Part I Topology

Definition 0.1 — Topology and Topological Space.

Let X be a nonempty set. A set \mathcal{T} of subsets of X is said to be a topology on X if

- 1. X and the empty set \emptyset belong to \mathcal{T}
- 2. the union of arbitary many number of sets in \mathcal{T} belong to \mathcal{T}
- 3. the intersection of any two sets in \mathcal{T} belongs to \mathcal{T}

The pair (X, \mathcal{T}) is called a topological space.

Definition 0.2 — Discrete Topology.

Let X be any nonemoty set and \mathcal{T} be the collection of all subsets of X. Then \mathcal{T} is called the discrete topology on the set X. The topological space (X, \mathcal{T}) is called a discrete space.

Definition 0.3 — Indiscrete Topology.

Let X be any nonempty set and $\mathcal{T} = \{\mathcal{T}, \emptyset\}$. Then \mathcal{T} is called the indiscrete topology and (X, \mathcal{T}) is said to be an indiscrete space.

Proposition 1. If (X, \mathcal{T}) is a topological space such that for every $x \in X$ the singleton set $\{x\}$ is in \mathcal{T} then \mathcal{T} is the discrete topology.

Definition 0.4 — .

Let (X,\mathcal{T}) be any topological space. Then the members of \mathcal{T} are said to be open sets.

Proposition 2. If (X, \mathcal{T}) is any topological space, then

- 1. X and \emptyset are open sets.
- 2. The union of arbitary many number of open sets is an open set.
- 3. The intersection of finitely many number of open sets is an open set.

Definition 0.5 — .

Let (X, \mathcal{T}) be a topological space. A subset S of X is said to be a closed set in (X, \mathcal{T}) if its complment in X, namely X - S is open in (X, \mathcal{T}) .

Proposition 3. If (X, \mathcal{T}) is any topological space, then

- 1. \emptyset and X are closed set.
- 2. The intersection of arbitary many number of closed sets is a closed set.
- 3. The union of finitely many number of closed sets is a closed set.

Definition 0.6 — .

A subset S of a topological space (X, \mathcal{T}) is said to be clopen if it is both open and closed in (X, \mathcal{T}) .

Definition 0.7 — .

Let X be any nonempty set. A topology \mathcal{T} on X is called the finite-closed topology or the cofinite topology if the closed subsets of X are X and all finite subsets of X; that is, the open sets are \emptyset and all subsets of X which have finite complments.

Definition 0.8 — Euclidean Topology.

A subset S of \mathbb{R} is said to be open in the euclidean topology on \mathbb{R} if for each $x \in S$, there exist $a, b \in \mathbb{R}$, with a < b, such that $x \in (a, b) \subseteq S$.

Proposition 4. A subset S of \mathbb{R} is open if and only if it is a union of open intervals.

Definition 0.9 — Basis for a Topology.

Let (X, \mathcal{T}) be a topological space. A collection \mathcal{B} of open subsets of X is said to be a basis for the topology \mathcal{T} if every open set is a union of members in \mathcal{B} .

Example 0.10. Let $\mathcal{B} = \{ (a, b) \mid a, b \in \mathbb{R}, a < b \}$. Then \mathcal{B} is a basis for the euclidean topology on \mathbb{R} .

Example 0.11. Let (X, \mathcal{T}) be a discrete space and \mathcal{B} the family of all singleton subsets of X; that is, $\mathcal{B} = \{\{x\} \mid x \in X\}$.

Example 0.12. Let $X = \{a, b, c, d, e, f\}$ and

$$\mathcal{T}_1 = \{ X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\} \}$$
 (1)

Then $\mathcal{B} = \{a, c, d, b, c, d, e, f\}$ is a basis for \mathcal{T}_1 as $\mathcal{B} \subseteq \mathcal{T}_1$ and every member of \mathcal{T}_1 can be expressed as a union of members of \mathcal{B} . Note that \mathcal{T}_1 itself is also a basis for \mathcal{T}_1 .

Proposition 5. Let X be a nonempty set and let \mathcal{B} be a collection of subsets of X. Then \mathcal{B} is a basis for a topology on X if and only if \mathcal{B} has the following properties:

- 1. $X = \bigcup_{B \in \mathcal{B}} B$
- 2. for any $B_1, B_2 \in \mathcal{B}$ the set $B_1 \cap B_2$ is a union of members of \mathcal{B}

Proposition 6. Let (X, \mathcal{T}) be a topological space. A family \mathcal{B} of open subsets of X is a basis for \mathcal{T} if and only if for any point x belonging to any open set U there is a $B \in \mathcal{B}$ such that $x \in B \subseteq U$

Proposition 7. Let \mathcal{B} be a basis for a topology \mathcal{T} on a set X. Then a subset U of X is open if and only if for each $x \in U$ there exists a $B \in \mathcal{B}$ such that $x \in B \subseteq U$.

Proposition 8. Let \mathcal{B}_1 and \mathcal{B}_2 be bases for topologies \mathcal{T}_1 and \mathcal{T}_2 respectively, on a nonempty set X. Then $\mathcal{T}_1 = \mathcal{T}_2$ if and only if

- 1. for each $B \in \mathcal{B}_1$ and each $x \in \mathcal{B}$, there exists a $B' \in \mathcal{B}_2$ such that $x \in B' \subseteq B$
- 2. for each $B \in \mathcal{B}_2$ and each $x \in \mathcal{B}$, there exists a $B' \in \mathcal{B}_1$ such that $x \in B' \subseteq B$

Part II Other Stuff

Definition 0.13 — Euler Totient Function.

The Euler totient function counts the positive integers up to a given integer n that are relatively prime to n.

Part III Commutative Rings

Rings and Ideals

1.1 Cheat Sheet

Definition 1.1 — Ring.

A ring is a set R equipped with two binary operations + (addition) and · (multiplication) satisfying the following three sets of axioms, called the ring axioms.

- 1. (R, +) is an abelian group.
- 2. (R, \cdot) is a semigroup.
- 3. Multiplication is distributive with respect to addition, meaning that
 - $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in R$ (left distributivity).
 - $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a,b,c \in R$ (right distributivity).

A ring is called unitary if it contains the multiplicative identity and commutative if multiplication is commutative.

Definition 1.2 — Unit.

Definition 1.3 — Zerodivisors.

Definition 1.4 — Nilpotent.

Definition 1.5 — Idempotent.

Definition 1.6 — Ideal.

Definition 1.7 — Operations on Ideals.

Let R be a ring $\{\mathfrak{a}_i\}_{i\in I}$ be a collection of ideals in R.

1.

$$\sum_{i \in I} \mathfrak{a}_i = \left\{ \sum_{i \in I} a_i \mid a_i \in \mathfrak{a}_i \text{ for all } i \in I, \text{ and } a_i = 0 \text{ for almost all i} \right\}$$
(1.1)

2. The transporter of two ideals is defined By

$$(\mathfrak{a}:\mathfrak{b}) := \{ x \in R \mid x\mathfrak{b} \subset \mathfrak{a} \} \tag{1.2}$$

Definition 1.8 — Prime Ideal.

Definition 1.9 — Maximal Ideal.

Definition 1.10 — Quotient Ring.

Given a ring A and two-sided ideal $\mathfrak a$ in A, we may define an congruence relation \sim on A as follows:

$$x \sim y : \iff x - y \in \mathfrak{a}. \tag{1.3}$$

The equivalence class of the element x in A is given by

$$[x] = x + \mathfrak{a} := \{ x + a \mid a \in \mathfrak{a} \}$$
 (1.4)

and the set of all such equivalence classes is denoted by A/\mathfrak{a} ; it becomes a ring, the factor ring or the quotient ring of A modulo \mathfrak{a} , if one defines

- 1. $(a + \mathfrak{a}) + (b + \mathfrak{a}) = (a + b) + \mathfrak{a}$
- 2. $(a + \mathfrak{a})(b + \mathfrak{a}) = (ab) + \mathfrak{a}$

The map $\pi: R \longrightarrow A/\mathfrak{a}$, $x \mapsto \pi(x) := x + \mathfrak{a}$ is a surjective ring homomorphism and is sometimes called the natural quotient map or the canonical homomorphism.

Proposition 9 (Universal Property). Let A and B be rings, \mathfrak{a} an ideal, and $f: A \longrightarrow B$ a ring homomorphism with $\mathfrak{a} \subseteq \operatorname{Ker}(f)$. Then there exists a unique ring homomorphism $\tilde{f}: A/\mathfrak{a} \longrightarrow B$ such that $f = \tilde{f} \circ \pi$.

Theorem 1.11. There is a bijection between the sets

$$\{ \mid \} \tag{1.5}$$

Definition 1.12 — Integral Domain.

Theorem 1.13. • prime ideal, quotient is integral domain

- same as above, but if prime maximal, then quotient is a fields
- Maximal ideals are prime ideals.

Definition 1.14 — Unique Factorization Domain.

Definition 1.15 — Principal Ideal Domain.

Proposition 10. Commutative Rings \supset Unique Factorization Domain \supset Principal Ideal Domain \supset Fields

Theorem 1.16. • prime ideal, quotient is integral domain

- same as above, but if prime maximal, then quotient is a fields
- Maximal ideals are prime ideals.
- There is a 1:1 correspondence

$$\{ Ideals \ in \ A/\mathfrak{a} \} \longleftrightarrow \{ \mathfrak{b}/\mathfrak{a} \mid \mathfrak{a} \subseteq \mathfrak{b} \subseteq A \} \tag{1.6}$$

П

Proof. For the last point, it is easier to understand with extension and contraction.

1.2 Examples

Example 1.17. 1. \mathbb{Z}

- 2. All fields.
- 3. Let S be any set, then $(\mathcal{P}(S), \triangle, \cap)$ is a ring.
- 4. continuous $f: I \longrightarrow \mathbb{R}$ with a real interval I forms a ring.
- 5. cartesian product of rings

Example 1.18. Let S be any set, then $(2^S, \triangle, \cap)$ is a ring.

1. $0 = \emptyset$ and -A = A

1.3. PROOFS 13

- 2. The neutral element of the multiplication is S.
- 3. $(2^S)^{\times} = \{S\}$
- 4. $ZD(2^S) = 2^S S$ since $A \cap A^c = \emptyset$ (also minus the empty set) (this seems to be true for all boolean rings)
- 5. $Nil(2^S) = \emptyset$ (seems to be true for all boolean rings)
- 6. $\langle A \rangle = 2^A$ contains all subset of A

Example 1.19 (Integral Domains). 1. $\mathbb{Z}[i]$ the Gaussian integers, $(\mathbb{Z}[i])^{\times} = \{\pm 1, \pm i\}$

2. $\mathbb{Z}/n\mathbb{Z}$, $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ \overline{a} \mid \gcd(a,n) = 1 \}$, $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \phi(n)$ (Euler totient function)

1.3 Proofs

1.4 Exercises

Exercise 1.20. Let $\varphi: R \longrightarrow R'$ be a ring homomorphism, \mathfrak{a}_1 , \mathfrak{a}_2 , \mathfrak{a}_3 ideals of R, and $\mathfrak{b}_1,\mathfrak{b}_2$, \mathfrak{b}_3 ideals of R'. Prove the following statements:

1. $(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e$

Proof. We show $(\mathfrak{a}_1 + \mathfrak{a}_2)^e \subseteq \mathfrak{a}_1^e + \mathfrak{a}_2^e$. Let $x \in (\mathfrak{a}_1 + \mathfrak{b}_2)^e$, then we have for some index set I

$$x = \sum_{i \in I} \lambda_i x_i, \tag{1.7}$$

where $\lambda_i \in R'$ and $x_i \in \varphi(\mathfrak{a}_1 + \mathfrak{a}_2)$ for all $i \in I$. For each $i \in I$ we find and $a_{i,1}, a_{i,2} \in \mathfrak{a}$ such that $x_i = \varphi(a_{i,1} + a_{i,2})$, hence

$$x = \sum_{i \in I} \lambda_i (a_{i,1} + a_{i,2}) \tag{1.8}$$

$$= \sum_{i \in I} \lambda_i \left(\varphi(a_{i,1}) + \varphi(a_{i,2}) \right)$$
 (by linearity) (1.9)

$$= \sum_{i \in I} \lambda_i \varphi(a_{i,1}) + \lambda_i \varphi(a_{i,2})$$
 (by distributivity) (1.10)

$$= \sum_{i \in I} \lambda_i \varphi(a_{i,1}) + \sum_{i \in I} \lambda_i \varphi(a_{i,2})$$
 (reordering the sum). (1.11)

(1.12)

The last term is exactly the elements expressed by $\mathfrak{a}_1^e + \mathfrak{a}_2^e$, therefore, $(\mathfrak{a}_1 + \mathfrak{a}_2)^e \subset \mathfrak{a}_1^e + \mathfrak{a}_2^e$. I think the above proof should work into both directions. If not, just notice that $\mathfrak{a}_1^e \subset (\mathfrak{a}_1 + \mathfrak{a}_2)^e$.

2. $(\mathfrak{b}_1 + \mathfrak{b}_2)^c \supseteq \mathfrak{b}_1^c + \mathfrak{b}_2^c$

Proof. We have

$$(\mathfrak{b}_1 + \mathfrak{b}_2)^c = \{ x \in A \mid \exists b_1 \in \mathfrak{b}_1 \exists b_2 \in \mathfrak{b}_2 : \varphi(x) = b_1 + b_2 \}. \tag{1.13}$$

Now let $x \in \mathfrak{b}_1^c + \mathfrak{b}_2^c$, then $x = a_1 + a_2$ where $\varphi(a_1) \in \mathfrak{b}_1$ and $\varphi(a_2) \in \mathfrak{b}_2$. It is

$$\varphi(x) = \varphi(a_1 + a_2) \tag{1.14}$$

$$=\varphi(a_1) + \varphi(a_2)$$
 (by additivity) (1.15)

Since $\varphi(a_1) \in \mathfrak{b}_1$ and $\varphi(a_2) \in \mathfrak{b}_2$ we have that $x \in (\mathfrak{b}_1 + \mathfrak{b}_2)^c$.

Radicals

- 2.1 Cheat Sheet
- 2.2 Proofs
- 2.3 Exercises

Exercise 2.1. Let R be a ring, $\mathfrak{a} \subset \operatorname{Jac}(R)$ an ideal, $u \in R$, and $u + \mathfrak{a}$ its residue in R. Prove that $u \in R^{\times}$ if and only if $u + \mathfrak{a} \in (R/\mathfrak{a})^{\times}$. What if $\mathfrak{a} \not\subset \operatorname{Jac}(R)$?

Proof. If $u \in R^{\times}$, then we have immediately $u \in (R/\mathfrak{a})^{\times}$ without using the condition $\mathfrak{a} \subset \operatorname{Jac}(R)$. On the contrary, let $u + \mathfrak{a}$ be a unit

Zariski Topology

Definition 3.1 — Spectrum.

Let R be a ring. We denote the set of all prime ideals of R by $\operatorname{Spec}(R)$ and the set of all maximal ideals of R by $\operatorname{Spm}(R)$.

Definition 3.2 — Variety.

Let R be a ring and \mathfrak{a} an ideal in R. Let $\mathbf{V}(\mathfrak{a})$ denote the subset of $\operatorname{Spec}(R)$ consisting of those primes that contain \mathfrak{a} , i.e.

$$\mathbf{V}(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{a} \subseteq \mathfrak{p} \}. \tag{3.1}$$

We call $\mathbf{V}(\mathfrak{a})$ the variety of \mathfrak{a} .

Proposition 11. Let R be a ring, and \mathfrak{a} and \mathfrak{b} two ideals in R.

- 1. If $\mathfrak{a} \subset \mathfrak{b}$, then $\mathbf{V}(b) \subset \mathbf{V}(a)$.
- 2. If $V(b) \subset V(a)$, then $\mathfrak{a} \subset \sqrt{\mathfrak{b}}$.
- 3. $\mathbf{V}(\mathfrak{a}) = \mathbf{V}(\mathfrak{b})$ if and only if $\sqrt{\mathfrak{a}} = \sqrt{\mathfrak{b}}$.
- 4. $\mathbf{V}(\mathfrak{a}) \cup \mathbf{V}(\mathfrak{b}) = \mathbf{V}(\mathfrak{a} \cap \mathfrak{b}) = \mathbf{V}(\mathfrak{a}\mathfrak{b}).$
- 5. For any index set I, it is $\bigcap_{i \in I} \mathbf{V}(\mathfrak{a}_i) = \mathbf{V}(\sum_{i \in I} \mathfrak{a}_i)$.
- 6. $\mathbf{V}(\langle 0 \rangle) = \operatorname{Spec}(R)$.

Definition 3.3 — Zariski Topology.

Declaring $V(\mathfrak{a})$ to be closed sets induces a topology on $\operatorname{Spec}(R)$, the Zariski topology.

Given an element $f \in R$, we call the open set

$$\mathbf{D}(f) := \operatorname{Spec}(R) - \mathbf{V}(\langle f \rangle) \tag{3.2}$$

a principal open set. These sets form a basis for the topology of $\operatorname{Spec}(R)$; indeed, given any prime $\mathfrak{a} \not\subset \mathfrak{p}$, there is an $f \in \mathfrak{a} - \mathfrak{p}$, and so $\mathfrak{p} \in \mathbf{D}(f) \subset \operatorname{Spec}(R) - \mathbf{V}(\mathfrak{a})$. Further, $f, g \not\in \mathfrak{p}$ if and only if $fg \not\in \mathfrak{p}$ for any $f, g \in R$ and prime \mathfrak{p} , in other words

$$\mathbf{D}(f) \cap \mathbf{D}(g) = \mathbf{D}(fg) \tag{3.3}$$

3.1 Proofs

Proposition 12. Let R be a ring, and \mathfrak{a} and \mathfrak{b} two ideals in R.

- 1. If $\mathfrak{a} \subset \mathfrak{b}$, then $\mathbf{V}(b) \subset \mathbf{V}(a)$.
- 2. If $\mathbf{V}(b) \subset \mathbf{V}(a)$, then $\mathfrak{a} \subset \sqrt{\mathfrak{b}}$.
- 3. $\mathbf{V}(\mathfrak{a}) = \mathbf{V}(\mathfrak{b})$ if and only if $\sqrt{\mathfrak{a}} = \sqrt{\mathfrak{b}}$.
- 4. $\mathbf{V}(\mathfrak{a}) \cup \mathbf{V}(\mathfrak{b}) = \mathbf{V}(\mathfrak{a} \cap \mathfrak{b}) = \mathbf{V}(\mathfrak{a}\mathfrak{b}).$

Proof.

$$\mathbf{V}(\mathfrak{a}) \cup \mathbf{V}(\mathfrak{b}) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{a} \subset \mathfrak{p} \} \cup \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{b} \subset \mathfrak{p} \}$$
(3.4)

$$= \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{a} \subset \mathfrak{p} \text{ or } \mathfrak{b} \subset \mathfrak{p} \}$$

$$(3.5)$$

$$= \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{p} \} \tag{3.6}$$

$$= \mathbf{V}(\mathfrak{a} \cap \mathfrak{b}) \tag{3.7}$$

- 5. For any index set I, it is $\bigcap_{i \in I} \mathbf{V}(\mathfrak{a}_i) = \mathbf{V}(\sum_{i \in I} \mathfrak{a}_i)$.
- 6. $V(R) = \emptyset$.

Proof. $\mathbf{V}(R) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid R \subset \mathfrak{p} \} = \emptyset \text{ because by definition a prime ideal must not be the whole ring.}$

7. $\mathbf{V}(\langle 0 \rangle) = \operatorname{Spec}(R)$.

Proof.
$$\mathbf{V}(\langle 0 \rangle) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \langle 0 \rangle \subset \mathfrak{p} \} = \operatorname{Spec}(R) \text{ because all ideals contain the zeroideal.}$$

Proposition 13. The Zariski topology is indeed a topology.

3.2 Exercises

Exercise 3.4. Let R be a ring and $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(R)$. Show:

1. The closure $\overline{\{\mathfrak{p}\}}$ of \mathfrak{p} is equal to $\mathbf{V}(\mathfrak{p})$; that is, $\mathfrak{q} \in \overline{\{\mathfrak{p}\}}$ if and only if $\mathfrak{p} \subseteq \mathfrak{q}$.

Proof. Let
$$\mathfrak{q} \in \overline{\{\mathfrak{p}\}}$$
. If $f \in R - \mathfrak{p}$, then $\mathfrak{q} \in \mathbf{D}(f)$.

Exercise 3.5. Describe $\operatorname{Spec}(\mathbb{R})$, $\operatorname{Spec}(\mathbb{Z})$, $\operatorname{Spec}(\mathbb{C}[X])$, and $\operatorname{Spec}(\mathbb{R}[X])$.

Proof. 1. Spec(\mathbb{R}) = { $\langle 0 \rangle$ } because the only ideals in a field are the zeroideal and the field itself.

- 2. Spec(\mathbb{Z}) = { $p\mathbb{Z} \mid p$ is a prime number }.
- 3. Spec($\mathbb{C}[X]$) = { $\langle X-z\rangle \mid z\in\mathbb{C}$ } because $\mathbb{C}[X]$ is a PID and because of the fundamental theorem of algebra.
- 4. $\operatorname{Spec}(\mathbb{R}[X])$ has the ideals above and all polynomials of degree two with complex roots.

For any PID R, the points x_p of $\operatorname{Spec}(R)$ represents the ideals $\langle p \rangle$ with p prime or 0. The closed sets are the $\mathbf{V}(\langle a \rangle)$ with $a \in R$; moreover, $\mathbf{V}(\langle a \rangle) = \emptyset$ if a is a unit, $\mathbf{V}(\langle 0 \rangle) = R$, and $\mathbf{V}(\langle a \rangle) = x_{p_1} \cup \ldots \cup x_{p_s}$ if $a = p_1^{n_1} \cdots p_s^{n_s}$ with p_i a prime and $n_i \leq 1$.

Exercise 3.6. Let R be a ring, and let $X_1, X_2 \subset \operatorname{Spec}(R)$ closed subsets. Show that the following four statements are equivalent:

- 1. Then $X_1 \sqcup X_2 = \operatorname{Spec}(R)$; that is, $X_1 \cup X_2 = \operatorname{Spec}(R)$ and $X_1 \cap X_2 = \emptyset$.
- 2. There are complementary idempotents $e_1, e_2 \in R$ with $V(\langle e_i \rangle) = X_i$.

Proof. "1. to 2." Since X_1 and X_2 are closed subsets, there are ideals \mathfrak{a}_1 and \mathfrak{a}_2 such that

$$\operatorname{Spec}(R) = \mathbf{V}(\mathfrak{a}_1) \cup \mathbf{V}(\mathfrak{a}_2) = \mathbf{V}(\mathfrak{a}_1 \mathfrak{a}_2) \tag{3.8}$$

$$\emptyset = \mathbf{V}(\mathfrak{a}_1) \cap \mathbf{V}(\mathfrak{a}_2) = \mathbf{V}(\mathfrak{a}_1 + \mathfrak{a}_2) \tag{3.9}$$

If two variety are equal, the radical of the generating ideals are equal, hence $\sqrt{\langle 0 \rangle} = \sqrt{\mathfrak{a}_1 \mathfrak{a}_2}$ and $\sqrt{R} = \sqrt{\mathfrak{a}_1 + \mathfrak{a}_2}$.

Part IV Modules

Exact Sequences

Definition 4.1 — Exact Sequence.

Tensor Product

5.1 Definition

Definition 5.1 — Bilinear Maps.

Let R be a ring, and M, N, P modules. We call a map

$$\alpha: M \times N \longrightarrow P \tag{5.1}$$

bilinear if it is linear in each variable. Denote all these maps by $Bil_R(M, N; P)$. It is an R-module with sum and scalar multiplication performed valuewise.

Definition 5.2 — Tensor Product.

Let R be a ring, and M and N be R-modules.

5.2 Proofs

Proposition 14. $Bil_R(M, N; P)$ is a R-module.

5.3 Exercises

Exercise 5.3. Let R be a ring, and X and Y variables, then $R[X] \otimes R[Y] \simeq R[X,Y]$.

Proof.

Flatness

Lemma 1 (9.1). Let R be a ring, $\alpha: M \longrightarrow N$ a module homomorphism. Then there is a commutative diagram with two short exact sequences involving N