SRM INSTITUTE OF SCIENCE AND TECHNOLOGY FACULTY OF SCIENCE AND HUMANITIES DEPARTMENT OF COMPUTER SCIENCE KATTANKULATHUR – 603 203

PRACTICAL LAB RECORD

NAME :

REGISTER NUMBER:

CLASS & SECTION:

DEPARTMENT : Computer Science

SUBJECT CODE : UCS20D07J

SUBJECT NAME : MACHINE LEARNING

APRIL 2025

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY FACULTY OF SCIENCE AND HUMANITIES DEPARTMENT OF COMPUTER SCIENCE

KATTANKULATHUR - 603 203

CERTIFICATE

Certified to be the bonafide of record of practical work done by

_ of B.Sc Degree course for UCS20D07J -
mputer Science laboratory in SRM Institute of
ne academic year 2024-2025.
H.O.D
Examination held on
INTERNAL EXAMINER II

Table of Contents

Exercise Number	Date	Title	Page Number	Signature
1	06-12-24	Creating and Loading A Data Frame	1	
2	13-12-24	Import a Dataset	3	
3	08-01-25	Plotting a Graph	5	
4	20-01-25	Exploring plot() Function	7	
5	03-02-25	Exploring Statistical Functions	9	
6	10-02-25	Data Pre-Processing	11	
7	18-02-25	Data Pre-Processing	14	
8	25-02-25	Naïve Bayes Classifier	18	
9	04-03-25	Linear Regression	20	
10	11-03-25	Logistic Regression	24	
11	14-03-25	Decision Tree	28	
12	18-03-25	KNN Algorithm	32	
13	20-03-25	K-Mean Clustering	36	
14	21-03-25	Spam Mail Detection	39	

Ex No: 1 Creating and Loading A Data Frame

Date: 6-12-24

Aim: Using Pandas to Create a Data Frame.

Procedure:

- 1. **Import Pandas Library** Imports the pandas library to enable DataFrame operations.
- 2. **Create a Dictionary** Defines a dictionary named data with keys representing column names and lists representing corresponding values.
- 3. **Create a DataFrame** Uses the pd.DataFrame() function to convert the dictionary into a structured DataFrame.
- 4. **Display the DataFrame** Displays the DataFrame, showing all the data in tabular format.
- 5. **Observation** The 'Nan' value in the 'CGPA' column is treated as a **string**, not as a proper missing value.

Output: ± R Name Type Size Value DataFrame [5, 4] Column names: Name, Age, Gender, CGPA 4 {'Name':['Sammy', 'Tim', 'Ram', 'Jai', 'Sai'], 'Age':[19, 17, 15, 20, ... data Help Variable Explorer Debugger Plots Files Name Age Gender CGPA Sammy 19 F 8.5 Tim 17 M NaN Ram 15 M 9 Jai 20 M 7.5 M NaN M 9 M 7.5 F 8.5 17 15 20 18 Sai 2

Ex No: 2 Import a Dataset

Date: 13-12-24

Aim: To import dataset that is a part of python library

Procedure:

- 1. **Import Required Libraries** Imports the fetch_california_housing dataset from sklearn.datasets and the pandas library for data manipulation.
- 2. Load the California Housing Dataset Uses fetch_california_housing() to load the dataset into the variable housing.
- 3. **Print Dataset Description** Displays the dataset's description using print (housing.DESCR), which provides details about the dataset's features, target values, and other relevant information.
- 4. Create a DataFrame Constructs a DataFrame named housing_df using pd.DataFrame(), where:
 - o data=housing.data assigns the dataset's feature values.
 - o columns=housing.feature_names assigns the feature names as column headers.
- 5. **Display the First Few Rows** Uses print (housing_df.head()) to display the first five rows of the DataFrame for an initial overview of the data.

```
from sklearn.datasets import fetch_california_housing
import pandas as pd
housing = fetch_california_housing()

#Print Dataset Description

print(housing.DESCR)

# Create a DataFrame for easier data manipulation
housing_df = pd.DataFrame(data= housing.data, columns= housing.feature_names)

# Display the first few rows

print(housing_df.head())
```

Output:

```
- Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
Statistics and Probability Letters, 33 (1997) 291-297
```

```
      MedInc
      HouseAge
      AveRooms
      ...
      AveOccup
      Latitude
      Longitude

      0
      8.3252
      41.0
      6.984127
      ...
      2.555556
      37.88
      -122.23

      1
      8.3014
      21.0
      6.238137
      ...
      2.109842
      37.86
      -122.22

      2
      7.2574
      52.0
      8.288136
      ...
      2.802260
      37.85
      -122.24

      3
      5.6431
      52.0
      5.817352
      ...
      2.547945
      37.85
      -122.25

      4
      3.8462
      52.0
      6.281853
      ...
      2.181467
      37.85
      -122.25
```

[5 rows x 8 columns]

Ex. No: 3 Plotting a Graph

Date: 08-01-25

Aim : Working with the plot() function in Mathplot lib

Procedure:

- 1. **Import Library** Imports the matplotlib.pyplot library as plt for data visualization.
- 2. **Define Data** Creates two lists:
 - o days Represents the days of the week.
 - o steps walked Represents the number of steps walked each day.
- 3. **Plot the Data** Uses plt.plot() to plot days on the x-axis and steps_walked on the y-axis with the format "x-r" (red line with 'x' markers).
- 4. Add Title and Labels
 - o plt.title() sets the chart title.
 - o plt.xlabel() labels the x-axis as "Days of the week".
 - o plt.ylabel() labels the y-axis as "Steps walked".
- 5. **Display the Plot** Uses plt.show() to render the graph on the screen.

```
import matplotlib.pyplot as plt
days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
steps_walked = [8934, 14902, 3409, 25672, 12300, 2023, 6890]
plt.plot(days, steps_walked, "x-r")
plt.title("Step count for the week")
plt.xlabel("Days of the week")
plt.ylabel("Steps walked")
plt.show()
```

Output

Exploring plot() Function

Date: 20-01-25

Ex. No: 4

Aim: To plot a Comparative Graph

Procedure:

- 1. **Import Library** Imports the matplotlib.pyplot library as plt for plotting.
- 2. **Define Data** Creates three lists:
 - o days Represents the days of the week.
 - o steps walked Represents the number of steps walked this week.
 - o steps last week Represents the number of steps walked last week.
- 3. **Plot This Week's Data** Uses plt.plot() to plot days against steps_walked with the format "o-g" (green line with 'o' markers).
- 4. **Plot Last Week's Data** Uses plt.plot() to plot days against steps_last_week with the format "v--m" (magenta dashed line with 'v' markers).
- 5. Add Title and Labels
 - o plt.title() sets the chart title.
 - o plt.xlabel() labels the x-axis as "Days of the week".
 - o plt.ylabel() labels the y-axis as "Steps walked".
- 6. Add Grid Uses plt.grid(True) to display a grid for better readability.
- 7. **Display the Plot** Uses plt.show() to render the graph on the screen.

Code:

```
import matplotlib.pyplot as plt

days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]

steps_walked = [8934, 14902, 3409, 25672, 12300, 2023, 6890]

steps_last_week = [9788, 8710, 5308, 17630, 21309, 4002, 5223]

plt.plot(days, steps_walked, "o-g")

plt.plot(days, steps_last_week, "v--m")

plt.title("Step count | This week and last week")

plt.xlabel("Days of the week")

plt.ylabel("Steps walked")

plt.grid(True)

plt.show()
```

Output:

Exploring Statistical Functions

Date: 3-02-25

Ex No: 5

Aim: To calculate and display statistical measures (mean, median, mode, and standard deviation) for a given dataset using the statistics module.

Procedure:

- 1. **Import Library** Imports the statistics module for statistical calculations.
- 2. **Define Data** Creates a list named data containing sample numeric values.
- 3. Calculate Mean Uses statistics.mean() to compute the average of the dataset.
- 4. Calculate Median Uses statistics.median() to compute the middle value of the sorted dataset.
- 5. Calculate Mode Uses statistics.mode() to identify the most frequently occurring value in the dataset.
- 6. Calculate Standard Deviation Uses statistics.stdev() to compute the sample standard deviation.
- 7. **Display Results** Prints the dataset along with the calculated mean, median, mode, and standard deviation.

```
import statistics
# Sample data list
data = [1, 2, 2, 3, 4, 5, 5, 5, 6]
# Calculate statistical measures
mean_value = statistics.mean(data)
median_value = statistics.median(data)
mode_value = statistics.mode(data) # Returns the single most common value
std_deviation = statistics.stdev(data) # Sample standard deviation
# Print the results
print("Data: ", data)
print("Mean: ", mean_value)
print("Median: ", median_value)
print("Mode: ", mode_value)
print("Standard Deviation: ", std_deviation)
```

Output:

 $\label{lem:condition} % runfile \ C:/Users/admin/untitled 0.py \ --wdir$

Data: [1, 2, 2, 3, 4, 5, 5, 5, 6]

Mean: 3.66666666666665

Median: 4

Mode: 5

Standard Deviation: 1.7320508075688772

Data Pre-Processing

Date: 10-02-25

Ex No: 6

Aim: To Demonstrate various data pre-processing techniques for a given dataset such as Reshaping the data, Filtering the data.

Procedure:

- 1. **Import Library** Imports the statistics module for statistical calculations.
- 2. **Define Data** Creates a list named data containing sample numeric values.
- 3. Calculate Mean Uses statistics.mean() to compute the average of the dataset.
- 4. Calculate Median Uses statistics.median() to compute the middle value of the sorted dataset.
- 5. Calculate Mode Uses statistics.mode() to identify the most frequently occurring value in the dataset.
- 6. Calculate Standard Deviation Uses statistics.stdev() to compute the sample standard deviation.
- 7. **Display Results** Prints the dataset along with the calculated mean, median, mode, and standard deviation.

Code:

```
import pandas as pd
import numpy as np
# Sample dataset creation
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],
    'Age': [25, 30, 35, 40, 45],
    'Salary': [50000, 60000, 70000, 80000, 90000],
    'Department': ['HR', 'IT', 'Finance', 'IT', 'HR']
}
# Creating a DataFrame
df = pd.DataFrame(data)
print("Original DataFrame:\n", df)
```

```
# 1. Reshaping Data (Melt)

df_melted = pd.melt(df, id_vars=['Name'], value_vars=['Age', 'Salary'],
var_name='Attribute', value_name='Value')

print("\nMelted DataFrame:\n", df_melted)

# 2. Reshaping Data (Pivot)

df_pivot = df_melted.pivot_table(index='Name', columns='Attribute',
values='Value').reset_index()

print("\nPivoted DataFrame:\n", df_pivot)

# 3. Filtering Data - Rows where Age > 30

filtered_df = df[df['Age'] > 30]

print("\nFiltered Data (Age > 30):\n", filtered_df)

# 4. Filtering Data - Employees in 'IT' Department

it_department_df = df[df['Department'] == 'IT']

print("\nFiltered Data (IT Department):\n", it_department_df)
```

Output:

Original DataFrame:

Name Age Salary Department

- 0 Alice 25 50000 HR
- 1 Bob 30 60000 IT
- 2 Charlie 35 70000 Finance
- 3 David 40 80000 IT
- 4 Eva 45 90000 HR

Melted DataFrame:

Name Attribute Value

0 Alice Age 25

- 1 Bob Age 30
- 2 Charlie Age 35
- 3 David Age 40
- 4 Eva Age 45
- 5 Alice Salary 50000
- 6 Bob Salary 60000
- 7 Charlie Salary 70000
- 8 David Salary 80000
- 9 Eva Salary 90000

Pivoted DataFrame:

Attribute Name Age Salary

- 0 Alice 25.0 50000.0
- 1 Bob 30.0 60000.0
- 2 Charlie 35.0 70000.0
- 3 David 40.0 80000.0
- 4 Eva 45.0 90000.0

Filtered Data (Age > 30):

Name Age Salary Department

- 2 Charlie 35 70000 Finance
- 3 David 40 80000 IT
- 4 Eva 45 90000 HR

Filtered Data (IT Department):

Name Age Salary Department

- 1 Bob 30 60000 IT
- 3 David 40 80000 IT

Data Preprocessing

Date: 18-02-25

Ex No: 7

Aim: To demonstrate merging, handling missing value and feature Normalization

Procedure:

1. Import Libraries

- o Import pandas for data manipulation.
- o Import numpy for handling missing values like NaN.

2. Create Sample Datasets

- o Define data1 with columns: ID, Name, Age, and Salary.
- o Define data2 with columns: ID, Department, and Experience.

3. Create DataFrames

o Use pd.DataFrame() to convert the dictionaries (data1 and data2) into DataFrames df1 and df2.

4. Display Original DataFrames

o Print the original DataFrames to observe their content.

5. Merge DataFrames

Use pd.merge() with how='outer' to perform an outer join, ensuring all rows from both DataFrames are included.

6. Handle Missing Values

- o Use .fillna() to replace:
 - Missing values in Age with the mean age.
 - Missing values in Salary with the mean salary.
 - Missing values in Department with "Unknown".
 - Missing values in Experience with 0.

7. Feature Normalization (Min-Max Normalization)

- o Compute normalized values for the Salary column
- o Assign the normalized values to a new column named Salary_Normalized.

8. **Display Results**

o Print the merged DataFrame, the DataFrame after handling missing values, and the final DataFrame with normalized salary values.

Code:

```
import pandas as pd
import numpy as np
# Sample dataset creation
data1 = {
```

```
'ID': [1, 2, 3, 4, 5],
  'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],
  'Age': [25, 30, 35, np.nan, 45],
  'Salary': [50000, 60000, np.nan, 80000, 90000]
}
data2 = {
  'ID': [3, 4, 5, 6, 7],
  'Department': ['Finance', 'IT', 'HR', 'Marketing', 'Sales'],
  'Experience': [5, 7, 10, 2, 3]
}
# Creating DataFrames
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
print("Original DataFrame 1:\n", df1)
print("\nOriginal DataFrame 2:\n", df2)
# 1. Merging Data
df_merged = pd.merge(df1, df2, on='ID', how='outer')
print("\nMerged DataFrame:\n", df_merged)
# 2. Handling Missing Values
df_merged.fillna({
  'Age': df_merged['Age'].mean(),
  'Salary': df_merged['Salary'].mean(),
  'Department': 'Unknown',
  'Experience': 0
}, inplace=True)
print("\nDataFrame after Handling Missing Values:\n", df_merged)
```

3. Feature Normalization - Min-Max Normalization

df_merged['Salary_Normalized'] = (df_merged['Salary'] - df_merged['Salary'].min()) /
(df_merged['Salary'].max() - df_merged['Salary'].min())

print("\nDataFrame after Min-Max Normalization:\n", df_merged)

Output:

Original DataFrame 1:

- ID Name Age Salary
- 0 1 Alice 25.0 50000.0
- 1 2 Bob 30.0 60000.0
- 2 3 Charlie 35.0 NaN
- 3 4 David NaN 80000.0
- 4 5 Eva 45.0 90000.0

Original DataFrame 2:

ID Department Experience

- 0 3 Finance 5
- 1 4 IT 7
- 2 5 HR 10
- 3 6 Marketing 2
- 4 7 Sales 3

Merged DataFrame:

- ID Name Age Salary Department Experience
- 0 1 Alice 25.0 50000.0 NaN NaN
- 1 2 Bob 30.0 60000.0 NaN NaN
- 2 3 Charlie 35.0 NaN Finance 5.0
- 3 4 David NaN 80000.0 IT 7.0
- 4 5 Eva 45.0 90000.0 HR 10.0
- 5 6 NaN NaN NaN Marketing 2.0

6 7 NaN NaN NaN Sales 3.0

DataFrame after Handling Missing Values:

- ID Name Age Salary Department Experience
- 0 1 Alice 25.00 50000.0 Unknown 0.0
- 1 2 Bob 30.00 60000.0 Unknown 0.0
- 2 3 Charlie 35.00 70000.0 Finance 5.0
- 3 4 David 33.75 80000.0 IT 7.0
- 4 5 Eva 45.00 90000.0 HR 10.0
- 5 6 NaN 33.75 70000.0 Marketing 2.0
- 6 7 NaN 33.75 70000.0 Sales 3.0

DataFrame after Min-Max Normalization:

- ID Name Age Salary Department Experience Salary_Normalized
- 0 1 Alice 25.00 50000.0 Unknown 0.0 0.00
- 1 2 Bob 30.00 60000.0 Unknown 0.0 0.25
- 2 3 Charlie 35.00 70000.0 Finance 5.0 0.50
- 3 4 David 33.75 80000.0 IT 7.0 0.75
- 4 5 Eva 45.00 90000.0 HR 10.0 1.00
- 5 6 NaN 33.75 70000.0 Marketing 2.0 0.50
- 6 7 NaN 33.75 70000.0 Sales 3.0 0.50

Naïve Bayes Classifier

Date: 25-02-25

Ex No: 8

Aim: To implement the Naïve Bayes Classifier on the isis dataset and check for Accuracy

Procedure:

1. Import Libraries

- o Import the following from sklearn:
 - load iris for loading the Iris dataset.
 - train test split for splitting the data into training and testing sets.
 - GaussianNB from sklearn.naive_bayes for the Naive Bayes classifier.
 - accuracy score for evaluating the model's performance.

2. Load the Dataset

- o Use load iris() to load the Iris dataset into the variable iris.
- Extract the feature data (iris.data) into X and the target labels (iris.target) into y.

3. Split the Dataset

- o Use train test split() to divide the dataset:
 - X train and y train for training.
 - X test and y test for testing.
- Specify test size=0.2 to allocate 20% of the data for testing.
- o Use random_state=42 to ensure reproducibility.

4. Initialize the Classifier

o Create an instance of GaussianNB() and assign it to nb classifier.

5. Train the Classifier

o Use .fit() to train the model using the training data (X train, y train).

6. Make Predictions

o Use .predict() to generate predictions on the test set (X test).

7. Evaluate the Model

- Calculate the model's accuracy using accuracy_score().
- o Print the accuracy value as a percentage with two decimal points for clarity.

Program:

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score

Load the dataset

iris = load_iris()

```
X, y = iris.data, iris.target
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize the Naive Bayes classifier
nb_classifier = GaussianNB()
# Train the classifier
nb_classifier.fit(X_train, y_train)
# Make predictions
y_pred = nb_classifier.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")
```

OUTPUT:

```
Python 3.11.10 | packaged by conda-forge | (main, Oct 16 2024, 01:17:14) [MSC v.1941 64 bit (AMD64)] Type "copyright", "credits" or "license" for more information.

IPython 8.30.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: %runfile D:/sweety/ML-Lab/Graphs.py --wdir Accuracy: 100.00%
```

Ex. No: 9 Linear Regression

Date: 4-03-25

Aim: To implement Linear Regression to predict house price using the California Housing Dataset

Procedure:

1. Import Required Libraries

 Use libraries like pandas, numpy, matplotlib, seaborn, and sklearn for data manipulation, visualization, and model building.

2. Load the Dataset

- o Use fetch_california_housing() to load the California housing data.
- o Convert the dataset into a DataFrame and add the target variable (Price).

3. Explore the Dataset

- o Display the first few rows to understand the data structure.
- o Identify key features like MedInc, HouseAge, AveRooms, etc.

4. Define Features (X) and Target (y)

 Separate the independent variables (features) and the dependent variable (Price).

5. Split Data into Training and Testing Sets

- o Use train_test_split() to divide the data (e.g., 80% training, 20% testing).
- Set random_state for reproducibility.

6. Initialize and Train the Linear Regression Model

- o Create a LinearRegression() model instance.
- o Fit the model using the training data.

7. Predict Housing Prices

o Use the trained model to predict house prices on the test data.

8. Evaluate the Model

o Calculate evaluation metrics:

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R² Score

9. Visualize Actual vs Predicted Prices

- o Use a scatterplot to compare predicted prices against actual values.
- Add a red dashed line (y = x) to indicate perfect predictions.

10. Interpret Results

- A strong alignment with the red dashed line suggests good model performance.
- Significant scatter may indicate model limitations or noisy data.

```
import matplotlib
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.datasets import fetch_california_housing # Newer housing dataset
# Load California Housing Dataset
data = fetch_california_housing()
df = pd.DataFrame(data.data, columns=data.feature_names)
df["Price"] = data.target # Target variable
# Display dataset info
print(df.head())
# Define features (X) and target (y)
X = df.drop(columns=["Price"])
```

```
y = df["Price"]
# Split data into training & testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random state=42)
# Initialize and train the Linear Regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Predict on test data
y_pred = model.predict(X_test)
# Model Evaluation
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2\_score(y\_test, y\_pred)
print(f"Mean Absolute Error (MAE): {mae:.2f}")
print(f"Mean Squared Error (MSE): {mse:.2f}")
print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")
print(f"R² Score: {r2:.2f}")
# Plot actual vs predicted prices
# Plot
plt.figure(figsize=(8, 6))
sns.scatterplot(x=y_test.to_numpy(), y=y_pred, alpha=0.6)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red',
linestyle="--")
plt.xlabel("Actual Prices")
plt.ylabel("Predicted Prices")
plt.title("Actual vs Predicted Housing Prices")
plt.show()
```


Ex. No: 10 Logistic Regression

Date: 11-03-25

Aim: To predict breast cancer using Logistic Regression

Procedure:

1. Import Required Libraries

o Import libraries for data manipulation (pandas, numpy), visualization (matplotlib, seaborn), and model building (sklearn).

2. Load the Dataset

- o Load the Breast Cancer dataset using load_breast_cancer().
- o Convert the dataset into a DataFrame and add the target variable.

3. Feature Selection

- Separate the dataset into:
 - Features (X): Independent variables (all columns except the target).
 - Target (y): Dependent variable indicating cancer presence.

4. Data Visualization

 Use a scatterplot to visualize the relationship between mean radius and mean texture, with different colors representing the target classes (malignant/benign).

5. Split the Data into Training and Testing Sets

- Use train_test_split() to split the data into training (70%) and testing (30%) sets.
- Set random_state for reproducibility.

6. Initialize and Train the Logistic Regression Model

- Create a LogisticRegression model with increased max_iter to ensure convergence.
- o Fit the model using the training data.

7. Make Predictions

• Use the trained model to predict outcomes on the test data.

8. Evaluate the Model

- o Calculate the Accuracy Score to measure the model's overall performance.
- Display the Classification Report to examine precision, recall, and F1-score for each class.

9. Visualize the Confusion Matrix

 Use a heatmap to display the confusion matrix, showing true positives, true negatives, false positives, and false negatives.

10. Interpret Results

import numpy as np

- A higher accuracy score and well-balanced precision/recall values indicate a robust model.
- The confusion matrix helps identify common misclassifications and potential improvements.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Load the Breast Cancer dataset
data = load breast cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
# Feature selection
X = df.drop('target', axis=1)
y = df['target']
# Data visualization
plt.figure(figsize=(8, 6))
```

```
sns.scatterplot(x='mean radius', y='mean texture', hue='target', data=df)
plt.title("Breast Cancer Data Distribution")
plt.show()
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random state=42)
# Initialize and train the Logistic Regression model
model = LogisticRegression(max_iter=5000)
model.fit(X_train, y_train)
# Predictions
y_pred = model.predict(X_test)
# Evaluate the model
print(f"Accuracy: {accuracy_score(y_test, y_pred):.2f}")
print("Classification Report:")
print(classification_report(y_test, y_pred))
# Confusion Matrix Visualization
plt.figure(figsize=(6, 4))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', cmap='Blues')
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```


Ex. No: 11 Decision Tree

Date: 14-03-25

Aim: To use decision tree for predicting risk of heart disease using the Cleveland heart disease dataset

Procedure:

1. Import Required Libraries

- Use pandas and numpy for data manipulation.
- Use matplotlib for visualization.
- Import train_test_split, DecisionTreeClassifier, plot_tree, and performance metrics from sklearn.

2. Load the Heart Disease Dataset

- o Load the dataset from the provided URL.
- o Assign appropriate column names based on the dataset's structure.

3. Data Cleaning

- o Replace missing values represented by '?' with NaN.
- o Drop rows with missing values to ensure data quality.

4. Target Conversion for Binary Classification

- o The original target values indicate different stages of heart disease.
- o Convert the target column into binary form:
 - 1 for the presence of heart disease.
 - 0 for the absence of heart disease.

5. Feature Selection

- o Split the dataset into:
 - Features (X): All columns except the target.
 - Target (y): The binary target variable.

6. Data Splitting

- Split the dataset into training (70%) and testing (30%) sets.
- Use random_state to ensure reproducibility.

7. Initialize and Train the Decision Tree Model

- Instantiate a DecisionTreeClassifier.
- o Train the model using the training data.

8. Make Predictions

Use the trained model to predict outcomes on the test set.

9. Evaluate the Model

- o Calculate the Accuracy Score to assess the overall performance.
- Display the Classification Report to review precision, recall, and F1-score for each class.

10. Visualize the Decision Tree

- Use plot_tree() to visualize the decision tree structure.
- o Display feature names and class labels for better interpretability.

11. Interpret Results

- A high accuracy score with balanced precision/recall values indicates a wellperforming model.
- The decision tree visualization helps understand the model's decision logic.

Program:

```
import numpy as np
```

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier, plot_tree

from sklearn.metrics import accuracy_score, classification_report

Load the Heart Disease dataset

df = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data", header=None)

```
df.columns = ["age", "sex", "cp", "trestbps", "chol", "fbs", "restecg", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "target"]
```

Clean the dataset by replacing '?' with NaN and dropping rows with missing values df.replace("?", np.nan, inplace=True)

```
df.dropna(inplace=True)
# Convert target into binary classification (presence of heart disease: 1, absence: 0)
df['target'] = (df['target'] > 0).astype(int)
# Feature selection
X = df.drop('target', axis=1)
y = df['target']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random state=42)
# Initialize and train the Decision Tree model
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
# Predictions
y_pred = model.predict(X_test)
# Evaluate the model
print(f"Accuracy: {accuracy_score(y_test, y_pred):.2f}")
print("Classification Report:")
print(classification_report(y_test, y_pred))
# Visualizing the Decision Tree
plt.figure(figsize=(12, 8))
plot_tree(model, feature_names=X.columns, class_names=['No Disease', 'Disease'],
filled=True)
plt.title("Decision Tree Visualization")
plt.show()
```


In [5]: %runf Accuracy: 0.6	9	y/ML-Lab/	untitled1.p	oywdir	
Classificatio	n keport:				
	precision	recall	f1-score	support	
0	0.71	0.71	0.71	49	
1	0.66	0.66	0.66	41	
accuracy			0.69	90	
macro avg	0.69	0.69	0.69	90	
weighted avg	0.69	0.69	0.69	90	

KNN Algorithm

Date: 18-03-25

Ex. No: 12

Aim:

To implement a K-Nearest Neighbors (KNN) classifier using the Iris dataset for predicting flower species based on feature measurements.

Procedure:

1. Import Libraries:

Import essential libraries such as numpy, pandas, matplotlib, seaborn, and scikit-learn modules for data manipulation, visualization, and model building.

2. Load the Dataset:

Load the built-in Iris dataset using load_iris() from sklearn.datasets. The dataset contains features such as sepal length, sepal width, petal length, and petal width, along with the target class representing three flower species.

3. Create a DataFrame:

Convert the dataset into a pandas DataFrame and add the target column to the DataFrame for easier handling.

4. Feature Selection:

Define X (features) by excluding the target column, and define y (target) as the target column.

5. Split the Data:

Split the data into training and testing sets using train_test_split() with a 70:30 ratio to train and evaluate the model effectively.

6. Initialize and Train the Model:

Create a KNeighborsClassifier model with n_neighbors=5 and fit it using the training data.

7. Make Predictions:

Use the trained model to predict labels for the test data.

8. Evaluate the Model:

- o Calculate the accuracy score to assess the model's performance.
- Display the classification report showing precision, recall, and F1-score for each class.

9. Visualize the Confusion Matrix:

• Use Seaborn's heatmap() to plot the confusion matrix.

Label the axes as Actual and Predicted for clarity.

10. Conclusion:

The confusion matrix helps visualize the model's performance by showing correctly and incorrectly predicted labels, aiding in better understanding and further model tuning.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import seaborn as sns
# Load the built-in Iris dataset
data = load_iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
# Feature selection
X = df.drop('target', axis=1)
y = df['target']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42)
# Initialize and train the KNN model
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train, y_train)
```

```
# Predictions
y_pred = model.predict(X_test)

# Evaluate the model
print(f"Accuracy: {accuracy_score(y_test, y_pred):.2f}")
print("Classification Report:")
print(classification_report(y_test, y_pred))

# Confusion Matrix Visualization
plt.figure(figsize=(6, 4))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, cmap='Blues', fmt='d')
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```

Output:

<pre>In [7]: %runfile D:/sweety/ML-Lab/untitled2.pywdir Accuracy: 1.00 Classification Report:</pre>						
C10331/1C0C10	precision	recall	f1-score	support		
0	1.00	1.00	1.00	19		
1	1.00	1.00	1.00	13		
2	1.00	1.00	1.00	13		
accuracy			1.00	45		
macro avg	1.00	1.00	1.00	45		
weighted avg	1.00	1.00	1.00	45		

K- Mean Clustering

Date: 20-03-25

Ex. No: 13

Aim : To implement K-Means clustering on the built-in Wine dataset to group data points based on their feature similarities.

Procedure:

1. Import Required Libraries

- o Use pandas and numpy for data manipulation.
- Use matplotlib for visualization.
- Import KMeans from sklearn for clustering and StandardScaler for data standardization.

2. Load the Wine Dataset

- o Load the built-in Wine dataset using load_wine() from sklearn.
- o Convert the dataset into a DataFrame and assign appropriate feature names.

3. Data Standardization

- Since K-Means is sensitive to feature scales, standardize the dataset using StandardScaler().
- Fit and transform the data to ensure all features have a mean of zero and a standard deviation of one.

4. Apply K-Means Clustering

- Initialize a KMeans model with n_clusters=3 (since the Wine dataset has three classes).
- Use random_state=42 for reproducibility.
- Set n_init=10 to ensure stable clustering results by performing multiple initializations.

5. Assign Cluster Labels

- Use fit_predict() to train the K-Means model and assign each data point to a cluster.
- o Add the predicted cluster labels as a new column in the DataFrame.

6. Visualize the Clusters

- Create a scatter plot of the first two features to visualize data distribution.
- Color each point based on its assigned cluster.

o Plot the cluster centroids as red 'X' markers to show the cluster centers.

7. Add Descriptive Details

- o Add appropriate labels for the X-axis, Y-axis, and plot title.
- o Include a legend to distinguish the centroids from the data points.

8. Interpret Results

- Observe the clustering pattern to evaluate how well the data points are grouped.
- Note that since K-Means is an unsupervised method, the clusters may not directly match the original class labels but can reveal meaningful groupings.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import load_wine
from sklearn.preprocessing import StandardScaler
# Load the built-in Wine dataset
data = load wine()
df = pd.DataFrame(data.data, columns=data.feature_names)
# Standardizing the data for better clustering performance
scaler = StandardScaler()
X = scaler.fit\_transform(df)
# Applying K-Means Clustering
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
df['cluster'] = kmeans.fit_predict(X)
# Visualizing the clusters
```

```
plt.figure(figsize=(8, 6))

plt.scatter(X[:, 0], X[:, 1], c=df['cluster'], cmap='viridis', s=50)

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=200, c='red', marker='X', label='Centroids')

plt.title('K-Means Clustering on Wine Dataset')

plt.xlabel(data.feature_names[0])

plt.ylabel(data.feature_names[1])

plt.legend()

plt.show()
```

Output:

Spam Mail Detection

Date: 21 -03-24

Ex No: 12

Aim: To develop a spam email detection system using the Naive Bayes algorithm with visualizations for data distribution and model evaluation.

Procedure:

- 1. **Import Libraries:** Import necessary libraries such as pandas, seaborn, matplotlib, and scikit-learn for data handling, visualization, and model building.
- 2. **Prepare the Dataset:** Create a sample dataset with email messages labeled as 'spam' or 'ham'.
- 3. **Encode Labels:** Convert the 'ham' and 'spam' labels into binary values (0 for ham, 1 for spam).
- 4. **Visualize Data Distribution:** Use a bar plot to visualize the proportion of spam vs ham messages.
- 5. **Text Vectorization:** Use CountVectorizer to transform email messages into numerical features.
- 6. **Split the Data:** Divide the dataset into training and testing sets for model evaluation.
- 7. Train the Model: Fit a Multinomial Naive Bayes classifier on the training data.
- 8. **Make Predictions:** Predict labels for the test data.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, confusion_matrix
# Sample email data (simplified dataset)
data = {
    'message': [
```

```
"Win a brand new car! Click here now.",
     "Meeting at 3 PM. Don't forget the documents.",
     "You've won a $1000 gift card! Claim your prize.",
     "Hey, let's catch up this weekend.",
     "Urgent! Your account has been compromised. Act now!"
  ],
  'label': ['spam', 'ham', 'spam', 'ham', 'spam']
# Create a DataFrame
df = pd.DataFrame(data)
\# Encode labels (ham = 0, spam = 1)
df['label'] = df['label'].map(\{'ham': 0, 'spam': 1\})
# Data Visualization - Bar Plot
plt.figure(figsize=(6, 4))
sns.countplot(x='label', data=df)
plt.xticks([0, 1], ['Ham', 'Spam'])
plt.title("Spam vs Ham Distribution")
plt.show()
# Text vectorization
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(df['message'])
y = df['label']
# Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42)
```

```
# Train the Naive Bayes model
       model = MultinomialNB()
       model.fit(X_train, y_train)
       # Predictions
       y_pred = model.predict(X_test)
       # Display accuracy
       print(f"Accuracy: {accuracy_score(y_test, y_pred) * 100:.2f}%")
       # Confusion Matrix Visualization
       plt.figure(figsize=(5, 4))
       sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, cmap='Blues', fmt='d')
       plt.title("Confusion Matrix")
       plt.xlabel("Predicted")
       plt.ylabel("Actual")
       plt.show()
       # Example prediction
       sample_message = ["Congratulations! You've won a free vacation!"]
       sample_vector = vectorizer.transform(sample_message)
       prediction = model.predict(sample_vector)
       print(f"Prediction for sample message: {'Spam' if prediction[0] == 1 else 'Ham'}")
Output:
       Accuracy: 100.00%
       Prediction for sample message: Spam
```

