DeepBlue, AlphaGo, and Al?

Machine Learning
CSE446
Sham Kakade

Announcements:

- Check website
- Next week: check website for updated office hours
- Final:
 - One side of handwritten notes
 - comprehensive, more emphasis on the second half
 - List of topics posted on Canvas
 - Understand the HWs
- Today:
 - DeepBlue, AlphaGo, and Al?
 - Monte Carlo Tree Search (MCTS)

Q5 histograms

Misclassification Error rate on 5.2

DeepBlue vs Kasparov:

- First match: 1996
 - Kasparov-DeepBlue: 4-2
- Second Match: 1997
 - Karasparov-DeepBlue: 2.5-3.5
- Logic-based, Al approach:
 - look ahead: alpha-beta search
 - Human board evaluations:
 - knight/bishop = 3 pawns, queen = 8 pawns, king = ∞
 - thousands of such rules

A fascination on games for "Humans vs. Al"...

- DeepBlue success didn't amount to much for "AI", societal impact, etc...
- Underlying techniques seem limited?
 - Hand coded rules...
 - Brute force look-ahead...

Thought to be a difficult task...

Chess vs. Alpha Go

 Will the technical advances (underlying AlphaGo) have broader implications?

1997, AI named "Deep Blue" beat chess world champion.

Search space: b^d : b = 35, d = 80

Search space: b^d : b = 250, d = 150

What is different today?

- Is it AI? NO
 - It might be better to ignore that question...
- Different from DeepBlue? YES
- Viewpoint: AlphaZero is at the forefront of progress in ML.
 - Pattern recognition (think of: supervised learning)
 - object recognition and ImageNet
 - the "universal" translator
 - exciting: the approach integrates "planning/search" with "pattern recognition

AlphaZero: the basic idea

- This is the "newer" method (over AlphaGo)
- A certain "lookahead" approach, using both a policy p and value v
 - p(a|s) is a distribution over move probabilities (for every state)
 - v(s) is the 'value' of the state (e.g. the estimated probability of winning)
- Learns: (p, v) = f(s, w)
 - s is the game state; w are the model parameters (some neural net)

Look Ahead...

- The search space is too big (even for "alpha-beta pruning" to handle)
- Suppose you had a perfect estimate of the "value" of any state.
- Then one step look ahead suffices:

Suppose we have approximate values?

 We would hope that some 'look-ahead/search' would lessen the errors in our value estimates?

— How do we decide which paths?

 Idea: should try to visit 'un-explored' states

Monte Carlo Tree Search (MCTS)

- A "heuristic" which tries to balance exploration/explotation
- AlphaZero:
 - Key idea: utilizes(+learns) a heuristic that both:
 1)estimates the values 2) estimates a policy

Monte Carlo Tree Search (MCTS)

- A popular heuristic search algorithm for game play
 - By lots of simulations and select the most visited action.

Thanks!

- Machine learning:
 - many different methods/tools/challenges in the wild...
 - many research questions...
 - Participate in the ML community.

(one more week to go....)
 Have a great spring break!

AlphaZero

- AlphaGo: (the earlier system)
 - Was (sorta) specific to Go (in that it used ConvNets)
 - Use previous world championship games for SL.
- AlphaZero:
 - this is the system that "learns from scratch"...
 - At a massive computational expense...
 - works for Go and Chess (and other games)
 - gets above human level performance