

Sri Chaitanya IIT Academy, India

A.P., TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI
A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 Date: 26-09-15

 Time: 9:00 AM to 12:00 Noon
 RPTM-8
 Max.Marks: 360

KEY SHEET

CHEMISTRY PHYSICS MATHS					
Q.NO	ANSWER	Q.NO	ANSWER	Q.NO	ANSWER
1	4	31	3	61	1
2	3	32	2	62	1
3	4	33	2	63	1
4	2	34	3	64	3
5	2	35	3	65	2
6	1	36	2	66	3
7	4	37	2	67	1
8	3	38	4	68	4
9	1	39	3	69	1
10	4	40	4	70	1
11	3	41	3	71	4
12	4	42	2	72	3
13	2	43	3	73	4
14	3	44	4	74	3
15	4	45	3	75	3
16	4	46	3	76	4
17	3	47	1	77	3
18	4	48	1	78	1
19	3	49	2	79	4
20	4	50	1	80	2
21	2	51	3	81	2
22	2	52	4	82	3
23	3	53	2	83	2
24	1	54	2	84	4
25	4	55	3	85	4
26	4	56	3	86	3
27	2	57	1	87	3
28	1	58	3	88	1
29	2	59	4	89	3
30	3	60	2	90	1

MATHS

- 61. From the graph observe that there are 8 solutions.
- 62. $\det(adj(adjA)) = (\det A)^{(n-1)^2}$
- 63. conceptual

$$xyz = 60$$

$$8x + 4y + 3z = 20$$

$$= x(yz-8) - 3(z-8) + 2(2-2y)$$

$$=60-(8x+4y+3z)+28$$

$$=40+28$$

$$=68$$

$$\therefore A(adjA) = (\det A)I$$

65.
$$AB = -BA \Rightarrow (A+B)^2 = A^2 + B^2$$

66.
$$\alpha + \beta + \gamma = 0$$

67.
$$\begin{vmatrix} 4 & (e^{i\alpha} - e^{-i\alpha})^2 & 4 \\ 4 & (e^{i\beta} - e^{-i\beta})^2 & 4 \\ 4 & (e^{i\gamma} - e^{-i\gamma})^2 & 4 \end{vmatrix}$$

68.
$$\sum_{n=1}^{N} u_n = \begin{vmatrix} \frac{N(N+1)}{2} & 1 & 5\\ \frac{N(N+1)(2N+1)}{26} & 2N+1 & 2N+1\\ \frac{N^2(N+1)}{4} & 3N^2 & 3N \end{vmatrix}$$

69. by
$$R_1 \to R_1 - R_2$$

26-09-15_Sr.IPLCO_JEE-MAIN_RPTM-8_Key&Sol's

- 70. $|A \lambda I| = 0 \Rightarrow \lambda_1 + \lambda_2 + \lambda_3 = 2$, $\lambda_1 \lambda_2 \lambda_3 = 22$ and there will be infinite number of X satisfy is $AX = \lambda_1 X$ for any particular $\lambda = \lambda_1$
- 71. $\Delta = \begin{vmatrix} 1 & \alpha & \beta \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{vmatrix}^2 = (a+b+c)^2 (b^2 4ac)^2$
- 72. $AA^T = I \Rightarrow a^2 + b^2 + c^2 = 1$; ab + bc + ca = 0 then use these equations to prove the truth of (3)
- 73. The determinant is constant then $\frac{d}{dx}(A) = 0$
- 74. $\begin{vmatrix} 5 & 4 & 3 \\ x51 & y41 & z31 \\ x & y & z \end{vmatrix} = \begin{vmatrix} 5 & 4 & 3 \\ 100x & 100y & 100z \\ x & y & z \end{vmatrix} + \begin{vmatrix} 5 & 4 & 3 \\ 50 & 40 & 30 \\ x & y & z \end{vmatrix} + \begin{vmatrix} 5 & 4 & 3 \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = 0$

$$\Rightarrow \begin{vmatrix} 5 & 4 & 3 \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = 0$$

 $\Rightarrow x, y, z \text{ are in A.P}$

 $75. P^2 = BI - P$

$$P^3 = P(I-P) = P(I-P) \Rightarrow P^3 = 2P-I$$

$$P^4 = 5P - 3I$$
 and $P^6 = 5I - 8P \Rightarrow n = 6$

76. $|Adj A| = A^5, |Adj |A| A| = ||A| A|^5 = |A|^{30}. |A|^5$

$$\Rightarrow |Adj|A|A| = |A|^{35}$$

Now
$$\Rightarrow ||A| A dj (|A| A)| = |A|^6 ||A dj (|A| A)| = |A|^6 . |A|^{35} = |A|^{41}$$

77.
$$|(2A)^{-1}| = \frac{Adj(2A)}{|2A|} = \frac{Adj A}{14} \Rightarrow |(2A)^{-1}| = \frac{1}{14^3} |Adj A| = \frac{1}{56}$$

78. Taking x common from C_2 , x+1 from C_3 and x-1 from R_3 , we get

$$\Delta(x) = x(x+1)(x-1)\begin{vmatrix} 1 & 1 & 1 \\ 2x & x-1 & x \\ 3x & x-2 & x \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 - C_3, C_2 \rightarrow C_2 - C_3$, we get

$$\Delta(x) = x(x+1)(x-1)\begin{vmatrix} 0 & 0 & 1 \\ x & -1 & x \\ 2x & -2 & x \end{vmatrix} = 0 \left[\because C_1 \text{ and } C_2 \text{ are proportional} \right]$$

Thus, $\Delta(100) = 0$

79.
$$|Q| = \begin{vmatrix} 2^2 a_{11} & 2^3 a_{12} & 2^4 a_{13} \\ 2^3 a_{21} & 2^4 a_{22} & 2^5 a_{23} \\ 2^4 a_{31} & 2^5 a_{32} & 2^6 a_{33} \end{vmatrix}$$

$$= (2^{2})(2^{3})(2^{4})\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 2a_{21} & 2a_{22} & 2a_{23} \\ 2^{2}a_{31} & 2^{2}a_{32} & 2^{2}a_{33} \end{vmatrix}$$

$$= 2^{9} (2) (2^{2}) \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 2^{12} |P| = 2^{13}$$

80. On expansion observe that the det. Is independent of p.

81.
$$C_3 \rightarrow C_3 + C_1 + C_2$$
, gives $\Delta = (2 + 4\sin\theta) \begin{vmatrix} 1 + \sin^2\theta & \cos^2\theta & 1 \\ \sin^2\theta & 1 + \cos^2\theta & 1 \\ \sin^2\theta & \cos^2\theta & 1 \end{vmatrix}$

Applying $R_3 \rightarrow R_3 - R_2, R_2 \rightarrow R_2 - R_1$, we get

$$\Delta = 2(1 + 2\sin 4\theta) \begin{vmatrix} 1 + \sin^2 \theta & \cos^2 \theta & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 0 \end{vmatrix} = 2(1 + 2\sin 4\theta)$$

$$\Delta = 0 \Rightarrow \sin 4\theta = -1/2$$

Now,
$$0 \le \theta \le \frac{\pi}{2} \Rightarrow 0 \le 4\theta \le 2\pi$$

$$4\theta = \frac{7\pi}{6}, \frac{11\pi}{6} \Rightarrow \theta = \frac{7\pi}{24}, \frac{11\pi}{24}$$

82. Assume
$$X = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$
 and solve the problem

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

26-09-15_Sr.IPLCO_JEE-MAIN_RPTM-8_Key&Sol's

- 83. Divide LHS by λ^4 and C_1 by λ_2 , C_2 by λ , C_3 by λ on RHS and then take limit as $\alpha \to \infty$
- 84. $\Delta_1 = \begin{vmatrix} x^2 & -2x & 1 \\ y^2 & -2y & 1 \\ z^2 & -2z & 1 \end{vmatrix} \begin{vmatrix} 1 & a & a^2 \\ 2 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$ by Row row product Now-use Row-row product after $C_1 \leftrightarrow C_3$ we get $\Delta_2 = \Delta_1 = \Delta_2$
- 85. As the system has a non-zero solution $\Delta = \begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix} = 0$ apply $R_2 \to R_2 R_1, R_3 \to R_3 R_1$

$$\Delta = \begin{vmatrix} p & b & c \\ a-p & q-b & 0 \\ a-p & 0 & r-c \end{vmatrix} = 0$$

Expanding along R_3 , we get

$$-(a-p)(q-b)c+(r-c)[q(q-b)-b(a-b)]=0$$

Dividing (p-a)(q-b)(r-c), we get

$$\frac{c}{r-c} + \frac{p}{p-a} + \frac{b}{q-b} = 0$$

$$\Rightarrow \frac{c-r}{r-c} + \frac{r}{r-c} + \frac{p}{p-a} + \frac{b-q}{q-b} + \frac{q}{q-b} = 0$$

$$\Rightarrow \frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$$

86.
$$\Delta^2 = \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} \cdot \begin{vmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \\ n_1 & n_2 & n_3 \end{vmatrix}$$

$$\Delta^{2} = \begin{vmatrix} l_{1}^{2} + m_{1}^{2} + n_{1}^{2} & l_{1}l_{2} + m_{1}m_{2} + n_{1}n_{2} & l_{1}l_{3} + m_{1}m_{3} + n_{1}n_{3} \\ l_{2}l_{1} + m_{2}m_{1} + n_{2}n_{1} & l_{2}^{2} + m_{2}^{2} + n_{2}^{2} & l_{2}l_{3} + m_{2}m_{3} + n_{2}n_{3} \\ l_{3}l_{1} + m_{3}m_{1} + n_{3}n_{1} & l_{3}l_{2} + m_{3}m_{2} + n_{3}n_{2} & l_{3}^{2} + m_{3}^{2} + n_{3}^{2} \end{vmatrix}$$

$$\Delta^{2} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1(1) = 1 \Rightarrow |\Delta| = 1$$

87.
$$(16x+2)x^2+rx+3k-1=0$$

$$(12k+4)x^2 + px + 6k - 2 = 0$$

26-09-15_Sr.IPLCO_JEE-MAIN_RPTM-8_Key&Sol's

$$\frac{6k+2}{12k+4} = \frac{r}{p} = \frac{3k-1}{6k-2} \Rightarrow \frac{r}{p} = \frac{1}{2}$$

$$2r - p = 0$$

88.
$$I - A = \begin{bmatrix} 1 & \tan(\alpha/2) \\ -\tan(\alpha/2) & 1 \end{bmatrix}$$
, then $(I - A)^{-1} = \frac{1}{\sec^2(\alpha/2)} \begin{bmatrix} 1 & \tan(\alpha/2) \\ -\tan(\alpha/2) & 1 \end{bmatrix}$

Now,
$$(I+A)(I-A)^{-1} = \frac{1}{\sec^2(\alpha/2)} \begin{bmatrix} 1 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1-\tan^{2}(\alpha/2)}{1+\tan^{2}(\alpha/2)} & \frac{-2\tan(\alpha/2)}{1+\tan^{2}(\alpha/2)} \\ \frac{2\tan(\alpha/2)}{1+\tan^{2}(\alpha/2)} & \frac{1-\tan^{2}(\alpha/2)}{1+\tan^{2}(\alpha/2)} \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$$

89. Let
$$M = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$

$$b_1 = -1, b_2 = 2, b_3 = 3$$

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$$a_1 - b_1 = 1, a_2 - b_2 = 1, a_3 - b_3 = -1$$

$$a_1 = 0, a_2 = 3, a_3 = 2$$

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 12 \end{bmatrix}$$

$$a_1 + b_1 + c_1 = 1, a_2 + b_2 + c_2 = 0, a_3 + b_3 + c_3 = 12$$

$$c_1 = 2, c_2 = -5, c_3 = 7$$

26-09-15_Sr.IPLCO_JEE-MAIN_RPTM-8_Key&Sol's

$$\mathbf{M} = \begin{bmatrix} 0 & -1 & 2 \\ 3 & 2 & -5 \\ 2 & 3 & 7 \end{bmatrix}$$

90.
$$\frac{p}{2} + \frac{q}{2} = \frac{\pi}{4} \Rightarrow \frac{\tan p/2 + \tan q/2}{1 - \tan p/2 \cdot \tan q/2} = 1 \rightarrow -\frac{b}{a} = 1 - \frac{c}{a}$$

$$c = a + b$$