CSC 475 Krency

Project 1

Robert Krency

Q1 For each of the following languages, find a grammar that generates it.

$$\begin{split} L &= \{a^n b^{2n} : n \geq 0\} \\ &\quad G = (\{S\}, \{a, b\}, S, \{\ S \ \to \ \lambda \mid aSbb\ \}) \end{split}$$

$$L &= \{a^m b^n : m \geq n \geq 0\} \\ &\quad G = (\{S\}, \{a, b\}, S, \{\ S \ \to \ \lambda \mid aS \mid aSb\ \}) \end{split}$$

Q2 Construct an accepting DFA for each of the requirements below:

All strings on $\{0,1\}$ containing 00 but not 000

All strings on $\{0,1\}$ with the leftmost symbol differing from the rightmost one

Q3 Equivalent DFA

Q4 Prove that language $L=\{a^n:n\geq 1\}\cup\{b^ma^k:m\geq 2,k\geq 0\}$

As the following DFA accepts language L, it is therefore regular.

 $\mathbf{Q5}$

Find a regular expression for the set $\{a^nb^m:n\geq 3,m \text{ is even}\}$

$$aaa (a)^* (bb)^*$$

Give a regular expression for language on $\Sigma = \{a, b, c\}$: all strings containing exactly one a.

$$(b+c)^* \ a \ (b+c)^*$$

Q2 A DFA with both of the criteria, because I misread the question at first:

Just thought I'd leave this in because I had already completed it.

