DAY 11.5 - Static Routing

Static Routing

Review: Local & Connected Routes:


```
R2>en
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#int g0/0
R2(config-if)#ip address 192.168.12.2 255.255.255.0
R2(config-if) #no shutdown
R2(config-if)#int g0/1
R2(config-if)#ip address 192.168.24.2 255.255.255.0
R2(config-if)#no shutdown
R2(config-if)#exit
R2(config) #do show ip int brief
Interface
                         IP-Address
                                         OK? Method Status
                                                                                Protocol
GigabitEthernet0/0
                        192.168.12.2
                                         YES manual up
                                                                                up
GigabitEthernet0/1
                        192.168.24.2
                                          YES manual up
GigabitEthernet0/2
                         unassigned
                                          YES NVRAM administratively down down
                                          YES unset administratively down down
Vlan1
                         unassigned
   R2#show ip route
   Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
           D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
          {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
          E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
            - candidate default, U - per-user static route, o - ODR
           P - periodic downloaded static route
   Gateway of last resort is not set
         192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
   C
           192.168.12.0/24 is directly connected, GigabitEthernet0/0
            192.168.12.2/32 is directly connected, GigabitEthernet0/0
         192.168.24.0/24 is variably subnetted, 2 subnets, 2 masks
            192.168.24.0/24 is directly connected, GigabitEthernet0/1
            192.168.24.2/32 is directly connected, GigabitEthernet0/1
```

The following routes are automatically added to the routing table for each interface with an IP address configured:

1. c - Connected:

1. A route to the network the interface is connected to. (With the actual netmask configured on the interface).

2. L - Local:

1. A route to the actual IP address configured on the interface. (With a /32 netmask)

R2 knows how to reach its own IP addresses and destinations in its connected networks, **but** it doesn't know how to reach destinations in remote networks.

Knows:

- 192.168.12.0/24 (including 192.168.12.2/32)
- 192.168.24.0/24 (including 192.168.24.2/32)

Doesn't know:

- 192.168.1.0/24
- 192.168.13.0/24
- 192.168.34.0/24
- 192.168.4.0/24

Default Gateway

- End hosts like PC1 and PC4 can send packets directly to destinations within their connected network.
 - PC1 is connected to 192.168.1.0/24
 - PC4 is connected to 192.168.4.0/24

- To send packets to destinations outside their local network, they must send the packets to their **Default Gateway**.
 - Configuring interfaces on a Linux PC:
 - PC1 Linux Config:

```
iface eth0 inet static
address 192.168.1.10/24
gateway 192.168.1.1
```

PC4 Linux Config:

```
iface eth0 inet static
address 192.168.4.10/24
gateway 192.168.4.4
```

- The Default Gateway configuration is also called a Default Route:
 - It is a route to 0.0.0.0/0 = all netmask bits set to 0.
 - Includes all addresses from 0.0.0.0 to 255.255.255.255
 - The **Default Route** is the **LEAST** specific route possible, because it includes **All** the IP addresses.
 - 0.0.0.0/0 = 4,294,967,296 IP addresses.
 - The Local Route is the MOST specific route possible, because it includes One IP address.
 - 192.168.1.1/32 = 1 IP address.
- End hosts usually have no need for any more specific routes.
 - They just need to know that "To send packets outside my local network,"
 I should send them to my default gateway."

• Source IP: 192.168.1.10

DST IP: 192.168.4.10

DST MAC: R1's G0/0 MAC

- To learn R1's G0/0 MAC address, PC1 will first send an ARP Request to 192.168.1.1
- SRC MAC: PC1's eth0 MAC

- When R1 receives the frame from PC1, it will de-encapsulate it (remove L2 header/trailer) and look at the inside packet.
- It will check its routing table for the most specific matching route:

```
R1#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       {\tt E1} - OSPF external type 1, {\tt E2} - OSPF external type 2, {\tt E} - {\tt EGP}
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C
        192.168.1.0/24 is directly connected, GigabitEthernet0/0
L
        192.168.1.1/32 is directly connected, GigabitEthernet0/0
     192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
C
        192.168.12.0/24 is directly connected, GigabitEthernet0/1
        192.168.12.1/32 is directly connected, GigabitEthernet0/1
     192.168.13.0/24 is variably subnetted, 2 subnets, 2 masks
C
        192.168.13.0/24 is directly connected, GigabitEthernet0/2
        192.168.13.1/32 is directly connected, GigabitEthernet0/2
```

- R1 has no matching routes in its routing table.
 - It will drop the packet.
- To properly forward the packet, R1 needs a route to the destination network of 192.168.4.0/24.
 - Routes are instructions: "To send a packet to destinations in network
 192.168.4.0/24, forward the packet to Next Hop Y"
- There are two possible path packets from PC1 to PC4 can take:
 - 1. $PC1 \rightarrow R1 \rightarrow R3 \rightarrow R4 \rightarrow PC4$
 - 2. $PC1 \rightarrow R1 \rightarrow R2 \rightarrow R4 \rightarrow PC4$
 - For now, we will use the path via R3 and not R2
 - Though it is possible to configure the routers to:
 - Load-Balance between path 1 and path 2.
 - Use path 1 as the main path and path 2 as a backup path.

Static Route Configuration

- Each router in the path needs *TWO* routes:
 - a route to 192.168.1.0/24 (PC1 network) and
 - a route to 192.168.4.0/24 (PC4 network)
- This ensures Two-Way Reachability
 - PC1 can send packets to PC4 & Vice-Versa.
- Routers don't need routes to all networks in the path to the destination.
 - R1 doesn't need a route to 192.168.34.0/24, it only needs to know a route to R3. R3 will handle the route to 192.168.34.0/24 by itself.
 - R4 also doesn't need a route to 192.168.13.0/24, R3 will handle it.
- R1 already has a Connected Route to 192.168.1.0/24.
- R4 already has a Connected Route to 192.168.4.0/24
- The other routes (Non-Connected Routes) still needed to be manually configured using Static Route.

Router	Destination	Next-Hop	Note
R1	192.168.1.0/24	Connected	-
	192.168.4.0/24	192.168.13.3	R3's G0/0
R3	192.168.1.0/24	192.168.13.1	R1's G0/2
	192.168.4.0/24	192.168.34.4	R4's G0/1
R4	192.168.1.0/24	192.168.34.3	R3's G0/1
	192.168.4.0/24	Connected	-

- To allow PC1 and PC4 to communicate with each other over the network, we will configure the Static Routes on R1, R3, R4 based on the pre-planning table above.
- Use ip route ip-address netmask next-hop
 - Where:
 - ip-address: The **Destination**'s IP address.
 - netmask: The netmask of Destination's network.
 - next-hop: Next-Hop IP Address

Demo:

```
R1(config) #ip route 192.168.4.0 255.255.255.0 192.168.13.3
R1(config)#do show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter are
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C
        192.168.1.0/24 is directly connected, GigabitEthernet0/0
L
        192.168.1.1/32 is directly connected, GigabitEthernet0/0
     192.168.4.0/24 [1/0] via 192.168.13.3
     192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
        192.168.12.0/24 is directly connected, GigabitEthernet0/1
C
        192.168.12.1/32 is directly connected, GigabitEthernet0/1
\mathbf{L}
     192.168.13.0/24 is variably subnetted, 2 subnets, 2 masks
C
        192.168.13.0/24 is directly connected, GigabitEthernet0/2
        192.168.13.1/32 is directly connected, GigabitEthernet0/2
L
```

Added R1's Static Route via:

```
ip route 192.168.4.0 255.255.255.0 192.168.13.3
```

• Where:

- 192.168.4.0 = Destination Network
- 255.255.255.0 = Destination Netmask
- 192.168.13.3 = Next Hop
- A Code S Static Route is added.
 - The [1/0] display for Static Routes means:
 - [Administrative Distance / Metric]
 - The concept will be covered later.

```
R3(config) #ip route 192.168.1.0 255.255.255.0 192.168.13.1
R3(config) #ip route 192.168.4.0 255.255.255.0 192.168.34.4
R3(config) #do show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/24 [1/0] via 192.168.13.1
     192.168.4.0/24 [1/0] via 192.168.34.4
192.168.13.0/24 is variably subnetted, 2 subnets, 2 masks
        192.168.13.0/24 is directly connected, GigabitEthernet0/0
C
        192.168.13.3/32 is directly connected, GigabitEthernet0/0
L
     192.168.34.0/24 is variably subnetted, 2 subnets, 2 masks
        192.168.34.0/24 is directly connected, GigabitEthernet0/1
\mathbf{C}
        192.168.34.3/32 is directly connected, GigabitEthernet0/1
```

R3 needed 2 routes.

```
R4(config) #ip route 192.168.1.0 255.255.255.0 192.168.34.3
R4(config)#do show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
    192.168.1.0/24 [1/0] via 192.168.34.3
     192.168.4.0/24 is variably subnetted, 2 subnets, 2 masks
        192.168.4.0/24 is directly connected, GigabitEthernet0/2
ь
        192.168.4.4/32 is directly connected, GigabitEthernet0/2
     192.168.24.0/24 is variably subnetted, 2 subnets, 2 masks
C
        192.168.24.0/24 is directly connected, GigabitEthernet0/0
        192.168.24.4/32 is directly connected, GigabitEthernet0/0
     192.168.34.0/24 is variably subnetted, 2 subnets, 2 masks
C
        192.168.34.0/24 is directly connected, GigabitEthernet0/1
        192.168.34.4/32 is directly connected, GigabitEthernet0/1
L
```

R4 needed 1 route.

Testing Communication

If the ping is successful, it means that there is two-way reachability. PC1 can reach PC4 and vice-versa.

Packet traveling from PC1 to PC4:

*we will examine this step-by-step in the "Life of a Packet" video

Note the relationship between IP and MAC address. (**ARP**ing for the **MAC** of the next hop while the IP address stay the same until the end).

exit-interface

Instead of configuring next hop, we can configure an exit interface (just send a packet out of this) instead of explicitly telling the ip address of the next hop.

- ip route ip-address netmask exit-interface
- ip route ip-address netmask exit-interface next-hop

```
R2(config) #ip route 192.168.1.0 255.255.255.0 g0/0
%Default route without gateway, if not a point-to-point interface,
R2(config) #do show ip rou
Codes: L - local, C - connected, S - static, R - RIP, M - mobile,
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter a
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external typ
E1 - OSPF external type 1, E2 - OSPF external type 2, E - E
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
```

Gateway of last resort is not set

```
S 192.168.1.0/24 is directly connected, GigabitEthernet0/0
192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.12.0/24 is directly connected, GigabitEthernet0/0
192.168.12.2/32 is directly connected, GigabitEthernet0/0
192.168.24.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.24.0/24 is directly connected, GigabitEthernet0/1
192.168.24.2/32 is directly connected, GigabitEthernet0/1
```

Note: Specifying only the exit-interface without a next-hop will show the Static Route as directly connected.

It is better to specify next-hop instead of only having exit-interface and without specifying a next-hop.

Default Route

- A Default Route is a route to 0.0.0.0/0
 - `0.0.0.0/0 is the *least specific* route possible; it includes every possible IP address.
- If the router doesn't have any more specific routes that match a packet's destination IP address, the router will forward the packet using the **Default Route**.
- A default route is often used to direct traffic to the internet.
 - More specific routes are used for destinations in the internal corporate network.
 - Traffic to destinations outside of the internal network is sent to the internet.


```
R1(config)# ip route 0.0.0 0.0.0 203.0.113.2
R1(config)# do show ip route
!most codes omitted
    ia - IS-IS inter area, * - candidate default, U - per-user static route
!most codes omitted

Gateway of last resort is 203.0.113.2 to network 0.0.0.0

S* 0.0.0.0/0 [1/0] via 203.0.113.2
S 10.0.0.0/8 [1/0] via 192.168.12.2
S 172.16.0.0/16 [1/0] via 192.168.13.3
    192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.12.0/24 is directly connected, GigabitEthernet0/1
    192.168.13.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.13.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.13.0/24 is directly connected, GigabitEthernet0/0
    192.168.13.1/32 is directly connected, GigabitEthernet0/0
    203.0.113.0/24 is variably subnetted, 2 subnets, 2 masks
C 203.0.113.0/24 is directly connected, GigabitEthernet0/0
    203.0.113.0/24 is directly connected, GigabitEthernet0/2
L 203.0.113.1/32 is directly connected, GigabitEthernet0/2
```

- Gateway of last resort usually means the default route.
- Same structure of command as other ip route settings.

Packet Tracer Lab

Configuration

All devices have NO pre-configurations:

- Configure the PCs and routers according to the network diagram (hostnames, IP addresses, etc.) Remember to configure the gateway on the PCs. (You don't have to configure the switches)
- 2. Configure static routes on the routers to enable PC1 to successfully ping PC2.

Troubleshooting

PC1 and PC2 are unable to ping eachother.

There is one misconfiguration on each router.

Find and fix the misconfigurations.

You have successfully completed the lab when PC1 and PC2 can ping eachother.