

ASIC IMPLEMENTATION OF A PRE-TRAINED NEURAL NETWORK FOR ECG FEATURE EXTRACTION

Huruy Tekle Tefai, Hani Saleh, Temesghen Tekeste, Mahmoud Algutayri, Baker Mohammad **System On Chip Center Khalifa University**

> 2020 IEEE International Symposium on Circuits and Systems **Virtual, October 10-21, 2020**

Background information and Motivation

- Success of ANN applications in ECG feature extraction
- It removes the need for hand-crafted features
- Deep Neural Network (1D CNN and LSTM) are common for 1 dimensional data
- It is growing in terms of accuracy and complexity
- The computation involved is heavy for deep networks
- Shallow networks are also capable of learning complex features similar to deep networks [1]
- Hardware implementation of QRS detection using shallow architecture neural network

Proposed neural network model

Dataset: PhysioNET labeled data

Dataset: Data Preparation

Input: A matrix of two vectors

Label vector in blue

where *i* is mid sample index of the running window

6

High level accuracy

High level accuracy

 In addition to the QRS feature, the network was analyzed for P & T wave detection

Percentage	Train Data			Test Data		
	Acc	Sen	PPR	Acc	Sen	PPR
QRS	97.18	96.98	82.81	96.51	95.76	79.47
P wave	97.67	98.23	88.57	95.71	91.17	84.34
T wave	94.04	94.62	86.08	85.04	79.87	74.83

ku.ac.ae

Hardware Implementation

- RTL for the inference phase
- Use parameters obtained in training
- Convert parameters to a fixed point representation
- The design was simulated for functional verification

No of parameters = 202x10 + (4+4) + 14 + 1+1 = 2044

Total Power (mW)	16.03	
Leakage Power (W)	184.71	
Net Switching Power (mW)	1.58	
Internal Power (mW)	14.45	
Category	Value	

ic.ae

Hardware Implementation

$$y = \frac{1}{1 + e^{-x}}$$

Sigmoid

Polynomial approximation

10

Simulation Result

Hardware Performance output before and after applying threshold

11

Conclusion

Shallow networks can

- Learn useful relationship between input and output
- Achieve accuracy comparable to deeper networks

nankYou

