MEX テンプレート

Author name

2024

目 次

第1章	数式	2
1.1	文字	2
	1.1.1 通常文字	2
	1.1.2 斜体	3
	1.1.3 太字	4
	1.1.4 筆記体	5
	1.1.5 ドイツ文字	5
	1.1.6 二重線	6
第2章	環境	8
2.1	数学用環境	8
第3章	ユーザー定義のコマンド	10
3.1	集合に関連するコマンド	10
3.2	線形代数に関連するコマンド	10
3.3	微積分に関連するコマンド	10
3.4	物理に関連するコマンド	11
3.5	情報理論に関連するコマンド	11
第4章	Preamble を読み込むだけでできること	12
4.1	最初のセクション	12
4.9	次のわカション	19

第1章 数式

1.1 文字

unicode-math を用いて太字、斜体などを統一的に扱えるようにしている。

1.1.1 通常文字

コマンド	出力
\symup{0123456789}	0123456789

コマンド	出力	コマンド	出力	コマンド	出力	コマンド	出力
\symup{A}	A	\symup{a}	a	\symup{\Alpha}	A	\symup{\alpha}	α
\symup{B}	В	\symup{b}	b	\sum_{β}	В	\symup{\beta}	β
\symup{C}	\mathbf{C}	\symup{c}	\mathbf{c}	\symup{\Gamma}	Γ	\symup{\gamma}	γ
\sum_{D}	D	\symup{d}	d	\sum_{Δ}	Δ	\symup{\delta}	δ
\symup{E}	\mathbf{E}	\symup{e}	e	\symup{\Epsilon}	\mathbf{E}	\symup{\epsilon}	ϵ
\symup{F}	F	\symup{f}	f	$\sum_{\sum_{i=1}^{n}} x_i = x_i$	\mathbf{Z}	\symup{\zeta}	ζ
\sum_{G}	G	\symup{g}	g	\sum_{Symup}	\mathbf{H}	\symup{\eta}	η
\symup{H}	Η	\symup{h}	h	$\sum_{\text{symup}} \$	Θ	\symup{\theta}	θ
\symup{I}	I	\symup{i}	i	$\sum_{\sum_{i=1}^{n}} (i)$	I	\symup{\iota}	ι
\symup{J}	J	\symup{j}	j	\symup{\Kappa}	K	\symup{\kappa}	κ
$\symup\{K\}$	K	\symup{k}	k	\symup{\Lambda}	Λ	\symup{\lambda}	λ
\sum_{L}	${ m L}$	\symup{1}	l	\symup{\Mu}	\mathbf{M}	\symup{\mu}	μ
\symup{M}	M	\sum_{m}	m	\symup{\Nu}	N	$\sum_{n} \sum_{i=1}^{n} (nu)^{i}$	ν
\symup{N}	N	$\sup\{n\}$	n	\symup{\Xi}	Ξ	\sum_{xi}	ξ
\symup{0}	O	\symup{o}	O	\symup{0}	O	\symup{o}	O
\symup{P}	P	\symup{p}	p	\symup{\Pi}	Π	\symup{\pi}	π
\sup{Q}	Q	\symup{q}	q	$\sum_{\mathbb{N}} {\mathbb{N}}$	P	\symup{\rho}	ρ
\symup{R}	R	\symup{r}	r	\symup{\Sigma}	\sum	\symup{\sigma}	σ

\symup{S}	\mathbf{S}	\symup{s}	\mathbf{s}	\symup{\Tau}	${ m T}$	\symup{\tau}	τ
\symup{T}	${ m T}$	\symup{t}	\mathbf{t}	\symup{\Upsilon}	Υ	\symup{\upsilon}	υ
\symup{U}	U	$\sum u \{u\}$	u	\symup{\Phi}	Φ	\symup{\phi}	ф
\symup{V}	V	$\sup\{v\}$	\mathbf{v}	\symup{\Chi}	X	\symup{\chi}	χ
\symup{W}	W	\symup{w}	w	\symup{\Psi}	Ψ	\symup{\psi}	ψ
\symup{X}	X	$\sum x $	X	\symup{\Omega}	Ω	\symup{\omega}	ω
\symup{Y}	Y	\symup{y}	У			\symup{\varepsilon}	ε
\sum_{Z}	\mathbf{Z}	$\sup\{z\}$	${f z}$			\symup{\vartheta}	ϑ

1.1.2 斜体

コマンド	出力	コマンド	出力	コマンド	出力	コマンド	出力
\symit{A}	A	\symit{a}	a	\symit{\Alpha}	A	\symit{\alpha}	α
$\symit\{B\}$	B	$\symit\{b\}$	b	$\ \$	B	\symit{\beta}	β
$\symit\{C\}$	C	$\symit\{c\}$	c	\sum_{Gamma}	Γ	\symit{\gamma}	γ
$\symit\{D\}$	D	\symit{d}	d	$\ \$	Δ	$\sum_{\delta} \$	δ
\symit{E}	E	\symit{e}	e	$\symit{\Epsilon}$	E	\symit{\epsilon}	ϵ
$\symit\{F\}$	F	\symit{f}	f	$\symit{\Xi}$	Z	\sum_{symit}	ζ
\symit{G}	G	\symint{g}	g	\sum_{Symit}	H	\sum_{symit}	η
$\symit\{H\}$	H	$\symit\{h\}$	h	\symit{\Theta}	Θ	\sum_{symit}	θ
\symit{I}	I	\symit{i}	i	$\sum_{i=1}^{s}$	I	\symit{\iota}	ι
\symit{J}	J	\symit{j}	j	\sum_{Kappa}	K	$\sum_{\kappa} \$	κ
$\symit\{K\}$	K	$\symit\{k\}$	k	\symit{\Lambda}	Λ	\symit{\lambda}	λ
\symit{L}	L	$\symit{1}$	l	\sum_{Mu}	M	\symit{\mu}	μ
$\symit\{M\}$	M	\sum_{m}	m	\sum_{Nu}	N	$\sum_{n} \sum_{i=1}^{n} (nu)^{i}$	ν
\symit{N}	N	$\symit\{n\}$	n	\symit{Xi}	Ξ	\sum_{xi}	ξ
$\symit\{0\}$	O	\symit{o}	0	$\symit\{0\}$	O	\symit{o}	0
\symit{P}	P	\symit{p}	p	\symit{\Pi}	Π	\symit{\pi}	π
\symit{Q}	Q	\symit{q}	q	$\ \$	P	\symit{\rho}	ho
$\symit\{R\}$	R	$\symit\{r\}$	r	\symit{\Sigma}	${\it \Sigma}$	\symit{\sigma}	σ
\symit{S}	S	\symit{s}	s	$\sum_{\Delta} Tau}$	T	$\sum_{\sum_{i=1}^{n}} x_i = x_i$	au
\symit{T}	T	\symit{t}	t	\symit{\Upsilon}	Υ	\symit{\upsilon}	v
\symit{U}	U	\symit{u}	u	\symit{\Phi}	Φ	\symit{\phi}	ϕ
\symit{V}	V	\symit{v}	v	\symit{\Chi}	X	\symit{\chi}	χ
\symit{W}	W	\symit{w}	w	\symit{\Psi}	Ψ	\symit{\psi}	ψ
\symit{X}	X	\symit{x}	x	\symit{\Omega}	Ω	\symit{\omega}	ω

\symit{Y}	Y	\symit{y}	y	\symit{\varepsilon}	ε
\symit{Z}	Z	\symit{z}	z	\symit{\vartheta}	ϑ

1.1.3 太字

すべての文字に対して太字が定義されている。

コマンド	出力
\symbf{0123456789}	0123456789

コマンド	出力	コマンド	出力	コマンド	出力	コマンド	出力
\symbf{A}	\boldsymbol{A}	\symbf{a}	a	\symbf{\Alpha}	\boldsymbol{A}	\symbf{\alpha}	α
\symbf{B}	\boldsymbol{B}	\symbf{b}	\boldsymbol{b}	$\boldsymbol{\symbf{\Beta}}$	\boldsymbol{B}	\symbf{\beta}	$oldsymbol{eta}$
\symbf{C}	\boldsymbol{C}	\symbf{c}	\boldsymbol{c}	\symbf{\Gamma}	$oldsymbol{arGamma}$	\symbf{\gamma}	γ
\symbf{D}	D	\symbf{d}	d	$\symbf{\Delta}$	Δ	\symbf{\delta}	δ
\symbf{E}	$oldsymbol{E}$	\symbf{e}	e	\symbf{\Epsilon}	$oldsymbol{E}$	\symbf{\epsilon}	ϵ
\symbf{F}	$oldsymbol{F}$	\symbf{f}	f	$\boldsymbol{\symbf{\Zeta}}$	\boldsymbol{Z}	\symbf{\zeta}	ζ
\symbf{G}	\boldsymbol{G}	\symbf{g}	\boldsymbol{g}	$\boldsymbol{\Symbf}\subset \boldsymbol{\Xi}$	H	\symbf{\eta}	η
\symbf{H}	H	\symbf{h}	h	$\boldsymbol{\symbf{\P}}$	$oldsymbol{arTheta}$	\symbf{\theta}	$oldsymbol{ heta}$
\symbf{I}	I	\symbf{i}	$m{i}$	$\boldsymbol{\symbf{\langle Iota\}}}$	I	\symbf{\iota}	ι
\symbf{J}	\boldsymbol{J}	\symbf{j}	$oldsymbol{j}$	\symbf{\Kappa}	\boldsymbol{K}	\symbf{\kappa}	κ
\symbf{K}	\boldsymbol{K}	\symbf{k}	${m k}$	$\boldsymbol{\symbf{\Lambda}}$	$\boldsymbol{\varLambda}$	\symbf{\lambda}	λ
\symbf{L}	$oldsymbol{L}$	\symbf{l}	\boldsymbol{l}	$\boldsymbol{\Sigma}_{\boldsymbol{M}u}$	M	\symbf{\mu}	$oldsymbol{\mu}$
\symbf{M}	M	\symbf{m}	m	\symbf{Nu}	N	\symbf{\nu}	ν
\symbf{N}	N	\symbf{n}	\boldsymbol{n}	$\boldsymbol{\lambda}$	$oldsymbol{arXi}$	\symbf{\xi}	ξ
\symbf{0}	O	\symbf{o}	0	\symbf{0}	o	\symbf{o}	0
\symbf{P}	P	\symbf{p}	$oldsymbol{p}$	\symbf{\Pi}	Π	\symbf{\pi}	π
\symbf{Q}	\boldsymbol{Q}	\symbf{q}	\boldsymbol{q}	\symbf{\Rho}	\boldsymbol{P}	\symbf{\rho}	ho
\symbf{R}	${m R}$	\symbf{r}	r	\symbf{\Sigma}	$oldsymbol{arSigma}$	\symbf{\sigma}	σ
\symbf{S}	$oldsymbol{S}$	\symbf{s}	s	$\boldsymbol{\Sigma} \$	$oldsymbol{T}$	$\boldsymbol{\sum}_{symbf}{\tilde{u}}$	au
\symbf{T}	$oldsymbol{T}$	\symbf{t}	t	\symbf{\Upsilon}	Υ	\symbf{\upsilon}	$oldsymbol{v}$
\symbf{U}	$oldsymbol{U}$	\symbf{u}	\boldsymbol{u}	\symbf{\Phi}	${m \Phi}$	\symbf{\phi}	ϕ
\symbf{V}	$oldsymbol{V}$	\symbf{v}	$oldsymbol{v}$	\symbf{\Chi}	\boldsymbol{X}	\symbf{\chi}	χ
\symbf{W}	W	\symbf{w}	$oldsymbol{w}$	\symbf{\Psi}	${\it \Psi}$	\symbf{\psi}	$oldsymbol{\psi}$
\symbf{X}	\boldsymbol{X}	\symbf{x}	$oldsymbol{x}$	\symbf{\Omega}	Ω	\symbf{\omega}	ω
\symbf{Y}	$oldsymbol{Y}$	\symbf{y}	\boldsymbol{y}	_		\symbf{\varepsilon}	arepsilon
						_	

\symbf{\vartheta}

 $\boldsymbol{\vartheta}$

1.1.4 筆記体

アルファベットのみ。ギリシャ文字は変わらない。数字も変わらない。

コマンド 出力				
$eq:local_symca$	コマンド	出力	コマンド	出力
$\label{eq:controller} $\operatorname{Symcal}\{\mathcal{C}\} \mathcal{C}$ \\ \operatorname{symcal}\{\mathcal{D}\} \mathcal{D}$ \\ \operatorname{symcal}\{\mathcal{C}\} \mathcal{C}$ \\ \operatorname{symcal}\{\mathcal{E}\} \mathcal{E}$ \\ \operatorname{symcal}\{\mathcal{E}\} \mathcal{F}$ \\ \operatorname{symcal}\{\mathcal{F}\} \mathcal$	\symcal{A}	\mathcal{A}	\symcal{a}	a
$eq:local_symca$	\symcal{B}	${\mathcal B}$	\symcal{b}	b
$\label{eq:linear_control_symcal} $\{E\} \in \mathcal{E} \qquad \qquad$	\symcal{C}	${\mathcal C}$	\symcal{c}	c
$\label{eq:linear_control_symcal} \mathcal{F} & $\operatorname{symcal}\{f\} & f \\ \operatorname{symcal}\{G\} & \mathcal{G} & \operatorname{symcal}\{g\} & g \\ \operatorname{symcal}\{H\} & \mathcal{H} & \operatorname{symcal}\{h\} & h \\ \operatorname{symcal}\{I\} & \mathcal{I} & \operatorname{symcal}\{i\} & i \\ \operatorname{symcal}\{J\} & \mathcal{J} & \operatorname{symcal}\{j\} & j \\ \operatorname{symcal}\{K\} & \mathcal{K} & \operatorname{symcal}\{k\} & k \\ \operatorname{symcal}\{L\} & \mathcal{L} & \operatorname{symcal}\{h\} & k \\ \operatorname{symcal}\{M\} & \mathcal{M} & \operatorname{symcal}\{h\} & m \\ \operatorname{symcal}\{M\} & \mathcal{N} & \operatorname{symcal}\{h\} & n \\ \operatorname{symcal}\{0\} & \mathcal{O} & \operatorname{symcal}\{h\} & n \\ \operatorname{symcal}\{0\} & \mathcal{O} & \operatorname{symcal}\{h\} & p \\ \operatorname{symcal}\{h\} & \mathcal{R} & \operatorname{symcal}\{h\} & q \\ \operatorname{symcal}\{h\} & \mathcal{R} & \operatorname{symcal}\{h\} & q \\ \operatorname{symcal}\{h\} & \mathcal{R} & \operatorname{symcal}\{h\} & r \\ \operatorname$	\symcal{D}	\mathcal{D}	\symcal{d}	d
$\label{eq:local_symcal_G} \mathcal{G} \\ \text{symcal}\{G\} & \mathcal{G} \\ \text{symcal}\{H\} & \mathcal{H} \\ \text{symcal}\{I\} & \mathcal{H} \\ \text{symcal}\{I\} & \mathcal{I} \\ \text{symcal}\{I\} & \mathcal{I} \\ \text{symcal}\{J\} & \mathcal{I} \\ \text{symcal}\{K\} & \mathcal{K} \\ \text{symcal}\{K\} & \mathcal{K} \\ \text{symcal}\{L\} & \mathcal{L} \\ \text{symcal}\{L\} & \mathcal{L} \\ \text{symcal}\{M\} & \mathcal{M} \\ \text{symcal}\{M\} & \mathcal{M} \\ \text{symcal}\{M\} & \mathcal{N} \\ \text{symcal}$	\symcal{E}	${\cal E}$	\symcal{e}	e
$eq:local_symca$	\symcal{F}	${\mathcal F}$	\symcal{f}	f
$eq:local_symca$	\symcal{G}	${\mathcal G}$	\symcal{g}	g
$eq:local_symca$	\symcal{H}	${\mathcal H}$	\symcal{h}	h
$\label{eq:local_k} \left\{ \begin{array}{lll} & & & & \\ & & & \\ & & & \\ & &$	\symcal{I}	${\mathcal I}$	\symcal{i}	i
$eq:local_symcal_local_symcal_local_local_symcal_local_local_sym$	\sum_{J}	$\mathcal J$	\symcal{j}	j
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\symcal{K}	${\mathcal K}$	\symcal{k}	k
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\symcal{L}	$\mathcal L$	\sum_{1}	l
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\symcal{M}	${\mathcal M}$	\symcal{m}	m
$\label{eq:local_problem} $\operatorname{ymcal}\{P\} \ \mathcal{P}$ $	\symcal{N}	${\mathcal N}$	\symcal{n}	n
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\symcal{0}$	$\mathcal O$	\symcal{o}	0
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\symcal{P}	${\mathcal P}$	\symcal{p}	p
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\symcal{Q}	$\mathcal Q$	\symcal{q}	q
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\symcal{R}	$\mathcal R$	\symcal{r}	r
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\symcal{S}	${\mathcal S}$	\symcal{s}	s
$\label{eq:local_v} $$ \symcal{V} $\mathcal V $ \symcal{v} v \\ \symcal{W} $\mathcal W $ \symcal{w} w \\ \symcal{X} $\mathcal X $ \symcal{x} x \\$	\symcal{T}	${\mathcal T}$	\symcal{t}	t
$\label{eq:local_w} $$ \x \$ $\x \$ $\x \$ $\x \$	\symcal{U}	\mathcal{U}	\sum_{u}	u
$eq:continuous_continuous$	\symcal{V}	${\mathcal V}$	\symcal{v}	v
	\symcal{W}	\mathcal{W}	\symcal{w}	w
\symcal{Y} y \symcal{y} y	\symcal{X}	\mathcal{X}	\sum_{x}	x
	\symcal{Y}	y	\symcal{y}	y
	\symcal{Z}	\mathcal{Z}	\symcal{z}	z

1.1.5 ドイツ文字

これはギリシャ文字ない。アルファベットのみ。数字も変化なし。

コマンド	出力	コマンド	出力
\symfrak{A}	\mathfrak{A}	\symfrak{a}	a
\symfrak{B}	\mathfrak{B}	\symfrak{b}	\mathfrak{b}
\symfrak{C}	\mathfrak{C}	\symfrak{c}	c
\symfrak{D}	$\mathfrak D$	\symfrak{d}	ð
\symfrak{E}	\mathfrak{E}	\symfrak{e}	e
\symfrak{F}	\mathfrak{F}	\symfrak{f}	f
\symfrak{G}	\mathfrak{G}	\symfrak{g}	\mathfrak{g}
\symfrak{H}	\mathfrak{H}	\symfrak{h}	\mathfrak{h}
\symfrak{I}	I	\symfrak{i}	i
\symfrak{J}	$\mathfrak J$	\symfrak{j}	j
\symfrak{K}	Ŕ	$\symfrak\{k\}$	ŧ
\symfrak{L}	${\mathfrak L}$	$\symfrak{1}$	\mathfrak{l}
\symfrak{M}	\mathfrak{M}	\symfrak{m}	m
\symfrak{N}	\mathfrak{N}	\symfrak{n}	\mathfrak{n}
$\symfrak{0}$	$\mathfrak O$	\symfrak{o}	0
\symfrak{P}	\mathfrak{P}	\symfrak{p}	\mathfrak{p}
\symfrak{Q}	$\mathfrak Q$	\symfrak{q}	q
\symfrak{R}	\Re	\symfrak{r}	r
\symfrak{S}	$\mathfrak S$	\symfrak{s}	$\mathfrak s$
\symfrak{T}	$\mathfrak T$	\symfrak{t}	ŧ
\symfrak{U}	\mathfrak{U}	\symfrak{u}	u
\symfrak{V}	$\mathfrak V$	\symfrak{v}	\mathfrak{v}
\symfrak{W}	\mathfrak{W}	\symfrak{w}	w
\symfrak{X}	\mathfrak{X}	\symfrak{x}	\mathfrak{x}
\symfrak{Y}	\mathfrak{Y}	\symfrak{y}	\mathfrak{y}
\symfrak{Z}	3	\symfrak{z}	3

1.1.6 二重線

ギリシャ文字の二重線はすべてが Unicode で定義されているわけではない。表示できない文字もある。

コマンド	出力
\symbb{0123456789}	0123456789

コマンド	出力	コマンド	出力	コマンド	出力	コマンド	出力
\symbb{A}	A	\symbb{a}	0	$\boldsymbol{\symbb{\Alpha}}$	A	$\boldsymbol{\symbb{\alpha}}$	α
\symbb{B}	\mathbb{B}	\symbb{b}	b	$\boldsymbol{\symbb{\Beta}}$	B	\symbb{\beta}	β
\symbb{C}	\mathbb{C}	\symbb{c}	\mathbb{C}	\symbb{\Gamma}	Γ	\symbb{\gamma}	D
\symbb{D}	\mathbb{D}	\symbb{d}	d	$\boldsymbol{\Sigma}$	Δ	\symbb{\delta}	δ
\symbb{E}	E	\symbb{e}	e	$\boldsymbol{\Sigma} \$	E	\symbb{\epsilon}	ϵ
\symbb{F}	F	\symbb{f}	F	$\boldsymbol{\Sigma} \$	Z	\symbb{\zeta}	ζ
\symbb{G}	\mathbb{G}	\symbb{g}	g	$\boldsymbol{\Sigma} \$	H	$\boldsymbol{\symbb{\eta}}$	η
\symbb{H}	\mathbb{H}	\symbb{h}	h	$\boldsymbol{\symbb{\Theta}}$	Θ	$\boldsymbol{\symbb{\theta}}$	θ
\symbb{I}		\symbb{i}	Î	$\boldsymbol{\symbb{\loca}}$	I	$\boldsymbol{\symbb{\iota}}$	ι
\symbb{J}	J	\symbb{j}	j	\symbb{\Kappa}	K	\symbb{\kappa}	κ
\symbb{K}	\mathbb{K}	\symbb{k}	k	$\boldsymbol{\symbb{\Lambda}}$	Λ	$\boldsymbol{\symbb{\lambda}}$	λ
\symbb{L}		\symbb{1}		$\symbb{\Mu}$	M	\symbb{\mu}	μ
\symbb{M}	\mathbb{M}	\symbb{m}	m	$\symbb{\Nu}$	N	$\sum_{n} \sum_{i=1}^{n} a_i$	ν
\symbb{N}	\mathbb{N}	\symbb{n}	n	$\boldsymbol{\Sigma}$	Ξ	\symbb{\xi}	ξ
\symbb{0}	\mathbb{O}	\symbb{o}	0	\symbb{0}	\mathbb{O}	\symbb{o}	0
\symbb{P}	\mathbb{P}	\symbb{p}	p	\symbb{\Pi}	\square	\symbb{\pi}	UT
\symbb{Q}	$\mathbb Q$	\symbb{q}	P	$\symbb{\Rho}$	P	\symbb{\rho}	ho
\symbb{R}	\mathbb{R}	\symbb{r}	r	\symbb{\Sigma}	Σ	\symbb{\sigma}	σ
\symbb{S}	S	\symbb{s}	\$	$\boldsymbol{\Sigma} \$	T	$\boldsymbol{\symbb{\tau}}$	au
\symbb{T}	\mathbb{T}	\symbb{t}	t	$\boldsymbol{\Sigma}$	Υ	\symbb{\upsilon}	v
\symbb{U}	\mathbb{U}	\symbb{u}	u	\symbb{\Phi}	Φ	\symbb{\phi}	ϕ
\symbb{V}	\mathbb{V}	\symbb{v}	\mathbb{V}	\symbb{\Chi}	X	\symbb{\chi}	χ
\symbb{W}	\mathbb{W}	\symbb{w}	\mathbb{W}	$\boldsymbol{\Sigma} \$	Ψ	\symbb{\psi}	ψ
\symbb{X}	X	\symbb{x}	X	\symbb{\Omega}	Ω	\symbb{\omega}	ω
\symbb{Y}	Y	\symbb{y}	У			\symbb{\varepsilon}	ε
\symbb{Z}	\mathbb{Z}	\symbb{z}	\mathbb{Z}			\symbb{\vartheta}	ϑ

第2章 環境

2.1 数学用環境

このテンプレートには以下の環境 (environment) が environment.tex に定義されている。

Proposition 2.1.1: <節題名>
< 命題内容 >
。 <証明内容(省略可)>
Definition 2.1.1: <定義名>
< 定義内容 >
Theorem 2.1.1: <定理名>
<定理内容>
。 <証明内容(省略可)>
Corollary 2.1.1: <系名>
< 系の内容 >
·····<証明内容(省略可)>

第 2. 環境 2.1. 数学用環境

Lemma 2.1.1: <補題名>				
<補題の内容>				
。 <証明内容(省略可)>	>			
Example 2.1.1: <例名>				
<例の内容>				
<解法など(省略可)>				
Problem 2.1.1: <問題名>	>			
 <問題内容> 				
<解法など(省略可)>				
√ <警告内容>				
? <疑問内容>				
以下のコマンドを用いると	数式を強調すること	:ができる。こ <i>の</i>)環境は math	. tex にて定義されている。
	コマンド	出力	説明	

コマンド 出力 説明 highlight{a+b} a+b 数式の強調

第3章 ユーザー定義のコマンド

この preamble には以下のユーザー定義のコマンドが commands.tex に定義されている。

3.1 集合に関連するコマンド

コマンド	出力	説明
\N	N	自然数
\Z	\mathbb{Z}	整数
\ Q	$\mathbb Q$	有理数
\R	\mathbb{R}	実数
\C	\mathbb{C}	複素数
\K	\mathbb{K}	上記の体のいずれか
\Ima	Im	像

3.2 線形代数に関連するコマンド

コマンド	出力	説明
\identity	1	単位行列
\Tr	Tr	トレース

3.3 微積分に関連するコマンド

コマンド	出力	説明
\vb{v}	v	ベクトル表記
$\dv{f}{x}$	$\frac{df}{dx}$	一階の微分

\dv[2]{f}{x}
$$\frac{d^2f}{dx^2}$$
 二階の微分 \dv[n]{f}{x} $\frac{d^nf}{dx^n}$ n階の微分 \pdv{f}{x} $\frac{\partial f}{\partial x}$ 一階の偏微分 \pdv[2]{f}{x} $\frac{\partial^2f}{\partial x^2}$ 二階の偏微分 \pdv[n]{f}{x} $\frac{\partial^2f}{\partial x^n}$ n階の偏微分 \curl{v} $\nabla \times v$ 回転 \rot{v} $\nabla \times v$ 回転 \grad{v} \quad \quad \text{v} \quad \text{v} \quad \text{v} \quad \text{q} \text{diver}{v} \quad \text{v} \quad \text{\text{2}} \text{\text{2}} \\ \quad \text{2} \quad \text{\text{v}} \quad \text{\text{2}} \quad \text{2} \quad \quad \text{2} \quad \text{2} \quad \text{2} \quad \text{2} \qua

3.4 物理に関連するコマンド

コマンド	出力	説明
\Lagr	L	ラグランジアン
\Ham	${\mathcal H}$	ハミルトニアン

3.5 情報理論に関連するコマンド

コマンド	出力	説明
\binentr	\mathcal{H}	二値エントロピー

第4章 Preambleを読み込むだけでできること

4.1 最初のセクション

親譲りの無鉄砲で小供の時から損ばかりしている。¹小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰を抜かす奴があるかと云ったから、この次は抜かさずに飛んで見せますと答えた。(青空文庫より)親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \tag{4.1}$$

別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰を抜かす奴があるかと云ったから、この次は抜かさずに飛んで見せますと答えた。(青空文庫より)親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰を抜かす奴があるかと云ったから、この次は抜かさずに飛んで見せますと答えた。(青空文庫より)親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1} \tag{4.2}$$

別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、

¹これは小説『坊っちゃん』の冒頭分である。

おやじが大きな眼をして二階ぐらいから飛び降りて腰を抜かす奴があるかと云ったから、この次は抜かさずに飛んで見せますと答えた。(青空文庫より)親譲りの無鉄砲で小供の時から損ばかりしている。

図 4.1: 一般的な円柱

小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰を抜かす奴があるかと云ったから、この次は抜かさずに飛んで見せますと答えた。(青空文庫より)親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰を抜かす奴があるかと云ったから、この次は抜かさずに飛んで見せますと答えた。(青空文庫より)親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。

4.2 次のセクション

親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階からなぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰を抜かす奴があるかと云ったから、この次は抜かさずに飛んで見せますと答えた。(青空文庫より) 親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階か

ら飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別 段深い理由でもない。

図 4.2: 様々な図形

親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰

Theorem 4.2.1: ピタゴラスの定理

直角三角形において、直角を挟んでいる 2 辺の長さをそれぞれ a,b とすると、斜辺の長さ c は

$$c = \sqrt{a^2 + b^2} \tag{4.3}$$

となる。

· 4 つの直角三角形を並べて下のように正方形を作る。· · ·

定理 4.2.1 は三平方の定理とも呼ばれる。

親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰

Example 4.2.1: 一次方程式

次の方程式を解け。

- 1. x + 2 = 0
- 2. 2x 3 = 0
- 3. 3x + 4 = 0

解のみを記す。

- 1. x = -2
- 2. $x = \frac{3}{2}$
- 3. $x = -\frac{4}{3}$

親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週 間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもな い。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる 事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼 をして二階ぐらいから飛び降りて腰親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時 分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人がある かも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いく ら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさっ て帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰親譲りの無鉄砲で小供の時から 損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。な ぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出してい たら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と 囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降り て腰親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一 週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でも ない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降 りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大き な眼をして二階ぐらいから飛び降りて腰親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居 る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人が あるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、 いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶ さって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰

個人的には、グラフは gnuplot や pgfplots で作成するよりも、python の matplotlib で作成する方が楽 であると思う。なんといっても、データ解析などの結果をそのままグラフにできるのが強みである。

図 4.3: サインカーブ

■これは警告です。最大限の注意を払ってください。

🤁 疑問点。なぜこのような結果が得られたのか?

親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から

親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな

眼をして二階ぐらいから飛び降りて腰親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から

親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から首を出していたら、同級生の一人が冗談に、いくら威張っても、そこから飛び降りる事は出来まい。弱虫やーい。と囃したからである。小使に負ぶさって帰って来た時、おやじが大きな眼をして二階ぐらいから飛び降りて腰親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から

Day	Max Temp	Min Temp
Mon	20	13
Tue	22	14
Wed	23	12
Thu	25	13
Fri	18	7
Sat	15	13
Sun	20	13

Day Max Temp Min Temp Mon 1711 Tue 16 10 Wed 8 14Thu 125 Fri 15 7 Sat 16 12 9 Sun 15

(a) First Week

(b) Second Week

表 4.1: Max and min temps recorded in the first two weeks of July

親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から

Corollary 4.2.1: とある系

これは系である。

Definition 4.2.1: とある定義

これは定義である。

親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別

段深い理由でもない。新築の二階から親譲りの無鉄砲で小供の時から損ばかりしている。小学校に居る時分学校の二階から飛び降りて一週間ほど腰を抜かした事がある。なぜそんな無闇をしたと聞く人があるかも知れぬ。別段深い理由でもない。新築の二階から

Lemma 4.2.1: とある補題

これは補題である。