

Computación Gráfica

Class 4. Images and Signal Processing.

Professor: Eric Biagioli

Today

Discussion on convolutional filters.

Some words on the Fourier Transform of an image.

Discussion about current applications in industry and/or about state of the art in Image Processing.

References for the class of today: (part of the first partial exam)

- [MAIN reference]: Velho, L., Frery, A. C., and Gomes, J. Image Processing for Computer Graphics and Vision, 2nd ed. Springer Publishing Company, Incorporated, 2008. → Chapter 7. Sections 7.3, 7.4 and 7.5 (filters)
- [ADDITIONAL reference]: Hughes, J. F., van Dam, A., McGuire, M., Sklar, D. F., Foley, J. D., Feiner, S., and Akeley, K. Computer Graphics: Principles and Practice, 3 ed. Addison-Wesley, Upper Saddle River, NJ, 2013. → Chapter 18

Spatially Invariant Linear Filters

• Let h(x, y) be the impulse response of the filter T

$$h(x,y) = T(\delta(x,y))$$

the image f(x, y) can be expressed as an infinite sum of dirac deltas

$$f(x) = \int_{-\infty}^{+\infty} f(u, v) \delta(u - x, v - y) du dv.$$

If T is a spatially invariant linear transformation, we have

$$Tf(x,y) = T\left(\int_{-\infty}^{+\infty} f(u,v)\delta(u-x,v-y) \, du \, dv\right)$$
$$= \int_{-\infty}^{+\infty} f(u,v)T(\delta(u-x,v-y)) \, du \, dv.$$

Spatially Invariant Linear Filters

If T is a linear transformation, we have

$$Tf(x,y) = T\left(\int_{-\infty}^{+\infty} f(u,v)\delta(u-x,v-y) \, du \, dv\right)$$
$$= \int_{-\infty}^{+\infty} f(u,v)T(\delta(u-x,v-y)) \, du \, dv.$$

If T is spatially invariant, we have:

$$Tf(x,y) = \int_{-\infty}^{+\infty} f(x,y)h(u-x, v-y) du dv$$

- This is the CONVOLUTION of f and h at (x, y). We write f*h
- We call KERNEL to h.

Discrete filters

• In a continuous filter $\int_{\mathbb{R}^2} h(x,y) \, dx \, dy = 1$

• When we discretize
$$\frac{1}{mn}\sum_{i=1}^{m}\sum_{j=1}^{n}h_{ij}=1$$

Kernel: symmetric and odd order

(-k,k)	 (k, 0)	 (k, k)
:	i	:
(-k, 0)	 (0,0)	 (k, 0)
	i	:
(-k, -k)	 (-k, 0)	 (k, -k)

Discrete filters

- How to evaluate them?
- Extensions of the domain
- Complexity?

Discrete filters: examples - BOX FILTERS

BOX FILTER

Box filter of order 3:

Discrete filters: examples - BOX FILTERS

Discrete filters: examples - BARTLETT FILTERS

$$\frac{1}{2} \cdot \left[\frac{1}{2} \right] 1 \left[\frac{1}{2} \right]$$

$$\frac{1}{3} \cdot \boxed{\frac{1}{3} \ \frac{2}{3} \ 1 \ \frac{2}{3} \ \frac{1}{3}}$$

$$\frac{1}{16} \cdot [1|2|3|4|3|2|1$$

• The Bartlett filter is separable.

$$h_2(x,y) = h_1(x) \cdot h_1(y).$$

1	
2	
3	ĺ
2	
1	

Discrete filters: examples - BARTLETT FILTERS

Fig. 7.22. Top: Original image. Bottom: Image after applying a Bartlett filter of order 5.

Discrete filters: examples - GAUSSIAN FILTERS

in 1D
$$G_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-x^2/(2\sigma^2)}$$
, in 2D $G_{\sigma}(x,y) = \frac{1}{2\sigma^2\pi}e^{-(x^2+y^2)/(2\sigma^2)}$.

• It is separable. $\rightarrow G_{\sigma}(x,y) = G_{\sigma}(x)G_{\sigma}(y)$

Fig. 7.23. Gaussian distribution function with mean 0 and variance 2.

Discrete filters: examples - GAUSSIAN FILTERS

Gaussian's kernel can be approximated by using the coefficients in binomial expansions

n	2^n	mask coefficients
1	2	1 1
2	4	1 2 1
3	8	1 3 3 1
4	16	$1\ 4\ 6\ 4\ 1$
5	32	1 5 10 10 5 1
6	64	1 6 15 20 15 6 1
7	128	1 7 21 35 35 21 7 1
8	256	1 8 28 56 70 56 28 8 1

1	1	1
$\overline{4}$.	1	1

$$\begin{array}{c|c}
1 & 3 & 3 & 1 \\
3 & 9 & 9 & 3 \\
\hline
3 & 9 & 9 & 3 \\
\hline
1 & 3 & 3 & 1
\end{array}$$

Discrete filters: examples - GAUSSIAN FILTERS

Discrete filters: examples - LAPLACIAN FILTERS

•
$$H(u,v) = -(2\pi)^2(u^2 + v^2)$$
.

• It is a highpass filter

Discrete filters: examples - LAPLACIAN FILTERS

• Laplacian of orders 3 and 5:

0	10	[0	0	1	0	07
1	1 1	0	1	2	1	0
1 -	-4 1	1	2	-17	2	1
0	10	0	1	2	1	0
		0	0	1	0	0

• Example of highpass filter based on a Laplacian:

1	1	1	
1	-8	1	
1	1	1	

Discrete filters: examples - LAPLACIAN FILTERS

Discrete filters: Highpass filters

- Highpass filters can be obtained by subtracting the image to a lowpass filter.
- This is a general concept that allows us to create a lot of highpass filters.

Example: Taking the Gaussian, we can obtain:

Edge Enhacements Operations

Laplacian addition

Fourier Transform

• Transforms the image representation into frequential domain instead of spatial domain.

$$F(f)(s) = \hat{f}(s) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi its} dt.$$

and the inverse:

$$f(t) = F^{-1}(\hat{f}(s)) = \int_{-\infty}^{+\infty} \hat{f}(s)e^{2\pi i s t} ds.$$

ullet Convolution in the spatial domain o Product in the frequency domain

Fourier Transform of the pulse

Fourier Transform - Filtering in the frequency domain

Fig. 2.15. One-dimensional ideal lowpass filter.

Fig. 2.16. Transfer function of ideal two-dimensional lowpass filters.

Fourier Transform - Filtering in the frequency domain

Fig. 2.14. Transfer function for filters: (a) highpass; (b) lowpass; (c) bandpass; (d) bandstop.

Fourier Transform - Practical considerations

- The Fourier Transform can be discretized. Its name is DFT (Discrete Fourier Transform)
- The computation of the DFT of a sequence of N points has complexity proportional to N^2. There are optimizations that reduce this complexity to N log N. This algorithm is known as Fast Fourier Transform (FFT)
- It can help us to save time during filtering operations.

Applications & State of the art. Computational Photography: Gradient domain blending.

Applications & State of the art. Computational Photography: Gradient domain blending.

- Problems of hole filling, combining multiple blurred images to create an unblurred image, compositing multiple images when no a priori masks are known, etc., are at the heart of the field of **computational photography**.
 - Image-based rendering: synthesis of new views of a scene from one or more photographs or renderings of previous views.
 - What pixel values should I fill in for the parts of the scene that weren't visible in the previous view, but are in this one?
 - If it's a matter of just a pixel or two, filling in with colors from neighboring pixels is good enough to fool the eye, but for larger regions, hole filling is a serious (although obviously underdetermined) problem.