SOLUTIONS DE L'INTERROGATION

22 novembre 2016

[durée : 1 heure]

Exercice 1

On se place dans l'espace vectoriel $M_2(\mathbb{R})$ des matrices 2×2 muni du produit scalaire standard, c.-à-d. pour lequel la base canonique est une base orthonormée et tel que $\langle A|B\rangle = \operatorname{tr}(A^tB)$. Soit

$$\mathcal{H} = \left\{ M \in M_2(\mathbb{R}) \middle| \operatorname{tr}(M) = 1 \right\}$$

l'ensemble des matrices à trace égale à 1.

- a) On note Id la matrice identité de $M_2(\mathbb{R})$. Montrer que $\overrightarrow{\mathcal{H}} = \mathrm{Id}^{\perp}$, où $\overrightarrow{\mathcal{H}}$ est la direction de \mathcal{H} .
- **b)** Soit $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$. Déterminer la distance de A à \mathcal{H} .

Solution:

a) Comme $\langle A|B\rangle = \operatorname{tr}(A^tB)$, nous avons $\operatorname{tr}(A) = \langle A|\operatorname{Id}\rangle$. Ainsi, comme la trace est linéaire, $\mathcal{H} = \operatorname{tr}^{-1}(1)$ est un espace affine de direction

$$\vec{\mathcal{H}} = \operatorname{tr}^{-1}(0) = \left\{ M \in M_2(\mathbb{R}) \middle| \operatorname{tr}(M) = 0 \right\} = \left\{ M \in M_2(\mathbb{R}) \middle| \langle A \middle| \operatorname{Id} \rangle = 0 \right\} = \operatorname{Id}^{\perp}.$$

b) D'après la question précédente on cherche la projection de A sur \mathcal{H} sous la forme $A+t\mathrm{Id} \in \mathcal{H}$ avec $t \in \mathbb{R}$. Nous avons $\mathrm{tr}(A+t\mathrm{Id})=1 \Leftrightarrow 3+2t=1 \Leftrightarrow t=-1$. Ainsi la projection de A sur \mathcal{H} est A – Id et la distance de A à \mathcal{H} est égale à $\mathrm{d}(A,A-\mathrm{Id})=\|\mathrm{Id}\|=\sqrt{1^2+0^2+0^2+1^2}=\sqrt{2}$.

Exercice 2

On considère \mathbb{R}^2 et \mathbb{R}^3 munis de la structure euclidienne standard. Pour chacune des applications suivantes, déterminer s'il s'agit d'une isométrie, et le cas échéant déterminer sa nature et ses paramètres.

- a) $f \in Aff(\mathbb{R}^2)$, $f(x,y) = (\frac{\sqrt{3}}{2}x + \frac{1}{2}y, \frac{1}{2}x \frac{\sqrt{3}}{2}y + 1)$.
- **b)** $g \in \text{Aff}(\mathbb{R}^3), \ g(x,y,z) = (\frac{1}{\sqrt{2}}x \frac{1}{\sqrt{2}}z, -y, \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}z).$
- c) [bonus] $h \in \mathrm{Aff}(\mathbb{R}^3), \ h = T_{\overrightarrow{v}} \circ S_{\mathcal{H}} \text{ où } T_{\overrightarrow{v}} \text{ est la translation du vecteur } \overrightarrow{v} = (1, 1, 1) \text{ et } S_{\mathcal{H}} \text{ est la réflexion par rapport au plan } \mathcal{H} = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1\}.$

Solution:

- a) Nous avons $f(x,y) = A\binom{x}{y} + B$ avec $A = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$ et $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Comme les vecteurs colonnes de A forment une b.o.n et det A = -1, alors f est une réflexion ou une réflexion glissée. Nous avons f(0,0) = (0,1) donc $N = \frac{(0,0)+(0,1)}{2} = (0,\frac{1}{2})$ est un point de l'axe de symétrie. De plus $f(N) = (\frac{1}{4}, -\frac{\sqrt{3}}{4} + 1) = N + \overrightarrow{v}$, où $\overrightarrow{v} = (\frac{1}{4}, -\frac{\sqrt{3}}{4} + \frac{1}{2})$. Ainsi on trouve que f est une réflexion glissée de vecteur $\overrightarrow{v} = \frac{1}{4}(1,2-\sqrt{3})$ et d'axe passant par $N = (0,\frac{1}{2})$ et de direction $\langle \overrightarrow{v} \rangle$.
- $f(0,0) \downarrow \overrightarrow{v}$ $f(N) = N + \overrightarrow{v} \downarrow \downarrow$ (0,0)
- b) L'application g est linéaire de la forme $g(x,y,z)=A\begin{pmatrix} x\\y\\z\end{pmatrix}$ avec $A=\begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\0 & -1 & 0\\\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\end{pmatrix}\in O_3^-$ car les vecteurs colonnes de A forment une b.o.n. et $\det(A)=-1$. De plus comme $\operatorname{tr} A=-1+2\frac{1}{\sqrt{2}}$ nous déduisons que g est une anti-rotation d'angle θ tel que $\cos(\theta)=\frac{1}{\sqrt{2}}$ $\Leftrightarrow \theta=\pm\frac{\pi}{4}$. L'axe de cette rotation est formé par les (-1)-vecteurs propres et comme $A\begin{pmatrix} 0\\1\\0\end{pmatrix}=\begin{pmatrix} 0\\-1\\0\end{pmatrix}$, nous obtenons que l'axe est engendré par $\overrightarrow{u}=(0,1,0)$ (et donc le plan de réflexion est le plan d'équation y=0). Il nous reste à déterminer le signe de l'angle de rotation en orientant l'axe selon \overrightarrow{u} . Soit $\overrightarrow{v}=(1,0,0)$ et $\overrightarrow{w}=g(\overrightarrow{v})=(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$. Comme $\det(u,v,w)=-\frac{1}{\sqrt{2}}<0$ nous pouvons conclure que g est une anti-rotation d'axe vectoriel orienté par (0,1,0) et d'angle de rotation $-\frac{\pi}{4}$ autour de cet axe orienté.
- c) Nous avons $\overrightarrow{\mathcal{H}} = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0\} = \overrightarrow{v}^\perp$. Donc d'après le cours h est une réflexion par rapport à un hyperplan (parallèle à \mathcal{H}) de la forme $M+\overrightarrow{\mathcal{H}}$ où M est un point fixe de h. Soit $P = (1,0,0) \in \mathcal{H}$, ainsi comme $h(P) = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}(1,0,0) = T_{\overrightarrow{v}}(1,0,0) = (2,1,1)$ on trouve que $M = \frac{P+h(P)}{2} = (\frac{3}{2},\frac{1}{2},\frac{1}{2})$ convient. En conclusion h est la réflexion par rapport au plan $\{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=\frac{5}{2}\}$ (car $\frac{3}{2} + \frac{1}{2} + \frac{1}{2} = \frac{5}{2}$).

Remarque: Une autre rédaction est possible en utilisant que si $\mathcal{H} \perp \vec{v}$ alors $S_{\mathcal{H}+\vec{v}/2} \circ S_{\mathcal{H}} = T_{\vec{v}} \Leftrightarrow T_{\vec{v}} \circ S_{\mathcal{H}} = S_{\mathcal{H}+\vec{v}/2}$.