Cheat sheet Specification and verification Beau De Clercq

lecture 2

 $Reach(T) = \{ s \in S | \exists s_0 \in I \land s_0 \to \dots \to s_n = s \} = Post^*(I)$

program graph: digraph with conditions on the edges, PG=(Locations, Actions, Effect, transition relation, Initial locations, initial

lecture 3

safety (something bad never happens): $\neg F(\text{formula})$, liveness (something good will happen): GF(...), persistence (ensure property holds forever): FG(...), unconditional fairness: for all $i \land_i GF(...)$, strong fairness: for all $i \land_i GF(...) \rightarrow GF(...)$ temporal operators: \bigcirc , U, G, F

derived operators: $F\phi = TU\phi$, $G\phi = \neg F\neg \phi$, $\phi W\psi = (\phi U\psi) \lor G\phi$, $\phi R\psi = \neg (\neg \phi U\neg \psi)$

 $\operatorname{Words}(\phi) = \{ \mathbf{w} = a_0 a_1 a_2 \dots \in (2^p)^{\omega} | w \models \phi \}, \ \pi \in \operatorname{Paths}(\mathbf{T}) \colon \pi \neg \models \phi \leftrightarrow \pi \models \neg \phi, \ \mathbf{TS} \ \mathbf{T} \ \neg \models \phi \leftarrow \mathbf{T} \models \neg \phi \ (\operatorname{Traces}(\mathbf{T}) \in \operatorname{Words}(\neg \phi))$

lecture 4

NFA NBA concatenation: I = I^1 if $I^1 \cap F^1$ is empty, $I^1 \cup I^2$ otherwise; transition: (q, A) = $\delta^1(q, A)$ if $q \in Q^1$ and $\delta^1(q, A) \cap F^1$ is empty; $\delta^1(q, A) \cup I^2$ if $q \in Q^1$ and $\delta^1(q, A) \cap F^1$ is not empty; $\delta^2(q, A)$ if $q \in Q^2$ ω -operator for NFA: add transitions from q_{new} to all states directly reachable by q_0 ; for all states in F, if $\delta(q, q_f, \alpha)$ then add $\delta(q, q_{new}, \alpha)$; the new set I' = F' = I; remove useless states

 $L(NBA) \neq \phi$ iff there is an accepting state on a reachable cycle

Accepting run for NBA: sequence of states such that $q_i \in F$ for infinitely many indices i, $L(NBA) = \{all \text{ words for which there is an accepting run}\}$

lecture 5

Closure (ϕ) = set of all sub-formulas and their negation; a set of sub-formulas B \in Closure is elementary if B is logically and locally consistent as well as maximal; states for a GNBA for LTL are all elementary sets, if ϕ is in B B is initial, the initial sets are those with an Until or the second part of an Until

Persistence checking: compute reachable SCCs and check if one contains a state satisfying $\neg \phi$ OR construct T and $A_{\neg \phi}$ in parallel and simultaneously construct the reachable fragment of the product via nested DFS lecture 6

State formula: $\Phi = T|a|\Phi \wedge \Psi|\neg\Phi|\exists\phi|\forall\phi$; path formula: $\phi = \bigcirc\Phi|\Phi U\Psi$

CTL derived operators: $\exists \Diamond \phi = \exists (TU\phi), \forall \Diamond \phi = \forall (TU\phi), \exists \Box \phi = \neg \forall \Diamond \neg \phi, \forall \Box \phi = \neg \exists \Diamond \neg \phi$

 $Sat_T(\Phi) = s \in S | s \models \Phi; s \in S \neg \models \Phi \leftrightarrow s \models \neg \Phi, TS T \neg \models \Phi \leftarrow T \models \neg \Phi$

lecture 7

define boolean function with truth table, can only use \land, \lor, \neg , negating BDD: replace 0 and 1 constant value leaves, from decision tree to BDD: merge/remove useless subtrees, merge equivalent nodes

lecture 8

Symbolic model checking via BDDs: encode states as bit vectors, represent transitions as boolean functions (==switching functions) = characteristic function $\chi_R(s)=1$ if $s\in R$ and 0 otherwise, represent labeling via $\chi_{Sat(s)}$; at the end of the model checking process check that $\neg\chi_I\vee f_{Sat(\Phi)}=1$

lecture 10

Given a circuit with automaton A, check if there exists a function μ such that the language of $Ax\mu$ is empty

AIGER: aag M I L O A; every variable and AND-gate is represented by an even index $i \ge 2$, negations by i+1; $i \le 2M+1$ for every index i

Games played on automata: states Q just keep track of latch values, Σ corresponds to valuations of the inputs, δ respects the latch next-step functions

LTL to games: construct NBA for ϕ , determinize it to a DPA and attempt to synthesize a strategy for player in the parity game