1. **[2 marks]** Consider the following statement about a language $L \subseteq \Sigma^*$.

If L is regular, then \exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ such that |F| = 1 and L(M) = L.

Is the statement true? Justify your answer.

Solution: This statement is incorrect.

Consider the language $L = \{0, 00\}$, where $\Sigma = \{0\}$. Suppose that there is a DFA for L with a single final state. Then $\widehat{\delta}(q_0, 0) = \widehat{\delta}(q_0, 00)$. But then, $\widehat{\delta}(q_0, 00) = \widehat{\delta}(q_0, 000)$ which cannot happen since $00 \in L$ and $000 \notin L$.

2. [2 marks] Consider the following statement.

Let N_1 and N_2 be two NFAs with the minimum number of states accepting a language L. Then, $N_1 \cong N_2$.

Is the statement true? Justify your answer.

Solution: This statement is incorrect.

Consider $L = \{0^i \mid i \ge 1\}$. We have the following NFAs (one of which is a DFA).

The two NFAs are not isomorphic. They are minimal as well since if there is an NFA with just a single state, then either its language must be empty, or it will accept ε .

3. [3 marks] Write down the regular expression corresponding to L given by the DFA below. Explain your answer clearly.

Solution: We can do state elimination here. We add a new start state s with ε -transition to q_0 , and a new final state f with ε -transitions from q_0 , q_1 , and q_2 to f. One order of elimination is q_3 , q_2 , q_1 , and finally q_0 . This gives the final regex as $(1 + 00^*11)^*(\varepsilon + 00^*(1 + \varepsilon))$.

1

4. [4 marks] Draw a DFA corresponding to the language given by the regular expression *R* below. Explain your answer clearly.

$$R = (0+11)^*(1+00)^*$$

Solution: We can describe this language as follows: L(R) contains all string w such that w can be written as xy, where #1(x) is even and no odd occurrence of 1 in x is followed by a 0, and #0(y) is even and no odd occurrence of 0 in y is followed by a 1.

Thus, we can draw the DFA as follows.

Notice that the only incoming transition to q_1 is from q_0 , and the only incoming transition to q_0 is from q_1 . Hence the set of strings that reach q_0 are precisely $(0+11)^*$, and the set of strings that reach q_1 is $(0+11)^*1$. Hence the strings that reach q_3 is $(0+11)^*100(1+00)^*$. Thus the language accepted by the DFA is $R' = (0+11)^* + (0+11)^*1 + (0+11)^*100(1+00)^*$. Now, $L(R') \subseteq L(R)$ from the way R' is written. For any $w \in L(R)$, if no odd occurrence of a 1 is followed by a 0, then $w \in (0+11)^*$. Otherwise $w \in (0+11)^*100(1+00)$. Hence $L(R) \subseteq L(R')$.

- 5. **[4 marks]** For a regular expression R, rev(R) is defined as follows.
 - If $R = \varepsilon$, then $rev(R) = \varepsilon$,
 - If $R = \sigma$, for $\sigma \in \Sigma$, then $rev(R) = \sigma$,
 - If $R = R_1 \cdot R_2$, then $rev(R) = rev(R_2) \cdot rev(R_1)$,
 - If $R = R_1 + R_2$, then $rev(R) = rev(R_1) + rev(R_2)$, and
 - If $R = R_1^*$, then $rev(R) = rev(R_1)^*$.

Consider the following statement about R and rev(R).

If
$$L = L(R)$$
, then $L(rev(R)) = \{w \mid reverse \text{ of } w \text{ is in } L\}$.

Is the statement true? Justify your answer.

Solution: This statement is correct.

Let R' = rev(R). We do this inductively on the length of R.

- If $R = \varepsilon$, then $R' = \varepsilon$, and L(R') = L(R) and $\varepsilon = \text{rev}(\varepsilon)$. Similarly for $R = \sigma$ for $\sigma \in \Sigma$. These are the simple base cases.
- If $R = R_1 + R_2$, then $R' = \text{rev}(R_1) + \text{rev}(R_2)$. Now, we have

$$w \in L(R') \Leftrightarrow w \in L(rev(R_1)) \text{ or } w \in L(rev(R_2))$$

 $\Leftrightarrow rev(w) \in L(R_1) \text{ or } rev(w) \in L(R_2)$
 $\Leftrightarrow rev(w) \in L(R_1 + R_2) = L(R)$

• If $R = R_1 \cdot R_2$, then $R' = \text{rev}(R_2) \cdot \text{rev}(R_1)$. Now, we have

$$w \in L(R') \Leftrightarrow w \in L(rev(R_2)) \cdot L(rev(R_1))$$

 $\Leftrightarrow \exists w_1, w_2, \text{ s.t } w = w_2w_1 \text{ and } w_2 \in L(rev(R_2)) \text{ and } w_1 \in L(rev(R_1))$
 $\Leftrightarrow rev(w_2) \in L(R_2) \text{ and } rev(w_1) \in L(R_1)$
 $\Leftrightarrow rev(w_1) \cdot rev(w_2) \in L(R_1 \cdot R_2)$
 $\Leftrightarrow rev(w_2w_1) \in L(R)$

• If $R = R_1^*$, then $R' = \text{rev}(R_1)^*$. Now, we have

$$w \in L(R') \Leftrightarrow \exists w_1, w_2, \dots, w_k \in L(\operatorname{rev}(R_1)) \text{ s.t } w = w_1 \cdot w_2 \cdots w_k$$

 $\Leftrightarrow \operatorname{rev}(w_i) \in L(R_1) \text{ and } \operatorname{rev}(w) = \operatorname{rev}(w_k) \cdot \operatorname{rev}(w_{k-1}) \cdots \operatorname{rev}(w_1)$
 $\Leftrightarrow \operatorname{rev}(w) \in L(R_1)^* = L(R_1^*) = L(R)$