PSY792F SEM

Week 14 — Multilevel SEM Mediation/Moderation

Mark A. Prince, PhD, MS

MSEM Mediation/Moderation

- Approaches to MSEM mediation and moderation vary by hypothesis.
 - I will review some, but not all approaches
- Read:
 - Preacher, Zyphur, Zhang, 2010 Multilevel Mediation
 - Preacher, Zhang, Zyphur, 2016 Multilevel Moderation
 - · There are other good references as well, but these are good to start with
- I'm serious this time... Read these articles.

MULTILEVEL MEDIATION

Multilevel Mediation

- Mediation: when the effect of Y on X is transmitted by M.
- Traditional mediation methods are inappropriate because the nesting of the data violates independence assumption and downwardly biases the standard errors.
- Terminology:
- Variables on the within level are notated with a 1
- Variables on the between level are notated with a 2
- Examples:
 - 1-1-1 all variables on the within level
 - · Daily levels of MPS use, Perceived Helpfulness, and Marijuana use
 - · 2-1-1 the IV is on the between level and the mediator and DV are on the within level
 - · Treatment condition, Daily MPS use, Marijuana use
 - 2-2-2 all variables on the between level
 - This is regular SEM or path analysis

Random slopes

- In MLM random slopes can only be dependent variables
- MSEM random slopes can be
 - Independent variables
 - Mediators
 - Dependent variables
- This is an example of the flexibility of MSEM
- *note, random slopes models do not have model fit

1-1-1 Mediation Random slopes

1-1-1 Mediation Example

```
TITLE:
              1-1-1 mediation
DATA:
              FILE IS ex9.10.dat:
VARIABLE:
NAMES ARE x1 m y x2 m2 w clus;
usevariables are clus x1 m y;
CLUSTER = clus; !grouping variable
ANALYSIS:
TYPE = TWOLEVEL RANDOM:
MODEL:
%WITHIN%
     m on x1; !create random slope sa from m on x1
sb | y on m; !create random slope sb from y on m
sc | v on x1; !create random slope sc from v on x1
%BETWEEN%
sa sb sc x1 m y; !estimate level-2 residual variances
sa with sc x1 m y; !estimate level-2 covariances of sa with x1 m y
sa with sb (cab); !estimate level-2 covariances of sa with sb call it cab
sb with sc x1 m y; !estimate level-2 covariances of sb with sc x1 m y m on x1 (ab); !ab = contextual effect, not the between slope y on m (bb); !bb = contextual effect, not the between slope
v on x1:
[sa] (aw); !estimate mean of sa call it aw
[sb] (bw): !estimate mean of sb call it bw
MODEL CONSTRAINT:
NEW (a b indb indw);
a = aw+ab; !compute a path
b = bw+bb; !compute b path
indw = aw*bw+cab; !compute within indirect effect
indb = a*b; !compute between indirect effect
```

OUTPUT: TECH1 tech3 sampstat CINTERVAL;

Note this can also be run with Estimator = bayes

To give this meaning
X – skill level assessed daily
M – effort assessed daily
Y – performance assessed daily

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Within Level				
Variances X1	1.756	0.135	12.990	0.000
Residual Variances M Y	1.642	0.097	16.844 12.679	0.000
Between Level				
M ON	0.393	0.119	3.303	0.001
Y ON M X1	0.521 0.116	0.033 0.086	15.677 1.359	0.000 0.174
SA WITH	0.004	0.032	0.123	0.902
X1 M Y SB	0.002 -0.006 -0.005 0.000	0.027 0.035 0.040 0.026	0.073 -0.157 -0.127 -0.002	0.942 0.875 0.899 0.998
SB WITH SC X1	-0.002 -0.036	0.017 0.028	-0.098 -1.301	0.922 0.193
M Y	0.006 -0.003	0.028 0.022	0.228 -0.156	0.820 0.876
Means X1 SA SB SC	-0.115 0.523 0.387 0.331	0.097 0.050 0.054 0.059	-1.186 10.544 7.180 5.609	0.236 0.000 0.000 0.000
Intercepts M Y	0.037 0.064	0.075 0.062	0.491 1.028	0.623 0.304
Variances	0.477	0.117	4 070	
X1 SA SB SC	0.477 0.008 0.009 0.007	0.117 0.037 0.022 0.019	4.072 0.213 0.415 0.381	0.000 0.831 0.678 0.703
Residual Variances M Y	0.025 0.010	0.050 0.053	0.499 0.192	0.618 0.847
New/Additional Para A B INDB INDW	meters 0.916 0.908 0.832 0.202	0.115 0.059 0.089 0.030	7.967 15.424 9.320 6.736	0.000 0.000 0.000 0.000

1-1-1 MCCIs

- http://quantpsy.org/medmc/medmc111.htm
- you will need
- a, b, var(a), var(b), cov(a,b), level-2 cov(a,b), var(level-2 cov(a,b))
- From the model results
 - a, b, level-2 cov(a,b)
- From tech3
 - Var(a), var(b), cov(a,b), var(level-2 cov(a,b))
- From tech1
 - Need to find the parameter numbers

1-1-1 MCCI example

• From 111 mediation ex.out

```
Mean(a) = .523 (from model estimated mean for sa)

Mean(b) = .387 (from model estimated mean for sb)

Tau(a,b) = .000 (from sa with sb in the between portion)

Var(a) = .0013 (from tech3 parameter 13 in the between psi matrix)

Var(b) = .0005 (from tech3 parameter 15 in the between psi matrix)

Cov(a,b) = -.00004 (from tech3 parameter 13 with 15)

Var(Tau(a,b)) = .0007 (from tech3 parameter 14 - between psi matrix sa with sb)
```

MCCI [.14, .26]

estimate of indw = .202

*note that it is in the interval is a basic check that you didn't make an error

2-1-2 Mediation Bayesian Estimation

2-1-2 Mediation example

```
TITLE:
          2-1-2 mediation
DATA:
          FILE IS ex9.10.dat;
VARIABLE: NAMES ARE x1 m y x2 m2 w clus;
           !BETWEEN = W;
usevariables are clus m yb xb;
          CLUSTER = clus;
          BETWEEN ARE xb yb;
define:
  xb = cluster mean(x1); 4
  yb = cluster mean(y);
ANALYSIS: TYPE = TWOLEVEL RANDOM;
          estimator=bayes; !this will provide bayesian credible intervals
MODEL:
          *WITHIN*
          m;
           *BETWEEN*
          xb yb;
          m on xb(a);
          yb on m(b);
          yb on xb;
MODEL CONSTRAINT:
          NEW (indb);
          indb = a*b;
OUTPUT:
          sampstat CINTERVAL;
```

I had to force x1 and y to be Between only because I simulated The data for the 1-1-1 example

For the write up:

X – skill at baseline

 $M-effort\ measured\ daily$

Y – performance at follow-up

Model fit – PPP and DIC

- Bayesian posterior predictive *p* values (PPP)
 - The model test statistic, the chi-square value, is calculated on the basis of the data is compared to the same test statistic, but then defined for the simulated data.
 - Then, the ppp value is defined as the proportion of chi-square values obtained in the simulated data that exceed that of the actual data.
 - The ppp values around .50 indicate a well-fitting model.
- Deviance Information Criterion (DIC)
 - Is a comparative fit index like AIC or BIC
 - Values closer to 0 indicate better fit

```
MODEL FIT INFORMATION

Number of Free Parameters 10

Bayesian Posterior Predictive Checking using Chi-Square

95% Confidence Interval for the Difference Between the Observed and the Replicated Chi-Square Values

-11.819 9.920

Posterior Predictive P-Value 0.528

Information Criteria

Deviance (DIC) 1905.678
Estimated Number of Parameters (pD) 67.588
```

Frequentist Confidence Intervals VS. Bayesian Credible Intervals

Frequentist confidence interval

- The parameter is fixed, but unknown data is random
- The CI will include the true value of the parameter 95% of the time over repeated experiments

Bayesian Credible Interval

- Parameters are random, and described by a distribution data is fixed
- A Bayesian CI will include the true value of the parameter with 95% probability

		Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significand	ce
Within Lev	el							
Variances M		2.019	0.127	0.000	1.796	2.280	*	
Between Le	vel							
м хв	ON	0.725	0.094	0.000	0.536	0.909	*	
YB M XB	ON	1.557 -0.315	0.353 0.290	0.000 0.033	1.228 -1.175	2.628 0.024	*	
Means XB		-0.079	0.099	0.189	-0.280	0.098		
Intercept YB M	s	0.061 -0.003	0.101 0.070	0.291 0.486	-0.137 -0.130	0.270 0.147		
Variances XB		0.904	0.144	0.000	0.685	1.198	*	
Residual YB M	Variances	0.045 0.131	0.044 0.051	0.000	0.006 0.041	0.168 0.240	*	
New/Additi INDB	onal Para	meters 1.150	0.292	0.000	0.808	2.020	*	
CREDIBILIT	Y INTERVA	ALS OF MODE	L RESULTS					
	I	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
Within Lev	el							
Variances M		1.726	1.796	1.828	2.019	2.239	2.280	2.363
Between Le	vel							
м хв	ON	0.511	0.536	0.563	0.725	0.878	0.909	0.962
YB M XB	ON	1.165 -1.597	1.228 -1.175	1.257 -0.996	1.557 -0.315	2.288 -0.025	2.628 0.024	2.938 0.108
Means XB		-0.341	-0.280	-0.249	-0.079	0.072	0.098	0.177
Intercept YB M	s	-0.177 -0.187	-0.137 -0.130	-0.111 -0.112	0.061 -0.003	0.239 0.117	0.270 0.147	0.293 0.171
Variances XB		0.613	0.685	0.708	0.904	1.149	1.198	1.450
Residual YB M	Variances	0.004 0.028	0.006 0.041	0.007 0.051	0.045 0.131	0.152 0.220	0.168 0.240	0.198 0.268
New/Additi INDB	onal Para	meters 0.689	0.808	0.853	1.150	1.795	2.020	2.413

MULTILEVEL MODERATION

Multilevel Moderation

- Moderation: when the effect of Y on X varies as a function of W
- Traditional methods conflate lower- and higher-order effects by not separating them into their orthogonal components, which causes model misspecification
- We need to examine level-specific moderation effects
 - Decomposing effects is necessary
 - Level-1 variables have both within and between components
 - Between –variation between units
 - e.g., between classrooms
 - Within variations around cluster means (within cluster variation)
 - · e.g., between students in a classroom
 - · Level-2 variables have no within cluster variation
 - e.g., what treatment condition a participant is in
 - *Level 1 only is possible, but rare and requires independence of observations
 - e.g., pregaming days nested within individuals' repeated assessments

Multilevel Moderation Notation

- 1 X (1→1)
 - First 1 is the level at which the moderator is measured
 - Second 1 is the level at which the focal predictor is measured
 - Last 1 is the level at which the outcome is measured
- In this example all three are at level 1
 - We can think of it as the 1's in parentheses is the primary relationship and the 1 outside is the variable moderating that relationship
 - We can rewrite the notation as:
 - $W * (X \rightarrow Y)$
- If for example we had treatment condition moderating the relationship between daily mood and daily substance use
 - $Tx * (mood \rightarrow substance use)$
 - The notation would be: $2 \times (1 \rightarrow 1)$

2 types of moderation

- Random Coefficient Prediction (RCP) Method
 - A slope is predicted by a moderator
 - Very useful for modeling cross-level interactions
 - Cannot treat interaction terms as random slopes
- Latent Moderated Structural Equation (LMS) Method
 - Computing a product involving at least one random Between part of an Level-1 variable as a latent predictor
 - Requires latent interactions among random coefficients by directly representing latent interactions as part of the structural model
 - · Can be used for cross- and same-level interactions
 - Can treat interactions as random slopes
 - · Produces biased results for non-normal data
 - However, due to central limit theorem, cluster means may be normal even if level-1 variables are not
- *NOTE: RCP and LMS can be applied in the same model

Predicting a slope (RCP method)

- The simplest form of multilevel moderation is
- S on w;
- Because the slope will have been previously specified in the within statement.
 - $S \mid y \text{ on } x;$
- If W predicts S then the relationship between y and x varies as a function of W.

Computing a product (LMS method)

- Computing a product involving at least one random Between part of an Level-1 variable as a latent predictor
- Excerpt from Preacher et al 2016 code for Moderation 2X(1-1) LMS

```
ANALYSIS: TYPE IS TWOLEVEL RANDOM; ESTIMATOR IS MLR;
ALGORITHM IS INTEGRATION; INTEGRATION IS 4;
MODEL:
%WITHIN%
xw BY x@1; xw*.7; x@.01;
yw BY y@1; yw*.7; y@.01;
s | vw ON xw;
xz | xw XWITH zb; yw ON xz*.2;
                                                               Note: zb is part of the latent
%BETWEEN%
                                                               Interaction term on the within
xb BY x@1; xb*.7; x@.01;
zb BY z@1; zb*.7; z@.01;
                                                               Level but is defined on the between
yb BY y@1; yb*.7; y@.01;
yb ON xb*.2 zb*.2; xb WITH zb*.1 s*0; zb WITH s*0;
                                                               level
[x@0 z@0 y@0 xb*0 zb*0 yb*.1 s*.1]; s*.2;
```


Moderation 2 X (1-1) RCP method

```
USEVARIABLES ARE
      pgday
      CONSd
      ptsd1
  CLUSTER IS IDNUM;
  within is pgday;
  between is ptsd1 ;
ANALYSIS:
   TYPE IS TWOLEVEL RANDOM;
MODEL:
   *WITHIN*
       consd on pgday;
   *BETWEEN*
   consd;
   s;
   consd with s;
   consd s on ptsd1
```

Note that here is the moderation.

By definition, if the relationship between x and y varies as a function of a third variable you have moderation. So a slope being predicted by a third variable fits that definition.

2 X (1-1) RCP OUTPUT

MODEL RESULTS

		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Within Lev	7el				
Residual CONSD	Variances	0.832	0.070	11.930	0.000
Between Le	evel				
s PTSD1	ON	-0.522	0.230	-2.271	0.023
CONSD PTSD1	ON	-0.106	0.020	-5.411	0.000
CONSD S	WITH	0.139	0.037	3.780	0.000
Intercept CONSD S	s	0.226 2.436	0.017 0.145	13.558 16.783	0.000
Residual CONSD S	Variances	0.041 4.400	0.012 0.772	3.478 5.699	0.001 0.000

Moderation 1X(1-1) LMS method

```
USEVARIABLES ARE
      pqday
      CONSI
      bfi c
      cbfi c
      cconsd
  CLUSTER IS IDNUM;
  within is pgday bfi c consd;
  between is cbfi c cconsd;
  define:
  cbfi c = cluster mean(bfi c);
  cconsd = cluster mean(consd);
ANALYSIS:
   TYPE IS TWOLEVEL RANDOM;
   algorithm=integration;
MODEL:
   *WITHIN*
   PD by pgday@1; pd@.7; pgday@.1;
   BC by bfi_c@1; bc@.7; bfi c@.1;
   ARC by consd@1; arc@.7; consd@.1;
pdXbc | PD xwith BC ;←
  ARC on PD BC pdXbc;
   *BETWEEN*
   cconsd cbfi c:
  cconsd on cbfi c:
  [cconsd cbfi c];
  OUTPUT: TECH1 TECH3;
```

These are single indicator Latent variables.

*You could use the observed variables and make simple interaction terms.

Xwith is used to create Latent variable interactions

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Within Level				
PD BY PGDAY	1.000	0.000	999.000	999.000
BC BY BFI_C	1.000	0.000	999.000	999.000
ARC BY CONSD	1.000	0.000	999.000	999.000
ARC ON PD BC	1.270 -0.154	0.081 0.025	15.665 -6.071	0.000
PDXBC	-3.140	0.220	-14.254	0.000
BC WITH	-0.515	0.018	-29.039	0.000
Intercepts PGDAY CONSD BFI_C	0.059 0.100 3.476	0.003 0.017 0.027	19.734 5.868 128.403	0.000 0.000 0.000
Variances PD BC	0.700 0.700	0.000	999.000 999.000	999.000 999.000
Residual Variances PGDAY CONSD BFI_C ARC	0.100 0.100 0.100 0.100 0.700	0.000 0.000 0.000 0.000	999.000 999.000 999.000	999.000 999.000 999.000
Between Level				
CCONSD ON CBFI_C	-0.060	0.020	-2.955	0.003
Means CBFI_C	3.474	0.027	128.242	0.000
Intercepts CCONSD	0.529	0.077	6.838	0.000
Variances CBFI_C	0.440	0.024	18.607	0.000
Residual Variances CCONSD	0.162	0.035	4.694	0.000

How to write up the results...

• Analysis plan

- Link hypotheses to chosen method
- Describe any data decisions or model building
- Describe the type of mediation or moderation used (e.g., 1-1-1, 1X(1-1) RCP, LMS)
- Describe any additional steps you took, MCCIs, Bayesian CIs

Results

- For mediation
 - Report like a typical mediation write up, with special emphasis given to the language used depending on the level of each variable
- For moderation
 - Emphasize the higher order effects, i.e., interaction terms are more important than main effects