Tutorial: CMA-ES — Evolution Strategies and Covariance Matrix Adaptation

Anne Auger & Nikolaus Hansen

INRIA Research Centre Saclay – Île-de-France Project team TAO University Paris-Sud, LRI (UMR 8623), Bat. 490 91405 ORSAY Cedex, France

GECCO'11, July 12–16, 2011, Dublin, Ireland.
get the slides: google "Nikolaus Hansen"...under Publications click Invited talks, tutorials...

Content

- Problem Statement
 - Black Box Optimization and Its Difficulties
 - Non-Separable Problems
 - III-Conditioned Problems
- **Evolution Strategies**
 - A Search Template
 - The Normal Distribution
 - Invariance
- Step-Size Control
 - Why Step-Size Control
 - One-Fifth Success Rule

 - Path Length Control (CSA)
 - Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Rank-μ Update
- Theoretical Foundations
- Experiments
- Summary and Final Remarks

Problem Statement

Continuous Domain Search/Optimization

 Task: minimize an objective function (fitness function, loss function) in continuous domain

$$f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}, \qquad \mathbf{x} \mapsto f(\mathbf{x})$$

Black Box scenario (direct search scenario)

- gradients are not available or not useful
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- Search costs: number of function evaluations

Problem Statement

Continuous Domain Search/Optimization

- Goal
 - fast convergence to the global optimum
 - ... or to a robust solution x os solution x with small function value f(x) with least search cost

there are two conflicting objectives

- Typical Examples
 - shape optimization (e.g. using CFD)
 - model calibration
 - parameter calibration

curve fitting, airfoils biological, physical

controller, plants, images

- Problems
 - exhaustive search is infeasible
 - naive random search takes too long
 - deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms

Objective Function Properties

We assume $f:\mathcal{X}\subset\mathbb{R}^n\to\mathbb{R}$ to be *non-linear, non-separable* and to have at least moderate dimensionality, say $n\not\ll 10$. Additionally, f can be

- non-convex
- multimodal

there are possibly many local optima

non-smooth

derivatives do not exist

- discontinuous
- ill-conditioned
- noisy
- ...

Goal: cope with any of these function properties
they are related to real-world problems

What Makes a Function Difficult to Solve?

Why stochastic search?

- non-linear, non-quadratic, non-convex on linear and quadratic functions much better search policies are available
- ruggedness non-smooth, discontinuous, multimodal, and/or noisy function
- dimensionality (size of search space)
 (considerably) larger than three
- non-separability
 dependencies between the objective variables
- ill-conditioning

gradient direction Newton direction

Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy

cut from a 5-D example, (easily) solvable with evolution strategies

Curse of Dimensionality

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the **rapid increase in volume** associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say [0,1]. To get **similar coverage**, in terms of distance between adjacent points, of the 10-dimensional space $[0,1]^{10}$ would require $100^{10}=10^{20}$ points. A 100 points appear now as isolated points in a vast empty space.

Remark: **distance measures** break down in higher dimensionalities (the central limit theorem kicks in)

Consequently, a **search policy** (e.g. exhaustive search) that is valuable in small dimensions **might be useless** in moderate or large dimensional search spaces.

Effect of Dimensionality: Example

Separable Problems

Definition (Separable Problem)

A function f is separable if

$$\arg\min_{(x_1,\ldots,x_n)} f(x_1,\ldots,x_n) = \left(\arg\min_{x_1} f(x_1,\ldots),\ldots,\arg\min_{x_n} f(\ldots,x_n)\right)$$

 \Rightarrow it follows that f can be optimized in a sequence of n independent 1-D optimization processes

Example: Additively decomposable functions

$$f(x_1,\dots,x_n) = \sum_{i=1}^n f_i(x_i)$$

Rastrigin function

Non-Separable Problems

Building a non-separable problem from a separable one (1,2)

Rotating the coordinate system

- $f: x \mapsto f(x)$ separable
- $\bullet f: x \mapsto f(\mathbf{R}x)$ non-separable

R rotation matrix

¹ Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

² Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

III-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function

$$f(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H}(\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_i h_{i,i} x_i^2 + \frac{1}{2} \sum_{i \neq j} h_{i,j} x_i x_j$$

$$\mathbf{H} \text{ is Hessian matrix of } f \text{ and symmetric positive definite}$$

gradient direction $-f'(x)^{T}$

Newton direction $-\mathbf{H}^{-1}f'(\mathbf{x})^{\mathrm{T}}$

Ill-conditioning means **squeezed level sets** (high curvature). Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise **second order information** (estimation of H^{-1}) is **necessary**.

What Makes a Function Difficult to Solve?

... and what can be done

The Problem	The Approach in ESs and continuous EDAs
Dimensionality, Non-Separability	exploiting the problem structure locality, neighborhood, encoding
III-conditioning	second order approach changes the neighborhood metric
Ruggedness	non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed
	stochastic, non-elitistic, population-based method
	recombination operator serves as repair mechanism
	restarts

Metaphors

Evolutionary Computation Optimization individual, offspring, parent candidate solution decision variables design variables object variables population set of candidate solutions fitness function objective function loss function cost function error function generation iteration

- 1 Problem Statemen
 - Black Box Optimization and Its Difficulties
 - Non-Separable Problems
 - III-Conditioned Problems
- 2 Evolution Strategies
 - A Search Template
 - The Normal Distribution
 - Invariance
- 3 Step-Size Contro
 - Why Step-Size Control
 - One-Fifth Success Rule
 - Path Length Control (CSA)
- 4 Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Rank-μ Update
 - Theoretical Foundations
- 6 Experiments
- 7 Summary and Final Remarks

Stochastic Search

A black box search template to minimize $f: \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- ① Sample distribution $P(x|\theta) o x_1, \dots, x_\lambda \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_{λ} on f
- **3** Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of P and F_{θ}

deterministic algorithms are covered as well

16/80

In many Evolutionary Algorithms the distribution P is implicitly defined via **operators on a population**, in particular, selection, recombination and mutation

Natural template for Estimation of Distribution Algorithms

Evolution Strategies

New search points are sampled normally distributed

$$x_i \sim m + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$
 for $i = 1, \dots, \lambda$

for
$$i = 1, \ldots, \lambda$$

as perturbations of m, where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbf{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $\mathbf{m} \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the **shape** of the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, \mathbb{C} , and σ .

Why Normal Distributions?

- widely observed in nature, for example as phenotypic traits
- only stable distribution with finite variance stable means the sum of normal variates is again normal, helpful in design and analysis of algorithms
- most convenient way to generate **isotropic** search points
 the isotropic distribution does **not favor any direction**
- maximum entropy distribution with finite variance
 the least possible assumptions on f in the distribution shape

connection to central limit theorem

(unfoundedly), supports rotational invariance

Normal Distribution

probability density of the 1-D standard normal distribution

probability density of a 2-D normal distribution

The Multi-Variate (*n*-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, \mathbb{C})$ is uniquely determined by its mean value $m \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \mathbb{C} .

The **mean** value *m*

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

The covariance matrix C

- determines the shape
- **geometrical interpretation**: any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x-m)^T \mathbb{C}^{-1}(x-m) = 1\}$

... any **covariance matrix** can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x - m)^T \mathbf{C}^{-1} (x - m) = 1\}$

Lines of Equal Density

 $\mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{I}) \sim \mathbf{m} + \sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$ one degree of freedom σ components are independent standard normally distributed

 $\mathcal{N}\left(m,\mathbf{D}^2\right)\sim m+\mathbf{D}\,\mathcal{N}(\mathbf{0},\mathbf{I})$ n degrees of freedom components are independent, scaled

 $\mathcal{N}(m,\mathbf{C}) \sim m + \mathbf{C}^{\frac{1}{2}} \mathcal{N}(\mathbf{0},\mathbf{I})$ $(n^2+n)/2$ degrees of freedom components are correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and $A \times \mathcal{N}(0,I) \sim \mathcal{N}(0,AA^T)$ holds for all A.

Evolution Strategies

Terminology

Let μ : # of parents, λ : # of offspring

Plus (elitist) and comma (non-elitist) selection

$$(\mu + \lambda)$$
-ES: selection in {parents} \cup {offspring} (μ, λ) -ES: selection in {offspring}

$$(1+1)$$
-ES

Sample one offspring from parent *m*

$$\mathbf{x} = \mathbf{m} + \sigma \, \mathcal{N}(\mathbf{0}, \mathbf{C})$$

If x better than m select

$$m \leftarrow x$$

The $(\mu/\mu, \lambda)$ -ES

Non-elitist selection and intermediate (weighted) recombination

Given the *i*-th solution point
$$x_i = m + \sigma \underbrace{\mathcal{N}_i(\mathbf{0}, \mathbf{C})}_{=:y_i} = m + \sigma y_i$$

Let $x_{i:\lambda}$ the *i*-th ranked solution point, such that $f(x_{1:\lambda}) \leq \cdots \leq f(x_{\lambda:\lambda})$. The new mean reads

$$m \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = m + \sigma \underbrace{\sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}}_{=: \mathbf{y}_w}$$

where

$$w_1 \ge \dots \ge w_{\mu} > 0$$
, $\sum_{i=1}^{\mu} w_i = 1$, $\frac{1}{\sum_{i=1}^{\mu} w_i^2} =: \mu_w \approx \frac{\lambda}{4}$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

Invariance Under Monotonically Increasing Functions

Rank-based algorithms

Update of all parameters uses only the ranks

$$f(x_{1:\lambda}) \le f(x_{2:\lambda}) \le \dots \le f(x_{\lambda:\lambda})$$

g is strictly monotonically increasing g preserves ranks

³Whitley 1989. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best ICGA

Anne Auger & Nikolaus Hansen ()

Basic Invariance in Search Space

translation invariance

$$f(\mathbf{x}) \leftrightarrow f(\mathbf{x} - \mathbf{a})$$

Identical behavior on f and f_a

$$f: \mathbf{x} \mapsto f(\mathbf{x}), \qquad \mathbf{x}^{(t=0)} = \mathbf{x}_0$$

$$f: \mathbf{x} \mapsto f(\mathbf{x}), \quad \mathbf{x}^{(t=0)} = \mathbf{x}_0$$

 $f_{\mathbf{a}}: \mathbf{x} \mapsto f(\mathbf{x} - \mathbf{a}), \quad \mathbf{x}^{(t=0)} = \mathbf{x}_0 + \mathbf{a}$

No difference can be observed w.r.t. the argument of *f*

Rotational Invariance in Search Space

invariance to orthogonal (rigid) transformations R, where $\mathbf{R}\mathbf{R}^{\mathrm{T}} = \mathbf{I}$ e.g. true for simple evolution strategies recombination operators might jeopardize rotational invariance

Identical behavior on f and $f_{\mathbf{R}}$

$$f: \mathbf{x} \mapsto f(\mathbf{x}), \quad \mathbf{x}^{(t=0)} = \mathbf{x}_0$$

 $f_{\mathbf{R}}: \mathbf{x} \mapsto f(\mathbf{R}\mathbf{x}), \quad \mathbf{x}^{(t=0)} = \mathbf{R}^{-1}(\mathbf{x}_0)$

$$f_{\mathbf{R}}: \mathbf{x} \mapsto f(\mathbf{R}\mathbf{x}), \mathbf{x}^{(t=0)} = \mathbf{R}^{-1}(\mathbf{x}_0)$$

45

No difference can be observed w.r.t. the argument of f

 5 Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. *Parallel Problem* Solving from Nature PPSN VI

Salomon 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

Invariance

Impact

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms.

Albert Einstein

- Empirical performance results, for example
 - from benchmark functions
 - from solved real world problems

are only useful if they do generalize to other problems

Invariance is a strong **non-empirical** statement about generalization

generalizing (identical) performance from a single function to a whole class of functions

consequently, invariance is important for the evaluation of search algorithms

- 1 Problem Statemen
 - Black Box Optimization and Its Difficulties
 - Non-Separable Problems
 - III-Conditioned Problems
- 2 Evolution Strategies
 - A Search Template
 - The Normal Distribution
 - Invariance
- 3 Step-Size Control
 - Why Step-Size Control
 - One-Fifth Success Rule
 - Path Length Control (CSA)
 - Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Rank-μ Update
 - Theoretical Foundations
- 6 Experiments
- 7 Summary and Final Remarks

Evolution Strategies

Recalling

New search points are sampled normally distributed

$$\mathbf{x}_i \sim \mathbf{m} + \sigma \, \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$
 for $i = 1, \dots, \lambda$

for
$$i = 1, \ldots, \lambda$$

as perturbations of m, where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbb{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $\mathbf{m} \in \mathbb{R}^n$ represents the favorite solution and $m \leftarrow \sum_{i=1}^{\mu} w_i x_{i:\lambda}$
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the **shape** of the distribution ellipsoid

The remaining question is how to update σ and \mathbb{C} .

$$f(x) = \sum_{i=1}^{n} x_i^2$$
in $[-0.2, 0.8]^n$
for $n = 10$

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

in
$$[-0.2, 0.8]^n$$

for $n = 10$

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

in
$$[-0.2, 0.8]^n$$

for $n = 10$

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

in
$$[-0.2, 0.8]^n$$

for $n = 10$

 $evolution\ window\ refers\ to\ the\ step-size\ interval\ ({\ f lue{1}})\ where\ reasonable\ performance$ is observed

Methods for Step-Size Control

increase step-size if more than 20% of the new solutions are successful, decrease otherwise

 \bullet σ -self-adaptation^c, applied with ","-selection

mutation is applied to the step-size and the better, according to the objective function value, is selected

simplified "global" self-adaptation

path length control^a (Cumulative Step-size Adaptation, CSA)^e

self-adaptation derandomized and non-localized

^aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Frommann-Holzboog

^bSchumer and Steiglitz 1968. Adaptive step size random search. *IEEE TAC*

^CSchwefel 1981, Numerical Optimization of Computer Models, Wiley

^dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, *Evol. Comput.*

One-fifth success rule

One-fifth success rule

Probability of success (p_s)

1/2

Probability of success (p_s)

1/5

"too small"

One-fifth success rule

 p_s : # of successful offspring / # offspring (per generation)

$$\sigma \leftarrow \sigma \times \exp\left(\frac{1}{3} \times \frac{p_s - p_{\text{target}}}{1 - p_{\text{target}}}\right) \qquad \text{Increase } \sigma \text{ if } p_s > p_{\text{target}} \\ \text{Decrease } \sigma \text{ if } p_s < p_{\text{target}}$$

$$(1+1)$$
-ES
$$p_{target} = 1/5$$
 IF offspring better parent
$$p_s = 1, \ \sigma \leftarrow \sigma \times \exp(1/3)$$
 ELSE
$$p_s = 0, \ \sigma \leftarrow \sigma / \exp(1/3)^{1/4}$$

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

$$\begin{array}{rcl} \boldsymbol{x}_i & = & \boldsymbol{m} + \sigma \, \boldsymbol{y}_i \\ \boldsymbol{m} & \leftarrow & \boldsymbol{m} + \sigma \, \boldsymbol{y}_w \end{array}$$

loosely speaking steps are

- perpendicular under random selection (in expectation)
- perpendicular in the desired situation (to be most efficient)

Path Length Control (CSA)

The Equations

Initialize $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, evolution path $p_{\sigma} = 0$, set $c_{\sigma} \approx 4/n$, $d_{\sigma} \approx 1$.

$$m{m} \leftarrow m{m} + \sigma m{y}_w \quad \text{where } m{y}_w = \sum_{i=1}^{\mu} w_i m{y}_{i:\lambda} \quad \text{update mean}$$
 $m{p}_\sigma \leftarrow (1-c_\sigma) m{p}_\sigma + \sqrt{1-(1-c_\sigma)^2} \quad \sqrt{\mu_w} \quad m{y}_w \quad \text{accounts for } accounts \text{ for } w_i \quad \text{or } c_\sigma \leftarrow \sigma \times \exp\left(\frac{c_\sigma}{d_\sigma} \left(\frac{\|m{p}_\sigma\|}{\mathsf{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|} - 1\right)\right) \quad \text{update step-size}$
 $b > 1 \Longleftrightarrow \|m{p}_\sigma\| \text{ is greater than its expectation}$

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

in
$$[-0.2, 0.8]^n$$

for $n = 10$

- 1 Problem Statement
- 2 Evolution Strategies
- 3 Step-Size Control
- 4 Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Rank-μ Update
- 5 Theoretical Foundations
- 6 Experiments
- 7 Summary and Final Remarks

Evolution Strategies

Recalling

New search points are sampled normally distributed

$$\mathbf{x}_i \sim \mathbf{m} + \sigma \, \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$
 for $i = 1, \dots, \lambda$

as perturbations of m, where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbf{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbb{C} \in \mathbb{R}^{n \times n}$ determines the **shape** of the distribution ellipsoid

The remaining question is how to update C.

Covariance Matrix Adaptation

Rank-One Update

$$m \leftarrow m + \sigma y_w, \quad y_w = \sum_{i=1}^{\mu} w_i y_{i:\lambda}, \quad y_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$

new distribution,

$$\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \mathbf{y}_w \mathbf{y}_w^{\mathrm{T}}$$

the ruling principle: the adaptation increases the likelihood of successful steps, y_w , to appear again

another viewpoint: the adaptation **follows a natural gradient** approximation of the expected fitness

Covariance Matrix Adaptation

Rank-One Update

Initialize $m \in \mathbb{R}^n$, and C = I, set $\sigma = 1$, learning rate $c_{cov} \approx 2/n^2$ While not terminate

$$\begin{aligned} & \boldsymbol{x}_i &= & \boldsymbol{m} + \sigma \, \boldsymbol{y}_i, & \boldsymbol{y}_i &\sim \, \mathcal{N}_i(\boldsymbol{0}, \mathbf{C}) \,, \\ & \boldsymbol{m} &\leftarrow & \boldsymbol{m} + \sigma \boldsymbol{y}_w & \text{where } \boldsymbol{y}_w = \sum_{i=1}^{\mu} w_i \, \boldsymbol{y}_{i:\lambda} \\ & \mathbf{C} &\leftarrow & (1 - c_{\text{cov}}) \mathbf{C} + c_{\text{cov}} \mu_w \, \underbrace{\boldsymbol{y}_w \boldsymbol{y}_w^{\text{T}}}_{\text{rank-one}} & \text{where } \mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \geq 1 \end{aligned}$$

$\mathbf{C} \leftarrow (1 - c_{\text{cov}})\mathbf{C} + c_{\text{cov}}\mu_{w}\mathbf{v}_{w}\mathbf{v}_{w}^{\mathrm{T}}$

covariance matrix adaptation

- learns all **pairwise dependencies** between variables off-diagonal entries in the covariance matrix reflect the dependencies
- conducts a principle component analysis (PCA) of steps y_w , sequentially in time and space

eigenvectors of the covariance matrix C are the principle components / the principle axes of the mutation ellipsoid, rotational invariant

 learns a new, rotated problem representation and a new metric (Mahalanobis)

components are independent (only) in the new representation rotational invariant

- approximates the inverse Hessian on quadratic functions
 - overwhelming empirical evidence, proof is in progress
- is entirely independent of the given coordinate system

for $\mu = 1$: natural gradient ascent on \mathcal{N}

- 1 Problem Statement
- 2 Evolution Strategies
- 3 Step-Size Control
- 4 Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Rank-μ Update
- 5 Theoretical Foundations
- 6 Experiments
- 7 Summary and Final Remarks

Cumulation

The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of steps y_w is used

$$m{p_c} \propto \sum_{i=0}^g \underbrace{(1-c_c)^{g-i}}_{ ext{exponentially}} m{y}_w^{(i)}$$

The recursive construction of the evolution path (cumulation):

$$p_{\mathrm{c}} \leftarrow \underbrace{(1-c_{\mathrm{c}})}_{\mathrm{decay \ factor}} p_{\mathrm{c}} + \underbrace{\sqrt{1-(1-c_{\mathrm{c}})^2} \sqrt{\mu_{w}}}_{\mathrm{normalization \ factor}} \underbrace{y_{w}}_{\mathrm{input} = \frac{m-m_{\mathrm{old}}}{\sigma}}$$

where $\mu_w = \frac{1}{\sum w_i^2}$, $c_c \ll 1$. History information is accumulated in the evolution path.

"Cumulation" is a widely used technique and also know as

- exponential smoothing in time series, forecasting
- exponentially weighted mooving average
- iterate averaging in stochastic approximation
- momentum in the back-propagation algorithm for ANNs
- ...

Cumulation

Utilizing the Evolution Path

We used $y_w y_w^T$ for updating C. Because $y_w y_w^T = -y_w (-y_w)^T$ the sign of y_w is lost.

The sign information is (re-)introduced by using the *evolution path*.

where $\mu_{\rm\scriptscriptstyle W}=\frac{1}{\sum w_i^2},\,c_{\rm\scriptscriptstyle C}\ll 1$ such that $1/c_{\rm\scriptscriptstyle C}$ is the "backward time horizon".

Using an **evolution path** for the **rank-one update** of the covariance matrix reduces the number of function evaluations to adapt to a straight ridge from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$. (a)

Number of f-evaluations divided by dimension on the cigar function

The overall model complexity is n^2 but important parts of the model can be learned in time of order n

^aHansen, Müller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), Evolutionary Computation, 11(1), pp. 1-18

Rank- μ Update

$$x_i = m + \sigma y_i, \quad y_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C}),$$

 $m \leftarrow m + \sigma y_w \quad y_w = \sum_{i=1}^{\mu} w_i y_{i:\lambda}$

The rank- μ update extends the update rule for **large population sizes** λ using $\mu>1$ vectors to update ${\bf C}$ at each generation step.

The matrix

$$\mathbf{C}_{\mu} = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}}$$

computes a weighted mean of the outer products of the best μ steps and has rank $\min(\mu, n)$ with probability one.

The rank- μ update then reads

$$\mathbf{C} \leftarrow (1 - c_{\text{cov}}) \mathbf{C} + c_{\text{cov}} \mathbf{C}_{\mu}$$

where $c_{\text{cov}} \approx \mu_w/n^2$ and $c_{\text{cov}} < 1$.

$$x_i = m + \sigma y_i, y_i \sim \mathcal{N}(\mathbf{0}, \mathbb{C})$$

$$\mathbf{C}_{\mu} = \frac{1}{\mu} \sum \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}}$$

$$\mathbf{C} \leftarrow (1-1) \times \mathbf{C} + 1 \times \mathbf{C}_{\mu}$$

new distribution

sampling of
$$\lambda=150$$
 solutions where $\mathbf{C}=\mathbf{I}$ and $\sigma=1$

calculating C where
$$\mu=50$$
, $w_1=\cdots=w_\mu=\frac{1}{\mu}$, and $c_{\text{cov}}=1$

Rank- μ CMA versus Estimation of Multivariate Normal Algorithm EMNA_{global} ⁶

rank- μ CMA conducts a PCA of steps

EMNA_{global} conducts a PCA of points

sampling of $\lambda = 150$ solutions (dots)

 $x_i = m_{\text{old}} + y_i, \quad y_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$

calculating C from $\mu = 50$ solutions

 $\mathbf{C} \leftarrow \frac{1}{\mu} \sum (x_{i:\lambda} - m_{\text{new}}) (x_{i:\lambda} - m_{\text{new}})^{\mathrm{T}}$

new distribution

The CMA-update yields a larger variance in particular in gradient direction, because m_{new} is the minimizer for the variances when calculating C

Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102

The rank- μ update

- \bullet increases the possible learning rate in large populations roughly from $2/n^2$ to $\mu_{\scriptscriptstyle W}/n^2$
- can reduce the number of necessary **generations** roughly from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$ (7)

given
$$\mu_w \propto \lambda \propto n$$

Therefore the rank- μ update is the primary mechanism whenever a large population size is used

say
$$\lambda \ge 3n + 10$$

The rank-one update

• uses the evolution path and reduces the number of necessary function evaluations to learn straight ridges from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$.

Rank-one update and rank- μ update can be combined

all equations

¹ Hansen, Müller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). *Evolutionary Computation*, 11(1), pp. 1-18

Summary of Equations

The Covariance Matrix Adaptation Evolution Strategy

Input: $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ Initialize: C = I, and $p_c = 0$, $p_{\sigma} = 0$,

Set: $c_{\mathbf{c}} \approx 4/n$, $c_{\sigma} \approx 4/n$, $c_{1} \approx 2/n^{2}$, $c_{\mu} \approx \mu_{w}/n^{2}$, $c_{1} + c_{\mu} \leq 1$, $d_{\sigma} \approx 1 + \sqrt{\frac{\mu_{w}}{n}}$,

and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$\begin{aligned} & \boldsymbol{x}_i = \boldsymbol{m} + \sigma \, \boldsymbol{y}_i, \quad \boldsymbol{y}_i \, \sim \, \mathcal{N}_i(\boldsymbol{0}, \mathbf{C}) \,, \quad \text{for } i = 1, \dots, \lambda \\ & \boldsymbol{m} \leftarrow \sum_{i=1}^{\mu} w_i \, \boldsymbol{x}_{i:\lambda} = \boldsymbol{m} + \sigma \, \boldsymbol{y}_w \quad \text{where } \boldsymbol{y}_w = \sum_{i=1}^{\mu} w_i \, \boldsymbol{y}_{i:\lambda} \\ & \boldsymbol{p}_c \leftarrow (1 - c_c) \, \boldsymbol{p}_c + 1\!\!1_{\{\|\boldsymbol{p}_\sigma\| < 1.5\sqrt{n}\}} \sqrt{1 - (1 - c_c)^2} \sqrt{\mu_w} \, \boldsymbol{y}_w \end{aligned} \quad \text{update mean cumulation for } \mathbf{C} \\ & \boldsymbol{p}_\sigma \leftarrow (1 - c_\sigma) \, \boldsymbol{p}_\sigma + \sqrt{1 - (1 - c_\sigma)^2} \sqrt{\mu_w} \, \mathbf{C}^{-\frac{1}{2}} \boldsymbol{y}_w \end{aligned} \quad \text{cumulation for } \boldsymbol{\sigma} \\ & \mathbf{C} \leftarrow (1 - c_1 - c_\mu) \, \mathbf{C} + c_1 \, \boldsymbol{p}_c \, \boldsymbol{p}_c^T + c_\mu \sum_{i=1}^{\mu} w_i \, \boldsymbol{y}_{i:\lambda} \boldsymbol{y}_{i:\lambda}^T \end{aligned} \quad \text{update } \mathbf{C} \\ & \boldsymbol{\sigma} \leftarrow \boldsymbol{\sigma} \times \exp\left(\frac{c_\sigma}{d_\sigma} \left(\frac{\|\boldsymbol{p}_\sigma\|}{\mathbf{E}\|\mathcal{N}(\mathbf{0},\mathbf{D})\|} - 1\right)\right) \end{aligned} \quad \text{update of } \boldsymbol{\sigma}$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

Source Code Snippet

```
W CMA-ES - Wikipedia, t... ×
              ☆ http://en.wikipedia.org/wiki/CMA-ES
         counteval = 0; % the next 40 lines contain the 20 lines of interesting code
         while counteval < stopeval
             for k=1:lambda,
                 arx(:,k) = xmean + sigma * B * (D .* randn(N,1)); % m + sig * Normal(0,C)
                 arfitness(k) = feval(strfitnessfct, arx(:,k)); % objective function call
                 counteval = counteval+1;
             % Sort by fitness and compute weighted mean into xmean
             [arfitness, arindex] = sort(arfitness); % minimization
             xold = xmean:
             xmean = arx(:,arindex(1:mu))*weights; % recombination, new mean value
             % Cumulation: Update evolution paths
             ps = (1-cs)*ps ...
                  + sgrt(cs*(2-cs)*mueff) * invsgrtC * (xmean-xold) / sigma;
             hsig = norm(ps)/sgrt(1-(1-cs)^(2*counteval/lambda))/chiN < 1.4 + 2/(N+1);
             pc = (1-cc)*pc ...
                  + hsig * sgrt(cc*(2-cc)*mueff) * (xmean-xold) / sigma;
             artmp = (1/sigma) * (arx(:,arindex(1:mu))-repmat(xold,1,mu));
             C = (1-c1-cmu) * C ...
                 + c1 * (pc*pc' ...
                                                  % plus rank one update
                          + (1-hsig) * cc*(2-cc) * C) ... % minor correction if hsig==0
                  + cmu * artmp * diag(weights) * artmp'; % plus rank mu update
             % Adapt step size sigma
             sigma = sigma * exp((cs/damps)*(norm(ps)/chiN - 1));
             % Decomposition of C into B*diag(D.^2)*B' (diagonalization)
             if counteval - eigeneval > lambda/(c1+cmu)/N/10 % to achieve O(N^2)
                 eigeneval = counteval;
                 [B,D] = eig(C); % eigen decomposition, B==normalized eigenvectors
                 D = sqrt(diag(D));
                                        % D is a vector of standard deviations now
                 invsgrtC = B * diag(D.^-1) * B';
            end
```

Evolution Strategies in a Nutshell

Sampling from a multi-variate normal distribution

with maximum entropy

- **Rank-based selection**: same performance on g(f(x)) for any g $g: \mathbb{R} \to \mathbb{R}$ strictly monotonic (order preserving)
- **Step-size control**: converge log-linearly on the sphere function and many others possibly with linear scaling in dimension n
- Covariance matrix adaptation: reduce any convex quadratic, g-transformed function

$$f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$$

to the sphere function

$$f(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{x}$$

without use of derivatives

lines of equal density align with lines of equal fitness $\mathbb{C} \propto \mathbf{H}^{-1}$

...Theory

- 1 Problem Statement
- 2 Evolution Strategies
- 3 Step-Size Control
- 4 Covariance Matrix Adaptation
- 5 Theoretical Foundations
- 6 Experiments
- 7 Summary and Final Remarks

Natural Gradient Descend

• Consider $\arg\min_{\theta} \mathrm{E}(f(x)|\theta)$ under the sampling distribution $p(.|\theta)$ we could improve $\mathrm{E}(f(x)|\theta)$ by following the gradient $\nabla_{\theta}\mathrm{E}(f(x)|\theta)$:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathbf{E}(f(\mathbf{x})|\theta), \qquad \eta > 0$$

 ∇_{θ} depends on the parameterization of the distribution, specifically

Consider the natural gradient of the expected weighted fitness

$$\begin{split} \widetilde{\nabla} \, \mathrm{E}(w_g(f(\boldsymbol{x}))|\theta) &= F_{\theta}^{-1} \nabla_{\theta} \mathrm{E}(w_g(f(\boldsymbol{x}))|\theta) \\ &= \mathrm{E}(w_g(f(\boldsymbol{x})) F_{\theta}^{-1} \nabla_{\theta} \ln p(\boldsymbol{x}|\theta)) \end{split}$$

using the Fisher information matrix $F_{\theta} = \left(\left(\mathbf{E} \frac{\partial^2 \log p(\mathbf{x}|\theta)}{\partial \theta_i \partial \theta_j}\right)\right)_{ij}$ of the density p. The natural gradient is **invariant under re-parameterization** of the distribution.

A Monte-Carlo approximation reads

$$\widetilde{\nabla} \widehat{\mathbf{E}}(\widehat{w}(f(\mathbf{x}))|\theta) = \sum_{i=1}^{\lambda} w_i F_{\theta}^{-1} \nabla_{\theta} \ln p(\mathbf{x}_{i:\lambda}|\theta), \quad w_i = \widehat{w}(f(\mathbf{x}_{i:\lambda})|\theta)$$

CMA-ES = Natural Evolution Strategy + Cumulation

Natural gradient descend using the MC approximation and the normal distribution

Rewriting the update of the distribution mean

$$m_{\mathsf{new}} \leftarrow \sum_{i=1}^{\mu} w_i x_{i:\lambda} = m + \sum_{i=1}^{\mu} w_i (x_{i:\lambda} - m)$$

natural gradient for mean $\frac{\tilde{\partial}}{\tilde{\partial} m} \widehat{E}(w_g(f(x))|m, \mathbb{C})$

Rewriting the update of the covariance matrix⁸

$$\begin{split} \mathbf{C}_{\mathsf{new}} \leftarrow \mathbf{C} + c_1 (\overbrace{\boldsymbol{p_c} \boldsymbol{p_c}^\mathsf{T}}^\mathsf{T} - \mathbf{C}) \\ + \frac{c_\mu}{\sigma^2} \sum_{i=1}^\mu w_i \bigg(\overbrace{(\boldsymbol{x}_{i:\lambda} - \boldsymbol{m}) \left(\boldsymbol{x}_{i:\lambda} - \boldsymbol{m}\right)^\mathsf{T}}^\mathsf{T} - \sigma^2 \mathbf{C} \bigg) \\ & \mathsf{natural gradient for covariance matrix } \frac{\tilde{\varrho}}{\tilde{\varrho} c} \hat{\mathbf{E}}(w_g(f(\boldsymbol{x})) | \boldsymbol{m}, \mathbf{C}) \end{split}$$

Maximum Likelihood Update

The new distribution mean m maximizes the log-likelihood

$$m_{\mathsf{new}} = \arg\max_{m} \sum_{i=1}^{\mu} w_{i} \log p_{\mathcal{N}}(\mathbf{x}_{i:\lambda}|\mathbf{m})$$

independently of the given covariance matrix

The rank- μ update matrix \mathbf{C}_{μ} maximizes the log-likelihood

$$\mathbf{C}_{\mu} = \arg \max_{\mathbf{C}} \sum_{i=1}^{\mu} w_i \log p_{\mathcal{N}} \left(\frac{\mathbf{x}_{i:\lambda} - \mathbf{m}_{\mathsf{old}}}{\sigma} \middle| \mathbf{m}_{\mathsf{old}}, \mathbf{C} \right)$$

 $\log p_{\mathcal{N}}(\mathbf{x}|\mathbf{m}, \mathbf{C}) = -\frac{1}{2} \log \det(2\pi\mathbf{C}) - \frac{1}{2}(\mathbf{x} - \mathbf{m})^{\mathrm{T}}\mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})$ $p_{\mathcal{N}}$ is the density of the multi-variate normal distribution

Variable Metric

On the function class

$$f(\mathbf{x}) = g\left(\frac{1}{2}(\mathbf{x} - \mathbf{x}^*)\mathbf{H}(\mathbf{x} - \mathbf{x}^*)^{\mathrm{T}}\right)$$

the covariance matrix approximates the inverse Hessian up to a constant factor, that is:

$$\mathbb{C} \propto \mathbf{H}^{-1}$$
 (approximately)

In effect, ellipsoidal level-sets are transformed into spherical level-sets.

 $g:\mathbb{R} \to \mathbb{R}$ is strictly increasing

On Convergence

Evolution Strategies converge with probability one on, e.g., $g\left(\frac{1}{2}x^{T}Hx\right)$ like

$$\|\boldsymbol{m}_k - \boldsymbol{x}^*\| \propto e^{-ck}, \qquad c \leq \frac{0.25}{n}$$

Monte Carlo pure random search converges like

$$\|\mathbf{m}_k - \mathbf{x}^*\| \propto k^{-c} = e^{-c \log k}, \qquad c = \frac{1}{n}$$

- 1 Problem Statement
- 2 Evolution Strategies
- 3 Step-Size Control
- 4 Covariance Matrix Adaptation
- 5 Theoretical Foundations
- 6 Experiments
- 7 Summary and Final Remarks

Experimentum Crucis (0)

What did we want to achieve?

reduce any convex-quadratic function

$$f(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x}$$

to the sphere model

$$f(\mathbf{x}) = \mathbf{x}^{\mathrm{T}}\mathbf{x}$$

without use of derivatives

e.g. $f(\mathbf{x}) = \sum_{i=1}^{n} 10^{6 \frac{i-1}{n-1}} x_i^2$

lines of equal density align with lines of equal fitness

$$\mathbf{C} \propto \mathbf{H}^{-1}$$

in a stochastic sense

Experimentum Crucis (1)

f convex quadratic, separable

... non-separable

Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

 $\mathbf{C} \propto \mathbf{H}^{-1}$ for all g, \mathbf{H}

...internal parameters

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number α

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier 2001)

$$f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$$
 with

H diagonal

g identity (for BFGS and NEWUOA)

g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations 9 to reach the target function value of $g^{-1}(10^{-9})$

⁹Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number α

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier 2001)

$$f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$$
 with

H full

g identity (for BFGS and NEWUOA)

g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations 10 to reach the target function value of $g^{-1}(10^{-9})$

Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms. SEA

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number α

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier 2001)

$$f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$$
 with

 \boldsymbol{H} full

 $g: x \mapsto x^{1/4}$ (for BFGS and NEWUOA)

g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations 11 to reach the target function value of $g^{-1}(10^{-9})$

¹¹ Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

24 functions and 31 algorithms in 20-D

24 functions and 20+ algorithms in 20-D

30 noisy functions and 20 algorithms in 20-D

30 noisy functions and 10+ algorithms in 20-D

- 1 Problem Statement
- 2 Evolution Strategies
- 3 Step-Size Control
- 4 Covariance Matrix Adaptation
- 5 Theoretical Foundations
- 6 Experiments
- 7 Summary and Final Remarks

The Continuous Search Problem

Difficulties of a non-linear optimization problem are

- dimensionality and non-separabitity
 demands to exploit problem structure, e.g. neighborhood
- ill-conditioning

demands to acquire a second order model

ruggedness

demands a non-local (stochastic? population based?) approach

Main Features of (CMA) Evolution Strategies

- Multivariate normal distribution to generate new search points follows the maximum entropy principle
- 2 Rank-based selection implies invariance, same performance on g(f(x)) for any increasing g more invariance properties are featured
- Step-size control facilitates fast (log-linear) convergence and possibly linear scaling with the dimension based on an evolution path (a non-local trajectory)
- Covariance matrix adaptation (CMA) increases the likelihood of previously successful steps and can improve performance by orders of magnitude

the update follows the natural gradient $\mathbf{C} \propto \mathbf{H}^{-1} \iff$ adapts a variable metric \iff new (rotated) problem representation $\implies f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$ reduces to $g(\mathbf{x}^{\mathrm{T}}\mathbf{x})$

Limitations

of CMA Evolution Strategies

- **internal CPU-time**: $10^{-8}n^2$ seconds per function evaluation on a 2GHz PC, tweaks are available 1000 000 f-evaluations in 100-D take 100 seconds *internal* CPU-time
- better methods are presumably available in case of
 - partly separable problems
 - specific problems, for example with cheap gradients

specific methods

• small dimension ($n \ll 10$)

for example Nelder-Mead

• small running times (number of f-evaluations $\ll 100n$)

model-based methods

Source code for CMA-ES in C, Java, Matlab, Octave, Scilab, Python is available at

http://www.lri.fr/~hansen/cmaes_inmatlab.html