Social network Graph Link Prediction - Facebook Challenge

In [0]:

```
#Importing Libraries
# please do go through this python notebook:
import warnings
warnings.filterwarnings("ignore")
import pandas as pd#pandas to create small dataframes
import datetime #Convert to unix time
import time #Convert to unix time
# if numpy is not installed already : pip3 install numpy
import numpy as np#Do aritmetic operations on arrays
# matplotlib: used to plot graphs
import matplotlib
import matplotlib.pylab as plt
import seaborn as sns#Plots
from matplotlib import rcParams#Size of plots
from sklearn.cluster import MiniBatchKMeans, KMeans#Clustering
import math
import pickle
import os
# to install xgboost: pip3 install xgboost
import xgboost as xgb
import warnings
import networkx as nx
import pdb
import pickle
from pandas import HDFStore, DataFrame
from pandas import read_hdf
from scipy.sparse.linalg import svds, eigs
import gc
from tqdm import tqdm
```

1. Reading Data

```
In [0]:
```

```
if os.path.isfile('data/after_eda/train_pos_after_eda.csv'):

train_graph=nx.read_edgelist('data/after_eda/train_pos_after_eda.csv',delimiter=',',create_using=n
x.DiGraph(),nodetype=int)
    print(nx.info(train_graph))
else:
    print("please run the FB_EDA.ipynb or download the files from drive")

Name:
Type: DiGraph
Number of nodes: 1780722
Number of edges: 7550015
Average in degree: 4.2399
Average out degree: 4.2399
```

2. Similarity measures

2.1 Jaccard Distance:

http://www.statisticshowto.com/jaccard-index/

 $\left(X \right) = \frac{|X \cap Y|}{|X \cap Y|} \$

```
In [0]:
#for followees
def jaccard for followees(a,b):
    try:
       if len(set(train graph.successors(a))) == 0 | len(set(train graph.successors(b))) == 0:
           return 0
       sim = (len(set(train_graph.successors(a)).intersection(set(train_graph.successors(b)))))/\
(len(set(train graph.successors(a)).union(set(train graph.successors(b)))))
    except:
       return 0
    return sim
In [0]:
#one test case
print(jaccard_for_followees(273084,1505602))
0.0
In [0]:
#node 1635354 not in graph
print(jaccard_for_followees(273084,1505602))
0.0
In [0]:
#for followers
def jaccard for followers(a,b):
    try:
       if len(set(train graph.predecessors(a))) == 0 | len(set(g.predecessors(b))) == 0:
           return 0
       sim = (len(set(train graph.predecessors(a)).intersection(set(train graph.predecessors(b))))
)/\
                                (len(set(train graph.predecessors(a)).union(set(train graph.predec
ssors(b)))))
       return sim
    except:
       return 0
4
In [0]:
print(jaccard for followers(273084,470294))
In [0]:
#node 1635354 not in graph
print(jaccard for followees(669354,1635354))
0
2.2 Cosine distance
In [0]:
#for followees
def cosine for followees(a,b):
    try:
       if len(set(train graph.successors(a))) == 0 | len(set(train graph.successors(b))) == 0:
```

```
sim = (len(set(train graph.successors(a)).intersection(set(train graph.successors(b)))))/
(math.sqrt(len(set(train graph.successors(a)))*len((set(train graph.successors(b)))))))
        return sim
    except:
        return 0
In [0]:
print(cosine for followees(273084,1505602))
0.0
In [0]:
print(cosine for followees(273084,1635354))
0
In [0]:
def cosine for followers(a,b):
        if len(set(train graph.predecessors(a))) == 0 | len(set(train graph.predecessors(b))) == 0
            return 0
        sim = (len(set(train graph.predecessors(a)).intersection(set(train graph.predecessors(b))))
)/\
                                      (math.sqrt(len(set(train graph.predecessors(a)))) * (len(set(tra
n_graph.predecessors(b)))))
       return sim
    except:
        return 0
In [0]:
print(cosine for followers(2,470294))
0.02886751345948129
In [0]:
print(cosine for followers(669354,1635354))
```

3. Ranking Measures

https://networkx.github.io/documentation/networkx-

1.10/reference/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links.

Mathematical PageRanks for a simple network, expressed as percentages. (Google uses a logarithmic scale.) Page C has a higher PageRank than Page E, even though there are fewer links to C; the one link to C comes from an important page and hence is of high value. If web surfers who start on a random page have an 85% likelihood of choosing a random link from the page they are currently visiting, and a 15% likelihood of jumping to a page chosen at random from the entire web, they will reach Page E 8.1% of the time. (The 15% likelihood of jumping to an arbitrary page corresponds to a damping factor of 85%.) Without damping, all web surfers would eventually end up on Pages A, B, or C, and all other pages would have PageRank zero. In the presence of damping, Page A effectively links to all pages in the web, even though it has no outgoing links of its own.

3.1 Page Ranking

https://en.wikipedia.org/wiki/PageRank

```
In [0]:
```

```
if not os.path.isfile('data/fea sample/page rank.p'):
    pr = nx.pagerank(train graph, alpha=0.85)
   pickle.dump(pr,open('data/fea sample/page rank.p','wb'))
   pr = pickle.load(open('data/fea_sample/page_rank.p','rb'))
```

In [0]:

```
print('min',pr[min(pr, key=pr.get)])
print('max',pr[max(pr, key=pr.get)])
print('mean',float(sum(pr.values())) / len(pr))
min 1.6556497245737814e-07
max 2.7098251341935827e-05
mean 5.615699699389075e-07
In [0]:
#for imputing to nodes which are not there in Train data
mean pr = float(sum(pr.values())) / len(pr)
print(mean pr)
```

5.615699699389075e-07

4. Other Graph Features

4.1 Shortest path:

Getting Shortest path between twoo nodes, if nodes have direct path i.e directly connected then we are removing that edge and calculating path.

```
In [0]:
```

```
#if has direct edge then deleting that edge and calculating shortest path
def compute shortest path length(a,b):
    try:
        if train graph.has edge(a,b):
            train_graph.remove_edge(a,b)
            p= nx.shortest path length(train graph, source=a, target=b)
            train graph.add edge(a,b)
            p= nx.shortest path length(train graph, source=a, target=b)
        return p
    except:
        return -1
```

In [0]:

```
compute shortest path length (77697, 826021)
Out[0]:
```

```
compute_shortest_path_length(669354,1635354)
```

```
Out[0]:
```

4.2 Checking for same community

In [0]:

```
#getting weekly connected edges from graph
wcc=list(nx.weakly connected components(train graph))
def belongs_to_same_wcc(a,b):
    index = []
    if train_graph.has_edge(b,a):
       return 1
    if train graph.has edge(a,b):
            for i in wcc:
                if a in i:
                    index= i
                    break
            if (b in index):
                train graph.remove edge(a,b)
                if compute_shortest_path_length(a,b) ==-1:
                    train graph.add edge(a,b)
                    return 0
                else:
                    train graph.add edge(a,b)
                    return 1
            else:
                return 0
    else:
            for i in wcc:
                if a in i:
                    index= i
                    break
            if(b in index):
               return 1
            else:
                return 0
```

```
In [0]:
```

```
belongs_to_same_wcc(861, 1659750)

Out[0]:

In [0]:
belongs_to_same_wcc(669354,1635354)

Out[0]:
0
```

4.3 Adamic/Adar Index:

 $Adamic/Adar\ measures\ is\ defined\ as\ inverted\ sum\ of\ degrees\ of\ common\ neighbours\ for\ given\ two\ vertices.\ \$A(x,y)=\sum_{u\in N(x)}\frac{u}{n} N(x) \exp N(y) \frac{1}{\log(|N(u)|)} \$

```
In [0]:
```

```
#adar index
def calc_adar_in(a,b):
    sum=0
    try:
        n=list(set(train_graph.successors(a)).intersection(set(train_graph.successors(b))))
    if len(n)!=0:
        for i in n:
```

```
sum=sum+(1/np.log10(len(list(train_graph.predecessors(i)))))
             return sum
         else:
             return 0
    except:
         return 0
In [0]:
calc adar in(1,189226)
Out[0]:
0
In [0]:
calc adar in(669354,1635354)
Out[0]:
0
4.4 Is persion was following back:
In [0]:
def follows back(a,b):
    if train_graph.has_edge(b,a):
        return 1
    else:
        return 0
In [0]:
follows_back(1,189226)
Out[0]:
In [0]:
follows back(669354,1635354)
Out[0]:
0
4.5 Katz Centrality:
https://en.wikipedia.org/wiki/Katz_centrality
https://www.geeksforgeeks.org/katz-centrality-measure/ Katz centrality computes the centrality for a node based on the
centrality of its neighbors. It is a generalization of the eigenvector centrality. The Katz centrality for node \pm is
```

 $x_i = \alpha \$ A _{ij} A_{ij} x_j + \beta,\$\$ where A is the adjacency matrix of the graph G with eigenvalues \$\$\lambda\$\$.

The parameter \$\$\beta\$\$ controls the initial centrality and

```
\ \square \frac{1}{\lambda_{max}}.$$
```

```
In [0]:
```

```
if not os.path.isfile('data/fea_sample/katz.p'):
    katz = nx.katz.katz_centrality(train_graph,alpha=0.005,beta=1)
    pickle_dump(katz_open('data/fea_sample/katz_p'_lubl'))
```

```
else:
    katz = pickle.load(open('data/fea_sample/katz.p','rb'))

In [0]:

print('min', katz[min(katz, key=katz.get)])
    print('max', katz[max(katz, key=katz.get)])
    print('mean', float(sum(katz.values())) / len(katz))

min 0.0007313532484065916
    max 0.003394554981699122
    mean 0.0007483800935562018

In [0]:

mean_katz = float(sum(katz.values())) / len(katz)
    print(mean_katz)

0.0007483800935562018
```

4.6 Hits Score

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

https://en.wikipedia.org/wiki/HITS_algorithm

```
In [0]:
```

```
if not os.path.isfile('data/fea_sample/hits.p'):
    hits = nx.hits(train_graph, max_iter=100, tol=1e-08, nstart=None, normalized=True)
    pickle.dump(hits,open('data/fea_sample/hits.p','wb'))
else:
    hits = pickle.load(open('data/fea_sample/hits.p','rb'))
```

```
In [0]:
```

```
print('min', hits[0][min(hits[0], key=hits[0].get)])
print('max', hits[0][max(hits[0], key=hits[0].get)])
print('mean', float(sum(hits[0].values())) / len(hits[0]))

min 0.0
max 0.004868653378780953
```

max 0.004868653378780953 mean 5.615699699344123e-07

5. Featurization

5. 1 Reading a sample of Data from both train and test

```
In [0]:
```

```
import random
if os.path.isfile('data/after_eda/train_after_eda.csv'):
    filename = "data/after_eda/train_after_eda.csv"
    # you uncomment this line, if you dont know the lentgh of the file name
    # here we have hardcoded the number of lines as 15100030
    # n_train = sum(1 for line in open(filename)) #number of records in file (excludes header)
    n_train = 15100028
    s = 100000 #desired sample size
    skip_train = sorted(random.sample(range(1,n_train+1),n_train-s))
    #https://stackoverflow.com/a/22259008/4084039
```

```
if os.path.isfile('data/after_eda/train_after_eda.csv'):
    filename = "data/after_eda/test_after_eda.csv"
    # you uncomment this line, if you dont know the lentgh of the file name
    # here we have hardcoded the number of lines as 3775008
# n_test = sum(1 for line in open(filename)) #number of records in file (excludes header)
    n_test = 3775006
s = 50000 #desired sample size
    skip_test = sorted(random.sample(range(1,n_test+1),n_test-s))
    #https://stackoverflow.com/a/22259008/4084039
```

In [0]:

```
print("Number of rows in the train data file:", n_train)
print("Number of rows we are going to elimiate in train data are",len(skip_train))
print("Number of rows in the test data file:", n_test)
print("Number of rows we are going to elimiate in test data are",len(skip_test))
```

```
Number of rows in the train data file: 15100028
Number of rows we are going to elimiate in train data are 15000028
Number of rows in the test data file: 3775006
Number of rows we are going to elimiate in test data are 3725006
```

In [0]:

```
df_final_train = pd.read_csv('data/after_eda/train_after_eda.csv', skiprows=skip_train, names=['sou rce_node', 'destination_node'])
df_final_train['indicator_link'] = pd.read_csv('data/train_y.csv', skiprows=skip_train, names=['indicator_link'])
print("Our train matrix size ",df_final_train.shape)
df_final_train.head(2)
```

Our train matrix size (100002, 3)

Out[0]:

	source_node	destination_node	indicator_link
0	273084	1505602	1
1	832016	1543415	1

In [0]:

```
df_final_test = pd.read_csv('data/after_eda/test_after_eda.csv', skiprows=skip_test,
names=['source_node', 'destination_node'])
df_final_test['indicator_link'] = pd.read_csv('data/test_y.csv', skiprows=skip_test, names=['indicator_link'])
print("Our test matrix size ",df_final_test.shape)
df_final_test.head(2)
```

Our test matrix size (50002, 3)

Out[0]:

	source_node	destination_node	indicator_link
0	848424	784690	1
1	483294	1255532	1

5.2 Adding a set of features

we will create these each of these features for both train and test data points

- 1. jaccard_followers
- 2. jaccard followees
- 3. cosine_followers

- 4. cosine_followees
- 5. num_followers_s
- 6. num followees s
- 7. num_followers_d
- 8. num followees d
- 9. inter_followers
- 10. inter followees

In [0]:

```
if not os.path.isfile('data/fea sample/storage_sample_stage1.h5'):
    #mapping jaccrd followers to train and test data
    df_final_train['jaccard_followers'] = df_final_train.apply(lambda row:
jaccard for followers(row['source node'],row['destination node']),axis=1)
    df_final_test['jaccard_followers'] = df_final_test.apply(lambda row:
jaccard for followers(row['source node'],row['destination node']),axis=1)
    #mapping jaccrd followees to train and test data
    df final train['jaccard followees'] = df final train.apply(lambda row:
jaccard for followees(row['source node'],row['destination node']),axis=1)
    df final test['jaccard followees'] = df final test.apply(lambda row:
jaccard for followees(row['source node'],row['destination node']),axis=1)
        #mapping jaccrd followers to train and test data
    df_final_train['cosine_followers'] = df_final_train.apply(lambda row:
cosine for followers(row['source node'],row['destination node']),axis=1)
    df final test['cosine followers'] = df final test.apply(lambda row:
cosine for followers(row['source node'],row['destination node']),axis=1)
    #mapping jaccrd followees to train and test data
    df final train['cosine followees'] = df final train.apply(lambda row:
cosine for followees(row['source node'],row['destination node']),axis=1)
    df final test['cosine followees'] = df final test.apply(lambda row:
cosine for followees(row['source node'],row['destination node']),axis=1)
```

```
def compute features stage1(df final):
   #calculating no of followers followees for source and destination
   #calculating intersection of followers and followees for source and destination
   num followers s=[]
   num_followees_s=[]
   num followers d=[]
   num followees d=[]
   inter followers=[]
   inter followees=[]
   for i,row in df final.iterrows():
            s1=set(train_graph.predecessors(row['source_node']))
            s2=set(train graph.successors(row['source node']))
        except:
            s1 = set()
            s2 = set()
            d1=set(train graph.predecessors(row['destination node']))
            d2=set(train graph.successors(row['destination node']))
        except:
           d1 = set()
            d2 = set()
        num followers s.append(len(s1))
        num followees s.append(len(s2))
       num followers d.append(len(d1))
       num followees d.append(len(d2))
       inter followers annend(len(s1 intersection(d1)))
```

```
inter_followees.append(len(s2.intersection(d2)))
    return num_followers_s, num_followers_d, num_followees_s, num_followees_d, inter_followers, int
er followees
4
In [0]:
if not os.path.isfile('data/fea sample/storage sample stage1.h5'):
    df_final_train['num_followers_s'], df_final_train['num_followers_d'], \
    df_final_train['num_followees_s'], df_final_train['num_followees_d'], \
df_final_train['inter_followers'], df_final_train['inter_followees'] = compute_features_stage1(c')
f final train)
    df_final_test['num_followers_s'], df_final_test['num_followers_d'], \
    df_final_test['num_followees_s'], df_final_test['num_followees_d'], \
df_final_test['inter_followers'], df_final_test['inter_followees']=
compute_features_stage1(df_final_test)
    hdf = HDFStore('data/fea_sample/storage_sample_stage1.h5')
    hdf.put('train_df',df_final_train, format='table', data_columns=True)
    hdf.put('test df',df final test, format='table', data columns=True)
    hdf.close()
else:
    df final train = read hdf('data/fea sample/storage sample stage1.h5', 'train df',mode='r')
    df_final_test = read_hdf('data/fea_sample/storage_sample_stage1.h5', 'test df',mode='r')
```

5.3 Adding new set of features

we will create these each of these features for both train and test data points

TOTTOMETS . abbena (Ten (ST . Three secreton (AT)))

- 1. adar index
- 2. is following back
- 3. belongs to same weakly connect components
- 4. shortest path between source and destination

```
if not os.path.isfile('data/fea sample/storage sample stage2.h5'):
   #mapping adar index on train
   df final train['adar index'] = df final train.apply(lambda row: calc adar in(row['source node']
,row['destination node']),axis=1)
    #mapping adar index on test
   df final test['adar index'] = df final test.apply(lambda row: calc adar in(row['source node'],r
ow['destination node']),axis=1)
   #mapping followback or not on train
   df final train['follows back'] = df final train.apply(lambda row:
follows_back(row['source_node'], row['destination_node']), axis=1)
    #mapping followback or not on test
   df final test['follows back'] = df final test.apply(lambda row: follows back(row['source node']
,row['destination node']),axis=1)
    #mapping same component of wcc or not on train
   df final train['same comp'] = df_final_train.apply(lambda row: belongs_to_same_wcc(row['source_
node'],row['destination_node']),axis=1)
    ##mapping same component of wcc or not on train
   df final test['same comp'] = df final test.apply(lambda row: belongs to same wcc(row['source no
de'], row['destination node']), axis=1)
    #-----
   #mapping shortest path on train
   df final train['shortest path'] = df final train.apply(lambda row: compute shortest path length
(row['source_node'], row['destination_node']), axis=1)
   #mapping shortest path on test
   df_final_test['shortest_path'] = df_final_test.apply(lambda row: compute_shortest_path_length(r
```

```
ow['source_node'], row['destination_node']), axis=1)

hdf = HDFStore('data/fea_sample/storage_sample_stage2.h5')
hdf.put('train_df', df_final_train, format='table', data_columns=True)
hdf.put('test_df', df_final_test, format='table', data_columns=True)
hdf.close()
else:
    df_final_train = read_hdf('data/fea_sample/storage_sample_stage2.h5', 'train_df', mode='r')
    df_final_test = read_hdf('data/fea_sample/storage_sample_stage2.h5', 'test_df', mode='r')
```

5.4 Adding new set of features

we will create these each of these features for both train and test data points

- 1. Weight Features
 - · weight of incoming edges
 - · weight of outgoing edges
 - · weight of incoming edges + weight of outgoing edges
 - weight of incoming edges * weight of outgoing edges
 - 2*weight of incoming edges + weight of outgoing edges
 - weight of incoming edges + 2*weight of outgoing edges
- 2. Page Ranking of source
- 3. Page Ranking of dest
- 4. katz of source
- 5. katz of dest
- 6. hubs of source
- 7. hubs of dest
- 8. authorities_s of source
- 9. authorities_s of dest

Weight Features

In order to determine the similarity of nodes, an edge weight value was calculated between nodes. Edge weight decreases as the neighbor count goes up. Intuitively, consider one million people following a celebrity on a social network then chances are most of them never met each other or the celebrity. On the other hand, if a user has 30 contacts in his/her social network, the chances are higher that many of them know each other. credit - Graph-based Features for Supervised Link Prediction William Cukierski, Benjamin Hamner, Bo Yang

it is directed graph so calculated Weighted in and Weighted out differently

```
#weight for source and destination of each link
Weight_in = {}
Weight out = {}
for i in tqdm(train graph.nodes()):
    s1=set(train_graph.predecessors(i))
    w in = 1.0/(np.sqrt(1+len(s1)))
    Weight in[i]=w in
    s2=set(train graph.successors(i))
    w \text{ out} = 1.0/(np.sqrt(1+len(s2)))
    Weight out[i]=w out
#for imputing with mean
mean weight in = np.mean(list(Weight in.values()))
mean_weight_out = np.mean(list(Weight_out.values()))
100%1
                                                                           | 1780722/1780722
[00:11<00:00, 152682.24it/s]
```

```
In [0]:
```

```
if not os.path.isfile('data/fea_sample/storage_sample_stage3.h5'):
    #mapping to pandas train
```

```
df_final_train['weight_in'] = df_final_train.destination_node.apply(lambda x: Weight_in.get(x,m
ean weight in))
    df final train['weight out'] = df final train.source node.apply(lambda x: Weight out.get(x,mean
_weight out))
    #mapping to pandas test
    df_final_test['weight_in'] = df_final_test.destination_node.apply(lambda x: Weight_in.get(x,mea
n weight in))
    df final test['weight out'] = df final test.source node.apply(lambda x: Weight out.get(x, mean w
eight out))
    #some features engineerings on the in and out weights
    df_final_train['weight_f1'] = df_final_train.weight_in + df_final_train.weight_out
    df_final_train['weight_f2'] = df_final_train.weight_in * df_final_train.weight_out
    df final train['weight f3'] = (2*df final train.weight in + 1*df final train.weight out)
    df_final_train['weight_f4'] = (1*df_final_train.weight_in + 2*df_final_train.weight_out)
    #some features engineerings on the in and out weights
    df_final_test['weight_f1'] = df_final_test.weight_in + df_final_test.weight_out
    df_final_test['weight_f2'] = df_final_test.weight_in * df_final_test.weight_out
df_final_test['weight_f3'] = (2*df_final_test.weight_in + 1*df_final_test.weight_out)
    df_final_test['weight_f4'] = (1*df_final_test.weight_in + 2*df_final_test.weight_out)
```

```
if not os.path.isfile('data/fea sample/storage sample stage3.h5'):
    #page rank for source and destination in Train and Test
    \# if anything not there in train graph then adding mean page rank
    df final train['page rank s'] = df final train.source node.apply(lambda x:pr.get(x,mean pr))
    df final train['page rank d'] = df final train.destination node.apply(lambda x:pr.get(x,mean pr
))
    df_final_test['page_rank_s'] = df_final_test.source_node.apply(lambda x:pr.get(x,mean_pr))
    df_final_test['page_rank_d'] = df_final_test.destination_node.apply(lambda x:pr.get(x,mean_pr))
    #Katz centrality score for source and destination in Train and test
    #if anything not there in train graph then adding mean katz score
    df_final_train['katz_s'] = df_final_train.source_node.apply(lambda x: katz.get(x,mean_katz))
    df final train['katz d'] = df final train.destination node.apply(lambda x: katz.get(x, mean katz
) )
    df final test['katz s'] = df final test.source node.apply(lambda x: katz.get(x,mean katz))
    df_final_test['katz_d'] = df_final_test.destination_node.apply(lambda x: katz.get(x,mean_katz))
    #Hits algorithm score for source and destination in Train and test
    #if anything not there in train graph then adding 0
    df_final_train['hubs_s'] = df_final_train.source_node.apply(lambda x: hits[0].get(x,0))
    df_final_train['hubs_d'] = df_final_train.destination_node.apply(lambda x: hits[0].get(x,0))
    df final test['hubs s'] = df final test.source node.apply(lambda x: hits[0].get(x,0))
    df final test['hubs d'] = df final test.destination node.apply(lambda x: hits[0].get(x,0))
    #Hits algorithm score for source and destination in Train and Test
    \#if anything not there in train graph then adding 0
    {\tt df\_final\_train['authorities\_s'] = df\_final\_train.source\_node.apply({\tt lambda} \ x: \ hits[1].get(x,0))}
    df_final_train['authorities_d'] = df_final_train.destination_node.apply(lambda x: hits[1].get(x
, ())
    df final test['authorities s'] = df final test.source node.apply(lambda x: hits[1].get(x,0))
    df final test['authorities d'] = df final test.destination node.apply(lambda x: hits[1].get(x,0)
))
    hdf = HDFStore('data/fea sample/storage sample stage3.h5')
    hdf.put('train df', df final train, format='table', data columns=True)
    hdf.put('test df', df final test, format='table', data columns=True)
   hdf.close()
    df_final_train = read_hdf('data/fea_sample/storage_sample_stage3.h5', 'train_df',mode='r')
    df final test = read hdf('data/fea sample/storage sample stage3.h5', 'test df',mode='r')
```

5.5 Adding new set of features

we will create these each of these features for both train and test data points

1. SVD features for both source and destination

```
In [0]:
def svd(x, S):
    try:
        z = sadj dict[x]
       return S[z]
    except:
        return [0,0,0,0,0,0]
In [0]:
#for svd features to get feature vector creating a dict node val and inedx in svd vector
sadj col = sorted(train graph.nodes())
sadj dict = { val:idx for idx,val in enumerate(sadj col)}
In [0]:
Adj = nx.adjacency matrix(train graph, nodelist=sorted(train graph.nodes())).asfptype()
In [0]:
U, s, V = svds(Adj, k = 6)
print('Adjacency matrix Shape', Adj.shape)
print('U Shape', U.shape)
print('V Shape', V.shape)
print('s Shape',s.shape)
Adjacency matrix Shape (1780722, 1780722)
U Shape (1780722, 6)
V Shape (6, 1780722)
s Shape (6,)
In [0]:
if not os.path.isfile('data/fea_sample/storage_sample_stage4.h5'):
    df_final_train[['svd_u_s_1', 'svd_u_s_2','svd_u_s_3', 'svd_u_s_4', 'svd_u_s_5', 'svd_u_s_6']] =
    df final train.source node.apply(lambda x: svd(x, U)).apply(pd.Series)
    df final train[['svd u d 1', 'svd u d 2', 'svd u d 3', 'svd u d 4', 'svd u d 5','svd u d 6']] =
    df final train.destination node.apply(lambda x: svd(x, U)).apply(pd.Series)
    df_final_train[['svd_v_s_1','svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6',]]
    df final train.source node.apply(lambda x: svd(x, V.T)).apply(pd.Series)
    df final train[['svd v d 1', 'svd v d 2', 'svd v d 3', 'svd v d 4', 'svd v d 5','svd v d 6']] =
    df final train.destination node.apply(lambda x: svd(x, V.T)).apply(pd.Series)
    df final test[['svd u s 1', 'svd u s 2', 'svd u s 3', 'svd u s 4', 'svd u s 5', 'svd u s 6']] =
```

```
dr_rinal_test.Source_node.apply(lambda x: svd(x, U)).apply(pd.Series)

df_final_test[['svd_u_d_1', 'svd_u_d_2', 'svd_u_d_3', 'svd_u_d_4', 'svd_u_d_5', 'svd_u_d_6']] =

df_final_test.destination_node.apply(lambda x: svd(x, U)).apply(pd.Series)

df_final_test[['svd_v_s_1', 'svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6',]] =

df_final_test.source_node.apply(lambda x: svd(x, V.T)).apply(pd.Series)

df_final_test[['svd_v_d_1', 'svd_v_d_2', 'svd_v_d_3', 'svd_v_d_4', 'svd_v_d_5', 'svd_v_d_6']] =

df_final_test.destination_node.apply(lambda x: svd(x, V.T)).apply(pd.Series)

### HDFStore('data/fea_sample/storage_sample_stage4.h5')

hdf_put('train_df',df_final_train, format='table', data_columns=True)

hdf.close()

#### Prepared and stored the data from machine learning models
# pelase check the FB_Models.ipynb
```