Práctica 1: Estudio de la eficiencia

José Antonio Álvarez Ocete - Norberto Fernández de la Higuera Javier Gálvez Obispo - Yábir García Benchakhtir

14 de marzo de 2018

1. Introducción

En esta práctica realizaremos un estudio de la eficiencia tanto empírica como híbrida de los algoritmos propuestos en el guión de prácticas. Siguiendo dicho guión, realizaremos distintas gráficas mostrando el trabajo realizado y expondremos diversos resultados para los distintos miembros del equipo.

Adjunto a esta memoria se entregarán los datos tomados así como las gráficas generadas a partir de los mismos.

2. Informe de la eficiencia

Los algoritmos propuestos para el estudio de la eficiencia son los siguientes:

Tabla 1: Algoritmos a estudiar.

Algoritmo	Eficiencia
burbuja	$O(n^2)$
inserción	$O(n^2)$
selección	$O(n^2)$
mergesort	O(nlogn)
quicksort	O(nlogn)
heapsort	O(nlogn)
floyd	$O(n^3)$
hanoi	$O(2^n)$

Para el estudio de estos, cada miembro del grupo ha utilizado un equipo distinto:

- En el caso de Yabir se ha utilizado un Intel Pentium G3258 con 2 núcleos a 3.2GHz, 8GB de RAM y el sistema operativo Linux Mint 18.3 Sylvia x86 64.
- Javier por su parte, ha utilizado un i5-6200U con 4 núcleos a 2.3GHz, 8GB de RAM y ubuntu 16 LTS de 64 bits como sistema operativo.
- Por otro lado Jose Antonio ha utilizado un i7-5500 con 4 núcleos a 2.4GHz, 8GB de RAM y ubuntu 16 LTS de 64 bits.
- Y por último Norberto ha utilizado un i5-4590 con 4 núcleos a 3.3GHz, 8GB de RAM y ubuntu 16 LTS de 64 bits.

2.1. Algoritmos de orden cuadrático

En primer lugar realizamos un estudio teórico de la eficiencia. Como se vió en el guión de prácticas, la eficiencia teórica del algoritmo burbuja es de:

$$\frac{a}{2}n^2 - \frac{3a}{2}n + a \in O(n^2)$$

Donde a es una constante que acota el interior del bucle.

Repetimos un proceso análogo al realizado para el algóritmo de burbuja estudiando **selección** para el siguiente código:

Acotamos el contenido del bucle for anindado por la constante a_1 y las operaciones del bucle exterior por la constante a_2 . De esta manera el análisis de la eficiencia sería el soguiente.

$$\sum_{i=0}^{n-1} \left[a_2 + \sum_{j=i}^n a_1 \right] = \sum_{i=0}^{n-1} \left[a_2 + a_1 \sum_{j=i}^n 1 \right]$$

$$= \sum_{i=0}^{n-1} a_2 + a_1 \sum_{i=0}^n \sum_{j=i}^{n-1} 1$$

$$= a_2 \sum_{i=0}^{n-1} 1 + a_1 \sum_{i=0}^n (n-i)$$
(1)

de la primera sumatoria extraemos b(n-1) y ahora procedemos a analizar la segunda:

$$a\sum_{i=0}^{n-1} (n-i) = a_1 \left[\sum_{i=0}^{n} n - \sum_{i=0}^{n} i \right]$$

$$= an^2 - a\frac{(n+1)n}{2}$$

$$= an^2 - \frac{an^2}{2} - \frac{an}{2}$$
(2)

Sumando ambas expresiones obtenemos:

$$\frac{an^2}{2} - \frac{an}{2} + b(n-1) = \frac{a}{2}n^2 + \frac{b-a}{2}n - b \in O(n^2)$$

Para el caso de **inserción** tenemos el siguiente algoritmo:

Manteniendo la notación utilizado y utilizando un razonamiento similiar al anterior obtenemos:

$$\sum_{i=0}^{n} \sum_{j=i}^{n} a = \dots = a \cdot (\frac{n^2}{2} + 2n) \in O(n^2)$$

Realizado el estudio teórico sobre los tres algoritmos, ejecutamos y utilizamos gnuplot para obtener un ajuste de los datos obtenidos. Representamos ahora los datos obtenidos junto a una comparativa gráfica de los tiempos generados para los distintos miembros del grupo.

Tabla 2: Burbuja

Tamaño	Jose Antonio	Yabir	Javier	Norberto
1000	0.002102	0.004246	0.004012	0.001311
2000	0.008624	0.008201	0.015366	0.007047
3000	0.019598	0.019307	0.015748	0.017844
4000	0.036247	0.034225	0.027918	0.022229
5000	0.059415	0.056845	0.051099	0.039783
6000	0.089915	0.088076	0.077024	0.061048
7000	0.126946	0.120856	0.114816	0.088834
8000	0.174056	0.161862	0.156521	0.121957
9000	0.221849	0.210286	0.207334	0.16015
10000	0.279818	0.264146	0.264914	0.207358
11000	0.341537	0.323677	0.328079	0.25534
12000	0.410517	0.394902	0.401309	0.30851
13000	0.487268	0.463354	0.475421	0.368633
14000	0.574468	0.541129	0.562932	0.434771
15000	0.669231	0.628463	0.652525	0.50592
16000	0.761777	0.718559	0.756564	0.579439
17000	0.859512	0.814468	0.860402	0.661685
18000	0.972132	0.919391	0.970756	0.751912
19000	1.08788	1.03422	1.08355	0.841164
20000	1.21375	1.14783	1.21362	0.944326
21000	1.35448	1.27545	1.35594	1.04575
22000	1.4721	1.39817	1.50011	1.15543
23000	1.6226	1.53151	1.65828	1.27277
24000	1.76133	1.67702	1.81174	1.3934
25000	1.92358	1.81403	1.98219	1.51766

Figura 1: Comparativa de la eficiencia empírica del algoritmo burbuja.

Tabla 3: Inserción

Tamaño	Jose Antonio	Yabir	Javier	Norberto
1000	0.0012	0.00112	0.000545	0.001092
2000	0.004572	0.004292	0.003054	0.003372
3000	0.010898	0.009728	0.008701	0.007137
4000	0.018749	0.017294	0.015705	0.013268
5000	0.029047	0.026957	0.024028	0.019037
6000	0.040956	0.038868	0.036763	0.028616
7000	0.055705	0.052248	0.050062	0.039232
8000	0.072807	0.068156	0.068483	0.053949
9000	0.092916	0.086587	0.08547	0.067547
10000	0.113404	0.107304	0.109743	0.087403
11000	0.137771	0.130252	0.131087	0.103835
12000	0.164464	0.15566	0.155903	0.123986
13000	0.193596	0.182503	0.182363	0.147122
14000	0.228399	0.212983	0.216041	0.17068
15000	0.257807	0.243724	0.25058	0.196732
16000	0.291294	0.2767	0.297828	0.225098
17000	0.328677	0.309732	0.32026	0.255474
18000	0.367407	0.346489	0.363618	0.288498
19000	0.407266	0.387793	0.400226	0.319619
20000	0.467829	0.432006	0.446305	0.355745
21000	0.500632	0.479765	0.508203	0.394738
22000	0.545645	0.524347	0.54851	0.433908
23000	0.595075	0.569582	0.601286	0.475005
24000	0.659751	0.620089	0.678724	0.517875
25000	0.711745	0.675667	0.702348	0.562875

Figura 2: Comparativa de la eficiencia empírica del algoritmo insercion.

Tabla 4: Selección

Tamaño	Jose Antonio	Yabir	Javier	Norberto
1000	0.00143505	0.00135595	0.00046005	0.00035719
2000	0.00561393	0.00524505	0.00340335	0.00261264
3000	0.012424	0.011705	0.009438	0.007685
4000	0.022427	0.020711	0.018861	0.016741
5000	0.034595	0.03227	0.03064	0.023002
6000	0.049521	0.046363	0.045548	0.034087
7000	0.067441	0.062962	0.062655	0.047873
8000	0.088587	0.082298	0.084243	0.063287
9000	0.111141	0.104299	0.107134	0.081399
10000	0.137052	0.128745	0.133317	0.103103
11000	0.166555	0.156038	0.162335	0.125322
12000	0.198069	0.185971	0.194576	0.149912
13000	0.231342	0.218305	0.230486	0.17692
14000	0.269093	0.253628	0.266774	0.20509
15000	0.308691	0.291057	0.308797	0.236309
16000	0.350138	0.331193	0.352636	0.271882
17000	0.400754	0.374365	0.39707	0.306598
18000	0.443237	0.419854	0.449266	0.343751
19000	0.495745	0.469411	0.500206	0.384171
20000	0.549374	0.518467	0.555784	0.426748
21000	0.603962	0.571629	0.614922	0.471934
22000	0.660961	0.62718	0.67396	0.521653
23000	0.722891	0.68739	0.737981	0.571422
24000	0.795483	0.747746	0.801045	0.621192
25000	0.861366	0.81211	0.879008	0.677699

Figura 3: Comparativa de la eficiencia híbridia del algoritmo selección.

2.2. Algoritmos de orden n - logarítimico

De nuevo comencemos realizando un estudio teórico. Como se vió en el guión de prácticas, la eficiencia teórica de el algoritmo *mergesort* es de:

```
c_1n + c_2nlog_2(n) \in O(nlog_2(n))
```

Para el caso de **heapsort** tenemos el siguiente algoritmo:

```
static void heapsort(int T[], int num_elem) {
        int i;
        for (i = num_elem/2; i >= 0; i--)
                reajustar(T, num_elem, i);
        for (i = num_elem - 1; i >= 1; i--) {
                int aux = T[0];
                T[0] = T[i];
                T[i] = aux;
                reajustar(T, i, 0);
        }
static void reajustar(int T[], int num_elem, int k) {
        int j;
        int v;
        v = T[k];
        bool esAPO = false;
        while ((k < num_elem/2) && !esAPO) {</pre>
                 j = k + k + 1;
                 if ((j < (num_elem - 1)) && (T[j] < T[j+1]))</pre>
                         j++;
                 if (v >= T[j])
                         esAPO = true;
                T[k] = T[j];
                k = j;
        T[k] = v;
```

Estudiaremos en primer lugar la eficiencia de la función Reajustar(k) que denotaremos por R(k). Si nos fijamos en la primera línea del bucle, en cada iteración multiplicamos $k \cdot 2$. Por lo tanto, si acotamos el interior del bucle por una constance c_1 y t = n - k:

$$R(n-k) = R(\frac{n-k}{2}) + c_1 \leftrightarrow R(t) = R(\frac{t}{2}) + c_1$$

Aplicando el cambio de variable $t = 2^m \leftrightarrow log_2 t = m$:

$$R(2^m) = R(2^{m-1}) + c_1$$

Denotando $R(2^m) = X_m$ obtenemos una ecuación en recurrencia:

$$X_m = X_{m-1} + c_1$$

Cuya solución es:

$$X_m = c_2 + c_1 * m$$

Donde c_2 es otra constance. Deshaciendo el cambio de variable obtenemos finalmente:

$$R(2^m) = R(t) = c_2 + c_1 * log_2(t) \in O(log(n))$$

A partir de la eficiencia de la función **Reajustar** es relativamente sencillo obtener la del algoritmo completo:

$$\sum_{i=0}^{n/2} R(i) + \sum_{i=1}^{n-1} (R(i) + c_3)$$

Como el logarítmo es una función creciente, acotamos los valores interiores de los bucles por el mayor valor alcanzado:

$$\sum_{i=0}^{n/2} R(i) + \sum_{i=1}^{n-1} (R(i) + c_3) \le \sum_{i=0}^{n/2} R(n/2) + \sum_{i=1}^{n-1} (R(n-1) + c_3) =$$

$$= (n/2) \cdot R(n/2 + 1) + (n-1) \cdot R(n-1) + c_3(n-1) =$$

$$= (n/2) \cdot R(n/2 + 1) + (n-1) \cdot R(n-1) + c_3(n-1)$$

Como el orden de eficiencia de **Reajustar** es de O(log(n)), podemos concluir que el algoritmo tiene una eficiencia de O(nlog(n))

Realizado el estudio teórico sobre los tres algoritmos, ejecutamos y utilizamos gnuplot para obtener un ajuste de los datos obtenidos. Adjuntamos a continuación las tablas con los datos obtenidos y una comparativa gráfica entre los distintos miembros del grupo.

Tabla 5: Mergesort

Tamaño	Jose Antonio	Yabir	Javier	Norberto
1000	0.000124104	0.000117755	6.0321e-05	5.8705e-05
2000	0.000275885	0.000265505	0.000264315	0.00020683
3000	0.000542727	0.000509884	0.000422699	0.00034141
4000	0.000609759	0.000580912	0.000544557	0.00042617
5000	0.000863075	0.000807877	0.000770273	0.00060328
6000	0.00112694	0.00107341	0.00103855	0.000831745
7000	0.00108948	0.00103389	0.00104633	0.00081689
8000	0.00132059	0.00124508	0.00127586	0.00099898
9000	0.00157088	0.00147816	0.00151632	0.00117791
10000	0.00184154	0.00174622	0.0017806	0.00138862
11000	0.002336	0.002063	0.002145	0.00161601
12000	0.002444	0.002352	0.002469	0.00186474
13000	0.002182	0.002076	0.003022	0.0021405
14000	0.002381	0.002313	0.002943	0.0018621
15000	0.002652	0.002485	0.002731	0.00202306
16000	0.002897	0.002708	0.003017	0.00221986
17000	0.003225	0.003018	0.003823	0.00242854
18000	0.003396	0.00331	0.003572	0.00263394
19000	0.003662	0.003453	0.003812	0.00285428
20000	0.003948	0.00379	0.004124	0.00308117
21000	0.004238	0.004064	0.004693	0.00331664
22000	0.004599	0.004262	0.005656	0.00356593
23000	0.005129	0.004612	0.005114	0.00382874
24000	0.00519	0.004959	0.005216	0.004356
25000	0.005524	0.005205	0.005718	0.00434365

Figura 4: Comparativa de la eficiencia empírica del algoritmo mergesort.

Tabla 6: Quicksort

Tamaño	Jose Antonio	Yabir	Javier	Norberto
1000	9.5e-05	8.7e-05	5.8e-05	3.5e-05
2000	0.000235	0.000187	0.000254	0.00012
3000	0.000345	0.000294	0.000343	0.000235
4000	0.000506	0.000394	0.00061	0.000299
5000	0.000624	0.000534	0.000767	0.000436
6000	0.000812	0.000616	0.000732	0.000527
7000	0.000958	0.000727	0.000871	0.000629
8000	0.001056	0.000843	0.001239	0.000741
9000	0.001065	0.00097	0.001219	0.000865
10000	0.001216	0.001065	0.001331	0.000993
11000	0.001258	0.001219	0.001487	0.001072
12000	0.001415	0.001415	0.001637	0.001457
13000	0.001679	0.001446	0.001801	0.00144
14000	0.001737	0.001549	0.001974	0.001604
15000	0.001792	0.001683	0.002109	0.001732
16000	0.001975	0.001781	0.002445	0.001795
17000	0.002115	0.001935	0.002623	0.001869
18000	0.002514	0.002054	0.002603	0.002044
19000	0.002346	0.002157	0.002756	0.002785
20000	0.002491	0.002295	0.002907	0.002104
21000	0.002695	0.002443	0.003105	0.002235
22000	0.002717	0.002554	0.003219	0.002372
23000	0.002852	0.002758	0.003706	0.002688
24000	0.002942	0.002788	0.003645	0.003142
25000	0.00342	0.002935	0.003427	0.003329

Figura 5: Comparativa de la eficiencia empírica del algoritmo quicksort.

Tabla 7: Heapsort

Tamaño	Jose Antonio	Yabir	Javier	Norberto
1000	0.000132	0.000124	8.4e-05	7.9e-05
2000	0.000255	0.000268	0.000271	0.000406
3000	0.000456	0.000422	0.00052	0.000716
4000	0.00066	0.000585	0.000691	0.000526
5000	0.000863	0.000748	0.000947	0.000689
6000	0.000986	0.00092	0.001139	0.000857
7000	0.001072	0.001085	0.001664	0.001057
8000	0.001196	0.001164	0.001972	0.001217
9000	0.001481	0.001303	0.001855	0.001698
10000	0.001664	0.00146	0.00178	0.001912
11000	0.001884	0.001627	0.0019	0.002133
12000	0.002017	0.001808	0.002024	0.001551
13000	0.00231	0.001986	0.002234	0.001741
14000	0.002296	0.00212	0.002421	0.001831
15000	0.002411	0.002294	0.002654	0.001931
16000	0.002687	0.002464	0.002998	0.002472
17000	0.002767	0.002641	0.003026	0.002658
18000	0.003095	0.002815	0.003222	0.002725
19000	0.00318	0.00305	0.003449	0.002751
20000	0.003568	0.003175	0.00356	0.002975
21000	0.0036	0.003364	0.003925	0.004273
22000	0.003762	0.003576	0.004304	0.003447
23000	0.003894	0.003686	0.004233	0.003695
24000	0.00414	0.003889	0.004508	0.003796
25000	0.004257	0.004078	0.005877	0.005502

Figura 6: Comparativa de la eficiencia empírica del algoritmo heapsort.

2.3. Algoritmo de orden cúbico

Comencemos con el estudio teórico, manteniendo la notación utilizada hasta ahora. He aqui el algoritmo a estudiar, \mathbf{floyd} :

$$\sum_{k=0}^{n} \sum_{i=0}^{n} \sum_{j=0}^{n} a = an^{3} \in O(n^{3})$$

Tablas de datos y comparativa:

Tabla 8: Floyd

Tamaño	Jose Antonio	Yabir	Javier	Norberto
25	0.000106	0.000104	0.000132	0.000255
60	0.00132	0.001315	0.001638	0.00309
95	0.00529	0.005052	0.006333	0.009714
130	0.013483	0.012898	0.016173	0.013252
165	0.026949	0.025858	0.030908	0.023836
200	0.047713	0.046035	0.053756	0.040295
235	0.076571	0.074148	0.082185	0.064654
270	0.115361	0.111999	0.12578	0.097323
305	0.16553	0.161234	0.179741	0.141312
340	0.229901	0.223649	0.246866	0.194466
375	0.306628	0.303014	0.328515	0.258094
410	0.399503	0.38989	0.428172	0.337823
445	0.511245	0.497475	0.542359	0.430337
480	0.646562	0.624318	0.678628	0.5407
515	0.792583	0.76971	0.84846	0.667034
550	0.964084	0.936758	1.04872	0.812562
585	1.167	1.12769	1.23856	0.976406
620	1.39008	1.3435	1.45209	1.163
655	1.63592	1.57988	1.70619	1.36855
690	1.90257	1.84778	1.9882	1.60272
725	2.21537	2.13758	2.32022	1.85235
760	2.53784	2.46761	2.67501	2.13302
795	2.92257	2.84002	3.07144	2.44512
830	3.30624	3.23833	3.4851	2.78404
865	3.78033	3.65871	3.96119	3.15061

Figura 7: Comparativa de la eficiencia empírica del algoritmo floyd.

2.4. Algoritmo de orden exponencial

Comencemos con el estudio teórico. He aqui el algoritmo a estudiar, hanoi:

```
void hanoi (int M, int i, int j) {
    if (M > 0) {
        hanoi(M-1, i, 6-i-j);
        hanoi (M-1, 6-i-j, j);
    }
}
```

Como este algoritmo se llama a si mismo dos veces podemos expresar su eficiencia vara una entrada n como:

$$Hanoi(n) = 2 \cdot Hanoi(n-1)$$

Viendo esta expresión como una ecuación en recurrencias:

$$X_{n+1} = 2 \cdot X_n$$

Esto es una progresión geométrica cuya solución viene expresada por:

$$X_n = C \cdot 2^n \in O(2^n)$$

Donde C es una constante que depende del problema. Una vez finalizado el estudio teórico representamos los datos obtenidos junto con la comparativa pertinente:

Tabla 9: Hanoi

Tamaño	Jose Antonio	Yabir	Javier	Norberto
5	1e-06	2e-06	3e-06	4e-06
6	2e-06	1e-06	2e-06	6e-06
7	3e-06	2e-06	3e-06	2e-06
8	3e-06	3e-06	5e-06	2e-06
9	4e-06	4e-06	6e-06	4e-06
10	7e-06	7e-06	1.1e-05	8e-06
11	1.5e-05	1.4e-05	1.9e-05	1.3e-05
12	2.9e-05	2.7e-05	4.7e-05	2.5e-05
13	5.4e-05	5.3e-05	9.2e-05	5e-05
14	0.000107	0.000103	0.000152	9.7e-05
15	0.000212	0.000205	0.000257	0.000193
16	0.000422	0.000409	0.000473	0.000386
17	0.000844	0.000817	0.000923	0.000769
18	0.001684	0.001631	0.001819	0.001537
19	0.003403	0.00327	0.003653	0.003089
20	0.006931	0.006554	0.007464	0.005846
21	0.013697	0.01307	0.014864	0.015505
22	0.027919	0.027262	0.029788	0.023595
23	0.054677	0.052523	0.059037	0.046132
24	0.108517	0.104901	0.116334	0.091187
25	0.216675	0.209356	0.228908	0.181641
26	0.434431	0.417555	0.456383	0.362962
27	0.867205	0.83499	0.908195	0.725599
28	1.73855	1.6775	1.80609	1.45384
29	3.46495	3.35842	3.60959	2.9018

Figura 8: Comparativa de la eficiencia empírica del algoritmo hanoi.

3. Conclusión

Como hemos podido ir observando en las gráficas comparativas de los distintos algoritmos, no importa el equipo que estemos utilizando para el estudio de estos, es decir, independientemente de la velocidad de cálculo que tenga un ordenador u otro el orden de los algoritmos no varía.