Lecture 3 Complexity Analysis

EECS 281: Data Structures & Algorithms

Complexity Analysis: Overview

Complexity Analysis

- What is it?
 - Given an algorithm and input size n, how many steps are needed?
 - Each step should take O(1) time
 - As input size grows, how does number of steps change?
 - Focus is on TREND
- How do we measure complexity?
 - Express the rate of growth as a function f(n)
 - Use the big-O notation
- Why is this important?
 - Tells how well an algorithm scales to larger inputs
 - Given two algorithms, we can compare performance before implementation

Metrics of Algorithm Complexity

Best-case: 1 comparison

Worst-case: *n* comparisons

Average-case: n/2 comparisons

Using a linear search over *n* items, how many comparisons will it take to find item *x*?

- Best-Case
 - Least number of comparisons required, given ideal input
 - Analysis performed over inputs of a given size
 - Example: Data is found in the first place you look
- Worst-Case
 - Most number of comparisons required, given hard input
 - Analysis performed over inputs of a given size
 - Example: Data is found in the last place you could possibly look
- Average-Case
 - Average number of comparisons required, given any input
 - Average performed over all possible inputs of a given size

What Affects Runtime?

- The algorithm
- Implementation details
 - Skills of the programmer
- CPU Speed / Memory Speed
- Compiler (Options used)
 g++ -g3 (for debugging, highest level of information)
 g++ -03 (Optimization level 3 for speed)
- Other programs running in parallel
- Amount of data processed (Input size)

Input Size versus Runtime

- Rate of growth independent of most factors
 - CPU speed, compiler, etc.
- Does doubling input size mean doubling runtime?
- Will a "fast" algorithm still be "fast" on large inputs?

How do we measure input size?

Measuring & Using Input Size

- Number of bits
 - In an int, a double? (32? 64?)
- Number of items: what counts as an item?
 - Array of integers? One integer? One digit? ...
 - One string? Several strings? A char?
- Notation and terminology
 - n Input size
 - f(n) Maximum number of steps taken by an algorithm when input has size n ("f of n")
 - O(f(n)) Complexity class of f(n) ("Big-O of f of n")

Common Orders of Functions

Notation	Name
<i>O</i> (1)	Constant
<i>O</i> (log <i>n</i>)	Logarithmic
O(n)	Linear
<i>O</i> (<i>n</i> log <i>n</i>)	Loglinear, Linearithmic
$O(n^2)$	Quadratic
<i>O</i> (<i>n</i> ³), O(<i>n</i> ⁴),	Polynomial
<i>O</i> (<i>c</i> ⁿ)	Exponential
O(n!)	Factorial
O(2 ^{2ⁿ})	Doubly Exponential

Graphing f(n) Runtimes

Input Size Example

Graph G = (V, E): V = 5 Vertices E = 6 Edges

What should we measure?

- Vertices?
- Edges?
- Vertices and Edges?

When in doubt, measure input size in bits

Use V and E to determine which contributes more to the total number of steps

Big-O examples: E log V, EV, V² log E

From Analysis to Application

- Algorithm comparisons are independent of hardware, compilers and implementation tweaks
- Predict which algorithms will eventually be faster
 - For large enough inputs
 - O(n²) time algorithms will take longer than O(n) algorithms
- Constants can often be ignored because they do not affect asymptotic comparisons

Complexity Analysis: Overview

Complexity Analysis: Counting Steps

Q: What counts as one step in a program?

A: Primitive operations

- Variable assignment
- Arithmetic operation
- Comparison
- Array indexing or pointer reference
- Function call (not counting the data)
- Function return (not counting the data)

Runtime of 1 step is independent on input

Counting Steps: for Loop

- The basic form of a for-loop:
 for (initialization; test; update)
- The initialization is performed once (1)
- The test is performed every time the body of the loop runs, plus once for when the loop ends (n + 1)
- The update is performed every time the body of the loop runs (n)
- Total is 2n + 2 steps (used a lot next slide)

Counting Steps: Polynomial

```
int func1(int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += i;
  } // for
  return sum;
  } // func1()</pre>
```

```
1
2  1 step
3  2n + 2 steps
4  1 step (loop n times)
5
6  1 step
7
```

Total steps: 3n + 4

```
int func2(int n) {
     int sum = 0;
     for (int i = 0; i < n; ++i) {
10
         for (int j = 0; j < n; ++j)
11
12
             ++sum;
    } // for i
13
    for (int k = 0; k < n; ++k) {
14
         --sum;
15
     } // for
16
    return sum;
18 } // func2()
```

```
9  1 step
10 2n + 2 steps
11  2n + 2 steps (inside loop)
12  1 step (inside 2 loops)
13
14 2n + 2 steps
15  1 step (inside loop)
16
17 1 step
18
```

Counting Steps: Logarithmic

```
int func3(int n) {
  int sum = 0;
  for (int i = n; i > 1; i /= 2)
      sum += i;
  return sum;
  } // func3()

1
2 1 step
3 (2 * ~log n) + 2 steps
4 1 step (loop ~log n times)
5
6 return sum;
7 } // func3()
```

Total steps: $(3 * \sim \log n) + 4 = O(\log n)$

Examples of O(log n) Time

```
uint32 t logB(uint32 t n) {
    // find binary log, round up
    uint32_t r = 0;
    while (n > 1) {
   n /= 2
   r++;
                          int *bsearch(int *lo, int *hi, int val) {
 } // while
                              // find position of val between lo,hi
                          11
8 return r;
                              while (hi >= lo) {
                          12
  } // logB()
                                int *mid = lo + (hi - lo) / 2;
                          13
                                if (*mid == val)
                          14
                          return mid;
                          16 else if (*mid > val)
                                  hi = mid - 1;
                          17
                                else
                          18
                                lo = mid + 1;
                          19
                          20 } // while
                          21 return nullptr;
                          22 } // bsearch()
```

Algorithm Exercise

How many multiplications, if size = n?

```
1 // REQUIRES: in and out are arrays with size elements
2 // MODIFIES: out
3 // EFFECTS: out[i] = in[0] *...* in[i-1] * in[i+1] *...* in[size-1]
  void f(int *out, const int *in, int size) {
    for (int i = 0; i < size; ++i) {
   out[i] = 1;
      for (int j = 0; j < size; ++j) {</pre>
        if (i != j)
      out[i] *= in[j];
10 } // for j
11 } // for i
12 } // f()
```

in[0]	in[1]	in[2]
3	1	2

out[0]	out[1]	out[2]
2	6	3

Algorithm Exercise

How many multiplications and divisions, if size = n?

```
void f(int *out, const int *in, int size) {
   int product = 1;
   for (int i = 0; i < size; ++i)
      product *= in[i];

for(int i = 0; i < size; ++i)
   out[i] = product / in[i];

// f()</pre>
```

Complexity Analysis: Counting Steps

Complexity Analysis: Big-O Notation

Big-O Definition

$$f(n) = O(g(n))$$
 if and only if there are constants $\begin{pmatrix} c > 0 \\ n_0 \ge 0 \end{pmatrix}$ such that $f(n) \le c * g(n)$ whenever $n \ge n_0$

Is
$$n = O(n^2)$$
?

$$f(n) = n$$

$$g(n) = n^2$$

Big-O: Sufficient (but not necessary) Condition

If
$$\left[\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right) = d < \infty\right]$$
 then $f(n)$ is $O(g(n))$

$$\log_2 n = O(2n)? \qquad \lim_{n \to \infty} \left(\frac{\log n}{2n}\right) \quad : \frac{\infty}{\infty}$$

$$f(n) = \log_2 n$$

$$g(n) = 2n \qquad \lim_{n \to \infty} \left(\frac{1}{2n}\right) \quad : \text{Use L'Hôpital's Rule}$$

$$1 + \log_2 n = O(2n) \checkmark$$

$$0 = d < \infty$$

$$\sin\left(\frac{n}{100}\right) = O(100)?$$

$$\lim_{n \to \infty} \left(\frac{\sin\left(\frac{n}{100}\right)}{100}\right)$$
Condition does not hold, but it is true that $f(n) = \sin\left(\frac{n}{100}\right)$

g(n) = 100

Big-O: Can We Drop Constants?

$$3n^2 + 7n + 42 = O(n^2)$$
?

$$f(n) = 3n^2 + 7n + 42$$

 $g(n) = n^2$

Definition

c > 0, n_0 3 0 such that $f(n) \pm c \times g(n)$ whenever $n + 3 + n_0$

Sufficient Condition

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = d < \infty$$

$$\lim_{n\to\infty} \left(\frac{3n^2 + 7n + 42}{n^2} \right) = \cdots$$

$$\lim_{n\to\infty} \left(\frac{6n+7}{2n}\right) = \cdots$$

$$\lim_{n\to\infty} \left(\frac{6}{2}\right) = 3 < \infty \checkmark$$

Rules of Thumb

- 1. Lower-order terms can be ignored (because of n_0)
 - $n^2 + n + 1 = O(n^2)$
 - $n^2 + \log(n) + 1 = O(n^2)$
- 2. Coefficient of the highest-order term can be ignored (because of *c*)
 - $-3n^2 + 7n + 42 = O(n^2)$

Log Identities

Identity	Example
$\log_a(xy) = \log_a x + \log_a y$	log ₂ (3*4)
$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$	log ₂ (4/3)
$\log_a(x^r) = r \log_a x$	$\log_2 x^3$
$\log_a\left(\frac{1}{x}\right) = -\log_a x$	log ₂ 1/3
$\log_a x = \frac{\log x}{\log a} = \frac{\ln x}{\ln a}$	log ₂ 1024
$\log_a a = 1$	
$\log_a 1 = 0$	

Power Identities

Identity	Example
$a^{(m+n)} = a^m \cdot a^n$	2 ²⁺³
$a^{(m-n)} = \frac{a^m}{a^n}$	2 ³⁻²
$(a^m)^n = a^{mn}$	$(2^2)^3$
$a^{-n} = \frac{1}{a^n}$	2-4
$a^{-1} = \frac{1}{a}$ $a^0 = 1$	
$a^1 = a$	

Exercise

True or False?

- $10^{100} = O(1)$
- $3n^4 + 45n^3 = O(n^4)$
- $3^n = O(2^n)$
- $2^n = O(3^n)$
- $45 \log(n) + 45n = O(\log(n))$
- $\log(n^2) = O(\log(n))$
- $[\log(n)]^2 = O(\log(n))$

Can you? Find f(n) and g(n), such that $f(n) \neq O(g(n))$

and $g(n) \neq O(f(n))$

Big-O, Big-Theta, and Big-Omega

	Big-O (<i>O</i>)	Big-Theta (<i>⊕</i>)	Big-Omega (Ω)
Defines	Asymptotic upper bound	Asymptotic tight bound	Asymptotic lower bound
Definition	$f(n) = O(g(n))$ if and only if there exists an integer n_0 and a real number c such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$	$f(n) = \Theta(g(n))$ if and only if there exists an integer n_0 and real constants c_1 and c_2 such that for all $n \ge n_0$: $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$	$f(n) = \Omega(g(n))$ if and only if there exists an integer n_0 and a real number c such that for all $n \ge n_0$, $f(n) \ge$ $c \cdot g(n)$
Mathematical Definition	\$n ₀ Î Z,\$c Î R: " n ³ n ₀ ,f(n) £ c×g(n)	$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$	\$n ₀ Î Z,\$c Î R: " n ³ n ₀ ,f(n) ³ c×g(n)
$f_1(n)=2n+1$	<i>O</i> (<i>n</i>) or <i>O</i> (<i>n</i> ²) or <i>O</i> (<i>n</i> ³)	Q(n)	$\Omega(n)$ or $\Omega(1)$
$f_2(n)=n^2+n+5$	<i>O</i> (<i>n</i> ²) or <i>O</i> (<i>n</i> ³)	$Q(n^2)$	$\Omega(n^2)$ or $\Omega(n)$ or $\Omega(1)$

Complexity Analysis: Big-O Notation

Complexity Analysis: Amortized Complexity

Amortized Complexity

- A type of worst-case complexity
- Used when the work/time profile is "spiky" (sometimes it is very expensive, but most times it is a small expense)
- Analysis performed over a sequence of operations covering of a given range
 - The sequence selected includes expensive and cheap operations

Amortized Complexity

- Considers the average cost of one operation over a sequence of operations
 - Best/Worst/Average-case only consider operations independently
 - <u>Different from average-case complexity!</u>
- Average case complexity is ONE event that is representative of all possible events
- Amortized complexity is an average of a sequence of events that ALL occur
- Key to understanding expandable arrays and STL vectors, priority queues, and hash tables

Cell Phone Bill Example

- Pay \$100 once per month, each call and text has no added cost (unlimited plan)
- If you make 1000 calls/texts during the month, each one effectively costs \$0.10
 - This is the "sequence of events that all occur"
- The rate at which money leaves your pocket is very "spiky"
- But each call or text appears to have basically a constant cost: the amortized cost per text is O(1)

Common Amortized Complexity

Analyze the asymptotic runtime complexity of the push operation for a stack implemented using an array/vector

Method	Implementation
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	 If needed, allocate a bigger array and copy data Add new element at top_ptr, increment top_ptr

Exercise

Analyze the asymptotic runtime complexity of the push operation for a stack implemented using an array/vector

Amortized $\Theta(1)$

Assume vector is filled with *n* elements

Double vector size $(1 + \Theta(n))$ steps

 $\Theta(1)$ push n times until full

Amortized cost: $\frac{(1 + \Theta(n)) + n \cdot \Theta(1)}{n \text{ push operations}} = \Theta(1)$

Example (drawn in lecture)

Container Growth Options

1. Constant Growth

- When container fills, increase size by c
- Amortized cost: $\frac{(1 + \Theta(n)) + c * \Theta(1)}{c \text{ push operations}} = \Theta(n)$
- Amortized linear

2. Linear Growth

- When container fills, increase size by *n*
- Amortized cost: $\frac{(1 + \Theta(n)) + n \cdot \Theta(1)}{n \text{ push operations}} = \Theta(1)$
- Amortized constant

Complexity Analysis: Amortized Complexity

Complexity Analysis: Balance Exercise

Exercise

- You have n billiard balls. All have equal weight, except for one which is heavier.
 Find the heavy ball using only a balance.
- Describe an O(n²) algorithm
- Describe an O(n) algorithm
- Describe an O(log n) algorithm
- Describe another O(log n) algorithm

Two O(log n) solutions

- Two groups: $\log_2(n) = O(\log_3 n)$
- Three groups: $\log_3(n) = O(\log_2 n)$
- True or False? Why?

Complexity Analysis: Balance Exercise