Московский Государственный Университет

им. М.В. Ломоносова

Факультет Вычислительной Математики и Кибернетики. Кафедра Суперкомпьютеров и Квантовой Информатики.

Практикум на ЭВМ.

Отчет №3: Параллельная программа на MPI, которая реализует однокубитное квантовое преобразование с шумами.

Постановка задачи.

Реализовать параллельную программу на C++ с использованием MPI, которая выполняет однокубитное квантовое преобразование над вектором состояний длины 2^n , где n- количество кубитов, по указанному номеру кубита k.

Реализовать параллельную программу на C++ с использованием MPI и OpenMP, которая выполняет квантовое преобразование n-Адамар с зашумленными вентилями над вектором состояний длины 2n , где n – количество кубитов. Описание преобразования дано в разделе методические рекомендации. Описание модели зашумления дано в разделе методические рекомендации.

Запуск:

./Task3 <n> <file - 0, rand - 1> <0 - ideal and (1-F), 1 - noise only> <if file filename.txt read, if rand filename out gener vec, 0 - no file>

Сборка:

make

Результаты на «Ломоносов 2».

Количество кубитов	Количество вычислительных узлов	Количество используемых ядер в узле	Время (сек)
27	1	1	245.896
		2	138.807
		4	55.5646
		8	28.8102
	2	1	241.137
		2	145.29
		4	61.35
		8	30.12
	4	1	244.268
		2	138.67
		4	55.6809
		8	28.8648

Распределение 25 кубит 60 экспериментов eps = 0.01

Распределение 27 кубит 60 экспериментов eps = 0.01

1-F 24-28 кубитов 60 запусков eps = 0.01

Количество кубитов	Среднее значение потерь точности
24	0.00251000
25	0.00266392
26	0.00266144
27	0.00271489
28	0.00272254

Распределение 26 кубит 60 экспериментов eps = 0.01

e	Среднее значение потерь точности
0.1	0.23675483
0.01	0.00266144
0.001	0.00002671

Основные выводы.

Исследования показывают, что изменение количества запущенных процессов и потоков оказывает значительное влияние на время выполнения программы. Другими словами алгоритм хорошо масштабируется.