Implementación del controlador

Índice

- Motor de DC
- Encoder
- Modulación PWM
- Driver del motor
- Arquitectura SW del controlador

Motor DC

$$\vec{F} = I \cdot (\vec{L} \times \vec{B})$$

F: fueza inducida

I: corriente

L: longitud de la bobina

 τ : par fuerza (torque)

Motor DC

Pololu 4741

- 12 V
- Reductora 18,75:1
- Encoder resolución 64
- Velocidad máxima sin carga 8.8 rps

Engranajes (reductora)

Quadrature Encoder

- Disco magnético acoplado al eje
- 2 sensores de efecto Hall
- Resolución 64 cuentas por revolución del eje del motor

Posibilita la realización de medidas

- de fase (relativas)
- o de velocidad de giro

Implementación

- Detectar cambios en A o B
- Incrementar/decrementar un contador teniendo en cuenta la fase actual y la anterior
- #pasos 1 vuelta = 64*factor reductora
- Fase = #pasos x $2\pi/\#$ pasos_1_vuelta (rad)
- Velocidad ang = Fase_en_Tm/Tm (rad/s)

PWM

PWM: Modulación de anchura de pulsos

- Genera trenes de pulsos de frecuencia constante y ancho variable
- Aplicaciones: regulación de velocidad en motores o luminosidad en LEDs

PWM

Generación de señal PWM

ESP32 contiene 16 controladores PWM independientes (denominados LED_PWM)

Programación con el entorno Arduino:

```
// Configurar LED_PWM
ledcSetup(pwmChannel, pwmfreq, pwmresolution);

// Anexar el GPIO al canal PWM
ledcAttachPin(PWM_Pin, pwmChannel);

// Excitacion del motor con PWM
ledcWrite(pwmChannel, Valor_pwm);

// Valor_pwm: valor de B (entre 0 y 2^ Pwmresolution-1)
```

Driver del motor DC

TB9051FTG

TB9051FTG simplified truth table (PWM1 + PWM2 + EN)						
Inputs				Outputs		Operation
EN	ENB	PWM1	PWM2	OUT1	OUT2	Operation
PWM	0	1	0	PWM (H/Z)	PWM (L/Z)	forward/coast at speed PWM %
		0	1	PWM (L/Z)	PWM (H/Z)	reverse/coast at speed PWM %
0	X	X	X	Z	Z	coast (outputs floating/disconnected)
Χ	1	X	X	Z	Z	

Lectura del encoder

- Genera interrupciones en cada cambio en A o B
- La ISR ENCODER solo lee los valores de Ay B y los envía a una cola
- Posteriormente, la Tarea ENCODER procesa dichos valores
 - Calcula el incremento/decremento de pasos
 - El resultado lo deja en una variable global

Lazo de control

- Un TIMER genera interrupciones periódicas cada Tm seg
- La ISR del TIMER solo lee la cuenta del encoder y activa un semáforo binario
- La Tarea LAZO CONTROL
 - Calcula el ángulo/velocidad
 - Lee señal de referencia
 - Calcula la señal de error
 - Procesa acción del controlador
 - Aplica mediante PWM la acción del controlador

Cálculo del ángulo y velocidad del motor

<u>Ángulo</u>

- #pasos_en_1_vuelta = factor_reducción_engranajes x factor_mult_encoder = 18,75 x 64 = 1200 pasos
- Ángulo_por_paso = 2π/ #pasos_en_1_vuelta = 5,235e-3 rad (0,3°)

Velocidad de giro

- Periodo de muestreo $T_m = 0.01 \text{ seg } (f_m = 100 \text{Hz})$
- Velocidad de giro = (#pasos en T_m / T_m) / #pasos en 1 vuelta rps

