Computer Vision and Deep Learning

Lecture 4

Today's agenda

- Short history of of neural networks
- Convolutional neural networks
- How to evaluate a classifier

Classifier evaluation

Train, dev and test sets

- Training set
 - Used to train the model, determines what the network learns
- Development (dev) set or validation set
 - Used to evaluate the performance of your models and determine which ones work best
- Test set
 - Used to get an unbiased estimate of the final performance of the model

Sometimes is might be ok to not have a test set (only train and dev sets)

How to split your data into train/dev/test set?

 Before deep learning, when available data was relatively limited (e.g. 10000 images)

K-fold validation

Stratified k-fold validation

How to split your data into train/dev/test set?

- Large scale datasets
 - ImageNet > 14 million images
 - VGGFace 2 > 3.3 million images
 - JFT > 300 million images
- E.g. 1 million images
 - 980000 train set, 10000 dev set, 10000 test set -> 98% train, 1% dev, 1% test
- E.g. 4 million images
 - 3980000 train set, 10000 dev set, 10000 test set -> 99.5% train, 0.25% dev, 0.25% test

Convolutional neural networks

Understanding the visual cortex

electrical signal

Hubel and Wiesel, 1959

https://www.youtube.com/watch?v=IOHayh06LJ4&ab_channel=PaulLester

Nobel Prize for Physiology or Medicine in 1981: David Hubel and Torsten Wiesel

Simple cells:

orientation, position

Complex cells:

orientation, motion, direction

"Hypercomplex" cells:

orientation, motion, direction, length

Understanding the visual cortex

- Nearby cells in the cortex represented and processed nearby regions in the visual field
- Hubel and Wiesel hypothesized that the visual cortex can be described by a hierarchical organization of simple cells that fed into complex cells which have more complicated activations and can form higher level representations

Backpropagation, 1986

Learning representations by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA † Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

Gradient-Based Learning Applied to Document Recognition, Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner, 1998

Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition

Dan Ciresan, 2010

- One of the very fist implementations of GPU Neural nets
 - forward and backward pass implemented of an artificial neural network (up to 9 layers) implemented on an NVIDIA GTX 280 graphic processor

ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton

Convolutional neural networks

- Preserve the spatial information
- Convolve the filter over the entire input volume
 - The filter has the same depth as the input

- Preserve the spatial information
- Convolve the filter over the entire input volume
 - The filter has the same depth as the input

- Preserve the spatial information
- Convolve the filter over the entire input volume
 - The filter has the same depth as the input

- Neurons in an activation map:
 - Each neuron is connected to a small region in the input
 - All of neurons in the activation map share parameters
- Receptive field of a neuron
- k filters → k different neurons all looking at the same region in the input volume

https://medium.com/@chriskevin_80184/feature-maps-ee8e11a71f9e

https://www.youtube.com/watch?v=AgkflQ4lGaM

Convolutional layers Stride

- Stride the amount by which the filter shifts
- Stride 1

Convolutional layers Stride

• Stride – the amount by which the filter shifts

Convolutional layers Padding

0	0	0	0	0	0	0
0						0
0						0
0						0
0						0
0						0
0	0	0	0	0	0	0

Convolve an input of spatial size 7x7 with a 3x3 filter: output spatial size?

Convolve an input of spatial size 7x7 with a 3x3 filter, and applying 0 padding to the input: output spatial size?

To preserve size spatially: CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2

padding: 1

Why convolutions

- Parameter sharing
 - A feature detector that's useful in one part of an image is probably useful in other parts of the image
 - Translation invariance
- Sparsity of connections
 - The output volume depends only on a small (filter size) subset of the input volume

```
(,,)(,,)
```

- = filter depth
- input width,
 output width
- input height, input height
- F filter size
- P padding
- S stride

$$W_o = \frac{W_I - F + 2P}{S} + 1$$

$$H_o = \frac{H_I - F + 2P}{S} + 1$$

Conv2D layer

Conv2D class

```
tf.keras.layers.Conv2D(
   filters,
   kernel_size,
   strides=(1, 1),
   padding="valid",
   data_format=None,
   dilation_rate=(1, 1),
   groups=1,
   activation=None,
   use bias=True,
   kernel_initializer="glorot_uniform",
   bias_initializer="zeros",
   kernel_regularizer=None,
   bias_regularizer=None,
   activity_regularizer=None,
   kernel_constraint=None,
   bias_constraint=None,
   **kwargs
```

Padding: "same" or "valid"

2D convolution layer (e.g. spatial convolution over images).

Pooling layers

- Operate independently over each channel in the input
- Reduces the input size, creating smaller (and more manageable) representations
- Common pooling layers:
 - max pooling: takes the maximum value within each "patch" in the feature map
 - average pooling: takes the average value of each "patch" in the feature map
- It does not contain any learnable weights

Pooling layers

Pooling layers Examples

Max pooling

Avg pooling

Pooling layers

Example: max pooling layer, F 2, stride 1

1	3	6	6
20	9	8	4
2	1	4	5
1	12	13	10

20	9	8
20	9	8
12	13	13

Pooling layers

Example: max pooling layer, F 2, stride 2

1	3	6	6	
20	9	8	4	
2	1	4	5	
1	12	13	10	

20	8
12	13

Pooling layer

- Parameters
 - Filter size (spatial extent): F
 - Stride: S
- Input: $W_1 \times H_1 \times D$
- Output: W_o × H_i × D
- It has no learnable parameters

$$W_o = \frac{W_I - F}{S} + 1$$
 $H_o = \frac{H_I - F}{S} + 1$

MaxPooling2D layer

MaxPooling2D class

```
tf.keras.layers.MaxPooling2D(
    pool_size=(2, 2), strides=None, padding="valid", data_format=None, **kwargs
)
```

Max pooling operation for 2D spatial data.

Downsamples the input representation by taking the maximum value over the window defined by pool_size for each dimension along the features axis. The window is shifted by strides in each dimension. The resulting output when using "valid" padding option has a shape(number of rows or columns) of: output_shape = (input_shape - pool_size + 1) / strides)

The resulting output shape when using the "same" padding option is: output_shape = input_shape /

AveragePooling2D

Fully connected layers

- They don't preserve spatial information
 - Linear unit followed by a linearity
- Just in regular NN, contain several neurons that are connected to the entire input volume
 - Each neuron "sees" the entire input volume

- If we have an input volume of 27x27x5, what will be size of this volume if we apply a padding of 2?
- How many parameters (including the bias) does a convolutional layer with 10 filters of size 5x5 have?
- How many parameters (including the bias) does a convolutional layer with 10 filters of size 5x5 have if the input size is 32x32x3? What if we use a stride of 2?
- Given an input volume that is 63x63x16 that is convolved with 32 filters that are each 7x7, using a stride of 2 and no padding. What is the output volume?
- Given a RGB image of size 300x300, and you use a classical neural network with the first hidden layer of 100 neurons (each one fully connected to the input). How many parameters does this hidden layer have?

Dense layer

Dense class

```
tf.keras.layers.Dense(
    units,
    activation=None,
    use_bias=True,
    kernel_initializer="glorot_uniform",
    bias_initializer="zeros",
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    **kwargs
)
```

Just your regular densely-connected NN layer.

Typical neural network architecture

Typical neural network architecture

- Several CONV, POOL and FC layers stacked together
 - [CONV-ReLU-POOL]*N [FC]*K softmax
 - Recent neural networks change this paradigm
- The trend is to reduce the filter sizes and to increase the depth of the networks
- Another trend is to avoid using POOL and FC layers, and use only CONV layers

Alexnet example

	AlexNet Network - Structural Details												
Input Output		out	Layer	Stride	Pad	Kernel size		in	out	# of Param			
227	227	3	55	55	96	conv1	4	0	11	11	3	96	34944
55	55	96	27	27	96	maxpool1	2	0	3	3	96	96	0
27	27	96	27	27	256	conv2	1	2	5	5	96	256	614656
27	27	256	13	13	256	maxpool2	2	0	3	3	256	256	0
13	13	256	13	13	384	conv3	1	1	3	3	256	384	885120
13	13	384	13	13	384	conv4	1	1	3	3	384	384	1327488
13	13	384	13	13	256	conv5	1	1	3	3	384	256	884992
13	13	256	6	6	256	maxpool5	2	0	3	3	256	256	0
	fc6 1 1 9216 4096									37752832			
	fc7								16781312				
	fc8 1 1 4096 1000								4097000				
	Total 62,378,344												

"AlexNet input starts with 227 by 227 by 3 images. And if you read the paper, the paper refers to 224 by 224 by 3 images. But if you look at the numbers, I think that the numbers make sense only of actually 227 by 227."

Playground

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Learning from multiple tasks

Transfer learning

- Task A and task B have the same input
- More data for task A than for task B
- Low level features from task A could be helpful for learning task B

Multi task learning

- Training on a set of tasks that could benefit from having shared low level features
- Amount of data for each task is quite similar. Can train a big enough network to do well on all the tasks.

End to end deep learning

Advantages:

- Lets the data speak
- No handcrafted features

Disadvantages

- Needs huge amount of data
- Excludes potentially useful hand-designed components

Data pre-processing

Importance of feature scaling

Gradient descent without scaling

Gradient descent after scaling variables

$$0 \le x_1 \le 1$$
$$0 \le x_2 \le 1$$

Mean subtraction, scaling

Pre-processing for Images

- Zero center: subtract the mean across every individual feature in the data
 - Mean image
 - Mean across each channel
- Optional: normalize the data such that dimensions are approximately the same scale

https://github.com/keras-team/keras-applications/blob/master/keras_applications/imagenet_utils.py