Algorithmen und Wahrscheinlichkeit

Woche 11

Theorie Recap

Konvexe Hülle

Gegeben: eine endliche Punktenmenge $P \subseteq \mathbb{R}^d$

Gesucht: die konvexe Hülle von P, conv(P)

Konvexe Hülle: die minimale konvexe Menge, die P beinhaltet

Randkante: geordnetes Paar qr für $q, r \in P$ mit $q \neq r$ s.d. alle Punkte von P links von qr liegen

JarvisWrap(P)

- 1) $h \leftarrow 0$
- 2) $p_{now} \leftarrow \text{Punkt mit kleinster } x \text{Koordinate}$
- 3) repeat
- 4) $q_h \leftarrow p_{now}$
- 5) $p_{now} \leftarrow \text{FindNext}(q_h)$
- 6) $h \leftarrow h + 1$
- 7) until $p_{now} = p_0$
- 8) return $(q_0, ..., q_{h-1})$

Laufzeit: $\mathcal{O}(n \cdot h)$, wobei h := # Ecken in conv(P)

- $\rightarrow \mathcal{O}(n^2)$ worst case
- $\rightarrow \mathcal{O}(n)$ wenn h konstant

FindNext(q)

- 1) Wähle beliebig $p_0 \in P \setminus \{q\}$
- 2) $q_{next} \leftarrow p_0$
- 3) for all $p \in P \setminus \{q, p_0\}$ do
- 4) if p rechts von qq_{next} then
- 5) $q_{next} \leftarrow p$
- 6) return q_{next}

p rechts von qq_{next}

$$\iff (q_x - p_x)(q_{next,y} - p_y) < (q_y - p_y)(q_{next,x} - p_x)$$

Konvexe Hülle - Lower Bound der Laufzeit

Reduktion vom Sortieren:

$$(x_1, ..., x_n) \rightarrow ((x_1, x_1^2), ..., (x_n, x_n^2))$$

können wir Konvexe Hülle in t(n) bestimmen so können wir in $\mathcal{O}(t(n)+n)$ sortieren $\implies t(n) \in \Omega(n \cdot \log n)$

Konvexe Hülle - Lokal Verbessern

```
LocalRepair(p_1, p_2, \ldots, p_n)
                                                            (p_1, p_2, \ldots, p_n) sortiert
 1: q_0 \leftarrow p_1; h \leftarrow 0
 2: for i \leftarrow 2 to n do

    □ unterer Rand, links nach rechts

          while h > 0 und q_h links von q_{h-1}p_i do
         h \leftarrow h - 1
       h \leftarrow h + 1; q_h \leftarrow p_i
                   \triangleright (q_0, \ldots, q_h) untere konvexe Hülle von \{p_1, \ldots, p_i\}
 7: h' \leftarrow h
 8: for i \leftarrow n-1 downto 1 do \triangleright oberer Rand, rechts nach links
          while h > h' und q_h links von q_{h-1}p_i do
              h \leftarrow h - 1
10:
          h \leftarrow h + 1; q_h \leftarrow p_i
11:
12: return (q_0, q_1, \dots, q_{h-1})
```

Analyse

- Sortieren -> $\mathcal{O}(n \log n)$
- 2n-2-h Mal erfolgreiche Tests (neues Dreieck) -> $\mathcal{O}(n)$
- 2n-2 erfolglose Tests (p_i wird zu einer Kante) -> $\mathcal{O}(n)$
- \rightarrow Wenn die Punkte schon sortiert sind -> $\mathcal{O}(n)$ statt $\mathcal{O}(n \log n)$

Netzwerke und Flüsse

Netzwerk N := (V, A, c, s, t)

- (V,A) ist ein gerichteter Graph
- $-s \in V$ ist die Quelle
- $-t \in V$ ist die Senke
- $c:A \to \mathbb{R}_0^+$ die <u>Kapazitätsfunktion</u>

Fluss f in $N: f: A \to \mathbb{R}_0^+$

- Zulässigkeit: $0 \le f(e) \le c(e)$ für alle $e \in A$
- Flusserhaltung: Für alle $v \in V \setminus \{s, t\}$ gilt

$$\sum_{u \in V: (u,v) \in A} f(u,v) = \sum_{u \in V: (v,u) \in A} f(v,u)$$

$$-\operatorname{val}(f) \coloneqq \operatorname{netoutflow}(s) \coloneqq \sum_{u \in V: (s, u) \in A} f(s, u) - \sum_{u \in V: (u, s) \in A} f(u, s)$$

$$-\operatorname{val}(f) \coloneqq \operatorname{netinflow}(t) \coloneqq \sum_{u \in V: (u, t) \in A} f(u, t) - \sum_{u \in V: (t, u) \in A} f(t, u)$$

Schnitte

s-t-Schnitt in
$$N := (V, A, c, s, t)$$

- eine Partition von V:(S,T)
- $-s \in S, t \in T$

$$-\operatorname{cap}(S,T) = \sum_{(u,w)\in(S\times T)\cap A} c(u,w)$$

Flüsse und Schnitte

- für einen Fluss f und einen Schnitt (S,T) : $\mathrm{val}(f) \leq \mathrm{cap}(S,T)$
- für einen Fluss $f: \exists (S, T) : val(f) = cap(S, T) \implies f$ is maximal
- MaxFlowMinCut-Theorem:

$$\max_{f} \operatorname{val}(f) = \min_{(S,T)} \operatorname{cap}(S,T)$$

$$cap(S, T) = 2 + 2 + 6 = 10$$

Restnetzwerk

Restnetzwerk $N_f = (V, A_f, r_f, s, t)$ für N, f

- N hat keine entgegen gerichtete Kanten
- $\forall e \in A : f(e) < c(e) \Longrightarrow e \in A_f \land r_f(e) = c(e) f(e)$
- $\forall e \in A : f(e) > 0 \Longrightarrow e^{opp} \in A_f \land r_f(e^{opp}) = f(e)$
- A_f hat keine weiteren Kanten

Restnetzwerk und MaxFlow

f ist ein <u>maximaler Fluss</u> $\iff \neg \exists \underline{\text{gerichteter s-t-Pfad}} \text{ in } N_f$

Netzwerk

Fluss

Restnetzwerk

Restnetzwerk $N_f = (V, A_f, r_f, s, t)$ für N, f

- N hat keine entgegen gerichtete Kanten
- $\forall e \in A : f(e) < c(e) \Longrightarrow e \in A_f \land r_f(e) = c(e) f(e)$
- $\forall e \in A : f(e) > 0 \Longrightarrow e^{opp} \in A_f \land r_f(e^{opp}) = f(e)$
- A_f hat keine weiteren Kanten

Restnetzwerk und MaxFlow

f ist ein <u>maximaler Fluss</u> $\iff \neg \exists \underline{\text{gerichteter s-t-Pfad}} \text{ in } N_f$

Netzwerk

Fluss

Max-Flow Algorithmen nach Veröffentlichung [Bearbeiten | Quelltext bearbeiten]

Jahr	Autor(en)	Name	Laufzeiten
1956	Ford, Fulkerson	Algorithmus von Ford und Fulkerson	$\mathcal{O}\left(m\cdot n\cdot u_{ ext{max}} ight)$, falls alle Kapazitäten ganzzahlig sind
1969	Edmonds, Karp	Algorithmus von ⊨amonds und Karp	$\mathcal{O}\left(m\cdot n\cdot u_{ ext{max}} ight)$, falls alle Kapazitäten ganzzahlig sind $\mathcal{O}\left(m^2\cdot n ight)$
1970	Dinic	Algorithmus von Dinic	$\mathcal{O}\left(m\cdot n^2 ight)$
1973	Dinic, Gabow		$\mathcal{O}\left(m \cdot n \cdot \log(u_{ ext{max}}) ight)$
1974	Karzanov		$\mathcal{O}\left(n^3 ight)$
1977	Cherkassky		$\mathcal{O}\left(n^2\cdot\sqrt{m} ight)$
1980	Galil, Naamad		$\mathcal{O}\left(m\cdot n\cdot \log\left(n ight)^2 ight)$
1983	Sleator, Tarjan		$\mathcal{O}\left(m \cdot n \cdot \log(n) ight)$
1986	Goldberg, Tarjan	Goldberg-Tarjan-Algorithmus	$\mathcal{O}\left(m\cdot n\cdot \log\!\left(rac{n^2}{m} ight) ight)$
1987	Ahuja, Orlin		$\mathcal{O}\left(m\cdot n + n^2\cdot \log(u_{ ext{max}}) ight)$
1987	Ahuja, Orlin, Tarjan		$\mathcal{O}\left(m \cdot n \cdot \log \left(2 + \frac{n \cdot \sqrt{\log(u_{\max})}}{m}\right)\right)$
1990	Cheriyan, Hagerup, Mehlhorn		$\mathcal{O}\left(rac{n^3}{\log(n)} ight)$
1990	Alon		$\mathcal{O}\left(m\cdot n + \sqrt[3]{n^8}\cdot \log(n)\right)$
1992	King, Rao, Tarjan		$\mathcal{O}\left(m\cdot n+n^{2+e} ight)$
1993	Philipps, Westbrook ^[2]		$\mathcal{O}\left(m\cdot n\cdot\log_{rac{m}{n}}\left(n ight)+n^2\cdot\log\left(n ight)^{2+e} ight)$
1994	King, Rao, Tarjan ^[3]		$\mathcal{O}\left(m \cdot n \cdot \log_{rac{m}{n \cdot \log(n)}}(n) ight)$
1997	Goldberg, Rao ^[4]		$\mathcal{O}\left(\min\{\sqrt{m},\sqrt[3]{n^2}\}\cdot m\cdot \log\!\left(\frac{n^2}{m}\right)\cdot \log(u_{\max})\right)$
2012	Orlin, King, Rao, Tarjan		$\mathcal{O}\left(n\cdot m ight)$
2022	Chen, Kyng, Liu Peng, Gutenberg, Sachdeva ^[5]		$m^{1+o(1)}$ für janzzahlige Kapazitäten, die polynomiell beschränkt sind

Algorithmen

Ford-Fulkerson Algorithmus

- 1) $f \leftarrow 0$
- 2) while $\exists s$ -t-Pfad P in N_f do
- 3) Augmentiere den Fluss entlang P
- 4) return f
- \rightarrow kann unendlich laufen wenn $c:A \rightarrow \mathbb{R}$
- \rightarrow läuft immer endlich wenn $c:A\to\mathbb{N}_0$
- ightarrow Laufzeit: $\mathcal{O}(mnU)$ wobei $c:A
 ightarrow\mathbb{N}_0$ und $U=\max_{e\in A}c(e)$

Andere Methode/Algorithmen

- 1) Capacity Scaling (Kapazitäten ganzzahlig + höchstens U) $\mathcal{O}(mn(1+\log U))$
- 2) Dynamic Trees $\mathcal{O}(mn \log n)$

Satz für Ford-Fulkerson Algorithmus

Für N mit $c:A\to \mathbb{N}_0^{\leq U}$ gilt:

- 1) es gibt einen ganzzahligen maximalen Fluss
- 2) der Algo findet den Fluss in $\mathcal{O}(mnU)$

Pathological Example:

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/07DemoFordFulkersonPathological.pdf

Kahoot

Aufgaben