

LG4573A Datasheet

Mobile Display Driver IC for a 16M-Color WVGA TFT LCD Panel

Version 1.1.5 2010-09-03

1		General	Description	. 3
2		Feature	s	. 4
3		Block D	iagram	. 5
4		Pin Des	cription	. 6
	4.		ist	
	4.	2 Pin A	ssignment	9
	4.	3 Bump	o Coordinates	10
	4.	4 Bump	o Arrangement	18
5		Function	nal Description	19
	5.		Serial Peripheral Interface)	
		5.1.1	Write/ Read Cycle Sequence	19
	5.	2 MIPI	DBI Type C	21
		5.2.1	Write Cycle Sequence	
		5.2.2	Read Cycle Sequence	
		5.2.3	Break and Pause of Sequences	
	5.		DPI-2	
		5.3.1	Interface Signals	
	_	5.3.2	Interface Color Coding	
	5.		light Control Function	
		5.4.1 5.4.2	CABC (Content Adaptive Brightness Control)	
	_	-	Brightness Control Block and CABC BlockPower Supply Circuit	
	Э.	5.5.1	Voltage Setting Pattern Diagram	
		5.5.2	Power On/Off Sequence	
		5.5.3	Display On Sequence	
		5.5.4	Sleep In, Out Sequence	
		5.5.5	DSTB IN, DSTB OUT, Display On Sequence	
	5.		ma Correction Function	
	-	5.6.1	Grayscale Generation Unit Configuration	
		5.6.2	Gamma Correction Register	
		5.6.3	Ladder Resistors and 8-to-1 Selector	
	5.	7 Oscill	lator	
	5.	8 OTP	Control	43
6		Comma	nds	47
_	6.		mand List	
	6.	2 Comr	mand Description	51
		6.2.1	00h – No Operation	51
		6.2.2	01h – Software Reset	52
		6.2.3	0Ah – Read Display Power Mode	53
		6.2.4	0Bh – Read Display MADCTL	
		6.2.5	0Ch – Read Display Pixel Format	
		6.2.6	0Dh – Read Display Image Mode	
		6.2.7	10h – Sleep In	
		6.2.8	11h – Sleep Out	
		6.2.9	13h – Normal Display Mode On	59
		6.2.10	20h – Display Inversion Off	60

6.2.11	21h – Display Inversion On	61
6.2.12	28h – Display Off	62
6.2.13	29h – Display On	63
6.2.14	36h – Set Address Mode	64
6.2.15	3Ah – Interface Pixel Format	66
6.2.16	51h – Write Display Brightness	67
6.2.17	52h – Read Display Brightness Value	
6.2.18	53h – Write Control Display	69
6.2.19	54h – Read Display Brightness Value	70
6.2.20	55h – Write Content Adaptive Brightness Control	71
6.2.21	56h – Read Content Adaptive Brightness Control	
6.2.22	5Eh – Write CABC Minimum Brightness	73
6.2.23	5Fh – Read CABC Minimum Brightness	74
6.2.24	A1h – Read DDB Start	
6.2.25	B1h – RGB Interface Setting	76
6.2.26	B2h – Panel Characteristics Setting	78
6.2.27	B3h – Panel Drive Setting	79
6.2.28	B4h – Display Mode Control	80
6.2.29	B5h – Display Control 1	81
6.2.30	B6h – Display Control 2	
6.2.31	C0h – Internal Oscillator Setting	
6.2.32	C1h – Power Control 1	
6.2.33	C2h – Power Control 2	
6.2.34	C3h – Power Control 3	
6.2.35	C4h – Power Control 4	
6.2.36	C5h – Power Control 5	
6.2.37	C6h – Power Control 6	
6.2.38	C7h — Offset Cancelling Control	
6.2.39	C8h – Backlight Control	
6.2.40	D0h – Positive Gamma Curve for Red	
6.2.41	D1h – Negative Gamma Curve for Red	
6.2.42	D2h – Positive Gamma Curve for Green	
6.2.43	D3h – Negative Gamma Curve for Green	
6.2.44	D4h – Positive Gamma Curve for Blue	
6.2.45	D5h – Negative Gamma Curve for Blue	
6.2.46	F0h – Test Register 1	
6.2.47	F8h – OTP 1	
6.2.48	F9h – OTP 2	
	cal Characteristics	
	solute Maximum Ratings	
	ver Supply Specifications	
	Characteristics	
	Characteristics	
7.4.1	Serial Peripheral Interface Characteristics	
7.4.2	Reset Characteristics	
7.4.3	RGB Interface Timing Characteristics	
	ence Applications	
8.1 Cor	nfiguration of Power Supply Circuit	124
Histor	y of Revision	127

7

8

1 General Description

The LG4573 is a 16M-color single-chip controller driver IC for a-Si TFT liquid crystal display with supporting various resolutions of max 480RGB x 1024 dots GIP¹ panels.

The driver supports MIPI² DBI³ and DPI⁴ interfaces. The LG4573 supports dot inversion for higher image quality and moving flicker free image realizations with low power driving.

The LG4573 supports BLU⁵ control functionality by analyzing the display data properties and it helps to get lower power consumptions without image losses.

The LG4573 can operate with low I/O interface power supply down to 1.65V, with an incorporated voltage follower circuit to generate voltage levels for driving an LCD. The driver also supports function such as 8 color displays and shut down. And these features make the LG4573 an ideal LCD driver for medium or small sized portable products supporting WWW full browsers such as smart phones or PDAs, where long battery life is a major concern.

Notice: The information contained here is subject to change without notice.

The information contained here is presented only as a guide for the applications of our products. LG is not responsible for any infringement of patents or other rights of third parties that may result from the use of LG products, and the use of LG products is without any right to indemnification, or defense to any allegation of, infringement of intellectual property rights of others. No license is granted by implication of otherwise under any patent or patent rights of LG or others and by accepting possession of any LG product user acknowledges that no rights to the patents of LG or others are transferred with such product and that a separate license from LG or others may be necessary.

These LG products are intended for the exclusive use of general electronic equipment (i.e.: office equipment, communication equipment, measuring equipment, domestic electrification, etc.).

Please make sure that you consult us before you use any LG products or equipment that require special uses or exceptional applications and any equipment that may impact the welfare of human life (i.e.: atomic energy control, airplane, spaceship, traffic signal, combustion control, all types of safety devices, etc.). LG is not liable for any damage that may occur by the improper use of the equipment without consulting LG prior to its use.

⁵ BLU – Backlight Unit

LGE Confidential

¹ GIP – Gate In Panel

² MIPI – Mobile Industrial Processor Interface

³ DBI – Display Bus Interface

⁴ DPI – Display Pixel Interface

2 Features

• A single-chip controller driver incorporating a GIP gate circuit and a power supply circuit for maximum 480RGB x 1024 dots graphics display on a-Si TFT panel in 16M colors. It supports 4N row resolutions of gate outputs in panel. In case of 854 row resolution, it is not divided by 4. But 856 row resolution could be chosen to support 854 row resolution by using 2 dummy rows.

- System interface
 - MIPI DBI Type C
 - MIPI DPI (RGB Interface)
 - SPI
- The 240RGB, 320RGB, 360RGB, and 480RGB source channels can be chosen for some applications. For those cases, the unused source outputs are made floating.
- Abundant color display
 - Programmable gamma correction function for 16M color display
- N-dot inversion and column inversion, where N can be 1, 2, or 3.
- Internal R, G, B independent gamma reference voltages generation function
- Content adaptive backlight control function for optimal power consumption
- Cst structure is only supported.
- Reversible source output shift direction by internal register setting
- Internal level shifter for GIP gate controls
- Internal power supply generations. The DC-DC charge pumping circuitry and PFM Booster with external inductor and external NMOS transistors.
- Internal NVM for VCOM level adjustment : 7bits with 4 times rewritable
- Low power consumption architecture
 - Standby function (Logic VDD is alive)
 - Deep standby function (Logic VDD is dead to be 0volt)
- Input power supply voltage ranges
 - Interface power supply: IOVCC = 1.65 to 3.3V
 - Logic power supply: VCC = 2.6 to 3.3V
 - But make sure that internally generated logic voltage (VDD) will not exceed 1.98V.
 - Analog power supply: VCI = 2.6 to 3.3V
 - But make sure that voltage difference between VGH and LVGL will not exceed 31.0V.
- Generated power supply voltage ranges
 - Logic VDD voltage: 1.62 to 1.98V
 - Source driver power supply positive voltage: DDVDH = 4.5 to 5.5V
 - Source driver power supply negative voltage: DDVDL = -4.0 to -5.0V
 - Gate on voltage: VGH
 - Gate off voltage: VGL
 - GIP most negative reference voltage: LVGL (VGL-VCI)
 - VGH-LVGL < 31.0V (operation maximum), VGH-GND < 18V (absolute maximum)
 - VCOM voltage: 0V, -0.5V to -3.5V

3 Block Diagram

Figure 1

4 Pin Description

4.1 Pin List

Name	# of pins	1/0	Connected to	Description		
IM3	4	I	MPU	MPU interface mode selection signal		
IM2				IM[3:0]	Register Access	Pixel Data
IM1 IM0/ID				0100	MIPI DBI Type C	MIPI DPI (RGB)
11-10/10				110X	SPI	MIPI DPI (RGB)
nRESET	1	I	MPU or external RC circuit	Reset pin (act Be sure to exe	ive low) ecute a power-on reset af	fter supplying power.
nCS	1	I	MPU	Chip select (a	ctive low)	
DnC	1	I	MPU	Data (1) or co	ommand (0) select	
DB[23:0]	24	I/O	MPU	Parallel data b Unused pins r	ous nust be fixed either to IO	VCC or GND level.
nRD/RnW	1	I	MPU) nRD - Read strobe (acti e) RnW - Read (1) or writ	
nWR/E/SCK	1	I	MPU	(M68 interface) nWR - Write strobe (act e) E - Enable) SCK - Serial clock	ive low)
SDI	1	I	MPU) Serial data input d be fixed either to IOVC	C or GND level when
SDO	1	0	MPU	(SPI interface) Serial data output This pin should be made floating when not in use.		
PCLK	1	I	MPU	Pixel clock		
VSYNC	1	I	MPU	Frame synchronization signal. It is Vsync input pin when DPI pixel data interface mode.		
HSYNC	1	I	MPU	Line synchronization signal. It is Vsync input pin when DPI pixel data interface mode. Fix to either IOVCC or GND level when not in use.		
DE	1	I	MPU		ignal in RGB interface mo OVCC or GND level when	
CLKP CLKN	2	I	MPU	Fix to GND.		
DATAOP DATAON DATA1P DATA1N	4	I/O	MPU	Fix to GND.		
V12_SEL	1	I	GND or IOVCC	MIPI DSI inte	IPI DSI interface. LG457 rface anymore, so this pir IOVCC or GND but not to	n should be set to
TEST1	1	I	GND	Test pin Fix to GND lev	vel in normal operation m	ode
TEST2	1	I	GND	Test pin Fix to GND lev	vel in normal operation m	ode
BLU_EN	1	0	BLU	BLU enable (a If not used, le	active HIGH) eave this pin open.	
BLU_PWM	1	0	BLU	BLU PWM sigi	BLU PWM signal If not used, leave this pin open.	
S1 to S1440	1440	0	LCD	Source driver	output pins	

Name	# of pins	1/0	Connected to	Description
FW_L BW_L GVST1_L GVST2_L GCLK#_L where #=1,2,3,4	8	0	GIP	Signals for right side GIP on panel view (Left side in IC bump view) Unused pins should be left open.
FW_R BW_R GVST1_R GVST2_R GCLK#_R where #=1,2,3,4	8	0	GIP	Signals for Right side GIP on panel view (Right side in IC bump view) Unused pins should be left open.
VBIAS	1	0	GIP	Bias voltage for some special GIP circuits. If not used, leave this pin open.
LVGL	1	I	GIP	Most negative voltage for some special GIP circuits. If not used, connect to VGL
VGL	1	I		A supply voltage to drive gate lines of the TFT panel.
VGH	1	I		A supply voltage to drive gate lines of the TFT panel.
DDVDL	1	I		Power supply for the source driver's LCD output unit
DDVDH	1	I		Power supply for the source driver's LCD output unit and an input voltage to generate DDVDL voltage.
VCL	1	I		Power supply voltage for the level shifter circuits.
IOVCC	1	I	Power supply	Power supply to the interface pins: IOVCC = 1.65 to 3.3V.
VCC	1	I	Power supply	Power supply to generate the internal logic power supply VDD. VCC = 2.6 to 3.3V
VDD	1	I	Power supply	Generated power supply for the internal logic.
VDDOUT	1	I/O	Stabilizing capacitor and VDD	Internal logic regulator output. Connect VDD to a stabilizing capacitor.
VSS	1	I	Power supply	VSS=0.
VCI	1	I	Power supply	Supply voltage to the analog circuit. Connect to an external power supply of 2.6 to 3.3V.
VCOM	1	0	TFT panel common electrode	Supply voltage to the common electrode of TFT panel.
VCOMR	1	I	Variable resistor or open	Reference level to generate the VCOM level with an externally connected variable resistor. Leave it open when not in use. The VREG2OUT voltage level could be a reference voltage to generate VCOMR.
CREG	1	0	Stabilizing capacitor	Regulator output that needs to be connected with stabilizing capacitor for MIPI block. Leave it open when MIPI were not used.
GND_SH	1	I	GND	Fix to GND.
LSW	1	0	Gate terminal of external switching Tr.	External switching transistor's gate on/off control signal for the switching regulator type DC-DC converter to make DDVDH and/or DDVDL. Leave it open when not in use.
VGS	1	I	GND or external resistor	Reference level for the positive grayscale voltage generation circuit. The VGS level can be changed by connecting to an external resistor.

	" -	1.40		
Name	# of pins	1/0	Connected to	Description
VGS_N	1	I	GND or external resistor	Reference level for the negative grayscale voltage generation circuit. The VGS_N level can be changed by connecting to an external resistor.
VREG1OUT	1	0	Stabilizing capacitor	VREG10UT is a positive source driver grayscale reference voltage.
VREG2OUT	1	0	Stabilizing capacitor	VREG2OUT is a negative source driver grayscale reference voltage.
C21P, C21N C22P, C22N C23P, C23N C24P, C24N	8	I/O	Step-up capacitor	Connect step-up capacitors to generate VGH, VGL, and VCL. Leave them open when not in use.
C31P, C31N	2	I/O	Step-up capacitor	Connect step-up capacitor to generate DDVDL when charge pumping method is used instead of diode inverting. When DDVDH is supplied externally, this capacitor is necessary to generate DDVDL. Leave them open when not in use.
C41P, C41N	2	I/O	Step-up capacitor	Connect step-up capacitor to generate LVGL only for H-type panel. Leave them open when not in use.
VPP	1	I	Power supply	7.5V power supply only for internal OTP programming for VCOM adjustments. Leave it open when not in programming.
GOUT_TEST1 GOUT_TEST2	2		DUMMY	Dummy pads only with bump
DUM_VON	1		DUMMY	Dummy pad only with bump
DUM_DATA1 DUM_DATA2	2		DUMMY	Dummy pads only with bump They are shorted together.
DUM_GOUT	1		DUMMY	Dummy pads only with bump
OSC1 OSC2 OSC3	3	I/O	DUMMY	Dummy pads Leave them open.

4.2 Pin Assignment

4.3 Bump Coordinates

No.	Name	Х	Υ
1	DUMMY	-10885	-397
2	FW_L	-10815	-397
3	BW_L	-10745	-397
4	GPWR1_L	-10675	-397
5	GPWR2_L	-10605	-397
6	GCLK4_L GCLK4_L	-10535	-397
7 8	GCLK4_L GCLK3 L	-10465 -10395	-397 -397
9	GCLK3_L	-10395	-397
10	GCLK2 L	-10255	-397
11	GCLK2_L	-10185	-397
12	GCLK1_L	-10115	-397
13	GCLK1_L	-10045	-397
14	GVST1_L	-9975	-397
15	GVST2_L	-9905	-397
16	VGL	-9835	-397
17	VGL	-9765	-397
18 19	VGL VBIAS	-9695 -9625	-397
20	LVGL	-9555	-397 -397
21	LVGL	-9333	-397
22	LVGL	-9415	-397
23	GOUT_TEST1	-9345	-397
24	VCOM	-9275	-397
25	VCOM	-9205	-397
26	VCOM	-9135	-397
27	DUM_VON	-9065	-397
28	DUM_DATA1	-8995	-397
29	DUM_DATA2	-8925	-397
30 31	DUM_GOUT	-8855 -8785	-397 -397
32	VGL VGL	-8715	-397
33	VGL	-8645	-397
34	LVGL	-8575	-397
35	LVGL	-8505	-397
36	LVGL	-8435	-397
37	LVGL	-8365	-397
38	LVGL	-8295	-397
39	VCOM	-8225	-397
40	VCOM	-8155	-397
41 42	VCOM	-8085	-397
42	VCOM C41P	-8015 -7945	-397 -397
44	C41P	-7943	-397
45	C41P	-7805	-397
46	C41N	-7735	-397
47	C41N	-7665	-397
48	C41N	-7595	-397
49	VGH	-7525	-397
50	VGH	-7455	-397
51	VGH	-7385	-397
52	VGH	-7315	-397
53	VGH	-7245	-397
54	VGH	-7175 -7105	-397 -397
55 56	C21N C21N	-7105 -7035	-397 -397
56 57	C21N	-7035 -6965	-397 -397
58	C21N	-6895	-397
59	C21P	-6825	-397
60	C21P	-6755	-397
61	C21P	-6685	-397
62	C21P	-6615	-397
63	C23N	-6545	-397
64	C23N	-6475	-397
65	C23N	-6405	-397
66	C23N	-6335	-397
67	C23P	-6265 -6105	-397 -397
68 69	C23P C23P	-6195 -6125	-397 -397
70	C23P	-6055	-397
71	C22P	-5985	-397
71 72	C22P C22P	-5985 -5915	-397 -397

-			
No.	Name	Х	Υ
73	C22P	-5845	-397
74	C22P	-5775	-397
75	C22N	-5705	-397
76	C22N	-5635	-397
77	C22N	-5565	-397
78	C22N	-5495	-397
79	C24N	-5425	-397
80	C24N	-5355	-397
81	C24N	-5285	-397
	C24N		
82 83	C24N	-5215 -5145	-397 -397
84	C24P	-5075	-397
85	C24P	-5005	-397
86	C24P	-4935	-397
87	VPP	-4865	-397
88	VPP	-4795	-397
89	VCL	-4725	-397
90	VCL	-4655	-397
91	VCL	-4585	-397
92	VCL	-4515	-397
93	VCL	-4445	-397
94	VCI	-4375	-397
95	VCI	-4305	-397
96	VCI	-4235	-397
97	VCI	-4165	-397
98	VCI	-4095	-397
99	VCI	-4025	-397
100	LSW	-4025	-397
101	LSW	-3885	-397
102	DDVDH	-3815	-397
103	DDVDH	-3745	-397
104	DDVDH	-3675	-397
105	DDVDH	-3605	-397
106	DDVDH	-3535	-397
107	DDVDH	-3465	-397
108	VSS	-3395	-397
109	VSS	-3325	-397
110	VSS	-3255	-397
111	VSS	-3185	-397
112	VSS	-3115	-397
113	VSS	-3045	-397
114	VSS	-2975	-397
115	VSS	-2905	-397
116	VDD	-2835	-397
117	VDD	-2765	-397
118	VDD	-2695	-397
119	VDD	-2625	-397
120	VDD	-2555	-397
121	VDD	-2485	-397
122	IOVCC	-2415	-397
123	IOVCC	-2345	-397
124	IOVCC	-2275	-397
125	IOVCC	-2205	-397
126	IOVCC	-2135	-397
127	BLU_PWM	-2065	-397
128	BLU_EN	-1995	-397
129	TEST1	-1925	-397
130	TEST2	-1855	-397
131	IM0	-1785	-397
132	IM1	-1715	-397
133	IM2	-1645	-397
134	IM3	-1575	-397
135			
	nRESET	-1505	-397
136	VSS_DUM	-1435	-397
137	DB<23>	-1365	-397
138	DB<22>	-1295	-397
139	DB<21>	-1225	-397
140	DB<20>	-1155	-397
141	DB<19>	-1085	-397
142	DB<18>	-1015	-397
143	DB<17>	-945	-397
144	DB<16>	-875	-397

NO.	IVallie	^	1
145	DB<15>	-805	-397
146	DB<14>	-735	-397
147	DB<13>	-665	-397
148	DB<12>	-595	-397
149	DB<11>	-525	-397
150	DB<10>	-455	-397
151	DB<9>	-385	-397
			-397
152	DB<8>	-315	
153	DB<7>	-245	-397
154	DB<6>	-175	-397
155	DB<5>	-105	-397
156	DB<4>	-35	-397
157	DB<3>	35	-397
158	DB<2>	105	-397
159	DB<1>	175	-397
	DB<0>		-397
160		245	
161	VSS_DUM	315	-397
162	nRD/RnW	385	-397
163	nWR/E/SCK	455	-397
		525	-397
164	DnC		
165	nCS	595	-397
166	VSS DUM	665	-397
167	SDI	735	-397
168	SDO	805	-397
169	VSYNC	875	-397
170	HSYNC	945	-397
171	DE	1015	-397
172	PCLK	1085	-397
173	V12_SEL	1155	-397
174	DUMMY	1225	-397
175	OSC1	1295	-397
176	OSC2	1365	-397
177	OSC3	1435	-397
178	VSS SH1	1505	-397
179	DATA0N	1575	-397
180	DATA0N	1645	-397
181	DATA0N	1715	-397
182	DATA0P	1785	-397
		1855	-397
183	DATA0P		
184	DATA0P	1925	-397
185	VSS_SH2	1995	-397
186	DATA1N	2065	-397
187	DATA1N	2135	-397
188	DATA1N	2205	-397
189	DATA1P	2275	-397
190	DATA1P	2345	-397
191	DATA1P	2415	-397
192	VSS_SH3	2485	-397
193	CLKN	2555	-397
194	CLKN	2625	-397
195	CLKN	2695	-397
196	CLKP	2765	-397
197	CLKP	2835	-397
198	CLKP	2905	-397
199	VSS_SH4	2975	-397
200	CREG	3045	-397
201	CREG	3115	-397
202	VCC	3185	-397
203	VCC	3255	-397
204	VCC	3325	-397
205	VCC	3395	-397
206	VCC	3465	-397
207	VSS	3535	-397
208	VSS	3605	-397
209	VSS	3675	-397
210	VSS	3745	-397
211	VSS	3815	-397
212	VSS	3885	-397
213	VSS	3955	-397
214	VSS	4025	-397
215	VSS	4095	-397
216	VSS	4165	-397

Name X Y

No.	Name	Х	Υ	N	lo.	Na
217	VSS	4235	-397	2	92	VBIAS
218	VSS	4305	-397		93	VGL
219	VSS	4375	-397		94	VGL
220	VSS	4445	-397	_	95	VGL
221	VSS	4515	-397	_	96	VGL
222	VDD	4585	-397	_	97	GVST2_
223 224	VDD VDD	4655 4725	-397 -397		98 99	GVST1_ GCLK1
225	VDD	4725	-397		00	GCLK1_
226	VDD	4865	-397	-	01	GCLK1_
227	VDD	4935	-397		02	GCLK2_
228	VDD	5005	-397		03	GCLK3
229	VDD	5075	-397		04	GCLK3
230	VDDOUT	5145	-397		05	GCLK4
231	VDDOUT	5215	-397		06	GCLK4
232	VDDOUT	5285	-397	3	07	GPWR2
233	VDDOUT	5355	-397	3	80	GPWR1
234	VDDOUT	5425	-397	3	09	BW_R
235	VREG10UT	5495	-397	3	10	FW_R
236	VGS	5565	-397	3	11	DUMMY
237	DDVDH	5635	-397	3	12	DUMMY
238	DDVDH	5705	-397	<u> </u>		DUMMY
239	DDVDH	5775	-397	-	13	S1
240	DDVDH	5845	-397		14	S2
241	DDVDH	5915	-397		15	S3
242	DDVDH	5985	-397		16	S4
243 244	DDVDH DDVDH	6055 6125	-397		17	S5 S6
244	C31P		-397 -397		18 19	S7
245	C31P	6195 6265	-397		20	S8
247	C31P	6335	-397	-	21	S9
248	C31P	6405	-397	-	22	S10
249	C31N	6475	-397	-	23	S11
250	C31N	6545	-397		24	S12
251	C31N	6615	-397		25	S13
252	C31N	6685	-397	3	26	S14
253	VREG2OUT	6755	-397	3	27	S15
254	VGS_N	6825	-397		28	S16
255	DDVDL	6895	-397	-	29	S17
256	DDVDL	6965	-397	-	30	S18
257	DDVDL	7035	-397		31	S19
258 259	DDVDL	7105	-397		32	S20
	DDVDL DDVDL	7175 7245	-397		33	S21 S22
260 261	DDVDL	7315	-397 -397		34 35	S23
262	VCI	7315	-397		36	S24
263	VCI	7455	-397		37	S25
264	VCI	7525	-397	_	38	S26
265	VCI	7595	-397		39	S27
266	VCI	7665	-397		40	S28
267	VCI	7735	-397	_	41	S29
268	VGH	7805	-397	_	42	S30
269	VGH	7875	-397	3	43	S31
270	VGH	7945	-397	_	44	S32
271	VGH	8015	-397	3	45	S33
272	VCOM	8085	-397		46	S34
273	VCOM	8155	-397	_	47	S35
274	VCOM	8225	-397		48	S36
275	VCOM	8295	-397		49	S37
276	LVGL	8365	-397		50	S38
277	LVGL	8435	-397		51	S39
278	LVGL	8505	-397		52	S40
279 280	LVGL DUM GOUT	8575 8645	-397 -397	_	53 54	S41 S42
/OU	DUM_GOUT DUMMY	8715	-397		5 4 55	S42
	VCOMR	8715	-397	_	55 56	S43
281			-397		57	S45
281 282			·J5/		58	S46
281 282 283	DUM_VON	8855 8925	-397			
281 282 283 284	DUM_VON VCOM	8925	-397 -397			
281 282 283 284 285	DUM_VON VCOM VCOM	8925 8995	-397	3	59	S47
281 282 283 284 285 286	DUM_VON VCOM VCOM VCOM	8925	-397 -397	3	59 60	S47 S48
281 282 283 284 285	DUM_VON VCOM VCOM	8925 8995 9065	-397	3 3 3	59	S47
281 282 283 284 285 286 287	DUM_VON VCOM VCOM VCOM DUMMY	8925 8995 9065 9135	-397 -397 -397	3 3 3	59 60 61	S47 S48 S49
281 282 283 284 285 286 287 288	DUM_VON VCOM VCOM VCOM DUMMY GOUT_TEST2	8925 8995 9065 9135 9205	-397 -397 -397 -397	3 3 3 3	59 60 61 62	S47 S48 S49 S50

No.	Name	X	Υ 207
292 VBI	_	9485	-397
293 VGI 294 VGI		9555	-397
294 VGI		9625 9695	-397 -397
296 VGI		9765	-397
297 GVS		9835	-397
298 GV	_	9905	-397
299 GCI		9975	-397
300 GCI		10045	-397
301 GCI		10115	-397
302 GCI	_	10185	-397
303 GCI	_	10255	-397
304 GCI	_K3_R	10325	-397
305 GCI	 _K4_R	10395	-397
306 GCI	_K4_R	10465	-397
307 GP\	VR2_R	10535	-397
308 GP\	VR1_R	10605	-397
309 BW	_R	10675	-397
310 FW	_R	10745	-397
	MMY	10815	-397
	MMY	10885	-397
	MMY	10935	338
313 S1		10920	225
314 S2		10905	338
315 S3		10890	225
316 S4		10875	338
317 S5		10860	225
318 S6		10845	338
319 S7		10830	225
320 S8		10815	338
321 S9		10800	225
322 S10 323 S11		10785 10770	338 225
324 S12		10775	338
325 S13		10733	225
326 S14		10725	338
327 S15		10723	225
328 S16		10695	338
329 S17		10680	225
330 S18		10665	338
331 S19		10650	225
332 S20		10635	338
333 S21		10620	225
334 S22		10605	338
335 S23		10590	225
336 S24		10575	338
337 S25	i	10560	225
338 S26		10545	338
339 S27		10530	225
340 S28		10515	338
341 S29		10500	225
342 S30		10485	338
343 S31		10470	225
344 S32		10455	338
345 S33		10440	225
346 S34 347 S35		10425 10410	338 225
347 S35		10395	338
349 S37		10393	225
350 S38		10365	338
351 S39		10353	225
352 S40		10335	338
353 S41		10320	225
354 S42		10305	338
355 S43		10290	225
356 S44		10275	338
357 S45		10260	225
358 S46		10245	338
330 340	,	10230	225
359 S47			
		10215	338
359 S47 360 S48 361 S49		10215 10200	338 225
359 S47 360 S48 361 S49 362 S50	i I	10200 10185	225 338
359 S47 360 S48 361 S49 362 S50 363 S51		10200 10185 10170	225 338 225
359 S47 360 S48 361 S49 362 S50		10200 10185	225 338

No. Name X Y 366 S54 10125 33 367 S55 10110 22 368 S56 10095 33 369 S57 10080 22 370 S58 10065 33 371 S59 10050 22 372 S60 10035 33 373 S61 10020 22 374 S62 10005 33	5
367 S55 10110 22 368 S56 10095 33 369 S57 10080 22 370 S58 10065 33 371 S59 10050 22 372 S60 10035 33 373 S61 10020 22	5
368 S56 10095 33 369 S57 10080 22 370 S58 10065 33 371 S59 10050 22 372 S60 10035 33 373 S61 10020 22	
369 S57 10080 22 370 S58 10065 33 371 S59 10050 22 372 S60 10035 33 373 S61 10020 22	
370 S58 10065 33 371 S59 10050 22 372 S60 10035 33 373 S61 10020 22	-
371 S59 10050 22 372 S60 10035 33 373 S61 10020 22	
372 S60 10035 33 373 S61 10020 22	
373 S61 10020 22	
 	
1 3/7 1302 1 10003 1 33	
375 S63 9990 22	
376 S64 9975 33	8
377 S65 9960 22	5
378 S66 9945 33	-
379 S67 9930 22	
380 S68 9915 33	
381 S69 9900 22	
382 S70 9885 33 383 S71 9870 22	
383 S71 9870 22 384 S72 9855 33	
385 S73 9840 22	
386 S74 9825 33	
387 S75 9810 22	
388 S76 9795 33	
389 S77 9780 22	5
390 S78 9765 33	_
391 S79 9750 22	
392 S80 9735 33	_
393 S81 9720 22	
394 S82 9705 33	_
395 S83 9690 22	
396 S84 9675 33 397 S85 9660 22	
397 383 9000 22 398 S86 9645 33	
399 S87 9630 22	
400 S88 9615 33	
401 S89 9600 22	_
402 S90 9585 33	_
403 S91 9570 22	5
404 S92 9555 33	8
405 S93 9540 22	5
406 S94 9525 33	
407 S95 9510 22	
408 \$96 9495 33	_
409 S97 9480 22 410 S98 9465 33	_
410 S98 9465 33 411 S99 9450 22	
411 399 9430 22 412 S100 9435 33	
413 S101 9420 22	
414 \$102 9405 33	
415 S103 9390 22	
416 S104 9375 33	8
417 S105 9360 22	
418 S106 9345 33	
419 S107 9330 22	
420 S108 9315 33	
421 S109 9300 22	
422 S110 9285 33	
423 S111 9270 22 424 S112 9255 33	
424 S112 9255 33 425 S113 9240 22	
426 S114 9225 33	
427 S115 9210 22	
428 S116 9195 33	
429 S117 9180 22	
430 S118 9165 33	
431 S119 9150 22	-
432 S120 9135 33	
433 S121 9120 22	_
434 \$122 9105 33	
435 S123 9090 22	
436 S124 9075 33	
437 S125 9060 22	
438 S126 9045 33 439 S127 9030 22	
438 \$126 9045 33 439 \$127 9030 22 440 \$128 9015 33	

	1		
No.	Name	X	Y
441	S129	9000	225
442	S130	8985	338
443 444	S131	8970 8955	225
445	S132 S133	8940	338 225
446	S134	8925	338
447	S135	8910	225
448	S136	8895	338
449	S137	8880	225
450	S138	8865	338
451	S139	8850	225
452	S140	8835	338
453	S141	8820	225
454	S142	8805	338
455	S143	8790	225
456	S144	8775	338
457	S145	8760	225
458	S146	8745	338
459	S147	8730	225
460	S148	8715	338
461 462	S149	8700	225
463	S150 S151	8685 8670	338 225
464	S151	8655	338
465	S152	8640	225
466	S154	8625	338
467	S155	8610	225
468	S156	8595	338
469	S157	8580	225
470	S158	8565	338
471	S159	8550	225
472	S160	8535	338
473	S161	8520	225
474	S162	8505	338
475	S163	8490	225
476	S164	8475	338
477	S165	8460	225
478	S166	8445	338
479	S167	8430 8415	225
480 481	S168 S169	8400	338 225
482	S170	8385	338
483	S171	8370	225
484	S172	8355	338
485	S173	8340	225
486	S174	8325	338
487	S175	8310	225
488	S176	8295	338
489	S177	8280	225
490	S178	8265	338
491	S179	8250	225
492	S180	8235	338
493	S181	8220	225
494	S182	8205	338
495	S183	8190	225
496 497	S184 S185	8175 8160	338 225
497	S185	8160 8145	338
499	S187	8130	225
500	S188	8115	338
501	S189	8100	225
502	S190	8085	338
503	S191	8070	225
504	S192	8055	338
505	S193	8040	225
506	S194	8025	338
507	S195	8010	225
508	S196	7995	338
509	S197	7980	225
510	S198	7965	338
511	S199	7950	225
512	S200	7935	338
513	S201 S202	7920	225 338
514 515	S202 S203	7905 7890	225
212	3203	7090	223

No.	Name	Х	Υ	No.	Name	Х	Υ
441	S129	9000	225	516	S204	7875	338
442	S130	8985	338	517	S205	7860	225
443	S131	8970	225	518	S206	7845	338
444	S132	8955	338	519	S207	7830	225
445	S133	8940	225	520	S208	7815	338
446	S134	8925	338	521	S209	7800	225
447	S135	8910	225	522	S210	7785	338
448	S136	8895	338	523	S211	7770	225
449	S137	8880	225	524	S212	7755	338
450	S138	8865	338	525	S213	7740	225
451	S139	8850	225	526	S214	7725	338
452	S140	8835	338	527	S215	7710	225
453	S141	8820	225	528	S216	7695	338
454	S142	8805	338	529	S217	7680	225
455	S143	8790	225	530	S217	7665	338
456	S144	8775	338	531	S219	7650	225
457	S145	8760	225	532	S220	7635	338
458	S146	8745	338	533	S221	7620	225
459	S147	8730	225	534	S222	7605	338
460	S148	8715	338	535	S223	7590	225
461	S149	8700	225	536	S224	7575	338
462	S150	8685	338	537	S225	7560	225
463	S150	8670	225	538	S226	7545	338
464	S151	8655	338	539	S227	7530	225
465	S152	8640	225	540	S228	7515	338
466	S153	8625	338	541	S229	7500	225
467	S155	8610	225	542	S230	7485	338
468	S156	8595	338	543	S231	7470	225
469	S150	8580	225	544	S231	7470	338
470	S157	8565	338	545	S232 S233	7433	225
471	S159	8550	225	546	S234	7425	338
472	S160	8535	338	547	S235	7423	225
473	S161	8520	225	548	S236	7395	338
474	S162	8505	338	549	S237	7380	225
475	S163	8490	225	550	S238	7365	338
476	S164	8475	338	551	S239	7350	225
477	S165	8460	225	552	S240	7335	338
			338	553	S240	7320	225
478 479	S166	8445		553	S241 S242		
480	S167 S168	8430 8415	225 338	555	S242 S243	7305 7290	338 225
481	S169	8400	225	556	S244	7275	338
482	S170	8385	338	557	S245	7260	225
483	S170	8370	225	558	S246	7245	338
484	S171	8355	338	559	S247	7243	225
485	S172	8340	225	560	S247	7215	338
486	S173	8325	338	561	S249	7213	225
487	S174	8310	225	562	S250	7185	338
488 489	S176 S177	8295 8280	338 225	563 564	S251 S252	7170 7155	225 338
489	S177	8265	338	565	S252 S253	7155	225
	S178 S179						
491		8250	225	566	S254	7125	338
492	S180	8235	338 225	567	S255	7110	225
493	S181	8220 8205	338	568	S256	7095	338 225
494	S182		225	569	S257	7080	
495	S183 S184	8190 8175	338	570 571	S258 S259	7065 7050	338 225
496 497	S184 S185	81/5	225	571 572	S260	7035	338
497	S185			572	S261		225
498		8145	338 225			7020	
	S187	8130 8115	338	574	S262	7005 6990	338 225
500	S188			575	S263 S264		
501	S189	8100	225	576		6975	338
502	S190	8085	338	577	S265	6960	225
503	S191	8070	225	578	S266	6945	338
504	S192	8055	338	579	S267	6930	225
505	S193	8040	225	580	S268	6915	338
506	S194	8025	338	581	S269	6900	225
507	S195	8010	225	582	S270	6885	338
508	S196	7995	338	583	S271	6870	225
509	S197	7980	225	584	S272	6855	338
510	S198	7965	338	585	S273	6840	225
511	S199	7950	225	586	S274	6825	338
512	S200	7935	338	587	S275	6810	225
	S201	7920	225	588	S276	6795	338
513					00==		
513 514 515	S202 S203	7905 7890	338 225	589 590	S277 S278	6780 6765	225 338

No.	Name	Х	Υ
591	S279	6750	225
592	S280	6735	338
593 594	S281	6720	225
595	S282 S283	6705 6690	338 225
596	S284	6675	338
597	S285	6660	225
598	S286	6645	338
599	S287	6630	225
600	S288	6615	338
601	S289	6600	225
602	S290	6585	338
603	S291	6570	225
604	S292	6555	338
605	S293	6540	225
606	S294	6525	338
607	S295	6510	225
608	S296 S297	6495 6480	338 225
610	S298	6465	338
611	S299	6450	225
612	S300	6435	338
613	S301	6420	225
614	S302	6405	338
615	S303	6390	225
616	S304	6375	338
617	S305	6360	225
618	S306	6345	338
619	S307	6330	225
620	S308	6315	338
621	S309 S310	6300 6285	225 338
622	S311	6270	225
624	S312	6255	338
625	S313	6240	225
626	S314	6225	338
627	S315	6210	225
628	S316	6195	338
629	S317	6180	225
630	S318	6165	338
631	S319	6150	225
632	S320	6135	338
634	S321 S322	6120 6105	225 338
635	S323	6090	225
636	S324	6075	338
637	S325	6060	225
638	S326	6045	338
639	S327	6030	225
640	S328	6015	338
641	S329	6000	225
642	S330	5985	338
643	S331	5970	225
644	S332	5955	338
645	S333	5940	225
646 647	S334 S335	5925 5910	338 225
648	S336	5895	338
649	S337	5880	225
650	S338	5865	338
651	S339	5850	225
652	S340	5835	338
653	S341	5820	225
654	S342	5805	338
655	S343	5790	225
656	S344	5775	338
657	S345	5760	225
658	S346	5745	338
659 660	S347 S348	5730 5715	225 338
661	S348 S349	5715	225
662	S350	5685	338
663	S351	5670	225
664	S352	5655	338
665	S353	5640	225
-			

Ver. 1.1.5 LG4573

No.	Name	Х	Υ	No.	Name	x	Υ
666	S354	5625	338	741	S429	4500	225
667	S355	5610	225	742	S430	4485	338
668	S356	5595	338	743	S431	4470	225
669	S357	5580	225	744	S432	4455	338
670	S358	5565	338	745	S433	4440	225
671	S359	5550	225	746	S434	4425	338
672	S360	5535	338	747	S435	4410	225
673	S361	5520	225	748	S436	4395	338
674	S362	5505	338	749	S437	4380	225
675	S363	5490	225	750	S438	4365	338
676	S364	5475	338	751	S439	4350	225
677	S365	5460	225	752	S440	4335	338
678	S366	5445	338	753	S441	4320	225
679	S367	5430	225	754	S442	4305	338
680	S368	5415	338	755	S443	4290	225
681	S369	5400	225	756	S444	4275	338
682	S370	5385	338	757	S445	4260	225
683	S371	5370	225	758	S446	4245	338
684	S372	5355	338	759	S447	4230	225
685	S373	5340	225	760	S448	4215	338
686	S374	5325	338	761	S449	4200	225
687	S375	5310	225	762	S450	4185	338
688	S376	5295	338	763	S451	4170	225
689	S377	5280	225	764	S452	4155	338
690	S378	5265	338	765	S453	4140	225
691	S379	5250	225	766	S454	4125	338
692	S380	5235	338	767	S455	4110	225
693	S381	5220	225	768	S456	4095	338
694	S382	5205	338	769	S457	4080	225
695	S383	5190	225	770	S458	4065	338
696	S384	5175	338	771	S459	4050	225
697	S385	5160	225	772	S460	4035	338
698	S386	5145	338	773	S461	4020	225
699	S387	5130	225	774	S462	4005	338
700	S388	5115	338	775	S463	3990	225
701	S389	5100	225	776	S464	3975	338
702	S390	5085	338	777	S465	3960	225
703	S391	5070	225	778	S466	3945	338
704	S392	5055	338	779	S467	3930	225
705	S393	5040	225	780	S468	3915	338
706	S394	5025	338	781	S469	3900	225
707	S395	5010	225	782	S470	3885	338
708	S396	4995	338	783	S471	3870	225
709	S397	4980	225	784	S472	3855	338
710	S398	4965	338	785	S473	3840	225
711	S399	4950	225	786	S474	3825	338
712	S400	4935	338	787	S475	3810	225
713	S401	4920	225	788	S476	3795	338
714	S402	4905	338	789	S477	3780	225
715	S403	4890	225	790	S478	3765	338
716	S404	4875	338	791	S479	3750	225
717	S405	4860	225	792	S480	3735	338
718	S406	4845	338	793	S481	3720	225
719	S407	4830	225	794	S482	3705	338
720	S408	4815	338	795	S483	3690	225
721	S409	4800	225	796	S484	3675	338
722	S410	4785	338	797	S485	3660	225
723	S411	4770	225	798	S486	3645	338
724	S412	4755	338	799	S487	3630	225
725	S413	4740	225	800	S488	3615	338
726	S414	4725	338	801	S489	3600	225
727	S415	4710	225	802	S490	3585	338
728	S416	4695	338	803	S491	3570	225
729	S417	4680	225	804	S492	3555	338
730	S418	4665	338	805	S493	3540	225
731	S419	4650	225	806	S494	3525	338
	S420	4635	338	807	S495	3510	225
732	S421	4620	225	808	S496	3495	338
733		160=	338	809	S497	3480	225
	S422	4605			C 400		220
733		4590	225	810	S498	3465	338
733 734	S422			810 811	S498 S499	3465 3450	338 225
733 734 735	S422 S423	4590	225	-			
733 734 735 736	S422 S423 S424	4590 4575	225 338	811	S499	3450	225
733 734 735 736 737	S422 S423 S424 S425	4590 4575 4560	225 338 225	811 812	S499 S500	3450 3435	225 338

	r		
No.	Name	Х	Υ
741	S429	4500	225
742	S430	4485	338
743	S431	4470	225
744	S432	4455	338
745	S433	4440	225
746	S434	4425	338
747	S435	4410	225
748	S436	4395	338
749	S437	4380	225
750	S438	4365	338
751	S439	4350	225
752	S440	4335	338
753	S441	4320	225
754	S442	4305	338
755	S443	4290	225
756	S444	4275	338
757	S445		225
_		4260	
758	S446	4245	338
759	S447	4230	225
760	S448	4215	338
761	S449	4200	225
762	S450	4185	338
763	S451	4170	225
764	S452	4155	338
765	S453	4140	225
766	S454	4125	338
767	S455	4110	225
768	S456	4095	338
769	S457	4080	225
770	S458	4065	338
771	S459	4050	225
772	S460	4035	338
773	S461	4020	225
774	S462	4005	338
775	S463	3990	225
			338
776	S464	3975	
777	S465	3960	225
778	S466	3945	338
779	S467	3930	225
780	S468	3915	338
781	S469	3900	225
782	S470	3885	338
783	S471	3870	225
784	S472	3855	338
785	S473	3840	225
_			338
786	S474	3825	
787	S475	3810	225
788	S476	3795	338
789	S477	3780	225
790	S478	3765	338
791	S479	3750	225
792	S480	3735	338
793	S481	3720	225
794	S482	3705	338
795	S483	3690	225
_			
796	S484	3675	338
797	S485	3660	225
798	S486	3645	338
799	S487	3630	225
800	S488	3615	338
801	S489	3600	225
802	S490	3585	338
803	S491	3570	225
804	S492	3555	338
805	S493	3540	225
_			
806	S494	3525	338
807	S495	3510	225
808	S496	3495	338
809	S497	3480	225
810	S498	3465	338
811	S499	3450	225
812	S500	3435	338
813	S501	3420	225
814	S502	3405	338
815	S503	3390	225

No.	Name	Х	Y
816	S504	3375	338
817	S505	3360	225
818	S506	3345	338
819	S507	3330	225
			338
820	S508	3315	
821	S509	3300	225
822	S510	3285	338
823	S511	3270	225
824	S512	3255	338
825	S513	3240	225
826	S514	3225	338
827	S515	3210	225
828	S516	3195	338
829	S517	3180	225
830	S517 S518	3165	338
831	S519	3150	225
		3135	
832	S520		338
833	S521	3120	225
834	S522	3105	338
835	S523	3090	225
836	S524	3075	338
837	S525	3060	225
838	S526	3045	338
839	S527	3030	225
840	S528	3015	338
841	S529	3000	225
842	S530	2985	338
843	S531	2970	225
844	S532	2955	338
	S532 S533		
845		2940	225
846	S534	2925	338
847	S535	2910	225
848	S536	2895	338
849	S537	2880	225
850	S538	2865	338
851	S539	2850	225
852	S540	2835	338
853	S541	2820	225
854	S542	2805	338
855	S543	2790	225
856	S544	2775	338
	S545	2760	225
857			
858	S546	2745	338
859	S547	2730	225
860	S548	2715	338
861	S549	2700	225
862	S550	2685	338
863	S551	2670	225
864	S552	2655	338
865	S553	2640	225
866	S554	2625	338
867	S555	2610	225
868	S556	2595	338
869	S557	2580	225
870	S558	2565	338
871	S559	2550	225
872	S560	2535	338
873	S561	2520	225
874	S562	2505	338
875	S563	2490	225
876	S564	2475	338
877	S565	2460	225
878	S566	2445	338
879	S567	2430	225
880	S568	2415	338
881	S569	2400	225
882		2385	338
	S570		
883	S571	2370	225
884	S572	2355	338
885	S573	2340	225
886	S574	2325	338
887	S575	2310	225
888	S576	2295	338
889	S577	2280	225
890	S578	2265	338
220	1		555

No. Name

No.	Name CE70	X 2250	Y 225
891 892	S579 S580	2250 2235	225 338
893	S581	2220	225
894	S582	2205	338
895	S583	2190	225
896	S584	2175	338
897	S585	2160	225
898	S586	2145	338
899	S587	2130	225
900	S588	2115	338
901	S589	2100	225
902	S590	2085	338
903	S591	2070	225
904	S592	2055	338
905	S593	2040	225
906	S594 S595	2025	338 225
907 908	S596	2010 1995	338
909	S597	1980	225
910	S598	1965	338
911	S599	1950	225
912	S600	1935	338
913	S601	1920	225
914	S602	1905	338
915	S603	1890	225
916	S604	1875	338
917	S605	1860	225
918	S606	1845	338
919	S607	1830	225
920	S608	1815	338
921	S609	1800	225
922 923	S610 S611	1785 1770	338 225
923	S612	1755	338
925	S613	1740	225
926	S614	1725	338
927	S615	1710	225
928	S616	1695	338
929	S617	1680	225
930	S618	1665	338
931	S619	1650	225
932	S620	1635	338
933	S621	1620	225
934	S622	1605	338
935	S623	1590	225
936 937	S624 S625	1575 1560	338 225
938	S626	1545	338
939	S627	1530	225
940	S628	1515	338
941	S629	1500	225
942	S630	1485	338
943	S631	1470	225
944	S632	1455	338
945	S633	1440	225
946	S634	1425	338
947	S635	1410	225
948	S636	1395	338
949	S637	1380	225
950	S638	1365	338
951	S639	1350	225
952 953	S640 S641	1335 1320	338 225
953 954	S642	1305	338
955	S643	1290	225
956	S644	1275	338
957	S645	1260	225
958	S646	1245	338
959	S647	1230	225
960	S648	1215	338
961	S649	1200	225
962	S650	1185	338
963	S651	1170	225
964	S652	1155	338
965	S653	1140	225

No.	Name	Х	Υ
966	S654	1125	338
967	S655	1110	225
968	S656	1095	338
969	S657	1080	225
970	S658	1065	338
971	S659	1050	225
972	S660	1035	338
973	S661	1020	225
974	S662	1005	338
975	S663	990	225
976	S664	975	338
977	S665	960	225
978	S666	945	338
979	S667	930	225
980	S668	915	338
981	S669	900	225
982	S670	885	338
983	S671	870	225
984	S672	855	338
985	S673 S674	840 825	225
986 987		810	338 225
	S675	795	
988 989	S676 S677	795 780	338 225
989	S678	765	338
990	S679	750	225
992	S680	735	338
993	S681	720	225
994	S682	705	338
995	S683	690	225
996	S684	675	338
997	S685	660	225
998	S686	645	338
999	S687	630	225
1000	S688	615	338
1001	S689	600	225
1002	S690	585	338
1003	S691	570	225
1004	S692	555	338
1005	S693	540	225
1006	S694	525	338
1007	S695	510	225
1008	S696	495	338
1009	S697	480	225
1010	S698	465	338
1011	S699	450	225
1012	S700	435	338
1013	S701	420	225
1014	S702	405	338
1015	S703	390 375	225
1016 1017	S704 S705	375 360	338 225
1017	S706	345	338
1019	S707	330	225
1020	S707	315	338
1021	S709	300	225
1022	S710	285	338
1023	S711	270	225
1024	S712	255	338
1025	S713	240	225
1026	S714	225	338
1027	S715	210	225
1028	S716	195	338
1029	S717	180	225
1030	S718	165	338
1031	S719	150	225
1032	S720	135	338
1033	DUMMY	90	338
1034	DUMMY	30	338
1035	DUMMY	-30	338
1036	DUMMY	-90	338
1037	S721	-135	338
	L (/))	-150	225
1038 1039	S722 S723	-165	338

No.	Name	Х	Υ
1041	S725	-195	338
1042	S726	-210	225
1043	S727	-225	338
1044	S728	-240	225
1045	S729	-255	338
1046	S730	-270	225
1047	S731	-285	338
1048	S732	-300	225
1049	S733	-315	338
1050	S734	-330	225
1051	S735	-345	338
1052	S736	-360	225
1053	S737	-375	338
1054	S738	-390	225
1055	S739	-405	338
1056	S740	-420	225
1057	S741	-435	338
1058	S742	-450	225
1059	S743	-465	338
1060	S744	-480	225
1061	S745	-495	338
1062	S746	-510	225
1063	S747	-525	338
1064	S748	-540	225
1065	S749	-555	338
1066	S750	-570	225
1067	S751	-585	338
1068	S752	-600	225
1069	S752	-615	338
1070	S754	-630	225
1071	S755	-645	338
1071		-660	225
	S756		
1073	S757	-675	338
1074	S758	-690	225
1075	S759	-705	338
1076	S760	-720	225
1077	S761	-735	338
1078	S762	-750	225
1079	S763	-765	338
1080	S764	-780	225
1081	S765	-795	338
1082	S766	-810	225
1083	S767	-825	338
1084	S768	-840	225
1085	S769	-855	338
1086	S770	-870	225
1087	S771	-885	338
1088	S772	-900	225
1089	S773	-915	338
1090	S774	-930	225
1091	S775	-945	338
1092	S776	-960	225
1093	S777	-975	338
1094	S778	-990	225
1095	S779	-1005	338
1096	S780	-1020	225
1097	S781	-1035	338
1098	S782	-1050	225
1099	S783	-1065	338
1100	S784	-1080	225
	S785		
1101		-1095	338
1102	S786	-1110	225
1103	S787	-1125	338
1104	S788	-1140	225
1105	S789	-1155	338
1106	S790	-1170	225
1107	S791	-1185	338
1108	S792	-1200	225
1109	S793	-1215	338
1110	S794	-1230	225
1111	S795	-1245	338
1112	S796	-1260	225
1113	S797	-1275	338
1114	S798	-1290	225
1115	S799	-1305	338
-			

No.	Name	X	Y	No.	Nan
1116	S800	-1320	225	1191	S875
1117	S801	-1335	338	1192	S876
1118	S802	-1350	225	1193	S877
1119	S803	-1365	338	1194	S878
1120	S804	-1380	225	1195	S879
1121	S805	-1395	338	1196	S880
1122	S806	-1410	225	1197	S881
1123	S807	-1425	338	1198	S882
1124	S808	-1440	225	1199	S883
1125	S809	-1455	338	1200	S884
1126	S810	-1470	225	1201	S885
1127	S811	-1485	338	1202	S886
1128	S812	-1500	225	1203	S887
1129	S813	-1515	338	1204	S888
1130	S814	-1530	225	1205	S889
1131	S815	-1545	338	1206	S890
1132	S816	-1560	225	1207	S891
1133	S817	-1575	338	1208	S892
1134	S818	-1590	225	1209	S893
1135	S819	-1605	338	1210	S894
1136	S820	-1620	225	1211	S895
1137	S821	-1635	338	1212	S896
1138	S822	-1650	225	1213	S897
1139	S823	-1665	338	1214	S898
1140	S824	-1680	225	1215	S899
1141	S825	-1695	338	1216	S900
1142	S826	-1710	225	1217	S901
1143	S827	-1725	338	1218	S902
1144	S828	-1740	225	1219	S903
1145	S829	-1755	338	1220	S904
1146	S830	-1770	225	1221	S905
1147	S831	-1785	338	1222	S906
1148	S832	-1800	225	1223	S907
1149	S833	-1815	338	1224	S908
1150	S834	-1830	225	1225	S909
1151	S835	-1845	338	1226	S910
1152	S836	-1860	225	1227	S911
1153	S837	-1875	338	1228	S912
1154	S838	-1890	225	1229	S913
1155	S839	-1905	338	1230	S914
1156	S840	-1920	225	1231	S915
1157	S841	-1935	338	1232	S916
1158	S842	-1950	225	1233	S917
1159	S843	-1965	338	1234	S918
1160	S844	-1980	225	1235	S919
1161	S845	-1995	338	1236	S920
1162	S846	-2010	225	1237	S921
1163	S847	-2025	338	1238	S922
1164	S848	-2040	225	1239	S923
1165	S849	-2055	338	1240	S924
1166	S850	-2070	225	1241	S925
1167	S851	-2085	338	1242	S926
1168	S852	-2100	225	1243	S927
1169	S853	-2115	338	1244	S928
1170	S854	-2130	225	1245	S929
1171	S855	-2145	338	1246	S930
1172	S856	-2160	225	1247	S931
1173	S857	-2175	338	1248	S932
1174	S858	-2190	225	1249	S933
1175	S859	-2205	338	1250	S934
1176	S860	-2220	225	1251	S935
1177	S861	-2235	338	1252	S936
1178	S862	-2250	225	1253	S937
1179	S863	-2265	338	1254	S938
1180	S864	-2280	225	1255	S939
1181	S865	-2295	338	1256	S940
1182	S866	-2310	225	1257	S941
1183	S867	-2325	338	1258	S942
1184	S868	-2340	225	1259	S943
110E	S869	-2355	338	1260	S944
1185	S870	-2370	225	1261	S945
1186		2205	338	1262	S946
	S871	-2385	330		
1186	S871 S872	-2365	225	1263	S947
1186 1187				1263 1264	S947 S948

No. Name X Y 1191 S875 -2445 338 1192 S876 -2460 225 1193 S877 -2475 338 1194 S878 -2490 225 1195 S879 -2505 338 1196 S880 -2520 225 1197 S881 -2535 338 1198 S882 -2550 225 1199 S883 -2565 338 1200 S884 -2580 225 1201 S885 -2595 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 <
1192 S876 -2460 225 1193 S877 -2475 338 1194 S878 -2490 225 1195 S879 -2505 338 1196 S880 -2520 225 1197 S881 -2535 338 1198 S882 -2550 225 1199 S883 -2565 338 1200 S884 -2580 225 1201 S885 -2595 338 1202 S886 -2610 225 1201 S887 -2625 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225
1193 S877 -2475 338 1194 S878 -2490 225 1195 S879 -2505 338 1196 S880 -2520 225 1197 S881 -2535 338 1198 S882 -2550 225 1199 S883 -2565 338 1200 S884 -2580 225 1201 S885 -2595 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338
1194 S878 -2490 225 1195 S879 -2505 338 1196 S880 -2520 225 1197 S881 -2535 338 1198 S882 -2550 225 1199 S883 -2565 338 1200 S884 -2580 225 1201 S885 -2595 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225
1195 S879 -2505 338 1196 S880 -2520 225 1197 S881 -2535 338 1198 S882 -2550 225 1199 S883 -2565 338 1200 S884 -2580 225 1201 S885 -2595 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338
1196 S880 -2520 225 1197 S881 -2535 338 1198 S882 -2550 225 1199 S883 -2565 338 1200 S884 -2580 225 1201 S885 -2595 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225
1197 S881 -2535 338 1198 S882 -2550 225 1199 S883 -2565 338 1200 S884 -2580 225 1201 S885 -2595 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1210 S894 -2730 225 1211 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225
1198 S882 -2550 225 1199 S883 -2565 338 1200 S884 -2580 225 1201 S885 -2595 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225
1199 S883 -2565 338 1200 S884 -2580 225 1201 S885 -2595 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338
1200 S884 -2580 225 1201 S885 -2595 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 235
1201 S885 -2595 338 1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338
1202 S886 -2610 225 1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1214 S898 -2790 225 1217 S901 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225
1203 S887 -2625 338 1204 S888 -2640 225 1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 38 1214 S898 -2790 225 1213 S897 -2775 38 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338
1204 \$888 -2640 225 1205 \$889 -2655 338 1206 \$890 -2670 225 1207 \$891 -2685 338 1208 \$892 -2700 225 1209 \$893 -2715 338 1210 \$894 -2730 225 1211 \$895 -2745 338 1212 \$896 -2760 225 1213 \$897 -2775 338 1214 \$898 -2790 225 1215 \$899 -2805 338 1216 \$900 -2820 225 1217 \$901 -2835 338 1218 \$902 -2850 225 1219 \$903 -2865 338 1220 \$904 -2880 225 1221 \$905 -2895 338 1222 \$906 -2910 225
1205 S889 -2655 338 1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338
1206 S890 -2670 225 1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225
1207 S891 -2685 338 1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338
1208 S892 -2700 225 1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S904 -2880 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225
1209 S893 -2715 338 1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338
1210 S894 -2730 225 1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1229 S913 -3015 338
1211 S895 -2745 338 1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1229 S912 -3000 225 1229 S913 -3015 338
1212 S896 -2760 225 1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225
1213 S897 -2775 338 1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338
1214 S898 -2790 225 1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1215 S899 -2805 338 1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1216 S900 -2820 225 1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1217 S901 -2835 338 1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1218 S902 -2850 225 1219 S903 -2865 338 1220 S904 -2880 225 1221 S905 -2895 338 1222 S906 -2910 225 1233 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1219 \$903 -2865 338 1220 \$904 -2880 225 1221 \$905 -2895 338 1222 \$906 -2910 225 1223 \$907 -2925 338 1224 \$908 -2940 225 1225 \$909 -2955 338 1226 \$910 -2970 225 1227 \$911 -2985 338 1228 \$912 -3000 225 1229 \$913 -3015 338 1230 \$914 -3030 225 1231 \$915 -3045 338 1232 \$916 -3060 225
1220 \$904 -2880 225 1221 \$905 -2895 338 1222 \$906 -2910 225 1223 \$907 -2925 338 1224 \$908 -2940 225 1225 \$909 -2955 338 1226 \$910 -2970 225 1227 \$911 -2985 338 1228 \$912 -3000 225 1229 \$913 -3015 338 1230 \$914 -3030 225 1231 \$915 -3045 338 1232 \$916 -3060 225
1221 S905 -2895 338 1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1222 S906 -2910 225 1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1223 S907 -2925 338 1224 S908 -2940 225 1225 S909 -2955 338 1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1224 \$908 -2940 225 1225 \$909 -2955 338 1226 \$910 -2970 225 1227 \$911 -2985 338 1228 \$912 -3000 225 1229 \$913 -3015 338 1230 \$914 -3030 225 1231 \$915 -3045 338 1232 \$916 -3060 225
1225 \$909 -2955 338 1226 \$910 -2970 225 1227 \$911 -2985 338 1228 \$912 -3000 225 1229 \$913 -3015 338 1230 \$914 -3030 225 1231 \$915 -3045 338 1232 \$916 -3060 225
1226 S910 -2970 225 1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1227 S911 -2985 338 1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1228 S912 -3000 225 1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1229 S913 -3015 338 1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1230 S914 -3030 225 1231 S915 -3045 338 1232 S916 -3060 225
1231 S915 -3045 338 1232 S916 -3060 225
1232 S916 -3060 225
1233 S91/ -30/5 338
1234 S918 -3090 225
1235 S919 -3105 338
1236 S920 -3120 225
1237 S921 -3135 338
1238 S922 -3150 225
1239 S923 -3165 338
1240 S924 -3180 225
1241 S925 -3195 338
1242 S926 -3210 225
1243 S927 -3225 338
1244 S928 -3240 225
1245 S929 -3255 338
1246 S930 -3270 225
1247 S931 -3285 338
1248 S932 -3300 225
1249 S933 -3315 338
1250 S934 -3330 225
1251 S935 -3345 338
1252 S936 -3360 225
1253 \$937 -3375 338
1254 S938 -3390 225
1255 S939 -3405 338
1256 S940 -3420 225
1257 S941 -3435 338
1258 S942 -3450 225
1259 S943 -3465 338
14300 10044
1260 S944 -3480 225
1261 S945 -3495 338
1261 S945 -3495 338 1262 S946 -3510 225
1261 S945 -3495 338 1262 S946 -3510 225 1263 S947 -3525 338
1261 S945 -3495 338 1262 S946 -3510 225

No.	Name	Х	Υ
1266	S950	-3570	225
1267	S951	-3585	338
1268	S952	-3600	225
1269	S953	-3615	338
1270	S954	-3630	225
1271	S955	-3645	338
1272	S956	-3660	225
1273	S957	-3675	338
1274	S958	-3690	225
1275	S959	-3705	338
1276	S960	-3720	225
1277	S961	-3735	338
1278	S962	-3750	225
1279	S963	-3765	338
1280	S964	-3780	225
1281	S965	-3795	338
1282	S966	-3810	225
1283	S967	-3825	338
1284	S968	-3840	225
1285	S969	-3855	338
1286	S970	-3870	225
1287	S971	-3885	338
1288	S972	-3900	225
1289	S973	-3915	338
1290	S974	-3930	225
1291	S975	-3945	338
1292	S976	-3960	225
1293	S977	-3975	338
1294	S978	-3990	225
1295	S979	-4005	338
1296	S980	-4020	225
1297	S981	-4035	338
1298	S982	-4050	225
1299	S983	-4065	338
1300	S984	-4080	225
1301	S985	-4095	338
1302	S986	-4110	225
1303	S987	-4125	338
1304	S988	-4140	225
1305	S989	-4155	338
1306	S990	-4170	225
1307	S991	-4185	338
1308	S992	-4200	225
1309	S993	-4215	338
1310	S994	-4230	225
1311	S995	-4245	338
1312	S996	-4260	225
1313	S997	-4275	338
1314	S998	-4290	225
1315	S999	-4305	338
1316	S1000	-4320	225
1317	S1001	-4335	338
1318	S1002	-4350	225
1319	S1003	-4365	338
1320	S1004	-4380	225
1321	S1005	-4395	338
1322	S1006	-4410	225
1323	S1007	-4425	338
1324	S1008	-4440	225
1325	S1009	-4455	338
1326	S1010	-4470	225
1327	S1011	-4485	338
1328	S1012	-4500	225
1329	S1013	-4515	338
1330	S1014	-4530	225
1331	S1015	-4545	338
1332	S1016	-4560	225
1333	S1017	-4575	338
1334	S1018	-4590	225
1335	S1019	-4605	338
1336	S1020	-4620	225
1337	S1021	-4635	338
1338	S1022	-4650	225
1339	S1023	-4665	338
1340	S1024	-4680	225
-			

No.	Name	Х	Υ	No.	Name X	Υ
1341	S1025	-4695	338	1416 S11		225
1342	S1026	-4710	225	1417 S11	101 -5835	338
1343	S1027	-4725	338	1418 S11	102 -5850	225
1344	S1028	-4740	225	1419 S11	103 -5865	338
1345	S1029	-4755	338	1420 S11	104 -5880	225
1346	S1030	-4770	225	1421 S11	105 -5895	338
1347	S1031	-4785	338	1422 S11	106 -5910	225
1348	S1032	-4800	225	1423 S11	107 -5925	338
1349	S1033	-4815	338	1424 S11	108 -5940	225
1350	S1034	-4830	225	1425 S11	109 -5955	338
1351	S1035	-4845	338	1426 S11	110 -5970	225
1352	S1036	-4860	225	1427 S11	111 -5985	338
1353	S1037	-4875	338	1428 S11	112 -6000	225
1354	S1038	-4890	225	1429 S11	113 -6015	338
1355	S1039	-4905	338	1430 S11	114 -6030	225
1356	S1040	-4920	225	1431 S11	115 -6045	338
1357	S1041	-4935	338	1432 S11	116 -6060	225
1358	S1042	-4950	225	1433 S11	117 -6075	338
1359	S1043	-4965	338	1434 S11	118 -6090	225
1360	S1044	-4980	225	1435 S11	119 -6105	338
1361	S1045	-4995	338	1436 S11		225
1362	S1046	-5010	225	1437 S11		338
1363	S1047	-5025	338	1438 S11		225
1364	S1048	-5040	225	1439 S11	123 -6165	338
1365	S1049	-5055	338	1440 S11	124 -6180	225
1366	S1050	-5070	225	1441 S11	125 -6195	338
1367	S1051	-5085	338	1442 S11	126 -6210	225
1368	S1052	-5100	225	1443 S11	127 -6225	338
1369	S1053	-5115	338	1444 S1	128 -6240	225
1370	S1054	-5130	225	1445 S11	129 -6255	338
1371	S1055	-5145	338	1446 S11	130 -6270	225
1372	S1056	-5160	225	1447 S11	131 -6285	338
1373	S1057	-5175	338	1448 S11	132 -6300	225
1374	S1058	-5190	225	1449 S11	133 -6315	338
1375	S1059	-5205	338	1450 S11	134 -6330	225
1376	S1060	-5220	225	1451 S11	135 -6345	338
1377	S1061	-5235	338	1452 S11	136 -6360	225
1378	S1062	-5250	225	1453 S11	137 -6375	338
1379	S1063	-5265	338	1454 S11	138 -6390	225
1380	S1064	-5280	225	1455 S11	139 -6405	338
1381	S1065	-5295	338	1456 S11	140 -6420	225
1382	S1066	-5310	225	1457 S11	141 -6435	338
1383	S1067	-5325	338	1458 S11	142 -6450	225
1384	S1068	-5340	225	1459 S11	143 -6465	338
1385	S1069	-5355	338	1460 S11	144 -6480	225
1386	S1070	-5370	225	1461 S11	145 -6495	338
1387	S1071	-5385	338	1462 S11	146 -6510	225
1388	S1072	-5400	225	1463 S11	147 -6525	338
1389	S1073	-5415	338	1464 S11		225
1390	S1074	-5430	225	1465 S11	149 -6555	338
1391	S1075	-5445	338		150 -6570	225
1392	S1076	-5460	225	1467 S11	151 -6585	338
1393	S1077	-5475	338		152 -6600	225
1394	S1078	-5490	225		153 -6615	338
1395	S1079	-5505	338		154 -6630	225
1396	S1080	-5520	225	1471 S11		338
1397	S1081	-5535	338	1472 S11		225
1398	S1082	-5550	225	1473 S11		338
1399	S1083	-5565	338	1474 S11		225
1400	S1084	-5580	225	1475 S11		338
1401	S1085	-5595	338	1476 S11		225
1402	S1086	-5610	225	1477 S11	161 -6735	338
1403	S1087	-5625	338	1478 S11		225
1404		-5640	225	1479 S11		338
1405	S1089	-5655	338	1480 S11		225
1406	S1090	-5670	225		165 -6795	338
1407	S1091	-5685	338	1482 S11		225
1408	S1092	-5700	225	1483 S11	167 -6825	338
1409	S1093	-5715	338		168 -6840	225
1410	S1094	-5730	225	1485 S11	169 -6855	338
1 4 4 4 4	S1095	-5745	338	1486 S11	170 -6870	225
1411	C100C	-5760	225	1487 S11	171 -6885	338
1411	S1096	3700		1.07 01.		
	S1096 S1097	-5775	338	1488 S11	172 -6900	225
1412						225 338

No.	Name	Х	Υ
1416	S1100	-5820	225
1417	S1101	-5835	338
1418	S1102	-5850	225
1419	S1103	-5865	338
1420	S1104	-5880	225
1421	S1105	-5895	338
1422	S1106	-5910	225
1423 1424	S1107 S1108	-5925 -5940	338 225
1425	S1108	-5955	338
1426	S1110	-5970	225
1427	S1111	-5985	338
1428	S1112	-6000	225
1429	S1113	-6015	338
1430	S1114	-6030	225
1431	S1115	-6045	338
1432	S1116	-6060	225
1433	S1117	-6075	338
1434	S1118	-6090	225
1435	S1119	-6105	338
1436 1437	S1120 S1121	-6120 -6135	225 338
1437	S1121 S1122	-6150	225
1439	S1122 S1123	-6165	338
1440	S1123	-6180	225
1441	S1125	-6195	338
1442	S1126	-6210	225
1443	S1127	-6225	338
1444	S1128	-6240	225
1445	S1129	-6255	338
1446	S1130	-6270	225
1447	S1131	-6285	338
1448	S1132	-6300	225
1449	S1133	-6315	338
1450	S1134	-6330 -6345	225
1451 1452	S1135 S1136	-6360	338 225
1453	S1130	-6375	338
1454	S1137 S1138	-6390	225
1455	S1139	-6405	338
1456	S1140	-6420	225
1457	S1141	-6435	338
1458	S1142	-6450	225
1459	S1143	-6465	338
1460	S1144	-6480	225
1461	S1145	-6495	338
1462	S1146	-6510	225
1463	S1147	-6525 6540	338
1464	S1148	-6540 -6555	225 338
1465 1466	S1149 S1150	-6555 -6570	225
1467	S1150 S1151	-6585	338
1468	S1151	-6600	225
1469	S1152	-6615	338
1470	S1154	-6630	225
1471	S1155	-6645	338
1472	S1156	-6660	225
1473	S1157	-6675	338
1474	S1158	-6690	225
1475	S1159	-6705	338
1476	S1160	-6720	225
1477	S1161	-6735 -6750	338 225
1478 1479	S1162 S1163	-6750 -6765	338
1480	S1164	-6780	225
1481	S1165	-6795	338
1482	S1166	-6810	225
1483	S1167	-6825	338
1484	S1168	-6840	225
1485	S1169	-6855	338
1486	S1170	-6870	225
1487	S1171	-6885	338
1488	S1172	-6900	225
1489	S1173	-6915	338
1490	S1174	-6930	225

No.	Name	Х	Υ
1491	S1175	-6945	338
1492	S1176	-6960	225
1493	S1170	-6975	338
1494	S1178	-6990	225
1495	S1179	-7005	338
1496	S1180	-7020	225
1497	S1181	-7035	338
1498	S1182	-7050	225
1499	S1183	-7065	338
1500	S1184	-7080	225
1501	S1185	-7095	338
1502		-7110	225
	S1186		
1503	S1187	-7125	338
1504	S1188	-7140	225
1505	S1189	-7155	338
1506	S1190	-7170	225
1507	S1191	-7185	338
1508	S1192	-7200	225
1509	S1193	-7215	338
1510	S1194	-7230	225
1511	S1195	-7245	338
1512	S1196	-7260	225
1512	S1196 S1197		
		-7275	338
1514	S1198	-7290	225
1515	S1199	-7305	338
1516	S1200	-7320	225
1517	S1201	-7335	338
1518	S1202	-7350	225
1519	S1203	-7365	338
1520	S1204	-7380	225
1521	S1205	-7395	338
1522	S1206	-7410	225
1523	S1207	-7425	338
1524		-7423	225
	S1208		
1525	S1209	-7455	338
1526	S1210	-7470	225
1527	S1211	-7485	338
1528	S1212	-7500	225
1529	S1213	-7515	338
1530	S1214	-7530	225
1531	S1215	-7545	338
1532	S1216	-7560	225
1533	S1217	-7575	338
1534	S1218	-7590	225
1535		-7605	338
	S1219		
1536	S1220	-7620	225
1537	S1221	-7635	338
1538	S1222	-7650	225
1539	S1223	-7665	338
1540	S1224	-7680	225
1541	S1225	-7695	338
1542	S1226	-7710	225
1543	S1227	-7725	338
1544	S1228	-7740	225
1545	S1229	-7755	338
1546	S1229		225
		-7770 -7785	
1547	S1231	-7785	338
1548	S1232	-7800	225
1549	S1233	-7815	338
1550	S1234	-7830	225
1551	S1235	-7845	338
1552	S1236	-7860	225
1553	S1237	-7875	338
1554	S1238	-7890	225
1555	S1239	-7905	338
1556	S1240	-7920	225
1557	S1241	-7935	338
1558	S1241	-7950	225
1559	S1243	-7965	338
1560	S1244	-7980	225
1561	S1245	-7995	338
1562	S1246	-8010	225
1563	S1247	-8025	338
1564	S1248	-8040	225
1565	S1249	-8055	338

Ver. 1.1.5 LG4573

No.	Name	Х	Υ
1566	S1250	-8070	225
1567	S1251	-8085	338
1568	S1252	-8100	225
1569	S1253 S1254	-8115 -8130	338 225
1570 1571	S1255	-8145	338
1572	S1256	-8160	225
1573	S1257	-8175	338
1574	S1258	-8190	225
1575	S1259	-8205	338
1576	S1260	-8220	225
1577	S1261	-8235	338
1578	S1262	-8250	225
1579	S1263	-8265	338
1580	S1264	-8280	225
1581	S1265	-8295	338
1582	S1266	-8310	225
1583	S1267	-8325	338
1584	S1268	-8340	225
1585	S1269	-8355	338
1586	S1270	-8370	225
1587 1588	S1271 S1272	-8385 -8400	338 225
1589	S1272 S1273	-8415	338
1590	S1273	-8430	225
1591	S1275	-8445	338
1592	S1276	-8460	225
1593	S1277	-8475	338
1594	S1278	-8490	225
1595	S1279	-8505	338
1596	S1280	-8520	225
1597	S1281	-8535	338
1598	S1282	-8550	225
1599	S1283	-8565	338
1600	S1284	-8580	225
1601	S1285	-8595	338
1602	S1286	-8610	225
1603	S1287	-8625	338
1604 1605	S1288 S1289	-8640 -8655	225 338
1606	S1299	-8670	225
1607	S1291	-8685	338
1608	S1292	-8700	225
1609	S1293	-8715	338
1610	S1294	-8730	225
1611	S1295	-8745	338
1612	S1296	-8760	225
1613	S1297	-8775	338
1614	S1298	-8790	225
1615	S1299	-8805	338
1616	S1300	-8820	225
1617	S1301	-8835	338
1618	S1302	-8850 -8865	225
1619 1620	S1303 S1304	-8865 -8880	338 225
1621	S1305	-8895	338
1622	S1305	-8910	225
1623	S1307	-8925	338
1624	S1308	-8940	225
1625	S1309	-8955	338
1626	S1310	-8970	225
1627	S1311	-8985	338
1628	S1312	-9000	225
1629	S1313	-9015	338
1630	S1314	-9030	225
1631	S1315	-9045	338
1632	S1316	-9060	225
1633	S1317	-9075	338
1634 1635	S1318 S1319	-9090 -9105	225 338
1636	S1319 S1320	-9105 -9120	225
1637	S1321	-9135	338
1638	S1322	-9150	225
1639	S1323	-9165	338
1640	S1324	-9180	225

No.	Name	х	Υ	No.	Name	х	Υ
1566	S1250	-8070	225	1641	S1325	-9195	338
1567	S1251	-8085	338	1642	S1326	-9210	225
1568	S1252	-8100	225	1643	S1327	-9225	338
1569	S1253	-8115	338	1644	S1328	-9240	225
1570	S1254	-8130	225	1645	S1329	-9255	338
1571	S1255	-8145	338	1646	S1330	-9270	225
1572	S1256	-8160	225	1647	S1331	-9285	338
1573	S1257	-8175	338	1648	S1332	-9300	225
1574	S1258	-8190	225	1649	S1333	-9315	338
1575	S1259	-8205	338	1650	S1334	-9330	225
1576	S1260	-8220	225	1651	S1335	-9345	338
1577	S1261	-8235	338	1652	S1336	-9360	225
1578	S1262	-8250	225	1653	S1337	-9375	338
1579	S1263	-8265	338	1654	S1338	-9390	225
1580	S1264	-8280	225	1655	S1339	-9405	338
1581	S1265	-8295	338	1656	S1340	-9420	225
1582	S1266	-8310	225	1657	S1341	-9435	338
1583	S1267	-8325	338	1658	S1342	-9450	225
1584	S1268	-8340	225	1659	S1343	-9465	338
1585	S1269	-8355	338	1660	S1344	-9480	225
1586	S1270	-8370	225	1661	S1345	-9495	338
1587	S1271	-8385	338	1662	S1346	-9510	225
1588	S1272	-8400	225	1663	S1347	-9525	338
1589	S1273	-8415	338	1664	S1348	-9540	225
1590	S1274	-8430	225	1665	S1349	-9555	338
1591	S1275	-8445	338	1666	S1350	-9570	225
1592	S1276	-8460	225	1667	S1351	-9585	338
1593	S1277	-8475	338	1668	S1352	-9600	225
1594	S1278	-8490	225	1669	S1353	-9615	338
1595	S1279	-8505	338	1670	S1354	-9630	225
1596	S1280	-8520	225	1671	S1355	-9645	338
1597	S1281	-8535	338	1672	S1356	-9660	225
1598	S1282	-8550	225	1673	S1357	-9675	338
1599	S1283	-8565	338	1674	S1358	-9690	225
1600	S1284	-8580	225	1675	S1359	-9705	338
1601	S1285	-8595	338	1676	S1360	-9720	225
1602	S1286	-8610	225	1677	S1361	-9735	338
1603	S1287	-8625	338	1678	S1362	-9750	225
1604	S1288	-8640	225	1679	S1363	-9765	338
1605	S1289	-8655	338	1680	S1364	-9780	225
1606	S1290	-8670	225	1681	S1365	-9795	338
1607	S1291	-8685	338	1682	S1366	-9810	225
1608	S1292	-8700	225	1683	S1367	-9825	338
1609	S1293	-8715	338	1684	S1368	-9840	225
1610	S1294	-8730	225	1685	S1369	-9855	338
1611	S1295	-8745	338	1686	S1370	-9870	225
1612	S1296	-8760	225	1687	S1371	-9885	338
1613	S1297	-8775	338	1688	S1372	-9900	225
1614	S1298	-8790	225	1689	S1373	-9915	338
1615	S1299	-8805	338	1690	S1374	-9930	225
1616	S1300	-8820	225	1691	S1375	-9945	338
1617	S1301	-8835	338	1692	S1376	-9960	225
1618	S1302	-8850	225	1693	S1377	-9975	338
1619	S1303	-8865	338	1694	S1378	-9990	225
1620	S1304	-8880	225	1695	S1379	-10005	338
1621	S1305	-8895	338	1696	S1380	-10020	225
1622	S1306	-8910	225	1697	S1381	-10035	338
1623	S1307	-8925	338	1698	S1382	-10050	225
1624	S1308	-8940	225	1699	S1383	-10065	338
1625	S1309	-8955	338	1700	S1384	-10080	225
1626	S1310	-8970	225	1701	S1385	-10095	338
1627	S1311	-8985	338	1702	S1386	-10110	225
1628	S1312	-9000	225	1703	S1387	-10125	338
1629	S1313	-9015	338	1704	S1388	-10140	225
1630	S1314	-9030	225	1705	S1389	-10155	338
1631	S1315	-9045	338	1706	S1390	-10170	225
1632	S1316	-9060	225	1707	S1391	-10185	338
1633	S1317	-9075	338	1708	S1392	-10200	225
1634	S1317 S1318	-9090	225	1709	S1393	-10215	338
1635	S1319	-9105	338	1710	S1394	-10230	225
1636	S1320	-9120	225	1711	S1395	-10245	338
1637	S1321	-9135	338	1711	S1396	-10243	225
1638	S1322	-9150	225	1713	S1397	-10200	338
1639	S1323	-9165	338	1713	S1398	-10273	225
	S1324	-9180	225	1715	S1399	-10290	338
1640							

No.	Name	Х	Υ
1716	S1400	-10320	225
1717	S1401	-10335	338
1718	S1402	-10350	225
1719	S1403	-10365	338
1720	S1404	-10380	225
1721	S1405	-10395	338
1722	S1406	-10410	225
1723	S1407	-10425	338
1724	S1408	-10440	225
1725	S1409	-10455	338
1726	S1410	-10470	225
1727	S1411	-10485	338
1728	S1412	-10500	225
1729	S1413	-10515	338
1730	S1414	-10530	225
1731	S1415	-10545	338
1732	S1416	-10560	225
1733	S1417	-10575	338
1734	S1418	-10590	225
1735	S1419	-10605	338
1736	S1420	-10620	225
1737	S1421	-10635	338
1738	S1422	-10650	225
1739	S1423	-10665	338
1740	S1424	-10680	225
1741	S1425	-10695	338
1742	S1426	-10710	225
1743	S1427	-10725	338
1744	S1428	-10740	225
1745	S1429	-10755	338
1746	S1430	-10770	225
1747	S1431	-10785	338
1748	S1432	-10800	225
1749	S1433	-10815	338
1750	S1434	-10830	225
1751	S1435	-10845	338
1752	S1436	-10860	225
1753	S1437	-10875	338
1754	S1438	-10890	225
1755	S1439	-10905	338
1756	S1440	-10920	225
	DUMMY	-10935	338

Alignment mark	Χ	Υ
+ (1-a)	-11060	325
+ (1-b)	11060	325

4.4 Bump Arrangement

5 Functional Description

5.1 SPI (Serial Peripheral Interface)

The serial interface is selected by setting the IM[2:0] = 110x for register access while MIPI DPI is used for pixel data streaming in LG4573. The data is transferred via chip select line (nCS), serial transfer clock line (SCK), serial data input line (SDI), and serial data output line (SDO). In serial interface operation, the IM[0] pin functions as the ID pin, and the DB[23:0] pins, not used in this mode, must be fixed at either IOVCC or GND level. When nCS is high, SCK clock pulse or serial input (SDI) and output (SDO) have no effect. A falling edge on nCS enables the serial interface and indicate the start of data transmission.

The LG4573 recognizes the start of data transfer on the falling edge of nCS input and starts transferring the start byte. It recognizes the data transferd on the rising edge of nCS input. The LG4573 is selected when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit device identification code assigned to the LG4573 are compared and both 6-bit data match, and then the LG4573 starts taking in data. The least significant bit of the device identification code is set with the ID pin. "The seventh bit of the start byte is assigned to the register select bit (RS). When RS = 0, an index register write operation is executed. When RS = 1, an instruction write operation is executed. The eighth bit of the start byte is to select read or write operation (R/W bit). The LG4573 receives data when the R/W = 0, and transfers data when the R/W = 1.

After receiving the start byte, the LG4573 starts transferring or receiving data. The LG4573 executes data transfer from the MSB.

Table 1 Start Byte Format

Transferred bits	1	2	3	4	5	6	7	8
Start byte format	Devic	e ID code					RS	R/W
	0	1	1	1	0	IM[0]	_	

Note: ID bit is selected by setting the IMO/ID pin.

Table 2

RS	R/W	Function
0	0	Set an index register
0	1	Read a status
1	0	Write an instruction
1	1	Read an instruction

5.1.1 Write/ Read Cycle Sequence

As shown in the following figure, on the rising edge of SCK the SDI data start being transferred to LG4573. But the serial reading operation through SDO happens on the falling edge of SCK.

Figure 2. SPI Interface

The following figures demonstrate the serial reading operation in the FAh register for example.

Figure 4. Example for serial data reading – continued

5.2 MIPI DBI Type C

The LG4573 supports MIPI DBI type C (4-wire 9-bit serial interface).

5.2.1 Write Cycle Sequence

During a write cycle the host processor sends a single bit of data to the display module via the interface. The type C interface utilizes nCS, SCK and SDI signals. SCK is driven from high to low then pulled back to high during the write cycle. The host processor provides information during the write cycle while the display module reads the host processor information on the rising edge of SCK.

The following figure shows the write cycle for the type C interface.

Figure 5. DBI Type C Interface Write Cycle

Note: SCK is an unsynchronized signal; it can be stopped.

During the write sequence the host processor writes one or more bytes of information to the display module via the interface. The write sequence is initiated when nCS is driven from high to low and ends when nCS is pulled high. Each byte is nine write cycles in length.

The type C interface write sequences is described in Figure 6.

Figure 6. DBI Type C Interface Write Sequence

5.2.2 Read Cycle Sequence

During a read cycle the host processor reads a single bit of data from the display module via the interface. The type C interface utilizes nCS, SCK and SDO signals. SCK is driven from high to low then pulled back to high during the read cycle. The display module provides information during the read cycle while the host processor reads the display module information on the rising edge of SCK.

Figure 7 shows the read cycle for the type C interface.

Figure 7. DBI Type C Interface Read Cycle

Note: SCK is an unsynchronized signal; it can be stopped.

During the read sequence the host processor reads one or more bytes of information from the display module via the interface. The read sequence is initiated when nCS is driven from high to low and ends when nCS is pulled high. Each byte is nine read cycles in length.

The type C interface read sequence is shown in Figure 8.

Figure 8. DBI Type C Interface Read Sequence

5.2.3 Break and Pause of Sequences

The host processor can break a read or write sequence by pulling the nCS signal high during a command or data byte. The display module shall reset its interface so it will be ready to receive the same byte when nCS is again driven low.

The host processor can pause a read or write sequence by pulling the nCS signal high between command or data bytes. The display module shall wait for the host processor to drive nCS low before continuing the read or write sequence at the point where the sequence was paused.

5.3 MIPI DPI-2

5.3.1 Interface Signals

Table 3. Interface Signals for DPI

Symbol	Name	1/0	Description
VSYNC	Vertical sync	I	Vertical synchronization timing signal
HSYNC	Horizontal sync	I	Horizontal synchronization timing signal
DE	Data enable	I	Data enable signal (assertion indicates valid pixels)
PCLK	Pixel Clock	I	Pixel clock for capturing pixels at display interface
DB[15:0], DB[17:0] or DB[23:0]	Pixel Data	I	Pixel data in 16-bit, 18-bit, or 24-bit format

5.3.2 Interface Color Coding

Table 4 specifies the mapping of data bits, as components of primary pixel color values R, G, and B, to signal lines at the interface.

Note: LG4573 supports configuration 3 for 16-bit pixels, configuration 2 for 18-bit pixels and 24-bit pixels.

Table 4. Interface Color Coding

Cianal	16-bit			18-bit		
Signal Line	Configuration 1	Configuration 2	Configuration 3	Configuration 1	Configuration 2	24-bit
D23	(not used)	(not used)	(not used)	(not used)	(not used)	R7
D22	(not used)	(not used)	(not used)	(not used)	(not used)	R6
D21	(not used)	(not used)	R4	(not used)	R5	R5
D20	(not used)	R4	R3	(not used)	R4	R4
D19	(not used)	R3	R2	(not used)	R3	R3
D18	(not used)	R2	R1	(not used)	R2	R2
D17	(not used)	R1	R0	R5	R1	R1
D16	(not used)	R0	(not used)	R4	R0	R0
D15	R4	(not used)	(not used)	R3	(not used)	G7
D14	R3	(not used)	(not used)	R2	(not used)	G6
D13	R2	G5	G5	R1	G5	G5
D12	R1	G4	G4	R0	G4	G4
D11	R0	G3	G3	G5	G3	G3
D10	65	G2	G2	64	G2	G2
D9	G4	G1	G1	63	G1	G1
D8	63	G0	G0	G2	G0	G0
D7	G2	(not used)	(not used)	G1	(not used)	B7
D6	G1	(not used)	(not used)	G0	(not used)	B6
D5	G0	(not used)	B4	B5	B5	B5
D4	B4	B4	B3	B4	B4	B4
D3	B3	B3	B2	B3	B3	B3
D2	B2	B2	B1	B2	B2	B2
D1	B1	B1	B0	B1	B1	B1
D0	B0	B0	(not used)	B0	B0	B0

There are three mappings for 16-bit pixels to data signals, two mapping for 18-bit pixels to data signals, and one mapping for 24-bit pixels to data signals.

5.4 Backlight Control Function

5.4.1 CABC (Content Adaptive Brightness Control)

The LG4573 supports "Content Adaptive Brightness Control" function which can be used to reduce the power consumption of the luminance source. Content adaptation means that content grey level scale can be increased while simultaneously lowering brightness of the backlight to achieve same perceived brightness. The adjusted grey level scale and thus the power consumption reduction depend on the content of the image.

The following figure shows that how the CABC algorithm works. The CABC block accumulates the gray levels for each pixels of the image and thus CABC block becomes to know the histograms about the gray levels of the image. Next, CABC block modify the original image data to have more widely spread shape while it makes the back light luminance lower so that the image luminance perceived by human becomes almost same.

Figure 9. Simple Explanation of Content Adaptive Brightness Control

5.4.2 Brightness Control Block and CABC Block

Figure 10. Block Diagram for Brightness Control Block and CABC Block

Brightness control block is used to control the display brightness as follows:

There is a resister, DBV: 8 bit, for display brightness of manual brightness setting and CABC in the display module. There is a PWM output signal, BC line, to control the LED driver IC in order to control display brightness. The brightness control method should be taken into account to avoid abnormal visible effect related with scanning frame frequency.

The brightness control block can be used in manual brightness mode and CABC mode, see "Write CTRL Display (53h)" and "Write Content Adaptive Brightness Control (55h)".

The user can adjust brightness, see "Write Display Brightness (51h)" for the display.

	WRCABC(55h)	Function	RDCABCMB(5Fh)	Image
CABC Off	00b	Disable	WRCABCMB(5Eh)	Original
CABC On	01b /10b /11b	Enable	WRCABCMB(5Eh)	CABC modified

Brightness level calculates with the following formula.

Display Output Brightness = Manual brightness setting * CABC brightness ratio Below drawing is for the explanation of the CABC minimum brightness setting.

Figure 11. Controlled Display Brightness by LABC and CABC Algorithm

CABC minimum brightness value = 51 (33h: 20% display brightness)

	Display Brightness [manual setting]	Brightness Ratio[CABC]	Calculation result of the display brightness formula	Display Output Brightness	Image
Case 1	50%	70%	35%	35%	CABC modified
Case 2	20%	70%	14%	20%	CABC modified
Case 3	50%	70%	35%	35%	CABC modified

At the case 2, the calculation result of the display brightness is 14%. CABC minimum brightness value is set to 20% brightness. Actual display brightness is 20% as the CABC minimum brightness setting.

To get more easy understandings and control of this CABC function, the below conceptual control flow diagram would be a help. In the following diagram, the DD, BCTRL, and BL are control parameter in 53h register. They control the CABC paths. If DD=0, then CABC function is disabled and the manual brightness setting by DBV[7:0] in 51h register is available. If DD=1, CABC function will start to work with the maximum and minimum brightness settings respectively by DBV[7:0] and CMB[7:0] in 5Eh register. If BCTRL=1, the CABC function will go through to next path. But if BCTRL=0, GND level for BLU_PWM would be forced. If BL=1, the CABC function will go though with BCTRL=1 and controls the duties of PWM (Pulse Width Modulated) waveforms through BLU_PWM pad. Finally, the PWMP parameter in C8h register can change the polarity of BLU_PWM output. If PWMP=0, BLU_PWM waveform works as active high but if 1, then the BLU_PWM waveform works as active low.

The not-shown parameter in the following diagram to control CABC function are CDSP[3:0], CDMP[3:0], and FPWM[1:0] in C8h register, where CDSP and CDMP parameter control the dimming levels of still images and moving images, respectively. If CDSP=8, then the duties of BLU_PWM are increased or decreased by 8 levels per frame, whose total levels of this is 255, after comparing the differences between predetermined threshold value and the calculated histogram value for still images. And if CDMP=4, then the duties of BLU_PWM are increased or decreased by 4 levels per frame, whose total levels of this is 255, after comparing the differences between predetermined threshold value and the calculated histogram value for moving images. The last parameter FPWM controls the frequencies of BLU_PWM_output. The setting 0 means 2 times of frame frequency, 1 means 4 times, 2 means 8

times, and 3 means 16 times of frame frequency. It goes faster according to the increased FPWM values. The tables for them are shown in C8h register description section.

Figure 12. Conceptual control flow diagram of CABC function.

5.5 LCD Power Supply Circuit

The LCD power supply circuit generates the voltage levels of DDVDH, DDVDL, VCL, VREG1OUT, VREG2OUT, VGH, VGL, LVGL and VCOM for driving an LCD.

The internal logic power supply regulator generates internal logic power supply VDD.

5.5.1 Voltage Setting Pattern Diagram

The pattern diagram of voltage setting and waveforms of the liquid crystal application voltages are as follows.

Figure 13. Pattern Diagram for Voltage Setting

5.5.2 Power On/Off Sequence

5.5.3 Display On Sequence

Display On Sequence

5.5.4 Sleep In, Out Sequence

Sleep In, Out Sequence

5.5.5 DSTB IN, DSTB OUT, Display On Sequence

DSTB IN, DSTB OUT, Display ON Sequences

5.6 Gamma Correction Function

The LG4573 has the gamma correction function to display in 16M colors simultaneously. The gamma correction is performed with 3 groups of registers determining eight reference grayscale levels, which are gradient adjustment, amplitude adjustment and fine-adjustment registers. Each register groups further consists of register groups of positive and negative polarities. Each register group is set independently to other register groups, making the LG4573 available with liquid crystal panels of various characteristics.

Figure 14. Grayscale Control

5.6.1 Grayscale Generation Unit Configuration

The following figure illustrates the grayscale generation unit of the LG4573.

To generate 64 grayscale voltages (V0 to V63), the LG4573 first generates eight reference grayscale voltages (VINP0-7/VINN0-7). The grayscale generation unit then divides eight reference grayscale voltages with the ladder resistors incorporated therein.

Figure 15. Grayscale Generation unit

Figure 16. Ladder resistor units and 8-to-1 selectors

5.6.2 Gamma Correction Register

The gamma correction registers of the LG4573 consist of gradient adjustment, amplitude adjustment, and fine adjustment registers, each of which has registers of positive and negative polarities. Each

different register group can be set independently to others, enabling adjustment of grayscale voltage levels in relation to grayscales set optimally for gamma characteristics of a liquid crystal panel. These gamma correction register settings and the reference levels of the 64 grayscales to which the three kinds of adjustments are made (bold lines in the following figure) are common to all RGB dots.

Figure 17

Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient of the curve representing the relationship between the grayscale and the grayscale voltage level around middle grayscales without changing the dynamic range. To adjust the gradient, the resistance values of grayscale reference voltage generating variable resistors (VRHP(N)/VRLP(N)) in the middle of the ladder resistor unit are adjusted. The registers consist of positive and negative polarity registers, allowing asymmetric drive.

Amplitude adjustment registers

The amplitude adjustment registers are used to adjust the amplitude of grayscale voltages. To adjust the amplitude, the resistance values of the grayscale voltage generating variable resistors (VRP(N)1/0) at the top and bottom of the ladder resistor unit are adjusted. Same with the gradient registers, the amplitude adjustment registers consist of positive and negative polarity registers.

Fine adjustment registers

The fine adjustment registers are used to fine-adjust grayscale voltage levels. To fine-adjust grayscale voltage levels, fine adjustment registers adjust the reference voltage levels, 8 levels for each register generated from the ladder resistor unit, in respective 8-to-1 selectors. Same with other registers, the fine adjustment registers consist of positive and negative polarity registers.

Table 5. List of registers

Positive Polarity	Negative Polarity	Description
PRP0[2:0]	PRN0[2:0]	Variable resistor VRHP(N)
PRP1[2:0]	PRN1[2:0]	Variable resistor VRHP(N)
PFP0[2:0]	PFN0[2:0]	Variable resistor VR0P(N)
PFP1[2:0]	PFN1[2:0]	Variable resistor VR1P(N)
PFP2[2:0]	PFN2[2:0]	Variable resistor VR2P(N)
PFP3[2:0]	PFN3[2:0]	Variable resistor VR3P(N)
PMP[2:0]	PMN[2:0]	Variable resistor VRMP(N)
VRP0[4:0]	VRN0[4:0]	Variable resistor VRP(N)0
VRP1[4:0]	VRN1[4:0]	Variable resistor VRP(N)1
PKP0[2:0]	PKN0[2:0]	8-to-1 selector (voltage level of grayscale 1)
PKP1[2:0]	PKN1[2:0]	8-to-1 selector (voltage level of grayscale 8)
PKP2[2:0]	PKN2[2:0]	8-to-1 selector (voltage level of grayscale 20)
	Polarity PRP0[2:0] PRP1[2:0] PFP0[2:0] PFP1[2:0] PFP2[2:0] PFP3[2:0] PMP[2:0] VRP0[4:0] VRP1[4:0] PKP0[2:0] PKP1[2:0]	Polarity Polarity PRP0[2:0] PRN0[2:0] PRP1[2:0] PRN1[2:0] PFP0[2:0] PFN0[2:0] PFP1[2:0] PFN1[2:0] PFP2[2:0] PFN2[2:0] PFP3[2:0] PFN3[2:0] PMP[2:0] PMN[2:0] VRP0[4:0] VRN0[4:0] VRP1[4:0] VRN1[4:0] PKP0[2:0] PKN1[2:0]

PKP3[2:0]	PKN3[2:0]	8-to-1 selector (voltage level of grayscale 43)
PKP4[2:0]	PKN4[2:0]	8-to-1 selector (voltage level of grayscale 53)
PKP5[2:0]	PKN5[2:0]	8-to-1 selector (voltage level of grayscale 62)

5.6.3 Ladder Resistors and 8-to-1 Selector

Block Configuration

The grayscale generation unit as illustrated in Figure 16 consists of two ladder resistor units including variable resistors and 8-to-1 selectors. Each 8-to-1 selector selects one of the 8 voltage levels generated from the ladder resistor unit to output as a grayscale reference voltage. Both variable resistors and 8-to-1 selectors are controlled according to the gamma correction registers. This unit has pins to connect a volume resistor externally to compensate differences in various characteristics of panels.

Variable Resistors

The LG4573 uses variable resistors of the following three purposes: gradient adjustment $(VRHP(N)/VRLP(N)/VR0\sim4P(N)/VRMP(N))$ and amplitude adjustment $(VRP(N)0\sim1)$. The resistance values of these variable resistors are set by gradient adjustment registers and amplitude adjustment registers as follows.

Table 6. Amplitude adjustment

Contents of register VRP(N)0[4:0]	Resistance VRP(N)0 VRP(N)1
00000	0R
00001	1R
00010	2R
:	:
:	:
11101	29R
11110	30R
11111	31R

8-to-1 Selectors

The 8-to-1 selector selects one of eight voltage levels generated from the ladder resistor unit according to the fine adjustment register, and output the selected voltage level as a reference grayscale voltage ($VINP(N)1 \sim VINP(N 6)$). The table below shows the setting in the fine adjustment register and the selected voltage levels for respective reference grayscale voltages.

Table 7. Fine adjustment registers and selected voltage

PKP(N)[2:0]	Selected Voltage								
	VINP(N)1	VINP(N)2	VINP(N)3	VINP(N)4	VINP(N)5	VINP(N)6			
3'h0	KVP(N)1	KVP(N)9	KVP(N)17	KVP(N)25	KVP(N)33	KVP(N)41			
3'h1	KVP(N)2	KVP(N)10	KVP(N)18	KVP(N)26	KVP(N)34	KVP(N)42			
3'h2	KVP(N)3	KVP(N)11	KVP(N)19	KVP(N)27	KVP(N)35	KVP(N)43			
3'h3	KVP(N)4	KVP(N)12	KVP(N)20	KVP(N)28	KVP(N)36	KVP(N)44			
3′h4	KVP(N)5	KVP(N)13	KVP(N)21	KVP(N)29	KVP(N)37	KVP(N)45			
3'h5	KVP(N)6	KVP(N)14	KVP(N)22	KVP(N)30	KVP(N)38	KVP(N)46			
3'h6	KVP(N)7	KVP(N)15	KVP(N)23	KVP(N)31	KVP(N)39	KVP(N)47			
3'h7	KVP(N)8	KVP(N)16	KVP(N)24	KVP(N)32	KVP(N)40	KVP(N)48			

The grayscale voltage levels for V0~V63 grayscales are calculated from the following formula.

Table 8. Formula for calculating voltage (1)

Pin	Formula	Fine adjustment register value	Reference voltage
KVP0	VREG1OUT - ΔV x VRP0/SUMRP	-	VINP0
KVP1	VREG1OUT - ΔV x (VRP0+VR0P+0R)/SUMRP	PKP0= 3'h0	VINP1
KVP2	VREG1OUT - ΔV x (VRP0+VR0P+4R)/SUMRP	PKP0= 3'h1	
KVP3	VREG1OUT - ΔV x (VRP0+VR0P+8R)/SUMRP	PKP0= 3'h2	
KVP4	VREG1OUT - ΔV x (VRP0+VR0P+12R)/SUMRP	PKP0= 3'h3	
KVP5	VREG1OUT - ΔV x (VRP0+VR0P+16R)/SUMRP	PKP0= 3'h4	
KVP6	VREG1OUT - ΔV x (VRP0+VR0P+20R)/SUMRP	PKP0= 3'h5	
KVP7	VREG1OUT - ΔV x (VRP0+VR0P+24R)/SUMRP	PKP0= 3'h6	
KVP8	VREG1OUT - ΔV x (VRP0+VR0P+28R)/SUMRP	PKP0= 3'h7	
KVP9	VREG1OUT - ΔV x (VRP0+VR0P+28R+VRHP)/SUMRP	PKP1= 3'h0	VINP2
KVP10	VREG1OUT - ΔV x (VRP0+VR0P+29R+VRHP)/SUMRP	PKP1= 3'h1	
KVP11	VREG1OUT - ΔV x (VRP0+VR0P+30R+VRHP)/SUMRP	PKP1= 3'h2	
KVP12	VREG1OUT - ΔV x (VRP0+VR0P+31R+VRHP)/SUMRP	PKP1= 3'h3	
KVP13	VREG1OUT - ΔV x (VRP0+VR0P+32R+VRHP)/SUMRP	PKP1= 3'h4	
KVP14	VREG1OUT - ΔV x (VRP0+VR0P+33R+VRHP)/SUMRP	PKP1= 3'h5	
KVP15	VREG1OUT - ΔV x (VRP0+VR0P+34R+VRHP)/SUMRP	PKP1= 3'h6	
KVP16	VREG1OUT - ΔV x (VRP0+VR0P+35R+VRHP)/SUMRP	PKP1= 3'h7	
KVP17	VREG1OUT - ΔV x (VRP0+VR0/1P+35R+VRHP)/SUMRP	PKP2= 3'h0	VINP3
KVP18	VREG1OUT - ΔV x (VRP0+VR0/1P+36R+VRHP)/SUMRP	PKP2= 3'h1	
KVP19	VREG1OUT - ΔV x (VRP0+VR0/1P+37R+VRHP)/SUMRP	PKP2= 3'h2	
KVP20	VREG1OUT - ΔV x (VRP0+VR0/1P+38R+VRHP)/SUMRP	PKP2= 3'h3	
KVP21	VREG1OUT - ΔV x (VRP0+VR0/1P+39R+VRHP)/SUMRP	PKP2= 3'h4	
KVP22	VREG1OUT - ΔV x (VRP0+VR0/1P+40R+VRHP)/SUMRP	PKP2= 3'h5	
KVP23	VREG1OUT - ΔV x (VRP0+VR0/1P+41R+VRHP)/SUMRP	PKP2= 3'h6	
KVP24	VREG1OUT - ΔV x (VRP0+VR0/1P+42R+VRHP)/SUMRP	PKP2= 3'h7	
KVP25	VREG1OUT - ΔV x (VRP0+VR0/1P+42R+VRHP +VRMP)/SUMRP	PKP3= 3'h0	VINP4
KVP26	VREG1OUT - ΔV x (VRP0+VR0/1P+43R+VRHP +VRMP)/SUMRP	PKP3= 3'h1	
KVP27	VREG1OUT - ΔV x (VRP0+VR0/1P+44R+VRHP +VRMP)/SUMRP	PKP3= 3'h2	
KVP28	VREG1OUT - ΔV x (VRP0+VR0/1P+45R+VRHP +VRMP)/SUMRP	PKP3= 3'h3	
KVP29	VREG1OUT - ΔV x (VRP0+VR0/1P+46R+VRHP +VRMP)/SUMRP	PKP3= 3'h4	
KVP30	VREG1OUT - ΔV x (VRP0+VR0/1P+47R+VRHP +VRMP)/SUMRP	PKP3= 3'h5	
KVP31	VREG1OUT - ΔV x (VRP0+VR0/1P+48R+VRHP +VRMP)/SUMRP	PKP3= 3'h6	
KVP32	VREG1OUT - ΔV x (VRP0+VR0/1P+49R+VRHP +VRMP)/SUMRP	PKP3= 3'h7	
KVP33	VREG1OUT - ΔV x (VRP0+VR0/1/2P+49R+VRHP +VRMP)/SUMRP	PKP4= 3'h0	VINP5
KVP34	VREG1OUT - ΔV x (VRP0+VR0/1/2P+50R+VRHP +VRMP)/SUMRP	PKP4= 3'h1	
KVP35	VREG1OUT - ΔV x (VRP0+VR0/1/2P+51R+VRHP +VRMP)/SUMRP	PKP4= 3'h2	
KVP36	VREG1OUT - ΔV x (VRP0+VR0/1/2P+52R+VRHP +VRMP)/SUMRP	PKP4= 3'h3	
KVP37	VREG1OUT - ΔV x (VRP0+VR0/1/2P+53R+VRHP +VRMP)/SUMRP	PKP4= 3'h4	
KVP38	VREG1OUT - ΔV x (VRP0+VR0/1/2P+54+VRHP +VRMP)/SUMRP	PKP4= 3'h5	
KVP39	VREG1OUT - ΔV x (VRP0+VR0/1/2P+55R+VRHP +VRMP)/SUMRP	PKP4= 3'h6	
KVP40	VREG1OUT - ΔV x (VRP0+VR0/1/2P+56R+VRHP +VRMP)/SUMRP	PKP4= 3'h7	

Pin	Formula	Fine adjustment register value	Reference voltage
KVP41	VREG1OUT - ΔV x (VRP0+VR0/1/2P+56R+VRHP +VRMP+VRLP)/SUMRP	PKP5= 3'h0	VINP6
KVP42	VREG1OUT - ΔV x (VRP0+VR0/1/2P+60R+VRHP +VRMP+VRLP)/SUMRP	PKP5= 3'h1	
KVP43	VREG1OUT - ΔV x (VRP0+VR0/1/2P+64R+VRHP +VRMP+VRLP)/SUMRP	PKP5= 3'h2	
KVP44	VREG1OUT - ΔV x (VRP0+VR0/1/2P+68R+VRHP +VRMP+VRLP)/SUMRP	PKP5= 3'h3	
KVP45	VREG1OUT - ΔV x (VRP0+VR0/1/2P+72R+VRHP +VRMP+VRLP)/SUMRP	PKP5= 3'h4	
KVP46	VREG1OUT - ΔV x (VRP0+VR0/1/2P+76R+VRHP+VRMP +VRLP)/SUMRP	PKP5= 3'h5	
KVP47	VREG1OUT - ΔV x (VRP0+VR0/1/2P+80R+VRHP+VRMP +VRLP)/SUMRP	PKP5= 3'h6	
KVP48	VREG1OUT - ΔV x (VRP0+VR0/1/2P+84R+VRHP+VRMP +VRLP)/SUMRP	PKP5= 3'h7	
KVP49	VREG1OUT - ΔV x (VRP0+VR0/1/2/3P+84R+VRHP+VRMP +VRLP)/SUMRP	-	VINP7

SUMRP: Sum of positive ladder resistors =

92R+VRHP+VRLP+VRP0+VRP1+VR0P+VR1P+VR2P+VR3P+VRMP Δ V: Difference in electrical potential between VREG10UT and VGS

LG Electronics

Table 9. Formula for calculating voltage (2)

Grayscale voltage	Formula
V0	VINP0
V1	VINP1
V2	VINP2+(VINP1-VINP2) x (30/48)
V3	VINP2+(VINP1-VINP2) x (23/48)
V4	VINP2+(VINP1-VINP2) x (16/48)
V5	VINP2+(VINP1-VINP2) x (12/48)
V6	VINP2+(VINP1-VINP2) x (8/48)
V7	VINP2+(VINP1-VINP2) x (4/48)
V8	VINP2
V9	VINP3+(VINP2-VINP3) x (22/24)
V10	VINP3+(VINP2-VINP3) x (20/24)
V11	VINP3+(VINP2-VINP3) x (18/24)
V12	VINP3+(VINP2-VINP3) x (16/24)
V13	VINP3+(VINP2-VINP3) x (14/24)
V14	VINP3+(VINP2-VINP3) x (12/24)
V15	VINP3+(VINP2-VINP3) x (10/24)
V16	VINP3+(VINP2-VINP3) x (8/24)
V17	VINP3+(VINP2-VINP3) x (6/24)
V18	VINP3+(VINP2-VINP3) x (4/24)
V19	VINP3+(VINP2-VINP3) x (2/24)
V20	VINP3
V21	VINP4+(VINP3-VINP4) x (22/23)
V22	VINP4+(VINP3-VINP4) x (21/23)
V23	VINP4+(VINP3-VINP4) x (20/23)
V24	VINP4+(VINP3-VINP4) x (19/23)
V25	VINP4+(VINP3-VINP4) x (18/23)
V26	VINP4+(VINP3-VINP4) x (17/23)
V27	VINP4+(VINP3-VINP4) x (16/23)
V28	VINP4+(VINP3-VINP4) x (15/23)
V29	VINP4+(VINP3-VINP4) x (14/23)
V30	VINP4+(VINP3-VINP4) x (13/23)
V31	VINP4+(VINP3-VINP4) x (12/23)
V32	VINP4+(VINP3-VINP4) x (11/23)
V33	VINP4+(VINP3-VINP4) x (10/23)
V34	VINP4+(VINP3-VINP4) x (9/23)
V35	VINP4+(VINP3-VINP4) x (8/23)
V36	VINP4+(VINP3-VINP4) x (7/23)
V37	VINP4+(VINP3-VINP4) x (6/23)
V38	VINP4+(VINP3-VINP4) x (5/23)
V39	VINP4+(VINP3-VINP4) x (4/23)
V40	VINP4+(VINP3-VINP4) x (3/23)
V41	VINP4+(VINP3-VINP4) x (2/23)
V42	VINP4+(VINP3-VINP4) x (1/23)
V43	VINP4
V44	VINP5+(VINP4-VINP5) x (22/24)

Grayscale voltage	Formula
V45	VINP5+(VINP4-VINP5) x (20/24)
V46	VINP5+(VINP4-VINP5) x (18/24)
V47	VINP5+(VINP4-VINP5) x (16/24)
V48	VINP5+(VINP4-VINP5) x (14/24)
V49	VINP5+(VINP4-VINP5) x (12/24)
V50	VINP5+(VINP4-VINP5) x (10/24)
V51	VINP5+(VINP4-VINP5) x (8/24)
V52	VINP5+(VINP4-VINP5) x (6/24)
V53	VINP5+(VINP4-VINP5) x (4/24)
V54	VINP5+(VINP4-VINP5) x (2/24)
V55	VINP5
V56	VINP6+(VINP5-VINP6) x (44/48)
V57	VINP6+(VINP5-VINP6) x (40/48)
V58	VINP6+(VINP5-VINP6) x (36/48)
V59	VINP6+(VINP5-VINP6) x (32/48)
V60	VINP6+(VINP5-VINP6) x (25/48)
V61	VINP6+(VINP5-VINP6) x (18/48)
V62	VINP6
V63	VINP7

Notes:

- 1. Make sure DDVDH-V0 > 0.5V
- 2. Based on the generated 64 gray levels above, interpolated 4 levels are newly generated. Eventually total 253 gray levels are generated to acquire 16.2M color depth.

5.7 Oscillator

LG4573 could generate RC oscillation with an internal oscillation resistor for power boosting circuit, like as step-up and step-down.

5.8 OTP Control

LG4573 has an embedded OTP which is a 32-bit one-time programmable (OTP) IP from eMemory Technology Inc. (EO01X32KCV6).

EO01X32KCV6 is a CMOS, 1bit (1-bit) program OTP logic device. The main memory block is organized as 8-bits by 4 banks. See the data sheet of EO01X32KCV6.

The pins of the embedded OTP can be controlled using the OTP control 1 (C4h) register as shown below.

Table 10.

EO01X32KCV6	Bit fields of register C4h
PTM = 0V/1.8V	PTM[1:0] = 00/11
POR = 0V/1.8V	POR = 0/1
VPP = 1.8V/7.5V	VPP = 0/1
PPROG = 0V/1.8V	PPROG = 0/1
PWE = 0V/1.8V	PWE = 0/1
PA[1:0] = 0V/1.8V	PA[1:0] = 0/1
PDIN[7:0] = 0V/1.8V	PDIN[7:0] = 0/1

The RA[1:0] of register F9h selects one of four OTP bytes.

Accessing OTP control registers, follow the timing requirements of read and program cycles.

Read Cycle

Figure 18. OTP Timing

Valid Data

Table 11.

Parameter	Symbol	EO01X32KCV6	Unit

Valid Data

PDIN[7:0]

		Min	Max		
Rising Time / Falling Time	Tr / Tf	-	1	ns	
Data Access Time	Taa	-	70	ns	
Power-on Pulse Width Time	Tpor	200	-	ns	
Address / Data Setup Time	Tas / Tds	4	-	ns	
Address / Data Hold Time	Tah / Tdh	9	-	ns	
External VPP Setup Time	Tvps	0	-	ns	
External VPP Hold Time	Tvph	0	-	ns	
Program Recovery Time	Tvr	10	-	μs	
Program Pulse Width	Tpw	300	350	μs	
VDD Setup Time	Tvds	0	-	ms	
VDD Recovery Time	Tvdr	0	-	ms	
PPROG Setup Time	Tpps	10	-	ns	
PPROG Recovery Time	Tppr	10	-	ns	
Power on Read Time	Trst	20	-	ns	•

Notes:

- 1. All program signals that align together in the timing diagrams should be derived from the rising clock edge.
- 2. All timing measurements are from the 50% of the input to 50% of the output.
- 3. All input waveforms have rising time (tr) and falling time (tf) of 1ns from 10% to 90% of the input waveforms.
- 4. For capacitive loads greater than 1pF, access time will increase by 1ns per pF of additional loading.
- 5. Program time means one byte program time in user mode

The following sequences are for writing and reading data into and/or from OTP.

OTP Write Sequence

Figure 19. OTP Write Sequence

OTP Read Sequence

Figure 20. OTP Write Sequence

6 Commands

6.1 Command List

User Command Set

Name	Addr	Size	D/nC	b7	b6	b5	b4	b3	b2	b1	b0	Default
NOP	00h	0										
SWRESET	01h	0			SV	VRST = 1	(self clear	ed after a	fixed del	ay)		0
RDDPM	0Ah	1		0	IDM	0	nSLP	1	DISP	0	0	
RDDMADCTL	0Bh	1		0	0	0	0	BGR	0	FH	FV	
RDDCOLMOD	0Ch	1		0		DPIPF[2:0]	0	0	0	0	
RDDIM	0Dh	1		0	0 0 INV 0 0 0 0 0							
SLPIN	10h	0					nSLF	9 = 0				0
SLPOUT	11h	0					nSLF	P = 1				U
INVOFF	20h	0					INV	= 0				0
INVON	21h	0					INV	= 1				U
DISPOFF	28h	0					DISF	P = 0				0
DISPON	29h	0					DISF	P = 1				
TEOFF	34h	0	0									
TEON	35h	1	0									
TLON		T	1								M	
MADCTL	36h	1						BGR		FH	FV	00h
IDMOFF	38h	0					IDM	= 0				
IDMON	39h	0					IDM	= 1				
COLMOD	3Ah	1				DPIPF[2:0]					70h
			0									
TESCAN	44h	3	1							N[S):8]	00h
TESCAN	7-111	3	1				N[7	7:0]				00h
			1				TEPW	/[7:0]				00h
WRDISBV	51h	1	1				DBV	[7:0]				00h
RDDISBV	52h	1	1				DBV	[7:0]				00h
WRCTRLD	53h	1	1			BCTRL		DD	BL			00h
RDCTRLD	54h	1	1			BCTRL		DD	BL			00h
WRCABC	55h	1	1							CABO	[1:0]	00h
RDCABC	56h	1	1							CABO	[1:0]	00h
WRCABCMB	5Eh	1	1				CMB	[7:0]				00h
RDCABCMB	5Fh	1	1				CMB	[7:0]				00h
RDDDB	A1h	52	1				DDB	[7:0]				xxh
RDDDBC	A8h	52	1		•		DDB0	[7:0]			•	xxh

Manufacturer Command Set

RGBIF BIT 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Name	Addr	Size	D/nC	b7	b6	b5	b4	b3	b2	b1	b0	Default
					57	50	D3	D4	DS	DZ.	, D1	DO	Delauit
	TODI.	5111						SYNC	CKPI	HSPI	VSPI	DFPI	06h
PANELSET B2h 2 2 0										1101 E	V 0.1 L	DLIL	
PANELSET 82h 2 0													
	DANIEI CET	R2h	2					VDIL	7.0] 				OCII
PANELDRY B3h 1 0	FAINLESET	DZII					1.0	CELD		LIDC	[1.0]	DEV	116
PANELDRV B3h							LK		7.01	HRS	[1:0]	REV	
DISPMODE	DANEI DDV	R3h	1					الكار	7.0 <u>]</u>		1		Doll
DISPCTL1	TANLLDIKV	DOIT									DI	NV	02h
DISPCTL1	DISPMODE	B4h	1								D1	144	0211
DISPCTIL1										DITH			04h
1 SDT[7-0] 10h 1	DISPCTL1	B5h	5										
				1		ı	1	SDT[7:0]				10h
DISPCTL2				1				Ē	HPN[6:0]				
DISPCTL2				1				El	NGND[6:0)]			10h
DISPCTL2				1				SHIZ	7:0]				00h
												SLT	00h
1 CLW[7:0] 18h 1 GTO[5:0] 02h 02h 02h 04h 04h	DISPCTL2	B6h	6										
1 GTO[5:0] O2h 1 GNO[7:0] 40h 1 FTI[7:0] 10h OSCSET COh 2 0										ASG	SDM	FHN	
1						T	1	CLW[
1										[5:0]			
OSCSET													
OSCSET COh 2													
PWRCTL1	OSCSET	COh	2			1		GPM	[/:U] 		1		oon
PWRCTL1	USCSET	COII										OSC	OOh
PWRCTL1										FRS[4·0]		030	
PWRCTL2 C2h 1 0 LVGL VDL VCL VGH VDH OOh PWRCTL3 C3h 5 0 STMODE[2:0] 00h OOh OOh <td< td=""><td>PWRCTI 1</td><td>C1h</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>110[1.0]</td><td></td><td></td><td>0011</td></td<>	PWRCTI 1	C1h	1							110[1.0]			0011
PWRCTL2 C2h 1 0 LVGL VDL VCL VGH VDH ODD PWRCTL3 C3h 5 0 I STMODE[2:0] 00h PWRCTL3 1 I DC1[2:0] 04h DC1[2:0] 04h 04h 052[2:0] 03h DC2[2:0] 03h 053[2:0] 03h DCPFM[2:0] 03h 054[2:0] 07h PWRCTL4 C4h 6 0 0 00h PWRCTL4 C4h 6 0 0 00h 00h PWRCTL4 C4h 6 0 0 0 00h 00h <td>· WitterEI</td> <td>CIII</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DTE</td> <td></td> <td>STB</td> <td>DSTB</td> <td>02h</td>	· WitterEI	CIII							DTE		STB	DSTB	02h
PWRCTL3 C3h 5 0	PWRCTL2	C2h	1						3.2		0.2	20.2	02
1				1			LVGL	VDL	VCL	VGL	VGH	VDH	00h
1	PWRCTL3	C3h	5	0									
1				1						S	TMODE[2:	0]	00h
1													
PWRCTL4 C4h 6 0 OPB BMB BDC[2:0] 00h WRCTL4 1 OPB BMB BDC[2:0] 00h WRCTL5 1 GDC[2:0] AP[2:0] 00h WRCTL5 1 SELOPA REGPD BT[2:0] 05h PWRCTL5 C5h 1 VBS[2:0] VREFS[3:0] 08h PWRCTL6 C6h 3 0 VCM[6:0] 00h PWRCTL6 C6h 3 0 RV[2:0] 23h RCCTL C7h 3 0 RCONT[2:0] 50h OFCCTL C7h 3 0 RCONT[2:0] 50h OFCCTL C7h 3 0 RCONT[2:0] 50h OFCCTL C7h 3 0 RCONT[2:0] 60h BUA 1 OFCTD2[3:0] OFCTD1[3:0] 40h BLCTL C8h 2 0 CDSP[3:0] CDMP[3:0] 82h													
PWRCTL4 C4h 6 0 OPB BMB BDC[2:0] 00h 1 GDC[2:0] AP[2:0] 00h 1 GDC[2:0] AP[2:0] 00h 1 VRH1[4:0] 00h VRH2[4:0] 00h 00h 1 SELOPA REGPD BT[2:0] 05h PWRCTL5 C5h 1 0 VREFS[3:0] 0Bh PWRCTL5 C5h 1 0 VCM[6:0] 00h PWRCTL6 C6h 3 0 VCM[6:0] RV[2:0] 23h PWRCTL6 C6h 3 0 RCONT[2:0] 50h PWRCTL6 C6h 3 0 RCONT[2:0] 50h PWRCTL6 C6h 3 0 RCONT[2:0] 50h PWRCTL6 C7h 3 0 RCONT[2:0] 50h PWRCTL6 C7h 3 0 RCONT[2:0] 50h PWRCTL6 C7h 3 0 RC													
1			_								CPFM[2:0	0]	03h
1 GDC[2:0] AP[2:0] 00h 1 VRH1[4:0] 00h 1 VRH2[4:0] 00h 1 SELOPA REGPD BT[2:0] 05h 1 VBS[2:0] VREFS[3:0] 08h 1 VBS[2:0] VREFS[3:0] 08h 1 VCM[6:0] 00h 1 RI[2:0] RV[2:0] 23h 1 RSET[2:0] RCONT[2:0] 50h 0 1 RSET[2:0] RCONT[2:0] 50h 0 1 SBC GBC 00h 0 1 OFCCTL C7h 3 0 0 0 0 1 OFCTD2[3:0] OFCTD1[3:0] 40h 0 BLCTL C8h 2 0 0 0 1 CDSP[3:0] CDMP[3:0] 82h	PWRCTL4	C4h	6				0.00	2142			DD 050 03		0.01
1								BMB					
1		 					GDC[2:0]			\/DL1[4.0			
1 SELOPA REGPD BT[2:0] 05h		 											
Negret N		-					SELOPA	REGPD		VINI12[7.0			
PWRCTL5 C5h 1 0 SVCM[6:0] 00h PWRCTL6 C6h 3 0 RI[2:0] RV[2:0] 23h RVI 1 RVII RVIII SBC GBC 00h OFCCTL C7h 3 0 SBC GBC 00h 00h 0FCCTN		<u> </u>						I NEGI D		VRFF	S[3:0]		
PWRCTL6	PWRCTL5	C5h	1							71321			2211
PWRCTL6 C6h 3 0 RI[2:0] RV[2:0] 23h 1 RSET[2:0] RCONT[2:0] 50h 0 1 SBC GBC 00h 0FCCTL C7h 3 0 0FCEN 00h 0FCCTL 1 0FCEN 00h 00h 0FCTSW[7:0] BOh 0FCTD1[3:0] 40h 0FCTL C8h 2 0 0 CDMP[3:0] 82h							1	,	VCM[6:01		1	1	00h
1 RI[2:0] RV[2:0] 23h 1 RSET[2:0] RCONT[2:0] 50h 1	PWRCTL6	C6h	3										
1 RSET[2:0] RCONT[2:0] 50h				1			RI[2:0]						23h
SBC GBC O0h							RSET[2:0]			F	RCONT[2:0		
Hard													00h
H OFCTSW[7:0] B0h 1 OFCTD2[3:0] OFCTD1[3:0] 40h BLCTL C8h 2 0	OFCCTL	C7h	3										
1 OFCTD2[3:0] OFCTD1[3:0] 40h												OFCEN	
BLCTL C8h 2 0 CDSP[3:0] CDMP[3:0] 82h								OFCTS\	N[7:0]				B0h
BLCTL C8h 2 0				1		OFCT	TD2[3:0]			OFCTI	01[3:0]		40h
	BLCTL	C8h	2	0								_	
1 PWMP FPWM[1:0] 01h				1		CDS	SP[3:0]			CDM			82h
				1	PWMP						FPWN	ا[1:0]	01h

DCAMMAD	DOL		T 0					
RGAMMAP	D0h	9	0		DVD1[2.0]		DIVDO[3.0]	001-
			1		PKP1[2:0]		PKP0[2:0]	00h
			1		PKP3[2:0]		PKP2[2:0]	00h
			1		PKP5[2:0]		PKP4[2:0]	00h
			1		PRP1[2:0]		PRP0[2:0]	00h
			1				VRP0[4:0]	00h
			1				VRP1[4:0]	00h
			1		PFP1[2:0]		PFP0[2:0]	00h
			1		PFP3[2:0]		PFP2[2:0]	00h
			1				PMP[2:0]	00h
RGAMMAN	D1h	9	0					
			1		PKN1[2:0]		PKN0[2:0]	00h
			1		PKN3[2:0]		PKN2[2:0]	00h
			1		PKN5[2:0]		PKN4[2:0]	00h
			1		PRN1[2:0]		PRN0[2:0]	00h
			1				VRN0[4:0]	00h
			1				VRN1[4:0]	00h
			1		PFN1[2:0]		PFN0[2:0]	00h
			1		PFN3[2:0]		PFN2[2:0]	00h
			1				PMN[2:0]	00h
GGAMMAP	D2h	9	0					
			1		PKP1[2:0]		PKP0[2:0]	00h
			1		PKP3[2:0]		PKP2[2:0]	00h
			1		PKP5[2:0]		PKP4[2:0]	00h
			1		PRP1[2:0]		PRP0[2:0]	00h
			1		[]		VRP0[4:0]	00h
			1				VRP1[4:0]	00h
			1		PFP1[2:0]		PFP0[2:0]	00h
			1		PFP3[2:0]		PFP2[2:0]	00h
			1		1113[2.0]		PMP[2:0]	00h
GGAMMAN	D3h	9	0				1111 [2.0]	0011
GGAITITAIN	DJII	<u> </u>	1		PKN1[2:0]		PKN0[2:0]	00h
			1		PKN3[2:0]		PKN2[2:0]	00h
			1		PKN5[2:0]		PKN4[2:0]	00h
			1		PRN1[2:0]		PRN0[2:0]	00h
			1		PRINI[2.0]			00h
			1	-			VRN0[4:0] VRN1[4:0]	00h
			1	-	PFN1[2:0]		PFN0[2:0]	00h
			1	-				
					PFN3[2:0]		PFN2[2:0]	00h
DCAMMAN	DAL		1				PMN[2:0]	00h
BGAMMAN	D4h	9	0	 	DI/0450 63		P1/2052 23	201
	 		1	 	PKP1[2:0]		PKP0[2:0]	00h
	 		1	 	PKP3[2:0]		PKP2[2:0]	00h
			1		PKP5[2:0]		PKP4[2:0]	00h
			1		PRP1[2:0]		PRP0[2:0]	00h
			1	 			VRP0[4:0]	00h
	ļ		1			Т	VRP1[4:0]	00h
			1		PFP1[2:0]		PFP0[2:0]	00h
			1		PFP3[2:0]		PFP2[2:0]	00h
			1				PMP[2:0]	00h
BGAMMAN	D5h	9	0					
			1		PKN1[2:0]		PKN0[2:0]	00h
			1		PKN3[2:0]		PKN2[2:0]	00h
			1		PKN5[2:0]		PKN4[2:0]	00h
			1		PRN1[2:0]		PRN0[2:0]	00h
			1				VRN0[4:0]	00h
			1				VRN1[4:0]	00h
			1		PFN1[2:0]		PFN0[2:0]	00h
			1		PFN3[2:0]		PFN2[2:0]	00h
			1				PMN[2:0]	00h
TEST1	F0h	1	0					
			1	HIZ			TPOL[1	L:0] 00h
			•					· · · · · · · · · · · · · · · · · · ·

OTP1	F8h	3	0									
			1	PTM	[1:0]			PRD	PWE	VPP	PPROG	00h
			1	APRG						PA[[1:0]	00h
			1				PDIN	[7:0]				00h
OTP2	F9h	1	0									
			1	VCMSE	EL[1:0]					RA[[1:0]	00h
OTP3	FAh	4	0									
			1				PDOUT	Γ[7:0]				xxh
			1		PDOUT[15:8]						xxh	
			1		•		PDOUT[23:16]				xxh
			1		PDIN[7:0] VCMSEL[1:0] RA[1:0] PDOUT[7:0]							xxh

6.2 Command Description

6.2.1 00h - No Operation

Mnemonic NOP

Type Command

Parameters None

Description

This command is an empty command; it does not have any effect on the display module.

6.2.2 01h - Software Reset

Mnemonic SWRESET

Type Command

Parameters None

Description

When the Software Reset command is written, it causes a software reset. It resets the commands and parameters to their default values.

The display becomes to be blank or white immediately, which depends on the panel type.

Restrictions

It will be necessary to wait 5msec before sending new command following software reset. The display module loads all display supplier's factory default values to the registers during this time.

If Software Reset is applied during Sleep Out mode, it will be necessary to wait 120msec before sending Sleep out command.

Software Reset Command cannot be sent during Sleep Out sequence.

6.2.3 OAh - Read Display Power Mode

Mnemonic RDDPM

Type Read

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	IDM	-	nSLP	-	DISP	-	-	00h

Description

This command indicates the current status of the display as described below:

IDM - Idle Mode On/Off

0 = Idle Mode Off.

1 = Idle Mode On.

nSLP - Sleep In/Out

0 = Sleep In Mode.

1 = Sleep Out Mode.

DISP – Display On/Off

0 = Display is Off.

1 = Display is On.

6.2.4 OBh - Read Display MADCTL

Mnemonic RDDMADCTL

Type Read

 Parameters
 No.
 b7
 b6
 b5
 b4
 b3
 b2
 b1
 b0
 Reset

 1
 BGR
 FH
 FV
 00h

Description

This command indicates the current status of the display as described below:

BGR - RGB/BGR Order

0 = RGB (When MADCTL.BGR = 0).

1 = BGR (When MADCTL.BGR = 1).

FH – Switching Between Segment Outputs and Host Processor This bit is not applicable for this project, so it is set to 0.

FV – Switching Between Common Outputs and Host Processor This bit is not applicable for this project, so it is set to 0.

6.2.5 OCh – Read Display Pixel Format

Mnemonic RDDCOLMOD

Type Read

 Parameters
 No.
 b7
 b6
 b5
 b4
 b3
 b2
 b1
 b0
 Reset

 1
 DPIPF[2:0]
 70h

Description

This command indicates the current status of the display as described below:

DPIPF[2:0] – DPI Pixel Format Definition

The pixel formats are shown below:

DPIPF[2:0]	Pixel Format
101	16 bits/pixel
110	18 bits/pixel
111	24 bits/pixel
Others	Not defined

6.2.6 ODh - Read Display Image Mode

Mnemonic RDDIM

Type Read

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	INV	1	ı	1	-	ı	00h

Description

This command indicates the current status of the display as described below:

INV - Inversion On/Off

0 = Inversion Off.

1 = Inversion On.

6.2.7 10h - Sleep In

Mnemonic SLPIN

Type Command

Parameters None

Default Sleep In Mode

Description

This command causes the display module to enter the minimum power consumption mode.

In this mode e.g. the DC/DC converter is stopped, Internal oscillator is stopped, and panel scanning is stopped.

Host interface is still working.

Backlights, display and keyboard, are off.

Dimming function does not work when there is changing mode from Sleep Out to Sleep In.

Restrictions

This command has no effect when module is already in sleep in mode. Sleep In Mode can only be left by the Sleep Out Command (11h).

It will be necessary to wait 5msec before sending next command, this is to allow time for the supply voltages and clock circuits to stabilize.

It will be necessary to wait 120msec after sending Sleep Out command (when in Sleep In Mode) before Sleep In command can be sent.

6.2.8 11h - Sleep Out

Mnemonic SLPOUT

Type Command

Parameters None

Default Sleep In Mode

Description

This command turns off sleep mode.

In this mode e.g. the DC/DC converter is enabled, Internal oscillator is started, and panel scanning is started.

See also section 8.6.2.

Restrictions

This command has no effect when module is already in sleep out mode. Sleep Out Mode can only be left by the Sleep In Command (10h), SW Reset Command (01h) or HW Reset.

It will be necessary to wait 5msec before sending next command, this is to allow time for the supply voltages and clock circuits to stabilize. The display module loads all display supplier's factory default values to the registers during this time and there cannot be any abnormal visual effect on the display image if factory default and register values are same when this load is done and when the display module is already Sleep Out mode.

The display module is doing self-diagnostic functions during this 5msec.

It will be necessary to wait 120msec after sending Sleep In command (when in Sleep Out mode) before Sleep Out command can be sent.

6.2.9 13h - Normal Display Mode On

Mnemonic NORON

Type Command

Parameters None

Default Normal Display Mode On

Description

This command returns the display to normal mode.

Restrictions

This command has no effect when Normal Display mode is active.

6.2.10 20h - Display Inversion Off

Mnemonic INVOFF

Type Command

Parameters None

Default Display Inversion Off

Description

This command is used to recover from display inversion mode.

This command does not change any other status.

6.2.11 21h - Display Inversion On

Mnemonic INVOFF

Type Command

Parameters None

Default Display Inversion Off

Description

This command is used to enter into display inversion mode.

Every bit is inverted from the Host Processor to the display.

This command does not change any other status.

6.2.12 28h - Display Off

Mnemonic DISPOFF

Type Command

Parameters None

Default Display Off

Description

This command is used to enter into Display Off mode. In this mode, the normal white or normal black image is displayed, which depends on the panel type.

This command does not change any other status.

There will be no abnormal visible effect on the display.

Restrictions

This command has no effect when module is already in display off mode.

6.2.13 29h - Display On

Mnemonic DISPON

Type Command

Parameters None

Default Display Off

Description

This command is used to recover from Display Off mode.

This command does not change any other status.

Restrictions

This command has no effect when module is already in display on mode.

6.2.14 36h - Set Address Mode

Mnemonic MADCTL

Type Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	ı	1	BGR	ı	FH	FV	00h

Description

This command defines write scanning direction from the host processor.

This command makes no change on the other driver status.

BGR – RGB/BGR Order

0 = Pixels sent in RGB order

1 = Pixels sent in BGR order

FH – Flip Horizontal

0 = Normal

1 = Flipped

FV – Flip Vertical (Note: For this function, the panel should support bi-directional scanning.)

0 = Normal

1 = Flipped

The remaining flip combination of FH=1 with FV=1 is as follows. For this function, the panel should support bi-directional scanning.

6.2.15 3Ah - Interface Pixel Format

Mnemonic COLMOD

Type Write

Parameters No. b7

No.	b7	b6	b5	b 4	b3	b2	b1	b0	Reset
1	-	[OPIPF[2:0]	-		-		70h

Description

This command is used to define the format of RGB picture data, which is to be transferred via the Host interface. The formats are shown below:

DPIPF[2:0] – DPI Pixel Format Definition

The pixel formats are shown below:

DPIPF[2:0]	Pixel Format
101	16 bits/pixel
110	18 bits/pixel
111	24 bits/pixel
Others	Not defined

6.2.16 51h - Write Display Brightness

Mnemonic WRDISBV

Type Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1				DBV	[7:0]				00h

Description

This command is used to adjust the brightness value of the display.

It should be checked what is the relationship between this written value and output brightness of the display. This relationship is defined on the display module specification.

In principle relationship is that 00h value means the lowest brightness and FFh value means the highest brightness.

6.2.17 52h - Read Display Brightness Value

Mnemonic RDDISBV

Type Read

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1				DBV	[7:0]				00h

Description

This command returns the brightness value of the display.

It should be checked what the relationship between this returned value and output brightness of the display. This relationship is defined on the display module specification.

In principle the relationship is that 00h value means the lowest brightness and FFh value means the highest brightness.

6.2.18 53h - Write Control Display

Mnemonic WRCTRLD

Type Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	BCTRL	-	DD	BL	-	-	00h

Description

This command is used to control ambient light, brightness and gamma settings.

BCTRL – Brightness Control Block On/Off

This bit is always used to switch brightness for display.

0 = Off (Brightness registers are 00h, DBV[7:0])

1 = On (Brightness registers are active, according to the other parameters.)

DD – Display Dimming

0 = Display Dimming is off

1 = Display Dimming is on

BL – Backlight On/Off

0 = Off (Completely turn off backlight circuit. Control lines must be low.)

1 = On

6.2.19 54h - Read Display Brightness Value

Mnemonic RDCTRLD

Type Read

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	BCTRL	1	DD	BL	-	-	00h

Description

This command returns brightness control values.

BCTRL - Brightness Control Block On/Off

This bit is always used to switch brightness for display.

0 = Off (Brightness registers are 00h, DBV[7:0])

1 = On (Brightness registers are active, according to the other parameters.)

DD – Display Dimming

0 = Display Dimming is off

1 = Display Dimming is on

BL – Backlight On/Off

0 = Off (Completely turn off backlight circuit. Control lines must be low.)

1 = On

6.2.20 55h - Write Content Adaptive Brightness Control

Mnemonic WRCABC

Type Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	ı	ı	ı	ı	ı	ı	CABC[1:0]		00h

Description

This command is used to set parameters for image content based adaptive brightness control functionality.

There is possible to use 4 different modes for content adaptive image functionality, which are defined on a table below.

CABC[1:0] - CABC mode

00 = Off

01 = User Interface Image

10 = Still Picture

11 = Moving Image

6.2.21 56h - Read Content Adaptive Brightness Control

Mnemonic WRCABC

Type Read

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	ı	ı	ı	ı	ı	ı	CABC[1:0]		00h

Description

This command is used to read the settings for image content based adaptive brightness control functionality.

There is possible to use 4 different modes for content adaptive image functionality, which are defined on a table below.

CABC[1:0] - CABC mode

00 = Off

01 = User Interface Image

10 = Still Picture

11 = Moving Image

6.2.22 5Eh – Write CABC Minimum Brightness

Mnemonic WRCABCMB

Type Write

Parameters No

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1				CMB	[7:0]				00h

Description

This command is used to set the minimum brightness value of the display for CABC function.

In principle relationship is that 00h value means the lowest brightness for CABC and FFh value means the highest brightness for CABC.

6.2.23 5Fh - Read CABC Minimum Brightness

Mnemonic RDCABCMB

Type Read

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1				CMB	[7:0]				00h

Description

This command returns the minimum brightness value of CABC function.

In principle the relationship is that 00h value means the lowest brightness and FFh value means the highest brightness.

6.2.24 A1h - Read DDB Start

Mnemonic RDDDB

Type Read

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset		
1		DDB[7:0] : Revision									
2				DDB[7:0] : Level				01h		
3			I	DDB[7:0]	: Not use	d			00h		
4			I	DDB[7:0]	: Not use	d			00h		
5		DDB[7:0] : Manufacture ID (MSB)									
6			DDB[7	:0] : Manı	ufacture I	D (LSB)			2Ah		
7			DDB[7:0] : Dev	rice Code	(MSB)			45h		
8			DDB[7:0] : Dev	vice Code	(LSB)			73h		
9		DDB[7:0] : Length of DDB Level 2 Data (MSB)									
10	DDB[7:0] : Length of DDB Level 2 Data (LSB)								2Ah		

Description

This command returns the DDB (Device Descriptor Block) values. For further DDB values in level 2 (larger number than 10) are not described here in detail.

6.2.25 B1h - RGB Interface Setting

Mnemonic RGBIF

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	-	SYNC	CKPL	HSPL	VSPL	DEPL	06h
2	-		HBP[6:0]						
3			VBP[7:0]						

Description

This command is used to set registers related with RGB (MIPI DPI) interface.

SYNC – Sync mode

0 = VSYNC+HSYNC+DE

1 = VSYNC+HSYNC

If SYNC is 1, the DE pin is ignored and a corresponding signal is internally generated using the registers HBP and VBP.

CKPL – PCLK pin polarity

0 = Rising edge

1 = Falling edge

HSPL – HSYNC pin polarity

0 = Active high

1 = Active low

VSPL - VSYNC pin polarity

0 = Active high

1 = Active low

DEPL – DE pin polarity

0 = Active high

1 = Active low

HBP[6:0] - Horizontal backporch in PCLKs

Used only if RGBIF.SYNC = 1 and the relationship of HBP > SDT should always be guaranteed for both DE and SYNC modes.

If HBP[6:0] is 32, then HBP is 32XPLK.

VBP[7:0] - Vertical backporch in lines

Used only if RGBIF.SYNC = 1.

If VBP[6:0] is 32, then VBP is 32x(Line Time).

Restrictions

This command has no effect if RGB interface is not used.

6.2.26 B2h - Panel Characteristics Setting

Mnemonic PANELSET

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	LR	SELP	-	HRS	[1:0]	REV	11h
2	VRS[7:0]							D8h	

Description

LR - Swap left/right GIP signals

0 = No swap

1 = Swap

SELP - Panel select

0 = L-Typepanel

1 = H-Type panel

HRS[1:0] - Horizontal resolution in pixels

00 = 480 (Valid source outputs = S1 ~ S1440)

01 = 360 (Valid source outputs = S181 ~ S1260)

10 = 320 (Valid source outputs = S241 ~ S1200)

11 = 240 (Valid source outputs = S361 ~ S1080)

REV – Panel type

0 = Normally black panel

1 = Normally white panel

VRS[7:0] - Vertical resolution in lines divided by 4

For example, if VRS is C8h (200 in decimal), vertical resolution is 800.

VRS[7:0]	Supportable Row Resolution
0	1024
1	4
2	8
3	12
255	1020

6.2.27 B3h - Panel Drive Setting

MnemonicPANELDRVTypeRead/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	-	-	-	-	DINV	[1:0]	02h

Description

DINV[1:0] – Dot inversion mode

DINV[1:0]	Mode	Description					
00	Column	1st frame 2nd frame					
	inversion	line 1 + - + - + - + - + - +					
		line 2 + - + - + - + - +					
		line 3 + - + - + - + - + - +					
		line 4 + - + - + - + - + - + - + - +					
01	1-dot inversion	1st frame 2nd frame					
		line 1 + - + - + - + - + - + - +					
		line 2 - + - + - + - + - + + + +					
		line 3 + - + - + - + - +					
		line 4 - + - + - + - + - + - + + + +					
10	2-dot inversion	1st frame 2nd frame					
		line 1 + - + - + - + - + - + - + - +					
		line 2 + - + - + - + - + - +					
		line 3 - + - + - + - + - + + + + + + +					
		line 4 - + - + - + - + - + - + + + + + +					
11	3-dot inversion	1st frame 2nd frame					
		line 1 + - + - + + - + - + - + - + - +					
		line 2 + - + - + - + - +					
		line 3 + - + - + - + - +					
		line 4 - + - + - + + - + - + + + + + +					

6.2.28 B4h - Display Mode Control

MnemonicPANELSETTypeRead/Write

Parameters N

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	-	-	-	DITH	-	-	04h

Description

DITH – Dither block enable

0 = Disable1 = Enable

6.2.29 B5h - Display Control 1

Mnemonic DISPCTL1

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset	
1			SDT[7:0]							
2	-		SHPN[6:0]							
3	-			E	NGND[6:()]			10h	
4			SHIZ[7:0]							
5	1	-	-	1	1	ı	-	SLT	00h	

Description

This command sets registers related with source outputs.

SDT[7:0] – Source output delay; [1..255] pixel clocks

SHPN[6:0] - Equalization period; [0..127] pixel clocks

ENGND[6:0] - GND level period; [1..127] pixel clocks

SHIZ[7:0] Source output High-Z period controlled by registers GDC and BDC.

SLT – Spread spectrum source output generation

0 = Simultaneous drive

1 = Spread source outputs for several pixel clocks

6.2.30 B6h - Display Control 2

Mnemonic DISPCTL2

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset	
1	-	ı	1	-	ı	ASG	SDM	FHN	01h	
2		CLW[7:0]								
3	-	-		GTO[5:0]						
4		GNO[7:0]							40h	
5	FTI[7:0]								10h	
6	GPM[7:0]								00h	

Description

This command sets registers related with gate outputs.

ASG - (Amorphous Silicon Gate) Scanning mode only for H-type panel

0 = Dual scan

1 = Single scan

SDM – Number of gate clocking phases only for L-type panel

0 = 4-phase clocking

1 = 8-phase clocking

FHN – Gate signaling mode for both panel types

0 = non-overlapping

1 = overlapping

CLW[7:0] - Non-overlapping interval between GCLKs; [1..255] pixel clocks

GTO[5:0] – GPWR toggling period; [1..63] frames

GNO[7:0] – Non-overlapping interval between GPWRs; [1..255] pixel clocks

FTI[7:0] - GVST output delay; [1..255] pixel clocks

GPM[7:0] – Duration of gate pulse modulation; [0..255] pixel clocks

In case of H-type panel (SELP=1), ASG and FHN are the related registers. According to ASG, dual mode (ASG=0) or single mode (ASG=1) is selected. According to the FHN, non-overlap (FHN=0) or overlap (FHN=1) mode is selected. The FTI determines the delay time of starting signal (STPO or STPE) referring to Hsync. And the CLW determines the non-overlapping time between CLKs.. The following timing diagram and the tables are for them.

Figure 21. FTI and CLW timing diagram for H-type panel

CLW[7:0]] –Non-overla	p timing contr	ol with CLW	/ register

CLW[7:0]	GCLK non-overlap timing				
8'h00	0				
8'h01	1 x PCLK				
8'h02	2 x PCLK				
:	:				
:	:				
8'hFD	253 x PCLK				
8'hFE	254 x PCLK				
8'hFF	255 x PCLK				

FTI[4:0] - GVST output delay control with FTI register

FTI[7:0]	GVST output delay
7'h00	0
7'h01	1 x PCLK
7'h02	2 x PCLK
:	:
:	:
7′h7D	125 x PCLK
7'h7E	126 x PCLK
7'h7F	127 x PCLK

In case of L-type panel (SELP=0), FHN, SDM, and FV (in 36h) are the related registers. According to the FHN, non-overlapping (FHN=0) or overlapping (FHN=1) mode is selected. According to the SDM, 4-phase (SDM=0) or 8-phase mode (SDM=1) is selected. Finally according to the FV, forward scan

mode (FV=0) or reverse scan mode (FV=1) is selected. This FV setting make flip horizontal image possible. But it should be noted that some L-type panels do not support this bi-directional scanning feature. It means that this flip horizontal image availability depends on the panel feature.

GVSTs output delay timing referred to Hsync can be set by FTI register. And non-overlapping intervals between nearby GCLKs can be set by CLW register. The setting choices are same as above in the H-type panel case. There is a related timing diagram in the following.

Figure 22. FTI and CLW timing diagram for L-type panel

To get more stable panel electrical characteristics, GNO and GTO registers are used only for the L-type panel. GTO determines GPWRs toggle frequency and the GNO determines the non-overlap timing between nearby GPWRs. The following timing diagram and the tables defines this.

Figure 23. GTO and GNO timing for L-type panel

GTO[5:0] - GPWR toggle frequency with GTO register

GTO[5:0]	GPWR toggle frequency
6'h00	0
6'h01	1 x Frame
6'h02	2 x Frame
:	:
:	:
6'hFD	61 x Frame
6'hFE	62 x Frame
6'h3F	63 x Frame

GNO[7:0] - Non-overlap interval control between GPWRs with GNO register

GNO[7:0]	GPWR non-overlap timing
8'h00	0
8'h01	1 x PCLK
8'h02	2 x PCLK
:	:
:	:
8'hFD	253 x PCLK
8'hFE	254 x PCLK
8'hFF	255 x PCLK

For both H- and L- type panel cases, gate pulse modulation can be adopted to reduce source data sampling errors at the edge of gate falling by reducing the VGH and VGL voltage level difference when pixel data sampling. See the following functional diagram. The gate pulse modulated period (=GPM) can be controlled by using GPM register.

Figure 24. Functional diagram of Gate Pulse Modulation

GPM[7:0] –Gate pulse modulation duration control with GPM register

GPM[7:0]	Duration of gate pulse modulation
8'h00	0
8'h01	1 x PCLK

8'h02	2 x PCLK
8'h03	3 x PCLK
:	:
8'hFD	253 x PCLK
8'hFE	254 x PCLK
8'hFF	255 x PCLK

Detailed waveforms with each cases are illustrated in the following figures. According to SELP setting, either H-type panel (SELP=1) or L-type panel (SELP=0) case is selected.

H-Type Panel (SELP = 1)

The three following figures are for the H-type panel. They vary their waveforms according to the FHN and ASG register settings.

Figure 25. Non-overlap, dual scan (FHN=0, ASG=0)

Figure 26. Non-overlap, single scan (FHN=X, ASG=1)

Figure 27. Overlap, dual scan (FHN=1, ASG=0)

L-Type Panel (SELP = 0)

The following figures are for the L-type panel. They vary their waveforms according to the FHN, SDM, FV and FVST register settings. When GSWAP register is set to high, GCLK waveform swapping happens for each modes.

Figure 28. Non-overlap, 4-phase, forward mode (FHN=0, SDM=0, FV=0)

Figure 29. Overlap, 4-phase, forward mode (FHN=1, SDM=0, FV=0)

Figure 30. Non-overlap, 8-phase, forward mode (FHN=0, SDM=1, FV=0)

Figure 31. Overlap, 8-phase, forward mode (FHN=1, SDM=1, FV=0)

Figure 32. Non-overlap, 4-phase, backward mode (FHN=0, SDM=0, FV=1)

Figure 33. Overlap, 4-phase, backward mode (FHN=1, SDM=0, FV=1)

Figure 34. Non-overlap, 8-phase, backward mode (FHN=0, SDM=1, FV=1)

Figure 35. Overlap, 8-phase, backward mode (FHN=1, SDM=1, FV=1)

6.2.31 C0h - Internal Oscillator Setting

Mnemonic OSCSET

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	-	-	-	-	1	OSC	00h
2	-	-	-	FRS[4:0]				00h	

Description

OSC – For step-up circuits, use the internal oscillator instead of PCLK.

0 = Disable

1 = Enable

FRS[4:0] – Oscillator frequency control

FRS[4:0]	Oscillator Frequency
00h	184 kHz
08h	256 kHz
10h	475 kHz
14h	499 kHz
18h	2.06 MHz
1Ah	2.30 MHz
1Ch	2.56 MHz
1Dh	2.94 MHz
1Eh	3.13 MHz
1Fh	3.58 MHz

6.2.32 C1h - Power Control 1

MnemonicPWRCTL1TypeRead/Write

Parameters No.

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	ı	ı	ı	DTE	ı	STB	DSTB	02h

Description

DTE - Manual gate output enable

0 = Disable

1 = Enable

STB – Standby mode

0 = Normal mode

1 = Standby mode

Standby mode is equivalent with sleep mode except that it does not come up with an automatic power on/off sequence.

DSTB – Deep standby mode

0 = Normal mode

1 = Deep standby mode

In deep standby mode, the internal logic power supply is turned off to reduce power consumption. In this mode, register contents are not retained.

6.2.33 C2h - Power Control 2

Mnemonic PWRCTL2

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	ı	ı	LVGL	VDL	VCL	VGL	VGH	VDH	00h

Description

LVGL – Generate LVGL

0 = Disable

1 = Enable

VDL – Generate DDVDL

0 = Disable

1 = Enable

VCL - Generate VCL

0 = Disable

1 = Enable

VGL - Generate VGL

0 = Disable

1 = Enable

VGH - Generate VGH

0 = Disable

1 = Enable

LVGL - Generate LVGL

0 = Disable

1 = Enable

VDH – Generate DDVDH

0 = Disable

1 = Enable

6.2.34 C3h - Power Control 3

MnemonicPWRCTL3TypeRead/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	1	-	1	1	STMODE[2:0]			00h
2	-	- 1	-	1	- 1	DC1[2:0]			04h
3	-	- 1	-	- 1	- 1	DC2[2:0]			03h
4	-	-	-	-	-	DC3[2:0]			03h
5	-	-	-	-	-	DCPFM[2:0]			03h

Description

STMODE[2:0] – These bits set the step-up auto power generation modes. $1\sim3$ are for H-type panel and $5\sim7$ are for L-type panel. 0 and 4 are for manual power generation settings.

STMODE[2:0]	DDVDH circuit	DDVDL circuit	Power Setting
3'h0	Manual	Manual	Manual
3′h1	External DDVDH	STEP-UP3	Auto
3'h2	PFM Boosting	STEP-UP3	Auto
3'h3	PFM Boosting	Diode inverting	Auto
3′h4	Manual	Manual	Manual
3'h5	External DDVDH	STEP-UP3	Auto
3'h6	PFM Boosting	STEP-UP3	Auto
3'h7	PFM Boosting	Diode inverting	Auto

DC1[2:0] – Clock frequency of the step-up circuit 2

DC1[2:0]	Step-up frequency		
	OSC = 1	OSC = 0	
000	fosc/2	fpclk/64	
001	fosc/4	fpclk/128	
010	fosc/8	fpclk/256	
011	fosc/16	fpclk/512	
100	fosc/32	fpclk/1024	
101	fosc/64	fpclk/2048	
110	fosc/128	fpclk/4096	
111	fosc/256	Setting disabled	

DC2[2:0] – Clock frequency of the step-up circuit 3

DC2[2:0]	Step-up frequency		
	OSC = 1	OSC = 0	
000	fosc/2	fpclk/64	
001	fosc/4	fpclk/128	
010	fosc/8	fpclk/256	
011	fosc/16	fpclk/512	
100	fosc/32	fpclk/1024	
101	fosc/64	fpclk/2048	
110	fosc/128	fpclk/4096	
111	fosc/256	Setting disabled	

DC3[2:0] - Clock frequency of the step-up circuit 4

DC3[2:0]	Step-up frequency		
	OSC = 1	OSC = 0	
000	fosc/2	fpclk/64	
001	fosc/4	fpclk/128	
010	fosc/8	fpclk/256	
011	fosc/16	fpclk/512	
100	fosc/32	fpclk/1024	
101	fosc/64	fpclk/2048	
110	fosc/128	fpclk/4096	
111	fosc/256	Setting disabled	

DCPFM[2:0] - Clock frequency of the PFM booster

DCPFM[2:0]	Step-up frequency	
	OSC = 1	OSC = 0
000	fosc/1	fpclk/4
001	fosc/1	fpclk/6
010	fosc/1	fpclk/8
011	fosc/1	fpclk/12
100	fosc/1	fpclk/16
101	fosc/1	fpclk/24
110	fosc/1	fpclk/32
111	fosc/2	fpclk/48

The followings are for understanding the operations of each auto power generation modes.

6.2.35 C4h - Power Control 4

Mnemonic PWRCTL4

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	OPB	BMB	-		BDC[2:0]		00h
2	-		GDC[2:0] AP[2:0]			00h			
3	-	-	-		,	VRH1[4:0]		00h
4	-	-	-		,	VRH2[4:0]		00h
5	-	-	SELOPA	REGPD	-		BT[2:0]		05h
6	-		VBS[2:0]	·	-	١	/REFS[2:0]	0Bh

Description

OPB – Bias selection

0 = Buffered bias

1 = Normal Bias

BMB – Bias line current adjustment

0 = 2

1 = 1

BDC[2:0] – Channel amp quiescent current adjustment

BDC[2:0]	Bias Current (μA)
0	Halt
1	0.5
2	1
3	1.5
4	2
5	2.5
6	3
7	3.5

GDC[2:0] – Grayscale amp quiescent current adjustment

GDC[2:0]	Bias Current (μA)
0	Halt
1	0.5
2	1
3	1.5
4	2
5	2.5
6	3
7	3.5

AP[2:0] – Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit.

AP[2:0]	Bias Current (μA)
0	Halt
1	0.25
2	0.5
3	0.75

4	1
5	1.25
6	1.5
7	1.75

VRH1[4:0] – Sets the VREG1 output level, which is a reference level for the grayscale voltage level.

VRH1[4:0]	VREG1 Level
5′h00	Halt (VREG1 = High-Z)
5′h01	VCI x 1.133
5'h02	VCI x 1.160
5'h03	VCI x 1.187
5′h04	VCI x 1.213
5'h05	VCI x 1.240
5′h06	VCI x 1.267
5'h07	VCI x 1.293
5'h08	VCI x 1.320
5'h09	VCI x 1.347
5'h0A	VCI x 1.373
5′h0B	VCI x 1.400
5'h0C	VCI x 1.427
5′h0D	VCI x 1.453
5'h0E	VCI x 1.480
5'h0F	VCI x 1.507

VRH1[4:0]	VREG1 Level
5′h10	VCI x 1.533
5′h11	VCI x 1.560
5′h12	VCI x 1.587
5′h13	VCI x 1.613
5′h14	VCI x 1.640
5′h15	VCI x 1.667
5′h16	VCI x 1.693
5′h17	VCI x 1.720
5′h18	VCI x 1.747
5′h19	VCI x 1.773
5′h1A	VCI x 1.800
5′h1B	VCI x 1.827
5'h1C	VCI x 1.853
5′h1D	VCI x 1.880
5'h1E	VCI x 1.907
5′h1F	VCI x 1.933

VRH2[4:0] – Sets the VREG2 output level, which is a reference level for the grayscale voltage level.

VRH2[4:0]	VREG2 Level
5′h00	Halt (VREG2 = High-Z)
5′h01	-VCI x 1.133
5′h02	-VCI x 1.160
5′h03	-VCI x 1.187
5′h04	-VCI x 1.213
5′h05	-VCI x 1.240
5′h06	-VCI x 1.267
5'h07	-VCI x 1.293
5′h08	-VCI x 1.320
5′h09	-VCI x 1.347
5'h0A	-VCI x 1.373
5′h0B	-VCI x 1.400
5'h0C	-VCI x 1.427
5′h0D	-VCI x 1.453
5′h0E	-VCI x 1.480
5'h0F	-VCI x 1.507

VRH2[4:0]	VREG2 Level
5′h10	-VCI x 1.533
5′h11	-VCI x 1.560
5′h12	-VCI x 1.587
5′h13	-VCI x 1.613
5′h14	-VCI x 1.640
5′h15	-VCI x 1.667
5′h16	-VCI x 1.693
5′h17	-VCI x 1.720
5′h18	-VCI x 1.747
5′h19	-VCI x 1.773
5′h1A	-VCI x 1.800
5′h1B	-VCI x 1.827
5′h1C	-VCI x 1.853
5′h1D	-VCI x 1.880
5'h1E	-VCI x 1.907
5′h1F	-VCI x 1.933

SELOPA – Vcom amp select

REGPD – Regulator power down

BT[2:0] – Changes the rate applied to the step-up circuit. Adjust the step-up rate according to the voltage in use. To reduce current consumption, set a smaller step-up rate.

BT[2:0]	DDVDH	DDVDL	VGH	VGL
3′h0			DDVDH x 3 [x 6]	-(DDVDH x 3) [x -6]
3′h1				-(VCI + DDVDH x 2) [x -5]
3′h2				-(DDVDH x 2) [x -4]
3′h3			VCI + DDVDH x	-(DDVDH x 3) [x -6]
3'h4			[x 5]	= (VCI + DDVDH x 2) [x =5]
3′h5				-(DDVDH x 2) [x -4]
3'h6			DDVDH x 2 [x 4]	-(VCI + DDVDH x 2) [x −5]
3'h7				-(DDVDH x 2) [x -4]

Notes:

- 1. The step-up rate from the VCI level is shown in the bracket [] in the above table.
- 2. When using the DDVDH, DDVDL, VCL, VGH and VGL voltage levels, connect a capacitor to each capacitor connection pin. Set the following voltages within the limits: DDVDH = max 6V, VCL = min -3V, VGH = max 18V, VGL = min -18V.
- 3. BT[2:0]=3'h4 mode is not recommended in auto power generation mode. If this mode is needed, manual power setting should be used.

VBS[2:0] - Sets the VBIAS level. The VBS bits can set the VBIAS level 1.3 to 1.9 times the VCI level.

VBS[2:0]	VBIAS
0	Halt
1	VCI x 1.30
2	VCI x 1.36
3	VCI x 1.44
4	VCI x 1.50
5	VCI x 1.56
6	VCI x 1.64
7	VCI x 1.90

VREFS[3:0] – Selects the reference voltage of the switching regulator circuit. Adjust the reference voltage according to the VCI voltage in use.

VREFS[3:0]	DDVDH voltage
0	VCI x 2.45
1	VCI x 2.40
2	VCI x 2.35
3	VCI x 2.30
4	VCI x 2.25
5	VCI x 2.20
6	VCI x 2.15
7	VCI x 2.10
8	VCI x 2.05
9	VCI x 2.00
10	VCI x 1.95

11	VCI x 1.90
12	VCI x 1.85
13	VCI x 1.80
14	VCI x 1.75
15	VCI x 1.70

6.2.36 C5h - Power Control 5

MnemonicPWRCTL5TypeRead/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-				VCM[6:0]				00h

Description

Note: Set the VCOML voltage from VREG2OUT level to 0V.

VCM[6:0] – Sets the VCOM level. VCM[6:0] specifies the voltage by VREG2OUT x n, where n can change from 0.1 to 1 as shown in the table below. To halt internal setting and adjust VCOM through VCOMR pad, set VCM[6:0] = "11111111". Then, VCOM level follows VCOMR level.

VCM[6:0]	VCOM
7′h00	Halt(VCOM=GND)
7′h01	VREG2OUT x 1
7′h02	VREG2OUT x 0.993
7'h03	VREG2OUT x 0.986
7'h04	VREG2OUT x 0.979
7'h05	VREG2OUT x 0.971
7'h06	VREG2OUT x 0.964
7'h07	VREG2OUT x 0.957
7'h08	VREG2OUT x 0.950
7'h09	VREG2OUT x 0.943
7'h0A	VREG2OUT x 0.936
7'h0B	VREG2OUT x 0.929
7'h0C	VREG2OUT x 0.921
7'h0D	VREG2OUT x 0.914
7'h0E	VREG2OUT x 0.907
7'h0F	VREG2OUT x 0.9
7′h10	VREG2OUT x 0.893
7′h11	VREG2OUT x 0.886
7′h12	VREG2OUT x 0.879
7'h13	VREG2OUT x 0.871
7'h14	VREG2OUT x 0.864
7′h15	VREG2OUT x 0.857
7'h16	VREG2OUT x 0.850
7'h17	VREG2OUT x 0.843
7'h18	VREG2OUT x 0.836
7'h19	VREG2OUT x 0.829
7'h0A	VREG2OUT x 0.821
7'h0B	VREG2OUT x 0.814
7'h0C	VREG2OUT x 0.807
7′h0D	VREG2OUT x 0.8
7'h0E	VREG2OUT x 0.793
7'h0F	VREG2OUT x 0.786
7'h20	VREG2OUT x 0.779
7'h21	VREG2OUT x 0.771
7'h22	VREG2OUT x 0.764
7'h23	VREG2OUT x 0.757
7'h24	VREG2OUT x 0.750
7'h25	VREG2OUT x 0.743

VCM[6:0]	VCOM
7'h26	VREG2OUT x 0.736
7'h27	VREG2OUT x 0.729
7'h28	VREG2OUT x 0.721
7'h29	VREG2OUT x 0.714
7'h2A	VREG2OUT x 0.707
7'h2B	VREG2OUT x 0.7
7'h2C	VREG2OUT x 0.693
7'h2D	VREG2OUT x 0.686
7'h2E	VREG2OUT x 0.679
7'h2F	VREG2OUT x 0.671
7′h30	VREG2OUT x 0.664
7′h31	VREG2OUT x 0.657
7′h32	VREG2OUT x 0.650
7'h33	VREG2OUT x 0.643
7'h34	VREG2OUT x 0.636
7'h35	VREG2OUT x 0.629
7'h36	VREG2OUT x 0.621
7'h37	VREG2OUT x 0.614
7'h38	VREG2OUT x 0.607
7'h39	VREG2OUT x 0.6
7'h3A	VREG2OUT x 0.593
7′h3B	VREG2OUT x 0.586
7′h3C	VREG2OUT x 0.579
7′h3D	VREG2OUT x 0.571
7′h3E	VREG2OUT x 0.564
7'h3F	VREG2OUT x 0.557
7′h40	VREG2OUT x 0.550
7′h41	VREG2OUT x 0.543
7′h42	VREG2OUT x 0.536
7′h43	VREG2OUT x 0.529
7′h44	VREG2OUT x 0.521
7′h45	VREG2OUT x 0.514
7′h46	VREG2OUT x 0.507
7′h47	VREG2OUT x 0.5
7'h48	VREG2OUT x 0.493
7'h49	VREG2OUT x 0.486
7'h4A	VREG2OUT x 0.479
7′h4B	VREG2OUT x 0.471

VCM[6:0]	VCOM
7'h4C	VREG2OUT x 0.464
7'h4D	VREG2OUT x 0.457
7'h4E	VREG2OUT x 0.450
7'h4F	VREG2OUT x 0.443
7'h50	VREG2OUT x 0.436
7'h51	VREG2OUT x 0.429
7′h52	VREG2OUT x 0.421
7'h53	VREG2OUT x 0.414
7'h54	VREG2OUT x 0.407
7'h55	VREG2OUT x 0.4
7'h56	VREG2OUT x 0.393
7'h57	VREG2OUT x 0.386
7'h58	VREG2OUT x 0.379
7'h59	VREG2OUT x 0.371
7'h5A	VREG2OUT x 0.364
7'h5B	VREG2OUT x 0.357
7'h5C	VREG2OUT x 0.350
7'h5D	VREG2OUT x 0.343
7'h5E	VREG2OUT x 0.336
7'h5F	VREG2OUT x 0.329
7'h60	VREG2OUT x 0.321
7'h61	VREG2OUT x 0.314
7'h62	VREG2OUT x 0.307
7'h63	VREG2OUT x 0.3
7'h64	VREG2OUT x 0.293
7'h65	VREG2OUT x 0.286
7'h66	VREG2OUT x 0.279
7'h67	VREG2OUT x 0.271
7'h68	VREG2OUT x 0.264
7'h69	VREG2OUT x 0.257
7′h6A	VREG2OUT x 0.250
7′h6B	VREG2OUT x 0.243
7'h6C	VREG2OUT x 0.236
7′h6D	VREG2OUT x 0.229
7'h6E	VREG2OUT x 0.221
7'h6F	VREG2OUT x 0.214
7'h70	VREG2OUT x 0.207
7′h71	VREG2OUT x 0.2

VCM[6:0]	VCOM
7′h72	VREG2OUT x 0.193
7′h73	VREG2OUT x 0.186
7′h74	VREG2OUT x 0.179
7′h75	VREG2OUT x 0.171
7'h76	VREG2OUT x 0.164
7′h77	VREG2OUT x 0.157
7'h78	VREG2OUT x 0.150
7′h79	VREG2OUT x 0.143
7'h7A	VREG2OUT x 0.136
7′h7B	VREG2OUT x 0.129
7'h7C	VREG2OUT x 0.121
7'h7D	VREG2OUT x 0.114
7′h7E	VREG2OUT x 0.107
7'h7F	VCOMR

6.2.37 C6h - Power Control 6

Mnemonic PWRCTL4

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	RI[2:0]		ı		RV[2:0]		23h	
2	-	RSET[2:0]		-	R	CONT[2:0)]	50h	
3	-	-	-	-	-	-	SBC	GBC	00h

Description

RI[2:0] – These bits control the bias current of internal logic regulator.

RI[2:0]	Logic Regulator Bias Current
0	x 0.2
1	x 1
2	x 2
3	x 3
4	x 3
5	x 4
6	x 5
7	x 6

RV[2:0] – These bits control the output voltage of internal logic regulator.

RV[2:0]	VDD Voltage
0	VCI x 0.80
1	VCI x 0.75
2	VCI x 0.70
3	VCI x 0.65
4	VCI x 0.60
5	VCI x 0.55
6	VCI x 0.50
7	VCI x 0.45

RSET[2:0] – These bits control the main bias.

RSET[2:0]	Main Bias Current
0	x 0.39
1	x 0.43
2	x 0.48
3	x 0.56
4	x 0.65
5	x 0.79
6	x 1.00 (default)
7	x 1.36

RCONT[2:0] – These bits control the input voltage of main bias opamp.

RCONT[2:0]	Main Bias Voltage
0	VCI x 0.25
1	Setting disabled

2	Open		
3	VCI x 0.30		
4	Setting disabled		
5	Setting disabled		
6	VCI x 0.20		
7	Setting disabled		

SBC – Source Channel AMP bias control.

GBC – Grayscale AMP bias control.

6.2.38 C7h - Offset Cancelling Control

Mnemonic OFCCTL

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-	-	•	-	-	-	•	OFCEN	00h
2	OFCTSW[7:0]				B0h				
3	OFCTD2[3:0]				OFCTE) 1[3:0]		40h	

Description

OFCEN - Offset cancelling enable/disable

0 = disable

1 = enable

OFCTSW[7:0] - Offset sampling period in 2*PCLKs

OFCTSW[7:0]	Sampling Period in PCLKs
0	θ
1	2
2	4
3	6
	
253	506
254	508
255	510

OFCTD1[3:0] - Delay of the offset sampling start time in 2*PCLKs

OFCTD2[3:0] — Interval between offset sampling period and compensation period in 2*PCLKs

6.2.39 C8h - Backlight Control

Mnemonic BLCTL

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	CDSP[3:0]					CDMF	P[3:0]		82h
2	PWMP	-	-	-	-	-	FPWN	1[1:0]	01h

Description

CDSP[3:0] - Dimming control of still image

CDSP[3:0]	Dimming Control Steps	CDSP[3:0]	Dimming Control Steps
4'h0	0	4'h8	8
4'h1	1	4'h9	9
4'h2	2	4'hA	10
4'h3	3	4'hB	11
4'h4	4	4'hC	12
4'h5	5	4'hD	13
4'h6	6	4'hE	14
4'h7	7	4'hF	15

CDMP[3:0] – Dimming control of moving picture

CDMP[3:0]	Dimming Control Steps	CDMP[3:0]	Dimming Control Steps
4'h0	0	4'h8	8
4'h1	1	4'h9	9
4'h2	2	4'hA	10
4'h3	3	4′hB	11
4'h4	4	4'hC	12
4'h5	5	4′hD	13
4'h6	6	4′hE	14
4'h7	7	4′hF	15

PWMP – PWM output polarity

0 = Active high 1 = Active low

FPWM[1:0] - PWM frequency

FPWM[1:0]	PWM Frequency
0	Frame frequency x 2
1	Frame frequency x 4
2	Frame frequency x 8
3	Frame frequency x 16

6.2.40 D0h - Positive Gamma Curve for Red

Mnemonic RGAMMAP

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-		PKP1[2:0]]	-	PKP0[2:0]			00h
2	-		PKP3[2:0]]	-	PKP2[2:0]			00h
3	-		PKP5[2:0]]	-	PKP4[2:0]			00h
4	-		PRP1[2:0]]	-	PRP0[2:0]			00h
5	-	-	-		,	VRP0[4:0]		00h
6	-	-	-		,	VRP1[4:0]		00h
7	-		PFP1[2:0]				PFP0[2:0]		00h
8	-	PFP3[2:0]			-		PFP2[2:0]		00h
9	-				1		PMP[2:0]		00h

Description

PKP0-5[2:0] – Gamma fine-adjustment register for positive polarity

PRP0-1[2:0] – Gamma gradient-adjustment register for positive polarity

VRP0-1[3:0] – Gamma amplitude-adjustment register for positive polarity

PFP0-3[2:0] – Gamma fine adjustment register bits for positive polarity

PMP[2:0] – Gamma fine adjustment register bits for positive polarity

6.2.41 D1h - Negative Gamma Curve for Red

Mnemonic RGAMMAN

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-		PKN1[2:0]]	-	PKN0[2:0]			00h
2	-		PKN3[2:0]]	-	PKN2[2:0]			00h
3	-		PKN5[2:0]]	-		PKN4[2:0]]	00h
4	-	PRN1[2:0]			-		PRN0[2:0]]	00h
5	-	-	-		,	VRN0[4:0]		00h
6	-	-	-		,	VRN1[4:0]		00h
7	-		PFN1[2:0]]	-		PFN0[2:0]		00h
8	-	PFN3[2:0]			-		PFN2[2:0]		00h
9	-				-		PMN[2:0]		00h

Description

PKN0-5[2:0] – Gamma fine-adjustment register for negative polarity

PRN0-1[2:0] – Gamma gradient-adjustment register for negative polarity

VRNO-1[3:0] – Gamma amplitude-adjustment register for negative polarity

PFN0-3[2:0] – Gamma fine adjustment register bits for negative polarity

PMN[2:0] – Gamma fine adjustment register bits for negative polarity

6.2.42 D2h - Positive Gamma Curve for Green

Mnemonic GGAMMAP

Read/Write

Parameters

Type

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-		PKP1[2:0]		-		PKP0[2:0]		
2	-		PKP3[2:0]		-	PKP2[2:0]			00h
3	-		PKP5[2:0]		-		PKP4[2:0]		00h
4	-		PRP1[2:0]]	-		PRP0[2:0]		00h
5	-	ı	ı		,	VRP0[4:0]]		00h
6	-	ı	ı		,	VRP1[4:0]]		00h
7	-	PFP1[2:0]			-		PFP0[2:0]		00h
8	-	PFP3[2:0]			-		PFP2[2:0]		00h
9	-				-		PMP[2:0]		00h

Description

PKP0-5[2:0] – Gamma fine-adjustment register for positive polarity

PRP0-1[2:0] – Gamma gradient-adjustment register for positive polarity

VRP0-1[3:0] - Gamma amplitude-adjustment register for positive polarity

PFP0-3[2:0] – Gamma fine adjustment register bits for positive polarity

PMP[2:0] – Gamma fine adjustment register bits for positive polarity

6.2.43 D3h - Negative Gamma Curve for Green

Mnemonic GGAMMAN

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-		PKN1[2:0]]	ı	PKN0[2:0]			00h
2	-		PKN3[2:0]]	ı	PKN2[2:0]			00h
3	-		PKN5[2:0]]	-	PKN4[2:0]			00h
4	-		PRN1[2:0]			PRN0[2:0]			00h
5	-	-	-		,	VRN0[4:0]		00h
6	-	-	-		,	VRN1[4:0]		00h
7	-		PFN1[2:0]				PFN0[2:0]		00h
8	-	PFN3[2:0]			-		PFN2[2:0]		00h
9	-				-		PMN[2:0]		00h

Description

PKN0-5[2:0] – Gamma fine-adjustment register for negative polarity

PRN0-1[2:0] – Gamma gradient-adjustment register for negative polarity

VRNO-1[3:0] – Gamma amplitude-adjustment register for negative polarity

PFN0-3[2:0] – Gamma fine adjustment register bits for negative polarity

PMN[2:0] – Gamma fine adjustment register bits for negative polarity

6.2.44 D4h - Positive Gamma Curve for Blue

Read/Write

Mnemonic BGAMMAP

Parameters

Type

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-		PKP1[2:0]]	-		PKP0[2:0]		
2	-		PKP3[2:0]]	-	PKP2[2:0]			00h
3	-		PKP5[2:0]]	-	PKP4[2:0]			00h
4	-	PRP1[2:0]			-		PRP0[2:0]		00h
5	-	-	ı		,	VRP0[4:0]		00h
6	-	-	ı		,	VRP1[4:0]		00h
7	-		PFP1[2:0]]	-		PFP0[2:0]		00h
8	-	PFP3[2:0]			-		PFP2[2:0]		00h
9	-				-		PMP[2:0]		00h

Description

PKP0-5[2:0] – Gamma fine-adjustment register for positive polarity

PRP0-1[2:0] – Gamma gradient-adjustment register for positive polarity

VRP0-1[3:0] – Gamma amplitude-adjustment register for positive polarity

PFP0-3[2:0] – Gamma fine adjustment register bits for positive polarity

PMP[2:0] – Gamma fine adjustment register bits for positive polarity

6.2.45 D5h – Negative Gamma Curve for Blue

Mnemonic BGAMMAN

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	-		PKN1[2:0]]	-	PKN0[2:0]			00h
2	-	F	KNP3[2:0)]	-	PKN2[2:0]			00h
3	-		PKN5[2:0]]	-	PKN4[2:0]			00h
4	-		PRN1[2:0]]	-	PRN0[2:0]			00h
5	-	-	-		,	VRN0[4:0]		00h
6	-	-	-		,	VRN1[4:0]		00h
7	-	PFN1[2:0]			-		PFN0[2:0]		00h
8	-	PFN3[2:0]			-		PFN2[2:0]]	00h
9	-				-		PMN[2:0]	•	00h

Description

PKN0-5[2:0] – Gamma fine-adjustment register for negative polarity

PRN0-1[2:0] – Gamma gradient-adjustment register for negative polarity

VRNO-1[3:0] – Gamma amplitude-adjustment register for negative polarity

PFN0-3[2:0] - Gamma fine adjustment register bits for negative polarity

PMN[2:0] – Gamma fine adjustment register bits for negative polarity

6.2.46 F0h - Test Register 1

Mnemonic TEST1

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	HIZ	-	ı	-	-	-	TPOL	[1:0]	00h

Description

6.2.47 F8h - OTP 1

Mnemonic OTP1

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	PTM	[1:0]	-	-	PRD	PWE	VPP	PPROG	00h
2	APRG	-	-	-	-	-	PA[1:0]	00h
3		PDIN[7:0]						00h	

Description

PPROG: Program mode enable.

VPP: Power switch control for the VPP pin of the embedded OTP. When VPP = "1", the internal VPP is set to 7.5V; otherwise it is set to 1.8V. This VPP register parameter is different from VPP in PAD.

PWE: Write enable.

PRD: Pin for power-on rest.

PTM[1:0]: Pins for enabling test mode.

PA[1:0]: Address input. This selects one of four banks of the OTP as bellows.

PA[1:0]	Write Data Input	Write OPT Cell
2′h0	PDIN[6:0]	Cell[6:0]
2′h1	PDIN[6:0]	Cell[14:8]
2′h2	PDIN[6:0]	Cell[22:16]
2'h3	PDIN[6:0]	Cell[30:24]

APRG: Select the method of write operation as bellows.

APRG	Write Operation
1'h0	Write address is PA.
1'h0	Write address is auto select address.

PDIN[7:0] : Data input.

More details can be referenced at 5.8 OTP Control section.

6.2.48 F9h - OTP 2

Mnemonic OTP2

Type Read/Write

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	VCM	1SEL	-	1	-	-	RA[1:0]	00h

Description

RA[1:0]: Read address input. This selects one of four banks of the OTP as bellows.

RA[1:0]	Read Data Input	Read OPT Cell
2′h0	PDOUT [6:0]	Cell[6:0]
2′h1	PDOUT [6:0]	Cell[14:8]
2′h2	PDOUT [6:0]	Cell[22:16]
2′h3	PDOUT[6:0]	Cell[30:24]

VCMSEL[1:0]: Sets Vcom level from either the register C5h or the OTP as bellows.

VCMSEL[1:0]	Vcom Level adjustment
2′h0	VCM[6:0] of the register C5h
2′h1	OTP data at first if OTP has data. Otherwise, VCM[6:0] of the register C5h
2′h2	OTP data selected by RA[1:0]
2′h3	OTP data selected by RA[1:0]

More details can be referenced at 5.8 OTP Control section.

6.2.49 FAh – OTP 3

Mnemonic OTP3

Type Read

Parameters

No.	b7	b6	b5	b4	b3	b2	b1	b0	Reset
1	PDOUT[7:0]						xxh		
2	PDOUT[15:8]					xxh			
3	PDOUT[23:16]					xxh			
4	PDOUT[31:24]					xxh			

Description

PDOUT[31:0] : Read OTP Data

More details can be referenced at 5.8 OTP Control section.

7 Electrical Characteristics

7.1 Absolute Maximum Ratings

Table 12. Absolute Maximum Ratings

Item	Symbol	Unit	Min	Max	Notes
Power supply voltage (1)	VDD	٧	-0.3	3.0	1
Power supply voltage (2)	VCC, IOVCC - GND	٧	-0.3	4.5	1, 2
Power supply voltage (3)	VCI – GND	٧	-0.3	4.5	1, 2
Power supply voltage (4)	DDVDH	٧	-0.3	8.0	1, 3, 4
Power supply voltage (5)	VGND - VCL	٧	-0.3	4.5	1
Power supply voltage (6)	VGH – AGND	٧	-0.3	18	1, 5
Power supply voltage (7)	AGND - VGL (or LVGL)	٧	-0.3	18	1, 6
Input voltage	Vt	٧	-0.3	IOVCC+0.3	1
Operating temperature	Topr	°C	-40	85	1, 7
Storage temperature	Tstg	°C	-55	125	1

Notes:

- 1. If used beyond the absolute maximum ratings, the LSI may permanently be damaged. It is strongly recommended to use the LSI at a condition within the electrical characteristics for normal operation. Exposure to a condition not within the electrical characteristics may affect device reliability.
- 2. Make sure (High) $VCI \ge GND$ (Low). (High) $IOVCC \ge GND$ (Low). (High) $VCC \ge GND$ (Low).
- 3. Make sure (High) DDVDH \geq AGND (Low).
- 4. Make sure (High) DDVDH ≥ VCI (Low).
- 5. Make sure (High) VGH ≥ GND (Low).
- 6. Make sure (High) GND ≥ VGL (or LVGL) (Low).
- 7. The DC/AC characteristics of die and wafer products is guaranteed at 85°C.
- 8. Make sure (High) VGH VGL (or LVGL) < 31V (operation maximum).

7.2 Power Supply Specifications

Table 13. Power Supply Specifications

No.		Item	LG4573
1	TFT source lines		1440 pins (480 x RGB)
2	GIP control signals		FW_L, BW_L, GPWR1_L, GPWR2_L, GCLK4_L, GCLK3_L, GCLK2_L, GCLK1_L, GVST1_L, GVST2_L, FW_R, BW_R, GPWR1_R, GPWR2_R, GCLK4_R, GCLK3_R, GCLK2_R, GCLK1_R, GVST1_R, GVST2_R,
3	Input voltages	IOVCC	1.65 to 3.30 V
		VCC	2.60 to 3.30 V
		VCI	2.60 to 3.30 V
4	Internal logic voltages	VDD	1.62 to 1.98 V
5	Internal step-up	DDVDH	VCI x (1.47 to 2.45)
	circuits	DDVDL	-DDVDH
		VGH	DDVDH x 2, DDVDH x 2 + VCI, DDVDH x 3
		VGL	-(DDVDH x 2), -(DDVDH x 2 + VCI), -(DDVDH x 3)
		LVGL	VGL - VCI
		VCL	VCI x -1

7.3 DC Characteristics

Table 14. DC Characteristics

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Notes
Input high voltage	V_{IH}	٧	IOVCC = 1.65~3.3	0.8*IOVCC	-	IOVCC	
Input low voltage	V_{IL}	٧	IOVCC = 1.65~3.3	-0.3	-	0.2*IOVCC	
Output high voltage (1) (DB17-0, SDO)	V _{OH1}	V	IOVCC = 1.65~3.3 IOH = 0.1mA	0.8*IOVCC	-	-	
Output low voltage (1) (DB17-0, SDO)	V _{OL1}	V	IOVCC = 1.65~3.3 IOL = 0.1mA	-	-	0.2*IOVCC	
I/O leakage current	I_{Li}	μA	Vin = 0~IOVCC	-1	-	1	
Current consumption during standby mode: (IOVCC - GND) + (VCC - GND)	I _{ST}	μА	IOVCC = VCC = VCI = 2.8V Ta = 25°C	-	1.4	10	

7.4 AC Characteristics

7.4.1 Serial Peripheral Interface Characteristics

Table 15. (Condition: IOVCC = 1.65 to 3.30V, VCC = 2.60 to 3.30V)

Item	Item			Min	Тур	Max
Serial clock cycle time	Write (received)	tSCYC	ns	20	ı	-
	Read (transmitted)			100	ı	-
Serial clock "High" level pulse width	Write (received)	tSCH	ns	10	ı	-
	Read (transmitted)			50	ı	-
Serial clock "Low" level pulse width	Write (received)	tSCL	ns	10	ı	-
	Read (transmitted)			50	ı	-
Serial clock rise/fall time		tscr, tscf	ns	-	-	20
Chip select setup time		tCSU	ns	20	ı	-
Chip select hold time		tCH	ns	10	ı	-
Serial input data setup time		tSISU	ns	5	-	-
Serial input data hold time		tSIH	ns	10	-	-
Serial output data setup time	tSOD	ns	80	-	150	
Serial output data hold time		tSOH	ns	-	-	80

Figure 36. Serial peripheral interface operation

7.4.2 Reset Characteristics

Table 16. (Condition: IOVCC = 1.65 to 3.30V, VCC = 2.60 to 3.30V)

Item	Symbol	Unit	Min	Тур	Max
Reset "Low" level width	tRES	ms	1	-	-
Reset rise time	trRES	μs	-	-	10

Figure 37. Reset operation

7.4.3 RGB Interface Timing Characteristics

Table 17. (24/18/16-bit I/F, IOVCC = 1.65 to 3.30V, VCC = 2.60 to 3.30V)

Item	Symbol	Unit	Min	Тур	Max
VSYNC/HSYNC setup time	tSYNCS	ns	5	ı	ı
VSYNC/HSYNC hold time	tSYNCH	ns	5	-	1
DE setup time	tENS	ns	5	-	-
DE hold time	tENH	ns	5	-	-
PCLK "Low" level pulse width	PWDL	ns	10	-	-
PCLK "High" level pulse width	PWDH	ns	10	-	-
PCLK cycle time	tCYCD	ns	20	-	-
Data setup time	tPDS	ns	6	-	-
Date hold time	tPDH	ns	6	-	-
PCLK, VSYNC, HSYNC, DE rise/fall time	trgbr, trgbf	ns	-	-	13

Figure 38. RGB interface

8 Reference Applications

8.1 Configuration of Power Supply Circuit

Figure 39 is one of the configurations of power supply circuits to generate liquid crystal panel drive levels.

Figure 39. One example of application circuits for the STMODE=7 case.

Some application circuitries in the above power supply circuit configuration should be changed according to the below setting modes. Please see the followings.

Under some abnormal situations, such as no power-on reset in the system or as un-kept power on/off sequences or as something else, external MOS switch should be protected by inserting high pass filter between LSW and MOS gate node of n1 in the following figure. The HPF circuits in the following figure is a recommended one. The connection of 1uF capacitance near to inductor and/or MOS switch could help to reduce the noises from VCI power node. But they are all optionals for special cases.

Figure 40. HPF (High Pass Filter) application circuits for protecting external MOS Tr.

Specification of External Elements Connected to LG4573 Power Supply

The following tables show specifications of external element connected to the LG4573's power supply circuit.

Table 18. Capacitor

Capacity	Recommended voltage	Pin connection
1uF	6V	C24, CB3, CB10**, CB11**
(B characteristics)	10V	C21, C22, C23, C31*
	25V	CB1, CB2
1.0uF	10V	CB5, CB7
1.0uF	6V	CB8
0.47uF	10V	Cb*

Note: Some components* are optional according to the specific usages and some components** would be eliminated after reliability test.

Table 19. Schottky diode

Feature	Pin connection
VF < 0.4V/20mA at 25°C , VR>30V	D1**, D2, D4, D5*, D6**

Note: Some components* are optional according to the specific usages and some components** would be eliminated after reliability test.

Table 20. N-ch MOSFET

Feature	Specification
M1	IDSS<1 μ A at VDS>16V, VGS=0V, and 25°C Ron<1.25 Ω at VGS=2.5V and ID=300mA ton<30ns(Typ.) toff<30ns(Typ.)

Note: Recommended N-ch MOSFETs:

- 1. Si1012R/X (Vishay Siliconix)
- 2. RUM003N02 (ROHM)

Table 21. Inductor for Booster

Feature	Inductance Specification
L1	Inductance value = 4.7uH
	Inductance tolerance < ± 20%
	DC resistance (± 30%) < 0.24ohm
	Max. rated current > 145mA at saturation
	Max. rated current > 470mA at temperature rise

Note: Recommended inductor components:

- 1. CBMF1608T4R7M (TAIYO YUDEN)
- 2. VLF3010AT-4R7MR70 (TDK)

9 History of Revision

Ver.	Date	Note
1.1.5	2010.09.03	- The chip thickness is changed from 300um to 250um. The others are same with LG4573 V1.1.5.

