Toll Cost Digits

The mayor of Farzville is studying the city's road system to find ways of improving its traffic conditions. Farzville's road system consists of n junctions connected by e bidirectional toll roads, where the i^{th} toll road connects junctions x_i and y_i . In addition, some junctions may not be reachable from others and there may be multiple roads connecting the same pair of junctions.

Each toll road has a toll rate that's paid each time it's used. This rate varies depending on the direction of travel:

- If traveling from x_i to y_i , then the toll rate is r_i .
- If traveling from y_i to x_i , then the toll rate is $1000 r_i$. It is guaranteed that $0 < r_i < 1000$.

For each digit $d \in \{0, 1, \dots, 9\}$, the mayor wants to find the number of ordered pairs of (x, y) junctions such that $x \neq y$ and a path exists from x to y where the total cost of the tolls (i.e., the sum of all toll rates on the path) ends in digit d. Given a map of Farzville, can you help the mayor answer this question? For each digit d from 0 to 9, print the the number of valid ordered pairs on a new line.

Note: Each toll road can be traversed an unlimited number of times in either direction.

Input Format

The first line contains two space-separated integers describing the respective values of n (the number of junctions) and e (the number of roads).

Each line i of the e subsequent lines describes a toll road in the form of three space-separated integers, x_i , y_i , and r_i .

Constraints

- $1 \le n \le 10^5$
- $1 \le e \le 2 \cdot 10^5$
- $1 \leq x_i, y_i \leq n$
- $x_i \neq y_i$
- $0 < r_i < 1000$

Output Format

Print ten lines of output. Each line j (where $0 \le j \le 9$) must contain a single integer denoting the answer for d=j. For example, the first line must contain the answer for d=0, the second line must contain the answer for d=1, and so on.

Sample Input 0

Sample Output 0

0		
2		
1		
1		
2		
2		
0		
2		
1		
1		
1		
2		

Explanation 0

The table below depicts the distinct pairs of junctions for each d:

d	(x,y)	path	total cost
0	none		
1	(1,2)	1 o 3 o 2	1191
	(2,3)	2 o 3	411
2	(1, 3)	1 o 3	602
3	(3, 1)	3 o 2 o 1	1333
4	(2, 1)	2 o 1	744
	(3,2)	3 o 1 o 2	654
5	none		
6	(1,2)	1 o 2	256
	(2,3)	$2 \to 1 \to 3$	1346
7	(1, 3)	1 o 2 o 3	667
8	(3, 1)	3 o 1	398
9	(2,1)	2 o 3 o 1	809
	(3,2)	3 o 2	589

Note the following:

- There may be multiple paths between each pair of junctions.
- Junctions and roads may be traversed multiple times. For example, the path $2 \to 3 \to 1 \to 2 \to 3$ is also valid, and it has total cost of 411 + 398 + 256 + 411 = 1476.
- An ordered pair can be counted for more than one d. For example, the pair (2,3) is counted for d=1 and d=6.
- Each ordered pair must only be counted once for each d. For example, the paths $2 \to 1 \to 3$ and $2 \to 3 \to 1 \to 2 \to 3$ both have total costs that end in d = 6, but the pair (2,3) is only counted once.