

IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application. An identifier indicating the status of each claim is provided.

Listing of Claims

a an n-port structure (1) being supplied with a first RF signal (2) to be demodulated at a first input (3) and with a second RF-signal (4) RF signal to be

1. (Currently Amended) I/Q-Demodulator An I/Q demodulator comprising:

demodulated at a second input (5), and , said n-port structure outputting n-2 output signals (6) to of a plurality of power sensors (7), with n being 4, 5 or 6, characterized by

and

a multiplexing means (8) for multiplexing low-pass-filtered output signals (9) of the plurality of power sensors (7).

2. (Currently Amended) I/Q- Demodulator The I/Q demodulator according to claim 1,

characterized in that it wherein said I/Q demodulator further comprises a single A/D converter (10) being that is supplied with an analog signal (11) originating from the multiplexing means (8) and outputting a digitally converted signal (12) to a digital processing unit (19).

3. (Currently Amended) I/Q- Demodulator The I/Q demodulator according to claim 2,

characterized in that wherein the A/D converter (10') has an adaptive sampling rate.

4. (Currently Amended) I/Q- Demodulator The I/Q demodulator according to claim 2,

characterized in that wherein the digital processing unit (19) comprises an adaptive baseband filtering unit (23).

5. (Currently Amended) I/Q-Demodulator The I/Q demodulator according to claim 1,

characterized in that wherein the output signal signals of the plurality of power sensors (13) can be are selectively passed through different low-pass-filters (14) having different cut-off-frequencies.

6. (Currently Amended) I/Q-Demodulator The I/Q demodulator according to claim the claim 5,

characterized by wherein said I/Q demodulator further comprises switches (15) for the selection of selecting the different low-pass-filters (14).

- 7. (Currently Amended) I/Q-Demodulator The I/Q demodulator according to claim
 1,
 characterized in that wherein the n-port structure is a five-port-junction (1).
- 8. (Currently Amended) I/Q-Demodulator The I/Q demodulator according to claim 1,

characterized in that wherein the n-port structure is a four-port-junction (16) and the demodulator is a (M)QAM or a (M)PSK demodulator.

9. (Currently Amended) I/Q-Demodulator The I/Q demodulator according to claim 1,

characterized in that wherein the multiplexing means is a DC-switch (8) with a switching time of $\frac{1}{n-2}$ times the a symbol duration.

10. (Currently Amended) I/Q-Demodulator The I/Q demodulator according to claim 1,

characterized in that wherein before or after the multiplexing means (8) at least one DC-amplifier (17) is provided.

11. (Currently Amended) I/Q-Demodulator The <u>I/Q demodulator</u> according to claim1,

characterized by further comprising a low-pass-filter (20) following the multiplexing means (8) and , said low-pass filter having a cut-off-frequency of $\frac{n-2}{2} \cdot B$, whereby the output signal signals of the plurality of power sensor (13) is a sensors are low-pass-filtered with a cut-off-frequency of $\frac{B}{2}$ and , where B is the a maximum bandwidth of the RF signal (2) to be demodulated.

12. (Currently Amended) I/Q-Demodulator The I/Q demodulator according to claim 1,

characterized in that wherein the n-port (1, 16) structure, the power-sensors (7) plurality of power sensors and said multiplexing means (8) are integrated on one a single chip (18).

13. (Currently Amended) Software A software radio device

characterized in that it wherein said radio device comprises an I/Q-demodulator (21)

according to claim 1.

- 14. (Currently Amended) Method A method for I/Q-demodulation, said method comprising the following steps of:
- [[-]]inputting a RF-signal (2) first RF signal to be demodulated in a an n-port structure (1),
 - [[-]]inputting a second RF-signal (4) RF signal in a an n-port structure (1),
- [[-]]detecting (7) the power on of n-2 output signals (6) of a plurality of output sensors of the n-port structure (1), n being 4, 5 or 6,
 - [[-]]low-pass-filtering (14) the detected power signals (13), and
 - [[-]]multiplexing the low-pass-filtered power signals (9).
- 15. (Currently Amended) Method The method according to claim 14, characterized by said method further comprising the step of: supplying a single A/D converter (10) with the multiplexed power signals and outputting a digitally converted signal (12) to a digital processing unit (19).
- 16. (Currently Amended) Method The method according to claim 15, characterized by said method further comprising the step of: adapting the a sampling rate of the A/D converter (10) depending on the a bandwidth of the RF signal (2) to be demodulated.
- 17. (Currently Amended) Method The method according to claim 14,

 characterized in that wherein the power signals (13) can be are selectively filtered

 (14) with different cut-off-frequencies.

- 18. (Currently Amended) Method The method according to claim 14, characterized in that wherein the step of multiplexing is implemented by a DC-switch (8) with a switching time $\frac{1}{n-2}$ of the a symbol duration.
- 19. (Currently Amended) Method The method according to claim 14, characterized in that wherein the multiplexed power signals are low-pass-filtered (20) with a cut-off-frequency of $\frac{n-2}{2} \cdot B$, whereby the non-multiplexed power signals are low-pass-filtered with the a cut-off-frequency of $\frac{B}{2}$, where B is the a maximum bandwidth of the RF signal (2) to be demodulated.

 \rangle