《数字信号处理》1-8 章作业选讲

杨勐 2019年11月8日

相关说明

- 1、注意教材的笔误、错误,及时上报
- 2、改作业无法完全准确,请对照参考答案

课堂目的

- 1、讲解作业难点
- 2、梳理知识要点

习题

第一章

1.3 考虑如图 1.29 所示的函数 x(t),求出 x(t)的连续时间傅里叶变换。

分析:

图(b)为连续时间周期信号,即 $x(t) = -A\delta(t+T) + A\delta(t-T)$.

应计算信号的傅里叶级数 (FS)。周期 $T_0=4T$,基波频率 $\Omega_0=2\pi/4T=\pi/2T$ 根据 FS 变换公式 (1.6) 有

$$X(n\Omega_0) = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jn\Omega_0 t} = \frac{1}{4T} \int_{-2T}^{2T} \left[-A\delta(t+T) + A\delta(t-T) \right] e^{-jn\pi t/2T}$$

$$= \frac{A}{4T} \left(-e^{-jn\pi t/2T} \Big|_{t=-T} + e^{-jn\pi t/2T} \Big|_{t=T} \right)$$

$$= \frac{A}{4T} \left(-e^{jn\pi/2} + e^{-jn\pi/2} \right)$$

$$= -\frac{jA}{2T} \sin(n\pi/2)$$

知识要点:区分连续时间周期信号傅里叶级数(FS)、离散时间傅里叶变换(DTFT)、离散时间傅里叶级数(DFS)、离散傅里叶变换(DFT).

1.17

分析:

1)卷积表示信号的周期化
$$h(t) = h_2(t) * p(t) = h_1(t) * \sum_{n=-\infty}^{\infty} \delta(t - 2T_0 n)$$

2) 三角波是方波的卷积 $h_2(t) = h_1(t) * h_1(t)$

知识要点:卷积的物理意义是实现时移(频移),比如通信技术中的调制(图 1.12)。

1.25

1.25 采样信号序列为
$$x(nT) = \cos\left(\frac{\pi}{4}nT\right), \quad -\infty < n < \infty$$

是对模拟信号

$$x(t) = \cos(\Omega_0 t), \quad -\infty < t < \infty$$

进行采样而得到,采样率为 1000 样本/秒。问:有哪两种可能的 Ω 。值以同样的采样率能得到该序列 x(nT)?

分析:

(1) 时域方法

采样信号 x(nT)和模拟信号 x(t)在任意采样点 t=nT 上值相等,即

$$\cos(\Omega_0 \cdot t) = \cos(\Omega_0 T \cdot n) = \cos\left(\frac{\pi T}{4} \cdot n\right) = \cos\left(\pm\left(\frac{\pi T}{4} + 2\pi k\right) \cdot n\right)$$

$$k = 0,1,2,3,...$$

$$\Omega_0 = \pm\left(\frac{\pi T}{4} + 2\pi k\right) / T = \pm\left(\frac{\pi}{4} + 2000\pi k\right)$$

(考虑物理意义,不含负频率值)

(2) 频域方法

$$\cos(\Omega_0 t) = \frac{1}{2} e^{j\Omega_0 t} + \frac{1}{2} e^{-j\Omega_0 t}$$
, 即对称的两个脉冲信号

任意一对脉冲信号周期化都可以得到相同的频域信号,并且已知频域周期为

$$\Omega_s = \frac{2\pi}{T} = 2000\pi$$
, 因此

$$\Omega_{\scriptscriptstyle 0} = \frac{\pi}{4}, -\frac{\pi}{4} + \Omega_{\scriptscriptstyle s}, \frac{\pi}{4} + \Omega_{\scriptscriptstyle s}, -\frac{\pi}{4} + 2\Omega_{\scriptscriptstyle s}, \frac{\pi}{4} + 2\Omega_{\scriptscriptstyle s}, \dots$$

知识要点:时域采样,频域周期延拓

- 1.28 对具有如图 1.36 所示的连续时间傅里叶变换 $X(j\Omega)$ 的模拟信号 x(t) 进行周期为 x(t) 0 的采样得到 x(nT) 。
- (1) 采样序列信号 x(nT)经过一个数字信道传输,在接收端原信号 x(t)必须恢复出来,假是可以采用理想滤波器。试画出该恢复系统的方框图,并给出它的特性;
 - (2) 请说明 T 在什么范围内(用 Ω 。表示),x(t)可从采样序列 x(nT)恢复?
- 1.29 在图 1.37 中,设 $X(j\Omega) = 0$, $|\Omega| \ge \pi/T$, 对于一般情况 $T_1 \ne T_2$, 试用 x(t)来表示 (t), 对于 $T_1 > T_2$ 和 $T_1 < T_2$, 两种情况有什么不同?

分析:

(1) 解决方案一: 频域周期延拓+高通滤波器。

Case 1. 以 A 和 B 频谱为总体,以 Ω_s 为周期进行延拓,则易得 $\Omega_s \ge 2\Omega_0$

Case 2. 对 A 和 B 频谱,分别以 Ω_s 为周期进行延拓,为保证所有频谱不混
叠,则有

$$\begin{cases} -\Omega_{\scriptscriptstyle 0}/2 \leq \Omega_{\scriptscriptstyle 0}/2 - \Omega_{\scriptscriptstyle s} \\ \Omega_{\scriptscriptstyle 0} - \Omega_{\scriptscriptstyle s} \leq -\Omega_{\scriptscriptstyle 0} + \Omega_{\scriptscriptstyle s} \end{cases}, \quad 即得 \Omega_{\scriptscriptstyle s} = \Omega_{\scriptscriptstyle 0} \\ -\Omega_{\scriptscriptstyle 0}/2 + \Omega_{\scriptscriptstyle s} \leq \Omega_{\scriptscriptstyle 0}/2 \end{cases}$$

因此,采样频率 $\Omega_s \geq 2\Omega_0$ 或 $\Omega_s = \Omega_0$ 可保证频谱不混叠,可通过**带通滤波器**恢复原始信号。

(2)解决方案二:解调制+低通滤波器。

即把高频信号解调制到低频,然后再做采样和低通滤波。假设 $x_{\scriptscriptstyle L}(t)$ 和 $X_{\scriptscriptstyle L}[j\Omega]$ 为一个低通信号及其傅里叶变换,则调制后的高频信号为

$$X_H(t) = X_L(t)e^{j\Omega_0 t} \Leftrightarrow X_L \left[j(\Omega - \Omega_0) \right]$$

反向即可把高频信号解调制得到低频信号,请自己推导。如果输入信号为实信号呢?

知识要点: 1.时域采样,频域周期延拓。2、频域调制技术。3、实信号共轭偶对称。

第二章

2.4

2.4 (1) 求等幅有限长序列

$$x(n) = \begin{cases} 1/2, & 0 \leqslant n \leqslant N-1 \\ 0, & \text{ 其他 } n \end{cases}$$

三萬散时间傅里叶变换,并画出 x(n)与 $X(e^{i\omega})$ 的幅频和相频特性。

- - (a) $\operatorname{Re}[X(e^{j\omega})]$; (b) $\operatorname{Im}[X(e^{j\omega})]$; (c) $|X(e^{j\omega})|$; (d) $\operatorname{arg}[X(e^{j\omega})]$.

分析: (见教材例题 2.9)

$$X(e^{j\omega}) = \frac{1 - e^{-jN\omega}}{2(1 - e^{-j\omega})} = \frac{e^{-jN\omega/2}(e^{jN\omega/2} - e^{-jN\omega/2})}{2e^{-j\omega/2}(e^{j\omega/2} - e^{-j\omega/2})} = e^{j(1-N)\omega/2}\frac{\sin(N\omega/2)}{2\sin(\omega/2)}$$

因此幅值和相角为

$$\left|X\left(e^{j\omega}\right)\right| = \left|\frac{\sin\left(N\omega/2\right)}{2\sin\left(\omega/2\right)}\right|,$$

$$\arg\left[X\left(e^{j\omega}\right)\right] = \frac{\omega}{2}(1-N) + \arg\left[\frac{\sin\left(N\omega/2\right)}{2\sin\left(\omega/2\right)}\right]$$
注:取主值区间 $\left(-\pi,\pi\right]$

图 2.15 $M_1 = 0$, $M_2 = 4$ 时移动平均系统频率响应的幅频特性和相频特性

知识要点: 幅频特性为非负实数; 数值-1 的幅值为 1,相位为 π ;相位有效范围为 $\left(-\pi,\pi\right]$

2.7

2.7 对下列系统,试判断系统是否是(a)稳定的;(b)因果的;(c)线性的;(d)时不变的; 三元记忆的;并说明理由。

分析:

以(2)为例。

续性:
$$T[ax_1(n)+bx_2(n)] = \sum_{k=n_0}^n [ax_1(k)+bx_2(k)]$$

$$= \sum_{k=n_0}^n ax_1(k) + \sum_{k=n_0}^n bx_2(k) = aT[x_1(k)] + bT[x_2(k)]$$

时变性:
$$T[x(n-n')] = \sum_{k=n_0}^n x(k-n') = \sum_{k=n_0-n'}^{n-n'} x(k) \neq y(n-n') = \sum_{k=n_0}^{n-n'} x(k)$$

不稳定性: 当 $x(n) \le M$, $|T(x(n))| \le \sum_{k=n_0}^n |x(k)| \le |n-n_0|M$ 。随着 n 变大趋向于

无穷, T(x(n))趋向于无穷。

因果性: T(x(n)) 只与过去的若干x(n) 值有关。

有记忆性: y(n) = T(x(n)) = x(n)过去时刻的值有关。

知识要点:

卷积运算 y(n) = x(n) * h(n) 是定义在 LTI 系统上,并用来表征 LTI 系统的响应。请详阅 2.4 章节的内容(P.61-P.63).

LTI系统稳定性判定。

- a)系统对每一个输入都产生有界输出,则称该系统在有界输入有界输出(BIBO)的意义下稳定。
 - b) LTI 系统稳定的充分必要条件是系统的单位采样相应绝对可加(有界)。

2.16

$$2.16$$
 —系统的线性常系数差分方程如下:
$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = 2x(n-1)$$
 当 $x(n) = \delta(n)$ 和 $y(n) = 0$, $n < 0$,求 $y(n)$ 。

分析:

(1) 归纳法

$$y(n) = 3/4 y(n-1) - 1/8 y(n-2) + 2\delta(n-1)$$

已知
$$y(n)=0, n<0$$
,则有

$$y(0) = 3/4 y(-1) - 1/8 y(-2)$$

$$y(1) = 3/4 y(0) - 1/8 y(-1) + 2 = 2$$

$$y(2) = 3/4 y(1) - 1/8 y(0) = 3/2$$

$$y(3) = 3/4 y(2) - 1/8 y(1) = 7/8$$

...

存在的问题:人为归纳的递推结果可能不准确。

(2) 频域响应求解

$$\left[1 - 3/4e^{-j\omega} + 1/8e^{-2j\omega}\right]Y(e^{j\omega}) = 2e^{-j\omega}X(e^{j\omega})$$

$$H(e^{j\omega}) = \frac{2e^{-j\omega}}{1 - 3/4e^{-j\omega} + 1/8e^{-2j\omega}} = \frac{8}{1 - 2e^{-j\omega}} - \frac{8}{1 - 1/4e^{-j\omega}}$$

$$\because y(n) = 0, n < 0$$

$$\therefore y(n) = 8\left[\left(\frac{1}{2}\right)^{n} - \left(\frac{1}{4}\right)^{n}\right]u(n)$$

存在的问题: 差分方程描述的系统, 应注意: 初始值不同、系统因果性不同, 则频域响应对应的输出序列不同。因此一般不能直接采用频域变换方法。该题目 初始条件简单,采用频域法的结果刚好正确。该问题可采用单边 Z 变换法来求 解,解法2请参见第3.6节内容。

知识要点: 频域变换方法或单边 Z 变换求解, 应注意系统的因果性和初始条件。

第三章 Z 变换

3.14

3. 14 已知
$$x(n)$$
和 $y(n)$ 的 z 变换
$$X(z) = \frac{0.99}{(1-0.1z^{-1})(1-0.1z)}, \quad 0.1 < |z| < 10$$

$$Y(z) = \frac{1}{1-10z}, \quad |z| > 0.1$$
 云則用直接法和复卷积公式求 $\mathcal{Z}[x(n)y(n)]$ 。

分析:

1) 直接法

$$X(z) = \frac{1}{1 - 0.1z^{-1}} - \frac{1}{1 - 10z^{-1}} \leftrightarrow x(n) = 0.1^{n}u(n) + 10^{n}u(-n - 1)$$

$$Y(z) = \frac{1}{1 - 10z} = \frac{-0.1z^{-1}}{1 - 0.1z^{-1}} \leftrightarrow y(n) = -0.1^{n}u(n - 1)$$

$$x(n)y(n) = -0.01^{n}u(n - 1) = -0.01^{n}u(n) + \delta(n)$$

$$Z[x(n)y(n)] = \frac{-1}{1 - 0.01z^{-1}} + 1 = \frac{1}{100z - 1}, |z| > 0.01$$
2) 复卷积法

$$X(v)Y(\frac{z}{v})v^{-1} = v^{-1}\frac{0.99}{(1 - 0.1v^{-1})(1 - 0.1v)}\frac{1}{1 - 10(z/v)}$$
$$= \frac{-9.9v}{(v - 0.1)(v - 10)(v - 10z)}, 0.1 < |v| < \min[10, 10z]$$

因此围线 c 只有一个极点 0.1, 因此复卷积计算如下

$$Z\left[x(n)\Box y(n)\right] = \frac{1}{2\pi i} \iint_{C} \frac{-9.9v}{(v-0.1)(v-10)(v-10z)} dv$$
$$= \frac{-9.9v}{(v-10)(v-10z)} \bigg|_{v=0.1} = \frac{0.1}{0.1-10z} = \frac{1}{1-100z}, |z| > 0.01$$

知识要点:

1) 部分分式展开法的标准式

$$X(z) = A_0 + \frac{A_1}{1 - p_1 z^{-1}} + \frac{A_2}{1 - p_2 z^{-1}} + \dots$$

- 2) 注意复卷积定理计算过程中区分 v 和 z 的收敛域。
- 3) 围线积分只计算围线以内的极点。(同 3.25 题)

3.25

3.25 设一个稳定序列
$$x(n)$$
的 z 变换为
$$X(z) = \frac{z^{10}}{\left(z - \frac{1}{2}\right)\left(z - \frac{3}{2}\right)^{10}\left(z + \frac{3}{2}\right)^{2}\left(z + \frac{5}{2}\right)\left(z + \frac{7}{2}\right)}$$

- (1) 求 X(z)的收敛域:
- (2) 利用围线积分求 n = -8 时的 x(n)。

分析:

(1) 稳定系统要求1/2 < |z| < 3/2

(2)
$$x(n) = \frac{1}{2\pi i} \iint_{\mathbb{R}} X(z) z^{n-1} dz$$

收敛域中的围线 c 只包含一个一级极点 1/2, 因此

$$x(-8) = \frac{1}{2\pi j} \iint_{c} X(z) z^{-8-1} dz$$

$$= \text{Res} \left[X(z) z^{-8-1} \right]_{z=1/2} = (z - 1/2) X(z) z^{-9} \Big|_{z=1/2}$$

$$= 1/96$$

知识要点: 围线积分只计算围线以内的极点。

3.30 一个因果的离散线性时不变系统的系统函数是

$$H(z) = \frac{1 - z^{-1}}{1 + 3/4 z^{-1}}$$

该系统的输入序列是

$$x(n) = (1/2)^n u(n) + u(-n-1)$$

- (1) 求对全部 n 的系统的单位采样响应;
- (2) 求对全部 n 的输出序列 y(n);
- (3) 该系统是稳定的吗?即 h(n)是绝对可加的吗?

分析:

(1) 用部分展开法分解如下:

$$H(z) = \frac{1 - z^{-1}}{1 + 3/4 z^{-1}} = \frac{1}{1 + 3/4 z^{-1}} - \frac{z^{-1}}{1 + 3/4 z^{-1}}$$

因为因果系统,所以H(z)的收敛域为|z| > 3/4,所以

$$h(n) = (-3/4)^n u(n) - (-3/4)^{n-1} u(n-1)$$

(2) 将
$$x(n) = \left(\frac{1}{2}\right)^n u(n) + u(-n-1)$$
 的 Z 变换为:

$$X(z) = \frac{z}{z - \frac{1}{2}} - \frac{z}{z - 1}, \quad \frac{1}{2} < |z| < 1$$

$$Y(z) = X(z)H(z)$$

$$= \left(\frac{z}{z - 1/2} - \frac{z}{z - 1}\right) \frac{(z - 1)}{(z + 3/4)} = \frac{-1/2 z}{(z - 1/2)(z - 1)} * \frac{(z - 1)}{(z + 3/4)}$$
$$= \frac{-1/2 z}{(z - 1/2)(z + 3/4)} = \frac{-2/5}{1 - 1/2 z^{-1}} + \frac{2/5}{1 + 3/4 z^{-1}}$$

Y(z)的收敛域为 $|z| > \frac{3}{4}$,因此其反变换为

$$y(n) = \frac{-2}{5} * \left(\frac{1}{2}\right)^n u(n) + \frac{2}{5} * \left(-\frac{3}{4}\right)^n u(n)$$

(3) 因为系统的极点 z = -3/4 在单位圆内,所以系统是稳定的,即 h(n) 是绝对可加的。

知识要点: 1) 注意收敛域的确定。

第四章

4.1

4.
$$\sqrt{$$
 假设 $x(t)$ 是一个周期为 1 ms 的连续时间信号,它的傅里叶级数为
$$x(t) = \sum_{k=0}^{9} a_k e^{j(2\pi kt/10^{-3})}$$

对于|k|>9,傅里叶系数 a_k 为零,以采样间隔 $T=\frac{1}{6}\times 10^{-3}$ s 对 x(t)采样,得到

$$x(n) = x\left(\frac{n10^{-3}}{6}\right)$$

- (1) x(n)是周期的吗?如果是,周期为多少?
- (2) 采样周期 T 是否充分小而可以避免混叠?
- (3) 利用 a, 求出 x(n)的离散傅里叶级数系数。

解:

$$(1) x(n) = \sum_{k=-9}^{9} a_k e^{j2\pi kn/6}$$

x(t)的周期为 1ms, 因此 x(n)的周期为 $N = 10^{-3}/T = 6$

(2)
$$X(j\Omega) = \sum_{k=-9}^{9} a_k \delta(\Omega - 2\pi k/10^{-3})$$
,其截止频率为 $\Omega_0 = 2\pi \cdot 9/10^{-3}$

而采样频率 $\Omega_s=2\pi/T=2\pi\cdot 6/10^{-3}<2\Omega_0=2\pi\cdot 19/10^{-3}$, 因此不能避免混叠

(3) 记周期信号x(n)为 $\tilde{x}(n)$,其 DFS 为

所以s=k+mN

$$\tilde{X}(0)=6(a_0+a_6+a_{-6}), \, \tilde{X}(1)=6(a_1+a_7+a_{-5}), \, \tilde{X}(2)=6(a_2+a_8+a_{-4})$$

 $\tilde{X}(3)=6(a_3+a_9+a_{-3}+a_{-9}), \, \tilde{X}(4)=6(a_4+a_{-2}+a_{-8}), \, \tilde{X}(2)=6(a_5+a_{-1}+a_{-7})$

知识要点: 1)信号周期(由最低频低频子信号决定)和最高频率的区别; 2)复指数的正交求和公式,作业 4.10 页用到该公式。

考虑图 4.25 所示的函数 x(t),用 N=6 对其采样。假如应用 DFT 对波形作谐波 那么采样间隔 T 应取多大? 计算和画出 DFT 的结果,并与该函数的傅里叶级数比较,

图 4.25 习题 4.27 图

知识要点:注意理解采样点 N、采样频率 f_s 、基波频率 Δf 等概念,以及他们与物理频率分辨率、计算频率分辨率的关系。

第五章

5.10 已知 x(n)是一个 N(N) 为偶数)点的序列,其 N 点离散傅里叶变换为 X(k),Y(k) 是 y(n)的 32 点离散傅里叶变换,其中

$$y(n) = \begin{cases} x(n), & 0 \leqslant n \leqslant N-1 \\ x(n-16), & N \leqslant n < 2N \\ 0, & \text{if } n \end{cases}$$

求 X(k) 和 Y(k) 之间的关系。

解: 由题意知:

$$X(k) = \sum_{n=0}^{N-1} x(n)W_N^{kn}, k = 0,1,2,...N-1$$

其中 $W_N = e^{-j\frac{2\pi}{N}}$ 。

由于Y(k)是y(n)的32点DFT,所以有:

$$Y(k) = \sum_{n=0}^{31} y(n)W_{32}^{kn} = \sum_{n=0}^{N-1} x(n)W_{32}^{kn} + \sum_{n=N}^{31} y(n)W_{32}^{kn}$$
$$= \sum_{n=0}^{N-1} x(n)W_{N}^{\frac{N}{32}kn} + \sum_{n=N}^{31} y(n)W_{32}^{kn}$$
$$= X(\frac{N}{32}k) + \sum_{n=N}^{31} y(n)W_{32}^{kn}, \quad k = 0, 1, 2, ..., 31$$

这里 y(n) 是 2N 点而 Y(k) 是 y(n) 的 32 点 DFT, 所以需要考虑 2N 和 32 的大小关系。

又由于 N 是偶数, 所以只要分析 N 与 16 的大小。

 $\stackrel{\text{def}}{=} N \le n \le 2N \text{ pt}, \quad y(n) = x(n-16) \text{ o}$

当 N=16 时:

$$\sum_{n=N}^{31} y(n) W_{32}^{kn} = \sum_{n=N}^{31} x(n-16) W_{32}^{kn} = \sum_{n=0}^{N-1} x(n) W_N^{\frac{n+16}{2}k} = X(\frac{k}{2}) (-1)^k$$

此时有 $Y(k) = [1 + (-1)^k]X(\frac{k}{2})$ 。

当 N<16 时:

$$\sum_{n=N}^{31} y(n) W_{32}^{kn} = \sum_{n=N}^{2N} x(n-16) W_{32}^{kn} = \sum_{n=0}^{2N-16} x(n) W_{32}^{(n+16)k} = \sum_{n=0}^{2N-16} x(n) W_{32}^{nk} (-1)^k$$

此时有
$$Y(k) = X(\frac{N}{32}k) + \sum_{n=0}^{2N-16} x(n)W_{32}^{nk}(-1)^k$$
。

当 N>16 时:

$$\sum_{n=N}^{31} y(n) W_{32}^{kn} = \sum_{n=N}^{N+15} x(n-16) W_{32}^{kn} = \sum_{n=N-16}^{N-1} x(n) W_{32}^{(n+16)k} = \sum_{n=N-16}^{N-1} x(n) W_{32}^{nk} (-1)^k$$

此时有
$$Y(k) = X(\frac{N}{32}k) + \sum_{n=N-16}^{N-1} x(n)W_{32}^{nk}(-1)^k$$
。

综上可得:

$$Y(k) = \begin{cases} X(\frac{N}{32}k) + \sum_{n=0}^{2N-16} x(n)W_{32}^{nk}(-1)^k, & N < 16 \\ [1 + (-1)^k]X(\frac{k}{2}), & N = 16 \\ X(\frac{N}{32}k) + \sum_{n=N-16}^{N-1} x(n)W_{32}^{nk}(-1)^k, & N > 16 \end{cases}$$

知识要点: 无。

5.16

5.16 某一线性时不变系统的输入和输出满足如下差分方程: $y(n) = \sum_{k=0}^{N} b_k y(n-k) + \sum_{k=0}^{M} a_k x(n-k)$ 更可用一FFT 程序来计算长度 $N=2^M$ 的任何有限长序列的 DFT, 试提出一种方法, 它可

$$H(e^{j(2\pi/(512)k}), k = 0, 1, \dots, 511$$

三中 H(z)是该系统的系统函数。

解:由题可得:

$$H(z) = \frac{\sum_{r=0}^{M} a_r z^{-r}}{1 - \sum_{l=1}^{N} b_l z^{-l}}$$

$$H(e^{j2\pi k/512}) = \frac{\sum_{r=0}^{M} a_r e^{-j2\pi kr/512}}{1 - \sum_{l=1}^{N} b_l e^{-j2\pi kl/512}}$$

假设 $N \le 511$ 且 $M \le 511$ (一般情况下,系统阶数较低),令:

$$a[n] = \begin{cases} a_n, & 0 \le n \le M \\ 0, & M+1 \le n \le 511 \end{cases}$$

$$b[n] = \begin{cases} 1, n = 0 \\ b_n, 1 \le n \le N \\ 0, N + 1 \le n \le 511 \end{cases}$$

令A[k]与B[k]分别为a[n]与b[n]的 512点 DFT,则:

$$H\left(e^{j2\pi k/512}\right) = \frac{A[k]}{B[k]}$$

知识要点:上述过程 a[n]和 b[n]都是补零序列,FFT 计算硬件实现时效率较高。 大多数人先计算出 h[n], 然后对其做 FFT, 这显然是最低效的方法。

第六章

6.5 设 h(n) 为一理想低通滤波器的冲激响应,其通带内增益为 1,截止频率为 $\omega_c = \pi/4$ 。图 6.16 示出四个系统,其中每一个都等效为一种理想线性时不变的频率选择性滤波器,对图 6.16 中每一个系统画出其等效频率响应,并用 ω_c 标注出通带边缘频率,并指出它们是否属于低通、高通、带通或带阻滤波器。

知识要点:判断系统特性应先推导出相应的频率响应 H (e^jw)。

6.8

6.8 考虑一个因果的线性时不变系统,其系统函数 H(z)在 $z=e^{i\omega}$ 上的求值如图 6.18 所示。

- (1) 从图 6.18 推断出有关极-零点位置的全部信息,并画出 H(z)的极-零点图;
- (2) 讨论有关冲激响应的长度;
- (3) 说明 $\theta(\omega)$ 是否线性;
- (4) 说明系统是否稳定。

图 6.18 习题 6.8

6.8 (1) 丰居區, 201g H(eio) =+10 = H(eio) =0
1 20 lg H(e;01) = -0 H(e;0) = 0
且在日文处有一极大值:极零运图处下:
(2)根据零根点分布,得到系统的数如下:
H(Z) = (1-e;0, Z-1)(1-e;0, Z-1)
(1-ei01x-1)(1-e-101x-1)(1-rei01x-1)(1-re-101x-1)
易知, 该系统的冲影响 应为IIR
长度为无限长
(3). 7(W) = - Re (Z d ln[H(Z)]) Z= ein
JIZ=EIW
$= \underbrace{\left\{\begin{array}{ccccccccccccccccccccccccccccccccccc$
Z-eigh Z-eigh Z-eigh Z-eigh Z-teigh Z+teigh) Z=eigh
可见, Tg(w) 不是常数: O(w) 非线性
(4) 由于系统是因果系统,而在单位圆上有极生
二、系统函数H(B) 的收敛域 ROC: 区171.
不包含单位圈 与 不稳定
6.8.鹤:
11) 若存在零点,则知 2010g10[H1ein] = 2010g10:0=-00
岩存在极点, 则实 2010910 Hie! = 2010910 = ta
则由图可知 H12) 在 2= eim上有一个规定
而图中存在一个机大值点、可知其为单位圈内的一个机点
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
R X
(2)(<1)
四月112 (2)
$\frac{ D }{ D } \frac{ D }{ D } = \frac{ C }{ D } \frac{ D }{ D } $
=) y(n)-(22+15)y(n-1)+225y(n-2)= kx(n-1-1-12+(n-2)) (n-2) = kx(n-2) = kx(n-1-1-12+(n-2)) (n-2) = kx(n-2) =
有相厚相上。而显然对天阳大
=)164/44/12
41日于单位图10首加点
图果、线性时不变彩纸 一)彩烧破灾

知识要点:理解零点、极点的物理意义(对频率响应的影响),理解共轭零点(极点)、单位圆镜像零点(极点)的意义。

6.16

6.16 6.2.1 节讨论了四种类型因果线性相位 FIR 滤波器,对于以下列出的每种滤波器指出四种 FIR 滤波器类型中的哪些可以用来逼近所要求的滤波器:

- (1) 低通;
- (2) 带通;
- (3) 高通;
- (4) 带阻;
- (5) 微分器。

知识要点: 微分器=jw,它要求滤波器有 90 度相移,因此 h(n)偶对称显然不符合。

第七章

注: 第七、八章的重点是滤波器设计,请认真对照参考答案复习相关的作业题,这里不专门讲解。

7.5
$$/$$
设计一个 FIR 高通数字滤波器来逼近所希望的幅频特性:
$$H_{\rm d}(\mathrm{e}^{\mathrm{j}\omega}) = \begin{cases} 0\,, & \mid\omega\mid<\omega_0\\ 1\,, & \omega_0\leqslant\mid\omega\mid\leqslant\pi \end{cases}$$

$$H_{\mathrm{d}}\left(\mathrm{e}^{\mathrm{j}\omega}
ight) = egin{cases} 0\,, & \mid\omega\mid<\omega_{0}\ 1\,, & \omega_{0}\leqslant\mid\omega\mid\leqslant\pi \end{cases}$$

试问其冲激响应与同样带宽的 FIR 数字低通滤波器的冲激响应之间有什么关系?

解:滤波器的冲击响应为:

$$h_{d}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\cos \omega n + j \sin \omega n) d\omega$$
$$= \frac{1}{\pi} \int_{0}^{\pi} (\cos \omega n) d\omega = \frac{1}{\pi} \int_{\omega_{0}}^{\pi} (\cos \omega n) d\omega = \frac{1}{\pi} \frac{\sin \pi n - \sin \omega_{0} n}{n}$$

因为低通滤波器于高通滤波器存在关系:

$$H_L = 1 - H_d$$

则其对应冲击响应为:

$$h_{l}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (1 - H_{d}) e^{j\omega n} d\omega = \frac{1}{\pi} \frac{\sin \pi n}{n} - h_{d}(n)$$

知识要点:滤波器带宽定义。

7.10

7.10 设有一个 FIR 系统的差分方程为
$$y(n) = x(n) - x(n-N)$$

给出该系统的幅频响应及相频响应。

解: 由
$$y(n) = x(n) - x(n-N)$$
 得

$$H(z) = 1 - z^{-N}, \quad H(e^{j\omega}) = 1 - e^{-j\omega N} = e^{\frac{-j\omega N}{2}} \left(e^{\frac{j\omega N}{2}} - e^{\frac{-j\omega N}{2}} \right) = 2j\sin\left(\frac{\omega N}{2}\right) e^{\frac{-j\omega N}{2}}$$

幅频响应和相频响应为

$$\left| H\left(e^{j\omega}\right) \right| = 2 \left| \sin\left(\frac{\omega N}{2}\right) \right|$$

$$\theta\left(H\left(e^{j\omega}\right)\right) = \frac{\pi}{2} - \frac{\omega N}{2} + \arg\left(\sin\left(\frac{\omega N}{2}\right)\right)$$

知识要点: -1 包含相位 pi, 前面章节也有相关题目。

第八章

8.1

8.1 根据图 8.24 所示数字滤波器的结构图,推导出相应的系统函数。

(1)设中间变量为T

$$\begin{cases} X + \frac{1}{2}z^{-1}T = T \\ T + \frac{1}{4}z^{-1}T = Y \end{cases} \not\exists H = \frac{Y}{X} = \frac{1 + \frac{1}{4}z^{-1}}{1 - \frac{1}{2}z^{-1}}$$

(2) 设中间量变量为T₁,T₂

$$\begin{cases} X + (-r\sin\theta)z^{-1}Y + r\cos\theta \cdot T_2 = T_1 \\ T_1 \cdot z^{-1} = T_2 \\ T_2 + Y \cdot z^{-1} \cdot r\cos\theta = Y \end{cases}$$

得到:
$$H = \frac{Y}{X} = \frac{z^{-1}}{1 - 2r\cos\theta z^{-1} + (r^2\cos^2\theta + r\sin\theta)z^{-2}}$$

(3) 由图,得:

$$X+X\cdot z^{-2}\cdot (-1)+Y\cdot z^{-1}\cdot 1.6+Y\cdot z^{-2}\cdot (-0.9)=Y$$
得到: $H=\frac{Y}{X}=\frac{1-z^{-2}}{1-1.6z^{-1}+0.9z^{-2}}$

知识要点:根据结构图求解系统函数可通过中间变量法,一般可以以+号为参考建立若干方程。