Universiteit van Stellenbosch

Toegepaste Wiskunde 314

Tutoriaal 6: Donderdag 1 April 2004

MEMORANDUM

(1) Die terugvoerpolinoom $f(x) = 1 + p_1x + p_2x^2 + p_3x^3 + p_4x^4$ kan uit die sisteem van vergelykings

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$

bepaal word, deur van (modulêre) Gauss-eliminasie gebruik te maak, of deur die inverse

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

te gebruik. Die oplossing is $f(x) = 1 + x^3 + x^4$.

- (2) (a) Ja, f(x) is onreduseerbaar in $(\mathbb{Z}_2[x], +, \times)$; dit het geen faktore in die ring nie.
 - (b) Ja, f(x) is primitief in $(\mathbb{Z}_2[x], +, \times)$; die eksponent daarvan is maksimaal (naamlik 15), volgens Tabel 3-2.
- (3) Die periode van \underline{s} is p = 15 (Stelling 3-4).
- (4) $\underline{s}_0^{15} = 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0.$
- (5) Die kripto–stroom is $\underline{k} = 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1.$
- (6) Die kripto–stroom is $\underline{k} = 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0.$
- (7) $\underline{s} = 1, 1, 0, 0, 1, 1, \underbrace{1, 1, 0, 0, 1, 1}_{\text{een siklus}}, 1, 1, 0, 0, 1, 1, \dots$ (Periode: 6)
- (8) (a) $1 + x^5 + x^7$ is nie 'n primitiewe polinoom in $\mathbb{Z}_2[x]$ nie, aangesien dit in die ring $(\mathbb{Z}_2[x], +, \times)$ as $(1 + x + x^2)(1 + x + x^3 + x^4 + x^5)$ gefaktoriseer kan word.
 - (b) $1+x^6+x^7$ het geen faktore in die ring $(\mathbb{Z}_2[x], +, \times)$ nie (m.a.w. is onreduseerbaar in die ring), maar die eksponent daarvan is $e < 2^7 1 = 127$; gevolglik is dit nie 'n primitiewe polinoom in $\mathbb{Z}_2[x]$ nie.
 - (c) $1 + x^4 + x^7$ is wel 'n primitiewe polinoom in $\mathbb{Z}_2[x]$, aangesien dit geen faktore in die ring $(\mathbb{Z}_2[x], +, \times)$ het nie, en 'n eksponent van $e = 2^7 1 = 127$ het.
- (9) Daar is $\phi(2^{25}-1)/25=1296\,000$ primitiewe polinome van graad 25.

(10) Die eerste 8 bisse van die sleutelstroom word gegee deur $\underline{s}=0,0,0,1,1,1,1,0,\ldots$ Die ASCII-waarde van die karakter "z" is $122=(01111010)_2$. Deur hierdie 8 bisse (modulo 2) by die eerste 8 bisse van die sleutelstroom te tel, word die binêre stroom $\underline{k}=0,1,1,0,0,1,0,0,\ldots$ verkry, en omdat $(01100100)_2=100$, is die ooreenstemmende kriptoteks-karakter "d".