Given the worst case, every partition would result in one sub-array containing one element, and another sub-array containing the remaining elements. The algorithm will continue partitioning until left with two elements where it no longer will need to traverse the sub-array. This results in a formula of the form:

$$n + (n - 1) + (n - 2) + ... + 3 + 2$$

which simplifies to

$$[n * (n + 1)] / 2 - 1$$

and is simply  $O(n^2)$ .

An example of the worst case would be an already sorted list and an implementation of quick sort that takes the pivot from the lower index.

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15































Left ptr Right ptr

Pivot: 0



Pivot: 1

Left ptr Right ptr

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | N ops     |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|-----------|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | N - 1 ops |

Pivot: 1

# Question 2



## Question 2



•



The plot displays a quadratic function, inline with what we expect of  $O(n^2)$ .

