Codierungstheorie – Praktikum 2

Schreiben Sie ein Programm zur Konstruktion eines endlichen Körpers $\mathbb{F}_{p^d} \simeq \mathbb{Z}_p[x]_{f(x)}$ mit p^d Elementen, p Primzahl, d>1 natürliche Zahl.

- 1. Entwerfen Sie eine Datenstruktur für die Elemente aus \mathbb{F}_{p^d} , welche Polynome $a(x) = \sum_{i=0}^{d-1} a_i x^i$ mit Koeffizienten $a_i \in \mathbb{Z}_p = \{0, 1, \dots, p-1\}$ sind.
- 2. Schreiben Sie eine Routine, welche die modulare Polynommultiplikation

$$a(x) \cdot_f b(x) := (a(x) \cdot b(x)) \mod f(x)$$

realisiert.

3. Durchlaufen Sie mit a(x), b(x) und c(x) alle Polynome aus $\mathbb{Z}_p[x]_{f(x)}$ und testen Sie

$$(a(x) \cdot_f b(x)) \cdot_f c(x) = a(x) \cdot_f (b(x) \cdot_f c(x)).$$

4. Testen Sie Ihr Programm für die endlichen Körper, die durch folgende irreduziblen Polynome definiert sind:

$$f(x) = x^{2} + x + 1 \in \mathbb{Z}_{2}[x]$$

$$f(x) = x^{3} + x^{2} + 1 \in \mathbb{Z}_{2}[x]$$

$$f(x) = x^{4} + x^{3} + 1 \in \mathbb{Z}_{2}[x]$$

$$f(x) = x^{2} + x + 2 \in \mathbb{Z}_{3}[x]$$

$$f(x) = x^{2} + x + 2 \in \mathbb{Z}_{5}[x]$$

$$f(x) = x^{3} + 3x + 2 \in \mathbb{Z}_{5}[x]$$

5. Berechnen Sie die Additions- und Multiplikationstabelle für die Körper $\mathbb{F}_8 = \{0, 1, \dots, 7\}$ und $\mathbb{F}_9 = \{0, 1, \dots, 8\}$.

Spielregeln für die Abnahme des Praktikums

- Sie bearbeiten die Aufgabe im 2er Team. Die Teams werden in der ersten Vorlesung gebildet.
- Wenn Sie das Praktikum vollständig gelöst haben, senden Sie eine E-Mail mit dem Betreff "Abnahmetermin Codierungstheorie" an den Dozenten (michael.braun@h-da.de). Sie bekommen dann den nächsten freien Zeitslot während Ihres Praktikumstermins zugewiesen, in dem die Abnahme stattfindet.
- Für die Abnahme bereiten Sie eine Kurzpräsentation vor (15 min) und senden den Foliensatz vorab als pdf an den Dozenten.
 Die Präsentation soll unter anderen
 - die nachvollziehbare Dokumentation der Lösungen bzw.
 Lösungswege der einzelnen Teilaufgaben,
 - sowie die nachvollziehbare Beschreibung der verwendeten Algorithmen (nicht nur ein Auszug des Quellcodes!)

enthalten.