TRANSLATION REPEATABILITY BENCHMARK

Reference No / Version	RAL-SI-2020-B19-0838_5-V1.0
	For the latest versions of the benchmark, please refer to http://newdexterity.org/benchmarking/
Authors	Geng Gao ¹ , Gal Gorjup ¹ , Ruobing Yu ² , Patrick Jarvis ² , and Minas Liarokapis ¹
Institution	¹ University of Auckland, ² Humanoid Artificial Intelligence
Contact Information	ggao102@aucklanduni.ac.nz, ggor290@aucklanduni.ac.nz, ruobingy@aidatainnovations.com, patrickj@aidatainnovations.com, m.liarokapis@auckland.ac.nz
Adopted Protocol	Any protocol that involves periodic object translation (RAL-SI-2020-P19-0838_1-V1.0, RAL-SI-2020-P19-0838_3-V1.0, RAL-SI-2020-P19-0838_4-V1.0).
Scoring	 Assessment is based on the cycle end point variation. For each recorded periodic manipulation motion: Isolate motion cycle start and end points. Compute the mean drift vector d (Benchmark RAL-SI-2020-B19-0838_3-V1.0) and subtract it from subsequent endpoints to eliminate drift. Compute covariance matrix of the end points. Perform eigenvalue decomposition on the covariance matrix and extract the largest eigenvalue λ_{max}. Compute the square root of the largest eigenvalue √λ_{max}. The result √λ_{max} corresponds to the standard deviation along the dominant principal component and characterizes the largest translational spread of the manipulation motion end points. A lower score corresponds to better repeatability. The computation is performed for every sensorized object.
Details of Setup	To assist with data processing and metric computation, code samples are provided.
Results to Submit	 For each sensorized object and manipulation motion: Sensorized object type, size, and surface. Sensorized object mass and center of mass (internal weight configuration). Assessed hand model, aperture and control details. Computed √λ_{max}. Plots of recorded point clouds with highlighted cycle end points. Comments on obtained results with respect to the hand model and control.