Multivariate Data Analysis

Data wrangling

Data wrangling (Data manipulation) often referred to as data munging, is a critical step in the data science process. It involves cleaning, structuring, and enriching raw data into a desired format for better decision making in less time. This process is fundamental because data is rarely in a form that is immediately optimal for obtaining insights. Data wrangling makes data more usable and accessible.

Data preparation accounts for about 80% of the work of data scientists

Key Steps in Data Wrangling

- **1. Gathering Data**: Collecting data from various sources such as files, databases, web servers, APIs, and more.
- **2. Assessing Data**: Evaluating the data for quality and structure issues. This includes identifying and diagnosing data inconsistencies, missing values, and the need for restructuring.
- **3. Cleaning Data**: Addressing the issues identified in the assessment phase. This involves correcting, imputing, or removing erroneous data. Techniques include deduplication, filling in missing values, correcting errors, and more.

Key Steps in Data Wrangling

- **4. Transforming Data**: Changing the format or structure of the data to make it more suitable for analysis. This could involve normalizing data, aggregating information, pivoting tables, and more.
- **5. Enriching Data**: Enhancing data by merging it with other data sources, adding derived attributes, or performing calculations that make the data more informative.
- **6. Validating and Publishing Data**: Ensuring that the data meets the criteria and standards for the analytics purposes. This could involve consistency checks, quality assurance, and finally making the data available for analysis or reporting.

NYC weather data

- we will using NYC daily weather data that was taken from the National Centers for Environmental Information (NCEI) API
- > 1-Year data, 1 station gathers the data once a day

Data meanings:

- > PRCP: precipitation in millimeters
- > SNOW: snowfall in millimeters
- > SNWD: snow depth in millimeters
- > TMAX: maximum daily temperature in Celsius
- > TMIN: minimum daily temperature in Celsius
- TOBS: temperature at time of observation in Celsius
- > WESF: water equivalent of snow in millimeters

Some important facts to get our bearings:

- ➤ According to the National Weather Service, the coldest temperature ever recorded in Central Park was -15°F (-26.1°C) on February 9, 1934: source
- The temperature of the Sun's photosphere is approximately 5,505°C: source


```
# Understanding data - head()
import pandas as pd
import numpy as np

pd.set_option('display.max_columns', None)

df = pd.read_csv('data/MDA_04_dirty_data.csv')
print(df.head())
```

date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOB	S WESF	inclement_weather
0 2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
1 2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2 2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
3 2018-01-02T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-8.3	-16.1	-12.2	NaN	False
4 2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False


```
# Understanding data - head()
import pandas as pd
import numpy as np

pd.set_option('display.max_columns', None)

df = pd.read_csv('data/MDA_04_dirty_data.csv')
print(df.head())
```

<Need to check>

• Station:?

SNWD : -inf

• TMAX 5505.0

• Some NaN s

date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOB	S WESF	inclement_weather
0 2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
1 2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2 2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
3 2018-01-02T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-8.3	-16.1	-12.2	NaN	False
4 2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False

Understanding data - describe()

print(df.describe())

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF
count	765.000000	577.000000	577.0	765.000000	765.000000	398.000000	11.000000
mean	5.360392	4.202773	NaN	2649.175294	-15.914379	8.632161	16.290909
std	10.002138	25.086077	NaN	2744.156281	24.242849	9.815054	9.489832
min	0.000000	0.000000	-inf	-11.700000	-40.000000	-16.100000	1.800000
25%	0.000000	0.000000	NaN	13.300000	-40.000000	0.150000	8.600000
50%	0.000000	0.000000	NaN	32.800000	-11.100000	8.300000	19.300000
75%	5.800000	0.000000	NaN	5505.000000	6.700000	18.300000	24.900000
max	61.700000	229.000000	inf	5505.000000	23.900000	26.100000	28.700000


```
# Understanding data - info()
print(df.info())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 765 entries, 0 to 764
Data columns (total 10 columns):
                Non-Null Count Dtype
# Column
0 date
              765 non-null object
1 station
               765 non-null
                            object
2 PRCP
               765 non-null float64
3 SNOW
                577 non-null float64
4 SNWD
                577 non-null float64
                765 non-null float64
  TMAX
               765 non-null float64
  TMIN
7 TOBS
               398 non-null float64
8 WESF
               11 non-null float64
  inclement weather 408 non-null object
dtypes: float64(7), object(3)
```

<Need to check>

- 765 entries (we have 1-year data)
- # of Non-null are different
- Inclement_weather is 'object', not 'boolean'


```
# Understanding data - info()
print(df.info())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 765 entries, 0 to 764
Data columns (total 10 columns):
# Column
                Non-Null Count Dtype
0 date
        765 non-null object
1 station
               765 non-null
                            object
2 PRCP
               765 non-null float64
3 SNOW
                577 non-null float64
4 SNWD
                577 non-null float64
5 TMAX
               765 non-null float64
               765 non-null float64
  TMIN
7 TOBS
               398 non-null float64
8 WESF
               11 non-null float64
9 inclement_weather 408 non-null object
dtypes: float64(7), object(3)
```

<Need to check>

- 765 entries (we have 1-year data)
- # of Non-null are different
- Inclement_weather is 'object', not 'boolean'


```
# Understanding Nulls: (1) WESF has only 11 non-null values: how do they look like?
```

print(df[df.WESF.isna()==False])

date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS V	WESF ir	nclement_weather
7 2018-01-04T00:00:00	?	20.6	229.0	inf	5505.0	-40.0	NaN 19	9.3	True
8 2018-01-04T00:00:00	?	20.6	229.0	inf	5505.0	-40.0	NaN 19	9.3	True
58 2018-01-30T00:00:00	?	1.5	13.0	inf	5505.0	-40.0	NaN 1	.8	True
137 2018-03-08T00:00:00	? 0	28.4	NaN	NaN	5505.0	-40.0	NaN 28	3.7	NaN
146 2018-03-13T00:00:00	? 0	3.0	13.0	inf	5505.0	-40.0	NaN 3.	0	True
159 2018-03-21T00:00:00	? 0	6.6	114.0	inf	5505.0	-40.0	NaN 8.	.6	True
162 2018-03-21T00:00:00	9 ?	6.6	114.0	inf	5505.0	-40.0	NaN 8.	.6	True
186 2018-04-02T00:00:00	? 0	14.0	152.0	inf	5505.0	-40.0	NaN 15	5.2	True
678 2018-11-16T00:00:00	? 0	47.0	152.0	inf	5505.0	-40.0	NaN 24	1.9	True
679 2018-11-16T00:00:00	? 0	47.0	152.0	inf	5505.0	-40.0	NaN 24	1.9	True
680 2018-11-16T00:00:00	0 ?	47.0	152.0	inf	5505.0	-40.0	NaN 24	1.9	True


```
# Understanding Nulls : (2) How many entries have at least one null value?

contain_nulls = df[
    df.SNOW.isna() | df.SNWD.isna() | df.TOBS.isna()
    | df.WESF.isna() | df.inclement_weather.isna()
]
print(contain_nulls.shape[0])
print(contain_nulls.head(10))
```

765									
date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
0 2018-01-01T00:00:00	,	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
1 2018-01-01T00:00:00	,	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2 2018-01-01T00:00:00	,	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
3 2018-01-02T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-8.3	-16.1	-12.2	NaN	False
4 2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False
5 2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False
6 2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False
7 2018-01-04T00:00:00	ý	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	True
8 2018-01-04T00:00:00	Ş	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	True
9 2018-01-05T00:00:00	?	0.3	NaN	NaN	5505.0	-40.0	NaN	NaN	NaN


```
# Understanding inf/-inf: (1) Find the number of inf/-inf values per column in the df

def get_inf_count(df):
    return {
        col: df[df[col].isin([np.inf, -np.inf])].shape[0] for col in df.columns
    }

print(get_inf_count(df))
```

```
{'date': 0, 'station': 0, 'PRCP': 0, 'SNOW': 0, 'SNWD': 577, 'TMAX': 0, 'TMIN': 0, 'TOBS': 0, 'WESF': 0, 'inclement_weather': 0}
```

- (CF) # of null values per column?
- → We already get information of Nulls from info()
- → 765-(non-null)


```
# Understanding inf/-inf: (2) Take a deep look at the 'SNWD(Snow depth)'

# Since snow depth (SNWD) and snowfall amount (SNOW) are closely related, let's interpret SNWD's inf/-inf information through SNOW.

snow = pd.DataFrame({
    'np.inf Snow Depth': df[df.SNWD == np.inf].SNOW.describe(),
    '-np.inf Snow Depth': df[df.SNWD == -np.inf].SNOW.describe()
})

print(snow)
```

	np.inf Snow Depth	-np.inf Snow Depth	1
count	24.000000	553.0	
mean	101.041667	0.0	
std	74.498018	0.0	
min	13.000000	0.0	
25%	25.000000	0.0	
50%	120.500000	0.0	
75%	152.000000	0.0	
max	229.000000	0.0	


```
# Understanding inf/-inf: (2) Take a deep look at the 'SNWD(Snow depth)'

# Since snow depth (SNWD) and snowfall amount (SNOW) are closely related, let's interpret SNWD's inf/-inf information through SNOW.

snow = pd.DataFrame({
    'np.inf Snow Depth': df[df.SNWD == np.inf].SNOW.describe(),
    '-np.inf Snow Depth': df[df.SNWD == -np.inf].SNOW.describe()
})

print(snow)
```

count	np.inf Snow Depth 24.000000	-np.inf Snow Dept 553.0	:h		
mean std	101.041667 74.498018	0.0 0.0			
min 25%	13.000000 25.000000	0.0 0.0	-	-inf -> 0 -> NO SNOW	
50% 75%	120.500000 152.000000	0.0 0.0	<u> </u>		
max	229.000000	0.0			

Understanding 'data' and 'station'

print(df.describe(include='object'))

	date	station	inclement_weather
count	765	765	408
unique	324	2	2
top	2018-07-05T00:00:00	GHCND:USC00280907	False
freq	8	398	384

- 'data'
- ➤ We have 1-year data -> 765 rows : Need to check
- 'data' has 324 unique rows (Some might be duplicated(765:365) and missing(365:324))
- A specific date appears up to 8 times (2018-07-05T00:00:00)
- 'station'
- ➤ We have 1 station, but # of unique data is 2 -> 'GHCND:USC00280907' and '?'
- 'GHCND:USC00280907' appears 398 times -> '?' appears (756-398) = 367 times

Understanding 'data' and 'station': Duplication information print(df[df.duplicated(keep=False)].head(10))

		date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_v	weather	
	0	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN		
	1	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN		
	2	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN		
	4	2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False		
	5	2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False		
	6	2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False		
	7	2018-01-04T00:00:00	?	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	True		
	8	2018-01-04T00:00:00	?	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	True		
	9	2018-01-05T00:00:00	ý	0.3	NaN	l NaN	5505.0	-40.0	NaN	NaN	NaN		
	10	2018-01-05T00:00:00	ý	0.3	NaN	NaN NaN	5505.0	-40.0	NaN	NaN	NaN		
Г	20	2018-01-12T00:00:00	GHCND:USC00280907	1.3	0.0) -inf	9.4	0.6	7.8	NaN	False		Cal
	21	2018-01-12T00:00:00	,	0.5	NaN	l NaN	5505.0	-40.0	NaN	NaN	NaN		Sa
	22	2018-01-12T00:00:00	,	0.5	NaN	l NaN	5505.0	-40.0	NaN	NaN	NaN		Dif
	23	2018-01-12T00:00:00	GHCND:USC00280907	1.3	0.0	-inf	9.4	0.6	7.8	NaN	False		
	24	2018-01-12T00:00:00	GHCND:USC00280907	1.3	0.0	-inf	9.4	0.6	7.8	NaN	False		'?'
Г	26	2018-01-14T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	2.2	-11.1	-11.1	NaN	False		ha
	27	2018-01-14T00:00:00	,	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN		val
	28	2018-01-14T00:00:00	,	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN		
L	29	2018-01-14T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	2.2	-11.1	-11.1	NaN	False		an
	31	2018-01-16T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-1.1	-9.4	-4.4	NaN	False		

ame date

Oiff. stations

?' station has lots NaN alues, and 5505s

- ◆ Handling the data!!
- ◆ Remove duplications : Combine the row having same date into one row.

BEFORE THAT, Let's consider the values that we should not erase carelessly!

- ➤ We will Keep the WESF values first
- ◆ QUIZ: Find unique 'station' values where the WSF value is not Null

date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
0 2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
1 2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2 2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
3 2018-01-02T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-8.3	-16.1	-12.2	NaN	False
4 2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	Faise
X 2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	13	False
X 2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	13	False
X 2018-01-04T00:00:00	?	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	True
X 2018-01-04T00:00:00	?	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	True
9 2018-01-05T00:00:00	?	0.3	NaN	NaN	5505.0	-40.0	NaN	NaN	NaN

For example:

GHCND:USC00280907,?

◆ QUIZ: Find unique 'station' values where the WSF value is not Null

```
# Understanding 'data' and 'station' : Unique value of the station whose WESF value is not null print(df[df.WESF.notna()].station.unique())
```

['?']

◆ QUIZ: Find unique 'station' values where the WSF value is not Null

```
# Understanding 'data' and 'station' : Unique value of the station whose WESF value is not null print(df[df.WESF.notna()].station.unique())
```

['?']

> we only have values for the WESF column when the station is '?'

- ◆ Handling duplications : Combine the row having same date into one row.
 - We will drop rows based on date.
 - Keep the WESF values first. (index = date)
 - If there are two types of station information for the same date, remove '?'
 - Delete the 'station' column as it is no longer needed.
 - Combine the WESF values based on date.
 - # 1. make the date a datetime (We don't need time (hour/minutes...) information.)
 - # 2. save the WEST information
 - # 3. sort '?' to the bottom
 - # 4. drop duplicates based on the date column keeping the first occurrence
 - # 5. remove the station column because we are done with it
 - # 6. Insert the saved WESF value.


```
# 1. make the date a datetime (We don't need time (hour/minutes...) information.)
df.date = pd.to_datetime(df.date)

# 2. save the WEST information
station_qm_wesf = df[df.station == '?'].drop_duplicates('date').set_index('date').WESF
```

```
date station PRCP SNOW SNWD TMAX TMIN TOBS WESF ...
0 2018-01-01
               ? 0.0 0.0 -inf 5505.0 -40.0 NaN NaN
1 2018-01-01
                     0.0 -inf 5505.0 -40.0 NaN NaN
2 2018-01-01
                     0.0 -inf 5505.0 -40.0 NaN NaN
               ? 20.6 229.0 inf 5505.0 -40.0 NaN 19.3
7 2018-01-04
               ? 20.6 229.0 inf 5505.0 -40.0 NaN 19.3
8 2018-01-04
9 2018-01-05
                      NaN NaN 5505.0 -40.0 NaN NaN
10 2018-01-05
                      NaN NaN 5505.0 -40.0 NaN NaN
21 2018-01-12
                      NaN NaN 5505.0 -40.0 NaN NaN
               ? 0.5
                      NaN NaN 5505.0 -40.0 NaN NaN
22 2018-01-12
               ? 0.5
27 2018-01-14
                      0.0 -inf 5505.0 -40.0 NaN NaN
               ? 0.0 0.0 -inf 5505.0 -40.0 NaN NaN
28 2018-01-14
```

df[df.station == '?']


```
date station PRCP SNOW SNWD TMAX TMIN TOBS WESF ...
0 2018-01-01 ? 0.0 0.0 -inf 5505.0 -40.0 NaN NaN
7 2018-01-04 ? 20.6 229.0 inf 5505.0 -40.0 NaN 19.3
9 2018-01-05 ? 0.3 NaN NaN 5505.0 -40.0 NaN NaN
21 2018-01-12 ? 0.5 NaN NaN 5505.0 -40.0 NaN NaN
27 2018-01-14 ? 0.0 0.0 -inf 5505.0 -40.0 NaN NaN
```

drop_duplicates('date')


```
date
2018-01-01 NaN
2018-01-04 19.3
2018-01-05 NaN
2018-01-12 NaN
2018-01-14 NaN
Name: WESF, dtype: float64
```



```
#3. sort '?' to the bottom
df.sort values('station', ascending=False, inplace=True)
# 4. drop duplicates based on the date column keeping the first occurrence
# which will be the valid station if it has data
df deduped = df.drop duplicates('date')
```

date

```
date
         station PRCP SNOW SNWD TMAX TMIN TOBS WESF ...
80 2018-02-10 GHCND:USC00280907 D.O 0.O -inf 0.O -8.3 O.O NaN
122 2018-03-01 GHCND:USC00280907 0.0 0.0 -inf 14.4 0.0 3.9
120 2018-03-01 GHCND:USC00280907 0.0 0.0 -inf 14.4 0.0 3.9
116 2018-02-27 GHCND:USC00280907 0.0 0.0 -inf 10.6 0.0 0.0 NaN
115 2018-02-27 GHCND:USC00280907 0.0 0.0 -inf 10.6 0.0 0.0 NaN
54 2018-01-26
                     ? 0.0 0.0 -inf 5505.0 -40.0 NaN NaN
                     ? 0.0 0.0 -inf 5505.0 -40.0 NaN NaN
53 2018-01-26
99 2018-02-16
                     ? 3.3 NaN NaN 5505.0 -40.0 NaN NaN
118 2018-02-28
                       0.0 0.0 -inf 5505.0 -40.0 NaN NaN
0 2018-01-01
                    ? 0.0 0.0 -inf 5505.0 -40.0 NaN NaN
```


station PRCP SNOW SNWD TMAX TMIN TOBS \

14.4 0.0 3.9

```
# 5. remove the station column because we are done with it
df_deduped = df_deduped.drop(columns='station').set_index('date').sort_index()

# 6. Insert the saved WESF value.
# combine_first(): Combine two DataFrame objects by filling null values in one DataFrame with non-null values

df_deduped = df_deduped.assign(
    WESF=lambda x: x.WESF.combine_first(station_qm_wesf)
)
print(df_deduped.shape)
```

	PRCP	SNOW	SNWD	TMAX	TMIN ⁻	TOBS \	NESF in	clement_weather
date								_
2018-03-19	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2018-03-21	0.0	0.0	-inf	2.8	-2.8	0.6	NaN	False
2018-03-22	17.3	178.0	inf	1.7	-1.7	0.0	NaN	True
2018-03-23	0.0	0.0	-inf	8.9	0.0	1.1	NaN	False
2018-03-25	0.0	0.0	-inf	8.3	-1.1	-0.6	NaN	False

	PRCP	SNOW	SNWD	TMAX	TMIN ⁻	TOBS \	NESF ir	clement_weather
date								
2018-03-19	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2018-03-21	0.0	0.0	-inf	2.8	-2.8	0.6	8.6	False
2018-03-22	17.3	178.0	inf	1.7	-1.7	0.0	NaN	True
2018-03-23	0.0	0.0	-inf	8.9	0.0	1.1	NaN	False
2018-03-25	0.0	0.0	-inf	8.3	-1.1	-0.6	NaN	False

◆Handling nulls - Remove

1) Remove if at least one null exist

```
print(df_deduped.dropna().shape)
Print(df_deduped)
```

Do not apply

```
PRCP SNOW SNWD TMAX TMIN TOBS WESF inclement_weather date

2018-01-30 0.0 0.0 -inf 6.7 -1.7 -0.6 1.8 False

2018-03-13 4.1 51.0 inf 5.6 -3.9 0.0 3.0 True

2018-03-21 0.0 0.0 -inf 2.8 -2.8 0.6 8.6 False

2018-04-02 9.1 127.0 inf 12.8 -1.1 -1.1 15.2 True
```


◆Handling nulls - Remove

② Remove if there are nulls in certain columns (all)

Do not apply

```
df_deduped =df_deduped.dropna(
   how='all', subset=['inclement_weather', 'SNOW', 'SNWD']
)
print(df_deduped)
```

PRCP SNOW SI	NWD TMAX TMIN TOBS WESF inclement_weather
	0.0 -inf 5505.0 -40.0 NaN NaN NaN
2018-01-02 0.0	0.0 -inf -8.3 -16.1 -12.2 NaN False
2018-01-03 0.0	0.0 -inf -4.4 -13.9 -13.3 NaN False
2018-01-04 20.6	5 229.0 inf 5505.0 -40.0 NaN 19.3 True
2018-01-05 14.2	2 127.0 inf -4.4 -13.9 -13.9 NaN True
2018-01-06 0.0	0.0 -inf -10.0 -15.6 -15.0 NaN False
2018-01-07 0.0	0.0 -inf -11.7 -17.2 -16.1 NaN False
2018-01-08 0.0	0.0 -inf -7.8 -16.7 -8.3 NaN False
2018-01-10 0.0	0.0 -inf 5.0 -7.8 -7.8 NaN False
2018-01-11 0.0	0.0 -inf 4.4 -7.8 1.1 NaN False
2018-01-12 1.3	0.0 -inf 9.4 0.6 7.8 NaN False
2018-01-13 17.5	5 NaN NaN 5505.0-40.0 NaN NaN NaN
2018-01-14 0.0	0.0 -inf 2.2 -11.1 -11.1 NaN False
2018-01-15 0.0	0.0 -inf -5.0 -11.7 -8.9 NaN False
2018-01-16 0.0	0.0 -inf -1.1 -9.4 -4.4 NaN False


```
PRCP SNOW SNWD TMAX TMIN TOBS WESF inclement weather
date
2018-01-01 0.0
              0.0 -inf 5505.0 -40.0 NaN NaN
                                                 NaN
2018-01-02 0.0 0.0 -inf -8.3 -16.1 -12.2 NaN
                                               False
False
2018-01-04 20.6 229.0 inf 5505.0 -40.0 NaN 19.3
                                                  True
2018-01-05 14.2 127.0 inf -4.4-13.9-13.9 NaN
                                                True
2018-01-06 0.0 0.0 -inf -10.0 -15.6 -15.0 NaN
                                               False
2018-01-07 0.0 0.0 -inf -11.7 -17.2 -16.1 NaN
                                               False
2018-01-08 0.0
              0.0 -inf -7.8 -16.7 -8.3 NaN
                                              False
2018-01-10 0.0 0.0 -inf 5.0 -7.8 -7.8 NaN
                                             False
2018-01-11 0.0 0.0 -inf 4.4 -7.8 1.1 NaN
                                             False
2018-01-12 1.3 0.0 -inf 9.4 0.6 7.8 NaN
                                             False
2018-01-14 0.0
              0.0 -inf 2.2 -11.1 -11.1 NaN
                                              False
              0.0 -inf -5.0 -11.7 -8.9 NaN
2018-01-15 0.0
                                              False
2018-01-16 0.0 0.0 -inf -1.1 -9.4 -4.4 NaN
                                              False
```


◆Handling nulls - Remove

3 Remove only if there are nulls in all columns

```
df_deduped =df_deduped.dropna(how='all')
print(df_deduped.shape)
```

(324, 8)

2018-01-02 0.0 0.0

2018-01-03 0.0 0.0

2018-01-04 20.6 229.0 inf

-inf -8.3

2018-01-05 14.2 127.0 inf -4.4 -13.9 -13.9

NaN

-16.1 -12.2

NaN NaN

-inf -4.4 -13.9 -13.3

0.0

0.0

19.3

0.0

◆Handling nulls - Fill

1 Filling nulls with a constant value

```
print(df_deduped['WESF'].fillna(0, inplace=True))
print(df deduped)
PRCP SNOW SNWD TMAX TMIN TOBS WESF inclement weather
date
2018-01-01 0.0 0.0 -inf 5505.0 -40.0 NaN
                                           0.0
                                                    NaN
2018-01-02 0.0 0.0 -inf -8.3 -16.1 -12.2
                                                    False
                                           0.0
2018-01-03 0.0 0.0
                    -inf -4.4 -13.9 -13.3
                                           0.0
                                                    False
2018-01-04 20.6 229.0 inf 5505.0 -40.0 NaN
                                                    True
                                          19.3
2018-01-05 14.2 127.0 inf -4.4 -13.9 -13.9
                                           0.0
                                                    True
df deduped = df deduped.assign(
  TMAX=lambda x: x.TMAX.replace(5505, np.nan),
  TMIN=lambda x: x.TMIN.replace(-40, np.nan),
print(df deduped)
PRCP SNOW SNWD TMAX TMIN TOBS WESF inclement weather
date
2018-01-01 0.0 0.0
                   -inf NaN
                              NaN NaN
                                           0.0
                                                     NaN
```

False

False

True

True

◆Handling nulls - Fill

② Filling nulls with the preceding (forward fill) or succeeding (backward fill) values.

```
df_deduped=df_deduped.assign(
    TMAX=lambda x: x.TMAX.fillna(method='ffill'), #backward fill: 'bfill'
    TMIN=lambda x: x.TMIN.fillna(method='ffill')
)

print(df_deduped)
```

PRCP SNOW SN	WD TMAX	TMAX TMIN TOBS			WESF inclement_weather			
date								
2018-01-01 0.0	0.0 -inf	NaN	NaN	NaN	0.0	NaN		
2018-01-02 0.0	0.0 -inf	-8.3	-16.1	-12.2	0.0	False		
2018-01-03 0.0	0.0 -inf	-4.4	-13.9	-13.3	0.0	False		
2018-01-04 20.6	229.0 inf	NaN	NaN	NaN	19.3	True		
2018-01-05 14.2	127.0 inf	-4.4	-13.9	-13.9	0.0	True		

PRCP SNOW SNWD	TMAX TMIN TOBS WESF	inclement_weather
date		
2018-01-01 0.0 0.0	-inf NaN NaN NaN	0.0 NaN
2018-01-02 0.0 0.0	-inf -8.3 -16.1 -12.2	0.0 False
2018-01-03 0.0 0.0	-inf -4.4 - 13.9 -13.3	0.0 False
2018-01-04 20.6 229.	0 inf -4.4 -13.9 NaN	19.3 True
2018-01-05 14.2 127.	0 inf -4.4 -13.9 -13.9	0.0 True

◆Handling nulls - Fill

③ Filling nulls with the clip() method to cap values at a specific minimum and/or maximum threshold.

```
df_deduped=df_deduped.assign(
    SNWD=lambda x: x.SNWD.clip(0, x.SNOW)
)
print(df_deduped)
```

```
PRCP SNOW SNWD TMAX TMIN TOBS WESF inclement weather
date
2018-01-01 0.0 0.0
                     -inf NaN
                                NaN NaN
                                             0.0
                                                       NaN
                     -inf
                         -8.3
2018-01-02 0.0
               0.0
                               -16.1 -12.2
                                                      False
                                            0.0
2018-01-03 0.0
               0.0
                     -inf -4.4
                               -13.9 -13.3
                                            0.0
                                                      False
2018-01-04 20.6 229.0 inf
                          NaN
                                NaN NaN
                                           19.3
                                                      True
2018-01-05 14.2 127.0 inf -4.4
                                -13.9 -13.9
                                            0.0
                                                      True
```



```
PRCP SNOW SNWD TMAX TMIN TOBS WESF inclement weather
date
2018-01-01 0.0 0.0
                    0.0
                          NaN NaN NaN
                                                    NaN
2018-01-02 0.0
               0.0
                    0.0
                          -8.3 -16.1 -12.2 0.0
                                                    False
2018-01-03 0.0
              0.0 0.0
                          -4.4 -13.9 -13.3 0.0
                                                    False
2018-01-04 20.6 229.0 229.0 -4.4 -13.9 NaN 19.3
                                                    True
2018-01-05 14.2 127.0 127.0 -4.4 -13.9 -13.9
                                                    True
```


♦ Handling nulls - Impute

- ① Use fillna() with other types of calculations.
- ➤ We replace missing values of TMAX with the median of all TMAX values, TMIN with the median of all TMIN values, and TOBS to the average of the TMAX and TMIN values. Since we place TOBS last, we have access to the imputed values for TMIN and TMAX in the calculation

```
df_deduped=df_deduped.assign(
    TMAX=lambda x: x.TMAX.fillna(x.TMAX.median()),
    TMIN=lambda x: x.TMIN.fillna(x.TMIN.median()),
    # average of TMAX and TMIN
    TOBS=lambda x: x.TOBS.fillna((x.TMAX + x.TMIN) / 2)
)
print(df_deduped)
```

```
PRCP SNOW SNWD TMAX TMIN TOBS WESF inclement weather
date
2018-01-01 0.0 0.0
                          NaN NaN NaN
                                                     NaN
                     0.0
                          -8.3 -16.1 -12.2 0.0
2018-01-02 0.0 0.0
                     0.0
                                                     False
2018-01-03 0.0 0.0
                     0.0
                          -4.4 -13.9 -13.3 0.0
                                                     False
2018-01-04 20.6 229.0 229.0 -4.4 -13.9 NaN 19.3
                                                     True
2018-01-05 14.2 127.0 127.0 -4.4 -13.9 -13.9
                                                     True
```


	PRCP SNO	W SN	WD 7	TMAX	TMIN	TOBS	WESF i	nclement_	weather
	date								
>	2018-01-01	0.0	0.0	0.0	16.1	6.7	11.40	0.0	NaN
	2018-01-02	0.0	0.0	0.0	-8.3	-16.1	-12.20	0.0	False
	2018-01-03	0.0	0.0	0.0	-4.4	-13.9	-13.30	0.0	False
	2018-01-04	20.6	229.0	229.0	-4.4	-13.9	-9.15	19.3	True
	2018-01-05	14.2	127.0	127.0	-4.4	-13.9	-13.90	0.0	True

♦ Handling nulls - Impute

- 2 Interpolate with the interpolate() method
- ➤ We specify the method parameter with the interpolation strategy to use. There are many options, but we will stick with the default of 'linear', which will treat values as evenly spaced and place missing values in the middle of existing ones. We have some missing data, so we will reindex first. Look at January 9th, which we didn't have before—the values for TMAX, TMIN, and TOBS are the average of values the day prior (January 8th) and the day after (January 10th):

```
print(df_deduped.head(10))
df_deduped=df_deduped.reindex(
   pd.date_range('2018-01-01', '2018-12-31', freq='D')).apply(lambda x: x.interpolate())
print(df_deduped.head(10))
```

PRCP SNOV	N SN	IWD .	TMAX TMIN TOBS WESF incle	ment_weather
date				
2018-01-01	0.0	0.0	0.0 16.1 6.7 11.40 0.0	NaN
2018-01-02	0.0	0.0	0.0 -8.3 -16.1 -12.20 0.0	False
2018-01-03	0.0	0.0	0.0 -4.4 -13.9 -13.30 0.0	False
2018-01-04	20.6	229.	0 229.0 -4.4 -13.9 -9.15 19.3	True
2018-01-05	14.2	127.	0 127.0 -4.4 -13.9 -13.90 0.0	True
2018-01-06	0.0	0.0	0.0 -10.0 -15.6 -15.00 0.0	False
2018-01-07	0.0	0.0	0.0 -11.7 -17.2 -16.10 0.0	False
2018-01-08	0.0	0.0	0.0 -7.8 -16.7 -8.30 0.0	False
2018-01-10	0.0	0.0	0.0 5.0 -7.8 -7.80 0.0	False
2018-01-11	0.0	0.0	0.0 4.4 -7.8 1.10 0.0	False

	PRCP SNOV	V SN	WD 7	ГМАХ	TMIN	TOE	BS WE	ESF incle	ement_weather	
	2018-01-01	0.0	0.0	0.0 1	6.1 6	.70 1	1.40	0.0	NaN	
	2018-01-02	0.0	0.0	0.0 -	8.3 -16	5.10 -1	12.20	0.0	False	
	2018-01-03	0.0	0.0	0.0 -	4.4 -13	.90 -1	13.30	0.0	False	
,	2018-01-04	20.6	229.0	229.	0 -4.4	-13.9	0 -9.	15 19.3	True	
	2018-01-05	14.2	127.0	127.	0 -4.4	-13.9	0 -13	.90 0.0	True	
	2018-01-06	0.0	0.0	0.0 -1	0.0 -1	5.60 -	15.00	0.0	False	
	2018-01-07	0.0	0.0	0.0 -1	1.7 -1	7.20 -	16.10	0.0	False	
	2018-01-08	0.0	0.0	0.0 -	7.8 -16	5.70 -	8.30	0.0	False	
	2018-01-09	0.0	0.0	0.0 -	1.4 -12	25 -	8.05	0.0	NaN	
	2018-01-10	0.0	0.0	0.0	5.0 -7.	80 -7	'.80 (0.0	False	

*Default: interpolate missing values linearly

