

Pengembangan Model Prediktif Harga Properti Residensial Berbasis Algoritma Machine Learning

Implementasi Linear Regression untuk Prediksi Harga Rumah

Kelompok 6 - Kelas TI23H

Agenda Presentasi

Pendahuluan & Latar Belakang

- Rumusan Masalah & Tujuan Tujuan
- 3 Metodologi Penelitian

- 4 Dataset & Preprocessing
- 5 Implementasi Model

6 Hasil & Evaluasi

7 Kesimpulan & Saran

Latar Belakang

Tantangan Sektor Properti

Sektor properti hadapi tantangan kompleks.

Keterbatasan Metode Konvensional

Metode lama kurang efektif.

Solusi Machine Learning

ML tawarkan solusi inovatif.

Potensi Algoritma ML

Algoritma ML berpotensi besar.

Rumusan Masalah

1

Faktor Harga Properti

Identifikasi faktor-faktor penentu harga.

2

Model Akurat & Efisien

Bangun model prediktif yang tepat.

3

Faktor Paling Berpengaruh

Temukan faktor dominan.

4

Perbandingan Algoritma

Bandingkan performa ML.

5

Akurasi vs Konvensional

Ukur akurasi model.

6

Implementasi Keputusan

Terapkan untuk keputusan.

Tujuan & Manfaat Penelitian

Tujuan

- Identifikasi faktor harga.
- Kembangkan model prediktif.
- Bandingkan kinerja algoritma.
- Evaluasi tingkat akurasi.

Manfaat

- Sistem pendukung keputusan.
- Referensi aplikasi properti.
- Pembelajaran implementasi ML.

Metodologi Penelitian

Jenis Penelitian

Kuantitatif Prediktif.

Platform & & Bahasa

Google Colaboratory, Python.

Library

Pandas,
NumPy,
Scikit-learn,
Matplotlib,
Seaborn.

Algoritma

Linear

Regression.

Alur Penelitian

Dataset & Fitur

Dataset	1.460 data rumah dari Kaggle	
LotArea	Luas tanah (kaki²)	
OverallCond	Kondisi bangunan (1-9)	
YearBuilt	Tahun pembangunan	
TotalBsmtSF	Luas basement	
SalePrice	Harga jual (target)	

Statistik Deskriptif Fitur Utama

Fitur	Rata-rata	Min-Max	Keterangan
LotArea	10.516 kaki²	1.300-215.245	Ada outlier lahan luas
OverallCond	5,57	1-9	Kondisi sedang- baik
YearBuilt	1971	1872-2010	Banyak tahun 1950-2000
TotalBsmtSF	1.057 kaki²	0-6.110	Ada rumah tanpa basement
SalePrice	\$180.921	\$34.900- 755.000	Harga sangat bervariasi

Analisis Korelasi Terhadap Harga Jual

TotalBsmtSF: +0.61 (Kuat)

Luas basement sangat berkorelasi positif dengan harga.

YearBuilt: +0.52 (Sedang-Kuat)

Tahun pembangunan memiliki korelasi sedang-kuat.

LotArea: +0.26 (Sedang)

Luas lahan berkorelasi sedang dengan harga.

OverallCond: -0.10 (Lemah-Negatif)

Kondisi keseluruhan berkorelasi lemah negatif.

Cpol Insttticns Niatues

Implementasi Model Regresi Linier

Formula Regresi Linier

SalePrice =
$$\beta_0$$
 + β_1 (LotArea) + β_2 (OverallCond) + β_3 (YearBuilt) + β_4 (TotalBsmtSF) + ε

Pembagian Data

Data dibagi menjadi 80% untuk pelatihan dan 20% untuk pengujian.

Hasil Evaluasi Model

39.827,33 USD

MAE

Rata-rata kesalahan absolut model.

58.576,75 USD

RMSE

Akar kuadrat rata-rata kesalahan kuadrat.

0.55

R² Score

Model menjelaskan 55% variasi harga.

evalluation mest

Ennils Ad-Ings

\$305, inte

Process meatly yr inredpless.

+ \$155 Acquioristion Cost™

\$ \$113,0000

\$\$112,00,000

Visualisasi Hasil Prediksi

Scatter plot menunjukkan harga aktual vs. prediksi.

Pola sebaran mendekati garis y=x, menunjukkan akurasi baik.

Namun, masih ada penyimpangan pada harga tinggi (outlier).

Kelebihan dan Keterbatasan Model

Kelebihan

- Mudah dipahami dan diimplementasikan.
- Cocok untuk hubungan linier.
- Baseline model yang baik.

Keterbatasan

- Tidak menangkap hubungan non-linear.
- Sensitif terhadap outlier.
- Kurang optimal untuk fitur kompleks.

Perbandingan dengan Studi Sebelumnya

Vaibhav Badne et et al. (2022)

R² > 0.70 untuk prediksi harga di India. Jaykumar Parekh Parekh (2023)

 $R^2 = 0.73$ dengan fitur serupa.

Ayushi Bhagat et et al. (2023)

Regresi Linier sebagai model baseline.

Model kami memberikan hasil yang kompetitif dan konsisten dengan studi sebelumnya.

Kesimpulan dan Saran Pengembangan

Kesimpulan

- Model Regresi Linier berhasil dibangun dengan R² = 0.55.
- TotalBsmtSF dan YearBuilt paling berpengaruh.
- Model praktis, cepat, dan mudah diinterpretasikan.
- Cocok sebagai baseline model untuk properti.

Saran Pengembangan

- Perluasan fitur: GrLivArea, OverallQual, Neighborhood.
- Algoritma lanjutan: Random Forest, XGBoost.
- Preprocessing: Deteksi outlier, transformasi logaritmik.
- Validasi: Cross-validation.
- Aplikasi: Sistem berbasis web/mobile.