Année: 2019/2020

Contrôle 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

QCM (Sans points négatifs) 4 points

Entourer la bonne réponse

- 1- Le produit scalaire de deux vecteurs non nuls, colinéaires et de sens opposés est
 - a) strictement positif
 - b) nul
 - c) strictement négatif
- 2- Les composantes du vecteur force \vec{F}_1 représenté sur le schéma ci-dessous sont :

a)
$$\vec{F}_1 = \begin{pmatrix} -F_1 \cos(\alpha) \\ F_1 \sin(\alpha) \end{pmatrix}$$
 b) $\vec{F}_1 = \begin{pmatrix} -F_1 \sin(\alpha) \\ -F_1 \cos(\alpha) \end{pmatrix}$ c) $\vec{F}_1 = \begin{pmatrix} -F_1 \sin(\alpha) \\ F_1 \cos(\alpha) \end{pmatrix}$

b)
$$\vec{F}_1 = \begin{pmatrix} -F_1 \sin(\alpha) \\ -F_1 \cos(\alpha) \end{pmatrix}$$

c)
$$\vec{F}_1 = \begin{pmatrix} -F_1 \sin(\alpha) \\ F_1 \cos(\alpha) \end{pmatrix}$$

- 3- La norme du vecteur $\vec{V}_3 = \vec{V}_1 \wedge \vec{V}_2$, tel que : $(\vec{V}_1, \vec{V}_2) = \alpha$ est

 - a) $V_3 = V_1.V_2.|sin(\alpha)|$ b) $V_3 = V_1.V_2.|cos(\alpha)|$ c) $V_3 = \sqrt{V_1^2 + V_2^2 + 2V_1.V_2.cos(\alpha)}$
- 4- La dérivée par rapport à la variable t de la fonction $f(t) = A\cos^2(\theta(t))$, A étant une constante, s'écrit

- 1 -

- a) $\frac{df(t)}{dt} = 2A\dot{\theta}(t)cos(\theta(t))\sin(\theta(t))$ b) $\frac{df(t)}{dt} = -2A\dot{\theta}(t)cos(\theta(t))\sin(\theta(t))$ c) $\frac{df(t)}{dt} = 2Acos(\theta(t))\sin(\theta(t))$
- 5- Le vecteur vitesse en coordonnées cylindriques s'écrit :

a)
$$\vec{V} = \dot{\rho} \vec{u}_{\rho} + \rho \dot{\theta} \vec{u}_{\theta}$$

b)
$$\vec{V} = \rho \vec{u}_0 + \rho \dot{\theta} \vec{u}_\theta + \dot{z} \vec{u}_z$$

c)
$$\vec{V} = \dot{\rho} \vec{u}_{\rho} + \rho \dot{\theta} \vec{u}_{\theta} + \dot{z} \vec{u}_{z}$$

6- Le vecteur accélération en coordonnées polaires est donné par :

$$\vec{a} = (\ddot{\rho} - \rho(\dot{\theta})^2)\vec{u}_\rho + (2\dot{\rho}\dot{\theta} + \rho\ddot{\theta})\vec{u}_\theta$$

Dans le cas d'un mouvement circulaire décéléré, de rayon R, le vecteur accélération s'écrit

a)
$$\vec{a} = \begin{pmatrix} 0 \\ R \ddot{\theta} \end{pmatrix}_{\overrightarrow{u_{\rho}}, \overrightarrow{u_{\theta}}}$$
 b) $\vec{a} = \begin{pmatrix} R(\dot{\theta})^2 \\ 0 \end{pmatrix}_{\overrightarrow{u_{\rho}}, \overrightarrow{u_{\theta}}}$ c) $\begin{pmatrix} -R(\dot{\theta})^2 \\ R \ddot{\theta} \end{pmatrix}_{\overrightarrow{u_{\rho}}, \overrightarrow{u_{\theta}}}$ d) $\vec{a} = \begin{pmatrix} -R(\dot{\theta})^2 \\ 0 \end{pmatrix}_{\overrightarrow{u_{\rho}}, \overrightarrow{u_{\theta}}}$

7- Le vecteur unitaire \vec{u}_{ρ} des coordonnées polaires vérifie :

a)
$$\frac{d\vec{u}_{\rho}}{dt} = -\dot{\theta}\vec{u}_{\theta}$$
 c) $\frac{d\vec{u}_{\rho}}{dt} = \dot{\theta}\vec{u}_{\rho}$
b) $\frac{d\vec{u}_{\rho}}{dt} = \vec{0}$ d) $\frac{d\vec{u}_{\rho}}{dt} = \dot{\theta}\vec{u}_{\theta}$

8- Les équations horaires d'un mouvement en coordonnées polaires sont :

$$\begin{cases} \rho(t) = \rho_0 e^{\omega t} \\ \theta(t) = \omega t \end{cases}; \ \rho_0, \omega \text{ sont des constantes positives.}$$

Les équations horaires en coordonnées cartésiennes de ce mouvement s'écrivent :

a)
$$\begin{cases} x(t) = \rho_0 \sin(\omega t) \\ y(t) = \rho_0 \cos(\omega t) \end{cases}$$
 b)
$$\begin{cases} x(t) = \rho_0 e^{\omega t} \cos(\omega t) \\ y(t) = \rho_0 e^{\omega t} \sin(\omega t) \end{cases}$$
 c)
$$\begin{cases} x(t) = \rho_0 e^{\omega t} \sin(\omega t) \\ y(t) = \rho_0 e^{\omega t} \cos(\omega t) \end{cases}$$

Exercice 1 (6 points)

La cycloïde est une trajectoire décrite par un point d'un cercle de rayon R roulant sans glisser sur une droite (D). On peut aussi définir la cycloïde comme la trajectoire d'un mouvement composé d'un mouvement rectiligne uniforme et d'un mouvement circulaire uniforme de même vitesse.

Les équations horaires en coordonnées cartésiennes de ce mouvement sont :

$$\begin{cases} x(t) = A(\omega t - \sin(\omega t)) \\ y(t) = A(1 - \cos(\omega t)) \end{cases}$$
; $Ou A et \omega$ sont des constantes positives.

1- Déterminer les composantes cartésiennes des vecteurs vitesse et accélération.

2- En déduire la norme de chacun de ces vecteurs. On donne : $1 - \cos(\alpha) = 2\sin^2(\alpha/2)$.

Fracer la cycloïde (y = f(x)), sur un intervalle de temps de 2 périodes (2T). Sachant que la pulsation ω est relié à la période T par : $\omega = 2 \pi / T$ (On prend les valeurs : t = 0 ; t = T/4 ; t = T/2 ; t = 3T/4 ; t = T).

Exercice 2 (6 points)
On considère un mouvement hélicoïdal d'équations horaires en coordonnées catésiennes données par
$\begin{cases} x(t) = R\cos(\omega t) \\ x(t) = R\cos(\omega t) \end{cases}$
$\begin{cases} y(t) = R \sin(\omega t) & \text{(R, } \omega \text{ et H sont des constantes positives)} \\ z(t) = H\omega t & \end{cases}$
1- Exprimer le vecteur vitesse en coordonnées cartésiennes, en déduire sa norme.
Exprimer to vecteur vitesse on coordonnees cartesiennes, en acadre sa norme.
2- Exprimer le vecteur accélération en coordonnées cartésiennes, en déduire sa norme.
2 a) Hélican las équations homines dannées alus hout, ainsi que las équations de nassace nous avaniments
3- a) Utiliser les équations horaires données plus haut, ainsi que les équations de passage pour exprimer le vecteur position $\overrightarrow{OM}(t)$ en coordonnées cylindriques.
vecteur position om (t) en coordonnees cymidiques.

b) Exprimer les vecteurs vitesse et accélération en coordonnées cylindriques, retrouver les normes de ces
vecteurs calculées aux questions 1 et 2.
Exercice 3 (4 points)
Un point matériel décrit un cercle de centre 0 et de rayon R avec une vitesse \vec{v} de norme :
$v(t) = \frac{v_0}{1+\alpha t}$; Où v_0 et α sont des constantes positives.
1- a) Exprimer l'abscisse curviligne s(t), sachant que $s(t_0 = 0) = 0$.
b) En déduire le temps au bout duquel le mobile fait un tour, en fonction de α, V ₀ et R.
b) En dedute le temps au bout duquer le mobile fait un tour, en fonction de d, v ₀ et R.

Exprimer les composantes a_T et a_N du vecteur accélération en base de Frenet. En déduire la norme du vecteur accélération dans cette même base.