- 1. Suppose that \mathbf{x} and \mathbf{y} are in \mathbf{R}^n and $\mathbf{x} \neq \mathbf{y}$. Show that there is a continuous function $f : \mathbb{R}^n \to \mathbb{R}$ with $f(\mathbf{x}) = 1$, $f(\mathbf{y}) = 0$ and $0 \le f(\mathbf{z}) \le 1$ for every $\mathbf{z} \in \mathbf{R}^n$.
- 2. Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{x}\right) + y \sin\left(\frac{1}{y}\right), & \text{if } x \neq 0, y \neq 0 \\ x \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0, y = 0 \\ y \sin\left(\frac{1}{y}\right), & \text{if } x = 0, y \neq 0 \\ 0 & \text{if } x = 0, y = 0. \end{cases}$$

- (a) Show that f is continuous at (0,0).
- (b) Show that none of the partial derivatives of f exist at (0,0).
- 3. In each of the following case, determine whether the function f is differentiable at (0,0):

(a)
$$f(x,y) = \begin{cases} e^{-\frac{1}{x^2+y^2}}, & \text{if } x^2+y^2 \neq 0\\ 0, & \text{if } x=y=0 \end{cases}$$
 (b) $f(x,y) = \sqrt{|xy|}$

- 4. Show that the function $f(r,\theta) = \frac{1}{2}r\sin 2\theta, r > 0$ is differentiable at every point in its domain. Determine whether this function is of class C^1 .
- 5. Use linear approximation to calculate:

(a)
$$\sin 29^{\circ} \cdot \tan 46^{\circ}$$
 (b) $\frac{1.03^2}{\sqrt[3]{0.98}\sqrt[4]{1.05^3}}$

6. Let

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & \text{if } x^2 + y^2 \neq 0 \\ 0, & \text{if } x = y = 0 \end{cases}$$

Prove that f is differentiable at (0,0) but its partial derivatives are not continuous at (0,0).

- 7. Let a, b be two real numbers. Show that the function f(x, y) = ax + by, $(x, y) \in \mathbb{R}^2$ is differentiable at every point in its domain and that the vector (a, b) is its derivative. Hence show that the tangent plane to the graph of f at any point on the graph co-incides with the graph of f.
- 8. Consider the surface $S: z = x^2 + 3y^2$.
 - (a) Find the slope of the tangent line to the curve of intersection of the surface S and the plane y=1 at the point (1,1,4).
 - (b) Find a parametric equation for the tangent line whose slope you computed in part (a).
 - (c) Find the slope of the tangent line to the curve of intersection of the surface S and the plane x = 1 at the point (1, 1, 4).
 - (d) Find a parametric equation for the tangent line whose slope you computed in part (b).
 - (e) Find an equation of the tangent plane to the surface S at the point (1,1,4).
- 9. Find the equation of the tangent plane to the graph $z = \cos x \cos y$ at the point $(0, \frac{\pi}{2}, 0)$.
- 10. Find the linear approximation of $f(x,y) = (xe^y + \cos y, x, x + e^y)$ at the point (1,0).

Version: 2.23494 Page 1 of 1