The Classification of Simulated Gene Expression Data Using LDA, KNN, etc.

October 1, 2019

```
> set.65rcin el e2 e2 e3 e43377667 5.537948e-01 1.063533e-02 6.2556203 0.433777667 5.537948e-01 1.063533e-02 6.2556203 0.433777667 5.537948e-01 1.063533e-02 6.2556205 0.95867567 0.98386789 0.411870967 -2.880961e-01 -2.318547e-01-01 0.4696205 0.6993479 0.122762561 -5.452579e-01 2.245622e-01 5.45622e-01 0.2553956 8.099362e-02 2.242678e-01 6.1699228476 0.44827997 -0.02559738 5.5575999e-01 1.5185382e-01 7.18543139 0.6601536 0.548387469 -3.542388-02 5.154083e-01 9.31854139 0.43475690 0.43476390 1.34362690 1.318546-02 6.332286e-01 0.34376390 1.318546-02 6.643528e-01 0.34376390 1.318546-02 6.643528e-01 0.34376390 0.34836749 3.332286e-01 0.34376390 0.34836749 3.332286e-01 0.34365390 0.3483749 3.332286e-01 0.34365390 0.3483749 3.332286e-01 0.34365390 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483690 0.3483749 3.3483749 3.3483690 0.3483749 3.3483749 3.3483749 3.3483749 3.3483749 3.34
```

With simulated data curves, five FPC scores were calculated

$$\hat{\epsilon}'_{im} = \sum_{k=1}^{S} ((\hat{X}_i(k) - \hat{\mu}'(k))\hat{\rho}'_m(k), \ m = 1, ..., 5, \ S = 18$$

- Last time, the classification performance of logistic regression and SVM was compared
- Two methods didn't show significant difference
- This time, classification performed with LDA, QDA, KNN, and neural net

LDA and QDA

- Let $f_k(X) = Pr(X = x | Y = k)$ denote the density function of X for an observation(x) that comes from the kth class(Y)
- Then, Bayes' Theorem states that,

$$Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_k(x)}, \text{ where } \pi_k = Pr(Y = k)$$

• Linear Discriminant Analysis(LDA) assumes that $f_k(x)$ is normal pdf with same variance across all classes:

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{(x-\mu)'\Sigma^{-1}(x-\mu)}{2}\right)$$

• On the other hand, Quadratic Discriminant Analysis(QDA) assumes each class has its own variance:

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{(x-\mu)' \Sigma_k^{-1} (x-\mu)}{2}\right)$$

LDA and QDA

• $\delta_k(x)$ is defined by plugging $f_k(x)$ into Pr(Y=k|X=x) and taking logarithm

LDA:
$$\delta_k(x) = x' \Sigma^{-1} \mu_k - \frac{1}{2} \mu'_k \Sigma^{-1} \mu_k + \log \pi_k$$

QDA: $\delta_k(x) = -\frac{1}{2} (x - \mu_k)' \Sigma_k^{-1} (x - \mu_k) + \log \pi_k$

- \bullet Discriminant analysis assigns an observation to the class for which δ_k is largest
- ullet $\hat{\mu}$ and $\hat{\Sigma}$ are estimated by data

K Nearest Neighbor Classifiers / Neural Network

- K nearest neighbor classifiers:
 - 1) Given an observation x_0 , find the k training points $x_{(r)}$, r=1,...,k closest in distance to x_0
 - 2) Classify using majority vote among the k neighbors
- Neural Network:
 - 1) 5 input, 2 hidden layers(first 10, second 5), 1 output
 - 2) Activation function is logistic

- Classification Error rates

Table: FPCA logistic regression and SVM(linear)

No. of FPCs or base functions	Group 1 FPCA	SVM(linear)	Group 2 FPCA	SVM(linear)	overall FPCA	SVM(linear)
1	32.72 (8.41)	63.20 (16.53)	32.70 (8.31)	47.38 (4.97)	32.71 (5.26)	55.29 (6.86)
2	22.16 (6.65)	21.90 (7.15)	22.06 (6.15)	22.80 (6.81)	22.11 (4.33)	22.35 (4.22)
3	7.58 (4.58)	7.60 (4.60)	8.26 (5.34)	8.32 (5.02)	7.92 (3.35)	7.96 (3.27)
4	7.14 (4.14)	6.86 (4.19)	7.62 (5.10)	7.82 (4.92)	7.38 (3.11)	7.34 (2.98)
5	7.40 (4.07)	7.14 (4.02)	7.86 (5.26)	7.88 (5.22)	7.63 (3.06)	7.51 (3.10)

Table: LDA, QDA, KNN, and neural net

No. of FPCs	Group 1 LDA	QDA	Group 2 LDA	QDA	overall LDA	QDA
1 2 3 4 5	31.66 (8.22) 21.70 (7.54) 7.32 (4.78) 6.40 (3.77) 6.40 (3.76)	31.22 (9.55) 22.24 (7.32) 7.44 (4.58) 6.76 (3.89) 7.12 (4.05)	33.56 (8.62) 22.02 (6.74) 7.74 (4.10) 7.08 (3.71) 7.24 (3.65)	34.00 (10.42) 22.24 (6.96) 7.78 (3.77) 7.22 (3.89) 7.74 (4.04)	32.61 (5.80) 21.86 (4.44) 7.53 (2.85) 6.74 (2.47) 6.82 (2.38)	32.61 (5.68) 22.24 (4.60) 7.61 (2.75) 6.99 (2.52) 7.43 (2.64)
3	0.40 (3.10)	7.12 (1.00)	7.27 (0.00)	()	**** (=***)	(-)
No. of FPCs	Group 1 KNN(k=11)	nnet(10,5)	Group 2 KNN	nnet	overall KNN	nnet