SEMAINE DU 21/11 AU 25/11

1 Cours

Réduction algébrique

Polynômes d'endomorphismes Définition. Algèbre commutative $\mathbb{K}[u]$ pour $u \in \mathcal{L}(E)$ et $\mathbb{K}[A]$ pour $A \in \mathcal{M}_n(\mathbb{K})$.

Polynômes annulateurs Définition. Les valeurs propres sont **des** racines d'un polynôme annulateur. Lemme des noyaux. Une matrice/un endomorphisme est diagonalisable si et seulement si il admet un polynôme annulateur scindé à racines simples. Si un endomorphisme est diagonalisable, tout endomorphisme induit l'est également. Théorème de Cayley-Hamilton. Une matrice/un endomorphisme est trigonalisable si et seulement si il admet un polynôme annulateur scindé. Si $u \in \mathcal{L}(E)$ est trigonalisable, il existe des sous-espaces supplémentaires sur lesquels les endomorphismes induits par u sont la somme d'une homothétie et d'un endomorphisme nilpotent. Interprétation matricielle.

Polynômes minimaux Idéal annulateur d'une matrice/d'un endomorphisme. Polynôme minimal d'une matrice/d'un endomorphisme. Le polynôme minimal divise le polynôme caractéristique. Le spectre est l'ensemble des racines du polynôme minimal. Une matrice/un endomorphisme est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples. Une matrice/un endomorphisme est trigonalisable si et seulement si son polynôme minimal est scindé. Si u est un endomorphisme d'un espace vectoriel de dimension finie et $d=\deg \pi_u$, alors $\dim \mathbb{K}[u]=d$ et $(u^k)_{0\leq k\leq d-1}$ est une base de $\mathbb{K}[u]$. Si $A\in \mathcal{M}_n(\mathbb{K})$ et $d=\deg \pi_A$, alors $\dim \mathbb{K}[A]=d$ et $(A^k)_{0\leq k\leq d-1}$ est une base de $\mathbb{K}[A]$.

2 Méthodes à maîtriser

- Déterminer des valeurs propres à l'aide d'un polynôme annulateur.
- Caractériser la diagonalisabilité/trigonalisabilité à l'aide d'un polynôme annulateur.
- Automatisme : $P(u) = 0 \iff \pi_u \mid P$.
- Calculer l'inverse d'une matrice à l'aide d'un polynôme annulateur.
- Calculer les puissances d'une matrice à l'aide d'un polynôme annulateur (division euclidienne de Xⁿ par un polynôme annulateur P puis considérer les racines de P).
- Déterminer le polynôme minimal d'une matrice : il divise le polynôme caractéristique et il admet pour racines les valeurs propres, ce qui ne laisse qu'un nombre fini de possibilités.

3 Questions de cours

Banque CCP Exos 62, 65, 88, 91, 93