The Basel Problem (1)

> The proof of the Prime Number Theorem uses the Riemann zeta function.

$$\zeta(s) = \sum_{N=1}^{\infty} \frac{1}{N^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \frac{1}{6^s} + \cdots$$

> The special values of ζ(s) were studied by Euler in the 18th century.

3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

The Basel Problem (2)

Basel Problem

Calculate the sum of the inverses of the squares?

$$\zeta(2) = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \cdots$$

Pietro Mengoli (1626-1686)

Leonhard Euler (1707-1783)

The Basel Problem (3)

> Basel is Euler's hometown.

$$\zeta(2) = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \cdots$$

Leonhard Euler (1707-1783)

The Basel Problem (4)

Answer (Euler, 1734)

$$\zeta(2) = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \cdots$$
$$= \frac{\pi^2}{6}$$

 π = **3.1415926535...** is the circumference of a circle with diameter 1.

The Basel Problem shows a **mysterious** connection between π and the squares!

The Basel Problem (5)

Euler used the sine function

$$\sin x = x \left(1 - \frac{x^2}{\pi^2} \right) \left(1 - \frac{x^2}{(2\pi)^2} \right) \left(1 - \frac{x^2}{(3\pi)^2} \right) \left(1 - \frac{x^2}{(4\pi)^2} \right) \cdots$$

• He obtained mysterious formulae for ζ (2N). It is a product of π^{2N} and a (mysterious) rational number.

$$\zeta(2) = \frac{\pi^2}{6} \qquad \zeta(4) = \frac{\pi^4}{90} \qquad \zeta(6) = \frac{\pi^6}{945}$$

$$\zeta(8) = \frac{\pi^8}{9450} \qquad \zeta(10) = \frac{\pi^{10}}{93555} \qquad \zeta(12) = \frac{691\pi^{12}}{638512875}$$

The Basel Problem (6)

- The rational numbers appearing in Euler's formula of ζ (2N) play an important role in Kummer's theory of cyclotomic fields.
- Kummer proved
 Fermat's Last Thm
 X^P + Y^P = Z^P
 for many P.

Ernst Eduard Kummer (1810-1893)

Kenkichi Iwasawa (1917-1998)

https://en.wikipedia.org/wiki/Ernst_Kummer https://alchetron.com/Kenkichi-Iwasawa-788267-W