# Paper Review: Ground-level Mapping And Navigating for Agriculture Based on IoT And Computer Vision

Name: Tasnim Fuyara Chhoan

**ID:** 23366035; **CSE 707** (Fall'23)

Submitted to- Annajiat Alim Rasel (AAR)

Motivation/purpose/ aims/hypothesis

Contribution

Methodology

Motivation/purpose/ aims/hypothesis

Contribution Methodology Conclusion



**FIGURE 1.** The IoT architecture of Cloud-Edge-Robot.



# Motivation/purpose/ aims/hypothesis

- Enhance agriculture mapping
- Combine IoT and computer vision
- •loT benefits precision agriculture



**FIGURE 1.** The IoT architecture of Cloud-Edge-Robot.

Motivation/purpose/ aims/hypothesis

Contribution Methodology Conclusion

Motivation/purpose/ aims/hypothesis

**Contribution** 

Methodology



Motivation/purpose/

aims/hypothesis

FIGURE 3. a) A demonstration of mn-scaled meshing with SLAM map as b) real-time farm view.

```
C_i[1..n_c^{(i)}], \forall i \in \{1..N\}: Connection cells of each grid
      h_i[1.N], \forall i \in \{1..N\}: Actual cell height of the grid map w_i[1..N], \forall i \in \{1..N\}: Actual cell width of the grid map \Phi_c[c_{\alpha}^{(i)}, c_{\beta}^{(i)}]: Whether c_{\alpha}^{(i)} and c_{\beta}^{(i)} of grid maps i and j are
       adjacent to each other
       W_i[c_\alpha, c_\beta]: Shortest path length between c_\alpha and c_\beta in
       grid map i
Output:
       G(V, E): Graph representing the graph of the connection
       cells and the weights between them
  1: Initialize sets V, E \leftarrow \{\}
 2: Initialize W[e] such that e \in E
      for i \in \{1..N\} do
for j \in \{1..n_c^{(i)}\} do
                  V.insert(C_i[j])
             end for
             for distinct j, k \in \{1..n_c^{(i)}\}^2 do
                  e(C_i[j], C_i[k]) \leftarrow W_i[C_i[j], C_i[k]]
                  E.insert(e(C_i[j], C_i[k]))
10:
             end for
11: end for
12: for distinct i, j \in \{1..N\}^2 do
13: for \alpha, \beta \in \{1..n_c^{(i)}\} \times \{1..n_c^{(j)}\} do
                  if \Phi_c[C_i[\alpha], C_j[\beta]] then
e(C_i[\alpha], C_j[\beta]) \leftarrow \frac{h[i] + h[j] + w[i] + w[j]}{4}
14:
15:
                         E.insert(e(C_i[\alpha], C_i[\beta]))
16:
17:
                  end if
18:
            end for
 19: end for
 20: Construct graph G(V, E)
```

FIGURE 5. Route planning algorithm based on the Mesh-map.



Methodology Conclusion

#### Contribution

- •IoT-based mapping (Fig. 3)
- •Computer vision and edge computing (Fig. 4)
  - •Advancing precision agriculture (Fig. 5)



FIGURE 3. a) A demonstration of mn-scaled meshing with SLAM map and b) real-time farm view.



FIGURE 5. Route planning algorithm based on the Mesh-map.



FIGURE 4. mn-Scaled Meshing algorithm.

#### Contribution

- •IoT-based mapping (Fig. 3)
- •Computer vision and edge computing (Fig. 4)
  - •Advancing precision agriculture (Fig. 5)



FIGURE 3. a) A demonstration of mn-scaled meshing with SLAM map and b) real-time farm view.



#### Contribution

- •IoT-based mapping (Fig. 3)
- Computer vision and edge computing (Fig. 4)
  - Advancing precision agriculture (Fig. 5)

81 lig

16366

HATTE.



```
C_i[1..n_c^{(i)}], \forall i \in \{1..N\}: Connection cells of each grid
     h_i[1..N], \forall i \in \{1..N\}: Actual cell height of the grid map
     w_i[1..N], \forall i \in \{1..N\}: Actual cell width of the grid map
     \Phi_c[c_{\alpha}^{(i)}, c_{\beta}^{(j)}]: Whether c_{\alpha}^{(i)} and c_{\beta}^{(j)} of grid maps i and j are
     adjacent to each other
      W_i[c_{\alpha}, c_{\beta}]: Shortest path length between c_{\alpha} and c_{\beta} in
     grid map i
Output:
     G(V, E): Graph representing the graph of the connection
     cells and the weights between them
  1: Initialize sets V, E \leftarrow \{\}
  2: Initialize W[e] such that e \in E
  3: for i \in \{1..N\} do
          for j \in \{1..n_c^{(i)}\} do
               V.insert(C_i[j])
          end for
          for distinct j, k \in \{1..n_c^{(i)}\}^2 do
               e(C_i[j], C_i[k]) \leftarrow W_i[C_i[j], C_i[k]]
               E.insert(e(C_i[j], C_i[k]))
          end for
 12: for distinct i, j \in \{1..N\}^2 do
          for \alpha, \beta \in \{1..n_c^{(i)}\} \times \{1..n_c^{(j)}\} do
              if \Phi_c[C_i[\alpha], C_i[\beta]] then
 14:
                    e(C_i[\alpha], C_i[\beta]) \leftarrow \frac{h[i] + h[j] + w[i] + w[j]}{}
 15:
 16:
                    E.insert(e(C_i[\alpha], C_i[\beta]))
               end if
 17:
          end for
 19: end for
 20: Construct graph G(V, E)
```

FIGURE 5. Route planning algorithm based on the Mesh-map.

Motivation/purpose/ aims/hypothesis

**Contribution** 

Methodology

Motivation/purpose/ aims/hypothesis

Contribution

Methodology

Motivation/purpose/ aims/hypothesis

Contribution



```
C_i[1..n_c^{(i)}], \forall i \in \{1..N\}: Connection cells of each grid
     h_i[1..N], \forall i \in \{1..N\}: Actual cell height of the grid map
      w_i[1..N], \forall i \in \{1..N\}: Actual cell width of the grid map
      \Phi_c[c_{\alpha}^{(i)}, c_{\beta}^{(j)}]: Whether c_{\alpha}^{(i)} and c_{\beta}^{(j)} of grid maps i and j are
      adjacent to each other
      W_i[c_\alpha, c_\beta]: Shortest path length between c_\alpha and c_\beta in
      grid map i
Output:
     G(V, E): Graph representing the graph of the connection
     cells and the weights between them
 1: Initialize sets V, E \leftarrow \{\}
 2: Initialize W[e] such that e \in E
 3: for i \in \{1..N\} do
          for j \in \{1..n_c^{(i)}\} do
               V.insert(C_i[j])
          for distinct j, k \in \{1..n_c^{(i)}\}^2 do
               e(C_i[j], C_i[k]) \leftarrow W_i[C_i[j], C_i[k]]
               E.insert(e(C_i[j], C_i[k]))
10:
11: end for
12: for distinct i, j \in \{1..N\}^2 do
         for \alpha, \beta \in \{1..n_c^{(i)}\} \times \{1..n_c^{(j)}\} do
13:
14:
               if \Phi_c[C_i[\alpha], C_j[\beta]] then e(C_i[\alpha], C_j[\beta]) \leftarrow \frac{h[i] + h[j] + w[i] + w[j]}{4}
15:
                    E.insert(e(C_i[\alpha], C_i[\beta]))
16:
17:
               end if
          end for
18:
19: end for
20: Construct graph G(V, E)
```

FIGURE 5. Route planning algorithm based on the Mesh-map.



FIGURE 12. The CDF of the time intervals between responses. Note: User means a working robot.



FIGURE 9. The flowchart of map maintenance.

- •Monocular cameras, SLAM, mesh maps (Figs. 2, 5)
  - Accuracy, CPU usage, localization
    experiments (Figs. 9, 12)
  - •Real-time mapping for precision agriculture(Fig. 8)



```
C_i[1..n_c^{(i)}], \forall i \in \{1..N\}: Connection cells of each grid
     h_i[1..N], \forall i \in \{1..N\}: Actual cell height of the grid map
     w_i[1..N], \forall i \in \{1..N\}: Actual cell width of the grid map
     \Phi_c[c_{\alpha}^{(i)}, c_{\beta}^{(j)}]: Whether c_{\alpha}^{(i)} and c_{\beta}^{(j)} of grid maps i and j are
     adjacent to each other
     W_i[c_\alpha, c_\beta]: Shortest path length between c_\alpha and c_\beta in
     grid map i
     G(V, E): Graph representing the graph of the connection
     cells and the weights between them
 1: Initialize sets V, E \leftarrow \{\}
 2: Initialize W[e] such that e \in E
 3: for i \in \{1..N\} do
          for j \in \{1..n_c^{(i)}\} do
              V.insert(C_i[j])
          for distinct j, k \in \{1..n_c^{(i)}\}^2 do
              e(C_i[j], C_i[k]) \leftarrow W_i[C_i[j], C_i[k]]
              E.insert(e(C_i[j], C_i[k]))
11: end for
12: for distinct i, j \in \{1..N\}^2 do
          for \alpha, \beta \in \{1..n_c^{(i)}\} \times \{1..n_c^{(j)}\} do
14:
              if \Phi_c[C_i[\alpha], C_j[\beta]] then
                   e(C_i[\alpha],C_j[\beta]) \leftarrow {}^{h[i]+h[j]+w[i]+w[j]}
15:
                   E.insert(e(C_i[\alpha], C_j[\beta]))
16:
              end if
17:
18:
         end for
19: end for
20: Construct graph G(V, E)
```

FIGURE 5. Route planning algorithm based on the Mesh-map.



FIGURE 12. The CDF of the time intervals between responses. Note: User means a working robot.



FIGURE 9. The flowchart of map maintenance.

#### Methodology

•Monocular cameras, SLAM, mesh maps (Figs. 2, 5)

Accuracy, CPU usage, localization

•experiments (Figs. 9, 12)

•Real-time mapping for precision agriculture(Fig. 8)



**FIGURE 2.** The Structure of the Edge Node Layer.





- •Monocular cameras, SLAM, mesh maps (Figs. 2, 5)
  - Accuracy, CPU usage, localization
  - •experiments (Figs. 9, 12)
- •Real-time mapping for precision agriculture

```
C_i[1..n_c^{(i)}], \forall i \in \{1..N\}: Connection cells of each grid
     h_i[1..N], \forall i \in \{1..N\}: Actual cell height of the grid map
     w_i[1..N], \forall i \in \{1..N\}: Actual cell width of the grid map
     \Phi_c[c_{\alpha}^{(i)}, c_{\beta}^{(j)}]: Whether c_{\alpha}^{(i)} and c_{\beta}^{(j)} of grid maps i and j are
      adjacent to each other
     W_i[c_{\alpha}, c_{\beta}]: Shortest path length between c_{\alpha} and c_{\beta} in
     grid map i
Output:
     G(V, E): Graph representing the graph of the connection
     cells and the weights between them
  1: Initialize sets V, E \leftarrow \{\}
  2: Initialize W[e] such that e \in E
  3: for i \in \{1..N\} do
          for j \in \{1..n_c^{(i)}\} do
                V.insert(C_i[j])
  5:
  6:
          for distinct j, k \in \{1..n_c^{(i)}\}^2 do
  7:
               e(C_i[j], C_i[k]) \leftarrow W_i[C_i[j], C_i[k]]
                E.insert(e(C_i[j], C_i[k]))
  9:
           end for
 10:
11: end for
12: for distinct i, j \in \{1..N\}^2 do
13: for \alpha, \beta \in \{1..n_c^{(i)}\} \times \{1..n_c^{(j)}\} do
               if \Phi_c[C_i[\alpha], C_i[\beta]] then
14:
                     e(C_i[\alpha], C_j[\beta]) \leftarrow \frac{h[i] + h[j] + w[i] + w[j]}{4}
 15:
                    E.insert(e(C_i[\alpha], C_i[\beta]))
 16:
17:
                end if
           end for
18:
19: end for
20: Construct graph G(V, E)
```

FIGURE 5. Route planning algorithm based on the Mesh-map.



FIGURE 12. The CDF of the time intervals between responses. Note: User means a working robot.



FIGURE 9. The flowchart of map maintenance.

- •Monocular cameras, SLAM, mesh maps (Figs. 2, 5)
  - Accuracy, CPU usage, localization
  - •experiments (Figs. 9, 12)
- •Real-time mapping for precision agriculture





FIGURE 12. The CDF of the time intervals between responses. Note: User means a working robot.

- •Monocular cameras, SLAM, mesh maps (Figs. 2, 5)
  - Accuracy, CPU usage, localization
  - •experiments (Figs. 9, 12)
- •Real-time mapping for precision agriculture





FIGURE 12. The CDF of the time intervals between responses. Note: User means a working robot.

Motivation/purpose/ aims/hypothesis

Contribution

Methodology

Motivation/purpose/ aims/hypothesis

Contribution

Methodology

Motivation/purpose/ aims/hypothesis Contribution Methodology

**TABLE 4.** Results from the accuracy experiment.

| Cell length (approximate) (cm)     | 30   | 60   |
|------------------------------------|------|------|
| Localization success frequency (%) | 84.7 | 89.3 |
| RMSE (cm)                          | 19.5 | 0    |
| Maximal error (cm)                 | 36.9 | 0    |
| Orientation accuracy (%)           | 100  | 100  |

Note: Orientation includes 8 directions separated by 45 degrees.



FIGURE 13. CPU usages in each experiment configuration.

**GURE 12.** The CDF of the time intervals between responses. Note: User eans a working robot.

**TABLE 4.** Results from the accuracy experiment.

| Cell length (approximate) (cm)     | 30   | 60   |
|------------------------------------|------|------|
| Localization success frequency (%) | 84.7 | 89.3 |
| RMSE (cm)                          | 19.5 | 0    |
| Maximal error (cm)                 | 36.9 | 0    |
| Orientation accuracy (%)           | 100  | 100  |

Note: Orientation includes 8 directions separated by 45 degrees.



FIGURE 13. CPU usages in each experiment configuration.

**GURE 12.** The CDF of the time intervals between responses. Note: User eans a working robot.

- •High accuracy (Table 4).
- Efficiency of edge computing (Fig. 13).
- •Real-time data and map updates (Fig. 12).

**TABLE 4.** Results from the accuracy experiment.

| Cell length (approximate) (cm)     | 30   | 60   |
|------------------------------------|------|------|
| Localization success frequency (%) | 84.7 | 89.3 |
| RMSE (cm)                          | 19.5 | 0    |
| Maximal error (cm)                 | 36.9 | 0    |
| Orientation accuracy (%)           | 100  | 100  |

Note: Orientation includes 8 directions separated by 45 degrees.





- High accuracy (Table 4).
- •Efficiency of edge computing (Fig. 13).
- •Real-time data and map updates (Fig. 12).



- High accuracy (Table 4).
- •Efficiency of edge computing (Fig. 13).
- •Real-time data and map updates (Fig. 12).

Motivation/purpose/ aims/hypothesis

Contribution

Methodology

#### Limitations

Limitation 1

Limitation 2

#### Limitations

#### **Limitation 1**

Planar terrain assumption

#### **Limitation 2**

SLAM technology limitations

#### Limitations



FIGURE 11. Building the SLAM map including (left) the map before path merging and (right) after path merging.



FIGURE 10. The configuration of the accuracy experiment with a unit of 30cm-cells (left) and 60cm-cells (right).

| Future                | Environmental | Smart       | Disaster     |
|-----------------------|---------------|-------------|--------------|
| Applications          | Monitoring    | Cities      | Response     |
| Exploration & Mapping | Versatile     | Overcoming  | Enhancing    |
|                       | Industries    | Limitations | Adaptability |

| Future                | Environmental | Smart       | Disaster     |
|-----------------------|---------------|-------------|--------------|
| Applications          | Monitoring    | Cities      | Response     |
| Exploration & Mapping | Versatile     | Overcoming  | Enhancing    |
|                       | Industries    | Limitations | Adaptability |

| Future                | Environmental | Smart       | Disaster     |
|-----------------------|---------------|-------------|--------------|
| Applications          | Monitoring    | Cities      | Response     |
| Exploration & Mapping | Versatile     | Overcoming  | Enhancing    |
|                       | Industries    | Limitations | Adaptability |

| Future                | Environmental | Smart       | Disaster     |
|-----------------------|---------------|-------------|--------------|
| Applications          | Monitoring    | Cities      | Response     |
| Exploration & Mapping | Versatile     | Overcoming  | Enhancing    |
|                       | Industries    | Limitations | Adaptability |

| Future        | Environmental | Smart       | Disaster     |
|---------------|---------------|-------------|--------------|
| Applications  | Monitoring    | Cities      | Response     |
| Exploration & | Versatile     | Overcoming  | Enhancing    |
| Mapping       | Industries    | Limitations | Adaptability |

| Future        | Environmental | Smart       | Disaster     |
|---------------|---------------|-------------|--------------|
| Applications  | Monitoring    | Cities      | Response     |
| Exploration & | Versatile     | Overcoming  | Enhancing    |
| Mapping       | Industries    | Limitations | Adaptability |

| Future                | Environmental | Smart       | Disaster     |
|-----------------------|---------------|-------------|--------------|
| Applications          | Monitoring    | Cities      | Response     |
| Exploration & Mapping | Versatile     | Overcoming  | Enhancing    |
|                       | Industries    | Limitations | Adaptability |

| Future                | Environmental | Smart       | Disaster     |
|-----------------------|---------------|-------------|--------------|
| Applications          | Monitoring    | Cities      | Response     |
| Exploration & Mapping | Versatile     | Overcoming  | Enhancing    |
|                       | Industries    | Limitations | Adaptability |

| Future        | Environmental | Smart       | Disaster     |
|---------------|---------------|-------------|--------------|
| Applications  | Monitoring    | Cities      | Response     |
| Exploration & | Versatile     | Overcoming  | Enhancing    |
| Mapping       | Industries    | Limitations | Adaptability |

**Reference:** Wei Zhao, Xuan Wang, Bozhao Qi, & Troy Runge. (2020). Ground-Level Mapping and Navigating for Agriculture Based on IoT and Computer Vision. *API* (Digital Object Identifier 10.1109/ACCESS.2020.3043662).