

VAE Beginner Guide

I am new to Python and trying to learn about variational autoencoders.

Because I am new, I need a lot of handholding. Can you tell me: 1) where do I install Python and all the necessary things? (I have a Macbook Pro), 2) how do I check if my Python installation works, 3) how to write a simple VAE and try it on the MNIST digits dataset, 4) how to "demonstrate the VAE works" (maybe through visualization), and lastly, what exactly is a VAE mathematically?

No problem! I'll guide you step by step. Since you're new to Python and VAEs, I'll break things down into small, manageable steps.

Step 1: Install Python and Necessary Packages

Since you're on a **MacBook Pro**, you likely already have Python installed, but it's best to install a dedicated environment for scientific computing.

1.1 Install Python with Miniconda (Recommended)

Using Miniconda makes package management easier:

- 1. Download Miniconda for macOS (Apple Silicon or Intel, depending on your MacBook)
 - o Miniconda Download
- 2. Install it by following the prompts.
- 3. Open **Terminal** and create a new Python environment:

```
bash
`conda create -n vae_env python=3.9
```

This creates an isolated Python environment named `vae env` with Python 3.9.

4. Activate the environment:

```
conda activate vae_env
```

5. Install required libraries:


```
bash
`pip install torch torchvision matplotlib numpy
```

Step 2: Check if Python Works

Once installed, check that Python and PyTorch work properly.

2.1 Test Python Installation

- 1. Open Terminal.
- 2. Activate your environment:

3. Open Python by typing:

```
bash
    python
```

4. Inside the Python shell, test Python and PyTorch:

```
python
   import torch
print(torch.__version__)
```

If you see something like `2.1.0` (or another version), PyTorch is installed correctly.

Step 3: Write a Simple Variational Autoencoder (VAE)

We will implement a VAE to learn a compressed representation of the MNIST digits dataset.

3.1 What is a VAE?

A **VAE** (Variational Autoencoder) is a type of neural network that learns a low-dimensional representation of data using probabilistic modeling.

Mathematically, a VAE consists of:

- **Encoder:** Maps input data x to a latent distribution q(z|x).
- Latent Space: A space where encoded data points are represented as distributions.
- **Decoder:** Samples from z and reconstructs the original data.
- Loss Function: Uses Reconstruction Loss (MSE/BCE) + KL Divergence Loss.

3.2 Python Code for a Simple VAE

I'll provide the full code, and then we will discuss how to visualize the results.

VAE Implementation

Let's create a simple **VAE for MNIST**.

```
python
`import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import matplotlib.pyplot as plt
# Load MNIST dataset
transform = transforms.ToTensor()
train_dataset = datasets.MNIST(root="./data", train=True, transform=transform, download=True)
train_loader = data.DataLoader(train_dataset, batch_size=128, shuffle=True)
# Define VAE
class VAE(nn.Module):
         __init__(self, latent_dim=2):
super(VAE, self).__init__()
     def
          # Encoder
          self.fc1 = nn.Linear(28*28, 400)
          self.fc_mu = nn.Linear(400, latent_dim) # Mean of latent space
self.fc_logvar = nn.Linear(400, latent_dim) # Log variance
          # Decoder
          self.fc2 = nn.Linear(latent_dim, 400)
          self.fc3 = nn.Linear(400, 28*28)
     def encode(self, x):
          h = torch.relu(self.fc1(x))
         mu = self.fc_mu(h)
          logvar = self.fc_logvar(h)
          return mu, logvar
     def reparameterize(self, mu, logvar):
    std = torch.exp(0.5 * logvar)
          eps = torch.randn like(std)
          return mu + eps * std # Sample from distribution
    def decode(self, z):
   h = torch.relu(self.fc2(z))
          return torch.sigmoid(self.fc3(h))
     def forward(self, x):
          mu, logvar = self.encode(x.view(-1, 28*28))
          z = self.reparameterize(mu, logvar)
          return self.decode(z), mu, logvar
# Loss Function
def loss_function(recon_x, x, mu, logvar):
    recon_loss = nn.functional.binary_cross_entropy(recon_x, x.view(-1, 28*28), reduction='sum')
     kl loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
     return recon_loss + kl_loss
# Train VAE
vae = VAE()
optimizer = optim.Adam(vae.parameters(), lr=le-3)
def train():
     vae.train()
     for epoch in range(10): # Train for 10 epochs
          total loss = 0
```

Step 4: Demonstrating That the VAE Works

There are two good ways to visualize that the VAE works:

- 1. **Reconstructed Digits:** Compare input digits with their reconstructions.
- 2. **Latent Space Visualization:** Plot the 2D latent space where digits are encoded.

4.1 Visualize Reconstructed Digits

```
def visualize_reconstruction():
    vae.eval()
    with torch.no_grad():
        test_data, _ = next(iter(train_loader))
        test_data = test_data[:10].view(-1, 28*28) # Take 10 samples
        reconstructed, _, _ = vae(test_data)

    fig, axes = plt.subplots(2, 10, figsize=(10, 2))
    for i in range(10):
        axes[0, i].imshow(test_data[i].view(28, 28).cpu(), cmap='gray')
        axes[1, i].imshow(reconstructed[i].view(28, 28).cpu(), cmap='gray')
    axes[0, 0].set_ylabel("Original", fontsize=12)
    axes[1, 0].set_ylabel("Reconstructed", fontsize=12)
    plt.show()

visualize_reconstruction()
```

4.2 Visualize the Latent Space

```
python

`import numpy as np

def visualize_latent_space():
    vae.eval()
    latents, labels = [], []
    with torch.no_grad():
        for data, label in train_loader:
            data = data.view(-1, 28*28)
            mu, _ = vae.encode(data)
            latents.append(mu.cpu().numpy())
            labels.append(label.cpu().numpy())

        latents = np.concatenate(latents, axis=0)
        labels = np.concatenate(labels, axis=0)

    plt.figure(figsize=(8, 6))
    plt.scatter(latents[:, 0], latents[:, 1], c=labels, cmap='tabl0', alpha=0.7)
    plt.colorbar()
```

```
plt.xlabel("Latent Dimension 1")
  plt.ylabel("Latent Dimension 2")
  plt.title("VAE Latent Space Representation")
  plt.show()

visualize_latent_space()
```

Step 5: What is a VAE Mathematically?

A VAE is a probabilistic generative model that learns to encode data into a distribution.

Mathematically:

• It optimizes the **ELBO** (Evidence Lower Bound):

$$\mathcal{L} = \mathbb{E}_{q(z|x)}[\log p(x|z)] - D_{KL}(q(z|x)||p(z))$$

where:

- $\circ p(x|z)$ is the decoder (likelihood term).
- $\circ q(z|x)$ is the encoder (approximate posterior).
- ullet o p(z) is the prior (usually standard normal $\mathcal{N}(0,I)$).
- $\circ \ D_{KL}$ is the **KL divergence** ensuring the latent space follows a normal distribution.

Let me know if any part needs more explanation! 🖋

How do I run Python? Is there a good interface to start using as a beginner?

Since you're new to Python, I'll guide you through the easiest ways to run Python and code interactively.

1. Running Python via the Terminal

After installing Python (via Miniconda), you can run Python directly in the Terminal.

1.1 Open Python in the Terminal

- 1. Open **Terminal** on your MacBook.
- 2. Activate the Conda environment:

```
conda activate vae_env
```

3. Start Python by typing:

```
bash
`python
```

You should see something like:

```
`Python 3.9.XX (default, ...)
Type "help", "copyright", "credits" or "license" for more information.
>>>
```

4. You can now type Python commands. For example:

```
python
    print("Hello, Python!")
```

To exit Python, type:

2. Using Jupyter Notebook (Recommended for Beginners)

Jupyter Notebook is one of the best interfaces for Python beginners. It allows you to write and run code in chunks interactively.

2.1 Install Jupyter Notebook

If you haven't installed it yet, do so with:

```
pip install notebook
```

2.2 Start Jupyter Notebook

Run:

```
bash
`jupyter notebook
```

This will open a **web-based interface** in your browser, where you can write and run Python code interactively.

How to Use Jupyter Notebook:

- Click **New** → **Python 3** to open a new notebook.
- Type a command like:

```
python
    print("Hello, Jupyter!")
```

• Press Shift + Enter to run the code.

3. Using VS Code (Best for Long-Term Use)

For a more advanced editor, you can use **VS Code**.

3.1 Install VS Code

- 1. Download it from https://code.visualstudio.com/.
- 2. Install the **Python extension** in VS Code.

3.2 Run Python in VS Code

- 1. Open VS Code.
- 2. Create a new file, e.g., `vae_test.py`.
- 3. Write Python code:

```
python
    print("Hello, VS Code!")
```

4. Press **Run** (top-right play button) or open a terminal and type:

```
python vae_test.py
```

Which Option Should You Choose?

- **Jupyter Notebook** → Best for beginners, interactive coding, and testing small parts of code.
- **VS Code** → Best for writing scripts and long-term Python development.
- **Terminal (REPL mode)** → Quick testing of Python commands.

Let me know which one you prefer, and I can guide you through setup! 🖋

Can you explain how this code works?


```
`class VAE(nn.Module):
    def __init__(self, latent_dim=2):
    super(VAE, self).__init__()
         # Encoder
         self.fc1 = nn.Linear(28*28, 400)
         self.fc_mu = nn.Linear(400, latent_dim) # Mean of latent space
         self.fc logvar = nn.Linear(400, latent dim) # Log variance
         self.fc2 = nn.Linear(latent_dim, 400)
         self.fc3 = nn.Linear(400, 28*28)
    def encode(self, x):
         h = torch.relu(self.fc1(x))
        mu = self.fc mu(h)
         logvar = self.fc_logvar(h)
         return mu, logvar
    def reparameterize(self, mu, logvar):
    std = torch.exp(0.5 * logvar)
         eps = torch.randn_like(std)
         return mu + eps * std # Sample from distribution
    def decode(self, z):
    h = torch.relu(self.fc2(z))
         return torch.sigmoid(self.fc3(h))
    def forward(self, x):
    mu, logvar = self.encode(x.view(-1, 28*28))
         z = self.reparameterize(mu, logvar)
         return self.decode(z), mu, logvar`
```


Understanding the Variational Autoencoder (VAE) Code

This code defines a **Variational Autoencoder (VAE)** using PyTorch's `nn.Module`. Let's break it down step by step.

1. Class Definition and Initialization (` init `)

```
class VAE(nn.Module):
    def __init__(self, latent_dim=2):
        super(VAE, self).__init__()
```

- This defines the `VAE` class, which inherits from `nn.Module` (the base class for PyTorch models).
- `latent dim=2`: The latent space dimension is set to 2 (for visualization purposes).
- `super(VAE, self).__init__()`: Calls the parent class(`nn.Module`) constructor.

1.1 Encoder Layers

```
python

`# Encoder
self.fc1 = nn.Linear(28*28, 400)
self.fc_mu = nn.Linear(400, latent_dim) # Mean of latent space
self.fc_logvar = nn.Linear(400, latent_dim) # Log variance
```


- The **encoder** compresses an input image (size **28×28 = 784**) into a **latent distribution**.
- `self.fc1`: First fully connected (FC) layer that maps $784 \rightarrow 400$ (hidden layer).
- `self.fc_mu`: Second FC layer that outputs **mean** (μ) of the latent distribution (400 \rightarrow latent_dim).
- `self.fc_logvar`: Second FC layer that outputs log variance (log σ^2) of the latent distribution (400 \rightarrow latent_dim).

1.2 Decoder Layers

```
python

`# Decoder
self.fc2 = nn.Linear(latent_dim, 400)
self.fc3 = nn.Linear(400, 28*28)
```

- The **decoder** reconstructs an image from the latent space.
- `self.fc2`: Maps latent space (latent_dim → 400).
- `self.fc3`: Maps $400 \rightarrow 784$ (28×28) to reconstruct the original image.

2. Encoder Function (`encode`)

```
python

`def encode(self, x):
    h = torch.relu(self.fc1(x))
    mu = self.fc_mu(h)
    logvar = self.fc_logvar(h)
    return mu, logvar
```

- Takes an input image `x` and encodes it into a latent distribution:
 - Passes `x` through `fc1`, applying the ReLU activation function.
 - \circ Computes the mean μ and log variance $\log(\sigma^2)$.
- Returns **mu** (**mean**) and **logvar** (**log variance**) of the latent distribution.

3. Reparameterization Trick (`reparameterize`)

```
python

`def reparameterize(self, mu, logvar):
    std = torch.exp(0.5 * logvar)
    eps = torch.randn_like(std)
    return mu + eps * std # Sample from distribution
`
```

This implements the **reparameterization trick**, a key concept in VAEs:

- `std = exp(0.5 * logvar)`: Convert `logvar` into standard deviation (σ).
- `eps = torch.randn_like(std)`: Sample random noise from a standard normal distribution.
- Return a sample from q(z|x):

$$z = \mu + \sigma \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

4. Decoder Function (`decode`)

```
python

`def decode(self, z):
    h = torch.relu(self.fc2(z))
    return torch.sigmoid(self.fc3(h))
```

- The **decoder takes a latent vector** `z` and reconstructs an image.
- Uses ReLU and Sigmoid activations:

```
\circ `fc2(z)` → Hidden layer.
```

- \circ `fc3(h)` \rightarrow Maps to **784 pixels**.
- \circ `sigmoid(fc3(h))` \rightarrow Ensures output values are between **0** and **1** (valid grayscale pixels).

5. Forward Pass (`forward`)

```
def forward(self, x):
    mu, logvar = self.encode(x.view(-1, 28*28)) # Encode image
    z = self.reparameterize(mu, logvar) # Sample latent vector
    return self.decode(z), mu, logvar # Return reconstructed image
```

- Encodes the input into `mu` and `logvar`.
- Samples `z` using reparameterization.
- Decodes `z` back into an image.

6. How the VAE Works Together

Step-by-step Execution

- 1. Input image (28×28) \rightarrow **Flatten into 784** \rightarrow Pass through `encode()` to get μ , $\log(\sigma^2)$.
- 2. Sample **latent vector** `z` using `reparameterize()`.
- 3. Decode `z` back into a reconstructed image.
- 4. Loss function (not shown here) combines:
 - **Reconstruction loss** (measuring how well the decoder reconstructs input).
 - **KL divergence loss** (ensuring latent space follows a normal distribution).

7. Summary

- **Encoder:** Maps input to latent distribution $(\mu, \log \sigma^2)$.
- Reparameterization Trick: Samples `z = \mu + \sigma \cdot \epsilon`.
- **Decoder:** Maps `z` back to an image.
- Latent Space: Encourages meaningful compressed representations.

• Loss Function: Combines reconstruction loss + KL divergence.

Let me know if you need more details! 🖋

This is great!

What about this?

`# Loss Function
def loss_function(recon_x, x, mu, logvar):
 recon_loss = nn.functional.binary_cross_entropy(recon_x, x.view(-1, 28*28), reduction='sum')
 kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())

Understanding the VAE Loss Function

return recon loss + kl loss

The function you posted is the loss function used to train the **Variational Autoencoder (VAE)**. It consists of two components:

- 1. **Reconstruction Loss** (Binary Cross-Entropy Loss)
 - Ensures that the decoded output is similar to the original input.
- 2. KL Divergence Loss
 - \circ Encourages the latent space to follow a standard normal distribution ($\mathcal{N}(0,I)$).

Let's break it down.

1. Code Breakdown

```
def loss_function(recon_x, x, mu, logvar):
    recon_loss = nn.functional.binary_cross_entropy(recon_x, x.view(-1, 28*28), reduction='sum')
    kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return recon_loss + kl_loss
```

1.1 Reconstruction Loss

```
python
   recon_loss = nn.functional.binary_cross_entropy(recon_x, x.view(-1, 28*28), reduction='sum')
```

- `recon_x`: The reconstructed output from the VAE.
- `x.view(-1, 28*28)`: Reshapes the original image into a 1D vector.
- `nn.functional.binary_cross_entropy(...)`: Computes the binary cross-entropy (BCE) between the original and reconstructed image.
- `reduction='sum'`: Sums the loss over all pixels in the batch.

Why Use Binary Cross-Entropy?

- Since we applied `sigmoid()` to the decoder output, pixel values are between **0** and **1**, making **BCE** loss a good choice.
- If using **Mean Squared Error (MSE)**, it assumes Gaussian noise, which may not work well in generative models.

Mathematically, **BCE loss** is:

$$\mathcal{L}_{ ext{recon}} = -\sum x \log(\hat{x}) + (1-x) \log(1-\hat{x})$$

where x is the true pixel value and \hat{x} is the predicted pixel value.

1.2 KL Divergence Loss

```
python
    kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
```

This term **regularizes the latent space** by making the learned distribution close to a **standard normal distribution** ($\mathcal{N}(0,I)$).

Mathematical Derivation

The KL Divergence between the learned latent distribution q(z|x) and the prior p(z) is:

$$D_{KL}(q(z|x)||p(z)) = rac{1}{2}\sum (1+\log\sigma^2-\mu^2-\sigma^2)$$

where:

- μ is the latent mean,
- $\sigma^2 = \exp(\mathrm{logvar})$ is the latent variance.

In PyTorch:

```
python
    `-0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
```

- `mu.pow(2)`: Computes μ^2 .
- `logvar.exp()`: Computes σ^2 by exponentiating `logvar` (log variance).
- `1 + logvar mu.pow(2) logvar.exp()`: Computes the KL divergence term.
- `torch.sum(...)`: Sums over all elements.

Why KL Divergence?

- Encourages the **latent space** to be structured.
- Ensures that each latent variable contributes meaningfully to the encoded information.

2. Final Loss

```
python
   return recon_loss + kl_loss
```

The total loss function is:

$$\mathcal{L} = \mathcal{L}_{ ext{recon}} + D_{KL}(q(z|x)||p(z))$$

- Reconstruction loss ensures that the output is close to the input.
- **KL loss** ensures that the latent space follows a normal distribution.

3. Summary

Loss Term	Purpose	Equation
Reconstruction Loss	Makes the output similar to the input image	$-\sum x \log(\hat{x}) + (1-x) \log(1-\hat{x})$
KL Divergence Loss	Regularizes the latent space to follow $\mathcal{N}(0,I)$	$-rac{1}{2}\sum(1+\log\sigma^2-\mu^2-\sigma^2)$

- If KL loss is too strong → The latent space collapses, and the VAE learns nothing.
- **If KL loss is too weak** → The VAE behaves like a regular autoencoder (not variational).

Would you like help modifying the loss function or testing different values? 🖋


```
This is great.
In the next part of the code:

'def train():
    vae.train()
    for epoch in range(100):  # Train for 10 epochs
        total_loss = 0
        for batch_idx, (data, _) in enumerate(train_loader):
            data = data.view(-1, 28*28)
            optimizer.zero_grad()
            recon_data, mu, logvar = vae(data)
            loss = loss_function(recon_data, data, mu, logvar)
            loss.backward()
            optimizer.step()
            total_loss += loss.item()
            print(f"Epoch {epoch+1}, Loss: {total_loss / len(train_loader.dataset)}")`
```

What is the data loader and batch? What is this doing?

Understanding the Training Loop in the VAE Code

This function trains the Variational Autoencoder (VAE). Let's break it down step by step.

1. Data Loader and Batches

- `train_loader`: A PyTorch DataLoader object that loads mini-batches of images from the MNIST dataset.
- `batch idx`: The index of the current batch.
- `data`: A batch of images (as tensors) from the dataset.
- ` `: The labels (which we ignore because VAEs are **unsupervised**).

1.1 What is a DataLoader?

A `DataLoader` helps efficiently load data in **mini-batches** instead of loading the entire dataset into memory at once.

Example:

- Loads the MNIST dataset.
- `batch size=128` → Each batch contains 128 images.
- `shuffle=True` → Randomizes the data order in each epoch.

Why Use Mini-Batches?

- **Faster training**: Instead of updating model weights after each image, we update them after **128 images**.
- **Better generalization**: Reduces overfitting by training on different mini-batches each time.
- **Efficient memory usage**: Training on the entire dataset at once would require too much RAM.

2. Step-by-Step Training Process

```
python

`def train():
    vae.train() # Set model to training mode
    for epoch in range(100): # Train for 100 epochs
        total_loss = 0
```

2.1 Epochs

- **Epochs**: The number of times the model goes through the entire dataset.
- `for epoch in range(100)`: Train for 100 epochs.

3. Forward Pass and Backpropagation

```
python

`for batch_idx, (data, _) in enumerate(train_loader):
    data = data.view(-1, 28*28) # Flatten images into 784-dimensional vectors
    optimizer.zero_grad() # Clear previous gradients

    recon_data, mu, logvar = vae(data) # Forward pass
    loss = loss_function(recon_data, data, mu, logvar) # Compute loss

    loss.backward() # Compute gradients
    optimizer.step() # Update model weights

    total_loss += loss.item() # Track loss
```

3.1 Forward Pass

```
python
    recon_data, mu, logvar = vae(data)
```

- `data`: A batch of images.
- `vae(data)`: The VAE encodes the images, samples latent vectors, and reconstructs them.
- Returns:
 - `recon_data`: The reconstructed images.
 - o `mu`, `logvar`: The latent space parameters.

3.2 Compute the Loss

- `loss_function(...)`: Computes the total VAE loss:
 - **Reconstruction loss** (how well the model reconstructs images).
 - **KL divergence** (how well the latent space follows a normal distribution).

4. Backpropagation

```
python
    `loss.backward()
    optimizer.step()
```

- `loss.backward()`: Computes gradients for all model parameters.
- `optimizer.step()`: Updates model weights using gradient descent.

Why do we need `optimizer.zero_grad()`?

Before computing gradients for a new batch, we clear previous gradients. If we don't, gradients from different batches accumulate, leading to incorrect updates.

5. Track and Print Loss

```
python

`total_loss += loss.item()
print(f"Epoch {epoch+1}, Loss: {total_loss / len(train_loader.dataset)}")
```

- Tracks the total loss across all batches.
- Prints the average loss per epoch.

6. Summary of the Training Process

Step	Description
1. Load batch	Get a mini-batch of 128 images.
2. Flatten images	Convert 28×28 pixels into a 784-dimensional vector.
3. Forward pass	Encode images $ ightarrow$ Sample latent vector $ ightarrow$ Decode images.
4. Compute loss	Compare reconstructed images with originals.
5. Backpropagation	Compute gradients.
6. Update weights	Adjust model parameters with `optimizer.step()`.
7. Repeat	Process next batch.
8. Print loss	Monitor training progress every epoch.

7. Why Does Training Take Many Epochs?

- At first, the model produces blurry or random images.
- Over many epochs, the **reconstruction improves** as the model learns better latent representations.
- The **KL divergence** regularizes the latent space to ensure meaningful embeddings.

Would You Like to Visualize Training Progress?

If you'd like, we can modify the code to **show reconstructed images every few epochs** so you can see how the VAE improves over time! \mathscr{A}

I see. Fantastic!

Now, I am interested in coding my own VAE in the future. Given the simple VAE you gave me, what are some components I might manually change as I code my own VAE? What are specific functions I have to keep, and are there specific names to these functions that I should not change?

That's great! Coding your own **Variational Autoencoder (VAE)** from scratch will help you understand **deep learning, probabilistic models, and PyTorch** better. Below, I'll guide you through what you **can change** and what you **must keep** in your implementation.

1. Core Components of a VAE

A VAE consists of four key parts:

- 1. **Encoder**: Compresses input into a latent distribution.
- 2. **Reparameterization Trick**: Samples from the latent space while allowing backpropagation.
- 3. **Decoder**: Reconstructs the original input from the latent vector.
- 4. Loss Function: Combines Reconstruction Loss and KL Divergence Loss.

Functions You Must Keep

Function	Purpose	Can Change?
`init()`	Defines the encoder, decoder, and latent space.	Yes (architectural changes)
`encode(x)`	Encodes input into $\mu,\log\sigma^2$.	No (functionality should remain the same)
`reparameterize(mu, logvar)`	Implements the reparameterization trick.	No (always needed for VAEs)
`decode(z)`	Decodes latent space into an output.	Yes (architecture changes)
`forward(x)`	Runs `encode()`, `reparameterize()`, and `decode()`.	No (should always return reconstructed output, `mu`, and `logvar`)
`loss_function(recon_x, x, mu, logvar)`	Computes VAE loss.	Yes (can modify loss components)

2. What You Can Change in Your Own VAE

Below are **specific parts of the VAE you can modify** while still keeping its structure.

2.1 Change the Encoder and Decoder Architecture

Currently, our VAE uses:

```
`self.fc1 = nn.Linear(28*28, 400)
self.fc_mu = nn.Linear(400, latent_dim)
self.fc_logvar = nn.Linear(400, latent_dim)
self.fc2 = nn.Linear(latent_dim, 400)
self.fc3 = nn.Linear(400, 28*28)
```

Possible Changes:

- Increase number of layers: Add more layers for a deeper VAE.
- Use convolutional layers (`nn.Conv2d`) instead of fully connected layers for image-based VAEs.
- Change activation functions (ReLU → LeakyReLU, ELU, etc.).

Example: A Deeper VAE

```
> `self.fc1 = nn.Linear(28*28, 512)
self.fc2 = nn.Linear(512, 256)
self.fc_mu = nn.Linear(256, latent_dim)
self.fc_logvar = nn.Linear(256, latent_dim)
```

• The encoder **now has more layers**: $784 \rightarrow 512 \rightarrow 256 \rightarrow$ latent space.

2.2 Change the Latent Space Dimensionality

Right now, the **latent space dimension** is **2**, which is useful for visualization but too small for complex datasets.

```
python
    vae = VAE(latent_dim=32) # Increase from 2 to 32
```

- Larger `latent_dim` → Higher capacity but harder to train.
- **Smaller** `latent_dim` → Simpler representations but might lose important details.

2.3 Change the Loss Function

Right now, the loss is:

```
def loss_function(recon_x, x, mu, logvar):
    recon_loss = nn.functional.binary_cross_entropy(recon_x, x.view(-1, 28*28), reduction='sum')
    kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return recon_loss + kl_loss
```

Possible Modifications:

1. Use Mean Squared Error (MSE) instead of BCE (better for continuous data).

```
python
    recon_loss = nn.functional.mse_loss(recon_x, x.view(-1, 28*28), reduction='sum')
```

2. Weight the KL Divergence loss differently (to control disentanglement).

```
python
    `beta = 0.1 # Lower value reduces KL effect
total_loss = recon_loss + beta * kl_loss
```

 $\circ~$ This is called a $\beta\text{-VAE}$ and encourages disentangled latent space representations.

2.4 Use a Different Sampling Technique in `reparameterize()`

Right now, `reparameterize()` does:

```
def reparameterize(self, mu, logvar):
    std = torch.exp(0.5 * logvar)
    eps = torch.randn_like(std)
    return mu + eps * std # Sample from distribution
```

- This samples from a **Gaussian normal distribution**.
- You could experiment with **alternative priors** (e.g., Student's t-distribution).

2.5 Change the Optimizer

Currently, we use **Adam**:

- Alternatives:
 - SGD: `optim.SGD(vae.parameters(), lr=0.01, momentum=0.9)`
 - AdamW: `optim.AdamW(vae.parameters(), lr=1e-3)`
 - RMSprop: `optim.RMSprop(vae.parameters(), lr=1e-3)`

2.6 Add a Variational Prior on Latent Space

By default, the VAE learns a **Gaussian prior** $p(z) \sim \mathcal{N}(0,I)$. You could:

• Use a **mixture of Gaussians** instead of a single normal distribution.

• Add a **Normalizing Flow** to improve the flexibility of p(z).

3. Things You Must Keep

Component	Reason
`encode()`	Always needed to produce `mu, logvar`.
`reparameterize()`	Required to enable backpropagation through sampling.
`decode()`	Required to reconstruct the image from latent space.
`forward()`	Must call `encode()`, `reparameterize()`, and `decode()`.
`loss_function()`	Must include Reconstruction Loss + KL Divergence .

4. Summary of What You Can Modify

Component	What You Can Change
Encoder	Add more layers, use CNNs, change activations
Decoder	Use different architectures, change activations
Latent Space	Increase dimension size, change prior distribution
Reparameterization	Try different sampling strategies
Loss Function	Use MSE loss, weight KL loss differently
Optimizer	Use AdamW, RMSprop, or SGD instead of Adam
Training Strategy	Change learning rate, add learning rate schedulers

5. Next Steps

- 1. Start with simple changes:
 - o Change `latent_dim=16`.
 - Use `MSELoss()` instead of `BCE`.
- 2. Try Convolutional VAEs (ConvVAE):
 - Replace `nn.Linear()` layers with `nn.Conv2d()` and `nn.ConvTranspose2d()`.
- 3. Experiment with β-VAE:
 - Tune the KL loss weight (`beta`).
- 4. Train on a different dataset:
 - Try Fashion-MNIST or CIFAR-10.

Would you like me to guide you in modifying a specific part of your VAE? 🖋