chngcntr

9 Alg. de Horner: Polynomial evaluation

Consider

$$p(x) = \sum_{i=0}^{n} a_i x^i$$

We wish to compute p(k) for a given $k \in \mathbb{R}$ minimizing the number of operations. Directly computing $a_0 + a_1k_1 + \ldots$ leads to n sums. The ith term requires computing k^i , which means i product operations, for a totall of $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ products. The total number of operations is then

$$\Theta = n + n(n+1)/2$$

The associated complexity is $O(n^2)$.

Horner's method consists of re-writing p(x) so that the number of products is reduced. One writes

$$p(x) = a_0 + xb_0$$

where $b_{n-1} = a_n$ and for $0 \le i < n-1$:

$$b_{i-1} = a_i + xb_i$$

Let $p(x) = 3 + 5x - 4x^2 + 0x^3 + 6x^4$, giving n = 4. Then $b_3 = 6$ and

$$b_2 = a_3 + xb_3 = 6x,$$
 $b_1 = a_2 + xb_2 = -4 + x(6x),$
 $b_0 = a_1 + xb_1 = 5 + x(-4 + x(6x))$

This finally gives

$$p(x) = 3 + xb_0 = 3 + x(5 + x(-4 + x(6x)))$$

Here, one must perform n sums again but only n products. Thus, there are $\Theta = n + n = 2n$ operations, giving a complexity of O(n) (in the operation space). See the algorithm below:

input
$$n$$
; a_i , $i = 0, ..., n$; x

$$b_{n-1} \leftarrow a_n$$
for $i = n - 2$ to $i = 0$

$$b_i = a_{i+1} + x * b_{i+1}$$
od
$$y \leftarrow a_0 + x * b_0$$
return y

It is easy to see in this code that the **for** loop performs n-1 iterations, in each of which a single sum and a single product are computed. The nth sum and nth product are performed in the computation of y, the final result.

A more polished version includes the last computation (the one in the assignment of y) within the loop and makes no use of indexes:

input
$$n$$
; a_i , $i = 0, ..., n$; x
 $b \leftarrow a_n$
for $i = n - 2$ to $i = -1$
 $b = a_{i+1} + x * b$
od
return b

In Python,

```
def horner(coefs, x):
    n = len(coefs)-1
    b = coefs[n]

for i in reversed(range(-1, n-1)):
    b = coefs[i+1] + x*b

return b
```

It is trivial to adapt the code so that it returns the coefficients b_0, \ldots, b_{n-1} and not the final result, if needed.

10 Error

Let r, \overline{r} be two real numbers s.t. the latter is an approximation of the first. We define the **error** of the approximation to be $r - \hat{r}$, and

$$\Delta r = |r - \overline{r}|, \qquad \delta r = \frac{\Delta r}{|r|}$$

With r unknown the strategy is to work with a known bound of r.

11 Non-linear equations

The general problem is to find members of the set \mathcal{R}_f of roots of $f \in \mathbb{R} \to \mathbb{R}$. The numerical strategy is to iteratively approximate some $r \in \mathcal{R}_f$ until some pre-established threshold in the error of approximation is met.

More formally, the numerical strategy produces a sequence $\{x_k\}_{k\in\mathbb{N}}$ which satisfies

- $\lim_{k\to\infty} \{x_k\} = r$ for some $r \in \mathcal{R}_f$
- Either $e(x_k) < e(x_{k-1})$ or, more strongly, $\lim_{k\to\infty} e(x_k) = 0$, where $e(x_k)$ is some appropriate measure of the error of approximation.

11.1 Bisection

A very simple procedure: if a root exists in [a, b], it iteratively shrinks [a, b] in halves (keeping the halves which contain the root) until the interval is of sufficiently small length.

Theorem 1 (Intermediate value). If f is continuous in [a, b] and f(a)f(b) < 0, then $\exists r \in \mathcal{R}_f$ s.t. $r \in [a, b]$.

Assume f is continuous. A root exists in [a, b] if f(a)f(b) < 0 (**Theorem 1**). If that is the case, the midpoint (a + b)/2 is taken as the approximation x_0 . It is also trivial to observe that x_0 is at most at a distance of (b - a)/2 from the real root, so $e_0 = |x_0 - r| \le (b - a)/2$.

If $f(x_0) = 0$ the procedure must end because a root was found. Otherwise, sufficies to find which half of the interval contains a root computing f(a)f(c) and, if needed, f(c)f(b).

The iterations may stop after reaching a maximum number of steps, when |f(c)| is sufficiently close to zero, or when the error bound $|e_k| \le (b_k - a_k)/2$ (where $[a_k, b_k]$ is the interval of this iteration) is sufficiently small.

(!) The algorithm not always converges. Take f(x) = 1/x. Clearly, it has no root. Yet setting a = -1, b = 1 in the initial iteration falsely passes the test. (The problem obviously is that f is not continuous in [-1, 1].) If one sets

```
Input : a, b, \delta, M, f
Output : Tupla de la forma: (r, \cot a \operatorname{error})
f_a \leftarrow f(a)
f_b \leftarrow f(b)
if f_a * f_b > 0
      return?
fi
for i = 1 to i = M do
      c \leftarrow a + (b - a)/2
      f_c \leftarrow f(c)
      if f_c = 0 then
              return (c, 0)
      \epsilon = \frac{b-a}{2}
      if \epsilon < \delta then
             break
      if f_a * f_c < 0 then
             b \leftarrow c
             f_b = f(b)
      else
             a \leftarrow c
             f_a = f(a)
      fi
od
return (c, \epsilon)
```

```
def bisection(f : callable, a : float, b : float, delta : float, M : int):
  s, e = f(a), f(b) # function values at (s)tart, (e)nd of interval
  if s*e > 0:
    raise ValueError("Interval [a, b] contains no root.")
  for i in range(M):
    c = a + (b-a)/2
    m = f(c) \# value of f at (m)idpoint
    if m == 0:
      return c, 0
    e = (b-a)/2
    if e < delta:</pre>
      return c, e
    if s*m < 0:
      b = c
      e = f(b)
    else:
      a = c
      s = f(a)
  return c, e
```

Theorem 2. If $\{[a_i, b_i]\}_{i=0}^{\infty}$ are the intervals generated by the bisection method on iterations i = 0, 1, ..., then:

1. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$ is a member of \mathcal{R}_f .

2. If
$$c_n = \frac{1}{2}(a_n + b_n)$$
, $r = \lim_{n \to \infty} c_n$, then $|r - c_n| \le \frac{1}{2^{n+1}}(b_0 - a_0)$

Proof. (1) It is clear that $a_i \le a_{i+1}$ and $b_i \ge b_{i+1}$, since the interval on each iteration shrinks in one direction.

 $\therefore a_n, b_n$ are monotonous.

But clearly a_n is bounded by b_0 and b_n is bounded by a_0 .

- $\therefore a_n, b_n$ are monotonous and bounded.
- :. Their limits exist.

It is also clear that the interval shrinks to half its size on each iteration:

$$b_n - a_n = \frac{1}{2}(b_{n-1} - a_{n-1}), \qquad n \ge 1$$
 (1)

By recurrence on (1),

$$b_n - a_n = \frac{1}{2^n}(b_0 - a_0), \qquad n \ge 0$$
 (2)

Then

$$\lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} \frac{1}{2^n} (b_0 - a_0) = 0$$
 (3)

 $\therefore \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n.$

Since the limit of a_n , b_n exists and f is by assumption continuous, the composition limit theorem applies and:

$$\lim_{n \to \infty} (f(a_n) \cdot f(b_n))$$

$$= \lim_{n \to \infty} f(a_n) \cdot \lim_{n \to \infty} f(b_n)$$

$$= f\left(\lim_{n \to \infty} a_n\right) \cdot f\left(\lim_{n \to \infty} b_n\right)$$

$$= [f(r)]^2$$
{Product of limits}
$$\left\{r = \lim_{n \to \infty} a_n\right\}$$
(4)

The invariant of the algorithm is $f(a_n)f(b_n) < 0$. But due to the last result,

$$\lim_{n \to \infty} f(a_n) f(b_n) \le 0 \iff [f(r)]^2 \le 0 \iff f(r) = 0$$

- $\therefore r = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ is a root.
- (2) Follows directly from result (2)

$$|r - c_n| = \left| r - \frac{1}{2} (b_n - a_n) \right|$$

$$\leq \left| \frac{1}{2} (b_n - a_n) \right|$$

$$= \left| \frac{1}{2^{n+1}} (b_0 - a_0) \right|$$
 {Result (2)}

11.2 Newton's method

Taylor: repasito. El desarrollo de una f suficientemente diferenciable alrededor de un punto r espa

$$f(x) = f(r) + f'(r)(x - r) + \frac{f''(r)}{2!}(x - r)^2 + \ldots + \frac{f^{(n)}(r)}{n!}(x - r)^n + R_n(x)$$

donde $R_n(x)$ es el resto.

Usualmente, queremos tomar r = x + h, donde x es una aproximación de r y h el error de aproximación. Entonces es provechoso expandir f(r) alreededor de su estimación x:

$$f(r) = f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \ldots + \frac{f^{(n)}(x)}{n!}h^n + R_n(h)$$

Esto es **recontra** útil porque nos dice cuánto se diferencia f(r) de nuestra aproximación f(x) (pues expresa f(r) como f(x) más algo).

Usualmente r, h son desconocidos pero h puede acotarse.

El resto R_n del teorema puede expresarse como sigue:

$$f(r) = f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \ldots + \frac{f^{(n)}(x)}{n!}h^n + \frac{f^{(n+1)}(\zeta)}{(k+1)!}h^{n+1}$$

para algún $\zeta \in (x, h)$. Esta forma de expresar el error de aproximación con el polinomio de Taylor se usará mucho.

Assume $r \in \mathcal{R}_f$ and r = x + h, with x an approximation of r and h its error. Assume f'' exists and is continuous in some I around x s.t. $r \in I$. What we explained on Taylor expansions around a point gives:

$$0 = f(r) = f(x+h) = f(x) + f'(x)h + O(h^2)$$

If x is sufficiently close to r, h is small and h^2 even smaller, so that $O(h^2)$ is unconsiderable:

$$0 \approx f(x) + hf'(x)$$

Therefore,

$$h \approx -\frac{f(x)}{f'(x)} \tag{1}$$

From this follows that r = x + h is approximated by

$$r \approx x - \frac{f(x)}{f'(x)}$$

Since the approximation in (5) truncated the terms of $O(h^2)$ complexity, this new approximation is closer to r than x originally was. In other words, x - f(x)/f'(x) is a better approximation to r than x itself.

Thus, if x_0 is an original approximation, we can define

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \tag{2}$$

to produce a sequence of approximations. This is the fundamental idea of Newton's method.

Input:
$$x_0, M, \delta, \epsilon$$
;
 $v \leftarrow f(x_0)$
if $|v| < \epsilon$ then return x_0 fi
for $k = 1$ to $k = M$ do

$$x_1 \leftarrow x_0 - \frac{v}{f'(x_0)}$$

$$v \leftarrow f(x_1)$$
if $|x_1 - x_0| < \delta \lor v < \epsilon$ then return x_1
fi

$$x_0 \leftarrow x_1$$
od

The predicate $|x_1 - x_0| < \delta$ checks whether our algorithm is adjusting x in a negligible degree. If that is the case, we should stop.

Theorem 3. If f'' continuous around $r \in \mathcal{R}_f$ and $f'(r) \neq 0$, then there is some $\delta > 0$ s.t. if $|r - x_0| \leq \delta$, then:

- $|r x_n| \le \delta$ for all $n \ge 1$.
- $\{x_n\}$ converges to r
- The convergence is quadratic, i.e. there is a constant $c(\delta)$ and a natural N s.t. $|r x_{n+1}| \le c |r x_n|^2$ for all $n \ge N$.

Proof. Let $e_n = r - x_n$ be the error in the *n*th approximation. Assume f'' is continuous and f(r) = 0, $f'(r) \neq 0$. Then

$$e_{n+1} = r - x_{n+1}$$

$$= r - \left(x_n - \frac{f(x_n)}{f'(x_n)}\right)$$

$$= r - x_n + \frac{f(x_n)}{f'(x_n)}$$

$$= \frac{e_n f'(x_n) + f(x_n)}{f'(x_n)}$$
(3)

Thus, the error at any given iteration is a function of the error at the previous iteration. Now consider the expansion of f(r) as

$$f(r) = f(x_n - e_n) = f(x_n) + e_n f'(x_n) + \frac{e_n^2 f''(\zeta_n)}{2}$$
(4)

for ζ_n between x_n and r. This equation gives

$$e_n f'(x_n) + f(x_n) = -\frac{1}{2} f''(\zeta_n) e_n^2$$
 (5)

The expression in (5) is the numerator in (3), whereby we obtain via substitution:

$$e_{n+1} = -\frac{1}{2} \frac{f''(\zeta_n) e_n^2}{f'(x_n)} \tag{6}$$

Equation (6) ensures that the error scales quadratically. Now we wish to bound the error expression in (6). To bound e_{n+1} , we take $\delta > 0$ to define a neighbourhood of length δ around r. For any x in this neighbourhood, (6) reaches its maximum when the numerator is maximized and the denominator is minimized:

$$c(\delta) = \frac{1}{2} \frac{\max_{|x-r| \le \delta} |f''(x)|}{\min_{|x-r| \le \delta} |f'(x)|}$$

In other words, $c(\delta)$ is the maximum value which e_{n+1} can take if ζ_n, x_n are assumed to belong to the neighbourhood. Now we make two assumptions:

- 1. x_0 belongs to the neighbourhood, i.e. $|x_0 r| \le \delta$
- 2. δ is sufficiently small so that $\rho := \delta c(\delta) < 1$.

Note that, since ζ_0 is between x_0 and r, assumption (1) ensures that ζ_0 is also in the neighbourhood, i.e. $|r - \zeta_0| \le \delta$. Then we have:

$$|e_0| = \frac{1}{2} |f''(\zeta_0)/f'(x_0)| \le c(\delta)$$

Then:

$$|x_{1} - r| = |e_{1}|$$

$$= \left| e_{0}^{2} \cdot \frac{1}{2} f''(\zeta_{0}) / f'(x_{0}) \right|$$

$$\leq |e_{0}^{2}|c(\delta) \qquad \left\{ \frac{1}{2} f''(\zeta_{0}) / f'(x_{0}) \leq c(\delta) \right\}$$

$$\leq |e_{0}|\delta c(\delta) \qquad \{|e_{0}| \leq \delta\}$$

$$= |e_{0}| \varrho \qquad \{\varrho = \delta c(\delta)\}$$

$$\leq |e_{0}| \qquad \{\varrho < 1\}$$

 $|e_1| < |e_0| \le \delta$, which means the error decreases. This argument may be repeated inductively, giving:

$$|e_1| \le \varrho |e_0|$$

$$|e_2| \le \varrho |e_1| \le \varrho^2 |e_0|$$

$$|e_3| \le \varrho |e_2| \le \varrho^3 |e_0|$$

$$\vdots$$

In general, $|e_n| \le \varrho^n |e_0|$. And since $0 \le \varrho < 1$, we have $\varrho^n \to 0$ when $n \to \infty$, entailing that $|e_n| \to 0$ when $n \to \infty$.

Theorem 4. If f'' is continuous in \mathbb{R} , and if f is increasing, convex, and has a root, then said root is unique and Newton's method converges to it from any starting point.

Recall that f is convex if f''(x) > 0 for all x. Graphically, it is convex if the line connecting two arbitrary points of f lies above the curve of f between those two points.

11.3 Secant method

In Netwon's method,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

The function of interest is f. We cannot escape computing $f(x_n)$, but it would be desirable to avoid the computation of $f'(x_n)$, which may potentially be expensive. Since

$$f'(x) = \lim_{h \to x} \frac{f(x) - f(h)}{x - h}$$

it is natural to suggest

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$
 (1)

Graphically, this means we are not using the line tangent to the point $(x_n, f(x_n))$ but the line secant to the points $(x_n, f(x_n))$ and $(x_{n-1}, f(x_{n-1}))$. The point x_{n+1} is then the value of x where this secant line has a root.

11.4 Fixed point iteration

The key observation is this: if $r \in \mathcal{R}_f$, then g(x) = x - k f(x) has r as fixed point, for any $k \in \mathbb{R}$. Inversely, if g has a fixed point in r, then $r \in \mathcal{R}_f$.

Theorem 5. (1) Let $g \in C[a, b]$ and assume $g(x) \in [a, b]$ for all $x \in [a, b]$. Then there is a fixed point of g in [a, b].

(2) If, on top of previous conditions, g is differentiable in (a, b) and there is some k < 1 s.t. $|g'(x)| \le k$ for all $x \in (a, b)$, then the fixed point referred in (1) is unique.

Theorem 6 (Mean value theorem). Let $f : [a, b] \to \mathbb{R}$ continuous and differentiable on (a, b) with a < b. Then there is some $c \in (a, b)$ s.t.

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

The interpretation is simple: consider the line secant to f on a, b. The theorem ensures that there is some point c s.t. the line tangent to c is parallel to said secant (equal slopes).

Proof. (1) If a or b are fixed points the proof is done so assume otherwise. Since $g(x) \in [a, b]$, we have g(a) > a and g(b) < b.

Take $\varphi(x) = g(x) - x$, which is continuous and defined in [a, b]. Then

$$\varphi(a) = g(a) - a > 0, \qquad \varphi(b) = g(b) - b < 0$$

Then $\varphi(a)\varphi(b) < 0$. Then, by the intermediate value theorem, φ has a root in (a,b). In otherwords, there is at least one p s.t.

$$\varphi(p) = g(p) - p = 0$$

g(p) = p is a fixed point of g.

(2) Assume two distinct fixed points p, q exist in [a, b]. The mean value theorem ensures the existence of some ζ between p, q (and thus in [a, b]) s.t.t

$$g'(\zeta) = \frac{g(a) - g(b)}{a - b} \iff g'(\zeta)(a - b) = g(a) - g(b) \tag{1}$$

By hypothesis, $|g'(x)| \le k < 1$. Since p, q are assumed to be fixed points, equation (1) gives:

$$|p-q| = |g(p) - g(q)|$$

$$= |g'(\zeta)| |p-q|$$

$$\leq k |p-q| < |p-q|$$

But this is absurd. The contradiction arises from assuming p, q to be distinct. Therefore, the fixed point is unique.

The fixed point algorithm begins with an approximation p_0 . Then,

$$p_n = g(p_{n-1})$$

If g continuous and the sequence converges, then it converges to a fixed point, since:

$$p := \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p)$$

Input:
$$p, M, \delta$$

$$p_{\text{previous}} = p$$
for $i = 1$ to $i = M$ do
$$p \leftarrow g(p)$$
if $|p - p_{\text{previous}}| < \delta$ then
return p
fi
$$p_{\text{previous}} = p$$
od
return p

Theorem 7. Let $g \in C[a, b]$ be a self-map of [a, b] differentiable in (a, b). Assume there is a constant 0 < k < 1 s.t. $|g'(x)| \le k$ for all $x \in (a, b)$.

For all $p_0 \in [a, b]$, the sequence $p_n = g(p_{n-1})$ converges to the unique f ixed point p in (a, b).

Proof. The mean value theorem ensures that

$$|p_n - p| = |g(p_{n-1}) - g(p)|$$

$$= |g'(\zeta_n)||(p_{n-1} - p)|$$

$$\le k |p_{n-1} - p|$$

with $\zeta_n \in (a, b)$. More succintly, with $e_n := p_n - p$,

$$|e_n| \le k |e_{n-1}| \le k |e_{n-2}| \le \ldots \le k |e_0|$$

By recurrence,

$$|e_n| \leq k^n |e_0|$$

Since 0 < k < 1, $k^n \to 0$ when $n \to \infty$, which entails $|e_n| \to 0$ when $n \to \infty$. It follows that $\{p_n\} \to p$ when $n \to \infty$.

Now let us consider the error of this method. Take $p_n = p + e_n$ and consider the Taylor expanssion of g around p evaluated at $p_n = p + e_n$:

$$g(p_n) = g(p + e_n) = \sum_{i=1}^{m-1} \frac{g^{(i)}(p)}{i!} e_n^i + \frac{f^{(m)}(\zeta_n)}{(n+1)!} e_n^m$$
 (2)

See that in (2), n corresponds to the iteration we are dealing with, and thus ζ_n and e_n depend on it. On the contrary, m is the degree to which we expand the series of g around p evaluated at p_n . We also assume that ζ_n lies between p_n and p.

By definition, $g(p_n) = p_{n+1}$ so (2) is nothing but an expression for this value. Assume $g^{(k)}(p) = 0$ for k = 1, 2, ..., m-1, but $g^{(m)}(p) \neq 0$. Then

$$e_{n+1} = p_{n+1} - p$$

$$= g(p_n) - g(p)$$

$$= \frac{g^{(m)}(\zeta_n)}{m!} e_n^m$$

More succintly,

$$e_{n+1} = \frac{g^{(m)}(\zeta_n)}{m!} e_n^m$$

Then

$$\lim_{n\to\infty} \left| \frac{e_{n+1}}{e_n^m} \right| = \frac{|g^m(p)|}{m!}$$

which is a constant. In conclusion, if the derivatives of g are null in p up to the order m-1, the method as an order of convergence of at least m. Three results follow from this fact.