

Performance Infrastructure Improvements in z/OS V2.5 WLM

Tuesday August 10th, 2021

Andreas Henicke, z/OS Workload Management andreas.henicke@de.ibm.com IBM Germany Research & Development, 2021

Trademarks

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA, WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System j5, System p5, System x, System z, System z9®, BladeCenter®

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems. Inc. in the United States, other countries. or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

Notes

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

^{*} All other products may be trademarks or registered trademarks of their respective companies.

Notice Regarding Specialty Engines (e.g., zIIPs, zAAPs and IFLs):

Any information contained in this document regarding Specialty Engines ("SEs") and SE eligible workloads provides only general descriptions of the types and portions of workloads that are eligible for execution on Specialty Engines (e.g., zIIPs, zAAPs, and IFLs). IBM authorizes customers to use IBM SE only to execute the processing of Eligible Workloads of specific Programs expressly authorized by IBM as specified in the "Authorized Use Table for IBM Machines" provided at

www.ibm.com/systems/support/machine warranties/machine code/aut.html ("AUT").

No other workload processing is authorized for execution on an SE.

IBM offers SEs at a lower price than General Processors/Central Processors because customers are authorized to use SEs only to process certain types and/or amounts of workloads as specified by IBM in the AUT.

Agenda

- Batch Initiator Enhancements for Job Placement and Initiator Management
- Service Coefficient Removal
- System Recovery Boost
- Other Enhancements and Important Information

Batch Initiator Enhancements for Job Placement and Initiator Management

WLM Batch Initiator Management

Policy adjustment:

- Initiators are dynamically started by WLM to meet service class period goals by reduction of batch queue delays
- WLM selects the system considering available system resources based on the job's importance

Resource adjustment:

- Start additional initiators if jobs are waiting and unused capacity is available
 - Based on service class history
 - Up to 5 at a time

Problem:

Initiator placement is determined based on the available or displaceable capacity of *general purpose processors*. As the capacity of specialty processors is increasing, as does the demand for such workloads, it is important to consider the workload specific capacity demand for placement routines

IBM z/OS V2R5 Batch Initiator Enhancements

Starting with IBM z/OS V2R5, WLM Batch Initiator takes the service class consumption of specialty processors into account.

Initiators for batch jobs classified into a service class of which the first period executes primarily on zIIP will tend to be added on systems with spare zIIP capacity.

Initiators for batch jobs classified into a service class of which the first period executes primarily on CP will tend to be added on systems with spare CP capacity.

This enhancement will help to remove the need of manual management of zIIP eligible batch jobs such that the z/OS system automatically selects to best suited system.

Mixed Service Classes

Mixed service classes:

Initiators running CP workload and initiators running zIIP workload are classified into the same service class. WLM then must assume that on such system each initiator consumes processor capacity on both processor types. Initiators will only be started if there is sufficient available capacity for all checked processor types.

To allow the customer some control with "mixed" service classes, WLM does the following:

- The available CP capacity is always checked.
- If OPT parameter "IIPHONORPRIORITY = NO" is in effect, the available zIIP capacity is always checked.
- If OPT parameter "IIPHONORPRIORITY = YES" is in effect (the default), zIIP capacity is only checked if the service class' consumed amount of zIIP capacity is at least ten percent of the consumed service units on CPs

Batch Initiator Enhancements Recommendation

- Use separate sets of service classes for initiators running on specialty processors and initiators executing on standard CPs such that all initiators running in the same service class either execute on standard CPs or on specialty processors. This is no mandatory requirement, but it allows for a more accurate management of the initiators.
- If back-level systems and IBM z/OS V2R5 systems in a SYSPLEX/MAS have WLM managed initiators running in the same service class and on either system the initiators execute on specialty processors, balancing these initiators across the SYSPLEX/MAS will not be optimal. Neither system would be aware of the other system's consumption of specialty processor capacity.
- You mcan use one set of service classes for initiators executing zIIP workloads on IBM z/OS V2R5 systems and another set of service classes for initiators executing zIIP workloads on back-level systems.

Service Coefficient Removal

Removal of Service Coefficients

Statement of Direction

z/OS V2.4 is the last release of z/OS to allow specifying service coefficients in the Workload Manager (WLM) service definition on the Service Definition Details page.

Starting with z/OS V2.5 the IBM recommended values CPU=1, SRB=1, MSO=0, and IOC=0, will be the predefined values.

IBM recommends that you adjust your service coefficients before upgrading to a later release.

New health checks ZOSMIGV2R4_NEXT_WLM_ServCoeff and ZOSMIGV2R3_NEXT2_WLM_ServCoeff are provided to check the WLM service coefficients being specified in the currently installed WLM service definition.

Migration Health Check

- OA59066 provides two health checks
 - ZOSMIGV2R3_NEXT2_WLM_ServCoeff at z/OS 2.3
 - ZOSMIGV2R4_NEXT_WLM_ServCoeff at z/OS 2.4
 - As is customary with migration health check, they are inactive and must be activated by the customer explicitly
- If the health check is activated and the recommended WLM service coefficients are already in use, information message IWMH101I THE RECOMMENDED WLM SERVICE COEFFICIENTS ARE BEING USED is issued.
- If the health check is activated and one or more of the WLM service coefficients currently in use have a different value than CPU=1, SRB=1, IOC=0, MSO=0, exception message IWMH102E THE RECOMMENDED WLM SERVICE COEFFICIENTS ARE NOT BEING USED is issued.

Overview - Migration Health Check

- If exception message IWMH102E is issued, the customer should consider changing the service coefficients in the WLM service definition to the recommended values and review the durations for any multi-period service classes and adjust them accordingly.
- Information how to adjust the durations is provided in the APAR text
- z/OS MVS Planning: Workload Management Chapter 13 (Defining service coefficients and options) is updated accordingly

```
Duration (DUR) is currently calculated as:
DUR = (CPU * CPU service units) +
      (SRB * SRB service units) +
      (IOC * I/O service units) +
      (MSO * storage service units)
where CPU, SRB, IOC, and MSO are the installation defined
WLM service coefficients. With CPU=1, SRB=1, IOC=0, MSO=0
the new duration is simplu calculated as:
NEW DUR = CPU service units + SRB service units
Converting DUR into NEW DUR is calculated as:
NEW DUR = DUR / Total service units
          * ( CPU service units / CPU +
              SRB service units / SRB
where CPU and SRB are the old service cofficients and Total
service units is the sum of CPU, SRB, IOC, and MSO service
units. These values should be collected for a peak period
interval from, for example, the RMF Postprocessor Workload
Activity (WLMGL) report.
EXAMPLE:
- Old DUR is 90000

    Old default service coefficients used (CPU=10, SRB=10)

- Values from RMF WLMGL peak period interval:
  TOTAL SU = 6218K
  CPU SU = 5877K
          = 95667
```

NEW DUR = 90000/6218K * (5877K/10 + 95667/10) = 8645

SDSF Health Checker Display (SDSF CK)

The initial state of the migration health check is **INACTIVE**.

```
SDSF HEALTH CHECKER DISPLAY SYS1

COMMAND INPUT ===>

PREFIX=IS* DEST=(ALL) OWNER=* SORT=ModName/A SYSNAME=SYS1 FILTERS=1

NP NAME

CheckOwner

ZOSMIGV2R4_NEXT_WLM_SERVCOEFF IBMWLM

LINE 1-1 (1)

SCROLL ===>

CheckOwner

State

INACTIVE(ENABLED)
```

Check is activated by line command **A** in CK display (**H** would deactivate the check).

z/OS Console

Check can also be activated by MODIFY console command: f hzsproc,activate,check=(ibmwlm,*)

```
    SYS1 f hzsproc,activate,check=(ibmwlm,*)
    SYS1 HZS0400I CHECK(IBMWLM,*):
    ACTIVATE PROCESSING HAS BEEN COMPLETED
    SYS1 HZS0001I CHECK(IBMWLM,ZOSMIGV2R4_NEXT_WLM_SERVCOEFF):
    IWMH102E The recommended WLM service coefficients are not being used.
```

Important note:

Customers typically don't need to care about activating migration health checks. When doing an upgrade, the **z/OSMF Upgrade Workflow** will run the migration health checks for the customers automatically.

Coexistence with z/OS V2.5

- z/OS V2.5 uses pre-set WLM service coefficients. They can no longer be defined in the WLM ISPF Application and the z/OSMF WLM task.
- WLM must take care that all systems in the sysplex use identical service coefficients.
 - When the WLM service definition installed has no service coefficients defined, defaults (CPU=10, SRB=10, IOC=5, MSO=0) are used, or when the service definition specifies other coefficients than the recommended ones, the V2.5 systems would use other coefficients than the pre-V2.5 systems.
 - Of course, this should not happen when the customer properly prepared the V2.5 migration. But it could happen, so we must deal with it...
 - Thus, coexistence logic is available which checks for a mismatch of the service coefficients and internally applies identical values.

Adapt Your Multiperiod Durations

 If the customer did not prepare his WLM service definition for the removal of the service coefficients, following steps should be taken because the calculation of DURATION for multi-period service classes changes:

Before z/OS V2.5 the DURATION is calculated as:

```
OLD DUR = (CPU * CPU service units) + (SRB * SRB service units) + (IOC * I/O service units) + (MSO * storage service units)
```

where CPU, SRB, IOC, and MSO are the installation defined WLM service coefficients. With CPU=1, SRB=1, IOC=0, MSO=0 the new duration is simply calculated as:

```
NEW DUR = CPU service units + SRB service units
```

Converting OLD DUR into NEW DUR is calculated as:

```
NEW DUR = OLD DUR / Total service units * ( CPU service units / CPU + SRB service units / SRB
```

where CPU and SRB are the old service coefficients and Total service units is the sum of CPU, SRB, IOC, and MSO service units. CPU, SRB, and Total service unit values should be collected for a peak period interval from, for example, the RMF Postprocessor Workload Activity (WLMGL) report.

```
EXAMPLE:

OLD DUR = 90000

- Old default service coefficients used (CPU=10, SRB=10)

- Values from RMF WLMGL peak period interval:

TOTAL_SU = 6218K

CPU_SU = 5877K

SRB_SU = 95667
```

NEW DUR = 90000/6218K * (5877K/10 + 95667/10) = 8645

Copyright© by SHARE Association Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 license. http://creativecommons.org/licenses/by-nc-nd/3.0/

System Recovery Boost

Introduction

- Part of the IBM Z Instant Recovery offering
- Minimizes impact and duration of downtimes
- No additional MSU consumption or IBM software licensing costs

"Because planned downtime is costly, some enterprises try to avoid it for needed bug fixes and security updates... [this] results in a greater risk of unplanned downtime, creating a downtime cycle."

Forrester Consulting, 2019

Anatomy of a planned outage

Technical Overview

Speed Boost

- Subcapacity CPC Boost
- Upgrade to full capacity on activate
- Affects only active LPAR

zIIP Boost

- Enables zIIPs to process nonsystem CP workload
- Activates additional zIIPs to the LPAR
- May affect LPARs on same CPC

Technical Overview

- Intelligent Resource Director (IRD) weight management is deactivated
- (Tenant) Resource Group Capping and Discretionary Goal Management (DGM) are deactivated
- Routing changes
 - Routing recommendations change according to boosted capacity (IPL only)
 - Deactivated (Shutdown only)

How to benefit from System Recovery Boost

- IBM z15
- IEASYSxx **BOOST** parameter BOOST=SYSTEM | ZIIP | SPEED | NONE
- **HIPERDISPATCH=YES** (zIIP Boost only)

with at least 1 shared zIIP

IPL Boost Processing

SYS1 SHASP100 IEABE ON STCINROR
SYS1 SHASP373 IEABE STARTED
SYS1 IEA678I All IPL boosts have ended
SYS1 SHASP395 IEABE ENDED - RC=0000
SYS1 IWM063I WLM POLICY WAS REFRESHED.
SYS1 IWM064I BOOST ENDED.

- Automatically started during IPL
 - Signaled via console message and ENF signal (84)
 - Ends current and starts new SMF interval

SYS1 IEA675I IPL ZIIP boost is active with 0 transient ZIIP cores

- 2. Boost Processing Phase
 - Possible offline zIIPs are configured online
 - Non-system work is balanced between zIIPs and CPs (zIIP Boost)
 - CPs are configured full capacity (Speed Boost)
 - IRD weight management, (T)RG capping and DGM are deactivated
 - Routing weights changes until 3 min before end (configurable via OPT RTBELeadTime)
- 3. Boost End (after 60 min or PROC IEABE)
 - Signaled via console message and ENF signal (84)
 - Ends current and starts new SMF interval
 - Return to normal system behavior

Shutdown Boost Processing

Started via PROC IEASDBS

•

2. Boost Processing Phase

```
SYS1 $HASP100 IEASDBS ON STCINRDR
SYS1 $HASP373 IEASDBS STARTED
SYS1 IEA681I Shutdown speed boost is active
SYS1 IEA675I Shutdown zIIP boost is active with 0 transient zIIP cores
SYS1 $HASP395 IEASDBS ENDED - RC=0000
SYS1 IWM063I WLM POLICY WAS REFRESHED.
SYS1 IWM064I BOOST ACTIVATED.
```

Boost End (after 30 min or PROC IEABE)

```
SYS1 SHASP100 IEABE ON STCINROR
SYS1 SHASP373 IEABE STARTED
SYS1 IEA678I All shutdown boosts have ended
SYS1 SHASP395 IEABE ENDED - RC=0000
SYS1 IWM063I WLM POLICY WAS REFRESHED.
SYS1 IWM064I BOOST ENDED.
```

CPC illustration

Capping

Capping Type	CP Type	Interactions with Speed Boost	Interactions with zIIP Boost
LPAR Absolute	СР	Cap Respected	N/A
LPAR Absolute	zIIP	N/A	Cap Ignored
Group Absolute	СР	Cap Respected	N/A
Group Absolute	zIIP	N/A	Cap Ignored
Initial	СР	Cap Respected	N/A
Initial	zIIP	N/A	Cap Ignored
Defined Capacity	CP	Cap Respected	Work running on zIIPs due to blurring doesn't count toward CP Cap; CP Cap respected
Defined Capacity	zIIP	N/A	N/A
LPAR Group Capacity	СР	Cap Respected	Work running on zIIPs due to blurring doesn't count toward CP Cap; CP Cap respected
LPAR Group Capacity	zIIP	N/A	N/A
Resource Group/Tenant Resource Group	СР	Caps Ignored	Caps Ignored
Resource Group/Tenant Resource Group	zIIP	N/A	Caps Ignored

Performance Considerations

- Two main phases during system startup
 - Single processor phase
 - Switch to multiprocessor processing
- Speed Boost does not affect other LPARs
- zIIP Boost can affect other LPARs
 Considerations regarding weight adjustment needed

Considerations for Automation

- Any automation product, IBM System Automation or vendor provided, can be used
- Possible actions for System Recovery Boost
 - Call PROC IEASDBS
 - Increasing/Decreasing the level of parallelism
 - Activation/Deactivation of temporary capacity record
 - Dynamic LPAR weight modification
 - General automation on issued z/OS messages

Messages

- IRA867I HIPERDISPATCH=NO CURRENTLY NOT ALLOWED
- IWM063I changed to WLM POLICY WAS REFRESHED
- IWM064I additions
 - IWM064I Boost Activated
 - IWM064I Boost Ended

Monitoring

WLM

RMF

Postprocessor CPU Activity and

• IWMWSYSQ WLM service SYSI_BoostInfo Workload Activity reports (current LPAR)

QVS Sysevent
 QVSBoostInfo

 Monitor II CPC and Postprocessor Partition Data reports (LPARs in CPC)

RMF Postprocessor CPU Activity Report

					CPU	A C T I	V I T Y	
CPU		CAPACITY :		ON V2R4 F QUENCE CO	DE 0000	TIME	08/07/201 02.02.16 2B0E8	9 INTERVAL 12.43. CYCLE 1.000 SEC
MODEL H/W MODEL	634 T01 CHA	NGE REASON=1		PERDISPAT OST TYPE:		BOOST (CLASS=IPL	
CPU			0				LOG PR	OCI/O INTERRUPTS
NUM TYPE	ONLINE	LPAR BUSY	MVS BUSY	PARKED			OST TYPE	The boost type that was active
0 CP 1 CP	100.00 100.00	14.89	14.82 6.80	0.00 0.00	100.00 100.00	14 BO	J31 TIFE	• • • • • • • • • • • • • • • • • • • •
	100.00	6.83 8.90	8.84	0.00	100.00	8 1101	\	at the end of the interval
2 CP 3 CP	100.00	5.62	5.60	0.00	100.00	NOI		Boost is inactive
4 CP	100.00	4.54	4.54	0.00	100.00	ZIIP	•	zIIP capacity boost
5 CP	100.00	2.47	2.47	0.00	100.00	2 SPE	ED	Speed boost
TOTAL/AVER		7.21	7.18		100.00	🛮 ALL	_	zIIP capacity and speed boost are both active
6 IIP	100.00	7.49	7.48	0.00	100.00	7		, , ,
7 IIP 8 IIP	100.00	3.30	3.30	0.00	100.00	3		
8 IIP 9 IIP	100.00 100.00	0.00 0.00		100.00 100.00	100.00 100.00	BO	001 CL AGG.	Indicates whether boost was active during IPL or
A IIP	100.00	0.00		100.00	100.00	_		· · · · · · · · · · · · · · · · · · ·
B IIP	100.00	0.00		100.00	100.00	Snu	taown. NONE	E is displayed if boost was inactive.
C IIP	100.00	0.00		100.00	100.00	0		
D IIP	100.00	0.00		100.00	100.00	0		
E IIP	100.00	0.00		100.00	100.00	0.00		LOW
F IIP	100.00	0.00		100.00	100.00	0.00		LOW
TOTAL/AVER		1.08 READING ANAL	5.39		100.00	1.08	166.7	
CPU TYPE	MODE	MAX CF	.YS1S CF	AVG TD				
CP	1	1.000	1.000	1.000				
ΙIP	ī	1.000	1.000	1.000				
								_

RMF Postprocessor Partition Data Report

RMF Postprocessor Workload Activity Report


```
ACTIVITY
                                                    WORKLOAD
        z/0S V2R4
                                                               DATE 08/07/2019
                                  SYSPLEX SVPLEX7
                                                                                           INTERVAL 14.59.980
                                  RPT VERSION V2R4 RMF
                                                               TIME 03.30.00
                                             POLICY ACTIVATION DATE/TIME 05/14/2019 10.14.45
                                                          - SERVICE POLICY PAGE -
                                                                    BOOST
                                                                               Indicates whether boost was inactive or active
SERVICE DEFINITION: SYSTEST BASEPOL from ...DEF.IOSPLEX
                                                                               during IPL or Shutdown.
 INSTALL DATE: 05/14/2019 10.14.44 INSTALLED BY: SETUP
                                                                               If active, the boost type is shown
                     BASEPOL from ...DEF.IOSPLEX
                                                                               zIIP capacity boost
 DISCRETIONARY GOAL MANAGEMENT: YES
                                                                    S
                                                                               Speed boost
 DYNAMIC ALIAS MANAGEMENT: YES
                                                                               zIIP capacity and speed boost were both active
 I/O PRIORITY MANAGEMENT: YES
SYSTEMS
 ---ID--- OPT SU/SEC CAP% --TIME--
                                                     --BOOST--
                 53156.1 171 03.30.00
                                          00.14.59
 R75
                                                     A Shutdown
```

RMF Monitor III CPC Report Postprocessor Workload Activity Report

	Command ===>	<u> </u>		3131	"	V2I	114 010 (Capacity			Scroll =	1 of 23 ==> CSR
	Samples: 60		System	: F	375	5	Date: 08/	07/19	Time: 02.	04.00	Range:	60 Se
	Partition: CPC Capacity	R75	3068				odel 634 % of Max		4h 0	1	Boost:	All
				1 11		-	pping %:	0.0	4h Avg: 4h Max:	40	Group:	N/A
BOOST	The boost type that MINTIME	it was ac	tive at the	e end	d of		IIP:	100	AbsMSUCa		Limit:	N/A
N zIIP	Boost was inactive zIIP capacity boos						Proc	Logical	Util %	- Phy	sical Ut	il % -
Speed	Speed boost	.•					Num	Effect	Total	LPAR	Effect	Total
AII	zIIP capacity and s	speed bo	ost were	both	act	tive	132			0.5	20.5	21.0
+ hidden fi	elds						6.0	5.7	6.0	0.0	1.0	1.1
							6.0	0.0	0.0	0.0	0.0	0.0
							20.0	8.3	8.4	0.0	4.9	4.9
							20.0	8.3	8.4	0.1	4.9	4.9
	S58	0	151	N		Н	50.0	3.3	3.4	0.1	4.9	5.0
	S59	0	149	N	N	N	30.0	5.5	5.5	0.1	4.8	4.9
	PHYSICAL									0.3		0.3
	*ICF						10.0			0.0	100	100
	XACFT87			N	N	N	1.0	100	100	0.0	10.0	10.0
	X5CFT87			N	N	N	6.0	100	100	0.0	60.0	60.0

Enablement of System Recovery Boost for IBM Z

OA57849 makes sure that all required SRB APARs are installed

	z/OS V2.4	z/OS V2.3
z/OS	OA57849	OA57849
RMF	OA56683	OA56683
СРМ	OA57552	OA57552
CIM	OA57478	OA57478

Wrap-Up

- Activated by default with z15
- Two Boost periods per IPL (IPL 60 min, Shutdown 30 min)
- Two Boost types (Speed and zIIP)
- Shutdown Boost has permanent changes for WLM Routing
- No additional costs (4HRA is not increased)
- Understanding and adjusting IPL and Shutdown process can dramatically increase Boost benefit

IBM Hardware Announcement 120-050 – August 4th 2020

IBM z15 Model T01 and IBM z15 Model T02 are enhanced to provide increased security, resiliency, performance, and flexibility for mission-critical workloads in a hybrid cloud

• ...

 Enhanced System Recovery Boost capabilities enable clients to leverage a new class of boost that can be applied to a range of sysplex recovery processes, including sysplex partitioning, CF structure recovery, CF data sharing member recovery, and IBM HyperSwap® recovery

• ...

System Recovery Boost Stage 2

Recovery Process Boost is a boost class that can help accelerate system recovery.

Recovery Process boost periods are restricted to 5 minute durations and are limited to 30 total minutes per partition per 24 hour period.

Recovery Process boost periods are started and ended solely by z/OS operating system controlled events. The applicable events for Recovery Process boosts are limited to:

- HyperSwap™
- Coupling Facility data-sharing member recovery
- Coupling Facility structure recovery
- Sysplex partitioning

System Recovery Boost Stage 2 — WLM Support

- In contrast to shutdown boost, the boosted system will NOT be eliminated from the sysplex routing recommendation
- In contrast to startup boost, WLM's sysplex routing weight calculation will NOT be honor any additional capacity on the boosted system, and thus does not route additional work to the boosted system
- During RP boost, the algorithms of the sysplex routing services will handle the boosted system like not being boosted. This prevents additional work from other systems being attracted for a short period of time to the boosting system, while the recovery processing takes place – allowing the extra capacity to be applied meaningfully to recovery acceleration, not handling more workload

Further information

- System Recovery Boost for the IBM z15 Whitepaper
 http://ibm.biz/z15SRBWhitePaper
- System Recovery Boost
 http://publibz.boulder.ibm.com/zoslib/pdf/izsb100 v2r4.pdf
- System z Mean Time to Recovery Best Practices http://www.redbooks.ibm.com/redbooks/pdfs/sg247816.pdf
- Introducing IBM Z System Recovery Boost
 http://www.redbooks.ibm.com/redpieces/pdfs/redp5563.pdf

Other Enhancements and **Important Information**

OA558303 V2R4 / OA59890 V2R3 SRM ENHANCEMENT TO HANDLE DIAG 204 BUSY CONDITION

- In certain configurations, such as a low weighted LPAR or when an LPAR is being capped, it may take a considerable amount of time for PR/SM to complete a configuration change.
- This might delay SRM's request to PR/SM to obtain logical CPU utilization because PR/SM is busy.
- SRM is enhanced to handle PR/SM busy conditions when obtaining information on logical CPU utilization.

z/OS V2R5 SRM Contention Relief OA61240

- Timed algorithms are processed as an extension of any sysevent whenever they
 are due. In case the sysevent triggering the algorithm is running on a vertical
 low processor, the algorithm might not be executed and the SRM lock is held
 until the processor is dispatched again.
- SRM timed algorithms are only requested during a timer pop sysevent. This
 prevents SRM locks being held by vertical low processors.
- Added check if running under timer pop when requesting timed algorithms and skip the execution of algorithms that are due as an extension of a non-timer-DIE Sysevent
- No SRM locks are held due to algorithms requested that can not be executed.
 This leads to an overall better performance of the system.

XML Format WLM Service Definitions Recommendation

- Avoids particular problems in contrast to ISPF tables
- Since z/OS V2.3 XML-format is the default for "Save" and "Save as"
- Performance improvements in z/OS V2.4
- Recommendation:
 Use the XML-format for your WLM service definition data sets

z/OS Workload Management More Information

- z/OS WLM Homepage: https://www.ibm.com/it-infrastructure/z/zos-workload-management
- z/OS WLM GitHub: https://github.com/IBM/IBM-Z-zOS/tree/master/zOS-WLM
- z/OS MVS documentation
 - z/OS MVS Planning: Workload Management: https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc342662/\$file/ieaw100 v2r3.pdf
 - z/OS MVS Programming: Workload Management Services: https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc342663/\$file/ieaw200_v2r3.pdf
- IBM Redbooks publications:
 - System Programmer's Guide to: Workload Manager: http://www.redbooks.ibm.com/abstracts/sg246472.html?Open
 - Effective zSeries Performance Monitoring Using RMF: http://www.redbooks.ibm.com/abstracts/sg246645.html?Open
 - ABCs of z/OS System Programming Volume 12 http://www.redbooks.ibm.com/abstracts/sg247621.html?Open

Your feedback is important!

Submit a session evaluation for each session you attend:

www.share.org/evaluation

