Exercises(5) October 12, 2023

- 1. (10 points) Definition: Let X be a metric space and let $E \subseteq X$. E is dense if $\overline{E} = X$.
 - Let (X, d) be a metric space which every infinite subset has an accumulation point. Prove that X contains a countable dense subset.
- 2. (8 points) Prove that every open set in \mathbb{R} is the union of an at most countable collection of disjoint segments.
- 3. (6 points) Let A_n be subsets of a metric space (M,d), $A_{n+1} \subseteq A_n$, and $A_n \neq \emptyset$, but assume that $\bigcap_{n=1}^{\infty} A_n = \emptyset$. Let $A = \bigcap_{n=1}^{\infty} \overline{A_n}$. Show that $A \subseteq A'_1$
- 4. (6 points) For $A \subseteq M$, a metric space, prove that

$$\partial A = (A \cap \overline{M \setminus A}) \cup (\overline{A} \setminus A).$$