

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6679/01)

January 2008 6679 Mechanics M3 Mark Scheme

Question Number	Scheme	Marks
1.(a)	T or $\frac{\lambda \times e}{l} = mg$ (even $T = m$ is M1, A0, A0 sp case)	M1
	$\frac{\lambda \times 0.16}{0.4} = 2g$	A1
(b)	$\Rightarrow \lambda = \underline{49 \text{ N}} \text{or 5g}$ Special case $T \sin \theta = mg$	A1 (3)
	giving $\theta = 30$ is M1 A0 A0 unless there is evidence that they think θ is with horizontal – then M1 A1 A0 $R(\uparrow) T\cos\theta = mg \text{ or } \cos\theta = \frac{mg}{T}$	M1
	$49.\frac{0.32}{0.4}.\cos\theta = 19.6 \text{ or } 4g.\cos\theta = 2g \text{ or } 2mg.\cos\theta = mg \qquad \text{(ft on their } \lambda\text{)}$	A1ft
	$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ} \qquad (\text{ or } \frac{\pi}{3} \text{ radians})$	A1 (3)
		6
2.	$m'a' = \pm \frac{16}{5x^2}$, with acceleration in any form (e.g. $\frac{d^2x}{dt^2}$, $v\frac{dv}{dx}$, $\frac{dv}{dt}$ or a)	B1
	Uses $a = v \frac{dv}{dx}$ to obtain $kv \frac{dv}{dx} = \pm k' \frac{32}{x^2}$	M1
	Separates variables, $k \int v dv = k' \int \frac{32}{x^2} dx$	dM1
	Obtains $\frac{1}{2}v^2 = \mp \frac{32}{x} (+C)$ or equivalent e.g. $\frac{0.1}{2}v^2 = -\frac{16}{5x} (+C)$	A1
	Substituting $x = 2$ if + used earlier or -2 if – used in d.e. $x = 2$, $v = \pm 8 \Rightarrow 32 = -16 + C \Rightarrow C = 48$ (or value appropriate to their correct equation)	M1 A1
	$v = 0 \Rightarrow \frac{32}{x} = 48 \Rightarrow x = \frac{2}{3} \text{m}$ (N.B. $-\frac{2}{3}$ is not acceptable for final answer)	M1 A1 cao 8
	N.B $\frac{d}{dx}(\frac{1}{2}mv^2) = \frac{16}{5x^2}$, is also a valid approach.	
	Last two method marks are independent of earlier marks and of each other	

Question Number				Scheme		Marks
3.(a)		Large cone	small cone	S		
	Vol.	$\frac{1}{3}\pi(2r)^2(2h)$	$\frac{1}{3}\pi r^2h$	$\frac{7}{3}\pi r^2 h$ (accept ratio	os 8 : 1 : 7)	B1
	C of M	$rac{1}{2} m{h}$,	$\frac{5}{4}h$	$\frac{1}{x}$	(or equivalent)	B1, B1
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2 3	${}^{2}h \cdot \frac{5}{4}h = \frac{7}{3}\pi r^{2}h \cdot x$ $\stackrel{-}{x} = \frac{11}{28}h$	or equivalent	M1 A1
				28		(5)
(b)			$\tan \theta = \frac{2r}{\overline{x}} =$	$=\frac{2r}{\frac{11}{28}h}, =\frac{2r}{\frac{11}{14}r}=\frac{28}{11}$		M1, A1
			$\theta \approx 68.6^{\circ} \text{ or } 1.2$			A1 (3)
	(Special c	ase – obtains comple	ment by using tan	$\theta = \frac{2r}{\overline{x}}$ giving 21.4° o	or .374 radians M1A0A0)	8
					of small circle, or vertex) and subtraction) to give	
		value for x). However working clear.	ever B marks can l	be awarded for correc	et values if the candidate	

	Т	T
4. (a)	Energy equation with at least three terms, including K.E term $\frac{1}{2}mV^2 +$	M1
	$+ \frac{1}{2} \cdot \frac{2mg}{a} \cdot \frac{a^2}{16}, + mg \cdot \frac{1}{2} a \cdot \sin 30, = \frac{1}{2} \cdot \frac{2mg}{a} \cdot \frac{9a^2}{16}$	A1, A1, A1
	$\Rightarrow V = \sqrt{\frac{ga}{2}}$	dM1 A1 (6)
(b)	Using point where velocity is zero and point where string becomes slack: $\frac{1}{2}mw^2 =$	M1
	$\frac{1}{2} \cdot \frac{2mg}{a} \cdot \frac{9a^2}{16}, -mg \cdot \frac{3a}{4} \cdot \sin 30$	A1, A1
	$\Rightarrow w = \sqrt{\frac{3ag}{8}}$	A1 (4)
	Alternative (using point of projection and point where string becomes slack):	M1,A1 A1
	$\frac{1}{2}mw^2 - \frac{1}{2}mV_1^2 = \frac{mga}{16} - \frac{mga}{8}$	A1
	So $w = \sqrt{\frac{3ag}{8}}$	10
	In part (a) DM1 requires EE, PE and KE to have been included in the energy equation.	
	If sign errors lead to $V^2 = -\frac{ga}{2}$, the last two marks are M0 A0	
	In parts (a) and (b) A marks need to have the correct signs In part (b) for M1 need one KE term in energy equation of at least 3 terms with distance	
	$\frac{3a}{4}$ to indicate first method, and two KE terms in energy equation of at least 4 terms with	
	distance $\frac{a}{4}$ to indicate second method. SHM approach in part (b). (Condone this method only if SHM is proved)	M1 A1 A1
	Using $v^2 = o^2(g^2 - v^2)$ with $o^2 = 2g$ and $v = \pm a$	
	Using $v = \omega (a - x)$ with $\omega = \frac{1}{a}$ and $x = \pm \frac{1}{4}$.	A1
	Using $v^2 = \omega^2 (a^2 - x^2)$ with $\omega^2 = \frac{2g}{a}$ and $x = \pm \frac{a}{4}$. Using 'a' = $\frac{a}{2}$ to give $w = \sqrt{\frac{3ag}{8}}$.	A1
	Using $v = \omega$ $(a - x)$ with $\omega = \frac{1}{a}$ and $x = \pm \frac{1}{4}$. Using $a' = \frac{a}{2}$ to give $w = \sqrt{\frac{3ag}{8}}$.	A1

$mr^2 = \mu N, = \mu mg$ $mr^2 = \frac{v^2}{rg} = \frac{21^2}{75 \times 9.8} = 0.6 \qquad * \qquad \text{A1 (3)}$ $mr^2 = \frac{v^2}{rg} = \frac{21^2}{75 \times 9.8} = 0.6 \qquad * \qquad \text{A1 (3)}$ $mr^2 = \frac{v^2}{rg} = \frac{21^2}{75 \times 9.8} = 0.6 \qquad * \qquad \text{A1 (3)}$ $mr^2 = \frac{v^2}{rg} = \frac{21^2}{75 \times 9.8} = 0.6 \qquad * \qquad \text{A1 (3)}$ $mr^2 = \frac{v^2}{rg} = \frac{21^2}{75 \times 9.8} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{v^2}{rg} = \frac{21^2}{75 \times 9.8} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{v^2}{r} = \frac{21^2}{75 \times 9.8} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{v^2}{r} = \frac{21^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{v^2}{r} = \frac{21^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{v^2}{r} = \frac{25mg}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A1 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (4)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (5)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (5)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (5)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (5)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (6)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (6)}$ $mr^2 = \frac{mr^2}{r} = 0.6 \qquad * \qquad \text{A2 (6)}$	-		
(b) $R(\uparrow) R\cos\alpha, \mp 0.6R\sin\alpha = mg$ $\Rightarrow R\left(\frac{4}{5} - \frac{3}{5} \cdot \frac{3}{5}\right) = mg \Rightarrow R = \frac{25mg}{11}$ $M1, A1, A1$ $V \approx 32.5 \text{ m s}^{-1}$ $M1 \text{ A1 A1 A1}$ $In part (b) M1 needs three terms of which one is mg If \cos\alpha and \sin\alpha are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is \frac{mv^2}{r} or mr\omega^2 If \cos\alpha and \sin\alpha are interchanged in equation this is also awarded M1 A0 A1 If \text{ they resolve along the plane and perpendicular to the plane in part (b), then attempt at R - mg\cos\alpha = \frac{mv^2}{r}\sin\alpha, and 0.6R + mg\sin\alpha = \frac{mv^2}{r}\cos\alpha and attempt to eliminate v Two correct equations Correct \text{ work to solve simultaneous equations} A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 $	5.(a)	$m_{\rm g}$	
(c) $R(\leftarrow) R \sin \alpha, \pm 0.6R \cos \alpha = \frac{mv^2}{r}$ M1, A1, A1 $v \approx 32.5 \text{ m s}^{-1}$ dM1 A1 cao (5) 12 In part (b) M1 needs three terms of which one is mg If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is $\frac{mv^2}{r}$ or $mr\omega^2$ If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is also awarded M1 A0 A1 If they resolve along the plane and perpendicular to the plane in part (b), then attempt at $R - mg\cos \alpha = \frac{mv^2}{r}\sin \alpha$, and $0.6R + mg\sin \alpha = \frac{mv^2}{r}\cos \alpha$ and attempt to eliminate v Two correct equations Correct work to solve simultaneous equations Answer A1 A1 (4) In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b)) Uses $R = \frac{25mg}{11}$ (or $\frac{25mg}{29}$)		$rg = 75 \times 9.8$	
(c) $R(\Leftarrow) R \sin \alpha, \pm 0.6R \cos \alpha = \frac{mv^2}{r}$ $v \approx 32.5 \text{ m s}^{-1}$ $In part (b) M1 needs three terms of which one is mg if \cos \alpha and \sin \alpha are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is \frac{mv^2}{r} or mr\omega^2 If \cos \alpha and \sin \alpha are interchanged in equation this is also awarded M1 A0 A1 If they resolve along the plane and perpendicular to the plane in part (b), then attempt at R - mg \cos \alpha = \frac{mv^2}{r} \sin \alpha, \text{ and } 0.6R + mg \sin \alpha = \frac{mv^2}{r} \cos \alpha \text{ and attempt to eliminate } v Two correct equations Correct work to solve simultaneous equations Answer In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b)) Uses R = \frac{25mg}{11} (or \frac{25mg}{29})$	(b)	(b) $R(\uparrow) R\cos\alpha, \mp 0.6R\sin\alpha = mg$ $0.6R \alpha mg$ $R(\uparrow) R\cos\alpha, \mp 0.6R\sin\alpha = mg$ $R(\downarrow) R\cos\alpha, \mp 0.6R\sin\alpha = mg$ $R(\downarrow) R\cos\alpha, \mp 0.6R\sin\alpha = mg$	
R(\leftarrow) $R \sin \alpha, \pm 0.6R \cos \alpha = \frac{mv^2}{r}$ $v \approx 32.5 \text{ m s}^{-1}$ In part (b) M1 needs three terms of which one is mg If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is $\frac{mv^2}{r}$ or $mr\omega^2$ If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is also awarded M1 A0 A1 If they resolve along the plane and perpendicular to the plane in part (b), then attempt at $R - mg \cos \alpha = \frac{mv^2}{r} \sin \alpha$, and $0.6R + mg \sin \alpha = \frac{mv^2}{r} \cos \alpha$ and attempt to eliminate v Two correct equations Correct work to solve simultaneous equations Answer In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b)) Uses $R = \frac{25mg}{11}$ (or $\frac{25mg}{29}$)		$\Rightarrow R\left(\frac{5}{5} - \frac{1}{5} \cdot \frac{1}{5}\right) = mg \Rightarrow R = \frac{1}{11}$	A1 (4)
In part (b) M1 needs three terms of which one is mg If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is $\frac{mv^2}{r}$ or $mr\omega^2$ If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is also awarded M1 A0 A1 If they resolve along the plane and perpendicular to the plane in part (b), then attempt at $R - mg \cos \alpha = \frac{mv^2}{r} \sin \alpha \text{ , and } 0.6R + mg \sin \alpha = \frac{mv^2}{r} \cos \alpha \text{ and attempt to eliminate } v$ Two correct equations Correct work to solve simultaneous equations Answer A1 In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b)) Uses $R = \frac{25mg}{11}$ (or $\frac{25mg}{29}$) A1	(c)		dM1 A1cao
If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is $\frac{mv^2}{r}$ or $mr\omega^2$ If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is also awarded M1 A0 A1 If they resolve along the plane and perpendicular to the plane in part (b), then attempt at $R - mg \cos \alpha = \frac{mv^2}{r} \sin \alpha$, and $0.6R + mg \sin \alpha = \frac{mv^2}{r} \cos \alpha$ and attempt to eliminate v Two correct equations Correct work to solve simultaneous equations Answer A1 In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b)) Uses $R = \frac{25mg}{11}$ (or $\frac{25mg}{29}$) A1			
l I		If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is $\frac{mv^2}{r}$ or $mr\omega^2$ If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is also awarded M1 A0 A1 If they resolve along the plane and perpendicular to the plane in part (b), then attempt at $R - mg \cos \alpha = \frac{mv^2}{r} \sin \alpha$, and $0.6R + mg \sin \alpha = \frac{mv^2}{r} \cos \alpha$ and attempt to eliminate v . Two correct equations Correct work to solve simultaneous equations Answer In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b)) Uses $R = \frac{25mg}{11}$ (or $\frac{25mg}{29}$)	A1 A1 A1 (4) M1 A1

6.(a)	Energy equation with two terms on RHS, $\frac{1}{2}mv^2 = \frac{1}{2}m \cdot \frac{5ga}{2} + mga \sin \theta$	M1, A1
	$\Rightarrow v^2 = \frac{ga}{2}(5 + 4\sin\theta) $	A1 cso (3)
(b)	$R(\parallel \text{string}) T - mg \sin \theta = \frac{mv^2}{a} $ (3 terms)	M1 A1
	$\Rightarrow T = \frac{mg}{2}(5 + 6\sin\theta)$ o.e.	A1 (3)
(c)	$T=0 \Rightarrow \sin \theta, =-\frac{5}{6}$ Has a solution, so string slack when $\alpha \approx 236(.4)^{\circ}$ or 4.13 radians	M1, A1 A1 (3)
(d)	At top of small circle, $\frac{1}{2}mv^2 = \frac{1}{2}m \cdot \frac{5ga}{2} - \frac{mga}{2}$ (M1 for energy equation with 3 terms) $\Rightarrow v^2 = \frac{3}{2}ga = 14.7a$	M1 A1 A1
	Resolving and using Force = $\frac{mv^2}{r}$, $T + mg = m \cdot \frac{\frac{3}{2}ga}{\frac{1}{2}a}$ (M1 needs three terms, but any v)	M1 A1
	$\Rightarrow T = 2mg$	A1 (6) 15
	Use of $v^2 = u^2 + 2gh$ is M0 in part (a)	
l		

7.(a)	(Measuring x from E) $2\ddot{x} = 2g - 98(x + 0.2)$, and so $\ddot{x} = -49x$	M1 A1, A1
	SHM period with $\omega^2 = 49$ so $T = \frac{2\pi}{7}$	d M1 A1cso (5)
(b)	Max. acceleration = $49 \times \text{max. } x = 49 \times 0.4 = 19.6 \text{ m s}^{-2}$	B1 (1)
(c)	String slack when $x = -0.2$: $v^2 = 49(0.4^2 - 0.2^2)$	M1 A1
	$\Rightarrow v \approx 2.42 \text{ m s}^{-1} = \frac{7\sqrt{3}}{5}$	A1 (3)
(d)	Uses $x = a \cos \omega t$ or use $x = a \sin \omega t$ but not with $x = 0$ or $\pm a$	M1
	Attempt complete method for finding time when string goes slack $-0.2 = 0.4 \cos 7t \implies \cos 7t = -\frac{1}{2}$	dM1 A1
	$t = \frac{2\pi}{21} \approx 0.299 \mathrm{s}$	A1
	21	M1 A1ft
	Time when string is slack $=$ $\frac{(2) \times 2.42}{g} = \frac{2\sqrt{3}}{7} \approx 0.495 \text{s}$ (2 needed for A)	A1 (7)
	Total time = $2 \times 0.299 + 0.495 \approx 1.09 \text{ s}$	16
(a)		
	DM1 requires the minus sign. Special case $2\ddot{x} = 2g - 98x$ is M1A1A0M0A0 $2\ddot{x} = -98x$ is M0A0A0M0A0	
(b)	No use of \ddot{x} , just a is M1 A0,A0 then M1 A0 if otherwise correct. Quoted results are not acceptable.	
(c)	Answer must be positive and evaluated for B1	
	M1 – Use correct formula with their ω , a and x but not $x = 0$. A1 Correct values but allow $x = +0.2$ Alternative It is possible to use energy instead to do this part	
(d)	$\frac{1}{2}mv^2 + mg \times 0.6 = \frac{\lambda \times 0.6^2}{2l} M1 \text{ A1}$	
	If they use $x = a \sin \omega t$ with $x = \pm 0.2$ and add $\frac{\pi}{7}$ or $\frac{\pi}{14}$ this is dM1, A1 if done correctly If they use $x = a \cos \omega t$ with $x = -0.2$ this is dM1, then A1 (as in scheme)	
	If they use $x = a \cos \omega t$ with $x = +0.2$ this needs their $\frac{\pi}{7}$ minus answer to reach dM1, then	
	A1	