FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Tomáš Plšek **Naměřeno:** 9. března 2018

Obor: Astrofyzika Ročník: II Semestr: IV Testováno:

Úloha č. 10: Zeemanův jev

Úkoly:

1. Ověřte funkci Fabry-Perotova interferometru. Ukažte, že naměřené poloměry různých interferenčních kroužků jedné vlnové délky souhlasí s vhodným vztahem uvedeným v návodu.

- 2. Pomocí posunu vlnočtů při normálním Zeemanově jevu zjistěte velikost Bohrova magnetonu.
- 3. Zjistěte, které složky rozštěpených spektrálních čar jsou vyzařovány ve směru kolmém na indukci magnetického pole, a které ve směru rovnoběžném. Změřte, jak jsou jednotlivé složky rozštěpených spektrálních čar polarizovány. Polarizaci stanovte pro oba směry záření (kolmý i rovnoběžný k magnetické indukci) a pro normální i anomální Zeemanův jev.

1. Úvod

Zeemanův jev popisuje rozštěpení spektrálních čar atomů, jež se nachází v magnetickém poli, jehož vlivem dochází ke změně energií jednotlivých hladin. Jako normální Zeemanův jev se označuje jev, při kterém dochází k přechodu atomu mezi dvěma singletovými stavy. Singletové stavy jsou stavy atomu, při kterých je celkový spin atomu nulový. Naopak k anomálnímu Zeemanově jevu dochází, když alespoň jeden ze stavů singletový není. Projeví se zde i celkový spin atomu a rozštěpení čar je proto složitější.

Při normálním Zeemanově jevu se posune energie vyzářeného fotonu o hodnotu:

$$\Delta E = E_{m_{J1}} - E_{m_{J2}} = (m_{J2} - m_{J1}) \,\mu_B \,B,\tag{1}$$

kde m_J je magnetické kvantové číslo, B je magnetická indukce a μ_B je Bohrův magneton. Hodnotu velikosti magnetické indukce určíme z měření proudu. Vztah mezi procházejícím proudem a velikostí magnetické indukce vyjadřuje tabulka 1.

Tabulka 1: Závislost magnetické indukce na el. proudu.

I[A]	1	2	3	4	5	6	7	8	9	10
B [mT]	72	130	191	253	316	379	439	496	549	596

Pro získání spektrálních čar použijeme Fabry-Perotův interferometr, který světlo rozloží na svazek fázově posunutých paprsků. Následný interferenční obrazec je Z-krát zvětšen a zobrazen

spojkou s ohniskovou vzdálenosti f na čip CCD kamery, kde vytváří soustředné kružnice. Pro rozdíl druhých mocnin sousedních kružnic platí vztah:

$$r_{p+1}^2 - r_p^2 = 2(fZn)^2 \frac{1}{2nd\tilde{\lambda}},$$
 (2)

kde n=1.456 je index lomu pro červené světlo ($\lambda=644$ nm), $\tilde{\lambda}=1/\lambda$ je vlnočet světla a d=3 mm je tloušťka interferometru. Po rozštěpení hladin platí:

$$\frac{r_{b,p}^2 - r_{a,p}^2}{r_{a,p+1}^2 - r_{a,p}^2} = 2nd\left(\tilde{\lambda}_b - \tilde{\lambda}_a\right) \tag{3}$$

kde $(\tilde{\lambda}_b - \tilde{\lambda}_a)$ je rozdíl vlnočtů původní a rozštěpené spektrální čáry. Úpravou rovnic (1) a (3) získáváme vztah pro Bohrův magneton:

$$\mu_B = \frac{r_{b,p}^2 - r_{a,p}^2}{r_{a,p+1}^2 - r_{a,p}^2} \frac{hc}{2ndB}.$$
 (4)

2. Měření

Nejdříve ověříme funkčnost Fabry-Perotova interferometru. Budeme tedy měřit poloměry kroužků při nulovém magnetickém poli a sledovat zda splňují vztah (2). Všechny veličiny na pravé straně rovnice (2) jsou konstanty, pro kvadrát poloměru by tedy měla platit lineární závislost.

Tabulka 2: Ověření funkce Fabry-Perotova interferometru.

p	$r_p [\mu m]$	$\Delta r^2 \ [\mu \mathrm{m}^2]$
1	2.25	5.062
2	4.10	16.82
3	5.41	29.31
4	6.54	42.78
5	7.60	57.79

Graf 1: Ověření funkčnosti Fabry-Perotova interferometru.

V grafu 1 vidíme, že závislost kvadrátu poloměru na jeho indexu p je lineární. Po sobě následující body jsou od sebe tedy stejně daleko.

Nyní budeme sledovat rozštěpení čar (kroužků) vlivem magnetického pole a měřením jejich poloměrů určíme hodnotu Bohrova magnetonu. Hodnotu magnetické indukce určíme z proudu interpolací hodnot z tabulky 1. Použil jsem polynom 3. stupně:

$$c_0 = 19.19 \text{ mT}, c_1 = 50.47 \text{ mT} \cdot \text{A}^{-1}, c_2 = 2.85 \text{ mT} \cdot \text{A}^{-2} \text{ a } c_3 = -0.21 \text{ mT} \cdot \text{A}^{-3}.$$

Tabulka 3a: Poloměry kroužků a hodnota magnetonu při B = 637 mT (I = 6.21 A).

$r_a [\mu \mathrm{m}]$	$r_b [\mu \mathrm{m}]$	$r_c [\mu \mathrm{m}]$	$\mu_B^{ab} [10^{-24} \text{ A} \cdot \text{m}^2]$	$\mu_B^{bc} [10^{-24} \text{ A} \cdot \text{m}^2]$
1.77	2.24	2.69	10.24	11.79
3.80	4.07	4.34	10.72	11.71
5.14	5.33	5.54	9.24	10.43
6.30	6.45	6.64		

Tabulka 3b: Poloměry kroužků a hodnota magnetonu při $B=765~\mathrm{mT}$ $(I=7.75~\mathrm{A}).$

	$r_a [\mu \mathrm{m}]$	$r_b [\mu \mathrm{m}]$	$r_c [\mu \mathrm{m}]$	$\mu_B^{ab} [10^{-24} \text{ A} \cdot \text{m}^2]$	$\mu_B^{bc} [10^{-24} \text{ A} \cdot \text{m}^2]$
ſ	1.66	2.23	2.72	9.76	10.42
	3.74	4.06	4.38	10.27	11.23
	5.08	5.35	5.57	10.42	9.43
	6.24	6.45	6.61		

Tabulka 3c: Poloměry kroužků a hodnota magnetonu při $B=858~\mathrm{mT}$ $(I=9.32~\mathrm{A}).$

$r_a [\mu \mathrm{m}]$	$r_b [\mu \mathrm{m}]$	$r_c [\mu \mathrm{m}]$	$\mu_B^{ab} [10^{-24} \text{ A} \cdot \text{m}^2]$	$\mu_B^{bc} [10^{-24} \text{ A} \cdot \text{m}^2]$
1.55	2.23	2.81	9.80	10.83
3.69	4.06	4.42	10.23	10.84
5.05	5.34	5.65	9.99	10.72
6.21	6.48	6.72		

Výsledná hodnota Bohrova magnetonu pro všechny tři hodnoty magnetické indukce $\mu_B = (10.4 \pm 0.2) \cdot 10^{-24} \text{ A} \cdot \text{m}^2.$

Při normálním Zeemanově jevu se v případě, že je směr šíření světla kolmý na vektor magnetické indukce, polarizují všechny čáry lineárně (hlavní i rozštěpené). Hlavní čára se polarizuje rovnoběžně a vedlejší čáry kolmo na směr magnetické indukce. Když je směr šíření světla rovnoběžný na vektor magnetické indukce, hlavní čára není viditelná a vedlejší čáry jsou polarizovány kruhově. Můžeme to dokázat pomocí čtvrtvlné destičky, která nám kruhově polarizované světlo změní na světlo lineárně polarizované. Ukáže se, že jedna vedlejší čára je polarizována levotočivě a druhá pravotočivě.

Při anomálním Zeemanově jevu se původní čára rozštěpí na 9 složek. Použitím polarizátoru se ukáže, že jsou všechny polarizovány lineárně a to tak, že šest je polarizováno kolmo a tři rovnoběžně na směr magnetické indukce.

3. Závěr

V první části jsem ověřil funkci Fabry-Perotova interferometru. Závislost kvadrátů poloměrů na indexu je lineární. Rozdíl po sobě následujících bodů je tedy stejný.

Z měření poloměrů původních a rozštěpených kružnic červené čáry kadmia jsem určil hodnotu Bohrova magnetonu $\mu_B = (10.4 \pm 0.2) \cdot 10^{-24} \text{ A} \cdot \text{m}^2$. Tato hodnota dost dobře odpovídá reálné hodnotě $\mu_B = 9.274 \cdot 10^{-24} \text{ A} \cdot \text{m}^2$.

Při normálním Zeemanově jevu jsou ve směru kolmém na směr magnetické indukce vyzařovány všechny tři složky spektrální čáry a jejich polarizace je lineární. Ve směru rovnoběžném jsou vyzařovány pouze vedlejší čáry a jejich polarizace je kruhová. Při anomálním Zeemanově jevu vzniká 9 složek, které jsou všechny polarizovány lineárně (šest kolmo a tři rovnoběžně na směr magnetické indukce).