Grundlagen

- Grundlagen
 - $-Y = f(x) + \epsilon$
- $Y = \text{Zielgr\"{o}}$ ße, f() = unbekanntes/wahres Modell, X =Prädiktoren, ϵ Nicht reduzierbarer Fehler
- $-\hat{Y} = \hat{f}(X) + \epsilon$
- \hat{Y} = Schätzung der Zielgröße, \hat{f} = Schätzung des Modells
- Ziel: Möglichst genaue Schätzung finden
- Ziel:
- Prediction (Vorhersage von Werten)
- Inference (Ursachenanalyse, wie wirken sich Änderungen
- · Bias-Variance Tradeoff
- Bias: Fähigkeit des Models die eigentliche Beziehung der Daten abzubilden
- Variance: Fähigkeit des Models auf anderen Subsets gleich gute Modelle zu erzeugen
- TrainingsError: Wird immer kleiner, da Modell sich immer besser anpasst
- TestError: Wird erst kleiner, steigt dann aber wieder (Overfitting)
- Nichtreduzierbarer Error: Bleibt immer gleich (Messfehler etc.)

Regression

- Modellgüte:
- Schätzung der Parameter $\beta_0 und \beta_1$ über kleinste **Ouadrate**

 - * $\beta_0 = \overline{v} \beta_1 \overline{x}$
 - * Erwartungstreue: $E(\hat{\beta}_0) = \beta_0$ und $E(\hat{\beta}_1) = \beta_1$
- $-RSS = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$

- $RSE = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i \hat{y}_i)^2}$ (Zielgröße weicht im Durchschnitt RSE Einheiten von der Regressionsgeraden ab)
- $-R^2 = 1 \frac{RSS}{TSS}$, je größer desto besser $0 \le R^2 \le 1$ (Var(Zielwert) wird durch R^2 % der Prädiktoren erklärt) $-R_{adj}^2 = 1 - \frac{(1-R^2)(N-1)}{N-p-1}$ Adjustiert mit Anzahl der Prädik-
- Standardfehler und Intervalle
 - * $Var(\epsilon) = \frac{1}{n-2} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- * $(SE(\hat{\beta}_0))^2 = Var(\epsilon) * (\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i \overline{x})^2})$
- * $(SE(\hat{\beta}_1))^2 = \frac{Var(\epsilon)}{\sum_{i=1}^n (x_i \overline{x})^2}$
- * Intervallschätzung: $[\hat{\beta}_1 2 * SE(\hat{\beta}_1), \hat{\beta}_1 + 2 * SE(\hat{\beta}_1)]$
- * Interpret: Aus 100 Proben liegt β_1 in 95 Fällen im Interval
- * 95%-Konfidenzinterval: bezieht sich auf den durchschnittlichen Y Wert
- * 95%-Prognoseinterval: bezieht sich auf den konkreten Wert Y von Ausgangswerten X1...
- t-Test
 - * $H_0: \beta_0 = 0; H_1: \beta_1 \neq 0$
 - * X₁ Hat keinen Einfluss auf Y
- * Einfach den p-Wert ablesen, wenn < als bspw. 0.05 dann H_0 verwerfen
- F-Test
 - * $H_0: \beta_0 = \beta_1 = ... = 0$
 - * Alle Prädiktoren haben keinen Einfluss auf Y
- · Oualitative Prädiktoren:
 - Prädiktoren mit 2 Ausprägungen:
 - DummyVariable aka 0(No) oder 1 (Yes)
- Achte auf Normalausprägung von R
- $\hat{y} = \beta_0 + \beta_1 * x_i$
- Koeffizient β_1 kürzt sich je nach Ausprägung raus
- Prädiktoren mit *k* Ausprägungen:
- Erstelle *k* − 1 Dummyvariablen
- Andere ist Normalzustand
- · Interaktionseffekte:
 - Synergieeffekte zwischen zwei oder mehreren Variablen
- $-\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon$
- Auswirkung erkennen durch Umformung:
- $-\hat{y} = \beta_0 + \beta_2 x_2 + (\beta_1 + \beta_3 x_2) * x_1$
- Erhöht man x_1 um eine Einheit erhöht sich \hat{y} um $\beta_1 + \beta_3 x_2$ Einheiten
- x₁ moderiert x₂ und Vice versa

- Signifikanz über p-value feststellen
- Interaktion zwischen Qauli udn Quanti Variablen:
- Kürzt sich komplett raus (wenn 0) oder ist *1 (wenn 1)

Klassifikation

• Grundlagen:

- Klassifikation ist Zuordnung von bedingten Wahrscheinlichkeiten anhand von Ausprägungen
- -P(Y=k|X=x)
- Klasse mit höchster Wahrscheinlichkeit wird gewählt
- Bpsw: Y = 1 (Yes) und 0 (No)
 - * Lineare Regression, die die Wahrscheinlichkeitausgibt funktioniert nicht!
 - * Reg.Gerade wird unter 0 fitten und auch nicht bis 1
- Funktion finden, die $0 \le p(x) \le 1$ für alle X

• Logistic Regression:

- $p(x) = \frac{e^{\beta_0 + \beta_1 * X}}{1 + e^{\beta_0 + \beta_1 * X}}$
- $-0 \le p(x) \le 1$, da immer $e^x \ge 0$ und $\frac{X}{1+Y} \le 1$
- Odds:
- $* \frac{p(x)}{1-(px)} = e^{\beta_0 + \beta_1 * X}$
- $* 0 \le odds \le \infty$
- * Möglichkeit Wahrscheinlichkeit anzugeben:
- * Odds= $\frac{4}{2}$ -> "Siegchancen stehen 4 zu 3"
- * Umrechnung:
- * $p = \frac{odds}{1 + odds} = \frac{e^{logit}}{1 + e^{logit}}$
- * $odds = \frac{p}{1-p} = e^{logit}$
- Logits:
 - * $log(\frac{p(x)}{1-(px)}) = \beta_0 + \beta_1 * X$
 - * $-\infty \le logits \le \infty$
 - * Logits hängen Linear von X ab

Schätzung der Koeffizienten

- Schätzung von β_0 und β_1 über Maximum-Likelihood
- $l(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) * \prod_{i: y_i = 0} (1 p(x_i))$
- Funktion wird maximiert = da wo Likelihood am größten ist, sind Parameter am besten

• Validierung:

- Gleiche Werte/ Tests, wie bei lineare Regression

• Confounding:

- Zusammenhang zwischen zwei Prädiktoren
- Confounder beeinflusst gleichzeitig Zielgröße und anderen Prädiktor
- Hier fehlts

4 Resampling

5 Modellauswahl

6 R - Hilfe

• Grundlagen:

- *set.seed*(*X*) Setzt Seed für random Number Generator
- c(1,2,3,4) Vektor mit Zahlen 1-4
- df[2,3] Greift auf Element der 2.Reihe und 3.Spalte des DFs zu
- -df[, -3] Entfernt 3. Spalte
- head() Zeigt erste X Zeilen von DF an

- summary() gibt Zusammenfassung von Modellen (DF, Modelle etc.)
- -table(X, Y) gibt Tabelle bzw. Konfusionsmatrix aus

Modelle:

- lm(A B + poly(C, 2) + BC, data = ...) Lineare Regression für A mit Interaktivität von BC und C mit Exponent 2
- glm(A B + C, data = ..., family = binomial) Logistic Regression Modell
- predict(Modell, DataFrame, interval =, type =)
 - * DF: data.frame(x1 = c(2), x2 = c(3))
 - * *interval* Konfidenzinterval(confidence), Prognoseinterval(prediction)

- * *type* Wahrscheinlichkeit(response), Loggits(ohne Angabe)
- coef() Zeigt Koeffizienten des Modells
- confint()Zeigt Konfidenzintervalle für Koeff.
- chisq.test(X, Y) Macht ChiquadratTest auf Unabhängigkeit von X und Y (H_0 : Merkmale sind unabhängig)

• Plots:

- pairs() Zeigt Pärchenplott aller qantitativer Variabeln
- plot() Zeigt X/Y Plot zweier Variablen
- *abline*(*Modell*, *col* = "*red*") Zeigt Regressionslinie
- *qplot*() aus ggplot2 für quickplot