Lineare Algebra - Übungsblatt 3

Bearbeitet von: Marcel Herd (1527440), Manuel Schwalm (1525044)

Abgabe: 14.04.2016

Dozent: Prof. Dr. Lutz Strüngmann

Aufgabe 15:

Die angegebenen Vektoren sind die Basis des \mathbb{R}^3 , wenn $\begin{pmatrix} 4 \\ 2 \\ -3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ und $\begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}$ linear unabhängig sind.

Prüfen auf lineare Unabhängigkeit:

I:
$$4a = -2$$

II: $2a + 2b = -2$
III: $-3a + b = 1$

$$I': a = -0.5$$

 $a = -0.5$ in $II:$
 $2 * (-0.5) + 2b = -2$
 $-1 + 2b = -2 \mid +1$
 $2b = -1 \mid :2$
 $b = -0.5$

Prüfen:
$$a = -0.5$$
 und $b = -0.5$ in I, II und III
I: $4 * (-0.5) = -2$
 $-2 = -2$ ✓

II:
$$2 * (-0.5) + 2 * (-0.5) = -2$$

 $-1 - 1 = -2$
 $-2 = -2$

III:
$$-3 * (-0.5) + 1 * (-0.5) = 1$$

 $1.5 - 0.5 = 1$
 $1 = 1 \checkmark$

Da die Vektoren linear unabhängig sind, bilden sie die Basis des \mathbb{R}^3 !

Aufgabe 17:

$$\begin{split} &U_1 = \{x \in \mathbb{R}: 2x_1 + 3x_2 - x_3 = 0\} \\ &\text{Vektor:} \begin{pmatrix} 2x_1 \\ 3x_2 \\ -x_3 \end{pmatrix} \text{kann gebildet werden durch: } x_1 * \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + x_2 * \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} + x_3 * \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}. \end{split}$$

Dies ist damit sowohl Erzeugendensystem und Basis.

Beweis: zeige auf lineare Unabhängigkeit.

$$I: 2x_1 = 0$$

 $II: 3x_2 = 0$
 $III: 0 = -x_3$

Da alle 3 Gleichungen nur durch setzen von $x_1 = x_2 = x_3$ = 0 gelöst werden kann, sind die 3 Funktionen linear unabhängig!

Da die Basis der Vektorengleichung aus 3 Basisvektoren besteht, ist die Dimension $\dim(U_1)=3$.