Stručné shrnutí semináře 4

Rozdělení/hustota pravděpodobnosti f(x) nese úplnou informaci o chování náhodné proměnné x. Známe-li f(x), lze spočítat některé důležité charkteristiky x:

Střední hodnota:
$$\mu \equiv E[x] = \int_{-\infty}^{\infty} x f(x) dx$$
 $\langle x \rangle$

Obecně střední hodnota nějaké funkce
$$g(x)$$
: $\mu \equiv E[g(x)] = \int_{-\infty}^{\infty} g(x)f(x)\mathrm{d}x$ $\langle g(x) \rangle$

Obecně střední hodnota nějaké funkce
$$g(x)$$
: $\mu \equiv E[g(x)] = \int\limits_{-\infty}^{\infty} g(x)f(x)\mathrm{d}x$ $\langle g(x)\rangle$

Druhý centrální moment (**disperze**, **variance**, **rozptyl**): $V(x) = \int\limits_{-\infty}^{\infty} (x-\mu)^2 f(x)\mathrm{d}x$ $\langle x^2\rangle - \langle x\rangle^2$

Standardní odchylka: $\sigma = \sqrt{V(x)}$

Medián, \tilde{x} ... prostřední hodnota (na seřazených výsledcích) $F(\tilde{x}) = \frac{1}{2}$

Modus, \hat{x} ... v bodě \hat{x} má f(x) maximum

Binomické rozdělení pravděpodobnosti vyjadřuje pravděpodobnost B(k, N, p), že nastane právě krealizací z N nezávislých pokusů, přičemž pravděpodobnost realizace je při každém pokusu konstantní a rovna p.

$$B(k, N, p) = \binom{N}{k} p^k (1-p)^{N-k}$$

- Střední hodnota binomického rozdělení, tj. střední počet realizací k: $\langle k \rangle = Np$
- Disperze binomického rozdělení: $V(k) = \langle k^2 \rangle \langle k \rangle^2 = Np(1-p)$

Poissonovo rozdělení pravděpodobnosti vyjadřuje pravděpodobnost $P(k, \mu)$, že nastane právě krealizací v daném (např. časovém) intervalu:

$$P(k,\mu) = \frac{\mu^k e^{-\mu}}{k!}$$

Předpokladem je, že události se realizují <u>nezávisle</u> na sobě a s konstantní pravděpodobností v čase (případně jiném intervalu).

- Střední hodnota Poissonova rozdělení: $\langle k \rangle = \mu$
- Disperze Poissonova rozdělení: $V(k) = \langle k^2 \rangle \langle k \rangle^2 = \mu$