「易贸 2019第十四届国际烯烃年会」

主要内容

- 1 世界α-烯烃供求与消费概况
- 2 α-烯烃生产技术与项目动态
- 3 国内α-烯烃应用领域市场分析
- 4 小结

2016年世界α-烯烃供求情况(万吨)

地区名称	产量	进口量	出口量	表观消费量	占比,%
北美	217	32	60	189	35.2
中南美	9	14	3	20	3.7
西欧	88	27	17	98	18.2
中东	106	13	59	60	11.2
中国	55	17		72	13.4
印度	10	3		12	2.2
日本	12	2	4	9	1.7
其它	59	46	30	77	14.3
合计	556	154	173	537	100.0

2016年世界α-烯烃消费构成情况(万吨)

地区名称	PE	PAO	高碳醇	其它	合计
北美	84	29	21	46	180
西欧	33	27	12	27	99
中东	59			2	61
中国	60	2		10	72
日本	6			3	9
其它	79		20	17	116
合计	321	58	53	105	537
占比,%	60.0	10.8	10.0	19.2	100.0

2016年世界α-烯烃主要生产商产能情况(万吨/年)

公司名称	美洲	欧洲	中东	非洲	亚洲	合计	占比,%
CPChem	106		23			129	25.6
SHELL	92	33				126	25.0
INEOS	28	30				58	11.5
SASOL	11			54		65	12.9
SABIC			25			25	5.0
/	\	\					
其它	2	16	55	5	25	103	20.4
合计	238	79	103	59	25	503	100.0

2012年北美α-烯烃消费构成情况(万吨)

应用领域	碳链长度	消费量	占比,%
LLDPE	C4-C8	49	31.6
HDPE	C4-C8	11	7.1
TPE	C4-C8	11	7.1
洗涤剂醇	C12-C20+	17	10.9
增塑剂醇	剂醇 C6-C10 2		1.3
PAO	C10,C8-C12	24	15.5
油田化学品	C16-C18,C14	13	8.4
润滑油添加剂	C16-C24	3	1.9
烷基苯	C10-C14	3	1.9
表面活性剂	C14-C16	3	1.9
合计		155	100.0

- ❖ 全组分乙烯齐聚制α-烯烃核术: (a) 齐格勒一步法。齐格勒一步法包括 链增长和链置换两步,反应以三乙基铝为催化剂,在180-220℃、21MPa 下进行。反应产物通过液相分离,所得粗产品经过冷却、干燥,送到精馏 塔中进行分离,得到不同碳数的α-烯烃产品;
- ❖ (b) 齐格勒二步法。该工艺主要包括:三乙基铝的合成、一步法乙烯齐聚、两步法链增长和置换反应、α-烯烃分离等四部分。三乙基铝催化剂同时进入两个齐聚反应器,第一个反应器温度控制在160-275℃、压力在10-25MPa范围内,主要合成两步法工艺中所需的C4-C10α-烯烃;在第二个反应器中,乙烯在60-100℃下进行链增长反应,然后在245-300℃下生成C12-18的α-烯烃。然后C12-18的α-烯烃进入分离塔进行分离、提纯;

- 《d)日本出光工艺。日本出光石化公司于1989年在千叶建成一套5万吨/ 年α-烯烃装置,所采用的催化剂是齐格勒型催化剂。该工艺的反应条件较 缓和,温度、压力均较低,C10以下的α-烯烃质量分数高达85.9%,且纯 度较高,因而特别适合生产以共聚单体为主的α-烯烃。
- ◆ 乙烯选择性齐聚(乙烯三聚)制α-烯烃技术: Phillips工艺。美国 Phillips 石油公司1990年开发出乙烯三聚制1-己烯的新工艺。该工艺主要 包括催化 剂的制备、齐聚、产物的分离和催化剂回收几部分。国内燕山石化研究院 和大庆化工研究中心拥有该技术,建有5万吨/年和2万吨/年工业化装置。

主要α-烯烃技术比较

项目	乙烯齐聚 一步法	乙烯齐聚 两步法	SHOP法工艺	出光工艺
催化剂	三乙基铝	三乙基铝	Ni配合物	Zr配合物
反应温度/℃	200	130	90	120
反应压力/MPa	20	20	10	7
反应器	管型	管型	搅拌槽	搅拌槽
催化剂回收	无	有	有	无
装置	简单	复杂	复杂	简单
C4-C18收率,%	70	87	61	72
C6纯度,%	97.9	98.2	97.2	99.3

不同工艺α-烯烃产品分布情况(wt%)

产品名称	СРСНЕМ	INEOS	SHELL
C4	14	0	7-14
C6-C10	41	70-77	25-41
C12-C14	19	21-28	15-18
C16-18	12	0	11-15
C20+	14	2	14-42

近期世界α-烯烃项目建设情况

公司名称	建设地点	装置规模	投产时间	备注		
SHELL	Geismar,	42.5	2019.1	在Geismar共有4套α-烯烃		
	Louisiana			装置,总产能135万吨/年。		
INEOS	Chocolate	40.0	2018	配套建设12万吨/年PAO装		
Oligomers	Bayou, Texas			置。		
ExxonMobil	Baytown, Texas	35.0	2022	同时建设40万吨/年高性能		
				聚 烯烃装置。		
INEOS	沙特	40.0	2025	同时配套建设PAO装置。		
Oligomers						
茂名石化	广东茂名	5.0		同时配套建设1.5万吨/年		
				PAO装置。		
未公开	广东省			世界规模LAO和PAO项目。		

- 吉化公司十万吨α-高碳醇装置,引进美国维斯塔公司技术,以乙烯为原料,采用齐格勒法合成工艺,生产α-高碳醇。其它公司不转让技术,引进的维斯塔的工艺技术只能生产α-高碳醇,不能生产α-烯烃。1996年开工建设.1998年正式建成投产.计划投资14亿元.竣工决算投资23亿元:
- 产品方案: α-烯烃 12000吨/年(其中丁烯-1 2400吨/年,已烯-1 5900吨/年,辛烯-1 2700吨/年,癸烯-1 1000吨/年);α-高碳醇 100000吨/年(其中增塑剂醇(C6-C10)36000吨/年,洗涤剂醇(C12-C14)34000吨/年,(C16-C18)2000吨/年,(C20+)10000吨/年);因技术和市场问题
 - ,装置没有运行; 20年后的2018年, 国内市场潜力已经发生巨大变化。
- ❖ 项目年耗乙烯12万吨,氢气1200万Nm3,铝粉6400吨。

2018年中国α-烯烃下游应用领域产品供求概况(万吨)

产品名称	产量	进口量	出口量	表观消费量
PE	1402	1472	54	2820
LDPE	384	293	7	670
HDPE	439	673	13	1099
LLDPE	579	437	3	1013
合成洗涤剂	929			929
表面活性剂	350	27	34	343
高碳醇	30	39	0	69
润滑油基础油	630	260	2	887

近年中国不同品种聚乙烯产量变化(单位:万吨)

近年中国HDPE供求变化情况(单位:万吨)

近年中国LLDPE供求变化情况(单位:万吨)

近年中国润滑油基础油供求变化情况(单位:万吨)

2018年我国进口润滑油基础油品种及来源国构成情(万吨

) 型号	进口量	总量占比
I类基础油	52.74	19.44%
Ⅱ类基础油	147.38	54.33%
Ⅲ类基础油	63.38	23.36%
环烷基油	7.77	2.86%
合计	271.27	100.00%

进口地区	进口量, 万吨	进口量占比
韩国	98	37.68%
新加坡	62	24.00%
台湾省	36	13.98%
其他地区	64	24.34%
合计	260	100%

2018年国内主要阴离子表面活性剂生产情

况		占比,%
脂肪醇醚硫酸盐和ES)	為量95毫	43.05
脂肪醇硫酸盐	77519	6.44
烯烃磺酸盐(AOS)	44004	3.66
烷基苯磺酸/盐(LAS)	551327	45.82
其他阴离子产品	12306	1.02
合计	1203108	100.00

2018年,我国表面活性剂产量为 350.20万吨,其中阴离子产量为120.31万吨,非离子(含聚醚及减水剂大单体)产量为210.23万吨,阳离子产品产量为7.91万吨,包括甜菜碱、氧化胺等在内的其他及两性离子产品产量为11.73万吨。

2018年我国主要非离子表面活性剂生产情

况 产品名称	产量, 吨	占比,%
AEO7+9	83555	3.97
AEO2+3	433568	20.62
聚醚 (含大单体)	1069691	50.87
其他(除EO数2,3,7,9之外的AEO、PEG等)	275338	13.09
脂肪胺聚氧乙烯醚	15500	0.74
脂肪酸聚氧乙烯酯	7850	0.37
烷基酚聚氧乙烯醚	60818	2.89
其他(包括多元醇酯、烷醇酰胺和APG等)	156065	7.42
合计	2102385	100.00

近年来我国脂肪醇供求变化情况(万吨)

年份	产量	进口量	出口量	消费量
2010	19	17.49	0.9	35.59
2011	23	21.71	0.85	43.86
2012	22	22.82	0.34	44.48
2013	24	26.96	0.21	50.75
2014	29	26.31	0.22	55.09
2015	29	30.13	0.11	59.02
2016	29	32.96	0.14	61.82
2017	28	34.43	0.14	62.29
2018	30	39.28	0.11	69.17

小结

- 我国 α-烯烃未来最具应用市场潜力的领域是聚乙烯共聚单体、合成润滑油(PAO)、高碳醇和热塑性弹性体(POE)领域,市场需求量巨大:
- 随着我国润滑油基础油的高端化发展以及聚乙烯的高端 化、专用化的结构调整,对α-烯烃(尤其是己烯-1、辛烯-1和癸烯-1)的需求会不断增大,市场前景看好;
- ❖ 国内市场已经具备建设大型乙烯齐聚路线α-烯烃装置的 市场各件 应继续加土技术开发力度·

报告结束,谢谢!

石油和化学工业规划院 副总工程师 刘延伟

Mobil Phone: 13901284958

E-mail: <u>liuyanwei@ciccc.com</u>