PATENT ABSTRACTS OF JAPAN

(11)Publication number:

****07-207211**

(43) Date of publication of application: 08.08.1995

(51)Int.CI.

CO9D 11/10 C08F290/06 C086 59/17 C09D163/00 GO3F 7/027 7/027 **GO3F** GO3F 7/029 7/031 **603F** 7/038 **GO3F**

H05K 3/28

(21)Application number: 06-003248

(71)Applicant: NIPPON KAYAKU CO LTD

NIPPON POLYTEC KK

(22)Date of filing:

17.01.1994

(72)Inventor: YOKOSHIMA MINORU

OKUBO TETSUO

SASAHARA KAZUNORI

SATO YONEJI BABA YOKO

(54) RESIST INK COMPOSITION FOR FLEXIBLE PRINTED CIRCUIT BOARD AND ITS CURED ITEM

(57) Abstract:

PURPOSE: To obtain a resist ink compsn. which is developable with a dil. aq. alkali soln. and excellent in flex resistance, folding resistance, adhesive properties, chemical resistance, etc., by compounding a specific unsatd. polycarboxylic acid resin, a photopolymn. initiator, a diluent, and a curative.

CONSTITUTION: An unsatd. polycarboxylic acid resin with an acid value of 40-110mgKOH/g is obtd. by subjecting an epoxy resin of formula I (wherein M is H or a group of formula II; n is 1 or higher; and when n is 1, then M is a group of formula III and when n is 2 or higher, then at least one M is a group of formula IV) to the addition reaction with an unsatd. monocarboxylic acid in an amt. of 0.8-1.3mol based on 1 equivalent of the epoxy group of the epoxy resin and reacting the resulting adduct with succinic anhydride in an amt. of 0.1-0.9 equivalent based on 1 equivalent of OH group of the adduct. This compsn. is prepd. by compounding 10-80% unsatd. polycarboxylic acid resin, 0.5-20wt.% photopolymn. initiator, 5-80wt.% diluent, and 1-50wt.% curative.

3

LEGAL STATUS

[Date of request for examination]

07.03.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3281473

[Date of registration] [Number of appeal against examiner's decision of 22.02.2002

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7章207211

(43)公開日 平成7年(1995)8月8日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 9 D 11/10	PTV			
C08F 290/06	MRV			
C08G 59/17	NHG			
C 0 9 D 163/00	РJМ			
G03F 7/027	502			
		審查請求	未開求一醋求	項の数5 OL (全 11 頁) 最終頁に続く
(21)出願番号	特顏平6-3248		(71)出願人	000004086
				日本化薬株式会社
(22)出顧日	平成6年(1994)1月	成6年(1994)1月17日		東京都千代田区富士見1丁目11番2号
			(71)出願人	594009450
			·	日本ポリテック株式会社
				東京都八王子市弐分方町358-2
			(72)発明者	横島 実
				茨城県取手市井野2291
			(72)発明者	大久保 哲男
				山口県宇部市大字中野開作92番地
		•	(72)発明者	笹原 数則
				山口県下関市長府安姜寺1丁目17-16
			(74)代理人	弁理士 川口 義雄 (外2名)
				最終頁に続く

(54) 【発明の名称】 フレキシブルブリント配線板用レジストインキ組成物及びその硬化物

(57)【要約】

【構成】 式(1)

【化1】

$$\begin{array}{c} c_{H_2} \\ c_{H_2} \\ c_{H_3} \\$$

(式中、Mは水素原子又は2,3-エポキシプロピル基を示し、nは1以上の整数である。但しnが1の場合、Mは2,3-エポキシプロピル基を示し、nが2以上の場合、Mの少なくとも1個は2,3-エポキシプロピル基を示す。)で表されるエポキシ樹脂(a)と不飽和基含有モノカルボン酸(b)との付加生成物と無水コハク酸(c)との反応生成物である不飽和基含有ポリカルボ

ン酸樹脂(A)、光重合開始剤(B)、希釈剤(C)及び硬化成分(D)を含有することを特徴とするフレキシブルプリント配線板用レジストインキ組成物、並びにその硬化物。

【効果】 組成物は現像性光感度等に優れ、その硬化物は耐屈曲性、耐折性等に優れている。

【特許請求の範囲】

【請求項1】 式(1)

【化1】

$$\begin{array}{c} CH_{3} \\ CH_{2}CHCH_{2}O + \left(\begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \right) - CH_{2}CH_{2}O + \left(\begin{array}{c} CH_{3} \\ CH_{2}O + CH_{2}O +$$

(式中、Mは水素原子又は、

【化2】

を示し、nは1以上の整数である。但しnが1の場合、Mは、

【化3】

$$-cH^{5}-cH-cH^{5}$$

を示し、nが2以上の場合、Mの少なくとも1個は、

を示す。)で表されるエポキシ樹脂(a)と不飽和基含有モノカルボン酸(b)との付加生成物と無水コハク酸(c)との反応生成物である不飽和基含有ポリカルボン酸樹脂(A)、光重合開始剤(B)、希釈剤(C)及び硬化成分(D)を含有することを特徴とするフレキシブルプリント配線板用レジストインキ組成物。

【請求項2】 不飽和基含有ポリカルボン酸樹脂(A)が、まずエポキシ樹脂(a)をそのエポキシ基1当量あたり不飽和基含有モノカルボン酸(b) 0.8~1.3 モルと反応させて付加生成物と為し、次いで、該付加生成物をその水酸基1当量あたり無水コハク酸(c) 0.1~0.9当量と反応させて得られるものであり、該樹脂(A)の酸価が40~110mg KOH/gであることを特徴とする請求項1記載の組成物。

【請求項3】 不飽和基含有モノカルボン酸(b)が、アクリル酸、アクリル酸の二量体、メタクリル酸、 β - スチリルアクリル酸、 β - フルフリルアクリル酸、クロ 40 トン酸、 α - シアノ桂皮酸、桂皮酸、飽和又は不飽和二塩基酸無水物と1分子中に1個の水酸基を有する(メタ)アクリレート誘導体との反応物である半エステル類、飽和または不飽和二塩基酸と不飽和基含有モノグリシジル化合物との反応物である半エステル類、およびこれらの混合物からなる群から選択されることを特徴とする請求項1または2記載の組成物。

【請求項4】 不飽和基含有ポリカルボン酸(A)を、 組成物全量に対し10~80重量%含むことを特徴とす る請求項1または2記載の組成物。 【請求項5】 請求項1~4のいずれか一項に記載の組成物の硬化物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、フレキシブルプリント配線板用レジストインキ組成物及びその硬化物に関する。更に詳しくは、フレキシブルプリント配線板製造の際のソルダーレジストやメッキレジスト等に使用できる希アルカリ水溶液で現像が可能でその硬化物は、耐屈曲性、耐折性、密着性、耐薬品性、耐熱性等に優れたレジストインキに適した組成物及びその硬化物に関する。

[0002]

【従来の技術】近年、省資源、省エネルギー、作業性向 上、生産性向上などの理由により各種分野において紫外 線硬化型組成物が多用されてきている。プリント配線板 加工分野においても同様の理由によりソルダーレジスト インキ、マーキングインキなど種々のインキが従来の熱 硬化型組成物から紫外線硬化型組成物へと移行した。た とえば、特公昭56-40329号公報には、エポキシ 樹脂-光重合性 α , β -不飽和カルボン酸付加生成物と 二塩基性カルボン酸無水物との反応生成物、光重合性単 量体および光重合開始剤を含有する硬化性感光材料が記 載されている。これまで、フレキシブルプリント配線板 と言われているポリイミド基板に用いるソルダーレジス トはカバーレイフイルムと呼ばれるポリイミドフイルム をパターンに合わせた金型をつくり打ち抜いたのち接着 剤を用いて張り付けるタイプや、可撓性を持たせた紫外 線硬化型または熱硬化型のソルダーレジストインキをス クリーン印刷法により塗布するタイプのものであった。 リジット(硬質)基板と呼ばれる一般のプリント配線板 は、エレクトロニクスの進歩に伴う高密度化実現のた め、ソルダーレジストに対しても高精度、高解像性の要 求が髙まった。従来のスクリーン印刷法ではパターン精 度が得られない為、液状フォトレジスト法が提案され、 現在50%以上導入されている。

[0003]

【発明が解決しようとする課題】フレキシブルプリント配線板の分野でも高密度化が近年要求されてきているが、従来の液状フォトソルダーレジストでは、パターン精度は得られるものの塗膜が硬くポリイミドとの密着性が悪いため、十分な可撓性や耐折性が得られず、また、可撓性はある程度得られるものの作業性が悪く耐薬品 たい 性、耐熱性が不十分であり、問題である。

[0004]

【課題を解決するための手段】本発明者らは、前記の課題を解決するため鋭意研究の結果、特定のポリカルボン酸樹脂を使用することによって、希アルカリ水溶液での現像が可能であり、その硬化皮膜も可撓性、耐折性、密着性、耐薬品性、耐熱性等に優れたものである、フレキ

シブルプリント配線板用レジストインキ組成物を見出した。

【0005】即ち、本発明は、式(1)で表されるエポキシ樹脂(a)

[0006]

【化5】

【0007】(式中、Mは水素原子又は、

[0008]

【化6】

【0009】を示し、nは1以上の整数である。但しnが1の場合、Mは、

[0010]

【化7】

【0011】を示し、nが2以上の場合、Mの少なくとも1個は、

[0012]

[作8]

$$-CH_2 - CH - CH_2$$

【0013】を示す。)と不飽和基含有モノカルボン酸(b)との付加生成物と無水コハク酸との反応生成物である不飽和基含有ポリカルボン酸樹脂(A)、光重合開始剤(B)、希釈剤(C)及び硬化成分(D)を含有することを特徴とするフレキシブルプリント配線板用レジストインキ組成物及びその硬化物に関する。

【0014】本発明に用いられる不飽和基含有ポリカルボン酸樹脂(A)は、前記式(1)で表されるエポキシ 樹脂(a)と不飽和基含有モノカルボン酸(b)の反応物(I)と無水コハク酸を反応させることにより得ることができる。具体的には、第1の反応で、エポキシ樹脂(a)のエポキシ残基とモノカルボン酸(b)のカルボキシル残基との付加反応により水酸基が形成され、第2の反応でその水酸基が無水コハク酸とエステル化反応すると推定される。

【0015】前記式(1)で表されるエポキシ樹脂は、

式(2)

[0016]

30 【化9】

【0017】(式中、nは1以上の整数である。)で表される化合物のアルコール性水酸基と、エピクロルヒドリン等のエピハロヒドリンを好ましくはジメチルスルホキシドの存在下に反応させることにより得ることができる。エピハロヒドリンの使用量は、式(2)におけるアルコール性水酸基1当量に対して1当量以上使用すれば良い。しかしながらアルコール性水酸基1当量に対して15当量を超えると増量した効果はほとんどなくなる一方容積効率も悪くなる。

【0018】ジメチルスルホキシドを用いる場合その使用量は、式(2)で表される化合物に対して5重量%~300重量%が好ましい。式(2)で表される化合物に対して5重量%以下であると式(2)におけるアルコール性水酸基とエピハロヒドリンとの反応が遅くなるため 50

長時間の反応が必要となり、一方、式(2)で表される 化合物に対して300重量%を超えると増量した効果は ほとんどなくなり、容積効率も悪くなる。

【0019】反応を行う際、アルカリ金属水酸化物を使用する。アルカリ金属水酸化物としては、苛性ソーダ、苛性カリ、水酸化リチウム、水酸化カルシウムなどが使用できるが苛性ソーダが好ましい。アルカリ金属水酸化物の使用量は、式(2)で化合物のエポキシ化したいアルコール性水酸基1当量に対してほぼ1当量使用すれば良い。式(2)で表される化合物のアルコール性水酸基を全量エポキシ化する場合は過剰に使用しても構わないが、アルコール性水酸基1当量に対して2当量を超えると若干高分子化が起こる傾向にある。

0 【0020】アルカリ金属水酸化物は固形でも水溶液の

状態で用いても構わない。また水溶液の状態で使用する 場合は、反応中、反応系内の水は常圧下、減圧下におい て反応系外に留去しながら反応を行うこともできる。反 応温度は30~100℃が好ましい。反応温度が30℃ 未満であると反応が遅くなり長時間の反応が必要とな る。反応温度が100℃を超えると副反応が多く起こり 好ましくない。

【0021】反応終了後、過剰のエピハロヒドリン及び ジメチルスルホキシドを減圧下留去した後、有機溶剤に 生成樹脂を溶解させアルカリ金属水酸化物で脱ハロゲン 10 化水素反応を行うこともできる。一方、反応終了後、水 洗分離を行い副生塩及びジメチルスルホキシドを分離 し、油層より過剰エピハロヒドリンを減圧下留去した 後、有機溶剤に樹脂を溶解させてアルカリ金属水酸化物 で脱ハロゲン化水素反応を行っても良い。有機溶剤とし ては、メチルイソブチルケトン、ベンゼン、トルエン、 キシレン等が使用できるが、メチルイソブチルケトンの 使用が好ましい。尚、これらの有機溶剤は単独若しくは 混合系で使用できる。

【0022】次に、前記不飽和基含有モノカルボン酸 (b) の具体例としては、例えば、アクリル酸、アクリ ル酸の二量体、メタクリル酸、βースチリルアクリル 酸、 β ーフルフリルアクリル酸、クロトン酸、 α ーシア ノ桂皮酸、桂皮酸、および飽和又は不飽和二塩基酸無水 物と1分子中に1個の水酸基を有する(メタ)アクリレ ート誘導体との反応物である半エステル類、あるいは飽 和または不飽和二塩基酸と不飽和基含有モノグリシジル 化合物との反応物である半エステル類が挙げられる。半 エステル類は、例えば無水コハク酸、無水マレイン酸、 無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒド 30 ロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メ チルテトラヒドロ無水フタル酸、無水イタコン酸、メチ ルエンドメチレンテトラヒドロ無水フタル酸等の飽和お よび不飽和二塩基酸無水物と、ヒドロキシエチル(メ タ) アクリレート、ヒドロキシプロピル(メタ)アクリ レート、ヒドロキシブチル(メタ)アクリレート、ポリ エチレングリコールモノ (メタ) アクリレート、グリセ リンジ(メタ)アクリレート、トリメチロールプロパン ジ(メタ)アクリレート、ペンタエリスリトールトリ (メタ) アクリレート、ジペンタエリスリトールペンタ 40 (メタ)アクリレート、フェニルグリシジルエーテルの (メタ) アクリレート等の1分子中に1個の水酸基を有 する(メタ)アクリレート誘導体類とを等モルで反応さ せて得られた半エステル類あるいは、飽和または不飽和 二塩基酸(例えば、コハク酸、マレイン酸、アジピン 酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフ タル酸、イタコン酸、フマル酸等。)と不飽和基含有モ ノグリシジル化合物(例えば、グリシジル(メタ)アク リレート、

[0023]

【0027】等。)を等モル比で反応させて得られる半 エステル等である。これらのモノカルボン酸(b)は単 独または混合して用いることができる。特に好ましいモ ノカルボン酸は、アクリル酸である。

【0028】前記式(1)で表されるエポキシ樹脂 (a) のエポキシ基の1当量に対して、不飽和基含有モ ノカルボン酸(b)、約0.8~1.3モルとなる比で 反応させるのが好ましく、特に好ましくは約0.9~ 1. 1モルとなる比で反応させる。反応時に、希釈剤と して、エチルメチルケトン、シクロヘキサンなどのケト ン類、トルエン、キシレン、テトラメチルベンゼンなど の芳香族炭化水素類、ジプロピレングリコールジメチル エーテル、ジプロピレングリコールジエチルエーテルな どのグルコールエーテル類、酢酸エチル、酢酸ブチル、 ブチルセロソルブアセテート、カルビトールアセテート などのエステル類、オクタン、デカンなどの脂肪族炭化 水素、石油エーテル、石油ナフサ、水添石油ナフサ、ソ ルベントナフサなどの石油系溶剤等の有機溶剤類又は、 カルビトール(メタ)アクリレート、フェノキシエチル (メタ) アクリレート、ペンタエリスリトールテトラ (メタ)アクリレート、トリメチロールプロパントリ (メタ) アクリレート、トリス (ヒドロキシエチル) イ ソシアヌレートトリ(メタ)アクレリート、ジペンタエ リスリトールヘキサ(メタ)アクリレート等の反応性単 量体類を使用するのが好ましい。更に、反応を促進させ るために触媒(例えば、トリエチルアミン、ベンジルジ 50 メチルアミン、メチルトリエチルアンモニウムクロライ

あり、単独または2種以上を組合せて用いることができる。さらに、光重合開始剤(B)は、N, Nージメチルアミノ安息香酸エチルエステル、N, Nージメチルアミノ安息香酸イソアミルエステル、ペンチル4ージメチル

8

ノ安息香酸イソアミルエステル、ペンチル4 ージメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン類のような光増感剤を単独ある

いは2種以上と組合せて用いることができる。

【0033】好ましい組合せは、2ーメチルー1ー [4ー(メチルチオ)フェニル]ー2ーモルフォリノープロパンー1ーオン(チバ・ガイギー社製、イルガキュアー907)と2、4ージエチルチオキサントン(日本化薬(株)製、カヤキュアーDETX)、2ーイソプロピルチオキサントンまたは4ーベンゾイルー4′ーメチルジフェニルサルファイドとの組合せ等である。

【0034】光重合開始剤(B)の使用割合は、本発明の組成物中、0.5~20重量%が好ましく、特に好ましくは1~10重量%である。

【0035】希釈剤(C)の具体例としては、例えば有 機溶剤および/または光重合性モノマーが使用できる。 有機溶剤の代表的なものとしては、、エチルメチルケト ン、シクロヘキサノン等のケトン類、トルエン、キシレ ン、テトラメチルベンゼン等の芳香族炭化水素類、メチ ルセロソルブ、ブチルセロソルブ、メチルカルビトー ル、ブチルカルビトール、プロピレングリコールモノメ チルエーテル、ジプロピレングリコールモノエチルエー テル、ジプロピレングリコールジエチルエーテル、トリ エチレングリコールモノエチルエーテル等のグルコール エーテル類、酢酸エチル、酢酸ブチル、ブチルセロソル ブアセテート、カルビトールアセテート等のエステル 類、エタノール、プロパノール、エチレングリコール、 プロピレングリコールなどのアルコール類、オクタン、 デカンなどの脂肪族炭化水素、石油エーテル、石油ナフ サ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤 等を挙げることができる。

【0036】一方、光重合性モノマーの代表的なものと しては、2ーヒドロキシエチル(メタ)アクリレート、 2ーヒドロキシプロピル (メタ) アクリレート等のヒド ロキシアルキル (メタ) アクリレート類、エチレングリ コール、メトキシテトラエチレングリコール、ポリエチ レングリコール等のグリコールのモノ又はジ(メタ)ア **クリレート類、N,N-ジメチル(メタ)アクリルアミ** ド、Nーメチロール(メタ)アクリルアミド等の(メ タ)アクリルアミド類、N、Nージメチルアミノエチル (メタ) アクリレート等のアミノアルキル (メタ) アク リレート類、ヘキサンジオール、トリメチロールプロパ ン、ペンタエリスリトール、ジトリメチロールプロパ ン、ジペンタエリスリトール、トリスーヒドロキシエチ ルイソシアヌレート等の多価アルコール又は、これらの エチレンオキサイドもしくはプロピレンオキサイド付加 物の多価(メタ)アクリレート類、フェノキシエチル

ド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムアイオダイド、トリフェニルフォスフィン、トリフェニルスチビン、オクタン酸クロム、オクタン酸ジルコニウム等)を使用することが好ましく、該触媒の使用量は、反応原料混合物に対して好ましくは0.1~10重量%である。反応中の重合を防止するために、重合防止剤(例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等)を使用するのが好ましく、その使用量は、反応原料混合物に対して、好ましくは0.01~1重量%である。反応温度は、好ましくは60~150℃である。又、反応時間は好ましくは5~60時間である。このようにしてエポキシ樹脂

(a)と不飽和基含有モノカルボン酸(b)との付加反 応物(I)を得ることができる。

【0029】次に、反応物(I)と無水コハク酸(c)の反応は、前記反応物(I)中の水酸基に対して、水酸基1当量あたり無水コハク酸(c)を0.1~0.9当量反応させるのが好ましい。反応温度は60~150℃が好ましい。反応時間は、1~10時間が好ましい。【0030】このようにして得られた不飽和基含有ポリ

10030】 このよっにして得られた不飽和基含有ポリカルボン酸樹脂(A)の酸価(mgKOH/g)は40~110が好ましく、特に好ましくは50~100である。

【0031】本発明の組成物に含まれる不飽和基含有ポリカルボン酸(A)の量は、組成物中10~80重量%が好ましく、特に15~60重量%が好ましい。

【0032】光重合開始剤(B)の具体例としては、例 えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾ インイソプロピルエーテル等のベンゾイン類、アセトフ 30 ェノン、2,2ージメトキシー2ーフェニルアセトフェ ノン、2,2ージエトキシー2ーフェニルアセトフェノ ン、1,1ージクロロアセトフェノン、1ーヒドロキシ シクロヘキシルフェニルケトン、2-メチル-1-[4] - (メチルチオ)フェニル] -2-モルフォリノープロ パンー1ーオン、N, N-ジメチルアミノアセトフェノ ン等のアセトフェノン類、2ーメチルアントラキノン、 2ーエチルアントラキノン、2ーtertープチルアントラ キノン、1ークロロアントラキノン、2ーアミルアント ラキノン、2ーアミノアントラキノン等のアントラキノ 40 ン類、2, 4ージメチルチオキサントン、2, 4ージエ チルチオキサントン、2-クロロチオキサントン、2、 4 ージイソプロピルチオキサントン等のチオキサントン 類、アセトフェノンジメチルケタール、ベンジルジメチ ルケタール等のケタール類、ベンゾフェノン、メチルベ ンゾフェノン、4、4′ージクロロベンゾフェノン、 4, 4'ービスジエチルアミノベンゾフェノン、ミヒラ ーズケトン、4ーベンゾイルー4′ーメチルジフェニル サルファイド等のベンゾフェノン類、2,4,6ートリ メチルベンゾイルジフェニルホスフィンオキサイド等が

(メタ) アクリレート、ビスフェノールAのポリエトキシジ (メタ) アクリレート等のフェノール類のエチレンオキサイドあるいはプロピレンオキサイド付加物の (メタ) アクリレート類、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの (メタ) アクリレート類、カプロラクトン変性トリス (アクリロキシエチル) イソシアヌレートなどの εーカプロラクトン変性 (メタ) アクリレート類、及びメラミン (メタ) アクリレート等を挙げることができる。【0037】前記の希釈剤 (C) は、単独または2種以上の混合物として用いられ、本発明の組成物に含まれる希釈剤 (C) の量は組成物中、5~80重量%が好ましく、特に好ましくは10~70重量%である。

【0038】前記希釈剤(C)の使用目的は、光重合性 モノマーの場合は、(A)成分を希釈し、塗布しやすい 状態にすると共に、光重合性を増強するのであり、有機 溶剤の場合は、(A)成分を溶解し希釈せしめ、それに よって液状として塗布し、次いで乾燥させることにより 造膜せしめるためである。従って用いる希釈剤に応じて、フォトマスクを塗膜に接触させる接触方式あるいは 非接触方式のいずれかの露光方式が用いられる。

【0039】硬化成分(D)の具体例としては、不飽和 二重結合を有しないものでそれ自身が熱や紫外線等によ って硬化するものや、本発明の組成物中の主成分である (A) 成分の水酸基やカルボキシル基等と熱や紫外線等 で反応するものでも良い。具体的には、例えば、1分子 中に1個以上のエポキシ基を有するエポキシ化合物(例 えば、油化シェル(株)製、エピコート1009、10 31、大日本インキ化学工業(株)製、エピクロンN-3050、N-7050、ダウケミカル(株) 製、DE R-642U、DER-673MF等のビスフェールA 型エポキシ樹脂、東都化成(株)製、ST-2004、 ST-2007等の水添ビスフェノールA型エポキシ樹 脂、東都化成(株)製、YDF-2004、YDF-2 007等のビスフェノールF型エポキシ樹脂、坂本薬品 工業(株)製、SR-BBS、SR-TBA-400、 東都化成(株)製、YDB-600、YDB-715等 の臭素化ビスフェノールA型エポキシ樹脂、日本化薬 (株) 製、EPPN-201、EOCN-103、EO CN-1020、BREN等のノボラック型エポキシ樹 脂、大日本インキ化学工業(株)製、エピクロンN-8 80等のビスフェノールAのノボラック型エポキシ樹 脂、油化シェル (株) 製、YL-931、YL-933 等のアミノ基含有エポキシ樹脂、大日本インキ化学工業 (株) 製、エピクロンTSR-601、エー・シー・ア ール(株)製、R-1415-1等のゴム変性エポキシ 樹脂、日本化薬(株)製、EBPS-200、大日本イ ンキ化学工業(株)製、エピクロンEXA-1514等 のビスフェノールS型エポキシ樹脂、日本油脂(株)

製、ブレンマーDGT等のジグリシジルテレフタレート、日産化学(株)製、TEPIC等のトリグリシジルイソシアヌレート、油化シェル(株)製、YX-4000等のビキシレノール型エポキシ樹脂、油化シェル(株)製、YL-6056等のビスフェノール型エポキシ樹脂、ダイセル化学工業(株)製、セロキサイド2021等の脂環式エポキシ樹脂等を挙げることができる。)、メラミン誘導体(例えば、ヘキサメトキシメラミン、ヘキサブトキシ化メラミン、縮合ヘキサメトキシメラミン等。)、尿素化合物(例えば、ジメチロール尿素等。)、ビスフェノールA系化合物(例えば、テトラ

【0040】前記硬化成分(D)の使用目的は、密着性、耐熱性、耐メッキ性等のソルダーレジストとしての諸特性を向上させるものである。

メチロール・ピスフェノールA等。)、オキサゾリン化

合物等を挙げることができる。

【0041】前記の硬化成分(D)は、単独または2種以上の混合物として用いられ、本発明の組成物に含まれる硬化成分(D)の量は組成分中、1~50重量%が好ましく、特に好ましくは3~45重量%である。

【0042】前記硬化成分(D)の中でエポキシ化合物 を使用する場合には、密着性、耐薬品性、耐熱性等の特 性をより一層向上するためにエポキシ樹脂硬化剤を併用 することが好ましい。このようなエポキシ樹脂硬化剤の 具体例としては、例えば、四国化成工業(株)製、2M Z, 2 E 4 M Z, C₁₁ Z, C₁₇ Z, 2 P Z, 1 B 2 M Z, 2MZ-CN, 2E4MZ-CN, $C_{11}Z-CN$, 2 P Z - C N, 2 P H Z - C N, 2 M Z - C N S, 2 E 4MZ-CNS, 2PZ-CNS, 2MZ-AZIN E, 2E4MZ-AZINE, C11 Z-AZINE, 2 MA-OK、2P4MHZ、2PHZ、2P4BHZ等 のイミダゾール誘導体;アセトグアナミン、ベンゾグア ナミン等のグアナミン類;ジアミノジフェニルメタン、 mーフェニレンジアミン、mーキシレンジアミン、ジア ミノジフェニルスルフォンン、ジシアンジアミド、尿 素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリ アミン類:これらの有機酸塩および/またはエポキシア ダクト;三フッ化ホウ素のアミン錯体;エチルジアミノ ーSートリアジン、2、4ージアミノーSートリアジ ン, 2, 4ージアミノー6ーキシリルーSートリアジン 等のトリアジン誘導体類:トリメチルアミン、トリエタ **ノールアミン、N,Nージメチルオクチルアミン、Nー** ベンジルジメチルアミン、ピリジン、N-メチルモルホ リン、ヘキサ (Nーメチル) メラミン、2, 4, 6ート リス(ジメチルアミノフェノール)、テトラメチルグア ニジン、mーアミノフェノール等の三級アミン類;ポリ ビニルフェノール、ポリビニルフェノール臭素化物、フ ェノールノボラック、アルキルフェノールノボラック等 のポリフェノール類;トリブチルホスフィン、トリフェ ニルホスフィン、トリスー2ーシアノエチルホスフィン

等の有機ホスフィン類;トリーnープチル(2,5ージ ヒドロキシフェニル) ホスホニウムブロマイド、ヘキサ デシルトリプチルホスホニウムクロライド等のホスホニ ウム塩類:ベンジルトリメチルアンモニウムクロライ ド、フェニルトリプチルアンモニウムクロライド等の4 級アンモニウム塩類;前記多塩基酸無水物;ジフェニル ヨードニウムテトラフルオロボロエート、トリフェニル スルホニウムヘキサフルオロアンチモネート、2,4, 6-トリフェニルチオピリリウムヘキサフルオロホスフ ェート、チバ・ガイギー社製、イルガキュアー261、 旭電化(株)製、オプトマーSP-170等の光カチオ ン重合触媒:スチレンー無水マレイン酸樹脂;フェニル イソシアネートとジメチルアミンの等モル反応物や、ト リレンジイソシアネート、イソホロンジイソシアネート 等の有機ポリイソシアネートとジメチルアミンの等モル 反応物等の公知慣用の硬化剤類あるいは硬化促進剤類を 単独または2種以上混合して用いる。エポキシ樹脂硬化 剤の使用量は、前記エポキシ化合物100重量部に対し て、0.01~25重量部が好ましく、特に好ましくは 0. 1~15重量部である。

【0043】本発明の組成物は、更に、密着性、硬度などの特性を向上する目的で必要に応じて、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、無定形シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、雲母粉等の公知慣用の無機充填剤が使用できる。その使用量は、本発明の組成物中の0~60重量%が好ましく、特に好ましくは5~40重量%である。

【0044】更に、必要に応じて、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリー 30 ン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラックなどの公知慣用の着色剤、ハイドロキノン、ハイドロキノンモノメチルエーテル、tertーブチルカテコール、ピロガロール、フェノチアジン等の公知慣用の重合禁止剤、アスベスト、オルベン、ベントン、モンモリロナイト等の公知慣用の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤および/または、レベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤のような公知慣用の添加剤類を用40 いることができる。

【0045】又、アクリル酸エステル類などのエチレン性不飽和化合物の共重合体類や、多価アルコール類と多塩基酸化合物から合成されるポリエステル樹脂類等の公知慣用のバインダー樹脂およびポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート等の光重合性オリゴマー類もソルダーレジストとしての諸特性に影響を及ぼさない範囲で用いることができる。

【0046】また、本発明の組成物の引火性の低下のた 50

めに水を添加することもできる。水を添加する場合には、(A)成分のカルボキシル基をトリメチルアミン、トリエチルアミン等のアミン類、N,Nージメチルアミノエチル(メタ)アクリレート、N,Nージメチルアミノプロピル(メタ)アクリルアミド、N,Nージメチル(メタ)アクリルアミド、アクリロイルモルホリン、Nーイソプロピル(メタ)アクリルアミド、Nーメチロールアクリルアミド等の3級アミノ基を有する(メタ)アクリレート化合物で造塩することにより、(A)成分を

12

【0047】本発明の組成物は、配合成分を好ましくは前記の割合で配合し、ロールミル等で均一に混合することにより得られる。

水に溶解するようにすることが好ましい。

【0048】本発明の組成物は、レジストインキに有用 である他、塗料、コーティング剤、接着剤等としても使 用できる。本発明のレジストインキ組成物は、例えば、 次のようにして硬化し、硬化物を得る。即ち、フレキシ ブルプリント配線板に、スクリーン印刷法、スプレー 法、ロールコート法、静電塗装法、カーテンコート法等 の方法により10~160 µmの膜厚で本発明の組成物 を塗布し、塗膜を60~110℃で乾燥させた後、ネガ フイルムを塗膜に直接に接触させ(又は、接触しない状 態で塗膜の上に置く。)、次いで紫外線を照射し、未露 光部分を希アルカリ水溶液(例えば、0.5~2%炭酸 ソーダ水溶液等)で溶解除去(現像)した後、更に諸物 性の向上のために、紫外線の照射および/または加熱 (例えば、100~200℃で、0.5~1.0時間) によって十分な硬化を行ない硬化皮膜を得る。本発明の 組成物は、紫外線照射により容易に硬化する。本発明の 紫外線照射による硬化は常法により行うことができる。 例えば低圧又は高圧水銀灯、キセノン灯等を用い紫外線 を照射すればよい。本発明はこのような硬化物にも関す る。

[0049]

【実施例】以下、本発明の実施例により更に具体的に説明する。なお実施例中の部は、重量部である。

【0050】<u>式(1)で表されるエポキシ樹脂(a)の</u> 合成例

合成例 1

式(2)におけるnの平均値が3.3、エポキシ当量650、軟化点81.1℃、溶融粘度(150℃)12.5ポイズのビスフェノールA型エポキシ樹脂371部をエピクロルヒドリン925部とジメチルスルホキシド462.5部を溶解させた後、撹拌下70℃で98.5%NaOH 52.8部を100分かけて添加した。

【0051】添加後さらに70℃で3時間反応を行なった。次いで過剰の未反応エピクロルヒドリンおよびジメチルスルホキシドの大半を減圧下に留去し、副生塩とジメチルスルホキシドを含む反応生成物をメチルイソブチルケトン750部に溶解させ、さらに30% NaOH

10部を加え70℃で1時間反応させた。

【0052】反応終了後、水200gで2回水洗を行った。油水分離後、油層よりメチルイソブチルケトンを蒸留回収して、エポキシ当量287、加水分解性塩素含有量0.07%、軟化点64.2℃、溶融粘度(150℃)7.1ポイズのエポキシ樹脂(a-1)340gを得た。得られたエポキシ樹脂(a-1)はエポキシ当量から計算すると式(2)におけるアルコール性水酸基3.3個の内約3.1個がエポキシ化されている。

【0053】 合成例2

98.5% NaOHの使用量を24.3gとした以外は合成例1と同様にして反応を行い、エポキシ当量379、加水分解性塩素含有量0.067%、軟化点76.8℃、溶融粘度(150℃)11.0ポイズのエポキシ樹脂(a-2)365gを得た。得られたエポキシ樹脂(a-2)はエポキシ当量から計算すると式(2)におけるアルコール性水酸基3.3個の内約1.7個がエポキシ化されている。

【0054】 合成例3

98.5% NaOHの使用量を13.3 gとした以外は合成例1と同様にして反応を行い、エポキシ当量444、加水分解性塩素含有量0.054%、軟化点79.5℃、溶融粘度(150℃)11.5ポイズのエポキシ樹脂(a-3)350gを得た。得られたエポキシ樹脂(a-3)はエポキシ当量から計算すると一般式(2a)におけるアルコール性水酸基3.3個の内約1.0個がエポキシ化されている。

【0055】<u>不飽和基含有ポリカルボン酸樹脂(A)の</u> 合成例

合成例4

合成例1で得たエポキシ樹脂(a-1)2870部(10当量)、アクリル酸720部(10当量)、メチルハイドロキノン2.8部、カルビトールアセテート1943.5部を仕込み、90℃に加熱、撹拌し、反応混合物を溶解した。次いで、反応液を60℃に冷却し、トリフェニルフォスフィン16.6部を仕込み、100℃に加熱し、約32時間反応し、酸価が1.0mg KOH/gの反応物を得た。次に、これに無水コハク酸783部(7.83モル)、カルビトールアセテート421.6部を仕込み、95℃に加熱し、約6時間反応し、冷却し、固形分の酸価が100mg KOH/gの固形分の濃度65%の不飽和基含有ポリカルボン酸樹脂(A-1)を得た。このものの粘度(25℃)は250ポイズであった。

【0056】 合成例5

合成例2で得たエポキシ樹脂(a-2)3650部(10当量)、アクリル酸720部(10当量)、メチルハイドロキノン3.4部、カルビトールアセテート2366部を仕込み、90℃に加熱、撹拌し、反応混合物を溶解した。次いで、反応液を冷却し、トリフェニルフォス 50

フィン20. 1部を仕込み、100℃に加熱し、約32時間反応し、酸価が1. 0mg KOH/gの反応物を得た。次に、これに無水コハク酸953部(9.5モル)、カルビトールアセテート513部を仕込み、95℃に加熱し、約6時間反応し、冷却し、固形分の酸価が100mg KOH/gの固形分の濃度65%の不飽和基合有ポリカルボン酸樹脂(A-2)を得た。このものの粘度(25℃)は450ポイズであった。

14

【0057】合成例6

合成例3で得たエポキシ樹脂(a - 3)4440部(10当量)、アクリル酸720部(10当量)、メチルハイドロキノン4.0部、カルビトールアセテート2794部を90℃に加熱、撹拌し、反応混合物を溶解した。次いで、反応液を冷却し、トリフェニルフォスフィン25.5部を仕込み、100℃に加熱し、約32時間反応し、酸価が1.0mg KOH/gの反応物を得た。次に、これに無水コハク酸1125部、カルビトールアセテート606部を仕込み、95℃に加熱し、約6時間反応し、冷却し、固形分の酸価が100mg KOH/gの固形分の濃度65%の不飽和基含有ポリカルボン酸樹脂(A-3)を得た。このものの粘度(25℃)は620ポイズであった。

【0058】 実施例1~3、比較例1~2

表1に示す配合組成(数値は重量部である。)に従って 組成物を配合し、3本ロールミルで混練し調製した。こ れをスクリーン印刷法により、100メッシュのポリエ ステルスクリーンを用いて20~30μmの厚さになる ようにパターン形成されている銅張ポリイミドフイルム 基板 (銅厚/12μm・ポリイミドフイルム厚/25μ m) に全面塗布し塗膜を80℃の熱風乾燥器で30分乾 燥させる。次いで、レジストパターンを有するネガフイ ルムを塗膜に密着させ紫外線露光装置(株)オーク製作 所、型式HMW-680GW)を用いて、紫外線を照射 した (露光量 5 0 0 m J / c m²)。次に 1 %の炭酸ナ トリウム水溶液で60秒間、2.0kg/cm²のスプ レー圧で現像し、未露光部分を溶解除去した。得られた ものについて、後述のとおり現像性および光感度の評価 を行った。その後、150℃の熱風乾燥器で40分加熱 硬化を行ない、得られた硬化膜を有する試験片につい て、後述のとおり密着性、鉛筆硬度、耐溶剤性、耐酸 性、耐熱性、耐屈性、耐折性の試験を行なった。それら

【0059】(現像性)下記の評価基準を使用した。

のとおりである。

【0060】〇 …… 現像時、完全にインキが除去され、現像できた。

の結果を表1に示す。なお、試験方法及び評価方法は次

【0061】 △ …… 現像時、わずかに残渣のあるもの。

【0062】× ······ 現像時、現像されない部分がある。

【0063】(光感度)乾燥後の塗膜に、ステップタブ レット21段(ストファー社製)を密着させ積算光量5 00mJ/cm²の紫外線を照射露光する。次に1%の 炭酸ナトリウム水溶液で60秒間、2.0kg/cm² のスプレー圧で現像し、現像されずに残った塗膜の段数。 を確認する。下記の基準を使用した。

【0064】〇 …… 9段以上。

【0065】△ …… 6~8段。

【0066】× …… 5段以下。

試験片に1mmのごばん目を100ヶ作りセロテープに よりピーリング試験を行った。ごばん目の剥離状態を観 察し、次の基準で評価した。

【0068】〇 …… 100/100で剥れのないも Ø)

 $[0069] \triangle \cdots 50/100 \sim 90/100$

 $[0070] \times \cdots 0/100 \sim 50/100$

【0071】(鉛筆硬度) JIS K5400に準じて 評価を行った。

ールに室温で30分間浸漬する。外観に異常がないか確 認した後、セロテープによるピーリング試験を行い、次 の基準で評価した。

【0073】〇 …… 塗膜外観に異常がなく、フクレ や剥離のないもの。

【0074】× …… 塗膜にフクレや剥離のあるも

Ø_o

【0075】(耐酸性)試験片を10%塩酸水溶液に室 温で30分浸漬する。外観に異常がないか確認した後、 セロテープによるピーリング試験を行い、次の基準で評 価した。

【0076】〇 …… 塗膜外観に異常がなく、フクレ や剥離のないもの。

【0077】× …… 塗膜にフクレや剥離のあるも の。

【0067】(密着性) JIS K5400に準じて、 10 【0078】(耐熱性) 試験片にロジン系プラックスを 塗布し260℃の半田槽に5秒間浸漬した。これを1サ イクルとし、3サイクル繰り返した。室温まで放冷した 後、セロテープによるピーリング試験を行い、次の基準 で評価した。

> 【0079】〇 …… 塗膜外観に異常がなく、フクレ や剥離のないもの。

【0080】× …… 塗膜にフクレや剥離のあるも の。

【0081】(耐屈曲性) JIS K5400に準じて 【0072】(耐溶剤性)試験片をイソプロピルアルコ 20 行った。試験片を用いて、心棒の直径は2mmとし、ク ラック発生の有無を観察した。

> 【0082】 (耐折性) JIS C5016に準じて行 った。折り曲げ面の曲率半径は0.38mmとし、クラ ックが入るまでの折り曲げ回数を測定した。

[0083]

【表1】

表 1

	実 施 例			比較例	
	1	2	3	1	2
合成例4で得た不飽和基含有ポリカルボン酸樹脂(A-1)	69				
合成例5で得た不飽和基含有 ポリカルボン酸樹脂(A-2)		64			
合成例 6 で得た不飽和基合有ポリカルボン酸樹脂(A-3)			64		
EAYARAD ZBR- #1				69	,
EAYARAD PCR- +2					64
U-200AX #3		5, 0	5. 0		5. 0
M-325 #4		3. 5	3. 5		3, 5
KAYARAD DPHA +5	3. 5			25	
イルガキュアー907 #6	3. Q	3. 0	3. 0	3.0	3. 0
KATACURE DETX-S #7	0. 5	0. 5	0. 5	0.5	0. 5
KAYACURE BMS #8	1. 0	1. 0	1. 0	1. 0	1. 0
R-1415-1 +9	10. 0				
EXA-4800 *10		10. Q	10.0	10.0	10.0
ジシアンジアミド (ユポキシ 硬化剤)	0. 5	0. 5	0, 5	Q 5	0. 5
シ リ カ (無機充填剤)	10.0	10.0	10.0	10.0	10. 0
フタロシアニングリーン(顔料)	0. 5	B. 5	0. 5	A 5	0.5
アエロジル #200 *11	1. 0	1.0	1.0	1.0	1.0
モダフロー #12	1. 0	1.0	1.0	1.0	1. 0
現像性	0	0	0	Δ	0
光感度	0	0	0	×	0
密 着 性	0	,Ō	0	0	0
鉛 華 硬 度	4 H	5 H	5 H	4 H	7 H
耐屈曲性	タラックなし	タラックなし	タラックなし	クラックなし	グラック発
耐 折 性	1000回吐	1000回址	1000EEL	1000回以上	10
耐溶剤性	0	0	0	×	0
耐酸性	0	0	0	×	0
耐熱性	0	0	0	×	0

【0084】注)

*1) KAYARAD ZBR-:日本化薬(株)製、ビスフェノールA型エポキシアクリレート(油化シェルエポキシ(株)製、エピコート1004にアクリル酸を反応させたもの)と無水コハク酸を反応させたもので、カルビトールアセテート24.5重量%及びソルベントナフサ10.5重量%含有し、固形分の酸価は、100mgKOH/gである。

【0085】*2) KAYARAD PCR一:日本化 40 薬(株) 製、フェノールノボラック型エポキシアクリレート(日本化薬(株) 製、EPPN-201にアクリル酸を反応させたもの)と無水コハク酸を反応させたもので、カルビトールアセテート24.5重量%及びソルベントナフサ10.5重量%含有し、固形分の酸価は、100mg KOH/gである。

【0086】*3) U-200AX:新中村化学工業 (株) 製、ウレタンアクリレート。

【0087】*4) M-325:東亞合成化学工業 (株) 製、カプロラクトン変性トリス (アクリロキシエ チル) イソシアヌレート。

【0088】*5) KAYARAD DPHA:日本化薬(株)製、ジペンタエリスリトールペンタ及びヘキサアクリレートの混合物。

【0089】*6) イルガキュアー907:チバ・ガイギー社製、光重合開始剤、2ーメチルー [4ー(メチルチオ)フェニル] -2ーモルホリノー1ープロパノン。

【0090】*7) KAYACURE DETX-S: 日本化薬(株)製、光重合開始剤、2,4-ジエチルチ オキサントン。

【0091】*8) KAYACURE BMS:日本化 薬(株)製、光重合開始剤、4ーベンゾイルー4'ーメ チルフェニルサルファイド。

【0092】*9) R-1415-1:エー・シー・アール (株) 製、ゴム変性エポキシ樹脂。

【0093】*10) EXA-4800:大日本インキエ 業(株)製、ビスフェノールS型エポキシ樹脂。

【0094】*11) アエロジル#200:日本アエロジル(株) 製、無水シリカ。

技術表示箇所

20

【発明の効果】本発明のレジストインキ組成物は、パタ

ーンを形成したフイルムを通した選択的に紫外線により

露光し、未露光部分を現像することによるソルダーレジ

ストパターンの形成において、現像性、光感度に優れ、

得られた硬化物が耐屈曲性、耐折性に優れ、密着性、鉛

筆硬度、耐溶剤性、耐酸性、耐熱性等も十分に満足する

ものであり、特に、フレキシブルプリント配線板用液状

ソルダーレジストインキ組成物に適している。

【0095】*12) モダフロー:モンサント(株)製、

【0096】表1の評価結果から明らかなように、本発明のレジストインキ組成物及びその硬化物は、現像性、感光性に優れ、その硬化物は、耐屈曲性、耐折性、耐溶剤性、耐酸性、耐熱性等に優れていることは明らかである。

[0097]

レベリング剤。

フロントページの続き

(51) Int.C1.6 識別記号 庁内整理番号 F I
G O 3 F 7/027 5 1 5
7/029
7/031
7/038 5 0 3
H O 5 K 3/28 D

(72)発明者 佐藤 米次 東京都八王子市川口町1646

(72)発明者 馬場 洋子 東京都秋川市油平字阿伎野22番地23