CSCI/MATH 2113 Discrete Structures

Chapter 7 Relations The Second Time Around

Alyssa Motas

April 6, 2021

Contents

1	7.1	Properties of Relations	3
	1.1	Recall: Binary Relation	3
	1.2	Properties of Relations	3
		1.2.1 Reflexive property	3
		1.2.2 Symmetric property	3
		1.2.3 Transitive property	4
		1.2.4 Antisymmetric property	4
	1.3	Partial order	4
		1.3.1 Example	5
	1.4	Total order	5
	1.5	Equivalence relation	5
2	7.2	Zero-One Matrices and Directed Graphs	5
	2.1	Relation Composition	5
		2.1.1 Example	5
		2.1.2 Theorem	6
		2.1.3 Powers of a relation	6
	2.2	Zero-one matrices	6
		2.2.1 Relation matrices	8
	2.3	Theorem	8
	2.4	Directed graphs	9
3	7.3	Partial Orders: Hasse Diagrams	12
	3.1	Totally ordered poset	13
	3.2	Maximal and minimal	14
	3.3	Conditions for maximal and minimal element in a set	14
	3.4	Greatest and least element	14
	3.5	Greatest and least elements are unique	14
	3.6	Lower and upper bounds	15
	3.7	Unique lub/glb	15
	3.8	Lattice	15
4	7.4	Equivalence Relations and Partitions	15
	4.1	Examples	15
	4.2	Equivalence class	16
	4.3	Example	16
	4.4	Equivalence relation	16
	4.5	Equivalence classes and partition	17

1 7.1 Properties of Relations

1.1 Recall: Binary Relation

For sets A, B, any subset of $A \times B$ is called a (binary) relation from A to B. Any subset of $A \times A$ is called a (binary) relation on A.

1.2 Properties of Relations

1.2.1 Reflexive property

A relation R on a set A is called *reflexive* if for all $x \in A$, $(x, x) \in R$. This means that each element x of A is related to itself.

Example. For $A = \{1, 2, 3\}$ and $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3)\}$, we know it is not reflexive since $(3, 3) \notin R$.

Remark. A relation R on A is reflexive if and only if $\{(a, a) \mid a \in A\} \subseteq R$.

Counting. Let A be a set with n elements. How many relations on A are reflexive? There are 2^{n^2} relations on A (2 choices for each of the n^2 pairs in $A \times A$). In a reflexive relation, n of these pairs are decided. Hence, we have $n^2 - n$ chocies to make and so there are

$$2^{n^2-2}$$

reflexive relations.

1.2.2 Symmetric property

A relation R on a set A is called *symmetric* if $(x,y) \in R \Rightarrow (y,x) \in R$, for all, $x,y \in A$.

Counting. If $|A| = n \le 0$, how many relations on A are symmetric? Write $A \times A = A_1 \cup A_2$ where

$$A_1 = \{(a_i, a_i) \mid 1 \le i \le n\}$$

$$A_2 = \{(a_i, a_j) \mid 1 \le i, j \le n, i \ne j\}.$$

We have

$$|A_1| = n \qquad |A_2| = n^2 - n.$$

For each element of A_1 and for half of the elements of A_2 , we choose whether it belongs to R. Thus, intotal, there are

$$2^n \cdot 2^{\frac{n^2 - n}{2}} = 2^{\frac{n^2 + n}{2}}$$

such relations. In counthing those relations on A that are both reflexive and symmetric, we have only one choice for each ordered pair in A_1 . So we have

$$2^{\frac{n^2-n}{2}}$$

relations on A that are both reflexive and symmetric.

1.2.3 Transitive property

For a set A, a relation R on A is called *transitive* if, for all $x, y, z \in A$, $(x, y), (y, z) \in R \Rightarrow (x, z) \in R$. So if x "is related to" y, and y "is related to" z, we want x "related to" z, with y playing the role of "intermediary."

Counting. There is no known general formula for the total number of transitive relations on a finite set.

1.2.4 Antisymmetric property

Given a relation R on a set A, R is called *antisymmetric* if for all $a, b \in A$, $(aRb \text{ and } bRa) \Rightarrow a = b$. Here, the only way we can have both a "related to" b and b "related to" a is if a and b are one and the same element from A.

Examples. Let $A = \mathbb{Z}$ and $R = \leq$ is an antisymmetric relation.

Antisymmetric is different than "not symmetric." Let $A = \{1, 2, 3\}$ and $R = \{(1, 2), (2, 1), (2, 3)\}$. Then, R is *not* symmetric and it is *not* antisymmetric.

Counting. How relations that are antisymmetric? Suppose that |A| = n > 0. By the rule of product, the number of antisymmetric relations are

$$(2^n)(3^{\frac{n^2-n}{2}}).$$

1.3 Partial order

A relation R on a set A is called a partial order, or a partial ordering relation, if R is reflexive, antisymmetric, and transitive.

1.3.1 Example

- \leq on \mathbb{N} . Partial order and total implies total order.
- \subseteq on $\mathcal{P}(S)$ is not total order.

1.4 Total order

A relation R on a set A is a total order if R is a partial order and for every $x, y \in A$, we have $(x, y) \in R$ or $(y, x) \in R$.

1.5 Equivalence relation

An equivalence relation on A is a relation that is reflexive, symmetric, and transitive.

2 7.2 Zero-One Matrices and Directed Graphs

2.1 Relation Composition

If A, B and C are sets with $R_1 \subseteq A \times B$ and $R_2 \subseteq B \times C$, then the *composite relation* R_1 ; R_2 is a relation from A to C defined by

$$R_1; R_2 = \{(x, z) \mid x \in A, z \in C, \exists y \in B \text{ with } (x, y) \in R_1, (y, z) \in R_2\}.$$

2.1.1 Example

Suppose that $A = \{1, 2, 3, 4\}, B = \{w, x, y, z\}, \text{ and } C = \{5, 6, 7\} \text{ where }$

$$R_1 = \{(1, x), (2, x), (3, y), (3, z)\} \subseteq A \times B$$

$$R_2 = \{(w, 5), (x, 6)\} \subseteq B \times C$$

$$R_3 = \{(w, 5), (w, 6)\} \subseteq B \times C$$

Then we have

$$R_1; R_2 = \{(1,6), (2,6)\}$$

and

$$R_1; R_3 = \varnothing.$$

2.1.2 Theorem

Let A, B, C and D be sets with $R_1 \subseteq A \times B$, $R_2 \subseteq B \times C$, and $R_3 \subseteq C \times D$. Then $R_1; (R_2; R_3) = (R_1; R_2); R_3$.

Proof. If $(a,d) \in R_1$; $(R_2; R_3)$, then there is an element $b \in B$ with $(a,b) \in R_1$ and $(b,d) \in (R_2; R_3)$. Also, $(b,d) \in (R_2; R_3) \Rightarrow (b,c) \in R_2$ and $(c,d) \in R_3$ for some $c \in C$. Then $(a,b) \in R_1$ and $(b,c) \in R_2 \Rightarrow (a,c) \in R_1$; R_2 . Finally, $(a,c) \in R_1$; R_2 and $(c,d) \in R_3 \Rightarrow (a,d) \in (R_1; R_2)$; R_3 , and R_1 ; $(R_2; R_3) \subseteq (R_1; R_2)$; R_3 . The opposite inclusion follows by similar reasoning.

2.1.3 Powers of a relation

Given a set A and a relation R on A, we define the *powers* of R recursively by

- (a) $R^1 = R$;
- (b) for $n \in \mathbb{Z}^+, R^{n+1} = R; R^n$.

Example. Suppose that $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (1, 3), (2, 4), (3, 2)\}$. Then we have

$$R^{2} = \{(1,4), (1,2), (3,4)\}$$

$$R^{3} = \{(1,4)\}$$

$$R^{n} = \emptyset \text{ for } n < 4.$$

2.2 Zero-one matrices

An $m \times n$ zero-one matrix $E = (e_{ij})_{m \times n}$ is a rectangular array of numbers arranged in m rows and n columns, where each e_{ij} , for $1 \le i \le m$ and $1 \le j \le n$, denotes the entry in the ith row and jth column of E, and each such entry is 0 or 1.

Example. The matrix

$$E = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

is a 3×4 (0,1)-matrix where, for example, $e_{11} = 1$, $e_{23} = 0$, and $e_{31} = 1$.

0 is the matrix such that $0_{i,j} = 0$. And 1 is the matrix such that $1_{i,j} = 1$. I_n is the identity matrix where

$$(I_n)_{i,j} = S_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

If M is a matrix then M^{tr} is

$$(M^{tr})_{i,j} = M_{j,i}$$

We think of 0 and 1 as truth values and of \cdot (multiplication) as conjunction and of + (addition) as disjunction. This means that

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$\underbrace{1 \cdot 1 = 1}_{\text{logical "and"}}$$

$$0 + 0 = 0$$

$$1 + 1 = 1$$

$$\underbrace{1 + 1 = 1}_{\text{logical "or"}}$$

We use these operations when multiplying matrices.

Example.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

As well as multiplication, we define another operation on matrices. Let M and N be (0,1)-matrices of the same size. Then $M \cap N$ is defined as

$$(M \cap N)_{i,j} = M_{i,j} \cdot N_{i,j}$$
.

Example.

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \cap \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Let M and N be (0,1)-matrices of the same size. Then

$$M \leq N$$

if $M_{i,j} \leq N_{i,j}$ for all i,j. In this case, we say that M precedes N.

Examples.

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \leq \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \not\leq \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \not\geq \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

2.2.1 Relation matrices

Suppose we have $A = \{1, 2, 3, 4\}$, $B = \{w, x, y, z\}$, $C = \{5, 6, 7\}$, $R_1 = \{(1, x), (2, x), (3, y), (3, z)\}$, and $R_2 = \{(w, 5), (x, 6)\}$. The matrix for R_1, R_2 is

$$M(R_1) = \begin{bmatrix} w & x & y & z \\ 1 & 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 \\ 3 & 0 & 0 & 1 & 1 \\ 4 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad M(R_2) = \begin{bmatrix} 5 & 6 & 7 \\ w & 1 & 0 & 0 \\ 0 & 1 & 0 \\ y & 0 & 0 & 0 \\ z & 0 & 0 & 0 \end{bmatrix}$$

We have

$$M(R_1; R_2) = M(R_1) \cdot M(R_2).$$

So to figure out what the matrix for R_1 ; R_2 is, it suffices to multiply the matrices for R_1 and R_2 .

$$M(R_1; R_2) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

2.3 Theorem

Let A be a set with $|A| = n \le 1$, R be a relation on A, and M be the matrix for R. Then

- 1. R is reflexive if and only if $I_n \leq M$.
- 2. R is symmetric if and only if $M = M^{tr}$.

- 3. R is transitive if and only if $M^2 \leq M$.
- 4. R is antisymmetric if and only if $M \cap M^{tr} \leq I_n$.

2.4 Directed graphs

Let V be a finite nonempty set. A directed graph (or digraph) G on V is made up of the elements of V, called vertices or nodes of G, and subset E, of $V \times V$, that contains the (directed) edges, or arcs, of G. The set V is called the vertex set of G, and the set E is called the edge set. We then write G = (V, E) to denote the graph.

If $a,b \in V$ and $(a,b) \in E$, then there is an edge from a to b. Vertex a is called the *origin* or *source* of the edge, with b the *terminus*, or *terminating* vertex, and we say that b is adjacent from a and that a is adjacent to b. In addition, if $a \neq b$, then $(a,b) \neq (b,a)$. An edge of the form (a,a) is called a loop at a.

Example. Suppose that $V = \{1, 2, 3, 4, 5\}$ and $E = \{(1, 1), (1, 2), (1, 4), (3, 2)\}$. Then

We can interpret a relation on a set A as a directed graph.

Example. Suppose that $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 2)\}.$ Then we have

The relation matrix M is also called the adjacency matrix of the associated graph.

Remark. A relation is reflexive if and only if its directed graph has a loop at each vertex.

Remark. A relation is symmetric if and only if its directed graph contains only loops and undirected edges.

3 7.3 Partial Orders: Hasse Diagrams

A partial order on a set A is a relation on A that is reflexive, antisymmetric, and transitive.

Example: Let $A = \{1, 2, 3, 4\}$ and let R be defined by xRy if and only if $x \mid y$. Then we have $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)\}.$

If R is a partial order on A then we draw a line up from x to y if xRy and there is no z such that xRz and zRy.

Examples:

 $\bullet \ \mbox{ If } A = \{1,2,4,8\} \mbox{ and } R \mbox{ is "divides."}$

 $\bullet \ \mbox{ If } A = \{2, 3, 5, 7\} \mbox{ and } R \mbox{ is "divides."}$

$2 \ 3 \ 5 \ 7$

• If $B = \{1, 2, 3\}, A = \mathcal{P}(\{1, 2, 3\})$ and R is \subseteq .

3.1 Totally ordered poset

If (A, R) is a poset, we say that A is totally ordered (or, lineraly ordered) if for all $x, y \in A$ either xRy or yRx. In this case R is called total order (or, a linear order).

Examples

- (\mathbb{Z}, \leq) is totally ordered.
- $(P(\{a,b\}),\subseteq)$ is not totally ordered. Indeed, $\{a\} \not\subseteq \{b\}$ and $\{b\} \not\subset \{a\}$.

Question: Given a partially ordered set, can we "extend" this relation so that the order becomes total? YES: topological sorting.

3.2 Maximal and minimal

If (A, R) is a psoet, then an element $x \in A$ is called a maximal element of A if for all $a \in A$, $a \neq x \Rightarrow (x, a) \notin R$. An element $y \in A$ is called minimal element of A if whenever $b \in A$ and $b \neq y$, then $(b, y) \notin R$.

Example: Let $A = \mathcal{P}(\{1,2,3\})$ and $R = \subseteq$. Then $\{1,2,3\}$ is the maximal element and \emptyset is the minimal element.

Let A be the collection of proper subsets of $\{1,2,3\}$ ordered by inclusion. Then. $\{1,2\}$ is a maximal element and so is $\{2,3\}$. Recall: for S and T sets, we have $S \subseteq T$ if $\forall x, x \in S \Rightarrow x \in T$.

3.3 Conditions for maximal and minimal element in a set

If (A, R) is a nonempty poset and A is finite, then A has a maximal element and a minimal element.

Proof. Let $a_1 \in A$. If there is no element $a \in A$ where $a \neq a_1$ and a_1Ra , then a_1 is maximal. Otherwise there is an element $a_2 \in A$ with $a_2 \neq a_1$ and a_1Ra_2 . If no element $a \in A$, $a \neq a_2$, satisfies a_2Ra , then a_2 is maximal. Otherwise we can find $a_3 \in A$ so that $a_3 \neq a_2$, $a_3, \neq a_1$ while a_1Ra_2 and a_2Ra_3 . Continuing in this manner, since A is finite, we get to an element a_ninA with $(a_n, a) \notin R$ for all $a \in A$ where $a \neq a_n$, so a_n is maximal. The proof for a minimal element follows in a similar way.

3.4 Greatest and least element

If (A, R) is a poset, then an element $x \in A$ is called a *least* element if xRa for all $a \in A$. Element $y \in A$ is called a *greatest* element if aRy for all $a \in A$.

Examples

- $(\mathcal{P}(\{1,2,3\}),\subseteq)$ has a maximal and a greatest element of $\{1,2,3\}$.
- $(\mathcal{P}(\{1,2,3\}) \setminus \{\{1,2,3\}\},\subseteq)$ has maximal elements (e.g., $\{1,2\}$) but no greatest element.

3.5 Greatest and least elements are unique

If the poset (A, R) has a greatest (least) element, then that element is unique.

Proof. Suppose that $x, y \in A$ and that both are greatest elements. Since x is a greatest element, yRx. Likewise, xRy because y is a greatest element. As R is antisymmetric, it follows that x = y. The proof for the least element is similar.

3.6 Lower and upper bounds

Let (A, R) be a poset with $B \subseteq A$. An element $x \in A$ is called a *lower bound* of B if xRb for all $b \in B$. Likewise, an element $y \in A$ is called an *upper bound* of B if bRy for all $b \in B$.

An element $x' \in A$ is called a greatest lower bound (glb) of B if it is a lower bound of B and if for all other lower bounds x'' of B we have x''Rx'. Similarly $y' \in A$ is a least upper bound (lub) of B if it is an upper bound of B and if y'Ry'' for all other upper bounds y'' of B.

3.7 Unique lub/glb

If A, R is a poset and $B \subseteq A$, then B has at most one lub (glb).

3.8 Lattice

The poset (A, R) is called a *lattice* if for all $x, y \in A$ the elements $lub\{x, y\}$ and $glb\{x, y\}$ both exist in A.

Example: Let S be a set. Then $(\mathcal{P}(S), \subseteq)$ is a lattice.

4 7.4 Equivalence Relations and Partitions

Given a set A and index set I, let $\emptyset \neq A_i \subseteq A$ for each $i \in I$. Then $\{A_i\}_{i \in I}$ is a partition of A if

- a) $A = \bigcup_{i \in I} A_i$ and
- b) $A_i \cap A_j = \emptyset$ for all $i, j \in I$ where $i \neq j$.

Each subset A_i is called a *cell* or *block* of the partition.

4.1 Examples

• Let $A = \{1, 2, ..., 10\} \subseteq \mathbb{Z}$. The following are partitions of A:

1. $\{A_1, A_2\}$ where

$$A_1 = \{1, \dots, 5\}$$
 and $A_2 = \{6, \dots, 10\}.$

2. $\{A_1, A_2, A_3\}$ where

$$A_1 = \{1, 2, 3\}, \quad A_2 = \{4, 5, 6\}, \quad \text{and} \quad A_3 = \{7, 8, 9, 10\}.$$

3. $\{A_i\}_{1 \le i \le 5}$ where

$$A_i = \{i, i+5\}.$$

• $\{A_i\}_{i\in\mathbb{Z}}$ where $A_i = [i, i+1) \subseteq R$ is a partition of \mathbb{R} .

4.2 Equivalence class

Let R be an equivalence relation on a set A. For each $x \in A$, the equivalence class of x, denoted [x], is defined by $[x] = \{y \in A \mid yRx\}$.

4.3 Example

Consider the relation \equiv_4 on \mathbb{Z} defined by

$$x \equiv_4 y \Leftrightarrow 4 \mid (x - y).$$

- $[0] = \{ y \in \mathbb{Z} \mid y \equiv_4 = 0 \} \Rightarrow \{ y \in \mathbb{Z} \mid 4 \mid y \} \Rightarrow \{ \dots, -8, -4, 0, 4, 8, \dots \}.$
- $[1] = \{\ldots, -3, 1, 5, 9, \ldots\}.$
- $[2] = \{\ldots, -2, 2, 6, \ldots\}.$
- $[3] = \{\ldots, -5, -1, 3, 7, \ldots\}.$

Remark: $\{[0], [1], [2], [3]\}$ is a partition of \mathbb{Z} .

Question: Is this always the case? That is, if R is an equivalence relation on A, does the collection of equivalence classes form a partition of A? Yes!

4.4 Equivalence relation

If R is an equivlanece relation on a set A, and $x, y \in A$ then

- (a) $x \in [x];$
- (b) xRy if and only if [x] = [y];

(c) [x] = [y] or $[x] \cap [y] = \emptyset$.

Proof. (a) This result follows from the reflexive property of R.

- (b) If xRy, let $w \in [x]$. Then wRx and because R is transitive, wRy. Hence $w \in [y]$ and $[x] \subseteq [y]$. With R symmetric, $xRy \Rightarrow yRx$. So if $t \in [y]$, then tRy and by the transitive property, tRx. Hence $t \in [x]$ and $[y] \subseteq [x]$. Consequently, [x] = [y]. Conversely, let [x] = [y]. Since $x \in [x]$ by part (a), then $x \in [y]$ or xRy.
- (c) This property tells us that two equivalence classes can be related in only one of two possible ways. Either they are idenitial or they are disjoint.

We assume that $[x] \neq [y]$ and show how it then follows that $[x] \cap [y] = \varnothing$. If $[x] \cap [y] \neq \varnothing$, then let $v \in A$ with $v \in [x]$ and $v \in [y]$. Then vRx, vRy, and, since R is symmetric, xRv. Now $(xRv \text{ and } vRy) \Rightarrow xRy$, by the transitive property. Also $xRy \Rightarrow [x] = [y]$ by part (b). This contradicts the assumption that $[x] \neq [y]$, so we reject the supposition that $[x] \cap [y] \neq \varnothing$, and the result follows.

Corollary: If R is an equivalence relation on A then

 $\{[x] \mid [x] \text{ is the equivalence class of } x\}$

is a partition of A. This tells us that some partition arise through equivalence relations. In fact, all partitions arise in this way!

4.5 Equivalence classes and partition

If P is a partition of A and R_p is defined as

 $xR_py \Leftrightarrow x$ and y belong to the same cell of A

then P consists of the equivalence classes of R_p .

And for any set A, there is a one-to-one correspondence between the set of equivalence relations on A and the set of partitions of A.