Transpose

Definition: Transpose

Let A be an $m \times n$ matrix. The *transpose* of A, denoted A^T , is the $n \times m$ matrix with entries:

$$(A^T)_{ij} = A_{ji}$$

Thus, the i^{th} row becomes the i^{th} column and the j^{th} column becomes the j^{th} row.

Theorem

- 1). $(A^T)^T = A^T$
- 2). $(cA)^T = cA^T$
- 3). $(A + B)^T = A^T + B^T$
- 4). $(cA + dB)^T = cA^T + dB^T$

Proof

- 1). $((A^T)^T)_{ij} = (A^T)_{ji} = A_{ij}$
 - $\therefore (A^T)^T = A^T$
- 2). $((cA)^T)_{ij} = (cA)_{ji} = cA_{ji} = c(A^T)_{ij}$

$$(cA)^T = cA^T$$

3). $((A+B)^T)_{ij} = (A+B)_{ii} = A_{ii} + B_{ii} = (A^T)_{ij} + (B^T)_{ij} = (A^T+B^T)_{ij}$

$$\therefore (A+B)^T = A^T + B^T$$

4). $(cA + dB)^T = (cA)^T + (dB)^T = cA^T + dB^T$

Definition: Symmetric

To say that a matrix A is symmetry means $A = A^T$.

Thus, all symmetry matrices must be square matrices.

Theorem

Let S be the set of all symmetric $n \times n$ matrices over a field \mathbb{F} :

S is a subspace of $M_n(\mathbb{F})$

Proof

Clearly, $0^T = 0$, so the zero matrix is in S.

Assume
$$A,B\in S$$

$$(A+B)^T = A^T + B^T = A + B$$

Thus, $A + B \in S$

Therefore S is closed under matrix addition.

Therefore ${\cal S}$ is closed under scalar multiplication.

Therefore, by the subspace test, S is a subspace of $M_n(\mathbb{F})$.