

Learning to Denoise Historical Music

Yunpeng Li, Beat Gfeller, Marco Tagliasacchi, Dominik Roblek (yunpeng,beatg,mtagliasacchi,droblek)@google.com

Introduction

Motivation

- Historical music: old equipment, analogue media → Noisy!
 - Popping, crackling, hissing, etc.
- Manual "remastering" is labor-intensive
- Objective:
 - Automated method
 - Direct audio-to-audio
 - Handles real recording with real noise

Approach

- Neural nets + supervised learning
- Obstacle: Historic music has no ground truth!
- But: We have "ground truth" noise samples -- in "silence"
- Solution: Synthesize
 - Clean target = clean modern recording (plenty)
 - Noisy input = clean target + real noise samples
 - Also simulate frequency loss by bandpass filtering
- Training objective:
 - STFT reconstruction loss + optional adversarial loss

Model Architecture

Fast: real-time speed on CPU!

More Details

- U-Net: Encoder/decoder + skip connections and residual blocks
- 2D convolutional on complex STFT spectrograms
 - Real/imaginary component = 2 input/output channels
- Can be made multi-scale
 - Together with multi-scale reconstruction/adversarial losses
- Discriminator (if used):
 - Same architecture as encoder (w/o U-Net skip connections)

Evaluation

Methodology

- MUSHRA, which measures human-perceived quality
- Score scale: 0--100
- 11 rates, 10 audio samples of 5 seconds each
 - Sampling rate: 44.1KHz

- On both real historical music and synthesized noisy music
 - \circ λ =0.01: Trained with adversarial loss (weight=0.01)
 - λ=0: No adversarial loss, i.e., reconstruction loss only
 - LogMMSE: A well-established signal processing baseline
- Scores shown: Difference between a method's output and noisy input.

differenc score s01 s02 s03 s04 s05 s06 s07 s08 s09 s10 all sample

logMMSE

 $\lambda = 0.01$

Real historic music recording samples

Synthesized noisy music samples

Observations

Reason:

- Our method much better than LogMMSE
- Reconstruction-loss-only model (λ=0) scored better than adversarially trained model (λ =0.01)
 - Difference is statistically significant

- Adversarially-trained model enhances more aggressively. Possibly wider frequency range, but also more artifacts
- See STFT spectrograms above
- Human are more sensitive to artifacts
- On synthesized test samples, the average score of our better model (λ =0) is statistically indistinguishable from that of ground truth

Web Links

Audio Samples

- Github page: https://google-research.github.io/seanet/music-denoising
 - YouTube playlist of interleaved noisy and denoised audios (<u>direct link</u>)
 - Live-switchable demo between noisy and denoised audios (<u>direct link</u>)

Paper

arXiv: https://arxiv.org/abs/2008.02027