Sponge: Anonymous Communication without Onion Encryption

May 17, 2016

1 Notation

- Let λ be the security parameter.
- Let H be a cryptographic hash function with output size λ .
- Let F_k be a PRF with key k and output size λ .
- Let Cr, R, and P be a consumer, router, and producer, respectively.
- Let I(N, s), P(N, s), and C(N) be an interest, push interest, and content object, respectively with the name N and nonce s.

2 Main Goal

The desired security goal is that for a given name N, the probability for any probabilistic polynomial time adversary to distinguish the transformed version of N - T(N) – from a random string is negligible (in something). This implies that the distribution (T(N), T(N)) for a fixed N is computationally indistinguishable from the tuple (T(N), r) for the same N and random r. Here, we assume that T(N) is a probabilistic algorithm.

Assume that a node had some data structure with two procedures: insert and lookup. We do not specify how they are implemented. Let k be the number of unique elements in this data structure at any given point in time. We will prove that their respective runtimes must be O(1) and O(k), respectively.

Theorem 1. Let D be a data structure as defined above. Its insert operation runs in $\Omega(k)$ time.

Proof. TODO

Theorem 2. Let D be a data structure as defined above. Its lookup operation runs in $\Theta(k)$ time.

Proof. TODO