## NATIONAL UNIVERSITY OF SINGAPORE

#### **CS2106 – INTRODUCTION TO OPERATING SYSTEMS**

(Semester 2: AY2014/15)

Time allowed: 2 hours

## **INSTRUCTIONS TO STUDENTS**

- 1. Please write your Matriculation Number. Do not write your name.
- 2. This assessment consists of fifteen questions and eighteen printed pages, including this page.
- 3. This is a **CLOSED BOOK** assessment. You may use any approved calculators but not any PDA or laptop, especially those capable of external connectivity or communication.
- 4. Write your answers on this script only. Answer in the spaces given.
- 5. All question carry the **same weight**. I.e., the marks for each question will be scaled to 10, for a maximum possible total of 150.

| MATRICULATION NO: |      |
|-------------------|------|
|                   | <br> |

This portion is for examiners' use only

| Question | Marks |
|----------|-------|
| 1        |       |
| 2        |       |
| 3        |       |
| 4        |       |
| 5        |       |

| Question | Marks |
|----------|-------|
| 6        |       |
| 7        |       |
| 8        |       |
| 9        |       |
| 10       |       |

| Question | Marks |
|----------|-------|
| 11       | •     |
| 12       |       |
| 13       |       |
| 14       |       |
| 15       |       |

| TOTAL (Scaled | ): | <br>1 | 5 | ( |  |
|---------------|----|-------|---|---|--|
|               |    |       |   |   |  |

- 1. [12 marks]
  - a. Express the process flow graph shown below using cobegin/coend notation. (Use only the smallest possible number of cobegin/coned statements.)





b. Consider each of the following process flow graphs. Determine which of them can be expressed using cobegin/coend:













|                                          | (1) | (2) | (3) | (4) | (5) | (6) |
|------------------------------------------|-----|-----|-----|-----|-----|-----|
| expressible using cobegin/coend (yes/no) |     |     |     |     |     |     |

2. [12 marks] Consider the program shown below, where the a, b, ..., h represent some arbitrary processes. Draw the corresponding process flow graph.





3. [8 marks] Consider the 3 processes below, where A, B, C are arbitrary computations:

| process 1: | process 2: | process 3: |
|------------|------------|------------|
| while(1){  | while(1){  | while(1){  |
| P(s1);     | P(s2);     | P(s1);     |
| A;         | В;         | C;         |
| V(s2); }   | V(s1); }   | V(s1); }   |

The initial semaphore values are: s1 = 0, s2 = 1Assuming that all processes run concurrently, which of the following are possible sequences of executions of A, B, C:

|                   | yes/no |
|-------------------|--------|
| B A B A B A       |        |
| BCCCCC            |        |
| ABCABC            |        |
| BCABCA            |        |
| CABABC            |        |
| BCCCAA            |        |
| B A B C A B       |        |
| B C A B A B       |        |
| All of the above  |        |
| None of the above |        |

Solution 2

| Solution                                                                                             | 1                                          | Solution 2                                                                                                                                 | 2                                                                                                                                             |
|------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| ader() { P(mutex1); rc++; if(rc=1) P(cs); V(mutex1); CS; P(mutex1); rc; if(rc=0) V(cs); V(mutex1); } | writer() {     P(cs);     CS;     V(cs); } | reader() {     P(mutex1);     rc++;     if(rc=1) P(cs);     V(mutex1);     CS;     P(mutex1);     rc;     if(rc=0) V(cs);     V(mutex1); } | writer() {     P(mutex2);     wc++;     if(wc==1) P(cs);     V(mutex2);     P(w)     CS;     V(w)     P(mutex2);     wc;     if(wc==0) V(cs); |

Solution 1

b. Assume that the following read/write requests arrive while r1 is in CS: w1, w2, r2. Which semaphore, if any will the corresponding process be blocked on?

Can multiple readers enter CS concurrently?

Can multiple writers enter CS concurrently?

Can writers starve?

| *************************************** |
|-----------------------------------------|
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |

c. Assume now that the following read/write requests arrive while w1 is in CS: r1, r2, w2. Which semaphore, if any will the corresponding process be blocked on?

|                | Solution 1 | Solution 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rl blocked on: |            | Add and a second |
| r2 blocked on: |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| w2 blocked on: |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Which request will enter CS next: |  |
|-----------------------------------|--|
| Can readers starve?               |  |

5. [30 marks] The diagram on the right shows the Dining Philosophers problem with 5 philosophers (p1 through p5) and 5 forks (1 through 5).

Consider the following strategies for picking up the forks:







C. Each philosopher picks either the left or right fork at random, then it picks the other fork.

For each of the strategies, determine if it possible to **violate concurrency** in that only 1 philosopher is eating while the remaining 4 are blocked. If so then show **one** possible scenario in the table below. Specifically, state which forks each philosopher is holding and which fork he is requesting at the time of the violation:

|    | Strategy A |            | Strategy B |            |  | Strategy C |            |  |
|----|------------|------------|------------|------------|--|------------|------------|--|
|    | Holding    | Requesting | Holding    | Requesting |  | Holding    | Requesting |  |
| p1 |            |            |            |            |  | •          |            |  |
| p2 |            |            |            |            |  |            |            |  |
| p3 |            |            |            |            |  |            |            |  |
| p4 |            |            |            |            |  |            |            |  |
| p5 |            |            |            |            |  |            |            |  |

6. [15 marks] Consider the following elevator algorithm from the book:

```
monitor elevator {
    int direction=1, up=1, down=-1, position=1, busy=0;
    condition upsweep, downsweep;
request(int dest) {
    if (busy) {
       if ((position<dest) || ((position==dest) && (direction==up))) upsweep.wait(dest);
       else downsweep.wait(-dest);
    busy = 1;
    position = dest;
}
release() {
    busy = 0;
    if (direction==up) {
       if (!empty(upsweep)) upsweep.signal;
       else {
               direction = down;
               downsweep.signal;
    else if (!empty(downsweep)) downsweep.signal;
       else {
               direction = up;
               upsweep.signal;
       }
}
}
```

This code services all requests in both directions, i.e., when moving up and when moving down. On the next page, rewrite this code to perform the "circular scan" algorithm, which services all requests in **only one direction** (say up). When there are no more requests in that direction, it returns to the lowest request and again continues servicing all requests in the same upward direction.

For example, assume the following requests arrive while the elevator is at position 50:

It would service them in the order of 50, 55, 60, 70, and then continue with 5, 10, 20.

#### Hints:

- Instead of upsweep and downsweep, use two queues named upsweep1 and upsweep2.
- Instead of direction use phase (which can be 1 or 2).
- Eliminate the variables up and down.
- Feel free to abbreviate (e.g., p for position, d for destination, sig for signal, etc.)

- 7. [18 marks] Consider the implementations of P/V operations on semaphores where
  - P(s) is busy-waiting when s = 0
  - all P and V operations are critical sections (surrounded by binary mutex semaphores, also implemented using busy-wait)

Assume 2 processes (p1 and p2) start executing the following code at the same time (CS is a critical section): P(s); CS; V(s);

Make the following assumptions:

- Initially s = 1
- Executing CS takes c time units
- Executing a P operation takes p time units
- Executing a V operation takes v time units
- There is only a single CPU
- The time quantum is very small compared to c, p, or v and the time of a context switch is 0

a. Assume both processes start executing concurrently at time 0. Process p1 wins the race and enters

the CS first. Determine at what time each process completes each of its operations:

p1 completes P(s) at time:
p1 completes CS at time:
p2 completes P(s) at time:
p2 completes CS at time:
p2 completes CS at time:
p2 completes V(s) at time:
b. Consider now a different implementation of P and V where P blocks the process when s = 0, instead of busy waiting. The timing of the process that wins the race is unaffected but the process that blocks executes for an additional b units of time at the end of its P operation to block itself (where b<c). Assuming again that p1 and p2 start concurrently at time 0 and p1 wins the race, determine the following:</li>
p1 completes P(s) at time:

p1 completes CS at time:

p1 completes V(s) at time:

| 8. |                                 | system analogous to the last project of this co<br>the corresponding output for each of the read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|----|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | in                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | cr a                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | op a                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | cr b                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | op b                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | wr 1 x 2                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | wr 1 y 64                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | wr 2 z 192                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | sk 1 0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | rd 1 5                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | cr c                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | cr d                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | op c                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | rd 1 5                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | cl 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | op a                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | sk 1 64                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | rd 1 5                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
|    | sk 2 64                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | wr 2 w 3                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | sk 2 62                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | rd 2 7                          | The state of the s | _ |
|    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | a. List all files that exist at | t the end of the sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    | b. Which of these files are     | still open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

9. [15 marks] Consider three processes, p1, p2, p3, with the following arrival times and total service times (t):

| process | arrival | t |
|---------|---------|---|
| p1      | 0       | 5 |
| p2      | 2       | 7 |
| р3      | 3       | 2 |

a. Determine the start and end time of each process under the following scheduling disciplines:

Round robin with a quantum of 1.

Assume that any new process starts running immediately at the time of its arrival.

|            | pl | p2 | р3 |
|------------|----|----|----|
| Start time |    |    |    |
| End time   |    |    |    |

MLF (multi-level feedback) with 5 priority levels and T=1 Assume that at each level, processes are running in FIFO order.

|            | pl | p2 | р3 |
|------------|----|----|----|
| Start time |    |    |    |
| End time   |    |    |    |

b. At which priority level will each process terminate under the above MLF discipline:

|                            | pl | p2 | р3 |
|----------------------------|----|----|----|
| Final<br>priority<br>level |    |    |    |

- 10. [35 marks] Consider 4 processes, p1, p2, p3, p4, and 2 resources, R1, R2.
  - p1 and p3 first request (and acquire) R1, then R2, then release both resources at the same time
  - p2 and p4 first request (and acquire) R2, then R1, then release both resources at the same time

Since there are 4 processes, the system state is represented by a 4-tuple, where the first digit represents the operations of p1, the second digit represents the operations of p2, etc. For example, when only p3 is active, the system would cycle through the following states:



a. Complete the following state diagrams corresponding to the states 3010 and 1141, respectively:

| (pl) | (p2 | p3) | p4 | pl | (p2 | 03 | (p4) |
|------|-----|-----|----|----|-----|----|------|
| R1   | 0   | 0   | R2 | R1 | 0   | 0  | R2   |

b. Determine which of the states listed in the table are reachable. For each reachable state answer the questions below:

|                                      | 1234 | 1411 | 2020 | 3301 | 1311 |
|--------------------------------------|------|------|------|------|------|
| Is the state reachable? If yes then: |      |      |      |      |      |
| Is it a deadlock state?              |      |      |      | 3    |      |
| Is p1 blocked?                       |      |      |      |      |      |
| Is p2 blocked?                       |      |      |      |      |      |
| Is p3 blocked?                       |      |      |      |      |      |
| Is p4 blocked?                       |      |      |      |      |      |

- 11. [12 marks] Consider the portion of main memory shown below.
  - The memory uses variable partitions where tags and sizes are replicated at both ends of each block.
  - Each tag/size pair is represented by a single integer: A positive integer, n, represents an occupied block of size n; a negative integer, -n, represents a free block (hole) of size n.
  - The size n is the total size occupied by the block or hole. For example, addresses 0-5 contain an occupied block of size 6.
  - Each hole contains a forward and a backward link. For example, the hole at address 6 is linked to 22 and 146.
  - a. Assume that the block starting at address 12 is to be deleted. In column (a), show all changes to memory that are necessary to implement this deletion (show only what's truly necessary for correctness, no optional changes)
  - b. Now assume that the block starting at address 52 is to be deleted. Starting with the original configuration, show all changes in column (b).

|    |     | (a)         | (b) |      | _   | (a) (b) |    |    | (a) (b)     |     |     | (a) | (b)         | _       |
|----|-----|-------------|-----|------|-----|---------|----|----|-------------|-----|-----|-----|-------------|---------|
| 0  | 6   |             |     | 24   | 6   | į       | 48 | 62 |             | 72  | 54  |     |             | 1       |
| 1  | 0   |             |     | 25   | -4  |         | 49 | 34 |             | 73  | 4   |     |             |         |
| 2  | 0   |             |     | 26   | 8   |         | 50 | 8  |             | 74  | -12 |     | <u>.</u>    |         |
| 3  | 0   |             |     | 27   | 1   |         | 51 | -6 |             | 75  | 110 |     |             | j       |
| 4  | 0   |             |     | 28   | 122 |         | 52 | 10 | <u>.</u>    | 76  | 46  |     |             | ;       |
| 5  | 6   |             |     | 29   | 1   |         | 53 | 99 | ;<br>;<br>; | 77  | 0   |     |             | ;       |
| 6  | -6  |             |     | 30   | 1   |         | 54 | 99 |             | 78  | 0   |     | 1<br>1<br>1 | 1 1 1 1 |
| 7  | 22  |             |     | 31   | 1   | 1       | 55 | 88 |             | 79  | 0   |     | !<br>!<br>! |         |
| 8  | 146 |             |     | 32   | 1   |         | 56 | 54 | <br>        | 80  | 0   |     |             | 1111    |
| 9  | 23  |             |     | 33   | 8   |         | 57 | 2  |             | 81  | 0   |     |             | 1111    |
| 10 | 4   |             |     | 34   | 6   |         | 58 | 55 |             | 81  | 0   |     |             | :       |
| 11 | -6  |             |     | 35   | 9   |         | 59 | 88 |             | 82  | 0   |     |             | :       |
| 12 | 4   |             |     | 36   | 567 |         | 60 | 3  | <u>.</u>    | 83  | 0   |     | ļ<br>Ļ      |         |
| 13 | 56  |             |     | 37   | 66  |         | 61 | 10 |             | 84  | -12 |     | ļ           | :       |
| 14 | 7   |             |     | 38   | 33  |         | 62 | -8 | <u>.</u>    | 85  | 54  |     |             |         |
| 15 | 4   |             |     | . 39 | 6   |         | 63 | 46 | ·           | 86  | 12  |     | ļ           |         |
| 16 | 6   |             |     | 40   | 6   |         | 64 | 22 |             | 87  | 13  |     |             |         |
| 17 | 66  |             |     | 41   | 0   |         | 65 | 3  |             | 88  | 14  |     |             | -       |
| 18 | 6   |             |     | 42   | 9   |         | 66 | 3  |             | 89  | 15  |     |             |         |
| 19 | 6   |             |     | 43   | 3   |         | 67 | 3  |             | 90  | 16  |     |             |         |
| 20 | 6   |             |     | 44   | 5   |         | 68 | 3  |             | ••• |     |     | :           | ;       |
| 21 | 6   | ;<br>;<br>; |     | 45   | 6   |         | 69 | -8 |             |     |     |     |             |         |
| 22 | -4  |             |     | 46   | -6  |         | 70 | 4  |             |     |     |     |             |         |
| 23 | 62  |             |     | 47   | 74  |         | 71 | 55 |             |     |     |     |             |         |

- 12. [38 marks] Consider a virtual memory system using paging (no segmentation) with the following specifications:
  - Size of virtual address (VA) = 10 bits
  - Size of physical address = 8 bits
  - Size of the offset w = 5 bits
  - There are currently 2 processes. The contents of the two page tables, PT1 and PT2, along with their physical addresses (in hex) are as shown in the diagram on the right
  - The page tables contain frame *numbers* (not memory addresses). Hence only 0 through 7 represent valid frame numbers. Any number greater than 7 is an invalid frame number.
  - a. Complete the table below by determining the contents of each frame. (State which page of which process resides in that frame or enter "free" if the frame is not occupied.)

| Frame# | Contents |
|--------|----------|
| 0      | PT1      |
| 1      |          |
| 2      |          |
| 3      |          |
| 4      | PT2      |
| 5      |          |
| 6      |          |
| 7      |          |

|    | PT1 |  |
|----|-----|--|
| 00 | 5   |  |
| 01 | В   |  |
| 02 | F   |  |
| 03 | 6   |  |
| 04 | 9   |  |
| 05 | A   |  |
| 06 | F   |  |
| 07 | 2   |  |
| 80 | F   |  |
| 09 | 8   |  |
| 0A | 9   |  |
| 0B | F   |  |
| 0C | F   |  |
| 0D | F   |  |
| Œ  | F   |  |
| 0F | F   |  |
| 10 | Α   |  |
| 11 | В   |  |
| 12 | С   |  |
| 13 | D   |  |
| 14 | E   |  |
| 15 | F   |  |
| 16 | F   |  |
| 17 | 8   |  |
| 18 | 9   |  |
| 19 | A   |  |
| 1A | 8   |  |
| 1B | 8   |  |
| 1C | Е   |  |
| 1D | В   |  |
| 1E | С   |  |
| 1F | A   |  |
|    |     |  |

|     | nma    |
|-----|--------|
|     | PT2    |
| 80  | 8      |
| 81  | 1      |
| 82  | A      |
| 83  | 6      |
| 84  | 9<br>F |
| 85  | F      |
| 86  | A      |
| 87  | 7      |
| 88  | С      |
| 89  | D      |
| 8A  | 5      |
| 8B  | 5<br>E |
| 8C  | 9      |
| 8D  | F      |
| 8E  | F      |
| 8F  | F      |
| 90  | 9      |
| 91  | A      |
| 92  | В      |
| 93  | F      |
| 94  | F      |
| 95  | F      |
| 96  | F      |
| 97  | F      |
| 98  | F      |
| 99  | F      |
| 9A  | F      |
| 9B  | A      |
| 9C  | A      |
| 9D  | 8      |
| 9E  | 9      |
| 9F  | С      |
| - 1 |        |

| Virtual address | Physical address<br>under process 1 | Physical address<br>under process 2                                                |
|-----------------|-------------------------------------|------------------------------------------------------------------------------------|
| 070             |                                     |                                                                                    |
| 0BB             |                                     |                                                                                    |
| 0FF             |                                     |                                                                                    |
| 141             |                                     |                                                                                    |
| The virtual a   |                                     | e extended to use both segmentation and<br>The sizes of pages and page tables rema |

|    | The virtual address size will be extended to 18 bits. The sizes of pages and page tables remain as before. Answer the following questions: |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
|    | i. How many segments can be implemented? (give as power of 2)                                                                              |
|    | ii. How many pages can each segment have? (give as power of 2)                                                                             |
|    | iii. What is the total virtual memory size?(number of addressable words)                                                                   |
| d. | With the above extension, the segment table does not fit into a single frame. How many pages does it have to be divided into?              |
|    |                                                                                                                                            |
| e. | What is the maximum size of the virtual address such that the segment directory and all page tables fit into a single frame each?          |
|    | (bits)                                                                                                                                     |

13. [12 marks] Consider an expanding file index similar to Unix but modified as shown in the figure below.



# Specifically:

- The first 4 blocks (0-3) resides inside the descriptor (requiring no disk access)
- The next 4 blocks (4-7) are pointed to directly from the descriptor (requiring 1 disk access each)
- The next 4 blocks (8-11) require 1 level of indirection, i.e., 1 additional disk access
- The next 16 blocks require 2 levels of indirection, and so on

Answer the following questions for each given file size:

- a. How many disk accesses are necessary to read the entire file sequentially
- b. How many disk accesses are necessary (on average) to seek to a random location within the file.

|    |          | File size |           |           |           |           |
|----|----------|-----------|-----------|-----------|-----------|-----------|
|    | 2 blocks | 7 blocks  | 12 blocks | 15 blocks | 17 blocks | 29 blocks |
| a. |          |           |           |           |           |           |
| b. |          |           |           |           |           |           |

- 14. [20 marks] Consider the following disk organization:
  - the disk rotates at 600 rpm
  - there are 10 blocks/track
  - all blocks are numbered sequentially starting from 0 (i.e., track 0 holds blocks 0-7, track 1 holds blocks 8-15, etc.)
  - no track skew is used
  - the average seek time to a different track is 6 ms
  - the time for any CPU calculations is negligible
  - at time 0 the disk head is at the beginning of block 12

Requests to access the following blocks are received in the given order: 12, 13, 15, 39, 5, 41

| a. | In which <b>order</b> will the requests be serviced (starting with the current sector 12) under:                                                        |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | • FIFO                                                                                                                                                  |  |  |  |
|    | SSTF (Shorted Seek Time First)                                                                                                                          |  |  |  |
|    | • Scan (Elevator Algorithm; assume r/w head is moving up)                                                                                               |  |  |  |
| b. | What will be the total <b>distance</b> (number of tracks) traveled by the read/write head to service al requests (again starting from sector 12) under: |  |  |  |

| • | FIFO |  |
|---|------|--|
|   |      |  |

| • | SSTF   |  |
|---|--------|--|
| _ | DOIL . |  |

| • | Scan |  |
|---|------|--|
|   |      |  |

c. For each request, determine the time at which the r/w head reaches the end of that block:

| Block number         | 12 | 15 | 39 | 41 |
|----------------------|----|----|----|----|
| Time at end of block |    |    | 1  |    |

d. Repeat the above question but assuming seek time of 12 ms

| Block number         | 12 | 15 | 39 | 41 |
|----------------------|----|----|----|----|
| Time at end of block |    |    |    |    |

| 15. | 5. [10 marks] Consider a biometric user authentication system that generates values between 0 and 1 where                                          |                     |                             |                                                                   |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|-------------------------------------------------------------------|--|
|     | I is a perfect match and 0 a perfect mismatch. For valid attempts, the probability of getting a value x is approximated by the following function: |                     |                             |                                                                   |  |
|     |                                                                                                                                                    |                     | $g = 0$ $g = 4x^2 - 4x + 1$ | for x the interval [0:0.5) for x in the interval [0.5:1]          |  |
|     |                                                                                                                                                    | · invalid<br>ction: | (imposter) attempts, the    | probability of getting a value x is approximated by the following |  |
|     |                                                                                                                                                    |                     | f = -2.5x + 1 $f = 0$       | for x in the interval [0 : 0.4] for x in the interval (0.4 : 1]   |  |
|     | a. Is it possible to set the threshold value for x such that all genuine attempts are accepted and all imposter attempts are rejected?             |                     |                             |                                                                   |  |
|     |                                                                                                                                                    | <del></del>         | (yes/no                     | )                                                                 |  |
|     | b. What should be the maximal threshold value for x such that all genuine attempts are accepted?                                                   |                     |                             |                                                                   |  |
|     | c. What should be the minimal threshold value for x such that all imposter attempts are rejected?                                                  |                     |                             |                                                                   |  |
|     | d.                                                                                                                                                 | Assum               | e the threshold value is s  | et to 0.2. What percentage of genuine attempts will be rejected?  |  |
|     | What percentage of imposter attempts will be accepted?                                                                                             |                     |                             |                                                                   |  |

END OF PAPER