Точечное оценивание.

Точечные оценки. Несмещенность и состоятельность оценок.

Как правило, в статистики редко о проводимом эксперименте совсем ничего нельзя сказать. Обычно, во многих задачах, тип распределения известен заранее, но неизвестны параметры или часть параметров этого распределения. Например, ошибки измерения предполагаются распределенными по нормальному закону с математическим ожиданием равным нулю (если систематическая ошибка равна нулю) и неизвестной дисперсией, число покупателей в магазине в течении часа имеет распределение Пуассона с неизвестным параметром λ и т.д. В результате мы имеем задачу статистического оценивания параметров этого распределения на основе выборочных данных.

Определение. Класс распределений, целиком определяющийся значением параметра $\theta \in \Theta$ (одномерным либо векторным) будем называть параметрическим семейством распределений F_{θ} .

Например, $F_{\theta}=\Pi_{\lambda}$ - семейство распределений Пуассона с параметром $\lambda>0$. Здесь $\theta=\lambda, \ \Theta=(0,\infty)$.

Определение. Любая функция $\theta^* = \theta^*(X_1, X_2, ..., X_n)$ от выборки называется *статистикой* θ^* .

Статистика - случайная величина.

Определение. Статистика $\theta^* = \theta^*(X_1, X_2, ..., X_n)$, используемая для оценки неизвестного параметра θ , называется <u>оценкой параметра</u> θ .

Например, статистика $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ - выборочное среднее, может быть использована в

качестве оценки математического ожидания, статистика $\overline{D} = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X})^2$ может быть использована для оценки дисперсии и т.д.

Определение. Статистика $oldsymbol{ heta}^*$ называется <u>несмещенной оценкой параметра</u> $oldsymbol{ heta}$, если

$$M(\theta^*) = \theta, \quad \forall \theta \in \Theta.$$
 (2.1).

Свойство несмещенности означает отсутствия ошибки в среднем, при систематическом использовании оценки. Так выборочное среднее является несмещенной оценкой математического ожидания (1.14), выборочная несмещенная дисперсия s^2 является

несмещенной оценкой дисперсии (1.16). Выборочная дисперсия \overline{D} является смещенной оценкой дисперсии (1.16).

Определение. Статистика θ^* называется <u>асимптотически несмещенной оценкой</u> <u>параметра</u> θ , если при $n \to \infty$

$$M(\theta^*) \to \theta, \quad \forall \theta \in \Theta.$$
 (2.2).

Так, выборочная дисперсия \overline{D} является асимптотически несмещенной оценкой дисперсии.

Определение. Статистика $heta^*$ называется состоятельной оценкой параметра heta , если при $n o \infty$

$$\theta^* \xrightarrow{p} \theta, \forall \theta \in \Theta.$$
 (2.3).

То есть состоятельная оценка должна стремиться к параметру с ростом объема выборки. Выборочное среднее и дисперсии в соответствии с (1.15), (1.17) являются состоятельными оценками математического ожидания и дисперсии.

Требования несмещенности и состоятельности являются основными требованиями, предъявляемыми к "качественным" оценкам.

Выборочные среднее \overline{X} и дисперсия s^2 , как оценки математического ожидания и дисперсии произвольного распределения, не были выведены нами ни из каких математических формул, они просто разумны с практической точки зрения как аналоги характеристик генеральной совокупности, и, как видим, обладают неплохими свойствами, с точки зрения требований предъявляемых к оценке. Однако в общем случае необходим систематический и обоснованный подход к методам получения оценок. Существуют различные подходы.

Метод моментов.

Согласно методу моментов в качестве оценок начальных моментов генеральной совокупности принимаются их выборочные аналоги, т.е.

$$m_k^* = \overline{m_k} = \overline{X^k} \ . \tag{2.4}.$$

Для оценки других параметров распределения по методу моментов, необходимо их выразить через начальные моменты случайной величины (в общем случае для этого необходимо знание закона распределения). Итак:

Пусть X_1, X_2, \dots, X_n выборка из семейства распределений F_{θ} , где $\theta \in \Theta$. Пусть $M\left(\xi^k\right) = h(\theta)$, где функция h(x) имеет обратную. Тогда в качестве оценки θ^* параметра θ берем решение уравнения $\overline{X^k} = h(\theta^*)$. Другими словами:

Определение. Если параметр $\theta = h^{-1}(M(\xi^k))$, то

$$\theta^* = h^{-1}(\overline{X}^k) \tag{2.5}$$

называется **оценкой метода моментов** параметра θ по k -му моменту.

Замечание 1. Как видно могут быть различные оценки (2.5) для одного и того же параметра (т.к. параметр может быть выражен через различные моменты).

Замечание 2. Как правило, априорно значения параметра принадлежат некоторому интервалу, т.е. $\theta \in \Theta$, а значение полученной оценки θ^* может и не попасть в этот интервал. Тогда в качестве оценки берут ближайшее к θ^* из Θ .

Замечание 3. Если θ - векторный параметр размерности l, то согласно методу моментов необходимо получить l уравнений для l различных моментов и разрешить их относительно координат вектора.

Замечание 4. Вообще говорю, в методе моментов можно использовать любое уравнение вида

 $M(\varphi(\xi))=h(\theta)$, тогда оценка $\theta^*=h^{-1}(\overline{\varphi(X)})$, где $\overline{\varphi(X)}=rac{1}{n}\sum_{i=1}^n \varphi(X_i)$. Функция $\overline{\varphi(X)}$ в этом случае называется пробной функцией.

Согласно методу моментов в качестве оценок математического ожидания и дисперсии при любом законе распределения можно взять выборочное среднее \overline{X} и дисперсия \overline{D} . (Действительно т.к. $M(X)=m_1$, следовательно $M^*(X)=\overline{m_1}=\overline{X}$, т.к. $D(X)=m_2-m_1^2$, то $D^*(X)=\overline{m_2}-\overline{m_1}^2=\overline{D}$).

Теорема. (состоятельность метода моментов). Пусть $\theta^* = h^{-1}(\overline{m}_k)$ - оценка параметра θ , полученная по методу моментов, причем функция $h^{-1}(x)$ непрерывна, тогда θ^* состоятельна. Доказательство. Так как в соответствии с ЗБЧ $\overline{m}_k \xrightarrow{p} m_k$, а функция $\varphi(x)$ непрерывна, то $\varphi(\overline{m}_k) \xrightarrow{p} \varphi(m_k) = \theta$.

Пример. Пусть X_1, X_2, \dots, X_n - выборка из генеральной совокупности равномерно распределенной на интервале $[0, \theta]$, где θ - неизвестный параметр. Требуется оценить θ по методу моментов.

В данном случае параметр $\, heta\,$ может быть выражен через моменты любого порядка:

$$m_k = rac{1}{ heta} \int\limits_0^ heta x^k dx = rac{1}{ heta} rac{x^{k+1}}{k+1} igg|_0^ heta = rac{ heta^k}{k+1} \,. \; O$$
ткуда $heta = \sqrt[k]{(k+1)m_k} \,$. Следовательно $heta^* = \sqrt[k]{(k+1)\overline{m}_k} \,.$

Соответственно имеем различные оценки для $\boldsymbol{\theta}: \ \boldsymbol{\theta}_1^* = 2\overline{m}_1, \ \boldsymbol{\theta}_2^* = \sqrt{3\overline{m}_2}$, и т.д. Проверим несмещенность оценок.

$$M(\theta_1^*) = 2M(\overline{m}_1) = 2m_1 = \theta$$
, т.е. θ_1^* - несмещенная.

 $M(\theta_2^*) = \sqrt{3}M\left(\sqrt{\overline{m}_2}\right)$. Чтобы оценка θ_2^* была несмещенной, очевидно необходимо, чтобы выполнялось равенство: $M\left(\sqrt{\overline{m}_2}\right) = \sqrt{m_2}$. Т.к. $M\left(\overline{m}_2\right) = m_2$, то это равносильно выполнению условия $M\left(\sqrt{\overline{m}_2}\right) = \sqrt{M\left(\overline{m}_2\right)}$, что в свою очередь для случайной величины $\eta = \sqrt{\overline{m}_2}$, равносильно условию $M(\eta^2) = M^2(\eta)$. Последнее возможно лишь при условии, что $D(\eta) = 0$, следовательно, оценка θ_2^* смещенная. Аналогично смещенными являются и другие оценки θ_k^* при k>2.

Таким образом, несмещенной является только оценка $heta_1^*$, все остальные оценки являются смещенными. Заметим, что в любом случае оценка не может быть меньше, чем наибольшее из выборочных значений. Следовательно, в качестве оценки heta следует принять (при использовании для оценивания первого момента) $heta^* = \max(heta_1^*, X_{\max})$.

Метод максимального правдоподобия (ММП)

В соответствии с ММП, в качестве оценок параметров $\theta_1, \theta_2, \dots$ закона распределения величины ξ , берут такие значения $\theta_1^*, \theta_2^*, \dots$, при которых вероятность получить данную выборку $X = \{X_1, X_2, \dots, X_n\}$ из генеральной совокупности величины ξ максимальна.

Определим предварительно, что значит "вероятность получить данную выборку". Для ДСВ очевидно:

$$P(\xi = \{X_1, X_2, ..., X_n\}) = P(\xi = X_1) \cdot P(\xi = X_2) \cdot ... \cdot P(\xi = X_n)$$

Для НСВ вероятность отдельного значения случайной величины равна нулю, однако можно считать, что вероятность получить значение $\xi=x$, есть вероятность попасть в некоторый малый интервал Δx , содержащий X, т.е. $P(\xi=x)=f_{\xi}(x)\Delta x$. Тогда для НСВ:

$$P(\xi = \{X_1, X_2, ..., X_n\}) = f_{\xi}(X_1) \cdot f_{\xi}(X_2) \cdot ... \cdot f_{\xi}(X_n) \cdot (\Delta x)^n.$$

Обозначим:

$$f(x) = \begin{cases} P(\xi = x), & \text{если } \xi \text{--дискретная случайная величина} \\ f_{\xi}(x), & \text{если } \xi \text{--непрерывная случайная величина.} \end{cases}$$
 (2.6)

Тогда, вероятность получить выборку X_1, X_2, \ldots, X_n :

$$P(\xi = \{X_1, X_2, \dots, X_n\}) = egin{cases} \prod_{i=1}^n f(X_i), & \text{для ДСВ}, \ \prod_{i=1}^n f(X_i) \Delta x, & \text{для НСВ}. \end{cases}$$

Так как величина Δx является постоянной, то как для ДСВ, так и для НСВ эта вероятность

зависит только от $\prod_{i=1}^n f(X_i)$.

Определение.

Функция

$$\Psi(X,\theta) = \prod_{i=1}^{n} f(X_i)$$
 (2.7)

называется функцией правдоподобия.

Функция

$$L(X,\theta) = \ln \left(\prod_{i=1}^{n} f(X_i) \right) = \sum_{i=1}^{n} \ln \left(f(X_i) \right)$$
(2.8)

называется логарифмической функцией правдоподобия.

Как видим, функция правдоподобия - это и есть вероятность того, что случайная величина примет значения $X_1, X_2, \dots X_n$ (в случае НСВ с точностью до постоянного множителя dx^n), причем эта вероятность зависит от неизвестного параметра распределения $m{\theta}$

Определение. <u>Оценкой параметра</u> θ <u>по методу МП</u> называется значение θ^* , при котором функция максимального правдоподобия $\Psi(X,\theta)$ достигает наибольшего значения, как функция переменной θ , в области Θ .

Замечание. Т.к. функция $\ln x$ монотонна, то максимумы функции $\Psi(X,\theta)$ совпадают с максимумами функции $L(X,\theta)$, которая более проста для исследования на экстремумы.

Пример. Пусть $X_1, X_2, ... X_n$ - выборка из распределения Пуассона с неизвестным параметром λ . Требуется найти оценку λ по методу МП.

Для случайной величины распределенной по закону Пуассона $P(\xi=m)=rac{\lambda^m e^{-\lambda}}{m!}$.

$$\Rightarrow L(X,\lambda) = \sum_{i=1}^{n} \ln \left(\frac{\lambda^{X_i} e^{-\lambda}}{X_i!} \right) = \sum_{i=1}^{n} \left(X_i \ln \lambda - \lambda - \ln X_i! \right) = \ln \lambda \sum_{i=1}^{n} X_i - \lambda n - \sum_{i=1}^{n} \ln X_i!.$$

Ищем максимум функции, используя методы дифференциального исчисления.

Вычисляем $\frac{\partial L}{\partial \lambda} = \frac{1}{\lambda} \sum_{i=1}^n X_i - n$, и приравнивая к нулю находим оценку для λ .

 $\frac{1}{\lambda}\sum_{i=1}^{n}X_{i}-n=0 \ \Rightarrow \ \lambda^{*}=\frac{1}{n}\sum_{i=1}^{n}X_{i}=\overline{X}$. Легко убедиться, что полученная точка является точкой максимума.