The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)

Awakening Latent Grounding from Pretrained Language Models for Semantic Parsing

Qian Liu¹, Dejian Yang², Jiahui Zhang¹, Jiaqi Guo³, Bin Zhou¹, Jian-Guang Lou²

¹ Beihang University; ² Microsoft Research ³ Xi'an Jiaotong University

Background

- Recent years pretrained language models (PLMs) hit a success on several downstream tasks, showing their power on modeling language.
- However, few efforts have been made to explore grounding capabilities of PLMs, which aims at connect linguistic symbols to real-world perception.

Background

- Existing methods are not satisfying:
 - ✓ Heuristic rules suffer from modeling flexibility => poor performance
 - ✓ Data driven models requires expensive annotations => not available in real

Can We Learn A Flexible Grounding Model Without Grounding Supervision?

Method

 YES! Our approach Erasing-then-Awakening (ETA) could automatically obtain grounding results from a pretrained language model with only weak supervision.

• Given a question, we use a module to evaluate the confidence of a column being mentioned in a question, and the module is trained using text-to-SQL datasets.

QuestionColumnConfidenceHow many total games were at braly
stadiumVenue0.92

• We erase "How" and feed the erased question into the module to obtain the confidence again and calculate the confidence difference after erasing "How".

Question	Column	Confidence
How many total games were at braly	Venue	0.92
stadium Erased Question	Column	Confidence
How many total games were at braly	Venue	0.91
4 1.	·	

• We erase "How" and feed the erased question into the module to obtain the confidence again and calculate the confidence difference after erasing "How".

Question	Column	Confidence
How many total games were at braly	Venue	0.92
stadium Erased Question	Column	Confidence
How many total games were at braly	Venue	0.91
stadium		Difference
		0.01

 By erasing tokens in the question one by one, we can find which tokens are important for a model when predicting the column "Venue".

Question

Column

How many total games were at braly stadium

Venue

0.01

 By erasing tokens in the question one by one, we can find which tokens are important for a model when predicting the column "Venue".

 Repeating the above steps on the input question tokens for all concepts. And then we could employ these differences to awaken the latent grounding.

Experiments

- Taking text-to-SQL as a case study, we couple our approach with two off-theshelf parsers and improve their performance by a large margin.
- Finally, our approach could achieve similar or better performance on two challenging benchmarks WikiTableQuestions & Spider.

Model	Dev		Test	
	Ex.Match	Ex.Acc	Ex.Acc	
ALIGN _P ALIGN _P + BERT ETA + BERT	37.8 ± 0.6 44.7 ± 2.1	56.9 ± 0.7 63.8 ± 1.1 66.6 ± 1.7	46.6 ± 0.5 51.8 ± 0.4	
ALIGN $^{\circ}$ ALIGN + BERT $^{\circ}$		61.3 ± 0.8 66.5 ± 1.2	49.7 ± 0.4 54.1 ± 0.2	

Model	Dev	Test
IRNet + BERT (Guo et al., 2019)	61.9	54.7
IRNet v2 + BERT (Guo et al., 2019)	63.9	55.0
BRIDGE + BERT _L (Lin et al., 2020)	70.0	65.0
RATSQL + BERT _L (Wang et al., 2020a)	69.7	65.6
SLSQL _P + BERT	57.4	-
$SLSQL_P + BERT_L$	61.0	-
ETA + BERT	64.5	59.5
$ETA + BERT_L$	70.8	65.3