問題 **2.7.** 正方行列 A_1, A_2 とベクトル $\vec{d_1}, \vec{d_2}$ に対し,アフィン変換 f, q を

$$f(\vec{p}) = A_1 \vec{p} + \vec{d_1}, \qquad g(\vec{p}) = A_2 \vec{p} + \vec{d_2}$$

と定義する.このとき,合成変換 $f\circ g$ および $g\circ f$ を $A_1,A_2,\vec{d_1},\vec{d_2}$ を用いて表しなさい*1.

問題 **2.8.** 正方行列 A とベクトル \vec{d} を用いて

$$f(\vec{p}) = A\vec{p} + \vec{d}$$

と定義されるアフィン変換 f が全単射のとき、f の逆変換 f^{-1} を A, \vec{d} を用いて表しなさい*2

問題 2.9. 行列

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \rho_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

を表現行列とする線形変換をそれぞれ f_{θ} , g_{θ} , h とする. つまり,

$$f_{\theta}(\vec{p}) = R_{\theta}\vec{p}, \quad g_{\theta}(\vec{p}) = \rho_{\theta}\vec{p}, \quad h(\vec{p}) = B\vec{p}.$$

このとき、次の間に答えなさい.

- (1) $f_{\theta} \circ f_{\omega} = f_{\theta+\omega}$ を示しなさい.
- (2) $g_{\theta} \circ g_{\varphi} = f_{\theta-\varphi}$ を示しなさい*3.
- (3) $f_{\theta}^{-1} = f_{-\theta}$ を示しなさい.
- (4) $g_{\theta}^{-1} = g_{\theta}$ を示しなさい.
- (5) h はある直線に関する鏡映である。どういう直線か説明しなさい* 4 .
- (6) $f_{\theta} = q_{\theta} \circ h$ を示しなさい.

4

2.3

^{*1 5} 月 21 日のノートを参考にせよ

^{*2 5} 月 21 日のノートを参考にせよ

^{*3} 第2回小テストの問題4を変換の言葉で言い替えただけ.

^{*4 5} 月 21 日の授業で説明しました。