

Markov networks: overview

X connects factor graphs ~1 probability

Review: factor graphs

Definition: factor graph-

Variables:

$$X = (X_1, \dots, X_n)$$
, where $X_i \in \mathsf{Domain}_i$

Factors:

$$f_1, \ldots, f_m$$
, with each $f_j(X) \geq 0$

Definition: assignment weight-

Each assignment $x = (x_1, \ldots, x_n)$ has a weight:

$$\mathsf{Weight}(x) = \prod_{j=1}^{m} f_j(x)$$

Example: object tracking

$$x_1 o_1(x_1)$$

$$\begin{bmatrix} x_2 & o_2(x_2) \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

 $x_3 \ o_3(x_3)$

$$\begin{vmatrix} |x_i - x_{i+1}| & t_i(x_i, x_{i+1}) \\ 0 & 2 \\ 1 & 1 \\ 2 & 0 \end{vmatrix}$$

[demo]

O |

Maximum weight assignment

CSP objective: find the maximum weight assignment

$$\max_{x} \mathsf{Weight}(x)$$

Maximum weight assignment: $\{x_1:1,x_2:2,x_3:2\}$ (weight 8)

But this doesn't represent all the other possible assignments...

CS221

to uncertainty in assignments

Definition

CS221

Definition: Markov network-

A Markov network is a factor graph which defines a joint distribution over random variables $X=(X_1,\dots,X_n)$: $\mathbb{P}(X=x)=\frac{\mathsf{Weight}(x)}{Z}$

$$\mathbb{P}(X=x) = rac{\mathsf{Weight}(x)}{Z}$$

where $Z = \sum_{x'} Weight(x')$ is the normalization constant.

$$Z = 4 + 4 + 4 + 4 + 2 + 8 = 26$$

Represents uncertainty!

I only 31%, certain, em the it's the

Marginal probabilities

Example question: where was the object at time step 2 (X_2) ?

Definition: Marginal probability—

The marginal probability of $X_i = v$ is given by:

$$\mathbb{P}(X_i = v) = \sum_{x: x_i = v} \mathbb{P}(X = x)$$

Object tracking example:

$$\mathbb{P}(X_2 = 1) = 0.15 + 0.15 + 0.15 + 0.15 = 0.62$$

 $\mathbb{P}(X_2 = 2) = 0.08 + 0.31 = 0.38$

Note: different than max weight assignment!

Application: Ising model

Ising model: classic model from statistical physics to model ferromagnetism

 $X_i \in \{-1, +1\}$: atomic spin of site i

 $f_{ij}(x_i, x_j) = \exp(\beta x_i x_j)$ wants same spin

Estroya A offiny between X: 1 X;

14

Samples as β increases:

Figure 2 from Perez (1998)

CS221

Application: image denoising

Example: image denoising-

- $X_i \in \{0,1\}$ is pixel value in location i
- Subset of pixels are observed

$$o_i(x_i) = [x_i = \text{observed value at } i]$$

• Neighboring pixels more likely to be same than different

$$t_{ij}(x_i, x_j) = [x_i = x_j] + 1$$

Summary

Markov networks = factor graphs + probability

- Normalize weights to get probablity distribution
- Can compute marginal probabilities to focus on variables

18

Markov networks: Gibbs sampling

Dapparinely competing marginal probs

Review: Markov networks

Definition: Markov network-

A Markov network is a factor graph which defines a joint distribution over random variables $X = (X_1, \dots, X_n)$:

$$\mathbb{P}(X=x) = \frac{\mathsf{Weight}(x)}{Z} \quad \text{such with } \downarrow$$

where $Z = \sum_{x'} Weight(x')$ is the normalization constant.

Objective: compute marginal probabilities $\mathbb{P}(X_i = v) = \sum_{x:x_i = v} \mathbb{P}(X = x)$

$$Z = 4 + 4 + 4 + 4 + 2 + 8 = 26$$

$$\mathbb{P}(X_2 = 1) = 0.15 + 0.15 + 0.15 + 0.15 = 0.62$$

$$\mathbb{P}(X_2 = 2) = 0.08 + 0.31 = 0.38$$

Gibbs sampling -> similar 2 food search

Algorithm: Gibbs sampling-

Initialize x to a random complete assignment

Loop through $i = 1, \ldots, n$ until convergence:

Set
$$x_i = v$$
 with prob. $\mathbb{P}(X_i = v \mid X_{-i} = x_{-i})$
 $(X_{-i} \text{ denotes all variables except } X_i)$

Estimate
$$\hat{\mathbb{P}}(X_i = x_i) = \frac{\mathsf{count}_i(x_i)}{\sum_v \mathsf{count}_i(v)}$$

Example: sampling one variable

Weight $(x \cup \{X_2 : 0\}) = 1 \rightarrow \text{prob. } 0.2$

Weight $(x \cup \{X_2 : 1\}) = 2 - \text{prob. } 0.4$

Weight $(x \cup \{X_2 : 2\}) = 2 \rightarrow \text{prob. } 0.4$

[demo]

CS221

- Now we present Gibbs sampling, a simple algorithm for approximately computing marginal probabilities. The algorithm follows the template of local search, where we change one variable at a time, but unlike Iterated Conditional Modes (ICM), Gibbs sampling is a randomized algorithm.
- Gibbs sampling proceeds by going through each variable X_i , considering all the possible assignments of X_i with some $v \in \mathsf{Domain}_i$, and setting $X_i = v$ with probability equal to the conditional probability of $X_i = v$ given everything else.
- To perform this step, we can rewrite this expression using laws of probability: $\mathbb{P}(X_i = v \mid X_{-i} = x_{-i}) = \frac{\text{Weight}(x \cup \{X_i : v\})}{\mathbb{ZP}(X_{-i} = x_{-i})}$, where the denominator is a new normalization constant. We don't need to compute it directly. Instead, we first compute the weight of $x \cup \{X_i : v\}$ for each v, and then normalize to get a distribution. Finally we sample a v according to that distribution.
- Along the way, for each variable X_i that we're interested in tracking, we keep a counter count_i(v) of how many times we've seen $X_i = v$. These counts can be normalized at any time to produce an estimate $\hat{\mathbb{P}}(X_i = x_i)$ of the marginal probability.

Application: image denoising

Example: image denoising-

- $X_i \in \{0,1\}$ is pixel value in location i
- Subset of pixels are observed

$$o_i(x_i) = [x_i = \text{observed value at } i]$$

• Neighboring pixels more likely to be same than different

$$t_{ij}(x_i, x_j) = [x_i = x_j] + 1$$

Gibbs sampling for image denoising

Scan through image and update each pixel given rest:

v	weight	$\mathbb{P}(X_i = v \mid X_{-i} = x_{-i})$
0	$2\cdot 1\cdot 1\cdot 1$	0.2
1	$1 \cdot 2 \cdot 2 \cdot 2$	0.8

- Let us compute the Gibbs sampling update. We go through each pixel X_i and try to update its value.
- For the given example, we consider both values 0 and 1, and multiply exactly the transition factors that depend on that value. Assume there are no observation factors here.
- The factor returns 2 if the pixel values agree and 1 if they disagree.
- ullet We then normalize the weights to form a distribution and then sample v.
- Intuitively, the neighbors are all trying to pull $X_{(3,2)}$ towards their values, and 0.8 reflects the fact that the pull towards 1 is stronger.

Search versus sampling

Iterated Conditional Modes

maximum weight assignment

choose best value

converges to local optimum

Gibbs sampling

marginal probabilities

sample a value

marginals converge to correct answer*

*under technical conditions (sufficient condition: all weights positive), but could take exponential time

at ray grb;

10

Summary

• Objective: compute marginal probabilities $\mathbb{P}(X_i = x_i)$

• Gibbs sampling: sample one variable at a time, count visitations to which

More generally: Markov chain Monte Carlo (MCMC) powerful toolkit of randomized procedures

CS221