Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи No 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів розгалуження»

Варіант 7

Виконав студент <u>ІП-1407 Грицина Діана Русланівна</u> (шифр, прізвище, ім'я, по батькові)

Перевірив Мартинова Оксана Петрівна (прізвище, ім'я, по батькові)

Лабораторна робота 2

Дослідження алгоритмів розгалуження

Мета — дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок їх використання під час складання програмних специфікацій.

Задача:

7. Задані дійсні числа x, y. Визначити, чи належить точка з координатами (x, y) заштрихованій частині площини:

Розв'язання

Побудова математичної моделі:

Змінна	Tun	Призначення
X	Дійсний	Початкове дане
Y	Дійсний	Початкове дане

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Перевірка чи точка входить в межі кола

Крок 3. Накладемо обмеження при різних значеннях змінних

Псевдокод

Крок 1

початок

перевірка чи точка входить в межі кола обмеження при різних значеннях змінних кінець

```
Крок 2
початок
якщо
POW(x,2) + POW(y, 2) < =1
    обмеження при різних значеннях змінних
     точка не належить заштрихованій області
все якщо
кінець
Крок 3
початок
якщо POW(x,2) + POW(y,2) < =1
  якщо x > 0 \& \& ((y > 0 \& \& y > = x) || (y < 0 \& \& ABS(y) < = x) || (y = 0))
     точка належить заштрихованій області
      якщо x < 0 \&\& ((y>0 \&\&ABS(y)<ABS(x))||(y<0\&\&ABS(y)>ABS(x)))
         точка належить заштрихованій області
        інакше
          якщо x = 0 \&\& y >= 0
             точка належить заштрихованій області
              точка не належить заштрихованій області
           все якщо
       все якщо
     все якщо
  інакше
     точка не належить заштрихованій області
все якщо
кінець
```


Випробування алгоритму:

Блок	Дія
	Початок
1	Введення 0.5, 0.7
2	$0.5^2 + 0.7^2 < 1$
3	0.5 > 0, $0.7 > 0$ i $0.7 > 0.5$
4	Виведення: точка належить
	заштрихованій області
	Кінець

Висновок — у роботі досліджено подання керувальної дії чергування у вигляді альтернативної форми задля її використання під час складання програмних специфікацій. У результаті створено алгоритм для перевірки чи належить точка заштрихованій області, описано умову для ствердної відповіді та накладено обмеження на допустимі значення. На основі псевдокоду було складено блок-схему і успішно випробувано алгоритм.