

Open in app Get starte

Installing Tensorflow with GPU, CUDA and cuDNN in Ubuntu 20.04

Deep Learning In-Depth — Get Started

This article covers the installation of GPU, CUDA, cuDNN and Tensorflow in Ubuntu 20.04. I have demonstrated below for Nvidia GeForce GTX1060m (m-Notebook) Graphic card, however you can follow below steps for any CUDA compatible GPU.

Most critical point is to install correct version of CUDA and cuDNN based on Graphic card driver installed in Step 1 below.

Prerequisite

- Ubuntu 20.04
- Nvidia GeForce GTX 1060m

Article Demonstrates installation for GTX1060m, however you can follow notes below each step, if you are installing for other CUDA compatible GPU.

You can find list of CUDA compatible GPU here: NVIDIA CUDA GPUs

Step 1: Install Graphic Card Driver

Assuming you are working on a fresh ubuntu 20.04 installation, first step is to install driver for your graphic card.

Run below in Terminal:

sudo add-ant-repository ppa:graphics-drivers/ppa

6/22/22, 09:53

Run below in Terminal:

nvidia-smi

harish@ Tue Aug			37HP6:∼\$ n\ 5 2021	⁄idia-	smi					
NVIDI	A-SMI	460.91	1.03 Dri	ver V	ersion:	460.9	1.03	CUDA Versio	on: 11.2	ļ
•	Name Temp	Perf	Persistenc Pwr:Usage/		Bus-Id	Memor	Disp.A y-Usage		Uncorr. ECC Compute M. MIG M.	
 0 N/A 	GeFord 61C	e GTX P2	1060 Of 26W / N		00000000 475M		 0.0 Off 6078MiB		N/A Default N/A	
+ Proce GPU 	sses: GI ID	CI ID	PID	Туре	Ргос	ess na	me		GPU Memory Usage	† † -
====== 0 0 0	===== N/A N/A N/A	N/A N/A N/A N/A	904 1284 2082	 G G	/usr		====== org/Xor nome-sh zoom		======== 280MiB 84MiB 29MiB	
0 0 0	N/A	N/A N/A	2309 2419 2872	G G	/usr /usr	/lib/f /lib/f	irefox/ irefox/	firefox firefox firefox	1MiB 1MiB 1MiB	İ
0 0 0	N/A N/A N/A	N/A N/A	2924 3125 7771	G G	/usr /usr	/lib/f /lib/f	irefox/ irefox/	firefox firefox firefox	1MiB 1MiB 1MiB	
0 0 +	N/A N/A		8315 10552	G C				firefox soffice.bin	1MiB 61MiB	

Note: Please Note the CUDA Version on Top Right. In my case it is 11.2. This is required to follow correct CUDA version.

Step 2: Install CUDA

CUDA is a parallel computing platform and application programming interface model developed by Nvidia to enable using GPU for general purpose processing.

Once you have installed the Nvidia Graphic card driver, install CUDA as per version from nvidia-smi output.

We will be installing CUDA 11.2. Please use correct CUDA Version.

Open in app Get start

sudo mv cuda-ubuntu2004.pin/etc/apt/preferences.d/cuda-repository-pin-600

wget https://developer.download.nvidia.com/compute/cuda/11.2.0/local_installers/cuda-repo-ubuntu2004-11-2-local_11.2.0-460.27.04-1_amd64.deb

sudo dpkg -i cuda-repo-ubuntu2004-11-2-local_11.2.0-460.27.04-1_amd64.deb

sudo apt-key add /var/cuda-repo-ubuntu2004–11–2-local/7fa2af80.pub

sudo apt-get update

sudo apt-get -y install cuda

Ref: CUDA Toolkit 11.2 Downloads

Note: You can find corresponding installation commands for different CUDA Versions

here: CUDA Toolkit Archive

Step 3: Install cuDNN

cuDNN is GPU-accelerated library of primitives developed by Nvidia for deep neural networks.

Yet again you need to install the correct cuDNN version as per CUDA version installed in above step. I have chosen to download "<u>Download cuDNN v8.2.1 (June 7th, 2021), for CUDA 11.x</u>" >> "<u>cuDNN Library for Linux (x86_64)</u>" from <u>cuDNN Archive</u> as my CUDA Version is 11.2. Please select accordingly.

To download you will have to create an Nvidia account. Once downloaded use below instructions.

Run below in Terminal:

tar -xzvf cudnn-11.3-linux-x64-v8.2.1.32.tgz

sudo cp cuda/include/cudnn.h/usr/local/cuda/include

Set path in .bashrc file.

Run below in Terminal from home directory:

gedit.bashrc

Above command will open .bashrc in text editor. Please change the version in below path if you are using different CUDA Version. Once added, save and close the text editor.

export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:\$LD_LIBRARY_PATH

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:\$LD_LIBRARY_PATH

Run below in Terminal from home directory:

source ~/.bashrc

Step 4: Install PIP

Python3.8 comes pre installed in Ubuntu 20.04. Run below command to install PIP.

Run below in Terminal:

sudo apt update

sudo apt install python3-pip

Step 5: Install tensorflow

Tensorflow by default comes with GPU support, so no need to install tensorflow-gpu specifically

Run below in Terminal:

pip install tensorflow

Step 6: Check tensorflow

Check GPU is detected by Tensorflow

4 01 0

Run below from python command line:

import tensorflow as tf

tf.config.list_physical_devices('GPU')

You should be able to see "[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]" as below

>>> Inport tensorflow as if
>>> Inport_lensorflow as if
>>> If.config.1st_physical_devices('GPU')
2021-08-17 17:05:45.064930: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning
1021-08-17 17:05:45.075982: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning
1021-08-17 17:05:45.075982: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning
1021-08-17 17:05:45.076430: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning
1021-08-17 17:05:45.076430: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning
1021-08-17 17:05:45.076430: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning
1021-08-17 17:05:45.076430: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning

Note: If you are facing issues, it will most likely be due to version mismatch.

Happy Exploring Deep Learning In-Depth

More from Harish Masand

Data Science: Neural Networks, Deep Learning, Machine Learning and Spark. An Quantum Computing Enthusiast. https://www.linkedin.com/in/harishmasand/

Love podcasts or audiobooks? Learn on the go with our new app.

Try Knowable

5 of 6 6/22/22, 09:53

Ispajic in MLearning.ai

Improving Crowd Wisdom with Machine Learning part 1

Ayesha M in Analytics Vidhya

My ML Glossary: Part 1

Max Larionov

I Built My Own Self-Driving Car. Part #3

🚨 Sumanth S R... in Analytics Vid...

Understanding the Gradient-

Representations and intuiti...

🏂 Learner1067 in Analytics Vidhya

Basic ANN using PyTorch

Mike Plotz

Isolated Learning of

Paper Summary: Enhanced Deep Residual Networks for Single Image Super-...

ximnet

What does Microsoft LUIS do and how it affects your Al **Chatbot quality?**

Chu-Tak Li in Analytics Vidhya

Review of TPNet: Trajectory Proposal Network for Motion Prediction

About Help Terms Privacy

Get the Medium app

