Downloaded from Stanmorephysics.com

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

TIME: 2 hours

N.B. This question paper consists of 7 pages and an information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 8 questions.
- 2. Answer **ALL** questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

[14]

QUESTION 1

- 1.1 Consider the arithmetic sequence: 8; 15; 22;
 - 1.1.1 Determine the 36th term (2)
 - 1.1.2 Calculate the sum of the first 36 terms. (2)
 - 1.1.3 If it is given that $T_{72} + T_{72-m} = 786$, determine the value of m. (4)
- 1.2 A frog is making a series of jumps. With every next jump, he has only enough energy left to jump $\frac{2}{3}$ the distance of his previous jump.

- 1.2.1 If his first jump is 81cm long, calculate the length of his second jump. (1)
- 1.2.2 Determine the length of his ninth jump. (2)
- 1.2.3 If the frog continues to jump in this way, will he be able to catch a trapped insect that is 230 cm away from his starting point? Show all your calculations. (3)

QUESTION 2

- 2.1 The given number pattern is a combination of a quadratic sequence and an arithmetic sequence: 16; 32; 0; 28; -12; 24; -20; 20;
 - 2.1.1 Determine the general term of the quadratic sequence. (4)
 - 2.1.2 Determine the general term of the arithmetic sequence. (2)
 - 2.1.3 The given number pattern has two consecutive terms that are equal in value.Determine the positions of the two terms.
- 2.2 Calculate: $\sum_{k=3}^{9} 2(-3)^k$ (4)

The diagram shows the graph of $f(x) = \frac{3}{x+2} + 1$

- 3.1 Write down the equations of the asymptotes of f. (2)
- 3.2 Determine the coordinates of A. (2)
- 3.3 Determine the coordinates of B. (2)
- 3.4 The graph of g is formed by first reflecting f in the y-axis and then translating it upwards by 2 units. Determine the equation of g. (2)
- 3.5 y = x + c is the equation of one of the axes of symmetry of g. Determine the value of c. (2)

[10]

The sketch below shows the graphs of $h(x) = -x^2 + 2x + p$ and t(x) = mx + 5.

- D is the *x*-intercept, and B the *y*-intercept of *t*.
- A is the *y*-intercept of *h*.

Stanmorephysics.com

- C is the *x*-intercept of *h*.
- F is the turning point of *h*.
- E is a point on *t*, such that EC is parallel to the *y*-axis.
- AB is 2 units and CD is 7 units.

- 4.1 Show that p = 3. (1)
- 4.2 Determine the coordinates of F. (3)
- 4.3 Determine the coordinates of C. (3)
- 4.4 Determine the length of EC. (5)
 - [12]

[11]

[16]

QUESTION 5

Given: $f(x) = 3x^2$, where $x \ge 0$.

- 5.1 Determine the equation of f^{-1} . (3)
- On the same set of axes, draw the graphs of f and f^{-1} , showing the intercepts with the axes as well as coordinates of two points on each graph. (4)
- 5.3 Determine the values of x for which $f(x) = f^{-1}(x)$. (4)

QUESTION 6

6.1 Given: $\tan x = \frac{3}{4}$, where $x \in [180^\circ; 270^\circ]$.

With the aid of a sketch, and without the use of a calculator, calculate:

$$6.1.1 \quad \sin x \tag{3}$$

6.1.2
$$2 - \sin 2x$$
 (3)

6.1.3
$$\cos^2(90^\circ - x) - 1$$
 (3)

6.2 Evaluate:
$$\frac{-1 + \cos(180^{\circ} - \theta) \cdot \sin(\theta - 90^{\circ})}{\cos(-\theta) \cdot \sin(90^{\circ} + \theta) \cdot \tan^{2}(540^{\circ} + \theta)}$$
 (7)

QUESTION 7

- 7.1 Given: cos(A B) = cos A cos B + sin A sin B
 - 7.1.1 Use the above identity to deduce that sin(A+B) = sin A cos B + cos A sin B. (3)
 - 7.1.2 Hence determine the general solution of the equation $\sin(2x+50^{\circ}) \sin 15^{\circ} \cos 48^{\circ} = \sin 48^{\circ} \cos 15^{\circ}. \tag{4}$
- 7.2 Given: $\frac{4\sin x \cos x}{2\sin^2 x 1}$
 - 7.2.1 Simplify $\frac{4\sin x \cos x}{2\sin^2 x 1}$ to a single trigonometric ratio. (3)
 - 7.2.2 For which value(s) of x in the interval $-90^{\circ} < x < 90^{\circ}$ will the above expression be undefined? (3)
 - 7.2.3 Without using a calculator, determine the value of $\frac{4\sin 15^{\circ} \cos 15^{\circ}}{2\sin^2 15^{\circ} 1}$. (2)

[15]

In the diagram below, the graphs of $f(x) = \cos x + m$ and $g(x) = \sin(x+n)$ are drawn on the same set of axes for $x \in [-240^{\circ}; 240^{\circ}]$.

A is an *x*-intercept of f and has coordinates $(60^{\circ}; 0)$.

B is a turning point of g and has coordinates $(60^{\circ}; 1)$.

- 8.1 Determine the values of m and n. (2)
- 8.2 Write down the amplitude of f. (1)
- 8.3 If h(x) = g(2x), write down the period of h. (1)
- 8.4 For which values of x will $f(x).g(x) \le 0$ in the interval $x \in [0^\circ; 240^\circ]$? (2)
- 8.5 Describe the transformations that the graph of g has to undergo to form the graph of p, where $p(x) = -\cos x$. (2)

TOTAL: 100 marks

INFORMATION SHEET: MATHEMATICS
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq 1 \qquad S_{\infty} = \frac{a}{1 - r} \; ; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$
In $\triangle ABC$:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^{2} = b^{2} + c^{2} - 2bc \cdot \cos A$$

area
$$\triangle ABC = \frac{1}{2}ab$$
. sin C

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases} \qquad \sin 2\alpha = 2\sin \alpha . \sin \alpha$$

$$\bar{x} = \frac{\sum x}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

Downloaded from Stanmore Physics.com

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

MARKING GUIDELINES

COMMON TEST

MARCH 2024

- Sunmorephysics.com

MARKS: 100

These marking guidelines consist of 10 pages.

QUES	TION 1		
1.1.1	8;15;22;		
1.1.1	a = 8; $d = 7;$ $n = 36$		
	$T_n = a + (n-1)d$		
1	$T_{36} = 8 + (36 - 1)(7)$	✓A substitution	
	$T_{36} = 253$	✓CA answer	(2)
1.1.2	a=8; $d=7;$ $n=36$		
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$		
	$S_{36} = \frac{36}{2} [2(8) + (36 - 1)(7)]$	✓CA substitution	
	$S_{36} = 4698$	✓CA answer	
	OR	OR	
	$S_n = \frac{n}{2}(a+l)$		
	$S_{36} = \frac{36}{2}(8+253)$	✓CA substitution	
	= 4698	✓CA answer	(2)
1.1.3	$T_n = a + (n-1)d$		
	$T_{72} = 8 + (72 - 1)(7) = 505$	✓CA value of T ₇₂	
	$T_{72-m} = 8 + (72 - m - 1)(7)$	✓CA Substitution in T_{72-m}	
	T _{72-m} + T _{72-a} 786 physics.com		
	505 + 8 + 497 - 72 - m = 786	✓CA Simplification	
	-7m = -224	0000	
	m=32	✓CA value of <i>m</i>	(4)
1.2.1	$81 \times \frac{2}{3} = 54cm$		
	The next jump is 54 <i>cm</i>	✓A answer	(1)
1.2.2	81;54;36;		
	$a = 81; r = \frac{2}{3}; n = 9$		
	$T_n = ar^{n-1}$		
	$T_9 = 81 \left(\frac{2}{3}\right)^8$	✓A substitution	
	$=\frac{256}{81}=3,16cm$	✓A answer	(2)

1.2.3	$S_{\infty} = \frac{a}{1 - r}$ $S_{\infty} = \frac{81}{1 - \frac{2}{3}}$	✓A substitution	
9	= 243cm 243 cm > 230cm	✓CA value of S_{∞}	
1	Yes he will be able to catch the insect	✓CA conclusion	
	OR	OR	
	Showing that he can reach a distance >	✓A substitution	
	230 through substitution of a value of <i>n</i>	\checkmark CA value of S_n	
	that is \geq 8 in the S_n formula.	✓CA conclusion	(3)
			[14]

QUES	UESTION 2			
2.1.1	16;0;-12;-20;			
	-16; -12; -8;			
	4; 4;			
	2a=4		\checkmark A value of a	
	a=2			
	-16 = 3a + b			
	-16 = 3(2) + b			
	b = -22		✓CA value of b	
	16 = 2 - 22 + c		(6)	
	c = 36		✓CA value of c	(4)
	$T_n = 2n^2 - 22n + 36$		✓CA answer	(4)
2.1.2	32; 28; 24; 20;			
	a=32			
	d = -4			
	$T_n = a + (n-1)d$		50000000 HT 100000 HT	
	$T_n = 32 + (n-1)(-4)$	Answer only:	✓A substitution	
	$T_n = -4n + 36$	Full marks	✓CA answer	(2)
2.1.3	$2n^2 - 22n + 36 = -4n + 36$		✓CA equating	
	$2n^2 \# 18n = 0$			
	n' - 9n = 0			
	n(n-9)=0		✓CA factors	
	n=0 or $n=9$			
	Stanmorephysics.com $n = 9$ only		\checkmark CA $n=9$ only	
	\therefore T ₁₇ and T ₁₈ are the terms		\checkmark CA answer	(4)
	1/ -18 -18		G. acceptation (ASC) (ASC)(ASC)(C) (ASC) (ASC)	100

Copyright Reserved

2.2	$T_1 = -54$; $T_2 = 162$; $T_3 = -486$			
	a = -54; $r = -3$; $n = 7$		✓A a=-54	
	$S_n = \frac{a(r^n - 1)}{1}$		✓A r=-3	
	r-1			
1	$S_7 = \frac{-54((-3)^7 - 1)}{-3 - 1}$	Answer only:	✓CA substitution	
	= -29538	Full marks	✓CA answer	(4)
				[14]

QUES	ESTION 3				
3.1	x = -2		✓A answer		
	y = 1		✓A answer	(2)	
3.2	$0 = \frac{3}{x+2} + 1$		✓ A substituting $y = 0$		
	$-1 = \frac{3}{x+2}$				
	-x-2=3				
	x = -5		\checkmark A value of x		
	A(-5; 0)			(2)	
3.3	$y = \frac{3}{0+2} + 1$		✓ A substituting $x = 0$		
	$y = \frac{5}{2}$		\checkmark A value of y		
	$\left B\left(0;\frac{5}{2}\right)\right $	Answer only: Full marks		(2)	
3.4	$g(x) = \frac{3}{-x+2} + 1 + 2$		✓A -x		
	$g(x) = \frac{-3}{x-2} + 3$		✓A answer		
	OR	Answer only:	OR		
	$g(x) = \frac{3}{-x+2} + 3$	Full marks	✓A✓A answer	(2)	
3.5	y = x + c				
	3 = 2 + c subst(2;3)		✓A substituting (2;3)		
	c=1		✓CA answer	(2)	
				[10]	

QUES	STION 4		
4.1	y = mx + 5 B(0; 5): <i>y</i> -intercept		
	OB = 5 units		
	OA = OB - AB = 5 - 2 = 3 units	✓A 5-2	
	A(0; 3)		
4	$f(x) = -x^2 + 2x + 3$		
	p=3		(1)
4.2	$x = \frac{-b}{2a}$		
	$x = \frac{-2}{2(-1)}$	✓A substitution	
	=1	✓CA value of x	
	$y = -(1)^2 + 2(1) + 3 = 4$	✓CA value of y	
	F(1; 4)		
	OR	OR	
	$f(x) = -\left[x^2 - 2x - 3\right]$		
	$f(x) = -[(x^2 - 2x + 1) - 3 - 1]$	✓A completing the square	
	$f(x) = -\left[\left(x-1\right)^2 - 4\right]$		
	$f(x) = -(x-1)^2 + 4$	✓CA value of x	(0)
	F(1; 4)	✓CA value of <i>y</i>	(3)
4.3	$f(x) = -x^2 + 2x + 3$		
	$0 = x^2 - 2x - 3$	✓A equating to 0	
	0 = (x-3)(x+1)	✓A factors	
	x = 3 or -1		
	C(3;0)	✓CA answer	(3)

4.4	C(3;0)			
	CD = 7 units			
	OD = 7 + 3 = 10 units		✓CA OD = 10 units	
	D(10; 0)			
1	y = mx + 5 or	$m = \frac{y_2 - y_1}{x_2 - x_1}$	✓CA substituting D(10; 0) in $y = mx + 5$	
4	0=10m+5	$=\frac{0-10}{5-0}$	OR substituting in gradient formula	
	$m = -\frac{1}{2}$	$=-\frac{1}{2}$	✓CA value of <i>m</i>	
	$y = -\frac{1}{2}x + 5$ or	$\hat{CDE} = 180^{\circ} - \angle \text{ of incl of DE}$		
	At E: $x=3$	= 26,57°		
	1.0 7	on on on	✓CA substituting $x = 3$	
	$\therefore y = -\frac{1}{2}(3) + 5 = \frac{7}{2}$	$CE = CD \times \tan 26,57^{\circ}$	in $y = -\frac{1}{2}x + 5$ OR	
			✓ CA CE = CD × tan 26,57°	(5)
	$\therefore CE = \frac{7}{2} - 0 = \frac{7}{2} \text{ units}$	$= 7 \times \tan 26,57^{\circ} = \frac{7}{2}$	✓CA answer	
				[12]

QUES	STION 5		
5.1	$f: y = 3x^{2}$ $f^{-1}: x = 3y^{2}$ $y^{2} = \frac{1}{3}x$	\checkmark A swapping <i>x</i> and <i>y</i>	
	$y^2 = \frac{1}{3}x$ $y = \pm \sqrt{\frac{1}{3}x}$	\checkmark A $\pm \sqrt{\frac{1}{3}}x$ \checkmark A answer $y = \sqrt{\frac{1}{3}}x$	
	$y = \sqrt{\frac{1}{3}x} \; ; \; y \ge 0$	\checkmark A answer $y = \sqrt{\frac{1}{3}x}$	(3)
5.2	$y \int f$	✓A ✓A shape of each graph	
	(1;3)	\checkmark A coordinates of any two points on f	
	f^{-1} (3;1)	✓ A coordinates of any two points on f^{-1}	
	(0;0) X		(4)

	2 2 1	✓CA equating
5.3	$3x^2 = \sqrt{\frac{1}{3}}x$	CA equating
	$\left(3x^2\right)^2 = \left(\sqrt{\frac{1}{3}}x\right)^2$	✓CA squaring both
	$\left(\sqrt{3}^{x}\right) = \left(\sqrt{3}^{x}\right)$	sides
	$9x^4 = \frac{1}{3}x$	
4	$27x^4 - x = 0$ $x(27x^3 - 1) = 0$	
	x(2/x - 1) = 0 $x(3x-1)(9x^2 + 3x + 1) = 0$ or $x = 0$ or $27x^3 = 1$	
	x(3x-1)(9x + 3x+1) = 0 0r x = 0 0r 2/x = 1	
	$x = 0$ or $x = \frac{1}{3}$ $x = 0$ $x = \frac{1}{3}$	\checkmark A $x=0$
	$x = 0$ or $x = \frac{1}{3}$ $x = 0$ $x = \frac{1}{3}$	\checkmark CA $x = \frac{1}{3}$
	OR	OR
	<u></u>	
	$x = \sqrt{\frac{1}{3}}x$	✓CA equating
	$x^2 = \left(\sqrt{\frac{1}{3}x}\right)^2$	✓CA squaring both
	$\left(\sqrt{3}\right)$	sides
	$x^2 = \frac{1}{3}x$	
	$3x^2 = x$	
	$3x^2 - x = 0$	
	x(3x-1)=0	
	$x = 0 \text{ or } x = \frac{1}{3}$	\checkmark A $x=0$
		\checkmark CA $x = \frac{1}{3}$
	OR	OR
		✓A equating
	$3x^2 = x$	
	$3x^2 - x = 0$	√ A factors
	x(3x-1)=0	✓A factors
	$x = 0 \text{ or } x = \frac{1}{3}$	\checkmark A $x=0$ (4)
		\checkmark CA $x = \frac{1}{3}$
		[11]

6.1.1	1		
	-4		
	$r^2 = (-4)^2 + (-3)^2 = 25$	✓ A sketch	
1 9	∴ r = 5 -3 5	\checkmark A $r = 5$	
	$\therefore \sin x = \frac{-3}{5}$	✓ CA answer	(3)
6.1.2	$2-\sin 2x$	(A compandian	
	$=2-2\sin x\cos x$	✓ A expansion	
	$=2-2\left(\frac{-3}{5}\right)\left(\frac{-4}{5}\right)$	✓ CA substitution	
	$= 2 - \frac{24}{25}$		
	$=\frac{26}{25}$	✓ CA answer	(3)
6.1.3	$\cos^2(90^{\circ}-x)-1$		
	$=\sin^2 x - 1$	\checkmark A $\sin^2 x$	
	$=\left(\frac{-3}{5}\right)^2-1$	✓ CA substitution	
	$=\frac{9}{25}-1$		
	$=\frac{-16}{25}$	✓ CA answer	(3)
6.2	$-1 + \cos(180^{\circ} - \theta) \cdot \sin(\theta - 90^{\circ})$		
5.2	$\cos(-\theta) \cdot \sin(90^\circ + \theta) \cdot \tan^2(540^\circ + \theta)$	In numerator:	
	$= \frac{-1 + (-\cos\theta) \cdot -\cos\theta}{-\cos\theta \cdot \cos\theta \cdot \cos\theta}$	✓ $A - \cos \theta$, ✓ $A - \cos \theta$ In denominator:	
	$\cos \theta \cdot \cos \theta \cdot \tan^2 (540^\circ - 360^\circ + \theta)$	\checkmark A $\cos\theta$, \checkmark A $\cos\theta$	
	$= \frac{\cos^2 \theta - 1}{\cos \theta \cdot \tan^2 (180^\circ + \theta)}$		
	$= \frac{-(1-\cos^2\theta)}{\cos^2\theta \cdot \tan^2\theta}$	(A +==2 0	
		\checkmark A tan ² θ	
	$=\frac{-\sin^2\theta}{\cos^2\theta}$	$\checkmark \text{CA} - \sin^2 \theta$	
	$-\frac{1}{\cos^2\theta} \cdot \frac{\sin^2\theta}{\cos^2\theta}$		
	= -1	✓ CA answer after	(7)
		simplification	(7) [16]
	I		[10]

7.1.1	$\sin(A+B)$		
	$=\cos[90^{\circ}-(A+B)]$	✓ A co-ratio	
	$=\cos(90^{\circ}-A-B)$		
1	$=\cos\left[\left(90^{\circ}-A\right)-B\right]$	✓ A re-arrangement	
	$= \cos(90^{\circ} - A) \cdot \cos B + \sin(90^{\circ} - A) \cdot \sin B$	✓ A expansion	
	$= \sin A \cdot \cos B + \cos A \cdot \sin B$		(3)
7.1.2	$\sin(2x+50^\circ) - \sin 15^\circ \cos 48^\circ = \sin 48^\circ \cos 15^\circ$		
	$\sin(2x+50^\circ) = \sin 48^\circ \cos 15^\circ + \sin 15^\circ \cos 48^\circ$		
	$\sin(2x+50^\circ) = \sin 63^\circ$	✓ A using compound angle identity	
	$2x + 50^{\circ} = 63^{\circ} + k.360^{\circ}$ OR $2x + 50^{\circ} = 180^{\circ} - 63^{\circ} + k.360^{\circ}$	✓ A both solutions	
	$2x = 13^{\circ} + k.360^{\circ}$ $2x = 67^{\circ} + k.360^{\circ}$		
	$x = 6,5^{\circ} + k.180^{\circ}, \ k \in \mathbb{Z}$ $x = 33,5^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$	✓CA $x = 6.5^{\circ} + k.180^{\circ}$	
		\checkmark CA $x = 33,5^{\circ} + k.180^{\circ}$	
		$k \in \mathbb{Z}$: penalty of 1 if not written at least once	(4)
7.2.1	$\frac{4\sin x \cos x}{2}$		
	$2\sin^2 x - 1$		
	$= \frac{2\left(2\sin x \cos x\right)}{-\left(1-2\sin^2 x\right)}$		
	$-(1-2\sin^2 x)$ $2\sin 2x$	✓ A 2 sin 2 <i>x</i>	
	$=\frac{2\sin 2x}{-\cos 2x}$	$\checkmark A - \cos x$	
	$= -2 \tan 2x$	✓ CA answer	(3)
7.2.2	$2\sin^2 x - 1 = 0$		
	$\sin x = \pm \frac{1}{\sqrt{2}}$	\checkmark A $\pm \frac{1}{\sqrt{2}}$	
	$x = -45^{\circ} \text{ or } x = 45^{\circ}$	✓ CA –45°; CA ✓ 45°	(3)
7.2.3	4sin 15° cos 15°		
	$2\sin^2 15^\circ -1$		
	$= -2 \tan 30^{\circ}$	✓ A – 2 tan 30°	
	$= -2\left(\frac{1}{\sqrt{3}}\right)$		
	$= \frac{-2}{\sqrt{3}} \text{ or } \frac{-2\sqrt{3}}{3}$	✓ A answer	(2)
			[1 5]
	·	•	

8.1	$m = -\frac{1}{2}$	$\checkmark A m = -\frac{1}{2}$	
	$n=30^{\circ}$	$\checkmark A n = 30^{\circ}$	(2)
8.2	amplitude of $f = 1$	✓ A answer	(1)
8.3	period of $h = 180^{\circ}$	✓ A answer	(1)
8.4	$60^{\circ} \le x \le 150^{\circ}$	✓ ✓ A A answer	(2)
8.5	translation of 60° to the left;	✓ A translation of 60° to the left	
	and reflection in the <i>x</i> -axis	\checkmark A reflection in the <i>x</i> -axis	(2)
			[8]

GRAND TOTAL: 100