Multiplexing

Radhika Sukapuram

September 23, 2020

1 / 14

Radhika Sukapuram Lecture 10 September 23, 2020

Multiplexing

- For efficiency, the capacity of a data link is shared between multiple communicating stations. This is called multiplexing
- Common application: long-haul communications (20 to 50km or longer) - high capacity fiber, coaxial or microwave links
- Can carry large numbers of voice and data transmissions simultaneously using multiplexing

Multiplexer

- Increase in data rate \rightarrow low cost per kbps of transmission facility, transmitting and receiving equipment [given application, given distancel
- Most communicating devices require modest data support. For many terminal and personal computer applications that do not involve Web access or intensive graphics, a data rate of between 9600 bps and 64 kbps is generally adequate
- Similar statements apply to voice communications

Radhika Sukapuram Lecture 10

September 23, 2020

Types of multiplexing techniques

- frequency-division multiplexing (FDM) : used in _____
- time-division multiplexing

Question

Frequency-division multiplexing (FDM) is possible when useful bandwidth of the transmission medium _____ the required bandwidth of signals to be transmitted

- (A) is more than
- (B) is less than

Frequency-division multiplexing (FDM)

- Each signal is modulated onto a different carrier frequency
- the carrier frequencies are sufficiently separated (by guard bands) that the bandwidths of the signals do not significantly overlap
- See the picture: Each modulated signal requires a certain bandwidth centered on its carrier frequency, referred to as a channel.
- The composite signal transmitted across the medium is analog

Radhika Sukapuram Lecture 10 September 23, 2020 6 / 14

Frequency-division multiplexing (FDM)

- $m_i(t)$ may be analog or digital
- Each f_i is a sub-carrier
- Baseband: the band of frequencies of the signal delivered by the source and potentially used as a modulating signal
- $m_b(t)$: Baseband signal, by summing up the analog, modulated signals $s_i(t)$

Radhika Sukapuram Lecture 10 September 23, 2020 7 / 14

Spectrum: composite baseband modulating signal

- The spectrum of $m_i(t)$ is shifted to be centered on f_i
- f_i must be chosen so that the bandwidths of the various signals do not significantly overlap — otherwise it will be impossible to recover the original signals
- The composite signal may then be shifted as a whole to another carrier frequency by an additional modulation step
- This second modulation step need not use the same modulation technique as the first
- ullet Total bandwidth of the signal is B , where $B>\Sigma_{i=1}^n B_i$

Radhika Sukapuram Lecture 10 September 23, 2020 8 / 14

Question

The output of an FDM transmitter is

- (A) an analog signal
- (B) a digital signal
- (C) neither

Radhika Sukapuram

FDM receiver

ullet Each bandpass filter is centered on f_i and has a bandwidth B_i

Radhika Sukapuram Lecture 10 September 23, 2020 10 / 14

FDM of three voiceband signals

Two problems that FDM must cope with

- Cross-talk can be avoided by using guard bands (0-300 Hz and 3400-4000Hz)
- the spectra of signals produced by modems for voiceband transmission also fit well in this bandwidth
- Intermodulation noise the nonlinear effects of amplifiers on a signal in one channel could produce frequency components in other channels

North American and International FDM Carrier Standards

Number of Voice Channels	Bandwidth	Spectrum	AT&T	ITU-T
12	48 kHz	60–108 kHz	Group	Group
60	240 kHz	312-552 kHz	Supergroup	Supergroup
300	1.232 MHz	812–2044 kHz		Mastergroup
600	2.52 MHz	564–3084 kHz	Mastergroup	
900	3.872 MHz	8.516-12.388 MHz		Supermaster group
N×600			Mastergroup multiplex	
3,600	16.984 MHz	0.564-17.548 MHz	Jumbogroup	
10,800	57.442 MHz	3.124-60.566 MHz	Jumbogroup multiplex	

- 12 voice channels; 12*4 = 48 kHz; subcarriers from 64 to 108 kHZ in increments of 4kHz
- 5 group signals; 5*48=240 kHz; subcarriers from 420 to 612 kHz in increments of 48 kHz
- 10 supergroup signals (12*5*10=600 voice channels; 10*240 2.52 MHz;

Example

- The original voice or data signal may be modulated many times
- \bullet Original voice signal \to encoded using QPSK to form an analog voice signal
- ullet ightarrow modulate a 76-kHz carrier to form a component of a group signal
- ullet This group signal could then be used to modulate a 516-kHz carrier to form a component of a supergroup signal.

14 / 14

Radhika Sukapuram Lecture 10 September 23, 2020