Architettura degli Elaboratori – II sem. AA 2018-19 Prova scritta – canale H-Z – Appello del 18.09.2019

Cognome	Nome	matr. N8	6
codice esame→	01570 (12 CFU)	U23	322 (9 CFU) 🗌
		Esonero SI	voto
Per essere ammessi all'orale s	enza riserva occorre su	<u>iperare l e ll parte co</u>	n un voto >= 18
Ιp	arte (3 punti	max per que	sito)
1- Si rappresenti in formato I Bit 31 30	EEE754 a 32bit il nume 23 221		
Segno esponente	 e (8bit) m a	ntissa	 (23 bit)
2- Si rappresenti in decimale rappresentato in esadecim	nale:	EEE754 a 32bit, di seg	
3- Si rappresenti in binario in grande <u>in modulo</u> avendo indicandone il valore in de	a disposizione 3 bit '1'		•
msb	lsb deci	male con segno	
4- L'operazione di somma a 8 origine a condizioni di erro	· ·	due di -3 al numero ρ	orima calcolato dà
5- Quante sono le funzioni di	istinte di 3 letterali f(A,	B,C) che hanno sette	mintermini ?

6- Si scriva la forma duale della funzione:

$$F(A,B) = (A \times B)$$

in forma canonica SOP indicando i mintermini presenti (ad esempio: $F_{duale} = m_2 + m_3$).

Note:

- si indica con A* il complemento di A, con B* il complemento di B
- si assuma $m_0 = A^* B^*$, $m_1 = A^* B$, $m_2 = A B^*$, $m_3 = A B$

F_{duale} =

7- Si minizzi la funzione la cui tabella di verità è riportata di seguito in forma di mappa di Karnaugh: disegnare i ricoprimenti, scrivere la funzione minimizzata.

8- Si completi il bubble diagram dell'automa a stati finiti il cui schema è riportato di seguito:

9- L' automa descritto in tabella possiede 5 stati, due ingressi A e B ed una uscita.

			AE	3	
		00	01	10	11
te	S0=000	S0/0	S0/_	S2/_	S2/_
Stato presente	S1=001	S1/_	_ S1/0	S3/_	S3/
pre	S2=010	S0/_	_ SO/_	S0/_	_ S1/_
ato	S3=011	S2/2	L S2/_	S3/_	_ S3/0
Sta	S4=100	S4/_	_ S4/1	S2/_	_ S2/_
			Stato fu	ıturo	

Completare la tabella, assumendo che l'automa sia di Moore.

10- Un automa di Moore possiede tre stati (S0, S1 e S2), un ingresso e una uscita, che commuta ogni qual volta l'automa passa da uno stato Si a Sj per ogni "i" e "j" pari. Disegnare un possibile bubble diagram dell'automa, evidenziando il valore dell'uscita.

 \cap

001 **S1**

CE4=

t0

t4

Il parte (10 punti max per quesito)

1- Il datapath di un processore con architettura multicycle impiega 5 colpi di clock (t0,1,2,3,4) per eseguire una istruzione. Si assuma che un ingresso dell'ALU assuma un valore costante, l'altro operando sia caricato in R5 al tempo t2 e t3 e il valore presente in uscita dall'ALU (si veda figura) debba essere caricato in R4 al tempo t3 e t4.

t0

t4

clock

CE4

CE5

t1

t2

t3

CE4= CE5=

g iS	rogetti un automa	di Moore che	piloti CE4 ((clock enable o	di R4)	e CE5	clock enabl	e di R5	١:
------	-------------------	--------------	--------------	-----------------	--------	-------	-------------	---------	----

a) si tracci l'evoluzione temporale dei segnali CE4 e CE5 e si compl	oieti ii bu	ooie alagram:
--	-------------	---------------

b) 9	si calcolino	le i	funzioni	di	prossimo	stato e	di	uscita:
------	--------------	------	----------	----	----------	---------	----	---------

Funzioni di p	orossimo	stato:
---------------	----------	--------

$$Q_{0next} = F_0(Q_2, Q_1, Q_0) =$$

$$Q_{1next} = F_1(Q_2, Q_1, Q_0) =$$
 $Q_{2next} = F_2(Q_2, Q_1, Q_0) =$

Funzioni di uscita:

CE4 =
$$G_0(Q_2,Q_1,Q_0) =$$

CE5 =
$$G_1(Q_2,Q_1,Q_0) =$$

2- Descrivere l'istruzione assembler ARM

illustrando in particolare il meccanismo di indirizzamento usato:

2- In un Sistema a 32 bit dotato di memoria virtuale, la tabella dei numeri di pagina (tabella degli indirizzi di base delle pagine) è il seguente (pagina logica = pagina virtuale, indirizzo logico = indirizzo virtuale). Gli indirizzi sono tutti esadecimali.

Pagina logica	Indirizzo base logico	Presente	Pagina fisica	Indirizzo base fisico
0	0	Sì	5	5000
1	1000	Sì	12	12000
2	2000	NO		
3	3000	SÌ	7	7000

- a) assumendo che la tabella dedichi 20 bit all'indirizzo del numero di pagina, determinare l'indirizzo fisico a 32bit delle istruzioni con indirizzo virtuale nell'intervallo 0x650 -> 0x1003
- b) descrivere cosa accade quando si tenta di eseguire una istruzione con indirizzo logico (virtuale) 0x02000544

-	 	 	
_			

Alcune risposte

```
(1)
in hex: 0xc2720000
(2)
0x4557f000 -> in bin: 010001010101111111100000000000 -> 3455
(3)
10000011 -> -125 -> modulo==125
(4)
(-125) + (-3) = -128 = 10000000
l'operazione non genera errore
(5)
le funzioni sono otto:
     01111111
m0
      10111111
m1
     11011111
m2
      11111110
m7
(6)
a \times b = (ab^* + a^*b)^*
forma duale = ((a+b^*)(a^*+b))^* = ((a+b^*)^* + (a^*+b)^*) = a^*b + ab^* = m1 + m2
(7)
f(A,B,C,D) = 0 \rightarrow funzione identicamente nulla
(8)
q1 q0 q1' q0'
0 0 -> 1 0
10 -> 1 1
11 -> 0 0
0 1 -> 0 1
(9)
Essendo l'automa di Moore, l'uscita deve dipendere esclusivamente dallo stato, quindi:
S0/0
S1/0
S2/1
S3/0
S4/1
```

(10)

Una possibile soluzione e' la seguente:

		input	
		0	1
S0/0	->	S1/1	S2/1
S1/1	->	S1/1	S0/0
S2/1	->	S1/1	S0/0

gli stati con indice pari (S0,S2) non possono ricircolare su loro stessi. Le uscite di S0 e S2 devono essere necessariamente l'una il complemento dell'altra.

II parte

```
(2) LDR R0, [R1, R2, LSL \#2]!; R0 = [R1 + (R2 << 2)], then R1 updated
```