Applicazione

Se $A \sim B$, allora esistono matrici elementari E_1, \ldots, E_h tali che

$$A = E_h \cdot \ldots \cdot E_2 E_1 B$$

quindi

$$\det A = \det E_h \cdot \ldots \cdot \det E_2 \det E_1 \cdot \det B$$

Conoscendo il determinante delle matrici elementari, il calcolo di det A si può ricondurre al calcolo di det B dove B è una matrice equivalente a A.

Determinante delle matrici elementari

• Operazione:
$$R_i \leftrightarrow R_{i'}$$
 (con $i \neq i'$)
Esempio: $E = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; $\det E = -1$

• Operazione:
$$R_i o aR_i$$
 (con $a \neq 0$)
Esempio: $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{pmatrix}$; det $E = a$

• Operazione:
$$R_i
ightarrow R_i + bR_{i'} \; (ext{con } i
eq i')$$
Esempio: $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ b & 0 & 1 \end{pmatrix}$; $\det E = 1$

Alcune conseguenze

• Se $A \sim B$ e B ha una riga nulla, allora det A = 0**Dim:** Infatti

$$A = E_1 E_2 \cdot \ldots \cdot E_h B$$

per opportune matrici elementari E_1, \ldots, E_h , quindi

$$\det A = \det(E_1 \cdot \ldots \cdot E_h) \cdot \det B = 0$$

• Se A ha una riga che è combinazione lineare delle altre, allora det A=0.

Dim: Infatti in questo caso $A \sim B$ per qualche B con almeno una riga nulla.

• Se B si ottiene da A scambiando due righe, allora det $B=-\det A$ **Dim:** Infatti B=EA, dove det E=-1, quindi

$$\det B = \det E \cdot \det A = -\det A$$

Se A ∈ K^{n,n}, allora det λA = λⁿ det A.
 Dim: Moltiplicando una riga per λ, il determinante risulta moltiplicato per λ.

Matrici triangolari

Definizione

Una matrice $A \in K^{n,n}$ si dice *triangolare* (*superiore*) se gli elementi sotto la diagonale sono tutti 0:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \dots & & & & & \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Il determinante di una matrice triangolare si calcola facilmente:

$$\det A = a_{11}a_{22} \cdot \ldots \cdot a_{nn}$$

Calcolo del determinante mediante riduzione

Osservazione. Una matrice quadrata ridotta è triangolare.

Quindi, per calcolare il determinante di una qualunque matrice quadrata A, si applica la riduzione mediante operazioni elementari, ottenendo una matrice triangolare $B \sim A$.

$$A = E_1 E_2 \cdot \ldots \cdot E_k B$$

da cui

$$\det A = \det E_1 \cdot \det E_2 \cdot \ldots \cdot \det E_k \cdot \det B$$

Matrici non singolari

Teorema

Sia $A \in K^{n,n}$. Allora

A è invertibile $\Leftrightarrow \det A \neq 0$

(si dice allora che A è non singolare).

Dimostrazione. ⇒: Già dimostrato.

 \Leftarrow : Si assuma det $A \neq 0$. Si riduca A per righe, ottenendo una matrice

$$B = E_1 E_2 \cdot \ldots \cdot E_h A$$

dove B è triangolare e E_1, \ldots, E_h sono elementari. Quindi

$$\det B = \det E_1 \cdot \ldots \cdot \det E_h \cdot \det A \neq 0$$

Poiché B è triangolare,

$$\det B = b_{11}b_{22}\cdot\ldots\cdot b_{nn}\neq 0$$

Pertanto B è una matrice ridotta, $n \times n$, con nessuna riga nulla. Segue che rkA = rkB = n, quindi A è invertibile.

Inversa di una matrice

Un altro modo per calcolare l'inversa di una matrice invertibile A è il seguente:

• Si calcolano gli elementi

$$\tilde{a}_{ij} = (-1)^{i+j} \det A_{ij}$$

Si forma la matrice

$$\tilde{A} = (\tilde{a}_{ij})$$

(detta matrice aggiunta di A)

Allora

$$A^{-1} = \frac{1}{\det A} \tilde{A}^T$$

Dim.: Calcolare direttamente che $\frac{1}{\det A}\tilde{A}^TA = I_n$.

Spazi vettoriali

In uno spazio vettoriale V sul campo numerico K sono definiti:

- una somma di elementi di $V: (u, v) \mapsto u + v$
- un prodotto tra scalari in K ed elementi di V: $(\lambda, u) \mapsto \lambda u$ e queste operazioni soddisfano gli assiomi richiesti agli spazi vettoriali.

Esempi

- (1) K^n
- (2) $K^{m,n}$
- (3) L'insieme di tutte le funzioni $\mathbb{R} \to \mathbb{R}$ è spazio vettoriale sul campo \mathbb{R} :
 - Per $f, g : \mathbb{R} \to \mathbb{R}$, si definisce $f + g : \mathbb{R} \to \mathbb{R}$: $\forall x \in \mathbb{R}, (f + g)(x) = f(x) + g(x)$
 - Per $\lambda \in \mathbb{R}$, $f : \mathbb{R} \to \mathbb{R}$, si definisce $\lambda f : \mathbb{R} \to \mathbb{R}$: $\forall x \in \mathbb{R}$, $(\lambda f)(x) = \lambda f(x)$
- (4) L'insieme delle funzioni $\mathbb{R} \to \mathbb{R}$ che sono soluzioni di un'equazione differenziale lineare omogenea

Osservazione. Lo spazio dell'esempio (4) è contenuto in quello dell'esempio (3).

Sottospazi vettoriali

Definizione

Siano V uno spazio vettoriale sul campo numerico K, e $W \subseteq V$. Si dice che W è un *sottospazio* di V se valgono le seguenti proprietà:

- (S0) $\vec{0} \in W$
- (S1) $\forall u, v \in W, u + v \in W$
- (S2) $\forall \lambda \in K, \forall u \in W, \lambda u \in W$

Osservazioni ed esempi

- \emptyset non è un sottospazio di V, perché non soddisfa la proprietà (S0) (anche se soddisfa (S1) e (S2)).
- $\{\vec{0}\}\$ è un sottospazio di V: è il più piccolo sottospazio di V.
- Se un sottospazio W di V contiene un vettore u non nullo, allora è infinito. Infatti deve contenere anche tutti i multipli di u, per la proprietà (S2).
- ullet V è un sottospazio di V: è il più grande sottospazio di V.

Esempio: sottospazi di $\mathbb R$

 $\mathbb R$ è spazio vettoriale (su $\mathbb R$). Gli unici sottospazi di $\mathbb R$ sono:

$$\{0\}$$
 e \mathbb{R}

Infatti, sia W sottospazio di \mathbb{R} . Se esiste $u \in W$ con $u \neq 0$, allora, per (S2),

$$\forall \lambda \in \mathbb{R}, \lambda u \in W$$

Quindi, per ogni $x \in \mathbb{R}$ si ha

$$x = \frac{x}{u}u \in W$$

dunque $W = \mathbb{R}$.

Esempio: sottospazi di \mathbb{R}^2

 \mathbb{R}^2 è spazio vettoriale (su \mathbb{R}). I sottospazi di \mathbb{R}^2 sono:

- \bullet {(0,0)}
- ullet \mathbb{R}^2
- ullet ogni retta passante per (0,0). Sia infatti

$$r = \{(x, y) \in \mathbb{R}^2 \mid ax + by = 0\}$$

una retta per l'origine.

- (S0) $(0,0) \in r$, perché a0 + b0 = 0
- (S1) se $u = (x_u, y_u), v = (x_v, y_v) \in r$, allora $u + v = (x_u + x_v, y_u + y_v)$ e si ha

$$a(x_u + x_v) + b(y_u + y_v) = ax_u + by_u + ax_v + by_v = 0 + 0 = 0$$

quindi $u + v \in r$.

(S2) se $\lambda \in \mathbb{R}$ e $u=(x_u,y_u) \in r$, allora $\lambda u=(\lambda x_u,\lambda y_u)$ e si ha

$$a\lambda x_u + b\lambda y_u = \lambda(ax_u + by_u) = \lambda 0 = 0$$

quindi $\lambda u \in r$.

Esempio: sottospazi di \mathbb{R}^2

Non ci sono altri sottospazi di \mathbb{R}^2 . Infatti, sia W sottospazio di \mathbb{R}^2 .

• Se $W \neq \{(0,0)\}$, sia $u \in W \setminus \{(0,0)\}$. Allora, per (S2),

$$r=\{\lambda u\}_{\lambda\in\mathbb{R}}=\mathcal{L}(u)\subseteq W$$

• Se $W \neq r$, sia $v \in W \setminus r$. Allora, per (S1) e (S2),

$$\{\lambda u + \mu v \mid \lambda, \mu \in \mathbb{R}\} = \mathcal{L}(u, v) \subseteq W, \text{ ma } \{\lambda u + \mu v \mid \lambda, \mu \in \mathbb{R}\} = \mathbb{R}^2$$
e quindi $W = \mathbb{R}^2$.

Sottospazi di \mathbb{R}^n

In generale, ogni \mathbb{R}^n è spazio vettoriale su \mathbb{R} .

- $\{\vec{0}\} = \mathcal{L}(\emptyset)$ è un sottospazio di \mathbb{R}^n
- I sottospazi di \mathbb{R}^n della forma $\mathcal{L}(u_1)$ (con $u_1 \neq \vec{0}$) sono le rette per l'origine
- I sottospazi di \mathbb{R}^n della forma $\mathcal{L}(u_1,u_2)$ (con u_1,u_2 lin.indip.) sono i piani per l'origine
- ecc.

Spazi di soluzioni di sistemi omogenei

L'insieme delle soluzioni di un sistema lineare omogeneo è uno spazio vettoriale. Più precisamente:

Teorema

Sia $A \in K^{m,n}$. Allora

$$Ker(A) = \{X \in \mathbb{R}^n \mid AX = O_{m1}\}$$

è un sottospazio di \mathbb{R}^n (= $\mathbb{R}^{n,1}$).

Dimostrazione.

- (S0) $\vec{0} = O_{n1} \in Ker(A)$. Infatti $AO_{n1} = O_{m1}$
- (S1) se $X,X'\in Ker(A)$, allora $X+X'\in Ker(A)$. Infatti, da $AX=O_{m1},AX'=O_{m1}$, segue

$$A(X + X') = AX + AX' = O_{m1} + O_{m1} = O_{m1}$$

da cui $X + X' \in Ker(A)$.

(S2) se $\lambda \in K, X \in Ker(A)$, allora $\lambda X \in Ker(A)$. Infatti, da $AX = O_{m1}$ segue $A\lambda X = \lambda AX = \lambda O_{m1} = O_{m1}$, quindi $\lambda X \in Ker(A)$.