Modèles de melange (G.M.M) Cours 2

1 Introduction

1.1 Clustering:

Apprentissage non-supervisé $\mathcal{D} = \underbrace{(\vec{x_n})_{n=1}^N}_{\mathbb{R}^d}$, on fix K, un nombre de clusters

 $\underline{\text{ex:}}$ K-means Algo iteratif:

- 0) Choisir une distance *
- 1) Assignation pour chaque cluster: $\vec{m_k}$, $\vec{x_n} \in$ au cluster le plus proche (min distance $(\vec{x_n}, \vec{m_k})$)
- 2) Re-estimation recalculer les $(\vec{m_k})_{k=1}^K$

1.2 Estimation de distribution:

ex: classification (d'image)

- \rightarrow augmenter la capacité du modèle
- \rightarrow augmenter le nombre de paramètres

1.3 Mélange de Gaussienne (GMM):

K le nombre de Gaussienne / cluster

$$p(\vec{x_n}|\underbrace{\mathcal{O}}_{(\Pi_k,\vec{\mu_k},\Sigma_k)_{k=1}^K}) = \sum_{k=1}^K \underbrace{\Pi_k}_{\text{Poids du m\'elange la gaussienne}} \underbrace{\mathcal{N}(\vec{\mu_k},\Sigma_k)}_{\text{gaussienne}}$$

Estimer les paramètres du mélange

2 Algorithme E.M

•Algo iteratif qui cherche à maximiser

$$\log(P(\vec{X} = \vec{x_n} | \mathcal{O}))$$

•Introduire des variable <u>latentes</u> (cachéés):

pour chaque
$$\vec{x} \to \vec{Z}$$

$$\vec{Z} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad \vec{Z_k} = 1 \Leftrightarrow \vec{x} \in \text{ cluster k}$$

 \vec{Z} : •pseudo affectation

- •une vecteur latent
- \bullet inconnue $\Rightarrow \vec{Z}$ un vecteur aléatoire
- •affectation "soft": un point peut appartenire à tous les clusters.

Résumé des programes

Introduction \vec{Z} associé à \vec{X} Si on souhaite maximiser

$$\begin{split} P(\vec{X}|\underline{\mathcal{O}}) &= \sum_{Z} P(\vec{X}, \vec{Z}|\mathcal{O}) \\ P(\vec{X}|\mathcal{O}) &= \underbrace{\sum_{Z} P(\vec{X}|\vec{Z}, \mathcal{O})}_{\mathcal{N}(\vec{\mu_k}, \Sigma_k)} \underbrace{P(\vec{Z}|\mathcal{O})}_{\Pi_k} \end{split}$$

$$\operatorname{si} \vec{Z_k} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} k$$

 $\bullet(\vec{X}, \vec{Z})$: données complètes

 $\bullet(\vec{X})$: données incomplètes

étape E(xpection):

 \rightarrow connaître \vec{Z} à ${\mathcal O}$ fixé

 \rightarrow calcul la probabilité d'affectation: $P(\vec{Z}|\vec{X}, \mathcal{O})$

étape M(aximigation)

Les données sont complètes

 \Rightarrow calcule de \mathcal{O} , on "fixe" \vec{Z}

3 Optimisation variationelle

On souhaite maxmiser selon \mathcal{O} :

$$\log(P(\vec{X}|\mathcal{O}) = \sum_{\vec{Z}} q(\vec{Z}) \log \frac{P(\vec{X}, \vec{Z}|\mathcal{O})}{q(\vec{Z})} - \sum_{\vec{Z}} q(\vec{Z}) \log \frac{P(\vec{X}|\vec{Z}, \mathcal{O})}{q(\vec{Z})}$$

•Après l'introduction de \vec{Z} , on introduit un distribution auxiliaire sur \vec{Z} : $q(\vec{Z})$ rappel:

$$\begin{split} P(\vec{X}|O) &= \frac{P(\vec{X}, \vec{Z}|\mathcal{O})}{P(\vec{X}|\vec{Z}, \mathcal{O})} \\ \Rightarrow &\log P(\vec{X}|\mathcal{O}) = \log(P(\vec{X}, \vec{Z}|\mathcal{O}) - \log(P(\vec{X}|\vec{Z}, \mathcal{O})) \end{split}$$

 $\underline{\text{c.à.d:}}$

le 2eme terme

$$-\sum_{\vec{Z}} q(\vec{Z}) \log \left(\frac{P(\vec{Z}|\vec{X},\mathcal{O})}{q(\vec{Z})} \right) = E_{\vec{Z} \ q(\vec{Z})} \left[\log \frac{P(\vec{Z},\vec{X}|\mathcal{O})}{q(\vec{Z})} \right]$$

Divergence de Kullback-leiber (D_{KL})

$$D_{KL}(q(\vec{Z})||P(\vec{Z}|\vec{X},\mathcal{O}))$$
 deux distribution sur \bar{Z}

Divergence ≠ distance (asymétrique)

<u>●1er terme:</u>

$$E_{\vec{Z}~q(\vec{Z})} \left[\log \frac{P(\vec{Z}, \vec{X} | \mathcal{O})}{q(\vec{Z})} \right]$$

 \rightarrow ELBO (Evidence Lower Bound)

$$\log(P(\vec{X}|\mathcal{O})) = \underbrace{\mathcal{L}(\mathcal{O}, q)}_{\text{ELBO} \ge \underbrace{\mathcal{L}(\mathcal{O}, q)}_{\text{borne inf}}} + D_{KL}(q(\vec{Z})||P(\vec{Z}|\vec{X}, \mathcal{O}))$$

3.1 Etape E

- $\bullet \mathrm{Les}$ paramètres sont fixés: $\mathcal{O} = \mathcal{O}^{\mathrm{\; old}}$
- •Maximiser $\mathcal{L}(\mathcal{O}^{\text{old}}, q)$

$$\begin{split} \rightarrow \mathcal{L}(\mathcal{O}^{\text{ old}},q) &= -D_{KL}(q(\vec{Z})||P(\vec{Z}|\vec{X},\mathcal{O}^{\text{ old}})) + \underbrace{\underbrace{\log(P(\vec{X}|\mathcal{O}^{\text{ old}}))}_{\text{cte}}}_{\text{cte}} \\ \Rightarrow q(\vec{Z}) &= P(\vec{Z}|\vec{X},\mathcal{O}^{\text{ old}}) \end{split}$$

3.2 Etape M

Maximiser \mathcal{L} selon \mathcal{O} avec q fixé

<u>Illustration:</u>

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm