Redes de Computadores

Aula 18 – Camada de Transporte TCP (Transmission Control Protocol)

Assis Tiago

assis.filho@unicap.br

OBJETIVO

- Conhecer o funcionamento do protocolo TCP;
- Aprender as principais características do protocolo e em que situações ele é recomendado;

MODELO TCP/IP

COMUNICAÇÃO ENTRE PROCESSOS FINAIS

- A camada de enlace é responsável por entregar frames entre nós vizinhos conectados em um link;
 - Comunicação nó a nó(node-to-node);
- A camada de rede é resposável por entregar pacotes entre hosts;
 - Comunicação entre hosts (host-to-host);

COMUNICAÇÃO ENTRE PROCESSOS FINAIS

- Na internet a comunicação real acontece entre dois processos finais(programas aplicativos);
 - Comunicação entre processos finais (process-toprocess);
 - A camada de transporte cuida da entrega das mensagens desses processos;

- Fundamentos
 - Define a unidade de dados do serviço de circuito virtual, denominada seguimento TCP
 - Especifica o formato e a função dos campos
 - Multiplexa mensagens geradas pelos processos no serviço da camada de rede
 - Encapsula segmentos em datagramas IP
 - Demultiplexa segmentos para os respectivos processos destino
 - Extrai mensagens dos segmentos

- Fundamentos
 - Adota uma abordagem baseada em fluxo de dados (data stream)
 - Trata o fluxo de dados como uma cadeia contínua de bytes
 - Decide como agrupar bytes em segmentos
 - Adota uma abordagem orientada à conexão full-duplex
 - Estabelecimento da conexão
 - Transferência de dados
 - Fechamento da conexão

- Fundamentos
 - Define mecanismos integrados de controle de erro e seqüência
 - Asseguram a entrega do fluxo de dados na sequência correta e sem erros
 - Define mecanismo de controle de fluxo
 - Regula e compatibiliza a taxa de transmissão das unidades envolvidas
 - Evita descarte de segmentos por falta de recursos da estação destino

Formato do segmento TCP

)	4 1	0 1	.6 2	4 31
	Source port	Destinatio n port		
		Sequence	e number	
	Acknowledgement number			
Hlen	Reserved	Code bits	Window	
	Checksum		Urgent point	
Options				Pad
		Da	ata	

- Campos do segmento
 - Hlen
 - Tamanho do cabeçalho em unidades de 4 bytes;
 - Reserved
 - Reservado para uso futuro (Não utilizado);
 - Checksum
 - Assegura a integridade do segmento;

- Campos do segmento
 - Code bits
 - Indica propósito e conteúdo do segmento
 - URG: Dados urgentes
 - ACK: reconhecimento
 - PSH: mecanismo de push(encaminhar segmento)
 - RST: abordo de conexão (reset)
 - SYN: Abertura de conexão
 - FIN: fechamento de conexão

- Campos do segmento
 - Options
 - Lista variável de informações opcionais
 - MSS Maximum Segment Size;
 - Opção sinalizada pelo segmento SYN;
 - Torna o tamanho do cabeçalho variável
 - Padding
 - Bits 0 que tornam o segmento múltiplo de 32 bits
 - Data
 - Dados do segmento

- Portas
 - Source port
 - Porta associada ao processo de origem
 - Destination port
 - Porta associada ao processo de destino
 - Endpoint(Socket)
 - Definido pelo par (Endereço IP, porta)
 - Identifica de forma única cada porta ou ponto de comunicação na inter-rede
 - Também conhecido como Socket

Conexão

- Cada conexão é identificada por um par de endpoints
- Também conhecida como Socket pair
- Várias conexões por estação

- Conexão
 - Cada endpoint local pode participar de diversas conexões com endpoints remotos
 - Compartilhamento de endpoints
 - O Sistema Operacional deve garantir que o par de endpoint da conexão é único

- Demultiplexação de mensagens
 - Segmentos recebidos são associados às conexões,
 não apenas as portas
 - Avalia o par de endpoints da conexão
 - Portas origem e destino são obtidas do segmento recebido
 - Endereço IP origem e destino são obtidos do datagrama IP
 - Cada conexão possui um buffer de transmissão e um
 - Buffer de recepção em cada extremidade

- Controle de sequência
 - Fluxo de dados é tratado como uma seqüência de bytes
 - Cada byte possui um número de seqüência
 - Numeração nem sempre começa em 0 (zero)
 - Negociado no estabelecimento da conexão
 - Campo Sequence number
 - Indica o número de seqüência do primeiro byte de dados contido no seguimento

Controle de sequência

Números de sequência:

 Número do primeiro byte nos segmentos de dados

ACKs:

- Número do próximo byte esperado do outro lado
 ACK cumulativo
- P.: Como o receptor trata segmentos fora de ordem?
- A especificação do TCP não define, fica a critério do implementador

- Controle de erros
 - Reconhecimento positivo
 - Destino retorna uma mensagem indicando o correto recebimento do segmento
 - Reconhecimento pode pegar carona no segmento de dados do fluxo inverso
 - Reconhecimento cumulativo
 - Diversos segmentos consecutivos podem ser reconhecidos em uma única mensagem

- Controle de erros
 - Acknowledgment number
 - Indica o número de sequência do próximo byte que espera receber
 - Indica o correto recebimento dos bytes com número de seqüência anterior
 - Bit ACK do Code Bits deve ser ativado

- Controle de erros
 - Realizado através de Retransmissão
 - Origem adota um temporizador para cada segmento enviado
 - Segmento é retransmitido quando a origem não recebe o reconhecimento (ack) antes de expirar o temporizador
 - Temporizador é reativado em cada retransmissão

Controle de erros - Cenários

Controle de erros - Cenários

Controle de fluxo

- Objetivo
 - Transmissor não deve esgotar os buffers de recepção enviando dados rápido demais
- Implementação
 - Janela deslizante
 - Entidades negociam o número de bytes adicionais que podem ser recebidos a partir do último reconhecimento
 - Destino define o tamanho de sua janela de recepção em cada segmento
 - Origem atualiza o tamanho de sua janela de transmissão a cada reconhecimento
 - Reconhecimento deslocam a janela de transmissão da origem para o primeiro byte sem reconhecimento

PROTOCOLO TCP - CONTROLE DE FLUXO

 lado receptor da conexão TCP possui um buffer de recepção:

 Processos de aplicação podem ser lentos para ler o buffer

Controle de fluxo

Transmissor não deve es<mark>gotar</mark> os buffers de recepção enviando dados rápido demais

 Serviço de speed-matching: encontra a taxa de envio adequada à taxa de vazão da aplicação receptora

PROTOCOLO TCP - CONTROLE DE FLUXO

- Receptor informa a área disponível incluindo valor RcvWindow nos segmentos
- Transmissor limita os dados não confirmados ao RcvWindow
 - Garantia contra overflow no buffer do receptor

(suponha que o receptor TCP descarte segmentos fora de ordem)

- Espaço disponível no buffer
- = RcvWindow
- = RcvBuffer-[LastByteRcvd LastByteRead]

- Controle de fluxo
 - Campo Window
 - Sinaliza o tamanho da janela de recepção da entidade em cada segmento enviado
 - Applet on-line
 - http://wps.aw.com/br kurose redes 3/40/10271/2 629597.cw/index.html

Processo de estabelecimento de conexões

- Estabelecimento de conexões
 - Three way handshake
 - Negocia e sincroniza o valor inicial dos números de seqüência em ambas as direções
 - Baseado na arquitetura cliente-servidor
 - O servidor deve está com a porta aberta em estado de escuta (*Listening*)

• Estabelecimento de conexões

- Transmissão de dados
 - Entrega de dados "fora-de-banda"
 - Campo Urgent Point
 - o transmissor transmite o dado urgente na área de dados e seta o bit URG (campo Codebits), indicando a posição no segmento onde o dado urgente terminou
 - O receptor deve notificar a aplicação sobre a chegada do dado urgente tão logo quanto possível
 - Mecanismo de Push
 - Aplicação avisa ao TCP para enviar o dado imediatamente
 - Força a geração de um segmento com os dados já presentes no Buffer
 - Não aguarda o preenchimento do Buffer
 - Segmentos gerados pelo mecanismo de PUSH são marcados com o flag PSH no campo codebits

- Fechamento de conexão (Liberação ordenada)
 - Ocorre separadamente em cada direção da conexão

Fechamento de conexão (Término abrupto)

Estados das conexões

REFERÊNCIAS

- Comer, Douglas E., Interligação de Redes Com Tcp/ip
- James F. Kurose, Redes de Computadores e a Internet
- Escola Superior de Redes, Arquitetura e Protocolos de Redes TCP/IP
- Escola Superior de Redes, Roteamento avançado

