И.И. Турулин, Ю.Б. Верич

ДИАЛОГОВЫЙ МЕТОД СИНТЕЗА РЕКУРСИВНЫХ КИХ-ФИЛЬТРОВ

Несмотря на разработку сигнальных процессоров с быстродействием порядка нескольких миллиардов операций в секунду проблема снижения вычислительных затрат (число операций на отсчет сигнала) цифровых фильтров остается актуальной для ряда задач. Существует класс рекурсивных КИХ-фильтров, которые, как и нерекурсивные, могут иметь линейную фазочастотную характеристику при гораздо меньших вычислительных затратах. Существующие методы синтеза таких фильтров обычно требуют кусочно-полиномиальной аппроксимации исходной КИХ, что является наиболее трудоемким этапом синтеза.

В докладе предлагается метод диалогового синтеза рекурсивных КИХ-фильтров, основанный на визуальной кусочно-полиномиальной аппроксимации исходной КИХ h(n) в среде математических программ. Вначале рассчитывают обратную конечную разность (p+1)-го порядка $\nabla^{p+1}h(n)$, где p- степень аппроксимирующего полинома. Далее у $\nabla^{p+1}h(n)$ обнуляют все отсчеты, кроме p+1 первых и p+1 последних, и строят соответствующий нерекурсивный фильтр, к выходу которого каскадно подключают p+1 накапливающих сумматоров. КИХ этой комбинации $h^*(n)$ аппроксимирует исходную КИХ. Затем строятся графики h(n) и $h^*(n)$ в одних координатах. Далее в структуру фильтра вводят прямые связи, задержки и весовые коэффициенты которых вместе с коэффициентами нерекурсивного фильтра подбирают так, чтобы расхождение h(n) и $h^*(n)$ было допустимым. В точке окончания h(n) аналогично вводят связи для обнуления $h^*(n)$, а также сумматоров.

Данный метод проигрывает по вычислительным затратам и погрешностям другим методам синтеза, зато процесс проектирования фильтра идет гораздо быстрее (фильтр с КИХ в виде окна Хэмминга синтезируется в системе Mathcad в течение часа).

А. В. Аграновский, М. Ю. Зулкарнеев, Д. А. Леднов, П. М. Сулима

ФОРМАНТНОЕ ПРЕДСТАВЛЕНИЕ РЕЧЕВОГО СИГНАЛА ДЛЯ РЕШЕНИЯ ЗАДАЧ ОБРАБОТКИ РЕЧИ

Известно, что способ представления речевого сигнала влияет как на качество, так и на скорость распознавания. Поэтому важно выбрать представление, адекватное поставленной задаче. На практике используются различные представления сигнала [1, 2]: автокорреляционная функция сигнала, различные параметры спектра и кепстра, коэффициенты линейного предсказания (а - параметры), связанные с ними коэффициенты отражения, b – параметры. В данной работе предлагается способ представления речевого сигнала. За основу берётся амплитудный спектр речевого окна, который предварительно фильтруется для того, чтобы уменьшить влияние случайных помех. При фильтрации сглаживаются острые пики и ширина этих пиков $\Delta\Omega$ после сглаживания не может быть меньше определённой величины, которая зависит от частоты среза фильтра τ_0 :