Метод золотого сечения.

Для разбиения интервала АВ используется так называемая пропорция золотого сечения:

$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1,6180339...$$

Если разбить отрезок ${f AB}$ точкой ${f X}$ таким образом, чтобы отношение длины большей части к длине короткой части равнялось золотому сечению ${AX\over XB}\!=\!\varphi$, то отношение длины всего отрезка ${f AB}$ к длине большего из отрезков $({\bf AX})$ также будет равно золотому сечению: ${AB\over AX}\!=\!\varphi$

Для первоначального разбиения отрезка \mathbf{AB} мы от концов отрезка отложим точки \mathbf{X}_1 и \mathbf{X}_2 таким образом, чтобы они делили отрезок в пропорциях золотого сечения. \mathbf{X}_1 будет отложена от точки \mathbf{B} , а \mathbf{X}_2 — от точки \mathbf{A} :

$$X_1 = b - \frac{b - a}{\varphi}$$

$$X_2 = a + \frac{b - a}{\varphi}$$

где **a** и **b** — координаты концов отрезка. Очевидно, что точки X_1 и X_2 будут симметричны относительно середины отрезка и порядок следования точек (слева направо) следующий:

Примечание: следующие рассуждения приводятся для алгоритма поиска минимума. Очевидно, что для поиска максимума сравнения должны быть инвертированы.

Далее, до тех пор пока длина отрезка **AB** будет больше заданной погрешности, мы будем выполнять следующие действия:

- 1. Вычислять значение функции в точках X_1 и X_2
- 2. Со стороны большего значения перемещать границу отрезка ${\bf AB}$ в соответствующую точку ${\bf X}$
- 3. Если была перемещена точка ${\bf B}$, то точка ${\bf X}_2$ перемещается в точку ${\bf X}_1$, а точка ${\bf X}_1$ откладывается симметрично относительно середины нового отрезка ${\bf AB}$:

$$x_2=x_1$$

 $x_1=b$ — (x_2-a)

иначе точка X_1 перемещается в точку X_2 , а новая X_2 откладыватся от точки A:

$$x_1=x_2$$

$$x_2=a+(b-x_1)$$

Когда длина $\mathbf{A}\mathbf{B}$ становится меньше заданной погрешности, то середину $\mathbf{A}\mathbf{B}$ можно приближенно считать найденным минимумом функции $\mathbf{f}(\mathbf{x})$.