DEEP LEARNING CÁC KIẾN TRÚC CNN (3)

Tôn Quang Toại Khoa Công nghệ thông tin Trường đại học Ngoại ngữ - Tin học TP.HCM (HUFLIT)

Nội dung

- LeNet (1998)
- AlexNet (2012)
- VGG (2014)
- Một số vấn đề của mạng sâu
 - Vanishing
 - Class Functions
- Mang sâu
 - ResNet (2015)
 - DenseNet (2016), U-Net
 - EfficientNet (2019)
 - ConvNeXt (2022)

DENSENET DENSELY CONNECTED CONVOLUTIONAL NETWORKS

DenseNet

DenseNet: Densely Connected Convolutional Networks

- Tác giả
 - Gao Huang
 - Zhuang Liu
 - Laurens van der Maaten
 - Kilian Q. Weinberger
- Bài báo
 - Densely Connected Convolutional Networks, 2016, 2017, 2018
- Link
 - https://arxiv.org/abs/1608.06993

CNN thông thường, ResNet, DenseNet

Standard CNN

DenseNet

DenseNet

ResNet và DenseNet

ResNet vs. DenseNet

VS.

ResNet

: Element-wise addition

DenseNet

Skip Connection

Addition

Dense Connection

Concatenating

Nhân xét 1

- 1. ResNet: element-wise addition
- 2. DenseNet: channel-wise concatenation

Nhận xét 2

- 1. ResNet: Kết nối nhảy tầng
- 2. DenseNet: Kết nối dày đặc

ResNet và DenseNet

Phép toán Concatenated

tf.keras.layers.concatenate(inputs, axis=-1)

Kiến trúc DenseNet

Kiến trúc DenseNet

- Các khối trong DenseNet
 - Convolution Block (conv_block):

BN + ReLU + Conv

- Dense Block
 - Gồm nhiều conv_block có cùng số kênh đầu ra
 - Concatenate đầu ra và đầu ra của mỗi conv_block

- Transition Layer: Mõi DenseBlock sẽ tăng số channel → Mô hình phức tạp quá mức
 - Điều khiển độ phức tạp của mô hình
 - Giảm số kênh bằng convolution 1×1

Kiến trúc DenseNet

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
Convolution	112 × 112	7×7 conv, stride 2			
Pooling	56 × 56	3×3 max pool, stride 2			
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 6 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$			
(1)	28×28	2×2 average pool, stride 2			
Dense Block	28×28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$
(2)		$[3 \times 3 \text{ conv}]$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$3 \times 3 \text{ conv}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$
Transition Layer	28×28	1×1 conv			
(2)	14×14	2×2 average pool, stride 2			
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 48 \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 64 \end{bmatrix}$
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 04}$
Transition Layer	14×14	1×1 conv			
(3)	7 × 7	2×2 average pool, stride 2			
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 2 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 48 \end{bmatrix} \times 48$
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 46$
Classification	1 × 1	7×7 global average pool			
Layer		1000D fully-connected, softmax			

Hiện thực đơn giản

```
def conv_block(inputs):
    block = BatchNormalization()(inputs)
    block = ReLU()(block)
    block = Conv2D(12, (3,3), padding='same')(block)
    return block

def dense_block(inputs):
    concatenated_inputs = inputs
    for i in range(3):
        x = conv_block(concatenated_inputs)
        concatenated_inputs = concatenate([concatenated_inputs, x], axis=3)
    return concatenated_inputs
```

Hiện thực đơn giản

```
def mini_dense_model(shape):
    inputs = Input(shape)

    x = dense_block(inputs)
    x = Flatten()(x)
    x = Dense(64, activation='softmax')(x)
    predictions = Dense(10, activation='softmax')(x)

    model = Model(inputs=inputs, outputs=predictions)
    return model
```