Python para Computação Numérica

André Nepomuceno

Universidade Federal Fluminense

18 de outubro de 2021

Roubando a Cena

Python é usado em diferentes áreas

- Ciência de Dados
- Inteligência Artificial
- Desenvolvimento Web
- Desenvolvimento de jogos
- Medicina e Farmacologia (AstraZeneca)
- Bioinformática
- Neurociência
- Física e Astronomia
- Business

Tópicos

Pacotes abordados neste minicurso:

- NumPy
- Matplotlib
- SciPy

Você pode executar os códigos online:

- Entre o site do Google Colab https://colab.research.google.com/notebooks/ intro.ipynb?utm_source=scs-index#recent=true
- Escolha a opção New Notebook
- Renomeie o arquivo de UntitledO para um nome apropriado.

NumPy Arrays

NumPy é o pacote padrão para programação científica em Python. O módulo NumPy implementa de forma eficiente operações matemáticas. Para usar os métodos do módulo, devemos importá-lo no início do programa:

import numpy as np

Os objetos do NumPy são **arrays**, que é um conjunto ordenado de valores, mas que possuem diferenças crucias em relação a listas:

- O número de elementos de um array é fixo. Não se pode adicionar ou remover itens de um array.
- Os elementos de um array são todos do mesmo tipo.
- Arrays podem ter n dimensões. Por exemplo, arrays com n=2 são matrizes.
- Operações com arrays são mais rápidas do que com listas.

Vamos ver diversas formas de criar um array.

Array a partir de listas

```
>>> a = np.array([1.,2,3.1])
>>> a
array([1., 2., 3.1])
>>> a[0]
1.0
>>> b = np.array([[1.,2.],[3.,4.]]) #2D array
>>> h
array([[1., 2.],
      [3., 4.11)
>>> b[0,0]
1.0
>>> b[1,0]
3.0
```

Array com todas as entradas iguais a zero

```
>>> np.zeros(5)
array([0., 0., 0., 0., 0.])
>>> np.zeros(5,dtype=int)
array([0, 0, 0, 0, 0])
```

Array com todas as entradas iguais a um

Array com todas as entradas iguais a um dado valor

Array como matrix identidade

Criando array com o método arange()

```
>>> np.arange(7)
array([0, 1, 2, 3, 4, 5, 6])
>>> np.arange(1.5,3.0,0.5)
array([1.5, 2. , 2.5])
>>> np.arange(6.5,0,-1)
array([6.5, 5.5, 4.5, 3.5, 2.5, 1.5, 0.5])
```

A sintaxe do método arange() é np.arange(inicio, fim, passo). Se apenas um número for dado, por exemplo, np.arange(N), será criado um array de zero até o valor N-1, com passo de um.

A função np.linspace (x, y, N) gera N números entre x e y, com y incluso.

Criando array com o método linspace()

```
>>> np.linspace(0,10,6)
array([ 0., 2., 4., 6., 8., 10.])
>>> z,dz = np.linspace(0.,2*np.pi,100,retstep=True)
>>> dz
0.06346651825433926
```

A opção retstep = True retorna o tamanho do passo.

Warning

Note a diferença entre arange() e linspace(). Use linspace() sempre que desejar um array de tamanho precisamente N.

Arrays - Atributos

Atributos de um array

```
>>> a = np.array([[1,0,1], [1,2,2]])
>>> a.shape
(2, 3)
>>> a.ndim
2
>>> a.size
6
>>> a.dtype
dtype('int64')
>>> a.nbytes
48
```

Operações com Arrays

O grande poder do NumPy reside na realização de operações em todos os elementos de um array sem a necessidade de *loops* explícitos. Esse tipo de operação é chamada **vetorização**, e é muito mais rápida que *for loops*.

Example

```
>>> a = np.array([1.3, 2.5, 10.1])
>>> b = np.array([9.3, 0.2, 1.2])
>>> a + b
array([10.6, 2.7, 11.3])
>>> a*b
array([12.09, 0.5, 12.12])
>>> a/b
array([0.13978495, 12.5, 8.41666667])
>>> a/b + 1
array([ 1.13978495, 13.5, 9.416666671)
>>> a**2
array([1.69, 6.25, 102.01])
```

Operações com Arrays

Produtos

```
>>> a = np.array( [1.,2.,3.])
>>> b = np.array( [2.,4.,5.])
>>> np.dot(a,b) # produto interno, (mesmo que a @ b)
25.0
>>> np.cross(a,b) #produto vetorial
array([-2., 1., 0.])
```

Operadores de comparação e lógica

```
>>> a = 2*np.linspace(1,6,6)
>>> a
array([ 2.,  4.,  6.,  8., 10., 12.])
>>> t = a > 10
>>> t
array([False, False, False, False, False, True])
```

Operações com Arrays

Exemplo: Vamos implementar o cálculo abaixo:

$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} + 2 \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ 0 & 2 \end{pmatrix}$$

```
Código
```

Arrays - Slicing

Muitas vezes precisamos obter um "subarray" a partir de um array, ou seja, um array com apenas alguns elementos do array original. Para isso, existe uma técnica chamada **slicing**. A sintaxe é:

[inicio:fim:passo]

onde "início" é o índice (posição) da primeira entrada desejada, e "fim" o índice do último elemento, que NÃO entrará no novo array. Esse comando vai gerar um array com entradas a[inicio], a[inicio + passo], a[inicio+2*passo],a[inicio+N*passo], com a posição "inicio+N*passo" < fim.

O array que retorna dessa operação **não** é um cópia, ou seja, não é um novo objeto.

Arrays - Slicing

Example

```
>>> a = np.linspace(1, 6, 6); a
array([1., 2., 3., 4., 5., 6.])
>>> a[:3] #mesmo que a[0:3]
array([1., 2., 3.])
>>> a[1:4:2]
array([2., 4.])
>>> a[1:]
array([2., 3., 4., 5., 6.])
>>> a[3::-2]
array([4., 2.])
>>> a[::-1]
array([6., 5., 4., 3., 2., 1.])
```

Importando Dados

Abrindo arquivos com NumPy

Para abrir arquivos de dados dos tipos .txt, .dat ou .csv, podemos usar o métodos **np.loadtxt()**. Os dados serão transformados num array. Como default, é assumido que os dados estão separados por espaços ou tabulação.

```
import numpy as np
data_set = np.loadtxt("millikan.txt")
data_x = data_set[:,0]
data_y = data_set[:,1]
```

Se os valores estiverem separados por um caractere, ele dever ser especificado usando a palavra chave delimiter.

```
data_set = np.loadtxt("millikan.csv",delimiter=',')
```

Importando Dados

A figura ilustra o exemplo acima.

Importando e Exportando Dados

Salvando dados em um arquivo.

Usando o método savetxt()

```
x = np.linspace(0,1,100)
y = 3*np.sin(x)**3 - np.sin(x)
np.savetxt("x_valores.dat",x)
np.savetxt("xy_values.dat",list(zip(x,y)),fmt="%8.3f")
```

A última linha salva os valores 'x' e 'y' num mesmo arquivo.

Usando Loops

```
my_file = open("xy_values.txt","w") #w=writing
for i in range(x.size):
    my_file.write("{:f}\t\t{:f}\n".format(x[i],y[i]))
my_file.close()
```

Álgebra Linear com NumPy - Operações com Matrizes

Multiplicação dos **Elementos** das Matrizes

Matriz Transposta

Matriz Identidade

Álgebra Linear com NumPy - Operações com Matrizes

Potência de Matrizes

Potência dos Elementos

Álgebra Linear com NumPy - Normas e Rank

Normas são calculadas com o módulo np.linalg.norm. O rank (posto) é obtido pelo método np.linalg.matrix_rank.

1. Norma de um Vetor

$$||a|| = \left(\sum_{i} |z_i|^2\right)^{1/2}$$

2. Norma de Frobenius

$$||A|| = \left(\sum_{i,j} |a_{ij}|^2\right)^{1/2}$$

3. Rank: número de colunas linearmente independentes.

Álgebra Linear com NumPy - Normas e *Rank*

Cálculo de Normas

Cálculo do Rank

Álgebra Linear com NumPy - Determinante e Inversa

Determinante

```
In[x]: np.linalg.det(A)
Out[x]: 0.5
```

Traço

```
In[x]: np.trace(A)
Out[x]: 2
```

Matriz Inversa

Se a matriz não tiver inversa, será retornado o erro

LinAlgError: Singular matrix

Álgebra Linear com NumPy - Autovalores e Autovetores

Problema de autovalor

Para uma matriz quadrada $m{A}$, um autovetor $m{v}$ é um vetor que satisfaz

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

onde λ são chamados *autovalores*. Para um matriz $N \times N$, existem N autovetores e N autovetores.

Para calcular autovetores e autovetores existe o módulo np.linalg.eig, que retorna os autovalores como um array de forma (n,) e os autovetores como colunas de um array de forma (n,n). Use np.linalg.eigval para calcular os autovalores apenas.

Autovalores e Autovetores

Álgebra Linear com NumPy - Sistemas Lineares

NumPy dispões de um método eficiente e estável para resolver sistemas de equações lineares: np.linalg.solve. Exemplo: o sistema abaixo

$$3x - 2y = 8,$$

 $-2x + y - 3z = -20,$
 $4x + 6y + z = 7$

pode ser escrito como uma equação matricial $\boldsymbol{M}\boldsymbol{x} = \boldsymbol{b}$

$$\begin{pmatrix} 3 & -2 & 0 \\ -2 & 1 & -3 \\ 4 & 6 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 8 \\ -20 \\ 7 \end{pmatrix}$$

Álgebra Linear com NumPy - Sistemas Lineares

Solução de Sistemas Lineares

Álgebra Linear com NumPy - Aplicação

Exercício. No circuito abaixo, determine os valores das correntes I_1 , I_2 , I_3 .

Vamos aplicar a 2° lei de Kirchhoff $(\sum_{k} V_{k} = 0)$ e a lei de Ohm (V = RI) ao circuito:

$$50I_1 - 30I_3 = 80$$
$$40I_2 - 20I_3 = 80$$
$$-30I_1 - 20I_2 + 100I_3 = 0$$

Gráficos - Matplotlib

Python tem uma poderosa biblioteca para produção de gráficos de boa qualidade: **Matplotlib**. Para gráficos simples, podemos usar o módulo **pyplot** que deve ser importado da seguinte forma:

import matplotlib.pyplot as plt

No jupyter, para que o gráfico apareça numa célula do notebook, digite na primeira célula: %matplotlib inline. Para que o gráfico seja mostrado numa janela separada, digite na primeira célula: %matplotlib.

Gráficos - Gráfico de Funções

Se quisermos fazer um gráfico de uma função, as entradas para o pyplot devem ser arrays (ou listas) correspondentes aos valores x e y. Exemplo:

Exemplo 1 - Gráfico simples

```
x = np.linspace(-3*np.pi,3*np.pi,100)
y = np.sin(x) #vetorização
plt.plot(x,y)
```

Para adicionar um segundo plot, basta chamar plt.plot novamente:

```
z = np.cos(x)
plt.plot(x,z) #ou plt.plot(x,y,x,z)
```

Gráficos - Legenda

Para nomear um gráfico, devemos atribuir um string ao argumento label da função plot. Para adicionar a legenda no gráfico, faça: plt.legend()

```
Exemplo 2 - Legenda
```

```
x = np.linspace(-3*np.pi,3*np.pi,100)
y = np.sin(x)
z = np.cos(x)
plt.plot(x,y,label='sen(x)')
plt.plot(x,z,label='cos(x)')
plt.legend()
```

Para retirar a legenda da "caixa", use a opção frameon=False. Para selecionar o tamanha da fonte, use fontsize=<inteiro>.

Gráficos - Legenda

Opções de localização da legenda

String	Inteiro
'best'	0
'upper right'	1
'upper left'	2
'lower left'	4
'lower right'	4
'right'	5
<pre>'center left'</pre>	6
<pre>'center right'</pre>	7
'lower center'	8
'upper center'	9
'upper center'	10

Gráficos - Descrição dos Eixos e Título

Exemplo 3 - Eixos e Título

Gráficos - Marcadores, Cores e Linhas

Existem diversas opções de marcadores, linhas e cores, que devem ser especificados por strings. Por exemplo, se quisermos linha vermelha tracejada, basta incluir 'r- -' na função plot.

Exemplo 3 - Cores e Linhas

```
plt.plot(x,y,'r--',label='sen(x)')
plt.plot(x,y,'r--o',label='sen(x)') #marcador 'o'
```

Também é possível passar os atributos explicitamente com c (color), marker (marcador) ls (estilo da linha) e lw (largura da lilnha)

```
plt.plot(x,y, c='r',marker='o',ls='--',lw=2)
```

Também é possível selecionar o tamanho do marcador (markersize), a cor (markerfacecolor ou mfc), e a cor da borda (markeredgecolor ou mec).

Gráficos - Marcadores, Cores e Linhas

Marcadores

Código	Marcador
•	Ponto
0	Círculo
+	Cruz
X	Cruzado
D	Diamante
V	Triângulo p/ baixo
^	Triângulo p/ cima
S	Quadrado
*	Estrela

Estilos de linha: (-) (-) (:) (-.)

Cores Básicas

_Código	Cor
r	Vermelho
g	Verde
b	Azul
С	ciano
m	magenta
У	Amarelo
k	Preto
W	Branco
brown	Marrom
gray	Cinza
purple	Roxo

Gráficos - Dois Eixos

O comando plt.twinx() cria um novo eixo y mantendo o mesmo eixo x (também existe a opção plt.twiny()).

Example

```
line1 = plt.plot(tempo, divorcios, 'b-o')
plt.ylim(4,5.2)
plt.ylabel('Divorcios por 100 mil')
plt.xlabel('Anos')
plt.twinx()
line2 = plt.plot(tempo, margarina, 'r-v')
plt.ylabel('Consumo de Margarina [lb]')
lines = line1 + line2
legendas = ['Divorcios', 'Consumo de Margarina']
plt.legend(lines, legendas, frameon=False)
```

Matplotlib - Interface Avançada

O Matplotlib tem uma interface básica, semelhante ao MATLAB, que permite fazer vários gráficos simples. No entanto, para ter maior controle sobre os elementos do gráfico, existe uma interface orientada a objetos. Nessa interface, criamos um objeto chamado *figure*, que pode ser pensando como um contêiner que contém todos os objetos relacionados aos eixos, gráficos e descrições. Acoplamos ao *figure* o objeto *axes*, que contém todos os elementos do gráfico.

Criando uma Figura

```
fig = plt.figure()
ax = fig.add_subplot()
```

Também é possível criar os dois objetos numa única linha

```
fig, ax = plt.subplots()
```

Matplotlib - Interface Avançada

O objeto *figure* tem vários argumentos opcionais, como identificador e tamanho da figura.

Argumento	Descrição
num	String identificador da figura
figsize	Tupla com as dimensões da figura (largura, comprimento),
	em polegadas
dpi	Resolução da figura (pts por polegada)
facecolor	Cor de fundo
edge color	Cor da borda

Matplotlib - Fontes

Os elementos de texto de um plot podem ser modificados com as opções da tabela abaixo.

Argumento	Descrição
fontsize	Tamanho da fonte
fontname	Nome (ex. 'Arial')
family	Família (ex. 'cursive')
fontweight	Peso (ex.'normal', 'bold')
fontstyle	Estilo (ex.'normal', 'italic')
color	Cor da fonte

Matplotlib - Gridlines e Escala Log

Podemos adicionar linhas de grade aos eixos vertical e/ou horizontal. É possível escolher o estilo da linha e cor (linestyle, linewidth, color, etc.).

Gridlines

```
ax.grid(True) #linhas horizontais e verticais
ax.yaxis.grid(True) #apenas horizontal
```

Escala logarítmica pode ser escolhida com os comandos abaixo. Por padrão, logaritmo decimal é usado, mas podemos escolher outra base com os argumentos basex, basey.

Escala Log

```
ax.set_xscale('log')
ax.set_yscale('log')
```

Matplotlib - Subplots

Subplots são grupos de gráficos que pertencem a uma mesma figura. Existem diferentes formas de criar subplots no Matplotlib.

Métodos plt.subplots()

```
fig, axes = plt.subplots(nrows=3, ncols=2)
fig.tight_layout()
```

Será criada uma figura com seis gráfico (3×2) , e cada um pode ser acessado com índices semelhantes a elementos de matrizes:

```
ax1 = axes[0, 0] #superior esquerdo
ax2 = axes[2, 1] #inferior direito
```

É possível escolher o tamanho da figura passando para a função plt.subplots() o argumento figsize=(<int>,<int>).

Matplotlib - Subplots

Para ajustar a distância entre os gráficos, usamos

fig.subplots_adjust(hspace=<float>, wspace=<float>).

```
fig, axes = plt.subplots(2,1)
fig.subplots_adjust(hspace=0.05)
x = np.linspace(0,2*np.pi,100)
axes[0].plot(x,np.sin(x))
axes[0].set_xticks([])
axes[1].plot(x,np.cos(x))
```

Matplotlib - Subplots

Podemos ocultar automaticamente os labels internos dos gráficos usando os argumentos sharex e sharey da função plt.subplots().

Matplotlib - Scatter Plots

A função pyplot.scatter() permite criar gráficos de dispersão onde as propriedades de cada ponto (cor, tamanho) podem ser controladas. Além dos valores x e y, podemos passar uma sequência de valores para os argumentos y e y, que controlam o tamanho e a cor da cada ponto. Esse tipo de gráfico é útil para visualizar dados multidimensionais.

```
x = np.random.randn(100)
y = np.random.randn(100)
colors = np.random.rand(100)
sizes = 1000*np.random.rand(100)
plt.scatter(x, y, c=colors, s=sizes, alpha=0.3)
plt.colorbar()
```

Matplotlib - Gráfico de Barras

A função para plotar gráficos de barras é plt.bar(). Para barras horizontais, usamos plt.barh(). Veja as opções de argumento em https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html

```
anos = np.arange(2014,2021)
consumo = np.array([327,392,490,643,806,981,1171])
plt.bar(anos, consumo, width=0.6,color='r')
plt.barh(anos, consumo, height=0.6,color='r')
```


Matplotlib - Gráfico de Pizza

Gráficos de pizza são feitos com o método plt.pie(). Os valores de cada entrada são automaticamente normalizados pela soma. As várias opções estão descritas em https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pie.html
Veja exemplo em pcientifico_matplotlib01.ipynb

Matplotlib - Salvando Figuras

Para salvar gráficos de boa qualidade (para publicações, por exemplo), os melhores formatos são *Encapsulated Encapsulated* (EPS) ou PDF:

```
plt.savefig('my_figure.eps')
```

Também é possível especificar a resolução com o argumento dpi (dots per inch) tanto na função plt.figure() como na função plt.savefig(), e usar o formato PNG:

```
fig = plt.figure (figsize =(3.5, 3), dpi=300)
ax = fig.add_subplot()
....
plt.savefig('my_figure.png', dpi=300)
```

SciPy - Raízes de Funções

O pacote scipy.optimize implementa vários métodos para calcular raízes de funções. Os argumentos passados devem ser uma função contínua, f(x), e um intervalo [a,b] dentro do qual a raiz será encontrada, tal que $\mathrm{sgn}[f(a)] = -\,\mathrm{sgn}[f(b)]$. Alguns dos métodos disponíveis:

- Método de Brent (scipy.optimize.brentq)
- Método da bisseção (scipy.optimize.bisect)
- Método de Newton (scipy.optimize.newton)

No caso do método Newton-Raphson, deve-se passar um ponto inicial, x0 (próximo a raiz), e opcionalmente, a primeira derivada da função, fprime. Note que nesse método, temos menos controle sobre a raiz encontrada se a função tem várias raízes.

Métodos numéricos devem ser utilizados com cuidado. Verifique se a raiz x encontrada produz $f(x) \approx 0$.

SciPy - Raízes de Funções

Raízes - Método de Brent

Vamos encontrar uma das raízes da função abaixo pelo método de Brent

$$f(x) = \frac{1}{5} + x \cos\left(\frac{3}{x}\right).$$

SciPy - Raízes de Funções

Raízes - Método de Newton

Vamos encontrar a raíz da função abaixo pelo método de Newton

$$f(x) = e^x - 2$$

SciPy - Sistemas de Eq. não Lineares

A solução de sistemas de equações não lineares é bem mais complicada do que a solução de uma única equação, e não existe um método que garanta a convergência da solução. No SciPy, uma das possibilidades implementadas para esse tipo de problema é o métido optimize.fsolve. O sistema de equações deve ser passado como um array de funções, e um conjunto de pontos iniciais, também como arrays, deve ser fornecido. Opcionalmente, pode-se passar o jacobiano da função com o argumento fprime.Note que diferentes pontos iniciais podem levar a diferentes soluções. Como exemplo, vamos resolver o seguinte sistema:

$$y - x^3 - 2x^2 + 1 = 0,$$

$$y + x^2 - 1 = 0$$

SciPy - Sistemas de Eq. não Lineares

Para codificar esse sistema, devemos escrever uma função na forma $f[x_1, x_2] = [x_2 - x_1^3 - 2x_1^2 + 1, x_2 + x_1^2 - 1]$. No código, $x_1 = x[0]$ e $x_2 = x[1]$.

SciPy - Otimização

Além de raízes de funções, o pacote scipy optimize conta com diversos algorítimos de para minimizar uma função de uma ou mais variáreis $f(x_1, x_2, ..., x_n)$. Para maximizar uma função, minimizamos $-f(x_1, x_2, ..., x_n)$.

Alguns algorítimos de minimização requerem, além da função, um array com o **jacobiano**:

$$J(f) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right)$$

Alguns algorítimos mais sofisticados também requerem uma matriz simétrica com as derivadas parciais de segunda ordem da função (Hessiano).

O algorítimo geral para minimizar funções de várias variáveis é scipy.optimize.minimize. Pelo menos dois argumentos devem ser passados: a função a ser minimizada (fun), que deve ter como argumentos obrigatórios um array X e um array de pontos iniciais (x0). Como exemplo, vamos minimizar a função:

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2.$$

Minimização

```
In[x]: def f(X):
          x, y = X
          return (x**2+y-11)**2 + (x+y**2-7)**2
In[x]: x0 = [0,0]
       minimize(f,x0)
Out[x]:
fun: 1.3782261326630835e-13
hess_inv: array([[ 0.01578229, -0.0094806 ],
                  [-0.0094806, 0.03494937]])
 jac: array([-3.95019832e-06, -1.19075540e-06])
message: 'Optimization terminated successfully.'
nfev: 64
 success: True
x: array([2.99999994, 1.99999999])
```

Maximização - Exemplo 1

```
In[x]: mf = lambda X: -f(X)
       minimize (mf, [0.1, -0.2])
Out[x]:
fun: -1.2100579056485772e+35
hess inv: array([[0.254751, -0.43222419],
                  [-0.43222419, 0.83976276]])
 jac: array([0., 0.])
message: 'Optimization terminated successfully.'
nfev: 68
nit: 2
njev: 17
 status: 0
 success: True
x: array([3.45579856e+08, -5.71590777e+08])
```

Algorítimo	Descrição
BFGS	Broyden-Fletcher-Goldfarb-Shanno (default)
Nelder-Mead	Algorítimo de Nelder-Mead
CG	Método do gradiente conjugado
Powell	Método de Powell
dogleg	Necessita Jacobiano e Hessiano
TNC	Algorítimo de Newton Truncado (contornos)
l-bfgs-b	Algorítimo para ser utilizado com contornos
slsqp	Utilizado com contornos e vínculos
cobyla	Método para minimização com vínculos

Veja mais detalhes em

https://docs.scipy.org/doc/scipy/reference/tutorial/
optimize.html

Maximização - Exemplo 2 In[x]: minimize(mf,[0.1,-0.2], method='Nelder-Mead') Out[x]: final_simplex: (array([-0.27087419, -0.9230486],[-0.27089208, -0.92298798],[-0.27077447, -0.9230454111),array([-181.6165215 , -181.61652146, fun: -181.61652150067573 message: 'Optimization terminated successfully.' nfev: 77 nit: 39c

success: True

x: array([-0.27087419, -0.9230486])

Podemos também otimizar uma função em uma dada região (contorno) e sujeita a algum vínculo. Os métodos 1-bfgs-b, tho e slsqp podem ser usados com contornos. Os contornos devem ser passados como uma sequencia de tuplas, com uma tupla (\min, \max) para cada variável. Para colocar limite em apenas uma direção, usamos a palavra None. Como exemplo, vamos minimizar nossa função f(x,y) na região $x \le 0$ e y < 0.

Minimização com contorno

```
In[x]: xlimites = (None,0)
        ylimites = (None,0)
        contorno = (xlimites,ylimites)
        x0 = (-0.5,-0.5)
In[x]: minimize(f,x0,bounds=contorno,method='slsqp')
Out[x]: ....
        x: array([-3.77933774, -3.28319868])
```

SciPy - Ajuste de Curvas

O método scipy.optimize.curve_fit é o mais direto e permite passarmos de forma mais transparente os erros da variável y e obter as incertezas nos parâmetros ajustados. O método é chamado da seguinte forma:

curve_fit(f,xdata,ydata,p0, sigma, absolute_sigma).

- f, xdata, ydata são, respectivamente, a função a ser ajustada aos dados (xdata, ydata);
- p0 é um valor inicial para os parâmetros;
- sigma é um array com as incertezas de ydata, de mesmo tamanho de ydata;
- absolute_sigma é uma variável booleana. Se True, os valores absolutos de sigma são usados. Essa deve ser a opção usada para obter os valores absolutos nas incertezas dos parâmetros. Se escolhermos a opção False, os valores de sigma são tratados como valores relativos.

SciPy - Ajuste de Curvas

O método curve_fit retorna o array popt, com o valor dos parâmetros ajustados, e o array 2D pcov, a matriz de covariância dos parâmetros. A incerteza nos parâmetros é dada pela raiz quadrada da diagonal de pcov: np.sqrt (np.diag (pcov)).

Para ilustrar o uso deste método, vamos ajustar a função Lorentziana a um conjunto de pontos:

$$f(x) = \frac{A\gamma^2}{\gamma^2 + (x - x_0)^2},$$

onde A, γ e x_0 serão os parâmetros ajustados.

Veja solução no código.

SciPy - Integração Numérica

O pacote scipy.integrate contém funções para o cálculo numérico de integrais definidas próprias (limites finitos) e impróprias (limites infinitos). A rotina está implementada em scipy.integrate.quad, que é baseada na biblioteca QUADPACK (FORTRAN 77). Os argumentos básicos são o integrando (func), e os limites de intergração a e b. O resultado será um flutuante com o valor da integral e outro com uma estimativa do erro absoluto.

Example

$$I = \int_1^4 x^{-2} dx$$

```
In[x]: from scipy.integrate import quad
```

In[x]:
$$f = lambda x: 1/x**(2)$$

In
$$[x]$$
: quad $(f, a=1, b=4)$

Out [x]:

(0.750000000000000, 1.913234548258995e-09)

SciPy - Integração Numérica

Para integrar funções com singularidades, devemos passar um lista de pontos onde ocorrem as divergências usando o argumento points.

$$I = \int_{-1}^{1} \frac{dx}{\sqrt{|x|}}$$

```
In[x]: f5 = lambda x: 1/np.sqrt(np.abs(x))
In[x]: quad(f5,-1,1)
Out[x]:
RuntimeWarning: divide by zero encountered in
double_scalars
(inf, inf)
In[x]: quad(f5,-1,1,points=[0,])
Out[x]:
(3.999999999999999813, 5.684341886080802e-14)
```

SciPy - Integração Numérica - Integrais Múltiplas

Integrais duplas, triplas e múltiplas (n > 3) podem ser calculadas, respectivamente, com os métodos dblquad, tplquad e nquad. O método dblquad calcula integrais do tipo:

$$I = \int_a^b \int_{g(x)}^{h(x)} f(y, x) dy dx.$$

O integrando deve ser definido como uma função de pelo menos duas variáveis, func(y,x...), tomando, **necessariamente**, y como primeiro argumento e x como segundo. Os limites de integração devem ser passados como flutuantes, a e b, para a integral na variável x, e como **funções** de x para a variável y.

Equações diferenciais ordinárias (EDOs) podem ser resolvidas numericamente com scipy.integrate.odeint ou scipy.integrate.solve_ivp. Esses métodos resolvem equações da forma:

$$\frac{d\mathbf{y}}{dt} = \mathbf{F}(\mathbf{y}, t)$$

onde \mathbf{y} é um vetor de componentes $y_i(t)$, e \mathbf{F} um vetor de componentes $F(y_i,t)$.

Para resolver EDOs de ordem n > 1, devemos transformá-las em um sistema de EDOs de primeira ordem (exemplos nos próximos slides).

O método scipy.integrate.solve_ivp toma pelo menos três argumentos: uma função que retorna dy/dt, os pontos iniciais e finais da variável t, e um conjunto de condições iniciais y_0 .

Exemplo 1:

$$\frac{dy}{dt} = -ky$$

- Primeiro, definimos dy/dt (note a ordem das variáveis!) def dydt(t,y): return -k*y
- Os tempos iniciais e finais devem ser passados como tuplas para o argumento t_span: t_span = (t0,tf).
- Os valores iniciais y0 devem ser passados como sequência (lista, array), mesmo que só tenha um valor.
- 4 solução será um objeto soln com os arrays soln.y, soln.t e soln.success (booleano).

EDOs Acopladas

$$\begin{array}{rcl} \frac{dy_1}{dt} & = & f_1(y_1, y_2, ..., y_n; t), \\ \frac{dy_2}{dt} & = & f_2(y_1, y_2, ..., y_n; t), \\ ... & \\ \frac{dy_n}{dt} & = & f_n(y_1, y_2, ..., y_n; t). \end{array}$$

Nesse caso, a função a ser passada para o método solve_ivp() dever retornar uma sequência com as funções $f_i(y_1, y_2, ...y_n; t)$.

EDOs Acopladas - Implementação

```
# y = [y1, y2, y3, ...]
#(sequencia de variáveis independentes)
def deriv(t, y):
    dy1dt = f1(y, t)
    dy2dt = f2(y, t)
    #...
    return dy1dt, dy2dt, ..., dyndt
solve_ivp(deriv, (t0, tf), y0 )
```

Note que agora, y0 será um sequência de n elementos.

Exemplo 2: Evolução de uma Epidemia (Modelo SIR)

$$\begin{array}{rcl} \frac{dS}{dt} & = & -\beta SI, \\ \frac{dI}{dt} & = & \beta SI - \gamma I, \\ \frac{dR}{dt} & = & \gamma I, \end{array}$$

onde as constantes β e γ são, respectivamente, a taxa de transmissão e a taxa de recuperação. Queremos resolver esse sistema para S(t), I(t) e R(t). Para uma população de tamanho fixo N, temos, em qualquer instante, N = S(t) + I(t) + R(t).

Veja solução no código.

Exemplo 3: EDO de segunda ordem

Para resolver uma EDO de ordem n > 1, primeiro devemos reduzi-la a um sistema de EDOs de primeira ordem:

$$\frac{d^2x}{dt^2} = -\omega^2 x$$

$$\frac{dx_1}{dt} = x_2,$$

$$\frac{dx_2}{dt} = -\omega^2 x_1,$$

onde $x_1 = x$ e $x_2 = dx/dt$.

Para Saber Mais

Meu canal no YouTube: Python Para Cientistas

https://www.youtube.com/user/HeavyState

Material dos minicursos disponíveis em:

https://github.com/aanepomuceno