Design Science Methodology Part A

Prof. Dr. Roel Wieringa
University of Twente,
The Netherlands
www.cs.utwente.nl/~roelw

Revised by Max HE with Thanks

Research methodology accross the disciplines

- Do these disciplines have the same methodology?
 - Technical science? Build cool stuff; test it; iterate
 - Social science? Observe people, interpret what they do or say; or select a sample, do a lot of statistics; iterate.
 - Physical science? Build instruments, create phenomena, analyze data, create theories; iterate.
 - Mathematics? Read, think, write, think; iterate.

Mutual lack of appreciation

- Do they appreciate each other's methodology?
 - For social scientists, engineers are slightly autistic tinkerers (自闭症修补匠)
 - For technical scientists, social scientists are chatterboxes (喋喋不休者, 唠叨的人)
 - For physicists, statistics is stamp collecting
 - Mathematicians think that they provide the foundations of civilization

Our approach

- All research in all disciplines is problem-solving
- The problems in design science research are design problems
 - Goal is to design something useful
 - Research method is the design cycle
- The problems in empirical research are knowledge questions
 - Goal is to acquire theoretical knowledge
 - Research method is the empirical cycle
- Wieringa, R.J. (2014) <u>Design science methodology for information</u> systems and software engineering. Springer Verlag

Outline

1. What is design science

- Research goals and problems
- The design and engineering cycles

2. Theories

- Scientific inference
- Research design

Outline

MIKS 17 january 2017 © R.J. Wieringa 8

What is design science?

 Design science is the design and investigation of artifacts in context

BPM sept 2016 © R.J. Wieringa 6

Two kinds of research problems in design science

To design an artifact to improve a problem context

Problems & Artifacts to investigate

Knowledge, Design problems To answer knowledge questions about the artifact in context

- Design software to estimate
 Direction of Arrival of plane
 waves, to be used in satelite TV
 receivers in cars
- Design a Multi-Agent Route
 Planning system to be used for aircraft taxi route planning
- Design a data location regulation auditing method

Is the artifact useful?

- Is the DoA estimation accurate enough in this context?
- Is it fast enough?
- Is this routing algorithm deadlock-free on airports?
- How much delay does it produce?
- Is the method usable and useful for consultants?

Is the answer **true**?

BPM sept 2016

© R.J. Wieringa

Reality check

- What research problem(s) are you investigating?
 - Artifact and context
- NB
 - The title of your project/thesis is the shortest summary of your research project.
 - Often, it mentions the artifact and the context.

Framework for design science

BPM sept 2016 © R.J. Wieringa

(Dis)similarity to Hevner et al. framework

- Hevner et al. want to identify these two activities
- But the methodology of these two activities is totally different

Outline

1. What is design science

- Research goals and problems
- The design and engineering cycles

2. Theories

- Scientific inference
- Research design

Goal structure: example

Goal structure

Three kinds of design research questions

1. Design research problems (a.k.a. technical research questions)

 To improve some kind of artifact in some kind of context.

2. Empirical knowledge questions

To ask questions about the real world.

3. Analytical knowledge questions

To ask questions about the logical consequences of definitions

Template for design problems

- Improve <problem context>
- by <treating it with a (re)designed artifact>
- such that <artifact requirements>
- in order to <stakeholder goals>

- Reduce my headache
- by taking a medicine
- that reduces pain fast and is safe
- in order for me to get back to work

Template for design problems

- Improve <problem context>
- by <treating it with a (re)designed artifact>
- such that <artifact requirements>
- in order to <stakeholder goals>

- Reduce my headache
- by taking a medicine
- that reduces pain fast and is safe
- in order for me to get back to work

Problem context and stakeholder goals.

Stakeholder language

Template for design problems

- Improve <problem context>
- by <treating it with a (re)designed artifact>
- such that <artifact requirements>
- in order to <stakeholder goals>

- Reduce my headache
- by taking a medicine
- that reduces pain fast and is safe
- in order for me to get back to work

Artifact and its desired properties.

Technical language

Template for design **research** problems

- Improve <problem context>
- by <treating it with a (re)designed artifact>
- such that <artifact requirements>
- in order to <stakeholder goals>

- Reduce patients' headaches
- by treating it with a medicine
- that reduces pain fast and is safe
- in order for them to function as they wish

The problem is now to design an artifact that helps a **class** of stakeholders achieve a **class** of goals.

Goal structure again

 The design problem template links the artifact to the problem context and stakeholder goals

BPM sept 2016

Discussion

- Who are the stakeholders of your project?
 - Real or hypothetical: Stakeholders may not know they are stakeholders
- What is/are your top-level design problem(s), using our template?
 - Improve <problem context>
 - by <treating it with a (re)designed artifact>
 - such that <artifact requirements>
 - in order to <stakeholder goals>

- NB some parts may be currently uncertain, fuzzy, or unknown.
- But surely, some parts are currently known!

There is no single "correct" problem statement

 A good problem statement forces the reader to think focussed about the artifact while remaining aware of the intended problem context

- <u>BPMN Plus : a modelling language for</u> Artifact <u>unstructured business processes.</u> Context
- The objective of this study is
 - To investigate the way through which unstructured business processes can be modelled and managed without limiting their run-time flexibility.
- Research questions
 - Q1 What are the differences between structured and unstructured business processes?
 - Q2 What are the differences between Business Process Management and Case Management in dealing with unstructured business processes?
 - Q3 What are the capabilities of existing modelling notations to deal with unstructured business processes?
 - Q4 How to model an unstructured business process while providing run-time flexibility?

- Improve <problem context in which unstructured business process is to be modelled>
- by <introducing a modeling language for unstructured business processes>
- such that <requirements such as run-time flexibility, and ... learnability etc?>
 - in order to <stakeholder goals, e.g. provide better process improvement advice to clients>

- Automated generation of attack trees by unfolding graph transformation systems.
 - RQ1: Can graph transformation be used as a modeling paradigm to specify systems and organizations as input models for the attack tree generation approach?
 - RQ2: Can partial-order reduction, and specifically the unfolding of a graph transformation model, be used to reduce the state-space explosion problem that occurs during the automated exploration of a model?
 - RQ3: How can the set of attacks be converted into an attack tree, what are the trade-offs and how can additional information such as sequential AND's be included in the tree?

- Context
 Artifact
- Improve <attack tree generation>
- by <graph transformation system>
- such that <artifact requirements, e.g. faster generation of bigger attack trees>
- in order to <stakeholder
 goals, e.g. security risk
 assessment is more complete>

Three kinds of design research questions

- 1. Design problems (a.k.a. technical research questions)
 - To improve some artifact in some context.
- 2. Empirical knowledge questions
- 3. Analytical knowledge questions (math, conceptual, logical). We ignore these in this course.

Empirical knowledge questions

- Descriptive knowledge questions:
 - What happened?
 - How much? How often?
 - When? Where?
 - What components were involved?
 - Who was involved?
 - Etc. etc.
- Explanatory knowledge questions:
 - Why?
 - 1. What has **caused** the phenomena?
 - 2. Which **mechanisms** produced the phenomena?
 - 3. For what **reasons** did people do this?

Journalistic questions.
Yield facts.

Beyond the facts.
Yields theories.

Discussion

 What descriptive and explanatory knowledge are you searching for in your project?

- <u>BPMN Plus</u>: a modelling language for unstructured business processes.
- The objective of this study is
 - To investigate the way through which the unstructured business processes can be modelled and managed without limiting their run-time flexibility.
- Research questions
 - Q1 What are the differences between structured and unstructured business processes?
 - Q2 What are the differences between Business Process Management and Case Management in dealing with unstructured business processes?
 - Q3 What are the capabilities of existing modelling notations to deal with unstructured business processes?
 - Q4 How to model an unstructured business process while providing run-time flexibility?

- Explanatory questions?
- Analytical questions?

Descriptive knowledge questions; (outcome of interviews)

Design problem

- Automated generation of attack trees by unfolding graph transformation systems.
 - RQ1: Can graph transformation be used as a modeling paradigm to specify systems and organizations as input models for the attack tree generation approach?
 - RQ2: Can partial-order reduction, and specifically the unfolding of a graph transformation model, be used to reduce the state-space explosion problem that occurs during the automated exploration of a model?
 - RQ3: How can the set of attacks be converted into an attack tree, what are the trade-offs and how can additional information such as sequential AND's be included in the tree?

Design problems

- Descriptive questions?
- Explanatory questions?
- Analytical questions?

Summary

1. Design research problems (a.k.a. technical research questions)

- Improve <problem context>
- by <treating it with a (re)designed artifact>
- such that <artifact requirements>
- in order to <stakeholder goals>.

2. Empirical knowledge questions

- Descriptive: what, how, when,
 where, who, etc. → Facts
- Explanatory: Why \rightarrow explanations

3. Analytical knowledge questions

 Yields definitions, assumptions, theorems.

Outline

- 1. What is design science
 - Research goals and problems
 - The design and engineering cycles
- 2. Theories
 - Scientific inference
 - Research design

This is a checklist. See appendix A in the book & on my web site

Engineering cycle

! = Action

? = Knowledge question

Design implementation

Implementation evaluation = Problem investigation

- •Stakeholders? Goals?
- •Conceptual problem framework?
- •Phenomena? Causes, mechanisms, reasons?
- Effects? Positive/negative goal contribution?

Treatment validation

- •Context & Artifact → Effects?
- •Effects satisfy Requirements?
- •Trade-offs for different artifacts?
- •Sensitivity for different Contexts?

Treatment design

- •Specify requirements!
- •Requirements contribute to goals?
- •Available treatments?
- •Design new ones!

Implementation is introducing the treatment in the intended problem context

- If problem context is a real-world context.... implementation of a solution is technology transfer to the real world.
 - Not part of a research project
- If the problem is to learn about the performance of a design ... Implementation of a solution is the **construction of a prototype** and test environment.
 - Part of a research project

To be continued ...