

Dem: Dado que 12/ depende de si 2>0 € 2<0 Consideramos todos los (asos posibles ≥0 < o Caso i: x≥0, y≥0 => x+y≥0 ≥0 >0 asique 1x+y1=x+y <0 191=y y compando |x+y| = x+y = |x1+141 / Caso (i i): (x > 0) (y < 0). No cabenos el signo de x+y asique queremos veiticu que $|x+y| \leq x-y$ Consideranos dos subcasos: Caso(ci).1: Casolii).2: $x+y \geq 0$ x+y <0 ? x+y < x-y - (x+y) ≤ x-y -x-y < x-y Si paque salens(*) Si, porque salemos (*) Caso(iii) y Caso(iv) son muy parecidos (VERIFÍRUELO) Las propiedades fundamentales del valor absoluts son: (1) |x|≥0 \frac{1}{x} =0 (=) x=0 (2) |xy|= |x||y| +x,y = IR $(3) |x+y| \leq |x| + |y|.$

Conclusión: Si arguramos una aproximación xcon $|x-a| \le \min\left(\frac{a}{z}, \frac{a^2}{z}\right) \Rightarrow \left|\frac{1}{a} - \frac{1}{x}\right| \le \delta$

I Inducción matemática:
La inducción matemática es una técnica para demostrar
que una propiedad cualquiera (2(n) se comple
que una propiedad cualquiera Q(n) se comple para todo número natural nE/10.
<u>Ejemplo:</u> Q(m):= "La suma 0+1+2++m vale in (m+1)"
$Q(3) := La suma O+1+2+3 = \frac{3\cdot 4}{2}$
6
Podemos verificar a mano para algunos valores,
Q(3):= "La suma 0+1+2+3 = 3.4" Podemos verifica a mano para algunos valores, pero cómo saber que es verdad PARA TODO M.
Idea: Demostraremos dos cosas: Caso BASE
(i) () (o) es VERDADERA y
(i) $Q(0)$ es VERDADERA y (ii) La IMPLICACIÓN $Q(m) \Rightarrow Q(m+1)$
\mathcal{O} = \pm \pm \pm \pm \pm \pm
Porqui esto es su piciente? Paso inductivo.
0
0 1 2
Hagámoslo para nuesto ejemplo CASO BASE:
CASO BASE:
Q(0): La suma 0 = Q(0+1)
11 VERDAD
0
Paso inductivo: Asumo Q (m) e intento
demostra Q(M+1)
Q(m+1) = La Suma 1+2++m+m+1 vale (m+1)(m+2)

(2m) (Hip. ind) $(1+2+3+...+m)+m+1 = \frac{m(m+1)}{2}+m+1 = \frac{m(m+1)}{2}$ $\frac{m^2 + m + 2m + 2}{2} = \frac{m^2 + 3m + 2}{2} = \frac{(m+1)(m+2)}{2}$