

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	РАДИОТЕХНИЧЕСКИЙ		
КАФЕДРА	СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ		
· · · · · · · ·			

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

Студент_	Столярова Ольга Денисовна фамилия, имя, отчество		
Группа	РТ5-51Б		
Название	предприятия	МГТУ им. Н. Э. Баумана	
Студент		Столярова О.Д.	
Преподава	атель	Гапанюк Ю.Е.	

Цель работы

Изучение объектно-ориентированных возможностей языка Python.

Задание

- 1. Необходимо создать виртуальное окружение и установить в него хотя бы один внешний пакет с использованием рір.
- 2. Необходимо разработать программу, реализующую работу с классами. Программа должна быть разработана в виде консольного приложения на языке Python 3.
- 3. Все файлы проекта (кроме основного файла main.py) должны располагаться в пакете lab python oop.
- 4. Каждый из нижеперечисленных классов должен располагаться в отдельном файле пакета lab python oop.
- 5. Абстрактный класс «Геометрическая фигура» содержит абстрактный метод для вычисления площади фигуры. Подробнее про абстрактные классы и методы Вы можете прочитать здесь.
- 6. Класс «Цвет фигуры» содержит свойство для описания цвета геометрической фигуры. Подробнее про описание свойств Вы можете прочитать здесь.
- 7. Класс «Прямоугольник» наследуется от класса «Геометрическая фигура». Класс должен содержать конструктор по параметрам «ширина», «высота» и «цвет». В конструкторе создается объект класса «Цвет фигуры» для хранения цвета. Класс должен переопределять метод, вычисляющий площадь фигуры.
- 8. Класс «Круг» создается аналогично классу «Прямоугольник», задается параметр «радиус». Для вычисления площади используется константа math.pi из модуля math.
- 9. Класс «Квадрат» наследуется от класса «Прямоугольник». Класс должен содержать конструктор по длине стороны. Для классов «Прямоугольник», «Квадрат», «Круг»:

- Определите метод "repr", который возвращает в виде строки основные параметры фигуры, ее цвет и площадь. Используйте метод format https://pyformat.info/
- Название фигуры («Прямоугольник», «Квадрат», «Круг») должно задаваться в виде поля данных класса и возвращаться методом класса.
- 10.В корневом каталоге проекта создайте файл main.py для тестирования Ваших классов (используйте следующую конструкцию https://docs.python.org/3/library/__main__.html). Создайте следующие объекты и выведите о них информацию в консоль (N номер Вашего варианта по списку группы):
 - Прямоугольник синего цвета шириной N и высотой N.
 - Круг зеленого цвета радиусом N.
 - Квадрат красного цвета со стороной N.
 - Также вызовите один из методов внешнего пакета, установленного с использованием pip.

Текст программы

figure.py

circle.py

```
circle.py ×
lab_python_oop > ♦ circle.py > ♦ Circle > ♦ square
      from lab_python_oop.figure import Figure
      from lab_python_oop.color import FigureColor
      import math
      class Circle(Figure):
           FIGURE_TYPE = "Kpyr"
           @classmethod
           def get_figure_type(cls):
              return cls.FIGURE_TYPE
           def __init__(self, color_param, r_param):
               self.r = r_param
               self.fc = FigureColor()
               self.fc.colorproperty = color_param
           def square(self):
               return math.pi*(self.r**2)
           def __repr__(self):
               return '{} {} цвета радиусом {} площадью {}.'.format(
                   Circle.get_figure_type(),
                   self.fc.colorproperty,
                   self.r,
                   self.square()
```

rectangle.py

```
rectangle.py ×
lab_python_oop > ♥ rectangle.py > ❤ Rectangle > ♦ square
       from lab_python_oop.figure import Figure
       from lab_python_oop.color import FigureColor
       class Rectangle(Figure):
           FIGURE_TYPE = "Прямоугольник"
           @classmethod
           def get_figure_type(cls):
               return cls.FIGURE_TYPE
           def __init__(self, color_param, width_param, height_param):
               self.width = width_param
               self.height = height_param
               self.fc = FigureColor()
               self.fc.colorproperty = color_param
           def square(self):
               return self.width*self.height
           def __repr__(self):
               return '{} {} цвета шириной {} и высотой {} площадью {}.'.format(
                   Rectangle.get_figure_type(),
                   self.fc.colorproperty,
                   self.width,
                   self.height,
                   self.square()
```

square.py

```
square.py X
lab_python_oop > 🏺 square.py > ધ Square > 😭 __repr__
       from lab_python_oop.rectangle import Rectangle
      class Square(Rectangle):
           FIGURE_TYPE = "Квадрат"
          @classmethod
          def get_figure_type(cls):
               return cls.FIGURE_TYPE
          def __init__(self, color_param, side_param):
              self.side = side_param
              super().__init__(color_param, self.side, self.side)
           def repr (self):
               return '{} {} цвета со стороной {} площадью {}.'.format(
                   Square.get_figure_type(),
                   self.fc.colorproperty,
                   self.side,
                   self.square()
 22
```

color.py

lab2.py

```
🕏 lab2.py
lab2.py > ...
      from lab_python_oop.rectangle import Rectangle
      from lab_python_oop.circle import Circle
      from lab_python_oop.square import Square
      from colorama import init
      init()
      from colorama import Fore, Back, Style
     def main():
      r = Rectangle("синего", 18, 18)
         c = Circle("зеленого", 18)
         s = Square("красного", 18)
          print(r)
          print(c)
          print(s)
      print(Fore.GREEN + 'зеленый текст')
      print(Back.YELLOW + 'на желтом фоне' + Style.RESET_ALL)
      if __name__ == "__main__":
 21
         main()
```

Пример выполнения программы

```
PS C:\Users\olyas\python\\P2> & 'C:\Program Files\\\indowsApps\PythonSoftwareFoundation.Python.3.9_3.9.2032.0_x64__qbz5n2kfra8p0\python3.9.exe ions\ms-python.python-2021.10.1365161279\pythonFiles\lib\python\debugpy\launcher' '51453' '--' 'c:\Users\olyas\python\\P2\lab2.py' I am init зеленый текст
на желтом фоне
Прямоугольник синего цвета шириной 18 и высотой 18 площадью 324.
Кург зеленого цвета радиусом 18 площадью 1017.8760197630929.
Квадрат красного цвета со стороной 18 площадью 324.
PS C:\Users\olyas\python\\P2>
```

Ссылка на GitHub https://github.com/OlyaSto/Olyabmstu