SÈRIE 4

Primera part

Exercici 1

Q1 b **Q2** c **Q3** d **Q4** d **Q5** b

Exercici 2

	p_{baixa}	$p_{\rm alta}$	m	C	
	0	0	0	0	
	0	0	1	0	
	0	1	0	0	
a)	0	1	1	1	b) $c = p_{\text{baixa}} \cdot \overline{m} + p_{\text{alta}} \cdot m$
	1	0	0	1	
	1	0	1	0	
	1	1	0	x←No és possible	
	1	1	1	x←No és possible	

Segona part

OPCIÓ A

Exercici 3

a)
$$\phi_1 = \arctan \frac{L}{3L} = 18,43^{\circ}$$
 $\phi_2 = \arctan \frac{L}{5L} = 11,31^{\circ}$

b)
$$\sum \mathbf{F}_{ext} = 0 \rightarrow \begin{cases} F_1 \cos \phi_1 - F_2 \cos \phi_2 = 0 \\ F_1 \sin \phi_1 + F_2 \sin \phi_2 - mg = 0 \end{cases}$$

$$F_1 = mg \frac{\cos \varphi_2}{\sin (\varphi_1 + \varphi_2)} = 67,84 \text{ kN}$$

$$F_2 = mg \frac{\cos \varphi_1}{\sin(\varphi_1 + \varphi_2)} = 65,63 \text{ kN}$$

c)
$$\sigma_1 = \frac{F_1}{S} = 383.9 \text{ MPa}$$
 ; $\sigma_2 = \frac{F_2}{S} = 371.4 \text{ MPa}$

Exercici 4

a)
$$\eta_{alt} = \frac{P_{elec}}{P_{m}} = 0,6522$$

b)
$$\eta_{\text{motor}} = \frac{P_{\text{m}} t_{\text{au}}}{E_{\text{dipòsit}}} = \frac{P_{\text{m}} t_{\text{au}}}{V \rho p_{\text{c}}} = 0,3258$$

c)
$$c_e = \frac{V \rho}{P_m t_{all}} = \frac{1}{p_c \eta_{motor}} = 240.2 \frac{g}{kW \cdot h}$$

OPCIÓ B

Exercici 3

a)
$$P_{\text{cremador}} = c p_{\text{c}} = 990 \text{ W}$$
 $P_{\text{estufa}} = 4P_{\text{cremador}} = 3960 \text{ W}$

b)
$$t = \frac{m_b}{4 \cdot c} = \frac{p_c m_b}{P_{\text{estufa}}} = 43,40 \text{ h}$$

Exercici 4

a)
$$L = 2(12 \cdot r + 2\pi \cdot r) = 18,28 \text{ m}$$
 $L_t = n \cdot L = 548,5 \text{ m}$

b)
$$P = P_{\text{tub}} \cdot L = 1,097 \text{ kW}$$
 $P_{\text{t}} = n \cdot P = 32,91 \text{ kW}$

c)
$$E = P_t \cdot t = 197,5 \text{ kW} \cdot \text{h}$$