

Machine Learning

(https://leonpalafox.github.io/mlclase/)

Leon F. Palafox PhD

Métodos de Validación

- Cross validation (validación cruzada)
 - Probar diferentes modelos
 - Obtener estadísticas confiables
- Bias -- Variance Analysis
 - Regularización
 - Overfitting

Validación cruzada

- Buscamos errores chicos de entrenamiento?.
 - Por que?
 - Necesitamos probar en prueba (no en entrenamiento)
- La primera tecnica se llama Hold-Out Cross validation

Hold-out cross validation

Que es M?

- Todo lo que hast aahora hemos asignado arbitrariamente.
- Linear Regression
 - Orden del polinomio, parametro de regularización
- SVM
 - Kernel, variables del kernel

Problemas con Hold-out CV

Estamos "desperdiciando" datos

Problemas con pocos datos empiezan a ser complicados

- Tengan cuidado con artpiculos que hablan de CV con pocos datos.
 - Y aún más si ni siquiera hablan de CV.

Un CV incluso mejor

- K-fold CV
 - Divide los datos en K conjuntos(disjoint)
 - Para cada j = 1..k
 - Entrenar modelo (M_i) en cada subconjunto, except j
 - Obtener error (E_{ii}) para Modelo i en iteración j
 - Total error para M_i va a ser el promedio de errores (E_{ij})

K-Fold Cross validation

K-Fold Cross validation

Revisión de Read team

- Que es un red team?
 - Independientes (revisores sin sesgo)
- Por que necesitamos un red team?.
 - Evitar overfitting en una revista.
 - Nuestro público no somos nostros, es una mayor audiencia.
- Idealmente debería haber red teams para todo.
 - Pláticas, presentaciones.

Movies

- Las taquilleras tartan de generalizar.
 - Audiencias de prueba
 - Actores de alto presupuesto (no necesariamente buenos).
 - "Wide appeal"
- Los ganadores de Oscar (por lo general) hacen overfit a los criticos.

Ventajas

- Podemos corer cada fold en cores distintos
 - Sklearn lo sabe hacer

- A diferencia de otros metodos, es muy facil de implementar
 - Las técnicas bayesianas son particularmente dificiles.

Desventajas

- Si no tenemos muchos datos, los folds van a estar muy correlacionados.
 - Esto hace que se generen overfits
- Toma mucho mas tiempo corer los algoritmos

• El mayor:

Cuantos folds se deben elegir?

K = 3 trabaja bien

Cosas simples como SVMs, puedes usar 10.

- Leave-one out (K=N-1) es un mal chiste de los cientificos.
 - Tenemos tantos folds como datos.
 - Bootsraping glorificado.

Bias-Variance

Concepts

 Bias: Que tan lejos estamos del set correcto de parámetros

 Variance: Que tan consistentes son las predicciones

No se puede ganar siempre

An example

Smallest training error

Bias-Variance

Notes

Es un buen punto de paro cuando se usa CV

 Puedes usarlo sin CV y aun asi se obtienen Buenos resultados.

 Bias and Variance se definen de maneras distintas para distintos algoritmos, asi que es un poco mas dificil de implementar.

Examen!!!

