1 Ring Homomorphisms

Theorem 1.1

Let $\varphi: R \mapsto S$ be a ring homomorphism. Then, $\ker \varphi = \{r \in R \mid \varphi(r) = 0\}$ is an ideal of R.

Proof. If $a, b \in \ker \varphi$, then $\varphi(a - b) = \varphi(a) - \varphi(b) = 0 - 0 = 0$, which implies that $a - b \in \ker \varphi$. Now, if we check $a \in \ker \varphi$ and $r \in R$, then $\varphi(ra) = \varphi(r)\varphi(a) = \varphi(r)0 = 0$. Therefore, $ra \in \ker \varphi$. Thus, $\ker \varphi$ is an ideal by the ideal test.

1.1 First Isomorphism Theorem

Theorem 1.2: First Isomorphism Theorem

Let $\varphi: R \mapsto S$ be a ring homomorphism. Then, the map

$$\overline{\varphi} = R/\ker \varphi \mapsto \varphi(R)$$

defined by the mapping

$$r + \ker \varphi \mapsto \varphi(r)$$

is an isomorphism.

Proof. We already know that $\overline{\varphi}: R/\ker \varphi \mapsto \varphi(R)$ is an isomorphism of additive groups; in particular,

$$(R/\ker\varphi,+)\mapsto(\varphi(R),+)$$

by the First Isomorphism Theorem for groups. Thus, it suffices to check that:

$$\overline{\varphi}(xy) = \overline{\varphi}(x)\overline{\varphi}(y)$$

So, it suffices to check:

$$\begin{split} \overline{\varphi}((r+\ker\varphi)(s+\ker\varphi)) &= \overline{\varphi}(rs+\ker\varphi) \\ &= \varphi(rs) \\ &= \varphi(r)\varphi(s) \\ &= \overline{\varphi}(r+\ker\varphi)\overline{\varphi}(s+\ker\varphi) \end{split}$$

And so we are done.

Remark: If $I \subseteq R$ is an ideal, then $I = \ker q$ where $q : R \mapsto R/I$, defined by the mapping $r \mapsto r + I$, is the quotient homomorphism.

1.2 Examples

1. Consider the homomorphism $\varphi : \mathbb{Z}[x] \to \mathbb{Z}$ defined by the mapping $f(x) \mapsto f(0)$. φ is a surjective homomorphism. By the First Isomorphism Theorem:

$$\mathbb{Z}[x]/\ker\varphi\cong\mathbb{Z}$$

Here, we define $\ker \varphi = \{a_1x + a_2x^2 + \dots + a_nx^n \mid a_i \in \mathbb{Z}\}$ because f(0) is a constant term. However, we can factor x out to get:

$$\ker \varphi = \{x(a_1 + a_2x^1 + \dots + a_nx^{n-1}) \mid a_i \in \mathbb{Z}\} = \langle x \rangle$$

¹If $a \in \mathbb{Z}$, then $(x+a) \xrightarrow{\varphi} 0 + a = a$

And so it follows that:

$$\mathbb{Z}[x]/\langle x\rangle \cong \mathbb{Z}$$

2. Consider the homomorphism $\varphi : \mathbb{R}[x] \to \mathbb{C}$ defined by the mapping $f(x) \mapsto f(i)$. φ is surjective because f(a+bx) = a+bi for any $a,b \in \mathbb{R}$. We also know that $x^2+1 \in \ker \varphi$ by $i^2+1=0$. This implies that:

$$\langle x^2 + 1 \rangle \subseteq \ker \varphi \subset \mathbb{R}[x]$$

Fact: $\langle x^2 + 1 \rangle$ is maximal, which implies that $\langle x^2 + 1 \rangle = \ker \varphi$.

Proof. (Of fact.) We prove that $\mathbb{R}[x]/I$ for $I=\langle x^2+1\rangle$ is a field for any a+bx+I with a,b not both zero, then $(a+b+I)^{-1}=\frac{a-bx}{a^2+b^2}+I$.

Therefore, $\boxed{\mathbb{R}[x]/\langle x^2+1\rangle\cong\mathbb{C}}$ by the First Isomorphism Theorem.

1.3 Rings with Unity

Proposition. If R has unity, then $\varphi : \mathbb{Z} \mapsto \mathbb{R}$ defined by

$$\varphi(n) = n \cdot 1 = \begin{cases} \underbrace{\frac{1 + \dots + 1}{n \text{ times}}} & n > 0\\ 0 & n = 0\\ \underbrace{-1 - 1 - \dots - 1}_{-n \text{ times}} & n < 0 \end{cases}$$

is a homomorphism.

Proof. Left as an exercise.

Proposition. If R is a ring with unity, then:

- (a) If char R = n > 0, then R contains a subring isomorphic to $\mathbb{Z}/n\mathbb{Z}$.
- (b) If char R = 0, then R contains a subring isomorphic to \mathbb{Z} .

Proof. Let $\varphi : \mathbb{Z} \to \mathbb{R}$ with $\varphi(n) = n \cdot 1$. Then, char R is the additive order of 1. This implies that if char R = n > 0, then $\ker \varphi = n\mathbb{Z}$ so $\mathbb{Z}/n\mathbb{Z} \cong \varphi(\mathbb{Z}) \subseteq R$ by the First Isomorphism Theorem. Likewise, if char R = 0, then $\ker \varphi = \{0\}$ and it follows that $\mathbb{Z} \cong \varphi(\mathbb{Z}) \subseteq R$ by the First Isomorphism Theorem. \square

1.4 Fields

Definition 1.1: Prime Subfield

The subfield of a field isomorphic to \mathbb{F}_p or \mathbb{Q} is called the **prime subfield**.

Theorem 1.3

- If F is a field of characteristic p, then F contains a subfield isomorphic to \mathbb{F}_p .
- If F is a field of characteristic 0, then F contains a subfield isomorphic to \mathbb{Q} .

Proof. We prove both parts.

- By the previous proposition, char F = p implies that the subring is isomorphic to $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$.
- char F = 0 implies that the subring is isomorphic to \mathbb{Z} , given by

$$\varphi: \mathbb{Z} \mapsto F$$

which sends $n \mapsto n \cdot 1$. Consider the set

$$T = \{ab^{-1} \mid a, b \in \varphi(\mathbb{Z}), b \neq 0\} \subseteq F$$

We claim that T is a subring isomorphic to \mathbb{Q} .

Proof. Define $\overline{\varphi}: \mathbb{Q} \mapsto F$ by $\overline{\varphi}(a/b) = \varphi(a)\varphi(b)^{-1}$.

- Well-Defined: This is well-defined since $\frac{a}{b} = \frac{c}{d}$ if and only if ad = bc, which then implies that $\varphi(a)\varphi(d) = \varphi(b)\varphi(c)$ for $\varphi: \mathbb{Z} \to F$. This implies that $\varphi(a)\varphi(b)^{-1} = \varphi(c)\varphi(d)^{-1}$, which again implies that $\overline{\varphi}(a/b) = \overline{\varphi}(c/d)$.
- Homomorphism: Addition is left as an exercise. For multiplication, see lecture.

So, we are done. \Box

And so on (need to come back).

Remark: If F is a field and $I \subseteq F$ is an ideal, then $I = \{0\}$ or I = F.

Proof. $F/\{0\} \cong F$ is a field. Thus, $\{0\}$ is a maximal ideal of F. This implies that, for all ideals I with $\{0\} \subseteq I \subseteq F$, $I = \{0\}$ or I = F. The fact that all ideals satisfy $\{0\} \subseteq I \subseteq F$ concludes the proof. \square