Exercícios de Química	Data de aplicação://2021
Professor(a): Fred Klier	Data da devolução://2021
 Dada a equação química não-balanceada: Na₂CO₃+HCl → NaCl + CO₂ + H₂O A massa de carbonato de sódio que reage completa 0,25 mol de ácido clorídrico é: (Dado: Na₂CO₃ = 10 	
 Uma vela de parafina queima-se, no ar ambiente, p água e dióxido de carbono. A parafina é composta culas de vários tamanhos,mas utilizaremos para el C₂₅H₅₂. Tal reação representa-se pela equação: 	a por molé- $Fe_2O_3 + 3C \longrightarrow 2Fe + 3CO$
 C₂₅H₅₂ + O₂ → H₂O + CO₂ (i) Equilibre a reação. (ii) Quantos mol de oxigênio são necessários pa um mol de parafina? 	(ii) Calcule, em condições ambientes, quantos dm3 de CO são obtidos por mol de ferro produzido.
(iii) Quanto pesa esse oxigênio?	(volume molar nas condições ambientes = 24,0 dm³; massas molares: Fe = 56 g/mol, Fe ₂ O ₃ = 160 g/mol) 6. Considere a equação da reação de combustão do acetileno (não-balanceada): C ₂ H _{2(g)} + O _{2(g)} → CO _{2(g)} + H ₂ O _(g) Admitindo-se CNTP e comportamento de gás ideal, a soma
 (massas molares: H = 1 g/mol; C = 12 g/mol; O = 16 3. O gás resultante da combustão de 160 g de enxofre pletamente em NaOH. Calcule a massa de Na₂S (massas molares: S = 32 g/mol; Na₂SO₃ = 126 g/mol S + O₂ → SO₂ SO₂ + 2 NaOH → Na₂SO₃ + H₂O⁴ 	do número de mol dos produtos obtidos, quando 112 litros de C_2H_2 reagem com excesso de oxigênio, é igual a: reage com- GO_3 obtido.
4. A equação da reação global da fermentação alcoóli rose é: fermentação	7. Considere uma amostra de 180 mL de água destilada, com densidade igual a 1 kg/L, contida em um copo. Sabendo que M(H) = 1 g/mol e M(O) = 16 g/mol, assinale os itens verdadeiros. O número de moléculas contidas no copo é igual ao número de átomos encontrados em uma amostra de 120 g de carbono-12. Para se produzir a quantidade de água contida no copo, é preciso reagir totalmente 30 g de H2 com 150

Data de aplicação: ____/___/2021

 $C_{12}H_{22}O_{11} + H_2O \xrightarrow{fermentação} 4C_2H_6O + 4CO_2$

Nome:_

2° Ano do Ensino médio

g de ceO2.

	○ A massa molecular da água no copo é igual a 180 g		
8.	Nas indústrias petroquímicas, enxofre pode ser obtido pela reação:		
	$2H_2S+SO_2\longrightarrow 3S+2H_2O$ Qual é a quantidade máxima de enxofre, em gramas, que pode ser obtida partindo-se de 5,0 mol de H_2S e 2,0 mol de SO_2 ? Indique os cálculos. (S = $32g/mol$)	11.	O carbonato de sódio, empregado na fabricação de vidro, é preparado a partir de carbonato de cálcio e cloreto de sódio: CaCO₃ + 2NaCl → Na₂CO₃ + CaCl₂ Colocando-se para reagir 1 000 g de CaCO₃ e 585 g de NaCl, a massa obtida de carbonato de sódio, em gramas, admitindo-se rendimento de 100% no processo, é:
9.	400 g de NaOH são adicionados a 504 g de HNO ₃ . Calcule: 1. a massa de NaNO ₃ obtida; 2. a massa do reagente em excesso, se houver. (massas molares: HNO ₃ = 63 g/mol; NaOH = = 40 g/mol; NaNO ₃ = 85 g/mol)	12.	Qual a porcentagem de impureza que existe em uma amostra impura de 150 g de hidróxido de sódio (NaOH) que contém 120 g de NaOH puro?
10.	$NaOH + HNO_3 \longrightarrow NaNO_3 + H_2O$ $Qual\ a\ quantidade\ m\'{a}xima\ de\ NH_3,\ em\ gramas,\ que\ pode\ ser$ obtida a partir de uma mistura de 140 g de N_2 com 18 g de H_2 ? (massas atômicas: $H=1g/mol,\ N=14g/mol$)	13.	Para obtermos 17,6 g de gás carbônico (CO ₂) pela queima total de um carvão com 60% de pureza, necessitaremos de uma amostra de carvão com massa igual a: (massas atômicas: C = 12g/mol, O = 16g/mol)
	$N_2 + 3H_2 \longrightarrow 2NH_3$		