Topic 6L. Galvanic Cells

- 6L.I The Structure of Galvanic Cells
- 6L.2 Cell Potential and Reaction Gibbs Free Energy
- 6L.3 The Notation for Cells

Luigi Galvani vs. Alessandro Volta

Luigi Galvani: "Animal electricity"

https://www.historytoday.com/archive/months-past/galvani-discovers-animal-electricity

Alessandro Volta: "Voltaic pile"

https://www.chemi-in.com/540

- Electrochemical cell: a device in which an electric current—a flow of electrons through a circuit—is either produced by a spontaneous chemical reaction or used to bring about a nonspontaneous reaction.
- Galvanic cell: an electrochemical cell in which a spontaneous chemical reaction is used to generate an electric current.
 - Battery is a collection of galvanic cells connected in series.
- Electrolytic cell: an electrochemical cell in which an electric current is used to bring about a nonspontaneous reaction.

Spontaneous redox reaction

$$Zn (s) + Cu^{2+} (aq) \rightarrow Zn^{2+} (aq) + Cu (s)$$

- Electrode
 - Anode: an electrode at which oxidation takes place
 - Cathode: an electrode at which reduction takes place
- Electrolyte: an ionically conducting medium inside the cell

- Daniel cell
 - Anode: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$
 - Cathode: Cu^{2+} (aq) + $2e^- \rightarrow Cu$ (s)

- Charge (Q)
 - Unit: Coulomb (C)
 - Charge of one electron: 1.6×10^{-19} C
 - Number of electrons for I C: 6.25×10^{18}
 - Total charge for I mol of electrons $(6.02 \times 10^{23}) \times (1.6 \times 10^{-19}) = 96,485 \text{ C} = \text{Faraday constant}$
 - $Q = I \times t$
 - $IC = IA \cdot s$

$$Q = It$$

$$I = Q/t$$

Charge flow per second

- Electric potential (difference)
 - Potential difference → Causes charges to flow
 - Charge flow → Existence of potential difference
 - Electrical potential is analogous to gravitational potential
 - Electrical work is a type of nonexpansion work because it involves moving electrons rather than changing the volume of the system.
 - I C · V = I J

Electric potential difference calculation

```
\Delta G = w_{\rm e,max} at const. pressure and temperature (Topic 4J) w_{\rm e} = {\rm total\ charge\ x\ potential\ difference} = (-neN_{\rm A}) \times \Delta V F = {\rm Faraday\ constant} = 96485\ {\rm C} \cdot {\rm mol}^{-1} w_{\rm e} = -nF\Delta V \Delta G = -nF\Delta V_{\rm rev} = -nFE_{\rm cell} for E > 0, \Delta G < 0 \rightarrow {\rm Spontaneous\ reaction}
```

Standard cell potential

$$\Delta G^{\circ} = -nFE_{cell}^{\circ}$$
 (gases at I bar, solutes in unit activity, liquids and solids are pure)

 \blacksquare $\triangle G$ vs. E

$$\Delta G^{\circ} \qquad E_{cell}^{\circ}$$

$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s) \qquad -212 \text{ kJ} \qquad +1.10 \text{ V}$$

$$2 Zn(s) + 2 Cu^{2+}(aq) \longrightarrow 2 Zn^{2+}(aq) + 2 Cu(s) \qquad -424 \text{ kJ} \qquad +1.10 \text{ V}$$

$$E_{\text{cell}}^{\circ} = -\Delta G^{\circ} / nF$$

The cell potential is independent of the size of the cell.

- Cell diagram
 For Daniel cell
 Zn(s)|Zn²⁺(aq)|Cu²⁺(aq)|Cu(s)
- With salt bridge
 Zn(s)|Zn²⁺(aq)|Cu²⁺(aq)|Cu(s)
- With inert metallic electrode
 H⁺(aq)|H₂(g)|Pt(s), Pt(s)|H₂(g)|H⁺(aq)

Salt bridge

- Two separate beakers without salt bridge
 The reaction will stop after a short period of time.
- One beaker:
 - \rightarrow mixture of Zn²⁺ and Cu²⁺ leads to ill-defined potential.

Electronic voltmeter

Notation convention

Left (L)	Right (R)
$Zn(s) \longrightarrow Zn^{2+}(aq) + 2 e^{-}$ (oxidation)	$Cu^{2+}(aq) + 2 e^{-} \longrightarrow Cu(s)$ (reduction)
Overall (R + L): $Zn(s) + Cu^{2+}(aq) \longrightarrow$	$Zn^{2+}(aq) + Cu(s)$ $E_{cell} = +1V$

Left (L)	Right (R)
$Cu^{2+}(aq) + 2 e^{-} \longrightarrow Cu(s)$ (oxidation)	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2 e^{-}$ (reduction)
Overall (L + R): $Cu(s) + Zn^{2+}(aq) \longrightarrow Cu^{2}$	$E_{\text{cell}} = -1\text{V}$