#

NOV 09, 2022

WORKS FOR ME 1

Lithium Acetate / SDS Extraction of Genomic DNA from Saccharomyces c erevisiae

This protocol is published without a DOI.

Clark Fritsch¹

¹University of Pennsylvania

COMMENTS 0

ABSTRACT

This protocol is just a quick description of the protocol provided by Looke et al., 2011 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182553/). The purpose of this protocol is simply to provide a quick and easy method to isolate genomic DNA from yeast for PCR-based applications. While it does not provide the purist genomic DNA that you can get, it is extremely quick and easy to perform.

PROTOCOL CITATION

Clark Fritsch 2022. Lithium Acetate / SDS Extraction of Genomic DNA from Saccharomyces cerevisiae. **protocols.io**

https://protocols.io/view/lithium-acetate-sds-extraction-of-genomic-dna-from-bvq2n5ye

LICENSE

This is an open access protocol distributed under the terms of the <u>Creative</u> <u>Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Jun 11, 2021

LAST MODIFIED

Nov 09, 2022

PROTOCOL INTEGER ID

50682

1	Pick one yeast colony from the plate or spin down 100-200 μ l of liquid yeast culture (0D600=0.4). Suspend cells in 100 μ l of 200mM LiOAc, 1 % SDS solution. Alternatively, you can spin down 100-500 uL of liquid culture at 3,000 rcf for 4 minutes and then resuspend the pelleted cells in 100 uL of 200 mM LiOAc, 1% SDS solution if you wish.
2	Incubate for 5 minutes at 70°C.
3	Add 300μl of 96-100 % ethanol, vortex thoroughly.
4	Spin down DNA and cell debris at 15,000 rcf for 3 minutes.
5	Resuspend the pellet in 70% ethanol. Then spin the resuspended DNA and cell debris mixture at 15,000 rcf for 3 minutes.
6	Dispose of the supernatant and then dissolve the pellet in 100 μl of H2O or TE and spin down cell debris for 15 seconds at 15 000 g.
7	Use 1 µl of supernatant for PCR.