

Disentangled Contrastive Learning on Graphs

Haoyang Li¹, Xin Wang¹, Ziwei Zhang¹, Zehuan Yuan²,
Hang Li², Wenwu Zhu¹

¹Tsinghua University, ²ByteDance

Graph Structured Data is Ubiquitous

Social Network

Knowledge Graph

Traffic Network

Internet of Things

Information Network

Biology Network

Graph Neural Networks

GNNs generally adopt a neighborhood aggregation paradigm.

 Most famous GNNs are trained end-to-end with task-specific labels, which could be extremely scarce for some graph datasets.

Self-supervised Learning on Graphs

Graph Contrastive Learning

Disentangled Graph Contrastive Learning

The formation of a graph is typically driven by many latent factors.

- Existing methods characterize graphs as a perceptual whole.
 - The learned representations contain a mixture of entangled factors.
 - They may lead to suboptimal performance and harm the explainability.

Model Framework

Experimental Results

Graph classification performance

9									
	MUTAG	PTC-MR	PROTEINS	NCI1	IMDB-B	IMDB-M	RDT-B	RDT-M5K	COLLAB
SP	85.2 ± 2.4	58.2 ± 2.4	75.1 ± 0.5	73.0 ± 0.2	55.6 ± 0.2	38.0 ± 0.3	64.1 ± 0.1	39.6 ± 0.2	_
GK	81.7 ± 2.1	57.3 ± 1.4	71.7 ± 0.6	62.3 ± 0.3	65.9 ± 1.0	43.9 ± 0.4	77.3 ± 0.2	41.0 ± 0.2	72.8 ± 0.3
WL	80.7 ± 3.0	58.0 ± 0.5	72.9 ± 0.6	80.0 ± 0.5	72.3 ± 3.4	47.0 ± 0.5	68.8 ± 0.4	46.1 ± 0.2	_
DGK	87.4 ± 2.7	60.1 ± 2.6	73.3 ± 0.8	80.3 ± 0.5	67.0 ± 0.6	44.6 ± 0.5	78.0 ± 0.4	41.3 ± 0.2	73.1 ± 0.3
MLG	87.9 ± 1.6	63.3 ± 1.5	76.1 ± 2.0	80.8 ± 1.3	66.6 ± 0.3	41.2 ± 0.0	_	_	-
node2vec	72.6±10.2	58.6±8.0	57.5±3.6	54.9±1.6	_	_	_	_	-
sub2vec	61.1 ± 15.8	60.0 ± 6.4	53.0 ± 5.6	52.8 ± 1.5	55.3 ± 1.5	36.7 ± 0.8	71.5 ± 0.4	36.7 ± 0.4	_
graph2vec	83.2 ± 9.3	60.2 ± 6.9	73.3 ± 2.1	73.2 ± 1.8	71.1 ± 0.5	50.4 ± 0.9	75.8 ± 1.0	47.9 ± 0.3	_
GVAE	87.7 ± 0.7	61.2 ± 1.8	_	_	70.7 ± 0.7	49.3 ± 0.4	87.1 ± 0.1	52.8 ± 0.2	-
InfoGraph	89.0 ± 1.1	61.7 ± 1.4	74.4 ± 0.3	76.2 ± 1.1	73.0 ± 0.9	49.7 ± 0.5	82.5 ± 1.4	53.5 ± 1.0	70.7 ± 1.1
GCC	_	_	_	· -	72.0	49.4	89.8	53.7	78.9
MVGRL	89.7 ± 1.1	62.5 ± 1.7	_	_	74.2 ± 0.7	51.2 ± 0.5	84.5 ± 0.6	_	
GraphCL	86.8 ± 1.3	63.6 ± 1.8	74.4 ± 0.5	77.9 ± 0.4	71.1 ± 0.4	$\overline{50.7 \pm 0.4}$	89.5 ± 0.8	56.0 ± 0.3	71.4 ± 1.2
DGCL	92.1±0.2	65.8±1.5	76.4±0.5	81.9±0.2	75.9±0.7	51.9±0.4	92.7±0.2	56.1±0.2	81.2±0.3

unsupervised setting

semi-supervised setting

Experimental Results

Feature correlation analysis

Conclusions

 This paper proposes a disentangled graph contrastive learning method.

 This paper proposes a disentangled graph encoder and factorwise contrastive learning approach.

Extensive experiments demonstrate the superiority of the method.

Thanks!

Haoyang Li, Tsinghua University lihy18@mails.tsinghua.edu.cn

Disentangled Contrastive Learning on Graphs