

MISCELLANEOUS PAPER C-72-12

OF ENDS OF CONCRETE CYLINDERS FOR TESTING

K. L. Saucier

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

April 1972

Sponsored by Office, Chief of Engineers, U. S. Army

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

55

Destroy this report when no longer needed. Do not return it to the originator.

ACCESSION INF CESTI BOG UMANIBUNGED JUSTIJ IGAPION	WHITE SECTION	
	Malanury costs	1
2		etti yake esike isaki isak

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Unclassified

Security Classification	
	ROL DATA - R & D
(Security classification of little, body of abetract and indexing a 1. ORIC NATING ACTIVITY (Comprete author)	enotation must be entered when the overall report is classified; 28. REPORT SECURITY CLASSIFICATION
U. S. Army Engineer Waterways Experiment S	
Vicksburg, Mississippi	tation Unclassified
, rounderfit alternous live	
3. REPORT TITLE	
EFFECT OF METHOD OF PREPARATION OF ENDS OF	CONCRETE CYLINDERS FOR TESTING
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)	
Final report 5. Author(8) (First name, middle initial, tant name)	
Kenneth L. Saucier	
6. REPORT DATE	70. TOTAL NO. OF PAGES 75. NO. OF REFS
April 1972	51 3
M. CONTRACT OR GRANT NO.	Se, ORIGINATOR'S REPORT HUMBER(S)
	Miscellaneous Paper C-72-12
B. PROJECT NO.	MINGELIAMEOUN TAPET 0-72-12
6. ES 622.8	
. 45 522.19	Sb. OTHER REPORT NOIS) (Any other numbers that may be assigned this report)
ا د	
10. DISTRIBUTION STATEMENT	<u></u>
Approved for public release; distribution	unlimited.
11. SUPPLEMENTARY NOTES	13. SPONSORING MILITARY ACTIVITY
/	Office, Chief of Engineers U.S. Armv
\ ,	Washington, D. C.
13. ABSTRACT The purpose of this program was to	
strength and surface condition of the sever	al materials commonly used for capping con-
crete cylinders and (b) various degrees of :	restraint of the capping material on the ap-
parent strength of concretes of different s	trength levels. The program was divided
into four phases. Phase I incorporated an	experimental method of preparing specimens
utilizing light steel rings to confine a gy	psum plaster cap on the end of the specimen
during testing. Variables included strength	n of concrete, use of rings, strength of
capping material, and cleanliness of the cap	p surface Phase II extended the investiga-
	lized medium-thick rings and a sulfur-silica
capping compound. Unexpected results with	
work with very thick rings, Phase MII. In	Phase'IIV, a high-strength sulfur capping
compound was evaluated. Test results indicate	ate that lubricant on the cap of a compres-
sive test specimen has no effect on the com	pressive strength if there is only a slight
film of oil. Low-strength capping material	(<3000 psi) was suitable for capping only
low-strength concrete specimens. It was no	t possible to practically confine a weak
capping material sufficiently to produce a	state of high stress resistance in the
material and allow a high-strength concrete	to demonstrate its maximum strength. High-
strength gypsum and sulfur compounds (7500 capping test specimens in the range of 10,00	
caps are used, sulfur compounds with compre-	
be used for capping concrete cylinders the	
16,000 psi.	and a second of the second settle second
l ' '	
DD FORM 1473 REPLACES DO FORM 1472, 1 JAN 14, V	Unclassified
	Security Classification

Unclassified

Security Classification					LINK		LINK C	
MEN MONDS		HOLE	WT	MOLE WT		ROLE WT		
Concrete cylinders	į							
Concrete test specimens							l	
Capping				}				
				}	ĺ	}	}	
]			ł	
)	•)	
]			l	
							1	
	i							
				1			İ	
	:							
				1				
						!		
			l					
			l					
· ,	Ì		'					
ı						l		
					!			
					,			
	j							
	j							

Unclas	sified
Security	Classification

MISCELLANEOUS PAPER C-72-12

OF ENDS OF CONCRETE CYLINDERS FOR TESTING

Ь

K. L. Saucier

April 1972

Sponsored by Office, Chief of Engineers, U. S. Army

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

ARMY-MRC VICKEBURG, MISS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

THE CONTENTS OF THIS REPORT ARE NOT TO BE
USED FOR ADVERTISING, PUBLICATION, OR
PROMOTIONAL PURPOSES. CITATION OF TRADE
NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH
COMMERCIAL PRODUCTS.

Foreword

This investigation was conducted as ES Item 622.8, which forms a part of Civil Works Investigations Engineering Studies Item 622, and was authorized by first indersement from the Office, Chief of Engineers (OCE), dated 30 September 1960, to a letter from the U.S. Army Engineer Waterways Experiment Station (WES). dated 23 September 1960, subject: Project Plan for Improved Method of Preparation of Ends of Concrete Cylinder for Testing.

The work was conducted during the period October 1960 to June 1965 at the Concrete Division (CD) of the WES under the direction of Messrs. Thomas B. Kennedy, former Chief, CD, and Bryant Mather, Chief, CD, and under the direct supervision of Messrs. J. M. Polatty, Chief, Engineering Mechanics Branch, W. O. Tynes, Chief, Concrete and Rock Properties Section, and K. L. Saucier. Mr. Saucier prepared this report.

COL Alex G. Sutton, Jr., CE, COL John R. Oswalt, Jr., CE, COL Levi A. Brown, CE, and COL Ernest D. Peixotto, CE, were Directors of the WES during the conduct of this study and the preparation of this report.

Technical Directors were Messrs. J. B. Tiffany and F. R. Brown.

Contents

					Pag
Foreword			 	 	 . iii
Conversion Fact of Measuremen					. vi:
Summary			 	 	 . ix
Introduction .			 	 	 . 1
Phase I			 	 	 ۰ ,43
Phase II			 	 	 7
Phase III			 	 	 . 10
Phase IV			 	 	 . 14
Discussion and	Conclusi	lons .	 	 	 . 15
Tables 1-8					
Plates 1-5					

•

U. S. Customary to Metric (SI) Units of Measurement

U. S. customary units of measurement used in this report can be converted to metric units as follows:

Multiply	Ву	To Obtain
bags* per cubic yard	55.768	kilograms per cubic meter
Fahrenheit degrees	5/9	Celsius or Kelvin degrees**
inches	25.4	millimeters
pounds (force)	4.448222	newtons
pounds (mass)	0.4535924	kilograms
pounds (force) per square inch	0.00689476	megapascals

^{* 94-1}b bag.

^{**} To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: C = (5/9)(F - 32). To obtain Kelvin (K) readings, use: K = (5/9)(F - 32) + 273.15.

Summary

The purpose of this program was to investigate the effects of

(a) the strength and surface condition of the several materials commonly

used for capping concrete cylinders and (b) various degrees of restraint

of the capping material on the apparent strength of concretes of different

strength levels.

The program was divided into four phases. Phase I incorporated an experimental method of preparing specimens utilizing light steel rings to confine a gypsum plaster cap on the end of the specimen during testing. Variables included strength of concrete, use of rings, strength of capping material, and cleanliness of the cap surface. Phase II extended the investigation to very high-strength concrete and utilized medium-thick rings and a sulfur-silica capping compound. Unexpected results with the medium-thick rings dictated additional work with very thick rings, Phase III. In Phase IV, a high-strength sulfur capping compound was evaluated.

Test results indicate that lubricant on the cap of a compressive test specimen has no effect on the compressive strength if there is only a slight film of oil.

Low-strength capping material <3000 psi) was suitable for capping only low-strength concrete specimens. It was not possible to practically confine a weak capping material sufficiently to produce a state of high stress resistance in the material and allow a high-strength concrete to

demonstrate its maximum strength. High-strength gypsum and sulfur compounds (7500 psr) were found to be satisfactory for capping test specimens in the range of 10,000-psi compressive strength. If very thin caps are used, sulfur compounds with compressive strengths of 7000 psi or greater may be used for capping concrete cylinders the ultimate strength of which approaches 16,000 psi.

OF CONCRETE CYLINDERS FOR TESTING

<u>Introduction</u>

Background

- 1. The apparent strength of a concrete cylinder may be greatly influenced by the manner in which its ends are prepared before testing. There is no argument that the ends should be plane and normal to the axis of the cylinder. Planeness can be achieved for one end by casting against a machined base plate. The other end must be capped with a suitable material or ground smooth and plane. If the bottom is not cast against a machined base, both ends must be ground or capped. Capping is the commonly accepted method for preparing cylinders for testing; grinding is tedious and expensive. Ideally, the cap should be as strong as or stronger than the specimen and should have the same modulus of elasticity and Poisson's ratio. As a practical matter, the coefficient of friction between cap and machine platen should be large enough to prevent complete end restraint yet not allow total freedom that could result in radial movement (negative restraint) and possibly induced axial cleavage.
- 2. The increasing use of high-strength concrete for reinforced and prestressed elements makes it important to know accurately the strength of the concrete in the members as indicated by test cylinders. Present materials and methods of capping are deficient in a number of respects:

 (a) It is impossible to be certain that the elastic properties of the

cap match the concrete, (b) the effect of the strength of the cap on the indicated strength of high-strength concrete in unknown, and (c) the condition in the end due to lateral stress is unknown.

Purpose

3. The purpose of this program was to investigate the effects of:

(a) the strength and surface condition of the several materials commonly used for capping of concrete cylinders and (b) various degrees of restraint of the capping material on the apparent strength of concretes of different \ strength levels.

Scope

- 4. The program was divided into four phases. Phase I incorporated an experimental method of preparing specimens utilizing light steel rings (1/8-in.-thick*) to confine a gypsum plaster cap on the end of the specimen during testing. Variables included strength of concrete, use of rings, strength of capping material, and cleanliness of the cap surface.
- 5. Phase II extended the investigation to very high-strength concrete (9000 to 10,000 psi) and utilized medium-thick steel rings (1/4 in.) and a sulfur-silica capping compound. Unexpected results with the medium-thick rings dictated additional work with very thick (1-in.) rings, Phase III. Phase IV completed the picture using very thick rings with the sulfur compound.
- 6. Given below is a summary of the work (Roman numerals indicate phase numbers):

^{*} A table of factors for converting U. S. customary units of measurement to metric units is given on page vii.

Strength Level			Ring	gs	
of Concrete	Variable	None	Light	Medium	Heavy
1					
Low	Low-strength cap	I	I		
(2500 ps1)	High-strength cap	I	I		
-	Cleanliness of cap	I	I		
	1				
Medium	Low-strength cap	I	I		
(6500 psi)	High-strength cap	I	I		
	Cleanliness of cap	I	I	444.00	
,			, .		
High	Low-strength cap	IJI	III	III	III
(9500 psi)	High-strength cap	II, III	II, III	II, III	III
-	Sulfur-silica cap	II, IV	II	tī	IV
	Mortar cap	II, IV			

Phase I

Program

- 7. The experiment was set up on a statistical basis to utilize the minimum number of batches, rounds, and specimens. Medium- and low-strength concretes were used. Cylinders were made, capped, and tested using conventional materials and methods and were compared with cylinders from the same batches prepared by the experimental method.
- 8. The experimental method of preparing specimens consisted of using machined steel rings 1/2 in. high, 1/8 in. thick, 6-1/8 in. inside diameter (for 6-in.-diameter cylinder) to confine a gypsum plaster cap on the end of the specimen during testing. The steel ring was placed on a sheet of plate glass, then filled about one-half full of plaster mixed to proper consistency, after which the cylinder was placed upright in the ring, forcing the plaster up around the end of the cylinder. The ring remained in contact with the glass, and the excess plaster was removed

by wiping with the finger. The plaster was allowed to harden, and the specimen was tested with the ring inplace. A few preliminary tests to determine feasibility of the method indicated noticeable increase in strength of specimens thus tested. A high-strength gypsum plaster, designated plaster 1, and an ordinary plaster of paris gypsum plaster, designated plaster 2, usually of relatively low strength, were used for capping.

9. The effects of the lateral restraining rings, strength of capping material, and the presence of oil on caps were investigated using two strengths of concrete by making four batches of concrete, two of each strength, and three test cylinders per test condition per round as follows:

Low-Str	ength (4-b	g*/cu yd)	Mixture	Medium-St	rength (8-	bg/cu yd) Mixture
Rin	gs	No R	ings	Rin	gs	No Rings
		Plaster				Plaster Plaster
No. 1	No. 2	No. 1	No. 2	No. 1	No. 2	No. 1 No. 2
Dry 0il	Dry Oil	Dry 011	Dry Oil	Dry 011	Dry Oil	Dry Oil Dry Oil

^{* 94-1}b bag.

^{10.} The concrete was nonair-entrained and was made with type II cement and well-graded natural sand and well-graded, good-quality, 3/4-in. maximum size limestone. Slump was $2-1/2 \pm 1/2$ in. Cylinders were moist-cured for 28 days and tested at 28 days age. The results of physical and chemical tests of the cement are given in table 1, and the physical properties of the aggregates are given in table 2.

11. The type of break was observed, and in most cases an attempt was made to determine the angle of failure of both top and bottom sections of the cylinders by using a protractor to measure the angle between the plane of the cap and the sheared slope.

Results

- 12. The strengths of the high- and low-strength plasters, cast in 6- by 12-in. cylinders and tested at 4 hr age, were 5280 and 2025 psi, respectively. Initial tangent moduli of elasticity for the high- and low-strength plaster cylinders were 2.2×10^6 and 1.2×10^6 psi, respectively. Poisson's ratios from sonic measurements were 0.19 and 0.28, respectively.
- 13. The results of the capping tests are given in table 3, including descriptions of individual cylinder breaks, compressive strengths, standard deviations, and coefficients of variation. Tensile strain developed in the rings during test was monitored with electrical resistance strain gages affixed to the outer perimeter of the rings. Utilizing elastic theory, the strain was converted to stress. Table 4 gives the stress resulting in the rings when the specimens were tested.
- 14. The test results show no significant difference for the low-strength (2300- to 2900-psi) concrete whether the caps were made of high-or low-strength material, whether they were dry or oiled, or whether they were confined in rings or not. For the low-strength concrete, the average strength of all the high-strength-capped specimens was 2590 psi and that of the low-strength-capped specimens was 2550 psi. The low-strength

concrete cylinders tested with the caps dry had an average strength of 2580 psi; those tested with a thin film of oil on the caps averaged 2560 psi. The average strength of the low-strength concrete specimens with the caps unconfined was 2550 psi. When the caps were confined in the rings, the strength averaged 2590 psi.

15. Analysis of the data for the medium-strength concrete cylinders (approximately 6500 psi) also showed that the effect of oil on the caps did not have a significant effect on the strength (6640 versus 6690 psi). The effects of the cap strength and rings are given below (averaged from table 3):

	Streng		
	High- Strength	Low- Strength	
Condition	Cap	Cap	
With rings	7150	6660	93
No rings	6810	6020	88
Percent	95	90	

Obviously, the largest effect is realized by use of good capping material (88 percent effectiveness with low-scrength plaster). Use of rings slightly improved the performance (93 percent). However, the rings were twice as effective with the low-strength material for increasing indicated strength (90 versus 95 percent). Perhaps the most significant point is the combined effect of rings and high strength cap, an improvement of 16% (6020 psi versus 7150 psi).

16. The exterior, circumferential stresses developed in the rings, given in table 4, may be considered indicative only of how capping materials of different strengths may deform under load. For example, with mediumstrength concrete, deformation of the high-strength caps when the load

applied to the cylinder was 5000 psi resulted in 6000-psi tension in the steel ring, but the same load applied to the low-strength cap resulted in about 17,000-psi tension in the ring.

17. Measurement of the angle of break was difficult, and the angle of break was not measured for all tests; however, there appeared to be a slight tendency for the angle between the surface of the cap and the sheared surface of the remaining cone after test to be somewhat less for the low-strength (65-deg) than for the medium-strength (71-deg) concrete. There appeared to be a tendency for the angle to be flatter for the top half of the cylinders for both strength classes of concrete than for the bottom. The angle described by the low-strength concrete top sections was about 63 deg, and by the bottom sections 67 deg. The respective angles for the medium-strength concrete were about 69 and 73 deg. The stronger concrete (bottom halves of the cylinder and higher cement factor concrete) tended to fail at angles more nearly approaching the vertical. The presence of the rings seemed to have no effect on the angle of break.

Phase II

Program

18. The previous phase of this experiment indicated that when cylinders of low-strength concrete (near 2500 psi) were tested, the method of capping and the materials used for capping (within the scope of this experiment) made no significant difference in their apparent strength. When the strength of the concrete was near 7000 psi, the method of capping and the material used in the cap made an appreciable difference in indicated strength.

- 19. The purpose of Phase II was to determine if higher strength concrete (9,500-psi) than the 7000-psi concrete previously used will be benefited in apparent strength to a greater degree. The previous phase used two grades of gypsum plaster for capping, confined in light steel rings and free of rings. High stresses developed in rings surrounding plaster caps.

 Phase II utilized no rings and both light and medium steel rings with high-strength plaster and a sulfur-silica compound. Specimens were also cast against machined steel plates, plane within 0.001 in. across any diameter, and the top ends were capped with neat cement paste of type III cement formed against plate glass before the concrete set so that no caps were needed.
- 20. The concrete was nonair-entrained and was made with type III cement and well-graded natural sand and well-graded, good-quality 3/4-in. maximum size limestone coarse aggregate. Cement factor was 10 bg/cu yd. Slump was 2-1/2 + 1/2 in. Concrete was consolidated by internal vibration. All specimens were moist-cured for 60 days, air-dried for 28 days, capped on the 29th day, and tested on the 30th day after removal from moist curing. Four rounds (batches) were cast.

Results

21. The results are given in table 5, including the round (batch) average strengths, standard deviations, and test condition averages.

The data indicate that the concrete was only moderately uniform within batch. Variation between batches was not as consistent, generally ranging between 1500- and 2000-psi difference between rounds for each test condition.

- 22. A statistical analysis of the results was not made; a corsory examination reveals that no appreciable difference existed in the test condition averages—the maximum variation between round averages was only 400 psi irrespective of the capping material, whether sulfur or high-strength plaster, or the ring condition, either light, medium, or none. The test condition wherein cement caps were used resulted in a slightly lower average strength. This could possibly be the result of inexperience on the part of personnel applying the caps, since near cement caps are seldom utilized at this laboratory.
- 23. Again, strains were measured in the rings on one specimen from each round during test and converted to stresses as given in table 6. Expectedly, the stresses increased as the load and stress in the cylinder increased. Since there appears to be little if any difference in the stresses developed in the top or bottom rings, the two were averaged in the following tabulation taken from table 6:

Circumferential, Exterior Stresses in Rings, psi, at Machine Load, 10³ lb Type Capping 60 120 240 300 Ring Material 180 9,350 Light Plaster 1 2,600 4,500 6,950 12,850 Light 3,150 5,400 8,500 11,900 15,750 Sulfur Medium Plaster 1 3,200 4,700 6,350 8,250 10,350 6,300 8,150 10,500 Medium Sulfur 4,750 13,350

24. In order to better understand the mechanics of the stresses developed in the confined caps, the circumferential stress measurements, given above, were used to compute the radial stresses imposed on the rings

by the capping material. Based on elastic theory for rings or hollow cylinders*, the radial stresses can be shown to be 4.25 percent of the exterior circumferential stress for 1/8-in.-thick rings and 8.68 percent for 1/4-in. rings. Theoretically, the radial stresses in the larger rings should be approximately twice those in the smaller rings for any one material. The results of the calculations, given in plate 1, confirm this analysis. Also, the stresses impose to both the light and medium rings surrounding the sulfur-silica caps. a approximately one-third higher than the stresses in the plaster-capped specimens. This would indicate that the plaster caps were more rigid, a premise supported by the moduli of elasticity determinations--2.2 x 10⁶ psi for the plaster (para 12) and 1.5 x 10⁶ psi for the sulfur-silica caps (para 32).

Phase III

Program

25. Phase II unexpectedly indicated that there was virtually no difference in the apparent strengths of cylinders capped with two strong materials, whether confined in medium or light rings, or whether unconfined. The purpose of Phase III was to determine if extra heavy rings would confine the capping material sufficiently to result in a higher apparent strength. Six rounds (batches) were cast utilizing the 10,000-psi mixture developed in Phase II. Three cylinders each were capped with low- and high-strength plasters. Tests were conducted at 90 days age after 60 days moist-curing and 30 days air-drying.

^{*} Seely, F.B., and Smith, J.O., "Thick-Walled Cylinders," Advanced Mechanics of Materials, 2d ed., Wiley, New York, 1967, pp 295-304.

Results

- 26. The results are given in table 7. Obviously, the low-strength compound results in lower indicated strengths when compared to the higher strength capping material, irrespective of the ring condition. The difference (approximately 2300 psi) is very significant when no rings are used, less significant (approximately 1300 psi) with light rings, and evident (approximately 1000 psi) even with the medium and heavy rings. Significantly, also, the standard deviations are consistently larger with the lower strength compound, indicating a greater degree of variability in the results when this material is used. However, even with the 1-in.-thick rings, the restraint is not complete; some plastic flow or failure evidently affects the strength results. Therefore, it follows that there should be no substitute for a high-strength, high-modulus capping compound for high-strength concrete.
- 27. During this phase of the investigation, the effect of the various end conditions upon the strain gradient was questioned. Consequently, two diametrically opposed strain gages were placed on test specimens at three locations: approximately 1 in. each from the bottom and top and at the midheight of the test specimens. Specimens from batch 5 (high-strength plaster) and batch 6 (low-strength plaster) were gaged: one from each batch with light rings, one with heavy rings, and one without rings. The stress-strain curves are given in plates 2 and 3. The results indicate that relatively equal strains existed up to failure in the specimens capped with the high-strength compound both with and

without rings and in the specimens capped with the low-strength compound with rings. However, a very peculiar strain picture developed in the specimen capped with the low-strength material without rings (plate 3a). Excessive and erratic strains were recorded in the gages near the top and bottom of the test specimen. This very possibly is a result of premature yielding or localized failure of the cap.

- 28. Strain gages were affixed to the rings of one specimen each with light, medium, and heavy rings for both the high- and low-strength plasters. The results of the tests (plate 4) are from batch 4 (specimens 2, 3, and 4) for the low-strength compound and from batch 1 (specimens 1, 2, and 6) for the high-strength compound. An approximate linear relation-ship exists between the applied machine load and the ring stresses for all conditions. Erratic behavior occurred in two of the specimens capped with the low-strength compound, specimens 4-3 and 4-4. However, the curves from specimen 4-4 indicate that the rings on any one specimen act somewhat in conjunction with each other, i.e., if one ring is strained excessively, the strain in the other end is reduced a comparable amount. Since the caps of the test specimens are not connected physically in any way, some facet of the loading, possibly an eccentricity or misalignment, is assumed to cause such an interaction.
- 29. If, during loading, the capping material acted as a completely plastic or fluid substance, it can be shown that the radial stresses should be in the ratio of 1.00, 2.04, and 9.15 for the 1/8-, 1/4-, and 1-in.-thick rings, respectively*, for any one material at a given

^{*} Ibid, Seely and Smith.

circumferential stress. However, the circumferential stresses were allowed to increase with load up to failure. Therefore, the light and medium rings strained more, allowing the cap to yield and build up less radial stress than the heavy rings. Given below are the approximate radial stresses at 10,000-psi cylinder stress imposed on the six cylinders gaged (from plate 4c):

Radial	Stresses at 10,000-psi	Cylinder Stress
Ring Type	Low-Strength Cap	High-Strength Cap
Light	1100	50 0
Medium	1300	700
Heavy	2000	1900

The greater rigidity of the high-strength caps apparently prevented buildup of radial stresses in the light and medium rings comparable to those obtained with the low-strength material. However, with the heavy rings, radial stresses are approximately equal, as are circumferential stresses (plates 4a and 4b). This would indicate that the heavy rings confined the low-strength caps as effectively as the high-strength caps. The ultimate strength results, given in table 7, indicate no difference in strength obtained through use of different size rings for either material. Lower strength (8660 psi) was obtained with the weaker material (plaster 2) when rings were not used. Indications are, therefore, that even slight confinement (light rings) will increase effectiveness of a weak capping material by increasing cap strength and/or preventing radial movement (negative restraint). Unfortunately, strength comparison between the two materials for respective ring types is not possible due to the batch

variations. However, the standard deviations are generally larger for the specimens capped with the weaker material. This should reinforce the argument for use of a high-quality capping material at all times.

Phase IV

Program

30. Phase IV was conducted to complete the information for the study; i.e., test specimens (a) capped with sulfur-silica compound in heavy rings and (b) capped with a mortar paste of stiff consistency made from the same materials used in the concrete. Utilizing the nominal 10,000-psi mixture previously used, three rounds (batches) were mixed, and three cylinders were cast and tested for compressive strength at 90 days age for each round. Strain measurements were not made on the ring capped cylinder; however, five 2-in. cubes of the sulfur-silica capping compound were cast, instrumented with electrical resistance strain gages, and tested at 1 day age.

Results

31. The results given in table 8 represent individual breaks. Since between-round differences were not significant, the standard deviations and coefficients of variation were computed for each test condition utilizing data from all rounds. Obviously, the variation was very slight for all test conditions. Also, there is no significant difference between the three methods of capping used in this phase. The use of heavy rings or a matching mortar cap did not increase the indicated strength. Unpublished work at this laboratory on test specimens which were cast from

a comparable 10-bg/cu-yd mixture and which had the ends ground prior to testing also yielded strengths in the range of 9000 to 11,000 psi. One might therefore postulate that the maximum strength of the concrete for the conventional compressive test as conducted herein had been attained. Other methods which tend to neutralize the effects of end restraint or produce a uniform stress condition throughout might yield higher indicated strengths, but such methods were not within the scope of this study.

32. Six 2-in. cubes of the sulfur compound were cast and tested for compressive strength at 1 day age. Average compressive strength was approximately 7000 psi. Electrical resistance strain gages affixed to the cubes yielded stress-strain curves not unlike a conventional concrete curve, i.e., linear to approximately one-half the ultimate strength, then becoming curvilinear to failure. Initial tangent modulus was approximately 1.5×10^6 psi. Ultimate strain was approximately 1.5×10^6 psi. Ultimate strain was approximately 1.5×10^6 psi. Ultimate strain was approximately 1.5×10^6 psi.

Discussion and Conclusions

Discussion

- 33. With respect to the stated objectives of this program, the study may be described as having been successfully completed. However, as with many research efforts, questions were raised which could not be answered from the results obtained or pursued further with the funds available.
- 34. The long accepted practice requiring caps for compressive test specimens to be free from grease and oil appears to be unjustified—at least to the extent that a light coat of lubricant has little or no perceptible effect on the failure stress of concrete up to 7000—psi

compressive strength. Apparently, the light coat of lubricant either did not reduce the end restraint sufficiently to produce a significant degree of freedom on the ends or the caps nullified whatever effect a slight lubricant may have coindicated strength.

35. Understandably, the quality of capping material made no detectable difference as long as the concrete was of rather low strength (<3000 psi). Although the weak gypsum plaster had a compressive strength of only 2000 psi when tested in a 6- by 12-in. cylinder, the concrete strengths obtained were equal to those obtained with the higher strength material. When a good-quality concrete (7000 psi) was used, a weak capping compound gave strengths only 88 percent of those obtained with a good-quality capping material; with high-strength concrete (10,000 psi), the figure was only 81%. This should be sufficient evidence to signal the need for high-strength capping material on all except very low-strength concrete test specimens.

36. The 5000-psi capping material (6- by 12-in. cylinder) was used successfully with the excellent-quality concrete (10 bg/cu/yd) to obtain strengths equal to those obtained on specimens capped with high-strength mortar (approximately 10,000 psi). The explanation may lie in the extremely thin section used in the capping procedure. Additional proof of the increased strength of capping materials when used in thin applications may be seen in plate 5.* The curve shown therein for plaster of paris indicates a basic strength for a conventional test specimen (h = 2d) of 2000 psi, which was equivalent to the weak gypsum plaster used in this

^{*} Joint Technical Information Letter, National Sand and Gravel Association No. 227, and National Ready-Mix Concrete Association No. 216, 27 November 1964.

study. The strength of a 1/8-in.-thick section of this same material was approximately 6000 psi, equivalent to the good-quality concrete testel in Phase I. The high-strength gypsum plaster utilized herein, roughly equivalent in a standard test specimen to the 3-day neat cement shown in plate 5, could therefore be expected to possess strength in excess of 10,000 psi in a 3/8-in. thickness. All of the caps fabricated in this investigation were less than 3/8 in. thick. Moreover, the sulfur compound utilized herein had a strength approximating the 325 F sulfur compound curve shown in plate 5. In very thin sections, this material could apparently be expected to possess strength in excess of 16,000 psi and should be satisfactory for capping of concrete test specimens approaching this strength.

37. For 7000-psi concrete the use of rings to confine the caps was logically more effective with lower strength capping compound--strengths of standard unconfined specimens averaged only 90 percent of those with light vings (Phase I). For the high-strength gypsum plaster, the ratio was 95 percent. For 10,000-psi concrete, however, results with the high-strength gypsum showed no effects of utilization of either light or medium rings. This was substantiated by the work in Phase III where confinement in very heavy rings had no effect on the test specimens utilizing high-strength gypsum and in Phase IV where a different (sulfur) compound is used. Phase III also indicated that rings of all three sizes improved low-strength caps equally when used on high-strength concrete. Apparently, confinement of the capping material is effective only if the material attempts to flow a

substantial amount as with the low-strength material. Since concrete strengths obtained with unconfined high-strength caps were equal to those with very heavy, rigid rings, a state of plastic flow had apparently not been attained at 10,000 psi in the capping material.

38. Stresses and strains in the rings were inversely proportional to the size ring and the elastic modulus of the capping material. Stresses approaching the yield limit were obtained in the light rings with the weak material. However, even very thin rings appear to strengthen weak capping material to a significant degree. When very heavy rings were used, ultimate ring stresses and concrete strengths were approximately equal for either grade capping material (Plate 4, Table 7). Therefore, confinement was apparently effective, but large internal (radial) stresses developed in the caps which could be of significance in very high-strength tests.

Conclusions

- 39. Based on the results of this investigation, the following conclusions appear justified:
- <u>a.</u> Lubricant on the cap of a compressive test specimen has no effect on the compressive strength if the thickness is very slight as would result from wiping with a greasy cloth.
- b. Low-strength capping material (<3000 psi) should be used only for capping low-strength concrete specimens and then only if high-strength material is not available. It is not practical to confine a weak capping material sufficiently to produce a state of high stress resistance in the material and allow high-strength concrete cylinders to attain maximum strength.

- e. High-strength gypsum and sulfur compounds (7500 psi) are satisfactory for capping test specimens by conventional means in the range to 10,000-psi compressive strength. If very thin caps are used, sulfur compounds with compressive strengths of 7000 psi or greater may be used for capping concrete cylinders the ultimate strength of which approaches 16,000 psi.
- d. Very high circumferential stresses are likely to develop in light rings placed around the ends of test specimens to confine the caps. The magnitude of stresses developed is inversely proportional to the size of the rings and quality of the capping material.
- e. Relatively large internal (radial) stresses were developed in the specimen caps surrounded with heavy rings. Confinement with the heavy rings, although not complete, was approximately equal for weak and strong capping materials.
- f. Confinement in rings does not improve the performance of high-strength caps on high-strength concrete, but may enhance cap performance under other conditions, i.e. weak capping material on high-strength concrete, although not necessarily to a degree adequate to mobilize the full strength of the specimen.

TABLE 1

Results of Physical and Chemical Tests of RC-474 Type II Portland Cement

Results of Physical Tests		Results of Chemical Tests,	85 86
Specific gravity	3.15	Si0 ₂	22.15
Fineness, air permeability, ${ m cm}^2/{ m g}$	3450	A1203	4.20
Normal consistency, water requirement, %	27.2	Fe203	3.31
Time of setting, Gillmore test:		CaO	62.96
 Initial, hr:min Final, hr:min	4:00 6:00	Мg0	3.06
Mortar expansion, autoclave test, %	20.0	so_3	2.00
	7.7	Loss on ignition	1.15
Compressive et and the contract of the contrac	•	Insoluble residue	0.36
Originality of original por	C C	Na ₂ O	0.20
Jays 7 days 28 Acres	3770	K20	0.39
בס תמאים	0776	Total alkalf as Na20	94.0
		င်း	64
		C3sh	٧

TABLE 2

Physical Properties and Gradings of Aggregates

Tests	Limestone No. 4 to 3/4 in. VICKS-3 G-1(23)	Natural Fine CRD S-4(15)
Physical	Properties	
Bulk specific gravity, saturated surface dry	2.69	2.61
Absorption, %	0.9	0.7
Soft particles, %	0	
Mortar-making properties, * %		
Strength at 3 days Strength at 7 days		
Flat and elongated particles, %	7.8	gad ==+
Abrasion loss (Los Angeles), %	24.2	

Gradings

		Cumulative Percent Passing Standard Sieve			
		Limestone	Natural		
		No. 4 to $3/4$ in.	Fine		
Sieve S	<u>Size</u>	VICKS-3 G-1(23)	CRD S~4(15)		
3/4 1	in.	100			
1/2 f	in.	84			
3/8 i	.n.	58			
No. 4	,	4	99		
No. 8	3		87		
No. 1	.6		72		
No. 3	30		57		
No. 5	50		25		
No. 1	.00		4		

^{*} CRD-C 116, Handbook for Concrete and Cement, Aug 1949 (with quarterly supplements), U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

TABLE 3

Resuits of Phase I Tests

	2.61	1.82	2.25	4.12	4.78	
G, pst	22	92	53	110	132	
28-day Compressive Strength, psi	2800 2950 2860 2870	2800 2700 2760 2750	2640 2660 2550 2620	2730 2540 2730 2670	2860 2830 2590 2760	
Angle of Break, deg Op Bottom	63 64 68 65	62 63 63	8 1 1 8	1111	70 68 71 70	
Anglareak Top Round 1	55 56 57 56	55 63 57 58	E 33	63 57 58 59	66 64 71 67	
	Cone Incl fned Cone	Inclined Inclined Cone	Inclined Inclined Vertical	Vertical Vertical Vertical	Cone Cone Cone	(Panel to to)
Type Break Top Bottom Low-Strength Mixture,	Cone Cone	Con e Inclined Cone	Cone Inclined Cone	Cone Cone Cone	Cone Cone Cone	•
End Condition	Dry	Oiled	Dry	Oiled	Dry	
Type Ring	None	None	None	None	Light	
Type	Plaster l	Plaster 1	Plaster 2	Plaster 2	Plaster l	
Cylinder	1154 1155 1156 Ave	1157 1158 1159 Ave	1160 1161 1162 Avg	1163 1164 1165 Avg	1166 1167 1168 Avg)

22

(Continued)

TABLE 3 (CONTINUED)

	, V	0.92	6.89	1.13	1.95	6.57	5.42
	o, psi	56	188	31	94	157	130
28-day	Strength, psi	2860 2810 2820 2830	2860 2500 2830 2730	2730 2770 2710 2740	2410 2350 2320 2360	2510 2440 2210 2390	2320 2330 2550 2400
Angle of	op Bottom	70 67 68 68	75 77 65	73 69 75 72	70 67 68	149 149 199	63 67 65 65
Ang	Top	61 63 63	70 65 65 67	66 67 70 68 8	63 70 66	67 67 69 68	71 65 65 67
Type Sreak	Bottom	Cone Cone Cone	Cone Cone Cone	Cone Cone Cone	Cone Cone Cone	Inclined Inclined Inclined	Cone Cone
	Top	Cone Cone Cone	Cone Cone Cone	Cone Cone Cone Cone Cone Cone	Cone Cone Inclined	Inclined Inclined Cone	Cone Cone
r E	Condition	Oiled	Dry	Offed	Dry	Oiled	Dry
Į.	Ring	Light	Light	Light	None	None	None
9	Cap	Plaster 1	Plaster 2	Plaster 2	Plaster 1	Plaster 1	Plaster 2
	Cylinder	1169 1170 1171 Avg	1172 1173 1174 Avg	11.75 11.76 11.77 Avg	1440 1441 1442 Avg	1443 1444 1445 A vg	1446 1447 1448 Avg

(Continued)

TABLE 3 (CONTINUED)

δ. γ	7.28	5.08	3.14	8.46	3.99	2.61
o, psi	171	125	72	204	6	166
28-day Compressive Strength, ps.	2550 2240 2270 2350	2340 2450 2591 2450	2330 2010 2340 2340	. 2260 2640 2320 2410	2370 2530 2550 2480	6510 6180 6380 6360
ireak, deg	67 69 68	68 63 64	63 65 63	66 61 68 65	66 46 63	1121
BEAT.	65 63 65 64	60 63 64 62	56 50 57 58	65 60 70 65	57 56 56 5 6	Round 68 67 70 68
reak Bottom	Inclined Inclined Cone	Cone Cone Cone	00 00 00 00 00 00 00 00 00 00 00 00 00	Zone Cone Cone	Cone Cone Cone	vertical Vertical Cone
Type ceak Top Bot	Inclined Cone Inclin i	Cons Cose Cose	one one	Cone Core	Cone Cone Cone	Medium-Streigth Mixture, Cone Vertical Cone Vertical Core Cone
J.d Cc.v.ition	∂ ile d	Dry	Oiled		Oiled	Dry
Type Ring	None	Light	ម្ចាស់ 🗜	L-ght	Ligh:	ione
Type Cap	Plaster 2	Plaster 1	Plaster l	Plaster 2	Plaster 2	P'aster 1
Cylinder	1449 1450 1451 Avg	1452 1453 1454 Avg	1455 1456 1457 Avg	1458 1459 1460 Avg	1461 1462 1463 Avg	1416 1417 1418 Avg

(Continued)

TABLE 3 (CONTINUED)

Control of the second section of the second
	, V	0.41	4.03	0.28	2.27	94.4	3.92
	σ, pst	26	22	16	155	295	251
28-day	Strength, psi	6290 6340 6330 6320	5500 5690 5250 5480	5820 5820 5790 5800	6990 6680 6820 6830	6270 6790 6770 6610	6560 6550 6120 6410
Angle of Bresk des	Bottom	1111	1111	1111	1111	1111	1111
Ang	Top	70 68 72 70	70 69 67 69	69 69 72 70	1111	1111	1111
40 41	Bottom	Vertical Vertical	Vertical Vertical Inclined	Vertical Vertical Vertical	Vertical Cone Vertical	Vertical Vertical Cone	Cone Cone Vertical
Tone Breek	Top	Cone Cone Cone	Cone Cone Cone	Cone Cone Cone	Cone Vertical Cone	Cone Vertical Cone	Cone Cone Cone
r E	Condition	Oiled	Dry	Ofled	Dry	0 1 1ed	Dry
graph of	Ring	None	None	None	Light	Light	Light
Tone	Cap	Plaster 1	Plaster 2	Plaster 2	Plaster 1	Plaster 1	Plaster 2
	Cylinder	1419 1420 2421 A°8	1422 1422 1424 AVE	1425 1426 1427 Avg	1428 1429 1430 Avg	1431 1432 1433 Avg	1434 1435 1436 Avg

TABLE 3 (CONTINUED)

₽6 •	5.57	8.76	1.80	3.46	3,68	2.10
o, pst	347	200	132	221	236	163
28-day Compressive Strength, psi	6270 6550 5960 6230	7460 7070 7190 7240	7460 7290 7200 7320	6620 6360 6180 6390	6600 6500 6150 6420	7650 7690 7950 7760
Angle of reak, deg P Bottom	1111	2 67 72 66 68	76 70 73	75 72 68 72	88 8	6666
Angle Break, Top Bc	1111	Round 70 45 66 60	2222	78 72 78 76	80 75 71 76	72 68 64 68
Type Break	Cone Inclined Cone	Medium-Strength Mixture, Round Cone Cone 70 Inclined Cone 45 Cone 65	Vertical Cone Cone	Inclined Inclined Inclined	Cone Cone Vertical	Cone Inclined Inclined
Type	Cone Cone	Cone Cone Cone Cone	Cone Inclined Inclined	Inclined Cone Cone	Cone Cone Inclined	Cone Cone Cone
End Condition	Ofled	Dry	Oiled	Dry	Oiled	Dry
Type Ring	Light	None	None	None	None	Light
Type Cap	Plaster 2	Plaster]	Plaster 1	Plaster 2	Plaster 2	Plaster 1
Cyl inder	1437 1438 1439 Avg	1464 1465 1465 Avg	7) 1467 1469 1469 Avg	1470 1471 1472 Avg	1473 1474 1475 Avg	1476 1477 1478 Avg

(Continued)

TABLE 3 (CONTINUED)

	۲, ۶		2.36				1.78				2.00			
	C, par		175				125				140			
28-day	Compressive Strength, psi		7210	0567	7450	7400	6920	6950	7180	7020	0669	0989	7140	7000
le of	Break, deg Top Bottom		†	Ç	2	73	78	76	73	76	74	73	17	73
Ang	Top	1	93	₹	63	65	2	76	73	73	2	73	9	68
	Type Break Top Bottom		Cone	Inclined	Inclined		Cone	Incl ined	Cone	-	Cone	Inclined	Cone	
	- 1	i	Cone	Cone	Incl ined		Inclined	Cone	Cone		Cone	Inclined	Cone	
	End Condition		Oiled				Dry	•			0iled			
	Type Ring	,	Light				Light)			Light)		
	Type Cap		Plaster 1				Plaster 2				Plaster 2			
	Cvlinder		1479	1480	1481	Avg	1482	1483	1484	Avg	1485	1486	1487	Avg

Dry end condition = cleaned with acetone; oiled end condition = thin coat of oil applied to cap. Type of break: Cone = conical; inclined = inclined splitting; vertical = vertical splitting. Angle of break measured as: NOTES:

(Continued)

TABLE 3 (CONCLUDED)

Variable Rings Capping Material Dry or Oiled Batch	Low-Strength Concrete Significance No No No No Yes*	Medium-Strength Concrete Varia Yes* 3-4 Yes* 2-4 No 1-2 Yes* 2-4	Variables 3-4 2-4 1-2 2-3	Low-Strength Concrete Interaction No Yes** No No	Medium-Strength Concrete No
			1-3 2-34 1-2-4 1-2-3 1-2-3	o o o o o o o	K NO OO OO NO

99 percent level. 95 percent level.

TABLE 4

Exterior, Circumferential Stress in Rings' Confining Caps During Phase I Compression Testing

n osi	2,120		3,240	4,200	05/30	9,150	4,240		6,480	17,640	16,260
Stress in Cylinder, psi	700 1,420	d 2	1,770	0,0,0	79467	3,600	2,840	nd 2	3,660		
Cy	700	e, Roun	009	650	1380	1800	1400	re, Rou	1680	6570	5730
End	Condition	Low-Strength Mixture, Round 2	Dry	Oiled	Dry	Oiled		ength Mixtu	Dry	Dry	Oiled
Type	СВР	Low-Stree	Plaster 1	Plaster 1	Plaster 2	Plaster 2		Medium-Strength Mixture, Round 2	Flaster 1	Plaster 2	Plaster 2
	Cylinder		1454	1457	1460	1463			1478	1484	1487
ı Ssi	2,550		4,315	3,675	10,575	9,245	5,100		5,280	16,950	20,220
Stress in Cvlinder, psi	850 1,700 2,550	1	1,800	2,050	3,635	3,485	3,400	ind 1	3,030	13,020	11,820
ς . (γ)	850	Round	675	675	1350	1235	1700	Mixture, Round 1	1170	2730	2520
1	Condition	th Mixture	Dry	Oiled	Dry	0iled			Dry	Drv	011ed
Type	í	Lcw-Strength Mixture, Round 1	Plaster 1	Plaster 1	Plaster 2	Plaster 2		Medium-Strength	Plaster 1	Plaster 2	Plaster 2
	Cylinder	-	1168	1171	1174	1177			1430	1435	1439

TABLE 5
Results of Phace II Tests

None Type III Cement	Type Ring	Capping Material	Average Compressive Strength 4 Rounds, psi	Standard Deviation psi	Test Condition Average Strength, psi
None Plaster 1 11,160 370 11,520 None Sulfur 11,420 320 11,250 None Sulfur 11,420 320 11,250 10,240 1030 11,610 680 11,730 990 Light Plaster 1 10,590 350 11,480 10,920 700 12,110 310 12,320* 160* Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,480 Medium Sulfur 10,000 450 11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260	None	Type III Cement	11,260	920	10,600
None Plaster 1 11,160 370 11,520 None Sulfur 11,420 320 11,250 None Sulfur 11,420 320 11,250 10,240 1030 11,610 680 11,730 990 Light Plaster 1 10,590 350 11,480 10,920 700 12,110 310 12,320* 160* Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,430 Medium Sulfur 10,000 450 11,400 Medium Sulfur 10,000 450 11,400 Medium Sulfur 10,000 450 11,400		-96			·
None Plaster 1 11,160 370 11,520 10,790 480 11,970 850 12,160 550 None Sulfur 11,420 320 11,250 10,240 1030 11,610 680 11,730 990 Light Plaster 1 10,590 350 11,480 10,920 700 12,110 310 12,320* 160* Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,480 Medium Sulfur 10,080 230 11,480 Medium Sulfur 10,000 450 11,400 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260				, 690	•
None Sulfur 11,420 320, 11,250 None Sulfur 11,420 320, 11,250 10,240 1030 11,610 680 11,730 990 Light Plaster 1 10,590 350 11,480 10,920 700 12,110 310 12,320* 160* Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,480 Medium Sulfur 10,000 450 11,30 12,580 260		,		700	
None Sulfur 11,420 320, 11,250 None Sulfur 11,420 320, 11,250 10,240 1030 11,610 680 11,730 990 Light Plaster 1 10,590 350 11,480 10,920 700 12,110 310 12,320* 160* Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,480 Medium Sulfur 10,000 450 11,30 12,580 260	None	Plaster 1	11,160	370	11,520
None Sulfur 11,970 850 12,160 550 None Sulfur 11,420 320 11,250 10,240 1030 11,610 680 11,730 990 Light Plaster 1 10,590 350 11,480 10,920 700 12,110 310 12,320* 160* Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,480 Medium Sulfur 10,000 250 11,000 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260				480	•
None Sulfur 11,420 320, 11,250 10,240 1030 11,610 680 11,730 990 Light Plaster 1 10,590 350 11,480 10,920 700 12,110 310 12,320* 160* Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,480 11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 11,400 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260				850	
10,240				5,50	
10,240		<u> </u>	!		·
Light Plaster 1 10,590 350 11,480 10,920 700 12,110 310 12,320* 160* Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,480 11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260	None	Sul fur		320 ,	11,250
Light Plaster 1 10,590 350 11,480 10,920 700 12,110 310 12,320* 160* Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,430 11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260			10,240	1030	
Light Plaster 1 10,590 350 11,480 10,920 700 12,110 310 12,320* 160* Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,480 11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260	1		11,610		
10,920	Ì	•	11,730	990	
Light Sulfur 11,220 240 11,670 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,430 11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 1130 12,580 260	Light	Plaster 1			11,480
Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,480 11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 11,000 11,080 1130 12,580 260				700	
Light Sulfur 11,220 240 11,670 10,750 450 11,900 690 12,820* 100* Medium Plaster 1 10,680 230 11,430 11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260					
10,750		•	12,320*	160*	
Medium Plaster 1 10,680 230 11,480 11,340 970 12,310 250 11,600 576 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260	Light	Sulfur	11,220	240	11,670
Medium Plaster 1 10,680 230 11,480 11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260				450	
Medium Plaster 1 10,680 230 11,480 11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260				6 9 0	
11,340 970 12,310 250 11,600 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260			12,820*	100 *	
12,310 250 11,600 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260	Mediam	Plaster l	10,680	23 0	11,430
11,600 570 Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260		į	11,340	97 0	
Medium Sulfur 10,000 450 11,400 11,080 1130 12,580 260		•	12,310	250	
11,080 1130 12,580 260			11,600	570	
11,080 1130 12,580 260	Medium	Sulfur	10,000	450	11.400
12,580 260		2 =			•
				530	

^{*} Average of two breaks only; all other values are averages of three cylinder breaks.

TABLE 6

Exterior, Circumferential
Stresses in Rings' Confining Caps During Phase II Compression Testing

Type	Capping								\			
Ring	Material	Batch				Str	Stress in	in Cylinder, psi	, psi			
			.4	2140	া	4280	54	24:30	7	8570	10,	10,710
						Stress i	in Rings,	, thousands of	1 Jo spu	psi		
	•		Top	Bottom	Top	Bottom	Top	Bottom	Top	Bottom	Top	Bottom
Light	Plaster 1	, 1	3.0	2.4	4.4	4.2	8.9	6.5	9.8	9.9	;	ì
,		2	3.0	2.7	5.3	8.4	7.4	6.5	10.4	8.5	14.0	13.1
		ന	9.1	3.0	3.9	8.7	6.2	6.5	9.1	8.6	12.5	11.6
		7	1.8	3.3	4.2	8.4	6.5	7.4	4.6	11.3	1	12.8
		Avg	2.4	2.8	4.4	4.6	2.9	6.7	₹. 6	9.3	13.2	12.5
								ļ				
Light	Sulfur	prod	3,3	3.3	5.6	5.3	φ, ψ,	7.4	11.0	10.4	14.2	13.1
		. 7	2.4	5.0	5.3	7.1	6.5	9.5	15.1	12.8	23.8	16.9
		ო	2.4	.3	4.8	5.0	7.0	8.9	10.0	9.2	14.1	11.6
		7	0.3	5.0	2.7	7.7	12.3	10.4	;	14.6	1	14.8
		Avg	2.1	4.2	4.6	6.2	Σ. 5.	8.5	12.0 -	11.8	17.4	14.1
Medium	Plaster 1	ŀщ	2.1	2.1	3.9	3.3	6.5	5.0	8.0	8.9	8.6	5.5
		2	3.4	3.3	5.2	4.5	6.7	5.9	₩ .8	7.7	10.5	8.0
		ന	4.2	4.2	6.2	5.3	8.2	7.1	10.1	-8.6	12.2	10.4
		4	2.1	3.9	3.7	5,3	5.3	6 <u>.</u> 8	7.7	8.6	10.0	11.0
1		AVE	3.0	3.4		4.6	6.5	6.2	8.6	7.9	10.6	10.1
Medium	Sul fur	pol	4.2		6.8	7.1	9.5	8.9	13.7	10.7	17.8	;
		2	3.9	5.3	5.3	6.8	7.7	8.6	10.5	11.0	34.8	14.2
		က	3,3	6.2	5.2	6.8	7.1	8.9	9.8	10.1	12.8	11.9
		7	7.3	1.8	8.0	3.6	9.5	5,3	10.5	7.7	12.2	10.7
		AVE	4.7	8.4	6.5	6.1	4.8	7.9	T	6°6	14.4	12.3
												,

TABLE 7

Results of Phase III Tests

Type Ring	Capping Material	Round (Batch)	Average Compressive Strength, psi	Standard Deviation, psi	Test Condition Average Strength, psi
None	Plaster l	1 3 5	9,430 11,520 11,950	170 250 180	10,970
Light	Plaster l	1 3 5	9,620 11,620 11,690	240 360 270	10,980
Medium	Plaster 1	1 3 5	10,220 11,830 11,520	110 250 80	11,190
Heavy	Plaster l	1 3 5	10,210 10,990 11,420	10 180 120	10,870
None	Plaster 2	2 4 6	7,590 8,800 9,580	530 640 850	8,660
Light	Plaster 2	2 4 6	8,390 9,820 1J,960	670 72 0 620	9,720
Medium	Plaster 2	2 4 6	9,280 10,240 10,460	510 210 210	9,990
Heavy	Plaster 2	2 4 6	9,260 10,240 9,960	230 460 360	9,820

NOTE: Each value given is an average of three cylinder breaks.

TABLE 8

Results of Phase IV Tests

Type Ring	Capping Material	Round (Batch)	Average Compressive Strength, psi	Standard Deviation, psi	Coefficient of Variation,	Test Condition Average Strength, psi
None	Sulfur	1 1 2 2 2 2 3 3 3	10,120 11,040 10,730 9,330 10,010 10,200 10,280 10,080 9,930	480	4.7	10,190
Неачу	Sulfur	1 1 2 2 2 2 3 3 3	9,140 10,590 10,340 10,620 10,680 9,690 10,380 10,400 10,840	540	5.2	10,300
None	Mort a r	1 1 2 2 2 2 3 3 3	10,550 10,840 10,800 10,210 10,080 10,050 10,010 10,760 10,880	380	3.6	10,460

NOTE: Each value given is an average of three cylinder breaks.

RADIAL STRESS NORMAL TO INSIDE SURFACE OF RING (PSI), AT MACHINE LOAD (10³ LB)

31

WES FORM NO. JULY 1968 PLATE 2c

1779

WES FORM NO. 1779

PLATE 3b

WES FORM NO. JULY 1968

WES FORM NO. 1779
JULY 1968
PLATE 4a

WES FORM NO. JULY 1938 PLATE 4c

PLATE 5. COMPRESSIVE STRENGTH OF CAPPING MATERIALS