

Synapse meets Slurm

Proposta de um middleware para paralelização de algoritmos de otimização populacionais

Arthur M. P. Gabardo¹ Thiago P. Tancredi^{1,2} Pablo A. Jaskowiak¹

¹Núcleo de Simulação e Otimização de Sistemas Dinâmicos (NSO) — Universidade Federal de Santa Catarina (UFSC)

 $^{^2}$ Laboratório de Simulação Naval (LaSiN) — Universidade Federal de Santa Catarina (UFSC)

Contextualização

 Em sistemas complexos de engenharia, diferentes disciplinas podem ter objetivos e restrições conflitantes;

 A Otimização Multidisciplinar (MDO) proporciona uma abordagem holística e integrada, buscando o aprimoramento globalde novos projetos;

 As meta-heurísticas (e.g. algoritmos genéticos) permitem explorar espaços de solução de maneira eficiente, mesmo quando abordagens analíticas tradicionais falham.

Figura 1: Simulação DFC do rotor de um compressor axial (Enteknograte, 2023)

Figura 2: Escoamento e distribuição de pressões em torno do X-43 a Mach 7 (NASA, 1997)

Synapse Engenharia Multidisciplinar

Ambiente colaborativo e amigável ao usuário;

Integração com ferramentas de planejamento de experimentos e análise de "fitness";

Diversas meta-heurísticas baseadas em população e gradiente.

Figura 3: Modelagem de problema de otimização por fluxogramas no Synapse

Problema

Processo de busca é limitado por recursos computacionais;

Synapse permite o processamento paralelo, mas não o distribuído;

• Alto nível de maturidade do software dificulta grandes mudanças.

Proposta

 Middleware que permita ao Synapse tirar proveito de sistemas de processamento distribuído de alto desempenho;

Modelo de paralelização master-worker;

Menor número de dependências possível;

• Comunicação Synapse-cluster via SSh interpretada pelo middleware.

Synapse meets Slurm

(i)	Receber	arquivos	contendo	indivíduos	que	devem	ser	avaliados;
-----	---------	----------	----------	------------	-----	-------	-----	------------

(ii) Alocar recursos e distribuir os indivíduos nos nós de computação;

(iii) Monitorar e gerenciar uma fila interna ao middleware, realizando balanceamento de carga;

(iv) Compactar arquivos de resultados e transferi-los.

Figura 4: Diagrama de sequência do middleware proposto

Figura 4: Diagrama de sequência do middleware proposto

Resultados

Implementação e validação em um cluster heterogêneo*;

O middleware foi integrado ao Synapse Offshore;

■ Testes preliminares apontaram um *speedup* de até dez vezeš*.

*Três nós com 2 processadores Xeon E5-2630v3 e um nó com 2 processadores Xeon E5-2670v3.

^{**}Comparação entre uma workstation com processador i 12900k e o cluster.

Figura 5: Speedup na otimização de um sistema de ancoragem de uma plataforma offshore

Figura 6: Tela de monitoramento da otimização no Synapse Offshore

Trabalhos Futuros

• Benchmarks e medidas de speedup seguindo o rigor estatístico necessário;

Portar um algoritmo genético como um todo para o cluster;

Implementação e comparação de diferentes modelos de paralelismo.

Agradecimentos

