Глава 1. Теория

Теоретическая часть данной работы будет описывать ту предметную область с которой пришлось столкнуться в ходе выполнения практической части.

1.1 Поведение робота

Прежде чем перейти к определению поведения будущего робота мы должны определить его главную задачу. А именно - поиск целевых объектов в замкнутом пространстве.

Для того чтобы выполнить данную задачу робот должен уметь объезжать то замкнутое пространство в котором он находится, распознавать объекты и уметь подъезжать к найденному целевому объекту. Здесь можно выделить две возможные стратегии, которые можно применять к данной задаче:

- 1. Сначала выполняется объезд всего доступного пространства, во время которого строится карта местности, а затем происходит выполнение на ней поиска целевых объектов;
- 2. Целевой объект ищется непосредственно во время объезда пространства. При этом объезд пространства происходит без составления карты.

К преимуществам первого подхода можно записать:

- Помимо поиска целевых объектов выполняется полное сканирование местности, что может пригодится для других задач;
- Возможно более «умное» построение маршрута при помощи, например, таких алгоритмов как А*;
- Можно найти все целевые объекты в данном замкнутом пространстве и примерно оценить их местоположение на отсканированной карте местности.

К недостаткам первого подхода относятся:

- Долгое время работы алгоритма: сначала нужно все объездить, оценить обстановку, а затем искать объекты;
- Требуется более сложная алгоритмическая составляющая: как минимум роботу нужно научиться прокладывать маршруты на динамически строящейся карте и уметь определять себя и целевые объекты на ней¹;

У второго подхода есть хоть и одно, но очень большое преимущество и это относительно «лёгкая» реализация: как в алгоритмическом, так и в плане производительности. Не требуется составлять карт, а значит и решать задачу SLAM, в связи с этим уменьшается вычислительная нагрузка на робота.

Недостатки второго подхода:

- Время поиска целевого объекта будет зависеть от удачи, так как карты местности не строится и угадать когда робот поедет к целевому объекту не просто;
- Полное сканирование местности не выполняется, а значит не все целевые объекты могут быть найдены в пространстве;

1.2 Анализ окружающего пространства

Здесь пишем о том, какие виды анализа окружающего пространства могут быть задействованы, и какие полезные данные они могут привнести

1.3 Об управлении

Здесь пишем о том, какого виды хода бывают роботы и как они управляются

¹По сути требуется решить задачу SLAM

1.4 Форматирование текста

Мы можем сделать жирный текст и курсив.

1.5 Ссылки

Сошлёмся на библиографию. Одна ссылка: [0, c. 54][0, c. 36]. Две ссылки: [0]. Ссылка на собственные работы: [0]. Много ссылок: [0][0]. И ещё немного ссылок: [0][0][0].

Несколько источников (мультицитата): [0, c. vii—x, 5, 7; 0, v—x, 25, 526; 0, c. vii—x, 5, 7], работает только в biblatex реализации библиографии.

Ссылки на собственные работы: [0]

Сошлёмся на приложения: Приложение А, Приложение Б.2.

Сошлёмся на формулу: формула (1.2).

Сошлёмся на изображение: рисунок 2.2.

Стандартной практикой является добавление к ссылкам префикса, характеризующего тип элемента. Это не является строгим требованием, но позволяет лучше ориентироваться в документах большого размера. Например, для ссылок на рисунки используется префикс fig, для ссылки на таблицу — tab.

В таблице 18 приложения Б.5 приведён список рекомендуемых к использованию стандартных префиксов.

1.6 Формулы

Благодаря пакету *icomma*, LATEX одинаково хорошо воспринимает в качестве десятичного разделителя и запятую (3,1415), и точку (3.1415).

1.6.1 Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованная отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

Формула с неопределенным интегралом:

$$\int f(\alpha + x) = \sum \beta$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

αβγδεεζηθθικχλμνξπωροσςτυφφχψωΓΔΘΛΞΠΣΥΦΨΩ

αβγδ ϵ εζηθθικ \varkappa λμνξ π ωρ ϱ σςτυ ϕ φχψω Γ ΔΘΛΞΠΣΥ Φ Ψ Ω

Для добавления формул можно использовать пары \dots и \dots и \dots но они считаются устаревшими. Лучше использовать их функциональные аналоги \dots и \dots .

1.6.2 Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки «равно» были строго друг под другом:

$$f_W = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$

$$f_T = \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right),$$

Выровнять систему ещё и по переменной x можно, используя окружение alignedat из пакета amsmath. Вот так:

$$|x| = \begin{cases} x, & \text{если } x \geqslant 0 \\ -x, & \text{если } x < 0 \end{cases}$$

Ещё вариант:

$$|x| =$$

$$\begin{cases} x, \text{если } x \geqslant 0 \\ -x, \text{если } x < 0 \end{cases}$$

Кроме того, для нумерованных формул alignedat делает вертикальное выравнивание номера формулы по центру формулы. Например, выравнивание компонент вектора:

$$\mathbf{N}_{o1n}^{(j)} = \sin\varphi \, n(n+1) \sin\theta \, \pi_n(\cos\theta) \, \frac{z_n^{(j)}(\rho)}{\rho} \, \hat{\mathbf{e}}_r + \\ + \sin\varphi \, \tau_n(\cos\theta) \, \frac{\left[\rho z_n^{(j)}(\rho)\right]'}{\rho} \, \hat{\mathbf{e}}_\theta + \\ + \cos\varphi \, \pi_n(\cos\theta) \, \frac{\left[\rho z_n^{(j)}(\rho)\right]'}{\rho} \, \hat{\mathbf{e}}_\varphi \,.$$

$$(1.1)$$

Ещё об отступах. Иногда для лучшей «читаемости» формул полезно немного исправить стандартные интервалы LATEX с учётом логической структуры самой формулы. Например в формуле 1.1 добавлен небольшой отступ \, между основными сомножителями, ниже результат применения

всех вариантов отступа:

\!
$$f(x) = x^2 + 3x + 2$$
по-умолчанию $f(x) = x^2 + 3x + 2$
\\, $f(x) = x^2 + 3x + 2$
\\: $f(x) = x^2 + 3x + 2$
\\: $f(x) = x^2 + 3x + 2$
\\: $f(x) = x^2 + 3x + 2$
\\quad $f(x) = x^2 + 3x + 2$
\\quad $f(x) = x^2 + 3x + 2$
\\quad $f(x) = x^2 + 3x + 2$

Можно использовать разные математические алфавиты:

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\begin{pmatrix}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\end{pmatrix}$$

1.6.3 Нумерованные формулы

А вот так пишется нумерованная формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.2}$$

Нумерованных формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.3}$$

Впоследствии на формулы (1.2) и (1.3) можно ссылаться.

Сделать так, чтобы номер формулы стоял напротив средней строки, можно, используя окружение multlined (пакет mathtools) вместо multline внутри окружения equation. Вот так:

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + \dots + + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + \dots + + 96 + 97 + 98 + 99 + 100 = 5050$$
(1.4)

Используя команду \eqrefs, можно красиво ссылаться сразу на несколько формул (1.2—1.4), даже перепутав порядок ссылок \eqrefs{eq1, eq3, eq2}. Аналогично, для ссылок на несколько рисунков, таблиц и т. д. 1.4—1.6 можно использовать команду \refs. Обе эти команды определены в файле common/packages.tex.

Уравнения (1.5 и 1.6) демонстрируют возможности окружения \subequations.

$$y = x^2 + 1 (1.5a)$$

$$y = 2x^2 - x + 1 ag{1.56}$$

Ссылки на отдельные уравнения (1.5а, 1.5б и 1.6а).

$$y = x^3 + x^2 + x + 1 ag{1.6a}$$

$$y = x^2 \tag{1.66}$$

1.6.4 Форматирование чисел и размерностей величин

Числа форматируются при помощи команды \num: 5.3; $2.3 \cdot 10^8$; $12\,345,678\,90$; $2.6 \cdot 10^4$; $1\pm 2\mathrm{i}$; $0.3 \cdot 10^{45}$; $5 \cdot 2^{64}$; $5 \cdot 2^{64}$; $1.654 \times 2.34 \times 3.430$ $12 \times 3/4$. Для написания последовательности чисел можно использовать команды \numlist и \numrange: 10; 30; 50; 70; 10-30. Значения углов

Таблица 1 — Основные величины СИ

Название	Команда	Символ	
Ампер	\ampere	A	
Кандела	\candela	кд	
Кельвин	\kelvin	К	
Килограмм	\kilogram	КГ	
Метр	\metre	M	
Моль	\mole	моль	
Секунда	\second	c	

можно форматировать при помощи команды \ang: $2,67^\circ$; $30,3^\circ$; -1° ; -2'; -3''; $300^\circ10'1''$.

Обратите внимание, что ГОСТ запрещает использование знака «-» для обозначения отрицательных чисел за исключением формул, таблиц и рисунков. Вместо него следует использовать слово «минус».

Размерности можно записывать при помощи команд \si и \SI: $\Phi^2 \cdot \text{лм} \cdot \text{кд}$; Дж·моль $^{-1} \cdot \text{K}^{-1}$; Дж/(моль · K); м · c $^{-2}$; (0.10 ± 0.05) Нп; $(1.2 - 3i) \cdot 10^5$ Дж·моль $^{-1} \cdot \text{K}^{-1}$; 1; 2; 3; 4 Тл; 50-100 В. Список единиц измерений приведён в таблицах 1–5. Приставки единиц приведены в таблице 6.

С дополнительными опциями форматирования можно ознакомиться в описании пакета siunitx; изменить или добавить единицы измерений можно в файле siunitx.cfg.

1.6.5 Заголовки с формулами:
$$a^2 + b^2 = c^2$$
, $|{
m Im}\Sigma\,(arepsilon)| pprox const$, $\sigma^{(1)}_{xx}$

Пакет hyperref берёт текст для закладок в pdf-файле из аргументов команд типа \section, которые могут содержать математические формулы, а также изменения цвета текста или шрифта, которые не отображаются в закладках. Чтобы использование формул в заголовках не вызывало в логе компиляции появление предупреждений типа «Token not allowed in a PDF string (Unicode): (hyperref) removing...», следу-

Таблица 2 — Производные единицы СИ

Название	Команда	Символ	Название	Команда	Символ
Беккерель	\becquerel	Бк	Ньютон	\newton	Н
Градус Цельсия	\degreeCelsius	$^{\circ}\mathrm{C}$	Ом	\ohm	Ом
Кулон	\coulomb	Кл	Паскаль	\pascal	Па
Фарад	\farad	Φ	Радиан	\radian	рад
Грей	\gray	Гр	Сименс	\siemens	См
Герц	\hertz	Гц	Зиверт	\sievert	3в
Генри	\henry	Гн	Стерадиан	\steradian	ср
Джоуль	\joule	Дж	Тесла	\tesla	Тл
Катал	\katal	кат	Вольт	\volt	В
Люмен	\lumen	ЛМ	Ватт	\watt	Вт
Люкс	\lux	лк	Вебер	\weber	Вб

Таблица 3 — Внесистемные единицы

Название	Команда	Символ	
День	\day	сут	
Градус	\degree	0	
Гектар	\hectare	га	
Час	\hour	Ч	
Литр	\litre	Л	
Угловая минута	\arcminute	′	
Угловая секунда	\arcsecond	″	
Минута	\minute	МИН	
Тонна	\tonne	Т	

ет использовать конструкцию $\text{texorpdfstring}\{\}\{\}$, где в первых фигурных скобках указывается формула, а во вторых — запись формулы для закладок.

1.7 Рецензирование текста

В шаблоне для диссертации и автореферата заданы команды рецензирования. Они видны при компиляции шаблона в режиме черновика

Таблица 4 — Внесистемные единицы, получаемые из эксперимента

Название	Команда	Символ
Астрономическая единица	\astronomicalunit	a.e.
Атомная единица массы	\atomicmassunit	а.е.м.
Боровский радиус	\bohr	a_0
Скорость света	\clight	c
Дальтон	\dalton	а.е.м.
Масса электрона	\electronmass	$m_{ m e}$
Электрон Вольт	\electronvolt	\mathbf{a}
Элементарный заряд	\elementarycharge	e
Энергия Хартри	\hartree	E_{h}
Постоянная Планка	\planckbar	\hbar

Таблица 5 — Другие внесистемные единицы

Название	Команда	Символ
Ангстрем	\angstrom	Å
Бар	\bar	бар
Барн	\barn	б
Бел	\bel	Б
Децибел	\decibel	дБ
Узел	\knot	у3
Миллиметр ртутного столба	\mmHg	мм рт.ст.
Морская миля	\nauticalmile	миля
Непер	\neper	Нп

Таблица 6 — Приставки СИ

Приставка	Команда	Символ	Степень	Приставка	Команда	Символ	Степень
Иокто	\yocto	И	-24	Дека	\deca	да	1
Зепто	\zepto	3	-21	Гекто	\hecto	Γ	2
Атто	\atto	a	-18	Кило	\kilo	К	3
Фемто	\femto	ф	-15	Мега	\mega	M	6
Пико	\pico	П	-12	Гига	\giga	Γ	9
Нано	\nano	Н	-9	Терра	\tera	T	12
Микро	\micro	МК	-6	Пета	\peta	Π	15
Милли	\milli	M	-3	Екса	\exa	Э	18
Санти	\centi	c	-2	Зетта	\zetta	3	21
Деци	\deci	Д	-1	Иотта	\yotta	И	24

или при установке соответствующей настройки (showmarkup) в файле common/setup.tex.

Команда \todo отмечает текст красным цветом.

Команда \note позволяет выбрать цвет текста.

Окружение commentbox также позволяет выбрать цвет.

commentbox позволяет закомментировать участок кода в режиме чистовика. Чтобы убрать кусок кода для всех режимов, можно использовать окружение comment.