UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

Pauta Ayudantía 1 Análisis Funcional

Repaso Análisis I y II

25 de agosto de 2022

Problema 1. Sea ω conjunto no vacío. Definimos el espacio vectorial

$$\ell^\infty(\omega) := \{x: \omega \to \mathbb{K} | \sup_{t \in \omega} |x(t)| < +\infty \}$$

junto con la norma

$$||x||_{\infty} := \sup_{t \in \omega} |x(t)| \quad \forall x \in \ell^{\infty}(\omega)$$

Demuestre que este espacio es Banach. Deduzca de lo anterior que si M es un espacio métrico compacto entonces el espacio $C(M) := \{f : M \to \mathbb{R} | f \text{ continua}\}$ junto con la norma del supremo es también Banach.

Demostración. Mostramos directamente la completitud del espacio. Sea entonces $\{x_n\}\subseteq \ell^{\infty}(\omega)$ sucesión de Cauchy. Esto en particular dice que para $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que para $m,n\geq N$ se verifica

$$|x_n(t) - x_m(t)| \le ||x_n - x_m||_{\infty} < \varepsilon \quad \forall t \in \omega$$

Así, para cada $t \in \omega$ se tiene que $\{x_n(t)\}$ es una sucesión de Cauchy, y podemos entonces definir puntualmente la función $x(t) := \lim_{n \to \infty} x_n(t)$.

Probamos ahora que $x \in \ell^{\infty}(\omega)$ y que es el límite de la sucesión. Para ello sea $\varepsilon > 0, t \in \omega$. Podemos seleccionar $N' \in \mathbb{N}$ tal que $|x(t) - x_n(t)| < \varepsilon$ para $n \ge N'$, y para $N := \max\{N, N'\}$ tenemos

$$|x(t) - x_n(t)| \le |x(t) - x_m(t)| + |x_m(t) - x_n(t)| < \varepsilon + ||x_m - x_n||_{\infty} < 2\varepsilon \quad \forall n \ge N$$

Podemos entonces tomar supremo en la desigualdad anterior para concluir que $x_n \to x$ en $\ell^{\infty}(\omega)$. Recordando ahora que toda sucesión de Cauchy es acotada ($\{x_k\}$ lo es) tenemos que

$$|x(t)| \le |x(t) - x_n(t)| + |x_n(t)| \le 2\varepsilon + \sup_{n \in \mathbb{N}} ||x_n||_{\infty}$$

de donde deducimos que $x \in \ell^{\infty}(\omega)$.

Consideremos ahora $\omega = M$ espacio métrico compacto y C(M) el espacio de funciones continuas. Notemos que $C(M) \subseteq \ell^{\infty}(M)$ pues toda función continua es acotada en un compacto. Luego basta verificar que C(M) es cerrado en dicho espacio. Ello equivale entonces a probar que el límite uniforme de funciones continuas es continuo. Probamos esto a continuación. Sea $\{x_n\}\subseteq C(M)$ convergente a x en $\ell^{\infty}(M)$. Sean $\varepsilon>0, t_0\in M$ fijos. Por la convergencia uniforme se tiene que existe $N \in \mathbb{N}$ tal que

$$|x(t) - x_n(t)| < \varepsilon/3$$
 $\forall t \in M, \forall n \ge N$

Dado que x_n es continua en t_0 podemos tomar $\delta > 0$ tal que

$$|x_n(t) - x_n(t_0)| < \varepsilon/3 \qquad \forall t \in B_M(t_0, \delta)$$

Juntando lo anterior

$$|x(t) - x(t_0)| \le |x(t) - x_n(t)| + |x_n(t) - x_n(t_0)| + |x_n(t_0) - x(t_0)| < \varepsilon \quad \forall t \in B_M(t_0, \delta)$$

de lo que concluimos el resultado.

Problema 2. Sea $(X, \|\cdot\|)$ espacio vectorial normado y $K \subseteq X$ un conjunto compacto no vacío y sea $0 < \alpha \le 1$. Decimos que una función $f: K \to \mathbb{R}$ es α -Hölder continua si

$$[f]_\alpha := \sup_{x,y \in K, x \neq y} \frac{|f(x) - f(y)|}{\|x - y\|_X^\alpha} < +\infty$$

Definimos el espacio de Hólder $C^{\alpha}(K)$ como el conjunto de funciones Hölder continuas sobre K. En este espacio definimos

$$||f|| = ||f||_{\infty} + [f]_{\alpha} := \sup_{x \in K} |f(x)| + \sup_{x,y \in K, x \neq y} \frac{|f(x) - f(y)|}{||x - y||_X^{\alpha}} \quad \forall f \in C^{\alpha}(K)$$

Demuestre que la función anterior define una norma en $C^{\alpha}(K)$ y que dicho espacio es Banach.

Demostración. En primer lugar debemos notar que $\|\cdot\|$ está bien definida, pues por definición de $C^{\alpha}(K)$ se tendrá que $[f]_{\alpha} < +\infty$ y lo anterior implica que f es uniformemente continua, así que en particular $\|f\| < +\infty$ pues K es compacto. El hecho que $\|\cdot\|$ define una norma es directo de las propiedades de supremo y valor absoluto.

Resta entonces ver la completitud del espacio. Para ello sea $\{f_k\}_{k\in\mathbb{N}}\subseteq C^{\alpha}(K)$ sucesión de Cauchy. Se puede observar entonces que esto implica que para cada $x\in K$ la sucesión $\{f_k(x)\}\subseteq\mathbb{R}$ es de Cauchy, y por lo tanto podemos definir una función $f:K\to\mathbb{R}$ tal que $f(x):=\lim_{k\to\infty}f_k(x)$. Veamos que $f\in C^{\alpha}(K)$. Para ello, recordamos que toda sucesión de Cauchy es acotada, es decir, en este caso tenemos que existe L>0 tal que

$$||f_k|| = ||f_k||_{\infty} + [f_k]_{\alpha} < L \qquad \forall k \in \mathbb{N}$$

De lo anterior entonces podemos obtener que

$$|f_k(x) - f_k(y)| \le L||x - y||_X^{\alpha} \quad \forall k \in \mathbb{N}, \forall x, y \in K$$

Tomando $k \to \infty$ se tiene entonces el resultado. Para concluir entonces probaremos que $f_k \to f$ en $C^{\alpha}(K)$. Para ello fijamos $\varepsilon > 0$. Usando nuevamente el hecho que $\{f_k\}$ es Cauchy, podemos decir que existe $k_0 \in \mathbb{N}$ de tal forma que

$$||f_k - f_{k'}||_{\infty} < \varepsilon$$
 $|f_k - f_{k'}||_{\alpha} < \varepsilon$ $\forall k, k' > k_0$

La primera cota entonces nos da una cota uniforme sobre K mientras que la segunda cota nos da que

$$|f_k(x) - f_{k'}(x) - f_k(y) + f_{k'}(y)| \le \varepsilon ||x - y||_X^{\alpha} \quad \forall k, k' \ge k_0, \forall x, y \in K$$

Podemos hacer $k' \to \infty$ para obtener las desigualdades

$$|f_k(x) - f(x)| \le \varepsilon \qquad \forall k \ge k_0, \forall x \in K$$

$$|f_k(x) - f(x) - f_k(y) + f(y)| \le \varepsilon ||x - y||_X^{\alpha} \qquad \forall k \ge k_0, \forall x, y \in K$$

y tomando supremo en las desigualdades anteriores obtenemos que $||f_k - f||_{\infty} \to 0$ y $[f_k - f]_{\alpha} \to 0$, lo que implica la convergencia en $C^{\alpha}(K)$.

Problema 3. Sea $(X, \|\cdot\|)$ espacio vectorial normado y $U \subseteq X$. Entonces se verifica que

$$d(x, U) = 0 \iff x \in \overline{U}$$

Demostración. Suponemos en primer lugar que d(x,U)=0. Dado que la distancia corresponde a un ínfimo, lo anterior permite decir que para todo $\varepsilon>0$ podemos encontrar un $x_{\varepsilon}\in U$ tal que

$$d(x, x_{\varepsilon}) < d(x, U) + \varepsilon < \varepsilon$$

Porlo tanto tenemos que $B(x,\varepsilon) \cap U \neq \emptyset$ para todo $\varepsilon > 0$, de donde $x \in \overline{U}$.

Por otro lado, si tenemos que $x \in \overline{U}$, podemos seleccionar $x_n \in U \cap B(x, 1/n)$ para cada $n \in \mathbb{N}$, así que

$$0 \le d(x, U) \le d(x, x_n) < \frac{1}{n}$$

v luego
$$d(x, U) = 0$$
.

Problema 4. El objetivo de este problema es demostrar el Teorema de Radon-Nikodym utilizando el Teorema de Representación de Riesz para espacios de Hilbert. Sean μ y ν dos medidas finitas sobre el espacio medible (X, \mathcal{A}) . Considere los siguientes pasos.

1. Si μ, ν satisfacen $\nu(A) \le \mu(A)$ para todo conjunto $A \in \mathcal{A}$, muestre que existe una función medible ψ tal que

$$\int_{X} \varphi d\nu = \int_{X} \varphi \psi d\mu, \quad \forall \varphi \in L^{2}(X, \mu).$$

- 2. Pruebe que la función ψ del ítem anterior satisface $0 \le \psi \le 1$ μ -ctp.
- 3. Suponga que ν es absolutamente continua con respecto a μ . Aplique los ítems anteriores para concluir que existen dos funciones medibles ψ_{ν} , ψ_{μ} tales que $0 \le \psi_{\nu} \le 1$, $0 \le \psi_{\mu} \le 1$ satisfaciendo

$$\int_{X} \varphi d\nu = \int_{X} \varphi \psi_{\nu} d[\nu + \mu] \quad \text{y} \quad \int_{X} \varphi d\mu = \int_{X} \varphi \psi_{\mu} d[\nu + \mu]$$

para toda $\varphi \in L^2(X, \nu + \mu)$.

4. Note que las medidas $\nu + \mu$ y μ tienen los mismos conjuntos nulos. Pruebe que $\psi_{\mu} \neq 0$ μ -ctp, $1/\psi_{\mu}$ es integrable respecto a μ y que para toda función medible no negativa φ se tiene

$$\int_X \varphi d[\nu + \mu] = \int_X \varphi \psi_\mu^{-1} d\mu.$$

5. Concluya que para todo conjunto medible $A \in \mathcal{A}$

$$\nu(A) = \int_A \psi_{\nu} \psi_{\mu}^{-1} d\mu.$$

Demostración.

1. Sea el funcional $T: L^2(X, \mathcal{A}, \mu) \to \mathbb{R}$ definida por

$$T(\varphi) = \int \varphi d\nu$$

Notar que dicho funcional está bien definido dado que, como $\nu(A) \leq \mu(A)$ para todo $A \in \mathcal{A}$, y además las medidas son finitas, se tiene que $L^2(X, \mathcal{A}, \mu) \subseteq L^2(X, \mathcal{A}, \nu)$. Podemos observar que T es lineal pues es una integral. Además es continuo dado que

$$|T(\varphi)| = \left| \int_X \varphi d\nu \right| \le \int_X |\varphi| d\nu \le \left(\int_X |\varphi|^2 d\nu \right)^{1/2} \nu(X)^{1/2} \le \left(\int_X |\varphi|^2 d\mu \right)^{1/2} \nu(X)^{1/2} = \|\varphi\|_{L^2(X,\mathcal{A},\mu)} \nu(X)^{1/2}$$
$$\Longrightarrow |T(\varphi)| \le \|\varphi\|_{L^2(X,\mathcal{A},\mu)} \nu(X)^{1/2} \quad \forall \varphi \in L^2(X,\mathcal{A},\mu)$$

donde hemos utilizado la desigualdad de Cauchy-Schwarz, la monotonía de la integral respecto de la medida y la finitud del espacio de medida. Como T es un funcional lineal continuo, el Teorema de Representación de Riesz asegura la existencia de $\psi \in L^2(X, \mathcal{A}, \mu)$ (por lo tanto medible) de tal forma que

$$T(\varphi) = \int_X \varphi d\nu = \langle \varphi, \psi \rangle_{L^2} = \int_X \varphi \psi d\mu \quad \forall \varphi \in L^2(X, \mathcal{A}, \mu)$$

2. Sea $\psi \in L^2(X, \mathcal{A}, \mu)$ la función encontrada en el problema anterior y considere los conjuntos

$$N_k := \{x \in X | \psi(x) < -1/n\} \quad \forall k \in \mathbb{N}^{\geq 1}$$

Luego utilizando el problema anterior notamos que (como ν es medida)

$$0 \le T(\mathbb{1}_{N_k}) = \int_{N_k} d\nu = \nu(N_k) = \int_{N_k} \psi d\mu \le -\mu(N_k)/k \le 0 \Longrightarrow \mu(N_k) = 0$$

de donde es posible concluir que

$$\{\psi(x) < 0\} = \bigcup_{k \in \mathbb{N}^{\geq 1}} N_k \Rightarrow 0 \le \mu(\{\psi(x) < 0\}) \le \sum_{k \in \mathbb{N}^{\geq 1}} \mu(N_k) = 0$$

Se sigue que $\psi \geq 0$ μ -ctp.

Dado que $\nu(A) \leq \mu(A) \quad \forall A \in \mathcal{A}$, tenemos que

$$\int_{A} \psi d\mu = \int_{A} d\nu \le \int_{A} d\mu = \mu(A)$$

Ahora podemos definir

$$P_k := \{x \in X | \psi(x) > 1 + 1/k\}$$

Entonces tenemos

$$0 \le \nu(P_k) = \int_{P_k} \psi d\mu \le \mu(P_k) \Rightarrow 0 \le \mu(P_k)/k \le \int_{P_k} (\psi - 1) d\mu \le 0$$

de donde deducimos que $\mu(P_k) = 0$ para todo $k \in \mathbb{N}^{\geq 1}$. Por lo tanto

$$\{\psi(x) > 1\} = \bigcup_{k \in \mathbb{N}^{\geq 1}} P_k \Rightarrow 0 \le \mu(\{\psi(x) > 1\}) \le \sum_{k \in \mathbb{N}^{\geq 1}} \mu(P_k) = 0$$

3. Como μ, ν son medidas finitas, tenemos que también $\nu + \mu$ es una medida finita sobre el espacio (X, A). Tenemos la siguiente desigualdad

$$\max\{\nu(A), \mu(A)\} \le (\nu + \mu)(A) \quad \forall A \in \mathcal{A}$$

Dado que se cumplen las hipótesis del punto 1. tanto para ν como para μ , podemos afirmar la existencia de ψ_{ν}, ψ_{μ} medibles las cuales verifican que

$$\int_{Y} \varphi d\nu = \int_{Y} \varphi \psi_{\nu} d[\nu + \mu] \qquad \int_{Y} \varphi d\mu = \int_{Y} \varphi \psi_{\mu} d[\nu + \mu] \qquad \forall \varphi \in L^{2}(X, \mathcal{A}, \nu + \mu)$$

Más aún, por el punto 2. se tiene que $0 \le \psi_{\nu} \le 1$ y $0 \le \psi_{\mu} \le 1$ c.t.p.. Dado que ahora se requiere que dichas funciones cumplan que $0 \le \psi_{\nu}, \psi_{\mu} \le 1$ en todo punto, basta definir los puntos en donde esto no se cumple como algún valor conveniente en el intervalo [0,1]. Como dichos conjuntos son de medida nula, su redefinición no afectará a los valores de las integrales.

4. Considere el conjunto $Z = \{x \in X : \psi_{\mu} = 0\}$. Luego por el problema anterior vemos que

$$\mu(Z) = \int_{Z} d\mu = \int_{Z} \psi_{\mu} d[\nu + \mu] = 0$$

de donde concluimos que $\psi_{\mu} \neq 0$ μ -ctp. Como μ y $\mu + \nu$ comparten sus conjuntos de medida nula, podemos decir lo mismo con respecto a la medida $\mu + \nu$, por ende tiene sentido considerar la función $1/\psi_{\mu}$. Veamos que dicha función es μ -integrable. Para ello definamos los conjuntos $E_n = \{x \in X : 1/n \leq \psi_{\mu}(x)\}$. Luego tenemos que

$$\int (\mathbb{1}_{E_n} \psi_{\mu}^{-1})^2 d[\mu + \nu] \le \int_{E_n} n^2 d[\mu + \nu] \le n^2 (\mu + \nu)(X) < +\infty$$

y así $\mathbbm{1}_{E_n}\psi_\mu^{-1}\in L^2(X,\mu)$. Por esto podemos emplear la identidad demostrada en 1.3 para observar que

$$(\nu + \mu)(E_n) = \int_{E_n} (\psi_\mu^{-1}) \psi_\mu d[\nu + \mu] = \int_{E_n} \psi_\mu^{-1} d\mu$$

Como la sucesión de conjuntos $(E_n)_n$ es creciente y esta converge a X, notamos que $(1_{E_n}\psi_{\mu}^{-1}) \nearrow \psi_{\mu}^{-1}$, y como ψ_{μ}^{-1} es no negativa, por TCM y la finitud de la medida se tiene que

$$\int \psi_{\mu}^{-1} d\mu = (\nu + \mu)(X) < +\infty$$

concluyendo que $1/\psi_{\mu}$ es μ -integrable.

Consideremos ahora $\varphi = a\mathbb{1}_A$ función característica para cierto $A \in \mathcal{A}$. Dado que ψ_{μ}^{-1} es acotada en E_n , tenemos que $\mathbb{1}_{A \cap E_n} \psi_{\mu}^{-1} \in L^2(X, \mu + \nu)$. Entonces, usando el punto 3, TCM y la continuidad de la medida (los E_n son crecientes) tenemos

$$\begin{split} \int_X \varphi d[\mu+\nu] &= a(\mu+\nu)(A) = a \lim_{n\to\infty} (\mu+\nu)(A\cap E_n) \\ &= a \lim_{n\to\infty} \int (\mathbbm{1}_{A\cap E_n} \psi_\mu^{-1}) \psi_\mu d[\mu+\nu] \\ &= a \lim_{n\to\infty} \int_{A\cap E_n} \psi_\mu^{-1} d\mu \\ &= a \int \psi_\mu^{-1} d\mu \\ &= \int \varphi \psi_\mu^{-1} d\mu \end{split}$$

Ahora, si φ es una función simple no negativa de la forma

$$\varphi = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}, \qquad a_k \ge 0$$

donde los A_k son 2 a 2 disjuntos, podemos aplicar lo anterior y obtener que

$$\int_{X} \varphi \psi_{\mu}^{-1} d\mu = \sum_{k=1}^{n} a_{k} \int_{A_{k}} \psi_{\mu}^{-1} d\mu = \sum_{k=1}^{n} a_{k} \int_{A_{k}} \psi_{\mu}^{-1} d\mu = \sum_{k=1}^{n} a_{k} \int_{A_{k}} d[\nu + \mu] = \int \varphi d[\nu + \mu]$$

A continuación, si φ es una función medible no negativa, podemos tomar una sucesión creciente $(\varphi_n)_n$ de funciones simples no negativas de tal forma que $\varphi_n \nearrow \varphi$. Entonces por TCM

$$\int_X \varphi \psi_\mu^{-1} d\mu = \lim_{n \to \infty} \int_X \varphi_n \psi_\mu^{-1} d\mu = \lim_{n \to \infty} \int_X \varphi_n d[\nu + \mu] = \int_X \varphi d[\nu + \mu]$$

5. Por el punto 3. sabemos que $0 \le \psi_{\nu} \le 1$, por lo que dicha función es no negativa. Entonces, si $A \in \mathcal{A}$ por los incisos 3. y 4. podemos concluir que

$$\nu(A) = \int_{A} d\nu = \int_{A} \psi_{\nu} d[\nu + \mu] = \int_{A} \psi_{\nu} \psi_{\mu}^{-1} d\mu$$