

5

ĐẠI HỌC BÁCH KHOA HÀ NỔI

THUẬT TOÁN BOYER MOORE

```
computeLast(p){
   for c = 0 to 255 do last[c] = 0;
   k = p.length();
   for i = k-1 downto i >= 0 do {
        if last[p[i]] = 0 then last[p[i]] = i;
   }
}
```

```
boyerMoore(P, T){
   computeLast(P);
   s = 0;   cnt = 0;
   N = T.length();   M = P.length();
   while s <= N-M do {
      j = M-1;
      while j >= 0 && T[j+s] = P[j] do
            j = j -1;
      if j == -1 then {
         cnt++; s = s + 1;
      }else{
            k = last[T[j+s]];
            s = s + (j - k > 1 ? j - k : 1);
      }
   return cnt;
}
```

ĐẠI HỌC BÁCH KHOA HẢ NỘI HANGI UNIVERSITY OF SCIENCE AND TECHNOLOGY

13

15

1 12

THUẬT TOÁN RABIN KARP

- Thuật toán Rabin-Karp đổi các xâu cần so khớp sang số nguyên không âm
- Mỗi ký tư trong bảng chữ cái được biểu diễn bởi 1 số nguyên không âm nhỏ hơn d
- Đổi xâu P[1..M] sang giá tri số nguyên dương

 $p = P[1]*d^{M-1} + P[2]*d^{M-2} + ... + P[M]*d^{0}$

- Đối sánh mẫu bằng cách so sánh 2 giá trị mã tương ứng
 - Nếu hai mã khác nhau thì hai xâu tương ứng là khác nhau
 - Nếu hai mã bằng nhau thì ta tiến hành so khớp từng ký tự
- Sử dụng lược đồ Horner để tang tốc độ tính toán mã các xâu con trong T
- Với vi trí trươt s, đổi xâu con T[s+1 .. s+M] sang số:

 $T_s = T[s+1]^*d^{M-1} + T[s+2]^*d^{M-2} + \dots + T[s+M]^*d^0$

• Với vị trí trượt s+1, T_{s+1} có thể được tính toán hiệu quả dựa vào T_s (đã được tính trước đó)

 $T_{s+1} = (T_s - T[s+1]^*d^{M-1})^*d + T[s+M+1]$

ĐẠI HỌC BÁCH KHOA HÀ NỘI

14

THUẬT TOÁN RABIN KARP

- Nhược điểm
 - Khi M lớn thì việc chuyển đổi xâu sang số mất thời gian đáng kể,
 - Có thể gây ra tràn số đối với kiểu dữ liệu cơ bản của ngôn ngữ lập trình
- Cách giải quyết: thực hiện phép chia cho Q và lấy giá trị số dự
 - Khi 2 số dư khác nhau có nghĩa 2 giá trị số khác nhau và 2 xâu tương ứng cũng khác nhau
 - Khi 2 số dư bằng nhau, tiến hành đối sánh từng ký tư như cách truyền thống

```
ĐẠI HỌC BÁCH KHOA HÀ NỘI
```

THUẬT TOÁN RABIN KARP

```
hashCode(p){
    c = 0;
    for i = 0 to p.length()-1 do {
        c = c*256 + p[i];
        c = c%Q;
    }
    return c;
}
hashCode(s, start, end){
    c = 0;
    for i = start to end do {
        c = c*256 + s[i];
        c = c%Q;
}
return c;
}
```

```
rabinkarp(P, T){
    cnt = 0; N = T.length(); M = P.length();
    e = d<sup>m-1</sup>;
    codeP = hashCode(P); codeT = hashCode(T,0,M-1);
    for s = 0 to N-M do {
        if(codeP = codeT){
            ok = true;
            for j = 0 to M-1 do if P[j] != T[j + s] then {
                 ok = false; break;
            }
            if ok then cnt++;
        }
        t = T[s]*e; t = t %Q; t = (codeT - t)%Q;
        codeT = (t*d + T[s+M])%Q;
    }
    return cnt;
}
```

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANGI UNIVERSITY OF SCIENCE AND TECHNOLOGY

16

THUẬT TOÁN KMP

 Bài toán tìm kiếm xâu mẫu: cho văn bản T là 1 chuỗi ký tự (độ dài n) lấy từ 1 bảng cho trước và 1 xâu mẫu P (độ dài m). Hãy tìm tất cả các vị trí xuất hiện của P trong T

- Thuật toán KMP
 - Trượt xâu mẫu từ trái qua phải
 - Đối sánh: trái qua phải
 - Sử dụng thông tin tiền xử lý để bỏ qua càng nhiều ký tư càng tốt

THUẬT TOÁN KMP

 Bài toán tìm kiếm xâu mẫu: cho văn bản T là 1 chuỗi ký tự (độ dài n) lấy từ 1 bảng cho trước và 1 xâu mẫu P (độ dài m). Hãy tìm tất cả các vị trí xuất hiện của P trong T

- Thuật toán KMP
 - Trượt xâu mẫu từ trái qua phải
 - Đối sánh: trái qua phải
 - Sử dụng thông tin tiền xử lý để bỏ qua càng nhiều ký tư càng tốt

17

19

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANGI UNIVERSITY OF SCIENCE AND TECHNOLOGY

18

THUẬT TOÁN KMP

- Tiền xử lý:
 - π[q]: độ dài của tiền tố dài nhất cũng đồng thời là hậu tố ngặt của xâu P[1...q]

THUẬT TOÁN KMP

- Tiền xử lý:
 - π[q]: độ dài của tiền tố dài nhất cũng đồng thời là hậu tố ngặt của xâu P[1..q]

	1	2	3 4	4 5	6	7	8	
							С	
π	0	0	1	2	3	4	0	1

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

20


```
THUẬT TOÁN KMP

    Trượt xâu mẫu P từ trái qua phải trên T

                             1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
kmp(P, T){
 a = 0:
                             a a a b a b a b c a c a b a b a b a b c a
 for i = 1..N do {
   while q > 0 && P[q+1] != T[i]
                                   a b a b a b c a
    q = pi[q];
  if P[q+1] = T[i]
                             i = 3, T[3] = P[0+1] \rightarrow q = q + 1 = 1
   q = q + 1;
   if(q = M){
    output(i-M+1);
    q = pi[q];
                                                                 1 2 3 4 5 6 7 8
 }
                                                              Pabababca
                                                              π 0 0 1 2 3
   ĐẠI HỌC BÁCH KHOA HÀ NỘI
                                                                                      27
```



```
THUẬT TOÁN KMP

    Trượt xâu mẫu P từ trái qua phải trên T

                             1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
kmp(P, T){
 a = 0:
                             a a a b a b a b c a c a b a b a b a b c a
 for i = 1..N do {
   while q > 0 && P[q+1] != T[i]
                                  a b a b a b c a
    q = pi[q];
                                    a
  if P[q+1] = T[i]
                             i = 5, T[5] = P[2+1] \rightarrow q = q + 1 = 3
   q = q + 1;
   if(q = M){
    output(i-M+1);
    q = pi[q];
                                                                1 2 3 4 5 6 7 8
 }
                                                             Pabababca
                                                              π 0 0 1 2 3
  ĐẠI HỌC BÁCH KHOA HÀ NỘI
                                                                                     31
```



```
THUẬT TOÁN KMP

    Trượt xâu mẫu P từ trái qua phải trên T

                             1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
kmp(P, T){
 a = 0:
                             a a a b a b a b c a c a b a b a b a b c a
 for i = 1..N do {
   while q > 0 && P[q+1] != T[i]
                                  a b a b a b c a
    q = pi[q];
                                          q_
  if P[q+1] = T[i]
                            i = 7, T[7] = P[4+1] \rightarrow q = q + 1 = 5
   q = q + 1;
  if(q = M){
    output(i-M+1);
    q = pi[q];
                                                                 1 2 3 4 5 6 7 8
 }
                                                             Pabababca
                                                              π 0 0 1 2 3
  ĐẠI HỌC BÁCH KHOA HÀ NỘI
                                                                                     35
```



```
THUẬT TOÁN KMP

    Trượt xâu mẫu P từ trái qua phải trên T

                             1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
kmp(P, T){
 a = 0:
                             a a a b a b a b c a c a b a b a b a b c a
 for i = 1..N do {
   while q > 0 && P[q+1] != T[i]
                                  a b a b a b c a
    q = pi[q];
                                               q
  if P[q+1] = T[i]
                             i = 9, T[9] = P[6+1] \rightarrow q = q + 1 = 7
   q = q + 1;
   if(q = M){
    output(i-M+1);
    q = pi[q];
                                                                 1 2 3 4 5 6 7 8
 }
                                                             Pabababca
                                                              π 0 0 1 2 3
   ĐẠI HỌC BÁCH KHOA HÀ NỘI
                                                                                     39
```



```
THUẬT TOÁN KMP
                                                           kmp(P, T){
computePi(p){
                                                              P = "-" + P; T = "-" + T;
  pi[1] = 0;
                                                              computePi(P);
   int k = 0;
                                                              cnt = 0;
   for q = 2 to p.length()-1 do {
                                                              N = T.length()-1;
       while(k > 0 && p[k+1] != p[q]) do
                                                              M = P.length()-1;
          k = pi[k];
                                                              q = 0;
       if (p[k+1] = p[q]) then k = k + 1;
                                                              for i= 1 to N do {
       pi[q] = k;
                                                                  while(q > 0 and P[q+1] != T[i]) do
                                                                     q = pi[q];
                                                                  if(P[q+1] = T[i]) then
                                                                    q = q + 1;
                                                                  if(q = M) then {
                                                                    cnt += 1; q = pi[q];
                                                              return cnt;
   ĐẠI HỌC BÁCH KHOA HÀ NỘI
                                                                                                     45
```

