

National University

of Computer and Emerging Sciences, CFD Campus

Al 2002 - Artificial Intelligence (Spring 2023) Assignment # 4

Topics Covered: Reasoning	Propositional	Logic	Submission Deadline: April 17, 2023, by 16.00 sharp
			Only hand-written solutions will be accepted. Submit hand-written solutions to your instructor's office.

Problem # 1: [Propositional logic + model enumeration]

Which of the following are correct? Validate your answers using truth-table.

- a. False |= True.
- b. True |= False.
- c. $(A \wedge B) \models (A \Leftrightarrow B)$.
- d. $A \Leftrightarrow B \models A \lor B$.
- e. A ⇔ B |= ¬A ∨ B.
- f. $(A \land B) \Rightarrow C \models (A \Rightarrow C) \lor (B \Rightarrow C)$.
- g. $(C \lor (\neg A \land \neg B)) \equiv ((A \Rightarrow C) \land (B \Rightarrow C)).$
- h. (A \vee B) \wedge (\neg C $\vee \neg$ D \vee E) |= (A \vee B).
- i. $(A \lor B) \land (\neg C \lor \neg D \lor E) \models (A \lor B) \land (\neg D \lor E)$.
- j. (A \vee B) $\wedge \neg (A \Rightarrow B)$ is satisfiable.
- k. $(A \Leftrightarrow B) \land (\neg A \lor B)$ is satisfiable.
- I. $(A \Leftrightarrow B) \Leftrightarrow C$ has the same number of models as $(A \Leftrightarrow B)$ for any fixed set of proposition symbols that includes A, B, C.

Problem # 2: [Propositional logic + inference rules]

Decide whether each of the following sentences is valid, unsatisfiable, or neither. Verify your answers using the equivalence rules.

- a. Smoke ⇒ Smoke
- b. Smoke ⇒ Fire
- c. (Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke $\Rightarrow \neg$ Fire)
- d. Smoke ∨ Fire ∨ ¬Fire
- e. ((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))
- f. (Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire)
- g. Big \vee Dumb \vee (Big \Rightarrow Dumb)

National University

of Computer and Emerging Sciences, CFD Campus

Problem # 3: [Propositional logic + CNF + proof by resolution]

Consider the following sentence:

 $[(Food \Rightarrow Party) \lor (Drinks \Rightarrow Party)] \Rightarrow [(Food \land Drinks) \Rightarrow Party]$

- a. Determine, using enumeration, whether this sentence is valid, satisfiable (but not valid), or unsatisfiable.
- b. Convert the left-hand and right-hand sides of the main implication into Conjunctive Normal Form (CNF), showing each step, and explain how the results confirm your answer to (a).
- c. Prove your answer to (a) using resolution.

Problem # 4: [Wumpus world + entailment]

Suppose the agent has progressed to the point shown in the figure below, having perceived nothing in [1,1], a breeze in [2,1], and a stench in [1,2], and is now concerned with the contents of [1,3], [2,2], and [3,1]. Each of these can contain a pit, and at most one can contain a wumpus.

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

- a. Create a knowledge base to represent the necessary environment rules and agent's observations.
- b. Prove that KB |= α 1 using resolution theorem where α 1 = "There is no pit in [2,2]."
- c. Prove that KB |= α 2 using inference rules where α 2 = "There is a wumpus in [1,3]."