

最小生成树算法比较

算法分析与设计-课程报告

学生姓名张三学生学号20242100000专业班级计算机科学与技术 2024指导教师程振波提交日期2024 年 4 月 21 日

内容与要求 1

本次课程报告以最小生成树问题为背景,请根据以下要求完成报告内 容:

- 问题背景请首先介绍什么是最小生成树问题,然后描述最小生成树问 题的应用场景;
- 最小生成树算法介绍部分, 请分别描述 Prim 算法和 Kruskal 算法, 算 法描述请使用伪代码。伪代码的格式可参考如下欧拉算法 1的描述;

質渉	1	欧拉算法
- 111		四人4八字(大

算法	1 欧拉算法	
1: p	$\mathbf{procedure} \ \mathrm{Euclid}(a,b)$	▷a 和 b 的公共
2:	$r \leftarrow a \bmod b$	
3:	while $r \neq 0$ do	▷ 如果 r 是 0
4:	$a \leftarrow b$	
5:	$b \leftarrow r$	
6:	$r \leftarrow a \bmod b$	
7:	$\mathbf{return}\ b$	▷ 返回公共因子

- 算法实现和比较部分包括:
 - 要求分别使用不同数据结构实现 Prim 算法(数组和优先队列) 和 Kruskal 算法(数组与并查集),并给出不同数据结构实现这 两个算法运行时间的变化;
 - 请给出选用不同数据结构对算法效率影响的理论分析;
 - 比较 Prim 算法和 Kruskal 算法在求解稠密图和稀疏图时运行时 间的比较;
 - 算法比较需要随机生成至少 10 组不同的数据, 然后统计每组不 同数据的算法运行平均时间;
 - 算法实现不要贴源代码,只需通过图表的方式给出不同情形(如 数据结构)下的数据(如运行时间);

- 总结部分需要根据算法实现与比较的数据分析得出一般性的结论;
- 课程报告要求语言精炼,数据翔实,列出参考文献;
- 课程报告要求独立完成。

该课程报告的模版是在 CTex[1] 基础上修改而成,如何在模版插入图 片或者制作表格请参考该模版的文档。

- 2 问题背景
- 3 最小生成树算法介绍
- 3.1 Prim 算法
- 3.2 Kruskal 算法
- 4 算法实现与比较
- 4.1 算法性能提升
- 4.2 算法适用场景分析
- 5 结论

参考文献

[1] https://ctex.org/