Fields in the vertex	Variational derivative of Lagrangian by fields
A_{μ} A_{ν}	$-p_1^ ho p_1^ ho g^{\mu u}$
$ar{b}_{ap}$ b_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_b \cdot \delta_{ab})$
\bar{c}_{ap} c_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_c \cdot \delta_{ab})$
$ar{d}_{ap}$ d_{bq}	$-p_1^\mu \delta_{pq} \gamma_{ac}^\mu \delta_{cb}$
\bar{e}_a e_b	$-p_1^\mu \gamma_{ac}^\mu \delta_{cb}$
$ar{\mu}_a$ μ_b	$-(p_1^\mu \gamma_{ab}^\mu + M_\mu \cdot \delta_{ab})$
$ar{ au}_a$ $ au_b$	$-(p_1^{\mu}\gamma_{ab}^{\mu} + Mtau \cdot \delta_{ab})$
$G_{\mu p}$ $G_{\nu q}$	$-p_1^{ ho}p_1^{ ho}g^{\mu u}\delta_{pq}$
H H	$-\frac{1}{e^2}(8M_W^2 s_w^2 \lambda_S - e^2 \cdot p_1^{\mu} p_1^{\mu})$
$\bar{ u}^e{}_a$ $ u^e{}_b$	$-p_1^{\mu}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{ u}^{\mu}_{a}$ $ u^{\mu}_{b}$	$-p_1^\mu \gamma_{ac}^\mu \frac{(1-\gamma^5)_{cb}}{2}$
$ar{ u}^{ au}{}_a { u}^{ au}{}_b$	$-p_1^{\mu} \gamma_{ac}^{\mu} rac{(1-\gamma^5)_{cb}}{2}$
$ar{s}_{ap}$ s_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_s \cdot \delta_{ab})$
$ar{t}_{ap}$ t_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_t \cdot \delta_{ab})$
\bar{u}_{ap} u_{bq}	$-p_1^{\mu}\delta_{pq}\gamma_{ac}^{\mu}\delta_{cb}$
W^+_{μ} W^{ν}	$-g^{\mu\nu}(p_1^{\rho}p_1^{\rho}-M_W^2)$
W_F^+ W_F^-	$(p_1^{\mu}p_1^{\mu}-M_W^{\ 2})$
Z_{μ} $Z_{ u}$	$-\frac{1}{c_w^2}g^{\mu\nu}(c_w^2 \cdot p_1^{\rho}p_1^{\rho} - M_W^2)$
Z_F Z_F	$\frac{1}{c_w^2}(c_w^2 \cdot p_1^{\mu} p_1^{\mu} - M_W^2)$
\widetilde{h}^+ \widetilde{h}^-	$\frac{1}{e^2}(e^2 \cdot p_1^{\mu} p_1^{\mu} + e^2 m d2 - 2M_W^2 s_w^2 \lambda_3)$
\widetilde{h}_1 \widetilde{h}_1	$\left \frac{1}{e^2} (e^2 \cdot p_1^{\mu} p_1^{\mu} + e^2 m d2 - 2M_W^2 s_w^2 \lambda_3 - 2M_W^2 s_w^2 \lambda_4 - 2M_W^2 s_w^2 \lambda_5) \right $
\widetilde{h}_2 \widetilde{h}_2	$ \frac{1}{e^2} (e^2 \cdot p_1^{\mu} p_1^{\mu} + e^2 m d2 - 2M_W^2 s_w^2 \lambda_3 - 2M_W^2 s_w^2 \lambda_4 + 2M_W^2 s_w^2 \lambda_5) $
$A_{\mu} W^{+}_{\nu} W^{-}_{\rho}$	$-e(p_2^{\rho}g^{\mu\nu} - p_2^{\mu}g^{\nu\rho} - p_3^{\nu}g^{\mu\rho} + p_3^{\mu}g^{\nu\rho} + p_1^{\nu}g^{\mu\rho} - p_1^{\rho}g^{\mu\nu})$
A_{μ} W^{+}_{ν} W^{-}_{F}	$i \cdot e \cdot M_W \cdot g^{\mu u}$
$A_{\mu} W_F^+ W^{\ \nu}$	$-i \cdot e \cdot M_W \cdot g^{\mu\nu}$

Fields in the vertex	Variational derivative of Lagrangian by fields
A_{μ} W_F^+ W_F^-	$e(p_3^\mu - p_2^\mu)$
A_{μ} \widetilde{h}^{+} \widetilde{h}^{-}	$e(p_3^\mu-p_2^\mu)$
\bar{C}^A C^{W+} W^{μ}	$-2e\cdot p_1^\mu$
\bar{C}^A C^{W-} W^+_{μ}	$2e \cdot p_1^{\mu}$
\bar{b}_{ap} b_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ar{b}_{ap}$ b_{bq} $G_{\mu r}$	$g_s \cdot \lambda^r_{pq} \gamma^\mu_{ab}$
\bar{b}_{ap} b_{bq} H	$-rac{1}{2}rac{e\cdot M_b}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$ar{b}_{ap}$ b_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + \frac{(1-\gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
$ar{b}_{ap}$ b_{bq} Z_F	$-\frac{1}{2} \frac{i \cdot e \cdot M_b}{M_W \cdot s_w} \delta_{pq} \cdot \gamma_{ab}^5$
\bar{b}_{ap} t_{bq} W^{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{b}_{ap} t_{bq} W_F^-	$-\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2}}{M_W \cdot s_w} \delta_{pq} \left(M_b \cdot \frac{(1 - \gamma^5)_{ab}}{2} - M_t \cdot \frac{(1 + \gamma^5)_{ab}}{2} \right)$
\bar{c}_{ap} c_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma_{ac}^{\mu}\cdot\delta_{cb}$
\bar{c}_{ap} c_{bq} $G_{\mu r}$	$g_s \cdot \lambda^r_{pq} \gamma^\mu_{ab}$
\bar{c}_{ap} c_{bq} H	$-rac{1}{2}rac{e\cdot M_c}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{c}_{ap} c_{bq} Z_{μ}	$ -\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(4c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - \frac{(1-\gamma^5)_{cb}}{2} - 4s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right) $
\bar{c}_{ap} c_{bq} Z_F	$\frac{1}{2} \frac{i \cdot e \cdot M_c}{M_W \cdot s_w} \delta_{pq} \cdot \gamma_{ab}^5$
\bar{c}_{ap} s_{bq} W^{+}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{c}_{ap} s_{bq} W_F^+	$\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2}}{M_W \cdot s_w} \delta_{pq} \left(M_s \cdot \frac{(1+\gamma^5)_{ab}}{2} - M_c \cdot \frac{(1-\gamma^5)_{ab}}{2} \right)$
\bar{d}_{ap} d_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{d}_{ap} d_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
$ar{d}_{ap}$ d_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + \frac{(1-\gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
\bar{d}_{ap} u_{bq} W^{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$ar{e}_a e_b A_\mu$	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ar{e}_a$ e_b Z_μ	$-\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
$\bar{e}_a \nu^e{}_b W^-{}_\mu$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\bar{\mu}_a$ μ_b A_{μ}	$e\gamma^{\mu}_{ac} \cdot \delta_{cb}$
$\bar{\mu}_a$ μ_b H	$-rac{1}{2}rac{e\cdot M_{\mu}}{M_W\cdot s_w}\cdot \delta_{ab}$
$ar{\mu}_a$ μ_b Z_μ	$ -\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2}) $
$ar{\mu}_a$ μ_b Z_F	$-rac{1}{2}rac{i\cdot e\cdot M_{\mu}}{M_W\cdot s_w}\cdot \gamma_{ab}^5$
$\bar{\mu}_a \nu^{\mu}{}_b W^{-}{}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\mu}_a \nu^{\mu}_b W_F^-$	$-\frac{1}{2}\frac{i\cdot e\cdot M_{\mu}\cdot\sqrt{2}}{M_{W}\cdot s_{w}}\cdot\frac{(1-\gamma^{5})_{ab}}{2}$
$\bar{\tau}_a$ τ_b A_μ	$e\gamma^{\mu}_{ac} \cdot \delta_{cb}$
$\bar{ au}_a$ τ_b H	$-rac{1}{2}rac{e\cdot Mtau}{M_W\cdot s_w}\cdot \delta_{ab}$
$ar{ au}_a$ $ au_b$ Z_μ	$ -\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2}) $
$\bar{ au}_a$ $ au_b$ Z_F	$-rac{1}{2}rac{i\cdot e\cdot Mtau}{M_W\cdot s_w}\cdot \gamma_{ab}^5$
$\bar{\tau}_a \nu^{\tau}_b W^{-}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\tau}_a \nu^{\tau}_b W_F^-$	$-rac{1}{2}rac{i\cdot e\cdot Mtau\cdot \sqrt{2}}{M_W\cdot s_w}\cdotrac{(1-\gamma^5)_{ab}}{2}$
$G_{\mu p}$ $G_{\nu q}$ $G_{\rho r}$	$g_s f_{pqr} (p_3^{\nu} g^{\mu\rho} - p_3^{\mu} g^{\nu\rho} + p_1^{\rho} g^{\mu\nu} - p_1^{\nu} g^{\mu\rho} - p_2^{\rho} g^{\mu\nu} + p_2^{\mu} g^{\nu\rho})$
$\bar{C}^G_{\ p}$ $C^G_{\ q}$ $G_{\mu r}$	$g_s \cdot p_2^\mu f_{pqr}$
H H H	$-12\frac{M_W \cdot s_w \cdot \lambda_S}{e}$
$H W^+_{\mu} W^{\nu}$	$\left[rac{e\cdot M_W}{s_w}\cdot g^{\mu u} ight]$
H W^+_{μ} W^F	$\left[rac{1}{2}rac{i\cdot e}{s_w}(p_3^\mu-p_1^\mu) ight]$
H W_F^+ W_μ^-	$\left $
H W_F^+ W_F^-	$-4 \frac{M_W \cdot s_w \cdot \lambda_S}{e}$
H Z_{μ} $Z_{ u}$	$\left rac{e\cdot M_W}{c_w^2\cdot s_w}\cdot g^{\mu u} ight $
H Z_{μ} Z_{F}	$-rac{1}{2}rac{i\cdot e}{c_w\cdot s_w}(p_1^\mu-p_3^\mu)$
H Z_F Z_F	$-4\frac{M_W \cdot s_w \cdot \lambda_S}{e}$
H \widetilde{h}^+ \widetilde{h}^-	$-2\frac{M_W \cdot s_w \cdot \lambda_3}{e}$
$H \widetilde{h}_1 \widetilde{h}_1$	$-2\frac{M_W \cdot s_w}{e} (\lambda_3 + \lambda_4 + \lambda_5)$
$H = \widetilde{h}_2 = \widetilde{h}_2$	$-2\frac{M_W \cdot s_w}{e} (\lambda_3 + \lambda_4 - \lambda_5)$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\bar{\nu}^e{}_a e_b W^+{}_\mu$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^e{}_a {\nu^e}_b Z_\mu$	$-rac{1}{2}rac{e}{c_w\cdot s_w}\cdot \gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ μ_{b} $W^{+}{}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ μ_{b} W_{F}^{+}	$\frac{1}{2} \frac{i \cdot e \cdot M_{\mu} \cdot \sqrt{2}}{M_W \cdot s_w} \cdot \frac{(1 + \gamma^5)_{ab}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ τ_{b} $W^{+}{}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ τ_{b} W_{F}^{+}	$rac{1}{2}rac{i\cdot e\cdot Mtau\cdot \sqrt{2}}{M_W\cdot s_w}\cdot rac{(1+\gamma^5)_{ab}}{2}$
$\bar{ u}^{ au}{}_{a}$ $ u^{ au}{}_{b}$ Z_{μ}	$-rac{1}{2}rac{e}{c_w\cdot s_w}\cdot \gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} c_{bq} W^{-}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} c_{bq} W_F^-	$-\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2}}{M_W \cdot s_w} \delta_{pq} \left(M_s \cdot \frac{(1 - \gamma^5)_{ab}}{2} - M_c \cdot \frac{(1 + \gamma^5)_{ab}}{2} \right)$
\bar{s}_{ap} s_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{s}_{ap} s_{bq} $G_{\mu r}$	$g_s \cdot \lambda^r_{pq} \gamma^\mu_{ab}$
\bar{s}_{ap} s_{bq} H	$-rac{1}{2}rac{e\cdot M_s}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{s}_{ap} s_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + \frac{(1-\gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
\bar{s}_{ap} s_{bq} Z_F	$-rac{1}{2}rac{i\cdot e\cdot M_s}{M_W\cdot s_w}\delta_{pq}\cdot \gamma_{ab}^5$
\bar{t}_{ap} b_{bq} W^{+}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
\bar{t}_{ap} b_{bq} W_F^+	$\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2}}{M_W \cdot s_w} \delta_{pq} \left(M_b \cdot \frac{(1+\gamma^5)_{ab}}{2} - M_t \cdot \frac{(1-\gamma^5)_{ab}}{2} \right)$
\bar{t}_{ap} t_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{t}_{ap} t_{bq} $G_{\mu r}$	$g_s \cdot \lambda^r_{pq} \gamma^\mu_{ab}$
\bar{t}_{ap} t_{bq} H	$-rac{1}{2}rac{e\cdot M_t}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$ar{t}_{ap}$ t_{bq} Z_{μ}	$-\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(4c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - \frac{(1-\gamma^5)_{cb}}{2} - 4s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2}\right)$
\bar{t}_{ap} t_{bq} Z_F	$\frac{1}{2} \frac{i \cdot e \cdot M_t}{M_W \cdot s_w} \delta_{pq} \cdot \gamma_{ab}^5$
\bar{u}_{ap} d_{bq} W^{+}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{u}_{ap} u_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{u}_{ap} u_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$

Fields in the vertex	Variational derivative of Lagrangian by fields
\bar{u}_{ap} u_{bq} Z_{μ}	$-\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(4c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - \frac{(1-\gamma^5)_{cb}}{2} - 4s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2}\right)$
	$-\frac{c_w \cdot e}{s_w} (p_1^{\nu} g^{\mu \rho} - p_1^{\rho} g^{\mu \nu} - p_2^{\mu} g^{\nu \rho} + p_2^{\rho} g^{\mu \nu} + p_3^{\mu} g^{\nu \rho} - p_3^{\nu} g^{\mu \rho})$
$W^+_{\mu} W^F Z_{\nu}$	$-rac{i\cdot e\cdot M_W\cdot s_w}{c_w}\cdot g^{\mu u}$
W^+_{μ} W^F Z_F	$-rac{1}{2}rac{e}{s_w}(p_2^\mu-p_3^\mu)$
$W^+_{\mu} \widetilde{h}^- \widetilde{h}_1$	$rac{1}{2}rac{i\cdot e}{s_w}(p_2^\mu-p_3^\mu)$
W^+_{μ} $\widetilde{h}^ \widetilde{h}_2$	$-rac{1}{2}rac{e}{s_w}(p_2^\mu-p_3^\mu)$
\bar{C}^{W+} C^Z W^{μ}	$2e\cdot p_1^\mu$
\bar{C}^{W+} C^Z W_F^-	
\bar{C}^{W+} C^{W-} A_{μ}	$-2e\cdot p_1^{\mu}$
\bar{C}^{W+} C^{W-} H	$-rac{1}{2}rac{e\cdot M_W}{s_w}$
\bar{C}^{W+} C^{W-} Z_{μ}	$-2rac{c_w\cdot e}{s_w}\cdot p_1^\mu$
\bar{C}^{W+} C^{W-} Z_F	$rac{1}{2}rac{i\cdot e\cdot M_W}{s_w}$
\bar{C}^{W+} C^Z W^{μ}	$2rac{c_w\cdot e}{s_w}\cdot p_1^\mu$
\bar{C}^{W+} C^Z W_F^-	$\frac{1}{2} \frac{i \cdot (1 - 2c_w^2) \cdot e \cdot M_W}{c_w \cdot s_w}$
W_F^+ $W_\mu^ Z_\nu$	$\frac{i\cdot e\cdot M_W\cdot s_w}{c_w}\cdot g^{\mu u}$
W_F^+ $W_\mu^ Z_F$	$-rac{1}{2}rac{e}{s_w}(p_3^\mu-p_1^\mu)$
$\begin{array}{cccc} W_F^+ & W_F^- & Z_\mu \end{array}$	$-rac{1}{2}rac{(1-2c_w^2)\cdot e}{c_w\cdot s_w}(p_2^\mu-p_1^\mu)$
W_F^+ $\tilde{h}^ \tilde{h}_1$	$-rac{M_W \cdot s_w}{e}(\lambda_4 + \lambda_5)$
W_F^+ $\tilde{h}^ \tilde{h}_2$	$-rac{i\cdot M_W\cdot s_w}{e}(\lambda_4-\lambda_5)$
W^{-}_{μ} \widetilde{h}^{+} \widetilde{h}_{1}	$-rac{1}{2}rac{i\cdot e}{s_w}(p_3^\mu-p_2^\mu)$
W^{μ} \widetilde{h}^+ \widetilde{h}_2	$-rac{1}{2}rac{e}{s_w}(p_3^\mu-p_2^\mu)$
\bar{C}^{W-} C^Z W^+_{μ}	
\bar{C}^{W-} C^Z W_F^+	
\bar{C}^{W-} C^{W+} A_{μ}	
\bar{C}^{W-} C^{W+} H	$-rac{1}{2}rac{e\cdot M_W}{s_w}$

Fields in the vertex	Variational derivative of Lagrangian by fields
\overline{C}^{W-} C^{W+} Z_{μ}	$2\frac{c_w \cdot e}{s_w} \cdot p_1^{\mu}$
\bar{C}^{W-} C^{W+} Z_F	$-rac{1}{2}rac{i\cdot e\cdot M_W}{s_w}$
\bar{C}^{W-} C^Z W^+_{μ}	$-2\frac{c_w \cdot e}{s_w} \cdot p_1^{\mu}$
\bar{C}^{W-} C^Z W_F^+	$-rac{1}{2}rac{i\cdot(1-2c_w^{\ 2})\cdot e\cdot M_W}{c_w\cdot s_w}$
$W_F^- \widetilde{h}^+ \widetilde{h}_1$	$-rac{M_W \cdot s_w}{e}(\lambda_4 + \lambda_5)$
$W_F^- \widetilde{h}^+ \widetilde{h}_2$	$\left rac{i\cdot M_W\cdot s_w}{e}(\lambda_4-\lambda_5) ight $
Z_{μ} \widetilde{h}^{+} \widetilde{h}^{-}	$-\frac{1}{2} \frac{(1-2c_w^2) \cdot e}{c_w \cdot s_w} (p_3^\mu - p_2^\mu)$
$igg Z_{\mu} \widetilde{h}_1 \widetilde{h}_2$	$-\frac{1}{2}\frac{i\cdot e}{c_w\cdot s_w}(p_2^\mu - p_3^\mu)$
\bar{C}^Z C^{W+} W^{μ}	$-2\frac{c_w \cdot e}{s_w} \cdot p_1^{\mu}$
\bar{C}^Z C^{W+} W_F^-	$rac{1}{2}rac{i\cdot e\cdot M_W}{c_w\cdot s_w}$
\bar{C}^Z C^{W-} W^+_{μ}	$2rac{c_{w}\cdot e}{s_{w}}\cdot p_{1}^{\mu}$
\bar{C}^Z C^{W-} W_F^+	$-\frac{1}{2}\frac{i \cdot e \cdot M_W}{c_m \cdot s_m}$
\bar{C}^Z C^Z H	$-rac{1}{2}rac{e\cdot M_W}{c_m^2\cdot s_m}$
$oxed{Z_F \widetilde{h}_1 \widetilde{h}_2}$	$-2\frac{M_W \cdot s_w \cdot \lambda_5}{e}$
$A_{\mu} A_{\nu} W^{+}{}_{\rho} W^{-}{}_{\sigma}$	$-e^2(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho})$
$A_{\mu} A_{\nu} W_F^+ W_F^-$	$2e^2 \cdot g^{\mu\nu}$
A_{μ} A_{ν} \widetilde{h}^{+} \widetilde{h}^{-}	$2e^2 \cdot g^{\mu\nu}$
	$rac{1}{2}rac{i\cdot e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} H W_F^+ W^{\ \nu}$	$-rac{1}{2}rac{i\cdot e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W^{+}_{\nu} W^{-}_{\rho} Z_{\sigma}$	$-\frac{c_w \cdot e^2}{s_w} (2g^{\mu\sigma}g^{\nu\rho} - g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma})$
$A_{\mu} W^{+}_{\nu} W^{-}_{F} Z_{F}$	$-rac{1}{2}rac{e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W^{+}_{\nu} \tilde{h}^{-} \tilde{h}_{1}$	$rac{1}{2}rac{i\cdot e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W^{+}_{\nu} \widetilde{h}^{-} \widetilde{h}_{2}$	$-rac{1}{2}rac{e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W_F^+ W^{\ \nu} Z_F$	= ~ w
$A_{\mu} W_F^+ W_F^- Z_{\nu}$	$-\frac{(1-2c_w^2)\cdot e^2}{c_w\cdot s_w}\cdot g^{\mu\nu}$

Fields in the vertex	Variational derivative of Lagrangian by fields
$A_{\mu} W^{-}_{\nu} \widetilde{h}^{+} \widetilde{h}_{1}$	$-rac{1}{2}rac{i\cdot e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W^{-}_{\nu} \tilde{h}^{+} \tilde{h}_{2}$	$-rac{1}{2}rac{e^2}{s_w}\cdot g^{\mu u}$
A_{μ} Z_{ν} \widetilde{h}^{+} \widetilde{h}^{-}	$-\frac{(1-2c_w^2)\cdot e^2}{c_w\cdot s_w}\cdot g^{\mu\nu}$
$G_{\mu p}$ $G_{\nu q}$ $G_{\rho r}$ $G_{\sigma s}$	$\left g_s^2 (g^{\mu\rho} g^{\nu\sigma} f_{pqt} f_{rst} - g^{\mu\sigma} g^{\nu\rho} f_{pqt} f_{rst} + g^{\mu\nu} g^{\rho\sigma} f_{prt} f_{qst} \right $
	$-g^{\mu\sigma}g^{\nu\rho}f_{prt}f_{qst} + g^{\mu\nu}g^{\rho\sigma}f_{pst}f_{qrt} - g^{\mu\rho}g^{\nu\sigma}f_{pst}f_{qrt})$
H H H	$-6\lambda_S$
$H H W^+_{\mu} W^{\nu}$	$\left[rac{1}{2} rac{e^2}{s_w^2} \cdot g^{\mu u} ight]$
H H W_F^+ W_F^-	$-2\lambda_S$
H H Z_{μ} Z_{ν}	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
H H Z_F Z_F	$-2\lambda_S$
H H \tilde{h}^+ \tilde{h}^-	$-\lambda_3$
H H \widetilde{h}_1 \widetilde{h}_1	$-(\lambda_3 + \lambda_4 + \lambda_5)$
H H \widetilde{h}_2 \widetilde{h}_2	$-(\lambda_3 + \lambda_4 - \lambda_5)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left[-rac{1}{2}rac{i\cdot e^2}{c_w}\cdot g^{\mu u} ight]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left[rac{1}{2}rac{i\cdot e^2}{c_w}\cdot g^{\mu u} ight]$
$H W_F^+ \widetilde{h}^- \widetilde{h}_1$	$-rac{1}{2}(\lambda_4+\lambda_5)$
$H W_F^+ \widetilde{h}^- \widetilde{h}_2$	$-\frac{1}{2}i(\lambda_4 - \lambda_5)$
$H W_F^- \widetilde{h}^+ \widetilde{h}_1$	$-rac{1}{2}(\lambda_4+\lambda_5)$
$H W_F^- \widetilde{h}^+ \widetilde{h}_2$	$\frac{1}{2}i(\lambda_4 - \lambda_5)$
H Z_F \widetilde{h}_1 \widetilde{h}_2	$-\lambda_5$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{e^2}{s_w^2} (2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
$W^{+}_{\mu} W^{+}_{F} W^{-}_{\nu} W^{-}_{F}$	$rac{1}{2}rac{e^2}{s_w{}^2}\cdot g^{\mu u}$
$W^+_{\mu} W^{\nu} Z_{\rho} Z_{\sigma}$	$-\frac{c_w^2 \cdot e^2}{s_w^2} (2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho})$
W^+_{μ} W^{ν} Z_F Z_F	$rac{1}{2}rac{e^2}{s_w{}^2}\cdot g^{\mu u}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left[rac{1}{2} rac{e^2}{s_w^2} \cdot g^{\mu u} ight]$

Fields in the vertex	Variational derivative of Lagrangian by fields
$W^+_{\mu} W^{\nu} \widetilde{h}_1 \widetilde{h}_1$	$\frac{1}{2}\frac{e^2}{s_w^2}\cdot g^{\mu\nu}$
$W^+_{\mu} W^{\nu} \widetilde{h}_2 \widetilde{h}_2$	$\frac{1}{2} \frac{e^2}{s_w^2} \cdot g^{\mu\nu}$
$W^+_{\mu} W^F Z_{\nu} Z_F$	$\left[rac{1}{2}rac{e^2}{c_w}\cdot g^{\mu u} ight]$
$W^+_{\mu} Z_{\nu} \widetilde{h}^- \widetilde{h}_1$	$\left[-rac{1}{2}rac{i\cdot e^2}{c_w}\cdot g^{\mu u} ight]$
$W^+_{\mu} Z_{\nu} \widetilde{h}^- \widetilde{h}_2$	$\frac{1}{2} \frac{e^2}{c_w} \cdot g^{\mu u}$
$W_F^+ W_F^+ W_F^- W_F^-$	$-4\lambda_S$
W_F^+ W_F^+ $\tilde{h}^ \tilde{h}^-$	$-2\lambda_5$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$rac{1}{2}rac{e^2}{c_w}\cdot g^{\mu u}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2} \frac{(1-2c_w^2)^2 \cdot e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-2\lambda_S$
W_F^+ $W_F^ \tilde{h}^+$ \tilde{h}^-	$-(\lambda_3+\lambda_4)$
$W_F^+ W_F^- \widetilde{h}_1 \widetilde{h}_1$	$-\lambda_3$
$W_F^+ W_F^- \widetilde{h}_2 \widetilde{h}_2$	$-\lambda_3$
W_F^+ Z_F $\widetilde{h}^ \widetilde{h}_1$	$\frac{1}{2}i(\lambda_4 - \lambda_5)$
W_F^+ Z_F $\widetilde{h}^ \widetilde{h}_2$	$-rac{1}{2}(\lambda_4+\lambda_5)$
W^{μ} Z_{ν} \tilde{h}^+ \tilde{h}_1	$\left[rac{1}{2}rac{i\cdot e^2}{c_w}\cdot g^{\mu u} ight]$
$W^{\mu} Z_{\nu} \widetilde{h}^+ \widetilde{h}_2$	$rac{1}{2}rac{e^2}{c_w}\cdot g^{\mu u}$
$W_F^ W_F^ \tilde{h}^+$ \tilde{h}^+	$-2\lambda_5$
$W_F^ Z_F$ \tilde{h}^+ \tilde{h}_1	$-\frac{1}{2}i(\lambda_4-\lambda_5)$
$W_F^ Z_F$ \widetilde{h}^+ \widetilde{h}_2	$-rac{1}{2}(\lambda_4+\lambda_5)$
Z_{μ} $Z_{ u}$ Z_{F} Z_{F}	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
Z_{μ} Z_{ν} \widetilde{h}^{+} \widetilde{h}^{-}	$\frac{1}{2} \frac{(1-2c_w^2)^2 \cdot e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
Z_{μ} $Z_{ u}$ \widetilde{h}_1 \widetilde{h}_1	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
Z_{μ} $Z_{ u}$ \widetilde{h}_2 \widetilde{h}_2	$\left[\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}\right]$
$egin{array}{c cccc} Z_F & Z_F & Z_F & Z_F \end{array}$	$-6\lambda_S$

Fields in the vertex	Variational derivative of Lagrangian by fields
Z_F Z_F \widetilde{h}^+ \widetilde{h}^-	$-\lambda_3$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$-(\lambda_3+\lambda_4-\lambda_5)$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$-(\lambda_3+\lambda_4+\lambda_5)$
\widetilde{h}^+ \widetilde{h}^+ $\widetilde{h}^ \widetilde{h}^-$	$-4\lambda_D$
\widetilde{h}^+ $\widetilde{h}^ \widetilde{h}_1$ \widetilde{h}_1	$-2\lambda_D$
\widetilde{h}^+ $\widetilde{h}^ \widetilde{h}_2$ \widetilde{h}_2	$-2\lambda_D$
$igg \widetilde{h}_1 \widetilde{h}_1 \widetilde{h}_1 \widetilde{h}_1$	$-6\lambda_D$
$egin{array}{cccc} \widetilde{h}_1 & \widetilde{h}_1 & \widetilde{h}_2 & \widetilde{h}_2 \end{array}$	$-2\lambda_D$
\widetilde{h}_2 \widetilde{h}_2 \widetilde{h}_2 \widetilde{h}_2	$-6\lambda_D$