Part 1C Plot:

The CLUSTER Procedure Ward's Minimum Variance Cluster Analysis

	Eigenval	lues of the C	ovariance M	atrix
	Eigenvalue	Difference	Proportion	Cumulative
1	7853.54187	6890.10250	0.7989	0.7989
2	963.43938	429.66835	0.0980	0.8969
3	533.77103	303.43881	0.0543	0.9512
4	230.33222	50.50585	0.0234	0.9746
5	179.82637	109.92771	0.0183	0.9929
6	69.89865	69.89865	0.0071	1.0000
7	0.00000	0.00000	0.0000	1.0000
8	0.00000	0.00000	0.0000	1.0000
9	0.00000	0.00000	0.0000	1.0000
10	0.00000	0.00000	0.0000	1.0000
11	0.00000	0.00000	0.0000	1.0000
12	0.00000	0.00000	0.0000	1.0000
13	0.00000	0.00000	0.0000	1.0000
14	-0.00000	0.00000	-0.0000	1.0000
15	-0.00000	0.00000	-0.0000	1.0000
16	-0.00000	0.00000	-0.0000	1.0000
17	-0.00000	0.00000	-0.0000	1.0000
18	-0.00000	0.00000	-0.0000	1.0000
19	-0.00000	0.00000	-0.0000	1.0000
20	-0.00000		-0.0000	1.0000

Root-Mean-Square Total-Sample Standard Deviation	22.17071
--	----------

Root-Mean-Square Distance Between Observations 140.2199

	Cluster History											
Number of Clusters	Cluster	Semipartial Clusters Joined Freq R-Square R-Square		Approximate Expected R-Square	Cubic Clustering Criterion							
6	MINNESOTA	NEBRASKA	2	0.0224	.978							
5	KANSAS	MISSOURI	2	0.0329	.945							
4	IOWA	CL6	3	0.0440	.901							
3	CL4	CL5	5	0.0894	.811							

The CLUSTER Procedure Ward's Minimum Variance Cluster Analysis

	Cluster History										
Number of Clusters			Freq	Semipartial R-Square			Clustering				
2	CL3	SOUTH DAKO	6	0.1248	.686						
1	CL2	OKLAHOMA	7	0.6865	.000	.000	0.00				

	Cluster History										
Number of Clusters	Cluster	rs Joined	Pseudo F Statistic	Pseudo t-Squared	Tie						
6	MINNESOTA	NEBRASKA	8.7								
5	KANSAS	MISSOURI	8.5								
4	IOWA	CL6	9.1	2.0							
3	CL4	CL5	8.6	2.7							
2	CL3	SOUTH DAKO	10.9	2.6							
1	CL2	OKLAHOMA	•	10.9							

The CLUSTER Procedure Ward's Minimum Variance Cluster Analysis

The CLUSTER Procedure

The CLUSTER Procedure Ward's Minimum Variance Cluster Analysis

Obs	Rotation	Fertilizer	_TYPE_	_FREQ_	Mean_CarbonLoss	SD_CarbonLoss	Count_CarbonLoss
1	C-C	HNPK	3	3	-0.25333	0.17542	3
2	C-C	NPK	3	3	-0.16967	0.08686	3
3	C-C	none	3	3	-0.16867	0.12956	3
4	C-O(S)	HNPK	3	3	-0.35633	0.08041	3
5	C-O(S)	NPK	3	3	-0.13600	0.12905	3
6	C-O(S)	none	3	3	-0.19233	0.12629	3
7	С-О-Н	HNPK	3	3	-0.34000	0.14509	3
8	С-О-Н	NPK	3	3	-0.11433	0.15929	3
9	С-О-Н	none	3	3	-0.18267	0.20373	3

H Statistic:

H_Val 8.3068783

P value:

ChiSquared_PDF 0.0938051

Is the combination of fertilizer and crop rotation predictive of carbon loss?

Answer: No, as a chi square test shows the H statistic for this study to have a P value of .09 which is too high to be statistically significant (threshold being .05).

Kruskal Test Function Results:

Exercise 3.

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Carbonloss Classified by Variable Rotation_Fertilizer										
Rotation_Fertilizer	N	Sum of Scores	•	Std Dev Under H0	Mean Score					
C-C none	3	49.0	42.0	12.961481	16.333333					
C-C NPK	3	51.0	42.0	12.961481	17.000000					
C-C HNPK	3	38.0	42.0	12.961481	12.666667					
C-O(S)none	3	45.0	42.0	12.961481	15.000000					
C-O(S)NPK	3	54.0	42.0	12.961481	18.000000					
C-O(S)HNPK	3	17.0	42.0	12.961481	5.666667					
C-O-H none	3	48.0	42.0	12.961481	16.000000					
C-O-H NPK	3	55.0	42.0	12.961481	18.333333					
C-O-H HNPK	3	21.0	42.0	12.961481	7.000000					

Kruskal-Wallis Test								
Chi-Square DF Pr > ChiSq								
8.3069	8	0.4041						

Exercise 3.

The NPAR1WAY Procedure

Exercise 4

Number of rows:

Finish_19_val_Rows

No null Finish values detected by this frequency function:

Exercise 4

The FREQ Procedure

Finish_18	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	5	3.21	5	3.21
2	5	3.21	10	6.41
3	7	4.49	17	10.90
4	7	4.49	24	15.38
5	4	2.56	28	17.95
6	5	3.21	33	21.15
7	5	3.21	38	24.36
8	6	3.85	44	28.21
cons 12	19	12.18	63	40.38
cons 16	19	12.18	82	52.56
cons 24	35	22.44	117	75.00
cons 32	35	22.44	152	97.44
cons 33	4	2.56	156	100.00

Finish_19	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	6	3.85	6	3.85
2	9	5.77	15	9.62
3	8	5.13	23	14.74
4	8	5.13	31	19.87
5	7	4.49	38	24.36
6	6	3.85	44	28.21
7	6	3.85	50	32.05
8	6	3.85	56	35.90
cons 12	22	14.10	78	50.00
cons 16	21	13.46	99	63.46
cons 24	26	16.67	125	80.13
cons 32	30	19.23	155	99.36
cons 33	1	0.64	156	100.00

Exercise 4

Contingency Table:

The FREQ Procedure

		r	Table	of Wei	ght_18	B by W	eight_	19			
Weight_18					V	Veight	_19				
Frequency Percent Row Pct Col Pct	125	133	141	149	157	165	174	184	197	285	Total
125	16 10.26 88.89 88.89	2 1.28 11.11 11.76	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	18 11.54
133	2 1.28 9.09 11.11	15 9.62 68.18 88.24	5 3.21 22.73 27.78	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00	22 14.10
141	0 0.00 0.00 0.00	0 0.00 0.00 0.00	7.05 73.33 61.11	4 2.56 26.67 22.22	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0.00 0.00 0.00 0.00	15 9.62
149	$0 \\ 0.00 \\ 0.00 \\ 0.00$	0.00 0.00 0.00	2 1.28 11.76 11.11	12 7.69 70.59 66.67	3 1.92 17.65 25.00	0.00 0.00 0.00	0 0.00 0.00 0.00	0.00 0.00 0.00	0 0.00 0.00 0.00	0.00 0.00 0.00 0.00	17 10.90
157	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	2 1.28 15.38 11.11	9 5.77 69.23 75.00	2 1.28 15.38 11.11	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	13 8.33
165	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	15 9.62 93.75 83.33	1 0.64 6.25 6.25	0 0.00 0.00 0.00	0.00 0.00 0.00	0 0.00 0.00 0.00	16 10.26
174	0.00 0.00 0.00	0.00 0.00 0.00	0 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	1 0.64 5.88 5.56	15 9.62 88.24 93.75	1 0.64 5.88 7.69	0.00 0.00 0.00	0 0.00 0.00 0.00	17 10.90
184	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0 0.00 0.00 0.00	0 0.00 0.00 0.00	10 6.41 83.33 76.92	2 1.28 16.67 13.33	0.00 0.00 0.00	12 7.69
197	$0 \\ 0.00 \\ 0.00 \\ 0.00$	0.00 0.00 0.00	0 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0 0.00 0.00 0.00	2 1.28 13.33 15.38	13 8.33 86.67 86.67	0.00 0.00 0.00 0.00	15 9.62
285	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00	0 0.00 0.00 0.00	0.00 0.00 0.00 0.00	7.05 100.00 100.00	11 7.05
Total	18 11.54	17 10.90	18 11.54	18 11.54	12 7.69	18 11.54	16 10.26	13 8.33	15 9.62	11 7.05	156 100.00

The FREQ Procedure

	,	Table	e of V	Veigh	t_18	by W	Veigh	t_19			
Weight_18		Weight_19									
Frequency	125	133	141	149	157	165	174	184	197	285	Total
125	16	2	0	0	0	0	0	0	0	0	18
133	2	15	5	0	0	0	0	0	0	0	22
141	0	0	11	4	0	0	0	0	0	0	15
149	0	0	2	12	3	0	0	0	0	0	17
157	0	0	0	2	9	2	0	0	0	0	13
165	0	0	0	0	0	15	1	0	0	0	16
174	0	0	0	0	0	1	15	1	0	0	17
184	0	0	0	0	0	0	0	10	2	0	12
197	0	0	0	0	0	0	0	2	13	0	15
285	0	0	0	0	0	0	0	0	0	11	11
Total	18	17	18	18	12	18	16	13	15	11	156

How many wrestlers changed weight classes?

Answer: According to my results, 127 of the 156 wrestlers who qualified for both tournaments stayed in the same weight class while 29 changed weight classes.

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Weight_19 Classified by Variable Weight_18						
Weight_18	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score	
125	18	206.00	1413.00	179.303142	11.444444	
133	22	646.50	1727.00	195.333101	29.386364	
141	15	739.50	1177.50	165.450198	49.300000	
149	17	1071.50	1334.50	174.881539	63.029412	
157	13	1007.50	1020.50	155.114287	77.500000	
165	16	1497.00	1256.00	170.269207	93.562500	
174	17	1859.00	1334.50	174.881539	109.352941	
184	12	1516.00	942.00	149.549159	126.333333	
197	15	2042.00	1177.50	165.450198	136.133333	
285	11	1661.00	863.50	143.678720	151.000000	
Average scores were used for ties.						

Kruskal-Wallis Test					
Chi-Square	DF	Pr > ChiSq			
151.4499	9	<.0001			

The NPAR1WAY Procedure

