Statistique Bayésienne

Anne Philippe

Laboratoire de Mathématiques Jean Leray Université de Nantes

Automne 2007

A. Фlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

1 /

Idée générale

- D'où ça vient?
- Fondement des probabilités (début du 20°)
 - Fréquentiste
 - Subjectiviste
 - Logiciste
- Kolmogorov : espérance conditionnelle

Idée générale

$$x \sim P(\theta)$$

- \bigcirc x est l'observation \rightsquigarrow Connue
- θ le paramètre inconnu, à estimer

A. Фlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

Quelques références

- Ongdon, Peter Applied Bayesian modelling. Wiley Series in Probability and Statistics.
- 2 Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. "Bayesian Data Analysis" Chapman and Hall Texts in Statistical Science Series.
- 3 C.P. Robert The Bayesian Choice: from Decision-Theoretic Motivations to Computational Implementation (2001) Springer-Verlag, New York
- O.P. Robert et G. Casella Monte Carlo Statistical Methods (1999) Springer-Verlag, New York.

A. Φlippe (Univ. Nantes) Statistique Bayésienne Automne 2007 3 / 1 A. Φlippe (Univ. Nantes) Statistique Bayésienne Automne 2007 4 /

Modèle paramétrique

Observations x_1, \ldots, x_n

$$x = (x_1, \dots, x_n) \sim f_{\theta}(x), \qquad \theta \in \Theta \text{ est inconnu}$$

Objectif

on veut estimer le paramètre θ à partir de l'échantillon $x_1, \dots x_n$.

Exemple

Observations suivant la loi normale $\mathcal{N}(m, \sigma^2)$ avec $\theta = (m, \sigma^2)$

A. Фlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

5 /

A. Фlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

Problématiqu

Une approche classique : le maximum de vraisemblance

la vraisemblance : c'est une fonction de Θ dans \mathbb{R}^+

$$\ell(\theta) \propto f_{\theta}(x)$$

On cherche la valeur de θ qui maximise la vraisemblance. c'est à dire on cherche la valeur de θ qui rend l'observation de x la plus probable.

Modèle de Poisson

A. Фlippe (Univ. Nantes

Statistique Bayésienne

Approche bayésienne

- Incertitude sur le paramètre θ est représentée par une probabilité π sur Θ .
- Le paramètre inconnu devient une variable aléatoire comme les observations

Définition

 π est la loi a priori sur θ .

On interprète la loi des observations f_{θ} comme la loi conditionnelle des observations sachant θ

$$f(x|\theta) = f_{\theta}(x)$$

A. Фlippe (Univ. Nantes)

Statistique Bayésienne

Problématique

Automne 2007

07

11 / 1

A. Фlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

10 / 1

Inférence Bayésienne

La loi a priori sur θ : π + Observations suivant une loi $f(x|\theta)$

On extrait des observations une information sur θ On actualise la loi sur θ à partir des observations

$$\pi(\theta|x) = f(x|\theta) \frac{\pi(\theta)}{m(x)}.$$

Définition

La loi conditionnelle de θ sachant les observations x est appelée loi a posteriori

Théorème de Bayes

A et E des évènements $P(E) \neq 0$, P(A|E) et P(E|A) sont liées par la relation

$$P(A|E) = P(E|A)\frac{P(A)}{P(E)}$$

Inversion des probabilités

Thomas Bayes, 1764

$$(\Theta, \pi(\theta))$$

Modèle a priori

. . . .

modèle sur les observations

$$(\mathcal{X}, f(x|\theta))$$

Modèle a posteriori

$$(\Theta, \pi(\theta|x))$$

Pièces conformes

- X représente le nombre de pièces non-conformes dans un lot de taille n.
- La proportion p de pièces non conformes est inconnue

Question

Étant donné X, que peut on dire de p?

A. Φlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007 13 / 1

Problématique

Loi Beta $x \sim \mathcal{B}e(a,b)$, $\mathbb{E}(x) = \frac{a}{a+b}$ et $\mathrm{Var}(x) = \frac{ab}{(a+b)^2(a+b+1)}$

Traduction Bayésienne

Loi *a priori* sur $p: p \sim \mathcal{U}([0,1])$

$$\pi(p) = \mathbb{I}_{[0,1]}(p)$$

Observation $X: X \sim \mathcal{B}(n, p)$

$$P(X = x|p) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

Loi a posteriori sur $p: p|x \sim \mathcal{B}e(x+1, n-x+1)$

loi Beta

$$\pi(p|X=x) \propto P(X=x|p)\pi(p) = p^{x}(1-p)^{n-x}\mathbb{I}_{[0,1]}(p)$$

A. Φlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007 14 / 1

Problématique

- 1 loi a priori sur p: loi uniforme la moyenne de p vaut $\frac{1}{2}$
- ② On observe x nombre de pièces défectueuses

 \Downarrow

3 loi a posteriori sur p: loi beta la moyenne de p sachant x vaut

$$\mathbb{E}(p|x) = \frac{x+1}{n+2} = \frac{1}{2} - \frac{n}{2(n+1)} + \frac{x}{n+2}$$

la loi a priori uniforme \rightsquigarrow suite des lois a posteriori quand le nb observations (n) varie

Les lois qui interviennent ...

On se donne $f(x|\theta)$ et $\pi(\theta)$

• la loi jointe de (θ, x) ,

$$\varphi(\theta, x) = f(x|\theta)\pi(\theta);$$

• la loi marginale de x,

$$m(x) = \int \varphi(\theta, x) d\theta = \int f(x|\theta)\pi(\theta) d\theta;$$

• la loi a posteriori de θ ,

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{m(x)};$$

loi a priori favorisant p < 1/2 ou p > 1/2

Évolution de l'information sur θ

$$heta \sim \pi_0(heta)$$
 [a priori] $+ x_1, ... x_n \sim f(x| heta)$ [n mesures] ψ $\theta|x \sim \pi_n(\theta|x_1, ... x_n)$ [a posteriori]

Updater

$$heta \sim \pi_n(heta|x_1,...x_n)$$
 [a priori]
La loi a posteriori à l'étape n devient la loi a priori $+$

$$x_{n+1} \sim f(x|\theta)$$
 [nouvelle observation]
$$\psi$$

$$\theta|x \sim \pi_n(\theta|x_1,...x_n,x_{n+1})$$
 [a posteriori]

Choix de la loi a priori

On dispose d'informations sur θ

Question

Comment traduire cette information en loi a priori?

Question

Comment traduire la qualité de cette information ?

!!! cas limite!!! : la loi a priori est concentrée sur $\{\theta_0\}$

$$\rightsquigarrow \pi(\theta|x) \equiv \pi(\theta)$$

Absence d'information : Approche non informative On minimise le rôle de la loi a priori sur l'inférence

Statistique Bayésienne

Automne 2007

Stratégie

A. Olippe (Univ. Nantes)

On restreint le choix de π à une famille de lois paramétriques

$$\pi(\theta|\lambda)$$
 $\lambda \in \Lambda$

Définition

 λ est appelé un hyper-paramètre

On fixe l'hyper-paramètre à partir de l'information que l'on possède sur les moments ou/et les quartiles

$$\lambda = \lambda_0$$

Statistique Bayésienne Automne 2007 A. Olippe (Univ. Nantes)

Détermination Subjective

modèle

 X_t le nombre de pièces défectueuses dans un lot issu de la machine numéro $t: X_t \sim \mathcal{B}(n, p_t)$

Information a priori sur p_t : la proportion de pièces défectueuses.

	machine	1	2	3	4	5
$\overline{p_t}$	Mean	0.3	0.4	0.5	0.2	0.2
	95% cred. int.	[0.1, 0.5]	[0.2, 0.6]	[0.3, 0.7]	[0.05, 0.4]	[0.05, 0.4]

Si p_t suit une loi beta, on ajuste les paramètres pour que la moyenne et les quartiles coïncident avec nos informations

_						
	Time	1	2	3	4	5
-	Dist.	$\mathcal{B}e(6,14)$	Be(8, 12)	Be(12, 12)	$\mathcal{B}e(3.5, 14)$	Be(3.5, 14)

A. Plippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

23 / 1

A. Plippe (Univ. Nantes)

Statistique Bavésienne

Automne 2007

Alternative : Structure hiérarchique

On met une loi sur l'hyper paramètre λ :

- $\pi_{HP}(\lambda)$ de moyenne λ_0 et de variance τ
- ullet le choix de au traduit la confiance que l'on accorde à l'information contenue dans λ_0 .

A. Plippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

25 / 1

Statistique Bayésienne

26 / 1

Famille Exponentielle

Cas particuliers : lois gaussiennes, betas binomiales ...

Définition

la densité est de la forme

$$f(x|\theta) = h(x) \exp\{\theta \cdot x - \psi(\theta)\},$$

Construction de la famille des lois a priori conjuguées :

$$\left\{\pi(\theta|\mu,\lambda) = K(\mu,\lambda) e^{\theta.\mu-\lambda\psi(\theta)}, \quad \lambda,\mu\right\}$$

A priori $(\mu, \lambda) \rightsquigarrow A$ posteriori $(\mu + x, \lambda + 1)$

Lois conjuguées

 \mathcal{F} une famille de lois sur Θ

Définition

 \mathcal{F} est une famille conjuguée pour la vraisemblance $f(x|\theta)$ Si pour toute loi a priori $\pi \in \mathcal{F}$, la loi a posteriori $\pi(\theta|x) \in \mathcal{F}$.

- Préserve la structure sur la loi de θ
- l'information apportée par les observations se traduit uniquement par un changement de paramètres.

A. Olippe (Univ. Nantes)

A. Фlippe (Univ. Nantes)

loi a priori

Automne 2007

les lois classiques

$f(x \theta)$	$\pi(\theta)$	$\pi(\theta x)$
vraisemblance	a priori	a posteriori
Normal	Normal	Normal
$\mathcal{N}(\theta, \sigma^2)$	$\mathcal{N}(\mu, \tau^2)$	$\mathcal{N}(\rho(\sigma^2\mu + \tau^2x), \rho\sigma^2\tau^2)$
		$\rho^{-1} = \sigma^2 + \tau^2$
Binomial	Beta	Beta
$\mathcal{B}(n, heta)$	\mathcal{B} e $(lpha,eta)$	$\mathcal{B}e(\alpha+x,\beta+n-x)$
Poisson	Gamma	Gamma
$\mathcal{P}(heta)$	$\mathcal{G}(lpha,eta)$	$\mathcal{G}(\alpha+x, eta+1)$
Normal	Gamma	Gamma
$\mathcal{N}(\mu, 1/ heta)$	\mathcal{G} a $(lpha,eta)$	$\mathcal{G}(\alpha+0.5,\beta+(\mu-x)^2/2)$

loi a prior

les lois classiques suite ...

 $f(x|\theta)$ $\pi(\theta|x)$ $\pi(\theta)$ vraisemblance a priori a posteriori Gamma Gamma Gamma $\frac{\mathcal{G}(\alpha+\nu,\beta+x)}{\text{Beta}}$ $G(\nu, \theta)$ $\mathcal{G}(\alpha,\beta)$ Negative Binomial Beta $\mathcal{B}e(\alpha+m,\beta+x)$ $\mathcal{N}eg(m,\theta)$ $\mathcal{B}e(\alpha,\beta)$ Dirichlet Multinomial Dirichlet $\mathcal{M}_k(\theta_1,\ldots,\theta_k)$ $\mathcal{D}(\alpha_1,\ldots,\alpha_k)$ $\mathcal{D}(\alpha_1 + x_1, \ldots, \alpha_k + x_k)$

A. Φlippe (Univ. Nantes) Statistique Bayésienne Automne 2007 29 / 1

choix uniforme

$$\Theta = \{\theta_1, \cdots, \theta_p\}$$
 $\pi(\theta_i) = 1/p$

Extension au continu $\pi(\theta) \propto 1$

 La loi a priori n'est pas une probabilité mais si

$$\int f(x|\theta) \, \mathrm{d}\theta < \infty$$

- on peut définir la loi a posteriori qui est bien une probabilité
- le choix dépend de la paramétrisation du modèle

Lois non informatives

Question

Comment choisir la loi a priori lorsque l'on ne dispose pas d'information?

On distingue trois grandes familles de lois

1 la loi uniforme (loi de Laplace)

2 maximisation d'un critère d'information (loi de Jeffrey)

3 argument fréquentiste (loi de concordance)

A. Φlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

30 / 1

loi a priori

Construction basée sur l'information

Principe : on maximise l'information apportée par les données c'est-à-dire

on maximise la distance entre la loi priori et la loi a posteriori

$$\mathbb{E}^n \left[\int \pi(\theta|x_n) \log(\pi(\theta|x_n)/\pi(\theta)) d\theta \right]$$

on obtient π_n , puis on prend la limite quand $n \to \infty$

A. Φlippe (Univ. Nantes) Statistique Bayésienne

Automne 2007 31 / 1

A. Фlippe (Univ. Nantes)

Statistique Bavésienne

Automne 2007

Résultat

Exemples

La loi dite de Jeffrey

$$\pi^*(\theta) \propto |I(\theta)|^{1/2}$$

οù

$$I(heta) = \mathbb{E}_{ heta} \left[rac{\partial \ell}{\partial heta^t} \; rac{\partial \ell}{\partial heta}
ight]$$

Information de Fisher

modèle Gaussien

La variance est connue

• La moyenne est connue

Les deux sont inconnues

$$\pi(\mu,\sigma)\sim\sigma^{-2}$$

modèle binomial

$$x \sim \mathcal{B}(n, \theta)$$

Be(1/2, 1/2)

A. Olippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

A. Olippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

Un problème classique : la régression

On observe x = (vitesse, distance)

log(distance) = a + b log(vitesse) + erreur

- $\theta = (a, b, \sigma^2)$
- $\log(\text{distance}) \sim$ $\mathcal{N}(a + b \log(\text{vitesse}), \sigma^2)$

la régression : estimateurs classiques

On estime les paramètres par la méthode des moindres carrés Voici le code R

> lm(log(dist) ~ log(speed), data = cars)

Call:

lm(formula = log(dist) ~ log(speed), data = cars)

Coefficients:

la régression : approche bayésienne

Approche bayésienne non informative voici le code R :

library(MCMCpack) posterior <- MCMCregress(log(dist) ~ log(speed), data = cars)</pre> plot(posterior)

Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-series SE
(Intercept)	-0.7262	0.38441	0.0038441	0.0035905
log(speed)	1.6010	0.14294	0.0014294	0.0013524
sigma2	0.1719	0.03700	0.0003700	0.0004516

A. Φlippe (Univ. Nantes)

Statistique Bayésienne

loi a priori

Automne 2007

Argument fréquentiste

Concordance des régions de confiance :

On part d'une région de confiance fréquentiste $\{\theta \in C_x\}$ de niveau $1-\alpha$ c'est à dire

$$P_{\theta}(\theta \in \mathbb{C}_{x}) = \int_{C_{x}} f(x|\theta) dx = 1 - \alpha$$

On cherche une loi a priori telle que la loi a posteriori vérifie

$$P(\theta \in C_x|x) \xrightarrow[n \to \infty]{} 1 - \alpha$$

Le graphique suivant donne

- dans la colonne de gauche les chaînes de Markov simulées par un algorithme de Gibbs
- dans la colonne de droite la loi a posteriori marginale des différents paramètres

A. Φlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

Automne 2007

38 / 1

Loi de concordance en dimension 1

la loi de Jeffrey vérifie

$$P(\theta \le k_{\alpha}(x)|x) = 1 - \alpha + O(n^{-1})$$

En dimension supérieure

A. Plippe (Univ. Nantes)

on doit résoudre une équation de la forme

$$[I''(\theta)]^{-1/2}I'(\theta)\nabla \log \pi(\theta) + \nabla^{t}\{I'(\theta)[I''(\theta)]^{-1/2}\} = 0.$$

Statistique Bavésienne

Automne 2007 A. Φlippe (Univ. Nantes) Statistique Bayésienne

Performance des procédures d'estimation

Modèle : : $X \sim f(X|\theta)$ avec $X \in \mathcal{X}$ [Observation] et $\theta \in \Theta$ [inconnu]

Estimation de $g(\theta) \in \mathcal{D}$

Problèmes : :

- Évaluation du risque des procédures employées
- Comparaison des procédures employées

Question

Quelle est la meilleure procédure?

Question

Existence? Unicité?

A. Plippe (Univ. Nantes)

Statistique Bayésienne

Risque

Automne 2007

41 / 1

43 / 1

Risque / Coût

Elle repose sur l'existence d'une fonction de coût

$$L: \begin{array}{ccc} \Theta \times \mathcal{D} & \to & \mathbb{R} \\ (\theta, \delta) & \to & L(\theta, \delta) \end{array}$$

• L mesure l'erreur/la pénalité résultant de l'emploi de δ pour estimer $g(\theta)$

A. Olippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

Automne 2007 42 / 1

Définitions du risque d'un estimateur $\delta(x)$

Risque (fréquentiste) :

$$R(\theta, \delta) = \mathbb{E}_{\theta}(L[\theta, \delta(x)]) = \int_{\mathcal{X}} L(\theta, \delta(x)) f(x|\theta) dx$$

2 Risque de Bayes :

A. Plippe (Univ. Nantes)

$$r(\pi, \delta) = \mathbb{E}^{\pi}[R(\theta, \delta)] = \int_{\Theta} R(\theta, \delta)\pi(\theta)d\theta$$
$$= \int_{\Theta} \int_{\mathcal{X}} L(\theta, \delta(x))f(x|\theta)dx\pi(\theta)d\theta$$

Statistique Bayésienne

Statistique Bayésienne Automne 2007 A. Plippe (Univ. Nantes)

Procédure de Bayes optimale

Étant donné :

- la loi des observations $x \sim f(x|\theta)$,
- ullet la loi a priori π
- une fonction de coût*L*

On cherche l'estimateur qui minimise le risque bayésien

$$\delta^{\pi}(x) = \arg \min_{d} \mathbb{E}^{\pi}[L(\theta, d)|x].$$

Définition

 δ^{π} est l'estimateur de Bayes de θ associé à π

Remarque

L'estimateur de Bayes n'est pas nécessairement unique (p.s.)

A. Φlippe (Univ. Nantes) Statistique Bayésienne Automne 2007 45 / 1

Deux critères fréquentistes

- Admissibilité
- Minimaxité

Quelques exemples

Sous coût L^2

$$L(\delta, \theta) = |\theta - \delta|^2$$

l'estimateur de Bayes est égal à

$$\delta^{\pi}(x) = \mathbb{E}(\theta|x)$$

Sous coût L^1

$$L(\delta, \theta) = |\theta - \delta|$$

l'estimateur de Bayes est la médiane de loi a posteriori

A. Φlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007 46 / 1

Risque

Admissibilité

Définition

Un estimateur δ est admissible s'il n'existe pas δ' tq

$$R(\theta, \delta') \le R(\theta, \delta) \ \forall \ \theta$$
 et $R(\theta_0, \delta') < R(\theta_0, \delta)$

Théorème

Si un estimateur de Bayes associé à une loi a priori π est unique, alors δ^{π} est admissible.

A. Φlippe (Univ. Nantes) Statistique Bayésienne Automne 2007 47 / 1

A. Фlippe (Univ. Nantes)

Minimaxité

Définition

Le risque minimax est donné par $\underline{R} = \inf_{\delta \in \mathcal{D}^*} \sup_{\theta} R(\theta, \delta)$

Définition

 δ_0 est un estimateur minimax si $R(\theta, \delta_0) \leq \underline{R}$

Théorème

Un estimateur de Bayes qui a un risque fréquentiste constant est minimax.

A. **Plippe** (Univ. Nantes)

Statistique Bayésienne

Automne 2007

Statistique Bayésienne

Automne 2007

50 / 1

Modèlisation par mélanges

Motivations

- Phénomènes complexes // Structures multimodales
- Populations hétérogènes et classes homogènes
- Oiscrimination/Classification

Définition

Le modèle admet une densité de la forme

$$g(x) = \sum_{i=1}^{k} p_i f(x|\theta_i) ,$$

avec la contrainte $p_1 + \ldots + p_k = 1$

A. Olippe (Univ. Nantes)

51 / 1

A. Фlippe (Univ. Nantes)

Difficulté

Évaluation de la vraisemblance $[k^n \text{ termes}]$

$$L(\theta, \sigma, p|x) = \prod_{j=1}^{n} \left(\sum_{i=1}^{k} p_i f(x_j|\theta_i) \right),$$

- L'estimateur du maximum de vraisemblance ne peut pas être calculé facilement
- la loi a posteriori est difficile à évaluer

Statistique Bayésienne

Automne 2007

Statistique Bavésienne

Automne 2007

Choix de la loi a priori

Paramètres :

$$\{p_1,\ldots,p_k,\theta_1,\ldots,\theta_k,z_1,\ldots,z_n\}$$

On décompose la loi a priori de la forme suivante

$$\pi(p,\theta,z) = \pi(z|p,\theta_1,\ldots\theta_k)\pi(\theta_1,\ldots\theta_k,p) = \pi(z|p)\pi(\theta_1,\ldots,\theta_k,p)$$

où $\pi(z|p) \sim p_1 \, \mathbb{I}_{(z=1)} + \ldots + p_k \, \mathbb{I}_{(z=k)}$

- La loi de z sachant $p, \theta_1, \dots \theta_k$ est indépendante de $\theta_1, \dots \theta_k$
- $p, \theta_1, \dots \theta_k$ sont indépendants

Données manquantes

$$x_1,\ldots,x_n\sim\sum_{i=1}^k p_i f(x|\theta_i),$$

On introduit les variables d'allocation :

 z_i indicateur de la composante d'origine de x_i .

Réécriture du modèle :

$$x|z \sim f(x|\theta_z)$$

et

$$z \sim p_1 \mathbb{I}_{(z=1)} + \ldots + p_k \mathbb{I}_{(z=k)},$$

Choix de la loi a priori [suite]

Lorsque les composantes sont dans la famille exponentielle

$$f(x|\theta) = h(x)e^{\theta \cdot x - \psi(\theta)}, \qquad \theta \in \mathbb{R}^p,$$

on peut prendre pour chaque composante une loi a priori conjuguée

$$\pi(\theta|y_0,\lambda)\propto \mathsf{e}^{ heta\cdot y_0-\lambda\psi(heta)}$$

et

$$(p_1,\ldots,p_k) \sim \text{Dirichet}(\alpha_1,\ldots,\alpha_k)$$

de densité

$$\pi^D(p_1,\ldots,p_k)\propto p_1^{lpha_1-1}\ldots p_k^{lpha_k-1}\,\mathbb{I}_{(p_1+\ldots+p_k=1)}.$$

Classification

On estime à partir de la loi a posteriori de z_i la composante d'origine de l'observation x_i .

Le critère est le suivant

On décide que l'observation x_i est issue de $f_{J(i)}$ où

$$J(i) = \operatorname{argmax}_{\ell=1,...,k} P(z_i = \ell | x_1,..,x_n)$$

Cas particulier: population à deux composantes

Il suffit de calculer $P(z_i = 1 | x_1, ..., x_n)$. Si $P(z_i = 1 | x_1, ..., x_n) > 1/2$ alors on décide que la composante x_i est issue de la première composante.

Statistique Bayésienne

Automne 2007

L'algorithme de Gibbs

On cherche à approcher la loi a posteriori des paramètres

$$p, \theta_1, \theta_2, z_i, i = 1...n$$

Les lois conditionnelles sont facilement simulables

$$\begin{aligned} z_i|x_1,...x_n,p,\theta_1,\theta_2 &\sim \mathrm{bernoulli}\left(\frac{pf_1(x_i)}{pf_1(x_i)+(1-p)f_2(x_i)}\right) \\ p|x_1,...x_n,z_1,...z_n,\theta_1,\theta_2 &\sim \mathrm{beta}(1+\sum_i z_i,1+n-\sum_i z_i) \\ \end{aligned}$$
etc

Exemple du mélange de deux populations gaussiennes

le modèle s'écrit

$$p\mathcal{N}(m_1, \sigma_1^2) + (1-p)\mathcal{N}(m_2, \sigma_2^2)$$
 ou $pf_1 + (1-p)f_2$

On introduit des variables latentes

$$z = egin{cases} 1 & ext{si } x \sim \mathcal{N}(m_1, \sigma_1^2) \ 0 & ext{si } x \sim \mathcal{N}(m_2, \sigma_2^2) \end{cases}$$

Le choix de la loi a priori sur p est une loi beta de paramètres (1,1) [c'est aussi la loi uniforme].

Le choix des lois a priori sur μ_i et σ_i sont les lois conjuguées. [loi gaussienne sur μ_i et loi gamma sur σ_i^2

Pour les z_i on prend

$$P(z_i = 1|p) = p, \qquad i = 1, ..., n$$

Automne 2007

Approximation de la loi a posteriori par MCMC

A partir des N valeurs simulées par l'algorithme de Gibbs :

$$(z^{(1)}, p^{(1)}, m_1^{(1)}, m_2^{(1)}, \sigma_1^{(1)}, \sigma_2^{(1)}) \dots (z^{(N)}, p^{(N)}, m_1^{(N)}, m_2^{(N)}, \sigma_1^{(N)}, \sigma_2^{(N)})$$

Remarque

 $z^{(j)}$ est un vecteur de taille n dont les coordonnées sont égales à 0 ou 1.

On peut faire une approximation de $\mathbb{E}(p|x_1,\ldots,x_n)$, $\mathbb{E}(\mu_1|x_1,\ldots,x_n)$ etc en prenant

$$\frac{1}{N} \sum_{j=1}^{N} p^{(j)} \qquad \text{etc}$$

Mélanges

Classification

On peut estimer à partir des valeurs $z_i^{(1)}, \dots z_i^{(N)}$ la probabilité $P(z_i = 1 | x_1, \dots, x_n)$ en prenant

$$\hat{P}(z_i = 1 | x_1, ..., x_n) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{I}_{z_i^{(j)} = 1}$$

si $\hat{P}(z_i = 1|x_1,..,x_n) > 1/2$ alors on décide que l'observation x_i est issue de la première composante f_1

A. Фlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

61 / 1

Les données manquantes

Mélanges

Les données simulées

On simule suivant un mélange de deux lois gaussiennes

- la composante 1 est centrée et de variance 1
- la composante 2 est de moyenne 2 et de variance 1

les observations simulées suivant un mélange gaussien

estimation des paramètres

Loi a posteriori pour les moyennes des composantes

Mélanges

Qualité de la classification

A. Φlippe (Univ. Nantes) Statistique Bayésienne Automne 2007 65 / 1 Sélection de modèles

Estimation du nombre de composantes

Problème de sélection de modèles

Mélanges

Passage à *k* inconnu avec

$$k \sim Poi(\lambda)....$$

Statistique Bayésienne Automne 2007 66 / 1 A. Olippe (Univ. Nantes) Sélection de modèles

Le contexte

- On dispose d'une famille de modèles $\{M_i; i \in K\}$
- Pour chaque modèle, on dispose d'une structure paramétrique

Question

- Choix d'une variable discrète k correspondant à un modèle $M_k \in \{M_i; i \in K\}$, K fini.
- **2** Estimation du vecteur des paramètres $\theta^{(k)} \in \Theta_k \subset \mathbb{R}^{n_k}$ pour le modèle sélectionné M_k .

A. Φlippe (Univ. Nantes) Statistique Bayésienne Automne 2007 67 / 1 A. Фlippe (Univ. Nantes) Statistique Bayésienne Automne 2007 68 / 1

Un problème de sélection de modèles ...

Soit \mathbf{x} un processus ARMA d'ordre (p, q)

$$(x_t - \mu) - a_1(x_{t-1} - \mu) + \dots - a_p(x_{t-p} - \mu) = \varepsilon_t - b_1\varepsilon_{t-1} + \dots - b_q\varepsilon_{t-q}$$

où $(\varepsilon_t)_t$ est un bruit blanc gaussien centré.

- \bullet estimation de p, q
- 2 estimation des coefficients, variance du bruit, moyenne

Sélection de modèles

A. Фlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

69 / 1

А. Фlippe (Uni

Statistique Bayésienne

n de modèles

Automne 2007

70 / 1

Approche bayésienne

k est inclus dans l'ensemble des paramètres.

$$p(\mathbf{x}, k, \theta^{(k)}) = \underbrace{\pi_0(k)\pi_1(\theta^{(k)}|k)}_{\text{loi a priori}} \underbrace{p(\mathbf{x}|\theta^{(k)}, k)}_{\text{vraisemblance}}$$

Les approches usuelles

elles utilisent un critère par exemple AIC, BIC ... La démarche est la suivante

- 1 Estimation des paramètres pour chaque modèle.
- Calcul du critère pour chaque modèle

On sélectionne le modèle qui minimise le critère

Estimateurs

A. Plippe (Univ. Nantes)

- Le paramètre discret est estimé par $\hat{k} = \underset{k \in K}{\operatorname{argmax}} P(k = k_0 | \mathbf{x})$
- $oldsymbol{e}$ pour chaque modèle M_k : son vecteur des paramètres $\theta^{(k)}$ est estimé par $\mathbb{E}(\theta^{(k)}|\mathbf{x},k)$

Cette approche nécessite en général la simulation de variables aléatoires en dimension variable.

Statistique Bavésienne

• Algorithme d'Hasting Métropolis à sauts réversibles

Green, 95

• Processus markovien de vie-et-mort

Stephens, 00

Automne 2007

A. Olippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007 71 / 1

Sélection de modèle

This series consists of 540 observations on the Southern Oscillation Index (SOI), computed as the difference of the departure from the long-term monthly mean sea level pressures monthly mean sea level pressures. The index is one measure of the so-called "El Niño-Southern Oscillation", an event of critical importance and interest in climatological studies in recent decades.

A. Фlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

73 / 1

A. Фlippe (Univ. Nantes)

Statistique Bayésienne

Automne 2007

74 / 1

La prévision

Tous les modèles contribuent au calcul de la prévision Contrairement à l'approche classique où l'on calcule la prévision dans le modèle sélectionné.

Le prédicteur bayésien :

c'est un mélange de prédicteurs

Ayant observé x_1, \ldots, x_n , la densité prédictive de x_{n+1} est

$$f(y|x_1,...,x_n) = \sum_{k} \pi(k|x_1,...,x_n) \int f(y|x_1,...,x_n,k\theta) \pi(\theta|x_1,...,x_n,k) d\theta$$

οù

$$\int f(y|x_1,\ldots,x_n,k\theta)\pi(\theta|x_1,\ldots,x_n,k) d\theta$$

correspond à la loi prédictive pour le modèle M_k

A. Φlippe (Univ. Nantes) Statistique Bayésienne Automne 2007 75 / 1

Loi a posteriori des ordres

Pour cet exemple, on sélectionne le modèle ARMA (1,1)

Sélection de modèles