#### **Adopted Levels, Gammas**

| History         |              |          |                        |  |  |  |
|-----------------|--------------|----------|------------------------|--|--|--|
| Type            | Author       | Citation | Literature Cutoff Date |  |  |  |
| Full Evaluation | Balraj Singh | ENSDF    | 20-Feb-2010            |  |  |  |

 $Q(\beta^{-})=-1.65\times10^{4} \text{ syst}; S(n)=1.803\times10^{4} \text{ 4}; S(p)=4882 22; Q(\alpha)=-6794 20$  2012Wa38

Note: Current evaluation has used the following Q record \$ -17100 syst 18.58E350 4883 26 -6777 21 2009AuZZ,2003Au03.

Estimated uncertainty=110 for  $Q(\beta^-)$  (2009AuZZ,2003Au03).

 $Q(\varepsilon p) = 2243 \ 20 \ (2009AuZZ, 2003Au03).$ 

Mass excess=-29.472 20 MeV (1992Bo37).

1972Zi02: identification and production of  $^{46}$ Cr in  $^{32}$ S( $^{16}$ O,2n) reaction.

1991Wi13:  $^{46}$ Ti( $\pi^+,\pi^-$ ) E=450 MeV, measured cross section for double isobaric analog state using LAMPF facility and Large Acceptance spectrometer (las). Measured  $d\sigma/d\Omega=0.25~\mu$ b/sr 10 at 5°.

1990We05:  $^{46}$ Ti( $\pi^+,\pi^-$ ) E=33.9 MeV, measured cross section and  $\sigma(\theta)$  for double isobaric analog state using LAMPF facility, Measured  $d\sigma/d\Omega$ =3.1  $\mu$ b/sr 8 at 0° and 2.5  $\mu$ b/sr 6 at 25.1°.

1994B110: <sup>9</sup>Be(<sup>58</sup>Ni,X) E=650 MeV/nucleon, Fragment separator FRS at GSI facility, measured cross section for the production of <sup>46</sup>Cr.

2005On03: measured half-life of <sup>46</sup>Cr g.s.

Structure calculations using shell model: 2008Ma44, 2007He32, 2002Ca48: levels, B(E2), mirror states, etc.

#### <sup>46</sup>Cr Levels

## Cross Reference (XREF) Flags

- A  $^{46}$ Mn  $\varepsilon$  decay (36.2 ms)
- B  $^{47}$ Fe  $\varepsilon$ p decay (21.9 ms)
- $C = {}^{12}C({}^{36}Ar,2n\gamma)$
- D Coulomb excitation

| E(level) <sup>†</sup>                                                          | $J^{\pi \ddagger}$                     | T <sub>1/2</sub> | XREF        | Comments                                                                                                                                                                                       |
|--------------------------------------------------------------------------------|----------------------------------------|------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0#                                                                           | 0+                                     | 0.26 s 6         | ABCD        | %ε+% $\beta$ <sup>+</sup> =100<br>$T_{1/2}$ : from 1972Zi02, timing of $\beta$ decays. Other: 0.24 s 14 (2005On03) from $\beta$ (993 $\gamma$ ) coin decay curve.<br>Additional information 1. |
| 892.16 <sup>#</sup> <i>10</i>                                                  | 2+                                     | 5.4 ps <i>12</i> | ABCD        | $J^{\pi}$ : level is Coulomb excited. $T_{1/2}$ : from B(E2)=0.093 20 (2005Ya26) in Coulomb excitation.                                                                                        |
| 1987.1 <sup>#</sup> <i>3</i>                                                   | $(4^{+})$                              |                  | ABC         | -1-                                                                                                                                                                                            |
| 3196.5 <sup>@</sup> 6                                                          | $(3^{-})$                              |                  | BC          |                                                                                                                                                                                                |
| 3226.9 <sup>#</sup> 6<br>3296 3<br>3494.3 7                                    | (6 <sup>+</sup> )                      |                  | C<br>C<br>C |                                                                                                                                                                                                |
| 3593.7 <sup>@</sup> 7<br>3682.2 <i>16</i><br>3715.8 9<br>3778.1 <i>12</i>      | (4-)                                   |                  | C<br>C<br>C |                                                                                                                                                                                                |
| 3986.7 <sup>@</sup> 7<br>4235 <i>3</i><br>4305.5 <i>12</i><br>4434.4 <i>10</i> | (5 <sup>-</sup> )                      |                  | C<br>C<br>C |                                                                                                                                                                                                |
| 4817.4 <sup>#</sup> 8<br>4830 <sup>@</sup> 3<br>5117 4                         | (8 <sup>+</sup> )<br>(6 <sup>-</sup> ) |                  | C<br>C<br>C |                                                                                                                                                                                                |
| 5346 <sup>@</sup> 3                                                            | (7-)                                   |                  | C           |                                                                                                                                                                                                |

#### Adopted Levels, Gammas (continued)

#### <sup>46</sup>Cr Levels (continued)

| E(level) <sup>†</sup>          | $J^{\pi \ddagger}$ | XREF |
|--------------------------------|--------------------|------|
| 6179.5 <sup>#</sup> 11         | $(10^{+})$         | С    |
| 8162.5? <sup>#</sup> <i>15</i> | $(12^{+})$         | C    |
| 9152.24                        | $(4^{+})$          | Α    |

Comments

E(level): from 2007Do17, see detailed comment in  $^{46}$ Mn  $\varepsilon$  decay.  $J^{\pi}$ : T=2 quadruplet in  $^{46}$ Sc (g.s.,4<sup>+</sup>),  $^{46}$ Ti (9168,4<sup>+</sup>,probable IAS of  $^{46}$ Sc g.s.),  $^{46}$ Cr (9152 state) and <sup>46</sup>Mn (g.s.). Superallowed type  $\beta^+$  decay (log  $ft \approx 3.4$ ) from <sup>46</sup>Mn g.s. to the 9152 level of <sup>46</sup>Cr is consistent with this interpretation. Also mirror analogy with 9168, 4<sup>+</sup> state of

This state decays mainly by proton emission, but only 17.3% 12 branch is so far accounted in measurements of 2007Do17 and 1992Bo37. Energetically, two-proton and  $\alpha$ -decay modes are also possible but these are expected to be small (2007Do17).

## $\gamma(^{46}Cr)$

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$           | $I_{\gamma}$                 | $\mathbf{E}_f$   | $\mathbf{J}_f^{\pi}$ | Mult.    | Comments         |
|--------------|----------------------|----------------------------------|------------------------------|------------------|----------------------|----------|------------------|
| 892.16       | 2+                   | 892.15 <sup>‡</sup> <i>10</i>    | 100                          | 0.0              | 0+                   | [E2]     | B(E2)(W.u.)=19 4 |
| 1987.1       | $(4^{+})$            | 1094.9 <sup>‡</sup> <i>3</i>     | 100                          | 892.16           | 2+                   |          |                  |
| 3196.5       | $(3^{-})$            | 2304.6 7                         | 100                          | 892.16           | 2+                   | D#       |                  |
| 3226.9       | $(6^+)$              | 1239.9 5                         | 100                          | 1987.1           | $(4^{+})$            | Q#       |                  |
| 3296         | . ,                  | 2404 <i>3</i>                    | 100                          | 892.16           |                      |          |                  |
| 3494.3       |                      | 1506.9 8                         | 100                          | 1987.1           | $(4^{+})$            |          |                  |
| 3593.7       | $(4^{-})$            | 397.4 6                          | 100 13                       | 3196.5           | $(3^{-})$            | $D^{\#}$ |                  |
|              |                      | 1605.3 <i>15</i>                 | 75 19                        | 1987.1           | $(4^{+})$            |          |                  |
| 3682.2       |                      | 1695.0 <i>15</i>                 | 100                          | 1987.1           | $(4^{+})$            |          |                  |
| 3715.8       |                      | 519.3 6                          | 100                          | 3196.5           | $(3^{-})$            |          |                  |
| 3778.1       |                      | 581.7 11                         | 50 30                        | 3196.5           | $(3^{-})$            |          |                  |
| 2006.7       | (5-)                 | 1790 <i>3</i><br>393.0 <i>15</i> | 100 <i>60</i><br>12 <i>7</i> | 1987.1<br>3593.7 | $(4^{+})$            |          |                  |
| 3986.7       | $(5^{-})$            | 492.3 7                          | 60 11                        | 3494.3           | (4-)                 |          |                  |
|              |                      | 760.3 10                         | 43 13                        | 3226.9           | (6+)                 |          |                  |
|              |                      | 790.1 8                          | 100 22                       | 3196.5           | $(3^{-})$            | Q#       |                  |
| 4235         |                      | 2248 3                           | 100                          | 1987.1           | $(4^{+})$            | ~        |                  |
| 4305.5       |                      | 711.8 9                          | 100                          | 3593.7           | $(4^{-})$            |          |                  |
| 4434.4       |                      | 841.0 22                         | 22 13                        | 3593.7           | (4-)                 |          |                  |
|              |                      | 1207.4 9                         | 100 17                       | 3226.9           | $(6^{+})$            |          |                  |
| 4817.4       | $(8^{+})$            | 1590.4 6                         | 100                          | 3226.9           | $(6^{+})$            |          |                  |
| 4830         | (6-)                 | 1236 3                           | 100                          | 3593.7           | $(4^{-})$            |          |                  |
| 5117         | (7-)                 | 1401 3                           | 100                          | 3715.8           | (F-)                 |          |                  |
| 5346         | $(7^{-})$            | 1359 3                           | 100                          | 3986.7           | $(5^{-})$            |          |                  |
| 6179.5       | $(10^{+})$           | 1362.1 7                         | 100                          | 4817.4           | (8+)                 |          |                  |
| 8162.5?      | $(12^{+})$           | 1983.0 <sup>@</sup> 10           | 100                          | 6179.5           | $(10^{+})$           |          |                  |

<sup>&</sup>lt;sup>†</sup> From <sup>12</sup>C(<sup>36</sup>Ar,2n $\gamma$ ), unless otherwise stated.

<sup>&</sup>lt;sup>†</sup> From least-squares fit to E $\gamma$ 's.

 $<sup>^{\</sup>ddagger}$  As proposed in 2007Ga03 based on  $\gamma(\theta)$  data for selected transitions observed in  $^{12}$ C( $^{36}$ Ar,2n $\gamma$ ) and mirror analogy with  $^{46}$ Ti and <sup>46</sup>V. # Band(A): Yrast (T=1) band. Structure is similar to T=1 states in mirror nuclide <sup>46</sup>Ti and <sup>46</sup>V.

<sup>&</sup>lt;sup>@</sup> Band(B):  $\Delta J=1$  band based on (3<sup>-</sup>).

## **Adopted Levels, Gammas (continued)**

# $\gamma(^{46}Cr)$ (continued)

<sup>&</sup>lt;sup>‡</sup> Weighted average of values from  $\varepsilon$  decay,  $\varepsilon$ p decay and  $^{12}C(^{36}Ar,2n\gamma)$ .

# The  $\gamma(\theta)$  patterns in  $^{12}C(^{36}Ar,2n\gamma)$  are consistent with  $\Delta J$ =2, quadrupole for 1240 $\gamma$  and 790 $\gamma$ ; and  $\Delta J$ =1 for 2305 $\gamma$  and 397 $\gamma$ .

@ Placement of transition in the level scheme is uncertain.

## **Adopted Levels, Gammas**

Legend

## Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)



 $^{46}_{24}\mathrm{Cr}_{22}$ 

## **Adopted Levels, Gammas**



$$^{46}_{24}\mathrm{Cr}_{22}$$