

Edson Prestes

Introdução – Mais sobre grafos..

A operação de arco-contração, denotada por G/a, consiste na retirada da aresta a=(u,v) juntamente com seus vértices u e v, seguida da inserção de um novo vértice w e a re-ligação das arestas incidentes tanto a u quanto a v a este novo vértice.

Introdução – Mais sobre grafos..

Qual é o resultado da execução da seqüência (((((G/a)/b)/c)/d)/e) no grafo G abaixo ?

Introdução – Mais sobre grafos..

Um vértice de corte, também chamado de ponte de articulação, é um vértice cuja remoção aumenta a quantidade de componentes do grafo.

Uma aresta de corte, também chamada de ponte ou ístimo, quando removida aumenta a quantidade de componentes conexos do grafo.

Um grafo induzido é um grafo obtido através da remoção de um conjunto de vértices.

Introdução - Mais sobre grafos..

Conjunto desconector é o conjunto de arestas de G cuja retirada torna G desconexo.

Conjunto de corte de arestas é qualquer conjunto *desconector* minimal de G, ou seja, que não possua subconjunto próprio.

A conectividade de arco $\lambda(G)$ é o tamanho do menor conjunto de corte de arestas de G. Um grafo G é k-arco-conexo onde $\lambda(G)=k$.

Conjunto separador é um conjunto de vértices de G cuja retirada torna G desconexo.

Conjunto de corte de vértices é qualquer conjunto *separador* minimal de G, ou seja, que não possua subconjunto próprio.

A conectividade de vértice $\kappa(G)$ é o tamanho do menor conjunto corte de vértices de G. Um grafo G é um grafo k-vértice-conexo onde $\kappa(G)=k$.

Introdução – Mais sobre grafos..

Determine a conectividade de arestas e vértices dos grafos abaixo

O grafo G_1 é 2-arco-conexo($\lambda(G)=2$) e 1-vértice-conexo ($\kappa(G)=1$).

O grafo G_2 é 1-arco-conexo ($\lambda(G)=1$) e 1-vértice-conexo($\kappa(G)=1$).

Introdução – Mais sobre grafos..

Mostre que para qualquer G

$$\kappa(G) \le \lambda(G) \le \delta(G)$$

Mais sobre grafos..

Mostre que um grafo é bipartido sse ele não possuir ciclos de tamanho impar

ightharpoonup Seja G um grafo bipartido e <math>V(G) o conjunto de vértices de G correspondente à união de dois subconjuntos disjuntos V_1 e V_2 de modo que as arestas de G unem apenas vértices de diferentes subconjuntos.

Considere um ciclo C em G, onde C é denotado pela seguinte seqüência de vértices $v_1, v_2, v_3, ..., v_n, v_l$. Suponha que $v_1 \in V_1$, então $v_2 \in V_2$, $v_3 \in V_1$, $v_n \in V_2, v_1 \in V_1$ a alternada entre os dois subconjuntos.

Como o ultimo vértice é v_l , e a seqüência é alternada entre os subconjuntos V_l e V_2 . Podemos constatar que o penúltimo vértice v_n possui índice n par.

Como um caminho com um número par de vértices possui exatamente um número ímpar de arestas. Logo, a adição da aresta de retorno (v_n, v_l) faz com que este caminho possua um comprimento par, dado pelo número par de arestas.

Mais sobre grafos..

 \blacktriangleleft A prova de que G é bipartido é como segue. Considere um vértice u, e uma função f(v) que retorna o comprimento do menor caminho de u até v. Faça $X = \{v \in V | f(v) \text{ é par}\}\ e\ Y = \{v \in V | f(v) \text{ é impar}\}$

Considere uma aresta (v,v'), onde $v,v' \in X$ ou $v,v' \in Y$, ou seja, uma aresta que liga vértices de um mesmo conjunto. Considere também um ciclo que passa pelo vértice u.

Este ciclo pode ser decomposto em dois subcaminhos, um entre v e u, e outro entre u e v', juntamente com a aresta que liga os vértices v e v'. Como v e v' estão no mesmo conjunto, os caminhos entre v e u e entre v' e u serão ou pares ou impares.

Mais sobre grafos..

Portanto, a soma dos comprimentos destes caminhos resultará em um número par que adicionado de 1, correspondente a aresta (v,v'), leva a um caminho de comprimento impar. Como estamos afirmando que nenhum ciclo de tamanho impar existe, logo a aresta (v,v') não existe. Por conseguinte, tanto X quanto Y são conjuntos independentes, logo o Grafo G é bipartido.

Obs: para sabermos se um grafo não é bipartido, basta verificarmos se existe algum ciclo de comprimento impar.

União de Grafos

A união de dois grafos G₁ e G₂ é definida como

$$G = (V, A) = G_1 \cup G_2 = (V(G_1) \cup V(G_2), A(G_1) \cup A(G_2))$$

Complemento de Grafos

O complemento de um grafo G, denotado por \bar{G} , é um grafo com

$$V(\bar{G}) = V(G)$$

$$V(\bar{G}) = V(G)$$
 e $(v, u) \in A(\bar{G})$ sse $(v, u) \notin A(G)$.

O complemento de um grafo completo é um grafo nulo. Enquanto que o complemento de um grafo bipartido é a união de dois grafos completos.

Complemento de Grafos

Um grafo é autocomplementar se ele for isomorfico ao seu complemento.

O grafo abaixo é autocomplementar?

Sim!

Complemento de Grafos

Mostre que para qualquer Grafo G com 6 pontos, G ou \bar{G} possui um triângulo

Considere um vértice v de V(G). Sem perda de generalidade, podemos assumir v é adjacente a outros três vértices u_1 , u_2 e u_3 em G.

Se dois destes vértices forem adjacentes, então existirá um triangulo formado por estes dois e por v.

Caso contrário, estes três vértices não serão adjacentes entre si em G, mas serão em \bar{G}

Decomposição

Uma decomposição de um grafo é uma lista de subgrafos tal que cada aresta aparece exatamente uma única vez em um único subgrafo.

Matching

Um *matching* em um grafo G é um conjunto de arestas que não formam loops e que não compartilham vértices entre si.

Um vértice incidente às arestas de um *matching* M é dito saturado por M.

Um matching perfeito de G satura todos os vértices de G.

Determine um matching para o grafo abaixo

É um matching perfeito? Sim!