Deney 1_Serbest Dusme

				-
Olasm Saylei	20 cm	30cm	hom	50cm
	0,188	0,232	0.267	0,297
2	0,187	9235	0,267	0,296
3	0,188	0,231	0,264	0,294
				0,296
4	0,186	0,230	0,268	0,294
5	0,\$87	0,230	0,264	01634
tent	0,1872	0,2316	0,266	0,2954
tort	0,0350	0,0536	0,090	0,0872

Bilyania: 20,30,40 ve soonlike yskalliklar den tyrker 5'er desse biraker, bu 5 desser den tort desservi buluyaruz, formilde kullarnek ein tort desservi heseplyeruz.

Sinds elimizele h ve to venleri vensu vensu venler hef(to) grafisini cizip bureden tona y buluyaruz ve formilde yarhe yerles krigaruz.

Denuy 2_ Bosit Sarkag

Sira	L(m)	Tis)	72(s2)
1	45	4	16
2	41	3,85	14.82
3	38	3,75	1406
4	34	3,55	12,60

Frekans: 20Hz ve L dégerler son (80,77,75,71)
gibs dégerler verilus, se

Frelen=201/2 1=0,05 Ti= 80x0,05=4
Ti= 77x0,05=3,85 sellinde

T dégerlerni bulayoruz.

Aksi durunde $T = 2\pi / L/s$ formulanden ? deger levini bulup, karelerni hesaphyaruz (T²).

Dala soura L=f(72) grafifini cizip, formülde g= 472 [[] yeare yazıyarı

$$tan\phi = \frac{11}{34} = 3,23$$

9 deregged =
$$\frac{4\pi^2}{8in\phi}$$
, $\frac{L}{T^2} = \frac{4.(3.14)^2}{0.5}$, 3,23

M=1897, Puelora =1,3cm					
+(s)	Ekinan bar scyll (F)	Acused W (rad/s)			
1	13	0,8/6			
3	30	1,884			
5	50	3,14			
(int = 613 am, Mask = 1350 pr					

Verilan degarter degruthismeda Idnaysel

TEFIT => FIRSHE => (T=M.g.F.

T= m.g.r=) 15.981.1,3 => T=19129,5 dyn.on

$$4 + \frac{1}{3}$$

$$2 + \frac{1}{3}$$

$$2 + \frac{1}{3}$$

$$4 + \frac{1}{3}$$

$$2 + \frac{1}{3}$$

$$4 + \frac{1}{3}$$

$$4800 = \frac{2.33}{4} = 0.58$$

Scanned by CamScanner

Deney 5- Newtorin II. Harelet Kanunu							. , ,	1	
m (gr)	Mask (ar)	t ₍ (s)	12(5)	43(s)	V, (em/s)	V2 (m/s)	a den (cu/52)	atro(cu/se)	
405	15	0,47	0,40	0,58				*	
405	25	8,40	0,32	0,49		manufacture for the contract of the contract o			
405	35	0.32	0,25	1					
Verilan digerler dogruhtusunda Maski (15,25 ve 35 grilik her bit kutte ram) Vi 112 V2 hizlarian brijaktoklerini, deneysel ve teorite ivnelesini, bağıl hata paynı bulmaya çalısıyoruz.									
$V_1 = \frac{L}{t_1} = \frac{21.5}{0.47} = 45.74 \text{ cm/s}$			$M_{a} = 25 \text{ sr } \hat{n}$ $V_{i} = \frac{L}{l_{i}} = \frac{21.5}{640} = 53,75 \text{ cm/s}$			$N_0 = 35$ or iam $V_1 = \frac{L}{l_1} = \frac{2l_1S}{0.32} = 67.18 \text{ calls}$			
$V_2 = \frac{L}{l_2} = \frac{21.5}{0.40} = 53.75 \text{ cm/s}$			$V_2 = \frac{L}{l_2} = \frac{2l_1 S}{0.32} = 67.18 \text{ cm/s}$			$V_{2} = \frac{L}{l_{2}} = \frac{21.5}{9.25} = 86 \text{ cm/s}$			
$a_{den} = \frac{V_2 - V_1}{t_3} = \frac{53,75 - 45,74}{0,58}$ $a_{den} = 13,81 \text{ cm/s}^2$		į.	$a_{der} = \frac{V_2 - V_1}{t_3} = \frac{67.18 - 53.75}{0.49}$ $a_{der} = 27.40 \text{ cm/s}^2$			$a_{den} = \frac{V_2 - V_1}{f_3} = \frac{86 - 67,18}{0,39}$ $a_{den} = 48,25 \text{ cm/s}^2$			
$a_{120} = \frac{M_{a.9}}{M + M_{a}} = \frac{15.981}{405 + 15}$			$a_{1eo} = \frac{M_{9.9}}{M_{1}M_{10}} = \frac{25.981}{408+25}$			$a_{1e0} = \frac{M_{9.9}}{M+M_{9}} = \frac{35.581}{405+35}$			
ala = 35,03 cm/s2			I tes =	57,03	cu/52	a tes:	= 78,03 cm	1/52	

= % 51,95

= % 60,57

Hata Pays = lader - atest .100 Hata Pays = lader - atest .100 Hata Pays = lader - atest .100 ates $= \frac{13.91 - 35.031}{35.03} \cdot 100 = \frac{127.40 - 57.031}{57.03} \cdot 100 = \frac{148.25 - 78.031}{78.03} \cdot 100$ = % 38,16

Scanned by CamScanner