Sprint-2

Model Building

Date	08 November 2022	
Team ID	PNT2022TMID19478	
Project Name	Al-powered Nutrition Analyzer for Fitness Enthusiasts	
Maximum Marks		

Dataset:

- > In our dataset we have collected images of the five variety of fruits.
 - Apple
 - Orange
 - Pineapple
 - Watermelon
 - Banana

Drive link: https://drive.google.com/file/d/1jzDjV7jYcIzllieagaJdubMJ3YeLsry1/view?usp=share link

Image Pre-processing:

- ➤ Import The ImageDataGenerator Library
- ➤ Configure ImageDataGenerator Class
- > Apply Image DataGenerator Functionality To Trainset And Testset

Model Building:

- ➤ Importing The Model Building Libraries
- > Initializing The Model
- Adding CNN Layers
- Adding Dense Layers
- Configure The Learning Process

Model Building

1. Importing The Model Building Libraries

```
import numpy as np
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense,Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout
   2. Initializing The Model
model = Sequential()
   3. Adding CNN Layers
# Initializing the CNN
classifier = Sequential()
# First convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Second convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), activation='relu'))
# input_shape is going to be the pooled feature maps from the previous convolution layer
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Flattening the layers
classifier.add(Flatten())
   4. Adding Dense Layers
```

```
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=5, activation='softmax'))
```

#summary of our model classifier.summary()

Model: "sequential_1"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 62, 62, 32)	896
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 31, 31, 32)	0
conv2d_1 (Conv2D)	(None, 29, 29, 32)	9248
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 14, 14, 32)	0
flatten (Flatten)	(None, 6272)	0
dense (Dense)	(None, 128)	802944
dense_1 (Dense)	(None, 5)	645
	=======================================	=======

Total params: 813,733 Trainable params: 813,733 Non-trainable params: 0

5. Configure The Learning Process

```
# Compiling the CNN
```

[#] categorical_crossentropy for more than 2 classifier.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['acc