Scala Tutorial I

Jan Macháček

June 7, 2018

Abstract

Scala is a fusion language that combines functional and object-oriented programming paradigms in a syntax that is similar to most other C-like languages. The ...

1 Zero to hundred

FizzBuzz is a typical program that follows Hello, world, adding iteration and conditions. The Scala version of FizzBuzz is shown in Listing 1–it shows the definition of a function def, followed by name and arguments, and its implementation that follows the = sign. The loop (for) and condition (if, else) keywords are the old friends from other languages.

```
def fizzBuzz = {
  for (i ← 1 to 100) {
    if (i % 15 == 0) println("FizzBuzz")
    else if (i % 3 == 0) println("Fizz")
    else if (i % 5 == 0) println("Buzz")
    else println(i)
  }
}
```

Listing 1: Fizz Buzz

The FizzBuzz from Listing 1 isn't particularly re-usable: it simply prints 100 elements to the standard output, nothing else and nothing more. There is no way, for example, to direct the output to a web socket, or to use it to determine how it maps of the value in the integer domain to the "FizzBuzz domain". Hmm!-mapping and domain sound like mathematics; and functional programming is supposed to be somehow more mathematical. And mathematics is jolly wonderful.

The first step in making the fizzBuzz more mathematical is to make it map an input to exactly one useful output. Right now, its return type now is Unit, which is a bit like void in Java and C; changing its definition to $def\ fizzBuzz2(max:\ Int):\ Unit$ (and then using the max parameter in the loop) isn't particularly useful: it is a mapping from a number to Unit. And, if this were mathematics, there can be only one such mapping: $def\ fizzBuzz2(max:\ Int):\ Unit=()$. Instead of printing the elements to the console, the implementation needs to return a value that can be printed. A a simple String would do, but a Seq of String s is better. The type becomes $Int\Rightarrow Seq[String]$, and the implementation is shown in Listing 2.

Listing 2: Fizz Buzz

This is a huge improvement! The fizzBuzz is now indeed a function: it maps input to output and its result depends only on the value of the parameter. It would even be possible to pre-compute the result for all possible values of the input and replace the function's body with a look-up in that table: the function would become just data!

Well, the outside looks great, but the implementation stinks! It uses mutation, and what about the strange :+ operator in result :+ "Fizz", never mind the for ($i \leftarrow 1$ to max) {...} nonsense!

```
def fizzBuzz(max: Int): Seq[String] = {
  def fb(i: Int): String =
    if (i % 15 == 0) "FizzBuzz"
    else if (i % 3 == 0) "Fizz"
    else if (i % 5 == 0) "Buzz"
    else i.toString

(1 to max).map(fb)
}
```

Listing 3: Fizz Buzz

In Scala, every concrete type (except Nothing) can have a value: for example, the type Boolean is inhabited by values true, false; the type Int is inhabited by values such as 5, 42, -100, 0, ...; the type String is inhabited by values such as "Hi", ":)", ""; the type Unit is inhabited by the only value (). (No, really, it's perfectly good Scala syntax to write () as value. It's just not particularly useful.) The only type that does not have any inhabitants is Nothing: it represents expressions that diverge, for example throwing an exception.

Taking a more precise look at $def\ fizzBuzz$ reveals its type to be Unit; it evaluates to only one value, namely (). If it were a function in the sense of strictly mapping input to output, it would be no different from any other () constant. But fizzBuzz does some additional work before returning (); this additional work is not represented by its type, even though it is its raison d'être.

In Java and C, there is no value of type void As it stands, its type is $() \Rightarrow Unit$,

2 Pattern matching

sasd