

Enhanced Data Analytics: Integrating NVIDIA Rapids cuGraph with TigerGraph

Dan McCreary

Head of Al

Jeff Hawkins on Al

Jeff Hawkins on Al

Sample Challenge: Banking Transaction Fraud

- Have you ever wondered what happens when you use your credit card at a retailer?
- The authorization usually is returned in just a few seconds (Service Level)
- Did you know that many banks execute tens
 of thousands of checks for each transactions
 to make sure the transaction is not fraudulent?
- But are these checks enough?

Credit Card Fraud Continues to Grow

According to WalletHub, the total worldwide credit card fraud rates continue to rise every year.

Annual global fraud losses (credit & debit card): \$34.36 billion (2022)

The total value of fraud in the US soared to \$246 million in 2023, signifying a substantial 12% rise from the previous year.

https://wallethub.com/edu/cc/credit-card-fraud-statistics/25725

Introduction

Dan McCreary

- Head of AI for TigerGraph you use your credit card at a retailer?
- TigerGraph is a market leader in scale-out enterprise graph databases
- We combine LLMs with scale-out graph representations of the world
- Large market share of financial institutions doing fraud detection and anti-money laundering
- Proponent of "Hardware Optimized Graph" (HOG)

The "Big Four" Representations in Al Today

? Which is most similar to the brain?

Our Journey: Hardware Optimized Graph (HOG Heaven)

https://towardsdatascience.com/from-flatland-to-hog-heaven-the-four-lands-of-ekg-adoption-945571c09b67

Background on Graph Acceleration

1. Many companies have requirements for mission critical real-time graph algorithms.

Example: is this credit-card transaction fraudulent?

Example: Is this transaction part of a money laundering scheme?

- 2. Service Level Agreements (SLAs) need to allow algorithms to run in under 100 milliseconds
- Most CPUs don't offer enough parallelism to execute complex graph algorithms within this SLA window

Some Terms

GPU - Graphics Processing Unit - optimized for matrix manipulation - they typically come with thousands of cores that run in parallel

CUDA - NVIDIA C-language application interface to communicate with GPU

RAPIDS - an open source Python library for using GPUs http://rapids.ai/

cuGraph - A open source collection of GPU accelerated graph algorithms and graph utility functions that are designed to work with Python libraries such as NetworkX

NVIDIA RAPIDS - libraries for accelerating the flow of data between CPU and NVIDIA GPUs

Sparse matrix - a matrix where most of the values in the matrix are zero - most graph problems have an sparse adjacency matrix

Dense and Sparse Matrix Representation

DENSE NETWORK

Everything is connected to everything

SPARSE NETWORK

Few connections per node (low degree)

GPUs are ideal for dense matrix problems

Dense vs Sparse Matrix

Dense Matrix

1	2	31	2	9	7	34	22	11	5
11	92	4	3	2	2	3	3	2	1
3	9	13	8	21	17	4	2	1	4
8	32	1	2	34	18	7	78	10	7
9	22	3	9	8	71	12	22	17	3
13	21	21	9	2	47	1	81	21	9
21	12	53	12	91	24	81	8	91	2
61	8	33	82	19	87	16	3	1	55
54	4	78	24	18	11	4	2	99	5
13	22	32	42	9	15	9	22	1	21

Sparse Matrix

1	*	3	:5	9	55	3	33	20	*
11	5	4			2	10		2	1
::		1	:0	-	*	4	50	1	.00
8	14			3	1	10	*		85
00	ŝ	0:	9	y:	ю	1	83	17	•3
13	21		9	2	47	1	81	21	9
+	76	ă.	¥.	¥1.	W.	ÿ.	¥)	÷	ş:
3	K	2	Į.	19	8	16			55
54	4	¥		10	11	į.	23	Į.	Ç.)
	33	2	22.	10	V.		22		21

NVIDIA Library for Sparse Matrix Representations (March 2021)

Solution!

Leverage the massive parallelism of both TigerGraph + NVIDIA GPUs to analyze complex networks in real-time with cuGraph

Accelerating TigerGraph for Enhanced Analytics

Performance Enhancement: Accelerating TigerGraph improves processing speed and efficiency for timely insights.

Scalability: Acceleration enables TigerGraph to handle larger and more complex datasets seamlessly.

Competitive Advantage: Faster insights from accelerated TigerGraph drive business success in a data-driven landscape.

Enabling Advanced Applications: Accelerating TigerGraph unlocks the potential of cutting-edge technologies like graph-based machine learning and Al-driven analytics.

Initial Approach - TigerGraph integration with cuGraph via Python APIs

Evolution from Python to Native C++ cuGraph Integration

CHALLENGES WITH THE PREVIOUS ARCHITECTURE:

- Dependency on Disk: We are using disk based data transfer between TigerGraph and cuGraph.
- Python Dependency: Utilizing
 Python for cuGraph introduced
 overhead and complexity,
 impacting performance.
- Thrift Layer: Thrift communication added complexity and overhead, potentially affecting system reliability.

IMPLICATIONS FOR SETUP AND PERFORMANCE:

- Complex setup process hindered optimal performance.
- Shared disk, Python, and Thrift dependencies created scalability challenges.

NEXT-GENERATION ARCHITECTURE:

- Designed to overcome limitations of the previous architecture.
- Revolutionizes graph processing for enhanced scalability and performance.
- Explores new frontiers in graph analytics through nativeC++ cuGraph integration.

Compilation - Native integration of Rapids with TigerGraph

[Execution] Native integration of Rapids with TigerGraph

Advantages of Next-Gen Architecture

UNPRECEDENTED PERFORMANCE:

- Leveraging GPU
 acceleration and
 streamlined processing
 pipeline.
- Enables rapid execution of complex graph algorithms.

SIMPLIFIED SETUP:

- Integration of cuGraph and ZettaAccel into TigerGraph.
- Eliminates complex dependencies, reduces configuration overhead.

SCALABILITY AND FLEXIBILITY:

- Dynamic GPU resource management.
- Streamlined data transfer mechanisms.
- Effortlessly scales to handle large-scale datasets and diverse workloads.

Use an Published Graph Benchmark: LDBC

GRAPH ANALYTICS OVERVIEW:

Developed by the Linked Data Benchmark Council (LDBC).

Comprehensive suite for evaluating graph database management systems and processing frameworks.

KEY FEATURES:

Real-world datasets and diverse workloads provided.

Includes a range of graph algorithms for testing system efficiency and scalability.

PURPOSE:

Helps researchers and organizations assess graph-related technologies.

Facilitates informed decisions in selecting and optimizing graph databases and processing frameworks.

LDBC Graphalytics PageRank Benchmark

OME BENCHMA

BENCHMARKS GQL (

NITY MEMBERS

POSTS

VENTS PL

PUBLICATIONS

LDBC GRAPHALYTICS BENCHMARK (LDBC GRAPHALYTICS)

Home / LDBC Graphalytics Benchmark (LDBC Graphalytics)

The Graphalytics benchmark is an industrial-grade benchmark for **graph analysis platforms** such as Giraph, Spark GraphX, and GraphBLAS. It consists of six core algorithms, standard data sets, and reference outputs, enabling the objective comparison of graph analysis platforms.

The benchmark harness consists of a core component, which is extendable by a driver for each different platform implementation. The benchmark includes the following algorithms:

- breadth-first search (BFS)
- PageRank (PR)
- weakly connected components (WCC)
- O community detection using label propagation (CDLP)
- local clustering coefficient (LCC)
- o single-source shortest paths (SSSP)

PageRank Algorithm Performance

Scale Exponents of 2	Vertices	Edges	TigerGraph Cluster (Sec)	cuGraph + TigerGraph (python)(Sec)	cuGraph + TigerGraph (Native)(Sec)
Graph 22	2.39M	64M	311.162	12.14 (25X)	6.91 (45X)
Graph 23	4.6M	129M	617.82	14.44 (42X)	9.04 (68X)
Graph 24	8.87M	260M	1205.34	24.63 (48X)	14.69 (82X)
Graph 25	17.06M	523M	2888.74	42.5 (67X)	21.09 (137X)
Graph 26	32.8M	1.05B	4842.4	73.84 (65X)	41.01 (118X)

Total Nodes	2 Nodes				
Each node has:					
RAM	512G				
CPU Cores	128 Core				
A100 GPUs	4 with 40G RAM each				
Connection	UCX				
Rapids Version	rapids-23.12				

Native cuGraph Integration Shows Nearly 2x Performance Boost Over Python, with Over 100X Improvement in Overall Runtime

Note: This is an end-to-end measure

Over 1 Billion Edges!

Accelerated Graph Processing: 100X+ Speed and 50X Cost Reduction

Total Instance name Nodes		On-Demand hourly rate(\$)	vCPU	Memory
m7a.32xlarge	2	7.41888	128	512 GiB
p4d.24xlarge	1	32.77	96	1152 GiB

GPU Specifications						
GPU – A100 GPU memory						
8	320 GB HBM2					

Graph	TigerGraph Cluster (Sec)	cuGraph + TigerGraph (Native)(Sec)	CPU Cost	GPU Cost	Benefit(X)
Graph 22	311.162	6.91 (45X)	\$1.28	\$0.06	20
Graph 23	617.82	9.04 (68X)	\$2.55	\$0.08	31
Graph 24	1205.34	14.69 (82X)	\$4.97	\$0.13	37
Graph 25	2888.74	21.09 (137X)	\$11.91	\$0.19	62
Graph 26	4842.4	41.01 (118X)	\$19.96	\$0.37	53

HBM2 is "High Bandwidth Memory"

Scaling Accelerated Graph Neural Networks Using the RAPIDS Framework

Summary and Call to Action

By combining TigerGraph and NVIDIA GPUs we can save consumers billions of dollars each year

Visit TigerGraph:

http://tigergraph.com

Connect with Dan McCreary on LinkedIn:

https://www.linkedin.com/in/danmccreary/

