CARNEGIE MELLON UNIVERSITY APPLIED STOCHASTIC PROCESSES (COURSE 18-751) HOMEWORK 1

Daniel Fekadu

August 31, 2017

1 prove with Venn diagrams

(a)
$$A \cap B^c = A - B$$

this implies $A \cap B^c = A - B$ is true

(b) $A \cup B^c = (A^c \cap B)^c$

this implies $A \cup B^c = (A^c \cap B)^c$ is true

(c)
$$B - A \neq A - B$$

this implies $B-A \neq A-B$ is true

(a) Irreduciblity and periodicity

The Markov Chain is irreducible because we can go from any of the states to the other states in finit number of steps It is also aperiodic[Justfy]

(b) invariant distribution π

$$\pi_j = \sum_{n=0}^n \pi_k p_{kj} \tag{1}$$

$$\pi_0 = \pi_0 P_{00} + \pi_1 P_{10} + \pi_2 P_{20} \tag{2}$$

$$\pi_1 = \pi_0 P_{01} + \pi_1 P_{11} + \pi_2 P_{21} \tag{3}$$

$$\pi_2 = \pi_0 P_{02} + \pi_1 P_{12} + \pi_2 P_{22} \tag{4}$$

(5)

$$P = \begin{bmatrix} 0.3 & 0.7 & 0 \\ 0.1 & 0.4 & 0.5 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\pi_0 = 0.3\pi_0 + 0.1\pi_1 + \pi_2 \tag{6}$$

$$\pi_1 = 0.7\pi_0 + 0.4\pi_1 \tag{7}$$

$$\pi_2 = 0.5\pi_1 \tag{8}$$

$$\pi_0 + \pi_1 + \pi_2 = 1 \tag{9}$$

lets write everything in terms of π_0

$$\pi_1 = \pi_1 \tag{10}$$

$$\pi_2 = 0.5\pi_1 \tag{11}$$

$$\pi_0 = 0.3\pi_0 + 0.1\pi_1 + 0.5\pi_1 \tag{12}$$

$$0.7\pi_0 = 0.6\pi_1 \tag{13}$$

$$\pi_0 = \frac{6}{7}\pi_1 \tag{14}$$

$$\pi_0 + \pi_1 + \pi_2 = \frac{6}{7}\pi_1 + \pi_1 + 0.5\pi_1 = 1 \tag{15}$$

$$\frac{33}{14}\pi_1 = 1\tag{16}$$

$$\pi_1 = \frac{14}{33} \tag{17}$$

$$\pi_0 = \frac{6}{7} \cdot \frac{14}{33} = \frac{4}{11} \tag{18}$$

$$\pi_{1} = \frac{14}{33}$$

$$\pi_{0} = \frac{6}{7} \cdot \frac{14}{33} = \frac{4}{11}$$

$$\pi_{2} = 0.5 \cdot \frac{14}{33} = \frac{7}{33}$$
(17)
(18)

Ans.

$$\pi = \begin{bmatrix} \frac{4}{11} & \frac{14}{33} & \frac{7}{33} \end{bmatrix}$$

$$\pi \approx \begin{bmatrix} 0.3636 & 0.4242 & 0.2121 \end{bmatrix}$$

(c) Expected Time from 0 to 2

$$\beta(2) = 0$$

$$\beta(0) = 1 + 0.7\beta(1) + 0.3\beta(0)$$

$$\beta(1) = 1 + 0.1\beta(1) + 0.4\beta(1) + 0.5\beta(2)$$
 since
$$\beta(2) = 0$$

$$\beta(1) = 1 + 0.1\beta(0) + 0.4\beta(1)$$

$$\beta(0) = 1 + 0.3\beta(0) + 0.7\beta(1)$$

$$0.7\beta(0) - 0.7\beta(1) = 1$$

$$0.6\beta(1) - 0.1\beta(0) = 1$$

2 we get $\beta(0) = 3.708$ and $\beta(1)$:

solving the eqn n1 and n2 we get $\beta(0) = 3.708$ and $\beta(1) = 2.286$ so the expected time from 0 to 2 is 3.708

(d) Probability that starting from 0, the MC has reached 2 after n-steps vs n

Figure 4: Probability that starting from 0, the MC has reached 2 after n-steps vs n

(e) Expected Time from 0 to 2

Figure 5: Probability that starting from 0, the MC has reached 2 after n-steps vs n

(f) π_n vs n

Figure 6: π_n vs n

 Q_3