Empleo de Autómatas Celulares en Problemas Sencillos de Mecánica Cuántica.

Grupo de Simulación de Sistemas Físicos

Eduardo J. Ortega U.* Dirigido por: Dr. José Daniel Muñoz 4 de mayo de 2004

^{*}ejortegau@unal.edu.co

1. Autómata celular de difusión 1D

Figura 1: Un estado posible para el autómata de difusión

Evolución en dos fases: Movimiento y colisión.En el límite contínuo (Expansión de Chapman-Enskog) la regla de evolución define la ecuación de difusión unidimensional dada por

$$\partial_t \rho = \frac{p}{2(1-p)} \partial_r^2 \rho. \tag{1}$$

1.1. Expansión de Chapman-Enskog para el autómata de difusión

n ₁ (0)	n ₁ (1)	n ₁ (x-1)	$n_1(x)$	$n_1(x+1)$		n ₁ (N-2)	n ₁ (N-1
n _r (0)	n _r (1)	$n_r(x-l)$	$n_{r}(x)$	$n_r(x+1)$		n _r (N-2)	n _r (N-1

$$x=0$$
 $x=\lambda$... $x=\lambda$ $x=\lambda$... $x=\lambda$ $x=\lambda$...

Figura 2: Autómata celular unidimensional de dos componentes para modelos de difusión

La regla de evolución se escribe como

$$n_l(x - \Delta x, t + \Delta t) = (1 - \mu(x, t))n_r(x, t)$$
 (2)

$$+\mu(x,t)n_l(x,t),\tag{3}$$

$$n_r(x + \Delta x, t + \Delta t) = \mu(x, t)n_r(x, t) \tag{4}$$

$$+(1-\mu(x,t))n_l(x,t).$$
 (5)

Regla promediada sobre muchas ejecuciones del autómata se ree-

scribe como

$$N_{l}(x - \Delta x, t + \Delta t) - N_{l}(x, t) =$$

$$(p - 1)(N_{l}(x, t) - N_{r}(x, t)),$$

$$N_{r}(x + \Delta x, t + \Delta t) - N_{r}(x, t) =$$

$$(p - 1)(N_{r}(x, t) - N_{l}(x, t)).$$
(6)

Expandimos perturbativo izquierda y Taylor derecha. La densidad de partículas en un sitio dado es $\rho(x,t) = N_l(x,t) + N_r(x,t)$. Se **supone** $\rho(x,t) = N_l^{(0)}(x,t) + N_r^{(0)}(x,t)$. El lado izquierdo puede expandirse como

$$N_{i}(x + c_{i}\Delta x, t + \Delta t) - N_{i}(x, t) = \left(\Delta t \partial_{t} + \frac{(\Delta t)^{2}}{2} \partial_{t}^{2} + \Delta x c_{i} \partial_{r} + \frac{(\Delta x)^{2}}{2} \partial_{r}^{2} + \Delta t \Delta x \partial_{t} \partial_{r}\right) N_{i}(x, t)$$
(8)

Escalando $\Delta x = \epsilon$ y $\Delta t = \epsilon^2$ y comparando orden a orden con el lado derecho se tiene:

• A orden cero:

$$N_l^{(0)}(x,t) = N_r^{(0)}(x,t) = \rho(x,t)/2.$$
(9)

• A orden uno:

$$N_i^{(1)} = \frac{1}{4(p-1)} c_i \partial_r \rho.$$
 (10)

• A orden dos:

$$\sum_{i=1}^{2} \left[\partial_t N_i^{(0)} + c_i \partial_r N_i^{(1)} + \frac{1}{2} \partial_r^2 N_i^{(0)} \right] = 0$$
 (11)

Combinando estos resultados se obtiene ecuación de difusión

$$\partial_t \rho = \frac{p}{2(1-p)} \partial_r^2 \rho. \tag{12}$$

Figura 3: Cuadrado de la desviación estándar en función del tiempo para una condición inicial de distribución gaussiana en el autómata de difusión 1D. La pendiente esperada de (12) com p = 0.5 es $\frac{1}{2}$, frente a una pendiente ajustada de D = 0.47

2. Autómatas Celulares Cuánticos (QCA)

2.1. Trabajo previo

- Feynman propone un autómata celular que en la evolución calcula integral de camino con acción proporcional al número de cambios de dirección.
- Grösing y Fussy proponen autómata celular, pero falla porque su regla de evolución no era unitaria.
- Succi y Benzi muestran que ecuaciones de lattice Boltzmann de fluidos pueden extenderse a mecánica cuántica.
- Boghosian, Taylor IV, y Meyer implementan QCA
 1D con reglas basadas en las del autómata de difusión.

2.2. QCA propuesto por D. A. Meyer y B. M. Boghosian

Similar al autómata de difusión. Se construye espacio de kets del autómata como

$$\{|x\rangle\} \otimes \{|i\rangle\}, i \in \{l, r\}. \tag{13}$$

Se satisface a relación de completez

$$\hat{1} = \sum_{i=l}^{r} \int_{-\infty}^{\infty} |x, i\rangle \langle x, i| dx$$
(14)

$$= \lim_{a \to \infty} \sum_{i=l}^{r} \sum_{n=0}^{N-1} \int_{a+n\Delta x}^{n-i} x, i \rangle \langle x, i | dx, \quad N = \frac{2a}{\Delta x}.$$
 (15)

Para simulación, a finito y $x \approx \text{cte} = x_n$ en cada intervalo de integración. Reescribimos como

$$\hat{1} = \sum_{i,n} |x_n, i\rangle \langle x_n, i| \int_{-a+n}^{-a+(n+1)} dx$$
 (16)

$$\hat{1} = \sum_{i=l}^{r} \sum_{n=0}^{N-1} |x_n, i\rangle \langle x_n, i|.$$
(17)

Estado en todo tiempo dado por:

$$|\Psi(t)\rangle = \sum_{x,i} \psi_i(x,t)|x,i\rangle,$$
 (18)

con $i \in \{l, r\}$ y $|\psi_i(x, t)\rangle = \langle x, i | \Psi(t) \rangle$.

Evolución en dos fases análogas a difusión. Se escribe como

$$\psi_l(x - \Delta x, t + \Delta t) = p\psi_l(x, t) + q\psi_r(x, t)$$
 (19)

$$\psi_r(x + \Delta x, t + \Delta t) = q\psi_l(x, t) + p\psi_r(x, t), \qquad (20)$$

con p y q amplitudes de probabilidad de seguir en la misma dirección o de rebotar. Satisfacen

$$|p|^2 + |q|^2 = 1 (21)$$

$$p^*q + pq^* = 0 (22)$$

para garantizar evolución unitaria.

Estas reglas llevan en límite contínuo a:

$$\partial_t \Psi = \frac{i}{2m} \partial_x^2 \Psi, \tag{23}$$

con $m = \tan \frac{\theta}{2}$ cuando se parametrizan p y q como $p = \cos \theta$ y $q = -i \sin \theta$.

Inclusión de potencial se logra multiplicando por una fase $e^{-i\epsilon^2V(x)}$ en cada paso de tiempo.

2.3. Expansion de Chapman - Enskog para el autómata de D. A. Meyer

La regla de evolución del autómata está dada por

$$\psi_i(x + c_i \epsilon, t) = \sum_j S_{i,j} \psi_j(x, t - \Delta t), \tag{24}$$

donde S es la matriz de colisión del autómata dada por

$$S = e^{-i\epsilon^2 V(x)} \begin{pmatrix} p & q \\ q & p \end{pmatrix}, \tag{25}$$

y
$$c_i = \begin{cases} 1, & i = r \\ -1, & i = l \end{cases}$$
. Definiendo la función

$$\phi(x,t) = S^{-\tau}\psi(x,t), \quad \tau = t/\Delta t$$

podemos escribir

$$\phi(x,t) - \phi(x,t - \Delta t) = -S^{-\tau} \epsilon C \left(\partial_x S^{\tau} \phi + S^{\tau} \partial_x \phi \right) - S^{-\tau} \frac{\epsilon^2}{2} \left(\partial_x^2 S^{\tau} \phi + 2 \partial_x S^{\tau} \partial_x \phi + S^{\tau} \partial_x^2 \phi \right).$$
 (26)

Diagonalizando S en una matriz D mediante $D=XSX^{-1}$, cambiando variable a $\eta=X\phi$ y luego a $\eta=\zeta+\epsilon\rho$, resulta

$$(\zeta(x,t) - \zeta(x,t - \Delta t)) + \epsilon \left(\rho(x,t) - \rho(x,t - \Delta t)\right) = -\epsilon D^{-\tau} X C X^{-1} D^{\tau} \partial_x \zeta - \epsilon^2 \left(D^{-\tau} X C X^{-1} D^{\tau} \partial_x \rho + \frac{1}{2} \hat{1} \partial_x^2 \zeta\right).$$
(27)

Realizando análisis multiescala se obtiene ecuación para la primera componente de ζ

$$\partial_t \zeta_1 = \frac{i}{2m} \partial_x^2 \zeta_1, \tag{28}$$

con $m = \tan \theta/2$ cuando se parametrizan $p = \cos \theta$ y $q = -i \sin \theta$. Deshaciendo los cambios de variable hasta recuperar ψ_i y realizando las derivadas involucradas se tiene

$$\partial_t \Psi = -i \left(-\frac{1}{2m} \partial_x^2 + V(x) \right) \Psi \tag{29}$$

que corresponde a la ecuación de Schrödinger 1D dependiente del tiempo.

3. Resultados parciales

3.1. Simulaciones de evolución

Se define estado para t=0 y se opera sobre él con una matriz que representa la regla de evolución.

3.2. Onda Plana

$$\psi_j(x,0) = \begin{cases} e^{ikx}, & j = r \\ 0, & j = l \end{cases}$$

Figura 4: Evolución de onda plana.

Figura 5: Evolución de onda plana con diferente número de onda.

3.3. Paquete gaussiano

$$\psi_j(x,0) = \begin{cases} \exp ikx - \frac{(x-x_0)^2}{2\sigma_x^2}, & j = r \\ 0, & j = l \end{cases}$$

Figura 6: Evolución de un paquete gaussiano con moméntum medio inicial a la derecha

Figura 7: Estado del paquete gaussiano en t=0

Figura 8: Estado del paquete gaussiano en t=300

$$\psi_j(x,0) = \begin{cases} \exp{-\frac{(x-x_0)^2}{2\sigma_x^2}}, & j = r \\ 0, & j = l \end{cases}$$

Figura 9: Evolución de un paquete gaussiano con moméntum medio inicial nulo

3.4. Autoestados de un pozo de potencial

Representación matricial

$$\begin{pmatrix} \psi_r(0,t) \\ \psi_l(0,t) \\ \psi_r(1,t) \\ \psi_l(1,t) \\ \psi_l(2,t) \\ \vdots \\ \psi_r(N-1,t) \\ \psi_l(N-1,t) \end{pmatrix} = \begin{pmatrix} 0,r \\ |0,r \\ |1,r \\ |0,r \\ |1,r \\ |0,r \\ |0,r \\ |1,r \\ |0,r \\ |0,r \\ |0,r \\ |0,r \\ |0,r \\ |1,r \\ |0,r \\ |1,r \\ |0,r \\$$

Figura 10: Estado base analítico y obtenido mediante la diagonalización de la matriz de evolución del autómata

Figura 11: Primer estado excitado analítico y obtenido mediante la diagonalización de la matriz de evolución del autómata

Figura 12: Segundo estado analítico y obtenido mediante la diagonalización de la matriz de evolución del autómata

Referencias

- [1] B. Chopard y M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge University Press (1998).
- [2] R. P. Feynman y A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw Hill (1965).
- [3] S. Fussy y G. Grossing, Non local computation in Quantum Cellular Automata, Physical Review A 48 (1993).
- [4] S. Succi y R. Benzi, Lattice Boltzmann equation for Quantum Mechanics, Physica D **69** (1993).
- [5] D. P. DiVincenzo, Science **270**, 255 (1995).
- [6] A. Ekert y R. Josza, Review on Modern Physics 68, 733 (1996).
- [7] B. M. Boghosian y W. Taylor IV, Quantum Lattice Gas Models for the Many Body Schrödinger Equation, Internationa Journal of Modern Physics C 8, 705 (1997).
- [8] D. A. Meyer, From Quatum Cellular Automata to Quatum Lattice Gases, Journal of Statistical Physics 85, 551 (1996).
- [9] D. A. Meyer, Quantum mechanics of lattice gas automata: One-particle plane waves and potentials, Physical Review E **55** 5261 (1997).
- [10] D. A. Meyer, Quantum Lattice Gases and their Invariants, International Journal of Modern Physics C 8 (1997).

- [11] D. A. Meyer, From Gauge Transformations to Topology Computation in Quantum lattice Gas Automata, Journal of Physics A **34** (2001).
- [12] T. Toffoli y N. Margolus, Cellular Automata Machines: A New Environment for Modeling (Scientific Computation), MIT Press (1987).

