Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский ядерный университет «МИФИ»

Кафедра «Криптология и кибербезопасность»

Основы блокчейн-технологий

Запечников Сергей Владимирович, д.т.н., профессор

7 октября 2025 г.

Примерное содержание курса (1/3)

Лекции:

- **Тема 1. Введение в блокчейн-технологии.** Краткая история развития блокчейн-технологий. Бизнес-идея блокчейн-технологий. Основная терминология. Свойства распределенного реестра. Архитектура блокчейн-платформ. Понятие консенсуса. Сложность достижения консенсуса. Уровни консенсуса и упорядочения сообщений. Виды блокчейн-платформ. Уровень распределенного реестра. Формат хранения данных. Уровни децентрализованных приложений и пользовательского интерфейса. Сферы применения блокчейн-технологий. Проблемы блокчейн-технологий.
- **Тема 2. Криптография в блокчейн-технологиях.** Обзор криптографических методов защиты информации, применяемых в блокчейн-технологиях: симметричные шифры, криптографические хэш-функции, электронная цифровая подпись, криптография на эллиптических кривых.
- **Тема 3. Блокчейн-платформы открытого типа.** Платформа Bitcoin. Консенсус типа proof-of-work (PoW). Майнинг. Вычислительно трудоёмкая задача, решаемая при майнинге. Регулирование трудоёмкости майнинга. Вилки и их разрешение. Алгоритм формирования блоков. Модель непотраченных транзакций (UTXO). Формат хранения данных и формат транзакций в распределенном реестре Bitcoin. Демонстрация работы блокчейн-платформы с механизмом консенсуса PoW. Применение браузерных инструментов просмотра блоков Bitcoin. Демонстрация роста цепочки блоков Bitcoin. Платформа Ethereum. Консенсус типа proof-of-stake (PoS). Два типа аккаунтов на платформе Ethereum. Децентрализованная виртуальная машина Ethereum, выполнение смарт-контрактов.

Примерное содержание курса (2/3)

Лекции (продолжение):

- **Тема 4. Блокчейн-платформы закрытого типа.** Платформа Hyperledger Fabric. Архитектура платформы, модель выполнения транзакций. Задача о византийских генералах. Консенсус на основе византийского соглашения.
- **Тема 5. Приложения блокчейн-технологий.** Случаи, в которых необходимо применение блокчейна. Масштабирование блокчейна. Криптовалюты. Цифровые финансовые активы (ЦФА). Цифровые права. Нормативное регулирование обращения криптовалют. Справочные ресурсы по криптовалютам и ЦФА. Расчётные центры (rollups). Платёжные каналы. Сети платёжных каналов (lightning networks). Децентрализованные финансовые сервисы (DeFi). Стейблкоины. Децентрализованные организации (DAO).
- **Тема 6. Обеспечение безопасности распределенных реестров.** Проблемы конфиденциальности и целостности информации в распределенных реестрах и операций с ними. Доказательства с нулевым разглашением и их применение. Анонимные криптовалюты. Миксеры и децентрализованные криптобиржи.

Примерное содержание курса (3/3)

Практические занятия:

- **Tema 1. Инструментарий и приложения экосистемы Ethereum.** Знакомство с основными инструментами экосистемы Ethereum. Работа с приложением Metamask и браузерной IDE Remix.
- **Тема 2. Виртуальная машина Ethereum и смарт-контракты.** Работа с виртуальной машиной Ethereum. Разработка кода смарт-контрактов, компиляция и размещение их на блокчейн-платформе. Язык Solidity. Виртуальная машина Ethereum (EVM).
- **Тема 3. Межконтрактное взаимодействие.** Разработка и использование смарт-контракта, взаимодействующего с другим смарт-контрактом. Основы безопасности смарт-контрактов. Формальная верификация смарт-контрактов.
- **Тема 4. Взаимодействие со смарт-контрактами из внешних информационных систем.** Получение практических навыков взаимодействия со смарт-контрактами из внешних информационных систем. Способы получения данных из распределенного реестра. Разработка клиентского JS-приложения для взаимодействия со смарт-контрактом.
- **Тема 5. Создание программной модели блокчейн-платформы.** Анализ требований учебного ТЗ на создание модели блокчейн-платформы. Анализ программной реализации модели блокчейн-платформы на языке программирования Python.

Литература

Основная:

- 1. CS 251: Cryptocurrencies and Blockchain technologies. Stanford university. 2025. URL: https://cs251.stanford.edu/
- 2. Сонг Дж. Python для программирования криптовалют. Как научиться программировать биткойн «с чистого листа». М.: Диалектика. 2020. 370 стр.
- 3. Narayanan A., Bonneau J., Felten E. et al. Bitcoin and cryptocurrency technologies. A comprehensive introduction. Princeton university press. 2016. 406 pp.
- 4. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. 2008. URL: https://bitcoin.org/bitcoin.pdf
- 5. Wood G. Ethereum: A secure decentralised generalised transaction ledger. ("Yellowpaper"). URL: https://ethereum.github.io/yellowpaper/paper.pdf
- 6. Androulaki E., Barger A., Bortnikov V. et al. Hyperledger Fabric: A distributed operating system for permissioned blockchains. URL: https://arxiv.org/pdf/1801.10228v1.pdf

Литература по отдельным темам будет сообщаться дополнительно.

Тема 1. Введение в блокчейн-технологии

Традиционные технологии управления и обмена данными

Технологии разнородны: собственные базы данных у каждой организации, разные способы взаимодействия (эл. почта, телефонные звонки, СМС, мессенджеры, заполнение форм на вебсайтах и пр.).

Следствия: многократное дублирование и перепроверка данных, разные форматы документов, длительное время рассмотрения заявок, человеческий фактор (ошибки) и пр.

Что такое блокчейн-технологии?

Abstract answer: a blockchain provides coordination between many parties, when there is no single trusted party

if trusted party exists ⇒ no need for a blockchain

[financial systems: often no trusted party]

Разнородные технологии управления и обмена данными заменяются новой единой технологией, которая предоставляет платформу взаимодействия между потенциально не доверяющими друг другу участниками деловой деятельности.

Бизнес-идея блокчейн-технологий

• Сеть строится вокруг некоторого *бизнес-процесса*. Участниками являются разные физические и (или) юридические лица. Все они в этой сети равноправны.

Бизнес-процесс — это совокупность взаимосвязанных мероприятий или работ, направленных на создание определённого продукта или услуги для потребителей. Бизнес-процесс может охватывать одну или несколько организаций. Вокруг бизнес-процессов в современных условиях строятся информационные системы. Бизнес-процесс подразумевает операции с активами.

Активом называется все, что обладает ценностью для бизнес-процесса.

- Все участники сети ведут общую базу данных активов, которые они обрабатывают в бизнес-процессе. Эта база активов называется распределенным реестром (PP).
- Приложения, надстроенные над реестром, обеспечивают возможность учета жизненного цикла любых видов активов и выполнение сколь угодно сложных операций над этими активами. Для этого реализуется *бизнес-логика*. Операции с активами подчиняются установленным в сообществе правилам.

Примеры активов, учитываемых в распределенных реестрах: денежные средства, ценные бумаги, права и обязательства, товары, транспортные средства, медицинские карты пациентов и пр.

Свойства распределенного реестра с точки зрения пользователя

- Внести в РР новую информацию можно только по поручению одного из участников сети.
- Любую информацию в РР можно добавлять только с согласия квалифицированного большинства участников (должен быть достигнут консенсус).
- Информацию в РР можно только добавлять, нельзя ни модифицировать, ни удалять ранее введенные данные таким образом сохраняется вся история операций с активами.
- Каждый участник имеет свою копию истории операций с активами, а также свою копию текущего состояния РР либо только части РР, описывающей его собственные активы. Все копии (почти) синхронны.
- Над РР можно надстраивать логику. Все операции с активами должны соответствовать определенному набору правил. Эти правила запрограммированы в виде смартконтрактов. Нельзя записывать в РР никакую иную информацию, не соответствующую правилам. Операции с активами могут быть обусловлены атрибутами участников, их состояниями в текущий момент времени, событиями вне системы.

Краткая история развития блокчейн-технологий (1/2)

2009

Bitcoin

Several innovations:

- A practical public append-only data structure, secured by <u>replication</u> and <u>incentives</u>
- A fixed supply asset (BTC). Digital payments, and more.

2009 2015

Bitcoin

Ethereum

Several innovations:

- Blockchain computer: a fully programmable environment
 - ⇒ public programs that manage digital and financial assets
- Composability: applications running on chain can call each other

Краткая история развития блокчейн-технологий (2/2)

- (1) Basic application: a digital currency (stored value)
- Current largest: Bitcoin (2009), Ethereum (2015)
- Global: accessible to anyone with an Internet connection
 (2) Decentralized applications (DAPPs)
 - **DeFi**: financial instruments managed by <u>public</u> programs
 - examples: stablecoins, lending, exchanges,
 - Asset management (NFTs): art, game assets, domain names.
 - **Decentralized organizations (DAOs)**: (decentralized governance)
 - DAOs for investment, for donations, for collecting art, etc.
 - (3) New programming model: writing decentralized programs

Замечание о терминологии

Термин «блокчейн-технологии» — в значительной мере условный, используется по традиции, но не совсем верно отражает суть технологии.

Decentralized computations — Децентрализованные вычисления — это наиболее общая функция, правильнее всего было бы говорить «технологии децентрализованных вычислений».

Distributed ledger — Распределенный реестр — обязательная составляющая децентрализованных вычислений, но может использоваться и как самостоятельная функция, поэтому говорят о «технологиях распределенного реестра».

Blockchain — Блокчейн — цепочка блоков — наиболее распространённый способ реализации распределенного реестра, но не единственно возможный.

BlockDAG – Ациклический направленный граф блоков – обобщение блокчейна, ещё один способ реализации распределённого реестра.

Архитектура блокчейн-платформ

Платформа распределенного реестра (блокчейн-платформа) — конкретное воплощение технологии децентрализованных вычислений, в том числе, PP.

user facing tools (cloud servers)

applications (DAPPs, smart contracts)

Execution engine (blockchain computer)

Sequencer: orders transactions

Data Availability / Consensus Layer

Уровни консенсуса и упорядочивания сообщений: техника – одноранговая сеть

Уровень распределенного реестра

Уровень приложений и пользовательских интерфейсов

Сферы применения блокчейн-технологий

• преимущественно реестровые приложения — замена реестров, ведущихся в традиционной форме, на децентрализованные: криптовалюты, государственные цифровые валюты (Central Bank Digital Currency), реестры государственных органов и частных организаций (недвижимого имущества, нотариальных действий, ЗАГС, реестры акционеров и пр.).

Datum 1942					Enfrahme usb Phhebungen		Lieferungen, Einzahlungen, Gutfcheiften			Bestand Schuld		Bestand bes Guthabene Ax			
				10	e Broden	as s							11028	4	
Top.	12.	au	2.000 Sa	hartel	Eren Olis	mit.			59			si.	4.163.8	1	
-	23.		2.100 /4	Year	Emile	Seeming	21	1	12.90				1.256.34		
041			280 40	Touse			_ /		3 2,59			-	43043		
	9.		10 mil.		Mille				4.50			4	4 310.8	0	
	19.	O.L	4.500 20						46.50			0	45523	1	
	21		500 44		Wathe	4			22.50			s i	1127.8	0	
Too.	5	The	1.252 4		Lottelin		10				64.50	4	19423	5	
	24.		1750 A				V				11.45	H	6835	5	
Du.	44	au	1.500 4						46.50				2314	5	
-	18.	r	2.500 -0	kali				d	54.50			И	8825	5	
191	31.	×	Zinfur o	99. gu	31.41	. YL	- 4		3 0. 05			ŀ	9,12,6	0 /	g .
You.	4	au	37.5-Ru	Quelle	Rein										
0			58 120	neign		Meir.	-		5.89			И		Ш	
	4.	v	1.200 4		Blakerle			1	12 -			4	4.0524	3	
	26.		525-40		Muleu										
	-					ly William	HAMA							П	
			Berille, 5						35.48				11929	2	

• приложения со сложной надстроенной логикой:

DeFi — финансовые инструменты, управляемые публичными программами: стейблкоины, биржи, кредитные площадки и пр.;

ЦП и ЦФА — цифровые права и цифровые финансовые активы: токены, в том числе, невзаимозаменяемые (NFT — Non-Fundable Tokens);

DAOs – децентрализованные организации: для инвестиций, для сбора пожертвований, для коллекционирования предметов искусства;

системы валовых расчетов реального времени (RTGS – Real-Time Gross Settlement); **системы международных банковских переводов,** не подверженных цензурированию; **страхование:** обработка страховых случаев;

международная торговля: экспортно-импортные операции;

логистика: управление цепочками поставок (supply chain management), в том числе транспортная логистика;

кредитование юридических лиц: синдицированный кредит; **медицинские информационные системы**.

Виды платформ распределенного реестра

Платформа распределенного реестра (блокчейн-платформа) — конкретное воплощение технологии распределенного реестра.

Платформы от типа (permissionless), или *публичные* — платформы, которые позволяют стать их участниками неограниченному кругу лиц, никакой регистрации или отзыва полномочий не требуется.

Примеры: Bitcoin, Ethereum, многочисленные "Altcoins" и пр.

Платформы закрытого типа (permissioned), или частные, корпоративные, разрешительные — ограничивают круг участников пределами сообщества, для участия требуется регистрация, при выходе из сообщества право доступа отзывается.

Примеры: проект Hyperledger (самые известные – Hyperledger Fabric, Hyperledger Iroha, Hyperledger Sawtooth, Hyperledger Indy, Hyperledger Burrow), Corda, Tendermint, Quorum, Exonum, NEM Catapult и др.

Смешанного, или комбинированного типа — платформы открытого типа, которые используют для достижения консенсуса технологии построения платформ закрытого типа.

Примеры: Toda-Algorand, Omniledger, BitcoinNG и др.

Особенности блокчейн-платформ открытого типа

- Участники могут легко добавляться и выходить из блокчейн-сети, от присутствия или отсутствия конкретного участника в целом ничего не зависит, возможно анонимное (точнее, псевдонимное) участие.
- Формирование новых блоков транзакций происходит посредством «доказательства выполнения работы» (proof-of-work), «доказательства обладания долей» (proof-of-stake) или другим аналогичным способом (принцип лотереи). Квалифицированное большинство участников это подмножество участников, обладающих более чем 50% некоторого вида ресурсов, а не более чем 50% численности.
- Две базовые модели транзакций: UTXO-модель, модель аккаунтов.
- Для работы блокчейн-платформы открытого типа *требуется криптовалюта*, чтобы стимулировать майнеров или валидаторов. Есть разные модели её применения при PoW, PoS, но она в любом случае нужна.
- Блокчейн-платформы открытого типа с PoW очень ресурсоёмки (электроэнергия, машинное время): предполагается, что к 2035 году на майнинг биткоинов будет тратиться столько же электроэнергии, сколько потребляет среднее европейское государство.

Особенности блокчейн-платформ закрытого типа

- Участники не могут самостоятельно добавляться и выходить из блокчейн-сети для этого центр регистрации (удостоверяющий центр, MSP membership service provider и т.п.) должен выдать участнику его цифровой идентификатор и ключи.
- Формирование новых блоков транзакций происходит посредством выполнения специального протокола достижения консенсуса (принцип голосования). Квалифицированное большинство участников это подмножество участников, составляющих не менее чем 50% их численности.
- Блокчейн-платформы закрытого типа обладают высоким быстродействием и хорошей масштабируемостью.
- Для работы блокчейн-платформы закрытого типа не требуется криптовалюта.

Когда нужен и когда не нужен блокчейн?

Проблемы технологий распределенного реестра (1/2)

Производительность. Скорость записи новых транзакций в базу данных значительно ниже, чем в традиционных системах, а по сравнению с высоконагруженными системами — на порядок ниже.

Решения:

- новые, более быстрые и масштабируемые протоколы консенсуса;
- экстенсивный путь (увеличение количества транзакций в блоке, размера блоков и т.п.) хардфорки, отсутствие обратной совместимости;
- разбиение реестра на шарды;
- платёжные каналы (lightning networks и др.) депонирование средств и транзакции напрямую между участниками, ведение реестров транзакций у участников, периодическое сохранение изменений балансов в основном реестре;
- расчётные центры (rollups) смарт-контракт, который реализует транзакции между участниками, периодическое сохранение балансов в основном реестре.

Проблемы технологий распределенного реестра (2/2)

Информационная безопасность. Системы распределенного реестра в классическом виде обеспечивает высокую доступность (невозможность уничтожения) и целостность (гарантии неизменности) информации, но не обеспечивает конфиденциальности информации (все записи в базе данных видны для всех участников системы).

Решения:

- обеспечение конфиденциальности балансов счетов (кошельков) при совершении транзакций;
- обеспечение конфиденциальности входных и выходных данных, передаваемых смарт-контрактам;
- обеспечение конфиденциальности кодов смарт-контрактов;
- архитектурные решения на уровне блокчейн-платформы по разграничению доступа пример: каналы в блокчейн-платформе закрытого типа Hyperledger Fabric.

Спасибо за внимание!

Вопросы?