# Цель лабораторной работы

Изучить способы предварительной обработки данных для дальнейшего формирования модел

### Задание

### Требуется:

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в да пунктов можно использовать несколько различных наборов данных.
- 2. Для выбранного датасета (датасетов) на основе материалов <u>лекции</u> решить следующие
  - обработку пропусков в данных;
  - кодирование категориальных признаков;
  - масштабирование данных.

## Ход выполнения работы

Подключим все необходимые библиотеки и настроим отображение графиков:

```
import numpy as np
import pandas as pd
import seaborn as sns
import sklearn.impute
import sklearn.preprocessing

# Enable inline plots
%matplotlib inline

# Set plot style
sns.set(style="ticks")

# Set plots formats to save high resolution PNG
from IPython.display import set_matplotlib_formats
set_matplotlib_formats("retina")
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/\_testing.py:19: FutureWarning: Зададим ширину текстового представления данных, чтобы в дальнейшем текст в отчёте влеза

```
pd.set_option("display.width", 70)
```

Для выполнения данной лабораторной работы возьмём набор данных по зарплатам в Огайо:

```
data = pd.read_csv("/content/ohio.csv")
```

Посмотрим на эти наборы данных:

data.head()

| ₽ |   | Name                   | Job Titles                 | Department     | Full or Part- |
|---|---|------------------------|----------------------------|----------------|---------------|
|   | 0 | ABEJERO, JASON V       | POLICE OFFICER             | POLICE         |               |
|   | 1 | ABERCROMBIE IV, EARL S | PARAMEDIC I/C              | FIRE           |               |
|   | 2 | ABERCROMBIE, TIMOTHY   | MOTOR TRUCK DRIVER         | STREETS & SAN  |               |
|   | 3 | ABFALL, RICHARD C      | POLICE OFFICER             | POLICE         |               |
|   | 4 | ABIOYE, ADEWOLE A      | LIBRARY ASSOCIATE - HOURLY | PUBLIC LIBRARY |               |

#### data.dtypes

| ₽ | Name              | object  |
|---|-------------------|---------|
|   | Job Titles        | object  |
|   | Department        | object  |
|   | Full or Part-Time | object  |
|   | Salary or Hourly  | object  |
|   | Typical Hours     | float64 |
|   | Annual Salary     | object  |
|   | Hourly Rate       | object  |
|   | dtype: object     |         |

data.shape

┌→ (33161, 8)

### ▼ Обработка пропусков в данных

### Найдем все пропуски в данных:

```
data.isnull().sum()
```

| Г⇒ | Name              | 0     |
|----|-------------------|-------|
| _  | Job Titles        | 0     |
|    | Department        | 0     |
|    | Full or Part-Time | 0     |
|    | Salary or Hourly  | 0     |
|    | Typical Hours     | 25146 |
|    | Annual Salary     | 8015  |
|    | Hourly Rate       | 25146 |
|    | dtype: int64      |       |

Очевидно, что мы будем работать с колонкой Typical Hours.

Самый простой вариант — заполнить пропуски нулями:

sns.distplot(data["Typical Hours"].fillna(0));



Видно, что в данной ситуации это приводит к выбросам. Логичнее было бы приложениям без часов:

```
mean_imp = sklearn.impute.SimpleImputer(strategy="mean")
mean_rat = mean_imp.fit_transform(data[["Typical Hours"]])
sns.distplot(mean_rat);
```



Попробуем также медианное кол-во часови самое частое кол-во часов:

10 15 20 25 30 35 40

med\_imp = sklearn.impute.SimpleImputer(strategy="median")
med\_rat = med\_imp.fit\_transform(data[["Typical Hours"]])
sns.distplot(med\_rat);



freq\_imp = sklearn.impute.SimpleImputer(strategy="most\_frequent")
freq\_rat = freq\_imp.fit\_transform(data[["Typical Hours"]])
sns.distplot(freq\_rat);



Видно, что получили одинаковые результаты. Остановимся на обычном среднем значении:

```
data["Typical Hours"] = mean rat
```

### ▼ Кодирование категориальных признаков

Paccмотрим колонку Salary or Hourly:

```
types = data["Salary or Hourly"].dropna().astype(str)
types.value_counts()

[ Salary 25146
    Hourly 8015
    Name: Salary or Hourly, dtype: int64
```

Выполним кодирование категорий целочисленными значениями:

```
le = sklearn.preprocessing.LabelEncoder()
type_le = le.fit_transform(types)
print(np.unique(type_le))
le.inverse_transform(np.unique(type_le))

[0 1]
    array(['Hourly', 'Salary'], dtype=object)
```

Выполним кодирование категорий наборами бинарных значений:

```
type_oh = pd.get_dummies(types)
type oh.head()
```

| C→ |   | Hourly | Salary |
|----|---|--------|--------|
|    | 0 | 0      | 1      |
|    | 1 | 0      | 1      |
|    | 2 | 1      | 0      |
|    | 3 | 0      | 1      |
|    | 4 | 1      | 0      |

```
type_oh[type_oh["Hourly"] == 1].head()
```

| С→ |    | Hourly | Salary |
|----|----|--------|--------|
|    | 2  | 1      | 0      |
|    | 4  | 1      | 0      |
|    | 11 | 1      | 0      |
|    | 14 | 1      | 0      |
|    | 17 | 1      | 0      |

# Масштабирование данных

Для начала попробуем обычное MinMax-масштабирование:

```
mm = sklearn.preprocessing.MinMaxScaler()
sns.distplot(mm.fit_transform(data[["Typical Hours"]]));
```



Результат вполне ожидаемый и вполне приемлемый. Но попробуем и другие варианты, напри оценки:

```
ss = sklearn.preprocessing.StandardScaler()
sns.distplot(ss.fit_transform(data[["Typical Hours"]]));
```

₽



Также результат ожидаемый, но его применимость зависит от дальнейшего использования.

