IFCE - Campus Maracanaú Lógica para Computação

Ciência da Computação Prof. Thiago Alves

3ª Lista de Exercícios

Aluno(a):	Matrícula:	

- 1. Prove que se $(\alpha \to \beta) \land (\beta \to \alpha)$ é válida e $(\beta \to \gamma) \land (\gamma \to \beta)$ é válida então $(\alpha \to \gamma) \land (\gamma \to \alpha)$ é válida.
- 2. Quatro detetives, João, Carlos, Paloma e Juliana, estão investigando as causas de um assassinato e cada um deles concluiu uma das afirmações a seguir:

João: Se há pouco sangue na cena do crime, o matador é um profissional.

Calos: Houve poucos ruídos no momento do crime ou o matador não é um profissional. Paloma: A vítima estava toda ensanguetada ou houve muitos ruídos no momento do crime.

Juliana: Houve pouco sangue na cena do crime.

Usando a satisfatibilidade da lógica proposicional, verifique se é possível que todas as afirmações sejam verdadeiras.

- 3. Verifique se a afirmação a seguir é verdadeira: Para toda fórmula ϕ da lógica proposicional, ϕ é satisfatível se e somente se $\neg \phi$ é satisfatível.
- 4. Prove ou apresente um contra-exemplo para a afirmação a seguir: Para toda fórmula ϕ da lógica proposicional, $\neg \phi$ é válida se e somente se ϕ é insatisfatível.
- 5. Na ilha dos honestos e desonestos, todo honesto sempre fala a verdade e todos os desonestos sempre mentem. Cada nativo da ilha, ou é honesto ou é desonesto, mas não ambos. Você conhece três nativos que fazem as seguintes afirmações:
 - Nativo A: Exatamente um de nós é honesto.
 - Nativo B: Exatamente dois de nós são honestos.
 - Nativo C: Todos nós somos honestos.

Usando a satisfatibilidade da lógica proposicional, diga qual a categoria de cada nativo.

- 6. Dado as premissas a seguir:
 - (a) "Se choveu na madrugada de ontem, a rua está molhada hoje pela manhã."
 - (b) "A rua está molhada hoje pela manhã."

Usando tabela verdade, verifique se é possível concluir que "Choveu na madrugada de ontem".

- 7. Verifique se a seguinte afirmação é verdadeira: Para ϕ e ψ fórmulas quaisquer da lógica proposicional, se $\phi \models \psi$ e ψ é válida então ϕ é válida.
- 8. Demonstre se a afirmação seguinte é verdadeira ou falsa: Para Γ um conjunto qualquer de fórmulas da lógica proposicional e ψ um fórmula qualquer da lógica proposicional, se $\Gamma \models \psi$ e para todo $\phi \in \Gamma$, ϕ é válida então ψ é válida.
- 9. Mostre se é verdadeira a afirmação: Para ϕ , ψ e γ fórmulas quaisquer da lógica proposicional, se $\phi \models \psi$ então $\phi \lor \gamma \models \psi \lor \gamma$.

- 10. Uma montadora de carros constrói carros com as seguintes características de motor, transmissão e tração:
 - (a) O motor deve seguir exatamente uma entre as seguintes opções: 1.2, 1.4 e 1.8.
 - (b) A transmissão automática não é disponível no modelo com motor 1.2.
 - (c) Um carro tem transmissão automática ou manual, mas não ambos.
 - (d) A tração nas quatro rodas é disponível apenas no modelo com motor 1.8.
 - (e) A transmissão manual não pode ser combinada com a tração nas quatro rodas.

Um cliente deseja comprar um carro da montadora com as seguintes características: motor 1.8, transmissão manual e sem tração nas quatro rodas. Use tabela verdade para descobrir se a montadora pode atender o pedido do cliente.