Departamento Académico Rafaela

B. Hip.Irigoyen 1502 – Rafaela – Santa Fe – República Argentina Te: 03492-432832-433408-433550 - ucsedar@ucse.edu.ar

PLANIFICACIÓN DE CÁTEDRA

1. IDENTIFICACIÓN

1.1. Universidad: Universidad Católica de Santiago de Estero

1.2. Unidad Académica: Departamento Académico Rafaela

1.3. Carrera: Ingeniería en Informática

1.4. Área: Tecnologías Aplicadas

1.5. Asignatura: Inteligencia Artificial

1.6. Plan: 2008

1.7. Régimen: Anual:

Cuatrimestral: \otimes Primero: \square Segundo: \otimes

1.8. Año académico: 2014

1.9. **Carga horaria semanal:** 4 horas

2. DOCENTE/EQUIPO DE CÁTEDRA

Apellido y Nombre	Categoría
Rossanigo, Ariel	Adjunto
Fisanotti, Juan Pedro	JTP

Departamento Académico Rafaela

B. Hip.Irigoyen 1502 – Rafaela – Santa Fe – República Argentina

Te: 03492-432832-433408-433550 - ucsedar@ucse.edu.ar

PLANIFICACIÓN DE CÁTEDRA

3. FUNDAMENTACIÓN

La Inteligencia Artificial es una rama de las denominadas ciencias de la computación que proporciona la oportunidad de estudiar métodos simbólicos de tratamiento de la información. Los problemas que se resuelven mediante este tratamiento son especiales en el sentido de que si un ser humano los resolviera, diriamos que ese ser humano exhibe un comportamiento inteligente. Esta asignatura enfrenta a los alumnos a tres situaciones nuevas: los probelmas considerados difíciles por métodos de computación tradicionales; los métodos de resolución simbólica; la reflexión sobre los propios mecanismos de resolución racional.

El alumno comprende la temática mientras estudia los conceptos, metodologías y técnicas para aplicarlos a los trabajos prácticos de desarrolla.

El futuro ingeniero será consciente de los tipos de problemas que enfrenta la Inteligencia Artificial; aprenderá a programar con lenguajes y herramientas adecuadas a este tipo de problemas y será capaz de representar y resolver problemas no triviales de búsqueda; podrán implementar arquitecturas sencillas de agentes racionales para la solución de problemas de Inteligencia Artificial.

4. OBJETIVOS

El desarrollo de la materia procura que el alumno:

- 1. Posea una perspectiva histórica del desarrollo de la Inteligencia Artificial
- 2. Comprenda los distintos procesos de búsqueda y satisfacción de restricciones, pudiendo aplicarlos en problemáticas reales.
- 3. Comprenda, relacione y aplique los conceptos de Agentes Inteligentes.
- 4. Identifique los problemas de planeamiento y su planteo.

5. CONTENIDOS PROGRAMÁTICOS

5.1. Contenidos básicos

El problema y su representación. Ingeniería del conocimiento. Metodología de construcción de sistemas expertos. Redes neuronales. Algoritmos genéticos. Agentes inteligentes.

5.2. Programa analítico

Unidad 1: Introducción a la inteligencia artificial.

Definiciones de IA. Historia de la IA. Aportes de los diversos campos del conocimiento humano a la IA. Aportes de la IA a los campos del conocimiento humano. El test de Turing. Racionalidad en la IA.

Departamento Académico Rafaela

B. Hip.Irigoyen 1502 – Rafaela – Santa Fe – República Argentina

Te: 03492-432832-433408-433550 - ucsedar@ucse.edu.ar

PLANIFICACIÓN DE CÁTEDRA

Unidad 2: Agentes inteligentes.

Definición de agente. Percepciones. Acciones. Agentes racionales. Estructura de un agente racional. Programa de agente. Agentes de software o *softbots*. Ambiente de un agente. Programas de simulación de ambiente.

Unidad 3: Agentes que resuelven problemas mediante búsqueda.

El problema y su representación. Diferencia entre el mundo real y el problema a resolver. Formulación del problema. Espacio de estados. Acciones u operadores de cambio de estado. Estado meta. Tipificación de problemas de búsqueda. Estrategias de búsqueda a ciegas: horizontal, en profundidad, profundidad limitada, profundización iterativa, costo uniforme, bidireccional. Ventajas y desventajas de cada una.

Unidad 4: Métodos de búsqueda con información.

Búsqueda de primero el mejor: búsqueda ávida, búsqueda A*. Funciones heurísticas. Búsqueda limitada en memoria. Búsqueda A* con profundización iterativa.

Unidad 5: Métodos de búsqueda locales.

Ascenso de colina. Solidificación simulada. Búsqueda por Haz local. Tabu Search. Algoritmos genéticos.

Unidad 6: Problemas de satisfacción de restricciones.

Estructura de los problemas de satisfacción de restricciones. Definición y propagación de restricciones. Búsqueda con vuelta atrás. Heurísticas comunes en PSR. Búsqueda local para PSR.

Unidad 7: Aprendizaje de máquina.

Tipos de aprendizaje: supervisado, no supervisado, semi-supervisado, por refuerzo. Arboles de decisión. Generalización y sobre-entrenamiento. Selección de la mejor hipótesis. Cross validation. Regresión y clasificación. Redes neuronales artificiales. El perceptrón. MLP y backpropagation. K vecinos cercanos (Knn). Aprendizaje por refuerzo.

Unidad 8: Ingeniería del conocimiento.

Definición. Definición de sistema experto. Metodología de construcción de sistemas expertos.

Departamento Académico Rafaela

B. Hip.Irigoyen 1502 – Rafaela – Santa Fe – República Argentina Te: 03492-432832-433408-433550 - ucsedar@ucse.edu.ar

PLANIFICACIÓN DE CÁTEDRA

6. DISTRIBUCIÓN DE LA CARGA HORARIA

6.1. Relación teoría-práctica

Clases	Teóricas		Prácticas		
Cuatrimestre	Hs.	Unidades	Hs.	Unidades	
Primero					
Segundo	28	1 a 8	24	2 a 7	
Totales	28	1 a 8	24	2 a 7	

6.2. Clasificación de la actividad práctica

Distribución de la carga horaria de las clases prácticas:

Ejercicios/Problemas Rutinarios	Formación Experimental	Problemas de Ingeniería	Proyecto y diseño	Investigación	Análisis de caso/proceso	Dinámica grupal
8	6	10	discrio		cuso/proceso	

7. METODOLOGÍA

Estrategias	Uso	Fundamentación
7.1. Exposición docente	×	Para explicar cada tema.
7.2. Planteo de Problemas	Х	Para ejemplificar los conceptos teóricos e iniciar la resolución de los prácticos.
7.3. Diálogo	Х	Para detectar inconvenientes en el aprendizaje, inquietudes y necesidades de los alumnos.
7.4. Estudio dirigido	Х	Para incentivar en los alumnos el hábito de la indagación y exploración de bibliografía y nuevos desafíos.
7.5. Discusión en grupo	Х	Para intercambiar opiniones y evaluar el grado de entendimiento de los temas.
7.6. Exposición del alumno	Х	Para que el alumno demuestre las habilidades logradas y los resultados obtenidos.
7.7. Análisis de caso	Х	En la resolución de ejemplos típicos de cada tema.

Departamento Académico Rafaela

B. Hip.Irigoyen 1502 – Rafaela – Santa Fe – República Argentina

Te: 03492-432832-433408-433550 - ucsedar@ucse.edu.ar

PLANIFICACIÓN DE CÁTEDRA

8. EVALUACIÓN Y ACREDITACIÓN

8.1. Requisitos para regularizar la asignatura

- Aprobar el parcial o su recuperatorio con puntaje mínimo de 60%.
- Asistencia mínima al 60 % de las clases
- Presentar y Aprobar el Trabajo Práctico de regularidad.

8.2. Requisitos para aprobar la asignatura

8.2.1. Con examen final

- Los alumnos regulares deberán rendir un examen teórico escrito sobre todos los contenidos de la materia. La aprobación del examen se logra respondiendo correctamente el 60% del examen.

8.2.2. Sin examen final (Promoción Directa)

- Aprobar el parcial con un puntaje de 80% o superior.
- Presentar y aprobar un Trabajo Práctico de Promoción.

8.3. Examen libre

8.3.1. Corresponde: **⊗** No Corresponde: □

8.4. Modalidad de evaluación:

Las evaluaciones son exámenes que integran teoría y práctica. La parte teórica se evalúa de manera estructurada, utilizando preguntas de múltiples opciones, de respuesta breve y opciones constantes.

La parte práctica se evalúa mediante resolución de ejercicios aplicados a los conceptos teóricos.

Adicionalmente se piden entregas de trabajos prácticos, los cuales además de ejercicios tienen como objetivos resolver problemáticas ingenieriles y de experimentación.

8.5. Cronograma de evaluaciones

Evaluaciones Parciales y Recuperatorio/s Trabajos Prácticos	Fecha Prevista	Tipo de Evaluación		Unidades didácticas Evaluadas
Otras Evaluaciones		Escrita	Oral	
Práctica de Búsqueda	Agosto	Х		3, 4, 5
Práctica de PSR	Septiembre	Х		6
Practica aprendizaje de máquina	Octubre	Х		7
Parcial	Octubre	Х		1, 2, 3, 4, 5, 6, 7. 8
Practica ingenieril	Octubre	Х		3, 4, 5, 6, 7
Recuperatorio	Octubre	Х		1, 2, 3, 4, 5, 6, 7. 8

Departamento Académico Rafaela

B. Hip.Irigoyen 1502 – Rafaela – Santa Fe – República Argentina

Te: 03492-432832-433408-433550 - ucsedar@ucse.edu.ar

PLANIFICACIÓN DE CÁTEDRA

9. INTEGRACIÓN CURRICULAR

9.1. Correlativas anteriores

Fuertes	Débiles
Sistemas de Información I	Programación II

9.2. Correlativas posteriores

Fuertes	Débiles
	Trabajo Final

9.3. Articulación vertical

Programación II refuerza las habilidades en el manejo de estructuras de datos y diseño de algoritmos que facilitarán la resolución de los problemas que se presentan en la asignatura.

Sistemas de Información I presenta las características de un sistema, sus elementos y relaciones que desde la Inteligencia Artificial se retoman para darles un nuevo significado y aplicación a las problemáticas presentadas.

9.4. Coordinación horizontal

Lenguajes Formales y Autómatas del mismo año, del cuatrimestre anterior introducen al tema de Lenguaje Formal como modelo del Lenguaje Natural.

10. ACTIVIDADES EXTRACURRICULARES

No se prevén.

Departamento Académico Rafaela

B. Hip.Irigoyen 1502 – Rafaela – Santa Fe – República Argentina Te: 03492-432832-433408-433550 - ucsedar@ucse.edu.ar

PLANIFICACIÓN DE CÁTEDRA

11. BIBLIOGRAFÍA

11.1. Bibliografía Básica

Autor (es)	Título	Editorial	Lugar Edición	Año Edición
RUSSELL, Stuart; NORVIG, Peter.	Inteligencia Artificial, un enfoque moderno.	Prentice-Hall	España	2da. Edición 2004
Stuart Russell , Peter Norvig	Artificial Intelligence: A Modern Approach			3rd Edition

11.2. Bibliografía Ampliatoria/Complementaria

Autor (es)	Título	Editorial	Lugar Edición	Año Edición
NILSSON, Nils.	Inteligencia Artificial una nueva síntesis			
RICH,Elaine; KNIGHT, Kevin.	Inteligencia Artificial, 2.da ed.			2da. Edición
Peter Norvig A book published by Morgan Kaufmann	Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp			1992
	Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence (Paperback)-	Gerhard Weiss (Editor)		

Departamento Académico Rafaela

B. Hip.Irigoyen 1502 – Rafaela – Santa Fe – República Argentina Te: 03492-432832-433408-433550 - ucsedar@ucse.edu.ar

PLANIFICACIÓN DE CÁTEDRA

Anexo I

Planificación General de las Actividades de la Cátedra

Unidad/Tema/ Práctico/Evaluación	Duración	Ámbito	Observaciones
Introducción	2	Aula	
Agentes inteligentes	3	Aula	
Agentes que resuelven problemas mediante búsqueda	4	Aula	
Búsqueda con información	4	Aula	
Practica de búsqueda (TP 1)	6	Laboratorio	
Busqueda local	3	Aula	
Satisfacción de restricciones	6	Aula	
Practica Satisfaccion de restricciones (TP 2)	4	Laboratorio	
Aprendizaje de máquina	6	Aula	
Practica de aprendizaje de máquina (TP 3)	4	Laboratorio	
Ingeniería del conocimiento	2	Aula	
Práctica ingenieril (TP 4)	10	Laboratorio	

Departamento Académico Rafaela

B. Hip.Irigoyen 1502 – Rafaela – Santa Fe – República Argentina Te: 03492-432832-433408-433550 - ucsedar@ucse.edu.ar

PLANIFICACIÓN DE CÁTEDRA

Planificación de las Actividades Prácticas

TP Nº	Hs	Competencias a Lograr	Ámbito/Materiales Equipamiento/Software	Tipo de Práctica(1)	Tipo de Evaluación
1	2	El alumno debe ser capaz de plantear problemas en papel.	Aula.	PR	Escrita
1	4	Introducir al alumno en la resolución de problemas mediante búsqueda con SimpleAl.	Laboratorio. Python y SimpleAl	FE	Escrita
2	4	Implementación de PSR en computadora y comparación de performance con algoritmos de búsquedas planteados en el práctico anterior.	Laboratorio. Python y SimpleAl		
3	4	El alumno debe plantear resolver problemas planteados mediante alguna técnica de machine learning	Laboratorio. Python y SimpleAl	FE	Escrita
4	10	Se induce al alumno a resolver problemas de la vida cotidiana utilizando conceptos dictados en la materia.	Laboratorio. Se usa lenguaje Python y opcionalmente SimpleAl.	PI	Escrita

1 Tipos de Práctica:

- PR: Problemas Rutinarios
- FE: Formación Experimental
- PI: Problemas Abiertos de Ingeniería
- APyD: Actividades de Proyecto y Diseño
- OP: Otro Tipo de Práctica

	PRFSFN		,	