Predicting Bodyfat Using Variable Selection Techniques A Data-Driven Approach

Shuo Li, Xinrui Zhong, Yunze Wang

Data Science Project University of Wisconsin-Madison October 2024

Outline

1 Data Preprocessing

2 Model Selection

3 Conclusion

Data Preprocessing

- Dataset: BodyFat.csv
- Removed outliers using the IQR method.
- Imputed missing values using KNN.
- Handling Bodyfat column.

Flowchart with Dataset Illustrations

Bodyfat	Feature 1	Feature 2	Feature 3
В	F1	F2	F3
В	F1	F2	F3
В	F1	F2	F3
:	:	:	:

	ı
	Γ
Remove	
Outliers	

,					
1	Bodyfat	Feature 1	Feature 2	Feature 3	
	В	F1	NA	F3	
	В	F1	F2	NA	
	В	NA	F2	F3	
	:	:			

KNN Imputation

	Bodyfat	Feature 1	Feature 2	Feature 3
	В	F1	F2	F3
	В	F1	F2	F3
	В	F1	F2	F3
	:	:	:	:
l	•	•	•	•

Adjust	
Bodyfat	

	V			
(Bodyfat	Feature 1	Feature 2	Feature 3
l	В	F1	F2	F3
1	В	F1	F2	F3
l	В	F1	F2	F3
l	:	:	:	:
ı				

Feature Selection

Model Comparison

- Best model: Multiple Linear Regression with Forward Selection
- Comparison of model performance:

	$MLR_Forward$	$MLR_Backward$	Decision Tree
Feature numbers	3	5	6
R^2	0.731	0.732	0.828
Adjusted \mathbb{R}^2	0.727	0.726	0.823
MSE	13.25	13.19	8.47
Cross-validation MSE	13.84	14.00	28.45
F-test (p-value)	2.58e-70	3.56e-68	NA
Jarque-Bera test (p-value)	0.112	0.110	NA

Table: Comparison of different models

Model Diagnostics

- Normality of the error terms :Jarque-Bera test
- Homoskedasticity:Residual plot

Figure: Resudual plot of MLR_Forward

Conclusion

$$BF = 9.43 + 32.97 \times \frac{Abd - 69.4}{118 - 69.4} - 6.55 \times \frac{Wrt - 16.1}{20.4 - 16.1} - 5.17 \times \frac{Height - 64}{77.75 - 64}$$
 (1)

- Advantages
 - The multiple linear regression model is simple in structure, making it easy to implement and use.
 - MLR is easy to interprete, together with the statistical meaning of the parameters.
- Disadvantages
 - MLR relies heavily on the assumption that the residuals (errors) follow a normal distribution.
 - It's difficult to clearly explain the individual effect of each variable.

Shiny APP

Shiny App link: click here

Thank you!