Proposition 3.13. If $m, n \in \mathbb{Z}$ satisfy $m \leq n \leq m$ then m = n.

Proof. Suppose that $m \leq n$ and $n \leq m$. Assume (by means of contradiction) that $m \neq n$. But then $m \leq n$ implies that m < n, and, similarly, $n \leq m$ implies that n < m. By Proposition 3.9, we obtain m < m, i.e., $0 = m - m \in \mathbb{N}$, a contradiction. Therefore, $m \neq n$ cannot hold, i.e., m = n.

Proposition 3.14. For all $m, n, p \in \mathbb{Z}$:

- (i) If m < n then m + p < n + p.
- (ii) If m < n and 0 < p then mp < np.
- (iii) If m < n and p < 0 then np < mp.

Proof. (i) Suppose m < n, i.e., $n - m \in \mathbb{N}$. Then (Axioms 2.2, 2.4, and associativity)

$$n-m = n-m+0 = n-m+p-p = (n+p)-(m+p) \in \mathbb{N}$$
,

i.e., m + p < n + p.

- (ii) Suppose m < n and 0 < p, i.e., $n m \in \mathbb{N}$ and (using the definition of subtraction, Proposition 2.11, and Axiom 2.2) $p 0 = p \in \mathbb{N}$. By Proposition 3.7, $(n m)p \in \mathbb{N}$, which we can distribute: $np mp \in \mathbb{N}$. But this just means mp < np.
- (iii) Suppose m < n and p < 0, i.e., $n m \in \mathbb{N}$ and (using the definition of subtraction and Axiom 2.2) $0 p = -p \in \mathbb{N}$. By Proposition 3.7, $(n m)(-p) \in \mathbb{N}$, which we can distribute: $n(-p) m(-p) \in \mathbb{N}$. The last expression equals, by the definition of subtraction and Proposition 2.15, $mp np \in \mathbb{N}$, i.e., np < mp.