INDEX

Acetaminophen, 66	Adrenal glands, 122, 184	Akt, 252, 264, 339
Acetylcholine, 216, 251, 299	Adult respiratory distress syndrome, 310	Alanine, 72
Acidosis, metabolic, 221	Advanced glycated end products (AGEs),	Albumin, 94
Aconitase, 37–39	26-27, 84, 86, 156	Alcohol, generally
Acrolein, 9	Aedes aegypti, 267	consumption, 213, 223
Activator protein-1 (AP-1), 7-8, 12, 20,	Aerobic metabolism, 37	dehydrogenase, 122
22–23, 73, 105, 107, 378	Age-related memory impairment (ARI	Aldehydes
Activin, 176, 181	studies)	antioxidants and, 216, 219-220
Acylation, 204	common misconceptions, 348-349	caloric restriction and, 92, 96
Acyl-CoA cholesterol acyltransferase, 109	defined, 347–348	cellular redox regulation and
Adduct formation, 9	influential factors, 347-349, 353-354	signaling, 196
Adenoma, 220	interventions, types of, 354–355	endocrine control and, 266
Adenomyosis, 220	multiple phases of, 355	functions generally, 25–27
Adenosine diphosphate (ADP), 24, 84,	AGI-1067, 215	in neurotraumatic and neurodegenerative
140, 157, 211	Aging process	diseases, 54, 108
Adenosine monophosphates (AMP), 157	diet and, 212-213	reactive oxygen species (ROS)
Adenosine triphosphate (ATP)	environmental stressors, 185	generation, 9
antioxidants and, 212, 286, 288	honeybees, 285	Alkoxyl radicals, 3, 52, 104, 377
binding cassette proteins (ABCA1/	influences on, 20, 93	Allelochemicals, 262
ABCG1), 56	memory impairment, 347-349	Allopurinol, 157, 159, 161-162, 224
caloric restriction and, 84-85	mitochondrial dysfunction and, 85-86	α -Amino-3-hydroxy-5-methyl-4-
cardiovascular disease, 157	neurodegenerative diseases and, 302	isoxazolepropionic acid (AMPA), 353
cellular redox regulation and signaling,	olfactory dysfunction, 299, 302, 382	α -Lipoic acid (ALA), 210–211, 222
202	oxidative stress role in, 355–356	α -Synuclein, 28, 139, 142, 144, 319
depletion, 104	preventive effects on, 90	α -Tocopherol
functions of, 9, 24	reactive oxygen species (ROS), 272-273	antioxidants and, 214, 217, 220, 222
mitochondrial diseases, 34-35, 37, 40	vertebrates compared with invertebrates,	caloric restriction and, 94-96
neurotraumatic and neurodegenerative	169-170	functions of, 18, 28, 94-96, 263
diseases, 52, 54, 59, 112, 119, 125	Aging theories	Parkinson disease, PD, 140
Parkinson disease, PD, 140	free radical/oxidative stress, 168-169	Alternative oxidase (AOX) pathway, 363
redox sensing, 363	overview of, 167–168	Alzheimer disease (AD)
synthase, 34	AhpD protein, 339	aging process and, 356
synthesis, 120	AIDS dementia complex, 111	amyloid plaques, 129-132, 216
Adenylation, 9	Air pollution, 183	aneuploidy, 130-134
Adhesion molecules, 106, 176, 181, 377	AKH/RPCH (adipokinetic hormone/red	antioxidant treatment, 215-216
Adipose tissue, 87, 122	pigment concentration hormone),	brain dysfunction, 6, 12, 341
Adrenalectomy, 120	264-266	caloric restriction and, 85

Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling, First Edition. Edited by Tahira Farooqui and Akhlaq A. Farooqui.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.

Alzheimer disease (AD) (continued)	Animal models	brain, iron in, 299-301
cell cycle, 130–131	Alzheimer Disease, 132–133	olfactory dysfunction, 297-298, 302-304
C. elegans model of, 352	environmental stressors, 186	olfactory neuronal network in, 298-299
characteristics of, generally, 26-28	mitochondrial mutations, 41-42	ontgenesis and life span, 266, 284-286
development of, 215-216	A9/A10 neurons, 145, 147	ROS regulation in, 288-289
DNA damage, 131	Anopheles gambiae, 280	winter generation of, 286–288
Drosophila melanogaster studies, 310	Anoxia	Aplysia spp., 352
early-onset (EOAD), 131	effects of, 284	Apoliprotein E (ApoE), 56, 130, 217
evidence of, 118-119	-reoxygenation, 364	Apolipoprotein E4, 118-119
familial (FAD), 118-120, 130	Anthropic sensors, 361–366	Apoptosis
future research directions, 379	Antiapoptosis genes, 179, 181–182	Alzheimer disease, 119, 125, 130, 133
incidence of, 235	Antibiotics, 247, 253	antioxidants and, 285
inherited, 130	Antibodies, 110, 249	caloric restriction and, 90
late-onset (LOAD), 130	Anticancer drugs, 23, 74, 247, 253	environmental stressors, impact of, 176,
memory impairment, 353-354	Antiedema substances, 215	182, 187, 190
mitochondrial DNA (mtDNA), 34, 38, 41	Antigens, 56, 130	free radicals, 19-20, 22-23, 25
neurofibrillary tangles (NFTs), 130-132,	Antiinflammatory substances, 249	future research directions, 382
134, 215, 236	Anti-inflammatory signaling, 111	in mollusks, 368, 370-371
neurogenesis in, 131-134	Antimicrobial peptides (AMP), 283	neurodegenerative diseases, 105
neuropathology features, 235-236	Antimicrobial substances, 273. See also	Parkinson disease, 144
neurosteroids in oxidative stress-mediated	Propolis	in propolis, 248, 252
injury, 120-125	Antioxidant(s)	reactive oxygen species (ROS) generation,
neurotoxicity, 55, 58	cycling of, 95	6, 8-10, 12
olfactory dysfunction, 297, 299, 303	environmental stressors and, 178	Apoptotic protease activating factor-1
oxidative stress and, 133-134, 273	enzymatic, 272, 276	(APAF-1), 11
pathogenesis, 103, 105, 107, 110-112,	enzymes targeted to mitochondria, 41	Apoptotic genes, 180–181
129-131	functions of, 6-7, 10, 18-19, 22-23, 25-26,	Arabdopsis, 331
proteins, of cell cycle, 130-131	28-29, 84, 103, 112, 156, 161-162	Arachidonic acid (ARA)
red wines/wine-derived polyphenols for	defense mechanism/response, 89, 119, 140,	antioxidants and, 216
prevention and treatment of,	160, 170-171, 176, 331, 378	future research directions, 377-378, 380
236-242	defense system (AOS), 39-40, 90, 117,	neurodegenerative diseases, 104, 106-111
sporadic, 118-120, 130	209, 284, 366	neurotoxicity, 52-53, 58
treatment of, 235	dietary, 212-213, 215	olfactory dysfunction and, 302-304
Ames test, 252	enzymatic mechanisms, 263, 331	reactive oxygen species (ROS) generation,
Amino acids	neurogenesis and, 134	4, 7, 16
Alzheimer disease and, 117	nonenzymatic mechanisms, 261, 263	Arctica islandia, 362
antioxidants and, 223, 225	propolis, 248	Arginine, 10-11, 41, 54, 106, 160
cardiovascular disease, 154	carregulation of, 40	Argopecten irradians, 370
mitochondrial diseases, 41	response element (ARE), 7–8, 63–64,	Aromatics, 25, 41, 246
neurodegenerative diseases, 117, 235	272, 283–284, 288, 309, 313, 316, 319	Arrhythmias, 159. See also Cardiovascular
in propolis, 246, 251	supplementation of, 120, 209-210, 218	disease
sestrins and, 340	target strategy, in mitochondria, 41	Arsenic, 20–21, 175, 188, 313
Amoxicillin, 185	therapies, see Antioxidant therapy	Arsenite, 74, 171
AMP-activated protein kinase (AMPK), 89,	Antioxidant therapy	Artepillin C, 247, 251–253
338, 341	aging and, 212–213	Ascorbate, 18–19, 27
Amyloid, generally	asthma, 221	Ascorbate peroxidase (APOX), 263
-β (Aβ) peptide, 117–119, 123–125,	benefits of, 161-162, 209-212, 225-226	Ascorbic acid, 23, 39-40, 84, 94-95, 143,
216, 235–236, 238, 240	cancer, 219-220	209, 214, 220, 263. See also
characterized, 26–27	cardiovascular disease, 213-215	Vitamin C
plaques, 129–132, 216	chronic obstructive pulmonary disease	Ascosphaera spp., 247
precursor protein (APP), 57, 118-120,	(COPD), 221–222	Aspergillus spp., 247
123–124, 130, 132, 134, 240	complex regional pain sydrome, 218-219	Aspirin, 157
Amyotrophic lateral sclerosis (ALS), 6, 34,	diabetes, 222–223	Associative learning, 349–352, 355
41, 103, 105, 107, 111, 215, 221, 297,	ischemia-reperfusion injury, 213-215	Asthma, 221, 272, 310
310, 379	kidney disease, 225	Astrocytes, 10, 52, 56, 107, 110-111, 146
Androstanediol, 121, 123	liver disease, 223	Asymmetrical dimethyl arginine
Androstenenedione, 121–122	neurodegenerative diseases, 215-218	(ADMA), 155
Anesthetics, 249, 253	pancreatitis, 223–225	Ataxia, 36
Aneuploidy, 130–134	pregnancy and preeclampsia, 221	ATG, 340-341
Ang II, 7	rheumatoid arthritis, 225	Atherosclerosis, etiology of, 12, 20, 23,
Angiogenesis, 89, 252	Antitumor substances, 249-250	25-26, 83, 88, 155-156, 162, 210,
Angiopoietin-I, 184	Antiviral substances, 250, 253	310, 379
Angiotensin-converting enzyme	Apis mellifera	Atrial fibrillation, 156–157
(ACE), 157	antioxidant system, 279-280, 289	ATPases, 107–108, 368

Autoantibodies, 12, 92	frontal cortex, 352	implications of, 168, 187, 190, 310
Autoimmune diseases/disorders, 12, 380.	mammalian, 378–379	initiation-promotion-progression model
See also Lupus erythematous;	medulla oblongata, 74	of carcinogeneis, 22
Multiple sclerosis	neurodegenerative disease and, 103-105,	metastasis, 74
Autoimmune inflammation, 65	109-110, 130-131	Nrf2 functions in, 74
Autooxidation, 142-144, 380	Nrf2 gene and, 66	Carcinoma cells, propolis-induced
Autophagy, 90, 176, 186, 189, 341	ROS generated in, 3–12	apoptosis carcinoma cells, 248
Autophosphorylation, 251	striatum, 216-217	redox environment of cell and
Azoxymethane/dextran sodium sulfate	substantia nigra, 216–217	carcinogenesis, 22-23
(AOM/DSS), 66	substantia nigra pars compacta	ROS-mediated, 12
	(SNpc), 139	Candida albicans, 247
Baccharis dracunculifoolia, 252	subventricular zone (SVZ), 131-134	Cap'n'Collar (CNC). See CNC protein
Bacillus spp., 247, 264	temporal lobe, 217	Carbohydrates
Bacterial meningitis, 111	tumors, 20	in aging process, 176
Bacteroides spp., 247	Breast cancer, 21, 23, 74, 247-248	antioxidants and, 213
Basic fibroblast growth factor (bFGF), 252	Bromodeoxyuridine (BrdU) labeling,	caloric restriction and, 90, 92
Basic helix-loop-helix (bHLH) transcription	132–133	endocrine system and, 263
factor, 327, 331	Bronchitis, 250	environmental stressors, 180
Batten disease, 215	bZIP protein, 63-64, 72	future research studies, 382
Bax gene, 106	r , , ,	honeybee research, 296–297
Bayesian network techniques, 176	Cadmium, 74, 171, 368	neurodegenerative diseases, 107
Bcl-2, 11, 106, 125	Caenorhabditis elegans	Carbon dioxide levels, 18
Beeswax. See Propolis	age-related memory impairment (ARMI)	Carbonylation, 280
Benz-starvation association, 350	studies, 347–349	Carbonyl groups, 367
Benzaldehyde, 350	aging research, 167–170	Carboplatin, 74
Benzo(a)pyrene, 66	airway system, 271	Cardiac conduction block, 36
Benzoic acid, 246, 253	Alzheimer disease (AD) in, 352	Cardiomyocytes, 156
Beryllium, 20	cognitive aging in, 349–351	Cardiomyopathy, 34, 88, 211
Beta-blocker therapy, 157	Keap1/Nrf2 signaling, 311, 315, 317, 319	Cardiovascular disease (CVD)
Beta-carotene, health effects of, 23, 210, 214,	locomotory rate, 350	aging and, 168
217, 219, 222, 224–225	neurodegenerative disease and, 353	antioxidant therapies, 161–162,
β-galactosidase (lacZ), 312–313	Nrf2-small Maf heterodimers, 64	213–215
β-Naphthalene, 74	sestrins, 338	arrhythmia, 159
Big MAPK (BMK1), 24	Caffeic acid, 249, 253	atheriosclerosis, 12, 20, 23, 25–26,
Bilirubin, 84, 94	Calbindin proteins, 145	
	Calcium/calcium channels	83, 88, 155–156, 162, 210, 310, 379
4E-binding protein (4E-BP), 340 Biogenesis, 90	Alzheimer disease, 117–118, 122,	atrial fibrillation, 156–157
<u> </u>	124–125	
Bioinformatics, 328, 338 Biomarkers, types of, 12, 91–96, 175,	antioxidant therapy and, 217	cardiac remodeling, 158
	**	development of, 20–21, 88, 91, 153, 223, 380
380–381 Biomolecules, 17, 24	in <i>Caenorhabditis elegans</i> studies, 351–352 calbindin proteins, 145	environmental stressors, 183
	* '	future research directions, 379
Biopsy, 132, 297	in <i>Drosophila melanogaster</i> studies, 274 free radicals, 22, 24	
Biosynthesis, 176, 178		heart failure, 156—157
Blaberus discoidalis, 267	neurotraumatic and neurodegenerative	heart infarction, 41, 156–157, 214
Bladder	diseases, 52, 54–55, 58, 104–105, 111	hypercholesterolemia, 25–26, 222
cancer, 2	Parkinson disease, 143, 145–147	hypertropy, 158
tumors, 66	reactive oxygen species (ROS) generation,	interstitial fibrosis, 158–159
BLASTn, 328	4, 6, 8–9	ischemic phase, 157
Bleomycin-induced pulmonary fibrosis,	Calmodulin, 22	mitochondrial dysfunction and, 24–25
64–65	Caloric restriction (CR), oxidative stress	prevention strategies, 23, 160–161
Blood-brain barrier (BBB), 55, 105, 111	modulation	reperfusion phase, 157–158
Blood pressure, 18. See also Hypertension	fasting, 90, 96	risk factors, 213
Bone morphogenetic protein (BMP), 175	molecular differences biomarkers, 91–96	Cardiovascular system, 187, 382. See also
Botrytis spp., 247	overview of, 89–90, 96, 355	Heart
Brain	physical activity, 90–91	Carnitine, 40
aging process, 105	ROS generated by food, 86–88, 96	Carotenoids, 22-23, 209, 263. See also Beta
amygdala, 217	sex differences, 91	carotene
amyloid plaques, 130	sirtuins role, 88–89	Carotid arteries, 25
cancer, 12	Cancer, see specific types of cancer	Carpal tunnel syndrome (CTS), 210
cerebellum, 122, 352	antioxidants and, 23, 219–220	Carrageenin, 66
cholesterol and, 56	carcinogenesis, 22–23, 175	Casein kinase 2 (CK2), 331, 333
dentate gyrus (DG), 131–134	cellular signaling dysregulation in, 20–22	Caspases, 10, 57, 66, 106, 110, 176, 181–182
dorsal root ganglia, 122	chemotherapy, 74, 220, 247–248	252, 369
environmental stressors, 185	future research directions, 380	Catabolism, 340

Catalase (CAT)	neurotraumatic and neurodegenerative	Curcumin, 75, 211
aging process and, 170	diseases, 52, 56-57, 103, 105,	2-Cyano-3,12-dioxooleana-1,9-dien-28-
antioxidants and, 283-284, 288	109-110	imidazolide (CDDO-Im), 66, 75
caloric restriction, 84, 86, 93-94	Chromatin immunoprecipitation	Cyclooxygenase -2 (COX-2)
cardiovascular disease, 154, 160	(ChIP), 334	antioxidant therapy and, 211
Drosophila melanogaster research, 271,	Chromium(III), 21	future research directions, 378
273-274, 276, 329, 331	Chronic inflammatory diseases, 12	neurotraumatic and neurodegenerative
endocrine system and, 263, 266	Chronic obstructive pulmonary disease	diseases, 52, 54–55, 58, 106, 111–112
free radicals, 17, 23	(COPD), 221–222	Nrf2-small Maf heterodimers, 66, 74
mitochondrial DNA (mtDNA) mutations,	Chronic progressive external	Parkinson disease, 146
34, 39–41	ophthalmoplegia (CPEO) syndrome,	reactive oxygen species (ROS) generation
neurodegenerative diseases, 113	34, 36–37, 39–40	5, 7, 11
Parkinson disease, 143	Chronic renal failure, 225	Cycloserine, 55
reactive oxygen species (ROS)	Cigarette smoking, health effects of, 66, 156,	Cysteine
generation, 5, 8	186, 214, 220	in aging process, 171
sesstrins and, 337	Cilstazol, 222	antioxidants and, 221, 225
Catalysis, 195, 367	Cinnamic acid, 253	cardiovascular disease and, 159–160
Catecholamines, 117–118, 142–144,	CIP1 protein, 23	cellular redox regulation and signaling,
	* '	
261, 302 Catalahina 214	Circadian regulatory motifs, 327	195–198
Catechins, 214	Circadian transcriptional control, 334	future research directions, 380
Catechols, 142, 144	Cisplatin, 74	neurodegenerative diseases, 108
Cations, lipophilic, 41	Citrulline, 10–11, 54	Nrf2-small Maf heterodimers, 70
Cell adhesion, 20	c-Jun, 11, 72–73, 111	reactive oxygen species (ROS), 6, 9, 20, 22
Cell cycle	c-Jun N-terminal kinase (JNK), 6, 21, 23,	sestrins and, 339
Alzheimer disease, 130–131	133, 160, 182, 339, 369	Cytochromes
antioxidants and, 285	Clioquinol, 141	c, 10, 34, 39, 107, 125, 248, 302, 364, 366
environmental stressors, 176, 178–180,	CLK-CYC pathway, 327–328	c oxidase (COX), 4, 12, 36–37, 90, 104,
187, 189	Clk mutations, 354	108, 110, 117–118, 382
free radicals, 22	Clock proteins, 331	<i>P</i> 450, 3, 12, 109–110, 121–122, 281
future research directions, 380–381	CNC protein, 64, 72, 311–317, 319–320,	Cytokines
Nrf2-small Maf heterodimers, 75	331	Alzheimer disease, role in, 132
in propolis, 247–248	Codons, 195–196	caloric restriction and, 87
reactive oxygen species (ROS), 6-7, 12	Coenzyme Q_{10} (Co Q_{10}), 40–42, 94–95,	environmental stressors, 183
Cell death. See Apoptosis	218, 354	free radicals and, 20, 25, 27
Cell differentiation, 21, 178, 285	Cognition, 8	generation of reactive oxygen species
Cell growth, 177–178	Cognitive aging, 352, 355	(ROS), 5, 8
Cell proliferation, 21–22, 75, 176, 178, 180,	Cognitive impairment, in Alzheimer disease	in neurotraumatic and neurodegenerative
248, 377	characterized, 107	diseases, 52, 104–106, 110–113
Cell signaling pathways, 19	mild (MCI), 119, 134, 217	Parkinson disease, role in, 146
Cell viability, 10	Colitis, 249, 310	in propolis, 251
Central nervous system (CNS), 28, 122, 216,	Collagen, 158–159	Cytoprotective genes, 68
299, 353	Colon cancer, 21, 23, 247. See also	Cytoskeleton, 180
Ceramides, 8, 11, 55, 57–58, 105, 109–110	Colorectal cancer	Cytosol, 210, 302, 377, 379
Cerebrospinal fluid (CSF), 210, 216–217,	Colony Collapse Disorder, 288	Cytotoxicity, 23, 88, 119, 220, 247, 282
380-381	Colorectal cancer, 219	
Ceruloplasmin, 94	Complementary DNA (cDNA), microarray	Deafness, 34
c-Fos proteins, 8, 72–73, 111, 124	analysis, 42	Deamination, 281
Chagas disease, 214	Complex regional pain sydrome, 218–219	Dehydroepiandrosterone (DHEA), 120–123
Chaperone-mediated autophagy	Consensus E-box (CACGTG) E-box, 327,	Dehydrogenases, 381
(CMA), 144	329	Deiodinases (DIO), 200–201, 204
Chaperone proteins, 8, 94, 272, 367, 369	Consensus sequences, 8	Deletions, 36, 67
Chelation, 23, 28–29, 110	Copper, health impact of, 4, 12, 27–28, 34,	Dementia, 217–218, 236, 297
Chemokines, 8, 106, 110, 112, 251, 377	105, 119, 175, 210, 214, 351, 368–369	Demyelination, 104
Chemoprevention strategies, 75, 211	Coronary artery disease (CAD), 222	Dental care, 246, 250
Chemotaxis, 349–350	Corticoids, 121	Deoxycorticosterone (DOC), 122
Chemotherapy, 74, 220, 247–248	Corticosteroids, 223	Deoxyguanosine, 9, 12
Chicago Health and Aging Study, 217	Craniofacial organs, 66	Deoxyguanosine, 9, 12 Deoxyribonucleic acid. See DNA
	<u> </u>	
Chalacteral levels	Crassostrea spp., 363, 368, 371	Dephrenyl and Tocopherol Antioxidative
Cholesterol levels	C-reactive protein (CRP), 212, 224	Therapy of Parkinsonism
Alzheimer disease, 121, 123	Creatine phosphokinase, 157	(DATATOP), 146
antioxidants and, 211, 213–215, 222–223	CREB, 124	Detoxification
endocrine system and, 266	Crohn disease (CD), 211, 249	enzymes, 312
free radicals and, 25–26	Cross-linkage, 9	Phase II detoxification response, 8
reactive species oxygen (ROS), 12, 25–26	Crosstalk, 58	of proteins, 280

Dexamethasone, 185	promoter analysis study of circadian	Ethnicity, as predisposition factor,
Dexlipotam (DEX), 223	regulatory motifs, 327–334	213-214
Diabetes, etiology, 26, 83, 85, 88, 92, 95, 168,	reactive oxygen species (ROS) 167,	Etoposide, 74
190, 210–211, 213, 222–223	170, 271	EUK proteins, 41, 354
Diabetes mellitus, 20, 34, 36, 175, 215	DSS, 66	Excitotoxicity, 55–56, 59, 103, 106–107,
Diacylglycerol (DAG), 87	D3T, 66	111–113, 125
Diclofenac, 225	Dual oxidase (DUOX), 274, 276	Exercise, health effects of, 86, 90–91, 93,
Diesel exhaust, health effects of, 66		160-161
Dihydroprogesterone (DHP), 122	Ear infection, 250	Exocytosis, 57
Dihydropyridines (DHPs), 146	Early-onset Alzheimer Disease (EOAD), 130	Extracellular acidification rate
Dihydrotestosterone (DHT), 121–122	E-box, promoter analysis study, 328–330,	(EDCAR), 37
Dimethyl sulfoxide (DMSO), 315–316	333	Extracellular oxidative stress, 175
Dimethyltyrosine, 41	Ecdysteroids, 264, 266–267	Extracellular signal-regulated kinase (ERK),
Dismutation reaction, 17	Ecotoxicology, 367, 371	6, 21, 24–25, 75, 160, 262
Disulfide isomerase,107	Ectothermy, 363	Extracorporeal shock wave lithotripsy
Disulfides, 96, 107, 196–197	EGF receptor (EGFR), 20	(ESWL), 225
Dithiolethiones, 75	Eicosanoids, 5, 52, 104, 108, 111	Extract of Brazilian propolis (EEBP), 252
Divalent metal transporter 1 (DMT1), 141	Elastase, 66	
DJ-1 protein, 28, 142, 317–318	Elastin, 159	Familial adenomatous polyposis, 211
DMBA/TPA, 66	Electromyographic studies, 210	Familial Alzheimer disease (FAD),
DNA	Electron paramagnetic resonance (EPR), 261	118–120, 130
Alzheimer Disease and, 131	Electron spin resonance (ESR)	Fatty acid coenzyme A (FA-CoA), 87
characteristics of, generally, 91, 113	analysis, 210	Fatty acids
estrogen and, 124	Electron transport chain (ETC), 34,	biosynthesis, 176
fragmentation, 18, 252, 368	140, 144	caloric restriction, 196
methylation, 74, 280	Electrophilicity/electrophiles, 67–71	free (FFA), 86
microarray analysis, 176	ELISA, 380–381	future research directions, 382
oxidation, 103, 118–119, 140, 297	Embryogenesis, 187	in neurotraumatic and neurodegenerative
repair, 177–179, 186–187, 189	Emphysema, 64, 310	diseases, 54, 57
replication, 12, 186–187	Encephalomyopathies, mitochondrial, 34,	omega-3, 221
ROS-mediated damage, 11–12	37, 39	polyunsaturated (PUFAs), 3–4, 105, 107,
sequences, 72–73	Endocrine diseases, 24	211, 215, 221, 266, 297, 299, 302, 353,
synthesis, 53–54, 108, 132	Endocrine system	377–378
transcription, 12	endocrine glands, peripheral, 120	unsaturated , 107, 117
DNA polymerase gamma (POLG)	functions of, 352	Fenton reaction, 17–18, 20, 25, 38, 267, 297,
deficiency, 41	in insects, 264–267	370, 377
Dobutamine, 215	Endocytosis, 56	Ferritin, 141, 263, 288, 365
Docosahexaenoic acid (DHA), 4, 104,	Endometriosis, 220	Ferrous ammonium citrate (FAC), 297,
107–109, 216	Endoplasmic reticulum (ER), 6, 107,	299–301, 304
Docosanoids, 5, 104, 108, 111	121–122, 202–203	Fibrinogen, 156
Docotrienes, 108	Endorphins, 251	Fibroblast growth factor, 20, 39
DOPAC, 142, 144, 146	Endosulfan, 266	Fibronectin, 184
Dopamine (DA), 8, 141–146, 251, 273, 302,	Energy consumption hypothesis, 168	Fibrosis, types of, 20, 64–65, 158–159, 310
317–319	Enolases, 107	Flavanones, 248
Dopaminergic neurons, 139–146, 317	Environmental stressors	Flavin adenine dinucleotide (FADH ₂), 34,
Dorsal root ganglion (DRG), 111	toxicity of, 176	84, 140, 143
Dose-response relationship, 96	types of, 130, 175	Flavoenzymes, 19
Down-genes, environmental stressors,	Enzyme activities, see specific types of	FlyBase, 328–329
184–186	enzymes	FLYREG database, 331–332
Downregulation, 8–9, 22, 124, 273, 342	activation of, 7–8, 52	Flavonoids, 23, 209, 212–213, 217, 239, 246,
Drosophila melanogaster	modulation of, 6	249, 253
age-associated pathologies, 341–342	Epidemiological studies, 23, 28	5-Fluorouracil, 74
airway system, oxidative stress in,	Epidermal growth factor (EGF), 20, 133,	Fly studies. See Drosophila melanogaster
275–276	199, 251	Food and diet
digestive systems, 273–274	Epigallocatechin gallate (EGCg), 209, 252	aging process and, 212–213
Cnc in development of, 311–312	Epileptic seizures, 111	ROS generated by, 86–88
endocrine control, 267	Epinephrine, 251	safety, 253
genome, 280	Epoxygenase (EPOX), 104	Forskolin, 184
immune system, 274–275	Escherichia coli, 247, 370	FoxO
modulation of oxidative stress by Keap1/	Essential life span (ELS), 167–168	activation, 272, 275–276, 285–286
Nrf2 signaling, 309–320	Esters, 246–247, 253	signaling pathway, 338–339, 380
nervous system, 273	Estradiols, 89, 117–118, 121–122, 124	Free Oxygen Radicals Defence
Nrf2 system, 310, 316–320	Estrogens, 91, 123–125, 142, 220	(FORD), 210
neurodegeneration, 341	Ethanol, 184, 186	Free Oxygen Radical Testing (FORT), 210

Free radicals, see specific types of free	Glutamine, 224	Haber-Weiss reaction, 17-18, 297, 367
radicals	Glutaredoxin (GRX), 280	Haliotis diversicolor, 371
defense against, 18	Glutathione (GSH)	Hayflick limit, 168
health impact of, 153-156, 161, 168-169,	antioxidants and, 224, 279, 288	Head and neck cancer, 74
271, 304, 361, 367, 380	cardiovascular disease, role in, 159, 162	Heart, see Cardiovascular disease
liver disease and, 223	in cellular redox regulation and signaling,	cardiac degeneration, age-related, 342
overproduction of, 17, 42	197-199, 201, 203	cardiac muscle, 341
oxidation, 18	endocrine system, 263, 265	cardiac remodeling, 158
oxidative stress effects, 210	environmental stressors, 175	chamber dilation, 159
pancreatitis and, 224	free radicals and, 18, 23, 28	contractibility, 159
reduction of, 18	mollusk research, 364, 368	failure, 23-24, 156-157
selenoproteins and, 196	in neurological disease, 300-301, 303	infarction, 156-157
thermodynamics of, 18	Nrf2-small Maf heterodimers, 75, 89,	Heat shock proteins (HSPs), 369, 380
Friedrich ataxia (FRDA), 37	90-91, 94-96	Heavy metals, 188, 313, 319, 368
Fructose-1,6-biphosphate aldolase, 107	Parkinson disease, role in, 140-144	HEK cells, 107
F ₂ -isoprostanes, 92–93, 96, 108–109, 155,	in promotor analysis, 331, 333	Helicobacter pylori infection, 220-221, 247
380. See also Isoprostanes	in reactive oxygen species (ROS)	Helicoverpa zea, 262
Fungi infection, 249	generation 5–6, 8–9	Helix spp., 366, 368
Furanocoumarins, 262	Glutathione disulfide (GSSG), 19, 94, 140, 197, 203	Hematological disease, 187. See also Leukemia
GABA, 122	Glutathione peroxidase (Gpx)	Hematologic malignancies, 331
Galanthus nivalis, 264–265	antioxidant therapy and, 217, 280, 288	Hematopoietic system, Nrf2 gene and, 66
Gallbladder cancer, 74	caloric restriction effects, 84, 90–91, 94	Heme
γ-linolenic acid (GLA), 210–211	cardiovascular disease, role in, 154, 158	oxygenase (HO-1), 27, 302, 309
Gamma radiation, 22	cellular redox regulation and signaling,	synthesis, 37–38
Gamma-T supplementation, 215	197–203	Hemocytes, 370
Gas chromatography-mass spectroscopic	endocrine system and, 266	Hemodialysis, 225
studies, 380–381	environmental stressors, 176, 178	Hemoglobin, 176
Gastric carcinogenesis, 220	free radicals and, 17, 23, 26	Hepatitis, 223
Gastritis, 23, 220–221, 310	future research directions, 379	Hepatocytes, 75
Gastronitestinal disease, 187	in mitochondrial diseases, 34, 39–41	HepG2 cells, 187
Gelatin, 159	mollusk research, 365–366	Herbicides, 262
Gender differences, 91. See also Women's	in neurodegenerative diseases, 113	Heregulin, 184, 186
health	Parkinson disease, role in, 140	Heterodimerization, 8, 72–74
Gene expression, see specific genes	in reactive oxygen species (ROS)	Heteroplasmy, 33, 35–36
environmental stressors and, 176–190	generation, 5–6	High-performance liquid chromatographic
induction of, 283	Glutathione reductase (GR), 5, 39, 84, 94,	(HPLC) studies, 92, 210, 237, 381
signatures, 186–187	273, 280	Hippocampus
stimulation of, 52	Glutathione S-transferase (GST), 6, 65, 199,	environmental stressors, 184–185
Gene Expression Omnibus (GEO),	272, 280–282, 284–285, 309, 329	functions of, 6, 51, 53–54, 56–57, 131,
183, 187	Glutathione S-transferase peroxidase	134, 352
Gene Ontology (GO), 183, 328–329, 333	(GSTPx), 263, 273	Hippocrates, 167, 245
Gene Ontology (GO), 183, 328–329, 333 Gene Ontology for Motifs (GOMO),	Glutathione synthetase (GSS), 188	Histidines, 9, 108, 380
328–329	Glutathionylation, 198, 200, 367	Histolysis, 284
Gene therapy, 41–42	Glycation, 110, 216, 222	Historysis, 284 Histories, 133, 281
Gene transcription, 365–366. See also	Glyceraldehyde-3-phosphate dehydrogenase	Homeostasis, influential factors, 8–9, 17, 19,
Transcription factors	(G3PD), 10	23, 28, 38, 56, 107, 110, 113, 320
Genes, modulation of, 6–8	Glycerophosphates, 55–56	Homolysis, 261
Genetic disorders, 34	Glycerophosphalipids, 52–54, 107, 110	Honeybee. See Apis mellifera
Genistein, 209	Glycolysis, 286	Honolulu-Asia Aging Study, 217
Genotoxic stresses/genotoxicity, 338–339,	Gonyaulax polyedra, 334	Hormones, health effects of, 20, 251, 264.
368	G protein	See also specific types of hormones
Germ cells, 186	-coupled receptors (GPCRs), 111, 274	HSP70, 368
Giardiasis, 249	functions of, 251	Human genome, 198, 201–202
Giardiasis, 249 Giardia spp., 247	-regulated signaling, 124	Huntington disease (HD), 103, 105, 111, 117,
Glaucoma, 297	Grape seed polyphenols, treatment of	273, 297
Glial cells, 56, 111, 120, 146	Alzheimer disease, 235–242	Hydrogen peroxide (H_2O_2)
Glioblastoma multiforme, 20	Graves disease, 220	in aging process, 171
Glomerulonephritis, 225	Growth differentiation factor (gdf),	Alzheimer disease, role in, 117, 125–126,
Glucagon, 266	176, 181	129
Gluconeogenesis, 89	Growth factors, 20, 110–111, 180, 251	antioxidants and, 222, 281, 283, 288–289
Glucose levels, 26, 36, 40, 105, 122, 125,	Guamanian amytrophic lateral sclerosis	caloric restriction and, 83, 85, 89–92
223, 283	(G-ALS), 297	cardiovascular disease, role in,
Glutamate, 104, 107, 110, 112, 118	Guanylate cyclases, 251	153–154, 161
Grammate, 107, 107, 110, 112, 110	Guarryian Cyclases, 231	133-137, 101

cellular redox regulation and	Hypoxanthine, 154	Drosophila melanogaster studies, $2/1-2/6$
signaling, 196	Hypoxia, 22, 175–176, 184, 186, 284, 338,	309-320, 327-334
Drosophila melanogaster research, 274	363-365	endocrine control, 261–267
endocrine system, impact on,	Hypoxia-induced factor-1 (HIF-1), 8,	future research directions, 377–382
262-263, 266	12, 20, 22, 105–107, 175, 177,	mollusks, 361-371
free radicals and, 17, 19-20, 22, 25, 27	363, 378	olfactory dysfunction, 304
honeybee research, 296–297	Hypoxia-reoxygenation, 363	sestrins, 337–342
mitochondrial diseases, role in, 34, 39	Tryponia reoxygenation, 303	Ions/ion transporters, 6, 56
mollusk research, 367, 370	Idiopathic REM sleep behavior disorder,	Iron, generally
	297	
in neurotraumatic and neurodegenerative		deficiency, 37–38, 185
diseases, 52, 104–105	IGF-I pathway, 351	-induced oxidative stress, 302
Nrf2-small Maf heterodimers, 74	I-κB protein, 8	levels, 4, 12, 27, 34, 105, 123, 141–142,
Parkinson disease, role in, 140, 142, 146	Imidazole, 380	210, 297, 299–301
reactive oxygen species (ROS) generation	Immune-regulated catalase (IRC), 274	regulatory proteins (IRPs), 38, 365
3, 5, 8–11	Immune response, 20, 88	Irradiation, 23, 74
Hydrolysis, 54	Immune system, 18, 66, 170-371	Irritable bowel syndrome, 211
Hydroperoxides, 5	Immunity, social, 283-284	Ischemia, 185
Hydroperoxyl radicals, 168, 295	Immunohistochemistry, 56	Ischemia-reperfusion injury (IRI), 12,
Hydroxycholesterol, 56-57, 105,	Immunological response, 42	157–158, 210, 212–215, 340, 379
109–110	Immunoreactivity, 52	Ischemic brain injury, 41
8-Hydroxydeoxy-guanosine, 93	Indoles, 141, 143, 252	Ischemic heart disease, 23
Hydroxyecdysone, 266	Inflammation, 74–75, 83, 110–111, 182. See	Ischemic injury, generally, 20, 24
4-Hydroxyhexenal (4-HHE), 5, 108–109	also Inflammatory diseases/disorders;	Isofluorane, 185
4-Hydroxynonenal (4-HNE)	Neuroinflammation	Isoforms, 58–59
Alzheimer disease, role in, 119	Inflammatory bowel disease, 310	Isofurans, 5, 109
antioxidants and, 216	Inflammatory diseases/disorders, 111, 272,	Isoketals, 5, 109
free radicals and, 25, 28	310, 379	Isoprostanes
future research directions, 380–381	Ingenuity Pathways Analysis Systems, 186	caloric restriction and, 92–93, 96
in neurotraumatic and neurodegenerative	Insecticides, 28, 262, 266, 281–282	cardiovascular disease, role of, 155
diseases, 53–55, 57, 105–109	Insects, endocrine control of oxidative stress	free radicals and, 26
Nrf2-small Maf heterodimers and, 74	adipokinetic hormones, 264–266	future research directions, 380
reactive oxygen species (ROS) generation,	environmental factors, 266-267	in neurotraumatic and neurodegenerative
8-10, 12	glutatione S-transferase, 281	diseases, 54, 57, 105, 108-109
Hydroxylase system, 281	hormones, generally, 264, 266–267	in reactive oxygen species (ROS)
Hydroxylation, 363	Insulin	generation, 5, 8
Hydroxyl radicals	levels, 20, 87, 89, 201, 222, 251, 285, 317,	8 , . , . ,
in aging process, 168	341, 351	Janus kinase (JAK), 21, 133
caloric restriction and, 83, 104–105	resistance, 210–211	JNK protein, 176, 272–276, 286, 364
characteristics of, 17–18, 20, 25	Insulin/IGF-1 pathway, 354–355	Jun-2 proteins, 8
endocrine system, impact on, 262	Insulin-like growth factor, 20, 23	Juvenile hormones (JHs), 264, 267, 284
		34veinie normones (3113), 204, 207, 204
honeybee research, 295–296	Interferon, 211, 251	Water at the case of the
mitochondrial diseases, role in, 38	Interleukins	Kainic acid neurotoxicity
mollusk research, 377	antioxidants and, 211, 222, 224	characteristics of, overview of, 51–52
neurotraumatic and neurodegenerative	cellular redox regulation and signaling,	cholesterol metabolism alterations in,
disease, role in, 52	203	56-57
Parkinson disease, role in, 140	free radicals and, 20, 22, 27	environmental stressors, 184, 186
reactive oxygen species (ROS) generation,	future research directions, 377	glycerophospholipid metabolism
3, 10	in neurotraumatic and neurodegenerative	alterations in, 52–54
17-Hydroxyprogesterone (17OH-PROG),	disease, 54, 106, 110, 112	lipid mediators, interaction consequences
123	Nrf2-small Maf heterodimers and, 66	57-58
Hydroxysteroid dehydrogenase (HSD),	reactive oxygen species (ROS)	modulation of neurochemical activities
121–122	generation, 7	in, 52
8-Hydroxy-2-deoxyguanosine (8-OHdG),	International Association for the Study of	neurotraumatic and neurodegenerative
9, 12	Pain (IASP), 218	diseases and, 58–59
Hypercholesterolemia, 25–26, 222	Interstitial fibrosis, 158–159	sphingolipid metabolism alterations in, 51
Hyperglycemia, 26, 222	Intracellular adhesion molecule-1 (ICAM-1),	54–56
Hyperinsulinemia, 185	7, 54, 111–112	Keap1
		•
Hyperoxia, 310	Intracellular oxidative stress, 175	Drosophila melanogaster research,
Hyperphosphorylation, 118, 123	Invertebrates	272, 331
Hypertension, 12, 23, 88, 213, 215, 222	aging in, 169–170	future research directions, 379
Hypertropy, 158	Apia mellifera, 279–289, 295–304	identification of, 67–68
Hypochlorous acid (HOCl), 153, 295	biomarkers of oxidative stress,	reactive oxygen species (ROS)
Hypoglycemia, 222	380-382	generation, 7
Hypothalamus-pituitary axis (HPA), 122	Caenorhabditis elegans, 347–356	as sensor molecules for electrophiles, 70

Keap1/Nrf2 system	Liquid chromatography-mass spectroscopic	Manganese(III) tetrakis(1-methyl-4-pyridyl)
characterized, 65-66, 68-70	studies, 380–381	prophyrin (MnTMPyP), 41
controlling longevity, 317	Littorina littorea, 365	Mantle cells, 369
functional conservation in Drosophila,	Liver	Maresins, 108, 111
312–316	aging process, 171	Matrix metalloproteinases (MMPs), 54, 159
preventing human disease, 309-310	diseases of, 223	MEK1 protein, 25
signaling, 316	environmental stressors, 184–185	MEKK, 21
Kearns-Sayre syndrome (KSS), 34, 37,	hepatic oxygen, 90	Melanin, 275
39-40	injury, 74	Melanoma, 247–248. See also Skin cancer
KEGG database, 189	nonalcoholic fatty liver disease	Melatonin, 212, 218, 251
Keto groups, 57	(NAFLD), 211	Memory, see Alzheimer disease; Dementia
Ketonemia, 8	toxicity, 310	formation of, 8
Ketones, 94, 246, 253	tumors, 66	impairment, 236, 299
Kidneys	LLRK2 gene, 28, 139	loss, 57
caloric restriction and, 94	Long-term memory (LTM), 347–348, 350	Metabolic diseases/disorders, 20, 320
environmental stressors, 93, 184-185	Long-term potentiation (LTP), 8	Metals, see specific types of metals
nephropathy, 88	Lovastatin, 225	chelation, 28-29, 210
renal carcinoma, 186, 247	Low-density cholesterol, 25	health effects of, 22-23, 27, 183, 262
renal diseases, 20, 24, 225	Low-density lipoproteins (LDLs), 92, 203	ions, 17, 175
renal dysfunction, 36	L-type Ca ²⁺ hypothesis, 145–147	redox-active, 4, 12
tubulointerstitial nephritis, 225	Luciferase, 201	Metalloids, 262
Klebsiella spp., 247	Luciferin binding protein (LBP), 334	Metalloproteinases (MMPs), 39-40, 111
Krebs cycle, 143, 288	Lung(s)	Metallothioneins, 94, 171
krox-24, 111	asthma, 221, 272, 310	Methicillin-resistant Staphylococcus
	cancers, 20, 23, 74	aureus, 247
Lactones, 246, 253	disease, 175	Methionine, 90, 221, 223-224, 267, 280
Laryngeal cancer, 248	environmental stressors, 185	Methionine sulfoxide reductase (MSR), 198
Laryngitis, 250	functions of, generally, 220	Methionine35 (Met35), 27
Late-onset Alzheimer Disease (LOAD), 130	injury, 310, 380	Methylene group, 109
L-Dopa, 139, 145	pleurisy, 74	Methylmercury toxicity, 319–320
Leber's hereditary optic neuropathy	pulmonary disease, 310	Methylprednisolone, 184, 186
(LHON), 34, 36–37, 39, 41	pulmonary fibrosis, 310	Mev-1 gene, 353
Leigh syndrome, 34, 36	Lupus erythematous, 379	Mianserin, 302
Leptinotarsa decemlineata, 264–265	Lycopenes, 23, 209, 214	Michael addition, 108
Leptominingeal melanocytes, 142	Lymphocytes, 21, 40	Michael adducts, 9, 12
Lesions, implications of, 23, 131, 211	Lymphomas, 220, 339	Microarray analyses, 42, 175, 183, 334, 352,
Letrozole, 124	Lysine, 41, 108, 381	354
Leucine, 188	Lysophosphatidylcholine	Microglia/microglial cells, 10, 52, 107,
Leukemia, myloid, 39	(lyso-PtdCho), 108	110-111, 113
Leukoaminochrome (LAC), 143-144		MicroRNA, 280
Leukotrienes, 52, 104, 108, 110	Macromolecules, 129, 196, 352	Microsomes, 3, 266, 281
Lewy bodies (LBs), 26, 28, 139, 141	Macrophages, 3, 74, 203, 223, 338-339	Midlife crisis theory, 355–356
Life span, 169–170	Macrophagocytes, 284	Miller-Dicker lissencephaly, 111
Ligand-receptor signaling, 175	Maf proteins	Mismatches, 176
Ligands, functions of, 20	functions of, 7, 311, 314, 379	Mito-NAC, 42
Lignans, 212	recognition elements (MAREs), 72-73	Mito-TEMPL, 42
Lipid(s)	regulation of, 73–74	Mito-vitamin E, 42
functions of, 4, 9, 24, 57–58, 83, 88, 92,	transcription factor network, 71-74	Mitochondria
131, 168, 176, 213, 382	Magnesium, 214	age-related memory impairment, 354
hydroperoxides, 365	Magnetic resonance imaging (MRI) studies,	Alzheimer disease brain and, 302
metabolism, 122, 180, 187	215, 352	dysfunctional, 24-25, 147
neurodegeneration and, 105	Malathion, 266	environmental influences, 179-180, 183,
oxidation of, 18	Malondialaldehyde (MDA), 9, 26–27, 92,	340-341
peroxidation, 9, 20, 25-26, 90, 93, 95,	96, 216, 219–220, 266	functions of, 6, 9, 11, 24, 28, 84-86, 157,
117–120, 124, 140, 171, 186, 297,	Mammalian studies	176, 281
304, 354	neurogenesis, 131	neurosteroids and, 121
unsaturated, 53	stress response signaling, 75	Mitochondrial diseases
Lipoic acid (LA), 9, 94, 209, 354	Manganese, 221	alteration of antioxidant defense system,
Lipopolysaccharides (LPS), 66, 370	Manganese-dependent superoxide dismutase	39-40
Lipoproteins, 25, 201, 266	(Mn-SOD), 34, 39–42, 91, 93,	biochemical consequences of mtDNA,
Lipotoxicity, 211	159-161	36–39
Lipoxins, 108, 110–111	Manganese superoxide dismutase (MnSOD),	free radicals, 20
Lipoxygenase (LOX), 4-5, 7, 11-12, 66,	84, 89, 93, 124, 154, 158, 169–170,	characteristics of, 33-34
104, 106, 110, 117–118, 382	280-281, 284	genetics-based gene therapy, 41-42

heteroplasmy of mtDNA mutations,	MPTP, 141–142, 145–146	influential factors, generally, 3, 9, 11, 103,
35–36	Mucosa-associated lymphoid tissue (MALT)	133, 341
mtDNA mutation-related, 36	lymphoma, 220	Parkinson disease (PD), 139–140
redox therapy, 40–41	Multiple Elm for Motif Elicitation (MEME)	Neurodegenerative diseases, see specific types
Mitochondrial DNA (mtDNA)	motifs, 329–330, 332–333	of neurodegenerative diseases
aging process and, 212	Multiple sclerosis (MS), 111, 215, 221, 297	antioxidant therapy, 210–212, 215–218
deletions, 168	Musashi1, 133	Caenorhabditis elegans research, 353, 356
functions of, 24–25	Musculapneurotic fibrosarcoma	Drosophila melanogaster research,
mitochondrial oxidative stress cycle,	oncogenes, 7	273, 317
34–35	Muscular dystrophy syndromes, 203	environmental factors, 104, 175
neurodegenerative diseases, 107,	Mutagenesis, 19, 382	future research directions, 379–380
113, 125 POS generation, 24, 86	Mya arenaria, 368 Mycobacterium spp., 247	genetic factors, 104
ROS generation, 34, 86	Myeloperoxidase, 3, 12, 104, 370, 382	inflammation, 110–111
Mitochondrial encephalomyopathy lactic acidosis and strokelike episodes	Myocardial infarction, 41, 214	interplay among excitotoxicity, oxidative stress, and neuroinflammation,
syndrooooooome (MELAS), 33,	Myocardial ischemia-reperfusion, 364	111–112
36–37, 39–40	Myocardium, 157	kainic acid neurotoxicity, 58–59
Mitochondrial permeability transition	Myoclonic epilepsy with ragged red fibers	mitochondrial diseases, 34
(MPT), 157	(MERRF), 34, 36–37, 39–40	oxidative ad nitrosative stress in, 104–110
Mitogen-activated protein kinase (MAPK)	Myocytes, 160, 184	reactive oxygen species (ROS) generation,
Alzheimer disease, role in, 124	Mytilus spp., 364, 368–370	10-12
cardiovascular disease, role in, 160–161	нушиз эрр., 304, 300 370	types of, 6, 103–104, 112–113, 317–318
Drosophila melanogaster research, 272	N-acetylcysteine (NAC), 39–40,	Neurodegenerative disorders, 85, 215–218,
endocrine system, impact on, 264	224–225	310
free radicals and, 20–22, 24	NADPH	Neurofibrillary tangles (NFTs), 118, 120,
mollusk research, 364, 366, 368–371	environmental stressors and, 183, 187	130–132, 134, 215–216, 236
in neurodegenerative diseases, 105, 109	functions of, 154–155, 158–160	Neurofurans, 5
Nrf2-small Maf heterodimer and, 75	neurosteroids and, 121	Neurogenesis, 112, 187
in reactive oxygen species (ROS)	oxidase, 4-5, 7, 10, 12, 20, 24, 26, 55,	Neurogenic muscle weakness, ataxia,
generation 6	57–58, 104–106, 109, 112, 183, 377	retinitis pigmentosa (NARP), 34
$MitoQ_{10}$, 41	oxidation of, 288, 302	Neurohormones, 28, 264
Mitosis, 133, 250	quinone oxidoreductase 1 (NQO1), 65,	Neuroinflammation, 103–105, 110–113,
Molecular biology, 334	309	352-354
Molecular biomarkers, 175	redox sensing, 370	Neuroketals, 5
Molecular genetics, 33	ROS production, 261, 274	Neurological diseases, 24
Molecular oxygen, 84, 262, 295-296, 377	selenoproteins and, 198	Neurological disorders, development of, 26.
Mollusks, free radical production, 367	NASH, 220	See also Alzheimer disease (AD);
Mollusks, redox sensing	National Center for Biotechnologty	Parkinson disease (PD)
characteristics of, 361–362	Information (NCBI), 328–329	Neurological disorders, 20
immune system, 370–371	Necrosis, 12, 19–20, 23	Neuromelanin, 143
oxygen availability, 362-366	Neoepitopes, 12	Neuronal disorders,190
pollutant-induced oxidative stress,	Neogenesis, 124	Neuronal injury, 6
366-369	Nephropathy, 88	Neuronal loss, 317–318
Monoamine oxidases (MAOs), generally	Nerve growth factor, 251	Neuropathic pain, 122
B (MAO-B), 119	Nervous systems, influences on, 187, 273. See	Neuropathy, 36, 210
functions of, 142, 281	also Central nervous system (CNS)	Neuropeptides, 264
inhibitors (MAOI), 217, 303	Nestin, 133	Neuroplasticity, 112
Monocyte chemotactic protein 1 (MCP-1), 7,	Neural cells, ROS role in	Neuropolypeptide h3, 107
106, 112	cell death, 8–9	Neuroprostanes, 5, 109
Motifs, 8. See specific types of motifs	cognition, 8 enzyme activities, 6	Neuroprotectins, 111 Neuroprotection, 106, 108, 122, 124–125.
Mouse studies aging process, 170–171	gene modulation, 6–8	See also Neurosteroids
Alzheimer disease, 119–120, 124, 302	long-term potentiation (LTP), 8	Neuropsychiatric disorders, 297
cardiovascular disease, 158	memory formation, 8	Neurosketal system, 109
environmental stressors, 40–41, 186	overview of, 4–6	Neurosteroidogenesis, 117, 123–124
neurogenesis, 132	transcription factors, 6	Neurosteroids
Nrf2 signals, 320	Neural loss, 352	biosynthesis, 117, 120–122
Nrf2-small Maf heterodimers, 64–74	Neural membrane, oxidative stress-mediated	characteristics of, 120
olfactory dysfunction, 299	damage to, 107–110	mechanisms of action, 122
Parkinson disease, 141–142, 145,	Neural stem cells (NSCs), 129, 131	oxidative stress and, 122–125
317–318	Neuroblastoma cells, 119, 124, 319	Neurotoxicity, 107, 144–145, 236
selenoproteins, 200–201	Neurodegeneration	Neurotoxins, parkinsonian, 141
sesstrin homologs, 338–339	Alzheimer Disease (AD) and, 131	Neurotransmitters, 28, 52, 57, 122, 132,
wine consumption benefits, 237–240	dopaminergic, 145	216, 251

Neurotraumatic diseases, 10–11, 58–59,	mutations, 71	Oltipraz, 75
111-112	neurodegenerative disease and, 106-107	Organ fibrosis, 20
Neurotrophins, 251	promoter analysis study of circadian	Ornithine, 11
Neutrophils, 3	regulatory motifs, 331	Osteoarthritis (OA), 225
Nickel, health effects of, 20, 22	in protection from Parkinson disease	Ovalbumin, 66
Nicotinamide adenine dinucleotide	9PD), 317–319	Ovarian cancer, 20
(NADH), 84, 140	post-translational modification of, 71	Oxidative metabolism, 354
Nicotinamide adenine dinucleotide	as target of Keap1, 68-69	Oxidative phosphorylation system
(NADH)-ubiquinone	Nrf2-small Maf heterodimer survival	(OXPHOS) system
oxidoreductase, 34	strategy and disease pathogenesis	Alzheimer disease (AD) and, 119
Nitric oxide (NO)	CNC-small Maf transcription factor	defects in, 36–37
in aging process, 154–155, 160	network, 71–74	deficiency, 42
caloric restriction, effect on, 92	DNA sequences, 72–73	honeybee research, 297
environmental stressors, 175–176,	dysfunctional Nrf2 in pathology, 74–75	mitochondrial diseases, 34, 37, 40
178-179	identification of Nrf2, 63-64	Oxidative strength, 112
free radicals and, 18, 20, 22, 25–26, 28–29	Keap1-nrf2 system in response to	Oxidative stress, generally
future research directions, 379	electrophiles, 65–71, 272	autocatalytic cycle, 88
honeybee research, 299	phenotypes, 66	basic characteristics of, 83–84
mollusk research, 363, 368, 370-371	susceptibility of Nrf-2 null mice to oxidative	defenses against, 262–264
in neurodegenerative diseases, 107, 113	and xenobiotic stress, 64–65	defined, 3
Parkinson disease, role in, 140	Nuclear DNA (nDNA), 24, 33	endogenous sources of, 261–262
Nitric oxide synthase (NOS)	Nuclear factor of activated T-cells (NFAT),	exogenous sources of, 262
Alzheimer disease, role in, 140	22	Oxidoreductase, 19
antioxidants and, 220	Nuclear factor erythroid 2 related factor 2.	4-Oxo-trans-2-nonenal (4-ONE), 28
caloric restriction and, 85-86	See Nrf2	Oxycholesterols, 56-57
cardiovascular disease, role in, 154	Nuclear factor kappa B (NF-κB)	Oxyconformity, 363
isoforms (iNOS), 93, 111, 146, 159	Alzheimer disease, role in, 124	Oxygen
mollusk research, 364	antioxidants and, 211	functions of, generally, 20, 27
in neurotraumatic and neurodegenerative	caloric restriction and, 84, 86	consumption rate (OCR), 37
diseases, 54, 57–58, 106–107, 112	cardiovascular disease, role in, 161	hepatic, 90
Nrf2-small Maf heterodimer, 66	Drosophila melanogaster research, 274	molecular, 84, 262, 295-296, 377
reactive oxygen species (ROS) generation,	endocrine system, effect on, 264	O_2 sensing, 363–364
4-5, 7-8, 11	environmental stressors, 175–177,	reactive, see Reactive oxygen species
Nitrogen levels, 83, 221	181-182	(ROS)
Nitrooleic acids, 107	free radicals and, 20, 22–23, 26	redox sensing, mollusk research,
Nitrosative stress, 11, 104–110	future research directions, 377, 380	362-366
Nitrosylation, 9–10, 107, 140, 198, 200, 204	honeybee research, 295	Oxyradicals, 55
Nitrotyrosine, 10, 26, 92, 103	in neurotraumatic and neurodegenerative	OXY-SCORE index, 95
N-methyl-D-aspartate receptor (NMDAR),	diseases, 53, 55, 105–107, 111	Oxysterols, 57
52, 122, 125, 143, 199, 353	Nrf2-small Maf heterodimer, 66	
Nonenzymatic scavengers, 94–96	reactive oxygen species (ROS) generation,	Pancreas, 184, 211
Non-small-cell lung cancers, 20	5, 8, 11–12	Pancreatic cancer, 21–23
Nonsteroidal antiinflammatory drugs	Nuclear magnetic resonance (NMR)	Pancreatitis, 223–225
(NSAIDs), 354	spectroscopic studies, 201	Paraoxonase I (PON1), 91, 94
Nonviral vectors, 43	Nucleic acids, 107, 131, 168	Paraquat, 141–142, 145, 171, 262, 265–267
Norepinephrine (NE) levels, 143, 251	Nucleophiles, 144	313, 317–318
Normal aging, 12, 352–353	Nurses' Health Study, 217	Parasitoids, 275
Novel motifs, 329, 331	Nutrition. See Food and diet; Parenteral	Parenteral nutrition (PN), 221
Nrf2, see Keap1/Nrf2 system; Nrf2-small	nutrition; Total parenteral nutrition	Parkin, 28, 319
Maf heterodimer survival strategy	(TPN)	Parkinson disease (PD)
and disease pathogenesis	Nutritional Prevention of Cancer, 219	antioxidant therapy, 215, 217
degradation of, 69-70		brain dysfunction, 341
Drosophila as model organism for study	Obesity, 86, 211, 213, 341	caloric restriction and, 85
of, 313–320	Octadecenoic acid, 107	Drosophila melanogaster research,
dysfunctional, 74–75	Octapine, 301	273, 310
electrophile-independent activation of, 71	Octopamine, 299, 302	free radicals and, 26, 28
future research directions, 379–380	Octreotide, 184, 186	future research directions, 379
functions of, generally, 7–8, 105, 175, 264	Oleic acids, 107	honeybee research, 297
heterodimerization, 72	Olfactory dysfunction, 297-298, 302-303	mitochondrial DNA (mtDNA), role in,
in honeybees, 295	Olfactory learning	34, 38, 41
identification of, 63-64	honeybee research, 298-299, 301	neurosteroids and, 117
inducers, 67	memory and, 349-350	olfactory dysfunction, 297, 302-303
inhibitors of, 75	Olfactory processing, honeybees and	overview, 139-140
methylmercury toxicity, 319-320	humans compared, 298	oxidative stress and, 139-146

pathogenesis, 58, 103, 105, 107, 111, 132,	Phenylalanine, 41	Pregnenolone (PREG), 120–122, 185
317–318	Phenylephrine, 74	Presenilins (PSEN), 118–119, 130, 132, 134
protective substances, 317–318	Phosphatases, 8	352
reactive oxygen species (ROS), 6, 140	Phosphatidylcholines, 104	Primate studies
therapeutic implications, 146–147	Phosphatidylinositol-3, 355	aging process, 352
Parkinsonism, 318	Phosphatidylinositol-3 kinase, 124	caloric restriction, 88, 92
Parkinsonism-complex disease	Phosphoglycerate mutasel, 107	neurogenesis, 131
(PCD), 297	Phospholipase A ₂ (PLA ₂)	selenoproteins, 200–201
PC12 cells, 119	Alzheimer disease, role in, 117	Prion diseases, 103, 111
PDGF receptor (PDGFR), 20	future research direcgtions, 378, 380	Proboscis extension reflex (PER)
p85, 22	honeybee research, 302-303	conditioning, 297
Peptides, functions of, 27, 41. See also	in neurotraumatic and neurodegenerative	Probucol, 222
specific types of peptides	diseases, 52-55, 58-59, 106-108,	Progenitor cells, 133
PER-ARNT-SIM (PAS) protein, 327	111-112	Progesterone (PROG), 117, 121-122, 124
Peripheral arterial disease (PAD), 215	reactive oxygen species (ROS)	Proinflammatory cytokinases, 110
Peripheral mononeuropathy, 210	generation, 9	Proinflammatory cytokines, 5, 27, 104, 106,
Peripheral-type benzodiazepine receptor	Phospholipases	113, 211, 224, 377
(PTBR), 121	C (PLC), 8, 274	Proinflammatory enzymes, 5, 106
Perkin, 107	C (PLC)/diacylglycerol (DAG) lipase	Proliferator-activated receptor
Permeability transition pores (PTPs), 11	pathway, 52	(PPARP), 107
Permethrin, 266	functions of, 4–5, 8, 111	Promoter analyses, 74, 328–334
Peroxidases (POs), 142, 283, 337	Phospholipids, 5–6, 12, 58, 103, 140, 203,	Prooxidant effect, 124
Peroxidation, 3, 5, 10, 108, 113, 266	216, 377	Pro-phenol oxidases (PPOs), 275
Peroxiredoxin (Prx), 2, 41, 107, 143,	Phosphorylation	Prophyrin (P), 41
176–178, 271, 273, 337, 339	Alzheimer disease, role in, 124	Propolis (bee glue)
		cellular signal transduction, 250–252
Peroxisome proliferator-activated receptor	environmental stressors and, 176	•
(PPAR), 89	free radicals and, 21–22	commercial use of, 253
Peroxisomes, 3	mollusk research, 366, 368	composition, 246
Peroxyl radicals, 3, 52, 83, 104–105, 263,	in neurodegenerative diseases, 108	food safety, 246
295, 377	Nrf2-small Maf heterodimers, 71, 75	historical perspective, 246
Peroxynitrate, 85	in propolis, 251	human nutrition, 246
Peroxynitrite (ONOO ⁻)	in reactive oxygen species (ROS)	overview, 245–246
Alzheimer disease, role in, 117, 129	generation 6–8	therapeutic properties, 246–250
caloric restriction, effect on, 85	sestrins and, 340–341	toxic effects, 252–253
cardiovascular disease, role in, 153	Phytochemicals, 212, 214	Prostaglandins (PGs)
cellular redox regulation and signaling,	Phytoestrogen, 89	caloric restriction, effect on, 92–93
196	Planococcus citreus, 370	in neurotraumatic and neurodegenerative
free radicals and, 18, 24–27	Plaques, in Alzheimer disease	diseases, 52, 57, 104, 108, 110
future research directions, 379–380	amyloid, 129–132, 216	Nrf2-small Maf heterodimers and, 74
honeybee research, 299	Αβ, 120	PGC-1 α , 40
mitochondrial DNA (mtDNA) and, 34	senile, 112, 118	PGD ₂ , 111
mollusk research, 364	Platelet-activating factor (PAF), 4, 7, 104,	PGF ₂ , 109
in neurotraumatic and neurodegenerative	108, 111	PGG, 109
diseases, 54, 107	Platelet-derived growth factor (PDGF), 7,	PGJ ₂ , 111
Parkinson disease, role in, 140, 143	20, 24	Prostate cancer, 20, 23, 219,
reactive oxygen species (ROS) generation,	Podospora spp., 169	247-248, 339
7, 12	Point mutations, 36	Prostate, Lung, Colorectal, and Ovarian
Peroxyredoxins, 309	Points of Care, 210	Cancer Screening Tool, 219
p53 gene	Pollution, health effects of, 319,	Proteasomes, 104, 107
environmental stressors, 175–176, 178,	366-369	Proteinases, 110
186-190	Poly(ADP-ribose) polymerase (PARP),	Protein error theory, 168
free radicals and, 20, 22	11–12, 88, 107, 252	Protein kinases
mollusk research, 368	Polychlorinated biphenyls (PCBs), 367	A (PKA), 109
in neurodegenerative disease, 105	Polycyclic aromatic hydrocarbons (PAHs),	B, see Akt
sestrins and, 337–339	367	C (PKC), 24, 26, 86–87, 124, 133, 370
pH, significance of, 18–19	Polymorphonuclear cells (PMNs), 220	functions of, 8
Phagocytes, 140, 283, 370	Polyols, 263	Protein phosphatases, 6
Phagocytosis, 281, 283, 370	Polypeptides, 34, 42	* * .
	** *	Proteins, see specific types of proteins
Phenolic acids, 212, 214, 237–239,	Polyphenolics, 240–241	acute-phase, 112
246, 253	Polyphenols, 22–23, 84, 209, 213	Alzheimer Disease and, 131
Phenol oxidases (POs), 275	Posttranslational modification, 71, 367	deficiency, 72
Phenoloxidase system (POS), in insects,	Potassium (K ⁺), 4	detoxification, 280
282–284	Prednisolone, 223	environmental stressors, 179, 184, 186
Phenoxyl radicals, 262	Pregnancy, preeclampsia and, 221	functions of, generally, 83, 88, 168, 176

Proteins, see specific types of proteins	chemical reactivity of, 3	Salmonella, 247
(continued)	production of, 3–4	SAMe supplements, 223–224
hemolymph, 266	role in neural cells, 4–9	Sandelin-Wasserman similarity function, 329
misfolded, 103, 107, 112	characteristics of, 83	Sarcolemma, 24
oxidation, 90, 124	cellular sources of, 261	Scavenger enzymes, 84, 93–94, 112, 145, 196
redox-responsive, 6	dual character of, 28–29	Schizophrenia, 297
redox sensing, 367	environmental stressors and, 175, 177	Sec insertion sequence (SECIS), 195–196,
redux environment, 19	formation/generation of, 84–88	202
scaffolding, 7	future research directions, 377–382	Secondary radicals, 17
stress-responsive, 6	human disease and, 20-26	Securin, 338
synthesis, 34, 107	hypoxia and, 362-363	Selectin, 111
Protein tyrosine	in member rafts, 58	Selegiline, 217
kinases (PTKs), 6, 20–21	mitochondrial, 92	Selenium (Se), 39, 217, 214, 220,
phosphatases (PTPs), 20–21	mitochondrial DNA (mtDNA), 34	224–225, 288
Proteomes, 88, 175	neurodegenerative diseases and, 140,	Selenoproteins
Proteomics, 381–382	215-218	defined, 195
p62 gene, 317	Nrf2 and, 65	families, 201–203
Psoriatic arthritis, 379	oxidative stress-mediated signaling	functions of, 6, 195–196, 217
PTEN-induced putative kinase 1 (PINK-1),	pathways, 176	future research directions, 203–204
28, 139, 142	redox sensing, 361–371	oxidative stress and, 196–198
p13, 20, 264	Reacylation, 5–6	redox systems, 198–200
p38 gene, 6, 21, 24, 133, 160, 272, 364,	Receptor for AGE (RAGE), 87–88, 156	synthesis, 196
368-369	Rectal cancer, 23. See also Colorectal cancer	in vertebrate signaling, 200–201, 204
P2X receptors, 122	Redox factor-1 (Ref-1), 264	Senescence, 167
p21 gene, 23	Redox potential, 198–200	Sepsis, 66
Purkinje neurons, 352	Redux environment, 18–20	Serine
Pyrrhocris apterus, 265–266	Reperfusion injury, 24, 41	functions of, 22
Pyruvate, 40	Reproductive disorders, 175	kinases, 251
Pyruvate dehydrogenase	Reproductive system, 187	palmitoyltransferase (SPT), 55
complex (PDHC), 40	Resolvins, 108, 111	/threonine phosphatases (PP2A), 8
kinase (PDK), 40	Respiratory infection, 250	/threonine protein kinase, 331
0 2 20 200 214 252	Respiratory system, 187	Serotonin levels, 251, 351–352, 354
Quercetin, 23, 209, 214, 252	Resveratrol, 84, 89, 209, 214, 252	Sestrins
Quinacrine, 53	Retinoic acids, 175	characteristics of, 337–338
Quinines, 246, 253	Retinoic X receptor ligand, 184, 186	chemical induction of, 339
Quinones, 141–142, 144, 158, 196, 302	Retinopathy, 223	deficiency and age-related pathologies,
D. 1. 41 74 220 240	Rheumatoid arthritis, 211, 225, 272, 379	341–342
Radiotherapy, 74, 220, 248	Rhinitis, 250	homologs, 338–339, 342
RAF, 21 Ragged red fibers (RRFs), 37, 39	Riboflavin, 223	nervous system effects, 339
RANTES, 251	Ribonucleic acid. See RNA RNA	as redox regulator, 339–340 regulation of expression by stresses,
Rapamycin, 341–342	double-stranded (dsRNA), 314–315	338–339
Raspherries, antioxidant studies, 211–212	functions of, 91, 113, 176	as TORC1 suppressor, 341
Rat studies	import complex (RIC), 42	SH-SY-5Y cells, 119, 123–124
caloric restriction, 90–93, 95	interference (RNAi), 280, 312, 315, 319	Shark liver oil (SLO), 211
environmental stressors, 183–186	messenger (mRNA), 195, 202, 312, 315,	Short-term memory (STM), 347–348, 350
neurotoxicity, 51–54	318, 327, 331, 334, 352, 355, 363, 365	Signaling networks, intracellular, 6
peroxidation in brain, 300	metabolism, 181	Signaling pathways, oxidative
propolis properties, 250	oxidation, 140, 297, 299	stress-mediated
Reactive nitrogen species (RNS)	oxidized, 118–119	environmental stressors, rat studies,
cardiovascular disease and, 153	synthesis, 54, 108	183–186
cellular metabolism and, 261	transfer RNA (tRNA), 33, 36, 42, 195–196	overview of, 177–183
environmental stressors and, 140, 175	Rodent studies, see Mouse studies; Rat	p53 pathways in human tissues, 186–190
free radicals and, 17–18, 20, 22–24, 26, 28	studies	Signal transduction
future research directions, 382	normal aging, 353	functions of, 176, 180, 367
neurodegenerative diseases, 107	selenoproteins, 200–201	human disease and, 20–26
Reactive oxygen metabolites (ROMs),	significance of, 88	pathways, 170
220–221	Rosiglitazone, 339	receptors, see Signal transduction
Reactive oxygen species (ROS)	Rotenone, 141	receptors
aging process and, 356	Ruditapes decussatus, 367	ROS generation and, 8–10, 12
aging theories, 168–169	Tamapes accussions, 501	Signal transduction receptors
Alzheimer disease and, 129, 133	Saccharides, 83, 88	classification of, 251
association with disease, 220–221	Saccharomyces cerevisiae, 169, 247, 274,	signaling molecules, 251–252
in brain	338, 341	Single nucleotide polymorphisms (SNPs), 65
	,	

Sirtuins, 88–89	Succinate	1au protein, 118–120, 123, 130–131, 134,
Skeletal muscle, 122, 184, 339, 341–342	dehydrogenase (SDH), 37–38	236
Skin	-ubiquinone oxidoreductases, 34	Telmisartan, 222
cancer, 219	Sucrose, 92. See also Sugars	Testosterone, 121
contact dermatitis, 252–253	Sugars, 168, 246, 253	2,3,7,8-Tetrachlorodibenzo-p-dioxin
infection, 249	Sulfate, 225	(TCDD), 175
Nrf2 gene and, 66	Sulfation, 281	TGF-β-BMP signaling, 176–177, 181
vitiligo, 310	Sulfenic acid, 198	Thermodynamics, 18
SKN-1 transcription factor, 317, 319–321	Sulfhydration, 198, 204	Thermotaxis
SMAD protein, 181	Sulfhydryl groups, 20, 24, 107, 380	Caenorhabditis elegans research, 353–354
Small molecule biochemistry, 187	Sulforaphane, 75	learning and memory, 349–351
Smooth muscle, 18, 109	Sulfotransferase, 281	Thiobarbituric acid (TBA), 92
Sniffer protein, 329, 331	Sulfur, 195	Thiols, 11, 19, 22, 196, 204, 367
S-nitrosoglutathione (GSNO), 364, 366	Sulfur dioxide, 184, 186	Thionein, 198
SNO-Drp1, 107	Superfamilies, 176	Thioredoxin (TXN)
Sodium barbitol, 158	Superoxide anions	antioxidants and, 217, 279
Sortilin, 130	caloric restriction, effect on, 83	cellular redox regulation and signaling,
Spatial memory, 352	cardiovascular disease, role in, 158	197–203
Sphingolipids, 12, 51–52, 54–56,	endocrine system effects, 261–262	Drosophila melanogaster research, 309, 329
103, 110	free radicals and, 24, 27	endocrine system effects, 263, 272
Sphingomyelinases (SMases), 10–11,	future research directions, 377	free radicals and, 19
109-110	honeybee research, 299	honeybee research, 279
Sphingosine kinase 1 (SPHK1), 55–56	mitochondrial diseases, 34	in mitochondrial diseases, 41
Spinal cord	in neurotraumatic and neurodegenerative	peroxidase (TPX), 280, 288
functions of, 122	diseases, 52, 104, 107	reactive oxygen species (ROS)
injury (SCI), 58, 111, 132	reactive oxygen species (ROS)	generation, 6
trauma, 6	generation, 3	thioredoxin reductase system, 380
Spinogenesis, 122	radical, 261, 279, 295	Threonine
Spodoptera littoralis, 262	Superoxide dismutase (SOD)	functions of, 21–22
Squalene, 211	in aging process, 168, 170	kinases, 251
Staining	Alzheimer disease, role in, 117, 119, 129	Thrombolytic therapy, 157
cholesterol, 56	antioxidants and, 284	Thromboxanes, 52, 54, 104, 108, 110
immunocytochemical, 53	caloric restriction, effect on, 84,	Thyroid hormones, 200–201
immunohistochemical, 132	86, 90, 95	Tin (Sn), health effects of, 195
Staphylococcus spp., 247, 250	cardiovascular disease, role in, 154	Tinidazole, 249
Starvation-odor association, 350	Drosophila melanogaster research, 271,	Tissue(s)
STAT proteins	273, 276, 331	oxidative damage to, 37, 42–43
functions of, 133	endocrine system effects on, 263, 266	regeneration, 75
Stat3, 75	environmental stressors, 175–177, 188	TNF- α
Statins, 55, 157	free radicals and, 17, 23, 25–26	antioxidants and, 211, 224
Stem cells, mesenchymal, 89	honeybee research, 284, 295	cellular redox regulation and
•	•	<u> </u>
Stereology, 132 Steroid hormones, 264, 266	in mitochondrial diseases, 34, 39–41	signaling, 203 environmental stressors, 176
	mollusk research, 370	
Steroidogenesis, 120–121	in neurotraumatic and neurodegenerative	future research directions, 377
Steroids, 121, 246, 251, 253	diseases, 54, 59, 103, 112	in neurotraumatic and neurodegenerative
Sterol regulatory element binding proteins	Parkinson disease, role in, 140, 143	diseases, 52, 54, 106, 110–112
(SREBPs), 105	reactive oxgen species (ROS) generation 3,	Nrf2-small Maf heterodimer, 66
Sterol-responsive binding protein	5-6, 8-10	reactive oxygen species (ROS) generation,
(SREBP), 340	sestrins and, 337, 355	7-8
Sterols, 168	Superoxide radicals, 17, 24–26, 83, 95	Tocopherols, 209, 218. See also
Stomach cancer, 23	Synapses	α -Tocopherols
Streptococcus spp., 247	synaptic dysfunction, 103	Toll-like receptor 3 (TLR3), 288
Streptokinase, 214	synaptogenesis, 122	TOR complexes (TORC1/TORC2)
Streptomyces lividan plasmid 1	Systemic lupus erythematous (SLE), 12	defined, 340
(SLP1), 66	Szeto-Schiller (SS) peptides, 41	functions of, 337–338
Streptozotocin, 184, 186		hyperactivation, 342
Stress-activated/c-Jun NH ₂ -terminal kinases	Tachycardia, 157	induction of stress-associated pathologies,
(SAPK/JNKs), 24	TAK, 21	340-341
Stroke(s)	Tandem mass spectrometric studies, 54	signaling, 340
antioxidant treatment, 214	Tannins, 212	suppression of, 341
cerebral, 132	Tapes phillipinarum, 368	Total body mass, 8–9
etiology, 6, 58, 111	Target of rapamycin (TOR), 340. See also	Total internal reflection fluorescence
risk factors, 213	TOR complexes (TORC1/TORC2)	microscopy (TIRFM), 57
Substantia nigra pars compacta (Snc), 28	Tauopathies, 297	Total parenteral nutrition (TPN), 224
Substantia ingra pars compacta (Siic), 28	rauopaunes, 291	rotat parenterat nutrition (TFIN), 224

Toxins	kinases, 251	Viruses
environmental, 28	methionine, 9	herpes virus, 247, 250
neurotoxins, 141	phosphatases, 251	human immunodeficiency virus (HIV),
Transcription factors (TF)		111, 220
activation of, 52	Ubiquinol-cytochrome c oxidoreductase, 34	influenza virus, 247
cellular redox regulation and signaling,	Ubiquinone, 34, 95, 209. See also	Newcastle disease virus, 247
199	Coenzyme Q	potato virus, 247
Drosophila melanogaster research, 311,	Ubiquitin, 142, 317	proplis treatment of, 247
327, 333	Ubiquitination, 310	Vitagenes, 380
environmental stressors, 175-176,	UDP glucuronate transferases (UGT), 65	Vitamin(s), functions of
180-181,183	UDP-glucose:glycoprotein	A, 210, 213–214, 217, 253
free radicals and, 22-23	glucosyltransferase (UGTR), 203	B, 40, 210, 253
honeybee research, 296	UDP-glucosidase, 281	B6, 223
Maf network, 71–74	Ulcerative colitis (UC), 211, 249	C, 18-19, 23, 28, 40, 42, 113, 156,
neurodegeneration and, 105-107	Ulcers, 211, 220, 310	212-225, 253, 379
neurogenesis, 131	Uncoupling proteins (UCPs), 25, 84-85, 90,	verview of, 84, 246, 253
reactive oxygen species (ROS) generation,	362-363	E, 6, 9, 18, 22–23, 26, 28, 42, 113, 210,
6-8	Untranslated region (UTR), 196	212-217, 219-225, 253, 342
Transcription regulators, 179, 182	Up-genes, environmental stressors,	K, 40, 42
Transcription start site (TSS), 328–329	184-186	Vitamin supplementation, 120
Transferrin, 94, 263, 267	Upregulation, 5, 22, 42, 52, 106, 112, 123,	Vitellogenins, 267, 284–285
Transferrin receptor (TfR1), 38-39	183, 272, 338–339, 365	Voltage-dependent anion channels
Transforming growth factor, 175	Uric acid, 84, 94, 263	(VDACs), 37, 143
Transient receptor potential	UV-B irradiated cells, 23	
(TRPA1), 107	UV radiation, 21–22	WAFI, 23
Transition metals, 25, 168		Wild-type APP (wtAPP), 119, 123–124
Translation, cotranslational, 42	Vaccines, 249	Wilson disease, 34
Translocation, 8, 106, 179, 199	Vanin-1, 288	Wine, treatment of Alzheimer disease,
Translocator protein (TSPO), 121	Vascular adhesion molecule-1	236-242
Transnitrosylation, 364	(VCAM-1), 54, 109, 111–112,	Women's health
Transporters, modulation of, 52	156, 378	breast cancer, 21, 23, 74, 247-248
Traumatic brain injury (TBI), 6, 58, 132	Vascular endothelial growth factor (VEGF),	contraception, 213
Traumatic head injury, 111	20, 22, 133, 160–161, 252	endometriosis, 220
Tricarboxylic acid (TCA), 38, 54, 125	Vascular smooth muscle cells (VSMCs), 7	estrogens, 91, 123-125, 142, 220
Trimethylin, 184, 186	VEGF receptor (VEGFR), 20	hormone replacement therapy, 213
Triose phosphate isomerase, 107	Vertebrates	menopause, 220
Triphenylphosphonium (TPP), 41	aging in, 167-171	ovarian cancer, 20
Triterpenoids, 75	Alzheimer disease, 117-125, 129-134	pregnancy and preeclampsia, 220-221
Troponin I, 157, 162	antioxidant therapy, 209-226	Woman's Health Initative Memory Study
Tryptophan, 9	biomarkers of oxidative stress, 380-382	(WHIMS), 124
Tumeric, health effects of, 211	caloric restrictions, 83-96	Working memory, 348, 352
Tumor(s)	cardiovascular disease, 153-162	Wound healing, 248-249, 253
caloric restriction, effects of, 83, 88	environmental stressors, 175-190	-
cerebral, 186	free radicals, 17–29	Xanthine
free radicals and, 19	future research directions, 377-382	dehydrogenase, 24
mammary, 184	kainic acid neurotoxicity, 51-59	functions of, 3, 12, 154
Nrf2-small Maf heterodimers ad, 66, 75	mitochondrial DNA mutations, 33-43	oxidase (XOD), 3, 12, 24, 26, 104, 168,
promoters, 23, 183	neurodegeerative diseases, 103-113,	220, 261, 382
suppressors, 186	235-242	Xenobiotic(s)
Tumor growth factor (TGF), 21, 176	Nrf2-small Maf heterodimers, 63-75	-activated receptors (XARs), 264
Tumor necrosis factor (TNF), see TNF- α	olfactory dysfunction, 304	functions of, 175, 281, 367
environmental stressors, 175, 183	Parkinson disease, 139–147	stress, 64-65, 67
free radicals and, 20, 22, 26	propolis research studies, 245-253	Xenopus, 339
ligand-receptor signaling, 176, 183	reactive oxygen species (ROS),	
Two-hit hypothesis, 133	3–12, 283	Yeast, see Saccharomyces cerevisaie
Type 2 diabetes, 85, 92. See also Diabetes;	redox regulation and signaling,	cells, 169
Insulin levels	195-204	infection, 249
Tyrosinase, 142	selenoproteins in, 200-201	mitochondrial diseases, 41
Tyrosine	signal transduction, 17–29	
functions of, 21, 27, 41, 72	Vibrio spp., 370	Zebrafish studies, 203
kinase inhibitors (TKIs), 20	Viral vectors, 43	Zinc (Zn), 27, 74, 119, 214, 220, 223, 280, 368