第六次作业评分标准

Liujia Li

Apr. 2025

答案仅供参考, 合理即酌情给分

1 题目 6.2(10%)

咖啡制造厂用 3 种咖啡豆制造一种混合咖啡,每种咖啡豆的香味等级、 味道等级、售价及库存量如表 1所示。假设混合咖啡的香味等级和味道等级 是所用咖啡豆的香味等级和味道等级的加权平均值,等级越高质量越好,现 要生产 1000 千克混合咖啡,要求香味等级不低于 75,味道等级不低于 80. 要使成本最低应如何配制?试建立该问题的数学模型。

表 1: 咖啡豆及库存

75H H === 567 13										
咖啡豆	香味等级	味道等级	售价/(元/千克)	库存/千克						
1	75	86	20	500						
2	85	88	28	600						
3	60	75	18	400						

参考答案: 说明参数含义 2%, 目标方程与每个约束方程均 1%

设 3 种咖啡豆的比例分别是 x_1 , x_2 和 x_3 , 问题可表述为:

$$\begin{aligned} & \text{min} & 20x_1 + 28x_2 + 18x_3 \\ & \text{s.t.} & 75x_1 + 85x_2 + 60x_3 \ge 75 \\ & 86x_1 + 88x_2 + 75x_3 \ge 80 \\ & x_1 + x_2 + x_3 = 1 \\ & 1000x_1 \le 500 \\ & 1000x_2 \le 600 \\ & 1000x_2 \le 400 \\ & x_1, x_2, x_3 \ge 0 \end{aligned}$$

2 题目 6.4,(1)(3) (20%)

图解法解下列线性规划(1)

$$\begin{array}{lll} \max & x_1 + x_2 \\ \text{s.t.} & x_1 & \leq 5 \\ & x_2 & \leq 3 \\ & x_1 + 3x_2 & \leq 11 \\ & x_1, x_2 & \geq 0 \end{array}$$

参考答案:可行域边界条件每条线 2%, 正确画出目标函数并找到最优点 3%。小分 4*2+3=11

如图 1最优解为点 A

图解 (3)

$$\begin{array}{lll} \min & 2x_1 + x_2 \\ \text{s.t.} & x_1 + x_2 & \geq 1 \\ & x_2 & \leq 2 \\ & x_1, x_2 & \geq 0 \end{array}$$

参考答案:可行域边界条件每条线 2%,正确画出目标函数并找到最优点 3%。小分 3*2+3=9

图 1: Figure for 6.4(1)

如图 2最优解为点 A

图 2: Figure for 6.4(3)

3 题目 6.6(30%)

设线性规划

$$\begin{array}{lll} \max & 2x_1 + x_2 \\ \text{s.t.} & -x_1 + 2x_2 & \leq 4 \\ & x_1 & \leq 5 \\ & x_1, x_2 & \geq 0 \end{array}$$

- (1) 画出它的可行域,用图解法求最优解.
- (2) 写出它的标准形,列出所有的基,指出哪些是可行基,通过列出所有的可行解及其目标函数值找到最优解,指出每个可行解对应的可行域的顶点.

参考答案: 可行域边界条件每条线 1%, 正确画出目标函数并找到最优点 1%。小分 1*5=5

(1) 如图 3所示,最优解是点 B。 $x_1 = 5, x_2 = 4.5, z = 14.5$ 。

图 3: Figure for 6.6

(2) 参考答案: 总 25%。标准形 5%,基,是否为可行基,可行解对应的目标函数以及最优解,可行域顶点 20%。不正确的采用扣分制,每个酌情扣 1 分,至 0 分为止。

标准形为

$$\begin{array}{ll} \min & -2x_1 - x_2 \\ \text{s.t.} & -x_1 + 2x_2 + x_3 \\ & x_1 \\ & x_j \geq 0, \quad 1 \leq j \leq 4 \end{array} = 4$$

$$A = \begin{pmatrix} -1 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$B_1 = (P_1, P_2) = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}, \quad x_1^{(1)} = 5, \quad x_2^{(1)} = 4.5, \quad x_3^{(1)} = 0, \quad x_4^{(1)} = 0, \quad z^{(1)} = -14.5.$$

对应点 B, B_1 是可行基。

$$B_2 = (P_1, P_3) = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}, \quad x_1^{(2)} = 5, \quad x_2^{(2)} = 0, \quad x_3^{(2)} = 9, \quad x_4^{(2)} = 0, \quad z^{(2)} = -10.$$

对应点 C, B_2 是可行基。

$$B_3 = (P_1, P_4) = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}, \quad x_1^{(3)} = -4, \quad x_2^{(3)} = 0, \quad x_3^{(3)} = 0, \quad x_4^{(3)} = 9.$$

B₃ 是基, 但不是可行基。

$$B_4 = (P_2, P_3) = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix},$$
不是基。

$$B_5 = (P_2, P_4) = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \quad x_1^{(5)} = 0, \quad x_2^{(5)} = 2, \quad x_3^{(5)} = 0, \quad x_4^{(5)} = 5, \quad z^{(5)} = -2.$$

对应点 A, B_5 是可行基。

$$B_6 = (P_3, P_4) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad x_1^{(5)} = 0, \quad x_2^{(5)} = 0, \quad x_3^{(5)} = 4, \quad x_4^{(5)} = 5, \quad z^{(5)} = 0.$$

对应点 O, B_6 是可行基。

$$x^{(1)} = (5, 4.5, 0, 0)$$
 是最优解。

4 题目 6.13(20%)

表 2是一张最终单纯形表(最小化),能否判断它是否有无穷多个最优解?若能,请给出你的结论.

表 2:									
			1	-1	0	0			
c_B	x_B	b	x_1	x_2	x_3	x_4			
-1	x_2	2	-1	1	1	0			
0	x_4	10	-3	0	-4	0			
	-Z	2	0	0	1	0			

表 2: 最终单纯形表 (最小化)

参考答案: 给出结论 5%, 逻辑合理 15%

由于非基变量 x_1 的检验数 $\lambda_1 = 0$ 且 a_{11}, a_{21} 都小于等于 0,令 $x_1 = \delta, x_3 = 0$,解得 $x_2 = 2 + \delta, x_4 = 10 + 3\delta$. 当 $\delta \ge 0$ 时, (x_1, x_2, x_3, x_4) 是可行解且目标函数值 z = -2,从而有无穷多个最优解。

5 题目 6.14(20%)

原始规划

max
$$3x_1 - 2x_2 + x_3 + 4x_4$$

s.t. $x_1 + x_2 - x_3 - x_4$ ≤ 6
 $x_1 - 2x_2 + x_3$ ≥ 5
 $2x_1 + x_2 - 3x_3 + x_4$ $= -4$
 x_1, x_2, x_3 ≥ 0 , x_4 任意

参考答案: 写错酌情扣分

对偶规划

$$\min 6y_1 - 5y_2 - 4y_3$$

s.t.
$$y_1 - y_2$$
 $+2y_3 \ge 3$ $y_1 + 2y_2$ $+y_3 \ge -2$ $-y_1 - y_2$ $-3y_3 \ge 1$ $-y_1$ $+y_3 = 4$ $y_1, y_2 \ge 0$, y_3 任意