

Dados e Aprendizagem Automática Regressão Linear e Logística

DAA @ MEI-1º/MiEI-4º/MMC-1º – 1º Semestre Bruno Fernandes, Filipe Gonçalves, Víctor Alves, Cesar Analide 2

• Linear Regression

• Logistic Regression

• Hands On

Exercise:

- Problem: Development of a Machine Learning Model able to predict house prices for regions in the USA
- Regression Approach: Linear Regression approach to solve this problem
- Dataset: table with information regarding houses info. in regions of the United States, containing:
 - 'Avg. Area Income': Avg. Income of residents of the city house is located in.
 - 'Avg. Area House Age': Avg Age of Houses in same city
 - 'Avg. Area Number of Rooms': Avg Number of Rooms for Houses in same city
 - 'Avg. Area Number of Bedrooms': Avg Number of Bedrooms for Houses in same city
 - 'Area Population': Population of city house is located in
 - 'Price': Price that the house sold at
 - 'Address': Address for the house

1	Α	В	С	D	E	F	G
1	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
2	79545.45857	5.682861322	7.009188143	4.09	23086.8005	1059033.558	208
3	79248.64245	6.002899808	6.730821019	3.09	40173.07217	1505890.915	188
4	61287.06718	5.86588984	8.51272743	5.13	36882.1594	1058987.988	9127
5	63345.24005	7.188236095	5.586728665	3.26	34310.24283	1260616.807	USS
6	59982.19723	5.040554523	7.839387785	4.23	26354.10947	630943.4893	USNS

Check out the data

We've been able to get some data from your neighbor for housing prices as a csv set, let's get our environment ready with the libraries we'll need and then import the data!

Import Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Check out the Data

```
USAhousing = pd.read_csv('USA_Housing.csv')
```

USAhousing.head() Avg. Area House Avg. Area Number of Avg. Area Number of Avg. Area Area Price Address Income Rooms Bedrooms Population 208 Michael Ferry Apt. 674\nLaurabury, NE 79545.458574 5.682861 7.009188 23086.800503 1.059034e+06 188 Johnson Views Suite 079\nLake 79248.642455 6.002900 6.730821 40173.072174 1.505891e+06 Kathleen, CA... 9127 Elizabeth Stravenue\nDanieltown, WI 61287.067179 5.865890 8.512727 36882.159400 1.058988e+06 63345.240046 7.188236 5.586729 34310.242831 1.260617e+06 USS Barnett\nFPO AP 44820 59982.197226 5.040555 7.839388 26354.109472 6.309435e+05 USNS Raymond\nFPO AE 09386

USAhousing.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

Avg. Area Income

Avg. Area House Age

Avg. Area Number of Rooms

Avg. Area Number of Bedrooms

Area Population

Price

Address

5000 non-null float64

5000 non-null object

dtypes: float64(6), object(1)
memory usage: 273.5+ KB

USAhousing.describe()

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

USAhousing.columns

Training a Linear Regression Model

Let's now begin to train out regression model! We will need to first split up our data into an X array that contains the features to train on, and a y array with the target variable, in this case the Price column. We will toss out the Address column because it only has text info that the linear regression model can't use.

X and y arrays

Train Test Split

Now let's split the data into a training set and a testing set. We will train out model on the training set and then use the test set to evaluate the model.

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
```

sns.distplot(y_train)

<matplotlib.axes._subplots.AxesSubplot at 0x1c6b394ed48>

sns.distplot(y_test)

<matplotlib.axes._subplots.AxesSubplot at 0x1c6b3ed28c8>

Creating and Training the Model

from sklearn.linear_model import LinearRegression

lm = LinearRegression()

lm.fit(X_train,y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

Model Evaluation

Let's evaluate the model by checking out it's coefficients and how we can interpret them.

print the intercept
print(lm.intercept_)

-2640159.79685

coeff_df = pd.DataFrame(lm.coef_,X.columns,columns=['Coefficient'])
coeff_df

	Coefficient
Avg. Area Income	21.528276
Avg. Area House Age	164883.282027
Avg. Area Number of Rooms	122368.678027
Avg. Area Number of Bedrooms	2233.801864
Area Population	15.150420

Interpreting the coefficients:

- Holding all other features fixed, a 1 unit increase in Avg. Area Income is associated with an *increase of \$21.52 *.
- Holding all other features fixed, a 1 unit increase in Avg. Area House Age is associated with an *increase of \$164883.28 *.
- Holding all other features fixed, a 1 unit increase in Avg. Area Number of Rooms is associated with an *increase of \$122368.67 *.
- Holding all other features fixed, a 1 unit increase in Avg. Area Number of Bedrooms is associated with an *increase of \$2233.80 *.
- . Holding all other features fixed, a 1 unit increase in Area Population is associated with an *increase of \$15.15 *.

Residual Histogram

Regression Evaluation Metrics

Here are three common evaluation metrics for regression problems:

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$$

Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

from sklearn import metrics

```
print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

MAE: 82288.2225191 MSE: 10460958907.2 RMSE: 102278.829223

Comparing these metrics:

- . MAE is the easiest to understand, because it's the average error.
- . MSE is more popular than MAE, because MSE "punishes" larger errors, which tends to be useful in the real world.
- . RMSE is even more popular than MSE, because RMSE is interpretable in the "y" units.

All of these are loss functions, because we want to minimize them.

Exercise:

- > **Problem:** use machine learning to create a model that predicts which passengers survived the Titanic shipwreck
- > Classification Approach: Logistic Regression approach to solve this problem
- <u>Dataset</u>: table with information regarding passengers' information, including:

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Import Libraries

Let's import some libraries to get started!

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

The Data

Let's start by reading in the titanic_train.csv file into a pandas dataframe.

```
train = pd.read_csv('titanic_train.csv')
```

train.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Exploratory Data Analysis

Let's begin some exploratory data analysis! We'll start by checking out missing data!

Missing Data

We can use seaborn to create a simple heatmap to see where we are missing data!

sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')

<matplotlib.axes._subplots.AxesSubplot at 0x11a56f7b8>

Roughly 20 percent of the Age data is missing. The proportion of Age missing is likely small enough for reasonable replacement with some form of imputation. Looking at the Cabin column, it looks like we are just missing too much of that data to do something useful with at a basic level. We'll probably drop this later, or change it to another feature like "Cabin Known: 1 or 0"

Let's continue on by visualizing some more of the data! Check out the video for full explanations over these plots,

```
sns.set_style('whitegrid')
sns.countplot(x='Survived',data=train,palette='RdBu_r')
```

<matplotlib.axes._subplots.AxesSubplot at 0x11afae630>


```
sns.set_style('whitegrid')
sns.countplot(x='Survived',hue='Sex',data=train,palette='RdBu_r')
```

<matplotlib.axes._subplots.AxesSubplot at 0x11b004a20>


```
train['Fare'].hist(color='green',bins=40,figsize=(8,4))
```

<matplotlib.axes._subplots.AxesSubplot at 0x113893048>

Data Cleaning

We want to fill in missing age data instead of just dropping the missing age data rows. One way to do this is by filling in the mean age of all the passengers (imputation). However we can be smarter about this and check the average age by passenger class. For example:

We can see the wealthier passengers in the higher classes tend to be older, which makes sense. We'll use these average age values to impute based on Pclass for Age.

```
def impute_age(cols):
    Age = cols[0]
    Pclass = cols[1]

if pd.isnull(Age):
    if Pclass == 1:
        return 37

    elif Pclass == 2:
        return 29

    else:
        return 24

else:
    return Age
```

Now apply that function!

```
train['Age'] = train[['Age','Pclass']].apply(impute_age,axis=1)
```

Now let's check that heat map again!

```
sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')
<matplotlib.axes._subplots.AxesSubplot at 0x11c4dae10>
```


Great! Let's go ahead and drop the Cabin column and the row in Embarked that is NaN.

e=True)	rop('Cabin',axis=1,inplace=Tru
---------	--------------------------------

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	c
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02, 3101282	7.9250	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	S

Allen, Mr. William Henry male 35.0

373450 8.0500

train.dropna(inplace=True)

train.head()

Converting Categorical Features

We'll need to convert categorical features to dummy variables using pandas! Otherwise our machine learning algorithm won't be able to directly take in those features as inputs.

```
train.info()
                                                                              sex = pd.get dummies(train['Sex'],drop first=True)
                                                                              embark = pd.get_dummies(train['Embarked'],drop_first=True)
<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 11 columns):
                                                                              train.drop(['Sex', 'Embarked', 'Name', 'Ticket'], axis=1, inplace=True)
             889 non-null int64
PassengerId
Survived
             889 non-null int64
Pclass
             889 non-null int64
                                                                              train = pd.concat([train,sex,embark],axis=1)
Name
             889 non-null object
Sex
             889 non-null object
             889 non-null float64
Age
                                                                              train.head()
             889 non-null int64
SibSp
             889 non-null int64
Parch
                                                                                 Passengerld Survived Polass Age SibSp Parch
                                                                                                                                    Fare male
             889 non-null object
Ticket
Fare
             889 non-null float64
                                                                              0
                                                                                                           3 22.0
                                                                                                                              0 7.2500
                                                                                                                                           1.0 0.0 1.0
             889 non-null object
Embarked
dtypes: float64(2), int64(5), object(4)
                                                                              1
                                                                                                           1 38.0
                                                                                                                              0 71.2833
                                                                                                                                           0.0 0.0 0.0
memory usage: 83.3+ KB
                                                                              2
                                                                                                           3 26.0
                                                                                                                       0
                                                                                                                                  7.9250
                                                                                                                                           0.0 0.0 1.0
                                                                              3
                                                                                                            1 35.0
                                                                                                                              0 53,1000
                                                                                                                                           0.0 0.0 1.0
                                                                                                                       1
                                                                                                    0
                                                                                                           3 35.0
                                                                                                                              0 8.0500
                                                                                                                                          1.0 0.0 1.0
```

Great! Our data is ready for our model!

Building a Logistic Regression model

Let's start by splitting our data into a training set and test set.

Train Test Split

```
from sklearn.model_selection import train_test_split
```

Training and Predicting

from sklearn.linear_model import LogisticRegression

```
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)
```

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='12', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

```
predictions = logmodel.predict(X_test)
```

Let's move on to evaluate our model!

Training and Predicting

```
from sklearn.linear_model import LogisticRegression
```

```
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)
```

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

```
predictions = logmodel.predict(X_test)
```

Let's move on to evaluate our model!

Evaluation

We can check precision, recall, f1-score using classification report!

from sklearn.metrics import classification_report, plot_confusion_matrix

print(classification_report(y_test,predictions))

		precision	recall	f1-score	support
	0	0.81	0.93	0.86	163
	1	0.85	0.65	0.74	104
vg /	total	0.82	0.82	0.81	267

#Get the confusion matrix
plot_confusion_matrix(logmodel, X_test, y_test)
plt.show()

Hands On

