Bestämning av antalet kristallvatten i kopparsulfat

Jonas Cronholm

December 22, 2021

Datum för utförande:	December 10, 2021
Datum för inlämning::	N/A
Datum för återlämning:	N/A
Datum för godkännande:	N/A
Medlaboranter:	N/A
	N/A
Godkänd av:	N/A

1 Inledning

Syftet med den laborationen var att bestämma antalet kristallvatten (d.v.s. x) i kopparsulfat.

$$CuSO_4 * xH_2O$$

2 Teori

Kristallvatten är vattenmolekyler bundet till jonerna i en fast saltkristall. Om ett salt innehållande kristallvatten och värms upp till hög temperatur (minst 300° celsius), så kommer kristallvattnet att lossna från saltet och bilda vattenånga. Efter uppvärmning kommer saltet vara utan kristallvatten och fortfarande vara i fast form [1]. Reaktionsformeln blir då:

$$CuSO_4 * xH_2O(s) \longrightarrow CuSO_4(s) + H_2O(g)$$

3 Material och genomförande

3.1 Materiallista

- Våg
- Degel
- Värmeplatta
- Sked
- Värmetåliga handskar
- Kristallerad Kopparsulfat

3.2 Genomförande

- a. En tom degel vägdes och vikten antecknades
- b. Ungefär 1 g kopparsulfat ($CuSO_4$) med kristallvatten (H_2O) tillsattes till degeln. Vartefter den vägdes igen (och vikten antecknades).
- c. Degeln upphettades med en kokplatta under ca 15 minuter.
- d. Degeln svalnade under ca 30 minuter, innan den vägdes igen (och vikten antecknades).

4 Resultat

4.1 Beskrivning av resultat

 $m_{kristalliserad-kopparsulfat} = m_{degel-med-kristalliserad-kopparsulfat} - m_{degel}$

 $m_{kopparsulfat-utan-kristallvatten} = m_{degel-med-kopparsulfat-utan-kristallvatten} - m_{degel-med-kopparsulfat-utan-kristallvatten}$

$$m_{H_2O} = m_{kristalliserad-kopparsulfat} - m_{kopparsulfatutankristallvatten}$$

$$M_{CuSO_4} = 63, 5 + 32, 1 + 4 * 16 = 159, 6g/mol$$

$$M_{H_2O} = 1 * 2 + 16 = 18,0g/mol$$

$$n_{CuSO_4} = \frac{m_{kopparsulfat-utan-kristallvatten}}{M_{CuSO_4}} = \frac{m_{kopparsulfat-utan-kristallvatten}}{159,6}$$

$$n_{H_2O} = \frac{m_{vatten}}{M_{H_2O}} = \frac{m_{vatten}}{18,0}$$

$$Antal \ kristall vatten, \ x \ = \frac{n_{H_2O}}{n_{CuSO_4}}$$

Beräkningar av värdena:

Förs. No.	Degel	Degel med $CuSO_4$ och H_2O	Degel med $CuSO_4$	Antal H_2O
1	15,8	15, 8+1, 0=16, 8	15, 8+0, 7=16, 5	3,80
2	22,5	22, 5+1, 0=23, 5	22, 5+0, 7=23.2g	3,80
3	18,4	18, 4 + 1.0 = 19, 4g	18.4 + 1.9 = 20, 3	-4,20
4	25,6	25.6g + 1g = 26.6g	26, 2g	5,91
5	18,3	18, 3g + 1, 1g = 19, 4	19,0g	5,07

Medelvärdet av värdena över 0 (Förs. No. 3 ign.):

$$\overline{Antal\ H_2O} = \frac{3,8+3,8+5,91+5,07}{4} = 4,65$$

5 Källförteckning

[1], Syntes Kemi 1 (Anders Henriksson, 2011, Gleerups) [ISBN: 978-91-40-67418-0]