

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

| zny © CKE 2013 | UZUP | EŁNIA ZDAJĄCY | miejsce                |
|----------------|------|---------------|------------------------|
| aficzny        | KOD  | PESEL         | miejsce<br>na naklejkę |
| kład graf      |      |               |                        |
| n              |      |               |                        |

## EGZAMIN MATURALNY Z INFORMATYKI

## POZIOM ROZSZERZONY

## CZĘŚĆ II

## Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron i czy dołączony jest do niego nośnik danych podpisany *DANE*. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 3. Jeśli rozwiązaniem zadania lub jego części jest program komputerowy, to umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL wszystkie utworzone przez siebie pliki w wersji źródłowej.
- 4. Pliki oddawane do oceny nazwij dokładnie tak, jak polecono w treści zadań, lub zapisz pod nazwami (wraz z rozszerzeniem zgodnym z zadeklarowanym oprogramowaniem), jakie podajesz w arkuszu egzaminacyjnym. Pliki o innych nazwach nie będą sprawdzane przez egzaminatorów.
- 5. Przed upływem czasu przeznaczonego na egzamin zapisz w katalogu (folderze) oznaczonym Twoim numerem PESEL ostateczną wersję plików stanowiących rozwiązania zadań.
- 6. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 7. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.



#### 17 MAJA 2016

| WYBRANE:           |  |  |  |  |  |
|--------------------|--|--|--|--|--|
| (środowisko)       |  |  |  |  |  |
| (kompilator)       |  |  |  |  |  |
| (program użytkowy) |  |  |  |  |  |

Czas pracy: 150 minut

Liczba punktów do uzyskania: 30

MIN-R2 1P-162

#### Zadanie 4. Doświadczenie

Planowane jest doświadczenie laboratoryjne, które będzie trwało 1500 minut. Do dyspozycji będą: naczynie o pojemności **5 litrów** z mechanizmem mieszającym, automatyczny dozownik pobierający roztwór z naczynia i robot odpowiedzialny za dolewanie wody do naczynia. Robot ten jest wyposażony w czujnik poziomu cieczy w naczyniu.

Na początku doświadczenia (czas – zero minut) stężenie roztworu w naczyniu będzie wynosić 80%, co oznacza, że w naczyniu będą się znajdować cztery litry substancji chemicznej X oraz jeden litr wody.

Podczas doświadczenia automatyczny dozownik będzie **pod koniec każdej parzystej minuty** wypuszczał z naczynia **20 mililitrów** roztworu. Pierwsze działanie dozownika będzie miało miejsce pod koniec drugiej minuty (1 minuta 59 sekund). Robot zaś, **co 50 minut**, będzie dolewał do naczynia *wodę* tak, żeby dopełnić roztwór do **5 litrów**. Pierwsze działanie robota będzie miało miejsce w 51. minucie doświadczenia.

Dla pierwszych pięciu minut doświadczenia, poziom roztworu w naczyniu i jego skład wyglądają następująco:

| Czas [minuty] | Poziom cieczy<br>w naczyniu [ml] | Stężenie % cieczy | Substancja chem. X<br>[ml] | Woda<br>[ml] |
|---------------|----------------------------------|-------------------|----------------------------|--------------|
| 0             | 5000,00                          | 80,00%            | 4000,00                    | 1000,00      |
| 1             | 5000,00                          | 80,00%            | 4000,00                    | 1000,00      |
| 2             | 4980,00                          | 80,00%            | 3984,00                    | 996,00       |
| 3             | 4980,00                          | 80,00%            | 3984,00                    | 996,00       |
| 4             | 4960,00                          | 80,00%            | 3968,00                    | 992,00       |
| 5             | 4960,00                          | 80,00%            | 3968,00                    | 992,00       |

Robot za każdym razem będzie dolewał wyłącznie *wodę*. Oznacza to, że w 51. minucie doświadczenia (jeszcze przed pierwszym dolaniem wody) w naczyniu będzie się znajdować 4,5 litra roztworu o stężeniu 80%. Na koniec 51. minuty (po dolaniu *wody*) w naczyniu będzie już 5 litrów roztworu o stężeniu 72%.

Korzystając z dostępnych narzędzi informatycznych, podaj odpowiedzi do zadań. Odpowiedzi w zaokrągleniu do dwóch miejsc po przecinku zapisz do pliku *wyniki\_4.txt*, a każdą z nich poprzedź numerem zadania (poza wykresem w zadaniu 4.3).

## Uwaga:

Zaokrąglenia obliczeń do dwóch miejsc po przecinku zastosuj dopiero przy podawaniu odpowiedzi.

## **Zadanie 4.1.** (3 pkt)

Jaki będzie poziom roztworu w naczyniu w **191. minucie** doświadczenia? Podaj ilość roztworu w naczyniu, ilość *wody* oraz ilość *substancji chemicznej X*.

## **Zadanie 4.2.** (3 pkt)

Podaj następujące informacje o roztworze w naczyniu, po 1500 minutach doświadczenia:

- stężenie roztworu w naczyniu,
- sumaryczną objętość wody, jaka została dolana w czasie doświadczenia.

## **Zadanie 4.3.** (3 pkt)

Przedstaw na wykresie liniowym zawartość naczynia podczas całego doświadczenia.

**Na jednym wykresie** należy przedstawić, jak zmieniały się w czasie: ilość *wody* i ilość *substancji chemicznej X* w naczyniu (zaczynając od początku doświadczenia, tj. od minuty 0). Zadbaj o czytelność wykresu.

## **Zadanie 4.4.** (3 pkt)

Laboranci zastanawiają się, czy dozownik mógłby pobierać roztwór większymi porcjami niż 20 ml. Podaj **maksymalną objętość roztworu**, jaką można pobierać (zachowując dotychczasowe ustawienia robota), która gwarantuje, że w trakcie doświadczenia stężenie roztworu **nie spadnie poniżej 1%**. Dozownik można ustawić z dokładnością do jednej setnej części mililitra.

#### Do oceny oddajesz:

- plik tekstowy *wyniki\_4.txt* zawierający odpowiedzi do poszczególnych zadań. Odpowiedź do każdego zadania powinna być poprzedzona jego numerem
- plik/pliki zawierający/zawierające komputerową realizację Twoich rozwiązań o nazwie/nazwach:

| ••••• | ••••• | <br> | <br> |
|-------|-------|------|------|
|       |       |      |      |
|       |       |      |      |

| _           | Nr zadania           | 4.1. | 4.2. | 4.3. | 4.4. |
|-------------|----------------------|------|------|------|------|
| Wypełnia    | Maks. liczba pkt.    | 3    | 3    | 3    | 3    |
| egzaminator | Uzyskana liczba pkt. |      |      |      |      |

## Zadanie 5. Gra w życie

Gra w życie została wymyślona w 1970 roku przez Johna Conwaya.

Rozpatrujemy wariant, w którym plansza składa się z komórek rozmieszczonych obok siebie na prostokątnej siatce o wymiarach  $n \times m$ , w której numeracja wierszy i kolumn zaczyna się od 1. Każda komórka może być w jednym z dwóch stanów: żywa "X" lub martwa ".". Przyjmijmy, że komórki z prawej krawędzi siatki sąsiadują z komórkami z lewej krawędzi siatki, a komórki z górnego wiersza sąsiadują z komórkami dolnego wiersza siatki. Każda komórka ma 8 sąsiadów, połączonych z nią bokiem lub wierzchołkiem.

Układ komórek podlega ewolucji. W **następnym pokoleniu** będą **żywe** tylko te komórki, które w **bieżącym pokoleniu** spełniają jeden z dwóch warunków:

- Komórka jest **żywa** i ma **dwóch** lub **trzech** żywych sąsiadów (inaczej umiera z samotności lub na skutek zbyt dużego zagęszczenia).
- Komórka jest **martwa**, ale ma dokładnie **trzech** żywych sąsiadów.

## Uwaga:

Planszę stanu komórek w nowym pokoleniu można wyznaczyć, tylko jeżeli ma się kompletne dane z poprzedniego pokolenia.

## Przykład:

| Pie | Pierwsze pokolenie: |  |   |   |   |  |  | Dr | Drugie pokolenie: |   |  |   |   |   |   |   |   |   |
|-----|---------------------|--|---|---|---|--|--|----|-------------------|---|--|---|---|---|---|---|---|---|
|     |                     |  |   |   |   |  |  |    |                   |   |  | • |   | • | • | • |   | • |
|     |                     |  |   |   |   |  |  |    |                   |   |  |   |   | X |   |   |   |   |
|     |                     |  | X | X | X |  |  | X  |                   |   |  |   | X |   | X |   |   |   |
|     |                     |  | X | X | X |  |  | X  | X                 | ( |  |   | X |   | X |   | X | X |
|     |                     |  |   |   |   |  |  | X  |                   |   |  |   |   | X |   |   |   |   |
|     |                     |  |   |   |   |  |  |    |                   |   |  |   |   |   | • |   |   | ٠ |
|     |                     |  |   |   |   |  |  |    | •                 |   |  |   |   |   |   |   |   |   |

Dla przykładu – w drugim pokoleniu komórka będąca w trzecim wierszu i dziewiątej kolumnie jest martwa i ma trzech żywych sasiadów.

W pliku *gra.txt* zapisany jest układ komórek na siatce o wymiarach: 12 wierszy i 20 kolumn – rozmieszczenie żywych i martwych komórek w pierwszym pokoleniu. Każdy wiersz siatki jest zapisany w osobnym wierszu pliku.

#### Uwaga:

Dla przykładu z pliku – w jedenastym pokoleniu – komórka w pierwszym wierszu i dziesiątej kolumnie jest martwa i ma trzech żywych sąsiadów.

#### Egzamin maturalny z informatyki Poziom rozszerzony

**Napisz program**, który da odpowiedzi do poniższych poleceń. Każdą odpowiedź zapisz w pliku *wyniki 5.txt*, poprzedź ją numerem zadania.

## **Zadanie 5.1.** (2 pkt)

Podaj liczbę żywych sąsiadów dla komórki w drugim wierszu i dziewiętnastej kolumnie w trzydziestym siódmym pokoleniu.

## **Zadanie 5.2.** (4 pkt)

Podaj liczbę żywych komórek w drugim pokoleniu tego układu.

## **Zadanie 5.3.** (4 pkt)

W którym pokoleniu (sprawdzamy maksymalnie do 100) układ żywych i martwych komórek się ustali (w bieżącym pokoleniu jest identyczny jak w poprzednim)?

Podaj, które to pokolenie oraz liczbę żywych komórek w tym pokoleniu.

## Do oceny oddajesz:

- plik tekstowy *wyniki\_5.txt* zawierający odpowiedzi do poszczególnych zadań. Odpowiedź do każdego zadania powinna być poprzedzona jego numerem.
- plik/pliki zawierający/zawierające kod źródłowy/kody źródłowe Twoich programów o nazwie/nazwach:

| zadanie 5.1 |  |
|-------------|--|
| zadanie 5.2 |  |
| zadanie 5 3 |  |

|             | Nr zadania           | 5.1. | 5.2. | 5.3. |
|-------------|----------------------|------|------|------|
| Wypełnia    | Maks. liczba pkt.    | 2    | 4    | 4    |
| egzaminator | Uzyskana liczba pkt. |      |      |      |

#### Zadanie 6. Muzeum Narodowe

Muzeum Narodowe w swoich oddziałach zgromadziło obrazy różnych malarzy. Informacje o dziełach sztuki, ich autorach oraz muzeach (oddziałach) zostały zapisane w plikach: obrazy.txt, malarze.txt, oddzialy.txt. Dane w poszczególnych wierszach oddzielone są znakami tabulacji. Pierwszy wiersz każdego z plików jest wierszem nagłówkowym.

Plik o nazwie obrazy.txt w każdym wierszu zawiera: identyfikator obrazu, tytuł, identyfikator malarza, identyfikator oddziału, stan.

Fragment pliku obrazy.txt:

| id_obrazu | tytul            | id_malarza | id_oddzialu | stan       |         |
|-----------|------------------|------------|-------------|------------|---------|
| 1         | Kazanie Skargi   | 1          | 1           | ekspozycja | czasowa |
| 2         | Konrad Wallenrod | 1          | 1           | ekspozycja | stala   |

Plik malarze. txt w każdym wierszu zawiera: identyfikator malarza, nazwisko, imię.

Fragment pliku malarze.txt:

Plik *oddzialy.txt* w każdym wierszu zawiera informacje o tym, gdzie na stałe jest przechowywany obraz: identyfikator oddziału, miejscowość.

Fragment pliku oddzialy.txt:

Wykorzystując dane zawarte w plikach tekstowych oraz dostępne narzędzia informatyczne, wykonaj polecenia. Każdą odpowiedź zapisz w pliku *wyniki\_6.txt*, poprzedź ją numerem zadania.

## **Zadanie** 6.1. *(1 pkt)*

Podaj imiona i nazwiska dwóch malarzy, których liczba obecnie wystawionych (na ekspozycji stałej lub czasowej) obrazów jest największa. Dla każdego z dwóch malarzy podaj liczbę tych obrazów.

#### **Zadanie 6.2.** (1 pkt)

Podaj tytuły obrazów oraz imiona i nazwiska malarzy, których dzieła w tytule zawierają ciąg znaków "polowanie" lub "Polowanie".

## **Zadanie 6.3.** (2 pkt)

Utwórz zestawienie zawierające informacje o liczbie obrazów znajdujących się w poszczególnych oddziałach z podziałem na ich stan. Oddziały uszereguj alfabetycznie.

## Zadanie 6.4. (2 pkt)

Warszawski Oddział Muzeum Narodowego będzie katalogować obrazy po tytułach. Wskaż literę, na którą zaczyna się najwięcej tytułów obrazów.

## **Zadanie 6.5.** (2 pkt)

Podaj, dla którego z malarzy liczba obecnie wypożyczonych obrazów jest największa.

## Do oceny oddajesz:

• plik tekstowy *wyniki\_6.txt* zawierający odpowiedzi do poszczególnych zadań. Odpowiedź do każdego zadania powinna być poprzedzona jego numerem

plik/pliki zawierający/zawierające komputerową realizację Twoich rozwiązań

o nazwie/nazwach:

|             | Nr zadania           | 6.1. | 6.2. | 6.3. | 6.4. | 6.5. |
|-------------|----------------------|------|------|------|------|------|
| Wypełnia    | Maks. liczba pkt.    | 1    | 1    | 2    | 2    | 2    |
| egzaminator | Uzyskana liczba pkt. |      |      |      |      |      |

# BRUDNOPIS (nie podlega ocenie)