

Executive Summary

Classification Model Comparison

- NYC Shooting Incident Report (Historic)
 - Classify Incidents as Murders Based on Incident Attributes
 - Accuracy / Computational Resources
- EDA
 - NA / Content
 - Feature Mapping (Multi-value to Binary)
- Models
 - K Nearest Neighbors
 - Random Forest
 - Gradient Boosting
- Evaluation
 - Tables / Plots
- Discussion
 - Expected vs Surprise
- Conclusion
 - Top Performer: Gradient Boosting

Project Description

Analyze the NYPD Shooting Incident Data data set in an attempt to classify shooting incidents as murders.

Data Set

- NYPD Shooting Incident Data (Historic)
- Every shooting incident that occurred in New York City from 1/1/2006 through 12/31/2021
- Importance Situational Avoidance, Murder Incident Reduction
- Location: https://catalog.data.gov/dataset/nypd-shooting-incident-data-historic

Models (sklearn)

- K Nearest Neighbors
- Random Forest
- Gradient Boosting
- Varying Conditions

Metrics

- Classification Accuracy
- Run Time

Evaluation

- Histograms
- Plots
- Tables

Exploratory Data Analysis and Cleansing

High Level

- 25,596 Observations
- 19 Features
- Type → OCCUR_DATE, OCCUR_TIME From Object to Date Time

NA Analysis

- 4 Features (LOCATION_DESC, PERP_AGE_GROUP, PERP_SEX, PERP_RACE)
- 9300+ Observations
- >5% Throw

Irrelevant

• Throw → INCIDENT_KEY PRECINCT, JURISDICTION_CODE, Coordinates

Redundant

• Throw → X_COORD_CD, Y_COORD_CD, Latitude, Longitude, Lon, Lat

INCIDENT KEY	int64
OCCUR_DATE	object
OCCUR_TIME	object
BORO	object
PRECINCT	int64
JURISDICTION_CODE	float64
LOCATION_DESC	object
STATISTICAL_MURDER_FLAG	bool
PERP_AGE_GROUP	object
PERP_SEX	object
PERP_RACE	object
VIC_AGE_GROUP	object
VIC_SEX	object
VIC_RACE	object
X_COORD_CD	float64
Y_COORD_CD	float64
Latitude	float64
Longitude	float64
Lon_Lat dtype: object	object
INCIDENT_KEY 0 0 OCCUR_DATE 0 0 OCCUR_TIME 0 0 BORO 0 0 PRECINCT 0 0	
JURISDICTION_CODE 2 0	
LOCATION_DESC 14977 0	
STATISTICAL_MURDER_FLAG	i 0 0
PERP_AGE_GROUP 9344 0)
PERP SEX 9310 0	
PERP RACE 9310 0	
VIC AGE GROUP Ø Ø	
VIC_AGE_GROOF 0 0	
VIC_SLX 0 0 VIC RACE 0 0	
_	
X_COORD_CD 0 0	
Y_COORD_CD 0 0	

Latitude 0 0

Longitude 0 0 Lon Lat 0 0

Exploratory Data Analysis (EDA)

Correctness

- VIC_AGE_GROUP, VIC_RACE, VIC_SEX → U and UNKNOWN Values
- <.5% of Observations → Removed

Unknown Age Rows: 60

Percent of Rows: 0.0023441162681669013

Unknown Sex Rows: 11

Percent of Rows: 0.0004297546491639319

Unknown Age Rows: 65

Percent of Rows: 0.0025394592905141427

Multi-Value to Binary Conversion

• 19 – 61 Features

dtype: object

0	murder	25482 non-nul	
2	sex de	25482 non-nul	
3	de d1	25482 non-nul 25482 non-nul	1 bool
4	d2	25482 non-nul	
5	d3	25482 non-nul	
6	d4	25482 non-nul	
7	d5	25482 non-nul	
8	d6	25482 non-nul	
9	he hi	25482 non-nul 25482 non-nul	
11	h2	25482 non-nul	
12	ha	25482 non-nul	
13	h4	25482 non-nul	l bool
14	hs	25482 non-nul	1 bool
15	h6	25482 non-nul	
16	h7	25482 non-nul	
17	hs ha	25482 non-nul 25482 non-nul	
19	hie	25482 non-nul	
20	h11	25482 non-nul	
21	h12	25482 non-nul	
22	h13	25482 non-nul	l bool
23	h14	25482 non-nul	
24	h15	25482 non-nul	
25 26	h16	25482 non-nul	
26	h18	25482 non-nul	
28	h19	25482 non-nul	
29	h20	25482 non-nul	1 bool
30	h21	25482 non-nul	
31	h22	25482 non-nul	
32	h23	25482 non-nul	
33	m1 m2	25482 non-nul 25482 non-nul	
35	m3	25482 non-nul	
36	84	25482 non-nul	
37	m5	25482 non-nul	
38	m6	25482 non-nul	
39	m7	25482 non-nul	
40	88 89	25482 non-nul 25482 non-nul	
42	m10	25482 non-nul	
43	m11	25482 non-nul	
44	m12	25482 non-nul	l bool
45	BROOKLYN	25482 non-nul	1 bool
46	QUEENS	25482 non-nul	
47	BRONX	25482 non-nul	
48 49	MANHATTAN STATEN ISLAND	25482 non-nul 25482 non-nul	
50	BLACK	25482 non-nul 25482 non-nul	
51	ASIAN / PACIFIC ISLANDER	25482 non-nul	
52	BLACK HISPANIC	25482 non-nul	
53	WHITE HISPANIC	25482 non-nul	1 bool
54	WHITE	25482 non-nul	1 bool
55			22
55 56	AMERICAN INDIAN/ALASKAN NATIVE 18-24	25482 non-nul 25482 non-nul	
57	25-44	25482 non-nul	
58	<18	25482 non-nul	
59			
	45-64	25482 non-nul	
60	45-64 65+	25482 non-nul 25482 non-nul	

Models

K Nearest Neighbor

- sklearn.neighbors
- KNeighborsClassifier(n_neighbors = k)
- k = 2 to 22

Gradient Boost

- sklearn.ensemble
- GradiebntBoostClassifier(n_estimators = e)
- estimators = [25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500]

Random Forest

- sklearn.ensemble
- RandomForestClassifier(n_estimators = e)
- estimators = [25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500]

```
y = classificationData['murder']
X = classificationData.drop(['murder'], axis = 1)
y.info()
X_train, X_test, y_train, y_test = train_test_split(X, \( \frac{1}{2} \), test_size = 0.25, \( \frac{1}{2} \), mandom_start = 
dfAccuracy = pd.DataFrame()
dfTimes = pd.DataFrame()
  #KNN Evaluation
knnStartTime = time.time()
                                                                                                                                                                                       Sample Model
 knnScores = [None]
  knnTimes = [None]
 for k in range(2, 22):
                 knn = KNeighborsClassifier(n_neighbors=k)
                knn.fit(X_train, y_train)
                knnPredictions = knn.predict(X test)
                knnScores.append(metrics.accuracy_score(y_test, knnPredictions))
                knnTimes.append(time.time() - knnStartTime)
dfAccuracy['KNN'] = knnScores
dfTimes['KNN'] = knnTimes
```

Decision tree trained on all the iris features

)

Accuracy

Best: Gradient Boost

Run Time

Best: KNN

Feature Importance

23 Unimportant Features

Accuracy: Reduced Feature Set

KNN	Random Forest	Gradient Boost
Exact Overlay	Similar Shape Variance Due to Randomness of Individual Tree Features	

No Impact on Accuracy

Run Time: Reduced Feature Set

KNN	Random Forest	Gradient Boost
19 %	↓10%	↓28%

Reduced Run Time on All Models

Discussion

- Accuracy
 - KNN and Gradient Boost Realized 81%
 - Random Forest 78%
 - Observations
 - Tree Models Much Better Accuracy Acceleration
 - KNN Noticeably Slower Accuracy Acceleration
- Feature Reduction
 - Daytime and Evening Hours
 - Sex
- Reduced Set Accuracy
 - No Change in Accuracy
 - Feature Reduction Impact Not As expected
 - Unexpected But Explainable
 - KNN
 - · Removed Features Never Part on Nearest Neighbor Set
 - But Included In Calculations
 - Trees
 - Removed Features Eliminated Early
 - Resultant Sets Did Not Change

Discussion

- Run Time
 - KNN Outperformed Others But At Highest K Condition
 - Total Varied Condition Runs Took Longer With Little Gain in Accuracy
- Over All Model Compare
 - KNN Will Get You There If you Have the Time and Resources
 - Random Forest Won't Get You There
 - Gradient Boost Best Overall
 - Quick To Accuracy
 - Minimal Amount of Learners
- Future Work
 - Repeat With Multi-Variable Set
 - Compare

Conclusion

Rating

Accuracy

Speed

Rate

Best

Worst

Worst

Good

Good

14 Image Provided By: https://stock.adobe.com/search?k=open+nutshell&asset_id=35826460

Resources

- Data Source
 - https://catalog.data.gov/dataset/nypd-shooting-incident-data-historic
- GitHub Repository
 - https://github.com/jmskeet/DTSA-5509

Image Provided By: https://stock.adobe.com/search?k=open+nutshell&asset_id=35826460