Looking at kinematic data from a different perspective: inter-joint coordination and cyclograms

Karolina Saegner

karolina.saegner@uksh.de

Universitätsklinikum Schleswig-Holstein

Prof. Dr. med. Walter Maetzler Dr. Clint Hansen

Background

Altered walking kinematics in elderly and people with neurodegenerative diseases → falling
 SPPB 4
 SPPB 10
 SPPB 12

- People with Parkinson's disease suffer from gait abnormalities, which have daily consequences
- Medication can partially improve those abnormalities
- Adequate inter-joint coordination is crucial for proper execution of the daily life activities

Aim

In PD, how do inter-joint coordination changes associate with diagnosis and treatment?

- How do different walking speeds affect:
 - ➤ The hip-knee coordination?
 - ➤ Hip and knee movement throughout the gait cycle?
- o In which phases of the gait cycle could changes be detected?

Experimental set-up

- 58 participants:
 - 29 people with PD (mean age 67 years, 11 females),
 on medication
 - 8 people (mean age 63) with PD measured off medication
 - 29 healthy controls (mean age 67 years, 14 females)
- 12-camera optical motion capture system:
 - 20 markers placed on pelvis and lower limbs
- 5 m walk in slow, preferred and fast walking speed

Data processing

- Flexion angles for knee and hip joints extracted from optical motion capture data (Python, GitHub)
- Gait cycles → initial contact to initial contact of the same side
- Cycles normalized with linear interpolation
- Hip and knee angles plotted against each other

Data processing (Statistical Parameter Mapping)

Temporal alignment

Data processing (Statistical Parameter Mapping)

Data-derived variables (time-series)

Range of motion (ROM) for the hip and knee joints

ACC (0 – maximal inconsistency; 1 – maximal consistency)

SSD (differences in cyclogram areas)

Results

Results

Secondary results

Secondary results

Discussion

- Cyclograms may serve as promising intermediate clinical endpoints
- People with PD exhibit altered adaptation strategies of hip and knee movements to different walking speeds
- Controls demonstrate a more dynamic preparation for subsequent steps
- Interventions targeting the timing of the hip flexion in people with PD may enhance gait speed

The outlook and conclusions

- The proposed methods can be used to analyse:
 - othe relationship of other than hip and knee joints
 - o analysing movement in other than sagittal plane
 - ousing cohorts from other mobility limiting diseases
- Surrogate Marker: ratio of minimum points to ratio of maximum points
- Significance: indicates adaptive strategies to changing walking speed
- Advantages: quick, inexpensive and directly applicable in clinical practise

Thank you for your attention

Python code for hip and knee angle extraction from motion capture data