

Python 机器学习实战

国际权威学术组织ICDM在 2006年12月评选出数据挖掘 领域的十大经典算法

数据挖掘十大算法: 一览表

排名	挖掘主题	算法	得票数	发表时间	作者	讲解人
1	分类	C4.5	61	1993	Quinlan, J.R	Hiroshi Motoda
2	聚类	K-Means	60	1967	MacQueen, J.B	Joydeep Ghosh
3	统计学习	SVM	58	1995	Vapnik, V.N	Qiang Yang
4	关联分析	Apriori	52	1994	Rakesh Agrawal	Christos Faloutsos
5	统计学习	EM	48	2000	McLachlan, G	Joydeep Ghosh
6	链接挖掘	PageRank	46	1998	Brin, S.	Christos Faloutsos
7	集装与推进	AdaBoost	45	1997	Freund, Y.	Zhi-Hua Zhou
8	分类	kNN	45	1996	Hastie, T	Vipin Kumar
9	分类	Naïve Bayes	45	2001	Hand, D.J	Qiang Yang
10	分类	CART	34	1984	L.Breiman	Dan Steinberg

决策树

ID.3、C4.5、C5.0

CART (Classification and Regression Tree, 分类回归树)

元模型

Bagging、Boosting、随机森林

认识决策树

记录ID	年龄	输入层次	学生	信用等级	是否购买电脑
1	青少年	高	否	一般	否
2	青少年	高	否	良好	否
3	中年	高	否	一般	是
4	老年	中	否	一般	是
5	老年	低	是	一般	是
6	老年	低	是	良好	否
7	中年	低	是	良好	是
8	青少年	中	否	一般	否
9	青少年	低	是	一般	是
10	老年	中	是	一般	是
11	青少年	中	是	良好	是
12	中年	中	否	良好	是
13	中年	高	是	一般	是
14	老年	中	否	良好	否

- 对样本数据不断分组过程
- 是个线性分类器

术语

根节点:一棵决策树只有一个根节点

叶节点:代表一个类别

中间节点: 代表在一个属性上的测试

分支: 代表一个测试输出

二叉树和多叉树

二叉树:每个节点最多有两个分支

多叉树: 每个节点不止有两个分支

树的生长

- 采用分而治之的策略
- 选变量的顺序: 如何从众多决策变量中选择一个当前最佳的决策变量;
- 最佳分离点在哪:如何从分组变量的众多取值中找到一个最佳的分割点;

树的修剪

避免过渡拟合:过于个性化、失去了一般化(收入大于1万、年龄小于30岁、姓名是张三的)

ID3

- 信息增益
- 没有修剪

C4.5

- 信息增益率
- 悲观剪枝法

C5.0

- 信息增益率
- 自适应增强

CART (分类回归树)

- 基尼指数
- · "代价复杂度"剪枝法

如何衡量混杂程度

箱子1: 100个红球

箱子2:50个红球、50个球

箱子3:10个红、30个篮、60个绿球

箱子4:10种颜色,每种颜色各10个

箱子5: 有100种颜色的球

凭直觉,箱子1显然是最纯粹的。箱子5是最乱的,箱子3比箱子4要好一点,箱子2 要再好一些。

如何把这种感觉量化呢,以数字化表示,进而计算机可以计算和处理。

对于这个数字,我们希望,集合越纯粹,数字越小。不妨想象成就一个集合的"纯洁度"给"差评",越不纯洁,差评分数越高,越纯洁,分数越低,直到0差评。

度量信息混杂程度的指标

• 熵

$$H(X) = -\sum_{x \in X} p(x) \ln p(x)$$

• 基尼系数

$$Gini(p) = \sum_{k=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{K} p_k^2$$

熵的理解

- · 事件X的信息量的期望
- · 事件的X的结果发生的概率越小,信息量越大
- · 定义一个结果的信息量: h(x)=-log x
- ·所有结果的信息量,或者事件X的信息量的期望

熵是随机变量不确定性的量化指标,越不确定,熵越大

条件熵

在知道了条件Y之后,X事件仍然具有的不确定性

$$H(X|Y) = H(X,Y) - H(Y)$$
$$= \sum_{x} p(x)H(Y|X=x)$$

信息增益 (互信息)

- · 在知道了事件Y之后,X事件不确定性减少程度
- Gain = 熵 条件熵

选择信息增益最大的属性作为决策属性 (ID3)

• 是否购买电脑的熵

$$H(D) = -\frac{5}{14} \log_2 \frac{5}{14} - \frac{9}{14} \log_2 \frac{9}{14} = 0.94$$

• 按照年龄这一列分裂

$$\begin{split} H_{age}(D_{youth}) &= -\frac{3}{5}\log\frac{3}{5} - \frac{2}{5}\log\frac{2}{5} = 0.971 \\ H_{age}(D_{youth}) &= -\frac{3}{5}\log\frac{3}{5} - \frac{2}{5}\log\frac{2}{5} = 0.971 \end{split}$$

• 分裂后的条件熵

$$H_{oge}(D) = \frac{5}{14} *0.971 + \frac{4}{14} *0 + \frac{5}{14} *0.971 = 0.694$$

• 用年龄作为决策属性后的信息增益

$$Gain(age) = H(D) - H_{age}(D) = 0.246$$

分别计算四个属性各自的信息增益

- Gain(age) = 0.246
- Gain(income)=0.029
- Gain(stduent)=0.151
- Gain(credit_rating)=0.048

于是把年龄作为根结点的测试属性,根据青少年、中年、老年分为三个分支

信息增益率

- 信息增益倾向于选择更混杂的属性
- · 信息增益的改进:增益率
- · C4.5

$$g_r(D,A) = g(D,A) / H(A)$$

信息增益率的例子

Gain(income)=0.029

H(income) =
$$-\frac{4}{14} \times \log_2 \frac{4}{14} - \frac{6}{14} \times \log_2 \frac{6}{14} - \frac{4}{14} \times \log_2 \frac{4}{14} = 1.557$$

$$Gr(income) = 0.029 / 1.557 = 0.019$$

