TRAVAUX DIRIGES TD Torsion

Travaux Dirigés

Objectifs:

Sur des exemples de base, être capable :

- > D'appliquer les lois de la RdM
- > De mener à bien les calculs relatifs aux lois de la RdM

Eléments utilisés :

> Cours

Leçons préalables :

- > RdM généralités
- ➤ Torsion

Travail demandé :

Exercice 1

Soit une éprouvette cylindrique en cuivre de 25 mm de diamètre soumise à un couple de 210 Nm lors d'un essai de torsion. L'angle de torsion mesuré est de 4,9 degré pour une longueur de 1m.

Calculer le module d'élasticité transversal G du cuivre testé.

Déterminer l'angle de torsion d'une poutre du même matériau, de même diamètre et de longueur 1,8m, sachant qu'elle supporte une contrainte tangentielle maximale de 140 N.mm⁻²

Exercice 2

L'arbre proposé transmet un couple de 3 000 Nm. On impose un angle de torsion $\alpha = 1.8^{\circ}$ entre les deux extrémités, A et B distantes de 0,8m. (G = 75 GPa) Déterminer le diamètre d.

TRAVAUX DIRIGES TD Torsion

Exercice 3

Déterminer la puissance transmise et la contrainte tangentielle maximale dans l'arbre si le diamètre d'enroulement de la courroie sur la poulie est de 100 mm et si $T_1 = 1 000 \text{ N}$ et $T_2 = 400 \text{ N}$ sont les tensions respectives des deux brins. $N_{arbre} = 1 000 \text{ tr/min}$.

Exercice 4

L'arbre creux proposé tourne à la vitesse de 180 tr/min. Un système de mesure stroboscopique indique un angle de torsion $\alpha = 3^{\circ}$ entre les deux extrémités A et B, G = 77 GPa. Déterminer la puissance transmise et la contrainte tangentielle maximale.

Exercice 5

Soit un arbre d'hélice de bateau de 15 m de long. L'arbre est creux, le rapport entre le diamètre intérieur d et le diamètre extérieur D est égal à 0,6. L'arbre transmet une puissance de 4,5

MW à la vitesse de 350 tr/min. La contrainte tangentielle admissible de l'acier de l'arbre est de 80 N/mm².

Déterminer les diamètres intérieur et extérieur de l'arbre.

Calculer l'angle de torsion à pleine puissance entre les deux extrémités distantes de 15m. (G = 80 000 MPa)

Exercice 6

L'arbre proposé distribue la puissance entre quatre roues dentées A, B, C et D. Les couples transmis sont $C_A = 600$ Nm, $C_B = -1400$ Nm, $C_C = 266$ Nm et $C_D = -534$ Nm. La contrainte admissible est de 50 MPa. Déterminer d_1 , d_2 et d_3 .

TRAVAUX DIRIGES TD Torsion

Exercice 7

Soient deux arbres de transmission de même longueur L transmettant la même puissance ($P = 2\,094\,$ kW) à la même vitesse de rotation ($2\,000\,$ tr/min). Le premier est plein, diamètre extérieur d₁, le second est creux, diamètre extérieur D et diamètre intérieur d. d/D = 0,9. On impose un angle de torsion maximal de 0,28°/m pour les deux arbres. ($G = 80\,000\,$ MPa)

Déterminer d, D et d_1 et le rapport des masses m_2/m_1 à déformation égale.

Exercice 8

L'arbre ci contre, avec une gorge de 15 mm de rayon, transmet un couple de torsion M_{T} de 10 kNm.

Déterminer la contrainte tangentielle maximale en tenant compte des concentrations de contraintes.

Exercice 9

Un perçage de 8 mm de diamètre est foré radialement dans un arbre de 80 mm de diamètre. La contrainte tangentielle admissible du matériau est de 100 MPa. Déterminer le couple transmissible.

Exercice 10

Un arbre de transmission subit une puissance de 300 kW à 480 tr/min. La contrainte tangentielle admissible est de 60 MPa

Déterminer le rayon r minimum pour le raccordement entre les deux cylindres.

Exercice 11

Un arbre composite bimétallique se compose d'une âme B en acier (d = 40) collée dans un tube en laiton (d = 40 et D = 50). L'arbre supporte un couple de torsion $M_T = 10$ kNm. Déterminer les contraintes maximales dans A et B ainsi que l'angle de torsion α de l'arbre.

