

MITSUBISHI 1993 SEMICONDUCTORS

RF POWER
SEMICONDUCTORS

HIN BOOK

HIGH FREQUENCY HIGH POWER TRANSISTORS

2SC730

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC730 is a silicon NPN epitaxial planar type transistor designed for industrual use RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: Gpe ≥ 10dB
 - @V_{CC} = 13.5V, P_O = 1W, f = 150MHz
- TO-39 metal seeled package for high reliability.
- All electrodes are isolated from the case.

APPLICATION

0.5 to 0.8 watt power amplifiers, and driver stage in VHF band.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage	1	40	V
VEBO	Emitter to base voltage	- 5	4	V
VCER	Collector to emitter voltage	R _{BE} = 10 Ω	40	V
lo	Collector current		0.4	А
15-7		Ta = 25°C	1,03	w
Pc	Collector dissipation	T _C =25°C	3	w
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-65~+175	°C
Rth-a		Junction to ambient .	145	°C/W
Rth-c	Thermal resistance	Junction to case	50	°C/W

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise specified)

Symbol	Parameter Test conditions		Unit			
		Min	Тур	Max	Unii	
V(BR)EBO	Emitter to base breakdown voltage	IE=1mA, IC=0	4			٧
V(BR)CBO	Collector to base breakdown voltage	1 _C = 1mA, I _E = 0	40			٧
V(BR)CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =10Ω	40	-		٧
сво	Collector cutoff current	V _{OB} =15V, I _E =0			10	μА
IEBO	Emitter cutoff current	V _{EB} =2.5V, I _C =0)		100	μΑ
hre .	DC forward current gain ★	V _{CE} =10V, I _C =0.1A	10	50	180	_
Po	Output power	V	1	1,5		W
ηo	Collector efficiency	V _{CC} =13.5V, Pin=0.1W, f=150MHz	50	60		%

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

Notes: All coils are made from 1.5mm silver plated copper wire Coil dimensions in milli-meter

- D: Inner diameter of coil
- T: Turn number of coil
- P: Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

THERMAL RESISTANCE 75°C HEAT SINK DRAWING

DIMENSIONS, mm

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS.

BASE-EMITTER RESISTANCE RBE (Q)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY

OUTPUT POWER VS.
COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC741 is a silicon NPN epitaxial planar type transistor designed for industrial use RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 13dB
 - @V_{CC} = 13.5V, P_o = 0.2W, f = 150MHz TO-39 metal seeled package for high reliability.
- Collector electrode is electrically connected to the case.

APPLICATION

Driver stage in VHF band.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		40	V
VEBO	Emitter to base voltage		4	V
VCER	Collector to emitter voltage	R _{BE} =10Ω	40	V
10	Collector current	98 -	0.3	A
Pc	Collector dissipation	Ta=25°C	0.68	w
	Conector dissipation	T _C =25°C	2.5	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-65~+175	,c
Rth-a	Thermal resistance	Junction to ambient	220	°C/W
Ath-o	Thermal resistance	Junction to case	60	*c/w

ELECTRICAL CHARACTERISTICS (To=25°C unless otherwise specified)

Symbol	Parameter Test conditions	Test conditions	Limits			
		Min	Тур	Max	Unit	
V(BR)EBO	Emitter to base breakdown voltage	IE=1mA, IC=0	4	3-		V
V(BR)CBO	Collector to base breakdown voltage	Ic=1mA, IE=0	40	- 1		V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =10Ω	40			V
CBO	Collector cutoff current	V _{OB} =15V, I _E =0	1150		1	μА
EBO	Emitter cutoff current	V _{EB} =3V, I _C =0		. :	1	μА
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	
Po	Output power	Control of the Contro	0.2	0.3		·w
η _C	Collector efficiency	V _{CC} =13.5V, P _{in} =10mW, f=150MHz	50	60		%

Coil dimensions in milli-meter

D: Inner diameter of coil

T: Turn number of coil

P · Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

THERMAL RESISTANCE 75°C HEAT SINK DRAWING

OUTPUT CHARACTERISTICS. **COMMON EMITTER**

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS.

BASE-EMITTER RESISTANCE R_{BE} (Ω)

OUTPUT POWER, COLLECTOR EFFICIENCY

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC908 is a silicon NPN epitaxial planar type transistor designed for industrial use RF power ampliflers on UHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 4dB
 @V_{CC} = 13.5V, P_o = 1W, f = 500MHz
- TO-39 metal seeled package for high reliability.
- · All electrodes are isolated from the case.

APPLICATION

0.5 to 0.8 watt power amplifiers, and driver stage in UHF band.

ABSOLUTE MAXIMUM RATINGS (TC=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vсво	Collector to base voltage		40	V
VEBO	Emitter to base voltage		4	V
VCER	Collector to emitter voltage	R _{BE} = 10 Ω	40	V
lo	Collector current		0.5	А
1 10		Ta=25°C	0,86	W
Pc	Collector dissipation	To=25°C	4.3	w
Ti	Junction temperature		+175	°C
Tstg	Storage temperature	The second second second second	-65~+175	*c
Rth-a	BOTH NEW TONE OF BEEN	Junction to ambient	175	*c/w
Rth-o	Thermal resistance	Junction to case	35	.c/w

ELECTRICAL CHARACTERISTICS (TG=25°C unless otherwise specified)

	Parameter			Unit		
Symbol		Test conditions	Min	Тур	- Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=1mA, IO=0	4			٧
V(BR)CBO	Collector to base breakdown voltage	IC=10mA, IE=0	40			٧
V(BR)CER	Collector to emitter breakdown voltage	1c=10mA, R _{BE} =10Ω	40		1/15	٧
СВО	Collector cutoff current	V _{CB} =15V, I _E =0			50	μА
EBO	Emitter cutoff current	V _{EB} =3V, I _C =0			100	μА
hFE	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	-
Po	Output power		1	1.2	-	W
$\eta_{\rm C}$	Collector efficiency	V _{CC} =13.5V, P _{In} =0.4W, f=500MHz	50	70		%

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

THERMAL RESISTANCE 75°C HEAT SINK DRAWING

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE RBE (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

COLLECTOR SUPPLY VOLTAGE Vcc (V)

h11e - FREQUENCY

Re (h11e)

DESCRIPTION

2SC1324 is a silicon NPN epitaxial planar type transistor designed for industrial use RF broadband amplifiers from VHF to UHF band.

FEATURES

- High power gain: G_{pe} ≥ 9dB
 @V_{CC} = 15V, I_C = 30mA, f = 770MHz
- TO-12 metal seeled package with case grounded pin for high reliability and good performances.
- All electrodes excepted ground pin are isolated from the case.

APPLICATION

Broadband amplifiers from VHF to UHF band.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
V _{EBO}	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} =∞	25	V
Ic	Collector current		150	mA
D-	Collector dissipation	Ta=25°C	0.8	W
		T _C =25°C	3	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-65~+175	°C
Rth-a	Thermal resistance	Junction to ambient	187.5	*c/w
Rth-o	THEITHEI PESISIANCE	Junction to case	50	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Total and distance	Limits			
Cymbol		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE = 1mA, IC =0	4	-		V
V _(BR) CBO	Collector to base breakdown voltage	I _O =1mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =∞	25			V
ГСВО	Collector.cutoff.current	V _{CB} =25V, I _E =0			50	μА
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0			75	μA
hre	DC forward current gain *	V _{CE} = 15 V, I _C = 30 mA	20	70	180	_
Gpe	Power gain	V _{CC} =15V, f=770MHz, I _C =30mA	9	10		dB
fT	Transition frequency	· VoE =15V, Io = 30mA		1.7		GHz
NF	Noise figure	$V_{OC} = 15V$, $I_{O} = 30mA$, $f = 500MHz$, $R_{G} = 50 \Omega$		5		dB

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA COLLECTOR DISSIPATION VS.

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS.

DC CURRENT GAIN

hFE

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

INPUT ADMITANCE VS. FREQUENCY

Re(ytte) (m강)

OUTPUT ADMITANCE

R_{e(y22e)} (mt)

NOISE FIGURE VS.

COLLECTOR CURRENT IC (mA)

POWER GAIN VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

POWER GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT IC (mA)

THIRD ORDER INTERMODULATION DISTORTION VS. OUTPUT LEVEL

OUTPUT LEVEL (dBµV)

DESCRIPTION

2SC1729 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on VHF band mobile radio amplications.

FEATURES

- High power gain: G_{pe} ≥ 10dB
 @V_{CC} = 13.5V, P_o = 14W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- · Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 and load VSWR when operated at V_{CC} = 15.2V, P_o = 18W, f = 175MHz.

APPLICATION

10 to 14 watts output power amplifiers applications in VHF band.

ABSOLUTE MAXIMUM RATINGS (TG=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
V _{EB} o	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} =∞	17	V
1 _C	Collector current		3.5	А
Pc	C Collector dissipation	Ta=25°C	2.5	w
		To=25°C	35	W
Tj	Junction temperature		+175	*c
Tstg	Storage temperature		-65~+175	*c
Rth-a	Thermal resistance	Junction to ambient	60	°C/W
Rth-c	Highligh resistance	Junction to case	4.3	*c/w

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	. Parameter	Test conditions		44.4		
-,		rest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	1 _E =10mA, I _C =0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	35	,		V
V(BR)CEO	Collector to emitter breakdown voltage	Ic=50mA, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			1	mA
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0			0.5	mA
hfE	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	
P ₀	Output power		14	16		W
η_{C}	Collector efficiency	V _{CO} =13.5V, P _{IN} =1.4W, f=175MHz	60	70		%

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

C2 22µF, 0.1µF, 0.02µF, 300pF in parallel

otes All coils are made from 1 5mm silver plated copper wire

Coil dimensions in milli-meter
D: Inner diameter of coil

- T Turn number of coil
- P Pitch of coil
- P Pitch of coi
- 1: Length

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS.
COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

DESCRIPTION

2SC1945 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on HF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 14.5dB$ $@V_{CC} = 12V$, $P_0 = 14W$, f = 27MHz
- Emitter ballasted construction for high reliability and good aperformances.
- TO-220 package similarly is combinient for mounting.
- Ability of withstanding infinite load VSWR when operated at V_{CC} = 16V, P_O = 18W, f = 27MHz.

APPLICATION

10 to 14 watts output power class AB amplifiers applications in HF band.

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		80	V
VEBO	Emitter to base voltage		5	V
V _{CEO}	Collector to emitter voltage	R _{BE} =∞	40	V
Ic	Collector current		. 6	Α
Pc	C Collector dissipation	Ta = 25°C	1,5	W
r c		T _C =25°C	20	W
Tj	Junction temperature		+150	°C
Tstg .	Storage temperature		-55~+150	.c
Rth-a	Thermal resistance	Junction to ambient	83,3	°C/W
Rth-c	Thermal resistance	Junction to case	6.25	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Test conditions				
-,	- arameter	Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =5mA, I _C =0	5			V
V(BR)CBO	Collector to base breakdown voltage	I _C =1mA, I _E =0	80			V
V _{(BR)CEO}	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =∞	40			V
СВО	Collector cutoff current	V _{CB} =30V, I _E =0			100	μА
EBO	Emitter cutoff current	V _{EB} =4V, I _O =0			100	μА
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	_
Po	Output power	·	14	16		W
η _C	Collector efficiency	V _{GO} =12V, Pin=0.5W, f=27MHz	60	70		%

^{*} Note: Pulse test, P_W = 150μs, duty = 5%

TEST CIRCUIT

P · Pitch of coil TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DISCRIPTION

2SC1946 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 6.7dB
 @V_{CC} = 13.5V, P_o = 28W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 30W, f = 175MHz.

APPLICATION

25 watts output power amplifiers applications in VHF band.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
VcBo	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
lo	Collector current		7	Α
_		Ta=25°C	3	W
Pc	Collector dissipation	T _C =25°C	50	W
Tį	Junction temperature		+175	°C
Tstq	Storage temperature		-65~+175	°C
Ath-a		Junction to ambient	50	°C/W
Rth-c	Thermal resistance	Junction to case	3	°C/W

ELECTRICAL CHARACTERISTICS (To=25°C unless otherwise specified)

		Total conditions		Limits	Max 2	Unit
Symbol	Parameter	Test conditions	Mın	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =10mA, I _C =0	4			٧
V(BR)CBO	Collector to base breakdown voltage	1 _C =10mA, I _E =0	35			٧
V(BR)CEO	Collector to emitter breakdown voltage	I _C =100mA, R _{BE} =∞	17			٧
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			2	mΑ
I _{EB0}	Emitter cutoff current	V _{EB} =3V, I _C =0			1	mA
hre	DC forward current gain *	V _{CE} =10V, I _C =0.2A	10	50	180	_
Po	Output power	1 - A2 EV D - AN 4 - 47FA41-	28	32		W
η _C	Collector efficiency	V _{CC} =13.5V, P _{in} =6W, f=175MHz	60	70		%

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

2SC1946A

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1946A is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 10dB
 @V_{CC} = 13.5V, P_o = 30W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 30W, f = 175MHz.
- Equivalent input/output impedance at rated operating conditions: $Z_{in} = 0.65 + j1.4\Omega$

$$Z_{out} = 1.9 + j0.75\Omega$$

APPLICATION

25 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcво	Collector to base voltage		35	٧
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
1c	Collector current		7	A
D.	C-Ndissipation	Ta=25°C	3	W
Pc	Collector dissipation	T _C =25°C	50	W
TI	Junction temperature		+ 175	*c
Tstg	Storage temperature		-55~+175	°C
Rth-a	Theresis	Junction to ambient .	50	°C/W
Rth-o	Thermal resistance	Junction to case	3	*c/w

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Test conditions		Limits		
	raianictei	. Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =10mA, I _C =0	.4			V
V(BR)CBO	Collector to base breakdown voltage	IC=10mA, IE=0	35			٧
V(BR)CEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	17			٧
СВО	Collector cutoff current	' V _{CB} =25V, I _E =0			2	mA
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0			1	mA
hre	DC forward current gain *	V _{OE} =10V, I _O =0.2A	10	50	180	_
Po	Output power	V 40.5V D 0W 4 47544V	30	35		W
η _C	Collector efficiency	Vcc=13.5V, Pin=3W, f=175MHz	60	70		%

^{*} Note Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

L: Length 10mm

RFC: 0.4mm enameled wire 12T with Ferrite Bead

CB1: 220pF, 2200pF in parallel

C_{B2} 220pF, 2200pF, 10µF in parallel

Notes: All coils are made from 1.5mm¢ silver plated copper wire Coil dimensions in milli-meter

D Inner diameter of coil

T: Turn number of coil

Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC1947 is a silicon NPN epitaxial planar type transistor designed for industrial use RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: Gpe ≥ 10.7dB
 - $@V_{CC} = 13.5V, P_0 = 3.5W, f = 175MHz$
- TO-39 metal seeled package for high reliability.
- Emitter electrode is connected electrically to the case.

APPLICATION

1 to 3 watt power amplifiers in VHF band mobile radio applica-

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current	- 1	1 . 1	A
Pc	Callagras dissipation	Ta = 25°C	1	W
		T _C = 25°C	10	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-65-+175	°C
Ath-a	Thermal resistance	Junction to ambient	150	°C/W
Rth-o	Thermal resistance	Junction to case	15	°C/W

ELECTRICAL CHARACTERISTICS (TC=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			
	T an entro Co	. rest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE = 5 mA, IC = 0	4			V
V(BR)CBO	Collector to base breakdown voltage	1c=10mA, IE=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	Ic=50mA, RBE=∞	17			
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			500	μΑ
LEBO	Emitter cutoff current	VEB=3V, IC=0			500	μА
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	
Po	Output power **		3.5	4		W
$\eta_{\rm C}$	Collector efficiency	V ₀₀ =13.5V, P _{in} =0.3W, f=175MHz	50	60		%

Note: Pulse test, P_w = 150µs, duty = 5%.
 Note: In case of the case grounded.

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE Vcc (V)

MITSUBISHI RF POWER TRANSISTOR 2SC1965

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1965 is a silicon NPN epitaxial planar type transistor designed for industrial use RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: Gpe ≥ 10dB @V_{CC} = 13.5V, P_O = 6W, f = 175MHz
- T_C-17 metal seeled package for high reliability.
- Emitter ballasted construction for good performances.
- Emitter electrode is connected electrically to the case.
- Ability of withstanding more than 20:1 load VSWR when operated at $V_{CC} = 15.2V$, $P_0 = 6W$, f = 175MHz, $T_C = 25^{\circ}C$.

APPLICATION

4 watt pawer amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current		1	А
_	0.0	Ta=25°C	1.5	W
Pc .	Collector dissipation	T _C =25°C	15	W-
Tj	Junction temperature		+175	*C
Tstg	Storage temperature		-65~+175 ·	*c
Rth-a		Junction to ambient	100	°C/W
Rth-c	Thermal resistance	Junction to case	10	°c/w

ELECTRICAL CHARACTERISTICS (To=25°C unless otherwise specified)

Symbol	Parameter		Limits			
Symbol	rarameter	Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=5mA, IO=0	4			V
V _(BR) CBO	Collector to base breakdown voltage	Ic=10mA, IE=0	35			V
V _{(BR)CEO}	Collector to emitter breakdown voltage	Io=50mA, RBE=∞	17			V
сво	Collector cutoff current . '	V _{CB} =25V, I _E =0			500	μΑ
1 _{EBO}	Emitter cutoff current	VEB=3V, IC=0			500	μА
hFE	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	_
P ₀	Output power **		6	6.5		W
$\eta_{\rm C}$	Collector efficiency	V ₀₀ =13.5V, Pin=0.6W, f=175MHz	50	60		%

Note: Pulse test, P_w = 150µs, duty = 5%. Note: In case of the case grounded.

TEST CIRCUIT

F Pitch of coil TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER PIN (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

MITSUBISHI RF POWER TRANSISTOR 2SC1966

NPN FPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1966 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on UHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 7.8dB
 @V_{CC} = 13.5V, P_O = 3W, f = 470MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.

APPLICATION

1 to 2 watts output power amplifiers in UHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
VCBO	Collector to base voltage		35	V
VEBO	Emitter to base voltage		3.5	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
1 _C	Collector current		1	А
Pc	Collector dissipation	T _C =25°C	10	W
Ti	Junction temperature		+175	°C
Tstg	Storage temperature		-65~+175	°C
Rth-c	Thermal resistance .	Junction to case	15	°C/W

ELECTRICAL CHARACTERISTICS (TG = 25°C unless otherwise specified)

Symbol			Limits Min Typ Max - 3.5	Unit		
Symbol	Parameter .	Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _F = 1mA, I _C = 0	. 3.5			٧
V(BR)CBO	Collector to base breakdown voltage	IO=10mA, IE=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	1 _C =10mA, R _{BE} =∞	17			V
I _{CBO}	Collector cutoff current	.V _{CB} =15V, I _E =0			100	μA
I _{EBO}	Emitter cutoff current	VEB=2.5V, IC=0			100	- µA
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	_
Po	Output power		3	3.5		W
$\eta_{\rm C}$	Collector efficiency	V _{CC} =13.5V, Pin=0.5W, f=470MHz	50	60		%

* Note. Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

Pitch of coil

COLLECTOR DISSIPATION VS.
AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS.

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE Vcc (V)

DESCRIPTION

2SC1967 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on UHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 6.7dB
 @V_{CC} = 13.5V, P_O = 7W, f = 470MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Ability of withstanding more than 20:1 load VSWR all phase when operated at V_{CC} = 15.2V, P_O = 7W, f = 470MHz.
- · Low thermal resistance ceramic package with flange.

APPLICATION

3 to 5 watts output power amplifiers in UHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Parameter Conditions		Unit	
V _{CBO}	Collector to base voltage		35	V	
VEBO	Emitter to base voltage		4	V	
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V	
lo	Collector current		2	A	
Pc	Collector dissipation	T _C =25°C	20	W	
T_{\parallel}	Junction temperature		+175 ,	°C	
Tstg	Storage temperature		-65~+175	°C	
Rth-c	Thermal resistance	Junction to case	7.5	°C/W	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter .	Test conditions	Limits			
		Test conditions	Min	Тур -	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	IE=5mA, IC=0	4			V
V(BR)C80	Collector to base breakdown voltage	. Ic=10mA, fE=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50 mA, R _{BE} =∞	17			V
¹ сво	Collector cutoff current	V _{CB} =15V, I _E =0			200	μА
[EBO	Emitter cutoff current	V _{EB} =2V, I _C =0			200	μΑ
hfE	DC forward current gain *	V _{OE} =10V, I _C =0.1A	10	50	180	_
Po	Output power	4	7	8		W
η_{C}	Collector efficiency	V _{CC} =13.5V, P _{in} =1.5W, f=470MHz		60		%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS.

Pitch of coil

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS.

COLLECTOR CURRENT Ic (A)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER. COLLECTOR EFFICIENCY

INPUT POWER PIN (W)

OUTPUT POWER VS. COLLECTOR

SUPPLY VOLTAGE

3

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC1968 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on UHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 3.7dB
 @V_{CC} = 13.5V, P_O = 14W, f = 470MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR all phase when operated at V_{CC} = 15.2V, P_O = 18W, f = 470MHz.

APPLICATION

10 to 14 watts output power amplifiers in UHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} =∞	17	V
I _C	Collector current		5	А
Pc	Collector dissipation	Ta=25°C	3	w
PC		T _O =25°C	40	W
Tj	Junction temperature		+175	•¢
Tstg	Storage temperature		-65~+175	°C
Rth-a		Junction to ambient	50	°C/W
Rth-c	Thermal resistance	Junction to case	3,75	*c/w

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			Unit
Oymous		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=10mA, IC=0	4			V
V(BA)CBO	Collector to base breakdown voltage	IC=10mA, IE=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	17			V
сво	Collector cutoff current	V _{CB} =15V, I _E =0			500	μА
IEBO	Emitter cutoff current	V _{EB} =2V, I _C =0			400	μΑ
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	_
Po	Output power		14	16		W
η _C	Collector efficiency	V _{OC} =13.5V, P _{in} =6W, f=470MHz	50	60		%

Note: Pulse test, P_W = 150µs, duty = 5%

TEST CIRCUIT

L1: Length 4mm, width 8mm, thickness 0.3mm copper plate

All coil are made from 1.5 mm ϕ silver plated copper wire except L₁ Notes: Coil dimensions in milli-meter

D upper diameter of coil

Turn number of coil

P Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS. COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE RBE (Q)

COLLECTOR OUTPUT CAPACITANCE VS.

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

2SC1968A

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1968A is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on UHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 5.4dB
 @V_{CC} = 13.5V, P_o = 14W, f = 470MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR all phase when operated at V_{CC} = 15.2V, P_O = 18W, f = 470MHz.

APPLICATION

10 to 14 watts output power amplifiers in UHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
VCBO	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	٧
Ic	Collector current		. 5	Α
		Ta=25°C	3	w
Pc	Collector dissipation	T _C = 25°C	40	W
TI	Junction temperature		+175	°C
Tstq	Storage temperature		-65~+175	°C
Rth-a		Junction to ambient	50	.c/M
Rth-c	Thermal resistance	Junction to case	3.75	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

	Parameter . Tes		Limits			
Symbol		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=10mA, IC=0	4			V
V(BR)CB0	Collector to base breakdown voltage	I ₀ =10mA, I _E =0	. 35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	17			V
1сво	Collector cutoff current	. V _{CB} =15V, I _E =0			500	μΑ
I _{EBO}	Emitter cutoff current	V _{EB} =2V, I _C =0			400	μА
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	_
Po	Output power		14	- 16		W
$\eta_{\rm C}$	Collector efficiency	V _{CO} =13.5V, Pin=4W, 1=470MHz	50	60		%

^{*} Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

D inner diameter of coil

Turn number of coil

P · Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS. COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS.

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC1969 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on HF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 12dB
 @V_{CC} = 12V, P_O = 16W, f = 27MHz
- Emitter ballasted construction for high reliaiblity and good performances.
- TO-220 package similarly is combinient for mounting.
- Ability of withstanding infinite load VSWR when operated at V_{CC} = 16V, P_O = 20W, f = 27MHz.

APPLICATION

10 to 14 watts output power class AB amplifiers applications in HF band.

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		60	V.
VEBO	Emitter to base voltage		5	V
VCEO	Collector to emitter voltage	RBE=∞	. 25	V
lc	Collector current		6	Α
0	Collector dissipation	Ta == 25°C	1.7	W
Po		T _C =25°C	20	w
Tj	Junction temperature		+150	°C
Tatg	Storage temperature		-55~+150	°C
Rth-a	The second secon	Junction to ambient	-73.5	*c/w
Rth-c	Thermal resistance	Junction to case	6.25	°C/W

ELECTRICAL CHARACTERISTICS (To=25°C unless otherwise specified)

Symbol	Parameter	Total consideration		Limits		
Зуппрог		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=5mA, IC=0	5			V
V(BR)CB0	Collector to base breakdown voltage	1c=1mA, 1E=0	60			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =∞	25			V
СВО	Collector cutoff current	V _{CB} =30V, I _E =0			100	μА
I _{EBO}	Emitter cutoff current	VEB=4V, IC=0			100	μА
hre .	DC forward current gain *	V _{CE} =12V, I _C =10mA	10	50	180	_
Po	Output power		16	18		W
η _C	Collector efficiency	V _{CC} =12V, P _{in} =1w, f=27MHz	- 60	70		%

Note: Pulse test, P_W = 150µs, duty = 5%, h_{FE} classification.

Item	×	Α	В	С	D
hFE	10~25	20~45	35~70	55~110	90-180

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

Pitch of coil

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS.

COLLECTOR CURRENT Ic (A)

DC CURRENT GAIN VS.

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS.

COLLECTOR SUPPLY VOLTAGE VCC (V)

IN CASE AB OPERATING OUTPUT POWER COLLECTOR CURRENT VS. INPUT POWER

INPUT POWER PIN (W)

THIRD ORDER INTERMODULATION DISTORTION VS. OUTPUT POWER

OUTPUT POWER LEVEL (PEP) (W)

2SC1970

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1970 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 9.2dB
 @V_{CC} = 13.5V, P_O = 1W, f = 175MHz
- Emitter ballasted construction, gold metallization for high reliability and good performances.
- TO-220 package similarly is combinient for mounting.

APPLICATION

0.8 to 1 watts output power amplifiers and driver in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
VcBo	Collector to base voltage		40	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current		0,6	А
		Ta=25°C	1	W
Pc	Collector dissipation	T _C =25°C	5	W
Tj	Junction temperature		+150	°C
Tstg	Storage temperature		-55-+150	°C
Ath-a		Junction to ambient	125	°C/W
Rth-c	Thermal resistance	Junction to case	25	°C/W

ELECTRICAL CHARACTERISTICS (TC=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			
Symbol		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=1mA, IC=0	4			V
V(BR)CBO	Collector to base breakdown voltage	1 _C =5mA, I _E =0	40			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			100	μА
1EBO	Emitter cutoff current	V _{EB} =3V, 1 _C =0			100	μА
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	_
Po	Output power		1	1,3		W
η _C	Collector efficiency	V _{CC} =13.5V, P _{in} =0.12W, f=175MHz	50	60		%

* Note. Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS.

COLLECTOR CURRENT Ic (mA)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

OUTPUT POWER, COLLECTOR EFFICIENCY

.

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC1971 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 10dB
 @V_{CC} = 13.5V, P_o = 6W, f = 175MHz
- Emitter ballasted construction, gold metallization for high reliability and good performances.
- TO-220 package similar is combinient for mounting.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 6W, f = 175MHz.

APPLICATION

4 to 5 watts output power amplifiers in VHF band applications.

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
VCBO	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} =∞	17	V
I C	Collector current		12	A
		Ta=25°C	1,5	W
Pc	Collector dissipation	T _C = 25°C	12.5	W
Ti	Junction temperature		+150	°C
Tstg	Storage temperature		-55~+150	· *C
Rth-a		· Junction to ambient	. 83	°C/W
Rth-c	Thermal resistance	Junction to case	10	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

	Parameter		Limits			
Symbol		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _F =5mA, I _C =0	4			٧
V(BR)CBO	Collector to base breakdown voltage	1 _C =10mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	i _O =50mA, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			500	μΑ
EBO	Emitter cutoff current	VEB=3V, IC=0			500	μΑ
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	_
Po	Output power		6	7		W
$\eta_{\rm C}$	Collector efficiency	V _{CO} =13.5V, P _{in} =0.6W, f=175MHz	60	70		%

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS.
AMBIENT TEMPERATURE

Putch of cod

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A) .

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE RBE (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

DESCRIPTION

2SC1972 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 7.5dB
 - @V_{CC} = 13.5V, P_O = 14W, f = 175MHz
- Emitter ballasted construction, gold metallization for high reliability and good performances.
- TO-220 package similar is combinient for mounting.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 18W, f = 175MHz.

APPLICATION

10 to 14 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current		3,5	Α
Pc	Collector dissipation	Ta = 25°C	1,5	W
	Conector dissipation	T _C =25°C	25	W
TJ	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	,c
Rth-a	Thermal resistance	Junction to ambient	100	°C/W
Rth-c	THEITHOLIESISCAICE	Junction to case	6	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	. Test conditions		Limits			
		Test conditions	Min	Тур	Max	Unit	
V(BR)EBO	Emitter to base breakdown voltage	IE=10mA, IC=0	4			V	
V(BR)CB0	Collector to base breakdown véltage	Ic=10mA, IE=0	35			V	
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	17			V	
СВО	Collector cutoff current -	V _{OB} =25V, I _E =0			1000	μА	
IEBO	Emitter cutoff current	VEB=3V, IC=0			500	μА	
hre	DC forward current gain * .	V _{CE} =10V, I _C =0.1A	10	50	180	_	
Po	Output power		14	15		w	
η _C	Collector efficiency	V _{CC} =13.5V, P _{In} =2.5W, f=175MHz	60	70		%	

* Note Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

Notes

D Inner diameter of coil Turn number of coil

P : Patch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS.

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS.

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

MITSUBISHI RF POWER TRANSISTOR 2SC2053

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2053 is a silicon NPN epitaxial planar type transistor designed for RF amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 15.7dB
 @V_{CC} = 13.5V, P₀ = 0.15W, f=175MHz
- Emitter ballasted construction, gold metallization for high reliability and good performances.
- TO-92 similar package is combinient for mounting.

APPLICATION

Driver amplifiers in general in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
VCBO	Collector to base voltage		40	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} =∞	17	V
Iç	Collector current		0.3	Α
Pc	Collector dissipation	Ta=25°C	0,6	W
Тј	Junction temperature		+135	*C
Tstg	Storage temperature		-55~+135	°C
Rth-a	Thermal resistance	Junction to ambient	183	*c/w

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

	Parameter Test conditions		Limits			
Symbol		lest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =1mA, I _C =0	4			٧
V(BR)CBO	Collector to base breakdown voltage	I _C =1mA, I _E =0	40			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =∞	17			V
I _{CB0}	Collector cutoff current	V _{CB} =15V, I _E =0			20	μА
I _{EB0}	Emitter cutoff current	V _{EB} =3V, I' _C =0			20	μА
hFE	DC forward current gain *	V _{CE} =10V, I _C =10mA	10	50	180	_
Po	Output power		150	200		mW
$\eta_{\rm C}$	Collector efficiency	V _{GC} =13.5V, P _{In} =4mW, f=175MHz	40	50		%

* Note. Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

- T: Turn number of coil
- P. Pitch of coil

TYPICAL PERFORMANCE DATA

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS. COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE RBE (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (mW)

OUTPUT POWER VS. COLLECTOR

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC2055 is a silicon NPN epitaxial planar type transistor designed for RF amplifiers on VHF band portable or hand-held radio applications.

FEATURES

- High power gain: G_{pe} ≥ 13dB
 @V_{CC} = 7.2V, P_o = 0.2W, f = 175MHz
- Emitter ballasted construction, gold metallization for high reliability and good performances.
- TO-92 similar package is combinient for mounting.

APPLICATION

Driver amplifiers in general in VHF band portable or hand-held radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		18	V
V _{EBO}	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	9	V
Ic	Collector current		0.3	A
Pc	Collector dissipation	Ta = 25°C	0.5	W
Tj	Junction temperature		+135	°C
Tstg	Storage temperature		-55~+135	°C
Rth-a	Thermal resistance	Junction to ambient	220	°C/W

ELECTRICAL CHARACTERISTICS (TC=25°C unless otherwise specified)

Symbol	Parameter	Test conditions		Here		
Syllibol	Laiding/ai	lest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =1mA, I _C =0	4			V
V(BR)CB0	Collector to base breakdown voltage	I _C =10mA, I _E =0	18			V
V(BR)CEO	Collector to emitter breakdown voltage	1 _C =10mA, R _{BE} =∞	9			٧
1сво	Collector cutoff current	V _{CB} =10V, I _E =0			30	μА
†EBO	Emitter cutoff current	V _{EB} =3V, I _C =0			30	μА
hre	DC forward current gain *	V _{OE} =7V, I _O =50mA	10	50	180	-
Po	Output power		0.2	0.25		W
η_{C}	Collector efficiency	V ₀₀ =7.2V, P _{IN} =10mW, f=175MHz	50	60		%

^{*} Note. Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

P. Pitch of coil

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS.

COLLECTOR CURRENT Ic (mA)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE Vcc (V)

DESCRIPTION

2SC2056 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band portable or hand-held radio applications.

FEATURES

- High power gain: $G_{pe} \ge 9dB$ $@V_{CC} = 7.2V$, $P_{O} = 1.6W$, f = 175MHz
- TO-39 metal seeled package for high reliability.
- Emitter ballasted construction, gold metallization for good
 performances
- Emitter electrode is connected electrically to the case.

APPLICATION

1 to 1.5 watt power amplifiers in VHF band portable or hand-held radio applications.

ABSOLUTE MAXIMUM RATINGS (To = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage	1	18	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	9	V
1 _C	Collector current		0.6	Α
	C-lldesired	Ta = 25°C	0.8	W
Pc	Collector dissipation .	T _C = 25°C	4	W
Tj	Junction temperature	·	+175	-c
Tstg	Storage temperature		-55~+175	°C
Rth-a	76	Junction to ambient	187.5	*c/w
Rth-c	Thermal resistance	Junction to case	37,5	°C/W

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise specified)

Symbol	Parameter . Test conditions					
		Min	Тур	Max	Unit	
V _{(BR)EBO}	Emitter to base breakdown voltage	IE=5mA, IC=0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	18			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =∞	9			V
СВО	Collector cutoff current	V _{CB} =10V, I _E =0			100	μА
1 _{EBO}	Emitter cutoff current	VEB=3V, IC=0			100	μА
hre	DC forward current gain *	V _{CE} =7V, I _C =0.1A	10	50	180	_
P ₀	Output power		1,6	2		W
η _C	Collector efficiency	V _{CO} =7.2V, Pin=0.2W, f=175MHz	55	60		%

* Note. Pulse test, Pw = 150µs, duty = 5%

D: Inner diameter of coil

- T Turn number of coil
- P Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

THERMAL RESISTANCE 75°C/W HEAT SINK OUTLINE DRAWING

MATERIAL. AL DIMENSIONS mm

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS.

COLLECTOR CURRENT Ic (mA)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS.

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

8

OUTPUT POWER

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC2086 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in HF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 13dB
 @V_{CC} = 12V, P_o = 0.3W, f=27MHz
- Emitter ballasted construction, gold metallization for good performances.
- TO-92 similar package with low thermal resistance.

APPLICATION

Driver amplifiers in general in HF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		75	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} =∞	35	V
Ic	Collector current		1	Α
Pc	Collector dissipation	Ta = 25°C	0.8	W
Tį	Junction temperature		+135	*c
Tstg	Storage temperature		-55~+135	*c
Rth-a	Thermal resistance .	Junction to ambient	137.5	'c/W

ELECTRICAL CHARACTERISTICS (To=25°C unless otherwise specified)

	Parameter Test conditions		A to the			
Symbol		Mın	Тур	Max	Unit	
V(BR)EBO	Emitter to base breakdown voltage	IE=1mA, IC=0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =1mA, I _E =0	75			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =∞	35			V
1сво	Collector cutoff current	V _{CB} =35V, I _E =0			100	μΑ
IEBO	Emitter cutoff current	V _{EB} =3V, l _O =0			100	μА
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	35	70	300	_
Po	Output power	V -45V F: -45-W 4-67M	0,3	0.45		W
$\eta_{\rm C}$	Collector efficiency ·	V _{CC} =12V, P _{in} =15mW, f=27MHz	50	60		%

^{*} Note. Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

Coils dimensions in milli-meter

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS.

COLLECTOR CURRENT Ic (mA)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER PIR (mW)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

DESCRIPTION

2SC2094 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 8.8dB
 @V_{CC} = 13.5V, P_o = 15W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 18W, f = 175MHz.
- Low intermodulation distortion: IMD -30dB (typ) @15WPEP

APPLICATION

10 to 14 watts output linear power amplifiers in VHF band.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		40	V
VEBO	Emitter to base voltage		4.5	V
VCEO	Collector to emitter voltage	A _{BE} = ∞	17	V
Ic	Collector current		3.5	Α
		Ta=25°C	2	W
Pc	Collector dissipation	T _C =25°C	30	W
Tı	Junction temperature		+175	*c
Tstq	Storage temperature		-55~+175	°C
Rth-a		Junction to ambient	75	°C/W
Rth-o	Thermal resistance	Junction to case	5	°C/W

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=1mA, IC=0	4.5			V
V(BR)CBO	Collector to base breakdown voltage .	I _C =10mA, I _E =0	40			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	17			V
СВО	Collector cutoff current ·	V _{CB} =25V, I _E =0			2	mA
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0			0.5	mA
hre	DC forward current gain *	. V _{CE} =10V, I _O =0.1A	10	50	180	_
Po	Output power	V ₀₀ =13.5V, P _{in} =2W, f=175MHz	15	17.5		W,
η_{C}	Collector efficiency		60	70		%

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS. COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V) COLLECTOR-EMITTER BREAKDOWN

VOLTAGE VS.

BASE-EMITTER RESISTANCE

Tc = 25°C

COLLECTOR CURRENT VS. BASE TO EMITTER VOLTAGE

f=1MHz 50 40

60

BASE-EMITTER RESISTANCE RBE (D)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE Voc (V)

IN CASE AB OPERATING **OUTPUT POWER COLLECTOR** CURRENT VS. INPUT POWER

INPUT POWER Pin (W)

THIRD ORDER INTERMODULATION DISTORTION VS. OUTPUT POWER

OUTPUT POWER Po (PEP W)

DESCRIPTION

2SC2097 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in HF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 12.3dB
 @V_{CC} = 13.5V, P_O = 75W, f = 30MHz
- Emitter ballasted construction for good performances.
- · Low thermal resistance ceramic package with flange.
- Ability of withstanding infinite load VSWR when operated at V_{CC} = 15.2V, P_O = 70W, f = 30MHz, T_C = 25°C.

APPLICATION

HF band linear power amplifiers in push-pull class AB operation.

ABSOLUTE MAXIMUM RATINGS (To = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		50	V
VEB0	Emitter to base voltage		5	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	20	V
Ic	Collector current		15	A
Pc	Collector dissipation	Ta = 25°C	7.5	W
	Conector dissipation	T _C =25°C	125	w
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	*c
Rthta	Thermal resistance	Junction to ambient	20	°C/W
Rtff-c	Thermal resistance	Junction to case	1.2	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Test conditions				
		rest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=10mA, IC=0	5			V
V(BR)CBO	Collector to base breakdown voltage	I _C =20mA, I _E =0	50			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	20			V
СВО	Collector cutoff current .	V _{CB} =25V, I _E =0			5	mA
EBO	Emitter cutoff current	VEB=2V, IC=0	1		4	mA
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	
Po	Output power		75	85		w
η _C	Collector efficiency	V _{CC} =13.5V, P _{In} =4W, f=30MHz	55	65		%

* Note. Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

- C₂ 82pF, 82pF, 82pF in parallel
- 100pF, 4700pF, 4700pF, 0.22μF, 0.22μF, 33μF, 330μF in parallel 100pF, 220pF, 4700pF, 0.1μF, 330μF in parallel C_3
- C₄
- REC 1mmø enameled wire 27T.
- Notes: All coils are made from 1.5mm¢ silver plated copper wire but coil (sign *) is made from 2.3mm¢
 - Inner diameter of coil P: Pitch of coil
 - Turn number of coil Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENCE TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE RBE (\Omega)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC2131 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in UHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 6.7dB
 @V_{CC} = 13.5V, P_o = 1.4W, f = 500MHz
- TO-39 metal seeled package for high reliability.
- Emitter ballasted construction, gold metallization for good performances.
- · Emitter electrode is connected electrically to the case.

APPLICATION

1 watt power amplifiers in UHF band mobile radio applications and driver amplifiers in general.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		40	V
V _{EBO}	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BÉ} = ∞	18	V
Ic	Collector current		0.6	A
Pc	Collector dissipation	Ta = 25°C	0.8	W
	Conscion dissipation	T _C = 25°C	4	W
Tj	Junction temperature		+175	·c
Tstg	Storage temperature		-55-+175	,c
Rth-a	Thermal resistance	Junction to ambient	187.5	°C/W
Rth-c	Thermal resistance	Junction to case	37.5	°C/W

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise specified)

Symbol	Parameter Test conditions	Test conditions				
		Min	Тур	Max	Unit	
V(BR)EBO	Emitter to base breakdown voltage	I _E =1mA, I _C =0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _O =5mA, I _E =0	40			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	18			
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			100	μА
I _{EBO}	Emitter cutoff current	VEB=3V, IC=0			100	μА
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	
Po	Output power		1.4	1.6	-	W
η _C	Collector efficiency	V _{CC} =13.5V, P _{in} =0.3W, f=500MHz	50	60		%

TEST CIRCUIT

0.3mm¢ enameled wire 25T ~ 30T RFC 50pF, 100pF, 2200pF, $0.005\mu F$, $0.0022\mu F$ in parallel C:

C2: 0.02µF, 0.047µF, 0.47µF in parallel

Coils are made from 1.5mm¢ silver plated copper wire except L1, L2 & RFC Notes:

D: Inner diameter of coil P · Pitch of coil

Coil dimensions in milli-meter Turn number of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. BASE TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE RRE (II)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR **EFFICIENCY VS. INPUT POWER**

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

TRIPLER OUTPUT POWER. COLLECTOR EFFICIENCY

150MHz INPUT POWER Pin (mW)

APPLICATION CIRCUIT TRIPLER CIRCUIT DIAGRAM (150MHz → 450MHz)

All coils are made from 1.5mm¢ silver plated copper wire

D: Inner diameter of coil

Turn number of coil P: Pitch of coil

Dimension in milli-meter

DESCRIPTION

2SC2133 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in UHF band 24 to 28 volts operation applications.

FEATURES

- High power gain: G_{pe} ≥ 8.2dB
 @V_{CC} = 28V, P_o = 30W, f = 220MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 28V, P_O = 30W, f = 220MHz, T_C = 25°C.
- Equivalent input series impedance: $Z_{in} = 1.2 + j3.3\Omega$ $@V_{CC} = 28V$, $P_{O} = 30W$, f = 220MHz

APPLICATION

10 to 15 watts output linear power amplifiers such as TV transposer amplifiers in VHF band.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcво	Collector to base voltage		55	V
VEED	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	. R _{BE} = ∞	35	V
l _C	Collector current		5	Α
-		Ta = 25°C	3.75	W
Pc	Collector dissipation	T _C = 25°C	75	W
Tı	Junction temperature		+175	*c
Tstg	Storage temperature		-55~+175	°C
Rth-a		Junction to ambient	40	°C/W
Rth-c	Thermal resistance	Junction to case	2	*c/w

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise specified)

	Parameter Test conditions	T	Limits			Unit
Symbol		lest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =10mA, I _C =0	4			٧
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	55			V
V(BR)CEO	Collector to emitter breakdown voltage	I ₀ =50mA, R _{BE} =∞	35			V
СВО	Collector cutoff current	. V _{CB} =35V, I _E =0			2	mA
ie80	Emitter cutoff current	V _{EB} =3V, I _C =0			- 1	mΑ
hre	DC forward current gain *	V _{CE} = 25V, I _C =0.2A	20	50	110	_
Po	Output power		30	34		W
$\eta_{\rm C}$	Collector efficiency	V _{CC} =28V, P _{in} =4.5W, f=220MHz	55	60		%

^{*} Note: Pulse test, P_W = 150μs, duty = 5%

- Thickness 0,2mm copper plate L1, L3
 - 10D, 7T, 2P, \$\phi\$1.0 silver plated copper wire 12D, 3T, 3P, \$\phi\$1.6 silver plated copper wire La:

 - 10D, 15T, \$1.0 enameled wire
 - 4.1 transformer
 - 1:4 transformer
 - Ferrite Sealed Bead
 - 330pF, 1000pF, 4700pF, 0.01μF, 0.1μF, 4.7μF in parallel 330pF, 1000pF, 4700pF, 0.01μF, 0.1μF, 47μF in parallel

Note D. Inner diameter of coil

- Turn number of coil
- Pitch of coil
- Dimension in milli-mater

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS. COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE Vcc (V)

IN CASE AB OPERATING OUTPUT POWER COLLECTOR CURRENT VS. INPUT POWER

INPUT POWER Pin (dBmW)

OUTPUT IMPEDANCE VS.

INPUT IMPEDANCE VS. **FREQUENCY**

G Rout OUTPUT RESISTANCE

FREQUENCY Tc = 25°C V_{CC}=28V Zout =Rout+iXout Po=30W Rout Id=80mA

FREQUENCY f (MHz)

G)

REACTANCE JXin

TUPUT

G

Rin

RESISTANCE

INPUT

DESCRIPTION

2SC2134 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band 24 to 28 volts operation applications.

FEATURES

- High power gain: G_{pe} ≥ 7dB
 @V_{CC} = 28V, P_o = 60W, f = 220MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- · Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 28V, P_O = 50W, f = 220MHz, T_C = 25°C.
- Equivalent input series impedance: $Z_{in} = 1 + j3\Omega$ @V_{CC} = 28V, P_O = 60W, f = 220MHz

APPLICATION

20 to 30 watts output linear power amplifiers such as TV transposer amplifiers in VHF band.

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		55	V
VEBO	Emitter to base voltage	,	4	V
VCEO	Collector to emitter voltage	R _{BE} =∞	35	V
1c	Collector current		10	А
Pc	Collector dissipation	Ta=25°C	4	W
re	Collector dissipation	T _C = 25°C	120	w
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	*c
Rth-a	Theresis	Junction to ambient	37.5	°C/W
Rth-c	Thermal resistance	Junction to case	1,25	·c/w

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise specified)

Symbol	Parameter Test conditions	Test conditions	Limits			
		Min	Тур	Max	Unit	
V _{(BR)EBO}	Emitter to base breakdown voltage	IE=10mA, IC=0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =50mA, I _E =0	55			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	35			V
¹сво	Collector cutoff current	V _{CB} =35V, I _E =0			5	mA
I _{EBO}	Emitter cutoff current	VEB=3V, IC=0			2	mA
hFE	DC forward current gain *	V _{CE} =25V, I _C =0.2A	20	50	110	
Po	Output power		60	70		W
η _C	Collector efficiency	V ₀₀ =28V, P _{in} =12W, f=220MHz	55	60		%

^{*} Note: Pulse test, Pw = 150µs, duty = 5%

TYPICAL PERFORMANCE DATA

F:

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

C₁: 330pF, 1000pF, 4700pF, 0.01 μ F, 0.1 μ F, 4.7 μ F in parallel C₂: 330pF, 1000pF, 4700pF, 0.01 μ F, 0.1 μ F, 4.7 μ F in parallel

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BRREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE RBE (Q)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

IN CASE AB OPERATING **OUTPUT POWER, COLLECTOR** CURRENT VS. INPUT POWER

INPUT POWER Pin (dBmW)

INPUT IMPEDANCE VS. **FREQUENCY**

FREQUENCY f (MHz)

OUTPUT IMPEDANCE VS. FREQUENCY

FREQUENCY f (MHz)

(G)

χ̈

REACTANCE

NPUT

8

COLLECTOR CURRENT

2SC2166

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2166 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in HF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 13.8dB
 @V_{CC} = 12V, P_o = 6W, f = 27MHz
- Emitter ballasted construction for high reliability and good performances.
- TO-220 similar package is combinient for mounting.

APPLICATION

3 to 4 watts output power amplifiers in HF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
VcBo	Collector to base voltage		75	V
VEBO	Emitter to base voltage		5	V
VCER	Collector to emitter voltage	R _{BE} = 10 Ω	75	٧
Ic	Collector current		4	Α
		Ta=25°C	1,5	W
Pc.	Collector dissipation	T ₀ =25°C	12.5	W
TI	Junction temperature		+150	°c
Tstg	Storage temperature		-55~+150	*C
Rth-a		Junction to ambient	83	°C/W
Rth-o	Thermal resistance	Junction to case	10	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions				
Symbol		1 est conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =1mA, I _C =0	5			V
V(BR)CBO	Collector to base breakdown voltage	I _C =1mA, I _E =0	75			V
V(BR)CER	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =10 Ω	75			V
СВО	Collector cutoff current	V _{CB} =30V, I _E =0			100	μА
I _{EBO}	Emitter cutoff current	VEB=3V, IC=0			100	μА
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	35	70	180	
Po	Output power	- 40V F - 0 05W 4-07M	6	7.5		. w
η ₀	Collector efficiency	V ₀₀ =12V, P _{in} =0.25W, f=27MHz	55	60		%

TEST CIRCUIT

Notes:

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS. COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE Vcc (V)

DESCRIPTION

2SC2237 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 13.8dB
 @V_{CC} = 13.5V, P_o = 6W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 6W, f = 175MHz.

APPLICATION

4 to 5 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (TG=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcво	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current		2	Α
	Ta=25°C	2	W	
Pc	Collector dissipation '	T _C = 25°C	20	W
Ti	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	,c
Rth-a		Junction to ambient	75	°C/W
Rth-c	Thermal resistance	Junction to case	7.5	*c/w

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

	Parameter Test conditions			Unit		
Symbol		lest conditions .	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =5mA, I _C =0	4			٧
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, i _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	10=50mA, RBE=00	17			V
СВО	Collector cutoff current	V _{GB} =25V, I _E =0			500	μА
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0			500	μΑ
hre	DC forward current gain *	V _{OE} =10V, I _O =0.1A	10	50	180	_
Po	Output power		6	7.5		w
η_0	Collector efficiency	V _{CO} =13.5V, P _{In} =0.25W, f=175MHz	60	65		%

^{*} Note: Pulse test, P_W = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

COLLECTOR CURRENT In (A)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE V(BR)CER (V) V(BR)CER 40 30 20 10

100

90

80

€ 60

BASE-EMITTER RESISTANCE RBE (Q)

20 30 50 70 100 200 300 500 700 1k

DC CURRENT GAIN VS. COLLECTOR CURRENT

 $T_C = 25^{\circ}C$

1c=50mA

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

CUITALIT DOUGED MA

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

2SC2538

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2538 is a silicon NPN epitaxial planar type transistor designed for RF amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 10dB$ $@V_{CC} = 13.5V$, $P_0 = 0.5W$, f = 175MHz
- TO-92 similar package is combinient for mounting.
- Equivalent input/output series impedance: ^{f_i}/₂ Z_{in} = 5.3 j2.9Ω @V_{CC} = 13.5V, P_O = 500mW, f = 175MHz Z_{out} = 29 j63.5Ω

APPLICATION

Driver amplifiers in general VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		40	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
10	Collector current		0.4	A
Pc	Collector dissipation	Ta = 25°C	0.7	W
	donector dissipation	To=25°C	3	w
TI	Junction temperature		+135	*C
Tstg	Storage temperature		-55~+135	°C
Rth-a	Thermal resistance	Junction to ambient	157	°C/W
Rth-c	Thermal resistance	Junction to case	36.7	°C/W

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise specified)

Symbol	Parameter Test conditions	Test conditions	Limits			
		Min	Тур	Max	Unit	
V(BR)EBO	Emitter to base breakdown voltage	IE=1mA, IC=0	4			V
V(BR)CB0	Collector to base breakdown voltage	I _O =1mA, I _E =0	40			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{RE} =∞	17			V
CBO	Collector cutoff current	V _{OB} =15V, I _E =0			100	μА
EBO	Emitter cutoff current	VEB=3V, IC=0			200	μА
hre	DC forward current gain *	V _{GE} =10V, l _G =0.1A	10	80	300	
Po	Output power		500	600	-50	mW
η _C	Collector efficiency	Voc=13.5V, Pin=50mW, f=175MHz	45	55		%

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

Coil Dimensions in milli-meter
D: Inner diameter of coil

T: Turn number of coil

P: Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCF (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC2539 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 14.5dB
 @V_{CC} = 13.5V, P_O = 14W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- · Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 18W, f = 175MHz, T_C = 25°C.

APPLICATION

10 to 14 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcво	Collector to base voltage		35	٧
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} =∞	17	V
1 _C	Collector current		4	Α
Pc	Collector dissipation	Ta = 25°C	2,5	w
r-c	Conector dissipation	T _C = 25°C	4	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	.c
Rth-a	7	Junction to ambient	60	*c/w
Rth-c	Thermal resistance	Junction to case	4.3	*C/W

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise specified)

Symbol	Parameter Test conditions					
-,		Test conditions	Min Typ	Max	Unit	
V(BR)EBO	Emitter to base breakdown voltage	I _E =10mA, I _C =0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	17			٧
СВО	Collector cutoff current	V _{CB} =25V, 1 _E =0			1000	μА
1EBO	Emitter cutoff current	V _{EB} =3V, I _C =0			1000	μА
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	-
P ₀	Output power		14	17		W
$\eta_{\rm C}$	Collector efficiency	V _{CC} =13.5V, P _{in} =0.5W, f=175MHz	60	65		%

^{*} Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

- L: Length 10mm
- RFC: 0.4mmø enameled wire 12T with Ferrite Bead
- C1 220pF, 2200pF in parallel
- C2 220pF, 2200pF, 10µF in parallel
- NOTES. All coils are made from 1.5mm¢ silver plated copper wire
 - D Inner diameter of cost
 - T Turn number of coil
 - P : Pitch of corl Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

DESCRIPTION

2SC2540 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 8.2dB
 @V_{CC} = 13.5V, P_o = 40W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- · Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 40W, f = 175MHz, T_C = 25°C.

APPLICATION

30 to 35 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcво	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	٧
V _{CEO}	Collector to emitter voltage	R _{BE} =∞	17	V
1 _C	Collector current		10	A
0.	C-ll	Ta=25°C	4.5	w
Pc	Collector dissipation T _O =25°C	75	W	
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	*c
Rth-a	Thermal resistance	Junction to ambient	33.3	°C/W
Ath-o	Thermal resistance	Junction to case	. 2	*c/w

ELECTRICAL CHARACTERISTICS (To=25°C unless otherwise specified)

Symbol	Parameter Test conditions	L				
		rest conditions	Min	Тур	Max	Unit
V(BR)E80	Emitter to base breakdown voltage	IE=10mA, IC=0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	1 ₀ =0.1A, R _{BE} =∞	17			V
¹ сво	Collector cutoff current	V _{CB} =15V, I _E =0			2.5	mA
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _O =0			2	mA
hFE	DC forward current gain *	V _{CE} =10V, I _C =0.2A	10	60	180 .	_
Po	Output power		40	45		W
η _C	Collector efficiency	V ₀₀ =13.5V, P _{in} =6W, f=175MHz	60	70		%

^{*} Note: Pulse test, P_W = 150µs, duty = 5%

TEST CIRCUIT

- L1. Length = 10mm, width = 6mm, thickness = 0,3mm copper plate
- L2 Length = 10mm, width = 3mm, thickness = 0.3mm copper plate
- F.B.. Ferrite bead
- RFC. 0.4mmφ enameled copper wire 17 turn
- Cg. 10µF, 1000pF, 150pF in parallel

- NOTES. Coils are made from 1.5mm¢ silver plated copper wire except £1 & £2
 - D Inner diameter of coil
 - T . Turn number of coil
 - P Pitch of coil
 - Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE RBE (II)

DC CURRENT GAIN VS.

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

Mitsubishi 2SC2609 is a silicon NPN epitaxial planar type transistor specifically deisgned for VHF power amplifier applications.

FEATURES

- High power gain: $G_{pe} \ge 6.0dB$ $@V_{CC} = 28V, P_0 = 100W, f = 220MHz$
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 28V, f = 220MHz, P_O = 70W

APPLICATION

For output stage of 100W power amplifiers VHF band.

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		55	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	35	V
Ic	Collector current		15	A
Pc	Collector dissipation .	T _C = 25°C	170	w
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55-+175	°C

ELECTRICAL CHARACTERISTICS (To=25°C unless otherwise specified)

base breakdown voltage base breakdown voltage pemitter breakdown voltage	Test conditions $I_{E} = 10 \text{mA}, I_{O} = 0$ $I_{C} = 100 \text{mA}, I_{E} = 0$	Max 4 55	Тур	Min	Unit
base breakdown voltage	I _C =100mA, I _E =0	<u> </u>			V
		55	-		
emitter breakdown voltage	1 000 1 0		1		V
	I _C =200mA, R _{BE} =∞	35	†		V
ut off current	VBE = 35V, IE = 0			10	mA
off current	V _{EB} =3V, I _C =0			4	mA
current gain *	V _{OE} =25V, I _C =0.2A	20	50	110	
ut '		-			- W
ficiency	V ₀₀ =28V, f=220MHz, P _{in} =25W				
	d current gain * put		Current gain * VoE = 25V, I = 0.2A 20	Courrent gain * VoE = 25V, Io = 0.2A 20 50	Current gain * VoE = 25V, Io = 0.2A 20 50 110

^{*} Note: Pulse test, Pw = 150µs, duty = 5%

- L_1 10D, 1T, \$1.6 Ag-plated Cu wire
- Length 10, \$1.6 Ag-plated Cu wire. Length 15, \$1.6 Ag-plated Cu wire. L_2

- 10D, 6T, 2P, φ1 6 Ag-plated Cu wire 10D, 5T, 3P, φ1.6 Ag-plated Cu wire
- Length 20, Width 4, Thinkness 0.2 Cupper plate
- Length 27, \$1.6 Ag-plated Cu wire.
- 8D, 20T, 1P, \$0.8 Enameled wire.

TYPICAL PERFORMANCE DATA

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

1000pF, 3300pF, 0.1µF, 4 7µF, in parallel. 1000pF, 3300μF, 0.1μF, 47μF, in parallel.

B.F Ferrint Bead

inside diameter 1.35 outside diameter 3,5

length 3 0. (Note) Dimensions mm

- D. inner diameter of coil.
- T: turn numbers of coil
- P pitch of coil

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

INPUT IMPEDANCE VS. FREQUENCY

REACTANCE

FREQUENCY f (MHz)

DESCRIPTION

2SC2627 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 13dB
 @V_{CC} = 12.5V, P_O = 5W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with stud.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 6W, f = 175MHz, T_C = 25°C.
- Equivalent input/output series impedance:

 Z_{in} = 2.9 + j0.5 Ω @P_o = 6W, V_{CC} = 12.5V, f = 175MHz Z_{out} = 11 -j1.9 Ω

APPLICATION

4 to 5 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
VcBo	Collector to base voltage		35	V
V _{EBO}	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
1c	Collector current		2	A
Pc ·	Collector dissipation	Ta=25°C	2	w
	Collector dissipation	T _C = 25°C	20	w
Tj	Junction temperature		+175	,c
Tstg	Storage temperature		-55~+175	°C
Rth-a	Thermal resistance	Junction to ambient	75	*c/w
Rth-c	Thermol resistance	Junction to case	7.5	*c/w

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise specified)

Symbol	Parameter Test conditions					
		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=5mA, IC=0	4			V
V(BR)CBO	Collector to base breakdown voltage	1 ₀ =10mA, 1 _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{OB} =25V, I _E =0			1	mA
IEBO	Emitter cutoff current	V _{EB} =3V, I _C =0			1	mA
hfE	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	80	180	
Po	Output power	,	5	6		w
$\eta_{\rm C}$	Collector efficiency	V ₀₀ =12.5V, Pin=0.25W, f=175MHz	60	70		%

^{*} Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

- C1: 100pF, 2200pF, 0.01µF in parallel
- C2. 100pF, 2200pF, 0.01µF, 10µF in parallel
- F B. Ferrite Bead

- Notes. All coils are made from 1.5mm¢ silver plated copper wire
 - D. Inner diameter of coil
 - T · Turn number of coil
 P Pitch of coil
 - Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE RBE (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

DUTPUT POWER Po (W)

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

OUTPUT POWER Po (W)

MITSUBISHI RF POWER TRANSISTOR 2SC2628

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2628 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: Gpe ≥ 11.8dB
 - @V_{CC} = 12.5V, P_O = 15W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with stud.
- Ability of withstading more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 18W, f = 175MHz, T_C = 25°C.
- Equivalent input/output series impedance:

 $Z_{in} = 2.0 + j0.4\Omega$ @P_O = 18W, $V_{CC} = 12.5V$, f = 175MHz $Z_{OUt} = 3.9 - j2.0\Omega$

APPLICATION

10 to 15 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (TC = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcво	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
1c	Collector current		4	Α
	Collector dissipation	Ta=25°C	4	W
Pc		T _C =25°C	40	w
Ti	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	*C
Rth-a		Junction to ambient	37.5	*c/w
Rth-c	Thermal resistance	Junction to case	3.75	°C/W

ELECTRICAL CHARACTERISTICS (TC=25°C unless otherwise specified)

	Parameter . Test conditions		Unit			
Symbol		1 est conditions	Min	Тур	Max	Onit
V(BR)EBO	Emitter to base breakdown voltage	i _E =10mA, i _C =0	4			٧
V(BR)CBO	Collector to base breakdown voltage	1c=10mA, 1E=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			2	mA
EBO	Emitter cutoff current	V _{EB} =3V, I _C =0			2	mA
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	30	180	_
Po	Output power	10 FM Pr - 4W 4 - 47FM	15	18		W
$\eta_{\rm C}$	Collector efficiency	V _{OC} =12.5V, P _{in} =1W, f=175MHz	60	70		%

Note: Pulse test, P_W = 150µs, duty = 5%

TEST CIRCUIT

- C1 220pF, 4700pF, 0.01µF in parallel
- C2 220pF, 0.02µF, 0.1µF, 3.3µF in parallel
- F.B. Ferrite Bead

- Notes All coils are made from 1.5mm ϕ silver plated copper wire
 - D Inner diameter of coil
 - T Turn number of coil
 - P . Pitch of coil Dimension in milli-meter

TYPICAL PERFORMANCE DATA COLLECTOR DISSIPATION V

COLLECTOR DISSIPATION VS.
AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC2629 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 9.3dB
 @V_{CC} = 12.5V, P_o = 30W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with stud.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 30W, f = 175MHz, T_C = 25°C.
- Equivalent input/output series impedance: $Z_{in} = 1.8 + j0.5\Omega \text{ @P}_{0} = 34\text{W}, \text{ V}_{CC} = 12.5\text{V}, \text{ f} = 175\text{MHz}$ $Z_{out} = 2.3 j1.2\Omega$

APPLICATION

25 to 30 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage .	A _{BE} = ∞	17	V
lc	Collector current		8	Α
Pc	0.0	Ta=25°C	3	w
PC	Collector dissipation	T _O =25°C	60	
Tf	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	*c
Rth-a	The second secon	Junction to ambient	50	*C/W
Rth-o	Thermal resistance	Junction to case	2.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions		Unit		
		rest conditions	Min	Тур	Max	Unit
V(BR)E80	Emitter to base breakdown voltage	IE=10mA, IC=0	4			V
V(BR)CBO	Collector to base breakdown voltage .	IO=10mA, IE=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I ₀ =0.1A, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			3	mA
IEBO	Emitter cutoff current	V _{EB} =3V, I _C =0			3	mA
hFE	DC forward current gain *	V _{CE} =10V, I _C =0.2A	10	40	180	_
Po	Output power		30	34		W
η _C	Collector efficiency	V ₀₀ =12.5V, P _{IN} =3.5W, f=175MHz	60	70		%

Note: Pulse test, P_W = 150µs, duty = 5%

TEST CIRCUIT

F.B. Ferrite Bead

All coils are made from 1.5mm¢ silver plated copper wire

- D Inner diameter of coil
- Turn number of coil
- P : Pitch of coil Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN **VOLTAGE VS. BASE-EMITTER RESISTANCE**

BASE-EMITTER RESISTANCE RBE (Q)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC2630 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 7dB
 @V_{CC} = 12.5V, P_o = 50W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 50W, f = 175MHz, T_C = 25°C.
- Equivalent input/output series impedance: $Z_{in}=0.8+j1.2\Omega \ \ \, \text{@P}_{0}=60\text{W}, \ \, \text{V}_{CC}=12.5\text{V}, \ \, \text{f}=175\text{MHz}$ $Z_{out}=1.5-j0.6\Omega$

APPLICATION

40 to 60 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
VcBo	Collector to base voltage		35	٧
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} =∞	17	V
10	Collector current		14	А
_	Collector dissipation	Ta = 25°C	5,5	w
Pc		To=25°C	100	, vv
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55-+175	°C
Rth-a	-	Junction to ambient	27.2	*c/w
Rth-c	Thermal resistance	Junction to case	1,5	°C/W

ELECTRICAL CHARACTERISTICS (Tc=25°C unless otherwise specified)

Symbol	Parameter Test conditions		Unit			
Symbol		Test conditions	Min	Тур	Max	Onit
V _{(BR)EBO}	Emitter to base breakdown voltage	I _E =10mA, I _C =0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _O =10mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	17			V
1080	Collector cutoff current .	V _{CB} =15V, 1 _E =0			5	mA
EBO	Emitter cutoff current .	V _{EB} =3V, I _C =0			5	mA
hFE	DC forward current gain *	V _{CE} = 10V, I _C = 0.2A	10	40	180	_
Po	Output power		50	60		W
η _C	Collector efficiency	V _{CC} =12.5V, P _{IN} =10W, f=175MHz	60	70		%

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

F.B. Ferrite Bead

NOTES All coils are made from 1.5mm¢ silver plated copper wire

D Inner diameter of coil Turn number of coil

P Pitch of coil

Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS. COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN **VOLTAGE VS. BASE-EMITTER RESISTANCE**

BASE-EMITTER RESISTANCE RBE (Q)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC2694 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 6.7dB
 @V_{CC} = 12.5V, P_o = 70W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- · Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 70W, f = 175MHz, T_C = 25°C.
- Equivalent input/output series impedance:
 Z_{in} = 0.7 + j0.9Ω @P₀ = 70W, V_{CC} = 12.5V, f = 175MHz
 Z_{out} = 1.2 j0.3Ω

APPLICATION

50 to 60 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} =∞	17	V
Ic	Collector current		20	A
Pc	Collector dissipation	Ta=25°C	5.5	w
-6	Collector dissipation	T ₀ = 25°C	140	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55-+175	°C
Rth-a	Thermal resistance	Junction to ambient	27.2	"C/W
Rth-o	Thermal resistance	Junction to case	1,07	*c/w

ELECTRICAL CHARACTERISTICS (TC=25°C unless otherwise specified)

Symbol	Parameter Test conditions					
		rest conditions	Min	Тур	Max	Unit
V(8R)E80	Emitter to base breakdown voltage	I _E =20mA, I _C =0	4			V
V(BR)CBO	Collector to base breakdown voltage	IC =20mA, IE=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	. 17			V
ово	Collector cutoff current	V _{CB} =15V, I _E =0			5	mA
I _{EBO}	Emitter cutoff current	VEB=3V, IC=0			5	mA
hfE	DC forward current gain *	V _{OE} = 10V, I _C = 1A	10	50	180	
Po	Output power		70	75		W
η _C	Collector efficiency	V _{CO} =12.5V, P _{in} =15W, f=175MHz	60	70		%

Note: Pulse test, P_W = 150µs, duty = 5%

TEST CIRCUIT

- L1, L2: L = 8mm, W = 5mm, t = 0,3mm copper plate
- C1, C2: 150pF, 1000pF, 4.7µF in parallel
- F.B.: Ferrite Bead

NOTES. All coils are made from 1 5mmp silver plated copper wire

- D. Inner diameter of coil T: Turn number of coil
- P Pitch of coil
- Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS. COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE RBE (Q)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC2695 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in UHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 4.9dB
 @V_{CC} = 13.5V, P_{in} = 9W, f = 520MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR all phase when operated at V_{CC} = 15.2V, P_O = 30W, f = 520MHz.
- Series equivalent input/output impedance: $Z_{in} = 1.5 + j2\Omega$ @P_O = 30W, $V_{CC} = 13.5V$, f = 520 MHz

APPLICATION

 $Z_{Out} = 2.5 + j1\Omega$

25 to 28 watts output power amplifiers in UHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} =∞	17	V
lo ·	Collector current		10	A
Pc	Collector dissipation	Ta=25°C	3	w
rc	Collector dissipation	T _O =25°C	75	w
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	°C
Rth-a	Thermal action	Junction to ambient	50	°C/W
Rth-c	Thermal resistance	Junction to case	2	°C/W

ELECTRICAL CHARACTERISTICS (To=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			
Cymbol		rest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=10mA, IO=0	4			V
V(BR)CBO	Collector to base breakdown, voltage	I_C=10mA, IE=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	17			۸.
ГСВО	Collector cutoff current	V _{CB} =15V, I _E =0			2	mA
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0			3	mA
hre	DC forward current gain*	V _{CC} =10V, I _C =1A	20	50	180	
Po	Output power		28	32		w
η_0	Collector efficiency	V ₀₀ =13.5V, P _{in} =9W, f≈520MHz	55	60		%

Note: Pulse test, P_W = 150µs, duty = 5%

TEST CIRCUIT

- RFC. 0,4mmø enameled wire 8T on D = 4mm, L = 13mm Bakelite
- F B.. Ferrite bead
- C1 68pF, 3300pF, 4700pF, 33µF in parallel
- C2. 3300pF, 4700pF, 33µF in parallel

- NOTES Coil dimensions in milli-meter
 - D Inner diameter of coil
 - T: Turn number of coil
 - P: Pitch of coil

Material of microstrip line H = 1.6mm Tefton glass ($\epsilon_s = 2.7$)

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT IC (A)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC2797 is a silicon NPN epitaxial planar type transistor designed for RF broad-band power amplifiers in UHF band.

FEATURES

- High power gain: G_{pe} ≥ 7dB (Class AB)
 @V_{CC} = 24V, P_Q = 5W, f = 770MHz, I_D = 20mA
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with stud.
- Ability of withstanding load VSWR 8.8:1 when operated at V_{CC} = 24V, P_O = 5W, f = 175MHz, T_C = 25°C, class AB condition.

APPLICATION

UHF high voltage (24V) broad-band amplifiers

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		45	V
V _{EBO}	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	35	V
.lc	Collector current		1	A
Pc	Collector dissipation	Ta=25°C	1	W
	Condition dissipation	To=25°C	10	W
T ₁	Junction temperature		+175	°C
Tstg .	Storage temperature		-55~+175	-c
Rth-c	Thermal resistance	Junction to case	15	°C/W

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions		Limits		
		. Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E = 1mA, I _C = 0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _B =0	45			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} = ∞	35			V
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			400	μΑ
EBO	Emitter cutoff cuirent	V _{EB} =3V, I _C =0			200	μА
hFE	DC forward current gain *	V _{CE} =25V, I _C =0.1A	10	50	180	_
Po	Output power	V _{CO} =24V, P _{ID} =1W,	5	6		w
η _C	Collector efficiency	f=770MHz, Ip=20mA **	55	60		%

TEST CIRCUIT

- L1: 0.4mm¢ enameled wire 6T, 3P
- Width 3mm, length 25mm, thickness 0.15mm copper plate
- 0.4mmø enameled 21T
- C1. 100pF, 1000pF, 0.01µF, 1µF in parallel 100pF, 1000pF, 0.1µF, 10µF in parallel
- C2.
- L4,L5 Microstrip line (t = 1.6mm, €s = 2.7 Teflon)

NOTES Coil dimensions in milli-meter

- D Inner diameter of coil T · Turn number of coil
- P. Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS COMMON EMITTER

INPUT POWER Pin (W)

COLLECTOR-EMITTER BREAKDOWN **VOLTAGE VS. BASE-EMITTER RESISTANCE**

COLLECTOR TO BASE VOLTAGE VCB (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

DESCRIPTION

2SC2798 is a silicon NPN epitaxial planar type transistor designed for RF broad-band power amplifiers in UHF band.

FEATURES

- High power gain: G_{pē} ≥ 6dB (Class AB)
 @V_{CC} = 24V, P_O = 12W, f = 770MHz, I_D = 50mA
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with stud.
- Ability of withstanding load VSWR 8.8:1 when operated at V_{CC} = 24V, P_O = 12W, f = 175MHz, I_D = 50mA, T_C = 25°C, class AB condition.

APPLICATION

UHF high voltage (24V) broad-band amplifiers

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		45	V
V _{EBO}	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} =∞	35	V
Ic	Collector current		2	A
Pc	Collector dissipation ·	T _O =25°C	30	w
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C
Rth-o	Thermal resistance	Junction to case	5	*c/w

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise specified)

Symbol	Parameter Test conditions	Test conditions	Limits			
		rest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=10mA, IC=0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	45			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	35			V
CBO	Collector cutoff current	V _{CB} =25V, I _E =0			1000	μА
1 _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0	1		400	μА
hre	DC forward current gain*	V _{OE} =25V, I _C =0.1A	10	50	180	_
Po	Output power	V _{CC} =24V, P _{In} =3W, f=770MHz,	12	14		w
η _C	Collector efficiency	Ip=50mA**	55	60		%

Note: Pulse test, P_W = 150µs, duty = 5%
 Note: Class AB operation.

TEST CIRCUIT

- L1. 4D, 6T, 3P, 0.4mm¢ enameled wire
- L2. Width = 3mm, thickness = 0.15mm, length = 23mm copper plate
- L3: 4D, 20T, 1P, 0.4mmø enameled wire
- L4~L6 Microstrip line (t = 1.6mm, €s = 2.7 Teflon)

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR TO BASE VOLTAGE VCB (V)

C1. 1000pF, 0.01µF in parallel

- 100pF, 1000pF, 0.01μF, 1μF in parallel C2-C3 100pF, 1000pF, 0.1µF, 10µF in parallel
- NOTES Coil dimensions in milli-meter D. Inner diameter of coil
 - T. Turn number of coil
 - P · Pitch of coil

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

DESCRIPTION

MITSUBISHI 2SC2799 is a silicon NPN epitaxial planar type transistor specifically designed for UHF power amplifier applications.

FEATURES

- High power gain: G_{pe} ≥ 4.9dB (Class AB)
 @V_{CC} = 24V, P_O = 25W, f = 770MHz, I_D = 80mA
- Ability to withstanding load VSWR 8.8:1 when operated at V_{CC} = 24V, P_O = 25W, f = 770MHz, I_D = 80mA, class AB condition.

APPLICATION

UHF high voltage (24V) broad-band amplifiers

ABSOLUTE MAXIMUM RATINGS (TC=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		45	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} =∞	35.	V
Ic	Collector current		4	А
Pc	Collector dissipation	T _O = 25°C	50	w
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	°C
Rth-c	Thermal resistance	Junction to case	3	*c/w

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter		Limits			
Зуппрог		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	i _E =10mA, I _C =0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	45			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	35			V
Гово	Collector cutoff current	V _{OB} =25V, I _E =0			1,5	mA
1 _{EBO}	Emitter cutoff current	V _{EB} =3V, t _C =0V	T		500	μА
hre	DC forward current gain *	V _{OE} =25V, I _C =0.2A	- 10	50	180	_
Po	Output power	V _{CC} =24V, f=770MHz, Pin=8W,	25	27		W
$\eta_{\rm C}$	Collector efficiency	ID=80mA **	55	60		%

^{*} Note: Pulse test, Pw = 150µs, duty 5% ** Note: Class AB operation

TEST CIRCUIT

- L1 0.4mmø enameled wire 6T, 2P.
- L2: Width = 3mm, thickness = 0.15mm, lenght = 25mm, copper plate.
- L3: 0.4mm¢ enameled wire 20T, 1P.
- C1:
- 100pF, 1000pF, 0.01μF, 1μF, in parallel. 100pF, 1000pF, 0.1μF, 10μF, in parallel C2
- Microstrip line: t = 1.6mm, teflon $\epsilon_s = 2.7$ D: Inner diameter of coil. L4~L6:
- NOTES
 - T. Turn numbers of coil.
 - P. Pitch of coil.

Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

OUTPUT POWER, COLLECTOR CURRENT VS. INPUT POWER

INPUT POWER PID (W)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

MITSUBISHI RF POWER TRANSISTOR 2SC2904

NPN EPITAXIAL PLANAR TYPE

DISCRIPTION

2SC2904 is a silicon NPN epitaxial planar type transistor specifically designed for high power amplifiers in HF band.

FEATURES

- High gain: Gpe ≥11.5dB
 - @V_{CC} = 12.5V, Po=100W, f=30MHz
- High ruggedness: Ability to withstand 20:1 load
 VSWR when operated at f = 30MHz
 - $P_0 = 100W, V_{CC} = 15.2V$
- Emitter ballansted construction
 Low thermal resistance ceramic package with flange.

APPLICATION

Output stage of transmitter in HF band SSB mobile radio sets.

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		50	V
VEBO	Emitter to base voltage		5	V
VCER	Collector to emitter voltage	R _{BE} = ∞	20	V
Ic	Collector current		22	А
Pc	Collector dissipation	Ta = 25°C	7.8	W
PC .	Collector dissipation	To=25°C	200	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	°C
Rth-c	Thermal resistance		0.75	*c/w

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter Test conditions	T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Limits			
-,		Min	Typ	Max	Unit	
V _{(BR)EBO}	Emitter to base breakdown voltage	IE=20mA, IC=0	5			V
V(BR)CBO	Collector to base breakdown voltage	I _C =20mA, I _E =0	50			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =100 mA, R _{BE} = ∞	20			V
¹сво	Collector cutoff current	V _{CB} =15V, I _E =0			5	mA
I _{EBO}	Emitter cutoff current	VEB=3V, IC=0			5	mA
hFE	DC forward current gain * .	V _{CE} =10V, I _C =1A	10	50	180	-
Po	Output power		100	110		W
η _C	Collector efficiency	f=30MHz, V _{CO} =12.5V, P _{In} =7W		60		%

^{*} Note. Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

- C₁ 160pF, 160pF, 82pF in parallel
- C₂ 82pF, 82pF, 82pF in parallel
- C₃: 100pF, 4700pF, 4700pF, 0.22µF, 0.22µF, 33µF, 330µF in parallel

C₄ 100pF, 220pF, 4700pF, 0.1µF, 330µF in parallel NOTES: All coils but L₁ are made from 1.5¢mm silver plated copper wire, L₁ is made from 2.3¢mm copper wire

- D: Inner diameter of coil P. Pitch of coil
- Turn number of coil
- Dimension is milli-meter

TYPICAL PERFORMANCE DATE COLLECTOR DISSIPATION VS.

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

50 100 20

500 BASE-EMITTER RESISTANCE RBE (Q)

1k

2k 5k 10k

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

2SC2905

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2905 is a silicon NPN epitaxial planar type transistor specifically designed for high power amplifiers applications in UHF band.

FEATURES

- High power output, high gain: $P_0 \ge 45W$, $G_{pe} \ge 4.8dB @V_{CC} = 12.5V$, f = 520MHz, $P_{in} = 15W$.
- Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P₀ = 45W,
- · High reliability due to gold metalization die.
- · Flange type ceramic package.
- Ž_{in} = 1.2 + j1.1Ω, Ž_{out} = 1.3 + j1.0Ω
 @V_{CC} = 12.5V, f = 520MHz, P_O = 45W.

APPLICATION

For output stage of 35 ~ 40W power amplifiers in UHF band.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Symbol	Parameter	Conditions	Ratings	Unit
VCBO	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	٧
Ic	Collector current		15	A
Pc	Collector dissipation	T _C = 25°C	120	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55-+175	°C

ELECTRICAL CHARACTERISTICS (Tc= 25°C)

Symbol	Parameter	Test conditions		Limits			
		Test conditions	Min	Тур	Max	Unit	
VIBRIEBO	Emitter to base breakdown voltage	I _E = 10mA, I _C = 0	4			V	
V _(BR) CBO	Collector to base breakdown voltage	IC = 10mA, I _E = 0	35			V	
VIBRICEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} = ∞	17			V	
Ісво	Collector cut off current	VCB = 15V, IE = 0			2	mA	
IEBO	Emitter cut off current	V _{EB} = 3V, I _C = 0			3	mA	
hre	DC forward current gain *	V _{CE} = 10V, † _C = 1A	10	50	180	_	
Po	Power Output		45	50		W	
$\eta_{\rm C}$	Collector efficiency	V _{CC} = 12.5V, P _{in} ≈ 15W, f = 520MHz	60	65		%	

* Note: Pulse test, Pw = 150µs, duty = 5%

 $\begin{array}{lll} L_{1}.L_{2}: & \text{Microstrip. Board Material 1.6mm Thick, glass-tellon } \epsilon_{r}\!=\!2\,7\\ L_{3}: & 1\,\text{Turn, AWG \#13, 8mm I.D}\\ L_{4}: & 5\,\text{Turns, AWG \#13, 8mm I.D} \end{array}$

RFC 9 Turns, AWG #20, 4mm I.D.

F.B.: Ferrite Bead

82pF, 220pF, 2200pF, 4700pF, 33µF in Parallel 82pF, 220pF, 2200pF, 4700pF, 22µF in Parallel

TEST CIRCUIT BOARD LAYOUT (f = 520MHz)

100pF(Ribbon Lead Mica) C₁: C₂: C₃: C₄: C₅: CV₂: F.B.: RFC: 12pF(Ribbon Lead Mica)

20pF(Ribbon Lead Mica)

12pF(Ribbon Lead Mica)
- 10pF(Air Variable Capacitor) muRata TTA 43 A 100A
- 20pF(Air Variable Capacitor) muRata TTA 45 A 200A
Ferrite Bead

9 Turns, AWG #20, 4mm I.D. 1 Turns, AWG #13, 8mm I.D. Microstrip: Board Material 1.8mm Thick, glass-tellon &r = 2.7

TYPICAL PERFORMANCE DATA

CAPACITANCE VS.
COLLECTOR TO BASE
VOLTAGE

COLLECTOR OUTPUT

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

OUTPUT POWER VS. FREQUENCY

SERIES INPUT AND OUTPUT IMPEDANCE VS. FREQUENCY CHARACTERISTICS

DESCRIPTION

2SC2932 is a silicon NPN epitaxial planar type transistor specifically designed for power amplifiers applications in $800{\sim}940$ MHz UHF band.

FEATURES

High power gain:

 $G_P \ge 7.8 dB$, $P_O \ge 6W$ @ f = 900MHz, $V_{CC} = 12.5V$

- Emitter ballasted construction
- Gold metalization die in the transistor
- High ruggedness high reliability: Ability to withstand 20:1 load VSWR when operated at V_{CC}=15.2V, Po=6W, f=900MHz,
- Small size, low common lead inductance strip line type ceramic package.
- Common base configuration.
- Series equivalent input/output impedance

 $Z_{in} = 2.8-j1.4 (\Omega), Z_{out} = 4.7-j5.9 (\Omega)$ Operated at f = 900MHz, $V_{CC} = 12.5 V, P_{O} = 6 W$

APPLICATION

RF power amplifiers applications in 800 to 940 MHz mobile radio sets.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcso	Collector to base voltage	·	· 35	V
VEB0	Emitter to base voltage		3	V
VCEO	Collector to emitter voltage	R _{BE} = ou	17	V
1 _C	Collector current		2	А
Po	Collector dissipation	T _C = 25°C	20	W
Tį	Junction temperature		+ 175	°C
Tstg	Storage temperature		−55 ~ +175	*C
Rth-c	Thermal resistance	Junction to case	7,5	*C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter . Test conditions	Total and the control of	1	14-		
		Min	Тур	· Max	Unit	
V(BR)EBO	Emitter to base breakdown voltage	IE=10mA, IC=0	3			v
V(BR) CB0	Collector to base breakdown voltage	Ic=10mA, IE=0	35			V
V(BR)OEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	17			V
СВО	Collector cut-off current	V _{CB} =15V, I _E =0			2	mA
I _{EBO}	Emitter cut-off current	V _{EB} =2V, I _C =0			2	mA
h _{FE}	DC Current gain *	V _{CE} = 10V, I _C = 0.1A	10	30	180	1 -
Po	Output power		6	7		W
$\eta_{\rm C}$	Collector efficiency	f=900MHz, V _{CC} =12,5V, Pin=1W	55	65		1 %

Note. Pulse test, P_W = 150µs, duty = 5%

TEST CIRCUIT (f=900MHz)

 L_5 : $Z_0 = 38\Omega$, $\ell = 0.123 \, \text{Ag}$

L6: 4D, 12T, OP (40 8 SILVER PLATED COPPER WIRE) L7 . \$ = 25, (\$1 O SILVER PLATED COPPER WIRE)

TYPICAL PERFORMANCE DATA COLLECTOR DISSIPATION VS.

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

D. Inner Diameter, T. Torn Number, P. Pitch. All denonsions in time

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER, COLLECTOR EFFICIENCY OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

DESCRIPTION

2SC2933 is silicon NPN epitaxial planar type transitor specifically designed for power amplifiers in $800 \sim 940 \text{MHz}$ hand.

FEATURES

· High gain, High efficiency:

 $G_{pb} = 6.7 dB$, $\eta_c \ge 50\%$, $P_o \ge 14W$ @f = 900MHz, $V_{CC} = 12.5V$, $P_{in} = 3W$

- Gold metalization of transistor die.
- Flange type ceramic package.
- Equivalent input/output series impedance:

$$Z_{in} = 2.5 + j0.75(\Omega)$$
, $Z_{out} = 2.2 - j2.1(\Omega)$
@f = 900MHz, $V_{CC} = 12.5V$, $P_0 = 16W$

- Common base type.
- The ability withstand infruite VSWR when operated at f = 900MHz V_{CC} = 15.2V, P_O = 14W.

APPLICATION

Output stage of power amplifiers in 800MHz band mobile radio equipment

ABSOLUTE MAXIMUM RATINGS (TC=25°C unless otherwise specified)

Symbol	Parameter	Parameter		Unit
V _{CBO}	Collector to base voltage	Collector to base voltage		V
VEBO	Emitter to base voltage		3	V
VCEO	Collector to emitter voltage Collector current		17	V
1c			4	A
-		Ta = 25°C	3	W
Pc	Collector dissipation	T _C = 25°C	40	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	°C
Rth-a			50	.c/M
Rth-c	Thermal resistance		3.75	°c/w

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol _	Parameter			Unit		
		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage .	1 _E =10mA, 1 _C =0	3			٧
V(BR)CBO	Collector to base breakdown voltage	Ic=10mA, IE=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	.1c=0.1A, R _{BE} =∞	17			
CBO	Collector cutoff current	V _{CB} =15V, I _E =0			2	mA
EBO	Emitter cutoff current	V _{EB} =2V, I _C =0			3	mA
hre	DC current gain *	V _{CE} =10V, I _C =0.2A	10	50	180	_
Po	Output power	4-00014U- V12 EV Di2W	14	16		W
η _C	Collector efficiency	f=900MHz, Vcc=12.5V, Pin=3W		60		%

^{*} Note: Pulse test, PW = 150µs, duty 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR LOSS VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT AMPLIFICATION RATE VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITNCE VS. COLLECTOR-BASE VOLTAGE

COLLECTOR-BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER, COLLECTOR SUPPLY VOLTAGE VARIATION

COLLECTOR SUPPLY VOLTAGE Vcc (V)

DESCRIPTION

2SC3001 is a silicon NPN epitaxial planar type transistor specifically designed for VHF power amplifier applications.

FEATURES

- High power gain: Gpe ≥ 13dB.
 @V_{CC} = 7.2V, f = 175MHz, P_{in} = 0.3W.
- Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC}=9V, f=175MHz, P_O=6.0W.
- Flange type ceramic package.
- Z_{in} = 1.5 j1.3Ω, Z_{out} = 5.0 j1.2Ω
 @V_{CC} = 7.2V, f = 175MHz, P_O = 6.0W.

APPLICATION

For output stage of 5W power amplifiers in VHF band portable type radio sets.

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C)

Symbol	Parameter	Conditions	Ratings	Unit
VCBO	Collector to base voltage		20	V
V _{EBO}	Emitter to base voltage		3 5	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	, 9	V
Ic	Collector current		3	A
Pc	Collector dissipation	T _C = 25°C	20	W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (Tc=25°C)

Symbol	Parameter	Test conditions		Limits			
	Tool Containing	Min	Тур	Max	Unit		
V(BR)EBO	Emitter to base breakdown voltage	Iε = 5mA, I _C = 0	3 5			V	
V(BR)CBO	Collector to base breakdown voltage	Ic=10mA, IE=0	20			V	
V _{(BR)CEO}	Collector to emitter breakdown voltage	I _C = 50mA, R _{BE} = ∞	9			V	
Ісво	Collector cut-off current	V _{CB} = 10V, I _E = 0			500	μA	
IEBO	Emitter cut-off current	V _{EB} = 2V, I _C = 0			500	μA	
h _{FE}	DC forward current gain *	V _{CE} = 5V, 1 _C = 0.1A	20	50	180	μ·\	
Po	Power Output		6	7	.50	w	
$\eta_{\mathbb{C}}$	Collector efficiency	Vcc = 7 2V, Pin = 0.3W, f = 175MHz	60	65		%	

^{*} Note: Pulse test, P_W = 150µs, duty 5%

TEST CIRCUIT (f = 175MHz)

14mm Length Bakelite. 220pF, 1000pF, 4700pF, 10µF in parallel. 220pF, 1000pF, 4700pF, 10µF in parallel.

Co:

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. CASE TEMPERATURE CHARACTERISTICS

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS

COLLECTOR TO BASE VOLTAGE VCB (V)

INPUT/OUTPUT IMPEDANCE VS. FREQUENCY CHARACTERISTICS

5 1.5-j1.3 5.0-j1.2 V_{CC}=7.2V, P_O=6W

DESCRIPTION

2SC3017 is a silicon NPN epitaxial planar type transistor specifically designed for VHF power amplifiers applications.

FEATURES

- High power gain: Gpe ≥ 11dB
 @V_{CC} = 7.2V., f = 175MHz, Pin = 0.1W
- Emitter ballasted construction.
- Emitter case type TO-39 package. (connected internally to emitter)
- Z_{in}=8-j12Ω, Z_{out}=11-j1Ω
 @V_{CC}=7.2V, f=175MHz, P_O=1.5W.

APPLICATION

For drive stage and output stage of power amplifiers in VHF band portable radio sets.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Symbol '	Parameter	Conditions Ratings		Unit
Vcво	Collector to base voltage		20	V
VEBO	Emitter to base voltage		3.5	V
VCEO	Collector to emitter voltage	R _{BE} = oe	9	V
lc	Collector current		1	Α
Pc	Collector dissipation	T _C = 25°C	4	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (Tc=25°C)

Symbol	Parameter	Test conditions	Limits			1
			Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E = 1 mA, I _C = 0	3.5			V
V(BR)CBO	Collector to base breakdown voltage	Ic = 10mA, IE = 0	20			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C = 10mA, R _{BE} = ∞	9			V
Ісво	Collector cut off current	Vc8 = 10V, fE = 0			200	μА
JEBO .	Emitter cut off current	V _{EB} = 2V, I _C = 0			200	μА
h _{FE}	DC forward current gain*	V _{CE} = 5V, I _C ≈ 0 1A	20	50	180	_
Po	Power Output	V _{CC} =7.2V, P _{in} =0 1W, f=175MHz	1.5	1.6		W
$\eta_{\mathbb{C}}$	Collector efficiency		55	60		%

* Note: Pulse test, P_W = 150μs, duty 5%

TEST CIRCUIT (f = 175MHz)

- 4 Turns AWG #13, 8mm I.D.
- L₂:
- 2 Turns AWG #13, 8mm I.D.
- 20 Turns AWG #26 Enameled wire Close Wound on 4mm O.D., 14mm RFC
 - Length Bakelite
- 0.022µF, 0.047µF, 0.1µF in parallel.

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE CHARACTERISTICS.

OUTPUT POWER COLLECTOR FFFICIENCY VS. INPUT POWER CHARACTERISTICS.

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE CHARACTERISTICS

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS.

COLLECTOR TO BASE VOLTAGE VCB (V)

DESCRIPTION

2SC3018 is a silicon NPN epitaxial planar type transistor designed for 7.2Volts VHF power amplifiers applications.

FEATURES

- High gain: Gpe ≥ 13dB @f = 175MHz, V_{CC} = 7.2V P_{in} = 0.15W.
- Convenient ceramic type package with flange for high gain and excellent heat dissipation.
- Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 9V, P_O = 3W.

APPLICATION

Output stage of 2W portable type transmitter in VHF band.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		20	٧
VEBO	Emitter to base voltage		3 5	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	9	V
lc	Collector current		1.5	А
Pc	Collector dissipation	T _C =25°C	10	W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (Tc = 25°C)

Symbol	Parameter	Test conditions	Limits			
O y TILDOT	+ drametal	rest conditions	Min -	Тур	Max	Unit
VIBRIEBO	Emitter to base breakdown voltage	IE = 1 mA, IC = 0	3.5			V
V(BR)CBO	Collector to base breakdown voltage	I _C = 10mA, I _E = 0	20			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C = 10mA, R _{BE} = ∞	. 9			V
Ісво	Collector cut off current	V _{CB} = 10V, I _E ≈ 0			300	μA
lebo	Emitter cut off current	V _{EB} = 2V, I _C = 0			300	μΑ
hre	DC forward current gain *	V _{CE} = 5V, I _C = 0.1A	20	50	180	-
Po	Power Output		3.0	35		W
$\eta_{\rm C}$	Collector efficiency	V _{CC} = 7.2V, P _{in} = 0.16W, f = 175MHz	55	60		%

Note: Pulse test, P_W = 150µs, duty 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. CASE TEMPERATURE CHARACTERISTICS 10 3 2 8 COLLECTOR DISSIPATION 6 4 2 ō n 40 80 120 160 200 CASE TEMPERATURE T_C (°C)

DC CURRENT GAIN VS.

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR BASE VOLTAGE

COLLECTOR BASE VOLTAGE VCB (V)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE CHARACTERISTICS

OUTPUT POWER VS. FREQUENCY CHARCTERISTICS

INPUT, OUTPUT IMPEDANCE VS. FREQUENCY CHARCTERISTICS

2SC3019

NPN EPITAXIAL PLANAR TYPE

DISCRIPTION

2SC3019 is silicon NPN epitaxial planar type transistor designed for RF power amplifiers in UHF band.

FEATURES

- High power gain: $G_{pe} \ge 14dB$ $@P_O = 0.5W$, f = 520MHz, $V_{CC} = 12.5V$
- Emitter ballasted construction for high reliability and good performance
- Small-disc-mold type package
- Collector dissipation: Pc = 0.6W, (@Ta = 25°C)
- Input/Output impedance:

$$Z_{in} = 2.6 - j3.0\Omega$$
, $Z_{out} = 16.5 - j56\Omega$
@f = 520MHz, $V_{CC} = 12.5V$, $P_{O} = 0.5W$

APPLICATION

Exciter stage in UHF band mobile radio application

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vceo	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current		0.4	Α
_		Ta=25°C	0.6	W
Pc	Collector dissipation	T _C =25°C	0.9	W
Tj	Junction temperature		+135	*C
Tstg	Storage temperature		-55~+135	°C
Rth-a	-	Junction to ambient	250	°C/W
Rth-c	Thermal resistance	Junction to case	166	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			
Symbol		l est conditions	Min	Тур	Max	Unit
V(BR)E80	Emitter to base breakdown voltage	IE=1mA, IC=0	4.0			V
V(BR)CBO	Collector to base breakdown voltage	I _C =1mA, I _E =0	35			٧
V(BR)CEO	Collector to emitter breakdown voltage	io=10mA, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{CB} =15V, I _E =0			500	μΑ
1EB0	Emitter cutoff current	V _{EB} =3V, I _C =0			500	μΑ
hre	DC forward current gain *	V _{CE} =10V, I _C =50mA	20	70	180	-
Po	Output power		500	600		mW
$\eta_{\rm C}$	Collector efficiency	V ₀₀ =12.5V, f=520MHz, Pin=20mW	40	50		%

^{*} Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

- Length = 8, \$1.5 silver plated copper wire.
- Width = 4, length = 12 (1.6 t glass-epoxy, ϵ_S = 4,7)
- 10D, 1/2T, \$1.5 silver plated copper wire.
 - 3D, 8T, ϕ 0.8 enameled wire.
- 220pF, 330pF, 2200pF, 4700pF, 10µF in parallel
- NOTES: \$1.5 silver plated copper wire except L2 and L4.
 - Dimension in milli-meter
 - D. Inner diameter of coil ferrite bead T . Turn number of coil

 - P : Pitch of coil
 - F.B. Ferrite bead

TYPICAL PERFORMANCE DATE

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BE VOLTAGE VCB (V)

OUTPUT POWER · COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

JC.

COLLECTOR SUPPLY VOLTAGE VCC (V)

13

INPUT/OUTPUT IMPEDANCE

10

REFERENCE DATA (f = 900MHz) OUTPUT POWER · COLLECTOR

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

Unit: mm

TEST CIRCUIT

 $L_1 \sim L_4$ · Strip-line: 1.6 t glass-teflon $\epsilon_r = 2.7$

L_s: 4D, 6T, AWG #20 enameled wire (\$0.8 mm)

4D, 5T, AWG #20 enameled wire (\$\phi 0.8 mm)

F.B. Ferrite bead

1000pF in parallel

100pF, 56pF, 560pF, 4.7μF in parallel

MATCHING PATTERN

DESCRIPTION

2SC3020 is a silicon NPN epitaxial planar type transistor designed for UHF power amplifier applications.

FEATURES

- High gain: Gpe≥10dB, @f=520MHz, V_{CC}=12.5V, Pin=0.3W.
- High ruggedness: Ability to withstand more than 20:1 load VSWR (all phase) when operated at V_{CC} = 15.2V, f = 520MHz, P_O = 3W.
- Emitter ballasted construction.
- Low thermal resistance: R_{th} = 15 °C/W(T_C = 25°C)
- Convenient flange type ceramic package.

APPLICATION

For drive stage and output stage of 400MHz band mobile radio.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Symbol	Parameter	Conditions	Ratings	Unit
VCBO	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4.0	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current		1	· A
Pc	Collector dissipation	T _C =25°C	10	W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (T_c = 25°C)

Symbol	Parameter	Test conditions	Limits			
		TOST CONTAINONS	Min	Түр	Max	Unit
V(BR)E80	Emitter to base breakdown voltage	$I_E = 1 \text{ mA}, I_C = 0$	4.0			V
V _{(BR)CBO}	Collector to base breakdown voltage	,IC= 10mA, IE=0	35			+ v
V _{(BRICEO}	Collector to emitter breakdown voltage	Ic = 10mA, Rge = 00	17			V
Ісво	Collector cut off current	V _{CB} = 15V, I _E = 0		-	300	+
IEBO	Emitter cut off current	V _{EB} = 3.0V, I _C = 0			300	μΑ
h _{FE}	DC forward current gain*	VCE = 10V, IC = 0.1A	10	50	180	μA
P ₀	Power Output		3.0		180	-
η_{C}	Collector efficiency	Vcc = 12 5V, Pin = 0.3W, f = 520MHz		3.5		W
			50	55		%

^{*} Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT (f = 520MHz)

 $L_1 \sim L_4$: Microstripe (Board: 1.6mm Glass Tellon $\epsilon_S = 2.7$)

C₁,C₂: 82pF, 220pF, 4700pF, 10μF in parallel.

TYPICAL PERFORMANCE DATA

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR BASE VOLTAGE

COLLECTOR-BASE VOLTAGE VCB (V)

DC CURRENT GAIN VS.

CASE TEMPERATURE T_C (°C)

COLLECTOR CURRENT Ic (A)

${ m P_O},\, { m \eta_C}$ VS. Pin CHARACTERISTICS 100 6 $T_C = 25$ °C V_{CC} = 12.5V 1 = 520MHz 5 S 3 EFFICIENCY OWER OUTPUT Po 60 4 $\eta_{\rm C}$ 3 ECTOR 40 20 2 1 0 0 0.2 0.6 1.0 0.4 8.0

POWER INPUT Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE CHARACTERISTICS

SERIES INPUT AND OUTPUT IMPEDANCE VS. FREQUENCY CHARACTERISTICS

_	9,49	49 0 6	0 00 thanks	
	400MHz	460MHz	520MHz	12/2
さなながら	460M 430MH f = 400MHz f (MHz)	Hz Iz	Ž _{out} (Ω)	52×13
2005/200/20	400	1.7-12 9	8.0-j15	Įξ
શ્રી	430	1.75-j2 1	7.5-1145	Ιŝ
8	460	1.85-11 35	7.0-j14	ķ
٦	490	1.85-j0 3	6.5-13.5	ľ
	520	2 1+10.85	60-113	I
	Conditions P _O = 3.0V	V, T _C = 25°C,	V _{CC} = 12 5V	

DESCRIPTION

2SC3021 is a silicon NPN epitaxial planar type transistor specifically designed for UHF power amplifiers applications.

FEATURES

- High power gain: Gpe ≥ 7.6dB
 @V_{CC} = 12.5V, f = 520MHz, P_{in} = 1.2W.
- Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 15.2V, f = 520MHz, P_O = 7W.
- Flange type ceramic package.
- Zin = 2.2 + j3.1Ω,

 $Z_{OUT} = 6 + j1.0\Omega$ @ $V_{CC} = 12.5V$, f = 520MHz, $P_0 = 7W$.

APPLICATION

For output stage of 5W power amplifiers and drive stage of higher power amplifiers in UHF band.

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C)

Symbol	Parameter	Conditions	Ratings	Unit
VCBO	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
lc	Collector current		. 2	Α
Pc	Collector dissipation	T _C =25°C	20	W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (Tc = 25°C)

Symbol		T	Limits			
Symbol	Parameter Test conditions	Min	Тур	Max	Unit	
V(BR)EBO	Emitter to base breakdown voltage	I _E = 5mA, I _C = 0	4			V
VIBRICBO	Collector to base breakdown voltage	$I_C = 10 \text{mA}, I_E = 0$	35			V
VIBRICEO	Collector to emitter breakdown voltage	I _C = 50mA, R _{BE} = ∞	17			V
Ісво	Collector cut off current	V _{CB} = 15V, I _E = 0			500	μА
EBO	Emitter cut off current	V _{EB} = 3V, I _C = 0			500	μА
hre	DC forward current gain *	V _{CE} = 10V, 1 _C = 0.1A	10	50	180	-
Po	Power Output	V- 10 51/ B 1 81/ / 5001//	7	8		W
$\eta_{\mathbb{C}}$	Collector efficiency	V _{CC} = 12.5V, P _{in} = 1.2W, f = 520MHz	50	60	1	%

^{*} Note: Pulse test, Pw = 150µs, duty 5%

L₃: 3 Turns AWG #20, 5mm I.D.

L4: 6 Turns AWG #20, 5mm I.D

10 Turns AWG #26 Enameled Wire on 4mm O.D., 14mm Length Bakelite.

F.B.: Ferrite Bead

C₁: 82pF, 220pF, 4700pF, 10μF in parallel C₂: 82pF, 220pF, 10μF in parallel

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. CASE TEMPERATURE CHARACTERISTICS

CASE TEMPERATURE T_C (°C)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER CHARACTERISTICS

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR OUTPUT
CAPACITANCE VS. COLLECTOR
TO BASE VOLTAGE
CHARACTERISTICS

INPUT POWER Pin (W)

COLLECTOR TO BASE VOLTAGE VCB (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

DESCRIPTION

2SC3022 is a silicon NPN epitaxial planar type transistor specifically designed for UHF high power amplifier applications.

FEATURES

- High Power Gain: Gpe ≥ 4.7dB
 @V_{CC} = 12.5V, f = 520MHz, P_{in} = 6W.
- Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 15.2V, f = 520MHz, P_O = 18W.
- Frange type ceramic package.
- Z_{in} = 1.5 + j2.0Ω, Z_{out} = 2.8 + j1.0Ω.
 @V_{CC} = 12.5V, f = 520MHz, P_O = 18W.

APPLICATION

For output stage of 15W power amplifiers in UHF band.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current		7	A
Pc	Collector dissipation	T _C = 25°C	50	. W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C
Rth-a	-	Junction to ambient	50	*c/w
Rth-c	Thermal resistance	Junction to case	3	*c/w

ELECTRICAL CHARACTERISTICS (T_C=25°C)

Symbol	Parameter	T		Limits		
Зуппвог	Parameter	Test conditions	Min	Тур	Max	Unit
ViBRIEBO	Emitter to base breakdown voltage	I _E = 10mA, I _C = 0	4			V
VIBRICBO	Collector to base breakdown voltage	IC = 10mA, IE = 0	35			٧
VIBRICEO	Collector to emitter breakdown voltage	I _C =0 1A, R _{BE} = ∞	17			٧
ICBO	Collector cut off current	V _{CB} = 15V, I _E = 0			2.0	mA
IEBO	Emitter cut off current	V _{EB} = 3V, I _C = 0			3.0	mA
h _{FE}	DC forward current gain *	V _{CE} = 10V, I _C = 1A	20	50	180	-
Po	Power Output -		18	22		W
η_{C}	Collector efficiency	V _{CC} = 12.5V, P _{in} = 6W, f = 520MHz	55	60		%

^{*} Note. Pulse test, $P_W = 150\mu s$, duty = 5%

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. CASE TEMPERATURE CHARACTERISTICS 50 ŝ 40 ည COLLECTOR DISSIPATION 30 20 10 0 0 40 80 120 160 200

CASE TEMPERATURE T_C (°C)

OUTPUT CHARACTRISTIC, COMMON EMITTER

COLLECTOR-EMITTER VOLTAGE VCE (V)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE CHARACTERISCTIS

COLLECTOR SUPPLY VOLTAGE VCC (V)

OUTPUT POWER VS. FREQUENCY CHARACTERISTICS

SERIES INPUT AND OUTPUT IMPEDANCE VS. FREQUENCY CHARACTERISTICS

PRECAUTIONS FOR MOUNTING HIGH-FREQUENCY HIGH-OUTPUT TRANSISTOR FOR MOBILE RADIO EQUIPMENT

When mounting high-frequency, high-output transistors for mobile radio equipment (flange screw fastening part cut package), care should be taken to the following points.

- When mounting the device to the heat sink, silicon compound should be applied to the heat sink and device heat radiating fin and apply the device to the heat sink using a proper fastening tool.
- If the device is soldered directly to heat sink, excessive thermal stress will result in deteriorating the reliability. Do not use this mounting method.
- Care should be taken, if the device is applied to the heat sink, the force of soldering the leads to the printed circuit board results in continual mechanical stress, deteriorating the reliability and performance of the system.
- Refer to Mitsubishi's DATABOOK or manuals for transistors, small-signal diodes and integrated circuit modules for mounting and handling of the device.

MITSUBISHI RF POWER TRANSISTOR 2SC3101

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC3101 is a silicon NPN epitaxial planar type transistor specifically designed for UHF power amplifiers applications.

FEATURES

High power gain: Gpe ≥ 5.7dB

@V_{cc} = 12.5V, f = 520MHz, P_{in} = 0.8W

Emitter ballasted construction

 High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at @V_{CC} = 15.2V, f = 520MHz, P_O = 3W.

APPLICATION

For drive stage and output stage of power amplifiers in UHF band.

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CEO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
1 _C	Collector current		1	Α
Pc	Collector dissipation	T _C =25°C	10	W
Tj	Junction temperature		+ 175	,c
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter	T		Limits		
-,		Test conditions	Min	Тур	Max	Unit
V (BR) EBO	Emitter to base breakdown voltage	1 _E =1mA, 1 _C =0	4			V
V _(BR) CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	Ic=10mA, R _{BE} =∞	17		-	٧
CBO	Collector cutoff current	V _{CB} =15V, I _E =0			300	μΑ
EBO	Emitter cutoff current	V _{EB} =2V, I _C =0			300	٠ μΑ
h FE	DC forward current gain *	V _{CB} =10V, I _C =0.1A	10	50	180	_
Po	Output power		3	3.5		W
7c	Collector efficiency	V _{CC} =12.5V, P _{IN} =0.8W, f=520MHz.	50	60		%

* Note. Pulse test, Pw = 150µs, duty = 5%

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE CHARACTERISTICS

AMBIENT TEMPERATURE Ta (°C)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE CHARACTERISTICS

OUTPUT POWER COLLECTOR EFFICIENCY VS. INPUT POWER CHARACTERISTICS

INPUT POWER Pin (W)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS

COLLECTOR TO BASE VOLTAGE VCB (V)

DESCRIPTION

2SC3102 is a silicon NPN epitaxial planar type transistor specifically designed for high power amplifiers applications in UHF band.

FEATURES

- High power output and high gain: P₀≥60W, Gpe≥4.8dB
 @V_{CC}=12.5V, f=520MHz, Pin=20W.
- Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC}=15.2V, P_O=60W, f=520MHz.
- · High reliability due to gold metalization die
- · Flange type ceramic package
- Z_{in} = 1.0+j1.0Ω, Z_{out} = 1.1+j1.0Ω
 QV_{CC} = 12.5V, f = 520MHz, P_O = 60W.

APPLICATION

For output stage of 50W power amplifiers in UHF band.

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C)

Symbol	Parameter	Conditions	Ratings	Unit
VCBO	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	· R _{BE} = ∞	17	٧
Ic	Collector current		18	А
Pc	Collector dissipation	T _C = 25°C	170	W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (Tc = 25°C)

Combal	Parameter	- Test conditions				
Symbol		lest conditions	Min	Тур	Max	Unit
VIBRIEBO	Emitter to base breakdown voltage	$I_E = 20 \text{mA}, I_C = 0$	4			V
V _(BR) CBO	Collector to base breakdown voltage	I _C = 20mA, I _E = 0	35			٧
VIBRICEO	Collector to emitter breakdown voltage	I _C = 0.2A, R _{BE} = ∞	17			٧
ICBO	Collector cut off current	V _{CB} = 15V, I _E = 0			5	mA
1EBO	Emitter cut off current	V _{EB} = 3V, I _C = 0			5	mA
hre	DC forward current gain *	V _{CE} = 10V, I _C = 2A	10	50	180	-
Po	Power Output	40.51/ 8	60	65		W
$\eta_{\rm C}$	Collector efficiency	V _{CC} = 12.5V, P _{in} = 20W, f = 520MHz	60	65		%

* Note: Pulse test, PW = 150 µs, duty 5%

COLLECTOR SUPPLY VOLTAGE VCC (V)

INPUT POWER Pin (W)

Ż_{out}(Ω)

1.1 + j10

1.18 + 10.9

1.25 + 10.8

TEST CIRCUIT BOARD LAYOUT (f = 520MHz)

DESCRIPTION

2SC3103 is a silicon NPN epitaxial planar type transistor specifically designed for UHF power amplifier applications.

FEATURES

- High power gain: Gpe ≥ 6.7dB
 @V_{CC} = 7.2V, f = 520MHz, P_{in} = 0.6W.
- Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 9V, f = 520MHz, P₀ = 2.8W
- Flange type ceramic package
- Z_{in} = 1.8 j1.9 Ω, Z_{out} = 6.0 j3.0 Ω @V_{CC} = 7.2V, f = 520MHz, P_O = 2.8W.

APPLICATION

For drive stage of 5W power amplifiers and output stage of up to 2W power amplifiers in UHF band portable type radio sets.

ABSOLUTE MAXIMUM RATINGS (Tr = 25°C)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		20	V
VEBO	Emitter to base voltage		3.5	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	9	V
lc	Collector current		1.5	A
Pc	Collector dissipation	T _C = 25°C	10	W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C
Rth-c	Thermal resistance	Junction to case	15	*c/w

ELECTRICAL CHARACTERISTICS (T_C = 25°C)

Symbol	Parameter	Test conditions				
Symbol	Parameter	l'est conditions	Min	Тур	Max	Unit
VIBRIEBO	Emitter to base breakdown voltage	I _E = 1 mA, I _C = 0	3 5			٧
VIBRICBO	Collector to base breakdown voltage	IC = 10mA, IE = 0	20			٧
VIBRICEO	Collector to emitter breakdown voltage	I _C = 10mA, R _{BE} = ∞	9			V
ICBO	Collector cut-off current	V _{CB} = 10V, I _E = 0			300	μΑ
IEBO	Emitter cut-off current	V _{EB} = 2V, I _C = 0			300	μΑ
h _{FE}	DC forward current gain *	V _{CE} = 5V, I _C = 0.1A	10	50	180	-
Po	Power Output .		2.8	3 2		W
$\eta_{\rm C}$	Collector efficiency	V _{CC} = 7.2V, P _{in} = 0.6W, f = 520MHz	55	60		%

^{*} Note: Pulse test, P_W = 150µs, duty 5%

INPUT/OUTPUT IMPEDANCE VS. FREQUENCY

f (MHz)	$Z_{in}(\Omega)$	Zout (Ω)
410	1.5-14.5	5,5-17.0
450 '	1.5-13.5	5,3-j5,5
470	1.6-j2.5	5.4-j4.5
520	6.0-j3.0	
Vcc	=7.2V, Po	=2.8W

2SC3104

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC3104 is a silicon NPN epitaxial planar type transistor specifically designed for UHF power amplifler applications.

FEATURES

- High power gain: Gpe ≥ 4.7dB
 @V_{CC} = 7.2V, f = 520MHz, P_{in} = 2W.
- Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 9V, f = 520MHz, P_O = 6W.
- Flange type ceramic package.
- $\dot{z}_{in} = 1.6 0.4 \,\Omega$, $\dot{z}_{out} = 3.5 j1.0 \,\Omega$ at $V_{CC} = 7.2 V$, f = 520 MHz, $P_0 = 6 W$.

APPLICATION

For output stage of 5W power amplifiers in UHF band portable type radio set.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Symbol	Parameter	Conditions	Ratings	Unit
VCBO	Collector to base voltage		20	V
VEBO	Emitter to base voltage		3.5	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	9	V
lc	Collector current		3	A
Pc	Collector dissipation	T _C =25°C	20 .	W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55 - + 175	°C
Rth-c	Thermal resistance	Junction to case	7 5	*c/w

ELECTRICAL CHARACTERISTICS (Tc=25°C)

		W Pr		Limits		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VIBRIEBO	Emitter to base breakdown voltage	I _E = 5mA, I _C = 0	3 5			V
VIBRICBO	Collector to base breakdown voltage	Ic=10mA, IE=0	20			V
V _{(BR)CEO}	Collector to emitter breakdown voltage	I _C = 50mA, R _{BE} = ∞	9			V
Ісво	Collector cut off current	V _{CB} = 10V, I _E = 0			500	μΑ
[EBO	Emitter cut off current	VEB = 2V, IC = 0			500	μА
hFE	DC forward current gain*	V _{CE} = 5V, I _C = 0.1A	10	50	180	-
Po	Power Output	14 - 7 014 B - 0144 6 - 5001411-	6	7		. M
$\eta_{\rm C}$	Collector efficiency	V _{CC} = 7 2V, P _{in} = 2W, f = 520MHz	60	65		%

^{*} Note: Pulse test, Pw = 150µs, duty 5%

Microstrip: Board Material 1.6mm Thick, glass-tellon ε_f = 2.7

3 Turns AWG #20, 5mm I.D. 6 Turns AWG #20, 5mm I.D.

10 Turns AWG #26 Enameled Wire on 4mm O.D., 14mm Length Bakelite.

F.B.: Ferrite Bead 82pF, 220pF, 4700pF, 10μF in parallel. 82pF, 220pF, 10μF in parallel

TYPICAL PERFORMANCE DATA

DESCRIPTION

2SC3105 is a silicon NPN epitaxial planar type transistor specifically designed for power amplifiers in the $800 \sim 900 MHz$ band range.

FEATURES

- High gain, high efficiency $P_0 \ge 30W$, $G_{pb} \ge 3.0dB$, $\eta_C = 50\%$ (MIN) @f = 850MHz, $V_{CC} = 12.5V$, $P_{in} = 15W$
- Emitter ballasted by diffusion resistance.
- Gold metalization of transistor die for good reliability.
- The ability withstand infinite VSWR when operated at $P_0 = 30W$, $V_{CC} = 15.2V$.
- High Input-Impedance Transistor (HI²T); internal input matching network.
- · Common-base type.

APPLICATION

For RF power amplifiers in the $800 \sim 900 \text{MHz}$ band range, especially suitable for mobile radio applications.

SERIES EQUIVALENT INPUT/OUTPUT IMPEDANCE

 Z_{in} = 2.75 ~ j0.65(Ω), Z_{out} = 3.45 + j0.15(Ω), @f = 850MHz, V_{CC} = 12.5V, P_{O} = 30W.

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
VCEO	Collector to base voltage		. 35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	A _{BÉ} = ∞	17	V
lc	Collector current		10	А
Pc	Collector dissipation	T _C =25°C	80	w
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise specified)

Symbol	Parameter	Test and Stines		Limits		
Symbol	rarameter	Test conditions	Min	Тур	Max	Unit
V (BR)EBO	Emitter to base breakdown voltage	IE=10mA, IO=0	3			V
V _{(BR)CBO}	Collector to base breakdown voltage	IC=10mA, IE=0	35			٧
V(BR)CEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	17			V
ICBO	Collector cutoff current	V _{CB} =15V, I _E =0			5	mA
I _{EBO}	Emitter cutoff current	V _{EB} =2V, I _C =0			5	mA
h _{FE}	DC forward current gain *	V _{OE} =10V, I _O =1A	10	30	180	_
Po	Output power	V -40 5V 5 -45W 4-05010V	30	35		W
ηc	Collector efficiency	V _{GC} =12.5V, P _{IN} =15W, f=850MHz	50	55		%

^{*} Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT f = 850MHz ~20oF Zout = 50 Ω 9 Zin=50 Ω (-7pF RFC 3D 10T 9 7 8pF 5pF -8pF RFC8 1P

#

 $L_1, L_4: Z_0 = 45\Omega, \ell = 11, W = 5.$ L2, L3. Z0 = 29Ω, £ = 15, W = 10. \$0.6 silver-plated copper wire.

RFC Board Material-Glass Teflon, t = 1.6, $\epsilon_s = 2.7$.

Note. D: Inner Diameter T: Turn Number P. Pitch

Cob VS. VCB CHARACTERISTICS

Dimensions in mm

Тсв

+Vcc o 7/7 7

COLLECTOR-TO-BASE VOLT VCB (V)

TYPICAL CHARACTERISTICS

Pc VS. Ta CHARACTERISTICS

AMBIENT TEMPERATURE Ta (°C)

Po, no VS. Pin CHARACTERISTICS

Po VS. VCC CHARACTERISTICS

COLLECTOR SUPPLY VOLT VCC (V)

DISCRIPTION

2SC3133 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in HF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 14dB
 @f = 27MHz, V_{CC} = 12V, P_o = 13W
- Emitter ballasted construction for high reliability and good performances.
- High ruggedness: The ability withstand infinite VSWR when operated at f = 27MHz, Po = 16W, V_{CC} = 16V.
- Intermodulation distortion: IMD \leq -25dB @f = 27MHz, V_{CC} = 12V, P_0 = 13W (PEP)
- Input/output impedance:
 Z_{in} = 1.8 j2.5(Ω), Z_{out} = 7.0 j3.5(Ω)
 @f = 27MHz, V_{CC} = 12V, P_O = 13W

APPLICATION

10 watts output power amplifiers in HF band SSB mobile radio application.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CB0}	Collector to base voltage		60	V
VEBO	Emitter to base voltage		5	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	25	V
Ic	Collector current		6	A
_	Collector dissipation	Ta = 25°C	1.5	W
Pc	Collector dissipation	T _C = 25°C	20	W
Tį	Junction temperature		-150	°C
Tstg	Storage temperature		-55~+150	°C
Rth-a	Thomas anima	Junction to ambient	83.3	°C/W
Rth-c	Thermal resistance	Junction to case	6.25	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Test conditions		Limits		
- Oyill Buil		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage .	IE=1mA, IC=0	5			V
V(BR)CBO	Collector to base breakdown voltage	Ic=5mA, IE=0	60			V
V(BR)CEO	Collector to emitter breakdown voltage	1 _C =10mA, R _{BE} =∞	25			٧
СВО	Collector cutoff current	V _{CB} =30V, I _E =0			500	μА
1EBO	Emitter cutoff current	V _{EB} =4V, I _C =0			500	μА
hFE	DC current gain *	V _{CE} = 12V, I _C = 10 mA	10	50	180	_
Po	Output power		13	16		W
$\eta_{\rm C}$	Collector efficiency	f=27MHz, V _{CC} =12V, Pin=0.5W	60	70		%

* Note. Pulse test, Pw = 150µs, duty = 5%

TYPICAL PERFORMANCE DATE COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENCE TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

MITSUBISHI RF POWER TRANSISTOR 2SC3240

NPN EPITAXIAL PLANAR TYPE

DISCRIPTION

2SC3240 is a silicon NPN epitaxial planar type transistor specifically designed for high power amplifiers in HF band.

FEATURES

- High gain: G_{pe} ≥11.5dB, P_o ≥100W
 @f = 30MHz, V_{CC} = 12.5V, P_{in} = 7W
- High ruggedness: Ability to withstand 20:1 load VSWR when operated at f = 30MHz, P_O = 100W, V_{CC} = 15.2V.
- Emitter ballasted construction
- Low thermal resistance ceramic package with flange.
 Input-output impedance

$$Z_{in}$$
 = 0.4 – j0.8 (Ω)
 Z_{out} = 1.0 – j1.1 (Ω)
@f = 30MHz, V_{CC} = 12.5V, P_0 = 100W

APPLICATION

Output stage of transmitter in HF band SSB mobile radio sets.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit	
VCBO	Collector to base voltage	·	50	V	
VEBO	Emitter to base voltage		5	V	
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	20	V	
10	Collector current		25	A	
P ₀	Collector dissipation	Ta = 25°C	8	W	
		T _C =25°C	270	w	
Ti	Junction temperature		+175	°C	
Tstg	Storage temperature		-55~+175	*C	
Rth-a		Junction to ambient	18.7	°C/W	
Rth-c	Thermal resistance	Junction to case	0.556	°C/W	

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter	- Test conditions	Limits			11-7-
			Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=20mA, IC=0	5			٧
V(BR)CBO	Collector to base breakdown voltage	I ₀ =20mA, I _E =0	50			V
V _(BR) CEO	Collector to emitter breakdown voltage	I _C =100mA, R _{BE} =∞	20			V
сво	Collector cutoff current	V _{CB} =15V, I _E =0			5	mA
IEBO	Emitter cutoff current	V _{EB} =2V, I _O =0			5	mA
hre	DC forward current gain *	V _{CE} =10V, I _C =1A	10	50	180	_
Po ·	Output power	f=30MHz, V _{CO} =12.5V, P _{IN} =7W	100	110		W
η_0	Collector efficiency		55	60		%

* Note: Pulse test, Pw = 150µs, duty = 5%

 C_3 : 100pF, 4700pF, 4700pF, 0.22 μ F, 0.22 μ F, 33 μ F, 330 μ F in parallel C_4 : 100pF, 220pF, 4700pF, 0.1 μ F, 330 μ F is parallel

C₄ 100pF, 220pF, 4700pF, 0.1μF, 330μF is parallel
NOTES: All coils but L₁ are made from 15φmm silver plated copper wire, L₁ is made from 2.3φmm copper wire

D Inner diameter of coil

T. Turn number of coil

P. Pitch of coil

Dimension in milli-meter

TYPICAL PERFORMANCE DATE

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

DC CURRENT GAIN VS. COLLECTOR CURRENT

RFC 27 Turns 1¢ enameled wire

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE Voc (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS.

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR CURRENT VS. COLLECTOR-TO-EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE (V)

2SC3241

NPN EPITAXIAL PLANAR TYPE

DISCRIPTION

2SC3241 is a silicon NPN epitaxial planar type transistor specifically designed for high power amplifiers in HF band.

FEATURES

High gain: Gpe ≥ 12.3dB

@f = 30MHz, V_{CC} = 12.5V, P_{in} = 4W

High ruggedness: Ability to withstand 20:1 load VSWR
 when operated at f = 30MHz, V_{CC} =

15.2V, $P_0 = 75W$, $T_c = 25^{\circ}C$.

Emitter ballasted construction

Low thermal resistance ceramic package with flange

Input-output impedance: Z_{in} = 0.5 - j1.0(Ω), Z_{out} = 1.15 - j1.4(Ω) @f = 30MHz.

 $V_{CC} = 12.5 \text{V}, P_0 = 75 \text{W}$

APPLICATION

Output stage of transmitter in HF band SSB mobile radio

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit	
V _{CBO}	Collector to base voltage		50	V	
VEBO	Emitter to base voltage		5	V	
VCEO	Collector to emitter voltage	R _{BE} = ∞	20	V	
Ic	Collector current		18	. A	
Pc	Collector dissipation	Ta=25°C	7.5	W.	
		T _C =25°C	180	W	
Tj	Junction temperature		+175	,c	
Tstg	Storage temperature		-55~+175	°C	
Rth-a	Thermal resistance	Junction to ambient	20	°C/W	
Rth-c	Thermal resistance	Junction to case	0.83	°C/W	

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter Test conditions	Test sendit see	Limits			
		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	1E=20mA, IC=0	5			V
V(BR)CBO	Collector to base breakdown voltage .	I _C =10 mA, I _E =0	50			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =100 mA, R _{RE} = ∞	20		-	V
СВО	Collector cutoff current	V _{OE} =25V, I _E =0		-	5	mA
EBO	Emitter cutoff current	V _{EB} =2V,1 _C =0			4	mA
hre	DC forward current gain*	V _{CE} =10V, I _C =0.1A	10	50	180	_
Po	Output power.	f=30MHz, V _{CC} =12,5V, Pin=4W	75	85		W
$\eta_{\rm C}$	Collector efficiency		55	65		%

^{*} Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

- C1: 160pF, 160pF, 82pF in parallel
- C2 82pF, 82pF, 82pF in parallel
- C₃ 100pF, 4700pF, 4700pF, 0.22µF, 0.22µF, 33µF, 330µF in parallel
- RFC. 27 Turns 1¢ enameled wire
- C_4 100pF, 220pF, 4700pF, 0.1 μ F, 330 μ F in parallel NOTES: All coils but L_1 are made from 1.5 ϕ mm silver plated coper wire, L_1 is made from 2.3 ϕ mm copper wire.
 - P Pitch of coil D Inner diameter of corl
 - T. Turn number of coil
- Dimension is milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

DESCRIPTION

2SC3379 is a silicon NPN epitaxial planar type transistor specifically designed for UHF power amplifier applications.

FEATURES

- High power gain: Gpe ≥ 6.7dB
 @V_{CC} = 7.2V, f = 520MHz, P_{in} = 0.6W.
- · Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 9V, f = 520MHz, P_O = 2.8W.
- · Flange type ceramic package.

APPLICATION

For output stage of $1\sim 2W$ power amplifiers in UHF band portable type radio sets.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Symbol	Parameter -	Conditions	Ratings	Unit
Vcao	Collector to base voltage		20	V
VEBO	Emitter to base voltage		3 5	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	9	V
Ic	Collector current		15	A
Pc	Collector dissipation	T _C =25°C	10	W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C
Rth-c	Thermal resistance	Junction to case	15	°C/W

ELECTRICAL CHARACTERISTICS (Tc=25°C)

Combal	Parameter Test conditions	Total and date		Limits		
Symbol		test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E = 1mA, I _C = 0	3 5			V
V _{(BR)CBO}	Collector to base breakdown voltage	IC= 10mA, IE = 0	20			V
VIBRICEO	Collector to emitter breakdown voltage	1C = 10mA, RBE = 00	9			٧
Ісво	Collector cut-off current	V _{CB} = 10V, I _E =0			300	μА
IEBO	Emitter cut-off current	V _{EB} = 2V, I _C = 0			300	μА
hfE	DC forward current gain *	V _{CE} = 5V, I _C = 0 1A	10	50	180	-
Po	Power Output	V 7.00 P . 0.000 / 500000	2.8	3 2		W
$\eta_{\rm C}$	Collector efficiency	V _{CC} = 7 2V, Pin = 0 6W, f = 520MHz	55	60		%

^{*} Note. Pulse test, Pw = 150µs, duty 5%

COLLECTOR SUPPLY VOLTAGE VCC (V)

INPUT POWER Pin (W)

SERIES INPUT AND OUTPUT IMPEDANCE VS. FREQUENCY

PRECAUTIONS FOR MOUNTING HIGH-FREQUENCY HIGH-OUTPUT TRANSISTOR FOR MOBILE RADIO EQUIPMENT

When mounting high-frequency, high-output transistors for mobile radio equipment (flange screw fastening part cut package), care should be taken to the following points.

- When mounting the device to the heat sink, silicon compound should be applied to the heat sink and device heat radiating fin and apply the device to the heat sink using a proper fastening tool.
- If the device is soldered directly to heat sink, excessive thermal stress will result in deteriorating the reliability. Do not use this mounting method.
- Care should be taken, if the device is applied to the heat sink, the force of soldering the leads to the printed circuit board results in continual mechanical stress, deteriorating the reliability and performance of the system.
- Refer to Mitsubishi's DATABOOK or manuals for transistors, small-signal diodes and integrated circuit modules for mounting and handling of the device.

DESCRIPTION

2SC3404 is a silicon NPN epitaxial planar type transistor specifically designed for VHF power amplifier applications.

FEATURES

- High power gain: Gpe ≥ 12.7dB.
 @V_{CC} = 7.2V, f = 175MHz, Pin = 80mW.
- Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at $V_{CC}\!=\!9V$, f=175MHz, $P_0\!=\!1.5W$, $T_C\!=\!25^{\circ}C$.
- Flange type ceramic package.

APPLICATION

For output stage of 1W power amplifiers in VHF band portable type radio sets.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		20	V
VEBO	Emitter to base voltage		3 5	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	9	V
lc	Collector current		1	A
Pc	Collector dissipation	T _C = 25°C	5	W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (Tc=25°C)

Symbol	, Parameter Test conditions	Test conditions	Limits ·			
		rest conditions	Min	Тур	Max	Unit
VIBRIEBO	Emitter to base breakdown, voltage	I _E = 1mA, I _C = 0	3 5			V
VIBRICBO	Collector to base breakdown voltage	I _C = 10mA, I _E = 0	20			V
VIBRICEO	Collector to emitter breakdown voltage	I _C = 10mA, R _{BE} = ∞	9			V
Ісво	Collector cut off current	V _{CB} = 10V, I _E = 0			200	μΑ
IEBO	Emitter cut off current	V _{EB} = 2V, I _C = 0			200	μА
hfe	DC forward current gain *	V _{CE} = 5V, I _C = 0.1A	10	50	180	-
Po	Power Output		1.5	1.8		W
$\eta_{\rm C}$	Collector efficiency	Vcc = 7.2V, Pin = 80mW, f = 175MHz	55	60		%

^{*} Note. Pulse test, Pw = 150µs, duty = 5%

TYPICAL PERFORMANCE DATA

2.5 P_{In} = 80mW V_{CC} = 7.2V 2.0 P_{In} = 40mW 1.5 0.5 0.5

FREQUENCY ((MHz)

INPUT/OUTPUT IMPEDANCE VS. FREQUENCY 135MHz 155MHz 175MHz 20ut (MHz) 2_{in}(0) 2_{out}(0) 135 70-j11.1 11-j14 1 155 78-j105 10-j135 175 85-j8.8 93-j135 V_{CC} = 7.2V, P₀ = 1.5W

PRECAUTIONS FOR MOUNTING HIGH-FREQUENCY HIGH-OUTPUT TRANSISTOR FOR MOBILE RADIO EQUIPMENT

130 140 150 160 170 180

When mounting high-frequency, high-output transistors for mobile radio equipment (flange screw fastening part cut package), care should be taken to the following points,

- When mounting the device to the heat sink, silicon compound should be applied to the heat sink and device heat radiating fin and apply the device to the heat sink using a proper fastening tool.
- If the device is soldered directly to heat sink, excessive thermal stress will result in deteriorating the reliability. Do not use this mounting method.
- Care should be taken, if the device is applied to the heat sink, the force of soldering the leads to the printed circuit board results in continual mechanical stress, deteriorating the reliability and performance of the system.
- Refer to Mitsubishi's DATABOOK or manuals for transistors, small-signal diodes and integrated circuit modules for mounting and handling of the device.

DISCRIPTION

2SC3628 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: Gpe ≥ 13.8dB
 - @V_{CC} = 13.5V, P₀ = 6W, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 6W, f = 175MHz.

APPLICATION

4 to 5 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (Tc=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcво	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
1c	Collector current		2	A
		Ta=25°C	2	W
Pc	Collector dissipation	T ₀ =25°C	20	w
Tj	Junction temperature		+175	*c
Tstg	Storage temperature		-55~+175	°C
Ath-a		Junction to ambient	75	°c/w
Rth-o	Thermal resistance	Junction to case	7.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter	. Test conditions	Limits			Unit
Symbol		. Fest conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	· IE=5mA, IC=0	4			V
V _(BR) CBO	Collector to base breakdown voltage	Ic=10mA, IB=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	1 _C =50mA, 'R _{BE} = ∞	17			V
CBO	Collector cutoff current	V _{CB} =25V, I _E =0			500	μА
EBO	Emitter cutoff current	V _{EB} =3V, I _C =0			500	μА
hre	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	_
Po	Output power	N -10 5V 5 -0 05W 4 475V	6	7.5		W
η _C	Collector efficiency	V ₀₀ =13.5V, P _{in} =0.25W, f=175MHz	60	65		%

^{*} Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT

TYPICAL PERFORMANCE DATE

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

Dimension in milli-meter

AMBIENCE TEMPERATURE Ta (°C)

OUTPUT CHARACTERISTICS, COMMON EMITTER

COLLECTOR TO EMITTER VOLTAGE VCF (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER PIN (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

PRECAUTIONS FOR MOUNTING HIGH-FREQUENCY HIGH-OUTPUT TRANSISTOR

FOR MOBILE RADIO EQUIPMENT
When mounting high-frequency, high-output transistors
for mobile radio equipment (flange screw fastening part
cut package), care should be taken to the following points,

- When mounting the device to the heat sink, silicon compound should be applied to the heat sink and device heat radiating fin and apply the device to the heat sink using a proper fastening tool.
- If the device is soldered directly to heat sink, excessive thermal stress will result in deteriorating the reliability. Do not use this mounting method.
- Care should be taken, if the device is applied to the heat sink, the force of soldering the leads to the printed circuit board results in continual mechanical stress, deteriorating the reliability and performance of the system.
- Refer to Mitsubishi's DATABOOK or manuals for transistors, small-signal diodes and integrated circuit modules for mounting and handling of the device.

DESCRIPTION

2SC3629 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in UHF band 7.2 volts operation applications.

FEATURES

- High gain: G_{pe} ≥ 7.7dB
 @V_{CC} = 7.2V, f = 520MHz, P_{in} = 0.2W
- Ability of withstanding more than 20:1 load VSWR when operated at f = 520MHz, V_{CC} = 9V, P_0 = 1.2W, T_C = 25°C.
- Emitter ballasted construction.
- Flange type ceramic package.

APPLICATION

Output stage of 1W output mobile radio equipment in UHF band

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise specified)

Symbol	Parameter		Ratings	Unit
VCBO	Collector to base voltage		20	V
VEBO	Emitter to base voltage		3.5	V
VCEO	Collector to emitter voltage	Collector to emitter voltage		٧
lo	Collector current		1 .	Α
Pc .	Collector dissipation	T _C = 25°C	5	W
TI	Junction temperature		+175	*C
Tstg	Storage temperature		-55~+175	*C
Rth-c	Thermal resistance		30	*c/w

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Tree of the	Limits			
Symbol		Test conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	I _C =10mA, I _E =0	20			٧
V(8R)C80	Collector to base breakdown voltage	I _E =1mA, I _C =0	3.5			V
V(BR)CEO	Collector to emitter breakdown voltage	Ic=10mA, R _{BE} =∞	9			V
СВО	Collector cutoff current	V _{OB} =10V, I _E =0			200	μА
I _{EBO}	Emitter cutoff current	V _{EB} =2V, I _O =0			200	μΑ
hre	DC forward current gain *	V _{CE} =5V, I _O =0.1A	20	50	180	-
Po	Output power .	14 T 614 4 T001411- Ci0 011	1.2	1.5		W
$\eta_{\rm C}$	Collector efficiency	V _{CC} =7.2V, f=520MHz, Pin=0.2W	55	60		%

^{*} Note. Pulse test, Pw = 150µs, duty = 5%

TYPICAL PERFORMANCE DATA

VS. COLLECTOR-BASE VOLTAGE (PF) 20 Tc = 25°C 5 f= 1MHz 10 CAPACITANCE OUTPUT COLLECTOR 0.7 0.5 0.3 7 10 20 30 50

COLLECTOR OUTPUT CAPACITANCE

COLLECTOR-BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR LOSS VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE VARIATION

COLLECTOR SUPPLY VOLTAGE VCC (V)

INPUT/OUTPUT

IMPEDANCE VS. FREQUENCY

OUTPUT POWER VS. FREQUENCY

FREQUENCY f (MHz)

PRECAUTIONS FOR MOUNTING HIGH-FREQUENCY HIGH-OUTPUT TRANSISTOR FOR MOBILE RADIO EQUIPMENT

When mounting high-frequency, high-output transistors for mobile radio equipment (flange screw fastening part cut package), care should be taken to the following points.

- When mounting the device to the heat sink, silicon compound should be applied to the heat sink and device heat radiating fin and apply the device to the heat sink using a proper fastening tool.
- If the device is soldered directly to heat sink, excessive thermal stress will result in deteriorating the reliability. Do not use this mounting method.
- Care should be taken, if the device is applied to the heat sink, the force of soldering the leads to the printed circuit board results in continual mechanical stress, deteriorating the reliability and performance of the system.
- Refer to Mitsubishi's DATABOOK or manuals for transistors, small-signal diodes and integrated circuit modules for mounting and handling of the device.

MITSUBISHI RF POWER TRANSISTOR 2SC3630

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC3630 is a silicon NPN epitaxial planar type transistor specifically designed for UHF power amplifiers applications.

FEATURES

High power gain: G_{pe} ≥ 5.7dB

@V_{CC} = 12.5V, f = 520MHz, Pin = 0.8W

- Emitter ballasted construction
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at @V_{CC} = 15.2V, f= 520MHz, P_O = 3W.

APPLICATION

For drive stage and output stage of power amplifiers in UHF

ABSOLUTE MAXIMUM RATINGS (TC=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
10	Collector current .		1	А
Po	Collector dissipation	T _C =25°C	10	w
Тј	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	,c

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

	Parameter Test conditions			Limits		
Symbol		Min	Тур	Max	Unit	
V (8R) EBO	Emitter to base breakdown voltage		4			٧
V _(BR) CB0	Collector to base breakdown voltage	I_C=10mA, I_E=0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =∞	17			V
1ceo	Collector cutoff current	V _{CB} =15V, I _E =0			300	μA
I _{EBO}	Emitter cutoff current	V _{EB} =2V, I _O =0			300	μА
hFE	DC forward current gain *	V _{CB} =10V, I _C =0.1A	10	50	180	_
Po	Output power		3	3.5		W
ηc	Collector efficiency	V _{CC} =12.5V, P _{IN} =0.8W, f=520MHz,	50	60	1	%

* Note: Pulse test, P_W = 150µs, duty = 5%

Lз TEST CIRCUIT 00 O+Vcc (f=520MHz) D.U.T ~ 20pF ~ 20 oF Lı L2 Zout = 50 Ω $Z_{IR} = 50 \Omega$ RFC 20 pF ~ 20 pF -20pF 7 C_{g} Width 3.5, length 25, thinkness 0.3 cupper plate 150pF, 1500pF, 3.3µF inparallel Width 3 5, length 17, thinkness 0 8 cupper plate Ferrite bead (Note) D Inner diameter T Turn numbers of coil 50, 2T, 1P, ¢0 8 enameled wire RFC: j0, 5T, 0.5P \u00f30.8 enameled wire P Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE CHARACTERISTICS

AMBIENT TEMPERATURE Ta (°C)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE CHARACTERISTICS

OUTPUT POWER COLLECTOR EFFICIENCY VS. INPUT POWER CHARACTERISTICS

Dimensions mm

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER Po (W)

DESCRIPTION

2SC3804 is a silicon NPN epitaxial planar-type transistor specifically designed for power amplifiers in the 800 \sim 900MHz band range.

FEATURES

- High gain, high efficiency $P_O \ge 40W$, $G_{pe} \ge 3.0dB$, $\eta_C = 50\%$ (MIN) @f = 850MHz, $V_{CC} = 13.5V$, $P_{in} = 20W$
- Emitter ballasted by diffusion resistance.
- Gold metalization of transistor die for good reliability.
- The ability withstand infinite VSWR when operated at P_O = 40W, V_{CC} = 15.2V.
- High Input-Impedance Transistor (HI²T); internal input matching network.
- · Common-base type.

APPLICATION

For RF power amplifiers in the $800 \simeq 900 \text{MHz}$ band range, especially suitable for mobile radio applications.

SERIES EQUIVALENT INPUT/OUTPUT IMPEDANCE

 Z_{in} = 1.4 - j2.4 $\,$ (Ω), Z_{out} = 2.5 + j1.0 (Ω) @f = 850MHz, V_{CC} = 13.5V, P_{O} = 40W

ABSOLUTE MAXIMUM RATINGS (To=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcso	Collector-to-base voltage		35	V
VEBO	Emitter-to-base voltage		3	V
V _{CEO}	Collector-to-emitter voltage	R _{BE} = ∞	17	V
10	Collector current		12	А
Pc	Collector dissipation	T _C =25℃	100	W
Tj	Junction temperature		+ 175	℃
Tstg	Storage temperature		-55~+175	70

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise noted)

6 1 1	Parameter	*				
Symbol		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter-to-base breakdown voltage	I _E =10mA, I _C =0	3			V
V(BR)CBO	Collector-to-base breakdown voltage	I _C =10mA, I _E =0	35			٧
V(BR)CEO	Collector-to-emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	17			V
ICBO	Collector cutoff current	V _{CB} =15V, I _E =0			5	mA
I _{EBO}	Emitter cutoff current	VEB=2V, IC=0			5	mA
h _{FE}	DC forward current gain *	V _{CE} =10V, I _C =1A	10	40	120	-
P ₀	Power output	- 10 FM P - 20W 4- 250MM-	40	35		W
7 _C .	Collector efficiency	V _{CC} =13.5V, Pin=20W, f=850MHz	50	55		%

 $L_1 \sim L_4$: W = 3mm STRIP-LINE

 L_s . 5D, 1T, 0P, 1.0 ϕ SILVER PLATED COPPER WIRE RFC: 5D, 1/2T, 1.0 ϕ SILVER PLATED COPPER WIRE

NOTE BOARD MATERIAL-GLASS TEFLON. 6s = 2.6, t = 0.8mm
D: INNER DIAMETER. T: TURN NUMBER. P. PITCH.
ALL DIMENSIONS IN mm.

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENCE TEMPERATURE Ta (°C)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

INPUT POWER, POWER GAIN, COLLECTOR CURRENT VS. FREQUENCY

RECOMMENDATION AND PRECAUTION ON THE USE OF DEVICE

1. MOUNTING METHOD TO THE HEAT SINK

Mounting the device to the heat sink should be given a special consideration as follows.

Optimum distance between the centers of the installing bolt holes is 18.3 mm, and optimum diameter of this hole is 3.5 mm.

Apply a thin coat of thermal compound to every portions relating with the thermal conduction such as the flance bottom, the installing bolt holes etc.

Optimum tightening torque is 5 to 6 kg-cm.

Prevent the upward stress to the leads.

Soldering should be conducted at the temperature of 250°C or lower and within 8 seconds.

2. OPERATING JUNCTION TEMPERATURE Tj(op) When designing the circuit, the thermal design should be performed so that the operating junction temperature Ti(op) will be 130°C or lower even under the ambinet temperature of 60°C.

3. BASE TO EMITTER BIAS RESISTANCE

Where a bias resistor is inserted between the base and the emitter for the devise to operate in AB or C class, make the resistance's value as small as possible, (normally 5Ω or less). If the value is excessibly large, reverse voltage will be applied to the emitter-base junction by this resistor when the drive power is large, and the emitter-base junction may be brought to avalanche breakdown by the drive power, resulting in the degradation of hee and output power.

4. GUARANTEED CHARACTERISTICS

All the graphic characteristics illustrated in this catalog are typical examples. The characteristics of individual device specified in Maximum ratings and Electrical characteristics are guaranteed under specified conditions.

5. DISPOSAL OF UNUSED DEVICES

The ceramic body of this transistor contains beryllium oxide (BeO). The dust or the vapor of BeO's porcelain is hazardous if inhaled, so don't crush, grind or abrade this portion. And don't treat the package in the high temperature (over 800°C) damp atmoshere.

DESCRIPTION

2SC3908 is a silicon NPN epitaxial planar type transistor designed for HF power amplifiers applications.

FEATURES

- High power gain: G_{pe} ≥ 11.5dB
 @P_O = 100W, f = 30MHz, V_{CC} = 12.5V
- The ability withstand infinite VSWR when operated at f = 30MHz. V_{CC} = 12.5V, P_O = 100W.
- · Flange type ceramic package.

APPLICATION

For output stage of 100 \sim 150W power amplifiers in HF band SSB mobile radio sets. (Push-pull operation)

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter		Ratings	Unit
V _{CBO}	Collector to base voltage		50	V
VEBO	Emitter to base voltage		5	V
V _{CEO}	Collector to emitter voltage		20	٧
lo	Collector current		22	A
Pc	Collector dissipation	Ta = 25°C	7.8	W
L		T _C =25°C	200	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55-+175	*c
Rth-a	Thermal resistance		19.2	*c/w
Rth-c			0.75	°C/W

ELECTRICAL CHARACTERISTICS (To=25°C unless otherwise specified)

Symbol	Parameter Test conditions	Limits				
57.1.501	rarametei	lest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _C =20mA, I _E =0	50			V
V(BR)CBO	Collector to base breakdown voltage	IE=20mA, IC=0	5			٧
V(BR)CEO	Collector to emitter breakdown voltage	1 ₀ =0.1A, R _{BE} =∞	20			٧
СВО	Collector cutoff current	V _{CB} =15V, I _E =0			5	mA
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _O =0			5	mA
hre	DC forward current gain	V _{CE} =10V, I _C =1A	10	50	180	_
Po	Output power	4-2014U- V -18 EV B -1W	100	110		W
η _C	Collector efficiency	f=30MHz, V _{CC} =12,5V, P _{In} =7W	55	60		%

TEST CIRCUIT

- C2 . 82pF x 3 in parallel
- 100pF, 4700pF x 2, 0,22µF x 2, 33µF, 330µF in parallel C3 ·
- C₄ 100pF, 220pF, 4700pF, 0.1µF, 330µF in parallel RFC: 27T on a dust core (V₉T-10-8-6), 1¢ enamel dense wiring
- NOTES 1.5¢ silver plated copper wire coil, 2.3¢ in diameter for those marked by *
 - D: Inner diameter of coil T Coil Turn
 - P Coil pitch
 - Coil dimensions in mm

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT CHARACTRISTIC, COMMON EMITTER

COLLECTOR-EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER BREAKDOWN VOLTAGE VS. BASE-EMITTER RESISTANCE

BASE-EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR-BASE VOLTAGE

COLLECTOR BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER, COLLECTOR SUPPLY VOLTAGE VARIATION

COLLECTOR SUPPLY VOLTAGE VCC (V)

PRECAUTIONS FOR USE

Mitsubishi transistors have high reliability and good performance, as they are designed and manufactured under strict quality control. However, the characteristics and reliability of semiconductor devices are greatly affected by usage conditions if inappropriate thermal, mechanical or electrical stresses are applied.

To keep high reliability and obtain good performance when using Mitsubishi transistors, the following important points should be noted before use:

1. OPERATING JUNCTION TEMPERATURE

Ti (OP)

When designing a heat sink, keep the operating junction temperature $T_{j\{OP\}}$ below 130°C at ambient temperature $T_a=60^{\circ}C$.

2. BASE-EMITTER EXTERNALLY CONNECTED RESISTOR

If a base-emitter bias resistor is inserted for AB class or C class amplifiers, the resistance value should be minimized. (Normally less than 5Ω to 10Ω .) If this value is too large, exciting input is increased and reverse bias current is applied to base and emitter and the emitter-base junction breaks down because of this exciting input, thus reducing h_{FE} and output power.

3. MOUNTING METHOD

- (1) Use fastening screws of M3 x 0.5.
- (2) Fastening torque of screw is recommended as 5 to 6 kg-cm.
- (3) Application of compound: Thermal compound to get good heat sinking should be applied to the bottom of the flange, fastening screws, as well as inside flange holes and holes of module's fin.

- (4) The distance between the centers of screw holes of heat sink fins should be 18.3 ± 0.2 mm and the diameter of holes should be 3.5 mm.
- (5) When mounting the device to the substrate, do not apply upper tensile force to the leads.
- (6) The temperature of lead soldering should be less than 250°C and shorter than 8 seconds.

4. GUARANTEED CHARACTERISTICS

All the graphic characteristics illustrated in this catalog are typical examples. The characteristics of individual devices as specified in the tables of absolute maximum ratings and electrical characteristics are guaranteed under the specified conditions.

5. PROCESSING OF DEFECTIVE PRODUCT OR DISCARDED PRODUCT

Beryllia porcelain is used in the transistor package. Dust or vapor of beryllia porcelain is extremely harmful to you. Do not cut, crack, or carve the device or do not process the device at high temperature (more than 800°C) in humid atmosphere.

2SC4167

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC4167 is a silicon NPN epitaxial planar type transistor specifically designed for UHF power amplifiers applications.

FEATURES

- High power gain: Gpe ≥ 7.6dB
 @V_{CC} = 12.5V, f = 520MHz, P_{in} = 1.2W.
- · Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 15.2V, f = 520MHz, P_O = 7W.
- · Flange type ceramic package.
- $Z_{in} = 2.2 + j3.1\Omega$, $Z_{out} = 6 - j1.0\Omega @V_{CC} = 12.5V$, f = 520MHz, $P_0 = 7W$.

APPLICATION

For output stage of 5W power amplifiers and drive stage of higher power amplifiers in UHF band.

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current		2	A
Pc	Collector dissipation	T _C =25°C	20	w
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (Tc = 25°C)

Symbol	Parameter			Limits		
07001	Parameter	. Test conditions	Min	Тур	Max	Unit
VIBRIEBO	Emitter to base breakdown voltage	I _E = 5mA, I _C = 0	4			V
V _(BR) CBO	Collector to base breakdown voltage	I _C = 10mA, I _E = 0	35			V
VIBRICEO	Collector to emitter breakdown voltage	I _C = 50mA, R _{BE} = ∞	17 (V
ICBO	Collector cut off current	V _{CB} = 15V, I _E = 0			500	μА
IEBO	Emitter cut off current	V _{EB} = 3V, I _C = 0			500	μА
hre	DC forward current gain *	.V _{CE} = 10V, I _C = 0 1A	10	50	180	-
Po	Power Output		7	8		W
$\eta_{\rm C}$	Collector efficiency	V _{CC} = 12.5V, P _{IN} = 1 2W, f = 520MHz	50	60		%

L₃: 3 Turns AWG #20, 5mm I.D. L₄: 6 Turns AWG #20, 5mm I.D.

L₅: 10 Turns AWG #26 Enameted Wire on 4mm O.D., 14mm Length Bakelite

F.B.: Ferrite Bead

C₁ 82pF, 220pF, 4700pF, 10μF in parallel

C2: 82pF, 220pF, 10µF in parallel

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. CASE TEMPERATURE CHARACTERISTICS

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE CHARACTERISTICS

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS

COLLECTOR TO BASE VOLTAGE VCB (V)

DESCRIPTION

2SC4240 is a silicon NPN epitaxial planar type transistor specifically designed for VHF power amplifier applications.

FEATURES

- High power gain: Gpe ≥ 13dB.
 @V_{CC} = 7.2V, f = 175MHz, P_{in} = 0.3W.
- · Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 9V, f = 175MHz, P_O = 6.0W.
- · Flange type ceramic package.
- Z_{in} = 1.5 j1.3Ω, Z_{out} = 5.0 j1.2Ω
 @V_{CC} = 7.2V, f = 175MHz, P_O = 6.0W.

APPLICATION

For output stage of 5W power amplifiers in VHF band portable type radio sets.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C)

Symbol	Parmeter ·	Conditions	Ratings	Unit
VCBO	Collector to base voltage	·	20	V
VEBO	Emitter to base voltage		3 5	V
V _{CEO}	Collector to emitter voltage	R _{BE} = co	9	V
lc	Collector current		3	Α
Pc	Collector dissipation	T _C =25°C	20	W
Tj	Junction temperature		÷ 175	°C
Tstg	Storage temperature		-55~+175	°C

ELECTRICAL CHARACTERISTICS (Tc = 25°C)

Symbol	Parameter	Test conditions		Limits		
- Cyllidol	Palametei	Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E = 5mA, I _C = 0	3.5			. V
VIBRICBO .	Collector to base breakdown voltage	ic= 10mA, i _E =0	20			V
VIBRICEO	Collector to emitter breakdown voltage	I _C = 50mA, R _{BE} = ∞	9			V
Ісво	Collector cut-off current	V _{CB} = 10V, I _E = 0			500	μА
EBO	Emitter cut-off current	V _{EB} = 2V, I _C = 0			500	μА
hre	DC forward current gain *	V _{CE} = 5V, I _C = 0.1A	20	50	180	-
Po	Power Output		6	7		W
η_{C}	Collector efficiency	Vcc = 7.2V, Pin = 0.3W, f = 175MHz	60	65		%

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT (f = 175MHz)

14mm Length Bakelite

C1: 220pF, 1000pF, 4700pF, 10μ F in parallel. 220pF, 1000pF, 4700pF, 10μ F in parallel.

C2

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. CASE TEMPERATURE

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE CHARACTERISTICS

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

DISCRIPTION

2SC4524 is a silicon NPN epitaxial planar type transistor specifically designed for RF power amplifiers applications in 1.65GHz

FEATURES

- High power gain: G_{pb} ≥ 5.4dB, P_o = 7W
 @V_{CC} = 28V, f = 1.65GHz.
- High ruggedness: Ability to withstand 16:1 load VSWR when operated at V_{CC} = 28V, f = 1.65GHz, P_O = 7W.
- Emitter ballasted construction. Gold metalization die.

APPLICATION

For pre-amplifier stage of 50W, 1.6GHz - 1.65GHz, 28V, amamplifier

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcso	Collector to base voltage		50	V
VEBO	Emitter to base voltage		. 4	V
V _{CES}	Collector to emitter voltage	R _{BE} =0	45	V
ic	Collector current		2.5	A
Pc	Collector dissipation	Tc=25°C	30	W
Tj	Junction temperature		+175	°c
Tstg	Storage temperature		-50~+175	°C
Rth-c	Thermal resistance	Junction to case	5.0	°C/W

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			
- Tarantota	roraniota	e, lest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=5mA, IO=0	4.0			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	50			. v
V(BR)CES	Collector to emitter breakdown voltage	I _C =10mA, R _{EB} =0	45			V
СВО	Collector cutoff current	V _{OB} =25V, I _E =0			1	mA
hfE	DC forward current gain *	V _{OE} =5V, i _O =1A	10	50	180	_
Po	Output power		7	10		W
7 _C	Collector efficiency	V _{OC} =28V, f=1.65GHz, Pin=2W	45	50		%

^{*} Note: Pulse test, PW = 150µs, duty = 5%

TEST CIRCUIT

Cc 50pF Chip capacita

C 50pF, 2200pF, 22000pF, 100µF in parallel Board Material Teflon-Glass t = 0.8 mm

TYPICAL PERFORMANCE DATE

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

CASE TEMPERATURE To (°C)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS.
COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

INPUT AND OUTPUT SERIES IMPEDANCE

f	Z _{IN} (Q)	Zout (Ω)
1,6GHz .	9.2+14.0	3,2-j3,0
1,65GHz	9.8+14.9	3.4-13.3
1.7GHz	10.3+j6	3.7-j2.5
CONDITION	IS:	

 $V_{CC}=28V$, f=1.6-1.70Hz, $P_0=7W$ CW

Special Instructions for Flange-Mounted Ceramic-Encapsulated High-Frequency High-Output Transistor Installation

Fig. 1 Flange-Mounted Ceramic Encapsulated High-Frequency High-Output Transistor

When the flange-mounted ceramic-encapsulated transistor shown in Fig. 1 is mounted on a heat sink plate, be sure to follow the special instructions below, after referring to Fig. 2.

- Be sure to use M3 x 0.5 screws for mounting the transistor.
- (2) Be sure that the fastening screws are tightened to a torque of 5 to 6kg.cm.
- (3) Application of lubricants (grease): Apply lubricant (grease) to all heat-conducting components, including the bottom of the flange, the fastening screws, inside the flange holes, and the holes of the heat sink fins. Particular care is required in applying the lubricant compound. Be the more careful the greater the higher the operating level of the device concerned is.
- (4) Be sure that the screw hole centers of the heat sink fins are spaced at a distance of 18.3 ± 0.2mm and that the holes have a diameter of 3.5mm.
- (5) Take care to ensure that when the device is mounted on to the substrate, no tensile stress acting in the upward direction is applied to the leads. Mount so that the printed circuit board is positioned slightly lower than the bottom of the leads.
- (6) After the device has been mounted, solder the leads so that the soldering temperature is below 250°C and that the time used for soldering one lead is within 8 seconds.

Fig. 2 Installation Procedure for Flange-Mounted Ceramic-Encapsulated Transistor with Printed Pattern on the Upper Surface

2. Precautions for Use of the Device

(1) Operating Junction Temperature (Tiop)

Be sure to design the circuit so that the operating junction temperature Tjop will not exceed 130°C at ambient temperature conditions within 60°C.

(2) Base-Emitter Externally Connected Resistor

If a bias resistor is inserted between the base and emitter for AB class amplifiers, be sure to design the bias circuit so that the resistance remains below 5 ohm. If this resistance value is excessively high, the exciting input will be increased, accordingly and a reverse bias current will be applied between the base and the emitter, thereby iving rise to the problem of a reduction in her and a drop in the output power.

(3) Guaranteed Characteristics

All graphic characteristics illustrated in this catalog are typical examples. The characteristics for the individual devices are guaranteed under the specified conditions laid down with respect to the absolute maximum-ratings and electrical characteristics.

3. Disposal of Defective or Discarded Products

All types of resin-encapsulated and ceramic-encapsulated high-frequency high-output transistors as well as some metal-encapsulated high-frequency high-output transistors use beryllia porcelain. The inhalation of beryllia dust and/or vapors can be extremely dangerous to the human body. It is therefore essential not to attempt to break, crush, cut, or dispose of these devices at high temperatures (above 800°C) in a moisture-containing atmosphere.

DISCRIPTION

2SC4525 is a silicon NPN epitaxial planar type transistor specifically designed for RF power amplifiers applications in 1.65GHz.

FEATURES

• High power gain: $G_{pb} \ge 6.0 dB$, $P_0 = 20W$ $@V_{CC} = 28V$, f = 1.65 GHz.

• High ruggedness: Ability to withstand 16:1 load VSWR

when operated at V_{CC} = 28V, f = 1.65

GHz, Po = 20W.

Emitter ballasted construction. Gold metalization die.

APPLICATION

For drive-amplifier stage of 50W, 1.6 \sim 1.65GHz amplifier.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter '	Conditions	Ratings	Unit
Vceo	Collector to base voltage		50	٠٧
VEBO	Emitter to base voltage		4.0	V
V _{CES}	Collector to emitter voltage	R _{BE} = 0	45	V
Ic	Collector current		5.0	A
Pc	Collector dissipation , .	T ₀ =25°C	60	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		~55~+175	°C
Ath-o	Thermal resistance	Junction to case	2.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			
	ranameter	lest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =10mA, I _C =0	4.0			٧
V(BR)CBO	Collector to base breakdown voltage	I _O =10mA, I _E =0	50			٧
V(BR)CES	Collector to emitter breakdown voltage	1 ₀ =10mA, R _{BE} =0	45			٧
СВО	Collector cutoff current	V _{OB} =25V, l _E =0			2	mA
hfE	DC forward current gain *	V _{OE} =5V, I _O =5A	10	50	180	-
Po	Output power		20	25		W
η _C	Collector efficiency	V ₀₀ =28V, f=1.65GHz, Pin=5W	40	45		%

* Note: Pulse test, Pw = 150µs, duty = 5%

TEST CIRCUIT (f = 1.65GHz)

TYPICAL PERFORMANCE DATE

COLLECTOR DISSIPATION VS.

CASE TEMPERATURE
CHARACTERISTICS

CASE TEMPERATURE Tc (°C)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER CHARACTERISTICS

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE CHARACTERISTICS

COLLECTOR SUPPLY VOLTAGE VCC (V)

INPUT AND OUTPUT SERIES IMPEDANCE

Po=20W CW

Special Instructions for Flange-Mounted Ceramic-Encapsulated High-Frequency High-Output Transistor Installation

Fig. 1 Flange-Mounted Ceramic Encapsulated High-Frequency High-Output Transistor

When the flange-mounted ceramic-encapsulated transistor shown in Fig. 1 is mounted on a heat sink plate, be sure to follow the special instructions below, after referring to Fig. 2

- (1) Be sure to use M3 x 0.5 screws for mounting the transistor.
- (2) Be sure that the fastening screws are tightened to a torque of 5 to 6kg.cm.
- (3) Application of lubricants (grease): Apply lubricant (grease) to all heat-conducting components, including the bottom of the flange, the fastening screws, inside the flange holes, and the holes of the heat sink fins. Particular care is required in applying the lubricant compound. Be the more careful the greater the higher the operating level of the device concerned is.
- (4) Be sure that the screw hole centers of the heat sink fins are spaced at a distance of 18.3 ± 0.2mm and that the holes have a diameter of 3.5mm.
- (5) Take care to ensure that when the device is mounted on to the substrate, no tensile stress acting in the upward direction is applied to the leads. Mount so that the printed circuit board is positioned slightly lower than the bottom of the leads.
- (6) After the device has been mounted, solder the leads so that the soldering temperature is below 250°C and that the time used for soldering one lead is within 8 seconds.

Fig. 2 Installation Procedure for Flange-Mounted Ceramic-Encapsulated Transistor with Printed Pattern on the Upper Surface

2. Precautions for Use of the Device

(1) Operating Junction Temperature (Tiop)

Be sure to design the circuit so that the operating junction temperature Tjop will not exceed 130°C at ambient temperature conditions within 60°C.

(2) Base-Emitter Externally Connected Resistor

If a bias resistor is inserted between the base and emitter for AB class amplifiers, be sure to design the bias circuit so that the resistance remains below 5 ohm. If this resistance value is excessively high, the exciting input will be increased, accordingly and a reverse bias current will be applied between the base and the emitter, thereby iving rise to the problem of a reduction in her and a drop in the output power.

(3) Guaranteed Characteristics

All graphic characteristics illustrated in this catalog are typical examples. The characteristics for the individual devices are guaranteed under the specified conditions laid down with respect to the absolute maximum ratings and electrical characteristics.

3. Disposal of Defective or Discarded Products

All types of resin-encapsulated and ceramic-encapsulated high-frequency high-output transistors as well as some metal-encapsulated high-frequency high-output transistors use beryllia porcelain. The inhalation of beryllia dust and/or vapors can be extremely dangerous to the human body. It is therefore essential not to attempt to break, crush, cut, or dispose of these devices at high temperatures (above 800°C) in a moisture-containing atmosphere.

DISCRIPTION

2SC4526 is a silicon NPN epitaxial planar type transistor specifically designed for RF power amplifier applications in 1.65GHz.

FEATURES

High power gain: G_{pb} ≥ 4.5dB, P_o = 28W

@V_{CC} = 28V, f = 1.65GHz.

 High ruggedness: Ability to withstand 16:1 load VSWR when operated at V_{CC} = 28V, f = 1.65

GHz, $P_0 = 28\dot{W}$.

Emitter ballasted construction, Gold metalization die.

APPLICATION

For final stage (parallel or push-pull operation) of 50W, $1.6 \sim 1.65 \text{GHz}$, 28V, amplifier.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		· 50	V
VEBO	Emitter to base voltage		4	V
V _{CES}	Collector to emitter voltage	R _{BE} = 0	45	V
1 _C	Collector current		7.5	A
Pc	Collector dissipation	T _C = 25°C	90	W
Tj	Junction temperature		+175	°C
Tstg	Storage temperature		-55-+175	*c
Rth-c	Thermal resistance	Junction to case	1.7	°C/W

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			
			Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE=10mA, IC=0	4.0			V
V(BR)CBO	Collector to base breakdown voltage	Ic=10mA, IE=0	50			٧.
V(BR)CES	Collector to emitter breakdown voltage	IC=10mA, REB=0	45 '			V
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			3	mA
hre	DC forward current gain *	V _{CE} =5V, I _C =6A	10	50	180	-
Po	Output power		28	32		W
$\eta_{\rm C}$	Collector efficiency .	V _{OC} =28V, f=1.65GHz, P _{in} =10W	40	45		%

TEST CIRCUIT (f = 1.65GHz)

Board material: Teflon-Grass 0.8 mm

- Cc. 50pF Chip capacitance
- C . 50pF, 2200pF, 22000pF, 100µF in paralleled
- L₁. O.D: AWG #20, 29 mm
- L₂ O.D. AWG #20, 29 mm

TYPICAL PERFORMANCE DATE

COLLECTOR DISSIPATION VS. CASE TEMPERATURE CHARACTERISTICS

CASE TEMPERATURE To (CC)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE CHARACTERISTICS

COLLECTOR SUPPLY VOLTAGE VCC (V)

INPUT AND OUTPUT SERIES IMPEDANCE

Special Instructions for Flange-Mounted Ceramic-Encapsulated High-Frequency High-Output Transistor Installation

Fig. 1 Flange-Mounted Ceramic Encapsulated
High-Frequency High-Output Transistor

When the flange-mounted ceramic-encapsulated transistor shown in Fig. 1 is mounted on a heat sink plate, be sure to follow the special instructions below, after referring to Fig. 2

- (1) Be sure to use M3 x 0.5 screws for mounting the transistor.
- (2) Be sure that the fastening screws are tightened to a torque of 5 to 6kg.cm.
- (3) Application of lubricants (grease): Apply lubricant (grease) to all heat-conducting components, including the bottom of the flange, the fastening screws, inside the flange holes, and the holes of the heat sink fins. Particular care is required in applying the lubricant compound. Be the more careful the greater the higher the operating level of the device concerned is.
- (4) Be sure that the screw hole centers of the heat sink fins are spaced at a distance of 18.3 ± 0.2 mm and that the holes have a diameter of 3.5mm.
- (5) Take care to ensure that when the device is mounted on to the substrate, no tensile stress acting in the upward direction is applied to the leads. Mount so that the printed circuit board is positioned slightly lower than the bottom of the leads.
- (6) After the device has been mounted, solder the leads so that the soldering temperature is below 250°C and that the time used for soldering one lead is within 8 seconds.

Fig. 2 Installation Procedure for Flange-Mounted
Ceramic-Encapsulated Transistor with Printed
Pattern on the Upper Surface

2. Precautions for Use of the Device

(1) Operating Junction Temperature (Tiop)

Be sure to design the circuit so that the operating junction temperature Tjop will not exceed 130°C at ambient temperature conditions within 60°C.

(2) Base-Emitter Externally Connected Resistor

If a bias resistor is inserted between the base and emitter for AB class amplifiers, be sure to design the bias circuit so that the resistance remains below 5 ohm. If this resistance value is excessively high, the exciting input will be increased, accordingly and a reverse bias current will be applied between the base and the emitter, thereby iving rise to the problem of a reduction in her and a drop in the output power.

(3) Guaranteed Characteristics

All graphic characteristics illustrated in this catalog are typical examples. The characteristics for the individual devices are guaranteed under the specified conditions laid down with respect to the absolute maximum ratings and electrical characteristics.

3. Disposal of Defective or Discarded Products

All types of resin-encapsulated and ceramic-encapsulated high-frequency high-output transistors as well as some metal-encapsulated high-frequency high-output transistors use beryllia porcelain. The inhalation of beryllia dust and/or vapors can be extremely dangerous to the human body. It is therefore essential not to attempt to break, crush, cut, or dispose of these devices at high temperatures (above 800°C) in a moisture-containing atmosphere.

2SC4624

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC4624 is a silicon NPN epitaxial planar type transistor specifically designed for RF power amplifiers in $800\!\sim\!900$ MHz band range.

FEATURES

- High power gain: Gpe ≥ 4.7dB, Po ≥ 45W
 Q Vcc = 12.5V, f = 900MHz, Pin = 15W
- Emitter ballasted construction.
- High ruggedness: Ability to withstand 20:1 load VSWR when operated at Vcc = 15.2V, Po = 45W, f = 900MHz.
- High reliability due to gold metalization die.
- Flange type ceramic package.
- · Common emitter configuration.

APPLICATIONS

RF power amplifiers in 800~900MHz band range, especially suitable for radio applications.

ABSOLUTE MAXIMUM RATINGS (Tc = 25 °C unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcво	Collector-base voltage		35	V
VEBO	Emitter-base voltage		2.5	V
VCES	Collector-emitter voltage	R _{BE} = ∞	16	V
Ic	Collector current		15	A
Pc	Collector dissipation	Tc = 25 ℃	110	. W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature range		- 55~175	20
Rth-c	Thermal resistance	Junction to case	1,36	W/°C

ELECTRICAL CHARACTERISTICS (Tc = 25 °C unless otherwise noted)

Symbol	Parameter	Test conditions	Limits /			
		rest conditions , .	Min	Typ	Max	Unit
V(BR)EBO	Emitter-base breakdown voltage	IE = 10mA, Ic = 0	2.5	-	-	V
V(BR)CBO	Collector-base breakdown voltage	Ic = 10mA, IE = 0	35	-	_	V
V(BR)CEO	Collector-emitter breakdown voltage	Ic = 100mA, RBE = ∞	16	-	· _	V
Ісво	Collector cutoff current	Vcs = 15V, IE = 0	_	_	5000	μА
lebo	Emitter cutoff current	VEB = 2V, Ic = 0	-		5000	μА
hre	DC forward current gain *	Vce = 10V, lc = 1A	10	50	180	
Po	Output power	1, , , , , , , , , , , , , , , , , , ,	45	50	-	W
ηс	Colletor efficiency	Vcc = 12.5V, Pin = 15W, f = 900MHz	45	50		%

^{*} Note: Pulse test, PW = 150 µs, duty 5 %

Dimensios: mms

TYPICAL PERFORMANCE DATA

OUTPUT CHARACTERISTICS. COMMON EMITTER

OUTPUT POWER-COLLECTOR

COLLECTOR OUTPUT CAPACITANCE VS.

INPUT AND OUTPUT SERIES IMPEDANCE VS. FREQUENCY CHARACTERISTICS

 $Z_0 = 10 \Omega$

f (GHz)	Zin (Ω)	Zout (Ω)					
806	1.05 - j0.60	1.63 - j0.00					
840	1.20 - j0.55	1.72 - j0.01					
870	1.40 - j0.50	1.90 - j0.30					
900	1.80 - j0.30	1.85 - j0.45					
920	2.00 - j0.20	1.70 - j0.58					
942	2.20 - j0.15	1.50 - j0.62					
CONDIT	CONDITIONS: Vcc = 12.5V, Po = 45W						

MITSUBISHI RF POWER TRANSISTOR

2SC4838

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC4838 is a silicon NPN epitaxial planar type transistor specifically designed for RF power amplifiers in 1.65GHz.

FEATURES

- High power gain : Gpb ≥ 9.3dB, Po ≥ 6W
 Q Vcc = 28V, f = 1.65GHz, Pln = 0.7W
- Emitter ballasted construction.
- High reggedness: Ability to withstand 16:1 load VSWR when operated at Vcc = 28V, Po = 6W, f = 1.65GHz.
- High reliability due to gold metalization die.
- Flange type ceramic package.
- · Common base configuration.

APPLICATIONS

For pre-amplifier stage of 50W, 1.65GHz, 28V.

ABSOLUTE MAXIMUM RATINGS (Tc = 25 ℃ unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vсво	Collector-base voltage		50	V
VEBO	Emitter-base voltage		4	V
VCES	Collector-emitter voltage	Ree = 0	45	V
lc	Collector current		2	A
Pc	Collector dissipation		17.5	W
Tj	Junction temperature		+ 175	°C
Tstg	Storage temperature range		- 55~175	90

ELECTRICAL CHARACTERISTICS (Tc = 25 °C unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			11.0
		Test conditions	Min	Тур	Max	Unit
V(BR)EBO		IE = 5mA, Ic = 0	4.0	-	-	V
V(BR)CBO	Collector-base breakdown voltage	Ic = 10mA, IE = 0	50	-		V
V(BR)CES	Collector-emitter breakdown voltage	Ic = 10mA, RBE = 0	45	-	-	V
СВО	Collector cutoff current	VcB = 25V, IE = 0	-	_	1000	μА
hre	DC forward current gain *	VcE = 5V, lc = 1A	10	50	180	-
Po	Output power	14	6.0	7.0	_	W
ηс	Colletor efficiency	Vcc = 28V, Pin = 0.7W, f = 1.65GHz		50	-	%

^{*} Note: Pulse test, PW = 150 µs, duty 5 %

TEST CIRCUIT (f=1.65GHz)

Cc: 47pF Chip capacita C: 49pF, 2200pF, 22000pF, $100 \mu F$ Board Material: Tefron-Glass h = 0.8mm

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. CASE TEMPERATURE CHARACTERISTICS 20 8 ЪС 16 COLLECTOR DISSIPATION 12 8 0 0 80 160 200 CASE TEMPERATURE Tc (℃)

f (GHz)	Žin (Ω)	Žout (Ω)					
1.60	2.86 + j23.31	4.39 - j8.99					
1.65	3.30 + j24.41	4.13 - j8.24					
1.70	3.47 + j25.56	3.09 - j7.19					
CONDI	TIONS: Vcc = 28V,	f = 1.6~1.7GHz					
	Po = 6W CW						

Zo = 50 Ω

INPUT AND OUTPUT SERIES IMPEDANCE 2SC4838

ANTENNA SWITCHES

MI 105

PIN DIODE

DESCRIPTION

The MI105 PIN diode is employing a high reliability glass construction, designed for small signal switching.

FEATURES

- Long carrier lifetime
- Low diode capacitance (0.25pF @VR = 0V, f = 100MHz)
- Low forward bias resistance
- Rugged for surge
- Small glass construction

APPLICATION

VCR, Video Disk Antenna switch.

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Ratings	Unit
V _{BM}	Repetitive peak reverse voltage	. 30	V
VR	Reverse voltage	30	V
P	Power dissipation	200	
Tj	Junction temperature	175	*C
Tstg	Storage temperature .	-55~+175	°C
IFM	Forward current	d current 150	

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Symbol	Parameter	Test conditions		Limits		
		Test conditions	Min	Тур	Max	Unit
I _{R1}	Reverse current	V _R =30V			10	μА
I _{R2}	Reverse current	V _R =28 V			0.5	μА
l _F	Forward current	V _F =1.0V	30 .	70		mA
Ot	Diode capacitance	V _R =0V, f=100MHz		0.25	0,5	ρF
r _{fs1}	Forward series resistance	IF=10mA, f=50MHz		13	20	Ω
r fs2	Forward series resistance	i _F =10 μA, f=50MHz	1.0	3		kΩ

TYPICAL PERFORMANCE DATA DIODE CAPACITANCE VS. REVERSE VOLTAGE CHARACTERISTICS

PARALLEL RESISTANCE VS. REVERSE VOLTAGE CHARACTERISTICS

FORWARD CURRENT VS. FORWARD VOLTAGE CHARACTERISTICS

FORWARD VOLTAGE VF (V)

FORWARD SERIES RESISTANCE VS. FORWARD CURRENT CHARACTERISTICS

REVERSE CURRENT VS. REVERSE VOLTAGE CHARACTERISTICS

PIN DIODE

DESCRIPTION

The MI204 PIN diode is employing a high reliability glass construction designed for RF small signal attenuator in VHF UHF.

FEATURES

- Long carrier lifetime
- Low distortion
- Large dynamic range

APPLICATION

RF attenuator RF switching

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Symbol	Parameter	Ratings	Unit
V _{RM}	Repetitive peak reverse voltage	30	V
VR	Reverse voltage	28	V
Р	Power dissipation	200	mW
Тј	Junction temperature	175	°C.
Tstg	Storage temperature	-55~+175	°C

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol	Parameter			Limits			
		Test conditions	Min	Тур	Max	Unit	
I _{R1}	Reverse current	V _R =30 V			10	μА	
I R2	Reverse current	V _R =28V			0.5	μΑ	
VF	Forward voltage	I _F =100 mA			1,0	V	
r _{fst}	Forward series resistance	I _F =10mA, f=50MHz		5.5	10	Ω	
r fa2		I _F =10 μA, f=50 MHz	1.0	1.5		kΩ	
Ct	Diode capacitance	V _B =15V, f=1.0MHz		0.7	1,2	pF	
τ	Life time	I _F = 10mA		2.1		μS	
*ts	Storage time	I _F =10mA, I _R =10mA	0.6	1.5		μs	

TYPICAL PERFORMANCE DATA FORWARD SERIES RESISTANCE VS. FORWARD CURRENT

TOTAL CAPACITANCE VS. REVERSE VOLTAGE CHARACTERISTICS

FORWARD CURRENT VS.

FORWARD CURRENT IF (A)

REVERSE CURRENT VS.
REVERSE VOLTAGE CHARACTERISTICS

FORWARD VOLTAGE VF (V)

REVERSE VOLTAGE VR (V)

PARALLAEL RESISTANCE VS. REVERSE VOLTAGE CHARACTERISTICS

INTER MODULATION
DISTORTION

INPUT POWER (dBµ)

REVERSE VOLTAGE VR (V)

MI301

PIN DIODE RF POWER SWITCHING

DESCRIPTION

The MI301 PIN diode is employing high reliability glass construction, designed for solid state antenna switches in commercial two-way radios.

FEATURES

- Low insertion loss
- High isolation
- Small glass construction

APPLICATION

Antenna switching

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Ratings	Unit
VaM	Repetitive peak reverse voltage	80	٧
IFSM *	Forward surge current	2.0	Α
Ρ	Power dissipation	350	mW
Tj	Junction temperature	175	°C
Tstg	Storage temperature	-55~+175	°C

^{*:} t=1sec

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol	Parameter	Test conditions		Limits			
		Test conditions	Min	Тур	Max	Unit	
IR	Reverse current	V _R =60 V			150	nA	
V _{(BR)R}	Reverse break-down voltage	IR=10 µA	80			V	
l _F	Forward current	V _F =1.0V	100			mA	
Ct	Diode capacitance	V _R =0V, f=1MHz			3.0	pF	
r _{fs}	Forward series resistance	I _F =20mA, f=470MHz			1.2	Ω	
Q	Q	V _R =0V, f=50MHz	20			-	
Ls	Lead Inductance	Total lead length 10mm		2.5		nH	

TYPICAL PERFORMANCE DATA FORWARD SERIES RESISTANCE VS. FORWARD CURRENT CHARACTERISTICS

TOTAL CAPACITANCE VS. REVERSE VOLTAGE CHARACTERISTICS

REVERSE VOLTAGE VR (V)

FORWARD CURRENT VS. FORWARD VOLTAGE CHARACTERISTICS

REVERSE CURRENT VS.
REVERSE VOLTAGE CHARACTERISTICS

REVERSE VOLTAGE VR (V)

CUT-OFF FREQUENCY VS. REVERSE VOLTAGE CHARACTERISTICS

FORWARD VOLTAGE VF (V)

REVERSE VOLTAGE VR (V)

POWER DISSIPATION VS. AMBIENT TEMPERATURE CHARACTERISTICS

AMBIENT TEMPERATURE Ta (°C)

PIN DIODE RF POWER SWITCHING

THERMAL RESISTANCE (JUNCTION TO AMBIENT) VS. PRINTED BOARD COPPER LEAF AREA CHARACTERISTICS

PRINTED BOARD COPPER LEAF AREA S (mm2)

SERIES INDUCTANCE VS. TOTAL LEAD LENGTH CHARACTERISTICS

TOTAL LEAD LENGTH & (mm)

APPLICATION

SINGLE POLE DOUBLE THROW SWITCHING CIRCUIT

SINGLE POLE DOUBLE THROW SWITCHING CHARACTERISTICS

FREQUENCY f (MHz)

SINGLE POLE DOUBLE THROW SWITCHING CIRCUIT (λ-4 TYPE)

SINGLE POLE DOUBLE THROW SWITCHING (\(\lambda\)/4 TYPE) CHARACTERISTICS

FREQUENCY f (MHz)

PIN DIODE RF POWER SWITCHING

DESCRIPTION

The MI303 PIN diode is employing high reliability glass construction, designed for solid state antenna switches in commercial two-way radios.

FEATURES

- Low insertion loss
- High isolation
- Small glass construction

APPLICATION

Antenna switching

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Symbol	Parameter	Ratings	Unit	
VRM	Repetitive peak reverse voltage	a voltage 180		
IFSM *	Forward surge current	2	Α	
Р	Power dissipation	. 500	mW	
T ₁	Junction temperature	175	°C	
Tstg	Storage temperature	-55~+175	°C	

^{*:} t=5sec

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol Parameter				Limits			
	Test conditions	Min	Тур	Max	Unit		
IRI	Reverse current	V _R =180 V			- 10	μА	
I _{R2}	Reverse current	V _R = 140 V			150	nA	
l _F	Forward current	V _F =1.0V	200			mA	
Ct	Diode capacitance	V _R =0V, f=1MHz			4.0	pF	
rfs	Forward series resistance	I _F = 20 mA , f = 470 MHz			1,0	Ω	
fo	Cut-off frequency	V _B =3V, f=50MHz	800			MHz	

TYPICAL PERFORMANCE DATA FORWARD SERIES RESISTANCE VS.

TOTAL CAPACITANCE VS. REVERSE VOLTAGE CHARACTERISTICS

REVERSE VOLTAGE VR (V)

FORWARD CURRENT VS. FORWARD VOLTAGE CHARACTERISTICS

FORWARD VOLTAGE VF (V)

REVERSE CURRENT VS. REVERSE VOLTAGE CHARACTERISTICS

REVERSE VOLTAGE VR (V)

POWER DISSIPATION VS. AMBIENT TEMPERATURE CHARACTERISTICS

AMBIENT TEMPERATURE Ta (°C)

THERMAL RESISTANCE (JUNCTION TO AMBIENT) VS. PRINTED BOARD COPPER LEAF AREA CHARACTERISTICS

PRINTED BOARD COPPER LEAF AREA S (mm2)

SERIES INDUCTANCE VS. TOTAL LEAD LENGTH CHARACTERISTICS

TOTAL LEAD LENGTH & (mm)

APPLICATION

SINGLE POLE DOUBLE THROW SWITCHING CIRCUIT (λ-4 TYPE)

	C ₁	C ₂	C ₃	L1, L2
50MHz	45pF	90pF	35pF	230nH
144MHz	15pF	24pF	10pF	75nH
440MHz	3pF	6pF	2pF	25nH

TYPICAL DATA

-	Isolation TX→RX	Insertion Loss TX→ANT
50 MHz	33dB	0.3dB
144MHz	33 dB	0.3dB
440 MHz	30 dB	0.5dB

Handling Power 10W Bias Current 20mA DC 2nd Harmonic >80dBc

PIN DIODE RF POWER SWITCHING

DESCRIPTION

The MI308 PIN diode is employing a high reliability glass construction, designed for solid state antenna switchs in commercial two-way radios.

FEATURES

- High power handling
- High zero bias impedance
- Low forward bias resistance
- Low insertion loss, High isolation
- Low distortion (TX: sprious < -80dBc, RX: intermodulation -73dBc @90dBμ)

APPLICATION

High power antenna switch (10W output two-way radio)

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Symbol	Parameter	Rating	Unit
V _{RM}	Repetitive peak reverse voltage	roltage 50	
VR	Reverse voltage	50	
IFSM *	Forward surge current	2	
Р	Power dissipation	500	
Tį	Junction temperature	erature 175	
Tstg	Storage temperature	-55~+175	.°C

^{*}:t=5sec

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol	Symbol Parameter	Parameter Test conditions		Limits			
Symbol			Min	Тур	Max	Unit	
181	Reverse current	V _R =50 V			10	μА	
I _{R2}	Reverse current	V _R =45 V			0.5	μА	
(F	Forward current	V _F =1.0V	100			mA	
r _{fs} .	Forward series resistance	IF=50mA, f=470MHz		0.5	0.7	Ω	
Ct	Diode capacitance	V _R =0V, f=100MHz			1.6	pF	
Rp	Parallel resistance	V _R =0V, f=100MHz	1.0	3.0		kΩ	

MI308

PIN DIODE RF POWER SWITCHING

TYPICAL PERFORMANCE DATA DIODE CAPACITANCE VS. REVERSE VOLTAGE CHARACTERISTICS

FORWARD SERIES RESISTANCE VS.

FORWARD CURRENT CHARACTERISTICS

FORWARD CURRENT IF (A)

FORWARD CURRENT VS. FORWARD VOLTAGE CHARACTERISTICS

FORWARD VOLTAGE VF (V)

REVERSE CURRENT VS. REVERSE VOLTAGE CHARACTERISTICS

REVERSE VOLTAGE VR (V)

THERMAL RESISTANCE (JUNCTION TO AMBIENT) VS. AREA CHARACTERISTICS

AREA·S (mm²)

PIN DIODE RF POWER SWITCHING

ALLOWABLE POWER DISSIPATION VS. HEAT SINK TEMPERATURE CHARACTERISTICS

HEAT SINK TEMPERATURE Th (°C)

TRANSMITTER POWER VS. AMBIENT TEMPERATURE CHARACTERISTICS

AMBIENT TEMPERATURE Ta (°C)

INTER MODULATION DISTORTION

INPUT SIGNAL LEVEL (dBµ)

INTER MODULATION DISTORTION

INPUT SIGNAL LEVEL (dBµ)

INTER MODULATION DISTORTION

INPUT SIGNAL LEVEL (dBµ)

PIN DIODE RF POWER SWITCHING

DESCRIPTION

The MI402 PIN diode is employing a high reliability glass construction, designed for solid state antenna switches in commercial two-way radios.

FEATURES

- High power handling
- Low insertion loss, High isolation

APPLICATION

High power antenna switch (25W output two-way radio)

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Symbol	Parameter	Ratings	Unit	
V _{RM}	Repetitive peak reverse voltage	270		
I _{FSM} *	Forward surge current	2.0	A	
Р	Power dissipation	1.0	mW	
TI	Junction temperature	175	°C	
Tstg	Storage temperature	-55-+175		

^{*:} t=5sec

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol Parameter			/ Limits			1
	Parameter	Test conditions	Min	Тур	Max	Unit
IRt	Reverse current	V _R =270V			10.0	μА
I _{R2}	Reverse current	V _R =200V			150	nA
1 _F	Forward current	. V _F =1.0V	500			mA
Ct	Diode capacitance	V _R =12V, f=1MHz			3.0	pF
r _{ts}	Forward series resistance	I _F =50mA, f=470MHz			0.7	Ω
fo	Cut-off frequency	V _R =12V, f=50MHz	1.0			GHz

TYPICAL PERFORMANCE DATA FORWARD SERIES RESISTANCE VS. FORWARD CURRENT CHARACTERISTICS

FORWARD CURRENT IF (mA)

DIODE CAPACITANCE VS. REVERSE VOLTAGE CHARACTERISTICS

REVERSE VOLTAGE VR (V)

FORWARD CURRENT VS. FORWARD VOLTAGE CHARACTERISTICS

FORWARD VOLTAGE VF (V)

REVERSE CURRENT VS. REVERSE VOLTAGE CHARACTERISTICS

REVERSE VOLTAGE VR (V)

Q VS. REVERSE VOLTAGE CHARACTERISTICS

REVERSE VOLTAGE VR (V)

ALLOWABLE POWER DISSIPATION VS. AMBIENT TEMPERATURE CHARACTERISTICS

AMBIENT TEMPERATURE Ta (°C)

PIN DIODE RF POWER SWITCHING

THERMAL RESISTANCE (JUNCTION TO AMBIENT) VS. AREA CHARACTERISTICS

INDUCTANCE VS. TOTAL LEAD LENGTH CHARACTERISTICS

TOTAL LEAD LENGTH & (mm)

APPLICATION

SINGLE POLE DOUBLE THROW SWITCHING CIRCUIT

TYPICAL DATA

-	Isolation TX→RX	Insertion Loss TX→A
29MHz	40dB	0.3dB
50MHz	39 dB	0,3dB
144MHz	39dB	0.3dB
220 MHz	38dB	0.4dB
440 MHz	36dB	0,5dB

HANDLING POWER 25W BIAS CURRENT 50mA DC SPRIOUS >80dB

SINGLE POLE DOUBLE THROW SWITCHING CIRCUIT (λ-4 TYPE)

	C ₁	C ₂	C ₃	L1, L2
50MHz	45pF	90 p F	35pF	230nH
144MHz	15pF	22pF	4pF	75nH
220MHz	8pF	15pF	3pF	50nH
440MHz	2pF	5pF	2pF	25nH

TYPICAL DATA

-	Isolation TX→RX	Insertion Loss TX→A
50 MHz	27dB	0.3dB
144MHz	33 dB	0.3dB
220MHz	31 dB	0.4dB
440MHz	24 dB	0,5dB

HANDLING POWER 25W
BIAS CURRENT 50mA DC
SPRIOUS >80dB

ANTENNA SWITCH MI407

PIN DIODE RF POWER SWITCHING

DESCRIPTION

The MI407 PIN diode is employing a high reliability glass construction, designed for solid state antenna switches in commercial two-way radios.

FEATURES

- High power handling
- High zero bias impedance
- Low forward bias resistance
- · Low insertion loss, High isolation
- Low distortion (TX: sprious < -80dBc, RX: intermodulation -73dBc @90dBμ)

APPLICATION

High power antenna switch (25W output two-way radio)

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Ratings	Unit
V _{RM}	Repetitive peak reverse voltage	50	V
Va	Reverse voltage	50	V
I _{FSM} *	Forward surge current	2	*A
Р	Power dissipation	1	
Ťj	Junction temperature	175	*C
Tstg	Storage temperature	-55~+175	

^{*:} t=5sec

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Symbol	Parameter	T dialo		Limits		Unit
		Test conditions	Min	Min Typ Max		
I _{R1}	Reverse current	V _R =50 V			10	μΑ
I _{R2}	Reverse current	V _R =45 V			0.5	μА
l _F	Forward current	V _F = 1.0V	100			mA
r _{f8}	Forward series resistance	IF=50mA, f=470MHz		0.5	0.7	Ω
Ct	Diode capacitance	V _R =0V, f=100MHz			1.8	pF
Rp	Parallel resistance	V _R =0V, f=100MHz	1.0	3.0		kΩ

TYPICAL PERFORMANCE DATA DIODE CAPACITANCE VS. REVERSE VOLTAGE CHARACTERISTICS

FORWARD SERIES RESISTANCE VS. FORWARD CURRENT CHARACTERISTICS

FORWARD CURRENT IF (A)

FORWARD CURRENT VS. FORWARD VOLTAGE CHARACTERISTICS

FORWARD VOLTAGE VF (V)

REVERSE CURRENT VS. REVERSE VOLTAGE CHARACTERISTICS

REVERSE VOLTAGE VR (V)

THERMAL RESISTANCE (JUNCTION TO AMBIENT) VS. AREA CHARACTERISTICS

AREA·S (mm²)

ALLOWABLE POWER DISSIPATION VS. HEAT SINK TEMPERATURE CHARACTERISTICS

HEAT SINK TEMPERATURE Th (°C)

TRANSMITTER POWER VS. AMBIENT TEMPERATURE CHARACTERISTICS

AMBIENT TEMPERATURE Ta (°C)

INTER MODULATION DISTORTION

INPUT SIGNAL LEVEL (dBµ)

INTER MODULATION DISTORTION

INPUT SIGNAL LEVEL (dBµ)

INTER MODULATION DISTORTION

INPUT SIGNAL LEVEL (dBµ)

Wilde

PIN DIODE RF POWER SWITCHING

DESCRIPTION

The MI809 PIN diode is designed for solid state antenna switching applications in mobile radios. The construction of MI809 is employing a SQUARE OUTLINE which is suitable for reflow assembly on surface mounting.

FEATURES

- High power handling
- High zero bias resistance
- Low forward bias resistance
- · Low insertion loss, High isolation
- Low distortion
- · Surface mounting type (for reflow assembly)

APPLICATION

High power antenna switch (10W output two-way radio)

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Ratings	Unit	
VR	Reverse voltage	50	V	
P *	Power dissipation (contact surface)	1@25°C	W	
Tį	Junction temperature	175	*C	
Tstg	Storage temperature	-55~+175	*c	

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol	Parameter	Test conditions		Limits		
		Test conditions	Min	Тур	Max	Unit
l _B	Reverse currént	V _R = 50 V			10	μА
VF	Forward voltage	I _F =50mA			1.0	V
r _{fs}	Forward series resistance	I _F =50mA, I=100MHz		0.5	0.75	Ω
Ct	Diode capacitance	V _R =40V, f=1MHz		<u> </u>	1,2	pF
Rp	Parallel resistance	V _B =0V, f=100MHz	1,0	3,0	 	kΩ

APPLICATION

© 800MHz BAND ANTENNA SWITCH (800MHz ~ 940MHz, HANDLING POWER 15W)

CIRCUIT DIAGRAM

- C₁, C₂, C₃, C₄
 D₁, D₂, D₃ MI809
- RFC SUBSTRATE
- 9 TURN \$4 1.6 DIA, ENAMEL WIRE EPOXY GLASS e = 4.7, t = 1.6mm BOTH SIDES COPPER (t = 35 µm)

1000oF CHIP CAPACITOR

SUBSTRATE DRAWING

TX-ANT INSERTION LOSS

EACH . POINTS SHOULD BE TREATED CONNECTIONS BETWEEN BOTH SIDES GROUNDS ON THROUGH HOLE.

CHARACTERISTICS

ANT-RX INSERTION LOSS (9P) 0.2 6 6 ANTI-RX INSERTION LOSS
TX-ANT INSERTION LOSS 0.4 I BIAS = 50 mA a 1 0.6 0.8 I BIAS = 0 1.0 αí 1.2 900 1000

FREQUENCY (MHz)

TYPICAL PERFORMANCE DATA

FORWARD SERIES RESISTANCE VS.

DIODE CAPACITANCE VS. REVERSE VOLTAGE CHARACTERISTICS

TRANSIENT THERMAL RESISTANCE

PRINTED BOARD

TIME (sec)

HYBRID ANTENNA SWITCHES

400~512MHz, 5W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD001 is designed to cover 400 \sim 512MHz, 5W, antenna switch module.

- · Small, Easily Mounted Package.
- · High Isolation: 40dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.5dB Typ.

ANT-RX 1.0dB Typ.

- Low Harmonic Output: 2nd Harmonic < -70dBc
 Low Operating Current (TX-ANT ON): 50mA
- · Off Through (ANT-RX ON): 0mA

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
lbias	Bias current	100	mA
Pin	Input power	12 @ Ta ≤ 60°C	w
Tstg	Storage temperature	-30~+85	*c

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol	Parameter	Test condition		Limits		
		Test condition	Min	Тур	Max	Unit
1	Frequency Range		400		512	MHz
150	Isolation (TX-RX)	Pin= 8 W, Ibias=50 mA, ANT port terminated 50 Ω	30	40		dB
α1	Insertion loss (TX-ANT)	Pin = 8 W, Ibias = 50 mA, RX port terminated 50 Ω		0.5	0.7	dB
α ₂	Insertion loss (ANT-RX)	Pin=1mW, lbias=0, TX port terminated 50 Ω		1.0	1,5	dB

TESTING CIRCUIT SCHEMATIC (ISO, a1)

TYPICAL PERFORMANCE DATA

TX-ANT INSERTION LOSS VS. BIAS CURRENT n Ibias = 50 mA NSERTION LOSS (4B) 10mA 400 450 FREQUENCY f (MHz)

2nd HARMONIC VS. BIAS CURRENT =450MHz - 50 Pin=8W 2nd HARMONIC (dBc) -60 - 70 -80

BIAS CURRENT Iblas (mA)

Recommended Practical Design

Fig. A shows a practical circuit pattern for mounting

This circuit pattern is 500 microstrip line with Epoxy-Glass printed circuit board.

- . It's desirable that distance of each RF port is as far as possible.
- Each GND terminal ①, ③, ⑥ should be soldered at both side S, C ground plane.
- · Each x point should be treated through hole or jumper.

400~512MHz, 10W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD001A is designed to cover 400 \sim 512MHz, 10W, antenna switch module.

- Small, Easilly Mounted Package.
- · High Isolation: 40dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.5dB Typ.

ANT-RX 1.0dB Typ.

- Low Harmonic Output: 2nd Harmonic < -70dBc
- Low Operating Current (TX-ANT ON): 50mA
- · Off Through (ANT-RX ON): 0mA

400~512MHz, 10W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Ibias	Bias current	100	mA
Pin	Input power	17 Ta≤60°C	W
Tstg	Storage temperature	-30-+85	°C

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol	Parameter	Test condition	Limits			Unit
		rest condition		Тур	Max	Ont
f	Frequency Range		400		512	MHz
ISO	Isolation (TX-RX)	Pin=15W, Ibias=50mA, ANT port terminated 50 Ω	30	40		dB
α1	Insertion loss (TX-ANT)	P _{IΠ} =15W, Ibias=50 mA, RX port terminated 50 Ω		0.5	0.7	dB
α ₂	Insertion loss (ANT-RX)	P _{In} =1mW, Ibias=0, TX port terminated 50 Ω		1.0	1.5	dB

TESTING CIRCUIT SCHEMATIC (ISO. a1)

TX-ANT INSERTION LOSS VS. BIAS CURRENT O IDIAS = 50 mA 10 mA 10 mA FREQUENCY 1 (MHz)

BIAS CURRENT Ibles (mA)

Recommended Practical Design

Fig. A shows a practical circuit pattern for mounting MD001A.

This circuit pattern is 50Ω microstrip line with Epoxy-Glass printed circuit board.

- It's desirable that distance of each RF port is as far as possible.
- Each GND terminal ②, ⑤, ⑦ should be soldered at both side S, C ground plane.
- Each x point should be treated through hole or jumper.

Fig A

330~400MHz, 10W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD001AL is designed to cover 330 \sim 400MHz, 10W, antenna switch module.

- Small, Easilly Mounted Package.
- High Isolation: 38dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.5dB Typ.
 - ANT-RX 0.8dB Typ.
- Low Harmonic Output: 2nd Harmonic < −70dBc
- Low Operating Current (TX-ANT ON): 50mA
- Off Through (ANT-RX ON): 0mA

330~400MHz, 10W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	ter Ratings	
Ibias	Bias current	100	mA
Pin	Input power	17 Ta≤60°C	w
Tstg	Storage temperature	-30~+85	*c

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Symbol Parame	- Commenter	Test condition —	Limits			10-1-
	rarameter		Min	Тур	Max	Unit
1	Frequency Range		330		400	MHz
ISO	Isolation (TX-RX)	Pin=15 W, Ibias=50 mA, ANT port terminated 50 Ω	30	38		dB
α1	Insertion loss (TX-ANT)	Pin =15W, Ibias=50mA, RX port terminated 50 Q		0.5	0.7	dB
α2	Insertion loss (ANT-RX)	P _{IN} = 1mW, Ib _{IBS} = 0, TX port terminated 50 Q		0.8	1.5	dB

TESTING CIRCUIT SCHEMATIC (ISO, a1)

330~400MHz, 10W, ANTENNA SWITCH

2nd HARMONIC VS. BIAS CURRENT

BIAS CURRENT Ibias (mA)

Recommended Practical Design

Fig. A shows a practical circuit pattern for mounting MD001AL.

This circuit pattern is 50Ω microstrip line with Epoxy-Glass printed circuit board.

- It's desirable that distance of each RF port is as far as possible.
- Each GND terminal ②, ⑤, ⑦ should be soldered at both side S, C ground plane.
- Each x point should be treated through hole or jumper.

Fig A

400~512MHz, 25W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD001H is designed to cover 400 \simeq 512MHz, 25W, antenna switch module.

- · Small, Easilly Mounted Package.
- · High Isolation: 40dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.5dB Typ.
 - ANT-RX 1.0dB Typ.
- Low Harmonic Output: 2nd Harmonic < −70dBc
- Low Operating Current (TX-ANT ON): 50mA
- Off Through (ANT-RX ON): 0mA

400~512MHz, 25W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted)

Symbol Parameter		Ratings	Unit
Ibias	Bias current	100	mA
Pin	Input power	50 T _O ≤90°C	w
Tstg	Storage temperature	-30~+110	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Тур	Max	OINT
1	Frequency Range		400		512	MHz
ISO	Isolation (TX-RX)	Pin=40W, Ibias=50 mA, ANT port terminated 50 Q	30	40		dB
α1	Insertion loss (TX-ANT)	Pin=40W, Ibias=50 mA, RX port terminated 50 Ω		0.5	0.7	dB
α 2	Insertion loss (ANT-RX)	Pin=1mW, Ibias=0, TX port terminated 50 Ω		1.0	1.5	dB

TESTING CIRCUIT SCHEMATIC (ISO. a1)

DESIGN CONSIDERATION OF HEAT RADIA-

Please refer to following consideration when designing heat sink

Junction temperature of incorporated diodes at standard operation

 Thermal resistance between junction and package of incorporated diodes.

 $R_{th(j-c)} \approx 70^{\circ} \text{C/W (Typ.)}$

(2) Junction temperature of incorporated diodes at standard operation. Conditions for standard operation.

 $P_{in} = 33W, \; I_{bias} = 50 mA \; (VF = 0.85V)^{(1)}, \; r_{fs} = 0.7 \Omega^{(2)}, \; Z_0 = 50 \Omega^{(3)}$

Note 1: Forward Voltage of diodes.

Note 2: Series Resistance of diodes.

Note 3: Characteristic Impedance.

Junction temperature of diodes

$$\begin{split} T_{j} &= [(P_{in}/Z_{o}) \times r_{fs} + I_{bias} \times VF] \times R_{th \{j-c\}} + T_{c}^{(4)} \\ &= [(33/50) \times 0.7 + 0.05 \times 0.85] \times 70 + T_{c} \\ &= 35.3 + T_{c} \, (^{\circ}C) \end{split}$$

Note 4: Package temperature of device

2. Heat sink design

In thermal design of heat sink, try to keep the package tempeatrure at the upper limit of the operating ambient temperature (normally $T_a=60^\circ C$) and at the input power of 33W below $90^\circ C$.

The thermal resistance $R_{th(c-a)}^{(5)}$ of the heat sink to realize this:

$$R_{th(c-a)} = \{T_c - T_a\}/(P_{in} - P_{out}) = \{90-60\}/(33-29.4)^{(6)}$$

= 8.3 (°C/W)

Note 5: Inclusive of the contact thermal resistance between device and heat sink.

Note 6: Insertion loss is 0.5dB

Mounting the heat sink of the above thermal resistance on the device,

 $T_i = 125.3^{\circ}C$, $T_C = 90^{\circ}C$

In the annual average of ambient temperature is 30° C, $T_i = 95.3^{\circ}$ C

As the maximum junction temperature of these incorporated diodes $T_{j_{max}}$ are 175°C, application under fully derated condition is ensured.

330~400MHz, 25W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD001HL is designed to cover 330 \simeq 400MHz, 25W, antenna switch module.

- Small, Easilly Mounted Package.
- High Isolation: 38dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.5dB Typ.
 ANT-RX 0.8dB Typ.
- Low Harmonic Output: 2nd Harmonic < −70dBc
- Low Operating Current (TX-ANT ON): 50mA
- Off Through (ANT-RX ON): 0mA

330~400MHz, 25W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter Ratings		Unit
Ibias	Bias current	100	mA
Pin	Input power .	50 T _O ≤90°C	w
Tstg	Storage temperature	-30~+110	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Symbol Parameter		Test condition	Limits			
	rarameter		Min	Тур	Max	Unit
f	Frequency Range		330		400	MHz
ISO	Isolation (TX-RX)	Pin=40W, Ibias=50 mA, ANT port terminated 50 Ω	30	38		dB
α 1	Insertion loss (TX-ANT)	Pin = 40W, Ibias = 50 mA, RX port terminated 50 Ω		0.5	0.7	dB
α2	Insertion loss (ANT-RX)	P _{IN} = 1mW, Ibias = 0, TX port terminated 50 Ω		0.8	1.5	dB

TESTING CIRCUIT SCHEMATIC (ISO. a1)

330~400MHz, 25W, ANTENNA SWITCH

2nd HARMONIC VS. BIAS CURRENT f=350MHz Pin = 40W -50 -70- 80

BIAS CURRENT Iblas (mA)

DESIGN CONSIDERATION OF HEAT RADIA-

Please refer to following consideration when designing heat

1. Junction temperature of incorporated diodes at standard operation

- (1) Thermal resistance between junction and package of incorporated diodes. $R_{th(j-c)} = 70^{\circ} C/W (Typ.)$
- (2) Junction temperature of incorporated diodes at standard operation. Conditions for standard operation.

 $P_{in} = 33W$, $I_{bias} = 50mA (VF = 0.85V)^{(1)}$, $r_{fs} = 0.7\Omega^{(2)}$ $Z_0 = 50\Omega^{(3)}$

Note 1: Forward Voltage of diodes.

Note 2: Series Resistance of diodes.

Note 3: Characteristic Impedance.

- Junction temperature of diodes
 - $T_j = [(P_{in}/Z_o) \times r_{fs} + I_{bias} \times VF] \times R_{th(j-c)} + T_C^{(4)}$ $= [(33/50) \times 0.7 + 0.05 \times 0.85] \times 70 + T_{C}$

 $= 35.3 + T_c (^{\circ}C)$

Note 4: Package temperature of device

2. Heat sink design

In thermal design of heat sink, try to keep the package tempeatrure at the upper limit of the operating ambient temperature (normally Ta = 60°C) and at the input power of 33W below 90°C.

The thermal resistance Rth(c-a) (5) of the heat sink to realize this:

$$R_{th(c-a)} = \{T_c - T_a\}/(P_{in} - P_{out}) = (90-60)/(33-29.4)^{(6)}$$

= 8.3 (°C/W)

Note 5: Inclusive of the contact thermal resistance between device and heat sink.

Note 6: Insertion loss is 0.5dB

Mounting the heat sink of the above thermal resistance on the device,

 $T_i = 125.3^{\circ}C, T_c = 90^{\circ}C$

In the annual average of ambient temperature is 30°C, $T_i = 95.3^{\circ}C$

As the maximum junction temperature of these incorporated diodes T_{Jmax} are 175°C, application under fully derated condition is ensured.

5. - 19 330~400MHz, 5W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD001L is designed to cover $330 \sim 400 \text{MHz}$, 5W, antenna switch module.

- · Small, Easily Mounted Package.
- · High Isolation: 38dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.5dB Typ.

ANT-RX 0.8dB Typ.

- Low Harmonic Output: 2nd Harmonic < ~70dBc
- Low Operating Current (TX-ANT ON): 50mA
- · Off Through (ANT-RX ON): 0mA

330 \sim 400MHz, 5W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Ibias	Bias current	100	mA
Pın	Input power	12 @ Ta ≤ 60°C	W
Tstg	Storage temperature	-30~+85	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Symbol	Parameter	Test condition	Limits			
		Teat condition		Тур	Max	Unit
f	Frequency Range		330		400	MHz
ISO	Isolation (TX-RX)	Pin = 8 W, Ibras = 50 mA, ANT port terminated 50 Q	30	38		dB
α ₁	Insertion loss (TX-ANT)	Pin = 8 W, Ibias = 50 mA, RX port terminated 50 Ω		0.5	0.7	dB
α2	Insertion loss (ANT-RX)	P _{In} = 1mW, Ib _{Ias} = 0, TX port terminated 50 Ω		0.8	1.5	dB

TESTING CIRCUIT SCHEMATIC (ISO, a1)

330~400MHz, 5W, ANTENNA SWITCH

Recommended Practical Design

Fig. A shows a practical circuit pattern for mounting MD001L.

This circuit pattern is 50Ω microstrip line with Epoxy-Glass printed circuit board.

- It's desirable that distance of each RF port is as far as possible.
- Each GND terminal ①, ③, ⑥ should be soldered at both side S, C ground plane.
- Each x point should be treated through hole or jumper.

Fig A

800~940MHz, 5W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD003 is designed to cover $800 \sim 940 \text{MHz}, \, 5\text{W}, \, \text{antenna}$ switch module.

- Small, Easily Mounted Package.
- · High Isolation: 35dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.5dB Typ.

ANT-RX 1.0dB Typ.

- Low Harmonic Output: 2nd Harmonic < -70dBc
 Low Operating Current (TX-ANT ON): 50mA
- Off Through (ANT-RX ON): 0mA

800~940MHz, 5W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol Parameter		Ratings	
Ibias	Bias current	100	mA
Pin	Input power	12 @ Ta ≤ 60°C	W
Tstg	Storage temperature	-30-+85	*c

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Тур	Max	Unit
t	Frequency Range		800		940	MHz
ISO	Isolation (TX-RX)	Pin = 8 W, Ibias = 50 mA, ANT port terminated 50 Ω	30	35		dB
α1	Insertion loss (TX-ANT)	Pin = 8 W, Ibias = 50 mA, RX port terminated 50 Ω		0.5	0.7	dB
ά ₂	Insertion loss (ANT-RX)	Pin=1mW, Ibias=0, TX port terminated 50 Ω		1.0	1.5	dB

TESTING CIRCUIT SCHEMATIC (ISO. a1)

TX-ANT INSERTION LOSS VS. BIAS CURRENT O Ibias = S0mA 10mA

FREQUENCY f (MHz)

BIAS CURRENT Ibias (mA)

Recommended Practical Design

Fig. A shows a practical circuit pattern for mounting MD003.

This circuit pattern is 50Ω microstrip line with Epoxy-Glass printed circuit board.

- It's desirable that distance of each RF port is as far as possible.
- Each GND terminal ①, ③, ⑥ should be soldered at both side S, C ground plane.
- Each x point should be treated through hole or jumper.

Fig A

MD003A

800~940MHz, 10W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD003A is designed to cover 800 \sim 940MHz, 10W, antenna switch module.

- Small, Easilly Mounted Package.
- High Isolation: 35dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.5dB Typ.
 - ANT-RX 1.0dB Typ.
- Low Harmonic Output: 2nd Harmonic < −70dBc
- Low Operating Current (TX-ANT ON): 50mA
- · Off Through (ANT-RX ON): 0mA

800 \sim 940MHz, 10W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Ibias	Bias current	100	mA
Pin	Input power	17 Ta≤60°C	W
Tstg	Storage temperature	-30~+85	°C

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol Parameter	_	Test condition	Limits			Unit
	Test Condition	Mın	Тур	Max	Unit	
f	Frequency Range		800		940	MHz
ISO	Isolation (TX-RX)	Pin = 15W, Ibias = 50 mA, ANT port terminated 50 Ω	30	35		dB
α1	Insertion loss (TX-ANT)	P _{IN} = 15W, Ibias = 50 mA, RX port terminated 50 Ω		0,5	0.7	dB
α2	Insertion loss (ANT-RX)	P _{IN} = 1mW, I _{blas} = 0, TX port terminated 50 Ω		1.0	1.5	dB

TESTING CIRCUIT SCHEMATIC (ISO. a1)

800~940MHz, 10W, ANTENNA SWITCH

2nd HARMONIC VS. BIAS CURRENT

Recommended Practical Design

Fig. A shows a practical circuit pattern for mounting MD003A.

This circuit pattern is 50Ω microstrip line with Epoxy-Glass printed circuit board.

- It's desirable that distance of each RF port is as far as possible.
- Each GND terminal ②, ⑤, ⑦ should be soldered at both side S, C ground plane.
- Each x point should be treated through hole or jumper.

800~940MHz, 25W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD003H is designed to cover 800 ~ 940MHz, 25W, antenna switch module.

- Small, Easilly Mounted Package.
- High Isolation: 35dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.5dB Typ.

ANT-RX 1.0dB Typ.

- Low Harmonic Output:
- Low Operating Current (TX-ANT ON): 50mA
- Off Through (ANT-RX ON): 0mA

800~940MHz, 25W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Ibias	Bias current	100	mA
Pin	Input power .	50 T _C ≤90°C	w
Tstg	Storage temperature	-30~+110	°c

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Symbol Parameter	. Test condition	Limits				
5,111001		Min	Тур	Max	Unit	
f	Frequency Range	·	800		940	MHz
ISO	Isolation (TX-RX)	Pin=30W, Ibias=50mA, ANT port terminated 50 Q	30	35		dB
a 1	Insertion loss (TX-ANT)	P _{ID} =30W, Ibias=50mA, RX port terminated 50 Ω		0.5	0.7	dB
α2 ·	Insertion loss (ANT-RX)	Pin = 1mW, Ibias = 0, TX port terminated 50 Ω		1.0	1.5	dB

TESTING CIRCUIT SCHEMATIC (ISO. a1)

FREQUENCY f (MHz)

800~940MHz, 25W, ANTENNA SWITCH

ALLOWABLE INPUT POWER

CASE TEMPERATURE To (°C)

DESIGN CONSIDERATION OF HEAT RADIA-

Please refer to following consideration when designing heat

1. Junction temperature of incorporated diodes at standard operation

(1) Thermal resistance between junction and package of incorporated diodes.

 $R_{th(J-c)} = 70^{\circ} \text{C/W (Typ.)}$

(2) Junction temperature of incorporated diodes at standard operation. Conditions for standard operation.

 $P_{in} = 33W$, $I_{blas} = 50mA (VF = 0.85V)^{(1)}$, $r_{fs} = 0.7\Omega^{(2)}$, $Z_0 = 50\Omega^{(3)}$

Note 1: Forward Voltage of diodes.

Note 2: Series Resistance of diodes.

Note 3: Characteristic Impedance.

Junction temperature of diodes

 $T_j = [(P_{in}/Z_o) \times r_{fs} + I_{bias} \times VF] \times R_{th(j-c)} + T_c^{(4)}$

= $[(33/50) \times 0.7 + 0.05 \times 0.85] \times 70 + T_{c}$ $= 35.3 + T_{C} (^{\circ}C)$

Note 4: Package temperature of device

2. Heat sink design

In thermal design of heat sink, try to keep the package tempeatrure at the upper limit of the operating ambient temperature (normally Ta = 60°C) and at the input power of 33W below 90°C.

The thermal resistance Rth(c-a) (5) of the heat sink to

 $R_{th(c-a)} = (T_c - T_a)/(P_{in} - P_{out}) = (90-60)/(33-29.4)^{(6)}$ = 8.3 (°C/W)

Note 5: Inclusive of the contact thermal resistance between device and heat sink.

Note 6: Insertion loss is 0.5dB

Mounting the heat sink of the above thermal resistance on the device,

 $T_i = 125.3^{\circ}C$, $T_c = 90^{\circ}C$

In the annual average of ambient temperature is 30°C,

As the maximum junction temperature of these incorporated diodes T_{Imax} are 175°C, application under fully derated condition is ensured.

1200 \sim 1300MHz, 5W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD004 is designed to cover 1200 \simeq 1300MHz, 5W, antenna switch module.

- · Small, Easilly Mounted Package.
- · High Isolation: 30dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.8dB Typ.
 - ANT-RX 1.0dB Typ.
- . Low Harmonic Output:
- Low Operating Current (TX-ANT ON): 50mA
- · Off Through (ANT-RX ON): 0mA

1200~1300MHz, 5W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Ibias	Bias current	100	mA
Pin	Input power	10 @ Ta ≤ 60°C	W
Tstg	Storage temperature	-30~+85	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Combal	2	Test condition	Limits			Unit
Symbol	Parameter		Min	Тур	Max	Unit
f	Frequency Range		1200		1300	MHz
ISO	Isolation (TX-RX)	Pin = 8 W, Ibias = 50 mA, ANT port terminated 50 Ω	25	30		dB
α,	Insertion loss (TX-ANT)	Pin = 8 W, Ibias = 50 mA, RX port terminated 50 Ω		0.8	1.2	dB
α2	Insertion loss (ANT-RX)	P _{ID} = 1mW, Ibias = 0, TX port terminated 50 Ω		1.0	1.5	dB

TESTING CIRCUIT SCHEMATIC (ISO. a1)

1200~1300MHz, 5W, ANTENNA SWITCH

Recommended Practical Design

Fig. A shows a practical circuit pattern for mounting MD004.

This circuit pattern is 50Ω microstrip line with Epoxy-Glass printed circuit board.

- It's desirable that distance of each RF port is as far as possible.
- Each GND terminal ①, ③, ⑥ should be soldered at both side S, C ground plane.
- Each x point should be treated through hole or jumper.

Fig A

MD004H

1200~1300MHz, 25W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD004H is designed to cover 1200 \sim 1300MHz, 25W, antenna switch module.

- Small, Easilly Mounted Package.
- High Isolation: 30dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.8dB Typ.

ANT-RX 1.0dB Typ.

- Low Harmonic Output:
- Low Operating Current (TX-ANT ON): 50mA
- · Off Through (ANT-RX ON): 0mA

1200~1300MHz, 25W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Ibias	Bias current	100	mA
Pin	Input power	50 @Ta≤90°C	W
Tstg	Storage temperature	-30~+110	*c

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol Parameter		Test condition	Limits			Unit
	Parameter		Min	Тур	Max	Onit
f	Frequency Range		1200		1300	MHz
ISO	Isolation (TX-RX)	Pin=20W, Ibias=50mA, ANT port terminated 50 Ω	25	30		dB
α 1	Insertion loss (TX-ANT)	$P_{10} = 20W$, $I_{b1aS} = 50 \text{ mA}$, RX port terminated 50Ω		0.8	1.2	dB
a 2	Insertion loss (ANT-RX)	Pin=1mW, Ibias=0, TX port terminated 50 Ω		1.0	1.5	dB

TESTING CIRCUIT SCHEMATIC (ISO. a1)

1200~1300MHz, 25W, ANTENNA SWITCH

FREQUENCY f (MHz)

ALLOWABLE INPUT POWER

CASE TEMPERATURE Tc (°C)

DESIGN CONSIDERATION OF HEAT RADIA-

Please refer to following consideration when designing heat

1. Junction temperature of incorporated diodes at standard operation

(1) Thermal resistance between junction and package of incorporated diodes.

 $R_{th(j-c)} = 70^{\circ} \text{C/W (Typ.)}$

(2) Junction temperature of incorporated diodes at standard operation. Conditions for standard operation.

 $P_{in} = 33W$, $I_{blas} = 50mA (VF = 0.85V)^{(1)}$, $r_{fs} = 0.8\Omega^{(2)}$, $Z_0 = 50\Omega^{(3)}$

Note 1: Forward Voltage of diodes.

Note 2: Series Resistance of diodes.

Note 3: Characteristic Impedance.

Junction temperature of diodes

 $T_j = [(P_{in}/Z_o) \times r_{fs} + I_{bias} \times VF] \times R_{th(j-c)} + T_c^{(4)}$

= $[(33/50) \times 0.7 + 0.05 \times 0.85] \times 70 + T_{C}$

 $= 40.0 + T_C (^{\circ}C)$

Note 4: Package temperature of device

2. Heat sink design

In thermal design of heat sink, try to keep the package tempeatrure at the upper limit of the operating ambient temperature (normally Ta = 60°C) and at the input power of 33W below 90°C.

The thermal resistance Rth(c-a) (5) of the heat sink to

$$R_{th(c-a)} = (T_c - T_a)/(P_{in} - P_{out}) = (90-60)/(33-27.5)^{(6)}$$

= 5.5 (°C/W)

Note 5: Inclusive of the contact thermal resistance between device and heat sink.

Note 6: Insertion loss is 0.8dB

Mounting the heat sink of the above thermal resistance on the device.

$$T_i = 130^{\circ}C, T_c = 90^{\circ}C$$

In the annual average of ambient temperature is 30°C, $T_i = 100^{\circ}C$

As the maximum junction temperature of these incorporated diodes Timax are 175°C, application under fully derated condition is ensured.

135~175MHz, 5W, ANTENNA SWITCH

MINIATURE RF ANTENNA SWITCH

MD007L is designed to cover 135 \simeq 175MHz, 5W, antenna switch module.

- Small, Easilly Mounted Package.
- · High Isolation: 28dB Typ.
- Low Transmit Insertion Loss: TX-ANT 0.4dB Typ. ANT-RX 0.5dB Typ.
- Low Harmonic Output:
- · Low Operating Current (TX-ANT ON): 20mA
- · Off Through (ANT-RX ON): 0mA

135~175MHz, 5W, ANTENNA SWITCH

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Ibias	Bias current	100	mA
Pin	Input power	10 @Ta≤60°C	w
Tstg	Storage temperature	-30~+85	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Symbol	2	. Parameter Test condition	Limits			Unit
Symbol	Parameter		Min	Тур	Max	Oint
1	Frequency Range		135		175	MHz
ISO	Isolation (TX-RX)	Pin = 8 W, Ibias = 20 mA, ANT port terminated 50 Ω	25	28		dB
α1	Insertion loss (TX-ANT)	P _{IR} = 8 W, Ibias = 20 mA, RX port terminated 50 Ω		0.4	0.7	dB
α2	Insertion loss (ANT-RX)	Pin=1mW, Ibias=0, TX port terminated 50 Q		0.5	0.8	dB

TESTING CIRCUIT SCHEMATIC (ISO. a1)

Recommended Practical Design

Fig. A shows a practical circuit pattern for mounting MD007L.

This circuit pattern is 50 $\!\Omega$ microstrip line with Epoxy-Glass printed circuit board.

- It's desirable that distance of each RF port is as far as possible.
- Each GND terminal ①, ③, ⑥ should be soldered at both side S, C ground plane.
- Each x point should be treated through hole or jumper.

Fig A

CONTACT ADDRESSES FOR FURTHER INFORMATION

Overseas Marketing Division Semiconductors

Mitsubishi Electric Corporation 2-3 Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Telephone: (03) 3218-2863 Facsimile: (03) 3218-2852

Overseas Marketing Manager Kita-Itami Works 4-1. Mizuhara, Itami-shi, Hyogo-ken 664, Japan 526408 KMELCO J Telephone: (0727) 82-5131 Facsimile: (0727) 72-2329

HONG KONG =

Mitsubishi Electric (H.K.) Ltd. 41st fl., Manulife Tower, 169, Electric Road, North Point, Hong Kong Telex: 60800 MELCO HX Telephone: 510-0555

510-9830, 510-9822, Facsimile:

510-9803

SINGAPORE = MELCO SALES SINGAPORE PTE. LTD

307 Alexandra Road #05-01/02 Mitsubishi Electric Building Singapore 0315 RS 20845 MELCO Telev Telephone: 4732308 Facsimile: 4738944

TAIWAN =

MELCO-TAIWAN CO., Ltd. 1st fl., Chung-Ling Bldg., 363, Sec. 2, Fu-Hsing S Road, Taipei R.O.C. Telephone: (02) 735-3030 Facsimile: (02) 735-6771 Telex: 25433 CHURYO "MELCO-

TAIWAN"

NORTHWEST Mitsubishi Electronics America, Inc. 1070 East Arques Avenue Sunnyvale, CA 94086 Telephone: (408) 730-5900 Facsimile: (408) 730-4972

SOUTHWEST Mitsubishi Electronics America, Inc.

5665 Plaza Drive Cypress, CA 90630-0007 Telephone: (714) 236-6270 Facsimile: (714) 236-6184

ROCKY MOUNTAIN

Mitsubishi Electronics America, Inc. 8101 E, Prentice Avenue, Suite 508 Englewood, CO 80111 Telephone: (303) 220-0744 Facsimile: (303) 220-5952

NORTHERN

Mitsubishi Electronics America, Inc. 9800 Bren Road East, Suite 243 Minnetonka, MN 55343-9671 Telephone: (612) 938-7779 Facsimile: (612) 938-5125

NORTH CENTRAL

Mitsubishi Electronics America, Inc. 800 N. Bierman Court Mt. Prospect, IL 60056 Telephone: (708) 298-9223 Facsimile: (708) 803-4224

SOUTH CENTRAL Mitsubishi Electronics America, Inc.

9000 Royal Lane Irving, TX 75063

Telephone: (214) 929-0046 Facsimile: (214) 929-5363

NORTHEAST

Mitsubishi Electronics America, Inc. 200 Unicorn Park Drive Woburn, MA 01801

Telephone: (617) 937-4300 Facsimile: (617) 938-1075

MID-ATLANTIC

Mitsubishi Electronics America, Inc. 800 Cottontail Lane Somerset, NJ 08873 Telephone: (908) 469-8833 Facsimile: (908) 469-1909

SOUTH ATLANTIC

Mitsubishi Electronics America, Inc. 2500 Gateway Center Blvd., Suite 500 Cary, NC 27560

Telephone: (919) 460-0404 Facsimile: (919) 460-6205

SOUTHEAST

Mitsubishi Electronics America, Inc. Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Teleph !! (407) 487-7747 (407) 487-2046

Mitsubishi Electronics America, Inc. 6100 Atlantic Blvd. Norcross, GA 30071 Telephone: (404) 368-4852 Facsimile: (404) 662-5208

SAN DIEGO

Mitsubishi Electronics America, Inc. 16980 Via Tazon, Suite 220 San Diego, CA 92127 Telephone: (619) 451-9618 Facsimile: (619) 592-0242

NEW YORK

Mitsubishi Electronics America, Inc. 300 Westgate Business Cntr., Ste. 160 Fishkill, NY 12524 Telephone: (914) 896-0896 Facsimile: (914) 896-8639

PUERTO RICO

Mitsubishi Electronics America, Inc. American Airlines Building, Suite 500 1509 Lopez Landron Santurce, PR 00911 Telephone: (809) 728-5040 Facsimile: (809) 728-5180

Mitsubishi Electric Sales Canada, Inc. 6185 Ordan Drive, Unit #110 Mississauga, Ontario, Canada L5T 2E1 Telephone: (416) 670-8711 Facsimile:

(416) 670-8715 Mitsubishi Electronic Sales Canada,

340 March Road, Suite 502 Kanata, Ontario, Canada K2K 2E4 Telephone: (613) 591-3348 Facsimile: (613) 591-3948

Facsimile:

Mitsubishi Electric Europe GmbH Headquarters Gothaer Str. 8 40880 Ratingen, Germany Telephone: 2102-486-0 Facsimile: 2102-486-367

Mitsubishi Electric Europe GmbH Munich Office Fraunhoferstr 85737 Ismaning, Germany Telephone: 89-96 07 94 30

89-96 07 94 11

Mitsubishi Electric Europe GmbH Stuttgart Office Zettachring 12 70567 Stuttgart, Germany

Telephone: 711-728 74 70 Facsimile. 711-72 47 21 Mitsubishi Electric Europe GmbH Frankfurt Office

(Power Semiconductors) Promenadenstr. 16 64625 Bensheim, Germany Telephone: 6251-62097 Facsimile: 6251-62099

FRANCE =

Mitsubishi Electric France S. A. 55. Avenue de Colmar 92563 Rueil Malmaison Cedex, France Telephone: 1-47, 08, 78, 00 Facsimile: 1-47, 51, 36, 22

Mitsubishi Electric Europe GmbH Milano Branch Office Centro Direzionale Colleoni Palazzo Perseo 2 20041 Agrate Brianza, Milano, Italy Telephone: 39-605 31 39-605 32 12 Facsimile:

SWEDEN =

Mitsubishi Electric Europe GmbH Hammarbacken 14 19127 Sollentuna, Sweden Telephone: 8-625 10 00 Facsimile: 8-625 10 33

SPAIN =

MELCO Iberica, S. A Parque Empresarial San Fernando Av. de Castilla, 2-Edif, Italia, I. Pl. 28831 San Fernando de Henares Madrid, Spain

Telephone: 1-677 56 53 Facsimile: 1-677 55 62

Mitsubishi Electric (U.K.) Ltd. Travellers Lane Hatfield

Herts AL10 8XB, U.K. Telephone: 707-27 61 00 707-27 86 92 Facsimile:

AUSTRALIA =

Mitsubishi Electric Australia Ptv. Ltd. 348 Victoria Road Rydalmere Nsw 2116, Australia Private Bag No.2 Rydalmere Nsw 2116 Telex: MESYDAA 126614 Telephone: (02) 684-7200 (02) 638-7072 Facsimile:

MITSUBISHI SEMICONDUCTORS RF POWER SEMICONDUCTORS DATA BOOK

September, First Edition 1993

Editioned by
Committee of editing of Mitsubishi Semiconductor Data Book

Published by Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

© 1993 MITSUBISHI ELECTRIC CORPORATION Printed in Japan

MITSUBISHI SEMICONDUCTORS RF POWER SEMICONDUCTORS 1993

If these products or technologies fall under Japanese and/or COCOM strategic restrictions, diversion contrary thereto is prohibited.