Lebegőpontos számok

Legyen a > 1 a számábrázolás alapja, t > 1 a mantissza hossza, k_- és k_+ a karakterisztika alsó és felső korlátja.

- 1. Írjuk fel a legnagyobb ábrazolható lebegőpontos számot (M_{∞}) , a legkisebb normalizált pozitív ábrázolható számot (ε_0) , illetve az 1 jobb- és baloldali szomszédját!
- **2.** Adott a, t, k_{-} és k_{+} mellett hány darab pozitív lebegőpontos szám írható fel?
- 3. $a=2,\,t=4$ esetén írjuk fel az alábbi számok lebegőpontos alakját!

$$\frac{3}{16}$$
, $-\frac{11}{4}$, 3.25 , $\frac{5}{8}$, $\frac{15}{128}$

4. $a=2,\ t=4,\ k_-=-3,\ k_+=3$ esetén írjuk fel az alábbi számokhoz rendelt lebegőpontos számot szabályos kerekítés, ill. levágás esetén!

$$0.1, \quad 0.4, \quad 0.6, \quad \frac{1}{3}, \quad \frac{1}{27}, \quad e.$$

- **5.** $a=2,\,t=4,\,k_-=-3,\,k_+=2$ esetén ábrázoljuk számegyenesen az összes pozitív lebegőpontos számot!
- **6.** Legyen $k_+ > t$. Melyik a legkisebb természetes szám, amely nem lebegő-pontos?
- 7. Legyen $a=2,\ t=4,\ k_-=-4,\ k_+=4.$ Jelölje fl(x) az x-hez rendelt lebegőpontos számot. Keressünk olyan $x,\ y>0$ lebegőpontos számokat, melyekre
 - a) $x \neq y$ és fl(x y) = 0,
 - b) fl(x+y) = x,
 - c) $x+y\in [-M_{\infty},M_{\infty}],$ de x+ynem lebegőpontos szám!
- 8. $a=2,\,t=4,\,k_+=2$ és $k_-=-3$ számábrázolási jellemzők mellett az

$$\frac{3}{16}x^2 + \frac{1}{2}x + \frac{5}{16} = 0$$

másodfokú egyenlet gyökeit akarjuk géppel kiszámolni az

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

megoldóképlettel. Feltételezve, hogy a gép az egyes műveletek eredményét pontosan számolja, majd az eredményekhez hozzárendel egy lebegőpontos számot, hány különböző gyököt találunk?

MATLAB feladatok

- 1. Számítógépén vizsgálja meg mi a 0.4 0.5 + 0.1 == 0 logikai kifejezés értéke. Adjon magyarázatot az eredményre!
- 2. Határozza meg számítógépén kísérletileg ε_1 és ε_0 értékét! A kapott értékeket hasonlítsa össze az eps függvény alkalmas értékeivel!
- 3. Határozza meg azt a legkisebb pozitív egész számot, melyet számítógéppel 10^{20} -hoz hozzáadva az eredmény különbözni fog 10^{20} -tól.
- 4. Az

$$\left(\frac{1}{5x} + 1\right)x - x = 0.2$$

egyenlőség elméletileg minden $x \neq 0$ esetén igaz. Az $x = 1, \dots, 100$ értékekre számítógépén tesztelje a fenti egyenlőség teljesülését!

- 5. Legyen x=1/3. Ciklusban futtassuk le néhányszor (≈ 40) az x=4x-1 utasítást, ami elméletileg az x=1/3 értéket adja vissza. Mit tapasztalunk a gyakorlatban?
- 6. Az alábbi algoritmus elméletileg minden $x \geq 0$ esetén az x eredeti értékét adja vissza. Vizsgálja meg mi történik a gyakorlatban, ha az algoritmust $x=1000,\ x=100$ kezdőértékkel futtatja! Mi az oka a tapasztalt jelenségnek?

for
$$i = 1:60$$

 $x = \sqrt{x}$
end
for $i = 1:60$
 $x = x^2$
end

- 7. Ismert, hogy $\lim_{x\to 0}\frac{e^x-1}{x}=1$. Számítsa ki az $\frac{e^x-1}{x}$ hányados értékét egyre csökkenő x értékek esetén! (x=1 kezdőértékkel x-et 40-szer, 200-szor, 2000-szer felezgetve írassa ki a kifejezés értékét!) Magyarázza meg a tapasztalt jelenséget!
- 8. Adott az x_1, \ldots, x_n minta esetén a tapasztalati szórásnégyzet kiszámításának két lehetséges módja:

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{i=1}^n x_i \right)^2 \quad \text{és} \quad s_n^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n x_i \right)^2 \right)$$

Az x=(10000,10001,10002) minta esetén egyszeres pontosságot használva ($x=\mathtt{single}([10000,10001,10002]))$ számítsa ki a tapasztalati szórásnégyzetet mindkét képlettel!