1

GATE:EE/63

EE23BTECH11208 - Manohar K*

Question: A signal $x(t) = 2\cos(180\pi t)\cos(60\pi t)$ is sampled at 200 Hz and then passed through an ideal low pass filter having cut-off frequency of 100 Hz.

The maximum Frequency present in the filtered signal in Hz is _____ (Round off to the nearest (GATE 2023 EE) integer.)

Solution:

Given,

$$x(t) = \cos(240\pi t) + \cos(120\pi t) \tag{1}$$

symbol	value	description
x(t)	$2\cos(180\pi t)\cos(60\pi t)$	input signal
f_s	200Hz	sampling frequency
f_c	100Hz	cut-off frequency
<i>y</i> (<i>t</i>)		output signal
f_1	120Hz	first signal frequency
f_2	60Hz	second signal frequency
TABLE I		

PARAMETERS

Aliased frequencies when f_1 frequency signal is sampled at 200Hz

$$f_1, |f_s \pm f_1|, |2f_s \pm f_1|...$$
 (2)

$$120, 80, 340, 280, 520...$$
 (3)

Aliased frequencies when f_2 frequency signal is sampled at 200Hz

$$f_2, |f_s \pm f_2|, |2f_s \pm f_2|...$$
 (4)

$$60, 140, 260, 340, 460...$$
 (5)

Fig. 1. delta function of input signal

Maximum Frequency present in the filtered signal

Fig. 2. delta function of sampled and filtered signal

from table $f_c = 100Hz$ LPF output: 60Hz, 80Hz

is 80Hz.