CS422 Computer Architecture

Assignment 2

Prof. Mainak Chaudhuri

October 11, 2023

Jaya Gupta Roll No: 200471

Contents

1	PART A: DIRECTION PREDICTORS FOR CONDITIONAL BRANCHES
	1.1 perlbench
	1.2 bzip2
	1.3 gcc
	1.4 mcf
	1.5 cactusADM
	1.6 leslie3D
	1.7 soplex
	1.8 hmmer
	1.9 libquantum
	1.10 lbm
	1.11 omnetpp
	1.12 sphinx3
	1.13 xalancbmk
2	OBSERVATIONS
3	PART B: TARGET PREDICTORS FOR INDIRECT CONTROL FLOW IN STRUCTIONS
1	ORSERVATIONS

1 PART A: DIRECTION PREDICTORS FOR CONDITIONAL BRANCHES

1.1 perlbench

Direction Predictor	Misprediction Fraction		
Direction Fredictor	Forward	Backward	Total
FNBT	37.5699	56.1758	41.3026
BIM	9.96035	7.88675	9.54435
SAG	3.749	3.32712	3.66437
GAG	12.427	9.1189	11.7633
GSHARE	10.3103	9.72903	10.1937
SAG_GAG_HYBRID	3.18185	2.76472	3.09817
MAJ	5.08555	4.77508	5.02326
TOURNAMENT_MP	2.90099	2.38271	2.79701

1.2 bzip2

Direction Predictor	Mispr	rediction Fra	ction
	Forward	Backward	Total
FNBT	30.9892	61.9445	46.892
BIM	10.7903	9.24878	9.99839
SAG	11.4242	8.92617	10.1409
GAG	14.7518	10.389	12.5105
GSHARE	12.1152	10.5467	11.3094
SAG_GAG_HYBRID	10.8428	8.38938	9.58242
MAJ	10.201	8.45028	9.30162
TOURNAMENT_MP	10.0766	8.21679	9.12114

1.3 gcc

Direction Predictor	Misprediction Fraction		
Direction Fredictor	Forward	Backward	Total
FNBT	31.9047	4.55539	10.453
BIM	12.6277	1.9919	4.28541
SAG	7.60393	1.31804	2.67353
GAG	11.9516	1.87172	4.04535
GSHARE	11.8776	1.70902	3.90177
SAG_GAG_HYBRID	5.74565	1.01943	2.03859
MAJ	7.02809	1.23017	2.48044
TOURNAMENT_MP	5.11418	0.937427	1.83811

1.4 mcf

Direction Predictor	Misprediction Fraction		
Direction Fredictor	Forward	Backward	Total
FNBT	35.7088	28.19	31.9496
BIM	16.2883	19.7519	18.02
SAG	15.0981	11.002	13.0502
GAG	9.22753	9.34422	9.28587
GSHARE	10.3481	10.0909	10.2195
SAG_GAG_HYBRID	8.94988	8.60069	8.77529
MAJ	8.76091	8.60215	8.68154
TOURNAMENT_MP	8.5454	8.26083	8.40312

1.5 cactusADM

Direction Predictor	Misprediction Fraction		
	Forward	Backward	Total
FNBT	0.459441	24.9282	12.6912
BIM	0.14132	24.8116	12.4738
SAG	0.0934394	0.482263	0.28781
GAG	0.193938	0.520965	0.357417
GSHARE	0.171832	24.3423	12.2545
SAG_GAG_HYBRID	0.0853122	0.469301	0.277266
MAJ	0.109415	0.497131	0.303232
TOURNAMENT_MP	0.0808538	0.465258	0.273015

1.6 leslie3D

Direction Predictor	Misprediction Fraction		
	Forward	Backward	Total
FNBT	3.82682	0.851498	0.884765
BIM	3.39932	0.851231	0.879721
SAG	0.506928	0.832854	0.82921
GAG	18.9296	0.941208	1.14234
GSHARE	6.60664	0.852528	0.916865
SAG_GAG_HYBRID	0.453975	0.828935	0.824743
MAJ	4.97715	0.82977	0.876142
TOURNAMENT_MP	0.453975	0.82895	0.824757

1.7 soplex

Direction Predictor	Misprediction Fraction		
Direction Fredictor	Forward	Backward	Total
FNBT	19.9305	15.5134	16.9548
BIM	0.912735	6.72012	4.82514
SAG	0.658447	5.64174	4.01566
GAG	0.850962	5.22952	3.80077
GSHARE	1.30071	5.26466	3.9712
SAG_GAG_HYBRID	0.651763	4.99313	3.57652
MAJ	0.821522	5.21704	3.78276
TOURNAMENT_MP	0.650605	4.99224	3.57554

1.8 hmmer

Direction Predictor	Mispr	ediction Fra	ction
	Forward	Backward	Total
FNBT	76.6315	0.669822	63.9146
BIM	10.2041	0.353847	8.55503
SAG	10.8637	0.480342	9.12541
GAG	13.6193	2.56574	11.7688
GSHARE	11.7958	2.7062	10.2741
SAG_GAG_HYBRID	10.2256	0.77008	8.64262
MAJ	10.3101	0.62554	8.68882
TOURNAMENT_MP	9.94742	0.416836	8.35189

1.9 libquantum

Direction Predictor	Misprediction Fraction		
Direction 1 redictor	Forward	Backward	Total
FNBT	86.2244	0.985879	55.6545
BIM	11.7074	0.492961	7.68548
SAG	1.24813	0.493088	0.977343
GAG	9.30406	0.493255	6.14416
GSHARE	9.12447	0.49331	6.029
SAG_GAG_HYBRID	1.18141	0.493041	0.934531
MAJ	8.06685	0.4932	5.35064
TOURNAMENT_MP	1.1814	0.493041	0.934528

1.10 lbm

Direction Predictor	Misprediction Fraction		
	Forward	Backward	Total
FNBT	47.2961	90.5521	62.0235
BIM	0.0376736	3.32815	1.15798
SAG	0.0154314	1.31342	0.457357
GAG	0.0210357	1.30018	0.456548
GSHARE	0.202009	1.30037	0.57597
SAG_GAG_HYBRID	0.0153536	1.2951	0.451068
MAJ	0.0198876	1.29917	0.455444
TOURNAMENT_MP	0.015373	1.29506	0.451068

1.11 omnetpp

Direction Predictor	Mispr	ediction Fra	ction
Direction 1 redictor	Forward	Backward	Total
FNBT	33.7247	36.1846	34.1219
BIM	9.72772	13.8898	10.3997
SAG	4.36209	8.3315	5.003
GAG	11.8266	14.3424	12.2328
GSHARE	10.3791	13.2551	10.8435
SAG_GAG_HYBRID	3.584	6.89711	4.11894
MAJ	4.76364	9.22605	5.48415
TOURNAMENT_MP	3.3828	6.58434	3.89973

1.12 sphinx3

Direction Predictor	Misprediction Fraction		
	Forward	Backward	Total
FNBT	59.551	7.35363	27.8501
BIM	6.93516	4.88766	5.69166
SAG	6.81008	4.52059	5.41961
GAG	6.73407	5.16692	5.78229
GSHARE	7.56273	5.25844	6.16327
SAG_GAG_HYBRID	5.3523	4.37221	4.75706
MAJ	5.46445	4.8121	5.06826
TOURNAMENT_MP	5.26672	4.36976	4.72197

1.13 xalancbmk

Direction Predictor	Misprediction Fraction		
	Forward	Backward	Total
FNBT	9.80271	5.33882	8.5914
BIM	4.66085	2.25203	4.0072
SAG	2.41469	1.24981	2.09859
GAG	5.8463	3.3471	5.16812
GSHARE	4.99449	3.20164	4.50798
SAG_GAG_HYBRID	1.76962	1.0967	1.58702
MAJ	2.68197	1.78191	2.43773
TOURNAMENT_MP	1.63322	0.965019	1.4519

2 OBSERVATIONS

- **FNBT** gives more than 90% accurate predictions for benchmark applications like xalancbmk, leslie3D, gcc etc. This shows that these programs are **loop-intensive**.
- In other cases, FNBT performs very poorly compared to other direction predictors. This
 is because in a program rich in conditional if-else type branches which shows multiple
 varying patterns over the timeline of the program, a static predictor like FNBT will give
 worse performance than dynamic predictors which learns the pattern during the execution
 of the program.
- All the other dynamic direction predictors gives approximately more than 90% accurate predictions.
- Performance of GAg and SAg on various benchmarks differs. In programs like perlbench, bzip2, gcc, leslie3D etc, SAg performs better than GAg showing greater local correlation over global correlation. In programs like mcf, soplex etc, GAg performs better than SAg showing greater global correlation. Overall, SAg perfoms better than GAg in most cases.
- Misprediction rate of gshare lies in between SAg and GAg for most programs. This is because gshare is indexed using GHR XOR PC, which contains both local(PC) and global components (GHR). Hence gshare to some extent is able to capture both local and global correlation. The Misprediction rate is much closer to the GAg showing dominance of global component over local component.
- Hybrid Predictors performs much better than individual GAg, SAg, and gshare. This is because they adaptively combine local and global predictions. Hence branches with local correlation will get trained to use prediction from SAg whereas branches with global correlation will get trained to use prediction from GAg or gshare. Tournament meta predictor works at par with GAg_SAg_Hybrid and much better than majority voter.

3 PART B: TARGET PREDICTORS FOR INDIRECT CONTROL FLOW INSTRUCTIONS

BenchMark Applications	Indexing By PC		Indexing By PC XOR GHR	
Denchwark Applications	Misprediction Rate	BTB Miss Rate	Misprediction Rate	BTB Miss Rate
perlbench	35.3423	0.0114141	10.418	1.55463
bzip2	48.2937	0.00745013	47.5235	0.0270225
gcc	35.5979	0.00674459	12.0902	0.796392
mcf	0.613493	0.0000716	0.409914	0.000836234
cactusADM	0.376885	0.0218048	0.252823	0.0473691
leslie3D	39.6728	11.5542	40.8998	19.0184
soplex	0.00535151	0.00148829	0.0104655	0.00539901
hmmer	6.38537	0.056556	2.64077	0.42169
libquantum	0.0123952	0.00161677	0.0138324	0.00449103
lbm	38.5714	16.1905	41.9048	35.2381
omnetpp	29.361	0.0188284	11.6377	0.878609
sphinx3	54.5317	0.00472665	12.6454	0.146099
xalancbmk	28.6954	2.46549	29.1813	16.1178

4 OBSERVATIONS

- Misprediction Rate decreases when using indexing by PC XOR GHR over using indexing by PC. This is because the indirect branches have a path correlation. Indexing by just PC just not encode path information at all contrary to PC XOR GHR. GHR encodes the global history of conditional branches, and hence in certain way the information about the path taken to reach the indirect branch instruction.
- BTB Miss Rate increases when using indexing by PC XOR GHR over using indexing by PC. This is because, in both cases, the BTB size(sets and ways) remains the same. In the first case, there are multiple entries for a single indirect branch instruction in the BTB depending on the path taken contrary to the second case, where there is a single entry per indirect instruction in the BTB. This, in turn, increases the number of conflicts and hence replacements in the BTB leading to a larger miss rate.
- Less BTB Miss Rate in some benchmark programs(mcf, soplex, libquantum) shows the **localization** of the program in certain areas for most of the duration and thus BTB is able to store all the targets for indirect instruction without replacements.
- In some benchmark applications(leslie3D, soplex, lbm, xalancbmk), BTB performs better when indexed by using **PC** over **PC** XOR GHR. This is because as seen from the data, BTB Miss Rate significantly increases in **PC** XOR GHR for these programs meaning that BTB is not able to hold all valid indirect targets(for different paths) and thus leading to higher mispredictions and BTB misses. This can be improved by increasing the size of BTB.