CHAPTER 7

Knowledge-Based Agents and Inference Engine

Knowledge Base (KB): Knowledge (a set of sentences) that describe facts about the world in some formal (representational) language. **Domain specific**

Inference Engine: A set of procedures that use the representational language to infer new facts from known ones, or answer a variety of KB queries. *Inferences typically require search*. **Domain independent**

MYCIN Example

MYCIN: an expert system for diagnosis of bacterial infections

Knowledge base represents...

- Facts about a specific patient case
- Rules describing relations between entities in the bacterial infection domain
 - IF
 - 1. The strain of the organism is gram-positive, and
 - 2. The morphology of the organism is coccus, and
 - 3. The growth conformation of the organism is chains
 - THEN
 - * The identity of the organism is streptococcus

Inference engine:

• Manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

Knowledge Representation

Objective: express the knowledge about the world in a computer-tractable form Knowledge representational languages (KRL) key aspects:

- Syntax: describe how sentences in KRL are formed in the language
- Semantics: describe the meaning of sentences, what is it the sentence refers to in the real world
- Computational aspect: describe how sentences and objects in KRL are manipulated in concordance with semantic conventions

Many KB systems rely on some variant of logics

Logic

Logic: a formal language for expressing knowledge and for making logical inferences, which is defined by...

- A set of sentences: a sentence is constructed from a set of *primitives* according to syntactic rules
- A set of interpretations: an interpretation I gives a semantic to primitives. It associates primitives with objects or values.
 - -I: primitives -> objects/values
- The valuation (meaning) function V: Assigns a values (typically the truth value) to a given sentence under some interpretation
 - -V: sentence x interpretation -> {True, False}

Propositional Logic - The Simplest Logic

Proposition: is a statement that is either true or false

Propositional Logic - Syntax

P: syntax + interpretation + semantics

• ex. P represents: "Golden is part of the Jefferson Country"

Connectives: and, or, if, if then, not

Atomic sentences: constructed from constants and propositional symbols - True, False are atomic sentences - P is an atomic sentences

Composite sentences: constructed from valid sentences via logical connectives - (P and Q)

Propositional Logic - Semantics

Semantic: semantic of a language gives the meaning to a sentence

The semantics in a propositional logic is defined by

- Interpretation of propositional symbols and constants
 - Semantics of atomic sentences
- Through the meaning of logical connectives
 - Meaning (semantics) of composite sentences

In a propositional symbol. . .

- Start with a statement about the world that is true or false
- Interpretation maps symbol to one of the two values (True or False)

• The meaning (value) of the propositional symbol for a given interpretation is given by its interpretation. False interpretation = false value.

Truth table for composite sentences

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Translation

Translation of English sentences to propositional logics

- Identify atomic sentences that are propositions
- Use logical connectives to translate more complex composite sentences that consist of many atomic sentences
- ex. "It is not sunny this afternoon and it is colder than yesterday
 - p = it is sunny this afternoon
 - q = it is colder than yesterday
 - not p and q

Contradiction and Tautology

Contradiction: always false

Tautology: always true

Model, Validity, and Satisfiability

Model: an interpretation is ${\bf a}$ model for ${\bf a}$ set of sentences if it assigns true

to each sentence in the set

Satisfiable: a sentence is satisfiable if it has a model

Validity: a sentence is valid if it is true in ALL interpretations

Entailment

Entailment: reflects the relation of one fact in the world following from the others

Knowledge base KB entails sentence P if and only if P is True in all worlds where KB is true

Logicians typically think in terms of **models**, which are formally structured worlds with respect to which truth can be evaluated:

- We say m is a model of sentence P if P is true in m
- M(P) is the set of all models of P
- Then KB entails P if and only if M(KB) is in the set of M(P)
- \bullet ex. KB = giants and red won, P = giants won

Sound and Complete Inference

Inference: inference is the process by which new sentences are derived from existing sentences in the KB

- The inference process is implemented on a computer
- Assume an inference procedure i that
 - derives a sentences a from the KB: KB provable_i a

Soundness: an inference procedure is sound. . .

• If KB provable; a then it is true that KB entails a

Completeness: an inference procedure is complete

• If KB entails a then it is true that KB provable, a

Logical Inference Problem

Logical Inference Problem:

- Given:
 - A knowledge base KB (a set of sentences) and
 - A sentence a (called a theorem)
- Does a KB semantically entail a?

- In other words: In all interpretations in which sentences in the KB are true, is a also true?

How to design procedure that answer KB entails a? Three approaches...

- 1. Truth-table approach
- 2. Inference rules
- 3. Conversion to the inverse SAT problem (resolution-refutation)

Truth-Table Approach

Problem: KB entails a?

• Need to check all possible interpretations for which the KB is true (models of KB) whether a is true for each of them

Truth Table:

• Enumerate truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Two step procedure

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence a evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

							-
A	В	C	$A \lor C$	$(B \vee \neg C)$	KB	α	
False	True True False False True True	True False True False True False	True True True True True False	True True False True True True	True True False True True False	True True True True True True True	ンンンン
	False False	True False	True False	False True	False	False False	
raise	r aise	ruise	r aise	irue	False	ruise	

Limitations of truth table approach: computational complexity is 2^n rows in the table has to be filled

How to make process more efficient?

• We only have to check entries of KB that are True (this is the idea behind inference rules approach)

Inference Rules for Logic

Inference Rules:

- Represent sound inference patterns repeated in inferences
- Can be used to generate new (sound) sentences from the existing ones

Modus ponens:

$$A \Rightarrow B$$
, A premise conclusion

• If both sentences in the premis are true, then the conclusion is true List of inference rules for logic:

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

• And-elimination:

. And-introduction:
$$\frac{A_1, A_2, \quad A_n}{A_1 \wedge A_2 \wedge \quad A_n}$$

. Or-introduction: $\frac{A_i}{A_1 \vee A_2 \vee \dots A_i \vee A_n}$

$$\frac{\neg \neg A}{A}$$

• Elimination of double negation:

$$\frac{A \vee B, \quad \neg A}{B}$$

• Unit resolution (a special case of resolution):

$$\frac{A \vee B, \quad \neg B \vee C}{A \vee C}$$

• Resolution:

Logical Equivalence

Logical Equivalence: two sentences are **logically equivalent** iff true in same models:

A logically equivalent B iff A entails B and B entails A

Logical Inferences & Search

For each instance of list of rules so far, many possible rules can be applied next (THIS IS LIKE A SEARCH PROBLEM)

Inference rule method as a search problem

- State: a set of sentences that are known to be true
- Initial State: a set of sentences in the KB
- Operators: applications of inference rules (allow us to add new sound sentences to old ones)
- Goal state: a theorem a is derived from KB

Logical inference:

- Proof: a sequence of sentences that are immediate consequences of applied inference rules
- Theorem proving: process of finding a proof of theorem

Problem: too many inference rules (big branching factor)

Solution: Simplify inferences using on of the normal forms

1. Conjunctive normal form (CNF): conjunction of clauses

$$(A \lor B) \land (\neg A \lor \neg C \lor D)$$

2. Disjunctive normal form (DNF): disjunction of terms

$$(A \land \neg B) \lor (\neg A \land C) \lor (C \land \neg D)$$

Conversion to CNF

- 1. Eliminate => and <=>
- 2. Reduce the scope of signs through De Morgan laws and double negation
- 3. Convert to CNF using the associative and distributive laws

Resolution Rule

Resolution rule: sound inference rule that fits the CNF

$$\frac{A \vee B, \quad \neg B \vee C}{A \vee C}$$

When applied directly to KB in CNF to infer a:

• Incomplete: repeated application of the resolution rule to a KB in CNF may fail to derive new valid sentences

Trick to make it work:

- Proof by contradiction:
 - $-\,$ Disprove KB and not a
 - Proves entailment KB entails a
- Resolution is refutation complete

Resolution Algorithm

- Convert KB to CNF form
- Apply iteratively the resolution rule starting from KB, not A
- Stop when:
 - Contradiction (empty clause) is reached:
 - * A, not A -> 0
 - No more new sentences can be derived
 - * Disproved

Properties of Inference Solutions

Truth-table:

- Blind
- Exponential in the numbers of variables

Inference rules:

- More efficient
- Many inference rules to cover logic

Conversion to SAT - Resolution refutation

- More efficient lol
- Sentences must be converted into CNF
- One rule (RESOLUTION RULE) is sufficient to perform all inferences

The Wumpus World

Performance measure

gold: +1000death: -1000per step: -1using arrow: -10

Environment

- Squares adjacent to Wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills Wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Actuators

• Left turn, right turn, forward, grab, release, shoot

Sensors

• Breeze, glitter, smell

Wumpus Models

KB = Wumpus world rules + observations

 $a_{\it 1}=$ "[1,2] is safe", KB entails $a_{\it 1}$ proved by model checking

 $a_{\mathcal{Z}} =$ "[2,2] is safe", KB entails $a_{\mathcal{Z}}$

Stuff I didn't know instantly

- Knowledge Representation Language (KRL)
- Model, Validity, and Satisfiability
- Sound and completeness of inference
- Inference rules (remember them)
- Logic Inferences as a search problem
- Normal Forms
 - CNF
 - DNF
- Resolution Rule

Stuff that will probably be on the test

- Knowledge Based
- Entailment
- Proposition stuff (maybe, might be too easy)
- Logical inference (3 approaches)
 - Truth table
 - Inference rule
 - Conversion to the inverse SAT problem (Resolution)
- Wumpus