Protection of Lithium Ion Batteries

Monolithic IC MM1414

Outline

This IC protects lithium ion batteries in the event of overcharge, overdischarge and overcurrent. It has the following two functions: an overcurrent detection function that turns the external FET-SW off when a problem occurs during charging, etc. and excess voltage is impressed on each battery for longer than a certain time, and an overdischarge detection function that turns the external FET-SW off when battery voltage drops below a certain voltage during discharge, in order to prevent battery overdischarge. When these functions operate, the IC is put into low consumption current mode. It also has an overcurrent detection function that turns the FET-SW off when excess current flows due to a short or the like.

Series Table

Temperature conditions A: Ta= $-25 \sim 75^{\circ}$ C, B: Ta= $-20 \sim 70^{\circ}$ C, C: Ta= $0 \sim 50^{\circ}$ C, D: Ta= $0 \sim 40^{\circ}$ C, E: Ta= $-20 \sim 25^{\circ}$ C

Model	Package TSOP-20A	Overcharge detection voltage (V)	Overcharge detection voltage temperature conditions	Overcharge detection hysteresis voltage (V)	Overdischarge detection voltage (V)	Overdischarge resumption voltage (V)	Overcurrent detection voltage (mV)
MM1414	AV	4.350±0.025	С	200±60	2.00±0.10	3.00 ± 0.15	150±15
	CV	4.350±0.025	С	200±60	2.30±0.10	3.00±0.15	150±15
	DV	4.250±0.025	С	200±60	2.30±0.10	3.00±0.15	150±15
	FV	4.325±0.025	С	200±60	2.30±0.10	3.00±0.15	100±15
	GV	4.295±0.025	С	8±8	2.30±0.10	3.00±0.15	150±15

Features

1. Consumption current (during overcharge) $V_{CELL} = 4.4$ CON = 0V $55\mu A$ typ.

2. Consumption current (normal) $V_{CELL} = 3.5V \text{ CON} = 0V \quad 15\mu\text{A typ.}$

3. Consumption current (during overdischarge) $V_{CELL} = 1.9V$ CON = 0V 0.5 μ A typ.

4. Consumption current (during overdischarge) VCELL = 1.0V CON = VCC 0.1μA max.

5. Overcharge detection voltage ($Ta = 0^{\circ}C \sim 50^{\circ}C$)

A, C, D, G; Los

A, C, D, G; Load open $500k\Omega$ or hight F; Load open $1MEG\Omega$ or hight

Package

TSOP-20A

Applications

IC for protection of lithium-ion batteries consisting of three or four cells Notebook PC lithium - ion battery packs

Pin Assignment

1	OV	11	SEL
2	N.C	12	N.C
3	CS	13	CON
4	N.C	14	N.C
5	DCHG	15	V1
6	N.C	16	V2
7	CDC	17	V3
8	COL	18	V4
9	COV	19	N.C
10	GND	20	Vcc

Block Diagram

Pin Description

Pin No.	Pin name	I/O	Functions
		Overcharge detection output pin	
4	1 OV		NPNTr open collector output
'		Output	Normal: high impedance
			Overcharge: Low
2	N.C		Not connected
			Overcurrent detection pin
			Monitors load current equivalently by the voltage drop between discharge control
3	CS	Input	FET source and drain, and makes DCHG pin high when the voltage goes below
J		Input	overcurrent detection voltage, turning off discharge control FET. After
			overcurrent detection, current flows from this pin and when there is a light load,
			overcurrent mode is released. This function does not operate in overdischarge mode.
4	N.C		Not connected
			Discharge control FET (P-ch) drive pin
5	DCHG	Output	Normal: Low
			Overdischarge: High
6	N.C		Not connected
7 0	CDC	Input	Overdischarge detection dead time setting pin
-		212p u.c	Dead time can be set by connecting a capacitor between CDC pin and ground.
8	COL Input	COL	Overcurrent detection dead time setting pin
		F	Dead time can be set by connecting a capacitor between COL pin and ground.
9	cov	Input	Overcharge detection dead time setting pin
		_	Dead time can be set by connecting a capacitor between COV pin and ground.
10	GND	Input	Ground pin
11	SEL	Input	3 cell switch pin SEL pin = GND: 3 cell (Connect V1 to GND)
- 10	N. O		SEL pin = Vcc: 4 cell
12	N.C		Not connected
40	CON	.	Discharge FET ON/OFF pin
13		Input	CON pin low; DCHG pin low (Normal mode)
1.1	NC		CON pin high; DCHG pin high (Discharging prohibited)
14	N.C	Innut	Not connected V1 cell high side veltage input pin
15	V1 V2	Input	V1 cell high side voltage input pin V2 cell high side voltage and V3 cell low side voltage input pin
16 17	V2 V3	Input Input	V3 cell high side voltage and V4 cell low side voltage input pin
18	V3 V4	Input	V4 cell high side voltage input pin
19	N.C	приг	Not connected
20	Vcc	Input	Power supply input pin
20	v CC	трис	ւ օտշւ շախիւչ ուրաւ իու

Pin Description

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+70	°C
Power supply voltage	Vcc max.	-0.3~24	V
OV pin impressed voltage	Vov max.	-0.3~24	V
SEL pin impressed voltage	Vsel max.	-0.3~24	V
CON pin impressed voltage	Vcon max.	-0.3~24	V
Allowable loss	Pd	300	mW

Recommended Operating Conditions

Item	Symbol	Ratings	Unit
Operating temperature	Topr	-20~+70	°C
Operating voltage	Vopr	+1.8~+24	V

(Except where noted otherwise, Ta=25°C, Vcc=V4+V3+V2+V1, Electrical Characteristics (Except where noted otherwise, 12-23-3, 13-23-3,

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Consumption current (Vcc pin) 1	Icc1	Vcell=4.4V, CON=0V		55	110	μA
Consumption current (Vcc pin) 2	Icc2	Vcell=3.5V, CON=0V		27	50	μA
Consumption current (Vcc pin) 3	Icc3	VCELL=1.8V, CON=0V		2	4	μA
Consumption current (Vcc pin) 4	Icc4	Vcell=3.5V, CON=Vcc		12	20	μA
Consumption current (Vcc pin) 5	Icc5	VCELL=1.8V, CON=VCC		1	2	μA
Consumption current (V4 pin) 1	I1V4	Vcell=4.4V		10	20	μA
Consumption current (V4 pin) 2	I2V4	VCELL=3.5V		8	15	μA
Consumption current (V4 pin) 3	I3V4	Vcell=1.8V		2.5	5.0	μA
V3 pin input current	IV3	Vcell=3.5V	-300	0	+300	nA
V2 pin input current	IV2	Vcell=3.5V	-300	0	+300	nA
V1 pin input current	IV1	Vcell=3.5V	-300	0	+300	nA
Overcharge detection voltage	VCELLU	V_{CELL} : 4.2 $V\rightarrow$ 4.4 V , $Ta=0\sim50^{\circ}C$	4.270	4.295	4.320	V
Overcharge hysteresis voltage	∠VU	$V_{CELL}: 4.2V \rightarrow 4.4V \rightarrow 3.9V$		8	16	mV
Overcharge sensing dead time	tOV	COV=0.1μF	0.5	1.0	1.5	s
Overdischarge detection voltage	VCELLS	$V_{CELL}: 3.5V \rightarrow 1.8V$	2.20	2.30	2.40	V
Discharge resume voltage	VCELLD	$V_{CELL}: 1.8V \rightarrow 3.5V$	2.85	3.00	3.15	V
Overdischarge hysteresis voltage	∠VDS	VCELLD-VCELLS	0.45	0.70	0.95	V
Overdischarge sensing dead time	tCDC	CDC=0.1µF	0.5	1.0	1.5	s
Overcurrent detection voltage	VOC	Vcc-Vcs, DCHG	135	150	165	mV
Overcurrent hysteresis voltage	∠VOC			20	40	mV
Overcurrent sensing dead time 1	tCOL1	COL=0.001μF	5	10	15	ms
Overcurrent sensing dead time 2	tCOL2	COL=0.001µF, Vcc-CS>1.0V		1.5	3.0	ms
Overcurrent sensing dead time 3	tCOL3	COL=0.001µF	5	10	15	ms
Overcurrent reset conditions			Load rele	ase conditio	ns 500kΩ	
DCHG pin source current	IsoDcн	Vcell=1.8V, SW1 : A VDCHG=Vcc-0.8V	20			μA
DCHG pin sink current	IsiDcн	Vcell=3.5V, SW1 : A VDCHG=0.8V	20			μA
DCHG pin output voltage H	VтнDcH	Vcc-VDCHG, Iso=20μA, SW1 : B			0.8	V
DCHG pin output voltage L	VтнDcL	VDCHG-GND, Is=-20μA, SW1 : B			0.8	V
OV pin sink current	IsiOV	VOV=0.4V, Ta=-20~+70°C	100			μA
OV pin leak current	IlkOV	VOV=24V			0.1	μA
CON pin L voltage		DCHG= "High"			0.4	V
CON pin H voltage		DCHG= "Low"	Vcc-0.4			V
CON pin current		Vcell=3.5V, CON=0.4V		1	2	μA
SEL pin L voltage		for 3 cell			0.4	V
SEL pin H voltage		for 4 cell	Vcc-0.4			V
SEL pin current		VCELL=3.5V, SEL=0.4V		1	2	μA

Measuring Circuit

Timing Chart

For overcharge

For overdischarge

For overcurrent

Application Circuit

Note: Applicable circuits shown are typical examples provided for reference purposes. Mitsumi cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Characteristics

Overcharge & Overdischarge Sensing Dead Times

Overcurrent Sensing Dead Time 2

Overcurrent Sensing Dead Time 1, Overcurrent Reset Dead Time 3

Note: The above characteristics are representative values only, and are not guaranteed.