TECHNISCHE UNIVERSITÄT MÜNCHEN

CHRISTOPH NIEHOFF ÜBUNG DONNERSTAG FERIENKURS ANALYSIS 2 FÜR PHYSIKER SS 2011

Aufgabe 1.

Minimieren Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x) = 4x_1 + x_2^2$ unter der Nebenbedingung $x_1^2 + x_2^2 \le 1$.

Aufgabe 2.

Aus einem Stein, dessen Form ein Ellipsoid mit den Halbachsen a, b und c sein möge, soll ein möglichst großer Quader herausgeschnitten werden. Welche Kantenlänge und welches Volumen hat der Quader? Es ist also das Maximum von f(x, y, z) = 8xyz unter der Nebenbedingung

$$\phi(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0$$

zu bestimmen.

Aufgabe 3.

Bestimmen Sie alle Lösungen das Differentialgleichungssystem

$$\dot{x}(t) = y(t) + 1, \quad \dot{y}(t) = x(t) + \sin(t).$$

Hinweis: Benutzen Sie folgende Identitäten:

$$\int \cosh(t)\sin(t)\,\mathrm{d}t = \frac{1}{2}\left(\sinh(t)\sin(t) - \cosh(t)\cos(t)\right), \quad \int \sinh(t)\sin(t)\,\mathrm{d}t = \frac{1}{2}\left(\cosh(t)\sin(t) - \sinh(t)\cos(t)\right).$$

Aufgabe 4.

Lösen Sie folgende Differentialgleichung

$$\ddot{\phi} + 2\ddot{\phi} - \dot{\phi} - 2\phi = 0,$$

mit den Nebenbedingungen $\phi(0) = 0$, $\dot{\phi}(0) = 0$ und $\phi(1) = 1$.

Aufgabe 5.

Gegeben sei folgendes Gleichungssystem

$$\begin{array}{rcl} \dot{x}-x+2y-5z & = & 0 \\ \dot{y}+y-6z & = & 0 \\ \dot{z}-2z & = & 0 \end{array}$$

Dabei sind x, y, z reellwertige Funktionen. Lösen Sie das Gleichungssystem mit den Anfangsbedingungen x(0) = 1, y(0) = 2 und z(0) = 3.

Aufgabe 6.

Die Wirkung eines freien, relativistischen Teilchens mit Trajektorie x(t) und Ruhemasse m_0 ist

$$S[x] = -m_0 c^2 \int \sqrt{1 - \frac{(\dot{x}(t))^2}{c^2}} dt.$$

Das *Prinzip der stationären Wirkung* besagt, dass das Teilchen diejenige Bahn beschreibt, für die das Wirkungsfunktional ein Extremum (typischerweise ein Minimum) annimmt. Zeigen Sie, dass freie, relativistische Teilchen gerade Bahnen durchlaufen.

Aufgabe 7.

Das Wirkungsfunktional für ein Skateboard in einer Halfpipe sei gegeben als

$$S[\varphi] = \int \left[m(\dot{\varphi}(t))^2 \left(1 - \cos(\varphi(t)) \right) - mg \left(1 + \cos(\varphi(t)) \right) \right] dt.$$

Dabei ist m die Masse das Skateboards, g ist die Erdbeschleunigung und φ ist ein Parameter, der die Bewegung des Boards beschreibt.

Benutzen Sie das Prinzip der stationären Wirkung, um zu zeigen, dass die Bewegungsgleichung des Skateboards durch

$$\ddot{\varphi} + \frac{1}{2} \frac{\sin(\varphi)}{1 - \cos(\varphi)} \dot{\varphi}^2 - \frac{g}{2} \frac{\sin(\varphi)}{1 - \cos(\varphi)} = 0$$

gegeben ist.