MATH 557 Oct 17

Fraïssé Theory of Random Graphs

Key facts from Fräissé theory

To simplify things, we state everything in the context of a **finite language that contains only constants and relations**. In this case *finitely generated* is equivalent to *finite*.

- \mathcal{M} is **homogeneous** if any isomorphism between finite substructures of \mathcal{M} can be extended to an automorphism of \mathcal{M} .
- $age(\mathcal{M})$ is the class of all finite \mathcal{L} -structures isomorphic to a substructure of \mathcal{M} .
- Any two countable homogeneous structures with the same age are isomorphic.
- A class of finite structures \overline{K} is an **amalgamation class** if it satisfies (HP), (JEP), and (AP). In words, every substructure of a structure in \overline{K} is in \overline{K} , any two structures in \overline{K} embed into another structure from \overline{K} , and any two structures with a common substructure (up to isomorphism) amalgamate to another structure that preserves the common substructure.
- Fraïssé's Theorem: Suppose \overline{K} is a class of finite \mathcal{L} -structures such that there are only countably many isomorphism types in \overline{K} . Then \overline{K} is an amalgamation class iff \overline{K} is the age of a countable homogeneous \mathcal{L} -structure.

Simple graphs

We consider the theory of undirected graphs without self-loops, also called **simple graphs**. Let $\mathcal{L}_G = \{E\}$ be the language of graphs with one binary relation symbol E.

Simple graphs are formalized by the axioms

- $\forall x \neg E(x, x)$
- $\forall x, y (E(x, y) \rightarrow E(y, x))$

We denote the theory of simple graphs by T_G

Exercise 0.1. Verify that

$$\overline{K} = \{ \mathcal{G} : \mathcal{G} \models T_C, \mathcal{G} \text{ finite} \}$$

is an amalgamation class with countably many isomorphism types.

It follows that \overline{K} has a Fraïssé limit. What does this limit look like?

Random graphs

We add the following **extension axioms**:

$$\sigma_{n,m} \equiv \forall x_1, \dots, x_n \forall y_1, \dots, y_m \ \left(\bigwedge_{i=1}^n \bigwedge_{j=1}^m x_i \neq y_j \ \rightarrow \ \exists z \left(\bigwedge_{i=1}^n (z \neq x_i \wedge E(z, x_i)) \wedge \bigwedge_{j=1}^m (z \neq y_j \wedge \neg E(z, y_j)) \right) \right)$$

Let

$$T_{RG} = T_G \cup \{\exists x,y \ (x \neq y)\} \cup \{\sigma_{n,m} : n,m \geq 1\}$$

Exercise 0.2. Show that every countable model of T_{RG} is homogeneous.

Exercise 0.3. Show that if \mathcal{R} is a model of T_{RG} , $\operatorname{age}(\mathcal{R}) = \overline{K}$.

It follows from Fraïssé's Theorem that T_{RG} has a countable model \mathcal{R} , and that this model is unique up to isomorphism.

Exercise 0.4. Show that T_{RG} is complete.

 \mathcal{R} is called the **random graph** and T_{RG} the theory of the random graph. Why? Let G_N be the set of all simple graphs on the vertex set $\{1,\ldots,N\}$. Put a probability distribution on G_N by giving every graph the same probability. (Alternatively, we could independently assign edges to any vertex pair with probability 1/2. This is called the **Erdös-Renyi model**.) Given an \mathcal{L}_G -sentence σ , let $\mathbb{P}_N(\sigma)$ be the probability that σ holds for a random graph in G_N , i.e.

$$\mathbb{P}_N(\sigma) = \frac{|\{\mathcal{G} \in G_N : \mathcal{G} \models \sigma\}|}{|G_N|}.$$

It turns out, for large N, graphs will satisfy the extension axioms with high probability.

Exercise 0.5. Show that for any $n, m \ge 1$,

$$\lim_{N\to\infty}\mathbb{P}_N(\sigma_{n,m})=1.$$

This justifies referring to \mathcal{R} as the random graph, since it can be seen as the "limit" of finite random graphs.

Further explorations

0-1 law for graphs

Theorem 0.1. For any \mathcal{L}_G -sentence σ ,

$$\label{eq:either_limit} either \ \lim_{N \to \infty} \mathbb{P}_N(\sigma) = 0 \ or \ \lim_{N \to \infty} \mathbb{P}_N(\sigma) = 1.$$

Moreover, T_{RG} axiomatizes the theory

$$\{\sigma: \lim_{N\to\infty} \mathbb{P}_N(\sigma) = 1\}$$

and this theory is complete.

To prove the theorem, use that T_{RG} is complete together with Exercise 0.5. Give it a try!

Other Fraïssé classes

There are other classes of structures that are amalgamation classes, for example:

- finite fields of characteristic p
- finite groups
- (non-trivial) finite Boolean algebras

What kind of object is the Fraïssé limit in each case?