Wednesday, September 11, 2019 10:20

Integration

measurable functions

$$f \ \overrightarrow{f} : P(x) \longrightarrow P(y)$$
 $f(s) = \{f(s) \mid s \in S\}$

$$f^{-1} \quad f : P(X) \longrightarrow P(X) \qquad f'(T) = \{x \in X \mid f(x) \in T\}$$

Recall
$$f:(X,\tau) \longrightarrow (Y,\theta)$$
 is if $f'(T) \in \tau \ \forall T \in \theta$.

Suppose
$$f: X \longrightarrow (Y, \theta)$$
. θ induces a topology

on X by
$$f'(\theta) = \{f'(T) : T \in \Theta\}$$

Small of weakest topology on X (it. f is ots.

Page 1

Now $f: (X, m) \longrightarrow (Y, n)$ is m-n measurable iff $\forall E \in \mathcal{N}, f^{-1}(E) \in \mathcal{M}$.

If $f: X \longrightarrow (Y, N)$, get on induced σ -algebra on X by f'(N).

Smallest σ -alg. where f is mble.

if $f: (X, M) \rightarrow Y$, get a co-induced σ -algorithm on Y by $E \subset Y$ make iff $f'(E) \in M$ $larges + \sigma$ -algorithm were f is in ble.

Just as a composite of cts for is cts,

if f is m-n mensurable and g is n-p mensuable, then g of is m-P mensurable.

Page 2

Linner: Suppose $f:(X, m) \to (Y, \eta)$ and $M = \sigma(E)$ for some $E \in P(Y)$ Then f is m-n neutrable $\iff f^{T}(E) \in M \ \forall \ E \in E$.

Suppose
$$(X, \tau) \xrightarrow{f} (Y, \phi)$$
 we call f barel means by f to f is f is

Prop ets fins eve Borel mble. Et use lema.

$$\frac{P_{00}}{P_{00}}$$
 Suppose $f: (X, m) \longrightarrow \mathbb{R} \cdot TFAF$:

- (F is M (-BR) Measurable
- € f'(a, ∞) ∈ m YaeR
- 3 f [a, so) & m "
- ⊕ f⁻¹(-∞, a] em "

- 5 f (-∞, a) ∈ m "
- (a,b) (a,b) (a,b) (a,b) (a,b).

If use the lemmer.

nu topology on \overline{R} is induced by a cts bijection W [0,1]. Borel σ -alg $B_{\overline{R}}$ year by Q-G but Not Q-G

Gorollans: same as proposition, replace \mathbb{R} by $\overline{\mathbb{R}}$, and replace (a, ∞) by $(a, \infty]$, etc.

If $f: X \longrightarrow \mathbb{R}$, write $\{f > a\} = f \times e X: x > a\}$ $= f^{-1}((a, a) - 1)$

Suppose $f,g:(X,m)\longrightarrow \overline{\mathbb{R}}$ are m-mble

The following fins $X \to \mathbb{R}$ are m - mble:

() $(f \vee g) (x) := \sup \{f(x), g(x)\}$ If $\{f \vee g > a\} = \{f > a\} \cup \{g > a\}$.

(2)
$$(f \land g) (x) := \inf \{f(x), g(x)\}$$

PE $\{f \land g > a\} = \{f > a\} \land \{g > a\}$.

3 any well-defined their combination of f & g.

f + g next + ime.