Ref. No.: Ex/PG/PHAR/T/127A/2018

M. PHARMACY FIRST YEAR SECOND SEMESTER EXAM 2018

Subject: PHARMACEUTICS - II

Full marks: 100

Time: 3 hours

Answer at least two questions from each group.

Group A

1. What is gene therapy? Give the idea of vector for human gene therapy. Give how antisense therapy is a better approach over gene therapy. How will you design antisense oligomers? Describe how rDNA technology can be used for synthesis of protein drugs industrially.

- 2. Define biotransformation. Determine designing and development of an entire biotransformation process. Describe biotransformation for synthesis of steroidal drugs of industrial importance with examples .2+12+6=20
- 3. Write short note on:

$$5 x4 = 20$$

- (a) Transposon
- (b) Lac Z gene as recombinant marker
- (c) Palindromic sequence and blunt cut
- (d) DNA melting

Ref. No.: EX/PG/PHAR/T/127A/2018

M. PHARMACY FIRST YEAR SECOND SEMESTER, 2018

Subject: PHARMACEUTICS-II

Time: Three Hours

Full Marks: 100

GROUP-B

Use separate Answer scripts for each Group.

	<u> </u>	araco 1 xrib y	or sompts i	or cach C	ioup.	
Q. No						Marks
B1.	(a) Describe the mecl	a) Describe the mechanisms of targeted drug delivery systems.				
		ch compo	nent for de	onents and different factors need to be ent for designing polymer drug conjugates.		
B2.	(a) Give structures of a poly (lactic acid), and chitosan polymer used for controlled drug delivery. What polymer is Eudragit and Pluronic.					or 4
	(b) A polyethylene sample made of the following distribution is given. Calculate M_n .					n. 6
	No. of chains	10 20	30	50	30	
	Chain length	30 50	100	150	200	
	(c) Graphically show the relationship between M _w and M _n for a polymer with low polydispersity and polymer with high polydispersity. Explain the principle of at least one method by which molecular weight distribution of a polymer sample can be determined.					n
	(d) Differentiate between	een step gr	owth and c	hain grow	th polymerization.	4
В3.	(a) What is T _g ? Explain, possibly with suitable thermograms and equations how T _g changes can be studied and their relevance for drug-polymer interactions in pharmaceutical product development of pharmaceutical amorphous solid dispersions.					er
	 (b) Define the terms: viscoelasticity, theta solvent, thermosetting, isotactic, degree of crystallinity, engineering polymers, stimuli responsive polymers and biocompatibility. 					e 12