Compilation

Analyse syntaxique : Analyse descendante

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

Mise en oeuvre d'un analyseur syntaxique

L'analyseur syntaxique

- Reçoit une suite d'unités lexicales de l'analyseur lexical
- Doit dire si cette phrase (suite de mots) est syntaxiquement correcte
 - Essaie de construire l'arbre de dérivation associé
 - ☐ Si l'arbre est construit : phrase syntaxiquement correcte
 - ☐ Sinon: phrase syntaxiquement incorrecte

Mise en oeuvre d'un analyseur syntaxique (suite)

- Deux approches pour construire l'arbre de dérivation
 - Approche descendante (top-down)
 - Partir de la grammaire pour retrouver la phrase en question
 - □ De la racine aux feuilles
 - Approche ascendante (bottom-up)
 - Partir de la phrase et remonter pour arriver aux règles de la grammaire
 - □ D es feuilles à la racine

Mise en oeuvre d'un analyseur syntaxique (suite)

- $S \rightarrow aABe$
- $A \rightarrow Abc \mid b$
- $B \rightarrow d$

Le mot à valider : abbcde

- Approche descendante (top-down)
 - □ De la racine aux feuilles

Mise en oeuvre d'un analyseur syntaxique (suite)

 $S \rightarrow aABe$

 $A \rightarrow Abc \mid b$

 $B \rightarrow d$

Le mot à valider : abbcde

- Approche ascendante (bottom-up)
 - □ Des feuilles à la racine

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

Objectif

 En commençant du symbole de départ (axiome), retrouver la suite de règles nécessaires pour la construction de l'arbre de dérivation

Principe de fonctionnement

- Partir de l'axiome
 - · À chaque pas :
 - □ Remplacer un non-terminal A par une expression α si A $\rightarrow \alpha$ est une règle de la grammaire
 - Arrêter lorsqu'il ne reste plus de non-terminaux

 Les non-terminaux permettent de décider quelle dérivation appliquer

- Exemple: $A \rightarrow aA \mid bA \mid \epsilon$
 - On a trois règles,
 - Pour choisir laquelle appliquer,on regarde le terminal courant dans la phrase à valider
 - Dans le cas de la phrase "aab" l'ordre d'application des règles est:
 - $A \rightarrow aA \rightarrow aaA \rightarrow aabA \rightarrow aab\epsilon = aab$

- Exercice:
 - Soit la grammaire suivante:
 - $S \rightarrow aAb$
 - A \rightarrow cd | c
 - Phrase à valider :
 - w = "acb"
 - La lecture de la première lettre (a) nous indique d'appliquer la règle S→ aAb

Exercice:

- Soit la grammaire suivante:
 - $S \rightarrow aAb$
 - A \rightarrow cd | c
- Phrase à valider :
 - w = "acb"
- La lecture de la deuxième lettre (c) nous indique que deux règles peuvent être appliquées :
 - A \rightarrow cd et A \rightarrow c

Conclusion

- La lecture d'une lettre n'est pas toujours suffisante pour décider quelle règle à appliquer
- Pour savoir à tous les coups quelle règle à appliquer, une table indiquant le choix de la règle à un moment donné sera nécessaire
 - Cette table s'appelle: Table d'analyse

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

Table d'analyse

- Table d'analyse LL
 - Caractéristiques
 - La table indique quelle transition (dérivation) effectuer lorsqu'on lit une lettre
 - □ Lecture des lettres de la gauche (Left : le premier L de LL) vers la droite
 - □ Dérivation des non-terminaux les plus à gauche (Left : le deuxième L de LL)

Table d'analyse

- Table d'analyse LL
 - Pour construire la table, on a besoin de calculer deux types d'ensembles de terminaux :
 - PREMIER
 - SUIVANT

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

- Calcul des ensembles PREMIER "First()"
 - Pour toute chaîne œomposée de symboles terminaux et de non-terminaux on calcule PREMIER(α)
 - PREMIER(α) = terminaux pouvant commencer une chaîne dérivée de α
 - □ a ∈ PREMIER(α) si et seulement si : α*→aβ où β peut être composé de terminaux et/ou de non-terminaux
 - \Box $\varepsilon \in PREMIER(\alpha)$ $si \alpha \stackrel{*}{\rightarrow} \varepsilon$

- Exemple de calcul des ensembles PREMIER avec la grammaire:
 - $S \rightarrow Ba$
 - B \rightarrow cP|bP|P| ϵ
 - $P \rightarrow dS$

PREMIER(S)

- On a S \rightarrow Ba \rightarrow ϵ a = a, donc a ϵ PREMIER(S)
- On a $S \rightarrow Ba \rightarrow cPa$, donc $c \in PREMIER(S)$
- On a $S \rightarrow Ba \rightarrow bPa$, donc $b \in PREMIER(S)$
- On a $S \rightarrow Ba \rightarrow Pa \rightarrow dSa$, donc d \in PREMIER(S)
- Conclusion:
 - PREMIER(S)={a,b,c,d}

- PREMIER(aB)
 - aB*→aα, d'où PREMIER(aB)={a}
- PREMIER(BS)
 - B→ εdonc BS→ S, d'où PREMIER(S) est un sous-ensemble de PERMIER(BS)

- Algorithme de calcul des PREMIER(X) avec X composé de terminaux et de non-terminaux
 - 1. Si X est un non-terminal et $X \rightarrow Y_1Y_2...Y_n$ avec Y_i symbole terminal ou non-terminal alors :
 - 1. Ajouter à l'ensemble PREMIER(X) tous les éléments de PREMIER(Y_1) sauf ε
 - 2. Si xPREMIER(Y_i) pour i x[1..j] alors PREMIER(Y_{i+1}) x PREMIER(X) sauf x
 - 3. Si &PREMIER(Y_i) pour i \(\{\)(1..n\)] alors \(\)PREMIER(X)
 - 2. Si X est un non-terminal et X→sune production, alors
 - 1 EPREMIER(X)
 - 3. Si X est un terminal, alors $PREMIER(X) = \{X\}$
 - 4. Recommencer jusqu'à ce qu'on ne trouve rien à ajouter aux ensembles PREMIERS

- Exemple d'application de l'algorithme
 - E→ TE'
 - E'→+TE' |-TE' |ε
 - T→FT'
 - T' \rightarrow *FT' | /FT' | ϵ
 - $F \rightarrow (E) \mid nb$
 - PREMIER(E)
 - PREMIER(T)
 - PREMIER(E')
 - PREMIER(F)
 - PREMIER(T')

Exemple d'application de l'algorithme

- E→ TE'
- E'→+TE' |-TE' |ε
- T→FT'
- T' \rightarrow *FT' | /FT' | ϵ
- $F \rightarrow (E) \mid nb$
- PREMIER(E)
- PREMIER(T)
- PREMIER(E') <={+,-, §
- PREMIER(F) <={(,nb}
- PREMIER(T') <={*,/, §

- Algorithme de calcul des PREMIER(X) avec X composé de terminaux et de non-terminaux
 - Si X est un non terminal et X → Y₁Y₂...Y_n avec Y; symbole terminal ou non terminal alors:
 - Ajouter à l'ensemble PREMIER(X) tous les éléments de PREMIER(Y) sauf &
 - Siε ε PREMIER(Y₁) pour i ε [1..j] alors PREMIER(Y₁+₁) ⊂ PREMIER(X) saufε
 - Si ε ε PREMIER(Y,) pour i ε [1..n] alors ε ε PREMIER(X)
 - Si X est un non-terminal et X→ε une production, alors ε ε PREMIER(X)
 - Si X est un terminal, alors PREMIER(X) ={X}
 - Recommencer jusqu'à ce qu'on ne trouve rien à ajouter dans les ensembles PREMIERS

Exemple d'application de l'algorithme

- E→ TE'
- E'→+TE' |-TE' |ε
- T→FT'
- T' \rightarrow *FT' | /FT' | ϵ
- $F \rightarrow (E) \mid nb$
- PREMIER(E) <= PREMIER(T) §
- PREMIER(T) <= PREMIER(F) §
- PREMIER(E') <={+,-, §
- PREMIER(F) <={(,nb}
- PREMIER(T') <={*,/, §

- Algorithme de calcul des PREMIER(X) avec X composé de terminaux et de non-terminaux
 - Si X est un non terminal et X → Y₁Y₂...Y_n avec Y; symbole terminal ou non terminal alors:
 - Ajouter à l'ensemble PREMIER(X) tous les éléments de PREMIER(Y₁) sauf ε
 - Siε ε PREMIER(Y₁) pour i ε [1..j] alors PREMIER(Y₁+₁) ⊂ PREMIER(X) sauf ε
 - Si ε ε PREMIER(Y,) pour i ε [1..n] alors ε ε PREMIER(X)
 - Si X est un non-terminal et X→ε une production, alors ε ε PREMIER(X)
 - Si X est un terminal, alors PREMIER(X) ={X}
 - Recommencer jusqu'à ce qu'on ne trouve rien à ajouter dans les ensembles PREMIERS

Exemple d'application de l'algorithme

- E→ TE'
- E'→+TE' |-TE' |ε
- T→FT'
- T' \rightarrow *FT' | /FT' | ϵ
- $F \rightarrow (E) \mid nb$
- PREMIER(E) <= PREMIER(T) §
- PREMIER(T) <= PREMIER(F) \{ \} = \{ (,nb\}
- PREMIER(E') <={+,-, §
- PREMIER(F) <={(,nb}
- PREMIER(T ') <={*,/, §

Algorithme de calcul des PREMIER(X) avec X composé de terminaux et de non-terminaux

- Si X est un non terminal et X → Y₁Y₂...Y_n avec Y₁ symbole terminal ou non terminal alors:
- Ajouter à l'ensemble PREMIER(X) tous les éléments de PREMIER(Y₁) sauf ε
- Si ε ε PREMIER(Y,) pour i ε [1..j] alors PREMIER(Y,+) ⊂ PREMIER(X) sauf ε
- Si s e PREMIER(Y,) pour i e [1..n] alors s e PREMIER(X)
- Si X est un non-terminal et X→ε une production, alors ε ε PREMIER(X)
- Si X est un terminal, alors PREMIER(X) ={X}
- Recommencer jusqu'à ce qu'on ne trouve rien à ajouter dans les ensembles PREMIERS

Exemple d'application de l'algorithme

- E→ TE'
- E'→+TE' |-TE' |ε
- T→FT'
- T' \rightarrow *FT' | /FT' | ϵ
- $F \rightarrow (E) \mid nb$
- PREMIER(E) <= PREMIER(T) \{ \{ \} = \{ \(\), nb \}
- PREMIER(T) <= PREMIER(F)
 {}= {(,nb}}
- PREMIER(E') <={+,-, §
- PREMIER(F) <={(,nb}
- PREMIER(T ') <={*,/, §</p>

Algorithme de calcul des PREMIER(X) avec X composé de terminaux et de non-terminaux

- Si X est un non terminal et X → Y₁Y₂...Y_n avec Y; symbole terminal ou non terminal alors:
 - Ajouter à l'ensemble PREMIER(X) tous les éléments de PREMIER(Y₁) sauf &
 - Siε ε PREMIER(Y,) pour i ε [1...j] alors PREMIER(Y,+;) ⊂ PREMIER(X) saufε
 - Si & & PREMIER(Y,) pour i & [1..n] alors & & PREMIER(X)
- Si X est un non-terminal et X→ε une production, alors ε ε PREMIER(X)
- Si X est un terminal, alors PREMIER(X) ={X}
- Recommencer jusqu'à ce qu'on ne trouve rien à ajouter dans les ensembles PREMIERS

- Exemple d'application de l'algorithme
 - $S \rightarrow ABCDE$
 - $A \rightarrow a \mid \epsilon$
 - $B \rightarrow b \mid \epsilon$
 - $C \rightarrow c$
 - $D \rightarrow d \mid \epsilon$
 - $E \rightarrow e \mid \epsilon$
 - PREMIER(S)
 - PREMIER(A)
 - PREMIER(B)
 - PREMIER(C)
 - PREMIER(D)
 - PREMIER(E)

Exemple d'application de l'algorithme

- $S \rightarrow ABCDE$
- $A \rightarrow a \mid \epsilon$
- $B \rightarrow b \mid \epsilon$
- $C \rightarrow c$
- D \rightarrow d | ϵ
- $E \rightarrow e \mid \epsilon$
- PREMIER(S) <={a, b, c}
- PREMIER(A) <={a, }
- PREMIER(B) <={b, }
- PREMIER(C) <={c}
- PREMIER(D) <={d, }
- PREMIER(E) <={e, §

- Calcul des ensembles SUIVANT "Follow()"
 - Pour tout symbole non-terminal A, on calcul SUIVANT (A)
 - SUIVANT(A) est l'ensemble des terminaux pouvant apparaître immédiatement à droite de A dans une dérivation S^{*}→ αAβ
 - □ Dans la dérivation ci-dessus "a" est un élément de l'ensemble des suivants de A

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

- Exemple de calcul des ensembles SUIVANT avec la grammaire:
 - $S \rightarrow Ba \mid Sc$
 - B \rightarrow cP|bPb |P| ϵ
 - $P \rightarrow dS$
 - SUIVANT(S)
 - S→ Sc, d'où c &UIVANT(S)

 - S → Ba→bPba→bdSba, d'où b &SUIVANT(S)

- 1. Ajouter un marqueur de fin de chaîne (\$) à SUIVANT(\$) où \$ est l'axiome de départ
- 2. Pour chaque production $A \rightarrow d\beta$ où B est un non-terminal, alors
 - 1. Ajouter le contenu de PREMIER(β dans SUIVANT(B) sauf ε
- 3. Pour chaque production $A \rightarrow B$, alors ajouter SUIVANT(A) à SUIVANT(B)
- Pour chaque production A→ Bβavec BPREMIER(β, ajouter SUIVANT(A) à SUIVANT(B)
- Recommencer à partir de l'étape 3 jusqu'à ce que les ensembles SUIVANT restent inchangés

Exemple

$$\begin{cases} S \to aSb|cd|SAe \\ A \to aAdB|\varepsilon \\ B \to bb \end{cases}$$

- Ajouter un marqueur de fin de chaîne (\$ par exemple) à SUIVANT(S) où S est l'axiome de départ
- 2. Pour chaque production A \rightarrow α B β où B est un non-terminal, alors
 - 1. Ajouter le contenu de PREMIER(β) dans SUIVANT(Β) sauf ε
- 3. Pour chaque production $A \rightarrow \alpha B$, alors ajouter SUIVANT(A) à SUIVANT(B)
- 4. Pour chaque production A → αBβ avec ε ε PREMIER(β) , ajouter SUIVANT(A) à SUIVANT(B)
- 5. Recommencer à partir de l'étape 3 jusqu'à ce que les ensembles SUIVANT restent inchangés

	PREMIER	SUIVANT
S	a c	\$
Α	aε	
В	b	

Exemple

$$\begin{cases} S \to aSb cd | SAe \\ A \to aAdB | \varepsilon \\ B \to bb \end{cases}$$

- Ajouter un marqueur de fin de chaîne (\$ par exemple) à SUIVANT(S) où S est l'axiome de départ
- 2. Pour chaque production A \rightarrow α B β où B est un non-terminal, alors
 - 1. Ajouter le contenu de PREMIER(β) dans SUIVANT(Β) sauf ε
- 3. Pour chaque production $A \rightarrow \alpha B$, alors ajouter SUIVANT(A) à SUIVANT(B)
- 4. Pour chaque production A → αBβ avec ε ε PREMIER(β) , ajouter SUIVANT(A) à SUIVANT(B)
- 5. Recommencer à partir de l'étape 3 jusqu'à ce que les ensembles SUIVANT restent inchangés

	PREMIER	SUIVANT
S	a c	\$ b
Α	aε	
В	b	

Exemple

$$\begin{cases} S \to aSb|ca|SAe \\ A \to aAdB|\varepsilon \\ B \to bb \end{cases}$$

Algorithme de calcul des suivants

- Ajouter un marqueur de fin de chaîne (\$ par exemple) à SUIVANT(S) où S est l'axiome de départ
- 2. Pour chaque production A → αBβ où B est un non-terminal, alors
 - 1. Ajouter le contenu de PREMIER(β) dans SUIVANT(B) sauf ϵ
- 3. Pour chaque production A → αB, alors ajouter SUIVANT(A) à SUIVANT(B)
- Pour chaque production A→ αBβ avec ε ε PREMIER(β), ajouter SUIVANT(A) à SUIVANT(B)
- 5. Recommencer à partir de l'étape 3 jusqu'à ce que les ensembles SUIVANT restent inchangés

PREMIER(A) est inclus dans SUIVANT(S) sauf ε

	PREMIER	SUIVANT
S	a c	\$ b a
Α	аε	
В	b	

Exemple

$$\begin{cases}
S \to aSb|ca|SAe \\
A \to aAdB|\varepsilon \\
B \to bb
\end{cases}$$

Algorithme de calcul des suivants

- Ajouter un marqueur de fin de chaîne (\$ par exemple) à SUIVANT(S) où S est l'axiome de départ
- 2. Pour chaque production $A \rightarrow \alpha B\beta$ où B est un non-terminal, alors
 - 1. Ajouter le contenu de PREMIER(β) dans SUIVANT(B) sauf ϵ
- 3. Pour chaque production A → αB, alors ajouter SUIVANT(A) à SUIVANT(B)
- 4. Pour chaque production A \rightarrow αBβ avec ε ε PREMIER(β) , ajouter SUIVANT(A) à SUIVANT(B)
- 5. Recommencer à partir de l'étape 3 jusqu'à ce que les ensembles SUIVANT restent inchangés

æppartient à PREMIER(A) => e est inclus dans PREMIER(Ae)
 => e est inclus dans SUIVANT(S)
 La règle appliquée est #2 et dans ce cas B est S, βest Ae et Œ ε

	PREMIER	SUIVANT
S	a c	\$ b a e
Α	aε	
В	b	

Exemple

$$\begin{cases} S \to aSb|cd|SAe \\ A \to aAdB|\varepsilon \\ B \to bb \end{cases}$$

- I. Ajouter un marqueur de fin de chaîne (\$ par exemple) à SUIVANT(S) où S est l'axiome de départ
- 2. Pour chaque production $A \rightarrow \alpha B\beta$ où B est un non-terminal, alors
 - 1. Ajouter le contenu de PREMIER(β) dans SUIVANT(B) sauf ϵ
- 3. Pour chaque production $A \rightarrow \alpha B$, alors ajouter SUIVANT(A) à SUIVANT(B)
- 4. Pour chaque production A → αBβ avec ε ε PREMIER(β) , ajouter SUIVANT(A) à SUIVANT(B)
- 5. Recommencer à partir de l'étape 3 jusqu'à ce que les ensembles SUIVANT restent inchangés

	PREMIER	SUIVANT
S	a c	\$bae
Α	aε	e d
В	b	

Follow()

Exemple

$$\begin{cases} S \to aSb|cd|SA\epsilon \\ A \to aAdB|\epsilon \\ B \to bb \end{cases}$$

Algorithme de calcul des suivants

- Ajouter un marqueur de fin de chaîne (\$ par exemple) à SUIVANT(\$) où \$ est l'axiome de départ
- 2. Pour chaque production $A \rightarrow \alpha B \beta$ où B est un non-terminal, alors
 - 1. Ajouter le contenu de PREMIER(β) dans SUIVANT(B) sauf ϵ
- 3. Pour chaque production $A \rightarrow \alpha B$, alors ajouter SUIVANT(A) à SUIVANT(B)
- 4. Pour chaque production A \rightarrow αBβ avec ε ε PREMIER(β) , ajouter SUIVANT(A) à SUIVANT(B)
- Recommencer à partir de l'étape 3 jusqu'à ce que les ensembles SUIVANT restent inchangés

SUIVANT(A) est inclus dans SUIVANT(B)

	PREMIER	SUIVANT
S	a c	\$ b a e
Α	aε	e d
В	b	e d

Follow()

Exemple d'application de l'algorithme

- S→ ABCDE
- $A \rightarrow a \mid \epsilon$
- $B \rightarrow b \mid \epsilon$
- $C \rightarrow c$
- $D \rightarrow d \mid \epsilon$
- $E \rightarrow e \mid \epsilon$
- PREMIER(S) <={a, b, c}
- PREMIER(A) <={a, }
- PREMIER(B) <={b, }
- PREMIER(C) <={c}
- PREMIER(D) <={d, §}
- PREMIER(E) <={e, §

- SUIVANT(S)
- SUIVANT(A)
- SUIVANT(B)
- SUIVANT(C)
- SUIVANT(D)
- SUIVANT(E)

Follow()

Exemple d'application de l'algorithme

- S→ ABCDE
- $A \rightarrow a \mid \epsilon$
- $B \rightarrow b \mid \epsilon$
- $C \rightarrow c$
- D \rightarrow d | ϵ
- $E \rightarrow e \mid \epsilon$
- PREMIER(S) <={a, b, c}
- PREMIER(A) <={a, §}
- PREMIER(B) <={b, §
- PREMIER(C) <={c}
- PREMIER(D) <={d, §
- PREMIER(E) <={e, §

- SUIVANT(S) <={\$}
- SUIVANT(A) <={b, c}
- SUIVANT(B) <={c}
- SUIVANT(C) <={d, e, \$}
- SUIVANT(D) <={e, \$}
- SUIVANT(E) <={\$}

Exercice

- Exemple d'application de l'algorithme
 - $S \rightarrow Bb|Cd$
 - B \rightarrow aB | ϵ
 - $C \rightarrow cC \mid \epsilon$

	PREMIER	SUIVANT
S		
В		
С		

Exercice

- Exemple d'application de l'algorithme
 - $S \rightarrow Bb|Cd$
 - $B \rightarrow aB \mid \epsilon$
 - $C \rightarrow cC \mid \epsilon$

	PREMIER	SUIVANT
S	{a, b, c, d}	{\$}
В	{a, ε}	{b}
С	{c, ε}	{d}

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

- Construction de la table d'analyse LL
 - Une table d'analyse est une matrice M
 - Dans la première colonne, on représente les non-terminaux
 - Dans la première ligne on place les terminaux et le symbole \$ (sauf le mot vide)
 - Chaque case M[X,x] comporte la règle de production à appliquer
 - ☐ On utilise un algorithme pour remplir la matrice

- Construction de la table d'analyse LL (suite)
 - Procédure de construction
 - Pour chaque production A → ofaire
 - Pour tout a ePREMIER(α) (si a est différent de ε), rajouter la production A → αdans la case M[A,a]
 - Si æPREMIER()x, alors pour chaque b eSUIVANT(A) ajouter A
 → odans M[A,b]
 - Chaque case M[A,a] vide constitue une erreur syntaxique

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE'| - TE'|\varepsilon \\ T \to FT' \\ T' \to *FT'|/FT'|\varepsilon \\ F \to (E)| \text{ nb} \end{cases}$$

	nb	+	-	*	/	()	\$
E								
E'								
Т								
T'								
F								

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \text{ nb} \end{cases}$$

```
\begin{array}{llll} \text{PREMIER}(E) &= \text{PREMIER}(T) &= \{(, \text{nb}\} \\ \text{PREMIER}(E') &= \{+, -, \varepsilon\} \\ \text{PREMIER}(T) &= \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \end{array} \begin{array}{lll} \text{SUIVANT}(E) &= \{ &\$, ) \\ \text{SUIVANT}(E') &= \{ &\$, ) \\ \text{SUIVANT}(T') &= \{ &+, -, & ), \$ \\ \text{SUIVANT}(T') &= \{ &+, -, & ), \$ \\ \text{SUIVANT}(F') &= \{ &*, /, & & ), +, -, \$ \\ \end{array}
```

	nb	+	-	*	/	()	\$
E								
E'								
Т								
T'								
F								

Exemple

$$E \to TE'$$

$$E' \to +TE' | -TE' | \varepsilon$$

$$T \to FT'$$

$$T' \to *FT' | /FT' | \varepsilon$$

$$F \to (E) | \text{ nb}$$

- Pour tout a ε PREMIER(α) (et a est différent de ε), rajouter la production A→ α dans la case M[A,a]
- Si ε ε PREMIER(α), alors pour chaque b ε SUIVANT(A) ajouter A → α dans M[A,b]
- Chaque case M[A,a] vide constitue une erreur syntaxique

```
\begin{array}{llll} \text{PREMIER}(E) &= \text{PREMIER}(T) &= \{(, \text{nb}\} & \text{SUIVANT}(E) &= \{ \$, ) & \} \\ \text{PREMIER}(E') &= \{+, -, \varepsilon\} & \text{SUIVANT}(E') &= \{ \$, ) & \} \\ \text{PREMIER}(T) &= \text{PREMIER}(F) &= \{(, \text{nb}\} & \text{SUIVANT}(T') &= \{ +, -, & ), \$ & \} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} & \text{SUIVANT}(T') &= \{ +, -, & ), \$ & \} \\ \text{PREMIER}(F) &= \{(, \text{nb}\} & \text{SUIVANT}(F') &= \{ *, /, & ), +, -, \$ & \} \\ \end{array}
```

	nb	+	-	*	/	()	\$
E	E→TE'					E→TE'		
E'								
Т								
T'								
F								

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE' \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \text{ nb} \end{cases}$$

- Pour tout a ε PREMIER(α) (et a est différent de ε), rajouter la production A→ α dans la case M[A,a]
- Si ε ε PREMIER(α), alors pour chaque b ε SUIVANT(A) ajouter A → α dans M[A,b]
- Chaque case M[A,a] vide constitue une erreur syntaxique

$$\begin{array}{llll} \text{PREMIER}(E) &= \text{PREMIER}(T) &= \{(, \text{nb}\} \\ \text{PREMIER}(E') &= \{+, -, \varepsilon\} \\ \text{PREMIER}(T) &= \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \end{array} \begin{array}{lll} & \text{SUIVANT}(E) &= \{ \text{ $\$,$}) \\ \text{SUIVANT}(E') &= \{ \text{ $\$,$}) \\ \text{SUIVANT}(T') &= \{$$

	nb	+	-	*	/	()	\$
E	E→TE'					E→TE'		
E'		E'→+TE'						
Т								
T'								
F								

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \epsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \epsilon \\ F \to (E) | \text{ nb} \end{cases}$$

- Pour chaque production A→ α faire
 - Pour tout a ε PREMIER(α) (et a est différent de ε), rajouter la production A→ α dans la case M[A,a]
 - Si ε ε PREMIER(α), alors pour chaque b ε SUIVANT(A) ajouter A → α dans M(A,b)
- Chaque case M[A,a] vide constitue une erreur syntaxique

$$\begin{array}{llll} \text{PREMIER}(E) &= \text{PREMIER}(T) &= \{(, \text{nb}\} \\ \text{PREMIER}(E') &= \{+, -, \varepsilon\} \\ \text{PREMIER}(T) &= \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \end{array} \begin{array}{lll} & \text{SUIVANT}(E) &= \{ &\$,) \\ & \text{SUIVANT}(E') &= \{ &\$,) \\ & \text{SUIVANT}(E') &= \{ &\$, \\ & \text{SUIVANT}(T') &= \{ &+, -, &), \$ \\ & \text{SUIVANT}(T') &= \{ &*, -, &), \$ \\ & \text{SUIVANT}(F) &= \{ &*, /, & &), +, -, \$ \\ \end{array}$$

	nb	+	-	*	/	()	\$
E	E→TE'					E→TE'		
E'		E'→+TE'	E'→-TE'					
Т								
T'								
F								

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \end{cases}$$

$$T \to FT'$$

$$T' \to *FT' | /FT' | \varepsilon$$

$$F \to (E) | \text{ nb}$$

- Pour chaque production A→ α faire
 - Pour tout a ε PREMIER(α) (et a est différent de ε), rajouter la production A→ α dans la case M[A,a]
 - Si ε ε PREMIER(α), alors pour chaque b ε SUIVANT(A) ajouter A → α dans M[A,b]
- Chaque case M[A,a] vide constitue une erreur syntaxique

	nb	+	-	*	/	()	\$
E	E→TE'					E→TE'		
E'		E'→+TE'	E'→-TE'				E -> ε	E -> ε
T								
T'								
F								

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \text{ nb} \end{cases}$$

- Pour tout a ε PREMIER(α) (et a est différent de ε), rajouter la production A→ α dans la case M[A,a]
- Si ε ε PREMIER(α), alors pour chaque b ε SUIVANT(A) ajouter A → α dans M(A,b)
- Chaque case M[A,a] vide constitue une erreur syntaxique

$$\begin{array}{llll} \operatorname{PREMIER}(E) &= \operatorname{PREMIER}(T) &= \{(, \operatorname{nb}\} \\ \operatorname{PREMIER}(E') &= \{+, -, \varepsilon\} \\ \operatorname{PREMIER}(T) &= \operatorname{PREMIER}(F) &= \{(, \operatorname{nb}\} \\ \operatorname{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \operatorname{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \operatorname{PREMIER}(F) &= \{(, \operatorname{nb}\} \\ \end{array} \begin{array}{lll} \operatorname{SUIVANT}(E) &= \{ \ \$,) \\ \operatorname{SUIVANT}(E') &= \{ \ \$,) \\ \operatorname{SUIVANT}(T') &= \{ \ +, -, \), \$ \\ \operatorname{SUIVANT}(T') &= \{ \ +, -, \), \$ \\ \operatorname{SUIVANT}(F) &= \{ \ *, /, \), +, -, \$ \end{array} \right\}$$

	nb	+	-	*	/	()	\$
E	E→TE'					E→TE'		
E'		E'→+TE'	E'→-TE'				E -> ε	E -> ε
T	T→FT'					T→FT'		
T'								
F								

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \text{ nb} \end{cases}$$

- Pour tout a ε PREMIER(α) (et a est différent de ε), rajouter la production A→ α dans la case M[A,a]
- Si ε ε PREMIER(α), alors pour chaque b ε SUIVANT(A) ajouter A → α dans M(A,b)
- Chaque case M[A,a] vide constitue une erreur syntaxique

$$\begin{array}{llll} \text{PREMIER}(E) &= \text{PREMIER}(T) &= \{(, \text{nb}\} \\ \text{PREMIER}(E') &= \{+, -, \varepsilon\} \\ \text{PREMIER}(T) &= \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \end{array} \begin{array}{lll} & \text{SUIVANT}(E) &= \{ \text{ $\$,$}) \\ \text{SUIVANT}(E') &= \{ \text{ $\$,$}) \\ \text{SUIVANT}(T') &= \{$$

	nb	+	-	*	/	()	\$
E	E→TE'					E→TE'		
E'		E'→+TE'	E'→-TE'				E -> ε	E -> ε
T	T→FT'					T→FT'		
T'				T'→*FT'				
F								

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \text{ nb} \end{cases}$$

- Pour tout a ε PREMIER(α) (et a est différent de ε), rajouter la production A→ α dans la case M[A,a]
- Si ε ε PREMIER(α), alors pour chaque b ε SUIVANT(A) ajouter A → α dans M(A,b)
- Chaque case M[A,a] vide constitue une erreur syntaxique

$$\begin{array}{llll} \text{PREMIER}(E) &= \text{PREMIER}(T) &= \{(, \text{nb}\} \\ \text{PREMIER}(E') &= \{+, -, \varepsilon\} \\ \text{PREMIER}(T) &= \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \end{array} \begin{array}{lll} & \text{SUIVANT}(E) &= \{ \text{ $\$,$}) \\ \text{SUIVANT}(E') &= \{ \text{ $\$,$}) \\ \text{SUIVANT}(T') &= \{$$

	nb	+	-	*	/	()	\$
E	E→TE'					E→TE'		
E'		E'→+TE'	E'→-TE'				E -> ε	E '> ε
T	T → FT'					T→FT'		
T'				T'→*FT'	T'→/FT'			
F								

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ \hline T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \text{ nb} \end{cases}$$

- Pour tout a ε PREMIER(α) (et a est différent de ε), rajouter la production A→ α dans la case M[A,a]
- Si ε ε PREMIER(α), alors pour chaque b ε SUIVANT(A) ajouter A → α dans M(A,b)
- Chaque case M[A,a] vide constitue une erreur syntaxique

$$\begin{array}{llll} \operatorname{PREMIER}(E) &= \operatorname{PREMIER}(T) &= \{(, \operatorname{nb}\} \\ \operatorname{PREMIER}(E') &= \{+, -, \varepsilon\} \\ \operatorname{PREMIER}(T) &= \operatorname{PREMIER}(F) &= \{(, \operatorname{nb}\} \\ \operatorname{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \operatorname{PREMIER}(F') &= \{(, \operatorname{nb}\} \\ \end{array} \begin{array}{lll} \operatorname{SUIVANT}(E) &= \{ \text{ $\$,$}) \\ \operatorname{SUIVANT}(E') &= \{$$

	nb	+	-	*	/	()	\$
E	E→TE'					E→TE'		
E'		E'→+TE'	E'→-TE'				E -> ε	E `> ε
T	T→FT'					T→FT'		
T'		T '> ε	T' -> ε	T'→*FT'	T'→/FT'		T' -> ε	T' -> ε
F								

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) \text{ nb} \end{cases}$$

- Pour chaque production A→ α faire
 - Pour tout a ε PREMIER(α) (et a est différent de ε), rajouter la production A→ α dans la case M[A,a]
 - Si ε ε PREMIER(α), alors pour chaque b ε SUIVANT(A) ajouter A → α dans M(A,b)
- Chaque case M[A,a] vide constitue une erreur syntaxique

$$\begin{array}{llll} \text{PREMIER}(E) &= \text{PREMIER}(T) &= \{(, \text{nb}\} \\ \text{PREMIER}(E') &= \{+, -, \varepsilon\} \\ \text{PREMIER}(T) &= \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \end{array} \begin{array}{lll} & \text{SUIVANT}(E) &= \{ \text{ $\$,$}) \\ \text{SUIVANT}(E') &= \{ \text{ $\$,$}) \\ \text{SUIVANT}(T') &= \{$$

	nb	+	-	*	/	()	\$
E	E→TE'					E→TE'		
E'		E'→+TE'	E'→-TE'				E -> ε	E -> ε
T	T→FT'					T→FT'		
T'		T '> ε	T' -> ε	T'→*FT'	T'→/FT'		T' -> ε	T' -> ε
F						F→ (E)		

Exemple

$$\begin{cases} E \to TE' \\ E' \to +TE' | - TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \text{ nb} \end{cases}$$

- Pour tout a ε PREMIER(α) (et a est différent de ε), rajouter la production A→ α dans la case M[A,a]
- Si ε ε PREMIER(α), alors pour chaque b ε SUIVANT(A) ajouter A → α dans M(A,b)
- Chaque case M[A,a] vide constitue une erreur syntaxique

$$\begin{array}{llll} \text{PREMIER}(E) &= \text{PREMIER}(T) &= \{(, \text{nb}\} \\ \text{PREMIER}(E') &= \{+, -, \varepsilon\} \\ \text{PREMIER}(T) &= \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(T') &= \{*, /, \varepsilon\} \\ \text{PREMIER}(F) &= \{(, \text{nb}\} \\ \end{array} \begin{array}{lll} & \text{SUIVANT}(E) &= \{ &\$,) \\ & \text{SUIVANT}(E') &= \{ &\$,) \\ & \text{SUIVANT}(E') &= \{ &\$, \\ & \text{SUIVANT}(T') &= \{ &+, -, &), \$ \\ & \text{SUIVANT}(T') &= \{ &*, -, &), \$ \\ & \text{SUIVANT}(F) &= \{ &*, /, & &), +, -, \$ \\ \end{array}$$

	nb	+	-	*	/	()	\$
E	E→TE'					E→TE'		
E'		E'→+TE'	E'→-TE'				E -> ε	E `> ε
T	T→FT'					T→FT'		
T'		T '> ε	T' -> ε	T'→*FT'	T'→/FT'		T' -> ε	T' -> ε
F	F→nb					F→ (E)		

Exercice

Donner la table d'analyse de la grammaire :

$$S \rightarrow (S) \mid \epsilon$$

Exercice

Donner la table d'analyse de la grammaire :

$$S \rightarrow (S) \mid \epsilon$$

	PREMIER	SUIVANT
S	(, ε),\$

Exercice

Donner la table d'analyse de la grammaire :

$$S \rightarrow (S) \mid \epsilon$$

	PREMIER	SUIVANT
S	(, ε),\$

	()	\$
S	$S \rightarrow (S)$	$S \rightarrow \epsilon$	$S \rightarrow \epsilon$

Vérifier le mot : (()())

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

 S'il existe un arbre de dérivation de l'axiome de départ au mot, alors le mot est accepté

- Pour générer l'arbre de dérivation, on utilise:
 - La table d'analyse,
 - Une pile et
 - Un algorithme

Algorithme :

- Données d'entrée : le mot m avec \$ à la fin et la table d'analyse M
- Initialisation de la pile : \$\$ où \$ est l'axiome de départ et un pointeur ps sur la première lettre du mot

```
repeter
      Soit X le symbole en sommet de pile
      Soit a la lettre pointée par ps
      Si X est un non terminal alors
             Si M[X, a] = X \rightarrow Y_1 \dots Y_n alors
                   enlever X de la pile
                   mettre Y_n puis Y_{n-1} puis ...puis Y_1 dans la pile
                   émettre en sortie la production X \to Y_1 \dots Y_n
                           (case vide dans la table)
             sinon
                   ERREUR
             finsi
      Sinon
             Si X = \$ alors
                   Si a = $ alors ACCEPTER
                   Sinon ERREUR
                   finsi
            Sinon
                   Si X = a alors
                          enlever X de la pile
                         avancer ps
                   sinon
                          ERREUR
                   finsi
             finsi
      finsi
jusqu'à ERREUR ou ACCEPTER
```

• Exemple
$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \end{cases}$$
$$T \to FT' \\ T' \to *FT' | /FT' | \varepsilon$$
$$F \to (E) | \text{ nb}$$

Pile	Entrée	Sortie
\$E	<u>3</u> +4*5\$	E→TE'
\$E'T		

	nb	+		*	1	()	\$
Е	E → TE′					E→TE'		
E'		E' -) +TE'	E'→-TE'				E' -> ε	E' -> ε
Т	T → FT'					T→FT'		
T'		T' → ε	T' → ε	T' → *FT'	T'→/FT'		T' → ε	T' -) ε
F	F -) nb					F → (E)		

```
repeter
      Soit X le symbole en sommet de pile
      Soit a la lettre pointée par ps
      Si X est un non terminal alors
             Si M[X, a] = X \rightarrow Y_1 \dots Y_n alors
                   enlever X de la pile
                   mettre Y_n puis Y_{n-1} puis ...puis Y_1 dans la pile
                   émettre en sortie la production X \to Y_1 \dots Y_n
                           (case vide dans la table)
             sinon
                   ERREUR
             finsi
      Sinon
             Si X = \$ alors
                   Si a = $ alors ACCEPTER
                   Sinon ERREUR
                   finsi
             Sinon
                   Si X = a alors
                         enlever X de la pile
                          avancer ps
                   sinon
                          ERREUR
                   finsi
             finsi
      finsi
jusqu'à ERREUR ou ACCEPTER
```

• Exemple $\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \text{ nb} \end{cases}$

Pile	Entrée	Sortie
\$E	<u>3</u> +4*5\$	E→TE'
\$E'T	<u>3</u> +4*5\$	T→FT'
\$E'T'F		

	nb	+		•	I	()	\$
E	E → TE'					E → TE'		
E'		E' ->+ TE'	E' → -TE'				Ε' -) ε	E' → ε
T	T) FT'					T→FT′		
T'		T' → ε	T' → ε	T' → *FT'	T'→/FT'		T' → ε	T' -} ε
F	F) nb					F→ (E)		

• Exemple
$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \text{ nb} \end{cases}$$

Pile	Entrée	Sortie
\$E	<u>3</u> +4*5\$	E→TE'
\$E'T	<u>3</u> +4*5\$	T → FT'
\$E'T'F	<u>3</u> +4*5\$	F→nb
\$E'T'3		

	nb	+		*	I	()	\$
E	E → TE′					E → TE'		
E'		E' ->+ TE'	E' → -TE'				Ε' -) ε	E' → ε
T	T→FT'					T→FT′		
T'		T' → ε	T' → ε	T' → *FT'	T'→/FT'		T' → ε	T' → ε
F	F→nb	>				F → (E)		

```
repeter
      Soit X le symbole en sommet de pile
      Soit a la lettre pointée par ps
      Si X est un non terminal alors
             Si M[X, a] = X \rightarrow Y_1 \dots Y_n alors
                   enlever X de la pile
                   mettre Y_n puis Y_{n-1} puis ...puis Y_1 dans la pile
                   émettre en sortie la production X \to Y_1 \dots Y_n
                           (case vide dans la table)
             sinon
                   ERREUR
             finsi
      Sinon
             Si X = \$ alors
                   Si a = $ alors ACCEPTER
                   Sinon ERREUR
                   finsi
             Sinon
                   Si X = a alors
                         enlever X de la pile
                          avancer ps
                   sinon
                          ERREUR
                   finsi
             finsi
      finsi
jusqu'à ERREUR ou ACCEPTER
```

• Exemple $\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \end{cases}$

Pile	Entrée	Sortie
\$E	<u>3</u> +4*5\$	E→TE'
\$E'T	<u>3</u> +4*5\$	T→FT'
\$E'T'F	<u>3</u> +4*5\$	F→nb
\$E'T'3	<u>3</u> +4*5\$	
\$E'T'	3 <u>+</u> 4*5\$	

	nb	+		*	I	()	\$
Е	E→TE'					E→TE'		
E'		E' → +TE'	E' → -TE'				E' → ε	E' -> ε
T	T→FT'					T→FT'		
T'		T'→ε	T' -) ε	T'→*FT'	T'→/FT'		T' → ε	T' → ε
F	F -> nb					F-> (E)		

```
repeter
      Soit X le symbole en sommet de pile
      Soit a la lettre pointée par ps
      Si X est un non terminal alors
             Si M[X, a] = X \rightarrow Y_1 \dots Y_n alors
                   enlever X de la pile
                   mettre Y_n puis Y_{n-1} puis ...puis Y_1 dans la pile
                   émettre en sortie la production X \to Y_1 \dots Y_n
                           (case vide dans la table)
             sinon
                   ERREUR
             finsi
      Sinon
             Si X = \$ alors
                   Si a = $ alors ACCEPTER
                   Sinon ERREUR
                   finsi
             Sinon
                   Si X = a alors
                         enlever X de la pile
                          avancer ps
                   sinon
                          ERREUR
                   finsi
             finsi
      finsi
jusqu'à ERREUR ou ACCEPTER
```

• Exemple
$$\begin{cases} E \to TE' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \mathrm{nb} \end{cases}$$

Pile	Entrée	Sortie
\$E	<u>3</u> +4*5\$	E→TE'
\$E'T	<u>3</u> +4*5\$	T → FT'
\$E'T'F	<u>3</u> +4*5\$	F→nb
\$E'T'3	<u>3</u> +4*5\$	
\$E'T'	3 <u>+</u> 4*5\$	T -) ε
\$E'		

	nb	+	-	•	I	()	\$
Е	E -) TE'					E → TE'		
E'		E' → +TE'	E' → -TE'				E' → ε	E' → ε
T	T→FT'					T→FT'		
T'		T'→ε	T' → ε	T' → *FT'	T'→/FT'		T' → ε	T'→ε
F	F -) nb					F -) (E)		

```
repeter
      Soit X le symbole en sommet de pile
      Soit a la lettre pointée par ps
      Si X est un non terminal alors
             Si M[X, a] = X \rightarrow Y_1 \dots Y_n alors
                   enlever X de la pile
                   mettre Y_n puis Y_{n-1} puis ...puis Y_1 dans la pile
                   émettre en sortie la production X \to Y_1 \dots Y_n
                           (case vide dans la table)
             sinon
                   ERREUR
             finsi
      Sinon
             Si X = \$ alors
                   Si a = $ alors ACCEPTER
                   Sinon ERREUR
                   finsi
             Sinon
                   Si X = a alors
                         enlever X de la pile
                          avancer ps
                   sinon
                          ERREUR
                   finsi
             finsi
      finsi
jusqu'à ERREUR ou ACCEPTER
```

Exemple

$$\begin{cases} E \to I E' \\ E' \to +TE' | -TE' | \varepsilon \\ T \to FT' \\ T' \to *FT' | /FT' | \varepsilon \\ F \to (E) | \text{ nb} \end{cases}$$

Pile	Entrée	Sortie
\$E	<u>3</u> +4*5\$	E→TE'
\$E'T	<u>3</u> +4*5\$	T→FT'
\$E'T'F	<u>3</u> +4*5\$	F→nb
\$E'T'3	<u>3</u> +4*5\$	
\$E'T'	3 <u>+</u> 4*5\$	T ') ε
\$E'	3 <u>+</u> 4*5\$	E'→ +TE'
\$E'T+	3 <u>+</u> 4*5\$	
\$E'T	3+ <u>4</u> *5\$	T→FT'
\$E'T'F	3+ <u>4</u> *5\$	F→nb
\$E'T'4	3+ <u>4</u> *5\$	
\$E'T'	3+4 <u>*</u> 5\$	T'→*FT'
\$E'T'F*	3+4 <u>*</u> 5\$	
\$E'T'F	3+4* <u>5</u> \$	F→nb
\$E'T'5	3+4* <u>5</u> \$	
\$E'T'	3+4*5 <u>\$</u>	T'→ε
\$E'	3+4*5 <u>\$</u>	E'→ε
\$	3+4*5 <u>\$</u>	ACCEPTER

	nb	+	-	•	1	()	\$
E	E → TE'					E → TE'		
E'		E' → +TE'	E' → -TE'				E' → ε	E' → ε
T	T→FT'					T→FT'		
T		T' → ε	T' → ε	T' → *FT'	T'→/FT'		T' → ε	T' → ε
F	F) nb					F → (E)		

```
repeter
      Soit X le symbole en sommet de pile
      Soit a la lettre pointée par ps
      Si X est un non terminal alors
            Si M[X, a] = X \rightarrow Y_1 \dots Y_n alors
                   enlever X de la pile
                   mettre Y_n puis Y_{n-1} puis ...puis Y_1 dans la pile
                   émettre en sortie la production X \to Y_1 \dots Y_n
                          (case vide dans la table)
             sinon
                   ERREUR
            finsi
      Sinon
            Si X = $ alors
                   Si a = $ alors ACCEPTER
                   Sinon ERREUR
                   finsi
             Sinon
                   Si X = a alors
                         enlever X de la pile
                         avancer ps
                   sinon
                          ERREUR
                   finsi
             finsi
      finsi
jusqu'à ERREUR ou ACCEPTER
```

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

- L'algorithme précédent ne s'applique qu'aux grammaires dites LL(1)
- C'est quoi une grammaire LL(1)?
 - Une grammaire LL(1) est une grammaire où une cellule de la table d'analyse ne contient pas plus qu'une règle de production

Intuition: une grammaire est LL(1) si la lecture d'un seul symbole terminal permet la sélection de la règle à appliquer sans ambigüité (dans la table d'analyse)

Exemple de grammaire qui n'est pas LL(1)

$$\begin{cases} S \to aAb \\ A \to cd|c \end{cases}$$

	a	c	b	d	\$
S	$S \rightarrow aAb$				
A		$A \rightarrow cd$			
		$A \rightarrow c$			

Une grammaire est dite LL(K) si le choix de la règle à appliquer nécessite la lecture de K symboles terminaux

- Y a-t-il des grammaires qui sont LL(1) par défaut?
 - Si les productions de chaque non-terminal commencent par un symbole terminal différent, alors la grammaire est LL(1)

- Quelles sont les grammaires qui sont par défaut non LL(1)?
 - Une grammaire immédiatement récursive à gauche n'est pas LL(1)
 - Une grammaire ambigüe n'est pas LL(1)

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

Récursivité à gauche immédiate

Récursivité à gauche immédiate

 Une grammaire est dite immédiatement récursive à gauche si elle contient un nonterminal A tel qu'il existe une règle de production A → Aαοù αest une chaîne quelconque

Récursivité à gauche immédiate

• Élimination de la récursivité à gauche immédiate

Remplacer toute règle de la forme
$$A \to A\alpha | \beta$$
 par
$$\begin{cases} A \to \beta A' \\ A' \to \alpha A' | \varepsilon \end{cases}$$

- Exemple:
 - $S \rightarrow ScA|B => S \rightarrow BS', S' \rightarrow cAS'|\epsilon$
 - $A \rightarrow Aa \mid \epsilon => A \rightarrow A', A' \rightarrow aA' \mid \epsilon$
 - B→Bb|d|e => B→dB'|eB', B'→ bB'|ε

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

Enlever l'ambigüité d'une grammaire

 Pour enlever l'ambigüité d'une grammaire, on utilise la technique de factorisation à gauche des parties communes d'une grammaire

Exemple:

- Grammaire ambigüe:
 - Explf → if Cond then Inst
 - Explf → if Cond then Inst else Inst
 - ...
- Après transformation en introduisant un nouveau non-terminal:
 - Explf → if Cond then Inst A
 - A \rightarrow else Inst | ϵ
 - ...

Plan

- Analyseurs syntaxiques
 - Analyse descendante
 - Table d'analyse LL
 - Calcul des ensembles PREMIER
 - Calcul des ensembles SUIVANT
 - Construction de la table LL
 - Déterminer si un mot est accepté par une grammaire
 - Grammaire LL(1)
 - Récursivité à gauche immédiate
 - Enlever l'ambigüité d'une grammaire
 - Résumé
 - Analyse ascendante

Résumé

- Approche de dérivation descendante:
 - Table d'analyse LL
 - Pile
 - Algorithme
- Pour rendre une grammaire LL(1):
 - Éliminer la récursivité à gauche (voir aussi l'élimination de l' ambigüité dans la partie 01 du cours sur l'analyse syntaxique)
 - Factoriser les parties communes

Références

- A.Aho, R. Sethi, J. Ullman, "Compilateurs: principes, techniques et outils".
 Deuxième édition, Pearson Education. 2007
- Andrew W. Appel and Jens Palsberg, "Modern Compiler Implementation in Java, Second Edition". Second Edition, Cambridge University Press, 2002
- Ronald Mak, "Writing Compilers and Interpreters: A Modern Software
 Engineering Approach Using Java". Third Edition, John Wiley & Sons, 2009