# Training neural nets: Online, batch, and minibatch modes

**Deep Learning & Applications** 

# **Perceptron Recap**



$$\sigma\left(\sum_{i=1}^{m} x_i w_i + b\right) = \sigma\left(\mathbf{x}^T \mathbf{w} + b\right) = \hat{y}$$

$$\sigma(z) = \begin{cases} 0, \ z \le 0 \\ 1, \ z > 0 \end{cases}$$

$$b = -\theta$$

Let 
$$\mathcal{D} = (\langle \mathbf{x}^{[1]}, y^{[1]} \rangle, \langle \mathbf{x}^{[2]}, y^{[2]} \rangle, ..., \langle \mathbf{x}^{[n]}, y^{[n]} \rangle) \in (\mathbb{R}^m \times \{0, 1\})^n$$

- 1. Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ ,  $\mathbf{b} := 0$
- 2. For every training epoch:
  - A. For every  $\langle \mathbf{x}^{[i]}, y^{[i]} \rangle \in \mathcal{D}$ :
    - (a)  $\hat{y}^{[i]} := \sigma(\mathbf{x}^{[i]T}\mathbf{w} + b)$  Compute output (prediction)

    - (c)  $\mathbf{w} := \mathbf{w} + err \times \mathbf{x}^{[i]}$ ,  $b := b + err \leftarrow \mathsf{Update\ parameters}$

**Let** 
$$\mathcal{D} = (\langle \mathbf{x}^{[1]}, y^{[1]} \rangle, \langle \mathbf{x}^{[2]}, y^{[2]} \rangle, ..., \langle \mathbf{x}^{[n]}, y^{[n]} \rangle) \in (\mathbb{R}^m \times \{0, 1\})^n$$

#### "On-line" mode

- 1. Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ ,  $\mathbf{b} := 0$
- 2. For every training epoch:
  - A. For every  $\langle \mathbf{x}^{[i]}, y^{[i]} \rangle \in \mathcal{D}$  :
    - (a) Compute output (prediction)
    - (b) Calculate error
    - (c) Update  $\mathbf{w}, b$

This applies to all common neuron models and (deep) neural network architectures!

There are some variants of it, namely the "batch mode" and the "minibatch mode" which we will briefly go over in the next slides and then discuss more later

**Let** 
$$\mathcal{D} = (\langle \mathbf{x}^{[1]}, y^{[1]} \rangle, \langle \mathbf{x}^{[2]}, y^{[2]} \rangle, ..., \langle \mathbf{x}^{[n]}, y^{[n]} \rangle) \in (\mathbb{R}^m \times \{0, 1\})^n$$

#### "On-line" mode

- 1. Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ ,  $\mathbf{b} := 0$
- For every training epoch:
  - A. For every  $\langle \mathbf{x}^{[i]}, y^{[i]} \rangle \in \mathcal{D}$  :
    - (a) Compute output (prediction)
    - (b) Calculate error
    - (c) Update  $\mathbf{w}, b$

#### Batch mode

- 1. Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ ,  $\mathbf{b} := 0$
- 2. For every training epoch:
  - A. Initialize  $\Delta \mathbf{w} := 0$ ,  $\Delta b := 0$
  - B. For every  $\langle \mathbf{x}^{[i]}, y^{[i]} \rangle \in \mathcal{D}$  :
    - (a) Compute output (prediction)
    - (b) Calculate error
    - (c) Update  $\Delta \mathbf{w}, \Delta b$
  - C. Update  $\mathbf{w}, b$ :

$$\mathbf{w} := \mathbf{w} + \Delta \mathbf{w}, b := +\Delta b$$

**Let** 
$$\mathcal{D} = (\langle \mathbf{x}^{[1]}, y^{[1]} \rangle, \langle \mathbf{x}^{[2]}, y^{[2]} \rangle, ..., \langle \mathbf{x}^{[n]}, y^{[n]} \rangle) \in (\mathbb{R}^m \times \{0, 1\})^n$$

#### "On-line" mode

- 1. Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ ,  $\mathbf{b} := 0$
- 2. For every training epoch:
  - A. For every  $\langle \mathbf{x}^{[i]}, y^{[i]} 
    angle \in \mathcal{D}$  :
    - (a) Compute output (prediction)
    - (b) Calculate error
    - (c) Update  $\mathbf{w}, b$

In practice, we usually shuffle the dataset prior to each epoch to prevent cycles

#### Batch mode

- 1. Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ ,  $\mathbf{b} := 0$
- 2. For every training epoch:
  - A. Initialize  $\Delta \mathbf{w} := 0$ ,  $\Delta b := 0$
  - B. For every  $\langle \mathbf{x}^{[i]}, y^{[i]} \rangle \in \mathcal{D}$  :
    - (a) Compute output (prediction)
    - (b) Calculate error
    - (c) Update  $\Delta \mathbf{w}, \Delta b$
  - C. Update  $\mathbf{w}, b$ :

$$\mathbf{w} := \mathbf{w} + \Delta \mathbf{w}, b := +\Delta b$$

Let 
$$\mathcal{D} = (\langle \mathbf{x}^{[1]}, y^{[1]} \rangle, \langle \mathbf{x}^{[2]}, y^{[2]} \rangle, ..., \langle \mathbf{x}^{[n]}, y^{[n]} \rangle) \in (\mathbb{R}^m \times \{0, 1\})^n$$

#### "On-line" mode

- 1. Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ ,  $\mathbf{b} := 0$
- 2. For every training epoch:
  - A. For every  $\langle \mathbf{x}^{[i]}, y^{[i]} 
    angle \in \mathcal{D}$  :
    - (a) Compute output (prediction)
    - (b) Calculate error
    - (c) Update  $\mathbf{w}, b$

In practice, we usually shuffle the dataset prior to each epoch to prevent cycles

### "On-line" mode II (alternative)

- 1. Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ ,  $\mathbf{b} := 0$
- 2. For for t iterations:
  - A. Pick random $\langle \mathbf{x}^{[i]}, y^{[i]} \rangle \in \mathcal{D}$ :
    - (a) Compute output (prediction)
    - (b) Calculate error
    - (c) Update  $\mathbf{w}, b$

#### No shuffling required

(actually, not really stochastic because a fixed training set instead of sampling from the population)

Let 
$$\mathcal{D} = (\langle \mathbf{x}^{[1]}, y^{[1]} \rangle, \langle \mathbf{x}^{[2]}, y^{[2]} \rangle, ..., \langle \mathbf{x}^{[n]}, y^{[n]} \rangle) \in (\mathbb{R}^m \times \{0, 1\})^n$$

#### Minibatch mode

(mix between on-line and batch)

- 1. Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ ,  $\mathbf{b} := 0$
- 2. For every training epoch:

The most common mode in deep learning. Any ideas why?

- 3. For every minibatch of size *k*:
  - A. Initialize  $\Delta \mathbf{w} := 0, \ \Delta b := 0$
  - B. For every  $\{\langle \mathbf{x}^{[i]}, y^{[i]} \rangle, ..., \langle \mathbf{x}^{[i+k]}, y^{[i+k]} \rangle\} \subset \mathcal{D}$ 
    - (a) Compute output (prediction)
    - (b) Calculate error
    - (c) Update  $\Delta \mathbf{w}, \Delta b$
  - C. Update  $\mathbf{w}, b$ :  $\mathbf{w} := \mathbf{w} + \Delta \mathbf{w}, b := +\Delta b$

Let 
$$\mathcal{D} = (\langle \mathbf{x}^{[1]}, y^{[1]} \rangle, \langle \mathbf{x}^{[2]}, y^{[2]} \rangle, ..., \langle \mathbf{x}^{[n]}, y^{[n]} \rangle) \in (\mathbb{R}^m \times \{0, 1\})^n$$

#### Most commonly used in DL, because

#### Minibatch mode

(mix between on-line and batch)

- 1. Initialize  $\mathbf{w}:=\mathbf{0}\in\mathbb{R}^m$ ,  $\mathbf{b}:=0$
- 2. For every training epoch:
  - 3. For every minibatch of size *k*:
    - A. Initialize  $\Delta \mathbf{w} := 0$ ,  $\Delta b := 0$
    - B. For every  $\{\langle \mathbf{x}^{[i]}, y^{[i]} \rangle, ..., \langle \mathbf{x}^{[i+k]}, y^{[i+k]} \rangle\} \subset \mathcal{D}^2$ .
      - (a) Compute output (prediction)
      - (b) Calculate error
      - (c) Update  $\Delta \mathbf{w}, \Delta b$
    - C. Update  $\mathbf{w}, b$ :  $\mathbf{w} := \mathbf{w} + \Delta \mathbf{w}, b := +\Delta b$

- 1. Choosing a subset (vs 1 example at a time) takes advantage of vectorization (faster iteration through epoch than on-line)
  - having fewer updates than "on-line" makes updates less noisy
- makes more updates/ epoch than "batch" and is thus faster

# **Linear Regression**

Perceptron: Activation function is the threshold function

The output is a binary label  $\hat{y} \in \{0, 1\}$ 



You can think of linear regression as a linear neuron!

Inputs

Linear Regression: Activation function is the identity function

$$\sigma(x) = x$$

The output is a real number  $\hat{y} \in \mathbb{R}$ 

## **Gradient Descent**



# **Gradient Descent**

If the learning rate is too large, we can overshoot



If the learning rate is too small, convergence is very slow



# (Least-Squares) Linear Regression

The update rule turns out to be this:

"On-line" mode

#### Perceptron learning rule

- Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ .  $\mathbf{b} := 0$
- For every training epoch:
  - A. For every  $\langle \mathbf{x}^{[i]}, y^{[i]} \rangle \in \mathcal{D}$ 
    - (a)  $\hat{y}^{[i]} := \sigma(\mathbf{x}^{[i]T}\mathbf{w} + b)$
    - (b)  $err := (y^{[i]} \hat{y}^{[i]})$
    - (c)  $\mathbf{w} := \mathbf{w} + err \times \mathbf{x}^{[i]}$ b := b + err

#### Stochastic gradient descent

- Initialize  $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$ .  $\mathbf{b} := 0$
- 2. For every training epoch:
  - A. For every  $\langle \mathbf{x}^{[i]}, y^{[i]} \rangle \in \mathcal{D}$

(a) 
$$\hat{y}^{[i]} := \sigma(\mathbf{x}^{[i]T}\mathbf{w} + b)$$

(b) 
$$\nabla_{\mathbf{w}} \mathcal{L} = (y^{[i]} - \hat{y}^{[i]}) \mathbf{x}^{[i]}$$
  $\nabla_b \mathcal{L} = (y^{[i]} - \hat{y}^{[i]})$ 

(c) 
$$\mathbf{w} := \mathbf{w} + \eta \times (-\nabla_{\mathbf{w}} \mathcal{L})$$
  $b := b + \eta \times (-\nabla_{b} \mathcal{L})$  learning rate

negative gradient

# Linear Regression Loss Derivative

$$\begin{split} \mathcal{L}(\mathbf{w},b) &= \sum_{i} (\hat{y}^{[i]} - y^{[i]})^2 \quad \text{Sum Squared Error (SSE) loss} \\ \frac{\partial \mathcal{L}}{\partial w_j} &= \frac{\partial}{\partial w_j} \sum_{i} (\hat{y}^{[i]} - y^{[i]})^2 \\ &= \frac{\partial}{\partial w_j} \sum_{i} (\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]})^2 \\ &= \sum_{i} 2(\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]}) \frac{\partial}{\partial w_j} (\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]}) \\ &= \sum_{i} 2(\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]}) \frac{d\sigma}{d(\mathbf{w}^T \mathbf{x}^{[i]})} \frac{\partial}{\partial w_j} \mathbf{w}^T \mathbf{x}^{[i]} \\ &= \sum_{i} 2(\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]}) \frac{d\sigma}{d(\mathbf{w}^T \mathbf{x}^{[i]})} x_j^{[i]} \quad \text{(Note that the activation function is the identity function in linear regression)} \\ &= \sum_{i} 2(\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]}) x_j^{[i]} \end{split}$$

# Linear Regression Loss Derivative (alt.)

$$\mathcal{L}(\mathbf{w}, b) = \frac{1}{2n} \sum_{i} (\hat{y}^{[i]} - y^{[i]})^2$$

Mean Squared Error (MSE) loss often scaled by factor 1/2 for convenience

$$\frac{\partial \mathcal{L}}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} \frac{1}{2n} \sum_{i} (\hat{y}^{[i]} - y^{[i]})^{2}$$

$$= \frac{\partial}{\partial w_{j}} \sum_{i} \frac{1}{2n} (\sigma(\mathbf{w}^{T} \mathbf{x}^{[i]}) - y^{[i]})^{2}$$

$$= \sum_{i} \frac{1}{n} (\sigma(\mathbf{w}^{T} \mathbf{x}^{[i]}) - y^{[i]}) \frac{\partial}{\partial w_{j}} (\sigma(\mathbf{w}^{T} \mathbf{x}^{[i]}) - y^{[i]})$$

$$= \frac{1}{n} \sum_{i} (\sigma(\mathbf{w}^{T} \mathbf{x}^{[i]}) - y^{[i]}) \frac{d\sigma}{d(\mathbf{w}^{T} \mathbf{x}^{[i]})} \frac{\partial}{\partial w_{j}} \mathbf{w}^{T} \mathbf{x}^{[i]}$$

$$= \frac{1}{n} \sum_{i} (\sigma(\mathbf{w}^{T} \mathbf{x}^{[i]}) - y^{[i]}) \frac{d\sigma}{d(\mathbf{w}^{T} \mathbf{x}^{[i]})} x_{j}^{[i]} \text{ (Note that identity for the identity of the ident$$

(Note that the activation function is the identity function in linear regression)

$$= \frac{1}{n} \sum_{i} (\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]}) x_j^{[i]}$$

## Batch Gradient Descent as Surface Plot



## Stochastic Gradient Descent as Surface Plot



## Batch Gradient Descent as Surface Plot



If inputs are on very different scales some weights will update more than others ... and it will also harm convergence (always normalize inputs!)