Lecture 7: Intro to ML & MLlib

Professor Robert J. Brunner Quinn Jarrell

Lab 4

• How was lab?

Announcement

Our BlueWaters (National Petascale Computing Facility) Tour is on March 31st at 4pm

More logistics details coming soon.

Machine Learning

ML is about generalizing things :D

Traditional Programming

Machine Learning

ML is actually really Math heavy!

From CS446 SP17 HW1:

The Learning Problem:³ Let $\vec{x_1}, \vec{x_2}, \ldots, \vec{x_m}$ represent m samples, where each sample $\vec{x_i} \in \mathbb{R}^n$ is an n-dimensional vector, and $\vec{y} \in \{-1, 1\}^m$ is an $m \times 1$ vector representing the respective labels of each of the m samples. Let $\vec{w} \in \mathbb{R}^n$ be an $n \times 1$ vector representing the weights of the linear discriminant function, and θ be the threshold value.

We predict $\vec{x_i}$ to be a positive example if $\vec{w}^T \vec{x_i} + \theta \ge 0$. On the other hand, we predict $\vec{x_i}$ to be a negative example if $\vec{w}^T \vec{x_i} + \theta < 0$.

We hope that the learned linear function can separate the data set. That is, for the true labels we hope

$$y_i = \begin{cases} 1 & \text{if } \vec{w}^T \vec{x_i} + \theta \ge 0\\ -1 & \text{if } \vec{w}^T \vec{x_i} + \theta < 0. \end{cases}$$
 (1)

In order to find a good linear separator, we propose the following linear program:

$$\min_{\vec{v} \in \mathcal{A}} \delta$$
 (2)

subject to
$$y_i(\vec{w}^T \vec{x_i} + \theta) \ge 1 - \delta, \quad \forall (\vec{x_i}, y_i) \in D$$
 (3)

$$\delta \ge 0 \tag{4}$$

Types of Learning

- **Supervised**: Training data includes outputs
 - Classification (spam, etc.), Regression
- **Unsupervised**: Training data does not includes desired output
 - Clustering
- Reinforcement: Rewards from a sequence of actions.

Classifiers

Classifiers take in data and try to assign a label or labels to it

Classifiers

- Requires categories
- Requires labeled data

Regression

Regression VS Classification

- Regression derives a relationship between variables
 - Used to give a quantify for a new object
- Classification sorts things into categories
 - Works on discrete number of things, NOT continuous
- Classification: When function/program being learned is **discrete**.
- Regression: When the function/program being learned is continuous.

Clustering

 Don't know the number of clusters or what the labels are

Unsupervised

Training

- For all of these algorithms we have to give it data and let it train for one iteration
 - Can train for many iterations
 - We DO NOT train for infinity time
 - A lot of algorithms do not have a final state
- Each iteration, the algorithm learns more about the data

How to measure accuracy?

 If we are letting the algorithm learn about the data we pass to it, how do we measure the accuracy correctly?

How to measure accuracy?

- If we are letting the algorithm learn about the data we pass to it, how do we measure the accuracy correctly?
 - We cannot measure how many correct it guesses on the training set because it is biased
 - o It has seen the data before and learned from it.
 - Showing it the same data would let it cheat

How to measure accuracy?

- If we are letting the algorithm learn about the data we pass to it, how do we measure the accuracy correctly?
 - We cannot measure how many correct it guesses on the training set because it is biased
 - o It has seen the data before and learned from it.
 - Showing it the same data would let it cheat
- Instead we need to give it new data which it has not trained on
 - This requires more data

Training Set vs Test Set

- Instead of acquiring more data, let's split the data we already have
- The training set will be images for the algorithm to train on
- The test set will only be for the algorithm to guess on

Have you ever seen a swan?

Have you ever seen a swan?

What about a black swan?

Garbage In Garbage Out

- If your data is not representative of the wider world, it will fail on real world data
- This can come from not having a wide enough data set
- Also can happen from biases in the data collection

On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?" ... I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.

— Charles Babbage, Passages from the Life of a Philosopher^[2]

Too much training

What happens if we train for infinite rounds?

Too much training

What happens if we train for infinite rounds?

- Data has random variation
- Training data will have the same random variation for every time it is trained
- So algorithms will try to learn the random variation

Overfitting

- If the data is not varied enough or too similar we it may adapt to patterns that only exist within your data set, not the real world
- It will adjust to the random noise within the data set

How can we fix overfitting?

- We will always have random noise
- We cannot get rid of it

How can we fix overfitting?

- We will always have random noise
- We cannot get rid of it

We can reduce it by

- Adding random noise to the data set
- Using the accuracy on the test set to select when to stop training

When you should use MLib

- Obviously when you have extremely large data
- When it is not GPU intensive
 - A lot of machine learning benefits from a single GPU than 100 CPUs

Lab 5 Advice

- Again, don't wait until Thursday
 - (seriously, this week's lab will take some time)
- There are really good programming guides online for spark

Projects

Start thinking of ideas

Start building groups

Start identifying what technologies you want to use

We'll teach you new ones if we haven't covered the one you want

Project Examples

- These are mainly about exploring a technology and explaining what you ran into
- The TAs and the rest of iDSI are currently working on
 - Setting up Ambari on Openstack
 - Running HDFS on Openstack
 - Graph Anomaly Detection using GraphX
 - Using Fabric to manage a cluster on Openstack
 - Loading Custom Binary Formats (aka Bitcoin) on Hadoop
 - Optimizing PySpark
 - Setting up Spark

Project Idea

- We're trying to build a graph of things people need to use Hadoop/Spark/Others on OpenStack
- We need reports on things like
 - Cleaning datasets using Spark
 - Exploring when to switch to using MLib from Sk-learn
 - Dealing with Ambari failures
 - Loading large datasets into OpenStack
 - Validating data using Spark
 - Confidence Levels on Data Quality
 - o Etc...

Class is going to change

- For the next 3ish weeks things will stay the same
- After that though, this class will is going to become more about peer review and advice on pursuing your technical papers
- We plan on having around 2-3 technical papers per group
 - These do not have to be extremely long (2-3 pages)
 - o If you have a very deep topic, you can publish only one
- There will be presentations on your technical paper
 - No need for slides, you'll have your paper projected and you'll have 3 minutes to talk about it
 - We are still ironing out details about the presentation, we'll have more on it next week