<미상치 판단/처리> ①사분위수 이용 ITQ=Q3-Q1 low=Q1-1.5*ITQ, //high=Q3+1.5ITQ df2=df[(df.v < high) & (df.v > low)] ② zscore z=np.abs(df.v -df.v.mean()/df.v.std()
z=np.abs(df.v -df.v.mean()/df.v.std()
df2=df[z<2.5]
회귀계수 0인가

범주(독립) 숫자(종속)	<정규성 검정> V_1=df[df.V ==0]['v'] V_2=df[df.V ==1]['v'] sns.histplot(V_1, kde=True) sns.histplot(V_2, kde=True)	<만일표본 T검정(one-sample T test)> 하나의 집단평균이 모평균과 동일한지 검정(신뢰구간) stats.ttest_1samp(V_1, df.1.mean()) stats.ttest_1samp(V_2, df.V.mean()) #귀무: 모평균과 동일 <정규성 검정>표준정규분포를 갖는지 stats.shapiro(V_1) stats.shapiro(V_2) # 귀무: 등분산을 가진다 <등분산 검정>같은 분산을 갖는지 #귀무: 갖는다 stats.bartett(V_1,V_2) # 표본크기 크고 정규성 가진 데이터 stats.levene(V_1,V_2) # 정규분포에 영향 안받음(중앙값) stats.fligner(V_1,V_2) # 정규분포 안따르는 데이터/중앙값	신뢰구간 구하기 n=len(v)-1 #자유도 mn=np.mean(v) #표준편차 sm=stats.sem(v) #표준오차 stats.t.interval(0.95, n, mn, sm)> 95% 신뢰구간 -1.96~1.96
	sns.barplot(x=V, y=v, data=df) # V 범주들 모두 그래프에 표시됨	<독립표본 T검정> 모집단이 서로 다를때 두 평균의 차이 stats.ttest_ind(V_1,V_2, equal_var=False) 귀무: 유의미한 평균 차이가 없다. t통계량 결과 -2> 또는 >2이면 '차이가 크다'. <mann-whitney test="" u="" 검정=""> 중앙값 차이 표본수가 적을때 비모수적인 분석// 평균비교X, 순위합검정 stats.mannwhitneyu(V_1,V_2) 귀무: 두 집단의 중앙값 차이가 없다.</mann-whitney>	
, ,	$V_1=df[df.V ==0]['v']$ $V_2=df[df.V ==1]['v']$ $V_3=df[df.V ==2]['v']$ sns.barplot(x='V', y='v', data=df)	<f검정(anova)> 신뢰구간 검정 여러 집단의 분산을 통한 집단의 차이가 있는지 stats.f_oneway('V_1','V_2','V_3') 귀무: 차이가 없다 f통계량 결과 2-3이상의 값을 가지면 차이가 있다</f검정(anova)>	