Fonctions polynômes du second degré.

I. Définition.

Définition: On appelle fonction polynôme de degré 2 ou trinôme du second degré, toute fonction f définie sur R par une expression de la forme : $f(x) = ax^2 + bx + c$. où les coefficients $a \ne 0$, b et c sont des réels donnés

	connaitre les coefficients fficients des trinômes suiva	<u>d'un trinôme du second a</u> ints :	<u>legre :</u>
$ f(x) = 2x^2 + 3x - 5 $		$ h(x) = -x^2 + 3$	$\bullet i(x) = (2x+5)(-x+4)$
II. Forme canonique	<u>d'une fonction polynô</u>	me du second degré.	
Exemple : Soit la fonction j	f définie sur IR par : f(x)= 22	$x^2 - 20x + 10$.	
On veut exprimer la fonction			
Forme générale :			
- (0.10)			
		gré peut s'écrire sous la form appelle la <u>forme canonique</u> c	
Remarque : $Sif(x) = 0$	$ax^2 + bx + c$. on a alors $\alpha = a$	et β =	
☑ Savoir-faire : Savoir tro	uver la forme canonique	d'un trinôme du second d	legré :
Détermine la forme canoni	que de la fonction f ayant $ ho$	pour expression $f(x) = -x^2 + 4$	<i>x</i> -1.

III. Représentation graphique d'une fonction polynôme du second degré.

Pı	ropriété	: Soit f de	efinie sur R par f(x) = ax	$c^2 + bx + c$. La courbe re	présentative de <i>f</i> est une
	ourbe. ♦ Si <i>a</i> <	0 alors la pa	rabole a les branches tourné	es vers le	
	♦ Si a >	0 alors la pa	rabole a les branches tourné	ees vers le	•
Rei	marque :	Avec la form	e canonique, on obtient direc	ctement les coordonnées du	ı sommet de la parabole.
\checkmark	Savoir-	faire : Savoi	r dresser le tableau de var	iations d'une fonction trin	ôme du second degré :
	1) Dress	ser le tableau	ı de variations de la fonction	f_1 définie par $f_1(x) = 2x^2 + 3x$	-5 :
	2) Dress	ser le tableau	de variations de la fonction	f_1 définie par $f_1(x) = -x^2 + 2x$	+3:
	IV Ré	solution d	'une équation du seco	nd dearé.	
				_	
☑ _			<u>résoudre une équation pr</u>	_	<u> </u>
	Résouc	dre l'équation	$(E_1): (-2x+3) (3x+5) = 0$		
	D		(2 , 5)	0/	
	Remarq	ue:(-2x+3)	$(3x+5) = \dots$	= - 6 () ()
√	Savoir f	airo : Savoir	résoudre une équation du	$u_1 + u_2 = u_1 = u_2 = u_2 = u_2 = u_1 = u_2 = u_2 = u_2 = u_1 = u_2 $	
			quations suivantes :	x = u.	
		E_1): $x^2 = 16$	$\phi(E_2): x^2 = 13$	$◆$ (E_3): $\chi^2 = 0$	$◆(E_4): x^2 = -4$
	¥ (1	-1)·N 10	· (-2/ · N 10	· (=3/ · × 0	· (-4/ · A 1
•				•••••	•••••

☑ Savoir-faire: Savoir factoriser	une expression. (un	facteur commun c	<u>uune identité remarquable):</u>
		2 - 25	$ h(x) = (x+1)^2 - (2x+3)^2 $
Définition : Si x_1 et x_2 sont deux solu		•	·
Définition : On appelle discriminan	t du trinôme $ax^2 + bx$	+ c, le nombre réc	el, noté Δ , égal à $b^2 - 4ac$.
Savoir-faire : Savoir calculer le		nôme :	
Dans chaque cas ci-dessous calcul • $f(x) = 2x^2 + 3x-5$		$ h(x) = -x^2 + 3$	$\bullet i(x) = (2x+5)(-x+4)$
		• n(x) x + 3	
Propriété : Soit f définie sur R par :			
◆ Si Δ = 0 : ◆ Si Δ > 0 :			
Démonstration exigible :			
Demonstration exigible .			
Savoir-faire: Savoir factoriser u	•	econd degré :	
Soit f la fonction définie sur IR par :	$f(x) = x^2 + x - 6.$		
Propriété : Soit é définie our Propr	$f(x) = ax^2 + bx$	a oloro	
Propriété : Soit f définie sur R par \bullet Si Δ < 0 :			
◆ Si ∆ = 0 :			
♦ Si Δ > 0:			
			<u>:</u>
		du second degré	$E(E_3): -x^2 + 3 x - 5 = 0$
☑ <u>Savoir-faire : Savoir résoudre t</u>	outes les équations (du second degré + 30 = 0	
✓ Savoir-faire: Savoir résoudre to $(E_1): x^2 + x - 6 = 0$	outes les équations (du second degré + 30 = 0	$(E_3): -x^2 + 3 x - 5 = 0$
✓ Savoir-faire: Savoir résoudre to $(E_1): x^2 + x - 6 = 0$	outes les équations (du second degré + 30 = 0	$(E_3): -x^2 + 3 x - 5 = 0$

V. Signes d'une fonction polynôme du second degré.

	Δ > 0	$\Delta = 0$	Δ < 0
a > 0			
a < 0			

☑ Savoir-faire : Savoir résoudre les inéquations du second degré.

1) Résoudre les inéquations suivantes :

♦ (I ₁)	$): x^2 + x -$	-6 > 0
----------------------------	----------------	------------------

♦ (I ₂)	$: -2x^2 -$	$4x + 30 \le 0$
---------------------	-------------	-----------------

	_
\boldsymbol{x}	
Signe	7
Signe de	
$x^2 + x - 6$	

λ	
Signe	
de	
$-2x^2-4x+30$	

2) Soit f et g les fonctions définie sur IR par $f(x) = -2x^2 + 3x + 5$ et $g(x) = x^2 + x - 6$. Résoudre $(I_1): -2x^2 + 3x + 5 \le x^2 + x - 6$. Interpréter le résultat.

