Linear Regression Project

Lingraj S Vannur Madhav Ponnudurai Rushil Manglik

Outlines

- 1. Problem Statement and Data Description
- 2. Exploratory Data Analysis
- 3. Multicollinearity and VIF
- 4. Influential points
- 5. Statistical tests
- 6. Residual Plots (Model Assumptions).
- 7. Final model and Contribution
- 8. Conclusion

Problem Statement

Our motivation is to select the best model using linear regression, which could assist in predicting the car price depending on the various features a car brand is offering. This could also help us understand why some car brands are very expensive while most others are in the affordable range.

Dataset Description

1. **Target column:** Price

2. Number of features: 25

3. Number of observations: 205

Variable description:

- a) **15 numerical variables** (symboling, normalized-losses, wheel-base, length, width, height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, highway-mpg).
- b) **10 categorical variables** (fuel-type, aspiration, num-of-doors, body-style, drive-wheels, engine-location, engine-type, num-of-cylinders, fuel-system, make)

Research questions

To get the best model we need to answer the following questions:

- How many and what predictors are correlated?
- 2. Are there any **outliers/influential points** that are severely affecting the model?
- 3. Are there any insignificant predictors?
- 4. Are any model assumptions being violated?
- 5. Finally checking model performance.

Summary of methods

- 1. Exploratory Data Analysis
- 2. Checking for multicollinearity using VIF
- 3. External studentised t-tests and Cook's distance
- 4. Breusch-Pagan test for heteroscedasticity and Jarque-Bera test for normality
- 5. T-test and ANOVA(typ=1)
- 6. Adj-R² and MSE

Exploratory Data Analysis

1. There were no null values but **few cells have '?'** which had to be replaced in columns like normalized-losses, num-of-doors, bore, stroke, horsepower, and peak-rpm variables.

 The null values were replaced by the mean value of the respective columns. For num-of-doors null value was filled based on domain knowledge.

3. For target variable 'price', the unknown values were saved as test_data to check model accuracy.

4. For numerical variables we plot scatterplots to understand their relationship

with price.

 Columns - compression ratio, height, symboling, normalised-losses, stroke and peak-rpm attributes has very less relation or no relation with price.

 Other columns have a positive or negative relationship with price.

5. For categorical variables we plotted boxplots to understand their relationship

vs price.

 Rear wheel drive, rear engine location, eight number of cylinders make the vehicles costlier.

 Multiple outliers can be identified for each case.

Target variable: "Price" PDF plot

Multicollinearity

We combined the length, width and height columns to create a new column "volume".

Heatmap for numerical variables

				• •			· P	•			. • •		<i></i>			
symboling	1	0.47	-0.54	-0.37	-0.24	-0.55	-0.23	-0.11	-0.14	-0.0082	-0.18		0.28	-0.036	0.036	-0.082
normalized-losses	0.47		-0.057	0.019		-0.37			-0.03		-0.11			-0.23	-0.18	0.13
wheel-base	-0.54	-0.057		0.88	0.81	0.59	0.78	0.57	0.49				-0.36	-0.47	-0.54	0.58
length	-0.37	0.019	0.88		0.86	0.49	0.88	0.69	0.61			0.58	-0.29	-0.67	-0.7	0.69
width	-0.24		0.81	0.86			0.87	0.73	0.54			0.62	-0.25	-0.63	-0.68	0.75
height	-0.55	-0.37	0.59	0.49	0.31	1		0.075		-0.061		-0.087	-0.31	-0.05	-0.1	0.14
curb-weight	-0.23		0.78	0.88	0.87	0.31	1	0.85	0.64	0.17		0.76	-0.28	-0.75	-0.79	0.83
engine-size	-0.11		0.57	0.69	0.73		0.85		0.57		0.029	0.82	-0.26	-0.65	-0.68	0.87
bore	-0.14	-0.03	0.49	0.61	0.54		0.64	0.57	1	-0.055	0.0013	0.57	-0.27	-0.58	-0.59	0.54
stroke	-0.0082		0.16	0.12	0.19	-0.061	0.17	0.21	-0.055	1		0.098	-0.064	-0.034	-0.035	0.082
compression-ratio	-0.18	-0.11				0.26		0.029	0.0013	0.19	1	-0.21	-0.44			0.071
horsepower	0.076		0.37	0.58	0.62	-0.087	0.76	0.82	0.57	0.098	-0.21	1	0.11	-0.82	-0.8	0.81
peak-rpm	0.28		-0.36	-0.29	-0.25	-0.31	-0.28	-0.26	-0.27	-0.064	-0.44	0.11	1	-0.12	-0.059	-0.1
city-mpg	-0.036	-0.23	-0.47	-0.67	-0.63	-0.05	-0.75	-0.65	-0.58	-0.034	0.33	-0.82	-0.12	1	0.97	-0.69
highway-mpg	0.036	-0.18	-0.54	-0.7	-0.68	-0.1	-0.79	-0.68	-0.59	-0.035		-0.8	-0.059	0.97	1	-0.7
price	-0.082		0.58	0.69	0.75		0.83	0.87	0.54	0.082		0.81	-0.1	-0.69	-0.7	1
	symboling	sessol-pa:	freel-base	length	width	height	urb-weight	ngine-size	pore	stroke	ssion-ratio	orsepower	peak-rpm	city-mpg	nway-mpg	price

Variance Inflation Factor

After encoding the categorical features we get
 72 features in our data set.

- As we have only 22 columns out of 72 columns with VIF<10, this isn't a reliable method to filter out predictors.
- Figure beside shows the features which had VIF<10.

features	VIF Factor	
Intercept	0.000000	0
make[T.chevrolet]	5.148115	3
make[T.isuzu]	4.012004	6
make[T.jaguar]	7.706195	7
make[T.mercury]	2.938450	10
make[T.plymouth]	8.352246	14
make[T.renault]	3.468340	16
make[T.saab]	9.790689	17
aspiration[T.turbo]	6.483269	23
num_of_doors[T.two]	4.202776	24
body_style[T.hardtop]	3.572518	25
engine_type[T.ohcv]	6.169138	35
num_of_cylinders[T.twelve]	8.732602	41
fuel_system[T.4bbl]	6.311034	44
fuel_system[T.mfi]	2.330516	46
fuel_system[T.spdi]	9.671580	48
fuel_system[T.spfi]	3.084567	49
symboling	7.138638	50
normalized_losses	3.864447	51
height	8.596078	55
stroke	6.435681	59
peak_rpm	6.367247	62

Influential Points

Observations

- We remove the points which we get common in both Cook's distance and studentized residual test results.
- 2. **7 records are removed as outliers** (indexes: 40, 41, 119....).
- 3. Now we are **left with 194 observations.**

Model Assumptions

- 1. Heteroscedasticity:
 - a. Initially found that heteroscedasticity existed.
 - So, applied log transformation on the Price variable and performed Breusch Pegan Test: LM-Test
 p-value: 0.15 > 0.05
 - c. Hence, resolved the issue of heteroscedasticity.
- Normality: From QQ plot we can observe the linear plot representing and performing Jarque-Bera test: (0.406>alpha), normality assumption is not violated.
- 3. **E[ei] = 0**. We can observe that average mean of residuals is 0.

T-test and ANOVA(typ=1) Results

- Once the outliers and multicollinearity is handled, model assumptions were agreed upon, We ran the the t test to select the significant features in the model.
- To verify we are not missing any significance in the features, we run ANOVA test type 1.
- Finally the table beside shows few features selected after doing t test and anova type 1.

	coef	std err	t	P> t	[0.025	0.975]
Intercept	7.7496	0.196	39.467	0.000	7.362	8.137
make_audi	0.3043	0.050	6.141	0.000	0.207	0.402
make_honda	0.0853	0.033	2.557	0.011	0.019	0.151
body_style_convertible	0.1550	0.049	3.191	0.002	0.059	0.251
make_saab	0.1344	0.049	2.732	0.007	0.037	0.231
curb_weight	0.0006	4.54e-05	14.309	0.000	0.001	0.001
make_bmw	0.4168	0.046	9.142	0.000	0.327	0.507
aspiration_turbo	0.0678	0.026	2.632	0.009	0.017	0.119
num_of_cylinders_two	0.1672	0.071	2.360	0.019	0.027	0.307
engine_location_rear	0.3865	0.125	3.093	0.002	0.140	0.633
num_of_cylinders_three	0.4153	0.124	3.347	0.001	0.170	0.660
make_isuzu	-0.2380	0.081	-2.942	0.004	-0.398	-0.078
fuel_system_mpfi	0.0779	0.024	3.213	0.002	0.030	0.126
make_porsche	0.4222	0.110	3.841	0.000	0.205	0.639
city_mpg	-0.0075	0.004	-1.992	0.048	-0.015	-6.98e-05
fuel_system_idi	0.1308	0.048	2.730	0.007	0.036	0.225
num_of_cylinders_eight	0.2034	0.071	2.864	0.005	0.063	0.344

Final model summary

OLS Regression Results

Dep. Variable:	price	R-squared:	0.956
Model:	OLS	Adj. R-squared:	0.951
Method:	Least Squares	F-statistic:	198.7
Date:	Sat, 15 Oct 2022	Prob (F-statistic):	2.96e-107
Time:	16:40:01	Log-Likelihood:	168.50
No. Observations:	194	AIC:	-297.0
Df Residuals:	174	BIC:	-231.7
Df Model:	19		

From the right graph, we can observe that *car maker, curb weight, engine type, mpg* are some major features contributing in **predicting the car price.**

nonrobust

Final model in equation form:

Price~

Covariance Type:

engine_size+make_toyota+body_style_convertible+make_plymouth+'make_porsche +make_peugot+engine_type_rotor+make_bmw+engine_type_ohcv+curb_weight+str oke+num_of_cylinders_three+wheel_base+bore+make_dodge+horsepower+make_mercedes_benz+make_mitsubishi.

Final model selected achieves:

- 1. Adj.R2 = 95.1%
- 2. MSE: 0.0114

Model Performance Graph

Conclusion

- We observed that the data was too messy with many variables and null values.
- Once the data was cleaned we performed statistical tests and resolved the problems like:
 - Multicollinearity
 - Influential points
 - Statistical tests
 - Model assumptions and mitigated the violations.
- We came to know that the car price depends on the brand(car maker), engine type, mileage, body style whether it's convertible, fuel system etc..
- Models like decision tree or xgboost can perform better.