ZEMRIS 24. 6. 2020.

ZAVRŠNI ISPIT IZ ELEKTRONIKE 2

ZADATAK 1. (**8 bodova**) Za diferencijsko pojačalo sa slike zadano je $U_{DD} = U_{SS} = 10 \text{ V}$, $R_{g1} = R_{g2} = 1 \text{ k}\Omega$, $R_D = 1 \text{ k}\Omega$ i $R_S = 3 \text{ k}\Omega$. Tranzistori T_1 i T_2 imaju jednake parametre $I_{DSS} = 8 \text{ mA}$ i $U_P = -4 \text{ V}$. Zanemariti porast struje odvoda u području zasićenja.

- a) Izračunati struje I_{DQ} i napone U_{DSQ} za oba tranzistora u statičkoj radnoj točki (**3 boda**).
- b) Odrediti naponska pojačanja zajedničkog i diferencijskog signala $A_{Vz} = u_{iz}/u_z$ i $A_{Vd} = u_{iz}/u_d$, te faktor potiskivanja ρ (4 boda).
- c) Izračunati izlazni napon ako je napon $u_g = 150 \sin \omega t \text{ mV } (1 \text{ bod}).$

ZADATAK 2. (9 bodova) Za pojačalo na slici zadano je $U_{CC} = 15 \text{ V}$, $R_G = 100 \text{ k}\Omega$, $R_D = 1 \text{ k}\Omega$, $R_E = 4 \text{ k}\Omega$, $R_T = 1 \text{ k}\Omega$, $C_G = 200 \text{ nF}$ i $C_E = 2 \text{ \mu}\text{F}$. Parametri tranzistora su $I_{DSS} = 32 \text{ mA}$, $U_P = -2 \text{ V}$, $\beta \approx h_{fe} = 100 \text{ i}$ $U_{\gamma} = 0.7 \text{ V}$. Zanemariti serijski otpor baze $r_{bb'}$, te poraste struje odvoda s naponom u_{DS} u području zasićenja i struje kolektora s naponom u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

- a) Odrediti otpor R_S s kojim će se postići struja $I_{DQ} = 8 \text{ mA}$, te izračunati struju I_{CQ} i napone U_{DSQ} i U_{CEQ} u statičkoj radnoj točki (**2 boda**).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu (**2 boda**).
- c) Izračunati pojačanje $A_V = U_{iz} / U_{ul}$ na srednjim frekvencijama (2 boda).
- d) Izračunati donju graničnu frekvenciju pojačanja A_V (3 boda).

ZADATAK 3. (9 bodova) Za pojačalo na slici zadano je: $U_{CC} = 12 \text{ V}$, $R_g = 5 \text{ k}\Omega$, $C_B = 2 \text{ μF}$, $R_1 = 40 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_C = 2 \text{ k}\Omega$, $R_E = 500 \Omega$, $R_E = 50 \text{ μF}$, $R_C = 2 \text{ μF}$ i $R_T = 500 \Omega$. Parametri tranzistora su $\beta \approx h_{fe} = 100$, $U_{\gamma} = 0.7 \text{ V}$, $r_{bb'} = 50 \Omega$, $C_{b'e} = 25 \text{ pF}$ i $C_{b'c} = 2 \text{ pF}$. Zanemariti porast struje kolektora s naponom u_{CE} normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

- a) Izračunati struju I_{CQ} i napon U_{CEQ} u statičkoj radnoj točki (**2 boda**).
- Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_{Ig} = I_{iz}/I_g$ na srednjim frekvencijama (2 boda).
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Ig} (3 boda).

ZEMRIS 24. 6. 2020.

ZADATAK 4. (10 bodova) Za pojačalo na slici zadano je $U_{CC}=12~{\rm V}$, $R_{C1}=3~{\rm k}\Omega$, $R_{B1}=100~{\rm k}\Omega$ i $R_{E2}=500~\Omega$. Parametri tranzistora su $β ≈ h_{fe}=100$ i $U_γ=0,7~{\rm V}$. Zanemariti serijski otpor baze r_{bb} i porast struje kolektora s naponom u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25~{\rm mV}$.

- a) Izračunati statičku radnu točku (2 boda).
- b) Odrediti tip povratne veze i nacrtati *A*-granu pojačala bez povratne veze za mali signal (**2 boda**).
- c) Odrediti pojačanje A-grane (4 boda).
- d) Odrediti koeficijent povratne veze β (1 bod).
- e) Odrediti pojačanja $A_{Vf} = u_{iz}/u_{ul}$ (1 bod).

ZADATAK 5. (6 bodova) U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze su

$$A(j\omega) = \frac{-10^4 (1 + j\omega/10^6)}{(1 + j\omega/10^4)(1 + j\omega/10^5)}, \qquad \beta(j\omega) = \frac{\beta_0}{1 + j\omega/10^4}$$

Grafičkim postupkom crtanjem aproksimativnog Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O. = 45^{\circ}$. Koliko je pri tome amplitudno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka. (Bodeov dijagram – **4 boda**, određivanje β_0 – **1 bod**, A.O. – **1 bod**)

ZADATAK 6. (8 bodova) Analogno-digitalni pretvornik s dva pilasta napona ima oscilator frekvencije 1 MHz, referentni napon 5 V i brojilo do 10⁴ impulsa. Na ulaz pretvornika je spojen istosmjerni napon od 2,5 V kojem se može superponirati smetnja trokutastog valnog oblika amplitude 20 mV i frekvencije 50 Hz.

- a) Nacrtajte shemu pretvornika i vremenski dijagram jednog ciklusa pretvorbe (2 boda).
- b) Koliko impulsa izbroji brojilo u slučaju bez superponirane smetnje (2 boda)?
- c) Koliko impulsa izbroji brojilo u slučaju sa superponiranom smetnjom? Koliki je minimalni broj impulsa koje bi brojilo trebalo izbrojati u prvom dijelu ciklusa da se ukloni utjecaj smetnje (**3 boda**)?
- d) Odredite minimalnu i maksimalnu frekvenciju otipkavanja ovog pretvornika (1 bod).

Popis složenijih formula:

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2 \left(1 + \lambda u_{DS} \right) \qquad i_C = \beta I_B \left(1 + \frac{u_{CE}}{U_A} \right)$$