ProblemSet 4 – Finite field projective spaces **Solutions**

George McNinch

2024-02-23

1. Find the irreducible factors of the polynomial T^9-1 in $\mathbb{F}_7[T]$.

(You should include proofs that the factors you describe are irreducible).

Note that the multiplicative group \mathbb{F}_7^{\times} has order 6 and hence contains an element of order 3; in fact, 2 has order 3 since $2^3 = 8 \equiv 1 \pmod{7}$.

Now, $\mathbb{F}_{7^2}^{\times}$ has order 49-1=48 which is not divisible by 9. And $\mathbb{F}_{7^3}^{\times}$ has order $7^3-1\equiv (-2)^3-1\equiv -9\equiv 0\pmod 9$. So $\mathbb{F}_{7^3}^{\times}$ has an element of order 9.

Consider the polynomial T^3-2 . Any root α of this polynomial satisfies $\alpha^3=2$ and $\alpha^9=1$; this shows that the multiplicative order of α is 9.

In particular, \mathbb{F}_7 contains no roots of $f(T) = T^3 - 2$; since f(T) has degree 3, it is irreducible over \mathbb{F}_7 .

If α is a root of f(T), then α^7 and $\alpha^{7^2}=\alpha^4$ are also roots (note that $7^2\equiv (-2)^2=4\pmod 9$). Thus

$$f(T) = (T-\alpha)(T-\alpha^7)(T-\alpha^4)$$

and

$$f(T) \mid T^9 - 1.$$

Notice that \mathbb{F}_{7^3} is a splitting field for f(T) over \mathbb{F}_7 .

Note that $2^2 = 4$ is also an element of \mathbb{F}_7^{\times} of order 3. Arguing as before, any root of $T^3 - 4$ is an element of multiplicative order 9.

On the other hand, since gcd(2,9) = 1, $\alpha^2 \in \mathbb{F}_{7^3}$ is also an element of order 9.

Moreover, the roots of its minimal polynomial g(T) have the form α^2 , $\alpha^{2\cdot 7}=\alpha^5$ (since $14\equiv 5\pmod 9$), and $\alpha^{2\cdot 7^2}=\alpha^{5\cdot 7}=\alpha^3$ (since $2\cdot 7^2\equiv 8\pmod 9$).

Thus

$$g(T) = (T-\alpha^2)(T-\alpha^5)(T-\alpha^8).$$

Now, notice that $(\alpha^2)^3=(\alpha^3)^2=2^2=4\in\mathbb{F}_7$. Thus the minimal polynomial g(T) of α^2 divides T^3-4 . It follows that

$$g(T) = T^3 - 4 = (T - \alpha^2)(T - \alpha^5)(T - \alpha^8).$$

Now, $g(T) \mid T^9 - 1$ and since $\gcd(f(T), g(T)) = 1$ we see that $f(T)g(T) \mid T^9 - 1$. Thus

$$T^9-1=f(T)\cdot g(T)\cdot (T-1)\cdot (T-2)\cdot (T-4).$$

2. Let $0 < k, m \in \mathbb{N}$, put n = mk, and consider the subspace $C \subset \mathbb{F}_q^n$ defined by

$$C = \{(v,v,\cdots,v) \mid v \in \mathbb{F}_q^k\} \subset \mathbb{F}_q^n.$$

Find the *minimal distance d* of this code.

For example, if n = 6, k = 3 and m = 2 then

$$C = \{(a_1, a_2, a_3, a_1, a_2, a_3) \mid a_i \in \mathbb{F}_q\} \subset \mathbb{F}_q^6.$$

(Corrected)

If $\mathbf{v} = (v, v, \dots, v) \in C$ for $v \in \mathbb{F}_q^n$, note that weight $(\mathbf{v}) = m \cdot \text{weight}(v)$.

In particular, for a non-zero vector we see that weight $(\mathbf{v}) \geq m$.

On the other hand, a standard basis vector $v = \mathbf{e}_i \in \mathbb{F}_q^n$ has weight 1, so if $\mathbf{w} = (\mathbf{e}_i, \mathbf{e}_i, \cdots, \mathbf{e}_i)$, then weight $(\mathbf{w}) = m$.

Thus

$$\min\{\text{weight}(\mathbf{v}) \mid 0 \neq \mathbf{v} \in C\} = m.$$

For a linear code, the minimal distance is simply the minimal weight of a non-zero vector; thus the minimal distance of C is m.

3. By an $[n, k, d]_q$ -system we mean a pair (V, \mathcal{P}) , where V is a finite dimensional vector space over \mathbb{F}_q and \mathcal{P} is an ordered finite family

$$\mathcal{P} = (P_1, P_2, \cdots, P_n)$$

of points in V (in general, points of \mathcal{P} need not be distinct – you should view \mathcal{P} as a *list* of points which may contain repetitions) such that \mathcal{P} spans V as a vector space. Evidently $|\mathcal{P}| \geq \dim V$.

The parameters [n, k, d] are defined by

$$n=|\mathcal{P}|, \quad k=\dim V, \quad d=n-\max_H |\mathcal{P}\cap H|.$$

where the maximum defining d is taken over all linear hyperplanes $H \subset V$ and where points are counted with their multiplicity – i.e. $|\mathcal{P} \cap H| = |\{i \mid P_i \in H\}|$.

Given a $[n, k, d]_q$ -system (V, \mathcal{P}) , let V^* denote the dual space to V and consider the linear mapping

$$\Phi:V^*\to \mathbb{F}_q^n$$

defined by

$$\Phi(\psi) = (\psi(P_1), \cdots, \psi(P_n)).$$

a. Show that Φ is injective.

 Φ is a linear mapping, so we just need to show that ker $\Phi = \{0\}$.

Suppose that $\psi \in V^*$ and $\Phi(\psi) = 0$. This means that $\psi(P_j) = 0$ for $1 \le j \le n$. Since ψ is linear, it follows that ψ vanishes at any linear combination of the vectors $\{P_j\}$.

Since \mathcal{P} spans V by assumption, it follows that $\psi = 0$. This proves that Φ is injective.

b. Write $C = \Phi(V^*)$ for the image of Φ , so that C is an $[n,k]_q$ -code. Show that the minimal distance of the code C is given by d.

Write d' for the minimal weight of C; we must argue that

$$d'=d=n-\max_{H}|\mathcal{P}\cap H|.$$

Let $\mathbf{v} = \Phi(\psi) \in C$ be a non-zero vector. We have

$$\operatorname{weight}(\mathbf{v}) = |\{j \mid \psi(P_j) \neq 0\}|.$$

Write $H = \ker \psi$ and note that

$$|\mathcal{P} \cap H| = |\{j \mid \psi(P_j) = 0\}|.$$

Thus

(*) weight(
$$\mathbf{v}$$
) = $n - |\mathcal{P} \cap H|$.

In $\max_H |\mathcal{P} \cap H|$ the *hyperplanes* H are precisely the kernels $H = \ker \psi$ of functionals $0 \neq \psi \in V^*$. Thus (*) shows that

$$\min_{\mathbf{v}=\Phi(\psi)\neq 0} \operatorname{weight}(\mathbf{v}) = n - \max_{H=\ker\psi,\psi\neq 0} |\mathcal{P}\cap H|;$$

it follows that d' = d.

c. Conversely, let $C \subset \mathbb{F}_q^n$ be an $[n,k,d]_q$ -code, and put $V=C^*$. Let $e^1,\cdots,e^n \in (\mathbb{F}_q^n)^*$ be the dual basis to the standard basis. The restriction of e^i to the subspace C determines an element P_i of $C^*=V$. Write $\mathcal{P}=(P_1,P_2,\cdots,P_n)$ for the resulting list of vectors in V..

Prove that the minimum distance d of the code C satisfies

$$d = n - \max_{H} |\mathcal{P} \cap H|.$$

We have $V^*=(C^*)^*=C$; the mapping $\Phi:V^*=C\to \mathbb{F}_q^n$ is just the given inclusion. Indeed, let $x=(x_1,x_2,\cdots,x_n)\in C\subset \mathbb{F}_q^n$. The mapping $\Phi:V^*\to \mathbb{F}_q^n$ is given by $\Phi(x)=(e^1(x),\cdots,e^n(x))=(x_1,\ldots,x_n)$.

Now the equality

$$d = n - \max_{H} |\mathcal{P} \cap H|$$

follows from the result of part (b).

4. Let C be the linear code over \mathbb{F}_5 generated by the matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 & 1 \end{pmatrix}.$$

a. Find a *check matrix* H for C.

```
k = GF(5)
```

V = VectorSpace(k,6)

generator matrix, in standard form

```
G = MatrixSpace(k,3,6).matrix(C.basis())
```

G =>

[1 0 0 1 1 2]

[0 1 0 1 2 1]

[0 0 1 2 1 1]

A = MatrixSpace(k,3,3).matrix([b[3:6] for b in G])

construct the check matrix, as a block matrix

H = block_matrix([[-A.transpose(),

MatrixSpace(k,3,3).one()]],
subdivide=False)

Η

=>

[4 4 3 1 0 0]

[4 3 4 0 1 0]

[3 4 4 0 0 1]

verification:

H * G.T

=>

[0 0 0]

 $[0 \ 0 \ 0]$

 $[0 \ 0 \ 0]$

b. Find the minimum distance of C.

```
The minimal distance of C is 4.
```

False

We check the weight of a vector using the following function:

```
def weight(v):
    r = [x \text{ for } x \text{ in } v \text{ if } x != 0]
    return len(r)
Now, we can just find the minimal weight of the non-zero vectors of V, as follows:
min([ weight(v) for v in C if v != 0])
4
Alternatively, you can investigate the columns of the check matrix H.
W = VectorSpace(k,3) # column space
# return the ith column of the 3xm matrix M
def col(M,i):
    return W([ b[i] for b in M ])
# check whether the columns of the 3xm matrix M
# specified by the list ll of indices are lin indep
def cols_lin_indep(M,ll):
    vecs = [ col(M,i) for i in ll ]
    # the method `linear_dependence` returns a list
    # of *linear relations*
    # so we return True if `W.linear_dependence(vecs)` is
    # the empty list
    return W.linear_dependence(vecs) == []
# check whether all collections of r columns of the
# 3xm matrix M are linearly independent
def check(M,r):
    # get the number of columns of M.
    l = len(list(M.T))
    # qet all lists of r-element subses of the numbers 0, \ldots, l-1
    al = map(list,Subsets(range(1),r))
    # return True iff `cols_lin_indep(M,ll)` is true for every
    # r-element subset ll of range(l)
    return all([ cols_lin_indep(M,ll) for ll in al])
check(H,3)
True
check(H,4)
=>
```

This shows that every collection of 3 columns of H is linearly independent, while there is some collection of 4 columns of H that is linearly dependent; thus d = 4.

c. Decode the received vectors (0, 2, 3, 4, 3, 2) and (0, 1, 2, 0, 4, 0) using syndrome decoding. The minimal distance of the code C is 4, so we should expect to correct $\lfloor (4-1)/2 \rfloor = \lfloor 3/2 \rfloor = 1$ error. We first make the lookup table lookup = { tuple(H*v):v for v in V if weight(v) <= 1 }</pre> lookup => $\{(0, 0, 0): (0, 0, 0, 0, 0, 0),$ (4, 4, 3): (1, 0, 0, 0, 0, 0),(3, 3, 1): (2, 0, 0, 0, 0, 0),(2, 2, 4): (3, 0, 0, 0, 0, 0),(1, 1, 2): (4, 0, 0, 0, 0, 0),(4, 3, 4): (0, 1, 0, 0, 0, 0),(3, 1, 3): (0, 2, 0, 0, 0, 0),(2, 4, 2): (0, 3, 0, 0, 0, 0), (1, 2, 1): (0, 4, 0, 0, 0, 0),(3, 4, 4): (0, 0, 1, 0, 0, 0),(1, 3, 3): (0, 0, 2, 0, 0, 0),(4, 2, 2): (0, 0, 3, 0, 0, 0),(2, 1, 1): (0, 0, 4, 0, 0, 0),(1, 0, 0): (0, 0, 0, 1, 0, 0),(2, 0, 0): (0, 0, 0, 2, 0, 0),(3, 0, 0): (0, 0, 0, 3, 0, 0),(4, 0, 0): (0, 0, 0, 4, 0, 0),(0, 1, 0): (0, 0, 0, 0, 1, 0), (0, 2, 0): (0, 0, 0, 0, 2, 0), (0, 3, 0): (0, 0, 0, 0, 3, 0),(0, 4, 0): (0, 0, 0, 0, 4, 0),(0, 0, 1): (0, 0, 0, 0, 0, 1),(0, 0, 2): (0, 0, 0, 0, 0, 2),(0, 0, 3): (0, 0, 0, 0, 0, 3),(0, 0, 4): (0, 0, 0, 0, 0, 4)Now we can decode using the lookup table def decode(v): return v-lookup[tuple(H*v)] [(decode(v), decode(v) in C) for v in [V([0,2,3,4,3,2]),V([0,1,2,0,4,0])][((1, 2, 3, 4, 3, 2), True), ((0, 1, 2, 0, 4, 3), True)]

Bibliography