Algorithme semi-supervisé : Fixmatch

Fares Ernez Baptiste Aussel Albin Cintas

Introduction

Plan

- 1) Présentation du jeu de données et de la méthode
- 2) Fonction pertes et optimiseurs
- 3) Comparaison des résultats

Présentation du jeu de données

1. Dataset de 9975 images 64*64.

- 2. 475 images sont associées à un label, 9500 ne le sont pas.
- 3. Le dataset possède 95 type d'animaux différents
 - a. ex: marmotte, macaque, fourmi, girafe, tortue, araigné, hippopotame, corcodile, ours brun, ours noir ...
- 4. 2850 images pour le test

Présentation du jeu de données CIFAR-10

1. Dataset de 50000 images 32*32.

2. 2500 images sont associées à un label, 47500 ne le sont pas.

- 3. Le jeu CIFAR-10 possède 10 classes différentes
 - a. avion, cerf, chien, chat, oiseau, cheval, camion, grenouille, voiture, bateau
- 4. 10000 images pour le test

Présentation de l'algorithme

Les augmentations de données : faible

Simple stratégie d'augmentation flip and shift .

On retourne l'image avec une probabilité 0.5 et on décale l'image de 12.5 % verticalement et horizontalement

Les augmentations de données : forte

(AutoAugment) *

En amont : Définition de policies et sub-policies (paires)

Sub-policy 0 (Invert,0.1,7) (Contrast,0.2,6)

probabilité
d'application magnitude

entraîné avec
RL

1111	Operation 1	Operation 2
Sub-policy 0	(Invert, 0.1, 7)	(Contrast, 0.2, 6)
Sub-policy 1	(Rotate, 0.7, 2)	(TranslateX, 0.3,9)
Sub-policy 2	(Sharpness, 0.8, 1)	(Sharpness, 0.9,3)
Sub-policy 3	(ShearY, 0.5, 8)	(TranslateY, 0.7,9)
Sub-policy 4	(AutoContrast, 0.5,8)	(Equalize, 0.9,2)
Sub-policy 5	(ShearY, 0.2, 7)	(Posterize, 0.3,7)
Sub-policy 6	(Color, 0.4, 3)	(Brightness, 0.6,7)
Sub-policy 7	(Sharpness, 0.3,9)	(Brightness, 0.7,9)
Sub-policy 8	(Equalize, 0.6, 5)	(Equalize, 0.5,1)
Sub-policy 9	(Contrast, 0.6, 7)	(Sharpness, 0.6,5)
Sub-policy 10	(Color, 0.7, 7)	(TranslateX, 0.5,8)
Sub-policy 11	(Equalize, 0.3,7)	(AutoContrast, 0.4,8)
Sub-policy 12	(TranslateY,0.4,3)	(Sharpness, 0.2, 6)
Sub-policy 13	(Brightness, 0.9,6)	(Color, 0.2, 8)
Sub-policy 14	(Solarize, 0.5,2)	(Invert, 0.0, 3)
Sub-policy 15	(Equalize, 0.2,0)	(AutoContrast, 0.6,0)
Sub-policy 16	(Equalize, 0.2,8)	(Equalize, 0.6,4)
Sub-policy 17	(Color, 0.9,9)	(Equalize, 0.6, 6)
Sub-policy 18	(AutoContrast, 0.8,4)	(Solarize, 0.2,8)
Sub-policy 19	(Brightness, 0.1,3)	(Color, 0.7, 0)
Sub-policy 20	(Solarize, 0.4,5)	(AutoContrast, 0.9,3)
Sub-policy 21	(TranslateY,0.9,9)	(TranslateY, 0.7,9)
Sub-policy 22	(AutoContrast, 0.9,2)	(Solarize, 0.8,3)
Sub-policy 23	(Equalize, 0.8,8)	(Invert, 0.1, 3)
Sub-policy 24	(TranslateY,0.7,9)	(AutoContrast, 0.9,1)

Table 7. AutoAugment policy found on reduced CIFAR-10.

^{*:&}quot;AutoAugment : Learning Augmentation Strategies from Data". Ekin D. Cubuk , Barret Zoph, Dandelion Man é, Vijay Vasudevan

Les augmentations de données : forte (AutoAugment) *

Résultats:

1111 11	Operation 1	Operation 2
Sub-policy 0	(Invert, 0.1, 7)	(Contrast, 0.2, 6)
Sub-policy 1	(Rotate, 0.7,2)	(TranslateX, 0.3,9)
Sub-policy 2	(Sharpness, 0.8, 1)	(Sharpness, 0.9,3)
Sub-policy 3	(ShearY, 0.5, 8)	(TranslateY, 0.7,9)
Sub-policy 4	(AutoContrast, 0.5,8)	(Equalize, 0.9,2)
Sub-policy 5	(ShearY, 0.2, 7)	(Posterize, 0.3,7)
Sub-policy 6	(Color, 0.4, 3)	(Brightness, 0.6,7)
Sub-policy 7	(Sharpness, 0.3,9)	(Brightness, 0.7,9)
Sub-policy 8	(Equalize, 0.6, 5)	(Equalize, 0.5,1)
Sub-policy 9	(Contrast, 0.6,7)	(Sharpness, 0.6,5)
Sub-policy 10	(Color, 0.7, 7)	(TranslateX,0.5,8)
Sub-policy 11	(Equalize, 0.3,7)	(AutoContrast, 0.4,8)
Sub-policy 12	(TranslateY,0.4,3)	(Sharpness, 0.2, 6)
Sub-policy 13	(Brightness, 0.9,6)	(Color, 0.2, 8)
Sub-policy 14	(Solarize, 0.5,2)	(Invert, 0.0, 3)
Sub-policy 15	(Equalize, 0.2,0)	(AutoContrast, 0.6,0)
Sub-policy 16	(Equalize, 0.2,8)	(Equalize, 0.6,4)
Sub-policy 17	(Color, 0.9,9)	(Equalize, 0.6, 6)
Sub-policy 18	(AutoContrast, 0.8,4)	(Solarize, 0.2,8)
Sub-policy 19	(Brightness, 0.1, 3)	(Color, 0.7, 0)
Sub-policy 20	(Solarize, 0.4,5)	(AutoContrast, 0.9,3)
Sub-policy 21	(TranslateY,0.9,9)	(TranslateY, 0.7,9)
Sub-policy 22	(AutoContrast, 0.9,2)	(Solarize, 0.8,3)
Sub-policy 23	(Equalize, 0.8,8)	(Invert, 0.1, 3)
Sub-policy 24	(TranslateY,0.7,9)	(AutoContrast, 0.9,1)

Une sub-policy choisie aléatoirement

Table 7. AutoAugment policy found on reduced CIFAR-10.

^{*:&}quot;AutoAugment : Learning Augmentation Strategies from Data". Ekin D. Cubuk , Barret Zoph, Dandelion Man é, Vijay Vasudevan

Fonction perte

$$\mathbf{L} = \ell_s + \lambda_u \ell_u$$

Avec:

•
$$\ell_s = \frac{1}{B} \sum_{b=1}^{B} \mathrm{H}(p_b, p_\mathrm{m}(y \mid \alpha(x_b)))$$
 l'entropie croisée sur les données labellisées

•
$$\ell_u = \frac{1}{\mu B} \sum_{b=1}^{\mu B} \mathbbm{1}(\max(q_b) \ge \tau) \, \mathrm{H}(\hat{q}_b, p_\mathrm{m}(y \mid \mathcal{A}(u_b)))$$
 l'entropie croisée entre les données non labellisées fortement augmentées et les pseudo-labels

- $q_b=p_{
 m m}(y\mid lpha(u_b))$ la prédiction du modèle sur une donnée non labellisées faiblement augmentées qu'on retient si l'arg max depasse le threshold au
- ullet un hyperparamètre à étudier et μ le ratio de données non labellisées

Optimiseurs

Essais des optimiseurs Adam et SGD avec threshold = 0.9 et $\lambda = \begin{cases} 0 \text{ si } t < 20 \\ (t - 20) \times \frac{1}{40} \text{ si } t < 60 \\ 1 \text{ sinon.} \end{cases}$

Optimiseur Adam

learning rate = 3e-3

learning rate = 3e-4

learning rate = 3e-5

Optimiseurs

Essais des optimiseurs Adam et SGD avec threshold = 0.9 et $\lambda = \begin{cases} 0 \text{ si } t < 20 \\ (t - 20) \times \frac{1}{40} \text{ si } t < 60 \\ 1 \text{ sinon.} \end{cases}$

Optimiseur SGD

learning rate = 3e-3 et momentum = 0.5

learning rate = 3e-4 et momentum = 0.5

learning rate = 3e-5 et momentum = 0.5

Comparaison des résultats

1) variation des lambdas

$$\lambda(t) = e^{t/Nbepochs} \qquad \lambda = \begin{cases} 0 \text{ si } t < 20 \\ (t-20) \times \frac{1}{40} \text{ si } t < 60 \\ 1 \text{ simon.} \end{cases}$$
Training and validation accuracy

Traini

Comparaison des résultats

2) variation du threshold

thre =
$$0.95$$

acc = 0.53

Conclusion

- Nécessité d'avoir un jeu de données important
- Meilleur résultat avec
 - Adam
 - \circ LR = 3e-4
 - \circ lambda = exp(t/(2*Nbepochs))
 - \circ threshold = 0.95
- Amélioration par rapport au modèle simplement supervisé de ~+3%