CS475/CS675 Computer Graphics

Modeling Curves: B-Splines

Bézier Splines

•
$$P(t) = \sum_{i=0}^{n} B_i J_{n,i}(t)$$
 with $0 \le t \le 1$ $J_{n,i}(t) = \binom{n}{i} t^i (1-t)^{n-i}$

- No local control.
- Degree restricted by the control polygon.

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-move-ct-pt.html

The B-Spline Curve of order k (degree, k-1)is given by:

$$P(t) = \sum_{i=1}^{n+1} B_i N_{i,k}(t)$$
 with $t_{min} \le t < t_{max}$ and $2 \le k \le n+1$

 $B_{\scriptscriptstyle i}$ - position vectors of the n+1 vertices of the control polygon

 $N_{i,k}$ - normalized B-spline basis functions

$$N_{i,1} = \begin{cases} 1, & \text{if } x_i \le t < x_{i+1} \\ 0, & \text{otherwise} \end{cases}$$

$$N_{i,k}(t) = \frac{(t - x_i) N_{i,k-1}(t)}{x_{i+k-1} - x_i} + \frac{(x_{i+k} - t) N_{i+1,k-1}(t)}{x_{i+k} - x_{i+1}}$$

• Properties:

- The function P(t) is a polynomial of degree k-1 on each interval $x_i \le t < x_{i+1}$
- i.e., A 4th-order B-spline curve is a piecewise cubic curve.
- P(t) and its derivatives of order 1 to k-2 are all continuous over the entire curve.
- Positivity $N_{i,k}(t) \ge 0 \forall t$
- Partition of Unity $\sum_{i=1}^{n+1} N_{i,k}(t) = 1$ for any t and k

- Strong Convex Hull Property:
 - For a B-spline curve of order k (degree k-1), a point on the curve lies within the convex hull of k neighbouring control points.
 - For k=2

- Strong Convex Hull Property:
 - For a B-spline curve of order k (degree k-1), a point on the curve lies within the convex hull of k neighbouring control points.
 - For k=3

- Strong Convex Hull Property:
 - For a B-spline curve of order k (degree k-1), a point on the curve lies within the convex hull of k neighbouring control points.
 - For k=3

- Strong Convex Hull Property:
 - For a B-spline curve of order k (degree k-1), a point on the curve lies within the convex hull of k neighbouring control points.
 - For k=3

- Strong Convex Hull Property:
 - For a B-spline curve of order k (degree k-1), a point on the curve lies within the convex hull of k neighbouring control points.
 - For k=3

- Strong Convex Hull Property:
 - For a B-spline curve of order k (degree k-1), a point on the curve lies within the convex hull of k neighbouring control points.
 - For k=4

- Strong Convex Hull Property:
 - For a B-spline curve of order k (degree k-1), a point on the curve lies within the convex hull of k neighbouring control points.
 - For k=9

- Strong Convex Hull Property:
 - For a B-spline curve of order k (degree k-1), a point on the curve lies within the convex hull of k neighbouring control points.
 - If all vertices of the control polygon are collinear then the Bspline curve is a straight line.
 - If at least k-1 coincident vertices of the defining polygon occur, i.e., $B_i = B_{i+1} = ... = B_{i+k-2}$, then the convex hull of these vertices is the vertex itself and so the resulting curve must pass through this vertex.

Knot Vectors and Basis, functions

$$N_{i,1} = \begin{cases} 1, \text{if } x_i \leq t < x_{i+1} \\ 0, \text{otherwise} \end{cases}$$
 Cox-deBoor recursive formula
$$N_{i,k}(t) = \frac{(t-x_i)N_{i,k-1}(t)}{x_{i+k-1}-x_i} + \frac{(x_{i+k}-t)N_{i+1,k-1}(t)}{x_{i+k}-x_{i+1}}$$

- The x_i 's are the knot values with, $x_i \le x_{i+1}$
- The basis function $N_{i,\,k}(t)$ is zero outside the knot span $\,x_i{\le}x_{i+k}$
- Total number of knot values is n+1+k, where n+1 is the number of vertices of the control polygon and k is the order of the b-spline curve.
- For e.g.,

$$n+1=4, k=3$$

$$N_{1,3} \to x_1, \dots, x_4 \\ N_{4,3} \to x_4, \dots, x_7$$
 $[x_1, x_2, x_3, x_4, x_5, x_6, x_7]$

- Types of Knot Vectors
 - Uniform (or periodic) knot vector : Individual knot values are evenly spaced.
 - For e.g., [1,2,3,4] [-0.2,-0.1,0.0,0.1,0.2] [0.0,0.25,0.50,0.75,1.0]
 - For a given order k, uniform knot vectors yield periodic uniform basis functions for which

$$N_{i,k}(t) = N_{i-1,k}(t-1) = N_{i+1,k}(t+1)$$

- Types of Knot Vectors
 - Uniform (or periodic) knot vector : Individual knot values are evenly spaced.
 - For a given order k, uniform knot vectors yield periodic uniform basis functions for which:

$$N_{i,k}(t) = N_{i-1,k}(t-1) = N_{i+1,k}(t+1)$$

• Thus each basis function is a translate of the other.

Figure 5-36 Periodic uniform B-spline basis functions, $[X] = [0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6]$, n+1=4, k=3.

- Types of Knot Vectors
 - Open uniform knot vector: this has a multiplicity of knot values at the ends of the knot vector equal to the order k of the b-spline basis function. Internal knot values are evenly spaced.
 - For e.g., [0,0,1,2,3,4,4] for k=2 [0,0,1/4,1/2,3/4,1,1] for k=2
 - Formally,

$$x_{i} = \begin{cases} 0, & 1 \le i \le k \\ i - k, & k + 1 \le i \le n + 1 \\ n - k + 2, & n + 2 \le i \le n + k + 1 \end{cases}$$

- Types of Knot Vectors
 - Open uniform knot vector: this has a multiplicity of knot values at the ends of the knot vector equal to the order k of the b-spline basis function. Internal knot values are evenly spaced.

- Formally,
$$x_i = \begin{cases} 0, & 1 \leq i \leq k \\ i - k, & k+1 \leq i \leq n+1 \\ n - k + 2, & n+2 \leq i \leq n+k+1 \end{cases}$$

- The basis functions look as shown [X]=[0.00.00.00.01.01.01.01.01] for k=4, n+1=4
- Looks familiar?

- Types of Knot Vectors
 - Open uniform knot vector: this has a multiplicity of knot values at the ends of the knot vector equal to the order k of the b-spline basis function. Internal knot values are evenly spaced.

- Formally,
$$x_i = \begin{cases} 0, & 1 \leq i \leq k \\ i - k, & k+1 \leq i \leq n+1 \\ n - k + 2, & n+2 \leq i \leq n+k+1 \end{cases}$$

- The basis functions look as shown [X]=[0.00.00.00.01.01.01.01.01] for k=4, n+1=4
- The B-spline basis reduces to the Bernstien basis when k=n+1 and an open uniform knot vector is used.

- Types of Knot Vectors
 - Non-uniform knot vector: this has a unequally spaced and/or multiple internal knot values. They may be periodic or open.
 - For e.g.,

[00011222], [0, 0.28, 0.5, 0.72, 1]

Nonuniform basis functions for n+1=5, k=3.

(a)
$$[X] = [0 \ 0 \ 0 \ 1 \ 2 \ 3 \ 3 \ 3];$$

(b) $[X] = [0 \ 0 \ 0 \ .4 \ 2.6 \ 3 \ 3 \ 3];$
(c) $[X] = [0 \ 0 \ 0 \ 1.8 \ 2.2 \ 3 \ 3 \ 3];$
(d) $[X] = [0 \ 0 \ 0 \ 1 \ 1 \ 3 \ 3 \ 3];$
(e) $[X] = [0 \ 0 \ 0 \ 2 \ 2 \ 3 \ 3 \ 3].$

Mathematical Elements for Computer Graphics, 4ed., D. F. Rogers and J. A. Adams

• Buildup of b-spline basis functions

```
N_{i,k}
N_{i,k-1} N_{i+1,k-1}
N_{i,k-2} N_{i+1,k-2} N_{i+2,k-2}
\vdots \vdots \vdots \vdots \vdots \vdots N_{i+1,1} N_{i+2,1} N_{i+3,1} N_{i+k-1,1}
```

Buildup of b-spline basis functions

• Buildup of b-spline basis functions

CS 475/CS 675: Lecture 14

- Properties
 - Strong Convex Hull Property
 - Curve follows shape of control polygon
 - Maximum order = number of control points
 - Invariance to affine transformation
 - Variation diminishing property

- Controlling the B-Spline
 - Knot Vector (uniform, open, non-uniform)
 - Order of the curve
 - Number and position of control points

- Order of the b-spline curve
 - Open uniform knot vector

CS 475/CS 675: Lecture 14

- Multiplicity of control points
 - Open uniform knot vector, k=4
 - Control Polygon B₁, B₂, B₃, B₄

- Multiplicity of control points
 - Open uniform knot vector, k=4
 - Control Polygon B₁, B₂, B₂, B₃, B₄

CS 475/CS 675: Lecture 14

- Multiplicity of control points
 - Open uniform knot vector, k=4
 - Control Polygon B₁, B₂, B₂, B₂, B₃, B₄

[00001111]

[000012222]

[0000123333]

Moving a control point

Mathematical Elements for Computer Graphics, 4ed., D. F. Rogers and J. A. Adams

To get a closed curve, repeat k-2 polygon vertices at the beginning or at the end

- Curve Fitting or Interpolating B-splines
 - Find a B-spline passing through D_1 , D_2 , ... D_i

$$\begin{split} D_{1}(t_{1}) &= N_{1,k}(t_{1})B_{1} + N_{2,k}(t_{1})B_{2} + \ldots + N_{i,k}(t_{1})B_{i} \\ D_{2}(t_{2}) &= N_{1,k}(t_{2})B_{1} + N_{2,k}(t_{2})B_{2} + \ldots + N_{i,k}(t_{2})B_{i} \\ \vdots &= &\vdots &\vdots &\vdots \\ D_{j}(t_{j}) &= N_{1,k}(t_{j})B_{1} + N_{2,k}(t_{j})B_{2} + \ldots + N_{i,k}(t_{j})B_{i} \\ \end{split}$$
 where $2 \leq k \leq n + 1 \leq j$

- Curve Fitting or Interpolating B-splines
 - Find a B-spline passing through D_1 , D_2 , ... D_j

$$\boldsymbol{D} = \boldsymbol{N} \cdot \boldsymbol{B}$$

$$\boldsymbol{D} = \begin{bmatrix} D_1(t_1) & D_2(t_2) & \dots & D_j(t_j) \end{bmatrix}^T$$

$$\boldsymbol{B} = \begin{bmatrix} B_1 & B_2 & \dots & B_i \end{bmatrix}^T$$

$$\boldsymbol{N} = \begin{bmatrix} N_{1,k}(t_1) & \dots & \dots & N_{i,k}(t_1) \\ \vdots & \ddots & \vdots \\ N_{1,k}(t_j) & \dots & \dots & N_{i,k}(t_j) \end{bmatrix}$$

- Curve Fitting or Interpolating B-splines
 - Find a B-spline passing through D_1 , D_2 , ... D_i

$$B = N^{-1}$$
. D if $2 \le k \le n+1 = j$
 $B = [N^T N]^{-1} N^T$. D if $2 \le k \le n+1 < j$

$$t_1 = 0, \quad \frac{t_l}{t_{max}} = \frac{\sum_{s=2}^{l} |(D_s - D_{s-1})|}{\sum_{s=2}^{j} |(D_s - D_{s-1})|} \quad \text{for } l \ge 2$$

 t_{max} = maximum value of the knot vector

Rational B-Splines

$$P^{h}(t) = \sum_{i=1}^{n+1} B_{i}^{h} N_{i,k}(t)$$

$$P(t) = \frac{\sum_{i=1}^{n+1} B_i h_i N_{i,k}(t)}{\sum_{i=1}^{n+1} h_i N_{i,k}(t)} = \sum_{i=1}^{n+1} B_i R_{i,k}(t)$$

$$R_{i,k}(t) = \frac{h_i N_{i,k}(t)}{\sum_{i=1}^{n+1} h_i N_{i,k}(t)}$$

Question: What can rational curves do for us that polynomial curves cannot?

Non-uniform knot vector + Rational B-splines = NURBS