

Progetto di Basi di Dati **SMART BUILDINGS**Documentazione tecnica

Bochicchio Andrea - Dei Tommaso

Indice

1	Intro	oduzione	3
2	Dizio 2.1 2.2	Dizionario delle entità	4
3	Prog	ettazione concettuale	8
	3.1	Area generale	8
		3.1.1 Struttura di un edificio	8
		3.1.2 Rischi	9
	3.2		10
	3.3	Area analisi del rischio	13
4	Rista	rutturazione	1 4
	4.1	Eliminazione delle generalizzazioni	14
	4.2	Eliminazione degli attributi multivalore	16
	4.3	Analisi ed eventuale eliminazione delle ridondanze	17
	4.4	Partizionamento/accorpamento di entità e relationship	17
5	Tavo	ola dei volumi	18
6	Opei	razioni	21
	6.1	Elenco dei gruppi di lavoro	21
	6.2	Sensori con deviazione standard più elevata	22
	6.3	Elenco lavoratori che hanno svolto lavori sul vano	23
	6.4	Calcolo del costo di un lavoro (analisi della ridondanza)	25
	6.5	Elenco dei materiali in esaurimento	28
	6.6	Numero vani in un piano (analisi della ridondanza)	29
	6.7	Gravità di una calamità	31
	6.8	Stato di un edificio	34
7	Prog	ettazione logica	37
	7.1	Descrizione del modello logico	37
	7.2	Analisi dipendenze funzionali e normalizzazione	39
	7.3	Vincoli	42
		7.3.1 Vincoli di dominio	42
		7.3.2 Vincoli di tupla	43

		7.3.3 7.3.4					_																
8	Data	a analy	tics																			40	(
	8.1	Stima	dan	ni																		4	ť
	8.2	Consig	gli d	i int	erve	nto																4'	,

1 Introduzione

Smart Buildings è una base di dati per aziende appartenenti al settore delle costruzioni. Essa è stata sviluppata per la gestione di uno degli ambiti in più forte sviluppo dell'edilizia, quello delle costruzioni smart. Per costruzioni smart si intendono le nuove edificazioni e le ristrutturazioni sviluppate in modo da essere sostenibili sia da un punto di vista ambientale che economico e tecnologicamente avanzate oltre che nell'uso di materiali anche lato informatico ed elettronico. Ecco che lo sviluppo di una base di dati per un'azienda del settore si rivela di fondamentale importanza.

Lo scopo di *Smart Buildings* è quello di gestire ed analizzare la mole di dati rilevata dai sensori installati sugli edifici rendendoli utili all'impresa edile per una più facile gestione e manutenzione delle costruzioni effettuate. Per di più essa si prefigge l'intento di fornire consigli, tramite meccanismi di analisi dei dati, sulla predisposizione di un territorio alla costruzione di un edificio e sui possibili danni arrecati alla stessa da eventuali eventi calamitosi avvenuta in una determinata area.

La seguente documentazione è indispensabile per comprendere ogni nostra scelta progettuale riuscendo a chiarire ogni ambiguità in caso se ne presenti la necessità.

2 Dizionario dei dati

In questa parte di documentazione introduciamo gli elementi presenti nel diagramma entity-relationship. Essi sono presentati tramite una breve descrizione alla quale è stato deciso di affiancare l'elenco degli attributi e quello degli identificatori.

2.1 Dizionario delle entità

ENTITA'	DESCRIZIONE	ATTRIBUTI	IDENTIFICATORE		
Edificio	Costruzione generica edificata dall'impresa di costruzioni smart	Sub, Particella, Foglio, Comune, Tipologia	Identificativo		
Pianta	Planimetria di un piano dell'edificio	Dimensione perimetro, Tipo perimetro, Piano	Codice		
Esistente	Edificio per cui è stata portata a termine la fase di costruzione		Edificio (Identificativo)		
Da realizzare	Edificio ancora in corso di edificazione		Edificio (Identificativo)		
Vano	Ambiente circoscritto di un edificio	Funzionalita, Larghezza, Lunghezza, Massima altezza, Piano	Numero vano, Edificio (Identificativo)		
Finestra	Apertura, tramite finestra, di un edificio con l'esterno	Punto cardinale	Indice, Vano (Numero vano), Edificio (Identificativo)		
Accesso	Apertura, tramite porta o portafinestra tra vani adiacenti o con l'esterno	Classificazione, Larghezza, Lunghezza, Punto cardinale, Collegamento esterno	Identificativo		
Mura	Parete perimetrale o separatoria di un edificio	Strato intonaco	Codice		
Area geografica	Territorio su cui è eretto o si sta costruendo un edificio caratterizzato da coefficienti utili all' azienda edile	Coef. rischio sismico, Coef. rischio idreogeologico, Data di variazione	Num. registrazione, Cap		
Sensore	Di vario tipo, è un raccoglitore di dati che servono per far funzionare il database	Tipo, Soglia	ID		

Misurazione	Valutazione quantitativa effettuata da un sensore	Intensita, Unita di misura, Alert	Data rilevamento, Tipologia, Sensore (ID)
Progetto edilizio	Include la descrizione del progetto ad ogni suo livello	Data presentazione, Data di inizio, Data approvazione, Stima data di fine	Codice, Codice catastale comune
Stadio di avanzamento	Descrive lo stato di una determinata fase del progetto	Data di completamento, Budget, Stima termine, Costo finale, Data inizio	ID
Lavoro	Analizza i passi per la costruzione di un edificio	Termine, Inizio	Nome, Stadio di avanzamento (ID)
Lavoratore	Operaio dell'azienda edile impiegato in un lavoro	Nome, Cognome, Paga oraria, Ruolo, Anno inizio	Matricola
Calendario	Racchiude i turni dei lavoratori	ID Supervisore, Mansione, Durata	Giorno ed orario, Lavoratore (Matricola)
Materiale	Qualsiasi elemento o conglomerato utilizzato nella costruzione di un edificio	Nome, Fornitore, Data di acquisto, Costo, Composizione	Codice lotto
Piastrella	Elemento pavimentale o mattonella da posa murale	Dimensioni, Forma, Disegno, Larghezza fuga, Materiale adesivo	Materiale (Codice lotto)
Altri materiali	Elemento strutturale o decorativo utilizzato durante una costruzione	Dimensioni	Materiale (Codice lotto)
Mattone	Blocco costruttivo pieno, vuoto o con alveolatura	Dimensioni, Modello, Riempimento, Alveolatura, Forma	Materiale (Codice lotto)
Pietra	Roccia o parte di essa impiegata a scopo realizzativo o ornamentale		Materiale (Codice lotto)
Ossatura	Pietra impiegata per la struttura di un edificio	Dimensioni	Materiale (Codice lotto)
Copertura	Pietra impiegata per la parte ornamentale in una costruzione	Peso medio, Superficie media, Disposizione	Materiale (Codice lotto)
Intonaco	Strato di una o piu' malte per copertura mura		Materiale (Codice lotto)

Evento	Calamità dovuta ad		Genere,
calamitoso	agenti esterni		Datazione
Stato	Descrive le condizioni	Parametri climatici,	Data,
Stato	dell'edificio	Parametri strutturali	Edificio (Identificativo)
	Deterioramento dei		
Danni	parametri strutturali	Muratura, Infissi	Data,
Dailiii	dell'edifico dovuto ad	Arredo	Edificio (Identificativo)
	un evento sismico		
		Codice priorita, Zona,	
Consiglio	Suggerimento fornito dal	Limite temporale,	Lavoro,
d'intervento	database secondo l'analisi	Evento calamitoso,	Edificio (Identificativo)
u miervento	di specifici parametri	Soglia, Incidenza,	Lumero (menuncativo)
		Spesa mancato intervento	

2.2 Dizionario delle relazioni

Topologia di un edificio organizzata in piante Suddivisione Suddivisione di un edificio in vani Sede Sede di un edificio in una precisa area geografica Apertura di un vano Vano, Finestra	
Suddivisione Suddivisione Suddivisione di un edificio in vani Sede Sede Sede di un edificio in una precisa area geografica Apertura Apertura Apertura Suddivisione di un Edificio, Vano Edificio, Area geografica Vano Finestra	
Suddivisione edificio in vani Sede Sede di un edificio in una precisa area geografica Apertura Apertura di un vano Edificio, Vano Edificio, Vano Vano Finestra	
Sede di un edificio in una precisa area geografica Apertura Apertura edificio in vani Edificio, Area geografica Vano Finestra	
Sede precisa area geografica Edificio, Area geografica Apertura di un vano Vano Finestra	
Apertura Apertura Apertura Apertura Apertura Apertura Apertura Apertura Apertura	
Apertura	
tramite finestra	
Passaggio da un vano Vano 1, Vano 2 Tipologi	
ad un altro adiacente	a
Demarcazione Demarcazione di un vano Vano, Mura	
tramite un muro	
Varco Varco tra una vano ed un Vano, Accesso	
altro oppure con l'esterno	
Posizione Posizione di un sensore Sensore, Mura	
su una parete	
Collocazione di un Sensore, Vano	
sensore in un vano	
Rilevamento effettuato da	
Rilevamento un sensore tramite una Sensore, Misurazione	
misurazione	

Monitoraggio	Monitoraggio di un edificio mediante posizionamento di sensori	Edificio, Sensore	
Planning	Planning di un progetto edilizio relativo ad un determinato edificio	Edificio, Progetto edilizio	
Attuazione	Attuazione di uno stadio d' avanzamento descritto in un progetto edilizio	Progetto edilizio, Stadio di avanzamento	
Esecuzione di un lavoro parte di uno stadio di avanzamento		Stadio di avanzamento, Lavoro	
Manodopera	Manodopera assegnata per un preciso lavoro	Lavoro, Lavoratore	
Turno	Il turno di un lavoratore è organizzato in un calendario	Lavoratore, Calendario	
Occorrenza	Occorrenza di un materiale per un certo lavoro	Lavoro, Materiale	Percentuale Utilizzo
Pavimentazione	Pavimentazione di un vano tramite piastrelle	Piastrella, Vano	
Impiego	Impiego di materiali extra- categorie in un vano	Altri Materiali, Vano	
Struttura	Struttura di una parete realizzata a mattoni	Mattone, Mura	
Costruzione	Costruzione di un muro tramite l'utilizzo di pietre	Pietra, Mura	
Rivestimento	Rivestimento di una parete utilizzando dell'intonaco	Intonaco, Mura	Numero strato
Stima	Stima dei danni riportati da un edificio	Edificio, Danni	
Urgenza	Urgenza di un consiglio d'intervento calcolato su un edificio esistente	Esistente, Consiglio d'intervento	
Checkup	Checkup dello stato di un edificio esistente	Esistente, Stato	
Rilevazione	Rilevazione di un evento calamitoso in un'area geografica	Area geografica, Evento calamitoso	Gravita

3 Progettazione concettuale

Per semplificare la comprensione delle prossime aree tematiche verranno utilizzate le suddivisioni da specifica e la seguente partizione in colori:

Area generale : contiene le informazioni riguardanti le specifiche dell'edificio e delle aree geografiche.

Area costruzione: descrive il processo di realizzazione o ristrutturazione della costruzione.

Area analisi rischi: memorizza i dati relativi alla sicurezza dell'edificio.

Area analytics: gestisce l'analisi dei dati misurati dai sensori.

3.1 Area generale

3.1.1 Struttura di un edificio

Caratteristiche

Le caratteristiche di un **Edificio** comprendono la suddivisione interna dello stesso.

Ogni edificio ha un *Identificativo* che lo contraddistingue da tutti gli altri gestiti dall'azienda, esso inoltre presenta quattro attributi specifici legati al mondo dell'edilizia: *Comune, Foglio, Particella, Sub* con cui sarebbe possibile identificare comunque la costruzione, scelta che tuttavia appesantirebbe molto il database. Abbiamo inserito due specializzazioni di edificio: **Da realizzare** e **Esistente** in modo da rendere possibile, tramite questa base di dati, la gestione di edifici ancora in fase di costruzione o per i quali i lavori siano in procinto di iniziare.

Tutti gli edifici sono suddivisi in vani ed in un certo numero di piani ognuno descritto da una **Pianta**. I primi presentano un codice per l'identificazione relativamente alla struttura alla quale appartengono, dunque è impossibile prescindere da una chiave esterna per collegare ogni **Vano** direttamente all'edificio di appartenenza.

Delimitazione locali e posizionamento varchi

I locali di ogni edificio sono separati tramite **Mura**, un **Codice** univoco identifica ogni parete di un **Vano** tranne nel caso in cui quello considerato sia un muro perimetrale esterno.

Vani adiacenti tra di loro o in comunicazione con l'esterno sono strettamente legati, possono infatti presentare un *Passaggio* diretto di vario tipo, ad esempio un varco senza serramento come: arco, porta scorrevole o tenda separatoria oppure presentare un **Accesso** con serramento classificato come porta o portafinestra. In ogni edificio, per legge, devono essere presenti un determinato numero di aperture caratterizzate da finestre che dovranno servire sia per l'illuminazione ambientale che per l'areazione del locale. Una **Finestra** è identificata da un indice numerico non univoco, per considerazioni di vani distinti dunque è necessario utilizzare una chiave esterna per generare un collegamento diretto tra la finestra e il vano dove è situata.

3.1.2 **Rischi**

Ogni edificio costruito dall'azienda edilizia ha **Sede** in una specifica **Area geografica**, i parametri descrittivi della quale variano per ogni singolo apporto dato dall'avvenimento di un qualsiasi evento calamitoso, si rende necessario identificare la stessa tramite una doppia chiave *Cap*, *Numero registrazione*.

I rischi relativi ad una determinata zona di costruzione sono forniti a *Smart Buildings* tramite l'analisi di dati relativi ad eventi calamitosi precedentemente pervenuti ed a eventuali nuove costruzioni effettuate nell'area stessa.

3.2 Area costruzione

Progettazione

La costruzione di un nuovo edificio o la ristrutturazione di uno già esistente sono operazioni per cui è fondamentale l'approvazione di un **Progetto Edilizio**, per la sua consultazione dovrà essere individuato tramite un *Codice* ed un *Codice catastale del comune* poiché quest'ultimo risulta univoco per ogni comune.

Nel progetto edilizio è presente l'articolazione del piano di lavoro in ogni suo **Stadio di avanzamento** che è distinto tramite un *ID* inequivocabile. Nel caso in cui la *Data di completamento* sia successiva a quella di *Stima termine* il *Costo finale* sarà maggiore del *Budget*.

A sua volta ogni stadio è suddiviso in uno specifico **Lavoro**. Quest'ultimo coniuga materiali necessari ed operai per ciascuna mansione, è caratterizzato per via di un nome proprio ma essendo unico per ogni stadio di avanzamento necessita di una chiave esterna, in più esso ha un attributo *Termine* opzionale perché la data di fine lavoro non è conosciuta a priori.

Organizzazione aziendale

Ogni **Lavoratore** facente parte della *Manodopera* per un lavoro è riconoscibile per mezzo di un numero di *Matricola*. Il *Turno* di un lavoratore è determinato tramite un **Calendario** unico per ogni lavoratore che dunque necessita oltre dell'attributo chiave *Giorno e orario* anche di una chiave esterna.

Logistica

In ogni lavoro vengono utilizzati più tipologie di **Materiale**, ognuna di esse è caratterizzata da un *Codice lotto*; un lotto di materiale al contrario potrebbe non essere utilizzato unicamente in un unico lavoro ma solamente in una *Percentuale di utilizzo*. I materiali sono stati articolati in categorie come suddivisi da specifica di progetto, ognuno di essi viene descritto con informazioni relative al fornitore, al lotto, al costo, alle dimensioni intrinseche e alla composizione. Oltre a delle categorie standard quali: **Piastrella**, **Mattone**, **Pietra** ed **Intonaco** è possibile inserire **Altri materiali** necessari alla costruzione ed alla decorazione di

un vano o di parte d'esso.

Sensoristica

Il monitoraggio di un edificio viene fatto dal database tramite l'analisi di dati raccolti da vari tipi di **Sensore** disposti su tutto il fabbricato. Ogni sensore viene identificato tramite un *ID* univoco per l'intera costruzione, ogni dispositivo di controllo rileva uno o più tipi di **Misurazione** ognuna delle quali è universalmente distinta da un doppio attributo di chiave *Tipologia*, che ne identifica il carattere e *Data rilevamento*, poiché ogni misura appartiene ad un singolo sensore si rende necessario l'utilizzo di una chiave esterna. A seguito di misurazioni oltre una soglia caratteristica, il sensore relativo viene messo in stato di allerta tramite un flag di *Alert*.

La posizione di un sensore viene specificata al variare della propria tipologia in base a: *Monitoraggio* di una parte di edificio, alla *Collocazione* in un vano o alla *Posizione* su di un muro.

3.3 Area analisi del rischio

L'analisi del rischio di un edificio monitorato dalla base di dati è svolta sia considerando gli **Eventi calamitosi** rilevati nell'area di costruzione dell'edificio che tenendo conto dello **Stato** della costruzione. Lo stato dell'edificio varia in base ai checkup effettuati periodicamente dal sistema tramite i dati raccolti dai sensori combinati ad algoritmi di analisi dei dati. Ogni edificio avrà più di uno stato, esso è infatti dovuto sia alla manutenzione che a variabili esterne quali quelle indotte dagli eventi calamitosi. Poiché uno stato è caratteristico di un solo edificio, oltre alla chiave esterna è necessario inserire un attributo *Data* per identificare univocamente lo stato voluto.

4 Ristrutturazione

4.1 Eliminazione delle generalizzazioni

Pietra

Nella progettazione dello schema ER abbiamo inserito una generalizzazione totale ed esclusiva dell'entità **Pietra** (padre) con **Ossatura** e **Copertura** (figlie).

Inizialmente questa generalizzazione é stata pensata per distinguere pietre ornamentali (Copertura) da pietre utilizzate per la struttura stessa (Ossatura). Siccome gli accessi e gli attributi sono distribuiti in modo distinto tra le entità figlie si è optato per rimuovere l'entità padre e utilizzare le due entità figlie (**Pietre di ossatura**, **Pietre di copertura**).

Con questa divisione delle entità è necessario inserire una nuova relazione chiamata **Decorazione** per suddividere la precedente relazione **Costruzione** tra Pietre di ossatura e di copertura.

La scelta fatta a riguardo delle due relazioni tra le nuove entità inserite e **Materiale** sarà argomentata nel paragrafo successivo.

Figura 4.1: Non ristrutturato

Figura 4.2: Ristrutturato

Materiale

Nella progettazione dello schema ER abbiamo inserito una generalizzazione totale ed esclusiva dell'entità **Materiale** (padre) con **Altri materiali**, **Piastrella**, **Mattone**, **Pietra** e **Intonaco** (figlie).

Inizialmente questa generalizzazione era stata pensata per categorizzare ogni **Materiale** per una migliore gestione. Poiché gli accessi avvengono in modo separato per l'entità genitore e per ciascuna figlia abbiamo deciso di mantenerle entrambe aggiungendo una relazione tra le entità.

Figura 4.3: Non ristrutturato

Figura 4.4: Ristrutturato

Edificio

Nella progettazione dello schema ER abbiamo inserito una generalizzazione totale ed esclusiva dell'entità **Edificio** (padre) con **Esistente** e **Da realizzare** (figlie).

Inizialmente questa generalizzazione era stata pensata per distinguere edifici in costruzione da quelli già costruiti. Poiché, durante la ristrutturazione, ci siamo accorti che la maggior parte di accessi sono all'entità padre abbiamo deciso di accorpare le figlie in essa.

Con questo accorpamento si rende necessario l'inserimento di un attributo aggiuntivo, chiamato *Condizione*, all'entità Edificio per poter distinguere i casi che precedentemente erano differenziati dalla generalizzazione. Inoltre abbiamo variato la cardinalità della relazione **Checkup** da (1-N) a (0-N).

Figura 4.5: Non ristrutturato

Figura 4.6: Ristrutturato

4.2 Eliminazione degli attributi multivalore

Strato intonaco

Abbiamo ristrutturato inserendo quattro attributi per eccedere il numero indicatoci da consegna, la quale specifica la presenza in media di tre strati.

Sarebbe stata possibile una ristrutturazione differente ma probabilmente poco adeguata in efficienza nel caso considerato.

Figura 4.7: Non ristrutturato

Figura 4.8: Ristrutturato

Funzionalità

Abbiamo inserito una nuova relazione **Tipologia** e una nuova entità **Funzionalita** per poter gestire il caso in cui un vano abbia più di una destinazione d'uso. La nuova entità fa si che una funzionalità sia inserita univocamente e collegata ad una vano in base alla necessità.

Figura 4.9: Non ristrutturato

Figura 4.10: Ristrutturato

4.3 Analisi ed eventuale eliminazione delle ridondanze

Durante l'analisi è stata trovata una ridondanza nella relazione **Passaggio**. L'attributo *Edificio*, chiave esterna di **Vano**, è ridondante perché un' apertura può collegare solo vani dello stesso edificio.

Successivamente in fase di implementazione delle operazioni verrà valutata la possibilità di aggiunta di ridondanze per ottimizzare il database, quest'ultime saranno riportate nel diagramma E-R evidenziandole in rosso.

4.4 Partizionamento/accorpamento di entità e relationship

Non è stata fatta nessuna scelta di partizionamento o accorpamento durante la fase di ristrutturazione. I singoli elementi costitutivi degli attributi composti sono stati accorpati direttamente alle entità cui si riferiscono come attributi standard.

5 Tavola dei volumi

NOME	NOME TIPO VOLUME		E MOTIVAZIONE				
Edificio	Entità	15	Per ipotesi				
Pianta	Entità	30	Si considerano in media due				
Flanta	Ellilia	30	Piante per ogni Edificio				
Topologia	Relazione	30	Per cardinalità (1-1) con Pianta				
Vano	Entità	150	Si considerano in media				
Vallo	Lillia	130	cinque Vani per ogni Pianta				
Tipologia	Relazione	200	Si considerano pochi				
Tipologia	Relazione	200	Vani con più funzionalità				
Funzionalità	Entità	12	Per ipotesi				
Suddivisione	Relazione	150	Per cardinalità (1-1) con Vano				
Mura	Entità	700	In media in base al numero di Vani				
Demarcazione	Relazione	750	Per ipotesi in base al numero di Mura				
Accesso	Entità	120	In media in base al numero di Vani				
Varco	Relazione	210	Per ipotesi al volume di Accesso e Vano				
Finestra	Entità	120	Si considera che non tutti				
rinestra	Lillia	120	i Vani hanno una finestra				
Apertura	Relazione	120	Per cardinalità (1-1) con Finestra				
Passaggio	Relazione	150	Per ipotesi in base al numero di Vani e				
1 assaggio	Relazione	130	al numero di possibili aperture senza serramenti				
			Si considera che più Edifici possono stare				
Area Geografica	Entità	8	nella stessa Area Geografica, il volume				
Tirea Geografica	Ellilia		aumenta perché ci possono essere				
			delle variazioni dei coefficienti di rischio				
Sede	Relazione	15	Per cardinalità (1-1) con Edificio				
Sensore	Entità	1.000	Per ipotesi considerando che ci sono vari				
ochsore	Diffita	1.000	tipi di Sensore per ogni Edificio				
Misurazione	Entità	80.000	Per ipotesi in base al numero di Sensori				
Rilevamento	Relazione	80.000	Per cardinalità (1-1) con Misurazione				
Monitoraggio	Relazione	45	Ipotizzando in media tre sensori per ogni Edificio				
Collocazione	Relazione	600	Per ipotesi considerando il numero di Edifici				
Posizione	Relazione	355	Abbiamo scelto di inserire vari sensori per				
1 OSIZIONE	Relazione	333	il controllo della stabilità di un edificio				
			Si considera un Progetto Edilizio iniziale				
Progetto Edilizio	Entità	20	e la possibilità che ce ne siano altri per la				
			ristrutturazione di edifici monitorati				
Planning	Relazione	20	Per cardinalità (1-1) con Progetto Edilizio				

Stadio di Avanzamento	Entità	100	Si considerano in media cinque Stadi				
			di Avanzamento per ogni Progetto Edilizio				
Attuazione	Relazione	100	Per cardinalità (1-1) con Stadio di Avanzamento				
Lavoro	Entità	1.000	In media in base al numero di Edifici				
Esecuzione	Relazione	1.000	Per cardinalità (1-1) con Lavoro				
Lavoratore	Relazione	15	Per ipotesi in base alla				
			dimensione dell'azienda edilizia				
Manodopera	Entità	3.000	Si considera un numero di Lavoratori per ogni				
			Lavoro, solitamente non inferiore a tre				
	-		Per ipotesi circa un anno e mezzo per ogni				
Calendario	Entità	40.500	Edificio, qualche mese per la ristrutturazione e che				
	_		non tutti gli operai siano presenti tutti i giorni				
Turno	Relazione	40.500	Per cardinalità (1-1) con Calendario				
Materiale	Entità	1.000	Per ipotesi				
Occorrenza	Relazione	3.000	Si considera che un lotto di Materiale				
Occorrenza	Relazione	3.000	può essere utilizzato in più Lavori				
Piastrella	Entità	100	Si considera che possono essere				
1 lastrella	Ellita	100	utilizzate Piastrelle di lotti diversi				
Specifica Piastrella	Relazione	100	Per cardinalità (1-1) con Piastrella				
			Per ipotesi tenuto conto del				
Pavimentazione	Relazione	500	volume di Occorrenza e della nostra				
			stima di lotti presenti per ciascun vano				
			Si considera che la quantità di lotti				
Altri Materiali	Entità	560	di Altri Materiali deve essere				
			quantitativamente la più grande				
Specifica	Relazione	560	Per cardinalità (1-1) con Altri Materiali				
			Per ipotesi tenuto conto				
Impiego	Relazione	1.700	del volume di Occorrenza e della nostra				
			stima di lotti presenti per ciascun vano				
N 6	T	4 = 0	Si considera che possono essere utilizzati				
Mattone	Entità	150	mattoni di lotti diversi in un Edificio				
Specifica Mattone	Relazione	150	Per cardinalità (1-1) con Mattone				
*			Per ipotesi tenuto conto del volume di				
Struttura	Relazione	400	Occorrenza e della nostra stima di				
			lotti presenti per ciascun muro				
			Si considera che possono essere utilizzate				
Pietre Ossatura	Entità	50	Pietre di lotti diversi in un Edificio				
Specifica Pietre Ossatura	Relazione	50	Per cardinalità (1-1) con Pietre Ossatura				
1		* *					

Costruzione	Relazione	120	Per ipotesi tenuto conto del volume di Occorrenza e della nostra stima
			di lotti presenti per ciascun muro
Pietre di Copertura	Entità	50	Si considera che possono essere utilizzate
			Pietre di lotti diversi in ogni Edificio
Specifica Pietre Ossatura	Relazione	50	Per cardinalità (1-1) con Pietre di Copertura
			Per ipotesi tenuto conto del volume di
Decorazione	Relazione	80	Occorrenza e della nostra stima di
			lotti presenti per ciascun muro
			Si considera che possono
Intonaco	Entità	90	essere utilizzati Intonaci di lotti
			diversi in un Edificio
Specifica Intonaco	Relazione	90	Per cardinalità (1-1) con Intonaco
			Per ipotesi tenuto conto del volume di
Rivestimento	Relazione	200	Occorrenza e della nostra
			stima di lotti presenti per ciascun muro
			Si considera che in zone ad alta sismicità
Evento Calamitoso	Entità	300	la possibilità di eventi calamitosi
			è molto frequente
			Per ipotesi in base ai valori
Rilevazione	Relazione	1.500	di Area Geografica e Evento Calamitoso,
Kilevazione	Relazione	1.500	tenendo conto della possibilità che non tutti
			gli eventi si verifichino in tutte le aree
			Per ipotesi in base al numero degli
Stato	Entità	250	edifici ed all'idea che i Checkup
			siano abbastanza frequenti
Checkup	Relazione	250	Per cardinalità (1-1) con Stato
Danni	Entità	400	Si considera circa un stima danni per ogni mese
Stima	Relazione	400	Per cardinalità (1-1) con Danni
0 11 117	D ((1)	100	Per ipotesi considerando che non sempre
Consiglio di Intervento	Entità	100	c'è bisogno di intervenire sull'edificio
Urgenza	Relazione	100	Per cardinalità (1-1) con Consiglio di Intervento
			` '

6 Operazioni

In questo paragrafo abbiamo inserito le otto operazioni. La scelta delle medesime è stata fatta in base a criteri secondo noi importanti sia per la gestione della logistica e delle finanze di un'azienda edile che per il mantenimento in condizione ottimale di ogni edificio monitorato, il tutto attenendoci alla consegna.

6.1 Elenco dei gruppi di lavoro

Descrizione: Quest'operazione permette di sapere chi sono i lavoratori, specificandone la mansione e i capicantiere dai quali sono diretti in un determinato giorno e orario. Nel caso in cui un lavoratore sia supervisore il proprio *ID_Supervisore* sarà impostato a NULL per rendere chiara la sua posizione.

Input: Data (YYYY-MM-DD HH:MM).

Output: Matricola, Cognome, Nome, Mansione (Lavoratore), ID_Supervisore.

Frequenza: 3 volte al giorno.

Porzione di diagramma ER interessata:

Tavola dei volumi coinvolta:

CONCETTO	TIPO	VOLUME
Calendario	Entità	40.500
Turno	Relazione	40.500
Lavoratore	Entità	15

Tavola degli accessi:

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE
					Si rende necessario discriminare tra tutti i
1	Calendario Entità		Lettura	40.500	turni possibili quelli identificati dai
					parametri di input
					Per ipotesi non possono lavorare
2	Lavoratore	Entità	Lettura	12	contemporaneamente più dell'80%
					dei lavoratori
	Tota	le accessi in letti	ıra	40.512	Il costo di ogni accesso in lettura vale una unità
		Costo totale		121.536	Totale accessi moltiplicato per la frequenza

6.2 Sensori con deviazione standard più elevata

Descrizione: Quest'operazione ci permette di conoscere i 50 sensori di posizione (ossia quelli utilizzati per misurare gli spostamenti murari) che hanno registrato una maggiore deviazione standard. La formula sfruttata nel calcolo dei risultati (σ) tiene conto della variazione tra le misure effettuate, oltre a essa abbiamo pensato di inserire una variabile temporale che consenta di avere una media calibrata sul tempo trascorso tra le misurazioni.

$$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n}(\frac{x_i - x_0}{t_i - t_0})^2}{N}}$$

 $x_0=$ Misurazione target iniziale $\qquad t_0=$ Tempo iniziale $\qquad N=$ Numero totale misurazioni

Nota: in caso di riparazione di un determinato muro, affinché il risultato dell'operazione rimanga attendibile è possibile creare una tabella in cui trasferire tutte le misurazioni effettuate prima dell'intervento.

Input: Nessuno

Output: ID, Massima Misurazione, Soglia, σ .

Frequenza:: 3 volte al mese.

Porzione del diagramma ER interessata:

Tavola dei volumi coinvolta:

CONCETTO	TIPO	VOLUME
Misurazione	Entità	80.000
Rilevamento	Relazione	80.000
Sensore	Entità	1.000

Tavola degli accessi:

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE		
					Si rende necessario discriminare tra tutte le		
1	Misurazione	Entità	Lettura	80.000	misurazioni possibili quelle riferite		
						agli spostamenti murari	
					Si leggono gli attributi dei 50 sensori con		
2	Compose	Entità Lettura	Lettura	T	T - 11 5	50	deviazione maggiore. Ovviamente si tiene
2	Sensore	Епша		50	conto che ci sono più di 50 sensori di		
					posizione nel database		
	Totale accessi in lettura		80.050	Il costo di ogni accesso in lettura vale una unità			
		Costo totale	Costo totale		Totale degli accessi moltiplicato per la frequenza		

6.3 Elenco lavoratori che hanno svolto lavori sul vano

Descrizione: Quest'operazione è stata pensata per conoscere in maniera immediata chi sono stati i lavoratori che hanno svolto un lavoro in un determinato vano.

Input: Identificativo (*Edificio*) e Numero Vano (*Vano*).

Output: Matricola, Nome, Cognome (Lavoratore), Nome (Lavoro)

Frequenza: 5 volte al mese

Porzione del diagramma ER interessata:

Tavola dei volumi coinvolta:

CONCETTO	TIPO	VOLUME
Vano	Entità	150
Impiego	Relazione	1.700
Pavimentazione	Relazione	500
Altri materiali	Entità	560
Piastrella	Entità	100
Specifica	Relazione	560
Specifica piastrella	Relazione	100
Materiale	Entità	1.000
Occorrenza	Relazione	3.000
Lavoro	Entità	1.000
Manodopera	Relazione	3.000
Lavoratore	Entità	15

Tavola degli accessi:

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE
1	Impiego	Relazione	Lettura	1.700	É necessaria per recuperare
1	Implego	Relazione	Lettura	1.700	i Materiali ai quali è associato un Vano
2	Pavimentazione	Relazione	Lettura 500		É necessaria per recuperare
2	1 aviillelitazione	Relazione	Lettura	300	i Materiali ai quali è associato un Vano
3	Occorrenza	Relazione	zione Lettura 42	42	É necessaria per recuperare
3	Occorrenza	Relazione		42	i Lavori ai quali sono associati i Materiali
4	Manadanara	Relazione Lettura	126	É necessaria per recuperare	
4	Manodopera		120	i Lavoratori ai quali è associato il Lavoro	
5	Lavoratore	Entità	Lettura	15	Si leggono gli attributi di Lavoratore
	Totale accessi in lettura			2.383	Il costo di ogni accesso in lettura vale una unità
		Costo totale		11.915	Totale accessi moltiplicato per la frequenza

6.4 Calcolo del costo di un lavoro (analisi della ridondanza)

Descrizione: Quest'operazione permette di definire quanto sia costato uno specifico lavoro; la spesa totale dipende sia dai materiali utilizzati che dalla manodopera impiegata.

In quest'operazione è stato pensato di svolgere un'analisi della ridondanza per capire se è il caso di aggiungere un attributo a *Lavoro* dove viene indicato esplicitamente il costo.

Input: ID (Stadio di Avanzamento), Nome (Lavoro).

Output: Nome, Costo.

Frequenza: 5 volte a settimana.

Porzione del diagramma ER interessata (senza ridondanza):

Tavola dei volumi coinvolta:

CONCETTO	TIPO	VOLUME
Stadio di avanzamento	Entità	100
Esecuzione	Relazione	1.000
Lavoro	Entità	1.000
Manodopera	Relazione	3.000
Lavoratore	Entità	15
Turno	Relazione	40.500
Calendario	Entità	40.500
Occorrenza	Relazione	3.000
Materiale	Entità	1.000

Tavola degli accessi (senza ridondanza):

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE	
1	Lavoro	Entità	Lettura	1	É necessaria per leggere inizio e	
1	Lavoio	Littita	Lettura	1	termine di un lavoro	
2	Manodopera	Relazione	Lettura	3	Nel caso medio ci sono tre	
	Manodopera	Relazione	Lettura	3	lavoratori per ogni lavoro	
3	Lavoratore	Entità	Lettura	3	Per ogni lavoratore dobbiamo	
3	Lavoratore	Elitta	Lettura	3	leggere la paga oraria	
4	Calendario	Entità Lattu	Lettura	Entità Lettura 40.500	40.500	Per ogni turno di ogni lavoratore bisogna
4	Calciluario	Elitta			40.300	leggere la durata del turno di lavoro
5	Occorrenza	Relazione	ne Lettura	3	Nel caso medio ogni lavoro si	
3	Occorrenza			3	sono utilizzati tre lotti di materiale	
6	Materiale	Entità	T	3	Per ogni materiale è necessario	
0	Materiale	Entita Lettura	Litale Little Lettura 3	Lettura	3	leggerne il costo
	Totale accessi in lettura		40.513	Il costo di ogni accesso in lettura vale un' unità		
		Costo totale		202.565	Totale degli accessi moltiplicato per la frequenza	

Caso in cui si aggiungesse le ridondanza: in base alle ipotesi fatte nella tavola dei volumi sono portati a termine circa 3 lavori a settimana dei quali è necessario inserire il costo. Gli accessi in lettura per conoscere il costo del Lavoro tuttavia rimangono invariati rispetto al caso precedente.

Porzione diagramma ER interessata (con ridondanza):

Tavola degli accessi (con ridondanza):

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE
1	Lavoro	Entità	Lettura	1	Nel caso a lavoro sia presente l'attributo costo
	Totale accessi in lettura		1	Il costo di ogni accesso in lettura vale un' unità	
	Costo totale			5	Totale degli accessi moltiplicato per la frequenza

Oltre agli accessi in lettura per far funzionare l'operazione tramite ridondanza è necessario tenere aggiornata quest'ultima, per scoprire se è conveniente farlo procediamo con un'analisi del metodo di inserimento dell'attributo ridondante.

Tavola degli accessi per l'aggiornamento della ridondanza:

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE
1	Lavoro	Entità	Lettura	1	É necessaria per leggere inizio e
1	Lavoio	Litta	Lettura	1	termine di un lavoro
2	Manodopera	Relazione	Lettura	3	Nel caso medio ci sono tre
4	Manodopera	Relazione	Lettura	3	lavoratori per ogni lavoro
3	Lavoratore	Entità	Lettura	3	Per ogni lavoratore dobbiamo
3	Lavoratore	Entita	Lettura 3		leggere la paga oraria
4	Calendario	Entit?	Entità Lettura	40.500	Per per ogni turno di ogni lavoratore bisogna
4	Calendario	Entita		40.300	leggere la durata del turno di lavoro
5	Occorrenza	Relazione Lettura	3	Nel caso medio ogni lavoro si	
3	Occorrenza	Relazione	Lettura	sono utilizzati tre lotti di materiale	
6	Materiale	Entità	Lettura	3	Per ogni materiale è necessario
	Materiale		Lettura	3	leggerne il costo
7	Lavoro	Entità	Scrittura	1	É necessaria per inserire l'attributo
'	Lavoio	Entita	Scrittura	1	Costo del lavoro
	Totale accessi in lettura		40.513	Il costo di ogni accesso in lettura vale un' unità	
	Totale accessi in scrittura		1	Il costo di ogni accesso in scrittura vale due unità	
		Costo totale		121.545	Totale degli accessi moltiplicato per la frequenza

Esaminando i dati notiamo che il numero totale di accessi senza ridondanza è **202.565**, includendo la ridondanza il numero di accessi arriverebbe a 5, tuttavia tenendo conto dei necessari inserimenti ogni qual volta finisce un lavoro il costo totale ammonta a **121.550**. Si rende possibile concludere che è **vantaggioso inserire l'attributo ridondante** *Costo* all'entità Lavoro.

6.5 Elenco dei materiali in esaurimento

Descrizione: Quest'operazione permette di sapere quali sono i materiali in esaurimento, il suo scopo è quello di facilitare la formulazione dell'inventario.

Essa è stata implementata considerando una soglia pari all' ottanta per cento dello stock iniziale oltre alla quale considerare il riassortimento di un materiale. Inoltre è stato inserito un controllo su tutti i lotti di materiali con lo stesso nome per inserire nei materiali in esaurimento solamente quelli con nome i cui lotti non presentino una *Percentuale d'utilizzo* minore dell' ottanta per cento.

Input: Nessuno.

Output: Nome (*Materiale*). Frequenza: 5 volte al mese.

Porzione del diagramma ER interessata:

Tavola dei volumi coinvolta:

CONCETTO	TIPO	VOLUME
Materiale	Entità	1.000
Occorrenza	Relazione	3.000
Lavoro	Entità	1.000

Tavola degli accessi:

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE
1	Materiale	Entità	Lettura	1.000	Si legge l'attributo Nome di Materiale
2	Occorrenza	Relazione	Lettura	3.000	Si legge la Percentuale di Utilizzo per ogni Materiale
Totale accessi in lettura		4.000	Il costo di ogni accesso in lettura vale una unità		
	Costo totale		20.000	Totale degli accessi moltiplicato per la frequenza	

6.6 Numero vani in un piano (analisi della ridondanza)

Descrizione: Quest'operazione rende possibile conoscere il numero di vani per ogni piano. Durante la fase di analisi dello schema precedente alla progettazione dell'operazione è stata considerata l'idea di aggiungere un attributo ridondante per accedere direttamente all'informazione cercata, nel seguito questa situazione sarà analizzata attentamente.

Input: Identificativo (Edificio), Piano.

Output: Numero vani.

Frequenza: 2 volte al mese.

Porzione del diagramma ER interessata (senza ridondanza):

Tavola dei volumi coinvolta (senza ridondanza):

CONCETTO	TIPO	VOLUME
Vano	Entità	150
Suddivisione	Relazione	150
Edificio	Entità	15

Tavola degli accessi (senza ridondanza):

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE	
1	Vano	Entità	Lettura	Lettura 150		É necessario trovare tutti i vani relativi
1	Valio	Elitta		130	al piano e all'edificio forniti dall'utente.	
	Totale accessi in lettura		150	Il costo di ogni accesso in lettura vale una unità		
	Costo totale		300	Totale degli accessi moltiplicato per la frequenza		

Segue l'analisi dell'operazione considerando l'aggiunta di una ridondanza.

Caso in cui si aggiungesse la ridondanza: come accennato nella descrizione dell'operazione è stata ipotizzata l'introduzione di un attributo a Pianta che specifichi direttamente il numero di vani in un piano. La scelta per cui mantenere o meno questo attributo specifico sarà possibile solamente al termine della successiva analisi.

Porzione diagramma ER interessata (con ridondanza):

Tavola dei volumi coinvolta (con ridondanza):

CONCETTO	TIPO	VOLUME
Edificio	Entità	15
Topologia	Relazione	30
Pianta	Entità	30

Tavola degli accessi (con ridondanza):

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE
1	Pianta	Entità	Lettura	30	É necessario trovare il numero dei vani relativo al piano fornito dall'utente.
	Totale accessi in lettura		30	Il costo di ogni accesso in lettura vale una unità	
Costo totale		60	Totale degli accessi moltiplicato per la frequenza		

Non è stata necessaria un'analisi nel caso di inserimento considerando che il numero di vani di un piano è deducibile dalla pianta.

Osservando i dati è palese come il numero totale di accessi senza ridondanza sia 300 mentre inserendo la ridondanza esso si riduca a 60. L'introduzione dell'attributo ridondante *Numero Vani* all'entità Pianta si rivela dunque una scelta corretta e vantaggiosa.

6.7 Gravità di una calamità

Introduzione: Quest'operazione fornisce la gravità di una calamità in base ai sensori posizionati sugli edifici costruiti nell'area geografica dove è avvenuto l'evento in questione.

Input: Genere, Data(YYYY-MM-DD HH:MM).

Output: Nessuno, inserisce nella relazione Rilevazione.

Frequenza: 10 volte l'anno.

Porzione del diagramma ER interessata:

Tavola dei volumi coinvolta:

CONCETTO	TIPO	VOLUME
Sensore	Entità	1.000
Rilevamento	Relazione	80.000
Misurazione	Entità	80.000
Posizione	Relazione	355
Mura	Entità	700
Demarcazione	Relazione	750
Vano	Entità	150
Suddivisione	Relazione	150
Monitoraggio	Relazione	45
Edificio	Entità	15
Sede	Relazione	15
Area geografica	Entità	8
Rilevazione	Relazione	1.500
Evento calamitoso	Entità	300

Tavola degli accessi:

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE
					Si rende necessario discriminare tra tutte le
1	Misurazione	Entità	Lettura	80.000	misurazioni possibili quelle identificate dai
					parametri di input
					Nel caso peggiore è necessario conoscere
2	Sensore	Entità	Lettura	1.000	l'Identificativo degli Edifici
					sui quali sono posizionati i sensori
					Nel caso peggiore è necessario
3	Demarcazione	Relazione	Lettura	355	conoscere l'Identificativo delle mura al
					quale sono collegati i sensori
					Si inserisce la gravità di un evento calamitoso in
4	Rilevazione	Relazione	Scrittura	3	una determinata area geografica, considerando
4	Kilevazione	Relazione	Scrittura	3	nel caso medio che la calamità venga rilevata
					contemporaneamente in tre zone diverse
	Totale accessi in lettura		81.355	Il costo di ogni accesso in lettura vale un' unità	
	Totale accessi in scrittura		3	Il costo di ogni accesso in scrittura vale due unità	
	Costo totale		813.610	Totale degli accessi moltiplicato per la frequenza	

Descrizione: L'operazione in questione è stata ideata considerando tre categorie standard implementandone le relative procedure ed una categoria generale valida per qualsiasi altra tipologia di evento calamitoso. Le tre categorie standard sono: *sisma*, *alluvione*, esplosione da fuga di gas e fuga di gas accorpate in *fuga di gas*.

Il metodo tramite cui ottenere la classificazione in range per ogni tipologia di gravità resta invariato per ognuna, ecco che nei quattro sotto paragrafi saranno esposti solamente i procedimenti per la raccolta dei dati necessari alla stima e la relativa categorizzazione in *codici di allerta*.

Il procedimento per il calcolo dei risultati consiste nel calcolare una media per ogni sensore a cui sottrarre il valore di soglia ottenendo un coefficiente di variazione per ogni tipologia di sensore considerato. Le variazioni ottenute vengono mediate nuovamente sul numero di tipi di sensori considerati dalla determinata tipologia di gravità ottenendo il valore stimato per la gravità dell'evento calamitoso.

Gravità sisma

Essa è calcolata tenendo conto dei valori registrati da *accelerometri* e *giroscopi*, che hanno superato l'ottanta percento del valore di soglia, a partire da due minuti prima dell'avvenimento fino a due minuti dopo.

Codice di allerta	valore_sisma
verde	x < 0
giallo	$x \ge 0 \text{ OR } x < 25$
arancione	$x \ge 25 \text{ OR } x < 70$
rosso	$x \ge 70$

Gravità alluvione

Il livello di gravità di un'alluvione è ottenuto tenendo conto dei *rilevatori di acqua* solamente nel caso in cui i sensori appartenenti alla stessa zona abbiano effettuato registrazioni oltre l'ottanta percento della soglia in un lasso di tempo a partire da un'ora prima dell' avvenuta registrazione dell' evento alle cinque ore successive.

Codice di allerta	valore_sisma
verde	x < 0
giallo	$x \ge 0 \text{ OR } x < 1.5$
arancione	$x \ge 1.5 \text{ OR } x < 3$
rosso	$x \ge 3$

Gravità fuga di gas

Una fuga di gas è considerata tale nel caso in cui nell'arco di tempo che va da trenta minuti prima ad un'ora dopo alla registrazione dell'evento calamitoso siano rilevate misure di: un rilevatore di gas, un giroscopio e un accelerometro sopra l'ottanta percento di soglia.

Codice di allerta	valore_sisma
verde	x < 50
giallo	$x \ge 50 \text{ OR } x < 75$
arancione	$x \ge 75 \text{ OR } x < 100$
rosso	$x \ge 100$

Gravità generale

Per qualsiasi altra tipologia di gravità non rientrante nei casi precedenti si raccolgono i dati di *accelerometri* e *giroscopi* aventi superato l'ottanta percento della soglia. Si è deciso di assegnare al massimo un codice di allerta gialla o verde vista la portata minore rispetto alle tre circostanza sopra riportate.

Codice di allerta	valore_sisma
verde	x < 25
giallo	$x \ge 25$

6.8 Stato di un edificio

Introduzione: Quest'operazione tramite alcuni algoritmi agenti sui dati rilevati dai sensori (ognuno dei quali raggruppato in una categoria) inserisce lo stato di un edificio basandosi sulle rilevazioni effettuate. Lo stato è gestito dalla base tramite due attributi *Parametri strutturali* e *Parametri climatici*, il primo riguarda tutti gli aspetti correlati alla gestione infrastrutturale puramente collegata all'assetto della costruzione, il secondo concerne misure relative all'ambiente interno dell'edificio.

Input: Identificativo (*Edificio*).

Output: Nessuno, inserisce nell'entità Stato.

Frequenza: 15 volte al mese.

Porzione del diagramma ER interessata:

Tavola dei volumi coinvolta:

CONCETTO	TIPO	VOLUME
Edificio	Entità	15
Suddivisione	Relazione	150
Vano	Entità	150
Demarcazione	Relazione	750
Mura	Entità	700
Posizione	Relazione	355
Collocazione	Relazione	600
Monitoraggio	Relazione	45
Sensore	Entità	1.000
Rilevamento	Relazione	80.000
Misurazione	Entità	80.000
Checkup	Relazione	250
Stato	Entità	250

Tavola degli accessi:

N°	CONCETTO	COSTRUTTO	TIPO ACCESSO	N° ACCESSI	DESCRIZIONE	
1	Sensore	Entità	Lettura	1.000	É necessario trovare i sensori da leggere	
1	Schsore	Litta	Lettura	1.000	per ogni edificio nel caso peggiore	
					E' necessario per conoscere l'Identificativo	
2	Demarcazione	Relazione	Lettura	355	delle mura sulle quali sono posizionati	
					dei sensori	
3	Misurazione	Entità	Lettura	80.000	Ne leggiamo gli attributi	
4	Stato	Entità Scrittura 1	Scrittura	Scrittura	1	Si inserisce i parametri che caratterizzano
4	Stato				Linna	lo stato di un edificio
Totale accessi in lettura		81.355	Il costo di ogni accesso in lettura vale un' unità			
	Totale accessi in scrittura		1	Il costo di ogni accesso in lettura vale due unità		
	Costo totale		1.220.355	Totale degli accessi moltiplicato per la frequenza		

Descrizione: L'operazione gestisce i due parametri secondo le successive considerazioni.

Gestione dei parametri climatici

Questi parametri sono calcolati tenendo conto di due tipologie di sensore: gli *igrometri* e i *termometri*. Di entrambi vengono calcolate le medie per l'edificio richiesto e di conseguenza definiti due stati intermedi, quello riguardante i sensori di temperatura e quello riguardante quelli di umidità seguendo la tabella posta sotto:

stato_termometri & stato_igrometri	media_termometri	media_igrometri
1	$18 \le x < 22$	$50 \le y < 60$
2	$16 \le x < 18 \text{ OR } 22 \le x < 24$	$47 \le y < 50 \text{ OR } 60 \le y < 65$
3	$14 \le x < 16 \text{ OR } 24 \le x < 26$	$44 \le y < 47 \text{ OR } 65 \le y < 70$
4	$x < 14 \text{ OR } x \ge 26$	$y < 44 \text{ OR } y \ge 70$

Tabella 6.1: stato_termometri, stato_igrometri

A seguito dell'individuazione degli stati intermedi viene fatta una media tra di essi che va a discriminare l'inserimento in uno dei quattro possibili parametri climatici (ottimo, buono, discreto, pessimo) tramite i range riportati in tabella:

parametri climatici	media_stati
Ottimo	x < 1.6
Buono	$1.6 \le x < 2.5$
Discreto	$2.5 \le x < 3.5$
Pessimo	$x \ge 3.5$

Tabella 6.2: parametri climatici

Gestione dei parametri strutturali

I dati riguardanti la struttura sono ottenuti considerando tre diverse categorie di sensori: gli *accelerometri*, i *giroscopi* e quelli di *posizione*. Per ogni classe l'operazione calcola il valor medio definendo un nuovo stadio intermedio mediante i range riportati nella tabella successiva.

stato_accelerometri & stato_giroscopi & stato_posizione	media_accelerometri	media_giroscopi	media_posizione
1	x < 0	y < 0	z < 0
2	$0 \le x < 25$	$0 \le y < 25$	$0 \le z < 2$
3	$25 \le x < 70$	$25 \le y < 70$	$2 \le z < 4$
4	$x \ge 70$	$y \ge 70$	$z \ge 4$

Tabella 6.3: stato_accelerometri, stato_giroscopi, stato_posizione

Lo stato dei parametri strutturali è stimato sfruttando una media ponderata tramite i due coefficienti: $\alpha=0.7$ per stato_accelerometri e stato_giroscopi e $\beta=1.1$ per stato_posizione. Le possibili fasce di inserimento per parametri strutturali sono mostrate in tabella:

parametri strutturali	media_stati
Ottimo	x < 0.9
Buono	$0.9 \le x < 1.3$
Discreto	$1.3 \le x < 1.6$
Pessimo	$x \ge 1.6$

Tabella 6.4: parametri strutturali

7 Progettazione logica

7.1 Descrizione del modello logico

Area generale

edificio(<u>Identificativo</u>, Comune, Foglio, Particella, Sub, Condizione, Tipologia, AreaGeogNumReg, AreaGeogCap)

pianta(Codice, DimensionePerimetro, TipoPerimetro, Piano, NumeroVani, Edificio)

vano(NumeroVano, Edificio, Piano, Larghezza, Lunghezza, MassimaAltezza)

tipologia(Funzionalita, Vano, Edificio)

funzionalita(Nome)

mura(Codice, SSI1, SSI2, SSI3, SSI4)

demarcazione(Vano, Edificio, Mura)

accesso(Identificativo, Classificazione, Larghezza, Lunghezza, PuntoCardinale, CollegamentoEsterno)

varco(Vano, Edificio, Accesso)

finestra(Indice, Vano, Edificio, PuntoCardinale)

passaggio(Vano1, Edificio, Vano2, Tipologia)

areageografica(<u>NumRegistrazione, Cap</u>, CoefRischioSismico, CoefRischioIdreogeologico, DataVariazione)

Area costruzione

sensore(<u>ID</u>, Tipo, Soglia, Edificio, Vano, EdificioVano, Mura)

misurazione(DataRilevamento, Tipologia, Sensore, Intensita, UnitaDiMisura, Alert)

 ${\bf progettoe dilizio}(\underline{Codice, Codice Catastale Comune}, Data Presentazione, Data Inizio, Data Approvazione, Stima Data Fine, Edificio)$

stadioavanzamento(<u>ID</u>, DataInizio, CostoFinale, StimaTermine, Budget, DataCompletamento, ProgettoEdilizioCod, ProgettoEdilizioComune)

lavoro(Nome, StadioAvanzamento, Inizio, Termine, Costo)

lavoratore(Matricola, Nome, Cognome, PagaOraria, Ruolo, AnnoInizio)

manodopera(Lavoratore, Lavoro, StadioAvanzamento)

calendario(GiornoEdOrario, Lavoratore, Durata, Mansione, IdSupervisore)

materiale(CodiceLotto, Nome, Fornitore, DataAcquisto, Costo, UnitaDiMisura, Composizione)

occorrenza(Lavoro, StadioAvanzamento, Materiale, PercUtilizzo)

piastrella(<u>CodiceLotto</u>, MaterialeAdesivo, LarghezzaFuga, Disegno, Forma, Larghezza, Lunghezza, Spessore)

pavimentazione(Piastrella, Vano, Edificio)

altrimateriali(CodiceLotto, Lunghezza, Altezza, Larghezza)

impiego(AltriMateriali, Vano, Edificio)

mattone(CodiceLotto, Alveolatura, Forma, Riempimento, Modello, Lunghezza, Larghezza, Spessore)

struttura(Mattone, Mura)

pietreossatura(CodiceLotto, Spessore, Larghezza, Lunghezza)

costruzione(PietreOssatura, Mura)

pietrecopertura(CodiceLotto, PesoMedio, SuperficieMedia, Disposizione)

decorazione(PietreCopertura, Mura)

intonaco(CodiceLotto)

rivestimento(Intonaco, Mura, NumeroStrato)

Area analisi del rischio

eventocalamitoso (Genere, Datazione)

rilevazione(<u>AreaGeogNumReg</u>, <u>AreaGeogCap</u>, <u>EventoCalamitosoGenere</u>, <u>EventoCalamitosoData</u>, <u>Gravita</u>)

stato (Data, Edificio Identificativo, Parametri Strutturali, Parametri Climatici)

Area analytics

danni(Data, Edificio, Muratura, Infissi, Arredo)

consigliintervento(<u>Lavoro, Edificio,</u> CodicePriorità, Zona, LimiteTemporale, EventoCalamitoso, Soglia, Incidenza, SpesaMancatoIntervento)

7.2 Analisi dipendenze funzionali e normalizzazione

In questa sezione analizziamo le dipendenze funzionali non banali relative a ciascuna tabella per poi poterne controllare il rispetto dei vincoli inerenti alla normalizzazione in Boyce Codd.

edificio: <u>Identificativo</u> \rightarrow (Comune, Foglio, Particella, Sub, Condizione, Tipologia, AreaGeogNumReg, AreaGeogCap)

 $\frac{\text{Comune, Foglio, Particella, Sub}}{\text{Cap})} \rightarrow (\text{Identificativo, Condizione, Tipologia, AreaGeogNumReg, AreaGeog-Cap})$

Sia la prima dipendenza che la seconda implicano l'intera tupla. Nella realizzazione dello schema logico abbiamo utilizzato come chiave <u>Identificativo</u> perchè più efficiente essendo formata da un solo elemento. Edificio è quindi in BCNF.

pianta: Codice → (DimensionePerimetro, TipoPerimetro, Piano, NumeroVani, Edificio)

 $\underline{Edificio, Piano} \rightarrow (Codice, Dimensione Perimetro, Tipo Perimetro, Numero Vani)$

Sia la prima dipendenza che la seconda implicano l'intera tupla. Nella realizzazione dello schema logico abbiamo utilizzato come chiave <u>Codice</u> perché identifica in maniera più tecnica la tabella. Pianta è quindi in BCNF.

vano: Numero Vano, Edificio \rightarrow (Piano, Larghezza, Lunghezza, Massima Altezza) La chiave implica l'intera tupla quindi è già in BCNF

tipologia: Gli attributi sono tutti chiave, non ci sono dipendenze non banali quindi è già in BCNF

funzionalita: C'è solo un attributo chiave quindi è già in BCNF

mura: $\underline{\text{Codice}} \rightarrow (\text{SSI1}, \text{SSI2}, \text{SSI3}, \text{SSI4})$

La chiave implica l'intera tupla quindi è già in BCNF

demarcazione: Gli attributi sono tutti chiave, non ci sono dipendenze non banali quindi è già in BCNF

accesso: Identificativo \rightarrow (Classificazione, Larghezza, Lunghezza, PuntoCardinale, CollegamentoEsterno) La chiave implica l'intera tupla quindi è già in BCNF

varco: Gli attributi sono tutti chiave, non ci sono dipendenze non banali quindi è già in BCNF

finestra: Indice, Vano, Edificio \rightarrow (PuntoCardinale) La chiave implica l'intera tupla quindi è già in BCNF

passaggio: Vano1, Edificio, Vano2 \rightarrow (Tipologia) La chiave implica l'intera tupla quindi è già in BCNF

La chiave implica l'intera tupla quindi è già in BCNF

sensore: $\underline{\text{ID}} \rightarrow (\text{Tipo, Soglia, Edificio, Vano, EdificioVano, Mura})$

La chiave implica l'intera tupla quindi è già in BCNF

misurazione: DataRilevamento, Tipologia, Sensore → (Intensita, UnitaDiMisura, Alert)

La chiave implica l'intera tupla quindi è già in BCNF

 $\textbf{progettoedilizio:} \ \underline{Codice, CodiceCatastaleComune} \rightarrow (DataPresentazione, DataInizio, DataApprovazio-$

ne, StimaDataFine, Edificio)

La chiave implica l'intera tupla quindi è già in BCNF

 $\textbf{stadioavanzamento:} \ \underline{\text{ID}} \rightarrow (\text{DataInizio}, \ \text{CostoFinale}, \ \text{StimaTermine}, \ \text{Budget}, \ \text{DataCompletamento}, \ \text{Promotional Promotions})$

gettoEdilizioCod, ProgettoEdilizioComune)

La chiave implica l'intera tupla quindi è già in BCNF

lavoro: Nome, StadioAvanzamento \rightarrow (Inizio, Termine, Costo)

La chiave implica l'intera tupla quindi è già in BCNF

lavoratore: Matricola → (Nome, Cognome, PagaOraria, Ruolo, AnnoInizio)

La chiave implica l'intera tupla quindi è già in BCNF

manodopera: Gli attributi sono tutti chiave, non ci sono dipendenze non banali quindi è già in BCNF

calendario: GiornoEdOrario, Lavoratore → (Durata, Mansione, IdSupervisore)

La chiave implica l'intera tupla quindi è già in BCNF

materiale: CodiceLotto \rightarrow (Nome, Fornitore, DataAcquisto, Costo, UnitaDiMisura, Composizione)

La chiave implica l'intera tupla quindi è già in BCNF

occorrenza: Lavoro, StadioAvanzamento, Materiale o (PercUtilizzo)

La chiave implica l'intera tupla quindi è già in BCNF

piastrella: CodiceLotto → (MaterialeAdesivo, LarghezzaFuga, Disegno, Forma, Larghezza, Lunghezza,

Spessore)

La chiave implica l'intera tupla quindi è già in BCNF

pavimentazione:Gli attributi sono tutti chiave, non ci sono dipendenze non banali quindi è già in BCNF

altrimateriali: CodiceLotto → (Lunghezza, Altezza, Larghezza)

La chiave implica l'intera tupla quindi è già in BCNF

impiego: Gli attributi sono tutti chiave, non ci sono dipendenze non banali quindi è già in BCNF

 $\textbf{mattone:} \ \underline{CodiceLotto} \rightarrow (Alveolatura, Forma, Riempimento, Modello, Lunghezza, Larghezza, Spessore)$

La chiave implica l'intera tupla quindi è già in BCNF

struttura: Gli attributi sono tutti chiave, non ci sono dipendenze non banali quindi è già in BCNF

 $pietreossatura: CodiceLotto \rightarrow (Spessore, Larghezza, Lunghezza)$

La chiave implica l'intera tupla quindi è già in BCNF

costruzione: Gli attributi sono tutti chiave, non ci sono dipendenze non banali quindi è già in BCNF

 $pietrecopertura: CodiceLotto \rightarrow (PesoMedio, SuperficieMedia, Disposizione)$

La chiave implica l'intera tupla quindi è già in BCNF

decorazione: Gli attributi sono tutti chiave, non ci sono dipendenze non banali quindi è già in BCNF

intonaco: C'è solo un attributo chiave quindi è già in BCNF

rivestimento: Intonaco, Mura \rightarrow (NumeroStrato) La chiave implica l'intera tupla quindi è già in BCNF

eventocalamitoso: Gli attributi sono tutti chiave, non ci sono dipendenze non banali quindi è già in BCNF

La chiave implica l'intera tupla quindi è già in BCNF

stato: <u>Data, EdificioIdentificativo</u> → (ParametriStrutturali, ParametriClimatici) La chiave implica l'intera tupla quindi è già in BCNF

danni: $\underline{\text{Data}}$, $\underline{\text{Edificio}}$ \rightarrow (Muratura, Infissi, Arredo) La chiave implica l'intera tupla quindi è già in BCNF

consigliintervento: <u>Lavoro, Edificio</u> → (CodicePriorità, Zona, LimiteTemporale, EventoCalamitoso, Soglia, Incidenza, SpesaMancatoIntervento)
La chiave implica l'intera tupla quindi è già in BCNF

7.3 Vincoli

7.3.1 Vincoli di dominio

Incidenza di *consigliintervento* > 0

Tutti gli attributi hanno il vincolo NOT NULL eccetto: **PuntoCardinale** di *accesso*, **SSI1**, **SSI2**, **SSI3**, **SSI4** di *mura*, **DataCompletamento**, **CostoFinale** di *stadioavanzamento*, **Costo,Termine** di *lavoro*, **Alveolatura** di *mattone*, **IdSupervisore** di *calendario*.

Gli attributi **CostoFinale** e **Budget** di *stadioavanzamento*, **Costo** di *lavoro*, **PagaOraria** di *lavoratore*, **Costo** di *materiale*, **SpesaMancatoIntervento** di *consigliintervento*, che descrivono una quantità monetaria, ovviamente devono essere maggiore di 0.

Tutti gli **attributi** che descrivono le **dimensioni** dei materiali ovvero *piastrelle*, *altri materiali*, *mattone*, *pietreossatura* e *pietrecopertura* hanno il vincolo di essere maggiore di 0.

```
Altri vincoli di dominio:
Foglio di edificio > 0
Particella di edificio > 0
Sub di edificio > 0
Condizione di edificio = 'esistente' || 'da realizzare'
DimensionePerimetro di pianta > 0
NumeroVano di vano > 0
Larghezza di vano > 0
Lunghezza di vano > 0
MassimaAltezza di vano > 0
SSI1 di mura > 0
SSI2 di mura > 0
SSI3 di mura > 0
SSI4 di mura > 0
Larghezza di accesso > 0
Lunghezza di accesso > 0
PuntoCardinale di accesso = 'N' || 'NE' || 'NW' || 'S' || 'SE' || 'SW' || 'E' || 'W'
PuntoCardinale di finestra = 'N' || 'NE' || 'NW' || 'S' || 'SE' || 'SW' || 'E' || 'W'
NumRegistrazione di areageografica > 0
Cap di areageografica > 0
CoefRischioSismico di areageografica > 0
CoefRsichioIdrogeologico di areageografica > 0
Durata di calendario > 0
PercUtilizzo di occorrenza > 0
LarghezzaFuga di piastrella > 0
Disegno di piastrella = 'naturale' || 'stampato'
Disposizione di pietrecopertura = 'orizzontale' || 'verticale' || 'naturale'
Muratura di danni > 0
Infissi di danni > 0
Arredo di danni > 0
CodicePriorita di consigliintervento > 0
LimiteTemporale di consigliintervento > 0
```

7.3.2 Vincoli di tupla

L'attributo **Alveolatura** di *mattone* deve essere NULL nel caso in cui in **Riempimento** sia presente 'pieno'. In caso contrario l'attributo descrive il tipo di alveolatura del mattone.

La tabella passaggio deve collegare Vano1 e Vano2 appartenenti allo stesso edificio.

Gli attributi in *progettoedilizio* che descrivono le fasi temporali devono avere un preciso ordine cronologico, in particolare **DataPresentazione** < **DataApprovazione** < **DataInizio** < **StimaDataFine**.

Gli attributi che descrivono le tempistiche dello *stadioavanzamento* devono avere una precisa disposizione temporale , in particolare **DataInizio** < **StimaTermine** e **DataInizio** < **DataCompletamento**.

Nella tabella *lavoro* ci sono degli attributi che si susseguono temporalmente ovvero **Inizio** < **Termine**.

Nella tabella *mura* ci sono quattro attributi che descrivono lo spessore degli strati di intonaco. Tutti gli attributi sono opzionali perché il numero di strati non è fissato. Si rende necessario inserire un vincolo che permette l'insermento in **SSI2** solo se è presente lo strato di intonaco precedente, lo stesso per **SSI3** e infine anche in **SSI4** è possibile inserire lo spessore solo se è già presente lo spessore del terzo strato.

Nella tabella *accesso* nel caso in cui **classificazione** sia uguale a portafinestra è necessario inserire il punto cardinale.

7.3.3 Vincoli di integrità referenziali

Per ogni riga inserisco **attributo** (entità) e vincolo (entità vincolo)

ATTRIBUTO	VINCOLO
AreaGeogNumReg (edificio)	NumRegistrazione (areageografica)
AreaGeogNumCap (edificio)	Cap (areageografica)
Edificio (pianta)	Identificativo (edificio)
Edificio (vano)	Identificativo (edificio)
Funzionalita (tipologia)	Nome (funzionalita)
Vano (tipologia)	NumeroVano (vano)
Edificio (tipologia)	Edificio (vano)
Vano (demarcazione)	NumeroVano (vano)
Edificio (demarcazione)	Edificio (vano)
Mura (demarcazione)	Codice (mura)
Vano (varco)	NumeroVano (vano)
Edificio (varco)	Edificio (vano)
Accesso (varco)	Identificativo (accesso)
Vano (finestra)	NumeroVano (vano)
Edificio (finestra)	Edificio (vano)
Vano1 (passaggio)	NumeroVano (vano)

Vano2 (passaggio)	NumeroVano (vano)	
Edificio (passaggio)	Edificio (vano)	
Edificio (sensore)	Identificativo (Edificio)	
Vano (sensore)	NumeroVano (Vano)	
EdificioVano (sensore)	Edificio (Vano)	
Mura (sensore)	Codice (Mura)	
Sensore (misurazione)	ID (sensore)	
Edificio (progettoedilizio)	Identificativo (edificio)	
ProgettoEdilizioCod (stadioavanzamento)	Codice (progettoedilizio)	
ProgettoEdilizioComune (stadioavanzamento)	CodiceCatastaleComune (progettoedilizio)	
StadioAvanzamento (lavoro)	ID (stadioavanzamento)	
Lavoratore (manodopera)	Matricola (lavoratore)	
Lavoro (manodopera)	Nome (lavoro)	
StadioAvanzamento (manodopera)	StadioAvanzamento (lavoro)	
Lavoratore (calendario)	Matricola (lavoro)	
Lavoro (occorrenza)	Nome (lavoro)	
StadioAvanzamento (occorrenza)	StadioAvanzamento (lavoro)	
Materiale (occorrenza)	CodiceLotto (materiale)	
CodiceLotto (piastrella)	CodiceLotto (materiale)	
Piastrella (pavimentazione)	CodiceLotto (piastrella)	
Vano (pavimentazione)	CodiceVano (vano)	
Edificio (pavimetazione)	Edificio (vano)	
CodiceLotto (altrimateriali)	CodiceLotto (materiale)	
AltriMateriali (impiego)	CodiceLotto (altrimateriali)	
Vano (impiego)	CodiceVano (vano)	
Edificio (impiego)	Edificio (vano)	
CodiceLotto (mattone)	CodiceLotto (materiale)	
Mattone (struttura)	CodiceLotto (mattone)	
Mura (struttura)	Codice (mura)	
CodiceLotto (pietreossatura)	CodiceLotto (materiale)	
PietreOssatura (costruzione)	CodiceLotto (pietreossatura)	
Mura (costruzione)	Codice (mura)	
CodiceLotto (pietrecopertura)	CodiceLotto (materiale)	
PietreCopertura (decorazione)	CodiceLotto (pietrecopertura)	
Mura (decorazione)	Codice (mura)	
CodiceLotto (intonaco)	CodiceLotto (materiale)	
Intonaco (rivestimento)	CodiceLotto (intonaco)	
Mura (rivestimento)	Codice (mura)	
AreaGeogNumReg (rilevazione)	NumRegistrazione (areageografica)	
AreaGeogCap (rilevazione)	Cap (AreaGeografica)	

EventoCalamitosoGenere (rilevazione)	Genere (eventocalamitoso)	
EventoCalamitosoData (rilevazione)	Datazione (eventocalamitoso)	
EdificioIdentificativo (stato)	Identificativo (edificio)	
Edificio (danni)	Identificativo (edifico)	
Edificio (consigliintervento)	Identificativo (edificio)	

7.3.4 Vincoli generici

Nell'attributo **IdSupervisore** di *calendario* è presente il codice del supervisore di quel determinato operaio. Esso deve essere inserito in **Matricola** di *lavoratore*. L'unica eccezione è nel caso in cui in calendario ci sia il turno di un responsabile o di un capocantiere, in quel caso in *IdSupervisore* ci deve essere il valore 'NULL' il quale indica che esso stesso è un supervisore.

Un *sensore* può essere collegato ad *edificio*, *vano* o *mura* in base alla sua funzionalità. E' necessario che un vincolo controlli che un sensore sia collegato o in **Edificio** o in **Vano ed EdificioVano** o in **Mura**.

L'attributo **Alert** di *misurazione* si deve attivare solo se l'**Intesita** ha superato il valore di **Soglia** presente in *sensore*.

Il **CostoFinale** di uno *stadioavanzamento* è esattamente uguale al **Budget** a meno che la **DataCompletamento** non sia successiva alla **DataStimaTermine**, in questo caso il **CostoFinale** è diverso da quello previsto.

Un capocantiere può coordinare un numero massimo di persone che dipende dalla sua esperienza, in particolare esso può coordinare una persona per ogni 4 anni di carriera lavorativa, con un minimo di tre operai. Inoltre in un turno di lavoro non possono lavorare più del 80% dei lavoratori.

In *misurazione* è possibile l'inserimento dei valori registrati da termometri, pluviometri ed igrometri, in continuo ma a bassa frequenza di campionamento. Nel caso di accelerometri, giroscopi e sensori di posizione le misurazioni vengono archiviate nel database il primo giorno di ogni mese o nel caso in cui **Intensita** superi la soglia.

In edificio non possono esserci due tuple con lo stesso Comune, Sub, Particella, Foglio

In vano non è possibile inserire un **Piano** non presente in *pianta*.

Nella tabella *calendario* l'attributo **Mansione** dove essere presente tra **Nome** di *lavoro*.

In *stadioavanzamento* non è possibile inserire una **Datainizio** precedente alla **Datainizio** di *progettoedilizio*.

In *lavoro* non è possibile inserire un **Inizio** precedente alla **Datainizio** di *stadioavanzamento*

8 Data analytics

8.1 Stima danni

L'analytics in questione si prefigge lo scopo di stimare la gravità dei danni arrecati ad un edificio sito in una determinata area geografica a seguito di un ipotetico terremoto.

Questa funzionalità si basa su due parametri contenuti nella base di dati: il *Coefficiente di rischio sismico*, memorizzato nella base durante l'inserimento di un'area geografica, e lo stato dei *Parametri strutturali* calcolato dal database tramite apposita operazione. Le zone geografiche, ai sensi dell'articolo 32-bis del Decreto Legge n° 269 del 30 settembre 2003 sono organizzate su quattro differenti livelli di rischio sismico tramite l'analisi di spettri di risposta elastici, i quali dipendono principalmente dalla tipologia di sottosuolo e dalla pericolosità del sito in base alle proprie coordinate geografiche. Valutando lo spettro di risposta in base all'accelerazione di picco orizzontale al suolo (PGA) otteniamo la suddivisione in quattro zone numerate da 1 a 4 seguendo un ordine decrescente di gravità.

La PGA, *Peak Ground Acceleration* è una misura vettoriale in uno spazio tridimensionale, essa è indice di quanto sono state intense le scosse del sisma in un preciso punto geografico. Nel ramo delle costruzioni il valore più importante della PGA è quello orizzontale che è strettamente legato ai danni arrecati all'edificio. In fase di progettazione dell'analytics è stata decisa l'introduzione di due tabelle per una comprensione ottimale del comportamento dell'operazione di stima dei danni.

Tabella di danno generale

Essa è stata ottenuta incrociando i dati di *Coefficiente di rischio sismico* e di *Parametri strutturali* in modo da quantificare il livello di danni tramite una scala centesimale suddivisa in sette range possibili numerati in ordine crescente di gravità da zero a sei.

	Stato Edificio				
	Ottimo	Buono	Discreto	Pessimo	
Zona 4	D0	D1	D2	D3	
Zona 3	D1	D2	D3	D4	
Zona 2	D2	D3	D4	D5	
Zona 1	D3	D4	D5	D6	

Tabella di danno arrecato alle categorie

Nella predizione dei danni a seguito di un sisma sono state scelte tre categorie da monitorare: *Arredo, Infissi* e *Muratura*, esse seguono in ordine una logica di resistenza alle onde sismiche crescente. Le percentuali di danno vengono ottenute interpolando le informazioni riguardanti le categorie con i coefficienti di danno all'edificio della tabella precedente.

	Percentuale Danno				
	Arredo	Infissi	Muratura		
D0	5%	2%	1%		
D1	15%	10%	5%		
D2	30%	20%	10%		
D3	60%	40%	35%		
D4	100%	60%	50%		
D5	100%	100%	70%		
D6	100%	100%	100%		

8.2 Consigli di intervento

Questa analytic si prefigge l'intento di riuscire a consigliare autonomamente i lavori da fare su di un determinato edificio per mantenerlo in ottime condizioni sia strutturalmente che lato vivibilità. Per una maggiore comprensione abbiamo diviso il testo sottostante in due sottosezioni secondo la considerazione appena precedente.

Parametri murari

Di fondamentale importanza per la buona riuscita di una costruzione smart è la capacità di segnalare automaticamente interventi volti alla conservazione delle opere strutturali quali: mura, solai, pilastri e fondamenta secondo regola d'arte.

Questa parte di analytics è stata implementata tenendo conto di quattro **codici di priorità** classificabili con cifre decimali in senso crescente in ordine di importanza.

Mentre i primi tre stadi variano in base alla grandezza delle crepe coinvolte, l'ultimo muta in base alla distribuzione ed alla presenza di crepe sull'edificio.

Al differenziamento della classificazione corrispondono soluzioni diverse.

Per ogni range di **spessore crepa** c'è una precisa **soglia** sismica misurata sulla scala Richter e un **limite temporale** dopo il cui, in caso di disinteresse, il fenomeno va in contro ad un peggioramento secondo un'**incidenza** anch'essa descritta nella tabella ed ad una **spesa per mancato intervento**.

	Spessore crepa	Soglia	Limite temporale	Incidenza	Spesa mancato intervento
1	2 / 5 mm	\geq 5 pti	10 anni	40 %	100 €
2	5 / 10 mm	\geq 4 pti	3 anni	50 %	500 €
3	> 10 mm	≥ 3 pti	6 mesi	65 %	3000 €
4	> 10 mm varie mura	\geq 2.5 pti	3 mesi	80 %	10000 €

In base al codice di priorità sono stati decisi quattro lavori da fare tramite cui il database consiglia di intervenire secondo la seguente tabella:

Codice di priorità	Lavoro consigliato
1	Sigillante crepe
2	Stucco riempitivo
2	Consolidamento
)	mura
4	Ristrutturazione

Umidità interna

Questa parte di analytics è gestita tramite un diagramma di comodità per Leusden - Freymark, esso consiste in una tabella che incrociando informazioni sulla temperatura ambientale e sul tasso percentuale di umidità restituisce il grado di tollerabilità all' umidità nell' edificio.

Ogni grado di sopportabilità identifica una fascia prioritaria, seguendo lo schema di Leusden - Freymark sono state identificate quattro fasce di vivibilità non ottimale, esse identificano anche le fasce di priorità. Le informazioni in circostanze ottimali non sono state riportate nella tabella poiché non interessanti ai fini dell' analytics.

		Umidità			
	18°	75 / 80%	80 / 85%	85 / 90%	90 / 100%
	20°	70 / 75%	75 / 80%	80 / 85%	85 / 100%
Temperatura	22°	65 / 70%	70 / 75%	75 / 80%	80 / 100%
	24°	40 / 45%	45 / 60%	60 / 75%	75 / 100%
	26°	35 / 40%	40 / 45%	45 / 50%	50 / 100%
_		Fascia 1	Fascia 2	Fascia 3	Fascia 4

Ad ogni fascia corrisponde un numero naturale da uno a quattro il quale è direttamente collegato ad un consiglio di intervento ed ad uno specifico limite temporale entro il quale prendere in considerazione il suggerimento prima che le condizioni peggiorino.

Nel caso in cui si presenti un alto tasso di umidità esterna il database stima una spesa di mancato intervento e un'incidenza sul probabile peggioramento delle condizioni di vivibilità nell'edificio nel caso si trascurino i consigli indicati oltre ad un certo tempo limite basandosi sul precedente diagramma di comodità.

	Umidità esterna	Incidenza	Limite temporale	Spesa mancato intervento
Fascia 1	95%	60 %	1 anno	200 €
Fascia 2	90%	65 %	5 mesi	400 €
Fascia 3	85%	70 %	1 mese	1000 €
Fascia 4	80%	80 %	2 settimane	2000 €

L'analytics restituisce consigli in caso di alto tasso di umidità correlato alla temperatura. Essi vengono indicati per ogni fascia in modo graduale.

Sfruttando un esempio per capire meglio: se i sensori misurano un' umidità del 75% assieme ad un temperatura di 20° C il database classificherà questa situazione in fascia 1 consigliando dunque l'installazione di un deumidificatore, nel caso la situazione peggiori ed i sensori arrivino a percepire un' umidità dell' 82% l'analytics incoraggerà l'applicazione di un particolare intonaco e di una tintura antimuffa mantenendo comunque il deumidificatore.

Le operazioni consigliate dalla base in funzione delle categorie di priorità sono riportate nella seguente tabella:

Fascia di priorità	Consiglio
1	Deumidificatore
2	Intonaco e
2	tintura antimuffa
3	Vespaio
4	Cappotto