

02

N91-28216

Nuclear Thermal Propulsion

Space Transportation Propulsion
Technology Symposium

Gary L. Bennett

Program Manager
Propulsion, Power and Energy Division
Office of Aeronautics, Exploration and Technology
27 June 1990

DIRECT FISSION-THERMAL PROPULSION PROCESS

NUCLEAR ENERGY

FRAGMENT KINETIC ENERGY

THERMAL ENERGY

THERMODYNAMIC EXPANSION

DIRECTED THRUST

NUCLEAR ENGINE SCHEMATIC

Typical Rocket Propulsion Reactor

DIRECT FISSION-THERMAL PROPULSION -- ADVANTAGES

- HIGH SPECIFIC IMPULSE (860s - 1000s)
- HIGH THRUST-TO-WEIGHT
- NOT ENERGY LIMITED (AUX. POWER OPTIONS)
- REUSABLE
- THROTTLEABLE (25% - 100%)
- MONO-PROPELLANT
- MULTIPLE PROPELLANT CHOICES (H_2 , NH_3 , . . .)
- NEAR-TERM TECHNOLOGY (IT WORKS!)

MISSION APPLICATIONS OF DIRECT FISSION-THERMAL PROPULSION

- ORBIT TRANSFER VEHICLE
- LUNAR TUG
- PILOTED MARS MISSION
- EXTRA-TERRESTRIAL RESOURCE UTILIZATION

MARS EXPEDITION CASE - IMLEO SENSITIVITY TO LAUNCH OPPORTUNITY

**PROPULSION PERFORMANCE COMPARISON
SCR AND GCR PILOTED MARS MISSIONS, QUICK TRIPS**

**PROPULSION PERFORMANCE COMPARISON
NEP, SEP, AND SCR PILOTED MARS MISSION**

Various Opportunities For Given MTV Propulsion Options

Ref: Boeing - Advanced Civil Space Systems

NTR MARS PERFORMANCE THRUST/WEIGHT AND ISP VARIATIONS

EXTRA-TERRESTRIAL PROPELLANT LANDER/HOPPER/ASCENT VEHICLE (DIRECT FISSION-THERMAL PROPULSION)

DIRECT FISSION-THERMAL PROPULSION SYSTEMS

	<u>NERVA</u>	<u>ANRE (INEL)</u>	<u>PBR (BNL)</u>
THRUST [kN]	333	65	44
I_{sp} [s]	825	900	900-1000
MASS FLOW [kg/s]	41.2	7.4	4.5
POWER [MW _T]	1500	370	200
WEIGHT [10^3 kg]	10.4	2.1	0.6
THRUST/WEIGHT	32	31	73
FUEL	UC	UC-ZrC-C	UC-ZrC
MODERATOR	C	ZrH	LiH, Be, ZrH

Nuclear Rocket Program

NERVA Engine Technology Testing Test Stand Superstructure

**What we are attempting to make
is a flyable compact reactor,
not much bigger than an office
desk, that will produce the
power of Hoover Dam from a
cold start in a matter of minutes**

-- Dr. Glenn T. Seaborg
Chairman
Atomic Energy Commission

Evolution of Rover Reactors

NERVA/Rover Reactor System Test Sequence

	'59	'60	'61	'62	'63	'64	'65	'66	'67	'68	'69	'70	'71	'72
N E R V A r a m	NRX Reactor Test				NRX-A1 ●	● NRX-A3	●	NRX-A6						
					NRX-A2 ●		●	NRX-AS						
	Engine Tests					NRX/EST ●		●	XECF	●	XE			
P R O G R A M	KIWI	KIWI A3 ●	KIWI A	KIWI B1 B ●	KIWI B4 D	KIWI B1 A ●	KIWI TNT	KIWI B4 E						
R O V e r a c h	Phoebus				Phoebus 1A ●				● Phoebus 1B		● Phoebus 2A			
	Pewee								● Pewee					
	Nuclear Furnace										NF-1 ●			

Flexibility Demonstrated in Ground Experimental Engine (XE) Test

TEST PERIOD: 3/20/69-8/28/69

EXPERIMENTS CONDUCTED

STARTUP INVESTIGATIONS	15
PERFORMANCE CHARACTERISTICS AT HIGH POWER	6
ENGINE DYNAMIC PERFORMANCE	10
FACILITY EVALUATION	4

Operating Time vs Temperature for Nuclear Rocket Program

Major System Test Results

- Demonstrated power capability
 - 1100 MWt in NRX (55,000 lbs thrust)
 - 4400 MWt in Phoebus (220,000 lbs thrust)
- Demonstrated power, temperature and flow stability
 - High specific impulse (800-900 seconds)
 - High thrust startup
- Demonstrated reactor/engine endurance - 60 minutes in NRX-A6
- Demonstrated reactor/engine maneuverability - 28 startup cycles in NRX-XE
- Demonstrated reactor fuel - 10 hours 40 minutes and 64 cycles

NERVA TECHNOLOGY HAS SYNERGISTIC APPLICATIONS

Steady-State Power

- 10's of MWe for electric propulsion

Direct thermal propulsion

- 15,000 to 250,000 pounds of thrust

Dual Power Systems

- High direct thrust (e.g., 75,000 pounds) plus low electric propulsion (e.g., 1MWe)

Steady-State Power

Dual Power System

Versatility

NERVA DESIGN - STATUS

- DEVELOPED DURING PROJECT ROVER
- FULL POWER, FULL DURATION TESTED
- FLIGHT QUALIFIABLE DESIGN UNDER WAY AT CONCLUSION OF PROJECT ROVER
- EXPERTISE STILL AROUND (JUST BARELY)
- WESTINGHOUSE FULL-DESIGN BLUEPRINTS INTACT
- LANL CAN STILL EXTRUDE FUEL SEGMENTS
- FUEL SEGMENT TEST FACILITIES AVAILABLE
- FULL SCALE TEST FACILITIES UNAVAILABLE

SMALL/ADVANCED NUCLEAR ROCKET ENGINE (SNRE/ANRE - LANL/INEL)

PARTICLE BED REACTOR DESIGN

NASA

NUCLEAR PROPULSION THRUST PLAN

OAGT

~~PROPELLION, POWER & ENERGY~~

5.3 TECHNOLOGY DEVELOPMENT STRATEGY

1990

PHASE 1

GCR - 1

GCR - 2

SCR - 1

SCR - 2

1995

PHASE 2

NTP

2000

PHASE 3

2005

NEP - 1 (CV)

NEP - 2 (CV)

NEP - 1 (Piloted)

NEP - 2 (Piloted)

CONCEPT/COMPONENT

SYSTEM

DEMONSTRATION

NUCLEAR PROPULSION THRUST PLAN

OAET

PROPULSION, POWER & ENERGY

EXECUTIVE SUMMARY

KEY TECHNICAL ISSUES

Safety/safeguards/QA (during all program phases)	Power Processing Units (NEP)
Qualification/acceptance test strat.	Thrusters (NEP)
Reliability and fault tolerance	Space operations
High Performance engines (including reactors)	- radiation shielding
Reusability/restart capability	- design criteria for in-space
Reactor Fuel	operation and
Structural Aspects	maintenance
Turbomachinery	Propellants/Prop. handling
Vessels/Nozzles	Thermal hydraulics
Pumps/Valves	Thermal Management
Diagnostic Capability	Materials
Control Systems (neutronics/ I&C)	Lifetime
	Mass/Volume Limitations
	In-situ Prop. Utilization

LET'S GO TO MARS!

PRESENTATION 1.4.3

FUSION PROPULSION

