DETECÇÃO DE FRAUDE DE CARTÃO DE CRÉDITO

JOZIANI MOTA VIEIRA

- Formação:
 - Graduada em Estatística UFOP
 - linkedin.com/in/joziani-mota
 - github.com/Joziani
 - jozianivieira@outlookl.com

SOBRE O PROBLEMA

- Como, cada vez menos as pessoas estão utilizando dinheiro físico, e optando mais por utilizar cartões, é de suma importância que as empresas que disponibilizam crédito tenham uma forma de verificar a probabilidade de um cliente fraudar o cartão.
- Assim podemos criar modelos para ajudar essas empresas nessa busca.

SOBRE OS DADOS

- O conjunto de dados contém transações feitas com cartões de crédito em setembro de 2013 por titulares de cartões europeus.
- Variáveis:
 - Class é a variável de resposta do modelo, assumindo valor 1 em caso de fraude e 0 caso contrário;
 - de V1 à V28 são os componentes principais obtidos através de PCA;
 - **Time** contém os segundos decorridos entre cada transação e a primeira transação no conjunto de dados;
 - Amount é o valor da transação.

ANÁLISE EXPLORATÓRIA

- Foi verificado, inicialmente, que a mostra não possuía dados faltantes.
- Após essa detecção, foi feita uma análise descritiva das variáveis.
 - Não foi incluídos os componentes principais para está análise.

ANÁLISE DESCRITIVA VARIÁVEL RESPOSTA

• Percebe-se que temos um desbalanceamento nos dados, já que em 99,83% não houve fraude.

Fraude	N	0/0
Não houve	284315	99,83
Houve	492	0,17

ANÁLISE DESCRITIVA VARIÁVEIS NUMÉRICAS

- A média de segundos entre as transações e a primeira transação foi de 94.813,86, com desvio padrão de 47.488,15.
- A média do valor da transação foi de 88,35, com desvio padrão de 250,12.

Variáveis	\mathbf{N}	Média	D.P.	Mínimo	1º Quartil	Mediana	3° Quartil	Máximo
Time	284807	94813,86	47488,15	0,00	54201,50	84692,00	139320,50	172792,00
Amount	284807	88,35	250,12	0,00	5,60	22,00	77,17	25691,16

ANÁLISE DE CORRELAÇÃO

	Time	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
Time	1.00	0.12	-0.01	-0.42	-0.11	0.17	-0.06	0.08	-0.04	-0.01	0.03	-0.25	0.12	-0.07	-0.10	-0.18	0.01	-0.07	0.09	0.03	-0.05	0.04	0.14	0.05	-0.02	-0.23	-0.04	-0.01	-0.01	-0.01	-0.01
V1	0.12	1.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	-0.00	-0.00	0.00			-0.00		0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	-0.00	0.00	0.00	-0.23	-0.10
V2	-0.01		1.00	0.00	-0.00	0.00	0.00	0.00	-0.00	0.00	-0.00			0.00		-0.00	0.00	-0.00	0.00	-0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	0.00	-0.00	-0.00	-0.53	0.09
V3	-0.42		0.00	1.00	0.00	-0.00	0.00	0.00	-0.00	0.00	0.00			0.00		0.00	0.00	0.00	0.00	0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	0.00	-0.21	-0.19
V4			-0.00	0.00	1.00	-0.00	-0.00	-0.00	0.00	0.00	0.00			0.00		0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00	-0.00	0.00	-0.00	0.10	0.13
V5	0.17		0.00	-0.00	-0.00	1.00	0.00	0.00	0.00	0.00	-0.00			0.00		-0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	0.00	0.00	-0.00	-0.39	-0.09
V6	-0.06		0.00	0.00	-0.00	0.00	1.00	0.00	-0.00	0.00	0.00			-0.00		-0.00	0.00	0.00	0.00	-0.00	-0.00	0.00	-0.00	0.00	-0.00	0.00	-0.00	-0.00	0.00	0.22	-0.04
V7	0.08		0.00	0.00	-0.00	0.00	0.00	1.00	0.00	0.00	-0.00			0.00		-0.00	0.00	0.00	0.00	-0.00	0.00	-0.00	-0.00	-0.00	0.00	-0.00	-0.00	-0.00	-0.00	0.40	-0.19
V8	-0.04		-0.00	-0.00	0.00	0.00	-0.00	0.00	1.00	0.00	-0.00			-0.00		0.00	-0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	-0.00	-0.10	0.02
V9	-0.01		0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	-0.00			0.00		-0.00	-0.00	0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.04	-0.10
V10	0.03		-0.00	0.00	0.00	-0.00	0.00	-0.00	-0.00	-0.00	1.00			-0.00		0.00	0.00	0.00	0.00	0.00	-0.00	0.00	-0.00	0.00	-0.00	-0.00	-0.00	-0.00	0.00	-0.10	-0.22
V11	-0.25		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.00	1.00		0.00		0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	-0.00	0.00	-0.00	-0.00	-0.00	-0.00	0.00	0.15
V12	0.12		-0.00	0.00	-0.00	0.00	0.00	-0.00	0.00	-0.00	0.00		1.00	-0.00		-0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	-0.01	-0.26
V13	-0.07		0.00	0.00	0.00	0.00	-0.00	0.00	-0.00	0.00	-0.00			1.00		0.00	0.00	0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	-0.00	-0.00	0.00	0.01	-0.00
V14			-0.00	0.00	0.00	0.00	0.00	0.00	-0.00	0.00	0.00			0.00	1.00	-0.00	-0.00	0.00	0.00	0.00	-0.00	-0.00	0.00	0.00	0.00	-0.00	-0.00	0.00	0.00	0.03	-0.30
V15	-0.18		-0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	-0.00	0.00			0.00		1.00	0.00	0.00	0.00	-0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	0.00	-0.00	-0.00	-0.00	-0.00
V16	0.01		0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	-0.00	0.00			0.00		0.00	1.00	0.00	-0.00	0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	-0.00	0.00	0.00	-0.00	-0.20
V17	-0.07		-0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	0.00	0.00			0.00		0.00	0.00	1.00	-0.00	-0.00	-0.00	-0.00	-0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	0.01	-0.33
V18	0.09		0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	0.00	0.00			0.00		0.00	-0.00	-0.00	1.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00	0.04	-0.11
V19	0.03		-0.00	0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	0.00			-0.00		-0.00	0.00	-0.00	-0.00	1.00	0.00	0.00	-0.00	0.00	0.00	0.00	0.00	-0.00	-0.00	-0.06	0.03
V20	-0.05		0.00	-0.00	-0.00	-0.00	-0.00	0.00	0.00	-0.00	-0.00			0.00		0.00	0.00	-0.00	-0.00	0.00	1.00	-0.00	0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.34	0.02
V21	0.04		-0.00	0.00	-0.00	-0.00	0.00	-0.00	0.00	0.00	0.00			0.00		0.00	-0.00	-0.00	-0.00	0.00	-0.00	1.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	0.11	0.04
V22	0.14		0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00			0.00		-0.00	-0.00	-0.00	-0.00	-0.00	0.00	0.00	1.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.06	0.00
V23	0.05		0.00	-0.00	0.00	-0.00	0.00	-0.00	0.00	-0.00	0.00			-0.00		-0.00	0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	1.00	0.00	-0.00	0.00	0.00	0.00	-0.11	-0.00
V24	-0.02		0.00	0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	-0.00			-0.00		-0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	-0.00	-0.00	0.01	-0.01
V25	-0.23		-0.00	-0.00	0.00	0.00	0.00	-0.00	-0.00	0.00	-0.00			-0.00		0.00	-0.00	0.00	-0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	1.00	0.00	-0.00	-0.00	-0.05	0.00
V26	-0.04		0.00	-0.00	-0.00	0.00	-0.00	-0.00	-0.00	-0.00	-0.00			-0.00		0.00	-0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00	1.00	-0.00	-0.00	-0.00	0.00
V27	-0.01		-0.00	0.00	0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00			-0.00		-0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	0.00	-0.00	-0.00	-0.00	1.00	-0.00	0.03	0.02
V28	-0.01	0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	0.00			0.00		-0.00	0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	0.00	-0.00	-0.00	-0.00	-0.00	1.00	0.01	0.01
Amount	-0.01	-0.23	-0.53	-0.21	0.10	-0.39	0.22	0.40	-0.10	-0.04	-0.10		-0.01	0.01	0.03	-0.00	-0.00	0.01	0.04	-0.06	0.34	0.11	-0.06	-0.11	0.01	-0.05	-0.00	0.03	0.01	1.00	0.01
Class	-0.01	-0.10	0.09	-0.19	0.13	-0.09	-0.04	-0.19	0.02	-0.10	-0.22	0.15	-0.26	-0.00	-0.30	-0.00	-0.20	-0.33	-0.11	0.03	0.02	0.04	0.00	-0.00	-0.01	0.00	0.00	0.02	0.01	0.01	1.00

Observa-se
 que não há
 correlações
 fortes entre
 as variáveis

MÉTODO HOLDOUT

- Foi aplicado o método holdout para calculo de métricas do modelo.
- Que consiste em separar o banco de dados para treino e teste dos modelos.
- Neste projeto o banco de dados para treinar os modelos foi composto por 70% e o banco de dados para testar os modelos foi composto por 30% dos dados

DADOS DESBALANCEADOS

- Como foi observado, temos uma grade quantidade de dados sem fraude, em comparação à dados onde houve fraude.
- O que indica que os modelos irão responder muito bem para detectar quando não houver frade, mas terá um desempenho inferior para detectar quando houver fraude.

UNDER-SAMPLING

- O método under-sampling consiste em reduzir o desbalanceamento dos dados, focando na classe majoritária, quando não houve fraude. Ou seja, elimina aleatoriamente entradas da classe desta classe.
- Foi optado pelo método under-sampling, já que o método over-sampling era inviável com uma diferença tão grande entre as classes.
- A desvantagem é que perdemos dados com esta abordagem, mas como o objetivo principal é prever fraudes, o método under-sampling se aplica melhor aqui.
- Será feita uma comparação entre utilizar o método e os dados originais.

UNDER-SAMPLING

• Depois de aplicar o método under-sampling, obtemos dados balanceados para a variável resposta:

MODELOS

- Optou-se por utilizar três algoritmos de machine learning, para fins de comparação, sendo eles:
 - Regressão Logística;
 - RandomForest;
 - Support Vector Machines SVM.

RESULTADOS MÉTRICAS

Métricas	Acurácia	Sensibilidade	Especificidade	AUC
Regressão Logística	1,00	1,00	0,61	0,95
Regressão - Under-sampling	0,96	0,96	0,92	0,98
RandomForest	1,00	1,00	0,81	0,96
RandomForest - Under-sampling	0,98	0,98	0,91	0,98
SVM	1,00	1,00	0,36	0,79
SVM - Under-sampling	0,99	0,99	0,80	0,97

RESULTADOS CURVA ROC

Dados originais

Método under-sampling

CONCLUSÕES

- Vimos que os modelos com os dados originais tiveram uma acurácia ótima,
 mas se olharmos, por exemplo, para a especificidade não se saíram tão bem.
- Já tivemos uma melhora na especificidade com a utilização under-sampling.
- Por esse motivo, é importante, quando verificar ajuste e desempenho de modelos, olhar para mais de uma métrica.
- Como a regressão logística teve um desempenho bem próximo aos outros modelos, é interessante à escolher, já que com esse modelo tem-se mais informações, não apenas se terá fraude ou não.

