

Análisis Avanzado - Supremos e ínfimos

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Cotas superiores

Sea $\underline{A} \subset \mathbb{R}$ un conjunto no vacío. Decimos que $c \in \mathbb{R}$ es una cota superior de A si $c \geq x$ para todo $x \in A$.

Un conjunto se dice *acotado superiormente* si tiene una cota superior.

Cotas superiores

Sea $A \subset \mathbb{R}$ un conjunto no vacío. Decimos que $c \in \mathbb{R}$ es una cota superior de A si $c \geq x$ para todo $x \in A$.

Un conjunto se dice *acotado superiormente* si tiene una cota superior.

Ejemplo

12 colon superior

• [0, 1] esta acotados superiormente por 1. Y también por 2 y por 4.5 y por 1000....

Cotas superiores

Sea $A \subset \mathbb{R}$ un conjunto no vacío. Decimos que $c \in \mathbb{R}$ es una cota superior de A si $c \geq x$ para todo $x \in A$.

Un conjunto se dice *acotado superiormente* si tiene una cota superior.

Ejemplo

- [0,1] esta acotados superiormente por 1. Y también por 2 y por 4.5 y por 1000....
- $\{-13, 0, 1, 3, 7\}$ está acotado superiormente,

Cotas superiores

Sea $A \subset \mathbb{R}$ un conjunto no vacío. Decimos que $c \in \mathbb{R}$ es una cota superior de A si $c \geq x$ para todo $x \in A$.

Un conjunto se dice *acotado superiormente* si tiene una cota superior.

Ejemplo

- [0,1] esta acotados superiormente por 1. Y también por 2 y por 4.5 y por 1000....
- $\{-13, 0, 1, 3, 7\}$ está acotado superiormente,
- $\{x \in \mathbb{R} : x \leq \frac{3}{4}\}$ está acotado superiormente, $\left(-\infty, \frac{3}{4}\right)$

Cotas superiores

Sea $A \subset \mathbb{R}$ un conjunto no vacío. Decimos que $c \in \mathbb{R}$ es una cota superior de A si $c \geq x$ para todo $x \in A$.

Un conjunto se dice *acotado superiormente* si tiene una cota superior.

Ejemplo

- [0,1] esta acotados superiormente por 1. Y también por 2 y por 4.5 y por 1000....
- $\{-13, 0, 1, 3, 7\}$ está acotado superiormente,
- $\{x \in \mathbb{R} : x \leq \frac{3}{4}\}$ está acotado superiormente,
- $\{n \in \mathbb{N} : n \text{ es par }\}$ no es acotado superiormente.

M=2Le mem: mesport=A
SiceIR que os cota sub de A
=> 2L (C + LEM.
Sabarus que 3 NEM / CCNX(2N) ABGL

Principio de Arquímedes	_

Si $x \in \mathbb{R}$ entonces existe $n \in \mathbb{N}$ tal que $x \le n$.

Si $x \in \mathbb{R}$ entonces existe $n \in \mathbb{N}$ tal que x < n.

A la menor cota superior de un conjunto A (acotado superiormente y no vacío) la llamamos supremo de A

Definición de Supremo

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente. Un número $s \in \mathbb{R}$ se dice supremo de Asi cumple las siguientes dos condiciones:

- (a) $s \ge x$ para todo $x \in A$; \longrightarrow 3 es coto seperitor
- (b) si $t \in \mathbb{R}$ satisface $t \ge x$ para todo $x \in A$, entonces $s \le t$.

took sup

3 es la menor de les cotres

Definición de Supremo

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente. Un número $s \in \mathbb{R}$ se dice *supremo de A* si cumple las siguientes dos condiciones:

- (a) $s \ge x$ para todo $x \in A$;
- (b) si $t \in \mathbb{R}$ satisface $t \ge x$ para todo $x \in A$, entonces $s \le t$.

Observación

- · El supremo es único.
- La existencia del supremo se debe al axioma de completitud de \mathbb{R} .

Todor conjunto fo y acotado su

Ejemplo .A = [0,1] CIR Afirus: 1 = Sup(A). Hem: (1) gra 1 es cota sup (2) la menor de les cotas suf. (1) - O XEA = D O EXEL , 1 cota sub. (2) _r tes un cota sup. de A => t > 1 pues 1e4. => 1 es el sulp(A). B= [0,1) Africa que 1 = Suf=(B) cota sub v. Si t cota sub de B gry t >1. Pttl=Xe(t,1) =D XE(t,1) = B = D XEB beno x>t ABS! prest cota Sab. = 1 + 51 =>

Análisis Avanzado

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente y sea $s \in \mathbb{R}$. Entonces $s = \sup A$ si y sólo si s cumple:

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente y sea $s \in \mathbb{R}$. Entonces $s = \sup A$ si y sólo si s cumple:

(a')
$$s \ge x$$
 para todo $x \in A$; $\lesssim contact sup$

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente y sea $s \in \mathbb{R}$. Entonces $s = \sup A$ si y sólo si s cumple:

(a') $s \ge x$ para todo $x \in A$;

(b') para todo $\varepsilon >$ 0 existe $a \in A$ tal que $a > s - \varepsilon$.

Dem:
$$@S = Sup(A) \Rightarrow S$$
 comple (a') y(b).
[(a') \sim ((a') = (a))

Nombre - Notación

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente. Cuando el supremo de A es un elemento de A, entonces lo llamamos máximo de A y lo notamos max(A).

Nombre - Notación

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente. Cuando el supremo de A es un elemento de A, entonces lo llamamos máximo de A y lo notamos max(A).

Proposición

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente. Si existe $t \in \mathbb{R}$ cota superior de A tal que $t \in A$, entonces A tiene máximo y max(A) = t.

Ínfimo

Ínfimo

Cotas inferiores

Sea $A \subset \mathbb{R}$ un conjunto no vacío. Decimos que $d \in \mathbb{R}$ es una cota inferior \hat{p} de A si $d \leq x$ para todo $x \in A$.

Un conjunto se dice acotado inferioirmente si tiene una cota superior. imferior!

Ínfimo

Cotas inferiores

Sea $A \subset \mathbb{R}$ un conjunto no vacío. Decimos que $d \in \mathbb{R}$ es una cota inferiori de A si $d \leq x$ para todo $x \in A$.

Definición de Ínfimo

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente. Un número $i \in \mathbb{R}$ se dice <u>ínfimo de</u> A si cumple las siguientes dos condiciones:

- (a) $i \le x$ para todo $x \in A$; (colorinf).
- (b) si $t \in \mathbb{R}$ satisface $t \le x$ para todo $x \in A$, entonces $t \le i$.

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente y sea $i \in \mathbb{R}$. Entonces $i = \inf A$ si y sólo si i cumple:

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente y sea $i \in \mathbb{R}$. Entonces $i = \inf A$ si y sólo si i cumple:

(a') $i \le x$ para todo $x \in A$;

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente y sea $i \in \mathbb{R}$. Entonces $i = \inf A$ si y sólo si i cumple:

- (a') $i \le x$ para todo $x \in A$; cota $m \notin A$.
- (b') para todo $\varepsilon >$ 0 existe $a \in A$ tal que $a < i + \varepsilon$.

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente y sea $i \in \mathbb{R}$. Entonces $i = \inf A$ si y sólo si i cumple:

- (a') $i \le x$ para todo $x \in A$;
- (b') para todo $\varepsilon > 0$ existe $a \in A$ tal que $a < i + \varepsilon$.

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente y sea $i \in \mathbb{R}$. Entonces $i = \inf A$ si y sólo si i cumple:

- (a') $i \le x$ para todo $x \in A$;
- (b') para todo $\varepsilon > 0$ existe $a \in A$ tal que $a < i + \varepsilon$.

Nombre - Notación

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente. Cuando el ínfimo de A es un elemento de A, entonces lo llamamos minimo de A y lo notamos min(A).

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente y sea $i \in \mathbb{R}$. Entonces $i = \inf A$ si y sólo si i cumple:

- (a') $i \le x$ para todo $x \in A$;
- (b') para todo $\varepsilon > 0$ existe $a \in A$ tal que $a < i + \varepsilon$.

Nombre - Notación

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente. Cuando el ínfimo de A es un elemento de A, entonces lo llamamos mínimo de A y lo notamos min(A).

Proposición

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente. Si existe $t \in \mathbb{R}$ cota inferior de A tal que $t \in A$, entonces A tiene mínimo y min(A) = t.

Nombre

Cuando un conjunto es a<u>cotado superiormente e</u> inferiormente, decimos que es (simplemente) <u>acotado</u>.

Nombre

Cuando un conjunto es acotado superiormente e inferiormente, decimos que es (simplemente) acotado.

Proposición

Sea $A, B \subset \mathbb{R}$ no vacíos y acotados. Entonces:

(1)
$$sup(A + B) = sup(A) + sup(B);$$

(2)
$$\sup(A - B) = \sup(A) - \inf(B)$$
.

. Voy a prober que rau (b). Dado 870 979

Fach, beB/ 34+SB-E < a+b.

 $S_{A} + S_{B} - E = (S_{A} - E_{/2}) + (S_{B} - E_{/2})$ Se que $\exists a \in A \mid a ? S_{A} - E_{/2} = 0 \text{ a+b} ? S_{A} - E_{/2}$ Se que $\exists b \in B \mid b ? S_{B} - E_{/2} + S_{B} - E_{/2}$ (2) $dp \cdot \pm u$ yaunds arg. Similar al $= s_{A} + s_{B}$.

 $S_{A}-i_{B}-\epsilon = S_{A}-\epsilon_{12}-(i_{B}+\epsilon_{2})...$ $\phi_{2}: A-B=A+(-B) \longrightarrow Sup(-B)=-imf(B).$

Análisis Avanzado

Daniel Carando - Victoria Paternostro

DM-FCEN-UBA

- . En R todo conj # of y acota do sep. tiene sepremo.
- · Eu R todo conj ≠φ y anot. mf tieve in fivo.
 - · Si ACIR + \$ y arcota do =>
 imf(A) < Bup(A).