You look awesome today!!!

Sadness

Fear

Natural language processing and Sentiment analysis

How can we efficiently analyze the sentiment in these data?

Two Approaches

Two Approaches

Statistical/ML

Linguistics

Goal

['word1' 'word2' 'word3']

High sentiment

Low sentiment

["Wheeeen I am alone, a NormallY enjoy a good pizza!! ©"]

VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text

C.J. Hutto

Eric Gilbert

Georgia Institute of Technology, Atlanta, GA 30032 cjhutto@gatech.edu gilbert@cc.gatech.edu

["Wheeeen I am alone, a NormallY enjoy a good pizza!! ©"]

VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text

C.J. Hutto

Eric Gilbert

Georgia Institute of Technology, Atlanta, GA 30032 cjhutto@gatech.edu gilbert@cc.gatech.edu

Binarize

1 2 3 4 5 ['play' 'funny' 'sad' 'good' 'bad'] Minimal Dictionary

Binarize

1 2 3 4 5 ['play' 'funny' 'sad' 'good' 'bad'] Minimal Dictionary

'This food is very good' Review

Binarize

1 2 3 4 5 ['play' 'funny' 'sad' 'good' 'bad'] Minimal Dictionary

'This food is very good' Review

[0 0 0 1 0] Binarized Review

Training data

Training data

Testing the Classifier

Testing the Classifier

Testing the Classifier

Who is getting good/bad reviews?

'Good' restaurants

'Bad' restaurants

Thank you