Differential Forms in n-dimensional Real Space

Labix

September 4, 2022

Abstract

Before diving deep into the abstract Differential Geometry, iit is crucial to understand those methods we apply to non-euclidean surfaces by first studying it on a more familiar setting.

Contents

1	Introduction to Multilinear Algebra			
	1.1	Basic Definitions	:	
	1.2	Tensor Product and Wedge Product	4	
2	Tangent Vectors in \mathbb{R}^n			
	2.1	Tangent Space	6	
2 3	Differential Forms on \mathbb{R}^n			
	3.1	Differential 1-forms	7	
	3.2	Differential k -forms	7	
	3.3	Exterior Derivative	7	

1 Introduction to Multilinear Algebra

1.1 Basic Definitions

Definition 1.1.1 (Multilinear Function). Let V be a vector space over \mathbb{R} . A function $f: V^k \to \mathbb{R}$ is k-linear if it is linear in each of its k arguments

$$f(v_1,\ldots,av_i+bw_i,\ldots,v_k)=af(v_1,\ldots,v_i,\ldots,v_k)+bf(v_1,\ldots,w_i,\ldots,v_k)$$

for $i \in \{1, ..., k\}$ nd $a, b \in \mathbb{R}$. It is also called a k-tensor on V. Denote the set of all k-tensors on V by $L_k(V)$

Definition 1.1.2 (Symmetric). Let V be a vector space over \mathbb{R} . $f: V^k \to \mathbb{R}$ is symmetric if

$$f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) = f(v_1, \dots, v_k)$$

for all $\sigma \in S_k$

Definition 1.1.3 (Alternating). Let V be a vector space over \mathbb{R} . $f: V^k \to \mathbb{R}$ is alternating if

$$f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) = \operatorname{sign}(\sigma) f(v_1, \dots, v_k)$$

for all $\sigma \in S_k$. Alternating k-tensors are also called k-covectors. Denote the set of all k-covectors $\Lambda_k(V)$. Thus we have $\Lambda_k(V) \subseteq L_k(V)$

Definition 1.1.4. Let $f: V^k \to \mathbb{R}$ be a k-linear function. Define

$$(Sf)(v_1,\ldots,v_k) = \sum_{\sigma \in S_k} \sigma(f)$$

Define

$$(Af)(v_1,\ldots,v_k) = \sum_{\sigma \in S_k} \operatorname{sign}(\sigma)\sigma(f)$$

Proposition 1.1.5. Let $f: V^k \to \mathbb{R}$ be a k-linear function. Then Sf is symmetric and Af is alternating.

Proof. We have

$$\tau(Sf) = \sum_{\sigma \in S_k} (\tau \sigma) f$$
$$= Sf$$

and

$$\tau(Af) = \sum_{\sigma \in S_k} \operatorname{sign}(\sigma)(\tau\sigma) f$$
$$= \operatorname{sign}(\tau) \sum_{\sigma \in S_k} \operatorname{sign}(\tau\sigma)(\tau\sigma) f$$
$$= \operatorname{sign}(\tau)(Af)$$

Lemma 1.1.6. If f is an alternating k-linear function on a vector space V, then Af = (k!)f. *Proof.* We have

$$Af = \sum_{\sigma \in S_k} \operatorname{sign}(\sigma)(\sigma f)$$

$$= \sum_{\sigma \in S_k} \operatorname{sign}(\sigma) \operatorname{sign}(\sigma) f$$

$$= \sum_{\sigma \in S_k} f$$

$$= (k!) f$$

1.2 Tensor Product and Wedge Product

Definition 1.2.1 (Tensor Product). Let f be k-linear on V and g be l linear on V. Their tensor product is defined to be the k+l linear function

$$(f \otimes g)(v_1, \dots, v_{k+l}) = f(v_1, \dots, v_k)g(v_{k+1}, \dots, v_{k+l})$$

Proposition 1.2.2. Let f, g, h be multilinear functions on V. Then

$$f \otimes (g \otimes h) = (f \otimes g) \otimes h$$

Definition 1.2.3 (Wedge Product). Let $f \in \Lambda_k(V)$ and $g \in \Lambda_l(V)$. Their wedge product is defined to be the k+l linear function

$$f \wedge g = \frac{1}{k! l!} A(f \otimes g)$$

Proposition 1.2.4. Let $f \in \Lambda_k(V)$ and $g \in \Lambda_l(V)$. Then

$$f \wedge q = (-1)^{kl} q \wedge f$$

Corollary 1.2.5. Let $f \in \Lambda_k(V)$ and k is odd. Then $f \wedge f = 0$

Proposition 1.2.6. Let f, g, h be multilinear functions on V. Then

$$f \wedge (g \wedge h) = (f \wedge g) \wedge h$$

Proposition 1.2.7. Let $f_k \in \Lambda_{d_k}(V)$ for $k \in \{1, \ldots, n\}$. Then

$$f_1 \wedge \cdots \wedge f_n = \frac{1}{(d_1)! \cdots (d_n)!} A(f_1 \otimes \cdots \otimes f_n)$$

Definition 1.2.8 (Multi-index Notation). Suppose that V is a vector space and $\alpha^1, \ldots, \alpha^n$ the dual basis of V. Define $I = (i_1, \ldots, i_k)$ and write α^I for $\alpha^{i_1} \wedge \cdots \wedge \alpha^{i_k}$. We usually want $i_1 < \cdots < i_k$.

Lemma 1.2.9. Let e_1, \ldots, e_n be a basis for V and $\alpha^1, \ldots, \alpha^n$ be the dual basis of V. Then

$$\alpha^{I}(e_{J}) = \delta^{I}_{J} \begin{cases} 1 & \text{if } I = J \\ 0 & \text{if } I \neq J \end{cases}$$

Proposition 1.2.10. The set of all α^I where $I = (i_1 < \cdots < i_k)$ form a basis for the space $\Lambda_k(V)$. The dimension of $\Lambda_k(V)$ is $\binom{n}{k}$

Corollary 1.2.11. If $k > \dim(V)$, then $\Lambda_k(V) = 0$

2 Tangent Vectors in \mathbb{R}^n

2.1 Tangent Space

Definition 2.1.1 (Tangent Space). The set of all vectors with tail at $p \in \mathbb{R}^n$ is denoted $T_p(\mathbb{R}^n)$. We write a point in \mathbb{R}^n as $p = (p_1, \dots, p_n)$ and a vector v in $T_p(\mathbb{R}^n)$ as $\langle v_1, \dots, v_n \rangle$

Definition 2.1.2 (Line Through a Point). The line through a point $p \in \mathbb{R}^n$ with direction v has parametrization

$$c(t) = (p_1 + tv_1, \dots, p_n + tv_n)$$

with its *i*-component $c_i(t) = p_i + tv_i$

Definition 2.1.3 (Directional Derivative). Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ be \mathcal{C}^{∞} . Let $v \in T_p(\mathbb{R}^n)$. The directional derivative of f in the direction v at p is defined to be

$$D_v(f) = \lim_{t \to 0} \frac{f(c(t)) - f(p)}{t} = \frac{d}{dt} \Big|_{t=0} f(c(t))$$

Proposition 2.1.4. Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ be \mathcal{C}^{∞} . Then

$$D_v(f) = \sum_{k=1}^n v_k \frac{\partial f}{\partial x_k} \bigg|_p$$

and D_v is a map from $\mathcal{C}_p^{\infty}(\mathbb{R}^n) \to \mathbb{R}$

Proposition 2.1.5. The map $\phi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$ given by $\phi(v) = D_v$ is an isomorphism of vector spaces.

Proposition 2.1.6. The standard basis of $T_p(\mathbb{R}^n)$ corresponds to

$$\left\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right\}$$

Definition 2.1.7 (Vector Fields). A vector field X on an open subset U of \mathbb{R}^n is a function that assigns to each point p in U a tangent vector denoted $X_p \in T_p(\mathbb{R}^n)$. This means that $X : \mathbb{R}^n \to T_p(\mathbb{R}^n)$

Proposition 2.1.8. For every vector field X,

$$X_p = \sum_{k=1}^n a_k(p) \frac{\partial}{\partial x_k} \bigg|_p$$

where $a_k(p) \in \mathbb{R}$

3 Differential Forms on \mathbb{R}^n

3.1 Differential 1-forms

Definition 3.1.1 (Cotangent Space). Define the cotangent space to \mathbb{R}^n at p to be $T_p^*(\mathbb{R}^n)$, the dual space of $T_p(\mathbb{R}^n)$.

Definition 3.1.2 (Differential 1-form). A differential 1-form is a function $\omega: U \subseteq \mathbb{R}^n \to \bigcup_{p \in U} T_p^*(\mathbb{R}^n)$ from $p \in \mathbb{R}^n$ to $\omega_p \in T_p^*(\mathbb{R}^n)$

Proposition 3.1.3. Fix $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$. Define $df_p: T_p(\mathbb{R}^n) \to \mathbb{R}$ by

$$(df)_p(X_p) = X_p(f)$$

Then the mapping $(df)(p) = (df)_p$ from p to $(df)_p$ is a differential 1-form.

Proposition 3.1.4. Suppose that x_1, \ldots, x_n are the standard coordinate for \mathbb{R}^n . Then for each point $p \in \mathbb{R}^n$,

$$\{(dx_1)_p,\ldots,(dx_n)_p\}$$

is the basis for $T_p^*(\mathbb{R}^n)$ dual to

$$\left\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right\}$$

in $T_p(\mathbb{R}^n)$

Proposition 3.1.5. If $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ is \mathcal{C}^{∞} , then

$$df = \sum_{k=1}^{n} \frac{\partial f}{\partial x_k} dx_k$$

3.2 Differential k-forms

Definition 3.2.1 (Differential k-forms). A differential k-form ω on $U \subseteq \mathbb{R}^n$ is a function that assigns to each point $p \in U$ an alternating k-linear function. This means $\omega : \mathbb{R}^n \to \Lambda_k(T_p(\mathbb{R}^n))$ Denote $\Omega^k(U)$ the vector space of \mathcal{C}^{∞} k-forms on U.

Proposition 3.2.2. A differential k-form ω is of the form

$$\omega = \sum_{I} \alpha_{I} dx^{I}$$

with $a_I: U \subseteq \mathbb{R}^n \to \mathbb{R}$

3.3 Exterior Derivative

Definition 3.3.1 (Exterior Derivative of 0-forms). Let $f \in \mathcal{C}^{\infty}(U)$. Then f is a 0-form. Define its exterior derivative to be its differential $df \in \Omega^1(U)$.

Definition 3.3.2 (Exterior Derivative of k-forms). Let $\omega = \sum_I \alpha_I dx^I \in \Omega^k(U)$. Define

$$d\omega = \sum_{I} d\alpha_{I} \wedge dx^{I} = \sum_{I} \left(\sum_{j} \frac{\partial \alpha_{I}}{\partial x_{j}} dx_{j} \right) \wedge dx^{I} \in \Omega^{k+1}(U)$$

Proposition 3.3.3. Let $\omega \in \Omega^k(\mathbb{R}^n)$. Then $d^2\omega = 0$

Definition 3.3.4 (Closed Forms). A k-form ω on U is closed if $d\omega=0$

Definition 3.3.5 (Exact Forms). A k-form ω on U is exact if there exists a k-1 form τ such that $\omega = d\tau$.