```
import pandas as pd
import numpy as np
from scipy import stats

In [3]:
bolt = pd.read_excel("Bolt diameter.xlsx")
bolt
```

Out[3]:		Diameter
	0	11.27
	1	12.06
	2	12.15
	3	9.89
	4	10.82
	5	13.53
	6	10.83
	7	8.87
	8	11.14
	9	9.71
	10	11.88
	11	9.53
	12	13.17
	13	10.54
	14	11.25
	15	10.84
	16	11.29
	17	10.54
	18	10.74
	19	10.93

one sample t test

N0:population mean -> specified value

Normality

data is continous

unknown population variance

```
In [8]: stats.ttest_1samp(bolt,8.87)
Out[8]: Ttest_1sampResult(statistic=array([8.54709067]), pvalue=array([6.18905683e-08]))
```

N0:is rejected

population mean >8.87

```
In [10]:     1-stats.t.cdf(8.54709067,19)#19 is deegre of freedom
Out[10]:     3.094528422398213e-08
In [ ]:
```