

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR SERTIFIKAAT/ NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

FISIESE WETENSKAPPE: CHEMIE (V2)

VOORBEREIDENDE 2021

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 16 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- 1. Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK.
- 2. Hierdie vraestel bestaan uit TIEN vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël tussen twee subvrae oop, bv. tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Toon ALLE formules en vervangings in ALLE berekeninge.
- 9. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 10. Gee kort (bondige) motiverings, besprekings, ens. waar nodig.
- 11. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 12. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDEBOEK neer, bv. 1.11 E.

- 1.1 Watter EEN van die volgende is 'n ALKAAN?
 - A C₆H₈
 - B C₆H₁₀
 - C C₆H₁₂

$$D C_6H_{14}$$
 (2)

1.2 Esters word gevorm deur 'n reaksie tussen twee organiese verbindings, **X** en **Y**, elk met 'n ander funksionele groep.

Die funksionele groepe van hierdie verbindings is:

	Verbinding X	Verbinding Y
Α	Hidroksielgroep	Karboksielgroep
В	Hidroksielgroep	Karbonielgroep
С	Hidroksied-ioon	Karboksielgroep
D	Hidroksied-ioon	Karbonielgroep

1.3 Wanneer butaan onderwerp word aan hoë temperature en drukke, vind die volgende reaksie plaas:

Watter EEN van die volgende verteenwoordig Y?

- A CHCCH₃
- B CH₂CHCH₃
- C CH₃CH₂CH₃
- D CH₃CHCHCH₃

(2)

(2)

1.4 'n Soutsuuroplossing, HCl(aq), met 'n konsentrasie van 1 mol·dm⁻³, word by 'n OORMAAT VERPOEIERDE magnesium by 25 °C gevoeg.

Kurwe I hieronder verteenwoordig die volume waterstofgas wat tydens die reaksie geproduseer is.

Kurwe II is verkry by verskillende toestande deur DIESELFDE VOLUME soutsuuroplossing te gebruik.

Watter EEN van die volgende verteenwoordig die toestande wat gebruik is om kurwe II te verkry?

	TOESTAND VAN VERDEELDHEID VAN Mg	KONSENTRASIE SUUR (mol·dm ⁻³)	TEMPERATUUR (°C)
Α	Lint	0,5	25
В	Lint	2	25
С	Poeier	1	20
D	Poeier	1	30

(2)

1.5 In watter EEN van die volgende reaksies by ewewig sal die OPBRENGS van die produk toeneem indien die VOLUME van die houer by konstante temperatuur vergroot word?

 $A \qquad N_2O_4(g) \; \rightleftharpoons \; 2NO_2(g)$

 $\mathsf{B} \quad \mathsf{H}_2(\mathsf{g}) + \mathsf{I}_2(\mathsf{g}) \, \rightleftharpoons \, 2\mathsf{H}\mathsf{I}(\mathsf{g})$

 $C N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

D $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ (2)

- 1.6 Watter EEN van die volgende stellings is WAAR vir 'n EKSOTERMIESE reaksie?
 - A Meer energie word geabsorbeer as vrygestel.
 - B Meer energie word vrygestel as geabsorbeer.
 - C Reaksiewarmte (ΔH) is positief.
 - D Energie van die produkte is groter as die energie van die reaktanse. (2)
- 1.7 Oorweeg die vergelyking hieronder.

$$H_3PO_4(aq) + H_2O(\ell) = H_3O^+(aq) + H_2PO_4^-(aq)$$

Watter EEN van die volgende is 'n gekonjugeerde suur-basis-paar?

- A $H_3O^+(aq)$ en $H_2O(\ell)$
- B $H_3PO_4(aq)$ en $H_2O(\ell)$
- C $H_3PO_4(aq)$ en $H_3O^+(aq)$

D
$$H_3O^+(aq) \text{ en } H_2PO_4^-(aq)$$
 (2)

1.8 Oorweeg die gebalanseerde vergelyking vir die reaksie hieronder:

$$2Cr^{2+}(aq) + Sn^{4+}(aq) \rightarrow 2Cr^{3+}(aq) + Sn^{2+}(aq)$$

Die OKSIDEERMIDDEL is:

- A $Cr^{2+}(aq)$
- B Cr³⁺(aq)
- C Sn²⁺(aq)
- $D Sn^{4+}(aq)$ (2)

1.9 'n Elektrochemiese sel word onder standaardtoestande opgestel. Die selnotasie vir die sel word hieronder gegee.

$$Mg(s) | Mg^{2+}(aq) | | Pb^{2+}(aq) | Pb(s)$$

Die sel word nou in 'n stroombaan geskakel. Watter EEN van die grafieke hieronder is die BESTE voorstelling van die konsentrasies van die elektroliete na 'n lang tyd?

1.10 Twee 50 kg-sakke, wat onderskeidelik kunsmisstowwe **R** en **S** bevat, word soos volg gemerk:

Kunsmis **R**: 3:1:5 (20) Kunsmis **S**: 1:2:6 (20)

Identifiseer die kunsmisstof/kunsmisstowwe wat die geskikste vir gesonde blaargroei en gesonde wortelgroei is.

	BLAARGROEI	WORTELGROEI
Α	R	R
В	S	R
С	R	S
D	S	S

(2)

[20]

VRAAG 2 (Begin op 'n nuwe bladsy.)

Die letters **A** tot **E** in die tabel hieronder verteenwoordig vyf organiese verbindings.

A	H Br CH ₃ CH ₂ CH ₃	В	C_xH_y
С	H-C-I H-C-I H-C-I H-C-I H-C-I	D	CH ₃ (CH ₂) ₂ CH(OH)CH ₂ CH ₃
Е	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CHCH ₂		

2.1 Skryf die letter neer wat ELK van die volgende verteenwoordig:

2.1.1 'n Ketoon (1)

2.1.2 'n Koolwaterstof (1)

2.1.3 'n Alkeen (1)

2.2 Skryf neer die:

2.2.1 IUPAC-naam van verbinding **A** (3)

2.2.2 STRUKTUURFORMULE van verbinding **D** (2)

2.2.3 IUPAC-naam van die REGUITKETTING- FUNKSIONELE ISOMEER van verbinding **C** (2)

2.3 Verbinding **B** is 'n reguitketting-verbinding wat die volgende eksotermiese reaksie ondergaan:

$$2C_xH_y + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(g)$$

2.3.1 Behalwe om eksotermies te wees, watter tipe reaksie word hierbo voorgestel? (1)

2.3.2 Bepaal die MOLEKULÊRE FORMULE van verbinding **B**. (2)

Die reaksie hierbo vind in 'n geslote houer by 'n konstante temperatuur hoër as 100 °C en by konstante druk plaas.

2.3.3 Bereken die TOTALE VOLUME van die gas wat in die houer gevorm word wanneer 50 cm³ C_xH_y volledig met suurstof reageer.

(3) **[16]**

VRAAG 3 (Begin op 'n nuwe bladsy.)

Verbindings **A**, **B** en **C** word gebruik om 'n faktor te ondersoek wat die kookpunte van organiese verbindings beïnvloed. Die resultate van die ondersoek word in die tabel hieronder getoon.

VERBINDING		KOOKPUNT (°C)		
Α	Butan-1-ol	117		
В	Butan-2-ol	100		
С	2-metielpropan-2-ol	82		

- 3.1 Is dit 'n regverdige ondersoek? Kies uit JA of NEE. (1)
- 3.2 Gee 'n rede vir die antwoord op VRAAG 3.1. (1)
- 3.3 Verduidelik die verskil in kookpunte van verbindings **B** en **C** volledig. (3)
- 3.4 Definieer die term *posisie-isomeer.* (2)
- 3.5 Kies uit verbinding(s) **A**, **B** en **C** die letter(s) wat ELK van die volgende voorstel:
 - 3.5.1 Posisie-isomere (1)
 - 3.5.2 'n Tersiêre alkohol

 Gee 'n rede vir die antwoord. (2)
- 3.6 Die grafiek hieronder verteenwoordig die verwantskap tussen dampdruk en temperatuur van verbinding **A** (butan-1-ol).

- 3.6.1 Skryf die waarde van **X** neer.
- 3.6.2 Teken die grafiek hierbo in die ANTWOORDEBOEK oor. Op dieselfde assestelsel, skets die kurwe wat verkry sal word vir verbinding **C**. Benoem kurwes **A** en **C** duidelik. Dui die toepaslike kookpunt vir verbinding **C** op die grafiek aan.

(2) **[13]**

(1)

VRAAG 4 (Begin op 'n nuwe bladsy.)

4.1 Die vloeidiagram hieronder toon verskeie organiese reaksies wat propaan as uitgangsreaktans gebruik. **R**, **T** en **U** verteenwoordig verskillende organiese verbindings.

Verbinding **T** is 'n KARBOKSIELSUUR en verbinding **U** is 'n FUNKSIONELE ISOMEER van pentanoësuur.

Skryf die NAAM neer van die tipe reaksie verteenwoordig deur:

Beskou reaksie 1 en reaksie 2.

4.1.3 Skryf die IUPAC-naam van verbinding **R** neer. (2)

Reaksie 3 vind in die teenwoordigheid van 'n katalisator en hitte plaas.

Skryf neer die:

- 4.1.4 NAAM of FORMULE van die katalisator (1)
- 4.1.5 IUPAC-naam van verbinding **T** (2)
- 4.1.6 STRUKTUURFORMULE van verbinding **U** (2)

4.2 'n Laboratoriumtegnikus wil but-2-een berei deur but-1-een as uitgangsreagens te gebruik, soos hieronder getoon.

Die volgende chemikalieë is in die laboratorium beskikbaar:

	11.0	l
gekonsentreerde H ₂ SO ₄	H ₂ O	gekonsentreerde NaOH

Kies die chemikalieë wat vir die ontwerp van hierdie bereiding benodig word uit die lys hierbo.

Gebruik STRUKTUURFORMULES vir alle organiese verbindings en skryf die gebalanseerde vergelyking vir ELKE stap in die bereiding neer. Dui die chemikalieë benodig in elke stap aan.

(6) **[15]**

VRAAG 5 (Begin op 'n nuwe bladsy.)

5.1 Bestudeer die Maxwell-Boltzmann-verspreidingskurwe vir 'n sekere reaksie hieronder.

P en **Q** is die byskrifte van die asse. Watter grootheid word verteenwoordig deur:

5.1.2
$$\mathbf{Q}$$
 (1)

- 5.2 Lyn **R** verteenwoordig die <u>minimum energie benodig vir die reaksie om plaas</u> te vind.
 - 5.2.1 Skryf die term vir die onderstreepte frase neer. (1)
 - 5.2.2 Hoe sal die gearseerde area op die grafiek beïnvloed word wanneer 'n katalisator bygevoeg word? Kies uit VERGROOT, VERKLEIN of BLY DIESELFDE. (1)
- 5.3 Gebruik die botsingsteorie om te verduidelik hoe 'n katalisator die reaksietempo beïnvloed. (4)

Blaai om asseblief

5.4 Die reaksie tussen VERPOEIERDE kalsiumkarbonaat, CaCO₃(s), en OORMAAT soutsuur, HCl(aq), word gebruik om reaksietempo by 25 °C te ondersoek. Die gebalanseerde vergelyking vir die reaksie is:

$$CaCO_3(s) + 2HC\ell(aq) \rightarrow CaC\ell_2(aq) + H_2O(\ell) + CO_2(g)$$

Verskeie eksperimente word uitgevoer deur dieselfde massa ONSUIWER kalsiumkarbonaat te gebruik en verskillende aanvanklike konsentrasies van verdunde soutsuur. Die grafiek hieronder verteenwoordig die resultate wat verkry is. Aanvaar dat die onsuiwerhede nie reageer nie.

Vir hierdie ondersoek, skryf neer 'n:

Die $CaCO_3(s)$ in 6 g van die onsuiwer monster reageer volledig met 0,03 mol·dm⁻³ HCl(aq) in 26 minute.

5.4.3 Gebruik die inligting in die grafiek om die persentasie suiwerheid van die kalsiumkarbonaat te bereken. Aanvaar dat die molêre gasvolume by 25 °C 24 000 cm³ is. (6)

VRAAG 6 (Begin op 'n nuwe bladsy.)

Stoom, H₂O(g), reageer met warm koolstof, C(s), by 1 000 °C volgens die volgende gebalanseerde vergelyking:

$$2H_2O(g) + C(s) \rightleftharpoons 2H_2(g) + CO_2(g)$$

Aanvanklik is 36 g stoom en 'n sekere hoeveelheid koolstof in 'n 2 dm³ verseëlde houer geplaas en toegelaat om te reageer. By ewewig is gevind dat die hoeveelheid koolstof met 0,225 mol verander het.

- 6.1 Definieer die term *dinamiese ewewig*. (2)
- 6.2 Bereken die ewewigskonstante, K_c, vir die reaksie by 1 000 °C. (8)
- 6.3 Die grafiek toon aan hoe die tempo's van die voorwaartse en die terugwaartse reaksies oor tyd verander.

- 6.3.1 Gee 'n rede waarom die tempo van die voorwaartse reaksie tussen $\mathbf{t_0}$ en $\mathbf{t_1}$ afneem. (1)
- 6.3.2 Watter verandering is by t_3 aan die ewewigsmengsel gemaak? (1)

By tyd \mathbf{t}_2 word die temperatuur van die sisteem verhoog.

- 6.3.3 Is die voorwaartse reaksie EKSOTERMIES of ENDOTERMIES? (1)
- 6.3.4 Verwys na Le Chatelier se beginsel om die antwoord op VRAAG 6.3.3 te verduidelik. (2) [15]

VRAAG 7 (Begin op 'n nuwe bladsy.)

Twee bekers, **A** en **B**, bevat sterk basisse.

Beker A: 500 cm³ bariumhidroksied, Ba(OH)₂(ag) met 'n onbekende konsentrasie X

Beker B: 400 cm³ kaliumhidroksied, KOH(aq) met 'n konsentrasie van 0,1 mol·dm⁻³

- 7.1 Definieer 'n *basis* volgens die Arrhenius-teorie. (2)
- 7.2 Bereken die aantal mol hidroksiedione (OH^-) in beker **B**. (2)
- 7.3 Die inhoud van bekers **A** en **B** word in beker **C** bymekaargevoeg. Die oplossing in beker **C** het 'n pH van 13.

Aanvaar dat die volumes saamtel en dat die temperatuur van die oplossings 25 °C is.

7.3.1 Bereken die konsentrasie, \mathbf{X} , van die Ba(OH)₂ in beker \mathbf{A} . (8)

Die oplossing in beker **C** word met etanoësuur getitreer. Daar word gevind dat 15 cm³ van die oplossing 30 cm³ van die suur neutraliseer.

Die gebalanseerde vergelyking vir die reaksie is:

$$CH_3COOH(aq) + OH^-(aq) \rightarrow CH_3COO^-(aq) + H_2O(l)$$

7.3.2 Is etanoësuur, CH₃COOH(aq), 'n SWAK suur of 'n STERK suur?

Gee 'n rede vir die antwoord. (2)

7.3.3 Bereken die konsentrasie van die etanoësuur. (4) [18]

VRAAG 8 (Begin op 'n nuwe bladsy.)

'n Galvaniese sel by standaardtoestande word deur die selnotasie hieronder verteenwoordig. **X** en **Y** is onbekende elektrodes.

$$X \mid Zn^{2+}(aq) \mid | Fe^{3+}(aq), Fe^{2+}(aq) \mid Y$$

- 8.1 Skryf die NAAM of FORMULE neer van:
 - 8.1.1 Elektrode **X** (1)
 - 8.1.2 Elektrode **Y** (1)
 - 8.1.3 Die oksideermiddel (1)
- 8.2 Skryf neer:
 - 8.2.1 EEN funksie van elektrode **Y** (1)
 - 8.2.2 Die halfreaksie wat by elektrode **Y** plaasvind (2)
 - 8.2.3 Die netto (algehele) vergelyking vir die selreaksie wat in hierdie sel plaasvind (3)
- 8.3 Bereken die aanvanklike emk van hierdie sel. (4)
- 8.4 Hoe sal die aanvanklike emk van die sel beïnvloed word wanneer die konsentrasie van die yster(III)-ione na 0,6 mol·dm⁻³ verander word? Kies uit VERHOOG, VERLAAG of BLY DIESELFDE. (1)

 [14]

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die vereenvoudigde diagram hieronder verteenwoordig 'n elektrochemiese sel wat vir die suiwering van koper gebruik word. Die onsuiwer koper bevat klein hoeveelhede silwer (Ag) en sink (Zn) as die enigste onsuiwerhede.

- 9.1 Definieer die term *elektrolise*. (2)
- 9.2 Skryf die NAAM of FORMULE neer van TWEE positiewe ione wat in die elektroliet teenwoordig is. (2)
- 9.3 Skryf die halfreaksie neer wat by die katode plaasvind. (2)
- 9.4 Verwys na die Tabel van Standaard-reduksiepotensiale en verduidelik waarom die gesuiwerde koper GEEN sink sal bevat NIE. (3)
- 9.5 Bereken die maksimum massa Cu wat gevorm word indien 0,6 mol elektrone oorgedra word.

(3) **[12]**

VRAAG 10 (Begin op 'n nuwe bladsy.)

10.1 Die vloeidiagram hieronder toon die prosesse wat by die vervaardiging van kunsmis **C** betrokke is.

Skryf die NAAM of FORMULE neer van:

10.1.2 Die katalisator wat in die Haberproses gebruik word (1)

Skryf neer die:

- 10.1.4 Naam van die proses wat gebruik word om gas **A** te vervaardig (1)
- 10.1.5 Gebalanseerde vergelyking vir die vorming van kunsmis **C** (3)
- 10.2 'n 40 kg-sak kunsmis bevat 65% bindstowwe (vulstowwe). Die massa voedingstowwe in die sak word in die tabel hieronder getoon.

VOEDINGSTOWWE	MASSA (kg)		
Stikstof	x		
Fosfor	2 x		
Kalium	5		

Bereken die NPK-verhouding van die kunsmis.

(3) **[10]**

TOTAAL: 150

a

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	T^{θ}	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{\mathbf{c_a v_a}}{\mathbf{c_b v_b}} = \frac{\mathbf{n_a}}{\mathbf{n_b}}$	pH = -log[H3O+]

$$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$$

$$\mathsf{E}_{\mathsf{cell}}^{\theta} = \mathsf{E}_{\mathsf{cathode}}^{\theta} - \mathsf{E}_{\mathsf{anode}}^{\theta} \ / \mathsf{E}_{\mathsf{sel}}^{\theta} = \mathsf{E}_{\mathsf{katode}}^{\theta} \ - \mathsf{E}_{\mathsf{anode}}^{\theta}$$

or/of

$$E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{reduksie}}^{\theta} - E_{\text{oksidasie}}^{\theta}$$

or/of

$$\mathsf{E}^{\theta}_{\text{cell}} = \mathsf{E}^{\theta}_{\text{oxidisingagent}} - \mathsf{E}^{\theta}_{\text{reducingagent}} / \mathsf{E}^{\theta}_{\text{sel}} = \mathsf{E}^{\theta}_{\text{oksideermiddel}} - \mathsf{E}^{\theta}_{\text{reduseermiddel}}$$

THE PERIODIC TABLE OF ELEMENTS	DIE PERIODIEKE TABEL VAN ELEMENTE
TABLE 3: THE PERI	TABEL 3: DIE PERIOD

Continuation Cont							
1	8	10 Ne 20 20 18	64	85 ⊼ 8	54 Xe 131	86 Rn	71 Lu
1	(<u>S</u>)						70 Yb
1	<u>S</u>	8 O 6 6 0	32	34 Se 79	52 Te 128	84 Po	69 Tm
1	3 15	~ Z	31	33 As 75	51 Sb 122	83 Bi 209	68 Fr
(ii) (iii) (4 §	o O 7 7 7 7	58	32 Ge 73	50 Sn 119	82 Pb 207	67 Ho
1	£ (jj)	ი B 1 2 B ა	27	31 Ga	49 In 115	81 T¢ 204	99 DV
1	2			30 Zn 65	48 Cd 112		65 Tb
1	7		1	29 Cu 63,5	47 Ag 108	79 Au 197	64 Gd
(i) (ii) (iii) KEY/SLEU 1	0	bool bool	nassa	28 Z 59	46 Pd 106	78 Pt 195	63 Eu
(i) (ii) (iii) KEY/SLEU 1	9 Imber e <i>tal</i>	Syn Sim	atoomn	27 Co 59	45 Rh 103	77 	62 Sm
(i) (ii) (iii) KEY/SLEU 1	8 omic nu	63,5 63,5 Felative	latiewe			76 Os 190	61 Pm
(i) (ii) (iii) KEY/SLEU 1	-	ity iteit i	lerde re	25 Mn 55	84 T		09 P
(i) (ii) (iii) (ii	6 UTEL	negativ regatiw Appro	Benad	2 C 8	42 M o 96	74 W 184	59 Pr
(i) (ii) (iii) (ii	5 EY/SLE	Electro <i>Elektro</i> I	3	23 < 23		73 Ta 181	58 Ce
(i) (ii) 3 1			1	52 ∺ 84	_	•	<u> </u>
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ო		;	21 Sc 45	39 8 ≻ 88		89 Ac
= - T - S - T - S - T - T - S - T - T - S - T - T	(E) 52			02 Ca	38 88		
	- = - I -		23	6 ₹ 8	37 Rb 86	55 CS 133	87 Fr
		0°L 6°	0	8,0	8,0	۲'0	۲'0

71 Lu 175	103 L
70 Yb 173	102 No
69 Tm 169	101 Md
68 Er 167	100 Fm
67 Ho 165	8 Ш
66 Dy 163	86 C t
65 Tb 159	97 BK
64 Gd 157	oc Cm
63 Eu 152	95 Am
62 Sm 150	94 P u
61 Pm	93 N
09 N 441	92 U 238
59 Pr 141	91 Pa
58 140	90 Th 232

Blaai om asseblief

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

BEL 4A: STANDAARD-REDUKSIEPOTENSIA				
Half-reactions	Ε ^θ (V)			
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87	
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81	
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77	
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51	
$Cl_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36	
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33	
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23	
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23	
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20	
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07	
$NO_3^- + 4H^+ + 3e^-$	=	$NO(g) + 2H_2O$	+ 0,96	
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85	
Ag⁺ + e⁻	\Rightarrow	Ag	+ 0,80	
$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80	
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77	
O ₂ (g) + 2H ⁺ + 2e ⁻	\Rightarrow	H_2O_2	+ 0,68	
l ₂ + 2e ⁻	=	2I ⁻	+ 0,54	
Cu ⁺ + e⁻	=	Cu	+ 0,52	
$SO_2 + 4H^+ + 4e^-$	\Rightarrow	S + 2H ₂ O	+ 0,45	
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40	
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34	
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17	
Cu ²⁺ + e ⁻	=	Cu [†]	+ 0,16	
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15	
S + 2H ⁺ + 2e ⁻	=	H ₂ S(g)	+ 0,14	
2H ⁺ + 2e ⁻	=	H₂(g)	0,00	
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06	
Pb ²⁺ + 2e ⁻	\Rightarrow	Pb	- 0,13	
Sn ²⁺ + 2e⁻	=	Sn	- 0,14	
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27	
$\text{Co}^{2^+} + 2\text{e}^-$	=	Co	- 0,28	
Cd ²⁺ + 2e ⁻ Cr ³⁺ + e ⁻	=	Cd Cr ²⁺	- 0,40	
Cr ^{s-} + e ⁻ Fe ²⁺ + 2e ⁻	=	Cr ²⁺	- 0,41	
Fe + 2e Cr ³⁺ + 3e ⁻	=	Fe Cr	- 0,44 0.74	
Zn ²⁺ + 2e ⁻	#	Zn	- 0,74 - 0,76	
2H ₂ O + 2e ⁻	#	H ₂ (g) + 2OH ⁻	- 0,76 - 0,83	
Cr ²⁺ + 2e ⁻	≠	Cr	- 0,83 - 0,91	
Mn ²⁺ + 2e ⁻	=	Mn	- 0,31 - 1,18	
$A\ell^{3+} + 3e^{-}$	=	Αℓ	- 1,66	
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36	
g = 5 Na ⁺ + e ⁻	=	Na	- 2,71	
Ca ²⁺ + 2e ⁻	=	Са	- 2,87	
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89	
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90	
Cs ⁺ + e ⁻	=	Cs	- 2,92	
K ⁺ + e [−]	=	K	- 2,93	
Li ⁺ + e ⁻	=	Li	- 3,05	

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

EASTERN CARE

Kopiereg voorbehou

Blaai om asseblief

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

BEL 4B: STANDAARD-REDUKSIEPUTENSIA				
Half-reactions/ <i>Halfreaksies</i>			Ε ^θ (V)	
Li ⁺ + e ⁻	=	Li	- 3,05	
K ⁺ + e ⁻	=	K	- 2,93	
Cs ⁺ + e ⁻	=	Cs	- 2,92	
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90	
Sr ²⁺ + 2e ⁻	\Rightarrow	Sr	- 2,89	
Ca ²⁺ + 2e ⁻	=	Са	- 2,87	
Na ⁺ + e ⁻	=	Na	- 2,71	
$Mg^{2+} + 2e^{-}$	=	Mg	- 2,36	
$Al^{3+} + 3e^{-}$	=	Al	- 1,66	
Mn ²⁺ + 2e ⁻ Cr ²⁺ + 2e ⁻	=	Mn	- 1,18	
	=	Cr	- 0,91	
2H ₂ O + 2e ⁻ Zn ²⁺ + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83	
Zn ⁻ + 2e Cr ³⁺ + 3e ⁻	=	Zn Cr	- 0,76	
Fe ²⁺ + 2e ⁻	=	Cr Fe	- 0,74 - 0,44	
Fe + 2e Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,44 - 0,41	
Cd ²⁺ + 2e ⁻	=	Cd	- 0,41 - 0,40	
Co ²⁺ + 2e ⁻	=	Co	- 0, 4 0 - 0,28	
Ni ²⁺ + 2e ⁻	=	Ni	- 0,2 7	
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14	
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13	
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06	
2H ⁺ + 2e ⁻	=	H ₂ (g)	0,00	
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14	
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15	
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16	
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17	
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34	
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40	
$SO_2 + 4H^+ + 4e^-$	=	S + 2H ₂ O	+ 0,45	
Cu ⁺ + e⁻	=	Cu	+ 0,52	
l ₂ + 2e ⁻	=	21-	+ 0,54	
$O_2(g) + 2H^+ + 2e^-$	\Rightarrow	H ₂ O ₂	+ 0,68	
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77	
$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80	
Ag ⁺ + e ⁻	=	Ag	+ 0,80	
$Hg^{2^{+}} + 2e^{-}$ NO $_{3}^{-} + 4H^{+} + 3e^{-}$	=	$Hg(\ell)$	+ 0,85	
NO ₃ + 4H + 3e Br ₂ (ℓ) + 2e ⁻	≠	NO(g) + 2H ₂ O 2Br ⁻	+ 0,96 + 1,07	
Pt ²⁺ + 2 e	#	Pt	+ 1,07	
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,20	
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23	
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33	
Cℓ₂(g) + 2e ⁻	=	2Cℓ ⁻	+ 1,36	
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51	
$H_2O_2 + 2H^+ + 2 e^-$		2H ₂ O	+1,77	
П ₂ О ₂ + 2П +2 е Со ³⁺ + е ⁻	#	2Π ₂ Ο Co ²⁺	+ 1,81	
F ₂ (g) + 2e ⁻	-	2F-	+ 2,87	
12(9) 126	-	<u></u>	. 2,01	

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë