DATA STRUCTURES AND ALGORITHM ANALYSIS

COMP 3804

Assignment 1

Date Due: Sept 29, 2017 Time Due: 11:00am

Your assignment should preferably be typed and should be submitted online on CuLearn.

Practice with Order

1. (16 pts) Prove or disprove the following:

(a)
$$(4 \text{ pts}) \text{ } n^3/5 - 4n^2 - n + 1 \text{ is } \theta(n^3)$$

(b)
$$(2 \text{ pts}) n^2/3 + 17n \text{ is } O(n^3)$$

(c)
$$(2 \text{ pts}) 3n^2 - 2n - 14 \text{ is } \Omega(n^2)$$

(d)
$$(2 \text{ pts}) 2n^3 \log n - 3n^2 \log n \text{ is } \Omega(n^2)$$

(e)
$$(2 \text{ pts}) 3^n \text{ is } \Omega(3^{n+1})$$

(f)
$$(2 \text{ pts}) 7n^3 \text{ is } O(n^2)$$

(g) (2 pts)
$$4n^2$$
 is $\Omega(n^3)$

Practice with Proofs

- 2. Consider $n \ge 3$ lines in general position (i.e. a set of lines is in general position when no two lines are parallel and no three lines intersect at a point.). This set of lines partitions the plane into regions.
 - (a) (4 pts) Prove that at least one of these regions is a triangle.
 - (b) (Optional Bonus Challenge: 4 pts) Prove that at least n-2 of these regions are triangles.
- 3. (4 pts) Prove by induction that $\sum_{i=1}^{n} 1/(n+i) < 13/24$.

Practice with Recurrences

4. (8 pts) The following questions are based on the following recurrence:

$$T(0) = 0, T(1) = 1, \text{ and } T(n) = T(n-1) + T(n-2), \ \forall n \ge 2$$

- (a) (4 pts) Use the fact that T(2n) = T(n-1)T(n) + T(n)T(n+1), $\forall n \ge 1$ to prove by induction that $T(2n) = T(n+1)^2 T(n-1)^2$, $\forall n \ge 1$
- (b) (4 pts) Use the fact proved above that $T(2n) = T(n+1)^2 T(n-1)^2$, $\forall n \ge 1$ to prove by induction that $T(2n+1) = T(n)^2 + T(n+1)^2$, $\forall n > 1$
- 5. (18 pts)
 - (a) (6 pts) Let $n = 5^k$. Resolve the following recurrence. T(1) = 1 and T(n) = T(n/5) + n, $\forall n \ge 5$. Use induction on k. Notice that the base case is k = 0.
 - (b) $(6 \text{ pts}) T(0) = 0, T(1) = 1 \text{ and } T(n) = 2T(n-1) T(n-2), \forall n \ge 2.$ Hint: Write out the first few values to find a pattern. Then, try to prove that your pattern is correct using induction.
 - (c) (6 pts) Let T(0) = 0, T(1) = 1 and T(n) = 6T(n-1) 9T(n-2), $\forall n \ge 2$. Use constructive induction to find an upper bound on the recurrence (i.e. assume that $T(n) \le \alpha c^n$, where $\alpha > 0$ and c > 1). Both α and c are unknown, but use induction to figure out suitable values for these variables.