# In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

## In [2]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\C8_loan-test.csv")
a
```

# Out[2]:

|   |     | Loan_ID  | Gender | Married | Dependents | Education       | Self_Employed | ApplicantIncome | C |
|---|-----|----------|--------|---------|------------|-----------------|---------------|-----------------|---|
|   | 0   | LP001015 | Male   | Yes     | 0          | Graduate        | No            | 5720            |   |
|   | 1   | LP001022 | Male   | Yes     | 1          | Graduate        | No            | 3076            |   |
|   | 2   | LP001031 | Male   | Yes     | 2          | Graduate        | No            | 5000            |   |
|   | 3   | LP001035 | Male   | Yes     | 2          | Graduate        | No            | 2340            |   |
|   | 4   | LP001051 | Male   | No      | 0          | Not<br>Graduate | No            | 3276            |   |
|   | ••• |          |        |         |            |                 |               |                 |   |
| 3 | 62  | LP002971 | Male   | Yes     | 3+         | Not<br>Graduate | Yes           | 4009            |   |
| 3 | 63  | LP002975 | Male   | Yes     | 0          | Graduate        | No            | 4158            |   |
| 3 | 64  | LP002980 | Male   | No      | 0          | Graduate        | No            | 3250            |   |
| 3 | 65  | LP002986 | Male   | Yes     | 0          | Graduate        | No            | 5000            |   |
| 3 | 66  | LP002989 | Male   | No      | 0          | Graduate        | Yes           | 9200            |   |
|   |     |          |        |         |            |                 |               |                 |   |

## 367 rows × 12 columns

# In [3]:

from sklearn.linear\_model import LogisticRegression

## In [4]:

```
a=a.head(10)
a
```

## Out[4]:

|     | Loan_ID  | Gender | Married | Dependents | Education       | Self_Employed | ApplicantIncome | Coa |
|-----|----------|--------|---------|------------|-----------------|---------------|-----------------|-----|
| 0   | LP001015 | Male   | Yes     | 0          | Graduate        | No            | 5720            |     |
| 1   | LP001022 | Male   | Yes     | 1          | Graduate        | No            | 3076            |     |
| 2   | LP001031 | Male   | Yes     | 2          | Graduate        | No            | 5000            |     |
| 3   | LP001035 | Male   | Yes     | 2          | Graduate        | No            | 2340            |     |
| 4   | LP001051 | Male   | No      | 0          | Not<br>Graduate | No            | 3276            |     |
| 5   | LP001054 | Male   | Yes     | 0          | Not<br>Graduate | Yes           | 2165            |     |
| 6   | LP001055 | Female | No      | 1          | Not<br>Graduate | No            | 2226            |     |
| 7   | LP001056 | Male   | Yes     | 2          | Not<br>Graduate | No            | 3881            |     |
| 8   | LP001059 | Male   | Yes     | 2          | Graduate        | NaN           | 13633           |     |
| 9   | LP001067 | Male   | No      | 0          | Not<br>Graduate | No            | 2400            |     |
| 4.4 |          |        |         |            |                 |               |                 |     |

# In [5]:

```
a.columns
```

## Out[5]:

```
In [6]:
```

```
b=a[['Dependents','ApplicantIncome', 'CoapplicantIncome', 'LoanAmount','Loan_Amount_Term'
b
```

## Out[6]:

|   | Dependents | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term |
|---|------------|-----------------|-------------------|------------|------------------|
| 0 | 0          | 5720            | 0                 | 110.0      | 360.0            |
| 1 | 1          | 3076            | 1500              | 126.0      | 360.0            |
| 2 | 2          | 5000            | 1800              | 208.0      | 360.0            |
| 3 | 2          | 2340            | 2546              | 100.0      | 360.0            |
| 4 | 0          | 3276            | 0                 | 78.0       | 360.0            |
| 5 | 0          | 2165            | 3422              | 152.0      | 360.0            |
| 6 | 1          | 2226            | 0                 | 59.0       | 360.0            |
| 7 | 2          | 3881            | 0                 | 147.0      | 360.0            |
| 8 | 2          | 13633           | 0                 | 280.0      | 240.0            |
| 9 | 0          | 2400            | 2400              | 123.0      | 360.0            |

# In [7]:

```
c=b.iloc[:,0:5]
d=a.iloc[:,-1]
```

## In [8]:

c.shape

## Out[8]:

(10, 5)

# In [9]:

d.shape

# Out[9]:

(10,)

### In [11]:

from sklearn.preprocessing import StandardScaler

# In [12]:

```
fs=StandardScaler().fit_transform(c)
```

```
In [14]:
from sklearn.linear_model import LogisticRegression
In [15]:
logr=LogisticRegression()
logr.fit(fs,d)
Out[15]:
LogisticRegression()
In [16]:
e=[[2,5,77,8,65]]
In [17]:
prediction=logr.predict(e)
prediction
Out[17]:
array(['Urban'], dtype=object)
In [18]:
logr.classes_
Out[18]:
array(['Rural', 'Semiurban', 'Urban'], dtype=object)
In [19]:
logr.predict_proba(e)[0][0]
Out[19]:
2.4832907804011954e-23
In [20]:
logr.predict_proba(e)[0][1]
Out[20]:
```

1.2487144392441901e-08

## In [21]:

```
import re
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
```

## In [22]:

```
digits=load_digits()
digits
   htxer_o_o '
  'pixel_3_7',
  'pixel_4_0',
  'pixel_4_1',
  'pixel_4_2',
  'pixel_4_3',
  'pixel_4_4',
  'pixel_4_5',
  'pixel_4_6',
  'pixel_4_7'
  'pixel_5_0',
  'pixel_5_1',
  'pixel_5_2',
  'pixel_5_3',
  'pixel_5_4',
  'pixel_5_5',
  'pixel_5_6',
  'pixel_5_7',
  'pixel_6_0',
  'pixel_6_1',
```

### In [23]:

```
plt.figure(figsize=(20,4))
for index,(image,label)in enumerate(zip(digits.data[0:5],digits.target[0:5])):
    plt.subplot(1,5,index+1)
    plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
    plt.title('Number:%i\n'%label,fontsize=15)
```



# In [24]:

```
x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.30)
```

```
In [25]:
```

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(1257, 64)
(540, 64)
(1257,)
(540,)
```

#### In [26]:

```
logre=LogisticRegression(max_iter=10000)
logre.fit(x_train,y_train)
```

### Out[26]:

LogisticRegression(max\_iter=10000)

### In [27]:

```
logre.predict(x_test)
```

#### Out[27]:

```
array([7, 4, 5, 8, 8, 6, 2, 4, 1, 9, 9, 4, 9, 8, 0, 8, 1, 3, 9, 8, 9, 3,
      1, 2, 6, 6, 1, 2, 7, 6, 1, 8, 3, 3, 9, 5, 7, 8, 3, 7, 9, 5, 5, 2,
      9, 8, 4, 0, 6, 2, 7, 7, 7, 1, 4, 1, 9, 7, 6, 7, 7, 5, 6, 9, 7, 7,
      1, 9, 5, 6, 4, 8, 9, 8, 1, 7, 4, 4, 3, 4, 1, 0, 7, 2, 3, 2, 7, 2,
       3, 1, 6, 1, 4, 4, 7, 4, 7, 4, 5, 8, 6, 8, 8, 8, 5, 0, 8, 2, 5,
       7, 4, 5, 1, 6, 0, 4, 4, 6, 3, 1, 4, 5, 3, 7, 1, 3, 5, 6, 6, 1, 9,
      2, 6, 7, 7, 1, 1, 6, 4, 3, 0, 0, 7, 6, 8, 4, 2, 1, 0, 4, 8, 5, 0,
      3, 5, 8, 1, 8, 5, 7, 9, 6, 3, 4, 5, 9, 4, 2, 3, 2, 9, 5, 4, 3, 7,
       3, 6, 3, 1, 9, 4, 2, 9, 3, 4, 4, 9, 6, 5, 9, 4, 9, 0, 1, 7, 7, 6,
      3, 0, 7, 6, 7, 0, 8, 3, 1, 9, 7, 4, 0, 1, 5, 9, 0, 1, 7, 4, 5, 5,
      6, 6, 2, 1, 4, 6, 8, 2, 3, 4, 8, 1, 0, 2, 5, 9, 2, 1, 3, 4, 9, 9,
      0, 3, 1, 7, 4, 1, 9, 1, 4, 0, 6, 6, 0, 4, 3, 6, 1, 9, 7, 7, 3, 9,
      9, 0, 4, 0, 7, 4, 9, 2, 8, 7, 2, 5, 5, 6, 5, 3, 0, 4, 8, 5, 1, 7,
      4, 0, 0, 0, 2, 6, 4, 1, 7, 8, 3, 0, 6, 5, 2, 0, 6, 2, 9, 4, 4, 8,
      8, 2, 3, 9, 7, 8, 0, 2, 0, 8, 4, 5, 9, 8, 2, 8, 9, 7, 4, 9, 5, 1,
      8, 6, 0, 6, 6, 5, 0, 4, 3, 7, 5, 5, 5, 2, 1, 1, 9, 0, 8, 1, 1, 6,
      3, 3, 1, 8, 5, 8, 3, 7, 2, 0, 5, 0, 1, 4, 7, 7, 2, 0, 7, 7,
      5, 7, 4, 1, 9, 5, 1, 6, 9, 4, 6, 7, 5, 5, 7, 6, 3, 1, 9, 7,
                                                                   5, 5,
      9, 8, 1, 7, 3, 2, 2, 2, 8, 7, 1, 2, 8, 7, 6, 6, 3, 6, 5, 0, 3, 4,
      2, 8, 9, 2, 1, 5, 1, 6, 0, 9, 5, 1, 3, 2, 1, 2, 9, 2, 4, 3, 2, 8,
      5, 5, 1, 8, 0, 8, 3, 3, 6, 6, 1, 4, 6, 3, 5, 3, 3, 2, 5, 0, 9, 1,
      4, 4, 1, 3, 2, 1, 5, 2, 8, 8, 1, 2, 8, 9, 9, 6, 8, 1, 8, 3, 4, 7,
      3, 7, 0, 0, 3, 2, 4, 0, 7, 9, 4, 1, 8, 5, 3, 5, 3, 8, 3, 3, 9, 7,
      2, 6, 4, 5, 0, 0, 6, 0, 2, 4, 6, 2, 5, 2, 9, 0, 3, 6, 5, 4, 9, 2,
       5, 4, 7, 3, 7, 5, 1, 3, 2, 6, 3, 3])
```

#### In [28]:

```
logre.score(x_test,y_test)
```

#### Out[28]:

0.9518518518518518

| In [ ]: |  |  |  |
|---------|--|--|--|
|         |  |  |  |