Floor 28, Tel Aviv, July 7th, 2019

Optimize your Machine Learning workloads on AWS

Julien Simon Global Evangelist, AI & Machine Learning, AWS @julsimon

Agenda

Infrastructure

Training

- Easy tips to speed up the training process
- Automatic model tuning

Inference

- Model compilation: Amazon SageMaker Neo
- Cost optimization: Amazon Elastic Inference

Optimizing infrastructure

Amazon EC2 P3dn

https://aws.amazon.com/blogs/aws/new-ec2-p3dn-gpu-instances-with-100-gbps-networking-local-nvme-storage-for-faster-machine-learning-p3-price-reduction/

Reduce machine learning training time

Better GPU utilization

Support larger, more complex models

100Gbps of networking bandwidth

KEY
FEATURES
8 NVIDIA Tesla
V100 GPUs

(2x more)

96 Intel Skylake vCPUs (50% more than P3) with AVX-512

Amazon EC2 C5n

https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-networking/

Intel Xeon Platinum 8000

Up to 3.5GHz single core speed

Up to 100Gbit networking

Based on Nitro hypervisor for bare metal-like performance

Instance Name	vCPUs	RAM	EBS Bandwidth	Network Bandwidth
c5n.large	2	5.25 GIB	Up to 3.5 Gbps	Up to 25 Gbps
c5n.xlarge	4	10.5 GIB	Up to 3.5 Gbps	Up to 25 Gbps
c5n.2xlarge	8	21 GiB	Up to 3.5 Gbps	Up to 25 Gbps
c5n.4xlarge	16	42 GiB	3.5 Gbps	Up to 25 Gbps
c5n.9xlarge	36	96 GiB	7 Gbps	50 Gbps
c5n.18xlarge	72	192 GiB	14 Gbps	100 Gbps

Tips to speed up the training process

Tips to speed up training

- Scale out with distributed training
- Pick the best format for your dataset
 - Use protobuf instead of CSV or JSON
 - Pack samples into record-based files
 - TFRecord (Tensorflow) or RecordIO (MXNet)
 - Splitting in 100MB files looks like the sweet spot
 - Amazon SageMaker: protobuf-encoded RecordIC
- Use Pipe Mode for large datasets
 - Stream directly from Amazon S3, don't copy
 - Train on arbitrary large datasets
- Monitor CPU/GPU usage in Amazon CloudWatch
 - Use the largest batch size that makes sense for your dataset
 - Multiply batch size by the number of GPUs on the instance

Automatic Model Tuning

Examples of hyperparameters

XGBoost

Tree depth Max leaf nodes

Gamma

Eta

Lambda

Alpha

. . .

Neural Networks

Number of layers

Hidden layer width

Learning rate

Embedding

dimensions

Dropout

. . .

Tactics to find the optimal set of hyperparameters

- 1. Manual Search
- Grid Search
 Typically training hundreds of models
 Slow and expensive
- 3. Random Search (Bengio 2012)
 Works better and faster than Grid Search
 But... but... it's random!
- 4. Hyperparameter Optimization
 Training fewer models
 Gaussian Process Regression and Bayesian Optimization

Demo:

HPO with Keras

<u> https://gitlab.com/juliensimon/dlnotebooks/tree/master/keras/04-fashion-mnist-sagemaker-advanced</u>

Model compilation with Amazon SageMaker Neo

Predictions drive complexity and cost in production

Model optimization is extremely complex

Amazon SageMaker Neo Train once, run anywhere with 2x the performance

Automatic optimization

Broad framework support

Broad hardware support

KEY FEATURES

Integrated with Amazon EC2 and Amazon SageMaker

Free of charge!

Open-source runtime and compiler; 1/10th the size of original frameworks github.com/neo-ai

Compiling ResNet-50 for the Raspberry Pi

```
Configure the compilation job
{
    "RoleArn":$ROLE_ARN,
    "InputConfig": {
        "S3Uri":"s3://jsimon-neo/model.tar.gz",
        "DataInputConfig": "{\"data\": [1, 3, 224, 224]}",
        "Framework": "MXNET"
    },
    "OutputConfig": {
        "S3OutputLocation": "s3://jsimon-neo/",
        "TargetDevice": "rasp3b"
    },
    "StoppingCondition": {
        "MaxRuntimeInSeconds": 300
    }
}
```

```
Compile the model
$ aws sagemaker create-compilation-job
--cli-input-json file://config.json
--compilation-job-name resnet50-mxnet-pi
$ aws s3 cp s3://jsimon-neo/model-
rasp3b.tar.gz .
$ gtar tfz model-rasp3b.tar.gz
compiled.params
compiled_model.json
compiled.so
```

```
Predict with the compiled model
from dlr import DLRModel
model = DLRModel('resnet50', input_shape,
output_shape, device)
out = model.run(input_data)
```

Demo:

Neo on SageMaker

Cost optimization with Amazon Elastic Inference

Right-sizing your inference infrastructure

 Statistical ML models, small DL models, and of course dev/test infrastructure: CPU instances (C5) deliver the best cost/performance ratio

- Very large DL models
 - GPU instances (P2 or P3) should work best, especially if you need high throughput
 - If not, C5n could be a reasonable alternative
- But what about everything in between?
 - Mid-sized models
 - NLP models
 - Low throughput, low latency workloads
 - « Too slow on CPU, too expensive on GPU » ?

Are you making the most of your GPU infrastructure?

Low utilization and high costs

One size does not fit all

Amazon Elastic Inference

Reduce deep learning inference costs up to 75%

Lower inference costs

Match capacity to demand

Available between 1 to 32 TFLOPS per accelerator

KEY FEATURES

Integrated with Amazon EC2 and Amazon SageMaker

Support for TensorFlow and Apache MXNet

Single and mixed-precision operations

Demo:

Elastic Inference on Amazon SageMaker

Getting started

http://aws.amazon.com/free

https://ml.aws

https://aws.amazon.com/sagemaker

https://github.com/aws/sagemaker-python-sdk

https://github.com/awslabs/amazon-sagemaker-examples

https://medium.com/@julsimon

https://gitlab.com/juliensimon/dlnotebooks

Mercil

Julien Simon Global Evangelist, AI & Machine Learning, AWS @julsimon