Mouse Longevity App – an ongoing project to collect and make available mouse lifespan data

Kaiser, W. A.^{1,2}, Canonico, M.¹, Gomez, J.², Prins. P.², Ashbrook, D. G.²

1. College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA. 2. Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.

dashbrook@UTHSC.edu

Introduction

- Mice have been used as a model for human longevity and lifespan for decades, due to our shared mammalian ancestry and close genetic similarity
- These studies have been carried out in vastly different conditions, even when nominally described as controls
- No centralized repository for this data. This is important, as each of these studies represent years of effort and public funding
- We concentrated on isogenic animals (e.g. inbred strains and their F1s)
 - Replicable across studies, years and laboratories
- Exception for the UM-HET3
 - G2 population with excellent and well documented data
- We did not include animals on mixed backgrounds
 - Uncontrolled segregation of alleles in these populations, which cannot be replicated
 - Excludes many studies in transgenic animals

Aims

- Collect mouse longevity data
- Standardize the metadata where possible
- Create an interactive web service

Methods

- Manually examine papers and databases to identify mouse lifespan data
- Data has to come from an isogenic genometype or from the UM-Het3
- Data from transgenic animals has to be on an isogenic background
- Values from taken from the manuscript
 - or estimated from figures where possible
- If mean and n were given, plus any of SD, SE or CV, missing values (e.g. if mean, n and SE were reported, we used these values to estimate SD and CV)
- If results were given in terms of weeks or months, these were assumed to be exactly 7 or 30 days respectively
- If strain could be unequivocally determined, the official name was used

Current status

- Work in progress
- Current data comes from 56 studies (of 158 manuscripts examined)
- 523 further publications remain to be examined
- Made the data accessible using an R Shiny App
- Made this app publicly available

General observations

- 969 rows of nominal control data so far
- Approx. 300 genometypes represented
- Reporting was often poor
- Despite known effects of sex, light cycle, temperature, humidity, nutrition, and cage density, it was rare that all reported
- Often not all summary statistics given

Increased lifespan in modern vivaria

Mean lifespan has generally increased over time

Heterosis

Well replicated evidence for F1s living longer than their inbred parent

UM-Het3 G2 vs related isogenics

- UM-Het3 generally have a higher longevity than their four parental strains
- Little evidence that a G2 population have less variation than an inbred population

Website

- http://longevity-explorer.genenetwork.org/
- Currently limited to 'control' data

Conclusions

- A huge amount of data available
- A lot of data has been 'lost' due to incomplete reporting
- The first attempt at a comprehensive collection of mouse longevity data across strains

https://davidashbrook.wordpress.com

@DavidAshbrook

Acknowledgements