Exogenous attention and its relationship with working memory contents:

beyond spatial selection

- 3 Fuentes-Guerra, Á. (aguedafgt@ugr.es; ORCID: 0009-0002-4070-3029), Botta, F.
- 4 (fabianobotta@ugr.es; ORCID: 0000-0002-3325-9217), Lupiáñez, J. (jlupiane@ugr.es;
- 5 ORCID: <u>0000-0001-6157-9894</u>), González-García, C.* (<u>cgonzalez@ugr.es</u>; ORCID:
- 6 0000-0001-6627-5777) & Martín-Arévalo, E.* (emartina@ugr.es; ORCID: 0000-0002-
- 7 4546-6440)

1

1

2

- 8 Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC),
- 9 University of Granada, Granada, 18071, Spain *Equal contribution.

10 Abstract

11 To successfully perform everyday activities, cognitive functions such as 12 working memory (WM) and selective attention are necessary. Specifically, when 13 environmental demands are dynamic, exogenous attention is crucial. However, its 14 ability to select and prioritize not only perceptual spatial locations, but also novel 15 stimulus-response (S-R) bindings held in WM remains largely unexplored. By 16 implementing a retro-cueing paradigm on a task that capitalized on WM, the present 17 experiment's aim was two-fold: i) to evaluate whether exogenous cueing effects 18 would not only impact spatial processing but also WM content, and ii) to explore how 19 meta-control states induced by the manipulation of an intervening event (IE) would 20 modulate these effects. We observed (N=50) that exogenous attention led to 21 selection of space, as it is usually observed in spatial exogenous attention paradigms, 22 but also the content associated with that location. Moreover, space selection was 23 modulated by the IE manipulation, which was thought to induce two meta-control 24 states (persistent vs. flexible). As such, the presence of the IE also modulated 25 participants' performance regarding novel vs. repeated stimulus-response mappings, 26 again hinting at an important role of content in this task. This pattern of findings fits 27 well with the concept of event file; a mental representation of all relevant

components assembled at the beginning of a trial (i.e., cue, target, lateralization, meta-control state, etc.), which are retrieved together once one or more of its elements are encountered. Although preliminary, this evidence of exogenous attentional selection of WM through event file activation paves the way for a promising research line.

Keywords: exogenous attention, working memory, event files, meta-control states.

Introduction

Humans tend to take for granted everyday activities by forgetting the actual complexity that they entail. For us, activities like following a recipe are trivial, but a cascade of cognitive functions must be triggered in our minds to achieve it. First, we must voluntarily guide our attention to look for the ingredients in the refrigerator. This is referred to as endogenous/voluntary attention and allows us to select and prioritize relevant information based on goals or preexisting information by biasing sensory recruitment in a top-down/goal-directed manner (Corbetta, Patel & Shulman, 2008; Jonides, 1981). Additionally, some external stimuli, like the strident sound of the oven timer, will automatically attract our attention. This form of bottom-up attentional selection is known as exogenous/involuntary attention and is essential in our adaptation to environmental demands (Jonides, 1981; Posner & Cohen, 1984). Lastly, to successfully cook the dish, we must maintain in our working memory (WM) the specific actions to be executed and their specific order. This temporal storage of information guides flexible and adaptive behavior by manipulating data in an online fashion (Baddeley, 1992; Souza & Oberauer, 2016).

Hence, given the relevance of these cognitive functions for the execution of most daily activities, they have been the spotlight of several seminal and review papers (see e.g., Awh, 2006; Baddeley & Hitch, 1974; Oberauer, 2019; Posner, 1980;

3 55 van Ede & Nobre, 2023; Wolfe, 1994). Particularly, relative to research dedicated to 56 externally directed attention for perception, research on internally directed attention 57 to WM contents is exponentially growing in the recent years (see e.g., Huynh Cong & 58 Kerzel, 2021; Kiyonaga & Egner, 2013; Myers, Stokes & Nobre, 2017; van Ede, 2020; 59 Zokaei et al., 2019). Several authors (Gazzaley & Nobre, 2012; Griffin & Nobre, 60 2003; Gunseli et al., 2015, 2019; Landman et al., 2003; Rerko, Souza & Oberauer, 61 2014; Souza, Rerko & Oberauer, 2014, 2015) have shown that it is possible to guide 62 attention internally and retrospectively towards WM contents in a top-down fashion. 63 Specifically, paradigms that implement retro-cueing (i.e., cues are presented 64 between the offset of memory array and the onset of a probe) have shown effective 65 internal attentional selection of WM contents (Rerko, Souza & Oberauer, 2014; 66 Shepherdson, Oberauer & Souza, 2018; Souza & Oberauer, 2016). However, most 67 have focused on endogenous/voluntary attention (Gunseli, van Moorselaar, Meeter, & 68 Olivers, 2015; Gunseli et al., 2019; Rerko, Souza & Oberauer, 2014; Shepherdson, 69 Oberauer & Souza, 2018; Souza & Oberauer, 2016), and, although some authors 70 even suggest that the retro-cueing effect can be observed with bottom-up (although 71 predictive) retro-cues (Berryhill et al. 2012), research implementing pure 72 exogenous/involuntary retro-cues (i.e., automatic spatially driven and non-predictive) 73 remains quite scarce (see Fuentes-Guerra Toral et al., 2025; Han & Ku, 2022; Han et 74 al., 2023). 75 Parallelly, research on exogenous/involuntary attention has mostly focused on 76 human perception through the spatial domain, by mostly implementing versions of 77 the classical Spatial Orienting Paradigm (Chica et al., 2012; 2014; Posner, 1980). 78 Essentially, two main effects tend to be observed depending on the cue-target onset 79 asynchronies (CTOAs): facilitation (i.e., faster reaction times (RTs) for target at cued

as compared to uncued locations) at short CTOAs, and Inhibition of Return (IOR; an

attentional cost at previously-cued locations) at longer CTOAs (Lupiáñez, Martín-

80

Arévalo & Chica, 2013; Posner and Cohen, 1984; Posner et al., 1985). However, not only CTOAs must be considered to observe and modulate theses effects, but other key factors such as task settings, type of task (e.g., detection vs. discrimination tasks; observing more facilitation in the latter), or the presence of an intervening event (IE; i.e., a flash at fixation between cue and target, which reduces that facilitation and favors the observation of IOR, especially in discrimination tasks; see Chica et al., 2014 for a review). Critically, until now, works on this paradigm (Lupiáñez et al., 2013; Martín-Arévalo, Chica & Lupiáñez, 2013, Martín-Arévalo et al., 2021) have paid little attention to the content of the stimuli presented in the task, as a key factor in the interaction between attention and WM. Some authors, however, already hint at a relation between exogenous/involuntary attention and WM contents (Botta et al., 2010; 2014; Hu & Samuel, 2010; Hu, Samuel & Chan, 2011; Spadaro, He, & Milliken, 2012; van Ede, Board and Nobre, 2020; Fuentes-Guerra et al., 2025). For instance, van Ede, Board and Nobre (2020) showed that involuntary retro-cues (but central and symbolic, with 50% predictability) led to the selection of WM contents.

However, this relationship with purely exogenous retro-cues remains largely unexplored. In a recent set of experiments (Fuentes-Guerra Toral et al., 2025), we manipulated exogenous cueing, CTOAs and stimulus-response (S-R) associations and we obtained robust evidence that spatially driven exogenous non-predictive retrocues seem to select and prioritize complex WM contents by showing a facilitation effect. In this line, the Binding and Retrieval in Action Control (BRAC; Frings et al., 2020) provides a common ground for the integration of research on visual search, attentional selection and action control, which fits very well with the cue-target integration theory (Lupiáñez, 2010; Lupiáñez et al., 2013) in explaining such exogenous/involuntary effects. It suggests that features of the stimulus environment, a response in that environment and its subsequent effects are integrated into an "event file": a "mental representation" in which all the elements related to a specific

event are included (Theory of Event Coding (TEC); Hommel, 1998; 2019). In this regard, by elements we mean the encoding of some content (as in retro-cueing WM paradigms), the potential exogenous retro-cue, the content itself (e.g., stimulus, response, the laterality of the response, etc.) as well as the meta-control state and goals adopted when performing the specific task at hand (Dignath et al., 2019; Hommel, 2019, 2022; Whitehead, Pfeuffer & Egner, 2020).

5

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Concerning meta-control states in particular, it has been theorized that a task can be approached in a continuum between two modes (Hommel, 2019, 2022): one characterized by extreme persistence (with strong impact of the current goal and strong mutual competition between alternative decisions; cognitive/behavioral exploitation); and, the opposite case, where there is extreme flexibility (the current goals have a weak impact and poor competition; cognitive/behavioral exploration) (Dreisbach & Fröber, 2019; Hommel, 2019). In fact, the attentional state with which the person approaches the task, that is, the meta-control state, can be induced through experimental manipulations in spatial exogenous attention. Martín-Arévalo and colleagues (2021) showed that - by using a classical spatial exogenous cueing paradigm - different attentional sets could be induced by manipulating the percentage of trials in which an IE was present in a discrimination task. Specifically, the presence of an IE in most trials changed the net exogenous effect into less positive/facilitatory (or more negative values/IOR effect). That is, the IE affected in a global manner how cue and target were integrated, leading to less integration and consequently, less facilitatory effect (Lupiáñez, 2010; Lupiáñez et al., 2013). In the context of retro-cueing paradigms, the presentation of an IE, by hindering retro-cue and target integration, could lead to a more explorative meta-control state. Conversely, the absence of IE, through a more straightforward integration of retrocue and target, could lead to a more exploitative state where goals have a stronger impact.

6
136
137 propo
138 in the
139 mode
140 cues;
141 spatia
142 more
143 (manif

Summarizing, the current preregistered study builds upon recent theoretical proposals about selective attention (Myers et al., 2017; cue-target integration theory in the spatial domain, Lupiáñez, 2010; Lupiáñez et al., 2013), and the BRAC and TEC models (Frings et al., 2020; Hommel, 2019) to investigate how pure exogenous retrocues; i.e., spatially driven exogenous non-predictive retro-cues, can select both spatial location and WM contents. The main aim is to conceptualize the phenomenon more extensively by exploring how it is modulated by the induced meta-control states (manipulating IEs across blocks) in WM contents (i.e., by presenting novel as compared to repeated content across trials, that have proven to modulate exogenous effects in classical exogenous experiments in the perceptual domain).

Specifically, based on Hommel's proposal of partial repetition costs (Hommel, 2004) - which refers to the cognitive load or processing difficulty experienced when only some elements of a task are repeated as opposed to all elements or none -, we hypothesized that exogenous retro-cues would prioritize both the location and associated object held in WM, resulting in the fastest RTs when both were retro-cued (i.e., retro-cue in the same location as the target and selected object the same as target -Cued Location, Cued Object; CLCO-), secondly, when none of them was retro-cued (i.e., retro-cue in the opposite location as the target and selected object different from the target -Uncued Location, Uncued Object; ULUO-); and last, responses being slowest in the two possible cases when one of them was retro-cued but not the other (i.e., retro-cue in the same location as target and selected object different from the target -Cued Location, Uncued Object; CLUO- or retro-cue in the opposite location as the target and selected object same as the target -Uncued Location, Cued Object; ULCO-).

Secondly, considering the event file as a representation that contains all the information of the trial, pure exogenous effects can lead to behavioral facilitation under a persistent meta-control state and, in contrast, reduce the facilitation/or

increase IOR under a flexibility bias (Martín-Arévalo, Chica, & Lupiáñez, 2013; Martín-Arévalo et al., 2016; 2021). We hypothesized that the absence of IE would lead to a persistent meta-control state (by inducing a facilitatory effect), while the induction of a flexible meta-control state via the presence of IE might favor top-down segregation (IOR effect). Specifically, we expected that meta-control states would modulate the effect of exogenous attention on retro-cued locations but not content since the IE was spatial in nature (Hu et al., 2010; 2011).

Additionally, we also hypothesized that the experimentally induced meta-control states would modulate the retrieval of novel (WM) vs. repeated S-R mappings (Dreisbach & Fröber, 2019; Hommel, 2015). Specifically, differences between novel and repeated S-Rs were expected to be larger in no-IEs than IEs blocks, given the increased flexibility in the latter. By lowering the updating threshold in WM (Dreisbach & Fröber, 2019), this induced flexibility could result in more similar RTs in both conditions (novel and repeated) compared to when there is no continuous disruption of information integration, less flexibility and a more goal-directed mindset from which repeated trials should specially benefit.

Lastly, we expected novelty (novel or repeated content across trials) to modulate the strength with which exogenous attention prioritizes both space and content (Whitehead, Pfeuffer & Egner, 2020), in this sense, the interaction between the location and object cueing should be larger in novel trials compared to repeated trials since the content component of the event file should be more critical for optimal behavior in the former case (Summerfield & Egner, 2009).

Methods

Data Availability. Raw data and analysis scripts for this experiment can be found at (https://osf.io/gz8ja/?view_only=2bd63bc8915e402a8749057149a0e45d). The hypotheses and analysis plan were preregistered prior to data collection and can be found at https://aspredicted.org/SO7_83V.

8 Participants. Fifty-seven naïve volunteers participated in this experiment, 190 191 192 193 194 195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

although seven of them were excluded from the analyses due to an error rate higher than 40% in regular and catch trials (see preregistration). Thus, the final sample size was 50 (40 females, mean age of 21.1 years, SD=3.1). We determined the sample size a priori, based on previous experiments using a similar spatial exogenous paradigm (Martín-Arévalo, Chica & Lupiáñez, 2013; Lupiáñez, Martín-Arévalo & Chica, 2013; Martín-Arévalo, Botta, De Haro & Lupiáñez, 2021).

Participants were recruited through the experiments' website (https://ugrcimcyc.sona-systems.com) of the research center where the study took place, the Centro de Investigación Mente, Cerebro y Comportamiento (CIMCYC). The prerequisites for participation in the present study were to be above 18 years old, to have normal or corrected to normal vision and to give a written consent. Moreover, participants were monetarily compensated (5€ per half an hour) after completing their partaking. The experiment was conducted in accordance with the ethical guidelines laid down by the Department of Experimental Psychology, University of Granada, in conformity with the ethical standards of the 1964 Declaration of Helsinki (last update: Brazil, 2013). The experiment was part of a larger research project approved by the University of Granada Ethical Committee (1816/CEIH/2020).

Apparatus, stimuli, and procedure. We conducted the experiment on a computer with an Intel Core i7-3770 CPU @ 3.40GHz x8 processor, connected to a 24 inches Beng XL2411T monitor with a 1920x1080 (16:9) pixel resolution and 350 cd/m² of brightness. Participants sat at a viewing distance of approximately 65 cm. The presentation of stimuli and data acquisition were controlled with PsychoPy 2021.2.3 throughout the whole experiment.

The experimental display consisted in the presentation of two placeholders, one on each side of the fixation point, which was presented right in the middle of the screen (position [relative to the center] of x = 0, y = 0). Each placeholder box had a

size of 200 x 200 pixels, and the border of the box comprised an extra 10 pixels. The left box was in the position (x = -250, y = 75) and the right one in (x = 250, y = 75). Inside of each placeholder an image of 200 x 200 pixels appeared at the beginning of each trial. These images of animate (non-human animals) and inanimate (vehicles and instruments) items were compiled from different available databases (Brady et al., 2008, 2013; Brodeur et al., 2014; Griffin et al., 2022; Konkle et al., 2010), creating a pool of 1550 unique pictures (770 animate items, 780 inanimate). To increase perceptual distinctiveness and facilitate recognition, the background was removed from all images, items were centered in the canvas, and images were converted to black and white. Additionally, we created peripheral cues by increasing the outline of one of two placeholder boxes from 10 to 30 pixels. Moreover, the IE was created by presenting a smaller box of 175 x 175 pixels centered around the fixation point.

The experiment consisted of a choice-reaction task embedded in an pure exogenous retro-cueing paradigm. The sequence of events in each trial is illustrated in Fig.1. Each trial began with the presentation of the encoding display -containing the fixation point, the two placeholders and two images- for a duration of 1000 ms. Participants were instructed to encode (or retrieve, see below) a stimulus-response (S-R) mapping in which they had to associate each stimulus with a specific bimanual response depending on its location on the screen. Specifically, participants were instructed at the beginning of the experimental session to associate stimuli to the left of the fixation point to bimanual index finger responses, and stimuli to the right to bimanual middle finger responses and to ignore any additional stimuli that could possibly appear between encoding and probe presentation (i.e., the retro-cue and the IE, see below). The location-response contingency was constant during the experiment but counterbalanced across participants. Bimanual index and middle responses were used to fully orthogonalize the location of the stimulus on the screen

with the response location. In 50% of the trials, a completely new pair of images 244 245 appeared and therefore S-R associations were new ("novel S-Rs"). Novel mappings 246 never repeated and appeared only once throughout the experiment. In the remaining 247 50% of trials, the same two images were displayed always in the same position, thus leading to the exact same pair of S-R associations throughout the whole experimental 248 249 session, which we labeled "repeated S-Rs". Next, an interval, composed by the two empty placeholders and the fixation point, appeared for 500ms (see Souza & 250 Oberauer, 2016). Immediately after, the peripheral non-predictive retro-cue was 252 presented for 50 ms in one of the two possible locations with equal probability (50%; 253 i.e., totally unpredictive for both location and object). After the peripheral retro-cue 254 had disappeared, a fixation display was presented for a jittered duration of 400-500 255 ms. Additionally, in one of the two blocks, an IE would flash for 50 ms on the fixation 256 point. In IE absent blocks, the fixation cross (without flash) was displayed for the 257 same duration to warrant identical retro-cue/target latencies across blocks. Another 258 fixation display was then presented for 400-500 ms. Then, one of the two images (i.e. 259 the target image) was displayed for 1200 ms in one of the two placeholders with 260 equal probability. Participants were instructed to provide the associated response learned at the encoding stage of the trial. Specifically, they had to simultaneously press the "S" and "L" keys on the keyboard with both middle fingers if the target was 262 associated with middle fingers' responses, and "D" and "K" with both index fingers 263 264 simultaneously if index fingers responses were required. In 5% of trials, a completely new picture, different from the two displayed in the encoding screen, and never seen 265 266 before, was shown as the target. In those cases, which we labeled "catch trials", 267 participants were instructed to press the spacebar with their thumbs. These trials 268 were included to prevent participants from adopting strategies to reduce the WM load (e.g., encoding just the left item and then treating the target as a go-no go task). 269 270 The inter-trial interval, in which the screen remained empty, lasted 1000-1500 ms.

10

251

Figure 1.

272 Sequences of events in each trial.

Note. ERI: encoding retro-cue interval.ISI: inter-stimulus interval. ITI: inter-trial interval. CTOA: cuetarget onset asynchrony.

Participants completed 2 blocks (in counterbalanced order across participants), one with IEs (100% of trials) and one without IEs (0%), of 168 trials each (160 regular trials, 8 catch ones), for a total of 336 trials. For each cell of the design (see below), participants performed 20 regular trials.

Prior to the main task, participants performed a practice phase with a similar task that did not include retro-cues nor IEs. This practice phase consisted of one

block of 16 trials (14 regular and 2 catch), which participants repeated until they achieved an accuracy of at least 85%. The images used in the practice phase were not used during the main task. The total duration of the experiment was around 40 minutes.

Design. The experiment consisted of a 2x2x2x2 full factorial design of four factors in which all variables were counterbalanced within participants: location cueing, object cueing and novelty (all manipulated within trials), and IE (manipulated across blocks).

Location cueing had two levels: *cued location* (the target appeared in the same location as the retro-cue) and *uncued location* (the target appeared in the opposite location of the retro-cue). As such, object cueing also had two levels: *cued object* (the target was the object selected by the retro-cue) and *uncued object* (the target was the object not selected by the retro-cue). Moreover, S-Rs could be novel (for uniquely presented objects) or repeated across trials (for repeated S-R mappings, i.e., for two stimuli which appeared in 50% of the trials always in the same location). Lastly, the IE could be present or absent, but in this case, it was manipulated across blocks (see Martín-Arévalo et al., 2013; 2021), with the order counterbalanced between participants.

Statistical analyses

To test our hypothesis, we performed 21 Generalized Linear Mixed Models (GLMM) (see e.g., Lo & Andrews, 2015) with the raw RT data of correct regular trials (catch trials were excluded) that didn't exceed 1200 ms (8.75% of rejected trials). First, to find the most appropriate random structure, we computed three models. The first model included the random intercept of participant and trial, the second one, the random intercept of participant and, the last one, the random intercept of trial¹. Once

^{13 1} Given the complexity of the experimental design, random slopes were not included since

convergence issues were raised. Nevertheless, a classical ANOVA (see https://osf.io/gz8ja/?

¹⁵ view only=2bd63bc8915e402a8749057149a0e45d) was carried out and the pattern of results mainly

¹⁶ mimicked the one reported below in the results section.

we compared these models by performing an ANOVA, the model with both the random intercept of participant and trial had the smallest AIC and BIC (AIC= 18976.2, BIC=187120.4), and therefore, it was chosen as the model with the most suited random structure. Consequently, we modeled the fixed effects of the model by comparing the model which included the most complex interaction among independent variables to its subsequent one, and so on. After carrying out 18 additional models, we identified the best fixed structure. The selected model included the random intercept of both participant and trial as random structure and for the fixed structure the model comprised an interaction between location cueing and object cueing, an interaction between IE and location cueing, and last, an interaction between IE and novelty. Within this model, we performed an analysis of deviance on RT. All data processing and analyses were carried out with RStudio 2022.02.3 and JASP 0.14.0.0. B. We also performed some exploratory analyses regarding accuracy scores (see https://osf.io/gz8ja/?view_only=2bd63bc8915e402a8749057149a0e45d) and catch trials. Accuracy was considered to exclude participants with an error rate above 40% on regular and/or catch trials. Lastly, p-values in post-hoc comparisons were corrected with the Holm-Bonferroni method.

Results

17

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

The analysis of deviance within the selected GLMM revealed a significant main effect of IE [$X^2(1,N=50)=11.51$, p<.001], with faster responses when IE was present (M=684 ms, SD=99 ms) vs. when it was absent (M=703 ms, SD=104 ms); Location Cueing [$X^2(1,N=50)=64.56$, p<.001], with faster responses in cued location (M=690 ms; SD=102 ms) vs. uncued location trials (M=697, SD=102); Object Cueing [$X^2(1,N=50)=136.96$, p<.001], with faster responses in cued object (M=688 ms; SD=97 ms) compared to uncued object (M=694ms; SD=97 ms); and Novelty [$X^2(1,N=50)=131.70$,p<.001], with faster responses for repeated (M=670

333 ms; SD=95 ms) vs. novel S-R mappings (M=717ms; SD=103 ms). See Table 1 for descriptive statistics.

Table 1.

Descriptive statistics on RTs (ms).

Location Cueing	Object Cueing	Intervening Event	Novelty	Mean	SD
Cued Location	Cued Object	Present	Novel	686.232	106.076
			Repeated	645.978	91.503
		Absent	Novel	697.284	104.298
			Repeated	656.677	104.173
	Uncued Object	Present	Novel	720.651	98.055
			Repeated	689.252	88.858
		Absent	Novel	746.840	100.668
			Repeated	680.182	88.310
Uncued Location	Cued Object	Present	Novel	723.224	102.801
			Repeated	675.289	86.240
		Absent	Novel	747.537	93.611
			Repeated	700.643	89.880
	Uncued Object	Present	Novel	690.430	101.868
			Repeated	643.849	92.402
		Absent	Novel	726.392	105.732
			Repeated	669.589	107.249

337 Note. SD: Standard Deviation

Regarding the first preregistered hypothesis

(https://aspredicted.org/eg7tc.pdf), where we expected pure exogenous retro-cues to modulate not only spatial representation but also the content held in working memory (WM), there was a significant interaction between Location Cueing and Object Cueing [X^2(1,N=50)= 224.32, p<.001], with faster RTs when the retro-cue selected both the target's location and the object [CLCO] (M=672 ms; SD=102 ms); next, when the retro-cue didn't select any of them [ULUO] (M=683 ms; SD=102 ms); on the third place, when the retro-cue selected the location but not the object [CLUO] (M=709 ms; SD=94 ms); and lastly, when it selected the object but not the location [ULCO] (M=712 ms; SD=93 ms). Crucially, pairwise comparisons revealed a

significant distinction between CLCO and ULUO [$X^2(1,N=50)=-9.34$, p=.024] (See Fig. 2).

Figure 2.

Effects of the interaction of Location Cueing and Object Cueing on RTs.

Note. The maximum and minimum Reaction Times' (RTs) values are represented in the whiskers of the box plots. The Interquartile range (IQR) is displayed in the boxes by portraying the lower quartile, median and upper quartile. The half-violin plots represent the distribution of RTs across conditions.

We also obtained evidence for the second hypothesis, which predicted an interaction between Location Cueing and IE [$X^2(1,N=50)=13.29$, p<.001]. In this line, the pairwise comparisons revealed a significant difference between cued location trials (M=695 ms; SD=99 ms) vs. uncued location trials (M=711 ms; SD=99) when IE was absent [$X^2(1,N=50)=-14.71$, p<.001]. In contrast, when IE was present, there were no statistically significant differences between cued and uncued location trials [$X^2(1,N=50)=3.16$, p=.789] (See Fig. 3). Lastly, the interaction of IE and Object Cueing was not part of the selected model and therefore, it was not further tested.

Figure 3.

Effects of the interaction of Intervening Event and Location Cueing on RTs.

Note. The maximum and minimum Reaction Times' (RTs) values are represented in the whiskers of the box plots. The Interquartile range (IQR) is displayed in the boxes by portraying the lower quartile, median and upper quartile. The half-violin plots represent the distribution of RTs across conditions.

As to the third hypothesis, where we expected the metacontrol states (absent/present IE) to modulate the novel vs. repeated S-R mappings, there was also a statistically significant interaction between Novelty and IE [X^(1,N=50)=6.89, p<.001]. Pairwise comparisons revealed that although the difference between novel vs. repeated S-R mappings was significant for both the IE present [X^2(1,N=50)=39.2, p<.001] and IE absent condition [X^2(1,N=50)=52.1, p<.001], the difference (41 ms) was reduced in the IE present block, with faster responses in repeated (M=664, SD=90) vs. novel S-R mappings (M=705, SD=102), compared to the IE absent block (53 ms), which also led to faster responses in repeated (M=677, SD=97) vs. novel S-R mappings (M=730, SD=101) (See Fig. 4). A direct comparison of the Novelty effect between the two conditions (absent/present IE) confirmed that this difference was statistically significant (z=2.67, p=.007).

Figure 4.

Note. The maximum and minimum Reaction Times' (RTs) values are represented in the whiskers of the box plots. The Interquartile range (IQR) is displayed in the boxes by portraying the lower quartile, median and upper quartile. The half-violin plots represent the distribution of RTs across conditions.

The last hypothesis predicted a three-way interaction between Location Cueing, Object Cueing and Novelty. Nevertheless, this effect was not part of the selected model, so it was not further tested.

Discussion

These results suggest that pure exogenous attention selects and prioritizes different contents included in an event file held in WM. In particular, it reveals that exogenous cues can equally select two of the main components of event files: location and object. This is evidenced by the significant difference between CLCO and CLUO, and between CLCO and ULUO. Additionally, these results also align with BRAC and TEC models (Frings et al., 2020; Hommel, 2019), and with the *partial repetition costs* hypothesis (Hommel, 2004): full repetitions of the encoded event file (CLCO or ULUO), led to faster responses, wherein participants had to accept or just reject the event file. However, in partial repetitions (CLUO or ULCO), participants had to partially update the event files leading to longer responses. This outcome presents

22 403 critic 404 WM 6 405 are e 406 cueir 407 lead 408 been 409 tasks

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

critical implications for the understanding on how attentional selection interacts with WM contents since it suggests that all the different features presented on each trial are encoded and retrieved as whole, and this can be triggered automatically by retrocueing one of its dimensions (space/location), although this default activation can lead to slower RTs when there is some conflicting information. Similar effects have been reported in many other domains, like in priming studies with different types of tasks (Mayr et al., 2011; Sohn & Anderson, 2003; Zehetleitner, Rangelov, & Müller, 2012).

In contrast, it could be argued that the pattern of results observed in the current study could be based on encoding-probe congruency rather than being a retro-cueing effect. That is, the fact that the encoded stimuli could be repeated at the same location from encoding to probe could facilitate its retrieval. Nevertheless, this explanation does not account for the statistically significant difference in RTs between CLCO and ULUO. According to the encoding-probe congruency interpretation participants should be equally fast in these two conditions since there is a full repetition of object and location from encoding to probe. However, this is certainly not the case. Participants were significantly faster for CLCO than for ULUO, which suggests that the retro-cue prioritized the selected content. Additionally, this aligns with recent evidence where this encoding-probe spatial congruency was eliminated by centralizing the probe, obtaining robust evidence for a pure exogenous retro-cueing effect (Fuentes-Guerra et al., 2025). However, whether this retrocueing effect is based on a benefit from cued trials and/or a cost from uncued trials can not be disentangled here since neutral retro-cues were not included. The inclusion of neutral retro-cues should be considered in future experiments to clearly distinguish between these two possibilities.

Furthermore, following the idea of event file, in which the different elements of the trial are interrelated, as expected, IE interacted with Location Cueing. More

specifically, in a task that capitalized on WM contents, a significant facilitatory effect was observed, just like in the classical spatial exogenous paradigm especially when using discrimination tasks (Martín-Arévalo, Chica, & Lupiáñez, 2013; Martín-Arévalo et al., 2016; 2021). In the IE absent block we observed a significant facilitation effect. which aligns with a persistent meta-control state (Martín-Arévalo et al., 2021; Hommel, 2019), and thus cognitive, and behavioral exploitation, which in turn led to faster responses in cued trials. On the other hand, the expected IOR on the IE present block was not present, although no significant facilitation was observed (i.e., we observed, as alternatively expected, less positive/facilitatory effect). We predicted IEs to induce a flexible meta-control state, and therefore, cognitive, and behavioral exploration, resulting in faster responses in uncued trials. The obtained results - in terms of facilitation (significant in the IE absent and non-significant in the IE present trials, but no IOR) - may be explained by the difficulty/demands of the current task (Chica et al., 2014), which are higher than those in the classical exogenous spatial tasks in which this effect has been seen, and wherein longer facilitation effects are usually observed (Lupiáñez et al., 1997; Martín-Arévalo et al. 2014; 2016).

Alternatively, if IOR is the result of a detection cost (Lupiáñez et al., 2023), which is specially apparent when the spatial selection benefits are eliminated by the IE, no detection cost would be present in this task as both the cued and the uncued objects and location are already detected and encoded into WM. Future research should investigate whether IOR also operates in the reactivation or retrieval of WM representations, or just in the detection of perceptual representations for their encoding into WM.

As it was also hypothesized, IE interacted with Location Cueing but not with Object Cueing. This may be explained by the fact that the implemented IE was purely spatial and consequently, it already shared a dimension with that type of cueing. In fact, location has proven to be a critical dimension when considering exogenous

24 457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

attentional modulation (Hu et al., 2010; 2011). Nevertheless, this remains as an open question that could be tested with a content related IE (Law. Pratt & Abrams, 1995).

Conversely, as also expected, the effect of IE did interact with WM contents. Under the hypothesized persistent meta-control state (Hommel, 2019), the difference between novel and repeated trials was larger as compared to blocks with IE (where behavioral flexibility, in which there is a weaker influence of the goal, was expected). In IE present trials, in contrast, a more explorative state could support better performance in novel trials (Dreisbach & Fröber, 2019). These results imply that the metacontrol state with which participants approach the task doesn't only affect the impact of the exogenous retro-cue on their performance, but also, the ease with which they are able to discriminate between novel and more declarative/long term memory (LTM) contents, which can also, in turn, be part of that explorative or exploitative mindset, respectively. In this context, regarding novel (WM) and repeated trials, it could be argued that the WM demands of the task in both conditions might be altered as the repeated stimuli could be well-stored in LTM. Nevertheless, even if this was the case, we argue that when the stimuli were repeated, the task should still engage WM mechanisms (Ranganath, & D'Esposito, 2001) through active maintenance and manipulation of that information trial-by-trial (Jonides et al., 2008), since the participants did not know in advance the exact type of trial (novel or repeated) that could be presented.

Last, we hypothesized that Novelty would modulate the strength with which exogenous attention prioritizes both space and content, based on Whitehead and collaborators (2020), who found reduced task-switching costs for probes whose primes were task switches as opposed to repeat trials. Nevertheless, this effect was not present in our results. One possible explanation is that, in this task, several factors that could induce cognitive and behavioral exploration/exploitation were included (Novelty and IE), hence, the modulatory effect of Novelty and its supposed

induced flexibility, might be hindered under the complexity of the design and the variability within so many interactions. Future research could address this issue by evaluating the effects of Novelty on exogenous attention in isolation, avoiding the inclusion of additional factors. This would allow testing whether novelty exerts a modulatory effect in the absence of other overarching influences.

Conclusion

Exogenous attention selected and prioritized both space and associated WM contents, challenging previous conceptualizations. Additionally, pure exogenous effects have proven to influence content integration. In fact, task elements like IE can induce meta-control states, leading to varied results based on task settings.

Therefore, it seems that event files encompass trial elements beyond space, facilitating stimulus interaction but may activate irrelevant information, and that these elements can be prioritized within WM via purely exogenous cues.

Declarations

Funding. This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness [research project PID2020-116342GA-I00 to CGG and EMA, funded by MCIN/ AEI /10.13039/501100011033]. CG-G was also supported by Grant RYC2021-033536-I funded by MCIN/AEI/10.13039/501100011033 and by the European Union Next Generation EU/PRTR. Additionally, this publication was funded by ESF+, CEX2023-001312-M by MCIN/AEI/10.13039/501100011033 and UCE-PP2023-11 by University of Granada. This work is part of the doctoral thesis of AFGT, under the supervision of CGG and EMA.

Conflicts of interest/Competing interests. The authors declare no competing interests.

Ethics approval. The experiment was conducted in accordance with the ethical guidelines laid down by the Department of Experimental Psychology, University of

26 Granada, in conformity with the ethical standards of the 1964 Declaration of Helsinki 511 512 (last update: Brazil, 2013). The experiment was part of a larger research project 513 approved by the University of Granada Ethical Committee (1816/CEIH/2020) 514 Consent to participate. Informed consent was obtained from all individual 515 participants included in the study. 516 Consent for publication. Informed consent was obtained from all individual 517 participants included in the study. 518 Availability of data and materials. The data and materials for all experiments 519 are available at (https://osf.io/gz8ja/? 520 view only=2bd63bc8915e402a8749057149a0e45d) and the experiment was preregistered (https://aspredicted.org/SO7_83V). 521 522 Code availability. The codes for the task design and statistical analyses are 523 available at (https://osf.io/gz8ia/?view_only=2bd63bc8915e402a8749057149a0e45d). 524 Authors' contributions. Águeda Fuentes-Guerra Toral: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data Curation, 525 Writing - Original Draft, Visualization, Project administration. Fabiano Botta: 526 Conceptualization, Validation, Writing - Review & Editing, Supervision. Juan 527 Lupiáñez: Conceptualization, Validation, Writing - Review & Editing, Supervision. 528 Carlos González-García: Conceptualization, Methodology, Software, Validation, 529 530 Writing - Review & Editing Resources, Supervision, Funding acquisition. Elisa 531 Martín-Arévalo: Conceptualization, Methodology, Validation, Resources, Writing -532 Review & Editing, Supervision, Funding acquisition. 533 References Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions between attention and

working memory. Neuroscience, 139(1), 201-208.

Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.

534

535

- 27 537 Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The
- psychology of learning and motivation: Advances in research and theory (Vol. 8,
- pp. 47-89). Academic Press.
- 540 Berryhill, M. E., Richmond, L. L., Shay, C. S., & Olson, I. R. (2012). Shifting attention
- among working memory representations: Testing cue type, awareness, and
- strategic control. Quarterly journal of experimental psychology, 65(3), 426-438.
- 543 Botta, F., & Lupiáñez, J. (2014). Spatial distribution of attentional bias in visuo-
- spatial working memory following multiple cues. *Acta psychologica, 150,* 1-13.
- 545 Botta, F., Santangelo, V., Raffone, A., Lupiáñez, J., & Belardinelli, M. O. (2010).
- Exogenous and endogenous spatial attention effects on visuospatial working
- memory. Quarterly Journal of Experimental Psychology, 63(8), 1590-1602.
- 548 Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory
- has a massive storage capacity for object details. *Proceedings of the National*
- 550 Academy of Sciences, 105(38), 14325-14329.
- 551 Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2013). Real-world objects are not
- represented as bound units: independent forgetting of different object details
- from visual memory. Journal of Experimental Psychology: General, 142(3), 791.
- 554 Brodeur, M. B., Guérard, K & Bouras, M. (2014). Bank of Standardized Stimuli
- 555 (BOSS) Phase II: 930 New Normative Photos. PLoS One, 9 (9). Article e106953,
- 556 10.1371/journal.pone.0106953.
- 557 Chica, A. B., Botta, F., Lupiáñez, J., & Bartolomeo, P. (2012). Spatial attention and
- 558 conscious perception: interactions and dissociations between and within
- endogenous and exogenous processes. *Neuropsychologia*, 50(5), 621-629.
- 560 Chica, A. B., Martín-Arévalo, E., Botta, F., & Lupiánez, J. (2014). The Spatial
- Orienting paradigm: How to design and interpret spatial attention experiments.
- Neuroscience & Biobehavioral Reviews, 40, 35-51.

- 28 563 Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the
- human brain: from environment to theory of mind. *Neuron*, *58*(3), 306-324.
- 565 Dignath, D., Johannsen, L., Hommel, B., & Kiesel, A. (2019). Reconciling cognitive-
- 566 control and episodic-retrieval accounts of sequential conflict modulation:
- Binding of control-states into event-files. *Journal of Experimental Psychology:*
- 568 Human Perception and Performance, 45(9), 1265.
- 569 Dreisbach, G., & Fröber, K. (2019). On how to be flexible (or not): Modulation of the
- 570 stability-flexibility balance. Current Directions in Psychological Science, 28(1),
- 571 3-9.
- 572 Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., ... &
- 573 Philipp, A. (2020). Binding and retrieval in action control (BRAC). *Trends in*
- 574 *Cognitive Sciences, 24*(5), 375-387.
- 575 Fuentes-Guerra, A., Botta, F., Lupiáñez, J., Talavera, P., Martín-Arévalo, E &
- González-García, C. (under review). Journal of Memory and Language.
- 577 Manuscript submitted for publication.
- 578 Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: bridging selective
- attention and working memory. *Trends in cognitive sciences*, 16(2), 129-135.
- 580 Griffin, G., Holub, A., & Perona, P. (2022). Caltech 256 (1.0) [Data set]. CaltechDATA.
- 581 <u>https://doi.org/10.22002/D1.20087.</u>
- 582 Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal
- representations. *Journal of cognitive neuroscience*, 15(8), 1176-1194.
- 584 Gunseli, E., Fahrenfort, J. J., van Moorselaar, D., Daoultzis, K. C., Meeter, M., &
- Olivers, C. N. L. (2019). EEG dynamics reveal a dissociation between storage
- and selective attention within working memory. *Scientific Reports*, 9(1), 13499.
- 587 Gunseli, E., van Moorselaar, D., Meeter, M., & Olivers, C. N. L. (2015). The reliability
- of retro-cues determines the fate of noncued visual working memory
- representations. *Psychonomic Bulletin & Review, 22*(5), 1334-1341.

- Han, S., & Ku, Y. (2022). Mnemonic attention in analogy to perceptual
- attention: harmony but not uniformity. *Psychological Research*, 86(4), 1274-
- 592 1296.
- Han, S., Zhou, H., Tian, Y., & Ku, Y. (2023). Early top-down control of internal
- selection induced by retrospective cues in visual working memory: advantage
- of peripheral over central cues. *Progress in Neurobiology, 230,* 102521.
- 596 Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus-
- response episodes. *Visual cognition, 5*(1-2), 183-216.
- 598 Hommel, B. (2004). Event files: Feature binding in and across perception and action.
- 599 Trends in cognitive sciences, 8(11), 494-500.
- 600 Hommel, B. (2015). Between persistence and flexibility: The Yin and Yang of action
- 601 control. In *Advances in motivation science* (Vol. 2, pp. 33-67). Elsevier.
- 602 Hommel, B. (2019). Theory of Event Coding (TEC) V2. 0: Representing and
- 603 controlling perception and action. Attention, Perception, & Psychophysics,
- *81*(7), 2139-2154.
- 605 Hommel, B. (2022). GOALIATH: A theory of goal-directed behavior. *Psychological*
- 606 Research, 86(4), 1054-1077.
- 607 Hu, F. K., & Samuel, A. G. (2010). Facilitation versus inhibition in non-spatial
- attribute discrimination tasks. Attention, Perception, & Psychophysics, 73, 784-
- 609 796.
- 610 Hu, F. K., Samuel, A. G., & Chan, A. S. (2011). Eliminating inhibition of return by
- changing salient nonspatial attributes in a complex environment. *Journal of*
- 612 Experimental Psychology: General, 140(1), 35.
- Huynh Cong, S., & Kerzel, D. (2021). Allocation of resources in working memory:
- Theoretical and empirical implications for visual search. *Psychonomic bulletin*
- 615 & review, 28(4), 1093-1111.

- 30 616 Jonides, J. (1981). Voluntary versus automatic control over the mind's eye's
- 617 movement. Baddeley, A. Attention and Performance IX Hillsdale, NJ Lawrence
- Erlbaum Associates 187-203.
- 619 Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S.
- 620 (2008). "The Mind and Brain of Short-Term Memory." Annual Review of
- Psychology, 59(1), 193-224. doi:10.1146/annurev.psych.59.103006.093615
- 622 Kiyonaga, A., & Egner, T. (2013). Working memory as internal attention: Toward an
- integrative account of internal and external selection processes. *Psychonomic*
- 624 bulletin & review, 20(2), 228-242.
- 625 Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Conceptual distinctiveness
- supports detailed visual long-term memory for real-world objects. *Journal of*
- 627 experimental Psychology: general, 139(3), 558.
- 628 Landman, R., Spekreijse, H., & Lamme, V. A. (2003). Large capacity storage of
- integrated objects before change blindness. Vision research, 43(2), 149-164.
- 630 Law, M. B., Pratt, J., & Abrams, R. A. (1995). Color-based inhibition of return.
- 631 *Perception & Psychophysics*, *57*(3), 402-408.
- 632 Lo, S., & Andrews, S. (2015). To transform or not to transform: Using generalized
- linear mixed models to analyse reaction time data. Frontiers in psychology, 6,
- 634 1171.
- 635 Lupiáñez, J., Martín-Arévalo, E., & Chica, A. B. (2013). Is Inhibition of Return due to
- attentional disengagement or to a detection cost? The Detection Cost Theory of
- 637 IOR. Psicologica: International Journal of Methodology and Experimental
- 638 *Psychology, 34*(2), 221-252.
- 639 Martín-Arévalo, E., Botta, F., De Haro, V., & Lupiáñez, J. (2021). On the putative role
- of intervening events in exogenous attention. Psychological Research, 85(2),
- 641 808-815.

- 642 Martín-Arévalo, E., Chica, A. B., & Lupiáñez, J. (2013). Task dependent modulation of
- exogenous attention: Effects of target duration and intervening events.
- Attention, Perception, & Psychophysics, 75(6), 1148-1160.
- 645 Martín-Arévalo, E., Chica, A. B., & Lupiáñez, J. (2016). No single electrophysiological
- marker for facilitation and inhibition of return: A review. *Behavioural brain*
- 647 research, 300, 1-10.

- Mayr, S., Buchner, A., Möller, M., & Hauke, R. (2011). Spatial and identity
- 649 negative priming in
- audition: Evidence of feature binding in auditory spatial memory.
- Attention, Perception,
- 652 & Psychophysics, 73(6), 1710-1732.
- 653 Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during
- working memory: beyond sustained internal attention. *Trends in cognitive*
- 655 sciences, 21(6), 449-461.
- Nobre, A. C., & Stokes, M. G. (2020). Memory and attention: the back and forth. *In*
- 657 The Cognitive Neurosciences (pp. 291-300). MIT Press.
- Mayr, S., Buchner, A., Möller, M., & Hauke, R. (2011). Spatial and identity
- 659 negative priming in
- audition: Evidence of feature binding in auditory spatial memory. Attention,
- Perception,
- 662 & Psychophysics, 73(6), 1710-1732.
- Oberauer, K. (2019). Working memory and attention-A conceptual analysis and
- review. Journal of cognition, 2(1).
- Posner, M. I. (1980). Orienting of attention. *Quarterly journal of experimental*
- 666 psychology, 32(1), 3-25.
- 667 Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. *Attention and*
- 668 performance X: Control of language processes, 32, 531-556.

- 32 669 Posner, M. I., Rafal, R. D., Choate, L. S., & Vaughan, J. (1985). Inhibition of return:
- Neural basis and function. *Cognitive neuropsychology, 2*(3), 211-228.
- Ranganath, C., & D'Esposito, M. (2001). Medial Temporal Lobe Activity
- Associated with Active Maintenance of Novel Information. Neuron, 31(5), 865-
- 673 873. doi:10.1016/S0896-6273(01)00411-1
- 674 Rerko, L., Souza, A. S., & Oberauer, K. (2014). Retro-cue benefits in working memory
- without sustained focal attention. *Memory & cognition, 42*(5), 712-728.
- Sohn, M. H., & Anderson, J. R. (2003). Stimulus-related priming during task
- 677 switching. Memory
- 678 & Cognition, 31(5), 775-780.
- 679 Shepherdson, P., Oberauer, K., & Souza, A. S. (2018). Working memory load and the
- retro-cue effect: A diffusion model account. *Journal of Experimental*
- 681 Psychology: Human Perception and Performance, 44(2), 286.
- Sohn, M. H., & Anderson, J. R. (2003). Stimulus related priming during task
- switching. Memory
- 684 & Cognition, 31(5), 775-780.
- 685 Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working
- memory: 13 years of the retro-cue effect. Attention, Perception, &
- 687 *Psychophysics, 78*(7), 1839-1860.
- 688 Souza, A. S., Rerko, L., & Oberauer, K. (2014). Unloading and reloading working
- memory: attending to one item frees capacity. Journal of Experimental
- Psychology: Human Perception and Performance, 40(3), 1237.
- 691 Souza, A. S., Rerko, L., & Oberauer, K. (2015). Refreshing memory traces: Thinking
- of an item improves retrieval from visual working memory. *Annals of the New*
- 693 *York Academy of Sciences, 1339*(1), 20-31.

33 694	Spadaro, A., He, C., & Milliken, B. (2012). Response to an intervening event reverses
695	nonspatial repetition effects in 2AFC tasks: Nonspatial IOR?. Attention,
696	Perception, & Psychophysics, 74(2), 331-349.
697	Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual
698	cognition. Trends in cognitive sciences, 13(9), 403-409.
699	van Ede, F., Board, A. G., & Nobre, A. C. (2020). Goal-directed and stimulus-driven
700	selection of internal representations. Proceedings of the National Academy of
701	Sciences, 117(39), 24590-24598.
702	van Ede, F., & Nobre, A. C. (2023). Turning attention inside out: How working
703	memory serves behavior. Annual review of psychology, 74(1), 137-165.
704	Whitehead, P. S., Pfeuffer, C. U., & Egner, T. (2020). Memories of control: One-shot
705	episodic learning of item-specific stimulus-control associations. Cognition, 199,
706	104220.
707	Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. <i>Psychonomic</i>
708	bulletin & review, 1, 202-238.
709	Zehetleitner, M., Rangelov, D., & Müller, H. J. (2012). Partial repetition costs
710	persist in
711	nonsearch compound tasks: Evidence for multiple-weighting-systems
712	hypothesis.

Attention, Perception, & Psychophysics, 74(5), 879-890.

the National Academy of Sciences, 116(45), 22802-22810.

Zokaei, N., Board, A. G., Manohar, S. G., & Nobre, A. C. (2019). Modulation of the

pupillary response by the content of visual working memory. Proceedings of

713

714

715

716