PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-360569

(43) Date of publication of application: 17.12.2002

(51)Int.CI.

A61B 8/00 G06T 1/00

(21)Application number: 2001-170485

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

06.06.2001

(72)Inventor: KAWAGISHI TETSUYA

(54) ULTRASONIC IMAGE DIAGNOSTIC INSTRUMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an ultrasonic diagnostic instrument capable of forming an ultrasonic image of high resolution and low artifact by efficiently detecting only required harmonic components.

SOLUTION: In a harmonic unit 17, a subtraction part 22 is provided to extract only odd-order harmonic components. After removing fundamental wave components with a filter 24, a synthesizing part 25 synthesizes it with even-order harmonic components.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-360569 (P2002-360569A)

(43)公開日 平成14年12月17日(2002.12.17)

(51) Int.Cl. ⁷		識別配号	FΙ		ž	7]1*(参考)
A61B	8/00		A 6 1 B	8/00		4C301
G06T	1/00	290	G06T	1/00	290D	5B057

審査請求 未請求 請求項の数15 OL (全 9 頁)

(21)出願番号	特額2001-170485(P2001-170485)	(71)出願人	000003078
			株式会社東芝
(22)出顧日	平成13年6月6日(2001.6.6)		東京都港区芝浦一丁目1番1号
		(72) 発明者	川岸 哲也
			栃木県大田原市下石上字東山1385番の1
		1	株式会社東芝那須工場內
		(74)代理人	100083161
			弁理士 外川 英明
		1	

最終頁に続く

(54) 【発明の名称】 超音波画像診断装置

(57)【要約】

【課題】 必要なハーモニック成分のみをより効率的に 検出することにより、高分解能、低アーチファクトの超 音波画像を生成可能な超音波診断装置を提供することを 目的とする。

(解決手段】 ハーモニックユニット17において、減算部22を設けることにより、奇数次ハーモニック成分のみを抽出し、フィルタ24により基本波成分を除去後、合成部25により偶数次ハーモニック成分と合成する。

【特許請求の記用】

【請求項1】 超音波を送信する送信手段と、前記送信 された超音波のエコーを受信し受信信号を得る受信手段 と、前記受信信号からハーモニック成分を抽出するハー モニック成分は出手段と、前記抽出されたハーモニック 成分を用いて超音波画像を生成する超音波画像生成手段 と、を具備し、前記ハーモニック成分抽出手段は、前記 受信信号から奇数次のハーモニック成分を抽出すること を特徴とする超音波画像診断装置。

【請求項2】 前記ハーモニック成分抽出手段は、前記 奇数次のハーモニック成分とは別に偶数次のハーモニッ ク成分を抽出し、前記超音波画像生成手段は、前記奇数 次のハーモニック成分および前記偶数次のハーモニック 成分のうち少なくとも一方のハーモニック成分を用いて 超音波画像を生成することを特徴とする請求項1記載の 超音波画像診断装置。

【請求項3】 前記超音波画像生成手段は、前記偶数次 のハーモニック成分と、前記奇数次のハーモニック成分 が合成された信号に基づいて超音波画像を生成すること を特徴とする請求項2記載の超音波画像診断装置。

【請求項4】 前記超音波画像生成手段は、前記偶数次 のハーモニック成分および前記奇数次のハーモニック成 分のそれぞれの成分に基づいて超音波画像を生成するこ とを特徴とする請求項2記載の超音波画像診断装置。

【請求項5】 前記偶数次のハーモニック成分および前 記奇数次のハーモニック成分のいずれのハーモニック成 分を用いるか操作者が選択可能な選択手段をさらに有 し、前記超音波画像生成手段は、前記選択されたハーモ ニック成分に基づいて超音波画像を生成することを特徴 とする請求項2記載の超音波画像診断装置。

【請求項6】 前記奇数次のハーモニック成分および前 記偶数次のハーモニック成分から任意の次数のハーモニ ック成分を抽出する任意ハーモニック成分抽出手段をさ らに具備し、前記超音波画像生成手段は、前記任意ハー モニック成分抽出手段により抽出されたハーモニック成 分を用いて超音波画像を生成することを特徴とする請求 項2記載の超音波画像診断装置。

【請求項7】 互いに位相反転した2種類の超音波を送 信する送信手段と、前記送信された2種類の超音波のエ コーを受信する受信手段と、前記それぞれの受信信号同 土を減算する減算手段と、前記減算手段の出力信号から 基本波成分を除去する基本波成分除去手段と、前記基本 波成分除去手段の出力信号に基づいて超音波画像を生成 する超音波画像生成手段と、を具備することを特徴とす る超音波画像診断装置。

【請求項8】 前記それぞれの受信信号同士を加算する 加算手段をさらに有し、前記超音波画像生成手段は、前 記加算手段の出力信号および前記基本波成分除去手段の 出力信号のうち少なくとも1つの出力信号に基づいて超 音波画像を生成することを特徴とする請求項7記載の超 音波画像診断装置。

【請求項9】 前記加算手段の出力信号と前記基本波成 分除去手段の出力信号を合成する合成手段をさらに有 し、前記超音波画像生成手段は、前記合成手段の出力信 号に基づいて超音波画像を生成することを特徴とする請 求項8記載の超音波画像診断装置。

【請求項10】 前記超音波画像生成手段は、前記加算 手段の出力信号と前記基本波成分除去手段の出力信号の それぞれの出力信号に基づいてそれぞれの超音波画像を 生成することを特徴とする請求項8記載の超音波画像診 断装置。

【請求項11】 前記加算手段の出力と前記基本波成分 除去手段の出力信号を切換えて出力する切換手段をさら に有し、前記超音波画像生成手段は、前記切換手段の出 力信号に基づいて超音波画像を生成することを特徴とす る請求項8記載の超音波画像診断装置。

【請求項12】 前記減算手段の出力信号および前記加 算手段の出力信号から、操作者によって選択された次数 のハーモニック成分を抽出する手段をさらに具備し、前 記超音波画像生成手段は、前記選択された次数のハーモ ニック成分を用いて超音波画像を生成することを特徴と する請求項8記載の超音波画像診断装置。

【請求項13】 互いに位相反転した2種類の超音波を 送信する送信手段と、前記送信された2種類の超音波の エコーを受信する受信手段と、前記それぞれの受信信号 同士を減算する減算手段と、前記減算手段の出力信号に 基づいて超音波画像を生成する超音波画像生成手段と、 を具備することを特徴とする超音波画像診断装置。

【請求項14】 前記送信手段および前記受信手段は、 1つのプローブであることを特徴とする請求項1乃至1 3いずれか1項記載の超音波画像診断装置。

【請求項15】 前記プローブは、単結晶の圧電結晶を 有することを特徴とする請求項14記載の超音波画像診 断装置。 18. W. Spille " Mar

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ハーモニック成分 を用いて超音波画像を生成する超音波画像診断装置に関 する。

[0002]

【従来の技術】従来、超音波診断装置の中には、被検体 に送信する周波数(以下基本周波数と呼ぶ)に対して、 略整数倍の周波数成分 (以下ハーモニック成分と呼ぶ) を受信信号として映像化する技術がある。なお、以下基 本周波数の成分を基本波成分と呼ぶ。なお、この技術 は、一般的にハーモニックイメージングと呼ばれてい る。ここで、ハーモニックイメージングの例として、コ ントラストハーモニックイメージング (以下CHIと呼 ぶ)と組織ハーモニックイメージング(以下THIと呼 ぶ)について説明する。まず、CHIとは、超音波の受

!(3) 002-360569 (P2002-筍僑

信信号に含まれるハーモニック成分を抽出して、画像を 作成するもののうち、特に微小気泡(以下マイクロバブ ルと呼ぶ) よりなる超音波造影剤をより効率的に検出す ることを目的として開発された。マイクロバブルは強い 非線形散乱特性を有しており、その散乱信号は生体組織 と比べて大きなハーモニック成分を含んでいる。そこで このハーモニック成分を抽出することにより、基本波成 分では周囲組織からのエコーに埋もれてしまうような微 小な血流 (パフュージョン) の映像化が可能となる。ま た、一方で、THI (Tissue Harmonic Imaging)と は、アーチファクトの低減された高コントラストの画像 が得られ、心内膜等の描出に優れることが特徴である。 【0003】CHIでは造影剤のマイクロバブルでの散 乱で生じたハーモニック成分を画像化するのに対して、 THIでは、送信された超音波が被検体内を歪みながら "伝搬"するいわゆる伝搬の非線形性により発生するハ ーモニック成分のエコー信号を画像化するものである。 THIにおけるハーモニック成分の発生は、基本波成分 の音圧の二乗(強度)に比例するため、超音波の送信ビ ームの中心軸上 (音圧の高い領域) に集中して発生す る。すなわち基本波成分を用いた場合に比べ、メインロ ーブが細くかつサイドローブレベルが低いシャープな超 音波の送信ビームが形成可能である。このようにTHI ではビーム幅が狭くかつサイドローブレベルの低いビー ム形成が可能なため、ビーム幅の低減により方位方向分 解能が向上し、またサイドローブレベルの低減によりコ ントラスト分解能が向上する。このように、THIある いはCHIのようなハーモニックイメージングを行うに は、上記ハーモニック成分を受信信号から取り出す必要 があり、この1 つとして、フィルタ法が上げられる。フ ィルタ法とは、受信信号に基本波成分を除去するような 低周波カットフィルタを用いるものである。

【0004】また、このフィルタ法よりも、さらに効果 的に基本波成分を除去し、ハーモニック成分を取り出す 技術がある。この技術として、主に、パルスインバージ ョン法および振幅変化法がある。パルスインバージョン 法とは、同じ超音波走査線上に、互いに位相反転させた 2種類の超音波パルスを交互に送信し、それに対応した 2種類の受信信号を加算するものである。これにより、 基本波成分および奇数次ハーモニック成分に対しては相 殺作用が生じ、また、偶数次ハーモニック成分に対して は逆に加算作用が生じるため、この方法を利用すると、 フィルタ法よりも効率的に基本波成分の除去、および偶 数次のハーモニック成分の抽出を行うことが可能であ る。なお、ここで奇数次ハーモニック成分とは、基本周 波数の略奇数倍の周波数を有する成分であり、以下これ と同様に、例えば2次ハーモニック成分とは、基本周波 数の略2倍の周波数を有する成分と呼ぶ。このパルスイ ンバージョン法は、阿比留巌、鎌倉友男共著「超音波パ ルスの被線形伝播」(信学技法、US89-23、p5

3) に記述されている。また、振幅変化法とは、同じ超音波走査線上に、互いに振幅の異なる2種類の超音波パルスを交互に送信し、それに対応した2種類の受信信号をゲイン補正後減算するものである。 この振幅変化法は、Ted Christopherによる"Finite Amplitude Distortion Based Inhomogeneous Pulse Echo Ultrasonic Imaging" (IEEE UFFC vol.44 No.1 January 1997) に記載されている。

[0005]

【発明が解決しようとする課題】しかしながら、上記フ ィルタ法においては、基本波成分の除去と共に2次ハー モニック成分を除去してしまい、効率的にハーモニック 成分のみを検出することができなかった。また、パルス インバージョン法においては、基本波成分は効率的に除 去できるものの、基本波成分の除去と共に、奇数次ハー モニック成分を失っていた。また、振幅変化法は、低振 幅送信時のS/N比が悪いという問題を有する。このよ うに従来では、必要ではない成分を大きく含んだ、ある いは必要な成分が小さいハーモニック成分を用いて超音 波画像の作成を行っていたため、超音波画像の高分解能 化、低アーチファクト化には限界があった。そこで、本 発明は上記課題を解決し、必要なハーモニック成分のみ をより効率的に検出することにより、高分解能、低アー チファクトの超音波画像を生成可能な超音波診断装置を 提供することを目的する。

[0006]

【課題を解決するための手段】上述の課題を解決するた め、請求項1に記載の発明は、超音波を送信する送信手 段と、前記送信された超音波のエコーを受信し受信信号 を得る受信手段と、前記受信信号からハーモニック成分 を抽出するハーモニック成分抽出手段と、前記抽出され たハーモニック成分を用いて超音波画像を生成する超音 波画像生成手段と、を具備し、前記ハーモニック成分抽 出手段は、前記受信信号から奇数次のハーモニック成分 を抽出することを特徴とする。また、請求項7に記載の 発明は、互いに位相反転した2種類の超音波を送信する 送信手段と、前記送信された2種類の超音波のエコーを 受信する受信手段と、前記それぞれの受信信号同士を減 算する減算手段と、前記減算手段の出力信号から基本波 成分を除去する基本波成分除去手段と、前記基本波成分 除去手段の出力信号に基づいて超音波画像を生成する超 音波画像生成手段と、を具備することを特徴とする。ま た、請求項13に記載の発明は、互いに位相反転した2 種類の超音波を送信する送信手段と、前記送信された2 種類の超音波のエコーを受信する受信手段と、前記それ ぞれの受信信号同士を減算する減算手段と、前記減算手 段の出力信号に基づいて超音波画像を生成する超音波画 像生成手段と、を具備することを特徴とする。

【発明の実施の形態】以下、本発明に係る第1の実施の 形態について、図面を参照して詳細に説明する。図1

の成分、この場合には基本波成分を完全に除去するもの

は、超音波診断装置10のブロック図である。超音波診断装置10は、超音波の送受信を行うプローブ11、プローブ11における超音波送受信信号の処理を行う超音波装置本体12および超音波画像表示を行うモニタ13を有する。

【0007】プローブ11は、一次元または二次元的に 配列された複数の振動素子(電気/音響変換素子)を有 し、各振動素子の遅延時間等を変化させることにより、 任意の方向へあるいは任意の焦点距離へ超音波を送信す ることが可能である。なお、振動素子が圧電結晶の場 合、単結晶のものがより効果的である。圧電結晶として 単結晶を用いることにより、プローブ11の帯域が広 く、高次のハーモニック成分も十分に検出できるように なるためである。ただし、振動素子の圧電結晶の結晶構 造は、単結晶以外でも良い。また、超音波装置本体12 は、プローブ11に接続されるパルサ/プリアンプユニ ット15、パルサ/プリアンプユニット15に接続され る受信遅延回路16、受信遅延回路16に接続されるハ ーモニックユニット17、ハーモニックユニット17に 接続される検波ユニット19、検波ユニット19に接続 される表示ユニット18を有しており、表示ユニット1 8はモニタ13に接続される。パルサ/プリアンプユニ ット15は、プローブ11に所定の中心周波数(基本周 波数)をもつ送信パルス電圧を印加し、あるいはプロー ブ11で超音波受信信号から変換された電圧信号を増幅 する機能を有する。なお、この送信パルス電圧は、各振 動素子によって上述のように超音波の送信方向あるいは 焦点距離等を加味した上で、若干の遅延時間を以って印 加される。

【0008】また、受信遅延回路16は、超音波ビーム の受信方向等の制御を行うものであり、具体的には各振 動素子に応じて信号を遅延させ加算するものである。ハ ーモニックユニット17は、ブロック図である図2に示 すように、受信遅延回路16からの出力信号が並列に、 加算部21および減算部22にそれぞれ入力されてい る。加算部21および減算部22の出力には、それぞれ フィルタ23および24が設けられている。フィルタ2 3およびフィルタ24は、基本波成分を除去するフィル タで、これに応じた時定数を有するいわゆる低周波カッ トフィルタである。また、フィルタ23および24の出 力には、合成部25が接続される。合成部25の出力 は、ハーモニックユニット17の出力として、検波ユニ ット19に接続されている。このハーモニックユニット 17は、受信信号のハーモニック成分を抽出する機能を 有している。ここで、抽出とは、特定成分のみを検出す ることであるが、必ずしも完全に特定成分のみを完全に 分離して検出するものではなく、実用レベルにおいて特 定成分の特定の性質を活かすことができる程度に検出す ることである。例えば、ハーモニック成分の抽出とは、 ハーモニック成分のみを検出するものであるが、その他 ではなく、実用レベルにおいてハーモニック成分の特性 を活かし得る程度に基本波成分を除去するということで ある。これらの処理は、RF、IQのどちらで行う。 【0009】また、検波ユニット19は、体内の組織構 造や造影剤等を示す形態画像を得るための一般的な検波 処理・対数圧縮等を行う。さらに、表示ユニット18 は、モニタ13に表示するための画像信号に変換するも のである。以下、パルスインバージョン法の原理につい て説明した後、本実施の形態における超音波診断装置1 0の動作について説明する。パルスインバージョン法 は、上述の通り、各超音波走査線上に位相の180°異 なる超音波パルスを交互に繰り返し送信するものであ る。なお、以下位相の180°異なる超音波パルスを1 回ずつ計2回の送信を行ういわゆる2レート送信として 説明するが、さらに多くの超音波パルスを繰り返しても 良い。被検体内に送信された超音波パルスは、被検体内 組織の非線形伝播あるいはマイクロバブルの非線形散乱 により、ハーモニック成分を有する。例えば、ここで被 検体内に送信する超音波パルスを簡略化した形でsinωt とすと、上述の被検体内組織またはマイクロバブルの影 響で、超音波パルスは、Asinωt+Bsin²ωt+Csin³ωt・ · · のように変化する。なお、ωは各周波数、A、B、Cは それぞれ振幅の大きさを表すものとする。 [0010] ZZT, Asin wt+Bsin² wt+Csin³ wt · · - をそれぞれの周波数成分に展開すると、Asinωtは基 本周波数成分、Bsin²ωtはO次と2次のハーモニック成 分、Csin³ ωtは基本周波数成分および3次のハーモニッ ク成分を表している。従って、受信超音波パルスは、a+ A' $\sin(\omega t + \theta_1) + B'\sin(2\omega t + \theta_2) + C'\sin(3\omega t + \theta_3) \cdot \cdot \cdot$ と表すことができる。なお、ここでaは0次のハーモ ニック成分を表す所定の定数、A'、B'、C'はそれぞれ受 信超音波パルスの振幅の大きさ、 θ_1 、 θ_2 、 θ_3 はそれ ぞれ各成分の位相のずれを表すものである。パルスイン バージョン法では、次に位相の180°異なる超音波パ ルス、上記例に従うと、-sinωtで表される超音波パル スを被検体に送信する。これに対応する生体またはマイ クロバブルの影響による超音波パルスは、-Asinωt+Bsi n²ωt-Csin³ωt・・・となり、これは基本波成分および 奇数次のハーモニック成分が負の符号を有し、偶数次の ハーモニック成分が正の符号を有することになる。従っ て、この受信超音波パルスは、 $a-A'sin(\omega t + \theta_1) + B'sin$

【0011】操作者は、超音波パルスの送信前にハーモニック成分による超音波画像の生成を行う画像モード

 $(2\omega t + \theta_2)$ -C'sin $(3\omega t + \theta_3) \cdot \cdot \cdot \cdot \delta$ \tag{2} \tag{4}

の受信超音波パルス同士を加算すると、基本波成分および
る数次のハーモニック成分は除去され、 0次および偶

数次のハーモニック成分のみを取り出すことができ、こ

の偶数次のハーモニック成分によって超音波画像を作成

するものがパルスインバージョン法である。

(以下ハーモニックイメージングモードと呼ぶ)か、基 本波成分を用いた画像(以下通常モードと呼ぶ)の選択 を行い、また選択したモードで被検体の撮影を開始する 指示を、キーボード等の入力装置 (図示しない) からホ ストCPU14へ行う。なお、以下ハーモニックイメー ジングモードが選択されたものとして、説明を行うが、 操作者が通常モードを選択した場合には、受信信号はハ ーモニックユニット17を介さずに、受信遅延回路16 から図示しないが通常のエコーフィルタを通って、検波 ユニット19へと入力される。ハーモニックイメージン グモードによる撮影が開始したら、ホストCPU14か ら、パルサ/プリアンプユニット15を介してプローブ 11へ、ハーモニックイメージングモードにおける電圧 パルスが送信される。つまり、パルサ/プリアンプユニ ット15から位相が180°異なる電圧パルスがプロー ブ11に印加され、プローブ11からこの電圧パルスに 応じた超音波パルスが被検体に送信される。また、プロ ーブ11は、この異なる位相それぞれの超音波反射信号 を受信する。プローブ11によって電気/音響変換され た信号は、パルサ/プリアンプユニット15において、 遅延処理および増幅処理がなされ、ハーモニックユニッ ト17に入力される。

【0012】ハーモニックユニット17では、パルサ/ プリアンプユニット15の出力信号が加算部21および 減算部22にそれぞれ入力される。加算器21では、上 記説明のように、基本波成分を含む奇数次ハーモニック 成分が除去され、図3(a)に示すような偶数次ハーモ ニック成分のみが出力される。この加算部21から出力 された信号は、フィルタ23へ入力される。なお、図3 (a)における点線はフィルタ23の透過帯域を示して いる。フィルタ23は、パルスインバージョンによって も除去できなかった残留基本波成分を取り除く役目を果 たしているが、残留基本波成分が小さい場合には、使用 しなくても良いし、あるいは予め設けられていなくても 良い。なお、基本波成分が多く残留してしまう1つの要 因として、一方の超音波パルスを送信してから、これと 180°位相の異なる超音波パルスを送信する間に、撮 影部分が移動してしまい、これが基本波成分の位相を変 化させるため、基本波成分同士が完全に相殺されないこ とが上げられる。従って、撮影部分が大きく移動する場 合 (心臓を観察する場合) などに、必要に応じて操作者 が使用するかどうかを選択可能な構成としても良い。 【0013】フィルタ23から出力された信号は、合成 部25に入力される。また、一方で、減算部22では、 それぞれの受信信号同士が減算処理される。減算部22 の出力信号は、図3(b)に示すように、基本波成分お よび奇数次ハーモニック成分である。この理由は、上述 のパルスインバージョン法の説明にように、それぞれの 送信超音波パルスは、被検体の体内でAsinωt+Bsin2ωt +Csin3 wt · · · · BLV-Asin wt+Bsin2 wt-Csin3 wt ·

Control of the Contro

・・のように変化するため、これらの受信超音波パルス 同士を減算すると2A'sin(ωt+θ₁)+2C'sin(3ωt+θ₃)・・・となり、基本波成分および奇数次のハーモニック成分が残ることになる、この減算器22の出力はフィルタ24に入力される。なお、図3(b)における点線はフィルタ24の透過帶域を示している。同図からも分かるように、3次のハーモニックと基本波成分は、ハーモニックでのフィルタ法に比較し、離れているので分離が容易である。フィルタ24の出力も、同様に合成部25に入力される。つまり、フィルタ23の出力は、奇数次ハーモニック成分であり、一方フィルタ24の出力は、偶数次ハーモニック成分であり、一方フィルタ24の出力は、偶数次ハーモニック成分であるといえる。

【0014】これらの信号は、合成部25で加算処理が 行われ、ほとんど基本波成分を有しない2次以上のハー モニック成分として出力される。なお、ここで合成と は、少なくとも加算処理を含む処理を意味し、この他に もゲインの調整や位相の調整を含む概念としても良い。 合成部25の出力信号は、図3(c)に示されている。 合成部25の出力は、検波ユニット19へと送られ、体 内の組織構造や造影剤等を示す形態画像を得るための一 般的な検波処理・対数圧縮等が行われた後、表示ユニッ ト18を介して、モニタ13に超音波診断画像が表示さ れる。なお、合成部25の後段、例えば検波ユニット1 9内に、信号を成形するためのフィルタ処理を加えても 良い。これは以下の実施の形態においても同様である。 本実施の形態では、偶数次のハーモニック成分と基本波 成分を含む奇数次のハーモニック成分とを別々に取得 し、基本波成分を含む奇数次のハーモニック成分から基 本波成分を除去した後、偶数次ハーモニック成分と合成 するため、従来例におけるフィルタ法に比べ、特に効率 的に2次のハーモニック成分を取得することが可能であ り、超音波画像の分解能向上が可能である。

【0015】また、本実施の形態では、偶数次ハーモニ ック成分だけでなく、奇数次ハーモニック成分も用いる ため、ノイズが低減した高コントラストの画像を作成す ることが可能である。以下、本発明に係る第2の実施の 形態について、ハーモニックユニット17のブロック図 である図4を参照して説明する。なお、第1の実施の形 態と同一構成のものは、同一番号を付して説明を省略す る。本実施の形態を簡単に説明すると、偶数次のハーモ ニック成分と、奇数次のハーモニック成分のそれぞれで 超音波画像を作成するものである。本実施の形態におけ るハーモニックユニット17は、加算部21、減算部2 2およびそれぞれに接続されるフィルタ23、フィルタ 24を有している。第1の実施の形態においては、フィ ルタ23およびフィルタ24の出力は合成部25に接続 されていたが、本実施の形態では、それぞれのフィルタ の出力を別々に検波ユニット19へ入力する。なお、本 実施の形態における検波ユニット19は、フィルタ23 および24からそれぞれ出力された信号に基づいてそれぞれの処理を行い、また表示ユニット18も同様に別々に信号として処理を行う。なお、この別々の処理の仕方は、時間差を設けて、所定の時間内はフィルタ23の出力信号を処理し、所定時間経過後、さらに所定時間内はフィルタ24の出力信号を処理とするといった時間差による処理でも良いし、それぞれのフィルタの出力を処理するためのそれぞれの処理回路を有していても良い。

【0016】つまり、検波ユニット19へ入力される信 号としては、図3 (a)と図3 (b)で示すそれぞれの 信号が検波ユニット19へ入力される。さらに、本実施 の形態では、このように別々に作成された超音波画像 が、モニタ13の同一画面上に表示される(あるいはモ ニタが2台あっても良い)。ここで、奇数次のハーモニ ック成分と偶数次のハーモニック成分をそれぞれ画像化 する意義としては、超音波造影剤におけるマイクロバブ ルは、2次ハーモニック成分に比して、3次ハーモニッ ク成分が、被検体の組織によって生じる成分よりも、大 きな成分を生じさせることが知られており、また、彼検 体の組織は、逆に3次ハーモニック成分に比して、2次 ハーモニック成分が、マイクロバブルによって生じる成 分よりも、大きな成分を生じさせるためである。なお、 参考として、図5にマイクロバブルによって生じる成分 と被検体の組織によって生じる成分を示す。本実施の形 態では、位相の180°異なる送信超音波パルスに対す る受信信号を減算した後、基本波成分を除去することに より、2次のハーモニック成分をほとんど含まない奇数 次のハーモニック成分を抽出することが可能である。

【0017】また、偶数次のハーモニック成分と奇数次 のハーモニック成分のそれぞれの成分からそれぞれの超 音波画像を作成することにより、操作者は略同時に組織 の影響が大きい超音波画像と、マイクロバブルの影響が 大きい超音波画像を同時に観察することが可能である。 なお、従来例におけるフィルタ法を用いても、3次以上 のハーモニック成分を抽出することは可能であるが、こ の場合には、3次ハーモニック成分と2次ハーモニック 成分の分離が困難である。また、本実施の形態において は、作成された超音波画像をそれぞれ別々に表示する場 合を示したが、それぞれの超音波画像を部分的に合成 し、1つの超音波画像で表示させても良い。すなわち被 検体の所定の領域は、組織の影響が大きい領域となり、 また他の領域はマイクロバブルの影響が大きい領域とし て表示することも可能である。以下、本発明に係る第3 の実施の形態について、ハーモニックユニット17のブ ロック図である図6を参照して説明する。なお、第1の 実施の形態と同一構成のものは、同一番号を付して説明 を省略する。本実施の形態を簡単に説明すると、偶数次 のハーモニック成分と、奇数次のハーモニック成分のそ れぞれ切換えて、選択的に超音波画像を作成するもので ある。

【0018】本実施の形態におけるハーモニックユニッ ト17は、フィルタ23およびフィルタ24の出力が切 換部28に接続されている。また、切換部28は、ホス トCPU14にも接続されている(図示しない)。操作 者は、第1の実施の形態と同様、ハーモニックモードお よび通常モードのうちいずれか一つのモードを選択する が、ハーモニックモードを選択した場合には、さらに奇 数次ハーモニック成分を用いたモードおよび偶数次ハー モニック成分を用いたモードのいずれか1つを選択す る。この操作者によって行われた選択動作の信号は、ホ ストCPU14を介して、切換部28に入力される。こ れによって、切換部28は、上記信号に基づいていずれ か1つのフィルタからの信号のみを検波ユニット19へ 送り、超音波画像の作成が行われる。本実施の形態で は、偶数次ハーモニック成分および奇数次ハーモニック 成分のうちいずれの成分によって超音波画像を作成する か、操作者が選択することができ、操作者は、組織の影 響が大きい超音波画像とマイクロバブルの影響が大きい 超音波画像を選択的に観察することが可能である。以上 が本発明における実施の形態であるが、本発明は、上記 実施の形態を種々組みあせて用いても良いし、あるいは スイッチ等により上記実施の形態を選択的に使用できる ようにしても良い。

【0019】例えば、第1の実施の形態と第2の実施の 形態を組み合わせて、使用できる構成としても良い。こ れは、ハーモニックユニットのブロック図である図7に 示されるように、第1の実施の形態における合成部25 の出力に切換部28'を接続し、さらに切換部28'に は、フィルタ23およびフィルタ24の出力も接続され る構成とすれば良い。この場合、操作者によって選択さ れた情報は、切換部28'に入力され合成部25、フィ ルタ23およびフィルタ24のうちいずれか1つの出力 信号を検波ユニット19へ送り、超音波画像を作成す る。また、上記実施の形態において、本発明の趣旨を一 脱しない範囲で変形しても良い。例えばこの変形には、 スイッチ等を設けることなどが挙げられる。一例とし て、第1の実施の形態における図2を参照して説明する と、受信遅延回路16と加算部21の間、加算部21と フィルタ23の間、あるいはフィルタ23と合成部25 の間等にスイッチを設け、2次以上のハーモニック成分 により超音波画像を作成する場合には、スイッチをオン としておき、一方で、奇数次のハーモニック成分により 超音波画像を作成する場合には、スイッチをオフとする 構成があげられる。

【0020】また、上述の実施の形態に限らず、フィルタ23およびフィルタ24の透過帯域や透過率等を変えることにより、任意のハーモニック成分あるいは基本波成分を、任意の大きさで取り出すことが可能であり、何次のハーモニックをどの程度取り出すかは、診断法、患

(7) 002-360569 (P2002-69

者別、あるいは操作者の好み、または被検体の視野深度 等によって決定すればよく、特に上述の実施の形態以外 のものでも良い。例えば、組織の画像化とマイクロバブ ルの画像化で用いるハーモニック成分は、以下のような 組み合わせが考えられる。つまり、組織の画像化には、 セカンドハーモニック成分とすれば良いし、マイクロバ ブルの画像化には、奇数次のハーモニック成分あるいは 3次以上のハーモニック成分(2次のハーモニック成分 を除いた偶数次のハーモニック成分を含む)とすれば良 い。なお、このような組み合わせや変形を実現するため には、フィルタ23あるいはフィルタ24の帯域、ある いはフィルタ23、フィルタ24および合成部25のど こから出力を取り出すかの決定、あるいはスイッチ等の 追加を行うことにより可能である。なお、被検体の生体 減衰の影響により、視野深度が大きいとハーモニック成 分が得られにくい場合があり、この場合には低い次数の 周波数成分を含めて画像化を行うとよい。つまり、視野 深度が小さい場合の超音波画像生成に用いられる周波数 成分よりも視野深度が大きい場合の超音波画像の生成に 用いられる周波数成分の方をより低い次数の周波数成分 とすることにより、広い範囲の視野深度で高分解能超音 波画像を生成することができ、いわゆるペネトレーショ ンを増大することが可能となる。特に、視野深度が大き い場合には、基本波成分を用いることが望ましい。

【0021】また、本発明は、本実施の形態に限定されるものではなく、その他にも、例えば、奇数次のハーモニック成分に、奇数次、偶数次の両方のハーモニック成分を有する成分を加算するようにしても良い。

[0022]

【発明の効果】以上詳細に説明したように、本発明によれば、必要なハーモニック成分のみをより効率的に検出することにより、高分解能、低アーチファクトの超音波 画像を生成可能な超音波診断装置を提供することができる。

【図面の簡単な説明】

【図1】本発明に係る第1の実施の形態における超音波

診断装置のブロック図である。

【図2】本発明に係る第1の実施の形態におけるハーモニックユニットのブロック図である。

【図3】本発明に係る第1の実施の形態におけるハーモニックユニット内の各部分の周波数成分を表したグラフである。

【図4】本発明に係る第2の実施の形態におけるハーモ ニックユニットのブロック図である。

【図5】本発明に係る組織またはマイクロバブルによる 周波数成分を表したグラフである。

【図6】本発明に係る第3の実施の形態におけるハーモニックユニットのブロック図である。

【図7】本発明に係る第1の実施の形態および第2の実施の形態の組み合わせによるハーモニックユニットのブロック図である。

【符号の説明】

- 11 プローブ
- 12 超音波装置本体
- 13 モニタ
- 14 ホストCPU
- 15 パルサ/プリアンプユニット

- 16 受信遅延回路
- 17 ハーモニックユニット
- 18 表示ユニット
- 19 検波ユニット
- 21 加算部
- 22 減算部
- 00 7
- 23 フィルタ
- 24 フィルタ
- 25 合成部
- 26 選択部
- 27 フィルタ
- 28 切換部
- 30 遅延回路
- 31 加算回路

!(8) 002-360569 (P2002-州僑

!(9) 002-360569 (P2002-應!c69

【図7】

フロントページの続き

F 夕一ム(参考) 4C301 AA02 BB23 DD15 EE01 EE07 GB03 GB09 GB34 HH01 HH07 HH11 HH24 HH37 HH38 HH46 HH51 JB29 JB38 JB50 JC14 5B057 AA07 BA05 CA08 CA12 CA16 CB08 CB12 CB16 DC32