

Análisis Matemático A (para Ingeniería y Ciencias Exactas y Naturales)

Práctica 5

Cátedra Cabana

Práctica 5

TEOREMA DE TAYLOR

Aproximación: Polinomio de Taylor

Ejercicio 5.1. Obtener el polinomio de Taylor de la función $f(x) = \ln(x+2)$ en un entorno de x=1 de orden 3. Verificar que f(1) es igual a p(1), f'(1) es igual a p''(1), f''(1) es igual a p'''(1) y f'''(1) es igual a p'''(1), ¿qué se puede decir al respecto?

Ejercicio 5.2. Calcular el polinomio de Taylor de las siguientes funciones del orden indicado centrado en x_0 .

- a. $f(x) = \ln(x)$ de orden 3 con $x_0 = 1$.
- b. $f(x) = \frac{3}{2-3x}$ de orden 3 con $x_0 = \frac{1}{3}$.
- c. $f(x) = \cos(x)$ de orden 10 con $x_0 = 0$.
- d. $f(x) = \sqrt{3-x}$ de orden 2 con $x_0 = 2$.
- e. $f(x) = x \ln(x+1)$ de orden 3 con $x_0 = 0$.

Ejercicio 5.3. Sea el polinomio de Taylor $P(x) = 5(x-3)^6 + 3(x-3) + 1$ asociado a la función y = f(x) centrado en x = 3 de grado 6. Se pide:

- a. Calcular f(3), f'(3), $f^{(3)}(3)$ y $f^{(4)}(3)$.
- b. Calcular la recta tangente a f(x) en x = 3.
- c. Calcular el polinomio de Taylor de $g(x) = e^{f(x)}$ centrado en x = 3 de grado 2.

Ejercicio 5.4. Dada la función $f(x) = e^x$. Se pide:

- a. Hallar el polinomio de Taylor de orden 4 centrado en x=0
- b. Hallar el polinomio de Taylor de grado n.

c. Con el polinomio hallado en el ítem a, calcular el valor aproximado del número e.

Ejercicio 5.5. Sabiendo que $f: \mathbb{R} \to \mathbb{R}$, derivable de orden 8 en \mathbb{R} , y su polinomio de Taylor de tercer grado en x=4 asociado a f es $P(x)=3-x^2+\frac{1}{3}x^3$ y $g(x)=f(x^2)$.

- a. Determinar g''(2).
- b. Calcular el polinomio de Taylor de grado 2 de g(x) en x=2.
- c. ¿Hasta el polinomio de qué grado podría calcular con la información dada?
- d. ¿Es posible calcular el polinomio de Taylor centrado en otro valor de x según la información dada?

Ejercicio 5.6. (Optativo) Si el polinomio de Taylor de f de orden 3 centrado en x=2 es $P(x)=5+4x-x^2$. Hallar el polinomio de Taylor de grado 2 centrado en x=2 de $g(x)=\frac{1-f(x)}{[f(x)]^2}$.

Ejercicio 5.7. Calcular el polinomio de Taylor de orden 2 centrado en x = 1 de la función $g(x) = \ln(x^2)$. Con dicho polinomio calcular aproximadamente el valor de $\ln(1,21)$.

Ejercicio 5.8. Utilizar un polinomio de Taylor de grado 2 para calcular el valor aproximado de $\sqrt{37}$.

Ejercicio 5.9. Con el polinomio de Taylor de orden 4 centrado en x = 0 aproximar el valor de cos(0,2).

Ejercicio 5.10. Dada la función $f(x) = \ln(x-1)$.

- a. Aproximar ln(1,1) con un polinimio de Taylor de grado 2.
- b. Con el polinomio hallado, ¿es posible calcular ln(5)? ¿Por qué?

Ejercicio 5.11. Hallar los valores de a y b para que el polinomio de Taylor de orden 3 centrado en x = 0 de la función $f(x) = a\sin(bx)$, sea $P(x) = 2x - \frac{4}{3}x^3$.

Respuestas de la Práctica 5

Ejercicio 5. 1.
$$P_3(x) = \ln 3 + \frac{1}{3}(x-1) - \frac{1}{18}(x-1)^2 + \frac{1}{81}(x-1)^3$$

Ejercicio 5. 2. a.
$$P_3(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3$$

b.
$$P_3(x) = 3 + 9(x - 1/3) + 27(x - 1/3)^2 + 81(x - 1/3)^3$$

c. $P_{10}(x) = 1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \frac{1}{8!}x^8 - \frac{1}{10!}x^{10}$
d. $P_2(x) = 1 - \frac{1}{2}(x - 2) - \frac{1}{8}(x - 2)^2$
e. $P_3(x) = x^2 - x^3/2$

c.
$$P_{10}(x) = 1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \frac{1}{8!}x^8 - \frac{1}{10!}x^{10}$$

d.
$$P_2(x) = 1 - \frac{1}{2}(x-2) - \frac{1}{8}(x-2)^2$$

e.
$$P_3(x) = x^2 - x^3/2$$

Ejercicio 5. 3. a.
$$f(3) = 1$$
, $f'(3) = 3$, $f^{(3)}(3) = 0$ y $f^{(5)}(3) = 120$

b.
$$y = 3(x - 3) + 1$$
 o $y = 3x - 8$
c. $P_2(x) = e + 3e(x - 3) + \frac{9}{2}e(x - 3)^2$

c.
$$P_2(x) = e + 3e(x - 3) + \frac{9}{2}e(x - 3)^2$$

Ejercicio 5. 4. a.
$$P_4(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$$

b.
$$P_n = \sum_{i=0}^n \frac{x^i}{i!}$$

c.
$$e^1 \approx 1 + 1 + \frac{1^2}{2!} + \frac{1^3}{3!} + \frac{1^4}{4!} + \frac{1^5}{5!} + \frac{1^6}{6!} \approx 2,71805556$$

Ejercicio 5. 5. a. g''(2)=112

b
$$P_{q2}(x) = 25/3 + 32(x-2) + 56(x-2)^2$$

- c. Hasta el grado 3 (el mismo de f)
- d. También en x = -2 porque al elevar al cuadrado da 4

Ejercicio 5. 6.
$$P_2(x) = -\frac{8}{81} - \frac{7}{729}(x-2)^2$$

Ejercicio 5. 7.
$$p(x) = 2(x-1) - (x-1)^2$$

 $x = 1,1$ (por estar al cuadrado) $p(1,1) = 0,19$

Ejercicio 5. 8.
$$P_3(x) = 6 + \frac{1}{12}(x - 36) - \frac{1}{1728}(x - 36)^2$$

 $\sqrt{37} \approx 6,0827$

Ejercicio 5. 9.
$$P_4(x) = 1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4$$

 $P_4(0,2) = 1 - \frac{1}{2}0, 2^2 + \frac{1}{4!}0, 2^4 \approx 0,980066$

Ejercicio 5. 10. b) El polinomio hallado aproxima a la función en un entorno del valor x=2. Se cometería mucho error, porque dicho valor está lejos de x=2y el valor de las derivadas de la función en x = 2 difieren mucho del valor de las derivadas en x = 5.

Ejercicio 5. 11.
$$(a = 1 y b = 2)$$
 o $(a = -1 y b = -2)$