

EE141-Spring 2012 Digital Integrated Circuits

Lecture 19 Layout

EECS141

Lecture #19

1

Administrativia

- □ No regrades on MT2 after next We!
- □ Phase 2 now in full motion

EECS141

Lecture #19

2

Challenges of Dynamic Gates

- □ Noise sensitivity and small noise margins
 - Leakage
 - Charge sharing
 - Clock feedthrough

Issues in Dynamic Design 2: Charge Sharing

- □ Charge initially stored on C₁
 - C_A previously discharged

- □ When A rises, this charge is redistributed (shared) between C₁ and C₄
- Makes Out drop below V_{DD}

Solution to Charge Sharing

- Keeper helps a lot
 - Can still get failures if Out drops below inverter V_{sw}
- Another option: precharge internal nodes
 - · Increases power and area

EECS141 Lecture #19

Issues in Dynamic Design 3: Clock Feedthrough

Coupling between Out and Clk input of the precharge device due to the gate to drain capacitance. So voltage of Out can rise above V_{DD}. The fast rising (and falling edges) of the clock couple to Out.

above V_{DD} . The fast rising (and falling edges) of the clock couple to Out. $V_{PD}C_{L}+V_{PD}C_{gp}=V_{out}C_{L}+(V_{out}-V_{PD})C_{gp}$

In digital circuit, when the circuit changes from one state to another state, the wire will product a big peak current, which will form a transient noise voltage and affect normal operation of the previous level.

Properties of Domino Logic

- □ Only non-inverting logic can be implemented Because it has to have a inverter all the time.
- □ Very high speed
 - static inverter can be skewed, only L-H transition critical
 - Input capacitance reduced smaller logical effort

EECS141 Lecture #19 1

Domino Logic LE

LE is independent of the numbers of input.

PMOS wider, VM increases, inverter switches earlier, 0 to 1 faster, 1 to 0 ldwer

Cell Design

- □ Standard Cells
 - General purpose logic
 - Used to synthesize RTL/HDL
 - Same height, varying width sometimes, same width, varying height
- □ Datapath Cells
 - For regular, structured designs (arithmetic)
 - Includes some wiring in the cell

Why Sequencing?

Two key (related) reasons that we need sequencing:

(1) Need to know when we are finished with a job

Why Sequential Logic?

Two key (related) reasons that we need sequencing:

(2) Need to order events (aligning fast and slow)

EECS141 Lecture #19 43

Latch versus Register (Flip-flop)

- Latch: level-sensitive clock is low - hold mode clock is high - transparent
- Register: edge-triggered stores data when clock rises

