Análisis de la vida útil de las pilas en bajas temperaturas

Milton Loayza Chumacero

Objetivos

 Evaluar el efecto de diferentes temperaturas y tipos de aislantes en la vida útil de las baterías para identificar las condiciones óptimas que maximicen su duración y rendimiento.

Metodologia

- Seleccion de la bateria
- Instrumentos de medición
 - Termometro
 - Medidor de vida util
- Congelador domestico

Medidor de vida util de la bateria

Umbral de descarga e s 8.5
voltios
Descarga la bateria en 35
minutos
Para la lectura cuado la
bateria se descarga

Diseño factorial

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ijk}$$

- Temperatura
 - -19C, -17C, -11C
- Tipo de aislante
 - Ninguno, plastaformo, cinta
- 36 pilas

Base de datos

,	id	dia	tipoAislante	temperatura	tiempoAplicacion	vidaUtilHora	vidaUtil
,	1	1	SinAislante	-19	1440	00:28:17	1697
	2	1	SinAislante	-19	1440	00:29:02	1742
	3	1	SinAislante	-19	1440	00:28:15	1695
	4	1	SinAislante	-19	1440	00:26:34	1594
	5	1	Plastaformo	-19	1440	00:31:10	1870
	6	1	Plastaformo	-19	1440	00:32:14	1934
	7	1	Plastaformo	-19	1440	00:31:11	1871
	8	1	Plastaformo	-19	1440	00:33:55	2035
	9	1	CintaAislante	-19	1440	00:30:47	1847
	10	1	CintaAislante	-19	1440	00:30:09	1809

ANOVA

Table 2: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
${f tipo Aislante}$	2	120337	60168	10.26	0.0004033
${f temperatura}$	1	159565	159565	27.2	0.00001268
${f tipo Aislante:} {f temperatura}$	2	36278	18139	3.092	0.06012
Residuals	30	175983	5866	NA	NA

Conclusiones

 Los resultados del experimento confirman que tanto la temperatura como el tipo de aislante son factores críticos que afectan la vida útil de las baterías. Además, existe una interacción significativa entre estos factores, lo que implica que la combinación óptima de temperatura y tipo de aislante depende de las condiciones