This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Cancelled):
- 2. (Cancelled):
- 3. (Currently Amended): A glycinamide compound according to elaim 1, selected from the compounds of formula II: [[,]]

$$(R^8)_p$$
 Ar^1 N N N $(R^9)_q$ II

wherein

Ar¹ is phenyl, pyridinyl, oxazolyl, isoxazolyl, pyrazolyl or imidazolyl;

- Ar¹, Ar² are each, independently from one another, selected from is an aromatic hydrocarbon group hydrocarbons containing 6 to 14 carbon atoms or an and ethylenical unsaturated or aromatic heterocyclic group residues containing 3 to 10 carbon atoms and one or two hetero atoms, wherein said hetero atoms are each independently selected from N, O or and S; [[,]]
- is alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, Hal, $\frac{\text{CH}_2\text{Hal, CH(Hal)}_2, \text{ perhaloalkyl having 1 to 4 carbon atoms, NO}_2, (\text{CH}_2)_n\text{CN}, }{(\text{CH}_2)_n\text{NR}^{11}\text{R}^{12}, (\text{CH}_2)_n\text{COR}^{13}, (\text{CH}_2)_n\text{COOR}^{11}, (\text{CH}_2)_n\text{CONR}^{11}\text{R}^{12}, }{(\text{CH}_2)_n\text{SO}_2\text{NR}^{11}\text{R}^{12}, \text{ or } (\text{CH}_2)_n\text{S(O)}_u\text{R}^{13}; } }$

 \mathbb{R}^{8} , \mathbb{R}^{9} and \mathbb{R}^{10} are <u>each</u> independently selected from H, A, cycloalkyl <u>having</u>

comprising 3 to 7 carbon atoms, Hal, CH₂Hal, CH(Hal)₂, C(Hal)₃, NO₂, (CH₂)_nCN, (CH₂)_nNR¹¹R¹², (CH₂)_nOR¹¹, (CH₂)_nO(CH₂)_kNR¹¹R¹², (CH₂)_nCOOR¹², (CH₂)_nCONR¹¹R¹², (CH₂)_nNR¹¹COR¹³, (CH₂)_nNR¹¹CONR¹¹R¹², (CH₂)_nNR¹¹SO₂A, (CH₂)_nSO₂NR¹¹R¹², (CH₂)_nS(O)_uR¹³, (CH₂)_nOC(O)R¹³, (CH₂)_nCOR¹³, (CH₂)_nSR¹¹, CH=N-OA, CH₂CH=N-OA, (CH₂)_nNHOA, (CH₂)_nCH=N-R¹¹, (CH₂)_nOC(O)NR¹¹R¹², (CH₂)_nNR¹¹COOR¹², (CH₂)_nN(R¹¹)CH₂CH₂OCF₃, (CH₂)_nN(R¹¹)C(R¹³)HCOOR¹², C(R¹³)HCOR¹², (CH₂)_nN(R¹¹)CH₂CH₂NR¹¹R¹², (CH₂)_nN(R¹¹)CH₂CH₂NR(R¹²)CH₂COOR¹², (CH₂)_nN(R¹¹)CH₂CH₂NR¹¹R¹², CH=CHCOOR¹¹, CH=CHCH₂NR¹¹R¹², CH=CHCH₂NR¹¹R¹², CH=CHCH₂OR¹³, (CH₂)_nN(COOR¹¹)COOR¹², (CH₂)_nN(CONH₂)COOR¹¹, (CH₂)_nN(CONH₂)COOR¹¹, (CH₂)_nN(CH₂COOR¹², (CH₂)_nN(CONH₂)COOR¹¹, (CH₂)_nN(CH₂COONH₂)COOR¹¹, (CH₂)_nCHR¹³COR¹¹, (CH₂)_nCOR¹¹, (CH₂)_nCHR¹³COR¹¹, (CH₂)_nCOR¹¹, (CH₂)_nCOR

- R¹¹, R¹² are <u>each</u> independently selected from H, A, (CH₂)_mAr³, or and (CH₂)_mHet, or, in NR¹¹R¹², R¹¹ and R¹² form, together with the N-Atom they are bound to, a 5-, 6- or 7-membered heterocycle which optionally contains 1 or 2 additional hetero atoms, wherein said hetero atoms are each independently selected from N, O or an S; [[,]]
- R^{13} , R^{14} are <u>each</u> independently selected from H, Hal, A, $(CH_2)_mAr^4$, or and $(CH_2)_mHet$; [[,]]
- A is selected from alkyl, alkenyl, cycloalkyl, alkylenecycloalkyl, alkoxy or and alkoxyalkyl; [[,]]
- Ar³, Ar⁴ are <u>each</u> independently from one another <u>an</u> aromatic hydrocarbon <u>group</u>

 <u>having residues comprising</u> 5 to 12 which <u>is</u> <u>are</u> optionally substituted by one or more substituents, <u>wherein said substituents are in each case independently</u>

 $\frac{\text{selected from A, Hal, NO}_2, \text{CN, OR}^{15}, \text{NR}^{15}\text{R}^{16}, \text{COOR}^{15}, \text{CONR}^{15}\text{R}^{16},}{\text{NR}^{15}\text{COR}^{16}, \text{NR}^{15}\text{CONR}^{15}\text{R}^{16}, \text{NR}^{16}\text{SO}_2\text{A, COR}^{15}, \text{SO}_2\text{R}^{15}\text{R}^{16}, \text{S(O)}_u\text{A}, \text{or and OOCR}^{15};}}{\text{and OOCR}^{15};}[[,]]$

Het is a saturated, unsaturated or aromatic heterocyclic group residue which is optionally substituted by one or more substituents, wherein said substituents are in each case independently selected from A, Hal, NO₂, CN, OR¹⁵, NR¹⁵R¹⁶, COOR¹⁵, CONR¹⁵R¹⁶, NR¹⁵COR¹⁶, NR¹⁵CONR¹⁵R¹⁶, NR¹⁶SO₂A, COR¹⁵, SO₂R¹⁵R¹⁶, S(O)_uA, or and OOCR¹⁵; [[,]]

R¹⁵, R¹⁶ are each independently selected from H, A, or and (CH₂)_mAr⁵; [[,]]

Ar⁵ Ar⁶ is a 5- or 6-membered aromatic hydrocarbon which is optionally substituted by one or more substituents, wherein said substituents are in each case independently selected from methyl, ethyl, propyl, 2-propyl, tert.-butyl, Hal, CN, OH, NH₂, or and CF₃; [[,]]

k, n, m are independently of one another 0, 1, 2, 3, 4, or 5;

n is 0 or 1;

- X is O, S, NR^{15} , $CHOR^{11}$, CH_2 , CH_2CH_2 , OCH_2 , CH_2O , OCH_2CH_2 , or CH_2CH_2O ; represents a bond or is $(CR^{11}R^{12})_h$, or $(CHR^{11})_h$ Q $(CHR^{12})_h$;
- $$\begin{split} Q & \quad \text{is selected from O, S, N-R$}^{15}, (CHal_2)_j, (O\text{-}CHR$^{18})_j, (CHR$^{18}\text{-}O)_j, CR$^{18}\text{=}CR$^{19}, \\ & \quad (O\text{-}CHR^{18}CHR^{19})_j, CHR^{18}CHR^{19}\text{-}O)_j, C=O, C=S, C=NR$^{15}, CH(OR$^{15}), \\ & \quad C(OR$^{17})(OR$^{20}), C(=O)O, OC(=O), OC(=O)O, C(=)N(R$^{15}), N(R$^{15})C(=O), \\ & \quad OC(=O)N(R$^{15}), N(R$^{15})C(=O)O, CH=N-O, CH=N-NR$^{15}, OC(O)NR$^{15}, \\ & \quad NR$^{15}C(O)O, S=O, SO_2, SO_2NR$^{15}, or and NR$^{15}SO_2; [[,]] \end{split}$$
- h, i are independently from each other 0, 1, 2, 3, 4, 5 or 6; [[,]]

- j is 1, 2, 3, 4, 5 or 6; [[,]]
- Y is selected from O, S, NR²¹, C(R²²)-NO₂, C(R²²)-CN, or and C(CN)₂; [[,]]
- R^{21} is H, Hal, A, $(CH_2)_mAr^4$, or and $(CH_2)_mHet$; [[,]]
- R^{22} is H, A, $(CH_2)_mAr^3$, or and $(CH_2)_mHet$; [[,]]
- p is 1, 2 or 3;
- p, r is are independently from one another 0, 1, 2, 3, 4 or 5; [[,]]
- q is <u>0 or 1; 0, 1, 2, 3 or 4,</u>
- u is <u>0 or 2; 0, 1, 2 or 3,</u>

and

Hal is <u>in each case</u> independently selected from F, Cl, Br <u>or</u> and I;

or a salt or solvate and the salts and solvates thereof.

4. (Currently Amended): A glycinamide compound according to claim <u>3</u> 4, selected from the compounds of formula IIa, IIb, IIc, IId, IIe, IIf, IIg and IIh, [[']]

$$(R^8)_p \xrightarrow{H} (R^9)_q \qquad IIa$$

MERCK-2971

$$(R^8)_p \xrightarrow{H} (R^9)_q \qquad IIb$$

$$(\mathsf{R}^8)_\mathsf{p} + (\mathsf{R}^9)_\mathsf{q} \qquad \qquad \mathsf{IId}$$

$$R^{8} \xrightarrow{O-N} Y \xrightarrow{H} (R^{9})_{q}$$
IIe

$$\mathbb{R}^8 \xrightarrow{\mathsf{N} - \mathsf{O}} \mathbb{H} \xrightarrow{\mathsf{N}} \mathbb{H} \times \mathbb{H} \times$$

wherein

is alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, Hal, $\frac{\text{CH}_2\text{Hal, CH(Hal)}_2, \text{C(Hal)}_3, \text{NO}_2, (\text{CH}_2)_n\text{CN, (CH}_2)_n\text{NR}^{11}\text{R}^{12}, (\text{CH}_2)_n\text{COR}^{13},}{(\text{CH}_2)_n\text{COOR}^{11}, (\text{CH}_2)_n\text{CONR}^{11}\text{R}^{12}, (\text{CH}_2)_n\text{SO}_2\text{NR}^{11}\text{R}^{12}, \text{or (CH}_2)_n\text{S(O)}_u\text{R}^{13},}}$

 \mathbb{R}^{8} , \mathbb{R}^{9} and \mathbb{R}^{10} are independently selected from H, A, cycloalkyl comprising 3 to 7 carbon atoms, Hal, CH₂Hal, CH(Hal)₂, C(Hal)₃, NO₂, (CH₂)_nCN, $(CH_2)_nNR^{11}R^{12}$, $(CH_2)_nOR^{11}$, $(CH_2)_nO(CH_2)_kNR^{11}R^{12}$, $(CH_2)_nCOOR^{12}$, $(CH_2)_n CONR^{11}R^{12}$, $(CH_2)_n NR^{11}COR^{13}$, $(CH_2)_n NR^{11}CONR^{11}R^{12}$, $(CH_2)_nNR^{11}SO_2A$, $(CH_2)_nSO_2NR^{11}R^{12}$, $(CH_2)_nS(O)_uR^{13}$, $(CH_2)_nOC(O)R^{13}$, $(CH_2)_nCOR^{13}$, $(CH_2)_nSR^{11}$, CH=N-OA, $CH_2CH=N-OA$, $(CH_2)_nNHOA$, $(CH_2)_nCH=N-R^{11}$, $(CH_2)_nOC(O)NR^{11}R^{12}$, $(CH_2)_nNR^{11}COOR^{12}$, $(CH_2)_nN(R^{11})CH_2CH_2OR^{13}, (CH_2)_nN(R^{11})CH_2CH_2OCF_3.$ $(CH_2)_nN(R^{11})C(R^{13})HCOOR^{12}$, $C(R^{13})HCOR^{12}$, (CH₂)_nN(R¹¹)CH₂CH₂N(R¹²)CH₂COOR¹², (CH₂)_nN(R¹¹)CH₂CH₂NR¹¹R¹², CH=CHCOOR¹¹, CH=CHCH₂NR¹¹R¹², CH=CHCH₂NR¹¹R¹², $CH=CHCH_2OR^{13}$, $(CH_2)_nN(COOR^{11})COOR^{12}$, $(CH_2)_nN(CONH_2)COOR^{11}$, (CH₂)_nN(CONH₂)CONH₂, (CH₂)_nN(CH₂COOR¹¹)COOR¹², (CH₂)_nN(CH₂CONH₂)COOR¹¹, (CH₂)_nN(CH₂CONH₂)CONH₂, (CH₂)_nCHR¹³COR¹¹, (CH₂)_nCHR¹³COOR¹¹, (CH₂)_nCHR¹³CH₂OR¹⁴, (CH₂)_nOCN and (CH₂)_nNCO,

R¹⁰ can also be H,

 R^{11} , R^{12} are <u>each</u> independently selected from H, A, $(CH_2)_mAr^3$, or and $(CH_2)_mHet$, or, in $NR^{11}R^{12}$, R^{11} and R^{12} form, together with the N-Atom they are bound to, a 5-, 6- or 7-membered heterocycle which optionally contains 1 or 2 additional MERCK-2971

hetero atoms, wherein said hetero atoms are independently selected from N, O or an S,

- R^{13} , R^{14} are <u>each</u> independently selected from H, Hal, A, $(CH_2)_mAr^4$, or and $(CH_2)_mHet$,
- A is selected from alkyl, alkenyl, cycloalkyl, alkylenecycloalkyl, alkoxy<u>, or</u> and alkoxyalkyl,
- Ar³, Ar⁴ are <u>each</u> independently from one another <u>an</u> aromatic hydrocarbon <u>group</u>

 <u>having residues comprising</u> 5 to 12 carbon atoms which <u>is</u> are optionally

 substituted by one or more substituents, <u>wherein said substituents are in each</u>

 <u>case independently selected from</u> A, Hal, NO₂, CN, OR¹⁵, NR¹⁵R¹⁶, COOR¹⁵,

 CONR¹⁵R¹⁶, NR¹⁵COR¹⁶, NR¹⁵ CONR¹⁵R¹⁶, NR¹⁶SO₂A, COR¹⁵, SO₂R¹⁵R¹⁶,

 S(O)_uA, <u>or</u> and OOCR¹⁵,
- Het is a saturated, unsaturated or aromatic heterocyclic group residue which is optionally substituted by one or more substituents, wherein said substituents are in each case independently selected from A, Hal, NO₂, CN, OR¹⁵, NR¹⁵R¹⁶, COOR¹⁵, CONR¹⁵R¹⁶, NR¹⁵COR¹⁶, NR¹⁵CONR¹⁵R¹⁶, NR¹⁶SO₂A, COR¹⁵, SO₂R¹⁵R¹⁶, S(O)₁₁A, or and OOCR¹⁵,
- R^{15} , R^{16} are <u>each</u> independently selected from a group consisting of H, A, <u>or</u> and $(CH_2)_mAr^5$,
- Ar⁵ is a 5- or 6-membered aromatic hydrocarbon which is optionally substituted by one or more substituents, wherein said substituents are in each case independently selected from methyl, ethyl, propyl, 2-propyl, tert.-butyl, Hal, CN, OH, NH₂, or and CF₃,

k, n, m are independently of one another 0, 1, 2, 3, 4, or 5;

- p is 0, 1, or 2, 0, 1, 2, 3, 4 or 5,
- q is <u>0 or 1</u>, 0, 1, 2, 3 or 4,

u is 0, 1, 2 or 3,

Y is selected from O, S, NR^{21} , $C(R^{22})$ - NO_2 , $C(R^{22})$ -CN, or and $C(CN)_2$,

 R^{21} is H, Hal, A, $(CH_2)_mAr^4$, or and $(CH_2)_mHet$,

 R^{22} is H, A, $(CH_2)_mAr^3$, or and $(CH_2)_mHet$,

or a salt or solvate and the salts and solvates thereof.

5. (Currently Amended): A glycinamide compound according to claim $4 \underline{3}$, selected from

<u>and</u>

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

- 6. (Cancelled):
- 7. (Cancelled):
- 8. ((Cancelled):
- 9. (Cancelled):
- 10. (Previously Presented): A pharmaceutical composition comprising one or more compounds according to claim 1, and one or more additional compounds, selected from physiologically acceptable excipients, auxiliaries, adjuvants, carriers and other pharmaceutical active ingredients.
- 11. (Currently Amended): A process for the manufacture of a pharmaceutical composition comprising:

processing one or more compounds according to claim 1 and one or more compounds selected from the group consisting of carriers, excipients, auxiliaries and pharmaceutical active ingredients other than the compounds according to claim 1, by mechanical means into a <u>dosage form</u> pharmaceutical composition that is suitable as <u>dosage form</u> for application

12.	(Cancelled):
13.	(Cancelled):
14.	(Cancelled):
15.	(Cancelled):
16.	(Cancelled):
17.	(Cancelled):
18.	(Cancelled):
19.	(Cancelled):
20.	(Cancelled):
21.	(Cancelled):
22.	(Cancelled):
23.	(Cancelled):
24.	(Cancelled):
25.	(Cancelled):
26.	(Cancelled):

and/or administration to a patient.

- 27. (Cancelled):
- 28. (Currently Amended): A method for producing a compound <u>according to claim 3 of formula II</u>, said method comprising:

reacting a compound of formula III

$$(R^8)_p$$
 $-Ar^1$ N L^1 III

wherein

L¹ is Cl, Br, l, OH, a reactive esterified OH-group or a diazonium moiety, <u>and</u>

R^8 , Ar^1 , and Y are as defined in claim 3,

is selected from H, A, cycloalkyl comprising 3 to 7 carbon atoms, Hal, CH2Hal, CH(Hal)2, C(Hal)2, NO2, (CH2)2CN, (CH2)2NR¹¹R¹²; (CH₂), OR¹¹, (CH₂), O(CH₂), NR¹¹R¹², (CH₂), COOR¹²; (CH₂)₀CONR¹¹R¹². (CH₂)₀NR¹¹COR¹³. (CH₂)₀NR¹¹CONR¹¹R¹². (CH₂)_nNR⁺⁺SO₂A, (CH₂)_nSO₂NR⁺⁺R⁺², (CH₂)_nS(O)₁R⁺², (CH₂), OC(O)R¹³, (CH₂), COR¹³, (CH₂), SR¹¹, CH=N, OA, CH₂CH=N OA. (CH₂), NHOA. (CH₂), CH=N-R¹¹. (CH₂), OC(O)NR¹¹R¹². (CH₂), NR¹¹COOR¹². (CH₂), N(R¹¹)CH₂CH₂OR¹³. (CH₂)_aN(R¹¹)CH₂CH₂OCF₃, (CH₂)_aN(R¹¹)C(R¹³)HCOOR¹²; C(R⁺³)HCOR⁺², (CH₂), N(R⁺¹)CH₂CH₂N(R⁺²)CH₂COOR⁺², (CH₂)_aN(R⁺⁺)CH₂CH₂NR⁺⁺R⁺². CH=CHCOOR⁺⁺. CH=CHCH₂NR¹¹R¹². CH=CHCH₂NR¹¹R¹². CH=CHCH₂OR¹³. (CH₂)_nN(COOR¹¹)COOR¹², (CH₂)_nN(CONH₂)COOR¹¹, $(CH_2)_nN(CONH_2)CONH_2, (CH_2)_nN(CH_2COOR^{11})COOR^{12},\\$ (CH₂)_nN(CH₂CONH₂)COOR¹¹, (CH₂)_nN(CH₂CONH₂)CONH₂, MERCK-2971 $(CH_2)_nCHR^{13}COR^{11}$, $(CH_2)_nCHR^{13}COOR^{11}$, $(CH_2)_nCHR^{13}CH_2OR^{14}$, $(CH_2)_nOCN$ and $(CH_2)_nNCO$,

p is 0, 1, 2, 3, 4 or 5,

Ar¹ is selected from aromatic hydrocarbons containing 6 to 14 carbon atoms and ethylenical unsaturated or aromatic heterocyclic residues containing 3 to 10 carbon atoms and one or two hetero atoms, independently selected from N, O and S,

Y is selected from O, S, NR²¹, C(R²²)-NO₂, C(R²²)-CN and C(CN)₂,

A is selected from alkyl, alkenyl, cycloalkyl, alkylenecycloalkyl, alkoxy and alkoxyalkyl,

R¹¹, R¹² are independently selected from H, A, (CH₂)_mAr³ and (CH₂)_mHet, or, in NR¹¹R¹², R¹¹ and R¹² form, together with the N. Atom they are bound to, a 5 , 6 or 7 membered heterocycle which optionally contains 1 or 2 additional hetero atoms, selected from N, O an S,

k, n, m are independently of one another 0, 1, 2, 3, 4, or 5,

 R^{13} , R^{14} -are independently selected from H, Hal, A, $(CH_2)_mAr^4$ -and $(CH_2)_mHet$,

Het is a saturated, unsaturated or aromatic heterocyclic residue which is

optionally substituted by one or more substituents, selected from A, Hal, NO₂, CN, OR¹⁵, NR¹⁵R¹⁶, COOR¹⁵, CONR¹⁵R¹⁶, NR¹⁵COR¹⁶, NR¹⁵CONR¹⁵R¹⁶, NR¹⁶SO₂A, COR¹⁵, SO₂R¹⁵R¹⁶, S(O)_uA and OOCR¹⁵,

R¹⁵, R¹⁶ are independently selected from H, A, and (CH₂)_mAr⁵,

Ar⁵ is a 5 or 6 membered aromatic hydrocarbon which is optionally substituted by one or more substituents selected from methyl, ethyl, propyl, 2 propyl, tert. butyl, Hal, CN, OH, NH₂ and CF₃,

$$R^{22}$$
 is H, Λ , $(CH_2)_m \Lambda r^3$ and $(CH_2)_m Het$,

with a compound of formula IV,

$$L_{N}^{2}$$
 $(R^{9})_{q}$ IV

wherein

 L^2 , L^3 are independently from one another H or a metal ion, and

 R^9 , q, X, Ar^2 , R^{10} and r are as defined in claim 3,

R⁹ and R¹⁰ are independent from one another selected from H, A, cycloalkyl comprising 3 to 7 carbon atoms, Hal, CH₂Hal, CH(Hal)₂, C(Hal)₃, NO₂, (CH₂), CN, (CH₂), NR¹¹R¹², (CH₂), OR¹¹, (CH₂)₂O(CH₂)₄NR⁺¹R⁺²-(CH₂)₂COOR⁺²-(CH₂)₃CONR⁺¹R⁺²-(CH₂)_nNR⁺⁺COR⁺³₋(CH₂)_nNR⁺⁺CONR⁺⁺R⁺²₋(CH₂)_nNR⁺⁺SO₂A₋ (CH₂)₀SO₂NR¹⁴R¹². (CH₂)₀S(O)₀R¹³. (CH₂)₀OC(O)R¹³. (CH₂)₀COR¹³. (CH₂)₀SR⁺¹-CH=N-OA-CH₂CH=N-OA-(CH₂)₀NHOA-(CH₂), CH=N-R⁺⁺, (CH₂), OC(O)NR⁺⁺R⁺², (CH₂), NR⁺⁺COOR⁺²; (CH2), N(R¹¹)CH2CH2OR¹³, (CH2), N(R¹¹)CH2CH2OCF3; (CH₂)_aN(R¹¹)C(R¹³)HCOOR¹²-C(R¹³)HCOR¹²-(CH₂)_nN(R¹¹)CH₂CH₂N(R¹²)CH₂COOR¹². (CH₂)₂N(R⁺¹)CH₂CH₂NR⁺¹R⁺²-CH=CHCOOR⁺¹-CH=CHCH₂NR¹¹R¹². CH=CHCH₂NR¹¹R¹². CH=CHCH₂OR¹³. (CH2), N(COOR 11) COOR 12, (CH2), N(CONH2) COOR 11, (CH2)₀N(CONH2)CONH2, (CH2)₀N(CH2COOR¹¹)COOR¹², (CH₂)₂N(CH₂CONH₂)COOR¹¹, (CH₂)₂N(CH₂CONH₂)CONH₂, (CH₂), CHR¹³COR¹¹, (CH₂), CHR¹³COOR¹¹. (CH₂), CHR¹³CH₂OR¹⁴. (CH₂),OCN and (CH₂),NCO,

q is 0, 1, 2, 3, or 4,

X represents a bond or is (CR⁺⁺R⁺²)_h, or (CHR⁺⁺)_h Q (CHR⁺²)_i;

Ar² is selected from aromatic hydrocarbons containing 6 to 14 carbon atoms and ethylenical unsaturated or aromatic heterocyclic residues containing 3 to 10 carbon atoms and one or two hetero atoms, independently selected from N, O and S,

r is 0, 1, 2, 3, 4 or 5, and

h, i are independently from each other 0, 1, 2, 3, 4, 5 or 6;

and optionally isolating and/or treating the compound of formula II obtained by said reaction with an acid, to obtain the salt thereof.

- 29. (Cancelled):
- 30. (Cancelled):
- 31. (Currently Amended): A compound according to claim 3, wherein
- Ar¹ is phenyl, pyridinyl, oxazolyl, isoxazolyl, pyrazolyl or imidazolyl, preferably phenyl, pyridinyl or isoxazolyl and especially phenyl or oxazolyl,

$$p = is 1, 2 or 3,$$

R⁸— is selected from the group consisting of alkyl comprising 1 to 4 carbon atoms, alkoxy comprising 1 to 4 carbon atoms, Hal, CH_2Hal , $CH(Hal)_2$, perhaloalkyl comprising 1 to 4 carbon atoms, NO_2 , $(CH_2)_nCN$, $(CH_2)_nNR^{11}R^{12}$, $(CH_2)_nCOR^{13}$, $(CH_2)_nCOOR^{11}$, $(CH_2)_nCONR^{11}R^{12}$, $(CH_2)_nSO_2NR^{11}R^{12}$ and $(CH_2)_nS(O)_nR^{13}$, wherein

$$n = is 0 or 1$$

u is
$$0$$
 or 2 ,

X is O, S, NR^{15} , $CHOR^{11}$, CH_2 , CH_2 CH₂, OCH_2 , CH_2O , OCH_2CH_2 , or CH_2CH_2O .

- 32. (Previously Presented): A compound according to claim 31, wherein A² is phenyl or pyridinyl.
- 33. (Previously Presented): A compound according to claim 31, wherein X is O or S.
- 34. (Previously Presented): A compound according to claim 31, wherein Y is O or S.
- 35. (Previously Presented): A compound according to claim 31, wherein A¹ is phenyl or oxazolyl.
- 36. (Previously Presented): A compound according to claim 31, wherein A² is pyridinyl.
 - 37. (Previously Presented): A compound according to claim 31, wherein X is O.
 - 38. (Previously Presented): A compound according to claim 31, wherein Y is O.
 - 39. (New): A compound according to claim 31, wherein A¹ is phenyl.
- 40. (New): A compound according to claim 3, wherein A is alkyl having 1 to 10 carbon atoms, allyl, 2-butenyl, 3-butenyl, isobutenyl, sec-butenyl, 4-pentenyl, isopentenyl, 5-hexenyl, cycloalkyl having 3 to 7 carbon atoms, alkylenecycloalkyl having 5 to 10 carbon atoms, alkoxy having 1 to 10 carbon atoms, or C_uH_{2u+1} -O-(CH_2)_v wherein u is 1 to 6 and v is 1 to 6.
- 41. (New): A compound according to claim 4, wherein A is alkyl having 1 to 10 carbon atoms, allyl, 2-butenyl, 3-butenyl, isobutenyl, sec-butenyl, 4-pentenyl, isopentenyl, 5-hexenyl, cycloalkyl having 3 to 7 carbon atoms, alkylenecycloalkyl having 5 to 10 carbon atoms, alkoxy having 1 to 10 carbon atoms, or C_uH_{2u+1} -O-(CH_2) $_v$ wherein u is 1 to 6 and v is 1 to 6.

- 42. (New): A compound according to claim 31, wherein A is alkyl having 1 to 10 carbon atoms, allyl, 2-butenyl, 3-butenyl, isobutenyl, sec-butenyl, 4-pentenyl, isopentenyl, 5-hexenyl, cycloalkyl having 3 to 7 carbon atoms, alkylenecycloalkyl having 5 to 10 carbon atoms, alkoxy having 1 to 10 carbon atoms, or C_uH_{2u+1} -O-(CH_2)_v wherein u is 1 to 6 and v is 1 to 6.
- 43. (New): A compound according to claim 35, wherein A is alkyl having 1 to 10 carbon atoms, allyl, 2-butenyl, 3-butenyl, isobutenyl, sec-butenyl, 4-pentenyl, isopentenyl, 5-hexenyl, cycloalkyl having 3 to 7 carbon atoms, alkylenecycloalkyl having 5 to 10 carbon atoms, alkoxy having 1 to 10 carbon atoms, or C_uH_{2u+1} -O-(CH_2)_v wherein u is 1 to 6 and v is 1 to 6.
- 44. (New): A compound according to claim 39, wherein A is alkyl having 1 to 10 carbon atoms, allyl, 2-butenyl, 3-butenyl, isobutenyl, sec-butenyl, 4-pentenyl, isopentenyl, 5-hexenyl, cycloalkyl having 3 to 7 carbon atoms, alkylenecycloalkyl having 5 to 10 carbon atoms, alkoxy having 1 to 10 carbon atoms, or C_uH_{2u+1} -O- $(CH_2)_v$ wherein u is 1 to 6 and v is 1 to 6.
- 45. (New): A compound according to claim 31, wherein A^2 is pyridinyl and X is O.
- 46. (New): A compound according to claim 35, wherein A² is pyridinyl and X is O.
- 47. (New): A compound according to claim 39, wherein A² is pyridinyl and X is O.
- 48. (New): A compound according to claim 42, wherein A² is pyridinyl and X is O.
- 49. (New): A compound according to claim 43, wherein A² is pyridinyl and X is O.

	50.	(New): A compound according to claim 44, wherein A ² is pyridinyl and X is
O.		