39766	461933	887606	1655427	435750	1420830	1635384	490813	1584287	491465

6.	1.929884946	3,30004023	2 40726344	2.13/2001	7 454982598	2.404004040	2.5/425504	5.2/8301450 0.2/8301450	2.055239174	2.420707805	1.9749694	3.781790780	4.90564.004	1.895040040	2.737257512	2.421305481	2.395787561	1.997028417	1.877309495	7.044854893	2.019793329	2.068057812	2.072859016	2.296191991	3.051432775	2.567650445	2.245666029	2.288002695	2.030950788	2,355673529	15.85417742	2.964973372	2,269889506	2.314283606	3 112257268	0.1
				:	>-					>	>	:	> -				>	>-	≻.		>	>				>					>-	>	>	-		
Table 4	٥	0	o	0	-	0	0	0	0	0	0	τ-	₹	0	0	0	*	0			0	· c	· c	· c	o 0	· - -	0	_) <u>(</u>) 4-	- c	> •		- (o
	Hs.102824	Hs.90093	Hs.16936	Hs.29383	Hs.30085	Hs.25320	Hs.3346	Hs.99769	Hs.178011	Hs.16085	Hs.69388	Hs.14368	Hs.18272	Hs.26136	Hs.12112	Hs.151536	Hs.79672	Hs.27842	He 27337	He 128685	Hs 12183	113.12.130	13.11000	115.405072	Hs. 10307.2 Hs. 117366	Hs 26267	He 93002	He 171965	Uc 22208	Us 78224	NS./0221	1300	HS.110509	HS.1/38/8	H\$.12245	Hs.124027
	P07226	P34932																			AB003152	AD023132					00000	2000	٠							P49903
	970880	856567	26736	590310	462237	1048746	239568	763428	235479	50075	743724	1603583	1605178	1607018	502198	4502064	744807	502730	50073	502774	25455	843/1	858183	859418	855236	400003	2 /0/0	140004	14/020	1555584	1468070	1558642	1604703	1610408	22722	41295

			Table 4			
00707		Hs 114404	0	> -		2.210350126
48402	707000	140000	c	>-		2,705500204
26366	101054	13,110023		-		1.99085508
347282	Q13330	38.00030	4 0		>	2.106123503
449275		0000	o •	>		2,232801374
25389	P11166	H8.158902	- c	- >		2,131133975
1526826		HS.2733	, c	-		2 024591687
1637313		Hs.164978	.	>		2 167897217
1536215		Hs.6079	0	- ;		2 474964070
878152		Hs.31819	0	>-		6 100 100 100 0
200483		Hs.5415	0			7.465568759
200400	200730	He 114366	0	>-		3.600875992
20400	000101	13,114000		· >-		2,307453184
3240/	F15/35	113,13017		>		2,912566176
201282		HS.25264	.	- >		3 788319106
		11 440120	_	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

S
0
酉
S
⊱

GenBank C Accession Ni Number	subtracted Cluster libraries (out Sec Number of six) Pre- where clone was found	Secretion Pradicted?	Known Secretion?	Expression Ratio (Cancer / Normal)
D84212 Hs 199147				2.427801567
_				2.025859631
	0			3.0654556
_	. 2			2.254955394
Hs.220502	ო			2.485657239
Hs.108623	•	>	>-	2.254109702
Hs.18376	0	>		2.329981397
Hs.99816	0			2.2813714
P04626 Hs.173664	0	>-		17.43821083
P08476 Hs.197458	0		>	7.196200569
P28288 Hs.76781	~			2.321340228
_	2			3.283821544
L07597 Hs.149957	0			2.216727585
Hs, 106019	2			2.551356737
Hs.24512	0	>		3.165698947
A27270 Hs.21922	2	>		2.973040192
AF060228 Hs.17466	ĸ			2.823056005
X95190 Hs.9795	0			8.263325493
U02680 Hs.82643	0			2.237531231
P25816 Hs.2962	2			9.706589076
P24390 Hs.78040	0	>		2.377505177
P38484 Hs.177559	-			2.215481739
P05323 Hs.91773	-			2.41230346
Hs.16769				2.674878439
Hs.173203	0	>-		2.115057802
Hs.149846		>-		2.123339709

٠	•	
	¢	۰
•	ć	
	٥	ς
ì	-	

823851	AF053944	Hs.118397	0			2.585850678
788285		Hs.76252	0			3.273655548
783729	P04626	Hs.173664	0			8.820457665
825296	Q14746	Hs.82399	0	>-		2.115663007
123614		Hs.19002	0			2.029006184
714106		Hs.77274	-	>-	>-	5.142918092
503617	Q07325	Hs.77367	0	> -	>	5.174834809
202919		Hs. 102824	0			2.183261587
840158	P19367	Hs.118625	0			2.269558258
244147	P49241	Hs.821	ო			4.328724892
140301		Hs.28792	-	>-		9.319294923
265694			0	>-		3.38742836
795803		Hs.109706	- -			3.524146834
782766	AF155110	Hs.5624	~			2.505042663
180520	Q05086	Hs.180686	-			2.029862646
809944	015027	Hs.5716	0			2.228780739
292996	Q04917	Hs.75544	0			2.677965848
204299	P35244	Hs.1608	-			1.903217029
841641	P24385	Hs.82932	0	> -		1.875255721
701751	L12579	Hs. 147049	0			2.510985726
144786	P21810	Hs.821	ო		>	8.672283043
782513		Hs.21205	0	>		3.300128419
120881	Q13636	Hs.107325	-			11.28086516
52933	U41060	Hs. 79136	Ŋ	>-		7.237847476
276449	P08236	Hs.198902	5	>		2.028745155
898262	P22314	Hs.2055	O		÷	2.603222403
66594	AF063605	Hs.11000	O			2.391948818
321706		Hs.6189	0	>		2.36504105
141314		Hs.113029	0			2.014940448
322723		Hs.93231	0	> -		2.463938198
363590		Hs.6111	0			4.772362616
823691	L49506	Hs.79069	0			2.074299481
22918	U86602	Hs.74407	~	•		2.146418589
214133	P25440	Hs.75243	-			2.421687088
150314	AF035293	Hs.12540	0			2,497015884

175103		Hs.57652	0	>		4.581620102
364329		Hs.23598	0			2.528038855
81129		Hs.146550	-	>		2.395299249
782497		Hs.6349	0			2.17451996
840687	P15941	Hs.89603	•	>-	>	6.636966636
839991		Hs.179573	2	>	>	2.500812699
154654		Hs.3321	0			2.637109328
293901	,	Hs.3459	0			2.318189784
366971	P11388	Hs.203779	9			3.237086105
359119	P33552	Hs.83758	0			2.027642653
809627		Hs.155017	-			2.093409846
376516		Hs.62354	0			2.656365873
813279	P13798	Hs.78223	0			2.450777507
768562	D76444	Hs.155968	0	>-		2.188753814
813149		Hs.2178	5			2.955485861
243741	Y12653	Hs.44532	0		>	2.503444839
823859	P29033	Hs.81795	0			4.146147805
135083	P30101	Hs.110029	0	>-		2,337908937
843159		Hs.21704	_			2.165319235
588500	P54886	Hs.114366	-	> -		2.575605867
773215		Hs.198191	0			2.654906717
841370	P00505	Hs.170197	0			2.549461209
814054		Hs.158282	0			2.717681152
130057		Hs.23057	2	> -		3.705692438
132140		Hs.93961	0	>		2.33461862
340630	P41279	Hs.248	0	>-		2.025753154
840942	P04232	Hs.814	0			2.974661416
814306		Hs.2384	_			3.705195035
823590	U14550	Hs.107573	-	>		2.685700585
949914	P07814	Hs.196458	0			2.262764708
897594	L37368	Hs.75104				1.909456672
24884	Q12860	Hs.143434	0	> -		2.382206005
898286	P06493	Hs.184572	9			2.205416845
470216	U90236	Hs.22564	0			2.523139252
123255	P15923	Hs.4963	3			3.920050882

Sable 5

358468	AF151881	Hs.96334	-			4.409376309
787857	Q13190	Hs.154546	0			2.107276009
122159	P02461	Hs.119571	0	> -		2.626998082
137456		Hs.23352	7			1.998722997
771220	Q04206	Hs.75569	0			2.259525621
246549	P49721	Hs.1390	- -			3.483192179
27104		Hs.76986	~			2.452394269
810124	Q15102	Hs.6793	0			2.089545188
742143	P06127	Hs.58685	0			2.384326866
138991		Hs.80988	7			2.601686854
363058	P51793	Hs.199250	0			3.475461842
838568	P09669	Hs.74649	က			4.680979055
897910	D13665	Hs.136348	4			7.786768616
897781	P05787	Hs.73742	-	>		2.524102086
814378	U78095	Hs.31439	ო	>	>	2.916004898
814595	Q92503	Hs.75871	ო			2.769941812
77805	P35606	Hs.75724	0			2.160461219
824426	Q13442	Hs.8653	, -			1.924632039
120015	U18297	Hs.35140	0	>		2.197386156
139009	P02751	Hs.118162	-	>	> -	14.05447168
547247	P52823	Hs.197382	-	>-	>-	2.679712095
769921	000762	Hs.93002	0	>-		2.915203239
767851	P35555	Hs.750	7			2,423023857
324210	U75283	Hs.24447	0	>-		2,481691223
897822	P43405	Hs.74101	0			2.580637691
711918		Hs.79033	0	>-		1.797649979
122077	AF070626	Hs.93832	-	>		1.910710364
877613	Q14203	Hs.74617	2	>-		2.102512183
789091	P28001	Hs.28777	0	>-		3.929145419
292882	AB015344	Hs.227940	0			2.248206996
789147	P09104	Hs.196837	2			2.694636342
82976		Hs.170218	7	> -		3,153749329
109316	P01011	Hs.107325	0	>	> -	3.026816153
811582		Hs.182793	τ-	> -		2.886560216
130835		Hs.96125	τ-	>		2.716301801

Table :

- -

897497	U82759	Hs.127428	0			4,480521137
813673	L24521	Hs.89525	0	>-		3.547496638
810017	Q03405	Hs.179657	0		•	2.148687971
30885	D63879	Hs.116875	τ-	>-	•	2.318074854
47647		Hs.74566	2			3.123872033
813841		Hs.173736	-		>-	3.162316341
810612	P31949	Hs.150580	4			1.872739861
126320	P14923	Hs.2340	0			3.219193983
897531	P02751	Hs.82914	0		>	4.7419311
725454	P33552	Hs.83758	0			2.733638213
26617	Q13740	Hs.10247	-	>-	>	3.613437384
843049	P33991	Hs.154443	0			3.13011803
549728	P17655	Hs.76288	4			2.179101678
48285		Hs.74427	0			2.338755332
511521	P27824	Hs.155560	D.	> -		2.337055315
589751	AF039103	Hs.90753	0			1.944791413
785816	U10324	Hs.195568	0			2.203043992
840158	P19367	Hs.118625	0			2.275624018
251685	P55287	Hs.75929	က			3.246335514
713145	P16070	Hs.169610		>		2.580466598
823851	AF053944	Hs.118397	0			2.504882906
138139	P05114	Hs.172207	- -			2.314394117
234617		Hs.24908	•			2.496763494
212542		Hs.21851	2			2.801015946
491113	P55287	Hs.75929	ო			2.277606061
153025	P15018	Hs.2250	0			2.29268235
51447	P08637	Hs.763	τ-	>		2.747348104
809598	P01919	Hs.73932	0			1.879722196
810331	L42379	Hs.71816	വ	>	>	2.621926511
42558	P50440	Hs.75335	0			1.869338646
120138		Hs.16940	0			3.809206941
49404	Q93075	Hs.195183	0			2.655563626
950367		Hs.7857	ო			2.633060694
49117	D86969	Hs.82292	0			2.798751607
840691	P42224	Hs.21486	0			2.413260809

[able

4
j
5
-

D86957	Hs.80712				3.551540043
282380 D04895	Hs 113368	- น			1 862826372
9	Hs. 179808	n 0			5.745453353
	Hs.105509	0			1.998170707
	Hs.31305	0			2.248108802
P06576	Hs.14838	0			2.331148935
L26245	Hs.1578	0			2.388538702
P15154	Hs.173737	4			2.582435776
	Hs.8841	0	>-		2.155581341
	Hs.110857	-			2.367983869
AF042001	Hs.93005	0			2.19581224
	Hs.77961	O	>-		2.157454395
Q13177	Hs.30692	-			2.684794399
P36405	Hs.182215	(1			2.227457434
	Hs.198564	0			12.33525885
	Hs.6220	0	· > -		2.24015657
U29656	Hs.81687	0			3.79816462
	Hs.30098	0	> -		2.92605978
	Hs.107767	0			2.253440363
	Hs.6786	0			2.350189786
AL049946	Hs.72157	71	> -	>	4.069375925
	Hs.41716	61			2.452994013
	Hs.23648	0	>-		1.802364802
AF097025	Hs.194692	-			2.059163645
	Hs.181244	0	> -		2.242771948
P28799	Hs.98167	-	≻ .		2.43848623
P07093	Hs.21858	0			2.60828432
P49798	Hs.13251	0			3.349779772
U70310	Hs.8047	0	>		2.236745435
P49454	Hs.77204	8			2.493040764
AF151829	Hs.7854	S.	>-		2.721592868
	Hs.8859	0	>		2.674618074
	Hs.108981	0	> -		2.063490175
	Hs.42927	co.	>		3.949583556

5
9
3
ૃ

3.911734751	7.044175616	2.175502274	2.170776896	2.587153739	2,393529214	2.255691126	2.023587296	1.930205349	1.896309847	2.455219283	1.955543471	3.464426608	2.626990002	2,489189205	8.799805633	2.398126973	2.834887283	2.00699186	2.459377472	2.569263169	3.92039864	3.356384801	1.928108505	2.049717106	1.865630632	2.049853165	2.141711971	3.824970262	3.795566455	2.612878159	3.561923378	2.066705325	4.081787334	2.038668092
										>				>																-				
	> -				> -		>-						>	>					> -				> -							٠	>-	>	>-	
2	4	0	0	0	4	0	-	0	~	7	ო	0	υ	0	-	0	-	0	0	0	7	2	0	2		0	0	0	0	0		0	-	0
Hs.149923	Hs.69771	Hs.26971	Hs.5944	Hs.23740	Hs.47343	Hs.18778	Hs,52515	Hs.74441	Hs.184786	Hs.25338	Hs.40098	Hs.109631	Hs.73817	Hs.159626	Hs.184276	Hs.104925	Hs.25318	Hs.184043	Hs.21701	Hs.21835	Hs.21851	Hs.74070	Hs.99367	Hs.22191	Hs.17118	Hs.107213	Hs.183738	Hs.182471	Hs.795	Hs.107767	Hs.29191	Hs.15386	Hs.11500	Hs. 100299
P17861	P00751									AF015287			P16619	AF062649	AF036241							P19012					AB008430				P54851			P49916
417867	741877	52228	71863	50383	357278	811038	809857	271045	50905	782547	324951	810446	153355	781089	773286	213651	25194	276871	795909	811581	200856	342008	809503	32083	770983	304858	842918	346321	283919	503602	109863	51218	772880	502977

Pable 5

ì	1	7
	¢	
1	ć	5
	C	
-	-	

856447	P13284	Hs.14623	τ-	>-		2.482412531
842839		Hs.99969	က			2.111870651
838636	P51148	Hs.214190	0			2.211243368
840783		Hs.103657	-	>		2.200499247
710997		Hs.55189	0	>		2.134155441
66599	P18440	Hs.155956	-			32.08001083
78921		Hs.10760	0			11.81094692
1020212		Hs.179987	O			2.223711198
725335	Q13561	Hs.84153	0			2.005721153
503579	U59111	Hs. 169993	0		> -	4.711618278
234329		Hs.5729	Ö			2.197408803
884822	L24804	Hs.75839	-			2.000176946
625234	297056	Hs.227342	-	>-		2.22612002
33611		Hs.22604	0	>-		1.87821767
491405		Hs.5807	(7			2.529167659
132307		Hs.23823	0			2.404762883
504461	AF140242	Hs. 107318	0	> -		3.634092645
857661	Q13435	Hs.75916	.			2.016156631
124447	•	Hs.100747	0			2.077486118
291880	P55001	Hs.83551	7		>	3.137421901
842825	P15170	Hs.2707	0			2.570742106
433253	P09467	Hs.574	-	> -		4.115649183
51700		Hs.5740	0	>-		2.997274448
855745	P01869	Hs.140	9			7.50464155
34442		Hs.22920	0	>		11.63801197
83358		Hs.76704	-	> -		3.123865219
796765		Hs.7727	0	>		2.314338304
838829		Hs.143323	0			2.791400022
840967		Hs.7773	0			2.621386749
897761	AB010882	Hs.9456	_			2.597385966
841067	P25787	Hs.21321	0			2.199304439
842767		Hs.21331	~			2.170525715
951305		Hs.21400	0	> -		1.886051707
788205		Hs.83484	0	>		1.90788516
767706		Hs.5944	0	>		2.854837696

3.577471317	2,142705584	2.546518949	2.209710611	1.941001443	2.282815101	5.219450872	3.471338457	11.01676306	2.133586729	2.321790706	2.988586021	1.968854886	2.585873364	2.625451281	3.652119711	2.076342767	3.525203847	2.171687768	2.549281546	2.061115575	6.17728235	5.096969323	6.918014303	6.706640702	3.526050572	2.882952595	2.457182247	2.296228212	2.507540414	2.47672456	2.906181278	4.029441196	2 2420220E
				>			>	>-					>	>		>										>	>-		>			>	>
-	0	0	0	0	-	0	0	_	0	0	-		0	0	-	0	÷	ë	7	0	က	0	-	0	0	0	0	0	0	0	0	0	ć
Hs.114599	Hs.48448	Hs.32690	Hs.108675	Hs.85335	Hs.19822	Hs.43658	Hs.6763	Hs.73980	Hs.198225	Hs.7943	Hs.90011	Hs.106919	Hs.15356	Hs.42768	Hs.6763	Hs.15898	Hs.22260	Hs.62273	Hs.4082	Hs.72865	Hs.2248	Hs.30504	Hs.107325	Hs.136253	Hs.173059	Hs.101282	Hs.59548	Hs.33719	Hs.25732	Hs.104106	Hs.79768	Hs.107318	10000
		P51669	AF117615						P30837	AB006572	P30520								AF074002				Q13636								P38919	AF140242	
1472775	785537	593164	730346	595238	785840	823656	666451	1409509	197657	788309	782406	788445	840698	262834	731240	730942	796266	951241	197903	593929	1493160	44387	785701	785703	754525	39453	357985	731019	838744	665148	306358	34526	001001

able 5

WO 01/46697

	2.083882836		Y 3.096289161	7 4.210404645	Y 2.359048117	Y 6.389393318	2.049195158	2.085598459	Y 6.12862391	Y 2.895115616	γ 3.722247204	25.27908105	2.555134442	Y 13.40428469	3.694727266	2.354430911	Y 2.800028673	2.107048906	15.85607558	1.818419488	2.529281069	γ 3.069827692	2.035800011	3.512553417	2.026599219	Y 2.191154819	2.929595413	Υ 2.502577374	Y 5.826571388	γ 2.311642542	γ 1.831227203	2.597173048	2.010466887	γ 8.224932097	Y 2.158427464
Table 5	2	o.	0		0	0	0	0	0	0	0	0	0		0	2	0	0	τ-	0	0	0	~	0	0	0	_	0	0	0	τ		←	0	0
	Hs.15929	Hs:170057	Hs.25933	Hs.80120	Hs.214507	Hs.47026	Hs.58241	Hs.28274	Hs.58314	Hs.6314	Hs.48730	Hs.106604	Hs.72916	Hs.313	Hs.55468	Hs.23060	Hs.155040	Hs.10098	Hs.3972	Hs.12581	Hs.3657	Hs.101174	Hs.161489	Hs.47188	Hs.180481	Hs. 174104	Hs.73239	Hs.106552	Hs.16869	Hs.206778	Hs. 169610	Hs.93847	Hs.12680	Hs.82985	Hs.23882
				Q10472							AF092051		P10071	P10451			AF041259				P08397							AC004891			P16070				
	785795	754594	754628	431397	344958	840726	344959	309496	344505	752802	753411	35010	767495	378461	594693	897542	147834	796656	785694	53122	788377	647397	951242	281934	626861	731376	594684	27404	786609	752625	328868	812098	796505	796613	35147

	3.238743847	3.395384931	1.957142508	2.824319215	1.946145144	2.57166356	2.852511374	4.932694459	1.940988504	2.319368826	2.072920407	3.313211968	3.155416381	2.867392162	2.427423479	2.344280305	2.282349596	2.205534492	2.111550132	2.355491896	2.502335195	3.319289442	2.871425628	2.149445394	1.871954952	3.055592545	2.35134451	2.295520654	2.530734718	30.7673517	9.399229653	2.047562145	4.57986836	2.287691925	5.277733083
																														>	>				
	>-	>	≻			> -			>				>		>			>								>-				> -	> -				
Table 5	0	0	5	ν-	o.	4	0	0	0	0	0	0	0	0	-	0	0	2	7	0	-	0	-	~	τ-	-	0	0	0	က	က	0	0	7	0
	Hs.23892	Hs.103316	Hs.146228	Hs.5025	Hs.43627	Hs.23703	Hs.77318	Hs.40183	Hs.40334	Hs.29269	Hs.90093	Hs.26941	Hs.183738	Hs.76277	Hs.33033	Hs,81915	Hs.24341	Hs.24375	Hs.5321	Hs.112712	Hs.71475	Hs.98186	Hs.8850	Hs.1390	Hs.9398	Hs.174203	Hs.9589	Hs,184779	Hs.30464	Hs.91011	Hs.100686	Hs.112606	Hs.101590	Hs.79516	Hs.76550
			P06899			Q16739					P34932								P32391					P49721			AB015344							P80723	
	35484	768432	214008	796643	1469425	593431	767180	277226	261852	285537	773673	629944	897656	757143	812277	1476065	626001	502200	593251	743589	593520	730871	627039	122241	767289	898227	898229	811121	773345	510578	841621	1048599	594600	843098	813730

	7.348630418	1.844735105	2.408211799	4.541577397	2.190625295	4.337235896	2.18816765	3.011997753	3.234461234	2.224379074	2.203638713	3.654745548	2.204176679	2.687766812	Y 1.758080703	2.803255156	2.695892624	2.560443458	1.986650657	1.701172918	2.581052358	3.406937962	1.883404751	2.378684108	5.60201087	1.927468381	2.562714593	2.181135028	3.886867382	2.932370253	2.553760464	2.144168419	9.738950199	1.910511922	1.866294567
			> -	>			>		>	>-	>-		>		>				>	≻	>			>		>	>		>	>			>		
Table 5	0	0	2	0	0	0	0	0	0	0	0	0	Υ-	0	0	0	₩	0	2	0	0	0	0	0	0	-	0	0	-	 -	0	0	0	0	0
	Hs.34806	Hs.26155	Hs.183212	Hs.179902	Hs.35304	Hs.203411	Hs.170144	Hs.41228	Hs.141376	Hs.30120	Hs.81234	Hs.102465	Hs.83724	Hs.109694	Hs.71	Hs.20555	Hs.26142		Hs.115285	Hs.114005	Hs.108636	Hs.76719	Hs.23552	Hs.107767	Hs.82772	Hs.84628	Hs.55902	Hs.180577	Hs.182778	Hs.25220	Hs.6831	Hs.12646	Hs.176588	Hs.90421	Hs.7274
																		D21239	P10515							D86983		P28799		AJ007583	AF020762				
	754126	29349	841140	838689	951303	296556	787865	253246	253314	280763	773335	257608	626793	502546	1456160	950778	488301	139771	124252	201931	272694	50175	788087	773138	796711	345601	666707	755762	1472689	470092	686552	205497	160532	413299	235923

9.179944406	1.776947353	2.005985977	2.331270168	1.9015191	Y 4.039662547	2.527808441	2.537478355	2.501335077	4.042278487	4,845425096	2.595842924	2.667107888	1.982668454	1.970221983	2.01893403	3.929647502	3.495073772	2.742318823	2.53350959	2.64314351	1.896533006	3.818336804	2.089036722	3.305886836	2.2623821	6.096273557	1.97297035	2.185048218	2.037654742	4.080109252	3.176403157	2.251948357	2.674807092
> -	>	· ≻	>-		>			>-	>-											>						>		> -	>	>			>-
w c	> 7	-	ო	4	0	•	-	0	0	0	0	0		0	0	2	7	0	თ	0	0	0		0	0	ო	2		0	4	•	-	0
Hs.11663	Hs.146233	Hs.5811	Hs.28980	Hs.112062	Hs.81800	Hs.8850	Hs.135056	Hs.183986	Hs.14977	Hs.125056	Hs.18341	Hs.22891	Hs.6113	Hs.87507	Hs.95464	Hs.169531	Hs.82758	Hs.182591	Hs.40098	Hs.185771	Hs.48306	Hs.10590	Hs.14570	Hs.29724	Hs.21371	Hs.41271	Hs.180909	Hs.15791	Hs.30029	Hs.23703	Hs.118739	Hs.172285	Hs.97101
AF120265					P13611						AF151830						P09669	AF081195			Q01844				L13858		Q06830		•	Q16739		P29728	
416374 502286	505904	814232	133341	454232	489631	489755	178805	725364	416479	361653	382451	267666	854450	684277	854570	190692	278531	725707	324513	814485	814618	825697	745495	150003	281846	281908	878259	826256	428184	739123	826194	155806	685516

739450		Hs.110379	0	>-	4.198712415
279963		Hs.48026	0	>-	4.556751707
773495		Hs.5378	0	>-	2.43951841
136508	P29728	Hs.172285	•		2.732022126
152289		Hs.106106	0		3.339851023
270558		Hs.28555	τ -	>	11.79033043
824937		Hs.59498	-		2.4385121
397488		Hs.203492	2	>-	1.745148384
280544	Q10472	Hs.80120	-	>-	1.848010673
878253		Hs.76682	0	>-	2.076987158
815683		Hs.194688	_		1.953009406
878511		Hs.27309	0	>	3.333054614
878550		Hs.7579	0		2.448566993
302955		Hs.76698	0		2.324332686
435447		Hs.26910	0	>-	2.135627259
884531		Hs.11463	0		2.111952056
825356		Hs.156906	-		2.274214236
277185		Hs.25063	-	>	2.159732802
746064		Hs. 196437	0		2.043566447
392366		Hs.193535	-		2.283951884
384634		Hs.186831	0	>-	1.953742682
381062		Hs.59773	0	>-	3.653077372
392399		Hs.137832	0	>-	1.9323428
262542		Hs.127310	0	>-	2.808434885
271865	Q10472	Hs.80120	τ-	· > -	2.495192148
460002		Hs.55968	0		2.800544082
825715	122343	Hs.226251	0		1.845174839
460164		Hs.15978	0		2.521642998
825719		Hs.165404	0		2.1100577
624785	AJ010842	Hs.18259	0		2.148369345
825736		Hs.192552	0		3.247200438
701371		Hs.21739	0		2.295038491
175533		Hs.32501	0		2.64401046
132326		Hs.63931	-		2.257048844
360743		Hs.25726	÷	>-	5.017012153

Pable 5

	2.104246519	2.155585592	2.197423368	2.567857202	2.777826229	4.552322733	2.447351821	Y 4.010499859	2.152222452	6.327110579	2.339861801	2.309739207	10.39124428	2.313427714	2.069789066	2.199558715	3.648585262	6.673858906	2.336390214	2.229467826	5,588193369	2.536729784	2.249627264	Y 6.801922076	3.937395453	3.559098289	2.024821823	2.455647721	1.948348145	2.816058276	2.461377861	2.922288132	2.536538578	2.751817314	2.100871545
	>					>-				>	>-	> -			>-	>-		>-		>				>-											
Table 5	0	0	0	0	0	0	0	0	0	0	0	ó	0	, T.	့ဝ	0	0	0	,	0	0	-		0	0	7	0	-	0	-	0	0	0	O	O
	Hs.204524	Hs.8325	Hs.24758	Hs.102548	Hs.44131	Hs.7393	Hs.168487	Hs.180703	Hs.26815	Hs.120910	Hs.181781	Hs.32539	Hs.43307	Hs.23765	Hs.179516	Hs.41267	Hs.6650	Hs.41371	Hs.227622	Hs.106227	Hs.57572	Hs.13201	Hs.6994	Hs.81800	Hs.39957	Hs.11817	Hs.12429	Hs.30081	Hs.29439	Hs.26625	Hs.3454	Hs.795	Hs.31257	Hs.21862	Hs.54470
		P45984		U17032							014610				AF151867		U35246							P13611				Q15763						AB011159	
	824201	26185	487499	824354	32134	490789	32621	824376	190305	392630	190321	190325	392647	265103	858152	826072	859832	826109	745174	745192	815127	455256	878330	122321	453710	824421	505958	266696	268978	1629420	1473146	488964	486731	489680	1558108

Table ?

2.208007515 4.274941437 2.505150418 1.953984521 2.704543729 3.027110145 2.580297935 7.996825887	2.315437022 2.882912785 2.754287472 2.121754884 2.129555262	2.4566449 5.057702038 2.495900053 2.112383277 2.42797476 2.926564497 2.352608404 2.436741845 2.318984025	1.998833841 2.08935018 3.657404783 2.619631296 2.00449339 2.545332173 4.19875646 2.440404003 3.121185352 2.370378262 1.973993209
>	>	>_	>> >> >>
000000-	.00000		0000000000
Hs. 107014 Hs. 101174 Hs. 6000 Hs. 5807 Hs. 66170 Hs. 186810 Hs. 180391	Hs. 6529 Hs. 125283 Hs. 105088 Hs. 116865 Hs. 182591	HS. 60238 HS. 170204 HS. 2178 HS. 3239 HS. 34892 HS. 8123 HS. 6949 HS. 6949 HS. 6862 HS. 6862	Hs. 11831 Hs. 14928 Hs. 80618 Hs. 16206 Hs. 30251 Hs. 30251 Hs. 5372 Hs. 180255 Hs. 4768
AC003108	AF041853 AF081195		P01912
155838 50764 788273 868736 45623 436455 858567	51851 1461528 701115 1031003 703637	845516 878451 461592 878461 824821 878469 461864 824879 32864 346666	525775 530460 434776 531031 1473796 1631472 1631634 1456701 1456776 186767

			Table 5	;	
759184		Hs.6845	0		3.128461451
50264		Hs.163546	0		2.076448172
32495	AB023152	Hs.12183	0	>-	2.352281717
171973		Hs.117663	0		2.851512374
32772		Hs.102469	0		2.078300765
800098		Hs.116909	0		2.36136918
1499830		Hs.18618	0		2.03270814
745283		Hs.112094	0		6.350692351
826974		Hs.125233	0		2.181942164
746217		Hs.119424	0		2.307259346
845780		Hs.121663	0		2.46379808
826170		Hs.58570	0	>	1.910059031
489533		Hs.5825	-	>-	2.401727329
505836		Hs.24283		>	2.425064059
884430		Hs.179902	0	>-	3.01416439
562318		Hs.48928	0	>	1.984267084
266500		Hs.8236	-	>-	7.427279406
219955		Hs.117906	o		2.415601844
110298		Hs.82171	-		2.92538951
283204		Hs.43558	-	>	2.100700472
814222		Hs.22981	0		2.426253931
1457276		Hs.154737	7	> -	2.913316624
1474604		Hs.155541	0		2.29635885
1459105		Hs.66295	O		2.231808611
1474670		Hs. 189090	0		2.872206566
855698		Hs.11135	0		2.081942952
447171		Hs.191322	0		2.128959252
854122		Hs.5432	O	> -	3.03962663
461933		Hs.193307	-		4.078765619
867606		Hs.180952			4.959955655
867717		Hs.122185	o		1.621354444
132702	P07237	Hs.75655	o	> -	2.327400544
1500821		Hs.5275	-		2.35166853
745394	Q14344	Hs.9691	O	> -	2.154007941
1555427		Hs.65119	ഗ	>	3.174847073

Fable 5

	1.988065867	1.960057553	2.199772384	3.082874955	1.890608889	2.942819467	3.470194622	3.081742643	2.4158489	3.201079973	2.748112011	3.138003872	2.920639144	3.232624423	2.835996587	2.912084218	2.376703087	1.934483847	3.481326836	3.579641654	2.234360431	3.238475202	2.803806486	2.521443297	2.177715859	3.8003133	9.734093906	2.644782494	2.079095745	2.629510253	2.368360083	2.653662294	2.602495253	2.660430042	3.019618449
				>		>				>-		>	>	>											>								>-		
Table 5	0	0	0	-	2	0	- -	0	0	0	2	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ໝ	0	0	0	0	0	0	-
	Hs.35696	Hs.172924	Hs.32478	Hs.80120	Hs.107637	Hs.115837	Hs.109706	Hs.15921	Hs.181385	Hs.117955	Hs.15165	Hs.165464	Hs.153961	Hs.14285	Hs.100555	Hs.150275	Hs. 16390	Hs.179309	Hs. 12243	Hs.90093	Hs.11156	Hs.16936	Hs.229227	Hs.123066	Hs.3742	Hs.3346	Hs.99769	Hs.180895	Hs.178011	Hs.94631	Hs.23440	Hs.120369	Hs.16085	Hs.4552	Hs.14368
				Q10472		,										÷				P34932														AB015344	
	234045	470099	470148	470187	40031	884662	471568	435750	284261	1475195	1460073	1420830	1635384	1602209	490813	1584287	491465	1032734	1276665	856567	80764	26736	462412	1501546	1551208	239568	753428	897219	235179	240680	1031072	1292501	40075	23018	1603583

			Table 5		
1605178		Hs.18272	τ-	>	2.764208822
1606275		Hs.214455	0		2.26124918
1607018		Hs.26136	0		2.257735622
1593261		Hs.151536	o		2.079345396
744907		Hs. 79672	-	>-	2.416299315
502536	AF016098	Hs.17778	0		1.721932752
854831		Hs.128685	-		4.415537225
84371	AB023152	Hs. 12183	O	>	2.412266619
859418		Hs.24713	0		2.332509763
855236		Hs.105872	o		2.020284254
878614	AF103939	Hs.24178	0		2.38771405
878713		Hs.26267		>-	2.62528755
146882	000762	Hs.93002	0		3.114393532
147826		Hs.171965	-		2,759062894
1468070		Hs.78221	0		2.271591363
1557277		Hs.42287	(1)	> -	2.023351018
1558642		Hs.11365	-	> -	8.322406514
1604703		Hs.110309	O	>-	2.115590461
377801		Hs.182167	Ö		3,173704318
41207		Hs.16206	-	> -	2.131083075
854593		Hs.5716	O	> -	3.098672052
243068		Hs.22391	(4	>-	2.549543009
854633		Hs.116773	0	> -	2.585161982
855029		Hs.9933	0		2.156912456
448417		Hs.48376	0		1.906992715
345752		Hs.28529	0		2.135350601
124064	AC004410	Hs.19399	0	>-	3.887053694
1613222		Hs.103329	0	>-	2.686547532
1435624		Hs.81800	0	>-	6.227108117
1460995		Hs.126018	0		1.856474993
1034644		Hs.105431	0	>-	3.272416269
1606780		Hs.119537	0		3.300692348
1492468		Hs.125783	0	>-	5.991795131
1500000		Hs.180779	0		2.676286436
1631194		Hs.30081	0		2.297008639

			Table 5		
858854	AB015344	Hs.227940	0		2.45924499
878617		Hs.4750	0	>	4.868786031
447787	P30837	Hs.198225	0		2.509351135
855563		Hs.179941	0	>-	4.751029397
591439	AF069762	Hs.11615	-		2.586853192
379941		Hs.192712	ŏ	>	2.588674037
1272428		Hs.91582	.0		2.126630823
153648		Hs.172928	-		12.74869661
1468160		Hs.4896	0	>	3.073405508
1466834		Hs.125646	0		2.505192013
814769		Hs.38178	←		3.939542263
814913		Hs.121619	0	>-	2.5123674
80715	AF053233	Hs.172684	0		3.067858782
745556		Hs.97684	0		3.895139507
486035	S73498	Hs.21293	0		2.379467747
745572		Hs.90020	0	>-	2.198716345
486102	P41970	Hs.169478	0		1.930021086
24181		Hs.6224	0.		3.041302477
25150		Hs.182811	0		2.03283288
306743		Hs.226039	0	>-	2.399566364
309563		Hs.166208	0	≻	2.571583284
856878		Hs.187934	0		2.145270516
857196		Hs.66103	0		2.008451966
1492238		Hs.25635	-		1.90659657
1492268		Hs.8164	0		2.688923456
1292121		Hs.120858	0		2.756590418
506128		Hs.25252	0	>-	3.616363113
1631863		Hs.73933	0	>-	4.168571791
1632161		Hs.1575	0		2.207418215
1517595		Hs.184339	-		2.270326627
645332		Hs.5025	0		2.644009269
448046		Hs.8850	0		2.035671714
23318	P08886	Hs.78305	0		2.284844005
855723		Hs.172035	-		5.825007297
40063		Hs.106419	0		4.16852721

			Table 5		
195652		Hs.11042	-		2.022230482
155227	P49411	Hs.12084	0	>-	2.444466795
486710	AF140242	Hs.107318	0		4.078518808
969560		Hs.7085	0	>	2.365064484
969593		Hs.116922	0		2.803101191
201125	P06899	Hs.155800	0		2.057651567
1570318		Hs.39387	0		2.063610907
1572196		Hs.22209	0		1.825722189
461336		Hs.110379	0	>-	5.904319956
1049031		Hs.122053	0		2.172464195
324785	U90441	Hs.3622	7	>-	2.571071409
49482		Hs.114404	0	>-	2.671113725
746229	AB014587	Hs.3628	0	>-	2.051285429
26152		Hs.6185	0		2.480253698
26366	P30101	Hs.110029	0	>	2.072518796
347282	Q13330	Hs.58598	2		3.012946029
857249		Hs.194860	0	>-	2.135097622
1637313		Hs.154978	0		2.315038374
1637343		Hs.79081	0		2.441463143
1536215		Hs.6079	0	>	2.271759818
745136		Hs.116169	۲-		2.39692077
878152		Hs.31819	0	>-	2.470358125
453233		Hs.14435	0	>-	2.512808498
453276		Hs.122705	0		2.015319614
453309		Hs.164496	0	>	2.246953958
26406	P54886	Hs.114366	0	>	3.595387735
32407	P15735	Hs.196177	0	>	2.920050466
435730		Hs.119549	0		1.719437717
487928		Hs.133481	0		3.111806568
201282		Hs.25264		>	2.775273726
432086		Hs.125652	0	>	2.442054608
487932		Hs.118739	0	>-	4.187413241
50982		Hs 22860	c		2.511252239

Ψ
a
÷.
Q
ಡ

Image Clone ID	GenBank Accession Number	Cluster Number	Number of subtracted libraries (out of six) where clone was	Secretion Predicted?	Known Secretion?	Expression Ratio (Cancer / Normal)
205633	P13236	Hs.75703	0	>	>	5.605327066
768561	P13500	Hs.340	0	>		286.4926191
183337	P28067	Hs.77522	5	> -		67.28736124
82991	P22413	Hs.11951	0	> -		6.79625083
768638		Hs.182575	0	>-		137.7559104
191664		Hs.108623	_	>	> -	31.32956579
296444		Hs.18376	0	> -		5.448550496
141768	P04626	Hs.173664	0	>-		67.98243565
269815	P08476	Hs.197458	0		>	8.799295204
52096		Hs.74615	7	>		77.41943316
782718	A27270	Hs.21922	2	>-		6.547398047
247835		Hs.92071	0	>		8.545202242
299815		Hs.72805	2	>		5.618194612
33045	P25929	Hs.154837	•	>		82.16345161
811740		Hs.1142	0	≻		6.93413084
120189	P06731	Hs.173609	0	>	> -	28.12068798
119882	P02679	Hs.75431	0	>	>	10.00142899
843321	P05787	Hs.23881	0	>		5.097161034
714106		Hs.77274	-	≻	> -	8.060136216
503617	Q07325	Hs.77367	0	>	>	18.16657553
786675	Q14508	Hs.2719	0	>-		8.628533382
140301		Hs.28792	-	>		13.7812527
110582		Hs.15061	0	>		14.20501468
139354		Hs.15093	0	>		11.02125306
193938	-	Hs.207865	0	>		13.00174721
365665		Hs.61311	. 0		>	10.47087894
67067		Hs.94795	0	>-		11.67949642
429466	AJ002305	Hs.6139	0	>		13.21937668

811028		Hs.9946	m	>-		15.9619503
810391	U03056	Hs.75619	0	>-		15.24643713
753770		Hs.195770	0	>-		5.337941756
841641	P24385	Hs.82932	0	>-		5.212952527
80109	P01908	Hs.53875	-		>-	7.18937028
144786	P21810	Hs.821	ო		> -	12.07339227
782513		Hs.21205	0	>-		12.90952191
898092	P29279	Hs.75511	က	>-		14,44248323
277305	P01121	Hs.204354	2	>-		21.28283813
509823		Hs.73848	-	>	>-	70.96205767
52933	U41060	Hs.79136	5	> -		25.4445697
470379	D86640	Hs.56045	0	> -		13.33282025
382773		Hs.180532	-	>-		19.56105286
321706		Hs.6189	0	>		20.37404042
121275	P05538	Hs.203656	0	>-		11.18343977
175103		Hs.57652	0	>		9.947540835
840687	P15941	Hs.89603	-	> -	>	35.37538975
142788		Hs.8930	0	>-		13.70500256
839991		Hs.179573	2	>-	>	270.1338126
159608	P05090	Hs.75736	-	> -		165.8381654
29063		Hs.90797	0	>-		5.778002318
127120		Hs.81086	4	>		36.89438299
271050	AF114165	Hs.82002	0	> -		11.15214427
45542		Hs.103391	0	> -		178.4295261
243741	Y12653	Hs.44532	0		>	6.143305425
185083	P30101	Hs.110029	0	> -		5.623140978
526657	L47345	Hs.155202	0	>		11.48223754
199628		Hs.138514	0	>-		6.177610005
703581	P10124	Hs.1908	2	> -		27.92802338
758266	P35443	Hs.75774	0		>	9.821274672
130057		Hs.23057	2	>-		8.637192391
132140		Hs.93961	0	>-		9.208209297
487118	P22760	Hs.587	0	>		24.80178683
823590	U14550	Hs.107573	-	>		5.540513991
240518	P05154	Hs.1305	0	>-	>	200.3235451

9
e
Q
ď

470379	D86640	Hs.56045	0	>-		12.66197619
309515	P49747	Hs.1584	-		> -	12.28065748
752732	Q13867	Hs.78943	0	>		5.74495155
143846	U33837	Hs.153595	0		>	10.41177781
840878	Q15392	Hs.195136	7	>-		9.481127436
530814		Hs.3314	0	>		31.13002274
840384	Q12849	Hs.79295	7	>		15.81363572
143887	AF015287	Hs.154737	2		>	31.52609898
262920		Hs.174050	-	>		8.096710975
\$32871		Hs.94037	0	>		47.58014679
289337	P01859	Hs.140	ၑ		>	49,42575483
813714	AF010127	Hs.195175	0	>-		17,24536061
839101		Hs.74471	0	>-		12.76050466
83605	P31327	Hs.50966	0	>		11.91904261
840818	AF043045	Hs.81008		>		7.930414097
122159	P02461	Hs.119571	0	>-		216.8717592
712341	U85625	Hs.8297	0	>		13.08487403
141209		Hs.28403	0	>		10.82330231
66437	P18428	Hs.154078	0	>		13.0466819
341680	P28300	Hs.102267	0	>-		35.38007638
155072		Hs.29190	0	>-		15.70016215
511428	U28249	Hs.92323	0	>		6.839914573
196612	P39900	Hs.1895	0		≻	8.875738161
301122		Hs.81071	O	>		23.31215417
756372	U77594	Hs.37682	0	>		11.53678406
131839	P15328	Hs.73769	0	>		12.28419437
789012	P98095	Hs. 198862	-	>-		51.30738036
139009	P02751	Hs.118162	-	> -	>	22.54385839
210717	P34741	Hs.1501		, >-		12.2879167
122159	P02461	Hs.119571	0	≻		612.5888811
361974	P21246	Hs. 44	-	>-		22.52864326
347036		Hs.44865	0	>-		6.435900536
592243	P20061	Hs.2012	0		>	34.61466719
713685	P07478	Hs.2003	0		>-	19.62960245
123561		Hs.75621	0	>	>	9.656723542

14.29246916	13.18777642	8.057095833	5.036661434	5.481281242	20.95842364	5.628837395	17.16580599	6.443805607	6.095493793	56.90851978	11.55069819	10.54856455	8.218881948	38.03045471	16.26931789	9.910138102	8.845534314	8.961018602	5.433545065	6.06797 5027	6.859788221	6.765251703	13.37409486	9.882585473	11.96143272	11.74171549	10.58051614	7.851063469	5.001675119	9.671567118	6.947873136	16.32752381	18.77462497	12.54394232
•	>-	>-	>		> -	> -								>-				> -			>-	>						>		>				
>	>	>	>	>	> -	>-	>	>-	>-	>-	>	≻	>-	>	>-	>-	>-		>	>		>-	> -	>	>	> -	>-		>	>	>	>	> -	> -
0	0	ო	so.	2	-	-	-	0	-	0	4	7	0	0	-	-	-	-	0	0	0	-	0	0	0	0	0	-	_	ĸ	0	0	0	0
Hs.75909	Hs.169980	Hs.31439	Hs.76353	Hs.181312	Hs.118162	Hs.197382	Hs.230	Hs.93002	Hs.107573	Hs.79914	Hs.142827	Hs.75716	Hs.28777	Hs.107325	Hs.84084	Hs.182793	Hs.96125	Hs.173736	Hs.170222	Hs.94395	Hs.82914	Hs.10247	Hs.12451	Hs.21205	Hs.823	Hs.32043	Hs.50382	Hs.38991	Hs.763	Hs.71816	Hs.2554	Hs.91165	Hs.8154	Hs.98606
	P06731	U78095	P05154		P02751	P52823	Q06828	000762	U14550	P51884	Q16612	P05120	P28001	P01011						AF009746	P02751	Q13740	U97018		P05981			P29034	P08637	L42379	P15907			
43977	143287	814378	416567	251019	139009	547247	811162	769921	823590	813823	306901	70692	789091	109316	782161	811582	130835	813841	812227	124753	897531	26617	784360	782513	208413	159725	296568	810813	51447	§10331	897906	121798	782537	130421

9
Q)
7
G

32223		Hs. 108502	0	· >		12.74864761
755373	Q13105	Hs.33532	0	> -		10.02769998
586706	P06731	Hs.220529	0	> -	>-	6.189927051
51178	Q92556	Hs. 198613	0	> -		16.69754991
588609	AB007885	Hs.54697	ო	>		17.12582589
79726		Hs.11067	0	> -		14.20634739
52435		Hs.26979	0	>-		11.15659791
322461		Hs.35198	0	>-		12.13492492
811139	P01913	Hs.181366	-	>		233.6544879
428721		Hs.148493	0	>		78.71974577
810142		Hs.77961	0	> -		5.243247016
361323	Q08116	Hs.75256	0	>		25.29907608
435036	X97324	Hs.3416	0	>-		24.4675747
51320		Hs.169482	Ó	> -		13.22709571
22374		Hs.13207	0	· ≻		20.02031122
47359	P05305	Hs.2271	0	>-		17.03837375
\$2021		Hs.30098	0	>-		7.13254404
129020		Hs.6649	0.	>		50.7602342
897593		Hs.6728	0	>-		16.29208625
33854		Hs.106642	· ~	>		112.9771019
810224	AL049946	Hs.72157	2	> -	>	6.441162754
215000		Hs.198726	. 0	>		28.89457421
345034	AF073957	Hs.24395	S		>	8.820505907
344430	P18075	Hs.170195	τ	> -		72.23448317
154472		Hs.748	0	>-		24.32459398
855547		Hs.181366	-	>-		96.21944165
138788	P16471	Hs.1906	0	>		99.56358145
854701	P38571	Hs.85226	0	>		5.89352095
257162		Hs.173609	0	> -	>	6.082496596
51344		Hs.6434		> -		12.99416248
343987	P27487	Hs.44926	0	≻		34.07603082
854746	P50290	Hs.146409	0		>	5.473485638
265853		Hs.42927	co.	>		5.554228891
324690		Hs.40098	ო	>		28.88536226
741977	P00751	Hs.69771	4	>		46.69762637

9
ē
ab
<u>-</u>

45501		Hs.23961	0	>		16.58986515
430231		Hs.47269	0	>-		6.807556298
357278		Hs.47343	4	>		13.03891137
488140		Hs.44883	0.	>-		6.259378009
325641	M73713	Hs.169980 .	0		>-	23.13308057
454822	P19827	Hs.2777	0		>	29.80347335
460487	P02788	Hs.347	0		>	25.77672661
1035889		Hs.3235	0	>-		193.8382308
52704		Hs.21902	0	>-		6.877621544
77651	AJ011972	Hs.6764	0	>-		10.97623394
856434	AF002163	Hs.75056	0	> -		21.40958612
487327		Hs.110453	0	>-		91.56101705
782547	AF015287	Hs.25338	7		>-	9.136653273
324665		Hs.143809	0	>-		14.38677986
153355	P16619	Hs.73817	32	> -		5.668142175
781089	AF062649	Hs.159626	0	> -	>	5.476719985
770388	AB000712	Hs.5372	0	>		12.4326427
725877	P10909	Hs.75106	0	>-		35.41286983
49275		Hs.225695	0	> -		7.271679582
796287	P06753	Hs.31239	0	> -		16.45982273
509564	AC004520	Hs.22900	0	>		17,40521425
488431		Hs.21894	۳-	>		5.000188503
415229		Hs.37331	0	>		18.62795199
809357		Hs.21970	0	>		5.116566909
283315	P15259	Hs.46039	0	>		10.14511823
51210	AB022918	Hs.34578	0	>		20.72332967
46105		Hs.22226	0	>-		21.60106246
725395	AF143807	Hs.169895	_		> -	6.014355031
841645		Hs.84359	2	>		10.44648036
489373		Hs.25557	0	≻		5.302056878
366887		Hs.170195	ν -	>		22.59027147
769686		Hs.125359	0	>		11.06083918
811024	Q10589	Hs.118110	0	>		7.398087651
868332		Hs.914	ó	>		60.66165226
741831	P55058	Hs.154854	0	≻		15.00257155

	26.20981668	6.164797551	5.169048171	8.59608543	12.96650517	28.02648834	10.26951837	10.70867341	6.465170777	31.05273383	9.772759095	6.561562252	5.906869601	15.6681957	5.316748565	16.0581775	5.687712863	19.4498269	12.07841314	7.169825492	5.756444852	6.46522421	5.766696374	5.273247546	20.43673254	15.77948436	12.5006982	12.26750596	7.458661016	11.7617619	5.49512842	21.23649758	12.50924719	7.111913141	7.159112893
			>-	>-								>	>																					>	
	>	> -	> -	> -	>-	>	>	>	>	>	>	> -		>-	> -	>	>	>	> -	>	> -	>-	> -	>-	>-	>-	>	>-	> -	>-	> -	>-	>		>-
> > > > > > > > > > > > > > > > > > > >	0	0	0	 -	0	0	0	_	-	0	rc.	ហ	2	0	0	0	0	0	0	0	-	0	0	~	0	Ó	0	0	0	0	0	0	0	-	-
•	Hs.30837	Hs.75621	Hs.103391	Hs.82961	Hs.22265	Hs.100980	Hs.3763	Hs.180320	Hs.11500	Hs.7949	Hs.178603	Hs.73817	Hs.54460	Hs.102308	Hs.172108	Hs.195851	Hs,158225	Hs.26040	Hs.26096	Hs.48353	Hs.833	Hs.572	Hs.184532	Hs.184601	Hs.77221	Hs.22545	Hs.7122	Hs. 166436	Hs.26549	Hs.42392	Hs.54946	Hs.2003	Hs.26630	Hs.418	Hs.26102
	P32243			Q07654		U78305						P10147	P51671	Q15842	•	P03998	P55347				P05161	P19652		AC003007	P35790							P01850	X97187	U09278	
	50354	240663	68049	298417	47378	243882	877664	949988	772880	341641	758347	460398	343736	472095	772890	868304	121406	41391	41825	366663	742132	452374	429434	755578	46367	32962	796148	269029	950429	491367	307249	306841	52741	772425	41822

811000	L13210	Hs.79339	τ-	>	13	13.2879885
897924		Hs.5472	0	>-	5.1	5.182574146
40364		Hs.26244	0	>-	8.7	8.739959421
50484	AF035013	Hs.26322	0	>-	1	11.68124618
272706	AB022918	Hs.34578	0	>-	18	18.05731096
415204		Hs.20188	0	> -	24	246.6733879
773330	Q14956	Hs.82226	-	>-	7	14.85184114
81449		Hs.4932	0	> -	1	11.05760557
49842		Hs.7908	0	>-	17	17.17163598
50114		Hs. 167399	-	>-	9.0	6.013769204
454908	P01215	Hs.119689	_	>-	۲7 ۲	77.50252108
856447	P13284	Hs.14623	-	>	55.	5.306007822
841624	-	Hs.179669	0	>-	.9	6.256306795
810367		Hs.16236	0	>	5.5	5.520319664
377441	P33764	Hs.2961	0	>	48	48.23843238
344126		Hs.58330	0	>-	17	17.42654997
503579	U59111	Hs.169993	0		.∞ ∞	8.170006532
22389		Hs.13222	0	>-	#	11.70513283
32050		Hs.21380	0	>	4.	14.80307244
51672		Hs.112278	0	> -	17	17.00164688
1049033		Hs.86368	0	>-	5.6	5.552950164
236059	Q14451	Hs.86859	0	> -	5	15,93583732
488579		Hs.165216	0	>	5	10.69122819
504461	AF140242	Hs.107318	0	>	9	6.287887033
291880	P55001	Hs.83551	2		 	5.113603275
590264	P08493	Hs.75742	-	>-	. 31	319.2297619
252515	Q16719	Hs.81771	0	> -	30	30.45481813
433253	P09467	Hs.574	τ-	> -	9	6.646462351
325182	P19022	Hs.161	0	>	25	54.23107451
724888	P13584	Hs.687	•	· ≻	15	15.85153058
51700		Hs.5740	0	>	7	7.120940176
34442		Hs.22920	0	>-	56	26.77227609
40100		Hs.54865	0	>-	5	10.66470798
530185		Hs.79197	0	>-	5	10.21794823
83358		Hs.76704	τ-	>-	5.0	5.066144758

9
9
亙
ূর
_

796079		Hs.107755	0	>-		13.33337423
509688	AF006622	Hs.74466	0	>-		32.77384818
51800	P49750	Hs.26956	-	>-		12.67426159
951305		Hs.21400	0	> -		10.61201098
262061		Hs.42622	0	> -		12.74380124
743309		Hs.97814	0	> -		11.7569098
26884		Hs.176977	0	> -		10.83093523
767706		Hs.5944	0	>-		7.174663252
271744		Hs.115263	0	>-		9.365329325
767775		Hs.12101	0	>-		7.65459267
289645	P51693	Hs.74565	0	>		20.30305918
504959		Hs.32405	0	>-		15.81647508
838611	P05090	Hs.75736	-	>-		192.3342175
666451		Hs.6763	0	>		7.084388697
1409509		Hs.73980	-	>		23.56420483
753248		Hs.100113	0	> -		17.21478312
37539		Hs.7004	0	>-		19.62705961
39191		Hs.194327	0	>-		11.03712751
39442		Hs.21896	0	>		14.46547098
39453		Hs.101282	0	>-		9.474806165
344834		Hs.58093	0	>-		14.79546631
1161830		Hs.68877	0	>		55.46099391
278430		Hs.6641	0	> -		5.867931305
811953	P33991	Hs.99433	-	>-		8.010667351
858450	L10333	Hs.99947	0	>		6.91159879
34526	AF140242	Hs.107318	0	>-		6.700127027
595037	AF095448	Hs.194691	0	>		5.09346396
754581		Hs.6338	0	> -		10.32531108
754594		Hs.170057	0	>-		6.394967547
431397	Q10472	Hs.80120	-	>		5.869100283
41905		Hs.26679	0	>		24.03863291
434768	P19883	Hs.9914	0		>	5.974791662
625616	AB005659	Hs.34744	-	>		7.514554559
840726		Hs.47026	0	>-	>	9.980084697
784178		Hs.27860	0	> -		17.94202511

9	
نه	
酒	
್ಷ	

344505		Hs 58314	0	>-		16.51741389
199635	P11464	Hs.173609	0	>		22.19509456
752802		Hs.6314	0	> -		14.84556402
753411	AF092051	Hs.48730	0	> -		5.879304595
813408		Hs.6314	0	>-		5.088411732
753417	AF035528	Hs.153863	0	>	•	11.26569657
378461	P10451	Hs.313	0		` > -	28.48795908
328287		Hs.170042	0	> -		5.316836461
796732		Hs.62905	4	> -		35.80052117
1048586		Hs.431	-	>-		6.501948912
647397		Hs.101174	0	>		6.123898971
787176		Hs.78276	0	>		5.878725356
358217		Hs.58367	0	>		5.886129992
428592		Hs.60006	0	>		7.019482152
27404	AC004891	Hs.106552	0	>		5.333145531
786609		Hs.16869	0	> -		8.044278612
280082		Hs.48008	0	> -		10.39076902
752625		Hs.206778	0	>		6.334043329
753909		Hs. 105641	0	> -		10.30079968
796613		Hs.82985	0	>-		13.73184471
35147		Hs.23882	0	>-		6.20402449
1410444		Hs.1257	0	>-		35.08042366
35484		Hs.23892	0	> -		8.697444715
768432		Hs.103316	0	>-		20.88536119
593431	Q16739	Hs.23703	4	> -		7.757041113
742672		Hs.97722	0	>-		6.478973955
897656		Hs.183738	0	> -		7.106962713
1056172		Hs.112242	0	>-		12.22112635
753982		Hs.7882	S	>		17.35990848
35575	AF151854	Hs.185057	-	> -		13.33335871
1475659		Hs.75799	0	≻		5.844968911
898227		Hs.174203	τ-	> -		9.286585718
347345		Hs.58632	0	>		11.54990087
510578		Hs.91011	ღ	>	>	92.89335475
841621		Hs.100686	ო	>	>	25.568 9756

10/14

682479		Hs.66999	0	>-	11.05433707	22
753076		Hs.98874	0	>-	25,71610616	9
1323448		Hs.17409	-	>-	5.91681239	.
g38689	•	Hs.179902	0	>	8,564045749	ე
37901		Hs.26640	0	>-	6.0090261	
38015		Hs.21527	0	>-	11.59223967	37
253314		Hs.141376	0	> -	5,403061544	4
276412		Hs.102550	0	> -	5.823009508	8
785866	D89052	Hs.31386	•	>-	8.192959579	<u>و</u>
450777	P56270	Hs.7647	•	>-	6.719588185	33
823688	P33908	Hs.25253	2	> -	13.70799286	ဓ္ထ
1456160		Hs.71	0	>	5.577389547	44
30275		Hs.100866	0	>-	10.55620586	ဓ္ဌ
272694		Hs.108636	0	>-	6.27358973	m
48404		Hs.106619	0	>-	12.58241074	7
785930		Hs.77637	0	· ≻	36.89827693	ဗ္ဗ
627306	P43320	Hs.169286	0	>	5.738033416	9
418159		Hs.6139	C	>	10.70338043	გ
782804		Hs.99158	0	>	10.81862606	90
812143		Hs.14146	0	>	5.592159568	28
1455835		Hs.17958	0	>-	25.99784944	4
1472689		Hs.182778	-	>-	31.71914518	8
470092	AJ007583	Hs.25220	-	>	14.18721241	7
156043		Hs.27268	0	>	18.42944168	88
713213	AC004410	Hs.19399	ö	>-	19.5723920	2
160532		Hs.176588	ò	>	33.66388374	74
713263	Q13519	Hs.89040	0	>	10.49952302	8
416374	AF120265	Hs.11663	rc C	>	74.44793889	68
132636	Q16651	Hs.75799	0	≻	6.737262483	83
431653		Hs.163610	0	>	7.168833618	<u>18</u>
489631	P13611	Hs.81800	0	≻	5.789645367	22
450398		Hs.227459	0	>	7.188236607	20
416479		Hs.14977	0	· > -	11.18111615	15
223043			. 0	>-	22.3169845	LO.
194717		Hs.34333	0	>	11.30160113	ي

		0000	ć	>		C 2074748E2
451707		HS.19978	>	-		7001 /4/07:0
451753	U40282	Hs.46531	ო	>-		14.28682569
824109	AB011141	Hs.34871	0	>		39,27799786
435890		Hs.189299	0	>		8.820463809
417777		Hs.118371	0	>-		12.15004989
325111		Hs.55950	0	>		20.06930485
704023		Hs.96561	0	>		97.02449466
383199		Hs.129056	0	>		7.869955829
281908		Hs.41271	ო	>		10.97038738
294578		Hs.75621	0	> -		180.1662123
739123	Q16739	Hs.23703	4	>		6.564097933
449034		Hs.122631	0	>		6.000589924
826273		Hs.30464	0	> -		7.015268541
363007		Hs.106576	0	> -		5.032173895
249784		Hs. 16580	0		≻	8.178950224
685516		Hs.97101	0	>		8.420285721
739450		Hs.110379	0	>		9.184224987
740780	AB012917	Hs.57771	~	>		15.55643658
279963		Hs.48026	0	> -		13.30971522
826995		Hs.16726	•	>		8.551959358
754625		Hs.70604	ო	>-		12.91269072
270558		Hs.28555	-	>		38.94166722
397488		Hs.203492	2	>		5.212739753
815740		Hs.86429	0	>		5.845137158
437704		Hs.221202	7	>		24.33949266
602885		Hs.54580	0	> -		5.144014857
878605		Hs.29005		> -		12.66212374
381036		Hs.227459	0	>-		13.17442605
381062		Hs.59773	0	> -		5.051108502
262542		Hs.127310	0	> -		5.020009469
684879	P06280	Hs.69089	0	> -	>	13.18203513
360743		Hs.25726	•	>-		7.122573491
431231	AJ132819	Hs.6059	0	> -		17.33060408
413292		Hs.62604	0	> -		20.19977455
413080		Hs.220567	0	>-		12.08883896

Table (

451557		Hs.18160	0	· -	16.22081248
415589	,	Hs.91668	0	>	9.758358543
25664		Hs.78006		> -	41.96780379
490789		Hs.7393	. 0	> -	8.618104244
824376		Hs.180703	0	> .	7.538784111
129032	P05154	Hs. 76353	z,	>	7.828374081
392630		Hs.120910	0	>-	51.14700619
266135	P48681	Hs.127356	0	>-	13.73276849
825742	P43005	Hs.91139	0	>-	12.50695469
826109		Hs.41371		>	20.46308344
825270		Hs.109315	.	>	24,12164595
121857	P14798	Hs.16244	0	>	7.675934078
122321	P13611	Hs.81800	0	∀	8.167873554
50772	AC006033	Hs.13467		>	6.062768709
48183		Hs.31141	-	>-	9.719778158
1474156		Hs.118867	0	>-	8.376639082
448489		Hs.184640	Υ-	>-	47.16025386
454317	P25311	Hs.228711	0	≻	84.11664063
397604		Hs.103184	0	>-	6.031781991
712600		Hs.110099	0	>-	13.10215532
32887	•	Hs.22941	-	>-	5.132335154
489533	•	Hs.5825	Ψ-	>-	5.080593165
884430		Hs.179902	0	>-	5.034268893
266500		Hs.8236	τ-	>-	13.77109613
1457276		Hs.154737	2	>	17.99979744
1474987		Hs.71520	0	> -	15.56939368
1574594		Hs.82045	0	>-	15.18681826
586742	AF118023	Hs.16420	0	>	6.191560522
447173		Hs.222038	0	>	23.00159789
856115		Hs.20166	0	>	14.05499285
1505360		Hs.36980	-	>-	12.12374384
1555427		Hs.65119	വ	>	5.911340504
39833	AC005162	Hs.95594	0	>-	34.77026468
725143		Hs.36563	0	> -	80.14724289
1475195		Hs.117955	0	> -	7,123888718

46223/		580085		>-		5.382350005
			. ,	. ;		
462325		Hs.11638	0	>		16.45544402
377573		Hs.124134	0	>-		5.842023308
447208		Hs.47504	0	>-		5.011813612
1635874		Hs.8693	0	>		6.299540768
1605426		Hs.22972	0	>		6.652996237
744918		Hs.116080	0	>		6.339484513
855079		Hs.16622	0	>		5.017783002
1558642		Hs.11365		>		32.68449022
377987		Hs.64859	-	>		11.87868467
124064	AC004410	Hs.19399	0	>		5.888562551
1435624		Hs.81800	0	>		7.277512266
1034644		Hs.105431	0	>		6.819865186
1492468		Hs.125783	0	>		22.0879966
745001		Hs.116118	0	>		10.08320816
878617		Hs.4750	0	>		7,059745851
855563		Hs.179941	0	>		9.949852117
470049		Hs.173824	0	>		5.655601162
1468160		Hs.4896	0	>		5.578163857
323599		Hs.1735	τ-	>		35.3679555
1505534		Hs.165615	·	>		11.93545235
506128		Hs.25252	0	> -		8.11526289
1631863		Hs.73933	0	>		7.275155082
461336		Hs.110379	0	>		13.06130819
814053		Hs.11638	τ-	>		66.21666121
449275			0		>	7.006039821
32407	P15735	Hs.196177	0	> -		5.999353338
487932		Hs.118739	0	>-		8.023453706
49229		Hs.13405	0		> -	5.18345556

Fable 6

Table 7

Expressi on Ratio (Cancer! Normal)	7.565 7.853 10.842 4.701 4.193 57.008 15.382 6.019
Known Secretion?	>>>>>
Secretion Predicted?	· >>>>
Number of subtracted libraries (out of six) where clone was found	O O O O O O O O -
Cluster Number (Unigene 94)	Hs. 197458 Hs. 1584 Hs. 2012 Hs. 31439 Hs. 72157 Hs. 91011 Hs. 100686 Hs. 180703
GenBank Accession Number	P08476 P49747 P20061 U78095 AL049946
Image Clone ID	269815 309515 592243 814378 810224 510576 841621
ID .	376 3384 4626 4747 7018 16612 16638

TABLE 8

Sequenc #	Accession #	Sequence 52	Al281115
Sequence 1	AB002330	Sequence 53	T11367
Sequence 2	AA373018	Sequence 54	AA404281
Sequence 3	Al761106	Sequence 55	Al380093
Sequence 4	U48271	Sequence 56	AA147803
Sequence 5	AA043226	Sequence 57	D31762
Sequence 6	AA460921	Sequence 58	AA768548
Sequence 7	G29998	Sequence 59	AA071169
Sequence 8	G11594	Sequence 60	AA526060
Sequence 9	AF081484	Sequence 61	AA630407
Sequence 10	AA599801	Sequence 62	M78906
Sequence 11	AL049381	Sequence 63	AI039651
Sequence 12	R25232	Sequence 64	AA227954
Sequence 13	AF047472	Sequence 65	L15388
Sequence 14	H14378	Sequence 66	AA282436
Sequence 15	T47448	Sequence 67	E00985
Sequence 16	V40508	Sequence 68	U28833
Sequence 17	Al222365	Sequence 69	AF121890
Sequence 18	X04098	Sequence 70	AB002303
Sequence 19	Al141565	Sequence 71	J05593
Sequence 20	135434	Sequence 72	AA582928
Sequence 21	Al608725	Sequence 73	AA243780
Sequence 22	Al440284	Sequence 74	X64875
Sequence 23	V41921	Sequence 75	AB011126
Sequence 24	AB002315	Sequence 76	AF099149
Sequence 25	X05231	Sequence 77	AF010313
Sequence 26	X89426	Sequence 78	AI707471
Sequence 27	U56255	Sequence 79	AA569766
Sequence 28	AL035306	Sequence 80	AA150356
Sequence 29	D26070	Sequence 81	AF057160
Sequence 30	AA256422	Sequence 82	L19711
Sequence 31	E02602	Sequence 83	W02294
Sequence 32	X81713	Sequence 84	R75969
Sequence 33	AF078828	Sequence 85	AA284532
Sequence 34	AA318193	Sequence 86	D78757
Sequence 35	AA195458	Sequence 87	D45917
Sequence 36	AA482432	Sequence 88	D45887
Sequence 37	U25435	Sequence 89	AA367588
Sequence 38	S77512	Sequence 90	D82254
Sequence 39	AA298918	Sequence 91	AA127461
Sequence 40	AA120818	Sequence 92	L25610
Sequence 41	AA865239	Sequence 93	AA403008
Sequence 42	X56807	Sequence 94	AI183387
Sequence 43	AA081269	Sequence 95	R69949
Sequence 44	E03415	Sequence 96	X00566
Sequence 45	AB017169	Sequence 97	AB011182
Sequence 46	AA609555	Sequence 98	A1075938
Sequence 47	AF039018	Sequence 99	W30780
Sequence 48	AI275381	Sequence 100	L38487
Sequence 49	G34637	Sequence 101	X15879
Sequence 50	Al263150	Sequence 102	Al131183
Sequence 51	V59620	Sequence 103	AI668847

TABLE 8

Sequence 104	AA302502	Sequence 156	AA757069
Sequence 105	Al752983	Sequence 157	Y00503
Sequence 106	U56725	Sequence 158	M22348
Sequence 107	AA037281	Sequence 159	Al264128
Sequence 108	AA565948	Sequence 160	AI590707
Sequence 109	AA058398	Sequence 161	AF004426
Sequence 110	AA056176	Sequence 162	AI769238
Sequence 111	AA772132	Sequence 163	AA487510
Sequence 112	AA455235	Sequence 164	AL050028
Sequence 113	AA100426	Sequence 165	AA868404
Sequence 114	Al200045	Sequence 166	H80042
Sequence 115	D12676	Sequence 167	AA863199
Sequence 116	H57528	Sequence 168	AA333390
Sequence 117	X04697	Sequence 169	AI082817
Sequence 118	G14639	Sequence 170	AA446375
Sequence 119	E03414	Sequence 171	AA983296
Sequence 120	N57174	Sequence 172	AF020500
Sequence 121	Al335277	Sequence 173	AA135768
Sequence 122	AA887673	Sequence 174	AI149258
Sequence 123	AI244268	Sequence 175	Al742050
Sequence 124	Z44305	Sequence 176	D53129
Sequence 125	AF095891	Sequence 177	M15990
Sequence 126	AA362604	Sequence 178	Al391519
Sequence 127	AA639640	Sequence 179	AA633901
Sequence 128	X04744	Sequence 180	AI753569
Sequence 129	AA156838	Sequence 181	G15893
Sequence 130	Z29328	Sequence 182	AL048118
Sequence 131	AI042302	Sequence 183	AA455660
Sequence 132	AF125098	Sequence 184	AA329545
Sequence 133	Al360681	Sequence 185	AF064104
Sequence 134	AF055033	Sequence 186	M11718
Sequence 135	AA374857	Sequence 187	E01591
Sequence 136	Al344691	Sequence 188	AA089985
Sequence 137	S71730	Sequence 189	AA416979
Sequence 138	U36764	Sequence 190	AA644680
Sequence 139	G15856	Sequence 191	Al267162
Sequence 140	L23114	Sequence 192	X69181
Sequence 141	AI590227	Sequence 193	Al267282
Sequence 142	X52221	Sequence 194	X22255
Sequence 143	AF055007	Sequence 195	Y08890
Sequence 144	AA632653	Sequence 196	AF131760
Sequence 145	AA669381	Sequence 197	AL049265
Sequence 146	AA037120	Sequence 198	M17885
Sequence 147	AF132951	Sequence 199	AF022385
Sequence 148	H71983	Sequence 200	AA010180
Sequence 149	AF016266	Sequence 201	AF023476
Sequence 150	AF040990	Sequence 202	R31669
Sequence 151	AB004854	Sequence 203	U18247
Sequence 152	D49396	Sequence 204	W31194
Sequence 153	R67494	Sequence 205	AA593130
Sequence 154	AA186479	Sequence 206	AI753968
Sequence 155	X66899	Sequence 207	AA373414

TABLE 8

Sequence 208	AA393650	Sequence 260	AF061016
Sequence 209	X60708	Sequence 261	E07890
Sequence 210	U83303	Sequence 262	D14043
Sequence 211	AF032119	Sequence 263	AJ006470
Sequence 212	AA043064	Sequence 264	AA055266
Sequence 213	AA261835	Sequence 265	AA159985
Sequence 214	M23449	Sequence 266	AI049723
Sequence 215	AB023159	Sequence 267	AA233192
Sequence 216	AA314348	Sequence 268	AA742706
Sequence 217	H94781	Sequence 269	AA410586
Sequence 218	U50079	Sequence 270	G07205
Sequence 219	F06747	Sequence 271	H81514
Sequence 220	AA302666	Sequence 272	R58887
Sequence 221	AI568038	Sequence 273	AA446537
Sequence 222	AA557195	Sequence 274	AA063478
Sequence 223	AA310364	Sequence 275	AA373723
Sequence 224	U50928	Sequence 276	U06863
Sequence 225	AA361447	Sequence 277	AA479402
Sequence 226	H54576	Sequence 278	J03578
Sequence 227	AA167755	Sequence 279	AA404253
Sequence 228	AC005755	Sequence 280	W76437
Sequence 229	L26336	Sequence 281	AA045381
Sequence 230	M14219	Sequence 282	D00099
Sequence 231	R80512	Sequence 283	M26512
Sequence 232	AC004067	Sequence 284	AA059036
Sequence 233	AF065684	Sequence 285	L19559
Sequence 234	J04478	Sequence 286	AA594000
Sequence 235	AB018289	Sequence 287	X64229
Sequence 236	AA427664 °	Sequence 288	U23070
Sequence 237	AA583044	Sequence 289	AF009242
Sequence 238	M21574	Sequence 290	AA581018
Sequence 239	S60099	Sequence 291	AF086249
Sequence 240	AA599304	Sequence 292	X04758
Sequence 241	AA169564	Sequence 293	AA047890
Sequence 242	W22634	Sequence 294	AA903223
Sequence 243	AI610794	Sequence 295	D14812
Sequence 244	AF117211	Sequence 296	Al261199
Sequence 245	U90942	Sequence 297	AA193674
Sequence 246	G26793	Sequence 298	AI089452
Sequence 247	AA074549	Sequence 299	G27725
Sequence 248	AA345127	Sequence 300	X55525
Sequence 249	D78361	Sequence 301	X17042
Sequence 250	M76377	Sequence 302	AA298077
Sequence 251	AF151884	Sequence 303	AA043473
Sequence 252	AF025304	Sequence 304	AA703549
Sequence 253	AB023187	Sequence 305	X85018
Sequence 254	AL049959	Sequence 306	D21262
Sequence 255	AI160200	Sequence 307	Al127013
Sequence 256	M76233	Sequence 308	AJ436644
Sequence 257	AF004562	Sequence 309	AA723605
Sequence 258	X52678	Sequence 310	U89942
Sequence 259	Y10658	Sequence 311	W26373
,		·	

Sequence 312	AF058953	Sequence 364	AA748042
Sequence 313	AA443864	Sequence 365	L12002
Sequence 314	T74430	Sequence 366	AA373244
Sequence 315	AA629688	Sequence 367	S64596
Sequence 316	AA164966	Sequence 368	N31142
Sequence 317	AI750261	Sequence 369	Al459549
Sequence 318	S71513	Sequence 370	AA021265
Sequence 319	AA037152	Sequence 371	X59543
Sequence 320	AA128778	Sequence 372	W03531
Sequence 321	AA514912	Sequence 373	Y10319
Sequence 322	AA452375	Sequence 374	AF100761
Sequence 323	AA132849	Sequence 375	M86609
Sequence 324	L42024	Sequence 376	AA593669
Sequence 325	T65427	Sequence 377	AI088338
Sequence 326	AL049943	Sequence 378	AF070600
Sequence 327	X82494	Sequence 379	AF070561
Sequence 328	Al459753	Sequence 380	X06256
Sequence 329	M10941	Sequence 381	AB028952
Sequence 330	Y14551	Sequence 382	V20862
Sequence 331	U67280	Sequence 383	N42279
Sequence 332	X54315	Sequence 384	R64182
Sequence 333	T99039	Sequence 385	AA463289
Sequence 334	U00946	Sequence 386	M10036
Sequence 335	AA595701	Sequence 387	AA171848
Sequence 336	AF100741	Sequence 388	Al126573
Sequence 337	L20088	Sequence 389	H12828
Sequence 338	U35139	Sequence 390	AA044756
Sequence 339	AR007257	Sequence 391	AF021232
Sequence 340	U20982	Sequence 392	Al421105
Sequence 341	D14878	Sequence 393	AA148087
Sequence 342	AA573819	Sequence 394	109499
Sequence 343	AF151809	Sequence 395	AI095129
Sequence 344	AA126605	Sequence 396	AA146717
Sequence 345	W67729	Sequence 397	Al475537
Sequence 346	Al632932	Sequence 398	Al677769
Sequence 347	Al204548	Sequence 399	AR009833
Sequence 348	X01742	Sequence 400	AA368244
Sequence 349	AF078749	Sequence 401	AI753615
Sequence 350	L15702	Sequence 402	D17278
Sequence 351	AA317121	Sequence 403	W15301
Sequence 352	AF047438	Sequence 404	AA058752
Sequence 353	D87127	Sequence 405	Al280637
Sequence 354	G23896	Sequence 406	AA599478
Sequence 355	X97324	Sequence 407	X73608
Sequence 356	N76198	Sequence 408	AF006264
Sequence 357	U24576	Sequence 409	AA535091
Sequence 358	D13866	Sequence 410	AA350289
Sequence 359	U78093	Sequence 411	AA229529
Sequence 360	Al262100	Sequence 412	AI376301
Sequence 361	J04513	Sequence 413	AA157608
Sequence 362	AA165485	Sequence 414	A1274317
Sequence 363	AA084678	Sequence 415	AA063373

Sequence 416	AA437239	Sequence 468	AF059524
Sequence 417	AA372793	Sequence 469	AA427890
Sequence 418	AA210780	Sequence 470	S45875
Sequence 419	AV109198	Sequence 471	Y12711
Sequence 420	X00737	Sequence 472	X12496
Sequence 421	AA864840	Sequence 473	AA039766
Sequence 422	AA043788	Sequence 474	A1086754
Sequence 423	AF086336	Sequence 475	M63180
Sequence 424	AF047437	Sequence 476	N45416
Sequence 425	Al378592	Sequence 477	AA460882
Sequence 426	AL037802	Sequence 478	AA853398
Sequence 427	Al929339	Sequence 479	AI086057
Sequence 428	N52770	Sequence 480	AL045196
Sequence 429	AF086352	Sequence 481	AA098979
Sequence 430	X52246	Sequence 482	AA084188
Sequence 431	N25092	Sequence 483	AA460226
Sequence 432	N28395	Sequence 484	AA423890
Sequence 433	AA315904	Sequence 485	AA775486
Sequence 434	AA046820	Sequence 486	AB014548
Sequence 435	Y13936	Sequence 487	AA554437
Sequence 436	AI253335	Sequence 488	Al824284
Sequence 437	M30257	Sequence 489	AL110247
Sequence 438	H10420	Sequence 490	W67131
Sequence 439	AI027998	Sequence 491	M63889
Sequence 440	M62403	Sequence 492	Al472536
Sequence 441	D31885	Sequence 493	AA160520
Sequence 442	AA443241	Sequence 494	AA826256
Sequence 443	AA384155	Sequence 495	AA700054
Sequence 444	AI086748	Sequence 496	AB011165
Sequence 445	AI754509	Sequence 497	X07077
Sequence 446	L19597	Sequence 498	AA314021
Sequence 447	AA379863	Sequence 499	AI635254
Sequence 448	AF021834	Sequence 500	AB007883
Sequence 449	M11353	Sequence 501	AL038417
Sequence 450	AI751475	Sequence 502	M95929
Sequence 451	AB023169	Sequence 503	M37104
Sequence 452	D44466	Sequence 504	A07020
Sequence 453	AA634681	Sequence 505	D00735
Sequence 454	M27492	Sequence 506	Z47087
Sequence 455	V84464	Sequence 507	AF153609
Sequence 456	AL050179	Sequence 508	AA296846
Sequence 457	D21243	Sequence 509	X95749
Sequence 458	AA678481	Sequence 510	AA194152
Sequence 459	AA044374	Sequence 511	AF086120
Sequence 460	AA307819	Sequence 512	D79205
Sequence 461	M33197	Sequence 513	AB011079
Sequence 462	AF132000	Sequence 514	A1053964
Sequence 463	AA852185	Sequence 515	M22918
Sequence 464	AA748034	Sequence 516	X03559
Sequence 465	U59863	Sequence 517	AB021288
Sequence 466	Al129966	Sequence 518	AI719420
Sequence 467	Z24725	Sequence 519	U21128

Sequence 520	AJ388069	Sequ nce 572	Z74615
Sequence 521	AF147329	Sequence 573	X56457
Sequence 522	X02761	Sequence 574	AF056717
Sequence 523	AA053486	Sequence 575	T20576
Sequence 524	AA524479	Sequence 576	S78569
Sequence 525	AJ007398	Sequence 577	U76549
Sequence 526	U43701	Sequence 578	G06686
Sequence 527	X64084	Sequence 579	AF016098
Sequence 528	AI267454	Sequence 580	AF038187
Sequence 529	AJ004955	Sequence 581	Y11651
Sequence 530	R16006	Sequence 582	AB007889
Sequence 531	Al632869	Sequence 583	AC007051
Sequence 532	M80563	Sequence 584	AB015594
Sequence 533	AA368675	Sequence 585	AF086484
Sequence 534	X14768	Sequence 586	AL035461
Sequence 535	AA906587	Sequence 587	AF017418
Sequence 536	AA459880	Sequence 588	M24194
Sequence 537	AA375257	Sequence 589	V59520
Sequence 538	U15795	Sequence 590	Z26248
Sequence 539	Al360651	Sequence 591	U43286
Sequence 540	W44372	Sequence 592	L28010
Sequence 541	AA643774	Sequence 593	X95632
Sequence 542	AF044221	Sequence 594	V59590
Sequence 543	AA339992	Sequence 595	114045
Sequence 544	AB020715	Sequence 596	V61478
Sequence 545	C17545	Sequence 597	U72209
Sequence 546	AA188025	Sequence 598	AB018327
Sequence 547	159730	Sequence 599	AB001575
Sequence 548	AA045556	Sequence 600	D90452
Sequence 549	Al123013	Sequence 601	J02645
Sequence 550	E05515	Sequence 602	Y09328
Sequence 551	Al087271	Sequence 603	AL035405
Sequence 552	AA477144	Sequence 604	AC005531
Sequence 553	D13630	Sequence 605	AF150962
Sequence 554	H12747	Sequence 606	G30939
Sequence 555	L06132	Sequence 607	G06503
Sequence 556	R82345	Sequence 608	M64257
Sequence 557	Al290941	Sequence 609	AA374361
Sequence 558	V59599	Sequence 610	AA210727
Sequence 559	A14829	Sequence 611	M65062
Sequence 560	U90549	Sequence 612	AA421227
Sequence 561	AA129679	Sequence 613	AA332672
Sequence 562	AA025057	Sequence 614	AF070550
Sequence 563	X53615	Sequence 615	AB029026
Sequence 564	AB020723	Sequence 616	D25283
Sequence 565	U16850	Sequence 617	M24630
Sequence 566	X13345	Sequence 618	AA045221
Sequence 567	A18757	Sequence 619	AA301781
Sequence 568	G22983	Sequence 620	AA427711 AI269205
Sequence 569	D83779	Sequence 621	AL079444
Sequence 570	U80771	Sequence 622 Sequence 623	AL079444 AL049969
Sequence 571	J04795	Sequence 023	ハレシャララリラ

Sequence 625 T58681 Sequence 677 X81295 Sequence 626 H84433 Sequence 678 U53874 Sequence 627 AA007606 Sequence 680 AA99483 Sequence 629 AA853476 Sequence 680 AA99483 Sequence 629 AF029786 Sequence 681 D45021 Sequence 631 V72101 Sequence 683 A60690 Sequence 632 AA488444 Sequence 685 A800620 Sequence 633 A60699 Sequence 685 A800620 Sequence 636 A8033905 Sequence 680 V007550 Sequence 636 AA954500 Sequence 680 V00478 Sequence 639 A2945500 Sequence 691 M65028 Sequence 639 A1218178 Sequence 692 X71973 Sequence 641 AF151807 Sequence 692 X71973 Sequence 642 AA577605 Sequence 694 J03040 Sequence 643 A867373 Sequence 696 H05586 Sequence 644 R56773 Sequence 691 H05586 </th <th></th> <th></th> <th></th> <th></th>				
Sequence 626 H84433 Sequence 678 U53874 Sequence 627 AA007606 Sequence 679 D14710 Sequence 628 AA853476 Sequence 680 AA99483 Sequence 630 AC000119 Sequence 681 D45021 Sequence 631 V72101 Sequence 683 A60690 Sequence 633 AA88444 Sequence 685 AB002314 Sequence 633 E06949 Sequence 685 AB002325 Sequence 636 C60627 Sequence 688 D87735 Sequence 637 AA954500 Sequence 689 V00478 Sequence 637 AA954500 Sequence 699 V0478 Sequence 637 AA954500 Sequence 699 V0478 Sequence 638 AL046467 Sequence 699 V0478 Sequence 639 AI218178 Sequence 691 M65028 Sequence 640 J39050 Sequence 692 X71973 Sequence 641 AF151807 Sequence 694 J03040 Sequence 643 M37825 Sequence 694 J04994	Sequence 624	AW020970	Sequence 676	Al591201
Sequence 627 AA007606 Sequence 679 D14710 Sequence 628 AA853476 Sequence 680 AA99483 Sequence 629 AF029786 Sequence 681 D45021 Sequence 631 AC000119 Sequence 682 V68635 Sequence 631 Y72101 Sequence 683 A60690 Sequence 633 AB014595 Sequence 684 AB02314 Sequence 634 E06949 Sequence 686 M26325 Sequence 635 G10627 Sequence 687 U07550 Sequence 636 AA833905 Sequence 689 V00478 Sequence 637 AA954500 Sequence 689 V0478 Sequence 638 AL046467 Sequence 690 V34271 Sequence 631 AS17860 Sequence 691 M65028 Sequence 641 AF151807 Sequence 692 X71973 Sequence 641 AA577605 Sequence 694 J03040 Sequence 642 AA577605 Sequence 694 J03040 Sequence 645 X06269 Sequence 694 J03040 <td>Sequence 625</td> <td>T58681</td> <td>Sequence 677</td> <td>X81295</td>	Sequence 625	T58681	Sequence 677	X81295
Sequence 628 AAB53476 Sequence 680 AA99483 Sequence 629 AF029786 Sequence 681 D45021 Sequence 630 AC000119 Sequence 682 V68635 Sequence 631 V72101 Sequence 683 A60690 Sequence 632 AA488444 Sequence 684 AB02314 Sequence 633 AB014595 Sequence 686 AB00620 Sequence 636 AB33905 Sequence 687 U07550 Sequence 636 AA833905 Sequence 689 V00478 Sequence 637 AA954500 Sequence 689 V00478 Sequence 637 AA954500 Sequence 690 V34271 Sequence 630 AL046467 Sequence 691 M65028 Sequence 640 U39050 Sequence 692 X71973 Sequence 641 AF151807 Sequence 693 J03040 Sequence 643 M37825 Sequence 694 J03040 Sequence 644 R56773 Sequence 696 H05686 Sequence 647 AA672758 Sequence 698 AL04994<	Sequence 626	H84433	Sequence 678	
Sequence 629 AF029786 Sequence 681 D45021 Sequence 630 AC000119 Sequence 682 V88635 Sequence 631 V72101 Sequence 683 A60690 Sequence 632 AA488444 Sequence 684 AB02314 Sequence 634 E06949 Sequence 686 M26325 Sequence 636 G10627 Sequence 688 D87735 Sequence 637 AA954500 Sequence 689 V00478 Sequence 637 AA954500 Sequence 690 V34271 Sequence 633 AL046467 Sequence 691 M65028 Sequence 634 AL04667 Sequence 691 M65028 Sequence 634 A27151807 Sequence 692 X71973 Sequence 641 AF151807 Sequence 693 AF06124 Sequence 641 AF151807 Sequence 693 AF06124 Sequence 643 M37825 Sequence 693 AF06124 Sequence 644 R56773 Sequence 694 AL04994 Sequence 648 AA703779 Sequence 698 L66075<	Sequence 627	AA007606	Sequence 679	
Sequence 630 AC000119 Sequence 682 V68635 Sequence 631 V72101 Sequence 683 A60690 Sequence 632 AA488444 Sequence 685 A800820 Sequence 633 AB014595 Sequence 685 A800820 Sequence 634 E06949 Sequence 686 M26325 Sequence 635 G10627 Sequence 687 NA954500 Sequence 637 AA854500 Sequence 689 V00478 Sequence 639 AL046467 Sequence 689 V04778 Sequence 639 Al218178 Sequence 690 V34271 Sequence 639 Al218178 Sequence 691 M55028 Sequence 640 U39050 Sequence 693 AF06124 Sequence 641 AF151807 Sequence 699 AF06124 Sequence 642 AA577605 Sequence 695 AL04994 Sequence 644 R56773 Sequence 695 AL04994 Sequence 644 R56773 Sequence 698 L06075 Sequence 646 AA703779 Sequence 698 L06075	Sequence 628	AA853476	Sequence 680	AA994838
Sequence 631 V72101 Sequence 683 A60690 Sequence 632 AA488444 Sequence 684 AB02314 Sequence 633 AB014595 Sequence 686 AB00620 Sequence 634 E06949 Sequence 686 M26325 Sequence 636 AB33905 Sequence 687 U07550 Sequence 637 AA954500 Sequence 689 V00478 Sequence 638 AL046467 Sequence 690 V34271 Sequence 639 Al218178 Sequence 691 M56028 Sequence 639 Al218178 Sequence 692 X71973 Sequence 640 U39050 Sequence 693 AF06124 Sequence 641 AF151807 Sequence 693 AF06124 Sequence 643 M37825 Sequence 694 J03040 Sequence 643 M37825 Sequence 695 H05686 Sequence 644 R56773 Sequence 696 AL04994 Sequence 647 AA572758 Sequence 698 U66075 Sequence 647 AA572758 Sequence 699 AA47835 <td>Sequence 629</td> <td>AF029786</td> <td>Sequence 681</td> <td>D45021</td>	Sequence 629	AF029786	Sequence 681	D45021
Sequence 632 AA488444 Sequence 684 AB02314 Sequence 633 AB014595 Sequence 685 AB00620 Sequence 634 E06949 Sequence 687 M26325 Sequence 636 G10627 Sequence 688 D87735 Sequence 637 AA954500 Sequence 689 V00478 Sequence 638 AL046467 Sequence 690 V34271 Sequence 639 AL218178 Sequence 691 M56028 Sequence 640 U39050 Sequence 692 X71973 Sequence 641 AF151807 Sequence 693 AF06124 Sequence 642 AA577605 Sequence 693 AF06124 Sequence 644 AK577605 Sequence 695 AL04994 Sequence 644 R56773 Sequence 696 AL04994 Sequence 646 AA703779 Sequence 697 A1217773 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA836012 Sequence 699 AA47835 Sequence 650 AL267185 Sequence 700	Sequence 630	AC000119	Sequence 682	V68635
Sequence 633 AB014595 Sequence 685 AB00620 Sequence 634 E06949 Sequence 686 M26325 Sequence 636 G10627 Sequence 687 U07550 Sequence 636 AA833905 Sequence 688 D87735 Sequence 637 AA954500 Sequence 690 V34271 Sequence 639 AL218178 Sequence 690 V34271 Sequence 640 U39050 Sequence 692 X71973 Sequence 641 AF151807 Sequence 694 J03040 Sequence 642 AA577605 Sequence 694 J03040 Sequence 643 M37825 Sequence 695 H05686 Sequence 644 R56773 Sequence 696 AL04994 Sequence 646 AA703779 Sequence 698 L06075 Sequence 647 AA572758 Sequence 699 AA47832 Sequence 648 AA63012 Sequence 699 AA47832 Sequence 650 Al267185 Sequence 701 AF00189 Sequence 651 AA598653 Sequence 702 AA95406<	Sequence 631	V72101	Sequence 683	A60690
Sequence 634 E06949 Sequence 686 M26325 Sequence 635 G10627 Sequence 687 U07550 Sequence 636 AA833905 Sequence 688 D87735 Sequence 637 AA954500 Sequence 689 V00478 Sequence 638 AL046467 Sequence 690 V34271 Sequence 639 AI218178 Sequence 691 M65028 Sequence 640 U39050 Sequence 693 AF06124 Sequence 641 AF151807 Sequence 694 J03040 Sequence 642 AA577605 Sequence 694 J03040 Sequence 644 R56773 Sequence 695 H05686 Sequence 645 X66269 Sequence 697 AL217773 Sequence 646 AA703779 Sequence 699 AA47835 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA638012 Sequence 702 AA95406 Sequence 650 AI267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 703 W6274	Sequence 632	AA488444	Sequence 684	AB023140
Sequence 635 G10627 Sequence 687 U07550 Sequence 636 AA833905 Sequence 688 D87735 Sequence 637 AA954500 Sequence 689 V00478 Sequence 638 AL046467 Sequence 690 V34271 Sequence 639 AL218178 Sequence 691 M65028 Sequence 640 U39050 Sequence 692 X71973 Sequence 641 AF151807 Sequence 693 AF06124 Sequence 642 AA577605 Sequence 694 J03040 Sequence 644 R56773 Sequence 696 AL04994 Sequence 644 R56773 Sequence 697 AL217773 Sequence 646 AA703779 Sequence 697 AL217773 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA836012 Sequence 699 AA47835 Sequence 649 AA679328 Sequence 701 AF00189 Sequence 651 AA598653 Sequence 701 AF0189 Sequence 652 AA190738 Sequence 706 L	Sequence 633	AB014595	Sequence 685	AB006202
Sequence 636 AA833905 Sequence 688 D87735 Sequence 637 AA954500 Sequence 689 V00478 Sequence 637 AA954500 Sequence 689 V00478 Sequence 639 AL046467 Sequence 690 V34271 Sequence 640 U39050 Sequence 692 X71973 Sequence 641 AF151807 Sequence 693 AF06124 Sequence 642 AA577605 Sequence 694 J03040 Sequence 644 R56773 Sequence 696 AL04994 Sequence 645 X06269 Sequence 698 L06075 Sequence 646 AA703779 Sequence 698 L06075 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 649 AA679328 Sequence 701 AF00189 Sequence 650 A1267185 Sequence 702 A892322 Sequence 651 AA598653 Sequence 704 W51811 Sequence 653 A17003 Sequence 706 L87162 Sequence 654 L22384 Sequence 706 L47162<	Sequence 634	E06949	Sequence 686	M26325
Sequence 637 AA954500 Sequence 689 V00478 Sequence 638 AL046467 Sequence 690 V34271 Sequence 639 Al218178 Sequence 691 M65028 Sequence 640 U39050 Sequence 692 X71973 Sequence 641 AF151807 Sequence 693 AF06124 Sequence 642 AA577605 Sequence 694 J03040 Sequence 643 M37825 Sequence 695 H05686 Sequence 644 R56773 Sequence 696 AL04994 Sequence 645 X06269 Sequence 698 L06075 Sequence 644 AA572758 Sequence 699 AA47835 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 649 AA679328 Sequence 701 AF00189 Sequence 650 AL267185 Sequence 702 A95406 Sequence 651 AA598653 Sequence 702 A95406 Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 708 N80776<	Sequence 635	G10627	Sequence 687	U07550
Sequence 638 AL046467 Sequence 690 V34271 Sequence 639 Al218178 Sequence 691 M65028 Sequence 640 U39050 Sequence 692 X71973 Sequence 641 AF151807 Sequence 693 AF06124 Sequence 642 AA577605 Sequence 695 H05686 Sequence 643 M37825 Sequence 695 H05686 Sequence 644 R56773 Sequence 696 AL04994 Sequence 645 X06269 Sequence 698 L60075 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 649 AA679328 Sequence 701 AF00189 Sequence 650 Al267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 704 Wf3111 Sequence 652 AA190738 Sequence 704 Wf311 Sequence 653 AF012126 Sequence 705 N80776 Sequence 654 V22384 Sequence 706 L47162<	Sequence 636	AA833905	Sequence 688	D87735
Sequence 639 Al218178 Sequence 691 M65028 Sequence 640 U39050 Sequence 692 X71973 Sequence 641 AF151807 Sequence 693 AF06129 Sequence 642 AA577605 Sequence 694 J03040 Sequence 643 M37825 Sequence 695 H05686 Sequence 644 R56773 Sequence 696 AL04994 Sequence 645 X06269 Sequence 697 Al217773 Sequence 646 AA703779 Sequence 699 AA47835 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA836012 Sequence 699 AA47835 Sequence 649 AA679328 Sequence 701 AF00189 Sequence 650 Al267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 703 U62740 Sequence 653 A47003 Sequence 704 W51811 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 708 M1627	Sequence 637	AA954500	Sequence 689	V00478
Sequence 640 U39050 Sequence 692 X71973 Sequence 641 AF151807 Sequence 693 AF06124 Sequence 642 AA577605 Sequence 694 J03040 Sequence 643 M37825 Sequence 695 H05686 Sequence 644 R56773 Sequence 697 AL04994 Sequence 645 X06269 Sequence 697 Al217773 Sequence 646 AA703779 Sequence 699 AL47835 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA836012 Sequence 700 AB02322 Sequence 650 AL267185 Sequence 701 AF00188 Sequence 651 AA598653 Sequence 701 AF00189 Sequence 652 AA190738 Sequence 705 N80776 Sequence 653 A17003 Sequence 706 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 708 M16279 Sequence 656 A7054 Sequence 709 J03464 </td <td>Sequence 638</td> <td>AL046467</td> <td>Sequence 690</td> <td>V34271</td>	Sequence 638	AL046467	Sequence 690	V34271
Sequence 641 AF151807 Sequence 693 AF06124 Sequence 642 AA577605 Sequence 694 J03040 Sequence 643 M37825 Sequence 695 H05686 Sequence 644 R56773 Sequence 696 AL04994 Sequence 645 X06269 Sequence 697 Al217773 Sequence 646 AA703779 Sequence 699 Al217773 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA836012 Sequence 700 AB02322 Sequence 659 AL267185 Sequence 701 AF00189 Sequence 650 AL267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 703 U62740 Sequence 653 AA190738 Sequence 704 W61811 Sequence 653 AF012126 Sequence 705 N80776 Sequence 654 U22384 Sequence 707 V06592 Sequence 655 AF012126 Sequence 708 M16279 Sequence 656 A47054 Sequence 709 M1	Sequence 639	AI218178	Sequence 691	M65028
Sequence 642 AA577605 Sequence 694 J03040 Sequence 643 M37825 Sequence 695 H05686 Sequence 644 R56773 Sequence 696 AL04994 Sequence 645 X06269 Sequence 697 Al217773 Sequence 646 AA703779 Sequence 698 U66075 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA836012 Sequence 700 AB02322 Sequence 650 Al267185 Sequence 701 AF00189 Sequence 650 Al267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 703 U62740 Sequence 652 AA190738 Sequence 705 N80776 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 707 V06592 Sequence 657 AI075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA278	Sequence 640	U39050	Sequence 692	X71973
Sequence 643 M37825 Sequence 695 H05686 Sequence 644 R56773 Sequence 696 AL04994 Sequence 645 X06269 Sequence 697 Al217773 Sequence 646 AA703779 Sequence 698 U66075 Sequence 648 AA836012 Sequence 699 AA47835 Sequence 649 AA679328 Sequence 701 AF00189 Sequence 650 AA2678328 Sequence 702 AA95406 Sequence 651 AA598663 Sequence 702 AA95406 Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 707 M16279 Sequence 655 AF012136 Sequence 708 M16279 Sequence 657 AI075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA2	Sequence 641	AF151807	Sequence 693	AF061243
Sequence 644 R56773 Sequence 696 AL04994 Sequence 645 X06269 Sequence 697 Al217773 Sequence 646 AA703779 Sequence 698 U66075 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA836012 Sequence 701 AB02322 Sequence 659 AL267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 702 AA95406 Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 708 M16279 Sequence 655 AF012126 Sequence 709 J03464 Sequence 655 AF012126 Sequence 709 J03464 Sequence 657 AI075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA	Sequence 642	AA577605	Sequence 694	J03040
Sequence 645 X06269 Sequence 697 Al217773 Sequence 646 AA703779 Sequence 698 U66075 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA836012 Sequence 700 AB02322 Sequence 649 AA679328 Sequence 701 AF00189 Sequence 650 Al267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 703 U62740 Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 708 M16279 Sequence 656 Z47054 Sequence 709 J03464 Sequence 657 A1075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27936 Sequence 660 W76278 Sequence 712 X357	Sequence 643	M37825	Sequence 695	H05686
Sequence 646 AA703779 Sequence 698 U66075 Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA836012 Sequence 700 AB02322 Sequence 649 AA679328 Sequence 701 AF00189 Sequence 650 Al267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 703 U62740 Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 707 V06592 Sequence 656 Z47054 Sequence 709 J03464 Sequence 657 AI075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27936 Sequence 660 W76278 Sequence 713 AA11201 Sequence 661 AA932207 Sequence 713 AA1	Sequence 644	R56773	Sequence 696	AL049940
Sequence 647 AA572758 Sequence 699 AA47835 Sequence 648 AA836012 Sequence 700 AB02322 Sequence 649 AA679328 Sequence 701 AF00189 Sequence 650 Al267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 703 U62740 Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 706 M6279 Sequence 656 Z47054 Sequence 709 J03464 Sequence 657 AI075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27878 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 714 U47077 Sequence 663 J06306 Sequence 715 D17409<	Sequence 645	X06269	Sequence 697	Al217773
Sequence 648 AA836012 Sequence 700 AB02322 Sequence 649 AA679328 Sequence 701 AF00189 Sequence 650 Al267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 703 U62740 Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 707 V06592 Sequence 656 Z47054 Sequence 708 M16279 Sequence 657 AI075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27936 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 AI342840 Sequence 714 U47077 Sequence 663 AI6306 Sequence 715 D17409	Sequence 646	AA703779	Sequence 698	U66075
Sequence 649 AA679328 Sequence 701 AF00189 Sequence 650 Al267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 703 U62740 Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 707 V06592 Sequence 656 Z47054 Sequence 708 M16279 Sequence 657 AI075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27878 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 AI342840 Sequence 714 U47077 Sequence 663 AI6306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311<	Sequence 647	AA572758	Sequence 699	AA478355
Sequence 650 Al267185 Sequence 702 AA95406 Sequence 651 AA598653 Sequence 703 U62740 Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 707 V06592 Sequence 656 Z47054 Sequence 708 M16279 Sequence 657 Al075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27878 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 667 AA303683 Sequence 718 AA13144<	Sequence 648	AA836012	Sequence 700	AB023227
Sequence 651 AA598653 Sequence 703 U62740 Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 707 V06592 Sequence 656 Z47054 Sequence 708 M16279 Sequence 657 Al075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27878 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 718 AA13144 Sequence 666 N79650 Sequence 719 AL11758 <td>Sequence 649</td> <td>AA679328</td> <td>Sequence 701</td> <td>AF001893</td>	Sequence 649	AA679328	Sequence 701	AF001893
Sequence 652 AA190738 Sequence 704 W51811 Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 707 V06592 Sequence 656 Z47054 Sequence 708 M16279 Sequence 657 Al075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27878 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157	Sequence 650	Al267185	Sequence 702	AA954061
Sequence 653 A17003 Sequence 705 N80776 Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 707 V06592 Sequence 656 Z47054 Sequence 708 M16279 Sequence 657 Al075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27878 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 720 Al675157 Sequence 668 M59979 Sequence 721 Al765994	Sequence 651	AA598653	Sequence 703	U62740
Sequence 654 U22384 Sequence 706 L47162 Sequence 655 AF012126 Sequence 707 V06592 Sequence 656 Z47054 Sequence 708 M16279 Sequence 657 Al075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27936 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 720 Al675157 Sequence 668 M59979 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al6834	Sequence 652	AA190738	Sequence 704	W51811
Sequence 655 AF012126 Sequence 707 V06592 Sequence 656 Z47054 Sequence 708 M16279 Sequence 657 Al075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27936 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 670 R34765 Sequence 721 Al765994 Sequence 671 R09231 Sequence 722 Al683	Sequence 653	A17003	Sequence 705	N80776
Sequence 656 Z47054 Sequence 708 M16279 Sequence 657 Al075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27936 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 670 R34765 Sequence 721 Al765994 Sequence 671 R09231 Sequence 722 Al683487 Sequence 672 U07919 Sequence 724 Al623	Sequence 654	U22384	Sequence 706	L47162
Sequence 657 Al075338 Sequence 709 J03464 Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27936 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 670 R34765 Sequence 721 Al765994 Sequence 671 R09231 Sequence 722 Al683487 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL1	Sequence 655	AF012126	Sequence 707	V06592
Sequence 658 AL114973 Sequence 710 AA27878 Sequence 659 AA046572 Sequence 711 AA27936 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL1	Sequence 656	Z47054	Sequence 708	M16279
Sequence 659 AA046572 Sequence 711 AA27936 Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 660 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC005	Sequence 657	AI075338	Sequence 709	J03464
Sequence 660 W76278 Sequence 712 X35729 Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC0521	Sequence 658	AL114973	Sequence 710	AA278789
Sequence 661 AA932207 Sequence 713 AA11201 Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC0521	Sequence 659	AA046572	Sequence 711	AA279360
Sequence 662 Al342840 Sequence 714 U47077 Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC00521	Sequence 660	W76278	Sequence 712	X35729
Sequence 663 U16306 Sequence 715 D17409 Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC00521	Sequence 661	AA932207	Sequence 713	AA112013
Sequence 664 AA490172 Sequence 716 Z30311 Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623973 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S55179 Sequence 726 AC00321	Sequence 662	AI342840	Sequence 714	U47077
Sequence 665 Al087159 Sequence 717 Al093496 Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623973 Sequence 673 T19961 Sequence 725 AL111718 Sequence 674 S50179 Sequence 726 AC00521	Sequence 663	U16306	Sequence 715	D17409
Sequence 666 N79650 Sequence 718 AA13144 Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623973 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC00521	Sequence 664	AA490172	Sequence 716	Z30311
Sequence 667 AA303683 Sequence 719 AL11758 Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL11178 Sequence 674 S50179 Sequence 726 AC00521	Sequence 665	AI087159	Sequence 717	Al093496
Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC00521	Sequence 666	N79650	Sequence 718	AA131442
Sequence 668 M59979 Sequence 720 Al675157 Sequence 669 AA079806 Sequence 721 Al765994 Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC04321	Sequence 667	AA303683	Sequence 719	AL117588
Sequence 670 R34765 Sequence 722 Al683487 Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623979 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC00521		M59979	Sequence 720	AI675151
Sequence 671 R09231 Sequence 723 L18964 Sequence 672 U07919 Sequence 724 Al623978 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC00521	Sequence 669	AA079806	Sequence 721	Al765994
Sequence 672 U07919 Sequence 724 Al623973 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC00521	Sequence 670	R34765	Sequence 722	Al683487
Sequence 672 U07919 Sequence 724 Al623973 Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC00521	•			L18964
Sequence 673 T19961 Sequence 725 AL11018 Sequence 674 S50179 Sequence 726 AC00521 AC00521 AC00521 AC00521	•	U07919	Sequence 724	Al623979
Sequence 674 S50179 Sequence 726 AC00521	•	T19961		AL110183
· · · · · · · · · · · · · · · · · · ·	•	S50179		AC005213
•	· · · · · · · · · · · · · · · · · · ·	L14812	Sequence 727	AF047337
	•			

			4 4 0 0 4 0 0 0
Sequence 728	AA805260	Sequence 780	AA394288
Sequence 729	AA938465	Sequence 781	E02516
Sequence 730	Al074445	Sequence 782	AA441838
Sequence 731	Al982899	Sequence 783	L07956
Sequence 732	AA961489	Sequence 784	AF055581
Sequence 733	AA505399	Sequence 785	D50372
Sequence 734	C05952	Sequence 786	AJ238979
Sequence 735	D83077	Sequence 787	M38083
Sequence 736	D54330	Sequence 788	X52947
Sequence 737	AA281916	Sequence 789	AB027760
Sequence 738	AA053650	Sequence 790	L12350
Sequence 739	AA046605	Sequence 791	AF090094
Sequence 740	AA216658	Sequence 792	AA398603
Sequence 741	Al341247	Sequence 793	AA211149
Sequence 742	AJ001050	Sequence 794	M74777
Sequence 743	AF078952	Sequence 795	G29752
Sequence 744	AA418478	Sequence 796	AA962252
Sequence 745	N98506	Sequence 797	Al300566
Sequence 746	AI753391	Sequence 798	H95146
Sequence 747	H03754	Sequence 799	Al598275
Sequence 748	D86963	Sequence 800	X80910
Sequence 749	AA446505	Sequence 801	M34276
Sequence 750	AI627310	Sequence 802	AF155238
Sequence 751	AA122182	Sequence 803	AA779727
Sequence 752	A1866002	Sequence 804	M34539
Sequence 753	A00127	Sequence 805	AB026190
Sequence 754	AA902483	Sequence 806	AA361821
Sequence 755	AI688914	Sequence 807	U41850
Sequence 756	AF151888	Sequence 808	D25248
Sequence 757	X94232	Sequence 809	AA861332
Sequence 758	D17268	Sequence 810	AL040936
Sequence 759	M69023	Sequence 811	U27768
Sequence 760	L42450	Sequence 812	AR001278
Sequence 761	AF054187	Sequence 813	AA983343
Sequence 762	T19055	Sequence 814	AB023163
Sequence 763	AF026219	Sequence 815	M97501
Sequence 764	AF124598	Sequence 816	Al640873
Sequence 765	V40521	Sequence 817	AF110137
Sequence 766	AI473744	Sequence 818	AJ005282
Sequence 767	Al422893	Sequence 819	A17786
Sequence 768	AA724967	Sequence 820	M92650
Sequence 769	AA599298	Sequence B21	AF043117
Sequence 770	AL050091	Sequence 822	AF151868
Sequence 771	U34605	Sequence 823	D50406
Sequence 772	X06700	Sequence 824	AF070571
Sequence 773	Y07570	Sequence 825.	AI719534
Sequence 774	AF168956	Sequence 826	X57527
Sequence 775	AB002383	Sequence 827	AL117477
Sequence 776	AA101485	Sequence 828	AF100757
Sequence 777	H70950	Sequence 829	D14689
Sequence 778	Al005232	Sequence 830	Z68694
Sequence 779	AA448803	Sequence 831	AA150366

Sequence 832	AA027916	Sequence 884	AA374833
Sequence 833	AA593916	Sequence 885	AA037733
Sequence 834	AA315380	Sequence 886	H02133
Sequence 835	Al497945	Sequence 887	U09278
Sequence 836	Z72499	Sequence 888	AA504219
Sequence 837	AA094129	Sequence 889	R91396
Sequence 838	N73165	Sequence 890	M84739
Sequence 839	N76481	Sequence 891	W92189
Sequence 840	M11749	Sequence 892	AA173344
Sequence 841	L27476	Sequence 893	AF125102
Sequence 842	U57847	Sequence 894	M28226
Sequence 843	Al349598	Sequence 895	C18327
Sequence 844	AI151412	Sequence 896	AA037080
Sequence 845	M10119	Sequence 897	H07071
Sequence 846	M73548	Sequence 898	E02628
Sequence 847	D17265	Sequence 899	U40282
Sequence 848	AL080250	Sequence 900	AA007581
Sequence 849	AB020684	Sequence 901	D14665
Sequence 850	W81052	Sequence 902	AA359432
Sequence 851	D13666	Sequence 903	AF131784
Sequence 852	AB015907	Sequence 904	J02854
Sequence 853	M96982	Sequence 905	AL047817
Sequence 854	X04741	Sequence 906	AA398507
Sequence 855	J05459	Sequence 907	AA363596
Sequence 856	V04699	Sequence 908	AA314616
Sequence 857	J03132	Sequence 909	Al199501
Sequence 858	L42379	Sequence 910	AI039087
Sequence 859	AF014402	Sequence 911	C17797
Sequence 860	D78014	Sequence 912	A10,73868
Sequence 861	T29858	Sequence 913	X63053
Sequence 862	AA043141	Sequence 914	AI268335
Sequence 863	Al275042	Sequence 915	AA316622
Sequence 864	AA757127	Sequence 916	Al267262
Sequence 865	N31381	Sequence 917	L76687
Sequence 866	AI077939	Sequence 918	Al457612
Sequence 867	M14648	Sequence 919	AA426022
Sequence 868	Al685282	Sequence 920	AA248675
Sequence 869	L36643	Sequence 921	F11882
Sequence 870	N52703	Sequence 922	A1752379
Sequence 871	D14658	Sequence 923	AA316064
Sequence 872	Al338310	Sequence 924	AL079971
Sequence 873	AA037732	Sequence 925	AF002697
Sequence 874	L22009	Sequence 926	AA444104
Sequence 875	AI677797	Sequence 927	D86326
Sequence 876	AA071084	Sequence 928	AA410325
Sequence 877	M13520	Sequence 929	X13839
Sequence 878	J03202	Sequence 930	F07186
Sequence 879	D21863	Sequence 931	AA039259
Sequence 880	AA112058	Sequence 932	AA829527
Sequence 881	AA425726	Sequence 933	AA148035
Sequence 882	AA913606	Sequence 934	U16307
Sequence 883	Al160315	Sequence 935	V59556

	,		
Sequence 936	R32254	Sequence 988	U81504
Sequence 937	M58581	Sequenc 989	M30393
Sequence 938	X57352	Sequence 990	W26608
Sequence 939	AF093419	Sequence 991	AJ010953
Sequence 940	AA209369	Sequence 992	AA603425
Sequence 941	AA056070	Sequence 993	Al340582
Sequence 942	AA143548	Sequence 994	X57119
Sequence 943	AF010472	Sequence 995	M19715
Sequence 944	AA932802	Sequence 996	D13969
Sequence 945	AA347235	Sequence 997	AA604283
Sequence 946	X05185	Sequence 998	AI540845
Sequence 947	AA300590	Sequence 999	AI751565
Sequence 948	AF026850	Sequence 1000	AF086322
Sequence 949	AA465346	Sequence 1001	
Sequence 950	D63998	Sequence 1002	
Sequence 951	AA778403	Sequence 1003	N57339
Sequence 952	Al669229	Sequence 1004	
Sequence 953	AF147308	Sequence 1005	T62811
Sequence 954	M25246	Sequence 1006	
Sequence 955	Q66638	Sequence 1007	
Sequence 956	T19390	Sequence 1008	
Sequence 957	AA159812	Sequence 1009	
Sequence 958	AA298567	Sequence 1010	
Sequence 959	AA194107	Sequence 1011	
Sequence 960	AW006464	Sequence 1012	
Sequence 961	X07884	Sequence 1013	
Sequence 962	H08531	Sequence 1014	
Sequence 963	AA703921	Sequence 1015	
Sequence 964	AA132297	Sequence 1016	
Sequence 965	Al628774	Sequence 1017	
Sequence 966	AA587287	Sequence 1018	
Sequence 967	U85245	Sequence 1019	T50032
Sequence 968	AL117496	Sequence 1020	
Sequence 969	AA458537	Sequence 1021	
Sequence 970	U55206	Sequence 1022	
Sequence 971	AL036992	Sequence 1023	
Sequence 972	AB004788	Sequence 1024	
Sequence 973	H70961	Sequence 1025	
Sequence 974	AA514276	Sequence 1026	
Sequence 975	J04173	Sequence 1027	
Sequence 976	AA075585	Sequence 1028	
Sequence 977	AA569025	Sequence 1029	
Sequence 978	R08982	Sequence 1030	
Sequence 979	AA046129	Sequence 1031	
Sequence 980	X57398	Sequence 1032	VV/31/6
Sequence 981	AA401501	Sequence 1033	
Sequence 982	Al267502	Sequence 1034	
Sequence 983	Y15062	Sequence 1035	
Sequence 984	AI719154	Sequence 1036	
Sequence 985	D55904	Sequence 1037	
Sequence 986		Sequence 1038 Sequence 1039	
Sequence 987	H52071	Sednerine 1038	WW43020

Sequence 1040	X82456	Sequence 1092	AA622754
Sequence 1041	AI750821	Sequence 1093	
Sequence 1042	AF097330	Sequence 1094	
Sequence 1043		Sequence 1095	
Sequence 1044	AA456063	Sequence 1096	
Sequence 1045	AA192957	Sequence 1097	
Sequence 1046	AA349251	Sequence 1098	
Sequence 1047		Sequence 1099	
Sequence 1048	AA653712	Sequence 1100	
Sequence 1049	AF027515	Sequence 1101	
Sequence 1050	R67773	Sequence 1102	
Sequence 1051		Sequence 1103	
Sequence 1052	Al953237	Sequence 1104	
Sequence 1053		Sequence 1105	
Sequence 1054		Sequence 1106	
Sequence 1055		Sequence 1107	
Sequence 1056	L78132	Sequence 1108	
Sequence 1057		Sequence 1109	
Sequence 1058		Sequence 1110	
Sequence 1059	D87445	Sequence 1111	
Sequence 1060	AA814511	Sequence 1112	
Sequence 1061		Sequence 1113	
Sequence 1062	AL045852	Sequence 1114	
Sequence 1063		Sequence 1115	
Sequence 1064		Sequence 1116	
Sequence 1065	AA973825	Sequence 1117	
Sequence 1066		Sequence 1118	
Sequence 1067	AA348392	Sequence 1119	
Sequence 1068		Sequence 1120	
Sequence 1069	AI750696	Sequence 1121	
Sequence 1070	AB018342	Sequence 1122	
Sequence 1071	H56754	Sequence 1123	D50922
Sequence 1072	Al670903	Sequence 1124	AA004741
Sequence 1073	AF124440	Sequence 1125	AA430432
Sequence 1074	AA772032	Sequence 1126	Al267373
Sequence 1075	AA243794	Sequence 1127	W48619
Sequence 1076	AA081945	Sequence 1128	X56667
Sequence 1077	AA752775	Sequence 1129	Al391190
Sequence 1078	Al867294	Sequence 1130	AI830138
Sequence 1079	AF052162	Sequence 1131	L40392
Sequence 1080	AA167682	Sequence 1132	Z45277
Sequence 1081	AA669840	Sequence 1133	H63662
Sequence 1082	Al422167	Sequence 1134	D13633
Sequence 1083	Al573140	Sequence 1135	U31384
Sequence 1084	AA007419	Sequence 1136	
Sequence 1085		Sequence 1137	
Sequence 1086		Sequence 1138	
Sequence 1087		Sequence 1139	
Sequence 1088		Sequence 1140	
Sequence 1089		Sequence 1141	
Sequence 1090		Sequence 1142	AF022815
Sequence 1091	AL050073	Sequence 1143	AA600082

Sequence 1144	AB018344	Sequence 1196	AB006630
Sequence 1145	AA393062	Sequence 1197	
Sequence 1146		Sequence 1198	
Sequence 1147	AL050108	Sequence 1199	AA708613
Sequence 1148	Al765792	Sequence 1200	D55654
Sequence 1149	R63766	Sequence 1201	
Sequence 1150	Al692905	Sequence 1202	AA004267
Sequence 1151	AF052130	Sequence 1203	Al620015
Sequence 1152	AA115099	Sequence 1204	T47040
Sequence 1153	Al214054	Sequence 1205	M14505
Sequence 1154	X01060	Sequence 1206	D37781
Sequence 1155	D86958	Sequence 1207	AA211366
Sequence 1156		Sequence 1208	AI066593
Sequence 1157		Sequence 1209	R15973
Sequence 1158	AA234443	Sequence 1210	D78611
Sequence 1159	Al420933	Sequence 1211	AA148566
Sequence 1160	Al281273	Sequence 1212	AA167821
Sequence 1161		Sequence 1213	AA086379
Sequence 1162	AA912445	Sequence 1214	D13388
Sequence 1163		Sequence 1215	AA214212
Sequence 1164		Sequence 1216	
Sequence 1165		Sequence 1217	AL080211
Sequence 1166		Sequence 1218	AA614610
Sequence 1167		Sequence 1219	
Sequence 1168		Sequence 1220	AA062976
Sequence 1169		Sequence 1221	AL046230
Sequence 1170		Sequence 1222	
Sequence 1171		Sequence 1223	
Sequence 1172		Sequence 1224	
Sequence 1173		Sequence 1225	
Sequence 1174		Sequence 1226	
Sequence 1175		Sequence 1227	
Sequence 1176		Sequence 1228	
Sequence 1177		Sequence 1229	
Sequence 1178		Sequence 1230	
Sequence 1179		Sequence 1231	
Sequence 1180		Sequence 1232	
Sequence 1181		Sequence 1233	
Sequence 1182		Sequence 1234	
Sequence 1183		Sequence 1235	
Sequence 1184		Sequence 1236	
Sequence 1185		Sequence 1237	
Sequence 1186		Sequence 1238	
Sequence 1187		Sequence 1239	
Sequence 1188		Sequence 1240	
Sequence 1189		Sequence 1241	
Sequence 1190		Sequence 1242	
Sequence 1191		Sequence 1243	
Sequence 1192		Sequence 1244	
Sequence 1193		Sequence 1245	
Sequence 1194		Sequence 1246	
Sequence 1195		Sequence 1247	
			

Sequence 12	248	AI638323	Sequence 1300	U28727
Sequence 12			Sequence 1301	
Sequence 12	250	AA420458	Sequence 1302	AF013759
Sequence 12	251	AI807462	Sequence 1303	
Sequence 12	252	AL035706	Sequence 1304	AF052088
Sequence 12	253	AL110164	Sequence 1305	AB002365
Sequence 12	254	AA361453	Sequence 1306	AA402590
Sequence 12	255	D49387	Sequence 1307	AF042385
Sequence 12	256	L25616	Sequence 1308	AF042379
Sequence 12	257	Al435548	Sequence 1309	AF151895
Sequence 12	258	AI123697	Sequence 1310	J02683
Sequence 12	259	AF010316	Sequence 1311	X94440
Sequence 12	260	D29992	Sequence 1312	U37283
Sequence 12	261	X85055	Sequence 1313	AB012664
Sequence 12	262	AI436456	Sequence 1314	
Sequence 12	263	Z30171	Sequence 1315	AU037034
Sequence 12	264	Al612913	Sequence 1316	AB021868
Sequence 12			Sequence 1317	D10523
Sequence 12	266	AB023173	Sequence 1318	
Sequence 12	267	M37190	Sequence 1319	M14058
Sequence 12	268	X15881	Sequence 1320	L01042
Sequence 12	269	U37122	Sequence 1321	AF064084
Sequence 12	270	AF055899	Sequence 1322	U48296
Sequence 12	271	AI587288	Sequence 1323	AF106682
Sequence 12	272	AF055014	Sequence 1324	D50857
Sequence 12			Sequence 1325	
Sequence 12	274	AF084457	Sequence 1326	
Sequence 12	275	D29810	Sequence 1327	AB030905
Sequence 12	276	AF053318	Sequence 1328	
Sequence 12	277	AF081258	Sequence 1329	
Sequence 12	278	AF082858	Sequence 1330	
Sequence 12			Sequence 1331	
Sequence 12	280	G34894	Sequence 1332	X14787
Sequence 12	281	AF118395	Sequence 1333	
Sequence 12			Sequence 1334	
Sequence 12			Sequence 1335	
Sequence 12			Sequence 1336	
Sequence 12			Sequence 1337	
Sequence 12			Sequence 1338	
Sequence 12			Sequence 1339	
Sequence 12			Sequence 1340	
Sequence 12			Sequence 1341	
Sequence 12			Sequence 1342	
Sequence 12			Sequence 1343	
Sequence 12			Sequence 1344	Y00978
Sequence 12			Sequence 1345	
Sequence 12			Sequence 1346	
Sequence 12			Sequence 1347	V89854
Sequence 12	296 /	A5047040	Sequence 1348	
Sequence 12			Sequence 1349	
Sequence 12			Sequence 1350	
Sequence 12	283	NU2100	Sequence 1351	L4U307

_			
Sequence 1352		Sequence 1404	
Sequence 1353		Sequence 1405	
Sequence 1354		Sequence 1406	AF095136
Sequence 1355		Sequence 1407	AF065482
Sequence 1356		Sequence 1408	
Sequence 1357		Sequence 1409	
Sequence 1358		Sequence 1410	
Sequence 1359		Sequence 1411	
Sequence 1360		Sequence 1412	
Sequence 1361		Sequence 1413	
Sequence 1362		Sequence 1414	
Sequence 1363	Y00706	Sequence 1415	
Sequence 1364	AF069378	Sequence 1416	
Sequence 1365		Sequence 1417	
Sequence 1366	M69066	Sequence 1418	
Sequence 1367	AF068754	Sequence 1419	
Sequence 1368	M98343	Sequence 1420	AF060515
Sequence 1369		Sequence 1421	S69738
Sequence 1370		Sequence 1422	
Sequence 1371		Sequence 1423	U41766
Sequence 1372		Sequence 1424	AA315943
Sequence 1373		Sequence 1425	AA112744
Sequence 1374		Sequence 1426	X95677
Sequence 1375		Sequence 1427	
Sequence 1376		Sequence 1428	
Sequence 1377		Sequence 1429	T36035
Sequence 1378		Sequence 1430	
Sequence 1379		Sequence 1431	
Sequence 1380		Sequence 1432	
Sequence 1381		Sequence 1433	AI754681
Sequence 1382		Sequence 1434	M60255
Sequence 1383		Sequence 1435	AC005881
Sequence 1384		Sequence 1436	AF008551
Sequence 1385		Sequence 1437	X80199
Sequence 1386		Sequence 1438	AA069809
Sequence 1387		Sequence 1439	
Sequence 1388		Sequence 1440	
Sequence 1389		Sequence 1441	
Sequence 1390		Sequence 1442	
Sequence 1391		Sequence 1443	
Sequence 1392		Sequence 1444	D87717
Sequence 1393		Sequence 1445	
Sequence 1394	M29536	Sequence 1446	AI028373
Sequence 1395	V52604	Sequence 1447	
Sequence 1396		Sequence 1448	
Sequence 1397		Sequence 1449	
Sequence 1398		Sequence 1450	
Sequence 1399		Sequence 1451	
Sequence 1400		Sequence 1452	
Sequence 1401		Sequence 1453	
Sequence 1402		Sequence 1454	
Sequence 1403		Sequence 1455	
	· ····································		

Sequ nce 1456	AA091445	Sequence 1508	Al536912
Sequence 1457		Sequence 1509	AA121343
Sequence 1458	W79345	Sequence 1510	AA579865
Sequence 1459		Sequence 1511	U03688
Sequence 1460		Sequence 1512	H94496
Sequence 1461		Sequence 1513	N26939
Sequence 1462	AA768627	Sequence 1514	AL080212
Sequence 1463	AA132196	Sequence 1515	AA115095
Sequence 1464	AA191369	Sequence 1516	AA284304
Sequence 1465		Sequence 1517	AA043707
Sequence 1466	AA402606	Sequence 1518	R79904
Sequence 1467	AA157065	Sequence 1519	X22229
Sequence 1468	AA282584	Sequence 1520	AA464838
Sequence 1469	M38690	Sequence 1521	AF098968
Sequence 1470	D29963	Sequence 1522	R35089
Sequence 1471	Al619755	Sequence 1523	AA176094
Sequence 1472	Al014957	Sequence 1524	AL110197
Sequence 1473	AL117413	Sequence 1525	Al300178
Sequence 1474	AA039916	Sequence 1526	AI969271
Sequence 1475	AA095727	Sequence 1527	U22431
Sequence 1476	M98833	Sequence 1528	M55153
Sequence 1477	E06721	Sequence 1529	AR004664
Sequence 1478	AL117597	Sequence 1530	AB006713
Sequence 1479		Sequence 1531	Z85999
Sequence 1480	U14970	Sequence 1532	AF006070
Sequence 1481	AA399974	Sequence 1533	AL080058
Sequence 1482	AU074171	Sequence 1534	L13977
Sequence 1483	Al220869	Sequence 1535	Al480123
Sequence 1484		Sequence 1536	U33821
Sequence 1485	U90904	Sequence 1537	AF077951
Sequence 1486		Sequence 1538	AB028969
Sequence 1487		Sequence 1539	J03210
Sequence 1488	•	Sequence 1540	AF070640
Sequence 1489	AL117662	Sequence 1541	M37744
Sequence 1490	D00017	Sequence 1542	U38292
Sequence 1491		Sequence 1543	
Sequence 1492		Sequence 1544	
Sequence 1493		Sequence 1545	S42303
Sequence 1494		Sequence 1546	X66363
Sequence 1495		Sequence 1547	
Sequence 1496		Sequence 1548	
Sequence 1497		Sequence 1549	
Sequence 1498		Sequence 1550	
Sequence 1499		Sequence 1551	
Sequence 1500		Sequence 1552	
Sequence 1501		Sequence 1553	
Sequence 1502		Sequence 1554	
Sequence 1503		Sequence 1555	
Sequence 1504		Sequence 1556	
Sequence 1505		Sequence 1557	
Sequence 1506		Sequence 1558	
Sequence 1507	AF127918	Sequence 1559	AA740996

		_	
Sequence 1560		Sequence 1612	
Sequence 1561		Sequence 1613	
Sequence 1562		Sequence 1614	
Sequence 1563		Sequence 1615	
Sequence 1564		Sequence 1616	
Sequence 1565		Sequence 1617	
Sequence 1566		Sequence 1618	
Sequence 1567		Sequence 1619	
Sequence 1568		Sequence 1620	
Sequence 1569		Sequence 1621	
Sequence 1570		Sequence 1622	
Sequence 1571		Sequence 1623	
Sequence 1572		Sequence 1624	
Sequence 1573		Sequence 1625	
Sequence 1574		Sequence 1626	
Sequence 1575		Sequence 1627	
Sequence 1576		Sequence 1628	
Sequence 1577		Sequence 1629	
Sequence 1578		Sequence 1630	
Sequence 1579		Sequence 1631	
Sequence 1580	•	Sequence 1632	
Sequence 1581		Sequence 1633	
Sequence 1582		Sequence 1634	
Sequence 1583		Sequence 1635	
Sequence 1584		Sequence 1636	
Sequence 1585		Sequence 1637	
Sequence 1586		Sequence 1638	
Sequence 1587		Sequence 1639	AF035313
Sequence 1588		Sequence 1640	
Sequence 1589		Sequence 1641	
Sequence 1590		Sequence 1642	
Sequence 1591		Sequence 1643	
Sequence 1592		Sequence 1644	
Sequence 1593		Sequence 1645	
Sequence 1594		Sequence 1646	
Sequence 1595		Sequence 1647	
Sequence 1596		Sequence 1648	
Sequence 1597		Sequence 1649	
Sequence 1598		Sequence 1650	
Sequence 1599		Sequence 1651	
Sequence 1600		Sequence 1652	
Sequence 1601		Sequence 1653	
Sequence 1602		Sequence 1654	AA074819
Sequence 1603		Sequence 1655	
Sequence 1604		Sequence 1656	
Sequence 1605		Sequence 1657	
Sequence 1606		Sequence 1658	
Sequence 1607		Sequence 1659	
Sequence 1608		Sequence 1660	
Sequence 1609		Sequence 1661	
Sequence 1610		Sequence 1662	
Sequence 1611	Y00282	Sequence 1663	D13119

		_	
Sequence 1664		Sequence 1716	J02770
Sequence 1665		Sequence 1717	AA197063
Sequence 1666		Sequence 1718	
Sequence 1667		Sequence 1719	
Sequence 1668		Sequence 1720	AA057756
Sequence 1669		Sequence 1721	
Sequence 1670	M55618	Sequence 1722	
Sequence 1671	AB028950	Sequence 1723	
Sequence 1672	X81198	Sequence 1724	
Sequence 1673	U12465	Sequence 1725	
Sequence 1674	AF021336	Sequence 1726	
Sequence 1675		Sequence 1727	
Sequence 1676	AF110647	Sequence 1728	AA131746
Sequence 1677	X76538	Sequence 1729	AA131834
Sequence 1678	AF023244	Sequence 1730	
Sequence 1679	U14394	Sequence 1731	AA373516
Sequence 1680	J04088	Sequence 1732	AB002364
Sequence 1681	AL117450	Sequence 1733	
Sequence 1682	L40391	Sequence 1734	
Sequence 1683		Sequence 1735	
Sequence 1684		Sequence 1736	M32304
Sequence 1685	E02205	Sequence 1737	
Sequence 1686		Sequence 1738	
Sequence 1687		Sequence 1739	
Sequence 1688		Sequence 1740	
Sequence 1689		Sequence 1741	AL049367
Sequence 1690		Sequence 1742	
Sequence 1691		Sequence 1743	
Sequence 1692		Sequence 1744	U18009
Sequence 1693		Sequence 1745	
Sequence 1694	•	Sequence 1746	
Sequence 1695		Sequence 1747	
Sequence 1696		Sequence 1748	
Sequence 1697		Sequence 1749	
Sequence 1698		Sequence 1750	
Sequence 1699		Sequence 1751	
Sequence 1700		Sequence 1752	
Sequence 1701		Sequence 1753	X85011
Sequence 1702		Sequence 1754	
Sequence 1703		Sequence 1755	AL117448
Sequence 1704		Sequence 1756	
Sequence 1705		Sequence 1757	
Sequence 1706	AA381189	Sequence 1758	
Sequence 1707		Sequence 1759	
Sequence 1708		Sequence 1760	AL050228
Sequence 1709		Sequence 1761	
Sequence 1710		Sequence 1762	
Sequence 1711		Sequence 1763	
Sequence 1712		Sequence 1764	
Sequence 1713		Sequence 1765	
Sequence 1714		Sequence 1766	
Sequence 1715		Sequence 1767	
•			

18/66

TABLE 8

Sequence 1768: found in patent publication WO99/36550

CGAATTGGAGCTCCCCGCGGTGGCGGCCGCCCGGGCAGGTACTCAGGGAATGACGGTGGA AATNAACAACACGGATGCCGAGGGCAGGCTGGTGCTGGCAGATGGCGTGTCCTATGCTTG CAAGGACCTGGGGGCCGACATCATCCTGGACATGGCCACCCTGACCGGGGCTCAGGGCAT TGCCACAGGGAAGTACCT

Sequence 1769: found in patent publication WO99/24836

Sequence 1770: found in patent publication WO99/18126

Sequence 1771: found in patent publication WO99/14328

Sequence 1773: found in patent publication WO98/39448

Sequence 1774	M18728	Sequence 1826	
Sequence 1775	AJ010442	Sequence 1827	
Sequence 1776		Sequence 1828	
Sequence 1777		Sequence 1829	
Sequence 1778	Al699217	Sequence 1830	
Sequence 1779		Sequence 1831	
Sequence 1780	AA779949	Sequence 1832	
Sequence 1781	H25211	Sequence 1833	
Sequence 1782		Sequence 1834	
Sequence 1783		Sequence 1835	AL037114
Sequence 1784		Sequence 1836	H66467
Sequence 1785		Sequence 1837	AF016270
Sequence 1786		Sequence 1838	AA337022
Sequence 1787		Sequence 1839	
Sequence 1788		Sequence 1840	
Sequence 1789		Sequence 1841	
Sequence 1790		Sequence 1842	
Sequence 1791		Sequence 1843	
Sequence 1792		Sequence 1844	
Sequence 1793		Sequence 1845	
Sequence 1793		Sequence 1846	
Sequence 1795		Sequence 1847	
		Sequence 1848	
Sequence 1796		Sequence 1849	
Sequence 1797		Sequence 1850	
Sequence 1798		Sequence 1851	
Sequence 1799		Sequence 1852	
Sequence 1800		Sequence 1853	
Sequence 1801			
Sequence 1802		Sequence 1854	
Sequence 1803		Sequence 1855	
Sequence 1804		Sequence 1856	
Sequence 1805		Sequence 1857	
Sequence 1806		Sequence 1858	
Sequence 1807		Sequence 1859	
Sequence 1808		Sequence 1860	
Sequence 1809		Sequence 1861	
Sequence 1810		Sequence 1862	
Sequence 1811		Sequence 1863	
Sequence 1812		Sequence 1864	
Sequence 1813		Sequence 1865	
Sequence 1814		Sequence 1866	
Sequence 1815		Sequence 1867	
Sequence 1816		Sequence 1868	AA558436
Sequence 1817	AA506767	Sequence 1869	
Sequence 1818	L40679	Sequence 1870	AA369238
Sequence 1819		Sequence 1871	
Sequence 1820		Sequence 1872	
Sequence 1821		Sequence 1873	
Sequence 1822		Sequence 1874	
Sequence 1823		Sequence 1875	AA747415
Sequence 1824		Sequence 1876	
Sequence 1825		Sequence 1877	AB022656
•			

TABLE 8 .

	•		
Sequence 1878	M22918	Sequence 1930	X56998
Sequence 1879		Sequence 1931	
Sequence 1880		Sequence 1932	AA318678
Sequence 1881		Sequence 1933	D87742
Sequence 1882		Sequence 1934	
Sequence 1883		Sequence 1935	M24486
Sequence 1884		Sequence 1936	
Sequence 1885	AJ231669	Sequence 1937	
Sequence 1886		Sequence 1938	
Sequence 1887		Sequence 1939	
Sequence 1888		Sequence 1940	
Sequence 1889		Sequence 1941	
Sequence 1890	AF061736	Sequence 1942	
Sequence 1891	Z30567	Sequence 1943	
Sequence 1892	AF071593	Sequence 1944	
Sequence 1893	T94936	Sequence 1945	
Sequence 1894	AA042879	Sequence 1946	R14392
Sequence 1895	Q51548	Sequence 1947	
Sequence 1896	R83590	Sequence 1948	
Sequence 1897		Sequence 1949	
Sequence 1898		Sequence 1950	
Sequence 1899		Sequence 1951	
Sequence 1900		Sequence 1952	
Sequence 1901		Sequence 1953	AI185700
Sequence 1902	AA635411	Sequence 1954	H80042
Sequence 1903		Sequence 1955	
Sequence 1904		Sequence 1956	
Sequence 1905	X55122	Sequence 1957	D38293
Sequence 1906	AA100138	Sequence 1958	
Sequence 1907		Sequence 1959	
Sequence 1908	R15890	Sequence 1960	X06617
Sequence 1909		Sequence 1961	
Sequence 1910		Sequence 1962	
Sequence 1911		Sequence 1963	
Sequence 1912	AA480231	Sequence 1964	
Sequence 1913		Sequence 1965	
Sequence 1914	Al671968	Sequence 1966	X81695
Sequence 1915	Al127556	Sequence 1967	
Sequence 1916	Y17957	Sequence 1968	
Sequence 1917		Sequence 1969	
Sequence 1918		Sequence 1970	
Sequence 1919	AA911387	Sequence 1971	L29157
Sequence 1920	AI127076	Sequence 1972	X85372
Sequence 1921	M69106	Sequence 1973	
Sequence 1922		Sequence 1974	Al765009
Sequence 1923	Al417239	Sequence 1975	AA295258
Sequence 1924	AA455793	Sequence 1976	AF025439
Sequence 1925	X13238	Sequence 1977	W26884
Sequence 1926	D55654	Sequence 1978	
Sequence 1927	AF132856	Sequence 1979	U66615
Sequence 1928	U15008	Sequence 1980	AA731897
Sequence 1929	AA689307	Sequence 1981	M65209
		•	

Sequence 1982		Sequence 2034	
Sequence 1983		S quence 2035	N64214
Sequence 1984		Sequence 2036	
Sequence 1985		Sequence 2037	
Sequence 1986		Sequence 2038	
Sequence 1987		Sequence 2039	
Sequence 1988		Sequence 2040	
Sequence 1989		Sequence 2041	
Sequence 1990		Sequence 2042	
Sequence 1991		Sequence 2043	
Sequence 1992	AA282664	Sequence 2044	
Sequence 1993		Sequence 2045	
Sequence 1994	AA806798	Sequence 2046	
Sequence 1995		Sequence 2047	
Sequence 1996		Sequence 2048	
Sequence 1997	AA321244	Sequence 2049	
Sequence 1998	U28811	Sequence 2050	
Sequence 1999		Sequence 2051	
Sequence 2000	AA649195	Sequence 2052	
Sequence 2001	T44091	Sequence 2053	
Sequence 2002	Z30570	Sequence 2054	AA976744
Sequence 2003	AA430565	Sequence 2055	
Sequence 2004	AA009707	Sequence 2056	
Sequence 2005	AF077034	Sequence 2057	
Sequence 2006	AA292993	Sequence 2058	
Sequence 2007	AA297402	Sequence 2059	
Sequence 2008	U88666	Sequence 2060	
Sequence 2009	D86974	Sequence 2061	
Sequence 2010	Al208741	Sequence 2062	
Sequence 2011	X04098	Sequence 2063	
Sequence 2012		Sequence 2064	
Sequence 2013	AA206085	Sequence 2065	
Sequence 2014		Sequence 2066	
Sequence 2015		Sequence 2067	
Sequence 2016		Sequence 2068	
Sequence 2017		Sequence 2069	
Sequence 2018		Sequence 2070	
Sequence 2019		Sequence 2071	
Sequence 2020		Sequence 2072	
Sequence 2021	AA307779	Sequence 2073	
Sequence 2022	AA081760	Sequence 2074	U03274
Sequence 2023		Sequence 2075	AF144713
Sequence 2024	R79907	Sequence 2076	AA490523
Sequence 2025		Sequence 2077	
Sequence 2026	M90809	Sequence 2078	
Sequence 2027		Sequence 2079	
Sequence 2028		Sequence 2080	
Sequence 2029		Sequence 2081	
Sequence 2030		Sequence 2082	
Sequence 2031		Sequence 2083	
Sequence 2032		Sequence 2084	
Sequence 2033	AF015812	Sequence 2085	D87078

			*
Sequence 2086	E08294	Sequence 2138	AA128111
Sequence 2087	AF055014	Sequence 2139	AA773032
Sequence 2088	Al124281	Sequence 2140	
Sequence 2089	AA705813	Sequence 2141	AF063527
Sequence 2090	AA632134	Sequence 2142	
Sequence 2091	AA125759	Sequence 2143	
Sequence 2092	AB018346	Sequence 2144	AA196117
Sequence 2093	AF099149	Sequence 2145	G06380
Sequence 2094	L26260	Sequence 2146	AF061926
Sequence 2095	AA147826	Sequence 2147	Al499129
Sequence 2096		Sequence 2148	AA495923
Sequence 2097	AF086234	Sequence 2149	AA026387
Sequence 2098		Sequence 2150	
Sequence 2099	•	Sequence 2151	
Sequence 2100		Sequence 2152	
Sequence 2101		Sequence 2153	AA022937
Sequence 2102		Sequence 2154	
Sequence 2103		Sequence 2155	
Sequence 2104		Sequence 2156	
Sequence 2105		Sequence 2157	
Sequence 2106		Sequence 2158	
Sequence 2107		Sequence 2159	
Sequence 2108		Sequence 2160	
Sequence 2109		Sequence 2161	
Sequence 2110		Sequence 2162	
Sequence 2111		Sequence 2163	
Sequence 2112		Sequence 2164	
Sequence 2113		Sequence 2165	
Sequence 2114		Sequence 2166	
Sequence 2115		Sequence 2167	
Sequence 2116		Sequence 2168	
Sequence 2117		Sequence 2169	
Sequence 2118		Sequence 2170	
Sequence 2119		Sequence 2171	
Sequence 2120		Sequence 2172	
Sequence 2121		Sequence 2173	
Sequence 2122		Sequence 2174	
Sequence 2123		Sequence 2175	
Sequence 2124		Sequence 2176	
Sequence 2125		Sequence 2177	
Sequence 2126		Sequence 2178	
Sequence 2127		Sequence 2179	
Sequence 2128		Sequence 2180	
Sequence 2129		Sequence 2181	
Sequence 2130		Sequence 2182	
Sequence 2131		Sequence 2183	
Sequence 2132		Sequence 2184	
Sequence 2133		Sequence 2185	
Sequence 2134		Sequence 2186	AA682861
Sequence 2135	AA327546	Sequence 2187	
Sequence 2136		Sequence 2188	
Sequence 2137		Sequence 2189	
ouquerior 2 101			

Sequenc 2190	X40372	Sequence 2242	AF151803
Sequence 2191	L22157	Sequence 2243	AL048707
Sequence 2192	N36740	Sequence 2244	AB011088
Sequence 2193		Sequence 2245	W00352
Sequence 2194	Q20067	Sequence 2246	AF153608
Sequence 2195	U07443	Sequence 2247	AA725071
Sequence 2196	AF047436	Sequence 2248	U07446
Sequence 2197	U69668	Sequence 2249	AA316441
Sequence 2198	Al435293	Sequence 2250	AA441787
Sequence 2199	AB003698	Sequence 2251	M22590
Sequence 2200	AB004066	Sequence 2252	
Sequence 2201	AA505632	Sequence 2253	AA528108
Sequence 2202	Y14737	Sequence 2254	
Sequence 2203	AA581946	Sequence 2255	H71830
Sequence 2204	X87949	Sequence 2256	
Sequence 2205		Sequence 2257	
Sequence 2206		Sequence 2258	
Sequence 2207		Sequence 2259	
Sequence 2208		Sequence 2260	
Sequence 2209		Sequence 2261	
Sequence 2210		Sequence 2262	
Sequence 2211		Sequence 2263	
Sequence 2212		Sequence 2264	
Sequence 2213		Sequence 2265	
Sequence 2214		Sequence 2266	
Sequence 2215		Sequence 2267	
Sequence 2216		Sequence 2268	
Sequence 2217		Sequence 2269	
Sequence 2218		Sequence 2270	
Sequence 2219		Sequence 2271	
Sequence 2220		Sequence 2272	
Sequence 2221		Sequence 2273	
Sequence 2222		Sequence 2274	
Sequence 2223		Sequence 2275	
Sequence 2224		Sequence 2276	
		•	
Sequence 2225		Sequence 2277	
Sequence 2226		Sequence 2278	
Sequence 2227		Sequence 2279	
Sequence 2228 Sequence 2229		Sequence 2280 Sequence 2281	
Sequence 2230		·	
Sequence 2231		Sequence 2282	
•		Sequence 2283 Sequence 2284	
Sequence 2232 Sequence 2233		•	
		Sequence 2285	
Sequence 2234		Sequence 2286	
Sequence 2235		Sequence 2287	
Sequence 2236		Sequence 2288	
Sequence 2237		Sequence 2289	
Sequence 2238		Sequence 2290	
Sequence 2239		Sequence 2291	
Sequence 2240		Sequence 2292	
Sequence 2241	A10/94	Sequence 2293	MUZ1922

Sequence 2294	F24320	Sequence 2346	
Sequence 2295		Sequence 2347	
Sequence 2296	AU067004	Sequence 2348	
Sequence 2297		Sequence 2349	
Sequence 2298	Al688098	Sequence 2350	
Sequence 2299		Sequence 2351	
Sequence 2300		Sequence 2352	
Sequence 2301	AA017582	Sequence 2353	
Sequence 2302	AA713551	Sequence 2354	
Sequence 2303	T63701	Sequence 2355	
Sequence 2304	L29222	Sequence 2356	
Sequence 2305	U90549	Sequence 2357	
Sequence 2306	AA482212	Sequence 2358	
Sequence 2307	AF103393	Sequence 2359	
Sequence 2308	R70290	Sequence 2360	
Sequence 2309		Sequence 2361	Al248817
Sequence 2310	U51478	Sequence 2362	
Sequence 2311		Sequence 2363	
Sequence 2312		Sequence 2364	AF015926
Sequence 2313		Sequence 2365	U17496
Sequence 2314		Sequence 2366	AA488211
Sequence 2315		Sequence 2367	AA173402
Sequence 2316		Sequence 2368	Al203143
Sequence 2317		Sequence 2369	AL039323
Sequence 2318		Sequence 2370	
Sequence 2319		Sequence 2371	V88876
Sequence 2320		Sequence 2372	
Sequence 2321		Sequence 2373	
Sequence 2322		Sequence 2374	AL036650
Sequence 2323		Sequence 2375	AA374020
Sequence 2324		Sequence 2376	AA113151
Sequence 2325		Sequence 2377	
Sequence 2326		Sequence 2378	AA362095
Sequence 2327		Sequence 2379	
Sequence 2328		Sequence 2380	
Sequence 2329		Sequence 2381	
Sequence 2330		Sequence 2382	AI080359
Sequence 2331		Sequence 2383	
Sequence 2332		Sequence 2384	R36562
Sequence 2333		Sequence 2385	
Sequence 2334		Sequence 2386	
Sequence 2335		Sequence 2387	
Sequence 2336	AF151878	Sequence 2388	
Sequence 2337		Sequence 2389	AA403087
Sequence 2338		Sequence 2390	AA725267
Sequence 2339		Sequence 2391	AA301032
Sequence 2340		Sequence 2392	
Sequence 2341		Sequence 2393	AA563865
Sequence 2342		Sequence 2394	AA021135
Sequence 2343		Sequence 2395	
Sequence 2344		Sequence 2396	AA015682
Sequence 2345		Sequence 2397	AA293287
		-	

Sequence 2398	AA295311	Sequence 2450	AA484752
Sequence 2399	AF035287	Sequence 2451	
Sequence 2400	AA381317	Sequence 2452	D15657
Sequence 2401	Al290826	Sequence 2453	U07510
Sequence 2402		Sequence 2454	Al262029
Sequence 2403	M77693	Sequence 2455	AF086522
Sequence 2404	AA190353	Sequence 2456	L37303
Sequence 2405	H07011	Sequence 2457	AA236638
Sequence 2406	X81109	Sequence 2458	F19095
Sequence 2407	AA205004	Sequence 2459	AA327357
Sequence 2408	AF103150	Sequence 2460	Al631745
Sequence 2409	Z45495	Sequence 2461	AI708983
Sequence 2410	X72815	Sequence 2462	H53479
Sequence 2411	N81637	Sequence 2463	AR051554
Sequence 2412	AJ010444	Sequence 2464	Al770054
Sequence 2413	AI016773	Sequence 2465	AT000865
Sequence 2414	AA302623	Sequence 2466	
Sequence 2415	AI557284	Sequence 2467	E02904
Sequence 2416	AB004304	Sequence 2468	AI609630
Sequence 2417	AA143149	Sequence 2469	
Sequence 2418	AA309058	Sequence 2470	
Sequence 2419	AA923061	Sequence 2471	
Sequence 2420	•	Sequence 2472	
Sequence 2421		Sequence 2473	
Sequence 2422		Sequence 2474	
Sequence 2423	Al312963	Sequence 2475	
Sequence 2424		Sequence 2476	
Sequence 2425		Sequence 2477	
Sequence 2426	AA375003	Sequence 2478	
Sequence 2427		Sequence 2479	
Sequence 2428		Sequence 2480	
Sequence 2429	AA287796	Sequence 2481	
Sequence 2430	L15702	Sequence 2482	
Sequence 2431		Sequence 2483	
Sequence 2432	U07430	Sequence 2484	
Sequence 2433		Sequence 2485	
Sequence 2434		Sequence 2486	
Sequence 2435		Sequence 2487	
Sequence 2436		Sequence 2488	
Sequence 2437		Sequence 2489	
Sequence 2438	AA167761	Sequence 2490	
Sequence 2439		Sequence 2491	
Sequence 2440		Sequence 2492	
Sequence 2441		Sequence 2493	
Sequence 2442		Sequence 2494	
Sequence 2443		Sequence 2495	
Sequence 2444	N28493	Sequence 2496	
Sequence 2445		Sequence 2497	
Sequence 2446		Sequence 2498	
Sequence 2447		Sequence 2499	
Sequence 2448		Sequence 2500	
Sequence 2449		Sequence 2501	
•		•	

			115 4047 4
Sequence 2502	AF152961	Sequence 2554	
Sequence 2503		Sequence 2555	AF038452
Sequence 2504		Sequence 2556	
Sequence 2505	AA464313	Sequence 2557	A142334 I
Sequence 2506		Sequence 2558	
Sequence 2507		Sequence 2559	Z11890
Sequence 2508		Sequence 2560	
Sequence 2509		Sequence 2561	
Sequence 2510		Sequence 2562	AF131857
Sequence 2511		Sequence 2563	
Sequence 2512		Sequence 2564	
Sequence 2513	Q11879	Sequence 2565	X58082
Sequence 2514		Sequence 2566	U24105
Sequence 2515	L03166	Sequence 2567	
Sequence 2516	W67625	Sequence 2568	
Sequence 2517	AA234225	Sequence 2569	L33042
Sequence 2518	Al370191	Sequence 2570	AF151885
Sequence 2519	AA165165	Sequence 2571	AA306892
Sequence 2520	AF070655	Sequence 2572	
Sequence 2521		Sequence 2573	
Sequence 2522	AF124726	Sequence 2574	
Sequence 2523		Sequence 2575	
Sequence 2524		Sequence 2576	
Sequence 2525		Sequence 2577	
Sequence 2526		Sequence 2578	
Sequence 2527		Sequence 2579	
Sequence 2528		Sequence 2580	
Sequence 2529		Sequence 2581	
Sequence 2530	AA240797	Sequence 2582	G34917
Sequence 2531		Sequence 2583	
Sequence 2532		Sequence 2584	
Sequence 2533	AL037679	Sequence 2585	U27900
Sequence 2534		Sequence 2586	
Sequence 2535		Sequence 2587	
Sequence 2536		Sequence 2588	
Sequence 2537		Sequence 2589	
Sequence 2538		Sequence 2590	S78271
Sequence 2539		Sequence 2591	
Sequence 2540		Sequence 2592	
Sequence 2541		Sequence 2593	
Sequence 2542		Sequence 2594	
Sequence 2543		Sequence 2595	Al204592
Sequence 2544	AF103468	Sequence 2596	
Sequence 2545		Sequence 2597	
Sequence 2546		Sequence 2598	
Sequence 2547		Sequence 2599	
Sequence 2548		Sequence 2600	
Sequence 2549		Sequence 2601	
Sequence 2550	108142	Sequence 2602	
Sequence 2551	AA075179	Sequence 2603	
Sequence 2552		Sequence 2604	
Sequence 2553		Sequence 2605	R29275
•			

Sequence 2606	AA639707	Sequence 2658	AA021457
Sequence 2607	AA102421	Sequence 2659	AA451629
Sequence 2608	Q40768	Sequence 2660	Y00503
Sequence 2609	E03413	Sequence 2661	AI630567
Sequence 2610	AA595559	Sequence 2662	E01971
Sequence 2611	AA113357	Sequence 2663	X82200
Sequence 2612	AA346556	Sequence 2664	L40669
Sequence 2613	M83822	Sequence 2665	AF103548
Sequence 2614	X54942	Sequence 2666	AA580264
Sequence 2615	N24798	Sequence 2667	Z26605
Sequence 2616	AA308091	Sequence 2668	U72511
Sequence 2617	AC005412	Sequence 2669	Al631124
Sequence 2618	N92545	Sequence 2670	AL120972
Sequence 2619	AA587815	Sequence 2671	R91802
Sequence 2620	Al707551	Sequence 2672	U25789
Sequence 2621	L01413	Sequence 2673	Z20414
Sequence 2622	D17039	Sequence 2674	M63438
Sequence 2623	AI741718	Sequence 2675	AA807383
Sequence 2624	AA307513	Sequence 2676	Al267659
Sequence 2625	AF077045	Sequence 2677	T02921
Sequence 2626	T78825	Sequence 2678	Al684170
Sequence 2627	R69391	Sequence 2679	AA405397
Sequence 2628	Al253335	Sequence 2680	X65882
Sequence 2629	AA459984	Sequence 2681	AA558899
Sequence 2630	Al702073	Sequence 2682	AL037176
Sequence 2631		Sequence 2683	T72111
Sequence 2632	AA393828	Sequence 2684	M29469
Sequence 2633	AL035695	Sequence 2685	AF071219
Sequence 2634	D29013	Sequence 2686	Z70648
Sequence 2635		Sequence 2687	AA223226
Sequence 2636		Sequence 2688	U44839
Sequence 2637		Sequence 2689	L40739
Sequence 2638	AA581264	Sequence 2690	AB018334
Sequence 2639	AA304821	Sequence 2691	L40697
Sequence 2640		Sequence 2692	AA464133
Sequence 2641		Sequence 2693	Al613017
Sequence 2642		Sequence 2694	AL039521
Sequence 2643		Sequence 2695	AB028963
Sequence 2644		Sequence 2696	
Sequence 2645		Sequence 2697	L40646
Sequence 2646		Sequence 2698	
Sequence 2647		Sequence 2699	
Sequence 2648		Sequence 2700	
Sequence 2649		Sequence 2701	
Sequence 2650		Sequence 2702	
Sequence 2651		Sequence 2703	
Sequence 2652		Sequence 2704	
Sequence 2653		Sequence 2705	
Sequence 2654		Sequence 2706	
Sequence 2655		Sequence 2707	
Sequence 2656		Sequence 2708	
Sequence 2657	U8//91	Sequence 2709	U09559

Sequence 2710	D87444	Sequence 2762	
Sequence 2711	AA152012	Sequence 2763	
Sequence 2712	R65657	Sequence 2764	
Sequence 2713		Sequence 2765	X67951
Sequence 2714		Sequence 2766	
Sequence 2715		Sequence 2767	
Sequence 2716	L03146	Sequence 2768	X65882
Sequence 2717	L15189	Sequence 2769	
Sequence 2718	Al339485	Sequence 2770	
Sequence 2719	AA740952	Sequence 2771	
Sequence 2720	AA009884	Sequence 2772	
Sequence 2721	X63745	Sequence 2773	
Sequence 2722	AA468276	Sequence 2774	AF086450
Sequence 2723	U67280	Sequence 2775	L03162
Sequence 2724	R83213	Sequence 2776	
Sequence 2725	X15729	Sequence 2777	E01972
Sequence 2726	Z85780	Sequence 2778	U69668
Sequence 2727		Sequence 2779	X91257
Sequence 2728		Sequence 2780	
Sequence 2729	AA664014	Sequence 2781	AF038452
Sequence 2730		Sequence 2782	AF147331
Sequence 2731		Sequence 2783	AF027159
Sequence 2732	L01439	Sequence 2784	U09564
Sequence 2733		Sequence 2785	D55654
Sequence 2734		Sequence 2786	U88666
Sequence 2735		Sequence 2787	
Sequence 2736		Sequence 2788	J04162
Sequence 2737		Sequence 2789	AF103469
Sequence 2738		Sequence 2790	AL049404
Sequence 2739		Sequence 2791	AF070561
Sequence 2740		Sequence 2792	
Sequence 2741		Sequence 2793	
Sequence 2742	E08293	Sequence 2794	
Sequence 2743	AL035304	Sequence 2795	
Sequence 2744		Sequence 2796	AF054990
Sequence 2745		Sequence 2797	AL080136
Sequence 2746	Y17957	Sequence 2798	
Sequence 2747	Y00503	Sequence 2799	AF103150
Sequence 2748		Sequence 2800	
Sequence 2749		Sequence 2801	
Sequence 2750	X95750	Sequence 2802	
Sequence 2751		Sequence 2803	
Sequence 2752	X59417	Sequence 2804	
Sequence 2753	AJ007398	Sequence 2805	AB012910
Sequence 2754	AF103460	Sequence 2806	
Sequence 2755	AF100759	Sequence 2807	
Sequence 2756		Sequence 2808	
Sequence 2757		Sequence 2809	
Sequence 2758		Sequence 2810	
Sequence 2759		Sequence 2811	
Sequence 2760		Sequence 2812	
Sequence 2761		Sequence 2813	X73459
-			

Sequence 2814	Z30567 ,	Sequence 2866	M12938
Sequence 2815	E03413	Sequence 2867	
Sequence 2816	J03799	Sequence 2868	
Sequence 2817	Z11894	Sequence 2869	
Sequence 2818	M30608	Sequence 2870	AL110297
Sequence 2819	M18728	Sequence 2871	AL110241
Sequence 2820	Y14737	Sequence 2872	X59407
Sequence 2821	S82616	Sequence 2873	J03241
Sequence 2822	Y00282	Sequence 2874	X81696
Sequence 2823	AF103468	Sequence 2875	E08294
Sequence 2824	AF099149	Sequence 2876	AB022654
Sequence 2825	L26260	Sequence 2877	AB022656
Sequence 2826	AF054284	Sequence 2878	U07430
Sequence 2827	D13665	Sequence 2879	U07516
Sequence 2828	Y10179	Sequence 2880	X06617
Sequence 2829	X89401	Sequence 2881	M60854
Sequence 2830	U07443	Sequence 2882	V00518
Sequence 2831		Sequence 2883	AF060228
Sequence 2832	M29469	Sequence 2884	
Sequence 2833	Z30564	Sequence 2885	D00760
Sequence 2834	U07465	Sequence 2886	X59406
Sequence 2835	X05606	Sequence 2887	AF061736
Sequence 2836	E02628	Sequence 2888	AA294850
Sequence 2837		Sequence 2889	
Sequence 2838		Sequence 2890	
Sequence 2839	AF044956	Sequence 2891	
Sequence 2840	AF042081	Sequence 2892	
Sequence 2841		Sequence 2893	
Sequence 2842	AF086234	Sequence 2894	AA296279
Sequence 2843		Sequence 2895	AA223779
Sequence 2844		Sequence 2896	AL039100
Sequence 2845	M63438	Sequence 2897	
Sequence 2846	X95747	Sequence 2898	
Sequence 2847	D17039	Sequence 2899	
Sequence 2848	AF007791	Sequence 2900	
Sequence 2849	L15702	Sequence 2901	Al253335
Sequence 2850	AL110185	Sequence 2902	AA292047
Sequence 2851	U15008	Sequence 2903	
Sequence 2852	U09559	Sequence 2904	Al417973
Sequence 2853	X15729	Sequence 2905	AI767622
Sequence 2854	AF065388	Sequence 2906	
Sequence 2855	U26032	Sequence 2907	
Sequence 2856	L40648	Sequence 2908	
Sequence 2857	D50525	Sequence 2909	
Sequence 2858	AF095448	Seguence 2910	
Sequence 2859	S78271	Sequence 2911	R64693
Sequence 2860	X04098	Sequence 2912	
Sequence 2861	L29157	Sequence 2913	
Sequence 2862	Z30570	Sequence 2914	
Sequence 2863	AF151803	Sequence 2915	
Sequence 2864	AB028963	Sequence 2916	
Sequence 2865		Sequence 2917	AA831802

•			
Sequence 2918	AA410496	Sequence 2970	H44273
Sequence 2919	AA506767	Sequence 2971	AA429420
Sequence 2920		Sequence 2972	Al458391
Sequence 2921	AA377319	Sequence 2973	AA099976
Sequence 2922		Sequence 2974	
Sequence 2923	AA484752	Sequence 2975	AA360223
Sequence 2924		Sequence 2976	
Sequence 2925		Sequence 2977	
Sequence 2926		Sequence 2978	
Sequence 2927		Sequence 2979	
Sequence 2928		Sequence 2980	
Sequence 2929	Al499106	Sequence 2981	AA135698
Sequence 2930		Sequence 2982	W26477
Sequence 2931		Sequence 2983	
Sequence 2932		Sequence 2984	AA779949
Sequence 2933		Sequence 2985	AA505632
Sequence 2934		Sequence 2986	
Sequence 2935		Sequence 2987	
Sequence 2936		Sequence 2988	T94936
Sequence 2937		Sequence 2989	AA580264
Sequence 2938		Sequence 2990	AA179000
Sequence 2939		Sequence 2991	AA413841
Sequence 2940		Sequence 2992	A1770054
Sequence 2941		Sequence 2993	
Sequence 2942		Sequence 2994	T90236
Sequence 2943		Sequence 2995	R79907
Sequence 2944	AA430565	Sequence 2996	AA525178
Sequence 2945	AA464647	Sequence 2997	
Sequence 2946		Sequence 2998	AA258568
Sequence 2947		Sequence 2999	
Sequence 2948		Sequence 3000	
Sequence 2949		Sequence 3001	
Sequence 2950		Sequence 3002	
Sequence 2951		Sequence 3003	
Sequence 2952		Sequence 3004	
Sequence 2953		Sequence 3005	
Sequence 2954		Sequence 3006	
Sequence 2955		Sequence 3007	
Sequence 2956		Sequence 3008	
Sequence 2957		Sequence 3009	
Sequence 2958		Sequence 3010	
Sequence 2959	AA737772	Sequence 3011	Q40700
Sequence 2960		Sequence 3012	
Sequence 2961		Sequence 3013	
Sequence 2962		Sequence 3014	
Sequence 2963		Sequence 3015	
Sequence 2964		Sequence 3016 Sequence 3017	
Sequence 2965		Sequence 3017 Sequence 3018	
Sequence 2966		Sequence 3019	
Sequence 2967 Sequence 2968		Sequence 3020	
Sequence 2969		Sequence 3021	
Sequence 2808	<u> </u>	Ocquerioe boz i	,420101

31/66

Sequence 3022	U60067	Sequence 3074	M32790
Sequence 3023	X15880	Sequence 3075	J03191
Sequence 3024	X55525	Sequence 3076	M55150
Sequence 3025		Sequence 3077	J04794
Sequence 3026	AJ249731	Sequence 3078	Z31696
Sequence 3027	M87503	Sequence 3079	X79536
Sequence 3028		Sequence 3080	L20814
Sequence 3029	E01972	Sequence 3081	M94556
Sequence 3030	X04758	Sequence 3082	
Sequence 3031	AF061736	Sequence 3083	X55122
Sequence 3032	AF091092	Sequence 3084	AF044956
Sequence 3033	AB028991	Sequence 3085	
Sequence 3034	AF070523	Sequence 3086	
Sequence 3035	AB011145	Sequence 3087	X04588
Sequence 3036	AF049910	Sequence 3088	
Sequence 3037	X56199	Sequence 3089	AF059617
Sequence 3038	X13238	Sequence 3090	Y00282
Sequence 3039		Sequence 3091	S68531
Sequence 3040		Sequence 3092	
Sequence 3041	Z82022	Sequence 3093	
Sequence 3042	AL050273	Sequence 3094	Y13367
Sequence 3043	D79996	Sequence 3095	
Sequence 3044	AF077029	Sequence 3096	
Sequence 3045		Sequence 3097	X58072
Sequence 3046	X80197	Sequence 3098	
Sequence 3047	AB018284	Sequence 3099	
Sequence 3048		Sequence 3100	
Sequence 3049	AL096716	Sequence 3101	AF038451
Sequence 3050		Sequence 3102	
Sequence 3051	AB002381	Sequence 3103	
Sequence 3052	Z47087	Sequence 3104	
Sequence 3053		Sequence 3105	
Sequence 3054	X54304	Sequence 3106	
Sequence 3055		Sequence 3107	
Sequence 3056		Sequence 3108	U41724
Sequence 3057		Sequence 3109	
Sequence 3058		Sequence 3110	
Sequence 3059		Sequence 3111	AF070649
Sequence 3060		Sequence 3112	AJ012409
Sequence 3061		Sequence 3113	
Sequence 3062		Sequence 3114	
Sequence 3063		Sequence 3115	
Sequence 3064	E06721	Sequence 3116	
Sequence 3065		Sequence 3117	
Sequence 3066		Sequence 3118	
Sequence 3067		Sequence 3119	
Sequence 3068		Sequence 3120	
Sequence 3069		Sequence 3121	
Sequence 3070		Sequence 3122	
Sequence 3071		Sequence 3123 Sequence 3124	NEO 42470
Sequence 3072		Sequence 3125	XU3632
Sequence 3073	ADUSSUU	Sequence 3123	700000

WO 01/46697 PCT/US00/35214 32/66

Sequence 3126	AF078848	Sequence 3178	AF007791
Sequence 3127	AF037204	Sequence 3179	L13923
Sequence 3128	AB020675	Sequence 3180	X95190
Sequence 3129		Sequence 3181	AF022795
Sequence 3130	X05276	Sequence 3182	AF026939
Sequence 3131	AF054990	Sequence 3183	AF070561
Sequence 3132	AF035121	Sequence 3184	M12937
Sequence 3133	X04098	Sequence 3185	M31627
Sequence 3134	M11718	Sequence 3186	L20941
Sequence 3135	M77830	Sequence 3187	
Sequence 3136	AB020636	Sequence 3188	S73591
Sequence 3137	M99626	Sequence 3189	AF140242
Sequence 3138	D11428	Sequence 3190	AB033115
Sequence 3139		Sequence 3191	M10940
Sequence 3140		Sequence 3192	M19309
Sequence 3141	Y00815	Sequence 3193	AF015287
Sequence 3142		Sequence 3194	M74491
Sequence 3143	X52520	Sequence 3195	
Sequence 3144	Z49270	Sequence 3196	M60857
Sequence 3145	K00409	Sequence 3197	D50918
Sequence 3146	J03040	Sequence 3198	M69177
Sequence 3147	AF075061	Sequence 3199	M14631
Sequence 3148	AF075587	Sequence 3200	L38995
Sequence 3149	M69106	Sequence 3201	
Sequence 3150	M10905	Sequence 3202	AB007946
Sequence 3151		Sequence 3203	
Sequence 3152	D16688	Sequence 3204	
Sequence 3153	X95384	Sequence 3205	
Sequence 3154	AL122072	Sequence 3206	U47741
Sequence 3155		Sequence 3207	D43968
Sequence 3156	AF026692	Sequence 3208	
Sequence 3157	AF016270	Sequence 3209	
Sequence 3158	M24194	Sequence 3210	
Sequence 3159	AJ010442	Sequence 3211	
Sequence 3160	AF061738	Sequence 3212	
Sequence 3161		Sequence 3213	
Sequence 3162		Sequence 3214	
Sequence 3163		Sequence 3215	
Sequence 3164	AB011123	Sequence 3216	
Sequence 3165		Sequence 3217	
Sequence 3166		Sequence 3218	
Sequence 3167		Sequence 3219	
Sequence 3168		Sequence 3220	
Sequence 3169		Sequence 3221	
Sequence 3170		Sequence 3222	
Sequence 3171		Sequence 3223	
Sequence 3172		Sequence 3224	
Sequence 3173		Sequence 3225	
Sequence 3174		Sequence 3226	
Sequence 3175		Sequence 3227	
Sequence 3176		Sequence 3228	
Sequence 3177	M58485	Sequence 3229	M16247

33/66

Sequence 323	0 D49489	Sequence 3282	AL050137
Sequence 323	1 D80005	Sequence 3283	AF147398
Sequence 323	2 U70063	Sequence 3284	AL050205
Sequence 323	3 AB004854	Sequence 3285	
Sequence 323	4 M93651	Sequence 3286	M64098
Sequence 323	5 AB011087	Sequence 3287	M61832
Sequence 323	6 U19348	Sequence 3288	D29805
Sequence 323	7 U67171	Sequence 3289	E08663
Sequence 323	8 M83248	Sequence 3290	
Sequence 323	9 D87667	Sequence 3291	D89675
Sequence 324	0 AF038452	Sequence 3292	AB002353
Sequence 324	1 J03799	Sequence 3293	
Sequence 324	2 M62403	Sequence 3294	AB007865
Sequence 324	3 AF067656	Sequence 3295	D42138
Sequence 324	4 E02904	Sequence 3296	M87789
Sequence 324	5 AF014402	Sequence 3297	D13643
Sequence 324	6 L09159	Sequence 3298	AF070555
Sequence 324	7 AB016533	Sequence 3299	M20259
Sequence 324	8 U22314	Sequence 3300	E02628
Sequence 324	9 M84326	Sequence 3301	M14794
Sequence 325	0 AB014600	Sequence 3302	J02814
Sequence 325	1 U57846	Sequence 3303	D26068
Sequence 325	2 X91625	Sequence 3304	E01650
Sequence 325	3 D90453	Sequence 3305	AF077202
Sequence 325	4 AB022653	Sequence 3306	AF131856
Sequence 325	5 AF051941	Sequence 3307	AL080113
Sequence 325	6 E01797	Sequence 3308	AF047020
Sequence 325	7 X97124	Sequence 3309	
Sequence 325	8 U30521	Sequence 3310	
Sequence 325	9 AF107406	Sequence 3311	M25246
Sequence 326	0 X80199	Sequence 3312	
Sequence 326	1 AF055584	Sequence 3313	S70290
Sequence 326		Sequence 3314	D45370
Sequence 326	3 AF176012	Sequence 3315	
Sequence 326		Sequence 3316	
Sequence 326	5 X14420	Sequence 3317	AL049381
Sequence 326	6 U55853	Sequence 3318	M18642
Sequence 326		Sequence 3319	
Sequence 326		Sequence 3320	
Sequence 326		Sequence 3321	
Sequence 327		Sequence 3322	X04408
Sequence 327		Sequence 3323	
Sequence 327		Sequence 3324	
Sequence 327		Sequence 3325	
Sequence 327		Sequence 3326	
Sequence 327		Sequence 3327	
Sequence 327		Sequence 3328	M23263
Sequence 327		Sequence 3329	AF151878
Sequence 327		Sequence 3330	
Sequence 327		Sequence 3331	
Sequence 328		Sequence 3332	
Sequence 328	1 AB021288	Sequence 3333	S75895

			105044
Sequence 3334		Sequence 3386	
Sequence 3335		Sequence 3387	
Sequence 3336		Sequence 3388	JU4U8U
Sequence 3337	U70439	Sequence 3389	AF0/395/
Sequence 3338		Sequence 3390	AB029006
Sequence 3339		Sequence 3391	AL11/461
Sequence 3340		Sequence 3392	
Sequence 3341	K00065	Sequence 3393	
Sequence 3342		Sequence 3394	
Sequence 3343	U12404	Sequence 3395	M16342
Sequence 3344		Sequence 3396	
Sequence 3345		Sequence 3397	
Sequence 3346		Sequence 3398	Y15286
Sequence 3347		Sequence 3399	
Sequence 3348	AJ000334	Sequence 3400	
Sequence 3349	U26162	Sequence 3401	
Sequence 3350	D78014	Sequence 3402	X65882
Sequence 3351	U09278	Sequence 3403	
Sequence 3352	Y10043	Sequence 3404	
Sequence 3353	AF052164	Sequence 3405	
Sequence 3354	AF037335	Sequence 3406	
Sequence 3355	X79234	Sequence 3407	
Sequence 3356	AL110273	Sequence 3408	
Sequence 3357		Sequence 3409	
Sequence 3358		Sequence 3410	
Sequence 3359	AL050044	Sequence 3411	
Sequence 3360		Sequence 3412	
Sequence 3361		Sequence 3413	
Sequence 3362	AJ223352	Sequence 3414	
Sequence 3363	D13666	Sequence 3415	
Sequence 3364	AF054174	Sequence 3416	
Sequence 3365	AF093535	Sequence 3417	
Sequence 3366	M11353	Sequence 3418	
Sequence 3367	Y14736	Sequence 3419	
Sequence 3368	AF103374	Sequence 3420	AF028832
Sequence 3369	AJ011007	Sequence 3421	
Sequence 3370		Sequence 3422	
Sequence 3371	D25542	Sequence 3423	
Sequence 3372	L41143	Sequence 3424	
Sequence 3373		Sequence 3425	
Sequence 3374	D14665	Sequence 3426	AB006621
Sequence 3375	AB033070	Sequence 3427	D32129
Sequence 3376	AF007170	Sequence 3428	
Sequence 3377	U41569	Sequence 3429.	
Sequence 3378	AF106943	Sequence 3430	M37712
Sequence 3379	L25085	Sequence 3431	X69910
Sequence 3380		Sequence 3432	AB007858
Sequence 3381	AB004850	Sequence 3433	
Sequence 3382	X14583	Sequence 3434	D84212
Sequence 3383	AF100759	Sequence 3435	X65614
Sequence 3384		Sequence 3436	
Sequence 3385	U80765	Sequence 3437	L07615

35/66

Sequence 3438	D28759	Sequ nce 3490	AB002357
Sequence 3439		Sequence 3491	
Sequence 3440		Sequence 3492	J03548
Sequence 3441		Sequence 3493	U41740
Sequence 3442		Sequence 3494	D38583
Sequence 3443		Sequence 3495	D83077
Sequence 3444		Sequence 3496	AF088038
Sequence 3445		Sequence 3497	
Sequence 3446		Sequence 3498	X63432
Sequence 3447		Sequence 3499	AF112968
Sequence 3448		Sequence 3500	
Sequence 3449		Sequence 3501	
Sequence 3450		Sequence 3502	AF020797
Sequence 3451		Sequence 3503	
Sequence 3452		Sequence 3504	U19495
Sequence 3453		Sequence 3505	
Sequence 3454		Sequence 3506	
Sequence 3455		Sequence 3507	
Sequence 3456		Sequence 3508	
Sequence 3457		Sequence 3509	
Sequence 3458		Sequence 3510	
Sequence 3459		Sequence 3511	
Sequence 3460		Sequence 3512	
Sequence 3461		Sequence 3513	
Sequence 3462		Sequence 3514	
Sequence 3463		Sequence 3515	
Sequence 3464		Sequence 3516	
Sequence 3465		Sequence 3517	
Sequence 3466		Sequence 3518	
Sequence 3467		Sequence 3519	
Sequence 3468		Sequence 3520	
Sequence 3469		Sequence 3521	AF153608
Sequence 3470		Sequence 3522	
Sequence 3471		Sequence 3523	
Sequence 3472		Sequence 3524	
Sequence 3473		Sequence 3525	
Sequence 3474		Sequence 3526	
Sequence 3475		Sequence 3527	X90857
Sequence 3476		Sequence 3528	
Sequence 3477		Sequence 3529	
Sequence 3478		Sequence 3530	
Sequence 3479		Sequence 3531	J02943
Sequence 3480		Sequence 3532	
Sequence 3481		Sequence 3533	AL117633
Sequence 3482	AF147334	Sequence 3534	J04183
Sequence 3483		Sequence 3535	X06700
Sequence 3484	AB007862	Sequence 3536	
Sequence 3485		Sequence 3537	AF087481
Sequence 3486		Sequence 3538	AB007930
Sequence 3487	AF054187	Sequence 3539	AF003594
Sequence 3488		Sequence 3540	S79895
Sequence 3489		Sequence 3541	
		-	

Sequence 3542	U21128	Sequence 3594	AF150087
Sequence 3543	X56998	Sequence 3595	AF006085
Sequence 3544	AF100756	Sequence 3596	M23254
Sequence 3545	AB033073	Sequence 3597	M14058
Sequence 3546	AB019524	Sequence 3598	AF113887
Sequence 3547	E00200	Sequence 3599	D59253
Sequence 3548	M58525	Sequence 3600	AB011128
Sequence 3549	M31159	Sequence 3601	AB011102
Sequence 3550	Z29331	Sequence 3602	AF086402
Sequence 3551	AF044671	Sequence 3603	J05192
Sequence 3552	U42457	Sequence 3604	AJ004955
Sequence 3553	D87845	Sequence 3605	AF091075
Sequence 3554	U52100	Sequence 3606	L36033
Sequence 3555	X03363	Sequence 3607	D83777
Sequence 3556	AF125102	Sequence 3608	AF064084
Sequence 3557		Sequence 3609	AB023420
Sequence 3558	AF070609	Sequence 3610	Z74616
Sequence 3559	AB023219	Sequence 3611	AF038955
Sequence 3560	AF131738	Sequence 3612	AF086389
Sequence 3561		Sequence 3613	D49677
Sequence 3562	Y16241	Sequence 3614	D29956
Sequence 3563		Sequence 3615	AF077301
Sequence 3564		Sequence 3616	M16660
Sequence 3565		Sequence 3617	U38817
Sequence 3566		Sequence 3618	J00200
Sequence 3567		Sequence 3619	M14354
Sequence 3568	U16798	Sequence 3620	X55954
Sequence 3569	L00160	Sequence 3621	AF059611
Sequence 3570	U46006	Sequence 3622	U95822
Sequence 3571	AF132942	Sequence 3623	M85168
Sequence 3572	X82834	Sequence 3624	AB032990
Sequence 3573	X81696	Sequence 3625	AA088197
Sequence 3574	U64791	Sequence 3626	AI589315
Sequence 3575	AF077037	Sequence 3627	AA872753
Sequence 3576	AF188298	Sequence 3628	AI216969
Sequence 3577	AB028969	Sequence 3629	AW022300
Sequence 3578	D42073	Sequence 3630	AI546975
Sequence 3579	X04665	Sequence 3631	AA399320
Sequence 3580	U39840	Sequence 3632	Al148251
Sequence 3581	AL133076	Sequence 3633	AA507383
Sequence 3582		Sequence 3634	AA663776
Sequence 3583	X70326	Sequence 3635	D83863
Sequence 3584		Sequence 3636	AA374976
Sequence 3585	D13286	Sequence 3637	AA625188
Sequence 3586	AF106684	Sequence 3638	AA228145
Sequence 3587		Sequence 3639	
Sequence 3588	U14969	Sequence 3640	
Sequence 3589		Sequence 3641	
Sequence 3590		Sequence 3642	
Sequence 3591		Sequence 3643	
Sequence 3592		Sequence 3644	
Sequence 3593	M65212	Sequence 3645	AA329308

Sequence 3646	AW069860	Sequence 3698	AI536688
Sequence 3647	AA705508	Sequence 3699	AA582588
Sequence 3648	F08552	Sequence 3700	AA436588
Sequence 3649		Sequence 3701	A1499393
Sequence 3650		Sequence 3702	AA393803
Sequence 3651		Sequence 3703	
Sequence 3652	AA029988	Sequence 3704	Al124736
Sequence 3653		Sequence 3705	AW019967
Sequence 3654		Sequence 3706	
Sequence 3655	AA633399	Sequence 3707	AA312170
Sequence 3656	AA115638	Sequence 3708	Al253288
Sequence 3657	AA356459	Sequence 3709	
Sequence 3658	Al312542	Sequence 3710	AA626192
Sequence 3659	AA897154	00400	AA365448
Sequence 3660		Sequence 3712	AI810954
Sequence 3661	Al267162	Sequence 3713	
Sequence 3662	Al690296	Sequence 3714	
Sequence 3663	AA143192	Sequence 3715	AI033531
Sequence 3664	AA224004	Sequence 3716	
Sequence 3665	AA934622	Sequence 3717	
Sequence 3666	AA370509	Sequence 3718	
Sequence 3667		Sequence 3719	AA010493
Sequence 3668		Sequence 3720	
Sequence 3669	AA599483	Sequence 3721	
Sequence 3670	Al267185	Sequence 3722	Al360176
Sequence 3671	AL036415	Sequence 3723	
Sequence 3672	Al668594	Sequence 3724	Z43969
Sequence 3673	AW173504	Sequence 3725	Al200991
Sequence 3674	AA161296	Sequence 3726	AL951970
Sequence 3675	Al820995	Sequence 3727	
Sequence 3676		Sequence 3728	AL039220
Sequence 3677	AI028542	Sequence 3729	
Sequence 3678	AA487801	Sequence 3730	
Sequence 3679		Sequence 3731	AA976043
Sequence 3680	Al203950	Sequence 3732	AA527708
Sequence 3681	AI814452	Sequence 3733	AA487580
Sequence 3682	AA479505	Sequence 3734	AA034993
Sequence 3683	AA309988	Sequence 3735	AA355987
Sequence 3684		Sequence 3736	AA775561
Sequence 3685		Sequence 3737	A1754599
Sequence 3686		Sequence 3738	
Sequence 3687	Al752929	Sequence 3739	
Sequence 3688	AA706942	Sequence 3740	
Sequence 3689	Al400676	Sequence 3741	
Sequence 3690	AL120743	Sequence 3742	AA155789
Sequence 3691	R84598	Sequence 3743	AA928915
Sequence 3692		Sequence 3744	K9/476
Sequence 3693	AA304332	Sequence 3745	AI/03009
Sequence 3694	AW020139	Sequence 3746	A422575
Sequence 3695	AI066419	Sequence 3747	A14E0E00
Sequence 3696	AA676495	Sequence 3748	VI 120200
Sequence 3697	' R35995	Sequence 3749	~~30Z33U

Sequence 3750	AA707659	Sequence 3802	AA424448
Sequence 3751		Sequence 3803	AA713551
Sequence 3752	AI750535	Sequence 3804	AI750383
Sequence 3753		Sequence 3805	AI879040
Sequence 3754	Al422378	Sequence 3806	AA179743
Sequence 3755		Sequence 3807	
Sequence 3756	W19986	Sequence 3808	
Sequence 3757	AA522675	Sequence 3809	AA743813
Sequence 3758	AL118633	Sequence 3810	AA034226
Sequence 3759		Sequence 3811	
Sequence 3760	AA653690	Sequence 3812	
Sequence 3761	AA604055	Sequence 3813	
Sequence 3762	Al581291	Sequence 3814	
Sequence 3763	Al859619	Sequence 3815	
Sequence 3764	AA151651	Sequence 3816	AA257980
Sequence 3765	Al990727	Sequence 3817	
Sequence 3766		Sequence 3818	
Sequence 3767		Sequence 3819	AI815850
Sequence 3768	AA970073	Sequence 3820	AA853990
Sequence 3769		Sequence 3821	AA192604
Sequence 3770		Sequence 3822	
Sequence 3771	Al679118	Sequence 3823	H51496
Sequence 3772		Sequence 3824	AA448227
Sequence 3773		Sequence 3825	AL037904
Sequence 3774		Sequence 3826	AA436224
Sequence 3775		Sequence 3827	W20408
Sequence 3776	AA977019	Sequence 3828	AA876987
Sequence 3777		Sequence 3829	AA485887
Sequence 3778		Sequence 3830	AA164861
Sequence 3779		Sequence 3831	AA970266
Sequence 3780		Sequence 3832	AA088783
Sequence 3781		Sequence 3833	AA565420
Sequence 3782		Sequence 3834	AA580448
Sequence 3783		Sequence 3835	
Sequence 3784		Sequence 3836	AI570378
Sequence 3785		Sequence 3837	Al950225
Sequence 3786		Sequence 3838	AI750879
Sequence 3787		Sequence 3839	AA081419
Sequence 3788		Sequence 3840	Al217035
Sequence 3789		Sequence 3841	Al300033
Sequence 3790		Sequence 3842	AW149836
Sequence 3791	AW069784	Sequence 3843	AA394049
Sequence 3792		Sequence 3844	Al334437
Sequence 3793	AA602867	Sequence 3845	
Sequence 3794	AA535276	Sequence 3846	Al240528
Sequence 3795		Sequence 3847	
Sequence 3796		Sequence 3848	
Sequence 3797		Sequence 3849	
Sequence 3798		Sequence 3850	AA528123
Sequence 3799		Sequence 3851	Al610142
Sequence 3800	AI735683	Sequence 3852	AA132979
Sequence 3801	AA316761	Sequence 3853	AA834739
•			

					s .
					•
	- P			*	- , , , ,
	ħ				6
			* * *	13 . स	
- بدر	1. 8 2				

•		a w	
		* *-	
			je s
A			*.
	*		
*			
**			
			-

*				9	A

Sequence 4270	AA526003	Sequence 4322	AI567732
Sequence 4271		Sequence 4323	
Sequence 4272		Sequence 4324	Al376591
Sequence 4273		Sequence 4325	AA398892
Sequence 4274	AI760398	Sequence 4326	
Sequence 4275	Al690278	Sequence 4327	
Sequence 4276	AI458411 ·	Sequence 4328	
Sequence 4277	AA182841	Sequence 4329	
Sequence 4278	AI420543	Sequence 4330	
Sequence 4279	AA393869	Sequence 4331	
Sequence 4280	Al674390	Sequence 4332	
Sequence 4281	AA683022	Sequence 4333	AA694120
Sequence 4282		Sequence 4334	AA358474
Sequence 4283	AA399628	Sequence 4335	
Sequence 4284	AA503355	Sequence 4336	C17558
Sequence 4285	Al346554 ·	Sequence 4337	
Sequence 4286		Sequence 4338	AA852143
Sequence 4287		Sequence 4339	AW007623
Sequence 4288	A1050729	Sequence 4340	AA629406
Sequence 4289	AI076787	Sequence 4341	
Sequence 4290		Sequence 4342	
Sequence 4291	AA152027	Sequence 4343	
Sequence 4292	Al814360	Sequence 4344	
Sequence 4293	AA876439	Sequence 4345	
Sequence 4294	AA372230	Sequence 4346	
Sequence 4295	AA100535	Sequence 4347	
Sequence 4296		Sequence 4348	
Sequence 4297		Sequence 4349	AA490495
Sequence 4298		Sequence 4350	
Sequence 4299		Sequence 4351	
Sequence 4300		Sequence 4352	
Sequence 4301		Sequence 4353	
Sequence 4302		Sequence 4354	
Sequence 4303		Sequence 4355	AA418080
Sequence 4304	Al914586	Sequence 4356	
Sequence 4305		Sequence 4357	
Sequence 4306		Sequence 4358	
Sequence 4307		Sequence 4359	
Sequence 4308		Sequence 4360	
Sequence 4309	AA569826	Sequence 4361	
Sequence 4310		Sequence 4362	
Sequence 4311	AA649113	Sequence 4363 Sequence 4364	A10201UZ
Sequence 4312		Sequence 4365	
Sequence 4313			
Sequence 4314		Sequence 4366	
Sequence 4315		Sequence 4367	
Sequence 4316		Sequence 4368	
Sequence 4317		Sequence 4369	
Sequence 4318		Sequence 4370 Sequence 4371	
Sequence 4319	A4009400 A4005007	Sequence 4371 Sequence 4372	
Sequence 4320		Sequence 4373	
Sequence 4321	AI203430	Sequence 4073	711 02000

Sequence 4374	AA989224	Sequence 4426	AA507595
Sequence 4375		Sequence 4427	Al686325
Sequence 4376		Sequence 4428	AA152069
Sequence 4377		Sequence 4429	AA905491
Sequence 4378		Sequence 4430	AA441905
Sequence 4379	AA598875	Sequence 4431	Al286057
Sequence 4380		Sequence 4432	Al148707
Sequence 4381		Sequence 4433	
Sequence 4382		Sequence 4434	
Sequence 4383		Sequence 4435	
Sequence 4384	AA622496	Sequence 4436	AA122240
Sequence 4385		Sequence 4437	
Sequence 4386		Sequence 4438	
Sequence 4387		Sequence 4439	
Sequence 4388		Sequence 4440	
Sequence 4389		Sequence 4441	
Sequence 4390		Sequence 4442	
Sequence 4391		Sequence 4443	
Sequence 4392		Sequence 4444	
Sequence 4393		Sequence 4445	
Sequence 4394	AA031935	Sequence 4446	
Sequence 4395		Sequence 4447	
Sequence 4396		Sequence 4448	
Sequence 4397		Sequence 4449	
Sequence 4398		Sequence 4450	Al885416
Sequence 4399		Sequence 4451	
Sequence 4400	AA242891	Sequence 4452	
Sequence 4401		Sequence 4453	
Sequence 4402		Sequence 4454	AA811942
Sequence 4403	Al732680	Sequence 4455	
Sequence 4404		Sequence 4456	R97459
Sequence 4405		Sequence 4457	
Sequence 4406	Al801294	Sequence 4458	
Sequence 4407		Sequence 4459	
Sequence 4408		Sequence 4460	
Sequence 4409		Sequence 4461	
Sequence 4410		Sequence 4462	
Sequence 4411		Sequence 4463	
Sequence 4412	Al307210	Sequence 4464	
Sequence 4413		Sequence 4465	
Sequence 4414		Sequence 4466	
Sequence 4415		Sequence 4467	AA402273
Sequence 4416		Sequence 4468	
Sequence 4417		Sequence 4469	A1075324
Sequence 4418		Sequence 4470	A106 1959
Sequence 4419		Sequence 4471	
Sequence 4420		Sequence 4472	
Sequence 4421		Sequence 4473	ALDEBOAR
Sequence 4422	AA8362/1	Sequence 4474	
Sequence 4423		Sequence 4475 Sequence 4476	
Sequence 4424		Sequence 4476 Sequence 4477	ΔΔ71/Q25
Sequence 4425	A11∠/U 1 3	Sequence 4477	, VX, 14000

Sequence 4478	AA481983	Sequence 4530	
Sequence 4479		Sequence 4531	W21979
Sequence 4480	AI583227	Sequence 4532	AA126121
Sequence 4481		Sequence 4533	
Sequence 4482	AA744819	Sequence 4534	AA379286
Sequence 4483		Sequence 4535	
Sequence 4484		Sequence 4536	
Sequence 4485		Sequence 4537	
Sequence 4486		Sequence 4538	AA127069
Sequence 4487		Sequence 4539	
Sequence 4488		Sequence 4540	
Sequence 4489		Sequence 4541	AA329152
Sequence 4490		Sequence 4542	Al753788
Sequence 4491		Sequence 4543	AL048540
Sequence 4492	AA128305	Sequence 4544	AA028897
Sequence 4493		Sequence 4545	
Sequence 4494		Sequence 4546	
Sequence 4495		Sequence 4547	
Sequence 4496	AA852332	Sequence 4548	
Sequence 4497	AA635590	Sequence 4549	Al277450
Sequence 4498	AW084050	Sequence 4550	
Sequence 4499	AA494295	Sequence 4551	
Sequence 4500		Sequence 4552	
		Sequence 4553	
Sequence 4502	AA429336	Sequence 4554	AA421682
Sequence 4503	AA649992	Sequence 4555	AA137120
Sequence 4504	AW058627	Sequence 4556	AA876364
Sequence 4505		Sequence 4557	AA603150
Sequence 4506		Sequence 4558	AA406425
Sequence 4507		Sequence 4559	AI799626
Sequence 4508	AI071258	Sequence 4560	
Sequence 4509		Sequence 4561	
Sequence 4510	AW020828	Sequence 4562	
Sequence 4511		Sequence 4563	
Sequence 4512	AA215330	Sequence 4564	
Sequence 4513	AA101201	Sequence 4565	AA099424
Sequence 4514	AA194429	Sequence 4566	
Sequence 4515	R12659	Sequence 4567	
Sequence 4516	AA129826	Sequence 4568	AA603500
Sequence 4517	AIA99592	Sequence 4569	
Sequence 4518	AA613907	Sequence 4570	AA224157
Sequence 4519	AA665829	Sequence 4571	AW156886
Sequence 4520	AW005955	Sequence 4572	Al360993
Sequence 4521	AI 120047	Sequence 4573	
Sequence 4522	AW151216	Sequence 4574	AA470705
Sequence 4523		Sequence 4575	AW118331
Sequence 4524		Sequence 4576	AA503101
Sequence 4525		Sequence 4577	AI262138
Sequence 4526	AI267454	Sequence 4578	AI374808
Sequence 4527	AA497028	Sequence 4579	
Sequence 4528		Sequence 4580	AA788711
Sequence 4529	AA044675	Sequence 4581	AA480980
Ocquerioe 4020		= 9 mg = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Sequence 4582	AI525552	Sequence 4634	AI358205
Sequence 4583		Sequence 4635	
Sequence 4584		Sequence 4636	
Sequence 4585		Sequence 4637	
Sequence 4586	AA336843	Sequence 4638	
Sequence 4587	AA164204	Sequence 4639	Al288730
Sequence 4588	AL120535	Sequence 4640	AA639707
Sequence 4589	Al475467	Sequence 4641	AA861665
Sequence 4590	AA037259	Sequence 4642	
Sequence 4591		Sequence 4643	AW022466
Sequence 4592		Sequence 4644	Al312092
Sequence 4593		Sequence 4645	AI074585
Sequence 4594	AA029089	Sequence 4646	AI803698
Sequence 4595		Sequence 4647	AW072611
Sequence 4596		Sequence 4648	AA346581
Sequence 4597		Sequence 4649	
Sequence 4598		Sequence 4650	
Sequence 4599		Sequence 4651	
Sequence 4600		Sequence 4652	
Sequence 4601		Sequence 4653	
Sequence 4602		Sequence 4654	
Sequence 4603		Sequence 4655	
Sequence 4604		Sequence 4656	
Sequence 4605		Sequence 4657	
Sequence 4606		Sequence 4658	
Sequence 4607		Sequence 4659	
Sequence 4608		Sequence 4660	Al354430
Sequence 4609		Sequence 4661	
Sequence 4610		Sequence 4662	
Sequence 4611		Sequence 4663	Al124257
Sequence 4612		Sequence 4664	
Sequence 4613		Sequence 4665	
Sequence 4614		Sequence 4666	
Sequence 4615		Sequence 4667	
Sequence 4616		Sequence 4668	
Sequence 4617		Sequence 4669	
Sequence 4618		Sequence 4670	
Sequence 4619		Sequence 4671	
		Sequence 4672	
Sequence 4620 Sequence 4621		Sequence 4673	
Sequence 4622		Sequence 4674	
		Sequence 4675	
Sequence 4623 Sequence 4624	AA704164	Sequence 4676	
		Sequence 4677	
Sequence 4625		Sequence 4678	
Sequence 4626		Sequence 4679	
Sequence 4627		Sequence 4680	
Sequence 4628		Sequence 4681	
Sequence 4629		Sequence 4682	V/VIUSE3UU
Sequence 4630		Sequence 4683	VALUE 0200
Sequence 4631		Sequence 4684	
Sequence 4632		Sequence 4685	
Sequence 4633	W150019	Octubility 4000	74007012

WO 01/46697 PCT/US00/35214 47/66

Sequence 4686	AA310865	Sequence 4738	AA398155
Sequence 4687	AA156664	Sequence 4739	AA324629
Sequence 4688	U55978	Sequence 4740	R91802
Sequence 4689	AA481036	Sequence 4741	AA431932
Sequence 4690	AA634260	Sequence 4742	AA304538
Sequence 4691	AW162545	Sequence 4743	AA468250
Sequence 4692	AI042559	Sequence 4744	AA188363
Sequence 4693	Al929819	Sequence 4745	Al810190
Sequence 4694	Al807654	Sequence 4746	AA311766
Sequence 4695	AA102825	Sequence 4747	AW080773
Sequence 4696	AW323331	Sequence 4748	AI753167
Sequence 4697	Al227296	Sequence 4749	AI084647
Sequence 4698	Al267502	Sequence 4750	AA503937
Sequence 4699	AA355096	Sequence 4751	AW190744
Sequence 4700	AA740196	Sequence 4752	AA059409
Sequence 4701	AA179672	Sequence 4753	AA506086
Sequence 4702	R86035	Sequence 4754	AA025141
Sequence 4703	AI040592	Sequence 4755	Al916650
Sequence 4704	AA481220	Sequence 4756	AA872729
Sequence 4705	Al199661	Sequence 4757	AA775030
Sequence 4706	F07802	Sequence 4758	AA111930
Sequence 4707		Sequence 4759	Al207628
Sequence 4708	AA425638	Sequence 4760	Al971801 ·
Sequence 4709	W63676	Sequence 4761	AA195834
Sequence 4710	AA506767	Sequence 4762	AA203745
Sequence 4711	AA677603	Sequence 4763	AI535656
Sequence 4712	AA639125	Sequence 4764	Al813758
Sequence 4713		Sequence 4765	Al312552
Sequence 4714		Sequence 4766	
Sequence 4715		Sequence 4767	
Sequence 4716		Sequence 4768	
Sequence 4717		Sequence 4769	
Sequence 4718		Sequence 4770	
Sequence 4719		Sequence 4771	
Sequence 4720		Sequence 4772	
Sequence 4721		Sequence 4773	
Sequence 4722		Sequence 4774	
Sequence 4723		Sequence 4775	
Sequence 4724		Sequence 4776	
Sequence 4725		Sequence 4777	
Sequence 4726		Sequence 4778	
Sequence 4727		Sequence 4779	
Sequence 4728		Sequence 4780	
Sequence 4729		Sequence 4781	
Sequence 4730		Sequence 4782	
Sequence 4731		Sequence 4783	
Sequence 4732		Sequence 4784	
Sequence 4733		Sequence 4785	
Sequence 4734		Sequence 4786	
Sequence 4735 Sequence 4736		Sequence 4787 Sequence 4788	
Sequence 4737		Sequence 4789	
Dequence 4/3/	7 771 00 100	Sednetice 4103	WO 199 ID

Sequence 4790	AA693860	Sequence 4842	AA422060
Sequence 4791	Al819855	Sequence 4843	AA095753
Sequence 4792	Al086608	Sequence 4844	AA293698
Sequence 4793	AA640015	Sequence 4845	AI524985
Sequence 4794	AA601511	Sequence 4846	Al357579
Sequence 4795	R71533	Sequence 4847	AA523196
Sequence 4796	AA993090	Sequence 4848	AI250348
Sequence 4797	AA433901	Sequence 4849	AA847655
Sequence 4798	AI159875	Sequence 4850	AA306068
Sequence 4799	AA339643	Sequence 4851	AA449878
Sequence 4800	Al129342	Sequence 4852	AA579497
Sequence 4801		Sequence 4853	Al343059
Sequence 4802		Sequence 4854	AA149830
Sequence 4803	R56531	Sequence 4855	AA340069
Sequence 4804		Sequence 4856	AI572796
Sequence 4805		Sequence 4857	
Sequence 4806		Sequence 4858	
Sequence 4807		Sequence 4859	
Sequence 4808		Sequence 4860	
Sequence 4809		Sequence 4861	
Sequence 4810		Sequence 4862	
Sequence 4811		Sequence 4863	
Sequence 4812		Sequence 4864	AA889143
Sequence 4813		Sequence 4865	
Sequence 4814		Sequence 4866	
Sequence 4815		Sequence 4867	
Sequence 4816		Sequence 4868	
Sequence 4817		Sequence 4869	
Sequence 4818		Sequence 4870	H15389
Sequence 4819		Sequence 4871	
Sequence 4820		Sequence 4872	
Sequence 4821		Sequence 4873	
Sequence 4822		Sequence 4874	
Sequence 4823		Sequence 4875	
Sequence 4824		Sequence 4876	
Sequence 4825		Sequence 4877	
Sequence 4826		Sequence 4878	
Sequence 4827		Sequence 4879	
Sequence 4828		Sequence 4880	
Sequence 4829		Sequence 4881	
Sequence 4830		Sequence 4882	
Sequence 4831		Sequence 4883	
Sequence 4832		Sequence 4884	
Sequence 4833		Sequence 4885	
Sequence 4834		Sequence 4886	
Sequence 4835		Sequence 4887	
Sequence 4836		Sequence 4888	
Sequence 4837		Sequence 4889	
Sequence 4838		Sequence 4890	
Sequence 4839		Sequence 4891	
Sequence 4840		Sequence 4892	AI052124
Sequence 4841		Sequence 4893	AA779944
-			

Sequence 4894 AA128020
Sequence 4895 AA304414
Sequence 4896 AA774261
Sequence 4897 Al302102
Sequence 4898 AA112161
Sequence 4899 R61221
Sequence 4900 AA291436
Sequence 4901 Al370835
Sequence 4902 H16051
00qu0;;00 ;00 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ;
Sequence 4905 AA468395
Sequence 4906 AA486535
Sequence 4907 AA748856
Sequence 4908 AA040643
Sequence 4909 AA255815
Sequence 4910 AA789057
Sequence 4911 AA661899
Sequence 4912 Al084466
Sequence 4913 AA011405
Sequence 4914 AL045748
Sequence 4915 AA040240
Sequence 4916 AA453693
Sequence 4917 AA033869
Sequence 4918 Al278800
Sequence 4919 Al267240
Sequence 4920 AA449333
Sequence 4921 Al221398
Sequence 4922 AA551240
Sequence 4923 - AA487845
Sequence 4924 AA512935
Sequence 4925 AA527429
Sequence 4926 AA035773
Sequence 4927 Al366381
Sequence 4928 AA741415
Sequence 4929 AA814728
Sequence 4930 AA180137
Sequence 4931 AW247213
Sequence 4932 Al446503
Sequence 4932 AA864690
Sequence 4934 Al085559
Sequence 4935 X80043
004000
Codaction too.
Sequence 4938 X89854 Sequence 4939 T26829
Coquentes into interes
Sequence 4940 Q94780
Sequence 4941 X37319
Sequence 4942 Z11491
Sequence 4943 T91165
Sequence 4944 V23110
Sequence 4945 V23112

Sequence 4946 T05906 Sequence 4947 Z22091 Sequence 4948 Q44222 Sequence 4949 V61359 Sequence 4950 X39426 Sequence 4951 V32930 Sequence 4952 V05384 Sequence 4953 X60581 Sequence 4954 V04202 Sequence 4955 V15826 Sequence 4956 V23109 Sequence 4957 Z33566 Sequence 4958 Z33949 Sequence 4959 T18813 Sequence 4960 T79274 Sequence 4961 V68992 Sequence 4962 V90020 Sequence 4963 Z24872 Sequence 4964 Z16810 Sequence 4965 N91825 Sequence 4966 V05728 Sequence 4967 X84939 Sequence 4968 X98641 Sequence 4969 V57903 Sequence 4970 Q56733 Sequence 4971 X39827 Sequence 4972 Z13903 Sequence 4973 Z33627 Sequence 4974 X37385 Sequence 4975 Z33512 Sequence 4976 V59600

50/66

TABLE 8

Sequence 4977: found in patent publication WO99/43696

Sequence 4978: found in patent publication WO99/54448

CCGGGCAGGTACGCGGGGAGGAGGTCCTGGGTGACTTTGGAAGTCCGTAGTGTCTCATTG CAGATAATNTTTAGCTTAGGGCCTGGTGGCTAGGTCGGTTCTCTCTTTCCAGTCGGAGA CCTCTGCCGCAAACATGCTCCGCCAGATCATCNGTCAGGCCNANAAACATTCCTANCCTT TGACCCCCCNTTTTTGTATTTATTTGGGAAACTGGGAGCTACTTGGAGCAACGCTGTAT CTCNTCGCGTNTGGCATATGTTCAATCCATATGTTNTGTNTGGGACAGAAATAACCCAGA GCCCTGGAACAAACTGGGTTCCCA

Sequence 4979: found in patent publication WO99/53051

ATAGGGCGAATTGGAGCTCCCCGCGGTGGCGGCCGAGGTACAGGTGCCTGCAGAGATGCC
CACTTTCAGCCAGAAATCTATGGTTTTGCAGATGGTGACTCTCTGCTCAGGCAGAGAAAT
GCCACCAGAGCATAGCTTGGGTTCTCGCCACACGTAAGTAGTCTTTGGATCCCAGCCACA
CAGCTGCTGACGATAGCATGGTAGTCAGCCACTGAGCAGAGCAGCAGCAGCCGCGCTC
TCCCACAGGAAGTTGCAGCCATCACAGGTCCCATCTGAGCACGTTCCTGGCAGC
AGCAAACTTCCAGGGACAGTTTTCTGTGGACTGCACCTGACGCCGGATGGTGGTGATCTC
CCAGAACTGNAGGACTGGGTCACATTATTGGACCTATAA

Sequence 4981: found in patent publication WO99/58660

AATANGTATTTTCCTTCTTTTAAAATGCTTTTA

WO 01/46697 PCT/US00/35214 51/66

Sequence 4983	AB002806	Sequence 5034	AF038451
Sequence 4984	AF107406	Sequence 5035	U34877
Sequence 4985	X02492	Sequence 5036	L40399
Sequence 4986	X17122	Sequence 5037	X67325
Sequence 4987	AB029005	Sequence 5038	X65614
Sequence 4988	AL049799	Sequence 5039	
Sequence 4989		Sequence 5040	
Sequence 4990		Sequence 5041	
Sequence 4991		Sequence 5042	
Sequence 4992		Sequence 5043	
Sequence 4993		Sequence 5044	
Sequence 4994		Sequence 5045	
Sequence 4995		Sequence 5046	
Sequence 4996		Sequence 5047	
Sequence 4997		Sequence 5048	
Sequence 4998		Sequence 5049	
Sequence 4999		Sequence 5050	
Sequence 5000		Sequence 5051	
Sequence 5001		Sequence 5052	
Sequence 5002		Sequence 5053	
Sequence 5003		Sequence 5054	
Sequence 5004		Sequence 5055	
Sequence 5005		Sequence 5056	
Sequence 5006		Sequence 5057	
Sequence 5007		Sequence 5058	
Sequence 5008		Sequence 5059	
Sequence 5009		Sequence 5060	
Sequence 5010		Sequence 5061	
Sequence 5011		Sequence 5062	
Sequence 5012		Sequence 5063	
Sequence 5013		Sequence 5064	
Sequence 5014		Sequence 5065	
Sequence 5015		Sequence 5066	
Sequence 5016		Sequence 5067	
Sequence 5017		Sequence 5068	
Sequence 5018		Sequence 5069	
Sequence 5019		Sequence 5070	
Sequence 5020		Sequence 5071	
Sequence 5021		Sequence 5072	
Sequence 5022		Sequence 5073	
Sequence 5023		Sequence 5074	
Sequence 5024		Sequence 5075	
Sequence 5025		Sequence 5076	
Sequence 5026		Sequence 5077	
Sequence 5027		Sequence 5078	AF060228
Sequence 5028		Sequence 5079	
Sequence 5029		Sequence 5080	
Sequence 5030		Sequence 5081	
Sequence 5031	M18642	Sequence 5082	
Sequence 5032		Sequence 5083	
Sequence 5033		Sequence 5084	

Sequence 50	85	X04665	Sequence 5137	
Sequence 50	86	M24594	Sequence 5138	
Sequence 50	87	L07393	Sequence 5139	
Sequence 50	88	X74070	Sequence 5140	
Sequence 50	89	U07857	Sequence 5141	
Sequence 50	90 .	AF007791	Sequence 5142	L06133
Sequence 50	91	AF176012	Sequence 5143	
Sequence 50	92	AF089747	Sequence 5144	M83822
Sequence 50	93	M33146	Sequence 5145	E02488
Sequence 50	94	AB014605	Sequence 5146	
Sequence 50	95	X93036	Sequence 5147	
Sequence 50	96	Z35093	Sequence 5148	D86322
Sequence 50			Sequence 5149	U42592
Sequence 50	98	AB014595	Sequence 5150	AL110197
Sequence 50	99	M64098	Sequence 5151	AB002332
Sequence 51		U36221	Sequence 5152	J02611
Sequence 51		S69272	Sequence 5153	A10416
Sequence 51		L23805	Sequence 5154	X78121
Sequence 51			Sequence 5155	X76732
Sequence 51			Sequence 5156	U33760
Sequence 51			Sequence 5157	
Sequence 51			Sequence 5158	
Sequence 51		J03817	Sequence 5159	
Sequence 51			Sequence 5160	
Sequence 51			Sequence 5161	
Sequence 51			Sequence 5162	
Sequence 51			Sequence 5163	
Sequence 51			Sequence 5164	
Sequence 51			Sequence 5165	AF077202
Sequence 51			Sequence 5166	E06721
Sequence 51			Sequence 5167	
Sequence 51			Sequence 5168	
Sequence 51			Sequence 5169	
Sequence 51			Sequence 5170	AL080091
Sequence 51			Sequence 5171	K01566
Sequence 51			Sequence 5172	AB007893
Sequence 51			Sequence 5173	
Sequence 51			Sequence 5174	
Sequence 51			Sequence 5175	
Sequence 51			Sequence 5176	
Sequence 51			Sequence 5177	
Sequence 51			Sequence 5178	
Sequence 51			Sequence 5179	
Sequence 51			Sequence 5180	
Sequence 51			Sequence 5181	
Sequence 51			Sequence 5182	AL117666
Sequence 51			Sequence 5183	
Sequence 51			Sequence 5184	
Sequence 51			Sequence 5185	
Sequence 51			Sequence 5186	
Sequence 51			Sequence 5187	
Sequence 51			Sequence 5188	
_			-	

WO 01/46697 PCT/US00/35214

S quence 5189	AF086390	Sequence 5241	AL050025
Sequence 5190	M19735	Sequence 5242	
Sequence 5191		Sequence 5243	AF086555
Sequence 5192	AF125525	Sequence 5244	AF061258
Sequence 5193		Sequence 5245	D49387
Sequence 5194		Sequence 5246	L76687
Sequence 5195		Sequence 5247	D43951
Sequence 5196		Sequence 5248	D26485
Sequence 5197		Sequence 5249	
Sequence 5198		Sequence 5250	
Sequence 5199		Sequence 5251	
Sequence 5200	Y10351	Sequence 5252	
Sequence 5201	AF044209	Sequence 5253	
Sequence 5202		Sequence 5254	
Sequence 5203		Sequence 5255	
Sequence 5204		Sequence 5256	
Sequence 5205		Sequence 5257	
Sequence 5206		Sequence 5258	
Sequence 5207	A.1223353	Sequence 5259	
Sequence 5208		Sequence 5260	
Sequence 5209		Sequence 5261	
Sequence 5210		Sequence 5262	
Sequence 5211		Sequence 5263	
Sequence 5212		Sequence 5264	
Sequence 5213		Sequence 5265	
Sequence 5214		Sequence 5266	
Sequence 5215		Sequence 5267	AF006010
Sequence 5216		Sequence 5268	
Sequence 5217	142542	Sequence 5269	
Sequence 5218		Sequence 5270	
Sequence 5219		Sequence 5271	
Sequence 5220		Sequence 5272	
Sequence 5221		Sequence 5273	
Sequence 5222		Sequence 5274	AF132942
Sequence 5223		Sequence 5275	
Sequence 5224		Sequence 5276	AF053304
Sequence 5225		Sequence 5277	
Sequence 5226		Sequence 5278	
Sequence 5227	AR011142	Sequence 5279	S67310
Sequence 5228	M69106	Sequence 5280	
Sequence 5229		Sequence 5281	
Sequence 5230		Sequence 5282	
Sequence 5231		Sequence 5283	AL050179
Sequence 5232		Sequence 5284	AF021819
Sequence 5233	105192	Sequence 5285	Y10043
Sequence 5234		Sequence 5286	E00631
Sequence 5235		Sequence 5287	
Sequence 5235	1150733	Sequence 5288	AF128527
Sequence 5237		Sequence 5289	
Sequence 5238		Sequence 5290	AF026939
Sequence 5239		Sequence 5291	
Sequence 5240		Sequence 5292	L10320
Coquentoe oz-40	0.000		

Sequence 5293		Sequence 5345	M98452
Sequence 5294		Sequence 5346	AF1/6518
Sequence 5295		Sequence 5347	M29540
Sequence 5296		Sequence 5348	M65131
Sequence 5297		Sequence 5349	D00068
Sequence 5298		Sequence 5350	E01813
Sequence 5299		Sequence 5351	AF055033
Sequence 5300		Sequence 5352	AB002329
Sequence 5301	E01971	Sequence 5353	U88879
Sequence 5302		Sequence 5354	
Sequence 5303	J04164	Sequence 5355	
Sequence 5304	AF052149	Sequence 5356	
Sequence 5305	M29548	Sequence 5357	
Sequence 5306	E03413	Sequence 5358	
Sequence 5307	AF061016	Sequence 5359	
Sequence 5308	D38583	Sequence 5360	
Sequence 5309	AB014563	Sequence 5361	
Sequence 5310		Sequence 5362	
Sequence 5311		Sequence 5363	L37385
Sequence 5312		Sequence 5364	
Sequence 5313		Sequence 5365	
Sequence 5314		Sequence 5366	
Sequence 5315		Sequence 5367	
Sequence 5316		Sequence 5368	
Sequence 5317	AB022427	Sequence 5369	
Sequence 5318		Sequence 5370	
Sequence 5319		Sequence 5371	
Sequence 5320		Sequence 5372	
Sequence 5321	X56999	Sequence 5373	
Sequence 5322		Sequence 5374	
Sequence 5323		Sequence 5375	
Sequence 5324	D87438	Sequence 5376	
Sequence 5325		Sequence 5377	
Sequence 5326		Sequence 5378	
Sequence 5327		Sequence 5379	AF001893
Sequence 5328		Sequence 5380	AF086282
Sequence 5329		Sequence 5381	
Sequence 5330		Sequence 5382	
Sequence 5331		Sequence 5383	
Sequence 5332		Sequence 5384	
Sequence 5333		Sequence 5385	M86917
Sequence 5334		Sequence 5386	X15505
Sequence 5335	AL050141	Sequence 5387	AF038452
Sequence 5336	J03634	Sequence 5388	AF077197
Sequence 5337	AF131738	Sequence 5389	AF087661
Sequence 5338		Sequence 5390	L20941
Sequence 5339		Sequence 5391	AJ010346
Sequence 5340		Sequence 5392	L19182
Sequence 5341		Sequence 5393	AF151884
Sequence 5342		Sequence 5394	S52450
Sequence 5343		Sequence 5395	U49352
Sequence 5344		Sequence 5396	D21092
•			

Sequence 5397	AF035319	Sequence 5449	AA418392
Sequence 5398	AF104921	Sequence 5450	H50843
Sequence 5399		Sequence 5451	Al913414
Sequence 5400		Sequence 5452	AA338377
Sequence 5401		Sequence 5453	AI887664
Sequence 5402		Sequence 5454	AA152337
Sequence 5403		Sequence 5455	AA911134
Sequence 5404		Sequence 5456	AI027915
Sequence 5405		Sequence 5457	
Sequence 5406		Sequence 5458	
Sequence 5407		Sequence 5459	AA120820
Sequence 5408	AB004044	Sequence 5460	W72728
Sequence 5409		Sequence 5461	AA155828
Sequence 5410		Sequence 5462	Al262029
Sequence 5411		Sequence 5463	
Sequence 5412		Sequence 5464	
Sequence 5413		Sequence 5465	
Sequence 5414	AB033071	Sequence 5466	
Sequence 5415	AF034607	Sequence 5467	
Sequence 5416		Sequence 5468	
Sequence 5417		Sequence 5469	
Sequence 5418		Sequence 5470	
Sequence 5419	AF131781	Sequence 5471	
Sequence 5420	M22918	Sequence 5472	
Sequence 5421	X07362	Sequence 5473	
Sequence 5422	D45370	Sequence 5474	
Sequence 5423		Sequence 5475	AI907858
Sequence 5424		Sequence 5476	
Sequence 5425		Sequence 5477	Al307406
Sequence 5426		Sequence 5478	AA460775
Sequence 5427		Sequence 5479	AA297615
Sequence 5428	D14696	Sequence 5480	AA037885
Sequence 5429		Sequence 5481	AW152550
Sequence 5430	AF095448	Sequence 5482	
Sequence 5431		Sequence 5483	Al366882
Sequence 5432		Sequence 5484	N40131
Sequence 5433	D28759	Sequence 5485	AA314225
Sequence 5434		Sequence 5486	AA668911
Sequence 5435	X00570	Sequence 5487	AA195431
Sequence 5436	AB003102	Sequence 5488	
Sequence 5437		Sequence 5489	H05698
Sequence 5438		Sequence 5490	AW150827
Sequence 5439	AF070555	Sequence 5491	Al453338
Sequence 5440	M58549	Sequence 5492	
Sequence 5441	AF078776	Sequence 5493	AA845374
Sequence 5442		Sequence 5494	R72794
Sequence 5443		Sequence 5495	AI567884
Sequence 5444		Sequence 5496	AA173756
Sequence 5445	AA327546	Sequence 5497	Al074030
Sequence 5446	AT000478	Sequence 5498	AA348614
Sequence 5447		Sequence 5499	AW188590
Sequence 5448		Sequence 5500	AA366233
•			

Sequence 5501	AI554378	Sequence 5553	R97676
Sequence 5502		Sequence 5554	W87894
Sequence 5503	AA694242	Sequence 5555	AI084466
Sequence 5504	AA757249	Sequence 5556	
Sequence 5505	AW080940	Sequence 5557	
Sequence 5506	AA586621	Sequence 5558	
Sequence 5507	AA446726	Sequence 5559	
Sequence 5508	R78585	Sequence 5560	AA992690
Sequence 5509		Sequence 5561	
Sequence 5510	AL036415	Sequence 5562	
Sequence 5511	AA481220	Sequence 5563	
Sequence 5512		Sequence 5564	
Sequence 5513	Al267351	Sequence 5565	
Sequence 5514		Sequence 5566	AA028906
Sequence 5515		Sequence 5567	Al128061
Sequence 5516		Sequence 5568	
Sequence 5517		Sequence 5569	
Sequence 5518		Sequence 5570	AA411452
Sequence 5519		Sequence 5571	AA936427
Sequence 5520		Sequence 5572	AW079863
Sequence 5521		Sequence 5573	
Sequence 5522		Sequence 5574	
Sequence 5523		Sequence 5575	
Sequence 5524		Sequence 5576	
Sequence 5525		Sequence 5577	Al356022
Sequence 5526		Sequence 5578	
Sequence 5527		Sequence 5579	AA338019
Sequence 5528		Sequence 5580	AI560870
Sequence 5529		Sequence 5581	Al246688
Sequence 5530		Sequence 5582	
Sequence 5531		Sequence 5583	
Sequence 5532		Sequence 5584	
Sequence 5533	AL036332	Sequence 5585	
Sequence 5534	AA344628	Sequence 5586	
Sequence 5535	AA307513	Sequence 5587	A1694634
Sequence 5536		Sequence 5588	H93602
Sequence 5537		Sequence 5589	
Sequence 5538		Sequence 5590	
Sequence 5539		Sequence 5591	
Sequence 5540		Sequence 5592	
Sequence 5541		Sequence 5593	
Sequence 5542		Sequence 5594	AA428950
Sequence 5543	AA308400	Sequence 5595	
Sequence 5544		Sequence 5596	Al362355
Sequence 5545		Sequence 5597	AA779168
Sequence 5546	Al374670	Sequence 5598	
Sequence 5547		Sequence 5599	
Sequence 5548		Sequence 5600	
Sequence 5549		Sequence 5601	
Sequence 5550		Sequence 5602	
Sequence 5551		Sequence 5603	
Sequence 5552		Sequence 5604	Z39898
•			

	5057 44000500
Sequence 5605 Al089528	Sequence 5657 AA298593
Sequence 5606 AA393355	Sequence 5658 Al580419
Sequence 5607 Al126443	Sequence 5659 Al859619
Sequence 5608 AA304762	Sequence 5660 AA307247
Sequence 5609 AA677706	Sequence 5661 AA155913
Sequence 5610 AA070567	Sequence 5662 AA259255
Sequence 5611 AA948372	Sequence 5663 Al909330
Sequence 5612 R54784	Sequence 5664 AA662470
Sequence 5613 AA295348	Sequence 5665 AA707576
Sequence 5614 Al829827	Sequence 5666 Al686930
Sequence 5615 AA707750	Sequence 5667 AL043702
Sequence 5616 Al627480	Sequence 5668 AA635641
Sequence 5617 Al348421	Sequence 5669 Al791322
Sequence 5618 Al087888	Sequence 5670 T85006
Sequence 5619 Al381494	Sequence 5671 Al680313
Sequence 5620 AA487580	Sequence 5672 AA297432
Sequence 5621 AA404214	Sequence 5673 AA400813
Sequence 5622 Al217003	Sequence 5674 Al267569
Sequence 5623 AW003747	Sequence 5675 R71822
Sequence 5624 Al640638	Sequence 5676 AA485853
Sequence 5625 Al216969	Sequence 5677 AA262399
Sequence 5626 H27807	Sequence 5678 AA039972
Sequence 5627 Al040598	Sequence 5679 AA278804
Sequence 5628 AA365951	Sequence 5680 N59576
Sequence 5629 AA641867	Sequence 5681 AA143609
Sequence 5630 Al802528	Sequence 5682 Al174846
Sequence 5631 Al051792	Sequence 5683 AA934734
Sequence 5632 AA524966	Sequence 5684 Al078038
Sequence 5633 AA984569	Sequence 5685 H52045
Sequence 5634 Al879040	Sequence 5686 AA165148
Sequence 5635 AA044098	Sequence 5687 Al873959
Sequence 5636 AA868309	Sequence 5688 AA384584
Sequence 5637 Al473799	Sequence 5689 Al094433
Sequence 5638 H25648	Sequence 5690 AA828505
Sequence 5639 AA102397	Sequence 5691 Al676218
Sequence 5640 AW129112	Sequence 5692 AA371760
Sequence 5641 AL035802	Sequence 5693 N49706
Sequence 5642 W74125	Sequence 5694 Al631297
Sequence 5643 AA580280	Sequence 5695 AA064779
Sequence 5644 AA292011	Sequence 5696 AA371595
Sequence 5645 AA315049	Sequence 5697 Al002056
Sequence 5646 Al021922	Sequence 5698 Al267307
Sequence 5647 AA362778	Sequence 5699 Al768568
Sequence 5648 AA074676	Sequence 5700 Al358337
Sequence 5649 AA385326	Sequence 5701 AA588854
Sequence 5650 AW189037	Sequence 5702 R65899
Sequence 5651. Al820678	Sequence 5703 AA102280
Sequence 5652 Al473864	Sequence 5704 Al655603
Sequence 5653 AA345807	Sequence 5705 Al655893
Sequence 5654 Al951118	Sequence 5706 AA371964
Sequence 5655 AL044891	Sequence 5707 AL039550
Sequence 5656 H78895	Sequence 5708 Al817242

Sequence 5709	AA557683	Sequence 5761	AI535656
Sequence 5710		Sequence 5762	
Sequence 5711		Sequence 5763	AA272128
Sequence 5712		Sequence 5764	
Sequence 5713	AA100857	Sequence 5765	AA524479
Sequence 5714	AA287804	Sequence 5766	AA505700
Sequence 5715	AI023453	Sequence 5767	T87986
Sequence 5716	AA328046	Sequence 5768	AA987583
Sequence 5717	AA482228	Sequence 5769	
Sequence 5718	AI014697	Sequence 5770	Al696748
Sequence 5719	AA410527	Sequence 5771	AA588848
Sequence 5720	AA507153	Sequence 5772	
Sequence 5721	AI273871	Sequence 5773	AA313487
Sequence 5722	AA121437	Sequence 5774	Al266582
Sequence 5723	AA586800	Sequence 5775	Al377925
Sequence 5724	AA296846	Sequence 5776	
Sequence 5725	Al752620	Sequence 5777	Al133489
Sequence 5726	AA083626	Sequence 5778	AW015349
Sequence 5727	AA423899	Sequence 5779	N91834
Sequence 5728	AA084923	Sequence 5780	W25732
Sequence 5729	AA423899 AA084923 AA335273 AI557359 AL042316 AA169743	Sequence 5781	AA442666
Sequence 5730	Al557359	Sequence 5782	Al252283
Sequence 5731	AL042316	Sequence 5783	Al187009
Sequence 5732	AA169743	Sequence 5784	AA316705
Sequence 5733		Sequence 5785	
Sequence 5734		Sequence 5786	AA344554
Sequence 5735	Al668594	Sequence 5787	
Sequence 5736	AA156784	Sequence 5788	AA748644
Sequence 5737	AA374373	Sequence 5789	Al791618
Sequence 5738	AA155926	Sequence 5790	AA873869
Sequence 5739		Sequence 5791	
Sequence 5740		Sequence 5792	AA393164
Sequence 5741	AA143616	Sequence 5793	
Sequence 5742	AA047054	Sequence 5794	
Sequence 5743	AL040758	Sequence 5795	
Sequence 5744		Sequence 5796	
Sequence 5745	AA866214	Sequence 5797	
Sequence 5746	AI648682	Sequence 5798	
Sequence 5747		Sequence 5799	
Sequence 5748		Sequence 5800	
Sequence 5749		Sequence 5801	
Sequence 5750		Sequence 5802	
Sequence 5751	AJ366015	Sequence 5803	
Sequence 5752		Sequence 5804	
Sequence 5753		Sequence 5805	
Sequence 5754		Sequence 5806	
Sequence 5755		Sequence 5807	
Sequence 5756		Sequence 5808	
Sequence 5757		Sequence 5809	
Sequence 5758		Sequence 5810	
Sequence 5759		Sequence 5811	
Sequence 5760	Al608864	Sequence 5812	Al207528

Sequence 5813	Al431756	Sequence 5865	Al287516
Sequence 5814		Sequence 5866	AW089920
Sequence 5815		Sequence 5867	AI583065
Sequence 5816		Sequence 5868	AA211763
Sequence 5817		Sequence 5869	R24312
Sequence 5818		Sequence 5870	AF147766
Sequence 5819		Sequence 5871	Al445220
Sequence 5820		Sequence 5872	AA344179
Sequence 5821		Sequence 5873	AA332072
Sequence 5822		Sequence 5874	AA643898
Sequence 5823		Sequence 5875	AA242898.
Sequence 5824		Sequence 5876	AA295091
Sequence 5825	AA295863	Sequence 5877	AA112882
Sequence 5826	R71039	Sequence 5878	
Sequence 5827		Sequence 5879	AA100023
Sequence 5828		Sequence 5880	Al767591
Sequence 5829	AA127185	Sequence 5881	
Sequence 5830		Sequence 5882	
Sequence 5831		Sequence 5883	
Sequence 5832		Sequence 5884	
Sequence 5833	AA682618	Sequence 5885	
Sequence 5834		Sequence 5886	
Sequence 5835		Sequence 5887	AA143286
Sequence 5836	AL037828	Sequence 5888	
Sequence 5837		Sequence 5889	
Sequence 5838		Sequence 5890	
Sequence 5839		Sequence 5891	
Sequence 5840	AA371077	Sequence 5892	AA052933
Sequence 5841		Sequence 5893	Al267482
Sequence 5842		Sequence 5894	AA159272
Sequence 5843	AI703142	Sequence 5895	AA810483
Sequence 5844		Sequence 5896	
Sequence 5845	AF063537	Sequence 5897	AA033651
Sequence 5846		Sequence 5898	
Sequence 5847		Sequence 5899	
Sequence 5848		Sequence 5900	AI091312
Sequence 5849		Sequence 5901	H25577
Sequence 5850		Sequence 5902	
Sequence 5851		Sequence 5903	AA580682
Sequence 5852		Sequence 5904	AW023447
Sequence 5853	Al923978	Sequence 5905	
Sequence 5854	AA305143	Sequence 5906	
Sequence 5855	Al252548	Sequence 5907	T94565
Sequence 5856		Sequence 5908	
Sequence 5857	AA610476	Sequence 5909	AW165953
Sequence 5858	AW072783	Sequence 5910	
Sequence 5859		Sequence 5911	
Sequence 5860	T29485	Sequence 5912	
Sequence 5861	T10966	Sequence 5913	
Sequence 5862	AI093004	Sequence 5914	AA010305
Sequence 5863		Sequence 5915	AA233029
Sequence 5864		Sequence 5916	AA552670

Sequence 5917	AA490687	Sequence 5969	
Sequence 5918	T68209	Sequence 5970	
Sequence 5919	AW081746	Sequence 5971	
Sequence 5920	AL041774	Sequence 5972	
Sequence 5921	Al554633	Sequence 5973	
Sequence 5922	Al089394	Sequence 5974	
Sequence 5923	AA457625	Sequence 5975	
Sequence 5924	AW015828	Sequence 5976	
Sequence 5925	AA552321	Sequence 5977	
Sequence 5926	AI820995	Sequence 5978	
Sequence 5927	AA932409	Sequence 5979	
Sequence 5928	H10974	Sequence 5980	
Sequence 5929	Al348024	Sequence 5981	
Sequence 5930		Sequence 5982	AW205207
Sequence 5931	AA352014	Sequence 5983	
Sequence 5932	AA740722	Sequence 5984	
Sequence 5933		Sequence 5985	AJ217019
Sequence 5934	AA057290	Sequence 5986	AA132005
Sequence 5935	Al445406	Sequence 5987	
Sequence 5936		Sequence 5988	
Sequence 5937		Sequence 5989	
Sequence 5938		Sequence 5990	
Sequence 5939		Sequence 5991	
Sequence 5940		Sequence 5992	
Sequence 5941		Sequence 5993	
Sequence 5942		Sequence 5994	
Sequence 5943		Sequence 5995	
Sequence 5944		Sequence 5996	
Sequence 5945		Sequence 5997	
Sequence 5946		Sequence 5998	
Sequence 5947		Sequence 5999	
Sequence 5948		Sequence 6000	
Sequence 5949		Sequence 6001	
Sequence 5950		Sequence 6002	
Sequence 5951		Sequence 6003	
Sequence 5952		Sequence 6004	
Sequence 5953		Sequence 6005	
Sequence 5954	ALU40800	Sequence 6006 Sequence 6007	
Sequence 5955		Sequence 6008	
Sequence 5956		Sequence 6009	
Sequence 5957		Sequence 6010	
Sequence 5958 Sequence 5959		Sequence 6011	AAA62767
Sequence 5960	V/V/060638	Sequence 6012	
Sequence 5961		Sequence 6013	
Sequence 5962		Sequence 6014	
Sequence 5963		Sequence 6015	
Sequence 5964		Sequence 6016	
Sequence 5965		Sequence 6017	
Sequence 5966	AA101471	Sequence 6018	
Sequence 5967		Sequence 6019	
Sequence 5968		Sequence 6020	

Sequence 6021	AA654828	Sequence 6073	
Sequence 6022	Al333596	Sequence 6074	
Sequence 6023	AA398507	Sequence 6075	
Sequence 6024	N28519	Sequence 6076	R91802
Sequence 6025	AI580902	Sequence 6077	H15261
Sequence 6026		Sequence 6078	AA377218
Sequence 6027		Sequence 6079	AA046941
Sequence 6028		Sequence 6080	Al110868
Sequence 6029		Sequence 6081	AI674876
Sequence 6030		Sequence 6082	AA532852
Sequence 6031		Sequence 6083	AA662901
Sequence 6032		Sequence 6084	AI290826
Sequence 6033		Sequence 6085	AA573737
Sequence 6034		Sequence 6086	
Sequence 6035		Sequence 6087	
Sequence 6036		Sequence 6088	AA503377
Sequence 6037		Sequence 6089	
Sequence 6038	AA099093	Sequence 6090	
Sequence 6039		Sequence 6091	
Sequence 6040		Sequence 6092	
Sequence 6041		Sequence 6093	
Sequence 6042		Sequence 6094	
Sequence 6043		Sequence 6095	
Sequence 6044		Sequence 6096	
Sequence 6045		Sequence 6097	
Sequence 6046		Sequence 6098	
Sequence 6047		Sequence 6099	AW070539
Sequence 6048		Sequence 6100	
Sequence 6049		Sequence 6101	
Sequence 6050		Sequence 6102	
Sequence 6051		Sequence 6103	
Sequence 6052	AI536688	Sequence 6104	
Sequence 6053		Sequence 6105	
Sequence 6054		Sequence 6106	
Sequence 6055		Sequence 6107	
Sequence 6056		Sequence 6108	
Sequence 6057		Sequence 6109	
Sequence 6058		Sequence 6110	
Sequence 6059		Sequence 6111	
Sequence 6060	AA429190	Sequence 6112	AA287159
Sequence 6061		Sequence 6113	
Sequence 6062		Sequence 6114	
Sequence 6063		Sequence 6115	
Sequence 6064	H30439	Sequence 6116	
Sequence 6065		Sequence 6117	AA531506
Sequence 6066		Sequence 6118	AA442415
Sequence 6067		Sequence 6119	
Sequence 6068		Sequence 6120	
Sequence 6069		Sequence 6121	
Sequence 6070		Sequence 6122	
Sequence 6071		Sequence 6123	
Sequence 6072		Sequence 6124	
		•	

Sequence 6125	AA513632	Sequence 6177	
Sequence 6126		Sequence 6178	
Sequence 6127		Sequence 6179	
Sequence 6128	AA019899	Sequence 6180	
Sequence 6129	AA682391	Sequence 6181	
Sequence 6130		Sequence 6182	AA514343
Sequence 6131		Sequence 6183	Al431279
Sequence 6132		Sequence 6184	AA130226
Sequence 6133		Sequence 6185	AA205019
Sequence 6134		Sequence 6186	T49245
Sequence 6135		Sequence 6187	AA164585
Sequence 6136		Sequence 6188	AA425526
Sequence 6137		Sequence 6189	
Sequence 6138		Sequence 6190	
Sequence 6139		Sequence 6191	
Sequence 6140		Sequence 6192	
Sequence 6141		Sequence 6193	AA975592
Sequence 6142		Sequence 6194	
Sequence 6143	AA398686	Sequence 6195	Al743578
Sequence 6144		Sequence 6196	
Sequence 6145		Sequence 6197	
Sequence 6146	AI547307	Sequence 6198	
Sequence 6147		Sequence 6199	
Sequence 6148		Sequence 6200	
Sequence 6149		Sequence 6201	
Sequence 6150		Sequence 6202	
Sequence 6151		Sequence 6203	N35421
Sequence 6152		Sequence 6204	AI539260
Sequence 6153		Sequence 6205	H17995
Sequence 6154		Sequence 6206	
Sequence 6155		Sequence 6207	
Sequence 6156		Sequence 6208	Al792054
Sequence 6157		Sequence 6209	
Sequence 6158		Sequence 6210	
Sequence 6159		Sequence 6211	Al693814
Sequence 6160	AA481028	Sequence 6212	AA651899
Sequence 6161	AA336450	Sequence 6213	Al341165
Sequence 6162		Sequence 6214	AA804447
Sequence 6163		Sequence 6215	
Sequence 6164		Sequence 6216	
Sequence 6165		Sequence 6217	
Sequence 6166		Sequence 6218	
Sequence 6167		Sequence 6219	
Sequence 6168		Sequence 6220	
Sequence 6169		Sequence 6221	AI921465
Sequence 6170		Sequence 6222	A1858134
Sequence 6171		Sequence 6223	AA039317
Sequence 6172	AA773211	Sequence 6224	A1003214
Sequence 6173	AA219158	Sequence 6225	AAE9E477
Sequence 6174		Sequence 6226 Sequence 6227	AVAUZU477
Sequence 6175		Sequence 6228	
Sequence 6176	WWnaaa.o	Sequence 0220	AUCTIT

		COOA AAOOOOA	
Sequence 6229		Sequence 6281 AA029881	
Sequence 6230		Sequence 6282 Al018522	
Sequence 6231		Sequence 6283 Al911493	
Sequence 6232	AA700442	Sequence 6284 Al656841	
Sequence 6233		Sequence 6285 AA781971	
Sequence 6234	AW006088	Sequence 6286 Al025830	
Sequence 6235	AA210703	Sequence 6287 AA310739	
Sequence 6236		Sequence 6288 AA303585	
Sequence 6237		Sequence 6289 N46575	
Sequence 6238	Al559190	Sequence 6290 AA045861	
Sequence 6239	AA541698	Sequence 6291 Al792405	
Sequence 6240	AA256985	Sequence 6292 Al972614	
Sequence 6241	AA314146	Sequence 6293 W27249	
Sequence 6242	AA470051	Sequence 6294 AA464360	
Sequence 6243	Al392890	Sequence 6295 Al366381	
Sequence 6244	T61688	Sequence 6296 AL044350	
Sequence 6245	AA316115	Sequence 6297 AA932839	
Sequence 6246	R19240	Sequence 6298 AA552443	
Sequence 6247	Al359502	Sequence 6299 W39498	
Sequence 6248	AA186825	Sequence 6300 AA425250	
Sequence 6249	AI034312	Sequence 6301 AA422022	
Sequence 6250	AA134283	Sequence 6302 Al636701	
Sequence 6251	AA403072	Sequence 6303 AA706932	
Sequence 6252	AI572043	Sequence 6304 AA046666	
Sequence 6253	AA219434	Sequence 6305 Al267573	
Sequence 6254	AA984156	Sequence 6306 Al144260	
Sequence 6255	AA165027	Sequence 6307 AA909582	
Sequence 6256	AW166442	Sequence 6308 AA759250	
Sequence 6257	AA768908	Sequence 6309 AA448758	
Sequence 6258	AA040240	Sequence 6310 AA948037	
Sequence 6259	AA447623	Sequence 6311 AA229611	
Sequence 6260	R60271	Sequence 6312 AA577045	
Sequence 6261	AA056703	Sequence 6313 AA480512	
Sequence 6262	AA293838	Sequence 6314 AA293759	
Sequence 6263	AA916848	Sequence 6315 AA094402	
Sequence 6264		Sequence 6316 Al280378	
Sequence 6265	AA768348	Sequence 6317 Al088004	
Sequence 6266	Al276361	Sequence 6318 Al753830	
Sequence 6267	AW073310	Sequence 6319 AA482432	
Sequence 6268	T96872	Sequence 6320 AW150869	
Sequence 6269	AA626274	Sequence 6321 Al740563	
Sequence 6270	AA610193	Sequence 6322 H97487	
Sequence 6271	N23798	Sequence 6323 T62059	
Sequence 6272	AA644559	Sequence 6324 AA994633	
Sequence 6273	3 AA393368	Sequence 6325 Al631862	
Sequence 6274	AL035805	Sequence 6326 Al379989	
Sequence 6275	5 AA223779	Sequence 6327 AL039576	
Sequence 6276	S AW167984	Sequence 6328 Al824013	
Sequence 6277	AA781512	Sequence 6329 AA398043	
Sequence 6278	3 AL038068	Sequence 6330 W81242	
Sequence 6279	AA156261	Sequence 6331 AA345906	
Sequence 6280) AA357592	Sequence 6332 AW170035	
3-4			

Sequence 6333	AA503923	Sequence 6385	
Sequence 6334		Sequence 6386	
Sequence 6335	AA644174	Sequence 6387	
Sequence 6336	Al686325	Sequence 6388	
Sequence 6337	AA358790	Sequence 6389	AI590351
Sequence 6338	AI366208	Sequence 6390	
Sequence 6339		Sequence 6391	AA339378
Sequence 6340	Al056974	Sequence 6392	
Sequence 6341	Al253087	Sequence 6393	AI800922
Sequence 6342	Al580292	Sequence 6394	
Sequence 6343	AA468297	Sequence 6395	
Sequence 6344	N91073	Sequence 6396	Al142540
Sequence 6345	AA307697	Sequence 6397	AI638398
Sequence 6346	AI568937	Sequence 6398	H67577
Sequence 6347		Sequence 6399	AL040084
Sequence 6348	AA176269	Sequence 6400	AI658720
Sequence 6349		Sequence 6401	
Sequence 6350		Sequence 6402	
Sequence 6351		Sequence 6403	
Sequence 6352		Sequence 6404	
Sequence 6353		Sequence 6405	
Sequence 6354		Sequence 6406	AA523167
Sequence 6355		Sequence 6407	
Sequence 6356		Sequence 6408	
Sequence 6357		Sequence 6409	
Sequence 6358		Sequence 6410	
Sequence 6359		Sequence 6411	
Sequence 6360		Sequence 6412	
Sequence 6361	Al816499	Sequence 6413	Al814513
Sequence 6362		Sequence 6414	
Sequence 6363		Sequence 6415	
Sequence 6364	AA994244	Sequence 6416	AA099739
Sequence 6365	AA829461	Sequence 6417	
Sequence 6366		Sequence 6418	AA297402
Sequence 6367		Sequence 6419	
Sequence 6368		Sequence 6420	
Sequence 6369		Sequence 6421	
Sequence 6370		Sequence 6422	Al916533
Sequence 6371		Sequence 6423	
Sequence 6372		Sequence 6424	W52632
Sequence 6373		Sequence 6425	
Sequence 6374		Sequence 6426	
Sequence 6375		Sequence 6427	
Sequence 6376		Sequence 6428	Al984229
Sequence 6377		Sequence 6429	
Sequence 6378		Sequence 6430	
Sequence 6379		Sequence 6431	
Sequence 6380		Sequence 6432	
Sequence 6381		Sequence 6433	
Sequence 6382	AA398256	Sequence 6434	Al349614
Sequence 6383	AA570171	Sequence 6435	Al364580
Sequence 6384	AI650528	Sequence 6436	
•		•	

PCT/US00/35214

WO 01/46697

65/66

	•		
Sequence 6437	AA634469	Sequence 6486	AA633488
Sequence 6438	AA115297	Sequence 6487	
Sequence 6439		Sequence 6488	
Sequence 6440	AA165082	Sequence 6489	AA728913
Sequence 6441		Sequence 6490	AI547306
Sequence 6442		Sequence 6491	AA307396
Sequence 6443	Al143160	Sequence 6492	Al147214
Sequence 6444	H16276	Sequence 6493	AA298786
Sequence 6445	AA552539	Sequence 6494	AI885273
Sequence 6446	AA582093	Sequence 6495	AA224487
Sequence 6447	Al127772	Sequence 6496	AA236418
Sequence 6448		Sequence 6497	AA994857
Sequence 6449	AA309058	Sequence 6498	Al815198
Sequence 6450	AA243332	Sequence 6499	AW015055
Sequence 6451	AA526498	Sequence 6500	AA805433
Sequence 6452	Al432038	Sequence 6501	AA470471
Sequence 6453	AA375816	Sequence 6502	Q36617
Sequence 6454	X84712	Sequence 6503	Q61566
Sequence 6455	Al301060	Sequence 6504	
Sequence 6456	AA054556	Sequence 6505	
Sequence 6457	H26328	Sequence 6506	
Sequence 6458	AA367039	Sequence 6507	V44294
Sequence 6459	Al127076	Sequence 6508	X37319
Sequence 6460	Al952920	Sequence 6509	Z16704
Sequence 6461	AA507550	Sequence 6510	V99312
Sequence 6462	AA948007	Sequence 6511	Q40769
Sequence 6463	T28300	Sequence 6512	T02797
Sequence 6464	AI720413	Sequence 6513	X37398
Sequence 6465	AA513640	Sequence 6514	V23109
Sequence 6466	AA143598	Sequence 6515	V04202
Sequence 6467	Al004210 ·	Sequence 6516	
Sequence 6468		Sequence 6517	
Sequence 6469		Sequence 6518	
Sequence 6470		Sequence 6519	
Sequence 6471		Sequence 6520	
Sequence 6472		Sequence 6521	
Sequence 6473		Sequence 6522	
Sequence 6474		Sequence 6523	
Sequence 6475		Sequence 6524	
Sequence 6476		Sequence 6525	
Sequence 6477		Sequence 6526	
Sequence 6478		Sequence 6527	
Sequence 6479		Sequence 6528	
Sequence 6480		Sequence 6529	
Sequence 6481		Sequence 6530	
Sequence 6482		Sequence 6531	
Sequence 6483		Sequence 6532	
Sequence 6484		Sequence 6533	VA1190
Sequence 6485	M310304		

66/66

TABLE 8

Sequence 6534: found in patent publication WO99/53040

GNAGCTCCACCGCGGTGGCGGCCGAGGTACTCTCGTTTCAGCTGGCCTCTTATGGCCAA CCCGCTCGGCTTGCGCCGCGGGTTTCCGGAGATATGTTGTATTCGGCTGGGTCGAGGG TCTCAGGCAGAGTGCGCAGGCTCGACGGCTTATACTTTGGGAACGACATCTTGGCGAACC AGGGCACAATTGCGCCTGCCCCGCGTACCTGCCCG

Sequence 6535: found in patent publication WO99/54461

CTNCTATAGGGCGAATTGGAGCTCCCCGCGGTGGCGGCCGCCCGGGCAGGTACGCGGAGCTGAACTTTTCCACCTGGAGTCCTTGGGAATACCGGACGTGATCTTCTTTTATAGGTCCAATGATGTGACCCAGTCCTGCAGTTCTGGGAGATCAACCACCATCCGCGTCAGGTGCAGTCCACAGAAAACTGTCCCTGGAAGTTTGCTGCTGCCAGGAACGTGCTCAGATGGGACCTGTGATGGCTGCAACTTCCACTTCCTGTGGGAGAGCGCGGCTGCTTGCCCGCTCTGCTCANTGGCTGACTACCATGCTATCGTCAGCAGCTGTGGGATCCAGAAGACTACTTACGTGTGGNNAGAACCCAAGCTATGCTCTGGTGGNATTTCTCTGCCTGAGCAGAGAGTCACCATCTGCAAAACCATAGATTTCTGGCTGAAAAGTGGGCATCTCTGCAGGCACCTGTACCTCGGCCSequence 6536: found in patent publication WO99/63088

CCGCGGTGGCGGCCGAGGTACGCGGGAAGATGTAGCTGTGTAGTCTCCTTCCATAGCTGC
TCTAAGGGGGCTGGCAACATGGCTCAGCAGGCTTGCCCCAGAGCCATGGCAAAGAATGGA
CTTGTAATTTGCATCCTGGTGATCACCTTACTCCTGGACCAGACCACCAGCCACACATCC
AGATTAAAAGCCAGGAAGCACAGCAAACGTCGAGTGAGAGACAAGGATGGAGATCTGAAG
ACTCAAATTGAAAAGCTCTGGACAGAAGTCAATGCCTTGAAGGAAATTCAAGCCCTGCAG
ACAGTCTGTCTCCGAGGCACTAAAGTTCACAAGAAATGCTACCTTGCTTCAGAAGGTTTG
AAGCATTTCCATGAGGCCAATGAAGACTGCATTTCCAAAGGAGAATCCTGGTTA

Sequence 6537: found in patent publication WO99/54446

CAGCTACAGATAAGGCCTCGCAAAGTTGGCCTCAGAGACACATCAGGAACCAAGGTGGAC
CAGCAGGTGCCGAGCCTGTGTATCTGCTTGGAGGAGACCATCCAATGTGCTGCCTTGTTC
AGAGATGGTGTAGTTGCAAGAAACAGAAACCCNNCACAATTTCTCAGGCAAAAAGGGAGT
TAATTATAAGGACATAAGAGCACAAAGTTCCAGTGCAAGAGATACATCCAGGCTGCACAA
GCTCCGGGAGTGGGGCCTGCCTGGCAAGCCAAAAGAAACCAAAGTTTGTCTTGCCTTCTG
TTCCTCTTTCTGAAGCCACATAGCCTTTTATGACTGTGTATTTTTTGCATCGCTTTTGTTT
TCTTTTTATGTCTCTGAAGCCAGCTTTTCCTGTTCACTCATCCCTTGATTAAATATGGAC
ATTCTAGCTCCAAAAAAAAANNAAAAANNANNNNNNANAAAGTACCT

Sequence 6538: found in patent publication WO99/32502

Sequence 6539: found in patent publication WO99/53051

CGCGGTGGCAGCAATCCTGGCCAAAGAAGGAGAGTTCCTGAGAAAGTGAAGCTGACCTCA CCGTCTTAAGCTTGGATGTGTTCCCCGCGTACCT

Sequence 6540: found in patent publication WO99/57132

			44450073
Sequence #	Accession#	Sequence 50	AA152073
		Sequence 51	AI128232
Sequence 1	AA704128	Sequence 52	AA345757
Sequence 2	AA331946	Sequence 53	AA523385
Sequence 3	AA709383	Sequence 54	AI110783
Sequence 4	AL048446	Sequence 55	AA232575
Sequence 5	AI755142	Sequence 56	C17084
Sequence 6	AA039902	Sequence 57	AA600826
Sequence 7	AI751785	Sequence 58	N23782
Sequence 8	AA669052	Sequence 59	AA308274
Sequence 9	AA604602	Sequence 60	Al751555
Sequence 10	AA203500	Sequence 61	AA398992
Sequence 11	AA736440	Sequence 62	AA788694
Sequence 12	AA778841	Sequence 63	AA552228
Sequence 13	AW087194	Sequence 64	AA583055
Sequence 14	Al132966	Sequence 65	AA578583
Sequence 15	AA715541	Sequence 66	AI754681
Sequence 16	AA311044	Sequence 67	H08043
Sequence 17	AA887058	Sequence 68	AA664849
Sequence 18	Z21669	Sequence 69	D58142
Sequence 19	AI033304	Sequence 70	AA102183
Sequence 20	AA773932	Sequence 71	AW023974
Sequence 21	AA070615	Sequence 72	AA886718
Sequence 22	AA075415	Sequence 73	AA031546
Sequence 23	AA186574	Sequence 74	H48018
Sequence 24	AA042853	Sequence 75	AA301897
Sequence 25	A1744219	Sequence 76	AA039259
Sequence 26	AA082572	Sequence 77	AA037290
Sequence 27	N42722	Sequence 78	AA451928
Sequence 28	AA308805	Sequence 79	AA147833
Sequence 29	AA031764	Sequence 80	AA406393
Sequence 30	AA449862	Sequence 81	R58560
Sequence 31	AA788710	Sequence 82	AL047035
Sequence 32	AA451821	Sequence 83	AA650303
Sequence 33	Al123697	Sequence 84	Al751220
Sequence 34	AA248703	Sequence 85	AA552596
Sequence 35	AA694215	Sequence 86	AA192483
Sequence 36	AA146899	Sequence 87	Al394305
Sequence 37	AA147585	Sequence 88	AA555160
Sequence 38	AA152204	Sequence 89	R78964
Sequence 39	AA173829	Sequence 90	AA508592
Sequence 40	N45416	Sequence 91	AA483177
Sequence 41	AI079882	Sequence 92	Al278640
Sequence 42	AW026089	Sequence 93	AA442803
Sequence 43	AA446179	Sequence 94	Z78377
Sequence 44	AA161343	Sequence 95	AA082805
Sequence 45	AI750827	Sequence 96	AA312287
Sequence 46	D79054	Sequence 97	AA639174
Sequence 47	AA610472	Sequence 98	AA778383
Sequence 48	AA648092	Sequence 99	AA704151
Sequence 49	AA487845	Sequence 100	AA984202
2 - M		-	

Sequence 101	A1750332	Sequence 152	AI752005
Sequence 102	AA446505	Sequence 153	AI754447
Sequence 103	Al150910	Sequence 154	AA082576
Sequence 104	AA573838	Sequence 155	AA305494
Sequence 105	Al358338	Sequence 156	AA339718
Sequence 106	AA160053	Sequence 157	H93127
Sequence 107	AA631152	Sequence 158	AA703938
Sequence 108	AW062558	Sequence 159	AW084608
Sequence 109	AI041974	Sequence 160	AL041915
Sequence 110	AA131455	Sequence 161	AA044574
Sequence 111	AA179921	Sequence 162	Ai040034
Sequence 112	AW068618	Sequence 163	AA780908
Sequence 113	AA378000	Sequence 164	AI913196
Sequence 114	AI079577	Sequence 165	AI017341
Sequence 115	AA545771	Sequence 166	AA292265
Sequence 116	AL042809	Sequence 167	AA081204
Sequence 117	AA303709	Sequence 168	Al459383
Sequence 118	AA022748	Sequence 169	AA025156
Sequence 119	Al630038	Sequence 170	AA213468
Sequence 120	AW020397	Sequence 171	AA564681
Sequence 121	A1795908	Sequence 172	AA557124
Sequence 122	Al676202	Sequence 173	W46197
Sequence 123	AA070516	Sequence 174	AA253098
Sequence 124	AA704000	Sequence 175	AA022596
Sequence 125	AA332035	Sequence 176	AA187564
Sequence 126	AA481432	Sequence 177	AA648579
Sequence 127	AA564636	Sequence 178	AA157776
Sequence 128	Al275042	Sequence 179	AL037531
Sequence 129	AA293864	Sequence 180	AA765363
Sequence 130	AA083405	Sequence 181	AA151468
Sequence 131	AA129240	Sequence 182	AA376374
Sequence 132	AI815640	Sequence 183	AA342989
Sequence 133	AA564659	Sequence 184	AA128589
Sequence 134	AA037736	Sequence 185	AI018625
Sequence 135	AA047110	Sequence 186	AA293867
Sequence 136	AI078167	Sequence 187	AL040084
Sequence 137	AA112649	Sequence 188	AA463238
Sequence 138	AA649933	Sequence 189	AA173657
Sequence 139	AA308845	Sequence 190	AW138445
Sequence 140		Sequence 191	AA366354
Sequence 141	Al400880	Sequence 192	AI808392
Sequence 142	AA147887	Sequence 193	AA779868
Sequence 143	AA303932	Sequence 194	AA218775
Sequence 144	N80420	Sequence 195	AA442280
Sequence 145		Sequence 196	AA076567
Sequence 146		Sequence 197	AA480299
Sequence 147		Sequence 198	W45394
Sequence 148		Sequence 199	AA373376
Sequence 149		Sequence 200	AA041526
Sequence 150	W00480	Sequence 201	AA147894
Sequence 151	AA069676	Sequence 202	AA514999
			•

Sequence 203	AA102120	Sequence 254	AA247768
Sequence 204	AW058418	Sequence 255	W44358
Sequence 205	AA010582	Sequence 256	AL046505
Sequence 206	AF063517	Sequence 257	AA188190
Sequence 207	AA280527	Sequence 258	AA314627
Sequence 208	AA102767	Sequence 259	AI052170
Sequence 209	AA136482	Sequence 260	Al142867
Sequence 210	AA182446	Sequence 261	AA295843
Sequence 211	AA074716	Sequence 262	AI752167
Sequence 212	AA642453	Sequence 263	AA213902
Sequence 213	AA179943	Sequence 264	AA448991
Sequence 214	AA858418	Sequence 265	AA076538
Sequence 215	AA037347	Sequence 266	AA037178
Sequence 216	Al262380	Sequence 267	AA486770
Sequence 217	AA082093	Sequence 268	AA083645
Sequence 218	AA329529	Sequence 269	Al684170
Sequence 219	N71242	Sequence 270	AA376034
Sequence 220	C00229	Sequence 271	AA082314
•	Al927755	Sequence 272	AA133983
Sequence 221	AA305968	Sequence 273	A(753090
Sequence 222	AA155772	Sequence 274	AA305969
Sequence 223	AA627871	Sequence 275	AA100764
Sequence 224		Sequence 276	AW131116
Sequence 225	A1741704	Sequence 277	AA334118
Sequence 226	AA070594	Sequence 278	AA069552
Sequence 227	Al815791 AL043753	Sequence 279	AA304447
Sequence 228		Sequence 280	Al697295
Sequence 229	AA314784 R22336	Sequence 281	AA291400
Sequence 230	AL047980	Sequence 282	Al271552
Sequence 231	AI751046	Sequence 283	AI751618
Sequence 232	AW190211	Sequence 284	AA336951
Sequence 233	AA315996	Sequence 285	Al114556
Sequence 234		Sequence 286	AA373365
Sequence 235	AA189124 AA022992	Sequence 287	AA788933
Sequence 236		Sequence 288	AA705508
Sequence 237	AA516043	Sequence 289	AA640931
Sequence 238	AA876057	Sequence 290	AA669133
Sequence 239	AA298582	Sequence 291	AA057599
Sequence 240	AA767234	Sequence 292	AA485495
Sequence 241	AA630286	_ '	AA367947
Sequence 242	AA293124	Sequence 293 Sequence 294	AA458613
Sequence 243	AA604352 AA179450	Sequence 295	AA568957
Sequence 244	AA179450 AA147777	Sequence 296	H54576
Sequence 245		•	AA056358
Sequence 246	AA664425	Sequence 297 Sequence 298	AA463426
Sequence 247	AA587110	Sequence 299	AA398581
Sequence 248	AA062957	Sequence 300	AI185804
Sequence 249	AA025562	•	AA234360
Sequence 250	H52575	Sequence 301	AW020650
Sequence 251	H08531	Sequence 302 Sequence 303	AA355196
Sequence 252	AA442263 AA573799	Sequence 304	AA703907
Sequence 253	Maisiaa	Sequence 304	, 171 00301

Sequence 305	AA316071	Sequence 356	C17716
Sequence 306	AA054776	Sequence 357	AA545758
Sequence 307	AA256715	Sequence 358	AA310001
Sequence 308	AA341608	Sequence 359	AA599724
Sequence 309	AA436486	Sequence 360	AA121145
Sequence 310	AA398033	Sequence 361	AI749171
Sequence 311	AA488403	Sequence 362	AA522686
Sequence 312	AA046572	Sequence 363	AA386011
Sequence 313	AA586744	Sequence 364	AA131227
Sequence 314	AA928492	Sequence 365	AA444099
Sequence 315	AA765228	Sequence 366	AA099976
Sequence 316	AA309944	Sequence 367	AA263070
Sequence 317	Al190285	Sequence 368	AA187386
Sequence 318	AA486015	Sequence 369	AI750854
Sequence 319	AI879344	Sequence 370	Al341295
Sequence 320	AL039924	Sequence 371	W00346
Sequence 321	AA350768	Sequence 372	AA599454
Sequence 322	AA629076	Sequence 373	AA452189
Sequence 323	AA004720	Sequence 374	AA421248
Sequence 324	AA633901	Sequence 375	AA679328
Sequence 325	R70995	Sequence 376	AA167808
Sequence 326	AI080314	Sequence 377	AI089452
Sequence 327	W76437	Sequence 378	AA311028
Sequence 328	AI929672	Sequence 379	AA481979
Sequence 329	AA326962	Sequence 380	R25847
Sequence 330	H77539	Sequence 381	AA026215
Sequence 331	AI052690	Sequence 382	AA164698
Sequence 332	AA444383 ⁻	Sequence 383	AA156607
Sequence 333	AI750879	Sequence 384	AA865218
Sequence 334	AA232319	Sequence 385	Al370992
Sequence 335	H85516	Sequence 386	AA534826
Sequence 336	AA188875	Sequence 387	AI636488
Sequence 337	AA301679	Sequence 388	AA319726
Sequence 338	AA102772	Sequence 389	AA160493
Sequence 339	AA479287	Sequence 390	AA553483
Sequence 340	AA046245	Sequence 391	AA699463
Sequence 341	AA554733	Sequence 392	AA875996
Sequence 342	A1038258	Sequence 393	AI753666
Sequence 343	AA044085	Sequence 394	AA173157
Sequence 344	AA558450	Sequence 395	AA233232
Sequence 345	AA579591	Sequence 396	AA071286
Sequence 346	AA633280	Sequence 397	AA363582
Sequence 347	AA058967	Sequence 398	AA315030
Sequence 348	AA128518	Sequence 399	AA150713
Sequence 349	AW005829	Sequence 400	AL042517
Sequence 350	AA333390	Sequence 401	AA358940
Sequence 351	AA394288	Sequence 402	AL079971
Sequence 352	AA122401	Sequence 403	AA134100
Sequence 353	AA149686	Sequence 404	AA468848
Sequence 354	AA007606	Sequence 405	AL040676
Sequence 355	AA244377	Sequence 406	AA351232

Sequence 407	AA662532	Sequence 458	AI807462
Sequence 408	AA443398	Sequence 459	AA558460
Sequence 409	AA373734	Sequence 460	AI079435
Sequence 410	Al342424	Sequence 461	A1815554
Sequence 411	AA432073	Sequence 462	AA306779
Sequence 412	N44949	Sequence 463	AA082101
Sequence 413	AA132297	Sequence 464	AA088505
Sequence 414	R62235	Sequence 465	AA554016
Sequence 415	AW178825	Sequence 466	AI052317
Sequence 416	AI761085	Sequence 467	AA127185
Sequence 417	AA291583	Sequence 468	AA634876
Sequence 418	Al222806	Sequence 469	AA428408
Sequence 419	AA477967	Sequence 470	AA130001
Sequence 420	Al339765	Sequence 471	C05929
Sequence 421	AA301665	Sequence 472	AA122112
Sequence 422	Al267185	Sequence 473	AA427835
Sequence 423	AA375366	Sequence 474	AL043277
Sequence 424	Al244970	Sequence 475	AA383260
Sequence 425	AJ038312	Sequence 476	AA129310
Sequence 426	AA037374	Sequence 477	AA039354
Sequence 427	AA209497	Sequence 478	AA279047
Sequence 428	AA853130	Sequence 479	Al751498
Sequence 429	AA360575	Sequence 480	Al471478
Sequence 430	AI751488	Sequence 481	Al077905
Sequence 431	AA383074	Sequence 482	AA649992
Sequence 432	Al690374	Sequence 483	AA319538
Sequence 433	AA044586	Sequence 484	AA166707
Sequence 434	AA853501	Sequence 485	AA133102
Sequence 435	AA029163	Sequence 486	Al264924
Sequence 436	A1750806	Sequence 487	AA088368
Sequence 437	A1743668	Sequence 488	AL118999
Sequence 438	AI610402	Sequence 489	AA496505
Sequence 439	AA451947	Sequence 490	F12165
Sequence 440	H38017	Sequence 491	AA252345
Sequence 441	AL079950	Sequence 492	AW179074
Sequence 442	AA064890	Sequence 493	AA317963
Sequence 443	AA047587	Sequence 494	AA081426
Sequence 444	AA417772	Sequence 495	AA852160
Sequence 445	AA037283	Sequence 496	AA614015
Sequence 446	AA516059	Sequence 497	AA045993
Sequence 447	AI824121	Sequence 498	D79026
Sequence 448	AA853833	Sequence 499	AA622005
Sequence 449	AI753507	Sequence 500	AA092804
Sequence 450	Al128986	Sequence 501	AA181968
Sequence 451	AA375384	Sequence 502	AA522879
Sequence 452	AA160751	Sequence 503	AA075781
Sequence 453	AA307854	Sequence 504	AA465494
Sequence 454	AI764962	Sequence 505	AA554920
Sequence 455	AA853532	Sequence 506	AA099452
Sequence 456	AA361332	Sequence 507	A1084654
Sequence 457	AA314770	Sequence 508	AA090795

Sequence 509	AA186939	Sequence 560	Al681959
Sequence 510	AA179456	Sequence 561	AA187627
Sequence 511	AA480182	Sequence 562	AI090003
Sequence 512	Al340529	Sequence 563	AA375853
Sequence 513	Al207488	Sequence 564	AA286872
Sequence 514	N45373	Sequence 565	AA447935
Sequence 515	AA852893	Sequence 566	X84716
Sequence 516	AA368884	Sequence 567	AA203251
Sequence 517	AI188765	Sequence 568	AA224507
Sequence 518	Al356625	Sequence 569	AA449083
Sequence 519	· AA482724	Sequence 570	Al000202
Sequence 520	AA411438	Sequence 571	AI557645
Sequence 521	AI570578	Sequence 572	AA308288
Sequence 522	AA053650	Sequence 573	M77886
Sequence 523	AA888156	Sequence 574	AA329707
Sequence 524	Al304857	Sequence 575	AA112851
Sequence 525	AJ017336	Sequence 576	AA451952
Sequence 526	AA043921	Sequence 577	AA058479
Sequence 527	AI754050	Sequence 578	AA041467
Sequence 528	Al636207	Sequence 579	AA293450
Sequence 529	AA315237	Sequence 580	AI751956
Sequence 530	Al435429	Sequence 581	AA634086
Sequence 531	AA483067	Sequence 582	AA419370
Sequence 532	AA425549	Sequence 583	AA046846
Sequence 533	AA301628	Sequence 584	AI814177
Sequence 534	Al827429	Sequence 585	AA404646
Sequence 535	AA359893	Sequence 586	AI363480
Sequence 536	AA318379	Sequence 587	AA701870
Sequence 537	AA302191	Sequence 588	AA329872
Sequence 538	D52592	Sequence 589	AI750360
Sequence 539	AA334698	Sequence 590	AA373617
Sequence 540	AA075136	Sequence 591	AA054151
Sequence 541	AA542939	Sequence 592	AA169157
Sequence 542	AA373516	Sequence 593	AA490172
Sequence 543	AI570057	Sequence 594	AA196501
Sequence 544	AA331219	Sequence 595	AA970433
Sequence 545	AA039810	Sequence 596	AL036073
Sequence 546	AL037610	Sequence 597	AI694764
Sequence 547	Al569859	Sequence 598	AA255837
Sequence 548	AA405912	Sequence 599	W42888
Sequence 549	AA493355	Sequence 600	AJ750830
Sequence 550	AA772071	Sequence 601	AA307657
Sequence 551	AA309847	Sequence 602	AW175607
Sequence 552	AA037281	Sequence 603	T63450
Sequence 553	Al356838	Sequence 604	AA112869
Sequence 554	AA524485	Sequence 605	A1493245
Sequence 555	AA188157	Sequence 606	AA334279
Sequence 556	AA308507	Sequence 607	A1983428
Sequence 557	AA149552	Sequence 608	A1750711
Sequence 558	AA593699	Sequence 609	AA852527
Sequence 559	H39934	Sequence 610	AA328696
•			

Sequence 611	AA191369	Sequence 662	AI758869
Sequence 612	AA743942	Sequence 663	AA115571
Sequence 613	AA010305	Sequence 664	AI142138
Sequence 614	AI042074	Sequence 665	AI084794
Sequence 615	AA127675	Sequence 666	AI634339
Sequence 616	AI081456	Sequence 667	AA909231
Sequence 617	AA744761	Sequence 668	AI126663
Sequence 618	AA304332	Sequence 669	AI753977
Sequence 619	AA364833	Sequence 670	AJ346653
Sequence 620	AA075663	Sequence 671	AI042188
Sequence 621	AA373597	Sequence 672	AA063373
Sequence 622	AA251627	Sequence 673	AA169561
Sequence 623	AA176374	Sequence 674	AA545790
Sequence 624	AA766219	Sequence 675	AL043907
Sequence 625	AA179603	Sequence 676	AW160399
Sequence 626	W60773	Sequence 677	AW001499
Sequence 627	AA384855	Sequence 678	AI952631
Sequence 628	AA329969	Sequence 679	AI798679
Sequence 629	AA143152	Sequence 680	AA116051
Sequence 630	AA573817	Sequence 681	AA545736
Sequence 631	AA256330	Sequence 682	AI376460
Sequence 632	Al804766	Sequence 683	AA496308
Sequence 633	AA040037	Sequence 684	AL121433
Sequence 634	W52266	Sequence 685	AA789052
Sequence 635	AA095650	Sequence 686	AA191422
Sequence 636	AA283810	Sequence 687	AA031550
Sequence 637	AA296666	Sequence 688	D78013
Sequence 638	AA471119	Sequence 689	X82321
Sequence 639	AA333307	Sequence 690	AF031385
Sequence 640	W51898	Sequence 691	X62744
Sequence 641	AA631211	Sequence 692	X03363
Sequence 642	W39064	Sequence 693	AF148457
Sequence 643	AA419274	Sequence 694	X87212
Sequence 644	AA346470	Sequence 695	AJ012463
Sequence 645	AA773324	Sequence 696	AF070561
Sequence 646	Al267454	Sequence 697	AF008443
Sequence 647	AA137197	Sequence 698	AB023182
Sequence 648	AA158657	Sequence 699	X15187
Sequence 649	AA863284	Sequence 700	M14083
Sequence 650	AA703949	Sequence 701	AF070648
Sequence 651	AA663341	Sequence 702	U42404
Sequence 652	AA789332	Sequence 703	AJ223812
Sequence 653	AI924524	Sequence 704	AF124440
Sequence 654	R20888	Sequence 705	M64110
Sequence 655	AA551065	Sequence 706	E02164
Sequence 656	C03546	Sequence 707	M16342
Sequence 657	AA098824	Sequence 708	U30897
Sequence 658	AI084804	Sequence 709	AB002323
Sequence 659	AA484021	Sequence 710	D00015
Sequence 660	N72936	Sequence 711	U67093 L22569
Sequence 661	AA010309	Sequence 712	LZZOOS

Sequence 713	E07218	Sequence 759	M69066
Sequence 714	AF127918	Sequence 760	AF006085
Sequence 715	AF038187	Sequence 761	M34539
Sequence 716	AF026030	Sequence 762	Y09188
Sequence 717	AF035191	Sequence 763	U14750
Sequence 718	U42592	Sequence 764	X15880
Sequence 719	L19182	Sequence 765	D86958
Sequence 720	M20372	Sequence 766	AF113925
Sequence 721	X56134	Sequence 767	AF132965
Sequence 722	J03202	Sequence 768	L29050
Sequence 723	AB032951	Sequence 769	AF013759
Sequence 724	AF003594	Sequence 770	X84194
Sequence 725	AF151822	Sequence 771	AF147331
Sequence 726	Y00755	Sequence 772	K01144
Sequence 727	U72761	Sequence 773	AB023216
Sequence 728	U42457	Sequence 774	U89942
Sequence 729	Y00711	Sequence 775	X07979
Sequence 730	U80747	Sequence 776	X57351
Sequence 731	AF009615	Sequence 777	M63180
Sequence 732	AF069307	Sequence 778	AF109196
Sequence 733	D14665	Sequence 779	E01979
Sequence 734	M25246	Sequence 780	E03157
Sequence 735	L16510	Sequence 781	U04815
Sequence 736	AL080223	Sequence 782	X84694
Sequence 737	U90426	Sequence 783	AF067853
Sequence 738	M11867	Sequence 784	L03426
Sequence 739	AF039656	Sequence 785	AF034607
Sequence 740	AL049367	Sequence 786	X55525
Sequence 741	M26039	Sequence 787	S75725
Sequence 742	AF025684	Sequence 788	X07884
Sequence 743	M94556	Sequence 789	AF050641
Sequence 744	X15480	Sequence 790	AB018010
Sequence 745	Z26248	Sequence 791	AB029000
Sequence 746	L21934	Sequence 792	X16707
Sequence 747	U86602	Sequence 793	X52022
Sequence 748	AC005969	Sequence 794	X12451
•	47992-48285	Sequence 795	AF006087
	9559-9649	Sequence 796	X63432
	55275-55348	Sequence 797	S79639
	55335-55424	Sequence 798	X93499
	55362-55439	Sequence 799	M14503
Sequence 749	AF034803	Sequence 800	AF040990
Sequence 750	Z18951	Sequence 801	X05231
Sequence 751	U19769	Sequence 802	D13666
Sequence 752	S82496	Sequence 803	U42594
Sequence 753	J05016	Sequence 804	J04173
Sequence 754	AF182294	Sequence 805	M31606
Sequence 755	AF031647	Sequence 806	AL109729
Sequence 756	AF083190	Sequence 807	AB030656
Sequence 757	J03209	Sequence 808	M29065
Sequence 758	M10119	Sequence 809	M25631
-			

Sequence 810	M16765	Sequence 861	M55618
Sequence 811	AF006751	Sequence 862	M24630
Sequence 812	U42456	Sequence 863	AB006780
Sequence 813	U65011	Sequence 864	X64229
Sequence 814	X05908	Sequence 865	U53204
Sequence 815	AB018288	Sequence 866	AF039291
Sequence 816	J00196	Sequence 867	AF077030
Sequence 817	J03464	Sequence 868	X14787
Sequence 818	D89937	Sequence 869	D31887
Sequence 819	D32076	Sequence 870	D13292
Sequence 820	D26120	Sequence 871	U33818
Sequence 821	AF127563	Sequence 872	L49345
Sequence 822	X00497	Sequence 873	AF015040
Sequence 823	M62424	Sequence 874	U83583
Sequence 824	M83653	Sequence 875	AB018271
Sequence 825	AF047185	Sequence 876	X64875
Sequence 826	J03015	Sequence 877	AB007915
Sequence 827	U10339	Sequence 878	X04828
Sequence 828	M24194	Sequence 879	U42593
Sequence 829	E01816	Sequence 880	X58141
Sequence 830	L20941	Sequence 881	AF047433
Sequence 831	M13899	Sequence 882	M88108
Sequence 832	AF063002	Sequence 883	X04665
Sequence 833	AF106966	Sequence 884	AB002533
Sequence 834	J03223	Sequence 885	U77456
Sequence 835	J02959	Sequence 886	X17206
Sequence 836	U77085	Sequence 887	D87666
Sequence 837	D45917	Sequence 888	U24169
Sequence 838	D38073	Sequence 889	M93425
Sequence 839	U29538	Sequence 890	X06547
Sequence 840	AB002310	Sequence 891	M10905
Sequence 841	AJ004832	Sequence 892	Z36852
Sequence 842	M13918	Sequence 893	AF017441
Sequence 843	U21858	Sequence 894	U79278
Sequence 844	X87342	Sequence 895	U43077
Sequence 845	U40282	Sequence 896	AF006082
Sequence 846	AF077042	Sequence 897	U46571
Sequence 847	M24486	Sequence 898	AF151872
Sequence 848	U09813	Sequence 899	M16827
Sequence 849	AL050396	Sequence 900	AF030555
Sequence 850	AL080119	Sequence 901	D43682
Sequence 851	X82456	Sequence 902	M69043
Sequence 852	L42531	Sequence 903	K03515
Sequence 853	AF026291	Sequence 904	M11887
Sequence 854	*X02308	Sequence 905	AF006083
Sequence 855	M11147	Sequence 906	AJ001381
Sequence 856	J00194	Sequence 907	AL050071
Sequence 857	U41850	Sequence 908	AF071593
Sequence 858	U41806	Sequence 909	D49489
Sequence 859	J03040	Sequence 910	A06800
Sequence 860	Y00345	Sequence 911	X13709

Sequence 912	J03210	Sequence 963	U47025
Sequence 913	M11718	Sequence 964	M14328
Sequence 914	AF082858	Sequence 965	AB010427
Sequence 915	M27110	Sequence 966	AF070548
Sequence 916	AL035081	Sequence 967	AB002359
Sequence 917	AF022229	Sequence 968	M32790
Sequence 918	X51945	Sequence 969	D17409
Sequence 919	AF002715	Sequence 970	J03041
Sequence 920	AF086249	Sequence 971	L54057
Sequence 921	D01038	Sequence 972	AF000982
Sequence 922	AB024703	Sequence 973	AF042166
Sequence 923	AB011004	Sequence 974	M94345
Sequence 924	AF091076	Sequence 975	AB033025
Sequence 925	AF037448	Sequence 976	AL080061
Sequence 926	L07393	Sequence 977	U42458
Sequence 927	D30648	Sequence 978	U67963
Sequence 928	J02642	Sequence 979	Z19554
Sequence 929	AB033075	Sequence 980	M31211
Sequence 930	E07219	Sequence 981	U42455
Sequence 931	M28992	Sequence 982	X52947
Sequence 932	AF017790	Sequence 983	D50372
Sequence 933	U41724	Sequence 984	E00882
Sequence 934	AB011542	Sequence 985	M13955
Sequence 935	M31159	Sequence 986	AB004047
Sequence 936	AL049356	Sequence 987	D50914
Sequence 937	D31764	Sequence 988	S75895
Sequence 938	U12535	Sequence 989	D43950
Sequence 939	D38251	Sequence 990	M17382
Sequence 940	M95627	Sequence 991	D17126
Sequence 941	AF081484	Sequence 992	AL080092
Sequence 942	AF061326	Sequence 993	M26252
Sequence 943	Z74615	Sequence 994	AF127761
Sequence 944	X02761	Sequence 995	M17783
Sequence 945	X82207	Sequence 996	AF061938
Sequence 946	D90452	Sequence 997	D83174
Sequence 947	X13839	Sequence 998	L40586
Sequence 948	AF026939	Sequence 999	M36693
Sequence 949	AF077367	Sequence 1000	D26351
Sequence 950	X76105	Sequence 1001	M58510
Sequence 951	U30521	Sequence 1002	AF077200
Sequence 952	Y08890	Sequence 1003	V34172
Sequence 953	X04758	Sequence 1004	Z17599
Sequence 954	U72511	Sequence 1005	N81104
Sequence 955	AL050228	Sequence 1006	.Q04549
Sequence 956	AF064084	Sequence 1007	Q65676
Sequence 957	D13665	Sequence 1008	Q48043
Sequence 958	J04795	Sequence 1009	Q62357
Sequence 959	AF156965	Sequence 1010	Q72480
Sequence 960	A03911	Sequence 1011	V90259
Sequence 961	U37230	Sequence 1012	V22716
Sequence 962	L28809	Sequence 1013	Q90112

Table 9

Sequence 1014 N81281

Sequence 1017 found in patent publication WO99/57132
AGGTACTACGTGCCGAAGGAGAGTGCTGCCCAGTGTGTGAAGATCCAGTGTATCCTTTT
AATAATCCCGCTGGCTGCTATGCCAATGGCCTGATCCTTGCCCACGGAGACCGGTGCGG
GAAGACGACTGCACATCTGCCAGTGCGTCAACGGTGAACGCCACTGCGTTGCGACCGTC
TGCGGACAGACCTGCACAAACCCTGTGAAAGTGCCTGGGGAGTTTGTCCTGTGTGAA
GAACCAACCATCATCACAGTTGATCCACCTGCATGTGGGGAGTTATCAAACTGCACTCTG
ACAGGGAAGGACTGCATTAATGGTTTCAAACGCGATCACAATGGTTGTCGGACCTGTCAG
TGCATAAACACCGAGGAACTATGTTCAGAACGTAAACAAGGCTGCACCTTGAACTGTCCC
TTCGGTTTCCTTACTGATGCCCAAAACTGTGAGATCTGTGAGTGCCGCCCAAGGCCC

Sequence 1019 found in patent publication W099/64576
AGGTACAGTCCTGATTGCATCATAATTGTGGTTTCCAACCCAGTGGACATTCTTACGTAT
GTTACCTGNAAACTAAGTGGATTACCCAAACACCGCGTGATTGGAAGTGGATGTAATCTG
GATTCTGCTAGATTTCGCTACCTTATGGCTGAAAAACTTGGCATTCATCCCAGCAGCTGC
CATGGATGGATTTTCGGGGAACATGGCGACTCAAGTGTGGCTGTGGAGTGGTGGAAT
GTGGCAGGTGTTTCTCTCCAGGAATTGAATCCAGAAATGGGAACTGACAATGATAGTGAA
AATTGGAAGGAAGTGCATAAGATGGTGGTTGAAAGTGCCTATGAAGTCATCAAGCTAAAA
GGATATACCAACTGGGCTATTGGATTAAAGTGTGGCTGATCTTATTGAATCCATGTTGAA
AAATCTATCCAAGGATTCATCCCGTGTCAACAATGGTAAAGGGGATGTATGGCATTTGAG
AATGAAAGTCTTCCTGAAGCCCTTCCATTGTATTCCTCAATTGCCCCGGGGGATTTAACC
CAGCGGTTTATTCAACCCAGAAAACCTAAAANGGATGAATGAAGGGTTNCTTCNAACCTC
AAAGAAAAAAGTNCCAGAATACCCCTGGTNGGGACCATTNCAAGNAANGGACCCTAAAAA
NNACCCTTGTGGACCTAAGGTNGAAGCCTTCTTAGGNCTTGNNGNAAAATTT

		Sequence 1068	AA181017
Coguenee #	Accession #	Sequence 1069	H14918
Sequence # Sequence 1020	AA026341	Sequence 1070	AA580771
Sequence 1020	AA194754	Sequence 1071	AA037261
Sequence 1021	AA192957	Sequence 1071	AA209531
•	Al215522	Sequence 1072	T10966
Sequence 1023	AA044629	•	AA314355
Sequence 1024		Sequence 1074	AA506766
Sequence 1025	AA039635	Sequence 1075	
Sequence 1026	AA295936	Sequence 1076	AA180768
Sequence 1027	AA355003	Sequence 1077	W03032
Sequence 1028	AI750883	Sequence 1078	AA633534
Sequence 1029	R75982	Sequence 1079	Al750399
Sequence 1030	AA479505	Sequence 1080	W02950
Sequence 1031	AA829547	Sequence 1081	AA808803
Sequence 1032	AA191476	Sequence 1082	W27056
Sequence 1033	AA173807	Sequence 1083	AA470026
Sequence 1034	AA150369	Sequence 1084	AA126391
Sequence 1035	AA313699	Sequence 1085	AA037382
Sequence 1036	AA357314	Sequence 1086	AA506767
Sequence 1037	AA046424	Sequence 1087	AA293537
Sequence 1038	AA083739	Sequence 1088	AW189039
Sequence 1039	AA374455	Sequence 1089	AA304760
Sequence 1040	AA838395	Sequence 1090	W24250
Sequence 1041	AI540877	Sequence 1091	AI745625
Sequence 1042	Al207618	Sequence 1092	AA354928
Sequence 1043	AW044405	Sequence 1093	AA121923
Sequence 1044	AW057905	Sequence 1094	. AW178642
Sequence 1045	AA729011	Sequence 1095	AA442829
Sequence 1046	AI744245	Sequence 1096	AA284893
Sequence 1047	A1608968	Sequence 1097	AA307197
Sequence 1048	Al970095	Sequence 1098	AA927532
Sequence 1049	AA418779	Sequence 1099	AA985311
Sequence 1050	AA056177	Sequence 1100	AI160630
Sequence 1051	AA043050	Sequence 1101	AA838133
Sequence 1052	AA486521	Sequence 1102	AA090669
Sequence 1053	AA557778	Sequence 1103	AA179487
Sequence 1054	AA134180	Sequence 1104	AA074930
Sequence 1055	Al916675	Sequence 1105	AA126011
Sequence 1056	AA573479	Sequence 1106	AA152004
Sequence 1057	AA405443	Sequence 1107	AA436767
Sequence 1058	D60566	Sequence 1108	AA337003
Sequence 1059	AA308969	Sequence 1109	AA314197
Sequence 1060	Al628274	Sequence 1110	AA314146
Sequence 1061	H82753	Sequence 1111	H59915
Sequence 1062	AA332040	Sequence 1112	AA469151
Sequence 1063	AA323949	Sequence 1113	AA985545
Sequence 1064	AI879839	Sequence 1114	AA856537
Sequence 1065	AA526812	Sequence 1115	AA989451
Sequence 1066	AA088914	Sequence 1116	H96053
Sequence 1067	AA252696	Sequence 1117	AA191046
Gequence 1007	, , , , , , , , , , , , , , , , , , , ,	Coquonico 1111	

Table 9

Sequence 1118	AI057601	Sequence 1169	Al669253
Sequence 1119	Al307407	Sequence 1170	AA133849
Sequence 1120	AA315253	Sequence 1171	AA593822
Sequence 1121	AA229564	Sequence 1172	AL042356
Sequence 1122	AA171454	Sequence 1173	AA022980
Sequence 1123	H30857	Sequence 1174	AA488579
Sequence 1124	Al972286	Sequence 1175	Al270393
Sequence 1125	T32135	Sequence 1176	AA099698
Sequence 1126	AA633075	Sequence 1177	AA151148
Sequence 1127	AA032059	Sequence 1178	AA186825
Sequence 1128	AA033520	Sequence 1179	AA039807
Sequence 1129	AA309058	Sequence 1180	AA306715
Sequence 1130	AA449054	Sequence 1181	AA115684
Sequence 1131	F13272	Sequence 1182	AA306847
Sequence 1132	AA745592	Sequence 1183	AW118495
Sequence 1133	AA099123	Sequence 1184	AA658159
Sequence 1134	AA877477	Sequence 1185	AA307209
Sequence 1135	AA361689	Sequence 1186	AW160317
Sequence 1136	AA317551	Sequence 1187	Al460220
Sequence 1137	AA826000	Sequence 1188	AI190303
Sequence 1138	AA311981	Sequence 1189	R34916
Sequence 1139	AA316579	Sequence 1190	AA205295
Sequence 1140	AA148014	Sequence 1191	W26185
Sequence 1141	AA844517	Sequence 1192	Al963434
Sequence 1142	AA507851	Sequence 1193	AA805563
Sequence 1143	AA337947	Sequence 1194	AA411564
Sequence 1144	AA745332	Sequence 1195	N42086
Sequence 1145	AI879268	Sequence 1196	AA468429
Sequence 1146	AA608702	Sequence 1197	. AA316000
Sequence 1147	AA131793	Sequence 1198	Al220531
Sequence 1148	C05733	Sequence 1199	AA301629
Sequence 1149	AA337280	Sequence 1200	AA640687
Sequence 1150	AA025287	Sequence 1201	AA338674
Sequence 1151	AA452312	Sequence 1202	Al253379
Sequence 1152	Al937296	Sequence 1203	AL046669
Sequence 1153	Al912021	Sequence 1204	AI751076
Sequence 1154	AA393148	Sequence 1205	C14920
Sequence 1155	AA315984	Sequence 1206	AA770326
Sequence 1156	AA533369	Sequence 1207	AW020379
Sequence 1157	Al285143	Sequence 1208	W21558
Sequence 1158	AA577585	Sequence 1209	AA683546
Sequence 1159	AA431004	Sequence 1210	AA134196
Sequence 1160	Al697056	Sequence 1211	AA032281
Sequence 1161	AA311081	Sequence 1212	H44201
Sequence 1162	AA484407	Sequence 1213	Al925654
Sequence 1163	AA608564	Sequence 1214	AA094477
Sequence 1164	AA468774	Sequence 1215	AA182547
Sequence 1165	AA307949	Sequence 1216	AA053587
Sequence 1166	AA228021	Sequence 1217	Al300582
Sequence 1167	D54010	Sequence 1218	AA442114
Sequence 1168	AA224968	Sequence 1219	AA367066

Sequence 1220	AA308400	Sequence 1271	AA236296
Sequence 1221	Al367372	Sequence 1272	AA872647
Sequence 1222	AA026444	Sequence 1273	AA130549
Sequence 1223	AA293385	Sequence 1274	AA225819
Sequence 1224	AA573742	Sequence 1275	AA011011
Sequence 1225	D52382	Sequence 1276	AA996199
Sequence 1226	AA316462	Sequence 1277	AA316893
Sequence 1227	AA804661	Sequence 1278	D60300
Sequence 1228	AA480385	Sequence 1279	D60285
Sequence 1229	AI806153	Sequence 1280	Al499331
Sequence 1230	AI080485	Sequence 1281	AA115006
Sequence 1231	AA180137	Sequence 1282	AA305736
Sequence 1232	AA305866	Sequence 1283	AI027887
Sequence 1233	AA258087	Sequence 1284	AA564296
Sequence 1234	AA086189	Sequence 1285	AA587236
Sequence 1235	AA099093	Sequence 1286	AA045659
Sequence 1236	AA307576	Sequence 1287	AA351480
Sequence 1237	N77808	Sequence 1288	R63282
Sequence 1238	AA310273	Sequence 1289	AA528155
Sequence 1239	AA630355	Sequence 1290	AA487870
Sequence 1240	AA837334	Sequence 1291	AA075474
Sequence 1241	AA844484	Sequence 1292	AA522530
Sequence 1241	AI564487	Sequence 1293	AA112311
Sequence 1242	AA723130	Sequence 1294	AA507595
Sequence 1244	AL042316	Sequence 1295	AA236043
Sequence 1245	AL042270	Sequence 1296	AA748181
Sequence 1246	AA214035	Sequence 1297	AA341818
Sequence 1247	AA604283	Sequence 1298	AA244238
Sequence 1248	N26315	Sequence 1299	. T29757
Sequence 1249	AA165634	Sequence 1300	AA515132
Sequence 1250	AA093276	Sequence 1301	AA310898
Sequence 1251	AA284355	Sequence 1302	AA159170
Sequence 1252	AA160505	Sequence 1303	AA310298
Sequence 1253	AA464250	Sequence 1304	AA311555
Sequence 1254	AA307066	Sequence 1305	AA243995
Sequence 1255	AA470936	Sequence 1306	U72943
Sequence 1256	N73165	Sequence 1307	AA180513
Sequence 1257	AA526497	Sequence 1308	AA664622
Sequence 1258	AA171834	Sequence 1309	AA507997
Sequence 1259	AA164709	Sequence 1310	AA069860
Sequence 1260	T65562	Sequence 1311	AA077112
Sequence 1261	AA355809	Sequence 1312	AA250805
Sequence 1262	AA278470	Sequence 1313	AA247691
Sequence 1263	AA307697	Sequence 1314	AA152000
Sequence 1264	AA927313	Sequence 1315	AA595626
Sequence 1265	AA422057	Sequence 1316	AJ499067
Sequence 1266	AA367451	Sequence 1317	AA182948
Sequence 1267	AI690596	Sequence 1318	AA099516
Sequence 1268	AA313850	Sequence 1319	AA112734
Sequence 1269	AA214231	Sequence 1320	AA486488
Sequence 1270	AW161503	Sequence 1321	AA126932
		•	•

Sequence 1322	AA587859	Sequence 1373	AL119362
Sequence 1323	AA397741	Sequence 1374	AA292800
Sequence 1324	W65292	Sequence 1375	W80587
Sequence 1325	AA244217	Sequence 1376	N42608
Sequence 1326	AA229029	Sequence 1377	AA173250
Sequence 1327	AA216117	Sequence 1378	F07281
Sequence 1328	AA196003	Sequence 1379	Al090786
Sequence 1329	AA120986	Sequence 1380	AA128300
Sequence 1330	AA888609	Sequence 1381	R85754
Sequence 1331	AA307728	Sequence 1382	Al131470
Sequence 1332	AA315928	Sequence 1383	Al301163
Sequence 1333	AI751215	Sequence 1384	AA076618
Sequence 1334	R17092	Sequence 1385	Al890549
Sequence 1335	AI432306	Sequence 1386	AA296285
Sequence 1336	AA449517	Sequence 1387	AA648634
Sequence 1337	H58018	Sequence 1388	N44682
Sequence 1338	AI963471	Sequence 1389	Al608873
Sequence 1339	AI494555	Sequence 1390	AA316391
Sequence 1340	AA343951	Sequence 1391	AA329116
Sequence 1341	AA130428	Sequence 1392	R80333
Sequence 1342	AI207650	Sequence 1393	AA020915
Sequence 1343	AA307371	Sequence 1394	AA401528
Sequence 1344	AA421213	Sequence 1395	AA953232
Sequence 1345	R73432	Sequence 1396	AA195617
Sequence 1346	AA150267	Sequence 1397	W60583
Sequence 1347	AA282996	Sequence 1398	AA296277
Sequence 1348	W19427	Sequence 1399	AA393178
Sequence 1349	AA552967	Sequence 1400	A1765620
Sequence 1350	AA021403	Sequence 1401	- AA160618
Sequence 1351	AL120451	Sequence 1402	AA042869
Sequence 1352	AA603304	Sequence 1403	AI870481
Sequence 1353	AA808675	Sequence 1404	AI829966
Sequence 1354	AA578609	Sequence 1405	AA373756
Sequence 1355	Al207731	Sequence 1406	AA179187
Sequence 1356	AA776291	Sequence 1407	AA331257
Sequence 1357	D60027	Sequence 1408	M85462
Sequence 1358	AA226721	Sequence 1409	AA305257
Sequence 1359	AA236418	Sequence 1410	AL121175
Sequence 1360	W39240	Sequence 1411	AA502836
Sequence 1361	AL043251	Sequence 1412	AA295991
Sequence 1362	AA662180	Sequence 1413	H79674
Sequence 1363	T29960	Sequence 1414	AA420581
Sequence 1364	Al766178	Sequence 1415	Al123763
Sequence 1365	AA635411	Sequence 1416	AW176262
Sequence 1366	AA315384	Sequence 1417	AI889552
Sequence 1367	AL038924	Sequence 1418	AA190350
Sequence 1368	AA557369	Sequence 1419	AA236767
Sequence 1369	AA325046	Sequence 1420	AA284955
Sequence 1370	AA780152	Sequence 1421.	AA218806
Sequence 1371	AA293654	Sequence 1422	AA593718
Sequence 1372	AA313235	Sequence 1423	Al131240

Sequence 1424	AA159657	Sequence 1475	AI133511
Sequence 1425	AW175609	Sequence 1476	AF005037
Sequence 1426	Al800712	Sequence 1477	D82348
Sequence 1427	AA083535	Sequence 1478	AF151810
Sequence 1428	AA582006	Sequence 1479	X74801
Sequence 1429	AA496091	Sequence 1480	AB002342
Sequence 1430	AA211798	Sequence 1481	X52104
Sequence 1431	AA394165	Sequence 1482	D87127
Sequence 1432	AA469324	Sequence 1483	AF036241
Sequence 1433	AA248406	Sequence 1484	D87667
Sequence 1434	AA860340	Sequence 1485	X51466
Sequence 1435	AA626503	Sequence 1486	M58028
Sequence 1436	AA457194	Sequence 1487	U62583
Sequence 1437	AA195824	Sequence 1488	AL133078
Sequence 1438	R71118	Sequence 1489	L41498
Sequence 1439	AI055835	Sequence 1490	AF132942
Sequence 1440	AA502897	Sequence 1491	X71490
Sequence 1441	AW070462	Sequence 1492	AF052179
Sequence 1442	AA535618	Sequence 1493	AJ223075
Sequence 1443	AA827830	Sequence 1494	D38549
Sequence 1444	AA078956	Sequence 1495	AF104914
Sequence 1445	AI524021	Sequence 1496	M11353
Sequence 1446	N31465	Sequence 1497	M21575
Sequence 1447	AA005407	Sequence 1498	M88279
Sequence 1448	W04314	Sequence 1499	M23613
Sequence 1449	AA226217	Sequence 1500	L18964
Sequence 1450	AA349978	Sequence 1501	J03799
Sequence 1451	AA449908	Sequence 1502	L38961
Sequence 1452	AI146884	Sequence 1503	M73547
Sequence 1453	AA244162	Sequence 1504	U54562
Sequence 1454	AI719534	Sequence 1505	Z18923
Sequence 1455	AI148942	Sequence 1506	U10860
Sequence 1456	AI027077	Sequence 1507	D26598
Sequence 1457	AA296790	Sequence 1508	AB006534
Sequence 1458	AA808281	Sequence 1509	X83218
Sequence 1459	AI816006	Sequence 1510	X64330
Sequence 1460	AA307247	Sequence 1511	Y14946
Sequence 1461	AA229069	Sequence 1512	J02853
Sequence 1462	A1473927	Sequence 1513	D85758
Sequence 1463	AL046375	Sequence 1514	M95767
Sequence 1464	AA078973	Sequence 1515	Y00503
Sequence 1465	AA160111	Sequence 1516	M14631
Sequence 1466	AA315718	Sequence 1517	AF077036
Sequence 1467	AA029090	Sequence 1518	U24105
Sequence 1468	AA297740	Sequence 1519	AL050159
Sequence 1469	Al336195	Sequence 1520	AF103803
Sequence 1470	AA558345	Sequence 1521	E03953
Sequence 1471	AA814140	Sequence 1522	X70940
Sequence 1472	AA429258	Sequence 1523	X12876
Sequence 1473	AA065281	Sequence 1524	AF098865
Sequence 1474	AA057428	Sequence 1525	AL049929
•			

	,		
Sequence 1526	U18062	Sequence 1577	D90373
Sequence 1527	AF132944	Sequence 1578	AF151835
Sequence 1528	D45198	Sequence 1579	X80909
Sequence 1529	AF010313	Sequence 1580	AF132973
Sequence 1530	U49240	Sequence 1581	X80692
Sequence 1531	X73066	Sequence 1582	AF101051
Sequence 1532	AF006043	Sequence 1583	L25610
Sequence 1533	L22009	Sequence 1584	AF062536
Sequence 1534	AB007962	Sequence 1585	E02904
Sequence 1535	X03559	Sequence 1586	AB020703
Sequence 1536	U14970	Sequence 1587	AJ005579
Sequence 1537	M26325	Sequence 1588	D83735
Sequence 1538	E08542	Sequence 1589	D31767
Sequence 1539	J03503	Sequence 1590	U12979
Sequence 1540	D28473	Sequence 1591	L28010
Sequence 1541	D13641	Sequence 1592	AF020797
Sequence 1542	AF047473	Sequence 1593	Z13009
Sequence 1543	Z48042	Sequence 1594	X71428
Sequence 1544	AF155110	Sequence 1595	L13848
Sequence 1545	D14696	Sequence 1596	AF028832
Sequence 1546	AF038962	Sequence 1597	D44466
Sequence 1547	X61156	Sequence 1598	AF144713
Sequence 1548	M26880	Sequence 1599	Y13647
Sequence 1549	AB001636	Sequence 1600	M74090
Sequence 1550	AF054990	Sequence 1601	X13482
Sequence 1551	AL117395	Sequence 1602	AF092565
Sequence 1552	M26512	Sequence 1603	AF151846
Sequence 1553	AF118886	Sequence 1604	D13388
Sequence 1554	AJ011001	Sequence 1605	.AF038451
Sequence 1555	U07151	Sequence 1606	AB018331
Sequence 1556	L33930	Sequence 1607	X15183
Sequence 1557	D38305	Sequence 1608	U76111
Sequence 1558	AF010309	Sequence 1609	AF100755
Sequence 1559	D43948	Sequence 1610	AB023205
Sequence 1560	J02683	Sequence 1611	AF007791
Sequence 1561	L08599	Sequence 1612	J04208
Sequence 1562	AB020705	Sequence 1613	AF132941
Sequence 1563	D26485	Sequence 1614	D50310
Sequence 1564	U05040	Sequence 1615	AF086172
Sequence 1565	D55716	Sequence 1616	AL050101
Sequence 1566	AF052578	Sequence 1617	D50525
Sequence 1567	U41060	Sequence 1618	AB033073
Sequence 1568	D78275	Sequence 1619	M17851
Sequence 1569	X61970	Sequence 1620	/U14966
Sequence 1570	D14710		·U75283
Sequence 1571	AJ009985	Sequence 1622	X17620
Sequence 1572	D86981	Sequence 1623	AB019563
Sequence 1573	D88357	Sequence 1624	M55409
Sequence 1574	AF086336	Sequence 1625	AF151878
Sequence 1575	S73591	Sequence 1626	S48196
Sequence 1576	M11948	Sequence 1627	D43947
•			

Sequence 162	8 AF151840	Sequence 1679	D30655
Sequence 162	9 X04106	Sequence 1680	D21260
Sequence 163	0 AF125525	Sequence 1681	U85658
Sequence 163	1 M22538	Sequence 1682	U77494
Sequence 163	2 D67025	Sequence 1683	M92439
Sequence 163	3 L49399	Sequence 1684	Y12065
Sequence 163		Sequence 1685	D31885
Sequence 163	5 Z48501	Sequence 1686	Z22548
Sequence 163		Sequence 1687	D87742
Sequence 163		Sequence 1688	AB020636
Sequence 163		Sequence 1689	AL031680
Sequence 163			82704-82882
Sequence 164			82595-82704
Sequence 164		Sequence 1690	M60257
Sequence 164		Sequence 1691	X15822
Sequence 164		Sequence 1692	AF070626
Sequence 164		Sequence 1693	U75330
Sequence 164		Sequence 1694	M30627
Sequence 164		Sequence 1695	AF052087
Sequence 164		Sequence 1696	X07466
Sequence 164		Sequence 1697	M86752
Sequence 164		Sequence 1698	X13293
Sequence 165		Sequence 1699	M62896
Sequence 165		Sequence 1700	M34175
Sequence 165		Sequence 1701	AF084457
Sequence 165		Sequence 1702	L09235
Sequence 165		Sequence 1703	AF085361
Sequence 165		Sequence 1704	D63876
Sequence 165		Sequence 1705	AF070649
Sequence 165		Sequence 1706	J05243
Sequence 165		Sequence 1707	M15533
Sequence 165		Sequence 1708	X74262
Sequence 166		Sequence 1709	D78130
Sequence 166		Sequence 1710	AF097514.
Sequence 166		Sequence 1711	U44772
Sequence 166		Sequence 1712	M62898
Sequence 166		Sequence 1713	AF041483
Sequence 166		Sequence 1714	AF020351
Sequence 166		Sequence 1715	A32135
Sequence 166		Sequence 1716	AF035158
Sequence 166		Sequence 1717	AF147322
Sequence 166		Sequence 1718	AF086136
Sequence 167		Sequence 1719	AL117514
Sequence 167		Sequence 1720	M87338
Sequence 167		Sequence 1721	X60036
Sequence 167		Sequence 1722	D87969
Sequence 167		Sequence 1723	X87949
Sequence 167		Sequence 1724	D84105
Sequence 167		Sequence 1725	U14968
Sequence 167	- · · · · · · · · · · · · · · · · · · ·	Sequence 1726	AJ011007
Sequence 167		Sequence 1727	X06272
20425.00 101		•	

Sequence 1728	U57847	Sequence 1776	M31467
Sequence 1729	X56932	Sequence 1777	M34225
Sequence 1730	U12596	Sequence 1778	AF012281
Sequence 1731	U23028	Sequence 1779	U52144
Sequence 1732	AB015907	Sequence 1780	AF132940
Sequence 1733	X75861	Sequence 1781	M23114
Sequence 1734	U66618	Sequence 1782	D89053
Sequence 1735	X15341	Sequence 1783	AF052113
Sequence 1736	AB011159	Sequence 1784	M37191
Sequence 1737	J03460	Sequence 1785	U22815
Sequence 1738	M15841	Sequence 1786	S62138
Sequence 1739	M61832	Sequence 1787	Y10658
Sequence 1740	U69668	Sequence 1788	D50420
Sequence 1741	AF038404	Sequence 1789	AL080066
Sequence 1742	M31661	Sequence 1790	M27937
Sequence 1743	L09159	Sequence 1791	D16849
Sequence 1744	AL110271	Sequence 1792	D87735
Sequence 1745	M22382	Sequence 1793	AF015926
Sequence 1746	D38551	Sequence 1794	M77830
Sequence 1747	L37127	Sequence 1795	Z75330
Sequence 1748	L07395	Sequence 1796	U83460
Sequence 1749	X16064	Sequence 1797	U47634
Sequence 1750	AF151806	Sequence 1798	AL050286
Sequence 1751	X01630	Sequence 1799	AF047042
Sequence 1752	S75311	Sequence 1800	AF059524
Sequence 1753	AB020692	Sequence 1801	D21090
Sequence 1754	M77025	Sequence 1802	.M29870
Sequence 1755	D89729	Sequence 1803	L16785
Sequence 1756	S74678	Sequence 1804	AF151884
Sequence 1757	AB011132	Sequence 1805	X75546
Sequence 1758	U33635	Sequence 1806	K00558
Sequence 1759	X72727	Sequence 1807	Z72499
Sequence 1760	X84407	Sequence 1808	L11066
Sequence 1761	AF112227	Sequence 1809	AF100756
Sequence 1762	M11507	Sequence 1810	U65928
Sequence 1763	AF078863	Sequence 1811	Y00281
Sequence 1764	X79201	Sequence 1812	J04088
Sequence 1765	M26324	Sequence 1813	Z21507
Sequence 1766	AL020995	Sequence 1814	AF102826
	20725-21002	Sequence 1815	U16798
	20611-20747	Sequence 1816	AF055002
	12383-12404	Sequence 1817	Y00282
Sequence 1767	D87438	Sequence 1818	X37385
Sequence 1768	AF070664	Sequence 1819	X06783
Sequence 1769	# U29171	Sequence 1820	V59619
Sequence 1770	D37991	Sequence 1821	X40066
Sequence 1771	U22897	Sequence 1822	V01860
Sequence 1772	AF167570	Sequence 1823	Z25433
Sequence 1773	M61831	Sequence 1824	X37319
Sequence 1774	AF067656	Sequence 1825	Z33627
Sequence 1775	AB028948	Sequence 1826	Z16766
•			

PCT/US00/35214

Sequence 1827	Q37741	Sequence 1832	X90442
Sequence 1828	V44866	Sequence 1833	V34210
Sequence 1829	V28120	Sequence 1834	V34265
Sequence 1830	X56457	Sequence 1835	AC34894
Sequence 1831	V18326	·	

found in patent publication WO99/57144 Sequence 1835 AGGTACAGTCCAGTCCTTGGAGATCGACCTGGACTCCATGAGAAATCTGAAGGCCAGCTT GGAGAACAGCCTGAGGGAGGTGGAGGCCCGCTACGCCCTACAGATGGAGCAGCTCAACGG GATCCTGCTGCACCTTGAGTCAGAGCTGGCACAGACCCGGGCAGAGGGACAGCGCCAGGC CCAGGAGTATGAGGCCCTGCTGAACATCAAGGTCAAGCTGGAGGCTGAGATCGCCACCTA CCGCCGCCTGCTGGAAGATGGCGAGGACTTTAATCTTGGTGATGCCTTGGACAGCAGCAA CTCCATGCAAACCATCCAAAAGACCACCACCCGCCGGATAGTGGATGGCAAAGTGGTGTC TGAGACCAATGACACCAAAGTTCTGAGGCATTAAGCCAGCAGAAGCAGGGTACCT

found in patent publication WO99/61626 AGGTACAATGACACCTACCCCTGTCTCCCCCACAAAGGACACCGGCTGGGATTCGGTAT CGAATCGCAGTTATCGCAGACCTGGACACAGAGTCAAGGGCCCAAGAGGAAAACACCTGG TTCAGTTACCTGAAAAAGGGCTACCTGACCCTGTCAGACAGTGGGGACAAGGTGGCCGTG GAATGGGACAAAGACCATGGGGTCCTGGAGTCCCACCTGGCGGAGAAGGGGAGAGGCATG GAGCTATCCGACCTGATTGTTTTCAATGGGAAACTCTACTCCGTGGATGACCGGACGGGG GTCGTCTACCAGATCGAAGGCAGCAAAGCCGTGCCCTGGGTGATTCTGTCCGACGGCGAC GGCACCGTGGAGAAAGGCTTTAAGGCCGAATGGCTGGCAGTGAAGGACGAGCGTNTGTAC CT

_ ,,		Commonos 1962	AA921890
Sequence #	Accession #	Sequence 1863	AA133199
Sequence 1837	AA421114	Sequence 1864	
Sequence 1838	AA174068	Sequence 1865	N27583
Sequence 1839	Al267492	Sequence 1866	Al140427
Sequence 1840	Al640613	Sequence 1867	
Sequence 1841	Al267162	Sequence 1868	AF001541
Sequence 1842	AA027063	Sequence 1869	AA017255
Sequence 1843	A1628088	Sequence 1870	AI040598
Sequence 1844	AA978352	Sequence 1871	AA004273
Sequence 1845:	AA063478	Sequence 1872	AA633909
Sequence 1846	Al668594	Sequence 1873	AI017336
Sequence 1847	F04705	Sequence 1874	AA826394
Sequence 1848	Al383726	Sequence 1875	AA040300
Sequence 1849	Al205501	Sequence 1876	.AA581510
Sequence 1850	AI589285	Sequence 1877	AA503137
Sequence 1851	Al627480	Sequence 1878	AA341924
Sequence 1852	AA398782	Sequence 1879	Al216968
Sequence 1853	Al004295	Sequence 1880	Al216966
Sequence 1854	A1750535	Sequence 1881	AA345303
Sequence 1855	H02190	Sequence 1882	AA205846
Sequence 1856	Al814513	Sequence 1883	H08545
Sequence 1857	AJ017208	Sequence 1884	Al017522
Sequence 1858	AJ761071	Sequence 1885	Al253335
Sequence 1859	AA130949	Sequence 1886	AA761790
Sequence 1860	Al341822	Sequence 1887	AA021135
Sequence 1861	AI052748	Sequence 1888	Al064748
Sequence 1862	AI732471	Sequence 1889	Z42731

Sequence 1890	AA583841	Sequence 1941	AA312435
Sequence 1891	AA004887	Sequence 1942	AA634562
Sequence 1892	AA531506	Sequence 1943	AA297631
Sequence 1893	AA378527	Sequence 1944	AA045147
Sequence 1894	AA047729	Sequence 1945	AA741219
Sequence 1895	AA307779	Sequence 1946	AA151830
Sequence 1896	Al492498	Sequence 1947	AA427596
Sequence 1897	Al346653	Sequence 1948	AA485460
Sequence 1898	AA225312	Sequence 1949	AA328018
Sequence 1899	AA773072	Sequence 1950	AI752163
Sequence 1900	AA295706	Sequence 1951	AA379320
Sequence 1901	AA604297	Sequence 1952	AA368462
Sequence 1902	AA295719	Sequence 1953	T94936
Sequence 1903	AA295091	Sequence 1954	AA411046
Sequence 1904	R78287	Sequence 1955	AA131720
Sequence 1905	N57136	Sequence 1956	Al253436
Sequence 1906	Al351856	Sequence 1957	H63819
Sequence 1907	AA180862	Sequence 1958	AF156972
Sequence 1908	W79416	Sequence 1959	AA906652
Sequence 1909	AA143220	Sequence 1960	AA927663
Sequence 1910	AA448092	Sequence 1961	Al685341
Sequence 1911	Al743332	Sequence 1962	AA460816
Sequence 1912	Al017201	Sequence 1963	Al693012
Sequence 1913	AA446711	Sequence 1964	AA738303
Sequence 1914	AA992596	Sequence 1965	AI680185
Sequence 1915	AA300659	Sequence 1966	AA204936
Sequence 1916	AA001086	Sequence 1967	AI028007
Sequence 1917	AA130162	Sequence 1968	AA643780
Sequence 1918	AI809676	Sequence 1969	· AA115320
Sequence 1919	AI041357	Sequence 1970	AA530876
Sequence 1920	R56878	Sequence 1971	AA843963
Sequence 1921	AA813244	Sequence 1972	H08920
Sequence 1922	AA393062	Sequence 1973	AA732978
Sequence 1923	H56587	Sequence 1974	AA085537
Sequence 1924	AA039972	Sequence 1975	AA148159
Sequence 1925	AA332672	Sequence 1976	AA319287
Sequence 1926	AA292800	Sequence 1977	AA203661
Sequence 1927	AA026757	Sequence 1978	Al216969
Sequence 1928	AA332667	Sequence 1979	W52503
Sequence 1929	AA377061	Sequence 1980	F21836
Sequence 1930	AA091329	Sequence 1981	AA479646
Sequence 1931	Al300511	Sequence 1982	AA437237
Sequence 1932	Al972614	Sequence 1983	AA151483
Sequence 1933	AA315689	Sequence 1984	AA148019
Sequence 1934	AA367451	Sequence 1985	AA449544
Sequence 1935	AA291644	Sequence 1986	At299297
Sequence 1936	AL037446	Sequence 1987	AA132445
Sequence 1937	AA190578	Sequence 1988	AI571288
Sequence 1938	AI536688	Sequence 1989	AA187921
Sequence 1939	AA424456	Sequence 1990	AA559906
Sequence 1940	T83651	Sequence 1991	N33988

		•	
Sequence 1992	AA304983	Sequence 2043	AA324373
Sequence 1993	AI569955	Sequence 2044	Al085849
Sequence 1994	AW080413	Sequence 2045	Al471665
Sequence 1995	AJ207012	Sequence 2046	AA954649
Sequence 1996	AA492541	Sequence 2047	AA352232
Sequence 1997	Al217021	Sequence 2048	AW021715
Sequence 1998	Al291244	Sequence 2049	AA194830
Sequence 1999	AA708673	Sequence 2050	AA256202
Sequence 2000	AA458877	Sequence 2051	AI675602
Sequence 2001	AA984460	Sequence 2052	AA102670
Sequence 2002	T90566	Sequence 2053	AA224751
Sequence 2003	AA731312	Sequence 2054	AI133535
Sequence 2004	AA299382	Sequence 2055	AA847441
Sequence 2005	Al142427	Sequence 2056	AA405905
Sequence 2006	AA648381	Sequence 2057	AA315943
Sequence 2007	H48467	Sequence 2058	AA211470
Sequence 2008	AA293706	Sequence 2059	AA876810
Sequence 2009	AA602266	Sequence 2060	AL120967
Sequence 2010	Al224425	Sequence 2061	AA506422
Sequence 2011	AA412359	Sequence 2062	AA832481
Sequence 2012	AA044095	Sequence 2063	AI750574
Sequence 2013	AA294986	Seguence 2064	AA757285
Sequence 2014	AI208340	Sequence 2065	AA116011
Sequence 2015	AA774672	Sequence 2066	AI267596
Sequence 2016	AA298794	Sequence 2067	AA715493
Sequence 2017	AA296938	Sequence 2068	AA088786
Sequence 2018	Al151425	Sequence 2069	R05918
Sequence 2019	Al798195	Sequence 2070	AI074804
Sequence 2020	AA458613	Sequence 2071	AA700062
Sequence 2021	AA789265	Sequence 2072	AA604310
Sequence 2022	AA262799	Sequence 2073	AA324685
Sequence 2023	AW006212	Sequence 2074	AA502113
Sequence 2024	Al273048	Sequence 2075	A1887664
Sequence 2025	W31167	Sequence 2076	. AA295096
Sequence 2026	Al591033	Sequence 2077	AI032133
Sequence 2027	AA334755	Sequence 2078	AA232718
Sequence 2028	AA101337	Sequence 2079	AA173158
Sequence 2029	AA457686	Sequence 2080	AA149791
Sequence 2030	AA301297	Sequence 2081	AI090763
Sequence 2031	T46855	Sequence 2082	A1888575
Sequence 2032	AA910563	Sequence 2083	AA279853
Sequence 2033	AA344004	Sequence 2084	AA300491
Sequence 2034	AA150566	Sequence 2085	AA400124
Sequence 2035	N85053	Sequence 2086	AA069783
Sequence 2036	R84397	Sequence 2087	AA659037
Sequence 2037	AA663188	Sequence 2088	AA157616
Sequence 2038	AA295139	Sequence 2089	AA410534
Sequence 2039	AA669302	Sequence 2090	AA309120
Sequence 2040	Al610228	Sequence 2091	AA176847
Sequence 2041	T30280	Sequence 2092	AA586744
Sequence 2042	AA506697	Sequence 2093	AA507478

Sequence 2094	AA292198	Sequence 2145	AA502851
Sequence 2095	AA194152	Sequence 2146	AA775464
Sequence 2096	AA416755	Sequence 2147	AW150827
Sequence 2097	AA188633	Sequence 2148	Al698104
Sequence 2098	AA318521	Sequence 2149	AA304306
Sequence 2099	AA070008	Sequence 2150	Al879413
Sequence 2100	AA316641	Sequence 2151	Al283155
Sequence 2101	AA318625	Sequence 2152	AA033869
Sequence 2102	Al133490	Sequence 2153	AI085887
Sequence 2103	Al657060	Sequence 2154	AA482434
Sequence 2104	AA173511	Sequence 2155	AI769247
Sequence 2105	R64693	Sequence 2156	AI751364
Sequence 2106	AA039895	Sequence 2157	AA902433
Sequence 2107	AW157828	Sequence 2158	AI970562
Sequence 2108	AI095558	Sequence 2159	AA346565
Sequence 2109	AA610476	Sequence 2160	AI150776
Sequence 2110	AA736817	Sequence 2161	AA081875
Sequence 2111	AA310726	Sequence 2162	T29670
Sequence 2112	AA232994	Sequence 2163	AI821897
Sequence 2113	AA602956	Sequence 2164	Al125744
Sequence 2114	AA604038	Sequence 2165	AA353721
Sequence 2115	AA921909	Sequence 2166	AA888097
Sequence 2116	Al955196	Sequence 2167	AI885021
Sequence 2117	AA488757	Sequence 2168	AA284678
Sequence 2118	AI932293	Sequence 2169	C18054
Sequence 2119	AA039907	Sequence 2170	AA489032
Sequence 2120	Al057429	Sequence 2171	AA557979
Sequence 2121	AA088914	Sequence 2172	AA190585
Sequence 2122	A1049555	Sequence 2173	- AW118331
Sequence 2123	AA648117	Sequence 2174	AA025156
Sequence 2124	AA348070	Sequence 2175	AA564000
Sequence 2125	AA514775	Sequence 2176	N41907
Sequence 2126	W01258	Sequence 2177	AI879040
Sequence 2127	AA854068	Sequence 2178	AA533834
Sequence 2128	A1040975	Sequence 2179	AA873536
Sequence 2129	AA336740	Sequence 2180	AA553749
Sequence 2130	Z44862	Sequence 2181	A1754163
Sequence 2131	AW168135	Sequence 2182	AA903783
Sequence 2132	AA300065	Sequence 2183	AA984744
Sequence 2133	AA328068	Sequence 2184	Al140358
Sequence 2134	Al290139	Sequence 2185	H26913
Sequence 2135	AA879191	Sequence 2186	Al199481
Sequence 2136	AA528226	Sequence 2187	Al360176
Sequence 2137	T06391	Sequence 2188	H04143
Sequence 2138	AA318124_	Sequence 2189	AA922291
Sequence 2139	Al686325	Sequence 2190	Al110706
Sequence 2140	Al394259	Sequence 2191	N31818
Sequence 2141	AA588034	Sequence 2192	AA304819
Sequence 2142	H73183	Sequence 2193	AI093004
Sequence 2143	AA492522	Sequence 2194	AA334592
Sequence 2144	AI648676	Sequence 2195	Al092971
*			

Sequence 2196	AA156664	Sequence 2247	AA973007
Sequence 2197	AA165164	Sequence 2248	AA187276
Sequence 2198	AA425640	Sequence 2249	AA324822
Sequence 2199	AA386035	Sequence 2250	Al307407
Sequence 2200	AW169876	Sequence 2251	AA128430
Sequence 2201	AA096039	Sequence 2252	Al492241
Sequence 2202	AA323639	Sequence 2253	AA203182
Sequence 2203	AI760968	Sequence 2254	Al282279
Sequence 2204	AA308812	Sequence 2255	AI743621
Sequence 2205	AI042113	Sequence 2256	AA112156
Sequence 2206	AI679457	Sequence 2257	AA487754
Sequence 2207	AA187949	Seguence 2258	AA487676
Sequence 2208	AA827394	Sequence 2259	AA308673
Sequence 2209	AA677667	Sequence 2260	AL047436
Sequence 2210	AA047570	Sequence 2261	AI630228
Sequence 2211	AA476832	Sequence 2262	AA128768
Sequence 2212	AA149624	Sequence 2263	AA356650
	Al356838	Sequence 2264	AA082684
Sequence 2213	Al590351	Sequence 2265	AA399230
Sequence 2214 Sequence 2215	AI050666	Sequence 2266	AA007459
•	AA297432	Sequence 2267	AA827553
Sequence 2216	AI818395	Sequence 2268	AA493565
Sequence 2217	AA295062	Sequence 2269	AI701132
Sequence 2218	Al241146	Sequence 2270	R90993
Sequence 2219 Sequence 2220	AA258003	Sequence 2271	AA707750
Sequence 2221	AA248361	Sequence 2272	Al078041
Sequence 2222	AA602630	Sequence 2273	AA337301
Sequence 2223	AJ471433	Sequence 2274	AA295522
Sequence 2224	AA300283	Sequence 2275	W02575
Sequence 2225	AA436767	Sequence 2276	AW160578
Sequence 2226	AA384225	Sequence 2277	AI264352
Sequence 2227	N29114	Sequence 2278	AA442510
Sequence 2228	AA788711	Sequence 2279	AA180809
Sequence 2229	AL045296	Sequence 2280	AA203595
Sequence 2230	AI090786	Sequence 2281	AA019528
Sequence 2231	AA314810	Sequence 2282	AA428008
Sequence 2232	R38086	Sequence 2283	AA827342
Sequence 2233	AA765974	Sequence 2284	T29104
Sequence 2234	AI929363	Sequence 2285	AI075161
Sequence 2235	C17220	Sequence 2286	AA652846
Sequence 2236	Z45029	Sequence 2287	AA682399
Sequence 2237	AA326251	Sequence 2288	Al658974
Sequence 2238	AA325169	Sequence 2289	AI567993
Sequence 2239	AA076585	Sequence 2290	AI217003
Sequence 2240	AA824398	Sequence 2291	AA722879
Sequence 2241	AI963313	Sequence 2292	AI540174
Sequence 2242	AA146589	Sequence 2293	AA113420
Sequence 2243	AA216085	Sequence 2294	Al690207
Sequence 2244	AA305599	Sequence 2295	AI795827
Sequence 2245	Al267316	Sequence 2296	AA961186
Sequence 2246	AA694231	Sequence 2297	AA383947
= - 4 = = = = = = = = = = = = = = =		·	

Sequence 2298	AA401871	Sequence 2349	AA467785
Sequence 2299	AA404374	Sequence 2350	AI698092
Sequence 2300	AA295936	Sequence 2351	AA424308
Sequence 2301	AI633642	Sequence 2352	AA411756
Sequence 2302	Al611810	Sequence 2353	AA454065
Sequence 2303	AA085872	Sequence 2354	Al929113
Sequence 2304	AI084478	Sequence 2355	AA456371
Sequence 2305	W39397	Sequence 2356	A1750840
Sequence 2306	AA659320	Sequence 2357	AA768061
Sequence 2307	AA558945	Sequence 2358	AI879992
Sequence 2308	AA910117	Sequence 2359	AA131480
Sequence 2309	AA653775	Sequence 2360	W19950
Sequence 2310	AA361678	Sequence 2361	AA005407
Sequence 2311	AA411585	Sequence 2362	AL048890
Sequence 2312	Z44154	Sequence 2363	AA354101
Sequence 2313	W92006	Sequence 2364	Al034414
Sequence 2314	AA845426	Sequence 2365	Al127836
Sequence 2315	AA883502	Sequence 2366	Al139120
Sequence 2316	Al133589	Sequence 2367	H73197
Sequence 2317	AI142227	Sequence 2368	AA618277
Sequence 2318	AA384505	Sequence 2369	AI751565
Sequence 2319	AW015828	Sequence 2370	AA305200
Sequence 2320	H75814	Sequence 2371	AA082570
Sequence 2321	AA555160	Sequence 2372	Al348499
Sequence 2322	AA552119	Sequence 2373	AA093542
Sequence 2323	AA491810	Sequence 2374	AA010564
Sequence 2324	AA244273	Sequence 2375	AA378933
Sequence 2325	AA480615	Sequence 2376	N86779
Sequence 2326	AA299404	Sequence 2377	AA121469
Sequence 2327	AA350163	Sequence 2378	N84951
Sequence 2328	A1923980	Sequence 2379	AA857180
Sequence 2329	Al149877	Sequence 2380	AA128084
Sequence 2330	AA063488	Sequence 2381	AA471201
Sequence 2331	AA007598	Sequence 2382	AW029091
Sequence 2332	AA527418	Sequence 2383	AA182479
Sequence 2333	Al205314	Sequence 2384	AA828671
Sequence 2334	AA464941	Sequence 2385	AA127014
Sequence 2335	AA146749	Sequence 2386	AA707199
Sequence 2336	H25169	Sequence 2387	T68539
Sequence 2337	AA302225	Sequence 2388	AL118570
Sequence 2338	AI655499	Sequence 2389	AW170485
Sequence 2339	AA603214	Sequence 2390	Al114433
Sequence 2340	AA948037	Sequence 2391	Al417334
Sequence 2341	AI469980	Sequence 2392	Al239906
Sequence 2342	~AA127826	Sequence 2393	AA464838
Sequence 2343	AA158009	Sequence 2394	H53915
Sequence 2344	AA935514	Sequence 2395	AA463563
Sequence 2345	A1672300	Sequence 2396	AA137184
Sequence 2346	Al929120	Sequence 2397	H88132
Sequence 2347	AA682542	Sequence 2398	AA223663
Sequence 2348	AA132755	Sequence 2399	AA789275
•			

Sequence 2400	AA419275	Sequence 2451	AA620697
Sequence 2401	AI214956	Sequence 2452	AA603709
Sequence 2402	AA507607	Sequence 2453	AA417050
Sequence 2403	Al216090	Sequence 2454	Al267485
Sequence 2404	AA599581	Sequence 2455	AA481618
Sequence 2405	AA228704	Sequence 2456	AW069601
Sequence 2406	AA429320	Sequence 2457	Al829507
Sequence 2407	AA255447	Sequence 2458	AA992117
Sequence 2408	AA639028	Sequence 2459	AA037254
Sequence 2409	AA298786	Sequence 2460	Al243595
Sequence 2410	AA126136	Sequence 2461	Al657158
Sequence 2411	AA301143	Sequence 2462	AA976694
Sequence 2412	AA280261	Sequence 2463	AA527187
Sequence 2413	AA434019	Sequence 2464	AL036372
Sequence 2414	N28384	Sequence 2465	W74302
Sequence 2415	Al792065	Sequence 2466	AI018625
Sequence 2416	AA476679	Sequence 2467	AI718771
Sequence 2417	AW138888	Sequence 2468	AA247210
Sequence 2418	AI057281	Sequence 2469	AA364707
Sequence 2419	AI302387	Sequence 2470	Z99381
Sequence 2420	AA187773	Sequence 2471	D58694
Sequence 2421	AI200836	Sequence 2472	Al267454
Sequence 2422	AA365996	Sequence 2473	AA070349
Sequence 2423	AJ571948	Sequence 2474	AA826906
Sequence 2424	AA292179	Sequence 2475	Al200852
Sequence 2425	AA497028	Sequence 2476	Al190868
Sequence 2426	AI064968	Sequence 2477	AF147766
Sequence 2427	AA493143	Sequence 2478	Al312823
Sequence 2428	AA843186	Sequence 2479	AA725605
Sequence 2429	AI016587	Sequence 2480	AA428908
Sequence 2430	AI826740	Sequence 2481	Al473812
Sequence 2431	AA366959	Sequence 2482	AI813942
Sequence 2432	Al268040	Sequence 2483	AA515323
Sequence 2433	AJ753623	Sequence 2484	AA675921
Sequence 2434	Al280699	Sequence 2485	AI074863
Sequence 2435	AA196331	Sequence 2486	AL119924
Sequence 2436	AJ912238	Sequence 2487	AA356913
Sequence 2437	AA236418	Sequence 2488	AA523102
Sequence 2438	A1568626	Sequence 2489	Al140672
Sequence 2439	AL044369	Sequence 2490	AA256507
Sequence 2440	AA229483	Sequence 2491	AI064691
Sequence 2441	AA318591	Sequence 2492	AI570611
Sequence 2442	R19813	Sequence 2493	AA039775
Sequence 2443	AA293071	Sequence 2494	AA281505
Sequence 2444	AA315134	Sequence 2495	AJ433313
Sequence 2445	AA314146	Sequence 2496	AA554836
Sequence 2446	AA101561	Sequence 2497	AA155674
Sequence 2447	AI004114	Sequence 2498	AW070916
Sequence 2448	AA366745	Sequence 2499	AA828594
Sequence 2449	Al346847	Sequence 2500	AA910644
Sequence 2450	R23488	Sequence 2501	AA479809

Sequence 2502	AI815200	Sequence 2553	Y15268
Sequence 2503	AA166705	Sequence 2554	U58130
Sequence 2504	Al698061	Sequence 2555	M86757
Sequence 2505	AA521148	Sequence 2556	S69272
Sequence 2506	AA890184	Sequence 2557	AF102546
Sequence 2507	AA075635	Sequence 2558	AB007944
Sequence 2508	Al127167	Sequence 2559	AF006088
Sequence 2509	AA156765	Sequence 2560	U16826
Sequence 2510	AW084125	Sequence 2561	AF052164
Sequence 2511	Al336513	Sequence 2562	D55696
Sequence 2512	Al927665	Sequence 2563	Y10351
Sequence 2513	Al498579	Sequence 2564	AF016496
Sequence 2514	AA156907	Sequence 2565	U20350
Sequence 2515	AA626181	Sequence 2566	M14328
Sequence 2516	AI684756	Sequence 2567	X55675
Sequence 2517	Al687730	Sequence 2568	M33195
Sequence 2518	Al692521	Sequence 2569	Z13009
Sequence 2519	AA723503	Sequence 2570	D63480
Sequence 2520	AA805995	Sequence 2571	X16940
Sequence 2521	AA186730	Sequence 2572	M16827
Sequence 2522	Al751046	Sequence 2573	U72514
Sequence 2523	AA489410	Sequence 2574	X06547
Sequence 2524	AA205573	Sequence 2575	D87735
Sequence 2525	AA449420	Sequence 2576	X03635
	AA314664	Sequence 2577	M37190
Sequence 2526 Sequence 2527	Al819701	Sequence 2578	X63657
Sequence 2528	AA041216	Sequence 2579	E00195
Sequence 2529	Al359088	Sequence 2580	X57819
Sequence 2530	F05334	Sequence 2581	AF072930
Sequence 2531	AA432212	Sequence 2582	AF072810
Sequence 2532	AL036211	Sequence 2583	X54937
Sequence 2533	AA187809	Sequence 2584	AB016789
Sequence 2534	AA469993	Sequence 2585	AF107406
Sequence 2535	AA594324	Sequence 2586	AL050142
Sequence 2536	U77088	Sequence 2587	AF115384
Sequence 2537	U47918	Sequence 2588	L38995
Sequence 2538	M30257	Sequence 2589	M18533
Sequence 2539	AF035555	Sequence 2590	L13977
Sequence 2540	Z36830	Sequence 2591	M94046
Sequence 2541	X55122	Sequence 2592	M55409
Sequence 2542	X06747	Sequence 2593	M35198
Sequence 2543	M13692	Sequence 2594	D50923
Sequence 2544	AB002803	Sequence 2595	L19067
	U14394		U25997
Sequence 2545	M74777	Sequence 2597.	
Sequence 2546	U90907	Sequence 2598	AF008551
Sequence 2547	AF096773	Sequence 2599	AF109681
Sequence 2548	M24594	Sequence 2600	M33519
Sequence 2549	W124594 U166894	Sequence 2601	U70668
Sequence 2550	AB033071	Sequence 2602	AL050290
Sequence 2551	AF044773	Sequence 2603	AB011792
Sequence 2552	AI VITI IV	ocqueine 2000	

Sequence 2604	AF078859	Sequence 2655	X86691
Sequence 2605	AF032119	Sequence 2656	AB024301
Sequence 2606	AB020657	Sequence 2657	Y09530
Sequence 2607	M24847	Sequence 2658	U07643
Sequence 2608	AL050225	Sequence 2659	AF047033
Sequence 2609	M90360	Sequence 2660	D14710
Sequence 2610	AL050202	Sequence 2661	X96698
Sequence 2611	AF035311	Sequence 2662	AB033098
Sequence 2612	K01396	Sequence 2663	AJ132583
Sequence 2613	X95190	Sequence 2664	AF078861
Sequence 2614	AJ006470	Sequence 2665	U30246
Sequence 2615	X51473	Sequence 2666	AB019494
Sequence 2616	AF067656	Sequence 2667	AF043644
Sequence 2617	AF072371	Sequence 2668	X58082
Sequence 2618	AB007892	Sequence 2669	M37716
Sequence 2619		Sequence 2670	AL080192
Sequence 2620	M64082	Sequence 2671	AF077048
Sequence 2621	X16396	Sequence 2672	AB001928
Sequence 2622	U22897	Sequence 2673	U76549
Sequence 2623	U90549	Sequence 2674	U18297
Sequence 2624	U35464	Sequence 2675	AB000095
Sequence 2625	D13287	Sequence 2676	Y14736
Sequence 2626	U03688	Sequence 2677	L76159
Sequence 2627	M74509	Sequence 2678	L38486
Sequence 2628		Sequence 2679	X01742
Sequence 2629	AF151884	Sequence 2680	AB007899
Sequence 2630		Sequence 2681	E02628
Sequence 2631	AB011173	Sequence 2682	AF103804
Sequence 2632	AF200348	Sequence 2683	U26174
Sequence 2633	M81844	Sequence 2684	M19961
Sequence 2634	U18121	Sequence 2685	U90919
Sequence 2635	M88461	Sequence 2686	Y17171
Sequence 2636	L15078	Sequence 2687	U96628
Sequence 2637		Sequence 2688	AB007921
Sequence 2638	E08293	Sequence 2689	AF035032
Sequence 2639	J02876	Sequence 2690	AF035121
Sequence 2640	AF145385	Sequence 2691	D89289
Sequence 2641	M60854	Sequence 2692	X87241
Sequence 2642	Y18314	Sequence 2693	U34252
Sequence 2643	J00200	Sequence 2694	U88666
Sequence 2644	AB023232	Sequence 2695	J00129
Sequence 2645	AF013160	Sequence 2696	M16660
Sequence 2646	AF042166	Sequence 2697	Z82022
Sequence 2647	AF100756	Sequence 2698	M55654
Sequence 2648	AF141347	Sequence 2699	L03162
Sequence 2649	AF126181	Sequence 2700	U32989
Sequence 2650	AB011169	Sequence 2701	Y09703
Sequence 2651	M34455	Sequence 2702	AF028832
Sequence 2652		Sequence 2703	AF012072
Sequence 2653		Sequence 2704	U66615
Sequence 2654	AF132945	Sequence 2705	M33600

Sequence 2706	M12525	Sequence 2757	L19185
Sequence 2707	M12937	Sequence 2758	AF074264
Sequence 2708	AB023221	Sequence 2759	AF097514
Sequence 2709	J03241	Sequence 2760	L03156
Sequence 2710	AF038421	Sequence 2761	U68140
Sequence 2711	U51134	Sequence 2762	D85390
Sequence 2712	J02814	Sequence 2763	M14661
Sequence 2713	X02422	Sequence 2764	M33689
Sequence 2714	AF178946	Sequence 2765	U16798
Sequence 2715	M30817	Sequence 2766	AB020633
Sequence 2716	AJ010442	Sequence 2767	AF044774
Sequence 2717	AF156965	Sequence 2768	U25182
Sequence 2718	X98259	Sequence 2769	AF099149
Sequence 2719	U29615	Sequence 2770	J02943
Sequence 2720	X03559	Sequence 2771	U89326
Sequence 2721	D90226	Sequence 2772	AF041449
Sequence 2722	E08663	Sequence 2773	L29158
Sequence 2723	U22233	Sequence 2774	U90942
Sequence 2724	AB014536	Sequence 2775	AF025684
Sequence 2725	M31165	Sequence 2776	D17554
Sequence 2726	D89053	Sequence 2777	AB032977
Sequence 2727	M31724	Sequence 2778	AB020637
Sequence 2728	M16086	Sequence 2779	M87771
Sequence 2729	AF151809	Sequence 2780	X04297
Sequence 2730	AJ243936	Sequence 2781	D21261
Sequence 2731	U02493	Sequence 2782	U08023
Sequence 2732	AB033042	Sequence 2783	AF024636
Sequence 2733	L13923 *	Sequence 2784	AJ251053
Sequence 2734	Y18007	Sequence 2785	L20814
Sequence 2735	AB006624	Sequence 2786	U47741
Sequence 2736	AB023193	Sequence 2787	M55580
Sequence 2737	AF027208	Sequence 2788	AJ010443
Sequence 2738	M24194	Sequence 2789	AL117237
Sequence 2739	L77213	Sequence 2790	M13231
Sequence 2740	M10906	Sequence 2791	AF086130
Sequence 2741	AF050639	Sequence 2792	D87969
Sequence 2742	Z36531	Sequence 2793	J04177
Sequence 2743	D29677	Sequence 2794	S79895
Sequence 2744	AB007933	Sequence 2795	AF035408
Sequence 2745	AF073887	Sequence 2796	M13194
Sequence 2746	AF100741	Sequence 2797	AB014610
Sequence 2747	M31212	Sequence 2798	X87176
Sequence 2748	X51420	Sequence 2799	AF070611
	M34458	Sequence 2800	M98325
Sequence 2750	*U90552 *	Sequence 2801	AF156098
Sequence 2751	AF070660	Sequence 2802	AF061738
Sequence 2752	D00422	Sequence 2803	J04162.
Sequence 2753	M14354	Sequence 2804	L25081
Sequence 2754	L05425	Sequence 2805	X59841
Sequence 2755	E01500	Sequence 2806	M80359
Sequence 2756	AB005289	Sequence 2807	M23379
•			

D43950	Sequence 2859	AF170583
S77601	Sequence 2860	A32135
AF109126	Sequence 2861	AB002387
D89667	Sequence 2862	AF064092
X04098	Sequence 2863	M14483
U10117	Sequence 2864	AB032961
AF053233	Sequence 2865	D84105
Y00281	Sequence 2866	U87571
J03619	Sequence 2867	M99603
AB004304	Sequence 2868	AB014574
AF177775	Sequence 2869	AJ132694
AF075589	Sequence 2870	M90439
D63391	Sequence 2871	AB033094
	Sequence 2872	AF117754
	Sequence 2873	AF050171
	Sequence 2874	AF031141
	Sequence 2875	M97168
	Sequence 2876	U31906
	Sequence 2877	S81914
		D14696
	•	AF004562
		J02908
		AL049985
	•	X84373
		E03413
	•	M18728
	•	D25542
		AB014538
		AL117526
		AF131746
-		U82988
	·	AL050179
	•	U76764
		AB022653
		D50929
		U50078
•		D01059
		M17323
	•	U31520
		U37283
	· · · · · · · · · · · · · · · · · · ·	M18642
	•	AF132048
•	•	AB011108
		M21008
		X72760
		Y17169
		D31764
		Z70701
		E01932
		AL117434
	•	AL080097
	S77601 AF109126 D89667 X04098 U10117 AF053233 Y00281 J03619 AB004304 AF177775 AF075589	S77601 Sequence 2860 AF109126 Sequence 2861 D89667 Sequence 2862 X04098 Sequence 2864 AF053233 Sequence 2865 Y00281 Sequence 2866 J03619 Sequence 2867 AB004304 Sequence 2869 AF177775 Sequence 2870 AF075589 Sequence 2871 D50525 Sequence 2873 M69043 Sequence 2873 AF111713 Sequence 2874 U62583 Sequence 2875 M58485 Sequence 2876 AB020663 Sequence 2878 AF034802 Sequence 2878 AF047185 Sequence 2878 L20941 Sequence 2880 AF144103 Sequence 2881 X64810 Sequence 2881 J03015 Sequence 2883 S73591 Sequence 2884 D45248 Sequence 2886 D37965 Sequence 2888 D37965 Sequence 2888 D801902 Sequence 2891 M627

Sequence 2910	J03804	Sequence 2961	U62961
Sequence 2911	AL049250	Sequence 2962	AB033082
Sequence 2912	M95787	Sequence 2963	AL050255
Sequence 2913	X74979	Sequence 2964	M55531
Sequence 2914	AB018346	Sequence 2965	S82240
Sequence 2915	AL080185	Sequence 2966	AB018330
Sequence 2916	L04284	Sequence 2967	Y00052
Sequence 2917	D42085	Sequence 2968	AF006085
Sequence 2918	M16941	Sequence 2969	X00474
Sequence 2919	M36647	Sequence 2970	AF049523
Sequence 2920	J05459	Sequence 2971	X95747
Sequence 2921	U61084	Sequence 2972	AB020692
Sequence 2922	AF044671	Sequence 2973	AF070646
Sequence 2923	AF027964	Sequence 2974	U41850
Sequence 2924	AF052123	Sequence 2975	AF004849
Sequence 2925	X15822	Sequence 2976	L03785
Sequence 2926	AF136380	Sequence 2977	D84488
Sequence 2927	U54559	Sequence 2978	X84987
Sequence 2928	AF077045	Sequence 2979	X97609
Sequence 2929	AB019691	Sequence 2980	Q11879
Sequence 2930	J02923	Sequence 2981	X39551
Sequence 2931	J00199	Sequence 2982	X14998
Sequence 2932	D80000	Sequence 2983	Z24879
Sequence 2933	L20773	Sequence 2984	X39695
Sequence 2934	M97924	Sequence 2985	X40006
Sequence 2935	AJ132637	Sequence 2986	X25445
Sequence 2936	X05044	Sequence 2987	V19980
Sequence 2937	M22414	Sequence 2988	X40191
Sequence 2938	X82456	Sequence 2989	Z24870
Sequence 2939	AB005038	Sequence 2990	X04343
Sequence 2940	M57399	Sequence 2991	T02792
Sequence 2941	AL110206	Sequence 2992	V89227
Sequence 2942	U07991	Sequence 2993	Q54117
Sequence 2943	K03515	Sequence 2994	X39539
Sequence 2944	U26032	Sequence 2995	X40654
Sequence 2945	X04408	Sequence 2996	V44294
Sequence 2946	E01971	Sequence 2997	Z14620
Sequence 2947	AF019562	Sequence 2998	V10352
Sequence 2948	E08542	Sequence 2999	Z33987
Sequence 2949	AF070626	Sequence 3000	X40706
Sequence 2950	L43575	Sequence 3001	X00705
Sequence 2951	AF061736	Sequence 3002	V89695
Sequence 2952	S77512	Sequence 3003	V68998
Sequence 2953	AJ010071	Sequence 3004	×X60801
Sequence 2954	M17733	Sequence 3005	∵V73004
Sequence 2955	X93036	Sequence 3006	X84201
Sequence 2956	M12938	Sequence 3007	X25487
Sequence 2957	D86958	Sequence 3008	T30092
Sequence 2958	X54137	Sequence 3009	X97764
Sequence 2959	E08764	Sequence 3010	V59651
Sequence 2960	AB000114		
-			

Sequence 3012 found in patent publication WO99/54461

Sequence 3013 found in patent publication WO99/54446

AGCTCCCGCGGTGGCGGCCGAGGTACACTGACTTACGCCCTTCCCACAGCTACAGATAA
GGGCTCGCAAAGTTGGCCTCAGAGACACATCAGGAACCAAGGTGGACCAGCAGGTGCCGA
GCCTGTGTATCTGCTTGGAGGAGACGTTCCAATGTGCTGCCTTGTTCAGAGATGGTGTAG
TTGCAAGAAACAGAAACCCACCACAATTTCTCAGGCAAAAAAGGGAGTTAATTATAAGGAC
ATAAGAGCACAAAGTTCCAGTGCAAGAGATACATCCAGGCTGCACAAGCTCCGGGAGTGG
GGCCTGGCAAGCCAAAAGAAACCAAAGTTTGTCTTGCCTTCTGTTCCTCTTTCTGAAGCC
ACATAGCCTTTTATGACTGTGTATCTTTGCATCGCTTTTGNTTTCTTTTTATGTCTCTGA
AGCCAGCTTTTCCTGTTCACTCATCCCTTGATTAA

Sequence 3014 found in patent publication WO99/57132

AGGTACGCGGGTAAACACCGAGGAACTATGTTCAGAACGTAAACAAGGCTGCACCTTGAA CTGTCCCTTCGGTTTCCTTACTGATGCCCAAAACTGTGAGATCTGTGAGTGCCGCCCAAG GCCCAAGAAGTGCAGACCCATAATCTGTGACAAGTATTGTCCACTTGGATTGCTGAAGAA TAAGCACGGCTGTGACATCTGTCGCTTGTAAGAAATGTCCAGAGCTCTCATGCAGTAAGA TCTGCCCCTTGGGTTTCCAGCAGGACAGTCACGGCTGTCTTATCTGCAAGTGCAGAGAG CCTCTGCTTCAGCTGGGCCACCCATCCTGTCGGGCACTTGTCTCACCGTGGAT

Sequence 3015 found in patent publication W099/53051

GCGAATTGTTGCTCCTNCGCGGCGGCGGCCGAGGACGCGGGGACCCAAAAACCACACCCC
TCCTTGGGAGNTTCCCCTAGATCACAGCTCCTCACCATGACTGACCTGGAGCATCCTT
TTCTTGGTGGCAGCAGCAACAGGTGCCCACTCCCAGGTTCAGCTGGAGCAGTCTGGACCT
GAATTGAAGAACCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGTTACAGCTTT
ATCAGCAATGGCATCACCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGC
TGGATCAGCGCTAGCAACGGTAACACAAACTACGCACAAGAAGTTCCAGGGCAAGÄGTCA
CCATGACCACAGNACACATCCACGGAGCACAACCTTATATTGGGAGCTTGAAGGGAGCCC
TTGGAGGATCT

Sequence 3016 found in patent publication WO99/54461

CCGGGCAGGTACAGGTGCCTGCAGAGATGCCCACTTTCAGCCAGAAATCTATGGTTTTGC
AGATGGTGACTCTCTGCTCAGGCAGAGAAATGCCACCAGAGCATAGCTTGGGTTCTCGCC
ACACGTAAGTAGTCTTCTGGATCCCAGCCACACAGCTGCTGACGATAGCATGGTAGTCAG
CCACTGAGCAGAGCGGGCAAGCAGCCGCCTCTCCCACAGGAAGTGGAAGTTGCAGCCAT
CACAGGTCCCATCCGAGCACCGTTCCTGGCAGCAAACTTCCAGGGACAGTTTTCTGTG

PCT/US00/35214

33/100

Table 9

GACTGCACCTGACGCGGATGGTGGTTGATCTCCCAGAACTGCAGGACTGGGTC found in patent publication WO99/53036 Sequence 3017 NAAAAAGAAAAACAGGAGTGGCTTTCAAAGCANAAGGAGAATATACAGCATTTCCAAGCA GAAGAAGAAGCTAACCTTCTTCGACGCCAAAGACAATACCTAGAGCTGGAATGCCGCCGC TTCAAGAGAAGAATGTTACTTGGGCGTCATAACTTAGAGCAGGACCTTGTCAGGGGGAGT TAAACAAAAGACAGACTCAGAAGGACTTAGAGCATGCCATGCTACTCCGACAGCATGAAT CTATGCAAGAACTGGAGTTCCGC found in patent publication WO99/61614 Sequence 3018 TATAGGGCGAATTGGAGCTCCCCGCGGTGGCGGCCCGAGGTGAATGCCCTGGATGGGTAT AACCGAACAGCCCTCCACTATGCAGCAGAGAAAGATGAGGCTTGTGTGGAGGTCCTATTG GAGTATGGTGCAAACCCCAATGCTTTGGATGGCAACAGAGATACCCCACTTCACTGGGCA GCCTTTAAGAACAATGCTGAGTGTGTGCGGGCTCTCCTAGAGAGCGGGGCCTCTGTCAAT GCCCTGGATTACAACAATGATACACCGCTCAGCTGGGCTGCCATGAAGGGAAATCTTGAG AGTGTCAGCATCCTTCTGGATTATGGCGCAGAGGTCANAGTCATCAACCTAATANGCCAG ACACCCATCTCCCGCCTGGTGGCTCTGCTAGTCAGGGGACTTGGAACAGAGAAAGANGAC TCTTGCTTTGAGCTCCTCCACAGAGCTGTTGGACACTTTGAATTGAGGAAAAATGG found in patent publication W099/57144 Sequence 3019 CTTTTTNTCCTATANGGNTTTTTGGNTCTCCACCGCGGTGGCGGCCGAGGTACAGNTTTC CCCAAAAATCTGGAGCTTTNCAGGCATNTTTTAGAGGACAGCTAATCAAAGCCCATCTGT GTTAACCCAGGAAGTCATCTTGCACAGAAAGTAAGGAGGCAGAGAGGGGTGGAGAGCTAT TCCAGGTGCAGATACTCCCTGGGATTCAAGGTGGCAGCATGCAGGCTACGAGCCTGGATA ACTTGCACGTTTTTATTTCAAAAGATCCAACAGGGAGGGCTTTTGTTATCTGACCAAGAG AGGAGCGTTAGACTTTAGCCACAATGCTTTTGAATTGGGCTTCTTAGTTTTGCTAAAATT AAANAATCTGGGGCCCTTTTTGGCAGAAATGCTTATGCTACTCATTCCTCAACTTTTCTT TCTTCCTTC found in patent publication WO99/53036 Sequence 3020 CGAGGTACAAAGCATTAAGAAATCACCTGCTGGAGACTACACCAAAGAGTGAGCACAAAG CTGTTCTGAAACGGCTCAAGGAGGAACAGACCCGGAAATTAGCTATCTTGGCTGAGCAGT ATGATCACAGCATTAATGAAATGCTCTCCACACAAGCCCTGCGTTTGGATGAAGCACAGG AAGCAGAGTGCCAGGTTTTGAAGATGCAGCTGCAGCAGGAACTGGAGCTGTTGAATGCGT ATCAGAGCAAAATCAAGATGCAAGCTGAGGCACAACATGATCGAGAGCTTCGCGAACTTG AACAGAGGGTCTCCCTCCGGAGGGCACTCTTAGAANAAAAGNTNGAAGAAGAGATGTT found in patent publication WO99/64576 Sequence 3021 CCGGGCAGGGTACCCATTTAATATAACTATGATGCACTTAAATTGAAGCTATGCCACAGG ATAGAAAATGAATTACAACTTAAATACATGTTGGAAGTGTAACACTGTTTTTCAAGGTTT AAAAAAATTCCTAATGCCTTTTAGCCTTCTTTAATATTTTTAGGTAAGGAAAGTATGTTT GGATTTTTTCCTCTTTGTAGGTATATGAGATTGAAATGTGAAGTATTTGGACAACAAACG TCAAGCAATGGGAAGCCATTTTGATTTCTTGAGTAATCTTGTAAGCATTAAGTGAATGAC AAAGTAGTAGTGTAACTTATTTCTTATGTTATAACTTCAGTCAATTAATATAAGGATAGT TTTTGTTGTATGTTCACTAAGTGGTTAATATAATAGCCATTGAATATACTAATCTTTCAT CTTAGAGAACTATACAACTTTTATTGTTTCTTAATGGGAACATTCTGGCTAACAAGAAAA **AGTGAGAAAAGTAGTACCTCGGC** found in patent publication WO99/53051 Sequence 3022 CCGCGGTGGCGGCCCGAGGTACAGAAAATAAGTAGAATAACAAAGTTCCTAGTTTTGTG TGGGCTGAGAGTGAAAAAAAAAGAGTAACGAGGAGTGAAAAGAATGAAGAAGAAAAAAACAGC TGCACAGGAAAAGGGCAGTGTCACAGGTGCCTCCCACGGTCCTTTGCCGAGAGCCTGTGG GGGAGGCCAAGTGGGGAGAATGGGGGACATCGGGTGGACGACCCAGGGGACCAGCTGGTG TCAGAGAATGGTAGATFAGGATTTGGCCTGCTAGATCATGCTGGCGGCATTGGCCAACAT CAAACACGAGGGGCTCTGGTGACAGGACATGACACTGCACAATCAGAGATCACAGCGAA

TGGCTTTGCTGAGGTGTCCACTTTACTCCTGCCCCGATCACCTCCCTTCCTGATTGTTAG TCCTTTTGTTTCTCCAGGAAGTCTCTTCTCATCCCTGTTCACGCCTTCATGTAACAAGCA

TTTATCACACTAGTACCTGCCCN

Table 9

Sample #	Accession #	Sequence 3068	AA156509
Sequence 3024	AA417652	Sequence 3069	AA315666
Sequence 3025	AA126614	Sequence 3070	Al338594
Sequence 3026	AA330753	Sequence 3071	AA399208
Sequence 3027	Al309431	Sequence 3072	AA464763
Sequence 3028	AA043659	Sequence 3073	AA314555
Sequence 3029	AA192604	Sequence 3074	AA095651
Sequence 3030	AL036415	Sequence 3075	AI124525
Sequence 3031	H53231	Sequence 3076	AA662208
Sequence 3032	AA503949	Sequence 3077	AI911496
Sequence 3033	R71822	Sequence 3078	H60504
Sequence 3034	Al127918	Sequence 3079	AA857872
Sequence 3035	AA292373	Sequence 3080	AA011613
Sequence 3036	AA331429	Sequence 3081	AA165490
Sequence 3037	H18735	Sequence 3082	AA533372
Sequence 3038	AA361157	Sequence 3083	A1935533
Sequence 3039	T33066	Sequence 3084	AA668164
Sequence 3040	AW188539	Sequence 3085	AA361821
Sequence 3041	AA253323	Sequence 3086	D81625
Sequence 3042	AA789292	Sequence 3087	AA295348
Sequence 3043	AA135903	Sequence 3088	H46448
Sequence 3044	AA455853	Sequence 3089	T06037
Sequence 3045	AA248319	Sequence 3090	AA911035
Sequence 3046	AI253336	Sequence 3091	AA235178
Sequence 3047	AA115426	Sequence 3092	Al131228
Sequence 3048	N32072	Sequence 3093	Al280751
Sequence 3049	Al371735	Sequence 3094	AI719184
Sequence 3050	AA127348	Sequence 3095	Al262380
Sequence 3051	Al223085	Sequence 3096	AA535888
Sequence 3052	AA015628	Sequence 3097	Al207370
Sequence 3053	AA554761	Sequence 3098	AL048693
Sequence 3054	AA285103	Sequence 3099	AA557619
Sequence 3055	AA189000	Sequence 3100	Al637612
Sequence 3056	W58321	Sequence 3101	AA088344
Sequence 3057	AA112288	Sequence 3102	AA679592
Sequence 3058	AA490577	Sequence 3103	AL036180
Sequence 3059	AI735683	Sequence 3104	Al128053
Sequence 3060	AA834004	Sequence 3105	AA885430
Sequence 3061	AA569064	Sequence 3106	AA306173
Sequence 3062	AA486674	Sequence 3107	Al205060
Sequence 3063	AA495759	Sequence 3108	AA469070
Sequence 3064	AA722847	Sequence 3109	AL048962
Sequence 3065	AA430731	Sequence 3110	AA777098
Sequence 3066	AA527298	Sequence 3111	AW135564
Sequence 3067	AA177092	Sequence 3112	AA351514

Sequence 3113	N45538	Sequence 3165	AA761101
Sequence 3114	AI523289	Sequence 3166	AL038502
Sequence 3115	Al125606	Sequence 3167	AA336387
Sequence 3116	AL036319	Sequence 3168	AA220948
Sequence 3117	AA313983	Sequence 3169	AA448990
Sequence 3118	AA134203	Sequence 3170	AA143001
Sequence 3119	AA453778	Sequence 3171	AA719975
Sequence 3120	Al253367	Sequence 3172	AA305118
Sequence 3121	H66108	Sequence 3173	AA410496
Sequence 3122	AA655034	Sequence 3174	AA374359
Sequence 3123	AA339277	Sequence 3175	AA335368
Sequence 3124	AA779966	Sequence 3176	Al217499
Sequence 3125	AA883590	Sequence 3177	N48436
Sequence 3126	Al089394	Sequence 3178	Al627332
Sequence 3127	AI916533	Sequence 3179	H05377
Sequence 3128	AA485853	Sequence 3180	AI525843
Sequence 3129	AA420523	Sequence 3181	AI683279
Sequence 3130	AA931996	Sequence 3182	AA344707
Sequence 3131	W94994	Sequence 3183	AA344287
Sequence 3132	AA525938	Sequence 3184	AA583067
Sequence 3133	AA430516	Sequence 3185	AA296881
Sequence 3134	N40017	Sequence 3186	AA187659
Sequence 3135	AA553486	Sequence 3187	AA307578
Sequence 3136	AA244050	Sequence 3188	Al634794
Sequence 3137	R89382	Sequence 3189	AA378787
Sequence 3138	AA631460	Sequence 3190	AA702182
Sequence 3139	Al253300	Sequence 3191	AA204865
Sequence 3140	AA093526	Sequence 3192	R09719
Sequence 3141	AA327250	Sequence 3193	AA082412
Sequence 3142	AA347581	Sequence 3194	AA767779
Sequence 3143	AI962828	Sequence 3195	AA312849
Sequence 3144	AA092812	Sequence 3196	H43367
Sequence 3145	AA360953	Sequence 3197	AA526483
Sequence 3146	AA677908	Sequence 3198	Al332588
Sequence 3147	AA028008	Sequence 3199	AI597808
Sequence 3148	AA363684	Sequence 3200	AA338793
Sequence 3149	AA908243	Sequence 3201	AA010760
Sequence 3150	AI028658	Sequence 3202	AA084067
Sequence 3151	AA287400	Sequence 3203	AA489243
Sequence 3152	AA505632	Sequence 3204	AI754666
Sequence 3153	AA337280	Sequence 3205	AA364498
Sequence 3154	AJ698179	Sequence 3206	Al922665
Sequence 3155	AA314773	Sequence 3207	A1290826
Sequence 3156	T48046	Sequence 3208	AA860984
Sequence 3157	AL120477	Sequence 3209	AA626192
Sequence 3158	AA316721	Sequence 3210	Al139036
Sequence 3159	AA524242	Sequence 3211	Al557112
Sequence 3160	AA337818	Sequence 3212	AI754078
Sequence 3161	N36637	Sequence 3213	AA120813
Sequence 3162	AA054376	Sequence 3214	AA089897
Sequence 3163	AI017574	Sequence 3215	AA398046
Sequence 3164	AA179450	Sequence 3216	AA662736
		•	

Sequence 32	217 A	N492934	Sequence 3269	L37385
Sequence 32	218 A	VA307787	Sequence 3270	M74775
Sequence 32	219 A	VA314379	Sequence 3271	AB000516
Sequence 32	220 A	L037746	Sequence 3272	AB033075
Sequence 32	221 A	N253337	Sequence 3273	X55654
Sequence 32	222 A	VA074811	Sequence 3274	L38563
Sequence 32	223 A	N140410	Sequence 3275	AL121740
Sequence 32	224 A	N053628	Sequence 3276	U15552
Sequence 32	225 A	N127556	Sequence 3277	AF012073
Sequence 32	226 A	VA431133	Sequence 3278	E02164
Sequence 32		VA649137	Sequence 3279	M16768
Sequence 32	228 A	A327546	Sequence 3280	AB023224
Sequence 32		A292903	Sequence 3281	AF016270
Sequence 32		N357803	Sequence 3282	D37991
Sequence 32		A779747	Sequence 3283	AF103775
Sequence 32)44747	Sequence 3284	AB022656
Sequence 32		A481979	Sequence 3285	AB028624
Sequence 32		N203141	Sequence 3286	D38305
Sequence 32		AI691046	Sequence 3287	U58855
Sequence 32		A044089	Sequence 3288	D87470
Sequence 32		A522445	Sequence 3289	Z74615
Sequence 32		A186479	Sequence 3290	X15987
Sequence 32		A568922	Sequence 3291	AF131848
Sequence 32		N207546	Sequence 3292	U96627
Sequence 32		AL119371	Sequence 3293	AB033078
Sequence 32		AA430305	Sequence 3294	AF153201
Sequence 32		A149492	Sequence 3295	AB016488
Sequence 32		A193101	Sequence 3296	J02683
Sequence 32		AI252084	Sequence 3297	U23028
Sequence 32	246 <i>F</i>	A085509	Sequence 3298	M81757
Sequence 32	247 <i>F</i>	A988107	Sequence 3299	AB008109
Sequence 32	248 A	\1802032	Sequence 3300	X74104
Sequence 32	249 A	A346556	Sequence 3301	AF038392
Sequence 32	250 A	A188088	Sequence 3302	AL096881
Sequence 32	251 A	A609538	Sequence 3303	AF070556
Sequence 32	252 A	A195832	Sequence 3304	AF072860
Sequence 32		A058410	Sequence 3305	X59405
Sequence 32	254 <i>A</i>	\L040479	Sequence 3306	L16510
Sequence 32	255 A	A152027	Sequence 3307	AF057299
Sequence 32	256 A	A037181	Sequence 3308	D17409
Sequence 32	257 A	A127162	Sequence 3309	X59303
Sequence 32	258 A	A315762	Sequence 3310	AB002346
Sequence 32	259 A	A044765	Sequence 3311	X15187
Sequence 32	260 A	A971857	Sequence 3312	M25316
Sequence 32	261 . <i>F</i>	A194538	Sequence 3313	AF086484
Sequence 32	262 A	A826015	Sequence 3314	AF092922
Sequence 32		AL041059	Sequence 3315	U05875
Sequence 32		A083182	Sequence 3316	D86961
Sequence 32		A719663	Sequence 3317	L39000
Sequence 32	266 V	V80983	Sequence 3318	AB033055
Sequence 32		AB002382	Sequence 3319	AB003333
Sequence 32	268 <i>P</i>	\F070661	Sequence 3320	E03565

Sequence 3	321	L38565	Sequence 3362	X87613
Sequence 3	322	L14076	Sequence 3363	AF086510
Sequence 3	323	AL122082	Sequence 3364	AF039918
Sequence 3	324	AF044957	Sequence 3365	AF117255
Sequence 3	325	AB011079	Sequence 3366	L34673
Sequence 3	326	D50310	Sequence 3367	X59766
Sequence 3	327	D16911	Sequence 3368	AF115359
Sequence 3	328	M12267	Sequence 3369	M29469
Sequence 3	329	M27937	Sequence 3370	AF153605
Sequence 3	330	U02032	Sequence 3371	X04236
Sequence 3	331	Y18207	Sequence 3372	AB023216
Sequence 3	332	AB018302	Sequence 3373	M76482
Sequence 3	333	M58549	Sequence 3374	Y17175
Sequence 3	334	AB020669	Sequence 3375	AF087693
Sequence 3	335	S42404	Sequence 3376	E01198
Sequence 3	336	AB022663	Sequence 3377	AL050265
Sequence 3		D13639	Sequence 3378	X57820 ·
Sequence 3	338	AF000367	Sequence 3379	D88674
Sequence 3	339	M14662	Sequence 3380	X52022
Sequence 3		AF026381	Sequence 3381	AF040704
Sequence 3	341	U96915	Sequence 3382	U49278
Sequence 3	342	U60206	Sequence 3383	AL049219
Sequence 3		Y00345	Sequence 3384	AF162704
Sequence 3	344	D78134	Sequence 3385	AL117602
Sequence 3		S73145	Sequence 3386	J00196
Sequence 3	346	AF020340	Sequence 3387	M25756
Sequence 3	347	U15008	Sequence 3388	D14658
Sequence 3	348	AF094517	Sequence 3389	E02651
Sequence 3	349	X94910	Sequence 3390	AF026030
Sequence 3	350	L36151	Sequence 3391	M60627
Sequence 3	351	AB033104	Sequence 3392	U18937
Sequence 3	352	M32011	Sequence 3393	J03934
Sequence 3	353	U82938	Sequence 3394	X65614
Sequence 3	354	AF038955	Sequence 3395	AL050274
Sequence 3	355	AF057160	Sequence 3396	Q55004
Sequence 3	356	D38551	Sequence 3397	X15000
Sequence 3	357	AJ012375	Sequence 3398	Z34097
Sequence 3	358	U06632	Sequence 3399	Z13355
Sequence 3		M73547	Sequence 3400	Z40831
Sequence 3	360	X02761	Sequence 3401	X37385
Sequence 3	361	J04080		

Sequence 3402 found in patent publication WO99/64576
GCGAATNGGAGCTCCCCGCGGTGGCGGCCCCCGGNCAGGTTGGTGGAAAGGAATGAAGC
ANTTTCTTCCTGCAAAANCAGTGGACCATGGGGAAACCCCAGTTCNCTATAGCNGCAGCG
AAGTNAATCACCTGAGTCCAAGAGAAGTCACCACANTGCTGCAGGCTGACTCTGCAGAGT
ATGCTCAGCCACTGGTAGGAGGAATTGTTGGTACCTN

Table 9

Sequence 3403 found in patent publication W099/54460
AGGTACGCGGGGGTTCCTTCCGGGGTTTTGGGCTGGAACTGCAGCGCTTAGAGAGCTCGG
TGGAAGCTGCTAAAGGCGGAGCGGGGCTCTGGCGAGTTCTCCTTCCACCTTCCCCCACC
CTTCTCTGCCAACCGCTGTTTCAGCCCCTAGCTGGATTCCAGCCATTGCTGCAGCTGCTC
CACAGCCCTTTTCAGGACCCAAACAACCGCAGCCGCTGTTCCCAGGATGGTGATCCGTGT
ATATATTGCATCTTCCTCTGGCTCTACAGCGATTAAGAAGAAACAACAAGATGTGCTTGG
TTTCCTAGAAGCCAACAAAATAGGATTTGAAGAAAAA

Sequence #	Accession#	Sequence 3447	
Sequence 3404	AA873272	Sequence 3448	AI042524
Sequence 3405	AA022896	Sequence 3449	AA894775
Sequence 3406	AA047432	Sequence 3450	H93264
Sequence 3407	AA297327	Sequence 3451	AA179887
Sequence 3408	AA129205	Sequence 3452	AI016587
Sequence 3409	AW008483	Sequence 3453	AA913592
Sequence 3410	AA513183	Sequence 3454	T65174
Sequence 3411	Al816261	Sequence 3455	AA165521
Sequence 3412	AA526767	Sequence 3456	AA641585
Sequence 3413	AW150827	Sequence 3457	AA652478
Sequence 3414	AA045127	Sequence 3458	H03514
Sequence 3415	AA303085	Sequence 3459	AA305331
Sequence 3416	AA126614	Sequence 3460	AI110866
Sequence 3417	AL041738	Sequence 3461	Al220623
Sequence 3418	AW071784	Sequence 3462	AA133357
Sequence 3419	AW175618	Sequence 3463	AI216978
Sequence 3420	Al418302	Sequence 3464	AI350896
Sequence 3421	AA088197	Sequence 3465_	AA369887
•	AA513640	Sequence 3466	AL048670
Sequence 3423	Al684122	Sequence 3467	AI085849
Sequence 3424	W19988	Sequence 3468	AA514409
•	Al659995	Sequence 3469	T79838
Sequence 3426	W94246	Sequence 3470	AA173432
Sequence 3427	AA429190	Sequence 3471	AA652746
Sequence 3428	AA305139	Sequence 3472	R78852
Sequence 3429	N80361	Sequence 3473	AA053636
Sequence 3430		Sequence 3474	AL039550
Sequence 3431	AI750669	Sequence 3475	AA007474
Sequence 3432	Al312325	Sequence 3476	
Sequence 3433	AI080314	Sequence 3477	AA083160
Sequence 3434	AA604688	Sequence 3478	
Sequence 3435	R82830	Sequence 3479	
Sequence 3436	AA496267	Sequence 3480	W90697
Sequence 3437	AA385573		Al253330
Sequence 3438	Al698401	Seguence 3482	
Sequence 3439	Al611881	Sequence 3483	AA443820
Sequence 3440	Al267602	Sequence 3484	
Sequence 3441	AA522790	Sequence 3485	
Sequence 3442	Al207546	Sequence 3486	AA644157
Sequence 3443	AA860791	Sequence 3487	
Sequence 3444	AA430597	Sequence 3488	Al005333
Sequence 3445	AA977234	Sequence 3489	R18733
Sequence 3446	AA417916	Sequence 3490	Al190341
•			

PCT/US00/35214

Sequence 3491	Al064691	Sequence 3542	Al208910
Sequence 3492	AL035802	Sequence 3543	AA446179
Sequence 3493	Al307504	Sequence 3544	AA292860
Sequence 3494	H50771	Sequence 3545	AA053376
Sequence 3495	AI091190	Sequence 3546	AA292638
Sequence 3496	AA136789	Sequence 3547	AI268369
Sequence 3497	Al061595	Sequence 3548	AA724868
Sequence 3498	Al150089	Sequence 3549	AA864493
Sequence 3499	Al361057	Sequence 3550	AA483368
Sequence 3500	Al745542	Sequence 3551	AA487864
Sequence 3501	AA418249	Sequence 3552	R71893
Sequence 3502	AA308273	Sequence 3553	AA687282
Sequence 3503	AA442385	Sequence 3554	AI588087
Sequence 3504	AA508075	Sequence 3555	AA242932
Sequence 3505	AA314717	Sequence 3556	AA112647
Sequence 3506	AA148250	Sequence 3557	AA971834
Sequence 3507	AA054506	Sequence 3558	AA206540
Sequence 3508	W60565	Sequence 3559	Al697470
Sequence 3509	Al678871	Sequence 3560	AW084936
Sequence 3510	N52198	Sequence 3561	AA319900
Sequence 3511	AL041769	Sequence 3562	AA249154
Sequence 3512	AW015055	Sequence 3563	AA722214
Sequence 3513	Al073373	Sequence 3564	AL079895
Sequence 3514	Al807804	Sequence 3565	AI065003
Sequence 3515	Al267162	Sequence 3566	AA150891
Sequence 3516	AA236449	Sequence 3567	R21012
Sequence 3517	AA639494	Sequence 3568	Al422714
Sequence 3518	Al471455	Sequence 3569	AA111856
Sequence 3519	AI064737	Sequence 3570	AA385768
Sequence 3520	Al865433	Sequence 3571	W56680
Sequence 3521	Al928958	Sequence 3572	AA864690
Sequence 3522	AI760450	Sequence 3573	AL110421
Sequence 3523	W17085	Sequence 3574	AI040598
Sequence 3524	AI566845	Sequence 3575	AL043001
Sequence 3525	AA156806	Sequence 3576	Al290232
Sequence 3526	AF150217	Sequence 3577	
Sequence 3527	AA313983	Sequence 3578	
Sequence 3528	AA773336	Sequence 3579	AA165027
Sequence 3529	AA927668	Sequence 3580	AA199700
Sequence 3530	N80102	Sequence 3581	AW027339
Sequence 3531	AW189598	Sequence 3582	AA143001
Sequence 3532	AA683546	Sequence 3583	AA917019
Sequence 3533	AA573912		N93894
Sequence 3534	W51959	Sequence 3585	AA507675
Sequence 3535		Sequence 3586	AA984172
Sequence 3536		Sequence 3587	
Sequence 3537		Sequence 3588	
Sequence 3538		Sequence 3589	
Sequence 3539		Sequence 3590	
Sequence 3540		Sequence 3591	
Sequence 3541	AA453075	Sequence 3592	AI732534
		•	

Sequence 3593		Sequence 3644	
Sequence 3594	AA190873	Sequence 3645	AA397572
Sequence 3595	AI085369	Sequence 3646	AA642987
Sequence 3596	AA448951	Sequence 3647	AA573950
Sequence 3597	AW104310	Sequence 3648	AA156269
Sequence 3598	R72145	Sequence 3649	AA502307
Sequence 3599	W47107	Sequence 3650	W52418
Sequence 3600	AA196338	Sequence 3651	AA486673
Sequence 3601	AA769876	Sequence 3652	AA312860
Sequence 3602	AA725340	Sequence 3653	AJ417767
Sequence 3603		Sequence 3654	AA235108
Sequence 3604	AA968843	Sequence 3655	AA760913
Sequence 3605	Al357472	Sequence 3656	AA152396
Sequence 3606		Sequence 3657	AA101674
Sequence 3607	AA022614	Sequence 3658	AA740186
Sequence 3608	11122121	Sequence 3659	AA186967
Sequence 3609		Sequence 3660	AA234130
Sequence 3610		Sequence 3661	R20225
Sequence 3611	Al915895	Sequence 3662	AI567426
Sequence 3612		Sequence 3663	AA449264
Sequence 3613		Sequence 3664	Al668574
Sequence 3614		Sequence 3665	AA507472
Sequence 3615		Sequence 3666	AA425400
Sequence 3616		Sequence 3667	AW179017
Sequence 3617		Sequence 3668	AA318347
Sequence 3618		Sequence 3669	Al887619
Sequence 3619		Sequence 3670	
Sequence 3620		Sequence 3671	AA331513
Sequence 3621	AA330619	Sequence 3672	AA176968
Sequence 3622		Sequence 3673	AA732820
Sequence 3623		Sequence 3674	AA319508
Sequence 3624		Sequence 3675	AA906921
Sequence 3625	Al027521	Sequence 3676	Al267416
Sequence 3626		Sequence 3677	AA535496
Sequence 3627	Al332588	Sequence 3678	AI093195
Sequence 3628		Sequence 3679	AA020956
Sequence 3629		Sequence 3680	
Sequence 3630		Sequence 3681	Al799521
Sequence 3631	AA627916	Sequence 3682	R71822
Sequence 3632	AW084003	Sequence 3683	AA236418
Sequence 3633		Sequence 3684	AA448600
	AA029915	Sequence 3685	AA608738
Sequence 3635		Sequence 3686	AA004655
Sequence 3636	AL039149	Sequence 3687	AA425024
Sequence 3637	AA170808	Sequence 3688	
Sequence 3638		Sequence 3689	AA493375
Sequence 3639		Sequence 3690	AA304611
Sequence 3640		Sequence 3691	AA325821
Sequence 3641		Sequence 3692	AA975564
Sequence 3642		Sequence 3693	AI862012
Sequence 3643		Sequence 3694	
• • • • • • • •		•	

Sequence 3695	Al668915	Sequence 3746	AA188171
Sequence 3696	AA236245	Sequence 3747	N36611
Sequence 3697	AA112161	Sequence 3748	AA827779
Sequence 3698	AA417872	Sequence 3749	AA134565
Sequence 3699	AL037800	Sequence 3750	R61601
Sequence 3700	AA526498	Sequence 3751	W95541
Sequence 3701	AA147836	Sequence 3752	AI523897
Sequence 3702	H14449	Sequence 3753	AA582093
Sequence 3703	Al216972	Sequence 3754	AA465612
Sequence 3704	Al675880	Sequence 3755	AA769006
Sequence 3705	Al360163	Sequence 3756	W03938
Sequence 3706	N98691	Sequence 3757	Al128216
Sequence 3707	AI968379	Sequence 3758	AA152420
Sequence 3708	AA292235	Sequence 3759	AA700643
Sequence 3709	AA166890	Sequence 3760	AA921913
Sequence 3710	AA947616	Sequence 3761	Al188505
Sequence 3711	Al499393	Sequence 3762	H99888
Sequence 3712	AA196048	Sequence 3763	Al807894
Sequence 3713	AA708159	Sequence 3764	AA321244
Sequence 3714	AA702091	Sequence 3765	AA400214
Sequence 3715		Sequence 3766	AA026757
Sequence 3716	AI025537	Sequence 3767	R15973
Sequence 3717	AA654320	Sequence 3768	AA600831
Sequence 3718	AW176113	Sequence 3769	Al278235
Sequence 3719	Al114651.	Sequence 3770	AA527187
Sequence 3720	AA057021	Sequence 3771	AA027803
Sequence 3721	AA324478	Sequence 3772	AA410888
Sequence 3722	AA130162	Sequence 3773	
Sequence 3723	Al207528	Sequence 3774	AA315723
Sequence 3724	AA564080	Sequence 3775	Al280561
Sequence 3725	AA100746	Sequence 3776	
Sequence 3726	AA224260	Sequence 3777	
Sequence 3727	Al077912	Sequence 3778	
Sequence 3728	AL045794	Sequence 3779	AA210796
Sequence 3729	AA296780	Sequence 3780	AI082230
Sequence 3730	AA449055	Sequence 3781	AI791618
Sequence 3731	AA557177	Sequence 3782	
Sequence 3732	Al446497	Sequence 3783	
Sequence 3733	AA490647	Sequence 3784	
Sequence 3734		1	Al498067
Sequence 3735	AA768348	Sequence 3786	
Sequence 3736	AA018946	Sequence 3787	
Sequence 3737	AA450189	Sequence 3788	AA868396
Sequence 3738		Sequence 3789	
Sequence 3739		Sequence 3790	
Sequence 3740		Sequence 3791	
Sequence 3741		Sequence 3792	
Sequence 3742		Sequence 3793	
Sequence 3743		Sequence 3794	AA469320
Sequence 3744		Sequence 3795	A1829770
Sequence 3745	AA633276	Sequence 3796	AA3265U0

Sequence 3797	Al270183	Sequence 3848	AA033724
Sequence 3798	Al278800	Sequence 3849	AA604620
Sequence 3799	N36813	Sequence 3850	AA313223
Sequence 3800	W91946	Sequence 3851	C04016
Sequence 3801	Al336501	Sequence 3852	Al057124
Sequence 3802	AF001541	Sequence 3853	AA314146
Sequence 3803	R54765	Sequence 3854	AA420705
Sequence 3804	AA846605	Sequence 3855	Al191009
Sequence 3805	AA493962	Sequence 3856	Al174824
Sequence 3806	AW150935	Sequence 3857	Al253436
Sequence 3807	AA527359	Sequence 3858	AA025875
Sequence 3808	Al859619	Sequence 3859	AI253335
Sequence 3809	R12140	Sequence 3860	Al457133
Sequence 3810	N40852	Sequence 3861	Al935290
Sequence 3811	AA164612	Sequence 3862	AA203313
Sequence 3812	Al951767	Sequence 3863	D55616
Sequence 3813	Al983317	Sequence 3864	AA514395
Sequence 3814	AA155640	Sequence 3865	AA075984
Sequence 3815	AA305436	Sequence 3866	AA283714
Sequence 3816	AA205470	Sequence 3867	Al131470
Sequence 3817	Al025023	Sequence 3868	AA376346
•	AL046863	Sequence 3869	N98569
Sequence 3819	AA199717	Sequence 3870	T54237
Sequence 3820	AA632875	Sequence 3871	AA772570
Sequence 3821	AA541651	Sequence 3872	AL037802
Sequence 3822	AA634203	Sequence 3873	Al436057
Sequence 3823	D79053	Sequence 3874	AA130201
Sequence 3824	C03757	Sequence 3875	Al460220
Sequence 3825	AA256095	Sequence 3876	Al743389
Sequence 3826	Al668594	Sequence 3877	Al160151
Sequence 3827	AA400384	Sequence 3878	AA156152
Sequence 3828	H03589	Sequence 3879	AW083729
Sequence 3829	Al373463	Sequence 3880	Al751039
Sequence 3830	AL080000	Sequence 3881	Al911944
Sequence 3831	Al280779	Sequence 3882	AA694055
Sequence 3832	AA494410	Sequence 3883	
Sequence 3833	AA176146	Sequence 3884	
Sequence 3834	AW050527	Sequence 3885	Al362355
Sequence 3835	AA133199	Sequence 3886	
Sequence 3836	Al668620	Sequence 3887	
Sequence 3837	Al318569	Sequence 3888	AW132039
Sequence 3838	Al310723	Sequence 3889	AW014590
Sequence 3839	AA298773	Sequence 3890	AL036565
Sequence 3840		Sequence 3891	
Sequence 3841		Sequence 3892	
Sequence 3842		Sequence 3893	
Sequence 3843		Sequence 3894	
Sequence 3844		Sequence 3895	
Sequence 3845		Sequence 3896	
Sequence 3846		Sequence 3897	
Sequence 3847	AIAOAAAA	Sequence 3898	rvv241403

99 Al480219	0 2050	
33 MITOUZ 13	Sequence 3950	AA335552
00 AA187639	Sequence 3951	AA456900
01 Al339455	Sequence 3952	AA147871
02 H80244	Sequence 3953	Al684615
03 Al148561	Sequence 3954	Al355260
	_ ·	Al417979
	_ ·	
	_ ·	AA643660
	•	AA470067
	Sequence 3960	AA437070
	Sequence 3961	AA497052
	•	AI820745
	•	AA348532
	•	
	_ •	AA083300
	_ '	AA173526
	· · · · · · · · · · · · · · · · · · ·	AI940351
	•	
	•	
	_ '	
	_ '	
	. · · ·	AF060231
		U15085
	_ · ·	L22453
	· · · · · · · · · · · · · · · · · · ·	X62534
	•	
	_ ·	
29 Al026839	Sequence 3980	
30 AI751017	Sequence 3981	U51678
31 AA702989	Sequence 3982	X75861
32 AA234434	Sequence 3983	
33 Al002715	Sequence 3984	D23662
34 AA437198	Sequence 3985	M11233
35 Al810764	Sequence 3986	AB019568
36 Al217114	Sequence 3987	J02908
37 Al538989	Sequence 3988	AF002020
38 AA099926	Sequence 3989	U79293
39 N44337	Sequence 3990	AB028971
10 AA641504	Sequence 3991	M27635
11 Al499986	Sequence 3992	U34877
12 AI535656	Sequence 3993	AB014523
13 AA700127	Sequence 3994	U38784
14 H43348	Sequence 3995	L19185
15 AL044967	Sequence 3996	K02765
16 AA259189	Sequence 3997	AF032103
47 Al143187	Sequence 3998	
18 AL037724	Sequence 3999	
19 AA709383	Sequence 4000	X00497
	00 AA187639 01 AI339455 02 H80244 03 AI148561 04 AA832521 05 AA399390 06 AI929696 07 AA155999 08 AA411585 09 AI940492 10 AA828862 11 AI650830 12 AI262932 13 AA368686 14 AA278595 15 AL037888 16 AA431858 17 H57382 18 AA411736 19 AA564296 10 AA327333 11 AI280149 10 AA327333 11 AI280149 11 AA702989 12 AI126461 13 AA411736 14 AI349614 15 AI472243 16 AA399070 17 AA702989 18 AI026839 18 AI026839 18 AI026839 18 AI026839 18 AI026839 18 AI472114 18 AA663188 19 AI751017 18 AA702989 18 AA399070 18 AA437198 18 AA099926 19 AA234434 19 AI43348 19 AA641504 19 AI43348 19 AI4348 1	00 AA187639 Sequence 3951 01 AI339455 Sequence 3952 02 H80244 Sequence 3954 03 AI148561 Sequence 3955 04 AA832521 Sequence 3955 05 AA399390 Sequence 3956 06 AI929696 Sequence 3958 07 AA155999 Sequence 3958 08 AA411585 Sequence 3960 09 AI940492 Sequence 3960 10 AA828862 Sequence 3961 11 AI650830 Sequence 3962 12 AI262932 Sequence 3963 13 AA368686 Sequence 3964 14 AA278595 Sequence 3965 15 AL037888 Sequence 3966 16 AA431858 Sequence 3976 17 H57382 Sequence 3972 18 AA181902 Sequence 3973 19 AA564296 Sequence 3973 10 AA237333 Sequence 3973 12

Sequence 4001	AB020721	Sequence 4052	X54326
Sequence 4002	D90453	Sequence 4053	AB011113
Sequence 4003	E01979	Sequence 4054	AF124491
Sequence 4004	AB002375	Sequence 4055	AF050641
Sequence 4005	M20681	Sequence 4056	AF063737
Sequence 4006	AL117550	Sequence 4057	D63480
Sequence 4007	M83246	Sequence 4058	X00568
Sequence 4008	D86982	Sequence 4059	AF045653
Sequence 4009	A18657	Sequence 4060	L06132
Sequence 4010	AF098786	Sequence 4061	L35249
Sequence 4011	AF063613	Sequence 4062	J00199
Sequence 4012	AF043472	Sequence 4063	AF047448
Sequence 4013	AB029037	Sequence 4064	M17846
Sequence 4014	D31764	Sequence 4065	AF016270
Sequence 4015	U03886	Sequence 4066	AF044671
Sequence 4016	M62831	Sequence 4067	AF167570
Sequence 4017	AF112227	Sequence 4068	AF077034
Sequence 4018	AL049455	Sequence 4069	M37583
Sequence 4019	AF039698	Sequence 4070	AF039564
Sequence 4020	J03483	Sequence 4071	Z13009
Sequence 4021	D86962	Sequence 4072	L19597
Sequence 4022	U35139	Sequence 4073	J02943
Sequence 4023	M14219	Sequence 4074	U01923
Sequence 4024	D87450	Sequence 4075	J05176
Sequence 4025	U75679.	Sequence 4076	S52624
Sequence 4026	AB018333	Sequence 4077	L38486
Sequence 4027	AL096719	Sequence 4078	AB017546
Sequence 4028	AF086002	Sequence 4079	E01813
Sequence 4029	L10376	Sequence 4080	E01956
Sequence 4030	AF145316	Sequence 4081	X74070
Sequence 4031	AB000221	Sequence 4082	Z22534
Sequence 4032	U96759	Sequence 4083	U12404
Sequence 4033	M38690	Sequençe 4084	U14971
Sequence 4034	L19711	Sequence 4085	AL117472
Sequence 4035	L13698	Sequence 4086	AB007954
Sequence 4036	AF050639	Sequence 4087	U76713
Sequence 4037	M26152	Sequence 4088	K01396
Sequence 4038	X60489	Sequence 4089	X04701
Sequence 4039	E03413	Sequence 4090	AF038172
Sequence 4040	U33760	Sequence 4091	U57091
Sequence 4041	AJ002744	Sequence 4092	J04080
Sequence 4042	U41740	Sequence 4093	X55525
Sequence 4043	AF100745	Sequence 4094	M69238
Sequence 4044	L11066	Sequence 4095	AF077203
Sequence 4045	D31767	Sequence 4096	AB002305
Sequence 4046	AB022654	Sequence 4097	AF141201
Sequence 4047	AF071884	Sequence 4098	U47101
Sequence 4048	AF092563	Sequence 4099	S57235
Sequence 4049	AF151810	Sequence 4100	M16765
Sequence 4050	AF131802	Sequence 4101	U38894
Sequence 4051	L07615	Sequence 4102	AF089747

Sequence 4103	L14599	Sequence 4154	U67085
Sequence 4104	AF047442	Sequence 4155	L19605
Sequence 4105	U37518	Sequence 4156	V00594
Sequence 4106	U12789	Sequence 4157	X87949
Sequence 4107	M69136	Sequence 4158	AF086182
Sequence 4108	D37965	Sequence 4159	D45887
Sequence 4109	J03210	Sequence 4160	AF016371
Sequence 4110	M25756	Sequence 4161	AF035304
Sequence 4111	X13839	Sequence 4162	S77601
Sequence 4112	AB007854	Sequence 4163	X17206
•	AB023216	Sequence 4164	U67171
Sequence 4114		Sequence 4165	M75126
Sequence 4115		Sequence 4166	
Sequence 4116		Sequence 4167	
Sequence 4117		Sequence 4168	
Sequence 4118		Sequence 4169	
Sequence 4119		Sequence 4170	M24630
Sequence 4120		Sequence 4171	AL117644
Sequence 4121		Sequence 4172	E00195
Sequence 4122	· · · · · · · · · · · · · · · · · · ·	Sequence 4173	D49490
Sequence 4123		Sequence 4174	
Sequence 4124		Sequence 4175	
Sequence 4125		Sequence 4176	
Sequence 4126		Sequence 4177	
Sequence 4127		Sequence 4178	
Sequence 4128		Sequence 4179	
Sequence 4129		Sequence 4180	
Sequence 4130		Sequence 4181	
Sequence 4131		Sequence 4182	
Sequence 4132	U21847	Sequence 4183	
Sequence 4133	AF001900	•	X56999
Sequence 4134			AB020689
Sequence 4135		Sequence 4186	
Sequence 4136		Sequence 4187	
Sequence 4137	U14394	•	D26129
Sequence 4138	D42047		AL050290
Sequence 4139	AF027299		AB014552
Sequence 4140	K03000	Sequence 4191	AF085833
	AF070555	Sequence 4192	
Sequence 4142	X51345	Sequence 4193	
Sequence 4143		Sequence 4194	
Sequence 4144		Sequence 4195	M14354
Sequence 4145	A21185	•	AB006534
Sequence 4146		Sequence 4197	
Sequence 4147		Sequence 4198	
Sequence 4148		Sequence 4199	
Sequence 4149		Sequence 4200	
Sequence 4150		Sequence 4201	
Sequence 4151		Sequence 4202	
Sequence 4152		Sequence 4203	
Sequence 4153		Sequence 4204	
•		•	

Sequence 4205	X60656	Sequence 4256	AF086330
Sequence 4206	M55618	Sequence 4257	L19058
Sequence 4207	AF000974	Sequence 4258	U16296
Sequence 4208	M15182	Sequence 4259	D29643
Sequence 4209	D63475	Sequence 4260	S70290
Sequence 4210	D90209	Sequence 4261	J02611
Sequence 4211	AL080118	Sequence 4262	L08246
Sequence 4212	AF174028	Sequence 4263	U09825
Sequence 4213	D78013	Sequence 4264	M15841
Sequence 4214	AF068754	Sequence 4265	M14794
Sequence 4215	X79440	Sequence 4266	U68140
Sequence 4216	M76729	Sequence 4267	AF077052
Sequence 4217	A17546	Sequence 4268	AL117560
Sequence 4218	J02871	Sequence 4269	U19869
Sequence 4219	AL050198	Sequence 4270	U14972
Sequence 4220	AF086503	Sequence 4271	L15702
Sequence 4221	M69043	Sequence 4272	AL117609
Sequence 4222	L12136	Sequence 4273	L42531
Sequence 4223	X57802	Sequence 4274	AB004066
Sequence 4224	L05093	Sequence 4275	AF075019
Sequence 4225	X06747	Sequence 4276	AB019527
Sequence 4226	D11428	Sequence 4277	X58072
Sequence 4227	M16660	Sequence 4278	AB005293
Sequence 4228	M16279	Sequence 4279	U25182
Sequence 4229	AF017305	Sequence 4280	AF065391
Sequence 4230	S77154	Sequence 4281	X04412
Sequence 4231	U33837	Sequence 4282	X55122
Sequence 4232	X05790	Sequence 4283	M96803
Sequence 4233	L07033	Sequence 4284	AB023197
Sequence 4234	X56351	Sequence 4285	U18919
Sequence 4235	AF131810	Sequence 4286	D63486
Sequence 4236	AF097362	Sequence 4287	D26350
Sequence 4237	AB032953	Sequence 4288	AF083190
Sequence 4238	M84443	Sequence 4289	AF151874
Sequence 4239	Y11709	Sequence 4290	AL049949
Sequence 4240	U72511	Sequence 4291	D26068
Sequence 4241	M10036	Sequence 4292	X06401
Sequence 4242	AJ006834	Sequence 4293	U52840
Sequence 4243	M14058	Sequence 4294	AF045584
Sequence 4244	D84239	Sequence 4295	Y12338
Sequence 4245	D45915	Sequence 4296	AF001893
Sequence 4246	X51445	Sequence 4297	U68758
Sequence 4247	U28249	Sequence 4298	X16064
Sequence 4248		Sequence 4299	
Sequence 4249		Sequence 4300	
Sequence 4250		Sequence 4301	
Sequence 4251		Sequence 4302	
Sequence 4252		Sequence 4303	
Sequence 4253		Sequence 4304 Sequence 4305	
Sequence 4254		Sequence 4305	
Sequence 4255	N04231	Sequence 4500	1A1 10200

WO 01/46697 PCT/US00/35214

Table 9

Sequence 4307	U76456	Sequence 4335	T79274
Sequence 4308	AB018330	Sequence 4336	Z27233
Sequence 4309	AF089750	Sequence 4337	Z33650
Sequence 4310	M23197	Sequence 4338	Z41991
Sequence 4311	AF153979	Sequence 4339	Z42246
Sequence 4312	D14696	Sequence 4340	Z27235
Sequence 4313	AF086557	Sequence 4341	V34157
Sequence 4314	AF155116	Sequence 4342	V26460
Sequence 4315	X94754	Sequence 4343	V23109
Sequence 4316	X00457	Sequence 4344	T91165
Sequence 4317	AJ002955	Sequence 4345	X83330
Sequence 4318	D87995	Sequence 4346	X27341
Sequence 4319	D16217	Sequence 4347	V86232
Sequence 4320	AB018280	Sequence 4348	Z43071
Sequence 4321	V30916	Sequence 4349	V60015
Sequence 4322	Z38061	Sequence 4350	T45981
Sequence 4323	V89518	Sequence 4351	V59661
Sequence 4324	T50925	Sequence 4352	X61434
Sequence 4325	Z15117	Sequence 4353	T71086
Sequence 4326	V01882	Sequence 4354	X37385
Sequence 4327	Z41952	Sequence 4355	T45982
Sequence 4328	X33941	Sequence 4356	V34242
Sequence 4329	Z42892	Sequence 4357	Q44224
Sequence 4330	X22244	Sequence 4358	T18551
Sequence 4331	V17906	Sequence 4359	V11636
Sequence 4332	Z12586	Sequence 4360	X04350
Sequence 4333	V04202	Sequence 4361	X90442
Sequence 4334	X84201	Sequence 4362	V19980

Sequence 4363 found in patent publication WO99/55721

CCGGGCAGGTACAAAATTCAAAACTGTCAACTTTAACTGTAAAGTAAATGCTCCAAGTGT
GTTAGACAGCATCATCTTGCTTGGGCTTACCAAATGCATTAGTCTTTGTTTTGGGTCGA
CAGCGAGTGTGCCTGGGGCAGGGTGTGTTCTGTGGGAGGGTGTCTGTGGGGAT
GTGACTATCAGGGTGGGCCTGTGCTGGGGATGGGCCANGCCTGGGTCTGGAGAGGATTTT
GTGTGAAAGTAAATGGGGTGTTTGAGGCGTATGGGTGGCTGTTGGTGTGGGAGGCATCT
GTGTATGGCTGTTGGGAACAGCAACCAAAAGGTGCTTTTTGGTTTTATTTGAGATCAAGA
TTGTGGTTTCCGCTTAATTACTANTTTGTGGTCTATATCATANAAGTTATTTCCCACCCC
ATTTTATCTTGACAACCCGTGTTTGCATTTCTGTAAAACTTCTACAACTTCTGGTGTCAG
ACTGTCCAGAAGATGGTACCTCNGC

Sequence 4364 found in patent publication US6017710

Sequence 4365 found in patent publication WO99/67377

CCGGGCAGGTACATGGATTATCTGTGTTTTTAGAACACTTTGCTGCAAGGGACCACCACCT GCACGACCAGAATATGACCTGGTTTGCATAGGCCTCACAGGTTCTGGCAAAACCAGTCTG

Sequence 4366 found in patent publication WO99/57132

GCCGCCCGGGCAGGTCTACGTGCCCGANGGAGTANTGCTGCCCAGTGNGTGAAGATCCAG TGTATCCTTTTAATAATCCCGNTGGCTGCTATGCCAATGGCCTGATCCTTGCTCACGGAG ACCGGTGGCGGAAGACGACTGCNCATTCTGCCAGTGCGTCAACGGTGAACGCCANTGCG TTGCGACCNTTTGCGGACAGGACCTGCTCAAACC

Sequence 4367 found in patent publication WO99/61471

Sequence 4368 found in patent publication WO99/63088

AGGTACCCAGATACGCTGGGAACCTTCCCCAGCCATGGCTTCCCTGGGGCAGATCCTCTT
CTGGAGCATAATTAGCATCATCATTATTCTGGCTGGAGCAATTGCACTCATCATTGGCTT
TGGTATTTCAGGGAGACACTCCATCACAGTCACTACTGTCGCCTCAGCTGGGAACATTGG
GGAGGATGGAATCCTGAGCTGCACTTTTGAACCTGACATCAAACTTTCTGATATCGTGAT
ACAATGGCTGAAGGAAGGTGTTTTAGGCTTGGTCCATGAGTTCAAAGAAGGCAAAGATGA
GCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTTGCTGATCAAGTGAT
AGTTGGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGCTGGCACCTACAA
ATGTTATATCATCACTTCTAAAGGCAAGGGAATGC

Cogueroe #	Accession #	Sequence 4389	AA313226
Sequence #		•	
Sequence 4369	Al310792	Sequence 4390	AL036073
Sequence 4370	AA155719	Sequence 4391	W67368
Sequence 4371	Al114676	Sequence 4392	R12646
Sequence 4372	AA307896	Sequence 4393	AI873306
Sequence 4373	AA640687	Sequence 4394	Al802154
Sequence 4374	AA043081	Sequence 4395	Al797515
Sequence 4375	AA090203	Sequence 4396	AA300994
Sequence 4376	Al000795	Sequence 4397	AA491810
Sequence 4377	AA774870	Sequence 4398	AA902127
Sequence 4378	D82157	Sequence 4399	AA814412
Sequence 4379	Al127049	Sequence 4400	AA627768
Sequence 4380	AA573291	Sequence 4401	AA314222
Sequence 4381	AA307509	Sequence 4402	AA308347
Sequence 4382	Al149743	Sequence 4403	AI089394
Sequence 4383	AA295706	Sequence 4404	AA424444
Sequence 4384	AI798946	Sequence 4405	AA025432
Sequence 4385	AA492042	Sequence 4406	W48698
Sequence 4386	AA435937	Sequence 4407	AA815378
Sequence 4387	W55892	Sequence 4408	AA308801
Sequence 4388	AA633280	Sequence 4409	AA131160

Sequence 4410	AA313887	Sequence 4462	AA315881
Sequence 4411	AA402045	Sequence 4463	R39505
Sequence 4412	AA421123	Sequence 4464	Al267148
Sequence 4413	F36607	Sequence 4465	AA705813
Sequence 4414	Al830956	Sequence 4466	AA516476
Sequence 4415	AA581997	Sequence 4467	F07685
Sequence 4416	AA314810	Sequence 4468	F19257
Sequence 4417	Al524135	Sequence 4469	Al064857
Sequence 4418	Al034444	Sequence 4470	AA434495
Sequence 4419	AA131455	Sequence 4471	AA649075
Sequence 4420	AA576503	Sequence 4472	AA133081
Sequence 4421	AA011259	Sequence 4473	AA733050
Sequence 4422	AA935710	Sequence 4474	A1064855
Sequence 4423	AA905990	Sequence 4475	AA312807
Sequence 4424	Al201426	Sequence 4476	AA362434
Sequence 4425	Al950959	Sequence 4477	AL038963
Sequence 4426	AA132642	Sequence 4478	AI018625
Sequence 4427	Al632528	Sequence 4479	AA594761
Sequence 4428	Al199277	Sequence 4480	AW131313
Sequence 4429	Al671640	Sequence 4481	T94936
Sequence 4430	AA343532	Sequence 4482	AA463475
Sequence 4431	AA812966	Sequence 4483	AA309546
Sequence 4432	AA252446	Sequence 4484	T58168
Sequence 4433	AA426351	Sequence 4485	AA482990
Sequence 4434	- AA789013	Sequence 4486	AA682910
Sequence 4435	W19759	Sequence 4487	AA147832
Sequence 4436	AA356572	Sequence 4488	AA423978
Sequence 4437	U47732	Sequence 4489	AW173354
Sequence 4438	Al358350	Sequence 4490	AA043818
Sequence 4439	R86035	Sequence 4491	AA165313
Sequence 4440	AA131506	Sequence 4492	Al123501
Sequence 4441	Al363118	Sequence 4493	AA312584
Sequence 4442	AA716094	Sèquence 4494	AA323639
Sequence 4443	N56211	Sequence 4495	Al241076
Sequence 4444	AA903124	Sequence 4496	AA148014
Sequence 4445	AA082523	Sequence 4497	Al340246
Sequence 4446	AA402796	Sequence 4498	AA599561
Sequence 4447	AA159575	Sequence 4499	AA102670
Sequence 4448	AW138461	Sequence 4500	AA635438
Sequence 4449	AA075045	Sequence 4501	T47884
Sequence 4450	AA339643	Sequence 4502	AA757125
Sequence 4451	H70174	Sequence 4503	AA188236
Sequence 4452	Al141736	Sequence 4504	AA531581
Sequence 4453	AA312142	Sequence 4505	AA308062
Sequence 4454	Al339806	Sequence 4506	. AA427726
Sequence 4455	AI089706	Sequence 4507	AA313653
Sequence 4456	AA587236	Sequence 4508	AA114940
Sequence 4457	AA025939	Sequence 4509	AW162774
Sequence 4458	Al929694	Sequence 4510	AA095478
Sequence 4459	Al133671	Sequence 4511	AA740986
Sequence 4460	H09646	Sequence 4512	AJ061649
Sequence 4461	AA813244	Sequence 4513	AA287397

PCT/US00/35214 WO 01/46697 50/100

Sequence 4514	N92095	Sequence 4566	AA078823
Sequence 4515	AI281925	Sequence 4567	AA378120
Sequence 4516	AA321649	Sequence 4568	AA984828
Sequence 4517	AA307735	Sequence 4569	AA037254
Sequence 4518	AA317362	Sequence 4570	AW161829
Sequence 4519	AA085539	Sequence 4571	AA158153
Sequence 4520	AI675967	Sequence 4572	AA046871
Sequence 4521	AA313571	Sequence 4573	T27727
Sequence 4522	AA301799	Sequence 4574	AA621764
Sequence 4523	AA301205	Sequence 4575	AA446468
Sequence 4524	AA328068	Sequence 4576	AW088634
Sequence 4525	AA565420	Sequence 4577	AA316207
Sequence 4526	AA102835	Sequence 4578	H67938
Sequence 4527	AI703036	Sequence 4579	Al679414
Sequence 4528	Al417334	Sequence 4580	AA436423
Sequence 4529	AA214617	Sequence 4581	Al242187
Sequence 4530	AA093289	Sequence 4582	AA122325
Sequence 4531	AA320701	Sequence 4583	T66271
Sequence 4532	AA903783	Sequence 4584	Al207513
Sequence 4533	Al364112	Sequence 4585	AA115656
Sequence 4534	AA075664	Sequence 4586	AA568401
Sequence 4535	AA313503	Sequence 4587	Al289066
Sequence 4536	AA714830	Sequence 4588	AA215962
Sequence 4537	Al133330	Sequence 4589	Al133489
Sequence 4538	AI630505	Sequence 4590	AA402974
Sequence 4539	AA847784	Sequence 4591	Al471995
Sequence 4540	Al970562	Sequence 4592	H18140
Sequence 4541	AA843086	Sequence 4593	AA405280
Sequence 4542	W61049	Sequence 4594	AA082661
Sequence 4543	AA248706	Sequence 4595	AI879220
Sequence 4544	AA628929	Sequence 4596	AA022704
Sequence 4545	AA730774	Sequence 4597	AI815610
Sequence 4546	T50615	Sequence 4598	AI719472
Sequence 4547	Al352048	Sequence 4599	AA333526
Sequence 4548	AA361355	Sequence 4600	AL043340
Sequence 4549	AA541537	Sequence 4601	AA010893
Sequence 4550	Al434388	Sequence 4602	AA301096
Sequence 4551	H43933	Sequence 4603	AA082767
Sequence 4552	AA336412	Sequence 4604	AA156927
Sequence 4553	AW161229	Sequence 4605	AA448526
Sequence 4554	AA809099	Sequence 4606	AI133401
Sequence 4555	AA307697	Sequence 4607	AA420633
Sequence 4556	A1750629	Sequence 4608	AA602794
Sequence 4557	AA323143	Sequence 4609	AA648341
Sequence 4558	AA250900	Sequence 4610	AA594764
Sequence 4559	AA469013	Sequence 4611	AA195077
Sequence 4560	T80845	Sequence 4612	AA029583
Sequence 4561	AA368986	Sequence 4613	AI871602
Sequence 4562 ·	AA043039 AA302225	Sequence 4614 Sequence 4615	AA115399 AA932099
Sequence 4563	AA302225 AA292993	· · · · · · · · · · · · · · · · · · ·	H78684
Sequence 4564	AA292993 Al080141	Sequence 4616	AA258271
Sequence 4565	A1000 14 I	Sequence 4617	77200211

Sequence 4618	AA295465	Sequence 4670	AA308438
Sequence 4619	AA284584	Sequence 4671	AA377218
Sequence 4620	AA702131	Sequence 4672	AA809041
Sequence 4621	AA640637	Sequence 4673	AA262571
Sequence 4622	AA031586	Sequence 4674	AA582851
Sequence 4623	AA293047	Sequence 4675	AA572862
Sequence 4624	AA314113	Sequence 4676	AI057281
Sequence 4625	Al051928	Sequence 4677	AA602161
Sequence 4626	Al141749	Sequence 4678	AA421682
Sequence 4627	AA033653	Sequence 4679	AA318185
Sequence 4628	AA570353	Sequence 4680	AA962450
Sequence 4629	AA315311	Sequence 4681	AA464338
Sequence 4630	AA292139	Sequence 4682	AA845639
Sequence 4631	AA534711	Sequence 4683	AA683080
Sequence 4632	AA262111	Sequence 4684	AI762497
Sequence 4633	AA382599	Sequence 4685	AL039472
Sequence 4634	AL037301	Sequence 4686	AA932854
Sequence 4635	R80287	Sequence 4687	AA398015
Sequence 4636	AA194535	Sequence 4688	AI300537
Sequence 4637	AA214710	Sequence 4689	AA031602
Sequence 4638	AI245538	Sequence 4690	AA984744
Sequence 4639	AI052724	Sequence 4691	AA651721
Sequence 4640	AA085570	Sequence 4692	AA047843
Sequence 4641	AW008204	Sequence 4693	AA746587
Sequence 4642	AW025332	Sequence 4694	AA437054
Sequence 4643	Al282669	Sequence 4695	AA411564
Sequence 4644	AA056358	Sequence 4696	AA156901
Sequence 4645	R91802	Sequence 4697	AA017146
Sequence 4646	AA359652	Sequence 4698	A1089382
Sequence 4647	AA935560	Sequence 4699	AA339554
Sequence 4648	Al672868	Sequence 4700	Al433157
Sequence 4649	AA743832	Sequence 4701	AA083489
Sequence 4650	AA303383	Sequence 4702	Al287608
Sequence 4651	AI095013	Sequence 4703	N27583
Sequence 4652	AA444396	Sequence 4704	Al929141
Sequence 4653	AA773760	Sequence 4705	Al525654
Sequence 4654	AA133223	Sequence 4706	Al079109
Sequence 4655	AA436100	Sequence 4707	AA366995
Sequence 4656	AA286851	Sequence 4708	AA317855
Sequence 4657	AA001815	Sequence 4709	AL037176
Sequence 4658	AA460747	Sequence 4710	AA149564
Sequence 4659	AW172722	Sequence 4711	AA338116
Sequence 4660	AA094256	Sequence 4712	AI061615
Sequence 4661	AA071084	Sequence 4713	AA179187
Sequence 4662	Al636929	Sequence 4714	AA777638
Sequence 4663	AI525552	Sequence 4715	A1820828
Sequence 4664	H46599	Sequence 4716	AI114504
Sequence 4665	AA514999	Sequence 4717	AA167252
Sequence 4666	AA251201	Sequence 4718	AA425458
Sequence 4667	AA789100	Sequence 4719	AA090106
Sequence 4668	AI355448	Sequence 4720	AL037646
Sequence 4669	AA399133	Sequence 4721	AI887964

Sequence 4722	AA282006	Sequence 4774	AA723130
Sequence 4723	AA431614	Sequence 4775	AA971638
Sequence 4724	Al126103	Sequence 4776	AA071472
Sequence 4725	AI708983	Sequence 4777	AA425587
Sequence 4726	AA236486	Sequence 4778	AA196781
Sequence 4727	AA972730	Sequence 4779	AA295816
Sequence 4728	AA135911	Sequence 4780	AA507629
Sequence 4729	Al005343	Sequence 4781	AA416686
Sequence 4730	AA152032	Sequence 4782	AA031764
Sequence 4731	W52675	Sequence 4783	AA037138
Sequence 4732	AA599416	Sequence 4784	AI092436
Sequence 4733	AA491804	Sequence 4785	H04143
Sequence 4734	Al203141	Sequence 4786	AA230271
Sequence 4735	AA203110	Sequence 4787	AA346556
Sequence 4736	AA626097	Sequence 4788	Al283902
Sequence 4737	AI608902	Sequence 4789	AA838117
Sequence 4738	AA363773	Sequence 4790	Al493802
Sequence 4739	AI468028	Sequence 4791	Al635294
Sequence 4740	AA703838	Sequence 4792	Al273083
Sequence 4741	AA192484	Sequence 4793	AA280115
Sequence 4742	Al820995	Sequence 4794	Al683279
Sequence 4743	AI688098	Sequence 4795	AA631191
Sequence 4744	AI050808	Sequence 4796	Al633226
Sequence 4745	AA188195	Sequence 4797	AA437077
Sequence 4746	AA295412	Sequence 4798	R10983
Sequence 4747	Al216969	Sequence 4799	AA689307
Sequence 4748	AA313804	Sequence 4800	H00858
Sequence 4749	AA354709	Sequence 4801	AI885021
Sequence 4750	AI589040	Sequence 4802	R72232
Sequence 4751	AI817242	Sequence 4803	Al371228
Sequence 4752	AA749080	Sequence 4804	AA737193
Sequence 4753	AA249356	Sequence 4805	AA376369
Sequence 4754	AI365471	Sequence 4806	Al239651
Sequence 4755	AA319103	Sequence 4807	AA888197
Sequence 4756	AA884539	Sequence 4808	AA494362
Sequence 4757	AA824310	Sequence 4809	AA467785
Sequence 4758	AA316034	Sequence 4810	AA226680
Sequence 4759	AA570035	Sequence 4811	AA305409
Sequence 4760	AA335375	Sequence 4812	W30840
Sequence 4761	W37563	Sequence 4813	AL044825
Sequence 4762	AA320417	Sequence 4814	AA088853
Sequence 4763	AI572865	Sequence 4815	AA081291
Sequence 4764	AA130515	Sequence 4816	AA084185
Sequence 4765	AI539847	Sequence 4817	AI814513
Sequence 4766	AI860415	Sequence 4818	AI307812
Sequence 4767	AI682937	Sequence 4819	AA384239
Sequence 4768	AA328889	Sequence 4820	AA188359
Sequence 4769	AA838377	Sequence 4821	AA526057
Sequence 4770	AA259220 AA220219	Sequence 4822	AA492348 N93851
Sequence 4771	AA220219 AL048413	Sequence 4823	AL047968
Sequence 4772 Sequence 4773	ALU46413 AA531506	Sequence 4824 Sequence 4825	AA167814
Sequence 4773	W09 1900	Sequence 4020	ACTIO1014

Sequence 4826	AA243482	Sequence 4878	M95724
Sequence 4827	AA405430	Sequence 4879	AF062249
Sequence 4828	AA010284	Sequence 4880	D59253
Sequence 4829	R05693	Sequence 4881	X15822
Sequence 4830	AA194517	Sequence 4882	U07440
Sequence 4831	AA236638	Sequence 4883	J00077
Sequence 4832	AA224487	Sequence 4884	L03162
Sequence 4833	AA838111	Sequence 4885	AF070596
Sequence 4834	AA346319	Sequence 4886	U73524
Sequence 4835	AA467860	Sequence 4887	M16985
Sequence 4836	AA148019	Sequence 4888	D13119
Sequence 4837	Y14736	Sequence 4889	AF086253
Sequence 4838	AF022815	Sequence 4890	L17128
Sequence 4839	AF047434	Sequence 4891	D89729
Sequence 4840	U25789	Sequence 4892	AB002533
Sequence 4841	AB000887	Sequence 4893	X04011
Sequence 4842	AF097514	Sequence 4894	AF100741
Sequence 4843	U61083	Sequence 4895	M33600
Sequence 4844	AF055028	Sequence 4896	AF033095
Sequence 4845	M23164	Sequence 4897	X90529
Sequence 4846	AB023135	Sequence 4898	D63477
Sequence 4847	L01413	Sequence 4899	AF120334
Sequence 4848	S74681	Sequence 4900	AB017019
Sequence 4849	L10678	Sequence 4901	AF063308
Sequence 4850	AF068235	Sequence 4902	AL117480
Sequence 4851	U59209	Sequence 4903	AF042282
Sequence 4852	X02422	Sequence 4904	AB034206
Sequence 4853	AF150100	Sequence 4905	M88461
Sequence 4854	U82258	Sequence 4906	AL110183
Sequence 4855	X67698	Sequence 4907	U44427
Sequence 4856	M74090	Sequence 4908	X57817
Sequence 4857	J03746	Sequence 4909	AF070656
Sequence 4858	AB014560	Sequence 4910	U85658
Sequence 4859	AF053453	Sequence 4911	L34839
Sequence 4860	AF103775	Sequence 4912	U37230
Sequence 4861	AF174076	Sequence 4913	U14193
Sequence 4862	J05249	Sequence 4914	L15189
Sequence 4863	AL035304	Sequence 4915	E03799
Sequence 4864	D17039	Sequence 4916	D90277
Sequence 4865	. U30255	Sequence 4917	AF030108
Sequence 4866	X61970	Sequence 4918	AB033049
Sequence 4867	AF052167	Sequence 4919	D13892
Sequence 4868	Y00503	Sequence 4920	L49431
Sequence 4869	AB011088	Sequence 4921	D43642
Sequence 4870	AF070662	Sequence 4922	M16342
Sequence 4871	AJ004913	Sequence 4923	E02822
Sequence 4872	AF045229	Sequence 4924	AB019392
Sequence 4873	X95693	Sequence 4925	AB022656
Sequence 4874	U94586	Sequence 4926	AF067517
Sequence 4875	AF070661	Sequence 4927	M15885
Sequence 4876	AF067172	Sequence 4928	D13665
Sequence 4877	X59417	Sequence 4929	AF127761

Table 9

	*		
Sequence 4930	X81695	Sequence 4982	X81479
Sequence 4931	AF022108	Sequence 4983	L07633
Sequence 4932	X12597	Sequence 4984	D29640
Sequence 4933	Z68935	Sequence 4985	AF189062
Sequence 4934	U82819	Sequence 4986	AF151885
Sequence 4935	AF077367	Sequence 4987	M35252
Sequence 4936	S69272	Sequence 4988	X56510
Sequence 4937	U79274	Sequence 4989	J05021
Sequence 4938	J04056	Sequence 4990	AB021288
Sequence 4939	X53070	Sequence 4991	AF103417
Sequence 4940	D87127	Sequence 4992	AF067171
Sequence 4941	D50371	Sequence 4993	D78275
Sequence 4942	AF015283	Sequence 4994	D13866
Sequence 4943	M36089	Sequence 4995	D87989
Sequence 4944	AF061243	Sequence 4996	X95190
Sequence 4945	X95583	Sequence 4997	AF088046
Sequence 4946	AB007929	Sequence 4998	S42404
Sequence 4947	AJ007418	Sequence 4999	U41668
Sequence 4948	AF077207	Sequence 5000	AF044773
Sequence 4949	AF093680	Sequence 5001	AB033073
Sequence 4950	AF077197	Sequence 5002	AF151845
Sequence 4951	U76367	Sequence 5003	S82616
Sequence 4952	U39840	Sequence 5004	D84105
Sequence 4953	AB032947	Sequence 5005	A23013
Sequence 4954	AF020352	Sequence 5006	X57810
Sequence 4955	M37104	Sequence 5007	AF070655
Sequence 4956	U90915	Sequence 5008	X16455
Sequence 4957	AF007791	Sequence 5009	L02547
Sequence 4958	AL080089	Sequence 5010	AB006968
Sequence 4959	L08044	Sequence 5011	M15661
Sequence 4960	X63380	Sequence 5012	X55954
Sequence 4961	AF011793	Sequence 5013	AF131739
Sequence 4962	X17620	Sequence 5014	AL117412
Sequence 4963	A26481	Sequence 5015	L78440
Sequence 4964	AF075601	Sequence 5016	AF022229
Sequence 4965	L38941	Sequence 5017	Y13323
Sequence 4966	S49006	Sequence 5018	X67699
Sequence 4967	X85373	Sequence 5019	L40357
Sequence 4968	X16135	Sequence 5020	X54473
Sequence 4969	A06805	Sequence 5021	AF086234
Sequence 4970	S74678	Sequence 5022	AF150089
Sequence 4971	M14505	Sequence 5023	M94556
Sequence 4972	M15887	Sequence 5024	AB000449
Sequence 4973	M17733	Sequence 5025	AB011143
Sequence 4974	Z50749	Sequence 5026	U19145
Sequence 4975	AF153609	Sequence 5027	X02902
Sequence 4976	D28430	Sequence 5028	AF037448
Sequence 4977	AJ246000	Sequence 5029	U27515
Sequence 4978	AF044957	Sequence 5030	D86984
Sequence 4979	U10323	Sequence 5031	X57823
Sequence 4980	E02904	Sequence 5032	AF042081
Sequence 4981	AF034607	Sequence 5033	X97065

Sequence !	5034	E01971	Sequence 5086	AJ243721
Sequence :	5035	AL049929	Sequence 5087	D89092
Sequence !	5036	AJ131753	Sequence 5088	D29011
Sequence :	5037	AF086336	Sequence 5089	AL133078
Sequence !		AF193795	Sequence 5090	K03001
Sequence !	5039	AF131754	Sequence 5091	Z68204
Sequence !		Y00971	Sequence 5092	M57567
Sequence :	5041	M29893	Sequence 5093	AB014536
Sequence !	5042	M13858	Sequence 5094	AF126181
Sequence !		M81057	Sequence 5095	AF043341
Sequence !	5044	U41569	Sequence 5096	D13641
Sequence !	5045	AF036241	Sequence 5097	L29164
Sequence !	5046	M18460	Sequence 5098	AF012281
Sequence !		AF038960	Sequence 5099	AF134159
Sequence !		U37558	Sequence 5100	M87284
Sequence :		M27025	Sequence 5101	E00200
Sequence		AL117584	Sequence 5102	D17409
Sequence		X51521	Sequence 5103	AF150959
Sequence		X86691	Sequence 5104	AF055022
Sequence :	5053	U07992	Sequence 5105	AB007921
Sequence		AB012083	Sequence 5106	AB007898
Sequence :		D14343	Sequence 5107	Y00052
Sequence		E01888	Sequence 5108	X00700
Sequence		Y00345	Sequence 5109	AF005422
Sequence		AD001528	Sequence 5110	AB028990
Sequence :		L43575	Sequence 5111	D45248
Sequence:	5060	AF026166	Sequence 5112	J03576
Sequence	5061	X57815	Sequence 5113	M14333
Sequence		AF073298	Sequence 5114	X13482
Sequence		AF025999	Sequence 5115	U33821
Sequence	5064	AF070523	Sequence 5116	AB018339
Sequence	5065	E00882	Sequence 5117	AF017782
Sequence	5066	AF128527	Sequence 5118	AF085361
Sequence	5067	U96915	Sequence 5119	X64134
Sequence	5068	U68566	Sequence 5120	AB018334
Sequence	5069	AF038452	Sequence 5121	D21260
Sequence	5070	AF071219	Sequence 5122	M58297
Sequence	5071	L05425	Sequence 5123	AB023204
Sequence	5072	X58141	Sequence 5124	AB028945
Sequence	5073	M90696	Sequence 5125	U12596
Sequence	5074	AF201077	Sequence 5126	AF176012
Sequence	5075	D13292	Sequence 5127	E03814
Sequence	5076	E08294	Sequence 5128	D38073
Sequence		L28043	Sequence 5129	L12535
Sequence,	5078	AF102546	Sequence 5130	M55543
Sequence	5079	AF192529	Sequence 5131	L28010
Sequence	5080	AB020676	Sequence 5132	AF151109
Sequence		X03363	Sequence 5133	M23254
Sequence		AF092134	Sequence 5134	AF044588
Sequence	5083	D87453	Sequence 5135	L38562
Sequence		L03555	Sequence 5136	M20430
Sequence	5085	D79996	Sequence 5137	AF182289

Sequence 5138	L32748	Sequence 5190	J04607
Sequence 5139	U28811	Sequence 5191	S67815
Sequence 5140	AL133105	Sequence 5192	U90552
Sequence 5141	AB006757	Sequence 5193	X74801
Sequence 5142	E08663	Sequence 5194	S56985
Sequence 5143	X68684	Sequence 5195	J03801
Sequence 5144	AJ132694	Sequence 5196	AF078861
Sequence 5145	M80899	Sequence 5197	M33195
Sequence 5146	AF006085	Sequence 5198	AF015926
Sequence 5147	AF035286	Sequence 5199	D26443
Sequence 5148	X13334	Sequence 5200	AF077200
Sequence 5149	AF080561	Sequence 5201	X57527
Sequence 5150	U60521	Sequence 5202	AF119042
Sequence 5151	AF039067	Sequence 5203	S82300
Sequence 5152	AF042166	Sequence 5204	U07991
Sequence 5153	X69838	Sequence 5205	D87845
Sequence 5154	U11036	Sequence 5206	AF051334
Sequence 5155	AF147389	Sequence 5207	L08441
Sequence 5156	AF042346	Sequence 5208	Z70759
Sequence 5157	E01497	Sequence 5209	U36787
Sequence 5158	X07696	Sequence 5210	U44772
Sequence 5159	AB017493	Sequence 5211	AF103615
Sequence 5160	AB008375	Sequence 5212	M86553
Sequence 5161	U49957	Sequence 5213	E07798
Sequence 5162	AF165967	Sequence 5214	M29696
Sequence 5163	X59407	Sequence 5215	AL050265
Sequence 5164	AF085355	Sequence 5216	AF064255
Sequence 5165	AL050061	Sequence 5217	D31889
Sequence 5166	AF151868	Sequence 5218	U78976
Sequence 5167	M98343	Sequence 5219	D13626
Sequence 5168	D49737	Sequence 5220	Z15005
Sequence 5169	AF106682	Sequence 5221	Y11681
Sequence 5170	D29958	Sequence 5222	M16505
Sequence 5171	M88282	Sequence 5223	D87076
Sequence 5172	U42412	Sequence 5224	M18216
Sequence 5173	D00068	Sequence 5225	U66616
Sequence 5174	AF020797	Sequence 5226	AB023483
Sequence 5175	U52513	Sequence 5227	AF103509
Sequence 5176	U65011	Sequence 5228	Z26623
Sequence 5177	M24853	Sequence 5229	L29156
Sequence 5178	U54558	Sequence 5230	Y12860
Sequence 5179	AF029669	Sequence 5231	L22157
Sequence 5180	AF151883	Sequence 5232	AB011151
Sequence 5181	AL050028	Sequence 5233	AB002384
Sequence 5182	AB011159	Sequence 5234	M37716
"Sëquence 5183	AJ012489	Sequence 5235	AF078862
Sequence 5184	U36764	Sequence 5236	E03412
Sequence 5185	AB032986	Sequence 5237	M55542
Sequence 5186	AF070652	Sequence 5238	X67951
Sequence 5187	L38995	Sequence 5239	AF070660
Sequence 5188	M90656	Sequence 5240	AF086249
Sequence 5189	L35263	Sequence 5241	X03068

Sequence 5242	U61084	Sequence 5271	AF057178
Sequence 5243	X59405	Sequence 5272	D11094
Sequence 5244	M75139	Sequence 5273	AF047472
Sequence 5245	AJ132637	Sequence 5274	AF047183
Sequence 5246	Y17957	Sequence 5275	J03798
Sequence 5247	AF054184	Sequence 5276	V07572
Sequence 5248	AF024714	Sequence 5277	Z42425
Sequence 5249	X80197	Sequence 5278	X51981
Sequence 5250	D49677	Sequence 5279	Z33561
Sequence 5251	Y15286	Sequence 5280	Z33627
Sequence 5252	X68314	Sequence 5281	V57903
Sequence 5253	AB029036	Sequence 5282	Q36952
Sequence 5254	AL133010	Sequence 5283	V33072
Sequence 5255	AF091073	Sequence 5284	T44091
Sequence 5256	J03578	Sequence 5285	X14998
Sequence 5257	S79862	Sequence 5286	Q44222
Sequence 5258	AB002409	Sequence 5287	X61277
Sequence 5259	AF151875	Sequence 5288	Z20410
Sequence 5260	L19779	Sequence 5289	X24804
Sequence 5261	J04615	Sequence 5290	Z52495
Sequence 5262	X04741	Sequence 5291	Z42315
Sequence 5263	AF091035	Sequence 5292	V15442
Sequence 5264	D50525	Sequence 5293	Z39321
Sequence 5265	AF054175	Sequence 5294	X25445
Sequence 5266	AF027302	Sequence 5295	X52268
Sequence 5267	L07876	Sequence 5296	N81638
Sequence 5268	S69738	Sequence 5297	X40390
Sequence 5269	AF077042	Sequence 5298	X40007
Sequence 5270	U76680	Sequence 5299	N90736

Sequence 5300 found in patent publication WO99/55858
ACTCACTATAGGGCGAATTNNANCTCCACACGCGGTGGCGGCCGAGAAGGAAAGCTGGAG
GCNCNGGTGGGGAACATGTCTGAGTCGGAGCTCGGCAGGAAGNGGGACCGGNGTCTGGCN
GATGCNGGTCGAGAAGATAGAATCCTGGTAATTGATGTCCACCCGAGAAATCCCTGCANA
TGTTCCAGCCTNTGTCTAGNCCAANATAGCCA

	Sequence #	Accession #	Sequence 5316	
	Sequence 5301		Sequence 5317	
	Sequence 5302		Sequence 5318	AA043830
	Sequence 5303		Sequence 5319	
	Sequence 5304	AA679058	Sequence 5320	
	Sequence 5305	Al222286	Sequence 5321	AL039204
	Sequence 5306		Sequence 5322	AJ253344
	Sequence 5307	AA433968	Sequence 5323	AA662920
	Sequence 5308		Sequence 5324	
7	Sequence 5309		Sequence 5325	.AA301569
	Sequence 5310		Sequence 5326	AW043837
	Sequence 5311	Al253379	Sequence 5327	AA281695
	Sequence 5312	AA442530	Sequence 5328	
	Sequence 5313	AW026300	Sequence 5329	AA812482
	Sequence 5314		Sequence 5330	AA297084
	Sequence 5315	AA164193	Sequence 5331	Al132961
	•			

Sequence 5332	AA186987	Sequence 5384	
Sequence 5333		Sequence 5385	
Sequence 5334	Al222690	Sequence 5386	
Sequence 5335		Sequence 5387	
Sequence 5336	AA308585	Sequence 5388	
Sequence 5337	AA513640	Sequence 5389	
Sequence 5338	Al267607	Sequence 5390	
Sequence 5339	Al435481	Sequence 5391	
Sequence 5340		Sequence 5392	
Sequence 5341	AA307903	Sequence 5393	AA528123
Sequence 5342		Sequence 5394	AA910013
Sequence 5343	AI732534	Sequence 5395	
Sequence 5344	Al922187	Sequence 5396	
Sequence 5345		Sequence 5397	
Sequence 5346	Al678902	Sequence 5398	
Sequence 5347		Sequence 5399	
Sequence 5348		Sequence 5400	
Sequence 5349		Sequence 5401	
Sequence 5350		Sequence 5402	Al128359
Sequence 5351		Sequence 5403	AA677446
Sequence 5352		Sequence 5404	
Sequence 5353		Sequence 5405	
Sequence 5354		Sequence 5406	
Sequence 5355		Sequence 5407	
Sequence 5356		Sequence 5408	
Sequence 5357		Sequence 5409	
Sequence 5358		Sequence 54101	AA203523
Sequence 5359		Sequence 5411	Al267665
Sequence 5360		Sequence 5412	
Sequence 5361		Sequence 5413	
Sequence 5362	AA738004	Sequence 5414	
Sequence 5363		Sequence 5415	
Sequence 5364		Sequence 5416	
Sequence 5365	AA744766	Sequence 5417	
Sequence 5366	AA503215	Sequence 5418	
Sequence 5367	AA199856	Sequence 5419	AA521065
Sequence 5368	AA334900	Sequence 5420	
Sequence 5369	AI088422	Sequence 5421	AA488669
Sequence 5370	AA404247	Sequence 5422	AA426495
Sequence 5371	Al623991	Sequence 5423	
Sequence 5372	AI566037	Sequence 5424	
Sequence 5373	AA129310	Sequence 5425	AA296994
Sequence 5374		Sequence 5426	
Sequence 5375		Sequence 5427	AA305590
Sequence 5376	AL044092	Sequence 5428	AA470337
Sequence 5377		Sequence 5429	
Sequence 5378	AA205419	Sequence 5430	
Sequence 5379	AA159780	Sequence 5431	
Sequence 5380		Sequence 5432	AL044967
Sequence 5381		Sequence 5433	AW015055
Sequence 5382		Sequence 5434	
Sequence 5383	AA483547	Sequence 5435	H47744

Sequence 5436		Sequence 5488	
Sequence 5437	T90236	Sequence 5489	
Sequence 5438	H18735	Sequence 5490	
Sequence 5439		Sequence 5491	
Sequence 5440		Sequence 5492	
Sequence 5441	AA603934	Sequence 5493	
Sequence 5442		Sequence 5494	
Sequence 5443		Sequence 5495	
Sequence 5444	AA284584	Sequence 5496	AA613972
Sequence 5445	AI185418	Sequence 5497	
Sequence 5446	AA427980	Sequence 5498	
Sequence 5447	N79675	Sequence 5499	
Sequence 5448	AA039645	Sequence 5500	
Sequence 5449	AA101552	Sequence 5501	
Sequence 5450	AA403251	Sequence 5502	
Sequence 5451	AA099080	Sequence 5503	
Sequence 5452		Sequence 5504	
Sequence 5453	AA453930	Sequence 5505	
Sequence 5454		Sequence 5506	Al312271
Sequence 5455		Sequence 5507	
Sequence 5456		Sequence 5508	Al422243
Sequence 5457		Sequence 5509	
Sequence 5458		Sequence 5510	
Sequence 5459		Sequence 5511	AA346556
Sequence 5460	AI707688	Sequence 5512	AA742518
Sequence 5461	Al304685	Sequence 5513	
Sequence 5462		Sequence 5514	
Sequence 5463	AA877534	Sequence 5515	
Sequence 5464	AA524064	Sequence 5516	
Sequence 5465		Sequence 5517	AA186730
Sequence 5466	Al217035	Sequence 5518	
Sequence 5467		Sequence 5519	
Sequence 5468	Al267845	Sequence 5520	
Sequence 5469		Sequence 5521	
Sequence 5470		Sequence 5522	
Sequence 5471		Sequence 5523	
Sequence 5472		Sequence 5524	
Sequence 5473	AI565044	Sequence 5525	
Sequence 5474	AA045173	Sequence 5526	
Sequence 5475	AA195044	Sequence 5527	
Sequence 5476	AA195535	Sequence 5528	
Sequence 5477		Sequence 5529	
Sequence 5478		Sequence 5530	
Sequence 5479	AA568217	Sequence 5531	W37145
Sequence 5480	:Al042014	Sequence 5532	
Sequence 5481	T70123	Sequence 5533	
Sequence 5482		Sequence 5534	
Sequence 5483		Sequence 5535	
Sequence 5484		Sequence 5536	
Sequence 5485		Sequence 5537	
Sequence 5486		Sequence 5538	
Sequence 5487	Al028092	Sequence 5539	AA282304

	•		
Sequence 5540	AA971723	Sequence 5592	
Sequence 5541		Sequence 5593	
Sequence 5542	AA310073	Sequence 5594	
Sequence 5543		Sequence 5595	
Sequence 5544	Al031990	Sequence 5596	
Sequence 5545	Al356269	Sequence 5597	
Sequence 5546	AL038028	Sequence 5598	
Sequence 5547		Sequence 5599	
Sequence 5548	W80654	Sequence 5600	
Sequence 5549		Sequence 5601	
Sequence 5550		Sequence 5602	
Sequence 5551		Sequence 5603	AA205679
Sequence 5552		Sequence 5604	AA558976
Sequence 5553		Sequence 5605	AI820745
Sequence 5554		Sequence 5606	R79141
Sequence 5555		Sequence 5607	
Sequence 5556		Sequence 5608	AA316317
Sequence 5557		Sequence 5609	
Sequence 5558		Sequence 5610	AL039504
Sequence 5559		Sequence 5611	
Sequence 5560		Sequence 5612	
Sequence 5561		Sequence 5613	
Sequence 5562		Sequence 5614	
Sequence 5563		Sequence 5615	AW148408
Sequence 5564		Sequence 5616	Al187024
Sequence 5565		Sequence 5617	AA775824
Sequence 5566		Sequence 5618	
Sequence 5567		Sequence 5619	Al684501
Sequence 5568		Sequence 5620	
Sequence 5569	W19884	Sequence 5621	Al018488
Sequence 5570		Sequence 5622	Al217003
Sequence 5571		Sequence 5623	
Sequence 5572	AA093359	Sequence 5624	
Sequence 5573	Al929820	Sequence 5625	
Sequence 5574	AA716450	Sequence 5626	
Sequence 5575	AA573090	Sequence 5627	
Sequence 5576	H08143	Sequence 5628	
Sequence 5577	R12651	Sequence 5629	
Sequence 5578	H63826	Sequence 5630	AA134337
Sequence 5579	AA344647	Sequence 5631	AA305819
Sequence 5580	AA479746	Sequence 5632	Al991469
Sequence 5581		Sequence 5633	AA113099
Sequence 5582	AA456454	Sequence 5634	AW150827
Sequence 5583	AA156616	Sequence 5635	AA410496
Sequence 5584	AA515132	Sequence 5636	
Sequence 5585	Al081546	Sequence 5637	
Sequence 5586	Al273746	Sequence 5638	
Sequence 5587		Sequence 5639	AI879040
Sequence 5588		Sequence 5640	AA133084
Sequence 5589		Sequence 5641	
Sequence 5590	Al356886	Sequence 5642	
Sequence 5591	AA564268	Sequence 5643	AA305747

Sequence 5644	H78671	Sequence 5696	
Sequence 5645		Sequence 5697	
Sequence 5646	H10822	Sequence 5698	
Sequence 5647		Sequence 5699	
Sequence 5648	AA071030	Sequence 5700	
Sequence 5649	AA488502	Sequence 5701	
Sequence 5650	AA025333	Sequence 5702	
Sequence 5651	AA325943	Sequence 5703	
Sequence 5652	AF098297	Sequence 5704	AF084457
Sequence 5653		Sequence 5705	
Sequence 5654		Sequence 5706	
Sequence 5655		Sequence 5707	
Sequence 5656	M17733	Sequence 5708	
Sequence 5657	AF060228	Sequence 5709	D50372
Sequence 5658	M17886	Sequence 5710	S49006
Sequence 5659	AJ224172	Sequence 5711	
Sequence 5660	AB007892	Sequence 5712	
Sequence 5661	M63438	Sequence 5713	
Sequence 5662	AJ222967	Sequence 5714	X55666
Sequence 5663	AB007860	Sequence 5715	
Sequence 5664	U22815	Sequence 5716	X63692
Sequence 5665		Sequence 5717	M18512
Sequence 5666		Sequence 5718	
Sequence 5667	AL049932	Sequence 5719	AF070626
Sequence 5668		Sequence 5720	AF043233
Sequence 5669		Sequence 5721	
Sequence 5670	AF103774	Sequence 5722	AL110269
Sequence 5671	J04443	Sequence 5723	
Sequence 5672	AF087942	Sequence 5724	
Sequence 5673		Sequence 5725	L37080
Sequence 5674		Sequence 5726	M11465
Sequence 5675	AB018309	Sequence 5727	
Sequence 5676		Sequence 5728	L12168
Sequence 5677		Sequence 5729	AB026833
Sequence 5678		Sequence 5730	AF052126
Sequence 5679		Sequence 5731	
Sequence 5680		Sequence 5732	AF032103
Sequence 5681		Sequence 5733	
Sequence 5682		Sequence 5734	M21575
Sequence 5683		Sequence 5735	S77601
Sequence 5684	M97920	Sequence 5736	
Sequence 5685		Sequence 5737	
Sequence 5686		Sequence 5738	M15182
Sequence 5687		Sequence 5739	
Sequence 5688		Sequence 5740	
Sequence 5689	·U12788	Sequence 5741	
Sequence 5690	U35143	Sequence 5742	
Sequence 5691	AJ132637	Sequence 5743	
Sequence 5692	M26481	Sequence 5744	AF020038
Sequence 5693	AF201077	Sequence 5745	
Sequence 5694	Y09703	Sequence 5746	
Sequence 5695	AF052124	Sequence 5747	D11094

Sequence 5748	AB007883	Sequence 5800	
Sequence 5749	AF131829	Sequence 5801	
Sequence 5750	X57809	Sequence 5802	
Sequence 5751	AB018323	Sequence 5803	
Sequence 5752	AF097021	Sequence 5804	
Sequence 5753	L14076	Sequence 5805	
Sequence 5754		Sequence 5806	
Sequence 5755		Sequence 5807	M14058
Sequence 5756		Sequence 5808	
Sequence 5757		Sequence 5809	
Sequence 5758		Sequence 5810	
Sequence 5759		Sequence 5811	
Sequence 5760		Sequence 5812	
Sequence 5761		Sequence 5813	AL117412
Sequence 5762		Sequence 5814	
Sequence 5763		Sequence 5815	X04098
Sequence 5764		Sequence 5816	U12789
Sequence 5765		Sequence 5817	X69089
Sequence 5766		Sequence 5818	AF152961
Sequence 5767		Sequence 5819	
Sequence 5768		Sequence 5820	
Sequence 5769		Sequence 5821	
Sequence 5770		Sequence 5822	
Sequence 5771		Sequence 5823	
Sequence 5772		Sequence 5824	
Sequence 5773		Sequence 5825	
Sequence 5774		Sequence 5826	AF110647
Sequence 5775		Sequence 5827	
Sequence 5776		Sequence 5828	D10040
Sequence 5777		Sequence 5829	
Sequence 5778		Sequence 5830	
Sequence 5779		Sequence 5831	U05598
Sequence 5780		Sequence 5832	
Sequence 5781		Sequence 5833	AB033012
Sequence 5782		Sequence 5834	AF070649
Sequence 5783		Sequence 5835	AF035811
Sequence 5784		Sequence 5836	
Sequence 5785		Sequence 5837	Z13009
Sequence 5786		Sequence 5838	
Sequence 5787		Sequence 5839	E02164
Sequence 5788		Sequence 5840	AF144755
Sequence 5789		Sequence 5841	AL133050
Sequence 5790		Sequence 5842	AL050192
Sequence 5791		Sequence 5843	L08441
Sequence 5792		Sequence 5844	
Sequence 5793		Sequence 5845	
Sequence 5794		Sequence 5846	
Sequence 5795		Sequence 5847	
Sequence 5796		Sequence 5848	
Sequence 5797		Sequence 5849	
Sequence 5798		Sequence 5850	
Sequence 5799		Sequence 5851	Y00282
		-	

PCT/US00/35214

63/100

Table 9

Sequence 5852	M96234	Sequence 5879	
Sequence 5853	M33376	Sequence 5880	
Sequence 5854	AF151855	Sequence 5881	AF103775
Sequence 5855	X07696	Sequence 5882	
Sequence 5856	AJ224143	Sequence 5883	
Sequence 5857	X57805	Sequence 5884	
Sequence 5858	AF044961	Sequence 5885	V49655
Sequence 5859	J03817	Sequence 5886	T79274
Sequence 5860	AF151884	Sequence 5887	Q44222
Sequence 5861	U07991	Sequence 5888	
Sequence 5862	M17885	Sequence 5889	V17906
Sequence 5863	AB021654	Sequence 5890	T86581
Sequence 5864	AF062179	Sequence 5891	X00684
Sequence 5865	M12272	Sequence 5892	Q47374
Sequence 5866	D86985	Sequence 5893	Z00439
Sequence 5867	AF000381	Sequence 5894	V69618
Sequence 5868	AF086178	Sequence 5895	Q78947
Sequence 5869	M87789	Sequence 5896	Z23358
Sequence 5870	L17128	Sequence 5897	
Sequence 5871	X95404	Sequence 5898	N81638
Sequence 5872	S74681	Sequence 5899	
Sequence 5873	AF070555	Sequence 5900	X97614
Sequence 5874	M27487	Sequence 5901	
Sequence 5875	U09178	Sequence 5902	
Sequence 5876	J03248	Sequence 5903	Q44224
Sequence 5877	M75139	Sequence 5904	X40654
Sequence 5878	Z68987	Sequence 5905	~Z20410

Sequence 5906 found in patent publication WO99/54461

CGCCAGTGTGATGGGATATCTGCAGAATTCGCCCTTAGCGTGGTCGCGGCCGAGGTACAG
GTGCCTGCAGAGATGCCCACTTTCAGCCAGAAATCTATGGTTTTGCAGATGGTGACTCTC
TGCTCAGGCAGAGAAATGCCACCAGAGCATAGCTTGGGTTCTCGCCACACGTAAGTAGTC
TTCTGGATCCCAGCCACACAGCTGCTGACGATAGCATGGTAGTCAGCCACTGAGCAGAGC
GGGCAAGCAGCCGCGCTCTCCCACAGGAAGTTGCAGCATTTCTGTGGACTCCACTGACG
GAGCACGTTCCTGGCAGCAGAACTTCCAGGGACAGTTTTCTGTGGACTGCACCTGACG
CGGATGGTGGTTGATCTCCCAGAACTGCAGGACTGGGTCACATCATTGGACCTATAAAAG
AAGATCACGTNCGGTAT

Sequence 5907 found in patent publication WO99/64584

CGCCAGTGTGATGGGATATCTGCAGAATTCGCCCTTAGCGTGGTCGCGGCCCGAGGTACT

TTTTTTTTTNTTTTTTGTTTT

64/100

Table 9

Sequence 5913 found in patent publication WO99/64594
GATATCTGCAGAATTCGCCCTTAGCGTGGTCGCGGCCGAGGTACT

Sequence 5914 found in patent publication WO99/63088
CCCTTAGCGTGGTCGCGGCCGANGTACGTGCTGCATGTNTACNAGCACCTGTCAAAGCCN
AAAGTCACCATGGGTCTGCANAGTAATAATAATGGCACCTGNGTGACCAATCTGACATGC
TGCATGGAACATGGGGAAGAGGNTGTGATTTATACC

Sequence 5915 found in patent publication WO99/64594
CTCGAGCCGCCAGTGTGATGGGATATCTGCAGAATTCGCCCTTTCGAGCGGCCGCC
CGGGCAGGTACAGTCGAGCC

Sequence 5918 found in patent publication W099/63088
CCGCGGTGGCGGCCGAGGTACCCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAG
GGGCGGCTGCATTTTANTAATGGGTCAAATGATTCACTTTTTATGATGCTTCCAAAGGTG
CCTTGGCTTCTCTCCCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTTTAG
CATAAACAGAGCAGTCGGCNGACACCGATTTTATAAATAAACTGAGCACCTTCTTTTTAA
ACAAACAAATG

Sequence #	Accession #	Sequence 5963	Al267664
Sequence 5919	T84060	Sequence 5964	AA470051
Sequence 5920	AI076630	Sequence 5965	Al613420
Sequence 5921	AL035802	Sequence 5966	AI336383
Sequence 5922	Al207474	Sequence 5967	AA428329
Sequence 5923	AA586744	Sequence 5968	AA531506
Sequence 5924	AA341924	Sequence 5969	AA330038
Sequence 5925	AI188787	Sequence 5970	AA781261
Sequence 5926	AA649215	Sequence 5971	AA056199
Sequence 5927	Al065099	Sequence 5972	Al445389
Sequence 5928	AA099023	Sequence 5973	AA393869
Sequence 5929	AA165093	Sequence 5974	AA416755
Sequence 5930	AI076470	Sequence 5975	AA369075
Sequence 5931	AA634564	Sequence 5976	H58592
Sequence 5932	AF001541	Sequence 5977	AA724578
Sequence 5933	D82309	Sequence 5978	AA317445
Sequence 5934	H30706	Sequence 5979	AA084560
Sequence 5935	AI093369	Sequence 5980	AA205857
Sequence 5936	AW069315	Sequence 5981	AA250959
Sequence 5937	AA132252 .	Sequence 5982	AA639587
Sequence 5938	AA452200	Sequence 5983	AA843414
Sequence 5939	AA421682	Sequence 5984	AA506621
Sequence 5940	Al148251	Sequence 5985	AI859619
Sequence 5941	AW072005	Sequence 5986	AA489032
Sequence 5942	AA314663	Sequence 5987	AA736918
Sequence 5943	AA423926	Sequence 5988	AL040354
Sequence 5944	AA058831	Sequence 5989	AA635267
Sequence 5945	AA019641	Sequence 5990	AA446064
Sequence 5946	Al475126	Sequence 5991	A1090803
Sequence 5947	AA074291	Sequence 5992	AA424894
Sequence 5948	Al581291	Sequence 5993	AA595157
Sequence 5949	W79289	Sequence 5994	AA366959
Sequence 5950	A1798949	Sequence 5995	AW020774
Sequence 5951	AA328327	Sequence 5996	AA309705
Sequence 5952	AW023392	Sequence 5997	Al653605 AA232186
Sequence 5953	H13B91	Sequence 5998	
Sequence 5954	Al174991	Sequence 5999	H25577
Sequence 5955	T06839	Sequence 6000	AL120348 AA887219
Sequence 5956	Al075189	Sequence 6001	AA603150
Sequence 5957	AJ471079	Sequence 6002	AA330012
Sequence 5958	Al933070	Sequence 6003 Sequence 6004	R02822
Sequence 5959	W60026	•	AA773610
Sequence 5960	AA557316	Sequence 6005 Sequence 6006	Al613095
Sequence 5961	AW131601	Sequence 6007	AA772780
Sequence 5962	AI732586	Sequence 0007	, , , , , , , , , , , , , , , , , , , ,

Sequence 6008	Al962463	Sequence 6059	AW103521
Sequence 6009	Al174739	Sequence 6060	AA464338
Sequence 6010	AA081105	Sequence 6061	Al913975
Sequence 6011	AA307460	Sequence 6062	AI089452
Sequence 6012	AL047150	Sequence 6063	AF150217
Sequence 6013	AA973007	Sequence 6064	AA885152
Sequence 6014	AA442014	Sequence 6065	AA602794
Sequence 6015	AA586811	Sequence 6066	AA422143
Sequence 6016	AA128559	Sequence 6067	AA932112
Sequence 6017	Al205314	Sequence 6068	AA532659
Sequence 6018	Al821897	Sequence 6069	AA569301
Sequence 6019	AA378934	Sequence 6070	AI625693
Sequence 6020	AA577045	Sequence 6071	AA446505
Sequence 6021	AA046763	Sequence 6072	Al139773
Sequence 6022	Al307583	Sequence 6073	Al184177
Sequence 6023	R15942	Sequence 6074	AA259220
Sequence 6024	R14299	Sequence 6075	Al189784
Sequence 6025	AA084749	Sequence 6076	AA766393
Sequence 6026	Al191789	Sequence 6077	AA280671
Sequence 6027	AA248791	Sequence 6078	AA099976
Sequence 6028	R91802	Sequence 6079	AA039871
Sequence 6029	Al344785	Sequence 6080	AA130428
Sequence 6030	AA224157	Sequence 6081	AA090298
Sequence 6031	AL037456	Sequence 6082	AA625563
Sequence 6032	AA220989	Sequence 6083	AA868829
Sequence 6033	AA436394	Sequence 6084	AI754313
Sequence 6034	R71944	Sequence 6085	AA281008
Sequence 6035	Al951970	Sequence 6086	AA412359
Sequence 6036	Al468835	Sequence 6087	AI064691
Sequence 6037	AA058683	Sequence 6088	Al183621
Sequence 6038	AA397951	Sequence 6089	N78486
Sequence 6039	T53940	Sequence 6090	AA308274
Sequence 6040	AI675602	Sequence 6091	AA080991
Sequence 6041	AW014151	Sequence 6092	Al267162
Sequence 6042	AA334416	Sequence 6093	AA180911
Sequence 6043	Al659178	Sequence 6094	AA397448
Sequence 6044	AA131342	Sequence 6095	Al267691
Sequence 6045	AA025432	Sequence 6096	AA190350
Sequence 6046	AA641100	Sequence 6097	AA896959
Sequence 6047	AA426362	Sequence 6098	AL036073
Sequence 6048	AW020583	Sequence 6099	AA447158
Sequence 6049	AA783035	Sequence 6100	H44974
Sequence 6050	N29000	Sequence 6101	Al417573
Sequence 6051	AI041616		AA045333
Sequence 6052	: AA069929	Sequence 6103	
Sequence 6053	Al655603	Sequence 6104	AA319765
Sequence 6054	AA025570	Sequence 6105	Al445052
Sequence 6055	Al271740	Sequence 6106	AI668594
Sequence 6056	H42090	Sequence 6107	AA654178
Sequence 6057	AA976281	Sequence 6108	AA707850
Sequence 6058	AA554235	Sequence 6109	AI743621
•			

Sequence 6110	Al365025	Sequence 6161	N77342
Sequence 6111	Al828618	Sequence 6162	AA322984
Sequence 6112	H54891	Sequence 6163	AW138121
Sequence 6113	AA328068	Sequence 6164	Al423022
Sequence 6114	AA384159	Sequence 6165	AA366354
Sequence 6115	W92536	Sequence 6166	AI246699
Sequence 6116	AA083922	Sequence 6167	AW169648
Sequence 6117	AA467734	Sequence 6168	AW151932
Sequence 6118	AI039955	Sequence 6169	AA621523
Sequence 6119	AA218739	Sequence 6170	D60771
Sequence 6120	AA173882	Sequence 6171	Al991695
Sequence 6121	R99043	Sequence 6172	AA323143
Sequence 6122	AA318033	Sequence 6173	Al262380
Sequence 6123	Al439089	Sequence 6174	AW183148
Sequence 6124	AA369710	Sequence 6175	AA460775
Sequence 6125	AA708693	Sequence 6176	AA191422
Sequence 6126	Al283356	Sequence 6177	AA458522
Sequence 6127	Al291043	Sequence 6178	AW191003
Sequence 6128	AA146589	Sequence 6179	H49166
Sequence 6129	AA088528	Sequence 6180	AI186460
Sequence 6130	AA404232	Sequence 6181	AL041521
Sequence 6131	AL036335	Sequence 6182	AA393368
Sequence 6132	AI675424	Sequence 6183	AA171510
Sequence 6133	AA293475	Sequence 6184	AA907297
Sequence 6134	AA515904	Sequence 6185	AI554405
Sequence 6135	Al216988	Sequence 6186	AA195092
Sequence 6136	Al375141	Sequence 6187	AA297404
Sequence 6137	AA862612	Sequence 6188	AA146983
Sequence 6138	N36740	Sequence 6189	AA428544
Sequence 6139	AA627351	Sequence 6190	AI767591
Sequence 6140	AA873013	Sequence 6191	AI188389
Sequence 6141	AA857001	Sequence 6192	Al344053
Sequence 6142	H28829	Sequence 6193	AA526368
Sequence 6143	AI660377	Sequence 6194	AA336503
Sequence 6144	AI017417	Sequence 6195	AA618171
Sequence 6145	AA612864	Sequence 6196	AVV020650
Sequence 6146	AI446086	Sequence 6197	AA083178
Sequence 6147	AA368546	Sequence 6198	AA513314
Sequence 6148	AA889699	Sequence 6199	AA007670
Sequence 6149	AI679040	Sequence 6200	AA305436
Sequence 6150	AA324597	Sequence 6201	Al216986
Sequence 6151	AA291210	Sequence 6202	AA937201
Sequence 6152	AA844907	Sequence 6203	AA909153
Sequence 6153	AA308062	Sequence 6204	AI686325
Sequence 6154		Sequence 6205	N62059
Sequence 6165	Al217019	Sequence 6206	AL044298
Sequence 6156	AA101789	Sequence 6207	Al684039
Sequence 6157	AA503551	Sequence 6208	AA694514
Sequence 6158	AA568815	Sequence 6209	AA447167
Sequence 6159	AW162392	Sequence 6210	AA165082
Sequence 6160	AI096676	Sequence 6211	AA078591

PCT/US00/35214 WO 01/46697 68/100

Sequence 6212	AA216192	Sequence 6263	AA307271
Sequence 6213	AA757613	Sequence 6264	AA100423
Sequence 6214	AA346200	Sequence 6265	AI820966
Sequence 6215	AA131480	Sequence 6266	AW005386
Sequence 6216	AA693936	Sequence 6267	AA313020
Sequence 6217	AI638778	Sequence 6268	AI633775
Sequence 6218	AA251297	Sequence 6269	Al167329
Sequence 6219	AA971638	Sequence 6270	AA422060
Sequence 6220	H00754	Sequence 6271	AI750643
Sequence 6221	AA164586	Sequence 6272	AI768507
Sequence 6222	AA362701	Sequence 6273	AI719488
Sequence 6223	AI654044	Sequence 6274	Al453405
Sequence 6224	AA146701	Sequence 6275	Al267285
Sequence 6225	AA461493	Sequence 6276	AA315904
Sequence 6226	AA032025	Sequence 6277	AA574455
Sequence 6227	AA071045	Sequence 6278	Al634404
Sequence 6228	Al922832	Sequence 6279	AA286975
Sequence 6229	AA344430	Sequence 6280	AA199881
Sequence 6230	AJ476250	Sequence 6281	AA372230
Sequence 6231	Al971801	Sequence 6282	AA186958
Sequence 6232	AA453217	Sequence 6283	AA491810
Sequence 6233	Al127013	Sequence 6284	Al358777
Sequence 6234	AA507595	Sequence 6285	AA121923
Sequence 6235	Al091341	Sequence 6286	AA464451
Sequence 6236	AA113788	Sequence 6287	Al267634
Sequence 6237	AA226259	Sequence 6288	Al267669
Sequence 6238	AI879992	Sequence 6289	U21128
Sequence 6239	AA083219	Sequence 6290	AF020202
Sequence 6240	AA628794	Sequence 6291	M12530
Sequence 6241	AA228912	Sequence 6292	S73145
Sequence 6242	AA531437	Sequence 6293	AL117237
Sequence 6243	AI188407	Sequence 6294	J04208
Sequence 6244	AA465600	Sequence 6295	AF006085
Sequence 6245	AA961699	Sequence 6296	U77396
Sequence 6246	AA811149	Sequence 6297	AF144235
Sequence 6247	N78154	Sequence 6298	.U41060
Sequence 6248	AA593864	Sequence 6299	AL080106
Sequence 6249	W25547	Sequence 6300	M23204
Sequence 6250	AA120782	Sequence 6301	J03799
Sequence 6251	AA131155	Sequence 6302	U60337
Sequence 6252	AA622517	Sequence 6303	AF091076
Sequence 6253	AA156211	Sequence 6304	X07876
Sequence 6254	R12016	Sequence 6305	X07523
Sequence 6255	Al422367	Sequence 6306	X57817
Sequence 6256	AA521069	Sequence 6307	
Sequence 6257	AA827412	Sequence 6308	AB018277
Sequence 6258	N57261	Sequence 6309	AB002370
Sequence 6259	AA888053	Sequence 6310	AB014540
Sequence 6260	AI831866	Sequence 6311	U00238
Sequence 6261	Al655499	Sequence 6312	AL050187
Sequence 6262	AJ015770	Sequence 6313	D16562

		•			
				· · · · · · · · · · · · · · · · · · ·	
				· ·	
			•		
£*		÷			
					W +
					·
		•			
			(4) (4) (3)		
				- 8	
:					*
					2
			÷ 10		
\$.					
Est - Fart S. J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*		

					r
				V ⁴ - +	
				•	
,					
			of the state of th		**
	'A	19		**	in the second
		5			
		•	* 1		
				:	
		· ·			d
á	•				
y .	* * * * * * * * * * * * * * * * * * * *				**************************************
	. **	4 ·		25	
			· · · · · · · · · · · · · · · · · · ·		
			× a, sp		
2					*.
					9
	* *				
	¥		*		<i>x</i> •
50 ·					
2 ,					
X					

	The second secon	4.0			

f.		al de la companya de	
			×
10			

Sequence 6557 found in patent publication WO99/64594
GATNTTTGCTCGAGCGNTTNGCCAGNGTTTTNGATANCNGCAGAATTCGCCCTTNNGAGC
GGCCGCCCGGGCAGGNACACCCAGCTCATTTAAAAAAAAATTTTTTTCTTTTTTTGAGAGT
CTTGCTTTGTTGCCCAGGCTGGAGTGCAGNGGTGTGATCTCGGCTCACTGCAAGCTCCAC
CTCCCGGCTTCACNCCATTCTNCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGTGCC
CGCCACCACACCCGGCTAATTTTTTTGTATTNTTAGTAGAGACGGGGTTTCACCGNGTTAG
CCAGGATGGTCTTGATCTCCTGACCTCATGGTCCGCCTGCTTTGGCCTCCCAAAGTGCTG
GGATTACAGNGCGTGAGTCACCGCGCCCGGCTCATTTTAAAATTTTNTGGAGATCAAGTG
TACCTCGGCCGCGCCCGACCACGCTAAGGGCGAATTC

Sequence #	Accession#	Sequence 6599	AB018353
Sequence 6558	AA316721	Sequence 6600	AB019568
Sequence 6559	AA469320	Sequence 6601	AB020669
Sequence 6560	AB018353	Sequence 6602	AF011387
Sequence 6561	AB019568	Sequence 6603	AF035286
Sequence 6562	AB020669	Sequence 6604	AF070556
Sequence 6563	AF011387	Sequence 6605	AF077207
Sequence 6564	AF035286	Sequence 6606	AF083441
Sequence 6565	AF070556	Sequence 6607	AF176006
Sequence 6566	AF077207	Sequence 6608	D13315
Sequence 6567	AF083441	Sequence 6609	D13748
Sequence 6568	AF176006	Sequence 6610	D21163
Sequence 6569	D13315	Sequence 6611	D29011
Sequence 6570	D13748	Sequence 6612	D45887
Sequence 6571	D21163	Sequence 6613	D66904
Sequence 6572	D29011	Sequence 6614	E02628
Sequence 6573	D45887	Sequence 6615	E06721
Sequence 6574	D66904	Sequence 6616	J02908
Sequence 6575	E02628	Sequence 6617	J03007
Sequence 6576	E06721	Sequence 6618	J03578
Sequence 6577	J02908	Sequence 6619	L38995
Sequence 6578	J03007	Sequence 6620	M10036
Sequence 6579	J03578	Sequence 6621	M16247
Sequence 6580	L38995	Sequence 6622	M16660
Sequence 6581	M10036	Sequence 6623	M17885
Sequence 6582	M16247	Sequence 6624	M28373
Sequence 6583	M16660	Sequence 6625	M33308
Sequence 6584	M17885	Sequence 6626	M36647
Sequence 6585	M28373	Sequence 6627	M60854
Sequence 6586	M33308	Sequence 6628	M64098
Sequence 6587	M36647	Sequence 6629	M81601
Sequence 6588	M60854	Sequence 6630	U12465
Sequence 6589	M64098	Sequence 6631	U14969
Sequence 6590	M81601	Sequence 6632	U14972
Sequence 6591	U12465	Sequence 6633	U34252
Sequence 6592	U14969	Sequence 6634	U83110
Sequence 6593	U14972	Sequence 6635	X04098
Sequence 6594	U34252	Sequence 6636	AL035985
Sequence 6595	U83110	Sequence 6637	T68393
Sequence 6596	X04098	Sequence 6638	AA972137
Sequence 6597	AA316721	Sequence 6639	A1635070
Sequence 6598	AA469320	Sequence 6640	AA333907

Sequence 6641	AA507383	Sequence 6692	AA317445
Sequence 6642	AA305990	Sequence 6693	AA314326
Sequence 6643	AA224157	Sequence 6694	AA337039
Sequence 6644	Al355050	Sequence 6695	AA628250
Sequence 6645	AA311004	Sequence 6696	AA573715
Sequence 6646	AA492272	Sequence 6697	AA136781
Sequence 6647	T68618	Sequence 6698	AA224505
Sequence 6648	AA464338	Sequence 6699	AA826649
Sequence 6649	AI086220	Sequence 6700	AA594155
Sequence 6650	AA976989	Sequence 6701	AA075663
Sequence 6651	Al221838	Sequence 6702	AA884705
Sequence 6652	W52418	Sequence 6703	AA604815
Sequence 6653	Al267185	Sequence 6704	AA378776
Sequence 6654	AA317855	Sequence 6705	AA127254
Sequence 6655	AA194517	Sequence 6706	Al469093
Sequence 6656	AA312528	Sequence 6707	AI859619
Sequence 6657	T67129	Sequence 6708	AA641867
Sequence 6658	T57733	Sequence 6709	AA285278
Sequence 6659	AA159198	Sequence 6710	AI832408
Sequence 6660	Al092436	Sequence 6711	AA099631
Sequence 6661	AW135302	Sequence 6712	AA091988
Sequence 6662	Al253330	Sequence 6713	AA411564
Sequence 6663	AA150871	Sequence 6714	H27256
Sequence 6664	H60000	Sequence 6715	AA287704
Sequence 6665	AA083300	Sequence 6716	AI086486
Sequence 6666	AA084560	Sequence 6717	Al216416
Sequence 6667	Al357472	Sequence 6718	H79663
Sequence 6668	Al148251	Sequence 6719	N56211
Sequence 6669	AA514776	Sequence 6720	AA861665
Sequence 6670	AA044187	Sequence 6721	AI088651
Sequence 6671	AA716150	Sequence 6722	AA095108
Sequence 6672	AA225857	Sequence 6723	AA557191
Sequence 6673	AA320701	Sequence 6724	AA093949
Sequence 6674	AL042316	Sequence 6725	AW140078
Sequence 6675	AA864259	Sequence 6726	AA249195
Sequence 6676	AA399133	Sequence 6727	AA247429
Sequence 6677	AA701380	Sequence 6728	AA421682
Sequence 6678	AI066510	Sequence 6729	AF001542
Sequence 6679	AA602794	Sequence 6730	AA284584
Sequence 6680	AA360219	Sequence 6731	AA225065
Sequence 6681	AI076019	Sequence 6732	AA090707
Sequence 6682	AA379075	Sequence 6733	AA428371
Sequence 6683	AA927498	Sequence 6734	H62289
Sequence 6684	AA229529	Sequence 6735	AA044154
Sequence 6685	AA468335	Sequence 6736	AA046538
Sequence 6686	AA381278	Sequence 6737	AA300575
Sequence 6687	AA503355	Sequence 6738	A1065099
Sequence 6688	AA054012	Sequence 6739	A1688488
Sequence 6689	AI815380	Sequence 6740	AA883580
Sequence 6690	AA223318	Sequence 6741	AA640687
Sequence 6691	AA577045	Sequence 6742	AA307728
•		-	

74/100

Sequence 6743	AA325178	Sequence 6794	M12530
Sequence 6744	- AA308400	Sequence 6795	M12075
Sequence 6745	AA224487	Sequence 6796	AF030339
Sequence 6746	AW075967	Sequence 6797	U40272
Sequence 6747	AA570353	Sequence 6798	M29873
Sequence 6748	AA430565	Sequence 6799	AF138300
Sequence 6749	AI744735	Sequence 6800	Y17957
Sequence 6750	W28226	Sequence 6801	U26424
Sequence 6751	AA737193	Sequence 6802	Z26317
Sequence 6752	AI141708	Sequence 6803	X03363
Sequence 6753	Al267502	Sequence 6804	E01972
Sequence 6754	AA357592	Sequence 6805	E02904
Sequence 6755	F07091	Sequence 6806	X60036
Sequence 6756	AA467901	Sequence 6807	U70735
Sequence 6757	Al127049	Sequence 6808	M60857
Sequence 6758	AA824416	Sequence 6809	AF062249
Sequence 6759	Al684170	Sequence 6810	AJ004955
Sequence 6760	AA152210	Sequence 6811	AF070649
Sequence 6761	H56585	Sequence 6812	D80007
Sequence 6762	Al267282	Sequence 6813	U37230
Sequence 6763	AA595471	Sequence 6814	AF103720
Sequence 6764	AA205857	Sequence 6815	AF040991
Sequence 6765	AA215579	Sequence 6816	J04607
Sequence 6766	AA316322	Sequence 6817	U14968
Sequence 6767	AA10.1964	Sequence 6818	AF000982
Sequence 6768	AA583574	Sequence 6819	Z11894
Sequence 6769	AA148087	Sequence 6820	K03028
Sequence 6770	AA507595	Sequence 6821	J04965
Sequence 6771	AI025537	Sequence 6822	AF044956
Sequence 6772	AA313263	Sequence 6823	X57814
Sequence 6773	AA232186	Sequence 6824	L25085
Sequence 6774	AA654557	Sequence 6825	AF000992
Sequence 6775	A1342546	Sequence 6826	AB008549
Sequence 6776	AA308370	Sequence 6827	S70 290
Sequence 6777	AA122237	Sequence 6828	D87437
Sequence 6778	Al110866	Sequence 6829	AF151103
Sequence 6779	A1636207	Sequence 6830	M10119
Sequence 6780	AI751970	Sequence 6831	L35263
Sequence 6781	H58906	Sequence 6832	L37080
Sequence 6782	AI017570	Sequence 6833	U95367
Sequence 6783	L15203	Sequence 6834	M60333
Sequence 6784	D87666	Sequence 6835	M63573
Sequence 6785	D85418	Sequence 6836	X67698
Sequence 6786	X52520	"Sequence 6837	U14971
Sequence 6787	M55543	:Sequence 6838	-4M83202
Sequence 6788	AF104421	Sequence 6839	Z18334
Sequence 6789	U14966	Sequence 6840	M24853
Sequence 6790	X07876	Sequence 6841	L11690
Sequence 6791	U96759	Sequence 6842	U69141
Sequence 6792	X15729	Sequence 6843	J05211
Sequence 6793	AF073298	Sequence 6844	M13573
•			

Sequence 6845	U41060	Sequence 6896	AF020797
Sequence 6846	D90427	Sequence 6897	U14970
Sequence 6847	AF151864	Sequence 6898	X52104
Sequence 6848	U14750	Sequence 6899	L12168
Sequence 6849	AF174028	Sequence 6900	X15880
Sequence 6850	U05877	Sequence 6901	AB033070
Sequence 6851	AF100761	Sequence 6902	U68566
Sequence 6852	AL122075	Sequence 6903	AF084520
Sequence 6853	AF025440	Sequence 6904	L29162
Sequence 6854	X83618	Sequence 6905	D14812
Sequence 6855	AB005299	Sequence 6906	AF026292
Sequence 6856	Y00282	Sequence 6907	M11353
Sequence 6857	J03040	Sequence 6908	L15702
Sequence 6858	X57809	Sequence 6909	AB020680
Sequence 6859	AB012910	Sequence 6910	AB017493
Sequence 6860	D89675	Sequence 6911	U77456
Sequence 6861	AF081484	Sequence 6912	M77830
Sequence 6862	AF036241	Sequence 6913	X13238
Sequence 6863	AF131802	Sequence 6914	AF044955
Sequence 6864	U43701	Sequence 6915	X15480
Sequence 6865	M87789	Sequence 6916	Y00503
Sequence 6866	D49919	Sequence 6917	AF016492
Sequence 6867	J02888	Sequence 6918	X81789
Sequence 6868	U30897	Sequence 6919	AB002308
Sequence 6869	U18728	Sequence 6920	S48220
Sequence 6870	U32907	Sequence 6921	U33837
Sequence 6871	AJ005897	Sequence 6922	AF088004
Sequence 6872	X57802	Sequence 6923	X74801
Sequence 6873	U66616	Sequence 6924	M16247
Sequence 6874	M65212	Sequence 6925	S82451
Sequence 6875	L29156	Sequence 6926	AF153608
Sequence 6876	J03464	Sequence 6927	AF103543
Sequence 6877	U49844	Sequence 6928	M64241
Sequence 6878	M10905	Sequence 6929	U52100
Sequence 6879	AF035582	Sequence 6930	AF077042
Sequence 6880	AB020639	Sequence 6931	AF026692
Sequence 6881	AF054990	Sequence 6932	U12789
Sequence 6882	J02642	Sequence 6933	M17885
Sequence 6883	D87667	Sequence 6934	X59706
Sequence 6884	U14969	Sequence 6935	AJ007398
Sequence 6885	U71363	Sequence 6936	D28137
Sequence 6886	M58525	Sequence 6937	X57815
Sequence 6887	D45917	Sequence 6938	AF068235
Sequence 6888	AF038954	Sequence 6939	AF131857
Sequence 6889	X04828	Sequence 6940	M60445
Sequence 6890	S80562	Sequence 6941	AF069765
Sequence 6891	K02403	Sequence 6942	X95073
Sequence 6892	Z68940	Sequence 6943	L11566
Sequence 6893	AL133078	Sequence 6944	X13923
Sequence 6894	AF125525	Sequence 6945	U36221
Sequence 6895	AF047472	Sequence 6946	AF147331

WO 01/46697

Table 9

Sequence 6947	AF026939	Sequence 6980	AF070555
Sequence 6948	AF035286	Sequence 6981	AB032953
Sequence 6949	AB020723	Sequence 6982	AJ223350
Sequence 6950	AB019564	Sequence 6983	AF086563
Sequence 6951	AF151893	Sequence 6984	AF060129
Sequence 6952	X15759	Sequence 6985	U12788
Sequence 6953	U04441	Sequence 6986	AL050363
Sequence 6954	D13665	Sequence 6987	AF070523
Sequence 6955	X57810	Sequence 6988	E01985
Sequence 6956	D25278	Sequence 6989	M26325
Sequence 6957	J02611	Sequence 6990	AF039081
Sequence 6958	AB029000	Sequence 6991	AB019568
Sequence 6959	Z11890	Sequence 6992	A21185
Sequence 6960	AF052179	Sequence 6993	L29164
Sequence 6961	X06617	Sequence 6994	M22918
Sequence 6962	J04478	Sequence 6995	AF007791
Sequence 6963	E01979	Sequence 6996	U67615
Sequence 6964	AL035369	Sequence 6997	X97324
Sequence 6965	M11147	Sequence 6998	X57398
Sequence 6966	AF150100	Sequence 6999	AB002375
Sequence 6967	AF132938	Sequence 7000	M13656
Sequence 6968	U19718	Sequence 7001	E06721
Sequence 6969	AB018348	Sequence 7002	S95936
Sequence 6970	AF027158	Sequence 7003	D00017
Sequence 6971	L38562	Sequence 7004	V68992
Sequence 6972	AL109672	Sequence 7005	Q44222
Sequence 6973	U37518	Sequence 7006	V68935
Sequence 6974	L29157	Sequence 7007	Q44223
Sequence 6975	Y14738	Sequence 7008	X52268
Sequence 6976	L76687	Sequence 7009	X37319
Sequence 6977	X81695	Sequence 7010	Z13121
Sequence 6978	L33930		
Sequence 6979	M74525	•	

Sequence 7011 found in patent publication W099/53051
AACCAATCTACCTGATGAAAACTCCGTTCCCTTCTCGCCAGAAACATAAAATGCGATGGA
GCTACGGCCACCGCTGCCGAGACAAAATGGCGCCCCCCGCGTACCT

Sequence #	Accession #	Sequence 7025	AA333907
Sequence 7012	T67129	Sequence 7026	AA976989
Sequence 7013	AA305990	Sequence 7027	AA215579
Sequence 7014		Sequence 7028	AA628250
Sequence 7015		Sequence 7029	AA229529
Sequence 7016		Sequence 7030	AA507383
Sequence 7017		Sequence 7031	AA091988
Sequence 7018		Sequence 7032	AA411564
		Sequence 7033	Al688488
Sequence 7020		Sequence 7034	AA640687
Sequence 7021		Sequence 7035	T57733
Sequence 7022		Sequence 7036	AA583574
Sequence 7023		Sequence 7037	AA054012
Sequence 7024		Sequence 7038	AA308400

Sequence 7039	AA602794	Sequence 7090	AA317445
Sequence 7040	AA152210	Sequence 7091	Al127049
Sequence 7041	AA883580	Sequence 7092	AA428371
Sequence 7042	AI076019	Sequence 7093	F07091
Sequence 7043	AI751970	Sequence 7094	Al684170
Sequence 7044	H79663	Sequence 7095	N56211
Sequence 7045	Al221838	Sequence 7096	AA737193
Sequence 7046	AA150871	Sequence 7097	AA223318
Sequence 7047	AA090707	Sequence 7098	AW075967
Sequence 7048	T68393	Sequence 7099	AA084560
Sequence 7049	AA492272	Sequence 7100	AA927498
Sequence 7050	AA159198	Sequence 7101	AA325178
Sequence 7051	AA224487	Sequence 7102	AA826649
Sequence 7052	AA357592	Sequence 7103	AA468335
Sequence 7053	AA421682	Sequence 7104	Al253330
Sequence 7054	AA308370	Sequence 7105	Al342546
Sequence 7055	Al357472	Sequence 7106	AA314326
Sequence 7056	Al216416	Sequence 7107	AA249195
Sequence 7057	AA654557	Sequence 7108	AA557191
	AW140078	Sequence 7109	AA514776
Sequence 7058	AI859619	Sequence 7110	AA093949
Sequence 7059	AA701380	Sequence 7111	AA225857
Sequence 7060	AA467901	Sequence 7112	AA577045
Sequence 7061	AA824416	Sequence 7113	AI635070
Sequence 7062	• • • • • • • • • • • • • • • • • • • •	Sequence 7114	AA224157
Sequence 7063	AA311004	Sequence 7115	AF001542
Sequence 7064	A1469093	Sequence 7116	AA972137
Sequence 7065	AA320701	Sequence 7117	AI141708
Sequence 7066	AA507595	Sequence 7118	H58906
Sequence 7067	AA884705 AA399133	Sequence 7119	T68618
Sequence 7068	*	Sequence 7120	H62289
Sequence 7069	Al110866	Sequence 7121	Al355050
Sequence 7070	H27256	Sequence 7122	H60000
Sequence 7071	AA044187	Sequence 7123	AA316322
Sequence 7072	AA225065	Sequence 7124	AI065099
Sequence 7073	AA570353	Sequence 7125	AA464338
Sequence 7074	AA337039	Sequence 7126	AI066510
Sequence 7075	AA716150	Sequence 7127	Al267502
Sequence 7076	AA148087	Sequence 7128	AL042316
Sequence 7077	AA127254	Sequence 7129	AA861665
Sequence 7078	AA287704	Sequence 7130	AI017570
Sequence 7079	AA378776	Sequence 7131	AA095108
Sequence 7080	AA604815	Sequence 7132	AA307728
Sequence 7081	Al636207		AA381278
Sequence 7082	**************************************	Sequence 7133	
Sequence 7083		Sequence 7134 Sequence 7135	AA379075
Sequence 7084	AA224505	•	
Sequence 7085	AA205857	Sequence 7136	AA099631 AI148251
Sequence 7086	AA284584	Sequence 7137	
Sequence 7087	AA313263	Sequence 7138	AA595471 AA360219
Sequence 7088	AA641867	Sequence 7139	
Sequence 7089	AA317855	Sequence 7140	H56585

WO 01/46697 PCT/US00/35214 78/100

Sequence 7141	AA864259	Sequence 7192	X57815
Sequence 7142	Al092436	Sequence 7193	Y14738
Sequence 7143	AA194517	Sequence 7194	U26424
Sequence 7144	Al267282	Sequence 7195	AJ005897
Sequence 7145	AA285278	Sequence 7196	E01985
Sequence 7146	W52418	Sequence 7197	Z68940
Sequence 7147	AA573715	Sequence 7198	X13923
Sequence 7148	AA044154	Sequence 7199	J04478
Sequence 7149	AA503355	Sequence 7200	K03028
Sequence 7150	AI832408	Sequence 7201	AF174028
Sequence 7151	AA232186	Sequence 7202	AF131857
Sequence 7152	AA312528	Sequence 7203	X97324
Sequence 7153	Al267185	Sequence 7204	U36221
Sequence 7154	AI025537	Sequence 7205	AF103720
Sequence 7155	AA247429	Sequence 7206	AF131802
Sequence 7156	AA122237	Sequence 7207	L11690
Sequence 7157	AA075663	Sequence 7208	M17885
Sequence 7158	AI744735	Sequence 7209	L25085
Sequence 7159	M12075	Sequence 7210	M60857
Sequence 7160	U41060	Sequence 7211	X52104
Sequence 7161	S70290	Sequence 7212	AF068235
Sequence 7162	AF081484	Sequence 7213	M64241
Sequence 7163	AF153608	Sequence 7214	AF070649
Sequence 7164	D00017	Sequence 7215	AF088004
Sequence 7165	D87437-	Sequence 7216	AB020723
Sequence 7166	AL035369	Sequence 7217	D87667
Sequence 7167	AF069765	Sequence 7218	L15203
Sequence 7168	L29156	Sequence 7219	U04441
Sequence 7169	U71363	Sequence 7220	A21185
Sequence 7170	U14966	Sequence 7221	L11566
Sequence 7171	J04965	Sequence 7222	D85418
Sequence 7172	AF104421	Sequence 7223	AF138300
Sequence 7173	AF060129	Sequence 7224	X15759
Sequence 7174	L29162	Sequence 7225	U14969
Sequence 7175	AF027158	Sequence 7226	AB020639
Sequence 7176	AF103543	Sequence 7227	AF000982
Sequence 7177	AB017493	Sequence 7228	X13238
Sequence 7178	U52100	Sequence 7229	X57398
Sequence 7179	AF026292	Sequence 7230	Y00503
Sequence 7180	AF151103	Sequence 7231	AB002308
Sequence 7181	M16247	Sequence 7232	AF026692
Sequence 7182	AJ223350	Sequence 7233	L29157
Sequence 7183	AF025440	Sequence 7234	X59706
Sequence 7184	AF038954	Sequence 7235	AF044956
Sequence 7185	U40272	Sequence 7236	AJ004955
Sequence 7186	M65212	Sequence 7237	AF044955
Sequence 7187	J03040	Sequence 7238	X04828
Sequence 7188	X57814	Sequence 7239	AF016492
Sequence 7189	AF151864	Sequence 7240	M10905
Sequence 7190	M58525	Sequence 7241	L35263
Sequence 7191	AB008549	Sequence 7242	J02611

Sequence 7243	M22918	Sequence 7294	D89675
Sequence 7244	U77456	Sequence 7295	D28137
Sequence 7245	AF151893	Sequence 7296	AF132938
Sequence 7246	X60036	Sequence 7297	K02403
Sequence 7247	AF007791	Sequence 7298	U37230
Sequence 7248	AB020680	Sequence 7299	U12789
Sequence 7249	S80562	Sequence 7300	X74801
Sequence 7250	D25278	Sequence 7301	L15702
Sequence 7251	U19718	Sequence 7302	M60333
Sequence 7252	AF035582	Sequence 7303	U37518
Sequence 7253	M24853	Sequence 7304	U43701
Sequence 7254	AB029000	Sequence 7305	U05877
Sequence 7255	AF052179	Sequence 7306	D87666
Sequence 7256	L76687	Sequence 7307	AF036241
Sequence 7257	U96759	Sequence 7308	AL050363
Sequence 7258	M12530	Sequence 7309	U69141
Sequence 7259	M11147	Sequence 7310	J05211
Sequence 7260	X03363	Sequence 7311	M60445
Sequence 7261	AF054990	Sequence 7312	AL109672
Sequence 7262	AF147331	Sequence 7313	AB033070
Sequence 7263	X57809	Sequence 7314	M13573
Sequence 7264	M29873	Sequence 7315	L37080
Sequence 7265	J02642	Sequence 7316	AF047472
Sequence 7266	E01972	Sequence 7317	D90427
Sequence 7267	AF084520	Sequence 7318	Z18334
Sequence 7268	X15480	Sequence 7319	Y00282
Sequence 7269	AF077042	Sequence 7320	X57802
Sequence 7270	U68566	Sequence 7321	L12168
Sequence 7271	X15880	Sequence 7322	M10119
Sequence 7272	U70735	Sequence 7323	M77830
Sequence 7273	J04607	Sequence 7324	M63573
Sequence 7274	E06721	Sequence 7325	J03464
Sequence 7275	AF035286	Sequence 7326	U12788
Sequence 7276	AB018348	Sequence 7327	AF062249
Sequence 7277	AB012910	Sequence 7328	U14970
Sequence 7278	\$48220	Sequence 7329	AB002375
Sequence 7279	U49844	Sequence 7330	X15729
Sequence 7280	U32907	Sequence 7331	J02888
Sequence 7281	U14750	Sequence 7332	E01979
Sequence 7282	U67615	Sequence 7333	U66616
Sequence 7283	X06617	Sequence 7334	M55543
Sequence 7284	U14968	Sequence 7335	Y17957
Sequence 7285	AB019564	Sequence 7336	U33837
Sequence 7286		Sequence 7337	
Sequence 7287		Sequence 7338-	
Sequence 7288			AF020797
Sequence 7289	_E02904	Sequence 7340	U30897
Sequence 7290		Sequence 7341	D49919
Sequence 7291			AF000992
Sequence 7292		Sequence 7343	M13656
Sequence 7293	AF070523	Sequence 7344	U18728

PCT/US00/35214 WO 01/46697 80/100

Table 9

		7000	M00000
Sequence 7345	X83618	Sequence 7366	M83202
Sequence 7346	M87789	Sequence 7367	AF030339
Sequence 7347	M26325	Sequence 7368	AB032953
Sequence 7348	L33930	Sequence 7369	Z26317
Sequence 7349	L29164	Sequence 7370	AF040991
Sequence 7350	U14971	Sequence 7371	D80007
Sequence 7351	Z11890	Sequence 7372	D13665
Sequence 7352	D14812	Sequence 7373	AF039081
Sequence 7353	AF100761	Sequence 7374	AF073298
Sequence 7354	L38562	Sequence 7375	S95936
Sequence 7355	M74525	Sequence 7376	X81789
Sequence 7356	AB005299	Sequence 7377	S82451
Sequence 7357	AF026939	Sequence 7378	X81695
Sequence 7358	AL133078	Sequence 7379	X52520
Sequence 7359	AB019568	Sequence 7380	V68935
Sequence 7360	AF070555	Sequence 7381	Z13121
Sequence 7361	Z11894	Sequence 7382	X52268
Sequence 7362	AL122075	Sequence 7383	X37319
Sequence 7363	X57810	Sequence 7384	Q44223
Sequence 7364	AF125525	Sequence 7385	Q44222
Sequence 7365	X95073	Sequence 7386	V68992

Sequence 7387 found in patent publication WO99/53051
CCGCGGTGGCGCCCCAAAAACCAATCTACCTGATGAAAACTCCGTTCCCTTCTCGCC
AGAAACATAAAATGCGATGGAGCTACGGCCACCGCTGCCGAGACAAAATGGCGCCCCCCG CGTACCT

Sequence #	Accession#	Sequence 7412	AA641867
Sequence 7388	AA573715	Sequence 7413	AI652066
Sequence 7389	AA902433	Sequence 7414	AA971857
Sequence 7390	AA419227	Sequence 7415	AA053860
Sequence 7391	Al267282	Sequence 7416	AA314920
Sequence 7392	AA112971	Sequence 7417	AA469453
Sequence 7393	Al815972	Sequence 7418	AI540174
Sequence 7394	AA488820	Sequence 7419	AA933076
Sequence 7395	AA479743	Sequence 7420	AA456981
Sequence 7396	Al525843	Sequence 7421	AI300511
Sequence 7397	AA232695	Sequence 7422	AA296846
Sequence 7398	Al217003	Sequence 7423	AA916110
Sequence 7399	Al927004	Sequence 7424	AA371265
Sequence 7400	AA046538	Sequence 7425	AI813617
Sequence 7401	H08035	Sequence 7426	AA307728
Sequence 7402	AA507383	Sequence 7427	AI753623
Sequence 7403	T53940	Sequence 7428	C20958
Sequence 7404	AA430565	Sequence 7429	
Sequence 7405	AA294986	Sequence 7430	
Sequence 7406	Al061603	Sequence 7431	D63209"
Sequence 7407	AL037114	Sequence 7432	Al337429
Sequence 7408	AA092060	Sequence 7433	
Sequence 7409	AA459496	Sequence 7434	AL035985
Sequence 7410	AA937773	Sequence 7435	AI825799
Sequence 7411	AA295348	Sequence 7436	AA366518

PCT/US00/35214 WO 01/46697 81/100

Sequence 7437	AI954474	Sequence 7488	X99920
Sequence 7438	W76278	Sequence 7489	E08293
Sequence 7439	AI812063	Sequence 7490	X12791
Sequence 7440	AA037181	Sequence 7491	M87790
Sequence 7441	AA654557	Sequence 7492	AB012910
Sequence 7442	AA486674	Sequence 7493	E05692
Sequence 7443	M64241	Sequence 7494	U14970
Sequence 7444	M87789	Sequence 7495	L31581
Sequence 7445	AJ010442	Sequence 7496	AJ223353
Sequence 7446	D87666	Sequence 7497	AF070664
Sequence 7447	U96750	Sequence 7498	L29162
Séquence 7448	J03460	Sequence 7499	U90551
Sequence 7449	D87292	Sequence 7500	M22918
Sequence 7450	U12979	Sequence 7501	D26598
Sequence 7451	AL117666	Sequence 7502	E01972
Sequence 7452	E06721	Sequence 7503	M26325
Sequence 7453	Y00064	Sequence 7504	U94592
Sequence 7454	X15729	Sequence 7505	AF151869
Sequence 7455	J03040	Sequence 7506	AF180322
Sequence 7456	M25113	Sequence 7507	AF077201
Sequence 7457	X56998	Sequence 7508	U95367
Sequence 7458	U36221	Sequence 7509	AB011079
Sequence 7459	D01059	Sequence 7510	X13923
Sequence 7460	AF144103	Sequence 7511	L15203
Sequence 7461	E02628	Sequence 7512	U14966
Sequence 7462	D88674	Sequence 7513	AF100756
Sequence 7463	D14043	Sequence 7514	Y00282
Sequence 7464	M11147	Sequence 7515	AF151902
Sequence 7465	Z47087	Sequence 7516	AB004304
Sequence 7466	'AF070561	Sequence 7517	AJ224866
Sequence 7467	L49169	Sequence 7518	AF061736
Sequence 7468	L21998	Seguence 7519	E00096
Sequence 7469	Z11894	Sequence 7520	J00196
Sequence 7470	AB007884	Sequence 7521	J00194
Sequence 7471	AF054990	Sequence 7522	AF077202
Sequence 7472	U12465	Sequence 7523	AF190168
Sequence 7473	AF151905	Sequence 7524	X93036
Sequence 7474	E01037	Sequence 7525	J02923
Sequence 7475	E02049	Sequence 7526	AF027158
Sequence 7476	AF196482	Sequence 7527	J04164
Sequence 7477	U10439	Sequence 7528	L14076
Sequence 7478	X02530	Sequence 7529	AF052179
Sequence 7479	Y00062	Sequence 7530	AF168956
Sequence 7480	AB028624	•	AJ004955
Sequence 7481	X14583	Sequence 7532	
Sequence 7482	AF016492	Sequence 7533	
Sequence 7483	X65614	Sequence 7534	
Sequence 7484	AB022653	Sequence 7535	
Sequence 7485	Y10179	Sequence 7536	
Sequence 7486		Sequence 7537	
Sequence 7487	AF085807	Sequence 7538	M83533

PCT/US00/35214

82/100

Table 9

Sequence 7539	D16111	Sequence 7578	L20941
Sequence 7540	U14968	Sequence 7579	AJ001443
Sequence 7541	M10905	Sequence 7580	X05607
Sequence 7542	M29366	Sequence 7581	D89667
Sequence 7543	U15008	Sequence 7582	X57812
Sequence 7544	AF044956	Sequence 7583	AF039918
Sequence 7545	X16940	Sequence 7584	AF138300
Sequence 7546	M33318	Sequence 7585	J00231
Sequence 7547	M16247	Sequence 7586	AL117413
Sequence 7548	J02642	Sequence 7587	M97922
Sequence 7549	D50372	Sequence 7588	M31627
Sequence 7550	M17886	Sequence 7589	AL122091
Sequence 7551	M14631	Sequence 7590	M63573
Sequence 7552	L05092	Sequence 7591	Y09188
Sequence 7553	Y14737	Sequence 7592	E01593
Sequence 7554	M26880	Sequence 7593	D16947
Sequence 7555	J03015	Sequence 7594	D90373
Sequence 7556	M81757	Sequence 7595	X13238
Sequence 7557	X04106	Sequence 7596	X55675
Sequence 7558	X62125	Sequence 7597	AB015856
Sequence 7559	AF095448	Sequence 7598	AF153608
Sequence 7560	AF085360	Sequence 7599	Y14738
Sequence 7561	S81439	Sequence 7600	D43950
Sequence 7562	X57809	Sequence 7601	X81109
Sequence 7563	L25085	Sequence 7602	AB018290
Sequence 7564	AF131856	Sequence 7603	M24194
Sequence 7565	L03426	Sequence 7604	L40410
Sequence 7566	D87735	Sequence 7605	AF103774
Sequence 7567	X54304	Sequence 7606	X82321
Sequence 7568	A28074	Sequence 7607	M12938
Sequence 7569	S54005	Sequence 7608	T47520
Sequence 7570	D14710	Sequence 7609	V34180
Sequence 7571	AF054187	Sequence 7610	Z17200
Sequence 7572	X56932	Sequence 7611	X84207
Sequence 7573	M17885	Sequence 7612	Z42940
Sequence 7574	AF026381	Sequence 7613	Q44223
Sequence 7575	X63432	Sequence 7614	V89565
Sequence 7576	X57819	Sequence 7615	V86389
Sequence 7577	M31212	Sequence 7616	V44301
	•		

Table 9

Sequence #	Accession #	Sequence 7667	D63209
Sequence 7618	AA507383	Sequence 7668	AA430565
Sequence 7619	AA092060	Sequence 7669	H08035
Sequence 7620	AL035985	Sequence 7670	Al217003
Sequence 7621	AA295348	Sequence 7671	Al267282
Sequence 7622	AA469453	Sequence 7672	AA452012
Sequence 7623	AA294986	Sequence 7673	D16111
Sequence 7624	Al061603	Sequence 7674	AF077201
Sequence 7625	AA296846	Sequence 7675	AF070561
Sequence 7626	Al815972	Sequence 7676	E08293
Sequence 7627	AA232695	Sequence 7677	X15729
Sequence 7628	AA937773	Sequence 7678	E02628
Sequence 7629	AA459496	Sequence 7679	J03007
Sequence 7630	AA053860	Sequence 7680	M81757
Sequence 7631	AA971857	Sequence 7681	J03040
Sequence 7632	AA641867	Sequence 7682	X56932
Sequence 7633	AA046538	Sequence 7683	X13923
Sequence 7634	Al652066	Sequence 7684	M14631
Sequence 7635	AA419227	Sequence 7685	AB028624
Sequence 7636	AL037114	Sequence 7686	X54304
Sequence 7637	AA486674	Sequence 7687	X99920
Sequence 7638	AA037181	Sequence 7688	AF180322
Sequence 7639	AI813617	Sequence 7689	AB004304
Sequence 7640	Al540174	Sequence 7690	AF196482
Sequence 7641	AA307728	Sequence 7691	AB018290
Sequence 7642	AA314920	Sequence 7692	M29366
Sequence 7643	AA366518	Sequence 7693	U90551
Sequence 7644	Al300511	Sequence 7694	J02923
Sequence 7645	AA112971	Sequence 7695	Z11894
Sequence 7646	Al525843	Sequence 7696	E05692
Sequence 7647	A1825799	Sequence 7697	M31212
Sequence 7648	AA916110	Sequence 7698	L05092
Sequence 7649	AA479743	Sequence 7699	M17886
Sequence 7650	AA371265	Sequence 7700	U15008
Sequence 7651	AA902433	Sequence 7701	X65614
Sequence 7652	T53940	Sequence 7702	AB015856
Sequence 7653	AI753623	Sequence 7703	X56998
Sequence 7654	C20958	Sequence 7704	AF077045
Sequence 7655	AA573715	Sequence 7705	X57819
Sequence 7656	W76278	Sequence 7706	U14968
Sequence 7657	AA933076	Sequence 7707	D90373
Sequence 7658	Al954474	Sequence 7708	AJ224866
Sequence 7659		Sequence 7709	J00194
Sequence 7660		Sequence 7710	*AB011079
Sequence 7661	AA099933	Sequence 7711	U94592
Sequence 7662	AA654557	Sequence 7712	U14970
Sequence 7663	Al927004	Sequence 7713	D14710
Sequence 7664	AA488820	Sequence 77.14	Y09188
Sequence 7665	Al337429	Sequence 7715	AF052179
Sequence 7666	AA456981	Sequence 7716	AF044956

Sequence 7717	AF151869	Sequence 7768	S81439
Sequence 7718	U36221	Sequence 7769	AF070664
Sequence 7719	AF103774	Sequence 7770	AB012910
Sequence 7720	D89667	Sequence 7771	X57809
Sequence 7721	L25085	Sequence 7772	J04164
Sequence 7722	M12938	Sequence 7773	AF153608
Sequence 7723	X82321	Sequence 7774	AB007884
Sequence 7724	AL117413	Sequence 7775	AF039918
Sequence 7725	AF054990	Sequence 7776	U16826
Sequence 7726	AF085807	Sequence 7777	X52520
Sequence 7727	X62125	Sequence 7778	U96750
Sequence 7728	AL122091	Sequence 7779	M24194
Sequence 7729	AF131856	Sequence 7780	A28074
Sequence 7730	AJ004955	Sequence 7781	J03460
Sequence 7731	AF026381	Sequence 7782	AF138300
Sequence 7732	M11147	Sequence 7783	Y10179
Sequence 7733	D01059	Sequence 7784	X55675
Sequence 7734	AF095448	Sequence 7785	M33318
Sequence 7735	X93036	Sequence 7786	Y00064
Sequence 7736	E01972	Sequence 7787	AF144103
Sequence 7737	J02642	Sequence 7788	M16247
Sequence 7738	AF077202	Sequence 7789	M25113
Sequence 7739	AF190168	Sequence 7790	D87292
Sequence 7740	X81109	Sequence 7791	M31627
Sequence 7741	AF100756	Sequence 7792	AL117666
Sequence 7742	M63573	Sequence 7793	L03426
Sequence 7743	X04106	Sequence 7794	D87666
Sequence 7744	J00196	Sequence 7795	D14043
Sequence 7745	Z47087	Sequence 7796	X16940
Sequence 7746	U12465	Sequence 7797	J03015
Sequence 7747	D26598	Sequence 7798	AB028981
Sequence 7748	M22918	Sequence 7799	M17885
Sequence 7749	M10119	Sequence 7800	L49169
Sequence 7750	AF016492	Sequence 7801	Y14737
Sequence 7751	E01037	Sequence 7802	D87735
Sequence 7752	M64241	Sequence 7803	M83533
Sequence 7753	L40410	Sequence 7804	M10905
Sequence 7754	U12979	Sequence 7805	Y00282
Sequence 7755	L15203	Sequence 7806	L14076
Sequence 7756	AF061736	Sequence 7807	L21998
Sequence 7757	X57812	Sequence 7808	M87789
Sequence 7758	X63432	Sequence 7809	X05607
Sequence 7759	U95367	Sequence 7810	Y14738
Sequence 7760	U14966	Sequence 7811	AF168956
Sequence:7761		Sequence:7812	L29162
Sequence 7762	D50372	Sequence 7813	J00231
Sequence 7763	M97922	Sequence 7814	AJ010442
Sequence 7764	M26880	Sequence 7815	X12791
Sequence 7765	AF085360	Sequence 7816	M26325
Sequence 7766	AB022653	Sequence 7817	X02530
Sequence 7767	S54005	Sequence 7818	X14583
-24		•	

Sequence 7819 Sequence 7820 Sequence 7821 Sequence 7822 Sequence 7823 Sequence 7824 Sequence 7825 Sequence 7826 Sequence 7827 Sequence 7828 Sequence 7829 Sequence 7830	D43950 AF027158 E06721 E02049 L20941 D16947 X13238 AF054187 AF151905 D88674 E01593 E00096	Sequence 7833 Sequence 7834 Sequence 7835 Sequence 7836 Sequence 7837 Sequence 7839 Sequence 7840 Sequence 7841 Sequence 7842 Sequence 7843 Sequence 7844	M87790 U10439 AF086183 Y00062 AJ223353 Q44223 Z42940 T47520 V44301 Z17200 V86389 V89565
•		•	

Sequence #	Accession #	Sequence 7872	X74801
Sequence 7848	AF017688	Sequence 7873	AF026381
Sequence 7849	AA545726	Sequence 7874	AF016492
Sequence 7850	Al253335	Sequence 7875	AF111713
Sequence 7851	AA342969	Sequence 7876	AF023462
Sequence 7852	Al253330	Sequence 7877	AB002387
Sequence 7853	Al267282	Sequence 7878	Z36531
Sequence 7854	Al267492	Sequence 7879	U14971
Sequence 7855	Al267216	Sequence 7880	M10905
Sequence 7856	F25339	Sequence 7881	X63432
Sequence 7857	AL036003	Sequence 7882	AF125525
Sequence 7858	Al216969	Sequence 7883	L29156
Sequence 7859	AA399133	Sequence 7884	D13666
Sequence 7860	Al253436	Sequence 7885	AF138300
Sequence 7861	Al267185	Sequence 7886	D13665
Sequence 7862	Al267454	Sequence 7887	X15949
Sequence 7863	AL036165	Sequence 7888	M87790
Sequence 7864	AA604610	Sequence 7889	-E02904
Sequence 7865	AA249154		∴M24317
Sequence 7866	AI500553	Sequence 7891	M10119
Sequence 7867	X57814	Sequence 7892	AF052097
Sequence 7868	X00351	Sequence 7893	X04408
Sequence 7869	AJ010442	Sequence 7894	AB004304
Sequence 7870	D87666	Sequence 7895	D17039
Sequence 7871	E02628	Sequence 7896	M73832

Table 9

Sequence 789	7 J03040	Sequence 7948	X04408
Sequence 789	98 Y15286	Sequence 7949	M10905
Sequence 789	9 J04164	Sequence 7950	AF023462
Sequence 790	0 AB022656	Sequence 7951	X00351
Sequence 790)1 X26850	Sequence 7952	AF138300
Sequence 790		Sequence 7953	AF111713
Sequence 790		Sequence 7954	X74801
Sequence 790		Sequence 7955	D13665
Sequence 790		Sequence 7956	Z41991
Sequence 790		Sequence 7957	X26850
Sequence 790	· · · · · · · · · · · · · · · · · · ·	Sequence 7958	AW247014
Sequence 790		Sequence 7959	AL135142
Sequence 790		Sequence 7960	AI907528
Sequence 791		Sequence 7961	AI902535
Sequence 791		Sequence 7962	AW247607
Sequence 791		Sequence 7963	AI905418
Sequence 791		Sequence 7964	AL135007
Sequence 791		Sequence 7965	AI907037
Sequence 791		Sequence 7966	A1907067
Sequence 791		Sequence 7967	AW238869
Sequence 791		Sequence 7968	AW239219
Sequence 791		Sequence 7969	AW238912
Sequence 791		Sequence 7970	AW245906
Sequence 792		Sequence 7971	AW385350
Sequence 792		Sequence 7972	AA316962
Sequence 792		Sequence 7973	AA493558
Sequence 792		Sequence 7974	AA837031
Sequence 792		Sequence 7975	AW361434
Sequence 792		Sequence 7976	AJ387747
Sequence 792		Sequence 7977	Z98946
Sequence 792		Sequence 7978	AC010197
Sequence 792		Sequence 7979	M14300
Sequence 792		Sequence 7980	M13560
Sequence 793		Sequence 7981	M14144
Sequence 793		Sequence 7982	AC000024
Sequence 793		Sequence 7983	AC006165
Sequence 793		Sequence 7984	AC007032
Sequence 793		Sequence 7985	AF095593
Sequence 793		Sequence 7986	AC002528
Sequence 79:		Sequence 7987	AF125348
Sequence 79:		Sequence 7988	AL031670
Sequence 79:		Sequence 7989	E00829
Sequence 79:		Sequence 7990	AB020777
Sequence 79		Sequence 7991	U78045
Sequence 79		Sequence 7992	
Sequence 79		Sequence 7993	
Sequence 79		Sequence 7994	
Sequence 79		Sequence 7995	
Sequence 79		Sequence 7996	
Sequence 79		Sequence 7997	
_		Sequence 7998	
Sequence 79	7/ /\!`U\\\32	0040000 1000	

Sequence 7999	AL157431	Sequence 8050	AA653775
Sequence 8000	AW001608	Sequence 8051	Al379402
Sequence 8001	AA551442	Sequence 8052	AA075486
Sequence 8002	AA112302	Sequence 8053	AA737932
Sequence 8003	AA403120	Sequence 8054	AA192816
Sequence 8004	AA918145	Sequence 8055	AW246427
Sequence 8005	AA330276	Sequence 8056	AL134929
Sequence 8006	AA897614	Sequence 8057	AA454884
Sequence 8007	AW393929	Sequence 8058	AA225694
Sequence 8008	AA155811	Sequence 8059	Z42700
Sequence 8009	AA308357	Sequence 8060	AW578537
Sequence 8010	AW409804	Sequence 8061	AW410472
Sequence 8011	Al754526	Sequence 8062	AA448748
Sequence 8012	Al291244	Sequence 8063	AW002338
Sequence 8013	Al691079	Sequence 8064	AW151704
Sequence 8014	AA417557	Sequence 8065	AL041541
Sequence 8015	AA083150	Sequence 8066	H25798
Sequence 8016	AA102695	Sequence 8067	AA385290
Sequence 8017	AA772683	Sequence 8068	AW192482
Sequence 8018	AW369331	Sequence 8069	AA130162
Sequence 8019	T07858	Sequence 8070	AA512946
Sequence 8020	AA353742	Sequence 8071	AA128348
Sequence 8021	AA037278	Sequence 8072	AA315904
Sequence 8022	AF063565	Sequence 8073	N84699
Sequence 8023	AW578701	Sequence 8074	AI032559
Sequence 8024	AA524812	Sequence 8075	AI093553
Sequence 8025	AA301143	Sequence 8076	AA996322
Sequence 8026	AA206373	Sequence 8077	AI684596
Sequence 8027	AA147938	Sequence 8078	N39760
Sequence 8028	AA084180	Sequence 8079	A1884578
Sequence 8029	AA399135	Sequence 8080	AW373651
Sequence 8030	AA452209	Sequence 8081	AW403080
Sequence 8031	Al266365	Sequence 8082	AW389843
Sequence 8032	AA219348	Sequence 8083	AW402074
Sequence 8033	AA327358	Sequence 8084	AW369769
Sequence 8034	AA308809	Sequence 8085	AB000095
Sequence 8035	AA434339	Sequence 8086	X57398
Sequence 8036	Al146835	Sequence 8087	U 78 575
Sequence 8037	AW439239	Sequence 8088	AF109872
Sequence 8038	Al207795	Sequence 8089	AK001636
Sequence 8039	AA082795	Sequence 8090	L42373
Sequence 8040	Al907176	Sequence 8091	AF029786
Sequence 8041	AL135073	Sequence 8092	U27112
Sequence 8042	Al905250	Sequence 8093	M14505
Sequence 8043	- AA219739	Sequence 8094	D87450
Sequence 8044	AA654557	Sequence 8095	AF041259
Sequence 8045	AA305117	Sequence 8096	X16396
Sequence 8046	AA324822	Sequence 8097	AC006064
Sequence 8047	AA129991	Sequence 8098	AF110774
Sequence 8048	AA190334	Sequence 8099	X62534
Sequence 8049	T27151	Sequence 8100	D25542

Sequence 8101	AL096719	Sequence 8152	AL117412
Sequence 8102	AB037790	Sequence 8153	X55733
Sequence 8103	AB017335	Sequence 8154	AC004912
Sequence 8104	AF113682	Sequence 8155	D13286
Sequence 8105	AF002668	Sequence 8156	AB037743
Sequence 8106	D29640	Sequence 8157	X04588
Sequence 8107	AF189062	Seguence 8158	J03490
Sequence 8108	M88458	Sequence 8159	X76770
Sequence 8109	L76416	Sequence 8160	D14697
Sequence 8110	D49547	Sequence 8161	L10138
Sequence 8111	AC008981	Sequence 8162	AB003730
Sequence 8112	AF113015	Sequence 8163	AC004230
Sequence 8113	AC004520	Sequence 8164	AL157481
Sequence 8114	AC005363	Sequence 8165	AC006536
•	AC007563	Sequence 8166	M33197
Sequence 8115	AK000474	Sequence 8167	AF042284
Sequence 8116	AF113016	Sequence 8168	AL136543
Sequence 8117		Sequence 8169	U50079
Sequence 8118	AC002480	Sequence 8170	L44140
Sequence 8119	AK000826	Sequence 8171	U38894
Sequence 8120	M57567	Sequence 8172	AF054828
Sequence 8121	AK000571	Sequence 8173	X05606
Sequence 8122	U25435		U60259
Sequence 8123	AF047472	Sequence 8174	D79986
Sequence 8124	AL079292	Sequence 8175	X99585
Sequence 8125	L11566	Sequence 8176	M34081
Sequence 8126	AF087020	Sequence 8177	
Sequence 8127	U16799	Sequence 8178	AC004801 AF113249
Sequence 8128	AB011108	Sequence 8179	
Sequence 8129	AF202724	Sequence 8180	L13850
Sequence 8130	AF151052	Sequence 8181	A32139
Sequence 8131	D78335	Sequence 8182	AF091084
Sequence 8132	AK000609	Sequence 8183	AB000220
Sequence 8133	AL133583	Sequence 8184	AJ012409
Sequence 8134	AF087988	Sequence 8185	AF161401
Sequence 8135	M34088	Sequence 8186	AJ002308
Sequence 8136	X05857	Sequence 8187	AK002031
Sequence 8137	AK000560	Sequence 8188	AF112213
Sequence 8138	M17886	Sequence 8189	L02426
Sequence 8139	E12795	Sequence 8190	J03575
Sequence 8140	U25975	Sequence 8191	AB029019
Sequence 8141	AK000587	Sequence 8192	AF072928
Sequence 8142	D45915	Sequence 8193	AF004427
Sequence 8143	Z35411	Sequence 8194	AF113019
Sequence 8144	. M27024	Sequence 8195	AF107406
Sequence 8145	X69397	Sequ <u>ence 8196</u>	X15729
Sequence 8146	L42809	Sequence 8197	E05692
Sequence 8147	Z11531	Sequence 8198	M11167
Sequence 8148	AF005889	Sequence 8199	AJ251053
Sequence 8149	AL050134	Sequence 8200	AF113125
Sequence 8150	M24842	Sequence 8201	AK000639
Sequence 8151	E14562	Sequence 8202	AC008040
•			

89/100

Sequence 8203	S70290	Sequence 8254	AW246900
Sequence 8204	AJ132583	Sequence 8255	AW371201
Sequence 8205	AF151803	Sequence 8256	AA203523
Sequence 8206	M19997	Sequence 8257	AA292325
Sequence 8207	A31584	Sequence 8258	Al862422
Sequence 8208	AF125533	Sequence 8259	AW406941
Sequence 8209	J03934	Sequence 8260	Al962647
Sequence 8210	AF090915	Sequence 8261	AI619681
Sequence 8211	U02680	Sequence 8262	AW238333
Sequence 8212	AL133623	Sequence 8263	AW290958
Sequence 8213	U28964	Sequence 8264	AW404369
Sequence 8214	U03643	Sequence 8265	R69623
Sequence 8215	AK001188	Sequence 8266	AA022994
Sequence 8216	AF151047	Sequence 8267	AW404630
Sequence 8217	M58485	Sequence 8268	AA157044
Sequence 8218	AF131820	Sequence 8269	AA609072
Sequence 8219	J03607	Sequence 8270	Al457158
Sequence 8220	AC008038	Sequence 8271	AA896959
Sequence 8221	AF126962	Sequence 8272	AA503408
Sequence 8222	AK001741	Sequence 8273	AA195033
Sequence 8223	AL031777	Sequence 8274	AW405183
Sequence 8224	AK001993	Sequence 8275	AI492238
Sequence 8225	AF088071	Sequence 8276	AC008063
Sequence 8226	AK002060	Sequence 8277	M14507
Sequence 8227	U20285	Sequence 8278	AB020236
	E01954	Sequence 8279	AL122127
Sequence 8228 Sequence 8229	AJ002030	Sequence 8280	M21540
Sequence 8230	U07343	Sequence 8281	AF129512
Sequence 8231	AF172093	Sequence 8282	AL080243
Sequence 8232	AL021807	Sequence 8283	E13878
Sequence 8233	X85129	Sequence 8284	AF187554
Sequence 8234	AB020980	Sequence 8285	AC004448
Sequence 8235	L78810	Sequence 8286	AF146191
Sequence 8236	X74929	Sequence 8287	AC000394
Sequence 8237	AC006088	Sequence 8288	M11567
Sequence 8238	AC004542	Sequence 8289	AF113538
Sequence 8239	X41268	Sequence 8290	AJ230240
Sequence 8240	V37932	Sequence 8291	AB035301
Sequence 8241	Z18356	Sequence 8292	AL132708
Sequence 8242	Al337979	Sequence 8293	AF137030
Sequence 8243	AA055043	Sequence 8294	AL034379
Sequence 8244	AI808031	Sequence 8295	M73700
Sequence 8245	AA830115	Sequence 8296	AF182277
Sequence 8246	H64719	Sequence 8297	AL133609
Sequence 8247	* * * * * * * * * * * * * * * * * * *	Sequence 8298	U81852
Sequence 8248	AA374376	Sequence 8299	AL035530
Sequence 8249	Al252023	Sequence 8300	AF004877
Sequence 8250	AA633918	Sequence 8301	U22027
Sequence 8251	AW196668	Sequence 8302	AC004876
Sequence 8252	Al902568	Sequence 8303	M63438
Sequence 8253	AW238267	Sequence 8304	AL136773
ocquence ozoo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2042002222	

Table 9

Sequence 8305	AF167706	Sequence 8356	A21577
Sequence 8306	M12140	Sequence 8357	AF113686
Sequence 8307	AB037886	Sequence 8358	AB007170
Sequence 8308	AC011331	Sequence 8359	AK000819
Sequence 8309	AF097362	Sequence 8360	AK002194
Sequence 8310	D31767	Sequence 8361	AC005189
Sequence 8311	L10376	Sequence 8362	M13560
Sequence 8312	A21604	Sequence 8363	AJ131016
Sequence 8313	AF113699	Sequence 8364	AL137517
Sequence 8314	AC009311	Sequence 8365	AF183810
Sequence 8315	AK000953	Sequence 8366	A31584
Sequence 8316	AC007748	Sequence 8367	AC004186
Sequence 8317	T28796	Sequence 8368	AF113676
Sequence 8318	AW404697	Sequence 8369	AF159447
Sequence 8319	Al906045	Sequence 8370	AL035461
Sequence 8320	AW404506	Sequence 8371	AC002428
Sequence 8321	AW377172	Sequence 8372	K03021
Sequence 8322	AL135401	Sequence 8373	Z57506
Sequence 8323	AW297814	Sequence 8374	AK001806
Sequence 8324	AW270874	Sequence 8375	X51501
Sequence 8325	L78669	Sequence 8376	AB020236
Sequence 8326	X05030	Sequence 8377	AF187554
Sequence 8327	AC003688	Sequence 8378	E13299
Sequence 8328	AK000168	Sequence 8379	AC005261
Sequence 8329	AJ230384	Sequence 8380	AK001158
	AW402138	Sequence 8381	Z98884
Sequence 8330 Sequence 8331	AW275125	Sequence 8382	AC007198
Sequence 8332	AW374095	Sequence 8383	AW405187
Sequence 8333	AW373880	Sequence 8384	AW246992
Sequence 8334	AW274631	Sequence 8385	AW405767
Sequence 8335	AW299551	Sequence 8386	AW406796
Sequence 8336	AW371201	Sequence 8387	AW383753
Sequence 8337	Ai907465	Sequence 8388	AL135007
Sequence 8338	AW405864	Sequence 8389	AW474659
Sequence 8339	AW364561	Sequence 8390	AW405772
Sequence 8340	AW292952	Sequence 8391	AW378925
Sequence 8341	AW206860	Sequence 8392	AW407909
Sequence 8342	AW386771	Sequence 8393	AW341041
Sequence 8343	AW374082	Sequence 8394	AW519085
Sequence 8344	AW192630	Sequence 8395	AW288086
Sequence 8345	AW380355	Sequence 8396	AW380184
Sequence 8346	Al904278	Sequence 8397	AW440150
Sequence 8347	AF161380	Sequence 8398	AW404368
Sequence 8348	AL049839	Sequence 8399	AW408092
Sequence 8349	L77702	Sequence 8400	AW407841
Sequence 8350	AP000129	Sequence 8401	AA128957
Sequence 8351	X52516	Sequence 8402	AF118090
Sequence 8352	AK000162	Sequence 8403	AF179404
Sequence 8353	AL021154	Sequence 8404	AL133610
Sequence 8354	J03474	Sequence 8405	AC006530
Sequence 8355	AF220416	Sequence 8406	L78669
ocqueine occo	, ,,		

Sequence 8407	AC007055	Sequence 8459	AA029668
Sequence 8408	AK001154	Sequence 8460	AA243361
Sequence 8409	D11023	Sequence 8461	H99577
Sequence 8410	AF161484	Sequence 8462	AA304979
Sequence 8411	D87017	Sequence 8463	AW067793
Sequence 8412	AF151018	Sequence 8464	AL134591
Sequence 8413	AK000349	Sequence 8465	AA355601
Sequence 8414	AK001732	Sequence 8466	AI133305
Sequence 8415	AK000624	Sequence 8467	R91904
Sequence 8416	AF113014	Sequence 8468	AL047780
Sequence 8417	AF117958	Sequence 8469	AA300728
Sequence 8418	AC005839	Sequence 8470	AA442553
Sequence 8419	AC000394	Sequence 8471	AW405241
Sequence 8420	AC002308	Sequence 8472	H22669
Sequence 8421	AL157440	Sequence 8473	AA096087
Sequence 8422	AK000888	Sequence 8474	AI815123
Sequence 8423	AC005682	Sequence 8475	AA229993
Sequence 8424	AC006064	Sequence 8476	AJ218208
Sequence 8425	D86993	Sequence 8477	N84976
Sequence 8426	AK001667	Sequence 8478	T35380
Sequence 8427	D86996	Sequence 8479	AW367638
Sequence 8428	U25657	Sequence 8480	AW381298
Sequence 8429	Z84983	Sequence 8481	AI082161
Sequence 8430	AF113702	Sequence 8482	AA654660
Sequence 8431	AA527851	Sequence 8483	AW404714
Sequence 8432	AA707441	Sequence 8484	AA482649
Sequence 8433	AA485781	Sequence 8485	AI627978
Sequence 8434	AA534285	Sequence 8486	AW404489
Sequence 8435	AA082698	Sequence 8487	Al352514
Sequence 8436	Al908378	Sequence 8488	AA988329
Sequence 8437	AJ142271	Sequence 8489	AW003852
Sequence 8438	H58018	Sequence 8490	Al820995
Sequence 8439	AA633909	Sequence 8491	Al826933
Sequence 8440	AA206684	Sequence 8492	N36576
Sequence 8441	AA242891	Sequence 8493	AA446929
Sequence 8442	AI906378	Sequence 8494	AW383563
Sequence 8443	AA010782	Sequence 8495	AA058637
Sequence 8444	T54595	Sequence 8496	Al433157
Sequence 8445	AA485488	Sequence 8497	H47306
Sequence 8446	AA524554	Sequence 8498	AA411306
Sequence 8447	AW269931	Sequence 8499	AA477092
Sequence 8448	AA312550	Sequence 8500	AA337350
Sequence 8449	R64693	Sequence 8501	AA255648 AA461187
Sequence 8450	Al174846	Sequence 8502	AW405603
Seguence 8451	AA291844	Sequence 8503	A1752817
Sequence 8452	AA182617	Sequence 8504 Sequence 8505	AW408549
Sequence 8453	AA496390	Sequence 8506	AA736981
Sequence 8454	AA760751	Sequence 8507	AL120743
Sequence 8455	AI061651	Sequence 8508	AA121996
Sequence 8456	Al445025	Sequence 8509	AA352835
Sequence 8457	AA420650	Sequence 8510	AA493120
Sequence 8458	AA780407	. Ocquence 0010	7555.120

Sequence 8511	AI282346	Sequence 8563	AA428371
Sequence 8512	AA114921	Sequence 8564	AA928702
Sequence 8513	AI027443	Sequence 8565	AA187659
Sequence 8514	AA760845	Sequence 8566	AA247232
Sequence 8515	AI081804	Sequence 8567	AI089653
Seguence 8516	AA291438	Sequence 8568	AW383753
Sequence 8517	AA918408	Sequence 8569	AA307552
Sequence 8518	AA327250	Sequence 8570	AA962194
Sequence 8519	AA303709	Sequence 8571	AA300982
Sequence 8520	AW265326	Sequence 8572	AA621015
Sequence 8521	Al277620	Sequence 8573	AW378607
Sequence 8522	Al206018	Sequence 8574	AF150247
Sequence 8523	AA532852	Sequence 8575	Al350070
Sequence 8524	AA568383	Sequence 8576	AA040854
Sequence 8525	AA340069	Sequence 8577	AA481566
Sequence 8526	AW368722	Sequence 8578	AA639822
Sequence 8527	AA040927	Sequence 8579	H53231
Sequence 8528	AA694120	Sequence 8580	AL040809
Sequence 8529	AA359526	Sequence 8581	AW410945
Sequence 8530	AW183621	Sequence 8582	AA134527
Sequence 8531	AI023341	Sequence 8583	AA074869
Sequence 8532	N78296	Sequence 8584	AI554887
Sequence 8533	Al829893	Sequence 8585	AA572858
Sequence 8534	AI028023	Sequence 8586	AI679939
Sequence 8535	AA419576	Sequence 8587	AA307033
Sequence 8536	Al763286	Sequence 8588	AI619777
Sequence 8537	AA804597	Sequence 8589	AA292139
Sequence 8538	T67580	Sequence 8590	AA492219
Sequence 8539	AI521456	Sequence 8591	AA554807
Sequence 8540	AA747879	Sequence 8592	AA314975
Sequence 8541	AW402926	Sequence 8593	AW402294
Sequence 8542	AA287543	Sequence 8594	AA058708
Sequence 8543	Al471712	Sequence 8595	AA318678
Sequence 8544	AA968885	Sequence 8596	AA316322
Sequence 8545	Al434639	Sequence 8597	AA329591
Sequence 8546	AA857478	Sequence 8598	AW405975
Sequence 8547	AA845913	Sequence 8599	AA302548
Sequence 8548	AA305181	Sequence 8600	AA977195
Sequence 8549	AA036920	Sequence 8601	AI751288
Sequence 8550	F07604	Sequence 8602	AA569077
Sequence 8551	AA406450	Sequence 8603	Al269851
Sequence 8552	Al950224	Sequence 8604	AA366745
Sequence 8553	Al218025	Sequence 8605	AW362858
Sequence 8554	AA487773	Sequence 8606	AA632163
Sequence 8555	AI539847	Sequence 8607	AI223382
Sequence 8556	AA374901	Sequerice 8608	~AA961797
Sequence 8557	AA582093	Sequence 8609	AA627554
Sequence 8558	AA354214	Sequence 8610	AA994027
Sequence 8559	AA293127	Sequence 8611	A1878887
Sequence 8560	Al751119	Sequence 8612	AA295465
Sequence 8561	AA024401	Sequence 8613	AW327822
Sequence 8562	AA076628	Sequence 8614	AW439210

Sequence 8615	AA513632	Sequence 8667	AA918127
Sequence 8616	AA319848	Sequence 8668	AI654672
Sequence 8617	AA335152	Sequence 8669	AA086028
Sequence 8618	AA151996	Sequence 8670	AA643257
Sequence 8619	AI608953	Sequence 8671	AA158308
Sequence 8620	AA186406	Sequence 8672	AI567632
Sequence 8621	AA295414	Sequence 8673	AA631397
Sequence 8622	AI217012	Sequence 8674	AA318591
Sequence 8623	AA045617	Sequence 8675	AA650444
Sequence 8624	AW300981	Sequence 8676	AA595471
Sequence 8625	AA310475	Sequence 8677	AA384655
Sequence 8626	AA149337	Sequence 8678	AA310561
Sequence 8627	AA410985	Sequence 8679	AW404042
	AW404536	Sequence 8680	AA327546
Sequence 8628		Sequence 8681	AA340373
Sequence 8629	AA035773	Sequence 8682	AI189386
Sequence 8630	AA285040	Sequence 8683	AI306936
Sequence 8631	A1698956	Sequence 8684	AJ183698
Sequence 8632	AA132445	Sequence 8685	AA299023
Sequence 8633	AA515152	Sequence 8686	AA343070
Sequence 8634	AI129133		AA029583
Sequence 8635	AA502897	Sequence 8687	AA354523
Sequence 8636	AA552321	Sequence 8688	AA703944
Sequence 8637	AA308390	Sequence 8689	AI038848
Sequence 8638	Al420180	Sequence 8690	
Sequence 8639	AA552443	Sequence 8691	AI114523
Sequence 8640	AA151680	Sequence 8692	AA112710
Sequence 8641	AI074622	Sequence 8693	AA176846
Sequence 8642	AA457713	Sequence 8694	AA092594
Sequence 8643	H21573	Sequence 8695	AA151274
Sequence 8644	AW327727	Sequence 8696	AA461556
Sequence 8645	AA464689	Sequence 8697	AA682948
Sequence 8646	AA190930	Sequence 8698	AL079982
Sequence 8647	AW405207	Sequence 8699	AA336670
Sequence 8648	AA143038	Sequence 8700	AA315671
Sequence 8649	AA884753	Sequence 8701	AA902190
Sequence 8650	AA362971	Sequence 8702	AW380144
Sequence 8651	AA196357	Sequence 8703	AA230271
Sequence 8652	AA341183	Sequence 8704	AA284615
Sequence 8653	AA225008	Sequence 8705	AI127556
Sequence 8654	AA045587	Sequence 8706	AA335237
Sequence 8655	AA411564.	Sequence 8707	AA417373
Sequence 8656	Al470005	Sequence 8708	AI061447
Sequence 8657	AA314681	Sequence 8709	AA313966
Sequence 8658	AW379384	Sequence 8710	AW162695
Sequence 8659	AA349149	Sequence 8711	AW405986
Sequence 8660	AA315594	Sequence 8712	A1200034
Sequence 8661	H66108	Sequence 8713	AI924753
Sequence 8662	AA099665	Sequence 8714	AA293063
Sequence 8663	AA743172	Sequence 8715	AA293759
Sequence 8664	AA181858	Sequence 8716	AI131228
Sequence 8665	AA424892	Sequence 8717	AA088606
Sequence 8666	Al908784	Sequence 8718	AA493624

Sequence 8719	AA399045	Sequence 8771	AA133734
Sequence 8720	AA291997	Sequence 8772	AW499979
Sequence 8721	AA102171	Sequence 8773	Al246580
Sequence 8722	AA349381	Sequence 8774	AW381335
Sequence 8723	AA426479	Sequence 8775	AA558948
Sequence 8724	Al908366	Sequence 8776	AA054427
Sequence 8725	Al564992	Sequence 8777	AA809041
Sequence 8726	AA715498	Sequence 8778	AA310867
Sequence 8727	AA302260	Sequence 8779	AW377625
Sequence 8728	AA316267	Sequence 8780	AA699572
Sequence 8729	Ał525843	Sequence 8781	AA306040
Sequence 8730	R40442	Sequence 8782	Al612913
Sequence 8731	AA043951	Sequence 8783	AA838111
Sequence 8732	AA583499	Sequence 8784	AA961274
Sequence 8733	AW470006	Sequence 8785	AA284551
Sequence 8734	AI141659	Sequence 8786	AW572176
Sequence 8735	AW378469	Sequence 8787	AW296824
Sequence 8736	AA305143	Sequence 8788	AA125989
Sequence 8737	AW157503	Sequence 8789	Al191369
Sequence 8738	Al439762	Sequence 8790	AA719377
Sequence 8739	AW405753	Sequence 8791	AA864525
Sequence 8740	AA618089	Sequence 8792	AI283344
Sequence 8741	Al910259	Sequence 8793	AA554755
Sequence 8742	AW383565	Sequence 8794	AA304025
Sequence 8743	AI568695	Sequence 8795	AW176250
Sequence 8744	A!457157	Sequence 8796	AA533524
Sequence 8745	AA377319	Sequence 8797	AA044753
Sequence 8746	AW160949	Sequence 8798	Al905070
Sequence 8747	Al110582	Sequence 8799	AF153821
Sequence 8748	AA016140	Sequence 8800	U40580
Sequence 8749	AA359956	Sequence 8801	AB019528
Sequence 8750	Al216990	Sequence 8802	AB032955
Sequence 8751	AA507878	Sequence 8803	AL117572
Sequence 8752	AA112156	Sequence 8804	AC007450
Sequence 8753	AA582853	Sequence 8805	AC001064
Sequence 8754	AW404898	Sequence 8806	AB037864
Sequence 8755	AA133224	Sequence 8807	Z98257
Sequence 8756	AA315762	Sequence 8808	AF069039
Sequence 8757	AA232417	Sequence 8809	AF039906
Sequence 8758	AA300571	Sequence 8810	AL034380
Sequence 8759	AA305030	Sequence 8811	AB037745
Sequence 8760	AA332640	Sequence 8812	AF051934
Sequence 8761	AJ174681	Sequence 8813	AL121838
Sequence 8762	. AW384035	Sequence 8814	AC005627
Sequence 8763	AA313487	Sequence 8815	AC004924
Sequence 8764	AN112971	Sequence 8816	AK000100
Sequence 8765	W86544	Sequence 8817	AK000897
Sequence 8766	AA291813	Sequence 8818	AK001701
Sequence 8767	AA488385	Sequence 8819	AF076196
Sequence 8768	AA062737	Sequence 8820	AC004987
Sequence 8769	AA191651	Sequence 8821	AK000563
Sequence 8770	AA836985	Sequence 8822	AK000189

95/100

Table 9

Sequence 8823	AC005099	Sequence 8835	M99651
Sequence 8824	AC004885	Sequence 8836	L29349
Sequence 8825	AL080312	Sequence 8837	D26067
Sequence 8826	AB019440	Sequence 8838	AB003063
Sequence 8827	AK001958	Sequence 8839	AK001675
Sequence 8828	AK001690	Sequence 8840	AC007528
Sequence 8829	AF117947	Sequence 8841	X51465
Sequence 8830	M31952	Sequence 8842	X41106
Sequence 8831	AC002520	Sequence 8843	Z29726
Sequence 8832	AK000279	Sequence 8844	Z12953
Sequence 8833	AJ250044		
Sequence 8834	AB019437		

Sequence 8847	AA468917	Sequence 8879	Al692661
Sequence 8848	AA297767	Sequence 8880	AA514775
Sequence 8849	AW402280	Sequence 8881	Al366360
Sequence 8850	C04801	Sequence 8882	AA376870
Sequence 8851	AA552396	Sequence 8883	Al280747
Sequence 8852	AA471133	Sequence 8884	T52909
Sequence 8853	AW160559	Sequence 8885	AA193479
Sequence 8854	AA102263	Sequence 8886	Al354872
Sequence 8855	AI151538	Sequence 8887	AJ829970
Sequence 8856	F28212	Sequence 8888	AW378925
Sequence 8857	AA129206	Sequence 8889	AA716411
Sequence 8858	AI267807	Sequence 8890	AL079578
Sequence 8859	Al951118	Sequence 8891	AA357031
Sequence 8860	AA470605	Sequence 8892	AW365221
Sequence 8861	Al332588	Sequence 8893	AA298786
Sequence 8862	T90566	Sequence 8894	Al815773
Sequence 8863	AI753623	Sequence 8895	AA256783
Sequence 8864	AI858003	Sequence 8896	AL046662
Sequence 8865	AA613890	Sequence 8897	Al446628
Sequence 8866	AA248846	Sequence 8898	AA411293
Sequence 8867	AA297215	Sequence 8899	AA564556
Sequence 8868	AA151172	Sequence 8900	AA131052
Sequence 8869	AA505723	Sequence 8901	A1758709
Sequence 8870	AA826261	Sequence 8902	AW020070
Sequence 8871	Al610115	Sequence 8903	AW277064
Sequence 8872	~~AW401517	Sequence 8904	AW370156
Sequence 8873	Al345608	Sequence 8905	AA902388
Sequence 8874	AW385798	Sequence 8906	AW371201
Sequence 8875	Al253292	Sequence 8907	AA084987
Sequence 8876	AA903904	Sequence 8908	AA112069
Sequence 8877	H40724	Sequence 8909	AA534166
Sequence 8878	Al685714	Sequence 8910	AA825558

Table 9

Sequence 8911	AA332061	Sequence 8962	AA167700
Sequence 8912	AI355300	Sequence 8963	AA313517
Sequence 8913	AW265262	Sequence 8964	AA481643
Séquence 8914	AW387958	Sequence 8965	AA432021
Sequence 8915	AW450800	Sequence 8966	AA598697
Sequence 8916	AW363125	Sequence 8967	W37336
Sequence 8917	AA075781	Sequence 8968	AA281454
Sequence 8918	AA151337	Sequence 8969	Al307504
Sequence 8919	AJ273106	Sequence 8970	AA521474
Sequence 8920	Al298300	Sequence 8971	AI144384
Sequence 8921	AA493962	Sequence 8972	R02337
Sequence 8922	AA554672	Sequence 8973	AI140066
Sequence 8923	AA669154	Sequence 8974	AA031875
Sequence 8924	AA502851	Sequence 8975	W22059
Sequence 8925	AA831564	Sequence 8976	AA143044
Sequence 8926	AI521027	Sequence 8977	AA714591
Sequence 8927	AA372927	Sequence 8978	AA429737
Sequence 8928	AA610476	Sequence 8979	AA303755
Sequence 8929	AA318174	Sequence 8980	Al151087
Sequence 8930	Al432554	Sequence 8981	AA004657
Sequence 8931	T88877	Sequence 8982	AA706738
Sequence 8932	AI610880	Sequence 8983	AA620697
Sequence 8933	AA084067	Sequence 8984	AA279345
Sequence 8934	AW339076	Sequence 8985	N47785
Sequence 8935	AA218693	Sequence 8986	AB035301
Sequence 8936	AA150292	Sequence 8987	S70290
Sequence 8937	AA033916	Sequence 8988	D43950
Sequence 8938	AI687375	Sequence 8989	AF020038
Sequence 8939	AA249539	Sequence 8990	AP000527
Sequence 8940	AW363299	Sequence 8991	Y16241
Sequence 8941	AA211485	Sequence 8992	AF117616
Sequence 8942	A1269205	Sequence 8993	AF121863
Sequence 8943	R73759	Sequence 8994	AC004534
Sequence 8944	AA507383	Sequence 8995	AC002377
Sequence 8945	AI499393	Sequence 8996	L78670
Sequence 8946	AA288016	Sequence 8997	AF103907
Sequence 8947	AW369622	Sequence 8998	AL109799
Sequence 8948	AW385350	Sequence 8999	AL110271
Sequence 8949	AI907465	Sequence 9000	AC005832
Sequence 8950	AW377168	Sequence 9001	M13520
Sequence 8951	AI088018	Sequence 9002	AF236871
Sequence 8952	Al301904	Sequence 9003	D16224
Sequence 8953	AW370153	Sequence 9004	AF113699
Sequence 8954	AA280261	Sequence 9005	A26126
Sequence 8955	AA664003	Sequence 9006	AC016831
Sequence 8956	AA291952	Sequence 9007	AC004526
Sequence 8957	AA319870	Sequence 9008	AB028986
Sequence 8958	H62510	Sequence 9009	AF113889
Sequence 8959	AW377172	Sequence 9010	AC004099
Sequence 8960	AI620284	Sequence 9011	X57819
Sequence 8961	AW050999	Sequence 9012	AF174496

Sequence 9013	AJ001545	Sequence 9064	AF169677
Sequence 9014	K01615	Sequ nce 9065	AF161350
Seguence 9015	AC002418	Sequence 9066	AK001736
Sequence 9016	J00200	Sequence 9067	AC007055
Sequence 9017	AF153201	Sequence 9068	AL049265
Sequence 9018	AF077035	Sequence 9069	AK001150
Sequence 9019	AF090947	Sequence 9070	AF047185
Sequence 9020	U43939	Sequence 9071	AP000495
Sequence 9021	AL132986	Sequence 9072	D37965
Sequence 9022	D14658	Sequence 9073	AL008627
Sequence 9023	AF077045	Sequence 9074	AB011542
Sequence 9024	D83327	Sequence 9075	AB035542
Sequence 9025	X52509	Sequence 9076	L29164
Sequence 9026	AF090935	Sequence 9077	U89436
Sequence 9027	D25274	Sequence 9078	AK001105
Sequence 9028	J00196	Sequence 9079	A21185
Sequence 9029	AK000866	Sequence 9080	AC005032
Sequence 9030	AC007655	Sequence 9081	AB003730
Sequence 9031	U38980	Sequence 9082	X02152
Sequence 9032	D29640	Sequence 9083	M97934
Sequence 9033	AL132821	Sequence 9084	D28759
Sequence 9034	AC007688	Sequence 9085	U20158
Sequence 9035	X76775	Sequence 9086	J04543
Sequence 9036	A26609	Sequence 9087	M14300
Sequence 9037	AC005523	Sequence 9088	AF141347
Sequence 9038	AF187554	Sequence 9089	AK000316
Sequence 9039	U68139	Sequence 9090	AL049705
Sequence 9040	AB020692	Sequence 9091	AF151103
Sequence 9041	AL050179	Sequence 9092	AK001239
Sequence 9042	AF026692	Sequence 9093	M55618
Sequence 9043	X97544	Sequence 9094	AK001930
Sequence 9044	AC003043	Sequence 9095	AF139461
Sequence 9045	AC002528	Sequence 9096	AF104921
Sequence 9046	M21692	Sequence 9097	D38521
Sequence 9047	AP000529	Sequence 9098	AC004522
Sequence 9048	AF077029	Sequence 9099	AL021578
Sequence 9049	AF113544	Sequence 9100	E13405
Sequence 9050	AL050302	Sequence 9101	AJ001548
Sequence 9051	AF017732	Sequence 9102	AF161458
Sequence 9052	S74728	Sequence 9103	AF052137
Sequence 9053		Sequence 9104	X04802
Sequence 9054	AF155235	Sequence 9105	AB020689
Sequence 9055	AC005488	Sequence 9106	X52519
Sequence 9056		Sequence 9107	AF176203
Sequence 9057		Sequence 9108	AL136504
Sequence 9058		Sequence 9109	AK000078
Sequence 9059		Sequence 9110	AC003081
Sequence 9060		Sequence 9111	X72420 AK001360
Sequence 9061		Sequence 9112	
Sequence 9062		Sequence 9113	AL137256 M11749
Sequence 9063	AK000168	Sequence 9114	WI I 1749

Sequence 9115	AB032255	Sequence 9151	AB020663
Sequence 9116	AB029032	Sequence 9152	AC005037
Seguence 9117	M12075	Sequence 9153	M76979
Sequence 9118	AL033525	Sequence 9154	AJ223948
Sequence 9119	AL137529	Sequence 9155	S69272
Sequence 9120	AF083249	Sequence 9156	AL031282
Sequence 9121	D86978	Sequence 9157	AK000738
Sequence 9122	AF017178	Sequence 9158	A69515
Seguence 9123	AK000178	Sequence 9159	M14661
Sequence 9124	AF130342	Sequence 9160	E01094
Sequence 9125	J05016	Sequence 9161	AC005839
Sequence 9126	AF202321	Sequence 9162	AK000009
Sequence 9127	AF110824	Sequence 9163	AC004922
Sequence 9128	AF004877	Sequence 9164	K01144
Sequence 9129	AC007226	Sequence 9165	AF112217
Sequence 9130	AL031058	Sequence 9166	AC021049
Sequence 9131	AF146651	Sequence 9167	AL109956
Sequence 9132	AL031255	Sequence 9168	A94982
Sequence 9133	D55653	Sequence 9169	AL136295
Sequence 9134	AF151840	Sequence 9170	AL031281
Sequence 9135	AC005946	Sequence 9171	E01985
Sequence 9136	AF164610	Sequence 9172	AL049929
Sequence 9137	AC005369	Sequence 9173	M34088
Sequence 9138	D83077	Sequence 9174	Z18334
Sequence 9139	Z94753	Sequence 9175	U25182
Sequence 9140	M62401	Sequence 9176	AF015812
Sequence 9141	E01797	Sequence 9177	U66616
Sequence 9142	AK000712	Sequence 9178	S73591
Sequence 9143	M81182	Sequence 9179	X04803
Sequence 9144	AC005412	Sequence 9180	J05459
Sequence 9145	AF078866	Sequence 9181	Z18355
Sequence 9146	AL023553	Sequence 9182	Q49943
Sequence 9147	AB011108	Sequence 9183	X52268
Sequence 9148	AC004126	Sequence 9184	X40197
Sequence 9149	D26155		
Sequence 9150	AC004986		

Sequence 9185 found in patent publication WO00/04140
GGTACTITATTICATTCTGTGTTCTTGGGTGAGGTCTCCCCTCACCCAGTCAAGTTGATGTTAATCTAGAATTTTT
TCTTTTCCTTTTTTTCACTCTCTCTGTATTTGTGCTTTCCCCCTTTACTCTCTTCCCTTCATTCCTCTTCTCACT
ATTATCTTTTANAAAACAGCAAGATATTATATATATTTACTTTATATTCTCTTTCCAAATGATTAAAGTAATAATT/
ATAGGAATCCTCTTGTAAGTGGAAGAACTCTACCACATGCAT

Sequence 9186	A33292	Sequence 9195	A31920
Sequence 9187	X80695	Sequence-9196	M88108
Sequence 9188	X07979	Sequence 9197	S61826
Sequence 9189	Y00345	Sequence 9198	X80695
Sequence 9190	AC000394	Sequence 9199	E02240
Sequence 9191	X02344	Sequence 9200	E01094
Sequence 9192	X17206	Sequence 9201	Al907465
Sequence 9193	AF069307	Sequence 9202	A1905070
Sequence 9194	AF070561	Sequence 9203	AW206860

Sequence 9204	Al907176	Sequence 9256	AF015812
Sequence 9205	AW238475	Sequence 9257	Z82195
Sequence 9206	AW297005	Sequence 9258	L78670
Sequence 9207	Al904738	Sequence 9259	U25657
Sequence 9208	AW242885	Sequence 9260	J03607
Sequence 9209	T33066	Sequence 9261	AF064861
Sequence 9210	Al557112	Sequence 9262	AP000529
Sequence 9211	AF064861	Sequence 9263	AW367638
Sequence 9212	AD000092	Sequence 9264	AW404697
Sequence 9213	AC002326	Sequence 9265	AW378557
Sequence 9214	AF118063	Sequence 9266	AW378607
Sequence 9215	AC002528	Sequence 9267	AW404910
Sequence 9216	M20593	Sequence 9268	AF077345
Sequence 9217	X03742	Sequence 9269	AF090928
Sequence 9218	X52519	Sequence 9270	U47924
Sequence 9219	AF015812	Sequence 9271	AC005480
Sequence 9220	AC000080	Sequence 9272	A15293
Sequence 9221	U25657	Sequence 9273	M12523
Sequence 9222	Z62968	Sequence 9274	AF116194
Sequence 9223	AL050331	Sequence 9275	AF161501
Sequence 9224	AJ237735	Sequence 9276	K03432
Sequence 9225	AF178030	Sequence 9277	AC002060
Sequence 9226	AC002060	Sequence 9278	AF203815
Sequence 9227	AL096710	Sequence 9279	AC003688
Sequence 9228	AF001549	Sequence 9280	A14133
Sequence 9229	AC002465	Sequence 9281	AC007199
Sequence 9230	AC012331	Sequence 9282	AK001149
Sequence 9231	AL031427	Sequence 9283	Y09781
Sequence 9232	AF092907	Sequence 9284	AC005738
Sequence 9233	E15551	Sequence 9285	AF015812
Sequence 9234	AC000119	Sequence 9286	AK000862
Sequence 9235	AF201947	Sequence 9287	X52519
Sequence 9236	AC002039	Sequence 9288	AF226614
Sequence 9237	AF017178	Sequence 9289	AC004551
Sequence 9238	Al905070	Sequence 9290	AW405183
Sequence 9239	Al904738	Sequence 9291	Al905070
Sequence 9240	AW297005	Sequence 9292	AW367638
Sequence 9241	AW242885	Sequence 9293	AW378557
Sequence 9242	Al907465	Sequence 9294	AW378607
Sequence 9243	AW238475	Sequence 9295	· AW404697
Sequence 9244	AW206860	Sequence 9296	AW404910
Sequence 9245	X52519	Sequence 9297	A15293
Sequence 9246	AF090928	Sequence 9298	M12523
Sequence 9247	AC012331	Sequence 9299	AF116194
Sequence 9248	AF092907	Sequence 9300	AF203815
Sequence 9249	AC002528	Sequence 9301	E01094
Sequence 9250	AL021940	Sequence 9302	AC006165
Sequence 9251	Z62968	Sequence 9303	AF015812
Sequence 9252	AL049610	Sequence 9304	AF077345
Sequence 9253	D87022	Sequence 9305	AC020663
Sequence 9254	AL031670	Sequence 9306	X52519
Sequence 9255	AL096710	Sequence 9307	AC005480

Table 9

Sequence 9308 Sequence 9310 Sequence 9311 Sequence 9312 Sequence 9313 Sequence 9314 Sequence 9315 Sequence 9316 Sequence 9317 Sequence 9318 Sequence 9319	AK001149 U47924 AC006449 AF116195 U91328 AL050331 A63633 AF090928 AI089452 AA568815 AI610402 AI267285	Sequence 9325 Sequence 9326 Sequence 9327 Sequence 9328 Sequence 9330 Sequence 9331 Sequence 9332 Sequence 9333 Sequence 9334 Sequence 9335 Sequence 9335	AA532659 AA113788 AF100756 AC004686 AL137535 AC005515 AI312325 AW367627 AI610402 AW378557 AI267502 AI253379
Sequence 9318 Sequence 9319 Sequence 9320		Sequence 9335	
Sequence 9321 Sequence 9322 Sequence 9323 Sequence 9324	AW367627 AW405216 AW378557	Sequence 9339 Sequence 9340	AC004686 AF178030

Table 9-1 (A key to markers in Table 9)

Sequence Numbers	Database
1-687	dbEST
688-1002	Genbank
1003-1014	NUCPATENT
1020-1475	dbEST
1476-1817	Genbank
1818-1834	NUCPATENT
1837-2535	dbEST
2536-2977	Genbank
2978-3010	NUCPATENT
3024-3266	dbEST
3267-3395	Genbank
3396-3401	NUCPATENT
3404-3969	dbEST
3970-4320	Genbank
4321-4362	NUCPATENT
4369-4836	dbEST
4837-5275	Genbank
5276-5299	NUCPATENT
5301-5651	dbEST
5652-5883	Genbank
5884-5905	NUCPATENT
5919-6288	dbEST
6289-6533	Genbank
6534-6550	NUCPATENT
6558-6559	dbEST
6560-6596	Genbank
6597-6598	dbEST
6599-6635	Genbank
6636-6782	dbEST
6783-7003	Genbank
7004-7010	NUCPATENT
7012-7158	dbEST
7159-7379	Genbank
7380-7386	NUCPATENT
7388-7442	dbEST
7443-7607	Genbank
7608-7616	NUCPATENT
7618-7672	dbEST
7673-7837	Genbank
7838-7846	NUCPATENT
7848-7866	dbEST
7867-7900	Genbank
7901-7902	NUCPATENT
7903-7921	dbEST
7903-7921 7922-7955	Genbank
7922-7955 7956-7957	NUCPATENT
1001001	1001711611

Table 9-1 (A key to markers in Table 9)

7958-7975	dbEST
7976-7999	Genbank
8000-8084	dbEST
8085-8238	Genbank
8239-8241	NUCPATENT
8242-8275	dbEST
8276-8316	Genbank
8317	NUCPATENT
8318-8324	dbEST
8325-8329	Genbank
8330-8346	dbEST
8347-8382	Genbank
8383-8401	dbEST
8402-8430	Genbank
8431-8798	dbEST
8799-8840	Genbank
8841-8844	NUCPATENT
8847-8985	dbEST
8986-9180	Genbank
9181-9184	NUCPATENT
9186-9187	Genbank
9188-9200	Genbank
9201-9210	dbEST
9211-9237	Genbank
9238-9244	dbEST
9245-9262	Genbank
9263-9267	dbEST
9268-9289	Genbank
9290-9296	dbEST
9297-9315	Genbank
9316-9326	dbEST
9327-9330	Genbank
9331-9336	dbEST
9337-9340	Genbank

Table 10

01	B/ Turnoro	UP/DOWN	May Fold	# Tumors	Fold	Max # Tumors
Clone	% Turnors	DOWN	2	2	2	2
21899	33.3333333	UP	5	1	2	2
21941	16.66666667	UP	3	1	3	1
22040	16.6666667		5	1	5	1
22134	16.6666667	UP		2	2	3
22355	33.3333333	DOWN	3		2	5
22895	33.3333333	DOWN	5	2		3
23041	50	DOWN	2	3	2	
23443	33.3333333	DOWN	3	2	2	3
23454	16.6666667	UP	10	1	5	2
23790	50	DOWN	2	3	2	3
24097	33.3333333	UP	2	2	2	2
24339	33,33333333	UP	2	2	2	2
24642	33.3333333	DOWN	2	2	2	2
24884	16.66666667	UP	3	1	2	2
24895	16,66666667	DOWN	· 3	1	3	1
25194	33.33333333	DOWN	2	2	2	2
25389	33.33333333	DOWN	2	2 ·	2	2
25396	16.6666667	UP	3	1	3	1
25517	16.6666667	DOWN	3	1	2	2
25520	33.33333333	UP	2	2	2	2
26162	50	DOWN	2	3	2	3
26295	16.66666667	UP	3	1	2	2
26568	16.66666667	DOWN	, 5	1 .	` 3	4
27333	16.66666667	UP	3	1	3	1
	16.66666667	UP	3	1	• 2	2
27388	16.66666667	UP	3	1	3	1
27404	16.66666667	UP	3	1	2	2
27544	16.66666667	DOWN	3	1	3	1
27769	16.66666667	UP	3	1	3	1
28823	33.33333333	DOWN	2	2	2	2
29030	16.66666667	DOWN	3	1	2	3
29063	50	UP	2	3	2	3
29349		DOWN	2	2	2	2
29920	33.33333333	UP	3	1	3	1
29927	16.66666667	DOWN	3	2	3	2
29967	33,33333333	UP	3	1	2	2
30428	16.66666667	DOWN	. 3	. 1	3	1
30473	16.66666667		3	1	2	. 2
30793	16.66666667	DOWN	2	2	2	2
31251	33.33333333		2	2	2	2
31869	33.3333333	UP	3	1	3	1
31955	16.6666667	DOWN	3	1	3	1
32092	16.6666667	UP		2	2	2
32205	33.3333333	DOWN	2		3	1
32273	16.6666667	DOWN	3	1	3 2	2
32331	16.6666667	UP	3	1		3
32381	50	DOWN	2	3	2	3 2
32509	33,3333333	DOWN	2	2 .	2	.1
32516	16.6666667	UP	5	1	5	• 1

2/50

T -	2 _ 1	1 _	4	\sim
Та	D	æ	1	u

32522	33.3333333	DOWN	2	2	2	2
32567	16.66666667	DOWN	3	1	2	3
32661	16,66666667	UP	3	1	3	1
32708	50	DOWN	2	3	2	3
32777	16.66666667	DOWN	3	1	2	2
32962	33,33333333	DOWN	2	2	2	2
33022	33.3333333	UP	2	2	2	2
33045	16.66666667	UP	5	1	5	1
33076	16.66666667	UP	3	1	2	2
33096	16.66666667	UP	5	1	5	1
33294	16.6666667	DOWN	3	1	2	2
33523	33.33333333	UP	2	2	2	2
33643	33.33333333	UP	3	2	3	2
33821	16.66666667	DOWN	10	1	2	3
33837	16.66666667	DOWN	3	1	3	1
34106	16.66666667	UP	3	1	2	2
34302	16.66666667	DOWN	3	1	3	1
34326	50	UP	2	3	2	3
34442	16.66666667	UP	3	1	2	2
34526	16.66666667	UP	3	1	2	3
	16.66666667	UP	5	1	5	1
34832	16.66666667	UP	5	1	3	2
35010	16.66666667	UP	3	1	2	2
35058	50	DOWN ·	2	. 3	2	3
35311 35329	50	DOWN	3	3	· 2	4
	16.66666667	UP	3	1	2	2
35481	16.66666667	UP	3	1	2	2
35484	16.66666667	DOWN	10	1	2	3
35575	16.66666667	DOWN	10	1	2	3
35626	16.66666667	DOWN	3	1	2	2
35804	16.66666667	UP	3	1	3	1
35828	16.66666667	UP	3	1	3	1
36393	66.66666667	DOWN	2	4	2	4
37404	16.66666667	DOWN	3	1	2	4
37665	16.6666667	UP	5	1	5	1
37901	16.66666667	UP	3	1	3	1
37980	33.33333333	DOWN	2	2	2	2
38263	33.33333333	DOWN	2	2	2	2
38510	33.33333333	DOWN	2	2	2	2
38718 39076	33.33333333	DOWN	2	2	2	2
	50	UP	2	3	2	3
39313	16.66666667	UP	3	1	3	1
39442	16.66666667	DOWN	3	1	2	2
39453	16.66666667	DOWN	3	1	3	1
39577		UP	2	2	2	2
39685	33.33333333 16.6666667	DOWN	3	1	2	2.
39766	16.66666667	UP	3	1	3	1
39833		DOWN	3	3	2	5
39885	50	UP	3	1	2	2
39977	16.66666667	UP	J	•	-	-

			_			2
40063	16.66666667	DOWN	3	1	2 3	2 1
40104	16.66666667	DOWN	3	1	2	4
40155	16.66666667	DOWN	3	1		1
40338	16.66666667	DOWN	3	1	3	5
40364	50	DOWN	3	3	2	
40402	33.3333333	UP .	2	2	2	2
40672	16.66666667	DOWN	3	1	3	1
40762	16.66666667	UP	3	1	3	1
40881	33.33333333	DOWN	2	2	2	2
41108	16.66666667	DOWN	3	1	2	2
41295	16.66666667	DOWN	3	1	2	4
41344	16.66666667	DOWN	. 3	1	2	2
41391	16.66666667	UP	5	1	2	2
41424	83.3333333	DOWN	3	5	2	6
41569	16.66666667	UP	3	1	2	2
41647	16.66666667	DOWN	3	1	3	1
41822	16.66666667	UP	3	1	2	2
41869	33.33333333	DOWN	2	2	2	2
41888	50	DOWN	3	3	2	6
41905	16.66666667	UP	3	1	3	1
42035	16.66666667	UP	5	1	5	1
42118	66,66666667	DOWN	2	4	2	4
42258	33.33333333	UP '	2	2	2	2
42373	16.6666667	. UP	5.	1	5	1
42415	33.3333333	DOWN	10	2	5	4
42636	16.6666667	DOWN	3	1	2	2
42864	16.6666667	DOWN	3	1	3	1
43662	16.66666667	UP	3	1	2	2
43743	16.6666667	DOWN	3	1	3	1
44387	33.33333333	DOWN	5	2	2	3
45542	16.6666667	DOWN	3	1	2	3
45544	33.3333333	DOWN	2	2	. 2	2
45578	16.6666667	DOWN	3 .	1	3	1
45641	16.6666667	UP	3	1	3	1
45852	16.66666667	DOWN	3	1	2	3
46054	33.3333333	DOWN	2	2	2	2
46166	16.66666667	DOWN	3	1	2	3
46266	33.3333333	DOWN	2	2	2	2
46356	16.6666667	UP	10	1	10	1
46452	16.6666667	UP	3	1	3	1
46518	16.66666667	DOWN	3	1	3	1
46667	33.3333333	DOWN	2	2	2	2
46829	16.6666667	DOWN	3	1	2	3
46958	66.6666667	DOWN	2	4	2	4
47037	16.66666667	DOWN	3	1	2	2
47043	16.66666667	UP	3	1	3	1
47264	33.33333333	DOWN	2	2	2	2
47378	16.66666667	UP	10	1	10	1
47452	16.66666667	DOWN	3	1	2	3
41402	10.00000001	20111	•	•		

Table 10

47459	50	DOWN	5	3	2	4
47461	16.66666667	UP	3	1	3	1
48183	33,33333333	DOWN	5	2	3	5
48553	33,33333333	UP	2	2	2	2
48642	33.33333333	DOWN	2	2	2	2
48751	33.33333333	DOWN	2	2	2	2
49204	16.66666667	UP	5	1	5	1
49229	16.66666667	UP	5	1	5	1
49249	16.66666667	DOWN	3	1	2	4
49311	16.66666667	UP	3	· 1	3	1
49332	16.66666667	UP	3	1	3	1
49443	16.66666667	UP	3	1	2	2
49443	33.33333333	UP	2	2	2	2
	33.33333333	UP	2	2	2	2
49515	16.66666667	DOWN	3	1	2	2
49567	33.33333333	DOWN	2	2	2	2
49595		UP	3	1	2	4
49707	16.66666667	DOWN	10	2	3	4
49796	33.33333333	DOWN	3	1	3 .	1
49836	16.6666667	UP	3	1	2	2
49839	16.66666667	DOWN	25	1	5	 6
49987	16.66666667	DOWN	3	4	3	4
50114	66.6666667		3	1	3 .	1
50508	16.66666667	DOWN		1	3	1
50521	16.66666667	UP	3	2	2	3
50562	33.3333333	UP	3	2	2	. 2
50680	33.33333333	UP	2	1	3	1
50703	16.6666667	UP	3	1	2	2
50764	16.66666667	UP	3	1	3	1
50772	16.6666667	UP	3	1	3	1
50786	16.6666667	UP	3	1	5	1
50877	16.66666667	UP	5		3	3
50892	16.66666667	DOWN	5	1	2	4
50900	16.66666667	DOWN	5	1		2
51103	16.6666667	UP	3	1	2 2	2
51216	33.3333333	UP	2	2	2	5
51226	16.6666667	UP	3	1		3
51331	33.3333333	DOWN	3	2	2 3	3 1
51363	16.6666667	DOWN	3	1		2
51378	16.66666667	UP	3	1	2 2	2
51406	16.66666667	UP	3	1		1
51420	16.6666667	UP	3	1	3	2
51447	33.33333333	UP	3	2	3	_
51448	16.6666667	DOWN	3	1	3 .	1
51511	16.66666667	DOWN	3	1	3 .	1
51585	16.66666667	UP	3	1	2	2
51606	33.33333333	UP	2	2	2	2
51608	16.66666667	DOWN	3	1	2	2
51700	33,33333333	DOWN	2	2	2	2
51708	16.66666667	DOWN	3	1	2	3

WO 01/46697

Table 10

5/50

517 1 6	33,33333333	UP	.2	2	2	2
51737	50	DOWN	5	3	2	6
51773	16.66666667	UP	5	1	5	1
51831	16.66666667	DOWN	3	1	2	3
51921	16.66666667	UP	3	1	3	1
51939	16.66666667	DOWN	3	1	3	1
	16.66666667	DOWN	5	1	2	3
52021	16.66666667	UP	3	1	3	1
52026		DOWN	3	4	2	5
52079	66.66666667	DOWN	2	2	2	2
52096	33.33333333	DOWN	3	1	3	1
52186	16.66666667	DOWN	3	1	2	3
52303	16.6666667		3	1	2	2
52339	16.66666667	DOWN	2	6	2	6
52704	100	DOWN		2	2	2.
52741	33.3333333	UP	2	2	2	2
52754	33.3333333	UP	2		3	3
52933	33.3333333	DOWN	5	2		2
52990	33.3333333	UP	2	2	2	2
52992	33.3333333	DOWN	2	2	2	2
53081	16.66666667	UP	3	1	2	3
53122	33.3333333	UP	3	2	2	3 4
53319	66.66666667	DOWN	2	4	2	5.
53384	50	DOWN	3	3	2	
53393	16.66666667	UP	5	. 1	5	1
60605	16.66666667 ´	DOWN	3	1	3	
62112	16.66666667	. UP	3 ·	1	3	1
62263	16.66666667	DOWN	3	.1	3	1
62340	16.6666667	DOWN	3	1	3	
66317	16.66666667	DOWN	5	1	3	2 1
66322	16.6666667	UP	3	1	3	
66437	16.66666667	UP	10	1	2	2
66498	16.6666667	DOWN	3	1	2	2
66560	16.6666667	UP	5	1	5	1 3
66562	50	DOWN	2	3	2	
66564	16.66666667	DOWN	3	1	2	2
66594	16.66666667	UP	3	1	3	1
66599	16.66666667	DOWN	25	1	3	2 ·
66815	33,3333333	DOWN	2	2	2	2
66977	33.33333333	DOWN	. 2	2	2	2
67033	16.6666667	UP	3	1	3	1
67067	33.33333333	DOWN	2	2	2	2
67069	16.6666667	UP	3	1	,3	1
67167	16.6666667	DOWN	3	1	.3	1
67654	33.33333333	UP	2	2	2	2
68049	16.66666667	DOWN	3	1	2	5
68207	16.66666667	UP	3	1	3	1
68340	16.6666667	UP	3	1	2	2
68557	33.3333333	UP	3	2	3	2 1
68794	16.66666667	DOWN	5	1	5	1

. 6/50

Ta	ab	e	1	0

68988	16.6666667	UP	3	1	3 .	1
69046	33.3333333	UP	2	2	2	2
69904	16.66666667	UP	3	1	3	1
69935	33.33333333	UP	2	2	2	2
70093	16.66666667	DOWN	3	1	3	1
70349	16.66666667	DOWN	3	1	3	1
71727	16.66666667	DOWN	3	1	3	1
71863	16.6666667	UP	3	1	3	1
72778	16.66666667	DOWN	3	1	2	2
73268	33.3333333	DOWN	2	2	2	2
73638	50	DOWN	2	3	2	3
73720	16.66666667	DOWN	3	1	3	1
73786	16.6666667	DOWN	5	1	5	1
73787	16.66666667	DOWN	5	1	3	2
73807	16.66666667	DOWN	5	1	5	1
73960	16.66666667	DOWN	5	1	5	1
74007	16.66666667	DOWN	5	1	5	1
74512	16.66666667	DOWN	5	1	5	1
74518	16.6666667	UP	3	1	3	1
74537	16.66666667	DOWN	3	1	3	1
74738	16.6666667	DOWN	3	1	3	1
75884	16.6666667	UP	3	1	3	1
75919	16.6666667	UP	3	1	3	1
76005	16.66666667	DOWN	5	1	5	1
76098	16.66666667	DOWN	3	1	3	1
76179	16.6666667	DOWN	3	1	3	, 1
76221	16.66666667	UP	5	1	5	1
76864	16.6666667	DOWN	3	1	3	1
77202	16.6666667	DOWN	5	1	5	1
77244	16.66666667	DOWN	3	1	3	1
77911	16.66666667	DOWN	. 3	1	2	3
77915	16.66666667	DOWN	3	1	3	1
78041	16.66666667	DOWN	5	1	5	1
78148	16.66666667	UP	3	1	2	3 3
78353	33.3333333	DOWN	3	2	2	ა 1
78921	16.6666667	DOWN	3	1	3	2
79022	16.6666667	UP	3	1	2 2	4
79412	33.3333333	DOWN	3	2	3	2
79503	33.3333333	DOWN	3	2	3	1
79581	16.6666667	UP	3	1	2	2
79629	16.6666667	UP	3	1	3	1
79747	16.6666667	DOWN	3	1	3	1
79822	16.6666667	DOWN	3	1	5 5	1
79852	16.6666667	DOWN	5	2	2	2
79899	33.3333333	DOMŇ	2 2	2	2	2
80050	33.33333333	UP	5	2	2	4
80109	33.3333333	UP		2	3	2
80221	33.33333333	UP	3 3	1	3	1
80371	16.66666667	DOWN	3	•	J	•

Ta	h	ما	1	ი

			2	1	2	4
80500	16.66666667	UP	3	1	5	. 1
80574	16.66666667	DOWN	5	1,	3	1
80618	16.66666667	UP	3	1	2	3
80643	16.6666667	UP	3		3	1
80672	16.6666667	UP	3	1	2	4
80948	16.66666667	DOWN	5	1	3	2
81203	16.66666667	DOWN	5	. 1	3	1
81316	16.66666667	UP	3	1	2	2
81320	16.66666667	UP	3	1	.5	1
81427	16.66666667	DOWN	5	1		- 1
81604	16.6666667	DOWN	3	1	3	5
82225	33.3333333	DOWN	3	2	2	2
82236	33.3333333	DOWN	2	2	2	1
82556	16.6666667	UP	3	1	3	3
82869	33.3333333	DOWN	3	2	2	
83029	16.66666667	DOWN	3	1	3	1
83466	16.66666667	DOWN	3	1	3	1
84211	33,33333333	UP	2	2	2	2
84586	16.66666667	UP	3	1	3	1
84713	16.66666667	UP	3	1	3	1
85074	16.66666667	DOWN	3	1	3	1
85224	16.66666667	UP	3	1	2	2
85450	33.33333333	UP	2	2	2	2
85497	33.33333333	DOWN	2	2	2	2
85678	16.66666667	DOWN	3	1	3	1
85682	16.66666667	DOWN	3	1	3	1
86160	16.66666667	DOWN	3	. 1	2	2
86220	16.66666667	UP	3	1	3	1
108330	16.66666667	· UP	3	1	2	3
108395	16.66666667	UP	3	1	3	1
109123	33.33333333	UP	2	2	2	. 2
109221	33.33333333	DOWN	2	2	2	2
109316	16.66666667	DOWN	10	1	3	5
109437	33.3333333	DOWN	2	2	2	2
110298	33.33333333	DOWN	2	2	2	2
110307	33.33333333	DOWN	2	2	2	2
110371	33.3333333	DOWN	2	2	2	2.
110507	16.66666667	DOWN	3	1	3	1
110582	16.6666667	UP	5	1	2	2
110904	16.66666667	UP	3	1	2	2
110912	33.3333333	DOWN	2	. 2	2	2 1
111348	16.66666667	DOWN	3	1	3	•
111389	16.66666667	UP	5	1	2	2
112482	50	UP	2	3	2	3
113048	50	DOMN	2	3	2	3
113257	16.66666667	DOWN	3	1	3	1.
115143	16.66666667	UP	3	1	3	1
118078	16.66666667	DOWN	3	1	3	1
119851	16.6666667	DOWN	10	1	10	1

Table 10

119882	16.6666667	UP	5	1	5	1
120106	50	DOWN	2	3	2	3
120138	33.33333333	DOWN	2	2	2	2
120189	33.33333333	DOWN	3	2	2	3
120544	16.66666667	UP	3	1	3	1
120707	16.6666667	DOWN	5	1	2	2
120881	16.66666667	UP	5	1	3	2
121018	16.6666667	DOWN	3	1	2	2
121275	33.3333333	UP	2	2	2	2
121722	16.6666667	UP	5	1	5	1
121857	16.6666667	UP	3	1	2	2
122159	16.6666667	DOWN	3	1	3	1
122183	16.66666667	DOWN	3	1	2	3
122321	50	UP	2	3	2	3
123061	33.33333333	,DOWN	2	2	2	2
123255	16.66666667	DOWN	3	1	3	1
123264	16.66666667	UP	3	1	2	2
123474	16.66666667	UP	3	1	2	2
123561	33.33333333	DOWN	10	2	3	6
123695	16.66666667	DOWN	5	1	5	1
123926	16.66666667	DOWN	3	1	3	1
123980	33.33333333	DOWN	2	2	2	2
124064	33.33333333	UP	3	2	.2	3
124071	50	DOWN	3	3	2	.5
124128	33.33333333	DOWN	2	2	2	2
124239	33.3333333	DOWN	3	2	2	4
124252	16.66666667	DOWN	5	1	5	1
124427	16.66666667	DOWN	3	1	3	1
124510	33.3333333	DOWN	3	2	2	4
124753	16.66666667	UP	5	1	5	1
125148	50	DOWN	2	3	2	3
126341	83.33333333	DOWN	2	5	2	5
126413	16.66666667	DOWN	3	1	2	5
126419	50	DOWN	2	3	2	3
126513	50	DOWN	2	3	2	3
127063	50	DOWN	2	3	2	3
127147	33.3333333	DOWN	2	2	2	2
127610	16.66666667	DOWN	5	1	2	4
127710	50	DOWN	2	3	2	
127841	16.66666667	UP	3	1	3	1
127931	16.66666667	DOWN	3	1	3	
128083	16.6666667	DOWN	5	1	. 5	1
128126	50	UP	. 2	3	2	. 3 2
128457	16.6666667	DOWN	3	1	2	2
128738	33.3333333	DOWN	2	2	2	2
128792	33.3333333	DOWN	2	2	2 2	5
129032	16.6666667	DOWN	10	1	2	2 2
129387	16.6666667	DOWN	3	1	3	1
129477	16.6666667	UP	3	1	3	•

Table 10

129478	33.33333333	DOWN	2	2	2	2
129585	16.66666667	DOWN	3	1	2	3
129610	16.6666667	DOWN	3	1	3	1
129725	66.6666667	DOWN	2	4	2	4
129922	50	DOWN	2	3	2	3
130031	33.33333333	UP	2	2	2 ·	2
130057	16.66666667	DOWN	5	1	2	2
130078	16.66666667	DOWN	3	1	3	1
130103	66.6666667	DOWN	2	4	2	4
130664	16.66666667	DOWN	10	1	10	1
130742	16.66666667	DOWN	5	1	5	1
130835	16.66666667	DOWN	3	1	3	1
131073	33.33333333	DOWN	2	2	2	2
131099	16.6666667	DOWN	3	1	. 2	4
131268	33.3333333	DOWN	10	2	5	5
131563	33.3333333	DOWN	2	· 2	2	2
131887	16.6666667	DOWN	3	1	2	4
132015	33,33333333	UP	2	2	2	2
132140	16.66666667	DOWN	10	1	5	2
132304	16.66666667	UP	3	1	2	2
132326	33.33333333	DOWN	2	2	2	2
132636	16.66666667	DOWN	3	1	2	2
133273	33.33333333	DOWN .	2	2	2	2
134430	16.66666667	DOWN	3	1	2	2
134783	16.66666667	UP	5	1	2	5
134969	16.66666667	DOWN	5	1	5	1
134976	50	DOWN	2	3	2	3
135065	33.33333333	DOWN	3	2	2	3
135083	33.3333333	DOWN	2	2	2	2
135221	50	DOWN	5	3	5	3
135240	33.3333333	DOWN	2	2	2	2
135253	66.6666667	DOWN	2	4	2	4
135527	33.33333333	UP	3	2	2	4
135900	16.66666667	DOWN	3	1	2	3
135975	33.3333333	DOWN	2	2	2	2
136169	16.66666667	UP	3	1	3	.1
136235	16.66666667	DOWN	3	1	2	2 2
136317	33,33333333	DOWN	2	2	2	4
136508	33,33333333	DOWN	3	2	2	4
136919	66.6666667	DOWN	2	4	2	1
137189	16.66666667	DOWN	3	1	3	2
137387	33.3333333	DOWN	2	2	2	2
137638	33.3333333	DOWN	2	2	2	1
137793	16.66666667	DOWN	3	1	. 3	2
137940	33.33333333	DOMN	5	2	5 2	2
138165	33.3333333	DOWN	2	2	2 2	2
138189	33.3333333	DOWN	2	2	2	2
138304	33.33333333	DOWN	2	2 1	2	3
138496	16.66666667	UP	3	ı	2	

Table 10

•						
138775	16.66666667	DOWN	3	1	3	1
138788	16.66666667	DOWN	3	1	2	3
138978	33.3333333	DOWN	2	2	2	2
138991	16.66666667	UP	3	1	2	4
139009	33.3333333	UP	3	2	2	4
139062	33.3333333	DOWN	2	2	2	2
139226	16.66666667	DOWN	3	1	2	4
139540	16.6666667	UP	3	1	3	1
139681	33.3333333	UP	2	2	2	2
139766	16.6666667	DOWN	5	1	2	5
139771	16.6666667	DOWN	10	1	10	1
139835	83.33333333	DOWN	2	5	2	5
139892	50	DOWN	2	3	2	3
140100	16.66666667	DOWN	3	1	3	1
140150	16.66666667	UP	5	1	5	1
140240	66.6666667	DOWN	3	4	2	5
140301	33,33333333	UP	3	2	2	4
140455	33.3333333	DOWN	3	2	2	3
140830	16.66666667	UP	3	1	3	1
140831	16.66666667	DOWN	3	1	3	1
141230	16.66666667	DOWN	3	1	2	3
141258	16.66666667	DOWN	5	1	3	2
141768	16.66666667	UP	10	1	10	1
141845	33,33333333	DOWN	2.	2	2	2
141852	16.66666667	UP	3	1	3	1
141854	50	DOWN	2	3	2	3
142326	16.66666667	UP	5	1	2	2
143169	16.66666667	DOWN	5	1	5	1
143322	33.3333333	UP	2	2	2	2
143661	16.66666667	UP	3	1	3	1
143846	33.33333333	DOWN	10	2	5	4
143887	50	DOWN	3	3	2	4
143962	33.33333333	DOWN	2	2	2	2
144786	50	UP	2	3	2	3
144880	16.6666667	DOWN	3	1	3	1
144916	33.3333333	DOWN	2	2	2	2
144924	50	DOWN	2	3	2	3
145740	16.66666667	UP	3	1	3	1
148225	16.66666667	DOWN	3	1	2	3
148743	16.66666667	DOWN	3	1	3	1
148968	16.66666667	UP	5	1	2	3
149013	50	DOWN	2	3	2	3
150135	33.3333333	UP	2	2	2	2
150702	100	DOWN	2	6	2	6
150897	33.3333333	UP.	2	2	2	2
151055	33.33333333	DOWN	2	2	2	2
151184	33.33333333	UP	2	2	2	2
151240	16.66666667	DOWN	3	1	2	2
151365	50	DOWN	5	. 3	3	6

151896	16.66666667	DOWN	3	1	3	1
152289	16.66666667	DOWN	10	1	2	5
153006	33.33333333	DOWN	2	2	2	2
153025	50	UP	2	3	2	3
153355	16.66666667	UP	5	1	2	3
153411	16.66666667	UP	3	1	2	. 2
153505	33.3333333	DOWN	2	2	2	2
153617	16.66666667	DOWN	3	1	3	1
153646	50	UP	5	3	2	5
153977	33.33333333	DOWN	2	2	2	2
154172	16.6666667	DOWN	3	1	2	3
154790	33.3333333	DOWN	2	2	2	2
155201	33.3333333	DOWN	2	2	2	2
155806	16.66666667	DOWN	5	1	2	. 4
159608	50	DOWN	10	3	3	5
159623	16.6666667	UP	5	1	5	1
159725	33.33333333	DOWN	5	2	2	5
160192	50	DOWN	2	3	2	3
160532	16.66666667	DOWN	3	1	3	1
161456	33.33333333	DOWN	5	2	3	4
162211	33.33333333	DOWN	2	2	2	2
162491	16.66666667	UP	5	1	2	2
162775	33.33333333	DOWN	3	2	3	2
166530	50	DOWN	2	3	2	3
166616	16.66666667	DOWN	3	1	3	1
167205	16.66666667	DOWN	3	1	3	1
171753	33,33333333	DOWN	2	2	2	2
171916	33,33333333	UP	2	2	2	2
171973	16.66666667	UP	3	1	2	3
172139	33.33333333	UP	2	2	2	2
175103	16.66666667	DOWN	3	1	2	2
177074	33.33333333	DOWN	2	2	2	2
178860	16.66666667	DOWN	5	1	2	4
179276	33.33333333	DOWN	5	2	2	4
179500	16.66666667	UP	3	1	2	4
179603	33.33333333	DOWN	2	2	2	Ż
180082	33.33333333	DOWN	2	2	2	2
183103	16.66666667	UP	3	1	3	1
183281	16.66666667	DOWN	5	1	2	4
183337	16.66666667	UP	3	1	3	1
186132	33.3333333	UP	2	2	2	2
186767	50	UP	2	3	2	3
186918	33.3333333	DOWN	2	2	2	2
186982	33.33333333	DOWN	2	2	2	2
187266	16.66666667	UP	3	1	3	1
188036	16.66666667	DOWN	5	1	2	5
190305	16.66666667	DOWN	3	1	. 3	1
190325	16.66666667	DOWN	3	1	3	1
190732	16.66666667	UP	3	1	3	1
		-				

12/50

Table 10

190915	16.66666667	DOWN	3	1	3	1
191015	66.6666667	DOWN	3	4	2	6
191107	16.66666667	DOWN	3	1	3	1
191569	16.6666667	DOWN	3	1	. 3	1
191664	16.6666667	UP	5	1	3	4
191904	33.3333333	DOWN	2	2	2	2
192401	50	DOWN	· 5	3	3	5
193476	16.6666667	DOWN	3	1	3	1
193518	16.66666667	UP	· 10	1	2	2
193617	33.3333333	UP	3	2	3	2
193883	50	DOWN	2	3	2	3
193892	33.33333333	DOWN	2	2	2	2
194704	33.3333333	DOWN	2	2	2	2
194723	16.66666667	DOWN	3	1	3	1
195346	16.66666667	DOWN	3	1	2	2
195875	16.66666667	UP	3	1	3	1
196005	33.33333333	DOWN	2	2	2	2 ·
196070	16.66666667	DOWN	3	1	3	1
196115	16.66666667	UP	5	1	5	1
196189	50	DOWN	2	3	2	3
196387	16.66666667	UP	3	1	3	1
196543	16.66666667	UP	50	1	50	1
196612	33.33333333	UP	5	2	2	3 .
196650	16.66666667	DOWN	3	1	3	1
196860	16.66666667	DOWN	3	1	2	2
197056	33.3333333	DOWN	2	2	2	2
197525	33.33333333	DOWN	3	2	3	2
197676	33.3333333	DOWN	2	2	2	2
197779	16.6666667	DOWN	5	1	5	1
197821	16.66666667	DOWN	3	1 .	. 3	1
197831	16.66666667	DOWN	5	1	5	1
197903	33,33333333	UP	2	2	2	2
198820	16.66666667	UP	3	1	3 .	1
198960	50	DOWN	3	3	2	4
199158	33.3333333	DOWN	2	2	2	2
199180	33.3333333	DOWN	2	2	2	2
199185	16.6666667	DOWN	3	1	2	2
199367	16.66666667	DOWN	3	1	3	1
199577	50	DOWN	2	3	2	3
199628	16.66666667	UP	5	1	5	1
199635	33.33333333	DOWN	5	2	3	3
200656	16.6666667	DOWN	3	1	2	3
201173	33.3333333	DOWN	2	2	2	2
201203	33.33333333	DOWN	2	. 2	2	2
201274	33.33333333	DOMN	2	2	2	2
201440	33.3333333	DOWN	2	2	2	2
201586	16.66666667	DOWN	3	1	2	2
201727	50	UP	2	3	2	3
201757	33.33333333	UP	2	2	2	2
					•	

201890	33.3333333	DOWN	2	2	2	2
201931	16.6666667	DOWN	3	1	3	1
202154	66.6666667	UP	2	4	2	4
202209	16.66666667	DOWN	3	1	2	2
202357	33.3333333	DOWN	2	2	2	2
202535	16.66666667	DOWN	3	1	2	2
202682	16.66666667	DOWN	3	1	3	1
203132	16.6666667	DOWN	10	1	2	5
203348	33.3333333	DOWN	2	2	2	2
204214	16.66666667	UP	5	1	5	1
204257	33.33333333	UP	2	2	2	2
204465	33.33333333	DOWN	2	2	2	2
204478	50	DOWN	2	3	2	3
204545	16.66666667	UP	3	1	2	2
204624	16.66666667	DOWN	3	1	3	1
204661	33.3333333	DOWN	2	2	2	2
204686	16.66666667	UP	3	1	3	1
204688	33.33333333	DOWN	2	2	2	2
205049	16.66666667	UP	· 3	1	2	4
205497	33.33333333	DOWN	2	2	2	2
205527	66.66666667	DOWN	2	· 4	2	4
205633	16.66666667	UP	5	1	2	4
206370	33.33333333	DOWN	3	2	2 .	5
206779	16.66666667	DOWN	3	1	3	1
206785	16.66666667	DOWN	3	1	3	1
206838	33.33333333	DOWN	3	2	2	• 4
207016	16.66666667	DOWN	3	1	2	3
207558	16.66666667	UP	3	1	2	3
207735	16.66666667	DOWN	3	1	2	5
208027	16.66666667	DOWN	3	1	3	1
209042	33.33333333	DOWN	2	2	2	2
209137	16.66666667	UP	3	1	3	1
209436	33.33333333	UP	2	2	2	2
209655	50	DOWN	2	3	2	3
209756	16.66666667	DOWN	3	1	2	2
210405	33.33333333	DOWN	2	2	2	2
210687	16.66666667	UP	5	1	5	1
210789	50	DOWN	2	3	2	3
210820	16.6666667	DOWN	3	1	3	1
211758	16.66666667	DOWN	5	1	3	4
211865	16.66666667	UP	3	1	3	1
212325	33.33333333	DOWN	2	2	2	2
212496	50	DOWN	2	3	2	3
212542	16.66666667	DOWN	3	1	2	. 3
212649	16.66666667	DOWN	3	1	2	2
212698	16.66666667	DOWN	3	1	3	1
213634	16.66666667	DOWN	3	1	3	1
214006	33.33333333	DOWN	2	2	2	2
214068	16.66666667	DOWN	5	1	5	.1

214136	33.3333333	DOWN	2 -	2	2	2
214162	33.3333333	DOWN	3	2	2	3
214441	16.6666667	UP	3	1	3	1
214809	33.3333333	DOWN	2	2	2	2
214823	33.3333333	DOWN	2	2	2	2
215000	16.6666667	DOWN	3	1	3	1
219961	33.3333333	DOWN	2	2	2	2
220069	16.66666667	DOWN	5	1	2	2
220096	16.6666667	DOWN	3	1	3	1
220372	16.66666667	UP	5	1	3	2
222157	50	DOWN	3	3	2	5
223043	100	DOWN	10	6	10	6
223121	33.3333333	DOWN	3	2 .	2	5
223350	33.3333333	UP	5	2	3	3
229467	16.6666667	DOWN	3	1	2	2
230016	33.3333333	DOWN	2	2	2	2
230370	33.33333333	DOWN	2	2	2	2
230440	16.66666667	DOWN	3	1	3	1
230560	16.66666667	DOWN	3	1	2	3
231472	33.33333333	DOWN	2	2	2	2
231574	50	DOWN	. 3	3	2	6
232772	16.66666667	DOWN	3	1	2	2
232860	33.33333333	DOWN	3	2	3	2
233199	16.66666667	DOWN	5	1	2	5
233464	33.3333333	DOMN	2	2	2	2
233688	33.3333333	UP	2	2	2	2
233759	16.6666667	DOWN	3	1	3	1
233909	33.33333333	DOWN	2	2	2	2
233927	16.66666667	DOWN	3	1	3	1
234127	16.66666667	DOWN	3	1	3	1
235938	33.33333333	DOWN	2	2	2 .	2
236034	16.6666667	DOWN	3	1	2	2
236059	16.66666667	UP	3	1	3	1
236129	33.3333333	DOWN	2	2	2	2
238661	16.66666667	DOWN	5	1	5	1
239611	16.6666667	UP	3	1	3	1
240518	16.6666667	UP	3	1	3	1
240663	16.6666667	DOWN	5	1	2	6 4
240961	16.6666667	DOWN	5	1	2	2
240977	33.3333333	DOWN	2	2	2	2
241171	16.66666667	DOWN	3	1	2	2
241348	33.3333333	DOWN	2	2	2	
241736	16.6666667	UP	3	1	2	2 1
241788	16.6666667	UP	3	1	3	
241847	33.33333333	UP	2	2	2 2	2 3
241985	50	DOWN	2	3	2	3 3
242061	50	DOWN	2	3	2	2
242070	33.3333333	DOWN	2	2	2	3
242778	16.6666667	DOWN	. 5	1	2	3

243199	33.33333333	DOWN	2	2	2	2
243347	33.33333333	DOWN	2	2	2	2
243641	33.33333333	DOWN	2	2	2	2
243648	16.66666667	DOWN	3	1	3	1
243653	33.33333333	DOWN	2	2	2	2
243700	33.33333333	DOWN	2	2	2	2
243741	33.33333333	UP	3	2	2	3
243741	16.66666667	DOWN	3	1	2	2
244062	16.66666667	UP	25	1	25	1
	33.33333333	UP	2	2	2	2
244147	16.6666667	DOWN	3	1	3	1
244323	16.66666667	DOWN	3	1	2	2
244347	16.66666667	UP	3	1	3	1
244355		UP	3	1	3	1
244637	16.6666667	UP	3	1	3	1
244767	16.6666667	DOWN	2	2	2	2
244879	33.33333333	DOWN	2	2	2	2
244951	33.33333333	UP	3	1	3	1
245147	16.66666667	DOWN	2	2	2	2
245174	33.3333333		5	1	2	. 6
245277	16.6666667	DOWN		1	3	1
245409	16.66666667	DOWN	3 2	3	2	3
245457	50	DOWN	2	2	2	2
245577	33.3333333	UP	2 3.	1	2	2
245853	16.6666667	DOWN.		1	3	1
245860	16.6666667	DOWN	3	1	2	3
245990	16.6666667	DOWN	3 5	1	5	1
246239	16.6666667	DOWN	-	2	2	5
246377	33.3333333	DOWN	3	3	2	3
246430	50	DOWN	2	3 1	3	1
246524	16.6666667	UP	3		3	1
246872	16.66666667	DOWN	3	1	2	3
247117	16.6666667	DOWN	3	. 1 2	2	2
247177	33.33333333	DOWN	2		3	5
247660	83.3333333	DOWN	3	5	ა 2	2
248020	33,33333333	DOWN	2	2	3	1
248261	16.6666667	UP	3	, 1		1
248412	16.6666667	UP	3	1	3 3	1
248478	16.6666667	DOWN	3	1.	ა 2	2
248545	33.3333333	DOWN	2	2		2
249603	33.3333333	DOWN	2	2	2	6
249784	50	DOWN	5	3	2	
249995	33.3333333	DOWN	2	. 2	2	2
250654	33.3333333	UP	2	2	2	2
250812	33.3333333	UP	2	2	2	2
250869	16.6666667	DOMN	3	1	3	1
250883	16.6666667	DOWN	3	1	2	2
251019	16.6666667	DOWN	10	1	10	1
251452	33.33333333	DOWN	2	2	2	2
251685	50	UP	2	3	2	3

16/50

			-	_
Ta	h	e	4	0
10	-31		- 1	u

251826	16.66666667	DOWN	3	1	3 .	1
252382	16.66666667	DOWN	3	1	3	1
252515	16.66666667	UP	25	1	2	2
252663	16.6666667	NWOC	5	1	5	1
252953	16.6666667	NWOC	3	1	3	1
253246	16.66666667	NWOC	3	1	3	1
253253	16.66666667	DOWN	3	1	3	1
253532	16.66666667	DOWN	3	1	3	1
253534	16.66666667	DOWN	3	1	3	1
253577	16.66666667	DOWN	3	1	3	1
253865	16.66666667	DOWN	.3	1	3	1
253931	16.66666667	DOWN	5	1	5	1
254117	16.66666667	DOWN	10	1	10	1
254229	16.66666667	DOWN	5	1	5	1
254276	16.66666667	DOWN	3	1	3	1
254276 254355	16.66666667	DOWN	3	1	3	1
	16.66666667	DOWN	5	1	5	1
254662	16.66666667	DOWN	5	1	5	1
255182	16.66666667	DOWN	5	1	5	1
255285	16.66666667	UP	3	i	3	1
255333		DOWN	2	2	2	2
255754	33.33333333	UP	2	2	2	2
256664	33.33333333	DOWN	5	1	2	. 2
257162	16.66666667	DOWN	3	1	2	2
257329	16.66666667	UP	2.	2	2	2
257608	33.33333333	UP UP	3	1	3	1
258235	16.66666667	DOWN	2	2	2	2
258300	33.33333333		2	2	2	2
258454	33.33333333	UP	2	2	2	2
258860	33.33333333	UP	2	2	2	2
259344	33.33333333	DOWN	2	2	2	2
259350	33.33333333	DOWN	3	2	2	4
259406	33.33333333	DOWN		1	2	4
260170	16.6666667	DOWN	5	1	2	5
262060	16.66666667	UP	3	1	3	1
262823	16.6666667	UP	3		2	3
262920	50	DOWN	2	3	2	3
263013	50	UP	2	3 3	2	4
263014	50	DOWN	3		2	4
263047	16.6666667	DOWN	5	1	2	3
263716	16.66666667	UP	3	1	2	2
264162	16.66666667	DOWN	5	1	_	_
264938	16.66666667	DOWN	5	1	2	4
265350	33.3333333	DOWN	2	2	2	2
265680	16.66666667	DOWN	3	1	2	3
265694	33.3333333	UP	3	2	3	2 3
265853	50	UP	3	3	3	
266093	33,33333333	DOWN	2	2	2	2
266106	50	DOWN	2	3	2	3
266146	16.66666667	UP	. 3	1	3	1

Ta	b	le	1	C
l a	u	ı	- 1	١

266500 33.33333333 UP 2 2 2 266727 16.66666667 DOWN 3 1 3 267135 16.66666667 DOWN 3 1 2 267666 16.66666667 DOWN 3 1 2 267691 33.33333333 DOWN 2 2 2 267808 16.66666667 DOWN 3 1 3 268385 33.333333333 DOWN 2 2 2 268387 16.66666667 DOWN 3 1 3 268476 16.66666667 UP 5 1 5 268692 33.333333333 UP 2 2 2 269269 66.666666667 DOWN 3 4 2 269425 50 UP 2 3 2 270535 16.666666667 DOWN 3 1 3 270558 16.666666667 DOWN 3 1 3 271038 16.666666667 DOWN 3	2 1 2
266727 16.66666667 DOWN 3 1 3 267135 16.66666667 DOWN 3 1 2 267666 16.66666667 DOWN 3 1 2 267691 33.33333333 DOWN 2 2 2 267808 16.66666667 DOWN 3 1 3 268385 33.333333333 DOWN 2 2 2 268387 16.66666667 DOWN 3 1 3 268476 16.666666667 UP 5 1 5 268692 33.333333333 UP 2 2 2 269269 66.666666667 DOWN 3 4 2 269425 50 UP 2 3 2 270505 66.66666667 DOWN 3 1 3 270558 16.66666667 DOWN 3 1 3 270826 33.333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3	
267135 16.66666667 DOWN 3 1 2 267666 16.66666667 DOWN 3 1 2 267691 33.33333333 DOWN 2 2 2 267808 16.66666667 DOWN 3 1 3 268385 33.333333333 DOWN 2 2 2 268387 16.66666667 DOWN 3 1 3 268476 16.66666667 UP 5 1 5 268692 33.333333333 UP 2 2 2 269269 66.66666667 DOWN 3 4 2 269425 50 UP 2 3 2 270505 66.66666667 DOWN 3 1 2 270558 16.66666667 DOWN 3 1 3 270826 33.3333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 3 1 </td <td>2</td>	2
267666 16.66666667 DOWN 3 1 2 267691 33.33333333 DOWN 2 2 2 267808 16.666666667 DOWN 3 1 3 268385 33.333333333 DOWN 2 2 2 268387 16.666666667 DOWN 3 1 3 268476 16.666666667 UP 5 1 5 268692 33.333333333 UP 2 2 2 269269 66.66666667 DOWN 3 4 2 269425 50 UP 2 3 2 270505 66.666666667 DOWN 2 4 2 270535 16.66666667 DOWN 3 1 3 270558 16.66666667 DOWN 3 1 3 270826 33.333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2	2
267691 33.33333333 DOWN 2 2 2 267808 16.66666667 DOWN 3 1 3 268385 33.33333333 DOWN 2 2 2 268387 16.666666667 DOWN 3 1 3 268476 16.666666667 UP 5 1 5 268692 33.333333333 UP 2 2 2 269269 66.666666667 DOWN 3 4 2 269425 50 UP 2 3 2 270505 66.66666667 DOWN 2 4 2 270535 16.666666667 DOWN 3 1 3 270558 16.666666667 DOWN 3 1 3 270826 33.333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.333333333 UP 2 2	2
267808 16.66666667 DOWN 3 1 3 268385 33.33333333 DOWN 2 2 2 268387 16.66666667 DOWN 3 1 3 268476 16.66666667 UP 5 1 5 268692 33.333333333 UP 2 2 2 269269 66.666666667 DOWN 3 4 2 269425 50 UP 2 3 2 270505 66.66666667 DOWN 2 4 2 270535 16.666666667 DOWN 3 1 3 270558 16.666666667 DOWN 3 1 3 270826 33.333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.333333333 UP 2 2 2	2
268385 33.33333333 DOWN 2 2 2 268387 16.666666667 DOWN 3 1 3 268476 16.666666667 UP 5 1 5 268692 33.333333333 UP 2 2 2 269269 66.666666667 DOWN 3 4 2 269425 50 UP 2 3 2 270505 66.66666667 DOWN 2 4 2 270535 16.666666667 DOWN 3 1 2 270558 16.666666667 DOWN 3 1 3 270826 33.333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.333333333 UP 2 2 2	1
268387 16.66666667 DOWN 3 1 3 268476 16.66666667 UP 5 1 5 268476 16.66666667 UP 5 1 5 268692 33.333333333 UP 2 2 2 269269 66.666666667 DOWN 3 4 2 269425 50 UP 2 3 2 270505 66.66666667 DOWN 2 4 2 270535 16.66666667 DOWN 3 1 2 270558 16.66666667 DOWN 3 1 3 270826 33.333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.333333333 UP 2 2 2	2
268476 16.666666667 UP 5 1 5 268692 33.333333333 UP 2 2 2 269269 66.66666667 DOWN 3 4 2 269425 50 UP 2 3 2 270505 66.66666667 DOWN 2 4 2 270535 16.66666667 DOWN 3 1 2 270558 16.66666667 DOWN 3 1 3 270826 33.333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.333333333 UP 2 2 2	1
268692 33.33333333 UP 2 2 2 269269 66.66666667 DOWN 3 4 2 269425 50 UP 2 3 2 270505 66.66666667 DOWN 2 4 2 270535 16.66666667 DOWN 3 1 2 270558 16.66666667 DOWN 3 1 3 270826 33.333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.33333333 UP 2 2 2	1
269269 66.666666667 DOWN 3 4 2 269425 50 UP 2 3 2 270505 66.66666667 DOWN 2 4 2 270535 16.666666667 DOWN 3 1 2 270558 16.66666667 DOWN 3 1 3 270826 33.333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.33333333 UP 2 2 2	2
269425 50 UP 2 3 2 270505 66.666666667 DOWN 2 4 2 270535 16.666666667 DOWN 3 1 2 270558 16.66666667 DOWN 3 1 3 270826 33.333333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.333333333 UP 2 2 2	5
270505 66.66666667 DOWN 2 4 2 270535 16.666666667 DOWN 3 1 2 270558 16.66666667 DOWN 3 1 3 270826 33.33333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.33333333 UP 2 2 2	3
270535 16.666666667 DOWN 3 1 2 270558 16.666666667 DOWN 3 1 3 270826 33.33333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.33333333 UP 2 2 2	4
270558 16.66666667 DOWN 3 1 3 270826 33.33333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.333333333 UP 2 2 2	2
270826 33.33333333 DOWN 3 2 3 271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.333333333 UP 2 2 2	1
271038 16.66666667 DOWN 3 1 3 271050 50 DOWN 2 3 2 271737 33.333333333 UP 2 2 2	2
271050 50 DOWN 2 3 2 271737 33.333333333 UP 2 2 2	1
271737 33.33333333 UP 2 2 2	3
	2
271744 16.66666667 DOWN 5 1 2	6
271863 33.3333333 DOWN 2 2 2	2
271865 33.33333333 UP 2 2 2	2
271899 33.33333333 UP 2 2 2	2
271989 50 DOWN 2 3 2	3
272049 16.66666667 DOWN 3 1 3	1
272183 33.3333333 DOWN 2 2 2	2
272200 33.3333333 DOWN 2 2 2	2
272468 33.33333333 DOWN 2 2 2	2
272507 33.3333333 DOWN 2 2 2	2
272576 33.3333333 DOWN 2 2 2	2
274169 33.33333333 DOWN 2 2 2	2
274529 16.66666667 DOWN 3 1 2	2
275226 33.3333333 DOWN 2 2 2	2
275642 33.3333333 DOWN 2 2 2	2
276412 16.66666667 UP 3 1 3	1
276502 16,66666667 UP 3 1 3	1
276523 33.33333333 UP 3 2 3	2
276920 33.33333333 UP 2 2 2	2
277021 16.66666667 DOWN 3 1 3	1
277074 33.33333333 UP 2 2 2	2
277173 16.66666667 UP 5 1 5	1
277423 50 DOWN 2 3 2	3
277463 33.33333333 UP 2 2 2	2
277476 33.33333333 UP 2 2 2	2
277537 33.3333333 DOWN 2 2 2	2
277596 33.33333333 UP 2 2 2	2
277761 50 UP 3 3 3	3
27761 30 Si	2
278430 50 DOWN 2 3 2	3
210100 00 001111 -	

Table 10

279077	33.33333333	DOWN	2	2	2	. 2
279077 279195	16.66666667	UP	10	1	10	1
279504	16.66666667	UP	3	1	3	1
279559	16.66666667	DOWN	3	1	2	2
279720	16.6666667	DOWN	3	1	2	2
279837	50	DOWN	2	3	2	3
279838	33.33333333	DOWN	2	2	2	2
	16.66666667	UP	3	1	3	1
279963	33.33333333	DOWN	2	2	2	2
280000	•••••		3	1	3	1
280308	16.6666667	DOWN	3	3	2	4
280465	50	DOWN	3 2	2	2	2
280528	33.33333333	DOWN		1	2	2
280602	16.66666667	DOWN	5	2	3	2
280782	33.3333333	UP	3			
280784	50	DOWN	2	3 2	2 2	3 2
281003	33.3333333	DOWN	2			2
281010	16.6666667	DOWN	3	1	2	
281053	33.3333333	DOWN	2	2	2	2
281072	16.66666667	UP	3	1	2	2
281240	33.33333333	UP	2	2	2	2
281467	16.66666667	UP	3	1	3	1
281521	33.33333333	DOWN	2	2	2	2
281625	16.66666667	UP	3	1	2	3
281733	33.3333333	DOWN	2	2	2	. 2
281904	33.3333333	DOWN	2	2	2	2
281908	16.66666667	UP	5	1	2	4
281934	33.3333333	UP	3	2	2 .	. 4
281936	16.66666667	DOWN	5	1	3	· 6
282000	33.3333333	UP	2	2	2	2
282144	16.66666667	DOWN	5	1	2	2
282283	33.3333333	UP	2	2	2	2
282446	16.66666667	DOWN	3	1	3	1
282564	16.66666667	DOWN	5	1	2	3
282884	16.66666667	DOWN	3	1	2	3
282977	16.66666667	UP	3	1 .	3	1
283080	33.3333333	DOWN	2	2	2	2
283089	16.66666667	DOWN	3	1	2	2
283099	33.3333333	DOWN	2	2	2	2
283118	33.3333333	DOWN	2	2	2	2
283142	50	DOWN	2	3	2	3
283252	16.66666667	UP	3	1	2	2
283301	33.3333333	DOWN	2	2	2	2
283398	16.66666667	DOWN	3	1	2	5
283461	33.3333333	DOWN	2	2	2	2
284341	16.6666667	DOWN	3	1	2	4
284524	16.66666667	UP	5	1	5	1
284531	33.3333333	UP	2	2	2	2
284564	16.66666667	UP	5	1	5	1
284689	33.3333333	DOWN	2	2	2	2

Table 10

			_		_	4
285207	16.6666667	DOWN	5	1	5	1
285323	16.6666667	DOWN	3	1	3	1
285460	16.66666667	DOWN	5	1	5	1
285503	16.66666667	DOWN	5	1	5	1
285636	16.6666667	DOWN	3	1	3	1;
285780	16.66666667	UP	3	1	2	3
286530	16.66666667	DOWN	3	1	3	1
287258	16.66666667	DOWN	5	1	5	1
287349	16.66666667	DOWN	3	1	3	1
287646	33.3333333	DOWN	2	2	2	2
287687	16.66666667	DOWN	3	1	2	3
288807	16.66666667	UP	3	1	3	1
288894	50	DOMN	2	3 '	2	3
288896	16.66666667	DOWN	3	1	2	2
288959	33.33333333	DOWN	3	2	2	. 4
288999	16.66666667	DOWN	3	1 .	3	1
289125	16.66666667	UP	3	1	3	1
289264	33.33333333	UP	2	2	2	2
289283	16.66666667	DOWN	3	1	3	1
289337	16.66666667	UP	10	1	3	2
289428	33.33333333	DOWN	2	2	2	2
289496	33.33333333	DOWN	3	2	3	2
289647	16.66666667	DOWN	3	1	2	3
290091	16.66666667	DOWN:	10	1	2	5
290476	50.0000007	DOWN	2	3	. 2	3
290476	16.66666667	UP	. 3	1	3	1
291057	16.66666667	DOWN	3	1	. 2	2
	33.33333333	DOWN	2	2	2	2
291083	16.66666667	DOWN	3	1	3	1
291272	16.66666667	UP	3	1	3	1
291342	16.66666667	DOWN	3	1	2	2
291345	16.66666667	DOWN	3	1	2	2
291462		UP	3	1	3	1
291690	16.66666667	DOWN	2	2	2	2
291827	33.33333333	UP	3	2	2	3
291880	33.33333333		5 5	3	2	6
292042	50	DOWN	3	1	2	2
292212	16.66666667	DOWN	3 2	2	2	2
292399	33.33333333	DOWN	3	2	3	2
292424	33.33333333	UP	_	2	2	2
292482	33.3333333	DOWN	2	2	2	2
292531	33.3333333	DOWN	2			2
292936	33.3333333	DOWN	2	2	2	
293078	16.6666667	UP	3	1	2	2
293104	33.3333333	DOWN	2	2	2	2
293325	16.66666667	UP	3	1	3	1
293331	16.6666667	UP	3	1	2	2
293339	16.66666667	DOWN	3	1	3	1
293569	16.6666667	DOWN	3	1	2	2
293579	16.6666667	DOWN	3	1	3	1

20/50

293683	33.33333333	DOWN	3	2	2	3
293901	33.33333333	DOWN	2	2	2	2
294221	83.33333333	DOWN	3	5	2	6
294259	33.33333333	DOWN	2	2	2	2
294487	16.66666667	DOWN -	3	1	2	2
294496	16.66666667	DOWN	3	1	2	3
294535	33.33333333	DOWN	2	2	2	2
294578	16.66666667	DOWN	50	1	3	6
294995	33,33333333	DOWN	2	2	2	2
295939	50	DOWN	2	3	2	3
295982	16.66666667	DOWN	3	1	2	2
296032	33.33333333	UP	2	2	2	2
296155	16.66666667	UP	3	1	3	1
296448	16.6666667	DOWN	5	1	5	1
296483	. 16.66666667	DOWN	3	1	2	5
296556	16.66666667	UP	3	1	2	2
296568	33.33333333	UP	2	2	2	2
296616	16.66666667	UP	3	1	3	1
296679	33.33333333	DOWN	2	2	2	2
296702	33.33333333	UP	3	2	3	2
297392	16.66666667	DOWN	3	1	2	3
297439	16.6666667	DOWN	3	1	3	1
297899	16.66666667	DOWN	3	1	3	1
298065	16.6666667	UP	5.	1	5	1
298143	16.66666667	DOWN	3	1	3	1
298417	16.66666667	DOWN	5	1	2	6
298766	16.66666667	UP	3	1	3	1
298770	33.33333333	UP	2	2	2	2
299197	16.66666667	UP	5	1	3	3
299664	33.33333333	UP	2	2	2	2
299679	16.66666667	DOWN	3	1	2	2
299723	16.6666667	DOWN	3	1	2	2
300038	66.66666667	DOWN	2	4	2	4
301122	16.66666667	DOWN	10	1	3	6
301504	16.66666667	UP	5	1	5	1
301995	16.6666667	DOWN	5	1	2	3
302025	33.33333333	DOWN	2	2	2	2
302591	16.66666667	DOWN	3	1	2	3
302885	83,33333333	DOWN	3	5	3	5
303035	33.33333333	DOWN	2	2	2	2
305481	16.66666667	DOWN	3	1	2	3
305677	16.66666667	DOWN	3	1	2	5
306013	16.66666667	UP	3	1	3	i
306771	16.66666667	UP	3 ·	1	2	5
306829	33.33333333	UP	3	2	3	2
306841	16.66666667	UP	3	1	3	1
307249	16.66666667	DOWN	3	1	3	1
307337	16.66666667	DOWN	3	1	3	1
307687	16.66666667	DOWN	3	1	2	3

Table	10

307774	16.66666667	DOWN	3	1	3	1
308437	50	DOWN	2	3	2	3
308989	33.33333333	DOWN	2	2	2	2
309316	16.66666667	DOWN	3	1	3	1
309447	66.66666667	DOWN	3	4	2	5
309515	16.66666667	UP	3	1	2	3
309895	16.66666667	UP	3	1	3	1
310406	16.66666667	UP	3	1	3	1
320343	16.66666667	DOWN	3	1	3	1
320345	16.66666667	DOWN	3	1	2	4
320424	16.66666667	UP	10	1 .	2	2
320770	16.66666667	UP	3	1	3	1
320794	16.66666667	DOWN	3	1	2	2
320871	16.66666667	DOWN	3	1	3	1
321574	33.33333333	UP	2	2	2	2
321706	16.66666667	UP	3	1	3	. 1
322005	50	DOWN	2	3	2	3
322024	16.66666667	DOWN	3	1	3	1
322051	16.66666667	DOWN	3	1	3	1
322175	33.33333333	DOWN	3	2	2	4
322223	16.66666667	DOWN	3	1	3	1
322461	33.33333333	DOWN	10	2	2	6
322723	33.33333333	UP	3	2	2	4
323238	16.66666667	UP	3	1	3	1
323371	16.66666667	DOWN	3	1	3	1
323429	33.33333333	UP	2	2	2	2
323465	50	DOWN	2	3	2	3
323611	33.33333333	UP	2	2	2	2
324225	16.66666667	DOWN	3	1	3	. 1
324307	50	DOWN	3	3	2	5
324492	16.66666667	DOWN	3	1	2	2
324513	16.66666667	UP	3	1	2	3
324655	33.33333333	UP	2	2	2	2
324672	16.66666667	DOWN	3	1	2	2
324690	50	UP	2	3	2	3
324715	33.3333333	DOWN	3	2	2	4
324749	16.66666667	UP	3	1	3	1
324951	16.66666667	UP	3	1	2	3
325062	16.66666667	DOWN	3	1	2	5
325090	33.33333333	DOWN	2	2	2	2
325128	16.66666667	UP	3	1	3	1
325220	16.66666667	DOWN	3	1	3	1
325513	33.3333333	DOWN	3	2	3 -	2
325641	33.3333333	DOWN	2	2	2	2
327461	33.33333333	DOWN	2	2	2	2
327676	16.66666667	UP.	3	1	3	1
328287	50	DOWN	5	3	3	. 4
328613	33.33333333	DOWN	2	2	2	2
340555	33.33333333	DOWN	2	2	2	2

Table 10

340657	16.66666667	UP ·	5	1	5	1
340037 340712	33.3333333	DOWN	2	2	2	2
	33,33333333	DOWN	2	2	2	2
340722	33.33333333	DOWN	2	2	2	2
340864	16.66666667	DOWN	3	1	3	1
341083	16.66666667	UP	3	1	3	1
341295	,	UP	2	2	2	2
341310	33.33333333	UP	3	1	3	1
341588	16.66666667	DOWN	3	1	3	1
341706	16.6666667		3	1	3	1
342008	16.66666667	UP	3 3	1	2	2
342089	16.66666667	UP		1	2	2
342232	16.66666667	DOWN	3	1	3	1
342640	16.66666667	DOWN	3			5
342740	50	DOWN	3	3	. 2	1
343538	16.66666667	UP	3	1	3	1
343700	16.66666667	DOWN	3	1	3	
343736	16.66666667	UP	5	1	2	4
343867	33.3333333	UP	2	2	2	2
343871	33.3333333	UP	2	2	2	2
343977	33.33333333	UP	2	2	2	2
343990	16.66666667	UP	3	1	2	3
344073	50	DOWN	2	3	2	3
344126	16.66666667	UP	10	1	2	2 .
344134	16.66666667	DOWN	3	1	2	2
344141	16.66666667	UP	3	1	2	2
344505	16.66666667	UP	5	1	2	4
344588	83.33333333	DOWN	3	5	3	5
344806	16.66666667	UP	25	1	5	2
344958	16.66666667	UP	3	1	2	3
345034	16.66666667	UP	5	1	5	1
345055	50	DOWN	2	3	2	3
345056	33.3333333	DOWN	2	2 .	2	2
345069	16.6666667	UP	3	1	3	1
345081	33.33333333	DOWN	2	2	2	2
345103	16.66666667	DOWN	3	1.	3	1
345123	33.3333333	DOWN	2	2	2	2
345247	16.66666667	DOWN	3	1	2	4.
345553	33.3333333	DOWN	2	2	2	2
345601	50	UP	2	3	2	3
345626	16.66666667	UP	50	1	5	2
345663	16.66666667	UP	3	1	3	1
345680	66.6666667	DOWN	3	4	3	4
345761	16.6666667	DOWN	3	1	3	1
345849	16.66666667	UP	3	1	3	1
345957	16.66666667	UP	3	1	2	2
346281	16.66666667	UP	3	1	2	3
346308	16.66666667	DOWN	3	1	3	1
346321	16.66666667	DOWN	10	1	2	5
346583.	50	DOWN	2	3	2	3

	•				_	•
346643	33.3333333	DOWN	2	2	2	2 4
346997	16.66666667	DOWN	3	1	2	4
347213	16.66666667	DOWN	3	1 .	2	5
347345	66.6666667	DOWN	3	4	2	1
347378	16.66666667	DOWN	3	1	3	2
347702	33.3333333	UP	2	2	2	3
347726	33.3333333	DOWN	3	2	2	3
356863	16.6666667	DOWN	5	1	2	
356883	16.6666667	DOWN	3	1	2	3
357031	16.66666667	UP	3	1	2	3
357278	16.66666667	DOWN	3	1	3	1
357364	5 0	UP	3	3	3	3
357373	33.3333333	DOWN	3	2	. 3	2
358217	16.6666667	DOWN	3	1	2	4
358314	16.6666667	DOWN	3	1	2	3
358468	16.66666667	UP .	3	1	2	. 2
358549	16.66666667	UP	3	1	3	1
358838	50	DOWN	2	3	2	3
358850	16.66666667	DOWN	3	1	3	1
359040	16.66666667	DOWN	3	1	3	1
359661	16.66666667	UP	3	1	3	1
359733	33.3333333	DOWN	2	2	2	2
359781	16.66666667	UP	3	1	3	1
359835	33.3333333	UP	. 2	2	2	2
359855	16.6666667	DOWN	3	1	3	1
360025	16.66666667	UP	3	1	3	1
360403	33.3333333	DOWN	. 3	2	2	4
360478	33.33333333	DOWN	2	2	2	2
360743	16,66666667	DOWN	5	1	5	1
360861	33.33333333	UP	2	2	2	2
361048	33.3333333	DOWN	3	2	2	3
361069	16.66666667	UP	3	1	3	1
361323	16.66666667	DOWN	3	1	3	1
361363	16.66666667	DOWN	3	1	2	3 2
361526	33.3333333	DOWN	2	2	2	3
361653	16.6666667	UP	3	1	2	3 1
361656	16.6666667	DOWN	3 .	1	3	2
361668	33.3333333	DOWN	3	2	3	2
361798	16.6666667	DOWN	3	1	2	2
361899	33.3333333	DOWN	2	2	2	3
361974	50	DOWN	2	3	2	2
361996	33.3333333	UP	3	2	3	6
362059	50	DOWN	5	3	2	3
362278	16.6666667	UP	3	1	2	3
362409	50	DOWN	2	3	2	3 3
362628	50	DOWN	2	3	2	2
362729	16.6666667	UP	3	1	2	1
362732	16.66666667	UP	3	1	3 2	3
362926	16.6666667	DOWN	5	1	2	3

Га	h	ما	1	n

363007	33.33333333	DOWN	3	2	2	6
363086	16.66666667	DOWN	5	1	5	1
363590	33.33333333	DOWN	3	2	3	2
363916	33.33333333	DOWN	2	2	2	2
364141	50	DOWN	3	3	2	4
364324	33,33333333	DOWN	2	2	2	2
364436	16.66666667	UΡ	3	1	2	2
364681	16.66666667	UР	3	1	3	1
364921	16.66666667	DOWN	3	1	3	1
365085	33.33333333	UP	2	2	2	2
365177	33.33333333	UP	2	2	2	2
365227	16.66666667	DOWN	3	1	2	2
365665	16.66666667	DOWN	25	1	3	3
366414	16.66666667	UP	3	1	2	2
	16.66666667	DOWN	5	1	5	1
366526	33.33333333	DOWN	3	2	2	6
366663	16.66666667	UP	5	1	5	1
366708	16.66666667	DOWN	3	1	3	1
366815		UP	2	2	2	2
366971	33.33333333 33.33333333	DOWN	2	2	2	2
375682		UP	2	3	2	3
376643	50	UP	5	1	2	2
377081	16.66666667	DOWN	5	1	5	1
377275	16.66666667	UP	25	1	25	1
377441	16.66666667	DOWN	2	2	2	2
377468	33.33333333		3	1	3	1
377560	16.66666667	UP	3	1	2	3
377573	16.6666667	DOWN	3	1	2	4
377692	16.66666667	UP	2	3	2	3
377728	50	DOWN	10	1	3	6
377731	16.6666667	DOWN .	5	1	2	4
377801	16.66666667	UP	3	, 1	3	1
377827	16.66666667	UP		2	2	4
377898	33.3333333	DOWN	3	2	2	4
377987	33.33333333	DOWN	5	1	2	3
378488	16.6666667	DOWN	3	1	3	1
378813	16.6666667	UP	3	1	3	1
379709	16.6666667	DOWN	3	1	3	1
379920	16.66666667	UP	3	2	2	2
379941	33.33333333	UP	2	2	2	2
380883	33.3333333	DOWN	2	1	2	3
380890	16.66666667	DOWN	3	2	2	2
380941	33.3333333	UP	2	_		3
381023	50	DOWN	2	3	2 2	2
381036	16.66666667	DOWN	5	1		6
382564	16.66666667	DOMN	5	1	2	
382659	16.66666667	UP	5	1	2	4
382773	33.3333333	UP	3	2	3	2 2
383175	33.33333333	UP	2	2	2	1
383199	16.6666667	UP	5	1	5	1

Table 10

383554	16.66666667	UP	3	1	2	2
383851	16.66666667	UP	3	1	3	1
384015	16.6666667	UP	10	1	10	1
384634	33.3333333	UP	2	2	2	2
384740	16.6666667	UP	3	1	3	1
384939	16.66666667	DOWN	3	1	3	1
384968	16.66666667	UP	3	1	3	1
392624	33.3333333	DOWN	2	2	2	2
392630	16.66666667	DOWN	5	1	2	4
395417	16.66666667	DOWN	3	1	2	2
395573	16.66666667	DOWN	3	1	2	2
399054	16.66666667	UP	3	1	3	1
399075	16.66666667	UP	3	1	3	1
399331	16.6666667	DOWN	3	1	2	2
413633	33.3333333	UP	2	2	2	2
414994	50	UP	2	3	2	3
415122	33.3333333	DOWN	2	2	2	2
415145	16.66666667	DOWN	5	1	2	5
415191	33.3333333	UP	2	2	2	2
415215	33.3333333	DOWN	2	2	2	2
415229	16.66666667	DOWN	3	1	2	2
415250	33,33333333	DOWN	2	2	2	2
415589	16.66666667	UP	5	1	5	1
415700	50	DOWN	2 .	3	2	3
415851	33.33333333	DOWN	2	2	. 2	2
416042	33.33333333	UP	2	2	2	2
416280	33.33333333	DOWN	3	2	3	2
416305	33.3333333	DOWN	2	2	2	2
416436	33.3333333	DOWN	2	2	2	2
416479	16.66666667	UP	5	1	2	2
416525	16.66666667	UP	3	1	2	2
416567	16.66666667	DOWN	10	1	2	5 2
416611	16.66666667	DOWN	5	1	3	3
416659	50	DOWN	2	3	2	ა 2
416745	33.3333333	UP	2	2	2	3
416833	50	DOWN	2	3	2 2	2
417075	16.66666667	UP	25	1		3
417318	16.66666667	DOWN	3	1	2 2	3
417388	16.66666667	DOWN	3	1	2	3
417393	16.66666667	DOWN	3	1	5	1
417404	16.66666667	DOWN	5	1	. 2	3
417711	16.6666667	UP	3	1	3	1
417730	16.66666667	DOWN	3	1 2	3 2	2
417748	33.33333333	DOWN	2	1	5	1
417777	16.66666667	UP DOM/M	5	2	2	2
417867	33.33333333	DOWN	2 2	2	2	2
418098	33.33333333	DOWN		4	3	4
418318	66.6666667	DOWN	3 2	2	2	2
427754	33.33333333	UP	2	4	-	-

Table 10

	40.0000007	DOWN	3	1	3	1
427767	16.66666667	DOWN		2	2	2
427877	33.3333333	DOWN	2 2	2	2	2
428043	33.3333333	DOWN		3	2	3
428163	50	DOWN	2	1	5	1
428184	16.66666667	DOWN	5	2	2	2
428309	33.3333333	DOWN	2		2	2
428338	33.3333333	DOWN	2	2	3	1
428412	16.66666667	UP	3	1	2	4
428592	33.3333333	DOWN	.3	2		2
429086	33.3333333	UP	2	2	2	2
429299	33.3333333	DOWN	2	2	2	
429349	16.66666667	DOWN	3	1	3	1
429434	33.3333333	DOWN	5	2	2	5
429678	16.66666667	UP	3	1	3	1
430092	33.3333333	U P	2	2	2	2
430231	33.3333333	DOWN	3	2	2	6
430233	33.3333333	DOWN	3	2	2	4
430318	33.3333333	DOWN	2	2	2	2
430368	33.3333333	UP	2	2	2	2
430709	16.66666667	UP	3	1	3	1
430968	16.66666667	UP	5	1	5	1
431397	50	UP	2	3	2	3
431655	16.6666667	UP	3	1	2	3
431944	66,66666667	UP	2	4	2	4
432072	16.66666667	UP	3	1	2	2
432194	16.66666667	DOWN	3	1	3	1
432564	16.66666667	DOWN	10	1	2	5
433078	33.33333333	DOWN	2	2	2	2
433487	16.66666667	DOWN	3	1	2	2
433522	16.6666667	UP	3	1	3	1
433567	16.66666667	· UP	3	1	3	1
434768	16.6666667	UP	3	1	3	1
434776	16.66666667	UP	3	1	2	3
434826	16.6666667	DOWN	5	1	5	1
435036	16.6666667	UP	3	1.	2	2
435149	16.66666667	DOWN	3	1	3	1
435470	33.33333333	DOWN	3	2	3	2
435481	33.33333333	UP	3	2	3	2
435551	16.66666667	UP	3	1	3	1
435730	33.33333333	UP	3	2	2	3
435855	33.33333333	UP	3	2	2	3
435890	16.66666667	UP	25	1	25	1
435984	16.66666667	UP	3	1	3	1
436062	33.33333333	UP	2	2	2	2
436094	16.66666667	DOWN	3	1	2	3
436121	33.33333333	DOWN	3	2	2	5
436388	16.66666667	UP	5	1	5	1
436366	16.66666667	DOWN	3	1	3	1
	16.66666667	UP	3	1	3	1
447208	10,0000001	01	0	•	-	

Ta	h	ما	1	0
121	D.	ш.	- 1	u

447416	33.3333333	DOWN	2	. 2	2	2
447715	-33.33333333	DOWN	2	2	2	2
448036	16.66666667	UP	3	1	3	1
44 8046	50	UP	2	3	2	3
448068	33.33333333	UP	2	2	2	2
448190	50	DOWN	2	3	2	3
448383	50	DOWN	2	3	2	3
448490	33,33333333	DOWN	2	2	2	2
448514	16.66666667	DOWN	3	1	3	1
448556	16.66666667	UP	3	1	2	3
448619	16.66666667	DOWN	3	1	2	3
448628	16.66666667	UP	3	1	2	2
449187	50	DOWN	2	3	2	3
449275	16.66666667	UP	3	1	3	1
449273	66.66666667	UP	2	4	2	4
450060	33.33333333	DOWN	2	2	2	2
450227	16.66666667	UP	3	1	3	1
450322	50	UP	2	3	2	3
450322	16.6666667	DOWN	5	1	2	2
450453	16.66666667	UP	3	1	3	1
450802	16.66666667	UP	3	· 1	3	1
450962	16.66666667	DOWN.	3	1	2	5
450974	83.33333333	DOWN	2	5	2	5 .
451161	33.33333333	DOWN	2	2	2	2
451587	16.66666667	DOWN	3	1	2	2
451707	33.33333333	DOWN	3	2	3	2
452016	16.66666667	DOWN	5	1	2	3
452068	16.66666667	UP	3	1	3	1
452333	33,33333333	UP	2	2	2	2
452374	33.33333333	DOWN	5	2	3	4
452395	33.3333333	DOWN	2	2	2	2
453107	33,33333333	DOWN	2	2	2	2
453175	16.66666667	DOWN	3	1	2	4
453710	16.66666667	UP	5	1	5	1
453722	16.66666667	UP	5	1	5	1
454232	33.33333333	UP	2	2	2	2
454317	16.6666667	DOWN	3	1	2	2.
454672	16.6666667	DOWN	5	1	2	2
454771	33.3333333	UP	5	2	5	2
454822	66.6666667	DOWN	10	4	5	6
454908	16.6666667	UP	3	1	2	3
454918	33.3333333	DOWN	2	2	2	2
454953	16.6666667	DOWN	5	1	2	5
454970	16.6666667	UP	3	1	2	2
455204	16.66666667	UP .	3	1	3	1
455271	16.66666667	DOWN	3	1	2	4
460002	16.66666667	DOWN	5	1	2	5
460039	16.66666667	DOWN	5	1	2	5 3
460114.	16.6666667	DOWN	3	1	2	3

Table 10

460189	50	DOWN	2	3	2	3
460258	16.66666667	DOWN	5	1	2	3
460279	16.66666667	DOWN	3	1	3	1
460398	16.66666667	UP	5.	1	2	4
460403	16.66666667	DOWN	3	1	2	4
460420	33.33333333	UP	3	2	3	2
460435	16.66666667	DOWN	3	1	3	1
460487	16.66666667	DOWN	50	1	2	6
460806	16.66666667	UP	3	1	3	1
461284	33.33333333	UP	5	2	5	2
461307	16.66666667	DOWN	5	1	2	5
461354	33.33333333	DOWN	2	. 2	2	2
461425	33.33333333	DOWN	2	2	2	2
461499	16.66666667	DOWN	3	1	3	1
461592	50	DOWN	3	. 3	2	4
461759	33.3333333	UP	3	2	2	5
461761	33.33333333	DOWN	3	2	3	2
461864	16.66666667	UP	3	1	3	1
461988	16.66666667	UP	3	1	- 2	2
462003	83,33333333	DOWN	2	5	2	5
462003	33.33333333	DOWN	3	2	3	2
462113	33.33333333	DOWN	2	2	2	2
	33.33333333	DOWN	2	2	2	2
462146 462237	16.66666667	DOWN	3	1	2	2
	50	UP	2	3	2	3
462325 462412	16.66666667	UP	3	1	2	3
462412	33.33333333	UP	2	2	2	2
462953	16.66666667	UP	5	1	2	2
470001	16.6666667	DOWN	3	1	2	2
470049	50	DOWN	2	3	2	3
470049	16.66666667	DOWN	5	1	5	1
470122	16.66666667	DOWN	3	1	3	1
470148	33.33333333	UP	3	2	2	4
470187	50	UP	2	3	2	3
470227	16.66666667	DOWN	3	1	3	1
470379	33.33333333	DOWN	5	2	2	5
470393	33.33333333	DOWN	2	2	2	2
471266	50	DOWN	2	3	2	3
471568	16.6666667	UP	3	1	3	1
471642	33.3333333	DOWN	2	2	2	2
471664	16.6666667	UP	3	1	3	1
485989	33.33333333	UP	2	2	2	2
486175	50	DOWN	2	3	2	3
486436	16.66666667	DOWN	3	1	3	1
486623	16.66666667	DOWN	5	1	5	1
486697	16.66666667	UP	3	1	3	1
486710	33.33333333	UP	3	2	2	3
487152	33.33333333	DOWN	2	2	2	2
487297	33.3333333	DOWN	3	2	2	3
701201						

Table 1	0
---------	---

487499	33.33333333	DOWN	2	2	2	2
487820	16.66666667	DOWN	3	1	2	2
487824	33.33333333	DOWN	2	2	2	2
487928	33,33333333	UP	3	2	2	4
487929	16.66666667	DOWN	3	1	2	3
488115	33.33333333	DOWN	2	2	2	2
	16.6666667	UP	5	1	5	1
488140	33.33333333	UP	2	2	2	2
488145	16.66666667	UP	3	1	3	1
488207	50	DOWN	. 2	3	2	3
488431	50	DOWN	2	3	2	3
488651	16.6666667	DOWN	3	1	2	2
488913	50	DOWN	2	3	2	3
488964	16.66666667	UP	3	1	2	2
489079	16.66666667	DOWN	3	1	2	2
489373		UP	3	1	2	3
489519	16.66666667	DOWN	3	1	2	4
489600	16.66666667	UP	2	3	2	3
489631	50 16.6666667	DOWN	3	1	2	4
489664		UP	3	1	2	2
489755	16.66666667	UP	3	1	3	1
489798	16.6666667	DOWN	2	3	2	3
489800	50	DOWN	3	1	3	1
490232	16.66666667	UP	3	3	2	5
490329	50	DOWN	2	2	· 2	2
490536	33,33333333	UP	3	1	3	1
490649	16.66666667	DOWN	. 2	2	2	2
490696	33.33333333	UP	3	1	3	1
490779	16.66666667	· UP	3	1	2	2
490819	16.66666667	DOWN	3	1	3	1
490925	16.6666667	UP	3	1	3	1
490946	16.6666667	UP	2	3	2	3
490971	50 50	UP	2	3	2	3
490995	33.33333333	UP	2	2	2	2
491113	16.6666667	DOWN	3	1	3	1
491298		UP	3	1	2	2
491311	16.66666667	DOWN	2	2	2	2
491405	33.33333333	DOWN	3	1	3	1
491435	16.66666667 33.33333333	DOWN	2	2	2	2
491706		DOWN	3	1	2	3
501868	16.6666667	DOWN	5	3	2	6
501981	50 33.33333333	UP	2	2	2	2
501989		DOWN	3	1	2	2
502164	16.66666667	DOWN	3	1	3	1
502173	16.6666667	DOWN	2	3	2	3
502198	50	DOWN	2	2	2	2
502215	33.33333333	UP	3	1	3	1
502286	16.6666667	DOWN	3	1	3	1
502287	16.66666667	UP	2	2	2	2
502367	33.33333333	UP	2	_	-	_

PCT/US00/35214

Table	1	0
-------	---	---

502527	16.6666667	UP	5	1	5		1
502536	50	UP	2	3	2	3	3
502682	33.3333333	UP	2	2	2	2	2
502690	16.6666667	DOWN	3	1	3		1
503214	50	DOWN	2	3	2		3
503579	33.3333333	UP	10	2	3		5
503581	16.66666667	DOWN	3	1	2	2	2
503617	16.66666667	UP	5	1	2		2
504111	33.33333333	DOWN	2	2	2		2
504226	16.66666667	. UP	3	1	3		1
504308	16.66666667	UP	3	1	3		1
504461	16.66666667	UP	3	1	2	;	3
504555	33.33333333	DOWN	3	2	3	:	2
504596	33.33333333	UP	3	2	2	4	4
504791	33.33333333	DOWN	2	2	2	:	2
504927	16.66666667	UP	3	1	3		1
504959	16.66666667	DOWN	25	1	5	;	3
505032	16.66666667	UP	3	1	3	*	1
505225	16.66666667	DOWN	3	1	2	•	4
505227	16.66666667	UP	5	1	5		1
505576	50	UP	2	3	2		3
505579	33.3333333	DOWN	2	2	2		2
506128	16.66666667	DOWN	3	1	3		1
506564	16.66666667	DOWN	3	1	2		3
509462	16.66666667	UP	3	1	3		1
509564	33,33333333	UP	2	2	2		2
509688	16.66666667	DOWN	5	1	2		3
509731	66.6666667	DOWN	2	4	2		4
509800	33.3333333	UP .	2	2	2		2
509823	33.3333333	DOWN	10	2	5		3
510576	33.3333333	DOWN	3	2	2		5
511060	16.66666667	DOWN	3	1	3		1
511428	33.3333333	DOWN	3	2	2		5
512116	16.6666667	DOWN	5	1	5		1
529185	16.6666667	DOWN	3	1	2		4
530139	16.6666667	UP	3	1	3		1
530359	16.6666667	UP	3	1	2		3
530526	16.6666667	UP	3	1	2		2
530814	16.6666667	DOWN	3	1	2		5
549728	33.3333333	DOWN	2	2	2		2
549933	16.66666667	UP	5	1	5		1
561916	16.6666667	DOWN	3	1	2		2
562158	16.6666667	DOWN	3	1	3		1 2
562447	33.33333333	UP	2	2	2		1
562729	16.66666667	UP	50	1	50 3		4
563598	50	DOWN	3	3	2 5		1
564517	16.66666667	DOWN	5	1	3		1
564549	16.66666667	UP	3 3	1	2		2
564621	16.6666667	DOWN	3	1	~		4-

Table 10

564801	33.3333333	DOWN	2	2	2	2
565779	16.66666667	UP	5	1	3	3
565863	16.66666667	DOWN	5	1	5	1
566106	33.3333333	DOWN	2	2	. 2	2
566250	16.66666667	DOWN	3	-1	3	1
566383	66.6666667	DOWN	3	4	3 .	4
566595	16.6666667	DOWN	3	1	3 .	1
567265	33.33333333	DOWN	2	2	2	2
586685	16.6666667	UP	· 3	1	3	1
586706	50	DOWN	3	. 3	3	3
586725	33.3333333	DOWN	2	2	2	2
586780	16.66666667	DOWN	3	1	3	1,
586820	16,66666667	DOWN	3	1 1	3	1
586845	16.66666667	DOWN	3	1	3	1
587268	16.66666667	DOWN	3	1	3	1
587415	16.66666667	DOWN	10	1	10	1
587595	16.66666667	UP	3	1	2	2
587847	16.66666667	DOWN	5	1	2	2
588053	16.66666667	DOWN	3	1	3	1
588915	33.33333333	DOWN	5	2	3	3
588960	16.66666667	DOWN	3	1	3	1
589115	16.66666667	UP	25	1	25	1.
589276	16.66666667	DOWN	3	1	3	1
590264	16.66666667	DOWN	25	1	3	4
590338	33.33333333	DOWN	2	2	2	2
591465	33.33333333	UP	2	2	2	. 2
592243	66.6666667	DOWN	10	4	5	6
592540	16.6666667	DOWN	3	1 .	3	1
592594	33.33333333	DOWN	2	2	2	2
593026	16.66666667	UP	5	1	5	1
593114	16.66666667	DOWN	3	1	3	1
593280	16.6666667	DOWN	3	1	3	1
593431	50	UP	2	3	2	3
593815	50	UP	2	3	2	3
594079	16.66666667	DOWN	3	1	3	1
594322	33.33333333	DOWN	2	2	2	2
594600	16.66666667	UP	3	1	2	2
594633	16.66666667	DOWN	5	1	5	1
594683	16.66666667	DOWN	3	1	3	1
594684	16.6666667	DOWN	5	1	5	1
594806	16.6666667	DOWN	3	1	3	1
595037	33.33333333	DOWN	2	2	2	2
595090	50	UP	2	3	2	3
595109	16.66666667	DOWN	3	1	3	1
609043	33.33333333	UP	5	2	2	4
609047	16.66666667	DOWN	3	1	3	1
609155	33.33333333	DOWN	2	2	2	2
609436	16.66666667	DOWN	3	1	3	1
610012	16.66666667	DOWN	3	1	3	1
J 100 12 .	,0.000000.		_			

Table 10

610883	33.3333333	DOWN	2	2	2	2
611150	33.33333333	DOWN	2	2	2	2
611452	16.66666667	DOWN	3	1	3	1
611510	16.66666667	DOWN	3	1	3	1
624360	16.66666667	DOWN	3	1	2	3
624372	16.66666667	UP	3	1	3	1
624577	33.33333333	DOWN	3	2	2	4
624627	16.66666667	UP	3	1	3	1
624991	33.33333333	UP	2	2	2	2
625616	16.66666667	DOWN	5	1	3	4
626001	33.33333333	UP	2	2	2	2
626385	16.66666667	DOWN	3	1	3	1
•	16.66666667	DOWN	5	1	5	1
626462 626487	16.66666667	DOWN	3	1	2	2
	16.66666667	DOWN	3	1	3	1
626555	16.66666667	DOWN	3	1	3	1
626842		DOWN	2	2	2	2
627002	33.3333333	UP	3	3	3	3
627039	50 16.6666667	DOWN	3	1	3	1
627288	***************************************	DOWN	3	2	2	5
627306	33,33333333	UP	3	1	3	1
627351	16.66666667		3	1	2.	2
627542	16.66666667	DOWN	2	2	2	2.
628418	33.33333333	DOWN	3	1	3	1
628602	16.6666667	DOWN	3	1	3	1
629498	16.66666667	DOWN	3	1	2	2
629906	16.6666667	UP	2	2	2	2
629944	33.33333333	DOWN	3	1	3	1
629945	16.6666667	DOWN	3	2	2	4
645161	33.33333333	DOWN		1	3	1
645461	16.6666667	DOWN	3 3	1	3	, 1
646035	16.6666667	DOWN		1	3	1
646556	16.66666667	DOWN	3	1	3	1
646753	16.6666667	DOWN	3	1	3	2
647397	16.66666667	DOWN	5		3	1
665127	16.66666667	DOWN	3	1	2	2
665144	33.3333333	DOWN	2	. 2	2	2.
665148	16.66666667	DOWN	3	1	2	2
665542	16.66666667	UP	3	1	2	2
665674	33.3333333	DOWN	2	2	2	2
665738	33.3333333	DOWN	2	2	3	1
666029	16.66666667	DOWN	3	1	_	2
666451	33.3333333	DOWN	5	2	5.	
666879	33.3333333	DOWN	3	2	2	6
667883	50	UP	2	3	2	3
669359	16.6666667	DOWN	5	1	2	3
669435	33.3333333	UP	2	2	2	2
681948	33.33333333	DOWN	2	2	2	2
682066	33.33333333	UP	2	2	2	2
682479	33.33333333	DOWN	2	2	2	2

683151	33.3333333	DOWN	2	2	2	2
683276	16.66666667	DOWN	5	1	2	6
684879	33,33333333	DOWN	5	2	2	6
685516	33.33333333	DOWN	2	2	2	2
687551	33.33333333	DOWN	2	2	2	2
687579	16.66666667	UP	3	1	2	2
700527	16.66666667	DOWN	3	1	2	2
700668	33.33333333	DOWN	5	2	3	4
700677	16.66666667	DOWN	3	1	2	2
701123	50	DOWN	2	3	2	3
701256	83.3333333	DOWN	5	5	5	5
701711	50	DOWN	2	3	2	3
701751	33.3333333	UP	· 3	2	2	4
703384	33.33333333	DOWN	2	2	2	2
703581	16.6666667	UP	3	1	3	1
703637	33.3333333	UP	2	2	2	2
703732	50	DOWN	2	3	2	3
703774	33,33333333	DOWN	2	2	2	2
703916	16.66666667	DOWN	3	1	2	4
704023	16.66666667	UP	100	1	100	1
704076	16.66666667	DOWN	· 3	1	3	1
704459	16.66666667	UP	3	1	2	2
711918	50	UP	2	3	2	3
712292	16.66666667	UP	3	1	3	1
712499	33.33333333	DOWN	2	2	2	2
712604	16.66666667	UP	5	1	5	1
712884	16.66666667	DOWN	3	1	2	3
712950	33.33333333	DOWN	2	2	2	2
713109	33.33333333	DOWN	2	2	2	2
713129	16.66666667	UP	5	1	2	2
713271	33.33333333	DOWN	2	2	2	2
713660	33.3333333	DOWN	2	2	2	2
713685	83,33333333	DOWN	5	5	3	6
713922	16.66666667	DOWN	10	1	2	6
714106	16.6666667	UP	3	1	2	3
724888	33.33333333	UP	5	2	3	3
724893	16.66666667	UP	3	` 1	3	1
724895	16.66666667	DOWN	3	1	3	1
725143	16.66666667	UP	3	1	3	1
725321	16.6666667	DOWN	10	1	2	3 2
725395	16.6666667	DOWN	3	1	2	۷ .
725533	16.6666667	DOWN	3	1	3	
725680	16.66666667	DOWN	3	1	3	1
725707	33,33333333	UP	3	2	3	2
726483	16.6666667	DOMN	3	1	2	3
726645	83.3333333	DOWN	25	5	2	6 2
726658	16.6666667	DOWN	3	1	2	1
726681	16.6666667	UP	3	1	3 2	4
726726	33.3333333	UP	3	2	2	4

Га		

726860	16.66666667	UP	3	1	3	1
729964	16.6666667	UP	3	1	2	2
730126	33.3333333	UP	2	2	2	2
730737	16.66666667	DOWN	3	1	3	1
730739	50	DOWN	2	3	2	3
730871	33.3333333	UP	3	2	2	4
730946	16.66666667	DOWN	5	1	5	1
730971	16.66666667	UP	10	1	10	1
731029	33.3333333	DOWN	2	2	2	2
731180	50	DOWN	3	3	2	4
731198	33.3333333	DOWN	3	2	2	4 ·
731236	33.3333333	DOWN	2	2	2	2
731240	16.66666667	DOWN	5	1	3	2
731255	16.66666667	DOWN	3	1	2	2
731290	50	DOWN	2	3	2	3
731404	16.66666667	DOWN	3	1	3.	1
731426	33.33333333	DOWN	3	2	2	6
731469	33,33333333	DOWN	2	2	2	2
738912	33.33333333	DOWN	2	2	2	2
738970	33.33333333	DOWN	2	2	2	2
739123	16.66666667	UP	3	1	2	3
739191	33.33333333	UP	2	2	2	2
739193	16.66666667	DOWN	3	1	3	1
739450	33.33333333	DOWN	2	2	· 2	2
740780	50	DOWN	2	3	2	3
740941	33.33333333	DOWN	3	2	3	2
741067	33.33333333	UP	3	2	2	4
741139	16.66666667	UP	5	1	2.	2
741474	33.33333333	DOWN	3	2	2	3
741497	50	DOWN	2	3	2	3
741880	50	DOWN	2	3	2	3
741977	16.66666667	DOWN	5	1	2	5
742125	50	UP	2	3	2	3
742132	33,33333333	DOWN	5	2	2	5
742596	33.33333333	DOWN	5	2	2	5
742672	16.66666667	DOWN	3	1	3	1
742679	50	DOWN	2	3	2	3
742763	16.6666667	UP	3	1	3	1
742818	16.66666667	UP	3	1	3	1
742977	50	DOWN	3	3	2	4
743081	16.66666667	DOWN	3	1	3	1
743150	16.66666667	DOWN	3	1	2	4
743161	16.6666667	DOWN	3	1	3	1
743230	16.6666667	DOWN	3	1	3	1
743309	16.6666667	UP	3	1	3	1
743412	16.6666667	DOWN	5	1	5	1
743416	16.66666667	DOWN	3	1	3	1
743452	16.6666667	DOWN	5	1	5	1
743465	16.66666667	DOWN	3	1	3	1

- Table 10

743574	16.6666667	DOWN	5	1	5	1
743688	33.3333333	UP	2	2	2	2
743699	33.3333333	DOWN	2	2	2	2
743731	16.66666667	UP	3	1	3	1
743868	16.66666667	DOWN	3	1	2	4
744367	33.33333333	DOWN	5	2	2	5
744385	16.66666667	DOWN	5	1	5	1
744395	50	DOWN	2	3	2	3
744565	16.66666667	DOWN	3	1	3	1
744647	16.66666667	DOWN.	3	1	3	1
744918	16.66666667	UP	5	1	5	1
745001	16.66666667	UP	5	1	5	1
745011	16.66666667	DOWN	3	1	3	1
745019	16.66666667	UP	3	1	2	2
745097	16.66666667	UP	3	1	3	1
745121	16.66666667	DOWN	3	1	2	2
745136	33.33333333	UP	3	2	2	4
745190	16.66666667	UP	3	1	3	1
745503	33.3333333	DOWN	2	2	2	2
745542	33.3333333	DOWN	2	2	2	2
745556	33.3333333	DOWN	5	2	3	3
745572	50	UP	3	3	2	4
745596	16.66666667	UP	3	1	3	1
746020	33.3333333 .	DOWN	2.	2	2	2
746163	50	DOWN	2	3	2	3
746217	16.66666667	DOWN	3	1	2	2
746347	16.6666667	DOWN	3	1	3	1
752625	16.66666667	DOWN	10	1	3	2
752640	16.66666667	DOWN	3	1	3	1
752732	16.66666667	UP	3	1	3	4
752802	50	DOWN	3	3	2	3
753028	50	UP	2	3	2 2	3
753076	16.66666667	· UP	10	1	3	1
753104	16.6666667	DOWN	3	1	3 2	3
753184	16.6666667	DOMN	3	1 2	2	2
753211	33,33333333	UP	2 3	1	3	1
753213	16.6666667	DOWN	3	1	3	1
753252	16.66666667	DOWN	. 3	1	3	1
753378	16.66666667	UP UP	2	2	2	2
753381	33.33333333	UP	2	2	2	2
753411	33.33333333		_	2	2	4
753428	33.33333333	UP UP	3 3	1	3	1
753467	16.66666667 33.33333333	DOWN	2	2	2	2
753587	50	DOWN	2	3	2	3
753625	16.6666667	DOWN	3	1	3	1
753743	16.66666667	UP	5	1	5	1
753770 753775	50	DOWN	3	3	2	4
753775 753794	50 50	DOWN	10	3	3	6
753794	30	201111		-		

						•
753897	16.6666667	DOWN	3	1	2 2	2 5
753909	33.3333333	DOWN	5	2		2
753914	33.3333333	DOWN	2	2	2 2	2
753973	33.33333333	DOWN	2.	2		2
754033	33.3333333	DOWN	2	2	2	6
754046	100	DOWN	2	6	2	
754126	16.66666667	UP	5	1	3	4
754255	33.3333333	DOWN	2	2	2	2
754334	16.6666667	UP	5	1	5	1
754358	16.66666667	UP	3	1	2 ·	3
754378	16.66666667	UP	5	1	3	2
754436	33.3333333	DOWN	2	2	2	2
754449	16.66666667	DOWN	3	1	2	. 2
754479	50	DOWN	2	3	2	3
754517	16.66666667	UP	3	1	3	1
754525	33.3333333	UP	2	2	2	2
754559	33.33333333	DOWN	2	2	2	2
754582	33.33333333	UP	2	2	2	2
755299	33.3333333	DOWN	2	2	2	2
755409	16.66666667	DOWN	3	1	2	2
755517	33.33333333	UP	2	2	2	2
755578	33.33333333	DOWN	2	2	2	2
755599	33.33333333	DOWN	2	2	2	2
755663	33.33333333	DOWN	2	2	2	2
755751	16.66666667	DOWN	3	1	2	3
755765	50	DOWN	2	3	2	3
756372	16.66666667	DOWN	3	1	2	2
756373	50	UP	2	3	2	3
756595	16.66 6666 667	UP	10	1	10	1
756596	16.66666667	DOWN	5	1	5	1
757143	33.33333333	UP	2	2	2	2
757151	16.66666667	DOWN	5	1	. 5	1
757197	16.66666667	UP	5	1	5	1
757222	33.33333333	DOWN	2	2	2	2
757435	50	DOWN	10	3	5	5
757873	16.66666667	DOWN	3	1	3	1
758148	50	DOWN	2	3	2	3
758266	16.66666667	UP	5	1 -	5	1
758280	33.3333333	DOWN	2	2	2	2
758347	16.6666667	DOWN	3	1	2	3
759163	16.66666667	DOWN	3	1	2	3
759173	33.3333333	DOWN	2	2	2	2
759865	66.6666667	DOWN	3	4	2	6
759873	16.66666667	UP	3	1	2	3
759948	16.66666667	DOMN	3	1	2	3
760224	16.66666667	DOWN	3	1	3	1
767075	33,33333333	UP	2	2	2	2
767164	33.3333333	DOWN	2	2	2	2
767172	16.66666667	DOWN	3	1	2	2

Table 10

767176	16.66666667	UP	3	1	3	1
767188	66.6666667	DOWN	2	4	2	4
767313	16.66666667	DOWN	3	1	2	3
767345	33.3333333	DOWN	2	2	2	2
767495	33.3333333	UP	2	2	2	2
767706	33.33333333	DOWN	3	2	3	2
767775	16.66666667	UP	5	1	5	1
767851	16.66666667	DOWN	3	1	3	1
767985	33.33333333	DOWN	2	2	2	2
767988	16.66666667	DOWN	3	1	2	2
767991	33.33333333	DOWN	3	2	2	6
768059	16.66666667	DOWN	3	1	2	2
768111	33.33333333	UP	2	2	2	2
768299	50	UP	2	3	2	3
768316	66.66666667	UP	2	4	2	4
768432	33.33333333	UP	2	2	2	2
	16.66666667	DOWN	5	1	5	1
768443	16.66666667	UP	3	1	3	1.
768497	16.66666667	UP	3	1	2	2
768561	16.66666667	DOWN	3	1	2	3
768570		DOWN	3	1	2	2
769579	16.66666667		3	1	2	2
769603	16.66666667	UP	· 3	1	2	. 2
769686	16.66666667	UP	3	1	3	1
769751	16.66666667	UP	3	1	2	2
769890	16.6666667	UP		1	5	1
770014	16.66666667	UP	5	2	2	2
770059	33.3333333	UP	2	1	2	4
770066	16.6666667	DOWN	3		2	5
770319	66.6666667	DOWN	3	4	2 .	3
770344	50	DOWN	2	3	2 .	4
770579	66.6666667	DOWN	2	4	3	1
770588	16.6666667	UP	3	1	5	1
770670	16.66666667	UP	5	1	5	1
770766	16.66666667	DOWN	5	1	2	2
770801	33.3333333	DOWN	2	2	2	4
770868	16.6666667	DOWN	3	1	3	1 .
770910	16.6666667	UP	. 3	1	3 3	1
771053	16.6666667	DOWN	3	1		2
771308	33.3333333	UP	2	2	2	3
772425	16.66666667	UP	3	1	2	2
772880	33.3333333	UP	2	2	2	4
772890	66.6666667	DOWN	2	4	2	•
772913	33.3333333	UP	2	2	2	2
772944	50	UP	2	3	2	3
772952	16.6666667	DOMN	3	1	2	3
773106	16.6666667	DOWN	3	1	3	1
773142	16.6666667	UP	3	1	2	2
773152	16.66666667	UP	3	1	3	1
773203	16.66666667	DOWN	3	1	3	1

773204	33.3333333	DOWN	2	2	2	2
773290	16.66666667	UP	3	1	3	1
773293	16.66666667	DOWN	3	1	2	2
773301	33.33333333	DOWN	2	2	2	2
773304	33.33333333	DOWN	2	2	2	2
773330	33.33333333	UP	2	2	2	2
773331	16,66666667	DOWN	3	1	2	2
773373	33.33333333	DOWN	2	2	2	2
773392	16.66666667	UP	3	1	2	2
773422	33.33333333	DOWN	2	2	2	2
773495	50	UP	3	3	2	4
773558	33.3333333	UP	2	2	2	2
773573	16.66666667	UP	3	1	2	4
773575	33.33333333	DOWN	2	2	2	2
773605	16.66666667	UP	3	1	3	1
780958	16.66666667	UP	3	1	3	1
781047	33.33333333	DOWN	2	2	2	2
781047	16.66666667	DOWN	5	1	5	1
781089	33.33333333	DOWN	2	2	2	2
781069 781139	16.66666667	UP	3	1	2	2
	16.66666667	UP	10	1	10	1
781339	16.66666667	DOWN	3	1	3	1
781366		DOWN	2	4	2	4
781401	66.6666667	UP	5	1 .	5	1
781467	16.66666667	DOWN	2	2	2	2
781505	33.33333333	DOWN	3	1	3	1
782209	16.66666667	DOWN	3	2	3	2
782217	33.33333333	UP	3	1	3	1
782259	16.66666667		5	1	2	4
782306	16.66666667	DOWN	2	2	2	2
782406	33.3333333	UP DOWN	2	3	2	3
782429	50		3	1	3	1
782503	16.66666667	UP	3	3	2	4
782513	66.66666667	DOWN	=	1	3	6
782537	16.6666667	DOWN	10	2	2	2
782547	33.3333333	DOWN	2	1	3	1
782575	16.6666667	UP	3	-	2	2
782701	33.3333333	UP	2	2	2	2
782835	33.3333333	UP	2	2	2	2
783696	33.3333333	DOWN	2	2	∠ 10	1
783729	16.6666667	UP	10	1		3
784065	16.6666667	DOWN	3	1	2	
784129	33.3333333	UP	2	2	2	2
784143	16.6666667	DOWN	3	1	3	1
784168	33.3333333	UP	2	2	2	2
784178	16.66666667	UP	3	1	3	1
784179	16.66666667	DOWN	3	1	2	2
784212	33.3333333	DOWN	3	2	2	3
784276	50	DOWN	2	3	2	3
784285	33.3333333	DOWN	2	2	2	2

Table 10

784296	33.3333333	DOWN	2	2	2	2
785293	16.66666667	DOWN	3	1 .	3	1
785342	16.66666667	DOWN	3	1	2	3
785368	33.33333333	DOWN	3	2	2	3
785693	16.66666667	DOWN	3	1	2	3
785694	16.66666667	DOWN	3	1	3	1
785695	16.66666667	UP	3	1	3	1
785701	16.66666667	UP	3	1	2	2
785703	16.66666667	UP	3	1	2	2
785707	16.66666667	UP	3	1	2	2
785745	33.33333333	DOWN	2	2	2	2
785766	33.3333333	DOWN	2	2	2	2
785788	33.3333333	DOWN	2	2	2	2
785795	33,33333333	DOWN	3	2	3	2
785847	16,66666667	UP	3	1	3	1
785866	16,66666667	DOWN	3	1	2	4
785910	16.66666667	DOWN	10	1	2	3
785913	33.33333333	DOWN	3	2	2	3
785983	33.33333333	DOWN	2	2	2	2
786067	16.66666667	UP	5	1	5	1
786602	33.33333333	DOWN	2	2	2	2
786607	33.3333333	DOWN	2	2	2	2
786609	33.3333333	UP .	3	2	2	3
786675	33.33333333	DOWN	10	2	, 2	4
787893	16.66666667	DOWN	3	1	3	1
788136	33.33333333	DOWN	2	2	2	2
788541	16.66666667	DOWN	10	1	2	3
788554	33.33333333	DOWN	2	2	2	2
788609	16.66666667	UP	3	1	3	1
788629	33.33333333	UP	2	2	2	2
788745	16.66666667	UP	3	1	3	1
788832	16.66666667	UP	3	1	3	1
789012	33.33333333	UP	2	2	2	2
789069	16.66666667	UP	3	1	2	2
789147	16.66666667	UP	3	1	3	1
789376	33.33333333	DOWN	3	2	2	4
789383	16.66666667	UP	3	1	3	1
795202	16.66666667	DOWN	10	1	2	4
795208	16.66666667	DOWN	5	1	2	3
795213	33.3333333	DOWN	2	2	2	2
795253	16.66666667	UP	3	1	3	1
795254	16.66666667	DOWN	5	1	5	1
795262	33,33333333	DOWN	3	2	2	3
795263	16.6666667	DOWN	3	1	2	2
795265	16.6666667	UP .	3	1	2	3
795284	50	DOWN	3	3	2	5
795307	33.33333333	DOWN	2	2	2	2
795322	16.66666667	DOWN	3	1	2	2 2
795379	33.33333333	DOWN	3	2	3	2

Table 10

795401	33.3333333	DOWN	2	2	2	2
795424	33.3333333	DOWN	2	2	2	2
795588	16.66666667	DOWN	5	1	5	1
795729	33.3333333	DOWN	3	2	2	4
795754	33.3333333	UP	2	2	2	2
795832	33.3333333	DOWN	2	2	2	2
795907	50	DOWN	5	3	3	4
796079	16.6666667	UP	5	1	2	2
796170	33,33333333	DOWN	2	2	- 2	2
796255	33.33333333	DOWN	2	2	2	2
796266	16.66666667	DOWN	5	1	3	2
796398	16.66666667	DOWN	3	1	2	4
796496	16.66666667	DOWN	3	1	3	• 1
796519	16.66666667	DOWN	3	1	2	4
796613	16.6666667	UP	3	1	2	3
796646	16.6666667	UP	3	1	3	1
796689	16.66666667	UP	3	1	3	1
796694	50	DOWN	2	3	2	3
796711	50	UP	3	3	2	4
796711	66.66666667	DOWN	2	4	2	4
	33.33333333	UP	2	2	2	2
796732 796759	16.66666667	UP	3	1	3	1
	16.6666667	DOWN	3	1	3	1
796968	16.66666667	DOWN	3	1	3	1
796994	16.66666667	DOWN	5	1	2	2
809357	16.66666667	UP	3	1	3	1
809374	16.66666667	UP	3	1	2	2
809406	33.33333333	UP	2	2	.2	2
809588	33.33333333	UP ·	3	2	2	4
809598	33.33333333	DOWN	2	2	2	2
809685		UP	3	1	3	1
809694	16.66666667 16.66666667	UP	3	1	3	1
809720		DOWN	2	2	2	2
809894	33.33333333	UP	3	1	3	1
810002	16.66666667	DOWN	2	2	2	2
810038	33.33333333	UP	. 3	1	3	1
810062	16.66666667 16.66666667	DOWN	3	1	2	2
810109		DOWN	2	2	2	2
810142	33.3333333 16.66666667	DOWN	3	1	2	2
810221	16.66666667	UP	3	1	2	3
810224		DOWN	5	1	2	5
810235	16.6666667		_	2	2	2
810272	33.33333333	DOWN	3	1	2	4
810331	16.66666667	DOWN UP	ა 5	1	2	2
810367	16.6666667		3	1	3	1
810372	16.6666667	UP .	3 2	3	2	3
810444	50	UP	2	3	2	3
810454	50	DOWN	2	2	2	2
810512	33,33333333	DOWN	3	1	2	2
810560	16.6666667	DOWN	3	•	۷.	_

Table 10

810711	33.3333333	UP	· 2	2	2	2
810727	33.33333333	DOWN	2	2	2	2
810753	16.6666667	DOWN	3	1	3	1
810773	16.66666667	DOWN	5	1	5	1
810787	16.66666667	UP	3	1	3	1
810813	16.66666667	DOWN	5	1	2	4
810846	33.3333333	DOWN	3	2	2	5
810927	50	DOWN	2	3	2	3
810983	16.66666667	DOWN	3	1	3	1
811000	16.66666667	DOWN	3	1	2	3
811024	33.3333333	DOWN	2	2	2	2
811028	16.66666667	UP	3	1	3	1
811035	33.33333333	DOWN	2	2	2	2
811048	16.66666667	UP	3	1	3	1
811064	33.33333333	DOWN	2	2	2	2
811108	33.33333333	DOWN	2	2	2	2
811149	16.66666667	UP	3	1	3	1
811162	16.66666667	DOWN	3	1	2	4
811581	50	DOWN	3	3	3	3
811582	16.66666667	DOWN	3	1	2	2
811627	33.33333333	DOWN	2	2	2	2
811740	33.33333333	DOWN	2	2	2	2
811911	33.33333333	DOWN	2	2	2	2
811954	50	DOWN	2	3	2	3
811976	16.66666667	UP	3	1	3	1
812041	16.66666667	DOWN	3	1	2	4
812074	16.66666667	UP	5	1	5	1
812105	16.66666667	DOWN	3	1	2	4
812217	33.33333333	DOWN	2	2	2	2
812227	16.66666667	UP	3	1	3	1
812277	16.66666667	UP	3	1	2	3
812954	16.66666667	UP	5	1	3	2
812955	16.66666667	UP	3	1.	3	1
812967	33.33333333	DOWN	3	2	3	2
813149	33,33333333	DOWN	3	2	2	4
813187	33,33333333	DOWN	2	2	2	2
813242	16.66666667	UP	3	1	3	1
813249	33.33333333	DOWN	2	2	2	2
813265	33.33333333	DOWN	2	2	2	2
813276	33.33333333	DOWN	3	2	2	5
813408	50	DOWN	2	3	2	3
813414	16.66666667	UP	3	1	3	1
813513	33.33333333	UP	2	2	2	2
813560	16.6666667	DOWN	3	1	2	2
813586	16.66666667	DOWN	3	1	2	4
813604	16.66666667	DOWN	3	1	2	4
813616	33.33333333	DOWN	2	2	2	2
813631	33.33333333	DOWN	2	2	2	2
813707	16.66666667	UP	3	1	2	2
0,0,0,						

Table 10

813714	16.6666667	UP	5	1	3	2
B13730	33.3333333	UP	2	2	2	2
813751	33.33333333	U P	2	2	2	2
813757	33.3333333	DOWN	3	2	2	4
813823	16.66666667	DOWN	5	1	5	1
813841	16.66666667	DOWN	5	1	2	3
813843	33.33333333	DOWN	2	2	2	2
814053	33.3333333	UP	2	2	2	2
814054	33.3333333	DOWN	2	2	2	2
814124	50	DOMN	2	3	2	3
814235	16.66666667	DOWN	3	1	3	1
814236	16.6666667	UP	10	1	10	1
814240	16.66666667	DOMN	3	1	3	1
814285	16.66666667	DOWN	3	1	3	1
814306	33.3333333	DOWN	2	2	2	2
814340	33.33333333	DOWN	3	2	2	3
814353	16.66666667	DOWN	3	1	2	. 2
814354	50	DOWN	2	3	2	3
814378	16.66666667	DOWN	3	1	2	2
814444	33.3333333	DOWN	2	2	2	2
814478	16.66666667	UP	3	1	3	1
814557	33.33333333	DOWN	2	2	2	2
814618	50	UP	2	3	2	3 ·
814701	16.66666667	UP	3	1	2	2
814769	16.66666667	UP	3	1	3	1
814779	33.33333333	DOWN	2	2	2	2
814983	16.6666667	DOWN	3	1	2	2
815072	33.33333333	DOWN	2	2	2	2
815127	16.66666667	UP	5	1 -	2	3
815239	16.66666667	UP	3	1	3	1
815242	50	DOWN	2	3	2	3
815542	66.6666667	DOWN	3	4	2	5
815556	16.66666667	UP	3	1	3	1
815740	33.3333333	DOWN	3	2	2	3
815794	33.3333333	DOWN	3	2	2	6
815861	16.6666667	UP	10	1	10	1
823574	16.6666667	DOWN	3	1	2	2.
823590	16.66666667	DOWN	5	1	2	4 1
823615	16.66666667	UP	3	1	3	2
823656	16.66666667	UP	3	1	2	5
823696	83.33333333	DOWN	3	5	3	2
823715	33.3333333	DOWN	2	2	2	2
823811	33.3333333	UP	2	2	2	3
823851	16.66666667	UP	3	1	2	3
823859	50	UP .	3	3	3 2	2
823932	33.3333333	DOWN	2	2	2	2
824052	33.3333333	DOWN	2	2	2	2
824117	33.33333333	DOWN	2	2	3	1
824193	16.6666667	DOWN	3	1	S	

Tε	ıbi	le	1	0

•						
824237	16.66666667	DOWN	3	1	3	1
824340	16.66666667	DOWN	3	1	2	3
824358	33.3333333	UP	2	2	2	2
824377	16.66666667	DOWN	3	1	3	1
824421	16.66666667	UP	3	1	3	1
824527	16.66666667	UP	3	1	3	1
824933	16.66666667	DOWN	3	1	2	2
824995	16.66666667	DOWN	3	1	2	3
825058	33.33333333	DOWN	2	2	2	2
825366	16.66666667	UP	3	1	3	1
825577	16.66666667	UP	5	1	5	1
825603	33.3333333	DOWN	2	2	2	2
825654	16.66666667	DOWN	3	1	3	1
825697	16.66666667	DOWN	3	1	3	1
825719	33.33333333	DOWN	2	2	2	2
825742	33.33333333	DOWN	3	2	2	3
825857	16.66666667	DOWN	10	1	2	5
826109	16.66666667	DOWN	3	1	2	2
826130	33.33333333	DOWN	2	2	2	2
826459	50	DOWN	2	3	2	3
826995	16.66666667	UP	3	1	3	1
837953	33.3333333	DOWN	2	2	2	2
838366	16.66666667	DOWN	3	1	3	1
838446	16.66666667	UP	3	1	3	1
838600	33.3333333	DOWN	2	2	2	. 2
838611	16.66666667	DOWN	25	1	2	6
838761	16.66666667	DOWN	5	1	5	1
839081	16.66666667	UP	3	1	2	2
839092	16.66666667	DOWN	3	1	3	1
839580	16.66666667	UP	3	1 .	3	1
839641	16.66666667	DOWN	3	1	3	1
839736	50	DOWN	2	3	2	3
839936	16.66666667	DOWN	5	1	5	1
839991	50	UP	3	3	2	4
840024	16.66666667	DOWN	3	1	3	1
840266	16.66666667	UP	5	. 1	2	2
840384	50	UP	2	3	2	3
840444	16.66666667	DOWN	3	1	3	1
840466	16.66666667	DOWN	5	1	5	1
840576	16.6666667	DOWN	3	1	3	1
840590	16.6666667	DOWN	3	1	2	2 1
840654	16.6666667	DOWN	3	1	3	2
840677	33.3333333	DOWN	2	2	2	1
840683	16.6666667	DOWN	3	1	3 2	4
840687	33.3333333	DOWN	5	2	2	5
840702	16.66666667	DOWN	3	1	2	5 4
840726	16.66666667	UP	5	1	3	1
840818	16.66666667	DOWN	3	1 4	2	4
840821	66.66666667	DOWN	2	4	2	-1

Table 10

840878	16.66666667	DOWN	3	1	3	1
840940	33.33333333	UP	2	2	2	2
840942	50	UP	2	3	2	3
840944	16.66666667	DOWN	5	1	2	3
840990	16.66666667	DOWN	5	1	2	6
841008	16.66666667	UP	3	1	3	1
841046	50	DOWN	2	3	2	3
841207	16.66666667	UP	. 3	1	3	1
841282	16.66666667	UP	3	1	2	2
841308	16.66666667	DOWN	5	1	2	6
841314	16.66666667	DOWN	3	1	2	2
841348	16.66666667	DOWN	3	1	3	1
841415	33,33333333	DOWN	2	2	2	2
841480	16.66666667	DOWN	3	1	3,	1
841492	16.66666667	UP	3	1	3	1
841615	16.66666667	DOWN	3	1	2	3
	16.66666667	DOWN	10	1	2	2
841621 841624	16.66666667	DOWN	3	1	2	4
841663	16.66666667	UP	3	1	3	1
	16.66666667	UP	3	1	3	1
841666	16.66666667	DOWN	3	1	2	4
842765	33.33333333	UP	2	2	2 .	2
842784	16.66666667	DOWN	3	. 1	2	2
842871	33.33333333	DOWN	2	2	2	2
842925 843049	16.66666667	UP	3	1	3	1
	33.33333333	UP	. 2	2	2	2
843054 843058	16.66666667	DOWN	3	1	3	1
843220	16.66666667	DOWN	3	1	3	1
843250	16.66666667	DOWN	3	1	3	1
843276	33.33333333	DOWN	2	2	2	2
843321	16.66666667	UP	3	1	3	1
844768	16.66666667	DOWN	5	1	5	1
844913	16.66666667	DOWN	3	1	3	1
845037	16.66666667	DOWN	5	1	5	. 1
845658	33.33333333	UP	2	2	2	2
845709	16.66666667	DOWN	3	1	3	1
845780	16.66666667	UP	3	1	3	1
852548	33.33333333	DOWN	2	2	2	2
852947	16.66666667	DOWN	3	1	3	1
853280	33.33333333	UP	2	2	2	2
853367	66.66666667	UP	2	4	2	4
853687	16.66666667	UP	5	1	5	1
853809	16.66666667	DOWN	3	1	3	1
853906	33.33333333	DOWN	2	2	2	2.
853938	16.66666667	UP	3	1	2	3
853968	50	DOWN	2	3	2	3
853988	33.33333333	DOWN	2	2	2	2
853998	33,33333333	DOWN	2	2	2	2
854338	33.3333333	DOWN	3	2	2	4

Table 10

						_
854444	33.3333333	UP	2	2	2	2
854581	16.66666667	DOWN	3	• 1	3	1
854746	50	DOWN	2	3	2	3
854831	16.66666667	DOWN	5	1	3	2
855133	16.66666667	DOWN	5	1	5	1
855157	16.66666667	DOWN	3	1	3	1
855244	33.3333333	DOWN	3	2	2	4
855395	66.6666667	DOWN	2	4	2	4
855448	16.66666667	UP	3	1	2	2
855476	33.3333333	UP	2	2	2	2
855487	16.66666667	DOWN	3	1	2	3
855547	16.6666667	DOWN	3	1	3	1
855574	16.66666667	UP	3	1	3	1
855698	33.3333333	U P	2	2	2	2
855728	16.6666667	DOWN	3	1	3	1
855745	16.66666667	UP	10	1	5	2
856289	16.66666667	UP	3	1	3	-1
856354	33,33333333	DOWN -	2	2	2	2
856535	33,33333333	DOWN	2	2	2	2
856568	33.3333333	DOWN	2	2	2	2
856639	16.66666667	DOWN	3	1	3	1
856650	16.66666667	DOWN .	`3	1	3	1
856878	16.6666667	UP	3	1	2	3
857249	33.33333333	UP	3	2	2	4
857612	16.66666667	UP	3	1	3	1
857640	33.33333333	UP	2	2	2	2
857874	16.66666667	UP	3	1	3	1
858132	33.33333333	UP	2	2	2	2
858363	33.33333333	UP	2	2	. 2	2
858450	16.66666667	DOWN	3	1	2	4
859228	16.66666667	DOWN	3	1	3	1
859253	33.3333333	UP	2	2	2	2
859266	16.66666667	DOWN	3	1	3	1
859386	16.66666667	DOWN	3	1	3	1
859392	16.6666667	DOWN	3	1	3	1
859408	16.66666667	DOWN	3	1	3	1
859460	16.6666667	UP	3	1	3	1
859832	16.66666667	DOWN	3	1	3	1
867606	16.66666667	UP	3	1	2	2
867717	16.66666667	DOWN	5	1	5	1
868188	16.6666667	DOWN	3	1	2	3
868245	16.66666667	DOWN	3	1	3	1
. 868396	16.66666667	DOWN	3	1	3.	1
868530	16.6666667	UP	3	1	3	1
868815	16.66666667	UP	3	1	3	1
868871	16.66666667	DOMN	5	•1	5	1
877835	33.33333333	DOWN	2	2	2	2
878182	16.66666667	DOWN	3	1	3	1
878231	33.33333333	DOWN	2	2	2	2

Table 10

878413	33.3333333	DOWN	2	2	2	2
878496	33.33333333	DOWN	2	2	2	2
878511	50	UP	2	3	2	3
878564	50	DOWN	3	3	2	5
878596	16.66666667	DOWN	5	1	2	6
878605	33.3333333	UP	2	2	2	2
878640	16.66666667	UP .	3	1	3	1
878652	33.3333333	UP	2	2	2	2
878676	16.66666667	DOWN	3	1	3	1
882506	33.33333333	UP	2	2	2	2
882510	33.3333333	UP	2	2	2	2
882522	16.66666667	UP	3	1	3	1
884436	16.66666667	UP	3	1	2	2
884510	16.66666667	DOWN	3	1	3	1
884644	16.66666667	UP	3	1	3	1
884655	16.6666667	UP	3	1	3	1
884662	16.66666667	UP	3	1	2	2
884696	16.66666667	UP .	3	1	3	1
884718	16.66666667	UP	3	1	3	1
884766	50	DOWN	2	3	2	3
897313	16.66666667	DOWN	3	1	3	1
897497	33.33333333	UP	2	2	2	2
897531	50	UP	2	3	2	3
897559	16.6666667	DOWN	3	1	2	3
897561	16.6666667	DOWN	3	1	3	1
897587	16.6666667	DOWN	3	1	2	3
897603	33.33333333	DOWN	3	2	2	3
897770	16.66666667	DOWN	5	1	2	2
897806	33.33333333	DOWN	2	2	2	2
897906	16.66666667	UP	3	1	3	1
897910	16.66666667	UP	3	1	3	1
897924	16.66666667	DOWN	3	1	2	4
897956	16.66666667	UP	3	1	3	1
898038	16.66666667	DOWN	5	1	5	1
898083	16.66666667	UP	3	1	3	1
898092	16.66666667	UP	3	1 .	3	1
898161	16.66666667	UP	3	1	3	1
898198	16.6666667	DOWN	3	1	2	3 3
898227	16.6666667	DOWN	5	1	2	3 1
898286	16.6666667	UP	3	1	3	3
898288	50	DOWN	2	3	2 3	1
898338	16.6666667	UP	3	1	•	
949988	33,3333333	UP	2	2	2	2 4
950410	66.6666667	DOWN	5	4	5	
950429	16.66666667	UP	5	1	5	1 4
950450	33.3333333	DOWN	3	2	2	4
950463	16.66666667	DOWN	5	1	5	1
950667	16.6666667	DOWN	3	1	3 2	2
950709	33.3333333	DOWN	2	2	Z	2

Table 10

950778	16.66666667	DOWN	3	1	3	1
951010	16.66666667	DOWN	3	1	2	4
951016	16.66666667	DOWN	3	1	3	1
951080	16.66666667	DOWN	3	1	3	1
951125	16.66666667	DOWN	3	1	2	4
969560	33.3333333	UP	2	2	2	2
969765	33.33333333	UP	2	2	2	2
969843	33.3333333	UP	2	2	2	2
970590	33.3333333	UP	2	2	2	2
970795	33.3333333	UP	2	2	2	2
970879	16.66666667	DOWN	3	1	3	1
970880	33.3333333	DOWN	2	2	2	2
971279	16.66666667	UP	3	1	3	1
971372	16.66666667	DOWN	3	1	3	1
1031185	33.33333333	DOWN	2	2	2	2
1031446	16.66666667	UP	5	1	5	1
1031548	33.3333333	UP	2	2	2	2
1031552	16.66666667	DOWN	3	1	3	1
1031592	16.66666667	DOWN	3	1	3	1
1031593	16.66666667	DOWN	3	. 1	3	1
1031595	16.66666667	UP ·	3	1	2	3
1031598	33.3333333	UP	2	2	2	2
1031698	33.33333333	DOWN	2	2	2	2 .
1031701	16.66666667	DOWN	10	1	2	6
1031791	16.66666667	DOWN	5	1	3	4
1031885	33.33333333	DOWN	2	2	2	2
1031940	16.66666667	UP	3	_1	3	1
1031967	16.66666667	DOWN	3	1	2	3
1031994	16.6666667	UP	5	1	5	1
1032056	33.33333333	DOWN	2	2	2	2
1032796	16.66666667	UP	3	1	3	1
1032831	16.66666667	DOWN	3	1	3	1
1033969	16.66666667	UP	3	1	3	. 1
1034644	16.66666667	UP	3	1	2	2
1035182	16.66666667	DOWN	3	1	2	3
1035765	33.33333333	DOWN	2	2	2	2
1048592	16.6666667	UP	5	1	2	2.
1048662	16.66666667	UP	3	1	3	1
1048746	16.6666667	DOWN	3	1	2	3
1048789	50	DOWN	2	3	2	3
1048804	50	DOWN	3	3	3	3
1048889	16.66666667	UP	3	1	3	1
1048913	16.6666667	UP	3	1	3	1
1049009	16.6666667	UP	5	1	2	2
1049031	33.3333333	DOMŅ	2	2	2	2
1049033	50	DOWN	3	3	2	4
1049143	16.66666667	UP	10	1	10	1
1049168	33.3333333	DOWN	3	2	2	3
1055121	16.6666667	UP	3	1	3	1

Table 10

						_
1055278	16.66666667	DOWN	3	1	2	2.
1055376	16.66666667	UP	3	1	3	1
1055543	16.66666667	UP	3	1	2	2
1056172	16.66666667	DOWN	5	1	3	5
1056200	16.66666667	UP	3	1	3	1
1070324	16.6666667	UP	3	1	3	1
1090708	33.33333333	UP	2	2	2	2
1161564	50	DOWN	2	3 .	2	3
1240414	33.3333333	DOWN	2 .	2	2	2
1240535	16.66666667	UP	3	1	3	1
1276343	33.3333333	DOWN	2	2	2	2
1276665	33.3333333	UP	3	2	2	3
1292115	33.3333333	UP	2	2	2	2
1292501	33.3333333	UP	5	2	2	4
1292523	16.66666667	DOWN	3	1	3	1
1292878	33.3333333	UP	2	2	2	2
1293191	33.3333333	UP	3	2	2	3
1309620	16.66666667	DOWN	5	1	3	2
1321598	16.66666667	UP	3	1	3	1
1323591	16.66666667	DOWN	25	1	3	4
1325605	33.33333333	DOWN	2	2	2	2
1384851	16.66666667	DOWN	3	1	2	2
1388373	33.33333333	UP	2	2	2	2
1404774	66.6666667	DOWN	5	4	3	5
1409509	16.66666667	UP	5	1	5	1
1410444	83,33333333	DOWN	10	5	3	6
1412344	50	DOWN	5	3	2	6
1412481	16.66666667	UP	5	1	5	1
1412503	66.6666667	UP	2	4	2	4
1416782	16.66666667	UP	3	1	3	1
1418621	33.33333333	UP	3	2	3	2
1420527	66.6666667	DOWN	2	4	2	4
1420830	33.33333333	DOWN	2	2	2	2
1421061	16.66666667	UP	5	1	5	1
1422723	16.66666667	DOWN	3	1	3	1
1435029	16.6666667	DOWN	3	1	2	2
1435624	66.6666667	UP	2	4	2	4
1455835	16.66666667	UP	10	1	10	1
1455976	33.3333333	DOWN	2	2	2	2
1456024	16.66666667	DOWN	3	1	3	1
1456060	16.66666667	UP	3	1	2	2
1456160	. 16.66666667	DOWN	5	1	3	2
1456405	16.66666667	UP	50	1	50	1
1456776	33.3333333	UP	2	2	2	2
1459376	16.66666667	UP	10	1	3	2
1460386	16.66666667	UP	3	1	3	1
1461048	33.3333333	UP	2	2	2	2
1461484	16.66666667	UP	3	1	3	1
1461601	33.3333333	DOWN	2	2	2	2

Table 10

1466834	16.66666667	UP	3	1	2	3
1466904	50	DOWN	2	3	2	3
1467799	16.66666667	DOWN	5	1	2	6
1467831	16.66666667	DOWN	3	1	3	1
1468260	16.66666667	UP	10	1	10	1
1468267	16.66666667	UР	3	1	3	1
1468895	50	DOWN	2	3	2	3
1469292	16.66666667	UP .	3	1	3	1
1470048	16.66666667	DOWN	5	1	2	5
1470446	66.66666667	DOWN	2	4	2	4
1470440	16.66666667	DOWN	5	1	2	4
1471841	16.66666667	DOWN	3	1	2	2
1472152	16.66666667	UP	5	1	5	1
1472132	16.66666667	UP	3	1	2	2
1472735	16.66666667	DOWN	3	1	2	3
1472743	50	DOWN	2	3	2	3
1472775	16.66666667	UP	5	1	2	2
1472773	16.66666667	UP	5	1	5	1
1472920	16.66666667	DOWN	5	1	2	3
1473237	16.66666667	DOWN	3	1	. 2	2
1473304	16.6666667	DOWN	3	1	3	1
1474174	50.	UP	2	3	2	3
1474424	16.66666667	UP	3	1	3	1
1474424	50	DOWN	2	3	2	3
1474429	50	DOWN	2	3	. 2	3
14745684	33.33333333	DOWN	3	2	3	2
1474900	16.66666667	UP	5	1	5 ·	1
1474987	16.66666667	DOWN	5	1	2	2
1475195	16.66666667	UP	5	1	2	3
1475421	16.66666667	UP	3	1	3	1
1475659	50	DOWN	2	3	2	3
1475720	50	DOWN	2	3	2	3
1476181	33.3333333	DOWN	2	2	2	2
1486194	16.66666667	UP	3	1	3 .	1
1486752	66.66666667	DOWN	2	4	2	4
1492202	50	DOWN	2	3	2	3
1492468	33.33333333	DOWN	5	2	3	5
1493128	33,33333333	DOWN	5	2	2	5
1493160	16.66666667	UP	5	1	5	1
1499830	33.3333333	UP	2	2	2	2
1500162	16,66666667	DOWN	3	1	2	4
1502206	16.6666667	UP	3	1	3	1
1505294	16.66666667	DOWN	3	1	2	4
1507713	50	DOWN	3	3	3	3
1517595	33.3333333	UP .	2	2	2	2
1525691	16.66666667	DOWN	10	1	2	5
1536240	16.66666667	UP	5	1	3	3
1536991	16.66666667	DOWN	3	1	2	2
1551208	16.66666667	UP	3	1	2	2

Table 10

1552481	16.6666667	UP	3	1	3	1
1556526	16.66666667	UP	5	1	3	2
1558108	16.66666667	DOWN	3	1	2	3
1558492	66.6666667	DOWN	2	4	2	. 4
1558642	16.66666667	DOWN	3	1	2	5
1558655	16.66666667	UP	3	1	3	1
1569876	33.3333333	DOWN	2	2	2	2
1573108	50	DOWN	2	3	2	3
1573778	50	DOWN	3	3	3	3
1574594	16.66666667	DOWN	3	1	3	1
1574854	16.66666667	DOWN	3	1	3	1
1575008	16.66666667	UP	3	1	3	1
1580874	50	DOWN	2	3	. 2	3
1586251	16.66666667	UP	3	1	2	2
1592048	16.66666667	DOWN	3	1	3	1
1597388	16. 6 6666667	UP	5	1	5	1
1601852	33.33333333	DOWN	3	2	2	3
1602209	16.66666667	UP	3	1	2	2
1603583	33.33333333	DOWN.	2	2	2	2
1604703	33.33333333	DOWN	2	2	2	2
1605178	16.6666667	DOWN	5	1	2	2
1605426	16.66666667	UP	3	1	3	1
1606557	33.3333333	DOWN	3	2	2	3
1607229	33.33333333	DOWN	2	2	2	2
1610448	33,33333333	DOWN	2	2	2	2
1623328	33.3333333	UP	2	2	2	2 3
1629420	50	UP	2	3	2	ა 3
1631863	16.66666667	UP	3	1	2	3 1
1636108	16.66666667	UP	5	1	5.	2
1636122	33.3333333	UP	2	2	2	1
1636248	16.66666667	DOWN	3	1	3 3	1
1636495	16.66666667	UP	3	1	ა 5	· 1
1636606	16.66666667	UP	5	1	_	2
1636786	33,33333333	DOWN	2	2	2	4
1636812	16.66666667	DOWN	5	1	2	1
1638479	16.66666667	DOWN	3	1	3	3
1642145	16.66666667	UP	3	1	2	3 _