Take Home Exam 1

Question 1

$$\neg(p \land q) \Leftrightarrow (\neg q \rightarrow p) \equiv (\neg p \lor \neg q) \Leftrightarrow (\neg q \rightarrow p) \qquad \text{by the second De Morgan law}$$

$$\equiv (\neg p \lor \neg q) \Leftrightarrow (\neg (\neg q) \lor p) \qquad \text{by the truth table for } \rightarrow$$

$$\equiv (\neg p \lor \neg q) \Leftrightarrow (q \lor p) \qquad \text{by the double negation law}$$

$$\equiv ((\neg p \lor \neg q) \rightarrow (q \lor p)) \land ((q \lor p) \rightarrow (\neg p \lor \neg q)) \qquad \text{by truth table for } \Leftrightarrow$$

$$\equiv (\neg (\neg p \lor \neg q) \lor (q \lor p)) \land (\neg (q \lor p) \lor (\neg p \lor \neg q)) \qquad \text{by the second De Morgan law}$$

$$\equiv ((p \land q) \lor (q \lor p)) \land ((\neg q \land \neg p) \lor (\neg p \lor \neg q)) \qquad \text{by the second De Morgan law}$$

$$\equiv ((p \land q) \lor (q \lor p)) \land ((\neg q \land \neg p) \lor (\neg p \lor \neg q)) \qquad \text{by the Distributive law } (1)$$

$$\equiv ((p \lor q) \land (q \lor p)) \land ((\neg q \land \neg p) \lor (\neg p \lor \neg q)) \qquad \text{by the Idempot. and Comm. law } (1)$$

$$\equiv (q \lor p) \land ((\neg q \lor \neg p) \lor (\neg p \lor \neg q)) \qquad \text{by the Distributive law } (1)$$

$$\equiv (q \lor p) \land ((\neg q \lor \neg p) \lor (\neg p \lor \neg q)) \qquad \text{by the Idempot. and Comm. law } (1)$$

$$\equiv (q \lor p) \land ((\neg q \lor \neg p) \land (\neg p \lor \neg q)) \qquad \text{by the Distributive law } (1)$$

$$\equiv (q \lor p) \land ((\neg q \lor \neg p) \land (\neg p \lor \neg q)) \qquad \text{by the Idempot. and Comm. law } (1)$$

$$\equiv (q \lor p) \land ((\neg q \lor \neg p) \land (\neg p \lor \neg q)) \qquad \text{by the Idempot. and Comm. law } (1)$$

$$\equiv (p \lor q) \land (\neg p \lor \neg q) \qquad \text{by the Comm. law } (1) \text{ and Idempot. law } (2)$$

Question 2

a. Two different interns in the same faculty cannot have the same employee id number.

$$\forall x \ \forall y \ (\forall z \ (x \neq y) \ \land \ (I(x,z) \ \land \ I(y,z)) \ \rightarrow \exists a \exists b (E(x,a) \ \land \ E(y,b) \ \land \ (a \neq b)))$$

b. There are some interns in all faculties who are supervised by no one but themselves.

$$\exists x \ (\forall y \ I(x,y) \rightarrow \forall z ((x \neq z) \land S(x,x) \land \neg S(x,z)))$$

c. At most two interns can be admitted to each job position in the medicine faculty.

$$\exists x \exists y \ \forall c ((x \neq y) \land J(c, medicine) \land (A(x, c) \lor A(y, c)) \land \forall z (A(z, c) \rightarrow (z = x) \lor (z = y)))$$

Question 3

a.

1: $(p \lor \neg q)$		Premise
2: (p	Vr)	Premise
3:	: r → q	Assumption
	4: p	Assumption
5:	: p → p	4, 4, → <i>i</i>
	6: ¬q	Assumption
	7: r	Assumption
	8: q	3, 7, → <i>e</i>
	9: ⊥	6 , 8, ¬ e
	10: p	9, ⊥ e
	11: r → p	7 – 10, → <i>i</i>
	12: p	2,5,11, V e
13	3: ¬q → p	$6-12$, $\rightarrow i$
14	4: p	1,5,13, v e
15: $(r \rightarrow q) \rightarrow p$		$3-14, \rightarrow i$

b.

$: (\mathbf{q} \to p) \to q$	Assumption
2: ¬q	Assumption
3: q	Assumption
4: ⊥	2,3,¬e
5: p	4,⊥ e
$6: q \rightarrow p$	3 – 5, → <i>i</i>
7: q	1 ,6, $ ightarrow$ e
8: ⊥	2 - 7, ¬ e
9: ¬q → ⊥	$2-8, \rightarrow 8$
10 : q	9, ¬ €
$: ((q \to p) \to q) \to q$	1 − 10, →

Question 4

b.

1: $\forall x \forall y (P(x,y) \rightarrow \neg P(y,x))$ Premise 2: $\forall x \exists y P(x, y)$ **Premise** t fresh name $3: \forall y P(t,y) \rightarrow \neg P(y,t)$ 1, ∀x *e* c fresh name 4: $P(t,c) \rightarrow \neg P(c,t)$ 3, ∀y *e* 5: P(t, c) Assumption 6: $\neg P(c,t)$ $4, \rightarrow e$ 7: P(c,t)Assumption 8: ⊥ 6, 7, $\neg e$ $9: \neg P(c,t)$ $6-8, \neg i$ 10: $\exists z \neg P(z, c)$ 5-9, $\exists z i$ 11: $\forall v \exists z \neg P(z, v)$ 4 - 10 , ∀v i 2, 3 - 11, $\neg \neg i$ 12: $\neg\neg \forall v \exists z \neg P(z, v)$ 13: $\neg \exists v \forall z P(z, v)$ 12