applied-project-codes

August 16, 2023

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import time
     import warnings
     warnings.simplefilter(action='ignore', category=FutureWarning)
    In C:\Users\HP\Anaconda3\lib\site-packages\matplotlib\mpl-
    data\stylelib\_classic_test.mplstyle:
    The savefig.frameon rcparam was deprecated in Matplotlib 3.1 and will be removed
    in 3.3.
    In C:\Users\HP\Anaconda3\lib\site-packages\matplotlib\mpl-
    data\stylelib\_classic_test.mplstyle:
    The verbose.level rcparam was deprecated in Matplotlib 3.1 and will be removed
    In C:\Users\HP\Anaconda3\lib\site-packages\matplotlib\mpl-
    data\stylelib\_classic_test.mplstyle:
    The verbose.fileo rcparam was deprecated in Matplotlib 3.1 and will be removed
    in 3.3.
```

1 1. Data Overview and Data Processing

```
[2]: df = pd.read_csv('data.csv',sep = '\t', error_bad_lines=False)
    print(df.shape)
    print(df['loan_status'].value_counts())

C:\Users\HP\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3057:
    DtypeWarning: Columns (72,75) have mixed types.Specify dtype option on import or set low_memory=False.
    interactivity=interactivity, compiler=compiler, result=result)

(1434388, 77)
    fully repaid 1406537
    defaulted 27851
    Name: loan_status, dtype: int64
```

No handles with labels found to put in legend.

1.1 Value Dropping

1.1.1 We will drop columns that have less than 1,000,000 real data points (Non NAN values). And then rename the columns according to the SFLP_dictionary

```
[4]: df = df[df.columns[((-df.isna()).sum() > 1000000)]]
    vnums = np.array(df.columns)
    df = df.rename(columns={'v2': 'LOAN_ID', 'v3': 'MNTH_REP', 'v4': 'ORIG_CHN', __
     'v10': 'ORIG_AMT', 'v12': 'CUR_AMT', 'v13': 'ORIG_TRM',
     'v20': 'OLTV', 'v21': 'OCLTV', 'v22': 'NUM_BO', 'v23':
     'v26': 'FTHB_FLG', 'v27': 'PURPOSE', 'v28': 'PROP_TYP',
     \circ'v29': 'NUM_UNIT', 'v30': 'OCC_STAT', 'v31': 'STATE',
                        'v32': 'MSA', 'v33': 'ZIP_3', 'v35': 'AM_TYPE', 'v36':

¬'PreP_FLG',
                        'v37': 'INTOnlly_FLG', 'v40': 'Delq.Status', 'v44':
     ⇔'Zero.Bal.Code', 'v45': 'Zero.Bal.Date',
                        'v46': 'REM_AMT', 'v49': 'DIFF_UPB', 'v79':
     ⇔'SPEC_PRG','v81': 'RELOCATION_FLG',
                        'v86': 'VAL_METH', 'v87': 'HBL_FLG', 'v102': 'ASS_PLAN',
     'v105': 'REPUR FLG', 'v106': 'ALT DELINQ'})
```

1.1.2 Some columns need to be dropped because they are unmatched to the data description. Eg: CUR_AMT, AM_TYPE contain all the same type of data, which do not have categories.

```
[5]: df["ASS_PLAN"] = df["ASS_PLAN"].replace({7:"F"})
    df["ALT_DELINQ"] = df["ALT_DELINQ"].replace({7:"P"})

remove_cols = ["v12","v35","v36","v37"]
    vnums = np.setdiff1d(vnums,remove_cols)

df = df.drop( columns=["CUR_AMT","AM_TYPE","PreP_FLG","INTOnlly_FLG"] )
    df.columns
```

1.1.3 Some variables are only available after the loans have been issued. Should drop them because they are the future data.

```
[6]: array(['loan_status', 'v10', 'v102', 'v103', 'v105', 'v106', 'v13', 'v2', 'v20', 'v21', 'v22', 'v23', 'v24', 'v26', 'v27', 'v28', 'v29', 'v3', 'v30', 'v31', 'v32', 'v33', 'v4', 'v49', 'v5', 'v79', 'v8', 'v81', 'v86', 'v87'], dtype=object)
```

1.1.4 Some columns contain no meaning (eg. LOAN_ID and Seller Name) in predicting default. Drop them as well.

```
[7]: df = df.drop( columns=["LOAN_ID", "Seller.Name"] )
   vnums = np.setdiff1d(vnums,["v2","v5"])
   vnums
```

```
[7]: array(['loan_status', 'v10', 'v102', 'v103', 'v105', 'v106', 'v13', 'v20', 'v21', 'v22', 'v23', 'v24', 'v26', 'v27', 'v28', 'v29', 'v3', 'v30', 'v31', 'v32', 'v33', 'v4', 'v49', 'v79', 'v8', 'v81', 'v86', 'v87'], dtype=object)
```

- 1.2 1.2 Encoding and Fillna
- 1.2.1 Encode the "string" type columns into numeric type and then fill NAN value with mean() function.

```
[8]: # Encode categorical variables to numeric type

df['loan_status'] = df['loan_status'].replace({'defaulted' : 1, 'fully repaid' :

0})

########

# encoding dummy variables

########

from sklearn.preprocessing import LabelEncoder

lbecd = LabelEncoder()

df["SPEC_PRG"] = lbecd.fit_transform( df["SPEC_PRG"] ) # values: N,Y

df["FTHB_FLG"] = lbecd.fit_transform( df["FTHB_FLG"] ) # values: N,Y

df["RELOCATION_FLG"] = lbecd.fit_transform( df["RELOCATION_FLG"] ) # Whether_

the loan is Relocation Mortgage loan. Values: N,Y
```

```
df["HBL_FLG"] = lbecd.fit_transform( df["HBL_FLG"] ) # if original loan_□

→ priciple is greater than general conforming loan limit. Values: N, Y

df["HLTV_FLG"] = lbecd.fit_transform( df["HLTV_FLG"] ) # if original reference_□

→ loan is refinanced under Fannie Mae's HLTV refinance option. Values: N, Y

df["REPUR_FLG"] = lbecd.fit_transform( df["REPUR_FLG"] ) # if Fannie Mae_□

→ received warranty arrangements for the repurchase of the mortgage loan.□

→ Values: N, Y
```

```
[9]: ########
     # encoding categorical variables
     ########
     def rank lbecd(column):
         le = LabelEncoder()
         # get the default case proportion in each category of input variable
         # and encode the input vairable by the rank of default rate in each \Box
         rank_order = df.copy().groupby([column],dropna=False)["loan_status"].mean().
      ⇔sort_values().index
         le.classes_ = np.array(rank_order)
         return le.transform( column.values )
     df["PURPOSE"] = rank_lbecd( df["PURPOSE"] ) # loaning purpose: Cash-Out_
      ⇔Refinance = C; Refinance = R; Purchase = P
     df["OCC STAT"] = rank lbecd( df["OCC STAT"] ) # propetety occupation status:
      →Principal = P; Second = S; Investor = I
     df['VAL METH'] = df['VAL METH'].replace({'.' : "0"})
     df["VAL_METH"] = rank_lbecd( df["VAL_METH"] ) # the mothod by which the value__
      of property is obtained: A = Appraisal; P = Onsite Property Data Collection;
      \rightarrow R = GSE Targeted Refinance; W = Appraisal Waiver; O = Other
     df["ORIG CHN"] = rank_lbecd( df["ORIG_CHN"] ) #"ORIG_CHN": Retail = R;
      \hookrightarrow Correspondent = C; Broker = B
     df["PROP_TYP"] = rank_lbecd( df["PROP_TYP"] ) # "PROP_TYP": CO = condominium;__
      →CP = co-operative; PU = Planned Urban Development; MH = manufactured home;
      \hookrightarrow SF = single-family home
     df["STATE"] = rank_lbecd( df["STATE"] ) # 56 USA states
     df["ASS_PLAN"] = rank_lbecd( df["ASS_PLAN"] ) # "ASS_PLAN": F = Forbearance_
      \hookrightarrow Plan; 7= Not Applicable; N = No Workout Plan
     df["ALT DELINQ"] = rank lbecd( df["ALT DELINQ"] ) # "ALT DELINQ": P = payment_1
      →deferral option; C = payment deferral option specific to COVID-19; 7 = Notu
      \rightarrowApplicable
```

```
df["ZIP_3"] = rank\_lbecd(df["ZIP_3"]) # 892 categories of first three digits_u of the code designated by the U.S. Postal Service where the subject property_u is located.
```

```
[10]: ########
# fillna and other data processing processes
#########

# type modification
df = df.astype({"ORIG_AMT": 'float64', "OLTV": 'float64', "OCLTV": 'float64' })
# "MSA": object

# NA features filtering
#### whether using mean filtering or other methods is not sure
df["DIFF_UPB"] = df["DIFF_UPB"].fillna(df["DIFF_UPB"].mean())
df["DRIG_RT"] = df["ORIG_RT"].fillna(df["ORIG_RT"].mean())
df["DTI"] = df["DTI"].fillna(df["DTI"].mean())
df["CSCORE_B"] = df["CSCORE_B"].fillna(df["CSCORE_B"].mean())
print(df.isna().sum().sum()) # no nan remains
print(df.shape)
```

1.3 Generate a Subsample dataset to replace the entire one

1.3.1 When the data sample is ready, can actually start running whole notebook from the next cell.

```
[12]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt

sample = pd.read_csv("data_sample.csv")
  sample = sample/sample.abs().max()
  print(sample.shape)
```

```
sample.head()
     (86063, 28)
[12]:
        MNTH_REP
                  ORIG_CHN
                             ORIG_RT ORIG_AMT
                                                ORIG_TRM
                                                              OLTV
                                                                      OCLTV \
                                                     1.0 0.814433 0.718182
     0 0.426320
                       1.0 0.660377 0.143164
     1 0.836086
                       0.5 0.603774 0.087330
                                                     1.0 0.979381 0.863636
     2 0.836086
                       0.0 0.566038 0.234789
                                                     1.0 0.824742 0.727273
     3 0.754132
                       1.0 0.547170
                                      0.100215
                                                     0.5 0.432990 0.381818
     4 0.180477
                       0.5 0.471698 0.088762
                                                     1.0 0.731959 0.645455
                     DTI CSCORE B ... DIFF UPB
                                                 SPEC PRG RELOCATION FLG \
        NUM BO
     0
          0.25 0.921569
                          0.903571 ...
                                       0.196069
                                                      0.0
                                                                     0.0
          0.25 0.823529
                                                      0.5
                                                                     0.0
     1
                          0.857143 ...
                                       0.117912
     2
          0.50 0.450980
                          0.938095 ...
                                       0.315402
                                                      0.0
                                                                     0.0
     3
          0.25 0.372549
                          0.946429
                                       0.051795
                                                      0.0
                                                                     0.0
                                                      0.0
          0.25 0.450980 0.913095 ... 0.120490
                                                                     0.0
        VAL_METH HBL_FLG ASS_PLAN HLTV_FLG REPUR_FLG ALT_DELINQ
                                                                     loan_status
     0
            1.00
                      0.0 0.666667
                                          0.0
                                                     0.0
                                                           0.000000
                                                                             0.0
            1.00
                      0.0 0.666667
                                          0.0
                                                     0.0
                                                           0.333333
                                                                             0.0
     1
                                          0.0
                                                                             0.0
     2
            0.25
                      0.0 0.666667
                                                     0.0
                                                           0.333333
     3
            1.00
                      0.0 0.666667
                                          0.0
                                                     0.0
                                                           0.333333
                                                                             0.0
            1.00
                      0.0 0.666667
                                          0.0
                                                     0.0
                                                           0.333333
                                                                             0.0
     [5 rows x 28 columns]
```

2 2. Federated Learning Simulation

2.1 Train-test-split and dealing with imbalanced data problem with SMOTE

```
[13]: from sklearn.model_selection import train_test_split

Xtrain, Xtest, Ytrain, Ytest = train_test_split( sample.iloc[:, sample.columns!

== "loan_status"], sample.loan_status,

test_size=0.166,

print(Xtrain.shape, Xtest.shape, Ytrain.shape, Ytest.shape)

(71776, 27) (14287, 27) (71776,) (14287,)

[14]: plt.figure(figsize=(3.5,2),dpi=500)

plt.xlim(0.5,2.5)

plt.ylim(0,80000)

plt.xticks(range(1,3,1), ["fully paid (0)","defaulted (1)"],fontsize=7)
```



```
[15]: # Applying SMOTE technique
    # SMOTE increases recall at the cost of lower precision
    from imblearn.over_sampling import SMOTE

    Xtrain_smote, Ytrain_smote = SMOTE().fit_resample(Xtrain, Ytrain)
    print(Xtrain_smote.shape)
    print(Ytrain_smote.value_counts()) # Now the #1:#0 = 1:1

    (140764, 27)
    0.0    70382
    1.0    70382
    Name: loan_status, dtype: int64

[16]: plt.figure(figsize=(3.5,2),dpi=500)

    plt.xlim(0.5,2.5)
    plt.ylim(0,80000)
```



```
[17]: Xtrain_smote = Xtrain_smote.reset_index(drop=True)
   Ytrain_smote = Ytrain_smote.reset_index(drop=True)
   Xtest = Xtest.reset_index(drop=True)
   Ytest = Ytest.reset_index(drop=True)
```

2.2 2.2 Federated Learning Structure

2.2.1 Define Configurations (using linear regression as defaulted settings)

```
[18]: from sklearn.linear_model import LinearRegression

conf = {
    "model_name" : LinearRegression(),
    "no_models" : 10,
    "global_epochs" : 20,
    "k" : 5,
```

```
"lambda" : 0.15
}
```

2.2.2 Define a Server

```
[19]: from sklearn.metrics import average_precision_score, log_loss
      class Server():
          def __init__(self, conf, Xtest, Ytest):
              self.conf = conf
              self.global_model = self.conf["model_name"]
              self.Xtest = Xtest
              self.Ytest = Ytest
              # to execute the fit() first to get the .coef_ and .intercept__
       \hookrightarrow attribute available to invoke
              self.global model.fit( np.zeros(self.Xtest.shape), np.zeros( len(self.
       →Ytest)) )
              #when initalized, self.qlobal model.coef = [0*27]; self.qlobal model.
       \hookrightarrow intercept_{-} = 0
          def model_aggregate(self, grads, global_epoch):
              if global_epoch==0:
                  self.global_model.coef_ = np.array(grads["Beta_base"]).mean(axis=0)
                  self.global_model.intercept_ = np.array(grads["Intercept_base"]).
       →mean()
              self.global_model.coef_ -= np.array(grads["gBetas"]).mean(axis=0) *_
       ⇔self.conf["lambda"]
              self.global_model.intercept_ -= np.array(grads["gIntercepts"]).mean()_u
       ⇔* self.conf["lambda"]
          def model_eval(self):
              # calculate the precision-recall AUC score
              precision_recall_auc = average_precision_score(Ytest, self.global_model.
       →predict(self.Xtest))
```

```
# calculate the cross-entropy loss
global_loss = log_loss(Ytest, self.global_model.predict(self.Xtest))
return precision_recall_auc, global_loss
```

2.2.3 Define The Client Class

```
[20]: class Client():
          def __init__(self, conf, Xtrain_full, Ytrain_full, cid = -1):
              self.conf = conf
              self.local_model = self.conf["model_name"]
              self.client_id = cid
              self.Xtrain_full = Xtrain_full
              self.Ytrain_full = Ytrain_full
              # get the local dataset of a client
              data_len = int(len(self.Xtrain_full) / self.conf['no_models'])
              if (cid+1) == self.conf['no_models']:
                  self.local_Xtrain = self.Xtrain_full.iloc[cid * data_len: ]
                  self.local_Ytrain = self.Ytrain_full.iloc[cid * data_len: ]
              else:
                  self.local_Xtrain = self.Xtrain_full.iloc[cid * data_len: (cid+1) *_
       →data_len]
                  self.local_Ytrain = self.Ytrain_full.iloc[cid * data_len: (cid+1) *__
       →data_len]
          def local_train(self, global_model, global_epoch):
              if global_epoch==0:
                  # first iteration, train fit on a local subsample to generate the
       →parameters base
                  # it will let the global model converge faster than starting from
       →all zeros
                  local_subsample_id = random.sample( range(len(self.
       →local_Xtrain)),int(len(self.local_Xtrain)/5)
                  self.local model.fit( self.local Xtrain.iloc[local subsample id],
       self.local_Ytrain.iloc[local_subsample_id] )
                  self.local_model.coef_ = np.zeros(27)
                  self.local_model.intercept_ = 0
              else:
```

2.2.4 2.2.4 Main Structure

```
[21]: import random
      import time
      start = time.time()
      prauc_scores = {"federated":[]}
      loss_scores = {"federated":[]}
      if __name__ == '__main__':
          # generate a server and the client instances
          server = Server(conf, Xtest, Ytest)
          clients = []
          for cid in range(conf["no_models"]):
              clients.append( Client(conf, Xtrain_smote, Ytrain_smote, cid) )
          print("Generated one Server and",conf["no_models"],"Clients...\n\n")
          # global iterations epochs
          for e in range(conf["global_epochs"]):
              gradients = {
                              "Beta_base":[],
                              "Intercept_base":[],
                              "gBetas":[],
                              "gIntercepts":[]
                          }
              if e==0:
```

```
candidates = clients.copy()
        else:
            # in every epoch, just select k clients for federated training
            candidates = random.sample(clients, conf["k"])
        for c in candidates:
            coef_grads, itcp_grads = c.local_train(server.global_model, e)
            if e==0:
                gradients["Beta base"].append(c.local model.coef )
                gradients["Intercept_base"].append(c.local_model.intercept_)
            gradients["gBetas"].append(coef_grads)
            gradients["gIntercepts"].append(itcp_grads)
        # pass the gradients data to the server for aggregation.
        server.model_aggregate(gradients, e)
        pr_auc, loss = server.model_eval()
        print("Epoch %d, precision_recall score: %f, loss: %f" % (e, pr_auc, __
 →loss))
        prauc_scores["federated"].append(pr_auc)
        loss_scores["federated"].append(loss)
end = time.time()
print("run time cost is", end-start, "seconds")
```

Generated one Server and 10 Clients...

```
Epoch 0, precision_recall score: 0.066318, loss: 1.158814
Epoch 1, precision_recall score: 0.283805, loss: 0.360570
Epoch 2, precision_recall score: 0.286746, loss: 0.535055
Epoch 3, precision_recall score: 0.388485, loss: 0.490388
Epoch 4, precision_recall score: 0.475235, loss: 0.458294
Epoch 5, precision_recall score: 0.269407, loss: 3.281494
Epoch 6, precision_recall score: 0.628286, loss: 0.236439
Epoch 7, precision_recall score: 0.422979, loss: 1.138762
Epoch 8, precision_recall score: 0.556164, loss: 0.637114
Epoch 9, precision_recall score: 0.622775, loss: 0.393575
Epoch 10, precision_recall score: 0.548270, loss: 0.321409
Epoch 12, precision_recall score: 0.568984, loss: 0.926967
```

```
Epoch 13, precision_recall score: 0.631212, loss: 0.294680
Epoch 14, precision_recall score: 0.629162, loss: 0.443202
Epoch 15, precision_recall score: 0.631437, loss: 0.147109
Epoch 16, precision_recall score: 0.628995, loss: 0.505616
Epoch 17, precision_recall score: 0.624215, loss: 0.680658
Epoch 18, precision_recall score: 0.602123, loss: 1.062550
Epoch 19, precision_recall score: 0.630839, loss: 0.479796
run time cost is 0.8995251655578613 seconds
```

2.3 Result Comparison

2.3.1 2.3.1 Centralized Model on Full Dataset

```
[22]: # centralized training
      import warnings
      warnings.simplefilter(action='ignore')
      Cen_lgr = conf["model_name"]
      Cen_lgr.coef_ = np.zeros(27)
      Cen_lgr.intercept_ = 0
      prauc_scores["centralized"] = []
      loss_scores["centralized"] = []
      for e in range(conf["global epochs"]):
          vpred = Cen lgr.predict(Xtrain smote.values)
          Cen_lgr.coef_ -= (1/len(ypred)) * Xtrain_smote.T.dot(ypred - Ytrain_smote)_
       →* conf["lambda"]
          Cen_lgr.intercept_ -= np.mean(ypred - Ytrain_smote) * conf["lambda"]
          # evaluation
          pr_auc = average_precision_score(Ytest, Cen_lgr.predict(Xtest.values))
          loss = log_loss(Ytest, Cen_lgr.predict(Xtest.values))
          print("Epoch %d, precision_recall score: %f, loss: %f" % (e, pr_auc, loss))
          prauc_scores["centralized"].append(pr_auc)
          loss_scores["centralized"].append(loss)
```

```
Epoch 0, precision_recall score: 0.066318, loss: 1.158878 Epoch 1, precision_recall score: 0.198240, loss: 0.526320 Epoch 2, precision_recall score: 0.236489, loss: 0.706895 Epoch 3, precision_recall score: 0.337982, loss: 0.614675 Epoch 4, precision_recall score: 0.397467, loss: 0.633619 Epoch 5, precision_recall score: 0.462737, loss: 0.610672
```

```
Epoch 6, precision_recall score: 0.508346, loss: 0.604806
Epoch 7, precision_recall score: 0.543364, loss: 0.592907
Epoch 8, precision_recall score: 0.568303, loss: 0.583945
Epoch 9, precision_recall score: 0.588038, loss: 0.574387
Epoch 10, precision_recall score: 0.602341, loss: 0.565584
Epoch 11, precision_recall score: 0.612446, loss: 0.556982
Epoch 12, precision_recall score: 0.619337, loss: 0.548773
Epoch 13, precision_recall score: 0.622673, loss: 0.540860
Epoch 14, precision_recall score: 0.625588, loss: 0.533258
Epoch 15, precision_recall score: 0.627274, loss: 0.525941
Epoch 16, precision_recall score: 0.628310, loss: 0.518902
Epoch 17, precision_recall score: 0.629297, loss: 0.512124
Epoch 18, precision_recall score: 0.630009, loss: 0.505598
Epoch 19, precision_recall score: 0.630644, loss: 0.499311
```

2.3.2 Single Local Model Average Performance

```
[23]: conf["no models"] = 10
     clients = []
     for cid in range(conf["no models"]):
          clients.append( Client(conf, Xtrain_smote, Ytrain_smote, cid) )
     for c in clients:
          c.local_model.coef_ = np.zeros(27)
         c.local_model.intercept_ = 0
     prauc_scores["Single"] = []
     loss_scores["Single"] = []
     prauc_e = []
     loss_e = []
     for e in range(conf["global_epochs"]):
         for c in clients:
             ypred = c.local_model.predict(c.local_Xtrain.values)
              c.local_model.coef_ -= (1/len(ypred)) * c.local_Xtrain.T.dot(ypred - c.
       →local_Ytrain) * conf["lambda"]
              c.local model.intercept -= np.mean(ypred - c.local Ytrain) *||
```

```
# evaluation
pr_auc = average_precision_score(Ytest, c.local_model.predict(Xtest.
values))

loss = log_loss(Ytest, c.local_model.predict(Xtest.values))

prauc_e.append(pr_auc)
loss_e.append(loss)

avg_prauc = np.mean(prauc_e)
avg_loss = np.mean(loss_e)
print("Epoch %d, precision_recall score: %f, loss: %f" % (e, avg_prauc, user_avg_loss))

prauc_scores["Single"].append(avg_prauc)
loss_scores["Single"].append(avg_loss)
```

```
Epoch 0, precision_recall score: 0.227903, loss: 6.802936
Epoch 1, precision recall score: 0.302180, loss: 6.234017
Epoch 2, precision_recall score: 0.357944, loss: 5.747979
Epoch 3, precision_recall score: 0.399177, loss: 5.351075
Epoch 4, precision_recall score: 0.429589, loss: 5.022111
Epoch 5, precision_recall score: 0.452682, loss: 4.747003
Epoch 6, precision_recall score: 0.470826, loss: 4.513260
Epoch 7, precision_recall score: 0.485407, loss: 4.311598
Epoch 8, precision_recall score: 0.497366, loss: 4.135463
Epoch 9, precision_recall score: 0.507344, loss: 3.981135
Epoch 10, precision_recall score: 0.515790, loss: 3.844527
Epoch 11, precision_recall score: 0.523026, loss: 3.722925
Epoch 12, precision_recall score: 0.529289, loss: 3.614137
Epoch 13, precision_recall score: 0.534759, loss: 3.516308
Epoch 14, precision recall score: 0.539578, loss: 3.428258
Epoch 15, precision_recall score: 0.543854, loss: 3.348441
Epoch 16, precision recall score: 0.547669, loss: 3.275573
Epoch 17, precision_recall score: 0.551094, loss: 3.209097
Epoch 18, precision_recall score: 0.554190, loss: 3.148399
Epoch 19, precision_recall score: 0.556996, loss: 3.092499
```

2.3.3 Result Visualization

```
[24]: import matplotlib.pyplot as plt

plt.figure(figsize=(5,3.2),dpi=500)

plt.xlim(0,21)
 plt.ylim(0,0.7)
 plt.xticks(range(0,21,1),fontsize=7)
 plt.yticks(fontsize=7)
```


[]:

2.3.4 2.4 Applying Homomorphic Encryption

[26]: pip install phe

Requirement already satisfied: phe in c:\users\hp\anaconda3\lib\site-packages (1.5.0)

Note: you may need to restart the kernel to use updated packages.

WARNING: Ignoring invalid distribution -cipy (c:\users\hp\anaconda3\lib\site-packages)

WARNING: Ignoring invalid distribution -cipy (c:\users\hp\anaconda3\lib\site-packages)

[notice] A new release of pip is available: $23.1.2 \rightarrow 23.2.1$ [notice] To update, run: python.exe -m pip install --upgrade pip

[27]: from phe import paillier public_key, private_key = paillier.generate_paillier_keypair()

```
[28]: class Server_homo():
          def __init__(self, conf, Xtest, Ytest):
              self.conf = conf
              self.global_model = self.conf["model_name"]
              self.Xtest = Xtest
              self.Ytest = Ytest
              # to execute the fit() first to get the .coef_ and .intercept__
       →attribute available to invoke
              self.global_model.fit( np.zeros(self.Xtest.shape), np.zeros( len(self.
       →Ytest)) )
          def model_aggregate(self, grads, global_epoch):
              if global_epoch==0:
                  self.global_model.coef_ = np.array(grads["Beta_base"]).mean(axis=0)
                  self.global_model.intercept_ = np.array(grads["Intercept_base"]).
       →mean()
              self.global_model.coef_ -= np.array(grads["gBetas"]).mean(axis=0) *_
       ⇔self.conf["lambda"]
              self.global_model.intercept_ -= np.array(grads["gIntercepts"]).mean()_u
       →* self.conf["lambda"]
          def model_eval(self):
              # calculate the precision-recall AUC score
              self.global_model.coef_ = np.array([private_key.decrypt(x) for x in_
       ⇔self.global_model.coef_])
              self.global_model.intercept_ = private_key.decrypt(self.global_model.
       →intercept_)
              precision_recall_auc = average_precision_score(Ytest, self.global_model.
       →predict(self.Xtest))
              # calculate the cross-entropy loss
              global_loss = log_loss(Ytest, self.global_model.predict(self.Xtest))
              return precision_recall_auc, global_loss
[29]: class Client homo():
          def __init__(self, conf, Xtrain_full, Ytrain_full, cid = -1):
```

```
self.conf = conf
      self.local_model = self.conf["model_name"]
      self.client_id = cid
      self.Xtrain_full = Xtrain_full
      self.Ytrain_full = Ytrain_full
       # get the local dataset of a client
      data_len = int(len(self.Xtrain_full) / self.conf['no_models'])
      if (cid+1) == self.conf['no_models']:
           self.local_Xtrain = self.Xtrain_full.iloc[cid * data_len: ]
           self.local_Ytrain = self.Ytrain_full.iloc[cid * data_len: ]
       else:
           self.local_Xtrain = self.Xtrain_full.iloc[cid * data_len: (cid+1) *_

data len]

           self.local_Ytrain = self.Ytrain_full.iloc[cid * data_len: (cid+1) *_u

data len]
  def local_train(self, global_model, global_epoch):
       if global_epoch==0:
           # first iteration, train fit on a local subsample to generate the \Box
→parameters base
           # it will let the global model converge faster than starting from
→all zeros
           local_subsample_id = random.sample( range(len(self.
→local_Xtrain)),int(len(self.local_Xtrain)/5)
           self.local_model.fit( self.local_Xtrain.iloc[local_subsample_id],_
self.local_Ytrain.iloc[local_subsample_id] )
           self.local_model.coef_ = np.zeros(27)
           self.local_model.intercept_ = 0
      else:
           # overwrite the local_model's coefficients by the global_models'
           self.local_model.coef_ = global_model.coef_
           self.local_model.intercept_ = global_model.intercept_
       # get gradients of parameters in the linear regression model (using u
⇔cross-entropy as the loss function)
      ypred = self.local_model.predict(self.local_Xtrain)
      grad_coef = (1/len(ypred)) * self.local_Xtrain.T.dot(ypred - self.
→local_Ytrain)
```

```
grad_intercept = np.mean(ypred - self.local_Ytrain)
enc_grad_coef = [public_key.encrypt(x) for x in grad_coef]
enc_grad_intercept = public_key.encrypt(grad_intercept)
return enc_grad_coef, enc_grad_intercept
```

```
[]: prauc_scores = {"federated":[]}
     loss_scores = {"federated":[]}
     start = time.time()
     if __name__ == '__main__':
         # generate a server and the client instances
         server = Server_homo(conf, Xtest, Ytest)
         clients = []
         for cid in range(conf["no_models"]):
             clients append( Client_homo(conf, Xtrain_smote, Ytrain_smote, cid) )
         print("Generated one Server and",conf["no_models"],"Clients...\n\n")
         # global iterations epochs
         for e in range(conf["global_epochs"]):
             gradients = {
                             "Beta_base":[],
                             "Intercept_base":[],
                             "gBetas":[],
                             "gIntercepts":[]
                         }
             if e==0:
                 candidates = clients.copy()
             else:
                 # in every epoch, just select k clients for federated training
                 candidates = random.sample(clients, conf["k"])
             for c in candidates:
                 coef_grads, itcp_grads = c.local_train(server.global_model, e)
                 if e==0:
                     gradients["Beta_base"].append(c.local_model.coef_)
                     gradients["Intercept_base"].append(c.local_model.intercept_)
                 gradients["gBetas"].append(coef_grads)
                 gradients["gIntercepts"].append(itcp_grads)
```

```
# pass the gradients data to the server for aggregation.
server.model_aggregate(gradients, e)

pr_auc, loss = server.model_eval()

print("Epoch %d, precision_recall score: %f, loss: %f" % (e, pr_auc,u)

aloss))

prauc_scores["federated"].append(pr_auc)
loss_scores["federated"].append(loss)

end = time.time()
print("run time cost is", end-start, "seconds")
```



```
[31]: # visualize gradient size
     plt.figure(figsize=(3.5,2),dpi=500)
     plt.xlim(0.5,2.5)
     plt.ylim(0,5000)
     plt.xticks(range(1,3,1),
                              ["Unencrypted Federated", "HE encrypted ⊔
      →Federated"],fontsize=7)
     plt.yticks(fontsize=7)
     plt.ylabel("gradient size /kb",fontsize=8)
     gradient_size = [857, 4453]
     plt.hlines(y=0,xmin=0.5,xmax=2.5,color='black',linewidth=1)
     plt.bar( range(1,3,1),gradient_size,width=0.8,color='darkgreen')
     for i in range(1,3,1):
         plt.text(i,gradient_size[i-1]+100, str(gradient_size[i-1])+"
      plt.show()
```



```
[]:
[]:
[32]: # roc curve and auc
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
```

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot
# generate 2 class dataset
X, y = make_classification(n_samples=1000, n_classes=2, random_state=1)
# split into train/test sets
trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5,_
 →random state=2)
# generate a no skill prediction (majority class)
ns_probs = [0 for _ in range(len(testy))]
# fit a model
model = LogisticRegression(solver='lbfgs')
model.fit(trainX, trainy)
# predict probabilities
lr_probs = model.predict_proba(testX)
# keep probabilities for the positive outcome only
lr_probs = lr_probs[:, 1]
# calculate scores
ns_auc = roc_auc_score(testy, ns_probs)
lr auc = roc auc score(testy, lr probs)
# summarize scores
print('No Skill: ROC AUC=%.3f' % (ns_auc))
print('Logistic: ROC AUC=%.3f' % (lr_auc))
plt.figure(figsize=(3.5,3),dpi=500)
# calculate roc curves
ns_fpr, ns_tpr, _ = roc_curve(testy, ns_probs)
lr_fpr, lr_tpr, _ = roc_curve(testy, lr_probs)
# plot the roc curve for the model
pyplot.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
pyplot.plot(lr_fpr, lr_tpr, marker='.')
# axis labels
pyplot.xlabel('Recall Rate')
pyplot.ylabel('Precision Rate')
plt.fill_between(lr_fpr,lr_tpr,color="papayawhip")
# show the legend
pyplot.legend(loc="lower right")
# show the plot
pyplot.show()
```

No Skill: ROC AUC=0.500 Logistic: ROC AUC=0.903

[]: