Recommending the Recommenders!

Aayush Gupta, Anjali Chadha, Nalin Dadhich

Texas A&M University

Motivation

Nowadays, users:

- Provide feedback for items of different types
- Express their opinion on different social media platforms
- provide recommendations to new users (cold-start problem)

Can we find relevant source domain for cross-domain recommendation?

Proposed Solution

- Cross-domain recommendation helps to alleviate the sparsity
- CCCFNet*- Unified Content-based and Collaborative Filtering
- The content information is used to augment the CF matrix
- The proposed methodology performs better as compared to other recommendations techniques like SVD and Bayesian Matrix Factorization
- Use CCCFNet on different domains.

The loss function for the CCCFNet model is given by:

$$\mathcal{L} = \frac{1}{2} \sum_{i,j} (r_{ij}^{(1)} - U_{ia} \cdot V_j^{(1)} - U_{ib} \cdot \sum_k a_{jk}^{(1)} B_k^{(1)})^2$$

$$+ \frac{\lambda_1}{2} \sum_{i,j} (r_{ij}^{(2)} - U_{ia} \cdot V_j^{(2)} - U_{ib} \cdot \sum_k a_{jk}^{(2)} B_k^{(2)})^2$$

Where,

- U_{ia} User's Collaborative part
- $U_{ib}^{''}$ User's Content preference part
- $V_i^{\prime\prime\prime}$ Item's Collaborative part

Dataset

MovieLens 100k Dataset

- Training data split into two parts to simulate cross domain scenario
- Movie Attributes Represented by 19 genres
- User Attributes Tags given by user to each movie

Key Findings

- Using combination of source and target domain for providing recommendations improves RMSE
- Choice of auxiliary domain remains tough
- Feeding model with more data; decreasing the sparsity level gives better results

Results

Yelp DataSet

- About 130k unique users and 520k unique reviews
- 21 broad categories in the dataset
- Evaluation was performed on Restaurant vs Food and Restaurant vs Shopping

The categories of business that are reviewed in Yelp

Ethical Consideration

- Assumption that interest in one domain will always map to another domain is misplaced
- Eg. Teenage kid interested in shooting games like Call of Duty might recommend violent videos

Future Work

- Applying the cross-domain CCCFNet model on multiple domains
- Applying the cross-domain CCCFNet model on different datasets
- Extending the model to automatically calculate the importance score of different source domains

Method		SVD	BMF	CCCFNet
Latent Factors		64	64	16
MovieLens	RMSE	0.945	0.931	0.892
Yelp (Restaurant-Shopping)	RMSE	0.981	0.978	0.912
Yelp (Restaurant-Food)	RMSE	0.978	0.971	0.905

References

Lian, Jianxun, et al. "CCCFNet: a content-boosted collaborative filtering neural network for cross domain recommender systems." *Proceedings of the 26th International Conference on World Wide Web Companion*. International World Wide Web Conferences Steering Committee, 2017.