For this homework \mathbf{P}_3 is the vector space of polynomials of degree at most three and \mathbf{P}_2 is the vector space of polynomials of degree at most two. You may assume without proof that $\langle A \rangle$ and $\langle B \rangle$ are basis for \mathbf{P}_3 . Likewise $\langle E \rangle$, $\langle R \rangle$ and $\langle C \rangle$ are basis for \mathbf{P}_2 .

$$\mathbf{P}_{3} = \langle B \rangle = \left\langle \vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}, \vec{b}_{4} \right\rangle = \left\langle x^{3}, x^{2}, x, 1 \right\rangle$$

$$= \langle A \rangle = \left\langle \vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4} \right\rangle = \left\langle x^{3} - 2x^{2} + 2x + 1, 2x^{3} + 3x + 1, 2x^{3} + x^{2} + 3x + 1, -x^{3} + x^{2} + x + 1 \right\rangle$$

$$\mathbf{P}_{2} = \langle E \rangle = \langle \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3} \rangle = \langle x^{2}, x, 1 \rangle$$

$$= \langle R \rangle = \langle \vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3} \rangle = \langle x^{2}, x^{2} + x, x^{2} + x + 1 \rangle$$

$$= \langle C \rangle = \langle \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3} \rangle = \langle 4x^{2} + 3x + 1, 2x^{2} + 2x + 1, 3x^{2} + x \rangle$$

- **Q1.** Give the matrix representation of the derivative $d: \mathbf{P}_3 \to \mathbf{P}_2$ for
 - 1. $A \rightarrow E$;
 - $2. A \rightarrow R;$
 - 3. $A \rightarrow C$;
- **Q2.** Give the matrix representation of the identity map $id : \mathbf{P}_2 \to \mathbf{P}_2$ for
 - 1. $C \rightarrow R$;
 - 2. $R \rightarrow C$;
 - 3. $C \rightarrow E$;
- Q3. How are the matrices in Q1.2, Q1.3 and Q2.2 related?
- **Q4.** How are the matrices in Q2.1, Q2.2 related?
- **Q5.** Let $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 2 \\ -1 \end{pmatrix}_A$. Compute representation of the derivative of \vec{v} in basis R, C and E.