For all questions please use following: kT = 0.026eV at 300K,
$$n_{i,Si} = 10^{10} \text{cm}^{-3}$$
 at 300K, $E_{g-Si} = 1.12 \text{ eV}$, $m_n^* / m_0 = 1.08$, $m_p^* / m_0 = 0.56$ in Si $h = 6.626 \times 10^{-34} \text{ J-s}$, $k = 1.38 \times 10^{-23} \text{ J/K}$, $m_0 = 9.11 \times 10^{-31} \text{ kg}$ $\hat{l}_0 = 8.85 \cdot 10^{-14} F / cm_1$, $K_S = 11.7$ for silicon

1. A sample germanium has acceptor concentration of $4x10^{16}$ cm⁻³ and donor concentration of 10^{17} cm⁻³. Find the room temperature concentrations of electrons and holes before. Plot band diagram indicating the location of Fermi energy. Is this an n-type or a p-type semiconductor? If you wish to make a compensated semiconductor how much more and what type of dopants you need to add? Can you formulate how to find density of carriers due to the thermal generation process?

$$Ge: m_n^* = 0.55m_0, \quad m_p^* = 0.36m_0, \quad m_0 = 9.11 \times 10^{-31} kg, \quad E_g = 0.66eV$$

- 2. Doping profile of a $4\mu m$ long silicon is illustrated in the figure.
 - a.Calculate the position of Fermi energy with respect to conduction band and plot the band diagram
 - b.Calculate the electric field along the sample
 - c.Find the force on electrons in the sample. Which directions electrons and holes are drifted

3. A non degenerate N type silicon with electron density of $n \square n_i$ is illuminated at the middle (at $-L \not \vdash x \not \vdash L$) to generate uniform excess hole density of Dp_0 (cm⁻³) between $-L \not \vdash x \not \vdash L$ at steady state. Assume that the recombination lifetime of holes in the semiconductor is t_p and $Dp_0 \square n$. The diffusion time between $t_p \not \vdash n$ and $t_p \not \vdash n$ hence there is negligible

recombination occurs between L and 3L. Also, the semiconductor surface at x = 3L is grounded to have Dp(3L) = 0. Calculate the excess hole distribution along the silicon? Find the <u>ratio of diffusion current</u> generated by excess holes at x = 2L and x = -2L? Assume electrons have mobility of \mathcal{M}_p and diffusion coefficient of D_p , and there is no electric field applied to the device. Derive your results with clear indication of your assumptions.

- 4. Consider a uniformly doped pn junction diode with concentrations $N_A=2x10^{17}cm^{-3}$, $N_D=10^{16}cm^{-3}$. For T=300K, calculate:
 - a) The built in potential,
 - b) Width of the depletion layer,
 - c) Distribution of the potential and electric field in the depletion (space charge) region
 - d) Maximum electric field in the depletion layer.