Pate: Tue. 9/25/18

We don't always need to consider linear Algebra in the context of solving a system of equations

In a more abstract sense, linear algebra is the study of <u>linear maps</u> on Finite dimensional vector spaces (we'll learn exactly what this means later).

Now we will examine matrices & how they act on (or transform) a vector

Definitions

<u>Def</u> Every mxn matrix A defines a <u>transformation</u> T: Rⁿ→ R^m <u>Domain</u> Codomain

as the <u>mapping</u> (or function)

$$T(\vec{x}) = A\vec{x}$$

$$\in \mathbb{R}^n$$

Def The range of T is

₹ T(ū) ∈ ℝ^m: ū∈ ℝⁿ } <u>image</u> (of u under action of T)

Note: the range is not the same as the codomain!

Date: Tue. 9/25/18

$$T(\vec{u}+\vec{v}) = A(\vec{u}+\vec{v})$$

$$= A\vec{L} + A\vec{v}$$
$$= T(\vec{L}) + T(\vec{v})$$

$$T(c\vec{a}) = A(c\vec{v})$$

$$T_{i}\begin{pmatrix} \begin{bmatrix} u_{i} \\ u_{z} \\ u_{3} \end{bmatrix} \end{pmatrix} = \begin{bmatrix} I & O & O \\ O & I & O \end{bmatrix} \begin{bmatrix} u_{i} \\ u_{z} \\ u_{3} \end{bmatrix} = \begin{bmatrix} u_{i} \\ u_{z} \end{bmatrix}$$

Date: Tue. 9/25/18

$$Ex.\lambda$$
 $T_2: \mathbb{R}^2 \to \mathbb{R}^3$,

$$T_{a}\left(\left[\begin{array}{c}u_{1}\\u_{z}\end{array}\right]\right)=\left[\begin{array}{c}u_{1}\\u_{z}\\u_{3}\end{array}\right]$$

The plane thrux-axis

$$[Ex.3]$$
 $T_3: \mathbb{R}^2 \rightarrow \mathbb{R}^2$

$$T_{3}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 & \frac{1}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + \frac{1}{2}y \\ y \end{bmatrix}$$

Shearing

$$E_{x.4}$$
 $T_{4}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$

$$T_{y}\left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$$

Date: Tue. 9/25/18

Lecture # 05: Linear Transformations

Def T: R^m → Rⁿ is

(a) <u>one to one</u> (1-1) if $T(\vec{u}) = T(\vec{v}) \implies \vec{u} = \vec{v}$ i.e. different vectors map to different images.

(b) onto if every xer is T(i)
For some ier

$$E_{x.5}$$
 • T_i (projection) is onto, not 1-1
$$T_i\left(\left[\begin{smallmatrix}1\\0\\0\end{smallmatrix}\right]\right) = T_i\left(\left[\begin{smallmatrix}1\\1\\1\\0\end{smallmatrix}\right]\right)$$

- T_2 (plane) is 1-1, not onto $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ & range (τ_z)
- oT3 (Shearing) & Ty (rotation) are 1-1 & onto

Date: Tue. 9/25/18

Matrix of a Linear Transformation

Shown: Every mxn matrix defines a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$

Next: Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ has a matrix representation.

Ex.6 In
$$\mathbb{R}^3$$
 let

 $\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \vec{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
We can write any $x \in \mathbb{R}^3$ as

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$= x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3$$

IF T: $\mathbb{R}^3 \to \mathbb{R}^4$ is a linear transformation $T\vec{x} = T(x_1 \vec{e}_1 + x_2 \vec{e}_z + x_3 \vec{e}_3)$

$$= \begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_2) & T(\vec{e}_3) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

 $= X_1 T(\vec{e}_1) + X_2 T(\vec{e}_2) + X_3 T(\vec{e}_3)$

Date: Tue. 9/25/18

In general, if T:R" > R" is a linear transf. the Standard Matrix for T is

$$A = [T(\vec{e}_1) \dots T(\vec{e}_m)] \qquad (n \times m)$$

Where

$$\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\vec{e}_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, ... $\vec{e}_m = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$

These are the standard basis vectors in Rm

T: $\mathbb{R}^{2} - \mathbb{R}^{2}$, Lum...

In \mathbb{R}^{2} : $e_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ T(\hat{e}_{1}) Ex.7 T: R2 -R2, Counter Clockwise by O radions

In
$$\mathbb{R}^2$$
: $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$T(\ell_2) = \begin{bmatrix} -5in\theta \\ \cos\theta \end{bmatrix}$$

So the standard matrix for
$$T$$

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$\theta$$
 θ
 θ
 θ
 θ

Pate: Tue. 9/25/18

Thm Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transf. then T is 1-1 iff the egn $T(\vec{x}) = \vec{0}$ has only the trivial soln.

 $\frac{PF}{(=>)}$ Assume T is 1-1. Then $T(\vec{x}) = \vec{o}$ for only one \vec{x} . That vector must be \vec{o} (the trivial soln) Since we must have $T(\vec{o}) = \vec{o}$ for any linear transformation.

(\Leftarrow) (by Contrapositive: i.e. to show $P \Rightarrow Q$ it is equivalent to show that not $P \Rightarrow$ not Q) Assume T is not I-1. Then For some $\vec{b} \in \mathbb{R}^m$ we have

 $T(\vec{u}) = T(\vec{v}) = \vec{b}$ For $\vec{v} \neq \vec{v}$

We want to show that $T(\dot{x}) = \ddot{0}$ for some $\dot{x} \neq 0$ Let $\dot{x} = \ddot{1} - \dot{y} \neq 0$

Then, $T(\hat{x}) = T(\hat{u} - \hat{J})$ $= T(\hat{u}) - T(\hat{J})$ $= \hat{b} - \hat{b}$ $= \hat{a}$

This means that T does not have only the trivial soln (since $\vec{x} \neq 0$).