Greek Characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
epsilon	ϵ or ϵ	angle, constant
theta	θ or θ	angle, constant
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named Sets

empty set	Ø
real numbers	R
ordered pairs of reals	\mathbf{R}^2
integers	Z
positive integers	$\mathbf{Z}_{>0}$
positive real numbers	$\mathbf{R}_{>0}$

Set Symbols

Meaning	Symbol
is a member	€
subset	_
intersection	n
union	U

Intervals

For numbers a and b, we define the intervals:

$$(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$$

$$[a, b) = \{x \in \mathbf{R} \mid a \le x < b\}$$

$$(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$$

$$[a,b] = \{x \in \mathbf{R} \mid a \le x \le b\}$$

Logic Symbols

Meaning	Symbol
negation	Г
and	٨
or	V
implies	\Rightarrow
equivalent	=
for all	A
there exists	3

Exponents

For a, b > 0 and m, n real:

$$a^{0} = 1,$$
 $0^{a} = 0$
 $1^{a} = 1,$ $a^{n}a^{m} = a^{n+m}$
 $a^{n}/a^{m} = a^{n-m},$ $(a^{n})^{m} = a^{n \cdot m}$
 $a^{-m} = 1/a^{m},$ $(a/b)^{m} = a^{m}/b^{m}$

Polar to Cartesian

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

For r > 0 and $0 \le \theta < 2\pi$

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \begin{cases} 2\pi - \arccos(x/r) & \text{if } y < 0\\ \arccos(x/r) & \text{if } y \ge 0 \end{cases}$$

Right Triangle Trigonometry

$$\sin(\alpha) = a/c$$
 $\cos(\alpha) = b/c$ $\tan(\alpha) = a/b$
 $\csc(\alpha) = c/a$ $\sec(\alpha) = c/b$ $\cot(\alpha) = b/a$

Trigonometric Identities

$$\sin^{2}(x) + \cos^{2}(x) = 1$$

$$2\cos^{2}(x) = 1 + \cos(2x)$$

$$2\sin^{2}(x) = 1 - \cos(2x)$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

Famous Triangles

The 30-60-90 triangle

The 45-45-90 triangle

Laws of Cosine & Sine

Law of cosines

$$C^2 = A^2 + B^2 - 2AB\cos(\gamma)$$

Law of sines

$$\frac{\sin \alpha}{A} = \frac{\sin \beta}{B} = \frac{\sin \gamma}{C}$$

Area

Area =
$$hB/2 = AB\sin(\gamma)/2$$

Solution of Equations

Algebraic

$$[ab = 0] \equiv [a = 0 \text{ or } b = 0]$$

$$[a^2 = b^2] \equiv [a = b \text{ or } a = -b]$$

$$\left[\frac{a}{b} = 0\right] \equiv [a = 0 \text{ and } b \neq 0]$$

$$\left[\frac{a}{b} = \frac{c}{d}\right] \equiv [ad = bc \text{ and } b \neq 0 \text{ and } d \neq 0]$$

$$[|a| = |b|] \equiv [a = b \text{ or } a = -b]$$

$$\left[\sqrt{a} = b\right] \equiv [a = b^2 \text{ and } b \geq 0]$$

For $a \neq 0$,

$$\left[ax^2 + bx + c = 0\right] \equiv \left[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right]$$

Trig

$$\begin{bmatrix} \cos(a) = 0 \end{bmatrix} \equiv \begin{bmatrix} a = (k - 1/2)\pi, k \in \mathbf{Z} \end{bmatrix}$$
$$\begin{bmatrix} \sin(a) = 0 \end{bmatrix} \equiv \begin{bmatrix} a = k\pi, k \in \mathbf{Z} \end{bmatrix}$$
$$\begin{bmatrix} \tan(a) = 0 \end{bmatrix} \equiv \begin{bmatrix} a = k\pi, k \in \mathbf{Z} \end{bmatrix}$$
$$\begin{bmatrix} \cos(a) = b \end{bmatrix} \equiv \begin{bmatrix} a = \pm \arccos(b) + 2k\pi, k \in \mathbf{Z} \end{bmatrix}$$
$$\begin{bmatrix} \sin(a) = b \end{bmatrix} \equiv \begin{bmatrix} a = \arcsin(b) + 2k\pi, k \in \mathbf{Z} \text{ or }$$
$$a = -\arcsin(b) + (2k+1)\pi, k \in \mathbf{Z} \end{bmatrix}$$
$$\begin{bmatrix} \tan(a) = b \end{bmatrix} \equiv \begin{bmatrix} a = \arctan(b) + k\pi, k \in \mathbf{Z} \end{bmatrix}$$

Vectors

Dot product:
$$\langle x_1, y_1 \rangle \cdot \langle x_2, y_2 \rangle = x_1 x_2 + y_1 y_2$$

Length: $\|\langle x, y \rangle\| = \sqrt{x^2 + y^2}$
Unit Vectors: $\mathbf{i} = \langle 1, 0 \rangle$, $\mathbf{j} = \langle 0, 1 \rangle$

Angle: $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \cos(\theta)$, where (θ) is the acute angle between \mathbf{a} and \mathbf{b} .

Graphs

Cosine, sine, and tangent

Figure 1: Graph of $y = \cos(x)$ on $[0, 2\pi]$.

Figure 2: Graph of $y = \sin(x)$ on $[0, 2\pi]$.

Figure 3: Graph of $y = \tan(x)$ on $[0, 2\pi]$.

Arccosine, arcsine, and arctangent

Figure 4: Graph of $y = \arccos(x)$ on [-1,1].

Figure 5: Graph of $y = \arcsin(x)$ on [-1, 1].

Figure 6: Graph of $y = \arctan(x)$ on [-10, 10].

Unit Circle

