CRYPTOGRAPHY: 3 properties

- · SECRECY encryption only be read by intended recipient -> encryption
- · INTEGRITY message cannot be altered in transit hash function
- · AUTHENTICATION recipient of msg can verify identity of sender signatures

KERCKHOFF'S ASSUMPTION: cryptosystem should be secure EVEN if the algorithm is known. opposite of "security by obscurity"

Stypically people can pretty easily figure it out

Ex: Copy protection algorithm

Ex: putting sensitive software Idate on a public-facing server, but not telling anyone the IP address of the server (nmap: port scanning)

ENCRYPTION:

7

7

3

T

1

T

J

TE

____3y

3

7

1

71

7

- · take input data (plaintext) & fransform into a scrambled form (ecyphertext)
 - symmetric is where both parties have the same key

ex. AES, RCH, Serpent, Blowfish

FIESTEL NETWORK * K can be anything, but snould be secret

- * Consume a fixed-size input block & output a ciphartext block of the same size
- -> in each round, divide input block into 2 halves (L&R)
- -7 in each round, R is unchanged, but to L is replaced with the output of the round function.
- at the end of the round, swap positions of new L & R.

to decrypt...

-> feed the ciprortext back through the network but in reverse - reverse the order of K (key) (K, R)

* very easy to implement in hardware or software -> x86 includes it!

GOOD ROUND FUNCTION:

- produces a lot e of diffusion: small change in input should affect output as much as spossible
- 2. Should produce a "high confusion": small change in KEY should affect any output as much as possible.

BLOCK CIPHERS MODE:

· ECB: electronic code book msg

ms g	h
$\int C_i = e_K(P_i)$ encryption	h
eigher TTTT	A
decryption is just the reverse	h
Disadvantages: same exphantext block always generates the same Eipnertext block	h
- like you can just analyze frequency & get the cipher	B
- Attacker can bet deleteladd blocks to ciphertext & recipient can't detect it	
~ overall, bad ~	
COUNTER ("CTR")	
for each message, select a random initialitation vector (IV) - can be public	
· split plain text into blocks	
c: = P: \oplus e _K CIV+i) IV is like a big number CKEY is still secret	
1. two plaintext blocks w/ same content will encrypt to different ciphertexts	
2. if attacker modifies/shuffles ciphertext blocks -> cascading decryption errors	
Solve the renderous problem?	
Asymmetric crypto systems!	
· RSA: a public key & a private key for each participent	
· small (?) problem is the host for public tey, but assume they are published	d
somewhire	
· private key is kept secret	
· sender encrypts msg w/ propublic key of recipient	H
recipient decrypts msg w/ private key	
EULER TOTIENT FUNCTION	
Ф(n): how many numbers blun 1 = n-1 are relatively prime to n	residence and the second
(meaning that the number 2 n have no common divisors besides 1)	
~ Suppose Alice wants to people to send her an encrypted msg \$	
· Alice picks a modulus n, find an encryption exponent e e decription exp d.	
e · d = 1 mod $\phi(n)$	
Alice's public key is (n, e) + a tuple	
Alices private key is (n, d)	
· · · · · · · · · · · · · · · · · · ·	
	Š.

- · suppose that Bob has a msg M that he wants to send to Alice
 - · Bob represents M as an integer, 0 ≤ M ≤ n
 - sends & ex ciphertext to Alice C = Me mod n
 - · Alice decrypts M message by doing M = Cd mod n (Me) mod n = M mod n = M mod n

in RSA, e & d are interchangeable

9-26-17

—3

=1

- Take a variable-sized msg as input & ouputs a fixed-size result (btwn 8-64 bil) Hash functions v
- · desireable properties;
- 1. It should be hard to invert the function given a hash value & it should be hard to generate an input w/ that & hash value ("one way property")
 - 2. Should be rare for mon two inputs to map to the same value ("collision resistance")
- examples: SHA family, Whirlpool, MOSLinsewre, known vulnerabilities)

Ensure the integrity of the msgs we send.

Append a hash valve for msg to the end of msg, when recipient gets msg, recipient can verify hash value.

~ Authentication ~

message authentication codes (MAC's) calculate a hash value over send msg + MAC to someone who knows the secret key · symmetric crypto:

RSA Signatures

- · calculate HARRY hash valve for msg to sign, H. Signed val = Hd mod n * remember d is private, e is public
- · recipient can uncover H by H= signedual mod n

a person

Certificate: binds a principal to a public key

- X.509 is most popular format for certificates, it includes: 1. issuer field (certificate authority), vouches for principal's identity

 - 2. signature algorithm. (like SHA1 w/ RSA encryption)
 - subject (eg: foo.com) > principal four whom we are binding public long

L' continued ...