Prove that $(A - B) \subseteq B \iff (A - B) = \emptyset$.

Assume $(A - B) \neq \emptyset$. First we consider the forward direction:

By definition 2.1.4, $(A-B)=\{x\in A\mid x\not\in B\}$, which means (A-B) consists of elements in A but not in B.

Since $(A-B) \subseteq B$, every element $x \in (A-B)$ must also belong to B. This leads to a contradiction.

Thus, there can't be any element in (A-B), which implies that $(A-B)=\emptyset$. Then we consider the reverse direction:

Since $(A-B)=\emptyset$, there can't be any element in (A-B). By definition, an empty set is a subset of any set.

Therefore, $(A - B) \subseteq B$.

We conclude that:

$$(A-B) \subseteq B \iff (A-B) = \emptyset$$