Secret Sharing

CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

Problem Setting

- I have a secret message m, and we have 3 users,
 Alice, Bob, and Charlie
 - E.g. m = 123-456-789 (my SSN)
- I want to share message m with the 3 users.
- Attacker can compromise at most 2 users
- Goal: I can still recover this m & minimizing the privacy leakage if (at most 2) users are compromised

- 3 users: Alice, Bob & Charlie
- Secret message: m = 123-456-789
- Solution 1: I give
 - Alice a copy of 123-456-789
 - Bob a copy of 123-456-789
 - Charlie a copy of 123-456-789
 - I delete my copy of SSN
- I contact any user, I can recover SSN

- Solution 1: I give
 - Alice a copy of 123-456-789
 - Bob a copy of 123-456-789
 - Charlie a copy of 123-456-789
- Attacker compromises any user, then my entire SSN is completely leaked
- Not very good solution

- 3 users: Alice, Bob & Charlie
- Secret message: m = 123-456-789
- Solution 2: I give
 - Alice 123-xxx-xxx
 - Bob xxx-456-xxx
 - Charlie xxx-xxx-789
 - I delete my copy of SSN
- I contact all 3 users, I can recover my SSN

- Solution 2: I give
 - Alice 123-xxx-xxx; Bob xxx-456-xxx; Charlie xxxxxx-789
- Attacker compromises (at most 2 users)
 - Alice + Bob: 123-456-xxx
 - Alice + Charlie: 123-xxx-789
 - Bob + Charlie: xxx-456-789
- Attacker gets at most 2/3 information, better than S1

- Cincinnati Bell or Duke Energy
 - Custom Service: Please provide last 4 digits of SSN
- Attacker compromises Bob + Charlie
 - Bob + Charlie: xxx-456-789
 - Last 4 digits: 6789
- Custom Service thinks Attacker is me
 - Attacker can change my services

- 3 users: Alice, Bob & Charlie
- Secret message: m = 123-456-789
- Solution 3:
 - I give Alice 1xx-4xx-7xx
 - I give Bob x2x-x5x-x8x
 - I give Charlie xx3-xx6-xx9
 - I delete my copy of SSN
- I contact all 3 users, I can recover my SSN

- Solution 3: I give
 - Alice 1xx-4xx-7xx; Bob x2x-x5x-x8x; Charlie xx3-xx6-xx9
- Attacker compromises (at most 2 users)
 - Alice + Bob: 12x-45x-78x
 - Alice + Charlie: 1x3-4x6-7x9
 - Bob + Charlie: x23-x56-x89
- Attacker cannot have last 4 digits, better than S2

- Attacker compromises (at most 2 users)
 - Alice + Bob: 12x-45x-78x
 - Alice + Charlie: 1x3-4x6-7x9
 - Bob + Charlie: x23-x56-x89
- Attacker gets 2/3 information, which makes <u>brute-force</u> much easier
 - Only need to guess another 3 digits.

123456789

- Solution 4:
 - Horizontally divide 123 456 789 into 3 pieces
 - Alice blue piece, Bob brown piece, Charlie purple piece
 - I contact all 3 users, can recover my SSN
- Attacker compromises Alice + Bob

192156720

Attacker compromises Bob + Charlie

Attacker compromises Alice + Charlie

- Still easy to recover/guess almost all information
- Any other solutions?

Secret Sharing

- I divide my SSN into 3 pieces with SS
 - Give Alice 1st piece
 - Give Bob 2nd piece
 - Give Charlie 3rd piece
 - I contact all 3 users, I can recover my SSN
- Attacker compromises any 1 or 2 users
 - 0 information about my SSN
 - Better than all the previous solutions

- Basic idea:
 - Given 1 point, infinite number of lines
 - 2 points define a unique line

- Basic idea:
 - Given 2 points, infinite number of parabolas
 - 3 points define a unique parabola

- Basic idea:
 - k points define a unique k-1 degree polynomial
 - E.g., 2 points define a unique 1 degree polynomial
 - y = ax + b

- 1 degree polynomial: y = ax + b
- Given 2 points $(x_1,y_1) = (0,1), (x_2,y_2) = (2,0)$
 - $1 = y_1 = ax_1 + b = 0*a + b \longrightarrow b = 1$
 - $0 = y_2 = ax_2 + b = 2*a + 1 \longrightarrow a = -1/2$
- polynomial is y = -0.5x + 1

- I set c as a secret message m
- Randomly choose a and b
- Obtain a 2-degree polynomial y = ax² + bx + c
- Generate 3 random points with $y = ax^2 + bx + c$
- Give 1 point to Alice; 1 point to Bob; 1 point to Charlie
- Attacker compromises (at most) 2 users
 - 2 points does not recover the polynomial (i.e., m)
 - Attacker has 0 information about my SSN

- 3 points define a unique 2 degree polynomial
- $y = ax^2 + bx + c$
- I set c as a secret message m
- Randomly choose a and b
- Generate 3 random points with $y = ax^2 + bx + c$
- Give 1 point to Alice; 1 point to Bob; 1 point to Charlie
- With 3 points, I can recover polynomial, i.e., m

- Example: 2 degree polynomial: $y = ax^2 + bx + c$
- Assume secret is c = m = 1234
- I choose a = 94 and b = 166
- $y = 94x^2 + 166x + 1234$
- I choose $x_1 = 1$, $x_2 = 2$, $x_3 = 3$
 - $y_1 = 94*1 + 166*1 + 1234 = 1494$
 - $y_2 = 94*4 + 166*2 + 1234 = 1942$
 - $y_3 = 94*9 + 166*3 + 1234 = 2578$

- I choose $x_1 = 1$, $x_2 = 2$, $x_3 = 3$
 - y1 = 94*1 + 166*1 + 1234 = 1494
 - y2 = 94*4 + 166*2 + 1234 = 1942
 - y3 = 94*9 + 166*3 + 1234 = 2578
- I obtain 3 points $(x_1, y_1) = (1, 1494), (x_2, y_2) = (2, 1942), (x_3, y_3) = (3, 2578)$
- I give Alice (x₁, y₁), Bob (x₂, y₂), Charlie (x₃, y₃)
- I delete polynomial $y = 94x^2 + 166x + 1234$

- Alice has $(x_1, y_1) = (1, 1494)$
- Bob has $(x_2, y_2) = (2, 1942)$
- Charlie has $(x_3, y_3) = (3, 2578)$
- Attacker compromises Alice + Bob
 - (x₁, y₁) + (x₂, y₂) cannot recover polynomial
- Attacker compromises Alice + Charlie
 - (x₁, y₁) + (x₃, y₃) cannot recover polynomial

- Alice has $(x_1, y_1) = (1, 1494)$
- Bob has $(x_2, y_2) = (2, 1942)$
- Charlie has $(x_3, y_3) = (3, 2578)$
- Attacker compromises Bob + Charlie
 - (x₂, y₂) + (x₃, y₃) cannot recover polynomial
- Attacker has 0 info about my secret
- I get the 3 points, can recover my secret (with some computation)

- Practice: 2 degree polynomial: $y = ax^2 + bx + c$
- Assume secret is c = m = 1234
- I choose a = 94 and b = 166
- $y = 94x^2 + 166x + 1234$
- I choose $x_1 = 4$, $x_2 = 5$, $x_3 = 6$
 - $y_1 = ??$
 - $y_2 = ??$
 - $y_3 = ??$

- Practice: 2 degree polynomial: $y = ax^2 + bx + c$
- Assume secret is c = m = 1234
- I choose a = 94 and b = 166
- $y = 94x^2 + 166x + 1234$
- I choose $x_1 = 4$, $x_2 = 5$, $x_3 = 6$
 - $y_1 = 94*16 + 166*4 + 1234 = 3402$
 - $y_2 = 94*25 + 166*5 + 1234 = 4414$
 - $y_3 = 94*36 + 166*6 + 1234 = 5614$

- Practice: 2 degree polynomial: $y = ax^2 + bx + c$
- Assume secret is c = m = 1234
- I choose a = 94 and b = 166
- $y = 94x^2 + 166x + 1234$
- Can I choose $x_1 = 0$ and give Alice (x_1, y_1) ?

- Practice: 2 degree polynomial: $y = ax^2 + bx + c$
- Assume secret is c = m = 1234
- I choose a = 94 and b = 166
- $y = 94x^2 + 166x + 1234$
- Can I choose $x_1 = 0$?
 - $y_1 = 94*0 + 166*0 + 1234 = 1234 = c = m$
 - I give Alice (x₁, y₁)
 - Attacker compromises Alice, learns secret m

Problem Setting Changed

- There is a secret message m, and we have 2 users,
 Alice and Bob
 - E.g. m = 123-456-789 (my SSN)
- I want to share message m with the 2 users.
- I recover secret m by contacting the 2 users
- Attacker can compromise at most 1 user

Problem Setting Changed

- I want to share secret m with the 2 users.
- I recover secret m by contacting the 2 users
- Attacker can compromise at most 1 user
- Example: which polynomial should I use?
 - 1 degree: y = ax + b
 - 2 degree: $y = ax^2 + bx + c$
 - 3 degree: $y = ax^3 + bx^2 + cx + d$

- I want to share secret m with the 2 users.
- I recover secret m by contacting the 2 users
- Attacker can compromise at most 1 user
- I need to 2 points to recover secret m
- 2 points define a unique 1 degree polynomial
- So I choose 1 degree: y = ax + b
- With 1 point, attacker cannot recover the polynomial

- Practice: 1 degree polynomial: y = ax + b
- Assume secret is b = m = 1234
- I choose a = 41
- y = 41x + 1234
- I choose $x_1 = 1$, $x_2 = 2$
 - $y_1 = ??$
 - $y_2 = ??$

- Practice: 1 degree polynomial: y = ax + b
- Assume secret is b = m = 1234
- I choose a = 41
- y = 41x + 1234
- I choose $x_1 = 1$, $x_2 = 2$
 - $y_1 = 41*1 + 1234 = 1275$
 - $y_2 = 41^2 + 1234 = 1316$
- I give Alice (x₁, y₁) and give Bob (x₂, y₂)

Problem Setting Changed

- There is a secret message m, and we have 7 users,
 Alex, Matt, Kurt, Kyle, Ryan, Dan and Will
 - E.g. m = 123-456-789 (my SSN)
- I want to share message m with the 7 users.
- I recover secret m by contacting the 7 users
- Attacker can compromise at most 6 users

Problem Setting Changed

- I want to share secret m with the 7 users.
- I recover secret m by contacting the 7 users
- Attacker can compromise at most 6 users
- Practice: which polynomial should I use?
 - 5 degree: $y = ax^5 + bx^4 + cx^3 + dx^2 + ex + f$
 - 6 degree: $y = ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g$
 - 7 degree: $y = ax^7 + bx^6 + cx^5 + dx^4 + ex^3 + fx^2 + gx + h$

- I want to share message m with 7 users.
- I recover secret m by contacting any 7 users
- Attacker can compromise at most 6 users
- I need to 7 points to recover secret m
- 7 points define a unique 6 degree polynomial
- So I choose 6 degree polynomial
- With 6 points, attacker cannot recover the polynomial

Problem Setting Changed

- There is a secret message m, and we have 7 users:
 Alex, Matt, Kurt, Kyle, Ryan, Dan and Will
 - E.g. m = 123-456-789 (my SSN)
- I want to share message m with 7 users.
- I recover secret m by contacting any 4 users
 - E.g. Alex, Matt, Kurt and Will
 - E.g. Kurt, Kyle, Ryan and Dan
- Attacker can compromise at most 3 users

Problem Setting Changed

- I want to share message m with 7 users.
- I recover secret m by contacting any 4 users
- Attacker can compromise at most 3 users
- Practice: which polynomial should I use?
 - 3 degree: $y = ax^3 + bx^2 + cx + d$
 - 4 degree: $y = ax^4 + bx^3 + cx^2 + dx + e$
 - 6 degree: $y = ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g$

- I want to share message m with 7 users.
- I recover secret m by contacting any 4 users
- Attacker can compromise at most 3 user
- I need to 4 points to recover secret m
- 4 points define a unique 3 degree polynomial
- So I choose 3 degree: $y = ax^3 + bx^2 + cx + d$
- With 3 points, attacker cannot recover the polynomial