

基于WLAN Ad-hoc网络的灾害现场和野外救援信息系统

同济大学电子与信息工程学院,计算机科学与技术系

导师: 程久军 教授

成员: 米浩东 刘天辰 林明仙 贾英奇

目 录

CONTENTS

1. 应用场景

2. 解决方案

3. 技术实现

4. 项目展望

1. 应用场景

灾害现场

灾害引起房屋坍塌,基站被毁,运营商信号中断。

人员被困,无法联络。

救援现场

搜索范围大,房屋地形结构混乱复杂。

地形复杂,人员容易走散。

现有搜救方案

1. 被困者的搜寻定位

声波探测仪、光学声波探测仪、红外线探测仪、无人机搭载生命探测仪。

2. 救援人员通信

参与应急救援的部门所联通的视频通信控制系统,包括手持对讲机、无线图传、卫星电话等。

存在的问题

① 受灾群众之间无直接通讯手段,难以互助自救。

受灾群众 ②受灾群众被动等待营 救,没有主动联络救援队 的通讯手段。

③ 现场情况复杂,紧靠对讲**信息不足**,需要多角度音视频辅助勘测。

④ **定位缓慢**,无法直接定位 多个群众的位置,更好地部署 救援方案。

2. 解决方案

方案布局

我们的成果:

多终端可用的软件

- 利用硬件对Wi-Fi P2P协议的支持实现功能。
- 可以部署在手机、 平板电脑、或其他 设备。
- 通讯范围由硬件设备决定。

方案布局

● 通信协议配置:

Wi-Fi p2p协议	管理链路和路由,多跳扩大 覆盖
UDP协议	广播自身位置,接收他人位 置
TCP协议	两点收发通信数据

● 现场设备配置:

手机、平板	主要使用者为普通群众
箱式节点	救援人员携带
移动信号车	增强信号

核心功能1: 点对点通讯

- ① 任意两点直接传递数据。
- ② 数据类型不限。
- ③ 可以直接拍摄照片或视频。

核心功能

核心功能2:区域群体定位

- ① 将p2p组群中所有设备的位置显示在地图上。
- ② 可以快速确定其他成员的位置。

连接控制键

组群状态:

可用

GROUP OWNER:

DIRECT-IY-Android_e99e

GroupOwner地址:

f6:8b:32:67:18:86

成员数:

2

显示组群系

发现设备列表 (点选通讯)

设备名

设备物理地址

设备状态

RandomDesk f6:63:1f:f :36:a7 AVALAIBLE

经度:121.223824 , 纬度: 11.291897

设备列表

Android_f545 fe:64:ba:57:a2:22 INGROUP

经度:121.223824, 纬度:31.291897

通讯

消息列表

来信设备 消息摘要 通信状态

fe:64:ba: /storage/emulated/0/ 57:a2:22 Mon Mar 25 15:59:49 GMT+08:00

2019output_image.jp

g

fe:64:ba: /sto 57:a2:22 Mor

/storage/emulated/0/ Mon Mar 25 16:00:42

GMT+08:00 2019output_video.mp

4

成果展示

消息列表

成果展示

成果展示

请看演示视频

3. 技术实现

功能设计

系统层次图

视图层	提供消息、地图显示和操作界 面
业务逻辑层	自动以及根据用户操作进行下层的控制
数据传输控制层	使用TCP和UDP协议,进行数 据发送
Wi-Fi p2p连接 控制层	通过调用系统服务管理P2P连 接
Android系统服 务层	为Wi-Fi p2p提供系统API

系统模块图

4. 创新与展望

创新点 — 技术

① 解决了应急通讯车无法进入,和曲折空间中传统中心化通信受阻情况下的应急通讯问题;

② 创新的群体定位解决方案,实现了无外部 网的情况下,组群定位和位置共享。

创新点 — 应用

① 将Wi-Fi Ad-hoc网络技术应用于灾害现场和野外救援的通讯,并在Android平台上加以开发实现;

② 让应急通讯门槛更低,普通群众用手机即可无基站自组网,并与其他群众或救援人员联络,发挥自救的主动性。

发展前景

需求大

使用门槛低

4

意义重大

场景可扩展

01 提高系统鲁棒性

02 移植到其他智能设备

03 扩展即时通讯流

04 成果申请专利

05 推广给小型团体试用

观看! 欢迎老师指导!