111 學年度學科能力測驗 數學 B 考科選擇(填) 題答案

題號	答案	題號	題號	答案	題號	答案
1	1	13	13-1	9	18	4
2	3		13-2	9	19	/
3	2	14	14-1	1	20	/
4	2		14-2	7		
5	5	15	15-1	1		
6	3		15-2	4		
7	5		15-3	1		
8	1,2,5		15-4	5		
9	1	16	16-1	3		
10	1,2,4		16-2	1		
11	2,3		16-3	4		
12	3,5		16-4	5		
			17-1	4		
		17	17-2	5		
			17-3	6		

※答案「/」者,表示該題為非選擇題。

111 學年度學科能力測驗 數學 B 考科非選擇題評分原則

數學 B 的題型有選擇(填)與混合題或非選擇題。非選擇題主要評量考生是否能夠清楚表達推理論證過程。數學科非選擇題的解法通常不只一種,且有些解法並不屬於高中課程範圍,在此提供屬於高中課程,且多數考生可能採用的解法以供各界參考。不管採取哪種解法,均需於答題卷上清楚表達推理或解題過程,且得到正確答案,方可得到滿分。若過程中列式正確,但計算錯誤,則酌給部分分數。如果只有答案對,但觀念錯誤,或過程不合理,則無法得到分數。以下提供非選擇題參考答案,以及評分原則,至於學生的作答與無法得到滿分的情形,請參閱本中心將於 4 月 15 日出刊的第 330 期《選才電子報》。

第 19 題

一、滿分參考答案:

由題意可得

$$\sin \theta_1^{\circ} = \frac{2.3}{48} \cdot \sin \theta_2^{\circ} = \frac{2.3}{19} \cdot \sin \theta_3^{\circ} = \frac{4}{57}$$

由通分或化成小數比較可得 $\frac{2.3}{19} > \frac{4}{57} > \frac{2.3}{48}$,即 $\sin \theta_1^{\circ} < \sin \theta_3^{\circ} < \sin \theta_2^{\circ}$

因為正弦函數在區間 $[0^{\circ},90^{\circ}]$ 為 (嚴格) 遞增函數,所以 $\theta_{1}<\theta_{3}<\theta_{2}$ 。

- 二、評分原則:
- (一) 根據題意列出正確的數學式,例如三個角度的正弦值或是三組邊長的比值。
- (二) 正確寫出 θ_1 、 θ_2 、 θ_3 的大小關係並說明理由,例如利用正弦函數嚴格 遞增性質得到 θ_1 < θ_3 < θ_2 。

第 20 題

一、滿分參考答案:

設兩座鐵塔塔高皆為x公尺,則其偏移距離分別為 $x\sin\alpha^{\circ} = \frac{x}{5}$ 與 $x\sin\beta^{\circ} = \frac{7x}{25}$,

依題意「偏移距離相差 20 公尺」可列式為

$$|x \sin \alpha^{\circ} - x \sin \beta^{\circ}| = 20 \Rightarrow \left| \frac{x}{5} - \frac{7x}{25} \right| = 20 \Rightarrow \frac{7x}{25} - \frac{x}{5} = 20$$
, 解得 $x = 250$ 公尺。

因為
$$\sin \alpha^{\circ} = \frac{1}{5}$$
和 $\sin \beta^{\circ} = \frac{7}{25}$,可得 $\cos \alpha^{\circ} = \sqrt{1 - (\frac{1}{5})^2} = \frac{2\sqrt{6}}{5}$ 與 $\cos \beta^{\circ} = \sqrt{1 - (\frac{7}{25})^2} = \frac{24}{25}$

故兩塔的塔頂到地面之距離分別為 $x\cos\alpha^\circ=100\sqrt{6}$ 與 $x\cos\beta^\circ=240$,得其距離相差 $100\sqrt{6}-240\approx100\times2.449-240=4.9$ (公尺)。

上述之兩塔的塔頂到地面距離也可利用畢氏定理得到,例如

$$\sqrt{250^2 - 50^2} = 100\sqrt{6} \cdot \sqrt{250^2 - 70^2} = 240$$
 °

二、評分原則:

- (一)根據題意,正確連結塔高、偏移距離與正弦函數值三者之間的關係,並列出正確的數學式。
- (二) 正確解出上述所列之數學式,並正確求出兩塔的塔頂到地面之垂直距 離。
- (三) 正確比較兩垂直距離的大小關係,並寫出其相差值。