תאריך הבחינה: 29/07/2011

שם המרצה: פרופי מרק לסט

שם הקורס: כריית נתונים ומחסני נתונים

מספר הקורס: 372-1-3105

 \underline{v} : מועד סמסטר בי מועד סמסטר שנה

משך הבחינה: 3 שעות

חומר עזר: דף נוסחאות (מצורף לבחינה) + מחשבון

גרסה מסי <u>1</u>

חלק 1 [50 נקודות]

- יש לענות על כל השאלות •
- משקל של כל שאלה 5 נקודות
- יש לרשום את התשובה בכתב-יד ברור במקום המיועד לכך על-גבי שאלון הבחינה בלבד
 - תשובה לא מנומקת (במידה ונדרשת הנמקה) תקבל ציון של אפס

. עליכם לבנות מחסן נתונים עבור נתונים רב-שנתיים של כמות הגשמים היורדים ברחבי הארץ מה יהיו המימדים (dimensions) והעובדות (facts) בתרשים הכוכב של מחסן זה?
ימדים (לפחות שניים):
מה משמעות התכונה Non-volatility (ייאי-נדיפותיי) של מחסני נתונים?
מהו תחום הערכים של אנתרופיה המחושבת עבור משתנה מקרי נתון?
. מה הבדל בין השיטות single link ו-complete link לחישוב המרחק בין שני אשכולות?
י. יש לציין לפחות שתי שיטות שונות לטיפול בערכים חסרים (missing data).
.2 מה מאפיין כל רמה (שכבה) במודלים של רשתות אינפו-עמומות (Info-Fuzzy Networks)!

חלק 2 [50 נקודות]

- יש להציג את כל התוצאות עם שלוש ספרות אחרי נקודה עשרונית אלא אם צוין אחרת!
 - יש לרשום את כל התשובות **על-גבי שאלון הבחינה בלבד**
 - טיוטות החישוב ייגרסו ללא בדיקה

נתון בסיס הנתונים <u>המסוכם</u> הבא:

#:4	A 000	Candan	Incomo	Marital	Ca	r Type Co	unt
# id	Age	Gender	Income	Status	Family	Luxury	Sports
1	25-33	Male	10,000	Married	10	5	7
2	34-45	Female	12,000	Single	6	8	9
3	46-55	Female	16,000	Divorced	5	4	19
4	56+	Female	7,000	Single	4	6	10
5	25-33	Male	16,000	Widowed	20	4	7
6	34-45	Male	12,000	Divorced	8	9	10
7	46-55	Female	7,000	Married	4	2	0
8	56+	Male	7,000	Single	3	1	7
9	46-55	Male	12,000	Widowed	9	5	1
10	56+	Female	10,000	Divorced	3	7	31
11	56+	Female	7,000	Married	42	2	1
12	25-33	Male	10,000	Single	20	3	2
13	34-45	Male	16,000	Single	0	10	13
14	46-55	Male	12,000	Divorced	1	5	8
15	25-33	Female	7,000	Married	17	0	2

Attribute	Type	Use
# id	Numeric	ID
Age	Nominal	Input
Gender	Nominal	Input
Income	Numeric	Input
Marital Status	Nominal	Input
Car Type	Nominal	Decision Class

שימו לב:

- יו. משתנה ה-#id הוא לשימוש בסעיף ו'. •
- העמודות "Car Type Count" מייצגות עבור כל אחד מהערכים האפשריים של המשתנה "Car Type Count" את מספר (Family, Luxury, Sports) Type עבור הרשומה #id=1 בבסיס הנתונים המסוכם:
 - יש 10 רשומה המקורי בבסיס הנתונים של Car Type: Family = 10 Family הסיווג שלהן והסיווג שלהן הינו #id=1 שבה +id=1

א. יש לחשב אנתרופיה בלתי מותנית עבור המשתנים Age ו-10 . Car Type נקודות נא להציג את החישובים בטבלאות הבאות:

Age	Count	Probability	Entropy
Total			

		•	
Car Type	Count	Probability	Entropy
Total			

ב. יש לחשב את הרווח האינפורמטיבי (Information Gain) של משתנה הסיווג "Car Type". עבור כל נקודות הפיצול האפשריות של המשתנה הרציף "Income". יש לציין בעיגול את נקודת הפיצול הטובה ביותר. **10 נקודות**.

	Left		Right			
	Interval		Interval		Total	Information
Threshold	Percentage	Entropy	Percentage	Entropy	Entropy	Gain

min-max normalization בשיטת Income ג. יש לנרמל את כל הערכים של המשתנה לתחום שבין אפס לאחד. **5 נקודות**.

# id	Income	Normalized Income
1	10,000	
2	12,000	
3	16,000	
4	7,000	
5	16,000	
6	12,000	
7	7,000	
8	7,000	

		Normalized
# id	Income	Income
9	12,000	
10	10,000	
11	7,000	
12	10,000	
13	16,000	
14	12,000	
15	7,000	

Min = Max =

ד. סווג את הרשומה הבאה על-ידי שימוש באלגוריתם K-NN, כאשר K-1 ד. סווג את הרשומה הבאה על-ידי שימוש

# id	Age	Gender	Income	Marital Status	Car Type
16	46-55	Female	8,200	Married	

עליך להשתמש **בהנחות הבאות**:

- יש להתייחס לכל שורה בטבלת הנתונים המסוכמת כאילו שהיא מייצגת <u>תצפית אחת</u> שהסיווג שלה נקבע עפיי חוק הרוב.
 - חישוב המרחקים:
 - חישוב המרחק יתבסס על המשתנים: Income, Marital Status בלבד.
 - עבור משתנה נומרי חשב את המרחק בין <u>הערכים המנורמלים</u> שנקבעו עפייי השיטה המוגדרת בסעיף הקודם.
 - .Simple matching עבור משתנה נומינלי חשב את המרחק על סמך -

#		Marital			marital status-	
id	Income	Status	Car Type	income-distance	distance	total distance
1	10,000	Married				
2	12,000	Single				
3	16,000	Divorced				
4	7,000	Single				
5	16,000	Widowed				
6	12,000	Divorced				
7	7,000	Married				
8	7,000	Single				
9	12,000	Widowed				
10	10,000	Divorced				
11	7,000	Married				
12	10,000	Single				
13	16,000	Single				
14	12,000	Divorced				
15	7,000	Married				
	Minimal					<u> </u>
16	distance				<i>{////////////////////////////////////</i>	

ה. בהנחה שכל רשומה בטבלת הנתונים המסוכמת מייצגת תצפית אחת בלבד (בדומה לסעיף הקודם), יש לבצע את האיטרציה הראשונה בלבד של האלגוריתם k-means לניתוח אשכולות על המשתנים הנומינליים הבאים: Age, Gender, Marital Status נקודות אשכולות על המשתנים הנומינליים הבאים:
 עליך להשתמש בהנחות הבאות:

.(מספר האשכולות שווה לארבעה) K=4

- החלוקה הראשונית של התצפיות לאשכולות נתונה בטבלה של האיטרציה מסי 1 (בעמודה "old cluster").
- לחישוב המרחקים יש להשתמש ב-Simple Matching, המרחק בין תצפית לאשכול יחושב כמרחק בין תצפית לווקטור המייצג את האשכול (centroid).
- הערכים של הווקטור המייצג את האשכול (centroid) ייקבעו לפי ה-majority rule.
 במידה ויש שוויון בין שכיחות הערכים של משתנה מסוים, יש לקבוע את הערך המייצג לפי הערך של התצפית עם ה-#id הנמוך ביותר. לדוגמא:

# id	Age	Gender
1	25-33	Male
2	34-45	Female
3	46-55	Female
Centroid	25-33	Female

: (centroids) הווקטורים המייצגים

Cluster	Age	Gender	Marital Status
1			
2			
3			
4			

:1 איטרציה מסי

			Marital	old	Distance to	Distance to	Distance to	Distance to	new
# id	Age	Gender	Status	cluster	cluster1	cluster2	cluster3	cluster4	cluster
1	25-33	Male	Married	1					
5	25-33	Male	Widowed	1					
9	46-55	Male	Widowed	1					
13	34-45	Male	Single	1					
2	34-45	Female	Single	2					
6	34-45	Male	Divorced	2					
10	56+	Female	Divorced	2					
14	46-55	Male	Divorced	2					
3	46-55	Female	Divorced	3					
7	46-55	Female	Married	3					
11	56+	Female	Married	3					
15	25-33	Female	Married	3					
4	56+	Female	Single	4					
8	56+	Male	Single	4					
12	25-33	Male	Single	4					

