Addressing Bias in Algorithmic Solutions: Exploring Vertex Cover and Feedback Vertex Set

Sheikh Shakil Akhtar

Chennai Mathematical Institute

December 6, 2024

Joint work with Jayakrishnan Madathil, Pranabendu Misra and Geevarghese Philip

Parameterised Complexity is a paradigm of algorithm design used for tackling $\operatorname{Np-Completeness}$.

Parameterised Complexity is a paradigm of algorithm design used for tackling $\operatorname{NP-Completeness}$.

What do we know about NP-COMPLETENESS

For NP-COMPLETE problems, in *general instances*, one does not **expect** exact deterministic algorithms which run in polynomial time.

Parameterised Complexity is a paradigm of algorithm design used for tackling $\operatorname{Np-Completeness}\nolimits.$

What do we know about NP-COMPLETENESS

For NP-COMPLETE problems, in *general instances*, one does not **expect** exact deterministic algorithms which run in polynomial time.

What if we relax the above requirments?

Parameterised Complexity is a paradigm of algorithm design used for tackling $\operatorname{Np-Completeness}\nolimits.$

What do we know about NP-COMPLETENESS

For NP-COMPLETE problems, in *general instances*, one does not **expect** *exact deterministic algorithms* which run in *polynomial time*.

What if we relax the above requirments?

Parameterised Complexity deals with algorithms which run efficiently for some instances.

FIXED-PARAMTER TRACTABLE

Definition of a parameterised problem

A parameterised problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet. For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

FIXED-PARAMTER TRACTABLE

Definition of a parameterised problem

A parameterised problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet. For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

FIXED-PARAMTER TRACTABLE

A parameterised problem $L\subseteq \Sigma^* \times \mathbb{N}$ is called *fixed-parameter tractable* (FPT) if there exists an algorithm \mathcal{A} (called a *fixed-parameter algorithm*), a computable function $f: \mathbb{N} \to \mathbb{N}$, and a constant c such that, given $(x,k)\in \Sigma^* \times \mathbb{N}$, the algorithm \mathcal{A} correctly decides whether $(x,k)\in L$ in time bounded by $f(k)\cdot |(x,k)|^c$. The complexity class containing all fixed-parameter tractable problems is called FPT.

\mathbb{T} - Fair Problems

Let t be constant positive integer. We will refer to members of $\{1,2,\ldots,t\}$ as colours. A graph G is said to be t-coloured if there exists a function $c:V(G)\to 2^{\{1,2,\ldots,t\}}\setminus\emptyset$. Given a t-tuple of non-negative integers, $\mathbb{T}=(k_i)_{i=1}^t$, a set $S\subseteq V(G)$ is said to be \mathbb{T} -fair if for each $i\in[t]$, we have $|\{v\in S|i\in c(v)\}|=k_i$.

\mathbb{T} - Fair Problems(contd.)

We will discuss the following problems

T-fair Vertex Cover

Input: An undirected t-coloured graph G = (V, E) and t-tuple of integers,

$$\mathbb{T}=(k_i)_{i=1}^t.$$

Parameter: $\sum_{i=1}^{t} k_i$

Question: Does G have a \mathbb{T} -fair vertex cover?

\mathbb{T} - Fair Problems(contd.)

We will discuss the following problems

T-fair Vertex Cover

Input: An undirected t-coloured graph G = (V, E) and t-tuple of integers,

$$\mathbb{T}=(k_i)_{i=1}^t.$$

Parameter: $\sum_{i=1}^{t} k_i$

Question: Does G have a \mathbb{T} -fair vertex cover?

T-fair Feedback Vertex Set

Input: An undirected t-coloured graph G = (V, E) and t-tuple of integers,

$$\mathbb{T}=(k_i)_{i=1}^t.$$

Parameter: $\sum_{i=1}^{t} k_i$

Question: Does G have a \mathbb{T} -fair feedback vertex set?

Kernelisation

A kernelisation algorithm for a parameterised problem Π is a deterministic algorithm \mathcal{A} that, given an instance (I,k) of Π , works in polynomial time and returns an equivalent instance (I',k'), such that $|I'|+k'\leq g(k)$, where $g:\mathbb{N}\to\mathbb{N}$ is a computable function. The instance (I',k') is called a kernel.

Kernelisation

A kernelisation algorithm for a parameterised problem Π is a deterministic algorithm $\mathcal A$ that, given an instance (I,k) of Π , works in polynomial time and returns an equivalent instance (I',k'), such that $|I'|+k'\leq g(k)$, where $g:\mathbb N\to\mathbb N$ is a computable function. The instance (I',k') is called a kernel.

(Intuitively speaking, a kernel is a "smaller" equivalent instance, where one can afford to use brute force algorithms)

Kernelisation

A kernelisation algorithm for a parameterised problem Π is a deterministic algorithm \mathcal{A} that, given an instance (I,k) of Π , works in polynomial time and returns an equivalent instance (I',k'), such that $|I'|+k'\leq g(k)$, where $g:\mathbb{N}\to\mathbb{N}$ is a computable function. The instance (I',k') is called a kernel.

(Intuitively speaking, a kernel is a "smaller" equivalent instance, where one can afford to use brute force algorithms)

Theorem

A problem Π is in FPT if and only if it admits a kernelisation algorithm.

We apply the following rules once at the beginning.

We apply the following rules once at the beginning.

• If $|\{v \in V(G)|c(i) \in v\}| < k_i$ holds for at least one $i \in [t]$ then return No.

We apply the following rules once at the beginning.

- If $|\{v \in V(G)|c(i) \in v\}| < k_i$ holds for at least one $i \in [t]$ then return No.
- Let $k_{max} = \max_{1 \leq i \leq t} k_i$. For each non-empty $X \subseteq [t]$, $V_X = \{v \in V(G) | deg(v) = 0 \land c(v) = X\}$. If $|V_X| > k_{max}$, then keep any k_{max} of them and remove the rest from V_X . Finally, let $I^* = \bigcup_{X \subseteq [t] \land X \neq \emptyset} V_X$.

We apply the following rules once at the beginning.

- If $|\{v \in V(G)|c(i) \in v\}| < k_i$ holds for at least one $i \in [t]$ then return No.
- Let $k_{max} = \max_{1 \leq i \leq t} k_i$. For each non-empty $X \subseteq [t]$, $V_X = \{v \in V(G) | deg(v) = 0 \land c(v) = X\}$. If $|V_X| > k_{max}$, then keep any k_{max} of them and remove the rest from V_X . Finally, let $I^* = \bigcup_{X \subseteq [t] \land X \neq \emptyset} V_X$.

We then apply the following rules in order, until they can't be applied any more.

• $\exists (i,j) \in [t] \times [t]$, such that $(i)k_i = k_j = 0$ and $(ii)\exists uv \in E(G)$, such that $i \in c(u) \land j \in c(v)$. Return No.

- $\exists (i,j) \in [t] \times [t]$, such that $(i)k_i = k_j = 0$ and $(ii)\exists uv \in E(G)$, such that $i \in c(u) \land j \in c(v)$. Return No.
- $\exists v \in V(G), deg(v) = 0 \land v \notin I^*$, then we return the instance $(G v, c', \mathbb{T})$, where c' is the restriction of c on $V(G) \setminus \{v\}$.

- $\exists (i,j) \in [t] \times [t]$, such that $(i)k_i = k_j = 0$ and $(ii)\exists uv \in E(G)$, such that $i \in c(u) \land j \in c(v)$. Return No.
- $\exists v \in V(G), deg(v) = 0 \land v \notin I^*$, then we return the instance $(G v, c', \mathbb{T})$, where c' is the restriction of c on $V(G) \setminus \{v\}$.
- $\exists v \in V(G)$, such that for some $i \in [t], |\{w \in N(v)|i \in c(w)\}| > k_i$, then return $(G v, c', k'_i)$, where c' is the restriction of c on $V(G) \setminus \{v\}$ and for each $i \in [t], k'_i = k_i |\{w \in \{v\}|i \in c(w)\}|$.

- $\exists (i,j) \in [t] \times [t]$, such that $(i)k_i = k_j = 0$ and $(ii)\exists uv \in E(G)$, such that $i \in c(u) \land j \in c(v)$. Return No.
- $\exists v \in V(G), deg(v) = 0 \land v \notin I^*$, then we return the instance $(G v, c', \mathbb{T})$, where c' is the restriction of c on $V(G) \setminus \{v\}$.
- $\exists v \in V(G)$, such that for some $i \in [t], |\{w \in N(v)|i \in c(w)\}| > k_i$, then return $(G v, c', k'_i)$, where c' is the restriction of c on $V(G) \setminus \{v\}$ and for each $i \in [t], k'_i = k_i |\{w \in \{v\}|i \in c(w)\}|$.

Return a kernel

If none of the above rules are applicable, then return No, if $|V(G)| > (\sum_{i=1}^t k_i)^2 + \sum_{i=1}^t k_i \times (1+2^t)$ or $|E(G)| > (\sum_{i=1}^t k_i)^2$. Otherwise, we return the instance (G, c, \mathbb{T}) .

Given a graph, its *treewidth* is a measure of how "tree-like" it is. Forests have treewidth 1, whereas cycles have treewidth 2.

Given a graph, its *treewidth* is a measure of how "tree-like" it is. Forests have treewidth 1, whereas cycles have treewidth 2.

Formally, a tree decomposition of a graph G is a pair (T, ϕ) , where T is a tree and $\phi: V(T) \to 2^{V(G)}$, such that the following conditions hold:

Given a graph, its *treewidth* is a measure of how "tree-like" it is. Forests have treewidth 1, whereas cycles have treewidth 2.

Formally, a tree decomposition of a graph G is a pair (T, ϕ) , where T is a tree and $\phi: V(T) \to 2^{V(G)}$, such that the following conditions hold:

 $\bullet \cup_{t \in V(T)} \phi(t) = V(G)$

Given a graph, its *treewidth* is a measure of how "tree-like" it is. Forests have treewidth 1, whereas cycles have treewidth 2.

Formally, a tree decomposition of a graph G is a pair (T, ϕ) , where T is a tree and $\phi: V(T) \to 2^{V(G)}$, such that the following conditions hold:

- $\bullet \cup_{t \in V(T)} \phi(t) = V(G)$
- $\forall uv \in E(G), \exists t \in V(T) \text{ such that } \{u, v\} \subseteq \phi(t)$

Given a graph, its *treewidth* is a measure of how "tree-like" it is. Forests have treewidth 1, whereas cycles have treewidth 2.

Formally, a tree decomposition of a graph G is a pair (T, ϕ) , where T is a tree and $\phi: V(T) \to 2^{V(G)}$, such that the following conditions hold:

- $\bullet \cup_{t \in V(T)} \phi(t) = V(G)$
- $\forall uv \in E(G), \exists t \in V(T) \text{ such that } \{u, v\} \subseteq \phi(t)$
- $\forall v \in V(G)$, the set $T_u := \{t \in V(T) | v \in \phi(t)\}$ is connected

Given a graph, its *treewidth* is a measure of how "tree-like" it is. Forests have treewidth 1, whereas cycles have treewidth 2.

Formally, a tree decomposition of a graph G is a pair (T, ϕ) , where T is a tree and $\phi: V(T) \to 2^{V(G)}$, such that the following conditions hold:

- $\bullet \cup_{t \in V(T)} \phi(t) = V(G)$
- $\forall uv \in E(G), \exists t \in V(T) \text{ such that } \{u, v\} \subseteq \phi(t)$
- $\forall v \in V(G)$, the set $T_u := \{t \in V(T) | v \in \phi(t)\}$ is connected

For any $t \in V(T)$, $\phi(t)$ is called the bag of the node t. The width of tree decomposition (T,ϕ) equals $\max_{t \in V(T)} |\phi(t)| - 1$, that is, the maximum size of its bag minus 1. The treewidth of a graph G, denoted by tw(G), is the minimum possible width of a tree decomposition of G.

For the purpose of designing algorithms we consider *nice tree* decomposition of a graph G. A tree decomposition (T, ϕ) of a graph G is called *nice* if the following conditions hold:

• The tree T is rooted at a node, say r.

- The tree T is rooted at a node, say r.

- The tree T is rooted at a node, say r.
- \bullet $\phi(r) = \emptyset$.
- $\phi(I) = \emptyset$ for every leaf I of T.

- The tree T is rooted at a node, say r.
- $\phi(I) = \emptyset$ for every leaf I of T.
- Every non-leaf node is one of the following types.

- The tree T is rooted at a node, say r.
- $\phi(I) = \emptyset$ for every leaf I of T.
- Every non-leaf node is one of the following types.
 - Introduce vertex node: This is a node x of T, with exactly one child y such that $\phi(x) = \phi(y) \cup \{v\}$ for some $v \notin \phi(y)$; we say that v is introduced at x.

- The tree T is rooted at a node, say r.
- $\phi(r) = \emptyset$.
- $\phi(I) = \emptyset$ for every leaf I of T.
- Every non-leaf node is one of the following types.
 - Introduce vertex node: This is a node x of T, with exactly one child y such that $\phi(x) = \phi(y) \cup \{v\}$ for some $v \notin \phi(y)$; we say that v is introduced at x.
 - Introduce edge node: This is a node x of T, with exactly one child y such that $\phi(x) = \phi(y)$ and for $u, v \in \phi(x)$, where $uv \in E(G)$ we label the node x with uv; we say that uv is introduced at x.

Nice Tree Decomposition(contd.)

• Forget node: This is a node x of T, with exactly one child y such that $\phi(x) = \phi(y) \setminus \{v\}$ for some $v \in \phi(y)$; we say that v is forgotten at x.

Nice Tree Decomposition(contd.)

- Forget node: This is a node x of T, with exactly one child y such that $\phi(x) = \phi(y) \setminus \{v\}$ for some $v \in \phi(y)$; we say that v is forgotten at x.
- **Join node**: This is a node x of T with exactly two children y and z, such that $\phi(x) = \phi(y) = \phi(z)$.

For a node x of T, we define $G_x = (V_x, E_x)$ as follows:

- $V_x = \bigcup_{y \text{ is a descendant of } x} \phi(y)$
- $E_x = \{ All \text{ edges introduced at } x \text{ and its descendants} \}$

Nice Tree Decomposition(contd.)

- Forget node: This is a node x of T, with exactly one child y such that $\phi(x) = \phi(y) \setminus \{v\}$ for some $v \in \phi(y)$; we say that v is forgotten at x.
- **Join node**: This is a node x of T with exactly two children y and z, such that $\phi(x) = \phi(y) = \phi(z)$.

For a node x of T, we define $G_x = (V_x, E_x)$ as follows:

- $V_x = \bigcup_y$ is a descendant of $x\phi(y)$
- $E_x = \{ All \text{ edges introduced at } x \text{ and its descendants} \}$

We say that G_x is the subgraph of G hanging from x.

Nice Tree Decomposition(contd.)

- Forget node: This is a node x of T, with exactly one child y such that $\phi(x) = \phi(y) \setminus \{v\}$ for some $v \in \phi(y)$; we say that v is *forgotten* at x.
- **Join node**: This is a node x of T with exactly two children y and z, such that $\phi(x) = \phi(y) = \phi(z)$.

For a node x of T, we define $G_x = (V_x, E_x)$ as follows:

- $V_x = \bigcup_y$ is a descendant of $x\phi(y)$
- $E_x = \{ All \text{ edges introduced at } x \text{ and its descendants} \}$

We say that G_x is the subgraph of G hanging from x.

If a graph G has a tree decomposition of width k, then it admits a nice tree decomposition of width at most k. Moreover, given a tree decomposition (T, ϕ) of width k, one can find a nice tree decomposition of width k, in time $O(k^2 \cdot \max(|V(T)|, |V(G)|))$ that has O(k|V(G)|) nodes.

11 / 18

Revisit the problems

T-FAIR VERTEX COVER

Input: An undirected *t*-coloured graph G = (V, E), a nice tree decompositon (T, ϕ) of G and t-tuple of integers, $\mathbb{T} = (k_i)_{i=1}^t$.

Parameter: width of (T, ϕ)

Question: Does G have a \mathbb{T} -fair vertex cover?

Revisit the problems

T-fair Vertex Cover

Input: An undirected *t*-coloured graph G = (V, E), a nice tree decompositon (T, ϕ) of G and t-tuple of integers, $\mathbb{T} = (k_i)_{i=1}^t$.

Parameter: width of (T, ϕ)

Question: Does G have a \mathbb{T} -fair vertex cover?

T-fair Feedback Vertex Set

Input: An undirected t-coloured graph G = (V, E), a nice tree decomposi-

ton (T, ϕ) of G and t-tuple of integers, $\mathbb{T} = (k_i)_{i=1}^t$.

Parameter: width of (T, ϕ)

Question: Does G have a \mathbb{T} -fair feedback vertex set?

Revisit the problems

T-FAIR VERTEX COVER

Input: An undirected *t*-coloured graph G = (V, E), a nice tree decompositon (T, ϕ) of G and t-tuple of integers, $\mathbb{T} = (k_i)_{i=1}^t$.

Parameter: width of (T, ϕ)

Question: Does G have a \mathbb{T} -fair vertex cover?

\mathbb{T} -fair Feedback Vertex Set

Input: An undirected *t*-coloured graph G = (V, E), a nice tree decompositon (T, ϕ) of G and t-tuple of integers, $\mathbb{T} = (k_i)_{i=1}^t$.

Parameter: width of (T, ϕ)

Question: Does G have a \mathbb{T} -fair feedback vertex set?

 $t_w := \text{width of } (T, \phi).$

Fair Vertex Cover for graphs with bounded Treewidth

We will use dynamic programming to solve Fair Vertex Cover for graphs with bounded Treewidth.

For a node x of T, a subset S of $\phi(x)$, a t-tuple of integers $(r_i)_{i=1}^t$, where for each $i \in [t]$, $0 \le r_i \le k_i$, we define $I_x[S, (r_i)_{i=1}^t]$ as follows:

- $I_x[S,(r_i)_{i=1}^t] = 1$, if G_x has an $(r_i)_{i=1}^t$ -fair vertex cover which intersects $\phi(x)$ at S.
- $I_x[S, (r_i)_{i=1}^t] = 0$, otherwise

If all of the above entries are correctly evaluated, then G has \mathbb{T} -fair vertex cover if and only if $I_r[\emptyset, \mathbb{T}] = 1$.

We will now compute the entries of DP table. For a node x of T, a subset S of $\phi(x)$, and a t-tuple of integers $(r_i)_{i=1}^t$, we determine the value of $I_x[S,(r_i)_{i=1}^t]$ as follows.

- x is a leaf node. If $\forall i \in [t], r_i = 0$, then $I_x[\emptyset, (r_i)_{i=1}^t] = 1$, otherwise $I_x[\emptyset, (r_i)_{i=1}^t] = 0$.
- x has a child y and forgets vertex v. $I_x[S,(r_i)_{i=1}^t] = I_y[S,(r_i)_{i=1}^t] \oplus I_y[S \cup \{v\},(r_i)_{i=1}^t]$

- x has a child y and introduces vertex v.
 - If $v \notin S$, $I_x[S, (r_i)_{i=1}^t] = I_y[S, (r_i)_{i=1}^t]$
 - $v \in S$ and for some $j \in c(v), r_j = 0$, then $I_x[S, (r_i)_{i=1}^t] = 0$
 - In all other cases, $I_x[S,(r_i)_{i=1}^t] = I_y[S \setminus \{v\},(r_i')_{i=1}^t]$, where for $i \in [t], r_i' = |\{w \in \{v\} | i \in c(w)\}|$

- x has a child y and introduces vertex v.
 - If $v \notin S$, $I_x[S, (r_i)_{i=1}^t] = I_y[S, (r_i)_{i=1}^t]$
 - $v \in S$ and for some $j \in c(v), r_j = 0$, then $I_x[S, (r_i)_{i=1}^t] = 0$
 - In all other cases, $I_x[S, (r_i)_{i=1}^t] = I_y[S \setminus \{v\}, (r_i')_{i=1}^t]$, where for $i \in [t], r_i' = |\{w \in \{v\} | i \in c(w)\}|$
- x has a child y and introduces edge uv.
 - $S \cap \{u, v\} = \emptyset$, then $I_x[S, (r_i)_{i=1}^t] = 0$
 - Otherwise, $I_x[S, (r_i)_{i=1}^t] = I_y[S, (r_i)_{i=1}^t]$

If x is a join node with children y and z, we do as follows: Consider all tuples $(a_i)_{i=1}^t$, such that $0 \le a_i \le r_i$. Evaluate the following. $I_x[S,(r_i)_{i=1}^t] \leftarrow (I_x[S,(r_i)_{i=1}^t] \oplus (I_y[S,(a_i)_{i=1}^t] \odot I_z[S,(r_i+|\{w \in S|i \in c(w)\}|-a_i)_{i=1}^t]))$

If x is a join node with children y and z, we do as follows: Consider all tuples $(a_i)_{i=1}^t$, such that $0 \le a_i \le r_i$. Evaluate the following. $I_x[S,(r_i)_{i=1}^t] \leftarrow (I_x[S,(r_i)_{i=1}^t] \oplus (I_y[S,(a_i)_{i=1}^t] \odot I_z[S,(r_i+|\{w \in S|i \in c(w)\}|-a_i)_{i=1}^t]))$

The runing time of the algorithm is $n^{\mathcal{O}(1)} \cdot 2^{t_w}$.

FPT ALGORITHM FOR FAIR VERTEX COVER

Let v be a vertex of degree 3 or more. Let H' be the graph obtained by deleting the vertex v from G, c' be the function obtained by restricting c to $V(H') = (V(G) \setminus \{v\})$, and let $\mathbb{T}' = \{k'_1, k'_2, \dots, k'_t\}$ where for each $i \in [t]$ we have $k'_i = k_i - |\{w \in \{v\}| i \in c(w)\}|$.

FPT ALGORITHM FOR FAIR VERTEX COVER

Let v be a vertex of degree 3 or more. Let H' be the graph obtained by deleting the vertex v from G, c' be the function obtained by restricting c to $V(H') = (V(G) \setminus \{v\})$, and let $\mathbb{T}' = \{k'_1, k'_2, \ldots, k'_t\}$ where for each $i \in [t]$ we have $k'_i = k_i - |\{w \in \{v\}| i \in c(w)\}|$. Let H'' be the graph obtained by deleting the open neighbourhood N(v) from G, let c'' be the function obtained by restricting c to $V(H'') = (V(G) \setminus N(v))$, and let $\mathbb{T}'' = \{k''_1, k''_2, \ldots, k''_t\}$ where for each $i \in [t]$ we have $k''_i = k_i - |\{w \in N(v)| i \in c(w)\}|$.

FPT ALGORITHM FOR FAIR VERTEX COVER

Let v be a vertex of degree 3 or more. Let H' be the graph obtained by deleting the vertex v from G, c' be the function obtained by restricting c to $V(H') = (V(G) \setminus \{v\})$, and let $\mathbb{T}' = \{k'_1, k'_2, \ldots, k'_t\}$ where for each $i \in [t]$ we have $k'_i = k_i - |\{w \in \{v\} | i \in c(w)\}|$.

Let H'' be the graph obtained by deleting the open neighbourhood N(v) from G, let c'' be the function obtained by restricting c to

 $V(H'') = (V(G) \setminus N(v))$, and let $\mathbb{T}'' = \{k''_1, k''_2, \dots, k''_t\}$ where for each $i \in [t]$ we have $k''_i = k_i - |\{w \in N(v)|i \in c(w)\}|$.

The branching rule recursively solves the two instances (H', c', \mathbb{T}') and (H'', c'', \mathbb{T}'') . If at least one of these recursive calls returns YES, then the rule returns YES; otherwise it returns No.

FPT ALGORITHM FOR FAIR VERTEX COVER(contd.)

For solving the base case, use the bounded treewidth algorithm as a routine.

FPT ALGORITHM FOR FAIR VERTEX COVER(contd.)

For solving the base case, use the bounded treewidth algorithm as a routine.

The branching algorithm follows the relation

 $T(k) \leq T(k-1) + T(k-3)$, when $k \geq 3$. Substituting $\sum_{i=1}^{t} k_i$ for k, we can get an upper bound on the number of recursive calls. Thus, the total time taken by the algorithm is $n^{O(1)} \cdot 1.4656^{\sum_{i=1}^{t}}$.