

Exercice 1 - Mouvement RT - RSG **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{A}}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

On donne
$$\overrightarrow{V(B,2/0)} = \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right)$$
 et $\overrightarrow{\Gamma(B,2/0)} = \ddot{\lambda}(t) \overrightarrow{i_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(2\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right)$.

Question 1 Déterminer $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$

Question 2 Déterminer $\overrightarrow{\delta(I, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 2.

Exercice 2 - Mouvement RT - RSG **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Question 1 Déterminer $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$

Par définition, $\overrightarrow{R_d(2/0)} = m_2 \overrightarrow{\Gamma(G_2, 2/0)} = m_2 \overrightarrow{\Gamma(B, 2/0)}$.

Calcul de $\overrightarrow{V(B,2/0)}$:

 $\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}.$

D'une part, $\overrightarrow{V(B,2/1)} = \dot{\lambda} \overrightarrow{i_1}$.

D'autre part, en utilisant le roulement sans glissement en I, $\overrightarrow{V(B,1/0)} = \overrightarrow{V(I,1/0)} + \overrightarrow{BI} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{0} + \left(-\lambda(t)\overrightarrow{i_1} - R\overrightarrow{j_0}\right) \wedge \overrightarrow{b} + \overrightarrow{k_0} = -\overrightarrow{b} \left(\lambda(t)\overrightarrow{i_1} \wedge \overrightarrow{k_0} + R\overrightarrow{j_0} \wedge \overrightarrow{k_0}\right) = \overrightarrow{b} \left(\lambda(t)\overrightarrow{j_1} - R\overrightarrow{i_0}\right).$ Au final, $\overrightarrow{V(B,2/0)} = \overrightarrow{\lambda}\overrightarrow{i_1} + \overrightarrow{b} \left(\lambda(t)\overrightarrow{j_1} - R\overrightarrow{i_0}\right).$

Calcul de $\Gamma(B,2/0)$:

 $\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right).$

Question 2 Déterminer $\overrightarrow{\delta(I, 1+2/0)} \cdot \overrightarrow{k_0}$

Exercice 3 - Mouvement RT - RSG **

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 Déterminer $\overrightarrow{V(B,2/0)}$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 3 *Déterminer* $\overrightarrow{\Gamma(B,2/0)}$.

Indications:
1.
$$V(B,2/0) = \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right).$$

2. $\{ \mathcal{V}(2/0) \} = \begin{cases} \dot{\theta} \overrightarrow{k_0} \\ \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) \end{cases}$
3. $\overrightarrow{\Gamma(B,2/0)} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right).$

Corrigé voir 4.

numchap-Cours

Exercice 4 - Mouvement RT - RSG **

B2-13

Question 1 Déterminer $\overrightarrow{V(B,2/0)}$.

$$\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}.$$

D'une part, $\overrightarrow{V(B,2/1)} = \overrightarrow{\lambda} \overrightarrow{i_1}$.

D'autre part, en utilisant le roulement sans glissement en I, $\overrightarrow{V(B,1/0)} = \overrightarrow{V(I,1/0)} + \overrightarrow{BI} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{0} + \left(-\lambda(t)\overrightarrow{i_1} - R\overrightarrow{j_0}\right) \wedge \overrightarrow{b} + \overrightarrow{k_0} = -\dot{\theta} \left(\lambda(t)\overrightarrow{i_1} \wedge \overrightarrow{k_0} + R\overrightarrow{j_0} \wedge \overrightarrow{k_0}\right) = \dot{\theta} \left(\lambda(t)\overrightarrow{j_1} - R\overrightarrow{i_0}\right).$ Au final, $\overrightarrow{V(B,2/0)} = \dot{\lambda}\overrightarrow{i_1} + \dot{\theta} \left(\lambda(t)\overrightarrow{j_1} - R\overrightarrow{i_0}\right).$

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B.

$$\{\mathscr{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta} \overrightarrow{k_0} \\ \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) \end{array} \right\}_B.$$

Question 3 *Déterminer* $\overrightarrow{\Gamma(B,2/0)}$.

$$\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right).$$