

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

STRENGTH OF MATERIALS

MECHANICAL ENGINEERING

Date of Test: 07/08/2023

ANSWER KEY >

1.	(a)	7.	(d)	13.	(a)	19.	(c)	25.	(c)
2.	(c)	8.	(b)	14.	(a)	20.	(a)	26.	(c)
3.	(a)	9.	(d)	15.	(b)	21.	(a)	27.	(b)
4.	(a)	10.	(a)	16.	(c)	22.	(c)	28.	(b)
5.	(c)	11.	(c)	17.	(a)	23.	(c)	29.	(b)
6.	(a)	12.	(a)	18.	(b)	24.	(a)	30.	(a)

DETAILED EXPLANATIONS

1. (a)

8

Elongation due to self weight, $\Delta = \frac{\gamma L^2}{2E}$ $= \frac{\left(89.2 \times 10^{-6}\right) \times \left(15 \times 10^3\right)^2}{2 \times \left(90 \times 10^3\right)} = 0.11 \text{ mm}$

Strain energy,
$$U = \frac{1}{2} \times P \times \Delta$$

$$= \frac{1}{2} \times P \times \frac{PL^3}{48EI}$$

$$\therefore \qquad U = \frac{P^2L^3}{96EI}$$
For $P = 1$; $U = \frac{L^3}{96EI}$

The length of column is very large as compared to its cross-sectional dimensions.

4. (a)

Maximum shear stress,
$$\tau_{\text{max}} = \frac{16}{\pi D^3} \sqrt{M^2 + T^2}$$

$$= \left[\frac{16}{\pi (100)^3} \sqrt{(8)^2 + (6)^2} \right] \times 10^6 = \frac{16}{\pi} \times \frac{10 \times 10^6}{10^6} = 50.93 \text{ MPa}$$

5. (c)

$$\Sigma F_y = 0$$

$$R_A + R_B = 0$$
 Also,
$$\Sigma M_A = 0$$

$$\Rightarrow R_B \times 5 = 15$$

$$\Rightarrow R_B = 3 \text{ kN}$$
 So,
$$R_A = -3 \text{ kN}$$

Now, the SFD for the beam will be as shown below:

6. (a)

Assuming $(\sigma_x > \sigma_y)$

$$AB = \sigma_x - \sigma_y$$

$$AC = \frac{AB}{2} = \frac{\sigma_x - \sigma_y}{2}$$

$$OC = OA + AC = \sigma_y + \frac{\sigma_x - \sigma_y}{2}$$

$$= \frac{\sigma_x + \sigma_y}{2}$$

7. (d)

8. (b)

 $\frac{T}{I} = \frac{\tau}{R}$, Here T and τ are same, so $\frac{J}{R}$ should be same i.e. polar section modulus will be same.

9.

Toughness is the ability of material to absorb the energy upto facture point i.e. toughness is the total area under stress-strain curve.

10. (a)

Circumferential stress =
$$\frac{Pd_i}{2t}$$

 $P = 6 \text{ MPa}$
 $d_i = 600 \text{ mm}$
 $t = 10 \text{ mm}$

$$\sigma_{c} = \frac{6 \times 600}{2 \times 10} = 180 \text{ MPa}$$

$$= 180 \times 1000 \text{ kPa}$$

$$= 18 \times 10^{4} \text{ kPa}$$

11. (c)

Plane having zero shear stress is called principal planes.

$$\tan 2\theta_{p} = \frac{2\tau_{xy}}{\sigma_{x} - \sigma_{y}}$$

$$\tan 2\theta_{p} = \frac{2 \times 30}{60 - 20}$$

$$\tan 2\theta_{p} = 1.5$$

$$2\theta_{p} = \tan^{-1} (1.5)$$

$$\theta_{p} = 28.15^{\circ}$$

Required angle from plane B, $\theta = 90^{\circ} - 28.15^{\circ} = 61.85^{\circ}$ (Clockwise)

12. (a)

$$J_{BC} = \frac{15}{16} J_{AB} = \frac{15}{16} J$$

$$\theta_{C} = \frac{T \times \frac{3L}{4}}{GJ} + \frac{T \times \frac{L}{4}}{G \times \frac{15}{16}J}$$
$$= \frac{3}{4} \frac{TL}{GJ} + \frac{4}{15} \frac{TL}{GJ}$$

$$= \frac{45TL + 16TL}{60GJ} = \frac{61}{60} \frac{TL}{GJ}$$

13. (a

Given, M = 54.0 kNm and $T_z = 72.0$ kNm

Consider external and internal diameter as D and d (= 0.5 D) respectively,

Now, section modulus,
$$Z = \frac{\pi D^3}{32} \left(1 - \frac{d^4}{D^4} \right) = \frac{\pi D^3}{32} \left(1 - \left(\frac{1}{2} \right)^4 \right) = \frac{15\pi D^3}{512}$$

Polar section modulus,

$$Z_p = \frac{\pi D^3}{16} \left(1 - \frac{d^4}{D^4} \right) = \frac{15\pi D^3}{256}$$

Maximum shear stress is given by,

$$\tau_{\text{max}} = \frac{T}{Z_p} = \left(\frac{256}{15\pi D^3}\right) \times T_e$$

$$T_e = \sqrt{M^2 + T^2} = \sqrt{54^2 + 72^2} = 90 \text{ kNm}$$

Now,

$$96 = \left(\frac{256}{15\pi D^3}\right) \times 90 \times 10^6$$

$$(:: \tau_{\text{permissible}} = 96 \text{ MPa})$$

$$D^3 = \frac{256}{15\pi} \times \frac{90 \times 10^6}{96} = 5092958$$

$$D = 172.05 \text{ mm}$$

14. (a)

Principal strains, $\begin{aligned} \varepsilon_{1/2} &= \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\phi_{xy}}{2}\right)^2} \\ &= \left[\frac{800 + 200}{2} \pm \sqrt{\left(\frac{800 - 200}{2}\right)^2 + \left(\frac{-600}{2}\right)^2}\right] \times 10^{-6} \\ \varepsilon_1 &= 924.264 \times 10^{-6} \\ \varepsilon_2 &= 75.74 \times 10^{-6} \end{aligned}$

Thus major principal stress is,

$$\sigma_1 = \frac{E}{1 - \mu^2} (\epsilon_1 + \mu \epsilon_2) = \frac{200 \times 10^3}{1 - 0.3^2} (924.264 + 0.3 \times 75.74) \times 10^{-6}$$
= 208.13 MPa

15. (b)

When both ends are clamped,
$$(l_{\rm eff})_1 = \frac{l}{2}$$

When one end is free, $(l_{\rm eff})_2 = 2l$
Buckling load, $P_{cr} = \frac{\pi^2 EI}{l_{\rm eff}^2}$
So, $(P_{cr})_1 = \frac{4\pi^2 EI}{l^2}$
Similarly, $(P_{cr})_2 = \frac{\pi^2 EI}{4l^2}$
So, $%$ change $= \frac{\frac{4\pi^2 EI}{l^2} - \frac{\pi^2 EI}{4l^2}}{\frac{4\pi^2 EI}{l^2}} \times 100 = \frac{4 - (1/4)}{4} \times 100$
 $= \left(1 - \frac{1}{16}\right) \times 100 = 93.75\%$

16. (c)

For a closed cylinder (thin), the two stress components induced due to internal pressure are,

$$\sigma_h = \frac{pd}{2t}$$
 (Hoop stress)
$$\sigma_l = \frac{pd}{4t}$$
 (Longitudinal stress)

If we neglect the pressure in radial direction, this becomes a plane stress condition.

For this condition, $\tau_{\text{max}} = \text{max.} \left\{ \frac{\sigma_h}{2}, \frac{\sigma_l}{2}, \frac{\sigma_h - \sigma_l}{2} \right\} = \frac{pd}{4t}$

For safety,
$$\tau_{\text{max}} \le \frac{\left(f_{y}/2\right)}{\text{FOS}}$$

$$\Rightarrow \frac{p \times 2 \times 100}{4 \times 5} = \frac{100/2}{2}$$

$$\Rightarrow p = 2.5 \text{ MPa}$$

17. (a)

$$\frac{1}{2} \times P \times \delta l = 50$$

$$\in = \frac{\delta l}{l}$$

$$\frac{1}{2} P \times \epsilon \times l = 50$$

or
$$\in l = \frac{100}{10} = 10 \text{ m}$$

18. (b)

or

At centre

$$M = 80 \cdot x - 64(x - 1) \forall x \in (1, 4)$$
$$x = 4 \text{ m}$$
$$M = (80 \times 4) - 64(3) = 128 \text{ kNm}$$

19. (c)

$$P_{x-x} = \gamma \times A \times x$$

where γ is load density

$$\left(\sigma_{\text{axial}}\right)_{x-x} = \frac{P_{x-x}}{A_{x-x}}$$

$$\left(\sigma_{\text{axial}}\right)_{x-x} = \gamma \times x$$

Axial stress diagram is triangle and independent of area.

20. (a)

$$K = \frac{E}{3(1-2\mu)} = \frac{100}{3(1-2\times0.2)} = \frac{100}{3\times0.6} = 55.555 \text{ GPa}$$

$$\sigma_x = \sigma_y = \sigma_z = \frac{P}{A} = \frac{250\times10^3}{40\times40\times10^{-6}} = 156.25 \text{ MPa}$$

$$K = \frac{\sigma}{\epsilon_v} = \frac{\sigma\times V}{(\Delta V)}$$

$$\Delta V = \frac{156.25\times(40)^3}{55.555\times10^3} \text{ mm}^3$$

Change in volume, $\Delta V = 180 \text{ mm}^3$

21. (a)

$$\sigma_h = \frac{pd}{2t \times \eta_{LJ}} = \frac{6 \times 150}{2 \times 12.5 \times 0.8} = 45 \text{ MPa}$$

$$\sigma_l = \frac{pd}{4t \times \eta_{CJ}} = \frac{6 \times 150}{4 \times 12.5 \times 0.9} = 20 \text{ MPa}$$

$$\frac{\delta d}{d} = \frac{1}{E} (\sigma_h - \mu \sigma_L) = \frac{1}{200 \times 10^3} (45 - 0.25 \times 20)$$

$$\frac{\delta d}{d} = 0.2 \times 10^{-3}$$

$$\delta d = 0.2 \times 150 \times 10^{-3} \text{ mm}$$

$$\delta d = 0.03 \text{ mm}$$

22. (c)

In case of composite bar,

$$\begin{split} (\delta_{\text{th}})_{\text{Cu}} - (\delta_{\text{axial}})_{\text{Cu}} &= (\delta_{\text{th}})_{\text{steel}} + (\delta_{\text{axial}})_{\text{steel}} \\ (\delta_{\text{axial}})_{\text{Cu}} + (\delta_{\text{axial}})_{\text{steel}} &= (\delta_{\text{th}})_{\text{Cu}} - (\delta_{\text{th}})_{\text{steel}} \\ \frac{\sigma_1 L}{E_1} + \frac{\sigma_2 L}{E_2} &= \alpha_1 T L - \alpha_2 T L \\ \left(\frac{\sigma_1}{E_1} + \frac{\sigma_2}{E_2}\right) L &= (\alpha_1 - \alpha_2) T L \\ \frac{\sigma_1}{E_1} + \frac{\sigma_2}{E_2} &= (\alpha_1 - \alpha_2) T \end{split}$$

23. (c)

Diameter of wire, d = 20 mm

So,
$$y_{\text{max}} = \frac{d}{2} = \frac{20}{2} = 10 \text{ mm}$$

Radius of curvature, R = 10 m

Bending equation

$$\frac{\sigma_{\text{max}}}{y_{\text{max}}} = \frac{E}{R}$$

$$\Rightarrow \frac{\sigma_{\text{max}}}{10 \times 10^{-3}} = \frac{200 \times 10^{3}}{10}$$

$$\Rightarrow \sigma_{\text{max}} = 200 \text{ MPa}$$

$$\Delta L_s = \Delta L_A$$

$$\left(\frac{PL}{AE}\right)_S = \left(\frac{PL}{AE}\right)_A$$

$$\frac{P_s}{P_A} = \frac{A_S E_S / L_S}{A_A E_A / L_A} = \frac{0.5 \times 200 / 2}{2 \times 100 / 1} = 0.25$$

25. (c)

From the symmetry of the figure,

$$R_C = R_D = P + \frac{wl}{2}$$

Bending moment at mid point,

26. (c)

gives

$$\frac{T}{J} = \frac{\tau}{R} = \frac{G\theta}{L}$$
 or $\tau = \frac{GR\theta}{L}$
 $\tau \propto \frac{1}{L}$

27. (b)

Area =
$$50 \times 110 = 5500 \text{ mm}^2$$

 $P = 30 \text{ kN} = 30 \times 10^3 \text{ N}$
Young's modulus = $\frac{\text{Longitudnal stress}}{\text{Longitudnal strain}}$
Stress = $\frac{F}{A} = \frac{30 \times 10^3}{5500} = 5.4545 \text{ N/mm}^2$
Strain = $\frac{\Delta L}{L} = \frac{0.625}{1500} = 4.16 \times 10^{-4}$
 $E = \frac{5.4545}{4.16 \times 10^{-4}} = 13090.90 \text{ N/mm}^2$

1.5 m

28. (b)

$$R_A = 40 + 60 + 80 = 180 \text{ kN}$$

Force P_1 on portion AB = 180 kN (tensile)

Force P_2 on portion BC = 180 - 40 = 140 kN (tensile)

Force P_3 on portion CD = 80 kN (tensile)

$$\Delta = \frac{1}{AE} (P_1 L_1 + P_2 L_2 + P_3 L_3)$$

$$\Delta = \frac{1}{1200 \times 2.05 \times 10^5} \times [180 \times 1500 + 140 \times 1000 + 80 \times 1500] \times 10^3$$

$$= \frac{530000 \times 10^3}{1200 \times 2.05 \times 10^5} = 2.15 \,\text{mm}$$

29. (b)

$$J_s = \frac{\pi}{32} \times (50)^4 = 613592 \text{ mm}^4$$

$$J_b = \frac{\pi}{32} \times (75^4 - 50^4) = 2492719 \text{ mm}^4$$

$$T_s = \frac{G_s J_s \theta}{I}$$
 and $T_b = \frac{G_b J_b \theta}{I}$

The total torque, $T = T_s + T_b = (G_s J_s + G_b J_b) \frac{\theta}{l}$

$$\theta = \frac{Tl}{G_s J_s + G_b J_b} = \frac{\left(800 \times 10^3\right) \left(1.5 \times 10^3\right)}{\left(8 \times 10^4 \times 613592\right) + \left(4 \times 10^4 \times 2492719\right)}$$
$$= 0.008065 \text{ radian} = 0.462^\circ$$

30. (a)

Total strain energy =
$$\frac{1}{2}P_1\delta_1 + \frac{1}{2}P_2\delta_2 + \frac{1}{2}P_3\delta_3$$

= $\frac{1}{2} \times P \times \frac{PL_1}{A_1E} + \frac{1}{2}P \times \frac{PL_2}{A_2E} + \frac{1}{2} \times P \times \frac{PL_3}{A_3E}$
= $\frac{P^2}{2E} \left[\frac{L_1}{A_1} + \frac{L_2}{A_2} + \frac{L_3}{A_3} \right]$
= $\frac{(10 \times 1000)^2}{2 \times 200 \times 10^9} \left[\frac{100 \times 4 \times 1000}{\pi \times (30)^2} + \frac{120 \times 4 \times 1000}{\pi \times (20)^2} + \frac{80 \times 4 \times 1000}{\pi \times (10)^2} \right]$
= 0.3855 N-m