

C5. Apprentissage des réseaux profonds

Advanced Machine Learning (MLA)

Kévin Bailly

kevin.bailly@sorbonne-universite.fr

http://people.isir.upmc.fr/bailly/

Plan

- Limites des modèles MLP classiques
- Définition de l'architecture
 - La fonction de coût entropie croisée
 - fonctions d'activation
 - Initialisation des paramètres (poids)
- L'optimisation des paramètres
 - Limites de la descente de gradient
 - Momentum
 - Adaptation du pas d'apprentissage
- Régularisation

Limites des modèles MLP classiques

- Pour aborder des problèmes plus complexes, il faut des réseaux plus profonds
- 2 difficultés principales
 - Risque de sur-apprentissage : il faut de grandes bases de données
 - Risque de sous-apprentissage : dispersion du gradient & saturation des sigmoïdes

Dispersion du gradient

Les dernières couches apprennent bien plus vite que les premières

http://neuralnetworksanddeeplearning.com/chap5.html

Dispersion du gradient

Dispersion du gradient :

Chaque passage par une sigmoïde diminue l'amplitude du gradient par un facteur 4 ou plus (max. à 0,25)

Limites des modèles MLP classiques

- Que se passe-t-il si les poids du neurone sont très grands?
 - Les activations des sigmoïdes sont presque binaires (0 ou 1)
 - le gradient devient nul (on ne rétro-propage plus rien)

Dispersion + explosion → Gradient instable

Les méthodes modernes

- Quelles avancées depuis les années 80
 - Même algorithme de rétro-propagation
 - Même(s) méthode(s) de descente de gradient
- Mais:
 - Nouvelles architectures (DAG, fonctions de coût intermédiaires...)
 - Fonction de coût : entropie croisée
 - Combinée avec la fonction d'activation softmax
 - Fonction d'activation : ReLU
 - + performante pour les grandes bases de données
 - + proche du comportement des neurones réels (activation parcimonieuse et linéaire)
 - Régularisation / normalisations /stratégies de descente
 - Pour aider le réseau à apprendre

Plan

- Limites des modèles MLP classiques
- Définition de l'architecture
 - La fonction de coût entropie croisée
 - fonctions d'activation
 - Initialisation des paramètres (poids)
- L'optimisation des paramètres
 - Limites de la descente de gradient
 - Momentum
 - Adaptation du pas d'apprentissage
- Régularisation

Plan

- Limites des modèles MLP classiques
- Définition de l'architecture
 - La fonction de coût entropie croisée
 - fonctions d'activation
 - Initialisation des paramètres (poids)
- L'optimisation des paramètres
 - Limites de la descente de gradient
 - Momentum
 - Adaptation du pas d'apprentissage
- Régularisation

Entropie croisée

- Permet de mesurer la ressemblance entre deux distributions de probabilité
 - Utilisée pour mesurer la ressemblance en la prédiction et la vérité terrain

Non symétrique

$$l_{CE}\left(\hat{y}, y^*\right) = -\sum_{i=1}^{N_{\text{classes}}} y_i^* \log \hat{y}_i$$

Que se passe-t-il si les sorties du réseau ne sont pas des probabilités ?

Comment être sur qu'elles le soient ?

« One hot encoding »

Entropie croisée

- La fonction d'activation softmax
- La combinaison [softmax + entropie croisée] donne généralement de meilleurs résultats que [sigmoïde + L2]

Entropie croisée

Exercice : calculer le gradient de la fonction de coût entropie croisée par rapport à o

$$y_{j} = S(o_{j}) = \frac{e^{o_{j}}}{\sum_{k} e^{o_{k}}}$$

$$0$$

$$0$$

$$0.3$$

$$1.1$$

$$-1.9$$

$$l_{CE}(\hat{y}, y^{*}) = -\sum_{i=1}^{N_{classes}} y_{i}^{*} \log \hat{y}_{i}$$

$$y^{*}$$

$$0.30$$

$$0,67$$

$$1$$

$$0,03$$

Exercices

Question 1 :

- En vous inspirant de l'exemple suivant :
 https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html
 Écrivez un code qui :
- charge la base de donnée MNIST
- permet de visualiser les exemples contenus dans un batch
- définit un réseau MLP à trois couches avec les caractéristiques suivantes :
 - tailles des couches cachées 120 et 80 neurones
 - fonction de coût : entropie croisée
 - fonction d'activation : sigmoïde
- apprend ce réseau sur la partition d'apprentissage (2 epochs)
- évalue les performances

Plan

- Limites des modèles MLP classiques
- Définition de l'architecture
 - La fonction de coût entropie croisée
 - fonctions d'activation
 - Initialisation des paramètres (poids)
- L'optimisation des paramètres
 - Limites de la descente de gradient
 - Momentum
 - Adaptation du pas d'apprentissage
- Régularisation

- La fonction sigmoïde
 - Valeurs dans l'intervalle [0,1]
 - Régime linéaire pour de faibles valeurs de x
 - Bio-inspirée (approximation de la fonction seuil)
 - Saturation et dispersion du gradient
 - Valeurs de sortie non centrées en 0
 - Coût de calcul de la fonction exponentielle

 $\sigma(x) = \frac{1}{1 + e^{-x}}$

allowed gradient update directions

allowed gradient update directions

hypothetical optimal w vector

zig zag path

http://cs231n.github.io/neural-networks-1/#actfun

La fonction tangente hyperbolique

- Valeurs dans l'intervalle [-1,1]
- Centrée en 0
- Saturation et dispersion du gradient

ReLU: Rectified Linear Unit

- La plus utilisée actuellement
- Accélère la convergence : x6 d'après [Krizhevsky et al., 2012]
- Pas de dispersion du gradient
- Rapide à calculer
- Biologiquement plus plausible que la sigmoïde

ReLU: Rectified Linear Unit

- La plus utilisée actuellement
- Accélère la convergence : x6 d'après [Krizhevsky et al., 2012]
- Pas de dispersion du gradient
- Rapide à calculer
- Biologiquement plus plausible que la sigmoïde

Certains neurones peuvent devenir inactifs :

- Attention à l'initialisation des poids
- Attention au pas de la descente

Leaky ReLU

- Accélère la convergence : x6 d'après [Krizhevsky et al., 2012]
- Pas de dispersion du gradient
- Rapide à calculer
- Pas de neurones inactifs

Parametric ReLU : la pente α est un paramètre appris

$$PReLU(x) = max(\alpha x, x)$$

- Beaucoup d'autres fonctions d'activations :
 - ELU, SELU, GELU, Swish...
- En pratique :
 - Utiliser ReLU (attention au pas d'apprentissage)
 - Utiliser certaines fonctions d'activation modernes :
 - Compromis coût / performance (calcul de l'exponentielle)
 - Par défaut dans certaines architectures modernes (eg. GELU dans les Transformers)

Exercice

 Reprendre le réseau de reconnaissance des chiffres manuscrits (base MNIST) et tester différentes fonctions d'activation.

Reporter les résultats obtenus

Plan

- Limites des modèles MLP classiques
- Définition de l'architecture
 - La fonction de coût entropie croisée
 - fonctions d'activation
 - Initialisation des paramètres (poids)
- L'optimisation des paramètres
 - Limites de la descente de gradient
 - Momentum
 - Adaptation du pas d'apprentissage
- Régularisation

- Le choix de la méthode d'initialisation est très important
 - Point de départ de l'initialisation
- Ce choix dépend :
 - Du type des fonctions d'activation
 - De l'architecture du réseau
 - De la méthode d'optimisation et de régularisation
- Trouver la bonne initialisation est difficile et empirique
 - Mais il existe des bonnes pratiques!

 Que se passe-t-il si les poids de deux neurones connectés à la même entrée sont initialisés avec les mêmes valeurs ?

- Que se passe-t-il si tous les poids sont initialisés avec la même valeur ?
 - Tous les poids évoluent de la même manière
- Comment casser la symétrie ?
 - En les initialisant aléatoirement
 - La plupart du temps, loi normale ou uniforme
- Quelle variance choisir ?

- Que se passe-t-il si on les initialise avec une variance trop faible ?
 - Les activations dans les couches suivantes tendent vers 0
- Que se passe-t-il si on les initialise avec une variance trop grande ?
 - Risque de saturation des sigmoïdes
 - Risque d'instabilité
- Que se passe-t-il si un neurone est connecté à un grand nombre de neurones de la couche précédente ?
 - Risque de saturation
 - Il faut adapter les poids des connexions en fonction du nombre de neurones de la couche précédente

• 1ère solution : en fonction du nombre d'entrées n du neurone

$$\mathbf{W}_{i,j} \leadsto U\left(-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$$

 Objectif: même variance d'activation, quelque soit la couche précédente

- 2^{ème} solution : en fonction du nombre d'entrées n et de sorite m du neurone
- Méthode de Xavier, très souvent utilisée [Glorot et Bengio 2010]

$$\mathbf{W}_{i,j} \leadsto U\left(-\sqrt{\frac{6}{n+m}}, \sqrt{\frac{6}{n+m}}\right)$$

- Objectif: même variance d'activation et même variance du gradient, quelque soit la couche (la formule dépend du type de la fonction d'activation)
- Ne prend pas en compte les non-linéarités (mais reste tout de même efficace)

X. Glorot, Y. Bengio, **Understanding the difficulty of training deep feedforward neural networks**, *AISTATS 2010*

- Il existe de nombreuses autres méthodes d'initialisation des poids :
 - Pas de méthode universelle
 - Stratégies actuelles simples et heuristiques
 - Phénomène encore mal compris (évolution au cours de l'apprentissage, impact sur la généralisation...)
- Seule certitude : il faut casser la symétrie
 - A considérer comme un hyper-paramètre (si les ressources sont disponibles)
- Il faut trouver un compromis entre :
 - Des poids forts pour casser la symétrie et limiter la dispersion du gradient
 - Des poids faibles pour limiter les risques d'explosion du gradient
- Possibilité d'utiliser un réseau pré-appris comme initialisation
 - Apprentissage non supervisé ou pour une autre tâche

Plan

- Limites des modèles MLP classiques
- Définition de l'architecture
 - La fonction de coût entropie croisée
 - fonctions d'activation
 - Initialisation des paramètres (poids)
- L'optimisation des paramètres
 - Limites de la descente de gradient
 - Momentum
 - Adaptation du pas d'apprentissage
- Régularisation

Méthodes d'optimisation

Credit: Alec Radford

Apprentissage du réseau

 Objectif: optimiser les paramètres du réseau qui minimisent un certain coût (ex: entropie croisée, erreur quadratique)

$$\theta^* = argmin_{\theta} \mathcal{L}(\hat{y}, y^*) = \sum_{i=1}^{N_{exemples}} \ell(\hat{y}^{(i)}, y^{*(i)})$$

- Quelle méthode utiliser ?
 - Grid search ?
 - Random search ?
 - Solution analytique ?
 - La descente de gradient

SGD: Stochastic gradient descent

– Quels exemples utilisent-on pour estimer le gradient ?

- Tous les exemples d'apprentissage : descente de gradient classique (ou batch gradient descent)
- **Un petit sous ensemble** (généralement un puissance de 2) : descente de gradient stochastique par mini-batch (SGD)
- Un seul exemple : descente de gradient stochastique online.

— Quel impact sur la descente ?

- Avec peu d'exemples : estimation bruitée mais beaucoup plus rapide à calculer
- Trouver un compromis
- Dépend des autres traitement effectués (par exemple, BatchNorm très sensible à la taille des batches)

Limites de la descente de gradient

- Les minima locaux et les points selles
 - Gradients nuls
 - Très fréquent en grande dimension
- La direction du gradient n'est pas optimale, sauf si l'ellipse est un cercle

- La fonction de coût est fortement non linéaire
 - Le choix du pas est important
 - Il faut avancer rapidement lorsque le gradient et faible et stable
 - Il faut avancer lentement lorsque il est fort et instable

Limites de la descente de gradient

Observer la courbe d'erreur pour régler le pas d'apprentissage

Source: cs231

Limites de la descente de gradient

- La plupart du temps, une simple descente de gradient ne suffit pas. Quelle(s) solution(s) ?
 - Momentum
 - Adaptation du pas du gradient
 - Normaliser les données (batch norm)
 - Régularisation (L2, L1, dropout)

Plan

- Limites des modèles MLP classiques
- Définition de l'architecture
 - La fonction de coût entropie croisée
 - fonctions d'activation
 - Initialisation des paramètres (poids)
- L'optimisation des paramètres
 - Limites de la descente de gradient
 - Momentum
 - Adaptation du pas d'apprentissage
- Régularisation

Momentum

- Idée: ne pas tenir compte uniquement du gradient
- Prendre en compte les (quelques) déplacements précédents
- Analogie avec une balle se déplaçant dans une cuvette

Momentum

- On introduit une variable v (la vitesse)
- Cette vitesse est une moyenne mobile exponentielle

Pas d'apprentissage (learning rate)

$$v \leftarrow \alpha v - \rho \nabla_{\theta} \mathcal{L} \left(f(x; \theta), y^* \right)$$

Pondère la contribution des anciens gradients

Puis on met à jour les paramètres du réseaux

$$\theta \leftarrow \theta + v$$

Nesterov momentum [Nesterov, 1983]

$$v \leftarrow \alpha v - \rho \nabla_{\theta} \mathcal{L} \left(f(x; \theta + \alpha v), y^* \right)$$

Donne généralement de meilleurs résultats

Le gradient n'est pas évalué pour la même position :

- On se déplace d'abord dans la direction du gradient cumulé
- Puis on cherche à corriger la prédiction par rapport au gradient à cette nouvelle position

Nesterov momentum

L

3

4a

Wlook_ahead

Wo

(a) Momentum-Based Gradient Descent

(b) Nesterov Accelerated Gradient Descent

Plan

- Limites des modèles MLP classiques
- Définition de l'architecture
 - La fonction de coût entropie croisée
 - fonctions d'activation
 - Initialisation des paramètres (poids)
- L'optimisation des paramètres
 - Limites de la descente de gradient
 - Momentum
 - Adaptation du pas d'apprentissage
- Régularisation

 AdaGrad [Duchi et al. JMLR 2011]: adapter le pas d'apprentissage pour chaque paramètre du réseau

```
Algorithm 8.4 The AdaGrad algorithm
Require: Global learning rate \epsilon
Require: Initial parameter \theta
Require: Small constant \delta, perhaps 10^{-7}, for numerical stability
   Initialize gradient accumulation variable r=0
   while stopping criterion not met do
      Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with
      corresponding targets y^{(i)}.
                                                                              Historique de l'intensité des
      Compute gradient: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
                                                                              gradients (par paramètre)
      Accumulate squared gradient: r \leftarrow r + g \odot g
      Compute update: \Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot g.
                                                             (Division and square root applied
      element-wise)
                                                               Normalisation du pas
      Apply update: \theta \leftarrow \theta + \Delta \theta
                                                               d'apprentissage
   end while
```

 RMSProp [Hinton 2012 (non publié)]: amélioration d'AdaGrad pour des fonctions de coût non-convexes

```
Algorithm 8.5 The RMSProp algorithm
Require: Global learning rate \epsilon, decay rate \rho.
Require: Initial parameter \theta
Require: Small constant \delta, usually 10^{-6}, used to stabilize division by small
   numbers.
   Initialize accumulation variables r=0
   while stopping criterion not met do
      Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with
      corresponding targets y^{(i)}.
                                                                                        moyenne mobile
      Compute gradient: \mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})
Accumulate squared gradient: \mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}
                                                                                        exponentielle
      Compute parameter update: \Delta \theta = -\frac{\epsilon}{\sqrt{\delta + r}} \odot g.
                                                                                      applied element-wise)
      Apply update: \theta \leftarrow \theta + \Delta \theta
                                                               Nouvel hyper-paramètre à déterminer
   end while
                                                                Généralement: 0.9 ou 0.99
```

• Adam [Kingma et al., 2014] : adaptive moments

```
Algorithm 8.7 The Adam algorithm
Require: Step size \epsilon (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, \rho_1 and \rho_2 in [0,1).
   (Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant \delta used for numerical stabilization. (Suggested default:
   10^{-8})
Require: Initial parameters \theta
   Initialize 1st and 2nd moment variables s = 0, r = 0
   Initialize time step t=0
   while stopping criterion not met do
      Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with
      corresponding targets y^{(i)}.
      Compute gradient: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
      t \leftarrow t + 1
                                                                                                    Momentum
      Update biased first moment estimate: \mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 - \rho_1) \mathbf{g}
      Update biased second moment estimate: r \leftarrow \rho_2 r + (1 - \rho_2) g \odot g
                                                                                                        RMSprop
      Correct bias in first moment: \hat{s} \leftarrow \frac{s}{1-\rho_1^t}
      Correct bias in second moment: \hat{r} \leftarrow \frac{r}{1-a_0^2}
      Compute update: \Delta \theta = \frac{\hat{s}}{-\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}} (operations applied element-wise)
      Apply update: \theta \leftarrow \theta + \Delta \theta
   end while
```



```
Algorithm 8.7 The Adam algorithm
Require: Step size \epsilon (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, \rho_1 and \rho_2 in [0,1).
   (Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant \delta used for numerical stabilization. (Suggested default:
   10^{-8})
Require: Initial parameters \theta
   Initialize 1st and 2nd moment variables s = 0, r = 0
   Initialize time step t = 0
   while stopping criterion not met do
      Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with
      corresponding targets \boldsymbol{y}^{(i)}.
      Compute gradient: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
      t \leftarrow t + 1
      Update biased first moment estimate: \mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 - \rho_1) \mathbf{g}
      Update biased second moment estimate: r \leftarrow \rho_2 r + (1 - \rho_2) g \odot g
      Correct bias in first moment: \hat{s} \leftarrow \frac{s}{1-\rho_1^t}
                                                                                         Corrige les biais d'initialisation
      Correct bias in second moment: \hat{r} \leftarrow \frac{r}{1-\rho_0^2}
      Compute update: \Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta} (operations applied element-wise)
      Apply update: \theta \leftarrow \theta + \Delta \theta
   end while
```

- Il existe de nombreuses autres méthodes
- Certaines s'appuient sur des approximation d'ordre 2
 - Méthodes de Newton (avec estimation de la hessienne)
 - Gradient conjugué (non linéaire)
 - BFGS

Normalisation par batch (batch norm)

- Normaliser les données améliorent les performances (descripteurs de moyenne nulle et variance égale à 1)
 - Les plages de variations entre descripteurs sont plus homogènes
 - Evite les saturations
- Idée : appliquer le même principe aux activations de chaque couche
 - (Beaucoup) plus de stabilité en apprentissage

S. loffe et C. Szegedy. **Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift**, ICML 2015

Batch norm: en apprentissage

 Pour chaque batch (sous-ensemble d'exemples d'apprentissage), on normalise chaque dimension (i.e. chaque sortie de la couche précédente)

Moyenne et variance empirique de la sortie du kème neurone calculée à partir du batch courant

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Fonction différentiable

Est-ce toujours adapté ?

Plus d'infos : Why Does Batch Norm Work?: https://www.youtube.com/watch?v=nUUqwaxLnWs Détails sur la passe de rétropropagation https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html

Batch norm: en apprentissage

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Est-ce toujours une bonne idée ?

On laisse au réseau la possibilité de modifier la dynamique des entrée en fonction des besoins (exemple ReLU)

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

Si il le souhaite, le réseau peut apprendre à « dénormaliser ». Comment ?

Plus d'infos : Why Does Batch Norm Work?: https://www.youtube.com/watch?v=nUUqwaxLnWs Détails sur la passe de rétropropagation https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html

Batch norm: en apprentissage

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}
```

[Ioffe et Szegedy, 2015]

La BN peut s'appliquer :

- À la sortie de la fonction d'activation
- Ou juste avant d'appliquer la nonlinéarité (c'est souvent le cas)

Quels paramètres utiliser en test ?

 Ceux estimés sur la base d'apprentissage (avec une moyenne glissante par exemple)

Que se passe-t-il si la distribution des données en test est très différente ?

- AdaBN [Li et al. 2017]

Plan

- Limites des modèles MLP classiques
- Définition de l'architecture
 - La fonction de coût entropie croisée
 - fonctions d'activation
 - Initialisation des paramètres (poids)
- L'optimisation des paramètres
 - Limites de la descente de gradient
 - Momentum
 - Adaptation du pas d'apprentissage
- Régularisation
 - Pénalisation de la norme des paramètres
 - Dropout

Régularisation

 Généralement : réduire l'erreur de prédiction sur la base d'apprentissage ne suffit pas

 Régularisation : ensemble des méthodes permettant d'améliorer l'erreur en test (généralisation)

Pénalisation de la norme des paramètres

 Objetif : limiter la capacité d'apprentissage du modèle pour éviter le sur-apprentissage

$$\mathcal{L}(\hat{y}, y^*) = \left(\sum_{i=1}^{N_{exemples}} \ell(f(x^{(i)}; \theta), y^{*(i)})\right) + \alpha \Omega(\theta)$$

Norme des paramètres

Quelle norme choisir?

Pénalisation de la norme des paramètres

Norme L2:

- Weight decay
- aka. ridge regression (ou Tikhonov regularization)
- Favorise les faibles valeurs des paramètres en particulier dans les direction de faible courbure.

Pénalisation de la norme des paramètres

Norme L2:

- Weight decay (somme des poids au carré)
- aka. ridge regression (ou Tikhonov regularization)
- Favorise les faibles valeurs des paramètres en particulier dans les directions de faible courbure.

Norme L1 :

- Somme des valeurs absolues des poids
- aka. LASSO penalty
- Favorise les solutions parcimonieuses (nombreuses valeurs nulles)

Dropout

Dropout

- Peut s'interpréter comme une méthode d'ensemble dont les modèles partagent certains paramètres
- Force le réseau à être moins sensible au bruit (surtout pour les descripteurs porteurs de beaucoup d'information)
- Temps d'apprentisage augmenté (+ d'epochs necessaires)
- Capacité de généralisation améliorée

Dropout

Et en test ?

Le modèle est stochastique et dépend d'un nouveau paramètre

$$\hat{y} = f(x, z; \theta)$$

Masque des désactivation aléatoires

On ne souhaite pas dépendre de ce paramètre aléatoire

$$\hat{y} = \mathbb{E}_{\theta} [f(x, z; \theta)] = \int p(z) f(x, z; \theta) dz$$

- Autre solution : multiplier la prédiction par la valeur la probabilité du dropout $\hat{y} = p_{do}f(x;\theta)$
- dropout inversé : on pondère les activations des neurones par $1/p_{do}$ en apprentissage et on ne modifie pas la sortie en test. (plus courant)

Autres méthodes de régularisation

- Augmentation des données
- Mixup / Cutout / CutMix
- Early stopping
- Injection de bruit (en entrée ou en sortie)
- Apprentissage multi-tâches
- Poids partagés (cf. CNN)
- Méthodes d'ensemble

Exercice

- Reprendre le réseau de reconnaissance des chiffres manuscrits (base MNIST) et tester différentes stratégie d'optimisation et de régularisation
- Quelle est la meilleure configuration trouvée ? Quelles performances ?
- Qu'apprend le réseau ?
 - Afficher sous forme d'images les poids des neurones de la première couche
 - Quelle différence observez vous en fonction de l'algorithme d'optimisation utilisé ?