Introduction to NLP

CSE5321/CSEG321

Lecture 10. Transformers

Hwaran Lee (hwaranlee@sogang.ac.kr)

Lecture Plan

Lecture 11: Transformers

- 1. From recurrence (RNN) to attention-based NLP models
- 2. The Transformer model
- 3. Great results with Transformers
- 4. Drawbacks and variants of Transformers

Do we even need recurrence at all?

- Abstractly: Attention is a way to pass information from a sequence (x) to a neural network input. (h_t)
 - This is also exactly what RNNs are used for to pass information!
 - Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass information!

The building block we need: self attention

• What we talked about – **Cross** attention: paying attention to the input x to generate y_t

• What we need – **Self** attention: to generate y_t , we need to pay attention to $y_{< t}$

Self-Attention Hypothetical Example

Self-Attention: keys, queries, values from the same sequence

Let $\mathbf{w}_{1:n}$ be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w_i , let $x_i = Ew_i$, where $E \in \mathbb{R}^{d \times |V|}$ is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in $\mathbb{R}^{d \times d}$

$$q_i = Qx_i$$
 (queries) $k_i = Kx_i$ (keys) $v_i = Vx_i$ (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

$$\mathbf{e}_{ij} = \mathbf{q}_i^{\mathsf{T}} \mathbf{k}_j$$
 $\qquad \mathbf{\alpha}_{ij} = \frac{\exp(\mathbf{e}_{ij})}{\sum_{j'} \exp(\mathbf{e}_{ij'})}$

3. Compute output for each word as weighted sum of values

$$o_i = \sum_i \alpha_{ij} v_i$$

Barriers and solutions for Self-Attention as a building block

Barriers

notion of order!

• Doesn't have an inherent

Solutions

Fixing the first self-attention problem: sequence order

- Since self-attention doesn't build in order information, we need to encode the order of the sentence in our keys, queries, and values.
- Consider representing each sequence index as a vector

$$p_i \in \mathbb{R}^d$$
, for $i \in \{1,2,...,n\}$ are position vectors

- Don't worry about what the p_i are made of yet!
- Easy to incorporate this info into our self-attention block: just add the $m{p}_i$ to our inputs!
- Recall that x_i is the embedding of the word at index i. The positioned embedding is:

$$\widetilde{\boldsymbol{x}}_i = \boldsymbol{x}_i + \boldsymbol{p}_i$$

In deep self-attention networks, we do this at the first layer! You could concatenate them as well, but people mostly just add...

Position representation vectors through sinusoids

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

$$p_i = \begin{cases} \sin(i/10000^{2*1/d}) \\ \cos(i/10000^{2*1/d}) \\ \vdots \\ \sin(i/10000^{2*\frac{d}{2}/d}) \\ \cos(i/10000^{2*\frac{d}{2}/d}) \end{cases}$$
 is since the sequence of the se

- Pros:
 - Periodicity indicates that maybe "absolute position" isn't as important
 - Maybe can extrapolate to longer sequences as periods restart!
- Cons:
 - Not learnable; also the extrapolation doesn't really work!

Position representation vectors learned from scratch

• Learned absolute position representations: Let all p_i be learnable parameters! Learn a matrix $p \in \mathbb{R}^{d \times n}$, and let each p_i be a column of that matrix!

- Pros:
 - Flexibility: each position gets to be learned to fit the data
- Cons:
 - Definitely can't extrapolate to indices outside 1, ..., n.
- Most systems use this!
- Sometimes people try more flexible representations of position:
 - Relative linear position attention [Shaw et al., 2018]
 - Dependency syntax-based position [Wang et al., 2019]

Common, modern position embeddings - RoPE

High level thought process: a *relative* position embedding should be some f(x, i) s.t.

$$\langle f(x,i), f(y,j) \rangle = g(x,y,i-j)$$

That is, the attention function *only* gets to depend on the relative position (i-j). How do existing embeddings not fulfill this goal?

- •Sine: Has various cross-terms that are not relative
- Absolute:

$$e_{ij} = rac{x_i W^Q (x_j W^K + a_{ij}^K)^T}{\sqrt{d_z}}$$
 is not an inner product

RoPE – Embedding via rotation

How can we solve this problem?

- We want our embeddings to be invariant to absolute position
- We know that inner products are invariant to arbitrary rotation.

Position independent embedding

know

Embedding "of course we know"

Rotate by '2 positions'

Embedding "we know that"

Rotate by '0 positions'

RoPE – From 2 to many dimensions

[Su et al 2021]

Just pair up the coordinates and rotate them in 2d (motivation: complex numbers)

Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!

Solutions

 Add position representations to the inputs

Adding nonlinearities in self-attention

- Note that there are no elementwise nonlinearities in self-attention; stacking more self-attention layers just re-averages value vectors (Why? Look at the notes!)
- Easy fix: add a feed-forward network to post-process each output vector.

$$m_i = MLP(\text{output}_i)$$

= $W_2 * \text{ReLU}(W_1 \text{ output}_i + b_1) + b_2$

Intuition: the FF network processes the result of attention

Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!
- No nonlinearities for deep learning magic! It's all just weighted averages
- Need to ensure we don't "look at the future" when predicting a sequence
 - Like in machine translation
 - Or language modeling

Solutions

- Add position representations to the inputs
- Easy fix: apply the same feedforward network to each selfattention output.

Masking the future in self-attention

 To use self-attention in decoders, we need to ensure we can't peek at the future.

 At every timestep, we could change the set of keys and queries to include only past words. (Inefficient!)

 To enable parallelization, we mask out attention to future words by setting attention scores to -∞.

For encoding these words $e_{ij} = \begin{cases} q_i^{\mathsf{T}} k_j, j \le i \\ -\infty, i > i \end{cases}$

(not greyed out) words chef Who [START] $-\infty$ $-\infty$ $-\infty$ The $-\infty$ $-\infty$ chef $-\infty$ who

We can look at these

Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!
- No nonlinearities for deep learning magic! It's all just weighted averages
- Need to ensure we don't "look at the future" when predicting a sequence
 - Like in machine translation
 - Or language modeling

Solutions

- Add position representations to the inputs
- Easy fix: apply the same feedforward network to each selfattention output.
- Mask out the future by artificially setting attention weights to 0!

Necessities for a self-attention building block:

Self-attention:

the basis of the method.

Position representations:

• Specify the sequence order, since self-attention is an unordered function of its inputs.

• Nonlinearities:

- At the output of the self-attention block
- Frequently implemented as a simple feedforward network.

Masking:

- In order to parallelize operations while not looking at the future.
- Keeps information about the future from "leaking" to the past.

Outline

- 1. From recurrence (RNN) to attention-based NLP models
- 2. The Transformer model
- 3. Great results with Transformers
- 4. Drawbacks and variants of Transformers

The Transformer Decoder

- A Transformer decoder is how we'll build systems like language models.
- It's a lot like our minimal selfattention architecture, but with a few more components.
- The embeddings and position embeddings are identical.
- We'll next replace our selfattention with multi-head selfattention.

Transformer Decoder

Recall the Self-Attention Hypothetical Example

Hypothetical Example of Multi-Head Attention

I went to Stanford CS 224n and learned

Sequence-Stacked form of Attention

- Let's look at how key-query-value attention is computed, in matrices.
 - Let $X = [x_1; ...; x_n] \in \mathbb{R}^{n \times d}$ be the concatenation of input vectors.
 - First, note that $XK \in \mathbb{R}^{n \times d}$, $XQ \in \mathbb{R}^{n \times d}$, $XV \in \mathbb{R}^{n \times d}$.
 - The output is defined as output = $\operatorname{softmax}(XQ(XK)^{\top})XV \in \in \mathbb{R}^{n \times d}$.

First, take the query-key dot products in one matrix multiplication: $XQ(XK)^{T}$

Next, softmax, and compute the weighted average with another matrix multiplication.

Multi-headed attention

- What if we want to look in multiple places in the sentence at once?
 - For word i, self-attention "looks" where $x_i^T Q^T K x_j$ is high, but maybe we want to focus on different j for different reasons?
- We'll define multiple attention "heads" through multiple Q,K,V matrices
- Let, $Q_{\ell}, K_{\ell}, V_{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$, where h is the number of attention heads, and ℓ ranges from 1 to h.
- Each attention head performs attention independently:
 - output_{\ell} = softmax $(XQ_{\ell}K_{\ell}^{\top}X^{\top}) * XV_{\ell}$, where output_{\ell} $\in \mathbb{R}^{d/h}$
- Then the outputs of all the heads are combined!
 - output = $[\text{output}_1; ...; \text{output}_h]Y$, where $Y \in \mathbb{R}^{d \times d}$
- Each head gets to "look" at different things, and construct value vectors differently.

Multi-head self-attention is computationally efficient

- Even though we compute h many attention heads, it's not really more costly.
 - We compute $XQ \in \mathbb{R}^{n \times d}$, and then reshape to $\mathbb{R}^{n \times h \times d/h}$. (Likewise for XK, XV.)
 - Then we transpose to $\mathbb{R}^{h \times n \times d/h}$; now the head axis is like a batch axis.
 - Almost everything else is identical, and the matrices are the same sizes.

First, take the query-key dot products in one matrix multiplication: $XQ(XK)^{T}$

 $= XQK^{\mathsf{T}}X^{\mathsf{T}}$ $= XQK^{\mathsf{T}}X^{\mathsf{T}}$ $\in \mathbb{R}^{3 \times n \times n}$ 3 sets of all pairs of attention scores!

mix

Next, softmax, and compute the weighted average with another matrix multiplication.

output $\in \mathbb{R}^{n \times d}$

Scaled Dot Product [Vaswani et al., 2017]

- "Scaled Dot Product" attention aids in training.
- When dimensionality d becomes large, dot products between vectors tend to become large.
 - Because of this, inputs to the softmax function can be large, making the gradients small.
- Instead of the self-attention function we've seen:

$$\operatorname{output}_{\ell} = \operatorname{softmax}(XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}) * XV_{\ell}$$

• We divide the attention scores by $\sqrt{d/h}$, to stop the scores from becoming large just as a function of d/h (The dimensionality divided by the number of heads.)

output_{$$\ell$$} = softmax $\left(\frac{XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}}{\sqrt{d/h}}\right) * XV_{\ell}$

The Transformer Decoder

- Now that we've replaced selfattention with multi-head selfattention, we'll go through two optimization tricks that end up being:
 - Residual Connections
 - Layer Normalization
- In most Transformer diagrams, these are often written together as "Add & Norm"

Transformer Decoder

The Transformer Encoder: Residual connections [He et al., 2016]

- Residual connections are a trick to help models train better.
 - Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (where i represents the layer)

$$X^{(i-1)}$$
 Layer $X^{(i)}$

• We let $X^{(i)} = X^{(i-1)} + \text{Layer}(X^{(i-1)})$ (so we only have to learn "the residual" from the previous layer)

- Gradient is great through the residual connection; it's 1!
- Bias towards the identity function!

[Loss landscape visualization, Li et al., 2018, on a ResNet]

The Transformer Encoder: Layer normalization [Ba et al., 2016]

- Layer normalization is a trick to help models train faster.
- Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation within each layer.
 - LayerNorm's success may be due to its normalizing gradients [Xu et al., 2019]
- Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.
- Let $\mu = \sum_{i=1}^{d} x_i$; this is the mean; $\mu \in \mathbb{R}$.
- Let $\sigma = \sqrt{\frac{1}{d} \sum_{j=1}^{d} (x_j \mu)^2}$; this is the standard deviation; $\sigma \in \mathbb{R}$.
- Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned "gain" and "bias" parameters. (Can omit!)
- Then layer normalization computes:

$$\text{output} = \frac{x - \mu}{\sqrt{\sigma} + \epsilon} * \gamma + \beta$$
 Normalize by scalar mean and variance
$$\text{Modulate by learned elementwise gain and bias}$$

The Transformer Decoder

- The Transformer Decoder is a stack of Transformer Decoder Blocks.
- Each Block consists of:
 - Self-attention
 - Add & Norm
 - Feed-Forward
 - Add & Norm
- That's it! We've gone through the Transformer Decoder.

The Transformer Encoder

- The Transformer Decoder constrains to unidirectional context, as for language models.
- What if we want bidirectional context, like in a bidirectional RNN?
- This is the Transformer
 Encoder. The only difference is that we remove the masking in the self-attention.

No Masking!

Softmax Linear 个 Add & Norm for number blocks Feed-Forward encoder Add & Norm Repeat Multi-Head Attention oę Block Add Position **Embeddings** Embeddings **Decoder Inputs**

Probabilities

The Transformer Encoder-Decoder

- Recall that in machine translation, we processed the source sentence with a bidirectional model and generated the target with a unidirectional model.
- For this kind of seq2seq format, we often use a Transformer Encoder-Decoder.
- We use a normal Transformer Encoder.
- Our Transformer Decoder is modified to perform crossattention to the output of the Encoder.

Probabilities

Softmax

Cross-attention (details)

- We saw that self-attention is when keys, queries, and values come from the same source.
- In the decoder, we have attention that looks more like what we saw last week.
- Let $h_1, ..., h_n$ be **output** vectors **from** the Transformer **encoder**; $x_i \in \mathbb{R}^d$
- Let $z_1, ..., z_n$ be input vectors from the Transformer **decoder**, $z_i \in \mathbb{R}^d$
- Then keys and values are drawn from the encoder (like a memory):
 - $k_i = Kh_i$, $v_i = Vh_i$.
- And the queries are drawn from the decoder, $q_i = Qz_i$.

Cross-attention (details)

- Let's look at how cross-attention is computed, in matrices.
 - Let $H = [h_1; ...; h_T] \in \mathbb{R}^{T \times d}$ be the concatenation of encoder vectors.
 - Let $Z = [z_1; ...; z_T] \in \mathbb{R}^{T \times d}$ be the concatenation of decoder vectors.
 - The output is defined as output = $softmax(ZQ(HK)^T) \times HV$.

First, take the query-key dot products in one matrix multiplication: $ZQ(HK)^{T}$

Next, softmax, and compute the weighted average with another matrix multiplication.

