EE910: Digital Communication Systems-I

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

April 11, 2022

Lecture #2C: Signal space representation of waveforms

Signal space concepts

• The *inner product* of two generally complex valued signals $x_1(t)$ and $x_2(t)$ is defined as

$$\langle x_1(t), x_2(t) \rangle \triangleq \int_{-\infty}^{\infty} x_1(t) x_2^*(t) dt$$

 $\langle x_1(t), x_2(t) \rangle = 0$ (orthogonality)

• The norm of a signal

$$||x(t)|| = \sqrt{\int_{-\infty}^{\infty} |x(t)|^2 dt} = \sqrt{\mathcal{E}_x}$$

where, \mathcal{E}_x is the energy in x(t).

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Signal space concepts

- A set of *m* signals is *orthonormal* if they are
 - Orthogonal;
 - Unit norm.

Signal space concepts

• A set of m signals is linearly independent if no signal can be represented as a linear combination of the remaining signals.

$$||x_1(t) + x_2(t)|| \le ||x_1(t)|| + ||x_2(t)||$$
 (Triangle inequality)

$$|\langle x_1(t), x_2(t) \rangle| \le \|x_1(t)\| \cdot \|x_2(t)\|$$
 (Cauchy- Schwartz inequality)
 $= \sqrt{\mathcal{E}_{x_1} \mathcal{E}_{x_2}}$ equivalently

$$\left| \int_{-\infty}^{\infty} x_1(t) x_2^*(t) dt \right| \leq \left| \int_{-\infty}^{\infty} |x_1(t)|^2 dt \right|^{1/2} \left| \int_{-\infty}^{\infty} |x_2(t)|^2 dt \right|^{1/2}$$

with equality when $x_2(t) = \alpha x_1(t)$ for some complex number α .

Orthogonal expansions of signals

• A set of orthonormal functions $\{\phi_n(t), n=1,2,\cdots,K\}$

$$\langle \phi_n(t), \phi_m(t) \rangle = \int_{-\infty}^{\infty} \phi_n(t) \phi_m^*(t) dt = \begin{cases} 1 & m = n \\ 0 & m \neq n \end{cases}$$

• Approximation of signal s(t) by $\hat{s}(t)$ is

$$\hat{s}(t) = \sum_{k=1}^K s_k \phi_k(t)$$

Approximation error

$$e(t) = s(t) - \hat{s}(t)$$

Orthogonal expansions of signals

• Energy in the error signal

$$\mathcal{E}_{e} = \int_{-\infty}^{\infty} |s(t) - \hat{s}(t)|^{2} dt$$
$$= \int_{-\infty}^{\infty} \left| s(t) - \sum_{k=1}^{K} s_{k} \phi_{k}(t) \right|^{2} dt$$

the coefficients $\{s_k\}$ are selected such that the error energy \mathcal{E}_e is minimized (in mean square error sense) and are given by

$$s_n = \langle s(t), \phi_n(t) \rangle = \int_{-\infty}^{\infty} s(t) \phi_n^*(t) dt, \qquad n = 1, 2, \cdots, K$$

4ロト 4回ト 4 重ト 4 重ト 重 9000

Adrish Banerjee EE910: Digital Communication SystemsDepartment of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Gram Schmidt procedure

• A set of orthogonal signals from the set of finite energy waveforms $\{s_m(t), m=1,2,\cdots,M\}$ is constructed as follows. choose a signal waveform randomly from the set $\{s_m(t), m=1,2,\cdots,M\}$, $s_1(t)$

$$\phi_k(t) = \frac{s_k(t)}{\sqrt{\int_{-\infty}^{\infty} |s_k(t)|^2 dt}} = \frac{s_k(t)}{\sqrt{\mathcal{E}_k}}, \quad \text{For k=1}$$

$$\gamma_k(t) = s_k(t) - \sum_{i=1}^{k-1} c_{ki} \phi_i(t)$$

$$\phi_k(t) = \frac{\gamma_k(t)}{\sqrt{\mathcal{E}_k}} \quad \text{For } k > 1$$

Gram Schmidt procedure

where,

$$c_{ki} = \langle s_k(t), \phi_i(t) \rangle = \int_{-\infty}^{\infty} s_k(t) \phi_i^*(t) dt$$
 $\mathcal{E}_k = \int_{-\infty}^{\infty} \gamma_k^2(t) dt$

• A signal $s_m(t)$ can be written in the term of set of orthonormal waveforms $\phi_n(t)$ as

$$s_m(t) = \sum_{n=1}^N s_{mn} \phi_n(t)$$
 for $m = 1, 2, \cdots, M$

◆□ ▶ ◆□ ▶ ◆ ■ ● 900

Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Gram Schmidt procedure

- Series expansion of the signal represents orthogonal projection of $s_i(t)$ onto the space spanned by the N basis function.
- Expansion coefficient s_{ik} can be interpreted as the projection of the *i*th signal onto the *k*th basis function.
- Each signal is represented as a point in N-dimensional signal space.
- The basis set for the signal set are the basis functions.

Gram Schmidt procedure

• For a fixed set of basis orthonormal waveforms $\phi_n(t)$, signals $\{s_m(t)\}$ can be written equivalently as vectors

$$\mathbf{s}_m = \begin{bmatrix} s_{m1} & s_{m2} & \cdots & s_{mN} \end{bmatrix}^T$$
 for $m = 1, 2, \cdots, M$

and by orthogonality of the basis

$$\langle s_k(t), s_l(t) \rangle = \langle \mathbf{s}_k, \mathbf{s}_l \rangle$$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C ・

Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Gram Schmidt procedure

- Note that the functions $\{\phi_n(t)\}$ obtained from the Gram Schmidt procedure are not unique.
- For the different order of orthogonalization process of $\{s_m(t)\}$, the orthonormal waveforms $\{\phi_n(t)\}$ will be different and the corresponding vector representation of the signal $s_m(t)$, s_m will be different
- The dimensionality of the signal space N will not change, and the vectors $\{\mathbf{s}_m\}$ will retain their geometric configuration, i.e. their lengths and their inner products will be invariant to the choice of the orthonormal functions $\{\phi_n(t)\}$.

Orthonormal Basis Sets

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Gram Schmidt Procedure

- Let the set of M signals be denoted by $s_1(t), s_2(t), \dots, s_M(t)$, defined over the interval [0, T].
- First basis function is defined by

$$\phi_1(t) = \frac{s_1(t)}{\sqrt{E_1}}$$

where E_1 is the energy of the signal $s_1(t)$ chosen arbitrarily from the

• $s_1(t)$ can then be represented as

$$s_1(t) = \sqrt{E_1}\phi_1(t)$$
$$= s_{11}\phi_1(t)$$

where the coefficient $s_{11} = \sqrt{E_1}$ and $\phi_1(t)$ has unit energy.

Gram Schmidt Procedure

• Next using $s_2(t)$ we define

$$s_{21}(t) = \int_0^T s_2(t)\phi_1(t)dt$$

• Let $g_2(t)$, a function orthogonal to $\phi_1(t)$ over the interval [0, T] be defined as

$$g_2(t) = s_2(t) - s_{21}(t)\phi_1(t)$$

• Second basis function can be defined as

$$\phi_2(t) = \frac{g_2(t)}{\sqrt{\int_0^T g_2^2(t)dt}}$$
$$= \frac{s_2(t) - s_{21}(t)\phi_1(t)}{\sqrt{E_2 - s_{21}^2}}$$

where E_2 is the energy of the signal $s_2(t)$.

Department of Electrical Engineering Indian Institute of Technology Kanpur, Uttar Pradesh India

Gram Schmidt Procedure

• Continuing in this fashion we can define

$$g_i(t)=s_i(t)-\sum_{j=1}^{i-1}s_{ij}(t)\phi_j(t)$$

where the coefficients s_{ij} are defined as

$$s_{ij}(t) = \int_0^T s_i(t)\phi_j(t)dt$$
 , $j = 1, 2, \cdots, i-1$

• Set of basis functions that form the orthonormal set can be defined as

$$\phi_i(t) = rac{g_i(t)}{\sqrt{\int_0^T g_i^2(t)dt}}$$
, $i = 1, 2, \cdots, N$

• If the signals $s_1(t), s_2(t) \cdots, s_M(t)$ forms a linearly independent set, then N = M, otherwise N < M

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India EE910: Digital Co

Gram Schmidt Procedure

• Apply Gram-Schmidt procedure to the signals given below

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Gram Schmidt Procedure

- ullet Signal $s_1(t)$ has energy 2, so $\phi_1(t)=s_1(t)/\sqrt{2}$.
- ullet $\phi_1(t)$ and $s_2(t)$ are orthogonal, so $\phi_2(t)=s_2(t)/\sqrt{2}$, where $E_2=2$.
- $g_3(t) = s_3(t) + \sqrt{2}\phi_2(t)$.
- $g_3(t)$ has unit energy, so $\phi_3(t) = g_3(t)$.
- $g_4(t) = s_4(t) \sqrt{2}\phi_1(t) \phi_3(t) = 0.$
- Thus $s_4(t)$ is linear combination of $\phi_1(t)$ and $\phi_3(t)$.
- The dimensionality of the signal set is N = 3.

Gram Schmidt Procedure

Solution:

40 > 4A > 4E > 4E > E 990

FF910: Digital Communication Systems-

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India