Ústav fyzikální elektroniky Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Teodor Duraković Naměřeno: 6. března 2024

Obor: F Skupina: St 8:00 Testováno:

Úloha č. 2: Měření odporu rezistoru

 $T=20.4~^{\circ}\mathrm{C}$ $p=99\,000~\mathrm{Pa}$

 $\varphi = 42.3 \%$

1. Zadání

Zjistit odpor dvou rezistorů a voltampérovou charakteristiku žárovky dvěma různými metodami zapojení měřících přístrojů.

2. Postup, metody měření

Napětí měříme přístrojem Keysight U3402A, proud přístrojem Metex M-3850. Kromě samotného změřeného odporu, toto praktikum slouží i k experimentálnímu potvrzení pravidel, kdy jednotlivé metody použít.

	Rozsah	rozlišení	$p \check{r} e s nost \ [\% \ rdg + dg]$	vnitřní odpor
	$1.20000{ m V}$	$1.10^{-5}{ m V}$	$\pm 0.012 \% + 5$	$10.0\mathrm{M}\Omega$
$ ule{Voltmetr}$	$12.0000\mathrm{V}$	$1.10^{-4}{ m V}$	$\pm0.012\% + 5$	$11.1\mathrm{M}\Omega$
	$120.000\mathrm{V}$	$1.10^{-3} m V$	$\pm0.012\% + 5$	$10.1\mathrm{M}\Omega$
Ampérmetr	0.040 A	$1.10^{-5}\mathrm{A}$	$\pm 0.8 \% + 1$	5.3Ω
	$0.400{ m A}$	$1.10^{-4}{ m A}$	$\pm 0.8 \% + 1$	5.3Ω
	$20\mathrm{A}$	$1.10^{-2}\mathrm{A}$	$\pm 1.5 \% + 5$	5.3Ω

Parametry používaných rozsahů měřících přístrojů

2.1. Metody měření

Měřící přístroje můžeme zapojit dvěma způsoby. Voltmetr sériově a ampérmetr paralelně, nebo naopak:

Obrázek 2: Schémata zapojení dle metod A a B

Oba způsoby zapojení do měření přinášejí systematickou chybu. Při metodě A měří ampérmetr proud, který se následně větví - neměří tedy pouze proud protékající rezistorem. Při metodě B ampérmetr měří sice správně, chyba je však tentokrát způsobena voltmetrem - ten měří kromě napětí na rezistoru i napětí na ampérmetru.

Užitím vztahu

$$R = \frac{U_V}{I_A} \tag{1}$$

tedy dostaneme výsledek zatížený systematickou chybou.

2.1..1 Eliminace systematické chyby

Známe-li vnitřní odpory ampérmetru a voltmetru, můžeme při kalkulaci zmíněnou systematickou chybu odstranit, a to následujícím způsobem:

$$R = \frac{U_R}{I_R} = \frac{U_V}{I_A - I_V} = \frac{U_V}{I_A - \frac{U_V}{R_V}}$$
 (2)
$$R = \frac{U_V - R_A I_A}{I_A} = \frac{U_V}{I_A} - R_A$$
 (3) (a) Metoda A (b) Metoda B

2.2. Způsob kalkulace odporu

Měření odporu rezistorů jsou provedena každým způsobem jednou. Z těchto údajů je odpor vždy spočítán vztahem (1) i (2), resp. (3), v závislosti na způsobu zapojení měřících přístrojů.

3. Měření odporu rezistoru a kalkulace nejistot

Při měření odporu rezistoru byl voltmetr nastaven na rozsah 120 V, ampérmetr byl nastaven na rozsah 400, resp. 40 mA. Nejistotu spočítáme z odpovídajících řádků přesnosti. Získáváme tyto hodnoty:

		Metoc	da A	Metoda B	
ĺ		I [A]	U[V]	I[A]	U[V]
ĺ	R_1	0.1913 ± 0.0016	18.950 ± 0.007	0.1927 ± 0.0016	20.125 ± 0.007
ĺ	R_2	$3.10^{-5} \pm 1.10^{-5}$	19.780 ± 0.007	$3.10^{-5} \pm 1.10^{-5}$	20.135 ± 0.007

3.1. Nejistoty, výsledky

Zmíněné metody výpočtu provedeme v Pythonu s pomocí modulu uncertainties, použijeme následující kód:

```
from uncertainties import ufloat

R_V = ufloat(10.1*10**6, 0)

R_A = ufloat(5.3, 0)

U_1_A = ufloat(18.950, 0.007)

I_1_A = ufloat(0.1913, 0.0016)

#Metoda A, rezistor 1

U_2_A = ufloat(3*10**(-5), 1*10**(-5))

#Metoda A, rezistor 2

U_1_B = ufloat(20.125, 0.007)

I_1_B = ufloat(0.1927, 0.0016)

#Metoda A, rezistor 1

U_2_B = ufloat(0.1927, 0.0016)

#Metoda B, rezistor 1

U_2_B = ufloat(20.135, 0.007)

I_2_B = ufloat(20.135, 0.007)

I_2_B = ufloat(3*10**(-5), 1*10**(-5))

#Metoda B, rezistor 2

R_1_A = U_1_A / I_1_A

print("R1A = ",'{:.5u}'.format(R_1_A))

R_1_A_kor = U_1_A / (I_1_A - (U_1_A / R_V))

print("R1A - korekce = ", '{:.5u}'.format(R_1_A)

R_2_A = U_2_A / I_2_A

print("R2A = ",'{:.5u}'.format(R_2_A))

R_2_A_kor = U_2_A / (I_2_A - (U_2_A / R_V))

print("R2A = ",'{:.5u}'.format(R_1_B))

R_1_B = U_1_B / I_1_B

print("R1B = ",'{:.5u}'.format(R_1_B))

R_1_B_kor = (U_1_B / I_1_B) - R_A

print("R1B - korekce = ",'{:.5u}'.format(R_1_B_kor))

R_2_B = U_2_B / I_2_B

print("R2B = ",'{:.5u}'.format(R_2_B))

R_2_B_kor = (U_2_B / I_2_B)

print("R2B - korekce = ",'{:.5u}'.format(R_2_B_kor))
```

Získáváme tyto údaje:

	Meto	da A	Metoda B	
	Bez korekce	S korekcí	Bez korekce	S korekcí
$R_1[\Omega]$	99.059 ± 0.83	99.060 ± 0.83	104.437 ± 0.87	99.137 ± 0.87
$R_2[\Omega]$	$6,593.10^5 \pm 2,198.10^5$	$7,054.10^5 \pm 2,516.10^5$	$6,712.10^5 \pm 2,237.10^5$	$6,712.10^5 \pm 2,237.10^5$

Hodnoty zde schválně nepodléhají správnému zaokrouhlení výsledku, jelikož by při něm rozdíly v nejistotách jednotlivých metod nebyly viditelné. Z tabulky můžeme vidět, že nejmenší nejistota při správném počítání odporu (tj. s korekcí) je pro malý odpor u metody A a pro velký odpor u metody B.

4. Voltampérová charakteristika žárovky

Za předpokladu malého odporu žárovky jsme měřili pouze metodou A. Byla použita žárovka s maximálním napětím $12\,\mathrm{V}$, proto jsme neměřili dle návodu v rozsahu $0-24\,\mathrm{V}$ Po prvním měření jsme se navíc spočítáním odporu přesvědčili, že má skutečně malou hodnotu. Získali jsme následující údaje:

U[V]	I[A]
0.4946	0.01656
0.9095	0.02206
1.4250	0.02722
2.0715	0.03350
2.5850	0.03800
3.0215	0.0417
3.5695	0.0458
3.9656	0.0486
4.5535	0.0528
5.0393	0.0560
5.5102	0.0590
5.9950	0.0621
6.4340	0.0645
7.0160	0.0679
7.4430	0.0704
8.0039	0.0735
8.5157	0.0765
9.1447	0.0798
9.5600	0.0818
9.9250	0.0834
10.5165	0.0867
11.1100	0.0895
11.6760	0.0921

Ze kterých jsme vytvořili následující grafy:

Obrázek 4: Graf s vykreslenými hodnotami, závislost proudu a odporu na napětí

Obrázek 5: Graf s fitovanými polynomy 3. řádu pro R a I

Po vykreslení hodnot je na první pohled vidět, že u žárovky závislost proudu na napětí **není** lineární. Fitovat graf přímkou by tudíž smysl nemělo, polynom 3. řádu se od hodnot již odchyluje minimálně. Nelinearita je zapříčiněna růstem odporu žárovky s rostoucí teplotou wolframového vlákna.

5. Závěr

V dnešním praktiku jsme se dozvěděli, jak správně zapojit měřící přístroje v závislosti na odporu. Dále jsme si potvrdili, nemůžeme vždy předpokládat konstantní odpor -to zejména v případě, kdy se vodič značně ohřívá.