Ejemplo:

Continuemos con el mismo ejemplo que hemos seguido para el Análisis de Componentes Principales, donde ya vimos allí que parecían manifestar en él la existencia de un par de factores causantes de la diversidad de calificaciones observadas, a partir del análisis de la matriz de varianzas y covarianzas de los datos.

Dado que los estadísticos descriptivos nos mostraban la igualdad casi absoluta de las varianzas de todas las variables observadas, el análisis (solución de componentes principales) sobre la matriz de correlaciones arrojará prácticamente la misma solución como podemos comprobar en los cuadros siguientes:

		Sumas de las saturaciones al cuadrado de la extracción % de la Total varianza % acumulado				
Componente	1	6,297	69,965	69,965		
	2	1.974	21.932	91.897		

	Comunalidades	Matriz de C	omponente
	Comunandades	1	2
ST1	,893	,868,	-,374
ST2	.884	.852	-,398
GES	,859	,926	,036
ST3	.988	,893	-,436
IOP	,872	,812	-,462
INF	,944	,914	,329
MAT	.882	.928	.145
ECO	,969	,635	,752
ING	.980	.635	.759

Vimos que una primera interpretación del significado de estos dos factores la debíamos hacer a través de los coeficientes de correlación entre cada factor y las variable observadas que aparecen en la anterior matriz de componentes. Obsérvese que para las soluciones del problema general del Análisis Factorial la matriz de componentes coincide con la matriz de estructuras. Nos ayuda asimismo a valorar la magnitud y signos de dichos coeficientes de correlación el realizar la representación gráfica de las variables observadas en el espacio de los dos factores, siendo sus coordenadas dichas correlaciones, como aparecen en el siguiente gráfico.

Para tratar de aclarar aún más dicha interpretación buscaremos otra solución rotando los ejes ortogonalmente de manera que las variables observadas se sitúen lo más cercanas posible a los ejes; lo que haremos mediante una rotación Varimax que nos indica que la rotación óptima es la indicada por la matriz ortogonal:

Componente 1

Matriz de transformación de las componentes							
1 2							
Componente 1	,813	,583					
2	-,583	.813					

y que nos conduce a la siguiente solución:

Matriz de componentes rotados

	Componente					
	1	2				
ST1	,923	,202				
ST2	.924	.173				
GES	,732	,569				
ST3	.980	,166				
IOP	,929	,098				
INF	,551	,800				
MAT	.670	.658				
ECO	,078	,981				
ING	.073	.987				

para la que se obtiene la siguiente descomposición de la varianza:

		Sumas de la	s saturaciones al extracción	cuadrado de la	Suma de las saturaciones al cuadrado de la rotación			
		Total	% de la varianza	% acumulado	Total	% acumulado		
Componente	1 2	6.297 1.974	69.965 21.932	69.965 91.897	4.829 3.442	53.652 38.246	53,652 91,897	

Después de la rotación, se conservan la proporción total de varianza explicada y las

comunalidades. Además podemos observar que nuevamente todos los coeficientes de los nuevos factores rotados presentan valores absolutos entre 0 y 1, ya que representan el grado de correlación existente entre cada uno de esos factores y cada una de esas variables. Por ejemplo, el coeficiente 0.924 de ST2 para el factor 1 indica el nivel de correlación lineal del factor con la puntuación obtenida en la asignatura de Estadística 2 (ST2). Cuando una persona aumenta su calificación de ST2, resulta que también aumentará su puntuación sobre el primer factor.

Si representamos gráficamente las nueve variables (calificaciones de asignaturas) en el espacio de los dos factores incorrelacionados, tendríamos la siguiente representación:

Gráfico de componentes

Podemos observar que las variables correspondientes a las tres Estadísticas y la Investigación Operativa están muy unidas casi sobre el factor 1, indicando que los individuos sacan notas muy correlacionadas en esas variables: los que sacan notas muy altas en alguna de ellas, suelen sacarlas altas en todas ellas, y los que las sacan muy bajas también lo hacen en general en todas ellas. Es decir, parece que son variables muy similares, que aportan información muy similar entre ellas. Prácticamente sobre el factor 2 se encuentran Economía e Inglés. Y en una posición intermedia para los dos factores se posicionan la Informática, las Matemáticas y la Gestión configurando un grupo de asignaturas diferenciado de los anteriores, cuyo comportamiento se podrían explicar a partir de una combinación e los dos factores.

Si realizamos una rotación oblicua mediante el método Oblimin (delta=0), obtenemos unos nuevos factores, ahora correlacionados según se indica en el siguiente cuadro:

Matriz de correlaciones de componentes

	1	2
Componente 1	1,000	,378
2	.378	1,000

En cuyo espacio las variables originalmente observadas toman las siguientes coordenadas:

4 CURSO BÁSICO DE ANÁLISIS MULTIVARIANTE

	Componente					
	1	2				
ST1	.947	-,005				
ST2	,953	-,035				
GES	,677	,427				
ST3	1.014	056				
IOP	,971	-,115				
INF	.442	.714				
MAT	,594	,537				
ECO	094	1,016				
ING	-,100	1,023				

Lo que permite obtener la siguiente representación gráfica:

Gráfico de componentes

Como los anteriores coeficientes ya no son indicadores estandarizados de la dependencia lineal existente entre variables y factores, debido a la correlación existente entre los propios factores, necesitamos calcularlos expresamente. Las correlaciones entre variables y factores calculadas se presentan en la próxima tabla.

Matriz de estructura

	Compo	Componente					
	1	2					
ST1	,945	.353					
ST2	,940	,325					
GES	,838,	,683					
ST3	.992	.328					
IOP	,928	,252					
INF	.712	.881					
MAT	,797	,761					
ECO	,290	.980					
ING	,287	,985					

Obsérvese cómo tras la rotación oblicua se acentúa la localización sobre los factores de las variables más propensas a ello (los dos mismos grupos de variables que aparecían sobre los

ejes factoriales tras la rotación ortogonal, ahora más claramente).

Las calificaciones de las Estadísticas (ST1, ST2, ST3) y la Investigación Operativa se ven influenciadas exclusivamente por el primer factor; mientras que la Economía y el Inglés se ven influidas exclusivamente por el segundo factor. Las variables restantes, Matemáticas Informática y Gestión, se ve influenciadas por ambos factores.

Matriz de correlaciones(a)

	ST1	ST2	GES	ST3	IOP	INF	MAT	ECO	ING
ST1	1,000	.872	.757	.936	.828	.659	.738	.286	.273
ST2	,872	1,000	,750	,945	,804	,634	,713	,255	,252
GES	.757	.750	1,000	.783	,726	.869	.844	.586	.586
ST3	,936	,945	,783	1,000	,932	,666	,763	,248	,247
IOP	,828	,804	,726	,932	1,000	,600	,669	,179	,173
INF	.659	.634	.869	.666	.600	1,000	.875	.809	.818
MAT	,738	,713	,844	,763	,669	,875	1,000	,673	,684
ECO	.286	.255	.586	,248	,179	.809	.673	1,000	.985
ING	,273	,252	,586	,247	,173	,818,	,684	,985	1,000

Determinante = 3,508E-08

Matriz de correlaciones anti-imagen

	ST1	ST2	GES	ST3	IOP	INF	MAT	ECO	ING
ST1	,728(a)	,536	-,110	-,754	,610	-,145	,206	-,323	,312
ST2	.536	.665(a)	-,186	897	.783	088	.345	237	.206
GES	-,110	-,186	,930(a)	,133	-,178	-,430	-,209	-,032	,081
ST3	-,754	-,897	,133	.633(a)	903	.075	-,444	.293	-,226
IOP	,610	,783	-,178	-,903	,629(a)	-,177	,342	-,263	,274
INF	-,145	-,088	-,430	.075	-,177	,917(a)	-,121	,081	-,366
MAT	,206	,345	-,209	-,444	,342	-,121	,891(a)	-,031	-,108
ECO	-,323	-,237	-,032	,293	-,263	,081	-,031	,696(a)	-,917
ING	.312	.206	.081	-,226	.274	366	-,108	917	.680(a)

a Medida de adecuación muestral