LSML #4

Градиентный бустинг

Одно дерево решений

Строим следующее дерево на остатки

Градиентный бустинг: 100 деревьев

А как же Bagging и Random Forest?

- Bagging учим каждое дерево на bootstrap выборке
- **RF** bootstrap + семплирование признаков при каждом разбиении
- Легко параллелятся по деревьям
- Локальные для машины данные могут заменять bootstrap

Критерий расщепления для регрессии

$$\sum_{j \in N} (y_j - c)^2 - \sum_{j \in N_1} (y_j - c_1)^2 - \sum_{j \in N_2} (y_j - c_2)^2 \to \max$$

$$c_1 = \frac{Y_1}{N_1}$$

среднее

$$\sum_{j \in N_1} (y_j - c_1)^2 = \sum_{j \in N_1} y_j^2 - 2c_1 \sum_{j \in N_1} y_j + \sum_{j \in N_1} c_1^2$$

$$= \sum_{j \in N_1} y_j^2 - 2c_1^2 N_1 + c_1^2 N_1$$

$$= \sum_{j \in N_1} y_j^2 - \left(\frac{Y_1}{N_1}\right)^2 N_1$$

$$= \sum_{j \in N_1} y_j^2 - \frac{Y_1^2}{N_1}$$

$$-\frac{Y_1^2}{N_1} - \frac{Y_2^2}{N_2} \to min$$

Gradient Boosting

- Бустинг итерационный надо параллелить создание дерева
- Для каждой вершины перебираются все признаки и пороги
 - Вещественные признаки дискретизируем по корзинкам (binning)
 - Порогами будут являться границы корзинок

Feature Binning

• На примере задачи **регрессии**, разбили признак на k корзинок

• Первый шаг: собираем статистики

$$N_i = \sum 1$$
 $Y_i = \sum y$ $N = \sum N_i$ $Y = \sum Y_i$

• Второй шаг: считаем пользу сплита по правой границе корзинки $B_{m{i}}$

$$-\frac{Y_{0:i}^2}{N_{0:i}} - \frac{(Y - Y_{0:i})^2}{N - N_{0:i}}$$

0: i — нотация суммирования

Feature Binning

Первый шаг: считаем статистики

Второй шаг: выбираем сплит

Feature Binning

- Один проход по данным для каждого уровня дерева
- Проход по данным можно распределять по объектам или признакам

Распределяем объекты

- Мастер
 - Посылает воркерам текущую модель
 - Агрегирует локальные гистограммы (Features-Bins) воркеров и выбирает лучший сплит
- Воркеры
 - Делают проход по своим данным и заполняют локальные гистограммы

Распределяем признаки

- Мастер
 - Получает лучшие сплиты по признакам от воркеров и выбирает лучший среди них
 - Просит лучших разослать всем остальным информацию про новый выбранный сплит
- Воркеры
 - Всех признаков нет, помнят в какой лист попадает каждый объект
 - Делают проход по своим признакам и выбирают лучший сплит

Пример реализации: PLANET (2011)

- MapReduce, RPC
- Разбиение по объектам
- Binning во время инициализации
 - За один проход оценивают квантили

Пример реализации: PLANET (2011)

- Бинарная классификация
- Признаки:
 - 4 вещественных
 - 6 категориальных, $|C| \in [2-500]$
- 314 млн объектов
- •Деревья глубины 3

Пример реализации: Yahoo! GBDT (2009)

- Hadoop, MPI
- Разбиение по объектам или признакам
- Результаты:
 - MapReduce Horizontal: 211 minutes x 2500 trees = 366 days (100 machines)
 - MapReduce Vertical: 28 seconds x 2500 trees = 19.4 hours (20 machines)
 - MPI: 5 seconds x 2500 trees = 3.4 hours (10 machines)

Пример реализации: LightGBM от Microsoft

Пример реализации: Catboost от Яндекс

- Разбиение по документам
- Ускорение обучения (CPU, GPU)
- Новые регуляризации и функции ошибок
- Хорошие модели без подбора параметров

Пример реализации: Catboost от Яндекс

	Catboost	Azure Boosted DT	XGBoost	LightGBM
Pol	0,994	0,922 ♦0,14%	0,991 \$ 0,23%	0,991 \$ 0,23%
2dplanes	0,9476	0,9474 \$0,02%	0,9474 \$ 0,02%	0,9474 \$ 0,01%
Elevator	0,915	0,909 \ 0,67%	0,9 \ 1,54%	0,908 \ \ 0,74%
Ailerons	0,86	0,856 \$0,45%	0,837 \$\ 2,67%	0,856 \$0,55%
Fried	0,957	0,955 ♦0,22%	0,954 ↓ 0,32%	0,955 \$0,17%
House	0,677	0,68 † 0,51%	0,658 \ 2,72%	0,661 \ \ 2,23%

Сравнение на открытых наборах данных с сайта www.openml.org Метрика – R2-коэффициент детерминации

Oblivious trees B Catboost

Oblivious trees B Catboost

Дерево решений

Oblivious дерево

Catboost на GPU

- https://www.kaggle.com/c/criteo-display-ad-challenge
- first 36M samples, 26 categorical, 13 numerical features

	128 bins	
CPU 32 cores	1060 (1.0)	
K40	373 (2.84)	
GTX 1080	285 (3.7)	
P40	123 (8.6)	
GTX 1080Ti	301 (3.5)	
P100-PCI	82 (12.9)	
V100-PCI	69.8 (15)	

Ссылки

- Как устроен xgboost http://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf
- xgboost: https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
- Catboost и обучение на GPU: https://github.com/catboost/benchmarks/tree/master/gpu_training
- LightGBM и обучение на GPU
 https://github.com/Microsoft/LightGBM/blob/master/docs/GPU-Performance.md