

COMP110: Principles of Computing

 Read some seminal papers in computing (listed on the assignment brief)

- Read some seminal papers in computing (listed on the assignment brief)
- ► Choose one of them

- Read some seminal papers in computing (listed on the assignment brief)
- ► Choose one of them
- Research how this paper has influenced the field of computing

- Read some seminal papers in computing (listed on the assignment brief)
- ► Choose one of them
- Research how this paper has influenced the field of computing
- ▶ Write up your findings

- Read some seminal papers in computing (listed on the assignment brief)
- ► Choose one of them
- Research how this paper has influenced the field of computing
- Write up your findings
 - ► Maximum 1500 words

- Read some seminal papers in computing (listed on the assignment brief)
- ► Choose one of them
- Research how this paper has influenced the field of computing
- ▶ Write up your findings
 - ► Maximum 1500 words
 - With reference to appropriate academic sources

Marking rubric

See assignment brief on LearningSpace/GitHub

Timeline

- ► Peer review next week! (4th December)
- ▶ Deadline shortly after! (check MyFalmouth)

Pass by reference

 Our picture of a variable: a labelled box containing a value

- Our picture of a variable: a labelled box containing a value
- ► For "plain old data" (e.g. numbers), this is accurate

- Our picture of a variable: a labelled box containing a value
- ▶ For "plain old data" (e.g. numbers), this is accurate
- ► For **objects** (i.e. instances of classes), variables actually hold **references** (a.k.a. **pointers**)

- Our picture of a variable: a labelled box containing a value
- ▶ For "plain old data" (e.g. numbers), this is accurate
- For objects (i.e. instances of classes), variables actually hold references (a.k.a. pointers)
- It is possible (indeed common) to have multiple references to the same underlying object

Variable	Value
X	
У	
Z	

Variable	Value
	a 30
X	b 40
У	
Z	

Variable	Vc	alue	
	a	30	
X	b	40	
	a	50	
У	b	60	
Z			

Variable	Vo	alue
	а	30
X	b	40
У	а	50
	b	60
7	a	50
Z	b	60

Variable	Value
X	
У	
Z	

Variable	Value
X	
У	
z/	
	
a 30	
b 40	

Values and references

Socrative room code: FALCOMPED

```
a = 10
b = a
a = 20
print("a:", a)
print("b:", b)
```

Values and references

Socrative room code: FALCOMPED

```
class X:
    def __init__(self, value):
        self.value = value

a = X(10)
b = a
a.value = 20
print("a:", a.value)
print("b:", b.value)
```

Values and references

Socrative room code: FALCOMPED

```
class X:
    def __init__(self, value):
        self.value = value

a = X(10)
b = X(10)
a.value = 20
print("a:", a.value)
print("b:", b.value)
```

In function parameters, "plain old data" is passed by value

In function parameters, "plain old data" is passed by value

```
def double(x):
    x *= 2

a = 7
double(a)
print(a)
```

In **function parameters**, "plain old data" is passed by **value**

```
def double(x):
    x *= 2

a = 7
double(a)
print(a)
```

double does not actually do anything, as x is just a local copy of whatever is passed in!

Pass by reference

Pass by reference

However, instances are passed by reference

```
class Box:
    def __init__(self, v):
        self.value = v

def double(x):
        x.value *= 2

a = Box(7)
double(a)
print(a.value)
```

Pass by reference

However, instances are passed by reference

```
class Box:
    def __init__(self, v):
        self.value = v

def double(x):
        x.value *= 2

a = Box(7)
double(a)
print(a.value)
```

double now has an effect, as x gets a reference to the

Lists are objects too

Lists are objects too

```
a = ["Hello"]
b = a
b.append("world")
print(a) # ["Hello", "world"]
```

Lists are objects too

```
a = ["Hello"]
b = a
b.append("world")
print(a) # ["Hello", "world"]
```

... which means you should be careful when passing lists into functions, because the function might actually change the list!

References can be circular

```
class X:
    pass

foo = X()
foo.x = foo
foo.y = "Hello"

print(foo.x.x.x.x.x.y)
```

Some languages (e.g. C, C++) use pointers

- ▶ Some languages (e.g. C, C++) use pointers
- Pointers are a type of reference, and have the same semantics

- ▶ Some languages (e.g. C, C++) use pointers
- Pointers are a type of reference, and have the same semantics
- C++ also has something called references...

Vectors

► A 2D vector is represented by a pair of numbers

- ► A **2D vector** is represented by a **pair** of **numbers**
- Often represented as a column vector

- ► A **2D vector** is represented by a **pair** of **numbers**
- Often represented as a column vector

► E.g.
$$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 or $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$ or $\begin{pmatrix} -3.7 \\ 6.2 \end{pmatrix}$

- ► A **2D vector** is represented by a **pair** of **numbers**
- Often represented as a column vector

► E.g.
$$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 or $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$ or $\begin{pmatrix} -3.7 \\ 6.2 \end{pmatrix}$

► General form:
$$\begin{pmatrix} x \\ y \end{pmatrix}$$

- A 2D vector is represented by a pair of numbers
- Often represented as a column vector

► E.g.
$$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 or $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$ or $\begin{pmatrix} -3.7 \\ 6.2 \end{pmatrix}$

- ► General form: $\begin{pmatrix} x \\ y \end{pmatrix}$
- ► Can also have 3,4,5,... dimensional vectors

 $ightharpoonup \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is the **origin**

- $ightharpoonup \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is the **origin**
 - $\begin{pmatrix} x \\ y \end{pmatrix}$ represents a point x units to the right and y units up from the origin

- $ightharpoonup \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is the **origin**
- $\binom{x}{y}$ represents a point x units to the right and y units up from the origin
 - Negative values represent left and down

- $ightharpoonup \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is the **origin**
- $\begin{pmatrix} x \\ y \end{pmatrix}$ represents a point x units to the right and y units up from the origin
 - Negative values represent left and down
 - In computer graphics, sometimes y points down instead of up

Operations on vectors

Operations on vectors

► Addition and subtraction work **element-wise**

Operations on vectors

Addition and subtraction work element-wise

Addition and subtraction work element-wise

$$\begin{pmatrix}
x_1 \\
y_1
\end{pmatrix} + \begin{pmatrix}
x_2 \\
y_2
\end{pmatrix} = \begin{pmatrix}
x_1 + x_2 \\
y_1 + y_2
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 \\
y_1
\end{pmatrix} - \begin{pmatrix}
x_2 \\
y_2
\end{pmatrix} = \begin{pmatrix}
x_1 - x_2 \\
y_1 - y_2
\end{pmatrix}$$

$$\qquad \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix}$$

- Addition and subtraction work element-wise
 - $\begin{pmatrix}
 x_1 \\
 y_1
 \end{pmatrix} + \begin{pmatrix}
 x_2 \\
 y_2
 \end{pmatrix} = \begin{pmatrix}
 x_1 + x_2 \\
 y_1 + y_2
 \end{pmatrix}$ $\begin{pmatrix}
 x_1 \\
 y_1
 \end{pmatrix} \begin{pmatrix}
 x_2 \\
 y_2
 \end{pmatrix} = \begin{pmatrix}
 x_1 x_2 \\
 y_1 y_2
 \end{pmatrix}$
- Multiplication by a scalar (a number) also works element-wise

Addition and subtraction work element-wise

$$\begin{pmatrix}
x_1 \\
y_1
\end{pmatrix} + \begin{pmatrix}
x_2 \\
y_2
\end{pmatrix} = \begin{pmatrix}
x_1 + x_2 \\
y_1 + y_2
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 \\
y_1
\end{pmatrix} - \begin{pmatrix}
x_2 \\
y_2
\end{pmatrix} = \begin{pmatrix}
x_1 - x_2 \\
y_1 - y_2
\end{pmatrix}$$

$$\qquad \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix}$$

 Multiplication by a scalar (a number) also works element-wise

$$\triangleright c \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c \times x \\ c \times y \end{pmatrix}$$

• $\begin{pmatrix} x \\ y \end{pmatrix}$ represents an offset of x units to the right and y units up

- $\begin{pmatrix} x \\ y \end{pmatrix}$ represents an offset of x units to the right and y units up
- Subtraction: if p and q are points, then q − p is the offset of q relative to p

- $\begin{pmatrix} x \\ y \end{pmatrix}$ represents an offset of x units to the right and y units up
- Subtraction: if p and q are points, then q − p is the offset of q relative to p
- ► Addition: if p is a point and u is an offset, then p + u is the point at an offset of u from p

- $\begin{pmatrix} x \\ y \end{pmatrix}$ represents an offset of x units to the right and y units up
- ➤ Subtraction: if p and q are points, then q p is the offset of q relative to p
- ► Addition: if p is a point and u is an offset, then p + u is the point at an offset of u from p
- Addition: if u and v are offsets, then u + v is the combined offset

ightharpoonup $\sin heta = rac{ ext{opposite}}{ ext{hypotenuse}}$

- $ightharpoonup \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$
- ightharpoonup $\cos heta = rac{ ext{adjacent}}{ ext{hypotenuse}}$

- ightharpoonup $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$
- ightharpoonup $\cos heta = rac{ ext{adjacent}}{ ext{hypotenuse}}$
- ightharpoonup tan $heta=rac{ ext{opposite}}{ ext{adjacent}}$

Sine, cosine and tangent

A vector has **components**

A vector has components

A vector also has **direction** and **magnitude** (or **length**)

A vector has **components**

A vector has components

A vector also has direction and **magnitude** (or **length**)

A vector has **components**

A vector also has **direction** and **magnitude** (or **length**)

(Direction is measured as an angle from the positive *x*-axis)

► The magnitude of $\begin{pmatrix} x \\ y \end{pmatrix}$ is $\sqrt{x^2 + y^2}$

- ► The magnitude of $\begin{pmatrix} x \\ y \end{pmatrix}$ is $\sqrt{x^2 + y^2}$
- ► The direction of $\begin{pmatrix} x \\ y \end{pmatrix}$ is $\tan^{-1} \left(\frac{y}{x} \right)$

- ► The magnitude of $\begin{pmatrix} x \\ y \end{pmatrix}$ is $\sqrt{x^2 + y^2}$
- ► The direction of $\begin{pmatrix} x \\ y \end{pmatrix}$ is $tan^{-1} \begin{pmatrix} \frac{y}{x} \end{pmatrix}$
- ► The vector with magnitude r and direction θ is $\begin{pmatrix} r\cos\theta\\r\sin\theta \end{pmatrix}$

- ► The magnitude of $\begin{pmatrix} x \\ y \end{pmatrix}$ is $\sqrt{x^2 + y^2}$
- ► The direction of $\begin{pmatrix} x \\ y \end{pmatrix}$ is $tan^{-1} \begin{pmatrix} \frac{y}{x} \end{pmatrix}$
- ► The vector with magnitude r and direction θ is $\begin{pmatrix} r\cos\theta\\r\sin\theta \end{pmatrix}$
- Multiplication: if u is a vector with magnitude r and direction θ, then c × u has magnitude c × r and direction θ

Worksheet D