Notas de Probabilidad y Estadística

Ivan Litteri

1 Probabilidad

El término probabilidad se refiere al término de azar, y la incertidumbre en cualquier situación en la que varios resultados pueden ocurrir.

Definición 1.1 (Experimentos aleatorios). Acciones o procesos en los cuales conocemos todos los resultados posibles pero no sabemos con certeza cuál va a ocurrir.

Si conocemos todos los resultados posibles entonces podemos anotarlos, entonces definimos *espacio muestral*:

Definición 1.2 (Espacio muestral (Ω)). Es el conjunto de todos los resultados posibles del experimento aleatorio. Sus elementos, ω , se llaman **elementos** elementales.

Ejemplos 1.2.1. Casos que conozco todas los posibles resultados pero no el resultado final:

1. Tiro una moneda y observo la cara superior. Espacio muestral:

$$\Omega_1 = \{"cara", "ceca"\}$$

2. Tiro una moneda 2 veces y observo que sale. Espacio muestral:

$$\Omega_2 = \{("cara", "ceca"), ("ceca", "cara"), ("cara", "cara"), ("ceca", "ceca")\}$$

3. Tiro un dado y observo el resultado.

Espacio muestral:

$$\Omega_3 = \{1, 2, 3, 4, 5, 6\}$$

4. Registro la cantidad de personas que entran a un banco entre las 11 y las 12hs.

Espacio muestral:

$$\Omega_4 = \{0, 1, 2, 3, \dots\} = \mathbb{N}_0$$

5. Registro el tiempo entre la llegada de autos a un peaje. Espacio muestral:

$$\Omega_5 = \{t : t \in \mathbb{R}, t \ge 0\}$$

En el estudio de la probabilidad nos interesa no solo los resultados individuales de los espacios muestrales sino que nos interesan varias recopilaciones de resultados. Por eso definimos *evento* o *suceso*:

Definición 1.3 (Evento o Suceso). Es cualquier conjunto de resultados en el espacio muestral. Los resultados pueden mostrar un conjunto finito o infinito con cualquier cardinalidad.

Ejemplo. Refiriendonos a (1) podemos definir un evento "A" como:

1. A. "El valor observado es par". (está formado por 3 eventos elementales) Asi creamos un subconjunto que corresponde a los elementos de Ω_1 que cumple con el evento "A".

Definición 1.4 (Espacio equiprobable). Un espacio muestrable es equiprobable cuando todos sus elementos tienen la misma probabilidad de ser elegidos.

Definición 1.5 (Frecuencia absoluta). Para un evento en particular, la frecuencia absoluta es la cantidad de veces que sucede ese evento. La cantidad de veces que sucede el evento A (o #A), se nota:

 η_A

Definición 1.6 (Frecuencia relativa). Para un evento en particular, se define como la relación entre la cantidad de veces que ocurre el evento A y el número total de ensayos.

$$f_a = \frac{\eta_A}{\eta}$$

Ahora estamos en condiciones para definir probabilidad.

Definición 1.7 (Probabilidad). Probabilidad de un evento A, es un número positivo (o nulo) que se le asigna a cada suceso o evento del espacio muestral.

Definición 1.8 (Regla de Laplace). La probabilidad de que ocurra un sucedo A se calcula como la cantidad de casos en los que ocurre ese suceso dividido los casos posbiles de ese experimento siempre y cuando los todos los elementos del espacio muestral sean equiprobables:

$$P(A) = \frac{\# casos \ favorables \ de \ A}{\# casos \ posibles \ del \ experimento}$$

Ejemplos 1.8.1. Regla de Laplace

- 1. Arrojo un dado equilibrado ¿cuál es la probabilidad de que observe el número 2? ¿cuál es la probabilidad de que observe un número par? Solución:
 - Experimento aleatorio: arrojo un dado y observo el resultado.
 - Espacio muestral:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

- Evento A. "Se observa el número 2".
- Definición de Laplace: ¿es mi espacio equiprobable? el dado es equilibrado, por lo tanto mi espacio es equiprobable. Entonces puedo usar la definición:

$$P(A) = \frac{|A|}{|\Omega|} : |A| = 1 \land |\Omega| = 6 \Rightarrow P(A) = \frac{1}{6}$$

• Evento B. "Se observa un número par".

 $P(B) = \frac{|B|}{|\Omega|} = \frac{3}{6} = \frac{1}{2}.$

- 2. Un dado equilibrado se arroja 2 veces. Hallar la probabilidad de que:
 - (a) Los dos resultados sean iguales.
 - (b) Los dos resultados sean distintos y su suma no supere 9.
 - (c) La suma de los resultados sea 10.
 - (d) El primr resultado sea 4 y el segundo resultado sea impar.

Solución:

- Experimento aleatorio: arrojo un dado 2 veces y observo el resultado.
- Evento D_i : "Valor observado en el tiro i" i = 1, 2
- Como los resultados son muchos para escribir el conjunto entero, escribo una tabla:

$$\Omega = \{(a,b): a,b = \{1,2,3,4,5,6\}\} : \mid \Omega \mid = 36$$

D_2/D_1	1	2	3	4	5	6
1						
2						
3				•		
4						
5				•		
6						

(a) A: "Los dos resultados son iguales" : |A| = 6

$$P(A) = \frac{|A|}{|\Omega|} = \frac{6}{36} = \frac{1}{6}$$

(b) B: "Los resultados son distintos y la suma no supera 9" : B = 26

3

$$P(B) = \frac{|B|}{|\Omega|} = \frac{26}{36} = \frac{13}{26}$$

(c) $\boxed{\pmb{C}}$: "La suma de los resultados sea 10s" :.. $\boxed{\pmb{C}}$ \mid = 4

$$P(C) = \frac{|C|}{|\Omega|} = \frac{4}{36} = \frac{1}{9}$$

(d) $\cdot D$: "El primer resultado sea 4 y el segundo resultado sea impar". $|\cdot D| = 4$

$$P(D) = \frac{|D|}{|\Omega|} = \frac{3}{36} = \frac{1}{12}$$