EXHIBIT F PART 1

RealSecureTM 1.2 User Guide and Reference Manual

RealSecure

Chapters:

- 1. Introduction
- 2. Installing RealSecure™
- 3. Configuring RealSecure
- 4. Using RealSecure
- 5. Generating Reports

Appendix:

A. RealSecure Features and Attack Signatures

Copyright © 1996, 1997 Internet Security Systems, Inc. All Rights Reserved.

Technical Support: rs-support@iss.net

Table of Contents

Chapter 1: Introduction to Real-Time Intrusion Detection	1-1
Common Uses for Network Intrusion Detection Dangers Legality	1-3
Chapter 2: Installing RealSecure	2-1
System Requirements	2-2 2-2
Chapter 3: Configuring RealSecure	3-1
Filter Configuration	3-4 3-7
Feature Configuration	3-8 3-11
Sample Configurations	3-12 3-13
Chapter 4: Using RealSecure	4-1
Chapter 5: Generating Reports	5-1
Playback Feature	

Appendix A: Features and Attack Signatures
IP Fragmentation
Ping Flooding A-Error! Bookmark not defined.
ARP Check A-Error! Bookmark not defined.
IP Duplicate Check A-Error! Bookmark not defined.
IP Half Scan A-Error! Bookmark not defined.
IP Unknown Protocol
UDP Bomb A-Error! Bookmark not defined.
SYN Flood
Source RoutingA-Error! Bookmark not defined.
ISS Scan Check
Satan Vulnerability Check A-Error! Bookmark not defined.
Chargen Denial of Service Vulnerability Check A-Error! Bookmark not defined.
Echo Denial of Service VulnerabilityA-Error! Bookmark not defined.
TFTP Put Vulnerability CheckA-11
Rwhod Vulnerability Check A-Error! Bookmark not defined.
Rlogin DecodingA-Error! Bookmark not defined.
Rlogin -froot Vulnerability CheckA-Error! Bookmark not defined.
FTP Username Decoding A-Error! Bookmark not defined.
FTP Password Decoding A-Error! Bookmark not defined.
FTP Site Command Decoding A-Error! Bookmark not defined.
FTP GET File Decoding A-Error! Bookmark not defined.
FTP PUT File Decoding A-Error! Bookmark not defined.
FTP Mkdir Decoding
FTP CWD ~root Vulnerability CheckA-Error! Bookmark not defined.
FTP Site Exec Tar Vulnerability CheckA-Error! Bookmark not defined.
FTP Site Exec Vulnerability CheckA-Error! Bookmark not defined.
HTTP GET Decoding
HTTP PHF Vulnerability CheckA-Error! Bookmark not defined.
HTTP Test-Cgi Vulnerability CheckA-Error! Bookmark not defined.
HTTP Nph-Test-Cgi Vulnerability CheckA-Error! Bookmark not defined.
HTTP PHP File Read Vulnerability CheckA-Error! Bookmark not defined.
HTTP SGI Wrap Vulnerability CheckA-Error! Bookmark not defined.
HTTP SCO View-Source Vulnerability Check
HTTP Novell Convert VulnerabilityA-16

DNS Length Overflow Vulnerability CheckA-Error! Bookmark not defined. DNS Hostname Overflow Vulnerability CheckA-Error! Bookmark not defined. Ascend Kill Denial of Service Vulnerability Check A-Error! Bookmark not defined. HTTP.. Vulnerability Check)... A-Error! Bookmark not defined. HTTP Authentication Decode A-Error! Bookmark not defined. HTTP Java Decoding A-Error! Bookmark not defined. HTTP IIS 3.0 Asp Dot Vulnerability Check)A-Error! Bookmark not defined. HTTP IIS 3.0 Asp 2E Vulnerability CheckA-Error! Bookmark not defined. HTTP PHP Buffer Overflow Vulnerability CheckA-Error! Bookmark not defined. HTTP Internet Explorer 3.0 .URL/.LNK Vulnerability Check A-Error! Bookmark not defined. Ident User Decoding A-Error! Bookmark not defined. Ident Buffer Overflow Vulnerability CheckA-Error! Bookmark not defined. Ident Newline Vulnerability CheckA-Error! Bookmark not defined. POP Username Decoding..... A-Error! Bookmark not defined. POP Password Decoding...... A-Error! Bookmark not defined. POP Buffer Overflow...... A-Error! Bookmark not defined. IMAP Username Decoding..... A-Error! Bookmark not defined. IMAP Password Decoding A-Error! Bookmark not defined. IMAP Buffer Overflow Vulnerability CheckA-Error! Bookmark not defined. Kerberos IV User Snarf Vulnerability CheckA-Error! Bookmark not defined. RSH Decoding A-Error! Bookmark not defined. E-Mail To..... A-Error! Bookmark not defined. E-Mail Subject...... A-Error! Bookmark not defined. E-Mail VRFY A-Error! Bookmark not defined. E-Mail EXPN A-Error! Bookmark not defined. E-Mail WIZ Vulnerability CheckA-Error! Bookmark not defined. E-Mail DEBUG Vulnerability CheckA-Error! Bookmark not defined. E-Mail Pipe Vulnerability CheckA-Error! Bookmark not defined. E-Mail Decode Vulnerability CheckA-Error! Bookmark not defined. TFTP Get Vulnerability Check A-Error! Bookmark not defined. Finger Bomb Vulnerability CheckA-Error! Bookmark not defined. RTM Finger Vulnerability CheckA-Error! Bookmark not defined. IRC Nick Decode.......A-Error! Bookmark not defined.

IRC Channel Decode
IRC Message Decode A-Error! Bookmark not defined.
NNTP Username Decoding A-Error! Bookmark not defined.
NNTP Password Decoding A-Error! Bookmark not defined.
NNTP Group Decoding A-Error! Bookmark not defined.
Talk Request Decoding A-Error! Bookmark not defined.
Talk Flash Vulnerability CheckA-Error! Bookmark not defined.
HP/UX RemoteWatch Vulnerability CheckA-Error! Bookmark not defined.
Nfs Mknod Check
Nfs Guess Check
Nfs Uid Check
Rpc.Admind Check
BootParamd Whoami Decode A-Error! Bookmark not defined.
Selection Service Holdfile CheckA-Error! Bookmark not defined.
Portmapper Program Dump DecodeA-Error! Bookmark not defined.
Portmapper Proxy Call DecodeA-Error! Bookmark not defined.
Portmapper Proxy Mount CheckA-Error! Bookmark not defined.
Mountd Export Decode A-Errorl Bookmark not defined.
Mountd Mount Decode A-Error! Bookmark not defined.
Ypupdated Exec CheckA-Error! Bookmark not defined.

Chapter 1: Introduction to Real-Time Intrusion Detection

RealSecure"

OVERVIEW

Security is a hot topic today, especially on the Internet. Very few people understand how to achieve an acceptably secure system. Some companies sell products that promise to make a network secure. What they neglect to mention is... "there is no single solution to security". Security is a process and method of doing business that requires continual updating.

The Security Cycle

Audit

The illustration above depicts the cycle used to dynamically improve the security of a system. An auditing tool is used to find the holes in a network. Combining a security audit with a security policy establishes the original baseline security.

Correct

The parts of the system which failed the audit are corrected. Subsequently, the system needs to be audited again and again to ensure that new holes do not appear or old ones resurface.

Monitor

A monitoring tool is used to watch for new security breaches or attempts to abuse old holes. This keeps the security manager in touch with the state of the network.

RealSecure... falls into the third category. It resides on a computer connected to the network and watches the network traffic. This allows it to compare traffic to a wide variety of attack signatures. It summarizes the information in a concise manner so the security manager can understand what is happening on the network, as it happens.

Chapter 1: Introduction

Common Uses for Network Intrusion Detection

Case 1:04-cv-01199-SLR

RealSecure

RealSecure is very versatile and therefore performs many different functions. Some possible uses include:

- Auditing network utilization. (How many hits does each Web.) server get? Who is transferring files from the FTP site?)
- · Auditing and blocking network intrusion attempts. (How many attacks are from non-US sites? How many riogin attempts are made and from where?)
- Providing a second tier of security behind a firewall. (There should never be telnet sessions incoming to the internal network. So, kill and log any such attempts.)
- Detecting network state and possible problems. (Did Sales just configure a new machine on the network? Who is using it? Was an IP address of an existing machine used?)
- Obtaining profiles of a detected intruder and assessing damage. (So, perhaps it is known that the intruder is using the Web server to attack other sites. In this case, consider logging all of his/her session data throughout the night and replay it later.)

Remember, RealSecure can analyze any network traffic. When watching the network for invalid login attempts, RealSecure prints all invalid login attempts made over the network. This is a great improvement over normal auditing in which the administrator has to search a log from each system on the network for suspicious activity.

Dangers

Because RealSecure watches and responds to network events. there are some associated risks. First, it can log all data in a connection including keystrokes and e-mail. Exercise discretion when using this feature. Once logs are created, they should be kept on a secure host as they may contain passwords or other sensitive data. This is one reason to run RealSecure on a dedicated machine. Intruders will perceive the monitoring machine Chapter 1: Introduction

as a prime target, both to steal its saved data and to erase evidence of their actions.

Second, RealSecure responds to events. In particular, the 'kill' option, if misused, can block traffic over an entire network. Ensure that any connections being killed are ones that require blocking. A wildcard rule with a 'kill' action will block all connections, including http, telnet, and ftp.

The rule of thumb to use is "think twice, configure once".

Legality

In most cases, the United States Government has upheld the right of individuals to monitor their own networks. The general consensus is to notify all users of monitoring. Consult a lawyer if there are any questions as to the legality of this product's use. For explanation of legal issues, refer to the CERT advisory provided at the back of this manual.

(This page intentionally left blank)

Chapter 2: Installing RealSecureTM

RealSecure

OVERVIEW

To obtain maximum benefits, install RealSecure™ on a dedicated machine at an entry point to the network. Good places to consider would be at the Ethernet interface just inside the firewall or between the Internet router and the Internal machines. For security and performance, it is strongly recommended that RealSecure be run on its own dedicated machine (ideally, the machine should have as many of its own services as possible disabled). Also, the only user(s) should be the administrator(s). RealSecure collects a lot of data from the network, so the more power and disk space the machine has, the better.

This chapter covers the following topics:

- System Requirements
- Installation Instructions

System Requirements

The RealSecure engine requires the following configuration:

- SunOS 4.1.x, Solaris 2.3 and up, or Linux (kernel versions) 1.3.x and later).
- · An Ethernet interface connected to the target network.
- 486-class machine or better; however, for non-dedicated machines running RealSecure, more resources will be necessary.
- A minimum of 25 MB of available disk space.
- A minimum of 16 MB RAM, 32 MB recommended.

The RealSecure GUI requires the following configuration:

- The X-Window system, version 11 or later.
- Motif Installation (Solaris 2.3 and 2.4 only).
- A minimum of 32 MB RAM.

How to Install RealSecure

Key Processing

To activate RealSecure obtain a license key file (iss.key). To obtain a license key file, please contact ISS immediately at (770) 395-0150 or by E-mail at keys@iss.net. Upon receiving a license key, save the key as the filename iss.key in the /usr/local directory.

Old versions of the software (Release 1.0) will continue to operate using the old key, but to utilize the new functionality of RealSecure, obtain a new key from ISS. To obtain a new key, e-mail the existing key along with name and address of the organization and

Chapter 2: Installing RealSecure

the e-mail address where the new key is to be sent to keys@iss.net. ISS will update key processing records and forward the new key promptly

Note: Save the e-mail message as "iss key," in your /usr/localdirectory: It is not necessary to decode this key. Save the entire message or just the key. The key MUST include the "BEGIN" and "END" lines.

For further questions about key processing, contact support@iss.net.

Step 1: Obtain the Distribution Software Installing from the ISS Web site:

To download RealSecure from ISS, access:

http://www.iss.net/RealSecure from within a Web browser.

Step 2: Copying the Distribution Software to the Destination System

- The tar file must be loaded to each machine that will be running either the RealSecure GUI or engine. Methods to transfer the archive include FTP and e-mail.
- Perform the remaining steps on each machine running
 RealSecure.

Step 3: Untar the Archive and Run the Install Program

123 23

RealSecure

• Change to the directory the directory where the tar file resides, for example: # cd /usr/local

- Next, enter the following commands: # tar xvf rs-*.tar
 - # cd rs
 - # /install.rs

Step 4: Start sssd on Each System Running the RealSecure Engine

Note: Perform Step 4 only for multiple engines

- To run the RealSecure engine, install sssd on the host.
- To run the RealSecure engine remotely, or to run multiple engines in order to sniff multiple segments or networks, perform these tasks for each machine for which the RealSecure GUI will run.

Installing from CD-ROM:

- Mount the CD-ROM volume (refer to the UNIX manual for instructions).
- From the directory where the CD-ROM is mounted, perform the following:

Jinstall.rs

A. How to Set Up the sssd Engine

The engine and RealSecure GUI setup can be automated by running sss-setup. sssd engines require an authentication file be created to restrict access to authorized hosts.

To manually edit the file, perform the following procedure:

Log in as root on the machine on which the engine will run.

RealSecure

Create a file containing the name or IP address of each machine on the network where the RealSecure GUI is being installed. Indicate a random pass phrase used to authenticate the connection.

This authentication file specifies allowable hosts for connectivity to sssd, in order to start up engines and to indicate a pass phrase used during connections for authentication and encryption. The default location of this file for the sssd server is /etc/sssd.auth. To change the default, specify the -a option along with an alternate pathname for the authentication file on the command line when running sssd.

The format of the authentication file is:

<Pass Phrase>//<hostname>

<hostname> can be a domain name or IP address. <Pass Phrase> should be a unique, hard-to-guess set of letters, numbers and punctuation. Do not use a single word, sentence or sentence fragment from a well-known published book or song, or one that is guessable. The sssd server runs an engine capable of monitoring all network traffic. Access through the sssd server poses serious compromise to the security of a system. Because IP addresses can be spoofed, it is vital to system security to choose a good pass phrase. The authentication file is owned by root and must not be readable by users on the system other than root. Be sure to create the file with proper modes before entering pass phrases. Take a look at the example on the following page:

whoami

root

cd /etc

echo > sssd.auth

chmod 600 sssd.auth

echo ad98IU Ai2 ah c89 kgaknsdh//myquibox.mydomain.com >

B. Set Up the GUI

To manually setup the GUI, perform the following procedure:

Run RealSecure on the machine from which the RealSecure GUI will run. Next, create an authentication file containing the hostname and pass phrases of each host running sssd for which RealSecure will run. This includes the local host when only planning to run local engines.

The default filename for this file is /etc/sss.auth. Match the entries in this file to the pass phrase in the /etc/sssd.auth file on each machine. If running only a local engine, accomplish this by simply copying the sssd.auth file to sss.auth. As with the sssd.auth file, be sure no one other than root can read the contents of the file.

Because the machine running the **RealSecure** GUI controls the remote engines on all the machines in the sss auth file, it is extremely important the machine remain secure against attack. If at all possible, run the GUI on a machine having no untrusted users and no services running. Take a look at the following example:

whoami

root

725

RealSecure

cd /etc # echo ad98IU Aj2 ah c89 kqaknsdh//ssdbox1.mydomain.com > sss.auth

echo okPui uz 472 JK cnzx opzutb//sssdbox2.mydomain.com >> sss.auth

C. How to Start sssd

To start the sssd daemon from a boot startup file, place the following command in a system re file the system uses (i.e.,/etc/rc, /etc/rc.local, or /etc/rc.2/SXX.sss, etc.). The file location depends on the operating system:

sh -c "(cd <RealSecure_distrib_directory>; ./sssd -s)"

Where: <RealSecure_distrib_directory> is the directory path in which the RealSecure engine is installed.

Start sssd from a shell command prompt by entering the same command provided above while logged in as root. For verbose output, run the foreground task using the -f option and use the -v option along with -f.

Chapter 2: Installing RealSecure

The following summarizes sssd command line options:

-a <file> Authentication file and path (default: /etc/sssd auth)

-f Foreground processing (do not run as daemon)

-p <port> Port number to listen for connections Log connections to systog

-v Verbose output

How to Stop sssd

Stop the sssd daemon with the kill command, for example:

kill -TERM 'ps ax | grep sssd | grep -v grep | cut -f1 -d" "'

Arguments to ps may vary.

Note: Its inet necessary to start the assessorer if only running and engine on the local machine.

Step 5: How to Start RealSecure GUI (rsgui) on the Administrative Machine

Enter the following commands:

cd rs

/rsgui

Note: Upon entenne the regulacemmand, an About box displays and will eventually time out if the OK button is not pressed.

The RealSecure toolbar displays:

RealSecure Toolbar

The toolbar allows for:

- General Configuration
- Configuring RealSecure engines
- Viewing network events
- Generating reports
- Help
- Exit

Chapter 2: Installing RealSecure

(This page intentionally left blank)

Chapter 3: Configuring RealSecure

RealSecure

OVERVIEW

To effectively monitor network problems, provide RealSecure with important network configuration requirements. For instance, a Web server should be having Web traffic, but the company's accounting machine probably should not. In this case, consider configuring RealSecure to ignore Web traffic to the Web server, while continuing to log all other Web traffic. Each service accessed through the network in the same manner.

RealSecure has two related, but separate configuration modes. The filter configuration mode sets what services **RealSecure** watches for connections. The feature configuration mode enables, disables and fine-tunes custom attack signatures.

To set GUI configurations, access the Engine Management window. To display this window, choose Configure Engines from the **RealSecure** toolbar.

Engine Management Window

The **RealSecure** Engine Management screens allow for configuration and monitoring of the state of **RealSecure** engines on the network. The active engines window displays a list of all **RealSecure** engines currently communicating with the network's GUI. Each engine normally remains in an "Alive" state. The GUI periodically plngs each engine to check for responsiveness. If it fails to respond to a ping, it moves into a "No Response" state, indicating the engine may no longer be communicating properly with the GUI.

At the bottom of the Engine Management window is a "Hostname or Address" field. Entering the name or IP address of an engine and then pressing Enter or clicking on "Start Engine" causes the

Case 1:04-cv-01199-SLR

Document 298-9

Filed 06/16/2006

Page 26 of 46

Chapter 3: Configuring RealSecure

GUI to communicate with the "sssd" daemon running on the remote machine; this starts a **RealSecure** engine on that machine. For an engine to startup remotely, **RealSecure** must be installed and the authentication entries should be setup and running sssd on the remote

RealSecure

machine. To start up a local engine, use the hostname "localhost" or the IP address "127.0.0.1". Starting up local engines does not require sssd to be running or any authentication information to be configured.

By selecting a running engine, one can then click on any of the buttons (located on the right side of the screen) and perform the specified actions.

General Configuration window

The General Configuration screen allows for adjustment to of RealSecure timeouts and settings to fit a particular network configuration. Once settings are configured, additional changes to this screen are not necessary, unless the system or network configuration has also changed.

The three event timeout boxes allow for entering the number of seconds that events remain on the GUI screen and is monitored internally by the RealSecure engine. The higher these timeout values, the more memory the engine and GUI utilize to track all of the events. Regardless of these values, if logging for events is enabled, a permanent record of each event that occurs in the log files is kept.

Case 1:04-cv-01199-SLR Document 298-9 Filed 06/16/2006

Chapter 3: Configuring RealSecure

Page 28 of 46

The Inactive Streams timeout allows for setting a value for how long the TCP stream data is kept in memory before it is discarded. Decreasing this value will save memory, but if set too low, signatures that occur with a larger amount of time between packets may be interpreted separately instead of as a continuous stream.

3.5

ISS25495

RealSecure

The HTML browser location is the path of the Web browser. If a Web browser is in the path, there is no need to specify a full pathname, although it is recommended in case the path variable should change at some point. Clicking on the "..." icon displays a directory browse window from which the Web browser is found.

Filter Configuration

The filter configuration does exactly what its name implies; it selects the types of network connections **RealSecure** should ignore or watch. To edit the filter configuration, click on the desired engine for configuration in the Engine Management window and then click on **Filters**. The Configure Events window displays. Alternately, the filter.cfg file on the engine's host are editable.

Configure Events window

A filter consists of rules matching in order. Once a match is found, further searches cancel. If the engine being configured has a filter configuration, the rules appear in the Filter List. To modify a rule, click on the rule. It will appear in the bottom half of the window. Clicking on any of the fields allows for modification. Clicking on the **Modify** button commits changes to the list. To add a rule, click on the position in the list where the new rule is to be inserted. Enter the desired rule in the fields in the bottom half of the window. To add the new rule, click on the **Add** button.

There are several fields to a rule, they are as follows:

- Source and Destination Address IPs or ranges of IPs
- Source and Destination Service -- TCP/UDP ports
- Source and Destination Type -- ICMP only
- Protocol -- TCP, UDP, or ICMP
- Label -- a one-word description of the event that appears in the GUI
- · Priority -- the severity of this rule
- Actions what to do when this rule is matched

Addresses

The source and destination addresses are structured in the common dotted decimal form (i.e., 10.1.2.3). To specify a range of addresses, use the asterisk (*) wildcard. For instance, an address of 10.1.1.* would match 10.1.1.2 and 10.1.1.50, but not 10.1.18.2. Wildcards must be on even boundaries. For example, 10.* is valid, but 10.1.1* is not. Finally, a wildcard by itself will match all addresses.

Services

Services are the ports in a connection. For instance, HTTP (Web) traffic uses port 80. To select a service, click on the button. A list of services appears. Select the desired service and click OK. Selecting the **Any (0)** service matches any service. If the desired

37

RealSecure

service is not in the list, edit the services file included with the distribution software to add the desired service.

ICMP Types

Every ICMP packet has a type and sub-type. For instance, ping packets have an ICMP type of Echo Request. To select a type, click on the button. A list of types appears. Select the desired type and click OK. If the desired service is not in the list, edit the services file included with the distribution software to add the desired ICMP type.

Protocols

Each rule must be of a specific protocol type. Valid protocols are TCP, UDP and ICMP. TCP is a reliable data transport used for services like E-Mail, FTP, and HTTP. UDP is a datagram service used for services like CU-SeeMe and Talk. Lastly, ICMP is used for sending control messages between Internet nodes.

Labels

The label is a one-word tag for this particular rule. It appears in the logs and on the display. It allows for differentiation of connections at a glance. Valid tags include Web-Traffic or Bob's PC, but not My Server (note the space).

Priority

Each rule has a priority that controls which window the event appears and additional group events for generating reports. Valid priorities are high, medium, and low. It is best to group rules based on priority, to filter out common events (Web transfers, email) from less common events (attempts to exploit security holes, connections to the accounting machine).

Actions

The action configuration is the same for both filters and attack pattern matching. There are quite a few possible actions, they are:

- Ignore any event matching this rule
- Display a message in the main window where the event occurred
- View the data from the connection in real-time
- Kill the connection by sending a reset packet (only possible with TCP connections)
- Mail a notification to the administrator
- Run a User-specified program when the event occurs
- Log data to a file:

- Log Info that the connection occurred to a file
- Log Text data sent through the connection
- Log Raw data sent through the connection for later playback

Configure Actions window

To enable or disable an action, click on it. When the Ignore action is enabled, all other actions are disabled. Some actions require additional data. For instance, if the Mail action is enabled, RealSecure must have an address in order to send mail. After selecting the desired action(s), click OK to continue.

Sample Uses of Filter Rules

Getting an Idea of Your Network Traffic

To initially become accustomed to filters and to become familiar with network traffic patterns, use filter.cfg (which is the default).

Chapter 3: Configuring RealSecure

Be sure to log in as root. Follow the startup instructions for using RealSecure. This configuration displays all TCP and UDP connections on the network. The display can get very crowded, quickly. Therefore, close down any engines still running by selecting each engine in the Engine Management window and clicking on the Shutdown button. If any/all engines are to remain running after exiting the GUI, it is not necessary to shut them down from within this window. To exit the GUI, click on the Exit button located on the toolbar.

RealSecure

Review the network security policy. Is rlogin permitted from anywhere, or just from internal hosts? Examining the firewall's configuration is helpful. The entries in the filter.cfg file are matched sequentially (one-by-one). A match indicates the action specified at the end of the line is taken, and further matches are discarded. For this reason, save wildcard entries until the end.

Determine the filter rules based on the network security policy. Usually, these correspond with the firewall configuration. Thus, RealSecure is used as a second level of defense. RealSecure will recognize and display exactly all occurrences of unauthorized traffic.

To see a general configuration that shows all common services refer to the filter.cfg included by default in the rs directory.

Since RealSecure engines communicate with the GUI host via normal UDP packets, configure RealSecure to ignore them. Use the following rules to ignore all RealSecure reports destined for the GUI host:

udp 0.0.0.0/0 10.0.0.1/32 0 900 RSgui 3 ignore udp 0.0.0.0/0 10.0.0.1/32 0 901 RSeng 3 ignore

Sample Configurations

To get started using RealSecure, three sample configurations are included. To use them, copy the sample filter ofg and features ofg to each of the hosts that will be using them. The following describes each of the three configurations:

- All filter/ features (default) Enables all RealSecure checking and data decoding.
- Exp filter/ features Enables only exploit checking (leaves) out some of the general information features).
- Web filter/ features Enables Web checks only.

Document 298-9

Feature Configuration

RealSecure has a standard set of attack signature checks that examine data inside a connection and check for significant signs of intrusion attempts. For instance, one of the old Sendmail exploits involved passing a malformed From address in an e-mail header. RealSecure watches all SMTP connections for this invalid data and triggers an alarm once it detects such an attack. The network administrator can then investigate and use the logging and response options of RealSecure to trace and ultimately lock out the intruder.

To enable signature checking, the filter configuration must have an entry for the service. For instance, Sendmail bug check is enabled (see above), but port 25 (Sendmail) is not being watched. subsequently the check is never used. To obtain more information about which filters are needed for each service, refer to the Appendix.

For a list of the checks and a definition of their capabilities, refer to Appendix A, RealSecure Features and Attack Signatures.

Each check has a standard set of options, configurable through the GUI. Select the engine to configure in the Engine Management window and then click on the Signatures button. The Configure Signatures window displays. Alternately, the features.cfg file is editable.

Configure Signatures window

Each check has a standard format scheme for its options. For instance, the check for IP fragmentation attacks contains the prefix IPFrag. To manually change the priority of this check, modify the entry called IPFragPriority in the features of file.

The following details common options for all checks:

- ...Check whether to perform this check (yes or no)
- ...Priority the priority level for this attack
- ...SMessage the message to log when this attack happens
- ...Actions a list of actions to take when RealSecure sees this attack

Also, there are tunable parameters for some of the checks. To prevent false alarms, set the sensitivity of these checks. RealSecure's default configuration has reasonable values for these settings. These settings may vary, depending on the network. They are configurable by selecting the check in the Configure Signatures window and clicking on the Advanced button.

Advanced Pattern Configuration window

Checks

IP Fragmentation

This check looks for IP fragments with a size less than or equal to IPFragThreshold. Fragmentation requires that the data portion of the generated fragments (that is, everything excluding the IP header) be a multiple of 8 bytes for all fragments other than the final one. To check for an offset less than 16, use a setting of 2. There is no need to change the default value.

Ping Flooding

This check determines if more than **PingFloodPackets** are received in **PingFloodDelta** seconds. The default setting is 50

packets in 3 seconds. If the network is on a slow connection like 14.4 PPP, consider making this setting more sensitive. Otherwise, the default value should suffice.

Arp Check

If someone attempts to contact a host that is powered down, multiple address request packets are sent with no response. **ArpMaxUnAcked** sets how many requests are sent to an unresponsive host, before triggering an alarm.

SYN flood Check

A SYN flood is a Denial of Service attack created by filling up the listen queue of a machine so that there is no room for legitimate users to establish a connection. If this attack is detected, and the "Kill" action is set, **RealSecure** will implement a random drop algorithm that frees up an entry in the listen queue for a legitimate connection.

In order to optimize the effectiveness of this algorithm, it is necessary to set the advanced parameter 'SYNFloodHighWaterMark'. This is the number of SYNs to allow to wait in each machine's queue for a response before the random drop algorithm is implemented. This number should be smaller than the size of the listen queue for your machines by some percentage. A guideline for this is 70% of the size of your listen queue, but this value will need to be fine-tuned to find what works best for each individual network.

The larger the size of the listen queue, the more effective **RealSecure** will be in allowing the queue to remain open at most points in time. Contact your vendor for information about how to increase the size of this queue, or to determine its current value.

Sample Configurations

The **RealSecure** sample directory contains several example configuration files that demonstrate various ways to use **RealSecure** on a network. Modification of these samples is not necessary. Next, set aside time to preview **RealSecure's** various features. Once you have explored each distinct option, consider creating a customized written configuration (refer to the files in the rs/sample directory for more details regarding customizing a configuration).

Each sample configuration contains two files, filter.cfg and features.cfg. The filter.cfg file determines which packets on the Network, **RealSecure** is to examine and suitable action(s) based on those packets. The features.cfg file contains information about how to analyze the traffic being examined in the filter configuration.

To use these samples, copy the sample filter.cfg and features.cfg to the main **RealSecure** GUI directory.

Sample Configuration 1: WebWatcher

Case 1:04-cv-01199-SLR

web-features cfg web-filter.cfg

The WebWatcher configuration logs all URLs transmitted across a network to the **RealSecure** GUI and to an http.log file, while ignoring all other traffic. This allows for tracking and monitoring Web site traffic in real-time and stores Web page(s) logs for which user's access. The administrator should refer to the network security policy that limits the types of Web page(s) and sites' users are permitted to access. As well, consider restricting the hours in a day and allotted online time users are permitted to "Surf the Web."

This configuration allows for tracking and monitoring of how each user is utilizing the World Wide Web (WWW) within an organization; all the while, not compromising speed or accessibility to the WWW. Identify violations to the network security policy

8-17-

RealSecure

either in real-time from the GUI or later by reviewing log files. Subsequently, take administrative action(s) based on the source and time of any such violation. Log source and time reports if necessary and use them to document network security violations as required.

This configuration produces logs that monitor Web traffic on the network Web server, without ever modifying it. Web traffic logs provide essential information that consequently administers a backup mechanism. These traffic logs both maintain and log all Web connections on the server; even if network disk space becomes full or logs become inadvertently deleted.

In the filter.cfg file, the source and destination addresses are set to the wildcard address, **0.0.0.0/0**. This file logs incoming connections from any source address to any destination address. If there is a specific machine installed to monitor outgoing Web connections, consider changing the source address value to the IP address of the machine; and only connections originating from that machine will log.

Chapter 3: Configuring RealSecure

Ignore all outgoing traffic while monitoring the Web server. Modify the destination address to the IP address to that of the Web server. The source port in the configuration is set to 0, indicating connections coming from any source port will be logged. The Message value is set to Web. Priority is set to 2 (Medium). Connection establishment on the GUI is viewable real-time, since the Display action is enabled.

In the features.cfg file, the HTTPGetDecodeCheck is enabled, and all other checks disabled. The action for this check is set to Display and to log to a file.

Sample Configuration 2: Exploit Finder

exp-features.cfg exp-filter.cfg

This configuration displays all attempts of known exploits against any machine on the network, or originating from any machine on the network. This immediately allows an administrator to check for a break-in, using one of the many ways **RealSecure** checks. **RealSecure** also detects if anyone inside the network is attempting to break-into other machines on the Internet.

To configure this, set up the features configuration to enable all of the exploit checks, while disabling all the simple informational decodes. The filter configuration is then set to filter out services the exploits are attempted against, in this case HTTP, SMTP, FTP, Rlogin, and Ident. Consider configuring the individual features to page or flag some other alert when detecting one of these exploits. These features will indicate a break-in attempt.

Sample Configuration 3: TCP Traffic

all-features.cfg all-filter.cfg

RealSecure

This configuration displays all TCP traffic going through the network and displays all decodes and vulnerability attempts. This configuration is good for a small network having an active system administrator. Watching **RealSecure**, the administrator can monitor all of the TCP traffic on the network, users and passwords being attempted to each machine files being transferred over FTP and URLs being used over HTTP. These attempts are harder to detect on larger networks.

Changing the one line of the filter configuration to point to a specific machine, can significantly reduce the information that pinpoints all of the TCP traffic coming and going from one particular machine. If there is a suspected hacker on a machine, consider this option to monitor the traffic on the machine. If this is the case, consider enabling log in to a file in order to efficiently monitor the activities of the hacker.

The filter configuration is defined to display all TCP traffic going through the network. Every feature is enabled in the features configuration.

Chapter 4: **Using RealSecure**

RealSecure*

OVERVIEW

Upon selecting Configure Engines from the RealSecure toolbar, the Engine Management window displays. This window allows for starting, stopping and configuration of engines on each host. If engines are already running on the network, the GUI is automatically contacted and appears within a list on the Engine Management window. The list displays the active engines, one per line as follows...

Engine Management Window

To start an engine, type the name or IP address of a host on which you wish to run an engine and press Enter, or click on Start Engine. After a short delay, the engine will appear in the engine list and the Network Events window will pop up to start displaying events.

Remote engines may only be started on hosts that are configured for running sssd.

Network Events window

4-3

As events appear in the window, more information is provided about them by double-clicking on the entry.