Truth Tables Cheat Sheet

Conjunction

p	q	p ∧ q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction

p	q	p∨q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Conditionals

p	q	p => q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Biconditionals

p	q	p <=> q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Logical Equivalence Laws

Commutative Laws

1.
$$p \lor q \equiv q \lor p$$

2.
$$p \land q \equiv q \land p$$

3.
$$p <=> q \equiv q <=> p$$

Associative Laws

1.
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

2.
$$(p \land q) \land r \equiv p \land (q \land r)$$

3.
$$(p <=> q) <=> r \equiv p <=> (q <=> r)$$

Distributive Laws

1.
$$p \lor (q \land r) \equiv (p \lor q) \land (q \lor r)$$

2.
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

3.
$$p \Rightarrow (q \lor r) \equiv (p \Rightarrow q) \lor (p \Rightarrow r)$$

4.
$$p => (q \land r) \equiv (p => q) \land (p => r)$$

Double Negative Law

1.
$$\sim (\sim p) \equiv p$$

De Morgan's Laws

1.
$$\sim (p \vee q) \equiv \sim p \wedge \sim q$$

2.
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

Implication Laws

1.
$$p <=> q \equiv (p => q) \land (q => p)$$

2.
$$p \Rightarrow q \equiv p \lor q$$

3.
$$p \Rightarrow q \equiv q \Rightarrow p$$

4.
$$\sim (p \Rightarrow q) \equiv p \land \sim q$$

Set Algebra

Closed:

A binary operation * is closed if:

$$x, y \in S \Rightarrow x * y \in S$$

Identity:

An element $e \in S$ is called an identity if:

$$x * e = x AND e * x = x \forall x \in S$$

Inverse:

If \exists *e* identity of S, an element $x \in S$ is called invertible when \exists $y \in S \ni$:

$$x * y = e AND y * x = e$$

Commutative:

A binary operation * on S is commutative if:

$$x * y = y * x \forall x, y \in S$$

Associative:

A binary operation * on S is associative if:

$$(x * y) * z = x * (y * z) \forall x, y, z \in S$$

Distributive:

A binary operation * is distributive over another \cdot if for all a, b, c \subseteq S.

$$a*(b \cdot c) = (a*b) \cdot (a*c)$$

 AND
 $(a \cdot b)*c = (a*c) \cdot (b*c)$

Well-Ordered:

A set S with order \leq is called well-ordered if every nonempty \emptyset subset T of S has at least one smallest element.

That is, if $T \subseteq S$, $T \neq \emptyset$, then $\exists s_0 \leq s \forall s \in T$

Rules for \mathbb{Z} :

On \mathbb{Z} , + and \cdot are commutative and associative. On \mathbb{Z} , - and / are not commutative and associative. However, if we define a-b=a+(-b) and $\frac{a}{b}=a\cdot(\frac{1}{b})$, then we have commutativity and associativity.

$$a-b \neq b-a$$
, $BUT \ a+(-b)=-b+a$ (assoc.) $\frac{a}{b}\neq \frac{b}{a}$, $BUT \ a\cdot \frac{1}{b}=\frac{1}{b}\cdot a$ (distrib.)

Multiplication distributes over addition and subtraction on \mathbb{Z} .

$$a \cdot (b \pm c) = (a \cdot b) \pm (a \cdot c)$$

 $(a \pm b) \cdot c = (a \cdot c) \pm (b \cdot c)$

Common Rules:

An integer $m \in \mathbb{Z}$ is **even** if m = 2k for some $k \in \mathbb{Z}$.

An integer $m \in \mathbb{Z}$ is **odd** if m = 2k + 1 for some $k \in \mathbb{Z}$

An integer m > 1 is **prime** if whenever m = rs for $r, s \in \mathbb{N}$, either r = 1 or s = 1

An integer m > 1 is **composite** if it is not prime (i.e. m = ab with a, b > 1 AND $a, b < m, a, b \in \mathbb{N}$)

Dedekind Cuts Properties:

A Dedekind Cut of \mathbb{Q} is a pair of subsets (A,B) of \mathbb{Q} that satisfy the following:

- A and B are nonempty
- \bullet $A \cup B = Q$
- A is closed downwards: If $q \in A$ and r < q, then $r \in A$
- B is closed upwards: if $q \in B$ and r > q, then $r \in B$
- A contains no greatest element: $\forall \ q \in A \ \exists \ r \in A \ \ni \ q < r$

Given $q \in \mathbb{Q}$, we can form a Dedekind Cut (A, B) where:

$$A = \{x \in \mathbb{Q} : x < q\} \text{ AND } B = \{x \in \mathbb{Q} : x \ge q\}$$