

SHENZHEN LDROBOT CO., LTD. DTOF LiDAR LD06 SPECIFICATION

Product Name : DTOF LiDAR_LD06

Description : DTOF COAXIAL BRUSHLESS LiDAR with Raspberry pi SBC

(based on UbuntuMate 18.04 bionic kernel version 4.15)

Date : 2021-12-17

File No : LD-LD06-DS-REV_1.0_EN

1.	DEVELOPMENT KIT3	
2.	INSTALL RASPBIAN OS ON SD CARD4 STEP1: Download a UbuntuMate OS4	4
	STEP2: Flash UbuntuMate 18.04 OS into SD card	5
3.	INSTALL ROS MELODIC ON UBUNTUMATE OS	6
	STEP2(OPTIONAL): Solve the ERROR:	7
	STEP3(OPTIONAL): CHECK:	10
4.	START SERIAL ttyS010	
5.	INSTALL LIDAR ROS PACKAGE12	
	STEP1: Device connection	12
	STEP2: ROS DTOF_LD06 Driver Compile	13
	STEP3: RVIZ results	14
6.	USE CAUTION	15
	Ambient lighting	15
	Power demand	16

1. DEVELOPMENT KIT

The development kit of DTOF LiDAR_LD06 is an accessory tool (includes bracket & DTOF module & Uart cable & Assembly screws) provided for robotic device development or performance evaluation of sensor products, and for the educational purpose use of robotic device motion control and algorithm study, Users need to purchase a RPI SBC (Raspberry PI3 A+/B+, Raspberry PI3 B, Raspberry PI 4B) to pair with DTOF module for use/development.

(a) TOFLIDAR_LD06 (b) Uart cable (c) raspberry pi 4B /PI 3B/PI3 A+/Pi3 B+ FIG 1 TOFLIDAR_LD06 DEVELOPMENT KIT

CHART 1 TOFLIDAR LD06 DEVELOPMENT KIT DESCRIPTION

Item	Qty	Description				
TOFLiDAR_LD06	1	Detection product for space detection and obstacle recognition				
Uart cable	1	Use for connection between the DTOF and Raspberry pi 4B for power and data transfer				
Raspberry pi 4B/3B/3B+/3A+	1	As a computing tool for the TOF lidar data analysis and visualization into to display device				

2. INSTALL RASPBIAN OS ON SD CARD

STEP1: Download a UbuntuMate OS

To install UbuntuMate OS on a SD Card you will need to download a Raspbian OS firstly. User may download the UbuntuMate OS directly from the official website of UbuntuMate, Ldrobot TOF lidar user manual is based on the version of UbuntuMate 18.04 armhf-raspi with desktop and recommended software as highlighted in the figure 2.

https://ubuntu-mate.org/download/

- or https://releases.ubuntu-mate.org/archived/18.04/armhf/
- or https://releases.ubuntu-mate.org/archived/

FIG 2. RASPBERRY OFFICIAL WEBSITE

STEP2: Flash UbuntuMate 18.04 OS into SD card

After downloading a Raspbian OS, you need to install win32diskimager as the tool to flash UbuntuMate 18.04 OS into SD card. After the image file has been flashed into the SD card sucessfully, SD card will automatically display a boot partition.

https://sourceforge.net/projects/win32diskimager/

3. INSTALL ROS MELODIC ON UBUNTUMATE OS

Powering up the Raspberry Pi. And then insert the Micro SD card into the Pi SD-cage. Connects the Mini-HDMI cable to your display ,connect mouse and keyboard. Plug in the power cable to turn on the Raspberry Pi. Then modify the source file of UbuntuMate 18.04 OS.

Installation reference tutorial is:

http://wiki.ros.org/cn/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu

- If you are a Chinese user, please modify as follows:

\$ sudo nano /etc/apt/sources.list

Block the existing modification as:

deb https://mirrors.ustc.edu.cn/ubuntu-ports/ bionic main restricted universe multiverse

deb-src https://mirrors.ustc.edu.cn/ubuntu-ports/ bionic main main restricted universe multiverse

deb https://mirrors.ustc.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse

deb-src https://mirrors.ustc.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse

deb https://mirrors.ustc.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse

deb-src https://mirrors.ustc.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse

deb https://mirrors.ustc.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse

deb-src https://mirrors.ustc.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse

deb https://mirrors.ustc.edu.cn/ubuntu-ports/ bionic-proposed main restricted universe multiverse

deb-src https://mirrors.ustc.edu.cn/ubuntu-ports/ bionic-proposed main restricted universe multiverse

- If you are a user outside of Chinese, please modify as follows:

\$ sudo nano /etc/apt/sources.list

Block the existing modification as:

Install any source from the following URL: https://help.ubuntu.com/community/Repositories/Ubuntu

STEP1: Install Dependencies and Download ROS source packages

- If you are a Chinese user, please modify as follows:

\$ sudo sh -c '. /etc/lsb-release && echo "deb http://mirrors.ustc.edu.cn/ros/ubuntu/ `lsb_release - cs` main" > /etc/apt/sources.list.d/ros-latest.list'

- If you are a user outside of Chinese, please modify as follows:

\$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu \$(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'

After the previous success, continue to set according to the following steps.

\$ sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

\$ sudo apt-get update

\$ sudo apt install ros-melodic-desktop

After the ros version is installed. To find available packages, use: apt search ros-melodic

\$ echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc

\$ source ~/.bashrc

\$ sudo apt-get install python-rosinstall-generator python-wstool python-rosinstall build-essential cmake

Then initialize rosdep and update it

\$ sudo rosdep init

\$ rosdep update

STEP2(OPTIONAL): Solve the ERROR:

ERROR :cannot download default sources list from:

https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/sources.list.d/20-default.list Website may be down.

\$ cd ~

\$ git clone https://github.com/ros/rosdistro.git

if Cloning into 'rosdistro'...

fatal: unable to access 'https://github.com/ros/rosdistro.git/': Failed to connect to github.com port 443: Connection timed out

You can go to this link to download the source package(rosdistro-master.zip) of the master branch. this link is https://github.com/ros/rosdistro

\$ mkdir ~/rosdistro

\$ unzip rosdistro-master.zip -d ~/rosdistro

\$ my ~/rosdistro/rosdistro-master/* ~/rosdistro/

\$ rm -rf ~/rosdistro/rosdistro-master

When the file is successfully cloned or downloaded, proceed as follows:

\$ cd ~

Step1:

\$ sudo nano ~/rosdistro/rosdep/sources.list.d/20-default.list

Modify the file as follows:

Note that 'pi' is the user name of the system, you can replace it with your own system user name

os-specific listings first

#yaml https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/osx-homebrew.yaml osx

yaml file:///home/pi/rosdistro/rosdep/osx-homebrew.yaml osx

generic

#yaml https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/base.yaml

#yaml https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/python.yaml

#yaml https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/ruby.yaml

#gbpdistro

https://raw.githubusercontent.com/ros/rosdistro/master/releases/fuerte.yaml fuerte

yaml file:///home/pi/rosdistro/rosdep/base.yaml

yaml file:///home/pi/rosdistro/rosdep/python.yaml

yaml file:///home/pi/rosdistro/rosdep/ruby.yaml

gbpdistro file:///home/pi/rosdistro/releases/fuerte.yaml fuerte

Step2:

\$ sudo nano /usr/lib/python2.7/dist-packages/rosdep2/sources_list.py

Modify the file as follows:

default file to download with 'init' command in order to bootstrap

rosdep

#DEFAULT_SOURCES_LIST_URL

'https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/sources.list.d/20-default.list'

DEFAULT_SOURCES_LIST_URL

'file:///home/pi/rosdistro/rosdep/sources.list.d/20-default.list'

seconds to wait before aborting download of rosdep data

DOWNLOAD_TIMEOUT = 15.0

Step3:

\$ sudo nano /usr/lib/python2.7/dist-packages/rosdep2/rep3.py

Modify the file as follows:

location of targets file for processing gbpdistro files

#REP3_TARGETS_URL

'https://raw.githubusercontent.com/ros/rosdistro/master/releases/targets.yaml'

REP3_TARGETS_URL = 'file:///home/pi/rosdistro/releases/targets.yaml'

seconds to wait before aborting download of gbpdistro data

DOWNLOAD_TIMEOUT = 15.0

Step4:

\$ sudo nano /usr/lib/python2.7/dist-packages/rosdistro/__init__.py

Modify the file as follows:

same version as in:

- setup.py

- stdeb.cfg

__version__ = '0.8.3'

index information

#DEFAULT INDEX URL

'https://raw.githubusercontent.com/ros/rosdistro/master/index-v4.yaml'

DEFAULT_INDEX_URL = 'file:///home/pi/rosdistro/index-v4.yaml'

Then reinitialize rosdep and update it

```
$ sudo rosdep init
$ rosdep update
```

STEP3(OPTIONAL): CHECK:

Try launching roscore to check if everything was successful.

\$ roscore

4. START SERIAL ttyS0

\$ sudo raspi-config

Open the system configuration interface as shown in the figure below, and select the **interface options**.

FIG 3. RASPBERRY SYSTEM CONFIGURATION I

Then select P6 serial.

FIG 4. RASPBERRY SYSTEM CONFIGURATION II

Then click Yes.

FIG 5. RASPBERRY SYSTEM CONFIGURATION III

Then Save and exit. Reboot raspberryPi. Please do not disconnect power during reboot. Otherwise, the serial configuration may not take effect.

Check if the serial port is open. View serial port mapping relationship

\$ ls -1 /dev

ANIEN									
crw-rw	1	root	video	241,		Jul	8	13:45	rpivid-hevcmem
crw-rw	1	root	video	240,		Jul	8	13:45	rpivid-intcmem
crw-rw	1	root	video	238,		Jul	8	13:45	rpivid-vp9mem
lrwxrwxrwx	1	root	root		5	Jul	8	13:45	serial0 -> ttyS0
lrwxrwxrwx	1	root	root		7	Jul	8	13:45	serial1 -> ttyAMA0
drwxrwxrwt	2	root	root		40	Feb	14	2019	shm
drwxr-xr-x	3	root	root		140	Jul	8	13:45	snd

FIG 6. RASPBERRY SERIAL PORT MAPPING

Serial0 is the serial port corresponding to the GPIO pin. If you see serial0 connected to ttys0, the serial port configuration is successful.

5. INSTALL LIDAR ROS PACKAGE

STEP1: Device connection

Connect Lidar and Raspberry Pi 4B as shown in the figure below. 5v connect 5v Power, GND connect Ground, Motor PWM connect BCM18(pwm0),Lidar Uart TX connect BCM15(RXD).

Our company's Lidar support internal speed control. If you want external speed control, you need to download an install the WiringPi library yourself, and configure the BCM18 pin as PWM0, output a 24KHz PWM signal, and implement PID speed control yourself.

WiringPi library installation method:

Then install wiringPi,WiringPi has updated to 2.52 for the Raspberry Pi 4B.

```
$ cd /tmp
$ wget https://project-downloads.drogon.net/wiringpi-latest.deb
sudo dpkg -i wiringpi-latest.deb
```

After wiringPi being updated ,you can check with the latest version update

```
gpio -v
```


FIG 7. CONNECTION BETWEEN LIDAR AND RASPBERRY PI 4B

The users need to have the -x permission of raspbian kernel system. After connecting TOF LiDAR_LD06 with raspberry pi 4B/3B/3B+/3A+.

\$ sudo chmod 777 /dev/ttyS0

STEP2: ROS DTOF_LD06 Driver Compile

The ROS driver package has been uploaded into the sdk_ld06_raspberry_ros/directory. You just open the sdk_ld06_raspberry_ros workspace and compile.

\$ cd ~

\$ git clone https://github.com/ldrobotSensorTeam/sdk_ld06_raspberry_ros.git

if Cloning into "sdk_ld06_raspberry_ros...

fatal: unable to access: Failed to connect to github.com port 443: Connection timed out. You can go to this link to download the source package of the main branch. this link is https://github.com/ldrobotSensorTeam/sdk_ld06_raspberry_ros

The download name is sdk_ld06_raspberry_ros-main.zip of source package is success, then:

\$ mkdir ~/sdk_ld06_raspberry_ros

\$ unzip sdk_ld06_raspbery_ros-main.zip -d ~/sdk_ld06_raspberry_ros

\$ cp ~/sdk_ld06_raspberry_ros/sdk_ld06_raspbery_ros-main/* ~/sdk_ld06_raspberry_ros/ -a

\$ rm -rf ~/sdk_ld06_raspberry_ros/sdk_ld06_raspbery_ros-main/

When the file is successfully cloned or downloaded, proceed as follows:

 $\ cd \sim /sdk_1d06_raspberry_ros$

\$ catkin_make

\$ source devel/setup.bash

\$ roslaunch ldlidar ld06.launch

STEP3: RVIZ results

After running the launch file, you need to open a new terminal. Then run rviz to view the scan results, as shown in the following figure:

\$ rosrun rviz rviz

You need to click the open config button. Then select the ldlidar.rviz file.

FIG 8 RVIZ CONFIGURATION

FIG 9 TOFLiDAR_LD06 RVIZ

6. USE CAUTION

ALARM: Please connect the TOFLiDAR_LD06 before you power up the raspberry.

Temperature

When the working environment temperature of TOFLiDAR_LD06 is too high or too low, it will affect the accuracy of the distance measuring system. It may also damage the structure of the scanning system and reduce the life of the TOFLiDAR_LD06. Avoid use in high temperature (>40 degrees Celsius) and low temperature (<0 degrees Celsius) conditions.

Ambient lighting

The ideal working environment for the Lidar is indoor, indoor lighting (including no light) will not affect it work. Don't using a strong light source (such as a high-power laser) to directly illuminate the lidar's vision system.

If you need to use it outdoors, please avoid that the its vision system is directly facing the sun. This may cause permanent damage to the vision system's sensor chip,

thus invalidating the distance measurement.

Please note that the Lidar standard version is subject to interference in outdoor strong sunlight reflection environments.

• Power demand

For development ,both external adaptor or independent power bank works , but need to ensue 5V and 200MA current power input, for external adaptor solution, the Raspberry Pi SBC adaptor is the preference choose.