運用優先權與無耐性之區塊鏈交易模型研究 A Study on Blockchain Transaction Models with Priority and Impatience

指導教授: 鍾順平 教授

研究生: 蔡怡翔

西元 2025 年 7 月 2 日

Outline

- Motivation
- System Model
- Analytical Model
- Numerical Results
- Conclusions and Future Works

Outline

- Motivation
- System Model
- Analytical Model
- Numerical Results
- Conclusions and Future Works

Motivation

- Key technical challenge: interoperability
 - Difficulty in communication and asset exchange between independent blockchains
- Solution: cross-chain bridges
 - Protocol-based mechanism which allow heterogeneous blockchains to interoperate

Motivation

- In [2], apply M/M/n/L queues modeling transaction processing and block generation in Bitcoin taking account of block generation rate
- In [7], Blockchain queuing model with non-preemptive limited-priority is proposed, illustrating the performance tradeoffs between high- and low-priority transaction classes
- In [10], a blockchain transaction system with consensus that realizes multi-chain interoperability and provides a practical cross-chain architecture is presented.

Outline

- Motivation
- System Model
- Analytical Model
- Numerical Results
- Conclusions and Future Works

System Model

- Two sequential queues: customer queue and block queue
 - Customer queue: waiting to be selected for block formation with partial batch
 - Block queue: undergoing consensus
- **ON / OFF** mechanism
 - During ON period: arrival / block generation / consensus / (impatience)
 - During OFF period: arrival / (impatience)
- Four scenarios are considered
 - With / Without priority
 - With / Without impatience

single-class without impatience

two-class without impatience

single-class with impatience

two-class with impatience

System Model

ON OFF

Outline

- Motivation
- System Model
- Analytical Model
- Numerical Results
- Conclusions and Future Works

- The arrivals follow a **Poisson process** with respective arrival rates $\lambda / \lambda_H / \lambda_L$
- Customers wait for block generation process in customer queue that determined by an **exponential distribution** with associate rates μ_1 / μ_{1_H} / μ_{1_L}
- Customers wait for consensus process in block queue that determined by an **exponential distribution** with associate rates μ_2 / μ_{2_H} / μ_{2_L}
- Impatience threshold is modeled as **exponential distribution** with associate rates $\gamma / \gamma_H / \gamma_L$
- The durations of both ON and OFF periods (the transition rate) are exponentially distributed (ON \rightarrow OFF: α , OFF \rightarrow ON: β)

Description	Single-class	Two-class
Arrival rate	λ	λ_H
		λ_L
Block generation rate	μ_1	μ_{1_H}
		μ_{1_L}
Consensus rate	μ_2	μ_{2_H}
		μ_{2_L}
Impatience rate	γ	γ_H
		γ_L
Transition rate (ON \rightarrow OFF)	α	α
Transition rate (OFF \rightarrow ON)	β	β

- The system models of scenarios 1 and 3 are described based on a three-dimensional Markov chain with the state (i, x, k).
 - (1) *i*: the number of customers in the customer queue
 - (2) x: the number of customers in the block queue
 - (3) *k*: the channel state
 - 0: channel OFF
 - 1: channel ON

• The state space for scenario 1 and scenario 3 can be expressed as :

$$S = \left\{ (i, x, k) \middle| \begin{cases} 0 \le k \le 1 \\ if \ x = 0 : 0 \le i \le N \\ if \ 1 < x \le b : 0 \le i \le N - b \end{cases} \right\}$$

• We obtain the total number of feasible states

$$|S| = 2(N+1) + 2b(N-b+1)$$

- The steady state probability: $\pi_{i,x,k}$
- The feasible states can be categorized into 16 distinct cases

Analytical Model – State Balance Equations

• For scenario 3

case 12:
$$i = N - b$$
, $x = 0$, $k = 1$

$$[\alpha + \lambda + \mu_1 + (N - b)\gamma]\pi_{N-b,0,1}$$

$$= \beta \pi_{N-b,0,0} + \lambda \pi_{N-b-1,0,1} + \sum_{t=1}^{b} \mu_2 \pi_{N-b,t,1}$$

$$+ (N - b + 1)\gamma \pi_{N-b+1,0,1}$$

- The system models of scenarios 2 and 4 are described based on a five-dimensional Markov chain with the state (i, j, x, y, k).
 - (1) i: the number of HP customers in the customer queue
 - (2) j: the number of LP customers in the customer queue
 - (3) x: the number of HP customers in the block queue
 - (4) y: the number of LP customers in the block queue
 - (5) *k*: the channel state
 - 0: channel OFF
 - 1: channel ON

• The state space for scenario 2 and scenario 4 can be expressed as :

$$S = \left\{ (i, j, x, y, k) \middle| \begin{cases} 0 \le i \le N, 0 \le j \le N - b \\ if \ x = 0 \ and \ y = 0 : i + j \le N \\ if \ 0 < x \le b \ or \ 0 < y \le b : i + j \le N - b \end{cases} \right\}$$

• We obtain the total number of feasible states

$$|S| = 2\left[(N+1)(N-b+1) - \frac{(N-b)(N-b+1)}{2} \right] + \frac{2b(N-b+1)(N-b+2)}{2}$$

- The steady state probability: $\pi_{i,j,x,y,k}$
- The feasible states can be categorized into 99 distinct cases

Analytical Model – State Balance Equations

• For scenario 4

case 45:

$$i = b, 1 \le j \le N - 2b, x = 0, y = 0, k = 1$$

$$(\alpha + \lambda_{H} + \lambda_{L} + \mu_{1_{H}} + i\gamma_{H} + j\gamma_{L})\pi_{2,j,0,0,1}$$

$$= \beta \pi_{2,j,0,0,0} + \lambda_{H}\pi_{2-1,j,0,0,1} + \lambda_{L}\pi_{2,j-1,0,0,1}$$

$$+ \sum_{t=1}^{b} \mu_{2_{H}}\pi_{2,j,t,0,1} + \sum_{t=1}^{b} \mu_{2_{L}}\pi_{2,j,0,t,1}$$

$$+ (b+1)\gamma_{H}\pi_{2+1,j,0,0,1} + (j+1)\gamma_{L}\pi_{2,j+1,0,0,1}$$

Analytical Model – Iterative Algorithm

- 1. Initialize $\pi(i, j, x, y, k)^{old} = \frac{1}{|s|}$ for all $(i, j, x, y, k) \in S$, where |S| is the total number of feasible states.
- 2. Substitute $\pi(i, j, x, y, k)^{old}$ into the balance equations from Case 1 to Case 99 to find $\pi(i, j, x, y, k)^{new}$, $\forall i, j, x, y, k$..
- 3. Normalize $\pi(i, j, x, y, k)^{new}$, $\forall i, j, x, y, k$.
- 4. If $\sqrt{\sum \sum \sum \sum \sum \sum_{(i,j,x,y,k) \in S} |\pi(i,j,x,y,k)^{old} \pi(i,j,x,y,k)^{new}|^2} < \varepsilon$, then stop the iteration. Otherwise, set $\pi(i,j,x,y,k)^{old} = \pi(i,j,x,y,k)^{new}$, $\forall i,j,x,y,k$., and return to **Step 2**.

• The average number of HP/LP/overall customers in customer queue

$$L_{CH} = \sum_{k=0}^{1} \sum_{j=0}^{N} \sum_{i=0}^{N-j} i\pi_{i,j,0,0,k} + \sum_{k=0}^{1} \sum_{x=1}^{b} \sum_{j=0}^{N-b} \sum_{i=0}^{N-b-j} i\pi_{i,j,x,0,k} + \sum_{k=0}^{1} \sum_{y=1}^{b} \sum_{j=0}^{N-b} \sum_{i=0}^{N-b-j} i\pi_{i,j,0,y,k}$$

$$L_{CL} = \sum_{k=0}^{1} \sum_{j=0}^{N} \sum_{i=0}^{N-j} j\pi_{i,j,0,0,k} + \sum_{k=0}^{1} \sum_{x=1}^{b} \sum_{j=0}^{N-b} \sum_{i=0}^{N-b-j} j\pi_{i,j,x,0,k} + \sum_{k=0}^{1} \sum_{y=1}^{b} \sum_{j=0}^{N-b} \sum_{i=0}^{N-b-j} j\pi_{i,j,0,y,k}$$

$$L_{C} = L_{CH} + L_{CL}$$

• The average number of HP/LP/overall customers in block queue

$$L_{bH} = \sum_{k=0}^{1} \sum_{x=1}^{b} \sum_{j=0}^{N-b} \sum_{i=0}^{N-b-j} x \pi_{i,j,x,0,k}$$

$$L_{bL} = \sum_{k=0}^{1} \sum_{y=1}^{b} \sum_{j=0}^{N-b} \sum_{i=0}^{N-b-j} y \pi_{i,j,0,y,k}$$

$$L_{b} = L_{bH} + L_{bL}$$

• The average number of HP/LP/overall customers in system

$$L_{H} = \sum_{k=0}^{1} \sum_{j=0}^{N} \sum_{i=0}^{N-j} i\pi_{i,j,0,0,k} + \sum_{k=0}^{1} \sum_{x=1}^{b} \sum_{j=0}^{N-b} \sum_{i=0}^{N-b-j} (i+x)\pi_{i,j,x,0,k} + \sum_{k=0}^{1} \sum_{y=1}^{b} \sum_{j=0}^{N-b} \sum_{i=0}^{N-b-j} i\pi_{i,j,0,y,k}$$

$$L_{L} = \sum_{k=0}^{1} \sum_{j=0}^{N} \sum_{i=0}^{N-j} j\pi_{i,j,0,0,k} + \sum_{k=0}^{1} \sum_{x=1}^{b} \sum_{j=0}^{N-b} \sum_{i=0}^{N-b-j} j\pi_{i,j,x,0,k} + \sum_{k=0}^{1} \sum_{y=1}^{b} \sum_{j=0}^{N-b} \sum_{i=0}^{N-b-j} (j+y)\pi_{i,j,0,y,k}$$

$$L = L_{H} + L_{L}$$

The blocking probability of HP/LP/overall

$$P_{b_{H}} = \sum_{k=0}^{1} \sum_{j=0}^{N-b} \pi_{N-j,j,0,0,k} + \sum_{k=0}^{1} \sum_{x=1}^{b} \sum_{j=0}^{N-b} \pi_{N-b-j,j,x,0,k} + \sum_{k=0}^{1} \sum_{y=1}^{b} \sum_{j=0}^{N-b} \pi_{N-b-j,j,0,y,k}$$

$$P_{b_{L}} = \sum_{k=0}^{1} \sum_{i=0}^{b} \pi_{i,N-b,0,0,k} + \sum_{k=0}^{1} \sum_{j=0}^{N-b-1} \pi_{N-j,j,0,0,k} + \sum_{k=0}^{1} \sum_{x=1}^{b} \sum_{j=0}^{N-b} \pi_{N-b-j,j,x,0,k} + \sum_{k=0}^{1} \sum_{y=1}^{b} \sum_{j=0}^{N-b} \pi_{N-b-j,j,0,y,k}$$

$$P_{b} = \frac{\lambda_{H} P_{b_{H}} + \lambda_{L} P_{b_{L}}}{\lambda_{H} + \lambda_{L}}$$

• The impatient probability of HP/LP/overall (scenario 4)

$$P_{im_H} = \frac{\gamma_H L_{c_H}}{\lambda_H (1 - P_{b_H})}$$

$$P_{im_L} = \frac{\gamma_L L_{c_L}}{\lambda_L (1 - P_{b_L})}$$

$$P_{im} = \frac{\gamma_H L_{c_H} + \gamma_L L_{c_L}}{\lambda_H (1 - P_{b_H}) + \lambda_L (1 - P_{b_L})}$$

• The throughput of HP/LP/overall

$$T_{h_H} = \sum_{x=1}^{b} \sum_{i=1}^{N-b} \sum_{j=0}^{N-b} \mu_{2_H} x \pi_{i,j,x,0,1}$$

$$T_{h_L} = \sum_{y=1}^{b} \sum_{i=1}^{N-b} \sum_{j=0}^{N-b} \mu_{2_L} y \pi_{i,j,x,0,1}$$

$$T_h = T_{h_H} + T_{h_L}$$

• The average waiting time of HP/LP/overall in the customer queue

$$W_{c_H} = \frac{L_{c_H}}{\lambda_H (1 - P_{b_H})}$$

$$W_{c_L} = \frac{L_{c_L}}{\lambda_L (1 - P_{b_L})}$$

$$W_c = \frac{L_c}{(\lambda_H + \lambda_L)(1 - P_b)}$$

• The average waiting time of HP/LP/overall in the block queue without impatience

$$W_{b_H} = \frac{L_{b_H}}{\lambda_H (1 - P_{b_H})}$$

$$W_{b_L} = \frac{L_{b_L}}{\lambda_L (1 - P_{b_L})}$$

$$W_b = \frac{L_b}{(\lambda_H + \lambda_L)(1 - P_b)}$$

• The average waiting time of HP/LP/overall in the block queue with impatience

$$W_{b_H} = \frac{L_{b_H}}{\lambda_H (1 - (P_{b_H} + (1 - P_{b_H})P_{im_H}))}$$

$$W_{b_L} = \frac{L_{b_L}}{\lambda_L (1 - P_{b_L} + (1 - P_{b_L})P_{im_L})}$$

$$W_b = \frac{L_b}{\lambda_H (1 - (P_{b_H} + (1 - P_{b_H})P_{im_H}) + \lambda_L (1 - P_{b_L} + (1 - P_{b_L})P_{im_L})}$$

• The average waiting time of HP/LP/overall in system

$$W_H = W_{c_H} + W_{b_H}$$

$$W_L = W_{c_L} + W_{b_L}$$

$$W = W_H + W_L$$

• Without impatience (scenarios 1&2)

•
$$\lambda_{eff} = \lambda(1 - P_b)$$

•
$$\mu_{eff} = b \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} \right)^{-1} \frac{\beta}{\alpha + \beta}$$

•
$$\lambda_{eff} = \lambda(1 - P_e)$$

•
$$P_e = P_b + (1 - P_b)P_{im}$$

•
$$\mu_{eff} = b \left(\frac{1}{\mu_1} + \frac{1}{\mu_2}\right)^{-1} \frac{\beta}{\alpha + \beta}$$

Outline

- Motivation
- System Model
- Analytical Model
- Numerical Results
- Conclusions and Future Works

Numerical Result

Description	Single-class (scenario 1 & 3)	Two-class (scenario 2 & 4)
Arrival rate	$\lambda = 20$	$\lambda_H = 5$
		$\lambda_L = 15$
Block generation rate	$\mu_1 = 20$	$\mu_{1_H}=20$
		$\mu_{1_L} = 20$
Consensus rate	$\mu_2 = 20$	$\mu_{2_H} = 25$
		$\mu_{2_L} = 20$
Impatience rate (scenarios 3 & 4)	$\gamma = 0.5$	$\gamma_H = 1$
		$\gamma_L = 0.5$
Transition rate (ON \rightarrow OFF)	$\alpha = 15$	$\alpha = 15$
Transition rate (OFF \rightarrow ON)	$\beta = 15$	$\beta = 15$

[•] N = 20, b = 5 for all scenarios

Numerical Result

- scenario 1 vs scenario 3

- scenario 1 vs scenario 3

- scenario 1 vs scenario 3

- scenario 2 vs scenario 4

- scenario 2 vs scenario 4

- scenario 2 vs scenario 4

-scenario 4

-scenario 4

-scenario 4

- scenario 4

Outline

- Motivation
- System Model
- Analytical Model
- Numerical Results
- Conclusions and Future Works

Conclusion

1. Effect of block size

- As b increases, L_b initially grows but eventually stabilizes around a constant value. (in all scenarios)
- T_{h_H} remains nearly constant, but T_{h_L} increases with b but the increase gradually slows down (in scenario 2 & 4)
- P_b decreases with increasing b at first, but shows a slight increase when b becomes large. (in all scenarios)

Conclusion

2. Effect of HP arrival rate

• Increasing λ_H , W_{b_H} and W_{b_L} remains constant. However, W_b shows a downward trend. (in scenario 2 & 4)

3. Effect of HP consensus rate

• Increasing μ_{2_H} leads to an upward trend in L_{b_L} . (in scenario 2 & 4)

4. Effect of impatience mechanism

• Scenarios with impatience leads to improvements in most performance metrics except throughput, when compared to scenarios without impatience.

Future Work

• Incorporate realistic voting mechanisms

Integrate more practical consensus voting procedures to reflect actual blockchain operations.

Dynamic batch policy optimization

Adapt the batch size based on the real-time state of the customer and block queues.

Enhanced impatience modeling

Extend impatience behavior to account for total waiting time until departure.

THANK YOU FOR LISTENING