equation	∇=gradient operator	mass leaving the defined area
The momentum equations	$\frac{\partial \vec{v}}{\partial t} = \vec{g} - \frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} - 2\vec{\Omega} \times \vec{v} + \vec{F}$ where g=gravitational force, p=water pressure, $\nabla^2 = \text{Laplacian operator, } \Omega = \text{angular velocity of the earth, } F = \text{external forces, } \nu = \text{kinematic viscosity}$	Navier-Stokes equation, valid for incompressible Newtonian flows
The advection equation	$J_a = C\vec{v}$ where J_a =advective flux density, C=pollutant concentration	Provide information for the horizontal transport by flows of pollutants; this is a primary transport process in the longitudinal direction in the rivers and estuaries
The dispersion	$J = -D\frac{dC}{dx}$	Provide information for the

flux

 $+b_k\sin\left(\frac{2\pi}{T_k}t\right)\right]+\eta_0(t)$

density,

estuaries

Description

Account for the flux of mass going

into a defined area and the flux of

gradient of material concentration

horizontal spreading by reducing the

Provide information of water level

over the tidal cycle in the tidal

Equation

 $\frac{\partial \rho}{\partial t} + \nabla(\rho \vec{v}) = 0$

where ρ = water density, ν = velocity vector,

J=dispersive

than the periodic components

D=diffusion coefficient, x=the distance

 $\eta(t) = a_0 + \sum_{k=1}^{N} \left[a_k \cos\left(\frac{2\pi}{T_k}t\right) \right]$

where $\eta(t)$ = tidal elevation, t= time, a0=mean

value of $\eta(t)$, a_k and b_k =constant, T_k = the tidal period of kth tidal constituent, N=number of tidal constituents, $\eta_0(t)$ = residual signal other

where

mass

Component

Continuity