LaPIS Diagnostic Test Workbook - Mathematics

Name : Samrithasarini S

Class: 7

Section : B

School : AKV Public School

Login ID : AKV162

Samrithasarini S's Performance Report

Score: 9/40 Percentage: 22.5%

Samrithasarini S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	ipal Signature	

Basic arithmetic

Topics to be Improved			
LCM Finding LCM			
Types of angles	Identification of types of angles		

Hi, here in this video you will learn **LCM**

Question: 1

Fill the hexagon with factors and multiples of 10.

......

\underline{Answer} :

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

 $\underline{Question: \ 2}$

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

.....

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of $2 = \underline{\hspace{1cm}}$

Multiple of 13 = _____

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Hi, here in this video you will learn **Types of Angles**

Question: 4

Find the angles.

Answer:

The angle ranges from $___{\circ}$ to $___{\circ}$.

The angle perpendicular to 0° is $___^{\circ}$.

The straight line measures $___^{\circ}$.

Question: 5

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is $__^\circ$ and it is called $__$ angle. The angle formed between North and East is $__^\circ$ and it is called $__$ angle. The angle formed between East and South is $__^\circ$ and it is called $__$ angle.

Question: 6

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is _____°

The measurement of right angle is _____°.

Straight angle + Right angle = ____ + ___ = ____

It is called as _____ angle.

Mensuration

Topics to be Improved			
Perimeter of triangle			
Area	Area of rectangle		

......

Hi, here in this video you will learn **Perimeter**

Question: 7

Highlight the perimeter in the given image.

\boldsymbol{A}	n	e 1	.,	on	٠.
71	. 1 6	n c	"	C. I	

Perimeter is the _____ (outer / inner) boundary of the shape

<u>Question: 8</u>

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____ Question: 9 Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft. Answer: Perimeter = ____ | Breadth = ____ Shape of the floor is _____ and its perimeter formula is _____. Given: floor perimeter = _____, and breadth = _____. Therefore, length of the rectangular floor is ______. Hi, here in this video you will learn **Area** Question: 10 Find which of the shaded portion in the given shape represent it's area. Answer: Given figure is ______ in shape. Area is the _____ (inside/ outside/ boundary) of a shape. Question: 11 Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth. Answer:

The garden is in shape. Length of garden is and breadth of garden is and	rden is
Formula for area of the shape =	
The area of garden $=$ $\underline{\hspace{1cm}}$ x $\underline{\hspace{1cm}}$ $=$ $\underline{\hspace{1cm}}$	cm^2
Question: 12	
Shade the possible dimension of the door whos	be area is $500 m^2$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\boxed{25 \ m \ \times \ 20 \ m}$

$\underline{Answer:}$

Door is _____ in shape. Area of the _____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25 \text{m} \times 25 \text{m}$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved				
Range Finding the range				
Chance of probability	Sample space in probability, Basis of probability			
Arithmetic mean, mode and median	Mean, Median and Mode			

Hi,	here	${\rm in}$	this	video	you	will	learn	Range
-----	------	------------	------	-------	-----	------	-------	-------

Question:	13

Answer:

The difference between highest value and lowest value is _____.

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}$, $Lowest value = \underline{\hspace{1cm}}$.

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 14

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20+51$$
 $\frac{-38-51}{2}$ $51+38$

$$\frac{-38-5}{2}$$

$$51 + 38$$

.....

.....

......

$$\frac{51+20}{2}$$

Answer:

Range = $_$

Arranging the data in ascending order, _____

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Question: 15

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of 5 =

Therefore.

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Basics of probability

$Question: \ 16$
Which of the following contains list of all possible outcomes.
Probability Sample space Sure events Impossible events
Answer:
Probability is the measure of (chance /number) of an events happenings. Sample space consists of (possible/ impossible) outcomes. Sure events always (occurs/don't occurs). Impossible events (occurs/ don't occurs). Therefore, contains list of possible outcomes.
Question: 17
Vrite the possible outcomes while spinning the given wheel.
250 100 5 1 500
$\underline{Answer:}$
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are ₹0, ₹10,
Question: 18
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls re taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or

Therefore, if two balls are taken out the	-				 ,
Hi, here in this video you will l	earn N	Iean, Mo	edian, N	/Iode	
Question: 19					
Find the mode of the following data: 5	5, 15, 23,	, 5, 32, 44,	72, 55, 6, 3	3, 5, 65, 45, 6	67, 24, 19 and 98.
Answer:					
Mode is the number that occurs Arranging the data in ascending order occurs most number o	<u> </u>				
Question: 20					
Which shape contains median of the g	iven data	a 3, 5, 6, 2,	7, 9, 6, 4	and 1	
Answer: Median is the(first/cen ascending or descending order. Arrange the given data in ascending or Central value of the given data is	rder :				
Question: 21					
Marks scored	100	90	80	70	
Number of students	4	5	2	1	
Mean = , Median = a	nd Mode	e =			
$\underline{Answer:}$					
Mean = — of all observation number of observation					
Here s sum of all observation = Therefore, mean = Arrange the data in ascending order : Here, median =, mod				tion =	

Hi, here in this video you will learn Basics of probability
Question: 22
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
$\underline{Answer:}$
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question:~23
Probability of sure events is (greater / smaller) than probability of impossible events.
$\underline{Answer:}$
Probability of sure event = $\underline{\hspace{1cm}}(0/\ 1/\ \text{any number})$. Probability of impossible event = $\underline{\hspace{1cm}}(0/\ 1/\ \text{any number})$. Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
Question:~24
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
$\underline{Answer:}$
Things Raju have (Yes/ No). Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)

Geometry

Topics to be Improved				
Right angle triangle and pythagoras property	Basics of Pythagoras property			
Types of triangle	Basics of types of triangle (sides)			
Related angles	Complementary angles			
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle			
Transversal angle made by transversal	Basics of Transversal angle			
Faces vertex and edges	Idenfication of faces, edges and vertices			
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles			
Angle sum property of triangle	Angle sum property of triangle			

Hi, here in this video you will learn Pythagoras property

<u>Question: 25</u>	
In a right angled triangle, square of thelegs.	= sum of the squares of the
Answer:	
Pythagoras theorem is only applicable for (hypotenuse/ legs). Pythagoras theorem states that	enuse/legs) and other two sides are called
Question: 26	
Find the hypotenuse of the triangle ABC if base is 12	m and altitude is 5 m.
Answer:	

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

 $= __ + ___$

Therefore, hypotenuse of the triangle is _____.

Question: 27

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? $_$ (yes/ no).

Given: breadth = _____, length of diagonal = _____

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn **Types of triangle**

Question: 28

Polygon with three sides is called as
Answer:
A polygon is a simple (open / closed) curve made up of only line segments. Polygon with three sides is called Draw a diagram of polygon with three sides :
Question:~29
Identify the types of triangles.
4 cm $3 cm$ $3 cm$ $3 cm$
5 cm $4 cm$ $3 cm$
Answer:
Triangle has sides.
• Triangle with all sides are equal is called triangle.
• Triangle with two sides of equal length is called triangle.
• Triangle with three sides of different length is called triangle.
Question: 30
A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be
Answer:
The shape of the park is The shapes has sides and this shape has sides of equal length. Given: length of sides of park is The possible length of third side is
Hi, here in this video you will learn Related Angles
Question: 31

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

- 1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example: 45° and 45°, _____, and ____.
- 2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

Question: 32

Shade the complementary angles.

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

$$85^{\circ}+95^{\circ}=$$
 _____ and this is _____ (a / not a) complementary angles.

$$45^{\circ} + 45^{\circ} =$$
 _____ and this is ____ angles.

$$6^{\circ} + 84^{\circ} =$$
 _____ and this is ____ angles.

$$73^{\circ} + 107^{\circ} =$$
 _____ and this is ____ angles.

$$36^{\circ} + 64^{\circ} =$$
 _____ and this is ____ angles.

$$90^{\circ}$$
 + 90° = ____ and this is ____ angles.

Question: 33

Find the complement and supplement of 15° and 90°

Answer:

One angle is $___$ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

One angle is $___$ (complements / supplements) to other angle, when sum of the two angles is equal to 180° .

Complement of
$$15^{\circ} = \underline{\hspace{1cm}}$$
,

Supplement of
$$15^{\circ} = \underline{\hspace{1cm}}$$
,

Complement of
$$90^{\circ} = \underline{\hspace{1cm}}$$
.

Supplement of
$$90^{\circ} = \underline{\hspace{1cm}}$$

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 34

Find the greatest distance to reach C from A in the given diagram.

.....

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

Side AC = _____

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 35

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 36

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = ____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____

Hi, here in this video you will learn Basics of Transversal angle

Question: 37

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 38

Find the transversal, alternate angles and corresponding angles in a given diagram.

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
\angle a and \angle g , \angle b and \angle h,	\angle a and \angle e, \angle b and \angle f,

Question: 39

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Basics of 3D model

A point at which two or more lines segments meet is called	(Vertex / edges / faces).
Answer:	((020027) 048007 140000).
has two end point (line/line segment/ray). Ais a point where two or more line segments meet((Vertex/ edges/ faces).
Mark the vertices in the diagram,	
_	
Question: 41	
Mark and find the number of vertices, edges and faces in a cube.	
Answer:	
Mark the vertex, edges and faces in a cube.	
Count the number of vertex, edges and faces in a cube.	
Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.	

How many vertices, edges and faces does dices have?

Answer:				
The shape of dice	is	 •		
Dices have	vertices,	edges and	faces.	
Hi, here in this	s video you w	ill learn Crit e	eria of congruence	
Question: 43				
Circle the groups t	hat contain cong	gruent images.		
Answer:				
(identical/non-iden	ntical) in shapes	and size.	they are	
Question: 44				
If the three sides o	f the triangle are	e equal to the co		other triangle, then two
Answer:				
			ongruent) if they are ide	ntical in shapes and size
			des of the triangle are _ the other triangle.	(equal/
			d the included angle of t	(one/two) angle between the other triangle.

3. In ASA Congruence criteria - (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

.....

......

Question: 45

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ____ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Angle sum property

C

Question: 46

Sum of the angles of triangle is ______.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 47

Which of the following triangle satisfy the angle sum property.

.....

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _____

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

In $\triangle PQR$, Sum of the angles = $\underline{\hspace{1cm}}$ = $\underline{\hspace{1cm}}$ = $\underline{\hspace{1cm}}$ = $\underline{\hspace{1cm}}$

In $\triangle KLM$, Sum of the angles = _____ = ____ = ____

In $\triangle XYZ$, Sum of the angles = ____ = ___ = ___

Therefore, the triangles that satisfy the angle sum property are = ______

Question: 48

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is _____

Let's consider the angles of triangle be 8x, ____ and ____

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Number system

Topics to be Improved				
Fractions Multiplication of fractions, Division of fraction				
Operations on rational numbers	Subtraction of rational numbers, Division of rational numbers			
Positive and negative rational numbers	Identification of positive rational numbers			
Exponents	Solving exponents			
Integers	Basics of integers			
Introduction to rational numbers	Basics of rational numbers			

Hi, here in this video you will learn Multiplication on fractions

Question: 49

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to $____$ (zero/one). Therefore, 2 can be written as $___$ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \frac{2}{\square} = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 50

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____ Fraction of students who are girls = _____

Number of girls $=$	×		=	
---------------------	---	--	---	--

Question: 51

Solve : $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is ____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn **Operation on rational numbers**

Question: 52

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

Question: 53

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$

Question: 54

Find the missing values in the given figure.

.....

Answer:

Given: $1 = \frac{7}{10} +$ ____ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} =$ _____

Therefore, result is _

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 55

Segregate positive and negative rational number.

- If both the numerator and the denominator of a rational number are _____ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

......

.....

......

Question: 56

 $\frac{-3}{4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a ____ number. Division of $\frac{-3}{-4} = \boxed{}$ and this ____ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 57

The product of a positive rational number and a negative rational number is _____ rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers:

Examples for negative rational numbers:

Positive rational number \times Negative rational number = $_$ \times $_$ = $_$ and this is ____ rational number

Hi, here in this video you will learn Operation on rational numbers

Question: 58

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor.

Here, dividend = and divisor = =

1		14	= .	1	\times	=	
5	•	15					

Question: 59

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of 0.6 =______,

when any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor. Here, dividend = ____ and divisor = ____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 60

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Exponents and power

Question: 61

Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itsel
to get the desired result.
Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $
10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{\underline{\hspace{1cm}}}$
Question: 62
Find the value of $(-2)^3$.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itsel
to get the desired result.
In this amonantial farms (2)3 has a name
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = \underline{\qquad} \times \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}$.
(-) —
Question: 63
(i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
(ii) k is raised to the power of 5 is $\underline{\hspace{1cm}}((k)^5 \text{ or } (5)^k)$.
((c) 10 10 10 10 10 10 F 0 11 0 10 10 10 ((v))
Answer:
Exponential form = $(Base)$ —
(i) Tenth power of 100: Base =, Power/Exponents =, exponential form =
(ii) k is raised to the power of 5 : Base =, Power/Exponent =,
exponential form $=$
Hi, here in this video you will learn Basics of integers
— In, here in this video you will learn Busies of integers
Question: 64
Highlight the ring that contains whole numbers.

A	~	-		_	n	
\boldsymbol{A}	n.	S1	"	е:1	r	۰

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are numbers. The numbers inside the middle ring are numbers.
The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as
Question: 65
Colour the frame of the box which contains the number $1,4$ and -10
Whole numbers
$\underline{Answer:}$
Whole number consists of $0,1,2,3,4,$. Negative number consists of Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
Question: 66
State whether the statement is true or false. Every positive number is an integer.
Answer:
Positive numbers are Integers consists of Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Division on fractions
Question: 67

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

10	
35	

.....

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 68

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

......

Question: 69

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Then the answer is _____

Hi, here in this video you will learn Basics of rational numbers

Question: 70

The numbers in the diagram represents_____.

......

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

Question: 71

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer), denominator is equal to _____ (zero/ one/ any integer other than zero).

Question: 72

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, _____ is/are rational number and _____ is/are not a rational number.

Comparing Quantities

Topics to be Improved				
Simple interest Calculation of simple interest				
Equivalent ratios	Basic of proportion			

Hi, here in this video you will learn $Simple\ Interest$

Question: 73

Match the following.

	Column A				
i	Principle(P)				
ii	Amount (A)				
iii	Rate (R)				
iv	Time period (T)				

Column B				
a	Interest calculated based on this			
b	Total sum you borrow			
С	Number of years			
d	Total sum with interest			

Answer:
Formula for calculating simple interest = Interest calculated based on Total sum you borrow is known as Number of years is Total sum with interest is
Question: 74
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.
Answer:
Given: Amount =, Principle =, Time period = If Amount and principle is given, then formula for calculating interest is Interest = =
Question: 75
The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.
Answer:
$Interest = \underline{\hspace{1cm}}, \ Time \ period = \underline{\hspace{1cm}}, \ Principal = \underline{\hspace{1cm}}.$

D	= <u>x 100</u>							
Rate of interest	Principal x	_						
Substituting values	s in the formula,							
	x 100							
Rate of interest :	$= \underline{\phantom{0000000000000000000000000000000000$	<u> </u>						
Rate of interest =								
Therefore, the rate	e of interest is		7 0					
Hi, here in this	s video you will l	learn Bas	ics of	prop	ortic	on		
Question: 76								
If a:b and c:d are	equivalent ratio, the	n it can be	expresse	ed as $_{-}$		_		
$\underline{Answer:}$								
\	rtion / ratio) is used express proportion is			(one_{i})	/two) e	equiva	lent rat	ios.
Question: 77								
	haded part to unsha							
ind the fatte of s	naded part to disina	aca part of	TI WIIG	5. 1110			- cqu	venerio :
	A							
					В			
$\underline{Answer:}$								
_	=, Unshade	-						
Ratio of shaded to Shaded part of B =	unshaded parts of A	A 18	Fract:	ional fo	orm =		·	
Unshaded part of I								
	unshaded parts of I	B is	_•					
${ m Fractional\ form}={ m Fraction\ form\ of\ A}$	 (equal/ no	ot equal) to	Fractio	n form	of B.			
lt a : b :: c : d is p	proportion, shade th	ie correct ex	pression	1				

Two equivalent ratio which are proportion, it can be written as a : b :: c : d or _____ = ____ (in fraction) .

First and fourth term are called _____ and second and third term are called _____.

In proportion, product of extreme terms is ____ (equal to/ not equal to) product of reconstruction.

In proportion, product of extreme terms is $___$ (equal to/ not equal to) product of middle terms.

Therefore, $a \times d = \underline{\hspace{1cm}}$, then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$

Algebra

Topics to be Improved					
Terms of an expression	Identification of terms in an expression				
Addition and subtraction of algebraic expressions	Like terms and Unlike terms				
subtraction of algebraic expressions	subtraction of algebraic expressions				
Monomials, binomials, trinomials and polynomials	Types of algebraic expression				
Basics of simple equation	Solving of simple equation				

Hi, here in this video you will learn Terms of an expression

Question: 79

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables		

Question: 80

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression $3x + 5$ is/are
The terms in the expression $12a$ is/are
The terms in the expression $4xy$ is/are The terms in the expression $12a + b + 1$ is/are
The terms in the expression $7m + 0$ is/are
Question: 81
Shade the outline of circle that contains the term of the given expression.
$6m^2 - 7mn + nl$
(m^2) $(7mn)$ $(6m^2)$ $(-7mn)$ (mn) (mn)
Answer:
In algebraic expression, (variables/ terms) are connected together with operations
of addition. Here,, are the terms of the given expression.
, and the torns of the given expression.
Hi, here in this video you will learn Addition on expression
Question: 82
Shade the like terms.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Answer:
Given terms are
Two or more term have (same/ different) variables is called like terms. Here, like terms are
Question: 83
Complete the expression $7r^2 + r \square - 2 \square = \underline{\qquad} r^2$
Answer:
(Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + _ -_{2})_{r^2} = _$$

Question: 84					
Sam have 3a chocolate	s and 9y icecream. I	Ram have 7	'a chocolates ar	d 5y icecrea	m.
(i) Total chocolates	Ram and Sam have	:			
(ii) How many icecre	ams Sam have more	than Ram	:	·	
Answer:					
<u> </u>					
	C	hocolates	Icecream		
	Sam				
	Ram				
· /	Ram and Sam have s chocolate + Sam's ams Sam have more	chocolates		=	_
Hi, here in this vio					
Answer:	rpressions a b c	alla b c	, i d		
The given two expressi The two terms will get The sum of two expres The answer is	added only if they	are	(Like/ Unlike)	terms.	
$\underline{Question:~86}\qquad \dots$					
		School A	A School	В	
	Number of boys	100b	250b		
	Number of girls	150g	200g		

(i) Total number of boys in school A and B is _____

Number of teachers

25t

45t

(ii)	Total	number	α f	etudente	in	school B is	
(11)	rotar	number	OI	students	Ш	SCHOOL D IS	

(iii) How many more teachers are there in school B than school A?

Answer:

- (i) Number of boys in school $A = \underline{\hspace{1cm}}$, Number of boys in school $B = \underline{\hspace{1cm}}$. Total number of boys in school A and school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.
- (ii) Number of boys in school $B = \underline{\hspace{1cm}},$ Number of girls in school $B = \underline{\hspace{1cm}}.$ Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$
- (iii) Number of teachers more in school B than school A = Teachers in school B Teachers in school A = $__$.

Question: 87

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

Answer:

The two terms will get added only if they are $___$ (like/unlike) terms.

Hi, here in this video you will learn **Types of expression**

Question: 88

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 89

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- $2. 8x^2 + 0$
- 3. 7xy + 4m

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

 $Question:\ 90$

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Answer:

The terms in expression $5m^2 + m + 0$ are _____.

Here, the expression has ______ terms and it is called a _____ expression.

.....

.....

.....

Hi, here in this video you will learn Solving an equation

Question: 91

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley ② is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 92

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

7 + 3 = -4

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} +3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 93

Arrange the terms in the descending order when the value of x is 2.

 $2x \qquad 5x \times 1 \qquad x+3 \qquad 2x-4 \qquad \frac{1}{2}x$

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\qquad} - 4 = \underline{\qquad}$$
 $\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, ____.