

# **CUSTOMER APPROVAL SHEET**

| <b>Company Name</b> |             |
|---------------------|-------------|
| MODEL               | C090EAN01.1 |
| CUSTOMER            | Title:      |
| APPROVED            | Name :      |

| APPROVAL FOR SPECIFICATIONS ONLY (Spec. Ver. 0.3)          |
|------------------------------------------------------------|
| APPROVAL FOR SPECIFICATIONS AND ES SAMPLE (Spec. Ver. 0.3) |
| APPROVAL FOR SPECIFICATIONS AND CS SAMPLE (Spec. Ver. 0.3) |
| CUSTOMER REMARK:                                           |

1 Li-Hsin Rd. 2. Science-Based Industrial Park Hsinchu 300, Taiwan, R.O.C. Tel: +886-3-500-8899 Fax: +886-3-577-2730

For PROMATE Internal Use Only - Provided By prestonpeng On 2015/01/13



| Doc. Version | 0.3        |
|--------------|------------|
| Total Page   | 24         |
| Date         | 2014/12/05 |

# **Product Specification**9.0" COLOR TFT-LCD MODULE

MODEL NAME: C090EAN01.1

Model Name: C090EAN01.1

Planned Lifetime: From 2015/Jan To 2018/Apr
Phase-out Control: From 2017/Apr To 2018/Apr
EOL Schedule: 2018/Apr

< > >Preliminary Specification

< > Final Specification

Note: The content of this specification is subject to change.

© 2014 AU Optronics All Rights Reserved, Do Not Copy.



Page: 3/22

# **Record of Revision**

| Version | Revise Date | Page  | Content                            |
|---------|-------------|-------|------------------------------------|
| 0.0     | 2014/8/12   | All   | First draft.                       |
| 0.1     | 2014/09/05  | 17    | Modified power off sequence        |
|         |             | 18    | Added Max value of Response Time   |
| 0.2     | 2014/10/30  | 12    | Added IVDD Inrush and IVDDA Inrush |
|         |             | 18    | Modified Brightness SPEC           |
|         |             | 18    | Added Color Chromaticity SPEC      |
| 0.3     | 2014/12/05  | 16,17 | Modified Power on and off sequence |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         | `           |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |
|         |             |       |                                    |



Page: 4/22

# Contents

| <u>A.</u> | General Description                        | <u> 5</u>  |
|-----------|--------------------------------------------|------------|
| <u>B.</u> | Features                                   | <u> 5</u>  |
| <u>C.</u> | Physical Specifications                    | 6          |
| <u>D.</u> | 1. TFT LCD Panel  Outline Dimension        |            |
| <u>E.</u> | 1. TFT-LCD ModuleElectrical Specifications |            |
|           | 1. TFT LCD Panel Pin Assignment            | 8          |
|           | 2. Differential Input Data Format          | .10        |
|           | a. JEIDA format (DE mode)                  | . 10       |
|           | 3. Input Timing Diagram                    | .11        |
|           | 4. Absolute Maximum Ratings                | .12        |
|           | 5. DC Electrical Characteristics           | .12        |
|           | a. Power Specification                     | . 12       |
|           | b. Signal DC Electrical Characteristics    | . 13       |
|           | c. Backlight Driving Conditions (Note 1)   | . 14       |
|           | 6. AC Electrical Characteristics           | .14        |
|           | a. Input AC characteristics                | . 14       |
|           | b. Differential signal AC characteristics  | . 15       |
|           | 7. Power on/off sequence                   | .16        |
|           | a. Power on sequence:                      | . 16       |
|           | b. Power Off sequence:                     |            |
| <u>F.</u> | Optical specifications (Note 1, 2)         | <u> 18</u> |
| <u>G.</u> | Reliability Test Items(Note 1~3)           | 20         |
| Н.        | Packing and Marking                        | 21         |
|           | 1. Packing Form                            | .21        |
|           | 2. Module/Panel Label Information          | .22        |
|           | 3. Carton Label Information                | .22        |
|           | 4. Warehouse storage condition:            | 22         |



Page: 5/22

#### A. General Description

C090EAN01.0 is an a-Si type Thin Film Transistor Liquid crystal Display (TFT-LCD) with AHVA (Advanced Hyper-Viewing Angle) technology. This model is composed of a TFT-LCD, driver ICs, PCB (Printed Circuit Board), and a backlight unit.

#### **B.** Features

- 9.0"-inch display
- 1280 RGB x 720 resolution in RGB stripe dot arrangement
- High brightness
- Interfaces: LVDS (8bit JEIDA, DE mode)
- AHVA wide view technology
- RoHS compliance



Page: 6/22

# **C. Physical Specifications**

#### 1. TFT LCD Panel

| NO. | Item                | Unit | Specification                      | Remark |
|-----|---------------------|------|------------------------------------|--------|
| 1   | Display Resolution  | dot  | 1280 RGB(H)x 720(V)                |        |
| 2   | Active Area         | mm   | 198.72 (H) x 111.78 (V)            |        |
| 3   | Screen Size         | inch | 9.0(Diagonal)                      |        |
| 4   | 4 Dot Pitch         |      | 51.75 (R.G.B) x 155.25 (V)         |        |
| 5   | Color Configuration | _    | R. G. B. Stripe                    |        |
| 6   | 6 Color Depth       |      | 16.7 M colors                      |        |
| 7   | 7 Overall Dimension |      | 210.7 x 126.8 x 7.1                |        |
| 8   | 8 Weight            |      | TBD                                |        |
| 9   | Display Mode        | -    | <ul> <li>Normally Black</li> </ul> |        |
| 10  | Surface Treatment   | _    | AG                                 |        |

Note 1: Below figure shows dot stripe arrangement.



Note 2: Below figure shows dot stripe arrangement.





Page: 7/22

#### **D. Outline Dimension**

#### 1. TFT-LCD Module





Page: 8/22

#### **E. Electrical Specifications**

# 1. TFT LCD Panel Pin Assignment Recommended Connector: FH52-40S-0.5SH

|          | Recommended Connector: FH52-40S-0.5SH |          |                                                             |         |  |  |  |  |  |
|----------|---------------------------------------|----------|-------------------------------------------------------------|---------|--|--|--|--|--|
| No.      | Pin Name                              | I/O      | Description                                                 | Remarks |  |  |  |  |  |
| 1        | NC                                    |          | Dummy                                                       |         |  |  |  |  |  |
|          |                                       |          | Horizontal scan direction control.                          |         |  |  |  |  |  |
| 2        | SHLR                                  |          | "H" Left to Right; "L" Right to Left.                       |         |  |  |  |  |  |
| _        | SHLK                                  | '        | Internal pull-high. The external pull-up resister with 3.3k |         |  |  |  |  |  |
|          |                                       |          | ohm should be used for changing the direction.              |         |  |  |  |  |  |
|          |                                       |          | Vertical scan direction control.                            |         |  |  |  |  |  |
| 3        | UPDN                                  | 1        | "H" Down to Up; "L" Up to Down.                             |         |  |  |  |  |  |
|          | 0. 5.4                                | '        | Internal pull-low. The external pull-up resister with 3.3k  |         |  |  |  |  |  |
|          |                                       |          | ohm should be used for changing the direction.              |         |  |  |  |  |  |
| 4        | VDD                                   | PI       | Digital power supply voltage.                               |         |  |  |  |  |  |
| 5        | GND                                   | G        | Digital Ground.                                             |         |  |  |  |  |  |
| 6        | GRB                                   | I        | Global reset pin. (Low active)                              |         |  |  |  |  |  |
| 7        | NC                                    |          | Dummy                                                       |         |  |  |  |  |  |
| 8        | GND                                   | G        | Digital Ground.                                             |         |  |  |  |  |  |
| 9        | CLKP                                  |          | Positive LVDS differential clock input.                     |         |  |  |  |  |  |
| 10       | CLKN                                  | I        | Negative LVDS differential clock input.                     |         |  |  |  |  |  |
| 11       | GND                                   | G        | Digital Ground.                                             |         |  |  |  |  |  |
| 12       | PIND0                                 |          | Positive LVDS differential input.                           |         |  |  |  |  |  |
| 13       | NIND0                                 |          | Negative LVDS differential input.                           |         |  |  |  |  |  |
| 14       | GND                                   | G        | Digital Ground.                                             |         |  |  |  |  |  |
| 15       | PIND1                                 | I        | Positive LVDS differential input.                           |         |  |  |  |  |  |
| 16       | NIND1                                 |          | Negative LVDS differential input.                           |         |  |  |  |  |  |
| 17       | GND                                   | G        | Digital Ground.                                             |         |  |  |  |  |  |
| 18       | PIND2                                 |          | Positive LVDS differential input.                           |         |  |  |  |  |  |
| 19       | NIND2                                 | I        | Negative LVDS differential input.                           |         |  |  |  |  |  |
| 20       | GND                                   | G        | Digital Ground.                                             |         |  |  |  |  |  |
| 21       | PIND3                                 | I        | Positive LVDS differential input.                           |         |  |  |  |  |  |
| 22       | NIND3                                 | l        | Negative LVDS differential input.                           |         |  |  |  |  |  |
| 23       | GND                                   | G        | Digital Ground.                                             |         |  |  |  |  |  |
| 24       | GND                                   | G        | Digital Ground.                                             |         |  |  |  |  |  |
| 25       | VDD                                   | PI       | Digital power supply voltage.                               |         |  |  |  |  |  |
| 26       | VDD                                   | PI       | Digital power supply voltage.                               |         |  |  |  |  |  |
| 27       | GND                                   | G        | Digital Ground.                                             |         |  |  |  |  |  |
| 28       | NC                                    |          | Dummy                                                       |         |  |  |  |  |  |
| 29       | VDDA                                  | PI       | Analog power supply voltage.                                |         |  |  |  |  |  |
| 30       | VDDA                                  | PI       | Analog power supply voltage.                                |         |  |  |  |  |  |
| 31       | VDDA                                  | PI       | Analog power supply voltage.                                |         |  |  |  |  |  |
| 32<br>33 | VDDA<br>VDDA                          | PI<br>PI | Analog power supply voltage.                                |         |  |  |  |  |  |
| 34       | NC NC                                 | PI       | Analog power supply voltage.                                |         |  |  |  |  |  |
| 35       | GNDA                                  | G        | Dummy Analog Ground.                                        |         |  |  |  |  |  |
| 36       | GNDA                                  | G        | Analog Ground. Analog Ground.                               |         |  |  |  |  |  |
| 37       | GNDA                                  | G        | Analog Ground.  Analog Ground.                              |         |  |  |  |  |  |
| 38       | GNDA                                  | G        | Analog Ground.  Analog Ground.                              |         |  |  |  |  |  |
| 39       | GNDA                                  | G        | Analog Ground.                                              |         |  |  |  |  |  |
| 40       | GNDA                                  | G        | Analog Ground.  Analog Ground.                              |         |  |  |  |  |  |
|          | 0.10/1                                |          | , 3 2. Curiu.                                               |         |  |  |  |  |  |

Note1: I: Digital signal input, O: Digital signal output, G: GND, PI: Power input



Page: 9/22

Note2:



Note3: Outside Reset circuit





Page: 10/22

#### 2. Differential Input Data Format

#### a. JEIDA format (DE mode)



Fig. 1. LVDS input data JEIDA format



Page: 11/22

## 3. Input Timing Diagram





Fig. 2. Input Timing Diagram

| Parameter     |                         | Symbol                              | Min. | Тур. | Max. | Unit. | Remark |
|---------------|-------------------------|-------------------------------------|------|------|------|-------|--------|
| CLK Frequency |                         | F <sub>CLK</sub>                    | 58.4 | 58.7 | 75   | MHz   |        |
|               | Period                  | T <sub>H</sub>                      | 1340 | 1344 | 1470 | CLK   |        |
| HSYNC         | Horizontal display area | $T_{HD}$                            |      | 1280 | CLK  |       |        |
|               | Blanking                | T <sub>HBP</sub> + T <sub>HFP</sub> | 60   | 64   | 190  | CLK   |        |
|               | Period                  | T <sub>V</sub>                      | 726  | 728  | 850  | HS    |        |
| VSYNC         | Vertical display area   | $T_VD$                              |      | 720  |      | HS    |        |
| _             | Blanking                | T <sub>VBP</sub> + T <sub>VFP</sub> | 6    | 8    | 130  | HS    |        |



Page: 12/22

#### 4. Absolute Maximum Ratings

| Items                 | Symbol   | Val  | lues      | Unit  | Condition |  |
|-----------------------|----------|------|-----------|-------|-----------|--|
| items                 | Cyllibol | Min. | Max.      | Oilit | Condition |  |
| Power Voltage         | VDD      | -0.3 | 5         | V     | GND = 0 V |  |
| 1 Ower voltage        | VDDA     | -0.3 | 5         | V     | GND = 0 V |  |
| Input Signal Voltage  | Vi       | -0.3 | VDD + 0.3 | V     | GND = 0 V |  |
| Operation Temperature | Тора     | -30  | 85        | °C    | Ambient   |  |
| Storage Temperature   | Tstg     | -40  | 95        | °C    | Ambient   |  |

Note 1: Functional operation should be restricted under normal ambient temperature.

#### 5. DC Electrical Characteristics

The following items are measured under stable condition and suggested application circuit.

#### a. Power Specification

| Parameter    | Symbol       | Min | Тур | Max  | Unit | Notes  |
|--------------|--------------|-----|-----|------|------|--------|
|              | VDD          | 3   | 3.3 | 3.6  | V    |        |
|              | IVDD         | 120 | 150 | 200  | mA   | Note 1 |
| Power Supply | IVDD Inrush  | -   | -   | 500  | mA   | Note2  |
| Fower Supply | VDDA         | 3   | 3.3 | 3.6  | V    |        |
|              | IVDDA        | 200 | 420 | 690  | mA   | Note 1 |
|              | IVDDA Inrush | -   | -   | 1100 | mA   | Note2  |

Note 1: The typ. current value is using the following test pattern.



Fig. 3. Test pattern for power specification

Note 2: Both of IVDD and IVDDA inrush current are defined in following condition.



ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.



Page: 13/22

b. Signal DC Electrical Characteristics

| Parameter                                 | Symbol            | Min    | Тур | Max       | Unit | Notes  |
|-------------------------------------------|-------------------|--------|-----|-----------|------|--------|
| Input signal voltage                      | Vi                | -0.3   | -   | VDD + 0.3 | V    | Note 1 |
| Input high level voltage                  | V <sub>IH</sub>   | 0.7VDD | -   | VDD       | V    | Note 1 |
| Input low level voltage                   | V <sub>IL</sub>   | GND    | -   | 0.3VDD    | V    | Note 1 |
| Differential input high threshold         | R <sub>XVTH</sub> | 0.1    | -   | -         | V    | Note 2 |
| Differential input low threshold          | R <sub>XVTL</sub> | -      | -   | -0.1      | V    | Note 2 |
| Input voltage range (singled-end)         | R <sub>XVIN</sub> | 0.8    | -   | 1.6       | V    | Note 2 |
| Input differential voltage                | V <sub>ID</sub>   | 0.1    | -   | 0.6       | V    | Note 2 |
| Differential Input<br>Common Mode Voltage | R <sub>XVCM</sub> | 1.1    | 1.2 | 1.4       | V    | Note 2 |

Note 1: TTL interface signal DC characteristics Note 2: LVDS interface signal DC characteristic

## Single-end Signal



# **Differential Signal**



Fig. 4. LVDS DC characteristics diagram



Page: 14/22

c. Backlight Driving Conditions (Note 1)

| Parameter          | Symbol | Min.   | Тур. | Max. | Unit | Remark                 |
|--------------------|--------|--------|------|------|------|------------------------|
| LED Supply Current | IL     |        | 80   | 85   | mA   | single serial (Note 3) |
| LED Supply Voltage | $V_L$  |        |      | 20.4 | V    | single serial Note 3   |
| LED Life Time      | LL     | 10,000 |      |      | hr   | Note 2                 |

Note 1: light-bar has 18 pieces of LED (3 strings, 6 pieces for each string).

Note 2: LED life time defining the 80% decreasing of the original brightness is 10,000 hours under the

80 mA of LED current in 25 °C.

Note 3: The LED supply power is for 3 string of LED.

Note 4: The voltage capacity of LED driver IC must be over max. of LED Voltage.



Fig. 5. Light bar structure

#### Note 5:

| No. | Pin Name | I/O | Description      |
|-----|----------|-----|------------------|
| 1   | ANODE1   | Р   | LED power supply |
| 2   | ANODE2   | Р   | LED power supply |
| 3   | ANODE3   | Р   | LED power supply |
| 4   | NC       | -   | No Connection    |
| 5   | NC       | -   | No Connection    |
| 6   | CATHODE1 | G   | Ground           |
| 7   | CATHODE2 | G   | Ground           |
| 8   | CATHODE3 | G   | Ground           |

#### 6. AC Electrical Characteristics

#### a. Input AC characteristics

| Parameter              | Symbol    | Min. | Тур. | Max. | Unit | Remark             |
|------------------------|-----------|------|------|------|------|--------------------|
| VDD power on slew time | $T_{POR}$ | 1    | -    | 15   | ms   | From 0V to 90% VDD |
| GRB active pulse width | $T_GRB$   | 1    | -    | 20   | ms   | VDD=3.3V           |



Page: 15/22



Fig. 6. VDD and GRB timing diagram

b. Differential signal AC characteristics

| Parameter              | Symbol             | Min. | Тур. | Max. | Unit | Remark                     |
|------------------------|--------------------|------|------|------|------|----------------------------|
| Clock frequency        | R <sub>XFCLK</sub> | 25   | -    | 75   | MHz  |                            |
| Input data skew margin | $T_{RSKM}$         |      | -    | 1/4  | UI   | V <sub>ID</sub>   = 100 mV |



Fig. 7 LVDS AC characteristics diagram



Page: 16/22

#### 7. Power on/off sequence

The LCD adopts high voltage driver IC, so it could be permanently damaged under a wrong power on/off sequence. The suggested LCD power sequence is below:

# a. Power on sequence: $VDD\&VDDA \to GRB \to LVDS \to BKLEN$



Fig. 8. Power on sequence

#### Power on timing:

| Doromotor |      | Value |      | Units |  |
|-----------|------|-------|------|-------|--|
| Parameter | Min. | Тур.  | Max. | Units |  |
| T1        | 1    | -     | 15   | ms    |  |
| T2        | 1    | -     | -    | ms    |  |
| Т3        | 1    | -     | 300  | ms    |  |
| T4        | 300  | 350   | -    | ms    |  |



Page: 17/22

# b. Power Off sequence: BKLEN → LVDS → GRB → VDD&VDDA



Fig. 9. Power off sequence

#### Power off timing:

| Parameter |      | Units |      |        |  |
|-----------|------|-------|------|--------|--|
| Parameter | Min. | Тур.  | Max. | Oillis |  |
| T1        | 90   | 100   | -    | ms     |  |
| T2        | 1    | 30    | 300  | ms     |  |
| Т3        | 1    | 30    | 40   | ms     |  |
| T4        | 50   | -     | -    | ms     |  |



Page: 18/22

## F. Optical specifications (Note 1, 2)

| Item                                         | Symbol | Condition | Min.  | Тур.                 | Max.  | Unit              | Remark       |
|----------------------------------------------|--------|-----------|-------|----------------------|-------|-------------------|--------------|
| Response Time                                | Tr     | θ = 0°    | -     | TBD                  | 15    | ms                | Note 3       |
| Rise<br>Fall                                 | Tf     | 0 – 0     | -     | TBD                  | 15    | IIIS              | Note 5       |
| Viewing Angle Top<br>Bottom<br>Left<br>Right |        | CR ≥ 10   | -     | 80<br>80<br>80<br>80 | -     | deg.              | Note 7, 8    |
| Contrast ratio                               | CR     | θ = 0°    | 800   | 1000                 | -     | ,                 | Note 4, 5, 6 |
| Brightness                                   | $Y_L$  | θ = 0°    | 520   | 680                  | 4_    | cd/m <sup>2</sup> | Note 9       |
| White Chromaticity                           | Х      | θ = 0°    | 0.258 | 0.298                | 0.338 |                   |              |
| Write Chromaticity                           | Y      | θ = 0°    | 0.277 | 0.317                | 0.357 |                   |              |
| Red Chromaticity                             | Х      | θ = 0°    | 0.595 | 0.635                | 0.675 |                   |              |
| Ned Chromaticity                             | Υ      | θ = 0°    | 0.29  | 0.330                | 0.37  |                   | Note 10      |
| Green Chromaticity                           | Х      | θ = 0°    | 0.274 | 0.314                | 0.354 |                   | Note 10      |
| Green Chromaticity                           | Υ      | θ = 0°    | 0.562 | 0.602                | 0.642 |                   |              |
| Blue Chromaticity                            | Х      | θ = 0°    | 0.11  | 0.150                | 0.19  |                   |              |
| Blue Chromaticity                            | Y      | θ=0°      | 0.008 | 0.048                | 0.088 |                   |              |
| Uniformity                                   |        | -         | 80    |                      |       | %                 | Note 11      |

Note 1: Measurement should be performed in the dark room, optical ambient temperature = 25  $^{\circ}$ C, and backlight current I<sub>L</sub> = 80mA.

Note 2: To be measured in the center area of TFT-LCD with a field angle of 1° by Topcon luminance meter SR3, after 10 minutes operation and warm up 30 minutes.

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black state" to "white state" (falling time) and from "white state" to "black state" (rising time), respectively.





Page: 19/22

Note 4: Based on liquid crystal characteristics, the response time will become slower and the color of panel will become darker than the above optical specification when ambient temperature is below 25 °C.

Note 5: Contrast ratio is calculated with the following formula.

Contrastratio = Photo detector output when LCD is at "White" state

Photo detector output when LCD is at "Black" state

Note 6: White Vdata=V1 or V18

Black Vdata=V9 or V10

(For definition of V1, V9, V10 & V18, please refer to Appendix )

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 7: Definition of viewing angle: refer to figure as below.



- Note 8: Viewing angles are measured at the center of the panel when all the input terminals of LCD oanel are electrically opened.
- Note 9: Brightness is measured at the center of the display.
- Note 10: The viewing angles are measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.
- Note 11: Luminance Uniformity of these 9 points is defined as below: (1:4:4:1)



Uniformity =  $\frac{\text{minimum luminance in 9 points (1-9)}}{\text{maximum luminance in 9 points (1-9)}}$ 



Page: 20/22

### G. Reliability Test Items(Note 1~3)

| No. | Test items                                                    | Conditions                                                                                      |            |              | Remark                       |  |
|-----|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------|--------------|------------------------------|--|
| 1   | High temperature storage                                      | Ta= 95 °C                                                                                       |            | 240 Hrs      |                              |  |
| 2   | Low temperature storage                                       | Ta= -40 °C                                                                                      |            | 240 Hrs      |                              |  |
| 3   | High temperature operation                                    | Ta= 85 °C                                                                                       |            | 240 Hrs      |                              |  |
| 4   | Low temperature operation                                     | Ta= -30 °C                                                                                      |            | 240 Hrs      |                              |  |
| 5   | High temperature and high humidity                            | Ta= 60 °C, 90 % R                                                                               | RH         | 240 Hrs      | Operation                    |  |
| 6   | Heat shock                                                    | -30 °C ~ 85 °C / 100                                                                            | 0 cycles 1 | l Hrs/cycle  | Non-operation                |  |
| 7   | Shock                                                         | 100 G, 6 ms, ±X, ±Y, ±Z<br>3 times for each direction                                           |            |              |                              |  |
| 8   | Electrostatic Discharge                                       | Contact = ± 4 kV, class B<br>Air = ± 8 kV, class B                                              |            |              | IEC61000-4-2                 |  |
|     |                                                               | Frequency range                                                                                 | 8          | ~ 33.3 Hz    |                              |  |
|     |                                                               | Stoke                                                                                           |            | 1.3 mm       |                              |  |
| 9   | Vibration                                                     | Vibration Sweep 2.9 G, 33.3 ~ 4                                                                 |            | 33.3 ~ 400Hz | JIS D1601,A10<br>Condition A |  |
|     |                                                               | Cycle                                                                                           | 15 min.    |              | Condition A                  |  |
|     | 2 hours for each direction of X, Z<br>4 hours for Y direction |                                                                                                 |            |              |                              |  |
| 10  | Vibration (with carton)                                       | Random vibration:<br>0.015 G <sup>2</sup> /Hz from 5 ~ 200 Hz<br>–6 dB/Octave from 200 ~ 500 Hz |            |              | IEC 68-34                    |  |
| 11  | Drop (with carton)                                            | Height: 60 cm<br>1 corner, 3 edges, 6 surfaces                                                  |            |              |                              |  |

Note 1: Ta: Ambient temperature

In the standard condition, there is no display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.  $I_L = 80 \text{mA}$ Note 2:

Note 3:



Page: 21/22

# H. Packing and Marking

#### 1. Packing Form



Fig. 10. Packing diagram

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.



Page: 22/22

#### 2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for detailed location and size of the label. The label is composed of a 22-digit serial number with the following definition:

#### ABCDEFGHIJKLMNOPQRSTUV

For internal system usage and production serial numbers.

LAUO Module or Panel factory code, represents the final production factory to complete the Product Product version code, ranging from 0~9 or A~Z (for Version after 9)

-Week Code, the production week when the product is finished at its production process

Example:

501M06ZL06123456781Z05:

Product Manufacturing Week Code: WK50

Product Version: Version 1

Product Manufacturing Factory: M06

#### 3. Carton Label Information

The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is appearing in the following format:

#### ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton.

Date from 01 to 31

lacksquare Month, ranging from 1~9, A~C. A for Oct, B for Nov and C for Dec.

lacktriangle A.D. year, ranging from 1~9 and 0. The single digit code reprents the last number of the year

Refer to the drawing of packing format for the location and size of the carton label.

#### 4. Warehouse storage condition:

Room temperature: 25 +/- 5 degrees

Humidity: 30% ~ 70%