ECCV 2018

Deep Kalman Filtering Network for Video Compression Artifact Reduction

Guo Lu¹, Wanli Ouyang^{2,3}, Dong Xu², Xiaoyun Zhang¹, Zhiyong Gao¹, and Ming-Ting Sun⁴

Shanghai Jiao Tong University, China {luguo2014,xiaoyun.zhang, zhiyong.gao}@sjtu.edu.cn

The University of Sydney, Australia
{wanli.ouyang,dong.xu}@sydney.edu.au

The University of Sydney, SenseTime Computer Vision Research Group

University of Washington, USA

mts@uw.edu

Introduced by Qing Lyu on 7/31/2019

Contribution

- Proposed a deep Kalman filtering network (DKFN) to implement video compression artifact reduction
- Bridged the gap between the model-based methods and learningbased methods by Kalman model and deep neural network
- Achieved high accuracy compared with SOTA methods

3D image restoration

- 2D CNN: U-Net
- 3D CNN: V-Net, 2D-3D ConvNet
- Tri-planar CNN
- RNN

Kalman Filter

• Estimate a certain state according to this state's prediction and measurement results.

Prediction

- Example: Car position estimation
 - Known
 - previous state position
 - moving direction and speed
 - time
 - current state measurement
 - Goal: find current car position

Kalman Filter

Update

Predict

$$\widehat{X}_t^- = F_t \widehat{X}_{t-1} + B_t u_t \longrightarrow \text{Control vector}$$
 State-transition model

Posterior error covariance matrix

$$P_t^- = F_t P_{t-1}^{\uparrow} F_t^T + Q_t$$
 Covariance of process noise Prior error covariance matrix

Measurement profit residual

$$\widehat{Y}_t = Z_t - H_t \widehat{X}_t^-$$
Observation model

Profit residual covariance

$$S_t = H_t P_t^- H_t^T + R_t$$
 Covariance of observation noise

Optimal Kalman gain

$$\overset{\scriptscriptstyle{\perp}}{K_t} = P_t^- H_t^T S_t^{-1}$$

$$\hat{X}_t = \hat{X}_t^- + K_t \hat{Y}_t \qquad P_t = (I - K_t H_t) P_t^-$$

DKFN

DKFN

- Temporal Mapping Network
 - Generate $\hat{X}_t^ \mathcal{L}_f(\theta_f) = ||X_t - \mathcal{F}(\hat{X}_{t-1}, X_t^c; \theta_f)||_2^2$
- Linearization Network
 - Learn F_t $\mathcal{L}_m(\theta_m) = ||\hat{X}_t^- \mathcal{G}(\hat{X}_{t-1}, X_t^c; \theta_m) \hat{X}_{t-1}||_2^2$
- Measurement Network
 - Generate Z_t $\mathcal{L}_z(\theta_z) = ||X_t - (\mathcal{M}(X_t^c, R_t^c; \theta_z) + X_t^p)||_2^2$

Fine-tune

$$\mathcal{L}(\theta) = ||X_t - \hat{X}_t||_2^2$$

(b) Proposed deep Kalman filtering network

(a) Temporal Mapping Network.

(b) Linearization Network.

(c) Measurement network.

Experiment

Dataset

- Vimeo-90K
 - 4278 videos with 89800 independent clips
 - 448 × 256
 - 64612 clips for training
 - 7824 clips for evaluation

Training

- First train the temporal mapping network for 40 epochs
- Then train the linearization network
- Next train the measurement network for 40 epochs
- Fine-tune the whole model

Result

Fig. 4. Quantitative (PSNR/SSIM) and visual comparison of JPEG2000 artifact reduction on the Vimeo dataset for q=20.

				V-BM4D [47]		
Vimeo	q=20	36.11/0.960	37.26/0.967	35.75/0.959	36.92/0.966	37.93/0.971
	q=40	34.21/0.944	35.22/0.953	33.99/0.940	34.97/0.953	35.88/0.958

Table 1. Average PSNR/SSIM results on the Vimeo dataset for JPEG2000 artifact reduction (q=20,40).

Fig. 5. Quantitative (PSNR/SSIM) and visual comparison of different methods for HEVC artifact reduction on the Vimeo dataset at qp=37.

				HEVC-LF [1]	
Vimeo	qp=32	34.87/0.954	35.58/0.961	34.19/0.950	35.81/0.962
	qp=37	32.54/0.930	33.01/0.936	31.98/0.923	33.23/0.939

Table 2. Average PSNR/SSIM results on the Vimeo test sequences for HEVC artifact reduction (qp=32,37).

Conclusion

- Propose a DKFN model combines Kalman Filter with neural network for video compression artifact reduction
- Take advantage of
 - the recursive nature of Kalman filter
 - Representation learning ability of neural network
- Superiority over SOAT methods