122 - Canaux rectangulaires : profondeurs conjuguées h' et h'' de même énergie H (pour un débit donné)

$$q = \frac{Q}{L}$$
 - Débit par unité de largeur du canal

K', K" - Valeurs du tableau

On a: h' = K'H; h'' = K''H

$x = \frac{q^2}{2g H^3}$	0	1	2	3	4	5	6	7	8	9
0,00	0,000	0,032	0,046	0,056	0,065	0,073	0,081	0,088	0,094	0,100
	1,000	999	998	997	996	995	994	993	992	
OI	0,106	989	988	987	986	984	983	982	981	980
02	154	158	162	166	170	174	178	182	185	189
	979	978	977	976	975	974	973	971	970	969
03	193 968	196 967	200 966	204 965	207 963	962	96I	960	959	957
04	228	231	234	237	241	244	247	250	254	257
	956	955	954	953	951	950	949	948	946	945
0,05	0,260	0,263	0,266 941	0,269	939	0,276 937	0,279 936	0,282 935	0,285 933	0,288
06	291	294	297	300	303	306	309	312	315	318
	931	929	928	927	925	924	922	921	920	
07	321	324 915	327 914	330 912	333	336 909	339 908	342 906	345 905	348 903
08	35I 902	354 900	357 898	360 897	363 895	366 894	369 892	37 ² 890	375 889	378 887
09	381 885	385 883	388 882	391 880	394 878	397 876	400 874	403 873	406 871	409 869
0,10	0,413	0,416	0,419	0,422	0,425	0,429	0,432	0,435 853	0,439	0,442
II	445 846	449 844	452 842	456 840	459 837	463 835	466 833	470 830	473 828	477 825
12	481 823	484	488	492 815	496 812	500	504	508 803	512	517
13	52I 794	5 ² 5	530	535 783	539 779	544 775	549 771	555 767	560	566
14	572 753	578 748	585 742	592 736	600 729	609	619		654	-

⁽¹⁾ Le régime critique se produit pour la valeur x=0,14815, à laquelle correspond K'=K''=0,667.

Exemple: $Q = 100 \text{ m}^3/\text{s}$; L = 10 m; H = 10 m. On a

$$q = \frac{Q}{L} = \frac{100}{10} = 10 \text{ m}^2/\text{s}; \quad x = \frac{q^2}{2 \text{ g } H^3} = \frac{100}{19600} = 0.051$$

La table donne K'=0.263 et K''=0.943. C'est-à-dire que le débit donné peur s'écouler avec l'énergie donnée, sous deux profondeurs : $h'=0.263\,H=2.63\,m$; $h''=0.943\,H=9.43\,m$. La première correspond au régime torrentiel, la seconde au régime tranquille.

123 - Canaux triangulaires : profondeurs conjuguées h' et h'' de même énergie H (pour un débit donné)

Q - débit; m - pente des côtés (horizontal sur vertical); K' et K'' - valeurs du tableau

On a:
$$h' = K'H$$
; $h'' = K''H$

	ī	1			1					
$x = \frac{Q^2}{2gm^2H^5}$	0	1	2	3	4	5	6	7	8	9
0,00	0,000	0,184	0,225	0,252	0,272	0,290	0,305	0,318	0,331	
0,01	0,352	0,362	0,372 987	0,381	0,389	0,397 984	994	993	992	0,342 991 0,427
0,02	0,433 978	0,440	0,446	o,453 974	°,459 973	0,465	983	982	981	979
0,03	0,493 965	0,499	0,504 963	0,509	0,514	0,520 958	971	969	968 °,535	967
0,04	0,544 951	0,549	°,554 948	0,559 946	0,563	0,568	957	956	954	953 0,587-
0,05	0,591 934	0,596	0,601	0,605	0,610	0,614	0,619	0,624	938	936
0,06	0,638	0,643	0,648	0,653	0,657	0,662	923 0,667 899	921 0,673 896	918 0,678	0,683
0,07	0,689	0,694	0,700	0,706 876	0,712	0,718	0,725	o,733 858	893 0,740 852	890 0,749 845
0,08	0,759 837	0,773 825	Q ² 2gm F.	$\frac{1}{H^5} = 0,0$						

Exemples: 1) $Q = 10 \text{ m}^3/\text{s}$; m = 2; H = 3 m. On a:

$$x = \frac{Q^2}{2 g m^2 H^5} = \frac{100}{19 071} = 0,00524$$

De la table, par interpolation, on déduit K'=0,294 et K''=0,995.

On obtient: h' = K' H = 0.88 mètres (régime torrentiel); h'' = K'' H = 2.99(régime tranquille).

2) Déterminer la profondeur critique, pour $Q = 10 \text{ m}^3/\text{s}$ et m = 2.

Le régime critique est tel que $\frac{Q^2}{2 \text{ g m}^2 H^5} = 0,0819$; par conséquent

$$H = 5\sqrt{\frac{Q^2}{2 g m^2 \times 0,0819}} = \sqrt[5]{15,56} = 1,73$$

Donc :

$$h_{\rm c} = 0.8 \ H = 1.38 \ {\rm m}$$

124 - Canaux trapézoidaux : profondeurs conjuguées, h' et h' de même énergie H (pour un débit donné)

Q - débit; l - largeur du fond; m - pente des côtés (horizontal sur vertical)

$$x = \frac{Q^2}{2g\ H^3\ l^2}; \quad y = \frac{m\ H}{l}\;;$$

 K^{\prime} , $K^{\prime\prime}$ - valeurs du tableau

On a:
$$h' = K' H$$
; $h'' = K'' H$

1	y = 0,1 $y = 0,3$		y =	y=0,5		y = 1		2	y=4		y=	6	
x	K' K"	, x	K' K''	x	K' K''	x	K' K''	x	K' K''	x	K' K''	*	K.1
0,0	1 0,1		0,10	1	0,10	0,01	0,10	0,01	0,09	0,01	0,08	0,01	0,07
0,0	2 0,1		0,15		0,14	0,02	0,13	0,05	0,18 99	0,05	0,15	0,03	0,13
0,0	0,19	, , 0	0,18		0,18	0,04	0,19	0,10	99	0,10	0,20	0,10	0,17
0,0.	0,22	- 1 ' '	0,21	0,04	0,20	0,06	0,23 98	0,15	0,29	0,20	0,26 99	0,30	0,25
0,05	0,23		0,24	0,05	0,23	0,09	0,28 98	0,20	0,33 98	0,30	0,30	0,60	0,32 99
0,06	0,28		0,26 96		0,25	0,12	0,32 97	0,25	0,36 97	0,40	0,33	0,90	98 98
0,07	0,31		0,29	0,08	0,29	0,15	0,36	0,30	0,39 96	0,60	0,39 97	1,2	0,41 97
0,08	0,34		0,31	0,10	o,33 95	0,18	0,39 95	0:35	0,42 95	0,80	0,43 96	1,5	0,45 96
0,09	0,36		0,36	0,12	0,37	0,21	0,42	0,40	0,45 95	1,0	0:48 95	1,8	0,48 96
0,10	0,39		0,40	0,14	0,40	0,24	0,46	0,45	0,47	1,2	0,51		0,51 95
0,11	0,42	0,14	0,44	0,16	0,44	0,27	0,49	0,50	0,50	1,4	93		0,54
0,12	0,45	0,16	0,48	0,18	o,47 89	0,30	0,52	0,60	0,55	1,6	0,59		0,57 93
0,13	0,48	0,17	0,51	0,20	0,51	0,33	o,55 88	0,65	0,58	1,8	0,63	3,0	0,60
0,14	0,51	0,18	0,54 84	0,22	0,55 85	0,36	0.59	0,70	0,60	1 51	0,6	3,3	0,63
0,15	0,55	0,19	0,57	0,24	0,59	0,38		0,75	0,63	2,0	0,6	7 3,6	
0,16	0,59	0,20	0,60	0,25	0,62	0,40		0,80	0,66	2,1	0,6	9 3,9	0,69
,165	0,62	0,21	0,64	0,26	0,65	0,42	0,69	0,85	0,70	2,2	0,7	3 4,2	
,169		0,215		0,269		0,431	79 0,74 77	0,880	0,76	2,27	0,7		