Prediction in MLM

Model comparisons and regularization PSYC 575

October 13, 2020 (updated: 25 October 2020)

Learning Objectives

- Describe the role of prediction in data analysis
- Describe the problem of overfitting when fitting complex models
- Use information criteria to compare models
- Use regularizing priors to increase the predictive accuracy of complex models

Prediction

Yarkoni & Westfall (2017)¹

 "Psychology's near-total focus on explaining the causes of behavior has led [to] ... theories of psychological mechanism but ... little ability to predict future behaviors with any appreciable accuracy" (p. 1100)

Prediction in Data Analysis

- Explanation: Students with higher SES receive higher quality of education prior to high school, so schools with higher MEANSES tends to perform better in math achievement
- Prediction: Based on the model, a student with an SES of 1 in a school with MEANSES = 1 is expected to score 18.5 on math achievement, with a prediction error of 2.5

Can We Do Explanation Without Prediction?

- "People in a negative mood were more aware of their physical symptoms, so they reported more symptoms."
- And then . . .
- "Knowing that a person has a mood level of 2 on a given day, the person can report anywhere between 0 to 10 symptoms"
- Is this useful?

Can We Do Explanation Without Prediction?

- "CO₂ emission is a cause of warmer global temperature."
- And then . . .
- "Assuming that the global CO₂ emission level in 2021 is 12 Bt, the global temperature in 2022 can change anywhere between -100 to 100 degrees"
- Is this useful?

Predictions in Quantitative Sciences

- It may not be the only goal of science, but it does play a role
 - Perhaps the most important goal in some research
- A theory that leads to no, poor, or imprecise predictions may not be useful
- Prediction does not require knowing the causal mechanism, but it requires more than binary decision of significance/nonsignificance

Example (M1)

• A subsample of 30 participants

Level 1:

$$symptoms_{ti} = \beta_{0i} + \beta_{1i} \bmod 1_pmc_{ti} + e_{ti}$$

Level 2:

$$\beta_{0i} = \gamma_{00} + \gamma_{01} \mod 1_{pm_i} + \gamma_{02} \mod 1_{pm_i} + \gamma_{03} \mod 1_{pm_i} \times \mod 1_{pm_i} \times \dim i + u_{0i}$$

 $\beta_{1i} = \gamma_{10} + \gamma_{11} \mod i + u_{1i}$

Two Types of Predictions

 Cluster-specific: For a person (cluster) in the data set, what is the predicted symptom level when given the predictors (e.g., mood1, women) and the person- (cluster-)specific random effects (i.e., the u's)

For person with ID 103, on a day with mood = 0, she is predicted to have 0.33 symptoms, with 95% prediction interval [-1.25, 1.97]

Two Types of Predictions

 Unconditional/marginal: for a new person not in the data, given the predictors but not the u's

For a random person who's a female and with an average mood = 0, on a day with mood = 0, she is predicted to report 0.93 symptom, with 95% prediction interval [-0.60, 2.45]

Prediction Errors

- Prediction error = Predicted $Y(\tilde{Y})$ Actual Y
- For our observation:

$$\tilde{e}_{ti} = \tilde{Y}_{ti} - 0$$

Average In-Sample Prediction Error

- Mean squared error (MSE): $\sum \sum \tilde{e}_{ti}^2/N$
- In-sample MSE: average squared prediction error when using the same data to build the model and compute prediction
- Here we have in-sample MSE = 1.04
 - The average squared prediction error is 1.04 symptoms

Overfitting

Overfitting

- When a model is complex enough, it will reproduce the data perfectly (i.e., in-sample MSE)
- It does so by capturing all idiosyncrasy (noise) of the data

Example (M2)

- 35 fixed effects
- In-sample MSE = 0.69
 - Reduction of 34%
- Some of the coefficient estimates were extremely large

Out-Of-Sample Prediction Error

- A complex model tends to overfit as it captures the noise of a sample
 - But we're interested in something generalizable in science
- A better way is to predict another sample not used for building the model
- Out-of-sample MSE:
 - M1: 1.84
 - M2: 5.20
- So M1 is more generalizable, and should be preferred

Estimating Out-of-Sample Prediction Error

Approximating Out-Of-Sample Prediction Error

- But we usually don't have the luxury of a validation sample
- Possible solutions
 - Cross-validation
 - Information criteria
- They are basically the same thing; just with different approaches (brute-force and analytical)

K-fold Cross-Validation (CV)

- E.g., 5-fold
- Splitting the data at hand
- M1: 5-fold MSE = 1.18
- M2: 5-fold MSE = 2.79

Data	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5
1st Fold 110, 125, 518, 526, 559, 564	Prediction Error	Model Building	Model Building	Model Building	Model Building
2nd Fold 130, 133, 154, 517, 523, 533	Model Building	Prediction Error			
3rd Fold 103, 143, 507, 519, 535, 557		Model Building	Prediction Error		
4th Fold 106, 111, 136, 137, 509, 547			Model Building	Prediction Error	
5th Fold 131, 147, 522, 530, 539, 543				Model Building	Prediction Error

Leave-One-Out (LOO) Cross Validation

- LOO, or *N*-fold CV, is very computationally intensive
 - Fitting the model N times
- Analytic/computational shortcuts are available
 - E.g., Pareto smoothed importance sampling (PSIS)
- > loo(m1, m2)
- LOO for M1: 377.7
- LOO for M2: 408.7
- So M1 should be preferred

Information Criteria

- AIC: An Information Criterion
 - Or Akaike information criterion (Akaike, 1974)
- Under some assumptions,
 - Prediction error = deviance + 2p
 - where p is the number of parameters in the model

Information Criterion

- LOO in brms has a similar metric as the AIC, so it's also called LOOIC
- LOO also approximates the complexity of the model (i.e., effective number of parameters)

```
> loo(m2)
> loo(m1)
       Estimate
                 SE
                                        Estimate
                                                 SE
elpd loo
        -188.9 16.0
                               elpd loo
                                         -204.4 14.5
       31.5 6.5
p loo
                               p_loo 53.2
                                               7.8
Looic
    377.7 32.1
                               Looic 408.7
                                               29.0
```

Summary

- More complex models are more prone to overfitting when the sample size is small
- A model with smaller out-of-sample prediction error should be preferred
- Out-of-sample prediction error can be estimated by
 - Cross-validation
 - LOOIC/AIC

Regularization

Restrain a Complex Model From Learning Too Much

- Reduce overfitting by allowing each coefficient to only be partly based on the data
- The same idea as borrowing information in MLM
 - Empirical Bayes estimates of the group means are regularized estimates

Regularizing Priors

- E.g., Lasso, ridge, etc
- A state-of-the-art method is the regularized horseshoe priors (Piironen & Vehtari, 2017)¹
 - Useful for variable selections when the number of predictors is large
- Because we need to compare predictors, the variables should be standardized (i.e., converted to Z scores)
- Let's try on the full sample

No Regularizing Priors

LOO = 1052.9

 $p_{loo} = 134.0$

With Regularizing Horseshoe Priors

LOO = 1024.5

 $p_{loo} = 115.4$

Reduce complexity by shrinking some parameters to close to zero

Summary

- Prediction error is a useful metric to gauge the performance of a model
- A complex model (with many parameters) is prone to overfitting when the sample size is small
- Models with lower LOOIC/AIC should be preferred as they tend to have lower out-of-sample prediction error
- Regularizing priors can be used to reduce model complexity and to promote better out-of-sample predictions

Topics Not Covered

- Other information criteria (e.g., mAIC/cAIC, BIC, etc)
- Classical regularization techniques (e.g., Lasso, ridge regression)
- Variable selection methods (see the projpred package)
- Model averaging