Part III Combinatorics

Based on lectures by Prof B. Bollobás

Michaelmas 2016 University of Cambridge

Contents

1	Introduction	1
2	Sperner Systems	2
3	The Kruskal-Katona Theorem	3

1 Introduction

Let X, Y, \ldots be sets

Definition. We call $A \subset \mathcal{P}(X)$ a **set system** or **family of sets**. A is naturally identified with a bipartite graph $G_A(U,W)$ with U = A, $W = \bigcup_{A \in A} A$ or W = X. Indeed, $Ax \in E(G_A) \iff x \in A$.

Definition. Given $A \in \mathcal{P}(X)$, a **set of distinct representatives** (SDR) is an injection $f : A \to X$ s.t. $f(A) \in A \ \forall A \in A$. In its bipartite graph, an SDR corresponds to a complete matching $U \to W$.

Theorem 1 (Hall, 1935). A set system \mathcal{A} has an SDR if $\forall \mathcal{A}' \subset \mathcal{A}$, $|\bigcup_{A \in \mathcal{A}'} A| \geq |\mathcal{A}|'$.

Theorem 1'. A bipartite graph G(U,W) has a complete matching $U \to W$ if $\forall S \subset U$, $|\Gamma(S)| \geq |S|$

Corollary 2. Suppose G(U, W) bipartite, $d(u) \ge d(w) \ \forall u \in U, \ w \in W$. Then $\exists \ a \ complete \ matching \ U \to W$.

Definition. A bipartite graph G(U, W) is (r, s)-regular if d(u) = r and $d(w) = s \ \forall u \in U, \ w \in W$.

Instant from Cor 2: if G(U, W) is (r, s)-regular then \exists a complete matching from U to W if $|U| \leq |W|$.

Corollary 3. Let $0 \le i, j \le n$, $\binom{n}{i} \le \binom{n}{j}$. Then \exists a complete matching $f: [n]^{(i)} \to [n]^{(j)}$ s.t. $f(A) \subset A$ if $j \le i$, and $f(A) \supset A$ if $i \le j$.

Theorem 4. Let G = G(U, W) be a connected (r, s)-regular graph. Then for $\emptyset \neq A \subset U$,

$$\frac{|\Gamma(A)|}{|W|} \ge \frac{|A|}{|U|}$$

Also, equality holds iff A = U.

The **cube** $Q^n \cong \mathcal{P}(n) \cong [2]^n = \text{set of all } 0, 1 \text{ sequences of length } n. Q^n \text{ is also a graph: } AB \text{ is an edge if } |A \triangle B| = 1. \text{ It is also a poset: } A < B \text{ if } A \subset B.$ $Q^n \text{ has a natural orientation: } \overrightarrow{AB} \text{ if } A = B \cup \{a\}.$

The order on $Q^n \cong \mathcal{P}(n)$ is induced by this oriented graph.

2 Sperner Systems

Definition. A set system $A \subset \mathcal{P}(n)$ is **Sperner** if $A, B \in \mathcal{A}$, $A \neq B \implies A \not\subset B$

Theorem 1 (Sperner, 1928). If $A \subset \mathcal{P}(n)$ is Sperner then

$$|\mathcal{A}| \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$$

Definition. The weight w(A) of a set $A \in \mathcal{P}(n)$ is $w(A) = \frac{1}{\binom{n}{|A|}}$

Theorem 2. Let A be a Sperner system on X, |X| = n. Then

$$w(\mathcal{A}) = \sum_{A \in \mathcal{A}} w(A) \le 1$$

Corollary 3. If $A \in \mathcal{P}(n)$ is a Sperner system then $|A| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$, with equality $\iff A$ is $X^{\lfloor n/2 \rfloor}$ or $X^{\lceil n/2 \rceil}$.

Definition. $A \in \mathcal{P}(n)$ is **k-Sperner** if it does not contain

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{k+1}$$

Note that Sperner = 1-Sperner.

Corollary 4 (Erdős, 1945). If $A \subset \mathcal{P}(n)$ is k-Sperner then |A| is at most the sum of the k largest binomial coefficients.

Theorem 5 (Erdős, 1945). Let $x_1, \ldots, x_n \in \mathbb{R}$, $x_i \geq 1$. Then the number of sums $\sum_{i=1}^{n} \pm x_i$ in an open interval J of length 2k is at most the sum of the k largest binomial coefficients.

Definition. A chain $A_o \subset A_1 \subset \cdots \subset A_k$ is symmetric if $|A_{i+1}| = |A_i| + 1 \ \forall i$ and $|A_o| + |A_k| = n$.

Theorem 6 (Kleitman and Katona). $\mathcal{P}(n)$ has a decomposition into symmetric chains.

Take such a partition $\mathcal{P}(n) = \bigcup_{i=1}^k \mathcal{C}_i$, $j = \binom{n}{\lfloor \frac{n}{2} \rfloor}$. There is one chain of length n+1, n-1 chains of length n-1, etc: there are $\binom{n}{i} - \binom{n}{i-1}$ chains of length n+1-2i.

Let E be a normed space, let $x_1, \ldots, x_n \in E$, $||x_i|| \ge 1 \ \forall i$, for $A \in \mathcal{P}(n)$ let $x_A = \sum i \in Ax_i$.

Conjecture (Erdős, 1945). If $A \in \mathcal{P}(n)$ s.t. $||x_A - x_B|| < 1$ then $|A| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$

Definition. Call $\mathcal{D} \in \mathcal{P}(n)$ scattered if $||x_A - x_B|| \ge 1 \ \forall A, B \in \mathcal{D}$. Call a partition $\mathcal{P}(n) = \bigcup_{i=1}^s \mathcal{D}_i$ symmetric if there are precisely $\binom{n}{i} - \binom{n}{i-1}$ sets \mathcal{D}_i of cardinality n+1-2i.

Theorem 7. (Kleitman, 1970) E, $(x_i)_1^n$ as before. Then $\mathcal{P}(n)$ has a symmetric partition into scattered sets.

Theorem 8. (Kleitman, 1970) If $A \in \mathcal{P}(n)$ s.t. $||x_A - x_B|| < 1$ then $|A| \le {n \choose \lfloor \frac{n}{2} \rfloor}$

3 The Kruskal-Katona Theorem

We know: if $A \subset X^{(r)}$ then ∂A (the **lower shadow** of A), defined by

$$\partial \mathcal{A} = \{ B \in X^{(r-1)} \mid B \subset A \text{ for some } A \in \mathcal{A} \}$$

satisfies

$$|\partial \mathcal{A}| \ge |\mathcal{A}| \frac{\binom{n}{r-1}}{\binom{n}{r}}$$
$$= |\mathcal{A}| \frac{r}{n-r+1}$$

with equality $\iff \mathcal{A} \text{ is } \emptyset \text{ or } X^{(r)}$.

What about in between? What is $\mathcal{B} \in X^{(r)}$ s.t. $|\mathcal{B}| = |\mathcal{A}|$ and $|\partial \mathcal{B}| \leq |\partial \mathcal{A}|$? $\exists \mathcal{B}_1, \mathcal{B}_2, \dots \in X^{(r)}$ s.t. $|\mathcal{B}_m| = m$ and $|\partial \mathcal{B}_m| \leq |\partial \mathcal{A}| \ \forall \mathcal{A} \subset X^{(r)}$ where $|\mathcal{A}| = m$.

Incredibly luckily, we have a sequence of nested extremal sets. Equivalently, \exists total order on $X^{(r)}$ s.t. the first m sets form \mathcal{B}_m .

Definition. Define the **colex** total order on $X^{(r)}$ by A < B if $\max(A\Delta B) \in B$.

Aim: given m and r, would like to find $\mathcal{B} \subset X^{(r)}$, $|\mathcal{B}| = m$ s.t. $|\partial \mathcal{B}| \leq |\partial \mathcal{A}| \ \forall \mathcal{A} \subset X^{(r)}$, $|\mathcal{A}| = m$.

Define $\mathcal{B}^{(r)}(m_r,\ldots,m_s), m_r > m_{r-1} > \cdots > m_s \geq s$ as follows:

$$\mathcal{B}^{(r)} = [m_r]^{(r)} \cup ([m_{r-1}]^{(r-1)} + \{m_r + 1\})$$

$$\cup ([m_{r-2}]^{(r-2)} + \{m_{r-1} + 1, m_r + 1\})$$

$$\cup \dots$$

$$\cup ([m_s]^{(s)} + \{m_{s+1} + 1, m_{s+2} + 1, \dots, m_r + 1\})$$

Set
$$b^{(r)}(m_r, \ldots, m_s) = \left| \mathcal{B}^{(r)}(m_r, \ldots, m_s) \right| = \sum_{j=s}^r {m_j \choose j}$$
.

$$\partial \mathcal{B}^{(r)}(m_r,\ldots,m_s) = \mathcal{B}^{(r-1)}(m_r,\ldots,m_s)$$

This has cardinality $b^{(r-1)}(m_r, \dots, m_s) = \sum_{j=s}^r \binom{m_j}{j-1}$.

Lemma 1. For $l, r \in \mathbb{N}$ $\exists ! m_r > \cdots > m_s$ s.t. $l = \sum_{j=s}^r {m_j \choose j}$; the initial segment of $X^{(r)}$ in colex, consisting of l sets, is $\mathcal{B}^{(r)}(m_r, \ldots, m_s)$.

Definition. Let $i \neq j \in X$, $A \in \mathcal{P}(X)$. Define the **ij-compression**

$$A_{ij} = C_{ij}(A) = \begin{cases} (A \setminus \{j\}) \cup \{i\} & \text{if } j \in A, i \notin A \\ A & \text{otherwise} \end{cases}$$

Given $A \subset \mathcal{P}(n), A \in \mathcal{A}$

$$C_{i,j,\mathcal{A}}(A) = \begin{cases} A_{ij} & \text{if } A_{ij} \notin \mathcal{A} \\ A & \text{otherwise} \end{cases}$$

Also,

$$C_{ij}(\mathcal{A}) = \{C_{i,j,\mathcal{A}} \mid A \in \mathcal{A}\}$$
$$= \{C_{ij}(A) \mid A \in \mathcal{A}\} \cup \{A \in \mathcal{A} \mid C_{ij}(A) \in \mathcal{A}\}$$

For $A \in X^{(r)}$,

$$\mathcal{A}_{ij} = \{ A \in \mathcal{A} \mid \{i, j\} \subset A \}$$

$$\mathcal{A}_i = \{ A \in \mathcal{A} \mid i \in A, j \notin A \}$$

$$\mathcal{A}_{\emptyset} = \{ A \in \mathcal{A} \mid A \cap \{i, j\} = \emptyset \}$$

$$\mathcal{A}_j = \{ A \in \mathcal{A} \mid i \notin A, j \in A \}$$

 $C_{ij}: \mathcal{A} \mapsto C_{ij}(\mathcal{A})$ keeps $\mathcal{A}_{\emptyset} \cup \mathcal{A}_{i} \cup \mathcal{A}_{ij}$ fixed, and maps \mathcal{A}_{j} into sets like those in \mathcal{A}_{i} .

Lemma 2. For $A \subset X^{(r)}$, $\partial C_{ij}(A) \subseteq C_{ij}(\partial A)$. In particular, the cardinality decreases.

Proof. Let $B \in \partial C_{ij}(A)$ and let $A \in A$ s.t. $B \subset C_{i,j,A}(A)$.

- i. Suppose B meets $\{i,j\}$ in 0 or 2 elements. Then $B \subset A$ so $B \in \partial A$ and $B \in C_{ij}(\partial A)$
- ii. Suppose $i \in B$, $j \notin B$. Then either B or $(B \setminus \{i\}) \cup \{j\}$ belongs to ∂A , so $B \in C_{ij}(\partial A)$.
- iii. Suppose $j \in B$, $i \notin B$. Then both B and $(B \setminus \{j\}) \cup \{i\}$ belong to ∂A , so both belong to $C_{ij}(\partial A)$.

Definition. Call $A \subset X^{(r)}$ left-compressed if $C_{ij}(A) = A \ \forall i < j$.

Lemma 3. Let $A \subset X^{(r)}$. Then \exists a left-compressed family $B \subset X^r$ s.t. |B| = |A| and $|\partial B| \leq |\partial A|$.

Proof. Define $A_0 = A, A_1, \ldots$ as follows: having reached A_k , if A_k is not left-compressed, pick i < j s.t. $C_{ij}(A_k) \neq A_k$, and set $A_{k+1} = C_{ij}(A_k)$

This sequence has to end because

$$\sum_{A \in \mathcal{A}_{k+1}} \sum_{a \in A} a < \sum_{A \in \mathcal{A}_k} \sum_{a \in A} a$$

let A_l be the last term: this will do for \mathcal{B} .

Theorem 4 (Kruskal-Katona, 1963 and 1968). Let $A \subset X^{(r)}$, m = |A|. Then

$$|\partial \mathcal{A}| \ge \left| \partial \mathcal{B}_m^{(r)} \right|$$

$$= \left| \partial \mathcal{B}^{(r)}(m_r, m_{r-1}, \dots, m_s) \right|$$

$$= b^{(r-1)}(m_r, \dots, m_s)$$

Proof. Induction on r and then m (or on r+m). $r=1 \checkmark m=1 \checkmark$

Induction step: we may assume that \mathcal{A} is left-compressed. Set $Y = X \setminus \{1\}$. Then $\mathcal{A} = (\mathcal{A}_1 + \{1\}) \cup \mathcal{A}_0$, where $\mathcal{A}_1 \subset Y^{(r-1)}$, $\mathcal{A}_0 \subset Y^{(r)}$.

$$m = |\mathcal{A}| = |\mathcal{A}_0| + |\mathcal{A}_1|, \ \partial \mathcal{A}_0 \subset \mathcal{A}_1, \ \partial (\mathcal{A}_1 + \{1\}) = \mathcal{A}_1 \cup (\partial \mathcal{A}_1 + \{1\}).$$

In particular, $|\partial \mathcal{A}| = |\mathcal{A}_1| + |\partial \mathcal{A}_1|$.

For $\mathcal{A} = \mathcal{B}^{(r)}(m_r, \ldots, m_s)$,

$$|\mathcal{A}_1| = b^{(r-1)}(m_r - 1, \dots, m_s - 1)$$

$$|\mathcal{A}_0| = b^{(r)}(m_r - 1, \dots, m_s - 1)$$

Suppose $|\mathcal{A}_0| > b^{(r)}(m_r - 1, \dots, m_s - 1)$. Then by the induction hypothesis, $|\partial \mathcal{A}_0| \geq b^{(r-1)}(m_r - 1, \dots, m_s - 1)$. Hence $|\mathcal{A}_1| \geq b^{(r-1)}(m_r - 1, \dots, m_s - 1)$ and so $|\partial \mathcal{A}| \geq b^{(r-1)}(m_r, \dots, m_s)$.

But if $|A_0| \le b^{(r)}(m_r - 1, \dots, m_s - 1)$, $|A_1|$ is again $\ge b^{(r-1)}(m_r - 1, \dots, m_s - 1)$. Done as before.

Soft version:

Theorem 5 (Lovász, 1979). If $A \subset X^{(r)}$ satisfies $|A| = {X \choose r}$ then $|\partial A| \ge {X \choose r-1}$.

Proof. Induction on r and $m = |\mathcal{A}|$. As before, $\mathcal{A}_0, \mathcal{A}_1$. Note that $\mathcal{A}_1 \geq {X-1 \choose r-1}$ since otherwise $\mathcal{A}_0 > {X-1 \choose r}$. But then $|\partial \mathcal{A}_0| \geq {X-1 \choose r-1}$, contradicting the fact that $\partial \mathcal{A}_0 \subset \mathcal{A}_1$.

But if $|\mathcal{A}_1| \ge {X-1 \choose r-1}$ then

$$|\mathcal{A}_1| + |\partial \mathcal{A}_1| \ge {X-1 \choose r-1} + {X-1 \choose r-2} = {X \choose r-1}$$

Definition. Define the uniform probability measure on $X^{(r)}$, |X| = n as $\mathbb{P}_{n,r}(A) = \frac{1}{\binom{n}{r}}$, and for $A \subset X^{(r)}$, $\mathbb{P}_{n-r}(A) = \frac{|A|}{\binom{n}{r}}$.

Definition. $A \subset \mathcal{P}(n)$ is monotone decreasing if $A \subset B \in \mathcal{A} \implies A \in \mathcal{A}$.