Introduction to Flow-based Generative Models

Pascal Mignon

Agenda

- Recap: Generative Models
- Flow-based Generative Models
- RealNVP & Glow: illustrations of Flow-based models
- Related works
- Q&A

Recap: Generative Models

Recap: Generative models

Types of Generative Models

Description **Architecture** Minimize the Generative discriminator error loss Discriminator Generator \mathbf{x}' 0/1 adversarial networks $G(\mathbf{z})$ $D(\mathbf{x})$ Maximize the Evidence **Variational** Lower Bound (ELBO) Encoder Decoder X autoencoders $q_{\phi}(\mathbf{z}|\mathbf{x})$ $p_{\theta}(\mathbf{x}|\mathbf{z})$

Flow-based generative models

Normalizing flows - overall idea

Normalizing flows - overall idea

Normalizing flows - requirements

- ☐ f must be reversible, ie. bijective
- f jacobian must be easily computable

$$\mathbf{z}_K = f_K \circ \dots \circ f_2 \circ f_1(\mathbf{z}_0)$$

$$\ln p_K(\mathbf{z}_K) = \ln p_0(\mathbf{z}_0) - \sum_{k=1}^K \ln \left| \det \frac{\partial f_k}{\partial \mathbf{z}_{k-1}} \right|$$

Normalizing flows - summary

Flow-based generative models

Description

Reversible - Using explicitly log-likelihood to train the generative model

Architecture

$$\mathbf{z}_K = f_K \circ \ldots \circ f_2 \circ f_1(\mathbf{z}_0)$$

$$\ln p_K(\mathbf{z}_K) = \ln p_0(\mathbf{z}_0) - \sum_{k=1}^K \ln \left| \det \frac{\partial f_k}{\partial \mathbf{z}_{k-1}} \right|$$

$$\mathcal{L}(\mathcal{D}) = -rac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log p(\mathbf{x})$$

RealNVP & Glow: illustrations of Flow-based models

RealNVP, 2016

DENSITY ESTIMATION USING REAL NVP

Laurent Dinh*

Montreal Institute for Learning Algorithms University of Montreal Montreal, QC H3T1J4

Jascha Sohl-Dickstein Google Brain Samy Bengio Google Brain

RealNVP, 2016, objective

Objective: create a reversible flow from input space x to latent space z

Constraints: intermediate functions must be reversible and the jacobian easily computable

RealNVP, 2016, proposed solution: coupling layers

(a) Forward propagation

(b) Inverse propagation

$$\begin{cases} y_{1:d} &= x_{1:d} \\ y_{d+1:D} &= x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}) \end{cases}$$

$$\Leftrightarrow \begin{cases} x_{1:d} &= y_{1:d} \\ x_{d+1:D} &= (y_{d+1:D} - t(y_{1:d})) \odot \exp(-s(y_{1:d})), \end{cases}$$

RealNVP, 2016, proposed solution: coupling layers

(a) Forward propagation

(b) Inverse propagation

$$\frac{\partial y}{\partial x^{T}} = \begin{bmatrix} \mathbb{I}_{d} & 0\\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}^{T}} & \operatorname{diag}\left(\exp\left[s\left(x_{1:d}\right)\right]\right) \end{bmatrix}$$

$$\begin{cases} y_{1:d} &= x_{1:d} \\ y_{d+1:D} &= x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}) \end{cases}$$

$$\Leftrightarrow \begin{cases} x_{1:d} &= y_{1:d} \\ x_{d+1:D} &= (y_{d+1:D} - t(y_{1:d})) \odot \exp(-s(y_{1:d})), \end{cases}$$

RealNVP, 2016, proposed solution: coupling layers with permutation

(a) Forward propagation

(b) Inverse propagation

(a) In this alternating pattern, units which remain identical in one transformation are modified in the next.

RealNVP, 2016, proposed solution: multi-scale arhitecture

(b) Multi-scale architecture (Dinh et al., 2016).

Glow, 2018

Glow: Generative Flow with Invertible 1×1 Convolutions

Diederik P. Kingma*, Prafulla Dhariwal* OpenAI, San Francisco

Glow, 2018, objective

Objective: create a reversible flow from input space x to latent space z

Constraints: intermediate functions must be reversible and the jacobian easily computable

Glow, 2018, Architecture

$$\mathbf{x} \overset{\mathbf{f}_1}{\longleftrightarrow} \mathbf{h}_1 \overset{\mathbf{f}_2}{\longleftrightarrow} \mathbf{h}_2 \cdots \overset{\mathbf{f}_K}{\longleftrightarrow} \mathbf{z}$$

$$\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{g}_{\boldsymbol{\theta}}^{-1}(\mathbf{x})$$

$$\mathbf{z} \sim p_{\boldsymbol{\theta}}(\mathbf{z})$$

$$\mathcal{L}(\mathcal{D}) = rac{1}{N} \sum_{i=1}^{N} -\log p_{oldsymbol{ heta}}(\mathbf{x}^{(i)})$$

(a) One step of our flow.

(b) Multi-scale architecture (Dinh et al., 2016).

Glow, 2018, Actnorm (activation normalization) layer

Description	Function	Reverse Function	Log-determinant
Actnorm. See Section 3.1.	$orall i,j: \mathbf{y}_{i,j} = \mathbf{s} \odot \mathbf{x}_{i,j} + \mathbf{b}$	$orall \ orall i,j: \mathbf{x}_{i,j} = (\mathbf{y}_{i,j} - \mathbf{b})/\mathbf{s}$	$\left \begin{array}{c} h \cdot w \cdot \mathtt{sum}(\log \mathbf{s}) \end{array}\right $

- Affine transformation for batch normalization
- Parameters are chosen to have as output 0 mean and 1 standard deviation

Glow, 2018, 1x1 convolutional layer

Description	Function	Reverse Function	Log-determinant
Invertible 1×1 convol $\mathbf{W} : [c \times c]$. See Section 3.2.	plution. $orall i, j: \mathbf{y}_{i,j} = \mathbf{W}\mathbf{x}_{i,j}$	$orall i, j: \mathbf{x}_{i,j} = \mathbf{W}^{-1}\mathbf{y}_{i,j}$	

- 1x1 convolution for permutation operation
- Weights are initialized as a rotation matrix
- Computation time can be optimized by choosing weights in its LU matrix decomposition

Glow, 2018, Affine coupling layer

Description	Function	Reverse Function	Log-determinant	
Affine coupling layer. See Section 3.3 and (Dinh et al., 2014)	fine coupling layer. $\mathbf{x}_a, \mathbf{x}_b = \text{split}(\mathbf{x})$ e Section 3.3 and $(\log \mathbf{s}, \mathbf{t}) = \text{NN}(\mathbf{x}_b)$		$\texttt{sum}(\log(\mathbf{s}))$	

(b) Inverse propagation

RealNVP, 2016 VS. Glow, 2018, Comparative results

Table 2: Best results in bits per dimension of our model compared to RealNVP.

Model	CIFAR-10	ImageNet 32x32	ImageNet 64x64	LSUN (bedroom)	LSUN (tower)	LSUN (church outdoor)
RealNVP	3.49	4.28	3.98	2.72	2.81	3.08
Glow	3.35	4.09	3.81	2.38	2.46	2.67

RealNVP, 2016 VS. Glow, 2018, Comparative results

Table 2: Best results in bits per dimension of our model compared to RealNVP.

Model	CIFAR-10	ImageNet 32x32	ImageNet 64x64	LSUN (bedroom)	LSUN (tower)	LSUN (church outdoor)
RealNVP	3.49	4.28	3.98	2.72	2.81	3.08
Glow	3.35	4.09	3.81	2.38	2.46	2.67

(b) Affine coupling.

Conclusion

Strengths and weaknesses of flow-based models

Strengths

- Reversible, ie. direct transformation between input space and latent space
- Direct use of log-likelihood
- Easily parallelizable

Weaknesses

- Important computation time
- Not easy to compute log-likelihood

Glow, 2018 - Interesting experiments

Figure 6: Manipulation of attributes of a face. Each row is made by interpolating the latent code of an image along a vector corresponding to the attribute, with the middle image being the original image

Recap: Generative models

model

Types of Generative Models

Description Architecture Minimize the Generative discriminator error loss Discriminator Generator \mathbf{x}' 0/1 adversarial networks $G(\mathbf{z})$ $D(\mathbf{x})$ Maximize the Evidence **Variational** Lower Bound (ELBO) Encoder Decoder X autoencoders $q_{\phi}(\mathbf{z}|\mathbf{x})$ $p_{\theta}(\mathbf{x}|\mathbf{z})$ Reversible - Using Flow-based Flow Inverse explicitly log-likelihood \mathbf{x} \mathbf{x} $f(\mathbf{x})$ generative models to train the generative

Related Works

Related works

Other related or relevant topics

- Other models with Normalizing Flows
 - o NICE 2014
- Models based on Autoregressive Flows
 - o PixeIRNN 2016
- Divergence-based Generative Models
 - Moser Flow: Divergence based generative models on manifolds 2021

Q&A

Additional content

Change of variable formula

Change of Variables: Z and X be random variables which are related by a mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ such that X = f(Z) and $Z = f^{-1}(X)$. Then

$$p_X(\mathbf{x}) = p_Z(f^{-1}(\mathbf{x})) \left| \det \left(\frac{\partial f^{-1}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

Jacobian Matrix

$$egin{aligned} egin{bmatrix} rac{\partial f_1}{\partial x_1} & \dots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \dots & rac{\partial f_m}{\partial x_n} \ \end{bmatrix} \end{aligned}$$

Glow, 2018 - Interesting experiments

Figure 9: Samples from shallow model on left vs deep model on right. Shallow model has L=4 levels, while deep model has L=6 levels

Glow, 2018 - Interesting experiments

Figure 8: Effect of change of temperature. From left to right, samples obtained at temperatures 0, 0.25, 0.6, 0.7, 0.8, 0.9, 1.0

RealNVP, 2016 VS. Glow, 2018, Improvements of 1x1 convolution

(a) Additive coupling.

(b) Affine coupling.