Compacité dans $H^{1/2}(\Gamma)$ pour l'opérateur régulier dans la méthode SCSD.

Martin AVERSENG

January 25, 2017

Soit Ω un domaine (ouvert connexe) borné de \mathbb{R}^n (n=2 ou 3) lipschitzien, c'est à dire qui est localement situé sous le graphe d'une fonction lipschitzienne. On note Γ sa frontière. On rappelle que

- L'injection canonique $H^2(\Omega) \subset H^1(\Omega)$ est compacte
- L'espace $H^{1/2}(\Gamma)$ (une définition des espaces de Sobolev au bort d'un domaine borné est donnée dans [2, Chapitre 1, p. 20]) a pour dual l'espace $H^{-1/2}(\Gamma)$.
- L'application trace, notée γ , est l'unique extension continue à $H^1(\Omega)$ de l'application de restriction des fonctions régulières au bord. C'est une surjection de $H^1(\Omega)$ dans $H^{1/2}(\Gamma)$.

On introduit l'opérateur classique de simple couche S (cf. [3, Chapitre 3, page 113]) qui associe à toute fonction $q \in C^0(\Gamma)$ la fonction Sq définie pour $x \notin \Gamma$ de la manière suivante

$$Sq(x) = \int_{\Gamma} E(x-y)q(y)dy$$

Et définie sur Γ par continuité, où E est la solution fondamentale de l'équation de Helmholtz qui satisfait la condition de radiation de Sommerfield choisie avec la convention +i, c'est-à-dire

$$E(x) = \frac{e^{ik|x|}}{4\pi|x|}.$$

D'après le théorème 3.4.1 de la même référence (p. 142), l'opérateur $\gamma \circ S$ s'étend par densité de manière unique en un isomorphisme de $H^{-1/2}(\Gamma)$ sur $H^{1/2}(\Gamma)$, dès lors que $-k^2$ n'est pas une valeur propre du Laplacien sur Ω . Dans [1] est introduite une méthode de décomposition de l'opérateur de simple couche précédent sous la forme

$$S = S_0 + R$$

Où S_0 sont deux opérateurs de convolution sur Γ , donc qui associent à une fonction u de $H^{-1/2}(\Gamma)$ une fonction de la forme

$$u \mapsto \int_{\Gamma} K(x-y)u(y)dy,$$

Où l'intégrale est définie par densité de même que S. Les propriétés du noyau K dans chaque cas sont :

- Support compact pour l'opérateur S_0 . On l'appelle ainsi l'opérateur de champ proche.
- Régularité C^{∞} sur \mathbb{R}^n pour l'opérateur R. On l'appelle ainsi l'opérateur régulier.

Nous allons montrer que dans ces conditions, l'opérateur R est une perturbation compacte de l'opérateur S_0 . L'intérêt de ce résultat tient au fait que dans les méthodes numériques, on s'attend à ce que l'opérateur $S_h S_{0,h}^{-1} = Id + R_h S_{0,h}^{-1}$ (où l'indice h signifie formellement ici que l'on parle des version discrétisées) ait un conditionnement indépendant de la taille h du maillage, puisqu'il sera une perturbation compacte de l'identité.

On considère une suite bornée u_n sur $H^{-1/2}(\Gamma)$, dont on cherche à extraire une sous-suite telle que $\gamma \circ Ru_n$ converge dans $H^{1/2}$. Le raisonnement est le suivant :

- R est continue de $H^{-1/2}(\Gamma)$ dans $H^m(\Omega)$ pour tout $m \in \mathbb{N}$. Donc Ru_n est bornée dans $H^m(\Omega)$.
- Les injections compactes de Sobolev permettent d'extraire de Ru_n une sous-suite convergente dans $H^1(\Omega)$.
- La continuité de l'application trace implique le résultat.

La seule affirmation méritant démonstration est la première :

Lemma. Pour tout $m \in \mathbb{N}$, R est continue de $H^{-1/2}(\Gamma)$ dans $H^m(\Omega)$.

Proof. On note K le noyau intégral de l'opérateur R. Par hypothèse, K est de classe C^{∞} sur \mathbb{R}^n . Soit $u \in H^{-1/2}(\Gamma)$, soit v = Ru. Observons que les dérivées de v sont données par

$$\partial^{\alpha} v = \int_{\Gamma} \partial^{\alpha} K(x - y) u(y) d\sigma(y).$$

Pour tout $x \in \Omega$, la fonction $G_x : y \in \Omega \mapsto \partial^{\alpha} K(x-y)$ est dans $H^1(\Omega)$. C'est évident car Ω est borné et K est C^{∞} . Sa restriction à Γ est donc dans $H^{1/2}(\Gamma)$, par le théorème de trace. On en déduit, par définition de $H^{-1/2}(\Gamma)$:

$$|\partial^{\alpha} v| \le ||G_x||_{H^{1/2}(\Gamma)} ||u||_{H^{-1/2}(\Gamma)}$$

Enfin, par application du théorème de trace, il existe une constante C telle que

$$\|G_x\|_{H^{1/2}(\Gamma)} \le C \|G_x\|_{H^1(\Omega)} \le C\sqrt{|\Omega|}\sqrt{\|G\|_{\infty}^2 + \|\nabla G\|_{\infty}^2}$$

On en déduit que $\partial^{\alpha} v \in L^2(\Omega)$ et

$$\|\partial^{\alpha} v\|_{L^{2}(\Omega)} \le C |\Omega| \sqrt{\|G\|_{\infty}^{2} + \|\nabla G\|_{\infty}^{2}} \|u\|_{H^{-1/2}(\Gamma)}$$

D'où la continuité annoncée.

References

- [1] François Alouges and Matthieu Aussal. The sparse cardinal sine decomposition and its application for fast numerical convolution. *Numerical Algorithms*, 70(2):427–448, 2015.
- [2] Pierre Grisvard. Elliptic problems in nonsmooth domains. SIAM, 2011.
- [3] Jean-Claude Nédélec. Acoustic and electromagnetic equations: integral representations for harmonic problems, volume 144. Springer Science & Business Media, 2001.