Embedded System Design Report

STM32G030F6P + nRF24L01+ + MAX30102

"This report outlines the hardware configuration, software setup, and communication protocol design for a low-cost embedded system that collects biometric data and transmits it wirelessly using a minimal BOM design approach.

Project Components

1. STM32G030F6P6

• Core: ARM Cortex-M0+ @ 64 MHz

• Flash: 32 KB

• **RAM**: 8 KB

• Package: TSSOP20

• Oscillator: Internal HSI RC oscillator used (no external crystal)

2. nRF24L01+

- Wireless transceiver operating at 2.4 GHz
- Interface: **SPI**
- Application: Wireless data transmission to another node
- **Datasheet**

--

3. MAX30102

- Integrated pulse oximetry and heart-rate sensor
- Interface: I2C
- Datasheet

Peripheral Configuration

SPI Interface (for nRF24L01+)

• Clock speed: 64 MHz system clock

• Prescaler: 8

• **SPI Speed**: 8 MHz

 Chosen for high-speed communication while staying within the nRF24L01+ supported SPI limits (~10 MHz max)

I2C Interface (for MAX30102)

- Internal pull-up resistors used in software
- Clock speed: 100 kHz
- MAX30102 I2C address (default): 0x57

X I2C Pull-Up Problem and Solution

? Problem

I2C lines are **open-drain** and require pull-up resistors to define a logical HIGH state. Without them, the lines float, resulting in:

- Signal integrity issues
- Unstable or failed communication
- NACKs or device lockups

Solutions

Type	Description
Hardware	Use external pull-up resistors (2.2k Ω –10k Ω) — standard and recommended for production
Software	Enable internal STM32 pull-up resistors via GPIO settings — acceptable for prototyping

✓ Chosen Approach:

"Used the **software/internal pull-up resistors** for I2C in this prototype stage. Given the **short trace lengths** and **low-speed (100 kHz)** bus, this approach is functionally stable for now.

However, **external pull-ups are recommended for final PCB** to ensure noise immunity and stronger drive capability.

Clock Configuration

- System Clock Source: Internal HSI (High-Speed Internal RC oscillator @ 64 MHz)
- External Crystal: X Omitted
- "Decision made to **reduce component count** and simplify PCB layout.

 For this application (SPI at 8 MHz and I2C at 100 kHz), the **internal RC oscillator provides sufficient timing accuracy**.
 - If wireless timing drift or USB support is needed later, we can revise and add a crystal.

© Configuration Screenshots

STM32CubeMX: SPI Configuration (nRF24L01)

STM32CubeMX: I2C with Internal Pull-Up (MAX30102)

§ Bill of Materials (BoM)

Estimated Hardware Cost for 1 Unit

Component	Part Number	Quantity	Unit Price (USD)	Total (USD)
MCU	STM32G030F6P6	1	\$0.60	\$0.60
Wireless Module	nRF24L01+	1	\$1.20	\$1.20
Sensor	MAX30102	1	\$2.80	\$2.80

Total Estimated Cost (Prototype): ~\$x.xx

Conclusion

This embedded setup is designed for wireless transmission of heart rate and temperature data using a cost-effective and low-power solution:

- STM32G030F6P runs at 64 MHz using its **internal HSI** oscillator
- Communicates wirelessly using **nRF24L01+** over SPI @ 8 MHz
- Collects health data via MAX30102 over I2C with internal pull-ups

The design is optimized for:

- Low BOM cost
- Simple PCB layout (no external crystal or I2C resistors)
- Wireless + biometric sensing

Report by: Amer Farg — Embedded Systems Engineer