用 Python 进行时间序列分析与预测

目录

引言	2
基础	
对数线性模型	
自回归模型 AR(p)	
移动平均模型 MA (q)	
自回归移动平均模型 ARMA(p, q)	
自回归综合移动平均模型 ARIMA(p, d, q)	11
自回归条件异方差模型 ARCH(p)	12
广义自回归条件异方差模型 GARCH (p, q)	13
时间序列分析预测以 SARIMA 为例	14
数据集	14
求解最优参数	15
模型检验	15
模型预测	15
代码	
参考文献	

引言

本文主要利用 Python 进行时间序列分析常见算法的运算和展示。系统得介绍了时间序列分析常见算法(AR、MA、ARMA、ARIMA、SARIMA、ARCH、GARCH)及其之间的联系与区别。时间序列分析试图理解过去并预测未来。通过时间序列分析技术,我们可以更好地了解已经发生的事情,并对未来做出更好,更有利的预测。

基础

时间序列是按时间顺序索引(列出或绘制图形)的一系列数据点。

平稳性是我们关注的重点。平稳的时间序列易于预测,因为我们可以假设未来的统计属性与当前的统计属性相同或成比例。我们在时间序列分析中使用的大多数模型都假设协方差平稳性。这意味着这些模型预测的描述性统计量(例如均值,方差和相关性)仅在时间序列稳定时才是可靠的,否则就无效。

我们一般遇到的大多数时间序列并不是固定不变的。因此,时间序列分析需要我们确定要预测的序列是否平稳,如果不是,我们必须找到方法对其进行变换以使其平稳(比如差分)。 **自相关:**本质上,当我们对时间序列建模时,我们将序列分解为三个部分:趋势,季节性/周期性和随机性。随机分量称为残差或误差。这只是我们的预测值和观察值之间的差异。序列相关是指时间序列模型的残差(误差)相互关联时的情况。

白噪声是最简单的时间序列模型之一。根据定义,作为白噪声过程的时间序列具有连续不相关的误差,并且这些误差的预期平均值等于零。如果时间序列模型成功地捕获了数据性质,模型的残差将变得类似于白噪声过程。因此,时间序列分析实际上是在尝试将模型拟合到某种时间序列模型,以使残差序列与白噪声无法区分。

我们模拟白噪声过程并进行可视化。下面我们用 Python 编写了一个函数,用于绘制时间序列并直观地分析序列相关性。

图 1 白噪声序列

我们可以看到该序列似乎是随机的,并且以零为均值。自相关(ACF)和部分自相关(PACF) 图也表明没有明显的序列相关。下面,我们可以看到QQ和概率图,其将我们的数据分布与 正态分布进行了比较。显然,我们的数据是随机分布的,并且看起来应该遵循高斯白噪声。 **随机游走定义**如下:随机游走序列是非平稳的,因为观察值之间的协方差是时间相关的。如 果我们建模的时间序列是随机游走,则其无法预测。 接着,我们用函数模拟随机游走,从标准正态分布中采样。

图 2 随机游走序列

显然,该随机游走序列不平稳。然而由于:

$$X_{t} = X_{t-1} + W_{t}$$
 $X_{t} - X_{t-1} = W_{t}$

因此,随机游动序列的一阶差分等于白噪声过程。所以,我们据此对随机游走序列进行一阶 差分。检验如下,其显然是白噪声过程。

图 3 差分后的随机游走序列

刚刚我们所处理的时间序列为自己生成的数据。接着,我们在实际数据集上进行试验。我们通过雅虎财经的 API 获取标准普尔 500 指数的 2007~2015 年的数据。对其做一阶差分,其结果如下:

图 5 SPY 数据进行一阶差分后

该差分结果很像白噪声。但是,根据 QQ 图和概率图的形状,表明该序列接近正态分布,然而存在重尾性。这意味着应该有更好的模型来描述实际的价格变化过程。

线性模型

线性模型(又称趋势模型)表示可以使用直线绘制的时间序列。基本公式为:

$$y_t = b_0 + b_1 t + \epsilon_t$$

在此模型中,因变量的值由 beta 系数和自变量时间确定。接下来,我们使用人工生成数据集进行模拟,如下图。

图 6 线性模型

在这里,我们可以看到模型的残差是相关的,并且呈现拖尾性。分布大致符合高斯分布。在使用该模型进行预测之前,我们必须考虑消除该序列中存在的明显的自相关。其 PACF 的显着性表明自回归模型可能是合适的。

对数线性模型

该模型与线性模型相似,我们进行类似的分析:

图 7 指数模型

自回归模型 AR (p)

相关性,一阶截尾。

当因变量根据自身的一个或多个滞后值进行回归时,该模型称为自回归模型。如下所示:

$$x_{t} = \alpha_{1}x_{t-1} + \dots + \alpha_{p}x_{t-p} + \omega_{t}$$
$$= \sum_{i=1}^{p} \alpha_{i}x_{t-i} + \omega_{t}$$

p表示模型中使用的滞后变量的数量。例如,AR(2)模型或二阶自回归模型如下所示:

$$x_t = \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \omega_t$$

其中, α 是系数, ω 是白噪声项。在 AR 模型中, α 不能等于零。接下来,我们模拟一个 α =0.6 的 AR (1) 模型:

不出所料,我们的模拟 AR (1) 模型的分布是正态的。如 PACF 图所示,其存在显著的偏自

现在,我们可以使用 Python 的 statsmodels 包拟合 AR(p) 模型。首先,进行模拟数据的估计,随后返回估计的 alpha 系数。然后,我们查看拟合模型是否会选择正确的滞后项。如果 AR 模型正确,则估算的 alpha 系数将接近我们的真实 alpha 值 0.6,阶数将等于 1.8

```
alpha estimate: 0.58227 | best lag order = 1
true alpha = 0.6 | true order = 1
```

看起来估计得很好。接下来我们用 alpha_1 = 0.666 和 alpha_2 = -0.333 来模拟 AR(2)过程。

图 9 AR(2)数据

让我们看看是否可以通过模型拟合得到正确的参数。

效果不错。

移动平均模型 MA (q)

MA(q)模型与 AR(p)模型非常相似。不同之处在于,MA(q)模型是过去的白噪声误差项的线性组合,而不是像 AR(p)模型那样的过去观测值的线性组合。MA(q)模型的公式为:

$$x_t = \omega_t + \beta_1 \omega_{t-1} + \dots + \beta_p \omega_{t-p}$$
$$= \omega_t + \sum_{i=1}^p \beta_i \omega_{t-i}$$

w 是白噪声, $E(w_t) = 0$ 。接下来,我们使用 beta = 0.6 生成人工数据集,进行模型可视化。

图 10 MA 模型

ACF 显示一阶截尾,这表明 MA(1)模型适用于我们的模拟序列。PACF 具有拖尾性。我们现在尝试将 MA(1)进行模型的拟合。

ARMA Model Results								
Dep. Variable:	able: y No. Observations:							
Model:		ARMA(0,	1)	Log Li	kelihood		-1390.513	
Method:			mle	S.D. o	f innovations		0.972	
Date:	Fri	, 12 Jun 2	020	AIC			2785.025	
Time:		11:32	:24	BIC			2794.841	
Sample:				HQIC			2788.756	
	coef	std err			P> z	[0.025	0.975]	
ma.L1.y	0.5874	0.026	2:	2, 762	0.000	0.537	0.638	
			Ro	ots				
	Real	Iπ	agin	ary	Modulus	;	Frequency	
MA. 1	-1.7024	+	0.000	00j	1.7024	!	0.5000	

图 11 MA (1) 模型摘要

该模型能够正确估计系数,0.58 接近我们的真实值 0.6。并且 95%置信区间确实包含真实值。接着,让我们尝试模拟一个 MA(3)序列,然后使用 ARMA 函数进行三阶 MA 模型拟合,观察是否可以进行正确的估计。Beta 1-3 分别等于 0.6、0.4 和 0.2。

图 12 模拟的 MA (3)

ARMA Model Results								
Dep. Variable: Model: Method: Date: Time: Sample:	y No. Observations ARMA(0, 3) Log Likelihood mle S.D. of innovation Fri, 12 Jun 2020 AIC 13:12:30 BIC 0 HQIC			ikelihood.	:	1000 -1427.038 1.008 2862.075 2881.706 2869.536		
	coef	std err	z	P> z	[0.025	0.975]		
ma. L1. y ma. L2. y ma. L3. y	0.6025 0.4060 0.1683	0.031 0.034 0.031	19.322 11.806 5.420 Roots	0.000 0.000 0.000	0.541 0.339 0.107	0.664 0.473 0.229		
	Real	Im	aginary	Modulus	:	Frequency		
MA. 1 MA. 2 MA. 3	-0.1714 -0.1714 -2.0700		1.6856j 1.6856j 0.0000j	1.6943 1.6943 2.0700		-0. 2661 0. 2661 -0. 5000		

图 13 模型摘要

该模型能够有效地估计实际系数。95%置信区间还包含 0.6、0.4 和 0.3 的真实参数值。现在,我们尝试利用 MA(3)模型拟合 SPY 数据。

图 14 模型摘要

让我们看一下模型残差。ACF 和 PACF 都快速收敛。然而在 QQ 图上有重尾性,使其不是预测未来 SPY 指数的最佳模型。

图 15 SPY MA (3) 模型残差

自回归移动平均模型 ARMA (p, q)

ARMA 模型是 AR(p) 和 MA(q) 模型之间的合并。如果是在量化金融中,AR(p) 模型试图捕获在交易市场中的动量和均值回归效应。MA(q) 模型试图捕获以白噪声方式观察到的冲击效果,这些影响可以被认为是意外事件。模型公式为:

$$\begin{split} x_t &= \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \ldots + \omega_t + \beta_1 \omega_{t-1} + \beta_2 \omega_{t-2} \ldots + \beta_q \omega_{t-q} \\ &= \sum_{i=1}^p \alpha_i x_{t-i} + \omega_t + \sum_{i=1}^Q \beta_i \omega_{t-i} \end{split}$$

我们用给定的参数模拟一个 ARMA (2, 2) 流程,然后拟合一个 ARMA (2, 2) 模型并查看它是否可以正确估计这些参数。将 alpha 设置为[0.5, -0.25],将 beta 设置为[0.5, -0.3]。

图 16 模拟的 ARMA (2, 2)

		ARMA	Model Resul				
Dep. Variabi	le: y No. Observations:						
Model:		ARMA(2,	2) Log Li	kelihood		-7076.176	
Method:			mle S.D. o	f innovatio		0.996	
Date:	Fri	i, 12 Jun 2	020 AIC			14162.35	
Time:		13:12	:33 BIC			14194.93	
Sample:			O HQIC			14173.77	
	coef	std err	z	P> z	[0.025	0.975	
ar.L1.y	0.4730	0.051	9.338	0.000	0.374	0.57	
ar.L2.y	-0.2645	0.015	-17.489	0.000	-0.294	-0.23	
ma.L1.y	0.5224	0.052	10.089	0.000	0.421	0.62	
ma.L2.y	-0.2699	0.047	-5.684	0.000	-0.363	-0.17	
			Roots				
	Real	Ιπ	aginary	Modul	us	Frequency	
AR. 1	0.8943		1.7267i	1.9446		-0.1739	
AR. 2	0.8943		1.7267j	1.9446		0.1739	
MA. 1	-1.1867		0.0000j			0.5000	
MA. 2	3, 1219		0.0000i	3.12	19	0.0000	

图 17 ARMA (2, 2) 拟合结果

该模型估计到了正确的参数,并且真实参数包含在95%的置信区间内。

接下来,我们模拟一个 ARMA(3,2) 模型。之后,我们循环遍历 p, q 的非平凡数量的组合,将 ARMA 模型拟合我们的模拟序列。我们根据哪种模型产生最低的 AIC 来选择最佳组合。

aic: 14212.01026 | order: (3, 2)

通过拟合得到的 AIC 以及对应的模型参数,可以发现其拟合到了正确参数。

ARMA Model Results							
Dep. Variable Model: Method: Date: Time: Sample:		ARMA(2, , 12 Jun 2 14:49	2) Log I mle S.D. 1020 AIC	bservations: .ikelihood of inmovation:		5000 -7076, 176 0, 996 14162, 352 14194, 938 14173, 773	
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1.y ar.L2.y ma.L1.y ma.L2.y	0. 4730 -0. 2645 0. 5224 -0. 2699	0.051 0.015 0.052 0.047	9,338 -17,489 10,089 -5,684 Roots	0.000 0.000 0.000 0.000	0.374 -0.294 0.421 -0.363	0.572 -0.235 0.624 -0.177	
	Real	In	aginary	Modulu		Frequency	
AR. 1 AR. 2 MA. 1 MA. 2	0.8943 0.8943 -1.1867 3.1219		-1.7267j -1.7267j -0.0000j -0.0000j	1. 9446 1. 9446 1. 186 3. 1219	7	-0.1739 0.1739 0.5000 0.0000	

图 18 拟合的 ARMA (3, 2) 模型摘要

我们看到拟合结果输出了正确的 p、q 参数,并且正确估计了模型的参数。但是注意 MA. L1. y 的真实系数 0.5 几乎超出了 95%的置信区间。下面我们观察模型的残差。显然,这是一个白噪声过程,因此我们确信这是最好的模型。

图 19 ARMA (3, 2) 最佳模型残留白噪声

接下来,我们将 ARMA 模型应用到 SPY 数据集(之前的章节提到过)上。根据遍历 p 和 q,我们找到了最低 AIC 下的最优参数组合:

aic: -11520.47028 | order: (4, 3)

可以得到最优参数为4,3。我们总结模型。

ARMA Model Results							
Dep. Variab Model: Method: Date: Time: Sample:		ARMA(4,	3) Log L: mle S.D. o)20 AIC	servations: kelihood of innovatio	ns	2013 5768. 235 0. 014 -11520. 470 -11475. 611 -11504. 004	
	coef	std err	z	P> z	[0.025	0.975]	
ar. L1. SPY ar. L2. SPY ar. L3. SPY ar. L4. SPY ma. L1. SPY ma. L2. SPY ma. L3. SPY	-0.6735 -0.9994 0.0118 -0.0526 0.5810 0.8708 -0.1262	0.617 0.510 0.650 0.060 0.618 0.452 0.597	-1.092 -1.960 0.018 -0.870 0.940 1.928 -0.211 Roots	0. 275 0. 050 0. 986 0. 384 0. 347 0. 054 0. 833	-1.882 -1.998 -1.261 -0.171 -0.631 -0.015 -1.297	0.535 -0.000 1.285 0.066 1.793 1.756 1.045	
AR. 1 AR. 2 AR. 3 AR. 4 MA. 1 MA. 2 MA. 3	-0. 3687 -0. 3687 0. 4810 0. 4810 -0. 3693 -0. 3693 7. 6361		-0.9387j +0.9387j +4.2977j +4.2977j +4.2977j -0.9492j +0.9492j -0.0000j		85 85 45 45 45 85 85	-0.3096 0.3096 -0.2323 0.2323 -0.3091 0.3091 -0.0000	

图 20 SPY 最佳模型模型

图 21 SPY 最佳模型残差

ACF 和 PACF 没有显示出显著的自相关。QQ 和概率图显示残差近似高斯分布,但呈重尾分布。然而该模型的残差看起来不像白噪声。原因可能是模型未捕获的明显的条件异方差(条件波动)的部分(2009年和2012年)。

自回归综合移动平均模型 ARIMA (p, d, q)

ARIMA 是 ARMA 模型类别的自然扩展。如前所述,许多时间序列不是平稳的,但是可以通过差分使它们平稳。当我们对高斯随机游走进行一阶差分并证明它等于白噪声时,即是完成了这一过程。换句话说,我们进行了非平稳随机游走,并通过一阶差分将其转换为平稳的白噪声。

在下面的示例中,我们遍历(p,d,q)阶的平凡组合,以找到最佳的 ARIMA 模型以适合 SPY 数据。我们使用 AIC 评估每个模型。我们得到最优参数。

aic: -11520.47028 | order: (4, 0, 3)

最优模型的差分项为 0。下面, 我绘制了模型残差。结果基本上与我们上面拟合的 ARMA (4, 3) 模型相同。显然, 这个 ARIMA 模型也没有解释该序列的条件波动率。

图 22 SPY 最佳模型残差

现在,我们可以对未来的数据进行简单的预测。除了预测准确值,我们还进行一个区间预测。

	forecast	lower_ci_95	lower_ci_99	upper_ci_95	upper_ci_99
2014-12-31	0.001367	-0.025642	-0.034129	0.028376	0.036863
2015-01-01	-0.000068	-0.027192	-0.035715	0.027056	0.035579
2015-01-02	0.000230	-0.026954	-0.035495	0.027413	0.035954
2015-01-03	0.000454	-0.026736	-0.035280	0.027644	0.036187
2015-01-04	-0.000608	-0.027798	-0.036342	0.026582	0.035126

图 23 SPY 数据预测

自回归条件异方差模型 ARCH (p)

ARCH (p) 模型可以简单地看作是应用于时间序列异方差的 AR (p) 模型。也可以看做,我们在时间 t 处的方差取决于先前方差。以下为 ARCH (1) 模型。

$$Var(y_t|y_{t-1})=\sigma_t^2=lpha_0+lpha_1y_{t-1}^2$$

我们可以将模型表示为:

$$y_t = \sigma_t \epsilon_t$$
, with $\sigma_t = \sqrt{\alpha_0 + \alpha_1 y_{t-1}^2}$, and $\epsilon_t \sim iid(0, 1)$

根据上式,我们可以模拟 ARCH(1)模型:

图 24 模拟 ARCH (1) 过程

广义自回归条件异方差模型 GARCH (p, q)

简而言之,GARCH(p,q)是应用于时间序列异方差的ARMA模型,即它具有自回归项和移动平均项。AR(p)对残差的方差(误差平方)建模。基本的GARCH(1,1)公式为:

$$\epsilon_t = \sigma_t w_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

w 是白噪声, 而 alpha 和 beta 是模型的参数。而且 alpha_1 + beta_1 必须小于 1, 否则模型不稳定。我们可以在下面模拟 GARCH (1, 1) 过程, 参数为 0.2, 0.5 和 0.3。

图 25 模拟 GARCH (1, 1) 过程

接下来,我们看看是否可以使用 GARCH (1,1) 模型对以上序列进行参数估计。在这里,我们利用 ARCH 包中的 arch_model 函数。经过试验发现估计的参数值均落入置信区间内。

图 26 GARCH 模型拟合摘要

现在我们使用 SPY 数据做一个示例。流程如下:

- 1. 通过 ARIMA (p, d, q) 模型的组合进行迭代,选择最优模型。
- 2. 根据具有最低 AIC 的 ARIMA 模型选择 GARCH 模型。
- 3. 将 GARCH (p, q) 模型拟合到我们的 SPY 数据集。
- 4. 检查模型残差和平方残差以进行自相关。

首先,得到最优参数:

aic: -5255.56660 | order: (3, 0, 2)

模型残差:

图 27 GARCH 模型

其对应的 GARCH 模型。我们可以看出,下方图形类似于白噪声,经过检查 ACF 和 PACF 可以看出,我们已经实现了良好的模型你和,由于平方残差中没有明显的正相关。

图 28 GARCH (3, 2) 模型残差

时间序列分析预测以 SARIMA 为例

数据集

在这里,我们采取了某城市电力负荷月度数据集,并将其划分为训练集和测试集。

图 29 数据集

求解最优参数

在处理季节性影响时,我们利用季节性 ARIMA,表示为 ARIMA(p,d,q)(P,D,Q)s。这里,(p,d,q)是上述非季节性参数,而(P,D,Q)适用于时间序列的季节分量。s 是时间序列的周期(季度为4,年度为12等等)。由于涉及诸多参数,所以我们采用枚举法求得最优的模型参数(在R语言中,实现了模型的自动定阶,但并未移植到Python中,所以这里我们手动求解)。

我们使用"网格搜索"来迭代地探索参数的不同组合。对于参数的每个组合,我们拟合一个新的季节性 ARIMA 模型,并评估其整体质量。

通过训练求解出最优参数: AIC 最小时: ARIMA(1, 1, 1)x(1, 1, 0, 12)12 - AIC:515.925486295917

训练过程:

```
ARIMA(1, 0, 1)x(0, 0, 1, 12)12 - AIC:40159.484179181
ARIMA(1, 0, 1)x(0, 0, 1, 0, 12)12 - AIC:778.8224319925813
ARIMA(1, 0, 1)x(1, 0, 0, 12)12 - AIC:825.3437968222438
ARIMA(1, 0, 1)x(1, 0, 1, 12)12 - AIC:825.3437968222438
ARIMA(1, 0, 1)x(1, 0, 1, 12)12 - AIC:815.28315968025185
ARIMA(1, 1, 0)x(0, 0, 0, 12)12 - AIC:1115.0787025203965
ARIMA(1, 1, 0)x(0, 0, 1, 12)12 - AIC:1115.0787025203965
ARIMA(1, 1, 0)x(0, 0, 1, 12)12 - AIC:188.5782169551662
ARIMA(1, 1, 0)x(1, 0, 0, 12)12 - AIC:790.5223007266907
ARIMA(1, 1, 0)x(1, 0, 1, 12)12 - AIC:12050.212155163801
ARIMA(1, 1, 0)x(1, 0, 1, 12)12 - AIC:1519.55349638674
ARIMA(1, 1, 0)x(1, 0, 1, 12)12 - AIC:1803.9691175643518
ARIMA(1, 1, 1)x(0, 0, 0, 12)12 - AIC:1603.9691175643518
ARIMA(1, 1, 1)x(0, 0, 1, 0, 12)12 - AIC:760.0380196582735
ARIMA(1, 1, 1)x(0, 0, 1, 12)12 - AIC:860.911502534033
ARIMA(1, 1, 1)x(1, 0, 0, 12)12 - AIC:8690.6115102534033
ARIMA(1, 1, 1)x(1, 1, 0, 12)12 - AIC:8690.6115102534033
ARIMA(1, 1, 1)x(1, 1, 1, 12)12 - AIC:8690.6115102534033
ARIMA(1, 1, 1)x(1, 1, 1, 12)12 - AIC:8690.6115102534033
```

图 30 网格搜索

模型检验

图 31 模型检验

残差近似为白噪声序列, QQ 图显示近似服从正态分布,模型检验通过。

模型预测

在模型预测方面。我们先在训练集上进行预测,并检查其误差。预测 2017 年的月度数据:

图 31 在训练集上预测

得到误差 RMSE: 23113.32, MAPE:14.5%。其预测效果不错,于是我们在测试集上预测 2018 年的月度数据:

图 31 在测试集上预测

在测试集上得到误差 RMSE: 16424.76, MAPE: 9.13%。可以看出, SARIMA 获得了非常好的效果。

代码

本文的代码均可以在我的 Gi thub 上获取:

其他章节:

https://github.com/stxupengyu/time-series-

analysis/blob/master/time series analysis prediction.ipynb

SARIMA 章节:

https://github.com/stxupengyu/SARIMA/blob/master/ts-predict-lord.ipynb

参考文献

http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-17.html

http://www.seanabu.com/2016/03/22/time-series-seasonal-ARIMA-model-in-python/

https://zhuanlan.zhihu.com/p/35128342

https://www.cnblogs.com/foley/p/5582358.html

https://blog.csdn.net/qifeidemumu/article/details/88782550