Berechenbarkeit und formale Sprachen

Felix Leitl

29. April 2024

Inhaltsverzeichnis

ıringmaschine												
1-Band TM		 										
Deltatabelle	 	 										
Konfiguration	 	 										
Begriffe	 	 										
Programmiertechniken	 	 										
Endlicher Speicher	 	 										
Unterprogramme	 	 										
Spurtechnik	 	 										
Gödelnummer	 	 										
Universelle $TM \dots$	 	 										
Halteproblem												
Allgemeines Halteproble												
Initiales Halteproblem .	 	 										
Reduktion												
$L_1 \leq L_2 \ldots \ldots \ldots$												
Begriffe \dots												
P-NP												
Sprachprobleme												
Satisfiability Problem .		 										
Clique \dots		 										
Independent-Set	 	 										
Coloring $\ldots \ldots \ldots$		 										
Traveling-Salesman	 	 										
Vertex-Cover	 	 										
Binary-Programming	 	 										
Verifizierer		 										
NP-Vollständig		 										
Polynomiell reduzierbar												
NP-schwer												
NP-vollständig												

ormale Sprachen	7
Chomsky-Grammatiken	7
Endliche Automaten	7
Reguläre Pump-Eigenschaft	8
Kontextfreie Pum-Eigenschaft	۶

Turingmaschine

1-Band TM

Turingmaschine $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$:

- ullet Q: endliche Zustandsmenge
- Σ : endliches Eingabealphabet
- Γ : endliches Bandalphabet $\Sigma \subsetneq \Gamma$
- $B: Blank, B \in \Gamma, B \notin \Sigma$
- $q_0: q_0 \in Q$ Startzustand
- F: akzeptierende Endzustände, $F \subseteq Q$
- das Programm $\delta: Q \times \Gamma \to Q \times \Gamma \times \{R, L, N\}$ eine partielle Funktion, wobei es für Endzustände keine Übergänge geben soll
- Zu Beginn steht der Lese-/Schreibkopf auf dem ersten Zeichen der Eingabe
- Eingabe: $w = w_1 w_2 \dots w_n \in \Sigma^*$
- ϵ : leeres Wort
- $L \subseteq \Sigma^*$ ist Sprache über dem Alphabet Σ

Deltatabelle

$$Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \Gamma\{0, 1, B\}, F = \{q_1\}$$

Konfiguration

TM M ist in Konfiguration $K = \alpha q \beta$ ($\Gamma^* \times Q \times \Gamma^*$), wobei der Schreib-/Lesekopf auf dem ersten Zeichen von β steht.

Eine direkte Nachfolgekonfiguration von $\alpha q \beta$ ist: $\alpha q \beta \vdash \alpha' q' \beta'$

i—te Nachfolgekonfiguration $\alpha q\beta \vdash K_1 \vdash \cdots \vdash K_{i-1} \vdash \alpha' q'\beta' = \alpha q\beta \vdash^i \alpha q\beta$

Nachfolgekonfiguration: $\alpha q \beta \vdash^* \alpha' q' \beta'$

Begriffe

- akzeptieren: Falls es $\alpha, \beta \in \Gamma^*$ und $q \in F$ gibt mit $q_0x \vdash^* \alpha q\beta$
- L(M): Menge aller von Makzeptierter Eingaben $x \in \Sigma^*$
- entscheidet: M hält mit Eingabe $x \in \Sigma^*$ nach endlich vielen Schritten
- rekursiv aufzählbar:

- $-L\subseteq\Sigma^*$ ist rekursiv aufzählbar, wenn es eine TM M gibt mit L(M)=L
- es gibt eine surjektive Funktion $g:0,1^*\to L$
- entscheidbar/rekursiv:
 - -wenn es eine deterministische 1-Band-TM M gibt, die L entscheidet
 - L und \overline{L} sind rekursiv aufzählbar

Programmiertechniken

Endlicher Speicher

Man merkt sich die Zeichen im Zustand $\Gamma = \Sigma \cup \{B\}, Q = (\{q_0\} \times \Sigma) \cup \{q_0, q_1\}, \text{ Startzustand } q_0, F = \{q_1\}$

Unterprogramme

Wenn man eine TM "programmiert", kann man sagen: Man benutzt ein Unterprogramm um eine bestimmte Aufgabe zu lösen

Spurtechnik

	U	N	I		
	E	R	L		
	N	В	G		
Das e	rste	Zeicl	hen v	väre	$\begin{pmatrix} U \\ E \\ N \end{pmatrix}$

Gödelnummer

 $\langle M \rangle$ ist die Gödelnummer (Bauplan von M). Sie ist die Repräsentation der TM Mals natürliche Zahl

Universelle TM

Eine TM \tilde{M} hießt universell, wenn sie sich mit der Eingabe $\langle M \rangle x, x \in \{0,1\}^*$ so verhält, wie M gestartet mit x

Halteproblem

Allgemeines Halteproblem

 $H = \{\langle M \rangle | M \text{ ist deterministische 1-Band-TM, die, gestartet mit Eingabe } w, \text{ hält} \}$

Initiales Halteproblem

 $H_{\epsilon} = \{\langle M \rangle | M$ ist deterministische 1-Band-TM, die, gestartet mit Eingabe $\epsilon, \text{hält} \}$

Reduktion

- Eine Funktion ist berechenbar, wenn es eine TM M_f gibt, für die mit $x \in \{0,1\}^*$ gilt:
 - Ist f(x) definiert, so hält M_f mit der Eingabe x und f(x) steht auf dem Band
 - Ist f(x) undefiniert, so hält ${\cal M}_f$ gestartet mit xnicht
- Eine Funktion ist total, wenn alle $x \in \{0,1\}^*$ definiert und berechenbar sind

Eine Reduktion ist eine total berechenbare Funktion $f:\{0,1\}^* \to \{0,1^*\}$, für die gilt:

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$

Wir schreiben " $L_1 \leq L_2$ " und sagen " L_1 wird auf L_2 reduziert,

 $L_1 \leq L_2$

- L_2 entscheidbar $\Rightarrow L_1$ entscheidbar
- L_2 rekursiv aufzählbar $\Rightarrow L_1$ rekursiv aufzählbar
- L_1 unentscheidbar $\Rightarrow L_2$ unentscheidbar
- L_1 nicht rekursiv aufzählbar $\Rightarrow L_2$ nicht rekursiv aufzählbar

Nichtdeterministische Turingmaschine

Nichtdeterministische TM $M = \{Q, \Sigma, \Gamma, \delta, q_0, F\}$, wobei nur δ anderes ist, als bei einer deterministischen TM. $\delta: Q \times \Gamma \to P(Q \times, \Gamma \times \{R, N, L\})$

Begriffe

• akzeptieren: wenn es eine Rechnung $q_0x \vdash^* \alpha q\beta$ gibt

P-NP

- DTIME $(t(n)) := \{L \mid \text{Es gibt eine deterministische } \mathcal{O}(t(n))$ -zeitbeschränkte TM, die L entscheidet $\}$
- NTIME $(t(n)) := \{L | \text{ Es gibt eine nichtdeterministische } \mathcal{O}(t(n)) \text{-zeitbeschränkte TM, die } L \text{ akzeptiert} \}$

Sprachprobleme

Satisfiability Problem

$$SAT := \{ \langle \Phi \rangle | \Phi \text{ ist eine erfüllbare } KNF \}$$

Clique

CLIQUE := $\{\langle G, k \rangle | k \in \mathbb{N}, G \text{ ist ein ungerichteter Graph}$ der einen vollständigen Teilgraphen der Größe k enthält $\}$

Independent-Set

$$\begin{split} \text{IS} := \{ \langle G, k \rangle | k \in \mathbb{N}, G = (V, E) \text{ ist ungerichteter Graph,} \\ \exists U \subseteq V, |U| = k : \forall u, v \in U : \{u, v\} \notin E \} \end{split}$$

Coloring

$$COL := \{ \langle G, k \rangle | G \text{ ist ein ungerichteter Graph und } G \text{ ist } k\text{-färbbar} \}$$

 $3COL := \{ \langle G \rangle | G \text{ ist ein ungerichteter Graph und } G \text{ ist } 3\text{-färbbar} \}$

Traveling-Salesman

$$TSP := \{ \langle G, c, k \rangle | \text{ der Graph } G \text{ mit Kantengewicht } c : E \to \mathbb{R}$$
enthält eine Rundreise mit Gewicht $\leq k \}$

Vertex-Cover

$$\mbox{VC} := \{\langle G,k\rangle | k \in \mathbb{N}, G \mbox{ ist ein ungerichteter Graph} \\ \mbox{und hat eine Knotenüberdeckung der Größe } k\}$$

Binary-Programming

$$\mathrm{BP} := \{ \langle A, \vec{b} \rangle | A \text{ ist eine } m \times n\text{-Matrix mit ganzzahligen Einträgen, } \vec{b} \text{ ist ein Vektor mit } m$$
 ganzzahligen Einträgen und es gibt einen 0-1-Vektor $\vec{x} \in \{0,1\}^n$ mit $A \cdot \vec{x} \leq \vec{b} \}$

Verifizierer

Eine deterministische Turingmaschine V_L heißt t(n)-beschränkter Verifizierer für L, wenn gilt:

- 1. Die Eingaben von V_L sind von der Form $x\#w, w, x \in \{0,1\}^*$
- 2. Die Laufzeit ist in $\mathcal{O}(t(|x|))$
- 3. Für alle $x \in \{0, 1\}^*$:

$$x \in L \Leftrightarrow \exists w : |w| \le t(|x|) \text{ und } V_L \text{ akzeptiert } x \# w$$

Dieses heißt Zertifikat von w

 $L \in NTIME(t(n)) \Leftrightarrow$ es gibt einen t(n)-beschränkten Verifizierer V_L für L $NP = \{L |$ es gibt einen polynomiellen Verifizierer für $L\}$

NP-Vollständig

Polynomiell reduzierbar

Seien $L_1 \subseteq \Sigma_1^*, L_2 \subseteq \Sigma_2^*$.

 L_1 ist genau dann polynomiell reduzierbar auf $L_2(L_1 \leq_p L_2)$, wenn gilt:

- 1. $L_1 \leq L_2$ mittels Reduktionsfunktion f
- 2. Die Laufzeit zur Berechnung von f(x) ist $\mathcal{O}(|x|^k)$ für $k \in \mathbb{N}$

NP-schwer

$$\forall L' \in NP : L' \leq_p L$$

NP-vollständig

- 1. $L \in NP$
- 2. L ist NP-schwer

Formale Sprachen

Eine Grammatik G vom Typ Chomsky-0 ist beschrieben durch ein 4-Tupel (V, Σ, P, S) mit:

- V: Endliche Menge an Variablen
- Σ : Endliche Menge der Terminalsymbole
- $S: S \in V$: Startsymbol
- $P \subseteq ((V \cup \Sigma)^+ \setminus \Sigma^*) \times (V \cup \Sigma)^*$: Endliche Menge von Produktionen/Ableitungsregeln: $u \to v$

Die erzeugte Sprache:

$$L(G) := \{ w | S \xrightarrow{*} w, w \in \Sigma^* \}$$

Chomsky-Grammatiken

Sprace	htyp	Erzeuger	Erkenner	Definition
rekursiv aı	ıfzählbar	Chomsky-0	Turingmachinen	
kontexts	ensitiv	Chomsky-1	Linear beschränkte Turningmaschinen	$ u \leq v $
kontex	tfrei	Chomsky-2	Kellerautomaten	$u \in V \& u = 1$
regu	lär	Chomsky-3	Automaten	$u \in V \& v \in \{\epsilon\} \cup \Sigma \ / \ u \in V \& v \in \Sigma \circ V$

Endliche Automaten

 $A = (Q, \Sigma, \delta, q_0, F)$:

- $\bullet \;\;Q$: Endliche Menge der Zustände
- Σ : Endliches Alphabet, $Q \cap \Sigma = \emptyset$
- $\delta: Q \times \Sigma \to Q$ Übergangsfunktion

- q_0 : Startzustand
- $F: F \subseteq Q$, akzeptierende Endzustände

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_0 & q_0 \\ q_1 & q_0 & q_1 \end{array} \Rightarrow \delta(q_0, 001) = \delta(q_0, 01) = \delta(q_0, 1) = q_1$$

Reguläre Pump-Eigenschaft

 $\exists n_L \in \mathbb{N} \ \forall z \in L, |z| \geq n_L \ \exists u, v, w \in \Sigma^* : uvw = z \text{ und}$

- $|uv| \le n_L$
- $v \neq \epsilon$
- $\forall i \geq 0 : uv^i w \in L$
- \Rightarrow Die Sprache List regulär

Kontextfreie Pum-Eigenschaft

 $\exists n_L \in \mathbb{N} \ \forall z \in L, |z| \geq n_L \ \exists u,v,w,x,y \in \Sigma^* : uvwxy = z \ \mathrm{und}$

- $|vwx| \le n_L$
- $vx \neq \epsilon$
- $\bullet \ \forall i \geq 0: uv^iwx^iy \in L$
- \Rightarrow Die Sprache List kontextfrei