(2) 易于验证, Aut G 中共有 3 个子群:

$$H_1 = \{\varphi_1\};$$

 $H_2 = \{\varphi_1, \varphi_4\};$
 $H_3 = \operatorname{Aut} G;$
从而哈斯图为:

(3) 由于 |S|<5,所以 $\langle S,R\rangle$ 是分配格,但因为 H_2 没有补元,所以不是有补格,从而也不是布尔格。(另证: 反设 $\langle S,R\rangle$ 是有补格,则 $\langle S,R\rangle$ 是有补分配格,从而是布尔格。但有限阶布尔格都是 $2^k(k\in\mathbb{N})$ 阶的,这与 |S|=3 矛盾。所以 $\langle S,R\rangle$ 必定不是有补格)。

4

证明: 首先证明 G 中无二阶元: 若不然,不妨设 $a \in G$ 为二阶元,则 $\langle a \rangle = \{e,a\}$ 是 G 的子群,从而由 Lagrange 定理知, $2 = |\langle a \rangle| \mid |G|$ 。这与 |G| 是奇数阶群矛盾。

令 $\mathscr{A}=\{\{x,y\}\mid x,y\in G\wedge xy=e\}$,则 \mathscr{A} 是 G 的一个划分(因为每个元素均可逆,所以 $\cup\mathscr{A}=G$; 又由逆元唯一性和 $(x^{-1})^{-1}=x$ 可知, $\forall A,B\in\mathscr{A},A\cap B\neq\varnothing\to A=B$)。由于 G 中无二阶元,所以 $\forall A\in\mathscr{A}$,若 $A\neq\{e\}$,就必有 |A|=2,从而总有 $\prod_{x\in A}x=e$ 。由于 \mathscr{A} 是 G 的划分,且 G 是 Abel 群,所以:

$$\prod_{x \in G} x = \prod_{A \in \mathscr{A}} \prod_{x \in A} x = \prod_{A \in \mathscr{A}} e = e.$$