

Unit 1 mth174 mcqs for practice

Digital system design using verilog (Lovely Professional University)

Unit 1

SET-1(MCQs)

1

. The matrix $\begin{pmatrix}1&2&3\\2&4&6\\3&6&5\end{pmatrix}$ is a

- a) symmetric matrix
- c) diagonal matrix

- b) skew-symmetric matrix
- d) none of these

2.

If A is a non-null square matrix then $A + A^{T}$ is a

- a) symmetric matrix
- b) skew-symmetric matrix

c) null matrix

d) none of these

3.

If
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 then $(A^2)^T =$

a)
$$\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$

b) I₂

c) 2A

d) none of these

4

 $(AB)^T$ is equal to

a) $A^T + B^T$

b) $A^T B^T$

c) $B^T A^T$

d) none of these

5.

If
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 then $A \cdot A^t =$

a) I2

b) A

c) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

d) none of these

6.

If
$$A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$
 then $A^2 + 7I =$

- a) (
- b) 2A
- c) 3A
- d) 5A

(use cayley theorem A²-5A+7I=O)

7.

 $(2A+3B)^T$ is equal to

a) $2A + 3B^T$

b) $2A^{T} + 3B^{T}$

c) $4A^{T} + 9B^{T}$

d) none of these

8.

If $\begin{pmatrix} 2 & k \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -3 & 1 \end{pmatrix}$ then the value of k is

- b) 0
- c) 5
- d) -1

9.

The trace of $A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ is

- a) 7
- c) 6
- d) 4.

10.

The trace of A^T is same as

a) trace of A

b) trace of A^{-1}

c) $[\text{trace of } A]^T$

d) none of these

11.

For an orthogonal matrix A, A^{-1} is same as

- b) A^T
- d) none of these

[matrix A is said to be orthogonal if $A^{-1}=A^{T}$]

12.

For any nonsingular matrix A, $(A^T)^{-1}$ is same as

- a) $\left(A^{-1}\right)^T$ b) A^T
- d) none of these

13.

For any orthogonal matrix A, det A is equal to

- a) 0
- b) 1
- c) ±1
- d) -1

14. If the order of matrix A is m x p. And the order of B is p x n. Then the order of AB is ?

- A. nxp
- B. $m \times p$
- $C. m \times n$
- D. $n \times m$

15. • What is a, if

$$B = \begin{bmatrix} 1 & 4 \\ 2 & a \end{bmatrix}$$
 is a singular matrix?

- A. 5
- B. 6
- C. 7
- D. 8

16. ● If

$$A = \begin{bmatrix} 2i & i \\ i & -i \end{bmatrix}$$

then
$$|A| = ?$$

- A. 2
- B. 3
- C. 4
- D. 5

17. • The matrix

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 0 & 1 \\ 2 & 1 & 5 \end{bmatrix}$$

is a?

- A. symmetric
- B. skew-symmetric
- C. hermitian
- D. skew-hermitian

18. Transpose of a rectangular matrix is a

- 1. rectangular matrix
- 2. diagonal matrix
- 3. square matrix
- 4. scalar matrix
- 5.

- 19. Two matrices A and B are multiplied to get AB if
 - 1. both are rectangular
 - 2. both have different order
 - 3. no of columns of A is equal to rows of B
 - 4. no of rows of A is equal to no of columns of B
- 20. If |A| = 0, then A is
 - 1. zero matrix
 - 2. singular matrix
 - 3. non-singular matrix
 - 4 (
- 21. If A is a symmetric matrix, then $A^t =$
 - 1. A
 - 2. |A|
 - 3. 0
 - 4. diagonal matrix

22.

If
$$\begin{bmatrix} x+3 & 1 \\ 2 & y+2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$$
 then values of x and y are

(a) x = 1 and y = 2 (b) x = -1 and y = -2 (c) x = 2 and y = 3 (d) none of these.

SET-2

- 1. Transpose of a rectangular matrix is a
 - a. rectangular matrix
 - b. diagonal matrix
 - c. square matrix
 - d. scalar matrix
- 2. Transpose of a column matrix is
- a. zero matrix
- b. diagonal matrix
- c. column matrix
- d. row matrix
- 3. Two matrices A and B are multiplied to get AB if
- a. both are rectangular
- b. both have same order
- c. no of columns of A is equal to rows of B
- d. no of rows of A is equal to no of columns of B
- 4. If eigen values of A are 0, 1, 2, then A is

a. zero mb. singulac. non-sid. none o	ar matrix ngular matrix				
5. If A isa. Ab. A c. 0d. diagor	a symmetric m	atrix, th	nen A ^t =		
6.Rank of	$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$ is				
a. 7.Rank of	$\begin{bmatrix} 1 & & b. & 2 \\ 1 & 3 & 1 \\ 0 & 6 & 0 \\ 0 & 0 & 5 \end{bmatrix} $ is	c. 3	d. none of the	se	
	1 b. 2 an identity mat			se	
	2 `a scalar matrix	b. 3 of orde	c. 4 r 4X4 is		d. 5
10.Rank o	a. 2 of a matrix of or	der pXc		c. 4	d. 5
a.)p	b.) q	c.) p oi	r less than p		d.) cannot say

11.
$$v1=(4,2,1,3), v2=(6,3,4,7), v3=(2,1,0,1).$$

- a. -4.v1+v2+5v3=0 b. v1+v2+5v3=0 c. v1-v2+5v3=0 d. none of these 12..(1,3,4,3),(1,3,2,3) and (1,3,4,1) are given vectors.
 - a. Vectors are Linearly independent.
 - b. Vectors are Linearly dependent.
 - c. Cannot say
 - d. None of these

13.v1=(1,2,0),v2=(2,0,1),v3=(6,4,3). Which of the following is correct

a. Vectors are Linearly independent.

- b. Vectors are Linearly dependent.
- c. Vectors are Linearly dependent and 2v1+3v2-v3=0
- d. None of these

14.If A is a matrix of order 3×2 and B is a matrix of order 2×3 , then what is the order of AB:

- (a) 3×2
- (b) 2×3
- (c) 3×3
- (d) 3×4

15.If $\begin{bmatrix} x+3 & 2y \\ x-1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 0 & 4 \end{bmatrix}$, then what is the value of x: (a) 2 (b) 3 (c)5 (d) 1

16.If $A = \begin{bmatrix} 1 & 4 \\ -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 6 \\ 3 & 5 \end{bmatrix}$.then value of 3A-2B is equal to:

(a)
$$A = \begin{bmatrix} 1 & 1 & 4 \\ 3 & 5 & 2 \\ 1 & 1 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} -1 & 5 \\ -12 & -7 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 0 \\ -12 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & 2 \\ -3 & -1 \end{bmatrix}$

17. Product of eigen value is equals to

(b)determinant of matrix (c)rank of matrix (a)trace of matrix (d)none 18

Which of the properties are true for matrix multiplication

- a. Distributive
- b. Commutative
- both a and b
- d. neither a nor b

19

Which of the operations can be valid with two matrices of different sizes?

- a. addition
- subtraction
- multiplication
- d. Division

20

Which of the following statements are true?

- a. trace(A)=trace(A')
- b. det(A)=det(A')
- c. both a and b
- d. neither a nor b

21.

Which of the statements are true?

- a. If A is a symmetric matrix, inv(A) is also symmetric
- b. det(inv(A)) = 1/det(A)
- c. If A and B are invertible matrices, AB is an invertible matrix too.
- d. all of the above

22

Which of the following options hold true?

- a. inv(inv(A)) = A
- b. inv(kA)=inv(A)/k
- c. inv(A') = inv(A)'
- d. all of the above

23

What is the rank of the matrix $\begin{bmatrix} 2 & -1 & 1 & -6 & 8 \\ 1 & -2 & -4 & 3 & -2 \\ -7 & 8 & 10 & 3 & -10 \\ 4 & -5 & -7 & 0 & 4 \end{bmatrix}$

- a. 2
- b. 3
- c. 4
- d. 5

24.

The vectors $x1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $x2 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $x3 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$ are :

- a. Linearly dependent
- b. Linearly independent

The vectors $x1 = {1 \choose 2}$, $x2 = {-5 \choose 3}$ are :

- a. Linearly dependent
- b. Linearly independent

26

The number of non-zero rows in an echelon form is called?

- a. reduced echelon form
- b. rank of a matrix
- c. conjugate of the matrix
- d. cofactor of the matrix

27

The rank of the matrix $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is

- a. 0
- b. 2
- c. 1
- d. 3

28

The rank of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is

- a. 3
- b. 2
- c. 1
- d. 0

29

5. Consider the following two statements:

I. The maximum number of linearly independent column vectors of a matrix A is called the rank of A.

II. If A is an $n \times n$ square matrix, it will be nonsingular is rank A = n.

With reference to the above statements, which of the following applies?

- a. Both the statements are false2
- b. Both the statements are true
- c. I is true but II is false.
- d. I is false but II is true

30

The Eigenvalues of a matrix $\begin{bmatrix} 2 & 7 \\ -1 & -6 \end{bmatrix}$ are

- a. 3 and 0
- b. -2 and 7
- c. -5 and 1
- d. 3 and -5

31

The Eigenvalues of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ are

- a. -1, 1 and 2
- b. 1, 1 and -2
- c. -1, -1 and 2
- d. 1, 1 and 2

32

The Eigenvectors of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ are

- a. (111), (101) and (110)
- b. (11-1), (10-1) and (110)
- c. (-1 1 -1), (1 0 1) and (1 1 0)
- d. (111), (-101) and (-110)

33

Indicate which of the statements are true?

a. If m is an Eigenvalue of A, the m is an Eigenvalue of A'

- If m is an Eigenvalue of A, then 1/m is the Eigenvalue of inv(A)
- c. both a and b
- d. neither a nor b

Indicate which of the statements are true?

- A singular matrix must have a zero Eigenvalue
- A singular matrix must have a negative Eigenvalue
- c. A singular matrix must have a complex Eigenvalue
- d. (d) All of the above
- 35. To multiply a matrix by 2, multiply
- (a) any row by 2 (b) every element by 2 (c) any column by 2 (d) none of these.
- 36. Matrix has a value. This statement is
- (a) always true (b) depend upon the matrices (c) false (d) none of these.
- 37 The product of the Eigen values of $\begin{vmatrix} 0 & 2 & 5 \\ 0 & 0 & 5 \end{vmatrix}$ is
- (a) 10 (b) 20 (c) 30 (d) none of these
- 38. If two Eigen values of $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ are 2 and 13, then the third value is
- (a) 0 (b) 3 (c) 2 (d) 4
- 39. The rank of matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 4 & 6 \end{bmatrix}$ is
- (a) 3 (b) 2 (c) 1 (d) 0
- 40. For any 2 x 2 matrix A, if A(Adj A)= $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, then |A| =a) 0 b) 10 c) 20 d) 100
- 41.The eigen values of a matrix $\begin{bmatrix} 2 & 7 \\ -1 & -6 \end{bmatrix}$ are a) 3 and 0 b) 3 and -7 c) -5 and 1 d) 3 and -5

- 42. The system of equations 3x + y + 2z = 3, 2x 3y z = -3, x + 2y + z = 4 has the solution
 - a) 2, 1, -2
- b) 1, 1, 1
- c) 1, 4, -2
- d) 1, 2, -1

43.If x1=(1,1,1,3), x2=(1,2,3,4) and x3=(2,3,4,7) are vectors, Which of following is false:

- a. X1,x2 and x3 are Linearly independent.
- b. X1,x2 and x3 are Linearly dependent.

- c. X1,x2 and x3 are Linearly dependent and x1+x2-x3=0.
- d. X1,x2 and x3 are Linearly dependent and x1+x2=x3

44..The eigen values of A= $\begin{bmatrix} 1 & 1 & 3 \\ 0 & -3 & -3 \\ 0 & 0 & -4 \end{bmatrix}$ are

45.If A= $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$ and $\lambda=2$ is eigen value of A, the eigen vector corresponding to $\lambda=2$ is :

- a. [1 -1 0]^t
- b. [1 2 1]^t c. [1 2 2]^t
- d. [1 -1 1]^t

46.A matrix $A = [a_{ij}]$ is an upper triangular matrix if

- a) it is a square matrix and $a_{ij} = 0$, i < j b) it is a square matrix and $a_{ij} = 0$, i > j
- c) it is not a square matrix and $a_{ij} = 0, i > j$ d) it is not a square matrix and $a_{ij} = 0, i < j$

47. The characteristic equation of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ is $a\lambda^3 - 20\lambda + 8 = 0$ $b\lambda^3 + 20\lambda + 8 = 0$ $c\lambda^3 - 20\lambda - 8 = 0$

Multiple Choice Questions.

Indicate the correct answer for each question by writing the corresponding letter from (a), (b), (c) and (d).

- 11. If A is a matrix such that there exists a square submatrix of order r which is non-singular and every square submatrix of order r + 1 or more is singular, then
 - (a) $\operatorname{rank} A = r + 1$ (b) $\operatorname{rank} A = r$
- (c) rank A > r
- (d) rank $A \ge r + 1$
- 12. Le $A = [a_{ij}]_{m \times n}$ be a matrix such that $a_{ij} = 1$ for all i, j. Then
 - (a) $\operatorname{rank} A > 1$ (b) $\operatorname{rank} A = 1$
- (c) rank A = m

- 13. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ is
 - (a) 1

- 14. If A and B are two matrices such that rank of A = m and rank of B = n, then
 - (a) $\operatorname{rank}(AB) = mn$

- (b) rank (A B) ≥ rank A
- (c) $rank(AB) \ge rankB$
- (d) rank (A B) ≤ min (rank A, rank B)
- 15. If A is an invertible matrix and B is a matrix, then
 - (a) rank (A B) = rank A
- (b) rank (A B) = rank B
- (c) rank (A B) > rank A
- (d) rank (A B) > rank B
- - (a) 0

(b) 1

- (d) 3
- (Bundelkhand 2001; Meerut 2003)

(a), (b), (c) ana (d).

- 10. If λ is a characteristic root of a matrix A, then a characteristic root of A^{-1} is
 - (a) 1/λ

(b) \(\lambda\)

- (c) 12
- 11. The eigenvalues of the matrix $\mathbf{A} = \begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & c & c \end{bmatrix}$ are
 - (a) a, h, g

(b) a, h, c

(c) a, g, c

- (d) a, b, c.
- 12. If λ is a characteristic root of the matrix A, then a characteristic root of the matrix A + kI is
 - (a) \(\lambda\)

(b) $k + \lambda$

(c) $k - \lambda$

- (d) none of these.
- 13. The characteristic equation of $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ is
 - (a) $\lambda^2 5\lambda + 7 = 0$

(b) $\lambda^2 - 3\lambda + 7 = 0$

(c) $\lambda^2 - 2\lambda + 7 = 0$

(d) none of these.

1. For the matrix $P = \begin{bmatrix} 3 & -2 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, one of the eigenvalues is equal to -2.

Which of the following is an eigenvector?

- (a) $\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$ (d) $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$

- 2. Eigenvalues of a matrix $S = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$ are 5 and 1. What are the eigenvalues of the matrix S2?
 - (a) 1 and 25

- (b) 6 and 4 (c) 5 and 1 (d) 2 and 10
- - (a) 5
- (b) 7 (c) 9
- (d) 18
- 4. The eigenvalues of the matrix $\begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 1 & 4 \end{bmatrix}$ are

- (a) 2, -2, 1, -1 (b) 2, 3, -2, 4 (c) 2, 3, 1, 4 (d) none of these

5.		1.1	40.40					
	The eigen	values of 1	1 1 are					
		-	-	(c) 0, 0, 3	10	1 1 1	C 1	
				values of the m	12040	1 1	3	
6.	The minim	num and ma	ximum eiger	ivalues of the m	atrix	1 5	1 are	
						3 1	1]	
				other eigenvalu	e!			
9	(a) 5	(b) 3	(c) 1	(d) -1				
7. 1	f A be a 3	× 3 matrix	with eigenv	alues 1, -1, 0, th	nen t	he det	erminant	
	of I + A100			, , , , ,				
	a) 6		(c) 9	(d) 100				
8 7	The sum o	of the eigen	values of the	matrix $\begin{bmatrix} 3 & 4 \\ x & 1 \end{bmatrix}$	for r	eal an	d negative	е
٠.	riic suiii c	i the eigen	dides of the	x 1	101 1	cut un	a negativ	
١.	value of x	is						
	(a) greate	or than zoro	(h) loss th	an zero (c) ze	ro (d) dor	oondont	
8	(a) Ricate	i tildii zero	(D) 1632 CI	all 2010 (c) 20		u) uci	rendent	
,	values of	x.						
			of order 3 w	ith eigenvalues	2 and	13. Th	e third	
	4 is a sing eigenvalue		of order 3 w	ith eigenvalues	2 and	1 3. Th	e third	
•			of order 3 w	ith eigenvalues : (d) -1	2 and	1 3. Th	e third	
•	eigenvalue	e is		17.0 18.00 (19.00)	2 and	1 3. Th	e third	
•	eigenvalue	e is		17.0 18.00 (19.00)	2 and	1 3. Th	e third	
(eigenvalue a) 1	e is (b) 0	(c) 4	(d) -1	1 1	0]	e third	
(eigenvalue a) 1	e is (b) 0	(c) 4	(d) -1	1 1 0 1	0 0 is	e third	
(eigenvalue a) 1	e is (b) 0	(c) 4	(d) -1	1 1	0 0 is	e third	
(eigenvalue a) 1	e is (b) 0 ber of indeper	(c) 4	(d) -1	1 1 0 1	0 0 is	e third (d) zero.	
25	eigenvalue a) 1 . The num (a) 1	e is (b) 0 ber of indeper	(c) 4 Indent eigenvector	(d) -1	1 1 0 1 0 0	0 0 1 is		
25	eigenvalue a) 1 . The num (a) 1	e is (b) 0 ber of indeper	(c) 4 Indent eigenvector	(d) -1	1 1 0 1 0 0	0 0 1 is		
25	eigenvalue a) 1 . The num (a) 1	e is (b) 0 ber of indeper	(c) 4 Indent eigenvector	(d) -1	1 1 0 1 0 0	0 0 1 is		
25	a) 1 The num (a) 1 The num	e is (b) 0 ber of indeper (ber of indeper	(c) 4 Indent eigenvector	tors to the matrix (c) 3	1 1 0 1 0 0	0 0 1 is	(d) zero.	
25	eigenvalue a) 1 The num (a) 1 The num (a) 0	e is (b) 0 ber of indeper (l) ber of indeper (l)	(c) 4 Indent eigenvector b) 2 Indent eigenvector b) 1	tors to the matrix (c) 3 tors to the matrix (c) 2	1 1 1 0 0 0 1 0 0 0	0 0 1 is		
25	eigenvalue a) 1 The num (a) 1 The num (a) 0	e is (b) 0 ber of indeper (l) ber of indeper (l)	(c) 4 Indent eigenvector b) 2 Indent eigenvector b) 1	tors to the matrix (c) 3 tors to the matrix (c) 2	1 1 1 0 0 0 1 0 0 0	0 0 1 is	(d) zero.	
25	eigenvalue a) 1 The num (a) 1 The num (a) 0	e is (b) 0 ber of indeper (l) ber of indeper (l)	(c) 4 Indent eigenvector b) 2 Indent eigenvector b) 1	tors to the matrix (c) 3 tors to the matrix (c) 2	1 1 1 0 0 0 1 0 0 0	0 0 1 is	(d) zero.	
25	eigenvalue a) 1 The num (a) 1 The num (a) 0	e is (b) 0 ber of indeper (l) ber of indeper (l)	(c) 4 Indent eigenvector b) 2 Indent eigenvector b) 1	tors to the matrix (c) 3 tors to the matrix (c) 2	1 1 1 0 0 0 1 0 0 0	0 0 1 is	(d) zero.	
25	eigenvalue a) 1 The num (a) 1 The num (a) 0	e is (b) 0 ber of indeper (l) ber of indeper (l)	(c) 4 Indent eigenvector b) 2 Indent eigenvector b) 1	tors to the matrix (c) 3	1 1 1 0 0 0 1 0 0 0	0 0 1 is	(d) zero.	

13. For the matrix
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$
, which of the follow-

ing is correct?

(a)
$$A^3 + 3A^2 - I = 0$$
 (b) $A^3 - 3A^2 - I = 0$

(c)
$$A^3 + 2A^2 - 1 = 0$$
 (d) $A^3 - A^2 + 1 = 0$