RL Lab 2 Report

資科工碩 陳冠廷 313551058

Basic

Screenshot of Tensorboard training curve and testing results on DQN.

Training Curve of DQN on game MsPacman-v5

Testing results of DQN on game MsPacman-v5

```
Evaluating...
episode 1 reward: 4260.0
episode 2 reward: 2710.0
episode 3 reward: 2350.0
episode 4 reward: 3690.0
episode 5 reward: 3810.0
average score: 3364.0
```

PS: 本次實驗的內容 (MsPacman-v5 與 Enduro-v5) 都是用相同的參數設定,參數值依照原先的 template 設定,僅將 batch_size 改為 64。由於實驗要跑很久,當程式執行到還不錯的結果時,我會手動中斷程式,因此實驗結果的 training_step 與設定值不同。所有截圖都是將 tensorboard 的 smooth 設定成 0.8 的繪圖結果。

Observation 我會將其 resize 至 (84,84) 並且以 grayscale 的讀取,用以減少參數量外,也可以保留有用的資訊即可。同時,為了讓每個輸入更有意義,我用 framestack 的方式堆疊多個 frame 讓每個輸入可以看到更有意義的內容。例如:遊戲裡的物件以單個 frame 來看沒辦法捕捉到方向和速度的概念,但是當堆疊多個 frame 後就可以有時間上的差異,進而較有機會捕捉到速度與移動方向的概念。

Bonus

Screenshot of Tensorboard training curve and testing results on Enduro-v5 using DQN.

Training curve of DQN on game Enduro-v5

Testing results of DQN on game Enduro-v5

```
Evaluating...
episode 1 reward: 483.0
episode 2 reward: 481.0
episode 3 reward: 441.0
episode 4 reward: 650.0
episode 5 reward: 699.0
average score: 550.8
```

PS: Enduro-v5 訓練過程會有一些特性:前面 1M 訓練過程的 reward 都是 0 的狀況,最後突然往上升,目前推測因為這個遊戲有很多 action 是多餘的,大多時候左右應該就很夠用了,而且他也不像小精靈可以吃分數馬上就有 reward 可以得到分數,而是需要超過車才會得到 reward,因此前期需要嘗試多次才知道那些動作較沒用,並且嘗試多次後才可以超過車成功獲得一些 reward。

■ Screenshot of Tensorboard training curve and testing results on DDQN, and discuss the difference between DQN and DDQN.

Training curve of DDQN on 2 games

♦ MsPacman-v5

♦ Enduro-v5

Testing results of DDQN on 2 games

Compare DQN and DDQN on 2 games

Discussion:

DDQN 與 DQN 在推理的過程沒有差異,都是選擇 Q 值最大(behavior network 的輸出)的動作來執行,並根據一定的機率 epsilon 來隨機探索。它們唯一的差距就在於訓練時的目標函數,DDQN 認為 DQN 容易有 over-estimate 的問題,因此改進了預期 Q 值的計算方法。DQN 直接用 target network 的最大 Q 值當作 TD Learning 的目標,而 DDQN 則是先用 behavior network 來找出最大 Q 值的動作,並利用 target network 算出該動作的 Q 值,當

作 TD learning 的目標。因為原始 DQN 不論動作或是 Q 值的選擇都是透過 target network 容易有過度樂觀的問題,容易有偏差的問題。從結果也可以看到 DDQN 的結果通常略好於 DQN,而且震盪幅度較小(DDQN 在 MsPacman 為紅色的曲線, Enduro 為藍色的)。

■ Screenshot of Tensorboard training curve and testing results on Dueling DQN, and discuss the difference between DQN and Dueling DQN.

Training curve of Dueling DQN on 2 games

♦ MsPacman-v5

♦ Enduro-v5

Testing results of Dueling DQN on 2 games

Compare DQN and Dueling DQN on 2 games

Discussion:

Dueling DQN 與 DQN 在推理的過程沒有差異,都是選擇 Q 值最大(behavior network 的輸出)的動作來執行,並根據一定的機率 epsilon 來隨機探索。它們最大的差異在於模型 的架構和 Q 值的計算方法,Dueling DQN 分別計算了 Value 與 Advantage 兩個數值,並根據以下方式來計算 Q 值:

```
class AtariNetDuelDQN(nn.Module):
    def __init__(self, num_classes=4, init_weights=True):
        self.cnn = nn.Sequential(nn.Conv2d(4, 32, kernel_size=8, stride=4),
                                  nn.ReLU(True),
                                  nn.Conv2d(32, 64, kernel_size=4, stride=2),
                                  nn.ReLU(True),
                                  nn.Conv2d(64, 64, kernel_size=3, stride=1),
                                  nn.ReLU(True)
        # predict value
        self.value = nn.Sequential(nn.Linear(7*7*64, 512),
                                    nn.ReLU(True),
                                    nn.Linear(512, 1)
        # Advantage stream
        self.advantage = nn.Sequential(nn.Linear(7*7*64, 512),
                                        nn.ReLU(True).
                                        nn.Linear(512, num_classes)
        if init_weights:
            self._initialize_weights()
    def forward(self, x):
    x = x.float() / 255.
        x = self.cnn(x)
        x = torch.flatten(x, start_dim=1)
        value = self.value(x)
        advantage = self.advantage(x)
        return value + (advantage - advantage.mean(dim=1, keepdim=True))
```

模型透過 CNN 來學習特徵並共享,利用兩個不一樣的 Linear 層分別預測 value 和 advantage。本次實驗的訓練方式是採用 DDQN 的不過度樂觀的訓練方法,因此從實驗結果可以看到 Dueling DQN 都比 DQN 好很多,而且特別是在 Enduro 這種需要看到更細節的動作分數的遊戲會有更好的表現,遠勝於 DQN。(因為 advantage 可以更細節地看出每個動作的差異,預測 Advantage 也有助於模型學習,因為 advantage 通常值的差異較小)

■ Screenshot of Tensorboard training curve and testing results on DQN with parallelized rollout, and discuss the difference between DQN and DQN with parallelized rollout

Training curve of Parallelized rollout DQN on MsPacman-v5

Testing results of Parallelized rollout DQN on MsPacman-v5

```
Evaluating...
episode 1 reward: 3370.0
episode 2 reward: 3200.0
episode 3 reward: 2460.0
episode 4 reward: 5320.0
episode 5 reward: 6170.0
average score: 4104.0
```

因為時間有限,平行化的環境我只用於 MsPacman-v5,而且執行的時間不多,大約 2.5M 左右。一開始實作時,一直是使用 AsyncVectorEnv ,但會經常執行到一半報錯並回傳 NoneType。因此平行化的環境,我改用 SyncVectorEnv 來實作,平行環境與一般環境的差 異在於一般環境只能輸入一個 action,而平行化環境可以輸入多個 action,並一次取得多個環境的 feedback,而且平行環境預設下會自動 reset 已經結束的環境,不需要手動重置。(實驗結果為 8 個 env 的平行結果)

◆ 一次初始化多個環境 → self.envs

```
def __make_wrap(self, env_id):
    env = gym.make(env_id)
    env = atari_preprocessing.AtariPreprocessing(env, screen_size=84, grayscale_obs=True, frame_skip=1)
    env = FrameStack(env, 4)
    return env
```

◆ 一次執行多個動作

```
def decide_agent_actions(self, observations, epsilon=0.0, action_space=None):
    ### TODO ###
    # get action from behavior net, with epsilon-greedy selection

if random.random() < epsilon:
    # exploration by randomly pick the action
    actions = np.array([ action_space.sample() for _ in range(len(observations))])
else:
    observation = torch.FloatTensor(np.array(observations)).to(self.device)
    with torch.no_grad():
        q_value = self.behavior_net(observation)
        actions = q_value.argmax(dim=1).cpu()</pre>
```

◆ 一次存多個 feedback 到 replay buffer

Compare with/without Parallelized rollout

Discussion:

在相同的 TimeStamp 下,可以發現平行化的結果會好過僅有單個 env,因為在相同 TimeStamp 下(2M 的時間點),可以看到平行化的 evaluate score 已經好過一般的方法一定的 數值了,原因就是因為平行化 8 個 environments 意味著,相同時間下平行化已經有 8 倍的 經驗量了,所以可以較快執行到很好的分數。