

0 Números complejos:

Al conjunto de los números complejos se los denota como $\mathbb C$ y está definido por

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$

sea $z=a+b\cdot i$ un número complejo denotamos $parte\ real$ de z a a y parte imaginaria de z a b de la siguiente manera

$$\Re(z) = a$$
 y $\Im(z) = b$

Los números reales están contenidos en C, son aquellos cuya parte imaginaria es nula, es decir

$$\mathbb{R} = \{ z \in \mathbb{C} \mid \Im(z) = 0 \}$$

Operaciones en los Complejos:

1 La suma de define de la siguiente manera:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

- 2 El producto:
 - Recordamos que $i^2 = -1$

$$\begin{aligned} (a+bi)\cdot(c+di) &= ac+adi+bci+bdi^2\\ &= ac+bd(-1)+(ad+bc)i\\ &= (ac-bd)+(ad+bc)i \end{aligned}$$

Cumple con los axiomas de cuerpo:

- La suma y el producto son asociativos y conmutativos.
- El producto es distributivo con respecto a la suma
- Existe un elemento neutro para la suma y otro para el producto
- Todo número complejo z tiene un opuesto -z
- Todo número complejo z distinto de θ tiene un inverso z^{-1}

Inverso de un número complejo:

Dado un número complejo z=a+bi, se define su conjugado como $\overline{z}=a-bi$

Si $z, w \in \mathbb{C}$, se cumple que:

$$\overline{z+w} = \overline{z} + \overline{w} \qquad \qquad \overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

Además notamos que