- 1. (Previously Presented) A method for preparing a steroidal carbothiolic acid or a salt thereof, said method comprises:
- A) reacting a steroidal carboxylic acid or a salt thereof with a coupling agent selected from the group consisting of carbodiimide derivatives represented by the following formula:

$$R_a$$
-N=C=N- R_b

 $\label{eq:continuous} wherein \ R_a \ and \ R_b \ are the same or different, and each represent an aliphatic,$ $\label{eq:continuous} heteroaliphatic, \ carbocyclic \ or \ a \ heterocyclic \ group, \ wherein \ the \ group \ is \ optionally \ substituted;$ $\ alone \ or \ in \ conjunction \ with \ a \ coupling \ enhancer; \ and$

- B) reacting the product of step A) with a nucleophilic agent comprising a sulfur atom.
- 2. (Original) A method according to claim 1 in which the coupling agent is 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC).
- 3. (Original) A method according to claim 2, in which the coupling agent is the hydrochloride salt of EDC.
- 4. (Previously Presented) A method according to claim 1, in which the coupling enhancer is selected from the group consisting of:
 - A) a heterocyclic ring of formula (D) or formula (E),

wherein R_{11} and R_{12} can be the same or different, and each represent a hydrogen atom or a cyano group; R_{13} represent a hydrogen atom or an alkyl group; and R_{14} represent a hydrogen atom or a salt of a sulfonic acid; and

B) an unsaturated 5-6 membered heterocyclic ring of formula (F) or formula (G),

X = H, F, Cl, Br and Y = CH, N, O, S

and

5. (Previously Presented) A method according to claim 1, where the nucleophilic agent comprising a sulfur atom is selected from the group consisting of:

compounds of formula [M]⁺[SH]⁻ wherein M is a metal such as Li, Na or K; or [M]²⁺[S]²⁻ wherein M is a metal such as Ca or Mg, the said sulfide salts being optionally hydrated;

an in situ generated sulfide salt or a hydrated sulfide salt.

- 6. (Previously Presented) The method of claim 1, wherein the nucleophilic agent is dissolved in a suitable solvent prior to addition to the reaction mixture, or wherein the nucleophilic agent is added in the form of a solid salt or as a solution of the salt in water, an organic solvent, or a combination thereof.
- 7. (Previously Presented) A method according to claim 1 for preparing a steroidal carbothioic acid of formula (IV) or a salt thereof

wherein the symbol === in the 1,2-position represent a single or a carbon-carbon double bond;

 R_1 represents a hydrogen atom, a hydroxy- or an alkoxy group in the *a*-configuration, a group -O-C(=O)- R_6 is an alkyl group or an optionally substituted 5-6 membered heterocyclic ring containing either oxygen, nitrogen or sulfur as ring hetero atom;

 R_2 represents a hydrogen atom, a hydroxy group, an alkoxy group in the *n*-configuration, an alkyl group which may be in either the η - or β -configuration, an alkylene group, wherein the alkylene group is bound to the steroid nucleus via a double bond, or R_1 and R_2 together represent

where R_7 and R_8 are the same or different and each represent a hydrogen atom or an alkyl group;

 R_3 represent a hydrogen atom, hydroxy-or a protected hydroxy group in either a α - or β configuration or an oxo group;

 R_4 represents a hydrogen- or a halogen atom or R_3 and R_4 together represent a carbon-carbon bond or an epoxy group in the β -configuration; and

 R_5 represents a hydrogen- or a halogen atom in either the α - or β -configuration;

R₉ represents a hydrogen atom or R₉ represent a metal ion; the method comprising;

A) reacting a steroidal carboxylic acid of formula (II) or a salt thereof

in which the substituents of formula (II) have the above defined meaning with a coupling agent alone or in conjunction with an coupling enhancer, followed by the reaction with a nucleophilic agent comprising a sulfur atom; and optionally

- B) reacting the product from step A) with an acid.
- 8. (Previously Presented) The method of claim 1, wherein i) the coupling agent is added before the coupling enhancer, or the coupling enhancer is added before the coupling agent, and/or wherein ii)

the steroidal carboxylic acid is added to a mixture of the coupling agent and the coupling enhancer, or wherein

a mixture of the coupling agent and the coupling enhancer is added to a steroidal carboxylic acid, or wherein

the steroidal carboxylic acid is added to a mixture of the coupling agent and the coupling enhancer in a polar aprotic solvent, preferably DMF or DMA, at elevated temperature.

9. (Currently Amended) <u>The A method of claim 1, further comprising for preparing a steroidal carbothioate, or a salt thereof, the method comprising.</u>;

reacting <u>thea</u> steroidal carbothioic acid or a salt thereof with an <u>electrophilic</u> agent to produce a steroidal carbothioate, or a salt thereoff.

- 10. (Currently Amended) A method according to claim 9, in which the <u>electrophilicelectrophillie</u> agent is selected from the group consisting of: C₁₋₈ di- or trihaloalkanes.
- 11. (Previously Presented) A method according to claim 9 for preparing a steroidal carbothioate of formula (I)

wherein R₁, R₂, R₃, R₄ and R₅ are;

 R_1 represents a hydrogen atom, a hydroxy- or an alkoxy group in the *a*-configuration, a group -O-C(=O)- R_6 is an alkyl group or an optionally substituted 5-6 membered heterocyclic ring containing either oxygen, nitrogen or sulfur as ring hetero atom;

 R_2 represents a hydrogen atom, a hydroxy group, an alkoxy group in the *n*-configuration, an alkyl group which may be in either the η - or β -configuration, an alkylene group, wherein the alkylene group is bound to the steroid nucleus via a double bond, or R_1 and R_2 together represent

where R_7 and R_8 are the same or different and each represent a hydrogen atom or an alkyl group;

 R_3 represent a hydrogen atom, hydroxy-or a protected hydroxy group in either a α - or β configuration or an oxo group;

 R_4 represents a hydrogen- or a halogen atom or R_3 and R_4 together represent a carbon-carbon bond or an epoxy group in the β -configuration; and

 R_5 represents a hydrogen- or a halogen atom in either the α - or β -configuration and R_{10} represents a $C_{1.5}$ haloalkyl or an optionally substituted heterocyclic ring, the method comprising:

A) reacting a steroidal carboxylic acid of formula (II)

with a coupling agent and a coupling enhancer of formula (D) or formula(E)]

$$R_{12}$$
 N
 R_{13}
 R_{13}
 R_{14}
 R_{14}
 R_{14}
 R_{15}
 R_{15}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
 R_{18}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}

wherein R_{11} and R_{12} independently represent a hydrogen atom or a cyano group (C=N); R_{12} represent a hydrogen atom or an alkyl group; and

R₁₄ represent a hydrogen atom or a moiety of a sulfonic acid

- B) reacting the product from step A) with a nucleophilic agent comprising sulfur; and
- C) reacting the product from step B) with an electrophillic agent or a compound of the following formula;

wherein X=H, F, Cl, or Br and; Y=CH₂, NH, O, or S.

- 12. (Original) The method of claim 11, wherein the coupling enhancer is selected from the group consisting of: NMI (N-methylimidazole); DCI (4,5-dicyanolmidazole); NHS (N-hydroxysuccinimide); and sulfo-NHS (N-hydroxysulfosuccinimide).
- 13. (Previously Presented) The method of claim 11, wherein step C) constitutes the *in* situ reaction of the product from step B) with bromofluoromethane to form a compound of formula (I) wherein R_{10} is a fluoromethyl group.

14. (Previously Presented) The method according to claim 9, in which at least two subsequent steps are performed *in situ*; the method is conducted as a continuous method;

step A), B) and optionally step C) are conducted as a one-pot synthesis without solvent changes. are performed at room or elevated temperature, or both; or

a combination of one or more of the foregoing.

- 15. (Previously Presented) The method of claim 9, wherein an androstane 17β -carboxylic acid is converted to an androstane 17β -carbothioate.
- 16. (Previously Presented) The method of claim 9, wherein step B) provides a compound of formula (IV), in which the moiety –5-R₅ represent a group of the formula [-S]⁻[M]⁺ wherein M is a metal such as Li, Na or K,

wherein the symbol — in the 1,2-position represent a single or a carbon-carbon double bond;

 R_1 represents a hydrogen atom, a hydroxy- or an alkoxy group in the α -configuration, a group -O-C(=O)- R_6 is an alkyl group or an optionally substituted 5-6 membered heterocyclic ring containing either oxygen, nitrogen or sulfur as ring hetero atom;

 R_2 represents a hydrogen atom, a hydroxy group, an alkoxy group in the *n*-configuration, an alkyl group which may be in either the η - or β -configuration, an alkylene group, wherein the alkylene group is bound to the steroid nucleus via a double bond, or R_1 and R_2 together represent

$$R_{3}$$
 R_{4}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{8}
 R_{1}
 R_{2}

where R_7 and R_8 are the same or different and each represent a hydrogen atom or an alkyl group;

 R_3 represent a hydrogen atom, hydroxy-or a protected hydroxy group in either a α - or β configuration or an oxo group;

R₄ represents a hydrogen- or a halogen atom or R₃ and R₄ together represent a carbon-carbon bond or an epoxy group in the β-configuration; and

 R_5 represents a hydrogen- or a halogen atom in either the α - or β -configuration; R_9 represents a hydrogen atom or R_9 represent a metal ion.

17. (Previously Presented) A compound of the formula (III) and salts and solvates thereof

$$R_3$$
 R_4
 R_4
 R_4
 R_5
 R_6
 R_8

wherein R_1 represents a hydrogen atom, a hydroxy- or an alkoxy group in the *a*-configuration, a group -O-C(=O)- R_6 is an alkyl group or an optionally substituted 5-6 membered heterocyclic ring containing either oxygen, nitrogen or sulfur as ring hetero atom;

 R_2 represents a hydrogen atom, a hydroxy group, an alkoxy group in the *n*-configuration, an alkyl group which may be in either the η - or β -configuration, an alkylene group, wherein the alkylene group is bound to the steroid nucleus via a double bond, or R_1 and R_2 together represent

where R_7 and R_8 are the same or different and each represent a hydrogen tom or an alkyl group;

 R_3 represent a hydrogen atom, hydroxy-or a protected hydroxy group in either a α - or β configuration or an oxo group;

 R_4 represents a hydrogen- or a halogen atom or R_3 and R_4 together represent a carbon-carbon bond or an epoxy group in the β -configuration; and

 R_5 represents a hydrogen- or a halogen atom in either the α - or β -configuration; and

Z represent the structural moiety resulting from the reaction between the steroidal carboxylic acid of formula (II) and a coupling agent, followed by a coupling enhancer selected from the group consisting of the compounds of formulas (D); (E); (F); and (G):

$$R_{12}$$
 R_{13}
 R_{13}
 R_{14}
 R_{14}
 R_{14}
 R_{15}
 R

wherein R_{11} and R_{12} independently represent a hydrogen atom or a cyano group; R_{13} represent a hydrogen atom or a methyl group; and R_{14} represent a hydrogen atom or a moiety of a sulfonic acid,

X - H, F, CL, Br and Y -- CH, N, O, S

with the proviso that:

when the coupling enhancer is a compound of formula (F), X can not represent H when Y represents CH:

when the coupling enhancer is a compound of formula (D), R_{11} and R_{12} can not both represent H when R_1 in formula III represents DH; and

when the coupling enhancer is a compound of formula (E), R_{14} can not represent H when R_1 in formula III represents H;

and with the further proviso that

succinlmidyl-9 υ -fluoro-11 β , 17 α -dihydroxy-16 α -methyl-3-oxoandrosta-1,4-diene-17 β -carboxylate;

 17α -hydroxy-4-androsten-3-one- 17β -carboxylic acid N-hydroxysuccinimide ester;

N-hydroxysuccinimidyl-9-fluoro- 16α -methyl- 11β , 17-dihydroxy-3-oxo-1,4-androstadiene- 17β -carboxyester;

N-hydroxysuccinimide ester of dexamethasone-17 β -carboxylic acid; and 1-[(9-fluoro-11 β -hydroxy-16 β -methyl-3-oxo-17 α -propionylaxyandrosta-1,4-dien-17 β -yi)carbonyl]imidazol are disclaimed.

18. (Previously Presented) The compound of claim 17, wherein at least one of R_{11} and R_{12} is a cyano group (C=N), R_{13} is a hydrogen atom, formula (D) is NMI (N-methylimidazole) or

DCI (4,5-dicyano-imidazole), formula (E) is NHS (N-hydroxysuccinimide) or sulfo-NHS (N-hydroxysulfosuccinimide), or a combination comprising one or more of the foregoing.

19. (Previously Presented) The compound of claim 17, having the formula:

$$R_{3}$$
 R_{4}
 R_{2}
 R_{4}
 R_{5}

with the proviso that R₁₄ can not represent H when R₁ represents H.

20.(Previously Presented) A compound of the formula (VI) and salts and solvates thereof wherein

 R_1 represents a hydrogen atom, a hydroxy- or an alkoxy group in the *a*-configuration, a group -O-C(=O)- R_6 is an alkyl group or an optionally substituted 5-6 membered heterocyclic ring containing either oxygen, nitrogen or sulfur as ring hetero atom;

 R_2 represents a hydrogen atom, a hydroxy group, an alkoxy group in the *n*-configuration, an alkyl group which may be in either the η - or β -configuration, an alkylene group, wherein the alkylene group is bound to the steroid nucleus via a double bond, or R_1 and R_2 together represent

where R_7 and R_8 are the same or different and each represent a hydrogen tom or an alkyl group;

 R_3 represent a hydrogen atom, hydroxy-or a protected hydroxy group in either a α - or β configuration or an oxo group;

 R_4 represents a hydrogen- or a halogen atom or R_3 and R_4 together represent a carbon-carbon bond or an epoxy group in the β -configuration; and

 R_5 represents a hydrogen- or a halogen atom in either the α - or β -configuration, wherein R_a and R_b are the same or different, and each represent an aliphatic, heteroaliphatic, carbocyclic or a heterocyclic group;

with the proviso that 1-(3-dimethylamino-propyl)-3-ethyl-carbodiimide- 6α , 9 υ -difluoro-11 β -hydroxy- 16α , 17 α -isopropylidenedioxy-3-oxo-androsta-1,4-diene-17 β -carboxylate is disclaimed.

21-23. (Cancelled).