Samenvatting Analyse op de Lijn

Jonas van der Schaaf

14 februari 2020

Inhoudsopgave

1	Metrieken	2
	1.1 Verschillende metrieken op \mathbb{R}^k	2
	1.2 Rijtjes in metrieken	2
	1.3 Volledigheid	;
2	Open, gesloten en compacte verzamelingen	9
	2.1 Open verzamelingen	
	2.2 Gesloten verzamelingen	
	2.3 Compacte verzamelingen	4
\mathbf{A}	Equivalentie van convergentie in de Manhattan- en Euclidische metriek	5

1 Metrieken

Wat is een metrische ruimte? Zij S een verzameling en een metriek $d: S \times S \to \mathbb{R}_{\geq 0}$ een functie met de volgende eigenschappen:

- i. Voor alle $x, y \in S$ geldt dat d(x, y) = 0 dan en slechts dan als geldt dat x = y.
- ii. Voor alle $x, y \in S$ geldt dat d(x, y) = d(y, x).
- iii. Voor alle $x, y, z \in S$ geldt dat $d(x, z) \leq d(x, y) + d(y, z)$. Dit is de driehoeksongelijkheid.

Als aan al deze eigenschappen volgaan wordt noemen we het paar (S, d) een metrische ruimte.

1.1 Verschillende metrieken op \mathbb{R}^k

Het is mogelijk om op dezelfde verzameling verschillende metrieken te definiëren. Hier zijn een paar belangrijke:

Euclidische metriek Gegeven twee vectoren¹ $x, y \in \mathbb{R}^k$, is de Euclidische metriek op \mathbb{R}^k de functie:

$$d_2 \colon \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}_{\geq 0} \colon (x, y) \mapsto \sqrt{\sum_{i=1}^k (x_i - y_i)^2}.$$

Deze functie voldoet aan alle drie de eigenschappen van een metriek. Als de metriek van een ruimte \mathbb{R}^k niet vermeld wordt, wordt bedoeld dat de gebruikte metriek de Euclidische metriek is. Deze ruimte wordt ook wel de k-dimensionale Euclidische ruimte genoemd.

Manhattan-metriek Gegeven twee vectoren $x,y\in\mathbb{R}^k$, is de Manhattan-metriek op \mathbb{R}^k de functie:

$$d_1 : \mathbb{R}^k \times \mathbb{R}^k : (x, y) \mapsto \sum_{i=1}^k |x_i - y_i|$$

Convergentie volgens de Manhattan-metriek is equivalent aan convergentie volgens de Euclidische metriek. Het bewijs is te vinden in appendix A.

Discrete metriek Gegeven twee vectoren $x, y \in \mathbb{R}^k$, is de Discrete metriek op \mathbb{R}^k de functie:

$$d \colon \mathbb{R}^k \times \mathbb{R}^k \colon (x,y) \mapsto \begin{cases} 1, & x = y \\ 0, & x \neq y \end{cases}$$

1.2 Rijtjes in metrieken

Convergentie Zij $(s^{(n)})_{n=1}^{\infty}$ een rij² in een metrische ruimte (S, d). Voor deze rij geldt dat dat deze convergeert naar een $s \in S$ als

$$\lim_{n \to \infty} d\left(s^{(n)}, s\right) = 0.$$

Cauchy rijtjes Voor een rij $(s^{(n)})_{n=1}^{\infty}$ in een metrische ruimte (S,d) geldt dat s_n Cauchy is als voor elke $\epsilon > 0$ er een N bestaat zodat voor alle m, n > N geldt dat $d(s^{(m)}, s^{(n)}) < \epsilon$.

Een metrische ruimte is volledig als geldt dat elke Cauchy rij convergeert naar een element in de ruimte.

¹Voor een vector $x \in \mathbb{R}^k$ geldt dat $x = (x_1, \dots, x_k)$.

²Voor een rij in \mathbb{R}^k wordt het n^e element aangeduid met een superscript n (geen macht), omdat het subscript i wordt gebruikt voor het i^e coördinaat.

1.3 Volledigheid Jonas van der Schaaf

Convergentie, Cauchy en Coördinaten Zij $(x^{(n)})_{n=1}^{\infty}$ een rij in \mathbb{R}^k dan convergeert deze alleen dan en slechts dan als voor alle $j \in \{1, \ldots, k\}$ geldt dat de rij $x_j^{(n)}$ ook convergeert in \mathbb{R} .

Zij $(x^{(n)})_{n=1}^{\infty}$ een rij in \mathbb{R}^k . Deze is Cauchy dan en slechts dan als elke rij $(x_j^{(n)})$ een Cauchy rij is.

Begrensdheid Voor een verzameling $S \subseteq \mathbb{R}^k$ geldt dat deze begrensd is als er een M > 0 is zodat voor elke $x \in S$ geldt dat $\max\{|x_j| \colon j = 1, \dots, k\} \leq M$.

Voor een rij $(x^{(n)})_{n=1}^{\infty}$ geldt dat $(x^{(n)})$ begrensd is als geldt dat de verzameling $\{x^{(n)}: n \in \mathbb{N}_0\}$ begrensd is.

1.3 Volledigheid

Volledigheid van \mathbb{R}^k De k-dimensionale Euclidische ruimte \mathbb{R}^k is volledig, dus elke Cauchy rij $(x^{(n)})_{n=1}^{\infty}$ convergeert naar een element $x \in \mathbb{R}^k$.

Bolzano-Weierstrass stelling in \mathbb{R}^k Zij $(x^{(n)})_{n=1}^{\infty}$ een begrensde rij in \mathbb{R}^k . Dan geldt dat $x^{(n)}$ een convergerende deelrij heeft.

2 Open, gesloten en compacte verzamelingen

2.1 Open verzamelingen

Bollen Zij $(S,d)^3$ een metrische ruimte. Dan geeft de functie

$$B: S \times \mathbb{R}_{>0} \to \mathcal{P}(S): (s_0, r) \mapsto \{s \in S: d(s_0, s) < r\}$$

een bol met straal r en middelpunt s_0 .

Invendige punten Zij $E \subseteq S$, dan geldt dat een punt $s_0 \in E$ invendig is als geldt dat er een r > 0 is zodat

$$B(s_0,r) \subseteq E$$
.

Voor de verzameling E geldt dan dat $E^{\circ} := \{s \in E : s \text{ is inwendig}\}$. De verzameling E° heet dan het inwendige van E.

Open verzamelingen Een verzameling $E \subseteq S$ heet open als geldt dat $E = E^{\circ}$.

Stellingen over open verzamelingen De volgende stellingen over open verzamelingen zijn waar:

- De verzameling S is open in S
- De lege verzameling \varnothing is open in S
- De vereniging van open verzamelingen is open⁴.
- De doorsnede van eindig veel open verzameling is een open verzameling.

 $^{^{3}}$ In de rest van deze samenvatting wordt in elke definitie geïmpliceerd dat (S, d) een metrische ruimte is zonder dat het er explicitiet bij wordt gezegd.

⁴Dit geldt ook als je oneindig veel verzamelingen neemt.

2.2 Gesloten verzamelingen

Wat is een gesloten verzameling We noemen een verzameling $E \subseteq S$ gesloten als het complement $S \setminus E$ open is. Dat is equivalent met het idee dat er een open verzameling $U \in S$ is zodat $E = S \setminus U$.

Merk op dat open en gesloten **niet** tegenovergesteld aan elkaar zijn. Zo zijn bijvoorbeeld S en \emptyset open én gesloten, en bijvoorbeeld [1,2) noch gesloten, noch open in \mathbb{R} .

Afsluiting van een verzameling Gegeven een verzameling $E \in S$ is de afsluiting $E^- = \overline{E}$ de doorsnede van alle gesloten verzamelingen die E bevatten. Als formule opgeschreven betekent dat dat gegeven een $E \subseteq S$, en $\mathcal{F} = \{F \subseteq S \colon E \subseteq F \text{ en } F \text{ is gesloten}\}$ geldt dat

$$\overline{E} := \bigcap_{F \in \mathcal{F}} F$$

Stellingen over gesloten verzamelingen De volgende stellingen over gesloten verzamelingen zijn waar:

- Een verzameling E is gesloten dan en slechts dan als $E = \overline{E}$.
- Een verzameling E is gesloten dan en slechts dan als E alle limieten bevat van alle rijen in E.
- Een element $s \in S$ is in \overline{E} dan en slechts dan als het de limiet is van een rijtje in E.

Rand van een verzameling Voor een verzamelingen $E \subseteq S$ is de rand ∂E als volgt gedefiniëerd:

$$\partial E := \overline{E} \setminus E^{\circ}$$

Rijen van gesloten verzamelingen Zij $(F_n)_{n=1}^{\infty}$ een rij van gesloten, begrensde niet-lege verzamelingen in \mathbb{R}^k die dalend is (voor alle $i \in \mathbb{N}$ geldt dat $F_i \supseteq F_{i+1}$). Dan geldt dat

$$F = \bigcup_{n=1}^{\infty} F_n$$

ook gesloten, begrensd en niet leeg is.

2.3 Compacte verzamelingen

Open overdekkingen Zij $E\subseteq S$. Dan is de familie⁵ \mathcal{U} van open verzamelingen in S een open overdekking als geldt dat

$$E\subseteq\bigcup_{U\in\mathcal{U}}U.$$

Een deeloverdekking van \mathcal{U} is een deelfamilie van \mathcal{U} die ook een overdekking is van E.

Een overdekking is eindig als geldt dat deze slechts eindig veel elementen heeft.

Compactheid Een verzameling $E \subseteq S$ is compact als geldt dat elke open overdekking \mathcal{U} een eindige deeloverdekking heeft van E.

Heine-Borel stelling Een verzameling $E \subseteq \mathbb{R}^k$ is compact dan en slechts dan als deze begrensd en gesloten is.

Compactheid van k-cellen Elke k-cel $[a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_k, b_k]$ in \mathbb{R}^k is compact.

⁵Een familie is een collectie van verzamelingen.

A Equivalentie van convergentie in de Manhattan- en Euclidische metriek

Bewijs. Stel een rij $(x^{(n)})_{n=1}^{\infty}$ convergeert in (\mathbb{R}^k, d_2) naar $x \in \mathbb{R}^k$. Dan geldt dat er voor elke $\epsilon > 0$ er een N is zodat voor alle n > N geldt dat $d_2(x^{(n)}, x) < \epsilon$. Laat nu $\epsilon > 0$ en kies voor N het getal zodat voor alle n > N geldt dat $d_2(x^{(n)}, x) < \frac{\epsilon}{k}$.

We weten dat voor alle $a, b \in \mathbb{R}^k$ geldt dat

$$|a_i - b_i| \le \sqrt{\sum_{j=0}^k (a_j - b_j)^2}$$

Door dan aan beide kanten te sommeren over i krijgen we

$$d_1(a,b) = \sum_{i=1}^k |a_i - b_i|$$

$$\leq \sum_{i=1}^k \sqrt{\sum_{j=0}^k (a_j - b_j)^2}$$

$$= k \cdot \sqrt{\sum_{j=0}^k (a_j - b_j)^2}$$

$$= k \cdot d_2(a,b)$$

Dus geldt voor alle $a, b \in \mathbb{R}^k$ dat $d_1(a, b) \leq k \cdot d_2(a, b)$.

Maar we hebben N zo gekozen dat voor alle n > N geldt dat $d_2(x^{(n)}, x) < \frac{\epsilon}{2}$. Dus geldt ook dat $d_1(x^{(n)}, x) \le k \cdot d_2(x^{(n)}, x) < \epsilon$. Dus voor elke $\epsilon > 0$ is er een N zodat voor alle n > N geldt dat $d_1(x^{(n)}, x) < \epsilon$. Dus als een rij convergeert in \mathbb{R}^k, d_2 , dan convergeert deze ook in (\mathbb{R}^k, d_1) .

Stel dat een rij $(x^{(n)})_{n=1}^{\infty}$ convergeert in \mathbb{R}^k, d_1 . Dan geldt dat er voor elke $\epsilon > 0$ er een N is zodat voor alle n > N geldt dat $d_2(x^{(n)}, x) < \epsilon$. Laat $\epsilon > 0$ en kies N zodat voor alle n > N geldt dat $d_1(x^{(k)}, x) < \epsilon$.

Beschouw nu vervolgens voor $a, b \in \mathbb{R}^k$ de afstand volgens de Manhattan-metriek en volgens de Euclidische metriek. Hiervoor geldt dat

$$(d_2(a,b))^2 = \sum_{i=1}^k |a_i - b_i|^2$$

$$\leq \left(\sum_{i=1}^k |a_i - b_i|\right)^2$$

$$= (d_1(a,b))^2$$

, dus dan geldt ook dat $d_2(a,b) \leq d_1(a,b)$ voor alle $a,b \in \mathbb{R}^k$.

Daaruit kunnen we dan opmaken dat voor alle n > N geldt dat $d_2(x^{(n)}, x) \le d_1(x^{(n)}, x) < \epsilon$. Dus geldt dat voor elke $\epsilon > 0$ dat er een N is zodat voor alle n > N geldt dat $d_2(x^{(n)}, x) < \epsilon$. Dus als $x^{(n)}$ convergeert naar x in \mathbb{R}^k, d_1 , dan ook in \mathbb{R}^k, d_2 .

Nu hebben we dus aangetoond dat convergentie in (\mathbb{R}^k, d_2) convergentie in (\mathbb{R}^k, d_1) impliceert en andersom, en dus zijn de twee begrippen equivalent.