

English Abstract for DE 197 12 401 C1

Process for degreasing and/or purifying metallic moulded pieces, such as wires, sheets or foils, especially made of Al or Cu, comprises applying a cleaning agent in the form of an activated peroxy compound at 10-90 deg C to the surface of the piece in the presence of ultrasound.

7864

(5) Int. Cl. 6:
C 23 G 1/24B 08 B 3/08
B 08 B 3/12(19) BUNDESREPUBLIK
DEUTSCHLANDDEUTSCHES
PATENTAMT(12) Patentschrift
(10) DE 197 12 401 C 1

(21) Aktenzeichen: 197 12 401.1-45
 (22) Anmeldetag: 25. 3. 97
 (43) Offenlegungstag: -
 (45) Veröffentlichungstag
der Patenterteilung: 20. 5. 98

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(66) Innere Priorität:
197 00 163. 7 07. 01. 97(72) Erfinder:
Antrag auf Teilnichtnennung(73) Patentinhaber:
Krupp VDM GmbH, 58791 Werdohl, DEGregarek, Ulrich, Dipl.-Ing., 58762 Altena, DE;
Tauchnitz, Heiko, Dr., 06688 Wengelsdorf, DE;
Vanselow, Heike, Dipl.-Chem., 07743 Jena, DE(66) Für die Beurteilung der Patentfähigkeit in Betracht
gezogene Druckschriften:DE-PS 6 14 352
DE 35 33 886 A1
EP 07 56 023 A1

(54) Verfahren zum Reinigen und/oder Entfetten von metallischen Formstücken

(55) Verfahren zur Entfettung und/oder Reinigung von me-
tallischen Formstücken wie Drähten, Blechen und/oder
Folien, in Gegenwart von Ultraschall, wobei als Reini-
gungsmedium eine aktivierte Peroxoverbindung, vor-
zugsweise eine Wasserstoffperoxid enthaltende wäßrige
Lösung, bei Temperaturen zwischen 10 und 90°C auf die
Oberfläche des Formstückes einwirkt.

E 197 12 401 C 1

DE 197 12 401 C 1

Beschreibung

Gegenstand der Erfindung ist ein Verfahren zur Entfettung und/oder Reinigung von metallischen Formstücken wie Drähten, Blechen und/oder Folien, insbesondere aus Aluminium oder Kupfer, in Gegenwart von Ultraschall.

Es ist bekannt, daß zur Entfettung respektive Reinigung metallischer Formstücke insbesondere Dräten Blechen und/oder Folien Reinigungsmittel in flüssiger, pastöser oder fester Form eingesetzt werden, die in der Regel aus mehreren Komponenten zusammengesetzt sind und teilweise gegen Korrosion schützen.

Die verwendeten Reinigungsmittel können eingeteilt werden in solche, die in wäßriger Phase lösend und/oder emulgierend und/oder dispergierend wirken und in solche, bei deren Einsatz die metallische Oberfläche vorwiegend mechanisch gereinigt wird (Reinigungspulver, Tücher).

In den Metallreinigungsmitteln können beispielsweise enthalten sein:

- organische Lösungsmittel (Fluorchloralkane, Tri- und Perchloräthylen, Alkohole, Benetzungsmittel)
- anorganische fettemulgierende Stoffe (Laugen, Natriumcarbonat, Natrium- und Kaliumsilicate, Phosphate)
- Ammoniak, Tenside, Emulgatoren und Dispergiermittel wie beispielsweise Alkyl- und Arylsulfonate, Fettamin-, Fettsäure-, Alkylaryl-Polyglykolether, Seifen, Fettalkoholsulfate
- oxidlösende Beizmittel wie Phosphorsäure, Oxalsäure und Oxalate, Citronensäure und Citrate, Weinsäure und Tartrate, Hydrogensulfate
- Stoffe mit hohem Kriechvermögen zur Unterwanderung von Rostschichten wie Mineral- und Siliconöle
- Korrosionsschutzmittel wie Ortho- oder Polyphosphate, Amine, stickstoffhaltige Kondensationsprodukte
- Adsorbentien zur Adsorption der Verunreinigungen wie beispielsweise Bentonit, Kaolin, Kieselgur
- Scheuermittel (Schmirgel, Poliertonerde, Kieselgur, Calcium- oder Magnesiumcarbonat)
- Verdickungsmittel wie Dextrin, Vaseline, Ceresin, Wachse, Methylzellulose.

Außerdem kann die Reinigung von metallischen Oberflächen auf elektolytischem Weg erfolgen. Bei diesem Reinigungsverfahren wird das zu reinigende metallische Formstück als Kathode oder Anode geschaltet. Die einsetzende Gasbildung an der Oberfläche verstärkt den Reinigungseffekt.

Weiterhin bekannt ist, daß bei schwer entfernbaren Verschmutzungen wie harzartigen oder verkohlenen Ziehmittelrückständen, zusätzlich Ultraschall eingesetzt wird.

Nachteilig für die betreffenden Reinigungsverfahren ist, daß die von der metallischen Oberfläche abgelösten Verbindungen wie Fette, Öle, Ziehmittellückstände und dergleichen in der wäßrigen Reinigungslösung angereichert werden und zu einer hohen organischen bzw. CSB-Fracht im Prozeßwasser führen.

Auch die bei der Bestrahlung mit Ultraschall infolge Blasenimplosion entstehenden hochreaktiven Wasserstoffatome und Hydroxylradikale führen nur zu einem unzureichendem Abbau der im Wasser enthaltenen organischen Substanzen. Dadurch bedingt sind die Reinigungslösungen bereits nach einigen Tagen verbraucht und es fallen Abwasser an, die sowohl der biologischen Abwasserrreinigung wie chemisch-physikalischen Reinigungsverfahren nur schwer oder überhaupt nicht zugänglich sind.

Die Reinigungswirkung läßt unter den gegebenen Bedin-

gungen mit steigender Konzentration der von der Metalloberfläche abgelösten Verbindungen in der Reinigungslösung nach, so daß eine hohen Qualitätsanforderungen entsprechende Oberflächenreinheit nicht, oder nur mit erhöhten Spülwassermengen gewährleistet werden kann.

Gerade bei der Reinigung von Aluminium- oder Kupferdrähten in Kombination mit Ultraschall verbieten sich bestimmte Reinigungsmittel, die sich aggressiv gegenüber dem Werkstoff verhalten [C. Zentgraf, P. Terliesner, W. Bohnack: Draht 47 (1996) 10, S. 500–501].

Durch die DE-C 6 14 352 ist ein Verfahren zur Beseitigung eines unangenehmen Geruches und Geschmacks an Metalloberflächen zu entnehmen, das sich dadurch auszeichnet, daß wäßrige Lösungen von Oxidationsmitteln, die die Metalloberfläche nicht angreifen, insbesondere Peroxide wie Wasserstoffperoxid, Perborat, Persulfat oder Chlorate unter anderem angewendet werden.

Die DE-A 35 33 886 betrifft ein Reinigungsv erfahren zur Reinigung von Behältern, wobei Ablagerungen chemisch aufgelöst oder mechanisch entfernt werden, in dem vorhandene Kupferverbindungen chemisch aufgelöst und anschließend lose Ablagerungen und Flüssigkeiten mechanisch entfernt werden und in dem dann noch verbleibende Verkrustungen chemisch aufgeweicht und anschließend die gelockerten Ablagerungen sowie die verbliebenen Chemikalien ausgespült werden, wobei in die verunreinigten Behälter zur Oxidation von Ablagerungen aus metallischem Kupfer Wasserstoffperoxid eingeleitet wird.

Darüber hinaus ist der EP-A 0 756 023 ein Verfahren zum Entfetten auf Basis von Wasserstoffperoxid sowie eine Anwendung auf metallische Artikel zu entnehmen. Eine wäßrige Lösung, die zwischen 3 und 50% Wasserstoffperoxid sowie bestimmte Mengen oberflächenaktiven Wassers beinhaltet, wird mit der Oberfläche des zu entfettenden Werkstoffes in Wirkverbindung gebracht.

Bei dem vorab beschriebenen Stand der Technik werden alternative Reinigungsverfahren vorgeschlagen, jedoch nicht in Gegenwart von Ultraschall.

Ziel des Erfindungsgegenstandes ist es, das im gattungsbildenden Teil des ersten Patentanspruchs angegebene Verfahren dahingehend weiterzubilden, daß eine Optimierung, insbesondere im Hinblick auf die ökonomischen und ökologischen Eigenschaften erreicht werden kann. Das Verfahren soll es ermöglichen, metallische Formkörper ohne Zusatz typischer lösend, emulgierend und/oder dispergierend wirkender Mittel in Reinigungsmitteln zu entfetten bzw. zu reinigen.

Dieses Ziel wird dadurch erreicht, daß ein Reinigungsmittel in Form einer aktivierten Peroxoverbindung bei einer Temperatur zwischen 10 und 90°C auf die Oberfläche des Formstückes einwirkt.

Vorteilhafte Weiterbildungen des Erfindungsgegenstandes sind den Unteransprüchen zu entnehmen.

Mit dem erfundungsgemäßen Verfahren ist es problemlos möglich, unter Schonung der Umwelt eine wirtschaftliche Entfettung und/oder Reinigung von metallischen Formstücken herbeizuführen.

Die Aktivierung der gelösten Peroxoverbindungen und/oder des Wasserstoffperoxids bei der Anwendung des erfundungsgemäßen Verfahrens geschieht entweder an der Oberfläche des metallischen Formkörpers und/oder durch den Zusatz geeigneter Katalysatoren, die als homogene und/oder heterogene Katalysatoren und/oder als Kombination homogener und heterogener Katalysatoren eingesetzt werden.

Eigignete heterogene Katalysatoren bei der Anwendung des erfundungsgemäßen Verfahrens sind vollmetallische Katalysatoren, die als Gestrick, Gewebe und/oder jeder anderen Form aus runden und/oder geplättetem Draht und/oder

Folien und/oder in jeglicher anderen, eine hinreichend große Oberfläche gewährleistende Form zum Einsatz kommen.

Der Vorteil dieser beispielhaft aufgeführten Verfahrensweise zur Reinigung von metallischen Formkörpern besteht darin, daß der Abbau der von der Oberfläche des Formkörpers abgelösten Substanzen durch aktivierte Peroxoverbindungen, vorzugsweise Wasserstoffperoxid, in Gegenwart von Ultraschall die Anreicherung der betreffenden Substanzen in der Reinigungslösung unterbindet. Neben der Standzeit der wäßrigen Reinigungslösung wird unter diesen Verhältnissen auch die Oberflächenreinheit des metallischen Formstückes erhöht.

Desweiteren sinkt der Bedarf an Spülwasser. Der Reinigungsaufwand für eine Phosphateliminierung, die bei der Anwendung phosphorsaurer und/oder phosphathaltiger Reinigungsmittel nicht zu umgehen ist, entfällt. Ein weiterer Vorteil des beispielhaft aufgeführten Verfahrens besteht zugleich darin, daß auch aluminiumhaltige Formstücke mit dem gleichen Verfahren, d. h. ohne Austausch des hochkorrosiven Reinigungsbades, gereinigt werden können. Beim Ziehen der auf diese Weise gereinigten Aluminiumlegierungen wird der Ziehsteinverschleiß verringert.

Ausführungsbeispiele

Versuch 1

Phosphorsaure Reinigung (Vergleichsbeispiel)

In einer Reinigungsstraße bestehend aus Spültisch, Ultraschallreinigung (Frequenz: 25 kHz), Spülbad, Trocknung und Glühung werden Drähte mittels phosphorsaurem Reinigungsmittel im Ultraschallbad entfettet. Die Reinigungslösung wird in einem beheizbaren Vorratsbehälter (425 l) auf 70°C erhitzt und im Kreislauf durch das Ultraschallbecken (113 l) geleitet.

Die Drähte (1,2 mm Durchmesser, Chrom-Aluminium-Legierung) werden mit einer Geschwindigkeit von ca. 10 m/min durch das Reinigungsbecken gezogen, wobei eine mittlere Verweilzeit von ca. 4 s realisiert wird. Durch den Zusatz von Entfettungsmitteln und die Anreicherung von Entfettungsrückständen stellt sich nach 5 Tägigem kontinuierlichem Betrieb ein CSB (Chemischer Sauerstoffbedarf) von ca. 12 000 mg O₂/l und ein TOC (Total Organic Carbon) von 1800 mg C/l ein. Aufgrund des hohen Kontaminationsgrades der Reinigungslösung werden von der Formstückoberfläche abgelöste organische und anorganische Ziehmittelreste in den Spülmittelkreislauf verschleppt. Der Spülwasserbedarf liegt bei 216 m³ pro Woche.

Versuch 2

Reinigung mit Ultraschall und Wasserstoffperoxid und Aktivierung der Peroxoverbindung durch das Werkstück (erfindungsgemäß)

Bei Versuch 2, wird anstelle des phosphorsauren Reinigungsmittels Wasserstoffperoxid verwendet. Das 30%ige Wasserstoffperoxid wird mit 1,5 l/h in den mit Wasser gefüllten 425 l großen Vorratsbehälter gepumpt, wobei sich durch die kontinuierliche Dosierung und den gleichzeitigen Verbrauch eine nahezu konstante Wasserstoffperoxidkonzentration von 2500 mg/l einstellt.

In Analogie zu Ausführungsbeispiel 1 wurde dieser Versuch bei einer Ultraschallfrequenz von 25 kHz, einer Temperatur von 70°C und einer mittleren Verweilzeit der Drähte im Ultraschallbad von ca. 4 s durchgeführt.

Die Behandlungsrückstände, überwiegend Calciumhv-

dioxid und Calciumcarbonat, wurden kontinuierlich abfiltriert. Um das Volumen im Vorratsbehälter konstant zu halten, wurde die Menge des bei der Querstromfiltration anfallenden Konzentrates durch Einspeisung von Frischwasser ersetzt.

Nach einer Versuchsdauer von 120 h (5 Tage) steigt der CSB im Reinigungsbad auf 3500 mg O₂/l.

Der erzielte Reinigungseffekt der Drähte einer Chrom-Aluminium-Legierung ist mit dem Ergebnis der phosphorsauren Reinigung vergleichbar. Die Spülwassermenge konnte auf 100 m³/Woche gesenkt werden.

Versuch 3

15 Reinigung mit Katalysator, Ultraschall und Wasserstoffperoxid (erfindungsgemäß)

Unter analogen Bedingungen wie bei Versuch 2, jedoch unter Anwendung eines speziellen Katalysatormoduls, gefüllt mit 400 g Katalysator, werden 1,5 l/h Wasserstoffperoxid in den beheizbaren Vorratsbehälter eindosiert. Dabei stellt sich eine stabile Wasserstoffperoxidkonzentration von 2000 mg/l ein. Um das Volumen im Vorratsbehälter konstant zu halten, wurde die Menge des bei der Querstromfiltration anfallenden Konzentrates durch Einspeisung von Frischwasser ersetzt.

Nach einer Versuchsdauer von 120 h (5 Tage) steigt der pH-Wert, bedingt durch den oxidativen Abbau des Ziehmittels (Na- und Ca-Stearat) von anfänglich pH = 6 auf pH = 9. Zum gleichen Zeitpunkt beträgt der CSB 900 mg O₂/l und der TOC 150 mg C/l. Unter den angegebenen Bedingungen werden die organischen Substanzen zu 90% abgebaut. Im Gegensatz zur phosphorsauren Reinigung ist die Oberflächengüte der Drähte (Drahtdurchmesser 1,2 mm, Chrom-Aluminium-Legierung) besser. So konnte durch ESMA-Untersuchungen (Elektronenstrahlmikroanalyse) festgestellt werden, daß die Drahtoberfläche im Vergleich zur phosphorsauren Reinigung weniger Sauerstoff enthält. Die dadurch erhöhte Oxidfreiheit an der Drahtoberfläche bewirkt einen geringeren Ziehsteinverschleiß. Da infolge der Oxidation die Verschleppung von Ziehmittelresten in den Spülwasser-Kreislauf eingeschränkt ist, wurde das Spülwasser im Kreislauf gefahren. Der Spülwasserbedarf wird gegenüber der phosphorsauren Reinigung um ca. 85% gesenkt.

Versuch 4

Reinigung mit UV-Licht (erfindungsgemäß)

Bei diesem Versuch wurde die gleiche Versuchsanordnung wie im Ausführungsbeispiel 2 mit dem Unterschied angewandt, daß in die Filtratrückführung zum Vorratsbehälter ein UV-Reaktor (Länge = 1000 mm, Durchmesser = 120 mm) eingebaut wurde. Die Strahlungsleistung betrug 55 1 kW.

Die Qualität der Drähte (Drahtdurchmesser 1,2 mm, Chrom-Aluminium-Legierung) entsprach dem Ergebnis von Versuch 3. Nach einer Versuchsdauer von 120 h (5 Tage) wurde ein CSB von 2000 mg O₂/l gemessen. Der TOC betrug 350 mg C/l. Die Einsparung an Spülwasser gegenüber der phosphorsauren Reinigung liegt unter diesen Bedingungen bei 70%.

Versuch 5

Reinigung mit UV-Licht und einem heterogenen Katalysator (erfindungsgemäß)

Bei diesem Versuch wurde die gleiche Versuchsanordnung wie im Ausführungsbeispiel 3 mit dem Unterschied angewandt, daß in die Filtratrückführung zum Vorratsbehälter ein UV-Reaktor (Länge = 1000 mm, Durchmesser = 120 mm) eingebaut wurde. Die Strahlungsleistung betrug 10 1 kW.

Die Qualität der Drähte (Drahtdurchmesser 1.2 mm, Chrom-Aluminium-Legierung) entsprach dem Ergebnis von Versuch 3. Nach einer Versuchsdauer von 120 h (5 Tage) wurde ein CSB von 1000 mg O₂/l gemessen. Der TOC betrug 200 mg C/l. Die Einsparung an Spülwasser unter diesen Bedingungen liegt bei ca. 85%.

Patentansprüche

20

1. Verfahren zum Entfetten und/oder Reinigen von metallischen Formstücken wie Drähten, Blechen und/oder Folien, insbesondere aus Aluminium oder Kupfer, in Gegenwart von Ultraschall, dadurch gekennzeichnet, daß ein Reinigungsmittel in Form einer aktivierten Peroxoverbindung bei einer Temperatur zwischen 10 und 90°C auf die Oberfläche des Formstückes einwirkt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Aktivierung der Peroxoverbindung, insbesondere der Wasserstoffperoxid enthaltenden wäßrigen Lösung, durch einen Katalysator herbeigeführt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Katalysator ein heterogener, insbesondere ein vollmetallischer, und/oder ein homogener Katalysator eingesetzt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als vollmetallischer Katalysator Gestricke aus rundem oder geplättetem Draht und/oder anderer Form mit hinreichend großer Oberfläche eingesetzt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als heterogener Katalysator das zu entfettende metallische Formstück Verwendung findet.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Aktivierung der Peroxoverbindung, insbesondere der Wasserstoffperoxid enthaltenden wäßrigen Lösung, mittels UV-Licht erfolgt.

35

40

45

50

55

60

65