Sprawozdanie Obliczenia naukowe - lista 2

Kamil Król

244949

Zadanie 1

Celem tego zadania było powtórzenie zadania 5 z listy 1, ale ze zmianą danych i zobaczenie jak te zmiany wpłynęły na wynik. Modyfikacja danych polegała na usunięciu ostatniej 9 z x4 i ostatniej 7 z x5. Dane początkowe:

 $x_1 = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]$

 $y_1 = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049].$

Dane po modyfikacji:

 $x_2 = [2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995]$

 $y_2 = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049].$

Poniżej wyniki dla obu zestawów.

Dla Float
64 dla danych x_1 i y_1

alogrytm	obliczona wartość	błąd bezwzględny	błąd względny
Forward	1.0251881368296672e-10	1.1258452438296672e-10	11.184955313981627
Backward	-1.5643308870494366e-10	1.4636737800494365e-10	14.541186645165915
Descending	0.0	1.00657107e-11	1.0
Ascending	0.0	1.00657107e-11	1.0

Dla Float
64 dla danych \boldsymbol{x}_2 i \boldsymbol{y}_2

alogrytm	obliczona wartość	błąd bezwzględny	błąd względny
Forward	-0.004296342739891585	0.004296342729825875	4.2682954615672344e8
Backward	-0.004296342998713953	0.004296342988648243	4.2682957186999655e8
Descending	-0.004296342842280865	0.004296342832215154	4.268295563288099e8
Ascending	-0.004296342842280865	0.004296342832215154	4.268295563288099e8

Dla Float
32 dla danych \boldsymbol{x}_1 i \boldsymbol{y}_1

		0 1 01	
alogrytm	obliczona wartość	błąd bezwzględny	błąd względny
Forward	-0.4999443	0.49994429944939167	4.9668057661282845e10
Backward	-0.4543457	0.4543457031149343	4.51379655800096e10
Descending	-0.5	0.499999999999343	4.967359135306107e10
Ascending	-0.5	0.499999999999343	4.967359135306107e10

Dla Float
32 dla danych \boldsymbol{x}_2 i \boldsymbol{y}_2

		v = v=	
alogrytm	obliczona wartość	błąd bezwzględny	błąd względny
Forward	-0.4999443	0.49994429944939167	4.9668057661282845e10
Backward	-0.4543457	0.4543457031149343	4.51379655800096e10
Descending	-0.5	0.499999999999343	4.967359135306107e10
Ascending	-0.5	0.499999999999343	4.967359135306107e10

Pierwszą obserwacją jest fakt, że wyniki dla typu Float32 są takie same dla obu zestawów testowych. Drugą obserwacją jest to, że dla typu Float64 niewielkie zmiany w danych wejściowych spowodowały duże różnice w wynikach. Wnioskiem z zadania jest to, że obliczanie iloczynku skalarnego jest zadaniem źle uwarunkowanym.

Zadanie 2

Celem zadania było narysowanie wykresu funkcji $f(x) = e^x \cdot \ln(1 + e^{-x})$ w dwóch dowolnych programach do wizualizacji. Ponadto należało obliczyć granicę funkcji $\lim_{x\to\infty} f(x)$ i porównać wynik z otrzymanymi wykresami. Zacząłem od obliczenia granicy: $\lim_{x\to\infty} f(x)$.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x \ln(1 + e^{-x}) = \lim_{x \to \infty} \frac{\ln(1 + e^{-x})}{e^{-x}} = \left[\frac{0}{0}\right] \stackrel{H}{=} \lim_{x \to \infty} \frac{(\ln(1 + e^{-x}))'}{(e^{-x})'} = \lim_{x \to \infty} \frac{\frac{1}{1 + e^{-x}} \cdot -e^{-x}}{-e^{-x}} = \lim_{x \to \infty} \frac{1}{1 + e^{-x}} = 1.$$

Poniżej wykresy z dwóch programów do wizualizacji.

Rysunek 1: Wykres funkcji f(x) narysowany w programie desmos

Rysunek 2: Wykres funkcji f(x) narysowany w programie pyplot

Na wykresach można zaobserwować ze dla x pomiędzy 30, a 40 funkcja zaczyna się zachowywać w nieoczekiwany sposób. Widać też, że dla dwóch programów zachowanie jest różne. Ponadto żaden z wykresów nie pokazuje właściwego przebiegu funkcji, ponieważ jej granicą przy x zmierzającym do nieskończoności jest 1, a nie jak sugerują wykresy wartość 0. Ostatnią rzeczą do zrobienia w tym zadaniu jest wyjaśnienie tego zjawiska. W tym celu przyjrzyjmy się dokładniej funkcji $f(x) = e^x \cdot ln(1 + e^{-x})$. Ze wzoru widać, że im większy argument x weźmiemy tym mamy do czynienia z mnożeniem coraz większej liczby z coraz mniejszą. Inna rzecz to to co dzieje się pod logarytmem. Jest tam dodawanie liczby 1 do bardzo małej liczby (w przypadku odpowiednio dużego x). Jeżeli czynnik e^{-x} jest odpowiednio mały to następuje zjawisko pochłonięcia tej wartości i otrzymujemy wartość 1.0. Zauważmy, że $e^{-37} < 2^{-53} < eps()$ oraz ln(1) = 0. Daje to w rezultacie mnożenie $e^{-x} \cdot ln(1) = e^{-x} \cdot 0 = 0$, a następnie błędny wykres. Wnioskiem z zadania jest to, że bardzo małe zmiany w danych spowodowały duże różnice w wyniku. Zatem jest to przykład zadania, które jest źle uwarunkowane.

Zadanie 3

Celem zadania jest wykonanie eksperymentów opisanych w treści zadania dotyczących rozwiązywania równania $\mathbf{A}\mathbf{x} = \mathbf{b}$. Gdzie $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^n$. Macierz A zadana jest jako:

- a) macierz Hilberta \mathbf{H}_n stopnia n,
- b) macierz losowa \mathbf{R}_n^c stopnia n o danym wskaźniku uwarunkowania c.

Wektor \mathbf{b} dany jest jako $\mathbf{b} = \mathbf{A}\mathbf{x}$, gdzie $\mathbf{x} = (1, \dots, 1)^T$. Dzięki temu znamy dokładne rozwiązanie dla A i b. Układ równań $\mathbf{A}\mathbf{x} = \mathbf{b}$ należało rozwiązać za pomocą dwóch algorytmów:

- a) metodą eliminacji Gaussa: $\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$,
- b) metodą macierzy odwrotnej: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Poniżej znajdują się wyniki eksperymentów.

	Wyniki dla macierzy Hilberta				
rozmiar	rank	cond	błąd względny dla gaussa	błąd względny dla odwrotności	
2 x 2	2	19.28147006790397	5.661048867003676e-16	1.4043333874306803e-15	
3 x 3	3	524.0567775860644	8.022593772267726e-15	0.0	
4 x 4	4	15513.73873892924	4.137409622430382e-14	0.0	
5 x 5	5	476607.25024259434	1.6828426299227195e-12	3.3544360584359632e-12	
6 x 6	6	1.4951058642254665e7	2.618913302311624e-10	2.0163759404347654e-10	
7 x 7	7	4.75367356583129e8	1.2606867224171548e-8	4.713280397232037e-9	
8 x 8	8	1.5257575538060041e10	6.124089555723088e-8	3.07748390309622e-7	
9 x 9	9	4.931537564468762e11	3.8751634185032475e-6	4.541268303176643e-6	
10 x 10	10	1.6024416992541715e13	8.67039023709691e-5	0.0002501493411824886	
11 x 11	10	5.222677939280335e14	0.00015827808158590435	0.007618304284315809	
12 x 12	11	1.7514731907091464e16	0.13396208372085344	0.258994120804705	
13 x 13	11	3.344143497338461e18	0.11039701117868264	5.331275639426837	
14 x 14	11	6.200786263161444e17	1.4554087127659643	8.71499275104814	
15 x 15	12	3.674392953467974e17	4.696668350857427	7.344641453111494	

	Wyniki dla macierzy losowej				
rozmiar	rank	cond	błąd względny dla gaussa	błąd względny dla odwrotności	
5 x 5	5	1.0	2.2752801345137457e-16	1.1102230246251565e-16	
5 x 5	5	10.0	3.8459253727671276e-16	2.482534153247273e-16	
5 x 5	5	1000.0	9.239830705567284e-15	8.255760547102576e-15	
5 x 5	5	1.0e7	2.677573588098912e-10	1.4018261081995785e-10	
5 x 5	5	1.0e12	1.1188918281429124e-5	1.5777474445400015e-5	
5 x 5	4	1.0e16	0.5599366084107262	0.570943572080464	
10 x 10	10	1.0	3.6821932062951477e-16	2.1925147983971603e-16	
10 x 10	10	10.0	2.6272671962866383 e-16	3.6316343785083587e-16	
10 x 10	10	1000.0	3.155065537791195e-15	4.089480552672362e-15	
10 x 10	10	1.0e7	1.1578006231204614e-10	1.1234229352336132e-10	
10 x 10	10	1.0e12	3.319411920794968e-6	6.607249479556569e-6	
10 x 10	9	1.0e16	0.09597742941854902	0.08790571295190734	
20 x 20	20	1.0	5.7635440208947e-16	3.9720546451956367e-16	
20 x 20	20	10.0	4.256659361141682e-16	4.902612130890297e-16	
20×20	20	1000.0	4.556042017608055e-15	7.992372100964234e-15	
20 x 20	20	1.0e7	1.197252918540844e-10	3.1220980667373144e-11	
20 x 20	20	1.0e12	4.354484314307619e-5	4.162108310059814e-5	
20 x 20	19	1.0e16	0.0675922370477866	0.09120905545435168	

Patrząc na tabelę pierwszą - wyniki dla macierzy Hilberta, można zauważyć zależność błędu względnego od wskaźnika uwarunkowania. Im większy jest wskaźnik uwarunkowania tym większy jest błąd. Macierz Hilberta jest przykładem macierzy, która jest bardzo źle uwarunkowana. Widać też, że metoda eliminacji Gaussa okazała się w tym przypadku dokładniejsza dla n>7.

Patrząc na tabelę drugą - wyniki dla macierzy losowej, można zauważyć taką samą zależność jak w eksperymencie pierwszym. Wartości błędów względnych są tym większe im więszke są wskaźniki uwarunkowania. Warto też zauważyć fakt, że dla dużej macierzy 20x20 o małym wskaźniku uwarunkowania np. c = 1, błąd względny jest znacznie mniejszy niż dla macierzy 5x5, która jest mniejsza, ale ma wskaźnik uwarunkowania równy 10^{16} . Widać zatem, że wielkość macierzy nie jest tu czynnikiem decydującym. Najważniejszy jest wskaźnik uwarunkowania. Wnioskiem z zadania jest to, że wskaźnik uwarunkowania ma decydujący wpływ na dokładność obliczeń oraz to, że w przypadku obliczeń na macierzy źle uwarunkowanej należy się liczyć z dużymi błędami.

Zadanie 4

Celem zadania było obliczenie dwudziestu zer wielomianu Wilkinsona w postaci naturalnej, a następnie sprawdzenie otrzymanych pierwiastków z_k poprzez obliczenie $|P(z_k)|$, $|p(z_k)|$ i $|z_k - k|$ dla $1 \le k \le 20$. Na końcu należało powtórzyć eksperyment Wilkinsona, który polegał na zamianie współczynnika przy x^{19} równego -210 na $-210-2^{23}$. Przez P będziemy oznaczać wielomian Wilkinsona w postaci naturalnej, a przez p ten sam wielomian w postaci iloczynowej.

$$p(x) = (x-20)(x-19)(x-18)\dots(x-6)(x-5)(x-4)(x-3)(x-2)(x-1)$$

W poniższej tabeli znajdują się wyniki eksperymentu, który sprawdzał wartości pierwiastków.

k	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	0.999999999996989	36352.0	5.517824e6	3.0109248427834245e-13
2	2.0000000000283182	181760.0	7.378697629901744e19	2.8318236644508943e-11
3	2.9999999995920965	209408.0	3.320413931687578e20	4.0790348876384996e-10
4	3.9999999837375317	3.106816e6	8.854437035384718e20	1.626246826091915e-8
5	5.000000665769791	2.4114688e7	1.8446752056545675e21	6.657697912970661e-7
6	5.999989245824773	1.20152064e8	$3.320394888870126\mathrm{e}{21}$	1.0754175226779239e-5
7	7.000102002793008	4.80398336e8	5.423593016891272e21	0.00010200279300764947
8	7.999355829607762	1.682691072e9	8.26205014011023e21	0.0006441703922384079
9	9.002915294362053	4.465326592e9	1.196559421646318e22	0.002915294362052734
10	9.990413042481725	1.2707126784e10	1.6552601335207813e22	0.009586957518274986
11	11.025022932909318	3.5759895552e10	2.2478332979247994e22	0.025022932909317674
12	11.953283253846857	7.216771584e10	2.8869446884129956e22	0.04671674615314281
13	13.07431403244734	$2.15723629056\mathrm{e}{11}$	3.807325552825022e22	0.07431403244734014
14	13.914755591802127	3.65383250944e11	4.612719853149547e22	0.08524440819787316
15	15.075493799699476	6.13987753472e11	$5.901011420239329\mathrm{e}22$	0.07549379969947623
16	15.946286716607972	1.555027751936e12	7.01087410689741e22	0.05371328339202819
17	17.025427146237412	3.777623778304e12	8.568905825727875e22	0.025427146237412046
18	17.99092135271648	7.199554861056e12	1.0144799361089491e23	0.009078647283519814
19	19.00190981829944	1.0278376162816e13	1.1990376202486947e23	0.0019098182994383706
20	19.999809291236637	2.7462952745472e13	1.4019117414364248e23	0.00019070876336257925

Widać, że pierwiastki nie zostały obliczone dokładnie. Zwróćmy uwagę na wyniki dla k = 1, dla tego przypadku popełniony błąd bezwzględny był rzędu 10^{-13} . Wydaje się, że nie jest to duży błąd. Kiedy popatrzymy na wartość wielomianu $|P(z_1)|$ to zamiast oczekiwanego 0, otrzymujemy 36352. Co dzieje się dla większych k? Dla k = 19 zamiast 0 otrzymujemy około 10^{13} . Tak ogromny błąd całkowicie wyklucza sensowność obliczeń. Kiedy popatrzymy na wartości $|p(z_k)|$ to popełnione błędy są jeszcze większe i sięgają rzędu 10^{23} . Skąd wzięły się tak ogromne błędy? Na początku przyjrzyjmy się postaci normalnej wielomianu P. Ostatnie współczynniki P to między innymi: 13803759753640704000, -8752948036761600000 i 2432902008176640000. Jeżeli uwzględnimy fakt, że arytmetyka Float64 ma w języku Julia od 15 do 17

cyfr znaczących to widzimy, że współczynniki te nie dadzą się przechować dokładnie w tej arytmetyce. Stąd właśnie biorą się tak duże błędy przy obliczaniu $|P(z_k)|$. Teraz zobaczmy skąd biorą się błędy przy obliczaniu wartości $|p(z_k)|$. Zauważmy, że dla wielomianu w postaci iloczynowej błąd popełniony przy obliczaniu pierwiastka jest mnożony przez czynnik rzędu 19!. Stąd w tym przypadku biorą się tak ogromne błędy. Teraz powtórzmy eksperyment Wilkinsona zamieniając w wielomianie P współczynnik -210 na $-210-2^{23}$. W tabeli poniżej znajdują się pierwiastki zaburzonego wielomianu.

część rzeczywista	część urojona
-8.865769941588573	-3.4046322682057264im
-8.865769941588573	3.4046322682057264im
-4.247664066417391	-6.419261223367462im
-4.247664066417391	6.419261223367462im
-0.7464546423257191	-5.95141991054467im
-0.7464546423257191	5.95141991054467im
0.999999997221236	$0.0 \mathrm{im}$
1.1377572287964575	-4.670665242945042im
1.1377572287964575	4.670665242945042im
2.000692699312875	$0.0 \mathrm{im}$
2.086386552448566	-3.4062233634074466im
2.086386552448566	3.4062233634074466im
2.526310875701247	-2.3152371089860093im
2.526310875701247	2.3152371089860093im
2.5729744507561003	$0.0 \mathrm{im}$
2.6484261575929047	-0.6383381720916199im
2.6484261575929047	0.6383381720916199im
2.675402970959691	-1.4005752583277125im
2.675402970959691	1.4005752583277125im
8.388817997542582e6	0.0im

Widzimy, że zmiana jednego ze współczynników o wartość rzędu 2^{-23} sprawiła, że wilelomian ma już pierwiastki zespolone. Wnioskiem z zadania jest fakt, że zadanie to jest źle uwarunkowane, ponieważ małe zaburzenia współczynników powodują znaczne zmiany w wynikach.

Zadanie 5

Celem zadania było wykonanie eksperymentów opisanych w treści zadania, które dotyczyły równania rekurencyjnego opisującego model logistyczny/model wzrostu populacji. Równanie:

$$p_{n+1} := p_n + rp_n(1 - p_n)$$
, dla $n = 0, 1, \dots$

gdzie r jest pewną daną stałą, $r(1-p_n)$ jest czynnikiem wzrostu populacji, a p_0 jest wielkością populacji stanowiącą procent maksymalnej wielkości populacji dla danego stanu środowiska. W tabeli poniżej znajdują się wyniki pierwszego eksperymentu polegającego na wykonaniu 40 iteracji danego wyrażenia rekurencyjnego w arytmetyce Float32 dla danych $p_0=0.01$ i r=3, a później ponownym wykonananiu 40 iteracji, ale z obcięciem wyniku w iteracji 10.

numer iteracji	bez modyfikacji	z modyfikacją
1	0.0397	0.0397
2	0.15407173	0.15407173
3	0.5450726	0.5450726
4	1.2889781	1.2889781
5	0.1715188	0.1715188
6	0.5978191	0.5978191
7	1.3191134	1.3191134
8	0.056273222	0.056273222
9	0.21559286	0.21559286
10	0.7229306	0.722
11	1.3238364	1.3241479
12	0.037716985	0.036488414
13	0.14660022	0.14195944
14	0.521926	0.50738037
15	1.2704837	1.2572169
16	0.2395482	0.28708452
17	0.7860428	0.9010855
18	1.2905813	1.1684768
19	0.16552472	0.577893
20	0.5799036	1.3096911
21	1.3107498	0.09289217
22	0.088804245	0.34568182
23	0.3315584	1.0242395
24	0.9964407	0.94975823
25	1.0070806	1.0929108
26	0.9856885	0.7882812
27	1.0280086	1.2889631
28	0.9416294	0.17157483
29	1.1065198	0.59798557
30	0.7529209	1.3191822
31	1.3110139	0.05600393
32	0.0877831	0.21460639
33	0.3280148	0.7202578
34	0.9892781	1.3247173
35	1.021099	0.034241438
36	0.95646656	0.13344833
37	1.0813814	0.48036796
38	0.81736827	1.2292118
39	1.2652004	0.3839622
40	0.25860548	1.093568

W tabeli poniżej znajdują się wyniki eksperymentu drugiego, który polegał na wykonaniu 40 iteracji tego samego wyrażenia rekurencyjnego w arytmetyce Float32 oraz Float64 dla danych $p_0 = 0.01$ i r = 3, a później porównaniu otrzymanych wyników.

numer iteracji	Float32	Float64
1	0.0397	0.0397
2	0.15407173	0.15407173000000002
3	0.5450726	0.5450726260444213
4	1.2889781	1.2889780011888006
5	0.1715188	0.17151914210917552
6	0.5978191	0.5978201201070994
7	1.3191134	1.3191137924137974
8	0.056273222	0.056271577646256565
9	0.21559286	0.21558683923263022
10	0.7229306	0.722914301179573
11	1.3238364	1.3238419441684408
12	0.037716985	0.03769529725473175
13	0.14660022	0.14651838271355924
14	0.521926	0.521670621435246
15	1.2704837	1.2702617739350768
16	0.2395482	0.24035217277824272
17	0.7860428	0.7881011902353041
18	1.2905813	1.2890943027903075
19	0.16552472	0.17108484670194324
20	0.5799036	0.5965293124946907
21	1.3107498	1.3185755879825978
22	0.088804245	0.058377608259430724
23	0.3315584	0.22328659759944824
24	0.9964407	0.7435756763951792
25	1.0070806	1.315588346001072
26	0.9856885	0.07003529560277899
27	1.0280086	0.26542635452061003
28	0.9416294	0.8503519690601384
29	1.1065198	1.2321124623871897
30	0.7529209	0.37414648963928676
31	1.3110139	1.0766291714289444
32	0.0877831	0.8291255674004515
33	0.3280148	1.2541546500504441
34	0.9892781	0.29790694147232066
35	1.021099	0.9253821285571046
36	0.95646656	1.1325322626697856
37	1.0813814	0.6822410727153098
38	0.81736827	1.3326056469620293
39	1.2652004	0.0029091569028512065
40	0.25860548	0.011611238029748606

Z pierwszej tabeli widać, że zaburzenie wartości w 10 iteracji zmienia całkowicie wyniki w dalszych iteracjach. Od tego miejsca nie widać żadnej zależności między wynikami. Widać zatem, że w przypadku równania rekurencyjnego małe zaburzenie danych całkowicie zmieniło następne wyniki. Kolejna tabela pokazuje doświadczenie gdzie żadne zaburzenie nie zostało wprowadzone, jedyna różnica to arytmetyka w jakiej były wykonywane obliczenia. Widać, że na początku wartości są podobne, ale później tak jak w poprzednim eksperymencie zaczynają od siebie odbiegać dając na końcu zupełnie różne wyniki. Oba eksperymenty ukazują jak drobne błędy np. te związane z dokładnością przechowywanych danych mogą się kumulować i wpływać na wyniki. Jest to zjawisko chaosu w układach sprzężeń zwrotnych. Czym są układy sprzężeń zwrotnych? Są to układy gdzie dane wyjściowe jednego procesu są danymi wejściowymi

dla kolejnego kroku obliczeń. Wnioskiem z zadania jest to, że równanie rekurencyjne jest niestabilne. Ponadto widać, że zjawisko chaosu jest trudne lub wręcz niemożliwe do wyeliminowania - dokładność obliczeń możemy ulepszyć poprzez zwiększanie precyzji arytmetyki, ale dla każdej arytmetyki pojawi się moment, w którym obliczenia stracą dokładność.

Zadanie 6

Celem zadania było sprawdzenie zachowania pewnego równania rekurencyjnego poprzez wykonanie 40 iteracji dla podanych w treści zadania zestawów danych. Równanie:

$$x_{n+1} := x_n^2 + c$$
, dla $n = 0, 1, \dots$