OBLON, SPIVAK, ET AL DOCKET #: 209045US2 INV: Naomi SUGIMOTO, et al. SHEET 1 OF 16

A-01028 FIGS. 1-17

FIG. 1

FIG. 3

OBLON, SPIVAK, ET AL DOCKET #: 209045US2 INV: Naomi SUGIMOTO, et al. SHEET <u>5</u> OF <u>16</u>

FIG. 7A

FIG. 7B

FIG.9

FIG. 10

OBLON, SPIVAK, ET AL DOCKET #: 209045US2 INV: Naomi SUGIMOTO, et al. SHEET 11 OF 16

romer menagor FIG. 11

Mis	,	6	6		1			,		
No.	~	7.	33	4	ۍ ک	9	2	∞	თ 	10
COPIER	MONOC	MONOCHRONATIC	'c OPIER	ER.		COLOR	PR COPIER	界		
SLEEVE VELOCITY	2	2.5	2	2.5	·			1.3		
DRUM DIAMETER (mm)	3	30	9	09	,			06		
SLEEVE DIAMETER ("mm)	·	16	20	0	·			30		
DEVELOPHENT GAP (mm)		0.	ਚ			0	0.4		0	0.35
NIP (mm)	1	1.5	ヤ	3	1	7	ħ	7	1.5	1.5
DISTANCE AT NIP BOUNDARY (mm)	0.79	0.45	0.67	0.47	0.95	0.95	0.58	0.58	0.42	0.42
BOUNDARY DISTANCE/ NIP DISTANCE	1.67	1.17	2.38	1.45	1.97	1.97	1, 13	1.13	1.2	1.2
8145	DC		-600V O	ONLY	% 1	× 2	% 1	× 2	*	× 5×
OHISSION RANK	2.5	4.5	2.5	4.5	ဗ	3	4.5	4.5	4.5	4.5
GRANUGARITY RANK	2	2.	2	2	3	2	4.5	2	4.5	2

* 1 DC+AC, F5KH, DUTY 25%, OFFSET VOLTME-100T, PEAK VOLTME 800V

FIG. 12

	
FREQUENCY (kHz)	GRANULARITY RANK
0	2
0.5	3
1	3.75
2	4
2.25	4
2.5	4. 25
3	4. 5
3.5	4. 5
4	4.75
4.5	4. 5
5	4. 5
5.5	4.5
6	4.5
7	4.5
9	4.5

FIG. 13

DUTY (%)	GRANULARITY RANK
. 10	4. 75
15	4.75
20	4.75
25	4.75
30	4.75
35	4.75
40	. 4.75
45	4. 25
50	4
- 60	3.5

The first tens and the tens and the feet will tens find the feet tens and the first first

FIG. 14

Gp[mm]	Gp[mm] Gd[mm]	Cp/Gd	BIAS: 0c-500T		81AS: AC	f 45kH2 VPP 800V DUTY 50%
			GRANULARITY RANK	OHISSION	GRANULARI TX RANK	OHISSION
0.35	0.75	0.466667	1.5	Þ	4.5	4
0.43	0.83	0.518072	1.5	₽.	4.5	4
0.35	0.63	0. 555556	1.5	7	Ť	4
0.43	0.75	0. 573333	1.5	4	4	4
0.5	0.83	0.60241	1.5	₽.	ት	7
0.5	0.75	0.666667	1.5	4	4	7
0.35	0.52	0.673077		4	3.5	4
0.43	0.63	0.68254		4	3.5	ਹਾ
0. 43	0.52	0.826923		4	જ	4
0.6	0.52	1. 153846		4	2	4

FIG. 15

Gp[mm]	Gp[mm] Gd[mm]	Gp/Gd	B/AS:		8/45:	£ 4.5 kH2
	•		DC-500V		A C	VPP 800V
·			GERNULARITY RANK	OMISSION	GRANULARITY	OMISSION
0.35	0.75	0.466667	1	2	3.5	2
0.35	0.64	0. 546875	·	2	3.5	2
0.4	0.64	0.625	1	2	3.5	2
0.45	0.56	0, 803571		2	3.5	2
0.5	0.56	0.892857	1	2.5	3.5	2.5
0.6	0.85	0. 705882		2.75	5	2.75
0.6	0.91	0.659341	1	2.75	2	2, 75

FIG. 16

Gp[mm]	ρ [g/cm²]	Gp/p	B/AS: . DC-500V		19/45; AC	f 45 412 UPP 800 V. DUTY 50%
			GRANULARITY RANK	NONISSIAN KANK	ARAWRALITY RANK	OHISSION
0.35	0.065	5, 384615	1.5	Þ	4.5	4
0.43	0.08	5.375	1.5	Ť	4.5	4
0.35	0.05	7	1.5	4	. 4	4
0.43	0.065	6. 615385	1.5	4	4	4
0.5	0.08	6. 25	1.5	₹.	4	4
0.5	0.065	7. 692308	1.5	4	7	サ
0.35	0.035	10		4	3, 5	4
0.43	0.05	8.6	,	4	3.5	4
0.43	0.036	11.94444		4	က	ਹਾਂ ਹ
0.6	0.035	17. 14286		ঝ	2	7

OBLON, SPIVAK, ET AL DOCKET #: 209045US2 INV: Naomi SUGIMOTO, et al. SHEET <u>16</u> OF <u>16</u>

F1G. -

 $Gp[mm] \mid \rho[g/cm^2]$	Gp/p	B/AS:		BIAS:	f 4,5442
		705-5U) <u>.</u>	VPP 500V
		GRANDLARITY RANK	BANK	GRAYULARITY RANK	O MISSION RANE
0.065	5.384615	1	2	3.5	2
0.05	7	1	2	3.5	2
0.05	8	1	2	3.5	2
0.04	11.25	. 1	2	3.5	2
0.04	12.5	1	2.5	3.5	2.5
0.076	7.894737	,	2.75	2	2.75
 0.085	7. 058824	-	2.75	7	2.75