Projeto

Índice

1	Noç	ões básicas de mecânica quántica	
	1.1	Clásica	
	1.2	Quântica	
2	Quantização		
	2.1	Prequantização	
	2.2	Polarização	
	2.3	k3quant.pdf	
	24	Coherent states	

1 Noções básicas de mecânica quántica

1.1 Clásica

Sistema físico é uma variedade com estrutura adicional. A variedade consiste dos estados do sistema (posição, momento), e a estrutura adicional são as leis de movimento. A dinâmica do sistema está determinada por uma função, o Hamiltoniano. Por medio de uma forma simplética podemos obter um campo vetorial associado a H

- ω não degenerada implica que sempre podemos achar esse campo vetorial
- w alternante (sg.pdf prop. 6.11) implica que H é constante ao longo do fluxo Hamiltoniano (X_H aponta na direção de energia constante).
- Fórmula de Cartan implica que ω é constante ao longo do fluxo Hamiltoniano, ie. fluxo Hamiltoniano simplético (independente do tempo?) ie. $\mathcal{L}_{X_H}\omega = 0$ se e somente se ω é fechada.

As equações de Hamilton são só outra formulação da segunda lei do Newton. O campo vetorial Hamiltoniano é uma formulação geométrica das equações de Hamilton.

Proposição (18.9 das.pdf) $\{f, H\} = 0$ ($f \in P$) for integral do fluxo de X) se e somente se $f \in P$ constante ao longo das curvas integrais de X_F .

1.2 Quântica

Equação de Schrödinger

$$i\hbar\frac{\partial\psi}{\partial t}=\hat{H}\psi.$$

Distintas escolhas de Hamiltoniano \hat{H} descrevem diferentes leis da natureza. Para partículas não relativistas em treis dimensões com energia potencial V(x), o Hamiltoniano é

$$\label{eq:Hamiltonian} \hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(x).$$

É um operador diferencial. O Laplaciano é

$$\nabla^2 = \frac{\partial^2}{\partial^2 x^2} + \frac{\partial^2}{\partial^2 y^2} + \frac{\partial^2}{\partial^2 z^2}.$$

Na mecânica clásica, o Hamiltoniano está relacionado com a energia do sistema, que para nós é

$$E = \frac{1}{2m} \mathbf{p}^2 + V(\mathbf{x})$$

onde $\mathbf{p} = m\dot{\mathbf{x}}$ o momentum da partícula.

Nem toda teoria física pode ser descrita usando um Hamiltoniano. (Em termos gerais, só as teorias que tem conservação da energia podem ser descritas com o Hamiltonano.) Importantemente, isso mesmo acontece na mecânica quântica.

O experimento do buraco duplo: a função de onda se comporta como partícula e como onda.

Definição Um *estado quântico* é uma função de onda $\psi(\mathbf{x}, t)$ normalizável, ie.

$$\int d^3x |\psi|^2 < \infty.$$

Esses estados quânticos moram num espaço de Hilbert (tem produto Hermitiano): se a partícula está num espaço M, o espaço de Hilbert relavante é $L^2(M)$.

Definição *Observável*: são funções de \mathbf{x} e \mathbf{p} . Por exemplo, \mathbf{x} e \mathbf{p} mesmas, ou o *momento angular* $\mathbf{L} = \mathbf{x} \times \mathbf{p}$ ou a *energia* $\mathbf{E} = \frac{\mathbf{p}^2}{2m} + \mathbf{V}(\mathbf{x})$.

Os observáveis são representados por *operadores* no espaço de Hilbert. Agem numa função de onda e dão outra função.

Observação O reemplazo das matrices nos espaços de dimensão infinita são os operadores diferenciais.

Observação O resultado de qualquer medição de um operador está no seu espectro (conjunto de eigenvalores).

O espectro do Hamiltoniano determina os possíveis níveis de energia do sistema quântico. Todo observável físico corresponde a um operador Hermitiano (autoadjunto).

2 Quantização

Aqui tem uma perguna de StackExchange: "Need help understanding the proof of Dirac's famous relation between commutators and Poisson brackets". So maybe that could be kind of an exercise/proof to carry out in the talk.

No seguinte vou ler sobre tudo wiki e um pouco de quank3.pdf

2.1 Prequantização

Passar de uma variedade simplética a um espaço de Hilbert assinalando operadores autoadjuntos às funções suaves na variedade, ie. oberváveis clássicos a observáveis quânticos, satisfazendo:

- 1. Linearidade: $\widehat{f+g} = \widehat{f} + \widehat{g}$, $\widehat{\lambda f} = \lambda \widehat{f}$.
- 2. Morfismo de álgebras de Lie a menos de uma constante.
- 3. Identidade vai para identidade.
- 4. Os operadores $\hat{q_i}$ e $\hat{p_i}$ agem irreduzivelmente no espaço de Hilbert.

Por exemplo, o espaço de funções integráveis respeito à forma de Liouville. Manda uma função suave f em $Q(f) := -i\hbar \left(X_f + \frac{1}{i\hbar} \theta(X_f) \right) + f$.

Otro exemplo: um fibrado linear L munido de uma conexão tal que a sua forma de curvatura é ω/\hbar . Aqui o espaço de Hilbert é o espaço de seções quadrado-integráveis de L como o operador $Q(f) = -i\hbar\nabla_{X_f} + f$. Neste caso temos que $[Q(f),Q(g)] = i\hbar Q(\{f,g\})$.

2.2 Polarização

É a escolha de um subespaço Lagrangiano em cada ponto de M.

Definição (nLab) Uma *polarização* de uma variedade simplética (X, ω) é a escolha de um subfibrado Lagrangiano involutivo $\mathscr{P} \hookrightarrow T_{\mathbb{C}}X$ do fibrado tangente complexificado de X.

Exemplo O fibrado holomorfo ou antiholomorfo caso (X, ω, g, I) seja Kähler.

A polarização no k3quant.pdf é a escolha de um fibrado linear; a gente vai tomar seções holomorfas para construir o espaço de Hilbert.

2.3 k3quant.pdf

After the definition of *full quantization* written above, we have definition of *quantizable* manifold in terms of curvature in the subbundle. And construction of Berezin-Toeplitz operators, which includes the construction of the Hilbert space of L²-measuable sections of the bundle. Then *Hardy space*, should I read this? Is there a proof that the operatrs are good?

2.4 Coherent states

Let's read a little bit of wiki. A *family of coherent states* is a set of vectors in some locally compact space X that satisfy the following properties in relation with some complex separable hilbert space \mathfrak{H} . To every element x in the family of coherent states associate an element $|x\rangle$ and ask that

- 1. the map $x \mapsto |x\rangle$ be weakly continuous (every functional evaluated on the vector is continuous... somehow)
- 2. Some condition called *resolution of the identity* that "ensures that an arbitrary vector $|\psi\rangle$ be expressible as a linear integral combination of these (the coherent states?) vectors. Indeed the resolution of the identity immediately implies that $|\psi\rangle = \int_X \Psi(x)|x\rangle d\nu(x)$ " where $\Psi(x) = \langle x|\psi\rangle$ and dv is a measure on X.

But how is this related to the quantization in raw.pdf?

"The Hilbert space on which th efunctions act as operators consists of holomorphic sections of a suitably chosen line bundle. Evaluation at a point is a continuous linear functional Evaluation at a point gives me a vector in the line bundle which is a functional on $C^{\infty}(X)$ functions and gives rise to a vector in the Hilbert space How because a vector in the Hilbert space is a whole section... which is labelled by that point.