Chapitre I – Structure des atomes

Notions de cours

I.1) L'ATOME

Structure

Noyau (rayon
$$\approx 10^{-14}$$
 m)
$$\begin{cases} \textit{Z protons } (m_{proton} = 1,6725\ 10^{-27}\ kg\ ;\ q_{proton} = +\ 1,602\ 10^{-19}\ C) \\ \textit{N neutrons } (m_{neutron} = 1,6748\ 10^{-27}\ kg\ ;\ q_{neutron} = 0) \end{cases}$$
 Nuage électronique (diamètre $\approx 10^{-10}$ m)
$$\textit{Z électrons } (m_c = 9,108\ 10^{-31}\ kg\ ;\ e = -\ 1,602\ 10^{-19}\ C)$$

$${ \begin{cases} A: nombre de masse = nombre de nucléons = Z + N \\ Z: numéro atomique = nombre de protons \end{cases} }$$

 $\underline{\textbf{Elément}}$: un élément X est l'ensemble des atomes et des ions qui ont le même numéro atomique Z.

Atome : un atome est une entité neutre définie par une valeur de Z et de A.

<u>Isotopes</u>: atomes qui ne diffèrent que par le nombre de neutrons.

<u>Masses atomiques</u>: échelle relative des masses = *unité de masse atomique* (notée u). 1 u = 1/12 masse d'un atome ${}^{12}_{6}$ C \Rightarrow la masse d'un atome de ${}^{12}_{6}$ C est de 12 u.

<u>Mole et nombre d'Avogadro N_A </u>: *une mole* = quantité de matière d'un système contenant autant d'entités élémentaires (atomes, ions, molécules, ...) qu'il y a d'atomes de ${}^{12}_{6}C$ dans 12 g de ${}^{12}_{6}C$.

Une mole d'atomes contient N_A atomes ($N_A = 6,022.10^{23} \text{ mol}^{-1}$).

<u>Masses atomiques des éléments naturels</u> : la masse d'une mole d'atome naturel = \sum (masses d'une mole de chaque isotope × son abondance isotopique).

6 Notions de cours

I.2) LES ELECTRONS

I.2.1) Dualité onde-particule (hypothèse de Max Planck)

Les échanges d'énergie entre la matière et les ondes électromagnétiques sont quantifiés.

I.2.2) Modèle de Bohr (atome et ions à 1 électron)

Absorption d'énergie

Emission d'énergie

Spectre d'émission de l'atome d'hydrogène

I.2.3) Fonction d'onde – équation de Schrödinger – nombres quantiques

Equation de Schrödinger : $H \Psi = E \Psi$.

Les orbitales sont définies par les trois nombres quantiques n, l et m (nombres entiers) :

- n: nombre quantique principal (n=1, 2, 3, ..., ∞). Il définit la couche électronique et le niveau énergétique.
- l: nombre quantique secondaire (0 ≤ l ≤ n-1) Il définit la forme de l'orbitale.
- m: nombre quantique magnétique (-l ≤ m ≤ +l)
 Il décrit l'orientation de l'orbitale atomique dans l'espace.

I.2.4) Les orbitales atomiques

8 Notions de cours

Valeur de n n > 0	Valeur(s) de l $0 \le l \le (n-1)$	Valeur(s) de m $-l \le m \le +l$	Nombre d'OA et appellation	Nombre total d'OA
1	0	0	1 orbitale 1s	1
2	0 1	0 -1, 0, 1	1 orbitale 2s 3 orbitales 2p	4
3	0 1 2	0 -1, 0, 1 -2, -1, 0, 1, 2	1 orbitale 3s 3 orbitales 3p 5 orbitales 3d	9
4	0 1 2 3	0 -1, 0, 1 -2, -1, 0, 1, 2 -3, -2, -1, 0, 1, 2, 3	1 orbitale 4s 3 orbitales 4p 5 orbitales 4d 7 orbitales 4f	16

Chaque OA est représentée par une case quantique :

n = 1	1 = 0	m = 0		sous-couche 1s	couche $n = 1$
n = 2	1 = 0 $1 = 1$	m = 0 m = -1, 0, +1	=	sous-couche 2s sous-couche 2p	couche $n = 2$
n = 3	1 = 1	m = 0 m = -1, 0, +1 m = -2, -1, 0, +1, +2		sous-couche 3s sous-couche 3p sous-couche 3d	couche n = 3
n = 4	1 = 2	m = 0 m = -1, 0, +1 m = -2, -1, 0, +1, +2 m = -3, -2, -1, 0, +1, +2, +3		sous-couche 4s sous-couche 4p sous-couche 4d Sous-couche 4f	couche n = 4

- Une OA (ou une case quantique) peut contenir au maximum 2 électrons.
- Le principe d'exclusion de Pauli : deux électrons d'un même atome ne peuvent avoir les mêmes nombres quantiques.

 \Rightarrow nécessité d'introduire d'un 4^e nombre quantique : le nombre quantique de spin, $s = +\frac{1}{2}$ ou $-\frac{1}{2}$.

I.2.5) Configuration électronique d'un élément à l'état fondamental

Etape 1

Respecter l'ordre de remplissage selon la règle de Klechkowski (règle mnémotechnique).

Etape 2

Respecter:

- o 2 électrons au maximum par orbitale (donc par case quantique).
- La règle de Hund = maximum d'électrons de la même sous-couche avec des spins parallèles.
- Le principe d'exclusion de Pauli qui stipule que 2 électrons ne peuvent être décrits par les 4 mêmes nombres quantiques.

Etape 3

Corriger les anomalies de remplissage des sous-couches 3d et 4d :

Etape 4

Réécrire les couches et sous-couches dans l'ordre d'énergie croissante. Par exemple pour le chrome (24Cr) :

Ordre de remplissage
$$\rightarrow$$
 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d⁵ Configuration électronique \rightarrow 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s¹

Définition : couche électronique externe

C'est la couche électronique de plus grande valeur de n.

Définition: couche de valence

C'est la couche électronique de plus grande valeur de n, sauf pour les éléments de transition qui ont leur sous-couche d en cours de remplissage. Dans ce cas, le nombre d'électrons de valence inclut les e⁻ d et les e⁻ s de la couche supérieure.

Par exemple pour le chrome (24Cr) : couche externe 4s, couche de valence 3d, 4s.

10 Notions de cours

I.3) LA CLASSIFICATION PERIODIQUE DES ELEMENTS

I.3.1) Le tableau périodique

<u>Remarque</u>: au sens strict, les lanthanides comprennent les 14 éléments de Ce à Lu, et les actinides de Th à Lr. Cependant, l'usage commun place La avec les lanthanides et Ac avec les actinides.

I.3.2) Variation de quelques propriétés des éléments

I.3.2.a) Le rayon atomique

<u>Rayon atomique « vrai »</u> : il ne peut pas être mesuré de façon exacte (car on ne sait pas précisément où sont situés les électrons) ; il peut être estimé par calcul.

<u>Rayon atomique covalent</u>: la moitié de la distance séparant les noyaux de deux atomes d'un même élément liés par une liaison de covalence simple.

Rayon atomique de Van der Waals : la moitié de la distance minimale à laquelle peuvent s'approcher deux atomes d'un élément lorsqu'ils ne se lient pas.

<u>Rayon ionique</u>: la moitié de la distance entre un cation et un anion voisins dans un cristal ionique.

I.3.2.b) L'énergie d'ionisation

C'est l'énergie qu'il faut fournir pour arracher un électron.

$$X \rightarrow X^+ + e^-$$
 (E_{1i}: énergie de première ionisation)

L'énergie de deuxième ionisation est l'énergie à fournir pour arracher un deuxième électron. Dans une période, l'énergie de deuxième ionisation la plus élevée est pour l'élément du groupe 1.

$$X^+ \rightarrow X^{2+} + e^-$$
 (E_{2i}: énergie de deuxième ionisation)

I.3.2.c) L'affinité électronique (AE)

C'est l'énergie libérée lorsqu'un élément capte un électron.

$$X + e^{-} \rightarrow X^{-}$$
: s'il capte spontanément un électron AE > 0

I.3.2.d) L'électronégativité (EN)

C'est la tendance d'un élément à attirer à lui les électrons de la liaison.

12 QCM d'entrainement

QCM d'entrainement

QCM₁

Au sujet de l'atome :

- A. Le nombre de masse d'un atome est égal à Z + N.
- B. La masse d'un proton et celle d'un neutron sont exactement les mêmes.
- C. Les charges électriques du proton et de l'électron ont la même valeur absolue.
- D. D'une façon générale, le rapport entre la taille d'un atome et celle de son novau est de l'ordre de 100.
- E. Un élément est caractérisé par son nombre de masse A.

QCM₂

Parmi les propositions suivantes, lesquelles sont exactes ?

- A. Chaque valeur de Z définit un élément.
- B. La charge du neutron est comme celle du proton égale à 1,602.10⁻¹⁹ C.
- C. La masse des électrons au sein de l'atome est aussi importante que celle du novau.
- D. Les isotopes d'un même élément sont des nucléides ayant une même valeur de Z mais des valeurs de A différentes.
- E. Un anion est un atome qui a perdu un ou plusieurs électron(s).

QCM₃

Parmi les propositions suivantes, lesquelles sont exactes ?

- A. Le carbone naturel a une masse atomique de 12 u.
- B. La masse d'un atome est retrouvée essentiellement au niveau de son noyau.
- C. Les nucléons représentent l'ensemble des protons et électrons d'un atome.
- D. Il n'existe pas d'élément dont le nombre de masse est égal au numéro atomique.
- E. Deux isotopes ne différent uniquement que par leur nombre de protons.

QCM₄

Les informations concernant 3 atomes sont données dans le tableau suivant :

Atome	Numéro atomique	Nombre de masse
A	1	1
В	1	2
С	1	3

- A. Ces trois atomes correspondent au même élément.
- B. Ce sont des isotopes d'un même élément.