ELVIS MBURU SCT212-0062/2020

BCT 2408: COMPUTER ARCHITECTURE

E1:

Problem

Consider the following MIPS code fragments, each containing two instructions. For each code fragment identify the type of hazard that exists between the two instructions and the registers involved.

a.

LD R1, 0(R2) DADD R3, R1, R2

b.

MULT R1, R2, R3 DADD R1, R2, R3

c.

MULT R1, R2, R3 MULT R4, R5, R6

d.

DADD R1, R2, R3 SD 2000(R0), R1

e.

DADD R1, R2, R3 SD 2000(R1), R4

Solution

- a. RAW: add requires the value of R1 returned by Id
- b. WAW: add modifies the value of R1 that is also computed by mul
- c. structural hazard for multiplier
- d. RAW: sd requires (in MEM stage) the value of R1 computed by add
- e. RAW: sd requires (in ALU stage) the value of R1 computed by add

E2:

Problem

- a. Explain the behaviour of a 2-bit saturating counter branch predictor. Show the state of the predictor and the transition for each outcome of the branch.
- b. Consider the following code:

```
for (i=0; i<N; i++)
    if (x[i] == 0)
    y[i] = 0.0;
else
    y[i] = y[i]/x[i];
```

Assume that the assembly code generated is then:

```
loop: L.D F1, 0(R2)

L.D F2, 0(R3)

BNEZ F1, else

ADD.D

F2, F0, F0

BEZ R0, fall

else: DIV.D F2, F2,

F1 fall: DADDI

R2, R2, 8

DADDI

R3, R3, 8

DSUBI

R1, R1, 1

S.D -8(R3), F2

BNEZ R1, loop
```

where:

- the value of N is already stored in R1
- the base addresses for x and y are stored in R2 and R3, respectively
- register F0 contains the value 0
- register R0 (always) contains the value 0

Assuming that every other element of x has the value 0, starting with the first one, show the outcomes of predictions when a 2-bit saturating counter is used to predict the inner branch BNEZ F1, else. Assume that the initial value of the counter is 00.

Solution

a. 2-bit saturating counter branch predictor

current counter value	prediction	actual outcome	new counter value
00	NT	NT	00
00	NT	Т	01
01	NT	NT	00
01	NT	Т	10
10	Т	NT	01
10	Т	Т	11
11	T	NT	10
11	Т	Т	11

b. 2-bit counter prediction rate

Iteration	current counter value	prediction	actual outcome	new counter value
1	00	NT	NT	00 (hit)
2	00	NT	Т	01 (miss)
3	01	NT	NT	00 (hit)
4	00	NT	Т	01 (miss)