Special Relativity - Summary 2 - Relativistic dynamics

by Dr. Helga Dénes (hdenes@yachaytech.edu.ec)

This summary is based on the book Robert Resnick: Introduction to Special Relativity, chapters 3.1 - 3.7

- SR is in contrast with some of the classical laws of physics
- In the classical case we can accelerate a body to any speed \Leftrightarrow SR the maximum speed is c

1 Relativistic momentum

Redefine momentum so that it is invariant under Lorentz transformation. The classical definition of the momentum: $\bar{p} = m\bar{u}$ is not invariant under Lorentz transformation. \to We need to update the definition: using relativistic mass: $m = m_0/\sqrt{1 - u^2/c^2}$.

Relativistic momentum:

$$\bar{p} = m\bar{u} = \frac{m_0\bar{u}}{\sqrt{1 - u^2/c^2}}$$

- In the classical case mass is invariant.
- In SR mass is not invariant (note: the rest mass is invariant m_0).
- When $u = 0 \to the body is at rest <math>m = m_0$
- m_0 rest mass is also called proper mass.
- The mass (m) depends on the velocity, but it is independent of the direction of the motion

General momentum:

When there are x, y, z, components $u^2 = u_x^2 + u_y^2 + u_z^2$

$$p_x = \frac{m_0 u_x}{\sqrt{1 - u^2/c^2}}$$

$$p_y = \frac{m_0 u_y}{\sqrt{1 - u^2/c^2}}$$

$$p_z = \frac{m_0 u_z}{\sqrt{1 - u^2/c^2}}$$

Note: u^2/c^2 has the full magnitude of u and not just the components.

1.1 Alternative views on mass in relativity

The relativistic momentum and mass can be interpreted in two different ways. classical momentum:

$$p_x = m_0 \frac{dx}{dt}$$

To make the momentum relativistic we can either treat the mass as relativistic and bringing in a factor of $\frac{1}{\sqrt{1-u^2/c^2}}$ or we treat the velocity component relativisticly and the $\frac{1}{\sqrt{1-u^2/c^2}}$ factor is attributed to time dilation. Both interpretations are correct and can be used for different problems.

As $u \to c \ m \to \infty$ for the relativistic mass. The inertia of a body increases with velocity \to c can not be reached for objects with mass.

2 Relativistic force and dynamics of a single body

In relativistic mechanics Newton's 2nd law generalises:

$$\bar{F} = \frac{d}{dt}(\bar{p}) = \frac{d}{dt} \left(\frac{m_0 \bar{u}}{\sqrt{1 - u^2/c^2}} \right)$$

• If there is no external force \rightarrow the momentum is conserved.

- If there is an external force → the momentum change is equal to the total impulse given to the system by the external force.
- Newtonian mechanics: The kinetic energy is defined to be equal to the work done by an external force in increasing the speed from 0 to some value.

Relativistic kinetic energy:

$$K = m_0 c^2 \left[\frac{1}{\sqrt{1 - u^2/c^2}} - 1 \right]$$

The total energy of the particle: $E = m_0 c^2 + K$ is the sum of the rest energy and the kinetic energy. Rest energy: $m_0 c^2$ is the energy of the particle at rest (u = 0)

- Total energy is often used in high energy and particle physics.
- if $v \ll c$ we get the classical expression: $K = 1/2m_0c^2$
- if $u \to c \ K \to \infty$ an infinite amount of work would be needed to accelerate a particle to c
- $K = (m m_0)c^2$ a change in kinetic energy is related to change in the relativistic mass
- There is a connection between K and the momentum: $E = c\sqrt{p^2 + m_0^2c^2}$
- Another often used version: $\frac{dE}{dp} = \frac{pc^2}{E} = u$

2.1 Acceleration of a particle under a single force

$$\bar{F} = m\frac{d\bar{u}}{dt} + \frac{\bar{u}(\bar{F} \cdot \bar{u})}{c^2}$$

$$\bar{a} = \frac{d\bar{u}}{dt} = \frac{\bar{F}}{m} - \frac{\bar{u}}{mc^2}(\bar{F} \cdot \bar{u})$$

The acceleration by a single force is not necessarily parallel to the force, because the last term is parallel to \bar{u} .

There are two simple cases where \bar{a} is parallel to \bar{F} :

1. If F is parallel to \bar{u} :

$$F_{\parallel} = \frac{m_0}{(1 - u^2/c^2)^{3/2}} a_{\parallel}$$

longitudinal mass:

$$\frac{m_0}{(1-u^2/c^2)^{3/2}}$$

2. If \bar{F} is perpendicular to \bar{u} :

$$F_{\perp} = \frac{m_0}{\sqrt{1 - u^2/c^2}} a_{\perp}$$

transverse mass:

$$\frac{m_0}{\sqrt{1-u^2/c^2}}$$

example: force on a charged particle moving in a magnetic field $\bar{B}(\bar{F} = q\bar{u} \times \bar{B})$

Experimental support for the relativistic mass: An e^- from a β decay $(n^0 \to p^+ + e^- + \bar{\nu}_e)$ enters a velocity selector, which determines the speed of the e^- that can emerge from the chamber. Then the particles with the same speed enter a magnetic field, where they are going to move on a curved path that is dependent on their momentum (mass). The radius of the path can be measured \to relativistic mass can get calculated.

3 The equivalence of mass and energy

The rest mass of a body is equivalent to energy \rightarrow rest-mass energy.

- This follows from the Lorentz transformation and the momentum conservation.
- The total energy is conserved in inelastic collisions
- The conservation of total energy is equivalent to conservation of rest mass

- ullet Mass and energy are equivalent o they form a single invariant: mass-energy
- relation: $E = mc^2$ or $m = E/c^2 \rightarrow$ we can convert one into the other
- The conversion of mass into energy is often used in nuclear physics: e.g. eV or MeV units for the mass of particles
- Or a mass less particle (e.g. photon) can get a "mass" assigned to it based on its energy
- We can think of the kinetic energy as an **external energy** and of the rest-mass energy as an internal energy.
- **Internal energy** is to the largest part mad up of the total rest-mass energy of the constituent fundamental particles, but it can also include:
 - molecular motion,
 - intermolecular potential energy,
 - atomic potential energy,
 - nuclear potential energy
- The rest mass or (proper mass) of a body is generally not constant.
- We can assign a rest mass to any collection of particles in motion in a frame at which the centre of mass
 is at rest.
- In classical physics we have 2 conservation laws: energy and mass conservation \rightarrow in SR we have 1: mass-energy conservation.

4 Lorentz transformation of momentum, energy, mass and force

4.1 Momentum and energy

$$\begin{split} p_x &= \frac{1}{\sqrt{1 - v^2/c^2}} \left(p_x' + \frac{E'v}{c^2} \right) & p_x' = \frac{1}{\sqrt{1 - v^2/c^2}} \left(p_x - \frac{Ev}{c^2} \right) \\ p_y &= p_y' \\ p_z &= p_z' \\ E &= \frac{1}{\sqrt{1 - v^2/c^2}} \left(E' + v p_x \right) & E' &= \frac{1}{\sqrt{1 - v^2/c^2}} \left(E - v p_x \right) \end{split}$$

Very similar to the Lorentz transformation of x, y, z, t:

$$x' = \frac{x - vt}{\sqrt{1 - v^2/c^2}} \qquad p'_x = \frac{p_x - v(E/c^2)}{\sqrt{1 - v^2/c^2}}$$
$$t' = \frac{t - (v/c^2)x}{\sqrt{1 - v^2/c^2}} \qquad \frac{E'}{c^2} = \frac{(E/c^2) - (v/c^2)p_x}{\sqrt{1 - v^2/c^2}}$$

- When relativity is put into 4 dimensional space-time form a four-vector can be created out of the space and time coordinates
- Similarly a four-vector can be created out of the three momentum components and the energy
- \bullet If energy and momentum are conserved in one interaction in an inertial frame \to then they are also conserved for the interaction in another inertial frame
- If momentum is conserved \rightarrow energy must be conserved as well.

4.2 Mass

The transformation of mass follows directly from the transformation of energy:

$$m = \frac{m'(1 + u'_x v/c^2)}{\sqrt{1 - v^2/c^2}} \qquad m' = \frac{m(1 - u_x v/c^2)}{\sqrt{1 - v^2/c^2}}$$

4.3 Force

$$F_x = F'_x + \frac{u'_y v}{c^2 + u'_x v} F'_y + \frac{u'_z v}{c^2 + u'_x v} F'_z \qquad F'_x = F_x - \frac{u_y v}{c^2 - u_x v} F_y - \frac{u_z v}{c^2 - u_x v} F_z$$

$$F_y = \frac{\sqrt{1 - v^2/c^2}}{1 + u'_x v/c^2} F'_y \qquad F'_y = \frac{\sqrt{1 - v^2/c^2}}{1 - u_x v/c^2} F_y$$

$$F_z = \frac{\sqrt{1 - v^2/c^2}}{1 + u'_x v/c^2} F'_z \qquad F'_z = \frac{\sqrt{1 - v^2/c^2}}{1 - u_x v/c^2} F_z$$

A more **compact version**:

$$\frac{1}{\sqrt{1 - v^2/c^2}} = \gamma$$

$$F_x = \frac{F'_x + (v/c^2)\bar{u}' \cdot \bar{F}'}{1 + u'_x v/c^2} \qquad F'_x = \frac{F_x - (v/c^2)\bar{u} \cdot \bar{F}}{1 - u_x v/c^2}$$

$$F_y = \frac{F'_y}{1 + u'_x v/c^2} \qquad F'_y = \frac{F_y}{1 - u_x v/c^2}$$

$$F_z = \frac{F'_z}{1 + u'_x v/c^2} \qquad F'_z = \frac{F_z}{1 - u_x v/c^2}$$

 F_x depends on $\bar{u} \cdot \bar{F}$ the power developed by the force in another frame \to power and force are related in 4D space, similar to momentum and energy.

The 4th relation that goes together with the force is:

$$\bar{u}\cdot\bar{F}=\frac{\bar{u}'\cdot\bar{F}'+vF_x}{1+u_x'v/c^2} \quad \ \bar{u}'\cdot\bar{F}'=\frac{\bar{u}\cdot\bar{F}-vF_x}{1-u_x'v/c^2}$$

Special case: if a body is at rest (u'=0) in the S' frame and it is subjected to a force with components F'_x, F'_y, F'_z

$$F_x = F'_x$$

$$F_y = \frac{F'_y}{\gamma} = \frac{F'_y}{\sqrt{1 - v^2/c^2}}$$

$$F_z = \frac{F'_z}{\gamma} = \frac{F'_z}{\sqrt{1 - v^2/c^2}}$$

The force is the gratest in the rest frame of the object and smaller in all other inertial frames.