Package 'iwaqr'

February 23, 2024

Title Irrigation Water Quality Assessment and Visualizations

Type Package

Version 1.8.4
Description Calculates irrigation water quality ratios and has functions that could be used to plot several popular diagrams for irrigation water quality classification.
Imports ggplot2, ggthemes, ggrepel, scales
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.2.3
License GPL (>= 3)
NeedsCompilation no
Author Wajid Ali [aut, cre, cph]
Maintainer Wajid Ali <wajeedaali@gmail.com></wajeedaali@gmail.com>
Repository CRAN
Date/Publication 2024-02-23 18:50:02 UTC
R topics documented:
calculate_Napercent
calculate_sar
calculate_tc
irrigationALL
KR
MAR
NaPercentage

PI plot_DoneenH ... plot_DoneenL ... plot_DoneenM ...

2 calculate_Napercent

Index	1	5
	SCAR	1
	SAR	
	RSC	3
	RSBC	3
	PS	2
	plot_Wilcox	L
	plot_USSL)
	plot_Riverside)

calculate_Napercent Calculate Na percent

Description

This function calculates the percentage of sodium (Na

Usage

```
calculate_Napercent(df, convert_units = FALSE)
```

Arguments

df A dataframe containing the necessary columns.

convert_units Logical indicating whether to convert values from mg/l to meq/l.

Value

A numeric vector containing Na percent values.

Examples

```
df <- data.frame(Ca = c(10, 20, 30),
Mg = c(5, 10, 15),
Na = c(15, 25, 35), K = c(3, 5, 6))
calculate_Napercent(df, convert_units = TRUE)</pre>
```

calculate_PI 3

calculate_PI

Calculate PI

Description

This function calculates the PI for water quality.

Usage

```
calculate_PI(df, convert_units = FALSE)
```

Arguments

df dataframe containing the necessary columns,

convert_units Logical, indicating whether to convert units from mg/l to meq/l.

Value

A numeric vector representing the permeability index (PI) for each row in the dataframe, @examples df <- data.frame(Ca = c(10, 20, 30), Mg = c(5, 10, 15), Na = c(8, 16, 24), Na = c(15, 25, 10), K = c(2, 6, 4), HCO3 = c(15, 30, 45), SO4 = c(110, 115, 88), CO3 = c(0, 0, 0), Cl = c(42, 25, 16)), calculate_PI <- function(df, convert_units = FALSE)

calculate_sar

Calculate SAR

Description

This function calculates the Sodium Adsorption Ratio (SAR) for water quality.

Usage

```
calculate_sar(df, convert_units = FALSE)
```

Arguments

df dataframe

convert_units logical, for conversion to meq/l

Value

SAR values

4 CC

calculate_tc

Calculate Total Concentration (tc)

Description

This function calculates the total concentration (tc) based on the provided dataframe.

Usage

```
calculate_tc(df, convert_units = FALSE)
```

Arguments

df Data frame containing the necessary columns.

convert_units Logical, indicating whether to convert units from mg/l to meq/l.

Value

A numeric vector representing the total concentration (tc) for each row in the dataframe.

Examples

```
\begin{array}{l} \text{df} <- \text{ data.frame}(\text{Ca} = \text{c}(10,\ 20,\ 30),\\ \text{Mg} = \text{c}(5,\ 10,\ 15),\ \text{Na} = \text{c}(8,\ 16,\ 24),\\ \text{Na} = \text{c}(15,\ 25,\ 10),\\ \text{K} = \text{c}(2,\ 6,\ 4),\\ \text{HCO3} = \text{c}(15,\ 30,\ 45),\\ \text{SO4} = \text{c}(110,\ 115,\ 88),\\ \text{CO3} = \text{c}(0,\ 0,\ 0),\\ \text{Cl} = \text{c}(42,\ 25,\ 16))\\ \text{calculate\_tc}(\text{df},\ \text{convert\_units} = \text{TRUE}) \end{array}
```

CC

Color palette for Wilcox diagram

Description

This vector defines the color palette used in the Wilcox diagram. It contains a sequence of color names

Usage

CC

Format

An object of class character of length 12.

irrigationALL 5

irrigationALL

Irrigation Water Quality Index Calculations

Description

This function calculates multiple water quality indices for irrigation.

Usage

```
irrigationALL(df, convert_to_meq = TRUE)
```

Arguments

df Dataframe containing necessary variables.

convert_to_meq Logical, indicating whether to convert concentrations to meq/L (default: TRUE).

Value

Dataframe containing calculated indices: SAR, MAR, SCAR, RSC, RSBC, PI, KR, NaPercentage, and PS.

KR

Kelly Ratio (KR) Calculation

Description

Kelly Ratio (KR) Calculation

Usage

```
KR(df, convert_to_meq = TRUE)
```

Arguments

```
df Dataframe containing necessary variables (Na, Ca).
convert_to_meq Logical, indicating whether to convert concentrations to meq/L (default: TRUE).
```

Value

KR value.

NaPercentage

MAR

Magnesium Adsorption Ratio (MAR) Calculation

Description

Magnesium Adsorption Ratio (MAR) Calculation

Usage

```
MAR(df, convert_to_meq = TRUE)
```

Arguments

```
df Dataframe containing necessary variables (Mg, Ca).
convert_to_meq Logical, indicating whether to convert concentrations to meq/L (default: TRUE).
```

Value

MAR value.

NaPercentage

Sodium Percentage (NaPercentage) Calculation

Description

Sodium Percentage (NaPercentage) Calculation

Usage

```
NaPercentage(df, convert_to_meq = TRUE)
```

Arguments

```
df Dataframe containing necessary variables (Na, Ca, Mg, K).
convert_to_meq Logical, indicating whether to convert concentrations to meq/L (default: TRUE).
```

Value

Sodium Percentage value.

PI 7

ΡI

Permeability Index (PI) Calculation

Description

Permeability Index (PI) Calculation

Usage

```
PI(df, convert_to_meq = TRUE)
```

Arguments

```
df Dataframe containing necessary variables (Na, HCO3, Ca, Mg). convert_to_meq Logical, indicating whether to convert concentrations to meq/L (default: TRUE).
```

Value

PI value.

plot_DoneenH

Plot Doneen diagram (High permeability) for all rows

Description

Plot Doneen diagram (High permeability) for all rows

Usage

```
plot_DoneenH(
   df,
   tc_column,
   PI_column,
   label_column = NULL,
   grp_column = NULL,
   convert_units = FALSE
)
```

Arguments

df Data frame containing the necessary columns.
tc_column Column name for total concentration (tc).
PI_column Column name for PI (optional).
label_column Column name for labels (optional).
grp_column Column name for grouping (optional).

convert_units Logical, whether to convert units.

8 plot_DoneenL

Value

```
A ggplot object representing the USSL diagram. #' @examples df <- data.frame(tc = c(80, 65, 70), PI = c(30, 65, 150), Color = c("red", "green", "blue")) plot_DoneenH(df, tc_column = "tc", PI_column = "PI", label_column = NULL, grp_column = NULL, convert_units = FALSE)
```

plot_DoneenL

Plot Doneen diagram (Low permeability) for all rows

Description

This function plots the USSL diagram for the given data frame.

Usage

```
plot_DoneenL(
   df,
   tc_column,
   PI_column,
   label_column = NULL,
   grp_column = NULL,
   convert_units = FALSE
)
```

Arguments

df Data frame containing the necessary columns.

tc_column Column name for total concentration (tc).

PI_column Column name for PI (optional).

label_column Column name for labels (optional).

grp_column Column name for grouping (optional).

convert_units Logical, whether to convert units.

Value

```
A ggplot object representing the USSL diagram. #'@examples df <- data.frame(tc = c(80, 65, 70), PI = c(30, 65, 150), Color = c("red", "green", "blue")) plot_DoneenL(df, tc_column = "tc", PI_column = "PI", label_column = NULL, grp_column = NULL, convert_units = FALSE)
```

plot_DoneenM 9

plot_DoneenM	Plot Doneen diagram (Low permeability) for all rows

Description

This function plots the USSL diagram for the given data frame.

Usage

```
plot_DoneenM(
   df,
   tc_column,
   PI_column,
   label_column = NULL,
   grp_column = NULL,
   convert_units = FALSE
)
```

Arguments

df Data frame containing the necessary columns.

tc_column Column name for total concentration (tc).

PI_column Column name for PI (optional).

label_column Column name for labels (optional).

grp_column Column name for grouping (optional).

convert_units Logical, whether to convert units.

Value

```
A ggplot object representing the USSL diagram. #' @examples df <- data.frame(tc = c(80, 65, 70), PI = c(30, 65, 150), Color = c("red", "green", "blue")) plot_DoneenM(df, tc_column = "tc", PI_column = "PI", label_column = NULL, grp_column = NULL, convert_units = FALSE)
```

|--|

Description

This function plots the USSL diagram for the given data frame.

10 plot_USSL

Usage

```
plot_Riverside(
   df,
   ec_column,
   sar_column,
   label_column = NULL,
   grp_column = NULL,
   convert_units = FALSE
)
```

Arguments

df containing values in relevant columns
ec_column Column name for electrical conductivity (EC).
sar_column Column name for SAR (optional).
label_column Column name for labels (optional).
grp_column Column name for grouping (optional).
convert_units logical wether to convert from mg/l to meq/l

Value

A ggplot object representing the USSL diagram. a numeric vector containing SAR values

Examples

```
\label{eq:convergence} \begin{split} &\text{df} <- \text{data.frame}(\text{EC} = \text{c}(1000, \ 2000, \ 3000), \\ &\text{SAR} = \text{c}(20, \ 30, \ 40), \\ &\text{Color} = \text{c}(\text{"red"}, \ \text{"green"}, \ \text{"blue"})) \\ &\text{plot_Riverside}(\text{df}, \ \text{ec_column} = \text{"EC"}, \ \text{sar_column} = \text{"SAR"}, \text{grp_column} = \text{"Color"}, \\ &\text{convert\_units} = \text{FALSE}) \end{split}
```

plot_USSL

Plot USSL diagram for all rows

Description

This function plots the USSL diagram for the given data frame.

plot_Wilcox 11

Usage

```
plot_USSL(
    df,
    ec_column,
    sar_column,
    label_column = NULL,
    grp_column = NULL,
    convert_units = FALSE
)
```

Arguments

df Data frame containing the necessary columns.
ec_column Column name for electrical conductivity (EC).
sar_column Column name for SAR (optional).
label_column Column name for labels (optional).
grp_column Column name for grouping (optional).
convert_units Logical, whether to convert units.

Value

A ggplot object representing the USSL diagram. #' @examples df <- data.frame(EC = c(1000, 2000, 3000), Na_percent = c(20, 30, 40), Group = c("red", "green", "blue")) plot_USSL(df, ec_column = "EC", sar_column = "SAR", label_column = NULL, grp_column = "Group", convert_units = FALSE)

plot_Wilcox

Plot Wilcox diagram for all rows

Description

This function plots the USSL diagram for the given data frame.

Usage

```
plot_Wilcox(
   df,
   ec_column,
   Napercent_column,
   label_column = NULL,
   grp_column = NULL,
   convert_units = FALSE
)
```

12 *PS*

Arguments

df containig relevant columns with values

Napercent_column

Column name for Na percent (optional).

convert_units logical wether to convert values from mg/l to meq/l

Value

A ggplot object representing the Wilcox diagram.

```
#' @examples f <- data.frame(EC = c(1000, 2000, 3000), Na_percent = c(20, 30, 40), Color = c("red", "green", "blue")) plot_Wilcox(f, ec_column = "EC", Napercent_column = "Na_percent", label_column = NULL, grp_column = "Color", convert_units = FALSE)
```

a numeric vector containing Na percent values

PS

Potential Salinity (PS) Calculation

Description

Potential Salinity (PS) Calculation

Usage

```
PS(df, convert_to_meq = TRUE)
```

Arguments

```
df Dataframe containing necessary variables (Cl, SO4).

convert_to_meq Logical, indicating whether to convert concentrations to meq/L (default: TRUE).
```

Value

PS value.

RSBC 13

RSBC

Residual Sodium Bicarbonate (RSBC) Calculation

Description

Residual Sodium Bicarbonate (RSBC) Calculation

Usage

```
RSBC(df, convert_to_meq = TRUE)
```

Arguments

```
df Dataframe containing necessary variables (HCO3, Ca).
convert_to_meq Logical, indicating whether to convert concentrations to meq/L (default: TRUE).
```

Value

RSBC value.

RSC

Residual Sodium Carbonate (RSC) Calculation

Description

Residual Sodium Carbonate (RSC) Calculation

Usage

```
RSC(df, convert_to_meq = TRUE)
```

Arguments

```
df Dataframe containing necessary variables (HCO3, CO3, Ca, Mg).
convert_to_meq Logical, indicating whether to convert concentrations to meq/L (default: TRUE).
```

Value

RSC value.

14 SCAR

SAR

Sodium Adsorption Ratio (SAR) Calculation

Description

Sodium Adsorption Ratio (SAR) Calculation

Usage

```
SAR(df, convert_to_meq = TRUE)
```

Arguments

df Dataframe containing necessary variables (Na, Ca, Mg, K).
convert_to_meq Logical, indicating whether to convert concentrations to meq/L (default: TRUE).

Value

SAR value.

SCAR

Sodium Adsorption Ratio (SCAR) Calculation

Description

Sodium Adsorption Ratio (SCAR) Calculation

Usage

```
SCAR(df, convert_to_meq = TRUE)
```

Arguments

```
df Dataframe containing necessary variables (Na, Ca).
convert_to_meq Logical, indicating whether to convert concentrations to meq/L (default: TRUE).
```

Value

SCAR value.

Index

```
* data
     CC, 4
{\tt calculate\_Napercent, 2}
calculate_PI, 3
calculate_sar, 3
calculate_tc, 4
CC, 4
{\tt irrigationALL}, {\color{red} 5}
KR, 5
MAR, 6
NaPercentage, 6
PI, 7
plot_DoneenH, 7
{\tt plot\_DoneenL}, \color{red} 8
plot_DoneenM, 9
{\tt plot\_Riverside}, {\color{red} 9}
plot_USSL, 10
plot_Wilcox, 11
PS, 12
RSBC, 13
RSC, 13
SAR, 14
SCAR, 14
```