#### 14.0 Linguistic Processing and Latent Topic Analysis

## Latent Semantic Analysis (LSA)



## Latent Semantic Analysis (LSA) - Word-Document Matrix Representation

#### Vocabulary V of size M and Corpus T of size N

 $\begin{array}{l} -V = \{w_1, w_2, ... w_i, ... w_M\} \quad , \ w_i : \ the \ i\text{--}th \ word \quad , e.g. \ M = 2 \times 10^4 \\ T = \{d_1, d_2, ... d_j, ... d_N\} \quad , \ d_j : \ the \ j\text{--}th \ document \quad , e.g. \ N = 10^5 \\ -c_{ij} : \ number \ of \ times \ w_i \ occurs \ in \ d_j \\ n_j : \ total \ number \ of \ words \ present \ in \ d_j \\ t_i = \Sigma_j \ c_{ij} : \ total \ number \ of \ times \ w_i \ occurs \ in \ T \\ \end{array}$ 

$$\Rightarrow \varepsilon_i = -\frac{1}{\log N} \sum_{j=1}^N {c_{ij} \choose t_i} \log(\frac{c_{ij}}{t_i}), \quad \text{normalized entropy (indexing power) of } \mathbf{w}_i \text{ in } \mathbf{T}$$

$$0 \le \varepsilon_i \le 1 \quad , \quad \varepsilon_i = 0 \quad \text{if } c_{ij} = t_i \text{ for some } \mathbf{j} \text{ and } c_{ij} = 0 \text{ for other } \mathbf{j}$$

$$\varepsilon_i = 1 \quad \text{if } c_{ij} = t_i / \mathbf{N} \text{ for all } \mathbf{j}$$

 $-\mathbf{w}_{ij} = (1 - \varepsilon_i) \frac{c_{ij}}{n_i}$ , word frequencies in doucments, but normalized with document length and word entropy

#### • Word-Document Matrix W

$$W = [w_{ij}]$$



- each row of W is a N-dim "feature vector" for a word w, with respect to all documents d<sub>i</sub> each column of W is a M-dim "feature vector" for a document d with respect to all words wi

## **Latent Semantic Analysis (LSA)**



## **Dimensionality Reduction (1/2)**

#### • $WW^T = \overline{U}\overline{S}_1^2\overline{U}T$

-(i, j) element of WW<sup>T</sup>: inner product of i-th and j-th rows of W

"similarity" between  $w_i$  and  $w_j$ 

$$\overline{\mathbf{U}} = [\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_{\mathbf{M}}] \qquad , \overline{\mathbf{S}}_1^2 = [s_i^2]_{M \times M}, \ s_i^2 : \text{eigenvalues of } \mathbf{W} \mathbf{W}^{\mathsf{T}}, s_i^2 \geq s_{i+1}^2$$

$$\mathbf{W} \mathbf{W}^{\mathsf{T}} = \sum s_i^2 e_i e_i^{\mathsf{T}} \qquad , \ e_i : \text{orthonormal eigenvectors}, \overline{\mathbf{U}}^{\mathsf{T}} \overline{\mathbf{U}} = \mathbf{I}_{\mathbf{M}}$$

 $s_i^2$ : weights (significance of the "component matrices"  $e_i e_i^T$ )

-dimensionality reduction: selection of R largest eigenvalues (R=800 for example)

$$W_{M\times N}W_{N\times M}^T \approx U_{M\times R}S_{R\times R}^2U_{R\times M}^T, U_{M\times R} = [e_1, e_2, .... e_R]$$
  
R "concepts" or "latent semantic concepts"



### **Dimensionality Reduction (2/2)**

$$\bullet \ W^{^{T}}W = \overline{V}\overline{S}_{2}^{^{2}} \ \overline{V}^{^{T}}$$

— (i,j) element of  $W^TW$ : inner product of i-th and j-th columns of W "similarity" between  $d_i$  and  $d_j$ 

$$\overline{Y} = [e'_1, e'_2, \dots e'_N], \quad \overline{S}_2^2 = [s_i^2]_{N \times N}, s_i^2 : \text{eigenvalues of } W^T W, s_i^2 \ge s_{i+1}^2, s_i^2 = 0 \text{ for } i > \min(M, N)$$

$$W^{\mathrm{T}}W = \sum_{i} s_{i}^{2} e_{i}' e_{i}'^{\mathrm{T}}, \qquad e_{i}' : \text{orthonormal eigenvectors, } \overline{V}^{\mathrm{T}} \overline{V} = I_{N}$$

 $s_i^2$ : weights (significance of the "component matrices"  $e'_i e'_i^T$ )

- dimensionality reduction: selection of R largest eigenvalues

$$\mathbf{W}_{\mathrm{N}\times\mathrm{M}}^{\mathrm{T}}\mathbf{W}_{\mathrm{M}\times\mathrm{N}} \approx \mathbf{V}_{\mathrm{N}\times\mathrm{R}}\mathbf{S}_{\mathrm{R}\times\mathrm{R}}^{2}\mathbf{V}_{\mathrm{R}\times\mathrm{N}}^{\mathrm{T}}, \quad \mathbf{V}_{\mathrm{N}\times\mathrm{R}} = [e_{1}^{\prime},e_{2}^{\prime}...e_{R}^{\prime}]$$

R "concepts" or "latent semantic concepts"



## **Singular Value Decomposition (SVD)**

#### • Singular Value Decomposition (SVD)



- $-\underline{s_i}$ : singular values,  $\underline{s_1} \ge \underline{s_2}$ ....  $\ge \underline{s_R}$
- U: left singular matrix, V: right singular matrix

#### • Vectors for word w<sub>i</sub>: u<sub>i</sub>S=u<sub>i</sub> (a row)

- -a vector with dimensionality N reduced to a vector u<sub>i</sub>S=u<sub>i</sub> with dimensionality R
- N-dimensional space defined by N documents reduced to R-dimensional space defined by R "concepts"
- -the R row vectors of  $V^T$ , or column vectors of V, or eigenvectors  $\{e'_1,...e'_R\}$ , are the R orthonormal basis for the "latent semantic space" with dimensionality R, with which  $u_i S = u_i$  is represented
- -words with similar "semantic concepts" have "closer" location in the "latent semantic space"
  - they tend to appear in similar "types" of documents, although not necessarily in exactly the same documents

## **Singular Value Decomposition (SVD)**



## **Singular Value Decomposition (SVD)**

#### • Singular Value Decomposition (SVD)



#### • Vectors for document $d_j$ : $v_j S = \underline{v_j}$ (a row, or $\underline{v_i}^T = S \ v_j^T$ for a column)

- -a vector with dimensionality M reduced to a vector v<sub>i</sub>S=v<sub>i</sub> with dimensionality R
- -M-dimensional space defined by M words reduced to R-dimensional space defined by R "concepts"
- the R columns of U, or eigenvectors  $\{e_1,...e_R\}$ , are the R orthonormal basis for the "latent semantic space" with dimensionality R, with which v<sub>i</sub>S=v<sub>i</sub> is represented
- -documents with similar "semantic concepts" have "closer" location in the "latent semantic space"
  - they tend to include similar "types" of words, although not necessarily exactly the same
- The Association Structure between words w<sub>i</sub> and documents d<sub>i</sub> is preserved with noisy information deleted, while the dimensionality is reduced to a common set of R "concepts"

## **Example Applications in Linguistic Processing**

#### Word Clustering

- example applications: class-based language modeling, information retrieval ,etc.
- -words with similar "semantic concepts" have "closer" location in the "latent semantic space"
  - they tend to appear in similar "types" of documents, although not necessarily in exactly the same documents
- each component in the reduced word vector u<sub>i</sub>S=u<sub>i</sub> is the "association" of the word with the corresponding "concept"
- example similarity measure between two words:

$$sim(w_i, w_j) = \frac{\underline{u}_i \cdot \underline{u}_j}{|\underline{u}_i| \cdot |\underline{u}_j|} = \frac{u_i S^2 u_j^T}{|u_i S| \cdot |u_j S|}$$
• **Document Clustering**
- example applications: clustered language mod

- example applications: clustered language modeling, language model adaptation, information retrieval, etc.
- -documents with similar "semantic concepts" have "closer" location in the "latent semantic space"
  - they tend to include similar "types" of words, although not necessarily exactly the same
- each component on the reduced document vector  $v_i S = v_i$  is the "association" of the document with the corresponding "concept" – example "similarity" measure between two documents:

$$sim(d_i, d_j) = \frac{\underline{v}_i \cdot \underline{v}_j}{|\underline{v}_i| \cdot |\underline{v}_j|} = \frac{v_i S^2 v_j}{|v_i S| \cdot |v_j S|}$$

## LSA for Linguistic Processing

#### Cosine Similarity



$$\vec{A} \cdot \vec{B} = |\vec{A}||\vec{B}| \cos \theta$$
magnitude Similarity

## **Example Applications in Linguistic Processing**

#### Information Retrieval

- -"concept matching" vs "lexical matching": relevant documents are associated with similar "concepts", but may not include exactly the same words
- -example approach: treating the query as a new document (by "folding-in"). and evaluating its "similarity" with all possible documents

#### • Fold-in

- -consider a new document outside of the training corpus T, but with similar language patterns or "concepts"
- -construct a new column d<sub>p</sub>,p>N, with respect to the M words
- -assuming U and S remain unchanged

 $d_p = USV_p^T$  (just as a column in  $W = USV^T$ )

$$\underline{\mathbf{v}}_{p} = \mathbf{v}_{p} \mathbf{S} = \mathbf{d}_{p}^{T} \mathbf{U}$$

as an R-dim representation of the new document (i.e. obtaining the projection of d<sub>p</sub> on the basis e<sub>i</sub> of U by inner product)

## **Integration with N-gram Language Models**

## **Probabilistic Latent Semantic Analysis (PLSA)**

#### Language Modeling for Speech Recognition

 $-\operatorname{Prob}(w_{a}|d_{a-1})$ 

 $w_a$ : the q-th word in the current document to be recognized (q: sequence index)

 $d_{g-1}$ : the recognized history in the current document

 $v^{\hat{}}_{\text{a-1}}\!\!=\!\!d_{\text{q-1}}{}^{T}\!U$  : representation of  $d_{\text{q-1}}$  by  $v_{\text{q-1}}$  (folded-in)

 $-\overline{P}$ rob $(w_q|d_{q-1})$  can be estimated by  $\underline{u}_q$  and  $\underline{v}_{q-1}$  in the R-dim space

- integration with N-gram

 $Prob(w_{q}|H_{q-1}) = Prob(w_{q}|h_{q-1}^{(n)}, d_{q-1})$ 

 $H_{a-1}$ : history up to  $W_{a-1}$ 

 $h_{q-1}^{(q-1)} : < w_{q-n+1}, w_{q-n+2}, ... w_{q-1} > -N$ -gram gives local relationships, while  $d_{q-1}$  gives semantic concepts  $-d_{q-1}$  emphasizes more the key content words, while N-gram counts all words similarly including function words

#### • $\underline{\mathbf{v}}_{q-1}$ for $\mathbf{d}_{q-1}$ can be estimated iteratively

- assuming the q-th word in the current document is w<sub>i</sub>

$$d_{q} = (\frac{q-1}{q})d_{q-1} + (\frac{1-\varepsilon_{i}}{q})[00...0100....0]^{\mathsf{T}}$$

$$v_{q} = d_{q}^{\mathsf{T}}U = (\frac{q-1}{q})v_{q-1} + (\frac{1-\varepsilon_{i}}{q})u_{i} \quad \text{, updated word - by - word}$$

 $\underline{\mathbf{v}}_{q}$  moves in the R-dim space initially, eventually settle down somewhere



Exactly the same as LSA, using a set of latent topics  $\{T_1, T_2, \dots, T_K\}$  to construct a new relationship between the documents and terms, but with a probabilistic framework

$$P(t_{j} | D_{i}) = \sum_{k=1}^{K} P(t_{j} | T_{k}) P(T_{k} | D_{i})$$

Trained with EM by maximizing the total likelihood

$$L_{T} = \sum_{i=1}^{N} \sum_{j=1}^{n} c(t_{j}, D_{i}) \log P(t_{j} | D_{i})$$

 $c(t_i, D_i)$ : frequency count of term  $t_j$  in the document  $D_i$ 

## **Probabilistic Latent Semantic Analysis (PLSA)**



w: word

z: topic

d: document

N: words in document d M: documents in corpus

## **Latent Dirichlet Allocation(LDA)**



## Gibbs Sampling in general

- To obtain a distribution of a given form with unknown parameters  $\{z_i: i=1,\cdots,M\}$
- 1. Initialize  $\{z_i^{(0)}: i = 1, \dots, M\}$
- 2. For  $\tau = 0, \dots, T$ :
  - Sample  $z_1^{(\tau+1)} \sim p(z_1 | z_2^{(\tau)}, z_3^{(\tau)}, \dots, z_M^{(\tau)})$

Take a sample of  $z_1$  base on the distribution  $p\left(z_1 \middle| z_2^{(\tau)}, z_3^{(\tau)}, \cdots, z_M^{(\tau)}\right)$ 

- Sample  $z_2^{(\tau+1)} \sim p\left(z_2 \middle| z_1^{(\tau+1)}, z_3^{(\tau)}, \cdots, z_M^{(\tau)}\right)$
- $\text{ Sample } z_{j}^{(\tau+1)} \sim p\left(z_{j} \left| z_{1}^{(\tau+1)}, \; \cdots \;, z_{j-1}^{(\tau+1)}, z_{j+1}^{(\tau)}, \; \cdots \;, z_{M}^{(\tau)} \right) \right.$
- Sample  $z_M^{(\tau+1)} \sim p\left(z_M \middle| z_1^{(\tau+1)}, z_2^{(\tau+1)}, \cdots, z_{M-1}^{(\tau+1)}\right)$
- Apply Markov Chain Monte Carlo and sample each variable sequentially conditioned on the other variables until the distribution converges, then estimate the parameters based on the converged distribution

### Gibbs Sampling applied on LDA

Sample P(Z,W):





17

## Gibbs Sampling applied on LDA

Sample P(Z,W):

1. Random Initialization





## Gibbs Sampling applied on LDA

Sample P(Z,W):

- Random Initialization
- Erase Z<sub>11</sub>, and draw a new Z<sub>11</sub> ~

$$P(z_{11}|z_{12}\cdots z_{M,N_M},w_{11},w_{12},\cdots,w_{M,N_M})$$







Doc 2

19

## Gibbs Sampling applied on LDA

#### Sample P(Z,W):

- 1. Random Initialization
- 2. Erase Z<sub>11</sub>, and draw a new Z<sub>11</sub> ~



- $P(z_{11}|z_{12}\cdots z_{M,N_M}, w_{11}, w_{12}, \cdots, w_{M,N_M})$
- 3. Erase Z<sub>12</sub>, and draw a new Z<sub>12</sub> ~

$$P(z_{12}\big|z_{11},z_{13}\cdots z_{M,N_M},w_{11},w_{12},\cdots,w_{M,N_M})$$







## Gibbs Sampling applied on LDA

#### Sample P(Z,W):

- 1. Random Initialization
- 2. Erase Z<sub>11</sub>, and draw a new Z<sub>11</sub> ~

$$P(z_{11}|z_{12}\cdots z_{M,N_M},w_{11},w_{12},\cdots,w_{M,N_M})$$

3. Erase Z<sub>12</sub>, and draw a new Z<sub>12</sub> ~

$$P(z_{12}|z_{11},z_{13}\cdots z_{M,N_M},w_{11},w_{12},\cdots,w_{M,N_M})$$





- 4. Iteratively update topic assignment for each word until converge
- 5. Compute  $\theta$ ,  $\phi$  according to the final setting



#### 21

# **Matrix Factorization (MF) for Recommendation systems**

|        | Movie |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
| User A | 3.7   |       |       |       | 4.0   |       |       |       |       |
| User B | 4.0   |       |       |       |       | 4.3   |       |       |       |
| User C |       |       | 4.1   |       |       |       |       |       |       |
| User D |       | 2.3   |       |       |       |       |       |       | 2.5   |
| User E |       |       |       |       |       |       |       | 3.3   |       |
| User F |       |       |       | 2.9   |       |       |       |       |       |
| User G |       | 2.6   |       |       |       |       | 2.7   |       |       |

 $R = [r_{ui}]$ : rating

u: user i: item

## **Matrix Factorization (MF)**

 Mapping both users and items to a joint latent factor space of dimensionality f

$$q_{i} \in \mathbb{R}^{f}$$

$$p_{u} \in \mathbb{R}^{f}$$

$$\hat{r}_{ui} = q_{i}^{T} p_{u}.$$

latent factor: towards male, seriousness, etc.



23

## **Matrix Factorization (MF)**

#### • Objective function

$$\min_{q,p} \sum_{(u,i)} (r_{ui} - q_i^T p_u)^2 + \lambda (\|q_i\|^2 + \|p_u\|^2)$$

#### Training

- gradient descent (GD)

$$e_{ui} \stackrel{def}{=} r_{ui} - q_i^T p_u.$$

$$q_i \leftarrow q_i + \gamma \cdot (e_{ui} \cdot p_u - \lambda \cdot q_i)$$

$$p_u \leftarrow p_u + \gamma \cdot (e_{ui} \cdot q_i - \lambda \cdot p_u)$$

- Alternating least square (ALS): alternatively fix  $p_u$  's or  $q_i$  's and compute the other as a least square problem

#### • Different from SVD (LSA)

- SVD assumes missing entries to be zero (a poor assumption)

## **Overfitting Problem**

#### A good model is not just to fit all the training data

- needs to cover unseen data well which may have distributions slightly different from that of training data
- too complicated models with too many parameters usually leads to overfitting



## **Extensions of Matrix Factorization (MF)**

#### Biased MF

– add global bias  $\mu$  (usually = average rating), user bias  $b_u$ , and item bias  $b_i$  as parameters

$$\hat{r}_{ui} = \mu + b_i + b_u + q_i^T p_u$$

#### • Non-negative Matrix Factorization

- restrict the value in each component of  $p_u$  and  $q_i$  to be non-negative

### References

#### LSA and PLSA

- "Exploiting Latent Semantic Information in Statistical Language Modeling",
   Proceedings of the IEEE, Aug 2000
- "Latent Semantic Mapping", IEEE Signal Processing Magazine, Sept. 2005,
   Special Issue on Speech Technology in Human-Machine Communication
- "Probabilistic Latent Semantic Indexing", ACM Special Interest Group on Information Retrieval (ACM SIGIR), 1999
- "Probabilistic Latent Semantic Indexing", Proc. of Uncertainty in Artificial Intelligence, 1999
- "Spoken Document Understanding and Organization", IEEE Signal Processing Magazine, Sept. 2005, Special Issue on Speech Technology in Human-Machine Communication

#### LDA and Gibbs Sampling

- Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2006
- Blei, David M.; Andrew Y. Ng, Michael I. Jordan. "Latent Dirichlet Allocation", Journal of Machine Learning Research 2003
- Gregor Heinrich, "Parameter estimation for text analysis", 2005

27

## References

#### • Matrix Factorization

- A Linear Ensemble of Individual and Blended Models for Music Rating Prediction. In JMLR W&CP, volume 18, 2011.
- Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, 2009.
- Introduction to Matrix Factorization Methods Collaborative Filtering (<a href="http://www.intelligentmining.com/knowledge/slides/Collaborative.Filtering.Factorization.pdf">http://www.intelligentmining.com/knowledge/slides/Collaborative.Filtering.Factorization.pdf</a>)
- GraphLab API: Collaborative Filtering (http://docs.graphlab.org/collaborative filtering.html)
- J Mairal, F Bach, J Ponce, G Sapiro, Online learning for matrix factorization and sparse coding, The Journal of Machine Learning, 2010