CS 188: Artificial Intelligence Fall 2011

Lecture 15: Bayes' Nets III: Inference 10/13/2011

Dan Klein - UC Berkeley

Many slides over this course adapted from Stuart Russell, Andrew Moore

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

 $P(X|A_1 \dots A_n)$

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

• For all joint distributions, we have (chain rule):

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1, \dots, x_{i-1})$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

3

All Conditional Independences

 Given a Bayes net structure, can run dseparation to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

Same Assumptions, Different Graphs?

- Can you have two different graphs that encode the same assumptions?
 - Yes!
 - Examples:

5

Example: Independence

For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independence
- *More about causality: [Causility Judea Pearl]

В

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability:

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them
- Example:

$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+j,+m)}$$

17

Example: Enumeration

 In this simple method, we only need the BN to synthesize the joint entries

$$P(+b,+j,+m) = P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a) + P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a) + P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a) + P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a)$$

19

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
 - You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

P	(T	,	W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

21

Factor Zoo II

- Family of conditionals: P(X |Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P(W|T)

Т	W	Р	
hot	sun	0.8	
hot	rain	0.2	ightharpoonup P(W hot)
cold	sun	0.4	
cold	rain	0.6	$\mid \mid P(W cold)$

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P(rain|T)

Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	$\left. ight P(rain cold)$

- In general, when we write P(Y₁ ... Y_N | X₁ ... X_M)
 - It is a "factor," a multi-dimensional array
 - Its values are all P(y₁ ... y_N | x₁ ... x_M)
 - Any assigned X or Y is a dimension missing (selected) from the array

23

Example: Traffic Domain

- Random Variables
 - R: Raining
 - T: Traffic
 - L: Late for class!
- First query: P(L)

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	

P(L|R)

	• •	
+t	+1	0.3
+t	-1	0.7
-t	+	0.1
-t	-	0.9

Variable Elimination Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)		
+r	0.1	
-r	0.9	

P(T R)		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$I \left(D I \right)$			
+t	+	0.3	
+t	-	0.7	
-t	+	0.1	
-t	-1	0.9	

P(L|T)

- Any known values are selected
 - E.g. if we know $L=+\ell$, the initial factors are

P(R)		
+r 0.1		
-r 0.9		

VE: Alternately join factors and eliminate variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R

 $P(R) \times P(T|R) \longrightarrow P(R,T)$

` /	
,	

0.1
0.9

`		•
+r	+t	8.0
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

• Computation for each entry: pointwise products

$$\forall r, t: P(r,t) = P(r) \cdot P(t|r)$$

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

+t

-t

0.063

0.081

30

-l 0.747

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)		P(T R)		P(.	L T	')		
+r	0.1		+r	+t	0.8	+t	+	0.3
-r	0.9		+r	-t	0.2	+t	7	0.7
		='	-r	+t	0.1	-t	+	0.1
			-r	-t	0.9	-t	-1	0.9

• Computing P(L|+r) , the initial factors become:

We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we'd end up with:

$$P(+r,L)$$
 Normalize $P(L|+r)$ + | 0.026 | + | 0.074 | - | 0.74 |

- To get our answer, just normalize this!
- That's it!

35

General Variable Elimination

- Query: $P(Q|E_1=e_1,\ldots E_k=e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

36

Variable Elimination Bayes Rule

Start / Select

Normalize

Join on B

 $P(A|B) \rightarrow P(a|B)$

В	Α	Р
+b	+a	0.8
- I-		0
D	Τα	0.2
$\neg b$	+a	0.1
h		0.0
ID	iu	0.0

P(a, B)

Α	В	Р
+a	+b	0.08
+a	¬b	0.09

P(B a)			
Α	В	Р	
+a	+b	8/17	
+a	¬b	9/17	

Example

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$

Choose A

$$P(A|B,E)$$
 $P(j|A)$
 $P(m|A)$
 $P(j,m,A|B,E)$
 $P(j,m|B,E)$

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$

38

Example

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$

Choose E

$$P(E)$$
 $P(j,m|B,E)$
 $P(j,m,E|B)$
 $P(j,m|B)$

$$P(B)$$
 $P(j,m|B)$

Finish with B

$$P(B)$$
 $P(j,m|B)$
 $P(j,m,B)$
Normalize
 $P(B|j,m)$

Variable Elimination

- What you need to know:
 - Should be able to run it on small examples, understand the factor creation / reduction flow
 - Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end
- We will see special cases of VE later
 - On tree-structured graphs, variable elimination runs in polynomial time, like tree-structured CSPs
 - You'll have to implement a tree-structured special case to track invisible ghosts (Project 4)