EX	
Consider a related p	wholen: Drup 4 coins down
a deep wishing	well with
	(
the bollowing gold	pettern on Assure the
	probability that a
the bottom	con lands m
II II	leach onea is the
	total area)
III III)
What is the soilale	lity that the four coins land in
vie probabil	ing the true coins that it
different guadante	(assure the popular on and as
) contract	(assume the coats are each coin
drup is an Independent	lovat oxceat)
13 00 100	1,000
	19 that product louds
(Ai) = Probe	bility that a coinci lands
ina	in un occupied " quedant (and u)
	in unoccupted gucdrant (greathet.
Frist coin: P(A)=1 one occupied)
201 0000	
2 PA	(one occupied)
PU	t3) = 1/2 (two occupied)
	3) 2
P	Ay) 2 /4
DIA DI	1 2/1 P/1 3 3 3 Dags
r (H,) · 1 (d	42) P(A3) · P(A4) = 3 = 32 (0000)
	0.002751
ie this is do	=0.09375
P= 41 C the four costs to	
P= The separate	
Hel ownter	SK /1/2 12 12 12 12 11 4. H.
of 4 coin protes	the Why is this less likely than the four aces in 4 piles publisher?
antenna prosition	TOW ales in 4 piles physlem

EX

Consider another related problem.

Consider a nonstended dech of cords with 4N cards including four aces. None of the other cords are aces. Divide this dech into 4 piles of N cards. What is the probability that therefore each pile has an ace?

(see notes, p. (2).

P(E, Ez Ez Eq) = P(Eq (E, Ez Ez). P(Ez | Ez E) P(Ez | E) P(E)

P(E) 21

(N-1) # of spots leftin pile!

PLEZIEI)

(4N-1) - Hot could go in pile

probability that Az is in pile 1 ophen A, is in pile 1.

 $P(E_3|E,E_2) = 1 - \frac{2(N-1)}{4N-2} = 1 - pub. that Azis in piles lor2

appearate grow A, in piles$

P(Ey|E,EzE3): 1 - 3(N-1) = 1 - pnh. Azis is in piles 1,273

quen Az in pile 1

Azimpilez

$$P(E_1E_2E_3E_4) = \left(1 - \frac{3(N-1)}{4N-3}\right) \left(1 - \frac{2(N-1)}{4N-2}\right) \left(1 - \frac{N-1}{4N-1}\right) \cdot 1$$

極い	2N	3N
- (4N-3)	(4N-2)	(4N-1)

12000 Q	N	P(all aces separate)
(4crds)		
(Scards)	2	2 4 6 8 0,229
/		5 6 7 38
(12cords)	3	$\frac{3}{9} \cdot \frac{6}{10} \cdot \frac{9}{11} = \frac{18}{110} = \frac{9}{55} \approx 0.164$
Į.		9 10 11 110 55 201167
(52 cards)	13	13.26 39 (01054198)
		13.26 39 ~ (0.105498)
(104 cards)	26	26.52.78
· ·		101 102
		10) 103 (0,09938)
Ar -	₽ω	
V		1 2 3 3
00		9 9 = = (0.09375)
		1 1 22

AD HOUDE

3.3 Bayes's Formula

Let Eard F be events. Then

E = EF U EFC

Since EF and EFC are mutually exclusing

1) by Airon 3

P(E)= P(EF) + P(EFC)

= P(E|F).P(F) + P(E|F')P(F')

P(FC) +P(F)=1 50

P(E)= P(E/F) P(F) + P(E/F) (1-P(F))

Recall Celine.

P(F) = 1/2 probability she takes them.

P(C) = 1/2 cosh flip

P(AIC) = 2 E giver shetches Chem probability of a A

P(AIP) = 1/2 com granshe teles French

Suppose after the semester she tells you she got an A.

What is the probability that she took chemistry?

= P(C|A) = Probability the took Chem given she got an A (different from P(Alc)

= P(Ac) = P(Alc) P(C) P(A) = P(AC) + P(AC)

P(A(c) P(c) P(CIA)= P(A/c)P(c) + P(A/c)P(C) note ce = F P(A(C)P(C) P(C(A): P(AC)P(C)+P(ALF)P(F) (2/3) (1/2) probability she took Ch, 3 Problem 3,18 46% of voters in a city classify themselves as independents. 30100f liberels 24% conservetives. In a recent election.

35% of independents voted 62% of liberals voted 589. of conservation roted.

A voter is chosenat random. Given that this person voted ...

what is the probability that he/she is

a) independent? b) liber(? c) conservative?

d) What percentage of voters patricipated in the election?

a) ans. P(IIV) = given that then voted, V P(IIV) = P(IV) P(V) P(V) = P(IV) + P(LV) - P(CV) (frum V = IVULVUCV) universe of mutually exclusive events SU P(IN) = P(IN) P(IV) +P(CV)+P(CV) P(IV) = P(VII) P(I) = (.35)(.46) = 0,161 P(LV) = P(V/L) P(L) = (.62) (.3) = 0,186 P(CV) = P(VIC) P(C) = (.58) (.24) = 0.1392 0.4862 P(IIV) - 0.161 0.166 = 0.161 = (.331) b) P(LIV) = P(LV) 0,186 = (383) c) P(c|v) = P(cv) 0.1392 ~ (286) d) P(v)=(0,4862

Generalized Version of Beyess Formula.

Suppose events F. Fr. Fr are mutually exclusive and together they make up the whole (i.e. FiF, = \$\phi\$ ility)

Scuple space. So

$$\bigcup_{i=1}^{n} F_i = S$$

Then we can write

and then, Since EF; are mutually exclusive hu i + j