Section 3.2 – Exponential Functions

Definition

The exponential function f with base b is defined by

$$f(x) = b^{x}$$
 or $y = b^{x}$

where b > 0, $b \ne 1$ and \boldsymbol{x} is any real number.

$$f(x) = 2^x$$
 $f(x) = \left(\frac{1}{2}\right)^{2x+1}$ $f(x) = 3^{-x}$ $f(x) = (-2)^{x}$

Example

Given: $f(x) = 13.49 (0.967)^{x} - 1$, find f(60)

Solution

$$f(60) = 13.49 (0.967)^{60} - 1$$
$$= 0.8014$$

Example

If $f(x) = 2^x$, find each of the following. f(-1), f(3), $f\left(\frac{5}{2}\right)$

Solution

a)
$$f(-1) = 2^{-1}$$

= $\frac{1}{2}$

$$b) \quad f(3) = 2^3$$

$$= 8$$

c)
$$f\left(\frac{5}{2}\right) = 2^{\frac{5}{2}}$$
$$= 4\sqrt{2}$$
$$= 5.6569$$

Graphing Exponential

1. Define the Horizontal Asymptote $f(x) = b^x \pm d$ $y = 0 \pm d$ $f(x) = 3^{x}$ Asymptote: y = 0

Example

The exponential function always equals to 0

$$x \to \infty \text{ or } x \to -\infty \Rightarrow f(x) \to 0$$

2. Define/Make a table

(Force your exponential to = 0, then solve for x)

	x	f(x)
	x-2	
	x-1	
	\boldsymbol{x}	
	x + 1	
	x + 2	

х	f(x)
-2	1/9
-1	1/3
0	1
1	3
2	9

Domain: $(-\infty, \infty)$

Range: (d, ∞)

Example

$$f(x) = \left(\frac{1}{3}\right)^{x}$$
$$= \left(3^{-1}\right)^{x}$$
$$= 3^{-x}$$

Reflected across y-axis

Asymptote: y = 0

Domain: $(-\infty,\infty)$

Range: $(0, \infty)$

Example

$$f(x) = 3^{x-1}$$

Shift right 1 unit

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Example

$$f(x) = 2^{x} + 1$$

Shift up 1 unit

Asymptote: y = 1

Domain: $(-\infty, \infty)$

Range: $(1, \infty)$

Example

$$f(x) = 5 - 2^{-x}$$

Shifted up 5 units

Reflected across x-axis and y-axis

Asymptote: y = 5

Domain: $(-\infty, \infty)$

Range: $(-\infty, 5)$

Example

Give the asymptote, domain and range.

$$a) f(x) = -2^x$$

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(-\infty, 0)$

$$b) f(x) = 2^{x+3}$$

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0,\infty)$

c)
$$f(x) = 2^x + 3$$

Asymptote: y = 3

Domain: $(-\infty,\infty)$

Range: $(3,\infty)$

Natural Base e

The irrational number e is called natural base

 $f(x) = e^{x}$ is called natural exponential function

$$e^0 = 1$$

$$e \approx 2.7183$$

$$e^2 \approx 7.3891$$

$$e^2 \approx 7.3891$$
 $e^{-1} \approx 0.3679$

Example

The exponential function $f(x) = 1066e^{0.042x}$ models the gray wolf population of the Western Great Lakes, f(x), in billions, x years after 1978. Project the gray population in the recovery area in 2012.

Solution

$$x = 2012 - 1978 = 34$$

$$f(x = 34) = 1066e^{0.042(34)}$$

$$= 4445.6$$

$$\approx 4446$$

Example

Graph

$$f(x) = e^{x}$$

Solution

Asymptote: y = 0

x	f(x)
-1	.4
0	1
1	2.7

Domain: $(-\infty, \infty)$

Range: $(0,\infty)$

Example

$$f(x) = e^{x+3}$$

Solution

Shifted left 3 units

Asymptote: y = 0

Exercises Section 3.2 – Exponential Functions

(1-8) Evaluate to four decimal places using a calculator

3.
$$6^{-1.2}$$

5.
$$e^{2.3}$$

7.
$$\pi^{\sqrt{\pi}}$$

2.
$$5^{\sqrt{3}}$$

4.
$$e^{-0.75}$$

6.
$$e^{-0.95}$$

8.
$$e^{\sqrt{2}}$$

(9-20) Find the *asymptote*, *domain*, and *range* of the given functions. Then, sketch the graph

9.
$$f(x) = 2^x + 3$$

13.
$$f(x) = 4^x$$

17.
$$f(x) = e^{x-2}$$

10.
$$f(x) = 2^{3-x}$$

14.
$$f(x) = 2 - 4^x$$

18.
$$f(x) = 3 - e^{x-2}$$

11.
$$f(x) = \left(\frac{2}{5}\right)^{-x}$$

15.
$$f(x) = -3 + 4^{x-1}$$

19.
$$f(x) = e^{x+4}$$

12.
$$f(x) = -\left(\frac{1}{2}\right)^x + 4$$

15.
$$f(x) = 2^{-4}$$

16. $f(x) = -3 + 4^{x-1}$
16. $f(x) = 1 + \left(\frac{1}{4}\right)^{x+1}$

20.
$$f(x) = 2 + e^{x-1}$$

- The exponential function $f(x) = 1066e^{0.042x}$ models the gray wolf population of the Western Great Lakes, f(x), in *billions*, x years after 1978. Project the gray population in the recovery area in 2012.
- The function $f(x) = 6.4e^{0.0123x}$ describes world population, f(x), in billions, x years after 2004 subject to a growth rate of 1.23% annually. Use the function to predict world population in 2050.
- 23. A cup of coffee is heated to $160^{\circ}F$ and placed in a room that maintains a temperature of $70^{\circ}F$. The temperature T of the coffee, in degree Fahrenheit, after t minutes is given by

$$T(t) = 70 + 90e^{-0.0485t}$$

- a) Find the temperature of the coffee 20 minutes after it is placed in the room
- b) Determine when the temperature of the coffee will reach $90^{\circ}F$
- A cup of coffee is heated to $180^{\circ}F$ and placed in a room that maintains a temperature of $65^{\circ}F$. The temperature T of the coffee, in degree Fahrenheit, after t minutes is given by

$$T(t) = 65 + 115e^{-0.042t}$$

- a) Find the temperature of the coffee 10 minutes after it is placed in the room
- b) Determine when the temperature of the coffee will reach $100^{\circ}F$
- The percent I(x) of the original intensity of light striking the surface of a lake that is available x feet 25. below the surface of the lake is given by the equation

$$I(x) = 100e^{-.95x}$$

15

a) What percentage of the light is available 2 feet below the surface of the lake?

- b) At what depth is the intensity of the light one-half the intensity at the surface?
- **26.** Starting on the left side of a standard 88–*key* piano, the frequency, in *vibrations* per *second*, of the *n*th note is given by

$$f(n) = (2.75) 2^{\frac{n-1}{12}}$$

- a) Determine the frequency of middle C, key number 40 on an 88–key piano.
- b) Is the difference in frequency between middle C (key number 40) and D (key number 42) the same as the difference in frequency between D (key number 42) and E (key number 44)?
- **27.** Starting on the left side of a standard 88–*key* piano, the frequency, in *vibrations* per *second*, of the *n*th note is given by

$$f(n) = (27.5) 2^{\frac{n-1}{12}}$$

- a) Determine the frequency of middle C, key number 40 on an 88-key piano.
- b) Is the difference in frequency between middle C (key number 40) and D (key number 42) the same as the difference in frequency between D (key number 42) and E (key number 44)?