Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

http://eisc.univalle.edu.co/~oscarbed/MD/

PARTE 2.

- * TEORÍA DE NÚMEROS * TÉCNICAS DE DEMOSTRACIÓN
- * RELACIONES

- * Notación a|b
- * Números primos
- * Aritmética modular
- * Congruencia lineal
- * Aplicaciones

División

• Sean a y b dos enteros, $a\neq 0$, se dice que a divide a b de forma exacta si existe un entero c tal que a·c=b

División

- a|b, si y solo si, existe un c tal que a·c=b
 - 3|6 porque 3.2=6
 - 4|28 porque 4.7=28
 - 2 1/5 porque no existe c

Determine si las siguientes expresiones son falsas o verdaderas:

Determine si las siguientes expresiones son falsas o verdaderas:

- 3 | 12, verdadero porque 3.4=12
- 12 4, falso porque no existe un entero c tal que 12·c=4
- 1|1, verdadero porque 1·1=1
- 4|15, falso porque no existe un entero c tal que $4 \cdot c = 15$
- 0|23, falso porque no está definida la división entre 0
- 4|4, verdadero porque 4.1=4
- 7|13, falso porque no existe un entero c tal que $7 \cdot c = 13$
- 2|3, falso porque no existe un entero c tal que $2 \cdot c = 3$

Números primos

- Un entero positivo p mayor que 1 se llama primo si los únicos divisores de p son 1 y p
- Un entero positivo mayor que 1 que no es primo se denomina compuesto

Criba de Eratóstenes

Es un método para hallar todos los números primos menores que un natural N dado

Algoritmo Criba de Eratóstenes (Complejidad

$$\mathcal{O}(n \, \log^2(n) \log \log n)$$

Entrada: Un número natural n

Salida: El conjunto de números primos anteriores a ռ (incluyendo ռ)

- 1. Escriba todos los números naturales desde 2 hasta n
- 2. Para i desde 2 hasta $|\sqrt{n}|$ haga lo siguiente:
 - 1. Si i no ha sido marcado entonces:
 - 1. Paraj desdei hasta $n \div i$ haga losiguiente:
 - 1. Ponga una marca en i imes j
- El resultado es: Todos los números sin marca

Eratóstenes

- Matemático, astrónomo y geógrafo griego
- Hizo contribuciones acerca de las dimensiones de la tierra
- Compañero de Arquimedes

(276a.c - 194a.c)

#	n	Fecha del descubrimiento	Descubridor
1	2	antigüedad	desconocido
2	3	antigüedad	desconocido
3	5	antigüedad	desconocido
4	7	antigüedad	desconocido
5	13	1456	anónimo
6	17	1588	Cataldi
7	19	1588	Cataldi
8	31	1772	Euler
9	61	1883	Pervushin
10	89	1911	Powers
11	107	1914	Powers
12	127	1876	Lucas
13	521	30-01-1952	Robinson
14	607	30-01-1952	Robinson
15	1.279	25-06-1952	Robinson
16	2.203	07-10-1952	Robinson

Número primo	Fecha de descubrimiento
242643801_1	2009
2 ³⁷¹⁵⁶⁶⁶⁷ -1	2008
2 ³²⁵⁸²⁶⁵⁷ - 1	2006
2 ³⁰⁴⁰²⁴⁵⁷ -1	2005

282589933_1

2018

46B= 732

32 byts 82589933 6.75 580MB

Teorema: si n es un número compuesto, entonces tiene un divisor primo menor o igual a \sqrt{n}

Teorema: si n es un número compuesto, entonces tiene un divisor primo menor o igual a \sqrt{n}

• Muestre que 101 es primo

Teorema: si n es un número compuesto, entonces tiene un divisor primo menor o igual a \sqrt{n}

•
$$\sqrt{101} = 10.04$$

Primos menores que 100					
2	3	5	7	11	
13	17	19	23	29	
31	37	41	43	47	
53	59	61	67	71	
73	79	83	89	97	

Teorema: si n es un número compuesto, entonces tiene un divisor primo menor o igual a \sqrt{n}

• $\sqrt{101} = 10.04$, se evalúa si 2,3,5,7 son divisores de 101

Primos menores que 100					
2	3	5	7	11	
13	17	19	23	29	
31	37	41	43	47	
53	59	61	67	71	
73	79	83	89	97	

Teorema: si n es un número compuesto, entonces tiene un divisor primo menor o igual a \sqrt{n}

• $\sqrt{101}$ = 10.04, se evalúa si 2,3,5,7 son divisores de 101. Como no lo son, se puede asegurar que 101 es primo

Teorema: si n es un número compuesto, entonces tiene un divisor primo menor o igual a \sqrt{n}

Muestre que 133 no es primo

Teorema: si n es un número compuesto, entonces tiene un divisor primo menor o igual a \sqrt{n}

• $\sqrt{133} = 11.53$, se evalúa si 2,3,5,7,11 son divisores de 133

Primos menores que 100					
2	3	5	7	11	
13	17	19	23	29	
31	37	41	43	47	
53	59	61	67	71	
73	79	83	89	97	

Teorema: si n es un número compuesto, entonces tiene un divisor primo menor o igual a \sqrt{n}

• $\sqrt{133}$ = 11.53, se evalúa si 2,3,5,7,11 son divisores de 133 Como 7 | 133, se puede asegurar que 133 no es primo

Clasifique los siguientes números como primos o compuestos:

Primos menores que 100					
2	3	5	7	11	
13	17	19	23	29	
31	37	41	43	47	
53	59	61	67	71	
73	79	83	89	97	

Clasifique los siguientes números como primos o compuestos:

- $\sqrt{123} = 11.09$, dados 2,3,5,7,11. 3|123. 123 es compuesto

Primos menores que 100					
2	3	5	7	11	
13	17	19	23	29	
31	37	41	43	47	
53	59	61	67	71	
73	79	83	89	97	

Números primos de Mersenne

 Encontrar primos de la forma 2^p-1 donde p es un número primo

$$> 2^2 - 1 = 3$$
 es primo

$$> 2^3 - 1 = 7$$
 es primo

$$> 2^5 - 1 = 31 \text{ es primo}$$

Números primos de Mersenne

- Encontrar primos de la forma 2^p-1 donde p es un número primo
 - $> 2^2 1 = 3$ es primo
 - $> 2^3 1 = 7$ es primo
 - $> 2^5 1 = 31 \text{ es primo}$
- · No funciona en todos los casos
 - $> 2^{11}-1 = 2047 \text{ no es primo puesto que } 23|2047$

GIMPS

http://mersenne.org/prime.html

Claves publicas

Claves privadas

Marin Mesenne

- Conoció a Descartes y le recomendó no publicar algunos de sus escritos
- Filósofo, matemático, músico y teólogo francés

(1588 - 1648)

Aritmética modular

Se basa en la operación residuo o módulo definida a continuación:

a mod b es el residuo de a div b

Aritmética modular

Se basa en la operación residuo o módulo definida a continuación:

a mod b es el residuo de a div b

• 0 ≤ a mod b < b

• 9 mod
$$4 = 1$$

• -5 mod
$$2 = 1$$

$$-7 = 3(-3) + 2$$

$$-5:2(-3)+1$$

- $17 \mod 5 = 2$
- 9 mod 4 = 1
- $-7 \mod 3 = 2$
- $2 \mod 2 = 0$
- $-5 \mod 2 = 1$

-131

- $-133 \mod 9 = 2$
- $4 \mod 2 = 0$
- $2 \mod 4 = 2$
- $-12 \mod 5 = 3$

• -57 mod
$$4 = 3$$

• 73 mod
$$8 = 1$$

- $-57 \mod 4 = 3$
- 7 mod 9 = 9 7
- $73 \mod 8 = 1$
- $-24 \mod 7 = 4$

Calcule y compare los siguientes pares de valores:

- •7 mod 5, 2 mod 5 2, 2
- 4 mod 3, 13 mod 3 15 1
- 11 mod 5, 21 mod 5 4, 1
- 22 mod 4, 38 mod 4 3 2

Calcule y compare los siguientes pares de valores:

•
$$7 \mod 5 = 2 \mod 5 = 2$$

•
$$4 \mod 3 = 13 \mod 3 = 1$$

• 11
$$\mod 5 = 21 \mod 5 = 1$$

$a \equiv b \pmod{m}$

Se dice que a es congruente con b módulo m, si y solo si,
 a mod m = b mod m

$a \equiv b \pmod{m}$

- Se dice que a es congruente con b módulo m, si y solo si,
 a mod m = b mod m
- Para los casos anteriores se tiene que:

```
7 \equiv 2 \pmod{5} 7 \mod 5 = 2 \mod 5

4 \equiv 13 \pmod{3}

11 \equiv 21 \pmod{5}

22 \equiv 38 \pmod{4}
```

- $2 \equiv 20 \pmod{6}$. si, 2 mod 6=20 mod 6=2
- $5 \equiv 16 \pmod{3}$. **no**, 5 mod 3=2 y 16 mod 3=1

$$51 - 7 \equiv -19 \pmod{4}$$
 $-7 \mod 4 = 1 - 19 \mod 4 = 19 = 6 \mod 6\%$ $-7 \equiv 38 \pmod{7}$ $3 \equiv 38 \pmod{7}$ $3 \equiv 38 \pmod{7}$ $3 \equiv 7 \pmod{7}$ $3 \pmod{7}$

- $-7 \equiv -19 \pmod{4}$. si, $-7 \pmod{4} = -19 \pmod{4}$
- $3 \equiv 38 \pmod{7}$. si, 3 mod 7=38 mod 7=3
- $-5 \equiv 5 \pmod{5}$. si, $-5 \pmod{5} = 5 \pmod{5}$

Liste cinco enteros que sean congruentes con 4 mod 12

Liste cinco enteros que sean congruentes con 4 mod 12

- $16 \equiv 4 \pmod{12}$
- $28 \equiv 4 \pmod{12}$
- $40 \equiv 4 \pmod{12}$
- $52 \equiv 4 \pmod{12}$
- $64 \equiv 4 \pmod{12}$

Propiedades

• $a \equiv b \pmod{m}$, si y solo si, $m \mid (a-b)$

Indique si se presenta cada una de las siguientes congruencias:

• $-29 \equiv 5 \mod 17$

•
$$-122 \equiv 5 \mod 17$$

• $226 \equiv 5 \mod 17$

Siguientes
$$|7|(-29-5)$$
 $|7|-34$ $|7|(-122-5)$ $|7|-34$ $|7|(-122-5)$ $|7|-127$ $|7|276-5$

Indique si se presenta cada una de las siguientes congruencias:

- $-29 \equiv 5 \mod 17$. **si** porque $17 \mid (-29-5)$
- $-122 \equiv 5 \mod 17$. **no** porque 17 // (-122-5)
- $226 \equiv 5 \mod 17$. si porque 17/(226-5)

Aplicaciones

- Tablas Hash
- Criptología

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

 $h(k) = k \mod 10$

Tablas Hash

• Dado un **código k**, para conocer el sitio donde se almacena, se utiliza la función:

 $h(k) = k \mod 10$

0509555

0817449

Tablas Hash

• Dado un **código k**, para conocer el sitio donde se almacena, se utiliza la función:

 $h(k) = k \mod 10$

0509555 h(0509555)=5

0817449 h(0817449)=9

Tablas Hash

• Dado un **código k**, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(0509555)=5

h(0817449)=9

Tablas Hash

• Dado un **código k**, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(0509555)=5

h(0817449)=9

h(0737459)=?

Tablas Hash

• Dado un **código k**, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(0509555)=5

h(0817449)=9

h(0737459)=9

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(0509555)=5

h(0817449)=9

h(0737459)=9

A pesar de las colisiones la búsqueda es rápida

Tablas Hash

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

La función h(k)=k mod 10 indica en cuál espacio del arreglo colocar el dato k

Tablas Hash

La función h(k)=k mod 10 indica en cuál espacio del arreglo colocar el dato k

Tablas Hash

Para resolver la colisión se utiliza una lista en cada espacio del arreglo

Tablas Hash

Una tabla hash permite ordenar los datos de tal forma que la recuperación sea rápida

Criptología

Julio Cesar

- Uno de los más destacados líderes militares y políticos romanos
- Sus conquistas extendieron el dominio romano sobre los territorios que hoy integran Francia, Bélgica, Holanda y parte de Alemania

(100a.c - 44a.c)

Escitala Espartana

- Usada en la antigua Grecia en el año 400a.c
- Se enrolla una cinta sobre un vara
- El ancho con el cual fue escrito el mensaje corresponde con la vara adecuada para descifrar el mensaje

E

ERTIODCAEEPAARTANSDEUSVIRABTESSDE

Ε

E S T U D I E B A S T A N T E O V A A P E R D E R D E T A S T A S T A S T B T A S T

Criptología

• Es el estudio de técnicas que permitan transformar un mensaje en otro, que oculta el significado del original

Método de Julio Cesar

- 1. Transforme cada letra a un número, para ello, utilice la posición relativa en el alfabeto. A es 0, B es 1, C es 2 ...
- 2. Aplique la función $f(p)=(p+3) \mod 26$ para cada número
- 3. Transforme cada número a letra y envíe el mensaje

Método de Julio Cesar

- 1. Transforme cada letra a un número, para ello, utilice la posición relativa en el alfabeto. A es 0, B es 1, C es 2 ...
- 2. Aplique la función $f(p)=(p+3) \mod 26$ para cada número
- 3. Transforme cada número a letra y envíe el mensaje

Para decodificar el mensaje

- 1. Transforme cada letra a número
- 2. Utilice la función f⁻¹(p)=(p-3) mod 26

A	0	N	13
В	1	0	14
С	2	Р	15
D	3	Q	16
E	4	R	17
F	5	5	18
G	6	T	19
Н	7	٥	20
I	8	V	21
J	9	W	22
K	10	X	23
L	11	У	24
M	12	Z	25

- Encriptar el mensaje "HOLA"
- Encriptar el mensaje "MUERTE"
- · Desencriptar el mensaje "HVWXGLHRYDDSHUGHU"

· Encriptar el mensaje "HOLA"

• El mensaje encriptado es "KROD"

• Desencriptar el mensaje "HVWXGLHRYDDSHUGHU"

	Н	٧	W	X	G	L	H	R	У	D	D	S	Н	C	G	Н	U
р	7	21	22	23	6	11	7	17	24	3	3	18	7	20	6	7	20
f-1(p)	4	18	19	20	3	8	4	14	21	0	0	15	4	17	3	4	17
	E	S	Т	U	D	I	Е	0	V	Α	Α	Р	Е	R	D	Е	R

- Calcule los siguientes módulos:
 - -19 mod 7 <u>~ 2</u>
 - -127 mod 4 ← 1
- Indique si se presenta cada una de las siguientes congruencias. Justifique sus respuestas 7 (52-31)-1
 - $52 \equiv 31 \mod 7$
 - $-31 \equiv 60 \mod 7$

$$-31 \text{ mod } 7 = 60 \text{ mod } 7$$

 $4 = 4$