Т.1. Исследуйте на дифференцируемость функции $f: \mathbb{R} \to \mathbb{R}$, заданные формулами

- a) |x|; 6) x|x|; B) $|\sin x|$; F) $|1 + \cos x|$.
- a) ym x>0 '. |x|=x = |x|=1 x < 0: |x|=-x = > |x|=-1 x < 0: |x|=-x = > |x|=-1 x < 0: $|x|= \lim_{h \to 0} \frac{|h|-|0|}{h} = \lim_{h \to 0} (sghh) - tecays-iR.$ h > +0 $|x|= \lim_{h \to 0} sghh=-1$
- B) $\mu \times f(0, \overline{h}) + 2\overline{h} + \frac{1}{|\sin x|} = \sin x \Rightarrow |\sin x|^2 = \cos x$ $\mu \times f(0, \overline{h}) + 2\overline{h} + \frac{1}{|\sin x|} = \sin x \Rightarrow |\sin x|^2 = -\cos x$ $\mu \times f(0, \overline{h}) + 2\overline{h} + \frac{1}{|\sin x|} = \sin x \Rightarrow |\sin x|^2 = -\cos x$ $\mu \times f(0, \overline{h}) + 2\overline{h} + \frac{1}{|\sin x|} = \lim_{n \to \infty} \frac{\sin n}{n} = 1$ $\mu \times f(0, \overline{h}) + 2\overline{h} + \frac{1}{|\sin x|} = \lim_{n \to \infty} \frac{\sin n}{n} = 1$ $\lim_{n \to \infty} \frac{|\sin n|}{|\sin n|} = \lim_{n \to \infty} \frac{\sin n}{n} = -1$ $\lim_{n \to \infty} \frac{|\sin n|}{|\sin n|} = \lim_{n \to \infty} \frac{\sin n}{n} = -1$

anavourts you X= T+2Tk - morns he cycl.

- $|1+\cos x|^2 = -\sin x$ $|1+\cos x|^2 = -\sin x$
- **Т.3.** Найдите производную обратной к функции $f(x) = x + \sin x$ в точках

a)
$$y = 0$$
; 6) $y = 1 + \pi/2$; B) $y = \pi$.

 $x'_{y} = \frac{1}{y'_{x}}$, rough a) $y = 0$ you $x = 0$; $x'_{y} = \frac{1}{f'_{y}} = \frac{1}{1 + \cos 0} = \frac{1}{2}$

b) $y = \pi$ you $x = \pi$; $x'_{y} = \frac{\pi}{f'_{y}} = \frac{1}{1 + \cos \pi} = \frac{1}{1 + \cos \pi} = \frac{1}{1 - 1} = \frac{1}{1 -$

Т.4. Найдите y'_x для функции, заданной параметрически:

- а) $y=a\operatorname{ch} t,\, x=b\operatorname{sh} t,\, a,b\neq 0;$ б) $y=\cos t,\, x=\operatorname{ch} t$ (для всех $t\in\mathbb{R}$).
- a) $y|_{x=}$ $y|_{t}$. $t|_{x=}$ $y|_{t}$. $t|_{x=}$ $t|_{x=1}$ $t|_{x=1}$ t
- $\vec{\sigma}) \ \vec{y} = \frac{\vec{y} \cdot \vec{t}}{\vec{x} \cdot t} = \frac{-\sin t}{\sin t} = -\frac{\sin t}{\sin t}$
- **Т.5.** Найдите y''_{xx} для функции, заданной параметрически:

$$\underline{a} \ y = \frac{t^{2}}{1+t^{3}}, \ x = \frac{t^{3}}{1+t^{3}}; \ 6) \ y = a \cos t, \ x = b \sin t, \ a, b > 0.$$

$$\forall x = (y x) / (x + t) /$$

Т.6. Найдите $y^{(n)}$ в зависимости от n для функции, заданной формулой:

a)
$$\sin^4 x + \cos^4 x$$
; 6) $\frac{x}{x^2 - 4x - 12}$; B) $(x - 1)2^{x-1}$;

г)
$$\frac{x^2}{\sqrt{1-2x}}$$
; д) $\ln(1+x)^{x^2}$; \underline{e} $(x^2+x)\cos^2 x$.

B)
$$((x-x)^{2}-x^{2}) = \begin{cases} t-x-x \\ t-x-x \end{cases} = \begin{cases}$$

$$\frac{1}{2} \left[\frac{1}{|h|^{1+x}} \right]_{n=1}^{2} = \left[\frac{1}{|h|^{1+x}} \right]_{n=1}^{$$

 ${\bf T.17.}$ Найдите пределы:

a)
$$\lim_{x \to +\infty} \frac{\ln \ln x}{\sqrt{\ln x}}; \quad 6) \lim_{x \to +\infty} \left(\frac{2 \arctan x}{\pi}\right)^x;$$

$$\lim_{x \to +\infty} \frac{\ln \ln x}{\sqrt{\ln x}}; \quad 6) \lim_{x \to +\infty} \left(\frac{1 - \ln x}{\pi}\right)^x;$$

$$\lim_{x \to +\infty} \frac{\ln \ln x}{\sqrt{\ln x}}; \quad 6) \lim_{x \to +\infty} \left(\frac{1 - \ln x}{\pi}\right)^x;$$

$$\lim_{x \to +\infty} \frac{\ln \ln x}{\sqrt{\ln x}}; \quad 6) \lim_{x \to +\infty} \left(\frac{1 - \ln x}{\pi}\right)^x;$$

$$\lim_{x \to +\infty} \frac{\ln \ln x}{\sqrt{\ln x}}; \quad 6) \lim_{x \to +\infty} \left(\frac{1 - \ln x}{\pi}\right)^x;$$

$$\lim_{x \to +\infty} \frac{\ln \ln x}{\sqrt{\ln x}}; \quad 6) \lim_{x \to +\infty} \left(\frac{1 - \ln x}{\pi}\right)^x;$$

$$\lim_{x \to +\infty} \frac{\ln \ln x}{\sqrt{\ln x}}; \quad 6) \lim_{x \to +\infty} \left(\frac{1 - \ln x}{\pi}\right)^x;$$

$$\lim_{x \to +\infty} \frac{\ln \ln x}{\sqrt{\ln x}}; \quad 6) \lim_{x \to +\infty} \left(\frac{1 - \ln x}{\pi}\right)^x;$$

$$\lim_{x \to +\infty} \frac{\ln \ln x}{\sqrt{\ln x}} = \lim_{x \to +\infty} \frac{1}{\ln x} = \lim_{x \to +\infty} \frac{1}{\ln x}$$

Т.18. Найдите предел $\lim_{x\to +\infty} \frac{x+\sin x}{x-\sin x}$ и объясните, почему его не удаётся

Haütu c πομαμιο πραβυπα Ποπυταπα.

1)
$$\lim_{x \to +\infty} \frac{x + \sin x}{x - \sin x} = \lim_{x \to +\infty} \frac{x + \sin x}{x - \sin x} = 1$$

1) $\lim_{x \to +\infty} \frac{x + \sin x}{x - \sin x} = \lim_{x \to +\infty} \frac{2 \sin x}{x - \sin x} = 0 \Rightarrow \lim_{x \to +\infty} \frac{x + \sin x}{x - \sin x} = 1$

2) $\lim_{x \to +\infty} \frac{x + \sin x}{x - \sin x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

2) $\lim_{x \to +\infty} \frac{x + \sin x}{x - \sin x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

Yherefore $\lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

Yherefore $\lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

Yherefore $\lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

Yherefore $\lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

Yherefore $\lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

Yherefore $\lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

Yherefore $\lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

Yherefore $\lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

Yherefore $\lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x} = \lim_{x \to +\infty} \frac{1 + \cos x}{1 - \cos x}$

Т.20. Представьте функцию формулой Тейлора с произвольной точностью в данной точке x_0

в данной точке
$$x_0$$
 a) $\frac{\sin^2 x}{x^2}$, $x_0 = 0$; $\underline{6}$) $(1-x)\ln(1+5x+6x^2)$, $x_0 = 0$; $\underline{8}$) $\frac{3x-1}{x^2+x-6}$, $x_0 = 0$; $(2 \ \ \ \ \ \ \)$

$$x^{2} = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6) = x^{2} + x - 6$$

$$(x^{2} + x - 6$$

матан.3 Стр.2

$$\frac{\partial (x-x)}{\partial x} = \frac{(x-x)}{(x-x)} = \frac{(x-x)}{$$

$$\frac{3X-1}{X^{2}+X-6} = \frac{3X-1}{(X-2)(X+3)} = \frac{A}{X-2} + \frac{B}{X+3} = \begin{cases} A=1 \\ B=2 \end{cases} = \frac{1}{X-2} + \frac{2}{X+3} = -\frac{1}{2} \cdot \frac{1}{1-\frac{X}{2}} - \frac{2}{3} \cdot \frac{1}{1-\frac{X}{3}} = \frac{1}{X-2} \cdot \frac{1}{X+3} = \frac{1}{X+3$$

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1$$

Т.21. Представьте функцию $x^3|x| + \cos x$ формулой Маклорена с остаточным членом $o(x^n)$ при максимально возможном n.

Т.22. Представьте функцию $(1+x)^{\sin x}$ формулой Маклорена с остаточным

Т.24. Найдите пределы с помощью формулы Тейлора

Т.24. Найдите пределы с помощью формулы Тейлора:

a)
$$\lim_{x\to 0} \frac{e^{\operatorname{tg}(x/2)} - \sqrt{1+\sin x} - x^2/4}{\operatorname{arccos} x - \operatorname{arcctg} x};$$
 б) $\lim_{x\to 0} \frac{\sqrt{1+\operatorname{sh} 2x} - \cos x - x}{\operatorname{tg} x - \operatorname{arctg} \sin x};$

B) $\lim_{x\to 0} \left(\frac{\sin x}{\operatorname{arcsin} x}\right)^{1/x^2};$ г) $\lim_{x\to 0} \left(\frac{\operatorname{arctg} \frac{2x}{2-x^2} - x}{x\sin \frac{x^2}{6}}\right)^{\operatorname{ctg}^2 x};$ д) $\lim_{x\to 0} \left(\frac{e^x - x}{\sqrt{1+x^2} - \ln(1+x^3)}\right)^{1/x^3}.$

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n}$$

$$q(x) = tg x - ant tg sin x = (1 + \frac{x^{3}}{b} + o(x^{4})) - (1 - \frac{1}{3}(x - \frac{x^{2}}{3!} + o(x^{4})) + o(x^{3}))$$

$$= \frac{2x^{3}}{3} + o(x^{4})$$

$$= \frac{x^{3}}{3} + o(x^{4}) + o$$

$$\lim_{x \to 0} \left(\frac{e^{x} - x}{\sqrt{1 + x^{2} - \ln(1 + x^{3})}} \right)^{1/x^{3}}.$$

$$\lim_{x \to 0} \left(\frac{e^{x} - x}{\sqrt{1 + x^{2} - \ln(1 + x^{3})}} \right)^{1/x^{3}}.$$

$$\lim_{x \to 0} \left(\frac{e^{x} - x}{\sqrt{1 + x^{2} - \ln(1 + x^{3})}} \right)^{1/x^{3}}.$$

$$\lim_{x \to 0} \left(\frac{e^{x} - x}{\sqrt{1 + x^{2} - \ln(1 + x^{3})}} \right) = \left(\frac{1}{2}x^{2} - \frac{1}{2}x^{2} \right) - \left(\frac{1}{2}x^{2} - \frac{1}{2}x^{3} + \frac{1}{6}x^{3} + \frac{1}{6}x^{2} \right) + \frac{1}{2}x^{2} + \frac{1}{2}x^{3} + \frac{1}{6}x^{3} + \frac{1}$$

Т.9. Докажите, что если функция дифференцируема и неограниченна на конечном интервале, то её производная тоже неограниченна.

Т.11. Предположим, что функция f дифференцируема n раз, $f^{(n)}(x) \geq 0$ на всей прямой, а многочлен P степени n таков, что уравнение f(x) = P(x) имеет n+1 решение. Докажите, что старший коэффициент P неотрицателен.

the zagare
$$T+.g(x+(x)-P(x))$$
 guapa n paz u cosp. 8 o n+1 paz.
targa $\exists \zeta: g^{(n)}(\zeta)=f^{(n)}(\zeta)-\alpha_n=0$, $\alpha_n-\alpha_n$ rosqp
$$0 \leqslant f^{(n)}(\zeta)=\alpha_n=2)\underline{\alpha_n}>0$$

Т.12. Докажите, что если квазимногочлен $P(x)e^{ax}$ (где P — обычный многочлен и $a \neq 0$) имеет n различных корней, то его производная тоже имеет n различных корней.

Т.26. Докажите, что если функция $f: \mathbb{R} \to \mathbb{R}$, равномерно непрерывна, то найдутся такие L, C > 0, что для любых $x, y \in \mathbb{R}$ выполняется

$$|f(x) - f(y)| \le L|x - y| + C.$$

$$| \frac{1}{\sqrt{1200}} | \frac{1}{\sqrt{12$$

Т.27. Докажите, что если $f:[0,+\infty)\to\mathbb{R}$ непрерывна и имеет конечный предел при $x\to+\infty$, то f равномерно непрерывна.

 $\forall \epsilon > \alpha \ \exists \delta(\epsilon) > \alpha \ \forall \ \forall \ (x_-x_2(\epsilon \delta(\epsilon) = >) \ \forall \ (x_0 + x_1) < \epsilon$?

Prime ε is onp. PH: torga is onp. rpegura: $\exists \delta_1(\epsilon) > \alpha \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \ \forall \ (x_1 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) \land (x_2 > \delta_1(\epsilon) = >) \)$

type $X \leq \delta_1(\epsilon)$ p-locate $f/[0,\epsilon]$ - PH kor temp. ha with torgot $\delta^{-1} = \max\{\delta_2,\lambda\}$

- **Т.28.** Является ли равномерно непрерывной на своей области определения функция:
 - a) $f(x) = \sqrt{x}$; $f(x) = x \sin x$; B) $f(x) = x \sin \ln x$?
 - a) Fera $3 \sigma(\varepsilon)$ or $4 \times 1, \times 2 \varepsilon$ $1 \times 1 \times 2 1 c$ or ε or $1 \cdot 1 \times 2 1 < \varepsilon$ P-pull $\frac{1}{1 \cdot 1 \cdot 1 \cdot 1} = \frac{1}{1 \cdot 1 \cdot 1} = \frac{1}{1 \cdot 1 \cdot 1 \cdot$
 - B) $f(x) = x \sin \ln x$ $f'(x) = \sin \ln x + \frac{x \cos \ln x}{x} = \sin \ln x + \cos \ln x - \operatorname{organurena} => f(x) - PH.$
- **Т.30.** Докажите, что сумма полунепрерывных снизу функций полунепрерывна снизу.

1, 10. W. N IN VILLETED FIXED FIXED - E/D

Докажите, что сумма полунепрерывных снизу функций полунепрерывна снизу.

- **Т.31.** Будет ли прямая $\mathbb R$ метрическим пространством, если расстояние определить как
 - a) $\rho(x,y) = \sqrt{|x-y|}$; 6) $\rho(x,y) = (x-y)^2$?
 - a) 1) 1/x-41 = 0 6> x=4
 - 2) (IX-4) = (I4-X)
 - 3) Ta+6 < Ta+16

 a+6 < a+6+7 Ta6
 - a+6 < a+6+2√ ○<√a7'
- **Т.33.** Пусть на множестве M есть два расстояния $\sigma, \tau : M \times M \to \mathbb{R}^+$, превращающие его в метрическое пространство. Верно ли, что отображение $\rho : M \times M \to \mathbb{R}^+$, заданное формулой

$$\rho(x,y) = \sqrt{\sigma(x,y)^2 + \tau(x,y)^2},$$

тоже превращает M в метрическое пространство?

- 1) p(x,y)=0 &> o(x,y)=0 &> x=y
- 2) p(x,y)=p(y,x) 3) p(x,y)=\left(\sigma(x,z)\reft)\reft(\tex,y)+\text{c(x,z)}\reft(\text{y,z}\reft)\reft(\tex

- **Т.36.** Найдите кривизну кривой при произвольном значении её параметра $t \in \mathbb{R}$:
 - а) $x=a\cos t,\,y=b\sin t,$ с постоянными a,b>0;
 - б) $x=a(t-\sin t),\,y=a(1-\cos t),$ с постоянной a>0.
- **Т.37.** Найдите наибольшую кривизну кривой, являющейся графиком функции $y = \ln(1+\operatorname{ch} x)$.

$$y'_{x} = \frac{1}{1 + chx} shx - y'_{xx} = \frac{1}{1 + chx}$$

$$k = \frac{1}{1 + chx} = \frac{1}{\sqrt{1 + (\frac{shx^{2}}{1 + chx})^{2}}} = \frac{1}{\sqrt{sh^{2}x + (1 + chx)^{2}}}$$

$$x'_{x} = 1 - y'_{xx} = 0$$

$$k = \frac{1}{\sqrt{1 + (\frac{shx^{2}}{1 + chx})^{2}}} = \frac{1}{\sqrt{sh^{2}x + (1 + chx)^{2}}} = \frac{1}{\sqrt{sh^{2}x + (1 + chx)^{2}}}$$

$$\begin{aligned} y & \times = \frac{1}{1 + (hx)} & \times = \frac{1}{1 + (hx)^2} & = \frac{1}{1 + (hx)^2} \\ x & \times = 1 & \Rightarrow x &$$

Т.38. Найдите кривизну и кручение кривой при произвольном значении параметра t и постоянными $a, b \neq 0$:

$$\frac{a)}{b} x(t) = a \cos t, y(t) = a \sin t, z(t) = bt;$$

$$\frac{b}{b} x(t) = a \cosh t, y(t) = a \sinh t, z(t) = bt.$$

$$\frac{b}{b} (t) = (a \cosh t, a \sinh b, h t)$$

$$\frac{b}{b} (t) = (a \sinh t, a \cosh t, h t)$$

$$\frac{b}{a \sinh t} \frac{d h t}{d h} \frac{d h}{d h}$$