Aula 12: Sumário

- Derivadas direccionais.
- Plano tangente.
- Diferenciabilidade de funções reais de uma variável real.
- Diferenciabilidade de funções reais de 2 ou mais variáveis.
- Continuidade das funções diferenciáveis.

Aula 12: Derivadas direccionais

 $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R},\ \ p_{\scriptscriptstyle 0}\in{\rm int}(D)\ \ {\rm e}\ \ \vec{u}\ {\rm um}\ {\rm vector}\ {\rm unit}\ {\rm ario}\ \ (\|\vec{u}\|=1).$

Tome-se a recta $L=\{p_0+t\vec u:t\in\mathbb R\}$. Seja $f_{\vec u}(t)=f_{|D\cap L}(t)=f(p_0+t\vec u)$, com t a variar num intervalo I em que $p_0+t\vec u\in D$.

Definição: A derivada direccional de f na direcção e sentido de \vec{u} no ponto p_0 é

$$D_{\vec{u}}f(p_0) = f'_{\vec{u}}(0) = \lim_{t \to 0} \frac{f_{\vec{u}}(t) - f_{\vec{u}}(0)}{t} = \lim_{t \to 0} \frac{f(p_0 + t\vec{u}) - f(p_0)}{t}$$

A derivada direccional $D_{\vec{u}}f(p_0)$ dá-nos o declive da recta tangente ao gráfico de $f_{\vec{u}}$ em \mathbb{R}^3 no ponto $(x_0,y_0,f(p_0).$ DerivadaDirecional Se $||\vec{u}|| \neq 1$, então define-se $D_{\vec{u}}f(p_0):=D_{\frac{\vec{u}}{||\vec{u}||}}f(p_0)$.

Vector director da recta tangente ao G(f) na direcção de \vec{u} no pto $(p_0, f(p_0))$, é $(\vec{u}, D_{\vec{u}}f(p_0))$.

n=3: Eq. vectorial da reta tangente ao G(f) no ponto $(x_0,y_0,f(p_0))$ na direcção de $\vec{u}=(a,b)$: $(x_0,y_0,f(p_0))+t(a,b,D_{\vec{u}}f(p_0)).$

Eq. paramétricas da reta tangente ao G(f) no ponto $(x_0, y_0, f(p_0))$ na direcção de $\vec{u} = (a, b)$:

$$\begin{cases} x = x_0 + a t \\ y = y_0 + b t \\ z = z_0 + t D_{\vec{u}} f(p_0) \end{cases}.$$

Aula 12: Plano tangente $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R},\ p_0\in\mathrm{int}(D)$ e \vec{u} um vector unitário

Para determinar o plano tangente ao gráfico $G(f) = \{(x, y, f(x, y) \mid (x, y) \in D\}$ no ponto $P_0 = (p_0, f(p_0))$, precisamos de dois vectores directores do plano. Como

$$\frac{\partial f}{\partial x}(p_{\scriptscriptstyle 0}) = D_{(1,0)}f(p_{\scriptscriptstyle 0}) \quad \text{e} \quad \frac{\partial f}{\partial y}(p_{\scriptscriptstyle 0}) = D_{(0,1)}f(p_{\scriptscriptstyle 0})$$

então $(1,0,\frac{\partial f}{\partial x}(p_0))$ e $(0,1,\frac{\partial f}{\partial y}(p_0))$ são dois vectores directores do plano tangente que são linearmente independentes. A equação vectorial do plano tangente é portanto

$$P = P_0 + r(1, 0, \frac{\partial f}{\partial x}(p_0)) + s(0, 1, \frac{\partial f}{\partial y}(p_{p_0}))$$

ou seja, $x=x_0+r,\;\;y=y_0+s\;\;$ e $\;z=z_0+r\frac{\partial f}{\partial x}(p_0)+s\frac{\partial f}{\partial y}(p_0).\;$ A equação cartesiana do

plano tangente é:
$$z = f(x_0, y_0) + (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0) \\ = f(x_0, y_0) + \nabla f(x_0, y_0) \cdot (x - x_0, y - y_0)$$

Isto mostra que $\left(\frac{\partial f}{\partial x}(x_0,y_0),\frac{\partial f}{\partial y}(x_0,y_0),-1\right)\cdot(x-x_0,y-y_0,z-z_0)=0$, ou seja,

$$\left(\frac{\partial f}{\partial x}(x_0,y_0),\frac{\partial f}{\partial y}(x_0,y_0),-1\right)$$
 é um vector ortogonal ao plano tangente

Aula 12: Polinómio de Taylor de grau 1 de $f:\mathbb{R}^2 o \mathbb{R}$

Seja $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ uma função com derivadas parciais finitas em $p_0=(x_0,y_0)$.

Existe um só polinómio P de grau 1 a duas variáveis $p-p_{\scriptscriptstyle 0}=(x-x_{\scriptscriptstyle 0},y-y_{\scriptscriptstyle 0})$ tal que

$$\begin{cases} P(p_0) = f(p_0) \\ \frac{\partial}{\partial x} P(p_0) = \frac{\partial}{\partial x} f(p_0) \\ \frac{\partial}{\partial y} P(p_0) = \frac{\partial}{\partial y} f(p_0) \end{cases}$$

Esse polinómio é $P = f(p_0) + \nabla f(p_0) \cdot (p - p_0)$.

O gráfico da função afim

$$A(p) = f(p_0) + \nabla f(p_0) \cdot (p - p_0)$$

dá-nos o plano tangente ao gráfico G(f) da função f no ponto $(p_{\scriptscriptstyle 0},f(p_{\scriptscriptstyle 0})).$

A extensão para funções de $\mathbb{R}^n \to \mathbb{R}$ é imediata tendo em conta que no sistema acima as derivadas parciais são agora relatitvas a todas as variáveis. O plano tangente deixa de ser plano para ser espaço tangente, naturalmente.

Aula 12: Diferenciabilidade - (1) caso de funções reais de variável real

Seja $A(x)=f(x_0)+f'(x_0)(x-x_0)=T^1_{x_0}f$ a aplicação "afim" cujo gráfico dá a recta tangente ao gráfico de f no ponto x_0 .

Se f é diferenciável em x_0 , próximo de x_0 temos que $f(x) \approx A(x)$. O erro f(x) - A(x), ou melhor, o rácio

$$\operatorname{do\,erro\,} \frac{f(x) - A(x)}{x - x_0} \underset{x \to x_0}{\longrightarrow} 0 \;\; \Leftrightarrow \;\; \frac{f(x) - A(x)}{|x - x_0|} \underset{x \to x_0}{\longrightarrow} 0.$$

Temos assim:

$$f$$
 é diferenciável em $x_0 \iff \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \in \mathbb{R}$

$$\Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} = 0$$

A(x)

X

 $f(x_0)$

 \mathbf{X}_{0}

$$\Leftrightarrow \lim_{x \to x_0} \frac{f(x) - A(x)}{|x - x_0|} = 0$$

Aula 12: Diferenciabilidade de funções reais de 2 variáveis reais

Seja $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$. Em $p_0=(x_0,y_0)\in\mathrm{int}(D)$ suponhamos que existem as derivadas parciais $\frac{\partial f}{\partial x}(p_0)$ e $\frac{\partial f}{\partial y}(p_0)$; isto é, existe $\nabla f(x_0,y_0)$.

O gráfico da função afim $A(x,y)=f(x_0,y_0)+\nabla f(x_0,y_0)\cdot (x-x_0\,,\,y-y_0)$ é o plano tangente ao gráfico de f no ponto (x_0,y_0) . Seja $p=(x,y)\in \mathrm{int}(D)$.

Definição: Dizemos que f é diferenciável em $p_0=(x_0,y_0)$ se

$$\lim_{p \to p_0} \frac{f(p) - A(p)}{\|p - p_0\|} = 0$$

em que $A(p)=f(p_0)+\nabla f(p_0)\cdot (p-p_0)$ é a função afim cujo gráfico de A(p) é o plano tangente ao gráfico de f no ponto p_0 .

Nota: Esta função afim A é o polinómio de Talor $T_{p_0}^1f$ de grau 1 da função f no ponto $p_0=(x_0,y_0).$

Aula 12: Diferenciabilidade - em \mathbb{R}^n

Seja $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$. Em $p_0\in\operatorname{int}(D)$ suponhamos que existem as derivadas parciais $\frac{\partial f}{\partial x_i}(p_0)\ i=1,2,\ldots,n$; isto é, existe $\nabla f(p_0)$.

O gráfico da função afim $A(\mathbf{x}) = f(p_0) + \nabla f(p_0) \cdot (\mathbf{x} - p_0)$ é o espaço tangente ao gráfico de f no ponto $(p_0, f(p_0))$. Seja $p = \mathbf{x} \in \mathrm{int}(D)$.

Definição: f é diferenciável em p_0 se $\nabla f(p_0)$ existe e

$$\lim_{p \to p_0} \frac{f(p) - A(p)}{\|p - p_0\|} = 0$$

em que $A(p)=f(p_{\scriptscriptstyle 0})+\nabla f(p_{\scriptscriptstyle 0})\cdot (p-p_{\scriptscriptstyle 0})$ é a função afim cujo gráfico de A(p) é o espaço tangente ao gráfico de f no ponto $p_{\scriptscriptstyle 0}$.

Nota: Esta função afim A é o polinómio de Talor $T_{p_0}^1f$ de grau 1 da função f no ponto p_0 .

Aula 12: Continuidade das funções diferenciáveis

Teorema (continuidade de funções diferenciáveis) Sejam $f:D\subset\mathbb{R}^n\to\mathbb{R}$ e $p_0\in\mathrm{int}D$. Se f é diferenciável em p_0 então f é contínua em p_0 .

Sendo f diferenciável em p_0 , então $\lim_{p \to p_0} \frac{f(p) - A(p)}{\|p - p_0\|} = 0 \implies \lim_{p \to p_0} f(p) - A(p) = 0$. Queremos mostrar que $\lim_{p \to p_0} f(p) = f(p_0) \Leftrightarrow \lim_{p \to p_0} f(p) - f(p_0) = 0 \Leftrightarrow \lim_{p \to p_0} |f(p) - f(p_0)| = 0$. De facto,

$$0 \leq |f(p) - f(p_0)| = |f(p) - A(p) + A(p) - f(p_0)| \leq |f(p) - A(p)| + |A(p) - f(p_0)|$$

$$\leq |f(p) - A(p)| + |\nabla f(p_0) \cdot (p - p_0)| \leq {}^{\mathsf{a}} |f(p) - A(p)| + |\nabla f(p_0)|| ||p - p_0||.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \qquad \qquad 0$$

^aDesigualdade de Cauchy-Schwarz: Dados dois vectores $a,b\in\mathbb{R}^n$, $|a\cdot b|\leq \|a\|\|b\|$.