TEORIA DE RESPOSTA AO ITEM (TRI) - AULA 2

MODELOS LOGÍSTICOS DA TRI

$$P(U_{ij} = 1/\theta_j) = c_i + (I - c_i) \frac{1}{I + e^{-a_i(\theta_j - b_i)}} \qquad P(U_{ij} = 1|\theta_j) = \frac{1}{1 + e^{-a_i(\theta_j - b_i)}}$$

$$P(U_{ij}=1|\theta_j)=\frac{1}{1+e^{\,(\theta_j-b_i)}}$$
 Parâmetros: a, = mede a discriminação do item \mathfrak{k} ; b, = mede a dificuldade de assinalar uma dada alternativa de resposta \mathfrak{k} ; c, = acerto ao acaso (chute) do item \mathfrak{k} ;

 $\Theta_{\rm j}$ = expressa o valor do traço latente do indivíduo j.

EXEMPLO

Digamos que 500 turistas tenham que expressar sua opinião sobre o São João (SJ) de Campina Grande. Há algum tempo o SJ é organizada por uma empresa privada que deseja saber o nível de satisfação dos turistas com a festa (traço latente). Para tanto, a empresa contrata um pesquisador que elabora 20 questões (0 – não e 1 – sim) sobre a festa do SJ.

Obs.:

Traço latente - Nível de satisfação com o evento SJ;

EXEMPLO

As 20 questões (itens):

' '	
1 – A festa é animada?	11 – As atrações vão até bom horário?
2 – A festa é segura?	12 – Durante o dia existem boas opções de atração?
3 – A festa tem boas atrações?	13 - As pessoas que conheceu são interessantes?
4 - A festa apresenta aspectos culturais?	14 - As pessoas que conheceu são bonitas?
5 – O local tem espaço suficiente?	15 – As pessoas que conheceu lhe deram atenção?
6 - Existe lugares para alimentação?	16 - Você se sentiu a vontade em todos os locais?
7 – Você dançou um forró?	17 - A cidade está enfeitada para o período?
8 - Os banheiros são higiênicos?	18 - Existem opções de bares e restaurantes?
9 – A cerveja vendida é sempre gelada?	19 - Existem vagas em hotéis?
10 – A revista de entrada foi amigável e	20 – Sua integridade estava garantida durante

EXEMPLO	Itens	a	ь	Respondentes	F1
EXEMPLO	Item_1	1,241	-1,354	[1,]	1,785795
	Item_2	1,675	1,010	[2,]	-1,07077
Determinamos os parâmetros dos	Item_3	1,198	0,623	[3,]	0,236117
itens.	Item_4	1,272	0.478	[4,]	0,808334
	Item_5	1,087	0,349	[5,]	0,854238
Também determinados os	Item_6	1,220	0,332	[6,]	0,4324
parâmetros dos respondentes	Item_7	1,154	-0,374	[7.]	-0,45445
	Item_8	1,138	1,080	[8,]	0,42413
Os parâmetros são estimados com	Item_9	1,101	0,688	[9,]	1,065583
média = 0 e sd = 1	Item_10	1,354	0.452	[10,]	-0,09083
	Item_11	1,102	0,476	[11,]	-1,43049
	Item_12	1,478	0,335	[12,]	-0,95792
	Item_13	1,080	-0,872	[13.]	0,077883
	Item_14	1,291	-0.634	[,]	
	Item_15	1,255	-0,135	[495,]	-1,65106
	Item_16	1,005	1,386	[496,]	0,25058
	Item_17	1,263	-2,310	[497.]	-1,21534
	Item_18	1,485	-0,711	[498,]	0,509631
	Item_19	0,928	-1,123	[499,]	-0,91375
$\mu - 3\sigma \mu - 2\sigma \mu - \sigma \mu \mu + \sigma \mu + 2\sigma \mu + 3\sigma x$	Item_20	1.398	1.448	[500,]	-1,13699

EXEMPLO

Estaria satisfeito meu Respondente 1? E meu Respondente 2? E meu Respondente 13? E meu Respondente 500?

Itens	а	ь	Respondentes	F1
Item 1	1.241	-1.354	[1,]	1,785795
Item 2	1.675	1.010	[2,]	-1,07077
Item_3	1,198	0,623	[3,]	0,236117
Item_4	1,272	0,478	[4,]	0,808334
Item_5	1,087	0,349	[5.]	0,854238
Item_6	1,220	0,332	[6,]	0,4324
Item_7	1,154	-0,374	[7,]	-0,45445
Item_8	1,138	1,080	[8,]	0,42413
Item_9	1,101	0,688	[9,]	1,065583
Item_10	1,354	0,452	[10,]	-0,09083
Item_11	1,102	0,476	[11,]	-1,43049
Item_12	1,478	0,335	[12,]	-0,95792
Item_13	1,080	-0,872	[13,]	0,077883
Item_14	1,291	-0,634	[,]	
Item_15	1,255	-0,135	[495,]	-1,65106
Item_16	1,005	1,386	[496,]	0,25058
Item_17	1,263	-2,310	[497,]	-1,21534
Item_18	1,485	-0,711	[498.]	0,509631
Item_19	0,928	-1,123	[499,]	-0,91375
Item_20	1,398	1,448	[500,]	-1,13699

EXEMPLO

Estaria satisfeito meu Respondente 1? E meu Respondente 2?

E meu Respondente 13?

E meu Respondente 500?

Item_2	1,675	1,010	[2,]	-1,07077
Item_3	1,198	0,623	[3,]	0,236117
Item_4	1,272	0,478	[4,]	0,808334
Item_5	1,087	0,349	[5.]	0,854238
Item_6	1,220	0,332	[6.]	0,4324
Item_7	1,154	-0,374	[7.]	-0,45445
Item_8	1,138	1,080	[8,]	0,42413
Item_9	1,101	0,688	[9,]	1,065583
Item_10	1,354	0,452	[10,]	-0,09083
Item_11	1,102	0,476	[11,]	-1,43049
Item_12	1,478	0,335	[12,]	-0,95792
Item_13	1,080	-0,872	[13,]	0,077883
Item_14	1,291	-0,634	[]	
Item_15	1,255	-0,135	[495,]	-1,65106
Item_16	1,005	1,386	[496,]	0,25058
Item_17	1,263	-2,310	[497,]	-1,21534
Item_18	1,485	-0,711	[498.]	0,509631
Item_19	0,928	-1,123	[499.]	-0.91375
Item_20	1,398	1,448	[500.]	-1,13699

EXEMPLO

Respondente 2 = -1,07Concordou (marcou sim) para: Q1 - A festa é animada,

Q17 – a cidade estava enfeitada Q19 - e que existem vagas em hotéis

 $\theta_2 = -1.07$ $\rightarrow \theta_2 > b_1, b_{17} e b_{19}$

*b*₁ = -1,354 <-> -1,07 > -1,354 b_{17} = -2,310 <-> -1,07 > -2,310 $b_{19} = -1,123 <-> -1,07 > -1,123$

Itens questionados	D D
1 - A festa é animada?	-1,354
2 – A festa é segura?	1,010
3 - A festa tem boas atrações?	0,623
4 - A festa apresenta aspectos culturais?	0,478
5 - O local tem espaço suficiente?	0,349
6 – Existe lugares para alimentação?	0,332
7 - Vocē dançou um forró?	-0,374
B - Os banheiros são higiênicos?	1,080
9 – A cerveja vendida é sempre gelada?	0,688
10 – A revista de entrada foi amigável e amistosa?	0,452
11 - As atrações vão até bom horário?	0,476
12 - Durante o dia existem boas opções de atração?	0,335
13 - As pessoas que conheceu são interessantes?	-0,872
14 - As pessoas que conheceu são bonitas?	-0,634
15 - As pessoas que conheceu lhe deram atenção?	-0,135
16 - Vocë se sentiu a vontade em todos os locais?	1,386
17 - A cidade está enfeitada para o período?	-2,310
18 - Existem opções de bares e restaurantes?	-0,711
19 - Existem vagas em hotéis?	-1,123
20 - Sua integridade estava garantida durante todo o tempo?	1 440

EXEMPLO

Respondente 1 = +1,79Concordou (marcou sim) para:

Q1 - A festa é animada

Q2 - e segura...

Q3 – Que as atrações são boas

Q4 - e que existem aspectos culturais.

Q5 – O local é espaçoso

Q6 - com lugares para alimentação.

Q20 - e que sua integridade estava garantida todo o tempo.

 $\theta_i = -1,07 \forall b_i$

Itens questionados	b
1 - A festa é animada?	-1,354
2 - A festa é segura?	1,010
3 - A festa tem boas atrações?	0,623
4 - A festa apresenta aspectos culturais?	0,478
5 - O local tem espaço suficiente?	0,349
6 - Existe lugares para alimentação?	0,332
7 - Vocē dançou um forró?	-0,374
8 - Os banheiros são higiênicos?	1,080
9 - A cerveja vendida é sempre gelada?	0,688
10 – A revista de entrada foi amigável e amistosa?	0,452
11 - As atrações vão até bom horário?	0,476
12 - Durante o dia existem boas opções de atração?	0,335
13 - As pessoas que conheceu são interessantes?	-0,872
14 - As pessoas que conheceu são bonitas?	-0,634
15 - As pessoas que conheceu lhe deram atenção?	-0,135
16 - Vocë se sentiu a vontade em todos os locais?	1,386
17 - A cidade está enfeitada para o período?	-2.310
18 - Existem opções de bares e restaurantes?	-0,711
19 - Existem vagas em hotéis?	-1,123
20 - Sua integridade estava garantida durante todo o tempo?	1,448

EXEMPLO

Respondente 13 = +0.08Concordou (marcou sim) para:

Q1 – A festa é animada

Q7 - e que dançou forró.

Q13 - As pessoas são interessantes

Q14 – bonitas e

Q15 - lhe deram atenção.

Q17 - A cidade estava enfeitada com

Q18 - opções de bares/restaurantes

Q19 - e com vagas de hotéis.

 $\theta_{13} = +0.08 -> \theta_{13} > b_1, b_7, b_{13}, b_{14}, b_{15}, b_{17}, b_{18}e b_{19}$

Itens questionados	b
1 - A festa é animada?	-1,354
2 – A festa é segura?	1,010
3 - A festa tem boas atrações?	0,623
4 - A festa apresenta aspectos culturais?	0,478
5 - O local tem espaço suficiente?	0,349
6 - Existe lugares para alimentação?	0.332
7 - Vocē dançou um forró?	-0.374
B - Os banheiros são higiênicos?	1.080
9 - A cerveja vendida é sempre gelada?	0.688
10 - A revista de entrada foi amigável e amistosa?	0,452
11 - As atrações vão até bom horário?	0.476
12 - Durante o dia existem boas opções de atração?	0.335
13 - As pessoas que conheceu são interessantes?	-0.872
14 - As pessoas que conheceu são bonitas?	-0.634
15 - As pessoas que conheceu lhe deram atenção?	-0.135
16 - Vocë se sentiu a vontade em todos os locais?	1.386
17 - A cidade está enfeitada para o período?	-2.310
18 - Existem opções de bares e restaurantes?	-0,711
19 - Existem vagas em hotéis?	-1,123
20 - Sug integridade estava garantida durante todo o tempo?	1 440

EXEMPLO

-3 -2 -1 0 +1 +2 +3

Itens questionados	b
1 – A festa é animada?	-1,354
2 – A festa é segura?	1,010
3 – A festa tem boas atrações?	0,623
4 - A festa apresenta aspectos culturais?	0,478
5 - O local tem espaço suficiente?	0,349
6 – Existe lugares para alimentação?	0,332
7 - Você dançou um forró?	-0,374
8 - Os banheiros são higiênicos?	1,080
9 – A cerveja vendida é sempre gelada?	0,688
10 - A revista de entrada foi amigável e amistosa?	0,452
11 - As atrações vão até bom horário?	0,476
12 - Durante o dia existem boas opções de atração?	0,335
13 - As pessoas que conheceu são interessantes?	-0,872
14 - As pessoas que conheceu são bonitas?	-0,634
15 - As pessoas que conheceu lhe deram atenção?	-0,135
16 - Vocë se sentiu a vontade em todos os locais?	1,386
17 - A cidade está enfeitada para o período?	-2,310
18 - Existem opções de bares e restaurantes?	-0,711
19 - Existem vagas em hotéis?	-1,123
20 - Sua integridade estava garantida durante todo o tempo?	1.448

Itens questionados	b
1- A feste é-animada?	-1,354
2- A festa 6-segurs2	1,010
3 A festa tem-beas-strações?	0,623
4 A festa apresenta aspectos culturais?	0,478
5- Q local tem-espaço suficiente?	0,349
6— Existo-lugares-para-alimentação?	0,332
7- Vosê dançou um/forró?	-0,374
8- Os lasa heiras aša higiánicos?	1,080
9 A cerveja vendida é sempre gelada 2	0,688
10 -A revista de entrada foi-amigável e-amistosa?	0,452
14 As-atrações võis-até bom horárie?	0,476
12 Durante o-die existem boas apções de etração?	0,335
13 - As-pessoas que-conheseusão interessantes?	-0,872
14 ~As-pessoas que-conheceusão bonitas?	-0,634
15 As-pessoas que-conheseulho deram-atenção?	-0,135
16Vecë-se-sentiu e ventade em-todoe oe lecais?	1,386
17A eidade está enfeitada-para-o período?	-2,310
18 Existem-opções-de bares e restaurantes?	-0,711
19 -Existem vagas em hotéis?	-1,123
29 Sua-integridade estava-garentida durante-todo e tempo? -	1.448

EXEMPLO

1,010 0,623 0,478

-0,374 0,688

0,335

-0,872

-0,634 -0,135

> -0.711 -1,123

- Portanto, classificar indivíduos/empresas de forma arbitraria não é um caminho seguro;
- Não devemos definir níveis para a escala e, em seguida, definir os padrões de resposta de cada nível... Mas sim, encontrar os padrões de resposta, para, em seguida, nomear o que significa cada nível da escala;
- A TRI, geralmente, faz uso de técnicas de ancoragem para definir os padrões de resposta.
- As técnicas de ancoragem fazem uso do cálculo de probabilidade para definir os padrões de resposta de cada nível da escala
- Técnicas de ancoragem serão matéria das próximas aulas.

CONFIABILIDADE DOS DADOS

CONFIABILIDADE DOS DADOS

- Até o presente momento, adotamos que os dados que estamos utilizando para estimar os parâmetros da TRI são confiáveis;
- Contudo, é bem provável que os dados não sejam tão confiáveis quanto nós pesamos;
- Alguns métodos são recomendados para avaliar a confiabilidade dos dados:
- ✓ Alfa de Cronbach -> Consistência interna
- ✓ Ômega de McDonald -> Confiabilidade

ALFA DE CRONBACH

- O coeficiente alfa de Cronbach (α) é uma técnica utilizada para avaliação da consistência interna de instrumentos de medição;
- É expresso pela seguinte equação.
- Via de regra, valores de $\alpha > 0.70$, indicam que dados coletados apresentam consistência interna;
- Valores muito elevados ($\alpha > 0.95$, por exemplo), podem indicar itens redundantes.

ALFA DE CRONBACH - NO SOFTWARE R

#Entrando com dados no R do São João dados=read.table(file.choose(),head=T,dec=",")

#Ativando pacotes library(psy) library(psych) library(MASS) library(mirt) library(lavaan) library(semTools) library(semPlot) library(lavaan)

ALFA DE CRONBACH - NO SOFTWARE R

#Calculando o alfa de Cronbach

alpha(dados)

alfa > 0,70.

maiores que 0,70.

ALFA DE CRONBACH

- Observamos então que os itens possuem um valor de correlação média igual a 0,83;
- Portanto, existem indícios de que os itens podem se relacionar a tal ponto de gerar, pelo menos, um escore ou traço latente;
- Valores baixos de alfa, indicam que os itens tem pouco correlação um com os outros, ou que alguns dos itens não tem boa correlação;
- Desse modo, uma baixa correlação indica que os itens não podem se relacionar e gerar, pelo menos, um escore ou traço latente.

ÔMEGA DE MCDONALD

- Contudo, alguns autores consideram o alfa de Cronbach como uma medida fiel de confiabilidade;
- Como alternativa temos o Ômega de McDonaldo (ω), que é expresso por:
- O ω é calculado com base nas cargas fatoriais padronizadas dos itens;
- Espera-se que $\omega > \alpha > 0,70$ para assegurar alguma confiabilidade para os dados coletados.

ÔMEGA DE MCDONALD - NO R

#Calculando o Ômega de McDonald

omega(dados)

Portanto o valor de $\omega > alfa > 0,70.$ Sendo 0.84 > 0,83 > 070

> omega(dados)		
Omega		
Call: omegah (m = m, n	factors = nfactors,	fm = f
digits = digits,	title = title, sl =	sl, la
plot = plot, n.ob	s = n.obs, rotate =	rotate
covar = covar)		
Alpha:	0.83	
G.6:	0.83	
Omega Hierarchical:	0.78	
Omega H asymptotic:	0.93	
Omega Total	0.84	

DIMENSIONALIDADE DOS DADOS

IONHATAN MAGNO, DE

DIMENSIONALIDADE DOS DADOS

- Todo fenômeno, via de regra, é governado por múltiplos fatores ou variáveis;
- Contudo, nem todos os fatores/variáveis tem igual importância para um dado fenômeno;
- Quando construímos um modelo (simplificação da realidade), estamos buscando representar, por meio de números, um fenômeno destacando os seus fatores/variáveis principais;
- Assim, em um modelo, buscamos inserir as variáveis que são mais importantes, e não necessariamente, todas as variáveis.

DIMENSIONALIDADE DOS DADOS

- Alguns procedimentos podem nos auxiliar a determinar a dimensionalidade de um instrumento de pesquisa ou coleta de dados;
- ✓ Análise Fatorial;
- ✓ Análise Paralela.

PRESSUPOSTOS PARA ANÁLISE FATORIAL

- Dos testes devem ser utilizados para assegurar a possibilidade de uso da técnica de análise fatorial.
- Teste de Kaiser-Meyer-Olkin (KMO):
- ✓ Teste de esfericidade de Bartlett

$$KMO = \frac{\displaystyle\sum_{j \neq k} r_{jk}^2}{\displaystyle\sum_{j \neq k} r_{jk}^2 + \displaystyle\sum_{j \neq k} p_{jk}^2}$$

$$\chi^2 = -\left[(n-1) - \frac{2p+5}{6} \right] \ln |R|$$

PRESSUPOSTOS PARA ANÁLISE FATORIAL

- O KMO indica a proporção de variância dos dados que são comuns a todas as variáveis.
- Portanto, um bom valor de KMO significa que o conjunto de itens compartilham uma variância comum com uma dada dimensão.
- Ou seja, compartilham informação com uma dada dimensão.
- É esperado um valor de KMO > 0.70 para a possibilidade de uso da Análise Fatorial

PRESSUPOSTOS PARA ANÁLISE FATORIAL

- O teste de esfericidade de Bartlett compara se a matriz de correlação dos itens se assemelha a uma matriz identidade;
- Quando a matriz de correlação dos itens se assemelha a uma matriz identidade, significa que os itens tem correlação apenas com ele mesmo;
- Ou seja, a sua correlação com os demais itens é tão baixa que se assemelha a zero.
- Logo, não podemos gerar, pelo menos, um escore

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

PRESSUPOSTOS PARA ANÁLISE FATORIAL - NO R

#Calculando o KMO

KMO(dados)

Portanto o valor de KMO > 0,70.Indicando que compartilham informação podem gerar uma dimensão, pelo menos.

Kaiser-Meyer-Olkin factor adequacy
Coll: MODI: - dedox
Overal: MSA - 0.91
NEATOR real: Team - 0.92
NEATOR real: Team - 0.

PRESSUPOSTOS PARA ANÁLISE FATORIAL - NO R

#Calculando a esfericidade de Bartlett bartlett.test(dados)

> bartlett.test(dados)

Bartlett test of homogeneity of variances

Portanto o valor de p-value < 0,05 Assim, está rejeitada a hipótese de que a matriz da correlação se assemelha a matriz identidades

ANÁLISE FATORIAL

- A análise fatorial é uma técnica estatística multivariada, que busca agrupar em conjuntos variáveis correlacionadas, dando origem aos fatores;
- O objetivo dos fatores é resumir diversas variáveis em um conjunto menor de dimensões com a menor perda de informação possível;
- Essa técnica é importante nos estudos de TRI, pois mostra como os itens de um instrumento podem se agrupar e gerar dimensões;
- Esse propriedade de redução de muitos itens em poucas dimensões está relacionada a Análise dos Componentes Principais (ACP).

ANÁLISE FATORIAL - NO R

#Análise fatorial, incialmente, tem o mesmo comando #utilizado para construção do modelo da TRI #Continuamos com o modelo

logístico de 2 parâmetros m1=mirt(dados,1,'2PL')

#Para apresentar o resultado da Análise Fatorial

summary(m1)

ANÁLISE FATORIAL -NO R

Espera-se cargas fatoriais (F) maiores que 0,300.

O valor de F expressa a relação de cada item com a dimensão.

ANÁLISE PARALELA

- A AP é um procedimento estatístico de simulação Monte-Carlo que consiste na construção aleatória de um conjunto hipotético de matrizes de correlação de variáveis;
- Tais matrizes utilizando como base a dimensionalidade (o mesmo número p de variáveis e o mesmo número n de sujeitos) do conjunto de dados reais;
- Portanto, o número de dimensões de um instrumento é determinado com base em várias amostras extraídas de uma população;
- Esse procedimento é mais preciso que outros como o Critério de Kayser e o Scree Plot).

ANÁLISE PARALELA - NO R

#Análise paralela

fa.parallel(dados, cor="tet", fa="pc", sim=FALSE)

#cor="tet" significa que a matriz de covariância utilizada é tetracórica, ou seja, ideal para dados dicotômicos

#fa="pc" significa que a extração dos fatores é feita pela técnica de análise de componentes principais

ANÁLISE PARALELA - NO R

- Observa-se que uma dimensão apresenta autovalor maior que 6.
- A segunda dimensão apresenta autovalor menor que 2, e já muito próximo do autovalor da dimensão 3, 4,
- Portanto, a primeira dimensão parece concentrar uma grande parte das informações levantadas pelos itens;
- São fortes os indícios de unidimensionalidade medidos pelos itens.

AVALIAÇÃO AB1 - PRIMEIRA PARTE

- Analise o bando de dados sorteado
- Verifique a semântica dos itens de tal modo que todos os itens estejam com a escala de resposta compatível com o traço latente:
- ✓ Organize os itens com opções de resposta invertidas;
- ✓ Determine a confiabilidade dos dados;
- ✓ Dimensionalidade dos dados;
- ✓ Parâmetro dos itens e dos respondentes.