Symulacje komputerowe w fizyce: metoda Monte Carlo (równowagowa)

Jakub Tworzydło

Instytut Fizyki Teoretycznej

6 i 7/12/2022 Pasteura, Warszawa

Wprowadzenie

2 Mode

Wprowadzenie

2 Model

Wprowadzenie

2 Model

Wprowadzenie

2 Model

Przypomnienie metod statystycznych

- układ składa się z wielu prostych części (cząsteczek)
- praktycznie i fundamentalnie: ścisłe rozwiązania niemożliwe (chaos)
- makroskopowe własności gazu są dobrze określone, przewidywalne

Przypomnienie metod statystycznych

- układ składa się z wielu prostych części (cząsteczek)
- praktycznie i fundamentalnie: ścisłe rozwiązania niemożliwe (chaos)
- makroskopowe własności gazu są dobrze określone, przewidywalne

⇒ centralna idea: pracujmy z prawdopodobieństwem znalezienia układu w pewnym stanie

Statystyczne metody symulacyjne

- REALISTYCZNA DYNAMIKA (MD): układ hamiltonowski, poddany działaniu termostatu
- FIKCYJNA DYNAMIKA (Monte Carlo): przygotowuje układ w stanie przypadkowym, reprezentatywnym dla parametrów makroskopowych

5/24

Układ w stanie równowagi

- zespół kanoniczny: temperatura T ustalana przez duży rezerwuar
- prawdopodobieństwo obsadzenia stanu wg. rozkładu Boltzmana

$$p_X = \frac{1}{Z}e^{-E_X/k_BT},$$

gdzie X jest stanem układu, E_X jego energią

• stała normalizacji nazywana jest funkcją partycji (rozdziału)

$$Z = \sum_{X} e^{-E_{X}/k_{B}T},$$

lub po prostu sumą statystyczną

Obserwable

- warości oczekiwane wielkości fizycznych
- energia wewnętrzna

$$U = \langle E \rangle = \frac{1}{Z} \sum_{X} E_{X} e^{-\beta E_{X}},$$

gdzie $\beta = 1/k_BT$

Obserwable

- warości oczekiwane wielkości fizycznych
- energia wewnętrzna

$$U = \langle E \rangle = \frac{1}{Z} \sum_{X} E_{X} e^{-\beta E_{X}},$$

gdzie $\beta = 1/k_BT$

ciepło właściwe

$$C = \frac{\partial U}{\partial T}$$

jest średnią kwadratową fluktuacją (wariancją) energii

$$\frac{C}{k\beta^2} = \langle (E - \langle E \rangle)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2$$

Wprowadzenie

2 Model

Energia momentów magnetycznych (Hamiltonian)

$$E = -J\sum_{\langle ij \rangle} s_i s_j - B\sum_i s_i$$

- spin $s_i = \pm 1$ w węzłach sieci i
- J oddziaływanie pomiędzy najbliższymi sąsiadami (ij)
- $X = \{s_i\}_{i=1...N}$ stan układu, całkowita liczba stanów 2^N
- zewnętrzne pole magnetyczne B

Fizyka modelu Isinga

- fizycznie umotywowany model układu magnetycznego
- gaz sieciowy w zespole wielkim kanonicznym, absorbcja atomów na powierzchni, termodynamika stopu (mapują się na model Isinga)

Znaczenie modelu Isinga

- ścisłe rozwiązanie przejścia fazowego w 2D przez Onsagera (1944)
- analitycznie w 3D ważne wyzwanie (np. gaz strun fermionowych Poliakova)
- zabawka w ręku teoretyków do testowania pomysłów, podejść i metod: sieciowe teorie pola

Wielkości obliczane w modelu Isinga

• funkcja rozkładu

$$Z = \sum_{X} e^{-\beta E(X)}$$

średnie termodynamiczne

$$\langle Q \rangle = \frac{1}{Z} \sum_{X} Q(X) e^{-\beta E(X)}$$

Wielkości obliczane w modelu Isinga

średnia magnetyzacja na spin

$$\langle m \rangle = \frac{1}{N} \langle \sum_{i} s_{i} \rangle$$

podatność magnetyczna

$$\chi = \frac{\partial \langle m \rangle}{\partial B} = \beta N (\langle m^2 \rangle - \langle m \rangle^2)$$

(odpowiedź na małe zaburzenie polem B)

Jakościowe zachowanie modelu Isinga

- niskie temperatury: spiny zorientowane, wszystkie w tym samym kierunku
- wysokie temperatury: spiny fluktują, brak magnetyzacji

13/24

Związek z fazą ciecz-gaz

14/24

- spin do góry = obecność atomu
- faza ciekła: wszędzie atomy, z nielicznymi wakancjami
- interesują nas własności w pobliżu punktu krytycznego

Jak rozwiązać?

Szkielet skryptu Pythona

```
for X in tqdm(range(2**Nbig)):
 s = np.array( list(np.binary repr(X,width=Nbig)), dtype=np.int)
 s = (s*2-1).reshape(Lbig,Lbig)
 a = np.roll(s, 1,axis=0)
 a += np.roll(s, -1, axis=0)
 a += np.roll(s, 1,axis=1)
 a += np.roll(s, -1, axis=1)
 boltz[X] = np.exp(beta*np.sum(s*a)/2.)
 mag[X] = np.sum(s*1.0/Nbig)
```

Ścisłe sumowanie

Sieć 5×5 , liczba stanów: $2^{25} = 33554432$

Ścisłe sumowanie

Sieć 5 × 5, liczba stanów: $2^{25} = 33554432$

Uwaga: 6×6 wymaga $2^{36}/2^{25} = 2048$ więcej obliczeń

Idea algorytmu kąpieli cieplnej (heat-bath)

- termalizujemy pojedynczy (losowo wybrany) spin
- ustaw spin zgodnie z rozkładem termicznym przy założeniu, że orientacje spinów sąsiednich są ustalone

Kąpiel cieplna (heat-bath) dla modelu Isinga

- 1. Wybierz losowo spin w węźle i
- 2. Oblicz liczbę sąsiadów "do góry"

$$h_i = \sum_{j: \langle ij \rangle} s_j$$

Oblicz energię konfiguracji ze spinem i
(albo do góry +1 albo do dołu −1)

$$E_{+} = -Jh_{i} - B; \quad E_{-} = +Jh_{i} + B$$

- 4. Ustaw spin jako +1 z prawdopodobieństwem $p = \frac{e^{-\beta E_+}}{e^{-\beta E_+} + e^{-\beta E_-}}$ (lub -1 z prawd. 1 p)
- Obliczaj średnie z obserwabli dla konfiguracji wygenerowanych co 1MCS (krok MC)
 1MCS – po odwiedzeniu (średnio) każdego spinu w układzie

Wprowadzenie

2 Mode

Przykładowe wyniki: sieć 100x100

- przejście ostre (rozbieżność) w granicy termodynamicznej
- temperatura krytyczna T_c rozdziela fazy: paramagnetyczną i ferromagnetyczną
- dla m. Isinga $T_{\it C}=\frac{2}{\log(1+\sqrt{2})}\simeq 2.27$

Przykładowe wyniki: sieć 100x100

- przejście ostre (rozbieżność) w granicy termodynamicznej
- temperatura krytyczna T_c rozdziela fazy: paramagnetyczną i ferromagnetyczną
- dla m. Isinga $T_C = \frac{2}{\log(1+\sqrt{2})} \simeq 2.27$
- linie ciągłe rozwiązanie Onsagera

Model Isinga w pobliżu punktu krytycznego

- ullet powstają klastry uporządkowanych spinów o typowym rozmiarze ξ
- symulacja dla: 10, 20, 40, 60, 100, 200, 400, 1000 MCS

Własności krytyczne

- rozbieżna skala długości $\xi \propto |t|^{-\nu}$, gdzie temp. zredukowana $t = \frac{T T_c}{T_c}$
- tzw. klasa uniwersalności modelu Isinga (w 2D oraz 3D).

Wykładniki krytyczne: $m \propto t^{\beta}$, $\chi \propto t^{-\gamma}$, $C \propto t^{-\alpha}$

D	2	3	4 (MF)
ν	1	0.63	1/2
\boldsymbol{eta}	1/8	0.32	1/2
α	0	0.11	0
γ	7/4	1.23	1

• wymiar fraktalny klastra w punkcie krytycznym $D_f = \frac{1}{2}(D + \frac{\gamma}{\nu})$

Podsumowanie

- Metoda symulacji układów w równowadze termodynamicznej
- Pomocnicza konstrukcja procesów Markowa (za tydzień)
- Model Isinga: najprostsza teoria pola i krytyczność