МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Статистические методы обработки экспериментальных данных»

Тема: Обработка выборочных данных. Нахождение точечных оценок параметров распределения.

Студент гр.8382	 Нечепуренко Н.А.
Студент гр.8382	 Терехов А.Е.
Преподаватель	 Середа АВ.И.

Санкт-Петербург

Цели работы.

Получение практических навыков нахождения точечных статистических оценок параметров распределения.

Постановка задачи.

Для заданных выборочных данных вычислить с использованием метода моментов и условных вариант точечные статистические оценки математического ожидания, дисперсии, среднеквадратичного отклонения, асимметрии и эксцесса исследуемой случайной величины. Полученные результаты содержательно проинтерпретировать.

Порядок выполнения работы.

- Для интервального ряда, полученного в лабораторной работе №1 найти середины интервалов, а также накопленные частоты. Результаты занести в таблицу.
- 2. Для полученных вариант вычислить условные варианты. Результаты занести в таблицу.
- 3. Вычислить условные эмпирические моменты M_i^* через условные варианты. С помощью условных эмпирических моментов вычислить центральные эмпирические моменты μ_i^* . Полученные результаты занести в таблицу.
- 4. Вычислить выборочные среднее и дисперсию с помощью стандартной формулы и с помощью условных вариант. Убедиться, что результаты совпадают.
- Найти статистическую оценку коэффициентов асимметрии и эксцесса.
 Сделать выводы.

6. Дополнительное необязательное задание: для интервального ряда вычислить моду и медиану заданного распределения. Сделать выводы.

Основные теоретические положения.

C матистической оценкой Θ^* неизвестного параметра теоретического распределения Θ называется функция от наблюдаемых значений случайной величины:

$$\Theta^* = f(x_1, x_2, \dots, x_n)$$

Статистические оценки, определяемые одним числом, называются *точечными*.

Оценка называется *несмещенной*, если ее математическое ожидание равно оцениваемому параметру Θ при любом объеме выборки n.

Начальным эмпирическим моментом k-того порядка называется среднее значение k-х степеней элементов вариационного или интервального ряда:

$$\overline{M}_k = \frac{1}{N} \sum n_j x_j^k$$

Центральным эмпирическим моментом k-того порядка называется среднее значение k-х степеней разностей $x_j - \overline{x}$ для вариационного или интервального ряда.

$$\overline{m}_k = \frac{1}{N} \sum n_j (x_j - \overline{x})^k$$

Для упрощения вычислений используют условные моменты k-того порядка:

$$\overline{M}_k^* = \frac{1}{N} \sum n_j (\frac{x_j - C}{h})^k = \frac{1}{N} \sum n_j u_j^k$$

где C — середина интервала, принятого за условный ноль, h — длина интервала.

Центральные эмпирические моменты связаны с условными следующими соотношениями:

$$\overline{x} = \overline{M}_1 = \overline{M}_1^* + C$$

$$\overline{m}_2 = (\overline{M}_2^* - (\overline{M}_1^*)^2)h^2$$

$$\overline{m}_3 = (\overline{M}_3^* - 3\overline{M}_2^*\overline{M}_1^* + 2(\overline{M}_1^*)^3)h^3$$

$$\overline{m}_4 = (\overline{M}_4^* - 4\overline{M}_3^*\overline{M}_1^* + 6\overline{M}_2^*(\overline{M}_1^*)^2 - 3(\overline{M}_1^*)^4)h^4$$

Статистические оценки асимметрии и эксцесса вычисляются по формулам:

$$\overline{A}_s = \frac{\overline{m}_3}{s^3}$$

$$\overline{E}_s = \frac{\overline{m}_3}{s^3} - 3$$

где s^2 — несмещенная оценка дисперсии.

Выполнение работы.

Для выполнения работы был выбран язык Python3 и среда Jupyter Notebook с сервисом Google Colab.

В лабораторной работе №1 были получены интервальные ряды для мужского и женского роста. Вычислим середины интервалов, а также накопленные частоты (см. табл. 1 и 2).

Таблица 1 – Интервальный ряд роста мужчин

Интервал	Середина интервала	Абсолютная	Накопленная	
		частота	частота	
[172.15 173.81)	172.98	16	16	
[173.81 175.47)	174.64	26	42	
[175.47 177.13)	176.3	25	67	

[177.13 178.8)	177.96	15	82
[178.8 180.46)	179.63	10	92
[180.46 182.12)	181.29	14	106
[182.12 183.78]	182.95	4	110

Таблица 2 – Интервальный ряд роста женщин

Интервал	Середина интервала	Абсолютная	Накопленная	
		частота	частота	
[158.29 160.01)	159.15	8	8	
[160.01 161.74)	160.88	24	32	
[161.74 163.46)	162.6	26	58	
[163.46 165.19)	164.32	16	74	
[165.19 166.91)	166.05	19	93	
[166.91 168.64)	167.77	11	104	
[168.64 170.36]	169.5	6	110	

Для вычисления условных вариант в качестве условного нуля возьмем середину 4 интервала как для мужчин, так и для женщин.

Построим таблицы вычисления условных вариант согласно рассмотренной в лекции, только будем использовать абсолютные частоты. Результаты приведены в таблицах 3 и 4.

Таблица 3 – Условные варианты роста мужчин

\overline{x}_i	u	n	nu	nu^2	nu^3	nu^4	$n(u+1)^4$
172.98	-3	16	-48	144	-432	1296	256
174.64	-2	26	-52	104	-208	416	26
176.30	-1	25	-25	25	-25	25	0

177.96	0	15	0	0	0	0	15
179.62	1	10	10	10	10	10	160
181.28	2	14	28	56	112	224	1134
182.94	3	4	12	36	108	324	1024
Σ		110	-75	375	-435	2295	2615
	M_k^*		-0.68	3.41	-3.95	20.86	-

Выполним проверку по последнему столбцу: 2295-1740+2250-300+110=2615 — верно.

Таблица 4 – Условные варианты роста женщин

$\overline{x_i}$	u	n	nu	nu^2	nu^3	nu^4	$n(u+1)^4$
159.15	-3	8	-24	72	-216	648	128
160.87	-2	24	-48	96	-192	384	24
162.60	-1	26	-26	26	-26	26	0
164.32	0	16	0	0	0	0	16
166.04	1	19	19	19	19	19	304
167.77	2	11	22	44	88	176	891
169.49	3	6	18	54	162	486	1536
2	2	110	-39	311	-165	1739	2899
	M_k^*		-0.35	2.83	-1.5	15.81	

Выполним проверку по последнему столбцу: 1739-660+1866-156+110=2899 — верно.

Обозначим эмпирические моменты как μ_k (в лекциях и формулах в разделе основные теоретические положения эмпирические моменты обознача-

лись как \overline{m}_k). Вычислим данные величины по формулам выше, получаем:

$$\mu_1^{\text{M}} = 176.83$$

$$\mu_2^{\text{M}} = 8.12$$

$$\mu_3^{\text{M}} = 10.93$$

$$\mu_4^{\text{M}} = 144.30$$

$$\mu_1^{\text{m}} = 163.73$$

$$\mu_2^{\text{m}} = 7.45$$

$$\mu_3^{\text{m}} = 6.50$$

$$\mu_4^{\text{m}} = 120.13$$

Вычислим среднее и дисперсию интервальных рядов с помощью стандартных формул:

$$\overline{x}_{\mathtt{B}} = \frac{1}{n} \sum n_i \overline{x}_i$$

$$D = \frac{1}{n} \sum n_i * (\overline{x}_i - \overline{x}_{\mathtt{B}})^2$$

Результаты совпали.

Вычислим несмещенную оценку дисперсии по формуле:

$$s^2 = \frac{n}{n-1}D$$

Получаем следующие значения:

$$s_{\rm M}^2 = 8.20$$

$$s_{\mathbf{x}}^2 = 7.52$$

По приведенным в разделе Основные теоретические положения форму-

лам вычислим оценку коэффициентов асимметрии и эксцесса:

$$\overline{A}_{\scriptscriptstyle \rm M}=0.46$$

$$\overline{E}_{\rm m}=2.14$$

$$\overline{A}_{\mathbf{x}} = 0.31$$

$$\overline{E}_{\mathbf{x}} = 2.12$$

Выборки роста мужчин и женщин имеют правостороннюю асимметрию, что вполне ожидаемо, так как были отобраны 110 стран с наиболее высоким населением в среднем. Так как значение коэффициента эксцесса положительно, кривые распределений островершинные.

Выводы.

В результате выполнения работы были найдены точечные статистические оценки параметров распределения для заданной выборки. С помощью метода условных эмпирических моментов были вычислены центральные эмпирические моменты 1-4 порядка. Результаты были сравнены с результатами стандартных формул для 1 и 2 порядка. Также были получены оценки коэффициентов асимметрии и эксцесса.

ПРИЛОЖЕНИЕ А. ИСХОДНЫЙ КОД ПРОГРАММЫ.

```
from math import log10, sqrt
import pandas as pd
SIZE = 110
N INT FLOAT = 1 + 3.322 * log10(SIZE)
N INT = int(N INT FLOAT)
data = pd.read csv('https://raw.githubusercontent.com/
   nechepurenkoN/spbetu2022 stats methods/master/cropped sample.
   csv')
male = data.iloc[:SIZE, 1]
female = data.iloc[:SIZE, 2]
sorted male = male.sort values()
sorted female = female.sort values()
male int width = (sorted male.iloc[-1] - sorted male.iloc[0]) /
   N INT
female int width = (sorted female.iloc[-1] - sorted female.iloc
   [0]) / N INT
def intervals(series, width):
    beg = []
    end = []
    avg = []
    count1 = []
    count2 = []
    for i interval in range (N INT):
        b = series.min() + width * i interval
```

```
beg.append(b)
       e = series.min() + width * (i interval + 1)
       end.append(e)
       avg.append((b + e) / 2)
       count1.append(len(series[series.between(b, e)]))
       count2.append(len(series[series.between(b, e)]) / SIZE)
   print(*list(zip([round(num, 3) for num in beg], [round(num,
      3) for num in end])), sep="\t")
   print(*[round(num, 3) for num in avg], sep="\t")
   print(*count1, sep="\t")
   print(*[round(num, 3) for num in count2], sep="\t")
    return list(zip(beg, end, avg, count1, count2, pd.Series(
      count1).cumsum()))
male hist = intervals(sorted male, male int width)
print('MALE INTERVAL SERIES')
for i in range(N INT):
   print(
       f'[{round(male hist[i][0], 2)} {round(male hist[i][1], 2)
          }) & {round(male hist[i][2], 2)} & {round(male hist[i])}
          [3], 2)  & {round(male hist[i][5], 2)} \\\\hline')
female hist = intervals(sorted female, female int width)
print('FEMALE INTERVAL SERIES')
for i in range(N INT):
   print(
       f'[{round(female hist[i][0], 2)} {round(female hist[i])
          [1], 2)}) & {round(female hist[i][2], 2)} & {round(
          \\\\hline')
```

```
def cond moments (data, h):
   x = pd.Series([d[2] for d in data])
   u = pd.Series(list(range(-3, 4)))
   n = pd.Series([d[3] for d in data])
   un = u * n
   u2n = u ** 2 * n
   u3n = u ** 3 * n
   u4n = u ** 4 * n
   u14n = (u + 1) ** 4 * n
    for i in range (N INT):
       print(f'{x[i]} & {u[i]} & {n[i]} & {un[i]} & {u2n[i]} & {
          u3n[i] & {u4n[i]} & {u14n[i]} \\\\hline')
   print()
   print(f'{n.sum()} & {un.sum()} & {u2n.sum()} & {u3n.sum()} &
      {u4n.sum()} & {u14n.sum()} \\\\hline')
   print()
   M1 = un.sum() / SIZE
   M2 = u2n.sum() / SIZE
   M3 = u3n.sum() / SIZE
   M4 = u4n.sum() / SIZE
   print(f'{round(M1, 2)} & {round(M2, 2)} & {round(M3, 2)} & {
      print()
   printΠPOBEPKA(": ", u4n.sum(), 4 * u3n.sum(), 6 * u2n.sum(),
      4 * un.sum(), n.sum())
   printΠPOBEPKA(": ", u4n.sum() + 4 * u3n.sum() + 6 * u2n.sum()
       + 4 * un.sum() + n.sum())
   printЭмпирические(" моменты")
   mu1 = M1 * h + data[3][2]
   mu2 = (M2 - M1 ** 2) * h ** 2
```

```
mu3 = (M3 - 3 * M2 * M1 + 2 * M1 ** 3) * h ** 3
    mu4 = (M4 - 4 * M3 * M1 + 6 * M2 * M1 ** 2 - 3 * M1 ** 4) * h
        ** 4
    print(f'mu1 = {mu1}')
    print(f'mu2 = {mu2}')
    print(f'mu3 = {mu3}')
    print(f'mu4 = \{mu4\}')
    x_avg = M1 * h + x[N INT // 2]
    print(f'x avg = {x avg}')
    print(f'D v = \{mu2\}')
    print(f'sigma = {sqrt(mu2)}')
    S2 = SIZE / (SIZE - 1) * mu2
    print(f'S2 = {S2}')
    s = sqrt(S2)
    print(f'S = {s}')
    As = mu3 / s ** 3
    print(f'As = {As}')
    Ex = mu4 / s ** 4
    print(f'Ex = {Ex}')
    print(f'M0 = {data[0][1] + (n[1] - n[0]) / ((n[1] - n[0]) + (
      n[1] - n[2])) * h}')
    print(f'Me = {data[0][1] + (0.5 * SIZE) / n[1]}')
print('MALE COND MOMENTS')
cond moments(male hist, male int width)
print('FEMALE COND MOMENTS')
cond moments(female hist, male int width)
```