Parrot: Efficient Serving of LLM-based Applications with Semantic Variable

Author: Chaofan Lin, Zhenhua Han, Chengruidong Zhang Yuqing Yang, Fan Yang, Chen Chen, Lili Qiu

OSDI 2024

Presented by Chaoyi Ruan, Kunzhao Xu and Bosen Yang in Reading Group Meeting at USTC

Disclaimer: 今天分享依据文本, 如有争议, 概不负责!

Agenda

- LLM Service and Application
- Problem Statement
- Design and Optimizations
- Evaluations
- Summary

The Rise of Large Language Models (LLMs)

- Advanced models trained to generate and manipulate human language.
- GPT-2, GPT-3, GPT-4, Claude...
- Popular Apps:
 - Chatbot
 - Content Creation
 - Code copilot
 - Al agents

Paradigm Shift of Computer Programs

- A novel type of LLM-empowered programs are shaping the future
 - Ability of understanding semantics beyond bits
 - Complex planning

Increased Adoption of GenAl in production

Paradigm Shift of Computer Programs

- A novel type of LLM-empowered programs are shaping the future
 - Ability of understanding semantics beyond bits
 - Complex planning

API-based LLM Service

Service are provisioned via a text completion API

LLM_call (prompt: str) → generated_text : str.

```
import openai
openai.api_key = "your-api-key-here"

prompt = "Explain the impact of large language models on society."

response = openai.Completion.create( engine="gpt-4", prompt=prompt, max_tokens=100 )

print(response.choices[0].text.strip())
```


MS Azure service

Antropic

Diverse Workflows of LLM Apps

- High-quality LLM apps often need multiple LLM requests to collaborate in different workflows
- Prompt engineering is needed for high-quality results

Complex prompt engineering: Map-reduce Summarization

Diverse Workflows of LLM Apps

 High-quality LLM apps often need multiple LLM requests to collaborate in different workflows

Agenda

- LLM Service and Application
- Problem Statement
- Design and Optimizations
- Evaluations
- Summary

Application-agnostic LLM backend Services

Multiple applications are running simultaneously

From the view of LLM Service-End

Independent client prompt requests through OpenAI-style APIs

Leading to amounts of problems in performance

Problem of Lacking Application Knowledge

Latency breakdown

High Excessive Latency

- 50~70% Non-GPU Time
- High Internet Latency
- **Excessive Queuing Delay**

Problem of Request-centric LLM APIs

Misaligned Scheduling Objectives

Small Batch Size for Low Per-Request Latency

Large Batch Size for Map Stage

Problem of Unknown Prompt Structure

Existing LLM services receive "rendered" prompt without structure info

Some apps use same prompt prefix for different user queries

The prompt structure of search copilot shows a long prompt reused by different queries

Problem of Unknown Prompt Structure

Existing LLM services receive "rendered" prompt without structure info

Some apps use same prompt prefix for different user queries

Public LLM Services (e.g., Azure, OpenAI)

No knowledge about **Shared Prompt Structure**

Existing LLM/App Serving Works

Existing LLM/App Serving Works

Failing to integrate application knowledge into LLM serving

Many Optimizations Not Applicable in Public LLM Services LADSLAB

Public LLM Services face diverse applications

- Although there have been some system optimizations
 - Sticky routing, DAG Scheduling, Prefix Sharing,

- Lacking essential information about applications
 - Have to blindly use a universal treatment for all requests

Agenda

- LLM Service and Application
- Problem Statement
- Design and Optimizations
- Evaluations
- Summary

Goals in Parrot

A unified abstraction to expose application-level knowledge

Uncover correlation of multiple requests

End-to-end optimization of LLM applications

Parrot Overview

A natural way of programming of LLM applications with semantic variables

Parrot Overview

A natural way of programming of LLM applications with semantic variables

- Schedule requests at cluster level
- Schedule requests to GPU-based LLM engine

Insight from Prompt Engineering

- Developers usually use prompt template to program LLM apps
- {{Placeholders}} are often used for inputs/outputs

```
You are an expert software engineer Write the python code of {{input:task}} Your Code: {{output:code}}
```

```
You are expert QA engineer, given code for {{input:task}} {{input:code}}
Your write test cases: {{output:test}}
```

Key Abstraction: Semantic Variables


```
@P.SemanticFunction
def WritePythonCode (task: P.SemanticVariable):
   You are an expert software engineer.
    Write python code of {{input:task}}.
    Code: {{output:code}}
11 11 11
@P.SemanticFunction
def WriteTestCode(
    task: P.SemanticVariable,
    code: P.SemanticVariable):
""" You are an experienced QA engineer.
    You write test code for {{input:task}}.
    Code: {{input:code}}.
    Your test code: {{output:test}}
11 11 11
def WriteSnakeGame():
  task = P.SemanticVariable("a snake game")
  code = WritePythonCode(task)
  test = WriteTestCode(task, code)
  return code.get(perf=LATENCY), test.get(perf=LATENCY)
```

Semantic Variables Data pipe that connects multiple LLM calls

Semantic Variables in Parrot Front-end


```
@P.SemanticFunction
def WritePythonCode(task: P.SemanticVariable):
""" You are an expert software engineer.
    Write python code of __ Input: task
                                                Prompt
    Code: Output: code
@P.SemanticFunction
def WriteTestCode(
    task: P.SemanticVariable,
    code: P.SemanticVariable):
""" You are an experienced QA engineer.
    You write test code for Input: task
                                                 Prompt
    Code: Input: code
    Your test code: Output: test
def WriteSnakeGame():
 ftask = P.SemanticVariable("a snake game")
 code = WritePythonCode(task)
 test = WriteTestCode(task, code)
  return code.get(perf=LATENCY), test.get(perf=LATENCY)
```

w/ Semantic Variables as Placeholders

Data pipeline by connecting LLM Requests using Semantic Variables

Performance Criteria

Exposing Semantic Variable to Parrot LLM Service ADSLAB

Semantic Variable brings:

- DAG construction between requests
- Prompt structure analysis
- Data pipelining between requests

. . .

Parrot Overview

Exposing Semantic Variable to Parrot LLM Service ADSLA

- DAG construction between requests
- Prompt structure analysis
- Data pipelining between requests

. . .

Optimization: Scheduling Dependent Requests ADSLAB

- Optimizing dependent requests by using semantic variables
 - Decreased Network Communication

Current LLM service

Parrot Design

Two steps are scheduled together with result of A be fed int B directly

- Avoid unnecessary network communication
- Avoid queuing delay from other apps

Optimization: Performance Criteria

- With DAG of application requests & E2E requirement
- Derive the performance requirement of each LLM call
 - High throughput Variables: all relevant requests are marked as thpt-preferred
 - Latency sensitive variables:
 - Reverse topological order analysis
 - Direct-linked requests and predecessor are marked as latency-preferred
 - Parallel requests at the same stage are grouped together, higher batch size

From the DAG, derive requests can be executed in parallel

Optimization: Performance Criteria

Public LLM Service w/ apps with different performance criteria

Chatbot: Low Latency

Data Analytics: High Throughput

Batch Size

Small

Large

Conflict when scheduled to the same GPU engine

Optimization: Performance Criteria

Public LLM Service w/ apps with different performance criteria

response.get(perf=LATENCY)

Data Analytics: High Throughput

Batch Size Small Large

Parrot can derive request-level scheduling goal from end-to-end requirement

Optimization: Sharing Prompt Prefix

• With prompt structure, Parrot can **automatically** detect shared prefix

Your are expert of {task}, here are some examples: {example}, your response: {response}

- Optimized CUDA Kernel
 - Two-phase attention: avoid recomputing and reloading shared prefix

Optimization: App-centric Scheduling

Discussion

- Dynamic Applications and Function calling
 - Security risk of public service
 - New optimization space when offloading them into LLM server-side
- Inter-Request Analysis with Other Applications
 - Unexplored features: outlier handling, job failures, scheduling fairness, etc.
- Parrot compatibility with LLM orchestration frameworks
 - Template-based programming style
 - Extending existing LLM calls with semantic variables

Agenda

- LLM Service and Application
- Problem Statement
- Design and Optimizations
- Evaluations
- Summary

Experimental Setup

Testbed

- 1 server with a 24-core CPU and 1 A100 GPU
- 1 server with a 64-core CPU and 4 A6000 GPUs
- 200-300ms emulating the Internet latency

Workloads

- Model utilized: LlaMA 7/13B model
- Task-1: long document analysis with Arxiv dataset
- Task-2: BingCopilot with synthesized user queries
- Task-3: Multi-agent application via MetaGPT
- Task-4: Mixed workload (chat application + task-1)

Workload	Serving Dependent Requests.	Perf. Obj. Deduction	Sharing Prompt	App-centric Scheduling
Data Analytics	✓	✓		✓
Serving Popular			1	1
LLM Applications			'	'
Multi-agent App.	✓	✓	✓	✓
Mixed Workloads	✓	✓		✓

Baseline

Application framework + LLM serving + Engine Backend
 Langchain FastChat + HG transformer/vLLM

Average E2E latency of chain summarization

Parrot achieves a 1.38× and 1.88× reduction in latency over baselines due to decreased network latency.

Chain Summary with queued delay

Multiple summary apps

- Parrot slashes latency by up to 2.38× since it further reduces queuing latency
- Slowdown due to interleaved execution of all applications

The difference in E2E latency of the 25 chain-summary application between Baseline and Parrot.

Average E2E latency of map-reduce summarization

Parrot realizes a 2.37× acceleration over baselines by identifying the map task as a task group (higher batch)

Evaluation: Popular Apps (Bing Copilot, GPTs) ADSLAB

Synthesized requests following Bing Copilot length distribution

Synthesized requests from 4 different popular GPTs applications

- Production prompts show up to 1.7x latency reduction due to better GPU kernel
- Parrot can sustain 12× higher request rates compared to the baseline without sharing.
 - Only 3X higher request rates without co-locate requests from the same app.
 - Even compared with paged attention, Parrot achieves 2.4x throughput improvement.

Evaluation: Multi-agent Applications

- MetaGPT: code review and revision task
 - Architect outlines files structures and APIs
 - Reviewers leave comments for each file
 - Coders revise codes based on comments

GPU Memory of KV cache

- Parrot achieves a speedup of up to $11.7 \times$ compared with the latency-centric baseline. (higher batch size)
- Even compared with throughput-centric baseline, Parrot achieves 2.45x throughput improvement.
 (sharing prefix)

Evaluation: Scheduling Mixed Workloads

Mixed workloads

Map-reduce Summary (high thpt.)_{Slow JCT of both Tasks!}

Evaluation: Scheduling Mixed Workloads

Mixed workloads

Map-reduce Summary (high thpt.)

Chat request at 1 req/s (low lat.)

Parrot achieves low latency and highthroughput for both apps

Parrot optimizes application performance by scheduling them on different engines

Agenda

- LLM Service and Application
- Problem Statement
- Design and Optimizations
- Evaluations
- Summary

Pros and Cons

Pros

- Innovative Abstraction (Semantic Variables)
- End-to-end application-level optimization instead of request level
- High performance gains and support for multiple workflows

Cons

- Potential overhead in terms of analyzing and managing variables
- Lack of comparison to SGLang

Summary

- Multi-tenant cloud LLM services running diverse apps
 - Lacking app knowledge misses many optimization opportunities

- Parrot: uses a unified abstraction Semantic Variable
 - To expose essential application-level information
 - End-to-end optimizations with dataflow analysis

• Evaluation shows order-of-magnitude efficiency improvement for practical use-cases