Entity: adc_controller

• File: ADC.v

Diagram

Ports

Port name	Direction	Туре	Description
clk	input	wire	系统时钟信号
rst_n	input	wire	复位信号,低电平有效
start	input	wire	启动信号,启动ADC转换
data	output	[15:0]	16位ADC数据输出
busy	output		ADC忙信号,表示ADC正在操作
cs_n	output		片选信号,低电平有效
rd_n	output		读信号,低电平有效
adc_data	input	wire [15:0]	16位ADC数据输入

Signals

Name	Type	Description
state	reg [3:0]	状态寄存器,用于保存状态机的当前状态

Constants

Name	Type	Value	Description
IDLE		4'd0	初始状态,等待启动信号
START		4'd1	断言cs_n和rd_n以启动ADC转换
READ		4'd2	读取ADC数据并存储在数据寄存器中

Name	Type	Value	Description
DONE		4'd3	取消断言cs_n和rd_n,并返回到IDLE状态

Description

adc_controller 模块用于控制AD7606 ADC芯片,实现对ADC的启动、数据读取和状态管理。该模块通过状态机控制ADC的操作。

Processes

- unnamed: (@(posedge clk or negedge rst_n))
 - **Type:** always
 - **Description**: 在每个时钟(clk)的上升沿,状态机根据当前状态和输入信号进行状态转换。在复位时(rst_n为低电平),状态机设置为IDLE状态,数据清零,控制信号取消断言。

State machines

