HydRoStat: a quick start guide

1 Introduction

The *HydroPortailStats* R package provides functions and objects used to estimate a distribution (and related uncertainties) based on a sample of observed values.

To use *HydroPortailStats*, you should have R (https://www.r-project.org/) installed on your computer. You should also download and install the following packages:

- 1. evd (https://cran.r-project.org/web/packages/evd/index.html)
- 2. mvtnorm (https://cran.r-project.org/web/packages/mvtnorm/index.html)
- 3. numDeriv (https://cran.r-project.org/web/packages/numDeriv/index.html)

In practice, only the two functions described below are needed to get started. We recommend to take a look at the README at https://github.com/benRenard/HydroPortailStats to understand how these functions can be called.

h3 <- Hydro3_Estimation(y, dist, [Emeth], [Umeth], [options])

The function Hydro3_Estimation has 2 compulsory inputs and 3 optional inputs:

- 1. y [compulsory] : numerical vector of observations (without missing data)
- 2. dist [compulsory]: character string denoting the distribution to be estimated. See section Error: Reference source not found for the list of available distributions.
- 3. Emeth [optional]: estimation method. L-Moments ("LMOM", default, recommended), moments ("MOM"), maximum likelihood ("ML") or Bayesian ("BAY").
- 4. Umeth [optional]: method for quantifying uncertainties. Parametric Bootstrap ("PBOOT", default, recommended), bootstrap ("BOOT"), maximum likelihood ("ML"), Bayesian ("BAY") or nothing ("NONE").
- 5. options [optional]: a list containing estimation options. See section 4 for details.

The output of the function Hydro3_Estimation is a Hydro3 object, containing all results of the estimation procedure (parameter estimates, quantiles, uncertainties, statistical tests, etc.). See section 3 for details.

Hydro3_Plot(y,h3)

The function Hydro3_Plot has 2 compulsory inputs

- 1. y [compulsory]: numerical vector of observations (without missing data)
- 2. h3 [compulsory]: Hydro3 object, resulting from the call of the Hydro3_Estimation function.

The function Hydro3_Plot has no output: it just produces a plot summarizing the inference (parameter estimates, data, cumulative distribution function (cdf) and quantiles).

2 Available distributions

Distribution	ID	# parameters	Typical usage*
-			
Normal (or Gaussian)	"Normal"	2	QA
Log-normal	"LogNormal"	2	QA, QN
Gumbel	"Gumbel"	2	QX
Generalized extreme value	"GEV"	3	QX
Pearson III	"PearsonIII"	3	QX
Log-Pearson III	"LogPearsonIII"	3	QX
exponential	"Exponential2"	2	QS
Generalized Pareto	"GPD3"	3	QS
Gumbel for minima	"Gumbel_min"	2	QN
Generalized extreme value for minima	"GEV_min"	3	QN
Exponential with zero threshold	"Exponential1"	1	QS
Generalized Pareto with zero threshold	"GPD2"	2	QS
Poisson	"Poisson"	1	N

^{*} QA = Annual discharge, QN = minimal discharge, QX = maximal discharge, QS = above-threshold discharge, N = count.

3 Description of a Hydro3 object

A Hydro3 object h3 is a list containing all useful results of the estimation process. It contains the following fields (fields marked in red should be the most useful):

- 1. h3\$dist: the estimated distribution.
- 2. h3\$empirical: empirical estimates. A data frame with the following columns:
 - a. **y**: sorted data
 - b. **freq**: non-exceedance frequency
 - c. T: return period
 - d. U: reduced variate
- 3. h3\$pcdf: estimated pdf and cdf. A data frame with the following columns:
 - a. x: value
 - b. pdf: associated pdf
 - c. cdf: associated cdf
- 4. h3\$quantile: estimated quantiles. A data frame with the following columns:
 - a. T: return period
 - b. p: non-exceedance probability
 - c. U: reduced variate

- d. q: estimated quantile
- e. IC. low: lower bound of the uncertainty interval
- f. IC. high: higher bound of the uncertainty interval
- 5. h3\$par: estimated parameters. A data frame with the following columns:
 - a. index: parameter index
 - b. name: parameter name
 - c. estimate: estimated parameter
 - d. IC. low: lower bound of the uncertainty interval
 - e. IC.high: higher bound of the uncertainty interval
 - f. mean: mean of the sampling distribution (see h3\$u)
 - g. median: median of the sampling distribution (see h3\$u)
 - h. sdev: standard deviation of the sampling distribution (see h3\$u)
- 6. h3\$KS: Result of the Kolmogorov-Smirnov goodness-of-fit test. A list with the following fields:
 - a. pval: p-value of the test
 - b. stat: test statistics
 - c. xtra: not used
- 7. h3\$MK: Result of the Mann-Kendall trend test. A list with the following fields:
 - a. pval: p-value of the test
 - b. stat: test statistics
 - c. xtra: not used
- 8. h3\$Pettitt: Result of the Pettitt step-change test. A list with the following fields:
 - a. pval: p-value of the test
 - b. stat: test statistics
 - c. xtra: estimated location of the step-change
- 9. h3\$u: Properties of the sampling distribution for parameters estimates, explored through simulations:
 - a. COV: covariance matrix for parameters estimates
 - b. sim: simulated parameter values, representing their sampling distribution
 - c. ok: logical flag indicating whether the simulations went well
 - d. error: integer error code (0 = no error)
 - e. message: character string with a possible error message
- 10. h3\$ok: logical flag indicating whether the estimation went well
- 11. h3\$error: integer error code (0 = no error)
- 12. h3\$message: character string with a possible error message

4 Estimation options

An option object o is a list containing all options used for estimation. In practice, the most useful ones are: (i) option invertT, that should be set to TRUE if large return periods correspond to small values of the variable (typical example: low flow variable "annual minimum"); (ii) option splitZeros that should be set to TRUE if values equal to zeros should be treated separately.

- 1. o\$FreqFormula: formula used for computing non-exceedance frequencies (default: Hazen (i-0.5)/n
- 2. oppgrid: grid of probabilities defining where estimated pdf and cdf are evaluated
- 3. o\$Tgrid: grid of return periods defining where estimated quantiles are evaluated

- 4. **o\$IClevel**: level of the confidence intervals (default: 0.9)
- 5. o\$p2T: conversion factor between return period and non-exceedance probability, equal to the average number of data per year (default: 1)
- 6. **o\$invertT**: FALSE if large return periods correspond to large values, TRUE otherwise (default: FALSE)
- 7. **o\$splitZeros**: Should values smaller than or equal to zero be treated separately? (default: FALSE)
- 8. o\$lang: language used in figure labels (default: French)
- 9. o\$nsim: number of simulations used to explore the sampling distribution (default: 1000)