Foundations of Computer Science

Notes from 02-26-2015

Kenny Roffo

March 5, 2015

Contents

1	Formal Languages 1.1 Definitions	1 1 2 2
2	Regular Expressions 2.1 What is a Regular Expression?	3
3	Finite State Machines 3.1 The Vending Machine	3
1	Formal Languages	
1.1 Definitions		
	1. A <u>symbol</u> is the basic indivisible entity Natural Languages: words, not letters	
	2. An <u>alphabet</u> is a finite, nonempty set of symbols Σ is typically used as the name for the alphabet Natural languages: $\Sigma = \{all \ words \ in \ English\}$ - Lexicon	
	3. A string (over Σ) is a finite sequence of symbols (over Σ) Properties: • length • empty string denoted λ • concatenation • λ identity of concatenation	

4. Σ^* is the set of all finite strings over Σ

e.q.
$$\Sigma = \{0, 1\}, \Sigma^* = \{\text{all strings of 0 and 1}\}$$

 Σ is an alphabet

 Σ^* is defined recursively

 λ is an element of Σ^* , and if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

5. A <u>language</u> L is any set of strings formed from a given alphabet Σ

 ϕ is a language over any alphabet

 Σ is a language over Σ

 Σ^* is a language over Σ

1.2 Examples

1.
$$\Sigma = \{b\}$$

 $\Sigma^* = \{\lambda, b, bb, bbb, ...\}$

2.
$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, \dots\}$$

L is a language over Σ that is defined recursively: ex: $L = \{w | w = a^n b^n, n \geq 1\}$ (a^n means aaa...a n times)

Thus $L = \{ab, aabb, aaabbb, aaaabbb, ...\}$, if $w \in L$, then $awb \in L$

- 3. Let $L_n = a^n b^n$. Then $L = L_0 \cup L_1 \cup L_2 \cup ...$
- 4. Let Σ_i be the language of i length strings in the alphabet $\Sigma = \{a, b\}$.

Then $\Sigma_0 = \{\lambda\}, \ \Sigma_1 = \{a, b\}, \ \Sigma_2 = \{aa, ab, ba, bb\}, \dots$

It follows that the language $\Sigma^* = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup ... = \bigcup_{i=1}^{\infty} \Sigma_i$

1.3 What is Σ^*

Concatenation - Making new strings from existing strings. We can also concatenate strings with languages and languages with languages. If L_1 and L_2 are languages, then $L_1L_2=\{w_1w_2|w_1\in L_1,w_2\in L_2\}$

ex: Let $L_1 = \{\text{in,out}\}\$ and $L_2 = \{\text{law,door,ward}\}.$

Then $L_1L_2 = \{\text{inlaw,outlaw,indoor,outdoor,inward,outward}\}$

 Σ^* is the set of all strings made from the alphabet Σ . But why Σ^* ?

 Σ^* is the result of concatenating Σ with itself zero or more times.

 Σ^+ is the result of concatenating Σ with itself one or more times.

This is called the positive closure of Σ .

2 Regular Expressions

2.1 What is a Regular Expression?

A $regular\ expression\ (regex)$ is a way to specify patterns for strings using union (or), concatenation, and *

A regex over Σ is defined:

Basis: Every $a \in \Sigma$ is a regex over Σ

Recursive: If u and v are regex over Σ then u|v, uv, and u^* are all regex over Σ

Here, | means or and * means 0 or more. When in doubt, use parentheses.

grep - general regular expression parser - a Unix command which searches a file for a pattern defined by a regex.

Let $X = \{a, ab, aba\}$ and $Y = \{b, bb\}$. Then

- $XY = \{ab, abb, abb, abb, abab, abab\}$ (Concatenation)
- $X|Y = \{a, ab, aba, b, bb\}$ (Like union)
- $ababa \in X^*$
- $ababa \in XY^*$
- $ab(ab)^*a$ is a regex that matches ababa

3 Finite State Machines

3.1 The Vending Machine

Consider a vending machine which contains Jelly beans and Gum. The Machine has inputs

- N 5 cents
- D 10 cents
- J Jelly Bean (Costs 20 cents)
- G Gum (Costs 15 cents)

These can be represented by $\Sigma = \{N, D, J, G\}$. The machine also has outputs

- b beep when money is added
- j jelly bean dispensed
- g gum dispensed

Design a <u>Finite State</u> machine - a machine with a finite number of "things to remember" This vending machine has to "remember":

- total money deposited (but not he order in which coins are desposited)
- which product is selected

States are drawn with circles and named on the inside:

For our Vending Machine the states are described by how much money is in the machine, and the transitions represent money input, or a purchase or gum or a jelly bean. The states live in the set $Q=\{GOT\emptyset,GOT5,GOT10,GOT15,GOT20\}$. State transitions are defined by a function $\delta:Q\times\Sigma\to Q$. As an example,

$$(GOT5)(N) \rightarrow GOT10$$

