Math 241 Midterm 2 Review

Topics

- 1. Double and triple integrals to find areas, volumes, averages, and center of mass
- 2. Rectangular, cylindrical and spherical coordinate systems
- 3. Change of variables and the Jacobian
- 4. Line integrals and calculating the work done by a vector field along a curve
- 5. Properties of conservative vector fields and the curl

Sample questions

- **1.** Find the center of mass for the region of the cylinder $x^2 + y^2 = 1$ which lies between the planes x + y + z = 2 and x + 2y + z = -2.
- **2.** Find the center of mass for the solid described in spherical coordinates by $\theta \in [0, 2\pi]$, $\varphi \in [\frac{\pi}{4}, \frac{\pi}{2}]$, and $\rho \in [2, 3]$.
- **3.** Write the integral $\int_0^1 \int_x^{2x} \int_0^1 1 \, dz \, dy \, dx$ the other 5 ways.
- **4.** Find the work done by $\mathbf{F}=\langle -y,x\rangle$ in moving along $\begin{cases} x=t\cos t, \\ y=\sin t, \end{cases}$ for $t\in [0,\pi/2].$
- **5.** Using $\begin{cases} x = u\sqrt{v}, \\ y = \sqrt{v}, \end{cases}$ find the area enclosed by $x^2 + y^6 = y^2$:

6. Find the center of mass for the solid in the first octant bounded by the plane z = 2 - 3x - y.

- **7.** Find the volume of the portion of the cylinder $x^2 + y^2 = 4$ which lies above the x, y plane and below the plane x + y + z = 4.
- **8.** Find the volume of the solid below the graph of $z = 3 8x^2 y^2$ and above the graph of $z = x^2 + 8y^2$.
- **9.** How much work is done by the vector field $\mathbf{F} = \langle xy^2 + y, x^2y \rangle$ when a particle travels along the graph of $y = \cos x$ for $x \in [0, \pi/2]$, then travels straight down to the point $(0, -\pi/2)$, and then straight to (0, 1)?
- **10.** Evaluate $\iiint_E xy \, dV$ where E is the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- **11.** Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{x^2+y^2}} z \, dz \, dy \, dx$ by converting to cylindrical coordinates.
- **12.** Rewrite $\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} f(x,y,z) dz dy dx$ using the order dx dy dz.
- **13.** Find the center of mass for the solid inside the cylinder $x^2 + y^2 = 1$, inside the sphere $x^2 + y^2 + z^2 = 4$, and above the x, y plane.
- **14.** Convert into spherical coordinates (but do not evaluate):

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} \, dz \, dx \, dy.$$