Chapter 7: Univariate and Descriptive Statistics

Exercises

Brian Fogarty 15 May 2018

Contents

EXERCISE I			T
ANSWERS FO	FOR EXERCISE I		1
Question 1.1	1		1
Question 1.2	2		2
Question 1.3	3		3
Question 1.4	1		4
Question 1.5	5		5
Question 1.6	ŝ		7
EXERCISE II	I		8
ANSWERS FO	FOR EXERCISE II		8
Question 2.1	1		8
	2		
EXERCISE III	II		9
ANSWERS TO	TO EXERCISE III	Ţ	10
Question 3.1	1		10
Question 3.2	2		10
-	}		

EXERCISE I

Using the six variables recoded in Exercise I of Chapter 5 from the abbreviated version of 2015 UK Millennium Cohort survey dataset (mcs.dta), provide the mode, median, mean, standard deviation, and variance (where appropriate). Note: you need to use the haven package to read-in the data.

ANSWERS FOR EXERCISE I

Question 1.1

Since maths is an ordinal-level variable, we can only look at the mode and median.

library(descr)

Warning: package 'descr' was built under R version 3.4.3

freq(mcs\$maths)

mcs\$maths

		Frequency	Percent	Valid Percent	
1. Strongly I	Disagree	598	5.037	5.20	
2. Disagree		1827	15.389	15.89	
3. Agree		5958	50.185	51.80	
4. Strongly A	Agree	3118	26.263	27.11	
NA's		371	3.125		
Total		11872	100.000	100.00	
A		. /	A \		

```
mcs$maths.num <- as.numeric(mcs$maths)
median(mcs$maths.num, na.rm=TRUE)</pre>
```

[1] 3

The mode is "agree" and the median is "agree". If we want to use the median() function, we need to convert maths to a numeric variable and run the function without missing values (na.rm=TRUE). Notice that the median() function gives us the numeric value, "3", and not the label. We need to simply check what the label is for "3" to see it is for "agree".

Question 1.2

Since science is an ordinal-level variable, we can only look at the mode and median.

freq(mcs\$science)

mcs\$science

	Frequency	Percent	Valid Percent	
1. Strongly Disagree	500	4.212	4.35	
2. Disagree	1993	16.787	17.34	
3. Agree	6166	51.937	53.65	
4. Strongly Agree	2834	23.871	24.66	
NA's	379	3.192		
Total	11872	100.000	100.00	
<pre>mcs\$science.num <- as.numeric(mcs\$science) median(mcs\$science.num, na.rm=TRUE)</pre>				

[1] 3

The mode is "agree" and the median is "agree". If we want to use the median() function, we need to convert science to a numeric variable.

Question 1.3

Since gender is a nominal-level variable, we can only look at the mode.

freq(mcs\$gender)

mcs\$gender

		Frequency	Percent
0.	Female	5926	49.92
1.	Male	5946	50.08
Total		11872	100.00

The mode is "male".

Question 1.4

Since bestsch is an ordinal-level variable, we can only look at the mode and median.

freq(mcs\$bestsch)

mcs\$bestsch

		Frequency	Percent	Valid Percent
1.	Never	35	0.2948	0.3044
2.	Sometimes	1058	8.9117	9.2008
3.	Most Times	6469	54.4896	56.2571
4.	Always	3937	33.1621	34.2378
NA	's	373	3.1418	
To	tal	11872	100.0000	100.0000
<pre>mcs\$bestsch.num <- as.numeric(mcs\$bestsch) median(mcs\$bestsch.num, na.rm=TRUE)</pre>				

[1] 3

The mode is "most times" and the median is "most times". If we want to use the median() function, we need to convert bestsch to a numeric variable.

Question 1.5

Since vidgames is an ordinal-level variable, we can look at the mode and median. But, we can also consider vidgames to be a high ordinal-level variable, which allows us to look at all the measures.

```
freq(mcs$vidgames)
```


mcs\$vidgames

		Frequency	${\tt Percent}$	Valid Percent
1. Never		2160	18.194	18.763
2. Less	Half Hr	1565	13.182	13.595
3. Half	Hr to Hr	1343	11.312	11.666
4. 1-2 H	rs	1751	14.749	15.210
5. 2-3 H	rs	1583	13.334	13.751
6. 3-5 H	rs	1478	12.449	12.839
7. 5-7 H	rs	770	6.486	6.689
8. More	7 Hrs	862	7.261	7.488
NA's		360	3.032	
Total		11872	100.000	100.000
<pre>mcs\$vidgames.num <- as.numeric(mcs\$vidgames) median(mcs\$vidgames.num.na.rm=TRUE)</pre>				

[1] 4

The mode is "never" and the median is "1-2 hours". If we want to use the median() function, we need to convert vidgames to a numeric variable.

For the high ordinal version, we can add in the mean, standard deviation, and variance. To do so, we need to use the numeric version of the variable.

```
mean(mcs$vidgames.num, na.rm=TRUE)
```

[1] 3.943016

```
sd(mcs$vidgames.num, na.rm=TRUE)
[1] 2.190292
var(mcs$vidgames.num, na.rm=TRUE)
```

[1] 4.797378

The mean is 3.94, the standard deviation is 2.19, and the variance is 4.80.

Question 1.6

Since siblings is a nominal-level variable, we can only look at the mode.

freq(mcs\$siblings)

Number of siblings

Frequency Percent
0. No Siblings 1678 14.13
1. Siblings 10194 85.87
Total 11872 100.00

The mode is "siblings".

EXERCISE II

Using the Scottish postcodes dataset (depdata.csv), provide the mode, median, mean, standard deviation, and variance (where appropriate) for the original version of pcnt_unemployed and the recoded version with labels from Exercise III in Chapter 5. Why is discussing the descriptive statistics for pcnt_unemployed likely more informative than for the recoded version?

ANSWERS FOR EXERCISE II

Question 2.1

pcnt_unemployed is a ratio-level variable, so we can look at all the measures.

```
depdata <- read.csv("depdata.csv")

options(max.print=9999)
freq(depdata$pcnt_unemployed, plot=FALSE)

median(depdata$pcnt_unemployed)

[1] 5.609426
mean(depdata$pcnt_unemployed)

[1] 6.276225
sd(depdata$pcnt_unemployed)

[1] 2.858125
var(depdata$pcnt_unemployed)</pre>
```

[1] 8.168876

There are 3 modes - 0, 4.615, and 7.222 percent (all the numbers correspond to percentages). The median is 5.61, the mean is 6.28, the standard deviation is 2.86, and the variance is 8.17.

Question 2.2

Since pnct_unemployed3 is an ordinal-level variable, we can only look at the mode and median.

depdata\$pcnt_unemployed3

Frequency	Percent	Valid Percent
43	4.2490	39.091
33	3.2609	30.000
. 25	2.4704	22.727
9	0.8893	8.182
902	89.1304	
1012	100.0000	100.000
	43 33 . 25 9	33 3.2609 25 2.4704

The mode is "low" and the median is "med low".

The original pcnt_unemployed gives us a more precise understanding of unemployment across Scotland. We can say that the median unemployment percentage is 5.61%, which is more informative than saying the median unemployment is "med low". The relatively small standard deviation suggests that most Scottish postcodes' unemployment percentages are clustered near the mean of 6.28%; which is something we cannot determine from the recoded version.

EXERCISE III

Mama Llama wants to know whether her cigarette smoking is excessive in the Glasgow llama population. You need to help her figure it out.

1. Mama Llama smokes 40 cigarettes a week (x), while the mean llama smoking is 30 cigarettes a week (μ) and the standard deviation is 10 cigarettes a week (σ) . Calculate the z-score.

- 2. Using the pnorm() function and the calculated z-score, find the probability.
- 3. Interpret the probability using plain language.

ANSWERS TO EXERCISE III

Question 3.1

$$z = \frac{40 - 30}{10} = 1.00$$

Question 3.2

pnorm(1.00)

[1] 0.8413447

The probability is .841.

Question 3.3

We interpret this as Mama Llama smokes more or the same number of cigarettes per week than 84.1% of the Glasgow llama population. This can be phrased differently by using the .159 probability - 15.9% of the Glasgow llama population smokes more or the same number of cigarettes per week than Mama Llama.