The Determinant and the Inverse

Recall that a matrix, $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $\det(A) \neq 0$.

The Determinant and the Inverse

Recall that a matrix, $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $\det(A) \neq 0$. But what about $\det(A^{-1})$?

The Determinant and the Inverse

Recall that a matrix, $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $\det(A) \neq 0$. But what about $\det(A^{-1})$? We claim that $\det(A^{-1}) = \frac{1}{\det(A)}$.

Let $A \in \mathbb{R}^{n \times n}$ such that det $(A) \neq 0$.

Let $A \in \mathbb{R}^{n \times n}$ such that det $(A) \neq 0$. Since we know that for all $A, B \in \mathbb{R}^{n \times n}$, det $(AB) = \det(A) \det(B)$, we have:

Let $A \in \mathbb{R}^{n \times n}$ such that $\det(A) \neq 0$. Since we know that for all $A, B \in \mathbb{R}^{n \times n}$, $\det(AB) = \det(A) \det(B)$, we have:

$$1 = \det(I_n)$$

$$= \det(AA^{-1})$$

$$= \det(A) \det(A^{-1})$$

$$\frac{1}{\det(A)} = \det(A^{-1})$$

Let $A \in \mathbb{R}^{n \times n}$ such that $\det(A) \neq 0$. Since we know that for all $A, B \in \mathbb{R}^{n \times n}$, $\det(AB) = \det(A) \det(B)$, we have:

$$1 = \det(I_n)$$

$$= \det(A) \det(A^{-1})$$

$$\frac{1}{\det(A)} = \det(A^{-1})$$

Let $A \in \mathbb{R}^{n \times n}$ such that $\det(A) \neq 0$. Since we know that for all $A, B \in \mathbb{R}^{n \times n}$, $\det(AB) = \det(A) \det(B)$, we have:

$$1=\det\left(I_{n}\right)$$

$$\frac{1}{\det\left(A\right)} = \det\left(A^{-1}\right)$$

Let $A \in \mathbb{R}^{n \times n}$ such that det $(A) \neq 0$. Since we know that for all $A, B \in \mathbb{R}^{n \times n}$, det $(AB) = \det(A) \det(B)$, we have:

$$1 = \det(I_n)$$

$$= \det(AA^{-1})$$

$$= \det(A) \det(A^{-1})$$

$$\frac{1}{\det(A)} = \det(A^{-1})$$

Last Content on Exam 1

The previous two slides are the last content that is fair game for the first exam