

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2017 - الموضوع -

+ \(\times \) \(\t

المركز الوطني للتغويم والامتحانات والتوجيه

NS 22

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	شعبة العلوم التجريبية بمسالكها	الشعبة أو المسلك

تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
- يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؛
 - ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة.

مكونات الموضوع

- يتكون الموضوع من ثلاثة تمارين و مسألة، مستقلة فيما بينها، و تتوزع حسب المجالات كما يلي:

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	حساب الاحتمالات	التمرين الثاني
3 نقط	الأعداد العقدية	التمرين الثالث
11 نقطة	دراسة دالة عددية و حساب التكامل و المتتاليات العددية	المسألة

- بالنسبة للمسألة ، ln يرمز لدالة اللوغاريتم النبيري.

الصفحة	1
3 2	

NS 22

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها

التمرين الأول: (3 نقط)

 $A(0\,,\,1\,,\,1)$ نعتبر، في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $\left(O\,,\,\vec{i}\,,\,\vec{j}\,,\,\vec{k}\right)$ ، المستوى $\Omega(0\,,\,1\,,\,-1)$ و شعاعها $\Omega(0\,,\,1\,,\,-1)$ و شعاعها $\Omega(0\,,\,1\,,\,-1)$

ور (z) . (z)

ب- بين أن المستوى (P) مماس للفلكة (S) و تحقق من أن (B(-1,1,0) هي نقطة التماس.

(P) أ- حدد تمثيلا بارامتريا للمستقيم (Δ) المار من النقطة A و العمودي على المستوى (Δ)

C(1,1,0) في النقطة (S) مماس للفلكة (S) مماس للفلكة (Δ) مماس بين أن المستقيم (Δ) مماس للفلكة (S)

OCB و استنتج مساحة المثلث $\overrightarrow{OC} \wedge \overrightarrow{OB} = 2\vec{k}$ و استنتج مساحة المثلث 0.75

$\begin{array}{c|c} \hline 0 & 2 & 2 \\ \hline 0 & 1 & 2 & 4 \end{array}$

التمرين الثاني : (3 نقط)

يحتوي صندوق على ثماني كرات لا يمكن التمييز بينها باللمس و تحمل كل واحدة منها عددا كما هو مبين في الشكل جانبه.

نسحب عشوائيا و في آن واحد ثلاث كرات من الصندوق.

1) نعتبر الحدث A: " من بين الكرات الثلاث المسحوبة لا توجد أية كرة تحمل العدد "

و الحدث B: " جداء الأعداد التي تحملها الكرات الثلاث المسحوبة يساوي 8 ".

$$p(B) = \frac{1}{7}$$
 و أن $p(A) = \frac{5}{14}$ بين أن

2) ليكن X المتغير العشوائي الذي يربط كل سحبة بجداء الأعداد التي تحملها الكرات الثلاث المسحوبة.

X_i	0	4	8	16
$p(X=x_i)$				$\frac{3}{28}$

$p(X=16) = \frac{3}{2}$	$\frac{3}{8}$ أن	أ۔ بین
-------------------------	------------------	--------

0.5

0.5

0.5

X ب- الجدول جانبه يتعلق بقانون احتمال المتغير العشوائي X أتمم ملء الجدول بعد نقله على ورقة تحريرك معللا أجوبتك.

التمرين الثالث : (3 نقط)

$$b=\sqrt{3}-1+\left(\sqrt{3}+1\right)i$$
 و $a=\sqrt{3}+i$ و م بحیث $a=\sqrt{3}+i$ و عتبر العددین العقدیین م

$$b = \begin{pmatrix} 1 & + & i \end{pmatrix} a$$
 أ- تحقق من أن (1 مراء) 0.25

$$arg b \equiv \frac{5\pi}{12} [2\pi]$$
 و أن $|b| = 2\sqrt{2}$ م

$$\cos \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 ن استنتج مما سبق أن

 $(O,\ ec{u}\ ,ec{v})$ المستوى العقدي منسوب إلى معلم متعامد ممنظم مباشر (2

 $c=-1+i\sqrt{3}$ بحيث و a اللتين لحقاهما على التوالي هما a و b و و النقطة c التي لحقها a بحيث التوالي التوالي

$$\left(\overline{\overrightarrow{OA}},\overline{\overrightarrow{OC}}\right) \equiv \frac{\pi}{2} \left[2\pi\right]$$
 و أن $OA = OC$ و أن $c = ia$ و 0.75

 \overrightarrow{OC} بين أن النقطة B هي صورة النقطة A بالإزاحة ذات المتجهة

ج- استنتج أن الرباعي OABC مربع.

الصفحة	NO 04
3	NS 22

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها

المسألة: (11 نقطة)

$$g(x)=x^2+x-2+2\ln x$$
 : يلي يا $g(x)=x^2+x-2+2\ln x$ التكن و الدالة العددية المعرفة على المجال $g(x)=x^2+x-2+2\ln x$

g(1) = 0 تحقق من أن

$$\begin{array}{c|cccc}
x & 0 & +\infty \\
g'(x) & + & \\
g(x) & -\infty & \end{array}$$

(2) انطلاقا من جدول تغيرات الدالة
$$g$$
 جانبه: $g(x) \le 0$ بين أن $g(x) \le 0$ لكل $g(x) \ge 0$ و أن $g(x) \ge 0$ لكل $g(x) \ge 0$

$$f(x) = x + \left(1 - \frac{2}{x}\right) \ln x$$
: ينتبر الدالة العددية f المعرفة على المجال $f(x) = 0$ بما يلي: (اا

(الوحدة : المنحنى الممثل للدالة f في معلم متعامد ممنظم $\left(C
ight)$ المنحنى الممثل للدالة المتعامد معلم المتعامد معامد المتعامد المتعا

ين أن $f(x) = +\infty$ و أول هندسيا النتيجة. $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$ 0.5

 $\lim_{x \to +\infty} f(x) = +\infty$ أ- بين أن (2 о.25

y=x فرعا شلجميا في اتجاه المستقيم D الذي معادلته y=x فرعا شلجميا في اتجاه المستقيم y=x معادلته y=x

 $]0,+\infty[$ المجال x من المجال $f'(x)=\frac{g(x)}{x^2}$ أ- بين أن أ

 $[1,+\infty[$ بين أن الدالة f تناقصية على المجال [0,1] و تزايدية على المجال f 0.75

 $]0,+\infty[$ على المجال الدالة f على المجال

 $\left(1-\frac{2}{x}\right)$ المعادلة $\left[0,+\infty\right]$ المعادلة $\left[0,+\infty\right]$ م.5

ب- استنتج أن المنحنى (C) يقطع المستقيم (D) في نقطتين يتم تحديد زوج إحداثيتي كل منهما.

[1,2] على [0,2] على [0,2] على إلى المنتج الوضع النسبي المنتنى والمستقيم [0,2] على [0,2] على [0,2]

وحيدة (C) أنشئ ، في نفس المعلم (C, \vec{i}, \vec{j}) ، المستقيم (D) و المنحنى (C) نقطة انعطاف وحيدة أفصولها محصور بين (C, \vec{i}, \vec{j}) ، المستقيم (D, \vec{i}, \vec{j}) المستقيم (D, \vec{i}, \vec{j})

$$\int_{1}^{2} \frac{\ln x}{x} dx = \frac{1}{2} (\ln 2)^{2}$$
 أ- بين أن (6) 0.5

 $]0,+\infty[$ على المجال $h:x\mapsto \frac{2}{x}-1$ على المجال $H:x\mapsto 2\ln x-x$ على المجال المجال

$$\int_{1}^{2} \left(\frac{2}{x} - 1\right) \ln x \, dx = \left(1 - \ln 2\right)^{2}$$
 بين أن ج- باستعمال مكاملة بالأجزاء ، بين أن

د- احسب ب m^2 ، مساحة حيز المستوى المحصور بين المنحنى m^2 و المستقيمين اللذين x=2 و x=1 معادلتاهما x=2 و x=1

IN من $u_{n+1}=f(u_n)$ و $u_0=\sqrt{3}$: المعرفة بما يلي المعرفة بما المعرفة العددية (u_n) المعرفة بما يلي

IN من n لكل $1 \le u_n \le 2$ انترجع أن $1 \le u_n \le 1$

(ع) بين أن المتتالية (u_n) تناقصية (يمكنك استعمال نتيجة السؤال (u_n) ج-) روح (2

ستنتج أن المتتالية (u_n) متقاربة و حدد نهايتها.

0.25

0.25

0.25

الامتحان الوطئي الموحد للبكالوريا

الدورة العادية 2017 -عناصر الإجابة -

NR 22

المركز الوطني للتغويم والامتحانات والتوجيد

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	شعبة العلوم التجريبية بمسالكها	الشعبة أو المسلك

- تؤخذ بعين الاعتبار مختلف مراحل الحل وتقبل كل طريقة صحيحة تؤدي إلى الحل -

<u>التمرين الأول (3 ن)</u>

اً - 0.25 ب (S) ب مماس ل (P) و 0.25 و 0.25 ب التحقق $d(\Omega,(P)) = \sqrt{2}$ ب 0.25 ب التحقق	(1	1.25
C ب- 0.5 للمستقيم Δ مماس للفلكة Δ و 0.25 لنقطة التماس هي Δ	(2	1
0.5 للجداء المتجهي و 0.25 لمساحة المثلث تساوي 1	(3	0.75

التمرين الثاني (3 ن)

$p(B) = \frac{1}{7}$ للتوصل إلى $p(A) = \frac{5}{14}$ و $p(A) = \frac{5}{14}$ 0.75	(1	1.5
$p(X=0) = \frac{9}{14}$ J 0.5 g $p(X=4) = \frac{3}{28}$ J 0.25 g $p(X=8) = \frac{1}{7}$ J 0.25 $p(X=8) = \frac{1}{7}$	(2	1.5

التمرين الثالث (3 ن)

أ- 0.25 للتحقق ب- 0.25 لمعيار العدد b و 0.25 ل عمدة للعدد b ج- 0.5	(1	1.25
$\left(\overline{\overrightarrow{OA}},\overline{\overrightarrow{OC}}\right) = \frac{\pi}{2} \left[2\pi\right]$ ل $O.25$ و $OA = OC$ ل $O.25$ و $OA = OC$ للتحقق و	(2	1.75
ب- 0.5 ل OABC متوازي أضلاع و 0.25 ل OABC مربع		

الصفحة	ND 0
2	NR 2

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها

	(11 ن)	المسألة
	(I	
0.25	(1	0.25
$[1,+\infty[$ لكل x من المجال $[0,1]$ و $[0,1]$ لكل $[0,+\infty[$ الكل $[0,+\infty[$ الكل $[0,+\infty[$ الكل $[0,+\infty[$	(2	1
	(II)	
0.25 للنهاية و 0.25 للتأويل الهندسي	(1	0.5
$\lim_{x \to +\infty} [f(x) - x] = +\infty 0.25 0.25 0.25 0.5 - 0.5$	(2	1
$[1,+\infty[$ با المارة $f'(x)$ هي إشارة $g(x)$ و $g(x)$ الماقصية على $[0,1]$ و $[0,25]$ با المارة $[0,+\infty[$	(3	2
0.25 - უ		
أ- 0.25 لكل حل من الحلين ب- 0.25 لكل نقطة من النقطتين	(4	1.75
ج- 0.5 لإثبات المتفاوتة و 0.25 للاستنتاج		
1 (انظر الشكل أسفله)	(5	1
اً- 0.5	(6	1.75
ج- 0.25 لتقنية المكاملة بالأجزاء و 0.25 للتوصل إلى النتيجة		
$\left(1-\ln 2\right)^2 \ cm^2$ و 0.25 للمساحة ب cm^2 هي $\int_{1}^{2} (x-f(x))dx$ و 0.25 للمساحة ب cm^2		
	(III)	
0.5	(1	0.5
0.5	(2	0.5
($f([1,2]) \subset [1,2]$ و $[1,2] \cup [1,2]$ و التأكيد على أن f متصلة على (u_n) و (u_n) ((u_n) متقاربة (u_n)	(3	0.75
و 0.25 لنهاية المتتالية هي 1		

