Grundlagen der Robotik

6. Differentielle und Inverse Kinematik

Prof. Sven Behnke

Letzte Vorlesung

- Orientierungsrepräsentationen
 - Absolut- und Eulerwinkel
 - Singularität der Repräsentation
 - Euler-Parameter
- Denavit-Hartenberg-Parameter
 - a_i: Distanz (z_i, z_{i+1}) entlang x_i
 - α_i : Winkel (z_i, z_{i+1}) um x_i
 - d_i: Distanz (x_{i-1}, x_i) entlang z_i
 - θ_i : Winkel (x_{i-1}, x_i) um z_i
- DH-Vorwärtskinematik
 - Vier elementare Transformationen pro Gelenk:

$${}_{i}^{i-1}T = {}_{R}^{i-1}T \quad {}_{Q}^{R}T \quad {}_{P}^{Q}T \quad {}_{I}^{P}T$$

$${}_{i}^{T}T_{(\alpha_{i-1}, a_{i-1}, \theta_{i}, d_{i})} = R_{x}(\alpha_{i-1}) \; D_{x}(a_{i-1}) \; R_{z}(\theta_{i}) \; D_{z}(d_{i})$$

• Multipliziere Transformationen in kinematischer Kette:

$${}^{0}_{N}T = {}^{0}_{1}T + {}^{1}_{2}T + ... + {}^{N-1}_{N}T$$

Literatur zu Kinematik

 Wolfgang Weber: Industrieroboter: Methoden der Steuerung und Regelung, Hanser-Verlag

 Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo: Robotics: Modelling, Planning and Control, Springer

 Mark W. Spong, Seth Hutchinson, and M. Vidyasagar: Robot Modeling and Control, Wiley

Differentielle Bewegung

- Differentielle Kinematik: $\theta + \delta\theta \rightarrow x + \delta x$

Gelenk-Koordinaten

- Variabler Gelenk-Parameter i:
 - \bullet θ_i bei Drehgelenk
 - d_i bei Lineargelenk
- Gelenk-Koordinate i:

$$q_i = \overline{\varepsilon}_i \theta_i + \varepsilon_i d_i$$

$$\mathcal{E}_i = \begin{cases} 0 \text{ wenn Drehgelenk} \\ 1 \text{ wenn Lineargelenk} \end{cases}$$

$$\overline{\mathcal{E}}_i = 1 - \mathcal{E}_i$$

■ Gelenk-Koordinaten-Vektor: $q=(q_1, q_2, ..., q_n)^T$

Jacobi-Matrix

- Gegeben Funktion x = f(q):
- Partielle Ableitungen von *f* vermitteln zwischen δq und δx :
- Jacobi-Matrix: $\delta x = \begin{bmatrix} \frac{\partial f_1}{\partial q_1} & \cdots & \frac{\partial f_1}{\partial q_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial q_n} & \cdots & \frac{\partial f_m}{\partial q_n} \end{bmatrix} . \delta q$ $\delta x_m = \frac{\partial f_m}{\partial q_1} \delta q_1 + \cdots + \frac{\partial f_m}{\partial q_n} \delta q_n$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} f_1(q) \\ f_2(q) \\ \vdots \\ f_m(q) \end{pmatrix}$$

$$\delta x_1 = \frac{\partial f_1}{\partial q_1} \delta q_1 + \dots + \frac{\partial f_1}{\partial q_n} \delta q_n$$

$$\delta x_m = \frac{\partial f_m}{\partial q_1} \delta q_1 + \dots + \frac{\partial f_m}{\partial q_n} \delta q_n$$

$$\delta x_{(m \times 1)} = J_{(m \times n)}(q) \delta q_{(n \times 1)}$$

$$\dot{x}_{(m \times 1)} = J_{(m \times n)}(q) \dot{q}_{(n \times 1)}$$

$$J_{ij}(q) = \frac{\partial}{\partial q_j} f_i(q)$$

Beispiel für Jacobi-Matrix

Arm mit zwei Drehgelenken

■ Endeffektor-Position: $x = l_1c_1 + l_2c_{12}$

$$y = l_1 s_1 + l_2 s_{12}$$

Endeffektor-Differentialbewegung:

$$\delta x = -(l_1 s_1 + l_2 s_{12}) \delta \theta_1 - l_2 s_{12} \delta \theta_2$$

$$\delta y = (l_1 c_1 + l_2 c_{12}) \delta \theta_1 + l_2 c_{12} \delta \theta_2$$

$$\delta X = \begin{bmatrix} \delta x \\ \delta y \end{bmatrix} = \begin{bmatrix} -y & -l_2 s_{12} \\ x & l_2 c_{12} \end{bmatrix} \begin{bmatrix} \delta \theta_1 \\ \delta \theta_2 \end{bmatrix} \qquad J = \begin{bmatrix} \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} \\ \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} \end{bmatrix}$$

$$c_{12} = \cos(\theta_1 + \theta_2)$$

$$s_{12} = \sin(\theta_1 + \theta_2)$$

nutze: $\cos'(\theta) = -\sin(\theta)$ $\sin'(\theta) = \cos(\theta)$

$$\begin{bmatrix} \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} \\ \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} \end{bmatrix}$$

Jacobi-Matrix und Repräsentationen

Endeffektor-Repräsentationen: • Kartesisch
• Zylindrisch
• Sphärisch
• Euler-Winkel
• Rotationsmatix

Jacobi-Matrix für Lineargeschwindigkeit und Rotationsgeschwindigkeit:

 $\begin{pmatrix} \dot{x}_P \\ \dot{x}_R \end{pmatrix} = \begin{pmatrix} J_{X_P}(q) \\ J_{X_P}(q) \end{pmatrix} \dot{q}$

• Euler-Parameter

Beispiel: Kartesische Position und Rotationsmatrix

$$\dot{\mathbf{x}}_{(12x1)} = J_X(q)_{(12x6)} \dot{q}_{(6x1)}$$

Jacobi-Matrix hängt von Repräsentation ab!

Basis-Jacobimatrix $J_0(q)$

Ziel: Finde repräsentationsunabhängige Darstellung

Durch Bezug auf Basis-Koordinatensystem:

$$\binom{v}{\omega}_{(6x1)} = J_0(q)_{(6xn)} \dot{q}_{(nx1)}$$

Ableitung der Positions- und Rotationsrepräsentationen:

$$\dot{x}_P = E_P(x_P)v$$

$$\dot{x}_R = E_R(x_R)\omega$$

Beispiele für Repräsentationen

Euler-Winkel

$$\dot{\boldsymbol{x}}_{R} = \boldsymbol{E}_{R}(\boldsymbol{x}_{R})\boldsymbol{\omega} \qquad \boldsymbol{x}_{R} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}; \boldsymbol{E}_{R}(\boldsymbol{x}_{R}) = \begin{pmatrix} -\frac{s\alpha.c\beta}{s\beta} & \frac{c\alpha.c\beta}{s\beta} & 1 \\ c\alpha & s\alpha & 0 \\ \frac{s\alpha}{s\beta} & -\frac{c\alpha}{s\beta} & 0 \end{pmatrix}$$

Sigularität für $sin(\beta)=0$

Kartesische Position

$$\dot{x}_P = E_P(x_P)v$$
 $x_P = \begin{pmatrix} x \\ y \\ z \end{pmatrix}; E_P(x_P) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Jacobi-Matrix für eine Repräsentation

- Gegeben: Repräsentation $x = \begin{bmatrix} x_P \\ x_D \end{bmatrix}$
- Die Jacobi-Matrix J_x(q) bezüglich dieser Repräsentation

$$\dot{x} = J_x(q) \dot{q}$$

kann von der Basis-Jacobimatrix $J_0(q)$ $\begin{pmatrix} v \\ w \end{pmatrix} = J_0(q) \dot{q}$ abgeleitet werden:

verden:
$$J_{v}(q) = E(x) J_{0}(q)$$

$$J = \left(\frac{J_{XP}}{J_{XR}}\right) = \left(\frac{E_P}{0} \mid 0\right) \left(\frac{J_v}{J_w}\right)$$

Positionsrepräsentationen

- Kartesische Koordinaten: $E_p(X) = I_3$
- Zylindrische Koordinaten:

$$(x \ y \ z)^T = (\rho \cos \theta \ \rho \sin \theta \ z)^T$$

$$E_{P}(X) = \begin{pmatrix} \frac{\partial \rho}{\partial x} & \frac{\partial \rho}{\partial y} & 0 \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E_{P}(X) = \begin{pmatrix} \frac{\partial \rho}{\partial x} & \frac{\partial \rho}{\partial y} & 0\\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad E_{P}(X) = \begin{pmatrix} \cos \theta & \sin \theta & 0\\ -\sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$
Sphärische

Erzeugt sehr hohe Winkelgeschwindigkeit in der Nähe der **Z-Achse**

Sphärische

Koordinaten: $(x \ y \ z)^T = (r \cos \theta \sin \phi \ r \sin \theta \sin \phi \ r \cos \theta)^T$

Jacobimatrix J(q)

Weglassen der tiefgestellten Null:

$$\begin{pmatrix} v \\ \omega \end{pmatrix}_{(6x1)} = J(q)_{(6xn)} \dot{q}_{(nx1)}$$
$$J_{x}(q) = E(x) J(q)$$

Lineargeschwindigkeit

Beschreibung bezüglich verschiedener Frames

Reine Translation

Rotationsbewegung

Rotationsachse

- Wie groß ist die Lineargeschwindigkeit von Punkten des rotierenden Starrkörpers?
- Lineargeschwindigkeit hängt von Entfernung zur Rotationsachse ab
- Richtung der instantanen
 Verschiebung orthogonal zur
 Normalen auf die Achse und zur
 Rotationsachse

Rotationsbewegung

- Lineargeschwindigkeit von v_P ist proportional zu
 - ||Ω|| Rotationsgeschwindigkeit
 - ||P sinφ||
 Länge der Normalen auf Achse
- Orthogonalität
 - v_p [⊥] Ω
 - V_D ⊥ P
- Kreuzprodukt

$$v_P = \Omega \times P$$

Kreuzprodukt als Operator

$$\mathbf{a} \times \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta \mathbf{n}$$

Einheitsvektor orthogonal zu a und b

■ Ziel:
$$c = \underset{\text{Vektor}}{a \times b} \Rightarrow c = \underset{\text{Matrix}}{\hat{a}b}$$

Kreuzprodukt durch Multiplikation mit schiefsymmetrischer Matrix

$$c = \hat{a}b = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

Operator für Rotation Ω

Gegeben: Rotation Ω und Punkt P

$$\Omega = \begin{bmatrix} \Omega_x \\ \Omega_y \\ \Omega_z \end{bmatrix}; P = \begin{bmatrix} P_x \\ P_y \\ P_z \end{bmatrix}$$

Berechnung der Lineargeschwindigkeit:

$$v_{P} = \hat{\Omega}P = \begin{bmatrix} 0 & -\Omega_{z} & \Omega_{y} \\ \Omega_{z} & 0 & -\Omega_{x} \\ -\Omega_{y} & \Omega_{x} & 0 \end{bmatrix} \begin{bmatrix} P_{x} \\ P_{y} \\ P_{z} \end{bmatrix}$$

Translation und Rotation

Lineargeschwindigkeit eines Punkts P:

$$v_{P/A} = v_{B/A} + v_{P/B} + \Omega \times P_B$$

Auf Koordinatensystem {A} bezogen:

$$^{\textcircled{A}}v_{P/A} = ^{\textcircled{A}}v_{B/A} + ^{\textcircled{A}}R.^{B}v_{P/B} + ^{\textcircled{A}}\Omega_{B} \times ^{\textcircled{A}}R.^{B}P_{B}$$

Geschwindigkeits-Propagierung in kinematischer Kette

Endeffektor-Geschwindigkeit

$$\dot{x} < \frac{V}{\omega}$$
 Lineargeschwindigkeit \dot{x}

 Jacobi-Matrix vermittelt zwischen Gelenkgeschwindigkeiten und Endeeffektor-Geschwindigkeiten

$$\dot{x} = J(\theta) \cdot \dot{\theta}$$

Geschwindigkeitspropagierung

Linear

$$v_{i+1} = v_i + \omega_i \times P_{i+1} + \dot{d}_{i+1}.Z_{i+1}$$
 nur für Lineargelenke

Rotation

$$\omega_{i+1} = \omega_i + \Omega_{i+1}$$
$$\Omega_{i+1} = \dot{\theta}_{i+1} \cdot Z_{i+1}$$

Geschwindigkeitspropagierung

• Start in Gelenk 0: $v_0=0$, $\omega_0=0$ in System $\{0\}$

Von Gelenk i nach Gelenk i+1:

$${}^{i+1}\omega_{i+1} = {}^{i+1}_{i}R.{}^{i}\omega_{i} + \dot{\theta}_{i+1}.{}^{i+1}Z_{i+1}$$

$${}^{i+1}v_{i+1} = {}^{i+1}_{i}R.({}^{i}v_{i} + {}^{i}\omega_{i} \times {}^{i}P_{i+1}) + \dot{d}_{i+1}.{}^{i+1}Z_{i+1}$$

- Im Gelenk n: ⁿv_n, ⁿω_n
- Rücktransformation in Basis-System:

$$\begin{pmatrix} {}^{0}v_{n} \\ {}^{0}\omega_{n} \end{pmatrix} = \begin{pmatrix} {}^{0}R & 0 \\ {}^{n}R & 0 \\ 0 & {}^{0}R \end{pmatrix} \cdot \begin{pmatrix} {}^{n}v_{n} \\ {}^{n}\omega_{n} \end{pmatrix}$$

Beispiel für Propagierung

Arm mit drei Drehgelenken

$$v_{i+1} = v_i + \omega_i \times P_{i+1}$$

Propagierung

$$v_{P_1} = 0$$
 $\int_{//}^{0} \omega_1 = \dot{\theta}_1.^{0} Z_1$ $v_{P_2} = v_{P_1} + \omega_1 \times P_2$ $v_{P_3} = v_{P_2} + \omega_2 \times P_3$

Bezug auf System {0}:

$${}^{0}v_{P_{2}} = 0 + \begin{bmatrix} 0 & -\dot{\theta}_{1} & 0 \\ \dot{\theta}_{1} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} l_{1}.c_{1} \\ l_{1}.s_{1} \\ 0 \end{bmatrix} = \begin{bmatrix} -l_{1}.s_{1} \\ l_{1}.c_{1} \\ 0 \end{bmatrix} \cdot \dot{\theta}_{1}$$

Beispiel für Propagierung II

$${}^{0}v_{P_{3}} = {}^{0}v_{P_{2}} + {}^{0}\omega_{2} \times {}^{0}P_{3}$$

$${}^{0}v_{P_{3}} = \begin{bmatrix} -l_{1}.s_{1} \\ l_{1}.c_{1} \\ 0 \end{bmatrix} \dot{\theta}_{1} + \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot (\dot{\theta}_{1} + \dot{\theta}_{2}) \cdot {}^{0}P_{3}$$

$$= \begin{bmatrix} -l_{1}.s_{1} \\ l_{1}.c_{1} \\ 0 \end{bmatrix} \dot{\theta}_{1} + \begin{bmatrix} -l_{2}.s_{12} \\ l_{2}.c_{12} \\ 0 \end{bmatrix} \cdot (\dot{\theta}_{1} + \dot{\theta}_{2})$$

$$= Potation:$$

Rotation:

$$^{0}\omega_{3} = (\dot{\theta}_{1} + \dot{\theta}_{2} + \dot{\theta}_{3})^{0}Z_{0}$$

Beispiel: Jacobimatrix

Lineargeschwindigkeit

$${}^{0}v_{P_{3}} = \begin{bmatrix} -(l_{1}s_{1} + l_{2}s_{12}) & -l_{2}s_{12} & 0 \\ l_{1}c_{1} + l_{2}c_{12} & l_{2}c_{12} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \end{bmatrix} \qquad \begin{matrix} \{0\} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \end{matrix}$$

Rotationsgeschwindigkeit

$${}^{0}\boldsymbol{\omega}_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{\theta}}_{1} \\ \dot{\boldsymbol{\theta}}_{2} \\ \dot{\boldsymbol{\theta}}_{3} \end{bmatrix}$$

Zusammen:

$$\begin{pmatrix} v \\ \omega \end{pmatrix} = J. \begin{pmatrix} \theta_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{pmatrix}$$

Jacobimatrix: Explizite Form

Kinematische Kette

- Drehgelenk: $\Omega_i = Z_i \dot{q}_i$
- Lineargelenk: $V_i = Z_i \dot{q}_i$

Jacobimatrix: Explizite Form

- Einflüsse auf Endeffektor: Lineargelenk Drehgelenk Lineargeschw. V_j $\Omega_i \times P_{in}$ Winkelgeschw. Ω_i
- Lineargeschwindigkeit des Endeffektors

$$v = \sum_{i=1}^{n} \left[\in_{i} V_{i} + \overline{\in}_{i} \left(\Omega_{i} \times P_{in} \right) \right] \qquad \longleftarrow \qquad V_{i} = Z_{i} \dot{q}_{i}$$

Winkelgeschwindigkeit des Endeffektors

Jacobimatrix: Explizite Form

Lineargeschwindigkeit des Endeffektors

$$v = \sum_{i=1}^{n} [\in_{i} Z_{i} + \overline{\in}_{i} (Z_{i} \times P_{in})] \dot{q}_{i}$$

$$v = \left[\in_{1} Z_{1} + \overline{\in}_{1} (Z_{1} \times P_{1n}) \in_{2} Z_{2} + \overline{\in}_{2} (Z_{2} \times P_{2n}) \cdots\right] \begin{bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{n} \end{bmatrix}$$

$$v = J_{v} \dot{q}$$

Winkelgeschwindigkeit des Endeffektors

$$\omega = \sum_{i=1}^{n} (\overline{\epsilon}_{i} Z_{i}) \dot{q}_{i}$$

$$\omega = \left[\overline{\epsilon}_{1} Z_{1} \quad \overline{\epsilon}_{2} Z_{2} \quad \cdots \quad \overline{\epsilon}_{n} Z_{n}\right] \begin{bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{n} \end{bmatrix}$$

$$\omega = J_{\omega} \dot{q}$$

Jacobimatrix: Direkte Differentiation

Betrachte Lineargeschwindigkeit des Endeffektors, die aus Vorwärts-Kinematik kommt:

$$v = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \dot{x}_P = \frac{\partial x_P}{\partial q_1} \cdot \dot{q}_1 + \frac{\partial x_P}{\partial q_2} \cdot \dot{q}_2 + \dots + \frac{\partial x_P}{\partial q_n} \cdot \dot{q}_n$$

Jacobimatrix für Lineargeschwindigkeit:

$$J_{v} = \begin{pmatrix} \frac{\partial x_{P}}{\partial q_{1}} & \frac{\partial x_{P}}{\partial q_{2}} & \cdots & \frac{\partial x_{P}}{\partial q_{n}} \end{pmatrix}$$

Jacobimatrix: Direkte Differentiation

Mit Rotationsgeschwindigkeiten

$$J = \begin{pmatrix} \frac{\partial x_P}{\partial q_1} & \frac{\partial x_P}{\partial q_2} & \dots & \frac{\partial x_P}{\partial q_n} \\ \overline{\in}_1 . Z_1 & \overline{\in}_2 . Z_2 & \dots & \overline{\in}_n . Z_n \end{pmatrix}$$

■ In Basis-Koordinatensystem {0}

$${}^{0}J = \begin{pmatrix} \frac{\partial^{0} x_{P}}{\partial q_{1}} & \frac{\partial^{0} x_{P}}{\partial q_{2}} & \cdots & \frac{\partial^{0} x_{P}}{\partial q_{n}} \\ \overline{\in}_{1} {}^{0}Z_{1} & \overline{\in}_{2} {}^{0}Z_{2} & \cdots & \overline{\in}_{n} {}^{0}Z_{n} \end{pmatrix}$$

J in Basis-Koordinatensystem

Rotation der i-ten Gelenkachse in das Basis-Koordinatensystem {0}

$${}^{0}Z_{i} = {}^{0}_{i}R {}^{i}Z_{i}$$

 ${}^{i}Z_{i} = Z = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Damit ist die Jacobimatrix:

$${}^{0}J = \begin{bmatrix} \frac{\partial}{\partial q_{1}} ({}^{0}x_{P}) & \frac{\partial}{\partial q_{2}} ({}^{0}x_{P}) & \cdots & \frac{\partial}{\partial q_{n}} ({}^{0}x_{P}) \\ \overline{\in}_{1}.({}^{0}_{1}R.Z) & \overline{\in}_{2}.({}^{0}_{2}R.Z) & \cdots & \overline{\in}_{n}.({}^{0}_{n}R.Z) \end{bmatrix}$$

Jeweils die letzte Spalte der Rotationsmatrix wird selektiert

Kinematische Singularität

- Der Endeffektor kann an bestimmten Stellen nicht mehr in bestimmte Richtungen verschoben oder rotiert werden
- Dies entspricht einer Abhängigkeit zwischen Spalten der Jakobi-Matrix

$$J = (J_1 \ J_2 \ \cdots \ J_n)$$

In diesem Fall hat die Matrix nicht mehr vollen Rang, also: $\det(J) = 0$

■ Determinante hängt nicht von Koordinatensystem ab $\binom{BR}{i}$

$$\det \begin{pmatrix} i J \end{pmatrix} = \det \begin{pmatrix} j J \end{pmatrix} \qquad {}^{B}J = \begin{pmatrix} {}^{B}R & 0 \\ 0 & {}^{B}R \end{pmatrix} {}^{A}J$$

Singuläre Konfigurationen

Setze die Determinante der Jakobi-Matrix Null:

$$\det[J(q)] = 0$$

Determinante ist Produkt von Funktionen von q:

$$\det[J(q)] = S_1(q)S_2(q)...S_s(q) = 0$$

Nullstellen:

$$S_1(q) = 0$$

$$S_2(q) = 0$$

$$\vdots$$

$$S_s(q) = 0$$

Beispiel für Kinematische Singularität

- Arm mit zwei Drehgelenken
- Vorwärts-Kinematik

$$x = l_1 C1 + l_2 C12$$

$$y = l_1 S1 + l_2 S12$$

Jakobi-Matrix

$$J = \begin{pmatrix} -(l_1S1 + l_2S12) & -l_2S12 \\ l_1C1 + l_2C12 & l_2C12 \end{pmatrix}$$

■ Singularität bei $q_2 = k\pi$

$$\det(J) = l_1 l_2 S2$$

Beispiel für Kinematische Singularität

Betrachte Jacobimatrix in Frame {1}:

$$^{1}J = _{0}^{1}R ^{0}J$$

$$= \begin{pmatrix} 0 & 0 \\ l_1 + l_2 & l_2 \end{pmatrix}$$

An der Singularität:

$$\{0\}$$

$$\{0\}$$

$$\{1\}$$

$$\{0\}$$

$$\{0\}$$

$$\{0\}$$

$$\{0\}$$

$$\{0\}$$

$$\{1\}$$

$$\int_{1}^{1} \delta x = 0$$

$$\int_{1}^{1} \delta y = (l_1 + l_2) \delta \theta_1 + l_2 \delta \theta_2$$

Kleine Veränderungen

 Gegeben kleine Änderung der Endeffektorposition

$$\Delta X = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

Dann ergibt sich die Änderung der Gelenkkordinaten mit der inversen Jakobimatrix: $\Delta q = J^{-1}\Delta X$

$$\Delta q = J^{-1} \Delta X$$

■ Für kleine
$$\theta_2$$
:
$$J_{(1)}^{-1} \cong \begin{bmatrix} \frac{1}{l_1 \theta_2} & \frac{1}{l_1} \\ -\frac{l_1 + l_2}{l_1 l_2 \theta_2} & \frac{1}{l_1} \end{bmatrix}$$

Division durch Null!

Jacobimatrix des Endeffektors

$$v_e = v_n + \omega_n \times P_{ne}$$

$$\begin{cases} v_e = v_n - P_{ne} \times \omega_n \\ \omega_e = \omega_n \end{cases}$$

$$\begin{cases} v_e = v_n - P_{ne} \times \omega_n \\ \omega_e = \omega_n \end{cases} \qquad \begin{pmatrix} v_e \\ \omega_e \end{pmatrix} = \begin{pmatrix} I - \hat{P}_{ne} \\ O & I \end{pmatrix} \begin{pmatrix} v_n \\ \omega_n \end{pmatrix}$$

Framewechsel für Kreuzprodukt-Operator

Wir wollen Endeffektor-Jakobimatrix in Frame {0}

$${}^{0}J_{e} = \begin{pmatrix} I & -{}^{0}\hat{P}_{ne} \\ 0 & I \end{pmatrix} {}^{0}J_{n}$$

Wir brauchen Kreuzprodukt-Operator in Frame {0}

$${}^{0}P \times {}^{0}\omega = {}^{0}_{n}R.({}^{n}P \times {}^{n}\omega)$$

$${}^{0}\hat{P}.{}^{0}\omega = {}^{0}_{n}R.({}^{n}\hat{P}.{}^{n}\omega) = {}^{0}_{n}R.({}^{n}\hat{P}.{}^{0}_{n}R^{T}.{}^{0}\omega)$$

$${}^{0}\hat{P} = {}^{0}_{n}R^{-n}\hat{P}^{-0}_{n}R^{T}$$

Ausgehend von
$${}^{n}J_{n}: {}^{0}J_{e} = \begin{pmatrix} {}^{0}R & -{}^{0}R {}^{n}\hat{P}_{ne} {}^{n}R^{T} \\ 0 & {}^{0}R \end{pmatrix} {}^{n}J_{n}$$

39

Inverse Kinematik mit inverser Jacobimatrix

 Jacobimatrix J linearisiert Beziehung zwischen Änderungen der Gelenkwinkeln δθ und Änderungen der Endeffektorpose δx an der Stelle θ:

$$\delta x = J(\theta)\delta\theta$$

Wenn J invertierbar (keine Singularität):

$$\delta\theta = J^{-1}(\theta)\delta x$$

- Ausgehend von Gelenkstellung θ:
 - Vorwärtskinematik gibt Endeffektorpose: $x = f(\theta)$
 - Differenz zu gewünschter Pose x_d:

$$\delta x = x_d - x$$

• Notwendige Gelenkwinkeländerung: $\delta \theta = J^{-1} \delta x$

Resultierender Gelenkwinkel:

$$\theta^+ = \theta + \delta\theta$$

Reglung der Endeffektorpose

 Rückführung auf Positionsregelung der Einzelgelenke

- Funktioniert bei langsamen Bewegungen
- Keine Berücksichtigung der Dynamik!