PROGETTO MACHINE LEARNING

BELTRAMELLI FABIO 816912

CAPELLI ALESSANDRO 816302

FINATI DAVIDE 817508

DOMINIO, OBIETTIVI

Dominio:

Il dataset preso in esame rappresenta le osservazioni atmosferiche di diverse stazioni meteo in Australia dal 01/11/2007 al 25/06/2017.

Obiettivo:

Allenare e valutare diversi modelli per la predizione della possibilità che piova il giorno successivo. Trovare modello con trade-off migliore tra performance e tempo.

IPOTESI E ASSUNZIONI

Ipotesi:

La probabilità che piova il giorno successivo è bassa in quanto l'Australia è un territorio caratterizzato da temperature alte e bel tempo. Questo è dimostrato anche dallo sbilanciamento del dataset.

Assunzioni:

Abbiamo rimosso dal dataset il valore RISK-MM in quanto variabile target per un task di regressione. Abbiamo anche rimosso le feature con elevata percentuale di valori nulli, quali Evaporation, Sunshine, Cloud9am, Cloud3pm.

DATASET

- MaxTemp: temperatura massima registrata
- MinTemp: temperatura minima registrata
- RainFall: quantità di pioggia caduta
- WindGustDir: direzione del vento più forte
- WindGustDir9am: direzione del vento più forte alle nove di mattina
- WindGustDir3pm: direzione del vento più forte alle tre di pomeriggio
- WindGustSpeed: velocità del vento più forte
- WindGustSpeed9am: velocità del vento più forte alle nove di mattina
- WindGustSpeed9pm: velocità del vento più forte alle tre di pomeriggio
- Humidity9am: livello di umidità alle nove di mattina
- Humidity3pm: livello di umidità alle tre di pomeriggio
- Pressure9am: livello di pressione alle nove di mattina
- Pressure3pm: livello di pressione alle tre di pomeriggio
- Temp9am: temperatura registrata alle nove di mattina
- Temp3pm: temperatura registrata alle tre di pomeriggio
- RainToday: indica se il giorno precedente alla predizione ha piovuto
- RainTomorrow: indica il target binario da predire

CORRELAZIONE FEATURE

FEATURE SELECTION

- Per quanto riguarda la feature selection abbiamo utilizzato il metodo Correlation-based, in cui un alto valore di correlazione tra due feature indica che avranno lo stesso effetto sulla predizione del target. Perciò è possibile andare a escluderne una delle due, in modo da ridurre il numero di attributi.
 - Data la soglia di 0.67, le feature rimosse dal dataset sono:
- Temp9am
- MaxTemp
- Temp3pm
- Pressure3pm
- Humidity9am
- WindGustSpeed

TRAINING SET & TEST SET

- Abbiamo inizialmente utilizzato la tecnica HoldOut per individuare i modelli più promettenti sui quali eseguire la CrossValidation, in modo da risparmiare tempo successivamente.
- La partizione HoldOut usata è formata da 70% training e da 30% test, in modo randomico.
- I modelli scelti dopo la fase di HoldOut sono: DecisionTree,
 RandomForest, NaiveBayes, NeuralNetwork. SVM è stata esclusa,
 in quanto è risultata troppo onerosa l'ottimizzazione dei parametri.
- La CrossValidation applicata è del tipo k-Fold uguale a 10.

DECISION TREE

	YES	NO
YES	3009	4564
NO	997	25260

Tempo creazione modello: 19 sec

Tempo calcolo predizione: 1 sec

Accuracy	0,83
Precision	0,75
Recall	0,39
F1-score	0,51
AUC	0,72

RANDOM FOREST

	YES	NO
YES	3714	3859
NO	1338	24919

Tempo creazione modello: 4 ore

Tempo calcolo predizione: 4 sec

Accuracy	0,84
Precision	0,73
Recall	0,48
F1-score	0,58
AUC	0,86

NAIVE BAYES

	YES	NO
YES	18	7555
NO	12	26245

Tempo creazione modello: 22 sec

Tempo calcolo predizione: 1 sec

Accuracy	0,77
Precision	0,60
Recall	0,002
F1-score	0,004
AUC	0,82

NEURAL NETWORK

	YES	NO
YES	3483	4090
NO	1447	24810

Tempo creazione modello: 13 min

Tempo calcolo predizione: 1 sec

Accuracy	0,83
Precision	0,70
Recall	0,46
F1-score	0,55
AUC	0,84

SVM - RADIAL KERNEL (HOLDOUT)

	YES	NO
YES	2990	787
NO	4583	25470

Accuracy	0,84
Precision	0,79
Recall	0,39
F1-score	0,52

Tempo creazione modello:

17 min

Tempo calcolo predizione:

2 min

Dal grafico è facile intuire come i modelli con ROC migliore siano NeuralNetwork e RandomForest, mentre il peggiore è DecisionTree.

CONCLUSIONI

- La scelta del modello con migliore rapporto performance-tempo è strettamente legata al contesto di utilizzo.
- Se l'obiettivo è un modello molto veloce, anche sacrificando leggermente le performance, la scelta migliore è DecisionTree, in quanto è risultato veloce, semplice da interpretare e con un buone performance.
- Al contrario se l'obiettivo è ottenere performance elevate, i modelli migliori sono RandomForest e NeuralNetwork.
- Il modello NaiveBayes è da escludere, infatti ha performance di predizione della classe positiva molto bassa. Mentre il modello SVM è risultato troppo oneroso da allenare.

SVILUPPI FUTURI

 Migliorare fase di preprocessing, andando a modificare nel modo opportuno i valori nulli.

Partire dai risultati di feature importance dei vari modelli, per selezionare le feature più importanti già in fase di preprocessing.

Migliorare scelta iperparametri per i vari modelli.

 Utilizzare modelli più complessi, come ad esempio Deep Learning.