MAT137 Lecture 22

Huan Vo

University of Toronto

January 11, 2018

A non-continuous function

Consider the function f defined on $\left[0,1\right]$ given by

$$f(x) = \begin{cases} 0, & x = 0, \\ 5, & 0 < x \le 1. \end{cases}$$

- (a) Fix an arbitrary partition $P = \{x_0, x_1, \dots, x_N\}$ of [0, 1]. What is $U_P(f)$?
- (b) For the same partition, what is $L_P(f)$?
- (c) What is the upper integral, $\overline{I_0^1}(f)$?
- (d) What is the lower integral, $\underline{I_0^1}(f)$?
- (e) Is f integrable on [0,1]?

A very non-continuous function

Consider the function defined on [0,1]:

$$f(x) = \begin{cases} 1 & \text{for } x = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \dots \\ 0 & \text{otherwise} \end{cases}$$

- (a) Compute all the lower sums.
- (b) Find a partition P such that $U_P(f) = 1$.
- (c) Find a partition P such that $U_P(f) < 1$.
- (d) Find a partition P with only 4 points such that $U_P(f)=0.52$.
- (e) Find a partition P with only 4 points such that $U_P(f)=0.5001$.
- (f) For $\varepsilon > 0$, find a partition P such that $U_P(f) < \varepsilon$.
- (g) Compute $\underline{I_0^1}(f)$ and $\overline{I_0^1}(f)$.
- (h) Is f integrable on [0,1]?

A very, very non-continuous function

Consider the function defined on [0,1]:

$$f(x) = \begin{cases} 1/2 & \text{if } 0 \leq x \leq 1/2 \\ 1 & \text{if } 1/2 < x \leq 1 \text{ and } x \in \mathbb{Q} \\ 0 & \text{if } 1/2 < x \leq 1 \text{ and } x \notin \mathbb{Q} \end{cases}$$

Question

Calculate $\overline{I_0^1}(f)$ and $I_0^1(f)$. Is f integrable?

Hint: Think of different partitions and what their upper and lower sums are.

Huan Vo (UofT) MAT137 Lecture 22 January 11, 2018

4 / 9

Computing an integral from Riemann sums

Exercise

Let $f(x) = x^2$ on [0, 1].

Let $P_n = \{ \text{breaking the interval into } n \text{ equal pieces} \}.$

- (a) Write a explicit formula for P_n .
- (b) What is Δx_i ?
- (c) Write the Riemann sum $S_{P_n}^{*}(f)$ with sigma notation when we choose x_i^{*} as the right end-point.
- (d) Add the sum
- (e) Compute $\lim_{n\to\infty} S_{P_n}^*(f)$.
- (f) Repeat the last 3 questions when we choose x_i^* as the left end-point.

Helpful formulas:
$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}, \qquad \sum_{i=1}^{N} i^2 = \frac{N(N+1)(2N+1)}{6}$$

More on upper/lower sums

- ► Consider f(x) = x on [0,1]. Is there a partition P of [0,1] such that $L_P(f) = U_P(f)$?
- ▶ Let f be a bounded function on [a, b].
 Assume f is not constant.
 Prove that there exists a partition P of [a, b] such that

$$L_P(f) \neq U_P(f)$$
.

Hint: This is easier than it looks.

Is this possible?

Find bounded functions f and g on $\left[0,1\right]$ such that

- ightharpoonup f is not integrable on [0,1],
- ightharpoonup g is not integrable on [0,1],
- f + g is integrable on [0, 1].

Properties of the integral

Assume we know the following

$$\int_0^2 f(x)dx = 3, \qquad \int_0^4 f(x)dx = 9, \qquad \int_0^4 g(x)dx = 2.$$

Compute:

(a)
$$\int_0^2 f(t)dt$$

(b)
$$\int_0^2 f(t)dx$$

(c)
$$\int_{0}^{0} f(x)dx$$

(d)
$$\int_2^4 f(x)dx$$

(e)
$$\int_0^1 f(x)dx$$

(f)
$$\int_0^4 [f(x) - 2g(x)] dx$$

Next Class: Monday January 15

Watch videos 8.1, 8.2, 8.3 in Playlist 8.