CATEGORY THEORY

EDWARD O'CALLAGHAN

Contents

1. Introduction 2

2

1. Introduction

We begin by defining what we mean by a 'Category'.

Definition 1.1 (Category). A category K consists of the following three mathematical entities:

- (1) A class $Ob(\mathcal{K})$ of objects
- (2) A class $\operatorname{Hom}(A,B)$ of *morphisms*, from $A \longrightarrow B$ such that $A,B \in \operatorname{Ob}(\mathcal{K})$. e.g. $f:A \to B$ to mean $f \in \operatorname{Hom}(A,B)$.

Remark. The class of *all* morphisms of K is denoted Hom(K).

- (3) Given $A, B, C \in \mathrm{Ob}(\mathcal{K})$, a binary operation $\circ : Hom(B, C) \times Hom(A, B) \to Hom(A, C)$ called *composition*, satisfying:
 - (a) (associativity) Given $f: A \to B, g: B \to C$ and $h: C \to D$ we have $h \circ (g \circ f) = (h \circ g) \circ f$.

(b) (identity) For any object X there is an identity morphism $1_X: X \to X$ such that for any $f: A \to B$ we have $1_B \circ f = f \circ 1_A$.

$$X^{2}$$

It is also worth noting about what we mean by 'small' and 'large' categories.

Definition 1.2 (Small Category). A category \mathcal{K} is called small if both $\mathrm{Ob}(\mathcal{K})$ and $\mathrm{Hom}(\mathcal{K})$ are sets. If \mathcal{K} is not small, then it is called large. \mathcal{K} is called locally small if $\mathrm{Hom}(A,B)$ is a set for all $A,B\in\mathrm{Ob}(\mathcal{K})$.

Remark. Most important categories in mathematics are not small however, are locally small.