DATA SCIENCE & ARTIFICIAL INTELLIGENCE

Seattle Airbnb Open Dataset

Helping owners to <u>predict appropriate prices</u> to determine if their house is undervalued or overvalued, and also performing sentiment classification to find out <u>how to improve their houses from reviews</u>.

EXPLORATORY DATA ANALYSIS

Initial investigation on data to visualise patterns

PRICING TREND OVER A YEAR

+

Interesting findings

Observation: Prices peaked during the months of June to September

Possible explanation: Summer break period where more people go on holidays

PRICING TREND OVER A WEEK

+

Interesting findings

Observation: Fridays and Saturdays have significantly higher prices

Possible explanation: Weekend time frame, where most people take a break from work, thus more people might be renting Airbnbs.

PRICING TREND DURING HOLIDAYS

+

Interesting findings

Observation: Rather equal in pricing for both holidays and non-holidays which was surprising to us

EXPLORATORY DATA ANALYSIS

Interesting findings: Pricing with location

Observation: Prices are highest around the central area of Seattle

Possible explanation: Most of the attractions are located there hence, there is a higher demand for houses there

MACHINE LEARNING MODELS WE'VE USED

Linear Regression

Predicting Price through uni and multi-variable regressions

Sentiment Analysis

Sieving through common complaints for improvement of homes

Predicting Price through uni-variable regression

Pycaret

Comparing different machine learning models and determining the best one

Keras

Construction of neural network

DATA PREPARATION

Cleaning and structuring the data

DATA CLEANING & STRUCTURING

* DATA CLEANING & STRUCTURING

01. CONVERTING UNSTRUCTURED DATA INTO NUMERICAL FORM

Converting unstructured data types into numerical form for implementation to regression models (price, transit, host_verfications)

Name: price, Length: 3818, dtype: object int64

* DATA CLEANING & STRUCTURING

02. KEEPING NUMERICAL FEATURES THAT HAVE STRONG CORRELATION

Only correlations with absolute value greater than 0.35 are kept while others are dropped

+ DATA CLEANING & STRUCTURING

03. KEEPING CATEGORICAL FEATURES THAT DISTINGUISH PRICE

Exploring categorical data and deducing if the feature aids in distinguishing prices

Price vs Room Type

Price vs Property Type

DATA CLEANING & STRUCTURING

04. MERGING DESIRED FEATURES TOGETHER

We merged the desired categorical and numerical features into a single dataframe and save it as a csv for input into machine learning notebook.

Numerical Data + Categorical Data

id	property_type	room_type	neighbourhood	price
241032	Apartment	Entire home/apt	Queen Anne	85
953595	Apartment	Entire home/apt	Queen Anne	150
3308979	House	Entire home/apt	Queen Anne	975
7421966	Apartment	Entire home/apt	Queen Anne	100
278830	House	Entire home/apt	Queen Anne	450

accommodates	bathrooms	bedrooms	beds	guests_included
4	1.0	1.0	1.0	2
4	1.0	1.0	1.0	1
11	4.5	5.0	7.0	10
3	1.0	0.0	2.0	1
6	2.0	3.0	3.0	6

cleaned_listing.csv

DATA CLEANING & STRUCTURING

05. CONVERTING WORDS TO TOKENS (for sentiment analysis)

STEP 01

Words

"The cat sat on the mat."

Tokens

"The", "cat", "sat", "on", "the", "mat"

Removing punctuations and converting the words to tokens.

STEP 02

Removing stopwords

STEP 03

	original_word	lemmatized_word
0	trouble	trouble
1	troubling	trouble
2	troubled	trouble
3	troubles	trouble
	original_word	lemmatized_word
(goose goose	goose
-	geese	goose

Lemmatize Words

MACHINE LEARNING

Tools and techniques to analyse the data

LINEAR REGRESSION on UNI-VARIABLES

Uni Variables are not an effective predictor of price

⁺LINEAR REGRESSION on MULTI-VARIABLES

Multivariable Linear Regression Actual vs Result

Since more points were on the best fit line, multi variable linear regression is an effective predictor of price.

RANDOM FOREST REGRESSION on UNI-VARIABLES

Similar to decision trees, Random forest regression uses the ensemble method which creates multiple models and combines them to improve results

Mean Squared Error obtained from uni-variables

property_type	accommodates	
8456.256473742025	4729.695370463768	

room_type bathrooms 5673.0327102035335

neighbourhood bedrooms 7940.975906691937 4621.515166299114

PYCARET

Pycaret is a Python low-code library that **helps you perform model selection** allowing us to spend less time coding and more time on results and data analysis.

	Model	MSE	RMSE	R2
gbr	Gradient Boosting Regressor	2420.8161	49.0773	0.6072
ghtgbm	Light Gradient Boosting Machine	2565.2213	50.5277	0.5830
br	Bayesian Ridge	2620.0793	51.0777	0.5747
ridge	Ridge Regression	2642.1222	51.2947	0.5711
lr	Linear Regression	2669.4086	51.5665	0.5666

After comparing ML models using PYCARET, **gradient boosting regressor** has the highest R^2 value, hence it is the best model for predicting price.

GRADIENT BOOSTING REGRESSOR (after tuning) IN PREDICTING PRICES

As seen from the results, the model performed a little worse on the test dataset, which is as expected.

NEURAL NETWORK via KERAS

Mean Square Error: 3197

Multiple layers

Layer (type)	Output	Shape	Param #
dense_51 (Dense)	(None,	128)	1280
dense_52 (Dense)	(None,	256)	33024
dropout_8 (Dropout)	(None,	256)	0
dense_53 (Dense)	(None,	256)	65792
dense_54 (Dense)	(None,	128)	32896
dropout_9 (Dropout)	(None,	128)	0
dense_55 (Dense)	(None,	64)	8256
dense_56 (Dense)	(None,	1)	65
T-t-1 144 242	 -		_

Total params: 141,313 Trainable params: 141,313 Non-trainable params: 0

NATURAL LANGUAGE PROCESSING

Where machines decipher and understand human language

UNSUPERVISED SENTIMENT ANALYSIS

Negative words

'wifi_unstable', 0.99560749530; 'biggest_complaint', 0.9948632; 'old_nasty', 0.994354486465454;

Positive words

lifetime_experience', 0.9917296171 georgeous', 0.9916488528251648), unbelievable_hospitality', 0.99162

sentence	prediction
perfect location everything	1
om central location beautiful bu	1
ent great neighborhood kind apa	1

01

02

08

04

Converted words into vectors using *Word2Vec*

(similar words are close together)

Separating words into positive and negative groups using *k-means* clustering

Assign weights to words within a sentence using *tf-idf vectorizer*

Aggregated sentiment and tf-idf scores at sentence level and output prediction (0 for negative, 1 for positive)

SUPERVISED SENTIMENT ANALYSIS

BERT

Bidirectional Encoder Representations from Transformers

Masking

Hides words from the model to better predict next words within a sentence

Attention

Enable the model to have longer memory and retains context from previous words

SUPERVISED SENTIMENT ANALYSIS

Accuracy on train set: 93%

Positive word cloud generated

Accuracy on test set: 89.5%

Negative word cloud generated

Conclusion

- Outcomes
- Reviewing objectives
- Work Allocation

MACHINE LEARNING OUTCOME

PRICE (REGRESSION)

Multivariate Gradient Boosting Regressor

	Train	Test
MSE	2410	2540
R^2	0.608	0.598

SENTIMENT (CLASSIFICATION)

BERT with neural network classifier

	Train	Test
Accuracy	93.6%	89.5%

REVIEWING OBJECTIVES

Predicted prices of houses using regression models

Highlighted improvements that can be made by owners using Sentiment Analysis

Gained interesting insights on the data from EDA

Experimented with various machine learning tools outside of syllabus

Gained knowledge on Natural Language Processing

+

FUTURE IMPLEMENTATIONS

- Create an application for AirBnB hosts
- Hosts receive advice on house pricings based on features
- Hosts receive notifications when a negative review is given

+ WORK ALLOCATION

Thank You!+

Any Questions?

