Couche 1 : Physique

Transport physique de l'information

• Le câble coaxial :

Jusqu'à 150MHz en large bande (fiabilité 1/107).

Support encombrant. Télévision et téléphone.

Version 10 Base 2 (10MHz sur 200m)

Version 100 Base 5 (100MHz sur 500m)

Connecté au poste avec un BNC (Ethernet fin)

• La paire torsadée : Gaine Isolante

Cœur de cuivre

Origine: téléphone (prise RJ45).

56kbit/s avec les modems récents (fiabilité 1/10⁵).

10 (voir 100) Mbits/s (sur quelques mètres).

Utilisée dans les réseaux 10 Base T (étoile en mode diffusion ou point à point).

Evolution vers 100 Base T voir « Gigabit ».

• La fibre optique :

-Gaine de silice (quelques μm)

Support de transmission récent.

Supporte le transport de plusieurs GBits/s sur de très longues distances (fiabilité 1/10¹²).

Faible sensibilité électromagnétique & difficultés d'écoute.

Emetteur diode Electroluminescente (LED) ou diode Laser. Récepteur photosensible.

• Sans fil:

Différents types : infrarouge, hertzien (2.4GHz)

Débit : 11 MBits/s

Portée moyenne : 10m à 150m

Forte sensibilité aux perturbations

électromagnétiques. Pas de sécurité physique.

Signaux échangés entre ordinateurs

Quantité d'information transmise = 1/T Bauds.

(T temps entre deux tops d'horloge)

Sur une liaison série 1 seul bit transmis à chaque Top d'horloge. 1 Bauds = 1 bit/s.

Sur une liaison parallèle à n bits 1 Bauds = n bits/s.

Transformer la valeur en un signal carré

Transmission modulée

Problème de la transmission en bande de base : dégradation du signal.

Usage limité au **réseau local**.

- ⇒Utilisation d'un modem (modulateur démodulateur) Convertisseur bande de base en :
 - ⇒ Modulation d'amplitude
 - **⇒ Modulation de fréquence**
 - ⇒ Modulation de phase et réciproquement ...

Modulation d'amplitude

Modulation de l'amplitude d'un signal sinusoïdal.

Pour	Contre
Transporter un signal alternatif est moins coûteux (moins de perte).	Sensible à la perturbation du signal (orage, lignes électriques).
La modulation d'amplitude est un circuit électrique simple (premier utilisé).	

Modulation de fréquence

Modulation de la fréquence d'un signal sinusoïdal.

Pour	Contre
Transporter un signal alternatif est moins coûteux (moins de perte).	 Système de démodulation moins trivial à concevoir. (la FM a vue le jour après la AM).
 La modulation de fréquence est résistante aux perturbations (d'amplitude). 	,

Modulation de phase

Modulation de la phase d'un signal sinusoïdal.

Pour	Contre
Les dispositifs de (dé)modulation de phase permettent de coder facilement plus de deux états.	Système de démodulation non trivial.
 La modulation de phase est résistante aux perturbations (d'amplitude). 	

Transmission modulée

Les transmissions modulées peuvent **combiner plusieurs** formes de **modulations** simultanées.

Exemple:

1 niveau de modulation d'amplitude + 1 niveau de modulation de fréquence Permet de coder [0|1] en AM et [0|1] en FM. Donc un temps d'horloge permet de coder 4 valeurs (00, 01, 10, 11) sur 2 bits :

Dans ce cas 1 Baud = 2 bits/s.

Les supports matériels de la communication entre ordinateurs

Transporter un signal carré sur un support analogique (e.g. téléphone)

Exemple : le modem ADSL

ADSL: Asymetric bit rate Digital Subscriber Line.

Division des signaux en **256 sous-canaux de fréquences** (de 0 à 1100kHz) (technologie DMT: Discrete MultiTone).

Modulation d'Amplitude Quadratique (QAM) sur 4 niveaux d'amplitude pour chaque canal de 4,3kHz.

Exemple : le modem ADSL

- •Débit théorique descendant 8,2MBits/s montant 640kBits/s sur < 5km.
- •Débit pratique en France : 512kb/s, 128kb/s.

