Exercise set #2

September 29, 2021

Exercise 1:

Given the following qubits:

$$\begin{split} |\Psi_{1}\rangle &= \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) \\ |\Psi_{2}\rangle &= \frac{1}{5}(4|00\rangle + 2|01\rangle + 2|10\rangle + |11\rangle) \\ |\Psi_{3}\rangle &= \frac{1}{2}(i|00\rangle - i|01\rangle - |10\rangle - i|11\rangle) \\ |\Psi_{4}\rangle &= \frac{1}{2}(|0\rangle + i|1\rangle + i|2\rangle - |3\rangle) \\ |\Psi_{5}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + i|10\rangle) - \frac{i}{\sqrt{2}}|11\rangle \end{split}$$

- a) Are the qubits entangled?
- b) Determine the tensor product $X \otimes H$.
- c) Determine the tensor product $Z \otimes X$.
- d) Determine the tensor product $X \otimes Y$.
- e) What is the result of applying $X \otimes H$ to $|\Psi_1\rangle$?

a)
$$|\Psi_{1}\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle$$

$$\frac{1}{12}|0\rangle \otimes \frac{1}{62}(|0\rangle + |1\rangle) + \frac{1}{12}|1\rangle \otimes \frac{1}{42}(|10\rangle + |1\rangle)$$

$$= \frac{1}{12}(|10\rangle + |1\rangle) \otimes \frac{1}{12}(|10\rangle + |1\rangle)$$

$$= \frac{1}{12}(|10\rangle + |10\rangle + |10\rangle$$

Exercise 2:

Given the following circuit:

- a) Determine U so that at point A the top register will be in the maximum superposition state $|\Psi_A^{top}\rangle = \frac{1}{2}(|0\rangle + |1\rangle + |2\rangle + |3\rangle)$.
- b) What is the state of the three cubit system at point A?
- c) What is the state of the three cubit system at point B?
- d) What is the probability we obtain m = +1 (outcome $|0\rangle$) when we measure the bottom qubit in the computational basis?
- e) What is the final state $|\Psi_{out}\rangle$ of the top register when we obtained m=+1 (outcome $|0\rangle$) when we measured the bottom qubit in the computational basis?
- f) Is the final state obtained at e) entangled?

b)
$$|\psi_{A}\rangle = \frac{1}{2} \left(|0\rangle\rangle\langle0\rangle + |0\rangle\rangle\langle0\rangle + |1\rangle\langle0\rangle\rangle \right)$$

= $\frac{1}{2} \left(|0\rangle\rangle\langle0\rangle + |0\rangle\langle0\rangle + |1\rangle\langle0\rangle \right)$

HBHB 1000> = 14A>

C)
$$|\Psi_{A}\rangle = \frac{1}{2} \left(|000\rangle + |010\rangle + |101\rangle + |111\rangle \right)$$

apr 1'st cut

Lenot $\frac{1}{2} \left(|000\rangle + |011\rangle + |101\rangle + |110\rangle \right)$

apr 2'nd

Exercise 3:

- a) What is the value of $|\Psi_{out}\rangle$? $|\chi_1 \chi_0\rangle \rightarrow no$ charge $(\chi \chi = I)$
- b) Suppose $|x_1x_0\rangle = |00\rangle$ and $|y\rangle = |0\rangle$, what is the final three qubit state?
- c) Repeat for all the other input states and write the final value of the bottom qubit into the following table:

		x_1	x_0	y	$(y + f(x_1, x_0)) mod 2$
enly	٠,	0	0	0	1
charge	->	0	1	0	0
here		1	0	0	0
		1	1	0	1
		0	0	1	0
		0	1	1	1
		1	0	1	0
		1_	_1	Ç,	1

d) This function corresponds to that of a search problem with a specific solution x^* . What is x^* ?

=

$$\begin{split} |\Psi_{A}\rangle &= |H\otimes H\otimes H| |1001\rangle = \frac{1}{\sqrt{8}} \left(|10\rangle - |11\rangle + |12\rangle - |3\rangle + |4\rangle - |5\rangle + |6\rangle + |7\rangle \right) \\ |\Psi_{B}\rangle &= \left(|X\otimes X\otimes I| \right) |706F0| II |(|X\otimes X\otimes I|) |\Psi_{A}\rangle = \frac{1}{\sqrt{8}} \left(|-|0\rangle + |11\rangle + |12\rangle - |3\rangle + |14\rangle - |5\rangle + |6\rangle - |7\rangle \right) \\ |\Psi_{C}\rangle &= \left(|H\otimes H\otimes I| \right) |1\Psi_{B}\rangle = \frac{1}{\sqrt{8}} \left(|0\rangle - |11\rangle - |2\rangle + |3\rangle - |4\rangle + |5\rangle - |6\rangle + |7\rangle \right) \\ |\Psi_{D}\rangle &= \frac{1}{\sqrt{8}} \left(-|0\rangle + |11\rangle - |2\rangle + |13\rangle - |4\rangle + |5\rangle - |6\rangle + |7\rangle \right) \end{split}$$

We will implement Grover's algorithm as shown in the following figure:

e) Determine the state of the system at points A,B,C,D and E, knowing that the gate between C and D has the following unitary:

- f) Which of the five states from e) have entanglement in the top two qubits?
- g) Did the algorithm succeed in finding $x^* = 00$?