1

AI1110 - Assignment 1

Kushagra Gupta CS21BTECH11033

ICSE 2018 Grade 10 Q10-c

PROBLEM STATEMENT

The angle of elevation from a point P of the top of a tower QR, 50m high is 60° and that of the tower PT from a point Q is 30°. Find the height of tower PT, correct to the nearest metre.

SOLUTION

Parameter	Symbol	Value
QR	h	50
Angle QPR	$\angle QPR$	60°
Angle PQT	$\angle PQT$	30°
Base PQ	d	???
PT	h2	???

In ΔPQR , using basic trigonometric equation in a right-angled triangle, we know that,

$$\tan(\theta) = \frac{perpendicular}{base} \tag{1}$$

Hence,

$$\tan(\angle QPR) = \frac{h}{d}$$

$$\Rightarrow d = \frac{h}{\tan(\angle QPR)}$$

$$\Rightarrow d = \frac{50}{\tan(60^\circ)} m$$

$$[\because \angle QPR = 60^\circ \& h = 50m]$$

$$\Rightarrow d = \frac{50}{\sqrt{3}} m - (1)$$

Now in ΔPQT , $\angle PQT = 30^{\circ}$.

$$\therefore \tan(\angle PQT) = \frac{h_2}{d}$$

$$\Rightarrow h_2 = d \times \tan(\angle PQT)$$

$$\Rightarrow h_2 = d \times \tan(30^\circ)$$

$$\Rightarrow h_2 = \frac{50}{\sqrt{3}} \times \tan(30^\circ) m$$

$$[using(1)]$$

$$\Rightarrow h_2 = \frac{50}{3} m$$

 $\therefore h_2(PT) \approx 17$ metres after rounding off. This can be verified by plotting QR , $\angle RPQ$ and $\angle PQT$ and approximating the length of PT.

OUTPUT

The Output of the program used to verify the answer is given below:

Fig. 1. Plot of the figure and calculated length