Supplementary Table 1. Key equations used in the operating model to generate age-structured population dynamics, indices of relative abundance, and age composition data.

1. Life history schedules		
E1.1	$l_a = l_{\infty} \times (1 - e^{(-K(a - t_0))})$	
E1.2	$w_a = \theta_1 \times l_a^{\theta_2} / 1000$	
E1.3	$m_a = \frac{1}{1 + e^{(-\theta_3(a - a_{50}))}}$	
2. Spawner–recruit relationships		
E2.1	$\phi_0 = r_1 m_1 w_1 + \sum_{a=2}^{A-1} e^{-M_{a-1}} r_a m_a w_a + \frac{exp^{-M_{A-1}} r_A m_A w_A}{1 - e^{-M_A}}$	
E2.2	_ v	
112.2	$R_{y+1} = \frac{0.8 \times R0 \times h \times SSB_y}{0.2 \times R0 \times \phi_0 \times (1-h) + SSB_y \times (h-0.2)}$	
3. Initial condition		
E3.1	$Z_{a,1} = Fmult_1 S_{Fa} + M_a$	
E3.2	$ \begin{array}{ll} 1 & a = 1 \\ \Phi_a = \{ \Phi_{a-1} e^{-Z_{a-1,1}} & 1 < a < A \end{array} $	
	$\Phi_a = \{ \Phi_{a-1} e^{-Z_{a-1,1}} 1 < a < A$	
	$\frac{\Phi_{A-1}e^{-Z_{A-1,1}}}{1-e^{-Z_{A,1}}} \qquad a = A$	
E3.3	$\Phi_{\rm F} = \sum_{a=1}^{A} \Phi_a r_a m_a w_a$	
E3.4	$R_{eq} = \frac{R0(4h\phi_{F}-(1-h)\phi_{0})}{(5h-1)\phi_{F}}$	
E3.5	$N_{a,1} = R_{eq} \Phi_{\mathrm{F}_a}$	
E3.6	$SSB_1 = \sum_{a=1}^A N_{a,1} r_a m_a w_a$	
4. Basic abundance dynamics		
E4.1	$N_{1,y} = R_y e^{Rdev_y}$	
E4.2	$Z_{a,y} = Fmult_{y}S_{Fa} + M_{a}$	
E4.3	$N_{a+1,y+1} = N_{a,y}e^{-Z_{a,y}}$ where $a < A - 1$	
E4.4	$N_{A,y+1} = N_{A-1,y}e^{-Z_{A-1,y}} + N_{A,y}e^{-Z_{A,y}}$	
E4.5	$SSB_{y} = \sum_{a=1}^{A} N_{a,y} r_{a} m_{a} w_{a}$	
E4.6	$A_{\mathcal{Y}} = \sum_{a=1}^{A} N_{a,\mathcal{Y}}$	
E4.7	$B_{y} = \sum_{a=1}^{A} N_{a,y} w_{a}$	
5. One fleet		
E5.1	$S_{Fa} = \frac{1}{1 + e^{-x_1(a - x_2)}}$	
E5.2	$L_{a,y} = \frac{Fmult_{y}S_{F_{a}}}{Z_{a,y}} N_{a,y} (1 - e^{-Z_{a,y}})$	
E5.3	$L_{Wy} = \sum_{a=1}^{A} L_{a,y} w_a$	
	(Continued on next page)	

Supplementary Table 1 (continued)

E6.1 $S_{I_a} = \frac{1}{1 + e^{-x_3(a - x_4)}}$	
$SI_a = \frac{1}{1+e^{-x_3(a-x_4)}}$	
$q = \frac{1}{mean(\sum_{a=1}^{A} N_{a,y} S_{I_a})}$	
$I_{a,y} = N_{a,y} S_{I_a}$	
$E6.4 I_{y} = q \sum_{a=1}^{A} I_{a,y}$	
7. Time series of F	
E7.1 $Fmult_{y} = f_{y}e^{fdev_{y}}$	
8. Observed data	
$E8.1 L'_{Wy} = L_{Wy} e^{\varepsilon_{1y}}$	
E8.2 $P_{L_{a,y}} = L_{a,y} / \sum_{a=1}^{A} L_{a,y}$	
E8.3 $C_{L_{a,y}} \sim Multinomial(\varphi_F, P_{L_{a,y}})$	
E8.4 $I_y' = I_y e^{\varepsilon_{2y}}$	
E8.5 $P_{I_{a,y}} = I_{a,y} / \sum_{a=1}^{A} I_{a,y}$	
E8.6 $C_{I_{a,y}} \sim Multinomial(\varphi_I, P_{I_{a,y}})$	