§1 Lecture 02-14

$$T:V \to V$$

If $p_T(x)$ factors into linear factors, (for example if the field F is algebraically closed, then every irreducible polynomial is linear), then

$$\begin{split} V &= \oplus_{\lambda \in spec(T)} V_{[\lambda]} \\ \text{Generalized eigenspace for } \lambda \colon \ V_{[\lambda]} &= \{v : (T-\lambda)^j(v) = 0\} \\ \text{Eigenspace for } \lambda \colon \ V_{\lambda} &= \{v : (T-\lambda)(v) = 0\} \end{split}$$

$$V_{\lambda} = V_{[\lambda]} \Leftrightarrow (x - \lambda)|p_T(x)$$
 but $(x - \lambda)^2 \not|p_1(x)$

T is diagonalizable $\Leftrightarrow p_T(x)$ factors into distinct linear factors.

Theorem 1.1

T diagonalizable $\Leftrightarrow p_T(x)$ factors into distinct linear factors.

Example 1.2 $F = \mathbb{Z}/p\mathbb{Z}. \ T \text{ satisfies } T^p = T \Rightarrow T \text{ satisfies } x^p - x \Rightarrow p_T(x) \text{ divides } x^p - x.$ This implies $p_T(x) = (x - \lambda_1)(\cdots)(x - \lambda_r), \ \lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_r.$ Therefore T is diagonalizable.

Example 1.3

 $T^n = 1 \Rightarrow p_T(x)$ divides $x^n - 1$.

If $x^n - 1$ factors into distinct linear factors in F, then T is diagonalizable.

Conversely, if all T satisfying $T^n=1$ are diagonalizable, then x^n-1 factors into distinct linear factors.

In order to prove the converse, we need to show that $\exists T$ such that $p_T(x) = x^n - 1$.

$$V = F^n = Fe_1 \oplus \cdots \oplus Fe_n$$
$$T(e_j) = e_{j+1} \quad (j = 1, \dots, n-1)$$
$$T(e_n) = e_1$$

Proposition 1.4

If $p(x) \in F[x]$, then \exists a vector space V over F, and $T: V \to V$ such that $p_T(x) = p(x)$.

Proof. Let V = F[x]/(p(x)). dim V = n.

$$T(g(x) + (p(x)) = xg(x) + (p(x))$$
$$f(T)(g(x) + (p(x))) = f(x)g(x) + (p(x))$$

If we want f(T) = 0 then $f(T)(1 + (p(x))) = 0 \Rightarrow f(x) + (p(x)) \Rightarrow p(x)|f(x) \Rightarrow p(x) = p_T(x)$

Example 1.5

When is it possible to factor x^n-1 in the following fields? $F=\mathbb{Q}$. Then $n\leq 2$. $F=\mathbb{R}$, then $n\leq 2$. $F=\mathbb{C}$, then any n. $F=\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$.