What is Machine Learning?

"Learning is any process by which a system improves performance from experience." _Herbert Simon

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that:

- Improve their performance P
- At some task **T**
- With experience E

A well-defined learning task is represented as (P, T, E).

Traditional Programming vs Machine Learning

Traditional Programming

• **Input:** Data + Program

• Output: Result

Machine Learning

• Input: Data + Output

• Output: Program

When Do We Use Machine Learning?

ML is useful when:

- Human expertise does **not exist**
- Humans can't explain their expertise (e.g., speech recognition)
- Models need to be **customized** (e.g., personalized medicine)
- Huge amounts of data are involved (e.g., genomics)

ML is not needed when:

• The task is rule-based (e.g., payroll calculation)

Examples of ML Use Cases

- Pattern Recognition:
 - o Facial identity/expression o Handwriting/speech o Medical imaging
- Pattern Generation:
 - o Images or motion sequences
- Anomaly Detection:
 - o Credit card fraud o Nuclear sensor anomalies
- Prediction:
 - o Stock prices o Currency rates

Sample Applications

- · Web search
- Computational biology
- Finance
- E-commerce
- Robotics
- · Social networks
- Software debugging
- Space exploration
- [Insert your domain here]

Historical Insight

"Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed."

_Arthur Samuel (1959)

Defining the Learning Task

Improve on task T, with respect to performance P, based on experience E.

Task	Performance (P)	Experience (E)
Playing checkers	% of games won	Self-play games
Handwriting	% words correctly classified	Human-labeled image
recognition	Ž	dataset

Task Performance (P)

Avg. distance before human Recorded sensor/steering

Experience (E)

Highway driving correction data

% correctly classified Labeled email dataset

Types of Learning

1. Supervised Learning

o Input: Training data + labels

2. Unsupervised Learning

o Input: Data without labels

3. Semi-supervised Learning

o Input: Data + few labels

4. Reinforcement Learning

o Input: Sequence of actions with rewards

Supervised Learning

Regression

- Predict real-valued outputs
- Example: House prices over years

Classification

- Predict categorical outputs
- Example: Cancer classification (Benign = 0, Malignant = 1)

Data Representation in Supervised Learning

- Input x can be multi-dimensional
- Each dimension = feature (e.g., Age, Tumor Size, Cell Shape, etc.)

Unsupervised Learning

- Input: $xi, X_2, ..., x_n$ (no labels)
- Goal: Discover hidden structure
- Example: Customer segmentation using clustering

Reinforcement Learning

- Output: Policy (mapping states to actions)
- Examples:
 - o Robot navigation
 - o Game playing o

Balancing a pole

Data Pipeline Overview

Machine Learning is only as good as the data it learns from.

Two Key Steps Before Training:

- 1. Data Collection
- 2. Data Filtering (Preprocessing)

Data Collection

What is it?

• Gathering data relevant to the ML task

Data Types:

- Structured: Tables, CSVs (e.g., sales records)
- Unstructured: Text, images, videos (e.g., tweets, CCTV)

Sources:

- Web scraping
- IoT sensors
- APIs (e.g., Twitter, Weather)
- Surveys & logs

CSV Files in ML

What is a CSV?

- Plain-text, tabular format
- Each line = data record
- Fields separated by comma, semicolon, or tab

Why CSV is Popular:

Feature Advantage

Simplicity Easy to read/write Portability Supported by all programming languages Compatibility Works with Excel, Python, R, etc. Lightweight No metadata overhead ML-Friendly Compatible with Pandas, Scikitlearn

Example CSV Data:

Patient ID, Age, BMI, Glucose, Blood Pressure, Outcome P001, 45~29.5, 150, 85, 1 P002, 34, 135, 92, 0 P003, 50, 31.2, 88, 1

Data Storage

• Should be scalable, secure, and accessible

Data Filtering (Preprocessing)

Goals:

- Remove duplicates, missing values, and outliers
- Select relevant features
- Normalize/standardize data

Steps:

- 1. Remove duplicates
- 2. Handle missing values (drop/fill)
- 3. Remove outliers (Z-score/IQR)
- 4. Feature selection
- 5. Data transformation (e.g., normalization)

Examples of Data Filtering

Example 1: House Prices

- Filled missing Lotsize with median
- Removed irrelevant column 1D

Example 2: Sensor Data

- Applied moving average for smoothing
- Converted temperature to Celsius

Why Data Filtering is Important

- Improves model performance
- Reduces bias and variance
- Ensures data consistency
- Avoids "garbage-in, garbage-out"

Real-World Use Case: Spam Detection

- Collected Data: Email content, metadata
- Storage: NoSQL database
- Filtering:

o Removed HTML tags o Removed stopwords o Selected keywords as features

Domain-Wise Use Cases

1. Healthcare - Predicting Diabetes (Supervised Learning)

Before Filtering:

P001	45	29.5	150	85	1
P002	34		135	92	0
P003	50	31.2	NULL	CO CO	1

Filtering:

Filled missing BMI = 30.0 Removed row with missing Glucose

After:

2. Retail - Customer Segmentation (Unsupervised Learning)

Before:

C101	22	15	39
C102	35	95	81
C103		45	66
C104	28	-100	70

Filtering:

- Removed negative income
- Filled missing age with mean = 28.3

After:			
C101	22	15	39
C102	35	95	81
C103	28	45	66

3. Education - Predicting Dropouts (Supervised Learning)

Before:

S001 S002 S003	80 45 NULL	$ \begin{array}{r} 3.1 \\ 2.0 \\ 3.4 \end{array} $	Y N
Filtering:			

• Filled missing attendance with average = 62.5

After:			
S001	80	3.1	N
S002	45	2.0	Y
S003	62.5	3.4	N

4. Finance - Anomaly Detection (Unsupervised Learning)

Before:

T1001 5,000 Mumbai 10:35 AM T1002 1,20,000 Dubai 3:15 AM T1003 -3,000 Bangalore 1:00 PM

Filtering:

Removed negative transaction Flagged foreign transaction > ?1,00,000

After:

```
T1001 5,000 Mumbai 10:35 AM Normal
T1002 1,20,000 Dubai 3:15 AM Suspicious
```

5. Social Media - Sentiment Analysis (Supervised Learning)

Before:

TW001 "I love this phone!" Positive
TW002 "Worst service ever!!" Negative
TW003 "Just okay...nothing special"

Filtering:

- · Removed special characters
- · Filled missing sentiment

After:

TW001 love this phone Positive TW002 worst service ever Negative TW003 just okay nothing special Neutral

Other CSV Examples (Practice Datasets)

- Gaming & Esports player stats.csv
 Columns: Player_ID, Game_Title, Hours_Played, Highest_Score, Country
- 2. Food Delivery restaurant reviews .csv
 Columns: Order_ID, Restaurant_Name, Rating, Delivery_Time, Review_Text
- 3. Streaming Platforms watch_history.csv
 Columns: User_ID, Video_Title, Genre, Duration, Watched_Fully
- 4. Travel & Tourism trip_bookings. csv Detect and filter unrealistic costs (e.g., ?10,000,000)
- 5. Mental Wellness Apps mood tracker.csv Handle missing sleep hours and simulate data gaps