

Example System

- 2 identical systems
- Step response
- P-Controller (orange)
- Amplifier (pink)
- Electrical motor model (blue)

Example System

- · Yamaha pendulum
- Actual part from SolidWorks
- STL format
- Sphere mass
- Located at COM
- Arm transparent -> no dynamics
- Identical motor (rotor) dynamics

Display Results

- · Drag & drop
- Minor differences in inertia

From SolidWorks

- Apply material to part
- Shows up in design tree

Evaluate Tab

- Model Properties
- Material density
- Mass
- COM
- Inertia Tensors
- Choose co-ordinate centre wisely to get useful info

Display Results

- · Drag & drop
- · Minor differences in inertia

Position

- · Location or components
- Predecessor frame + motion / rotation
- · Defines system inertia

Force

- · Mechanical models
- · Not a physical object that you can pick up and hold

Information

- Signals
- Just like Simulink

Rigid Bodies

- Reference frame aligns with Transformed frame of previous element
- Position & Rotation Angles Transform frame

Force Elements

- · No fixed length
- 2 Reference Frames (White)
- Reaction force
- · Closed kinematic chains

Animation Bodies

- No dynamic effect
- Visual representation only
- No explicit connection (yellow) to model
- · Physical spring hidden

Useful When

- Parameter used in multiple places
- · Design parameter

<u>Hole</u>

- Remove inertia from system
- Shaft not same material as Cap

Hole

- Remove inertia from system
- Shaft not same material as Cap

Spur Gear

- Power Transmission (1D) / Transmission Elements
- · Reverses direction
- · Specify losses

DC Machine

- Electro-Mechanics / Electric Machines / DC Machine
- Ground 1 terminal to avoid singularity

Controlled Voltage Source

- Electrical and Electronics / Analog / Basic Elements / Linear VCVS
- Electrical and Electronics / Analog / Sources / Voltage Source
- Ground 1 terminal to avoid singularity

<u>Gain</u>

- Signal Blocks / Linear Signal Blocks / Proportional Gain (P Gain)
- VCVS scales input by Voltage Source value (12 V)
- Divide by 12V to compensate

Getting Help

- Double-click what you are interested in
- · Press F1
- Web-Page appears
- · Other topics on left
- Search bar above