

School of Computer Engineering

Kalinga Institute of Industrial Technology (KIIT)

Deemed to be University

Bhubaneswar-751024

Lesson Plan and Activity Calendar

Design and Analysis of Algorithms - CS30001 (L-T-P-Cr: 3-0-0-3)

Semester: 5th

Discipline: B.Tech. (CSE), Section: CSE-07

Session: Autumn 2024

.....

Prerequisites: Data Structures (CS21001)

Instructor:

Name : Chamber : Email :

Class Hours:

Day Time		Class Room		

·-----

Lesson Plan:

Unit	Unit Name	Topics to be covered	No. of lectures	Lecture serial nos.
1	Introduction	 Concepts in algorithm analysis & design - motivation Complexity of an algorithm (Space and time Complexity), Analysis of time complexity of Insertion Sort by step count method Growth of functions, Asymptotic Notations (Big Oh, Omega, Theta)) Solving recurrences: Iterative method Substitution method, Recurrence Tree method Solving recurrences: Master theorem, Change of variable Tutorials / Activity 	8	1-8

2a	Divide and Conquer Approach	 Structure of Divide-and-Conquer algorithm design technique Analysis of divide-and-conquer run time recurrence relations of Finding Max/Min Binary Search Merge Sort Quick Sort Tutorials / Activity 	3	9-11
2b	Greedy Approach	 Revision of Heap: Build Heap/Insertion/Deletion, Complexity Overview of Greedy design paradigm and Solving as well as analyzing the following problems using Greedy method: Fractional knapsack problem Job sequencing with deadlines Huffman method of Optimal Coding Finding Minimum spanning trees for a Graph: Kruskal's Method Finding Minimum spanning trees for a Graph: Prim's Method Finding Single Pair Shortest Path in a graph: Dijkstra's Method Tutorials / Activity 	7	12-18
3	Dynamic Programming Approach	 Overview of Dynamic Programming paradigm, Difference between Dynamic Programming and Divide & Conquer/Greedy Methods Solving the following problems using Dynamic Programming method: 0/1 Knapsack problem Matrix Chain Multiplication Longest Common Subsequence Introduction to Multistage Graph problem: Problem statement, DP formulation, Discussion on Complexity All Pair Shortest Paths in a Graph Floyd Warshall Algorithm Optimal Binary Search Tree (OBST): Problem statement, DP formulation, Discussion on Complexity Travelling Salesman Problem (TSP): Problem statement, DP formulation, Discussion on Complexity Travelling Salesman Problem (TSP): Problem statement, DP formulation, Discussion on Complexity Tutorials / Activity Tutorials / Activity Activity Tutorials / Activity 	8	19-26

4	Amortized Analysis and Randomized Algorithms	6	27-32	
6.	Complexity Classes and Approximation Algorithms	 Concepts of Complexity Classes: P, NP, NP-Hard and NP-Complete Reducibility of problems Complexity Classes for the following selected problems: 3-CNF Satisfiability Problem Travelling Salesman Problem Maximal Clique Problem Hamiltonian cycle Problem Vertex Cover Problem Introductory idea of Approximation algorithms Approximation algorithms for following selective problems: Travelling Salesman Problem Vertex Cover Problem Tutorials / Activity 	8	32-40

Day-wise Lesson Handouts:

Week	Lecture No.	Topics				
		Concepts in algorithm, difference between Algorithm and Program,				
	1	characteristics of algorithms. Algorithm design and their Performance				
Week - 1		Analysis: Time and Space Complexity, motivation.				
WCCK - I	2	Pseudo code Conventions, Analysis of Insertion Sort by step count method				
	2	(Incremental Approach), Best-case, Worst-case and Average-case Analysis.				
	3	Growth of functions, Asymptotic Notations $(\theta, 0, \Omega)$				
	4	Solving recurrences using Iterative method				
Week - 2	5	olving recurrences using Substitution method				
	6	Solving recurrences using Recursion Tree method				
	7	Solving recurrences using Master's Theorem				
Week – 3	8	Solving recurrences using Change of Variables, Discussion and Examples of				
		Limitations of Master Theorem				
	9	Divide-and-Conquer Approach - Binary Search and its complexity analysis,				
		Finding Minimum/Maximum				
Week - 4	10	Divide-and-Conquer Approach - Merge Sort and its complexity analysis				
Week - 4	11	Divide-and-Conquer Approach - Quick Sort and its complexity analysis				
	(Worst-case, Best-case, Role of Pivot Choice and Balanced Partitioning)					
	12	Revision of Max and Min Heap: Discussion on Complexity of Heap				
	Insertion, Heap Deletion and Heap Building					

Г					
Week - 5	13	Overview of Greedy paradigm, Elements of greedy strategy: Recursive, Iterative greedy algorithm. Knapsack Problem, Difference between Fractional Knapsack and 0/1 Knapsack, Greedy strategy for solving Fractional Knapsack Problem			
, vecin e	14	Job sequencing with deadlines - A greedy problem formulation and solving			
	15	Problem of Optimal coding, Huffman Tree and Huffman method for Optimal coding			
Week - 6	16	Minimum-Cost Spanning Tree (MST) for a weighted graph, Kruskal's algorithm for finding MST			
WCCK - U	17	Prim's Method for finding MST			
	18	Single-Source Shortest Path problem for weighted graphs, Dijkstra's Method			
Week - 7	19	Overview of Dynamic Programming paradigm, Divide and Conquer vs Dynamic Programming, Greedy vs Dynamic Programming, Elements of dynamic programming, Tabulation vs Memoization approach			
vveek - /	20	Dynamic Programming approach for solving 0/1 Knapsack problem			
	21	Matrix Chain Multiplication (MCM) problem, Dynamic Programming approach for solving MCM problem			
Week - 8	22	Longest Common Subsequence (LCS) problem, Dynamic Programming approach for solving LCS problem			
	23	Multistage Graph problem: Problem Statement, DP Formulation, Discussion			
	24	All Pair Shortest Path problem for weighted graph: Floyd Warshall algorithm			
	25	Optimal Binary Search Tree (OBST): Statement, DP Formulation, Discussion			
Week - 9	26	Travelling Salesman Problem (TSP): Statement, DP Formulation, Discussion			
Week - 9	27	Basic Idea of Amortized Analysis of algorithms, Introductory Idea of Aggregate Analysis Method of Amortized Analysis			
	28	Introductory Idea of Accounting Method of Amortized Analysis			
Week - 10	29	Introductory Idea of Potential Method of Amortized Analysis			
	30	Basic Idea of Las Vegas and Monte Carlo algorithms			
	31	Randomized Quick Sort: Basic Idea and discussion on average case analysis			
	32	Minimum Cut in a graph: Concept and Introductory Idea			
Week - 11	33	Tractable vs Intractable problems, Decision vs Optimization Problems, Deterministic vs Nondeterministic Algorithms. Reduction, Polynomial Reduction and Equivalence of Problems.			
West- 12	34	Basic Concepts of Complexity Classes (P, NP, NP hard, NP Complete) and their hierarchy			
Week - 12	35	3CNF-SAT: Problem Statement and Discussion on Complexity Class			
	36	Travelling Salesman Problem			
	37	Maximal Clique Problem			
Wool- 12	38	Hamiltonian cycle Problem, Vertex Cover Problem			
Week - 13	39	Introductory Idea to Approximation Algorithms			
	40	Approximation Algorithms for Vertex Cover and TSP			
	10	1 approximation range running for a force of the transfer and the			

Activity Calendar - Autumn 2023

Activity No.	Type of Activity	Probable Date	Marks (Weightage)	CO		
1	ACTIVITY-1 (Class Test/ Subjective Test)	22.07.24 – 26.07.24	5			
2	ACTIVITY-2 (Class Test/Quiz Test)	05.08.24 – 09.08.24	5			
3	ACTIVITY-3 (Class Test/ Surprise Test)	02.09.24 - 06.09.24	5			
	Mid Semester Examination [17.09.2024 – 21.09.2024]					
4	ACTIVITY-4 (Home Assignment)	30.09.24 - 04.10.24	5			
5	ACTIVITY-5 (Class Test/Home Assignment)	21.10.24 – 25.10.24	5			
6	ACTIVITY-6 (Class Test/Quiz Test)	04.11.24 – 08.11.24	5			
End Semester Examination [16.11.2024 – 26.11.2024]						

Course Outcome: Upon completion of this course, the students will be able to:

CO1:	Analyze the time and space complexity for any algorithm	
CO2:	Compare and contrast different algorithm design techniques	
CO3:	Apply the algorithm design techniques in solving real world problems	
CO4:	Perform amortize analysis for any algorithm	
CO5:	Modify existing algorithms to apply in common engineering design situations	
CO6:	Use NP class of problems to propose approximation algorithms	

Text books:

- ▶ Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", Universities Press.
- Thomas H. Coreman, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", PHI.

Reference books:

- ▶ Jon Kleinberg, Eva Tardos, "Algorithm Design", Pearson.
- Michael T. Goodrich, Roberto Tamassia, "Algorithm Design: Foundations, Analysis, and Internet Examples", Wiley India.

Grading Policy:

Pedagogy: Lecture, Assignments, Quiz, Debate, Short Projects, etc.

Evaluation Methodology: Internal: 50 (20- Midterm Exam & 30 Activity), End Term: 50

Distribution of Marks:

SL No.	Evaluation Component	Evaluation Marks	Course Lecture No.		Mode
			From	То	
1	Mid-Semester Examination	20	1	21	Closed Book
2	Activity based Teaching and Learning	30	NA	NA	Open Book, Closed Book and Presentation, Short quiz
3	End-Semester Examination	50	1	40	Closed Book

Note

- Tentative Mid-Semester Syllabus would be up to Matrix Chain Multiplication (MCM) problem under the unit of Dynamic Programming approach as per the Lesson Plan
- Modifications to the above-mentioned structure (Lesson Plan / Examination Process / Any other modifications) may take place as per the Teacher's discretion adhering to the University Guidelines.