The Workspace

Algorithms and Data Structures 2 – Motion Planning and its applications
University of Applied Sciences Stuttgart

Dr. Daniel Schneider

What is the workspace?

Definition: Two-dimensional Workspace

Let \mathcal{W} denote the world, which contains a robot and obstacles, both defined by polygons. Let $\mathcal{W} \subseteq \mathbb{R}_2$ denote the set of all obstacles as $\mathcal{O} \subset \mathcal{W}$ and call it forbidden region. Moreover, define $\mathcal{A} \subset \mathcal{W}$ as a robot.

Sources:

Motion Planning: The Essentials – LaValle <u></u>
http://msl.cs.illinois.edu/~lavalle/papers/Lav11b.pdf

Some Notes on workspace

- The presented workspace definitions are definitions of a continuous workspace. ($\mathcal{W} \subseteq \mathbb{R}_2$).
- In past lectures you have probably already covered some discrete workspaces. Recap will follow.
- In the lecture we will work on continuous workspaces.

Important:

Don't get confused on the practical work study. There we will use bmp files as input. BMP files are **discrete workspaces** but we assume they are **continuous**. We use BMP files to make you the programming easier for you.

In detail: Collision detection is easy and involves less math and geometry knowledge.

Do you remember what kind of algorithm was used for solving this problem?

0/0 Stack

North/West/South/East-Rule

	1	
2		4
	3	

North/East/South/West-Rule

	1	
4		2
	3	

North/West/South/East-Rule

	1	
2		4
	3	

North/East/South/West-Rule

	1	
4		2
	3	

Exercise

Task:

- Write down the stack and with each iteration
- Use the North/West/South/East-Rule

Solution

Task:

- Write down the stack and with each iteration
- Use the North/West/South/East-Rule

6																	3/3
5														3/0		3/2	3/2
4					1/3								3/1	3/1	3/1	3/1	3/1
3				0/3	0/3	0/3						2/1	2/1	2/1	2/1	2/1	2/1
2			0/2	0/2	0/2	0/2	0/2				2/0	2/0	2/0	2/0	2/0	2/0	2/0
1		0/1	0/1	0/1	0/1	0/1	0/1	0/1		1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0
0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
It.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

When to use such algorithms?

- When the workspace is only two dimensional
- When the amount of discrete intervals is "small"
- When the robot can only move in two dimensions.
- When storage and performance are not relevant.

Practical applications of such algorithms: little

Therefore we address algorithms that can handle many dimensions and do this at high performance.

What is the workspace?

Definition: Two-dimensional Workspace

Let \mathcal{W} denote the world, which contains a robot and obstacles, both defined by polygons. Let $\mathcal{W} \subseteq \mathbb{R}_2$ denote the set of all obstacles as $\mathcal{O} \subset \mathcal{W}$ and call it forbidden region. Moreover, define $\mathcal{A} \subset \mathcal{W}$ as a robot.

Definition: Three-dimensional Workspace

Let \mathcal{W} denote the world, which contains a robot and obstacles, both defined by polyhedra. Let $\mathcal{W} \subseteq \mathbb{R}_3$ denote the set of all obstacles as $\mathcal{O} \subset \mathcal{W}$ and call it forbidden region. Moreover, define $\mathcal{A} \subset \mathcal{W}$ as a robot.

 $\mathcal{W} \subseteq \mathbb{R}_2$

Sources:

Motion Planning: The Essentials – LaValle - http://msl.cs.illinois.edu/~lavalle/papers/Lav11b.pdf

- → What is the robot?
- → What are the obstacles?

 $\mathcal{W} \subseteq \mathbb{R}_3$

- → What is the robot?
- → What are the obstacles?

 $\mathcal{W} \subseteq \mathbb{R}_3$

Sources:

Planning Algorithms – LaValle - http://planning.cs.uiuc.edu/

- → What is the robot?
- → What are the obstacles?

Planning Algorithms – LaValle - http://planning.cs.uiuc.edu/

 $\mathcal{W} \subseteq \mathbb{R}_3$

- → What is the robot?
- → What are the obstacles?

- → What is the robot?
- → What are the obstacles?

 $\mathcal{W} \subseteq \mathbb{R}_3$

- → What is the robot?
- → What are the obstacles?

 $\mathcal{W} \subseteq \mathbb{R}_2$

- → What is the robot?
- → What are the obstacles?

Sources:

Robot Motion Planning-Wolfram Burgard et al. -

http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/18-robot-motion-planning.pdf

 $\mathcal{W} \subseteq \mathbb{R}_3$

- → What is the robot?
- → What are the obstacles?

Sources:

A Journey of Robots, Digital Actors, Molecules and Other Artifacts – Jean Claude Latombe_ https://robotics.stanford.edu/~latombe/projects/motion-planning.ppt

Sources:

Simultaneous Grasp and Motion Planning – Nikolaus Vahrenkamp et al<u>https://h2t.anthropomatik.kit.edu/pdf/Vahrenkamp2012.pdf</u>

 $\mathcal{W} \subseteq \mathbb{R}_3$

- → What is the robot?
- → What are the obstacles?

How to model the robot and obstacles?

In <mark>2D</mark>:

The robot and obstacles are models with polygons.

In 3D:

The robot and obstacles are models with polyhedra

- → In practice: triangle sets.
- → Why? There are fast algorithms to detect collisions for triangle sets.

The most challenging task in the workspace

Collision detection 2D

Source: https://www.embed.com/typescript-games/polygon-collision-detection.html

The most challenging task in the workspace

Sources:

Planning Algorithms – LaValle - http://planning.cs.uiuc.edu/

Collision detection 3D – Bounding Volume Hierarchies

→ Topic of Algorithmic Geometry/Later in the course (depending on time)

A more simple but not exact approach

- 1. Take your obstacles in the workspace 2d/3d and discretize it in a pixel/voxel field.
- 2. In this field mark all covered pixels with "black"
- 3. Take your robot. Discretize its border to points.
- 4. Test for all points (which order?) of the robot whether the point is on a black pixel/voxel.
- 5. If no point is in "black" voxel" \rightarrow Robot is free of collision.
- → This algorithm is called Voxmap PointShell Algorithm and is very popular. Why?
- Easy to implement
- Easy to parallelize
- Precision is sufficient for most applications

Fig. 14: Example for the Voxmap PointShellTM algorithm.

Note for the practical work study

- By using bmp files we use the Voxmap PointShell algorithm.
- The environment is given by a discrete array.
- The robot as well → you can use the full robot or discretize the border. (Note: the border of the robot is a subset of the whole robot)

But again, still keep in mind:

In reality we are still dealing with continuous motion planning problem.

Exercise

Think about a motion planning example that has not yet been covered yet and define the dimension of the workspace. Moreover note down how you would model the workspace.