Rediscover your keyword search: Expand, Enrich and Rewrite

Praveen Mohan Prasad

Analytics Specialist TAM AWS

Hajer Bouafif

Analytics Solutions Architect AWS

Information Retrieval

Sparse Lexical Search

	cat	dog	is	it	my	not	old	wolf
It is dog	0	0.25	0.22	0.25	0	0		0
my cat is old	0.3	0	0.22	0	0.3	0	0.3	0
It is not dog, it is wolf	0	0.11	0.19	0.22	0	0.13	0	0.13

Algorithm: TF-IDF, BM25

Statistic: Frequency

Dense Vector Search

Algorithm: kNN, ANN

Measure: Cosine, Euclidean distance

Strengths

Lexical Search

- + Exact Matching
- + Interpretability
- + Less memory and Fast retrieval

Vector Search

- + Context matching
- + Natural language understanding: RAG
- + Multimodal search

Benchmarking on Generalisation

Beir: A heterogenous benchmark for zero-shot evaluation of information retrieval models. *arXiv preprint arXiv:2104.08663*.

- Vector Search poorly generalizes on Out Of Domain (OOD) Data"
- Lexical search > Vector Search @ OOD

Fine-tuning Vector Search is complex!

- 1. Training dataset
- 2. Data Science Expertise
- 3. retrain model and re-indexing

Can we do semantic search with lexical search?

Lexical search: limited semantic capabilities

Document: Exercising regularly makes body and mind stronger and healthy

Query: How to strengthen the physical and mental wellness?

Challenges

Vocabulary Mismatch

Poor semantic understanding

Existing Solutions

- ✓ Synonyms
- ✓ Analyzers and Boosting techniques
- ✓ Learning features from User signals
- ✓ Re-ranking

Lexical Search + Text expansion = Semantic Search

Text expansion: Rewrite + Inject + Boost/Decay

Boost and decay the features

Document 1: "Apple Products are expensive"

Document 2: "An apple a day keeps doctor away"

```
{'apple': 3.09,
  expensive': 2.58,
 apples': 2.31,
 'cost': 2.06,
 'products': 1.78,
 'cheap': 1.61,
 'product': 1.57,
 'price': 1.28,
 'expense': 1.04,
 'best': 0.66,
 'brand': 0.46,
 'stock': 0.44,
 'chip': 0.44,
 'store': 0.25,
 'computer': 0.24,
 'offer': 0.22,
 money': 0.21,
 'budget': 0.21,
 good': 0.2,
 'buy': 0.19,
 'affordable': 0.19,
 'popular': 0.16,
 'gift': 0.14,
  manufacturer': 0.12.
  purchase': 0.09,
 'iphone': 0.09,
 happiness': 0.06,
 'steve': 0.03,
 'amazon': 0.03,
 'hardware': 0.01}
```

Query: "apple headphones"

```
{'apple": 3.298149
"gift": 0.22470483,
"##phone": 1.6386933,
"electronics": 0.18978065,
"##phones": 2.0765076
"music": 0.725811,
"dj": 0.36222592,
"sound": 0.77559084}
```

score(D1, Q) = 7.4521604 > score(D2, Q) = 5.5605326

Scoring:

```
score(D,Q) = \sum w_j.w_i
```

```
{'apple': 2.45,
 doctor': 2.26,
 'day': 2.08,
'away': 2.05,
 'apples': 1.87,
 'doctors': 1.86,
daily': 1.83,
 'keep': 1.59,
 'medical': 1.19,
 prevent': 0.97,
 'every': 0.95,
 'a': 0.94,
 'fruit': 0.91,
 'dr': 0.7,
 'keeping': 0.62,
 'help': 0.56,
 'stay': 0.46,
'an': 0.42,
 'remove': 0.41,
 'remedy': 0.37,
'drink': 0.35,
 'one': 0.31,
 'candy': 0.31,
'pill': 0.31,
 'keeps': 0.26,
 'diet': 0.24,
 eat': 0.23,
```

OpenSearch

Neural Sparse Search 2.11

Open-source Sparse encoding models

DOCUMENT AND SEARCH QUERY SPARSE ENCODING

Sparse encoding model

- opensearch-project/opensearch-neural-sparse-encoding-v1
- naver/splade-v3

DOCUMENT ONLY SPARSE ENCODING

Sparse encoding model

- opensearch-project/opensearch-neural-sparse-encoding-doc-v1
- naver/splade-v3-doc

Tokenizer

amazon/neural-sparse/opensearch-neural-sparse-tokenizer-v1

Sparse search - High level Search architecture

DOCUMENT AND SEARCH QUERY SPARSE ENCODING

Sparse search - High level Search architecture

DOCUMENT ONLY SPARSE ENCODING

Neural Sparse Search with OpenSearch

Build Neural Sparse Search with OpenSearch

Create sparse ingest pipeline

Build the sparse index

Run neural sparse search

```
PUT /retail-sparse-index
  "settings": {
    "default pipeline": "sparse-embedding-pipeline"
  "mappings": {
    "properties": {
      "id": {
        "type": "text"
      "caption": {
        "type": "text"
        "type": "rank features"
      "description": {
        "type": "text"
        "type": "rank features"
```

Demo

Path to Neural Sparse search in OpenSearch

Neural Sparse Search Benchmarks

	ВМ	125	Dense TAS-B r			Neural sparse search bi- encoder		Neural sparse search document-only		
Dataset	NDCG	Rank	NDCG	Rank	NDCG	Rank	NDCG	Rank	NDCG	Rank
Trec-Covid	0.688	4	0.481	5	0.698	3	0.771	1	0.707	2
NFCorpus	0.327	4	0.319	5	0.335	3	0.36	1	0.352	2
NQ	0.326	5	0.463	3	0.418	4	0.553	1	0.521	2
HotpotQA	0.602	4	0.579	5	0.636	3	0.697	1	0.677	2
FiQA	0.254	5	0.3	4	0.322	3	0.376	1	0.344	2
ArguAna	0.472	2	0.427	4	0.378	5	0.508	1	0.461	3
Touche	0.347	1	0.162	5	0.313	2	0.278	4	0.294	3
DBPedia	0.287	5	0.383	4	0.387	3	0.447	1	0.412	2
SciDocs	0.165	2	0.149	5	0.174	1	0.164	3	0.154	4
FEVER	0.649	5	0.697	4	0.77	2	0.821	1	0.743	3
Climate FEVER	0.186	5	0.228	3	0.251	2	0.263	1	0.202	4
SciFact	0.69	3	0.643	5	0.672	4	0.723	1	0.716	2
Quora	0.789	4	0.835	3	0.864	1	0.856	2	0.788	5
Amazon ESCI	0.081	3	0.071	5	0.086	2	0.077	4	0.095	1
Average	0.419	3.71	0.41	4.29	0.45	2.71	0.492	1.64	0.462	2.64

NDCG(Neural Sparse) > NDCG(lexical, vector)
By atleast 5 Points

No Fine-tuning of models

Latency and Memory

Latency	BM25	Dense (with TAS- B model)	Neural sparse search bi-encoder	Neural sparse search document-only
P50 latency (ms)	8 ms	56.6 ms	176.3 ms	10.2ms
P90 latency (ms)	12.4 ms	71.12 ms	267.3 ms	15.2ms
P99 Latency (ms)	18.9 ms	86.8 ms	383.5 ms	22ms
Max throughput (op/s)	2215.8 op/s	318.5 op/s	107.4 op/s	1797.9 op/s
Mean throughput (op/s)	2214.6 op/s	298.2 op/s	106.3 op/s	1790.2 op/s

Memory	BM25	Dense (with TAS-B model)	Neural sparse search bi-encoder	Neural sparse search document-only
Index size	1 GB	65.4 GB	4.7 GB	6.8 GB
RAM usage	480.74 GB	675.36 GB	480.64 GB	494.25 GB
Runtime RAM delta	+0.01 GB	+53.34 GB	+0.06 GB	+0.03 GB

Configuration:

3 data nodes – 256 GB memory, 32 vCPU 1 ML node – 384 GB memory, 48 vCPU 20 query clients MS MARCO Dataset – 8.8M docs

- Sparse(Bi-encoder) > Dense
- Lexical Search ~ Sparse(Doc encoder)

- Dense > Sparse (Bi, doc encoder) by 7.9 %
- Lexical ~ Sparse(Bi, Doc encoder)

Enrich and Re-write

Enrich your documents

Images

Amazon Rekognition or Object detection models

```
"description": "Rugged Brown Leather Boots",

"price": "50

"color":"brown",

"category":"Apparel and Accessories",

"objects":"Footwear,Boot,Shoe,Clothing"
}
```

Text

```
{
  "message": "Bonjour"
}

{
  "Text": "Bob ordered two sandwiches and three ice cream cones today from a store in Seattle."
}
```


Amazon Comprehend or NER models

```
{
  "language": "FR",
  "message": "Bonjour"
}

{
  {"Text": "Bob", "Type": "PERSON" },
  {"Text": "two sandwiches", "Type": "QUANTITY" },
  {"Text": "three ice cream cones", "Type": "QUANTITY" },
  {"Text": "today", "Type": "DATE" },
  {"Text": "Seattle", "Type": "LOCATION" }
}
```

Filters in the Query

Query: "Brown leather shoes for men under 50\$"


```
GET /_search
 "query": {
   "bool": {
      "must": [
        { "match":
          { "description": "shoes"}}
      "should": [
       { "term": { "color":"brown" }},
       { "term": { "gender": "male" }},
       { "term": { "material":"leather"}}
        { "range": { "price":{ "lt": 50 }}}
```

DSL Query re-writing by applying filters

TAME LLM TO EXTRACT FILTERS

Query: Brown shoes for men under \$50

Structured Query

Your goal is to structure the user's query to match the request schema provided below

- <<query>>
- <<Schema>>
- <<examples>>

OpenSearch Query DSL

```
"query": {
 "bool": {
   "must": [
      { "match": { "description": "shoes" } }
   "filter": [
      { "term": { "category": "footwear" }},
       "range": { "price":{ "lt": 50 }},
       "term": { "gender":"male" }},
       "term": { "color": "brown"}}
```


Demo

(Semantic) lexical search lifecycle

Online: Search

Key takeaways

- 1. Provide semantic search capabilities with Neural Sparse Search
 - Bi-Encoder and Document only encoder models
- 2. Use AI/ML connectors of OpenSearch to reduce the heavy lifting
- 3. Enrich your image and text documents
- 4. Use LLM to rewrite your DSL queries
 - Use existing frameworks and improve upon (LangChain, Haystack)
 - Measure, Evaluate and Iterate

Thank you!

Hajer Bouafif bouhajer@amazon.fr

Praveen Mohan prasadnu@amazon.com