Investigation of Max likelihood fit and Expected Limit

Lisa Paspalaki

Expected Limit

• datacard

Asymptotic approximation

create a pseudo-data set where the data values are set equal to the expectation

the data_obs distribution is blinded

To InU or InN??

InN:

log normal → recommended choice for multiplicative corrections

InU:

- log-uniform distribution --> "set a large a-priori uncertainty on a given background and then rely on the correlation between channels to constrain it"
- this is done when pre fit normalization is not known
- QCD_norm: use the data driven ABCD to constrain by hand QCD_norm: lnN instead of lnU
- ttbar_norm: fit simultaneously all categories with ttbar control region
- InN because we trust the MC prediction or InU to let ttbar region constrain norm???

rate plus shape uncertainties

rate uncertainties

- affect the overall normalization
- nuisance: log-normal distribution (lnN)

shape uncertainties

- variations of expected event yields that are correlated among bins of a template
- variation of the underlying parameter by ±1 standard deviation
- template "morphing" procedure
- the normalization of a template is not conserved during morphing
- scale each template to the nominal

Post fit distributions

- binned max likelihood fit on the M_{SD} of the Higgs candidate
- signal and the control regions fitted to the data simultaneously
- data_obs template is the actual data distribution
- is it still **blinded**?

Pulls for QCD fraction

- if we increase the pre fit uncertainty on the QCD fraction the uncertainties are constrained by the fit
- expected limit is sensitive to this uncertainty: (10,7—12,...)

Pulls for Subdominant bkg

100% flat uncertainty

- not enough statistics on the templates
- even with 100% pre fit uncertainty the fit does not constrain this uncertainty

Impact of pulls

- Post- fit values of the nuisance parameters and their impacts on the extracted signal strength
- The pulls of the nuisance parameters (black markers with error bars) are computed as the differences between the best- fit values θ and the pre- fit values θ0, and then divided by the pre- fit uncertainties Δθ
- The impact $\Delta \hat{r}$ for each nuisance parameter is computed as the difference between the best- fit signal strength value of the nominal fit, \hat{r} , and the best- fit value obtained when the nuisance parameter under investigation is fixed to its best- fit value plus/minus its post- fit uncertainty.

Impact of the Pulls for an Asimov dataset

Asimov dataset:

r is fixed to 1