Data Analytics in Business Linear Regression

Sridhar Narasimhan, Ph.D

ProfessorScheller College of Business

Steps in Regression Analysis

Lessons in this Module

- A. Steps in Regression Analysis
- B. Linear Regression Example
- C. Notation
- D. R², Adjusted R²
- E. Simple Regression (One Predictor Variable) Using R
- F. Multiple Regression
- G. R², Adjusted R² from Multiple Regression
- H. Prediction

Steps in Regression Analysis

- 1. Statement of the problem
- 2. Using regression for
 - Diagnostic,
 - Predictive, or
 - Prescriptive analytics?
- 3. Selection of potentially relevant response and explanatory variables
- 4. Data collection
 - Internal data external data, purchased data, experiments, etc.

Steps in Regression Analysis (cont'd)

- 5. Choice of fitting method
 - Ordinary least squares (OLS),
 - Generalized least squares,
 - Maximum likelihood,
 - Etc.
- Model fitting
- Model validation (diagnostics)
- 8. Refine the model & iterate from step 3
- 9. Use of the model

Business Examples

Y - Dependent Variable

X - Independent Variable(s)

- 1. Used car price
- 2. Sales
- 3. Time taken to repair a product
- 4. Product added to shopping cart?
- 5. Starting salary of new employee
- 6. Sale price of house
- 7. Will customer default?
- 8. Will customer churn?

odometer reading, age of car, condition advertisement spending experience of technician in years ratings, price work experience, years of education square feet, # of bedrooms, location credit balance, income, age length of contract, age of customer

Quiz (True/False)

 Could a variable, say price, be either a dependent or an independent variable?

Answer: **TRUE**. Depends on the purpose of your model; see examples #1 and #4 in the previous slide.

 A variable that takes binary values (pass/fail or true/false) cannot be a dependent variable.

Answer: **FALSE**. We do use 0/1 dependent variables in logistic regression models; #7 in the previous slide is one example.

Data Analytics in Business Linear Regression

Sridhar Narasimhan, Ph.D

ProfessorScheller College of Business

Linear Regression Example

Linear Regression: A Sample Problem

- Assume that you need to sell your house.
- You want to predict the listing price based on how other houses are listed in the market.
- How would you approach this task?
- A typical approach is to ask realtors
 - Realtors often will use "comparables" (i.e., recent sales of houses in your neighborhood) and somehow come up with a suggested sale price.
- However, you want to be more analytical in your approach
 - You have access to recent actual home sales in your city.
 - You'd like to know what are the impacts of factors such as lotsize, # of bedrooms, # of bathrooms, etc., on the price.
 - Could you use linear regression to help you get a "better" estimate of the listing price?

Use Housing dataframe in Ecdat package in R

- This data set is a sample of the real estate transactions in one city
- It is a cross-section of 546 home prices (from 1987) in the city of Windsor in Canada.
- Alternatively, you could collect house prices from websites or scrape them from the web

str(Housing)

- 'data.frame': 546 obs. of 12 variables:
- \$ price: num 42000 38500 49500 60500 61000 66000 66000 69000 83800 88500 ...
- \$ lotsize: num 5850 4000 3060 6650 6360 4160 3880 4160 4800 5500 ...
- \$ bedrooms: num 3233233333...
- \$ bathrms: num 11111112112...
- \$ stories: num 2 1 1 2 1 1 2 3 1 4 ...
- \$ driveway: Factor w/ 2 levels "no", "yes": 2 2 2 2 2 2 2 2 2 2 ...
- \$ recroom: Factor w/ 2 levels "no", "yes": 1 1 1 2 1 2 1 1 2 2 ...
- \$ fullbase: Factor w/ 2 levels "no", "yes": 2 1 1 1 1 2 2 1 2 1 ...
- \$ gashw: Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 1 ...
- \$ airco: Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 2 1 1 1 2 ...
- \$ garagepl: num 1000002001...
- \$ prefarea: Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 1 ...

The First 10 Records in Housing

Housing Dataset in the Ecdat package in R

Tiousing Dataset in the Ecdat package in it											
price	lotsize	bedrooms	bathrms	stories	driveway	recroom	fullbase	gashw	airco	garagepl	prefarea
42000	5850	3	1	2	yes	no	yes	no	no	1	no
38500	4000	2	1	1	yes	no	no	no	no	0	no
49500	3060	3	1	1	yes	no	no	no	no	0	no
60500	6650	3	1	2	yes	yes	no	no	no	0	no
61000	6360	2	1	1	yes	no	no	no	no	0	no
66000	4160	3	1	1	yes	yes	yes	no	yes	0	no
		_	_	_						_	
66000	3880	3	2	2	yes	no	yes	no	no	2	no
		_		_							
69000	4160	3	1	3	yes	no	no	no	no	0	no
		_									
83800	4800	3	1	1	yes	yes	yes	no	no	0	no
20500											
88500	5500	3	2	4	yes	yes	no	no	yes	1	no

Histogram of House Prices

Histogram of lotsize

Correlation Matrix

Correlation Matrix

Scatter Plot

Scatter Plot of price (y) against lotsize (x), including the linear regression line

Quiz (True/False)

 The mean of a variable that has a right-skewed distribution is smaller than the median.

Answer: **FALSE**.

 The correlation coefficient can capture the strength of both linear and nonlinear relationships.

Answer: **FALSE**.

Data Analytics in Business Linear Regression

Sridhar Narasimhan, Ph.D

ProfessorScheller College of Business

Notation

Linear Regression: Notation

Notation	Meaning						
i = 1,2,,n	i refers to the ith observation or record in a data set of records (typically a sample of the population)						
$(x_{11}, x_{21},, x_{p1}),$ $(x_{12}, x_{22},, x_{p2}),$, $(x_{1n}, x_{2n},, x_{pn})$	n observations of the p explanatory variables						
y_1, y_2, \ldots, y_n	n observations of the dependent variable						
$ar{y}$	Mean value of the dependent (y) variable						
$ar{x}_{ ext{k}}$	Mean value of the x_k th explanatory (independent) variable						

Linear Regression: Notation (cont'd)

Notation	Meaning
$\boldsymbol{\beta}_{\scriptscriptstyle O}$, $\boldsymbol{\beta}_{\scriptscriptstyle 1}$,, $\boldsymbol{\beta}_{\scriptscriptstyle P}$	Parameters of the regression line for the entire population
b_0, b_1, b_p	Estimates of the $oldsymbol{eta}$ parameters obtained by fitting the regression to the sample data
$\mathcal{E}_{ar{l}}$	Error term for the ith observation in the population
\boldsymbol{e}_i	Error term for the ith observation in the sample
$\hat{\mathcal{Y}}_i$	Estimated value of y for the i th observation in a sample. This is obtained by evaluating the regression function at x_i

Simple Linear Regression

- We observe the data in the Housing dataset (which is a sample)
- We want to build a model for the population:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
 (which is the valid relation)

- ε_i are independent and identically distributed (i.i.d.) random variables, which are normally distributed with mean 0 and standard deviation σ
- However, we do not know β_0 , β_1 , or σ , so we need to estimate them based on the **sample** in the Housing dataset
- Using this sample, we are going to build a model

$$Y_i = b_0 + b_1 X_i + e_i$$

Population model, $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$

Independent variable, x

Estimates of Slope and Intercept Depend on the Sample Being Used

Estimates of Slope and Intercept Depend on the Sample Being Used

Quiz (True/False)

• The total deviation at observation (x_i, y_i) is $y_i - \overline{y}$. Answer: **TRUE**

 In OLS, the estimates of slope and intercept do not depend on the sample being used.

Answer: FALSE

Data Analytics in Business Linear Regression

Sridhar Narasimhan, Ph.D

ProfessorScheller College of Business

Regression (Ordinary Least Squares): Sum of Squared Errors (SSE)

Regression (OLS) determines the line that minimizes the Sum of Squared Errors.

• i.e., b_0 and b_1 are determined such that they minimize:

$$SSE = \sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} (y_i - (b_0 + b_1 x_i))^2$$

Summing the Deviations

$$\sum_{i} (y_{i} - \bar{y})^{2} = \sum_{i} (y_{i} - \hat{y}_{i})^{2} + \sum_{i} (\bar{y} - \hat{y}_{i})^{2}$$

$$SST = SSE + SSR$$

$$Total Sum of Squares = Squared Errors + Squares Regression$$

Regression Output R² and Adjusted R²

Coefficient of determination (R²)

- A measure of the overall strength of the relationship between the dependent variable (Y) and independent variables (X)
- R² = 1 (SSE/SST) = SSR/SST
 = Explained deviation (SSR)/Total Deviation (SST)
- R² → how much of the variation in Y (from the mean) has been explained

Adjusted R²

- Adding a penalty for the number of independent variables (p)
- Adjusted $R^2 = 1 {SSE/(n p 1)}/{SST/(n 1)}$

 $R^2 = 1$, X accounts for all Y variation

 $R^2 = 0$, X accounts for none of the Y variation

 $R^2 = 0.75$, X accounts for most of the Y variation

Quiz (True/False)

- R² = 0, implies that X values account for all of the variation in the Y values
 Answer: FALSE. R² = 0 implies that X values account for none of the
 variation in the Y values
- R² can take any value from infinity to + infinity
 Answer: FALSE. It can take on values between 0 and 1

Data Analytics in Business Linear Regression

Sridhar Narasimhan, Ph.D

ProfessorScheller College of Business

Simple Regression (One Predictor Variable) Using R

Regression Output: Simple Linear Regression

Im(formula = price ~ lotsize, data = Housing)

Residuals:

Min	1Q	Median	3Q	Max
-69551	-14626	-2858	9752.	106901

Unexplained deviation/Error/Residual = $\mathbf{v}_i - \hat{\mathbf{v}}_i$

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.414e+04	2.491e+03	13.7	<2e-16 ***
lotsize	6.599e+00	4.458e-01	14.8	<2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22570 on 544 degrees of freedom Multiple R-squared: 0.2871, Adjusted R-squared: 0.2858 F-statistic: 219.1 on 1 and 544 DF, p-value: < 2.2e-16

Regression Output: Coefficients

 b_0 and b_1 are estimates of the true parameters β_0 and β_1

H₀: the parameter is zero, H₁: The parameter is not zero

```
Im(formula = price ~ lotsize, data = Housing)
```

Residuals:

Min	1Q	Median	3Q	Max
-69551	-14626	-2858	9752	106901

Coefficients:

```
(Intercept) Estimate Std. Error t value Pr(>|t|)
3.414e+04 2.491e+03 13.7 <2e-16 ***
6.599e+00 4.458e-01 14.8 <2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22570 on 544 degrees of freedom Multiple R-squared: 0.2871, Adjusted R-squared: 0.2858 F-statistic: 219.1 on 1 and 544 DF, p-value: < 2.2e-16

Regression Output: t-values for Coefficients

p value: the probability of finding a t value of this size if the null hypothesis is true H_0 : the parameter is zero

```
Im(formula = price ~ lotsize, data = Housing)
```

Residuals:

Min	1Q	Median	3Q	Max
-69551	-14626	-2858	9752	106901

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.414e+04	2.491e+03	13.7	<2e-16 ***
lotsize	6.599e+00	4.458e-01	14.8	<2e-16 ***
		•		

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22570 on 544 degrees of freedom Multiple R-squared: 0.2871, Adjusted R-squared: 0.2858 F-statistic: 219.1 on 1 and 544 DF, p-value: < 2.2e-16

Interpreting Coefficients

	Estimate
(Intercept)	3.414e+04 ***
lotsize	6.599e+00 ***

$$b_0 = 34,140$$

Intercept of the regression line with the y-axis (when lotsize is zero). Not useful.

$$b_1 = 6.599$$

An increase of 1,000 square feet is associated with an increase of the sale price of a house by \$6,599, keeping all else constant (*ceteris paribus*)

Regression Output: Sum of Squares

Analysis of Variance Table

```
Df Sum Sq
lotsize 1 1.1156e+11
Residuals 544 2.7704e+11
```

```
SSR = 1.1156e+11

SSE = 2.7704e+11

SST = SSR + SSE = 3.886e+11
```


Regression Output: R²

```
Im(formula = price ~ lotsize, data = Housing)
```

Residuals:

```
Min 1Q Median 3Q Max -69551 -14626 -2858 9752 106901
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.414e+04 2.491e+03 13.7 <2e-16 ***
lotsize 6.599e+00 4.458e-01 14.8 <2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22570 on 544 degrees of freedom

Multiple R-squared: 0.2871, Adjusted R-squared: 0.2858

F-statistic: 219.1 on 1 and 544 DF, p-value: < 2.2e-16

Regression Output R² and Adjusted R²

```
SSR = 1.1156e + 11
SSE = 2.7704e + 11
SST = SSR + SSE = 3.886e + 11
Multiple R-squared: 0.2871, Adjusted R-squared: 0.2858
R^2 = 1 - (SSE/SST) = SSR/SST = 1.1156e + 11/3.886e + 11
          0.2871
Note: \sqrt{R^2} = \sqrt{0.2871} = 0.536 (which is the correlation coefficient between price and lotsize)
Adjusted R^2 = 1 - \{SSE/(n - p - 1)\}/\{SST/(n - 1)\}
          = 1 - \{(2.7704e + 11/(546 - 1 - 1))\} / \{3.886e + 11/(546 - 1)\}
          = 0.2858
```


F-test that the model is significant $(H_0: b_1 = 0)$

```
SSR = 1.1156e + 11
SSE = 2.7704e + 11
SST = SSR + SSE = 3.886e + 11
If p is the number of independent variables, The F statistic
  = (SSR/p)/(SSE/n - p - 1) = (R^2/p)/(1 - R^2)/(n - p - 1)
The value of Prob(F) is the probability that H_0 is true (i.e., b_1 = 0).
For this model, p = 1,
F = (0.2871/1) / (1 - 0.2871)/(546 - 1 - 1) = 219.1
     with (1,544) degrees of freedom.
F statistic: 219.1 with (1, 544) DF, p-value: < 2.2e-16. Hence H<sub>0</sub> is rejected.
```


Data Analytics in Business Linear Regression

Sridhar Narasimhan, Ph.D

ProfessorScheller College of Business

Multiple Regression

Multiple Linear Regression, with *p* Explanatory Variables

Regression coefficients:

 b_0 , b_1 , ..., b_p are estimates of β_0 , β_1 , ..., β_p

• **Prediction** for Y at x_i

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_p x_{pi}$$

· Residual:

$$e_i = y_i - \hat{y}_i$$

Goal: choose b_0 , b_1 , ..., b_p to minimize the sum of squared errors

$$SSE = \sum_{i} (y_i - \hat{y}_i)^2 =$$

$$\sum_{i} (y_i - (b_0 + b_1 x_{1i} + \dots b_p x_{pi}))^2$$

Using R to estimate a Linear Model

Using the Housing Dataset in the Ecdat package in R

Adding Bedrooms to the Analysis

price	lotsize	bedrooms	
42,000	5,850	3	
38,500	4,000	2	
49,500	3,060	3	
60,500	6,650	3	
61,000	6,360	2	
66,000	4,160	3	
66,000	3,880	3	
69,000	4,160	3	
83,800	4,800	3	
88,500	5,500	3	
90,000	7,200	3	
30,500	3,000	2	
27,000	1,700	3	
36,000	2,880	3	
37,000	3,600	2	

Visualize (Plots)

Do the slopes make sense?

Regression Output

```
Im(formula = price ~ lotsize + bedrooms, data = Housing)
Coefficients:
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	5.613e+03	4.103e+03	1.368	0.172
lotsize	6.053e+00	4.243e-01	14.265	< 2e-16 ***
bedrooms	1.057e+04	1.248e+03	8.470	2.31e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21230 on 543 degrees of freedom

Multiple R-squared: 0.3703, Adjusted R-squared: 0.3679

F-statistic: 159.6 on 2 and 543 DF, p-value: < 2.2e-16

Regression Output: Coefficients

 b_0 , b_1 , ..., b_p are estimates of the true parameters θ_0 , θ_1 , ..., θ_p

H₀: the parameter is zero, H₁: The parameter is not zero

Im(formula = price ~ lotsize + bedrooms, data = Housing)

Coefficients:

(Intercept) lotsize bedrooms Estimate 5.613e+03 6.053e+00 1.057e+04 Std. Errort valuePr(>|t|)4.103e+031.3680.1724.243e-0114.265< 2e-16 ***</td>1.248e+038.4702.31e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21230 on 543 degrees of freedom Multiple R-squared: 0.3703, Adjusted R-squared: 0.3679 F-statistic: 159.6 on 2 and 543 DF, p-value: < 2.2e-16

Regression Output: Standard Error of the Coefficients

Similar to Standard Deviation

Im(formula = price ~ lotsize + bedrooms, data = Housing)

Coefficients:

	Estimate
(Intercept)	5.613e+03
lotsize	6.053e+00
bedrooms	1.057e+04

```
Std. Error t
4.103e+03 1
4.243e-01 1
1.248e+03
```

Pr(> t)
0.172
< 2e-16 ***
2.31e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21230 on 543 degrees of freedom Multiple R-squared: 0.3703, Adjusted R-squared: 0.3679 F-statistic: 159.6 on 2 and 543 DF, p-value: < 2.2e-16

Regression Output: t-values for Coefficients

Im(formula = price ~ lotsize + bedrooms, data = Housing)

Coefficients:

	Estimate	Std. Error
(Intercept)	5.613e+03	4.103e+03
lotsize	6.053e+00	4.243e-01
bedrooms	1.057e+04	1.248e+03

t value Pr(>|t|) 1.368 0.172 14.265 < 2e-16 *** 8.470 2.31e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21230 on 543 degrees of freedom Multiple R-squared: 0.3703, Adjusted R-squared: 0.3679

F-statistic: 159.6 on 2 and 543 DF, p-value: < 2.2e-16

Interpreting Coefficients

Estimate
(Intercept) 5.613e+03
lotsize 6.053e+00
Bedrooms 1.057e+04

$$b_0 = 5613$$

Intercept of the regression line with the y-axis (when all x's are zero). Not useful

$$b_1 = 6.053$$

An increase of 1,000 square feet is associated with an increase of the sale price of a house by \$6,053, keeping all else constant

$$b_2 = 10570$$

An additional bedroom is associated with an increase of the sale price of a house by \$10,570, keeping all else constant

Data Analytics in Business Linear Regression

Sridhar Narasimhan, Ph.D

ProfessorScheller College of Business

R², Adjusted R² from Multiple Regression

Regression Output: Sum of Squares

Analysis of Variance Table

	Df	Sum Sq
lotsize	1	1.1156e+11
bedrooms	1	3.2329e+10
Residuals	543	2.4472e+11

```
SSR = (1.1156 + 0.32329) e+11

SSE = 2.4472e+11

SST = SSR + SSE = 3.88609e+11
```


Regression Output: R²

```
Im(formula = price ~ lotsize + bedrooms, data = Housing)
Coefficients:
```

```
Estimate
                         Std. Error
                                      t value
                                               Pr(>|t|)
(Intercept)
            5.613e+03
                         4.103e+03
                                      1.368
                                               0.172
            6.053e+00
                        4.243e-01
                                      14.265
                                               < 2e-16 ***
lotsize
                                      8.470
bedrooms
             1.057e+04
                         1.248e+03
                                               2.31e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21230 on 543 degrees of freedom

Multiple R-squared: 0.3703, Adjusted R-squared: 0.3679

F-statistic: 159.6 on 2 and 543 DF, p-value: < 2.2e-16

Regression Output R² and Adjusted R²

```
SSR = (1.1156 + 0.32329) e+11

SSE = 2.4472e+11

SST = SSR + SSE = 3.88609e+11
```

Multiple R-squared: 0.3703, Adjusted R-squared: 0.3679

```
R^2 = 1 - SSE/SST = SSR/SST = 1.43889e+11/3.88609e+11
= 0.3703
```

Adjusted R² =
$$1 - {SSE/(n-p-1)}/{SST/(n-1)}$$

= $1 - ((2.4472e+11/(546-2-1)) / {3.88609e+11/(546-1)}$
= 0.3679

F-test of the overall significance of the model $(H_0: b_1 = b_2 = 0)$

```
SSR = (1.1156 + 0.32329) e+11

SSE = 2.4472e+11

SST = SSR + SSE = 3.88609e+11

The F statistic

= (SSR/p) / (SSE/(n-p-1)) = (R^2/p) / ((1-R^2)/(n-p-1))
```

The value of Prob(F) is the probability that H_0 is true.

For this example, F = (0.3703/2)/(1 - 0.3703)/(546 - 2 - 1) = 159.6F-statistic: 159.6 on 2 and 543 DF, p-value: < 2.2e-16. Hence H₀ is rejected.

Simple vs. Multiple Regression

For the Simple Regression we got:
 Multiple R-squared: 0.2871, Adjusted R-squared: 0.2858

For the Multiple Regression we got:
 Multiple R-squared: 0.3703, Adjusted R-squared: 0.3679

As you add variables, R-square will not decrease

Comparing the Two Models

n: number of observations

p: number of variables (do not count the intercept)

Bigger model 2 which has (more) p₂ variables

Smaller model 1 which has (fewer) p₁ variables

We want to determine whether model 2 gives a *significantly* better fit to the data. Then use the F statistic shown below

- $F(p_2-p_1, n-p_2-1)$
- F test statistic is calculated as

$$F = \frac{(R_2^2 - R_1^2)/(p_2 - p_1)}{(1 - R_2^2)/(n - p_2 - 1)}$$

Quiz (True/False)

 In general, adding more variables decreases the overall R-Square value of the multiple regression.

Answer: FALSE.

 In the regression output shown below, a p-value of < 2e-16 *** means that there is not much evidence for the coefficient of lotsize to be different from zero.

Answer: FALSE.

Im(formula = price ~ lotsize + bedrooms, data = Housing)					
Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	5.613e+03	4.103e+03	1.368	0.172	
lotsize	6.053e+00	4.243e-01	14.265	< 2e-16 ***	
bedrooms	1.057e+04	1.248e+03	8.470	2.31e-16 ***	

Data Analytics in Business Linear Regression

Sridhar Narasimhan, Ph.D

ProfessorScheller College of Business

Predictions (Interpolation)

Predictions

You know of several methods for prediction, including:

- Decision Trees
- Random Forests
- Neural Nets
- Etc.

We are interested in interpolation here.

Prediction Interval

Prediction Interval

What does this mean?

- Narrowest at (\bar{X}, \bar{Y})
- It gets wider the further away X is from (\bar{X})
- Need to be careful about when to use prediction

Making Predictions (Interpolation)

```
ab.lm <- lm(formula = price ~ lotsize + bedrooms, data = Housing)
Coefficients:
```

	Estimate	Std. Error
(Intercept)	5.613e+03	4.103e+03
lotsize	6.053e+00	4.243e-01
bedrooms	1.057e+04	1.248e+03

For a new data point for a house with a lotsize of 3000 sq ft and 2 bedrooms, we can use the predict function in R.

```
newdata = data.frame(lotsize=3000, bedrooms = 2)
predict(ab.lm, newdata, interval = "predict")
```

```
fit lwr upr
44906.37 3077.091 86735.65
```

The expected predicted value is \$44,906.37 and the 95% Prediction Interval is (\$3,077.091, \$86,735.65)

Evaluation of Prediction Methods

- Sometimes, regression is used for prediction.
- You already have learned about metrics to evaluate prediction performance in other courses.
- You could also use training sets and evaluation sets with regression models.
- Use Confusion Matrices to develop metrics (sensitivity, specificity, accuracy, etc.) to evaluate the prediction performance of your regression model.

Recap of this Module

- A. Steps in Regression Analysis
- B. Linear Regression Example
- C. Notation
- D. R², Adjusted R²
- E. Simple Regression (One Predictor Variable) Using R
- F. Multiple Regression
- G. R², Adjusted R² from Multiple Regression
- H. Prediction

