

Core network protocols and architectures

MPLS-based Traffic Engineering

Enzo Mingozzi
Professor @ University of Pisa
enzo.mingozzi@unipi.it

Routing flexibility

Traffic Engineering

MPLS enables the decoupling of the CONTROL plane from the DATA plane

Traffic Engineering

In IP, Traffic Control can not be managed. IP Tables are configured, then each node runs a function based on the contents of the table.

If MPLS uses IP Routing to calculate the routes, it encounters the same fate

- Controlling the path taken by traffic through a network
- What is the purpose of influencing paths?
 - Improve utilization of network resources
 - Avoid congestion (and/or load unbalancing across the network)
 - Ensure the path has certain characteristics
 - E.g., not using high-latency links
 - Determine which traffic gets priority at a time of resource crunch

Traffic Engineering

- Why is that relevant for a network operator?
 Increase revenues
 - Offering new services with extra guarantees
 - Extra guarantee -> extra money charged
 - Example: Guaranteed Bandwidth service Capital Expenditures, the money used
 - Lowering capex in new resources by improving utilization of existing ones
 - Cost savings by delaying link upgrades, e.g., by increasing average % of link utilization

Traffic Engineering

TE is not always required

Further protocols and such are needed to use TE with with MPLS

- Not all MPLS deployments are used for TE
- Not all MPLS networks can indeed provide TE^V
- TE entails operating a more complex network (i.e., additional cost)
 - The means by which TE is implemented must be simple enough to deploy and maintain
 - MPLS provides operational simplicity along with flexibility to support complex TE policies

Wondershare PDFelement

Application scenario [1]

Not possible with IP Routing -----

traffic originating at A should avoid the high-latency link G-D

Ability to forward traffic along a path specified by the source, i.e., explicit routing

Application scenario [2]

- Shortest path → C-G-D is congested
- ECMP → ok, needs manipulating link costs
- What if link E-F has capacity of 50 Mbps?

Specify bandwidth requirements between each source/destination pair, find a path that satisfies these requirements, forward the traffic along this path

Application scenario [3]

find paths between source/destination pairs that **comply with bandwidth constraints**, enforce the **priority of the path** sourced at B over that sourced at A

2. What if link G-D fails?

with strict guarantees

Requirements for TE

Computing paths that comply with a set of constraints

Enforcing traffic to be forwarded along these paths

By decoupling service from transport, MPLS is fundamental to support TE requirements