

Facial Expression Recognition System Using DNN Accelerator with Multi-threading on FPGA

<u>Takuto Ando¹</u> Yusuke Inoue²

¹ Electrical, Electronics Information Engineering Major,

National Institute of Technology, Oita College Advanced Course

² Department of Information Engineering, National Institute of Technology, Oita College

Outline

01	Introduction	Problem Background and objectives
02	Proposed method	Explanation of the FER system on DPU
03	Experimental evaluation	Evaluate by comparing performance with the previous work
04	Disscution	Investigate optimal DPU size and frequency
05	Conclusion	Conclusion of this presentation and future work

Outline

01	Introduction	Problem Background and objectives
02	Proposed method	Explanation of the FER system on DPU
03	Experimental evaluation	Evaluate by comparing performance with the previous work
04	Disscution	Investigate optimal DPU size and frequency
05	Conclusion	Conclusion of this presentation and future work

Facial expression and robot

Facial expression: Effective Non-Verbal Communication

- Human-to-Human: Conveys emotions and intentions
- Human-Computer: Enables intuitive interactions
- Applied to pet robots and medical robots

What is facial expression recognition?

Robots need to understand emotions

Ekman basic emotions classify them into six types [1]

Ekman's six basic emotions

Implementation on robot

Installation on battery-powered robots

- Low-power processing for longer operation
- DNN recognition needs a high-performance unit (e.g., GPU)
- GPU provides high performance BUT high-power consumption

FPGA Implementation : Balanced Solution

low power consumption and high computing performance

Previous work

Vinh et al. implemented a facial expression recognition system using an SoC FPGA [2]

FPGA

In this work

Our work **Previous work** ACC **CPU CPU FPGA** DPU FD (non-DNN) FER (DNN) Overall control FD (DNN) Overall control FER (DNN)

: Face Detection ACC: accelerator

FER: Facial Expression Recognition DPU: Deep learning Processing Unit

Objectives

Running Two DNN Models on the Same DPU

- Improve DPU utilization efficiency with multi-threading
- Achieve high throughput and low power consumption

System Implementation and Evaluation

- Offloaded two DNN inferences to FPGA
- Face detection and facial expression recognition

Outline

01 Introduction Problem Background and objectives 02 Proposed method Explanation of the FER system on DPU 03 Experimental evaluation Evaluate by comparing performance with the previous work 04 Disscution Investigate optimal DPU size and frequency 05 Conclusion Conclusion of this presentation and future work

Two DNN models

Face detection: DenseBox

Input : $640 \times 460 \times 3$

Output : Coordinates of the face region (x, y, w, h)

Facial expression recognition : CNN

Input : $48 \times 48 \times 1$

Output: Label of the expression class (7 categories)

Face detection model

Dense Box [3]: Face detection model provided by Xilinx

- Lightweight and simple network
- The Wider Face dataset [4] was used for training

Face detection using Dense box example [3]

Facial expression recognition model

Guarniz's CNN architecture [5]

- Feature extraction with 4 repeated blocks (convolution, batch normalization, activation, pooling, dropout layers)
- Trained using FER-2013 dataset

FER-2013 [6]

7 facial expression labels (Ekman's basic emotions + "Neutral"):

Training set: Approx. 27,000 images Test set: Approx. 3,500 images

Face images: 48x48 pixels

Anger

Disgust

Fear

Happy

Sadness

Surprise

Neutral

Hardware configuration

What is "DPU"?

Deep learning Processing Unit

- Implemented on FPGA as a CNN accelerator
- Provided by Xilinx
- Multiple DNN models executed in time division on the same DPU

What is "DPU"?

Purposeful use is possible

- Select an architecture from B512 to B4096 for each application
- The higher the number, the higher the performance

Processing performance

FPGA resources for different DPU sizes

DPU Architecture	LUT	Register	Block RAM	DSP
B512	26922	34543	72	118
B1024	34074	48057	104	230
B2304	42127	68829	165	438
B4096	52161	98249	255	710

Multi-threading strategy

Utilization efficiency of the DPU in single-threading

- The DPU has idle time until it is given instructions
- This method does not utilize the DPU efficiently

Multi-threading strategy

Utilization efficiency of the DPU in multi-threading

- Increased frequency of tasks assigned to DPU
- Reduced waiting time, enabling more efficient DPU operation

Outline

01	Introduction	Problem Background and objectives
02	Proposed method	Explanation of the FER system on DPU
03	Experimental evaluation	Evaluate by comparing performance with the previous work
04	Disscution	Investigate optimal DPU size and frequency
05	Conclusion	Conclusion of this presentation and future work

Experimental objectives

Assess the effectiveness of offloading DNN inference to the DPU

Comparison with previous work

- Recognition performance evaluation for each DNN model
 - Recognition accuracy
 - Processing time
- System evaluation : overall system performance

Evaluation board

Integrates a CPU and FPGA on the same chip

Target board : Xilinx Kria KV260

CPU: ARM Cortex-A53

FPGA: Xilinx UltraScale+

DDR memory: 4 GB

Operating frequency: 1.3 GHz

Hardware architecture

- CPU and DPU communicate via AXI bus
- DPU operation is controlled by fetching instructions from off-chip memory

DPU

Hardware Architecture Overview [7]

Evaluate each inference

01 > Face detection

Using AFW dataset (401 images) [8]

Compare AP and processing time per image

02 Facial expression recognition

Using the FER dataset (3,589 images)

Compare accuracy and processing time per image

Evaluate each inference

01 > Face detection

Using AFW dataset (401 images) [8]

Compare AP and processing time per image

02 Facial expression recognition

Using the FER dataset (3,589 images)

Compare accuracy and processing time per image

Accuracy of face detection

Comparison of the DNN model (this work)

Processing time face detection

Comparison of the DNN model (this work) with the Haar Cascade detector (previous work)

Comparison of average processing time with previous work

Evaluate each inference

01 > Face detection

Using AFW dataset (401 images)

Compare AP and processing time per image

02 Facial expression recognition

Using the FER dataset (3,589 images)

Compare accuracy and processing time per image

Facial expression recognition results

[3] L. Pham, T. H. Vu and T. A. Tran, "Facial Expression Recognition Using Residual Masking Network," *2020 25th International Conference on Pattern Recognition (ICPR)*, Milan, Italy, 2021, pp. 4513-4519.

Comparison with CNN model from previous work

1. Recognition accuracy [%]

Comparison of accuracy with previous work

- Slightly higher than the previous work
- Lower than SOTA but acceptable

2. Processing time / image [ms]

Comparison of processing time with previous work

- Previous work is about 1 ms superior
- Almost ignorable due to face detection time

Overall system comparison

Evaluate throughput and power consumption

- Throughput
 - Measure overall system throughput
- Power consumption (SoC)
 - Compare idle state (7.8W) with system runtime
 - Measure using KETOTEK KTEM02
 connected to the board's power socket

Overall system comparison

Evaluate throughput and power consumption

Throughput

Previous work : 11.67 FPS

Our work (single-threading): 14.69 FPS

Our work (multi-threading) : 25.00 FPS

Realize real-time performance

Comparison of throughput per power consumption

Compare circuit size

Compare FPGA resource utilization with previous work

This system is slightly larger

Comparison of FPGA resource utilization

	ALM or LUT	DSP	BRAM
Previous work (Intel: ALM)	22,465	112	44
Our work (Xilinx: LUT)	27,023	118	12

Two DNN inferences could be performed without a significant increase in circuit size

Verify utilization efficiency of DPU

Compare DPU utilization by threading

Calculate <u>DPU processing time</u> as a percentage of system runtime

DPU utilization improved by approximately 3.43x

DPU utilization comparison by threading

Outline

01	Introduction	Problem Background and objectives
02	Proposed method	Explanation of the FER system on DPU
03	Experimental evaluation	Evaluate by comparing performance with the previous work
04	Disscution	Investigate optimal DPU size and frequency
05	Conclusion	Conclusion of this presentation and future work

Analysis of optimum operating frequency

Investigate optimal DPU operating frequency

The throughput improvement rate is low even

when the operating frequency exceeds 400 MHz

Throughput per power consumption by frequency

Frequency	Throughput [FPS]	Peak Power [W]	Power [W]	Throughput/Power [FPS / W]
600	27.78	11.7	2.3	12.08
500	25.00	11.6	2.2	11.36
400	25.00	11.4	2.0	12.50
300	21.74	11.2	1.8	12.08

Investigated optimal DPU size

FPGA resources and performance

Comparison made between B512 and larger DPU at 400 MHz

For larger DPU, throughput is not worth the circuit size

Comparison of FPGA resources and performance with different DPU sizes

Size	FPGA resource		Thread	Throughput	Power	
Size	LUTs	DSPs	BRAMs	Tilleau	[FPS]	[W]
512	27,023	118	12.0	1	14.69	2.4
312	21,023	110	12.0	2	25.00	2.7
1024	34,593	230	44.0	1	19.21	2.5
1024	34,393	230		2	27.74	3.1
2034	41,861	438	60.5	1	20.80	2.9
2034	41,001	436		2	27.75	3.2
4096	51,561	710	82.5	1	23.77	3.2
4090	31,301	/10		2	27.74	3.5

9.26 FPS/W

Outline

01	Introduction	Problem Background and objectives
02	Proposed method	Explanation of the FER system on DPU
03	Experimental evaluation	Evaluate by comparing performance with the previous work
04	Disscution	Investigate optimal DPU size and frequency
05	Conclusion	Conclusion of this presentation and future work

Conclusion

- We implemented facial expression recognition system on DPU
- We utilized a systolic array accelerator for time-division inference of two DNNs on the same DPU
- We proposed a multi-threaded system to improve throughput and DPU utilization efficiency
- Future work: Reduce power consumption, optimize processing for realworld applications (e.g., face detection every few frames)

appendix

Processing Times for System

Privious work challengings

Low accuracy with Haar Cascade detector running on CPU

Very lightweight

 \bigcirc

Not robust to detect oblique or sideways faces

Very sensitive to lighting

Poor facial expression recognition accuracy

due to no proper face detection

Quantization & Compliation

Quantization: Converts 32-bit floating type → 8-bit integer type

Reduces the number of hardware operations

Compilation: Converted to a format executable by DPU

Accuracy by Expression Classes

Confusion matrix

Fear class
Sad class

Otherwise, high accuracy

Prediction

Compare with other sizes of the DPU

Investigated throughput per power consumption

Comparison made between B512 and larger DPU at 400 MHz

B512 multi-threading execution

achieves highest efficiency of 9.26 FPS/W

Throughput per power consumption for hardware with each DPU

Evaluation by DPU size

FPGA resource utilization: Kria KV260

Comparison of circuit size embedding each DPU

スライド素材

Outline

01	Introduction	Problem Background and objectives
02	Proposed method	Explanation of the FER system on DPU
03	Experimental evaluation	Evaluate by comparing performance with the previous work
04	Disscution	Investigate optimal DPU size and frequency
05	Conclusion	Conclusion of this presentation and future work