The HR433A is a true one- port , surface- acoustic- wave(SAW) resonator in a low- profile F-11 case. It provides reliable , fundamental- mode , quartz frequency stabilization of fixed- frequency transmitters operating at 433.92 MHz.

1.Package Dimension (F-11)

2.Marking

HR433A

Color: Black or Blue

4.Typical Application Circuit

1) Typical Low-Power Transmitter Application

5. Typical Frequency Response

Pin	Connection		
1/4	Input / Output		
2/3	Case Ground		

Dimension	Data (unit: mm)				
А	11.0±0.3				
В	4.5±0.3				
С	3.2±0.3				
D	0.45±0.1				
E	5.0±0.5				
F	2.54±0.2				

3. Equivalent LC Model and Test Circuit

2) Typical Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	±30V	VDC
Case Temperature	-40 to +85	${\mathbb C}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.920 MHz	Δ f _C		±75	±150	kHz
Insertion Loss		IL		1.7	2.0	dB
Quality Factor	Unloaded Q	Q_U		10371		
	50 Ω Loaded Q	Q_L		1800		
Temperature Stability	Turnover Temperature	T _O	25	40	55	$^{\circ}\!\mathbb{C}$
	Turnover Frequency	f _O		fc) >	kHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/°C ²
Frequency Aging Absolute Value during the First Year		f _A	~(≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}	\(\sqrt{\sqrt{1}}\)	21	26	Ω
	Motional Inductance	L _M		79.926		μH
	Motional Capacitance	C _M		1.6848		fF
	Pin 1 to Pin 2 Static Capacitance	C_{o}		1.9		pF

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

NOTES:

- 1. Frequency aging is the change in f_C with time and is specified at +65 °C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, f_C, is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2: 1. Typically, $f_{oscillator}$ or $f_{transmitter}$ is less than the resonator f_{C} .
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature $T_c=+25^{\circ}\text{C}\pm2^{\circ}\text{C}$.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- 7. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal center frequency at any case temperature, T_C , may be calculated from: $f = f_O \left[1-FTC \left(T_O - T_C \right)^2 \right]$. Typically, oscillator T_O is 20°C less than the specified resonator T_O.
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground .The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to Co.

WIN-KARE Technology Co.,Ltd Http://www.win-kare.com Tel:+86 0755 25003073 Mobile:+86-13302965579

Fax:+86 0755 25003079

E-mail:service@win-kare.com; marketing@win-kare.com