Churn Customer Prediction

September 16, 2025

1 Customer Churn Prediction

This notebook demonstrates how to build a **supervised machine learning model** to predict customer churn, an online food ordering provider.

Why churn prediction matters? - Acquiring a new customer is 5–7 times more expensive than retaining an existing one. - By predicting churn, can target discounts, loyalty campaigns, or personalized offers to customers before they leave.

1.1 Step 1: Import Libraries

1.2 Step 2: Create Sample Dataset

```
[2]: # Simulated dataset
np.random.seed(42)
n = 10000

data = pd.DataFrame({
    'customer_id': range(1, n+1),
    'last_order_days_ago': np.random.randint(1, 365, n),
    'total_orders': np.random.poisson(10, n),
```

```
'avg_order_value': np.random.uniform(5, 50, n),
'complaints': np.random.binomial(5, 0.1, n),
'discount_used': np.random.randint(0, 20, n),
'churn': np.random.binomial(1, 0.3, n) # 1 = churned, 0 = active
})
data.head()
```

```
[2]:
        customer_id last_order_days_ago total_orders avg_order_value \
                  1
                                       103
                                                      10
                                                                 38.251680
     1
                  2
                                       349
                                                       9
                                                                 37.210404
     2
                  3
                                       271
                                                       9
                                                                 36.023084
                  4
                                                       9
     3
                                       107
                                                                 17.451155
     4
                  5
                                                       9
                                       72
                                                                 30.801515
        complaints discount_used churn
     0
     1
                 0
                                13
                                         1
     2
                 0
                                 7
                                         1
     3
                 0
                                         0
                                10
     4
                 1
                                         1
                                14
```

1.3 Step 3: Exploratory Data Analysis

	customer_id	last_order_days_ago	total_orders	avg_order_value	\
count	10000.00000	10000.000000	10000.000000	10000.000000	
mean	5000.50000	181.922300	10.042600	27.451422	
std	2886.89568	104.853453	3.160472	13.000012	
min	1.00000	1.000000	0.000000	5.009142	
25%	2500.75000	93.000000	8.000000	16.280541	
50%	5000.50000	181.000000	10.000000	27.375755	
75%	7500.25000	273.000000	12.000000	38.774759	
max	10000.00000	364.000000	23.000000	49.995486	

	complaints	discount_used	churn
count	10000.000000	10000.000000	10000.000000
mean	0.499400	9.437900	0.305100
std	0.668763	5.735227	0.460473
min	0.000000	0.000000	0.000000
25%	0.000000	4.000000	0.000000
50%	0.000000	9.000000	0.000000
75%	1.000000	14.000000	1.000000
max	4.000000	19.000000	1.000000

Churn Distribution

1.4 Step 4: Data Preprocessing

```
[4]: X = data.drop(['customer_id', 'churn'], axis=1)
y = data['churn']

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, arandom_state=42, stratify=y)

# Feature scaling
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

1.5 Step 5: Train Models

```
[5]: # Logistic Regression
log_reg = LogisticRegression(max_iter=1000)
log_reg.fit(X_train_scaled, y_train)
y_pred_log = log_reg.predict(X_test_scaled)

# Random Forest
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)

# XGBoost
xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss',userandom_state=42)
xgb.fit(X_train, y_train)
y_pred_xgb = xgb.predict(X_test)
```

1.6 Step 6: Model Evaluation

```
[6]: print("Logistic Regression:\n", classification_report(y_test, y_pred_log))
     print("Random Forest:\n", classification_report(y_test, y_pred_rf))
     print("XGBoost:\n", classification_report(y_test, y_pred_xgb))
     # Confusion Matrix for Random Forest
     sns.heatmap(confusion_matrix(y_test, y_pred_rf), annot=True, fmt='d',__
      ⇔cmap='Blues')
     plt.title("Confusion Matrix - Random Forest")
     plt.xlabel("Predicted")
     plt.ylabel("Actual")
     plt.show()
     # ROC Curve for XGBoost
     y_probs = xgb.predict_proba(X_test)[:,1]
     fpr, tpr, _ = roc_curve(y_test, y_probs)
     plt.plot(fpr, tpr, label=f"AUC = {roc_auc_score(y_test, y_probs):.2f}")
     plt.plot([0,1], [0,1], 'k--')
     plt.xlabel("False Positive Rate")
     plt.ylabel("True Positive Rate")
     plt.title("ROC Curve - XGBoost")
     plt.legend()
     plt.show()
```

Logistic Regression:

precision		recall	f1-score	support	
0	0.69	1.00	0.82	1390	
1	0.00	0.00	0.00	610	

accuracy			0.69	2000
macro avg	0.35	0.50	0.41	2000
weighted avg	0.48	0.69	0.57	2000
Random Forest:				
	precision	recall	f1-score	support
0	0.70	0.92	0.79	1390
1	0.31	0.09	0.13	610
				0000
accuracy			0.66	2000
macro avg	0.50	0.50	0.46	2000
weighted avg	0.58	0.66	0.59	2000
XGBoost:				
	precision	recall	f1-score	support
0	0.70	0.89	0.78	1390
1	0.32	0.12	0.17	610
accuracy			0.66	2000
macro avg	0.51	0.50	0.48	2000
weighted avg	0.58	0.66	0.60	2000

ROC Curve - XGBoost


```
[7]: ex_data = [186, 8, 25.8733, 2, 11]

# Convert to numpy array and reshape to (1, n_features)
ex_data = np.array(ex_data).reshape(1, -1)

# Preprocessing by Standard Scaler
ex_data_scaled = scaler.transform(ex_data)

# Prediction By Algorithms:
ex_data_pred_log = log_reg.predict(ex_data_scaled)
ex_data_pred_rf = rf.predict(ex_data_scaled)
ex_data_pred_xgb = xgb.predict(ex_data_scaled)

print(f'Prediction by Logistic Regression is {ex_data_pred_log[0]}')
print(f'Prediction by Random Forest is {ex_data_pred_rf[0]}')
print(f'Prediction by XGBoost is {ex_data_pred_xgb[0]}')
```

Prediction by Logistic Regression is 0 Prediction by Random Forest is 1 Prediction by XGBoost is 0

1.7 Step 7: Feature Importance

```
[9]: importances = rf.feature_importances_
    feat_names = X.columns

feat_imp = pd.DataFrame({'Feature': feat_names, 'Importance': importances})
    feat_imp.sort_values(by='Importance', ascending=False, inplace=True)

sns.barplot(x='Importance', y='Feature', data=feat_imp)
plt.title("Logistic Regression Feature Importance")
plt.show()
```


1.8 Step 8: Conclusion & Business Use Case

- The models give us a way to predict which customers are likely to churn.
- We can integrate this model into the CRM/marketing system:
 - Send targeted discounts to **high-risk churners**.
 - Recommend personalized meals to re-engage customers.
 - Monitor churn rates across restaurants and regions.

Next Steps: - Replace synthetic dataset with real customer order data.

- Regularly retrain the model with new data.

- Deploy as an API to integrate with the app.

[]:[