AdaBoost

Lecturer: Jan Šochman

Authors: Jan Šochman, Jiří Matas

Center for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz

Presentation

Motivation

AdaBoost with trees is the best off-the-shelf classifier in the world. (Breiman 1998)

Outline:

- AdaBoost algorithm
 - How it works?
 - Why it works?
- Online AdaBoost and other variants

AdaBoost is an algorithm for constructing a "strong" classifier as linear combination

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

of "simple" "weak" classifiers $h_t(x): \mathcal{X} \to \{-1, +1\}$.

Terminology

- \bullet $h_t(x)$... "weak" or basis classifier, hypothesis, "feature"
- lacktriangleq H(x) = sign(f(x)) ... "strong" or final classifier/hypothesis

Interesting properties

- ◆ AB is capable reducing both bias (e.g. stumps) and variance (e.g. trees) of the weak classifiers
- ◆ AB has good generalisation properties (maximises margin)
- AB output converges to the logarithm of likelihood ratio
- AB can be seen as a feature selector with a principled strategy (minimisation of upper bound on empirical error)
- ◆ AB is close to sequential decision making (it produces a sequence of gradually more complex classifiers)

4/17

Given: $(x_1, y_1), \dots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$

4/17

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$

4/17

Given:
$$(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$$

Initialise weights $D_1(i)=1/m$

4/17

Given:
$$(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$$

Initialise weights $D_1(i)=1/m$
For $t=1,\ldots,T$:

4/17

Given:
$$(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$$

Initialise weights $D_1(i)=1/m$
For $t=1,\ldots,T$:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop

t = 1

4/17

Given:
$$(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$$

Initialise weights $D_1(i)=1/m$
For $t=1,\ldots,T$:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$

The AdaBoost Algorithm

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

t = 1

4/17

Given:
$$(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$$

Initialise weights $D_1(i)=1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

The AdaBoost Algorithm

Given: $(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$ Initialise weights $D_1(i)=1/m$ For $t=1,\ldots,T$:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

The AdaBoost Algorithm

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

The AdaBoost Algorithm

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For t = 1, ..., T:

- Find $h_t = \arg\min_{h_i \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

The AdaBoost Algorithm

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

The AdaBoost Algorithm

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

The AdaBoost Algorithm

Given: $(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$ Initialise weights $D_1(i)=1/m$ For $t=1,\ldots,T$:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Given: $(x_1, y_1), \dots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$

Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Reweighting

5/17

Effect on the training set

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

- ⇒ Increase (decrease) weight of wrongly (correctly) classified examples
- ⇒ The weight is the upper bound on the error of a given example
- \Rightarrow All information about previously selected "features" is captured in D_t

Reweighting

Effect on the training set

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

- ⇒ Increase (decrease) weight of wrongly (correctly) classified examples
- ⇒ The weight is the upper bound on the error of a given example
- \Rightarrow All information about previously selected "features" is captured in D_t

Reweighting

5/17

Effect on the training set

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

- ⇒ Increase (decrease) weight of wrongly (correctly) classified examples
- ⇒ The weight is the upper bound on the error of a given example
- \Rightarrow All information about previously selected "features" is captured in D_t

Upper Bound Theorem

Theorem: The following upper bound holds on the training error of H

$$\frac{1}{m} |\{i : H(x_i) \neq y_i\}| \le \prod_{t=1}^{T} Z_t$$

Proof: By unravelling the update rule

$$D_{T+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$= \frac{exp(-\sum_t \alpha_t y_i h_t(x_i))}{m\prod_t Z_t} = \frac{exp(-y_i f(x_i))}{m\prod_t Z_t}$$

If $H(x_i) \neq y_i$ then $y_i f(x_i) \leq 0$ implying that $exp(-y_i f(x_i)) > 1$, thus

$$[H(x_i) \neq y_i] \leq exp(-y_i f(x_i))$$

$$\frac{1}{m} \sum_{i} [H(x_i) \neq y_i] \leq \frac{1}{m} \sum_{i} exp(-y_i f(x_i))$$

$$= \sum_{i} (\prod_{t} Z_t) D_{T+1}(i) = \prod_{t} Z_t$$

Consequences of the Theorem

7/17

- Instead of minimising the training error, its upper bound can be minimised
- lacktriangle This can be done by minimising Z_t in each training round by:
 - Choosing optimal h_t , and
 - Finding optimal α_t
- AdaBoost can be proved to maximise margin
- AdaBoost iteratively fits an additive logistic regression model

Choosing α_t

8/17

We attempt to minimise $Z_t = \sum_i D_t(i) exp(-\alpha_t y_i h_t(x_i))$:

$$\frac{dZ}{d\alpha} = -\sum_{i=1}^{m} D(i)y_i h(x_i) e^{-y_i \alpha_i h(x_i)} = 0$$

$$-\sum_{i:y_i = h(x_i)} D(i) e^{-\alpha} + \sum_{i:y_i \neq h(x_i)} D(i) e^{\alpha} = 0$$

$$-e^{-\alpha} (1 - \epsilon) + e^{\alpha} \epsilon = 0$$

$$\alpha = \frac{1}{2} \log \frac{1 - \epsilon}{\epsilon}$$

 \Rightarrow The minimisator of the upper bound is $\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$

Weak classifier examples

- ◆ Decision tree (or stump), Perceptron ℋ infinite
- Selecting the best one from given *finite* set \mathcal{H}

Justification of the weighted error minimisation

Having
$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

$$Z_{t} = \sum_{i=1}^{m} D_{t}(i)e^{-y_{i}\alpha_{i}h_{t}(x_{i})}$$

$$= \sum_{i:y_{i}=h_{t}(x_{i})} D_{t}(i)e^{-\alpha_{t}} + \sum_{i:y_{i}\neq h_{t}(x_{i})} D_{t}(i)e^{\alpha_{t}}$$

$$= (1 - \epsilon_{t})e^{-\alpha_{t}} + \epsilon_{t}e^{\alpha_{t}}$$

$$= 2\sqrt{\epsilon_{t}(1 - \epsilon_{t})}$$

 $\Rightarrow Z_t$ is minimised by selecting h_t with minimal weighted error ϵ_t

Generalisation (Schapire & Singer 1999)

Maximising margins in AdaBoost

$$P_{(x,y)\sim S}[yf(x)\leq \theta]\leq 2^T\prod_{t=1}^T\sqrt{\epsilon_t^{1-\theta}(1-\epsilon_t)^{1+\theta}}\qquad \text{where }f(x)=\frac{\vec{\alpha}\cdot\vec{h}(x)}{\|\vec{\alpha}\|_1}$$

- lacktriangle Choosing $h_t(x)$ with minimal ϵ_t in each step one minimises the margin
- Margin in SVM use the L_2 norm instead: $(\vec{\alpha} \cdot \vec{h}(x))/\|\vec{\alpha}\|_2$

Upper bounds based on margin

With probability $1-\delta$ over the random choice of the training set S

$$P_{(x,y)\sim\mathcal{D}}[yf(x) \le 0] \le P_{(x,y)\sim S}[yf(x) \le \theta] + \mathcal{O}\left(\frac{1}{\sqrt{m}} \left(\frac{d\log^2(m/d)}{\theta^2} + \log(1/\delta)\right)^{1/2}\right)$$

where \mathcal{D} is a distribution over $\mathcal{X} \times \{+1, -1\}$, and d is pseudodimension of \mathcal{H} .

Problem: The upper bound is very loose. In practice AdaBoost works much better.

Convergence (Friedman et al. 1998)

Proposition 1 The discrete AdaBoost algorithm minimises $J(f(x)) = E(e^{-yf(x)})$ by adaptive Newton updates

Lemma J(f(x)) is minimised at

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x) = \frac{1}{2} \log \frac{P(y=1|x)}{P(y=-1|x)}$$

Hence

$$P(y=1|x) = \frac{e^{f(x)}}{e^{-f(x)} + e^{f(x)}} \qquad \text{and} \qquad P(y=-1|x) = \frac{e^{-f(x)}}{e^{-f(x)} + e^{f(x)}}$$

Additive logistic regression model

$$\sum_{t=1}^{T} a_t(x) = \log \frac{P(y=1|x)}{P(y=-1|x)}$$

Proposition 2 By minimising J(f(x)) the discrete AdaBoost fits (up to a factor 2) an additive logistic regression model

Given: $(x_1, y_1), \dots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$

12/17

Given:
$$(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$

12/17

Given: $(x_1, y_1), \dots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$

Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

12/17

Given:
$$(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$$

Initialise weights $D_1(i)=1/m$
For $t=1,\ldots,T$:

12/17

Given:
$$(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$$

Initialise weights $D_1(i)=1/m$
For $t=1,\ldots,T$:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop

t = 1

12/17

Given:
$$(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$$

Initialise weights $D_1(i)=1/m$
For $t=1,\ldots,T$:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$

12/17

Given:
$$(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$$

Initialise weights $D_1(i)=1/m$
For $t=1,\ldots,T$:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

t = 1

12/17

Given: $(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$ Initialise weights $D_1(i)=1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

12/17

Given: $(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$ Initialise weights $D_1(i)=1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

12/17

Given: $(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$ Initialise weights $D_1(i)=1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

12/17

Given: $(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$ Initialise weights $D_1(i)=1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

12/17

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

12/17

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

12/17

Given: $(x_1,y_1),\ldots,(x_m,y_m); x_i\in\mathcal{X},y_i\in\{-1,+1\}$ Initialise weights $D_1(i)=1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

12/17

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

AdaBoost Variants

Freund & Schapire 1995

- \bullet Discrete $(h: \mathcal{X} \to \{0,1\})$
- lack Multiclass AdaBoost.M1 $(h: \mathcal{X} \rightarrow \{0, 1, ..., k\})$
- lacktriangle Multiclass AdaBoost.M2 $(h: \mathcal{X} \rightarrow [0,1]^k)$
- lacktriangle Real valued AdaBoost.R $(Y=[0,1],\ h:\mathcal{X}
 ightarrow [0,1])$

Schapire & Singer 1999

- Confidence rated prediction $(h: \mathcal{X} \to R)$, two-class)
- Multilabel AdaBoost.MR, AdaBoost.MH (different formulation of minimised loss)

Oza 2001

Online AdaBoost

Many other modifications since then: cascaded AB, WaldBoost, probabilistic boosting tree, ...

Given:

- Set of labeled training samples $\mathcal{X} = \{(x_1, y_1), ..., (x_m, y_m) | y = \pm 1\}$
- Weight distribution over \mathcal{X} $D_0 = 1/m$

For $t = 1, \ldots, T$

 Train a weak classifier using samples and weight distribution

$$h_t(x) = \mathcal{L}(\mathcal{X}, D_{t-1})$$

- lacktriangle Calculate error ϵ_t
- lacktriangle Calculate coeficient $lpha_t$ from ϵ_t
- lacktriangle Update weight distribution D_t

Output:

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Online

Given:

For
$$t = 1, \ldots, T$$

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Given:

- Set of labeled training samples $\mathcal{X} = \{(x_1, y_1), ..., (x_m, y_m) | y = \pm 1\}$
- Weight distribution over \mathcal{X} $D_0 = 1/m$

For $t = 1, \ldots, T$

 Train a weak classifier using samples and weight distribution

$$h_t(x) = \mathcal{L}(\mathcal{X}, D_{t-1})$$

- Calculate error ϵ_t
- Calculate coeficient α_t from ϵ_t
- lacktriangle Update weight distribution D_t

Output:

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Online

Given:

- One labeled training sample $(x,y)|y=\pm 1$
- Strong classifier to update

For
$$t = 1, \dots, T$$

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Given:

- Set of labeled training samples $\mathcal{X} = \{(x_1, y_1), ..., (x_m, y_m) | y = \pm 1\}$
- Weight distribution over \mathcal{X} $D_0 = 1/m$

For
$$t = 1, \ldots, T$$

 Train a weak classifier using samples and weight distribution

$$h_t(x) = \mathcal{L}(\mathcal{X}, D_{t-1})$$

- Calculate error ϵ_t
- Calculate coeficient α_t from ϵ_t
- lacktriangle Update weight distribution D_t

Output:

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Online

Given:

- One labeled training sample $(x,y)|y=\pm 1$
- Strong classifier to update
- Initial importance $\lambda = 1$

For
$$t = 1, \ldots, T$$

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Given:

- Set of labeled training samples $\mathcal{X} = \{(x_1, y_1), ..., (x_m, y_m) | y = \pm 1\}$
- Weight distribution over \mathcal{X} $D_0 = 1/m$

For
$$t = 1, \ldots, T$$

 Train a weak classifier using samples and weight distribution

$$h_t(x) = \mathcal{L}(\mathcal{X}, D_{t-1})$$

- lacktriangle Calculate error ϵ_t
- Calculate coeficient α_t from ϵ_t
- lacktriangle Update weight distribution D_t

Output:

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Online

Given:

- One labeled training sample $(x,y)|y=\pm 1$
- Strong classifier to update
- Initial importance $\lambda = 1$

For
$$t = 1, \dots, T$$

 Update the weak classifier using the sample and the importance

$$h_t(x) = \mathcal{L}(h_t, (x, y), \lambda)$$

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Given:

- Set of labeled training samples $\mathcal{X} = \{(x_1, y_1), ..., (x_m, y_m) | y = \pm 1\}$
- Weight distribution over \mathcal{X} $D_0 = 1/m$

For $t = 1, \ldots, T$

 Train a weak classifier using samples and weight distribution

$$h_t(x) = \mathcal{L}(\mathcal{X}, D_{t-1})$$

- lacktriangle Calculate error ϵ_t
- Calculate coeficient α_t from ϵ_t
- lacktriangle Update weight distribution D_t

Output:

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Online

Given:

- One labeled training sample $(x,y)|y=\pm 1$
- Strong classifier to update
- Initial importance $\lambda = 1$

For
$$t = 1, \dots, T$$

 Update the weak classifier using the sample and the importance

$$h_t(x) = \mathcal{L}(h_t, (x, y), \lambda)$$

- lacktriangle Update error estimation ϵ_t
- Update weight α_t based on ϵ_t

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Given:

- Set of labeled training samples $\mathcal{X} = \{(x_1, y_1), ..., (x_m, y_m) | y = \pm 1\}$
- Weight distribution over \mathcal{X} $D_0 = 1/m$

For $t = 1, \ldots, T$

 Train a weak classifier using samples and weight distribution

$$h_t(x) = \mathcal{L}(\mathcal{X}, D_{t-1})$$

- Calculate error ϵ_t
- Calculate coeficient α_t from ϵ_t
- lacktriangle Update weight distribution D_t

Output:

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Online

Given:

- One labeled training sample $(x,y)|y=\pm 1$
- Strong classifier to update
- Initial importance $\lambda = 1$

For
$$t = 1, \dots, T$$

 Update the weak classifier using the sample and the importance

$$h_t(x) = \mathcal{L}(h_t, (x, y), \lambda)$$

- Update error estimation ϵ_t
- Update weight α_t based on ϵ_t
- lacktriangle Update importance weight λ

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

14/17

Offline

Given:

- Set of labeled training samples $\mathcal{X} = \{(x_1, y_1), ..., (x_m, y_m) | y = \pm 1\}$
- Weight distribution over \mathcal{X} $D_0 = 1/m$

For $t = 1, \ldots, T$

 Train a weak classifier using samples and weight distribution

$$h_t(x) = \mathcal{L}(\mathcal{X}, D_{t-1})$$

- Calculate error ϵ_t
- Calculate coeficient α_t from ϵ_t
- lacktriangle Update weight distribution D_t

Output:

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Online

Given:

- One labeled training sample $(x,y)|y=\pm 1$
- Strong classifier to update
- Initial importance $\lambda = 1$

For
$$t = 1, \dots, T$$

 Update the weak classifier using the sample and the importance

$$h_t(x) = \mathcal{L}(h_t, (x, y), \lambda)$$

- lacktriangle Update error estimation ϵ_t
- Update weight α_t based on ϵ_t
- Update importance weight λ

$$F(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Online AdaBoost

Converges to offline results given the same training set and the number of iterations $N \to \infty$

N. Oza and S. Russell. Online Bagging and Boosting. Artificial Inteligence and Statistics, 2001.

Pros and Cons of AdaBoost

Advantages

- Very simple to implement
- General learning scheme can be used for various learning tasks
- Feature selection on very large sets of features
- Good generalisation
- Seems not to overfit in practice (probably due to margin maximisation)

Disadvantages

Suboptimal solution (greedy learning)

Selected references

- ◆ Y. Freund, R.E. Schapire. A Decision-theoretic Generalization of On-line Learning and an Application to Boosting. Journal of Computer and System Sciences. 1997
- ◆ R.E. Schapire, Y. Freund, P. Bartlett, W.S. Lee. **Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods**. The Annals of Statistics, 1998
- R.E. Schapire, Y. Singer. Improved Boosting Algorithms Using Confidence-rated Predictions. Machine Learning. 1999
- J. Friedman, T. Hastie, R. Tibshirani. Additive Logistic Regression: a Statistical View of Boosting. Technical report. 1998
- N.C. Oza. Online Ensemble Learning. PhD thesis. 2001
- http://www.boosting.org

Selected references

- ◆ Y. Freund, R.E. Schapire. A Decision-theoretic Generalization of On-line Learning and an Application to Boosting. Journal of Computer and System Sciences. 1997
- R.E. Schapire, Y. Freund, P. Bartlett, W.S. Lee. Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. The Annals of Statistics, 1998
- R.E. Schapire, Y. Singer. Improved Boosting Algorithms Using Confidence-rated Predictions. Machine Learning. 1999
- J. Friedman, T. Hastie, R. Tibshirani. Additive Logistic Regression: a Statistical View of Boosting. Technical report. 1998
- ◆ N.C. Oza. Online Ensemble Learning. PhD thesis. 2001
- http://www.boosting.org

Thank you for attention

