Multimedia Lecture 3

Dr. Mona M.Soliman

Faculty of Computers and Artificial Intelligence
Cairo University
Feb 2020

Variable Length Coding

abaacaadaa (10 Symbols)

P(a)=7/10, P(b)=1/10, P(c)=1/10, P(d)=1/10

Binary System assigns 2 Bits for Each Symbol

Symbol Count Code Code Total **Bits** Length 0014 a b 01 10 C d 11

00010000100000110000

Symbols Can be stored in 20 Bits

We can Use Variable Length Codes for different Symbols

2

Symbol	Count	Code	Code Length	Total Bits
а	7	0	1	7
b	1	10	2	2
С	1	110	3	3
d	1	111	3	3

010001100011100

Symbols Can be stored In 15 Bits

1

Variable Length Coding (VLC)

4

abaacaadaa (10 Symbols)

P(a)=7/10, P(b)=1/10, P(c)=1/10, P(d)=1/10

Another Variable Length Codes for different Symbols

Symbol	Count	Code	Code Length	Total Bits
а	7	0	1	7
b	1	1	1	1
С	1	01	2	2
d	1	00	2	2

010001000000

Symbols Can be stored in 12 Bits

Another Variable Length Codes for different Symbols

Symbol	Count	Code	Code Length	Total Bits
а	7	10	2	14
b	1	0	1	1
С	1	111	3	3
d	1	110	3	3

100101011110101101010

Symbols Can be stored In 21 Bits

Confusing Codes

abaacaadaa (10 Symbols)

P(a)=7/10, P(b)=1/10, P(c)=1/10, P(d)=1/10

3

Symbol	Count	Code	Code Length	Total Bits
а	7	0	1	7
b	1	1	1	1
С	1	01	2	2
d	1	00	2	2

01000100000

Prefix Conditional Code Generation

No Symbol Code is a prefix of any other Symbol Code

Generation of Prefix Conditional Codes

Generation of Prefix Conditional Codes

Generation of Prefix Conditional Codes

Entropy

Entropy

Entropy is the average amount of information contained in each message received.

Entropy is a measure of *information content*: the number of bits *actually* required to store data.

Information content "I"associated with any symbol "S" is reversely proportional to its probability

$$I(S) = Log_2 \{1/P(S)\}$$

Information Content "I" associated with ALL Symbols (S0, S1, S2, ..Sn)=

I(All Symbols)=
$$Log_2 \{1/P(S_1)\} + Log_2 \{1/P(S_2)\} + Log_2 \{1/P(S_3)\} + ... + Log_2 \{1/P(S_n)\}$$

$$I(AllSymbols) = \sum_{i=0}^{i=n} \log_2 \{1/P(S_i)\}$$

Average Information Content "H" associated with ALL Symbols (S0, S1, S2, ..Sn)=

```
H(S)=1/M [m_1 Log_2 {1/P(S_1)} + m_2 Log_2 {1/P(S_2)} + m_3 Log_2 {1/P(S_3)} + ... + m_n Log_2 {1/P(S_n)}]
```

Where S_1 is repeated m_1 times, S_2 , is repeated m_2 times, , ... and Total Number of Symbols $M = m_1 + m_2 + ... m_n$

```
H(S)=(m_1/M) Log_2 \{1/P(S_1)\} + (m_2/M) Log_2 \{1/P(S_2)\} + (m_3/M) Log_2 \{1/P(S_3)\} + ... + (m_n/M) Log_2 \{1/P(S_n)\}
```

$$H(S)=(P(S_1) Log_2 \{1/P(S_1)\} + (P(S_2) Log_2 \{1/P(S_2)\} + (P(S_3) Log_2 \{1/P(S_3)\} + ... + (P(S_n) Log_2 \{1/P(S_n)\} + ... + (P(S_$$

$$H(S) = \sum_{i=0}^{i=n} P(S_i) \log_2 \{1/P(S_i)\}$$

$$H(S) = \sum_{i=0}^{i=n} P(S_i) \log_2 \{1/P(S_i)\}$$

Calculate Entropy for the following Data a b a a c a a d a a

Symbol	P(S)	Log ₂ [1/P(S)]	P(S) * Log ₂ [1/P(S)]
а	0.7	0.5145	0.36
b	0.1	3.3219	0.33219
С	0.1	3.3219	0.33219
d	0.1	3.3219	0.33219

Shannon Source Coding Theorem

For a Discrete Memoryless System (Where no Prediction is Allowed)
The maximum level of compression can be reached is the Entropy H(S) measured in Bits/ Symbol

Entropy Calculation Example

```
abaacaadaa (10 Symbols)
P(a)=7/10, P(b)=1/10, P(c)=1/10, P(d)=1/10
```

$$H(S) = \sum_{i=0}^{i=n} P(S_i) \log_2 \{1/P(S_i)\}$$

| <u>Note:</u> |log₂ X= log₁₀ X / log₁₀ 2=

 $\log_{10} x / \log_{10} z$ $\log_{10} x / 0.301$

```
H(S)=0.7* log_2 (1/0.7) + 0.1* log_2 (1/0.1) + 0.1* log_2 (1/0.1) + 0.1* log_2 (1/0.1) = 0.7* 0.515+0.1*3.322*3 = 1.375 Bits / Symbol
```

the Minimum Memory less compression size that can be reached Is 1.375 bits /symbol (e.g. 10 symbols can be stored in 10*1.375=13.75 bits ~=14 bits

Different Codes for Symbols

abaacaadaa (10 Symbols) P(a)=7/10, P(b)=1/10, P(c)=1/10, P(d)=1/10

Coding 1: Binary System

Symbol	Count	Code	Code Length	Total Bits
а	7	00	2	14
b	1	01	2	2
С	1	10	2	2
d	1	11	2	2

Compressed Total = 20 Bits

Coding 2: Huffman

Symbol	Count	Code	Code Length	Total Bits
а	7	0	1	7
b	1	10	2	2
С	1	110	3	3
d	1	111	3	3

Compressed Total = 15 Bits

Compressed (According to Entropy) = 14 Bits

Entropy Calculation Example

$$P(a)=0.17$$
, $P(b)=0.22$, $P(c)=0.15$, $P(d)=0.14$, $P(e)=0.3$, $P(f)=0.02$

$$H(S) = \sum_{i=0}^{i=n} \mathbf{P(S_i) log_2 \{1/P(S_i)\}}$$

Note:

 $\log_2 X = \log_{10} X / \log_{10} 2$

```
H(S)=0.17* \log_2 (1/0.17) + 0.22* \log_2 (1/0.22) + 0.15* \log_2 (1/0.15) + 0.14* \log_2 (1/0.14) + 0.30* \log_2 (1/0.30) + 0.02* \log_2 (1/0.02) = 2.3567 Bits / Symbol
```

the Minimum compression size that can be reached

is 2.3567 bits /symbol

(e.g. 100 symbols can be stored in 100*2.3567=235.67 bits ~=236 bits

Huffman Coding Algorithm

Huffman Coding Algorithm

- Each symbol is a leave node in a tree
- •Combining the two symbols or composite symbols with the least probabilities to form a new parent composite symbols, which has the combined probabilities. Assign a bit 0 and 1 to the two links
- Continue this process till all symbols merged into one root node. For each symbol, the sequence of the 0s and 1s from the root node to the symbol is the code

P(a)=0.17, P(b)=0.22, P(c)=0.15, P(d)=0.14, P(e)=0.3, P(f)=0.02

$$P(e) = 0.3$$

$$P(b) = 0.22$$

$$P(a) = 0.17$$

$$P(c) = 0.15$$

$$P(d) = 0.14$$

$$P(f) = 0.02$$

Order Symbols According to Their probabilities (Descending)

P(e) = 0.3 P(e) = 0.3

P(b)= 0.22 P(b)= 0.22

P(a)= 0.17 P(a)= 0.17

P(c) = 0.15 P(d+f) = 0.16

P(d) = 0.14 P(c) = 0.15

P(f) = 0.02

Compression Ratio

а	17	11	2	34	
b	22	10	2	44	
С	15	001	3	45	
d	14	0000	4	56	
е	30	01	2	60	
f	2	0001	4	8	

Compressed Total = 247 Bits

Uncompressed size=100 Symbol * 3 bits/symbol = 300 Bits

Entropy =2.35 bits/Symbol (for 100 Symbols H=235 bits

Modified Huffman Coding Algorithm

Modified Huffman Coding Algorithm

- •Same steps and concept as Huffman Coding Algorithm
- In order to Minimize Huffman Table size and Codes lengths, set <u>Minimum</u> <u>Limit of Symbol Probabilities</u> (e.g. 0.05)
- Symbols with Probabilities <= the Limit will be grouped in one group called "Others"
- •All Symbols will be coded using Corresponding Huffman codes, Symbols in "Other" group will be coded using both "Others" Huffman code + Original Symbol Code.

ab cazdafc q d a d cu a b a p d

Count (a) = 6

$$P(a) = 0.3$$

P(a) = 0.3

Count (b) = 2

$$P(b) = 0.1$$

Count (c) = 3

$$P(c) = 0.15$$

Count (d) = 4

$$P(d) = 0.2$$

Count (f) = 1

$$P(f) = 0.05$$

Count (z) = 1

$$P(z) = 0.05$$

Count (q) = 1

$$P(q) = 0.05$$

Count (p) = 1

$$P(p) = 0.05$$

P(b) = 0.1

P(c) = 0.15

P(d) = 0.2

P(Others)= 0.25

Symbol	Original Code
a	0000
b	0001
С	0010
d	0011
f	0100
р	0101
q	0110
u	0111
Z	1000

Count (u) = 1

P(u) = 0.05

Modified Huffman Coding Example

Combine Last two Symbols (with Lowest Probabilities), Then reorder the list

Modified Huffman Coding Example

Assign Binary Codes to each branch, Continue

Modified Huffman Coding Example

Symbol	Code
а	00
b	011
С	010
d	11
Others	10

Symbol	Original Code
а	0000
b	0001
С	0010
d	0011
f	0100
р	0101
q	0110
u	0111
	4000

In the following Table

Given Data Symbols (Character) and

Corresponding *Number of Occurrence (Frequency)*

Use Standard Huffman Coding to generate VLC for each Symbol

Char	Freq
Е	125
Т	93
А	80
0	76
I	72
N	71
S	65
R	61
Н	55
L	41
D	40
С	31
U	27

