

上海银行 OCR 分析报告

上海萃舟智能科技有限公司

2018-01-28

1. 技术分析

OCR 的基本原理就是通过扫描仪将一份文稿的图像输入给计算机,然后由计算机取出每个文字的图像,并将其转换成汉字的编码。其具体工作过程是,扫描仪将汉字文稿通过电荷耦合器件 CCD 将文稿的光信号转换为电信号,经过模拟/数字转换器转化为数字信号传输给计算机。计算机接受的是文稿的数字图像,其图像上的汉字可能是印刷汉字,也可能是手写汉字,然后对这些图像中的汉字进行识别。对于印刷体字符,首先采用光学的方式将文档资料转换成原始黑白点阵的图像文件,再通过识别软件将图像中的文字转换成文本格式,以便文字处理软件的进一步加工。

目前市场上较为成熟的 OCR 产品有:证件识别 SDK、车牌识别 SDK、文档识别 SDK、银行卡识别 SDK、表格识别 SDK、票据识别 SDK、名片识别 SDK、护照识别 SDK、身份证识别 SDK。目前,银行、保险、金融、税务、海关、公安、边检、物流、电信工商管理、图书馆、户籍管理、审计等很多行业都已经应用了 OCR 技术。OCR 技术让大家减少了设备配置,降低了人力成本,提高了工作效率。

在 OCR 领域,中文 OCR 一直是其中的痛点和难点。随着近年来深度学习的不断发展,中文字符识别精度得到大幅提高。本公司多年从事图像处理和计算机视觉方面的工作,在中文 OCR 方面有着丰富的技术和经验。

结合本公司的技术经验和上海银行的业务需求,本公司为上海银行开发如下票据识别系统。具体识别内容为以下四大要素:流水号、收款人姓名、收款人账号以及收款金额。票据示例如图 1 所示。针对该四大要素,本公司从应用的技术手段给出相应的可行性分析。

图 1

识别的四大要素:流水号、收款人姓名、收款人账号和收款人金额,在图 2

图 2

图 3

AK:	务类型						 大学 大学							张
PX.	PR	P	吉					FILES;		OR	8 12	600	客	户须知",易
数	胜/卡号	620	,522	200	1004	1338	226	非級	方式	口作	a o	bn 3s	jà	资料真实, 引位要素填写;
A	开护物								18				660	银行照此办理
(1)		OXX			tin C	His I	口其他				DR			
金	86	化	1			7.7	1 +		t			分	认	客户签名: 3
48.	7191				当	3	7	7	1	9	0	0		787 M. F 47 =
銀行城写	交易軟款款款 財材放款 易數款款款 多 數 於 於 於 於 於 於 於 於 於 於 於 於 於	名:沈卡陆号/陆号号:20	如菊 号:63 <u>东升</u> 号:63 1801	2246 2052 3033 9, 00	2001 2001 0480 CM	01840 00433 50021	05260 38226 538] 包 核心:) 。	月转账 号: TT	1803			

票据识别系统的技术流程为: (1) 图像预处理; (2) 文字行提取; (3) 文字行字符识别; (4) 0CR 后处理。

在票据扫描过程中,由于光照、拍摄角度、字体印刷以及印章等的影响,扫描后的字体质量并不能达到最优。为了避免噪声、角度倾斜造成的干扰,在字符识别之前,我们需要对票据进行旋转、仿射变换以及二值化等相关预处理操作,使得票据中的字符呈现最佳效果。此外,为了利用票据中的直线信息,并消除直线对之后字符识别的影响,在预处理过程中,我们还需确定票据中直线的位置信息,在预处理完成后,首先我们利用依据直线信息对票据中的文字信息进行划分,其初步结果如图 4 所示。

图 4 依据直线进行文字区域提取

接着在划分后的图像中采用深度学习算法,进行文字行提取,部分文字行提取结果如图 5 所示。

图 5 文字行检测结果

在文字行提取结束后,我们对每个单独的文字行进行字符识别。字符识别通常有两种思路: (1)字符分割+单个字符分类; (2)单行文字整体识别。方法(1)为传统 OCR 方法的思路,但其往往忽略了文字之间的语义关系。为了充分利用字符之间的语义关系,我们采用深度网络进行字符行识别,其识别精度相比方法(1),效果更优。其部分识别结果如图 6 所示。

图 6 字符识别结果

由于中文 OCR 目前精度仍不能达到 100%。在票据识别的过程中难免出现个别字符错误的情况。而此次任务中,我们识别的票据中四个要素的关键词相对固定,不同的要素间格式也不尽相同。所以,我们可采用模糊算法进行匹配,以修正中文 OCR 的个别字符的错误。如②中"收款人姓名:陆东升"被识别为"收款入姓名:陆东升",我们依据字符串相似度以及其后字符串为中文字段,可将"入"模糊修正为"人"。

2. 实测分析

2.1 算法特点与优势

- (1) 自动判断票据图像是否包含"流水号"字段。
- (2) 流水号识别准确率高于传统 OCR 方法。

2.2 精度分析

首先,对测试使用的图像数据进行分类说明,见表 2-1。其中包含流水号是指,包含 21 位数字流水号,手写流水号与英文流水号暂未计入。

图片类型	数量	含义	图例
总处理图像	17867	经过程序判读的所有票据正面图像	
无效图像	8144	票据正面无"流水号"字段	图 2-1
(不含流水号)			
无效图像	215	人眼无法认读票据正面"流水号"的真值	图 2-2
(含流水号)			
有效图像	9508	票据正面包括人眼可识别真值的21位流水号	

表 2-1 测试数据结构说明

图 2-1 无效图像(不含流水号,票据正面图像)

图 2-2 无效图像 (含流水号,人眼无法判读真值)

第一轮测试精度如表 2-2。

表 2-2

图像类型	数量
处理图像总量	17867
含流水号的图像	215
(人眼不可辩)	
含流水号的图像	9508
(人眼可辩)	
软件识别出包含流水号图像	9184
软件正确识别流水号的图像	8843
流水号图片检出率	96. 59%
准确率	93.00%

其中,"处理图像总数"为所有票据的正面图像(图片名为奇数),"有效图片"为包含流水号的票据图片。

"流水号图片检出率" Ratio 的计算方式为:

Ratio= 软件识别出含流水号的图像数量 含人眼可辨流水号的图像数量

"准确率" Accuracy 的计算方式为:

Accuracy= 正确识别流水号的图像数量 含人眼可辨流水号的图像数量 根据第一轮测试结果,精度分析和提升计划如表 2-3。

表 2-3

识别错误的图像种类	精度提升方法				
图像旋转角度大或倒放	影像纠正处理				
字体褪色严重	图像预处理				
字迹被污染	图像预处理				
字迹缺损	深度学习模型迭代训练				
改进后预计保	障精度: 95%				

识别错误的图像种类图例如图 2-3。

图 2-3 识别错误样例:字迹被污染,字体旋转角度大

2.3 效率分析

第一轮测试硬件环境如下表 2-3。

表 2-3

系统环境	Win7 使用 vmware 安装的 ubuntu16 虚拟机系统
CPU	Intel i5-4590 3.3Ghz
分配核心数	2
分配内存	3. 8G
硬盘	90G
累计运行时间	16.4 小时
处理图像总量	19453 张
运行速度	1186 张/小时
5 台同配置机器	8.4 小时
处理 5 万张时间	

提升硬件条件,数据处理效率水平如下表 2-4。

表 2-4

	• • • • • • • • • • • • • • • • • • • •
CPU	Intel i7-7700HQ
内存	8G

核心数	2.8GHz * 8
预计处理效率	2860 张/小时
4 台同配置机器	4.37 小时
处理 5 万张时间	