A Novel AutoML Solution with NePS

Ömer Emre POLAT, Barbaros INAK Dropouts

Modality 1/2

Motivation

Our main motivation was to create a versatile one click AutoML solution that can adapt to any tabular dataset using 8 different state-of the-art regression models.

NePS was chosen as an hyperparameter optimizer because it was the option which we had experience in exercises and it was transparent with the source code.

Used Methods

Bayesian Hyperparameter Optimization

Successive Halving

IQR Variable Scale Outlier Detection

Standardization

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

VVCCICO

Week 10

Bonus

Literature

Pipeline Training Succesive Halving over 8 different Regression Data Algorithms Pre-made Outlier Data Splits Standardization Search Space Detection and Selection Dropping Selection of Final Hyperparameter Optimization Using Hyperparameter < Best Optimization NePS Algorithm(s) Top Performing Predictions Model Test Configuration Data Succesive Optimization Data Model

Details

The pipeline consists of a main successive halving loop which works on 8 different regression algorithms such as:

- Sklearn and XGB Random Forest
- Gradient Boost
- Ada Boost
- MLP
- Bayesian Ridge
- Elastic Net
- Dart Boost

Optimization run on the given configuration space, the IQR scale and the validation split ratio. The resulting best model is then saved to be used for predictions.

Resources Used

For development:

- 1 Ryzen 9 5900HX

(Laptop)

- Total compute estimate: 50 CPU-hours

Workforce:

- 2 full week on average

Empirical Results

space

Our Approach

y_prop Dataset

Validation 0.1229

Test 0.1135

Processing

Validation

0.9423

Test 0.9755

0.9997 0.997

Test

Validation

Brazilian Houses

Dataset

Exam Dataset

Validation 0.9016

Test

Number of queries for test score generation: **5**

Chosen Algorithm: XGB Random Forest

For the y_prop dataset, our AutoML solution found the XGB Random Forest as the most optimal algorithm.

Chosen Algorithm: SKlearn Random Forest

Bike Sharing

Dataset

Halving Loop

For the Bike Sharing Dataset, our AutoML solution found the Gradient Boost as the most optimal algorithm.

Chosen Algorithm: SKlearn Random Forest

For the Brazilian Houses
Dataset, our AutoML
solution found the MLP
as the most optimal
algorithm.

Chosen Algorithm:
Gradient Boost

For the Exam Dataset, our AutoML solution found the Dart Boost as the most optimal algorithm.

