智慧空調系統:深度強化學習助力節能與舒適調控

Smart Cooling: Deep Reinforcement Learning helps energy saving and comfort control

指導老師

蘇銓清教授

專題成員

邱聖佐

Motivation

社會與環保

政府積極推動節能減碳政策,空調用電則是建築耗能的主要來 源之一。但目前多數機關仍以固定時段與固定溫度操作冷氣,缺乏 即時調整機制,難以兼顧舒適與節能。能自動反應環境變化的智慧 控制系統,有助於實現舒適與碳減排的雙重目標。

內在動機

冷氣的目的是為了舒適,但實際常常過冷或不夠涼,調整溫度既 不直覺也會影響到耗電量與能源成本。我希望開發一套智慧系統,讓 電腦能自動學習如何調整溫度,在舒適與節能之間取得平衡,減少人 工干預,達成真正聰明的空調控制。

Model Architecture

Results

Comfort Version

Green Version

本研究通過兩組參數設定分別進行 20 次試驗後平均,評估模型表現, (左圖為分別1次試驗結果適意圖),權重係數分別為:

Comfort Version: a = 0.7, b = 0.3 (偏重舒適度) Green Version: a = 0.3, b = 0.7 (偏重節能)

策略	平均耗電量(kWh)	標準差	配對 t 檢定 (與 Heuristic 比較)
Comfort Version	49.801	41.001	t = 6.271, p = 0.000
Green Version	5.737	7.130	t = -4.460, p = 0.000
Heuristic	20.848	21.668	_

說明: Comfort Version 的 DQN 模型在追求舒適度下耗電顯著增加。

策略	最佳舒適度平均占比	標準差	配對 t 檢定 (與 Heuristic 比較)
Comfort Version	0.274	0.228	t = 3.687, p = 0.002
Green Version	0.155	0.111	t = -3.067, p = 0.006
Heuristic	0.160	0.115	_

說明:在最佳舒適區間內,Green Version 的 DQN 模型顯著低於 Heuristic 策略。

Conclusion

Energy Consumption Curve

DQN Agent

我將政府現行的策略(Heuristic)與兩種控制策略比較,結果顯示:

- Comfort Version:提升最佳舒適度占比(0.274 vs. 0.160), 但耗電量較高 (49.801 kWh vs. 20.848 kWh)。
- Green Version:能耗大幅降低(5.737 kWh vs. 20.848 kWh), 但最佳舒適度占比略低(0.155 vs. 0.160)。

所有配對 t 檢定均達到顯著水準 (p < 0.01) ,證明各指標間的差異 不是由隨機波動引起,而是真實反映了不同策略下的效能變化。

整體而言,DQN策略可依需求靈活調整,實現能耗與舒適度的最 佳平衡。若參數調整適宜能達成在舒適度相似的情況下更節能。

Future Directions

- 探索 Rainbow DQN 等進階演算法,提升學習穩定性與策略表現
 - 增加 action space:可一次調整多步
- Multi-step Learning: 觀察長期依賴
- 結合**時段電價政策**,於不同時段進行自動節能調節
- 納入**使用者即時回饋**,動態調整 reward,實現個人化控制
- 擴展為 multi-zone 控制模型,模擬建築內部熱流傳遞
- 整合溫濕度感測器,應用於實際空間,提升自動化程度

References

Buck, A. L. (1981). New equations for computing vapor pressure and enhancement factor E. C. Thom (1959) The Discomfort Index

T Schaul, J Quan, I Antonoglou, D Silver (2016) Prioritized Experience Replay