作业 6

1. 三种模型的实际例子与建模

1) 马尔可夫过程示例: 天气变化

• 状态空间 S

S = {晴天, 多云, 雨天}

• 状态转移矩阵 P

		晴天	多云	雨天
	晴天	0.7	0.2	0.1
	多云	0.3	0.5	0.2
,	雨天	0.2	0.3	0.5

其中 P[i][j] 表示从状态 i 转移到状态 j 的概率。

- 2) 马尔可夫回报过程示例: 股票投资
 - 状态空间 S

S = {上涨, 下跌, 震荡}

• 状态转移矩阵 P

	上涨	下跌	震荡
上涨	0.6	0.2	0.2
下跌	0.3	0.5	0.2
震荡	0.2	0.3	0.5

• 状态期望回报 r

r = [0.05, -0.03, 0.01] // 分别对应上涨、下跌、震荡的期望收益率

• 折现因子 γ

y = 0.95

在股票投资的例子中,折现因子表示未来收益对当前决策的重要性,γ越大,说明投资者越重视 长期收益。

3) 马尔可夫决策过程示例: 学习时间分配

• 状态空间 S

S={精力充沛,一般,疲惫}

• 行动集合 A

A = {学习, 休息, 运动}

• 状态转移矩阵 P

对于每个行动 a, 都有一个转移矩阵 P(a):

o P(学习):

	精力充沛	一般	疲惫
精力充沛	0.4	0.4	0.2
一般	0.3	0.5	0.2
 疲惫	0.2	0.3	0.5

∘ P(休息):

		精力充沛	一般	疲惫	
	精力充沛	0.7	0.2	0.1	
•	一般	0.6	0.3	0.1	
•	疲惫	0.5	0.3	0.2	

o P(运动):

	精力充沛	一般	疲惫
精力充沛	0.6	0.3	0.1
一般	0.5	0.4	0.1
疲惫	0.4	0.4	0.2

• 行动期望回报 R

例如:

状态	学习	休息	运动
精力充沛	0.8	0.3	0.6
一般	0.5	0.4	0.5
 疲惫	0.2	0.6	0.4

其中, R(状态, 行动) 表示在某一状态下采取某一行动的期望回报。

• 折现因子 γ

y = 0.9

在学习时间分配的例子中,折现因子表示未来学习或休息带来的收益对当前决策的影响, γ 越大,说明更重视长期的精力和学习效果。

2. 甲乙比赛问题

- 1) 状态空间和状态转移矩阵
 - 状态空间 S

S = {-2, -1, 0, 1, 2} // 表示甲的得分

• 状态转移矩阵 P

当前分数	-2	-1	0	1	2
-2	1	0	0	0	0
-1	q	r	р	0	0
0	0	q	r	р	0
1	0	0	q	r	р
2	0	0	0	0	1

其中 p 为甲胜概率, q 为乙胜概率, r 为平局概率。

2) 甲积1分时,恰好再赛两局结束比赛的概率

- 甲当前 1 分,恰好两局结束比赛的情况:第一局平局(概率 r),第二局甲胜(概率 p)
- 总概率:

P = rp