```
import pandas
import numpy
import datetime
import math
import warnings
import missingno as msno
pandas.set option('display.max columns', 500)
warnings.simplefilter('ignore')
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.colors import ListedColormap
from sklearn import preprocessing
from sklearn.decomposition import PCA
from sklearn.decomposition import IncrementalPCA
from sklearn.model selection import train test split
from sklearn.preprocessing import MinMaxScaler
from statsmodels.stats.outliers influence import
variance inflation factor
from sklearn.metrics import precision recall curve
from sklearn.feature selection import RFE
from sklearn.linear model import LogisticRegression
from sklearn import metrics
from sklearn import sym
import statsmodels.api as sm
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import KFold
from sklearn.model selection import GridSearchCV
from sklearn.experimental import enable iterative imputer
from sklearn.impute import IterativeImputer
from sklearn.linear model import BayesianRidge
from sklearn.impute import KNNImputer
from imblearn.over sampling import SMOTE
from collections import Counter
```

Setting Up

Visualization Functions

```
def ratio_plot_data(data, var, target, nBins):
    plot_data = data.loc[data[var].isnull()==False]
```

```
m=min(data[var])
    M=max(data[var])
    bins=list(numpy.linspace(m,M,nBins+1,endpoint=True))
    plot data[var+' bins'] = pandas.cut(plot data[var],bins=bins)
    plot data = plot data.groupby(var+' bins').agg({target:
['sum','count']})
    plot data.columns = ['issue count', 'total count']
    plot_data['issue%'] = plot_data['issue_count'] /
plot data['total count']
    plot_data = plot_data.reset_index()
    plot data[var+' bins'] = plot_data[var+'_bins'].apply(lambda
x: str(round(x.left, 1)) + - + str(round(x.right, 1))
    return plot data
def ratio plots_num(data, var_list, target, nBins, c_palette):
    var list 2 = []
    for var in var list:
        try:
            plot data = ratio plot data(data, var, target, nBins)
            var list 2.append(var)
        except:
            continue
    cols = 3
    rows = math.ceil(len(var list 2)/3)
    plt.subplots(rows, cols, figsize=(20, rows * 7))
    index = 1
    for var in var list 2:
        plt.subplot(rows, cols, index)
        try:
            plot data = ratio plot data(data, var, target, nBins)
        except:
            continue
        sns.barplot(plot data[var+'_bins'].astype('str'),
plot data['issue%'], palette=c palette)
        plt.xticks(rotation=45)
        plt.title(var)
        plt.xlabel(var)
        plt.ylabel("Converted %")
        index=index+1
    plt.tight_layout()
    plt.show()
Utility Functions
def format date(x):
    if str(x) == 'nan':
        return x
    else:
        return datetime.datetime.strptime(x,"%m/%d/%Y")
```

```
def imputation(data, column, value):
    data.loc[data[column].isnull()==True,column] = value
    return data
def missing_value_percentage(data):
    missing value summary =
pandas.DataFrame(\overline{data.isnull().sum()*100/data.shape[0])}
    missing value summary.columns = ['Invalid Data %']
    missing value summary =
missing value summary.loc[missing value summary['Invalid Data
%']>0].sort_values('Invalid Data %', ascending=False)
    return missing value summary
def create outlier df(data, var list):
outlier df=pandas.DataFrame(columns=['ColumnName','OutlierCount','Outl
ier%'l)
    for var in var list:
        try:
            Q1 = data[var].quantile(0.25)
            Q3 = data[var].quantile(0.75)
            IQR = 03 - 01
            outlier count=((data[var] < (Q1 - (1.5 * IQR))))
(data[var] > (Q3 + (1.5 * IQR))).sum()
            new row = {
                         'ColumnName':var.
'OutlierCount':outlier count,
                         'Outlier
%':round(outlier count*100/data[var].shape[0],2)
            outlier df=outlier df.append(new row,ignore index=True)
        except TypeError:
            print('Error with column '+var)
    return outlier df
def cap outlier(data, var list):
    for col in var list:
        Q1 = data[col].quantile(0.25)
        Q3 = data[col].quantile(0.75)
        IQR = Q3 - Q1
        data[col][data[col] \leftarrow (Q1 - 1.5 * IQR)] = (Q1 - 1.5 * IQR)
        data[col][data[col] >= (Q3 + 1.5 * IQR)] = (Q3 + 1.5 * IQR)
    return data
def vif_ranks(data, features, row_count):
    vif = pandas.DataFrame()
    vif['Features'] = data[features].columns
```

```
vif['VIF'] = [variance inflation factor(X train[features].values,
i) for i in range(X train[features].shape[1])]
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort values(by = "VIF", ascending = False)
    return vif.head(row count)
def create correlation df(data,var list,threshold):
    listi=[]
    listj=[]
    data=data[var list]
    resultDf=pandas.DataFrame(columns=['Feature 1', 'Feature
2', 'Correlation Value'])
    corrDf=data.corr()
    for i in corrDf.columns:
        for j in corrDf.columns:
            if i==j:
                break
            if (corrDf.loc[i,j] >=threshold) and (str(i)!=str(j)):
                new row = {
                        'Feature 1':str(i), 'Feature 2':str(j),
                        'Correlation Value':round(corrDf.loc[i,j],2)
                resultDf=resultDf.append(new row,ignore index=True)
    return resultDf
Performance Metric Functions
def predict summarize(predicted, actual, threshold, plot roc =False):
    y pred final = pandas.DataFrame({'Converted':actual,
'Converted Probability':predicted})
    y pred final['CustID'] = range(len(predicted))
    y pred final['predicted'] =
y pred final['Converted Probability'].map(lambda x: 1 if x > threshold
else 0)
    # Confusion matrix
    confusion = metrics.confusion matrix(y pred final['Converted'],
y pred final['predicted'] )
    TP = confusion[1,1] # true positive
    TN = confusion[0,0] # true negatives
    FP = confusion[0,1] # false positives
    FN = confusion[1,0] # false negatives
    sensitivity = TP / float(TP+FN)
    specificity = TN / float(TN+FP)
    false_positive_rate = FP/ float(TN+FP)
    precision = TP / float(TP + FP)
    recall = TP / float(TP + FN)
```

```
confusion = pandas.DataFrame(confusion)
    confusion.columns = ['predicted_no','predicted_yes']
    confusion['ind'] = ['actual_no', 'actual yes']
    confusion = confusion.set index('ind')
    print('Accuracy =
',metrics.accuracy score(y pred final['Converted'],
y_pred_final.predicted))
    print('Sensitivity = ',sensitivity)
    print('Specificity = ', specificity)
    print('False Positive Rate = ',false_positive_rate)
    print('\nPrecision = ',precision)
    print('Recall = ',recall)
    if plot roc :
        plot roc(y pred final['Converted'],
y pred final['Converted_Probability'])
    return confusion
def plot roc( actual, probs ):
    print('Plotting')
    fpr, tpr, thresholds = metrics.roc curve( actual, probs,
                                               drop intermediate =
False )
    auc_score = metrics.roc_auc_score( actual, probs )
    plt.figure(figsize=(5, 5))
    plt.plot( fpr, tpr, label='ROC curve (area = %0.2f)' % auc score )
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic example')
    plt.legend(loc="lower right")
    plt.show()
    return None
def plot_precision_recall_curve(predicted, actual):
    y pred final = pandas.DataFrame({'Converted':actual,
'Converted_Probability':predicted})
    y pred final['CustID'] = range(len(actual))
    p, r, thresholds =
precision_recall_curve(y_pred_final['Converted'],
y pred final['Converted Probability'])
    plt.plot(thresholds, p[:-1], "g-", label='precision')
```

```
plt.plot(thresholds, r[:-1], "r-",label='recall')
    plt.xlabel('Thresholds')
    plt.title('Precision Recall Curve')
    plt.legend()
    plt.show()
def plot feature importance(features, parameters):
    feature importance = pandas.DataFrame(list(zip(features,
parameters)))
    feature importance.columns = ['column', 'value']
    feature importance['abs value'] = abs(feature importance['value'])
    feature importance =
feature_importance.sort_values('abs_value',ascending=False)
    feature importance =
feature importance.loc[feature importance['abs value']>0]
    plt.figure(figsize=(10,10))
sns.barplot(feature importance['value'],feature importance['column'],p
alette='husl')
    plt.title('Feature Importances')
Data Preparation
data = pandas.read csv('..//Data//telecom churn data.csv')
data.shape
(99999, 226)
data.head()
   mobile number circle id loc og t2o mou std og t2o mou
loc ic t2o mou
      7000842753
                                         0.0
                                                         0.0
                        109
0.0
1
      7001865778
                        109
                                         0.0
                                                         0.0
0.0
2
      7001625959
                        109
                                         0.0
                                                         0.0
0.0
3
      7001204172
                        109
                                         0.0
                                                         0.0
0.0
      7000142493
                                         0.0
                                                         0.0
4
                        109
0.0
  last date of month 6 last date of month 7 last date of month 8
                                  7/31/2014
0
             6/30/2014
                                                        8/31/2014
1
             6/30/2014
                                  7/31/2014
                                                        8/31/2014
2
             6/30/2014
                                  7/31/2014
                                                        8/31/2014
3
             6/30/2014
                                  7/31/2014
                                                        8/31/2014
4
                                  7/31/2014
             6/30/2014
                                                        8/31/2014
```

		onth_9 arpu_0	6 arpu_7	arpu_8	arpu_9	
onnet_mo		0/2014 197.38	5 214.816	213.803	21.100	
NaN 1	9/36	0/2014 34.04	7 355.074	268.321	86.285	
24.11	9/36	0/2014 167.690	9 189.058	210.226	290.714	
11.54	9/30	0/2014 221.338	3 251.102	508.054	389.500	
99.91 4 50.31	9/30	9/2014 261.630	309.876	238.174	163.426	
		onnet_mou_8 o	nnet_mou_9	offnet_	mou_6	
offnet_m 0	NaN	0.00	NaN		NaN	NaN
1	78.68	7.68	18.34		15.74	99.84
2	55.24	37.26	74.81	1	43.33	220.59
3	54.39	310.98	241.71	1	23.31	109.01
4	149.44	83.89	58.78		76.96	91.88
offne roam ic		offnet_mou_9	roam_ic_mc	ou_6 roa	m_1c_mou_/	
0 0.00	$\overline{0}.00$	NaN		NaN	NaN	
1 0.00	304.76	53.76		0.0	0.00	
2 0.00	208.36	118.91		0.0	0.00	
3 44.38	71.68	113.54		0.0	54.86	
4 0.00	124.26	45.81		0.0	0.00	
	ic mou 9	roam_og_mou_0	6 roam og	mou 7 r	oam og mou 8	
roam_og_	mou_9 \	_ = =		_		
0 NaN	NaN	Nal	V	NaN	0.00	
1 0.00	0.00	0.0	9	0.00	0.00	
2 70.94	38.49	0.0	9	0.00	0.00	
70.94 3	0.00	0.0	9	28.09	39.04	

0.00 4 0.00 0.00	0.0	0.00	0.00
	6 loc_og_t2t_mou_7	loc_og_t2t_mou_8	
loc_og_t2t_mou_9 0 Na		0.00	
NaN 1 23.8	8 74.56	7.68	
18.34 2 7.1	9 28.74	13.58	
14.39 3 73.6	8 34.81	10.61	
15.49 4 50.3 58.78	149.44	83.89	
	6 loc_og_t2m_mou_7	loc_og_t2m_mou_8	
loc_og_t2m_mou_9 0 Na		0.00	
NaN 1 11.5	1 75.94	291.86	
53.76 2 29.3	4 16.86	38.46	
28.16 3 107.4	3 83.21	22.46	
65.46 4 67.6 37.89	91.88	124.26	
loc_og_t2f_mou_ loc_og_t2f_mou_9	6 loc_og_t2f_mou_7	loc_og_t2f_mou_8	
0 Na		0.00	
NaN 1 0.0	0.00	0.00	
0.00 2 24.1	1 21.79	15.61	
22.24 3 1.9	0.65	4.91	
2.06 4 0.0 1.93	0.00	0.00	
	6 loc_og_t2c_mou_7	loc_og_t2c_mou_8	
loc_og_t2c_mou_9 0 Na		0.00	
NaN 1 0.	0 2.91	0.00	
0.00 2 0.	0 135.54	45.76	

0.48 3 0.00 4 0.00	0.0 0.0		0.00 0.00		0.00 0.00
	og_mou_6 loc :2t_mou_6 \		loc_og_	mou_8	loc_og_mou_9
0 NaN	NaN	NaN		0.00	NaN
1 0.23	35.39	150.51	2	99.54	72.11
2 4.34	60.66	67.41		67.66	64.81
	183.03	118.68		37.99	83.03
	117.96	241.33	2	08.16	98.61
std_c	og_t2t_mou_7	std_og_t2	t_mou_8	std_o	g_t2t_mou_9
0	2m_mou_6 \ NaN		0.00		NaN
NaN 1	4.11		0.00		0.00
0.00	26.49		22.58		8.76
41.81	14.89		289.58		226.21
2.99 4 9.31	0.00		0.00		0.00
	og_t2m_mou_7	std og t2	m mou 8	std o	a t2m mou 9
	2f_mou_6 \ NaN		0.00		
NaN 1	0.46		0.13		0.00
0.00 2	67.41		75.53		9.28
1.48 3	1.73		6.53		9.99
0.00 4	0.00		0.00		0.00
0.00	0.00		0.00		0.00
	og_t2f_mou_7 :2c mou 6 \	std_og_t2	f_mou_8	std_o	g_t2f_mou_9
0 NaN	NaN		0.00		NaN
1	0.00		0.00		0.0

0.0 2 0.0 3 0.0 4 0.0	6	1.76 0.00 0.00	22.83 0.00 0.00	0.6 0.6 0.6)
st \	d_og_t2c_mc	ou_7 std_og_t	2c_mou_8 sto	d_og_t2c_mou_9	std_og_mou_6
Θ		NaN	0.0	NaN	NaN NaN
1		0.0	0.0	0.0	0.23
2		0.0	0.0	0.0	47.64
3		0.0	0.0	0.0	29.23
4		0.0	0.0	0.0	9.31
	2d_og_mou_7 og_mou_7 \ NaN 4.58 108.68 16.63 0.00	std_og_mou_8 0.00 0.13 120.94 296.11 0.00		aN N 00 6 04 6	1_6 laN 0.0 0.0 0.0
	0.0 0.0	isd_og_mou_9 NaN 0.0 0.0		58 23. 56 236.	laN 43
4 0.00	0.0	0.0	0.0	00 0.	00
sp 0	ol_og_mou_9 NaN	og_others_6 NaN	og_others_7 NaN	og_others_8 0.0	og_others_9 \ NaN

1 2 3 4	0.00 42.08 43.29 5.98	0.00 0.45 0.00 0.00	0.0 0.0 0.0 0.0		0.0 0.0 0.0	0.0 0.0 0.0 0.0
total 0 1 2 3 4	l_og_mou_6 t 0.00 40.31 155.33 223.23 127.28	otal_og_mou_7 0.00 178.53 412.94 135.31 241.33	total_o	g_mou_8 0.00 312.44 285.46 352.21 208.16	total_	og_mou_9 0.00 72.11 124.94 362.54 104.59
loc_ic_t 0	ic_t2t_mou_6 t2t_mou_9 \ NaN	loc_ic_t2t_mo	u_7 loc NaN	_ic_t2t_r	nou_8 0.16	
NaN 1	1.61	29	.91	2	29.23	
116.09 2	115.69	71	. 11	(57.46	
148.23 3	62.08	19	. 98		8.04	
41.73 4 154.56	105.68	88	. 49	23	33.81	
	ic_t2m_mou_6 t2m_mou_9 \	loc_ic_t2m_mo	u_7 loc	_ic_t2m_n	nou_8	
0 NaN	NaN	1	NaN		4.13	
1 56.93	17.48	65	.38	37	75.58	
2	14.38	15	. 44	3	38.89	
38.98 3	113.96	64	.51	2	20.28	
52.86 4 48.24	106.84	109	.54	10	94.13	
		loc_ic_t2f_mo	u_7 loc	_ic_t2f_n	nou_8	
0	t2f_mou_9 \ NaN	1	NaN		1.15	
NaN 1	0.00	8	. 93		3.61	
0.00 2	99.48	122	. 29	4	19.63	
158.19 3	57.43	27	. 09	-	19.84	
65.59 4 0.00	1.50	Θ	. 00		0.00	

loc_	ic_mou_6 loc	_ic_mou_7 loc_	_ic_mou_8	loc_ic_mou_9
0	t2t_mou_6 \ NaN	NaN	5.44	NaN
NaN 1	19.09	104.23	408.43	173.03
0.00 2 72.41	229.56	208.86	155.99	345.41
3 43.48	233.48	111.59	48.18	160.19
4 0.00	214.03	198.04	337.94	202.81
	ic_t2t_mou_7 t2m_mou_6 \	std_ic_t2t_mou	ı_8 std_i	c_t2t_mou_9
0 NaN	NaN	0.	.00	NaN
1 5.90	0.00	2.	. 35	0.00
2 45.18	71.29	28.	69	49.44
3 1.33	66.44	0.	.00	129.84
1.93 1.93	0.00	0.	. 86	2.31
		std_ic_t2m_mou	ı_8 std_i	c_t2m_mou_9
0 NaN	t2f_mou_6 \ NaN	0.	. 00	NaN
1 0.00	0.00	12.	49	15.01
2 21.73	177.01	167.	09	118.18
3 1.18	38.56	4.	. 94	13.98
4 0.00	0.25	0.	.00	0.00
_		std_ic_t2f_mou	_8 std_i	c_t2f_mou_9
0 NaN	t2o_mou_6 \ NaN	0.	.00	NaN
1 0.0	0.00	0.	. 00	0.00
0.0 2 0.0	58.34	43.	23	3.86
3 0.0	0.00	0.	.00	0.00

4 0.0	0.00	0	.00	0.00	
	ic_t2o_mou_7	std_ic_t2o_mo	u_8 std_i	c_t2o_mou_9	std_ic_mou_6
0	NaN	I	0.0	NaN	NaN
1	0.0)	0.0	0.0	5.90
2	0.6)	0.0	0.0	139.33
3	0.6)	0.0	0.0	45.99
4	0.6)	0.0	0.0	1.93
total_i	c_mou_7 \	d_ic_mou_8 std			u_6 .00
0 0.00	NaN	0.00	NaN		
1 104.23	0.00	14.84	15.01	26	.83
2 519.53	306.66	239.03	171.49	370	. 04
3 216.61	105.01	4.94	143.83	280	.08
4 198.29	0.25	0.86	2.31	216	.44
	L_ic_mou_8 nou_8 \	total_ic_mou_9	spl_ic_mo	u_6 spl_ic_	mou_7
0	5.44	0.00	1	NaN	NaN
0.0 1	423.28	188.04	0	.00	0.0
0.0	395.03	517.74	0	.21	0.0
0.0 3	53.13	305.38	0	.59	0.0
0.0 4 0.0	338.81	205.31	0	.00	0.0
		sd_ic_mou_6 isd	_ic_mou_7	isd_ic_mou_	8
0	nou_9 \ NaN	NaN	NaN	0.	0
NaN 1	0.00	1.83	0.00	0.	0
0.00 2	0.45	0.00	0.85	0.	0

0.01 3	0.55	0.00	0.0	90	0.0
0.00 4 0.00	0.18	0.00	0.0		0.0
ic_ot		others_7 ic_ot	hers_8	ic_others_9	
total_re	ch_num_6 \ NaN	NaN	0.0	NaN	
4 1	0.00	0.00	0.0	0.00	
4 2	0.93	3.14	0.0	0.36	
2 5 3	0.00	0.00	0.0	0.80	
10 4 5	0.48	0.00	0.0	0.00	
		total_rech_nu	ım_8 to	tal_rech_num_	_9
total_re	ch_amt_6 \ 3		2		6
362 1	9		11		5
74 2	4		2		7
168 3	11		18	-	L4
230 4 196	6		3		4
total max_rech		total_rech_am	nt_8 to	tal_rech_amt_	_9
0 252	_amt_6 \ 252		252		0
1 44	384		283	12	21
2 86	315		116	35	58
3 60	310		601	43	10
4 56	350		287	20	00
	ech_amt_7 n	nax_rech_amt_8	max_re	ch_amt_9 date	e_of_last_rech_6
0	252	252		0	6/21/2014
1	154	65		50	6/29/2014

2	200	86	100	6/17/2014
3	50	50	50	6/28/2014
4	110	110	50	6/26/2014
0 1 2 3 4 0 1 2	252 44 0	8/8/2 8/28/2 8/14/2 8/31/2 8/9/2 last_day_rch_am	2014 2014 2014 2014 2014 at_7 last_day 252 23 200	9/28/2014 9/30/2014 9/29/2014 9/30/2014 9/28/2014 _rch_amt_8 \ 252 30 86
3 4	30 50		50 110	50 110
date 0 7/16 1	ast_day_rch_amt_9 _of_last_rech_data	n_7 \	ch_data_6 6/21/2014 NaN NaN NaN	
da [•]	te_of_last_rech_da	nta_8 date_of_las	st_rech_data_9	total_rech_data_6
0	8/8/	2014	NaN	1.0
1	8/10/	2014	NaN	NaN
2		NaN	9/17/2014	NaN
3		NaN	NaN	NaN
4		NaN	NaN	1.0

total_rech_data_7 total_rech_data_8 total_rech_data_9

max 0 252 1 NaN 2 NaN 3 NaN 4	2.0 N N N N	0 0 laN laN	1.0 2.0 NaN NaN	NaN NaN 1.0 NaN NaN
,	max_rech_data_7	max_rech_data_8	max_rech_data_9	count_rech_2g_6
0	252.0	252.0	NaN	0.0
1	154.0	25.0	NaN	NaN
2	Naf	l NaN	46.0	NaN
3	Naf	l NaN	NaN	NaN
4	Naf	l NaN	NaN	1.0
0	count_rech_2g_7		count_rech_2g_9 NaN	count_rech_3g_6
1 2 3 4	1.0 Nai Nai Nai	I NaN I NaN	NaN 1.0 NaN NaN	NaN NaN NaN 0.0

	av_rech_am ¹ _2g_mb_6		v_rech_amt	_data_8	av_rech_	_amt_data_9	
0 30.2	13	252.0		252.0		NaN	
1 0.00		154.0		50.0		NaN	
2		NaN		NaN		46.0	
0.00		NaN		NaN		NaN	
0.00		NaN		NaN		NaN	
0.00	9						
0 1 2 3 4	$-1.\overline{3}$	2 5 7 365 9 0	5.75	g_mb_9 0.0 0.0 0.0 0.0	83 0 0	o_6 vol_3g_ .57 15 .00 .00 .00 .00	
		3 vol_3g_m	ıb_9 arpu_	.3g_6 a	rpu_3g_7	arpu_3g_8	
0	u_3g_9 \ 109.63		.00 21	2.17	212.17	212.17	
NaN 1	0.00	9 0	.00	NaN	0.00	0.00	
NaN 2	0.00	9 8	3.42	NaN	NaN	NaN	
2.84	4 0.00	9 0	.00	NaN	NaN	NaN	
NaN 4 NaN	0.00	9 0	.00	0.00	NaN	NaN	
ā				' 		nt_pck_user_ 0. Na Na Na 0.	. 0 aN aN aN
	night_pck_u	user_7 nig	ht_pck_use	r_8 ni	ght_pck_u	ser_9 month	nly_2g_6
0		0.0		0.0		NaN	0
1		0.0		0.0		NaN	0
2		NaN		NaN		0.0	0

3		NaN	NaN	I	NaN	0
4		NaN	NaN	I	NaN	0
\	monthly_2g_7	monthly_2g_8	monthly_2g_	9 sachet_2	2g_6 sach	et_2g_7
0	0	0		0	Θ	0
1	1	0		0	0	0
2	0	0		0	Θ	0
3	0	0		0	0	0
4	0	0		0	1	0
\		sachet_2g_9 r	monthly_3g_6	monthly_3		ly_3g_8
0	0	0	1		1	1
1	2	0	0		0	0
2	0	1	0		0	0
3	0	0	0		0	0
4	0	0	0		0	0
0 1 2 3 4	monthly_3g_9 0 0 0 0	sachet_3g_6 0 0 0 0 0	sachet_3g_7 0 0 0 0 0	sachet_3g	_8 sachet 0 0 0 0	_3g_9 \ 0 0 0 0
	l_vbc_3g \	o_user_7 fb_us			aug_vbc_3	
0 0.		1.0		NaN 968	30.	
1 0.		1.0		NaN 1006	0.	0
2 0.	NaN 0	NaN	NaN	1.0 1103	0.	Θ
3	NaN	NaN	NaN	NaN 2491	0.	0

```
0.0
                                                             0.0
4
         0.0
                    NaN
                               NaN
                                           NaN 1526
0.0
               sep_vbc 3g
   jun_vbc_3g
0
       101.20
                     3.58
1
         0.00
                     0.00
2
         4.17
                     0.00
3
         0.00
                     0.00
4
         0.00
                     0.00
data.drop(['last_date_of_month_6', 'last_date_of_month_7',
           'last_date_of_month_8', 'last_date_of_month_9',], axis=1,
inplace=True)
data['date of last rech data 6'] =
data['date of last rech data 6'].apply(lambda x:format date(x))
data['date of last rech data 7'] =
data['date of last rech data 7'].apply(lambda x:format date(x))
data['date of last rech data 8'] =
data['date of last rech data 8'].apply(lambda x:format date(x))
data['date_of_last_rech_data_9'] =
data['date of last rech data 9'].apply(lambda x:format date(x))
data['date of last rech 6'] = data['date of last rech 6'].apply(lambda
x:format date(x))
data['date of last rech 7'] = data['date of last rech 7'].apply(lambda
x:format date(x))
data['date of last rech 8'] = data['date of last rech 8'].apply(lambda
x:format date(x))
data['date_of_last_rech_9'] = data['date of last rech 9'].apply(lambda
x:format date(x))
Tag Churners (Target Variable)
condition = (data['total ic mou 9'] == 0) & (data['total og mou 9'] ==
/$ (0
            (data['vol 2g mb 9'] == 0) & (data['vol 3g mb 9'] == 0)
data['churn flag'] = 0
data.loc[condition, 'churn flag'] = 1
churn summary = pandas.DataFrame(data.groupby('churn flag')
['mobile number'].count())
churn summary.columns = ['customer count']
sns.set()
churn summary.T.plot(kind='barh', stacked=True,
colormap=ListedColormap(sns.color palette("GnBu d", 10)), grid=False)
plt.show()
churn summary['customer(%)'] = round((churn summary['customer count']
```

```
/ churn_summary['customer_count'].sum()) * 100, 0)
display(churn_summary)
```


customer_count customer(%)

churn_flag

0 89808 90.0 1 10191 10.0

Eliminate Churn Month Data To Avoid Data Leakage

churn_month_columns = [x for x in data.columns if x[-1]=='9']
data = data.drop(churn_month_columns, axis=1)

Missing Value Checks

msno.bar(data)
plt.show()


```
missing value columns = missing value percentage(data)
print(len(missing value columns), '')
123
for column in missing_value_columns.loc[missing_value_columns['Invalid
Data %'|>0|.index.to list():
    if 'mou' in column:
        print('Imputing ',column)
        data[column] = data[column].fillna(0)
    elif 'count' in column:
        print('Imputing ',column)
        data[column] = data[column].fillna(0)
Imputing
          count rech 2g 6
Imputing
          count rech 3g 6
Imputing
          count_rech_2g_7
          count_rech 3g 7
Imputing
Imputing
          count rech 2g 8
Imputing
          count rech 3g 8
Imputing
          isd og mou 8
Imputing
          isd ic mou 8
Imputing
          spl ic mou 8
Imputina
          spl og mou 8
          std ic mou 8
Imputing
Imputing
          loc_ic_mou_8
Imputing
          std ic t2t mou 8
          loc ic t2t mou 8
Imputing
Imputing
          std_ic t2f mou 8
          loc_ic t2m mou 8
Imputing
Imputing
          std_ic_t2m_mou_8
Imputing
          loc ic t2f mou 8
          std ic t2o mou 8
Imputing
Imputing
          std og mou 8
Imputing
          std_og_t2t_mou_8
Imputing
          std og t2m mou 8
          loc_og_t2t mou 8
Imputing
          loc_og_t2f_mou 8
Imputing
          loc og t2c mou 8
Imputing
Imputing
          roam og mou 8
          loc_{og} mou \overline{8}
Imputing
Imputing
          roam ic mou 8
Imputing
          loc og t2m mou 8
          offnet mou 8
Imputing
          std og t2f mou 8
Imputing
Imputing
          std og t2c mou 8
Imputing
          onnet mou 8
Imputing
          spl_ic mou 6
Imputing
          roam ic mou 6
          loc_og_t2m_mou 6
Imputing
Imputing
          std ic mou 6
```

```
roam og mou 6
Imputing
Imputing
          offnet mou 6
Imputing
          std ic t2o mou 6
Imputina
          isd ic mou 6
Imputing
          loc og t2t mou 6
Imputing
          onnet mou 6
          std ic t2f mou 6
Imputing
          isd og mou 6
Imputing
Imputing
          std ic t2t mou 6
          std ic t2m mou 6
Imputing
Imputing
          loc og t2f mou 6
Imputing
          loc og t2c mou 6
          loc_ic_mou_6
Imputing
Imputing
          loc og mou 6
Imputing
          loc ic t2f mou 6
Imputing
          std og t2t mou 6
Imputing
          loc ic t2m mou 6
          std_og_t2m_mou 6
Imputing
          loc ic t2t mou 6
Imputing
          std og t2f mou 6
Imputina
Imputing
          std og t2c mou 6
Imputing
          spl og mou 6
Imputing
          std og mou 6
Imputing
          loc ic t2f mou 7
          spl og mou 7
Imputing
Imputing
          onnet mou 7
          offnet mou 7
Imputing
Imputing
          roam ic mou 7
Imputing
          roam og mou 7
Imputing
          loc og t2t mou 7
Imputing
          loc og t2m mou 7
          loc_og_t2f_mou_7
Imputing
          loc og t2c mou 7
Imputing
          loc og mou 7
Imputing
Imputing
          std og t2t mou 7
          std og t2m mou 7
Imputing
          std og t2f mou 7
Imputing
          std og t2c mou 7
Imputing
Imputing
          std og mou 7
Imputing
          isd og mou 7
          std ic t2f mou 7
Imputing
Imputing
          loc ic t2t mou 7
          loc ic t2m mou 7
Imputing
Imputing
          loc ic mou 7
          std ic t2t mou 7
Imputing
Imputing
          std_ic_t2m_mou_7
          std ic t2o mou 7
Imputing
Imputing
          std ic mou 7
Imputing
          spl ic mou 7
Imputing
          isd ic mou 7
```

```
Imputing std og t2o mou
Imputing loc ic t2o mou
Imputing loc_og_t2o_mou
missing value columns = missing value percentage(data)
Observation:
Drop columns with more than 30% missing values
drop columns list =
missing value columns.loc[missing value columns['Invalid Data
%']>30].index
data = data.drop(drop columns list, axis=1)
print(len(drop_columns_list), ' columns have been dropped.')
24 columns have been dropped.
drop columns list
Index(['arpu_2g_6', 'av_rech_amt_data_6', 'fb_user_6', 'arpu_3g_6',
         'night pck user 6', 'max rech data 6',
'date of last rech data 6'
         'total_rech_data_6', 'max_rech_data_7', 'arpu_3g_7',
'total_rech_data_7', 'date_of_last_rech_data_7', 'arpu_2g_7',
'night_pck_user_7', 'fb_user_7', 'av_rech_amt_data_7',
'av_rech_amt_data_8', 'arpu_3g_8', 'arpu_2g_8',
'night pck user 8',
         'fb user 8', 'max rech data 8', 'total rech data 8',
         'date of last rech data 8'],
       dtype='object')
```

Observation:

For the remaining columns, with less than 60% of the data missing, we can use iterative imputer if the columns are not like dates, which we can treat later after deriving metrics out of them.

```
missing_value_columns =
missing_value_columns.loc[missing_value_columns['Invalid Data %']<=30]
missing_value_columns =
pandas.DataFrame(data[missing_value_columns.index].dtypes)
missing_value_columns =
missing_value_columns.loc[missing_value_columns[0]!
='datetime64[ns]',:].index

print(len(missing_value_columns), 'columns have to be imputed.')
6 columns have to be imputed.</pre>
```

```
imputer = imputer = IterativeImputer(BayesianRidge())
data[missing_value_columns] =
imputer.fit_transform(data[missing_value_columns])
msno.bar(data)
plt.show()
```


Save the data and reuse to avoid re running of imputation

```
Filter: High Valued Customers
percentile_70 = ((data['total_rech_amt_6'] +
data['total_rech_amt_7'])/2).quantile(0.70)
print(percentile_70, 'is the 70th percentile of the average recharge
amount.')
```

368.5 is the 70th percentile of the average recharge amount.

```
data = data.loc[((data['total_rech_amt_6'] +
data['total_rech_amt_7'])/2) >= percentile_70,:]
print(data.shape[0],' customers are high valued customers and are
hence retained in the data.')
```

30011 customers are high valued customers and are hence retained in the data.

Feature Creation

As defined, there are mainly 3 phases: good, action & churn. While we have only one month data for each of the action & churn phases, we have 2 months data for the good phase. We can create features by taking the average of the good phases information. This will help us narrow down on the features to optimum level

```
data.head()
```

0 0						
0.0 8	700152	4846	109	0.0	0.0	
0.0 13	700219	1713	109	0.0	0.0	
0.0 16	700087	5565	109	0.0	0.0	
0.0 17 0.0	700018	7447	109	0.0	0.0	
			arpu_8	onnet_mou_6	onnet_mou_7	
$7 ext{1}\overline{0}$	mou_8 69.180		3171.480	57.84	54.68	
		492.223	137.362	413.69	351.03	
	92.846	205.671	593.260	501.76	108.39	
	30.975	299.869	187.894	50.51	74.01	
70.61 17 6 7.79		18.980	25.499	1185.91	9.28	
			t_mou_7 o	ffnet_mou_8	roam_ic_mou_6	
7	c_mou_7 453	.43	567.16	325.91	16.23	
33.49	94	.66	80.63	136.48	0.00	
0.00 13		.31	119.28	482.46	23.53	
144.24 16		.29	229.74	162.76	0.00	
2.83 17	61	.64	0.00	5.54	0.00	
4.76						
7 8 13 16 17	₃	ou_8 roam 1.64 0.00 2.11 0.00 4.81	n_og_mou_6 23.74 0.00 7.98 0.00 0.00	roam_og_mou_ 12.5 0.0 35.2 17.7 8.4	9 38.06 0 0.00 6 1.44 4 0.00	\
			.oc_og_t2t_	mou_7 loc_og	_t2t_mou_8	
7	_t2m_mo	51.39		31.38	40.28	
308.63		297.13	2	17.59	12.49	
80.96 13		49.63		6.19	36.01	

151.13 16 273.29 17 58.54	42.61 38.99	65.16 0.00	67.38 0.00	
loc_og_t loc_og_t2f_m 7		loc_og_t2m_mou_8 162.28	loc_og_t2f_mou_6 62.13	
55.14 8	70.58	50.54	0.00	
0.00 13	47.28	294.46	4.54	
0.00 16	145.99	128.28	0.00	
4.48 17 0.00	0.00	0.00	0.00	
loc_og_t loc_og_t2c_n		loc_og_t2c_mou_6	loc_og_t2c_mou_7	
7 0.00	53.23	0.0	0.0	
8 7.15	0.00	0.0	0.0	
13 0.49	23.51	0.0	0.0	
16 0.00	10.26	0.0	0.0	
17 0.00	0.00	0.0	0.0	
7 42 8 37 13 26 16 31	nou_6 loc 22.16 78.09 05.31 15.91	533.91 2 288.18 53.48 3	mou_8 std_og_t2t_mou_ 55.79 4.3 63.04 116.5 53.99 446.4 05.93 7.8 0.00 1146.9	0 6 1 9
std_og_t std og t2m n	2t_mou_7	std_og_t2t_mou_8	std_og_t2m_mou_6	
7 31.76	23.29	12.01	49.89	
8 10.04	133.43	22.58	13.69	
13 52.94	85.98	498.23	255.36	
16 64.51	2.58	3.23	22.99	
17	0.81	0.00	1.55	

S	td_og_t2m_mo	u_8 std_og_t2	f_mou_6	std_o	g_t2f_mou_7	
7		.14	6.66		20.08	
16.68		.69	0.00		0.00	
0.00	156	.94	0.00		0.00	
0.00 16 0.00	18	.29	0.00		0.00	
17 0.00	0	.00	0.00		0.00	
_	td_og_t2c_mo	u_6 std_og_t2	c_mou_7	std_o	g_t2c_mou_8	std_og_mou_6
7		0.0	0.0		0.0	60.86
8		0.0	0.0		0.0	130.26
13		0.0	0.0		0.0	701.78
16		0.0	0.0		0.0	30.89
17		0.0	0.0		0.0	1148.46
	.+	atd as man 0	ئاما ما	 6	ind on man 7	
isd_o	g_mou_8 \	std_og_mou_8	180_09_	_	15a_og_mou_/	
7 10.01	75.14	77.84		0.0	0.18	
8 0.00	143.48	98.28		0.0	0.00	
13 1.29	138.93	655.18		0.0	0.00	
16 0.00	67.09	21.53		0.0	0.00	
17 0.00	0.81	0.00		0.0	0.00	
_	pl_og_mou_6	spl_og_mou_7	spl_og_	mou_8	og_others_6	og_others_7
7	4.50	0.00		6.50	0.00	0.0
8	0.00	0.00		10.23	0.00	0.0
13	0.00	0.00		4.78	0.00	0.0

16	0.00	3.26	5.91	0.00	0.0
17	2.58	0.00	0.00	0.93	0.0
og_othe 7 8 13 16 17	ers_8 tota 0.0 0.0 0.0 0.0 0.0	l_og_mou_6 to ² 487.53 508.36 907.09 346.81 1249.53	tal_og_mou_7 609.24 431.66 192.41 286.01 0.81	total_og_mou_8 350.16 171.56 1015.26 233.38 0.00	\
loc_ic_ loc ic t2m		loc_ic_t2t_mo	u_7 loc_ic_t	2t_mou_8	
7 217.56	58.14	32	.26	27.31	
8 57.58	23.84	9	.84	0.31	
13 142.88	67.88	7	.58	52.58	
16	41.33	71	. 44	28.89	
226.81 17 47.41	34.54	0	.00	0.00	
		loc_ic_t2m_mo	u_8 loc_ic_t	:2f_mou_6	
loc_ic_t2f_ 7	221.49	121	. 19	152.16	
101.46	13.98	15	. 48	0.00	
0.00 13	18.53	195	. 18	4.81	
0.00 16	149.69	150	. 16	8.71	
8.68 17 0.00	2.31	Θ	.00	0.00	
loc_ic_ 7 8 13 16 17	_t2f_mou_8 39.53 0.00 7.49 32.71 0.00	loc_ic_mou_6 427.88 81.43 215.58 276.86 81.96	loc_ic_mou_7 355.23 23.83 26.11 229.83 2.31	3	\
std_ic_t2m_	-	std_ic_t2t_mo			
7 91.44	36.89	11	.83	30.39	

8	0.00		0.58		0.10
22.43	115.68		38.29		154.58
308.13 16	68.79		78.64		6.33
18.68 17 1.28	8.63		0.00		0.00
	ic_t2m_mou_7	std_ic_t2	m_mou_8	std_i	c_t2f_mou_6
7 34.24	2f_mou_7 \ 126.99		141.33		52.19
8	4.08		0.65		0.00
0.00 13 0.00	29.79		317.91		0.00
16 0.00	73.08		73.93		0.51
17 0.00	0.00		0.00		0.00
	ic_t2f_mou_8 20 mou 8 \	std_ic_t2	o_mou_6	std_i	c_t2o_mou_7
7	22.21		0.0		0.0
8	0.00		0.0		0.0
13 0.0	1.91		0.0		0.0
16 0.0	2.18		0.0		0.0
17 0.0	0.00		0.0		0.0
		_ic_mou_7	std_ic_	mou_8	total_ic_mou_6
total_ic_ 7 558.04 8 28.49	180.54	173.08	1	93.94	626.46
	22.43	4.66		0.75	103.86
	423.81	68.09	4	74.41	968.61
172.58 16	87.99	151.73		82.44	364.86
381.56 17 2.31	9.91	0.00		0.00	91.88
	1	. 1	C1 '		71

total_ic_mou_8 spl_ic_mou_6 spl_ic_mou_7 spl_ic_mou_8
isd_ic_mou_6 \

7	428.74	0.21	1	0.	۵	0.0	
2.06							
8 0.00	16.54	0.00)	0.	0	0.0	
13 245.28	1144.53	0.45	5	0.	0	0.0	
16	294.46	0.00)	Θ.	0	0.0	
0.00 17	0.00	0.00)	0.	0	0.0	
0.00							
isd_i	.c_mou_7 isd	_ic_mou_8	ic_other	s_6	ic_others_7	ic_others_8	
7	14.53	31.59	15	.74	15.19	15.14	
8	0.00	0.00	0	.00	0.00	0.00	
13	62.11	393.39	83	.48	16.24	21.44	
16	0.00	0.23	0	.00	0.00	0.00	
17	0.00	0.00	0	.00	0.00	0.00	
	_rech_num_6	total_rech	n_num_7	total	_rech_num_8		
total_red 7	ch_amt_6 \ 5		5		7		
1580 8	19		21		14		
437 13	6		4		11		
507 16	10		6		2		
570							
17 816	19		2		4		
total	_rech_amt_7	total_rech	n_amt_8	max_r	ech_amt_6 m	ax_rech_amt_7	
\ 7	790		3638		1580	790	
8	601		120		90	154	
13	253		717		110	110	
16	348		160		110	110	
17	0		30		110	0	

```
max_rech_amt_8 date_of_last_rech_6 date_of_last_rech_7
7
                               2014-06-27
                                                      2014-07-25
               1580
8
                  30
                               2014-06-25
                                                      2014-07-31
13
                 130
                               2014-06-20
                                                      2014-07-22
                 130
                               2014-06-30
                                                      2014-07-31
16
17
                  30
                               2014-06-30
                                                      2014-07-30
                                                 last_day_rch_amt_7
   date_of_last_rech_8
                           last day rch amt 6
7
                                              0
             2014-08-26
                                                                    0
8
                                             50
                                                                    0
             2014-08-30
                                            110
13
             2014-08-30
                                                                   50
                                                                  100
16
             2014 - 08 - 14
                                            100
17
             2014-08-25
                                             30
                                                                    0
    last_day_rch_amt_8
                           count_rech_2g_6 count_rech_2g_7
count rech 2g 8
                                                           0.0
7
                     779
                                        0.0
0.0
8
                      10
                                        0.0
                                                           2.0
3.0
13
                       0
                                        0.0
                                                           0.0
3.0
16
                     130
                                        0.0
                                                           0.0
0.0
17
                       0
                                        0.0
                                                           0.0
0.0
                                                             vol 2g_mb_6
    count rech 3g 6
                       count rech 3g 7
                                          count rech 3g 8
7
                  0.0
                                     0.0
                                                        0.0
                                                                       0.0
8
                  0.0
                                     0.0
                                                        0.0
                                                                       0.0
13
                  0.0
                                     0.0
                                                        0.0
                                                                       0.0
16
                  0.0
                                     0.0
                                                        0.0
                                                                       0.0
17
                  0.0
                                     0.0
                                                        0.0
                                                                       0.0
    vol_2g_mb_7
                  vol_2g_mb_8
                                 vol_3g_mb_6
                                                vol_3g_mb_7
                                                               vol_3g_mb_8
7
                           0.00
                                                        0.00
             0.0
                                          0.0
                                                                       0.00
8
           356.0
                           0.03
                                          0.0
                                                      750.95
                                                                     11.94
13
             0.0
                           0.02
                                          0.0
                                                        0.00
                                                                       0.00
                                          0.0
16
             0.0
                           0.00
                                                        0.00
                                                                       0.00
17
             0.0
                           0.00
                                          0.0
                                                        0.00
                                                                       0.00
    monthly_2g_6
                    monthly_2g_7
                                   monthly_2g_8
                                                   sachet_2g_6
                                                                  sachet 2g 7
7
                 0
                                0
                                                0
                                                               0
                                                                             0
8
                 0
                                1
                                                0
                                                               0
                                                                             1
13
                0
                                0
                                                0
                                                               0
                                                                             0
```

16	0	0)	0	0	0
17	0	6)	0	0	0
\ 7 8 13	0 3 3	monthly_3g_6 0 0	mont	000	9 9 9	sachet_3g_6 0 0
16	0	0		0	0	0
17	Θ	0		Θ	0	0
7	0	sachet_3g_8 0	aon 802	57.74		18.74
8	0	0	315	21.03		122.16
13	Θ	0	2607	0.00	0.00	0.00
16	0	0	511	0.00	2.45	21.89
17	0	0	667	0.00	0.00	0.00
7 8 13 16	sep_vbc_3g 0.0 0.0 0.0 0.0	churn_flag 1 0 0				

Feature:

17

Combine local and std calls to customer care

0.0

```
data['total_og_t2c_mou_6'] = data['loc_og_t2c_mou_6'] +
data['std_og_t2c_mou_6']
data['total_og_t2c_mou_7'] = data['loc_og_t2c_mou_7'] +
data['std_og_t2c_mou_7']
data['total_og_t2c_mou_8'] = data['loc_og_t2c_mou_8'] +
data['std_og_t2c_mou_8']
```

0

```
data = data.drop(['loc og t2c mou 6',
 'loc og t2c mou 7',
 'loc_og_t2c_mou_8',
 'std og t2c mou 6',
 'std og t2c mou 7',
 'std og t2c mou 8'], axis=1)
Feature:
Combine all local & std metrics into one
loc metrics = [x[4:] for x in data.columns if 'loc' in x]
std metrics = [x[4:] for x in data.columns if 'std' in x]
common metrics = list(set(loc metrics) & set(std metrics))
for metric in common metrics:
    data['l s ' + metric] = (data['loc ' + metric] + data['std ' +
metric])/2
    data = data.drop(['loc_' + metric, 'std ' + metric], axis=1)
Feature:
Average of Month 6 & 7 - All Metrics
for x in data.columns:
    if 'date' in str(x):
        data.drop(columns=x,inplace=True)
for x in data.columns:
        if str(x[-1]) = -6':
            colName=str(x[0:len(x)-1])+'good'
            data[colName] = (data[x] + data[x[0:len(x)-1]+'7'])/2
for x in data.columns:
        if ((str(x[-1])=='6') \text{ or } (str(x[-1])=='7')) and '67' not in
str(x):
            data.drop(columns=x,inplace=True)
Feature:
Percentage change of metrics towards the action phase
for x in data.columns:
    if str(x[-1])=='8':
        metric = str(x[0:len(x)-2])
        good phase metric = metric + ' good'
        action phase metric = metric + ' 8'
        data[metric + '_perc_change'] = (data[good_phase_metric] -
data[action phase metric])/data[good phase metric]
        data.loc[data[good phase metric] == 0, metric + ' perc change'] =
0
```

Note:

We can drop all columns with only one unique value

```
for column in data.columns:
    if data[column].nunique() == 1:
        data = data.drop(column, axis=1)
```

Outliers Analysis

data.describe(percentiles=(0.5,0.75,0.99,1),exclude=['object'])

99% 100% max	3251. 14043. 14043.	. 785000 . 060000 . 060000)))	1746.22 5990.71 5990.71	4000 0000 0000	(9.6100 6.2300 6.2300	00 00 00	249.88 4100.38 4100.38	8000 0000 0000
			total	_rech_n	um_8	tota	l_rech	_amt_	_8	
max_rech_ count 3 30011.00	0011.00	90000	3	0011.00	9999	3	30011.	00000	00	
mean	1.27	73249		10.22	5317		613.	63879	9	
162.8693	12.92	26832		9.47	8572		601.	82163	30	
172.6058 min 0.000000	0.00	90000		0.00	0000		0.	00000	00	
50%	0.00	90000		8.00	0000		520.	00000	00	
130.0000 75%	0.13	30000		13.00	9000		790.	00000	00	
198.0000 99%	21.72	28000		46.00	0000		2341.	90000	00	
	1209.86	50000		196.00	0000	4	45320.	00000	00	
4449.000 max 4449.000	1209.86	50000		196.00	9000	4	45320.	00006	00	
		y_rch_a	amt_8	count_	rech_	2g_8	count	_rech	n_3g_8	
vol_2g_m	_ 36	9011.00	0000	300	11.00	0000	30	011.0	00000	
30011.00 mean		95.65	3294		0.72	1669		0.3	313618	
69.20910 std		145.26	60363		1.87	0910		1.1	161561	
268.4942 min	84	0.00	0000		0.00	0000		0.0	00000	
0.000000 50%		50.00	00000		0.00	0000		0.0	00000	
0.000000 75%		130.00	0000		1.00	0000		0.0	00000	
9.620000 99%		619.00	0000		9.00	0000		5.0	00000	
1256.619 100%		4449.00	0000		44.00	0000		45.6	00000	
11117.61 max		4449.00	0000	•	44.00	0000				
11117.61	0000									
	vol_3g_	_mb_8	month	ly_2g_8	sa	chet_2	2g_8	month	nly_3g_8	
sachet_3g_8 \ count 30011.000000 30011.000000 30011.000000 30011.000000										

mean 269.864111	0.114058	0.607611	0.173203	
0.140415 std 859.299266	0.357272	1.844444	0.582932	
0.974727 min 0.000000	0.000000	0.000000	0.000000	
0.000000 50% 0.000000	0.000000	0.000000	0.000000	
0.000000 75% 0.000000	0.000000	0.000000	0.000000	
0.000000 99% 3790.385000	2.000000	9.000000	3.000000	
3.000000 100% 30036.060000	5.000000	44.000000	16.000000	
41.000000 max 30036.060000 41.000000	5.000000	44.000000	16.000000	
aon	aug_vbc_3g	jul_vbc_3g	jun_vbc_3g	
sep_vbc_3g \ count 30011.000000	30011.000000	30011.000000	30011.000000	
30011.000000 mean 1264.064776	129.439626	135.127102	121.360548	
6.562685 std 975.263117	390.478591	408.024394	389.726031	
48.638658 min 180.000000	0.000000	0.000000	0.000000	
0.000000 50% 914.000000	0.000000	0.000000	0.000000	
0.000000 75% 1924.000000	1.600000	1.990000	0.000000	
0.000000 99% 3651.000000	1822.115000	1941.598000	1866.386000	
173.662000 100% 4321.000000	12916.220000	9165.600000	11166.210000	
2618.570000 max 4321.000000 2618.570000	12916.220000	9165.600000	11166.210000	
churn_flag	total_og_t2c_r	mou_8 l_s_ic_	mou_8	
l_s_og_t2t_mou_8 \ count 30011.000000	30011.00	90000 30011.0	00000	
30011.000000 mean 0.086402	1.7	12739 141.2	26284	
129.668201 std 0.280961	7.39	97562 173.2	16137	
231.027026 min 0.000000	0.00	90000 0.0	00000	
0.000000 50% 0.000000 45.685000	0.00	92.6	05000	

	0.000000	0.050000	182.307500
	000000	28.871000	833.123500
1083.609500 100% 1	.000000	351.830000	2995.350000
5376.280000 max 1 5376.280000	000000	351.830000	2995.350000
l_s_c l_s_og_t2f_m	og_mou_8 l_s	s_ic_t2f_mou_8 l_s	_ic_t2t_mou_8
count 30011	000000	30011.000000	30011.000000
	7.396382	8.693718	40.494264
4.142021 std 340	.942184	24.711588	86.278911
	0.000000	0.000000	0.000000
	3.160000	1.290000	18.625000
	.797500	7.235000	44.515000
3.040000 99% 1609	0.752500	106.416500	363.049000
54.647000 100% 7020	.785000	794.265000	2196.490000
464.245000 max 7020 464.245000	.785000	794.265000	2196.490000
		l_s_og_t2m_mou_8	arpu_good
onnet_mou_go count 3	80011.000000	30011.000000	30011.000000
30011.000000 mean	92.031641	173.579995	588.209915
300.188833 std	123.793712	233.606622	409.006147
436.981100 min	0.000000	0.000000	-749.783000
0.000000 50%	57.535000	105.885000	485.602500
136.845000 75%	117.485000	222.877500	674.492000
380.202500 99%	569.370000	1069.472500	1867.815750
2053.946500 100%	2880.225000	7001.500000	31438.461000
7331.060000 max 7331.060000	2880.225000	7001.500000	31438.461000

offr	net_mou_good	roam_ic_mou_good	roam_og_mou_good	
	80011.000000	30011.000000	30011.000000	
30011.00000 mean	00 420.928874	15.467439	25.678826	
2.235913 std	440.662739	67.369363	94.737246	
44.785169 min	0.000000	0.00000	0.00000	
0.000000 50%	299.095000	0.00000	0.000000	
0.000000 75%	532.092500	3.055000	7.270000	
0.000000 99% 42.724000	2145.356000	280.745500	444.284000	
100% 5695.47000	8314.795000	3060.600000	2410.835000	
max 5695.470000	8314.795000	3060.600000	2410.835000	
3033.470000	,			
	_og_mou_good	og_others_good	total_og_mou_good	
	$80\overline{0}11.000000$	30011.000000	30011.000000	
30011.00000 mean	6.670925	0.372831	697.911136	
311.193772 std	18.350992	1.846397	610.373239	
345.411427 min 0.000000	0.000000	-0.117216	0.00000	
50% 211.185000	1.730000	0.00000	547.010000	
75% 395.232500	7.032500	0.000000	896.840000	
99% 1686.116006	65.081500	4.794500	2956.728500	
1000.110000 100% 6266.145000	1144.500000	185.065000	9347.210000	
max 6266.145006	1144.500000	185.065000	9347.210000	
	_ic_mou_good	isd_ic_mou_good	ic_others_good	
count 3	_num_good \ 80011.000000	30011.000000	30011.000000	
30011.00000 mean	0.042399	11.758360	1.342866	
12.017394 std	0.152451	67.199626	13.400827	

0 720542				
8.729543 min 0.500000	0.000000	0.000000	0.00000)
50% 9.500000	0.000000	0.000000	0.000000)
75%	0.000000	0.802500	0.270000)
15.000000 99% 44.500000	0.415000	243.307000	20.327500)
100%	16.610000	3811.385000	1420.040000)
155.500000 max 155.500000	16.610000	3811.385000	1420.04000)
	_rech_amt_good	max_rech_amt_go	ood	
count	_amt_good \ 30011.000000	30011.0000	900	30011.000000
mean	696.664356	173.5375	553	104.886392
std	488.782088	153.5042	272	115.077568
min	368.500000	9.0000	900	0.000000
50%	568.500000	124.0000	900	80.000000
75%	795.500000	200.0000	900	124.000000
99%	2216.300000	799.5000	900	550.000000
100%	37762.500000	3299.0000	900	3100.000000
max	37762.500000	3299.0000	900	3100.000000
	_rech_2g_good	count_rech_3g_gd	ood vol_2g_n	nb_good
vol_3g_mb_go count	od \ 30011.000000	30011.0000	30011.	000000
30011.000000 mean 268.243209	0.671887	0.3235	581 78.	515195
std 794.962391	1.695099	1.0332	207 254.	201180
min 0.000000	0.000000	0.0000	900 0.	000000
50%	0.000000	0.0000	900 0.	000000
0.000000 75% 99.697500	0.500000	0.0000	900 29.	330000

99%	8.500000	4.000	1220.188500	
3347.470000 100%	38.500000	27.000	7939.075000	
36667.845000 max 36667.845000	38.500000	27.000	7939.075000	
		chet_2g_good mo	nthly_3g_good	
sachet_3g_goo count 300 30011.000000	11.000000	30011.000000	30011.000000	
mean	0.128103	0.543784	0.179518	
0.144064 std	0.336706	1.668069	0.540083	
0.852098 min	0.000000	0.00000	0.00000	
0.000000 50%	0.000000	0.00000	0.00000	
0.000000 75%	0.000000	0.00000	0.00000	
0.000000 99%	1.500000	8.000000	2.500000	
3.000000 100%	4.500000	38.000000	11.500000	
27.000000 max 27.000000	4.500000	38.000000	11.500000	
total_count mean std min 50% 75% 99% 100% max	og_t2c_mou_go 30011.0000 1.7146 6.7034 0.0000 0.0000 1.0400 22.6050 420.5750	$egin{array}{cccccccccccccccccccccccccccccccccccc$	898 4.530 6750 13.061 6000 0.000 7500 0.590 6000 3.655 6000 55.344 6000 750.432	000 401 159 000 000 750
count 300 mean 3 std 3 min 50% 2 75% 4 99% 14 100% 45	_mou_good l_ 11.000000 44.312472 03.671453 0.000000 69.455000 44.155000 64.662000 14.047500	s_ic_t2t_mou_goo 30011.00000 43.04586 86.21331 0.00000 21.80500 47.05625 355.99125 2919.27750	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 7 5 0 0 0 0

lsoa	l_s_ic_t2m_mou_good _t2t_mou_good \	l_s_ic_t2f_mou_good	
count	30011.000000	30011.000000	30011.000000
mean	96.479788	9.493277	145.010266
std	116.788251	25.037982	216.380664
min	0.000000	0.000000	0.000000
50%	63.235000	1.862500	63.690000
75%	120.778750	8.338750	180.698750
99%	564.908000	110.928250	1023.323000
100%	2263.127500	685.240000	3665.525000
max	2263.127500	685.240000	3665.525000
\	arpu_perc_change on	net_mou_perc_change	offnet_mou_perc_change
count	30011.000000	30011.000000	30011.000000
mean	0.054280	-0.318394	-0.037691
std	1.247809	14.556860	1.963606
min	-159.521376	-2415.000000	-180.866667
50%	0.092445	0.131863	0.112235
75%	0.360677	0.533966	0.448030
99%	1.000000	1.000000	1.000000
100%	32.029066	1.000000	1.000000
max	32.029066	1.000000	1.000000
count mean std min 50%	roam_ic_mou_perc_cha 30011.000 -0.560 16.420 -1692.860 0.000	1000 30011 1839 - 0 1730 16 1465 - 1608	c_change \ 1.000000 0.560960 5.048688 3.541667 0.000000

75% 99% 100% max	0.000000 1.000000 1.000000 1.000000	0.106725 1.000000 1.000000 1.000000	
isd_og_mo og_others_perc_c count		og_mou_perc_change 30011.000000	
30011.000000 mean	-0.317038	-3.587897	
0.241487 std 0.533021	22.130220	89.624125	
min 28.343173	-3301.000000	-9241.000000	-
50% 0.000000	0.000000	0.000000	
75% 0.000000	0.000000	0.973571	
99% 1.000000	1.000000	1.000000	
100%	1.000000	1.000000	
3.851003 max 3.851003	1.000000	1.000000	
total_og_ count mean std min 50% 75% 99% 100% max	mou_perc_change to 30011.000000 -0.071427 6.303876 -1022.153846 0.091907 0.418111 1.000000 1.000000 1.000000	otal_ic_mou_perc_change \	
<pre>spl_ic_mo ic others perc of</pre>		ic_mou_perc_change	
count 30011.000000	30011.000000	30011.00000	
mean			
	0.136893	-2.03782	-
1.107639 std	0.136893 0.793283	-2.03782 128.71216	-
1.107639 std 19.513004 min			- -
1.107639 std 19.513004	0.793283	128.71216	-

```
0.303026
99%
                      1.000000
                                                 1.00000
1.000000
100%
                      1.000000
                                                 1.00000
1.000000
max
                      1.000000
                                                 1.00000
1.000000
                                     total rech_amt_perc_change
       total rech num perc change
                      30011,000000
                                                     30011,000000
count
mean
                           0.132477
                                                         0.101014
std
                           0.489753
                                                         0.561578
                          -7.250000
                                                       -11.937143
min
50%
                           0.185185
                                                         0.119871
75%
                           0.454545
                                                         0.426385
99%
                           1.000000
                                                         1.000000
100%
                           1.000000
                                                         1.000000
                           1.000000
                                                         1.000000
max
       max rech amt perc change
                                   last day rch amt perc change
                    30011.000000
                                                     30011.000000
count
                        -0.007710
                                                        -0.120641
mean
                        0.579296
                                                         2.195628
std
min
                       -10.976048
                                                      -187.514286
                        0.000000
                                                         0.000000
50%
75%
                        0.272727
                                                         0.800000
99%
                        1.000000
                                                         1.000000
100%
                        1.000000
                                                         1.000000
                        1.000000
                                                         1.000000
max
       count_rech_2g_perc_change
                                     count_rech_3g_perc_change
                     30011.000000
                                                   30011.000000
count
                         -0.011431
                                                       0.038128
mean
std
                          0.936077
                                                       0.568915
min
                        -23,000000
                                                     -21,000000
50%
                          0.000000
                                                       0.000000
75%
                          0.000000
                                                       0.000000
99%
                          1.000000
                                                       1.000000
100%
                          1.000000
                                                       1.000000
                          1.000000
                                                       1.000000
max
       vol 2g mb perc change
                                vol 3g mb perc change
monthly_2g_perc_change \
                 30011.000000
count
                                          30011.000000
30011.000000
                   -12.768452
mean
                                             -4.022263
0.044191
                   674.767276
std
                                            281.026005
0.357355
                -67949.000000
                                         -41197.000000
min
```

```
7.000000
                     0.000000
                                              0.000000
50%
0.000000
75%
                     0.151052
                                              0.00000
0.000000
99%
                     1.000000
                                              1.000000
1.000000
100%
                     1.000000
                                              1.000000
1.000000
                     1.000000
                                              1.000000
max
1.000000
       sachet 2g perc change
                                monthly 3g perc change
sachet 3g perc change \
                 30011.000000
count
                                           30011.000000
30011.000000
mean
                    -0.004292
                                               0.029569
0.036178
                     0.854959
                                               0.421215
std
0.470230
                                             -13.000000
min
                   -21.000000
25.000000
50%
                     0.000000
                                               0.000000
0.000000
75%
                     0.000000
                                               0.000000
0.000000
99%
                     1.000000
                                               1.000000
1.000000
100%
                     1.000000
                                               1.000000
1.000000
                     1.000000
                                               1.000000
max
1.000000
       total og t2c mou perc change
                                       l s ic mou perc change
                        30011.000000
                                                  30011.000000
count
mean
                            -1.609834
                                                      -0.180846
std
                            60.379931
                                                      11.332222
min
                         -8361.000000
                                                  -1859.666667
                             0.000000
50%
                                                       0.060770
75%
                             0.869018
                                                       0.365278
99%
                             1.000000
                                                       1.000000
100%
                             1.000000
                                                       1.000000
max
                             1.000000
                                                       1.000000
       l s og t2t mou perc change
                                     l s og mou perc change
                      30011.000000
                                                30011.000000
count
                          -0.375677
mean
                                                    -0.082759
                         14.707390
                                                    6.347731
std
                      -2415.000000
                                                -1022.153846
min
50%
                          0.124609
                                                    0.091683
```

```
75%
                          0.544132
                                                    0.420734
99%
                          1.000000
                                                    1.000000
100%
                          1.000000
                                                    1.000000
                          1.000000
                                                    1.000000
max
       l s ic t2f mou perc change
                                     l s ic t2t mou perc change
                      30011.000000
                                                    30011.000000
count
mean
                         -1.081201
                                                       -0.552800
                         22.376735
std
                                                       19.118517
min
                      -2648.666667
                                                    -2585.000000
                                                        0.106480
50%
                          0.035122
75%
                          0.759021
                                                        0.524674
99%
                          1.000000
                                                        1.000000
100%
                          1.000000
                                                        1.000000
                          1.000000
                                                        1.000000
max
       l s og t2f mou perc change
                                     l s ic t2m mou perc change
                      30011.000000
                                                    30011.000000
count
                         -0.696418
                                                       -0.242943
mean
std
                         10.282067
                                                        8.598364
                       -691.000000
                                                    -1244.333333
min
50%
                          0.00000
                                                        0.062092
75%
                                                        0.400177
                          0.777778
99%
                          1.000000
                                                        1.000000
100%
                          1.000000
                                                        1.000000
max
                          1.000000
                                                        1.000000
       l_s_og_t2m_mou_perc_change
                      30011.000000
count
mean
                         -0.190344
                          7.438990
std
min
                       -770.000000
50%
                          0.108718
75%
                          0.472157
99%
                          1.000000
100%
                          1.000000
max
                          1.000000
rem col=[
         'mobile number','circle id','date of last rech 6',
        'date_of_last_rech_7', 'date_of_last_rech_8', 'churn_flag'
outlier col check=[x for x in data.columns if x not in rem col]
outlier df=create outlier df(data,outlier col check)
display(outlier df.sort values('Outlier%'))
print("Number of columns with more than 5% outliers
',len(outlier df[outlier df['Outlier%']>5]))
print("Number of columns with more than 10% outliers
 ,len(outlier df[outlier df['Outlier%']>10]))
```

```
print("Number of columns with more than 20% outliers
",len(outlier_df[outlier_df['Outlier%']>20]))
                    ColumnName OutlierCount Outlier%
25
                                                  0.09
                                          28
87
    total rech amt perc change
                                         795
                                                  2.65
    total rech num perc change
86
                                         908
                                                  3.03
73
              arpu perc change
                                        1004
                                                  3.35
7
                   og others 8
                                        1118
                                                  3.73
85
         ic others perc change
                                                 30.24
                                        9074
77
       roam og mou perc change
                                        9276
                                                 30.91
84
        isd ic mou perc change
                                        9552
                                                 31.83
76
       roam_ic_mou_perc_change
                                        9656
                                                 32.17
92
         vol 2g mb perc change
                                       10191
                                                 33.96
[107 rows x 3 columns]
Number of columns with more than 5% outliers
                                               98
```

Number of columns with more than 10% outliers Number of columns with more than 20% outliers

- As high number of columns are having outliers, removing them will reduce the data significantly (due to union of outlier cell rows), should be avoided
- Transforming the outlier with the mean will also not be favourable as columns exists with high percentage of outliers, that would have skewed the mean
- Capping the outliers seems the best option here to avoid incorrect deductions

```
#Capping outliers to the IQR limit
data=cap_outlier(data,outlier_col_check)
#Create dataframe of outlier count to verify
outlier_df=create_outlier_df(data,outlier_col_check)
data.shape
(30011, 109)
outlier_df['Outlier%'].value_counts()
0.0     107
Name: Outlier%, dtype: int64

Dropping columns:
mobile_number: because it is identifier
data.drop(columns=['mobile_number'],inplace=True)
```

EDA

EDA Can be performed on good phase, action phase & 8th month data to remove variables which clearly do not seem to impact the churn ratio.

```
ratio_plots_num(data, [x for x in data.columns if '_good' in x],
'churn_flag', 4, 'husl')
```


Some of the good phase columns do not depict any difference in the churn ratios and we can hence drop them.

All of the perc_change columns seem to demarcate the churn ratio well, so we do not have to drop any of them.

```
ratio_plots_num(data, [x for x in data.columns if '_8' in x],
'churn_flag', 4, 'Paired')
```


One of the action phase columns do not depict any difference in the churn ratios and we can hence drop it.

```
insignificant_columns = ['spl_og_mou_8']
data = data.drop(insignificant_columns, axis=1)
```

Correlation

To remove interdependent features and avoid redundancy to increase model efficiency. As the number of cokumns is high , creating a heatmap will be tricy to analyse same goes with the corr() Dataframe, hence creating a function that takes input - the dataframe , the column list, threshold. Returns a dataframe with unique column pairs and their corr value (>= threshold)

```
corr_col=list(data.columns)
# Finding the correlation of features > 0.9
corr_df=create_correlation_df(data,corr_col,0.9)
corr_df.sort_values(by=('Correlation
Value'),ascending=False,inplace=True)
corr df
```

```
Feature 1
                                                 Feature 2 Correlation
Value
                  l_s_og_mou_8
                                           total_og_mou_8
1.00
7
               l s og mou good
                                        total og mou good
1.00
2
              l s og t2t mou 8
                                               onnet mou 8
0.99
9
           l s og t2t mou good
                                           onnet mou good
0.99
12
        l_s_og_mou_perc_change
                                 total og mou perc change
0.99
                  l s ic mou 8
                                           total ic mou 8
1
0.98
5
              l s og t2m mou 8
                                              offnet mou 8
0.98
               l s ic mou good
                                        total ic mou good
6
0.98
8
           l_s_og_t2m_mou_good
                                          offnet mou good
0.98
10
        l s ic mou perc change
                                 total ic mou perc change
0.98
11
   l s og t2t mou perc change
                                    onnet mou perc change
0.95
```

The above Dataframe gives us the Features highly correlated to each other. We can remove some of the highly correlated variables and retain the rest, which can be removed after VIF checks.

```
correlated column list = ['l s og mou 8', 'l s og mou good',
'l s og t2t mou 8',
                              'l s og t2t mou good',
'l s og mou perc change',
                              'l s og t2m mou 8', 'l s ic mou 8',
'l s og t2m mou good',
                              'l s ic mou good',
'l s ic mou perc change',
                              'l s og t2t_mou_perc_change',
'total rech amt 8',
                              'l s og t2m mou perc change',
'l s ic mou 8']
data.drop(columns=correlated column list,inplace=True)
data.shape
(30011, 89)
Class Imbalance
print('Churn flag 1 count: ',len(data[data['churn_flag']==1]))
print('Churn flag 0 count: ',len(data[data['churn_flag']==0]))
ClassImbRatio=len(data[data['churn_flag']==0])/len(data[data['churn_flag']==0])
ag']==1])
print('Class imbalance ratio: ',round(ClassImbRatio,2))
Churn flag 1 count:
                       2593
Churn flag 0 count:
                       27418
Class imbalance ratio: 10.57
```

The class imbalance ratio is high \sim 10.6, due to this the predictions will be biased towards the majority class. This will result in a lower accuracy model when compared to a model trained on a balanced data set.

We can use either over sampling or under sampling for the data:

 Undersampling will reduce the major class data points to match the minority class data points count. This will result is reduction of overall data which is not recommended. • Oversampling will match the minority class data points count to match the majority class data points count (Recommended)

We would be using SMOTE from imblearn.over_sampling to do the same, on the training data set only.

```
data.shape
(30011, 89)
#Splitting the data into X and y (target variable)
data temp=data.copy()
y=data temp.pop('churn flag')
X=data temp
# Splitting into train and test
X train, X test, y train, y test=train test split(X, y, test size=0.3, rando
m state=100)
# Implementing SMOTE
smote=SMOTE(sampling strategy=0.6, random state=42, k neighbors=3)
X train smote,y train smote=smote.fit sample(X train,y train)
print('Before SMOTE',Counter(y train))
print('After SMOTE', Counter(y train smote))
Before SMOTE Counter({0: 19184, 1: 1823})
After SMOTE Counter({0: 19184, 1: 11510})
Now we have the class balanced for the training data
Feature Scaling
X train smote original = X train smote.copy()
X test original = X test.copy()
scaler = preprocessing.StandardScaler()
X train smote[X train smote.columns] =
\overline{\text{scaler.}} fit transform(\overline{X} train smote)
X test[X train smote.columns] =
scaler.transform(X test[X train smote.columns])
```

Eliminate Insignificant Variables Using VIF

Though we will be using PCA to extract the features for building the model, the objective still remains to be able to extract the important features impacting the churn. We will thus work towards this by eliminating the redundant variables before application of PCA.

```
features_set_1 = X_train_smote.columns
vif ranks(X train smote, features set 1, 10)
```

```
VIF
               Features
40
      total ic mou good
                          53.19
8
         total_ic_mou_8
                          52.05
33
              arpu good
                          50.26
0
                  arpu 8
                          47.41
39
      total_og_mou_good
                          44.47
56
    l s ic t2m mou good
                          36.59
       l_s_ic_t2m_mou_8
32
                          36.58
7
         total og mou 8
                          34.01
44
    total rech num good
                          27.99
13
         max rech amt 8 27.62
Note:
RFE can be used to eliminate variables with high VIF
lr = LogisticRegression()
rfe = RFE(lr, 25)
rfe = rfe.fit(X train smote[features set 1], y train smote)
features set 2 = list(data temp.columns[rfe.support ])
X_train_smote = X_train_smote[features_set_2]
X_test = X_test[features_set_2]
X_train_smote_original = X_train_smote_original[features_set_2]
X test original = X test original[features set 2]
features set 2
['arpu 8',
 'total og mou 8',
 'ic others 8',
 'total rech num 8',
 'max rech amt 8',
 'last_day_rch_amt_8',
 'vol_2g_mb_8',
 'aon<sup>'</sup>,
 'l s ic t2f mou 8',
 'l s ic t2t mou 8',
 'l s og t2f mou 8',
 'l_s_ic_t2m_mou 8',
 'arpu good',
 'roam ic mou good',
 'total ic_mou_good',
 'last day rch amt good',
 'count rech 2g good'
 'l s ic t2m mou good',
 'arpu perc change',
 'total_og_mou_perc_change',
```

```
'total ic mou perc change',
 'total rech amt perc change',
 'max_rech_amt_perc_change',
 'last day rch amt perc change',
 'l s ic t2m mou perc change']
PCA
pca iteration = PCA(random state=0)
pca iteration.fit(X train smote)
PCA(copy=True, iterated power='auto', n components=None,
random state=0,
    svd solver='auto', tol=0.0, whiten=False)
var cumu = numpy.cumsum(pca iteration.explained variance ratio )
fig = plt.figure(figsize=[12,8])
plt.vlines(x=12, ymax=1, ymin=0, colors="r", linestyles="--")
plt.hlines(y=0.90, xmax=25, xmin=0, colors="g", linestyles="--")
plt.plot(var cumu)
plt.ylabel("Cumulative variance explained")
plt.show()
   1.0
   0.8
  Cumulative variance explained
   0.6
   0.2
   0.0
pca iteration 2 = IncrementalPCA(n components=13)
X train smote transformed =
pca iteration 2.fit transform(X train smote)
X_test_transformed = pca_iteration_2.transform(X_test)
```

X train smote transformed =

pandas.DataFrame(X train smote transformed)

```
X_train_smote_transformed.columns = ['PC '+str(x) for x in
X_train_smote_transformed]

X_test_transformed = pandas.DataFrame(X_test_transformed)
X_test_transformed.columns = ['PC '+str(x) for x in
X_test_transformed]

sns.heatmap(X_train_smote_transformed.corr())

<matplotlib.axes._subplots.AxesSubplot at 0x7f93595c8dd0>
```


PCA has been used to select only the top features contributing to the 95% of the variation & we can verify through the correlation plot that there absolutely exists no correlation amongst the principal components.

Model Building - Features: PCA

Logistic Regression

Iteration 1

```
pc_features_set_1 = X_train_smote_transformed.columns

features = pc_features_set_1
X_train_sm = sm.add_constant(X_train_smote_transformed[features])
```

```
X_test_sm = sm.add_constant(X_test_transformed[features])
logm2 = sm.GLM(y_train_smote, X_train_sm, family =
sm.families.Binomial())
model = logm2.fit()
model.summary()
```

<class 'statsmodels.iolib.summary.Summary'>

Generalized Linear Model Regression Results

====== Dep. Variable: churn_flag No. Observations: 30694 Model: GLM Df Residuals: 30680 Model Family: Binomial Df Model: 13 Link Function: logit Scale: 1.0000 Method: IRLS Log-Likelihood: -11987. Thu, 21 May 2020 Date: Deviance: 23973. Time: 22:32:09 Pearson chi2: 3.73e+04

No. Iterations: 6

Covariance Type: nonrobust

0.975]	coef	std err	z	P> z	[0.025
const -0.885	-0.9209	0.018	-50.532	0.000	-0.957
PC 0 0.728	0.7125	0.008	91.004	0.000	0.697
PC 1 -0.022	-0.0434	0.011	-3.922	0.000	-0.065
PC 2 0.075	0.0497	0.013	3.876	0.000	0.025
PC 3 0.525	0.4972	0.014	34.843	0.000	0.469
PC 4 -0.052	-0.0808	0.015	-5.419	0.000	-0.110
PC 5 0.068	0.0372	0.016	2.395	0.017	0.007

PC 6 0.022	-0.0107	0.017	-0.647	0.518	-0.043
PC 7	0.0115	0.017	0.672	0.501	-0.022
0.045 PC 8	0.0364	0.020	1.825	0.068	-0.003
0.075 PC 9 -0.189	-0.2280	0.020	-11.474	0.000	-0.267
PC 10 -0.269	-0.3098	0.021	-14.723	0.000	-0.351
PC 11 0.164	0.1160	0.025	4.720	0.000	0.068
PC 12 0.039	-0.0094	0.025	-0.379	0.705	-0.058

======

11 11 11

Tuning The Probability Theshold

plot_precision_recall_curve(model.predict(X_train_sm), y_train_smote)

Observation:

From this, it appears that the optimal threshold is 0.45 predict_summarize(model.predict(X_train_sm), y_train_smote, 0.45, True)

Accuracy = 0.8331921548185313 Sensitivity = 0.7662033014769766 Specificity = 0.873384070058382

False Positive Rate = 0.12661592994161802

Precision = 0.7840504978662873 Recall = 0.7662033014769766

Plotting

Receiver operating characteristic example

predicted_no predicted_yes

predict_summarize(model.predict(X_test_sm), y_test.values, 0.45, True)

Accuracy = 0.8668369613505109 Sensitivity = 0.7558441558441559 Specificity = 0.8772164197230994

False Positive Rate = 0.12278358027690066

Precision = 0.3653483992467043

Recall = 0.7558441558441559 Plotting

	<pre>predicted_no</pre>	<pre>predicted_yes</pre>
ind	_	
actual no	7223	1011
actual_yes	188	582

Random Forest

Apart from creating features, we will have to further tune the model by arriving at the best hyper parameters either by trial & erro or by grid search.

Choosing multiple values of parameters to avoid over/under fitting of the RF Model. Using 3 folds CV we have come accross the best suited param set for RF model : $\frac{1}{2}$

'criterion': gini & entropy are the 2 possible criterion, and considering use cases where there is a class imbalance, entropy proves to be a better fit.

^{&#}x27;bootstrap': True,To reduce latency

'max_depth': Having higher number of tress will make the model learn the data to a level of overfitting. And will perform poorly in real time scenario. Hence restricting to [5,10,15,20,25]

'min_impurity_decrease': This parameter ensures that the tree does grow more without a substantial increase in the purity.

'min_samples_split': Less min_samples_split would have caused the tree to increase and over fit the data.

'n_estimators': To avoid over fitting, more the estimators, better is the model, but unnecessary increase in this also slows down the model build process with no improvement in the accuracy.

'oob_score': Out of bag scoring will ensure that the model works well even on unseen data.

```
features = [x for x in pc features set 1 if x not in ['PC 6', 'PC
7','PC 8','PC 12']]
X train forest = X train smote transformed[features]
X test forest = X test transformed[features]
n estimators = [500,800,1000]
max features = ['auto','sqrt']
criterion = ["gini", "entropy"]
\max depth = [5, 10, 15, 20, 25]
min samples split = [50, 100]
min impurity decrease = [0.1, 0.2]
param grid = {'n estimators': n estimators,
                 'max features': max features,
                'max depth': max depth,
                'min_samples_split': min_samples split,
                'min impurity decrease':min impurity decrease,
                'criterion':criterion,
                'bootstrap':[True],
                'oob score':[True]}
grid search = GridSearchCV(estimator = RandomForestClassifier(),
                           param grid = param grid,
                        cv = 3, n jobs = 8, verbose = 2)
grid search.fit(X train forest, y train smote)
grid search
Fitting 3 folds for each of 240 candidates, totalling 720 fits
[Parallel(n jobs=8)]: Using backend LokyBackend with 8 concurrent
workers.
[Parallel(n jobs=8)]: Done 25 tasks
                                             elapsed:
                                                        49.6s
[Parallel(n jobs=8)]: Done 146 tasks
                                             elapsed: 4.6min
[Parallel(n_jobs=8)]: Done 349 tasks
                                           elapsed: 11.2min
[Parallel(n jobs=8)]: Done 632 tasks
                                           I elapsed: 27.7min
[Parallel(n jobs=8)]: Done 720 out of 720 | elapsed: 33.1min finished
```

```
GridSearchCV(cv=3, error score=nan,
              estimator=RandomForestClassifier(bootstrap=True,
ccp alpha=0.0,
                                                 class weight=None,
                                                 criterion='gini',
max depth=None,
                                                 max features='auto'.
                                                max leaf nodes=None,
                                                max samples=None,
min impurity decrease=0.0,
                                                min impurity split=None,
                                                 min samples leaf=1,
                                                 min samples split=2,
min weight fraction leaf=0.0,
                                                 n estimators=100,
n jobs=None,...
                                                warm start=False),
             iid='deprecated', n jobs=8,
             param_grid={'bootstrap': [True], 'criterion': ['gini',
'entropy'],
                           'max_depth': [5, 10, 15, 20, 25],
                          'max_features': ['auto', 'sqrt'],
'min_impurity_decrease': [0.1, 0.2],
                          'min_samples_split': [50, 100],
                          'n estimators': [500, 800, 1000],
                           'oob score': [True]},
             pre dispatch='2*n jobs', refit=True,
return train score=False,
              scoring=None, verbose=2)
grid search.best params
{'bootstrap': True,
 'criterion': 'entropy',
 'max depth': 15,
 'max_features': 'sqrt',
 'min impurity decrease': 0.2,
 'min samples split': 50,
 'n estimators': 500,
 'oob score': True}
model rf = RandomForestClassifier(bootstrap=True,
                                    criterion = 'entropy',
                                    \max depth=15,
                                    max features='sqrt',
                                    min samples split=50,
                                    n estimators=500,
                                    min impurity decrease=0.2,
                                    random state = 42,
```

```
oob score=True
model_rf.fit(X_train_forest, y_train_smote)
RandomForestClassifier(bootstrap=True, ccp alpha=0.0,
class weight=None,
                       criterion='entropy', max depth=15,
max features='sqrt',
                       max leaf nodes=None, max samples=None,
                       min_impurity_decrease=0.2,
min impurity split=None,
                       min_samples_leaf=1, min_samples_split=50,
                       min weight fraction leaf=0.0, n estimators=500,
                       n jobs=None, oob score=True, random state=42,
verbose=0,
                       warm start=False)
plot_precision_recall_curve([x[1] for x in
model rf.predict proba(X train forest)], y train smote.values)
```


From the above graph we see that the recall and precision is not dipping with some variation in the threshold. The model is robust around the threshold value and has very well bifurcated the 0s and 1s.

Accuracy = 0.8277187723985143 Sensitivity = 0.7259774109470026 Specificity = 0.8887614678899083 False Positive Pate = 0.11123853211000

False Positive Rate = 0.11123853211009174

Precision = 0.7965681601525262 Recall = 0.7259774109470026 Plotting

Receiver operating characteristic example

predicted_no predicted_yes

ind actual_no 17050 2134 actual_yes 3154 8356

Accuracy = 0.8745002221235006 Sensitivity = 0.7142857142857143 Specificity = 0.8894826329851834 False Positive Rate = 0.11051736701481661 Precision = 0.3767123287671233 Recall = 0.7142857142857143 Plotting

Receiver operating characteristic example

predicted_no predicted_yes

7324 910
220 550

Recall, which tells us the correctly predicted relevant results is $\sim 70\%$ with accuracy of $\sim 87\%$.

SVM

ind

actual no

actual yes

We can attain the best hyper parameters using the grid search for SVM as well

```
'kernel': ['rbf']}
svm grid search = GridSearchCV(svm.SVC(), param grid, refit = True,
verbose = 3, n jobs=6)
svm grid search.fit(X train, y train)
svm grid search.best estimator .get params()
{'C': 10,
 'break ties': False,
 'cache size': 200,
 'class weight': None,
 'coef0': 0.0,
 'decision_function_shape': 'ovr',
 'degree': 3,
 'gamma': 0.0001,
 'kernel': 'rbf',
 'max iter': -1,
 'probability': False,
 'random state': None,
 'shrinking': True,
 'tol': 0.001,
 'verbose': False}
clf = svm.SVC(C=10, break ties=False, cache size=200,
class weight=None, coef0=0.0,
    decision function shape='ovr', degree=3, gamma=0.0001,
kernel='rbf',
    max iter=-1, probability=True, random state=None, shrinking=True,
    tol=0.001, verbose=False)
clf.fit(X train svm, y train smote)
SVC(C=10, break ties=False, cache size=200, class_weight=None,
coef0=0.0,
    decision function shape='ovr', degree=3, gamma=0.0001,
kernel='rbf',
    max iter=-1, probability=True, random state=None, shrinking=True,
tol=0.001,
    verbose=False)
plot precision recall curve([x[1] for x in
clf.predict proba(X train svm)], y train smote)
```


predict_summarize([x[1] for x in clf.predict_proba(X_train_svm)],
y_train_smote, 0.4, True)

Accuracy = 0.8321821854434092 Sensitivity = 0.7900086880973067 Specificity = 0.8574854045037531 False Positive Rate = 0.14251459549624687

Precision = 0.7688340238437473 Recall = 0.7900086880973067 Plotting


```
predicted_no predicted_yes
```

```
ind actual_no 16450 2734 actual yes 2417 9093
```

predict_summarize([x[1] for x in clf.predict_proba(X_test_svm)], y_test, 0.4, True)

Accuracy = 0.8530653043091959 Sensitivity = 0.7831168831168831 Specificity = 0.8596065095943648

False Positive Rate = 0.14039349040563517

Precision = 0.3428084138715179 Recall = 0.7831168831168831 Plotting

	predicted_no	predicted_yes
ind	_	
actual_no	7078	1156
actual_yes	167	603

In this problem, the objective is to identify the churners correctly as compared to identification of non churners. We can thuse look for an optimal Sensitivity value. The SVM model gives the best sensitivity at 78%, accuracy of approximately 85 in both train & test set. Although, in this case, precision is low as some non churners have been identified as churners in the test set. But this can be compensated for the higher sensitivity/recall which is of higher priority. Hence, the model which can be used to identify churners best is SVM

Model Building - Features: Original Variables

RF

The objective of this is to come up with variables and their impact on the churn for the business to be able to take better decisions.

```
model rf 2 = RandomForestClassifier(bootstrap=True,
                                   criterion = 'entropy',
                                   max_depth=10,
                                   max features='auto',
                                   min samples split=100,
                                   n estimators=1000,
                                   min impurity decrease=0.2,
                                   random state = 42)
model_rf_2.fit(X_train_smote_original, y_train_smote)
RandomForestClassifier(bootstrap=True, ccp alpha=0.0,
class_weight=None,
                        criterion='entropy', max depth=10,
max features='auto',
                       max leaf nodes=None, max samples=None,
                       min impurity decrease=0.\overline{2},
min impurity split=None,
                       min samples leaf=1, min samples split=100,
                       min weight fraction leaf=0.0,
n estimators=1000,
                       n jobs=None, oob score=False, random state=42,
verbose=0,
                       warm_start=False)
plot precision recall curve([x[1] for x in
model rf 2.predict proba(X train smote original)], y train smote)
```


predict_summarize([x[1] for x in
model_rf_2.predict_proba(X_train_smote_original)], y_train_smote,
0.32, True)

Accuracy = 0.8149801264090701 Sensitivity = 0.7466550825369244 Specificity = 0.8559737281067556

False Positive Rate = 0.14402627189324438

Precision = 0.756713920929823 Recall = 0.7466550825369244 Plotting

Receiver operating characteristic example

predicted_no predicted_yes

ind actual_no 16421 2763 actual_yes 2916 8594

predict_summarize([x[1] for x in
model_rf_2.predict_proba(X_test_original)], y_test, 0.32, True)

Accuracy = 0.8471790315415371 Sensitivity = 0.7714285714285715 Specificity = 0.8542628127277143
False Positive Rate = 0.14573718727228566

Precision = 0.3311036789297659 Recall = 0.7714285714285715 Plotting

Receiver operating characteristic example

<pre>predicted_no predicted_no predicted_no</pre>	edicted_yes
---	-------------

ind		
actual_no	7034	1200
actual yes	176	594

Observation

The above model built using the original non-scaled, variables also gives a good sensitivity of 77 on the test data and we can thus use the feature importance from the above model to obtain important observations.

plot_feature_importance(X_train_smote_original.columns, model rf 2.feature importances)

0.10

value

0.15

0.20

Important Features - Visualization

arpu 8

0.00

max_rech_amt_8

column

```
important parameters =
pandas.DataFrame(zip(X_train_smote_original.columns,
model rf 2.feature importances ))
important parameters.columns = ['parameter','importance']
important parameters =
important parameters.loc[important_parameters['importance']>0]
important parameters.sort values('importance', ascending=False)
                                importance
                     parameter
20
      total_ic_mou_perc_change
                                   0.218478
24
    l s ic t2m mou perc change
                                   0.176087
11
              l_s_ic_t2m_mou_8
                                   0.131522
19
      total og mou perc change
                                   0.125000
18
              arpu perc change
                                  0.106522
21
   total rech amt perc change
                                  0.089130
1
                total og mou 8
                                  0.063043
9
              l_s_ic_t2t mou 8
                                   0.041304
0
                        arpu 8
                                   0.039130
4
                max_rech_amt 8
                                   0.009783
variables = important_parameters['parameter'].values
ratio plots num(data, variables, 'churn flag', 5, 'husl')
```

0.05

Conclusion:

We can see few of the above parameters impact clearly on the churn ratio.

- arpu_perc_change > 0.7
- total_og_mou_perc_change > 0.6
- total_ic_mou_perc_change > 0.6
- total_rech_amt_perc_change > 0.6
- l_s_ic_t2m_nou_perc_change > 0.5

All the above changes from the good phase to the action phase are clear indicators of churn through which the operator can identify & mitigate the risk.

The below are indicators from the action phase which can further be used to confirm the same.

- arpu_8 < 22
- total_og_mou_8 < 360
- max_rech_amt_8 < 79
- l_s_ic_t2t_mou_8 < 21
- $l_s_ic_t2m_mou_8 < 52$

The team must ideally use the above symptoms to identify possible churners and appropriately handle their retention strategy.