alex-hw3-html.rmd

The following DAG represents a causal model of user behavior in an app.

U represents the user specific preferences. X represents the introduction of a feature designed to make users make certain in-app purchases, Y was whether or not the user made the purchase, W represents app usage after the feature is introduced.

1.1.a

You are interested in estimating the causal effect of X on Y. List all the valid adjustment sets. A valid adjustment set is the set of variables that if you adjust, you will get the unbiased results. (For a formal definition of valid adjustment set, see "ELements of Causal Inference", Definition 6.38, Proposition 6.41) (3 points)

Answer to 1.1.a

{}, {U} {U, W}

1.1.b

What would happen if you adjusted for W? (2 points)

Answer to 1.1.b

Since W is a collider, conditioning on W would open path X->W<-U->Y, and our evaluated casual effect of X on Y would create bias and will be incorrect.

1.1.c

Suppose you want to assess the effect of X on Y for users who have a high amount of app usage. Fill in the blanks on the right-hand-side for the adjustment formula of interest. (4 points)

$$P(Y=y|do(X=x),W=high) = \sum_? P(Y=y|?)P(?|?)$$

Answer to 1.1.c

1.2 (6 points)

Consider the following DAG.

You are interest in estimating the causal effect of X on Y.

1.2.a

Is the set containing only Z a valid adjustment set? Why or why not? (2 points)

Answer to 1.2.a

Z is not valid adjustment set, Z is collider and conditioning on it would open path X \leftarrow E \rightarrow Z \leftarrow A \rightarrow Y

1.2.b

List all of the adjustment sets that blocks all the back doors(there are three) and write the adjustment formula for each adjustment set. (3 points)

Answer to 1.2.b

Valid adjustment sets are {Z, E}, {Z, A} and {Z, A, E}

1.2.c

Suppose that E and A are both observable, but observing E costs \$10 per data point and observing A costs \$5 per data point. Which conditioning set do you go with? (1 point)

Answer to 1.2.c

Conditioning set would be {Z,A} because it is cheaper than {Z, E} or {Z, A, E}

1.3 (12 points)

Consider the following DAG:

1.3.a

List all of the sets of variables that satisfy the backdoor criterion to determine the causal effect of X on Y. (3 points)

Answer to 1.3.a

1.3.b

List all of the minimal sets of variables that satisfy the backdoor criterion to determine the causal effect of X on Y (a minimal valid adjustment set here means if you removed any one of the variables from the set, it would no longer be a valid adjustment set). (3 points)

Answer to 1.3.b

$$\{Z, C\}, \{Z, D\}, \{Z, B\}, \{Z, A\}$$

1.3.c

List all the minimal sets of variables that need to be measured in order to identify the effect of D on Y. (3 points)

Answer to 1.3.c

1.3.d

Now suppose we want to know the causal effect of intervening on 2 variables. List all the minimal sets of variables that need to be measured in order to identify the effect of set $\{D, W\}$ on Y, i.e., P(Y = y|do(D = d), do(W = w)). (3 points)

Answer to 1.3.d

$$\{C, X\}, \{Z\}$$