Contents

1	概述		
	1.1	统计学习三要素....................................	,
		1.1.1 模型	2
		1.1.1.1 模型的假设空间	2
		1.1.1.1.1 定义 1	2
		1.1.1.1.2 定义 2	-
		1.1.2 策略	-
		1.1.2.1 损失函数与风险函数	-
		1.1.2.2 经验风险最小化与结构风险最小化	:
	1.2	1.1.3 算法	(
	1.2	模型评估与模型选择	(
		1.2.1 训练误差与测试误差	,
	1.3		,
	1.3	正则化与交叉验证	,
		1.3.2 交叉验证	,
	1.4	泛化能力	,
	1.7	1.4.1 泛化误差	,
		1.4.2 泛化误差上界	,
	1.5	生成模型与判别模型	,
	1.6	立版版 	,
	1.7	标注问题	,
	1.8	回归问题	,
2	感知	${f I}$	8
3	k 近领	R法	
	~ `		
4	朴素」	Q叶斯法	8
	4.1	贝叶斯公式	8
	4.2	极大似然估计(MLE)	(
	4.3	最大后验估计 (MAP)	10
	4.4	贝叶斯估计	10
5	决策	र्ष	10
6	logis	tic 回归与最大熵模型	1
_			
7	支持向	可量机	1
8	提升力	5法	1
	8.1	gbdt	1
		8.1.1 gbdt 概述	1
		8.1.2 gbdt 的负梯度拟合	1
9	EM :	章法及其推广	11
10	隐马尔	R可夫模型	12
11	条件	直机场	12
12	附录		12
-	12.1	矩阵	12

	12.2.1	拉格朗日乘子法	12
		12.2.1.1 等式约束	12
		12.2.1.2 不等式约束	15
		12.2.1.3 带等式和不等式约束的拉格朗日乘子法	17
	12.2.2	梯度下降	18
		12.2.2.1 《统计学习方法》的视角	18
		12.2.2.2 《机器学习》的视角	20
	12.2.3	牛顿法	21
		12.2.3.1 二阶导基本性质	21
		12.2.3.2 牛顿法	22
	12.2.4	拟牛顿法的思路....................................	25
	12.2.5	DFP(Davidon-Fletcher-Powell)	25
	12.2.6	BFGS(Broydon-Fletcher-Goldfarb-Shanno)	25
12.3	拉格朗日	对偶性	25
12.4	信息论相	送	25
	12.4.1	凸集	25
	12.4.2	凸函数	26
	12.4.3	KL 散度	26
12.5	采样		28
	12.5.1	拒绝采样	29
	12.5.2	重要性采样	30
	12.5.3	马尔可夫蒙特卡洛采样(MCMC)	31
		12.5.3.1 Metropolis-Hastings 采样	31
		12.5.3.2 吉布斯采样	32

下载地址: https://github.com/daiwk/collections/posts/blob/master/8.int-ml.pdf

本文参考自李航的《统计学习方法》、周志华的《机器学习》、Hulu 的《百面机器学习》等。

1 概述

1.1 统计学习三要素

1.1.1 模型

监督学习中,模型是要学习的条件概率分布或决策函数。

1.1.1.1 模型的假设空间

假设空间是所有可能的条件概率分布或决策函数

1.1.1.1.1 定义 1

可以定义为**决策函数的集合**:

・ $\mathcal{F} = \{f|Y = f(X)\}$ ・ X 和 Y 是定义在 \mathcal{X} 和

上的变量

 \mathcal{F}

是一个参数向量决定的**函数族**:

$$\mathcal{F} = \{f|Y = f_{\theta}(X), \theta \in R^n\}$$

参数向量

 θ

取值于 n 维欧式空间

 \mathbb{R}^n

,称为**参数空间**

1.1.1.1.2 定义 2

也可以定义为条件概率的集合:

 $\mathcal{F} = \{P|P(Y|X)\}$

•

X

和

Y

是定义在

 \mathcal{X}

和

y

上的**随机变量**

 ${\mathcal F}$

是一个参数向量决定的条件概率分布族:

$$\mathcal{F} = \{P|P_{\theta}(Y|X), \theta \in \mathbb{R}^n\}$$

1.1.2 策略

1.1.2.1 损失函数与风险函数

损失函数 (loss function) 或代价函数 (cost function): 度量预测值

f(X)

与真实值

Y

的误差程度,记为

- ,是个非负实值函数。损失函数越小,模型越好。
 - 0-1 损失函数:

$$L(Y, f(X)) = \begin{cases} 0 & Y \neq f(X) \\ 1 & Y = f(X) \end{cases}$$

• 平方损失函数:

$$L(Y, f(X)) = (Y - f(X))^2$$

• 绝对损失函数:

$$L(Y, f(x)) = |Y - f(X)|$$

• 对数损失函数 (logarithmic loss function)/对数似然损失函数 (log-likelihood loss function):

$$L(Y,P(Y|X)) = -logP(Y|X)$$

风险函数 (risk function) 或期望损失 (expected loss):

X

和

Y

服从联合分布

P(X,Y)

,理论上模型

f(X)

关于**联合分布**

P(X,Y)

的平均意义下的损失:

$$R_{exp}(f) = E_P[L(Y,f(X))] = \int_{\mathcal{X} \times \mathcal{Y}} L(y,f(x))P(x,y)dxdy$$

学习的目标:选择期望风险最小的模型。但联合分布

P(X,Y)

是未知的,所以无法直接计算

$$R_{exp}(f)$$

。所以监督学习是病态问题(ill-formed problem): 一方面需要联合分布,另一方面联合分布是未知的。 给定训练集:

$$T = \{(x_1, y_1), ...(x_N, y_N)\}\$$

经验风险 (expirical risk)/经验损失 (expirical loss): 模型

f(X)

关于**训练集**的平均损失

$$R_{emp}(f) = \frac{1}{N} \sum_{i=1}^N L(y_i, f(x_i))$$

根据大数定律, 当样本容量

N

趋向无穷时,经验风险

 R_{emp}

趋于期望风险

 $R_{exp}(f)$

۰

1.1.2.2 经验风险最小化与结构风险最小化

经验风险最小化 (empirical risk minimization, ERM): 经验风险最小的模型就是最优模型。所以需要求解的最优化问题是:

$$\min_{f \in \mathcal{F}} R_{erm} = \min_{f \in \mathcal{F}} \frac{1}{N} L(y_i, f(x_i))$$

当满足以下两个条件时,经验风险最小化就等价于极大似然估计 (maximum likelihood estimation):

- 模型是条件概率分布
- 损失函数是对数损失函数

当样本量足够大时,ERM 能有很好的效果,但样本量不够多时,为了防止过拟合,需要用下面的方法。

结构风险最小化(structual risk minimization, SRM):结构风险 = 经验风险 + 表示模型复杂度的正则化项 (regularizer)或罚项 (penalty term)。结构风险定义如下:

$$R_{srm}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f)$$

J(f)

是模型的复杂度,模型越复杂,

J(f)

越大。

$$\lambda \ge 0$$

是用于权衡经验风险和模型复杂度的系数。

当满足以下 3 个条件时,结构化风险最小化等价于) 贝叶斯估计中的最大后验概率估计 (maximum posterior probability estimation, MAP):

- 模型是条件概率分布
- 损失函数是对数损失函数,对应后验估计中的似然函数
- 模型复杂度由**模型的先验概率**表示

似然函数和先验概率的乘积即对应**贝叶斯最大后验估计**的形式

参考https://www.zhihu.com/question/23536142

所以结构风险最小化就是求解优化问题:

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^N L(y_i, f(x_i)) + \lambda J(f)$$

1.1.3 算法

算法指的是学习模型的具体方法,即使用什么计算方法求解最优模型。

因为统计学习问题归结为最优化问题,所以统计学习的算法就是求解最优化问题的算法。

- 如果有显式的解析解,此最优化问题就比较简单
- 如果没有,需要用数值计算方法求解,需要考虑如何保证找到全局最优解,并使求解过程高效

1.2 模型评估与模型选择

1.2.1 训练误差与测试误差

假设学习到的模型是

$$Y = \hat{f}(X)$$

,训练误差是模型

$$Y = \hat{f}(X)$$

关于训练数据集的平均损失(

N

是样本容量):

$$R_{emp}(\hat{f}) = \frac{1}{N} \sum_{i=1}^N L(y_i, \hat{f}(x_i))$$

测试误差是模型

$$Y = \hat{f}(X)$$

关于测试数据集的平均损失(

N'

是测试样本容量):

$$e_{test}(\hat{f}) = \frac{1}{N'} \sum_{i=1}^{N'} L(y_i, \hat{f}(x_i))$$

- 训练误差的大小,对判断给定的问题是不是一个容易学习的问题是有意义的
- 测试误差反映了学习方法对未知数据的预测能力,即泛化能力(generalization ability)

1.2.2 过拟合与模型选择

当模型复杂度增加时,训练误差会逐渐减小并趋向于0;测试误差会先减小,达到最小值后又会增大。

当模型复杂度过大时,就会出现过拟合。所以需要在学习时防止过拟合,选择复杂度适当的模型。

1.3 正则化与交叉验证

1.3.1 正则化

模型选择的典型方法是正则化(regularization)。正则化是**结构风险最小化**策略的实现,即在经验上加一个正则化项(regularizer)或罚项(penalty term)。

正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值越大。比如,正则化项可以是模型参数向量的范数。

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f)$$

其中

 $\lambda \ge 0$

正则化符合奥卡姆剃刀(Occam's razor)原理:在所有可能选择的模型中,能够**很好地解释已知数据**并且**十分简单**才是最好的模型,也就是应该选择的模型。

从贝叶斯估计的角度来看,**正则化项**对应于模型的**先验概率**。可以假设复杂的模型有较小的先验概率,简的模型有较大的先验概率。

1.3.2 交叉验证

e

1.4 泛化能力

f

1.4.1 泛化误差

g

1.4.2 泛化误差上界

a

1.5 生成模型与判别模型

а

1.6 分类问题

ล

1.7 标注问题

c

1.8 回归问题

b

- 一个常问的问题:平方损失在做分类问题的损失函数时,有什么缺陷?
- 一方面,直观上看,平方损失函数**对每一个输出结果都十分看重**,而交叉熵**只看重正确分类**的结果。例如三分类问题,如果预测的是

(a,b,c)

,而实际结果是

(1,0,0)

,那么:

$$mse = (a-1)^2 + b^2 + c^2$$

$$crossentropy = -1 \times \log a - 0 \times \log b - 0 \times \log c = -\log a$$

所以,交叉熵损失的梯度只和正确分类有关。而平方损失的梯度和错误分类有关,**除了让正确分类尽可能变大,还会让错误分类都变得更平均**。实际中后面这个调整在分类问题中是不必要的,而回归问题上这就很重要。

另一方面,从理论角度分析。两个损失的源头不同。平方损失函数**假设最终结果都服从高斯分布**,而高斯分布的随机变量实际是一个**连续变量**,而非离散变量。如果假设结果变量服从均值

t

,方差

 σ

的高斯分布,那么利用最大似然法可以优化其负对数似然,最终公式变为:

$$\max \sum_i^N [-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(t_i-y)^2}{2\sigma^2}]$$

除去与

y

无关的项,剩下的就是平方损失函数。

2 感知机

d

3 k 近邻法

e

4 朴素贝叶斯法

参考https://www.cnblogs.com/jiangxinyang/p/9378535.html

4.1 贝叶斯公式

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)}$$

又可以写为:

$$posterior = \frac{likelihood*prior}{evidence}$$

其中:

•

posterior

: 通过样本

X

得到参数

θ

的概率,即后验概率

•

likelihood

: 通过参数

 θ

得到样本

X

的概率,即似然函数。

prior

: 参数

 θ

的先验概率

evidence

.

$$p(X) = \int p(X|\theta)p(\theta)d\theta$$

。样本

X

发生的概率,是各种

 θ

条件下发生的概率的积分。

4.2 极大似然估计 (MLE)

极大似然估计的核心思想是:认为**当前发生的事件是概率最大的事件。**因此就可以给定的数据集,使得该数据集**发生的概率最大**来求得模型中的参数。

似然函数如下:

$$p(X|\theta) = \prod_{i=1}^{n} p(x_i|\theta)$$

为便于计算,对似然函数两边取对数,得到对数似然函数:

$$\begin{split} LL(\theta) &= \log p(X|\theta) \\ &= \log \prod_{i=1}^n p(x_i|\theta) \\ &= \sum_{i=1}^n \log p(x_i|\theta) \end{split}$$

极大似然估计**只关注当前的样本**,也就是只关注当前发生的事情,**不考虑事情的先验情况。**由于计算简单,而且不需要关注先验知识,因此在 机器学习中的应用非常广,最常见的就是**逻辑回归**。

4.3 最大后验估计 (MAP)

最大后验估计中引入了**先验概率**(先验分布属于**贝叶斯学派**引入的,像 L1,L2 正则化就是对参数引入了**拉普拉斯先验**分布和**高斯先验**分布),而且最大后验估计要求的是

$$p(\theta|X)$$

$$\begin{split} f(x) &= \arg\max_{\theta} p(\theta|X) \\ &= \arg\max_{\theta} \frac{p(X|\theta)p(\theta)}{p(X)} \\ &= \arg\max_{\theta} p(X|\theta)p(\theta) \end{split}$$

其中因为分母

p(X)

与

 θ

无关, 所以可以去掉, 同样地, 取 log:

$$\begin{split} f(x) &= \arg\max_{\theta} \log p(X|\theta) p(\theta) \\ &= \arg\max_{\theta} \{ \sum_{i=1}^{n} \log p(x_i|\theta) + \log p(\theta) \} \end{split}$$

最大后验估计不只是关注当前的样本的情况,还关注已经发生过的先验知识。

最大后验估计和最大似然估计的区别:

最大后验估计允许我们**把先验知识加入到估计模型中**,这在**样本很少的时候是很有用的**(因此朴素贝叶斯在较少的样本下就能有很好的表现),因为**样本很少**的时候我们的**观测结果很可能出现偏差**,此时先验知识会把估计的结果"拉"向先验,实际的预估结果将会在先验结果的两侧形成一个顶峰。通过调节先验分布的参数,比如 **beta** 分布的

 α

,

β

,我们还可以调节把估计的结果"拉"向先验的幅度,

 α

β

越大,这个顶峰越尖锐。这样的参数,我们叫做预估模型的"超参数"。

4.4 贝叶斯估计

贝叶斯估计和极大后验估计有点相似,都是以最大化后验概率为目的。区别在于:

- 极大似然估计和极大后验估计都是只返回了的预估值。
- 极大后验估计在计算后验概率的时候,把**分母**

p(X)

忽略了,在进行**贝叶斯估计的时候则不能忽略**

• 贝叶斯估计要计算整个后验概率的概率分布

5 决策树

W

6 logistic 回归与最大熵模型

0

7 支持向量机

u

8 提升方法

8.1 gbdt

参考https://www.cnblogs.com/pinard/p/6140514.html

梯度提升树 (Gradient Boosting Decison Tree, 以下简称 GBDT) 有很多简称,有 GBT (Gradient Boosting Tree) , GTB (Gradient Tree Boosting), GBRT (Gradient Boosting Regression Tree) , MART(Multiple Additive Regression Tree) 等等。

8.1.1 gbdt 概述

在 Adaboost 中,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。

GBDT 也是迭代,但是弱学习器限定了只能使用 CART 回归树模型,同时迭代思路和 Adaboost 也有所不同。

假设我们前一轮迭代得到的强学习器是

$$f_{t-1}(x)$$

,损失函数是

$$L(y, f_{t-1}(x))$$

,本轮迭代的目标是找到一个 CART 回归树模型的弱学习器

$$h_t(x)$$

,使得本轮的损失函数

$$L(y,f_t(x)) = L(y,f_{t-1}(x) + h_t(x)) \label{eq:loss}$$

最小。也就是说,要找到一个决策树,使得样本的损失

$$L(y - f_{t-1}(x), h_t(x))$$

最小。

8.1.2 gbdt 的负梯度拟合

第

t

轮的第

i

个样本的损失函数的负梯度:

$$r_{ti} = - \bigg[\frac{\partial L(y_i, f(x_i)))}{\partial f(x_i)} \bigg]_{f(x) = f_{t-1}(x)}$$

利用

9 EM 算法及其推广

e

10	隐马尔可夫模型	
c		
11	条件随机场	
b		
12	附录	
e		
12.1 e	1 矩阵	
12.2 c	2 优化	
12.2.1	2.1 拉格朗日乘子法	
拉格朗日	朗日乘子法 (Lagrange multipliers) 是一种寻找多元函数在 一组约 了	束下 的极值的方法。通过引入拉格朗日乘子,将
	d	
个变量和	量和 k	
个约束领	束条件的最优化问题转化为具有 $d+\iota$	'c
个变量的	量的无约束优化问题求解。	
12.2.1	2.1.1 等式约束	
假设	x	
是	d	
维向量,	量,要寻找	
的某个国	x个取值	
,使目标	x^st 目标函数	
	f(x)	
最小且同	且同时满足 $g(x)=% {\displaystyle\int\limits_{0}^{\infty}} dx dx$	= 0
的约束。		
从几何角	何角度看,目标是在由方程 $g(x)=% {\displaystyle\int\limits_{-\infty}^{\infty}} f(x)^{2}$	= 0

确定的

d-1

维曲面上,寻找能使目标函数

f(x)

最小化的点。

1. 对于约束曲面

g(x) = 0

上的**任意点**

 \boldsymbol{x}

,该点的梯度

 $\nabla g(x)$

正交于约束曲面

2. 在最优点

 x^*

,目标函数

f(x)

在该点的梯度

 $\nabla f(x^*)$

正交于约束曲面

对于第1条,梯度本身就与曲面的切向量垂直,是曲面的法向量,并且指向数值更高的等值线。

证明:

参考http://xuxzmail.blog.163.com/blog/static/251319162010328103227654/

z = f(x, y)

的等值线:

 $\Gamma : f(x,y) = c$

,两边求微分:

$$df(x,y) = dc$$
$$\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = 0$$

看成两个向量的内积:

$$\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = \left\{\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\} \cdot \left\{dx, dy\right\} = 0$$

而内积

$$a \cdot b = |a||b|cos\theta$$

为 0 说明夹角是 90 度, 而

$$\left\{\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\}$$

是梯度向量,

$$\{dx, dy\}$$

是等值线的切向量,所以梯度向量和切向量是垂直的。

对于第2条,可以用反证法,如下图,蓝色是

$$g(x) = 0$$

,橙色是

f(x)

的等值线 (图里假设

$$f(x) = x^2 + y^2$$

), 交点的

 $\nabla f(x^*)$

的梯度和

g(x)

的切面不垂直,那么,可以找到更小的等值线,使夹角更接近 90 度,也就是说,这个点不是真正的最优点

 x^*

所以,在最优点

 x^*

处,梯度

 $\nabla g(x)$

和

 $\nabla f(x)$

的方向必然**相同或相反**,也就是存在

 $\lambda \neq 0$

,使得:

$$\nabla f(x^*) + \lambda \nabla g(x^*) = 0$$

 λ

是拉格朗日乘子,定义拉格朗日函数

$$L(x,\lambda) = f(x) + \lambda g(x)$$

$$L(x,\lambda)$$

对 X 的偏导

 $\nabla_x L(x,\lambda)$

置 0, 就得到:

$$\nabla f(x) + \lambda \nabla g(x) = 0$$

而

 $L(x,\lambda)$

对

 λ

的偏导

 $\nabla_{\lambda}L(x,\lambda)$

置 0, 就得到

$$g(x) = 0$$

所以,原约束问题可以转化为对

 $L(x,\lambda)$

的无约束优化问题。

12.2.1.2 不等式约束

考虑不等式约束

 $g(x) \le 0$

,最优点或者在边界

g(x) = 0

上,或者在区域

g(x) < 0

中。

• 对于

g(x) < 0

相当于使

f(x)

取得最小值的点落在可行域内,所以**约束条件相当于没有用**,所以,直接对

f(x)

求极小值即可。因为

$$L(x,\lambda) = f(x) + \lambda g(x)$$

,所以

 $\nabla_x L(x,\lambda) = \nabla f(x) + \lambda \nabla g(x)$

因为

g(x) < 0

,想要只让

 $\nabla f(x) = 0$

,那么令

 $\lambda = 0$

即可。

• 对于

g(x) = 0

这就变成了等式约束, 且此时

 $\nabla f(x^*)$

和

 $\nabla g(x^*)$

反向相反。因为在

g(x) = 0

越往里值是越小的,而梯度是指向等值线高的方向,所以梯度是指向外的。而

f(x)

的可行域又在

g(x)

的里面和边界上,我们要找的是

f(x)

的最小值,所以

f(x)

的梯度是指向内部的。

൬

 $\nabla f(x) + \lambda \nabla g(x) = 0$

,两个又是反向的,所以

 $\lambda > 0$

结合

 $g(x) \le 0$

和

$$g(x) = 0$$

两种情况的结论,就得到了 KKT (Karush-Kuhn-Tucker) 条件

$$\left. \begin{array}{l} g(x) = 0, \lambda > 0 \\ g(x) < 0, \lambda = 0 \end{array} \right\} \Rightarrow \left\{ \begin{array}{l} g(x) \leq 0 \\ \lambda \geq 0 \\ \lambda g(x) = 0 \end{array} \right.$$

其中

$$\lambda g(x) = 0$$

是因为

 λ

和

g(x)

至少一个是0,而且不能都不是0。

以上三个条件有各自的名字:

• Primal feasibility(原始可行性):

$$g(x) \leq 0$$

• Dual feasibility(对偶可行性):

$$\lambda \geq 0$$

• Complementary slackness:

$$\lambda g(x) = 0$$

12.2.1.3 带等式和不等式约束的拉格朗日乘子法

对于多个约束的情形,

m

个等式约束和

n

个不等式约束, 可行域

 $\mathbb{D}\subset\mathbb{R}^d$

非空的优化问题:

$$\min_x f(x)$$

s.t
$$h_i(x) = 0, i = 1, ..., m$$

 $g_j(x) \le 0, j = 1, ..., n$

引入拉格朗日乘子

$$\boldsymbol{\lambda} = (\lambda_1, \lambda_2, ..., \lambda_m)^T$$

和

$$\boldsymbol{\mu} = (\mu_1, \mu_2, ..., \mu_n)^T$$

,相应的拉格朗日函数为:

$$L(x,\lambda,\mu) = f(x) + \sum_{i=1}^m \lambda_i h_i(x) + \sum_{j=1}^n \mu_j g_j(x)$$

由不等式约束引入的 KKT 条件

$$(j = 1, 2, ...n)$$

为

$$\begin{cases} g_j(x) \leq 0 \\ \mu_j \geq 0 \\ \mu_j g_j(x) = 0 \end{cases}$$

12.2.2 梯度下降

12.2.2.1 《统计学习方法》的视角

假设

f(x)

有一阶连续偏导,对于无约束的最优化问题而言:

$$\min_{x \in R^n} f(x)$$

f(x)

在

 $x^{(k)}$

附近的一阶泰勒展开如下, 其中

$$g_k = g(x^{(k)}) = \nabla f(x^{(k)})$$

是

f(x)

在

 $x^{(k)}$

的梯度:

$$f(x) = f(x^{(k)}) + g_k^T(x-x^{(k)})$$

所以对于

$$x=x^{(k+1)}$$

:

$$f(x^{(k+1)}) = f(x^{(k)}) + g_k^T(x^{(k+1)} - x^{(k)})$$

令

$$x^{(k+1)} = x^{(k)} + \lambda_k p_k$$

 p_k

是搜索方向,

 λ_k

是步长,代入上式,有

$$\begin{split} f(x^{(k+1)}) &= f(x^{(k)}) + g_k^T(x^{(k)} + \lambda_k p_k - x^{(k)}) \\ &= f(x^{(k)}) + g_k^T \lambda_k p_k \end{split}$$

为了让每次迭代的函数值变小,可以取

$$p_k = -\nabla f(x^{(k)})$$

把

 λ_k

看成是可变化的, 所以需要搜索

 λ_k

使得

$$f(x^{(k)} + \lambda_k p_k) = \min_{\lambda \geq 0} f(x^{(k)} + \lambda p_k)$$

梯度下降法:

输入: 目标函数

f(x)

,梯度

$$g(x) = \nabla f(x)$$

,精度要求

 ε

0

输出:

f(x)

的极小点

 x^*

0

1. 取初始值

 $x^{(0)} \in R^n$

,置

k = 0

2. 计算

 $f(x^{(k)})$

3. 计算梯度

 $g_k = g(\boldsymbol{x}^{(k)})$

,当

 $\|g_k\|<\varepsilon$

,则停止计算,得到近似解

 $x^*=x^{(k)}$

;否则,令

 $p_k = -g(\boldsymbol{x}^{(k)})$

,求

 λ_k

使得

$$f(x^{(k)} + \lambda_k p_k) = \min_{\lambda \geq 0} f(x^{(k)} + \lambda p_k)$$

4. 置

$$x^{(k+1)} = x^{(k)} + \lambda_k p_k$$

,计算

$$f(x^{(k+1)})$$

当

$$\left\|f(x^{(k+1)}) - f(x^{(k)})\right\| < \varepsilon$$

或

$$\left\|x^{(k+1)}-x^{(k)}\right\|<\varepsilon$$

时,停止迭代,令

$$x^* = x^{(k+1)}$$

5. 否则,置

$$k = k + 1$$

,转第3步

只有当目标函数是**凸函数**时,梯度下降得到的才是**全局最优解**。

12.2.2.2 《机器学习》的视角

梯度下降是一阶 (first order)(只用一阶导,不用高阶导数)优化方法,是求解无约束优化问题最简单、最经典的方法之一。 考虑无约束优化问题

$$\min_{x} f(x)$$

,

是连续可微函数,如果能构造一个序列

$$x^0, x^1, x^2, \dots$$

满足

$$f(x^{t+1}) < f(x^t), t = 0, 1, 2, \dots$$

那么不断执行这个过程,就可以收敛到局部极小点,根据泰勒展开有:

$$\begin{split} f(x) &= f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) \\ f(x + \Delta x) &= f(x^{(k)}) + \nabla f(x^{(k)})^T (x + \Delta x - x^{(k)}) \\ &= f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + \nabla f(x^{(k)})^T \Delta x \\ &= f(x) + \nabla f(x^{(k)})^T \Delta x \end{split}$$

而

$$\nabla f(x^{(k)})^T \Delta x$$

是一个标量,其转置等于自己,所以

$$f(x + \Delta x) = f(x) + \Delta x^T \nabla f(x^{(k)})$$

想要让

$$f(x + \Delta x) < f(x)$$

, 只需要令:

$$\Delta x = -\gamma \nabla f(x)$$

其中的步长

 γ

是一个小常数

如果

f(x)

满足

L

-Lipschitz 条件,也就是说对于任意的

 \boldsymbol{x}

,存在常数

L

,使得

 $\|\nabla f(x)\| \leq L$

成立,那么设置步长为

 $\frac{1}{2L}$

就可以确保收敛到局部极小点。

同样地,当目标函数是凸函数时,局部极小点就对应全局最小点,此时梯度下降可以确保收敛到全局最优解。

12.2.3 牛顿法

12.2.3.1 二阶导基本性质

对于点

 $x = x_0$

,

一阶导

 $f'(x_0)=0$

时,如果二阶导

 $f''(x_0)>0$

,那么

 $f(x_0)$

是极小值,

 x_0

是极小点

一阶导

 $f'(x_0) = 0$

,如果二阶导

 $f''(x_0)<0$

,那么

 $f(x_0)$

是极大值,

 x_0

是极大点

• 一阶导 $f'(x_0)=0$,如果二阶导 $f''(x_0)=0$,那么 x_0 是鞍点 证明: 对于任意 x_1 ,根据二阶泰勒展开,有

$$f(x_1) = f(x_0) + f'(x_0)(x_1 - x_0) + \frac{1}{2}f''(x_0)(x_1 - x_0)^2 + \ldots + R_n(x_1)$$

 $f(x_0)$

因为 $f''(x_0) > 0$

且 $f'(x_0) = 0$

,所以,不论 $x_1 > x_0$

还是 $x_1 < x_0$

,总有 $f(x_1) > f(x_0)$

,也就是周围的函数值都比

大,而

 x_0

又是极值点, 所以是极小点。

12.2.3.2 牛顿法

是一个 nx1 的列向量,

的海赛矩阵,即二阶导,shape 是

对于矩阵形式,

 \boldsymbol{x}

H(x)

是

f(x)

 $n \times n$

 $f(x) = f(x^{(x)}) + g_k^T(x - x^{(k)}) + \frac{1}{2}(x - x^{(k)})^T H(x^{(k)})(x - x^{(k)})$

函数

f(x)

有极值的必要条件是在极值点处一阶导为0,特别地,当

 $H(x^{(k)})$

是正定矩阵时(二阶导大于0),是极小值。

牛顿法利用极小点的必要条件

 $\nabla f(x) = 0$

,每次迭代从点

 $x^{(k)}$

开始, 求目标函数极小点, 作为第

k+1

次迭代值

 $x^{(k+1)}$

,具体地,假设

$$\nabla f(x^{(k+1)}) = 0$$

,有

$$\begin{split} f(x) &= f(x^{(x)}) + g_k^T(x - x^{(k)}) + \frac{1}{2}(x - x^{(k)})^T H(x^{(k)})(x - x^{(k)}) \\ &= f(x^{(x)}) + [g_k^T + \frac{1}{2}(x - x^{(k)})^T H(x^{(k)})](x - x^{(k)}) \\ &= f(x^{(x)}) + [g_k + \frac{1}{2}H(x^{(k)})(x - x^{(k)})]^T(x - x^{(k)}) \end{split}$$

把其中的

$$g_k + \frac{1}{2} H(x^{(k)}) (x - x^{(k)})$$

看成一阶导,则上式就是一阶泰勒展开。记

$$H^k = H(x^{(k)})$$

,令

$$x=x^{(k+1)}$$

,令一阶导为0:

$$\begin{split} g_k + \tfrac{1}{2} H^k \big(x^{(k+1)} - x^{(k)} \big) &= 0 \\ g_k = - \tfrac{1}{2} H^k \big(x^{(k+1)} - x^{(k)} \big) \\ - 2 H_k^{-1} g_k &= x^{(k+1)} - x^{(k)} \\ x^{(k+1)} &= -2 H_k^{-1} g_k + x^{(k)} \end{split}$$

可以无视这个 2, 变成:

$$x^{(k+1)} = x^{(k)} - H_k^{-1} g_k$$

或者

$$x^{(k+1)} = x^{(k)} + p_k$$

其中,

$$H_k p_k = -g_k \,$$

f(x)

f(x)

k = 0

 p_k

牛顿法:

输入: 目标函数

,精度要求

,梯度

 $g(x) = \nabla f(x)$

,海赛矩阵 $H(x) \label{eq:hamiltonian}$

arepsilon

输出:

的极小点 x^*

1. 取初始点 $x^{(0)}$

,置

2. 计算 $g_k = g(x^{(k)})$

3. 若 $\|g_k\|<\varepsilon$

,则停止计算,得到近似解 $x^* = x^{(k)} \label{eq:x*}$

4. 计算 $H_k = H(\boldsymbol{x}^{(k)})$

,并求

,满足 $H_k p_k = -g_k \label{eq:hkpk}$

5. 置 $x^{(k+1)} = x^{(k)} + p_k$

6. 置 k=k+1

,转到第 2 步

其中的步骤 4,求

很复杂。

时, $p_k = -H_k^{-1} g_k \label{eq:pk}$

需要求解 H_k^{-1}

 p_k

12.2.4 拟牛顿法的思路

基本想法就是通过一个

n

阶矩阵

 $G_k = G(\boldsymbol{x}^{(k)})$

来近似代替

 $H^{-1}(\boldsymbol{x}^{(k)})$

۰

12.2.5 DFP(Davidon-Fletcher-Powell)

X

12.2.6 BFGS(Broydon-Fletcher-Goldfarb-Shanno)

X

12.3 拉格朗日对偶性

X

12.4 信息论相关

12.4.1 凸集

假设

S

为在实或复向量空间的集。若对于所有

 $x,y\in S$

和所有的

 $t \in [0, 1]$

都有

 $tx+(1-t)y\in S$

,则

S

称为凸集。

也就是说,

S

中任意两点间的线段都属于

S

性质:

如果

S

是凸集,对于任意的

 $u_1,u_2,...,u_r \in S$

,以及所有的非负

 $\lambda_1, \lambda_2, ..., \lambda_r$

满足

 $\lambda_1 + \lambda_2 + \ldots + \lambda_r = 1$

,都有

$$\sum_{k=1}^{r} \lambda_k u_k \in S$$

。这个组合称为

$$u_1, u_2, ..., u_r$$

的凸组合。

12.4.2 凸函数

函数是凸函数:曲线上任意两点 x 和 y 所作割线(与函数图像有两个不同交点的直线,如果只有一个交点,那就是切线)一定在这两点间的函数图象的上方:

$$tf(x)+(1-t)f(y)\geq f(tx+(1-t)y), 0\leq t\leq 1$$

有如下几个常用性质:

- 一元可微函数在某个区间上是凸的,当且仅当它的导数在该区间上单调不减。
- 一元连续可微函数在区间上是凸的,当且仅当函数位于**所有它的切线的上方**:对于区间内的所有

 \boldsymbol{x}

和

y

,都有

$$f(y) \ge f(x) + f'(x)(y - x)$$

(右边就是一阶泰勒展开)。特别地,如果

$$f'(c) = 0$$

,那么

f(c)

是

f(x)

的最小值。

- 一元二阶可微的函数在区间上是凸的,当且仅当它的**二阶导数是非负的**;这可以用来判断某个函数是不是凸函数。如果它的二阶导数是正数,那么函数就是严格凸的,但反过来不成立。
- 多元二次可微的连续函数在凸集上是凸的,当且仅当它的黑塞矩阵在凸集的内部是半正定的

12.4.3 KL 散度

熵的小结: https://blog.csdn.net/haolexiao/article/details/70142571

相对熵 (relative entropy) 又称为 **KL** 散度 (Kullback–Leibler divergence, 简称 KLD), 信息散度 (**information divergence**), 信息增益 (**information gain**)。

KL 散度是两个概率分布 P 和 Q 差别的非对称性的度量。KL 散度是用来度量使用基于 Q 的编码来编码来自 P 的样本 平均所需的额外的位元数。典型情况下,P 表示数据的真实分布,Q 表示数据的理论分布,模型分布,或 P 的近似分布。

注意:

$$D_{KL}(P||Q)$$

是指的用分布 Q 来近似数据的真实分布 P,先写 P 再写 Q,公式里没有-ln 的时候,就是 p/q

对于离散随机变量:

$$D_{KL}(P||Q) = \sum_{i} P(i) ln \frac{P(i)}{Q(i)} = -\sum_{i} P(i) ln \frac{Q(i)}{P(i)} \label{eq:problem}$$

KL 散度仅当概率 P 和 Q 各自总和均为 1,且对于任何 i 皆满足

Q(i) > 0

及

P(i) > 0

时,才有定义。如果出现

0ln0

,当做 0

对于连续随机变量:

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) ln \frac{p(x)}{q(x)} dx$$

性质:

KL 散度大于等于 0

证明:

先了解一下 Jensen 不等式:

如果

 φ

是一个凸函数,那么有:

$$\varphi(E(x)) \le E(\varphi(x))$$

对于离散随机变量,

 $\sum_{i=1}^{n} \lambda_i = 1$

:

$$\varphi(\sum_{i=1}^n g(x_i)\lambda_i) \leq \sum_{i=1}^n \varphi(g(x_i))\lambda_i$$

当我们取

$$g(x) = x$$

,

$$\lambda_i = 1/n$$

,

$$\varphi(x) = \log(x)$$

时,就有

$$log(\sum_{i=1}^n \frac{x_i}{n}) \geq \sum_{i=1}^n \frac{log(x_i)}{n}$$

对于**连续随机变量**,如果 f(x) 是非负函数,且满足 (f(x) 是概率密度函数):

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

如果

φ

在 g(x) 的值域中是凸函数,那么

$$\varphi(\int_{-\infty}^{\infty}g(x)f(x)dx)\leq\int_{-\infty}^{\infty}\varphi(g(x))f(x)dx$$

特别地,当

$$g(x) = x$$

时,有

$$\varphi(\int_{-\infty}^{\infty}xf(x)dx)\leq \int_{-\infty}^{\infty}\varphi(x)f(x)dx$$

回到这个问题中,

$$g(x) = \frac{q(x)}{p(x)}$$

 $\varphi(x) = -logx$

是一个严格凸函数,那么

$$\varphi(g(x)) = -log \frac{q(x)}{p(x)}$$

,所以

$$\begin{split} D_{KL}(P||Q) &= \int_{-\infty}^{\infty} p(x) ln \frac{p(x)}{q(x)} dx \\ &= \int_{-\infty}^{\infty} p(x) (-ln \frac{q(x)}{p(x)}) dx \\ &= \int_{-\infty}^{\infty} (-ln \frac{q(x)}{p(x)}) p(x) dx \\ &\geq -ln (\int_{-\infty}^{\infty} \frac{q(x)}{p(x)} p(x) dx) \\ &\geq -ln (\int_{-\infty}^{\infty} q(x) dx) \\ &= -ln 1 = 0 \end{split}$$

12.5 采样

假设有一个很复杂的概率密度函数

, 求解随机变量基于此概率下的某个函数期望, 即:

$$E_{x \sim p(x)}[f(x)]$$

求解有两种方法:

解析法:

将上式展开成积分,并通过积分求解:

$$\int_{x} p(x)f(x)dx$$

对于简单的分布,可以直接这么做。但 dnn 就不可行了。

蒙特卡洛法:

根据大数定理,当采样数量足够大时,采样的样本就可以无限近似地表示原分布:

$$\frac{1}{N} \sum_{x_i \sim p(x), i=1}^N f(x_i)$$

12.5.1 拒绝采样

拒绝采样又叫接受/拒绝采样 (Accept-Reject Sampling),对于目标分布

p(x)

,选取一个容易采样的参考分布

q(x)

,使得对于任意

 \boldsymbol{x}

都有

$$p(x) \leq M \cdot q(x)$$

- ,则可以按如下过程采样:
 - 从参考分布

q(x)

中随机抽取一个样本

 x_i

• 从均匀分布

U(0,1)

产生一个随机数

 u_i

• 如果

$$u_i \leq \frac{p(x_i)}{Mq(x_i)}$$

,则接受样本

 x_i

,否则拒绝。

重新进行如上 3 个步骤, 直到新产生的样本

 x_i

被接受

其中的第三步是因为

$$p(x) \leq M \cdot q(x)$$

,所以

$$\frac{p(x_i)}{Mq(x_i)} \le 1$$

,说明只有函数值在

$$p(x_i)$$

下方的

 x_i

才接受,所以

$$x_i \sim p(x)$$

。相当于为目标分布

选一个包络函数

$$M \cdot q(x)$$

,包络函数紧,每次采样时样本被接受的概率越大,采样效率越高。实际应用中还有自适应拒绝采样等。

12.5.2 重要性采样

强化学习经常使用重要性采样。重要性采样主要应用在一些难以直接采样的数据分布上。

我们令待采样分布为

p(x)

,有另一个简单可采样且定义域和

p(x)

相同的概率密度函数为

 $\tilde{p}(x)$

,可以得到:

$$\begin{split} E_{x \sim p(x)}[f(x)] &= \int_x p(x) f(x) dx \\ &= \int_x \tilde{p}(x) \frac{p(x)}{\tilde{p}(x)} f(x) dx \\ &= E_{x \sim \tilde{p}(x)} [\frac{p(x)}{\tilde{p}(x)} f(x)] \\ &\simeq \frac{1}{N} \sum_{x_i \sim \tilde{p}(x), i=1}^N \frac{p(x)}{\tilde{p}(x)} f(x) \end{split}$$

因此, 只需要从简单分布

 $\tilde{p}(x)$

中采样,然后分别计算

p(x)

`

 $\tilde{p}(x)$

和

f(x)

就可以了。

最好选择一个和原始分布尽量接近的近似分布进行采样。

例如,要对一个均值 1,方差 1 的正态分布进行采样,有两个可选的分布:均值 1 方差 0.5 和均值 1 方差 2。 从图像上可以看到方差为 0.5 的过分集中在均值附近,而且方差为 2 的与原分布重合度较高,所以应该选方差为 2 的。

12.5.3 马尔可夫蒙特卡洛采样 (MCMC)

如果是高维空间的随机向量,拒绝采样和重要性采样经常难以找到合适的参考分布,采样效率低下(样本的接受概率低或者重要性权重低),此时可以考虑马尔可夫蒙特卡洛采样法。

蒙特卡洛法指基于采样的数值近似求解方法,马尔可夫链用于进行采样。

基本思想是:

- 针对待采样的目标分布,构造一个马尔可夫链,使得该马尔可夫链的平稳分布就是目标分布;
- 然后**从任何一个初始状态出发**,沿着马尔可夫链进行**状态转移**,最终得到的状态转移序列会收敛到目标分布
- 由此可以得到目标分布的一系列样本

核心点是如何构造合适的马尔可夫链,即确定马尔可夫链的状态转移概率。

12.5.3.1 Metropolis-Hastings 采样

对于目标分布

p(x)

,首先选择一个容易采样的参考条件分布

 $q(x^*|x)$

,并令

$$A(x,x^*) = \min\{1, \frac{p(x^*)q(x|x^*)}{p(x)q(x^*|x)}\}$$

然后根据如下过程采样:

• 随机选一个初始样本

 $x^{(0)}$

• For t = 1, 2, 3, ...:

- 根据参考条件分布

 $q(x^*|x^{(t-1)})$

抽取一个样本

 x^*

;

- 根据均匀分布

U(0, 1)

产生随机数

u

, - 若

 $u < A(x^{(t-1)}, x^*)$

,则令

 $x^{(t)} = x^*$

【接受新样本】,否则令

 $x^{(t)} = x^{(t-1)}$

【拒绝新样本,维持旧样本】

可以证明,上述过程得到的样本序列

 $\{...,x^{(t-1)},x^{(t)},...\}$

最终会收敛到目标分布

p(x)

12.5.3.2 吉布斯采样

吉布斯采样是 Metropolis-Hastings 算法的一个特例,核心思想是只对样本的一个维度进行采样和更新。对于目标分布

p(x)

,其中

$$x = (x_1, x_2, ..., x_d)$$

是一个多维向量,按如下过程采样:

• 随机选择初始状态

$$x^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_d^{(0)})$$

- For t = 1, 2, 3, ...:
 - 对于前一步产生的样本

$$\boldsymbol{x}^{(t-1)} = (x_1^{(t-1)}, x_2^{(t-1)}, ..., x_d^{(t-1)})$$

,依次采样和更新每个维度的值,即依次抽取分量

$$x_1^{(t)} \sim p(x_1|x_2^{(t-1)}, x_3^{(t-1)}, ..., x_d^{(t-1)})$$

,

$$x_2^{(t)} \sim p(x_1|x_1^{(t-1)}, x_3^{(t-1)}, ..., x_d^{(t-1)})$$

, ...

$$x_d^{(t)} \sim p(x_1|x_1^{(t-1)}, x_2^{(t-1)}, ..., x_{d-1}^{(t-1)})$$

- 形成新的样本

$$x^{(t)} = (x_1^{(t)}, x_2^{(t)}, ..., x_d^{(t)})$$

同样可以证明,上述过程得到的样本序列

$$\{...,x^{(t-1)},x^{(t)},...\}$$

会收敛到目标分布

。另外,步骤 2 中对样本每个维度的抽样和更新操作,不是必须按下标顺序进行的,可以是随机顺序。

注意点:

- 拒绝采样中,如果某一步中采样被拒绝,则**该步不会产生新样本,需要重新采样**。但 **MCMC** 采样**每一步都会产生一个样本**,只是有时候这个样本与之前的样本一样而已。
- MCMC 采样是在**不断迭代**过程中**逐渐收敛**到平稳分布的。实际应用中一般会对得到的样本序列进行"burn-in"处理,即截除掉序列中最开始的一部分样本,**只保留后面的样本**。

MCMC 得到的样本序列中相邻的样本是**不独立的**,因为后一个样本是由前一个样本根据特定的转移概率得到的。如果仅仅是采样,并不要求样本之间相互独立。

如果确实需要产生独立同分布的样本,可以:

- 同行运行多条马尔可夫链,这样不同链上的样本是独立的
- 或者在同一条马尔可夫链上每隔若干个样本才选取一个,这样选出来的样本也是近似独立的。