Planche nº 8. Topologie

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice nº 1 (**)

Montrer que toute boule, fermée ou ouverte, d'un espace vectoriel normé est un convexe de cet espace.

Exercice nº 2 (*** I)

- 1) Inégalités de HÖLDER et de MINKOWSKI. Soit $(p,q) \in]0,+\infty[^2$ tel que $\frac{1}{p}+\frac{1}{q}=1$.
 - $\mathbf{a)} \ \mathrm{Montrer} \ \mathrm{que} \ \mathrm{pour} \ (x,y) \in [0,+\infty[^2, \, xy \leqslant \frac{x^p}{p} + \frac{x^q}{q}.$
 - $\mathbf{b)} \text{ En d\'eduire que } \forall ((a_1,...,a_n),(b_1,...,b_n)) \in (\mathbb{R}^n)^2, \ \left| \sum_{k=1}^n a_k b_k \right| \leqslant \left(\sum_{k=1}^n |a_k|^p \right)^{1/p} \left(\sum_{k=1}^n |b_k|^q \right)^{1/q}.$
 - $\mathbf{c)} \text{ En d\'eduire que } \forall ((\alpha_1,...,\alpha_n),(b_1,...,b_n)) \in (\mathbb{R}^n)^2, \\ \left(\sum_{k=1}^n |\alpha_k + b_k|^p\right)^{1/p} \leqslant \left(\sum_{k=1}^n |\alpha_k|^p\right)^{1/p} + \left(\sum_{k=1}^n |b_k|^p\right)^{1/p}.$
- $\textbf{2)} \text{ Soit } \alpha \text{ un r\'eel strictement positif. Pour } x=(x_1,...,x_n) \in \mathbb{R}^n, \text{ on d\'efinit } N_\alpha(x)=\left(\sum_{k=1}^n|x_k|^\alpha\right)^{1/\alpha}.$
 - a) Montrer que $\forall \alpha \geqslant 1$, N_{α} est une norme sur \mathbb{R}^{n} .
 - b) Dessiner les « boules unités » de \mathbb{R}^2 dans le cas où $\alpha \in \left\{\frac{2}{3}, 1, \frac{3}{2}, 2, +\infty\right\}$.
 - c) Montrer que, pour $x=(x_k)_{1\leqslant k\leqslant n}$ fixé, $\lim_{\alpha\to +\infty}N_\alpha(x)=\max\{|x_k|,\ 1\leqslant k\leqslant n\}=N_\infty(x).$
 - d) Montrer que si $0 < \alpha < 1$, N_{α} n'est pas une norme sur \mathbb{R}^n (si $n \ge 2$).

Exercice no 3 (** I)

 $\begin{aligned} &\mathrm{Soit}\ E=C^2([0,1],\mathbb{R}).\ \mathrm{Pour}\ f\ \mathrm{\acute{e}l\acute{e}ment}\ \mathrm{de}\ E,\ \mathrm{on}\ \mathrm{pose}\ N(f)=\int_0^1|f(t)|\ dt,\ N'(f)=|f(0)|+\int_0^1|f'(t)|\ dt\ \mathrm{et}\\ &N''(f)=|f(0)|+|f'(0)|+\int_0^1|f''(t)|\ dt.\ \mathrm{Montrer}\ \mathrm{que}\ N,\ N'\ \mathrm{et}\ N''\ \mathrm{sont}\ \mathrm{des}\ \mathrm{normes}\ \mathrm{et}\ \mathrm{les}\ \mathrm{comparer}. \end{aligned}$

Exercice nº 4 (*** I) (topologie dans $\mathcal{M}_n(\mathbb{K})$)

- 1) Montrer que $GL_n(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$, dense dans $\mathcal{M}_n(\mathbb{R})$.
- 2) Montrer que $\mathcal{M}_n(\mathbb{R}) \setminus GL_n(\mathbb{R})$ est fermé mais non compact (pour $n \ge 2$).
- 3) Montrer que $O_n(\mathbb{R})$ est compact. $O_n(\mathbb{R})$ est-il convexe?
- 4) Montrer que $\mathscr{S}_{\mathfrak{n}}(\mathbb{R})$ est fermé.
- 5) Soit $p \in [0, n]$. Montrer que l'ensemble des matrices de rang inférieur ou égal à p (p < n) est un fermé de $\mathcal{M}_n(\mathbb{R})$.
- **6)** Montrer que l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$. Peut-on remplacer $\mathcal{M}_n(\mathbb{C})$ par $\mathcal{M}_n(\mathbb{R})$?
- 7) Montrer que l'ensemble des matrices stochastiques (matrices $(a_{i,j})_{1\leqslant i,j\leqslant n}\in \mathcal{M}_n(\mathbb{R})$ telles que $\forall (i,j)\in [\![1,n]\!]^2,\,a_{i,j}\geqslant 0$ et $\forall i\in [\![1,n]\!],\,\sum_{i=1}^n a_{i,j}=1)$ est un compact convexe de $\mathcal{M}_n(\mathbb{R}).$

1

8) Montrer que l'ensemble des matrices diagonalisables de $M_n(\mathbb{R})$ est connexe par arcs.

Exercice no 5 (**)

Montrer qu'entre deux réels distincts, il existe un rationnel (ou encore montrer que \mathbb{Q} est dense dans \mathbb{R}).

Exercice nº 6 (**)

Soient A et B des parties d'un espace vectoriel normé E. Montrer que

1)
$$\overline{(\overline{A})} = \overline{A} \text{ et } \overset{\circ}{A} = \overset{\circ}{A}.$$

- 2) $A \subset B \Rightarrow \overline{A} \subset \overline{B} \text{ et } A \subset B \Rightarrow \mathring{A} \subset \mathring{B}$.
- 3) $\overline{A \cup B} = \overline{A} \cup \overline{B} \text{ et } A \cap B = \overset{\circ}{A} \cap \overset{\circ}{B}.$

4) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ et $A \overset{\circ}{\cup} B \subset \overset{\circ}{A} \cup \overset{\circ}{B}$. Trouver un exemple où l'inclusion est stricte.

$$5) \ \underline{A} \stackrel{\circ}{\setminus} B = \stackrel{\circ}{A} \stackrel{\circ}{\setminus} \overline{B}.$$

6)
$$\overrightarrow{A} = \overrightarrow{A}$$
 et $\frac{\circ}{A} = \overrightarrow{A}$.

Exercice nº 7 (**)

Trouver une partie A de \mathbb{R} telle que les sept ensembles A, \overline{A} , $\overset{\circ}{A}$, $\overset{\circ}{A}$, $\overset{\circ}{\overline{A}}$, $\overset{\circ}{\overline{A}}$, $\overset{\circ}{\overline{A}}$ soient deux à deux distincts.

Exercice nº 8 (**)

Soit E le \mathbb{R} -espace vectoriel des fonctions continues sur [0,1] à valeurs dans \mathbb{R} . On munit E de $\|\cdot\|_{\infty}$.

D est la partie de E constituée des applications dérivables et P est la partie de E constituée des fonctions polynomiales. Déterminer l'intérieur de D et l'intérieur de P.

Exercice nº 9 (** I) (Distance d'un point à une partie)

Soit A une partie non vide d'un espace vectoriel normé (E, || ||).

Pour $x \in E$, on pose $d_A(x) = d(x, A)$ où $d(x, A) = \inf\{||x - \alpha||, \alpha \in A\}$.

- 1) Justifier l'existence de $d_A(x)$ pour chaque x de E.
- 2) a) Montrer que si A est fermée, $\forall x \in E$, $d_A(x) = 0 \Leftrightarrow x \in A$.
- b) Montrer que si A est fermée et E est de dimension finie, $\forall x \in E, \exists a \in A/d_A(x) = \|x a\|$.
- 3) Si A est quelconque, comparer $d_A(x)$ et $d_{\overline{A}}(x)$.
- 4) Montrer d_A est continue sur E.
- 5) A chaque partie fermée non vide A, on associe l'application d_A définie ci-dessus. Montrer que l'application $A \mapsto d_A$ est injective.
- 6) Dans l'espace des applications continues sur [0,1] à valeurs dans $\mathbb R$ muni de la norme de la convergence uniforme, on considère $A = \left\{ f \in E / \ f(0) = 0 \ \mathrm{et} \ \int_0^1 f(t) \ \mathrm{d}t \geqslant 1 \right\}$. Calculer $d_A(0)$.

Exercice nº 10 (**)

- 1) Soient (E, N_E) et (F, N_F) deux espaces vectoriels normés. Soient f et g deux applications continues sur E à valeurs dans F. Soit D une partie de E dense dans E. Montrer que si $f_{/D} = g_{/D}$ alors f = g.
- 2) Déterminer tous les morphismes continus de $(\mathbb{R}, +)$ dans lui-même.

Exercice no 11 (***)

Soit $\mathfrak u$ une suite bornée d'un espace vectoriel normé de dimension finie ayant une unique valeur d'adhérence. Montrer que la suite $\mathfrak u$ converge.

Exercice nº 12 (***)

Calculer
$$\inf_{\alpha \in]0,\pi[} \left\{ \sup_{n \in \mathbb{Z}} |\sin(n\alpha)| \right\}.$$

Exercice nº 13 (*** I)

Soit $f: \mathbb{R} \to \mathbb{R}$ une application uniformément continue sur \mathbb{R} . Montrer qu'il existe deux réels \mathfrak{a} et \mathfrak{b} tels que $\forall x \in \mathbb{R}$, $|f(x)| \leq a|x| + \mathfrak{b}$.

2

Exercice no 14 (*** I):

Donner un développement à la précision $\frac{1}{n^2}$ de la n-ième racine positive x_n de l'équation $\tan x = x$.

Exercice no 15 (*** I)

Soit z un nombre complexe. Déterminer $\lim_{n\to+\infty} \left(1+\frac{z}{n}\right)^n$.

Exercice nº 16 (*** I)

Soit (E, || ||) un espace vectoriel normé et F un sous-espace vectoriel de E.

1) Montrer que si $\overset{\circ}{F} \neq \emptyset$, alors F = E.

2) Montrer que \overline{F} est un sous-espace vectoriel de E.

Exercice nº 17 (***)

Soit (E, || ||) un espace vectoriel normé et C un convexe de E.

- 1) Montrer que \overline{C} est convexe.
- $\textbf{2) a)} \ \, \text{Montrer que pour tout } (x,y) \in E^2 \ \, \text{et tout } (r,r') \in]0, \\ +\infty[^2, \, B_o(x,r) + B_o(y,r') = B_o(x+y,r+r') \ \, \text{et que pour tout } \\ x \in E \ \, \text{et tout } \lambda \in]0, \\ +\infty[, \, \lambda B_o(x,r) = B_o(\lambda x,\lambda r).$
 - b) Montrer que C est convexe.

Exercice nº 18 (***)

On pose
$$K_0 = [0,1], \ K_1 = K_1 \setminus \left] \frac{1}{3}, \frac{2}{3} \right[= \left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right], \ K_2 = K_1 \setminus \left(\left]\frac{1}{9},\frac{2}{9}\right[\cup \left]\frac{7}{9},\frac{8}{9}\right[\right) = \left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{7}{3}\right] \cup \left[\frac{2}{3},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right], \ \dots$$
 (on retire à chaque étape les « tiers médians ouverts »). Soit alors $K = \bigcap_{n \in \mathbb{N}} K_n$.

Montrer que K est un compact d'intérieur vide (K est l'ensemble de Cantor).