t in(a) above.	usər əfi gnisu _{xb x 800 x}	$\int\limits_{\zeta}^{\frac{\pi}{\zeta}} \operatorname{bnif} \operatorname{aneH} (d)$
	x uis	x Differentiate x
marks require	ions worth more than 2	Note: All part quest Question 1
Теасhег:		Лате:
	al schooling. Exceptional stude	Exceptions
	Teacher:	ions worth more than 2 marks require

Working out space

Page **| 2** Year 12 Mathematics Methods Page | **7** Year 12 Mathematics Methods

Page | 2 Working out space (3 marks)

Determine the *x*-coordinates of all points on the graph of $f(x) = 2\cos(x) + x$ for $-\pi \le x \le \pi$ where the tangent line is horizontal. (Justify your answers)

Question 2

Year 12 Mathematics Methods	Раве 3	Year 12 Mathematics Methods	9 ə8e4

	-1 -0		
3 (7 marks	Question	(11 marks)	9 nestion 6
conducted by a local bank shows that 75% of its customers use an ATM at least once a	o yəvrus A nonth.	A game is played by throwing two standard six-sided dice into the air once. The sum of the uppermost numbers are added together and if the sum is greater than 8 the player wins $$5$.	
nd the probability that in a random sample of 8 customers, at least 75% of them use an M machine at least once a month.		(5 marks)	Determine: a) the probability of winning \$5 in one game.
		(3 шяқг)	b) the probability of winning exactly \$15 in 5 games.
the random variable X follows a binomial distribution with n=12 and p=0.75, what is the san of this distribution and what is P¿X≥mean¿?		(3 marks)	c) the probability of winning at least \$15 in at most 5 games.
ithe sample size became very large what would you expect $P(X \ge mean)$ to approach? iefly explain your answer.		obability of winning at least \$15 is	d) the minimum number of games to be played so that the pr greater than 0.47. (Justify)

Page | 4 Year 12 Mathematics Methods

Question 4 (10 marks)

The discrete random variable X can only take the values 2, 3 or 4. For these values the cumulative distribution function is defined by

$$P(X \le x) = \frac{(x+k)^2}{25}$$

for $x=2,3 \land 4$, where *k* is a positive constant integer.

(a) Find the value for k. (3 marks)

(b) Complete the following table for X.

(3 marks)

X	2	3	4
$P(X \leq x)$			
P(X=x)			

(c) Hence find E(X) and SD(X). (2 marks)

(d) Calculate Var(3-2X) giving your answer to 2 decimal places. (2 marks)

Page | 5 Year 12 Mathematics Methods

Question 5 (8 marks)

Consider the function $f(x) = \frac{1 - \cos x}{x}$ where x is in radians.

a) Sketch f(x) on the axes below for $-20 \le x \le 20$ on the axes below. Clearly label undefined points (if any).

(3 marks)

- b) As $^\chi$ approaches zero from the positive side, state the value that $^{f(\chi)}$ approaches. (1 mark)
- c) As $^\chi$ approaches zero from the negative side, state the value that $^{f}(\chi)$ approaches. (1 mark)
- d) Use the above to define a value for f(x) as x approaches zero, that is the following limit $\lim_{x\to 0} \frac{1-\cos x}{x}$. (1 mark)

It can be shown that $\frac{d}{dx}(\cos x) = -\cos x \lim_{h \to 0} \frac{1 - \cosh}{h} - \sin x \lim_{h \to 0} \frac{\sinh}{h}$

e) Using the fact that $\lim_{h\to 0} \frac{\sinh h}{h} = 1$ and the above results, show that $\frac{d}{dx}(\cos x) = -\sin x$ (2 marks)