MSMC-204: Design and Analysis of Algorithms

M.Sc. in Mathematics and Computing II-Semester Session 2024-25

LECTURE 2: by Dr. Supriya Chanda
- Asymptotic Analysis

Analyzing Algorithms

- Predict how your algorithm performs in practice
- By analyzing several candidate algorithms for a problem we can identify efficient ones
- Criteria:
 - Running time
 - Space usage
 - Cache I/O
 - Main memory I/O
 - Lines of codes

Asymptotic Analysis

- It is a technique of representing limiting behavior.
- It can be used to analyze the performance of an algorithm for some large data set.
- The asymptotic behavior of a function f(n) refers to the growth of f(n) as n gets large.
- We typically ignore small values of **n**, since we are usually interested in estimating how slow the program will be on large inputs.
- A good rule of thumb is that the slower the asymptotic growth rate, the better the algorithm. Though it's not always true.
- $f(n) = n^2 + 3n$

Asymptotic Notations

• used to write fastest and slowest possible running time for an algorithm. These are also referred to as 'best case' and 'worst case' scenarios respectively.

Why is Asymptotic Notation Important?

- 1. They give simple characteristics of an algorithm's efficiency.
- 2. They allow the comparisons of the performances of various algorithms.

Best/Average/Worst Case Analysis

- We looked at both 'best case' (input array was already sorted) and 'worst case' (input array was reverse sorted)
- In this course, we shall usually concentrate on worst-case running time
- Major reasons
 - Gives an upper bound on the running time for any input
 - For some algorithms, worst case occurs fairly often, e.g., searching
 - Average case is often roughly as bad as the worst case.

Order of Growth

- In analyzing running time for `insertion sort', we started with constants c_i to represent the cost of each statement
- Then we observed that they give more detail than we need and we discarded them
- We shall go ahead with more simplifying abstraction: Rate/Order of Growth
- For the function f(n) we care when n is large enough. When n is small, f(n) is small anyway
- The constant factors and lower order terms doesn't affect the growth of the function
- One algorithm is more efficient than another if its worst-case running time has a lower order of growth

Order of Growth

$$g_2(n) = 0.1 \times 2^n$$

$$g_1(n) = n^2$$

$$f_2(n) = 9n$$

$$f_1(n) = 3n$$

Omit the constant factors

When n is large enough, $g_1(n)$ will be much larger than $f_1(n)$ or $f_2(n)$ $f_1(n)$ and $f_2(n)$ will have similar growth trend

Order of Growth

$$g_1(n) = n^2$$

$$g_2(n) = n^2 - 6n$$

$$f(n) = 6n$$

Omit the lower-order terms

When n is large enough, $g_1(n)$ or $g_2(n)$ will still be much larger than f(n) $g_1(n)$ and $g_2(n)$ will have similar growth trend because -6n is much smaller compared to n^2

Big Oh, O: Asymptotic Upper Bound

- The notation O(n) is the formal way to express the upper bound of an algorithm's running time.
- It is the most commonly used notation.
- It measures the **worst case time complexity** or the longest amount of time an algorithm can possibly take to complete.

A function f(n) can be represented is the order of g(n) that is O(g(n)), if there exists a value of positive integer n as n_0 and a positive constant c such that –

 $f(n) \le c.g(n)$ for $n > n_0$ in all case

Hence, function g(n) is an upper bound for function f(n), as g(n) grows faster than f(n).

Big Oh, O: Asymptotic Upper Bound

Example

Let us consider a given function, $f(n) = 4.n^3 + 10.n^2 + 5.n + 1$ Considering $g(n) = n^3$,

 $f(n)\leqslant 5.g(n)$ for all the values of n>2

Hence, the complexity of f(n) can be represented as O(g(n)), i.e. $O(n^3)$

O (Big-O) [≤]

$$O(g(n)) = \{f(n): \exists c > 0, n_0 > 0, such that 0 \le f(n) \le cg(n) \forall n \ge n_0\}$$

•
$$f(n) = 3n^2, g(n) = n^2$$

- How can we show, f(n) = O(g(n))
- Let $c = 3, n_0 = 5$
- $cg(n) = 3n^2$, so $f(n) \le cg(n)$
- Similarly, let $c = 10, n_0 = 2$
- $cg(n) = 10n^2$, so $f(n) \le cg(n)$

- Always larger than $n^2 + 2n$
- $f(n) = n^2 + 2n$, $g(n) = n^3$; How can we show, f(n) = O(g(n))?
- Let c = 3, $n_0 = 10$; $cg(n) = 3n^3 = n^3 + 2n^3 = n(n^2 + 2n^2)$
- so $f(n) \le cg(n)$

Ω (Big- Ω) [\geq]

$$\Omega(g(n)) = \{f(n): \exists c > 0, n_0 > 0, such that 0 \le cg(n) \le f(n) \forall n \ge n_0\}$$

- Asymptotic lower bound
- can be of the same order, but can be larger as well

Θ (Big- theta) [=]

$$\Theta(g(n)) = \{f(n) : \exists c_1, c_2 > 0, n_0 > 0, s. t. 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \le c_2 g(n) \ \forall \ n \le c_3 g(n) \le f(n) \le c_3 g(n) \ \forall \ n \le c_3 g(n) \le f(n) \le c_3 g(n) \ \forall \ n \le c_3 g(n) \le f(n) \le c_3 g(n) \ \forall \ n \le$$

- After some constant n_0 Asymptotic tight bound
 - Must be of the same order
 - $f(n) = \Theta(g(n))$ means f(n) = O(g(n)) [\leq] and $f(n) = \Omega(g(n))$ [\geq], must be =

What This also Means

- O(g(n)): class of functions f(n) that grow no faster than g(n)
- $\Theta(g(n))$: class of functions f(n) that grow <u>at same rate</u> as g(n)
- $\Omega(g(n))$: class of functions f(n) that grow at least as fast as g(n)