Introduction to Information Security

7. Public-key Cryptography

Kihong Heo

Symmetric-Key Encryption

- Recap: the same key shared between two parties
- What happens if there are many users?
 - n users: $\binom{n}{2} = n(n-1)/2$
 - Example: 4950 keys / 100 users
- Key distribution and maintenance problem

Public-Key Revolution

- Invented in 1976 by Diffie and Hellman (ACM Turing Award 2015)
- Problem
 - pk: public key, widely disseminated, used for encryption
 - *sk*: private key, kept secretly, used for decryption
 - *n* users: 2*n* keys

Instances

- Secret-key exchange (Diffie-Hellman key exchange)
- Confidentiality: public-key encryption (RSA)
- Integrity: digital signature

Secret Key Exchange

- Setting: Alice and Bob want to share a secret key using an insecure channel
- Problem: How can two people (who have never met) agree on a secret key?

Idea: One-way Function

- Easy in one direction but hard in the reverse direction
 - E.g., discrete logarithm (math), integer factorization (math), color mixing (painting), 비빔밥

Diffie-Hellman Key Exchange (1)

- Pick two public values: large prime p and generator g
- Alice has secret value a
- Bob has secret value b

$$p = 23, g = 9$$

Alice

a = 4

Bob

b = 3

Diffie-Hellman Key Exchange (2)

- Alice sends $A = (g^a \mod p)$ to Bob
- Bob sends $B = (g^b \mod p)$ to Alice

$$p = 23, g = 9$$

Alice
$$a = 4$$

Bob b = 3

Diffie-Hellman Key Exchange (3)

- Alice computes $(B^a \bmod p) = ((g^b \bmod p)^a \bmod p)^a$
- Bob computes $(A^b \mod p) = ((g^a \mod p)^b \mod p)$
- Secret key: $g^{ab} \mod p$

$$p = 23, g = 9$$

$$K = (16^4 \text{ mod } 23) = 9$$

Alice
$$a = 4$$

$$(g^a \bmod p) = (9^4 \bmod 23) = 6$$

$$(g^b \bmod p) = (9^3 \bmod 23) = 16$$

$$(g^{\circ} \bmod p) = (9^{\circ} \bmod$$

$$K = (6^3 \mod 23) = 9$$

$$b = 3$$

Correctness

• Correctness: Is $K_{Alice} = (B^a \mod p)$ equal to $K_{Bob} = (A^b \mod p)$?

$$(B^a \bmod p) = ((g^b \bmod p)^a \bmod p) = (g^{ab} \bmod p)$$

$$(A^b \bmod p) = ((g^a \bmod p)^b \bmod p) = (g^{ab} \bmod p)$$

Theorem. Given natural numbers X, Y, p and k,

$$((X \mod p)^k \mod p) = (X^k \mod p)$$

Security

- Eve cannot efficiently compute $(g^{ab} \mod p)$ without knowing a and b
 - Eve can observe p, g, ($g^a \mod p$), and ($g^b \mod p$)
- Discrete logarithm problem: given m, n, and p, find x s.t. $(m^x \equiv n \mod p)$
 - No efficient algorithms (no polynomial time algorithm)
- Not secure against quantum computers
 - An efficient algorithm exists (Shor's algorithm)

Instances

- Secret-key exchange (Diffie-Hellman key exchange)
- Confidentiality: public-key encryption (RSA)
- Integrity: digital signature

Confidentiality with Public-Key

- Generate (pk, sk) and publicize pk
- Anyone with pk can encrypt message
- Only the one with sk can decrypt message
 - Cannot decrypt with pk

RSA Cryptosystem

- Invented by Rivest, Shamir, and Adleman in 1977
 - ACM Turing award in 2002
- Rely on the practical difficulty of factoring the product of two large prime numbers
 - But efficiently solvable by quantum computers

RSA Algorithm (1)

Introduction to Information Security

- Select two large primes p and q
- Compute n = pq and $\phi(n) = (p-1)(q-1)$

$$p = 7, q = 13$$

 $n = 91, \phi(n) = 72$

RSA Algorithm (2)

- Choose e s.t. $1 < e < \phi(n)$ and $gcd(e, \phi(n)) = 1$
- Choose d s.t. $1 < d < \phi(n)$ and $ed \equiv 1 \mod \phi(n)$

$$p = 7, q = 13$$

 $n = 91, \phi(n) = 72$
 $e = 5, d = 29$

RSA Algorithm (3)

- Public key: (*n*, *e*)
- Private key: (n, d)

$$p = 7, q = 13$$

 $n = 91, \phi(n) = 72$
 $e = 5, d = 29$

$$pk = (n, e) = (91,5)$$

 $sk = (n, d) = (91,29)$

RSA Algorithm (4)

- Encryption
 - For plaintext m < n, $c = m^e \mod n$
- Decryption
 - $m = c^d \mod n$
- Correctness: $(m^e \mod n)^d \mod n = m$

$$m = 10$$

$$c = 10^5 \mod 91 = 82$$

$$pk = (n, e) = (91,5)$$

$$p = 7, q = 13$$

 $n = 91, \phi(n) = 72$
 $e = 5, d = 29$

$$m = 82^{29} \mod 91 = 10$$

$$pk = (n, e) = (91,5)$$

 $sk = (n, d) = (91,29)$

Correctness

• Correctness: $(m^e \mod n)^d \mod n = m$

 $(m^e \mod n)^d \mod n = (m^e)^d \mod n$

$$(m^e)^d = m^{ed} = m^{1+k\cdot\phi(n)}$$

Theorem

 $((X \mod p)^k \mod p) = (X^k \mod p)$

"Choose
$$d$$
 s.t. $1 < d < \phi(n)$ and $ed \equiv 1 \mod \phi(n)$ "

$$m^{1+k\cdot\phi(n)} \equiv m \mod n$$

Euler's Theorem

If p and q are primes, n = pq, then $\forall a \in \mathbb{Z}_n . a^{k \cdot \phi(n) + 1} \equiv a \mod n$

Security

- Adversary cannot efficiently compute p and q from n
 - n = pq and p, q: large prime numbers
- Adversary can observe n and e (public key) but cannot efficiently compute d (private key)
 - $d: 1 < d < \phi(n)$ and $ed \equiv 1 \mod \phi(n)$
- Integer factorization problem: given n, find prime number p and q s.t. n = pq

Comparison to Private-Key Encryption

- Pros
 - Does not need any secure key distribution
 - Enable multiple senders to communicate privately with a single receiver
- Cons
 - Roughly 2-3 orders of magnitude slower

Instances

- Secret-key exchange (Diffie-Hellman key exchange)
- Confidentiality: public-key encryption (RSA)
- Integrity: digital signature

Digital Signature (1)

- Only the one with sk can generate signature σ for message m
- Anyone with pk can verify the signature (i.e., integrity)

pk = (n, e) = (91,5)

Example: SW patch distribution

$$p = 7, q = 13$$

 $n = 91, \phi(n) = 72$
 $e = 5, d = 29$

$$pk = (n, e) = (91,5)$$

 $sk = (n, d) = (91,29)$

Digital Signature (2)

- Send message m and signature $\sigma = m^d \mod n$
- Verify the integrity by checking m is equal to $\sigma^e \mod n$
- Correctness: $(m^d \mod n)^e \mod n = m$

$$m = 10$$

$$\sigma = 10^{29} \mod 91 = 82$$
82⁵ mod 91 = 10

$$pk = (n, e) = (91,5)$$

$$pk = (n, e) = (91,5)$$

$$sk = (n, d) = (91,29)$$

Correctness

• Correctness: $(m^e \mod n)^d \mod n = m$

 $(m^e \mod n)^d \mod n = (m^e)^d \mod n$

$$(m^e)^d = m^{ed} = m^{1+k\cdot\phi(n)}$$

Theorem

 $((X \mod p)^k \mod p) = (X^k \mod p)$

"Choose
$$d$$
 s.t. $1 < d < \phi(n)$ and $ed \equiv 1 \mod \phi(n)$ "

$$m^{1+k\cdot\phi(n)} \equiv m \mod n$$

Euler's Theorem

If p and q are primes, n = pq, then $\forall a \in \mathbb{Z}_n . a^{k \cdot \phi(n) + 1} \equiv a \mod n$

Security

- Adversary cannot efficiently compute p and q from n
 - n = pq and p, q: large prime numbers
- Adversary can observe n and e (public key) but cannot efficiently compute d (private key)
 - $d: 1 < d < \phi(n)$ and $ed \equiv 1 \mod \phi(n)$
- Integer factorization problem: given n, find prime number p and q s.t. n = pq

Digital Signature in Practice

- Authentication: proof that you or something you created is legitimate
- Non-repudiation: signed document becomes proof that Alice indeed signed the document
 - Only Alice can generate (m, σ) and
 - Cannot deny having created the signature

Comparison to MAC

- Both: ensure the integrity of transmitted messages
- Pros: public verifiability
 - Multiple receivers can verify the signature
- Cons: efficiency

Holy Grail of Cryptography

- Is it possible to provide a secure public service? (i.e., computations on encrypted data)
- Example
 - Average GPA in the class with encrypted individual GPAs
 - Covid-19 alert with encrypted location information
 - Searchable cloud storage with encrypted data
 - Election with encrypted votes
- Necessary property: homomorphism
 - $Dec(c_1 \oplus c_2) = Dec(c_1) \oplus Dec(c_2)$

Homomorphic Encryption (동형 암호)

- Allows computations on encrypted data
- "A Fully Homomorphic Encryption Scheme", C. Gentry, 2009
- Applications

A Simplified Symmetric HE

- Plaintext space: {0,1}
- Secret key: p
- Random numbers: q and ϵ
- Encryption: $Enc(m) = m + pq + 2\epsilon$
- Decryption: $Dec(c) = (c \mod p) \mod 2$
- Homomorphism
 - $Dec(Enc(m_1) + Enc(m_2)) = Dec(Enc(m_1 + m_2)) = m_1 + m_2$
 - $Dec(Enc(m_1) \times Enc(m_2)) = Dec(Enc(m_1 \times m_2)) = m_1 \times m_2$

Summary

- Public-key revolution: solve key distribution and maintenance problem
 - Diffie-Hellman key exchange
 - Public-key encryption
 - Digital signature
- New emerging technology: homomorphic encryption
 - Computation on encrypted data
 - Application: privacy-preserving services