MSc. Research Methods – Statistikteil Lösungstext

- Übung 4.1: Nicht-lineare Regression -

Methoden

Es wurden Pflanzenartenzahlen der Pflanzengesellschaft Lolio-Cynosuretum im Nationalpark Kurische Nehrung auf verschieden grossen, geschachtelten Flächen erhoben. Eine solche Nested-plot-Serie bestand aus 16 Erhebungen auf Flächen von 0.0001 m² bis 900 m². Die Werte von acht untersuchten nested-plot Serien wurden für die weiteren Analysen gemittelt.

Mittels nicht-linearer Regression (Funktion nls in R) wurde ermittelt, welche Funktion die Artenzahlzunahme mit der Flächengrösse am besten beschreibt. Verglichen wurden vier Modelle mit je zwei Funktionsparametern (Potenzfunktion, logarithmische Funktion, Michaelis-Menten-Funktion, asymptotische Funktion durch den Ursprung; Tab. 1). Die Modelle wurden anschliessend mittels AICc verglichen und ihre Validität visuell in den Residualplots begutachtet.

Tab. 1. Funktionen, die verglichen wurden. A = Fläche in m², S = Artenreichtum.

Funktion	Oberer Grenzwert	Funktionsgleichung
Potenzfunktion	nein	S~c*A^z
Logarithmusfunktion	nein	S ~ b0 + b1 * log10 (A)
Michaelis-Menten-Funktion	ja (Vm)	S ~ Vm * A / (K + A)
Asymptotische Funktion durch	ja (Asym)	$S \sim Asym * (1 - exp(-exp(Irc) * A))$
Ursprung		

Ergebnisse

Unter den verglichenen fünf Modellen (vier Funktionen, darunter zwei Variaten von Michaelis-Menten mit unterschiedlichen Startwerten) war die Potenzfunktion mit einem Akaike weight von 0.98 klar die beste (Tab. 2, Abb. 1). Die Logarithmusfunktion als zweitbeste Funktion war mit einem Delta-AICc von 7.68 (Akaike weight = 0.02) schon weit abgeschlagen und die drei Modelle mit einem modellierten oberen Grenzwert statistisch bedeutungslos (Delta-AICc > 33) (Tab. 2).

Abb. 1. Modellierte Artenzahl-Areal-Beziehungen für die Nested-plot-Serie aus dem Nationalpark Kurische Nehrung. Die Potenzfunktion (rot) gab den Zusammenhang am besten wider (Akaike weight = 0.98), selbst die relativ beste der drei Sättigungsmodelle, die Michaelis-Menten-Funktion (mit Selbststart; blau), zeigte starke Abweichungen (Akaike weight < 0.01); der vorhergesagte Sättigungswert lag weit unter dem empirischen höchsten Wert.

Tab. 2. Modellgüte und Funktionsparameter der fünf verglichenen Modelle. A = Fläche in m^2 , S = Artenreichtum.

Funktion	Delta-AICc	Akaike weight	Funktionsgleichung
Potenzfunktion	0.00	0.98	S~36.2 * A ^ 0.14
Logarithmusfunktion	7.68	0.02	S ~ 43.3 + 13.3 * log10 (A)
Michaelis-Menten-	33.92	< 0.01	S ~ 72.0 * A / (0.85 + A)
Funktion (Selbststarter)			3 72.0 77 (0.03 77)
Michaelis-Menten-	38.69	< 0.01	S ~ 46.7 * A / (-2.15 + A)
Funktion (manuell)			3 40.7 A/ (2.13 · A)
Asymptotische Funktion	68.42	< 0.01	$S \sim 68.5 * (1 - exp(-exp(0.12) * A))$
durch Ursprung			