CH1 Knowledge Check

MATH 2B

Registered Name (print):	
<u>I pledge</u> to support the mission of Foothill College and to demonstrate its core vaupholding academic integrity in this assignment.	llues by
Signature:	

Materials permitted for this assessment: Course Textbook, Lecture Notes, Your Own Course Notes ONLY

No Calculator, No Online Resources, No Other Human Being, No STEM CENTER Help

Directions: Please read the following directions carefully.

- 1. Honor yourself with academic integrity.
- 2. Please write your **full name clearly** which is **registered** for the class.
- 3. Read all questions carefully before responding.
- 4. Please show **all your work clearly** to get partial credit, unless instructed otherwise. You are to defend all your answers for full credit in this assessment. That means you need to show work. You must defend your answers **analytically** (with algebra or calculus), unless stated otherwise. For open-ended questions, you can earn significant points for showing clear, well-organized work even if your answer is not correct. Similarly, you will lose significant points if you don't show your work or display an answer (even if correct) with little or no work. **If your work is hard to read, it will be considered wrong.**
- 5. Except for typographical errors and omissions, questions will neither be interpreted, nor explained. Comprehension of all questions is considered a part of the assessment..
- 6. You are graded for correct mathematical notation as well as for the correct answer(s) for each question.
- 7. Simplify your final answers and write appropriate units when applicable.
- 8. You must show your work and use concepts you have learned in Math1D.

- 1. (5 points) Consider the following system: $\begin{cases} x + y + z = 1 \\ 2x + y + z = h \\ x y + kz = 1 \end{cases}$
- (A) Apply the elementary row operations to the corresponding augmented matrix to the system above in order to write it in an echelon form. (solution)

(B) Determine the values of k and h such that the linear system has a specific number of solutions stated in the table given below. (solution)

# of solutions	k	h
No solution		
A unique solution		
Many solutions		

(C) When the system has many solutions in (B) above, find the general solution of the system in parametric vector form. (solution)

(D) Describe the solution set in (C) above geometrically. (solution)

- 2. (5 points) Let $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 2 & 1 \\ 2 & 0 & -1 \end{bmatrix}$.
- (A) Do the columns in A span \mathbb{R}^3 ? Explain why or why not. (solution)
- (B) If the answer to (A) above was 'No', then find all the vectors that are linear combinations of the columns in A. If the answer to (A) above was 'Yes', then skip this question. (solution)

(C) Determine whether the columns in A are linearly independent or not. Explain why or why not. (solution)

(D) If your answer to (C) was 'No', then write a dependence relation among the column vectors. If your answer to (C) was 'Yes', then skip this question. (solution)

(E) Describe the set $Span\{a_1, a_2, a_3\}$ geometrically, where a_1, a_2 and a_3 are the columns of A. (solution)

- 3. (5 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a transformation defined by $T(x,y,z) = (x+2y, \ x+y+3z)$.
- (A) Determine whether T is a matrix transformation or not. Explain why or why notl (solution)
- (B) If the answer to (A) is 'YES', then find the standard matrix for T. If not, skip this question. (solution)
- (C) Use the definition of Linear Transformation to prove that T is linear. (solution)

(D) Find all the preimage(s) of (-1,1) under the transformation if there is any. If not, explain why not. (solution)