AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 10/724,164

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (Currently amended): A memory system comprising:

a plurality of memory modules provided with memory areas for holding data and buffer sections for sending and receiving the data;

a hard disk device to which the data stored in said memory modules is copied at predetermined time periods;

a control device for which, in replacing when an arbitrary memory module is being replaced, switching switches an operational mode of a ring bus from a unidirectional bus capable of sending and receiving a signal unidirectionally, to a bi-directional bus capable of either sending or receiving a signal unidirectionally to a bi-directional bus capable of sending and receiving a signal bi-directionally, detecting detects an address space of said memory module to be replaced, and accessing accesses a memory area in said hard disk device corresponding to the detected address space at the time when an access to said memory module to be being replaced is requested; and

a CPU which controls said control device for access operation to said memory modules,

wherein said buffer sections are connected in series to form the ring bus with said control device, each having a buffer circuit for causing said ring bus to operate as said unidirectional bus or said bi-directional bus in accordance with an instruction from said control device, and

wherein said control device comprises:

a first buffer circuit for receiving a signal from one input/output end of the ring bus;

a second buffer circuit for sending a signal to one input/output end of the ring bus;

U.S. Application No.: 10/724,164

a third buffer circuit for receiving a signal from the other input/output end of the ring bus; and

a fourth buffer circuit for sending a signal to the other input/output end of the ring bus.

2. (Currently amended): A memory system comprising:

a plurality of memory modules provided with memory areas for holding data and buffer sections for sending and receiving the data;

a hard disk device to which the data stored in said memory modules is copied <u>at</u> <u>predetermined time periods</u>;

a storage to which data stored in an arbitrary memory module is temporarily copied;

a control device forwhich, in replacing-when an arbitrary memory module is being replaced, switching switches an operational mode of a ring bus from a unidirectional bus capable of either sending or receiving a signal unidirectionally, to a bi-directional bus capable of sending and receiving a signal bi-directionally, detecting detects an address space of said memory module to be replaced, copying-copies data corresponding to the detected address space from said hard disk device to said storage, and accessing-accesses a memory area in said storage corresponding to the detected address space at the time when an access to said memory module to be being replaced is requested; and

a CPU which controls said control device for access operation to said memory modules, wherein said buffer sections are connected in series to form the ring bus with said control device, each having a buffer circuit for causing said ring bus to operate as said unidirectional bus or said bi-directional bus in accordance with an instruction from said control device, and

wherein said control device comprises:

a first buffer circuit for receiving a signal from one input/output end of the ring bus;

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 10/724,164

a second buffer circuit for sending a signal to one input/output end of the ring bus;

a third buffer circuit for receiving a signal from the other input/output end of the ring bus;

and

a fourth buffer circuit for sending a signal to the other input/output end of the ring bus.

3. (Original): The memory system according to claim 1, further comprising a short-

circuit device for, when an arbitrary memory module is replaced, recovering bus connection

which is disconnected by removing said memory module.

4. (Original): The memory system according to claim 2, further comprising a short-

circuit device for, when an arbitrary memory module is replaced, recovering bus connection

which is disconnected by removing said memory module.

5. (Currently amended): A memory system comprising:

a plurality of memory modules provided with memory areas for holding data and buffer

sections for sending and receiving the data;

a hard disk device to which the data stored in said memory modules is copied at

predetermined time periods;

a storage to which data stored in an arbitrary memory module is temporarily copied;

a short-circuit device forwhich, in replacing-when an arbitrary memory module is being

replaced, recovering recovers a bus connection which is disconnected by removing said memory

module to be being replaced;

a control device forwhich, in replacing when an arbitrary memory module is being

replaced, detecting detects an address space of said memory module to be being replaced,

4

Atty Docket No. Q78699

AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. Application No.: 10/724,164

eopying copies data corresponding to the detected address space from said hard disk device to said storage, and accesses a memory area in said storage corresponding to the detected address space at the time when an access to said memory module to be being replaced is requested; and

a CPU which controls said control device for access operation to said memory modules, wherein said buffer sections are connected in series to form a unidirectional bus capable of either sending or receiving a signal unidirectionally, and

wherein said control device comprises:

- a first buffer circuit for receiving a signal from one input/output end of the ring bus;
- a second buffer circuit for sending a signal to one input/output end of the ring bus;
- a third buffer circuit for receiving a signal from the other input/output end of the ring bus;

and

- a fourth buffer circuit for sending a signal to the other input/output end of the ring bus.
- 6. (Original): The memory system according to claim 3, wherein said short-circuit device is a dummy module which is inserted instead of said memory module to be replaced and is provided with a short-circuit line for short-circuiting bus connection which is disconnected by removing said memory module.
- 7. (Original): The memory system according to claim 4, wherein said short-circuit device is a dummy module which is inserted instead of said memory module to be replaced and is provided with a short-circuit line for short-circuiting bus connection which is disconnected by removing said memory module.

AMENDMENT UNDER 37 C.F.R. § 1.111 Atty Docket No. Q78699

U.S. Application No.: 10/724,164

8. (Original): The memory system according to claim 5, wherein said short-circuit device is a dummy module which is inserted instead of said memory module to be replaced and is provided with a short-circuit line for short-circuiting bus connection which is disconnected by removing said memory module.

9. (Original): The memory system according to claim 3, wherein said short-circuit device is an FET switch, which is provided in association with said memory modules, respectively, for short-circuiting or opening bus connection which is disconnected by removing said memory module, and

in replacing an arbitrary memory module, said control device generates a control signal for turning ON the FET switch provided in association with said memory module to be replaced and turning OFF the FET switches provided in association with the other memory modules.

10. (Original): The memory system according to claim 4, wherein said short-circuit device is an FET switch, which is provided in association with said memory modules, respectively, for short-circuiting or opening bus connection which is disconnected by removing said memory module, and

in replacing an arbitrary memory module, said control device generates a control signal for turning ON the FET switch provided in association with said memory module to be replaced and turning OFF the FET switches provided in association with the other memory modules.

11. (Original): The memory system according to claim 5, wherein said short-circuit device is an FET switch, which is provided in association with said memory modules,

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 10/724,164

Atty Docket No. Q78699

respectively, for short-circuiting or opening bus connection which is disconnected by removing said memory module, and

in replacing an arbitrary memory module, said control device generates a control signal for turning ON the FET switch provided in association with said memory module to be replaced and turning OFF the FET switches provided in association with the other memory modules.

- 12. (Currently amended): The memory system according to claim 3, wherein said shortcircuit device is a connector, which is provided in association with said memory modules, respectively, and is provided with short-shorting pins which short-circuits bus connection, which is disconnected by removing said memory module, at the time when said memory module is removed, and releases the short-circuit at the time when said memory module is inserted.
- 13. (Currently amended): The memory system according to claim 4, wherein said shortcircuit device is a connector, which is provided in association with said memory modules, respectively, and is provided with shorting short-pins which short-circuits bus connection, which is disconnected by removing said memory module, at the time when said memory module is removed, and releases the short-circuit at the time when said memory module is inserted.
- 14. (Currently amended): The memory system according to claim 5, wherein said shortcircuit device is a connector, which is provided in association with said memory modules. respectively, and is provided with shorting short-pins which short-circuits bus connection, which is disconnected by removing said memory module, at the time when said memory module is removed, and releases the short-circuit at the time when said memory module is inserted.

U.S. Application No.: 10/724,164

15. (Previously presented): The memory system according to claim 2, wherein said storage is a memory module for mirroring which is provided with a memory area for holding data and a buffer section for sending and receiving data.

16. (Previously presented): The memory system according to claim 5, wherein said storage is a memory module for mirroring which is provided with a memory area for holding data and a buffer section for sending and receiving data.

17. (Original): The memory system according to claim 2, wherein said storage is a memory for graphics.

18. (Original): The memory system according to claim 5, wherein said storage is a memory for graphics.

- 19. (Original): The memory system according to claim 2, wherein said storage is free memory areas of the other memory modules excluding said memory module to be replaced.
- 20. (Original): The memory system according to claim 5, wherein said storage is free memory areas of the other memory modules excluding said memory module to be replaced.

21-38. (Canceled).