

Increasing Cellular Capacity Using ISM Band Side-channels: A First Study

Jingwen Bai

ECE, Rice University

Joint work with Chenxi Liu* and Ashutosh Sabharwal Rice University, *Tsinghua University

Before Smartphone Revolution

WiFi- Laptop

Cellular-phone

Today's Smartphones

Cellular band:

UMTS/HSPA+/DC-HSDPA (850, 900, 1700/2100, 1900, 2100 MHz);
LTE (Bands 1, 2, 3, 4, 5, 8, 13, 17, 19, 20, 25) ...

ISM band:

- 802.11a/b/g/n Wi-Fi (802.11n2.4GHz and 5GHz)
- Bluetooth 4.0 ...

Use of ISM Band on Smartphones

- Simultaneous use of ISM- and Cellular band
 - Assisted GPS
 - Location accuracy
 - Data Offloading
 - Cellular network congestion

- Data Forwarding
 - · Wireless tethering

New Use of ISM Band: ISM Side-channel

- Create side-channels for interference management to increase the overall cellular network capacity
 - Side-channels are established between mobile clients
- Serve as an additional radio to access ISM bands when available and controlled by cellular providers
 - ISM bands are usually controlled by end-users
 - Local knowledge
 - Inefficient and unstructured

- How often can we establish ISM side-channels between smartphones?
- PART I: Availability of ISM side-channels in highways
- How can we benefit from ISM side-channels?
- PART II: Impact on cellular capacity of future wireless architecture (MU-MIMO and full-duplex network)

Highway – WiFi Free Locations

- No WiFi infrastructure
 - Opportunity of using ISM band among users
- Rush hour: traffic congestion
 - Need to invoke complicated techniques to increase cellular capacity

PART I: Availability of ISM Side-channels in Highways

- Highway: Practically no WiFi coverage
- Methodology
 - Measure WiFi channel strength between smartphones
 - Our designed Android Application
- Range Test + Highway Traffic data = Estimate
 - Use WiFi frequency band as an example in ISM band

Intra-vehicle and Inter-vehicle ISM Sidechannels in Highway

Methodology

- Set up WiFi connection using WiFi Hotspot
 - Measure the WiFi channel strength using our designed Android apps

Server-side App

Client-side App

Methodology

- Set up WiFi connection using WiFi Hotspot
 - Measure the WiFi channel strength using our designed Android apps
 Server

Server-side and Client-side Logs

Intra-vehicle Environment

- For a compact car:
 - Average RSSI is -34.5 dBm,
 with a standard deviation of 5.5 dBm.

Mimic Intra-vehicle Environment

- High-scattering indoor
 - Mimic vehicles of large size
 - SNR of 32 to 54 dB

 (assuming the WiFi noise floor is -95 dBm)

High-Scattering Indoor Environment

Inter-vehicle Environment

- Place two vehicles at different distance separation
 - Measure inter-vehicle ISM side-channel

Inter-vehicle Environment

Average SNR ≥ 15 dB

Rush Hour Highway Traffic Data

- Rush hour traffic counts on California State
 - 900 California State Highways: interstate, CA Route, US Route
 - Calculate vehicle-to-vehicle range
 - Estimate of the smartphone-to-smartphone WiFi communication range

$$V2V \ Range(meter) = \frac{Avg \ Rush \ Hour \ Speed(meters/hour)}{Rush \ Hour \ Traffic \ Counts(vehicles/hour)}.$$

V2V Range Histogram

- 69% of time, there is at least one ISM side-channel within 50m
 - Given at least one smartphone per vehicle

PART II: Impact on Cellular Capacity of Future Wireless Architecture

- Trend of Base Station
 - RF resources
 - Processing capability

Rice Argos Platform

Massive MIMO BS Symmetric Traffic: MU-MIMO
Asymmetric Traffic: Full-duplex Network

Support multiple flows in the same cell simultaneously

PART II: Impact on Cellular Capacity of Future Wireless Architecture

MU-MIMO Downlink

Full-duplex Network

MU-MIMO Full-duplex via ISM Side-channel

Performance Evaluation

MU-MIMO Downlink

- Massive MIMO BS
 - Zero-forcing beamforming (ZFBF)
 - Create orthogonal beam for each user
 - With perfect Channel State Info at the Transmitter (CSIT), ZFBF can completely null out interference

MU-MIMO ZFBF System with Perfect CSIT

MU-MIMO Downlink

- In practice: CSIT is not perfect
 - Finite feedback bit → quantize channel instantiation
- Imperfect CSIT → Inter-beam
 Interference

MU-MIMO ZFBF System with Imperfect CSIT

PART II: Impact on Cellular Capacity of Future Wireless Architecture

MU-MIMO Downlink

Full-duplex Network

MU-MIMO Full-duplex via ISM Side-channel

Performance Evaluation

Full-duplex Network

Asymmetric traffic: full-duplex doubles spectral efficiency

- Massive MIMO BS
 - Use some of the antennas for transmission and others for reception to enable full-duplex operation.
 - Passive self-interference suppression
 - Polarization, directionality, absorption
 - Active self-interference cancellation

Full-duplex Network

Everett, Sahai, Sabharwal, Rice, 2013 Full-duplex Network with Half-duplex Clients

Full-duplex Network

Full-duplex Network with Half-duplex Clients

PART II: Impact on Cellular Capacity of Future Wireless Architecture

MU-MIMO Downlink

Full-duplex Network

MU-MIMO Full-duplex via ISM Side-channel

Performance Evaluation

Massive MIMO: MU-MIMO Full-duplex

Crisis

MU-MIMO Downlink -- Inter-beam interference Full-duplex -- Uplink-downlink interference

MU-MIMO Full-duplex: Intra-cell Interference

Improved Interference Management

Leverage ISM side-channels in dense environments

- Our Solution
 - Amplify-and-forward: Inter-beam interference for MU-MIMO downlink
 - Decode-and-cancel: Uplink-downlink interference for fullduplex network

MU-MIMO Downlink: Amplify-and-Forward

- A (B) amplifies the received signal and forwards it to B (A) on the side-channel
- A and B perform receive-beamforming to decode its own packet based on all received signal and channel knowledge.

Full-duplex: Decode-and-Cancel

- C sends the packet encoded for the side-channel
- B decodes Packet C, re-encodes, then cancels from main-channel
- After canceling out Packet C, B can decode Packet B

MU-MIMO Full-duplex via ISM Side-channels

Base Station: M antennas

- BS: No CSIT is required
 - Blindly serve DL with only K antennas
 - ZFBF to serve UL with the remaining antennas
- DL users:
 - amplify-and-forward
- UL users:
 - decode-and-cancel

BS can schedule the use of ISM side-channels for intra-cell interference management

PART II: Impact on Cellular Capacity of Future Wireless Architecture

MU-MIMO Downlink

Full-duplex Network

MU-MIMO Full-duplex via ISM Side-channel

Performance Evaluation

Performance Evaluation

Goal: show the benefits of leveraging ISM side-channels

Area	50×50 square meters
Base station antennas	M = 20
Maximum number of users	K + L = 20
Uplink and Downlink SNR	35 dB
ISM Side-channel RSSI	Refer to our measurement
Main-channel	Rayleigh fading

Results I: MU-MIMO Downlink

- Compare three systems with only downlink users:
 - ZFBF with perfect CSIT
 - Use all M antennas
 - ZFBF with finite-bit feedback
 - Use all M antennas
 - Finite-bit feedback: 10 bits per user
 - User cooperation via ISM side-channels
 - Amplify-and-forward
 - Use only K antennas without acquiring CSIT

Results I: MU-MIMO Downlink

- Compare three systems with only downlink users:
 - ZFBF with perfect CSIT
 - Use all M antennas
 - ZFBF with finite-bit feedback
 - Use all M antennas
 - Finite-bit feedback: 10 bits per user
 - User cooperation via ISM side-channels
 - Amplify-and-forward
 - Use only K antennas without acquiring CSIT

Results II: MU-MIMO Full-duplex

- Compare four systems with both up- & downlink users:
 - TDMA
 - Serve one user at a time; Use all M antennas
 - ZFBF downlink with perfect CSIT
 - Use all M antennas
 - Full-duplex ZFBF with perfect CSIT
 - Use a subset of antennas for DL
 - Remaining antennas for UL
 - MU-MIMO full-duplex via ISM side-channels
 - Use a subset of antennas to blindly serve DL without CSIT
 - Remaining antennas for UL

Results II: MU-MIMO Full-duplex

- Compare four systems with both up- & downlink users:
 - TDMA
 - Serve one user at a time; Use all M antennas
 - ZFBF downlink with perfect CSIT
 - Use all M antennas
 - Full-duplex ZFBF with perfect CSIT
 - Use a subset of antennas for DL
 - Remaining antennas for UL
 - MU-MIMO full-duplex via ISM side-channels
 - Use a subset of antennas to blindly serve DL without CSIT
 - Remaining antennas for UL

MU-MIMO Full-duplex with Fixed User Density

MU-MIMO Full-duplex with Fixed User Density

6.5X over ZFBF Downlink
12X over TDMA

MU-MIMO Full-duplex with Fixed User Density

Recovering 2X full-duplex gain

MU-MIMO Full-duplex with SNR

- Expected capacity $\mathbb{E}_d [\operatorname{Capacity}(d)]$
 - The expectation is taken over the estimate of the ISM side-channel range distribution we found in PART I

Conclusion

- Availability of ISM side-channels
 - 69% of time, we can establish ISM side-channels within 50m range on highway during rush hour with reliable link quality
- ISM band for improved interference management
 - Enable a flexible wireless architecture design of MU-MIMO full-duplex
 - Promise to improve the cellular network capacity many-fold