(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年12 月27 日 (27.12.2002)

PCT

(10) 国際公開番号 WO 02/102847 A1

(51) 国際特許分類⁷: C07K 14/47, 14/705, C12N 15/12, 1/21, 1/19, 5/10, C12P 21/02, C07K 16/18, 16/28, C12Q 1/68, A61K 38/17, 39/395, G01N 33/53, 33/577

(21) 国際出願番号:

PCT/JP02/05915

(22) 国際出願日:

2002年6月13日(13.06.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-180562 2001年6月14日(14.06.2001) JP 特願2001-216773 2001年7月17日(17.07.2001) JP 特願2001-359826

2001年11月26日(26.11.2001) JP

特願2001-401019

2001年12月28日(28.12.2001)

特願2002-154533 2002年5月28日(28.05.2002)

JP ^{JP} (84) { N 集品 (

(71) 出願人 (米国を除く全ての指定国について): 武田薬品工業株式会社 (TAKEDA CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒541-0045 大阪府 大阪市中央区 道修町四丁目 1番 1号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 日沼州司 (HINUMA,Shuji) [JP/JP]; 〒305-0821 茨城県 つくば 市 春日 1 丁目 7 番地 9 – 1 4 O 2 号 Ibaraki (JP). 藤 井 亮 (FUJII,Ryo) [JP/JP]; 〒305-0821 茨城県 つくば 市 春日 2 丁目 3 3 番地 1 6 Ibaraki (JP). 福住 昌司 (FUKUSUMI,Shoji) [JP/JP]; 〒305-0044 茨城県 つくば市並木3丁目17番地6-302号 lbaraki (JP).森正明 (MORI,Masaaki) [JP/JP]; 〒305-0821 茨城県 つくば市春日3丁目8番地5 lbaraki (JP). 吉田博美(YOSHIDA,Hiromi) [JP/JP]; 〒300-2741 茨城県 結城郡石下町大字国生1444番地の23 lbaraki (JP).

- (74) 代理人: 高橋秀一, 外(TAKAHASHI,Shuichi et al.); 〒532-0024 大阪府 大阪市淀川区 十三本町 2 丁目 1 7番85号 武田薬品工業株式会社大阪工場内 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: NOVEL LIGAND AND DNA THEREOF

(54) 発明の名称: 新規リガンドおよびそのDNA

(57) Abstract: A GPR7 ligand having the amino acid sequence represented by SEQ ID NO:1, which is optionally brominated at the N-terminal amino acid residue, or a substantially the same amino acid sequence is useful in developing a receptor-binding assay system with the use of the GPR7 expression system, screening a candidate compound for a drug such as an antiobestic, etc.

(57) 要約:

N末端アミノ酸残基がプロモ化されていてもよい配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGPR7リガンドは、GPR7の発現系を用いたレセプター結合アッセイ系の開発と抗肥満薬などの医薬品候補化合物のヌクリーニングなどに有用である。

明細書

新規リガンドおよびそのDNA

5 技術分野

本発明は、GPR7等と結合する能力を有するペプチド、そのDNAおよびそれらの用途、およびウシ由来のGPR7並びにGPR8、それらのDNAおよびそれらの用途に関する。

10 背景技術

15

20

25

生体のホメオスタシスの維持、生殖、個体の発達、代謝、成長、神経系、 循環器系、免疫系、消化器系、代謝系の調節、感覚受容などの重要な機能調 節は、様々なホルモンや神経伝達物質のような内在性因子あるいは光や匂い などの感覚刺激をこれらに対して生体が備えている細胞膜に存在する特異的 な受容体を介して細胞が受容し、それに応じた反応をすることによって行わ れている。このような機能調節によるホルモンや神経伝達物質の受容体の多 くはguanine nucleotide-binding protein (以下、G蛋白質と略称する場合 がある)と共役しており、このG蛋白質の活性化によって細胞内にシグナル を伝達して様々な機能を発現させることを特徴とする。また、これらの受容 体タンパク質は共通して7個の膜貫通領域を有する。これらのことからこう した受容体はG蛋白質共役型受容体あるいは7回膜貫通型受容体と総称され る。このように生体機能の調節には様々なホルモンや神経伝達物質およびそ れに対する受容体蛋白質が存在して相互作用し、重要な役割を果たしている ことがわかっているが、未知の作用物質(ホルモンや神経伝達物質など)お よびそれに対する受容体が存在するかどうかについてはいまだ不明なことが 多い。

近年、ヒトゲノムDNAあるいは各種ヒト組織由来のcDNAのランダムな配列決定による配列情報の蓄積および遺伝子解析技術の急速な進歩によってヒトの遺伝子が加速度的に解明されてきている。それにともない、機能未

5

10

15

20

25

知の蛋白をコードすると予想される多くの遺伝子の存在が明らかになってい る。G蛋白質共役型受容体は、7個の膜貫通領域を有するのみでなくその核酸 あるいはアミノ酸に多くの共通配列が存在するためそのような蛋白の中から 明確にG蛋白質共役型受容体として区分することができる。一方でこうした 構造の類似性を利用したポリメラーゼ・チェーン・リアクション (Polymerase Chain Reaction:以下、PCRと略称する)法によってもこうしたG蛋白質 共役型受容体遺伝子が得られている。このようにしてこれまでに得られたG 蛋白質共役型受容体のうちには既知の受容体との構造の相同性が高いサブター イプであって容易にそのリガンドを予測することが可能な場合もあるが、ほ とんどの場合その内在性リガンドは予測不能であり、これらの受容体は対応 するリガンドが見いだされていない。このことからこれらの受容体はオーフ ァン受容体と呼ばれている。このようなオーファン受容体の未同定の内生リ ガンドは、リガンドが知られていなかったために十分な解析がなされていな かった生物現象に関与している可能性がある。そして、このようなリガンド が重要な生理作用や病態と関連している場合には、その受容体作動薬あるい は拮抗薬の開発が革新的な医薬品の創製に結びつくことが期待される (Stadel, J. et al.、TiPS、18巻、430-437頁、1997年、Marchese, A. et al.、

(Stadel, J. et al.、TiPS、18巻、430-437頁、1997年、Marchese, A. et al.、 TiPS、20巻、370-375頁、1999年、Civelli, O. et al.、Brain Res.、848巻、 63-65頁、1999年、Howard, A. D. et al.、TiPS、22巻、132-140頁、2001年)。

最近、幾つかのグループによってこうしたオーファン受容体のリガンド探索の試みがなされ、新たな生理活性ペプチドであるリガンドの単離・構造決定が報告されている。ReinsheidらおよびMeunierらは独立に、動物細胞にオーファンG蛋白質共役型受容体LC132あるいはORL1をコードするCDNAを導入して受容体を発現させ、その応答を指標としてorphanin FQあるいはnociceptinとそれぞれ名付けられた同一の新規ペプチドをブタ脳あるいはラット脳の抽出物より単離し、配列を決定した(Reinsheid, R. K. et al.、Science、270巻、792-794頁、1995年、Meunier, J.-C. et al.、Nature、377巻、532-535頁、1995年)。このペプチドは痛覚に関与していることが報告されたが、さらに、受容体のノックアウトマウスの研究により記憶に関与して

いることが明らかにされた (Manabe, T. et al. 、Nature、394巻、577-581頁、1998年)。

その後これまでにPrRP (prolactin releasing peptide)、orexin、apelin、 ghrelinおよびGALP (galanin-like peptide) などの新規ペプチドがオー ファンG蛋白質共役型受容体のリガンドとして単離された(Hinuma, S. et al.、 5 Nature、393巻、272-276頁、1998年、Sakurai, T. et al.、Cell、92巻、573-585 頁、1998年、Tatemoto, K. et al.、Bichem. Biophys. Res. Commun.、251巻、 471-476頁、1998年、Kojima, M. et al.、Nature、402巻、656-660頁、1999 年、Ohtaki, T. et al.、J. Biol. Chem.、274巻、37041-37045頁、1999年)。 一方、これまで明らかでなかった生理活性ペプチドの受容体が解明された例 10 もある。腸管収縮に関与するmotilinの受容体がGPR38であることが明ら かにされた (Feighner, S. D. et al.、Science、284巻、2184-2188頁、1999 年)ほか、SLC-1がMCHの受容体として同定され(Chambers, J. et al.、 Nature、400巻、261-265頁、1999年、Saito, Y. et al.、Nature、400巻、265-269 頁、1999年、Shimomura, Y. et al.、Biochem. Biophys. Res. Commun.、261 15 巻、622-626頁、1999年、Lembo, P. M. C. et al.、Nature Cell Biol.、1巻、 267-271頁、1999年、Bachner, D. et al.、FEBS Lett.、457巻、522-524頁、 1999年)、また、GPR14 (SENR) がurotensin IIの受容体であるこ とが報告された (Ames, R. S. et al.、Nature、401巻、282-286頁、1999年、 Mori, M. et al.、Biochem. Biophys. Res. Commun.、265巻、123-129頁、1999 20 年、Nothacker, H.-P. et al.、Nature Cell Biol.、1巻、383-385頁、1999 年、Liu, Q. et al.、Biochem. Biophys. Res. Commun.、266巻、174-178頁、 1999年)。さらに、最近、神経ペプチドであるneuromedin U、neuropeptide FF の受容体が明らかにされたほか、これらのペプチド以外にもcysteinyl leukotriene類、sphingosine-1-phosphate、lysophosphatidic acid、 25 sphingosylphosphorylcholine、UDP-glucoseなど低分子の生理活性脂質ある いは核酸誘導体がオーファン受容体のリガンドとして同定された(Howard, A. D. et al. 、TiPS、22巻、132-140頁、2001年)。 MCHはそのノックアウト マウスが羸痩のphenotypeを示すことから肥満に関与することが示されてい

たが (Shimada, M. et al.、Nature、396巻、670-674頁、1998年) 、その受 容体が明らかにされたことにより抗肥満薬としての可能性を有する受容体拮 抗薬の探索が可能となった。また、urotensin IIはサルに静脈内投与するこ とによって心虚血を惹起することから心循環系に強力な作用を示すことも報 告されている (Ames, R. S. et al.、Nature、401巻、282-286頁、1999年)。 5 このように、オーファン受容体およびそのリガンドは新たな生理作用に関 与する場合が多く、その解明は新たな医薬品開発に結びつくことが期待され る。しかし、オーファン受容体のリガンド探索においては多くの困難さが伴 うことが知られている。例えば、細胞に発現させたオーファン受容体がリガ ンドに応答した後にいかなる二次情報伝達系が作動するかは一般に不明であ 10 り、様々な応答系について検討する必要がある。また、リガンドの存在する 組織は容易には予想されないため種々の組織抽出物を用意しなければならな い。さらに、リガンドがペプチドである場合、受容体を刺激するのに必要な リガンド量はごく低濃度で十分であるためにこのようなリガンドの生体内の 存在量は極微量であることが多いことに加え、ペプチドは蛋白分解酵素によ 15 って消化されて活性を失ったり、非特異的吸着によって精製過程において回 収が悪かったりするために、生体より抽出して構造決定に必要な量を単離す ることは通常極めて困難である。これらの問題によって、これまでに数多く のオーファン受容体の存在が明らかにされながらそのリガンドが明らかにさ れた受容体はごく一部に過ぎない。 20

G蛋白質共役型受容体として報告されているものの一つにGPR7(配列番号:49、0'Dowd, B. F. et al., Genomics、28巻、84-91頁、1995年)がある。GPR7はソマトスタチン受容体(SSTR3)およびオピオイド受容体(δ 、 κ および μ) と低いホモロジーがある。また、GPR7は、GPR8(配列番号:66、0'Dowd, B. F. et al., Genomics、28巻、84-91頁、1995年)とアミノ酸レベルで64%程度の相同性が認められるものである。この0'Dowd, B. F. et al.には、GPR7の膜画分に[3 H] bremazocineが結合し、この結合が μ オピオイド受容体選択的リガンドである β — funal trexamine、[D-Pro 4] morphiceptin、 β — エンドルフィン、 κ オピオイド受容体選択的リ

10

25

ガンドであるU 5 0, 4 8 8、δオピオイド受容体選択的リガンドである naltrindoleにより阻害されることが報告されている。

本発明は、GPR7等に結合する能力を有する新規ペプチド、そのDNA、 該ペプチドとGPR7等とを用いる医薬のスクリーニング方法などを提供す る。

発明の開示

本発明者たちは、上記の課題を解決するために鋭意研究を重ねた結果、ヒト全脳、マウス全脳およびラット全脳からGPR7と結合する能力を有する新規なペプチド(GPR7リガンド)をコードするDNAを取得することに成功し、GPR7リガンドが食欲(摂食)増進作用を示すことを見出した。さらに、ウシ視床下部からGPR7およびGPR8をそれぞれコードするDNAを取得することに成功した。本発明者たちは、これらの知見に基づいて、さらに検討を重ねた結果、本発明を完成するに至った。

- 15 すなわち、本発明は、
 - (1) N末端アミノ酸残基がプロモ化されていてもよい配列番号:1で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするペプチド、そのアミド、もしくはそのエステルまたはその塩、
- 20 (2)配列番号:1で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする上記(1)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
 - (3)配列番号:1、配列番号:2、配列番号:3または配列番号:66で表わされるアミノ酸配列を有する上記(1)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
 - (4) N末端のトリプトファン残基が6ーブロモ化されている、配列番号: 1、配列番号:2、配列番号:3または配列番号:66で表わされるアミノ 酸配列を有する上記(1)記載のペプチド、そのアミド、もしくはそのエス テルまたはその塩、

- (5) N末端アミノ酸残基がプロモ化されていてもよい配列番号: 4で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするペプチド、そのアミド、もしくはそのエステルまたはその塩、
- 5 (6) 配列番号: 4で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする上記(5) 記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
 - (7)配列番号: 4、配列番号: 5、配列番号: 6または配列番号: 67で表わされるアミノ酸配列を有する上記(5)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
 - (8) N末端のトリプトファン残基が6-ブロモ化されている、配列番号: 67で表わされるアミノ酸配列を有する上記(5)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
- (9) N末端のトリプトファン残基が6-ブロモ化されている、配列番号: 4、配列番号:5、配列番号:6または配列番号:67で表わされるアミノ酸配列を有する上記⁽⁵⁾ 記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
- (10) N末端アミノ酸残基がブロモ化されていてもよい配列番号:7で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするペプチド、そのアミド、もしくはそのエステルまたはその塩、
 - (11)配列番号:7で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする上記(10)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
- 25 (12)配列番号:7、配列番号:8、配列番号:9、配列番号:10、配列番号:11、配列番号:12、配列番号:68または配列番号:69で表わされるアミノ酸配列を有する上記(10)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
 - (13) N末端アミノ酸残基がブロモ化されていてもよい配列番号:13で

表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするペプチド、そのアミド、もしくはそのエステルまたはその塩、

- (14)配列番号:13で表わされるアミノ酸配列と同一もしくは実質的に5 同一のアミノ酸配列を含有することを特徴とする上記(13)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
 - (15)配列番号:13、配列番号:14、配列番号:15または配列番号:70で表わされるアミノ酸配列を有する上記(13)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
- 10 (16) N末端アミノ酸残基がプロモ化されていてもよい配列番号: 16で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするペプチド、そのアミド、もしくはそのエステルまたはその塩、
- (17)配列番号:16で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする上記(16)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
 - (18)配列番号:16、配列番号:17、配列番号:18または配列番号:71で表わされるアミノ酸配列を有する上記(17)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
- 20 (19)配列番号:49または配列番号:86で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩と結合する能力を有している上記(1)~(18)記載のペプチド、そのアミド、もしくはそのエステルまたはその塩、
- (20)配列番号:59で表わされるアミノ酸配列と同一もしくは実質的に 25 同一のアミノ酸配列を含有する蛋白質またはその塩と結合する能力を有して いる上記(1)~(18)記載のペプチド、そのアミド、もしくはそのエス テルまたはその塩、
 - (21)配列番号:84または配列番号:88で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩と

結合する能力を有している上記(1)~(18)記載のペプチド、そのアミ ド、もしくはそのエステルまたはその塩、

- (22)上記(1)~(21)のいずれかに記載のペプチドの部分ペプチド、 そのアミド、もしくはそのエステルまたはその塩、
- (23)上記(1)~(21)のいずれかに記載のペプチドの前駆体ペプチ ド、そのアミド、もしくはそのエステルまたはその塩、
 - (24) 配列番号:19で表わされるアミノ酸配列と同一もしくは実質的に 同一のアミノ酸配列を含有することを特徴とする上記(23)記載の前駆体 ペプチド、そのアミド、もしくはそのエステルまたはその塩、
- (25)配列番号:19、配列番号:20、配列番号:21または配列番号: 10 72で表わされるアミノ酸配列を有する上記(24)記載のペプチド、その アミド、もしくはそのエステルまたはその塩、
 - (26) 配列番号: 22で表わされるアミノ酸配列と同一もしくは実質的に 同一のアミノ酸配列を含有することを特徴とする上記(23)記載のペプチ ド、そのアミド、もしくはそのエステルまたはその塩、

- (27)配列番号:22、配列番号:23、配列番号:24または配列番号: 73で表わされるアミノ酸配列を有する上記(26)記載のペプチド、その アミド、もしくはそのエステルまたはその塩、
- (28) 上記(1)~(21) のいずれかに記載のペプチドをコードするポ リヌクレオチドを含有するポリヌクレオチド、 20
 - (29)配列番号:25、配列番号:26、配列番号:27、配列番号:2 8、配列番号:29、配列番号:30、配列番号:31、配列番号:32、 配列番号:33、配列番号:34、配列番号:35、配列番号:36、配列 番号:37、配列番号:38、配列番号:39、配列番号:40、配列番号:
- 41、配列番号: 42、配列番号: 74、配列番号: 75、配列番号: 76、 25 配列番号:77、配列番号:78または配列番号:79で表わされる塩基配 列を有する上記(28)記載のポリヌクレオチド、
 - (30)上記(22)記載の部分ペプチドをコードするポリヌクレオチドを 含有するポリヌクレオチド、

- (31) 上記 (23) 記載の前駆体ペプチドをコードするポリヌクレオチド を含有するポリヌクレオチド、
- (32)配列番号:43、配列番号:44、配列番号:45、配列番号:46、配列番号:47、配列番号:48、配列番号:80または配列番号:81で表わされる塩基配列を有する上記(31)記載のポリヌクレオチド、
- (33) DNAである上記(28)~(32) 記載のポリヌクレオチド、

5

- (34)上記(28)~(33)のいずれかに記載のポリヌクレオチドを含有する組換えベクター、
- (35)上記(34)記載の組換えベクターで形質転換させた形質転換体、
- 10 (36)上記(35)記載の形質転換体を培養し、上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチドまたはその前駆体ペプチドを生成せしめることを特徴とする上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチドもしくはその前駆体ペプチドまたはその塩の製造法、
- 15 (37)上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチドもしくはその前駆体ペプチド、そのアミド、もしくはそのエステルまたはその塩に対する抗体、
 - (38)上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩の活性を不活性化する中和抗体である上記(37)記載の抗体、
 - (39)上記(37)記載の抗体を含有してなる医薬、
 - (40) 肥満症または摂食亢進症の予防・治療剤である上記 (39) 記載の 医薬、
 - (41)上記(37)記載の抗体を含有してなる診断薬、
- 25 (42) 拒食症、肥満症または摂食亢進症の診断薬である上記(41) 記載の診断薬、
 - (43) 上記(1)~(21) のいずれかに記載のペプチド、その部分ペプ チド、そのアミド、もしくはそのエステルまたはその塩を含有してなる医薬、
 - (44) 拒食症の予防・治療剤または食欲増進剤である上記(43) 記載の

医薬、

15

20

25

- (45)上記(28)記載のポリヌクレオチドを含有してなる医薬、
- (46) 拒食症の予防・治療剤または食欲増進剤である上記(45) 記載の医 薬、

- (47)上記(28)記載のポリヌクレオチドを含有してなる診断薬、 5
 - (48) 拒食症、肥満症または摂食亢進症の診断薬である上記(47) 記載の 診断薬、
 - (49) 上記(28) 記載のポリヌクレオチドと相補的な塩基配列またはその 一部を含有してなるポリヌクレオチド、
- (50)上記(49)記載のポリヌクレオチドを含有してなる医薬、 10
 - (51)肥満症または摂食亢進症の予防・治療剤である上記(50)記載の医 薬、
 - (52) 上記(1)~(21) のいずれかに記載のペプチド、その部分ペプ チド、そのアミド、もしくはそのエステルまたはその塩と配列番号:49で 表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有 する蛋白質またはその塩を用いることを特徴とする上記(1)~(21)の いずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはその エステルまたはその塩と配列番号: 49で表わされるアミノ酸配列と同一も しくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合 性を変化させる化合物またはその塩のスクリーニング方法、
 - (53)上記(1)~(21)のいずれかに記載のペプチド、その部分ペプ チド、そのアミド、もしくはそのエステルまたはその塩と配列番号:59で 表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有 する蛋白質またはその塩を用いることを特徴とする上記(1)~(21)の いずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはその エステルまたはその塩と配列番号:59で表わされるアミノ酸配列と同一も しくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合 性を変化させる化合物またはその塩のスクリーニング方法、
 - (54) 上記(1)~(21) のいずれかに記載のペプチド、その部分ペプ

WO 02/102847

5

10

15

20

25

チド、そのアミド、もしくはそのエステルまたはその塩と配列番号:84で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩を用いることを特徴とする上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:84で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

(55)上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:49で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩とを含有することを特徴とする上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:49で表わされるアミノ酸配列と同しては実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット、

(56) 上記(1) \sim (21) のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:59で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩とを含有することを特徴とする上記(1) \sim (21) のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:59で表わされるアミノ酸配列と同しては実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット、

(57)上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:84で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩とを含有することを特徴とする上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:84で表わされるアミノ酸配列と同一

もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結 合性を変化させる化合物またはその塩のスクリーニング用キット、

- (58) 上記(52) 記載のスクリーニング方法または上記(55) 記載のスクリーニング用キットを用いて得られうる、上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:49で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩、
- (59)上記(53)記載のスクリーニング方法または上記(56)記載のスクリーニング用キットを用いて得られうる、上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:59で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩、
- 16 (60)上記(54)記載のスクリーニング方法または上記(57)記載のスクリーニング用キットを用いて得られうる、上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:84で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩、
 - (61) アゴニストである上記 (58) ~ (60) 記載の化合物またはその 塩、
 - (62) アンタゴニストである上記 (58) ~ (60) 記載の化合物または その塩、
- **25** (63) 上記 (58) ~ (60) のいずれかに記載の化合物またはその塩を 含有してなる医薬、
 - (64)上記(61)記載のアゴニストを含有してなる拒食症の予防・治療剤 または食欲増進剤、
 - (65) 上記(62) 記載のアンタゴニストを含有してなる肥満症または摂食

亢進症の予防・治療剤、

- (66)上記(52)記載のスクリーニング方法または上記(55)記載のスクリーニング用キットを用いて得られうる抗肥満薬、
- (67)上記(53)記載のスクリーニング方法または上記(56)記載の スクリーニング用キットを用いて得られうる抗肥満薬、
 - (68)上記(54)記載のスクリーニング方法または上記(57)記載のスクリーニング用キットを用いて得られうる抗肥満薬、
- (69)上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチドまたはその前駆体ペプチドをコードするDNAを用いることを特徴とする上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチドまたはその前駆体ペプチドの発現量を変化させる化合物またはその塩のスクリーニング方法、
- (70)上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチドまたはその前駆体ペプチドをコードするDNAを含有することを特徴とする
 上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチドまたはその前駆体ペプチドの発現量を変化させる化合物またはその塩のスクリーニング用キット、
 - (71)上記(69)記載のスクリーニング方法または上記(70)記載のスクリーニング用キットを用いて得られうる、上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチドまたはその前駆体ペプチドの発現量を変化させる化合物またはその塩、
 - (72)発現量を増加させる化合物またはその塩である上記 (71)記載の化合物またはその塩、
- (73) 発現量を減少させる化合物またはその塩である上記 (71) 記載の化 25 合物またはその塩、
 - (74)上記(71)記載の化合物またはその塩を含有してなる医薬、
 - (75)上記(72)記載の化合物またはその塩を含有してなる拒食症の予防・ 治療剤または食欲増進剤、
 - (76)上記(73)記載の化合物またはその塩を含有してなる肥満症また

は摂食亢進症の予防・治療剤、

5

10

15

(77) 哺乳動物に対して、上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩、上記(28)記載のポリヌクレオチド、上記(61)記載のアゴニスト、または上記(72)記載の化合物またはその塩の有効量を投与することを特徴とする拒食症の予防・治療方法、

(78) 哺乳動物に対して、上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩、上記(28)記載のポリヌクレオチド、上記(61)記載のアゴニスト、または上記(72)記載の化合物またはその塩の有効量を投与することを特徴とする食欲増進方法、

(79)哺乳動物に対して、上記(37)記載の抗体、上記(49)記載のポリヌクレオチド、上記(62)記載のアンタゴニスト、または上記(73)記載の化合物またはその塩の有効量を投与することを特徴とする肥満症または摂食亢進症の予防・治療方法、

- (80)配列番号:86で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質またはその塩、
- (81)配列番号:86で表されるアミノ酸配列を含有する上記(80)記載のタンパク質またはその塩、
- 20 (82) 上記 (80) 記載のタンパク質の部分ペプチドまたはその塩、
 - (83) 上記(80) 記載のタンパク質またはその部分ペプチドをコードする ポリヌクレオチドを含有するポリヌクレオチド、
 - (84) DNAである上記(83) 記載のポリヌクレオチド、
- (85) 配列番号:87で表される塩基配列を含有する上記(84) 記載のポ 25 リヌクレオチド、
 - (86)上記(83)記載のポリヌクレオチドを含有する組換えベクター、
 - (87) 上記(86) 記載の組換えベクターで形質転換させた形質転換体、
 - (88)上記(87)記載の形質転換体を培養し、上記(80)記載のタンパク質またはその部分ペプチドを生成せしめることを特徴とする上記(80)記

- 載のタンパク質、その部分ペプチドまたはその塩の製造法、
- (89) 上記 (80) 記載のタンパク質もしくは上記 (82) 記載の部分ペプ チドまたはその塩を含有してなる医薬、
- (90)上記(83)記載のポリヌクレオチドを含有してなる医薬、
- (91) 拒食症の予防・治療剤または食欲増進剤である上記(90) 記載の医 5 薬、
 - (92)上記(83)記載のポリヌクレオチドを含有してなる診断薬、
 - (93) 拒食症、肥満症または摂食亢進症の診断薬である上記(92) 記載の 診断薬、
- (94) 上記(80) 記載のタンパク質もしくは上記(82) 記載の部分ペプ 10 チドまたはその塩に対する抗体、
 - (95) 上記(80) 記載のタンパク質のシグナル伝達を不活性化する中和抗 体である上記(94)記載の抗体、
 - (96)上記(94)記載の抗体を含有してなる医薬、
- (97)肥満症または摂食亢進症の予防・治療剤である上記(96)記載の医 15 薬、
 - (98) 上記(94)記載の抗体を含有してなる診断薬、
 - (99) 拒食症、肥満症または摂食亢進症の診断薬である上記(99) 記載の 診断薬、
- (100) 上記(83) 記載のポリヌクレオチドと相補的な塩基配列またはそ 20 の一部を含有してなるポリヌクレオチド、
 - (101)上記(100)記載のポリヌクレオチドを含有してなる医薬、
 - (102) 肥満症または摂食亢進症の予防・治療剤である上記(101) 記載 の医薬、
- (103)配列番号:88で表されるアミノ酸配列と同一もしくは実質的に 25 同一のアミノ酸配列を含有することを特徴とするタンパク質またはその塩、
 - (104) 配列番号:88で表されるアミノ酸配列を含有する上記(103) 記載のタンパク質またはその塩、
 - (105)上記(103)記載のタンパク質の部分ペプチドまたはその塩、

(106) 上記(103) 記載のタンパク質またはその部分ペプチドをコード するポリヌクレオチドを含有するポリヌクレオチド、

- (107) DNAである上記(106) 記載のポリヌクレオチド、
- (108) 配列番号:89で表される塩基配列を含有する上記(107) 記載 のポリヌクレオチド、
 - (109)上記(108)記載のポリヌクレオチドを含有する組換えベクター、
 - (110)上記(109)記載の組換えベクターで形質転換させた形質転換体、
 - (111)上記(110)記載の形質転換体を培養し、上記(103)記載の タンパク質またはその部分ペプチドを生成せしめることを特徴とする上記(1
- 10 03)記載のタンパク質、その部分ペプチドまたはその塩の製造法、
 - (112)上記(103)記載のタンパク質もしくは上記(105)記載の部分ペプチドまたはその塩を含有してなる医薬、
 - (113)上記(106)記載のポリヌクレオチドを含有してなる医薬、
- (114) 拒食症の予防・治療剤または食欲増進剤である上記(113) 記載 15 の医薬、
 - (115)上記(106)記載のポリヌクレオチドを含有してなる診断薬、
 - (116) 拒食症、肥満症または摂食亢進症の診断薬である上記(115) 記載の診断薬、
- (117)上記(103)記載のタンパク質もしくは上記(105)記載の部 20 分ペプチドまたはその塩に対する抗体、
 - (118)上記(103)記載のタンパク質のシグナル伝達を不活性化する中和抗体である上記(117)記載の抗体、
 - (119) 上記(117) 記載の抗体を含有してなる医薬、
- (120) 肥満症または摂食亢進症の予防・治療剤である上記(119) 記載25 の医薬、
 - (121) 上記(117) 記載の抗体を含有してなる診断薬、
 - (122) 拒食症、肥満症または摂食亢進症の診断薬である上記(121) 記載の診断薬、
 - (123) 上記(106) 記載のポリヌクレオチドと相補的な塩基配列または

20

25 .

その一部を含有してなるポリヌクレオチド、

(124)上記(123)記載のポリヌクレオチドを含有してなる医薬、

(125) 肥満症または摂食亢進症の予防・治療剤である上記(124) 記載の医薬、

(126)上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:86で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩を用いることを特徴とする上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:86で表わされるアミノ酸配列と同ししくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

(127)上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:88で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩を用いることを特徴とする上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:88で表わされるアミノ酸配列と同しては実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

(128)上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:86で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩とを含有することを特徴とする上記(1)~(21)のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:86で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット、

(129)上記(1)~(21)のいずれかに記載のペプチド、その部分ペ

プチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:88 で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含 有する蛋白質またはその塩とを含有することを特徴とする上記(1)~(2 1) のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしく はそのエステルまたはその塩と配列番号:88で表わされるアミノ酸配列と 同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩と の結合性を変化させる化合物またはその塩のスクリーニング用キット、

18

(130) 上記(126) 記載のスクリーニング方法または上記(128) 記載のスクリーニング用キットを用いて得られうる、上記(1)~(21) のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそ 10 のエステルまたはその塩と配列番号:86で表わされるアミノ酸配列と同一 もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結ん 合性を変化させる化合物またはその塩、

(131)上記(127)記載のスクリーニング方法または上記(129)

記載のスクリーニング用キットを用いて得られうる、上記(1)~(21) 15 のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそ のエステルまたはその塩と配列番号:88で表わされるアミノ酸配列と同一 もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結 合性を変化させる化合物またはその塩、

(132) アゴニストである上記(130) または(131) 記載の化合物 20 またはその塩、

(133) アンタゴニストである上記(130) または(131) 記載の化 合物またはその塩、

(134) 上記(130) または(131) 記載の化合物またはその塩を含 有してなる医薬、 25

(135) 上記(132) 記載のアゴニストを含有してなる拒食症の予防・治 療剤または食欲増進剤、

(136) 上記(133) 記載のアンタゴニストを含有してなる肥満症または 摂食亢進症の予防・治療剤、

- (137)配列番号:86で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質をコードするDNAを用いることを特徴とする、配列番号:86で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の発現量を変化させる化合物またはその塩のスクリーニング方法、
- (138)配列番号:86で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質をコードするDNAを含有することを特徴とする、配列番号:86で表されるアミノ酸配列と同しもしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の発現量を変化させる化合物またはその塩のスクリーニング用キット、
- (139)上記(137)記載のスクリーニング方法または上記(138)記載のスクリーニング用キットを用いて得られうる、配列番号:86で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の発現量を変化させる化合物またはその塩、
- 15 (140) 発現量を増加させる化合物またはその塩である上記(139) 記載 の化合物またはその塩、
 - (141)発現量を減少させる化合物またはその塩である上記(139)記載 の化合物またはその塩、
 - (142) 上記(139) 記載の化合物またはその塩を含有してなる医薬、
- 20 (143)上記(140)記載の化合物またはその塩を含有してなる拒食症の予防・治療剤または食欲増進剤、
 - (144)上記(141)記載の化合物またはその塩を含有してなる肥満症 または摂食亢進症の予防・治療剤、
- (145)配列番号:88で表されるアミノ酸配列と同一もしくは実質的に同 25 一のアミノ酸配列を含有することを特徴とするタンパク質をコードするDNA を用いることを特徴とする、配列番号:88で表されるアミノ酸配列と同一も しくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の 発現量を変化させる化合物またはその塩のスクリーニング方法、
 - (146) 配列番号:88で表されるアミノ酸配列と同一もしくは実質的に同

一のアミノ酸配列を含有することを特徴とするタンパク質をコードするDNAを含有することを特徴とする、配列番号:88で表されるアミノ酸配列と同しもしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の発現量を変化させる化合物またはその塩のスクリーニング用キット、

20

5 (147)上記(145)記載のスクリーニング方法または上記(146)記載のスクリーニング用キットを用いて得られうる、配列番号:88で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の発現量を変化させる化合物またはその塩、

(148) 発現量を増加させる化合物またはその塩である上記(147) 記載 10 の化合物またはその塩、

(149)発現量を減少させる化合物またはその塩である上記(147)記載の化合物またはその塩、

(150)上記(147)記載の化合物またはその塩を含有してなる医薬、

(151)上記(148)記載の化合物またはその塩を含有してなる拒食症の 予防・治療剤または食欲増進剤、

15

20

25

(152)上記(149)記載の化合物またはその塩を含有してなる肥満症または摂食亢進症の予防・治療剤、

(153) 哺乳動物に対して、上記(80) 記載のタンパク質、その部分ペプチドまたはその塩、上記(83) 記載のポリヌクレオチド、上記(103) 記載のタンパク質、その部分ペプチドまたはその塩、上記(106) 記載のポリヌクレオチド、上記(132) 記載のアゴニスト、上記(140) 記載の化合物またはその塩、または上記(148) 記載の化合物またはその塩の有効量を投与することを特徴とする拒食症の予防・治療方法、

(154) 哺乳動物に対して、上記(80) 記載のタンパク質、その部分ペプチドまたはその塩、上記(83) 記載のポリヌクレオチド、上記(103) 記載のタンパク質、その部分ペプチドまたはその塩、上記(106) 記載のポリヌクレオチド、上記(132) 記載のアゴニスト、上記(140) 記載の化合物またはその塩、または上記(148) 記載の化合物またはその塩の有効量を投与することを特徴とする食欲増進方法、

5

15

(155)哺乳動物に対して、上記(94)記載の抗体、上記(100)記載のポリヌクレオチド、上記(117)記載の抗体、上記(123)記載のポリヌクレオチド、上記(133)記載のアンタゴニスト、上記(141)記載の化合物またはその塩、または上記(149)記載の化合物またはその塩の有効量を投与することを特徴とする肥満症または摂食亢進症の予防・治療方法、

(156)外来性の上記(28)記載のDNAまたはその変異DNAを有する 非ヒト哺乳動物、

(157) 非ヒト哺乳動物がゲッ歯動物である上記(156)記載の動物、

10 (158)外来性の上記(28)記載のDNAまたはその変異DNAを含有し、 哺乳動物において発現しうる組換えベクター、

(159)上記(28)記載のDNAが不活性化された非ヒト哺乳動物胚幹細胞、

(160)該DNAがレポーター遺伝子を導入することにより不活性化された 上記(159)記載の胚幹細胞、

(161)非ヒト哺乳動物がゲッ歯動物である上記(159)記載の胚幹細胞、 (162)上記(28)記載のDNAが不活性化された該DNA発現不全非ヒ ト哺乳動物、

(163) 該DNAがレポーター遺伝子を導入することにより不活性化され、

20 該レポーター遺伝子が上記 (28) 記載のDNAに対するプロモーターの制御 下で発現しうる上記 (162) 記載の非ヒト哺乳動物、

(164) 非ヒト哺乳動物がゲッ歯動物である上記(162) 記載の非ヒト哺乳動物、

(165)上記(163)記載の動物に、試験化合物を投与し、レポーター遺 25 伝子の発現を検出することを特徴とする上記(28)記載のDNAに対するプロモーター活性を促進または阻害する化合物またはその塩のスクリーニング方法、

(166)外来性の上記(83)記載のDNAまたはその変異DNAを有する 非ヒト哺乳動物、

- (167) 非ヒト哺乳動物がゲッ歯動物である上記(166)記載の動物、
- (168)外来性の上記(83)記載のDNAまたはその変異DNAを含有し、 哺乳動物において発現しうる組換えベクター、
- - (170) 該DNAがレポーター遺伝子を導入することにより不活性化された 上記(169) 記載の胚幹細胞、
 - (171) 非ヒト哺乳動物がゲッ歯動物である上記 (169) 記載の胚幹細胞、
- (172)上記(83)記載のDNAが不活性化された該DNA発現不全非ヒ 10 ト哺乳動物、
 - (173) 該DNAがレポーター遺伝子を導入することにより不活性化され、 該レポーター遺伝子が上記(83) 記載のDNAに対するプロモーターの制御 下で発現しうる上記(172) 記載の非ヒト哺乳動物、
- (174) 非ヒト哺乳動物がゲッ歯動物である上記(172) 記載の非ヒト哺 15 乳動物、
 - (175)上記(173)記載の動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする上記(83)記載のDNAに対するプロモーター活性を促進または阻害する化合物またはその塩のスクリーニング方法、
- (176) 外来性の上記(106) 記載のDNAまたはその変異DNAを有する非ヒト哺乳動物、
 - (177) 非ヒト哺乳動物がゲッ歯動物である上記(176)記載の動物、
 - (178)外来性の上記(106)記載のDNAまたはその変異DNAを含有し、哺乳動物において発現しうる組換えベクター、
- 25 (179)上記(106)記載のDNAが不活性化された非ヒト哺乳動物胚幹細胞、
 - (180) 該DNAがレポーター遺伝子を導入することにより不活性化された 上記(179) 記載の胚幹細胞、
 - (181) 非ヒト哺乳動物がゲッ歯動物である上記(179)記載の胚幹細胞、

WO 02/102847

10

15

20

(182)上記(1.06)記載のDNAが不活性化された該DNA発現不全非 ヒト哺乳動物、

(183)該DNAがレポーター遺伝子を導入することにより不活性化され、 該レポーター遺伝子が上記(106)記載のDNAに対するプロモーターの制 御下で発現しうる上記(182)記載の非ヒト哺乳動物、

(184) 非ヒト哺乳動物がゲッ歯動物である上記(182) 記載の非ヒト哺乳動物、

(185)上記(183)記載の動物に、試験化合物を投与し、レポーター 遺伝子の発現を検出することを特徴とする上記(106)記載のDNAに対 するプロモーター活性を促進または阻害する化合物またはその塩のスクリー ニング方法、

(186) 拒食症の予防・治療剤を製造するための、上記(1)~(21) のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩、上記(28) 記載のポリヌクレオチド、上記(61) 記載のアゴニスト、または上記(72) 記載の化合物またはその塩の使用、

(187) 食欲増進剤を製造するための、上記(1) \sim (21) のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩、上記(28) 記載のポリヌクレオチド、上記(61) 記載のアゴニスト、または上記(72) 記載の化合物またはその塩の使用、

(188) 肥満症または摂食亢進症の予防・治療剤を製造するための、上記 (37) 記載の抗体、上記 (49) 記載のポリヌクレオチド、上記 (62) 記載のアンタゴニスト、または上記 (73) 記載の化合物またはその塩の使用、

25 (189) 拒食症の予防・治療剤を製造するための、上記(80) 記載のタンパク質、その部分ペプチドまたはその塩、上記(83) 記載のポリヌクレオチド、上記(103) 記載のタンパク質、その部分ペプチドまたはその塩、上記(106) 記載のポリヌクレオチド、上記(132) 記載のアゴニスト、上記(140) 記載の化合物またはその塩、または上記(148) 記載の化

合物またはその塩の使用、

(190)食欲増進剤を製造するための、上記(80)記載のタンパク質、その部分ペプチドまたはその塩、上記(83)記載のポリヌクレオチド、上記(103)記載のタンパク質、その部分ペプチドまたはその塩、上記(106)記載のポリヌクレオチド、上記(132)記載のアゴニスト、上記(140)記載の化合物またはその塩、または上記(148)記載の化合物またはその塩の使用、および

(191) 肥満症または摂食亢進症の予防・治療剤を製造するための、上記(94) 記載の抗体、上記(100) 記載のポリヌクレオチド、上記(11
 7) 記載の抗体、上記(123) 記載のポリヌクレオチド、上記(133) 記載のアンタゴニスト、上記(141) 記載の化合物またはその塩、または上記(149) 記載の化合物またはその塩の使用を提供する。

図面の簡単な説明

15 図1はヒト型GPR7リガンド前駆体HのDNA配列を示す。 図2はヒト型GPR7リガンド前駆体Hのアミノ酸配列を示す。 図3はマウス型GPR7リガンド前駆体HのDNA配列を示す。 図4はマウス型GPR7リガンド前駆体Hのアミノ酸配列を示す。 図5はラット型GPR7リガンド前駆体HのDNA配列を示す。

20 図6はラット型GPR7リガンド前駆体Hのアミノ酸配列を示す。 図7はヒト型、ラット型およびマウス型GPR7リガンド前駆体Hの比較図を示す。一致するアミノ酸はボックスで囲む。また矢印は分泌シグナルの予想される切断部位を示す。

図8はリガンド発現ベクターpAK-S64および空の発現ベクター(pAK KO-111H)を発現させたCHO細胞の培養上清を、GPR7cDNAを 挿入した発現プラスミドを一過性に発現させたCHO細胞の培地にホルスコリン (FSK) とともに添加し、リガンド刺激によるルシフェラーゼ活性の抑制 を検出した結果を示す。

図9はS64を一過性に発現させたCHO細胞の培養上清を、TGR26を

一過性に発現させたCHO細胞の培地にFSKと共に添加した際のルシフェラーゼ活性の抑制を検出した結果を示す。

図10はS64の一過性発現細胞上清によるGPR7発現CHO細胞特異的なcAMP産生量の抑制反応を調べた結果を示す。

5 図11はS64の一過性発現細胞上清によるmockCHOのcAMP産生量の抑制反応を調べた結果を示す。

図12はGPR7リガンドmRNAのラットにおける組織分布およびその発現量をRT-PCR法によって求めた結果を示す。

図13はウシ視床下部からの内因性 GPR7 リガンドの最終精製のクロマトパターンを示す。最終精製段階の μ RPC C2/C18 SC 2.1/10 のクロマトパターンと各フラクションをヒト GPR7 発現 CHO 細胞に反応させ、cAMP-Screen System(ABI)を用いて測定した cAMP 産生量を示す。クロマトのチャートは 215nm の吸光度とアセトニトリルの溶出濃度を示す。

図14はウシ視床下部より精製した内因性 GPR7 リガンドのN末端配列分析結果 15 を示す。

図15はウシ視床下部より精製した内因性GPR7リガンドのESIMSスペクトル(上)とMS/MSスペクトル(下)を示す。

図16は3価分子イオンのズームスキャンスペクトルを示す。

図 1 7 は PTH-5-bromotryptophan (5BrW) および PTH-6-bromotryptophan (6BrW) 20 を 20 アミノ酸 PTH スタンダード (*で示したピーク) 分析と混合してスタンダード分析し、スタンダード 5 BrW が未知試料 5 BrW とピークが重なることを確認した結果を示す。

図18はPTH-5-bromotryptophan(5BrW)およびPTH-6-bromotryptophan (6BrW) を20アミノ酸PTHスタンダード(*で示したピーク)分析と混合してスタンダード分析し、スタンダード6BrWが未知試料である6BrWとピークが重なることを確認した結果を示す。

図19はウシ視床下部から精製したGPR7LのN末端配列分析結果を示す。 スタンダード分析と2サイクル目までのクロマトグラムサイクル1のアミノ酸は、6-bromotryptophanのピークと一致している。

- 図20はウシ型GPR7リガンド前駆体HのDNA配列を示す。
- 図21はウシ型GPR7リガンド前駆体Hのアミノ酸配列を示す。
- 図22はブロム化されていないGPR7Lまたは蒸留水をラット側脳室内に投 与後2時間ごとの摂餌量の経時的変動を示す。図中のVehicleは蒸留水
- 5 を、またbGPR7L(Br-)はプロム化されていないウシ型GPR7リガンドを示す。
 - 図23は内因性GPR7リガンドのFTMSスペクトルを示す。
 - 図24はGPR7リガンドmRNAのヒトにおける組織分布および発現量をRT-PCR法によって求めた結果を示す。
- 10 図25はラット型GPR7 (ラットTGR26) mRNAの組織分布および発 現量をRT-PCR法によって求めた結果を示す。
 - 図26はウシ型GPR7のcDNA配列を示す。
 - 図27はウシ型GPR7のアミノ酸配列を示す。
 - 図28はウシ型GPR8のcDNA配列を示す。
- 15 図29はウシ型GPR8アミノ酸配列を示す。
 - 図30はヒト型GPR7リガンド発現CHO細胞の培養上清からのヒト型GPR7リガンドの最終精製結果を示す。最終精製段階のµRPC C2/C18 SC 2.1/10 のクロマトパターンと各フラクションをヒト型GPR7発現CHO細胞反応させて得られた特異的な細胞内cAMP産生抑制活性を示す。クロマトのチャートは215nmの吸光度とアセトニトリルの溶出濃度を示す。
 - 図31はヒト型GPR7リガンド発現CHO細胞の培養上清から精製したGPR7リガンドのN末端配列分析結果を示す。
 - 図32はヒト型GPR7リガンド発現CHO細胞の培養上清から精製したGPR7リガンドのESI-MSスペクトルを示す。
- 25 図33はヒト型GPR7発現CHO細胞膜画分を用いたスキャッチャード解析の結果を示す。

発明を実施するための最良の形態

本発明の配列番号:1、配列番号:4、配列番号:7、配列番号:13ま

たは配列番号:16で表わされるアミノ酸配列と同一もしくは実質的に同一 のアミノ酸配列を有するペプチド(以下、本発明のペプチドと略記する場合 がある)は、ヒトや温血動物(例えば、モルモット、ラット、マウス、ニワ トリ、ウサギ、ブタ、ヒツジ、ウシ、サルなど)の細胞(例えば、網膜細胞、 肝細胞、脾細胞、神経細胞、グリア細胞、膵臓β細胞、骨髄細胞、メサンギ 5 ウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、繊維芽細 胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、 B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単 球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細 胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしく 10 は癌細胞など)もしくはそれらの細胞が存在するあらゆる組織、例えば、脳、 脳の各部位(例、網膜、嗅球、扁桃核、大脳基底球、海馬、視床、視床下部、 大脳皮質、延髄、小脳)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、 甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、 血管、心臟、胸腺、脾臟、顎下腺、末梢血、前立腺、睾丸、卵巣、胎盤、子 15 宮、骨、関節、骨格筋など、または血球系の細胞もしくはその培養細胞(例 えば、MEL, M1, CTLL-2, HT-2, WEHI-3, HL-60, JOSK-1, K562, ML-1, MOLT-3, MOLT-4, MOLT-10, CCRF-CEM, TALL-1, Jurkat, CCRT-H SB-2, KE-37, SKW-3, HUT-78, HUT-102, H9, 20 U937, THP-1, HEL, JK-1, CMK, KO-812, MEG -01など)に由来するペプチドであってもよく、合成ペプチドであっても よい。

配列番号:1、配列番号:4、配列番号:7、配列番号:13または配列番号:16で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、配列番号:1で表わされるアミノ酸配列と約70%以上、好ましくは約80%以上、さらに好ましくは90%以上、最も好ましくは約95%以上の相同性を有するアミノ酸配列などがあげられる。

25

配列番号:1で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を

WO 02/102847

有するペプチドとしては、例えば、前記の配列番号:1で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有し、配列番号:1で表わされるアミノ酸配列を有するペプチドと実質的に同質の活性を有するペプチドなどが好ましい。

- 5 配列番号:4で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を 有するペプチドとしては、例えば、前記の配列番号:4で表わされるアミノ 酸配列と実質的に同一のアミノ酸配列を有し、配列番号:4で表わされるア ミノ酸配列を有するペプチドと実質的に同質の活性を有するペプチドなどが 好ましい。
- 10 配列番号: 7で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を 有するペプチドとしては、例えば、前記の配列番号: 7で表わされるアミノ 酸配列と実質的に同一のアミノ酸配列を有し、配列番号: 7で表わされるア ミノ酸配列を有するペプチドと実質的に同質の活性を有するペプチドなどが 好ましい。
- 15 配列番号:13で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有するペプチドとしては、例えば、前記の配列番号:13で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有し、配列番号:13で表わされるアミノ酸配列を有するペプチドと実質的に同質の活性を有するペプチドなどが好ましい。
- 20 配列番号:16で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有するペプチドとしては、例えば、前記の配列番号:16で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有し、配列番号:16で表わされるアミノ酸配列を有するペプチドと実質的に同質の活性を有するペプチドなどが好ましい。
- 25 実質的に同質の活性としては、例えば、本発明のペプチドが有する活性(例えば、後述の疾患の予防・治療活性、GPR7との結合活性、GPR7発現細胞に対する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fos

の活性化、pHの低下、 $GTP\gamma S$ 結合活性などを促進する活性等)) など があげられる。

実質的に同質とは、それらの活性が性質的に(例、生理化学的に、または 薬理学的に)同質であることを示す。

- 5 配列番号:1で表わされるアミノ酸配列と同一または実質的に同一のアミノ酸配列の具体例としては、
 - (i)配列番号:1で表わされるアミノ酸配列、
 - (ii) 配列番号:2で表わされるアミノ酸配列、
 - (iii) 配列番号: 3で表わされるアミノ酸配列、
- 10 (iv) 配列番号: 66で表わされるアミノ酸配列、
 - (v) 配列番号: 1、配列番号: 2、配列番号: 3または配列番号: 66で表 わされるアミノ酸配列中の $1\sim5$ 個(好ましくは $1\sim3$ 個、さらに好ましく は $1\sim2$ 個、より好ましくは、1個)のアミノ酸が欠失したアミノ酸配列、
- (vi)配列番号:1、配列番号:2、配列番号:3または配列番号:66で表わされるアミノ酸配列に1~5個(好ましくは1~3個、さらに好ましくは1~2個、より好ましくは、1個)のアミノ酸が付加したアミノ酸配列、(vii)配列番号:1、配列番号:2、配列番号:3または配列番号:66で表わされるアミノ酸配列に1~5個(好ましくは1~3個、さらに好ましくは1~2個、より好ましくは、1個)のアミノ酸が挿入されたアミノ酸配列、
- 20 (viii)配列番号: 1、配列番号: 2、配列番号: 3または配列番号: 66で表わされるアミノ酸配列中の $1\sim5$ 個(好ましくは $1\sim3$ 個、さらに好ましくは $1\sim2$ 個、より好ましくは、1個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、
 - (ix) 上記(v)~(viii)を組み合わせたアミノ酸配列などがあげられる。
- 25 配列番号: 4 で表わされるアミノ酸配列と同一または実質的に同一のアミノ酸配列の具体例としては、
 - (i)配列番号:4で表わされるアミノ酸配列、
 - (ii) 配列番号:5で表わされるアミノ酸配列、
 - (iii) 配列番号:6で表わされるアミノ酸配列、

- (iv) 配列番号: 67で表わされるアミノ酸配列、
- (v) 配列番号: 4、配列番号: 5、配列番号: 6 または配列番号: 6 7で表わされるアミノ酸配列中の $1\sim5$ 個(好ましくは $1\sim3$ 個、さらに好ましくは $1\sim2$ 個、より好ましくは、1 個)のアミノ酸が欠失したアミノ酸配列、

- (vi)配列番号:4、配列番号:5、配列番号:6または配列番号:67で表わされるアミノ酸配列に1~5個(好ましくは1~3個、さらに好ましくは1~2個、より好ましくは、1個)のアミノ酸が付加したアミノ酸配列、(vii)配列番号:4、配列番号:5、配列番号:6または配列番号:67で表わされるアミノ酸配列に1~5個(好ましくは1~3個、さらに好ましくは1~2個、より好ましくは、1個)のアミノ酸が挿入されたアミノ酸配列、(viii)配列番号:4、配列番号:5、配列番号:6または配列番号:67で表わされるアミノ酸配列中の1~5個(好ましくは1~3個、さらに好ましくは1~2個、より好ましくは、1個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、
- 15 (ix) 上記(v)~(viii)を組み合わせたアミノ酸配列などがあげられる。 配列番号: 7で表わされるアミノ酸配列と同一または実質的に同一のアミノ酸配列の具体例としては、
 - (i)配列番号:7で表わされるアミノ酸配列、
 - (ii) 配列番号:8で表わされるアミノ酸配列、
- 20 (iii) 配列番号:9で表わされるアミノ酸配列、
 - (iv) 配列番号:10で表わされるアミノ酸配列、
 - (v)配列番号:11で表わされるアミノ酸配列、
 - (vi) 配列番号:12で表わされるアミノ酸配列、
 - (vii) 配列番号:68で表わされるアミノ酸配列、
- 25 (viii) 配列番号: 69で表わされるアミノ酸配列、
 - (ix) 配列番号:7、配列番号:8、配列番号:9、配列番号:10、配列番号:11、配列番号:12、配列番号:68または配列番号:69で表わされるアミノ酸配列中の $1\sim5$ 個(好ましくは $1\sim3$ 個、さらに好ましくは $1\sim2$ 個、より好ましくは、1個)のアミノ酸が欠失したアミノ酸配列、

(x) 配列番号:7、配列番号:8、配列番号:9、配列番号:10、配列番 号:11、配列番号:12、配列番号:68または配列番号:69で表わさ れるアミノ酸配列に1~5個(好ましくは1~3個、さらに好ましくは1~ 2個、より好ましくは、1個)のアミノ酸が付加したアミノ酸配列、

- (xi)配列番号:7、配列番号:8、配列番号:9、配列番号:10、配列番 号:11、配列番号:12、配列番号:68または配列番号:69で表わさ れるアミノ酸配列に1~5個(好ましくは1~3個、さらに好ましくは1~ 2個、より好ましくは、1個)のアミノ酸が挿入されたアミノ酸配列、
- (xii) 配列番号:7、配列番号:8、配列番号:9、配列番号:10、配列 番号:11、配列番号:12、配列番号:68または配列番号:69で表わ 10 されるアミノ酸配列中の1~5個(好ましくは1~3個、さらに好ましくは $1 \sim 2$ 個、より好ましくは、1 個)のアミノ酸が他のアミノ酸で置換された アミノ酸配列、
 - (xiii) 上記(ix)~(xii)を組み合わせたアミノ酸配列などがあげられる。
- 配列番号:13で表わされるアミノ酸配列と同一または実質的に同一のア 15 ミノ酸配列の具体例としては、
 - (i) 配列番号:13で表わされるアミノ酸配列、
 - (ii) 配列番号: 14で表わされるアミノ酸配列、
 - (iii) 配列番号:15で表わされるアミノ酸配列、
- (iv) 配列番号: 70で表わされるアミノ酸配列、 20
 - (v) 配列番号:13、配列番号:14、配列番号:15または配列番号:7 0で表わされるアミノ酸配列中の1~5個(好ましくは1~3個、さらに好 ましくは1~2個、より好ましくは、1個)のアミノ酸が欠失したアミノ酸 配列、
- (vi) 配列番号:13、配列番号:14、配列番号:15または配列番号: 25 70で表わされるアミノ酸配列に1~5個(好ましくは1~3個、さらに好 ましくは1~2個、より好ましくは、1個)のアミノ酸が付加したアミノ酸 配列、
 - (vii)配列番号:13、配列番号:14、配列番号:15または配列番号:7

0で表わされるアミノ酸配列に $1\sim5$ 個(好ましくは $1\sim3$ 個、さらに好ましくは $1\sim2$ 個、より好ましくは、1個)のアミノ酸が挿入されたアミノ酸配列、

(viii)配列番号: 13、配列番号: 14、配列番号: 15または配列番号: 70で表わされるアミノ酸配列中の $1\sim5$ 個(好ましくは $1\sim3$ 個、さらに好ましくは $1\sim2$ 個、より好ましくは、1個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、

- (ix) 上記(v)~(viii)を組み合わせたアミノ酸配列などがあげられる。 配列番号:16で表わされるアミノ酸配列と同一または実質的に同一のア 10 ミノ酸配列の具体例としては、
 - (i)配列番号:16で表わされるアミノ酸配列、
 - (ii) 配列番号:17で表わされるアミノ酸配列、
 - (iii) 配列番号:18で表わされるアミノ酸配列、
 - (iv) 配列番号: 71で表わされるアミノ酸配列、
- (v) 配列番号:16、配列番号:17、配列番号:18または配列番号:7 1で表わされるアミノ酸配列中の1~5個(好ましくは1~3個、さらに好ましくは1~2個、より好ましくは、1個)のアミノ酸が欠失したアミノ酸配列、
- (vi)配列番号:16、配列番号:17、配列番号:18または配列番号:
 71で表わされるアミノ酸配列に1~5個(好ましくは1~3個、さらに好ましくは1~2個、より好ましくは、1個)のアミノ酸が付加したアミノ酸配列、
 - (vii)配列番号: 16、配列番号: 17、配列番号: 18または配列番号: 71で表わされるアミノ酸配列に $1\sim5$ 個(好ましくは $1\sim3$ 個、さらに好ましくは $1\sim2$ 個、より好ましくは、1個)のアミノ酸が挿入されたアミノ酸配列、
 - (viii)配列番号: 16、配列番号: 17、配列番号: 18または配列番号: 71で表わされるアミノ酸配列中の $1\sim5$ 個(好ましくは $1\sim3$ 個、さらに好ましくは $1\sim2$ 個、より好ましくは、1個)のアミノ酸が他のアミノ酸で

置換されたアミノ酸配列、

(ix) 上記(v)~(viii)を組み合わせたアミノ酸配列などがあげられる。 本発明のペプチドの具体例としては、例えば、

33

[ペプチドA]

5 配列番号:1で表わされるアミノ酸配列を有するヒト型ペプチド、 配列番号:2で表わされるアミノ酸配列を有するマウス型ペプチド、 配列番号:3で表わされるアミノ酸配列を有するラット型ペプチド、 配列番号:66で表わされるアミノ酸配列を有するウシ型ペプチド、 「ペプチドB〕

10 配列番号: 4 で表わされるアミノ酸配列を有するヒト型ペプチド、 配列番号: 5 で表わされるアミノ酸配列を有するマウス型ペプチド、 配列番号: 6 で表わされるアミノ酸配列を有するラット型ペプチド、 配列番号: 6 7 で表わされるアミノ酸配列を有するウシ型ペプチド、 (ペプチドC)

15 配列番号:7で表わされるアミノ酸配列を有するヒト型ペプチドまたはそのアミド体、

配列番号:9で表わされるアミノ酸配列を有するマウス型ペプチドまたはそのアミド体、

配列番号: 11で表わされるアミノ酸配列を有するラット型ペプチドまたは そのアミド体、

配列番号:68で表わされるアミノ酸配列を有するウシ型ペプチドまたはそのアミド体、

「ペプチドD]

20

配列番号:8で表わされるアミノ酸配列を有するヒト型ペプチド、

25 配列番号:10で表わされるアミノ酸配列を有するマウス型ペプチド、

配列番号:12で表わされるアミノ酸配列を有するラット型ペプチド、

配列番号:69で表わされるアミノ酸配列を有するウシ型ペプチド、

「ペプチドE]

配列番号:13で表わされるアミノ酸配列を有するヒト型ペプチド、

配列番号:14で表わされるアミノ酸配列を有するマウス型ペプチド、

配列番号:15で表わされるアミノ酸配列を有するラット型ペプチド、

配列番号:70で表わされるアミノ酸配列を有するウシ型ペプチド、

[ペプチドF]

5 配列番号:16で表わされるアミノ酸配列を有するヒト型ペプチド、

配列番号:17で表わされるアミノ酸配列を有するマウス型ペプチド、

配列番号:18で表わされるアミノ酸配列を有するラット型ペプチド、

配列番号:71で表わされるアミノ酸配列を有するウシ型ペプチドなどが挙

げられる。

10 本発明の部分ペプチドとしては、前記した本発明のペプチドの部分ペプチドであれば何れのものであってもよいが、通常、アミノ酸が5個以上、好ましくは10個以上からなるペプチドが好ましく、さらには、本発明のペプチドと同様の活性を有するものが好ましい。

本発明のペプチドの前駆体ペプチドとしては、前記した本発明のペプチド 15 を含むポリペプチドであり、適当なペプチダーゼ等で切断することによって、 本発明のペプチドを製造し得るものである。

具体的には、配列番号:19または配列番号:22で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を有する蛋白質などが用いられる。

- 20 配列番号:19または配列番号:22で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を有する蛋白質は、ヒトや温血動物(例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、ブタ、ヒツジ、ウシ、サルなど)の細胞(例えば、網膜細胞、肝細胞、脾細胞、神経細胞、グリア細胞、膵臓β細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、
- 25 表皮細胞、上皮細胞、内皮細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、 免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、 肥満細胞、好中球、好塩基球、好酸球、単球)、巨核球、滑膜細胞、軟骨細 胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞もしくは間質細胞、ま たはこれら細胞の前駆細胞、幹細胞もしくは癌細胞など)もしくはそれらの

25

細胞が存在するあらゆる組織、例えば、脳、脳の各部位(例、網膜、嗅球、扁桃核、大脳基底球、海馬、視床、視床下部、大脳皮質、延髄、小脳)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、血管、心臓、胸腺、脾臓、顎下腺、末梢血、前立腺、睾丸、卵巣、胎盤、子宮、骨、関節、骨格筋など、または血球系の細胞もしくはその培養細胞(例えば、MEL, M1, CTLL-2, HT-2, WEHI-3, HL-60, JOSK-1, K562, ML-1, MOLT-3, MOLT-4, MOLT-10, CCRF-CEM, TALL-1, Jurkat, CCRT-HSB-2, KE-37, SKW-3, HUT-78, HUT-102, H9, U937, THP-1, HEL, JK-1, CMK, KO-812, MEG-01など)に由来する蛋白質であってもよく、合成蛋白質であってもよい。

配列番号:19または配列番号:22で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、配列番号:19または配列番号:22で表わされるアミノ酸配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上の相同性を有するアミノ酸配列などがあげられる。

特に、配列番号:19で表わされるアミノ酸配列と実質的に同一のアミノ 酸配列としては、

- (i) 配列番号:19で表わされるアミノ酸配列(ヒト型)、
- 20 (ii) 配列番号: 20で表わされるアミノ酸配列(マウス型)、
 - (iii) 配列番号:21で表わされるアミノ酸配列(ラット型)、
 - (iv) 配列番号: 72で表わされるアミノ酸配列(ウシ型)、
 - (v) 配列番号: 19、配列番号: 20、配列番号: 21または配列番号: 72で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が欠失したアミノ酸配列、
 - (vi) 配列番号: 19、配列番号: 20、配列番号: 21または配列番号: 72で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が付加したア

ミノ酸配列、

20

- (vii) 配列番号: 19、配列番号: 20、配列番号: 21または配列番号: 72で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が挿入されたアミノ酸配列、
- (viii) 配列番号: 19、配列番号: 20、配列番号: 21または配列番号: 72で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、
- 10 (ix) 上記(v)~(viii)を組み合わせたアミノ酸配列などがあげられる。 配列番号:22で表わされるアミノ酸配列と実質的に同一のアミノ酸配列 としては、
 - (i) 配列番号: 22で表わされるアミノ酸配列(ヒト型)、
 - (ii) 配列番号:23で表わされるアミノ酸配列(マウス型)、
- 15 (iii) 配列番号: 24で表わされるアミノ酸配列(ラット型)、
 - (iv) 配列番号: 73で表わされるアミノ酸配列(ウシ型)、
 - (v) 配列番号: 22、配列番号: 23、配列番号: 24または配列番号: 73で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が欠失したアミノ酸配列、
 - (vi) 配列番号: 22、配列番号: 23、配列番号: 24または配列番号: 73で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が付加したアミノ酸配列、
- 25 (vii) 配列番号:22、配列番号:23、配列番号:24で表わされるアミノ酸配列に1~15個(好ましくは1~10個、さらに好ましくは1~5個、より好ましくは、1~3個)のアミノ酸が挿入されたアミノ酸配列、(viii)配列番号:22、配列番号:23、配列番号:24または配列番号:

73で表わされるアミノ酸配列中の1~15個(好ましくは1~10個、さ

15

20

25

らに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、

(ix) 上記(v)~(viii)を組み合わせたアミノ酸配列などがあげられる。

配列番号:19で表わされるアミノ酸配列を有するヒト型前駆体ペプチド Gは、配列番号:22で表わされるアミノ酸配列を有するヒト型前駆体ペプ チドHから分泌シグナル配列を除いたものである。

配列番号:20で表わされるアミノ酸配列を有するマウス型前駆体ペプチドGは、配列番号:23で表わされるアミノ酸配列を有するマスウ型前駆体ペプチドHから分泌シグナル配列を除いたものである。

10 配列番号:21で表わされるアミノ酸配列を有するラット型前駆体ペプチ ドGは、配列番号:24で表わされるアミノ酸配列を有するラット型前駆体 ペプチドHから分泌シグナル配列を除いたものである。

配列番号:72で表わされるアミノ酸配列を有するラット型前駆体ペプチドGは、配列番号:73で表わされるアミノ酸配列を有するラット型前駆体ペプチドHから分泌シグナル配列を除いたものである。

本発明の前駆体ペプチドは、本発明のペプチドと同様の活性を有していてもよい。

配列番号:49で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を有する蛋白質(ヒトGPR7)、配列番号:59で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を有する蛋白質(ラットTGR26)、配列番号:84で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を有する蛋白質(ヒトGPR8)、配列番号:86で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を有する蛋白質(ウシGPR7)または配列番号:88で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を有する蛋白質(ウシGPR8)は、ヒトや温血動物(例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、ブタ、ヒツジ、ウシ、サルなど)の細胞(例えば、網膜細胞、肝細胞、脾細胞、神経細胞、グリア細胞、膵臓β細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、

繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、 T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好 酸球、単球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、 乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞 もしくは癌細胞など) もしくはそれらの細胞が存在するあらゆる組織、例え ば、脳、脳の各部位(例、網膜、嗅球、扁桃核、大脳基底球、海馬、視床、 視床下部、大脳皮質、延髄、小脳)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、 生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、 小腸)、血管、心臟、胸腺、脾臟、顎下腺、末梢血、前立腺、睾丸、卵巣、 胎盤、子宮、骨、関節、骨格筋など、または血球系の細胞もしくはその培養 10 細胞(例えば、MEL, M1, CTLL-2, HT-2, WEHI-3, H L-60, JOSK-1, K562, ML-1, MOLT-3, MOLT-4, MOLT-10, CCRF-CEM, TALL-1, Jurkat, C CRT-HSB-2, KE-37, SKW-3, HUT-78, HUT-102, H9, U937, THP-1, HEL, JK-1, CMK, KO-8 15 12, MEG-01など) に由来する蛋白質であってもよく、合成蛋白質で あってもよい。

配列番号:49で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、配列番号:49で表わされるアミノ酸配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上の相同性を有するアミノ酸配列などがあげられる。

特に、配列番号:49で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、上記のアミノ酸配列の他、

- (i) 配列番号: 49で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が欠失したアミノ酸配列、
 - (ii) 配列番号: 49で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が付加したアミノ酸配列、

25

- (iii) 配列番号: 49で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が挿入されたアミノ酸配列、
- (iv) 配列番号: 49で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、
 - (v) 上記(i)~(iv)を組み合わせたアミノ酸配列などがあげられる。

配列番号:59で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、配列番号:59で表わされるアミノ酸配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上の相同性を有するアミノ酸配列などがあげられる。

特に、配列番号:59で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、上記のアミノ酸配列の他、

- (i) 配列番号: 59で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が欠失したアミノ酸配列、
 - (ii) 配列番号: 59で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が付加したアミノ酸配列、
- 20 (iii) 配列番号: 59で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が挿入されたアミノ酸配列、
 - (iv) 配列番号: 59 で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、
 - (v) 上記(i)~(iv)を組み合わせたアミノ酸配列などがあげられる。

配列番号:84で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、配列番号:84で表わされるアミノ酸配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上の相同性を有するアミノ

20

25

酸配列などがあげられる。

特に、配列番号:84で表わされるアミノ酸配列と実質的に同一のアミノ 酸配列としては、上記のアミノ酸配列の他、

- (i) 配列番号: 84で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が欠失したアミノ酸配列、
 - (ii) 配列番号:84で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が付加したアミノ酸配列、
- 10 (iii)配列番号: 84で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が挿入されたアミノ酸配列、
 - (iv) 配列番号: 84で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、
 - (v) 上記(i)~(iv)を組み合わせたアミノ酸配列などがあげられる。

配列番号:86で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、配列番号:86で表わされるアミノ酸配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、さらに好ましくは約95%以上の相同性を有するアミノ酸配列などがあげられる。

特に、配列番号:86で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、上記のアミノ酸配列の他、

- (i) 配列番号:86で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が欠失したアミノ酸配列、
- (ii) 配列番号: 86 で表わされるアミノ酸配列に $1\sim15$ 個 (好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個) のアミノ酸が付加したアミノ酸配列、
- (iii) 配列番号:86で表わされるアミノ酸配列に1~15個(好ましくは

15

 $1 \sim 10$ 個、さらに好ましくは $1 \sim 5$ 個、より好ましくは、 $1 \sim 3$ 個)のアミノ酸が挿入されたアミノ酸配列、

- (iv) 配列番号: 86で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、
- (v) 上記(i)~(iv)を組み合わせたアミノ酸配列などがあげられる。

配列番号:88で表わされるアミノ酸配列と実質的に同一のアミノ酸配列 としては、配列番号:88で表わされるアミノ酸配列と約70%以上、好ま しくは約80%以上、より好ましくは約90%以上、さらに好ましくは約9 5%以上の相同性を有するアミノ酸配列などがあげられる。

特に、配列番号:88で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、上記のアミノ酸配列の他、

- (i) 配列番号: 88で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が欠失したアミノ酸配列、
- (ii) 配列番号: 88で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が付加したアミノ酸配列、
- (iii) 配列番号: 88で表わされるアミノ酸配列に $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個) のアミノ酸が挿入されたアミノ酸配列、
 - (iv) 配列番号: 88で表わされるアミノ酸配列中の $1\sim15$ 個(好ましくは $1\sim10$ 個、さらに好ましくは $1\sim5$ 個、より好ましくは、 $1\sim3$ 個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、
- 25 (v) 上記(i)~(iv)を組み合わせたアミノ酸配列などがあげられる。

ヒトGPR7、ラットTGR26、ヒトGPR8、ウシGPR7またはウシGPR8(以下、合わせてGPR7と略記する)の部分ペプチドとしては、後述の医薬等のスクリーニング方法に用いることのできる部分ペプチドであれば、いかなるものであっていてもよいが、好ましくは、本発明のペプチド

15

20

25

に対する結合能を有する部分ペプチド、細胞膜外領域に相当するアミノ酸配列を含有する部分ペプチド等が用いられる。

本発明のペプチド、その部分ペプチドまたはその前駆体ペプチド、特に本発明のペプチドには、N末端アミノ酸残基がプロモ化されたものも含まれる。 N末端アミノ酸残基としては、トリプトファン残基(Trp)などが好ましい。

具体的には、N末端のトリプトファン残基(Trp)がブロモ化された配列番号: $1\sim$ 配列番号: 12、配列番号: $19\sim$ 配列番号: 21、配列番号: $66\sim$ 配列番号: 69 および配列番号: 72 から選ばれる配列番号で表わされるアミノ酸配列を含有するペプチドなどが用いられ、なかでもN末端のトリプトファン残基(Trp)がブロモ化された配列番号: 1、配列番号: 2、配列番号: 3、配列番号: 4、配列番号: 5、配列番号: 6、配列番号: 6 をまたは配列番号: 6 で表わされるアミノ酸配列を含有するペプチドが好ましく用いられる。ブロモ化の位置は特に限定されないが、トリプトファン残基(Trp)の6位が好ましい。

より具体的には、N末端のトリプトファン残基(Trp)が6-プロモ化されている、配列番号: $1\sim$ 配列番号:12、配列番号: $19\sim$ 配列番号:21、配列番号: $66\sim$ 配列番号:69および配列番号:72から選ばれる配列番号で表わされるアミノ酸配列を含有するペプチドが好ましく用いられ、なかでもN末端のトリプトファン残基(Trp)が6-プロモ化されている、配列番号:1、配列番号:2、配列番号:3、配列番号:4、配列番号:5、配列番号:6、配列番号:60 または配列番号:67 で表わされるアミノ酸配列を含有するペプチドが好ましく用いられる。

本発明のペプチド、その部分ペプチドまたはその前駆体ペプチド(以下、本発明のペプチドと略記する場合がある)、GPR7またはその部分ペプチド(以下、GPR7と略記する場合がある)は、ペプチド標記の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)である。本発明のペプチドまたはGPR7は、C末端がカルボキシル基(-COOH)、カルボキシレート(-COO⁻)、アミド(-CONH。)またはエス

15

20

25

テル (- COOR) のいずれであってもよい。

ここでエステルにおけるRとしては、例えば、メチル、エチル、n-プロピル、イソプロピルもしくはn-プチルなどの C_{1-6} アルキル基、例えば、シクロペンチル、シクロヘキシルなどの C_{3-8} シクロアルキル基、例えば、フェニル、 α -ナフチルなどの C_{6-12} アリール基、例えば、ベンジル、フェネチルなどのフェニルー C_{1-2} アルキル基もしくは α -ナフチルメチルなどの α -ナフチルー C_{1-2} アルキル基などの C_{7-14} アラルキル基のほか、経口用エステルとして汎用されるピバロイルオキシメチル基などが用いられる。

本発明のペプチドまたはGPR7がC末端以外にカルボキシル基(またはカルボキシレート)を有している場合、カルボキシル基がアミド化またはエステル化されているものも本発明のペプチドに含まれる。この場合のエステルとしては、例えば上記したC末端のエステルなどが用いられる。

さらに、本発明のペプチドまたはGPR7には、 $N末端のアミノ酸残基(例、メチオニン残基)のアミノ基が保護基(例えば、ホルミル基、アセチル基などの<math>C_{1-6}$ アルカノイルなどの C_{1-6} アシル基など)で保護されているもの、生体内で切断されて生成するN末端のグルタミン残基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えば<math>-OH、-SH、アミノ基、イミダゾール基、インドール基、グアニジノ基など)が適当な保護基(例えば、ホルミル基、アセチル基などの C_{1-6} アルカノイル基などの C_{1-6} アシル基など)で保護されているもの、あるいは糖鎖が結合したいわゆる糖タンパク質などの複合タンパク質なども含まれる。

本発明のペプチドまたはGPR7の塩としては、生理学的に許容される酸 (例、無機酸、有機酸) や塩基 (例、アルカリ金属塩) などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。このような塩としては、例えば、無機酸 (例えば、塩酸、リン酸、臭化水素酸、硫酸) との塩、あるいは有機酸 (例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸) との塩などが用いられる。以下、塩も含めて、本発明のペプチドまたはGPR7と称する。

WO 02/102847

5

25

本発明のペプチドまたはGPR7は、前述したヒトや温血動物の細胞また は組織から自体公知のペプチドの精製方法によって製造することもできるし、 後述するペプチドをコードするDNAで形質転換された形質転換体を培養す ることによっても製造することができる。また、後述のペプチド合成法に準 じて製造することもできる。

ヒトや哺乳動物の組織または細胞から製造する場合、ヒトや哺乳動物の組織または細胞をホモジナイズした後、酸などで抽出を行ない、該抽出液を逆相クロマトグラフィー、イオン交換クロマトグラフィーなどのクロマトグラフィーを組み合わせることにより精製単離することができる。

本発明のペプチドもしくはGPR7またはそれらのアミド体の合成には、 10 通常市販のペプチド合成用樹脂を用いることができる。そのような樹脂とし ては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリル アミン樹脂、アミノメチル樹脂、4-ベンジルオキシベンジルアルコール樹 脂、4ーメチルベンズヒドリルアミン樹脂、PAM樹脂、4ーヒドロキシメ チルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4 15 - (2', 4', -ジメトキシフェニルーヒドロキシメチル)フェノキシ樹脂、 4-(2', 4'-ジメトキシフェニル-Fmocアミノエチル)フェノキ シ樹脂などをあげることができる。このような樹脂を用い、αーアミノ基と 側鎖官能基を適当に保護したアミノ酸を、目的とするペプチドの配列通りに、 自体公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂か 20 らペプチドを切り出すと同時に各種保護基を除去し、さらに高希釈溶液中で 分子内ジスルフィド結合形成反応を実施し、目的の本発明のペプチド、GP R7またはそれらのアミド体を取得する。

上記した保護アミノ酸の縮合に関しては、ペプチド合成に使用できる各種活性化試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド類としては、DCC、N, N'ージイソプロピルカルボジイミド、NーエチルーN'ー(3ージメチルアミノプロリル)カルボジイミドなどが用いられる。これらによる活性化にはラセミ化抑制添加剤(例えば、HOBt、HOOBt)とともに保護アミノ酸を直接樹脂に添加するかまたは、対

10

15

20

称酸無水物またはHOB t エステルあるいはHOOB t エステルとしてあらかじめ保護アミノ酸の活性化を行なった後に樹脂に添加することができる。

保護アミノ酸の活性化や樹脂との縮合に用いられる溶媒としては、ペプチ ド縮合反応に使用しうることが知られている溶媒から適宜選択されうる。例 えば、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド、N ーメチルピロリドンなどの酸アミド類、塩化メチレン、クロロホルムなどの ハロゲン化炭化水素類、トリフルオロエタノールなどのアルコール類、ジメ チルスルホキシドなどのスルホキシド類、ピリジン,ジオキサン,テトラヒ ドロフランなどのエーテル類、アセトニトリル、プロピオニトリルなどのニ トリル類、酢酸メチル、酢酸エチルなどのエステル類あるいはこれらの適宜 の混合物などが用いられる。反応温度はペプチド結合形成反応に使用され得 ることが知られている範囲から適宜選択され、通常約−20℃~50℃の範 囲から適宜選択される。活性化されたアミノ酸誘導体は通常1.5~4倍過剰 で用いられる。ニンヒドリン反応を用いたテストの結果、縮合が不十分な場 合には保護基の脱離を行なうことなく縮合反応を繰り返すことにより十分な 縮合を行なうことができる。反応を繰り返しても十分な縮合が得られないと きには、無水酢酸またはアセチルイミダゾールを用いて未反応アミノ酸をア セチル化することによって、後の反応に影響を与えないようにすることがで きる。

原料のアミノ基の保護基としては、例えば、Z、B o c 、t ーペンチルオキシカルボニル、イソボルニルオキシカルボニル、4 ーメトキシベンジルオキシカルボニル、C 1 ー Z 、B r ー Z 、P ダマンチルオキシカルボニル、トリフルオロアセチル、フタロイル、ホルミル、2 ーニトロフェニルスルフェニル、ジフェニルホスフィノチオイル、F moc x をが用いられる。

25 カルボキシル基は、例えば、アルキルエステル化(例えば、メチル、エチル、プロピル、プチル、tーブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、2ーアダマンチルなどの直鎖状、分枝状もしくは環状アルキルエステル化)、アラルキルエステル化(例えば、ベンジルエステル、4ーニトロベンジルエステル、4ーメトキシベンジルエステル、

 $4- \rho$ ロロベンジルエステル、ベンズヒドリルエステル化)、フェナシルエステル化、ベンジルオキシカルボニルヒドラジド化、t ープトキシカルボニルヒドラジド化、トリチルヒドラジド化などによって保護することができる。セリンの水酸基は、例えば、エステル化またはエーテル化によって保護することができる。このエステル化に適する基としては、例えば、アセチル基などの低級(C_{1-6})アルカノイル基、ベングイル基などの炭酸から誘導される基などが用いられる。また、エーテル化に適する基としては、例えば、ベンジル基、テトラヒドロピラニル基、t ープチル基などである。

10 チロシンのフェノール性水酸基の保護基としては、例えば、Bzl、Cl₂ -Bzl、2-ニトロベンジル、Br-Z、t-ブチルなどが用いられる。 ヒスチジンのイミダゾールの保護基としては、例えば、Tos、4-メト キシ-2,3,6-トリメチルベンゼンスルホニル、DNP、ベンジルオキ シメチル、Bum、Boc、Trt、Fmocなどが用いられる。

原料のカルボキシル基の活性化されたものとしては、例えば、対応する酸無水物、アジド、活性エステル〔アルコール (例えば、ペンタクロロフェノール、2,4,5ートリクロロフェノール、2,4ージニトロフェノール、シアノメチルアルコール、パラニトロフェノール、HONB、Nーヒドロキシスクシミド、Nーヒドロキシフタルイミド、HOBt)とのエステル〕などが用いられる。原料のアミノ基の活性化されたものとしては、例えば、対応するリン酸アミドが用いられる。

15

20

25

パラクレゾール、ジメチルスルフィド、1,4ーブタンジチオール、1,2 ーエタンジチオールなどのようなカチオン捕捉剤の添加が有効である。また、 ヒスチジンのイミダゾール保護基として用いられる2,4ージニトロフェニ ル基はチオフェノール処理により除去され、トリプトファンのインドール保 護基として用いられるホルミル基は上記の1,2ーエタンジチオール、1, 4ーブタンジチオールなどの存在下の酸処理による脱保護以外に、希水酸化 ナトリウム溶液、希アンモニアなどによるアルカリ処理によっても除去される。

原料の反応に関与すべきでない官能基の保護ならびに保護基、およびその 10 保護基の脱離、反応に関与する官能基の活性化などは公知の基または公知の 手段から適宜選択しうる。

本発明のペプチドまたはGPR7のアミド体を得る別の方法としては、例えば、まず、カルボキシ末端アミノ酸の α ーカルボキシル基をアミド化して保護した後、アミノ基側にペプチド鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端の α ーアミノ基の保護基のみを除いたペプチドとC 末端のカルボキシル基の保護基のみを除去したペプチドとを製造し、この両ペプチドを上記したような混合溶媒中で縮合させる。縮合反応の詳細については上記と同様である。縮合により得られた保護ペプチドを精製した後、上記方法によりすべての保護基を除去し、所望の粗ペプチドを得ることができる。この粗ペプチドは既知の各種精製手段を駆使して精製し、主要画分を凍結乾燥することで所望の本発明のペプチドまたはGPR7のアミド体を得ることができる。

本発明のペプチドまたはGPR7のエステル体を得るには、例えば、カルボキシ末端アミノ酸の α ーカルボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、本発明のペプチドまたはGPR7のアミド体と同様にして、所望の本発明のペプチドまたはGPR7のエステル体を得ることができる。

本発明のペプチドまたはGPR7の部分ペプチドは、自体公知のペプチド の合成法に従って、あるいはGPR7の部分ペプチドについては、GPR7

を適当なペプチダーゼで切断することによって製造することができる。ペプチドの合成法としては、例えば、固相合成法、液相合成法のいずれによっても良い。すなわち、本発明のペプチド、GPR7の部分ペプチドを構成し得る部分ペプチドもしくはアミノ酸と残余部分とを縮合させ、生成物が保護基を有する場合は保護基を脱離することにより目的のペプチドを製造することができる。公知の縮合方法や保護基の脱離としては、例えば、以下の①~⑤に記載された方法があげられる。

- ①M. Bodanszky および M.A. Ondetti、ペプチド・シンセシス (Peptide Synthesis), Interscience Publishers, New York (1966年)
- 10 ②SchroederおよびLuebke、ザ・ペプチド(The Peptide), Academic Press, New York (1965年)
 - ③泉屋信夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)
 - ④矢島治明 および榊原俊平、生化学実験講座 1、タンパク質の化学IV、205、(1977年)
- ⑤矢島治明監修、続医薬品の開発、第14巻、ペプチド合成、広川書店また、反応後は通常の精製法、例えば、溶媒抽出・蒸留・カラムクロマトグラフィー・液体クロマトグラフィー・再結晶などを組み合わせて本発明のペプチド、GPR7またはその部分ペプチドを精製単離することができる。上記方法で得られる本発明のペプチド、GPR7の部分ペプチドが遊離体である場合は、公知の方法あるいはそれに準じる方法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法あるいはそれに準じる方法によって遊離体または他の塩に変換することができる。

本発明のペプチドまたはGPR7をコードするポリヌクレオチドとしては、上記した本発明のペプチドまたはGPR7をコードする塩基配列(DNAまたはRNA、好ましくはDNA)を含有するものであればいかなるものであってもよい。該ポリヌクレオチドとしては、本発明のペプチドまたはGPR7をコードするDNA、mRNA等のRNAであり、二本鎖であっても、一本鎖であってもよい。二本鎖の場合は、二本鎖DNA、二本鎖RNAまたはDNA:RNAのハイブリッドでもよい。一本鎖の場合は、センス鎖(すなわち、コード

10

15

20

25

鎖)であっても、アンチセンス鎖(すなわち、非コード鎖)であってもよい。 本発明のペプチドまたはGPR7をコードするポリヌクレオチドを用いて、 例えば、公知の実験医学増刊「新PCRとその応用」15(7)、1997記載の方法またはそれに準じた方法により、本発明のペプチドまたはGPR7のmRNAを定量することができる。

本発明のペプチドまたはGPR7をコードするDNAとしては、前述した本発明のペプチドまたはGPR7をコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のcDNA、前記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。

ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、前記した細胞・組織よりtotalRNAまたはmRNA画分を調製したものを用いて直接 Reverse Transcriptase Polymerase Chain Reaction (以下、RT-PCR法と略称する)によって増幅することもできる。

本発明のペプチドをコードするDNAとしては、例えば配列番号:25~配列番号:42および配列番号:74~配列番号:79のいずれかの配列番号で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、本発明のペプチドと実質的に同質の活性を有するペプチドをコードするDNAなどであれば何れのものでもよい。

配列番号:25~配列番号:42および配列番号:74~配列番号:79 のいずれかの配列番号で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズできるDNAとしては、例えば、それぞれ配列番号:25~配列番号:42および配列番号:74~配列番号:79のいずれかの配列番号で表わされる塩基配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、さらに好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

ハイブリダイゼーションは、自体公知の方法あるいはそれに準じる方法、 例えば、モレキュラー・クローニング (Molecular Cloning) 2 nd (J. Sambrook

- et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。より好ましくは、ハイストリンジェントな条件に従って行なうことができる。
- ハイストリンジェントな条件とは、例えば、ナトリウム濃度が約19~4
 0 mM、好ましくは約19~20mMで、温度が約50~70℃、好ましく
 は約60~65℃の条件を示す。特に、ナトリウム濃度が約19mMで温度が約65℃の場合が最も好ましい。

より具体的には、

- 10 (i) 配列番号: 1 で表わされるアミノ酸配列を含有するヒト型ペプチドAを コードするDNAとしては、配列番号: 25で表わされる塩基配列を含有す るDNAなどが用いられ、
 - (ii) 配列番号: 2で表わされるアミノ酸配列を含有するマウス型ペプチドA をコードするDNAとしては、配列番号: 26で表わされる塩基配列を含有するDNAなどが用いられ、
 - (iii) 配列番号: 3で表わされるアミノ酸配列を含有するラット型ペプチド AをコードするDNAとしては、配列番号: 27で表わされる塩基配列を含有するDNAなどが用いられ、
- (iv) 配列番号: 4で表わされるアミノ酸配列を含有するヒト型ペプチドBを 20 コードするDNAとしては、配列番号: 28で表わされる塩基配列を含有す るDNAなどが用いられ、
 - (v)配列番号:5で表わされるアミノ酸配列を含有するマウス型ペプチドBをコードするDNAとしては、配列番号:29で表わされる塩基配列を含有するDNAなどが用いられ、
- 25 (vi) 配列番号:6で表わされるアミノ酸配列を含有するラット型ペプチドB をコードするDNAとしては、配列番号:30で表わされる塩基配列を含有するDNAなどが用いられ、
 - (vii) 配列番号: 7で表わされるアミノ酸配列を含有するヒト型ペプチドCをコードするDNAとしては、配列番号: 31で表わされる塩基配列を含有

するDNAなどが用いられ、

- (viii) 配列番号:8で表わされるアミノ酸配列を含有するヒト型ペプチドDをコードするDNAとしては、配列番号:32で表わされる塩基配列を含有するDNAなどが用いられ、
- 5 (ix) 配列番号: 9で表わされるアミノ酸配列を含有するマウス型ペプチドC をコードするDNAとしては、配列番号: 33で表わされる塩基配列を含有するDNAなどが用いられ、
- (x)配列番号:10で表わされるアミノ酸配列を含有するマウス型ペプチド DをコードするDNAとしては、配列番号:34で表わされる塩基配列を含 10 有するDNAなどが用いられ、
 - (xi) 配列番号: 11で表わされるアミノ酸配列を含有するラット型ペプチド CをコードするDNAとしては、配列番号: 35で表わされる塩基配列を含 有するDNAなどが用いられ、
- (xii) 配列番号:12で表わされるアミノ酸配列を含有するラット型ペプチ15 ドDをコードするDNAとしては、配列番号:36で表わされる塩基配列を含有するDNAなどが用いられ、
 - (xiii) 配列番号:13で表わされるアミノ酸配列を含有するヒト型ペプチド EをコードするDNAとしては、配列番号:37で表わされる塩基配列を含 有するDNAなどが用いられ、
- 20 (xiv)配列番号:14で表わされるアミノ酸配列を含有するマウス型ペプチドEをコードするDNAとしては、配列番号:38で表わされる塩基配列を含有するDNAなどが用いられ、
 - (xv) 配列番号:15で表わされるアミノ酸配列を含有するラット型ペプチド EをコードするDNAとしては、配列番号:39で表わされる塩基配列を含 有するDNAなどが用いられ、
 - (xvi) 配列番号:16で表わされるアミノ酸配列を含有するヒト型ペプチド FをコードするDNAとしては、配列番号:40で表わされる塩基配列を含 有するDNAなどが用いられ、
 - (xvii) 配列番号:17で表わされるアミノ酸配列を含有するマウス型ペプチ

WO 02/102847 PCT/JP02/05915

ドFをコードするDNAとしては、配列番号:41で表わされる塩基配列を含有するDNAなどが用いられ、

(xviii) 配列番号:18で表わされるアミノ酸配列を含有するラット型ペプチドFをコードするDNAとしては、配列番号:42で表わされる塩基配列を含有するDNAなどが用いられ、

5

20

25

(xix) 配列番号:66で表わされるアミノ酸配列を含有するウシ型ペプチド AをコードするDNAとしては、配列番号:74で表わされる塩基配列を含有するDNAなどが用いられ、

(xx) 配列番号:67で表わされるアミノ酸配列を含有するウシ型ペプチドB をコードするDNAとしては、配列番号:75で表わされる塩基配列を含有するDNAなどが用いられ、

(xxi) 配列番号:68で表わされるアミノ酸配列を含有するウシ型ペプチド CをコードするDNAとしては、配列番号:76で表わされる塩基配列を含 有するDNAなどが用いられ、

15 (xxii) 配列番号:69で表わされるアミノ酸配列を含有するウシ型ペプチド DをコードするDNAとしては、配列番号:77で表わされる塩基配列を含 有するDNAなどが用いられ、

(xxiii)配列番号:70で表わされるアミノ酸配列を含有するウシ型ペプチドEをコードするDNAとしては、配列番号:78で表わされる塩基配列を含有するDNAなどが用いられ、

(xxvi) 配列番号:71で表わされるアミノ酸配列を含有するウシ型ペプチド FをコードするDNAとしては、配列番号:79で表わされる塩基配列を含 有するDNAなどが用いられる。

本発明の部分ペプチドをコードするDNAとしては、前述した本発明の部分ペプチドをコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。

本発明の部分ペプチドをコードするDNAとしては、例えば、配列番号:

10

15

20

25

25~配列番号:42および配列番号:74~配列番号:79のいずれかの配列番号で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または配列番号:25~配列番号:42および配列番号:74~配列番号:79のいずれかの配列番号で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、本発明のペプチドと実質的に同質の活性を有するペプチドをコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号:25~配列番号:42および配列番号:74~配列番号:79 のいずれかの配列番号で表わされる塩基配列とハイブリダイズできるDNA は、前記と同意義を示す。

ハイブリダイゼーションの方法およびハイストリンジェントな条件は前記と 同様のものが用いられる。

本発明の前駆体ペプチドをコードするDNAとしては、例えば配列番号: 43または配列番号: 46で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、本発明の前駆体と実質的に同質の活性を有するペプチドをコードするDNAなどであれば何れのものでもよい。

配列番号:43または配列番号:46で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズできるDNAとしては、例えば、それぞれ配列番号:43または配列番号:46のいずれかの配列番号で表わされる塩基配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、さらに好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

ハイブリダイゼーションの方法およびハイストリンジェントな条件は前記 と同様のものが用いられる。

より具体的には、

(i) 配列番号:19で表わされるアミノ酸配列を含有するヒト型GPR7リガンド前駆体GをコードするDNAとしては、配列番号:43で表わされる塩基配列を含有するDNAなどが用いられ、

WO 02/102847 PCT/JP02/05915

(ii) 配列番号:20で表わされるアミノ酸配列を含有するマウス型GPR7 リガンド前駆体GをコードするDNAとしては、配列番号:44で表わされ る塩基配列を含有するDNAなどが用いられ、

- (iii) 配列番号:21で表わされるアミノ酸配列を含有するラット型GPR 7リガンド前駆体GをコードするDNAとしては、配列番号:45で表わされる塩基配列を含有するDNAなどが用いられ、
 - (iv) 配列番号: 72で表わされるアミノ酸配列を含有するウシ型GPR7リガンド前駆体GをコードするDNAとしては、配列番号:80で表わされる塩基配列を含有するDNAなどが用いられ、
- 10 (v) 配列番号:22で表わされるアミノ酸配列を含有するヒト型GPR7リガンド前駆体HをコードするDNAとしては、配列番号:46で表わされる 塩基配列を含有するDNAなどが用いられ、

15

25

- (vi) 配列番号: 23で表わされるアミノ酸配列を含有するマウス型GPR7 リガンド前駆体HをコードするDNAとしては、配列番号: 47で表わされ る塩基配列を含有するDNAなどが用いられ、
- (vii) 配列番号:24で表わされるアミノ酸配列を含有するラット型GPR 7リガンド前駆体HをコードするDNAとしては、配列番号:48で表わされる塩基配列を含有するDNAなどが用いられ、
- (viii) 配列番号: 73で表わされるアミノ酸配列を含有するウシ型GPR7 20 リガンド前駆体HをコードするDNAとしては、配列番号: 81で表わされ る塩基配列を含有するDNAなどが用いられる。

本発明のペプチドまたはその部分ペプチドをコードするDNAの塩基配列の一部、または該DNAと相補的な塩基配列の一部を含有してなるポリヌクレオチドとは、本発明の部分ペプチドをコードするDNAを包含するだけではなく、RNAをも包含する意味で用いられる。

本発明に従えば、本発明のペプチド遺伝子の複製または発現を阻害すること のできるアンチセンス・ポリヌクレオチド(核酸)を、クローン化した、ある いは決定された本発明のペプチドをコードするDNAの塩基配列情報に基づき 設計し、合成しうる。そうしたポリヌクレオチド(核酸)は、本発明のペプチ

20

25

ド遺伝子のRNAとハイブリダイズすることができ、該RNAの合成または機 能を阻害することができるか、あるいは本発明のペプチド関連RNAとの相互 作用を介して本発明のペプチド遺伝子の発現を調節・制御することができる。 本発明のペプチド関連RNAの選択された配列に相補的なポリヌクレオチド、 および本発明のペプチド関連RNAと特異的にハイブリダイズすることができ 5 るポリヌクレオチドは、生体内および生体外で本発明のペプチド遺伝子の発現 を調節・制御するのに有用であり、また病気などの治療または診断に有用であ る。用語「対応する」とは、遺伝子を含めたヌクレオチド、塩基配列または核 酸の特定の配列に相同性を有するあるいは相補的であることを意味する。ヌク レオチド、塩基配列または核酸とペプチド(蛋白質)との間で「対応する」と 10 は、ヌクレオチド(核酸)の配列またはその相補体から誘導される指令にある ペプチド(蛋白質)のアミノ酸を通常指している。本発明のペプチド遺伝子の 5² 端へアピンループ、5² 端6-ベースペア・リピート、5² 端非翻訳領域、 ペプチド翻訳開始コドン、蛋白質コード領域、ORF翻訳開始コドン、3)端 非翻訳領域、3′端パリンドローム領域、および3′端ヘアピンループは好ま しい対象領域として選択しうるが、本発明のペプチド遺伝子内の如何なる領域 も対象として選択しうる。

目的核酸と、対象領域の少なくとも一部に相補的なポリヌクレオチドとの関 係は、対象物とハイブリダイズすることができるポリヌクレオチドとの関係は、 「アンチセンス」であるということができる。アンチセンス・ポリヌクレオチ ドは、2ーデオキシーDーリボースを含有しているポリデオキシヌクレオチド、 D-リボースを含有しているポリデオキシヌクレオチド、プリンまたはピリミ ジン塩基のN-グリコシドであるその他のタイプのポリヌクレオチド、あるい は非ヌクレオチド骨格を有するその他のポリマー(例えば、市販の蛋白質核酸 および合成配列特異的な核酸ポリマー)または特殊な結合を含有するその他の ポリマー(但し、該ポリマーはDNAやRNA中に見出されるような塩基のペ アリングや塩基の付着を許容する配置をもつヌクレオチドを含有する)などが 挙げられる。それらは、2本鎖DNA、1本鎖DNA、2本鎖RNA、1本鎖 RNA、さらにDNA:RNAハイブリッドであることができ、さらに非修飾

WO 02/102847 PCT/JP02/05915

5

10

15

20

25

ポリヌクレオチド(または非修飾オリゴヌクレオチド)、さらには公知の修飾 の付加されたもの、例えば当該分野で知られた標識のあるもの、キャップの付 いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを類縁物で置 換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合(例え ば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバ メートなど)を持つもの、電荷を有する結合または硫黄含有結合(例えば、ホ スホロチオエート、ホスホロジチオエートなど)を持つもの、例えば蛋白質(ヌ クレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチ ド、ポリーLーリジンなど)や糖(例えば、モノサッカライドなど)などの側 鎖基を有しているもの、インターカレント化合物(例えば、アクリジン、プソ ラレンなど)を持つもの、キレート化合物(例えば、金属、放射活性をもつ金 属、ホウ素、酸化性の金属など)を含有するもの、アルキル化剤を含有するも の、修飾された結合を持つもの(例えば、αアノマー型の核酸など)であって もよい。ここで「ヌクレオシド」、「ヌクレオチド」および「核酸」とは、プ リンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環 型塩基をもつようなものを含んでいて良い。こうした修飾物は、メチル化され たプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるい はその他の複素環を含むものであってよい。修飾されたヌクレオチドおよび修 飾されたヌクレオチドはまた糖部分が修飾されていてよく、例えば、1個以上 の水酸基がハロゲンとか、脂肪族基などで置換されていたり、あるいはエーテ ル、アミンなどの官能基に変換されていてよい。

本発明のアンチセンス・ポリヌクレオチド(核酸)は、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。修飾された核酸の具体例としては核酸の硫黄誘導体やチオホスフェート誘導体、そしてポリヌクレオシドアミドやオリゴヌクレオシドアミドの分解に抵抗性のものが挙げられるが、それに限定されるものではない。本発明のアンチセンス核酸は次のような方針で好ましく設計されうる。すなわち、細胞内でのアンチセンス核酸をより安定なものにする、アンチセンス核酸の細胞透過性をより高める、目標とするセンス鎖に対する親和性をより大きなものにする、そしてもし毒性があるならアンチ

10

15

20

25

センス核酸の毒性をより小さなものにする。

こうして修飾は当該分野で数多く知られており、例えば J. Kawakami et al., Pharm Tech Japan, Vol. 8, pp. 247, 1992; Vol. 8, pp. 395, 1992; S. T. Crooke et al. ed., Antisense Research and Applications, CRC Press, 1993 などに 開示がある。

本発明のアンチセンス核酸は、変化せしめられたり、修飾された糖、塩基、 結合を含有していて良く、リポゾーム、ミクロスフェアのような特殊な形態で 供与されたり、遺伝子治療により適用されたり、付加された形態で与えられる ことができうる。こうして付加形態で用いられるものとしては、リン酸基骨格 の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との 相互作用を高めたり、核酸の取込みを増大せしめるような脂質(例えば、ホス ホリピド、コレステロールなど)といった粗水性のものが挙げられる。付加す るに好ましい脂質としては、コレステロールやその誘導体(例えば、コレステ リルクロロホルメート、コール酸など)が挙げられる。こうしたものは、核酸 の3、端あるいは5、端に付着させることができ、塩基、糖、分子内ヌクレオ シド結合を介して付着させることができうる。その他の基としては、核酸の3' 端あるいは5、端に特異的に配置されたキャップ用の基で、エキソヌクレアー ゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げら れる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエ チレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基 の保護基が挙げられるが、それに限定されるものではない。

アンチセンス核酸の阻害活性は、本発明の形質転換体、本発明の生体内や生体外の遺伝子発現系、あるいは本発明のペプチドの生体内や生体外の翻訳系を用いて調べることができる。該核酸それ自体公知の各種の方法で細胞に適用できる。

ヒトGPR 7をコードするDNAとしては、例えば、配列番号:50で表わされる塩基配列を含有するDNA、または配列番号:50で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、配列番号:49で表わされるアミノ酸配列を有するヒトGPR 7と実質

10

15

20

的に同質の活性を有するタンパク質をコードするDNAなどであれば何れの ものでもよい。

配列番号:50で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズできるDNAとしては、例えば、それぞれ配列番号:50で表わされる塩基配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、さらに好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

ラットTGR26をコードするDNAとしては、例えば、配列番号:60で表わされる塩基配列を含有するDNA、または配列番号:60で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、配列番号:59で表わされるアミノ酸配列を有するラットTGR26と実質的に同質の活性を有するタンパク質をコードするDNAなどであれば何れのものでもよい。

配列番号:60で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズできるDNAとしては、例えば、それぞれ配列番号:60で表わされる塩基配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、さらに好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

ヒトGPR8をコードするDNAとしては、例えば、配列番号:85で表わされる塩基配列を含有するDNA、または配列番号:85で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、配列番号:66で表わされるアミノ酸配列を有するヒトGPR8と実質的に同質の活性を有するタンパク質をコードするDNAなどであれば何れのものでもよい。

25 配列番号:85で表わされる塩基配列とハイストリンジェントな条件下で ハイブリダイズできるDNAとしては、例えば、それぞれ配列番号:85で 表わされる塩基配列と約70%以上、好ましくは約80%以上、より好まし くは約90%以上、さらに好ましくは約95%以上の相同性を有する塩基配 列を含有するDNAなどが用いられる。

15

20

25

ウシGPR7をコードするDNAとしては、例えば、配列番号:87で表わされる塩基配列を含有するDNA、または配列番号:87で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、配列番号:86で表わされるアミノ酸配列を有するウシGPR7と実質的に同質の活性を有するタンパク質をコードするDNAなどであれば何れのものでもよい。

配列番号:87で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズできるDNAとしては、例えば、それぞれ配列番号:87で表わされる塩基配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、さらに好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

ウシGPR8をコードするDNAとしては、例えば、配列番号:89で表わされる塩基配列を含有するDNA、または配列番号:89で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、配列番号:88で表わされるアミノ酸配列を有するウシGPR8と実質的に同質の活性を有するタンパク質をコードするDNAなどであれば何れのものでもよい。

配列番号:89で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズできるDNAとしては、例えば、それぞれ配列番号:89で表わされる塩基配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、さらに好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

ハイブリダイゼーションは、自体公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング (Molecular Cloning) 2 nd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。より好ましくは、ハイストリンジェントな条件に従って行なうことができる。

ハイストリンジェントな条件とは、例えば、ナトリウム濃度が約19~4

10

15

20

25

 $0 \, \text{mM}$ 、好ましくは約 $1 \, 9 \sim 2 \, 0 \, \text{mM}$ で、温度が約 $5 \, 0 \sim 7 \, 0 \, ^{\circ}$ 、好ましくは約 $6 \, 0 \sim 6 \, 5 \, ^{\circ}$ の条件を示す。特に、ナトリウム濃度が約 $1 \, 9 \, \text{mM}$ で温度が約 $6 \, 5 \, ^{\circ}$ の場合が最も好ましい。

より具体的には、配列番号:49で表わされるアミノ酸配列を含有するヒトGPR7をコードするDNAとしては、配列番号:59で表わされる塩基配列を含有するDNAなどが用いられ、配列番号:59で表わされるアミノ酸配列を含有するラットTGR26をコードするDNAとしては、配列番号:60で表わされる塩基配列を含有するDNAなどが用いられ、配列番号:84で表わされる工ミノ酸配列を含有するヒトGPR8をコードするDNAとしては、配列番号:85で表わされる塩基配列を含有するDNAなどが用いられ、配列番号:86で表わされるアミノ酸配列を含有するウシGPR7をコードするDNAとしては、配列番号:87で表わされる塩基配列を含有するDNAなどが用いられ、配列番号:88で表わされるアミノ酸配列を含有するDNAなどが用いられ、配列番号:89で表わされる塩基配列を含有するウシGPR8をコードするDNAとしては、配列番号:89で表わされる塩基配列を含有するDNAなどが用いられる。

GPR7の部分ペプチドをコードするDNAとしては、前述したGPR7の部分ペプチドをコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。

ヒトGPR7の部分ペプチドをコードするDNAとしては、例えば、配列番号:50で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または配列番号:50で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、ヒトGPR7と実質的に同質の活性を有するペプチドをコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号:50で表わされる塩基配列とハイブリダイズできるDNAは、 前記と同意義を示す。

ラットTGR26の部分ペプチドをコードするDNAとしては、例えば、

10

15

25

配列番号:60で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または配列番号:60で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、ラットTGR26と実質的に同質の活性を有するペプチドをコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号:60で表わされる塩基配列とハイブリダイズできるDNAは、 前記と同意義を示す。

ヒトGPR8の部分ペプチドをコードするDNAとしては、前述したヒトGPR8の部分ペプチドをコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のcDNA、前記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。

ヒトGPR8の部分ペプチドをコードするDNAとしては、例えば、配列番号:85で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または配列番号:85で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、ヒトGPR8と実質的に同質の活性を有するペプチドをコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号:85で表わされる塩基配列とハイブリダイズできるDNAは、 20 前記と同意義を示す。

ウシGPR7の部分ペプチドをコードするDNAとしては、前述したウシGPR7の部分ペプチドをコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のcDNA、前記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。

ウシGPR7の部分ペプチドをコードするDNAとしては、例えば、配列番号:87で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または配列番号:87で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、ウシGPR7と実質的に同

質の活性を有するペプチドをコードするDNAの部分塩基配列を有するDN Aなどが用いられる。

配列番号:87で表わされる塩基配列とハイブリダイズできるDNAは、 前記と同意義を示す。

5 ウシGPR8の部分ペプチドをコードするDNAとしては、前述したウシGPR8の部分ペプチドをコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のcDNA、前記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。

10 ウシGPR8の部分ペプチドをコードするDNAとしては、例えば、配列番号:89で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または配列番号:89で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、ウシGPR8と実質的に同質の活性を有するペプチドをコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号:89で表わされる塩基配列とハイブリダイズできるDNAは、 前記と同意義を示す。

ハイブリダイゼーションの方法およびハイストリンジェントな条件は前記 と同様のものが用いられる。

20 本発明のペプチドまたはGPR7をコードするDNAは、自体公知の方法で標識化されていてもよく、具体的にはアイソトープラベル化されたもの、 蛍光標識されたもの(例えば、フルオレセインなどによる蛍光標識)、ビオ チン化されたものまたは酵素標識されたものなどがあげられる。

本発明のペプチドまたはGPR7を完全にコードするDNAのクローニングの手段としては、本発明のペプチドまたはGPR7の部分塩基配列を有する合成DNAプライマーを用いて自体公知のPCR法によって増幅するか、または適当なベクターに組み込んだDNAを本発明のペプチドまたはGPR7の一部あるいは全領域をコードするDNA断片もしくは合成DNAを用いて標識したものとのハイブリダイゼーションによって選別することができる。

ハイブリダイゼーションの方法は、例えば、モレキュラー・クローニング (Molecular Cloning) 2 nd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。

DNAの塩基配列の変換は、公知のキット、例えば、Mutan™-super Express Km (宝酒造(株))、Mutan™-K (宝酒造(株))等を用いて、ODA-LA PCR法、Gapped duplex法、Kunkel法等の自体公知の方法あるいはそれらに準じる方法に従って行なうことができる。

10 クローン化されたペプチドをコードするDNAは目的によりそのまま、または所望により制限酵素で消化したり、リンカーを付加したりして使用することができる。該DNAはその5'末端側に翻訳開始コドンとしてのATGを有し、また3'末端側には翻訳終止コドンとしてのTAA、TGAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することもできる。

本発明のペプチドまたはGPR7の発現ベクターは、例えば、(イ)本発明のペプチドまたはGPR7をコードするDNAから目的とするDNA断片を切り出し、(ロ)該DNA断片を適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる。

べクターとしては、大腸菌由来のプラスミド(例、pBR322, pBR325, pUC12, pUC13)、枯草菌由来のプラスミド(例、pUB110, pTP5, pC194)、酵母由来プラスミド(例、pSH19, pSH15)、λファージなどのバクテリオファージ、レトロウイルス, ワクシニアウイルス, バキュロウイルスなどの動物ウイルスなどの他、pA1-11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neoなどが用いられる。

本発明で用いられるプロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。例えば、動物細胞を宿主として用いる場合は、SR α プロモーター、SV 4 0 プロモータ

15

20

25

ー、HIV・LTRプロモーター、CMVプロモーター、HSV-TKプロモーターなどがあげられる。

これらのうち、CMV(サイトメガロウイルス)プロモーター、SR α プロモーターなどを用いるのが好ましい。宿主がエシェリヒア属菌である場合は、t r p プロモーター、l a c プロモーター、r e c A プロモーター、l PLプロモーター、l p p プロモーター、t 7 プロモーターなどが、宿主がバチルス属菌である場合は、t S P O 1 プロモーター、t S P O 2 プロモーター、t p e n P プロモーターなど、宿主が酵母である場合は、t P H O 5 プロモーター、t P G K プロモーター、t G A P プロモーター、ADH プロモーターなどが好ましい。宿主が昆虫細胞である場合は、ポリヘドリンプロモーター、P 1 O プロモーターなどが好ましい。

発現ベクターには、以上の他に、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジン(以下、SV40oriと略称する場合がある)などを含有しているものを用いることができる。選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素(以下、dhfrと略称する場合がある)遺伝子〔メソトレキセート(MTX)耐性〕、アンピシリン耐性遺伝子(以下、Amp rと略称する場合がある)、

ネオマイシン耐性遺伝子(以下、 Neo^r と略称する場合がある、G418 耐性)等があげられる。特に、dhfr遺伝子欠損チャイニーズハムスター細胞を用いてdhfr遺伝子を選択マーカーとして使用する場合、目的遺伝子をチミジンを含まない培地によっても選択できる。

また、必要に応じて、宿主に合ったシグナル配列を、本発明のペプチドの N端末側に付加する。宿主がエシェリヒア属菌である場合は、Pho A・シグナル配列、Omp A・シグナル配列などが、宿主がバチルス属菌である場合は、 α ーアミラーゼ・シグナル配列、サブチリシン・シグナル配列などが、宿主が酵母である場合は、MF α ・シグナル配列、SUC 2・シグナル配列など、宿主が動物細胞である場合には、インシュリン・シグナル配列、 α ーインターフェロン・シグナル配列、抗体分子・シグナル配列などがそれぞれ利用で

WO 02/102847 PCT/JP02/05915

きる。

10

15

このようにして構築された本発明のペプチドをコードするDNAを含有するベクターを用いて、形質転換体を製造することができる。

宿主としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、昆虫、動物細胞などが用いられる。

エシェリヒア属菌の具体例としては、例えば、エシェリヒア・コリ (Escherichia coli) K12・DH1 [プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 60巻, 160(1968)], JM103 [ヌクイレック・アシッズ・リサーチ, (Nucleic Acids Research), 9巻, 309(1981)], JA221 [ジャーナル・オブ・モレキュラー・バイオロジー (Journal of Molecular Biology), 120巻, 517(1978)], HB101 [ジャーナル・オブ・モレキュラー・バイオロジー, 41巻, 459(1969)], C600 [ジェネティックス (Genetics), 39巻, 440(1954)] などが用いられる。

バチルス属菌としては、例えば、バチルス・サブチルス (Bacillus subtilis) MI114 [ジーン, 24巻, 255(1983)], 207-21 [ジャーナル・オブ・バイオケミストリー (Journal of Biochemistry), 95巻, 87(1984)] などが用いられる。

- 20 酵母としては、例えば、サッカロマイセス セレビシエ (Saccharomyces cerevisiae) AH22, AH22R⁻, NA87-11A, DKD-5D, 2 0B-12、シゾサッカロマイセス ポンベ (Schizosaccharomyces pombe) NCYC1913,NCYC2036、ピキア パストリス(Pichia pastoris) KM71などが用いられる。
- E虫細胞としては、例えば、ウイルスがAcNPVの場合は、夜盗蛾の幼虫由来株化細胞(Spodoptera frugiperda cell; S f 細胞)、Trichoplusia niの中腸由来のMG 1 細胞、Trichoplusia niの卵由来のHigh Five™細胞、Mamestra brassicae由来の細胞またはEstigmena acrea由来の細胞などが用いられる。ウイルスがBmNPVの場合は、蚕由来株化細胞(Bombyx mori N 細

10

15

20

25

胞; BmN細胞) などが用いられる。該Sf細胞としては、例えば、Sf9細胞 (ATCC CRL1711)、Sf21細胞 (以上、Vaughn, J.L.ら、イン・ヴィボ (In Vivo), 13, 213-217, (1977)) などが用いられる。

昆虫としては、例えば、カイコの幼虫などが用いられる〔前田ら、ネイチャー (Nature), 315巻, 592(1985)〕。

動物細胞としては、例えば、サル細胞COS-7(COS7),Vero,チャイニーズハムスター細胞CHO(以下、CHO細胞と略記),dhfr 遺伝子欠損チャイニーズハムスター細胞CHO(以下、CHO(dhfr)細胞と略記),マウスL細胞,マウスAtT-20,マウスミエローマ細胞,ラットGH3,ヒトFL細胞などが用いられる。

エシェリヒア属菌を形質転換するには、例えば、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンジイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 69巻, 2110(1972)やジーン (Gene), 17巻, 107(1982)などに記載の方法に従って行なうことができる。

バチルス属菌を形質転換するには、例えば、モレキュラー・アンド・ジェネラル・ジェネティックス (Molecular & General Genetics), 168巻, 111(1979)などに記載の方法に従って行なうことができる。

酵母を形質転換するには、例えば、メソッズ・イン・エンザイモロジー (Methods in Enzymology) , 194巻, 182-187 (1991) 、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA) , 75巻, 192 9(1978) などに記載の方法に従って行なうことができる。

昆虫細胞または昆虫を形質転換するには、例えば、バイオ/テクノロジー (Bio/Technology, 6, 47-55(1988)) などに記載の方法に従って行なうことができる。

動物細胞を形質転換するには、例えば、細胞工学別冊8 新細胞工学実験 プロトコール. 263-267 (1995) (秀潤社発行)、ヴィロロジー (Virology), 52巻, 456(1973)に記載の方法に従って行なうこと

10

15

20

ができる。

このようにして、ペプチドをコードするDNAを含有する発現ベクターで 形質転換された形質転換体を得ることができる。

宿主がエシェリヒア属菌、バチルス属菌である形質転換体を培養する際、 培養に使用される培地としては液体培地が適当であり、その中には該形質転 換体の生育に必要な炭素源、窒素源、無機物その他が含有せしめられる。炭 素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖な ど、窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチー プ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液な どの無機または有機物質、無機物としては、例えば、塩化カルシウム、リン 酸二水素ナトリウム、塩化マグネシウムなどがあげられる。また、酵母エキ ス、ビタミン類、生長促進因子などを添加してもよい。培地のpHは約5~ 8が望ましい。

エシェリヒア属菌を培養する際の培地としては、例えば、グルコース、カザミノ酸を含むM 9 培地〔ミラー(Miller),ジャーナル・オブ・エクスペリメンツ・イン・モレキュラー・ジェネティックス(Journal of Experiments in Molecular Genetics),431-433,Cold Spring Harbor Laboratory,New York 1972〕が好ましい。ここに必要によりプロモーターを効率よく働かせるために、例えば、 3β -インドリルアクリル酸のような薬剤を加えることができる。

宿主がエシェリヒア属菌の場合、培養は通常約15~43℃で約3~24 時間行ない、必要により、通気や撹拌を加えることもできる。

宿主がバチルス属菌の場合、培養は通常約30~40℃で約6~24時間 行ない、必要により通気や撹拌を加えることもできる。

25 宿主が酵母である形質転換体を培養する際、培地としては、例えば、バークホールダー (Burkholder) 最小培地 [Bostian, K. L. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 77巻, 4505(1980)] や0.5%カザミノ酸を含有するSD培地 [Bitter, G. A. ら、プロシージン

10

25

グズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA) , 81 巻, 5330 (1 984)] があげられる。培地のp Hは約5 ~ 8 に調整するのが好ましい。培養は通常約20 ~ 35 \sim で約24 ~ 72 時間行ない、必要に応じて通気や撹拌を加える。

宿主が昆虫細胞または昆虫である形質転換体を培養する際、培地としては、Grace's Insect Medium (Grace, T. C. C., ネイチャー (Nature), 195, 788 (1962)) に非動化した 10%ウシ血清等の添加物を適宜加えたものなどが用いられる。 培地の p Hは約 6. $2\sim6$. 4 に調整するのが好ましい。培養は通常約 27%で約 $3\sim5$ 日間行ない、必要に応じて通気や撹拌を加える。

宿主が動物細胞である形質転換体を培養する際、培地としては、例えば、約5~20%の胎児牛血清を含むMEM培地 [サイエンス (Science), 122巻, 501(1952)], DMEM培地 [ヴィロロジー (Virology), 8巻, 396(1959)], RPMI 1640培地 [ジャーナル・オブ・ザ・アメリカン・メディカル・アソシエーション (The Journal of the American Medical Association) 199巻, 519(1967)], 199培地 [プロシージング・オブ・ザ・ソサイエティ・フォー・ザ・バイオロジカル・メディスン (Proceeding of the Society for the Biological Medicine), 73巻, 1(1950)] などが用いられる。pHは約6~8であるのが好ましい。培養は通常約30℃~40℃で約15~60時間行ない、必要に応じて通気や撹拌を加える。

以上のようにして、形質転換体の細胞内、細胞膜または細胞外などに本発明のペプチドmatahaGPR7を生成せしめることができる。

上記培養物から本発明のペプチドまたはGPR7を分離精製するには、例 えば、下記の方法により行なうことができる。

本発明のペプチドまたはGPR7を培養菌体あるいは細胞から抽出するに際しては、培養後、公知の方法で菌体あるいは細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチームおよび/または凍結融解などによって菌体あるいは細胞を破壊したのち、遠心分離やろ過により本発明のペプチドま

15

20

25

たはGPR 7の粗抽出液を得る方法などが適宜用いられる。緩衝液の中に尿素や塩酸グアニジンなどの蛋白質変性剤や、トリトンX-100™などの界面活性剤が含まれていてもよい。培養液中にペプチドが分泌される場合には、培養終了後、それ自体公知の方法で菌体あるいは細胞と上清とを分離し、上清を集める。

このようにして得られた培養上清、あるいは抽出液中に含まれる本発明のペプチドまたはGPR7の精製は、自体公知の分離・精製法を適宜組み合わせて行なうことができる。これらの公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、

10 およびSDSーポリアクリルアミドゲル電気泳動法などの主として分子量の 差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用す る方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する 方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、 等電点電気泳動法などの等電点の差を利用する方法などが用いられる。

かくして得られる本発明のペプチドまたはGPR7が遊離体で得られた場合には、自体公知の方法あるいはそれに準じる方法によって塩に変換することができ、逆に塩で得られた場合には自体公知の方法あるいはそれに準じる方法により、遊離体または他の塩に変換することができる。

なお、組換え体が産生する本発明のペプチドまたはGPR7を、精製前または精製後に適当な蛋白修飾酵素を作用させることにより、任意に修飾を加えたり、ペプチドを部分的に除去することもできる。蛋白修飾酵素としては、例えば、トリプシン、キモトリプシン、アルギニルエンドペプチダーゼ、プロテインキナーゼ、グリコシダーゼなどが用いられる。

本発明のペプチドに対する抗体(以下、単に本発明の抗体と称する場合がある)は、本発明のペプチドに対する抗体を認識し得る抗体であれば、ポリクローナル抗体、モノクローナル抗体の何れであってもよい。

本発明のペプチドに対する抗体は、本発明のペプチドを抗原として用い、 自体公知の抗体または抗血清の製造法に従って製造することができる。 〔モノクローナル抗体の作製〕

(a) モノクローナル抗体産生細胞の作製

本発明のペプチドは、温血動物に対して投与により抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は通常2~6週毎に1回ずつ、計2~10回程度行われる。用いられる温血動物としては、例えば、サル、ウサギ、イヌ、モルモット、マウス、ラット、ヒツジ、ヤギ、ニワトリがあげられるが、マウスおよびラットが好ましく用いられる。

モノクローナル抗体産生細胞の作製に際しては、抗原で免疫された温血動物、例えばマウスから抗体価の認められた個体を選択し最終免疫の2~5日後に脾臓またはリンパ節を採取し、それらに含まれる抗体産生細胞を同種または異種動物の骨髄腫細胞と融合させることにより、モノクローナル抗体産生ハイブリドーマを調製することができる。抗血清中の抗体価の測定は、例えば、後記の標識化ペプチドと抗血清とを反応させたのち、抗体に結合した標識剤の活性を測定することにより行なうことができる。融合操作は既知の方法、例えば、ケーラーとミルスタインの方法 [ネイチャー (Nature)、256、495 (1975)] に従い実施することができる。融合促進剤としては、例えば、ポリエチレングリコール (PEG) やセンダイウィルスなどがあげられるが、好ましくはPEGが用いられる。

20 骨髄腫細胞としては、例えば、NS-1、P3U1、SP2/0、AP-1などの温血動物の骨髄腫細胞があげられるが、P3U1が好ましく用いられる。用いられる抗体産生細胞(脾臓細胞)数と骨髄腫細胞数との好ましい比率は1:1~20:1程度であり、PEG(好ましくはPEG1000~PEG6000)が10~80%程度の濃度で添加され、20~40℃、好ましくは30~37℃で1~10分間インキュベートすることにより効率よく細胞融合を実施できる。

モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法 が使用できるが、例えば、ペプチド(蛋白質)抗原を直接あるいは担体とと もに吸着させた固相(例、マイクロプレート)にハイブリドーマ培養上清を WO 02/102847 PCT/JP02/05915

添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体(細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる)またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識したペプチドを加え、固相に結合したモノクローナル抗体を検出する方法などがあげられる。

71

モノクローナル抗体の選別は、自体公知あるいはそれに準じる方法に従って行なうことができる。通常HAT(ヒポキサンチン、アミノプテリン、チミジン)を添加した動物細胞用培地で行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、1~20%、好ましくは10~20%の牛胎児血清を含むRPMI 1640培地、1~10%の牛胎児血清を含むGIT培地(和光純薬工業(株))あるいはハイブリドーマ培養用無血清培地(SFM-101、日水製薬(株))などを用いることができる。培養温度は、通常20~40℃、好ましくは約37℃である。培養時間は、通常5日~3週間、好ましくは1週間~2週間である。培養は、通常5%炭酸ガス下で行なうことができる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。

20 (b) モノクローナル抗体の精製

モノクローナル抗体の分離精製は、自体公知の方法、例えば、免疫グロブリンの分離精製法 [例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換体 (例、DEAE) による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相あるいはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法]に従って行なうことができる。

〔ポリクローナル抗体の作製〕

25

本発明のポリクローナル抗体は、それ自体公知あるいはそれに準じる方法に従って製造することができる。例えば、免疫抗原(ペプチド抗原)自体、

20

25

あるいはそれとキャリアー蛋白質との複合体をつくり、上記のモノクローナル抗体の製造法と同様に温血動物に免疫を行ない、該免疫動物から本発明のペプチドに対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造することができる。

5 温血動物を免疫するために用いられる免疫抗原とキャリアー蛋白質との複合体に関し、キャリアー蛋白質の種類およびキャリアーとハプテンとの混合比は、キャリアーに架橋させて免疫したハプテンに対して抗体が効率良くできれば、どの様なものをどの様な比率で架橋させてもよいが、例えば、ウシ血清アルブミンやウシサイログロブリン、ヘモシアニン等を重量比でハプテン1に対し、約0.1~20、好ましくは約1~5の割合でカプルさせる方法が用いられる。

また、ハプテンとキャリアーのカプリングには、種々の縮合剤を用いることができるが、グルタルアルデヒドやカルボジイミド、マレイミド活性エステル、チオール基、ジチオビリジル基を含有する活性エステル試薬等が用いられる。

縮合生成物は、温血動物に対して、抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は、通常約2~6週毎に1回ずつ、計約3~10回程度行なわれる。

ポリクローナル抗体は、上記の方法で免疫された温血動物の血液、腹水など、好ましくは血液から採取することができる。

抗血清中のポリクローナル抗体価の測定は、上記の抗血清中の抗体価の測定と同様にして測定できる。ポリクローナル抗体の分離精製は、上記のモノクローナル抗体の分離精製と同様の免疫グロブリンの分離精製法に従って行なうことができる。

本発明のペプチドをコードするDNA(以下、これらのDNAを本発明の DNAと略記する場合がある)に相補的な、または実質的に相補的な塩基配 列を有するアンチセンスDNA(以下、これらのDNAをアンチセンスDN

10

15

20

25

Aと略記する場合がある)としては、本発明のDNAに相補的な、または実質的に相補的な塩基配列を有し、該DNAの発現を抑制し得る作用を有するものであれば、いずれのアンチセンスDNAであってもよい。

本発明のDNAに実質的に相補的な塩基配列とは、例えば、本発明のDNAに相補的な塩基配列(すなわち、本発明のDNAの相補鎖)の全塩基配列あるいは部分塩基配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、最も好ましくは約95%以上の相同性を有する塩基配列などがあげられる。特に、本発明のDNAの相補鎖の全塩基配列うち、本発明のペプチドのN末端部位をコードする部分の塩基配列(例えば、開始コドン付近の塩基配列など)の相補鎖と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、最も好ましくは約95%以上の相同性を有するアンチセンスDNAが好適である。これらのアンチセンスDNAは、公知のDNA合成装置などを用いて製造することができる。

以下に、①本発明のペプチド、②本発明のDNA、③本発明の抗体、および④アンチセンスDNAの用途を説明する。

(1) 本発明のペプチドが関与する各種疾病の治療・予防剤

本発明のペプチドは後述の実施例6に示すとおり、GPR7発現細胞の細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下、GTPγS結合活性などを促進する活性等)を有し、GPR7の内因性リガンドである。また、本発明のペプチドは後述の実施例14に示すとおり、食欲(摂食)増進作用を有している。さらに、本発明のペプチドは、神経調節物質もしくは神経内分泌物質として作用したり、記憶や学習、あるいはストレスの調節に関与していると考えられる。

従って、本発明のペプチドまたは本発明のDNAに異常があったり、欠損している場合、またはGPR7またはGPR7をコードするDNAに異常があったり、欠損している場合には、例えば、拒食症、高血圧、自己免疫疾患、心不全、白内障、緑内障、急性バクテリア髄膜炎、急性心筋梗塞、急性膵炎、

する可能性が高い。

急性ウイルス脳炎、成人呼吸促迫症候群、アルコール性肝炎、アルツハイマ 一病,喘息,動脈硬化,アトピー性皮膚炎,バクテリア肺炎,膀胱がん,骨 折,乳がん,過食症,多食症,火傷治癒,子宮頸部がん,慢性リンパ性白血 病,慢性骨髄性白血病,慢性膵炎,肝硬変,大腸がん(結腸/直腸がん), クローン病、痴呆、糖尿病性合併症、糖尿病性腎症、糖尿病性神経障害、糖 5 尿病性網膜症、胃炎、ヘリコバクター・ピロリ感染症、肝不全、A型肝炎、 B型肝炎、C型肝炎、肝炎、単純ヘルペスウイルス感染症、水痘帯状疱疹ウ イルス感染症, ホジキン病, エイズ感染症, ヒトパピローマウイルス感染症, 高カルシウム血症、高コレステロール血症、高グリセリド血症、高脂血症、 感染症、インフルエンザ感染症、インシュリン依存性糖尿病(Ⅰ型)、侵襲 10 性ブドウ状球菌感染症、悪性黒色腫、がん転移、多発性骨髄腫、アレルギー 性鼻炎、腎炎、非ホジキン性リンパ腫、インシュリン非依存性糖尿病(II型)、 非小細胞肺がん,臓器移植,骨関節炎,骨軟化症,骨減少症,骨粗鬆症,卵 巣がん、骨ペーチェット病、消化性潰瘍、末梢血管疾患、前立腺がん、逆流 性食道炎,腎不全,リウマチ関節炎,精神分裂症,敗血症,敗血症ショック, 15 重症全身性真菌感染症、小細胞肺がん、脊髄損傷、胃がん、全身性エリテマ トーサス、一過性脳虚血発作、結核、心弁膜症、血管性/多発梗塞痴呆、創 傷治癒、不眠症、関節炎、下垂体ホルモン分泌不全〔例、プロラクチン分泌 不全(例、卵巢機能低下症、精嚢発育不全、更年期障害、甲状腺機能低下等)〕、 瀬尿、尿毒症、または神経変成疾患等(特に拒食症等)の種々の疾病が発症 20

従って、本発明のペプチド、本発明のDNAは、例えば、上記の種々の疾病(特に拒食症)の治療・予防剤などの医薬(特に、食欲(摂食)増進剤等)として使用することができる。

25 本発明のペプチドおよび本発明のDNAは、例えば、生体内において本発明のペプチドが減少あるいは欠損している患者がいる場合に、(イ)本発明のDNAを該患者に投与し、生体内で本発明のペプチドを発現させることによって、(ロ)細胞に本発明のDNAを挿入し、本発明のペプチドを発現させた後に、該細胞を患者に移植することによって、または(ハ)本発明のペ

WO 02/102847

10

15

20

25

プチドを該患者に投与することなどによって、該患者における本発明のペプ チドの役割を十分に、あるいは正常に発揮させることができる。

本発明のDNAを上記の治療・予防剤として使用する場合は、該DNAを 単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウ イルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した 後、常套手段に従って、ヒトまたは温血動物に投与することができる。本発 明のDNAは、そのままで、あるいは摂取促進のための補助剤などの生理学 的に認められる担体とともに製剤化し、遺伝子銃やハイドロゲルカテーテル のようなカテーテルによって投与できる。

本発明のペプチドを上記の治療・予防剤として使用する場合は、少なくと も90%、好ましくは95%以上、より好ましくは98%以上、さらに好ま しくは99%以上に精製されたものを使用するのが好ましい。

本発明のペプチドは、例えば、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、本発明のペプチドを生理学的に認められる担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な用量が得られるようにするものである。

錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラチン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、前記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産出植物油などを溶解または懸濁させるな

10

20

25

どの通常の製剤実施に従って処方することができる。

注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど)などがあげられ、適当な溶解補助剤、例えば、アルコール(例えば、エタノールなど)、ポリアルコール(例えば、プロピレングリコール、ポリエチレングリコールなど)、非イオン性界面活性剤(例えば、ポリソルベート80™、HCO-50など)などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などがあげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。また、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液など)、無痛化剤(例えば、塩化ベンザルコーウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された注射液は、通常、適当なアンプルに充填される。

15 本発明のDNAが挿入されたベクターも上記と同様に製剤化され、通常、 非経口的に使用される。

このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒトまたは温血動物 (例えば、ラット、マウス、モルモット、ウサギ、トリ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サル、など) に対して投与することができる。

本発明のペプチドの投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、拒食症の治療目的で本発明のペプチドを経口投与する場合、一般的に成人(60kgとして)においては、一日につき該ペプチドを約0.1mg~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該ペプチドの1回投与量は投与対象、対象疾患などによっても異なるが、例えば、拒食症の治療目的で本発明のペプチドを注射剤の形で成人(体重60kgとして)に投与する場合、一日につき該ペプチドを約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程

度を患部に注射することにより投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

- (2)疾病に対する医薬候補化合物のスクリーニング
- (2-1) スクリーニング方法A
- 本発明のペプチドはGPR7のリガンドとしての機能などを有するため、 5 本発明のペプチドの機能を促進する化合物またはその塩は、例えば、拒食症、 高血圧、自己免疫疾患、心不全、白内障、緑内障、急性バクテリア髄膜炎、 急性心筋梗塞、急性膵炎、急性ウイルス脳炎、成人呼吸促迫症候群、アルコ ール性肝炎、アルツハイマー病、喘息、動脈硬化、アトピー性皮膚炎、バク テリア肺炎、膀胱がん、骨折、乳がん、過食症、多食症、火傷治癒、子宮頸 10 部がん,慢性リンパ性白血病,慢性骨髄性白血病,慢性膵炎,肝硬変,大腸 がん (結腸/直腸がん), クローン病, 痴呆, 糖尿病性合併症, 糖尿病性腎 症、糖尿病性神経障害、糖尿病性網膜症、胃炎、ヘリコバクター・ピロリ感 染症, 肝不全, A型肝炎, B型肝炎, C型肝炎, 肝炎, 単純ヘルペスウイル ス感染症、水痘帯状疱疹ウイルス感染症、ホジキン病、エイズ感染症、ヒト 15 パピローマウイルス感染症、高カルシウム血症、高コレステロール血症、高 グリセリド血症,高脂血症,感染症,インフルエンザ感染症,インシュリン 依存性糖尿病(I型),侵襲性ブドウ状球菌感染症,悪性黒色腫,がん転移, 多発性骨髄腫、アレルギー性鼻炎、腎炎、非ホジキン性リンパ腫、インシュ リン非依存性糖尿病(II型)、非小細胞肺がん、臓器移植、骨関節炎、骨軟 20 化症,骨減少症,骨粗鬆症,卵巣がん,骨ペーチェット病,消化性潰瘍,末 梢血管疾患, 前立腺がん, 逆流性食道炎, 腎不全, リウマチ関節炎, 精神分 裂症、敗血症、敗血症ショック、重症全身性真菌感染症、小細胞肺がん、脊 髄損傷、胃がん、全身性エリテマトーサス、一過性脳虚血発作、結核、心弁 膜症,血管性/多発梗塞痴呆,創傷治癒,不眠症,関節炎、下垂体ホルモン 25 分泌不全〔例、プロラクチン分泌不全(例、卵巣機能低下症、精嚢発育不全、 更年期障害、甲状腺機能低下等)〕、瀕尿、尿毒症、または神経変成疾患等 (特に拒食症等) の疾病の治療・予防剤など (特に食欲 (摂食) 増進剤等) の医薬として使用できる。

25

一方、本発明のペプチドの機能を阻害する化合物またはその塩は、例えば、 肥満症 [例、悪性肥満細胞症(malignant mastocytosis)、外因性肥満 (exogenous obesity)、過インシュリン性肥満症(hyperinsulinar obesity)、 過血漿性肥満(hyperplasmic obesity)、下垂体性肥満(hypophyseal 5 adiposity)、減血漿性肥満症(hypoplasmic obesity)、甲状腺機能低下肥満症 (hypothyroid obesity)、視床下部性肥満(hypothalamic obesity)、症候性肥 満症(symptomatic obesity)、小児肥満 (infantile obesity)、上半身肥満 (upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性 肥満(hypogonadal obesity)、全身性肥満細胞症(systemic mastocytosis)、 10 単純性肥満(simple obesity)、中心性肥満(central obesity)など] 、摂食亢 進症(hyperphagia)などの安全で低毒性な予防・治療剤、下垂体腺腫瘍、間脳 腫瘍、月経異常、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、 無月経症、乳汁漏症、末端肥大症、キアリ・フロンメル症候群、アルゴンツ・ デル・カスティロ症候群、フォーベス・アルブライト症候群、リンパ腫、シ ーハン症候群、精子形成異常などの安全で低毒性な予防・治療剤(プロラク 15 チン産生抑制剤)、好ましくは肥満症、摂食亢進症などの安全で低毒性な予 防・治療剤として有用である。

該スクリーニングは、本発明のペプチドを用いるか、または組換え型本発明のペプチドの発現系を構築し、該発現系を用いたレセプター結合アッセイ系を用いることによって、本発明のペプチドとGPR7との結合性を変化させる化合物(本発明のペプチドの活性を促進または阻害する化合物)(例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物など)またはその塩をスクリーニングすることができる。このような化合物には、本発明のペプチドのGPR7を介した細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²+遊離、細胞内CAMP生成、細胞内CGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c‐fosの活性化、pHの低下、GTPyS結合活性などを促進する活性など)を有する化合物(即ちGPR7アゴニスト)と該細胞刺激活性を有しない化合物(即ちGPR7アンタゴニスト)などが含まれる。

15

20

25

「リガンドとの結合性を変化させる」とは、リガンドとの結合を阻害する場合とリガンドとの結合を促進する場合の両方を包含するものである。

すなわち、本発明は、

本発明のペプチドを用いることを特徴とする本発明のペプチドの活性を促進または阻害する化合物またはその塩のスクリーニング方法、具体的には、

(i) GPR7またはその部分ペプチド(以下、これらを単にGPR7と略称する)に、本発明のペプチドを接触させた場合と(ii) GPR7に、本発明のペプチドおよび試験化合物を接触させた場合との比較を行なうことを特徴とする本発明のペプチドとGPR7の結合性を変化させる化合物(本発明のペプチドの活性を促進または阻害する化合物)またはその塩のスクリーニング方法を提供する。

本発明のスクリーニング方法においては、(i) GPR7に、本発明のペプチドを接触させた場合と(ii) GPR7に、本発明のペプチドおよび試験化合物を接触させた場合における、例えばGPR7に対するリガンドの結合量、細胞刺激活性などを測定して、比較する。

本発明のスクリーニング方法は具体的には、

①標識した本発明のペプチドを、GPR7に接触させた場合と、標識した本発明のペプチドおよび試験化合物をGPR7に接触させた場合における、標識した本発明のペプチドのGPR7に対する結合量を測定し、比較することを特徴とする本発明のペプチドとGPR7との結合性を変化させる化合物(本発明のペプチドの活性を促進または阻害する化合物)またはその塩のスクリーニング方法、

②標識した本発明のペプチドを、GPR7を含有する細胞または該細胞の膜画分に接触させた場合と、標識した本発明のペプチドおよび試験化合物をGPR7を含有する細胞または該細胞の膜画分に接触させた場合における、標識した本発明のペプチドの該細胞または該膜画分に対する結合量を測定し、比較することを特徴とする本発明のペプチドとGPR7との結合性を変化させる化合物(本発明のペプチドの活性を促進または阻害する化合物)またはその塩のスクリーニング方法、

WO 02/102847

5

10

15 .

20

25

③標識した本発明のペプチドを、GPR7をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現したGPR7に接触させた場合と、標識した本発明のペプチドおよび試験化合物をGPR7をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現したGPR7に接触させた場合における、標識した本発明のペプチドのGPR7に対する結合量を測定し、比較することを特徴とする本発明のペプチドとGPR7との結合性を変化させる化合物(本発明のペプチドの活性を促進または阻害する化合物)またはその塩のスクリーニング方法、

④GPR7を活性化する化合物(例えば、本発明のペプチド)をGPR7を含有する細胞に接触させた場合と、GPR7を活性化する化合物および試験化合物をGPR7を含有する細胞に接触させた場合における、GPR7を介した細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca $^{2+}$ 遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、 $pHo低下、GTP\gammaS$ 結合活性などを促進する活性または抑制する活性など)を測定し、比較することを特徴とする本発明のペプチドとGPR7との結合性を変化させる化合物(本発明のペプチドの活性を促進または阻害する化合物)またはその塩のスクリーニング方法、および

⑤GPR7を活性化する化合物(例えば、本発明のペプチドなど)をGPR7をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現したGPR7に接触させた場合と、GPR7を活性化する化合物および試験化合物を、GPR7をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現したGPR7に接触させた場合における、GPR7を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、cーfosの活性化、pHの低下、GTPγS結合活性などを促進する活性または抑制する活性など)を測定し、比較することを特徴とする本発明のペプチドとGPR7との結合性を変化させる化合物(本発明のペプチドの活性を促進

20

25

または阻害する化合物)またはその塩のスクリーニング方法などである。 本発明のスクリーニング方法の具体的な説明を以下にする。

まず、本発明のスクリーニング方法に用いるGPR7としては、本発明のペプチドをリガンドとして認識するものであれば何れのものであってもよいが、ヒトや温血動物の臓器の膜画分などが好適である。しかし、特にヒト由来の臓器は入手が極めて困難なことから、スクリーニングに用いられるものとしては、組換え体を用いて大量発現させたGPR7などが適している。GPR7は前述の方法に従って製造することができる。

本発明のスクリーニング方法において、GPR7を含有する細胞あるいは 5 該細胞膜画分などを用いる場合、後述の調製法に従えばよい。

GPR7を含有する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法はそれ自体公知の方法に従って行うことができる。

GPR7を含有する細胞としては、GPR7を発現した宿主細胞をいうが、該宿主細胞としては、前述の大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などが挙げられる。また、GPR7を発現した宿主細胞は、前述の本発明のペプチドを含有する発現ベクターで形質転換された形質転換体の製造方法と同様の方法などがあげられる。

膜画分としては、細胞を破砕した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破砕方法としては、PotterーElvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン(Kinematica社製)による破砕、超音波による破砕、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破砕などがあげられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破砕液を低速(500rpm~3000rpm)で短時間(通常、約1分~10分)遠心し、上清をさらに高速(15000rpm~30000rpm)で通常30分~2時間遠心し、得られる沈澱を膜画分とする。該膜画分中には、発現したGPR7と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。

15

20

25

該GPR7を含有する細胞や膜画分中のGPR7の量は、1細胞当たり1 $0^3 \sim 10^8$ 分子であるのが好ましく、 $10^5 \sim 10^7$ 分子であるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性(比活性)が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同ーロットで大量の試料を測定できるようになる。

本発明のペプチドとGPR7との結合性を変化させる化合物(本発明のペプチドの活性を促進または阻害する化合物)をスクリーニングする前記の① ~③を実施するためには、適当なGPR7画分と、標識した本発明のペプチドなどが用いられる。GPR7画分としては、天然型のGPR7画分か、またはそれと同等の活性を有する組換え型GPR7画分などが望ましい。ここで、同等の活性とは、同等のリガンド結合活性などを示す。標識したリガンドとしては、標識したリガンド、標識したリガンドアナログ化合物などが用いられる。例えば $[^3H]$ 、 $[^{125}I]$ 、 $[^{14}C]$ 、 $[^{35}S]$ などで標識されたリガンドなどを利用することができる。このうち好ましくは、 $[^{125}I]$ で標識されたリガンドである。

具体的には、本発明のペプチドとGPR7との結合性を変化させる化合物のスクリーニングを行うには、まずGPR7を含有する細胞または細胞の膜画分を、スクリーニングに適したバッファーに懸濁することによりレセプター標品を調製する。バッファーには、pH4~10(望ましくはpH6~8)のリン酸バッファー、トリスー塩酸バッファーなどのリガンドとレセプターとの結合を阻害しないバッファーであればいずれでもよい。また、非特異的結合を低減させる目的で、СHAPS、Tween-80™(花王ーアトラス社)、ジギトニン、デオキシコレートなどの界面活性剤をバッファーに加えることもできる。さらに、プロテアーゼによるGPR7や本発明のペプチドの分解を抑える目的でPMSF、ロイペプチン、E-64(ペプチド研究所製)、ペプスタチンなどのプロテアーゼ阻害剤を添加することもできる。0.01m1~10m1の該レセプター溶液に、一定量(5000cpm~500000cpm)の標識した本発明のペプチドを添加し、同時に10⁻¹°~10⁻⁷Mの試験化合物を共存させる。非特異的結合量(NSB)を知るた

めに大過剰の未標識の本発明のペプチドを加えた反応チューブも用意する。 反応は0 $^{\circ}$ 0 $^$

本発明のペプチドとGPR7との結合性を変化させる化合物(本発明のペ 10 プチドの活性を促進または阻害する化合物)をスクリーニングする前記の④ ~⑤の方法を実施するためには、GPR7を介する細胞刺激活性(例えば、 アラキドン酸遊離、アセチルコリン遊離、細胞内 C a 2+遊離、細胞内 c A M P生成、細胞内 c GMP生成、イノシトールリン酸産生、細胞膜電位変動、 細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下、GTPvS結 15 合活性などを促進する活性または抑制する活性など)を公知の方法または市 販の測定用キットを用いて測定することができる。具体的には、まず、GP R7を含有する細胞をマルチウェルプレート等に培養する。スクリーニング を行うにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当 なバッファーに交換し、試験化合物などを添加して一定時間インキュベート 20 した後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの 方法に従って定量する。細胞刺激活性の指標とする物質(例えば、アラキド ン酸など)の生成が、細胞が含有する分解酵素によって検定困難な場合は、 該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。また、c AMP産生抑制などの活性については、フォルスコリンなどで細胞の基礎的 25 産生量を増大させておいた細胞に対する産生抑制作用として検出することが できる。

細胞刺激活性を測定してスクリーニングを行なうには、適当なGPR7を 発現した細胞が必要である。GPR7を発現した細胞としては、前述のGP WO 02/102847 PCT/JP02/05915

R7発現細胞株などが望ましい。

試験化合物としては、例えばペプチド、タンパク、非ペプチド性化合物、 合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが あげられる。

84

- 本発明のペプチドとGPR7との結合性を変化させる化合物(本発明のペプチドの活性を促進または阻害する化合物)またはその塩のスクリーニング用キットは、GPR7またはその塩、GPR7の部分ペプチドまたはその塩、GPR7を含有する細胞、あるいはGPR7を含有する細胞の膜画分、および本発明のペプチドを含有するものである。
- 10 本発明のスクリーニング用キットの例としては、次のものが挙げられる。1. スクリーニング用試薬
 - ①測定用緩衝液および洗浄用緩衝液

Hanks' Balanced Salt Solution (ギブコ社製) に、0.05%のウシ血清アルブミン (シグマ社製) を加えたもの。

- - ②GRP7標品

GPR 7を発現させたCHO細胞を、1 2穴プレートに 5×10 ⁵個/穴で継代し、37℃、5%CO₂、95%airで2日間培養したもの。

20 ③標識リガンド

 $[^3H]$ 、 $[^{125}I]$ 、 $[^{14}C]$ 、 $[^{35}S]$ などで標識した本発明のペプチドを適当な溶媒または緩衝液に溶解したものを 4° のるいは -20° にて保存し、用時に測定用緩衝液にて 1_{μ} Mに希釈する。

- ④リガンド標準液
- 25 本発明のペプチドを0.1%ウシ血清アルブミン(シグマ社製)を含むPB Sで1mMとなるように溶解し、-20で保存する。
 - 2. 測定法
 - ①12穴組織培養用プレートにて培養したGPR7を発現させた細胞を、測定用緩衝液1mlで2回洗浄した後、490μlの測定用緩衝液を各穴に加

える。

5

20

25

② 10^{-3} ~ 10^{-10} Mの試験化合物溶液を 5μ 1加えた後、標識した本発明 のペプチドを 5μ 1加え、室温にて1時間反応させる。非特異的結合量を知るためには試験化合物の代わりに 10^{-3} Mの本発明のペプチドを 5μ 1加えておく。

③反応液を除去し、1 m l の洗浄用緩衝液で3回洗浄する。細胞に結合した標識された本発明のペプチドを0.2 N N a O H - 1 % S D S で溶解し、4 m l の液体シンチレーターA (和光純薬製) と混合する。

④液体シンチレーションカウンター (ベックマン社製) を用いて放射活性を10 測定し、Percent Maximum Binding (PMB) を次の式〔数1〕で求める。[数1]

 $PMB = [(B-NSB) / (B_0-NSB)] \times 100$

PMB: Percent Maximum Binding

B:検体を加えた時の値

15 NSB: Non-specific Binding (非特異的結合量)

B。:最大結合量

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、本発明のペプチドとGPR7との結合を変化させる(結合を阻害あるいは促進する)化合物(本発明のペプチドの活性を促進または阻害する化合物)であり、具体的にはGPR7を介して細胞刺激活性を有する化合物またはその塩(いわゆるGPR7アゴニスト)、あるいは該刺激活性を有しない化合物(いわゆるGPR7アンタゴニスト)である。該化合物としては、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

上記GPR7アゴニストであるかアンタゴニストであるかの具体的な評価 方法は以下の(i)または(ii)に従えばよい。

(i)前記①~③のスクリーニング方法で示されるバインディング・アッセイを行い、本発明のペプチドとGPR7との結合性を変化させる(特に、結

15

合を阻害する)化合物を得た後、該化合物が上記したGPR7を介する細胞刺激活性を有しているか否かを測定する。細胞刺激活性を有する化合物またはその塩はGPR7アゴニストであり、該活性を有しない化合物またはその塩はGPR7アンタゴニストである。

- 5 (ii) (a)試験化合物をGPR7を含有する細胞に接触させ、上記GPR7を 介した細胞刺激活性を測定する。細胞刺激活性を有する化合物またはその塩 はGPR7アゴニストである。
 - (b) GPR 7を活性化する化合物(例えば、本発明のペプチドまたはGPR 7アゴニストなど)をGPR 7を含有する細胞に接触させた場合と、GPR 7を活性化する化合物および試験化合物をGPR 7を含有する細胞に接触させた場合における、GPR 7を介した細胞刺激活性を測定し、比較する。GPR 7を活性化する化合物による細胞刺激活性を減少させ得る化合物またはその塩はGPR 7アンタゴニストである。

該GPR7アゴニストは、GPR7に対する本発明のペプチドが有する生理活性と同様の作用を有しているので、本発明のペプチドと同様に安全で低毒性な医薬(例えば、拒食症の予防・治療薬、食欲(摂食)増進剤,下垂体ホルモン分泌不全〔例、プロラクチン分泌不全(例、卵巣機能低下症、精嚢発育不全、更年期障害、甲状腺機能低下等)〕の予防・治療薬等)として有用である。

逆に、GPR7アンタゴニストは、GPR7に対する本発明のペプチドが有する生理活性を抑制することができるので、肥満症 [例、悪性肥満細胞症 (malignant mastocytosis)、外因性肥満 (exogenous obesity)、過インシュリン性肥満症(hyperinsulinar obesity)、過血漿性肥満 (hyperplasmic obesity)、下垂体性肥満 (hypophyseal adiposity)、減血漿性肥満症

25 (hypoplasmic obesity)、甲状腺機能低下肥満症(hypothyroid obesity)、視床下部性肥満(hypothalamic obesity)、症候性肥満症(symptomatic obesity)、小児肥満 (infantile obesity)、上半身肥満(upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性肥満(hypogonadal obesity)、全身性肥満細胞症(systemic mastocytosis)、単純性肥満(simple obesity)、

10

15

20

中心性肥満(central obesity)など]、摂食亢進症(hyperphagia)などの安全で低毒性な予防・治療剤、下垂体腺腫瘍、間脳腫瘍、月経異常、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、キアリ・フロンメル症候群、アルゴンツ・デル・カスティロ症候群、フォーベス・アルブライト症候群、リンパ腫、シーハン症候群、精子形成異常などの安全で低毒性な予防・治療剤(プロラクチン産生抑制剤)、好ましくは肥満症、摂食亢進症などの安全で低毒性な予防・治療剤として有用である。

本発明のスクリーニング方法Aまたはスクリーニング用キットを用いて得られる化合物またはその塩は、例えば、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などから選ばれた化合物であり、本発明のペプチドの機能を促進または阻害する化合物である。

該化合物の塩としては、前記した本発明のペプチドの塩と同様のものが用 いられる。

本発明のスクリーニング方法Aまたはスクリーニング用キットを用いて得られる化合物を上述の治療・予防剤として使用する場合、常套手段に従って 実施することができる。例えば、前記した本発明のペプチドを含有する医薬 と同様にして、錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤、無 菌性溶液、懸濁液剤などとすることができる。

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトまたは温血動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、トリ、ネコ、イヌ、サル、チンパンジーなど)に対して投与することができる。

25 該化合物またはその塩の投与量は、その作用、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、拒食症治療の目的でGPR7アゴニストを経口投与する場合、一般的に成人(体重60kg当たり)においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場

10

15

合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、拒食症治療の目的でGPR7アゴニストを注射剤の形で通常成人(60kg当たり)に投与する場合、一日につき該化合物を約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

また、例えば、肥満症治療の目的でGPR7アンタゴニストを経口投与する場合、一般的に成人(体重60kg当たり)においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、肥満症治療の目的でGPR7アンタゴニストを注射剤の形で通常成人(60kg当たり)に投与する場合、一日につき該化合物を約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

(2-2) スクリーニング方法B

次に、GPR7リガンドの発現量を調節する化合物のスクリーニング方法について説明する。

20 本発明のスクリーニング方法Bは、具体的には、(i) GPR7リガンドを 発現し得る細胞または組織を、試験化合物の存在下および非存在下で培養した 場合における、それぞれのGPR7リガンドの発現量またはGPR7リガンド をコードするmRNA量を測定し、比較することを特徴とするGPR7リガン ドの発現量を増加または減少させる化合物またはその塩のスクリーニング方法 である。

GPR7リガンドを発現し得る細胞または組織としては、ヒトや温血動物 (例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、ブタ、ヒツジ、ウシ、サル等)の細胞 (例えば、神経細胞、内分泌細胞、神経内分泌細胞、グリア細胞、膵臓β細胞、骨髄細胞、肝細胞、脾細胞、メサンギウム細胞、表皮細胞、

20

25

上皮細胞、内皮細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単球、樹状細胞)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞等)、もしくはそれらの細胞が存在するあらゆる組織、例えば、脳、脳の各部位(例、嗅球、扁桃核、大脳基底球、海馬、視床、視床下部、大脳皮質、延髄、小脳)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、血管、心臓、胸腺、脾臓、唾液腺、末梢血、前立腺、睾丸(精巣)、卵巣、胎盤、子宮、骨、軟骨、関節、骨格筋等を用いても良い。その際、株化細胞、初代培養系を用いてもよい。また、前記したGPR7リガンドをコードするDNAを含有する組換えベクターで形質転換された形質変換体を使用してもよい。

GPR7リガンドを発現し得る細胞の培養方法は、前記した形質変換体の培養法と同様である。

試験化合物としては、前記の試験化合物の他、DNAライブラリーなどを用いることができる。

GPR7リガンドの発現量は抗体などを用いて免疫化学的方法などの公知の 方法により測定することもできるし、GPR7リガンドをコードするmRNA をノザンハイブリダイゼーション法、RT-PCRやTaqMan PCR法 を用いて、公知の方法により測定することもできる。

mRNAの発現量の比較をハイブリダイゼーション法によって行うには、公 知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング

(Molecular Cloning) 2 nd(J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法等に従って行なうことができる。

具体的には、GPR7リガンドをコードするmRNAの量の測定は、公知の 方法に従って細胞から抽出したRNAと、GPR7リガンドをコードするDN Aもしくはその一部または本発明のアンチセンス・ポリヌクレオチドとを接触 させ、GPR7リガンドをコードするDNAもしくはその一部または本発明の

10

15

20

アンチセンス・ポリヌクレオチドと結合したmRNAの量を測定することによって行われる。GPR7リガンドをコードするDNAもしくはその一部または本発明のアンチセンス・ポリヌクレオチドを、例えば放射性同位元素、色素などで標識することによって、GPR7リガンドをコードするDNAもしくはその一部または本発明のアンチセンス・ポリヌクレオチドに結合したmRNAの量が容易に測定できる。放射性同位元素としては、例えば32P、3Hなどが用いられ、色素としては、例えばfluorescein、FAM (PE Biosystems 社製)、JOE (PE Biosystems 社製)、TAMRA (PE Biosystems 社製)、ROX (PE Biosystems 社製)、Cy 5 (Amersham 社製)、Cy 3 (Amersham 社製)などの蛍光色素が用いられる。

また、mRNAの量は、細胞から抽出したRNAを逆転写酵素によってcDNAに変換した後、GPR7リガンドをコードするDNAもしくはその一部または本発明のアンチセンス・ポリヌクレオチドをプライマーとして用いるPCRによって、増幅されるcDNAの量を測定することによって行うことができる。

このように、GPR 7リガンドをコードするmRNAの量を増加させる試験 化合物を、GPR 7リガンドの発現量を増加させる活性を有する化合物として 選択することができ、また、GPR 7リガンドをコードするmRNAの量を減 少させる試験化合物をGPR 7リガンドの発現量を減少させる活性を有する化 合物として選択することができる。

さらに、本発明は、

(ii) GPR 7 リガンドをコードする遺伝子のプロモーター領域またはエンハンサー領域の下流にレポーター遺伝子を連結した組換えDNAで形質転換した形質転換体を試験化合物の存在下および非存在下で培養した場合における、それぞれのレポーター活性を測定し、比較することを特徴とする当該プロモーター活性を促進または阻害する化合物のスクリーニング方法を提供する。

レポーター遺伝子としては、例えば、 $1 a c Z (\beta - \mathcal{I} = \mathcal{I$

10

15

25

fluorescent protein (GFP)、 β -ラクタマーゼなどが用いられる。

レポーター遺伝子産物(例、mRNA、タンパク質)の量を公知の方法を用いて測定することによって、レポーター遺伝子産物の量を増加させる試験化合物を本発明のGPR7リガンドのプロモーターもしくはエンハンサーの活性を制御(特に促進)する作用を有する化合物、すなわちGPR7リガンドの発現量を増加させる活性を有する化合物として選択できる。逆に、レポーター遺伝子産物の量を減少させる試験化合物をGPR7リガンドのプロモーターもしくはエンハンサーの活性を制御(特に阻害)する作用を有する化合物、すなわちGPR7リガンドの発現量を減少させる活性を有する化合物として選択することができる。

試験化合物としては、前記と同様のものが使用される。

形質転換体の培養は、前記の形質転換体と同様にして行うことができる。

レポーター遺伝子のベクター構築やアッセイ法は公知の技術に従うことができる(例えば、Molecular Biotechnology 13, 29-43, 1999)。

GPR 7リガンドの発現量を増加させる活性を有する化合物は、安全で低毒性な医薬 (例えば、拒食症の予防・治療薬、食欲 (摂食) 増進剤,下垂体ホルモン分泌不全 [例、プロラクチン分泌不全 (例、卵巣機能低下症、精嚢発育不全、更年期障害、甲状腺機能低下等)]の予防・治療薬等)として有用である。

GPR7リガンドの発現量を減少させる活性を有する化合物は、肥満症[例、 悪性肥満細胞症(malignant mastocytosis)、外因性肥満 (exogenous obesity)、 過インシュリン性肥満症(hyperinsulinar obesity)、過血漿性肥満 (hyperplasmic obesity)、下垂体性肥満(hypophyseal adiposity)、減血漿性肥 満症(hypoplasmic obesity)、甲状腺機能低下肥満症(hypothyroid obesity)、

視床下部性肥満(hypothalamic obesity)、症候性肥満症(symptomatic obesity)、小児肥満 (infantile obesity)、上半身肥満(upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性肥満(hypogonadal obesity)、全身性肥満細胞症(systemic mastocytosis)、単純性肥満(simple obesity)、中心性肥満(central obesity)など]、摂食亢進症(hyperphagia) などの安全で低毒性な予防・治療剤、下垂体腺腫瘍、間脳腫瘍、月経異常、自己免疫疾患、プロラ

10

15

20

25

クチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、キアリ・フロンメル症候群、アルゴンツ・デル・カスティロ症候群、フォーベス・アルブライト症候群、リンパ腫、シーハン症候群、精子形成異常などの安全で低毒性な予防・治療剤(プロラクチン産生抑制剤)、好ましくは肥満症、摂食亢進症などの安全で低毒性な予防・治療剤として有用である。

本発明のスクリーニング方法Bまたはスクリーニング用キットを用いて得られる化合物またはその塩は、例えば、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などから選ばれた化合物であり、本発明のペプチドの機能を促進または阻害する化合物である。

該化合物の塩としては、前記した本発明のペプチドの塩と同様のものが用いられる。

本発明のスクリーニング方法Bまたはスクリーニング用キットを用いて得られる化合物を上述の治療・予防剤として使用する場合、常套手段に従って 実施することができる。例えば、前記した本発明のペプチドを含有する医薬 と同様にして、錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤、無 菌性溶液、懸濁液剤などとすることができる。

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトまたは温血動物 (例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、トリ、ネコ、イヌ、サル、チンパンジーなど) に対して投与することができる。

該化合物またはその塩の投与量は、その作用、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、拒食症治療の目的でGPR7リガンドの発現量を増加させる化合物を経口投与する場合、一般的に成人(体重60kg当たり)においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、拒食症治療の目的でGPR7リガンドの発現量を増加させる化合物を注射剤の形で通常成人(60kg当たり)に

投与する場合、一日につき該化合物を約 $0.01\sim30$ mg程度、好ましくは約 $0.1\sim20$ mg程度、より好ましくは約 $0.1\sim10$ mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

また、例えば、肥満症治療の目的でGPR7リガンドの発現量を減少させる化合物を経口投与する場合、一般的に成人(体重60kg当たり)においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、肥満症治療の目的でGPR7リガンドの発現量を減少させる化合物を注射剤の形で通常成人(60kg当たり)に投与する場合、一日につき該化合物を約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

(3) 本発明のペプチドの定量

本発明の抗体は、本発明のペプチドを特異的に認識することができるので、 被検液中の本発明のペプチドの定量、特にサンドイッチ免疫測定法による定 量などに使用することができる。

20 すなわち、本発明は、

- (i) 本発明の抗体と、被検液および標識化された本発明のペプチドとを競合的に反応させ、該抗体に結合した標識化された本発明のペプチドの割合を 測定することを特徴とする被検液中の本発明のペプチドの定量法、および
- (ii)被検液と担体上に不溶化した本発明の抗体および標識化された本発明 の別の抗体とを同時あるいは連続的に反応させたのち、不溶化担体上の標識 剤の活性を測定することを特徴とする被検液中の本発明のペプチドの定量法 を提供する。
 - 上記(ii)の定量法においては、一方の抗体が本発明のペプチドのN端部を認識する抗体で、他方の抗体が本発明のペプチドのC端部に反応する抗体

WO 02/102847 PCT/JP02/05915

であることが望ましい。

10

15

20

25

また、本発明のペプチドに対するモノクローナル抗体を用いて本発明のペプチドの定量を行うことができるほか、組織染色等による検出を行なうこともできる。これらの目的には、抗体分子そのものを用いてもよく、また、抗体分子の $F(ab')_2$ 、Fab'、あるいはFab画分を用いてもよい。

94

本発明の抗体を用いる本発明のペプチドの定量法は、特に制限されるべき ものではなく、被測定液中の抗原量 (例えば、ペプチド量) に対応した抗体、 抗原もしくは抗体-抗原複合体の量を化学的または物理的手段により検出し、 これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測 定法であれば、いずれの測定法を用いてもよい。例えば、ネフロメトリー、 競合法、イムノメトリック法およびサンドイッチ法が好適に用いられるが、 感度、特異性の点で、後述するサンドイッチ法を用いるのが特に好ましい。

標識物質を用いる測定法に用いられる標識剤としては、例えば、放射性同位元素、酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例えば、 $\left[^{125}\,\mathrm{I}\right]$ 、 $\left[^{131}\,\mathrm{I}\right]$ 、 $\left[^{3}\,\mathrm{H}\right]$ 、 $\left[^{14}\,\mathrm{C}\right]$ などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えば、 β ーガラクトシダーゼ、 β ーグルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオレスカミン、フルオレッセンイソチオシアネートなどが用いられる。発光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなどが用いられる。さらに、抗体あるいは抗原と標識剤との結合にビオチンーアビジン系を用いることもできる。

抗原あるいは抗体の不溶化に当っては、物理吸着を用いてもよく、また通常ペプチドあるいは酵素等を不溶化、固定化するのに用いられる化学結合を用いる方法でもよい。担体としては、アガロース、デキストラン、セルロースなどの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコン等の合成樹脂、あるいはガラス等があげられる。

サンドイッチ法においては不溶化した本発明のモノクローナル抗体に被検 液を反応させ(1次反応)、さらに標識化した別の本発明のモノクローナル

10

15

20

25

抗体を反応させ(2次反応)たのち、不溶化担体上の標識剤の活性を測定することにより被検液中の本発明のペプチド量を定量することができる。1次反応と2次反応は逆の順序に行っても、また、同時に行なってもよいし時間をずらして行なってもよい。標識化剤および不溶化の方法は前記のそれらに準じることができる。また、サンドイッチ法による免疫測定法において、固相用抗体あるいは標識用抗体に用いられる抗体は必ずしも1種類である必要はなく、測定感度を向上させる等の目的で2種類以上の抗体の混合物を用いてもよい。

本発明のサンドイッチ法による本発明のペプチドの測定法においては、1 次反応と2次反応に用いられる本発明のモノクローナル抗体は、本発明のペプチドの結合する部位が相異なる抗体が好ましく用いられる。すなわち、1 次反応および2次反応に用いられる抗体は、例えば、2次反応で用いられる 抗体が、本発明のペプチドのC端部を認識する場合、1次反応で用いられる 抗体は、好ましくはC端部以外、例えばN端部を認識する抗体が用いられる。

本発明のモノクローナル抗体をサンドイッチ法以外の測定システム、例えば、競合法、イムノメトリック法あるいはネフロメトリーなどに用いることができる。

競合法では、被検液中の抗原と標識抗原とを抗体に対して競合的に反応させたのち、未反応の標識抗原(F)と、抗体と結合した標識抗原(B)とを分離し(B/F分離)、B,Fいずれかの標識量を測定し、被検液中の抗原量を定量する。本反応法には、抗体として可溶性抗体を用い、B/F分離をポリエチレングリコール、前記抗体に対する第2抗体などを用いる液相法、および、第1抗体として固相化抗体を用いるか、あるいは、第1抗体は可溶性のものを用い第2抗体として固相化抗体を用いる固相化法とが用いられる。

イムノメトリック法では、被検液中の抗原と固相化抗原とを一定量の標識 化抗体に対して競合反応させた後固相と液相を分離するか、あるいは、被検 液中の抗原と過剰量の標識化抗体とを反応させ、次に固相化抗原を加え未反 応の標識化抗体を固相に結合させたのち、固相と液相を分離する。次に、い ずれかの相の標識量を測定し被検液中の抗原量を定量する。

ことができる。

また、ネフロメトリーでは、ゲル内あるいは溶液中で抗原抗体反応の結果 生じた不溶性の沈降物の量を測定する。被検液中の抗原量が僅かであり、少 量の沈降物しか得られない場合にもレーザーの散乱を利用するレーザーネフ ロメトリーなどが好適に用いられる。

5 これら個々の免疫学的測定法を本発明の定量方法に適用するにあたっては、 特別の条件、操作等の設定は必要とされない。それぞれの方法における通常 の条件、操作法に当業者の通常の技術的配慮を加えて本発明のペプチドの測 定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、 成書などを参照することができる。

10 例えば、入江 寛編「ラジオイムノアッセイ」(講談社、昭和49年発行)、 入江 寛編「続ラジオイムノアッセイ」(講談社、昭和54年発行)、石川 栄治ら編「酵素免疫測定法」(医学書院、昭和53年発行)、石川栄治ら編 「酵素免疫測定法」(第2版)(医学書院、昭和57年発行)、石川栄治ら 編「酵素免疫測定法」(第3版)(医学書院、昭和62年発行)、「Methods 15 in ENZYMOLOGY」Vol. 70(Immunochemical Techniques(Part A))、同書 Vol. 73(Immunochemical Techniques(Part B))、同書 Vol. 74(Immunochemical Techniques(Part C))、同書 Vol. 84(Immunochemical Techniques(Part D: Selected Immunoassays))、同書 Vol. 92(Immunochemical Techniques(Part E: Monoclonal Antibodies and General Immunoassay Methods))、同書 Vol. 20 121(Immunochemical Techniques(Part I: Hybridoma Technology and Monoclonal Antibodies))(以上、アカデミックプレス社発行)などを参照する

以上のようにして、本発明の抗体を用いることによって、本発明のペプチ ドを感度良く定量することができる。

25 さらには、本発明の抗体を用いて本発明のペプチドの濃度を定量することによって、本発明のペプチドの濃度の減少が検出された場合、例えば、拒食症、高血圧、自己免疫疾患、心不全、白内障、緑内障、急性バクテリア髄膜炎,急性心筋梗塞,急性膵炎,急性ウイルス脳炎,成人呼吸促迫症候群,アルコール性肝炎,アルツハイマー病、喘息、動脈硬化、アトピー性皮膚炎,

10

15

20

25

バクテリア肺炎、膀胱がん、骨折、乳がん、過食症、多食症、火傷治癒、子 宮頸部がん,慢性リンパ性白血病,慢性骨髄性白血病,慢性膵炎,肝硬変, 大腸がん(結腸/直腸がん)、クローン病、痴呆、糖尿病性合併症、糖尿病 性腎症, 糖尿病性神経障害, 糖尿病性網膜症, 胃炎, ヘリコバクター・ピロ リ感染症、肝不全、A型肝炎、B型肝炎、C型肝炎、肝炎、単純ヘルペスウ イルス感染症, 水痘帯状疱疹ウイルス感染症, ホジキン病, エイズ感染症, ヒトパピローマウイルス感染症, 高カルシウム血症, 高コレステロール血症, 高グリセリド血症、高脂血症、感染症、インフルエンザ感染症、インシュリ ン依存性糖尿病(Ⅰ型),侵襲性ブドウ状球菌感染症,悪性黒色腫,がん転 移、多発性骨髄腫、アレルギー性鼻炎、腎炎、非ホジキン性リンパ腫、イン シュリン非依存性糖尿病(II型),非小細胞肺がん,臓器移植,骨関節炎, 骨軟化症, 骨減少症, 骨粗鬆症, 卵巣がん, 骨ペーチェット病, 消化性潰瘍, 末梢血管疾患,前立腺がん,逆流性食道炎,腎不全,リウマチ関節炎,精神 分裂症, 敗血症, 敗血症ショック, 重症全身性真菌感染症, 小細胞肺がん, 脊髄損傷、胃がん、全身性エリテマトーサス、一過性脳虚血発作、結核、心 弁膜症,血管性/多発梗塞痴呆,創傷治癒,不眠症,関節炎、下垂体ホルモ ン分泌不全〔例、プロラクチン分泌不全(例、卵巣機能低下症、精嚢発育不 全、更年期障害、甲状腺機能低下等)〕、瀕尿、尿毒症、または神経変成疾 **患等(特に拒食症等)の疾病である、または将来罹患する可能性が高いと診** 断することができる。

また、本発明のペプチドの濃度の増加が検出された場合には、例えば、肥満症[例、悪性肥満細胞症(malignant mastocytosis)、外因性肥満 (exogenous obesity)、過インシュリン性肥満症(hyperinsulinar obesity)、過血漿性肥満 (hyperplasmic obesity)、下垂体性肥満 (hypophyseal adiposity)、減血漿性肥満症 (hypoplasmic obesity)、甲状腺機能低下肥満症 (hypothyroid obesity)、視床下部性肥満 (hypothalamic obesity)、症候性肥満症 (symptomatic obesity)、小児肥満 (infantile obesity)、上半身肥満 (upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性肥満 (hypogonadal obesity)、全身性肥満細胞症 (systemic mastocytosis)、単純

性肥満(simple obesity)、中心性肥満(central obesity)など]、摂食亢進症 (hyperphagia)、下垂体腺腫瘍、間脳腫瘍、月経異常、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、キアリ・フロンメル症候群、アルゴンツ・デル・カスティロ症候群、フォーベス・アルブライト症候群、リンパ腫、シーハン症候群、精子形成異常 (特に肥満症等)などの疾病である、または将来罹患する可能性が高いと診断することができる。

また、本発明の抗体は、体液や組織などの被検体中に存在する本発明のペプチドを検出するために使用することができる。また、本発明のペプチドを精製するために使用する抗体カラムの作製、精製時の各分画中の本発明のペプチドの検出、被検細胞内における本発明のペプチドの挙動の分析などのために使用することができる。

(4) 遺伝子診断剤

5

10

15

20

25

本発明のDNAは、例えば、プローブとして使用することにより、ヒトまたは温血動物(例えば、ラット、マウス、モルモット、ウサギ、トリ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サル、など)における本発明のペプチドをコードするDNAまたはmRNAの異常(遺伝子異常)を検出することができるので、例えば、該DNAまたはmRNAの損傷、突然変異あるいは発現低下や、該DNAまたはmRNAの増加あるいは発現過多などの遺伝子診断剤として有用である。

本発明のDNAを用いる上記の遺伝子診断は、例えば、自体公知のノーザンハイブリダイゼーションやPCR-SSCP法(ゲノミックス(Genomics), 第5巻, 874~879頁(1989年)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ユーエスエー

(Proceedings of the National Academy of Sciences of the United States of America), 第86巻, 2766~2770頁(1989年)) などにより実施することができる。

例えば、ノーザンハイブリダイゼーションによりmRNAの発現低下が検 出された場合は、 例えば、拒食症、高血圧、自己免疫疾患、心不全、白内障、

10

15

20

25

緑内障、急性バクテリア髄膜炎、急性心筋梗塞、急性膵炎、急性ウイルス脳 炎,成人呼吸促迫症候群,アルコール性肝炎,アルツハイマー病,喘息,動 脈硬化,アトピー性皮膚炎,バクテリア肺炎,膀胱がん,骨折,乳がん,過 食症、多食症、火傷治癒、子宮頸部がん、慢性リンパ性白血病、慢性骨髄性 白血病、慢性膵炎、肝硬変、大腸がん(結腸/直腸がん)、クローン病、痴 呆,糖尿病性合併症,糖尿病性腎症,糖尿病性神経障害,糖尿病性網膜症, 胃炎, ヘリコバクター・ピロリ感染症, 肝不全, A型肝炎, B型肝炎, C型 肝炎、肝炎、単純ヘルペスウイルス感染症、水痘帯状疱疹ウイルス感染症、 ホジキン病、エイズ感染症、ヒトパピローマウイルス感染症、高カルシウム 血症,高コレステロール血症,高グリセリド血症,高脂血症,感染症,イン フルエンザ感染症、インシュリン依存性糖尿病(I型)、侵襲性ブドウ状球 菌感染症、悪性黒色腫、がん転移、多発性骨髄腫、アレルギー性鼻炎、腎炎、 非ホジキン性リンパ腫、インシュリン非依存性糖尿病(II型),非小細胞肺 がん,臓器移植,骨関節炎,骨軟化症,骨減少症,骨粗鬆症,卵巣がん,骨 ペーチェット病,消化性潰瘍,末梢血管疾患,前立腺がん,逆流性食道炎, 腎不全、リウマチ関節炎、精神分裂症、敗血症、敗血症ショック、重症全身 性真菌感染症,小細胞肺がん,脊髄損傷,胃がん,全身性エリテマトーサス, 一過性脳虚血発作,結核,心弁膜症,血管性/多発梗塞痴呆,創傷治癒,不 眠症,関節炎、下垂体ホルモン分泌不全〔例、プロラクチン分泌不全〔例、 卵巣機能低下症、精嚢発育不全、更年期障害、甲状腺機能低下等)〕、瀕尿、 尿毒症、または神経変成疾患等(特に拒食症等)である可能性が高いまたは 将来罹患する可能性が高いと診断することができる。

また、ノーザンハイブリダイゼーションによりmRNAの発現過多が検出された場合は、例えば、肥満症[例、悪性肥満細胞症(malignant mastocytosis)、外因性肥満 (exogenous obesity)、過インシュリン性肥満症(hyperinsulinar obesity)、過血漿性肥満(hyperplasmic obesity)、下垂体性肥満(hypophyseal adiposity)、減血漿性肥満症(hypoplasmic obesity)、甲状腺機能低下肥満症(hypothyroid obesity)、視床下部性肥満(hypothalamic obesity)、症候性肥満症(symptomatic obesity)、小児肥満 (infantile obesity)、上半身肥満

15

20

25

(upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性肥満 (hypogonadal obesity)、全身性肥満細胞症 (systemic mastocytosis)、単純性肥満 (simple obesity)、中心性肥満 (central obesity)など]、摂食亢進症 (hyperphagia)、下垂体腺腫瘍、間脳腫瘍、月経異常、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、キアリ・フロンメル症候群、アルゴンツ・デル・カスティロ症候群、フォーベス・アルブライト症候群、リンパ腫、シーハン症候群、精子形成異常(特に肥満症等)などである可能性が高いまたは将来罹患する可能性が高いと診断することができる。

10 (5) アンチセンスDNAを含有する医薬

本発明のDNAに相補的に結合し、該DNAの発現を抑制することができ るアンチセンスDNAは、例えば、肥満症 [例、悪性肥満細胞症(malignant mastocytosis)、外因性肥満 (exogenous obesity)、過インシュリン性肥満症 (hyperinsulinar obesity)、過血漿性肥満(hyperplasmic obesity)、下垂体 性肥満(hypophyseal adiposity)、減血漿性肥満症(hypoplasmic obesity)、 甲状腺機能低下肥満症(hypothyroid obesity)、視床下部性肥満(hypothalamic obesity)、症候性肥満症(symptomatic obesity)、小児肥満 (infantile obesity)、上半身肥満(upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性肥満(hypogonadal obesity)、全身性肥満細胞症 (systemic mastocytosis)、単純性肥満(simple obesity)、中心性肥満(central obesity)など]、摂食亢進症(hyperphagia)、下垂体腺腫瘍、間脳腫瘍、月 経異常、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経 症、乳汁漏症、末端肥大症、キアリ・フロンメル症候群、アルゴンツ・デル・ カスティロ症候群、フォーベス・アルブライト症候群、リンパ腫、シーハン 症候群、精子形成異常(特に肥満症等)などの予防・治療薬として使用する ことができる。

例えば、該アンチセンスDNAを用いる場合、該アンチセンスDNAを単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスベクターに挿入した後、

10

15

20

常套手段に従って実施することができる。該アンチセンスDNAは、そのままで、あるいは摂取促進のために補助剤などの生理学的に認められる担体とともに製剤化し、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与できる。

さらに、該アンチセンスDNAは、組織や細胞における本発明のDNAの 存在やその発現状況を調べるための診断用オリゴヌクレオチドプローブとし て使用することもできる。

(6) 本発明の抗体を含有する医薬

本発明のペプチドの活性を中和する作用を有する本発明の抗体は、例えば、 肥満症 [例、悪性肥満細胞症(malignant mastocytosis)、外因性肥満 (exogenous obesity)、過インシュリン性肥満症(hyperinsulinar obesity)、 過血漿性肥満(hyperplasmic obesity)、下垂体性肥満(hypophyseal adiposity)、減血漿性肥満症(hypoplasmic obesity)、甲状腺機能低下肥満症 (hypothyroid obesity)、視床下部性肥満(hypothalamic obesity)、症候性肥 満症(symptomatic obesity)、小児肥満 (infantile obesity)、上半身肥満 (upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性 肥満(hypogonadal obesity)、全身性肥満細胞症(systemic mastocytosis)、 単純性肥満(simple obesity)、中心性肥満(central obesity)などし、摂食亢 進症(hyperphagia)、下垂体腺腫瘍、間脳腫瘍、月経異常、自己免疫疾患、 プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大 症、キアリ・フロンメル症候群、アルゴンツ・デル・カスティロ症候群、フ ォーベス・アルブライト症候群、リンパ腫、シーハン症候群、精子形成異常 (特に肥満症等) などの予防・治療薬などの医薬として使用することができ る。

25 本発明の抗体を含有する上記疾患の治療・予防剤は、そのまま液剤として、または適当な剤型の医薬組成物として、ヒトまたは哺乳動物(例、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して経口的または非経口的に投与することができる。投与量は、投与対象、対象疾患、症状、投与ルートなどによっても異なるが、例えば、成人の肥満症患者の治療・予

15

20

25

防のために使用する場合には、本発明の抗体を1回量として、通常 $0.01\sim 20\,\mathrm{mg/kg}$ 体重程度、好ましくは $0.1\sim 10\,\mathrm{mg/kg}$ 体重程度、さらに好ましくは $0.1\sim 5\,\mathrm{mg/kg}$ 体重程度を、 $1\,\mathrm{H}\,1\sim 5\,\mathrm{DH}$ 程度、好ましくは $1\,\mathrm{H}\,1\sim 3\,\mathrm{DH}$ 程度、静脈注射により投与するのが好都合である。他の非経口投与および経口投与の場合もこれに準ずる量を投与することができる。症状が特に重い場合には、その症状に応じて増量してもよい。

本発明の抗体は、それ自体または適当な医薬組成物として投与することができる。上記投与に用いられる医薬組成物は、上記またはその塩と薬理学的に許容され得る担体、希釈剤もしくは賦形剤とを含むものである。かかる組成物は、経口または非経口投与に適する剤形として提供される。

すなわち、例えば、経口投与のための組成物としては、固体または液体の 剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、 顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、 懸濁剤などがあげられる。かかる組成物は自体公知の方法によって製造され、 製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有するも のである。例えば、錠剤用の担体、賦形剤としては、乳糖、でんぷん、蔗糖、 ステアリン酸マグネシウムなどが用いられる。

非経口投与のための組成物としては、例えば、注射剤、坐剤などが用いられ、注射剤は静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤などの剤形を包含する。かかる注射剤は、自体公知の方法に従って、例えば、上記抗体またはその塩を通常注射剤に用いられる無菌の水性もしくは油性液に溶解、懸濁または乳化することによって調製する。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液などが用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン界面活性剤〔例、ポリソルベート80、HCO-50

(polyoxyethylene (50 mol) adduct of hydrogenated castor oil)] などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用いられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールなどを併用し

15

25

てもよい。調製された注射液は、通常、適当なアンプルに充填される。直腸 投与に用いられる坐剤は、上記抗体またはその塩を通常の坐薬用基剤に混合 することによって調製される。

上記の経口用または非経口用医薬組成物は、活性成分の投与量に適合するような投薬単位の剤形に調製されることが好都合である。かかる投薬単位の剤形としては、錠剤、丸剤、カプセル剤、注射剤(アンプル)、坐剤などが例示され、それぞれの投薬単位剤形当たり通常5~500mg、とりわけ注射剤では5~100mg、その他の剤形では10~250mgの上記抗体が含有されていることが好ましい。

10 なお前記した各組成物は、上記抗体との配合により好ましくない相互作用 を生じない限り他の活性成分を含有してもよい。

(7) DNA転移動物

本発明は、外来性の本発明のペプチドをコードするDNA(以下、本発明の外来性DNAと略記する)またはその変異DNA(本発明の外来性変異DNAと略記する場合がある)を有する非ヒト哺乳動物を提供する。

すなわち、本発明は、

- (i) 本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物、
- (ii) 非ヒト哺乳動物がゲッ歯動物である第(i)記載の動物、
- (iii) ゲッ歯動物がマウスまたはラットである第(ii) 記載の動物、および
- 20 (iv) 本発明の外来性DNAまたはその変異DNAを含有し、哺乳動物において発現しうる組換えベクターを提供するものである。

本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物(以下、本発明のDNA転移動物と略記する)は、未受精卵、受精卵、精子およびその始原細胞を含む胚芽細胞などに対して、好ましくは、非ヒト哺乳動物の発生における胚発生の段階(さらに好ましくは、単細胞または受精卵細胞の段階でかつ一般に8細胞期以前)に、リン酸カルシウム法、電気パルス法、リポフェクション法、凝集法、マイクロインジェクション法、パーティクルガン法、DEAEーデキストラン法などにより目的とするDNAを転移することによって作出することができる。また、該DNA転移方法により、体細

10

20

25

PCT/JP02/05915

胞、生体の臓器、組織細胞などに目的とする本発明の外来性DNAを転移し、 細胞培養、組織培養などに利用することもでき、さらに、これら細胞を上述 の胚芽細胞と自体公知の細胞融合法により融合させることにより本発明のD NA転移動物を作出することもできる。

非ヒト哺乳動物としては、例えば、ウシ、ブタ、ヒツジ、ヤギ、ウサギ、イヌ、ネコ、モルモット、ハムスター、マウス、ラットなどが用いられる。なかでも、病体動物モデル系の作成の面から個体発生および生物サイクルが比較的短く、また、繁殖が容易なゲッ歯動物、とりわけマウス(例えば、純系として、C57BL/6系統,DBA2系統など、交雑系として、B6C3F1系統,BDF1系統,B6D2F1系統,BALB/c系統,ICR系統など)またはラット(例えば、Wistar, SDなど)などが好ましい。哺乳動物において発現しうる組換えベクターにおける「哺乳動物」としては、上記の非ヒト哺乳動物の他にヒトなどがあげられる。

本発明の外来性DNAとは、非ヒト哺乳動物が本来有している本発明のD NAではなく、いったん哺乳動物から単離・抽出された本発明のDNAをい う。

本発明の変異DNAとしては、元の本発明のDNAの塩基配列に変異(例えば、突然変異など)が生じたもの、具体的には、塩基の付加、欠損、他の塩基への置換などが生じたDNAなどが用いられ、また、異常DNAも含まれる。

該異常DNAとしては、異常な本発明のペプチドを発現させるDNAを意味し、例えば、正常な本発明のペプチドの機能を抑制するペプチドを発現させるDNAなどが用いられる。

本発明の外来性DNAは、対象とする動物と同種あるいは異種のどちらの哺乳動物由来のものであってもよい。本発明のDNAを対象動物に転移させるにあたっては、該DNAを動物細胞で発現させうるプロモーターの下流に結合したDNAコンストラクトとして用いるのが一般に有利である。例えば、本発明のヒトDNAを転移させる場合、これと相同性が高い本発明のDNAを有する各種哺乳動物(例えば、ウサギ、イヌ、ネコ、モルモット、ハムス

ター、ラット、マウスなど)由来のDNAを発現させうる各種プロモーターの下流に、本発明のヒトDNAを結合したDNAコンストラクト(例、ベクターなど)を対象哺乳動物の受精卵、例えば、マウス受精卵へマイクロインジェクションすることによって本発明のDNAを高発現するDNA転移哺乳動物を作出することができる。

本発明のペプチドの発現ベクターとしては、大腸菌由来のプラスミド、枯草菌由来のプラスミド、酵母由来のプラスミド、えファージなどのバクテリオファージ、モロニー白血病ウィルスなどのレトロウィルス、ワクシニアウィルスまたはバキュロウィルスなどの動物ウイルスなどが用いられる。なかでも、大腸菌由来のプラスミド、枯草菌由来のプラスミドまたは酵母由来のプラスミドなどが好ましく用いられる。

上記のDNA発現調節を行なうプロモーターとしては、例えば、①ウイル

ス(例、シミアンウイルス、サイトメガロウイルス、モロニー白血病ウイル ス、JCウイルス、乳癌ウイルス、ポリオウイルスなど)に由来するDNA のプロモーター、②各種哺乳動物(ヒト、ウサギ、イヌ、ネコ、モルモット、 15 ハムスター、ラット、マウスなど) 由来のプロモーター、例えば、アルブミ ン、インスリンII、ウロプラキンII、エラスターゼ、エリスロポエチン、 エンドセリン、筋クレアチシキナーゼ、グリア線維性酸性タンパク質、グル タチオンSートランスフェラーゼ、血小板由来成長因子 β 、ケラチンK1, K10およびK14、コラーゲンI型およびII型、サイクリックAMP依 20 存タンパク質キナーゼβΙサブユニット、ジストロフィン、酒石酸抵抗性ア ルカリフォスファターゼ、心房ナトリウム利尿性因子、内皮レセプターチロ シンキナーゼ (一般にTie 2と略される)、ナトリウムカリウムアデノシ ン3リン酸化酵素(Na, KーATPase)、ニューロフィラメント軽鎖、 メタロチオネインIおよびIIA、メタロプロティナーゼ1組織インヒビタ 25 ー、MHCクラス I 抗原(H-2 L)、H-r a s、レニン、ドーパミンβ -水酸化酵素、甲状腺ペルオキシダーゼ (TPO)、ペプチド鎖延長因子1α $(EF-1\alpha)$ 、 β アクチン、 α および β ミオシン重鎖、ミオシン軽鎖1お よび2、ミエリン基礎タンパク質、チログロブリン、Thv-1、免疫グロ

15

20

25

ブリン、H鎖可変部(VNP)、血清アミロイドPコンポーネント、ミオグロビン、トロポニンC、平滑筋 α アクチン、プレプロエンケファリンA、バソプレシンなどのプロモーターなどが用いられる。なかでも、全身で高発現することが可能なサイトメガロウイルスプロモーター、ヒトペプチド鎖延長因子 1α (EF- 1α) のプロモーター、ヒトおよびニワトリ β アクチンプロモーターなどが好適である。

上記ベクターは、DNA転移哺乳動物において目的とするメッセンジャーRNAの転写を終結する配列(一般にターミネターと呼ばれる)を有していることが好ましく、例えば、ウイルス由来および各種哺乳動物由来の各DNAの配列を用いることができ、好ましくは、シミアンウイルスのSV40ターミネターなどが用いられる。

その他、目的とする外来性DNAをさらに高発現させる目的で各DNAのスプライシングシグナル、エンハンサー領域、真核DNAのイントロンの一部などをプロモーター領域の5'上流、プロモーター領域と翻訳領域間あるいは翻訳領域の3'下流に連結することも目的により可能である。

正常な本発明のペプチドの翻訳領域は、ヒトまたは各種哺乳動物(例えば、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど)由来の肝臓、腎臓、甲状腺細胞、線維芽細胞由来DNAおよび市販の各種ゲノムDNAライブラリーよりゲノムDNAの全てあるいは一部として、または肝臓、腎臓、甲状腺細胞、線維芽細胞由来RNAより公知の方法により調製された相補DNAを原料として取得することが出来る。また、外来性の異常DNAは、上記の細胞または組織より得られた正常なペプチドの翻訳領域を点突然変異誘発法により変異した翻訳領域を作製することができる。

該翻訳領域は転移動物において発現しうるDNAコンストラクトとして、 前記のプロモーターの下流および所望により転写終結部位の上流に連結させ る通常のDNA工学的手法により作製することができる。

受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の 胚芽細胞および体細胞のすべてに存在するように確保される。DNA転移後 の作出動物の胚芽細胞において、本発明の外来性DNAが存在することは、

15

20

作出動物の後代がすべて、その胚芽細胞および体細胞のすべてに本発明の外来性DNAを保持することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞のすべてに本発明の外来性DNAを有する。

5 本発明の外来性正常DNAを転移させた非ヒト哺乳動物は、交配により外 来性DNAを安定に保持することを確認して、該DNA保有動物として通常 の飼育環境で継代飼育することが出来る。

受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽細胞および体細胞の全てに過剰に存在するように確保される。DNA転移後の作出動物の胚芽細胞において本発明の外来性DNAが過剰に存在することは、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有する。

導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、この 雌雄の動物を交配することによりすべての子孫が該DNAを過剰に有するよ うに繁殖継代することができる。

本発明の正常DNAを有する非ヒト哺乳動物は、本発明の正常DNAが高発現させられており、内在性の正常DNAの機能を促進することにより最終的に本発明のペプチドの機能亢進症を発症することがあり、その病態モデル動物として利用することができる。例えば、本発明の正常DNA転移動物を用いて、本発明のペプチドの機能亢進症や、本発明のペプチドが関連する疾患の病態機序の解明およびこれらの疾患の治療方法の検討を行なうことが可能である。

25 また、本発明の外来性正常 DNA を転移させた哺乳動物は、遊離した本発明のペプチドの増加症状を有することから、本発明のペプチドに関連する疾患に対する治療薬のスクリーニング試験にも利用可能である。

一方、本発明の外来性異常DNAを有する非ヒト哺乳動物は、交配により 外来性DNAを安定に保持することを確認して該DNA保有動物として通常

10

15

20

25

の飼育環境で継代飼育することが出来る。さらに、目的とする外来DNAを 前述のプラスミドに組み込んで原科として用いることができる。プロモータ ーとのDNAコンストラクトは、通常のDNA工学的手法によって作製する ことができる。受精卵細胞段階における本発明の異常DNAの転移は、対象 哺乳動物の胚芽細胞および体細胞の全てに存在するように確保される。DN A転移後の作出動物の胚芽細胞において本発明の異常DNAが存在すること は、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の異常 DNAを有することを意味する。本発明の外来性DNAを受け継いだこの種 の動物の子孫は、その胚芽細胞および体細胞の全てに本発明の異常DNAを 有する。導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、 この雌雄の動物を交配することによりすべての子孫が該DNAを有するよう に繁殖継代することができる。

本発明の異常DNAを有する非ヒト哺乳動物は、本発明の異常DNAが高発現させられており、内在性の正常DNAの機能を阻害することにより最終的に本発明のペプチドの機能不活性型不応症となることがあり、その病態モデル動物として利用することができる。例えば、本発明の異常DNA転移動物を用いて、本発明のペプチドの機能不活性型不応症の病態機序の解明およびこの疾患を治療方法の検討を行なうことが可能である。

また、具体的な利用可能性としては、本発明の異常DNA高発現動物は、本発明のペプチドの機能不活性型不応症における本発明の異常ペプチドによる正常ペプチドの機能阻害(dominant negative作用)を解明するモデルとなる。

また、本発明の外来異常DNAを転移させた哺乳動物は、遊離した本発明のペプチドの増加症状を有することから、本発明のペプチドまたはの機能不活性型不応症に対する治療薬スクリーニング試験にも利用可能である。

また、上記2種類の本発明のDNA転移動物のその他の利用可能性として、 例えば、

- ①組織培養のための細胞源としての使用、
- ②本発明のDNA転移動物の組織中のDNAもしくはRNAを直接分析する

か、またはDNAにより発現されたペプチド組織を分析することによる、本 発明のペプチドにより特異的に発現あるいは活性化するペプチドとの関連性 についての解析、

- ③DNAを有する組織の細胞を標準組織培養技術により培養し、これらを使用して、一般に培養困難な組織からの細胞の機能の研究、
- ④上記③記載の細胞を用いることによる細胞の機能を高めるような薬剤のスクリーニング、および
- ⑤本発明の変異ペプチドを単離精製およびその抗体作製などが考えられる。
 さらに、本発明のDNA転移動物を用いて、本発明のペプチドの機能不活
 性型不応症などを含む、本発明のペプチドに関連する疾患の臨床症状を調べることができ、また、本発明のペプチドに関連する疾患モデルの各臓器におけるより詳細な病理学的所見が得られ、新しい治療方法の開発、さらには、該疾患による二次的疾患の研究および治療に貢献することができる。

また、本発明のDNA転移動物から各臓器を取り出し、細切後、トリプシンなどのタンパク質分解酵素により、遊離したDNA転移細胞の取得、その培養またはその培養細胞の系統化を行なうことが可能である。さらに、本発明のペプチド産生細胞の特定化、アポトーシス、分化あるいは増殖との関連性、またはそれらにおけるシグナル伝達機構を調べ、それらの異常を調べることなどができ、本発明のペプチドおよびその作用解明のための有効な研究材料となる。

さらに、本発明のDNA転移動物を用いて、本発明のペプチドの機能不活性型不応症を含む、本発明のペプチドに関連する疾患の治療薬の開発を行なうために、上述の検査法および定量法などを用いて、有効で迅速な該疾患治療薬のスクリーニング法を提供することが可能となる。また、本発明のDNA転移動物または本発明の外来性DNA発現ベクターを用いて、本発明のペプチドが関連する疾患のDNA治療法を検討、開発することが可能である。

(8) ノックアウト動物

5

15

· 20

25

本発明は、本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞および本発明のDNA発現不全非ヒト哺乳動物を提供する。

すなわち、本発明は、

- (i) 本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞、
- (ii) 該DNAがレポーター遺伝子(例、大腸菌由来のβーガラクトシダー ゼ遺伝子) を導入することにより不活性化された第(i)項記載の胚幹細胞、
- 5 (iii)ネオマイシン耐性である第(i)項記載の胚幹細胞、
 - (iv) 非ヒト哺乳動物がゲッ歯動物である第(i) 項記載の胚幹細胞、
 - (v) ゲッ歯動物がマウスである第(iv) 項記載の胚幹細胞、
 - (vi) 本発明のDNAが不活性化された該DNA発現不全非ヒト哺乳動物、
- (vii) 該DNAがレポーター遺伝子(例、大腸菌由来のβーガラクトシダー 10 ゼ遺伝子)を導入することにより不活性化され、該レポーター遺伝子が本発 明のDNAに対するプロモーターの制御下で発現しうる第(vi)項記載の非 ヒト哺乳動物、
 - (viii) 非ヒト哺乳動物がゲッ歯動物である第 (vi) 項記載の非ヒト哺乳動物、
- 15 (ix) ゲッ歯動物がマウスである第 (viii) 項記載の非ヒト哺乳動物、および
 - (x) 第 (vii) 項記載の動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする本発明のDNAに対するプロモーター活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供する。
- 20 本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞とは、該非ヒト哺乳動物が有する本発明のDNAに人為的に変異を加えることにより、DNAの発現能を抑制するか、もしくは該DNAがコードしている本発明のペプチドの活性を実質的に喪失させることにより、DNAが実質的に本発明のペプチドの発現能を有さない(以下、本発明のノックアウトDNAと称することがある)非ヒト哺乳動物の胚幹細胞(以下、ES細胞と略記する)をいう。

非ヒト哺乳動物としては、前記と同様のものが用いられる。

本発明のDNAに人為的に変異を加える方法としては、例えば、遺伝子工学的手法により該DNA配列の一部又は全部の削除、他DNAを挿入または置換させることによって行なうことができる。これらの変異により、例えば、

10

15

20

25

コドンの読み取り枠をずらしたり、プロモーターあるいはエキソンの機能を 破壊することにより本発明のノックアウトDNAを作製すればよい。

本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞(以下、本発明 のDNA不活性化ES細胞または本発明のノックアウトES細胞と略記す る) の具体例としては、例えば、目的とする非ヒト哺乳動物が有する本発明 のDNAを単離し、そのエキソン部分にネオマイシン耐性遺伝子、ハイグロ マイシン耐性遺伝子を代表とする薬剤耐性遺伝子、あるいは 1 a c Z (β-ガラクトシダーゼ遺伝子)、cat(クロラムフェニコールアセチルトラン スフェラーゼ遺伝子)を代表とするレポーター遺伝子等を挿入することによ りエキソンの機能を破壊するか、あるいはエキソン間のイントロン部分に遺 伝子の転写を終結させるDNA配列(例えば、polyA付加シグナルなど)を 挿入し、完全なメッセンジャーRNAを合成できなくすることによって、結 果的に遺伝子を破壊するように構築したDNA配列を有するDNA鎖 (以下、 ターゲッティングベクターと略記する)を、例えば相同組換え法により該動 物の染色体に導入し、得られたES細胞について本発明のDNA上あるいは その近傍のDNA配列をプローブとしたサザンハイブリダイゼーション解析 あるいはターゲッティングベクター上のDNA配列とターゲッティングベク ター作製に使用した本発明のDNA以外の近傍領域のDNA配列をプライマ ーとしたPCR法により解析し、本発明のノックアウトES細胞を選別する ことにより得ることができる。

また、相同組換え法等により本発明のDNAを不活化させる元のES細胞としては、例えば、前述のような既に樹立されたものを用いてもよく、また公知 EvansとKaufmaの方法に準じて新しく樹立したものでもよい。例えば、マウスのES細胞の場合、現在、一般的には129系のES細胞が使用されているが、免疫学的背景がはっきりしていないので、これに代わる純系で免疫学的に遺伝的背景が明らかなES細胞を取得するなどの目的で例えば、C57BL/6マウスやC57BL/6の採卵数の少なさをDBA/2との交雑により改善したBDF₁マウス(C57BL/6とDBA/2とのF₁)を用いて樹立したものなども良好に用いうる。BDF₁マウスは、採卵数が多く、

15

20

25

かつ、卵が丈夫であるという利点に加えて、C57BL/6マウスを背景に持つので、これを用いて得られたES細胞は病態モデルマウスを作出したとき、C57BL/6マウスとバッククロスすることでその遺伝的背景をC57BL/6マウスに代えることが可能である点で有利に用い得る。

また、ES細胞を樹立する場合、一般には受精後3.5日目の胚盤胞を使用するが、これ以外に8細胞期胚を採卵し胚盤胞まで培養して用いることにより効率よく多数の初期胚を取得することができる。

また、雌雄いずれのES細胞を用いてもよいが、通常雄のES細胞の方が 生殖系列キメラを作出するのに都合が良い。また、煩雑な培養の手間を削減 するためにもできるだけ早く雌雄の判別を行なうことが望ましい。

ES細胞の雌雄の判定方法としては、例えば、PCR法によりY染色体上の性決定領域の遺伝子を増幅、検出する方法が、その1例としてあげることができる。この方法を使用すれば、従来、核型分析をするのに約10⁶個の細胞数を要していたのに対して、1コロニー程度のES細胞数(約50個)で済むので、培養初期におけるES細胞の第一次セレクションを雌雄の判別で行なうことが可能であり、早期に雄細胞の選定を可能にしたことにより培養初期の手間は大幅に削減できる。

また、第二次セレクションとしては、例えば、G-バンディング法による 染色体数の確認等により行うことができる。得られるES細胞の染色体数は 正常数の100%が望ましいが、樹立の際の物理的操作等の関係上困難な場 合は、ES細胞の遺伝子をノックアウトした後、正常細胞(例えば、マウス では染色体数が2n=40である細胞)に再びクローニングすることが望ま しい。

このようにして得られた胚幹細胞株は、通常その増殖性は大変良いが、個体発生できる能力を失いやすいので、注意深く継代培養することが必要である。例えば、STO繊維芽細胞のような適当なフィーダー細胞上でLIF(1-10000U/ml)存在下に炭酸ガス培養器内(好ましくは、5%炭酸ガス、95%空気または5%酸素、5%炭酸ガス、90%空気)で約37℃で培養するなどの方法で培養し、継代時には、例えば、トリプシン/EDTA溶液

(通常0.001-0.5%トリプシン/0.1-5 mM EDTA、好ましくは約0.1%トリプシン/1 mM EDTA) 処理により単細胞化し、新たに用意したフィーダー細胞上に播種する方法などがとられる。このような継代は、通常1-3 日毎に行なうが、この際に細胞の観察を行い、形態的に異常な細胞が見受けられた場合はその培養細胞は放棄することが望まれる。

ES細胞は、適当な条件により、高密度に至るまで単層培養するか、または細胞集塊を形成するまで浮遊培養することにより、頭頂筋、内臓筋、心筋などの種々のタイプの細胞に分化させることが可能であり [M. J. Evans及びM. H. Kaufman, ネイチャー (Nature) 第292巻、154頁、1981年; G. R. Martin プロシーディングス・オブ・ナショナル・アカデミー・オブ・サイエンス・ユーエスエー (Proc. Natl. Acad. Sci. U.S.A.) 第78巻、7634頁、1981年; T. C. Doetschman ら、ジャーナル・オブ・エンブリオロジー・アンド・エクスペリメンタル・モルフォロジー、第87巻、27頁、1985年]、本発明のES細胞を分化させて得られる本発明のDNA発現不全細胞は、インビトロにおける本発明のペプチドまたは本発明のレセプター蛋白質の細胞生物学的検討において有用である。

本発明のDNA発現不全非ヒト哺乳動物は、該動物のmRNA量を公知方法を用いて測定して間接的にその発現量を比較することにより、正常動物と区別することが可能である。

20 該非ヒト哺乳動物としては、前記と同様のものが用いられる。

本発明のDNA発現不全非ヒト哺乳動物は、例えば、前述のようにして作製したターゲッティングベクターをマウス胚幹細胞またはマウス卵細胞に導入し、導入によりターゲッティングベクターの本発明のDNAが不活性化されたDNA配列が遺伝子相同組換えにより、マウス胚幹細胞またはマウス卵細胞の染色体上の本発明のDNAと入れ換わる相同組換えをさせることにより、本発明のDNAをノックアウトさせることができる。

本発明のDNAがノックアウトされた細胞は、本発明のDNA上またはそ の近傍のDNA配列をプローブとしたサザンハイブリダイゼーション解析ま たはターゲッティングベクター上のDNA配列と、ターゲッティングベクタ

25

一に使用したマウス由来の本発明のDNA以外の近傍領域のDNA配列とをプライマーとしたPCR法による解析で判定することができる。非ヒト哺乳動物胚幹細胞を用いた場合は、遺伝子相同組換えにより、本発明のDNAが不活性化された細胞株をクローニングし、その細胞を適当な時期、例えば、8細胞期の非ヒト哺乳動物胚または胚盤胞に注入し、作製したキメラ胚を偽妊娠された乾非ヒト哺乳動物の子宮に移植する。作出された動物は正常な木

8 和配期の非こ下哺乳動物配または配盤配に任べし、作製したキメノ配を協 妊娠させた該非ヒト哺乳動物の子宮に移植する。作出された動物は正常な本 発明のDNA座をもつ細胞と人為的に変異した本発明のDNA座をもつ細胞 との両者から構成されるキメラ動物である。

該キメラ動物の生殖細胞の一部が変異した本発明のDNA座をもつ場合、 このようなキメラ個体と正常個体を交配することにより得られた個体群より、 全ての組織が人為的に変異を加えた本発明のDNA座をもつ細胞で構成され た個体を、例えば、コートカラーの判定等により選別することにより得られ る。このようにして得られた個体は、通常、本発明のペプチドのヘテロ発現 不全個体であり、本発明のペプチドまたは本発明のレセプター蛋白質のヘテロ発現不全個体同志を交配し、それらの産仔から本発明のペプチドまたは本 発明のレセプター蛋白質のホモ発現不全個体を得ることができる。

卵細胞を使用する場合は、例えば、卵細胞核内にマイクロインジェクション法でDNA溶液を注入することによりターゲッティングベクターを染色体内に導入したトランスジェニック非ヒト哺乳動物を得ることができ、これらのトランスジェニック非ヒト哺乳動物に比べて、遺伝子相同組換えにより本発明のDNA座に変異のあるものを選択することにより得られる。

このようにして本発明のDNAがノックアウトされている個体は、交配により得られた動物個体も該DNAがノックアウトされていることを確認して通常の飼育環境で飼育継代を行なうことができる。

さらに、生殖系列の取得および保持についても常法に従えばよい。すなわち、該不活化DNAの保有する雌雄の動物を交配することにより、該不活化 DNAを相同染色体の両方に持つホモザイゴート動物を取得しうる。得られたホモザイゴート動物は、母親動物に対して、正常個体1,ホモザイゴート複数になるような状態で飼育することにより効率的に得ることができる。へ

25

テロザイゴート動物の雌雄を交配することにより、該不活化DNAを有する ホモザイゴートおよびヘテロザイゴート動物を繁殖継代する。

本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞は、本発明のDNA発現不全非ヒト哺乳動物を作出する上で、非常に有用である。

5 また、本発明のDNA発現不全非ヒト哺乳動物は、本発明のペプチドにより誘導され得る種々の生物活性を欠失するため、本発明のペプチドの生物活性の不活性化を原因とする疾病のモデルとなり得るので、これらの疾病の原因究明及び治療法の検討に有用である。

(8 a) 本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予 10 防効果を有する化合物のスクリーニング方法

本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物のスクリーニングに用いることができる。

すなわち、本発明は、本発明のDNA発現不全非ヒト哺乳動物に試験化合物を投与し、該動物の変化を観察・測定することを特徴とする、本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物またはその塩のスクリーニング方法を提供する。

該スクリーニング方法において用いられる本発明のDNA発現不全非ヒト 哺乳動物としては、前記と同様のものがあげられる。

20 試験化合物としては、例えば、ペプチド、タンパク、非ペプチド性化合物、 合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿 などがあげられ、これら化合物は新規な化合物であってもよいし、公知の化 合物であってもよい。

具体的には、本発明のDNA発現不全非ヒト哺乳動物を、試験化合物で処理し、無処理の対照動物と比較し、該動物の各器官、組織、疾病の症状などの変化を指標として試験化合物の治療・予防効果を試験することができる。

試験動物を試験化合物で処理する方法としては、例えば、経口投与、静脈 注射などが用いられ、試験動物の症状、試験化合物の性質などにあわせて適 宜選択す

15

20

25

ることができる。また、試験化合物の投与量は、投与方法、試験化合物の性質などにあわせて適宜選択することができる。

例えば、拒食症、高血圧、自己免疫疾患、心不全、白内障、緑内障、急性 バクテリア髄膜炎、急性心筋梗塞、急性膵炎、急性ウイルス脳炎、成人呼吸 促迫症候群、アルコール性肝炎、アルツハイマー病、喘息、動脈硬化、アト ピー性皮膚炎、バクテリア肺炎、膀胱がん、骨折、乳がん、過食症、多食症、 火傷治癒、子宮頸部がん、慢性リンパ性白血病、慢性骨髄性白血病、慢性膵 炎、肝硬変、大腸がん(結腸/直腸がん)、クローン病、痴呆、糖尿病性合 併症,糖尿病性腎症,糖尿病性神経障害,糖尿病性網膜症、胃炎、ヘリコバ クター・ピロリ感染症、肝不全、A型肝炎、B型肝炎、C型肝炎、肝炎、単 純ヘルペスウイルス感染症、水痘帯状疱疹ウイルス感染症、ホジキン病、エ イズ感染症、ヒトパピローマウイルス感染症、高カルシウム血症、高コレス テロール血症、高グリセリド血症、高脂血症、感染症、インフルエンザ感染 症、インシュリン依存性糖尿病(I型)、侵襲性ブドウ状球菌感染症、悪性 黒色腫,がん転移,多発性骨髄腫,アレルギー性鼻炎,腎炎,非ホジキン性 リンパ腫、インシュリン非依存性糖尿病(II型),非小細胞肺がん,臓器移 植,骨関節炎,骨軟化症,骨減少症,骨粗鬆症,卵巣がん、骨ペーチェット 病,消化性潰瘍,末梢血管疾患,前立腺がん,逆流性食道炎,腎不全,リウ マチ関節炎,精神分裂症,敗血症,敗血症ショック,重症全身性真菌感染症, 小細胞肺がん、脊髄損傷、胃がん、全身性エリテマトーサス、一過性脳虚血 発作,結核,心弁膜症,血管性/多発梗塞痴呆,創傷治癒,不眠症,関節炎、 下垂体ホルモン分泌不全[例、プロラクチン分泌不全(例、卵巣機能低下症、 精嚢発育不全、更年期障害、甲状腺機能低下等)〕、瀕尿、尿毒症、または 神経変成疾患等(特に拒食症等)に対して治療・予防効果を有する化合物を スクリーニングする場合、本発明のDNA発現不全非ヒト哺乳動物に糖負荷 処置を行ない、糖負荷処置前または処置後に試験化合物を投与し、該動物の 摂食量、血糖値および体重変化などを経時的に測定する。

該スクリーニング方法において、試験動物に試験化合物を投与した場合、 該試験動物の摂食量等が約10%以上、好ましくは約30%以上、より好ま しくは約50%以上上昇した場合、該試験化合物を上記の疾患に対して治療・予防効果を有する化合物として選択することができる。

該スクリーニング方法を用いて得られる化合物は、上記した試験化合物から選ばれた化合物であり、本発明のペプチドの欠損や損傷などによって引き起こされる疾患に対して治療・予防効果を有するので、該疾患に対する安全で低毒性な治療・予防剤などの医薬として使用することができる。さらに、上記スクリーニングで得られた化合物から誘導される化合物も同様に用いることができる。

5

10

15

該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸(例、無機酸、有機酸など)や塩基(例、アルカリ金属など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、 前記した本発明のペプチドを含有する医薬と同様にして製造することができ る。

20 このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒトまたは哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サルなど)に対して投与することができる。該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、該化合物を経口投与する場合、一般的に成人 (体重60kgとして)の拒食症患者においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、該化合物を注射剤の形で通常成人(60kgとして)の拒食症患者に投与する場合、一日につ

15

25

き該化合物を約 $0.01\sim30$ m g 程度、好ましくは約 $0.1\sim20$ m g 程度、より好ましくは約 $0.1\sim10$ m g 程度を静脈注射により投与するのが好都合である。他の動物の場合も、60 k g 当たりに換算した量を投与することができる。

5 (8b) 本発明のDNAに対するプロモーターの活性を促進または阻害する 化合物をスクリーニング方法

本発明は、本発明のDNA発現不全非ヒト哺乳動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供する。

上記スクリーニング方法において、本発明のDNA発現不全非ヒト哺乳動物としては、前記した本発明のDNA発現不全非ヒト哺乳動物の中でも、本発明のDNAがレポーター遺伝子を導入することにより不活性化され、該レポーター遺伝子が本発明のDNAに対するプロモーターの制御下で発現しうるものが用いられる。

試験化合物としては、前記と同様のものがあげられる。

レポーター遺伝子としては、前記と同様のものが用いられ、βーガラクトシダーゼ遺伝子(1 a c Z)、可溶性アルカリフォスファターゼ遺伝子またはルシフェラーゼ遺伝子などが好適である。

20 本発明のDNAをレポーター遺伝子で置換された本発明のDNA発現不全 非ヒト哺乳動物では、レポーター遺伝子が本発明のDNAに対するプロモー ターの支配下に存在するので、レポーター遺伝子がコードする物質の発現を トレースすることにより、プロモーターの活性を検出することができる。

例えば、本発明のペプチドをコードするDNA領域の一部を大腸菌由来の β – ガラクトシダーゼ遺伝子(1 a c Z)で置換している場合、本来、本発明のペプチドの発現する組織で、本発明のペプチドの代わりに β – ガラクトシダーゼが発現する。従って、例えば、5 – プロモー4 – クロロー3 ーインドリルー β – ガラクトピラノシド(X – g a 1)のような β – ガラクトシダーゼの基質となる試薬を用いて染色することにより、簡便に本発明のペプチ

15

20

25

ドの動物生体内における発現状態を観察することができる。具体的には、本発明のペプチド欠損マウスまたはその組織切片をグルタルアルデヒドなどで固定し、リン酸緩衝生理食塩液(PBS)で洗浄後、X-galを含む染色液で、室温または37℃付近で、約30分ないし1時間反応させた後、組織標本を1mM EDTA/PBS溶液で洗浄することによって、 $\beta-$ ガラクトシダーゼ反応を停止させ、呈色を観察すればよい。また、常法に従い、1ac 2をコードするmRNAを検出してもよい。

上記スクリーニング方法を用いて得られる化合物またはその塩は、上記した試験化合物から選ばれた化合物であり、本発明のDNAに対するプロモーター活性を促進または阻害する化合物である。

該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸(例、無機酸など)や塩基(例、有機酸など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。

本発明のDNAに対するプロモーター活性を促進する化合物またはその塩は、本発明のペプチドの発現を促進し、該ペプチドの機能を促進することができるので、例えば、拒食症、高血圧、自己免疫疾患、心不全、白内障、緑内障、急性バクテリア髄膜炎,急性心筋梗塞,急性膵炎,急性ウイルス脳炎,成人呼吸促迫症候群,アルコール性肝炎,アルツハイマー病,喘息,動脈硬化,アトピー性皮膚炎,バクテリア肺炎,膀胱がん,骨折,乳がん,過食症,多食症,火傷治癒,子宮頸部がん,慢性リンパ性白血病,慢性骨髄性白血病,慢性膵炎,肝硬変,大腸がん(結腸/直腸がん),クローン病,痴呆,糖尿病性骨炎,肝硬変,大腸がん(結腸/直腸がん),クローン病,痴呆,糖尿病性合併症,糖尿病性腎症,糖尿病性神経障害,糖尿病性網膜症,胃炎,ヘリコバクター・ピロリ感染症,肝不全,A型肝炎,B型肝炎,C型肝炎,肝炎,単純ヘルペスウイルス感染症,水痘帯状疱疹ウイルス感染症,ホジキン

10

15

20

25

病,エイズ感染症,ヒトパピローマウイルス感染症,高カルシウム血症,高 コレステロール血症,高グリセリド血症,高脂血症,感染症,インフルエン ザ感染症, インシュリン依存性糖尿病(I 型), 侵襲性ブドウ状球菌感染症, 悪性黒色腫、がん転移、多発性骨髄腫、アレルギー性鼻炎、腎炎、非ホジキ ン性リンパ腫、インシュリン非依存性糖尿病(II型)、非小細胞肺がん、臓 器移植、骨関節炎、骨軟化症、骨減少症、骨粗鬆症、卵巣がん、骨ペーチェ ット病、消化性潰瘍、末梢血管疾患、前立腺がん、逆流性食道炎、腎不全、 リウマチ関節炎,精神分裂症,敗血症,敗血症ショック,重症全身性真菌感 染症、小細胞肺がん、脊髄損傷、胃がん、全身性エリテマトーサス、一過性 脳虚血発作, 結核, 心弁膜症, 血管性/多発梗塞痴呆, 創傷治癒, 不眠症, 関節炎、下垂体ホルモン分泌不全〔例、プロラクチン分泌不全(例、卵巣機 能低下症、精嚢発育不全、更年期障害、甲状腺機能低下等)〕、瀕尿、尿毒 症、または神経変成疾患等(特に拒食症等)の疾病に対する安全で低毒性な 治療・予防剤(特に、食欲(摂食)増進剤)などの医薬として有用である。 また、本発明のDNAに対するプロモーター活性を阻害する化合物または その塩は、本発明のペプチドの発現を阻害し、該ペプチドの機能を阻害する ことができるので、例えば、肥満症 [例、悪性肥満細胞症 (malignant mastocytosis)、外因性肥満 (exogenous obesity)、過インシュリン性肥満症 (hyperinsulinar obesity)、過血漿性肥満(hyperplasmic obesity)、下垂体 性肥満(hypophyseal adiposity)、減血漿性肥満症(hypoplasmic obesity)、 甲状腺機能低下肥満症(hypothyroid obesity)、視床下部性肥満(hypothalamic obesity)、症候性肥満症(symptomatic obesity)、小児肥満(infantile obesity)、上半身肥満(upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性肥満(hypogonadal obesity)、全身性肥満細胞症 (systemic mastocytosis)、単純性肥満(simple obesity)、中心性肥満(central obesity)など]、摂食亢進症(hyperphagia)、下垂体腺腫瘍、間脳腫瘍、月経 異常、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、 乳汁漏症、末端肥大症、キアリ・フロンメル症候群、アルゴンツ・デル・カ スティロ症候群、フォーベス・アルブライト症候群、リンパ腫、シーハン症

WO 02/102847 PCT/JP02/05915

候群、精子形成異常などの予防・治療剤(プロラクチン産生抑制剤)などの 予防・治療剤、好ましくは肥満症、摂食亢進症などの予防・治療剤などの医 薬として有用である。

さらに、上記スクリーニングで得られた化合物から誘導される化合物も同様に用いることができる。

5

10

15

20

25

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、 前記した本発明のペプチドまたはその塩を含有する医薬と同様にして製造す ることができる。

このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒトまたは哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サルなど)に対して投与することができる。該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、本発明のDNAに対するプロモーター活性を促進する化合物を経口投与する場合、一般的に成人(体重60kgとして)の拒食症患者においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、本発明のDNAに対するプロモーター活性を促進する化合物を注射剤の形で通常成人(60kgとして)の拒食症患者に投与する場合、一日につき該化合物を約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

一方、例えば、本発明のDNAに対するプロモーター活性を阻害する化合物を経口投与する場合、一般的に成人(体重60kgとして)の肥満症患者においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、本発明のDNAに対するプロモーター活性を阻害する化

10

15

20

25

合物を注射剤の形で通常成人(60kgとして)の肥満症患者に投与する場合、一日につき該化合物を約 $0.01\sim30mg$ 程度、好ましくは約 $0.1\sim20mg$ 程度、より好ましくは約 $0.1\sim10mg$ 程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

このように、本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩をスクリーニングする上で極めて有用であり、本発明のDNA発現不全に起因する各種疾患の原因究明または予防・治療薬の開発に大きく貢献することができる。

また、本発明のペプチドのプロモーター領域を含有するDNAを使って、 その下流に種々のタンパクをコードする遺伝子を連結し、これを動物の卵細胞に注入していわゆるトランスジェニック動物(遺伝子移入動物)を作成すれば、特異的にそのペプチドを合成させ、その生体での作用を検討することも可能となる。さらに上記プロモーター部分に適当なレポーター遺伝子を結合させ、これが発現するような細胞株を樹立すれば、本発明のペプチドそのものの体内での産生能力を特異的に促進もしくは抑制する作用を持つ低分子化合物の探索系として使用できる。

さらに、本発明のウシGRP7、ウシGPR8(以下、ウシGPR7/8と略記する)の用途について説明する。

本発明のウシGPR7/8に対する抗体(以下、単にウシGPR7/8抗体と称する場合がある)は、本発明のウシGPR7/8に対する抗体を認識し得る抗体であれば、ポリクローナル抗体、モノクローナル抗体の何れであってもよい。

本発明の抗体は、本発明のウシGPR7/8を抗原として用い、自体公知 の抗体または抗血清の製造法に従って製造することができる。具体的には、 前記した本発明のペプチドに対する抗体と同様に製造することができる。

本発明のウシGPR7/8をコードするDNA(以下、ウシGPR7/8 DNAと略記する場合がある)に相補的な、または実質的に相補的な塩基配

10

15

25

PCT/JP02/05915

列を有するアンチセンスDNA(以下、ウシGPR7/8アンチセンスDNAと略記する場合がある)としては、本発明のウシGPR7/8DNAに相補的な、または実質的に相補的な塩基配列を有し、該DNAの発現を抑制し得る作用を有するものであれば、いずれのアンチセンスDNAであってもよい。

本発明のウシGPR7/8DNAに実質的に相補的な塩基配列とは、例えば、本発明のウシGPR7/8DNAに相補的な塩基配列(すなわち、本発明のDNAの相補鎖)の全塩基配列あるいは部分塩基配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、最も好ましくは約95%以上の相同性を有する塩基配列などがあげられる。特に、本発明のウシGPR7/8DNAの相補鎖の全塩基配列うち、本発明のウシGPR7/8のN末端部位をコードする部分の塩基配列(例えば、開始コドン付近の塩基配列など)の相補鎖と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、最も好ましくは約95%以上の相同性を有するアンチセンスDNAが好適である。これらのアンチセンスDNAは、公知のDNA合成装置などを用いて製造することができる。

以下に、①本発明のウシGPR7/8、②本発明のウシGPR7/8DNA、③本発明のウシGPR7/8抗体、および④ウシGPR7/8アンチセンスDNAの用途を説明する。

20 (1)本発明のウシGPR7/8が関与する各種疾病の治療・予防剤 本発明のウシGPR7/8は後述の実施例25に示すとおり、本発明のペ プチドに対する受容体である。

従って、本発明のウシGPR7/8または本発明のウシGPR7/8DN Aに異常があったり、欠損している場合には、例えば、拒食症、高血圧、自己免疫疾患、心不全、白内障、緑内障、急性バクテリア髄膜炎,急性心筋梗塞,急性膵炎,急性ウイルス脳炎,成人呼吸促迫症候群,アルコール性肝炎,アルツハイマー病,喘息,動脈硬化,アトピー性皮膚炎,バクテリア肺炎,膀胱がん,骨折,乳がん,過食症,多食症,火傷治癒,子宮頸部がん,慢性リンパ性白血病,慢性骨髄性白血病,慢性膵炎、肝硬変,大腸がん(結腸/

10

15

20

25

PCT/JP02/05915

直腸がん), クローン病, 痴呆, 糖尿病性合併症, 糖尿病性腎症, 糖尿病性 神経障害, 糖尿病性網膜症, 胃炎, ヘリコバクター・ピロリ感染症, 肝不全, A型肝炎、B型肝炎、C型肝炎、肝炎、単純ヘルペスウイルス感染症、水痘 帯状疱疹ウイルス感染症,ホジキン病,エイズ感染症,ヒトパピローマウイ ルス感染症, 高カルシウム血症, 高コレステロール血症, 高グリセリド血症, 高脂血症、感染症、インフルエンザ感染症、インシュリン依存性糖尿病(I 型)、侵襲性ブドウ状球菌感染症、悪性黒色腫、がん転移、多発性骨髄腫、 アレルギー性鼻炎、腎炎、非ホジキン性リンパ腫、インシュリン非依存性糖 尿病(II型),非小細胞肺がん,臓器移植,骨関節炎,骨軟化症,骨減少症, 骨粗鬆症、卵巣がん、骨ペーチェット病、消化性潰瘍、末梢血管疾患、前立 腺がん,逆流性食道炎,腎不全,リウマチ関節炎,精神分裂症,敗血症,敗 血症ショック、重症全身性真菌感染症、小細胞肺がん、脊髄損傷、胃がん、 全身性エリテマトーサス、一過性脳虚血発作、結核、心弁膜症、血管性/多 発梗塞痴呆,創傷治癒,不眠症,関節炎、下垂体ホルモン分泌不全〔例、プ ロラクチン分泌不全(例、卵巣機能低下症、精嚢発育不全、更年期障害、甲 状腺機能低下等)〕、瀕尿、尿毒症、または神経変成疾患等(特に拒食症等) の種々の疾病が発症する可能性が高い。

従って、本発明のウシGPR7/8、本発明のウシGPR7/8DNAは、例えば、上記の種々の疾病(特に拒食症)の治療・予防剤などの医薬(特に、食欲(摂食)増進剤等)として使用することができる。

本発明のウシGPR7/8および本発明のウシGPR7/8DNAは、例えば、生体内において本発明のウシGPR7/8が減少あるいは欠損している患者がいる場合に、(イ)本発明のウシGPR7/8DNAを該患者に投与し、生体内で本発明のウシGPR7/8を発現させることによって、(ロ)細胞に本発明のウシGPR7/8DNAを挿入し、本発明のウシGPR7/8を発現させた後に、該細胞を患者に移植することによって、または(ハ)本発明のウシGPR7/8を該患者に投与することなどによって、該患者における本発明のウシGPR7/8の役割を十分に、あるいは正常に発揮させることができる。

20

25

本発明のウシGPR7/8またはウシGPR7/8DNAを上記の治療・ 予防剤として使用する場合は、前記した本発明のペプチドまたは本発明のD NAを含有する医薬と同様に製造し、使用することができる。

- (2)疾病に対する医薬候補化合物のスクリーニング
- 5 (2-1) スクリーニング方法A

本発明のウシGPR7/8と本発明のペプチドとの結合を変化させる化合物またはその塩のスクリーニング方法は前記したとおりである。

(2-2) スクリーニング方法B

次に、ウシGPR7/8の発現量を調節する化合物のスクリーニング方法に 10 ついて説明する。

本発明のスクリーニング方法Bは、具体的には、(i)ウシGPR7/8を発現し得る細胞または組織を、試験化合物の存在下および非存在下で培養した場合における、それぞれのウシGPR7/8の発現量またはウシGPR7/8をコードするmRNA量を測定し、比較することを特徴とするウシGPR7/8の発現量を増加または減少させる化合物またはその塩のスクリーニング方法である。

ウシGPR7/8を発現し得る細胞または組織としては、ヒトや温血動物(例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、ブタ、ヒツジ、ウシ、サル等)の細胞(例えば、神経細胞、内分泌細胞、神経内分泌細胞、グリア細胞、膵臓β細胞、骨髄細胞、肝細胞、脾細胞、メサンギウム細胞、表皮細胞、上皮細胞、内皮細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単球、樹状細胞)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨 細胞、幹細胞、乳腺細胞、もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞等)、もしくはそれらの細胞が存在するあらゆる組織、例えば、脳、脳の各部位(例、嗅球、扁桃核、大脳基底球、海馬、視床、視床下部、大脳皮質、延髄、小脳)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、血管、心臓、胸腺、脾臓、唾液腺、末梢血、前立腺、睾丸(精巣)、

15

20

25

卵巣、胎盤、子宮、骨、軟骨、関節、骨格筋等を用いても良い。その際、株化 細胞、初代培養系を用いてもよい。また、前記したウシGPR7/8をコード するDNAを含有する組換えベクターで形質転換された形質変換体を使用して もよい。

5 ウシGPR7/8を発現し得る細胞の培養方法は、前記した形質変換体の培養法と同様である。

試験化合物としては、前記の試験化合物の他、DNAライブラリーなどを用いることができる。

ウシGPR7/8の発現量は抗体などを用いて免疫化学的方法などの公知の 方法により測定することもできるし、ウシGPR7/8をコードするmRNA をノザンハイブリダイゼーション法、RT-PCRやTaqMan PCR法 を用いて、公知の方法により測定することもできる。

mRNAの発現量の比較をハイブリダイゼーション法によって行うには、公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング (Molecular Cloning) 2 nd(J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法等に従って行なうことができる。

具体的には、ウシGPR7/8をコードするmRNAの量の測定は、公知の方法に従って細胞から抽出したRNAと、ウシGPR7/8をコードするDNAもしくはその一部または本発明のウシGPR7/8アンチセンス・ポリヌクレオチドとを接触させ、ウシGPR7/8をコードするDNAもしくはその一部または本発明のウシGPR7/8アンチセンス・ポリヌクレオチドと結合したmRNAの量を測定することによって行われる。ウシGPR7/8をコードするDNAもしくはその一部または本発明のウシGPR7/8アンチセンス・ポリヌクレオチドを、例えば放射性同位元素、色素などで標識することによって、ウシGPR7/8をコードするDNAもしくはその一部または本発明のウシGPR7/8アンチセンス・ポリヌクレオチドに結合したmRNAの量が容易に測定できる。放射性同位元素としては、例えば32P、3Hなどが用いられ、色素としては、例えばfluorescein、FAM (PEBiosystems 社製)、JOE (PEBiosystems 社製)、TAMRA (PEBiosystems 社製)、ROX (PEBiosystems

WO 02/102847 PCT/JP02/05915

社製)、Cy5 (Amersham 社製)、Cy3 (Amersham 社製) などの蛍光色素が用いられる。

また、mRNAの量は、細胞から抽出したRNAを逆転写酵素によってcDNAに変換した後、ウシGPR7/8をコードするDNAもしくはその一部または本発明のウシGPR7/8アンチセンス・ポリヌクレオチドをプライマーとして用いるPCRによって、増幅されるcDNAの量を測定することによって行うことができる。

このように、ウシGPR 7/8をコードするmRNAの量を増加させる試験化合物を、ウシGPR 7/8の発現量を増加させる活性を有する化合物として選択することができ、また、ウシGPR 7/8をコードするmRNAの量を減少させる試験化合物をウシGPR 7/8の発現量を減少させる活性を有する化合物として選択することができる。

さらに、本発明は、

5

10

15

20

25

(ii) ウシGPR7/8をコードする遺伝子のプロモーター領域またはエンハンサー領域の下流にレポーター遺伝子を連結した組換えDNAで形質転換した 形質転換体を試験化合物の存在下および非存在下で培養した場合における、それぞれのレポーター活性を測定し、比較することを特徴とする当該プロモーター活性を促進または阻害する化合物のスクリーニング方法を提供する。

レポーター遺伝子産物(例、mRNA、タンパク質)の量を公知の方法を用いて測定することによって、レポーター遺伝子産物の量を増加させる試験化合物を本発明のウシGPR7/8のプロモーターもしくはエンハンサーの活性を制御(特に促進)する作用を有する化合物、すなわちウシGPR7/8の発現量を増加させる活性を有する化合物として選択できる。逆に、レポーター遺伝子産物の量を減少させる試験化合物をウシGPR7/8のプロモーターもしくはエンハンサーの活性を制御(特に阻害)する作用を有する化合物、すなわち

25

ウシGPR7/8の発現量を減少させる活性を有する化合物として選択するこ とができる。

試験化合物としては、前記と同様のものが使用される。

形質転換体の培養は、前記の形質転換体と同様にして行うことができる。

5 レポーター遺伝子のベクター構築やアッセイ法は公知の技術に従うことがで きる (例えば、Molecular Biotechnology 13, 29-43, 1999)。

ウシGPR7/8の発現量を増加させる活性を有する化合物は、安全で低毒 性な医薬(例えば、拒食症の予防・治療薬、食欲(摂食)増進剤、下垂体ホル モン分泌不全〔例、プロラクチン分泌不全(例、卵巣機能低下症、精嚢発育不 全、更年期障害、甲状腺機能低下等) 〕の予防・治療薬等) として有用である。 10 ウシGPR7/8の発現量を減少させる活性を有する化合物は、肥満症 [例、 悪性肥満細胞症(malignant mastocytosis)、外因性肥満(exogenous obesity)、 過インシュリン性肥満症(hyperinsulinar obesity)、過血漿性肥満 (hyperplasmic obesity)、下垂体性肥満(hypophyseal adiposity)、減血漿性肥 15 満症(hypoplasmic obesity)、甲状腺機能低下肥満症(hypothyroid obesity)、 視床下部性肥満(hypothalamic obesity)、症候性肥満症(symptomatic obesity)、 小児肥満 (infantile obesity)、上半身肥満 (upper body obesity)、食事性肥 満症(alimentary obesity)、性機能低下性肥満(hypogonadal obesity)、全身 性肥満細胞症(systemic mastocytosis)、単純性肥満(simple obesity)、中心性 肥満(central obesity)など]、摂食亢進症(hyperphagia) などの安全で低毒性 な予防・治療剤、下垂体腺腫瘍、間脳腫瘍、月経異常、自己免疫疾患、プロラ クチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、キア リ・フロンメル症候群、アルゴンツ・デル・カスティロ症候群、フォーベス・ アルブライト症候群、リンパ腫、シーハン症候群、精子形成異常などの安全で 低毒性な予防・治療剤(プロラクチン産生抑制剤)、好ましくは肥満症、摂食 亢進症などの安全で低毒性な予防・治療剤として有用である。

本発明のスクリーニング方法Bまたはスクリーニング用キットを用いて得 られる化合物またはその塩は、例えば、ペプチド、タンパク、非ペプチド性 化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出 液、血漿などから選ばれた化合物であり、本発明のペプチドの機能を促進ま たは阻害する化合物である。

該化合物の塩としては、前記した本発明のペプチドの塩と同様のものが用いられる。

- 5 本発明のスクリーニング方法Bまたはスクリーニング用キットを用いて得られる化合物を上述の治療・予防剤として使用する場合、前記した本発明のペプチドの発現量を変化させる化合物またはその塩を含有する医薬と同様に製造し、使用することができる。
 - (3) 本発明のウシGPR7/8の定量
- 10 本発明の抗体は、本発明のウシGPR7/8を特異的に認識することができるので、被検液中の本発明のウシGPR7/8の定量、特にサンドイッチ免疫測定法による定量などに使用することができる。

すなわち、本発明は、

15

20

- (i)本発明のウシGPR7/8抗体と、被検液および標識化された本発明のウシGPR7/8とを競合的に反応させ、該抗体に結合した標識化された本発明のウシGPR7/8の割合を測定することを特徴とする被検液中の本発明のウシGPR7/8の定量法、および
 - (ii) 被検液と担体上に不溶化した本発明の抗体および標識化された本発明の別の抗体とを同時あるいは連続的に反応させたのち、不溶化担体上の標識剤の活性を測定することを特徴とする被検液中の本発明のウシGPR7/8の定量法を提供する。
 - 上記(ii)の定量法においては、一方の抗体が本発明のウシGPR7/8のN端部を認識する抗体で、他方の抗体が本発明のウシGPR7/8のC端部に反応する抗体であることが望ましい。
- また、本発明のウシGPR 7/8に対するモノクローナル抗体を用いて本発明のウシGPR 7/8の定量を行うことができるほか、組織染色等による検出を行なうこともできる。これらの目的には、抗体分子そのものを用いてもよく、また、抗体分子の $F(a \ b')_2$ 、 $Fa \ b'$ 、あるいは $Fa \ b$ 画分を用いてもよい。

10

15

20

25

本発明のウシGPR7/8抗体を用いる本発明のウシGPR7/8の定量 法は、特に制限されるべきものではなく、被測定液中の抗原量(例えば、ペ プチド量)に対応した抗体、抗原もしくは抗体-抗原複合体の量を化学的ま たは物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作 製した標準曲線より算出する測定法であれば、いずれの測定法を用いてもよ い。例えば、ネフロメトリー、競合法、イムノメトリック法およびサンドイ ッチ法が好適に用いられるが、感度、特異性の点で、後述するサンドイッチ 法を用いるのが特に好ましい。

標識物質を用いる測定法に用いられる標識剤としては、例えば、放射性同位元素、酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例えば、 $\begin{bmatrix} 1^{25} \ I \end{bmatrix}$ 、 $\begin{bmatrix} 1^{31} \ I \end{bmatrix}$ 、 $\begin{bmatrix} 3 \ H \end{bmatrix}$ 、 $\begin{bmatrix} 1^{4} \ C \end{bmatrix}$ などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えば、 β ーガラクトシダーゼ、 β ーグルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオレスカミン、フルオレッセンイソチオシアネートなどが用いられる。発光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなどが用いられる。さらに、抗体あるいは抗原と標識剤との結合にビオチンーアビジン系を用いることもできる。

抗原あるいは抗体の不溶化に当っては、物理吸着を用いてもよく、また通常ペプチドあるいは酵素等を不溶化、固定化するのに用いられる化学結合を用いる方法でもよい。担体としては、アガロース、デキストラン、セルロースなどの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコン等の合成樹脂、あるいはガラス等があげられる。

サンドイッチ法においては不溶化した本発明のウシGPR7/8モノクローナル抗体に被検液を反応させ(1次反応)、さらに標識化した別の本発明のウシGPR7/8モノクローナル抗体を反応させ(2次反応)たのち、不溶化担体上の標識剤の活性を測定することにより被検液中の本発明のウシGPR7/8量を定量することができる。1次反応と2次反応は逆の順序に行っても、また、同時に行なってもよいし時間をずらして行なってもよい。標

識化剤および不溶化の方法は前記のそれらに準じることができる。また、サンドイッチ法による免疫測定法において、固相用抗体あるいは標識用抗体に 用いられる抗体は必ずしも1種類である必要はなく、測定感度を向上させる 等の目的で2種類以上の抗体の混合物を用いてもよい。

5 本発明のサンドイッチ法による本発明のウシGPR7/8の測定法においては、1次反応と2次反応に用いられる本発明のウシGPR7/8モノクローナル抗体は、本発明のウシGPR7/8の結合する部位が相異なる抗体が好ましく用いられる。すなわち、1次反応および2次反応に用いられる抗体は、例えば、2次反応で用いられる抗体が、本発明のウシGPR7/8のC端部を認識する場合、1次反応で用いられる抗体は、好ましくはC端部以外、例えばN端部を認識する抗体が用いられる。

本発明のウシGPR7/8抗体をサンドイッチ法以外の測定システム、例 えば、競合法、イムノメトリック法あるいはネフロメトリーなどに用いるこ とができる。

15 競合法では、被検液中の抗原と標識抗原とを抗体に対して競合的に反応させたのち、未反応の標識抗原(F)と、抗体と結合した標識抗原(B)とを分離し(B/F分離)、B, Fいずれかの標識量を測定し、被検液中の抗原量を定量する。本反応法には、抗体として可溶性抗体を用い、B/F分離をポリエチレングリコール、前記抗体に対する第2抗体などを用いる液相法、および、第1抗体として固相化抗体を用いるか、あるいは、第1抗体は可溶性のものを用い第2抗体として固相化抗体を用いる固相化法とが用いられる。

イムノメトリック法では、被検液中の抗原と固相化抗原とを一定量の標識 化抗体に対して競合反応させた後固相と液相を分離するか、あるいは、被検 液中の抗原と過剰量の標識化抗体とを反応させ、次に固相化抗原を加え未反 応の標識化抗体を固相に結合させたのち、固相と液相を分離する。次に、い ずれかの相の標識量を測定し被検液中の抗原量を定量する。

また、ネフロメトリーでは、ゲル内あるいは溶液中で抗原抗体反応の結果 生じた不溶性の沈降物の量を測定する。被検液中の抗原量が僅かであり、少 量の沈降物しか得られない場合にもレーザーの散乱を利用するレーザーネフ

10

15

25

ロメトリーなどが好適に用いられる。

これら個々の免疫学的測定法を本発明の定量方法に適用するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的配慮を加えて本発明のウシGPR7/8の測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書などを参照することができる。

例えば、入江 寛編「ラジオイムノアッセイ」(講談社、昭和49年発行)、 入江 寛編「続ラジオイムノアッセイ」(講談社、昭和54年発行)、石川 栄治ら編「酵素免疫測定法」(医学書院、昭和53年発行)、石川栄治ら編 「酵素免疫測定法」(第2版)(医学書院、昭和57年発行)、石川栄治ら 編「酵素免疫測定法」(第3版)(医学書院、昭和62年発行)、「Methods in ENZYMOLOGY」Vol. 70(Immunochemical Techniques(Part A))、 同書 Vol. 73(Immunochemical Techniques(Part B))、 同書 Vol. 74(Immunochemical Techniques(Part C))、 同書 Vol. 84(Immunochemical Techniques(Part D: Selected Immunoassays))、 同書 Vol. 92(Immunochemical Techniques(Part E: Monoclonal Antibodies and General Immunoassay Methods))、 同書 Vol. 121(Immunochemical Techniques(Part I: Hybridoma Technology and Monoclonal Antibodies))(以上、アカデミックプレス社発行)などを参照する ことができる。

20 以上のようにして、本発明のウシGPR7/8抗体を用いることによって、 本発明のウシGPR7/8を感度良く定量することができる。

さらには、本発明のウシGPR7/8抗体を用いて本発明のウシGPR7/8の濃度を定量することによって、本発明のウシGPR7/8の濃度の減少が検出された場合、例えば、拒食症、高血圧、自己免疫疾患、心不全、白内障、緑内障、急性バクテリア髄膜炎,急性心筋梗塞,急性膵炎,急性ウイルス脳炎,成人呼吸促迫症候群,アルコール性肝炎,アルツハイマー病,喘息,動脈硬化,アトピー性皮膚炎,バクテリア肺炎,膀胱がん,骨折,乳がん,過食症,多食症,火傷治癒,子宮頸部がん,慢性リンパ性白血病,慢性骨髄性白血病,慢性膵炎、肝硬変、大腸がん(結腸/直腸がん),クローン

10

15

20

25

病,痴呆,糖尿病性合併症,糖尿病性腎症,糖尿病性神経障害,糖尿病性網 膜症,胃炎,ヘリコバクター・ピロリ感染症,肝不全,A型肝炎,B型肝炎, C型肝炎、肝炎、単純ヘルペスウイルス感染症、水痘帯状疱疹ウイルス感染 症、ホジキン病、エイズ感染症、ヒトパピローマウイルス感染症、高カルシ ウム血症, 高コレステロール血症, 高グリセリド血症, 高脂血症, 感染症, インフルエンザ感染症,インシュリン依存性糖尿病(I型),侵襲性ブドウ 状球菌感染症,悪性黒色腫,がん転移,多発性骨髄腫,アレルギー性鼻炎, 腎炎, 非ホジキン性リンパ腫, インシュリン非依存性糖尿病(II型), 非小 細胞肺がん,臓器移植,骨関節炎,骨軟化症,骨減少症,骨粗鬆症,卵巣が ん、骨ペーチェット病、消化性潰瘍、末梢血管疾患、前立腺がん、逆流性食 道炎、腎不全、リウマチ関節炎、精神分裂症、敗血症、敗血症ショック、重 症全身性真菌感染症,小細胞肺がん,脊髄損傷,胃がん,全身性エリテマト ーサス,一過性脳虚血発作,結核,心弁膜症,血管性/多発梗塞痴呆,創傷 治癒,不眠症,関節炎、下垂体ホルモン分泌不全〔例、プロラクチン分泌不 全(例、卵巢機能低下症、精囊発育不全、更年期障害、甲状腺機能低下等)〕、 瀕尿、尿毒症、または神経変成疾患等(特に拒食症等)の疾病である、また は将来罹患する可能性が高いと診断することができる。

また、本発明のウシGPR7/8の濃度の増加が検出された場合には、例えば、肥満症 [例、悪性肥満細胞症 (malignant mastocytosis)、外因性肥満 (exogenous obesity)、過インシュリン性肥満症 (hyperinsulinar obesity)、過血漿性肥満 (hyperplasmic obesity)、下垂体性肥満 (hypophyseal adiposity)、減血漿性肥満症 (hypoplasmic obesity)、甲状腺機能低下肥満症 (hypothyroid obesity)、視床下部性肥満 (hypothalamic obesity)、症候性肥満症 (symptomatic obesity)、小児肥満 (infantile obesity)、上半身肥満 (upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性肥満 (hypogonadal obesity)、全身性肥満細胞症 (systemic mastocytosis)、単純性肥満 (simple obesity)、中心性肥満 (central obesity)など]、摂食亢進症 (hyperphagia)、下垂体腺腫瘍、間脳腫瘍、月経異常、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、

WO 02/102847

キアリ・フロンメル症候群、アルゴンツ・デル・カスティロ症候群、フォーベス・アルブライト症候群、リンパ腫、シーハン症候群、精子形成異常 (特に肥満症等) などの疾病である、または将来罹患する可能性が高いと診断することができる。

5 また、本発明のウシGPR7/8抗体は、体液や組織などの被検体中に存在する本発明のウシGPR7/8を検出するために使用することができる。また、本発明のウシGPR7/8を精製するために使用する抗体カラムの作製、精製時の各分画中の本発明のウシGPR7/8の検出、被検細胞内における本発明のウシGPR7/8の挙動の分析などのために使用することができる。

(4) 遺伝子診断剤

15

20

25

本発明のウシGPR7/8DNAは、例えば、プローブとして使用することにより、ヒトまたは温血動物(例えば、ラット、マウス、モルモット、ウサギ、トリ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サル、など)における本発明のウシGPR7/8をコードするDNAまたはmRNAの異常(遺伝子異常)を検出することができるので、例えば、該DNAまたはmRNAの損傷、突然変異あるいは発現低下や、該DNAまたはmRNAの増加あるいは発現過多などの遺伝子診断剤として有用である。

本発明のウシGPR 7/8 DN Aを用いる上記の遺伝子診断は、例えば、自体公知のノーザンハイブリダイゼーションやPCR-SSCP法(ゲノミックス(Genomics),第5巻,874~879頁(1989年)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ユーエスエー(Proceedings of the National Academy of Sciences of the United States of America),第86巻,2766~2770頁(1989年))などにより実施することができる。

例えば、ノーザンハイブリダイゼーションによりmRNAの発現低下が検 出された場合は、例えば、拒食症、高血圧、自己免疫疾患、心不全、白内障、 緑内障、急性バクテリア髄膜炎,急性心筋梗塞,急性膵炎,急性ウイルス脳 炎,成人呼吸促迫症候群、アルコール性肝炎、アルツハイマー病、喘息、動

25

脈硬化、アトピー性皮膚炎、バクテリア肺炎、膀胱がん、骨折、乳がん、過 食症、多食症、火傷治癒,子宮頸部がん,慢性リンパ性白血病,慢性骨髄性 白血病、慢性膵炎、肝硬変,大腸がん(結腸/直腸がん),クローン病,痴 呆、糖尿病性合併症、糖尿病性腎症、糖尿病性神経障害、糖尿病性網膜症, 胃炎, ヘリコバクター・ピロリ感染症, 肝不全, A型肝炎, B型肝炎, C型 5 肝炎、肝炎、単純ヘルペスウイルス感染症、水痘帯状疱疹ウイルス感染症、 ホジキン病, エイズ感染症, ヒトパピローマウイルス感染症, 高カルシウム 血症,高コレステロール血症,高グリセリド血症,高脂血症,感染症,イン フルエンザ感染症、インシュリン依存性糖尿病(I型),侵襲性ブドウ状球 菌感染症、悪性黒色腫、がん転移、多発性骨髄腫、アレルギー性鼻炎、腎炎、 10 非ホジキン性リンパ腫,インシュリン非依存性糖尿病(II型),非小細胞肺 がん、臓器移植、骨関節炎、骨軟化症、骨減少症、骨粗鬆症、卵巣がん、骨 ペーチェット病,消化性潰瘍,末梢血管疾患,前立腺がん,逆流性食道炎, 腎不全、リウマチ関節炎、精神分裂症、敗血症、敗血症ショック、重症全身 性真菌感染症, 小細胞肺がん, 脊髄損傷, 胃がん, 全身性エリテマトーサス, 15 一過性脳虚血発作,結核,心弁膜症,血管性/多発梗塞痴呆,創傷治癒,不 眠症,関節炎、下垂体ホルモン分泌不全〔例、プロラクチン分泌不全(例、 卵巣機能低下症、精嚢発育不全、更年期障害、甲状腺機能低下等)〕、瀕尿、 尿毒症、または神経変成疾患等(特に拒食症等)である可能性が高いまたは 将来罹患する可能性が高いと診断することができる。

また、ノーザンハイプリダイゼーションによりmRNAの発現過多が検出 された場合は、例えば、肥満症[例、悪性肥満細胞症(malignant mastocytosis)、 外因性肥満(exogenous obesity)、過インシュリン性肥満症(hyperinsulinar obesity)、過血漿性肥満(hyperplasmic obesity)、下垂体性肥満(hypophyseal adiposity)、減血漿性肥満症(hypoplasmic obesity)、甲状腺機能低下肥満症 (hypothyroid obesity)、視床下部性肥満(hypothalamic obesity)、症候性肥 満症(symptomatic obesity)、小児肥満 (infantile obesity)、上半身肥満 (upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性 肥満(hypogonadal obesity)、全身性肥満細胞症(systemic mastocytosis)、

単純性肥満(simple obesity)、中心性肥満(central obesity)など]、摂食亢進症(hyperphagia)、下垂体腺腫瘍、間脳腫瘍、月経異常、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、キアリ・フロンメル症候群、アルゴンツ・デル・カスティロ症候群、フォーベス・アルブライト症候群、リンパ腫、シーハン症候群、精子形成異常(特に肥満症等)などである可能性が高いまたは将来罹患する可能性が高いと診断することができる。

(5)ウシGPR7/8アンチセンスDNAを含有する医薬

本発明のウシGPR7/8DNAに相補的に結合し、該DNAの発現を抑 制することができるアンチセンスDNAは、例えば、肥満症「例、悪性肥満 10 細胞症(malignant mastocytosis)、外因性肥満(exogenous obesity)、過イ ンシュリン性肥満症(hyperinsulinar obesity)、過血漿性肥満(hyperplasmic obesity)、下垂体性肥满(hypophyseal adiposity)、減血漿性肥満症 (hypoplasmic obesity)、甲状腺機能低下肥満症(hypothyroid obesity)、視 床下部性肥満(hypothalamic obesity)、症候性肥満症(symptomatic obesity)、 15 小児肥満 (infantile obesity)、上半身肥満(upper body obesity)、食事性 肥満症 (alimentary obesity)、性機能低下性肥満(hypogonadal obesity)、 全身性肥満細胞症(systemic mastocytosis)、単純性肥満(simple obesity)、 中心性肥満(central obesity)など]、摂食亢進症(hyperphagia)、下垂体腺 腫瘍、間脳腫瘍、月経異常、自己免疫疾患、プロラクチノーマ、不妊症、イ 20 ンポテンス、無月経症、乳汁漏症、末端肥大症、キアリ・フロンメル症候群、 アルゴンツ・デル・カスティロ症候群、フォーベス・アルプライト症候群、 リンパ腫、シーハン症候群、精子形成異常(特に肥満症等)などの予防・治 療薬として使用することができる。

25 例えば、該アンチセンスDNAを用いる場合、該アンチセンスDNAを単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、常套手段に従って実施することができる。該アンチセンスDNAは、そのままで、あるいは摂取促進のために補助剤などの生理学的に認められる担体と

10

15

20

25

ともに製剤化し、遺伝子銃やハイドロゲルカテーテルのようなカテーテルに よって投与できる。

さらに、該アンチセンスDNAは、組織や細胞における本発明のウシGPR7/8DNAの存在やその発現状況を調べるための診断用オリゴヌクレオチドプローブとして使用することもできる。

(6) 本発明のウシGPR7/8抗体を含有する医薬

本発明のウシGPR7/8の活性を中和する作用を有する本発明のウシG PR7/8抗体は、例えば、肥満症 [例、悪性肥満細胞症(malignant mastocytosis)、外因性肥満(exogenous obesity)、過インシュリン性肥満症 (hyperinsulinar obesity)、過血漿性肥満(hyperplasmic obesity)、下垂体 性肥満(hypophyseal adiposity)、減血漿性肥満症(hypoplasmic obesity)、 甲状腺機能低下肥満症(hypothyroid obesity)、視床下部性肥満(hypothalamic obesity)、症候性肥満症(symptomatic obesity)、小児肥満(infantile obesity)、上半身肥満(upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性肥満(hypogonadal obesity)、全身性肥満細胞症 (systemic mastocytosis)、単純性肥満(simple obesity)、中心性肥満(central obesity)など]、摂食亢進症(hyperphagia) 、下垂体腺腫瘍、間脳腫瘍、月 経異常、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経 症、乳汁漏症、末端肥大症、キアリ・フロンメル症候群、アルゴンツ・デル・ カスティロ症候群、フォーベス・アルブライト症候群、リンパ腫、シーハン 症候群、精子形成異常(特に肥満症等)などの予防・治療薬などの医薬とし て使用することができる。

本発明のウシGPR7/8抗体を含有する上記疾患の治療・予防剤は、前記した本発明のペプチドに対する抗体を含有する医薬と同様に製造し、使用することができる。

(7) ウシGPR7/8DNA転移動物

本発明は、外来性の本発明のウシGPR7/8DNA(以下、本発明の外来性ウシGPR7/8DNAと略記する)またはその変異DNA(本発明の外来性変異ウシGPR7/8DNAと略記する場合がある)を有する非ヒト

哺乳動物を提供する。

15

20

25

すなわち、本発明は、

- (i) 本発明の外来性ウシGPR7/8DNAまたはその変異DNAを有する非ヒト哺乳動物、
- 5 (ii) 非ヒト哺乳動物がゲッ歯動物である第(i) 記載の動物、
 - (iii) ゲッ歯動物がマウスまたはラットである第(ii) 記載の動物、および
 - (iv) 本発明の外来性ウシGPR7/8DNAまたはその変異DNAを含有し、哺乳動物において発現しうる組換えベクターを提供するものである。

本発明のウシGPR7/8DNA転移動物は、前記した本発明のDNA転 10 移動物と同様に作製することができる。

本発明の正常ウシGPR7/8DNAを有する非ヒト哺乳動物は、本発明の正常ウシGPR7/8DNAが高発現させられており、内在性の正常ウシGPR7/8DNAの機能を促進することにより最終的に本発明のウシGPR7/8DNAの機能亢進症を発症することがあり、その病態モデル動物として利用することができる。例えば、本発明の正常ウシGPR7/8DNA転移動物を用いて、本発明のウシGPR7/8の機能亢進症や、本発明のウシGPR7/8が関連する疾患の病態機序の解明およびこれらの疾患の治療方法の検討を行なうことが可能である。

また、本発明の外来性正常ウシGPR7/8DNAを転移させた哺乳動物は、遊離した本発明のウシGPR7/8の増加症状を有することから、本発明のウシGPR7/8に関連する疾患に対する治療薬のスクリーニング試験にも利用可能である。

一方、本発明の異常ウシGPR7/8DNAを有する非ヒト哺乳動物は、本発明の異常ウシGPR7/8DNAが高発現させられており、内在性の正常ウシGPR7/8DNAの機能を阻害することにより最終的に本発明のウシGPR7/8の機能不活性型不応症となることがあり、その病態モデル動物として利用することができる。例えば、本発明の異常ウシGPR7/8DNA転移動物を用いて、本発明のウシGPR7/8の機能不活性型不応症の病態機序の解明およびこの疾患を治療方法の検討を行なうことが可能である。

25

また、具体的な利用可能性としては、本発明の異常ウシGPR7/8DNA高発現動物は、本発明のウシGPR7/8の機能不活性型不応症における本発明の異常ウシGPR7/8による正常ウシGPR7/8の機能阻害 (dominant negative作用) を解明するモデルとなる。

5 また、本発明の外来異常ウシGPR7/8DNAを転移させた哺乳動物は、 遊離した本発明のウシGPR7/8の増加症状を有することから、本発明の ウシGPR7/8またはの機能不活性型不応症に対する治療薬スクリーニン グ試験にも利用可能である。

また、上記2種類の本発明のウシGPR7/8DNA転移動物のその他の 10 利用可能性として、例えば、

- ①組織培養のための細胞源としての使用、
- ②本発明のウシGPR7/8DNA転移動物の組織中のDNAもしくはRNAを直接分析するか、またはDNAにより発現されたペプチド組織を分析することによる、本発明のウシGPR7/8により特異的に発現あるいは活性化するペプチドとの関連性についての解析、
- ③DNAを有する組織の細胞を標準組織培養技術により培養し、これらを使用して、一般に培養困難な組織からの細胞の機能の研究、
- ④上記③記載の細胞を用いることによる細胞の機能を高めるような薬剤のスクリーニング、および
- 20 ⑤本発明の変異ウシG P R 7 / 8 を単離精製およびその抗体作製などが考え られる。

さらに、本発明のウシGPR7/8DNA転移動物を用いて、本発明のウシGPR7/8の機能不活性型不応症などを含む、本発明のウシGPR7/8に関連する疾患の臨床症状を調べることができ、また、本発明のウシGPR7/8に関連する疾患モデルの各臓器におけるより詳細な病理学的所見が得られ、新しい治療方法の開発、さらには、該疾患による二次的疾患の研究および治療に貢献することができる。

また、本発明のウシGPR7/8DNA転移動物から各臓器を取り出し、 細切後、トリプシンなどのタンパク質分解酵素により、遊離したDNA転移 細胞の取得、その培養またはその培養細胞の系統化を行なうことが可能である。さらに、本発明のウシGPR7/8産生細胞の特定化、アポトーシス、分化あるいは増殖との関連性、またはそれらにおけるシグナル伝達機構を調べ、それらの異常を調べることなどができ、本発明のウシGPR7/8およびその作用解明のための有効な研究材料となる。

さらに、本発明のウシGPR7/8DNA転移動物を用いて、本発明のウシGPR7/8の機能不活性型不応症を含む、本発明のウシGPR7/8に関連する疾患の治療薬の開発を行なうために、上述の検査法および定量法などを用いて、有効で迅速な該疾患治療薬のスクリーニング法を提供することが可能となる。また、本発明のウシGPR7/8DNA転移動物または本発明の外来性ウシGPR7/8DNA発現ベクターを用いて、本発明のウシGPR7/8が関連する疾患のDNA治療法を検討、開発することが可能である。

- (8) ウシGPR7/8ノックアウト動物
- 15 本発明は、本発明のウシGPR7/8DNAが不活性化された非ヒト哺乳動物胚幹細胞および本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物を提供する。

すなわち、本発明は、

5

10

25

- (i)本発明のウシGPR7/8DNAが不活性化された非ヒト哺乳動物胚20 幹細胞、
 - (ii) 該DNAがレポーター遺伝子(例、大腸菌由来の β -ガラクトシダー ゼ遺伝子)を導入することにより不活性化された第(i)項記載の胚幹細胞、
 - (iii) ネオマイシン耐性である第(i) 項記載の胚幹細胞、
 - (iv) 非ヒト哺乳動物がゲッ歯動物である第(i)項記載の胚幹細胞、
 - (v) ゲッ歯動物がマウスである第(iv) 項記載の胚幹細胞、
 - (vi) 本発明のウシGPR7/8DNAが不活性化された該DNA発現不全 非ヒト哺乳動物、
 - (vii) 該DNAがレポーター遺伝子(例、大腸菌由来のβーガラクトシダー ゼ遺伝子)を導入することにより不活性化され、該レポーター遺伝子が本発

WO 02/102847 PCT/JP02/05915

明のDNAに対するプロモーターの制御下で発現しうる第 (vi) 項記載の非ヒト哺乳動物、

- (viii) 非ヒト哺乳動物がゲッ歯動物である第 (vi) 項記載の非ヒト哺乳動物、
- 5 (ix) ゲッ歯動物がマウスである第 (viii) 項記載の非ヒト哺乳動物、およ.
 び

10

20

25

(x)第(vii)項記載の動物に、試験化合物を投与し、レポーター遺伝子の 発現を検出することを特徴とする本発明のウシGPR7/8DNAに対する プロモーター活性を促進または阻害する化合物またはその塩のスクリーニン グ方法を提供する。

本発明のウシGPR7/8DNAが不活性化された非ヒト哺乳動物胚幹細胞および本発明のウシGPR7/8DNAが不活性化された該DNA発現不全非ヒト哺乳動物は、前記した本発明の非ヒト哺乳動物胚幹細胞および本発明のDNA発現不全非ヒト哺乳動物と同様に作製することができる。

15 本発明のウシGPR7/8DNAが不活性化された非ヒト哺乳動物胚幹細胞は、本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物を作出する上で、非常に有用である。

また、本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物は、本発明のウシGPR7/8により誘導され得る種々の生物活性を欠失するため、

本発明のウシG P R 7 / 8 の生物活性の不活性化を原因とする疾病のモデル となり得るので、これらの疾病の原因究明及び治療法の検討に有用である。

(8a) 本発明のウシGPR7/8DNAの欠損や損傷などに起因する疾病 に対して治療・予防効果を有する化合物のスクリーニング方法

本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物は、本発明のウシGPR7/8DNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物のスクリーニングに用いることができる。

すなわち、本発明は、本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物に試験化合物を投与し、該動物の変化を観察・測定することを特徴とする、本発明のウシGPR7/8DNAの欠損や損傷などに起因する疾病に

10

15

20

25

対して治療・予防効果を有する化合物またはその塩のスクリーニング方法を 提供する。

該スクリーニング方法において用いられる本発明のウシGPR7/8DN A発現不全非ヒト哺乳動物としては、前記と同様のものがあげられる。

試験化合物としては、例えば、ペプチド、タンパク、非ペプチド性化合物、 合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿 などがあげられ、これら化合物は新規な化合物であってもよいし、公知の化 合物であってもよい。

具体的には、本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物を、 試験化合物で処理し、無処理の対照動物と比較し、該動物の各器官、組織、 疾病の症状などの変化を指標として試験化合物の治療・予防効果を試験する ことができる。

試験動物を試験化合物で処理する方法としては、例えば、経口投与、静脈注射などが用いられ、試験動物の症状、試験化合物の性質などにあわせて適宜選択することができる。また、試験化合物の投与量は、投与方法、試験化合物の性質などにあわせて適宜選択することができる。

例えば、拒食症、高血圧、自己免疫疾患、心不全、白内障、緑内障、急性バクテリア髄膜炎、急性心筋梗塞、急性膵炎、急性ウイルス脳炎、成人呼吸促迫症候群、アルコール性肝炎、アルツハイマー病、喘息、動脈硬化、アトピー性皮膚炎、バクテリア肺炎、膀胱がん、骨折、乳がん、過食症、多食症、火傷治癒、子宮頸部がん、慢性リンパ性白血病、慢性骨髄性白血病、慢性膵炎、肝硬変、大腸がん(結腸/直腸がん)、クローン病、痴呆、糖尿病性合併症、糖尿病性腎症、糖尿病性神経障害、糖尿病性網膜症、胃炎、ヘリコバクター・ピロリ感染症、肝不全、A型肝炎、B型肝炎、C型肝炎、肝炎、単純ヘルペスウイルス感染症、水痘帯状疱疹ウイルス感染症、ホジキン病、エイズ感染症、ヒトパピローマウイルス感染症、高カルシウム血症、高コレステロール血症、高グリセリド血症、高脂血症、感染症、インフルエンザ感染症、インシュリン依存性糖尿病(I型)、侵襲性ブドウ状球菌感染症、悪性黒色腫、がん転移、多発性骨髄腫、アレルギー性鼻炎、腎炎、非ホジキン性

10

15

20

25

リンパ腫、インシュリン非依存性糖尿病(II型)、非小細胞肺がん、臓器移植、骨関節炎、骨軟化症、骨減少症、骨粗鬆症、卵巣がん、骨ペーチェット病、消化性潰瘍、末梢血管疾患、前立腺がん、逆流性食道炎、腎不全、リウマチ関節炎、精神分裂症、敗血症、敗血症ショック、重症全身性真菌感染症、小細胞肺がん、脊髄損傷、胃がん、全身性エリテマトーサス、一過性脳虚血発作、結核、心弁膜症、血管性/多発梗塞痴呆、創傷治癒、不眠症、関節炎、下垂体ホルモン分泌不全〔例、プロラクチン分泌不全〔例、卵巣機能低下症、精嚢発育不全、更年期障害、甲状腺機能低下等)〕、瀕尿、尿毒症、または神経変成疾患等(特に拒食症等)に対して治療・予防効果を有する化合物をスクリーニングする場合、本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物に糖負荷処置を行ない、糖負荷処置前または処置後に試験化合物を

該スクリーニング方法において、試験動物に試験化合物を投与した場合、 該試験動物の摂食量等が約10%以上、好ましくは約30%以上、より好ま しくは約50%以上上昇した場合、該試験化合物を上記の疾患に対して治療・予防効果を有する化合物として選択することができる。

投与し、該動物の摂食量、血糖値および体重変化などを経時的に測定する。

該スクリーニング方法を用いて得られる化合物は、上記した試験化合物から選ばれた化合物であり、本発明のウシGPR7/8の欠損や損傷などによって引き起こされる疾患に対して治療・予防効果を有するので、該疾患に対する安全で低毒性な治療・予防剤などの医薬として使用することができる。さらに、上記スクリーニングで得られた化合物から誘導される化合物も同様に用いることができる。

該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸(例、無機酸、有機酸など)や塩基(例、アルカリ金属など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンス

25

ルホン酸など)との塩などが用いられる。

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、 前記した本発明のペプチドを含有する医薬と同様にして製造することができ る。

このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒト 5 または哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、 ブタ、ウシ、ウマ、ネコ、イヌ、サルなど) に対して投与することができる。 該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなど により差異はあるが、例えば、該化合物を経口投与する場合、一般的に成人 (体重60kgとして)の拒食症患者においては、一日につき該化合物を約 10 $0.1 \sim 100 \, \text{mg}$ 、好ましくは約1.0~50 mg、より好ましくは約1. ○ ○ 2 0 mg投与する。非経口的に投与する場合は、該化合物の1回投与量 は投与対象、対象疾患などによっても異なるが、例えば、該化合物を注射剤 の形で通常成人(60kgとして)の拒食症患者に投与する場合、一日につ き該化合物を約0.01~30mg程度、好ましくは約0.1~20mg程 15 度、より好ましくは約 $0.1 \sim 10$ mg程度を静脈注射により投与するのが 好都合である。他の動物の場合も、60kg当たりに換算した量を投与する ことができる。

(8b) 本発明のウシGPR7/8DNAに対するプロモーターの活性を促進または阻害する化合物をスクリーニング方法

本発明は、本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物に、 試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする 本発明のウシGPR7/8DNAに対するプロモーターの活性を促進または 阻害する化合物またはその塩のスクリーニング方法を提供する。

上記スクリーニング方法において、本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物としては、前記した本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物の中でも、本発明のウシGPR7/8DNAがレポーター遺伝子を導入することにより不活性化され、該レポーター遺伝子が本発明のウシGPR7/8DNAに対するプロモーターの制御下で発現しうるも

のが用いられる。

10

15

20

試験化合物としては、前記と同様のものがあげられる。

レポーター遺伝子としては、前記と同様のものが用いられ、βーガラクトシダーゼ遺伝子(lacZ)、可溶性アルカリフォスファターゼ遺伝子また はルシフェラーゼ遺伝子などが好適である。

本発明のウシGPR 7/8 DNAをレポーター遺伝子で置換された本発明のウシGPR 7/8 DNA発現不全非ヒト哺乳動物では、レポーター遺伝子が本発明のウシGPR 7/8 DNAに対するプロモーターの支配下に存在するので、レポーター遺伝子がコードする物質の発現をトレースすることにより、プロモーターの活性を検出することができる。

25 上記スクリーニング方法を用いて得られる化合物またはその塩は、上記した試験化合物から選ばれた化合物であり、本発明のウシGPR7/8DNAに対するプロモーター活性を促進または阻害する化合物である。

該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化 合物の塩としては、生理学的に許容される酸(例、無機酸など)や塩基(例、

有機酸など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。

本発明のウシGPR7/8DNAに対するプロモーター活性を促進する化 合物またはその塩は、本発明のウシGPR7/8の発現を促進し、該ウシG PR7/8の機能を促進することができるので、例えば、拒食症、高血圧、 自己免疫疾患、心不全、白内障、緑内障、急性バクテリア髄膜炎、急性心筋 10 梗塞、急性膵炎、急性ウイルス脳炎、成人呼吸促迫症候群、アルコール性肝 炎、アルツハイマー病、喘息、動脈硬化、アトピー性皮膚炎、バクテリア肺 炎,膀胱がん,骨折,乳がん,過食症,多食症,火傷治癒,子宮頸部がん, 慢性リンパ性白血病,慢性骨髄性白血病,慢性膵炎,肝硬変,大腸がん(結 腸/直腸がん)、クローン病、痴呆、糖尿病性合併症、糖尿病性腎症、糖尿 15 病性神経障害、糖尿病性網膜症、胃炎、ヘリコバクター・ピロリ感染症、肝 不全、A型肝炎、B型肝炎、C型肝炎、肝炎、単純ヘルペスウイルス感染症、 水痘帯状疱疹ウイルス感染症、ホジキン病、エイズ感染症、ヒトパピローマ ウイルス感染症、高カルシウム血症、高コレステロール血症、高グリセリド 血症、高脂血症、感染症、インフルエンザ感染症、インシュリン依存性糖尿 20 病(I型),侵襲性ブドウ状球菌感染症,悪性黒色腫,がん転移,多発性骨 髄腫,アレルギー性鼻炎,腎炎,非ホジキン性リンパ腫,インシュリン非依 存性糖尿病(II型),非小細胞肺がん,臓器移植,骨関節炎,骨軟化症,骨 減少症、骨粗鬆症、卵巣がん、骨ペーチェット病、消化性潰瘍、末梢血管疾 患、前立腺がん、逆流性食道炎、腎不全、リウマチ関節炎、精神分裂症、敗 25 血症、敗血症ショック、重症全身性真菌感染症、小細胞肺がん、脊髄損傷、 胃がん,全身性エリテマトーサス,一過性脳虚血発作,結核,心弁膜症,血 管性/多発梗塞痴呆,創傷治癒,不眠症,関節炎、下垂体ホルモン分泌不全 [例、プロラクチン分泌不全(例、卵巣機能低下症、精嚢発育不全、更年期

障害、甲状腺機能低下等)〕、瀕尿、尿毒症、または神経変成疾患等(特に 拒食症等)の疾病に対する安全で低毒性な治療・予防剤(特に、食欲(摂食) 増進剤)などの医薬として有用である。

また、本発明のウシGPR7/8DNAに対するプロモーター活性を阻害 する化合物またはその塩は、本発明のウシGPR7/8の発現を阻害し、該 5 ウシGPR7/8の機能を阻害することができるので、例えば、肥満症[例、 悪性肥満細胞症(malignant mastocytosis)、外因性肥満 (exogenous obesity)、 過インシュリン性肥満症(hyperinsulinar obesity)、過血漿性肥満 (hyperplasmic obesity)、下垂体性肥満(hypophyseal adiposity)、減血漿性 肥満症(hypoplasmic obesity)、甲状腺機能低下肥満症(hypothyroid obesity)、 10 視床下部性肥満(hypothalamic obesity)、症候性肥満症(symptomatic obesity)、小児肥満(infantile obesity)、上半身肥満(upper body obesity)、 食事性肥満症 (alimentary obesity)、性機能低下性肥満 (hypogonadal obesity)、全身性肥満細胞症(systemic mastocytosis)、単純性肥満(simple obesity)、中心性肥満(central obesity)など]、摂食亢進症(hyperphagia)、 15 下垂体腺腫瘍、間脳腫瘍、月経異常、自己免疫疾患、プロラクチノーマ、不 妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、キアリ・フロンメ ル症候群、アルゴンツ・デル・カスティロ症候群、フォーベス・アルブライ ト症候群、リンパ腫、シーハン症候群、精子形成異常などの予防・治療剤(プ ロラクチン産生抑制剤)などの予防・治療剤、好ましくは肥満症、摂食亢進 20 症などの予防・治療剤などの医薬として有用である。

さらに、上記スクリーニングで得られた化合物から誘導される化合物も同様に用いることができる。

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、 前記した本発明のペプチドまたはその塩を含有する医薬と同様にして製造す ることができる。

このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒト または哺乳動物 (例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、 ブタ、ウシ、ウマ、ネコ、イヌ、サルなど) に対して投与することができる。 WO 02/102847 PCT/JP02/05915

該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、本発明のウシGPR7/8DNAに対するプロモーター活性を促進する化合物を経口投与する場合、一般的に成人(体重60kgとして)の拒食症患者においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、本発明のウシGPR7/8DNAに対するプロモーター活性を促進する化合物を注射剤の形で通常成人(60kgとして)の拒食症患者に投与する場合、一日につき該化合物を約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

5

10

15

20

25

一方、例えば、本発明のウシGPR7/8DNAに対するプロモーダー活性を阻害する化合物を経口投与する場合、一般的に成人(体重60kgとして)の肥満症患者においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、本発明のウシGPR7/8DNAに対するプロモーター活性を阻害する化合物を注射剤の形で通常成人(60kgとして)の肥満症患者に投与する場合、一日につき該化合物を約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

このように、本発明のウシGPR7/8DNA発現不全非ヒト哺乳動物は、本発明のウシGPR7/8DNAに対するプロモーターの活性を促進または阻害する化合物またはその塩をスクリーニングする上で極めて有用であり、本発明のウシGPR7/8DNA発現不全に起因する各種疾患の原因究明または予防・治療薬の開発に大きく貢献することができる。

また、本発明のウシGPR7/8のプロモーター領域を含有するウシGP

10

R 7/8 DNAを使って、その下流に種々のタンパクをコードする遺伝子を連結し、これを動物の卵細胞に注入していわゆるトランスジェニック動物(遺伝子移入動物)を作成すれば、特異的にそのペプチドを合成させ、その生体での作用を検討することも可能となる。さらに上記プロモーター部分に適当なレポーター遺伝子を結合させ、これが発現するような細胞株を樹立すれば、本発明のウシG PR 7/8 そのものの体内での産生能力を特異的に促進もしくは抑制する作用を持つ低分子化合物の探索系として使用できる。

本明細書および図面において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IUB Commission on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。

DNA : デオキシリボ核酸

c D N A : 相補的デオキシリボ核酸

15 A : アデニン

T: チミン

G: グアニン

C:シトシン

I : イノシン

20 R : アデニン (A) またはグアニン (G)

Y: f(T) f(T) f(T)

M: アデニン(A) またはシトシン(C)

S: グアニン(G) またはシトシン(C)

25 W : アデニン (A) またはチミン (T)

V : アデニン (A) 、グアニン (G) またはシトシン (C)

N : アデニン (A) 、グアニン (G) 、シトシン (C)

WO 02/102847 PCT/JP02/05915

150

もしくはチミン(T)または不明もしくは他の塩基

RNA : リボ核酸

mRNA :メッセンジャーリボ核酸

dATP : デオキシアデノシン三リン酸

5 dTTP : デオキシチミジン三リン酸

dGTP : デオキシグアノシン三リン酸

dCTP : デオキシシチジン三リン酸

ATP : アデノシン三リン酸

EDTA:エチレンジアミン四酢酸

10 SDS :ドデシル硫酸ナトリウム

BHA: ベンズヒドリルアミン

pMBHA: p-メチルベンズヒドリルアミン

Tos: pートルエンスルフォニル

Bzl : ベンジル

15 Bom : ベンジルオキシメチル

Boc: tーブチルオキシカルボニル

DCM : ジクロロメタン

HOBt : 1-ヒドロキシベンズトリアゾール

DCC: N, N'ージシクロヘキシルカルボジイミド

20 TFA : トリフルオロ酢酸

DIEA : ジイソプロピルエチルアミン

Gly又はG:グリシン

Ala又はA:アラニン

Val又はV:バリン

25 Leu又はL : ロイシン

Ile又はI:イソロイシン

Ser又はS:セリン

Thr又はT : スレオニン

Cys又はC:システイン

Met又はM:メチオニン

Glu又はE:グルタミン酸

Asp又はD:アスパラギン酸

Lys又はK :リジン

5 Arg又はR : アルギニン

His又はH:ヒスチジン

Phe又はF:フェニルアラニン

Tyr又はY : チロシン

Trp又はW: トリプトファン

10 Pro又はP : プロリン

Asn又はN:アスパラギン

Gln又はQ:グルタミン

pGlu:ピログルタミン酸

Tyr(I): 3-ヨードチロシン

15 DMF : N, N-ジメチルホルムアミド

Fmoc: N-9-フルオレニルメトキシカルボニル

Trt : トリチル

Pbf : 2, 2, 4, 6, 7-ペンタメチルジヒドロベンゾフラン-5-

スルホニル

20 Clt : 2-クロロトリチル

Bu¹: tーブチル

Met(O):メチオニンスルフォキシド

本願明細書の配列表の配列番号は、以下の配列を示す。

〔配列番号:1〕

25 ヒト型GPR7リガンドAのアミノ酸配列を示す。

[配列番号:2]

マウス型GPR7リガンドAのアミノ酸配列を示す。

〔配列番号:3〕

ラット型GPR7リガンドAのアミノ酸配列を示す。

〔配列番号:4〕

ヒト型GPR7リガンドBのアミノ酸配列を示す。

〔配列番号:5〕

マウス型GPR7リガンドBのアミノ酸配列を示す。

5 〔配列番号:6〕

ラット型GPR7リガンドBのアミノ酸配列を示す。

[配列番号:7]

ヒト型GPR7リガンドCのアミノ酸配列を示す。

〔配列番号:8〕

10 ヒト型GPR7リガンドDのアミノ酸配列を示す。

〔配列番号:9〕

マウス型GPR7リガンドCのアミノ酸配列を示す。・

[配列番号:10]

マウス型GPR7リガンドDのアミノ酸配列を示す。

15 〔配列番号:11〕

ラット型GPR7リガンドCのアミノ酸配列を示す。

[配列番号:12]

ラット型GPR7リガンドDのアミノ酸配列を示す。

[配列番号:13]

20 ヒト型GPR7リガンドEのアミノ酸配列を示す。

[配列番号:14]

マウス型GPR7リガンドEのアミノ酸配列を示す。

[配列番号:15]

ラット型GPR7リガンドEのアミノ酸配列を示す。

25 〔配列番号:16〕

ヒト型GPR7リガンドFのアミノ酸配列を示す。

[配列番号:17]

マウス型GPR7リガンドFのアミノ酸配列を示す。

[配列番号:18]

ラット型GPR7リガンドFのアミノ酸配列を示す。

[配列番号:19]

分泌シグナルを含まないヒト型GPR7リガンド前駆体Gのアミノ酸配列を示す。

5 [配列番号:20]

分泌シグナルを含まないマウス型GPR7リガンド前駆体Gのアミノ酸配列を示す。

[配列番号:21]

分泌シグナルを含まないラット型GPR7リガンド前駆体Gのアミノ酸配 10 列を示す。

[配列番号:22]

分泌シグナルを含むヒト型GPR7リガンド前駆体Hのアミノ酸配列を示す。

[配列番号:23]

15 分泌シグナルを含むマウス型GPR7リガンド前駆体Hのアミノ酸配列を示す。

[配列番号:24]

分泌シグナルを含むラット型GPR7リガンド前駆体Hのアミノ酸配列を示す。

20 〔配列番号:25〕

ヒト型GPR7リガンドAをコードするDNAの塩基配列を示す。

[配列番号:26]

マウス型GPR7リガンドAをコードするDNAの塩基配列を示す。

[配列番号:27]

25 ラット型GPR7リガンドAをコードするDNAの塩基配列を示す。

[配列番号:28]

ヒト型GPR7リガンドBをコードするDNAの塩基配列を示す。

[配列番号:29]

マウス型GPR7リガンドBをコードするDNAの塩基配列を示す。

[配列番号:30]

ラット型GPR7リガンドBをコードするDNAの塩基配列を示す。

[配列番号:31]

ヒト型GPR7リガンドCをコードするDNAの塩基配列を示す。

5 〔配列番号:32〕

ヒト型GPR7リガンドDをコードするDNAの塩基配列を示す。

〔配列番号:33〕

マウス型GPR7リガンドCをコードするDNAの塩基配列を示す。

[配列番号:34]

10 マウス型GPR7リガンドDをコードするDNAの塩基配列を示す。

[配列番号:35]

ラット型GPR7リガンドCをコードするDNAの塩基配列を示す。

[配列番号:36]

ラット型GPR7リガンドDをコードするDNAの塩基配列を示す。

15 〔配列番号:37〕

ヒト型GPR7リガンドEをコードするDNAの塩基配列を示す。

[配列番号:38]

マウス型GPR7リガンドEをコードするDNAの塩基配列を示す。

[配列番号:39]

20 ラット型GPR7リガンドEをコードするDNAの塩基配列を示す。

[配列番号:40]

ヒト型GPR7リガンドFをコードするDNAの塩基配列を示す。

[配列番号:41]

マウス型GPR7リガンドFをコードするDNAの塩基配列を示す。

25 [配列番号: 42]

ラット型GPR7リガンドFをコードするDNAの塩基配列を示す。.

[配列番号:43]

分泌シグナルを含まないヒト型GPR7リガンド前駆体GをコードするDNAの塩基配列を示す。

[配列番号:44]

分泌シグナルを含まないマウス型GPR7リガンド前駆体Gをコードする DNAの塩基配列を示す。

[配列番号:45]

5 分泌シグナルを含まないラット型GPR7リガンド前駆体Gをコードする DNAの塩基配列を示す。

[配列番号:46]

分泌シグナルを含むヒト型GPR7リガンド前駆体HをコードするDNAの塩基配列を示す。

10 「配列番号: 47]

15

25

分泌シグナルを含むマウス型GPR7リガンド前駆体HをコードするDNAの塩基配列を示す。

[配列番号:48]

分泌シグナルを含むラット型GPR7リガンド前駆体HをコードするDNAの塩基配列を示す。

[配列番号:49]

ヒトGPR7のアミノ酸配列を示す。

[配列番号:50]

ヒトGPR7をコードするDNAを含有するDNAの塩基配列を示す。

20 〔配列番号:51〕

実施例1でヒト型GPR7リガンド前駆体HをコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:52]

実施例1でヒト型GPR7リガンド前駆体HをコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:53]

実施例2でマウス型GPR7リガンド前駆体HをコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:54]

実施例2でマウス型GPR7リガンド前駆体HをコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:55]

実施例3でラット型GPR7リガンド前駆体HをコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:56]

実施例3でラット型GPR7リガンド前駆体HをコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:57]

10 参考例1で用いたプライマーの塩基配列を示す。

[配列番号:58]

参考例1で用いたプライマーの塩基配列を示す。

[配列番号:59]

ラットTGR26のアミノ酸配列を示す。

15 〔配列番号:60〕

ラットTGR26をコードするDNAの塩基配列を示す。

[配列番号:61]

参考例3におけるPCR反応で使用したプライマー1の塩基配列を示す。

[配列番号:62]

20 参考例3におけるPCR反応で使用したプライマー2の塩基配列を示す。

[配列番号:63]

実施例9で用いたプライマーの塩基配列を示す。

[配列番号:64]

実施例9で用いたプライマーの塩基配列を示す。

25 〔配列番号:65〕

実施例9で用いたプライマーの塩基配列を示す。

[配列番号:66]

ウシ型GPR7リガンドAのアミノ酸配列を示す。

[配列番号:67]

ウシ型GPR7リガンドBのアミノ酸配列を示す。

[配列番号:68]

ウシ型GPR7リガンドCのアミノ酸配列を示す。

[配列番号:69]

5 ウシ型GPR7リガンドDのアミノ酸配列を示す。

[配列番号:70]

ウシ型GPR7リガンドEのアミノ酸配列を示す。

[配列番号:71]

ウシ型GPR7リガンドFのアミノ酸配列を示す。

. 10 〔配列番号:72〕

分泌シグナルを含まないウシ型GPR7リガンド前駆体Gのアミノ酸配列を示す。

[配列番号:73]

分泌シグナルを含むウシ型GPR7リガンド前駆体Hのアミノ酸配列を示

15 す。

[配列番号:74]

ウシ型GPR7リガンドAをコードするDNAの塩基配列を示す。

[配列番号:75]

ウシ型GPR7リガンドBをコードするDNAの塩基配列を示す。

20 [配列番号: 76]

ウシ型GPR7リガンドCをコードするDNAの塩基配列を示す。

[配列番号:77]

ウシ型GPR7リガンドDをコードするDNAの塩基配列を示す。

[配列番号:78]

25 ウシ型GPR7リガンドEをコードするDNAの塩基配列を示す。

[配列番号:79]

ウシ型GPR7リガンドFをコードするDNAの塩基配列を示す。

[配列番号:80]。

分泌シグナルを含まないウシ型GPR7リガンド前駆体GをコードするD

NAの塩基配列を示す。

[配列番号:81]

分泌シグナルを含むウシ型GPR7リガンド前駆体HをコードするDNAの塩基配列を示す。

5 〔配列番号:82〕

実施例12で用いたプライマーの塩基配列を示す。

[配列番号:83]

実施例12で用いたプライマーの塩基配列を示す。

[配列番号:84]

10 ヒトGPR8のアミノ酸配列を示す。

[配列番号:85]

ヒトGPR8をコードするDNAを含有するDNAの塩基配列を示す。

[配列番号:86]

ウシGPR7のアミノ酸配列を示す。

15 [配列番号:87]

ウシGPR7をコードするDNAを含有するDNAの塩基配列を示す。

[配列番号:88]

ウシGPR8のアミノ酸配列を示す。

[配列番号:89]

20 ウシGPR8をコードするDNAを含有するDNAの塩基配列を示す。

[配列番号:90]

実施例16で用いたプライマーの塩基配列を示す。

[配列番号:91]

実施例16で用いたプライマーの塩基配列を示す。

25 〔配列番号:92〕

実施例16で用いたプライマーの塩基配列を示す。

[配列番号:93]

実施例17で用いたプライマーの塩基配列を示す。

[配列番号:94]

実施例17で用いたプライマーの塩基配列を示す。

[配列番号:95]

実施例17で用いたプライマーの塩基配列を示す。

[配列番号:96]

5 実施例18で用いたプライマーの塩基配列を示す。

[配列番号:97]

実施例18で用いたプライマーの塩基配列を示す。

[配列番号:98]

実施例19で用いたプライマーの塩基配列を示す。

10 〔配列番号:99〕

15

20

25

実施例19で用いたプライマーの塩基配列を示す。

[配列番号:100]

ヒトGPR8リガンド(1-23)のアミノ酸配列を示す。

後述の実施例1で得られた形質転換体Escherichia coli JM109/pTAhGPR7-1は、Escherichia coli JM109/pTAhGPR7L-1として2001年6月27日から茨城 県つくば市東1丁目1番地1 中央第6(郵便番号305-8566)の独立 行政法人産業技術総合研究所 特許生物寄託センターに寄託番号FERM BP-7640として、2001年6月19日から大阪府大阪市淀川区十三 本町2-17-85(郵便番号532-8686)の財団法人・発酵研究所 (IFO)に寄託番号IFO 16644として寄託されている。

後述の実施例2で得られた形質転換体Escherichia coli JM109/pTAmGPR7-1は、Escherichia coli JM109/pTAmGPR7L-1として2001年6月27日から独立 行政法人産業技術総合研究所 特許生物寄託センターに寄託番号FERM BP-7641として、2001年6月19日から財団法人・発酵研究所(I FO) に寄託番号IFO 16656として寄託されている。

後述の実施例3で得られた形質転換体Escherichia coli JM109/pTArGPR7-1は、Escherichia coli JM109/pTArGPR7L-1として2001年6月27日から独立 行政法人産業技術総合研究所 特許生物寄託センターに寄託番号FERM BP-7642として、2001年6月19日から財団法人・発酵研究所(I FO) に寄託番号IFO 16657として寄託されている。

後述の実施例12で得られた形質転換体Escherichia coli JM109/pTAbGPR7L-1は、2001年12月17日から独立行政法人産業技術総合研究所 特許生物寄託センターに寄託番号FERMBP-7829として、2001年12月6日から財団法人・発酵研究所(IFO)に寄託番号IFO 16736として寄託されている。

後述の実施例18で得られた形質転換体Escherichia coli JM109/pTAbGPR7は、2002年5月24日から独立行政法人産業技術総合研究所 特許生物寄託センターに寄託番号FERM BP-8050として寄託されている。

後述の実施例19で得られた形質転換体Escherichia coli JM109/pTAbGPR8は、2002年5月24日から独立行政法人産業技術総合研究所 特許生物寄託センターに寄託番号FERM BP-8051として寄託されている。

後述の参考例3で得られた形質転換体 大腸菌(Escherichia coli) DH10B/pAK-rGPR7は、2000年10月31日から大阪府大阪市淀川区十三本町2-17-85、財団法人・発酵研究所(IFO)に受託番号IFO 16496として、2000年11月13日から日本国茨城県つくば市東1-1-3、通商産業省工業技術院生命工学工業技術研究所(NIBH)に受託番号 FERM BP-7365としてそれぞれ寄託されている。

25 実施例

15

20

以下に参考例および実施例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。

参考例 1 ヒト染色体 DNA を用いた PCR 法によるヒト GPR7 DNA の増幅 ヒト染色体 DNA を鋳型として、2種の合成プライマー(配列番号:57およ

10

15

20

25

び配列番号:58)を用いた PCR 法による DNA 増幅を行なった。合成プライマーは受容体蛋白に翻訳される領域の遺伝子が増幅されるように構築したが、その際に遺伝子の5'側に制限酵素 Cla I の認識する塩基配列が付加され、3'側に制限酵素 Spe I の認識する塩基配列が付加されるように、5'側および 3'側にそれぞれの制限酵素の認識配列を付加した。反応液の組成は、ヒト染色体 DNA (タカラ) 0.5μ g、合成 DNA プライマー各 1μ M、0.8 m dNTPs、1 mM MgCl₂、KOD ポリメラーゼ(トーヨーボー) 1μ 1 および酵素に付属のバッファーで、総反応量は 50μ 1 とした。増幅のためのサイクルはサーマルサイクラー(タカラ)を用い、94 C・60 秒の加熱の後、98 C・15 秒、65 C・2 秒、74 C・30 秒のサイクルを 35 回繰り返した。増幅産物の確認は、0.8%アガロースゲル電気泳動の後、エチジウムブロマイド染色によって行なった。

参考例 2 PCR 産物のプラスミドベクターへのサブクローニングおよび挿入 DNA 部分の塩基配列の解読による増幅 DNA 配列の確認

参考例1で行なった PCR 反応液を 0.8%の低融点アガロースゲル電気泳動によ り分離し、バンドの部分をかみそりで切り出した後、細片化、フェノール抽出、 フェノール・クロロホルム抽出、エタノール沈殿の操作を行なって DNA を回収 した。pCR-Script™ Amp SK(+)クローニングキット (ストラタジーン) の処方に 従い、回収した DNA をプラスミドベクターpCR-Script Amp SK(+)へサブクロー ニングした。これをエシェリヒア コリ(Escherichia coli) DH5αcompetent cell (トーヨーボー) に導入して形質転換した後、DNA 挿入断片を持つクローン をアンピシリン、IPTG および X-gal を含む LB 寒天培地で選択し、白色を呈する クローンのみを滅菌したつま楊枝を用いて分離し、形質転換体 E. coli DH5α /GPR7 を得た。個々のクローンをアンピシリンを含む LB 培地で一晩培養し、 QIAwell 8 Plasmid Kit (キアゲン)を用いてプラスミド DNA を調整した。調 整した DNA の一部に対して制限酵素 Cla I および Spe I による切断を行ない、 挿入されている受容体 DNA 断片の大きさを確認した。塩基配列の決定のための 反応は DyeDeoxyTerminator Cycle Sequence Kit (Applied Biosystems 社)を用 いて行ない、蛍光式自動シーケンサーを用いて解読した(配列番号:50)。 配列番号:50で表わされる塩基配列を有するDNA を保持する pCR-Script Amp

20

25

SK(+)プラスミドを、pCR-Script ヒト GPR7 と命名した。配列番号:50で表わされる塩基配列を有するDNAがコードするヒト GPR7 のアミノ酸配列を配列番号:49に示した。ここで配列を決定したヒト GPR7 の DNA 配列は O'Dowd らの報告 (O'Dowd, B. F. et al.、Genomics、28巻、84-91頁、1995年)にある DNA 配列とは2塩基が異なっていた。これらは配列番号:50の893番目および894番目に当たり、O'Dowd らの報告ではそれぞれ C および G であるが、本参考例では G および C であった。これにより、翻訳されるアミノ酸配列において配列番号:49の296番目のアミノ酸が、O'Dowd らの報告の Thr が本実施例では Serとなる。

10 参考例3 ラット全脳由来G蛋白質共役型レセプター蛋白質をコードする c DNAのクローニングと塩基配列の決定

ラット全脳cDNA(CLONTECH社)を鋳型とし、ヒトGPR8を コードするDNAの塩基配列を元に設計した2個のプライマー、プライマー 1 (配列番号: 61) およびプライマー2 (配列番号: 62) を用いてPC R反応を行った。該反応における反応液の組成は、上記cDNAを10分の 1量鋳型として使用し、Advantage-2 cDNA Polymer ase Mix (CLONTECH社) 1/50量、プライマー3 0.2μ M、プライマー2 0.2 μ M 、dNTPs 200 μ M、および酵素に添付 のバッファーを加え、 25μ 1の液量とした。PCR反応は、 $\mathbb{O}94\mathbb{C}\cdot 2$ 分の後、②94℃・20秒、72℃・2分のサイクルを3回、③94℃・20 秒、66℃・20秒、68℃・2分のサイクルを3回、④94℃・20秒、 60℃・20秒、68℃・2分のサイクルを36回繰り返し、最後に68℃・ 7分の伸長反応を行った。該PCR反応後の反応産物を、TAクローニング キット(Invitrogen社)の処方に従い、プラスミドベクターpC R2. 1-TOPO (Invitrogen社) ヘサブクローニングした。 これを大腸菌DH5αに導入し、アンピシリンを含むLB寒天培地中で、c DNAを持つクローンを選択した。個々のクローンの配列を解析した結果、 新規G蛋白質共役型レセプター蛋白質をコードするcDNAの塩基配列(配 列番号:60)を得た。このDNAの塩基配列がコードするアミノ酸配列(配 WO 02/102847 PCT/JP02/05915

列番号:59)を含有する新規G蛋白質共役型レセプター蛋白質をTGR26と命名した。

163

配列番号:59で表されるアミノ酸配列は、既知のヒトG蛋白質共役型レセプター蛋白質であるGPR7[ゲノミクス(Genomics),28巻,84-91頁,1995年] との間に84.8%の相同性を有していた。

TGR26をコードするDNAを挿入したプラスミドを有する前述した形質転換体から1クローンを選択し、アンピシリンを含むLB培地で振とう培養し、プラスミドを得た。これを制限酵素ClaIおよびSpeIで処理し、TGR26をコードするインサート部分を切り出した。同様に制限酵素ClaIおよびSpeIで処理したpAKKO-1.11HおよびLigation Express Kit (CLONTECH社)を用いて連結し、大腸菌DH10Bにエレクトロポーレーション法にて導入した。得られたクローンについては、有する発現細胞構築用プラスミドの構造を、制限酵素処理および配列解析で確認したうえ、大腸菌(Escherichia coli) DH10B/pAK-rGPR7と命名した。

参考例4 TGR26発現CHO細胞の作製

5

10

15

20

25

参考例3に記載の発現プラスミドpAK-rGPR7で形質転換した $EscherichiacoliDH5\alpha$ (トーヨーボー)を培養後、PlasmidMidiKit(キアゲン)を用いてpAK-rGPR7プラスミドpDNAを調製した。これをpDNAでは、pDNAでであまた。これをpDNAでは、pDNAでのプロトコールに従ってpDNAでのプロトコールに従ってpDNAでは、pDNAを間前にpDNAをリン酸カルシウムとの共沈懸濁液とし、pDNAを間前にpDNAをリン酸カルシウムとの共沈懸濁液とし、pDNAを間前にpDNAを引かるpDNAを調整を含むMEMpDNAを増進では、pDNAを開かた。pDNAを開かるpDNAを調整を含むMEMpDNAを開かるpDNAを開かるpDNAを開かるpDNAを開かるpDNAを関本を含むMEMpDNAを開かるpDNAを関本であるpDNAを関本では増殖した。

実施例1 ヒト全脳cDNAからのPCR法によるGPR7リガンド前駆体遺伝子の取

15

20

25

得と発現プラスミドの構築

クローンテック社より購入したヒト全脳cDNAを鋳型として、以下の2種類の合成DNAを用いて、PCR による増幅を行った。

GSF1: 5'-GTCGACATGGCCCGGTCCGCGACACTGGCGGCC-3'(配列番号: 5 1)

5 GSR2: 5'-GCTAGCAGCGGTGCCAGGAGAGGTCCGGGCTCA-3'(配列番号: 5 2)

PCRの反応液はcDNA溶液1 μ1、0.5 μ1 GSF1 (10 μM) 、0.5 μ1 GSR2 (10 μM)、2.5 μ1添付の10 x 反応液、2.5 μ1 dNTP (10 mM)、0.5 μ1 KlenTaq (クローンテック)、 $17.5 \mu 1$ 大塚蒸留水を加えて合計 $25 \mu 1$ にした。反応 液を、ThermalCycler9600を用いてPCR反応にかけた。PCRの条件は95 ℃2 分 の変性の後、98 ℃10 秒、60 ℃20 秒、72 ℃20秒のサイクルを35回繰り返し た。PCR産物の一部を用いて電気泳動で約400 bpのPCR産物の増幅を確認した 後、PCR産物をQuiagen PCR purification Kitを用いて精製し、直接配列決定 を行ったところ図1で示す配列がえられた。図1のDNA配列から予測されるア ミノ酸配列は図2に示すものであった。次に、ゲルから回収したPCR産物をTA クローニングキット(Invitrogen社)を用いて大腸菌JM109にサブクローニン グし、大腸菌TM109/pTAhGPR7-1を取得した。サブクローニングで得られた大 腸菌からプラスミドpTAhGPR7-1をプラスミド抽出機(クラボウ社)を用いて 抽出し、挿入断片の塩基配列を決定し、その配列が図1と同じヒト型GPR7リ ガンド cDNAであることを確認した。次にそのプラスミドから制限酵素Sal1 I およびNhe I によって消化後約0.4kbのヒト型GPR7リガンドcDNA断片を得た。 さらに、動物細胞用の発現ベクターであるpAKKO-111Hはマルチクローニング サイト部分の制限酵素サイトSal I およびNhe I によって消化後、電気泳動を 行い、ベクター部分を回収した。以上の操作によって調製したヒト型GPR7リ ガンドcDNA断片および発現ベクターをライゲーションによって連結し、大腸 菌JM109を形質転換してE. coli JM109/pAK-S64を得た。

形質転換体E. coli JM109/pAK-S64を培養し、プラスミドpAK-S64のDNAを大量に調製した。

実施例 2 マウス全脳cDNAからのPCR法によるGPR7リガンド前駆体遺伝子の 取得

10

15

マウス全脳cDNAを鋳型として、以下の2種類の合成DNAを用いて、PCR による増幅を行った。

MFSAL1: 5'-GTCGACAGCTCCATGGCCCGGTGTAGGACGCTG-3'(配列番号:53)

MRNHE1: 5'-GCTAGCTCAGGTGCTCTGGCAATCAGTCTCGTG-3'(配列番号: 5 4)

PCRの反応液はcDNA溶液1 μ 1、0.5 μ 1 MFSAL1(10 μ M)、0.5 μ 1 MRNHE1(10 μ M)、2.5 μ 1 添付の10 x 反応液、2.5 μ 1 dNTP(10 mM)、0.5 μ 1 KlenTaq(クローンテック)、17.5 μ 1 大塚蒸留水を加えて合計25 μ 1にした。反応液を、ThermalCycler9600を用いてPCR反応にかけた。PCRの条件は95 \mathbb{C} 2 分の変性の後、98 \mathbb{C} 10 秒、60 \mathbb{C} 20 秒、72 \mathbb{C} 20秒のサイクルを35回繰り返した。PCR産物の一部を用いて電気泳動で約400 bpのPCR産物の増幅を確認した後、PCR産物をQuiagen PCR purification Kitを用いて精製し、直接配列決定を行ったところ図 3 で示す配列がえられた。図 3 のDNA配列から予測されるアミノ酸配列は図 4 に示すものであった。次に、ゲルから回収したPCR産物をTAクローニングキット(Invitrogen社)を用いて大腸菌JM109にサブクローニングし、大腸菌JM109/pTAmGPR7-1を取得した。サブクローニングで得られた大腸菌からプラスミドpTAmGPR7-1を取得した。サブクローニングで得られた大腸菌からプラスミドpTAmGPR7-1をプラスミド抽出機(クラボウ社)を用いて抽出し、挿入断片の塩基配列を決定し、その配列が図 3 と同じマウス型GPR7リガンド cDNAであることを確認した。

実施例 3 ラット全脳cDNAからのPCR法によるGPR7リガンド前駆体遺伝子の 20 取得

ラット全脳cDNAを鋳型として、以下の2種類の合成DNAを用いて、PCR による増幅を行った。

RF: 5'-CACGGCTCCATGGTCCGGTGTAGGACG-3'(配列番号:55)

RR: 5'-CAGCGTCGAGGTTTGGGTTGGGGTTCA-3'(配列番号:56)

PCRの反応液はcDNA溶液1 μ1、0.5 μ1 RF (10 μM)、0.5 μ1 RR (10 μM)、2.5 μ1 Ѭ付の10 x 反応液、2.5 μ1 dNTP (10 mM)、0.5 μ1 KlenTaq (クローンテック)、17.5 μ1大塚蒸留水を加えて合計25 μ1にした。反応液を、ThermalCycler9600を用いてPCR反応にかけた。PCRの条件は95 ℃2 分の変性の後、98 ℃10 秒、60 ℃20 秒、72 ℃20秒のサイクルを35回繰り返し

WO 02/102847 PCT/JP02/05915

た。PCR産物の一部を用いて電気泳動で約400 bpのPCR産物の増幅を確認した後、PCR産物をQuiagen PCR purification Kitを用いて精製し、直接配列決定を行ったところ図5で示す配列がえられた。図5のDNA配列から予測されるアミノ酸配列は図6に示すものであった。

 次に、ゲルから回収したPCR産物をTAクローニングキット(Invitrogen社) を用いて大腸菌JM109にサブクローニングし、大腸菌JM109/pTArGPR7-1を取得 した。サブクローニングで得られた大腸菌からプラスミドpTArGPR7-1をプラ スミド抽出機(クラボウ社)を用いて抽出し、挿入断片の塩基配列を決定し、 その配列が図5と同じラット型GPR7リガンド cDNAであることを確認した。

10 実施例 4 GPR7発現プラスミドおよびレポータープラスミドのチャイニーズ ハムスターオバリー (CHO) 細胞での一過的な発現

参考例2で得たヒト型GPR7 DNAを、自体公知の方法により動物細胞用発現プラスミドpAKKO-111Hに挿入したプラスミドを用いて大腸菌JM109を形質転換した。得られたコロニーを単離・培養後、QUIAGEN Plasmid Maxi Kit (キアゲン社)を用いてGPR7発現プラスミドDNAの調製を行なった。また、cAMPレスポンスエレメント (CRE) の下流にレポーターとしてルシフェラーゼ遺伝子が連結されたpCRE-Luc (クロンテック社)のプラスミドDNAを同様の方法で調製した。

15

20

GPR7発現プラスミドおよびpCRE-Lucは受容体遺伝子を挿入していない発現ベクターを導入したCHO細胞に一過性に発現させた。CHO細胞は96-ウェルプレート (コーニングコースター社) に40,000 細胞/ウェル、培養液量 $100 \mu 1$ で播種し、37^{\circ}で一晩培養した。プレート上での培養にはDMEM (Dulbecco's modified Eagle's medium, GibcoBRL社) に10%のウシ胎児血清のみを添加した培地を用いた。

25 各プラスミドは240ng/ μ 1の濃度に希釈し、GPR7の発現プラスミド9 μ 1と pCRE-Luc 1 μ 1の割合で240 μ 1のOpti-MEM-I(GibcoBRL社)に添加した。これを、同じく240 μ 1のOpti-MEM-Iに10 μ 1のリポフェクトアミン2000 (GibcoBRL社)を添加したものと等量混合して、リポフェクトアミン2000に添付のマニュアル記載の方法に従ってリポソームとプラスミドDNAの複合体

PCT/JP02/05915

を形成させた。これを25 µ 1/wellずつCHO細胞の培養液に添加し、その4時間後に培養液をアッセイバッファー (0.1%のウシ血清アルブミンを添加したDMEM) に交換して無血清化し、37℃で一晩培養した。

実施例5 リガンド遺伝子のCHO細胞での発現

5

10

15

20

25

実施例1で作製したヒト型リガンドcDNAを挿入した動物細胞用発現プラスミドpAK-S64を実施例4と同様の方法でCHO細胞に一過性に発現させた。ただし細胞は6-ウェルプレート(ファルコン社)に600,000細胞/ウェルで播種し、一晩培養の後、リガンド遺伝子プラスミドを導入した。240ng/μ1の濃度に希釈したプラスミドを10 μ1と240 μ1の0pti-MEM-Iに添加し、これを、同じく240 μ1の0pti-MEM-Iに10 μ1のリポフェクトアミン2000を添加したものと等量混合して、リポフェクトアミン2000に添付のマニュアル記載の方法に従ってリポソームとプラスミドDNAの複合体を形成させた。これを500μ1/ウェルずつCHO細胞の培養液に添加し、その4時間後に培養液をアッセイバッファーに交換し、無血清化をおこなった。培地交換の18時間後に各ウェルの培地を回収しリガンドペプチドを含むCHO細胞培養上清を得た。

実施例 6 S 6 4 発現細胞上清による G P R 7 を一過性に発現させた C H O 細胞でのルシフェラーゼ活性の抑制の検出

実施例4の方法に従いGPR7を一過性に発現させたCHO細胞の培養液に、実施例5で調製したpAK-S64発現培養上清および終濃度2 μMとなるようにホルスコリンを添加した。またリガンド遺伝子を挿入していない空の発現ベクター(pAKKO-111H)を実施例5の方法で一過性に発現させたCHO細胞の培養上清も同様に添加した。その際発現上清はアッセイバッファーにて2倍、4倍、8倍、16倍に希釈した。上清を添加してから4時間37℃でインキュベーションを行ない、受容体を介したリガンドのアゴニスト活性によって惹起される細胞内シグナル伝達に由来するレポーター(ルシフェラーゼ)遺伝子の転写・翻訳の促進あるいは抑制を誘導した。インキュベーション終了後に各ウェルのアッセイバッファーを除去し、PicaGene LT2.0 (東洋インキ社)発光基質を50 μ1ずつ加えた。細胞が溶解し、基質と充分に混合した後、各ウェルのレポーター遺伝子の発現誘導量に由来する発光量をプレートリーダ

WO 02/102847 PCT/JP02/05915

ー(ARVOsxマルチラベルカウンター、PerkinElmer社)を用いて測定した。その結果、pAK-S64の培養上清を添加した際にのみレポーター遺伝子の発現抑制がルシフェラーゼ活性の低下として検出された(図8)。さらに、この抑制の程度はpAK-S64の培養上清の濃度依存的であった。このことはpAK-S64に挿入されたプラスミドによって発現した産物が、GPR7を介した細胞内のシグナルを伝達した、すなわちGPR7のリガンドとして作用したことを示している。実施例7 S64発現細胞上清によるTGR26を一過性に発現させたCHO細胞でのルシフェラーゼ活性の抑制の検出

5

10

15

20

25

参考例3で得たTGR26 DNAを、自体公知の方法により動物細胞用発現プラスミドpAKKO-111Hに挿入したプラスミドを用いて、実施例4と同様の方法でTGR26発現プラスミドDNAの調製を行なった。これをやはり実施例4に示した方法でCHO細胞にルシフェラーゼ遺伝子とともに一過性に発現させた。この細胞に、実施例5で調製したpAK-S64発現培養上清、空の発現ベクターのみを発現させた細胞の培養上清および終濃度2 μ Mとなるようにホルスコリンを添加し、実施例6と同様の方法でリガンド活性の検出を試みた。その結果pAK-S64の上清は、ホルスコリンによって上昇したルシフェラーゼ活性を濃度依存的に低下させた(図9)。実施例8 S64発現細胞上清によるGPR7発現CHO細胞のcAMP産生量の抑制

実施例4にて作製したGPR7発現用プラスミドを用いて自体公知の方法によりGPR7の安定的な発現CHO細胞、CHO-GPR7を作製した。CHO-GPR7あるいは受容体遺伝子を導入していないmock CHO細胞を20000cells/ウェルの濃度で96ウェルプレート(ベクトンデッキンソン)に播種し、37 $^{\circ}$ 5%CO2で1晩培養したものをアッセイに使用した。サンプルバッファーはダルベッコ改変培地(DMEM、ギブコ)に0.1%ウシ血清アルブミン(シグマ)および0.2mm IBMX(シグマ)を添加したものを用いた。細胞をサンプルバッファーで2回洗浄し、37 $^{\circ}$ 5%CO2で30分間プレインキュベーションした後、さらに細胞を2回洗浄し、サンプルを添加して37 $^{\circ}$ 5%CO2で30分間インキュ

WO 02/102847 PCT/JP02/05915

ベーションした。サンプルはサンプルバッファーのみ(無処理)、cAMP 産生の上昇を促す試薬であるホルスコリン (和光純薬工業) 1 μ Μ、実施例 5においてpAK-S64を一過性に発現させて得たCHO細胞の培養上清 とホルスコリンを同時に添加したもの(S64上清)、およびpAKKO-111Hを発現させたCHO細胞の培養上清(pAKKO上清)とホルスコ リンを同時に添加したものの4種類であった。サンプルとのインキュベーシ ョンの後、細胞内のcAMP産生量はcAMP Screen Syste m (ABI) を用いて測定した。その結果、S64上清を添加することによ りCHO-GPR7特異的に細胞内cAMP産生量の抑制反応が認められ (図10)、mockCHO細胞では細胞内cAMP産生量の抑制反応が認

5

15

20

25

10 められなかった(図11)。

実施例9 RT-PCRによるGPR7リガンドmRNAのラットにおける 組織分布の検討

Wistarラットより各種臓器を摘出し、total RNAをIso gen (ニッポンジーン社)、poly (A) +RNAをmRNA puri fication kit (Pharmacia社) により、それぞれのマ ニュアルにしたがって調製した。得られた $poly(A)^+RNA = 1 \mu g$ を DnaseI(Amplification Grade, GIBCO B RL社) 処理後、160ng分をRNA PCR Kit (Takara社) を用いて、マニュアルに従い42℃でcDNAを合成した。合成されたcD NAはpoly (A) [†]RNA換算で4ng/μlの溶液とし、以後のRT-PCRの鋳型として用いた。 RT-PCRはSequence Dete ction System Prism 7700 (PE Biosyst ems社)を用い、増幅と検出のためのプライマーとして5'-CTGTC GAGTTTCCACAGGTTCC-3'(配列番号:63), 5'-TTGCGCAGAGGTACGGTTCC-3'(配列番号:64) よびTagMan probeとして5'-(Fam)-CGTGCCAA GAAACGCGTGACCTTGTT-(Tamra)-3'(配列番号: 65)を使用した。RT-PCR反応液はTaqMan Universa

WO 02/102847 PCT/JP02/05915

1 PCR Master Mix (PE Biosystems社) 12. 5μ 1に、それぞれ 100μ Mのプライマー溶液を 0.05μ 1、 5μ Mの TaqMan probeを 0.5μ 1、および上記で調製したcDNA溶液を 0.5μ 1加え、蒸留水で総反応液量を 25μ 1とした。PCR反応は 50° 2分、 95° 10分の後、 95° 15秒、 60° 1分のサイクルを40回繰り返した。得られたラット各種組織におけるGPR 7リガンドのmRNA発現量はpoly(A)+RNA 1ngあたりのコピー数として算出した(図12)。

実施例10 ウシ視床下部からの内因性GPR7リガンドの精製

5

15

20

25

10 ヒトGPR7リガンド前駆体mRNAは視床下部、脊髄で多く発現していることが認められたため、内因性GPR7リガンドの精製を、ウシ視床下部を出発材料として、ヒト型GPR7発現CHO細胞を用い、細胞内cAMP産生抑制活性(cAMP-Screen System(ABI)を用いて測定)を指標にして行った。

まず、凍結保存されたウシ視床下部1.0kgをミリQ水中で煮沸し、冷 **却後酢酸を1Mとなるように加え、ポリトロンでホモジナイズした。一晩撹** 押した後、遠心にて上清を得た。上清にトリフルオロ酢酸 (TFA) を 0. 05%となるように加え、C18カラム(Prep C18 125Å; Waters)にアプラ イした。カラムに結合したペプチドをO. 5%TFAを含む10、40、6 0%アセトニトリルでステップワイズに溶出した。40%アセトニトリル画 分に二倍量の20mM酢酸アンモニウム(pH4.7)で希釈し、イオン交 換カラム HiPrep CM-Sepharose FF (Pharmacia)にアプライした。イオン交換 カラムに結合したペプチド10%アセトニトリルを含む20mM酢酸アンモ ニウム (pH4.7) 中の0~0.5M NaClの濃度勾配で溶出した。 もっとも多く活性物質が含まれていたNaCl画分(0.3~0.35M) に2倍量の冷アセトンを加え、遠心にて沈殿を除き上清をエバポレートにて 濃縮した。濃縮された上清に0.1%となるようTFAを加え、逆相HPL Cカラム RESOURCE RPC (Pharmacia) にてさらなる分離を行った。RESOURCE RPCの分離は20~30%アセトニトリルの濃度勾配で行い、主たる活性は、 およそ22%アセトニトリルで溶出された。この活性画分に3倍量の冷アセ

10

20

25

トンを加え、遠心にて沈殿を除き上清をエバポレートにて濃縮した。濃縮された上清に 0.1%となるよう TFAを加え、逆相HPLCカラム Vydac C18 218TP5415 (Vydac) にてさらなる分離を行った。Vydac C18 218TP5415 Omega Omega

実施例11 最終精製標品のN末端アミノ酸配列分析およびマススペクトル による分子量測定

実施例10で得られた最終精製標品を、約半量をN末端アミノ酸をプロティンシークエンサー(model 491cLC; Applied Biosystems)で分析、残り半量をESIMS(Thermoquest)で分析した。

N末端配列分析の結果、2サイクル目から25サイクル目までウシGPR7 リガンド前駆体の26位から49位に相当する配列を読むことができた(図1 4)。サイクル1は同定できなかった(x)ことから、翻訳後修飾を受けているものと推定された。2サイクル目以降は、明瞭に上記の配列と同定された。

ESIMS測定(図15上)では、フルマススキャンモードでの測定から3241.5の値を得た。マススペクトルから算出された分子量とMS/MSスペクトルの解析結果(図15下)から、N末端2残基の何れかが翻訳後修飾を受けているものと推定した。N末端配列分析結果を考え合わせて、1位Trpが修飾されているものと推定した。

ズームスキャンモードで測定した3価の分子イオンの同位体プロファイル (図16)を考え合わせて、本物質は29残基GPR7リガンドで、1位ト リプトファン残基がブロモ化されていると推定した。

この推定を確認するため、DL-5-bromotryptophan(Aldrich)、

DL-6-bromotryptophan (Biosynth) からPTHスタンダードを作成して分析した。DL-5-bromotryptophan または DL-6-bromotryptophan 200nmolを、ethanol:triethyamine:DW:phenylisothiocyanate(sigma)=7:1:1:1 20ulを加え室温で20分反応し、乾燥後TFA 50ulを加えて50℃10分反応し、乾燥後2N HCl:methanol=1:1を50ul加えて50℃10分反応し、乾燥後2N HCl:methanol=1:1を50ul加えて50℃10分反応し、逆相HPLCにて精製して、5-bromotryptophanまたは6-bromotryptophanのPTH誘導体を得た。最終物の確認はプロテインシーケンサーにて行った(図17および図18)。これらのPTH誘導体を20アミノ酸PTHスタンダード(ABI)に混合し、これらが分離するプロトコルを作成し(表1および表2)、内因性ウシGPR7リガンドを分析したところ、1位アミノ酸はPTH-6-bromotryptophanのピークと一致した(図19)。

これらの分析結果より、ウシ視床下部からの最終精製標品はウシGPR7 リガンド前駆体の25位Trpから53位Alaに相当する29アミノ酸 (配列番号:67)からなるペプチドで、1位Trpは翻訳後修飾で6ープ ロモ化されていることが判明した。

〔表1〕

5

10

15

20

Pulsed-Liquid cLC:								
Cycle #	Cartridge cycle	Flask cycle	Gradient					
Default	Cart-PL 6mmGFF cLC	Flask Normal cLC	Normal 1 cLC					
1	None	Prepare Pump cLC	Prepare Pump cLC					

Default Cart-PL 6mmGFF cLC Flask Normal cLC Normal 1 cLC

1 None Prepare Pump cLC Prepare Pump cLC

2 None Flask Blank cLC Normal 1 cLC

3 Cart Begin cLC Flask Standard cLC Normal 1 cLC

BrTrp-liq	uid cLC:				
Cycle #	Cartridge cycle	Flask cycle	Gradient		
Default	Cart-PL 6mmGFF cLC	Flask Normal cLC	Normal for BrW cLC		
1	Sample wash	Prepare Pump cLC	Prepare Pump cLC		
2	None	Flask Blank cLC	BrTrp cLC		
3	Cart Begin cLC	Flask Standard cLC	BrTrp cLC		
4	Cart-PL 6mmGFF cLC	Flask Normal cLC	BrTrp cLC		
5	Cart-PL 6mmGFF cLC	Flask Normal cLC	BrTrp cLC		

表1は、通常のペプチド用メソッド(Pulsed-Liquid cLC)とプロモトリプトファン用メソッド (BrTrp-liquid cLC) の、サイクルとグラディエントの比較を示す。

25

〔表2〕

		. Time(min)							
		0	0.4	4	22		22.6	29	33
Normal 1 cLC	%B	8	10	20	47		90	90	70
		0	0.4	4	22		22.6	29	33
Normal for BrW cLC	%B	8	10	20	44		90	90	70
		0.0	0.4	4	22.0	28.0	28.6	32.0	33.0
BrTrp_cLC	%B	8	10	20	44	44	90	90	70

表 2 は、491cLC protein sequencer (ABI) の通常のペプチド用(Normal 1 cLC)とブロモトリプトファン分析用に作成した(Normal for BrW cLC, BrTrp cLC) グラディエントの比較を示す。

N末端配列分析は、491cLC protein sequencer (ABI)で、通常のペプチド 分析用メソッド(Normal 1 cLC)をbromotryptophan分析用に改良 (BrTrp-liquid cLC)したものを用いて行った。上記の条件以外は、メーカー のマニュアルに従った。改良したグラディエント(BrTrp cLC)を用いると、Br 付加位置の異なる5-/6-bromotryptophanを判別することが可能である。

改良したメソッド、BrTrp-liquid cLCを用いて分析すると、ブランク、スタンダード及び2サイクル目までのみ5-/6-bromotryptophan分析用グラディエント(BrTrp cLC)が適応され、3サイクル目以降は異なるグラディエント(Normal for Brw cLC)が適応される。

15 実施例12 ウシ視床下部cDNAからのPCR法によるウシ型GPR7リガンド前駆体遺伝子の取得

ウシ視床下部cDNAを鋳型として、以下の2種類の合成DNAを用いて、PCR による増幅を行った。

BF1: 5'-CCCATGCCCGGGCCCGCGATGCTGGTCGCC-3' (配列番号:82)

20 BR1: 5'-TCACTTGCGACAGTCCGAGGCGCTGAGCGA-3' (配列番号:83)

PCR の反応液は cDNA 溶液 1 μ 1、0.5 μ 1 BF1(10 μ M)、0.5 μ 1 BF2(10 μ M)、2.5 μ 1 添付の 10 x 反応液、2.5 μ 1 dNTP(10 mM)、0.5 μ 1 KlenTaq(クローンテック)、17.5 μ 1 大塚蒸留水を加えて合計 25 μ 1 にした。反応液を、ThermalCycler9600を用いて PCR 反応にかけた。PCR の条件は 95 $^{\circ}$ 2 分の変性の後、98 $^{\circ}$ 10 秒、60 $^{\circ}$ 20 秒、72 $^{\circ}$ 20 秒のサイクルを 35 回繰り返した。

PCR 産物の一部を用いて電気泳動で約 400 bp の PCR 産物の増幅を確認した後、PCR 産物を Quiagen PCR purification Kit を用いて精製し、直接配列決定を行ったところ図 2 0 で示す配列がえられた。図 2 0 の DNA 配列から予測されるアミノ酸配列は図 2 1 に示すものであった。次に、ゲルから回収した PCR 産物をTA クローニングキット (Invitrogen 社)を用いて大腸菌 JM109 にサブクローニングし、大腸菌 JM109/pTAbGPR7L-1を取得した。サブクローニングで得られた大腸菌からプラスミド pTAbGPR7L-1をプラスミド抽出機 (クラボウ社)を用いて抽出し、挿入断片の塩基配列を決定し、その配列がウシ型 GPR7 リガンド cDNAであることを確認した。

PCT/JP02/05915

10 実施例13 GPR7リガンドの合成

25

GPR7リガンド (GPR7L) およびGPR8リガンド (GPR8L) は、ABI 433ペプチド合成機にて、Fmoc/DCC/HOBt プロトコルで合成した。DL-6-Bromotryptophan (Biosynth) は、Boc-DL-6-bromotryptophan-OMe とした後キラル分割して、それぞれをペプチド合成に用いた。

- 15 (1) DTrp(6Br)1-human GPR7L(29)(配列番号:4で表されるアミノ酸配列のN末端D-トリプトファンの6位がブロモ化されたもの):
 (D-Trp(6Br)-Tyr-Lys-Pro-Ala-Ala-Gly-His-Ser-Ser-Tyr-Ser-Val-Gly-Arg-Ala-Ala-Gly-Leu-Leu-Ser-Gly-Leu-Arg-Arg-Ser-Pro-Tyr-Ala)、
- (2) LTrp(6Br)1-human G P R 7 L (29) (配列番号: 4で表されるアミノ酸配 20 列のN末端 L ートリプトファンの6位がブロモ化されたもの): (Trp(6Br)-Tyr-Lys-Pro-Ala-Ala-Gly-His-Ser-Ser-Tyr-Ser-Val-Gly-Arg-Ala-Ala-Gly-Leu-Leu-Ser-Gly-Leu-Arg-Arg-Ser-Pro-Tyr-Ala)、
 - (3) Trp1-human G P R 7 L (29) (配列番号: 4):
 (Trp-Tyr-Lys-Pro-Ala-Ala-Gly-His-Ser-Ser-Tyr-Ser-Val-Gly-Arg-Ala-Ala-Gly-Leu-Leu-Ser-Gly-Leu-Arg-Arg-Ser-Pro-Tyr-Ala)、
 - (4) Trp1-human G P R 7 L (23) (配列番号: 1):
 (Trp-Tyr-Lys-Pro-Ala-Ala-Gly-His-Ser-Ser-Tyr-Ser-Val-Gly-Arg-Ala-Ala-Gly-Leu-Leu-Ser-Gly-Leu)、
 - (5) DTrp(6Br)1-bovine GPR7L(29) (配列番号:67で表されるアミノ酸

10

25

配列のN末端Dートリプトファンの6位がブロモ化されたもの):

(D-Trp (6Br)-Tyr-Lys-Pro-Thr-Ala-Gly-Gln-Gly-Tyr-Tyr-Ser-Val-Gly-Arg-Ala-Ala-Gly-Leu-Leu-Ser-Gly-Phe-His-Arg-Ser-Pro-Tyr-Ala) ,

- (6) LTrp(6Br)1-bovine GPR7L(29)(配列番号:67で表されるアミノ酸配列のN末端L-トリプトファンの6位がブロモ化されたもの):
- (Trp(6Br)-Tyr-Lys-Pro-Thr-Ala-Gly-Gln-Gly-Tyr-Tyr-Ser-Val-Gly-Arg-Ala-Ala-Gly-Leu-Leu-Ser-Gly-Phe-His-Arg-Ser-Pro-Tyr-Ala) ,
- (7) Trp1-bovine G P R 7 L (29) (配列番号: 67):
 (Trp-Tyr-Lys-Pro-Thr-Ala-Gly-Gln-Gly-Tyr-Tyr-Ser-Val-Gly-Arg-Ala-Ala-Gly-Leu-Leu-Ser-Gly-Phe-His-Arg-Ser-Pro-Tyr-Ala)、
- (8) Trp1-rat G P R 7 L (29) (配列番号: 6):
 (Trp-Tyr-Lys-Pro-Ala-Ala-Gly-Ser-HisI-His-Tyr-Ser-Val-Gly-Arg-Ala-Ala-Gly-Leu-Leu-Ser-Ser-Phe-His-Arg-Phe-Pro-Ser-Thr)、
 - (9) Trp1-rat GPR7L(24)(配列番号:3):
- 15 (Trp-Tyr-Lys-Pro-Ala-Ala-Gly-Ser-His-His-Tyr-Ser-Val-Gly-Arg-Ala-Ala-Gly-Leu-Leu-Ser-Ser-Phe-His)
 - (10) Trp1-human GPR 8L(23) (配列番号:100):
 (Trp-Tyr-Lys-His-Val-Ala-Ser-Pro-Arg-Tyr-His-Thr-Val-Gly-Arg-Ala-Ala-Gly-Leu-Leu-Met-Gly-Leu) (WO01/98494号)
- 20 実施例14 GPR7リガンドのラット側脳室内投与による摂食量に及ぼす影響

GPR 7 リガンド(GPR 7 L)のラット側脳室内投与による摂餌量に及ぼす影響を検討した。ラットは、照明時間を 8 時から 20 時、室温 25℃において飼育した。成熟 Wistar 系雄性ラット(手術時体重 300~320 g)をペントバルビタール 50 mg/kg の腹腔内投与にて麻酔し、ラット脳定位固定装置に固定した。切歯用バーはインターオーラルラインから 3.3 mm 低くした。頭蓋骨を露出し、側脳室にガイドカニューレAG-8(内径 0.4 mm、外径 0.5 mm、エイコム社)を埋め込むために歯科用ドリルを用いて骨に穴を開けた。また、その周囲 3 箇所にアンカービスを埋めた。ステンレス製ガイドカニューレ、AG-8を、その先

15

20

25

176

端が側脳室の上部に位置するように挿入した。定位座標は、Paxinos と Watson (1998) のアトラスに従い、ブレグマより、AP: -0.8 mm、L:1.5 mm、H:-4.5 mm とした。ガイドカニューレは歯科用セメントおよびアンカービスで 頭蓋骨に固定した。ガイドカニューレにはステンレス製ダミーカニューレ、A D-8 (外径 0.35 mm、エイコム社) を挿入し、キャプナット (エイコム社) で 固定した。術後、ラットは個別のケージで飼育した。

ガイドカニューレを埋め込んでから約1週間飼育して術後の回復を待ち、ラットの頭蓋骨に装着したキャップナットとダミーカニューレを取り外し、代わりにテフロン(登録商標)チューブ(長さ50 cm、内径0.1 mm、外径0.35 mm、エイコム社)につないだステンレス製マイクロインジェクションカニューレ AMI-9(内径0.17 mm、外径0.35 mm、エイコム社)を挿入した。マイクロインジェクションカニューレの長さは、その先端1 mm がガイドカニューレから露出するように調節しておいた。テフロン(登録商標)チューブの一方をマイクロシリンジポンプにつなぎ、滅菌蒸留水(大塚製薬)、実施例13で合成したブロム化されていないGPR7L(Trp1-bovine GPR7L(29)、配列番号:67)を溶解させた蒸留水を $5\mu1/$ 分の流速で計 $10\mu1$ (10 nmo1/rat)を側脳室に注入した。注入終了後2分待ってからマイクロインジェクションカニューレを取り外し、再びダミーカニューレをキャップナットで固定した。注入は、19時から20時の間に行いその後の摂餌量を摂餌量測定措置 Feed-Scale(コロンバス社)を用いて経時的に測定した。図22に示すごとくブロム化されていないGPR7L投与群は対象群に比し、投与2時間後より有意な摂餌量の増加が認められた。

ウシ内因性 GPR 7 Lを、ApexII (ブルカーダルトニクス) にて ESIFTMS 分析 した(図 2 3 上)。図 2 3 の中図に [M+5H] $^{5+}$ イオンの拡大図、下図に 1Br 付加ウシGPR 7 Lの [M+5H] $^{5+}$ イオンの同位体理論プロファイルを示す。同位体プロファイル、マス値共によく一致したことで、修飾物は Br と同定された。

実施例15 ウシ内因性GPR7リガンドのFTMS測定

実施例16 RT-PCRによるGPR7リガンドmRNAのヒトにおける組織分布の検討

mRNAの発現量は実施例9と同様の方法で行った。ただし鋳型となるcD

NAには、ヒト各種組織由来のpolyA+RNA (クロンテック社) から以下の方法で合成したものを使用した。RNA1 μ gからランダムプライマー、逆転写酵素としてSuperScriptII逆転写酵素 (GIBCO BRL社) を用い、添付のマニュアルに従って42℃で反応を行い、反応終了後にエ

- 5 タノール沈殿して $100~\mu$ l に溶解した。発現量の定量も実施例9 と同様にS equence Detection System Prism 7700 を用いて行った。ただし増幅と検出のためのプライマーとして
 - 5'-CGCTCCCAGCCCTACAGA-3'(配列番号: 90), 5'-TCGCCTTGCACTGGTAGGTC-3'(配列番号: 91) およびTagMan probeとして
- 10 5'-(Fam) AGCCTCGCTGTGCGTCCAGGAC-(Tamra)-3'(配列番号:92)を使用した。

得られたヒト各種組織におけるGPR7のmRNA発現量はpoly(A)⁺ RNA 1 ng あたりのコピー数として算出した(図24)。

実施例17 RT-PCRによるラット型GPR7 (ラットTGR26) mR NAの組織分布の検討

mRNAの発現量は実施例9と同様の方法で行った。実施例9で使用したラット各種臓器由来のcDNAを用いて、ラットGPR7mRNAの発現量を求めた。ただし増幅と検出のためのプライマーとして5'-

TGCGTGCTATCCAGCTAGACAG-3'(配列番号:93), 5'-

20 AGAGGAGGCACACAGCCAGAAT-3'(配列番号:94) およびTaaMan p robeとして5'-(Fam) CGTGCCAAGAAACGCGTGACCTTGTT-(Tamra)-3'(配列番号:95)を使用した。

得られたラット各種組織におけるGPR7のmRNA発現量はpoly(A) +RNA lngあたりのコピー数として算出した(図25)。

25実施例18ウシ視床下部cDNAからのPCR法によるウシ型GPR7遺伝子の取得

ウシ視床下部 c DNAを鋳型として、以下の2種類の合成DNAを用いて、PCRによる増幅を行った。

BGPR7F: 5'-GTCGACCGAGTGTCTGTCCTCGCCAGGATG-3' (配列番号: 9 6)

10

15

BGPR7R: 5'-GCTAGCTCCTTGTTATCGGGCTCAGGAGGTGGT-3' (配列番号: 97) PCR の反応液は cDNA 溶液 1 microl、0.5 microl BGPR7F (10 microm)、0.5 microl BGPR7R (10 microm)、2.5 microl 添付の 10 x 反応液、2.5 microl dNTP (10 mM)、0.5 microl KlenTaq (クローンテック)、17.5 microl 大塚蒸留水を加えて合計25 microl にした。反応液を、ThermalCycler9600を用いて PCR 反応にかけた。PCR の条件は95°C2分の変性の後、98°C10秒、60°C20秒、72°C60秒のサイクルを40回繰り返した。PCR 産物の一部を用いて電気泳動で約1000 bpの PCR 産物の増幅を確認した後、PCR 産物を Quiagen PCR purification Kit (キアゲン社)を用いて精製し、直接配列決定を行ったところ図26で示す配列がえられた。図26のDNA配列から予測されるアミノ酸配列は図27に示すものであった。次に、ゲルから回収したPCR 産物をTAクローニングキット (インビトローゲン社)を用いて大腸菌 JM109 にサブクローニングし、大腸菌 JM109/pTAbGPR7を取得した。サブクローニングで得られた大腸菌からプラスミド pTAbGPR7をプラスミド抽出機 (クラボウ社)を用いて抽出し、挿入断片の塩基配列を決定し、その配列がウシ型GPR7受容体 cDNAであることを確認した。

実施例19 ウシ視床下部cDNAからのPCR法によるウシ型GPR8遺 伝子の取得

ウシ視床下部 c DNAを鋳型として、以下の2種類の合成DNAを用いて、 PCR による増幅を行った。

BGPR8F: 5'-GTCGACCATGATGGAGGCCACTGGGCTGGAAGG-3' (配列番号:98)
BGPR8R: 5'-GCTAGCTTATGCCCCCTGGCACCGACATGCGGT-3' (配列番号:99)
PCR の反応は実施例18と同様の方法で行った。得られたPCR産物をQuiagen PCR purification Kitを用いて精製し、直接配列決定を行ったところ図28で示す配列がえられた。図28のDNA配列から予測されるアミノ酸配列は図29に示すものであった。次に、ゲルから回収したPCR産物をTAクローニングキットを用いて大腸菌JM109にサブクローニングし、大腸菌JM109/pTAbGPR8を取得した。サブクローニングで得られた大腸菌からプラスミドpTAbGPR8をプラスミド抽出機を用いて抽出し、挿入断片の塩基配列を決定し、その配列がウシ型GPR8cDNAであることを確認した。

WO 02/102847

実施例20 ヒト型GPR7リガンド発現CH0細胞の培養上清からのGPR7 リガンドの精製

実施例 5 で構築したヒト型GPR7リガンド発現 CHO 細胞の培養上清を 2L 集 め、-80℃にて保存した。培養上清は、解凍後湯せんにてボイルし、さらに遠心 して上清を得た。上清にトリフルオロ酢酸(TFA)を 0.05%となるように加え、C18 5 カラム(Prep C18 125Å; ウォーターズ社)にアプライした。カラムに結合した ペプチドを 0.5%TFA を含む 10、40、60%アセトニトリルでステップワイズに溶出 した。40%アセトニトリル画分を三倍量の 20mM 酢酸アンモニウム(pH4.7)で希釈 し、イオン交換カラム HiPrep CM-Sepharose FF (ファルマシア社)にアプライ 10 した。イオン交換カラムに結合したペプチド 10%アセトニトリルを含む 20mM 酢 酸アンモニウム(pH4.7)中の OM~0.5M NaCl の濃度勾配で溶出した。各フラクシ ョンの一部を Sep-Pak plus C18 Cartridge(ウォーターズ社)を用いた脱塩後、 ヒト型 GPR7 発現 CHO 細胞に特異的な細胞内 cAMP 産生抑制活性を測定した。ヒ ト型 GPR7 発現 CHO 細胞に特異的活性が見出された CM-Sepharose フラクション に 0.1%となるよう TFA を加え、逆相 HPLC カラム RESOURCE RPC (ファルマシア 15 社)にて、さらなる分離を行った。RESOURCE RPC の分離は15-30%アセトニト リルの濃度勾配で行い、主たるヒト型 GPR7 発現 CHO 細胞に特異的な細胞内 cAMP 産生抑制活性は、およそ22%アセトニトリルで溶出された。この活性画分を10% アセトニトリルを含む 20mM 酢酸アンモニウム (pH4.7) 中での 0.2-0.5M NaCl の 20 濃度勾配を用いた陽イオン交換カラム TSK gel CM-SW(トーソー社)で分離した ところ、主たる細胞内 cAMP 産生抑制活性は、およそ 0.3M NaCl で溶出された。 この CM-2SW カラムの画分に 0.1%となるよう TFA を加え、15-22%アセトニトリル の濃度勾配を用いた逆相カラム μ RPC C2/C18 SC2.1/10 で最終精製した結果、 単一のピークが得られ、これはヒト型 GPR7 発現 CHO 細胞に特異的な細胞内 cAMP 産生抑制活性と一致した(図30)。 25

この最終精製標品のN末端アミノ酸をプロティンシークエンサー(model 492; アプライドバイオシステムス社)で分析したところ、図31に示すアミノ酸配列が得られた。

また、ESI-MS (サーモクエスト社)を用いて、最終精製標品の分子量を測定し

10

15

20

25

たところ、2505.6の値を得た(図32)。

これらの分析結果より、最終精製標品は前駆体の Trp25 から Arg48 までに相当する 24 アミノ酸からなるペプチドであることが判明した。

実施例21 ヒト型GPR7リガンドのヨード標識体の作製

h G P R 7 L − 2 3 (配列番号: 1) (0.1 mM 又は 1 mM) 20 μ 1、ラクトペル オキシダーゼ(シグマ社、10 μ g/mL に 0.1 M HEPES-NaOH pH7.0 を用いて調製) 20 μ 1、Idoine-125 (アマシャム社製、IMS-30、74MBq) 20 μ 1、0.005% 過酸化 水素(和光純薬社製) 20 μ 1 を混合、室温で 20 分から 30 分静置した後、0.1% TFA 600 μ 1 を添加して逆相 HPLC にて分離、2 つの標識体のピークを 1 mL DMSO を入れたチューブで分取した。直ちに氷上に保管し、一部を 1/100 希釈して γ − カウンターで放射活性を測定し、残りの標品は分注して-30℃にて保存した。

実施例22 ヒト型GPR7発現CHO細胞膜画分の調製

ヒト型 GPR7 発現 CHO 細胞を培養したフラスコを 5mM EDTA/PBS で洗浄、5mM EDTA/PBS で細胞を剥がし、遠心して細胞を回収、25mL の 膜画分調製用緩バッファー (50mM Tris-HC1, pH7.5、5mM EDTA、 0.1% ウシ血清アルブミン (シグマ社製)、0.5mM PMSF (和光純薬社製)、 20μ g/mL leupeptin(ペプチド研究所製)、 0.1μ g/mL pepstatinA (ペプチド研究所製)、 4μ g/mL E-64 (ペプチド研究所製))に懸濁、ポリトロンを用い氷上でホモジナイズした (12,000 rpm、 15 秒×3回)。これを、高速冷却遠心機にて 4° C、1,000g、10 分遠心し、上清を回収した。沈殿に 25mL の膜画分調製用緩衝バッファーを加え、同様の操作で上清を回収した。これら上清をまとめ、セルストレーナーにかけた後、超遠心機用チューブに分注し、 4° C、100,000g、1 時間遠心した。ペレットを回収し、少量の膜画分調製用バッファーに懸濁し、テフロン (登録商標)ホモジナイザーを用いて懸濁した後、一部を用いて蛋白量を測定し、残りを分注して -80° Cにて保存した。

実施例23 ヒト型GPR7発現CHO細胞膜画分を用いたスキャッチャード 解析

ヒト型 GPR7 発現 CHO 細胞膜画分、[Tyr(¹²⁵I)¹¹]-hGPR7L-23(配列番号:1) を用いてスキャッチャード解析を行った。アッセイ用バッファー(50mM Tris-HCl,

10

15

20

25

pH7. 5、 5mM EDTA、 0.1% ウシ血清アルブミン(シグマ社製)、0.5mM PMSF(和光純薬社製)、 20μ g/mL leupeptin(ペプチド研究所製)、 0.1μ g/mL pepstatinA(ペプチド研究所製)、 4μ g/mL E-64(ペプチド研究所製))にて、膜画分を終濃度 1μ g/well となるよう希釈、標識体を終濃度 400pM、200pM、100pM、50pM、25pM、10pM となるよう希釈した。ポリプロピレン製 96 穴プレートを用いて、アッセイバッファーのみ(トータル)と終濃度 2μ Mの hGPR7L-23 (NSB) 各 50μ 1を分注、各 well に標識体容液 25μ 1を添加して攪拌後膜画分希釈液 25μ 1を混合・攪拌して、室温で 1.5μ 時間インキュベート、 96μ 穴プレート用セルハーベスターを用いて、洗浄用バッファー(50μ Tris-HCl,pH7.5)で予め湿らせたフィルターユニット(GF/C、ポリエチレンイミン処理)に吸着、 5μ 回洗浄用緩衝液で洗浄した後、充分に乾燥させた。インプットとして、標識体希釈液を直接フィルターユニット(GF/C、ポリエチレンイミン処理)に添加し、乾燥させた。これらに液体シンチレーターを 50μ 1分注し、トップカウント(パッカード)で放射活性を測定し、 3μ でデータを解析し(図 3μ 3)、 3μ Bmax=1.28pmol/mg protein、 3μ Kd= 35.5μ M の値を得た。

実施例 24 ヒト型G P R 7 発現C H O 細胞に対する各種ペプチドの結合阻害実験 アッセイ用バッファーを用いて、ヒト型 GPR7 発現 CHO 細胞の膜画分を終濃度 1μ g/well、hGPR7L-23 ヨード標識体(配列番号: 1)を終濃度 100pM となるよう 希釈した。表 3 に示したペプチドは、 10^{-2} M 又は 10^{-3} M のストック溶液を、終濃度 が 10^{-6} M、 10^{-6} M 10^{-10} M 10^{-

合阻害実験結果を表3にIC50値を示す。

[表3]

10

15

20

	IC50 (nM)
ペプチド	
(
DTrp(6Br)1-human GPR7L(29)	13
LTrp(6Br)1-human GPR7L(29)	0.32
Trp1-human GPR7L(29)	0.33
Trp1-human GPR7L(23)	1.6
Trp1-human GPR8L(23)	0.4
DTrp(6Br)1-bovine GPR7L(29)	6.1
LTrp(6Br)1-bovine GPR7L(29)	0.34
Trp1-bovine GPR7L(29)	0.31
Trp1-rat GPR7L(29)	0.34
Trp1-rat GPR7L(24)	0.30

実施例25 GPR7およびGPR8発現CHO細胞に対する各種ペプチドの アゴニスト活性の比較

ヒト型 GPR7、ウシ型 GPR8、ヒト型 GPR8、ウシ型 GPR8、ラット型 GPR7 を発現 させた CHO 細胞に対する、各種 GPR7 リガンドに関連したペプチドの、細胞内 cAMP 産生抑制活性を調べた。各受容体発現細胞を、96 穴プレートに 4×10⁴個/well で継代し、37℃、5%CO。95%air で一日培養した。アッセイ用バッファーとして、 Hanks' Balanced Salt Solution (ギブコ社) に、20mM HEPES pH7.4、0.1% ウ シ血清アルブミン、0.2mM 3-isobutyl-1-methylxanthine(シグマ社)を加えたも のを調製した。一晩培養したプレートは、まず、アッセイ用バッファー150μ1 . で二回洗浄後、アッセイ用バッファー150 μ1 に交換して、30 分、37℃、100% air で培養した。試料希釈用バッファーとしてアッセイ用バッファーに 4μΜ フォル スコリンを添加したものを作成、これを用い表 に示したペプチドのストック 溶液(10⁻²M 又は 10⁻³M)を希釈して、終濃度 10⁻⁶M、10⁻⁷M、10⁻⁸M、10⁻⁹M、10⁻¹⁰M とな るよう試料溶液を調製した。アッセイ用バッファーで30分培養したプレートを 取り出し、アッセイ用バッファーで2回洗浄後、アッセイバッファーを50μ1、 次に試料溶液 50μ1を添加した。一つの試料につき、測定は3連で行った。ま た、basal level 測定用に同量のアッセイ用バッファー、maximum level 測定用 にフォルスコリンを加えたバッファーを添加した。プレートを、30分、37℃、

100% air で培養し、細胞内 cAMP 量を、cAMP-Screen™ System (ABI 社)を用い、本キットのプロトコールに従い測定した。Maximam level の cAMP 量と各サンプルを添加した時の cAMP 量の差を算出して、フォルスコリンによる cAMP 産生促進量に対する百分率を算出し、これを cAMP の産生の抑制率とした。表 4 に各試料の ICsn 値を示す。

〔表4〕

5

		_	IC50 (nM)		
^0 − ₽ → 1 +	human GPR7	human GPR8	bovine GPR7	bovine GPR8	rat GPR7
ペプチド					
DTrp(6Br)1-human GPR7L(29)	106	770	360	424	49
LTrp(6Br)1-human GPR7L(29)	0.44	32	1.8	51	0.47
Trp1-human GPR7L(29)	0.45	49	2.6	52	0.29
Trp1-human GPR7L(23)	0.58	44	3.5	47	0.28
Trp1-human GPR8L(23)	0.82	3.7	2.4	4.8	0.32
DTrp(6Br)1-bovine GPR7L(29)	35	198	77	34	2.5
LTrp(6Br)1-bovine GPR7L(29)	0.58	9.7	1.9	4.0	0.21
Trp1-bovine GPR7L(29)	0.43	8.1	1.2	5.4	0.25
Trp1-rat GPR7L(29)	0.86	8.8	1.2	14	0.30
Trp1-rat GPR7L(24)	0.31	2.8	0.51	3.5	0.18

実施例9 in situ ハイブリダイゼーション法によるGPR7リガンドmRNAのラット脳における発現分布の検討

Wistarラットをネンブタール麻酔下で開腹し、左心室から0.9%食塩水を250ml潅流し、続いて4%パラホルムアルデヒド溶液を250ml潅流した。取り出した脳を同溶液中に4時間4℃で浸漬したのち、20%スクロース溶液に置換し、4℃で3日間浸漬し、解析に供する脳のサンプルを得た。GPR7リガンドアンチセンス、センスプローブは以下の方法で調製した。まず、プラスミドベクターpBluescript II KS+(ストラタジーン社)に自体公知の方法でラット型GPR7リガンドcDNAを挿入した。このプラスミドをBamHIもしくはXbaIを用いて制限酵素処理し、失活させた後に、それぞれ0.52μg/ml、0.47μg/mlとなるようにTEに溶かした。BamHI処理したものを2μl、T3 RNA polymerase (ロッシュ社) 40U、supplied 10X buffer 2μl、RNase inhibitor (ロッシュ社) 20U、D

IG RNA Labelling Mix, 10X (ロッシュ社) 2μl、

最終容量が 20μ 1となるように水を加え、37℃、2時間反応させた。0. 2M EDTAを 2μ 1加えて反応を止めた後にエタノール沈殿により生成したリボプローブを回収し、アンチセンスプローブとした。また、X ba I 処理したものを 2μ 1、T3 RNA polymerase (ロッシュ社) 40 U、supplied 10X buffer 2μ 1、RNase inhibitor (ロッシュ社) 20U、DIG RNA Labelling Mix, 10X (ロッシュ社) 2μ 1、最終容量が 20μ 1となるように水を加え、37℃、2時間反応させた。0. 2M EDTAを 2μ 1加えて反応を止めた後にエタノール沈殿により生成したリボプローブを回収し、センスプローブとした。それぞれの濃度を測定し、アンチセンスプローブ濃度が0. 29μ g/m1、センスプローブ濃度が0. 27μ g/m1となるようにRNaseフリーの水に溶かした。

5

10

15

20

25

In situ ハイブリダイゼーションは以下の方法で行った。上記で調製した脳試 料をクライオスタットCM3050(ライカ社)を用いて25ミクロンの厚さに 前額断で調製した。生成した切片を10mlの4XSSCにて5分間、2回洗浄 した後に、10mlのPK buffer (pH7.4、10mM Tris -HCl、10mM EDTA) 中にプロテネースK(シグマ社) が最終濃度 2. 5 m g / m l となるように加え、37℃、10分反応させる。10 m l の 4XSSCにて5分間、2回洗浄した洗う。10mlのアセチレーションバッフ ァー (pH7. 5、100mM トリエタノールアミン) に0. 25%となる ように無水酢酸を加え、室温で10分反応させた。10mlの4XSSCにて 5分洗う。この操作を2回行った後に、ハイブリバッファー(pH7.4、6 0% ホルムアミド、 10mM Tris-HCl、200μg/ml イー ストt-RNA、1X デンハルト,10% デキストラン硫酸、600mM NaCl、0.25% SDS、1mM EDTA) 1ml中にアンチセンス 及びセンスプローブが O. 2 μ g / m l となるように加えた溶液に切片を加え、 55℃、13時間ハイブリさせた。10m1洗浄バッファー(2XSSC、5 0%ホルムアミド) で55℃、15分間、2回洗浄した。RNaseバッファー (pH8. 0, 10mM Tris-HCl, 1mMEDTA, 0. 5M N

PCT/JP02/05915

aCl) にRNaseA (Sigma社) が2. 5μg/mlとなるように加 え、切片を移し、37℃、30分間反応させた。10m1洗浄バッファーで5 5℃、15分間洗った。この操作を2回繰り返した後に、0.4XSSCで5 5℃、15分間洗った。ブロッキング溶液(ロッシュ社)0.1gを10m1 のバッファー A (pH7. 5、100mM Tris-HCl、150mM NaC1) に溶かしたものに切片を移し、室温で1時間反応させる。0.1% トライトン X-100を含む1mlのバッファー Aにアンチージゴキシゲ ニン-AP、Fab fragments (ロッシュ社)を0.75U加えた ものに切片を移し、4℃で16時間反応させた。その後10mlのバッファー Aで室温、15分間洗った。この操作を2回繰り返した後、10mlのバッフ 10 7- B (pH9. 5, 100mM Tris-HCl, 100mM NaC 1、50mM MgCl2)で室温15分間洗った。10mlのバッファー B に40μlのNBT溶液 (ロッシュ社) 及び35μlのX-phosphat e溶液を加え、切片を移し、発色反応を行った。室温で24時間反応させた後 に50mlのTEに移す。切片をMASコートスライドガラス(松浪ガラス)に 15 貼り付け、風乾させた後に、封入剤(50%グリセロール、5%ゼラチン)に てカバーグラスを貼り付ける。アンチセンスプローブにて特異的に発色してい たのは視床下部の内側視索前野、外側視索前野、視床下部外側野、海馬の海馬 錐体細胞 CA1-CA3 領域、また中脳の中脳水道腹側部などであった。これらの領 域ではセンスプローブによる発色は検出されなかった。 20

産業上の利用可能性

25

本発明のペプチドおよびそのDNA、本発明のウシGPR7およびそのD NA、および本発明のウシGPR8およびそのDNAは、例えば、拒食症の 予防・治療薬、食欲(摂食)増進剤などとして有用である。

さらに、本発明のペプチド等はGPR7アゴニストやアンタゴニストのス クリーニング等にも有用である。

請求の範囲

1. N末端アミノ酸残基がブロモ化されていてもよい配列番号:1で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするペプチド、そのアミド、もしくはそのエステルまたはその塩。

5

15

- 2. 配列番号:1で表わされるアミノ酸配列と同一もしくは実質的に同一の アミノ酸配列を含有することを特徴とする請求項1記載のペプチド、そのア ミド、もしくはそのエステルまたはその塩。
- 3. 配列番号: 1、配列番号: 2、配列番号: 3または配列番号: 66で表10 わされるアミノ酸配列を有する請求項1記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。
 - 4. N末端のトリプトファン残基が6-ブロモ化されている、配列番号:1、 配列番号:2、配列番号:3または配列番号:66で表わされるアミノ酸配 列を有する請求項1記載のペプチド、そのアミド、もしくはそのエステルま たはその塩。
 - 5. N末端アミノ酸残基がプロモ化されていてもよい配列番号: 4で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするペプチド、そのアミド、もしくはそのエステルまたはその塩。
- 6. 配列番号: 4 で表わされるアミノ酸配列と同一もしくは実質的に同一の アミノ酸配列を含有することを特徴とする請求項5 記載のペプチド、そのア ミド、もしくはそのエステルまたはその塩。
 - 7. 配列番号: 4、配列番号: 5、配列番号: 6または配列番号: 67で表わされるアミノ酸配列を有する請求項5記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。
- 25 8. N末端のトリプトファン残基が6-ブロモ化されている、配列番号:6 7で表わされるアミノ酸配列を有する請求項5記載のペプチド、そのアミド、 もしくはそのエステルまたはその塩。
 - 9. N末端のトリプトファン残基が6-ブロモ化されている、配列番号:4、 配列番号:5、配列番号:6または配列番号:67で表わされるアミノ酸配

列を有する請求項5記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。

- 10. N末端アミノ酸残基がブロモ化されていてもよい配列番号: 7で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするペプチド、そのアミド、もしくはそのエステルまたはその塩。
- 11. 配列番号:7で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする請求項10記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。
- 10 12.配列番号:7、配列番号:8、配列番号:9、配列番号:10、配列番号:11、配列番号:12、配列番号:68または配列番号:69で表わされるアミノ酸配列を有する請求項10記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。
- 13. N末端アミノ酸残基がブロモ化されていてもよい配列番号:13で表 わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有す ることを特徴とするペプチド、そのアミド、もしくはそのエステルまたはそ の塩。
 - 14.配列番号:13で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする請求項13記載のペプチド、
- 20 そのアミド、もしくはそのエステルまたはその塩。
 - 15. 配列番号:13、配列番号:14、配列番号:15または配列番号:70で表わされるアミノ酸配列を有する請求項13記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。
- 16. N末端アミノ酸残基がプロモ化されていてもよい配列番号:16で表 25 わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有す ることを特徴とするペプチド、そのアミド、もしくはそのエステルまたはそ の塩。
 - 17. 配列番号:16で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする請求項16記載のペプチド、

そのアミド、もしくはそのエステルまたはその塩。

15

25

- 18. 配列番号:16、配列番号:17、配列番号:18または配列番号:71で表わされるアミノ酸配列を有する請求項17記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。
- 5 19.配列番号:49または配列番号:86で表わされるアミノ酸配列と同 ーもしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩と結 合する能力を有している請求項1~18記載のペプチド、そのアミド、もし くはそのエステルまたはその塩。
- 20.配列番号:59で表わされるアミノ酸配列と同一もしくは実質的に同 10 一のアミノ酸配列を含有する蛋白質またはその塩と結合する能力を有してい る請求項1~18記載のペプチド、そのアミド、もしくはそのエステルまた はその塩。
 - 21. 配列番号:84または配列番号:88で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩と結合する能力を有している請求項1~18記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。
 - 22. 請求項1~21のいずれかに記載のペプチドの部分ペプチド、そのアミド、もしくはそのエステルまたはその塩。
- 23. 請求項1~21のいずれかに記載のペプチドの前駆体ペプチド、その 20 アミド、もしくはそのエステルまたはその塩。
 - 24. 配列番号: 19で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする請求項23記載の前駆体ペプチド、そのアミド、もしくはそのエステルまたはその塩。
 - 25.配列番号:19、配列番号:20、配列番号:21または配列番号:72で表わされるアミノ酸配列を有する請求項24記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。
 - 26. 配列番号:22で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする請求項23記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。

- 27. 配列番号:22、配列番号:23、配列番号:24または配列番号:73で表わされるアミノ酸配列を有する請求項26記載のペプチド、そのアミド、もしくはそのエステルまたはその塩。
- 28. 請求項1~21のいずれかに記載のペプチドをコードするポリヌクレ オチドを含有するポリヌクレオチド。

5

- 29. 配列番号: 25、配列番号: 26、配列番号: 27、配列番号: 28、 配列番号: 29、配列番号: 30、配列番号: 31、配列番号: 32、配列 番号: 33、配列番号: 34、配列番号: 35、配列番号: 36、配列番号: 37、配列番号: 38、配列番号: 39、配列番号: 40、配列番号: 41、
- 10 配列番号: 42、配列番号: 74、配列番号: 75、配列番号: 76、配列番号: 77、配列番号: 78または配列番号: 79で表わされる塩基配列を 有する請求項28記載のポリヌクレオチド。
 - 30. 請求項22記載の部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチド。
- 15 31.請求項23記載の前駆体ペプチドをコードするポリヌクレオチドを含 有するポリヌクレオチド。
 - 32.配列番号:43、配列番号:44、配列番号:45、配列番号:46、 配列番号:47、配列番号:48、配列番号:80または配列番号:81で 表わされる塩基配列を有する請求項31記載のポリヌクレオチド。
- 20 33. DNAである請求項28~32記載のポリヌクレオチド。
 - 34. 請求項28~33のいずれかに記載のポリヌクレオチドを含有する組換えベクター。
 - 35. 請求項34記載の組換えベクターで形質転換させた形質転換体。
- 36.請求項35記載の形質転換体を培養し、請求項1~21のいずれかに 25 記載のペプチド、その部分ペプチドまたはその前駆体ペプチドを生成せしめ ることを特徴とする請求項1~21のいずれかに記載のペプチド、その部分 ペプチドもしくはその前駆体ペプチドまたはその塩の製造法。
 - 37. 請求項1~21のいずれかに記載のペプチド、その部分ペプチドもしくはその前駆体ペプチド、そのアミド、もしくはそのエステルまたはその塩

に対する抗体。

- 38. 請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩の活性を不活性化する中和抗体である請求項37記載の抗体。
- 5 39. 請求項37記載の抗体を含有してなる医薬。
 - 40.肥満症または摂食亢進症の予防・治療剤である請求項39記載の医薬。
 - 41. 請求項37記載の抗体を含有してなる診断薬。
 - 42. 拒食症、肥満症または摂食亢進症の診断薬である請求項41記載の診断薬。
- 10 43.請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩を含有してなる医薬。
 - 44. 拒食症の予防・治療剤または食欲増進剤である請求項43記載の医薬。
 - 45. 請求項28記載のポリヌクレオチドを含有してなる医薬。
 - 46. 拒食症の予防・治療剤または食欲増進剤である請求項45記載の医薬。
- 15 47. 請求項28記載のポリヌクレオチドを含有してなる診断薬。
 - 48. 拒食症、肥満症または摂食亢進症の診断薬である請求項47記載の診断薬。
 - 49. 請求項28記載のポリヌクレオチドと相補的な塩基配列またはその一部 を含有してなるポリヌクレオチド。
- **20** 50. 請求項49記載のポリヌクレオチドを含有してなる医薬。
 - 51.肥満症または摂食亢進症の予防・治療剤である請求項50記載の医薬。
 - 52. 請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:49で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩を用いることを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたは
 - のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたは その塩と配列番号:49で表わされるアミノ酸配列と同一もしくは実質的に 同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる 化合物またはその塩のスクリーニング方法。

10

15

20

53.請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:59で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩を用いることを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:59で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法。

54.請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:84で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩を用いることを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:84で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法。

55. 請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:49で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩とを含有することを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:49で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット。

25 5 6. 請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:59で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩とを含有することを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルま

5

10

15

20

25

たはその塩と配列番号:59で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット。

57. 請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:84で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩とを含有することを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:84で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット。

58.請求項52記載のスクリーニング方法または請求項55記載のスクリーニング用キットを用いて得られうる、請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:49で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩。

59. 請求項53記載のスクリーニング方法または請求項56記載のスクリーニング用キットを用いて得られうる、請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:59で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩。

60. 請求項54記載のスクリーニング方法または請求項57記載のスクリーニング用キットを用いて得られうる、請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:84で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩。

- 61. アゴニストである請求項58~60記載の化合物またはその塩。
- 62. アンタゴニストである請求項58~60記載の化合物またはその塩。
- 63. 請求項58~60のいずれかに記載の化合物またはその塩を含有してなる医薬。
- 5 64. 請求項61記載のアゴニストを含有してなる拒食症の予防・治療剤また は食欲増進剤。
 - 65. 請求項62記載のアンタゴニストを含有してなる肥満症または摂食亢進症の予防・治療剤。
- 66.請求項52記載のスクリーニング方法または請求項55記載のスクリ 10 ーニング用キットを用いて得られうる抗肥満薬。
 - 67. 請求項53記載のスクリーニング方法または請求項56記載のスクリーニング用キットを用いて得られうる抗肥満薬。
 - 68. 請求項54記載のスクリーニング方法または請求項57記載のスクリーニング用キットを用いて得られうる抗肥満薬。
- 15 69.請求項1~21のいずれかに記載のペプチド、その部分ペプチドまたはその前駆体ペプチドをコードするDNAを用いることを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチドまたはその前駆体ペプチドの発現量を変化させる化合物またはその塩のスクリーニング方法。
- 70.請求項1~21のいずれかに記載のペプチド、その部分ペプチドまたは 20 その前駆体ペプチドをコードするDNAを含有することを特徴とする請求項1 ~21のいずれかに記載のペプチド、その部分ペプチドまたはその前駆体ペプ チドの発現量を変化させる化合物またはその塩のスクリーニング用キット。
 - 71. 請求項69記載のスクリーニング方法または請求項70記載のスクリーニング用キットを用いて得られうる、請求項1~21のいずれかに記載のペプチド、その部分ペプチドまたはその前駆体ペプチドの発現量を変化させる化合物またはその塩。

25

- 72. 発現量を増加させる化合物またはその塩である請求項71記載の化合物またはその塩。
- 73. 発現量を減少させる化合物またはその塩である請求項71記載の化合物

15

20

またはその塩。

- 74. 請求項71記載の化合物またはその塩を含有してなる医薬。
- 75.請求項72記載の化合物またはその塩を含有してなる拒食症の予防・治療剤または食欲増進剤。
- 5 76. 請求項73記載の化合物またはその塩を含有してなる肥満症または摂 食亢進症の予防・治療剤。
 - 77. 哺乳動物に対して、請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩、請求項28記載のポリヌクレオチド、請求項61記載のアゴニスト、または請求項72記載の化合物またはその塩の有効量を投与することを特徴とする拒食症の予防・治療方法。
 - 78. 哺乳動物に対して、請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩、請求項28記載のポリヌクレオチド、請求項61記載のアゴニスト、または請求項72記載の化合物またはその塩の有効量を投与することを特徴とする食欲増進方法。
 - 79. 哺乳動物に対して、請求項37記載の抗体、請求項49記載のポリヌクレオチド、請求項62記載のアンタゴニスト、または請求項73記載の化合物またはその塩の有効量を投与することを特徴とする肥満症または摂食亢進症の予防・治療方法。
 - 80.配列番号:86で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質またはその塩。
 - 81.配列番号:86で表されるアミノ酸配列を含有する請求項80記載のタンパク質またはその塩。
- 25 82. 請求項80記載のタンパク質の部分ペプチドまたはその塩。
 - 83. 請求項80記載のタンパク質またはその部分ペプチドをコードするポリ ヌクレオチドを含有するポリヌクレオチド。
 - 84. DNAである請求項83記載のポリヌクレオチド。
 - 85. 配列番号:87で表される塩基配列を含有する請求項84記載のポリヌ

クレオチド。

- 86. 請求項83記載のポリヌクレオチドを含有する組換えベクター。
- 87. 請求項86記載の組換えベクターで形質転換させた形質転換体。
- 88. 請求項87記載の形質転換体を培養し、請求項80記載のタンパク質ま
- 5 たはその部分ペプチドを生成せしめることを特徴とする請求項80記載のタンパク質、その部分ペプチドまたはその塩の製造法。
 - 89. 請求項80記載のタンパク質もしくは請求項82記載の部分ペプチドまたはその塩を含有してなる医薬。
 - 90. 請求項83記載のポリヌクレオチドを含有してなる医薬。
- 10 91. 拒食症の予防・治療剤または食欲増進剤である請求項90記載の医薬。
 - 92. 請求項83記載のポリヌクレオチドを含有してなる診断薬。
 - 93. 拒食症、肥満症または摂食亢進症の診断薬である請求項92記載の診断薬。
- 94. 請求項80記載のタンパク質もしくは請求項82記載の部分ペプチドま 15 たはその塩に対する抗体。
 - 95. 請求項80記載のタンパク質のシグナル伝達を不活性化する中和抗体である請求項94記載の抗体。
 - 96. 請求項94記載の抗体を含有してなる医薬。
 - 97. 肥満症または摂食亢進症の予防・治療剤である請求項96記載の医薬。
- 20 98. 請求項94記載の抗体を含有してなる診断薬。
 - 99. 拒食症、肥満症または摂食亢進症の診断薬である請求項98記載の診断薬。
 - 100. 請求項83記載のポリヌクレオチドと相補的な塩基配列またはその一部を含有してなるポリヌクレオチド。
- 25 101. 請求項100記載のポリヌクレオチドを含有してなる医薬。
 - 102. 肥満症または摂食亢進症の予防・治療剤である請求項101記載の医薬。
 - 103. 配列番号:88で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質またはその塩。

- 104. 配列番号:88で表されるアミノ酸配列を含有する請求項103記載のタンパク質またはその塩。
- 105. 請求項103記載のタンパク質の部分ペプチドまたはその塩。
- 106. 請求項103記載のタンパク質またはその部分ペプチドをコードする
- 5 ポリヌクレオチドを含有するポリヌクレオチド。
 - 107. DNAである請求項106記載のポリヌクレオチド。
 - 108. 配列番号:89で表される塩基配列を含有する請求項107記載のポリヌクレオチド。
 - 109. 請求項108記載のポリヌクレオチドを含有する組換えベクター。
- 10 110. 請求項109記載の組換えベクターで形質転換させた形質転換体。
 - 111. 請求項110記載の形質転換体を培養し、請求項103記載のタンパク質またはその部分ペプチドを生成せしめることを特徴とする請求項103記載のタンパク質、その部分ペプチドまたはその塩の製造法。
- 1 1 2. 請求項 1 0 3 記載のタンパク質もしくは請求項 1 0 5 記載の部分ペプ 15 チドまたはその塩を含有してなる医薬。
 - 113. 請求項106記載のポリヌクレオチドを含有してなる医薬。
 - 114. 拒食症の予防・治療剤または食欲増進剤である請求項113記載の医薬。
 - 115. 請求項106記載のポリヌクレオチドを含有してなる診断薬。
- 20 116. 拒食症、肥満症または摂食亢進症の診断薬である請求項115記載の 診断薬。
 - 117. 請求項103記載のタンパク質もしくは請求項105記載の部分ペプチドまたはその塩に対する抗体。
- 118. 請求項103記載のタンパク質のシグナル伝達を不活性化する中和抗 25 体である請求項117記載の抗体。
 - 119. 請求項117記載の抗体を含有してなる医薬。
 - 120. 肥満症または摂食亢進症の予防・治療剤である請求項119記載の医薬。
 - 121. 請求項117記載の抗体を含有してなる診断薬。

122. 拒食症、肥満症または摂食亢進症の診断薬である請求項121記載の診断薬。

123. 請求項106記載のポリヌクレオチドと相補的な塩基配列またはその一部を含有してなるポリヌクレオチド。

5 124. 請求項123記載のポリヌクレオチドを含有してなる医薬。

10

. 15

20

125. 肥満症または摂食亢進症の予防・治療剤である請求項124記載の医薬。

126. 請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:86で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩を用いることを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:86で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法。

127. 請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:88で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩を用いることを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:88で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法。

128.請求項1~21のいずれかに記載のペプチド、その部分ペプチド、 そのアミド、もしくはそのエステルまたはその塩と配列番号:86で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩とを含有することを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:86で表わされるアミノ酸配列と同一もしくは実

質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化 させる化合物またはその塩のスクリーニング用キット。

129.請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:88で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩とを含有することを特徴とする請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:88で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット。

130. 請求項126記載のスクリーニング方法または請求項128記載のスクリーニング用キットを用いて得られうる、請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:86で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩。

15

20

131. 請求項127記載のスクリーニング方法または請求項129記載のスクリーニング用キットを用いて得られうる、請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩と配列番号:88で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質またはその塩との結合性を変化させる化合物またはその塩。

132. アゴニストである請求項130または131記載の化合物またはその塩。

- 25 133. アンタゴニストである請求項130または131記載の化合物また はその塩。
 - 134. 請求項130または131記載の化合物またはその塩を含有してなる医薬。
 - 135. 請求項132記載のアゴニストを含有してなる拒食症の予防・治療剤

または食欲増進剤。

136.請求項133記載のアンタゴニストを含有してなる肥満症または摂食 亢進症の予防・治療剤。

137.配列番号:86で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質をコードするDNAを用いることを特徴とする、配列番号:86で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の発現量を変化させる化合物またはその塩のスクリーニング方法。

138.配列番号:86で表されるアミノ酸配列と同一もしくは実質的に同一 のアミノ酸配列を含有することを特徴とするタンパク質をコードするDNAを 含有することを特徴とする、配列番号:86で表されるアミノ酸配列と同一も しくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の 発現量を変化させる化合物またはその塩のスクリーニング用キット。

139. 請求項137記載のスクリーニング方法または請求項138記載のスクリーニング用キットを用いて得られうる、配列番号:86で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の発現量を変化させる化合物またはその塩。

- 140. 発現量を増加させる化合物またはその塩である請求項139記載の化合物またはその塩。
- 20 141. 発現量を減少させる化合物またはその塩である請求項139記載の化 合物またはその塩。
 - 142. 請求項139記載の化合物またはその塩を含有してなる医薬。
 - 143. 請求項140記載の化合物またはその塩を含有してなる拒食症の予防・治療剤または食欲増進剤。
- 25 144. 請求項141記載の化合物またはその塩を含有してなる肥満症また は摂食亢進症の予防・治療剤。

145. 配列番号:88で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質をコードするDNAを用いることを特徴とする、配列番号:88で表されるアミノ酸配列と同一もし

くは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の発 現量を変化させる化合物またはその塩のスクリーニング方法。

- 146. 配列番号:88で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質をコードするDNAを
- 5 含有することを特徴とする、配列番号:88で表されるアミノ酸配列と同一も しくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の 発現量を変化させる化合物またはその塩のスクリーニング用キット。
 - 147. 請求項145記載のスクリーニング方法または請求項146記載のスクリーニング用キットを用いて得られうる、配列番号:88で表されるアミノ
- 10 酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするタンパク質の発現量を変化させる化合物またはその塩。
 - 148. 発現量を増加させる化合物またはその塩である請求項147記載の化合物またはその塩。
- 149. 発現量を減少させる化合物またはその塩である請求項147記載の化 15 合物またはその塩。
 - 150. 請求項147記載の化合物またはその塩を含有してなる医薬。
 - 151. 請求項148記載の化合物またはその塩を含有してなる拒食症の予防・治療剤または食欲増進剤。
- 152. 請求項149記載の化合物またはその塩を含有してなる肥満症また 20 は摂食亢進症の予防・治療剤。
 - 153. 哺乳動物に対して、請求項80記載のタンパク質、その部分ペプチドまたはその塩、請求項83記載のポリヌクレオチド、請求項103記載のタンパク質、その部分ペプチドまたはその塩、請求項106記載のポリヌクレオチド、請求項132記載のアゴニスト、請求項140記載の化合物またはその塩、または請求項148記載の化合物またはその塩の有効量を投与す
- 25 はその塩、または請求項148記載の化合物またはその塩の有効量を投与することを特徴とする拒食症の予防・治療方法。
 - 154. 哺乳動物に対して、請求項80記載のタンパク質、その部分ペプチドまたはその塩、請求項83記載のポリヌクレオチド、請求項103記載のタンパク質、その部分ペプチドまたはその塩、請求項106記載のポリヌク

レオチド、請求項132記載のアゴニスト、請求項140記載の化合物またはその塩、または請求項148記載の化合物またはその塩の有効量を投与することを特徴とする食欲増進方法。

155. 哺乳動物に対して、請求項94記載の抗体、請求項100記載のポリヌクレオチド、請求項117記載の抗体、請求項123記載のポリヌクレオチド、請求項133記載のアンタゴニスト、請求項141記載の化合物またはその塩、または請求項149記載の化合物またはその塩の有効量を投与することを特徴とする肥満症または摂食亢進症の予防・治療方法。

5

156. 外来性の請求項28記載のDNAまたはその変異DNAを有する非と10 ト哺乳動物。

- 157. 非ヒト哺乳動物がゲッ歯動物である請求項156記載の動物。
- 158.外来性の請求項28記載のDNAまたはその変異DNAを含有し、哺 乳動物において発現しうる組換えベクター。
- 159. 請求項28記載のDNAが不活性化された非ヒト哺乳動物胚幹細胞。
- 15 1 6 0. 該DNAがレポーター遺伝子を導入することにより不活性化された請求項159記載の胚幹細胞。
 - 161、非ヒト哺乳動物がゲッ歯動物である請求項159記載の胚幹細胞。
 - 162. 請求項28記載のDNAが不活性化された該DNA発現不全非ヒト哺乳動物。
- 20 163. 該DNAがレポーター遺伝子を導入することにより不活性化され、該レポーター遺伝子が請求項28記載のDNAに対するプロモーターの制御下で 発現しうる請求項162記載の非ヒト哺乳動物。
 - 164. 非ヒト哺乳動物がゲッ歯動物である請求項162記載の非ヒト哺乳動物。
- 25 165. 請求項163記載の動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする請求項28記載のDNAに対するプロモーター活性を促進または阻害する化合物またはその塩のスクリーニング方法。
 - 166.外来性の請求項83記載のDNAまたはその変異DNAを有する非ヒト哺乳動物。

- 167. 非ヒト哺乳動物がゲッ歯動物である請求項166記載の動物。
- 168. 外来性の請求項83記載のDNAまたはその変異DNAを含有し、哺乳動物において発現しうる組換えベクター。
- 169. 請求項83記載のDNAが不活性化された非ヒト哺乳動物胚幹細胞。
- 5 170. 該DNAがレポーター遺伝子を導入することにより不活性化された請求項169記載の胚幹細胞。
 - 171. 非ヒト哺乳動物がゲッ歯動物である請求項169記載の胚幹細胞。
 - 172. 請求項83記載のDNAが不活性化された該DNA発現不全非ヒト哺乳動物。
- 10 173. 該DNAがレポーター遺伝子を導入することにより不活性化され、該レポーター遺伝子が請求項83記載のDNAに対するプロモーターの制御下で発現しうる請求項172記載の非ヒト哺乳動物。
 - 174. 非ヒト哺乳動物がゲッ歯動物である請求項172記載の非ヒト哺乳動物。
- 15 175. 請求項173記載の動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする請求項83記載のDNAに対するプロモーター活性を促進または阻害する化合物またはその塩のスクリーニング方法。
 - 176. 外来性の請求項106記載のDNAまたはその変異DNAを有する非ヒト哺乳動物。
- 20 177. 非ヒト哺乳動物がゲッ歯動物である請求項176記載の動物。
 - 178. 外来性の請求項106記載のDNAまたはその変異DNAを含有し、 哺乳動物において発現しうる組換えベクター。
 - 179. 請求項106記載のDNAが不活性化された非ヒト哺乳動物胚幹細胞。
 - 180. 該DNAがレポーター遺伝子を導入することにより不活性化された請
- 25 求項179記載の胚幹細胞。
 - 181. 非ヒト哺乳動物がゲッ歯動物である請求項179記載の胚幹細胞。
 - 182. 請求項106記載のDNAが不活性化された該DNA発現不全非ヒト 哺乳動物。
 - 183. 該DNAがレポーター遺伝子を導入することにより不活性化され、該

レポーター遺伝子が請求項106記載のDNAに対するプロモーターの制御下で発現しうる請求項182記載の非ヒト哺乳動物。

184. 非ヒト哺乳動物がゲッ歯動物である請求項182記載の非ヒト哺乳動物。

- 5 185. 請求項183記載の動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする請求項106記載のDNAに対するプロモーター活性を促進または阻害する化合物またはその塩のスクリーニング方法。
 - 186. 拒食症の予防・治療剤を製造するための、請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステ
- 10 ルまたはその塩、請求項28記載のポリヌクレオチド、請求項61記載のア ゴニスト、または請求項72記載の化合物またはその塩の使用。
 - 187. 食欲増進剤を製造するための、請求項1~21のいずれかに記載のペプチド、その部分ペプチド、そのアミド、もしくはそのエステルまたはその塩、請求項28記載のポリヌクレオチド、請求項61記載のアゴニスト、
- 15 または請求項72記載の化合物またはその塩の使用。
 - 188. 肥満症または摂食亢進症の予防・治療剤を製造するための、請求項37記載の抗体、請求項49記載のポリヌクレオチド、請求項62記載のアンタゴニスト、または請求項73記載の化合物またはその塩の使用。
 - 189. 拒食症の予防・治療剤を製造するための、請求項80記載のタンパク質、その部分ペプチドまたはその塩、請求項83記載のポリヌクレオチド、請求項103記載のタンパク質、その部分ペプチドまたはその塩、請求項106記載のポリヌクレオチド、請求項132記載のアゴニスト、請求項140記載の化合物またはその塩、または請求項148記載の化合物またはその塩の使用。
- 25 190.食欲増進剤を製造するための、請求項80記載のタンパク質、その部分ペプチドまたはその塩、請求項83記載のポリヌクレオチド、請求項103記載のタンパク質、その部分ペプチドまたはその塩、請求項106記載のポリヌクレオチド、請求項132記載のアゴニスト、請求項140記載の化合物またはその塩、または請求項148記載の化合物またはその塩の使用。

191. 肥満症または摂食亢進症の予防・治療剤を製造するための、請求項94記載の抗体、請求項100記載のポリヌクレオチド、請求項117記載の抗体、請求項123記載のポリヌクレオチド、請求項133記載のアンタゴニスト、請求項141記載の化合物またはその塩、または請求項149記載の化合物またはその塩の使用。

1/33

図 1

tgcctgct gctggcgccg 60	tactcggt gggccgcgcc 120	cgctccca gccctacaga 180	caactgca ccccaggctg 240	cagaggtg cgagcggctc 300	ctgtccct gcgcgcagcc 360	
ggcccggt ccgcgacact ggcggccgcc gccctggcgc tgtgcctgct gctggcgccg	tggcctcg cgtggtacaa gccagcggcg gggcacagct cctactcggt gggccgcgcc	ggggetge tgteeggeet eegcaggtee eegtaegege ggegeteeea geeetaeaga	ggoggaac cocogggogg ggooggogo tocooggago tgcaactgca cocoaggotg	gagecteg etgtgtgegt ecaggaegte geeceaaace tgeagaggtg egageggete	egacggee gegggaeeta ecagtgeaag gegaaegtet teetgteeet gegegeagee	-
ccgcgacact gg	cgtggtacaa gc	tgtccggcct co	ဝင်ငင်ရဲရှင်ရှင် ရှင်	ctgtgtgcgt co	gegggaeeta ee	
ggcccggt	tggcctcg	ggggctgc	ıggcggaac	gageeteg	cgacggcc	

Cys Glu Arg Leu Pro Asp Gly Arg Gly Thr Tyr Gln Cys Lys Ala Asn

105

100

Val Phe Leu Ser Leu Arg Ala Ala Asp Cys Leu Ala Ala End

120

図 2

、ノ酸配列

Met Ala Arg Ser Ala Thr Leu Ala Ala Ala Ala Leu Ala Leu Cys Leu Arg Ser Leu Ala Val Cys Val Gln Asp Val Ala Pro Asn Leu Gln Arg Pro Gly Gly Ala Gly Ala Ser Pro Glu Leu Gln Leu His Pro Arg Leu Leu Leu Ala Pro Pro Gly Leu Ala Trp Tyr Lys Pro Ala Ala Gly His Ser Ser Tyr Ser Val Gly Arg Ala Ala Gly Leu Leu Ser Gly Leu Arg Arg Ser Pro Tyr Ala Arg Arg Ser Gln Pro Tyr Arg Gly Ala Glu Pro 45 9 8 25 55 85 20 35

3/33

図 3

360	gagcacctga	ctgattgcca	ctgcacgaga	ttccagtgta aagcggacgt cttcttgtcg ctgcacgaga ctgattgcca gagcacctga	aagcggacgt	tccagtgta
300	ccgagggact	aactcaacag	tgccagcggc	gtcaaagatg tgaccccgaa cctgcagagc tgccagcggc aactcaacag ccgagggact	tgaccccgaa	tcaaagatg
240	ggaaccggac ctctgcgcaa tttagagatg cgccccagcg taaggagcct tgccctgtgt	taaggagcct	cgccccagcd	tttagagatg	ctctgcgcaa	gaaccggac
180	ctgtcgagtt tccacaggtt cccgtccacg cgacgctccg agtctccagc actccgggtg	agtctccagc	cgacgctccg	cccgtccacg	tccacaggtt	tgtcgagtt
120	ctcggggcta	tgggccgcgc	cactactcgg	gogtggtaca agcoogoggo gggacoocao cactactogg tgggoogogo ctoggggota	agcccdcddc	cgtggtaca
09	aryyccyyu yldyyddycy yglygddgae gadalggaga tgataetgad gadagadta	tgctcctgcc	gccctggcgc	ာစစ်သစ်စ်သစ်စ	ytayyacyct	าห์กาวห์กา

Met Ala Arg Cys Arg Thr Leu Val Ala Ala Ala Leu Ala Leu Leu Leu

Pro Pro Ala Leu Ala Trp Tyr Lys Pro Ala Ala Gly Pro His His Tyr

30

25

Ser Val Gly Arg Ala Ser Gly Leu Leu Ser Ser Phe His Arg Phe Pro 40

Ser Thr Arg Arg Ser Glu Ser Pro Ala Leu Arg Val Gly Thr Gly Pro 9 55

50

Leu Arg Asn Leu Glu Met Arg Pro Ser Val Arg Ser Leu Ala Leu Cys

Val Lys Asp Val Thr Pro Asn Leu Gln Ser Cys Gln Arg Gln Leu Asn 90 85

Ser Arg Gly Thr Phe Gln Cys Lys Ala Asp Val Phe Leu Ser Leu His 105 100

Glu Thr Asp Cys Gln Ser Thr End

5/33

図 5

360	ttccagtgta aggcggacgt cttcttgtcg ctgcacaagg ctgaatgcca aagcgcctga	ctgaatgcca	ctgcacaagg	cttcttgtcg	aggcggacgt	ttccagtgta
300	ccgagggact	aactcaacag	tgccagcggc	gtcaaagatg tgaccccgaa cctgcagagc tgccagcggc aactcaacag ccgagggact	tgacccgaa	gtcaaagatg
240	tgccctgtgt	taagaagcct	cgcccaagcg	ggaaccgtac ctctgcgcaa cttggagatg cgcccaagcg taagaagcct tgccctgtgt	ctctgcgcaa	ggaaccgtac
180	actccgggtg	agtctccagc	cgacgttccg	ctgtcgagtt tccacaggtt cccatccacg cgacgttccg agtctccagc actccgggtg	tccacaggtt	ctgtcgagtt
120	tgcggggcta	tgggccgcgc	cactactcgg	gogtggtaca agcccgcggc gggatcccac cactactcgg tgggccgcgc tgcggggcta	agcccgcggc	gcgtggtaca
09	atggtccggt gtaggacgct ggtggccgcc gccctggcgc tgctcctgac gccagccctc	tgctcctgac	gccctggcgc	ggtggccgcc	gtaggacgct	atggtccggt

図 6

Met Val Arg Cys Arg Thr Leu Val Ala Ala Ala Leu Ala Leu Leu Leu Leu Arg Asn Leu Glu Met Arg Pro Ser Val Arg Ser Leu Ala Leu Cys Val Lys Asp Val Thr Pro Asn Leu Gln Ser Cys Gln Arg Gln Leu Asn Ser Arg Gly Thr Phe Gln Cys Lys Ala Asp Val Phe Leu Ser Leu His Ser Val Gly Arg Ala Ala Gly Leu Leu Ser Ser Phe His Arg Phe Pro Ser Thr Arg Arg Ser Glu Ser Pro Ala Leu Arg Val Gly Thr Val Pro Thr Pro Ala Leu Ala Trp Tyr Lys Pro Ala Ala Gly Ser His His Tyr 15 9 90 105 Lys Ala Glu Cys Gln Ser Ala End 55 70 ယ် က

7/33

図 7

	30 27 27	60 55	90 84 94	120 114 114	125 119 119
		•			
	4 4 4	— β4 Ι Ι → Ι Ι Ι Ι Ι	> > >	ব দ্ব	
	2 2 2	A M W	O M M	A H H	
	M M M	OHH	> >	T T H	
	KKK	SSS	UUU	S S S	
	XXX	2 2 2	> 11 11	11 11 11	٠
→	AAA	124 124 124 124 124 124	A A A	E4 E4 E4	•
-	디디디	4 4 4	ннн	> > >	
	U A A	N N K	တတလ	ZAA	
	д д д	<u> </u>	段 段 段	AAA	•
	PH PH EH	ល្អម	니 > >	* * *	
	य न न	联转段	တ လ	υυυ	
	11 11	KHH	Pr Pr Pr	0 0 0	•
		디타타	# K K	H H H	
	д ()	က လ	JEE	HHH	
	0 1 1	α α α	OBB	000	
	1111	H H H	HHH	R R R	
	LLA	11 11 11	M Z Z	ט מ ט	•
	AAI	A S A	50 E E		
	AAA	A A A	A A A A I	다다니	
	AAA	888	[0 0 >	R R R O R	
	4 > >	0 0 0	AHH	H 0 0	,·
		> > >	ပ ပ ပ	000	
	HHH	တ တ တ	٥ > >	N N	
	4 2 2	N N N	P1 PK PK	aaa	4 4
	တ ပ လ	SHH	머니니	нны	A N N
	民民民	SHH	BAA	222	100
	4 4 >	N A H	4 Pr Pr	д д д	ပြပ
i	ΣΣΣ	000	יו ט	A H H	O O 🖽
	•				
	r o	ದ ത	പ്പ ത	ct : a)	
	Human Mouse Rat	Human Mouse Rat	Human Mouse Rat	Human Mouse Rat	mai use t
	Hr Mc Ra	Ht Mo Ra	Hu Mo Ra	Hu Mo Ra	Human Mouse Rat

8/33

図 8

9/33

図 9

10/33

図10

11/33

図11

図 i 3

図14

図15

図16

図17

図18

図19

20/33

図20

NA の配列

t gggccgcgcc 120	a gccccgcggg 180	a cctgcggagt 240	actecegae 300	ctcggactgt 360	369
actactccg.	ggcgctccg	tgcgcccca	gctgcgago	cgctcagcg	
gggcaggggt	ccgtacgcac	ttccgggaga	aacctgcaga	gtcttcctgt	
gccgacggcg	ccacaggtcg	ggtcggcact	ggtcacccc	caaggccgac	
cgtggtacaa	tgtccggctt	ccctgggagg	gcgtcgagga	ctttccagtg	
cctggcctcg	gcggggctgc	ggcacgcgat	cttgccgtgt	ggccgcgcca	cgcaagtga
	cgtggtacaa gccgacggcg gggcaggggt actactccgt gggccgcgcc	cgtggtacaa gccgacggcg gggcaggggt actactccgt gggccgcgcc tgtccggctt ccacaggtcg ccgtacgcac ggcgctccga gccccgcggg	cgtggtacaa gccgacggcg gggcaggggt actactccgt gggccgcgcc tgtccggctt ccacaggtcg ccgtacgcac ggcgctccga gccccgcggg ccctgggagg ggtcggcact ttccgggaga tgcgccccaa cctgcggagt	cgtggtacaa gccgacggcg gggcagggt actactccgt gggccgcgcc tgtccggctt ccacaggtcg ccgtacgcac ggcgctccga gccccgcggg ccctgggagg ggtcggcact ttccgggaga tgcgccccaa cctgcggagt gcgtcgagga ggtcacccc aacctgcaga gctgcgagcc actccccgac	ogtggtacaa gccgacggcg gggcagggt actactccgt gggccgcgcc tgtccggctt ccacaggtcg ccgtacgcac ggcgctccga gccccgcggg ccctgggagg ggtcggcact ttccgggaga tgcgccccaa cctgcggagt gcgtcgagga ggtcacccc aacctgcaga gctgcgagcc actccccgac ctttccagtg caaggccgac gtcttcctgt cgctcagcgc ctcggactgt

Met Ala Gly Pro Ala Met Leu Val Ala Ala Ala Leu Ala Leu Cys Leu

アミノ酸の配列

Leu Leu Ala Ser Pro Gly Leu Ala Trp Tyr Lys Pro Thr Ala Gly Gln

22

20

21/33

1

図 2

Gly Tyr Tyr Ser Val Gly Arg Ala Ala Gly Leu Leu Ser Gly Phe His

Arg Ser Pro Tyr Ala Arg Arg Ser Glu Pro Arg Gly Gly Thr Arg Ser

9

55

80 Leu Gly Gly Val Gly Thr Phe Arg Glu Met Arg Pro Asn Leu Arg Ser 75

Leu Ala Val Cys Val Glu Glu Val Thr Pro Asn Leu Gln Ser Cys Glu

Pro Leu Pro Asp Gly Arg Ala Thr Phe Gln Cys Lys Ala Asp Val Phe 105

100

Leu Ser Leu Ser Ala Ser Asp Cys Arg Lys End

120

図22

図23

·24/33

図 2 4

コピー数/ng polyAtRNA

図26

540 120 300 360 420 480 600 099 720 780 900 960 180 240 840 cgcgccaaca cgtcgtgccc cgcgcccgca gccgctggcc caactcggcg gttcatcctc cgccgacttt togtogtggc cgtcgatcag ctacctggtg cgcgcgcgcg ggtgttcgcg gcccgaggcc cccagtgtcc cctcgacagc ggccatcctg gctcaccacc cctgagctac ccgccggagc acgacagett ctgtcaacat cgtacggcgc cgctgccgcc gactggcggg gcgccgaccg tgcccttcgc gcgccatacg tcctggtggt tcatcaccag tcttcccgca gcttcgccat tcaccaacct ccgtggtggc cgccaagaag cgggtgaccg ctcgtgccgc gctggccctt cggggagctc ctatgcaagc ggtcgcgacc ctggtggtgc gccggccgca tgcgtactgg tgccggctgc cacctgagca gccttcctgg CCEECECCEC tgcgcagtgg ctatttcctc acggtcatga gtgtcctact aggaagaccg ctggtgctcg tcctga ccggcgccag tttcctctac ctcgctgctg ccgcaccacc gacgccctac atgcacaacg cgtcgtactg ggggccggag cgcgtccggg cctgtacacg agacgccgct ggtcatcgcc cgcggtgatc ggcgccgcgc gcttttcacg gcgccgggtg tcctctacac ccctggaccg gcctcaaccc gctgtcccaa ccgttgtgta tctccagcct tcctcgtctg tgctggcgtg tgctgctgcg ccgtctgggg aggagcaggg tggccgacga ccgccgagtc gcgcgagccg gtagccgtgc ctccgccagc ctgctgaggc cacgccaagg cccacgctcg gtactgttcg aacctggccg tacaacacct gtgagcctgg gccgtgtgcc gccaacagct gtgctggcca cggctcgacg ttgtggtggc accatctgcg gacctcccgc

DNAの配列

27/33

図 2 7

ア	ミノ	後の[記列													
Met	His	Asr	ı Ala	Ser 5	Туі	Trp	Gly	Pro	Glu 10		, Ala	As n	Thi	Sei 18	Cys	
Pro	Ala	Pro	Ala 20		The	Leu	Gly	Cys 25		Asn	Ala	Ser	Gly 30		Ala	
Pro	Pro	Leu 35		Pro	Pro	Leu	Ala 40		Ala	Val	Pro	Val 45		Tyr	Ala	
Val	11e 50		Ala	Val	Gly	Leu 55		Gly	Asn	Ser	Ala 60		Leu	Phe	· Vai	
65			•		70)				75	;				Leu 80	
				85				•	90	١.				95		
			100					105		-			110	1	Cys	
		115		•		,	120					125			Tyr	
	130					135		•			140				Thr	
145					150				_	155			•		Ala 160	
				165		Gly			170					175		
			180			Asp		185		•			190			
		195				Glu	200					205				
	210					Phe 215					220					
225		•			230					235				-	240	
				245		Arg			250					255		
			260			Cys		265					270			
		275				Thr	280					285				
	290					11e 295					300	•				
305					310	Ala		•		315		Phe	Arg	Arg	Ser 320	
Leu	Arg	Gin	Leu	Leu	Ala	Cys	Arg	Thr	Thr	Ser	End					

325 330

28/33

図28

540 600 660 840 900 180 240 300 360 420 480 720 780 ctcctatgtg cctggcctca ccccgagccg cgtggggctg gacagtgacc gctgcccacc caagctggtg catgagtata gcgcaccgtc agtgctgccc ggtgctgggc gaggctaagg ggttagcctc cttcctggat cccaggtagc t gggc t gagt gctcccctg aggtgctctg tcctggccgc gcatgcccg tcacaagttg acctgctgcg ccaagcggaa cgcccttcca tectetatge ccaagatgaa tcacgctggt teacagtege tetacacget tcatcatcgt ggaagageet eegeaeegea tgteggtgee aggggggata atgecaectt teatetgtge tggctgggtg gcaagccgca ctctacgcag ctgggcaagg ctctgctgga gacgggctct cgctcccgcc gagctgcagg gaaagcacaa accagacaca gtatactetg ctgagggete ccctttgggg agtgtctact ctcaacccct catettetee cctgtgcgtc cctctgcgtg agccaaggct cgtgggcctg cctgccccag cagetectge ggaaggcctg gcagcgctgg ggccacggca ctggttccag ggccatcgcc gtacaacaat ggacaatggc gctgccggtg ctgtgtgatc accactgcaa aggicgccag ccgagagggc ccatgigcac tccactccgg ccgtgctggc ∉gaccacaga teagetacae atgatggagg ccactgggct gcctctcatg agcacctgct tggtggttct tcctgaacct tegeaggegt tetacgtget cagccgtcat gtgggcaacg cacgtgttca ttccgcggc ctggtcctgg gtcaccagcc cacagettee acaggcaccg ctgcctgccc aatattgctg gaccgctacc cacagggcga tteettaeet ttcgtggtgc gccctgcggc attgtggccc ctggccattg

DNAの配列

29/33

図29

アミ	ノ酸	色の面	列												
				Thr 5	Gly	Leu	Glu	Gly	Leu 10	Glu	Ser	Thr	Ser	Ser 15	Pro
Cys	Pro	Gly	Ser 20	Thr	Gly	Thr	Gly	Leu 25		Trp	Asp	Asn	G.1 y 30	Thr	Arg
His	Asn	Ala 35	Thr	Phe	Pro	Glu	Pro 40	Leu	Pro	Ala	Leu	Tyr . 45	Val	Leu	Leu
Pro	Val 50	Val	Tyr	Ser	Val	11e 55	Cys	Ala	Val	Gly	Leu 60	Val	Gly	Asn	Ala
Ala 65	Val	He	Cys	Val	11e 70	Leu	Arg	Ala	Pro	Lys 75	Met	Lys	Thr	Val	Thr 80
His	Val	Phe	He	Leu 85	Asn	Leu	Ala	Ile	Ala 90	Asp	Gly	Leu	Phe	Thr 95	Leu
			100			Ala		105					110	:	
		115				Leu	120					125			
	130					Leu 135		•	•		140				
145					150	Arg				155					160
				165		Ser			170					175	
			180			Thr		185	-		·		190		
		195				Leu	200					205			•
	210					Tyr 215					220				
225					230	Leu				235					240
				245		Gly			250					255	
			260			Leu		265					270		
		275				Ala	280				•	285			
	290					11e 295					300				
305					310	Leu -		•	•	315					320
HIS	ser	rne				Leu	_							Gly	

図30

31/33

図31

 Ψ -Y-K-P-A-A-G-H-S-S-Y-S-V-G-R-A-A-G-L-L-

図32

図33

SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> Novel Ligand And Its DNA

<130> 2917WOOP

<150> JP 2001-180562

<151> 2001-06-14

<150> JP 2001-216773

<151> 2001−07−17

<150> JP 2001-359826

<151> 2001-11-26

<150> JP 2001-401019

<151> 2001−12−28

<150> JP 2002-154533

<151> 2002-05-28

<160> 100

<210> 1

⟨211⟩ 23

<212> PRT

<213> Human

<400> 1

Trp Tyr Lys Pro Ala Ala Gly His Ser Ser Tyr Ser Val Gly Arg Ala

5

10

15

Ala Gly Leu Leu Ser Gly Leu

20

⟨210⟩ 2

<211> 24

<212> PRT

WO 02/102847 PCT/JP02/05915 ·

2/45

<213> Mouse <400> 2 Trp Tyr Lys Pro Ala Ala Gly Pro His His Tyr Ser Val Gly Arg Ala 5 10 15 Ser Gly Leu Leu Ser Ser Phe His 20 ⟨210⟩ 3 ⟨211⟩ 24 <212> PRT <213> Rat <400> 3 Trp Tyr Lys Pro Ala Ala Gly Ser His His Tyr Ser Val Gly Arg Ala 5 10 15 Ala Gly Leu Leu Ser Ser Phe His 20 <210> 4 <211> 29 <212> PRT <213> Human <400> 4 Trp Tyr Lys Pro Ala Ala Gly His Ser Ser Tyr Ser Val Gly Arg Ala 5 10 15 Ala Gly Leu Leu Ser Gly Leu Arg Arg Ser Pro Tyr Ala 20 25 <210> 5

<211> 29

<212> PRT

<213> Mouse

<400> 5

Trp Tyr Lys Pro Ala Ala Gly Pro His His Tyr Ser Val Gly Arg Ala

5

10

15

Ser Gly Leu Leu Ser Ser Phe His Arg Phe Pro Ser Thr

20

25

<210> 6

<211> 29

<212> PRT

<213> Rat

<400> 6

Trp Tyr Lys Pro Ala Ala Gly Ser His His Tyr Ser Val Gly Arg Ala

5

10

15

Ala Gly Leu Leu Ser Ser Phe His Arg Phe Pro Ser Thr

20

25

<210> 7

<211> 13

<212> PRT

<213> Human

<400> 7

Trp Tyr Lys Pro Ala Ala Gly His Ser Ser Tyr Ser Val

5

10

<210> 8

<211> 14

<212> PRT

<213> Human

<400> 8

Trp Tyr Lys Pro Ala Ala Gly His Ser Ser Tyr Ser Val Gly

5

10

<210> 9

⟨211⟩ 13

<212> PRT

<213> Mouse

⟨400⟩ 9

Trp Tyr Lys Pro Ala Ala Gly Pro His His Tyr Ser Val

5 10

<210> 10

<211> 14

<212> PRT

 $\langle 213 \rangle$ Mouse

<400> 10

Trp Tyr Lys Pro Ala Ala Gly Pro His His Tyr Ser Val Gly

5 10

⟨210⟩ 11

⟨211⟩ 13

<212> PRT

<213> Rat

<400> 11

Trp Tyr Lys Pro Ala Ala Gly Ser His His Tyr Ser Val

5 10

⟨210⟩ 12

<211> 14

<212> PRT

<213> Rat

5/45

⟨400⟩ 12

Trp Tyr Lys Pro Ala Ala Gly Ser His His Tyr Ser Val Gly

5 10

⟨210⟩ 13

<211> 70

<212> PRT

<213> Human

<400> 13

Ser Gln Pro Tyr Arg Gly Ala Glu Pro Pro Gly Gly Ala Gly Ala Ser

5 10 15

Pro Glu Leu Gln Leu His Pro Arg Leu Arg Ser Leu Ala Val Cys Val

20 25 30

Gln Asp Val Ala Pro Asn Leu Gln Arg Cys Glu Arg Leu Pro Asp Gly

35 40 45

Arg Gly Thr Tyr Gln Cys Lys Ala Asn Val Phe Leu Ser Leu Arg Ala

50 55 60

Ala Asp Cys Leu Ala Ala

65 70

<210> 14

⟨211⟩ 67

<212> PRT

<213> Mouse

⟨400⟩ 14

Ser Glu Ser Pro Ala Leu Arg Val Gly Thr Gly Pro Leu Arg Asn Leu

5 10 15

Glu Met Arg Pro Ser Val Arg Ser Leu Ala Leu Cys Val Lys Asp Val

20 25 30

Thr Pro Asn Leu Gln Ser Cys Gln Arg Gln Leu Asn Ser Arg Gly Thr 35 40 45 Phe Gln Cys Lys Ala Asp Val Phe Leu Ser Leu His Glu Thr Asp Cys 55 60 50 Gln Ser Thr 65 <210> 15 <211> 67 <212> PRT <213> Rat **<400> 15** Ser Glu Ser Pro Ala Leu Arg Val Gly Thr Val Pro Leu Arg Asn Leu 5 10 15 Glu Met Arg Pro Ser Val Arg Ser Leu Ala Leu Cys Val Lys Asp Val 20 25 30 Thr Pro Asn Leu Gln Ser Cys Gln Arg Gln Leu Asn Ser Arg Gly Thr 35 40 45 Phe Gln Cys Lys Ala Asp Val Phe Leu Ser Leu His Lys Ala Glu Cys 50 55 60 Gln Ser Ala 65 <210> 16 <211> 44 <212> PRT <213> Human <400> 16

Ser Leu Ala Val Cys Val Gln Asp Val Ala Pro Asn Leu Gln Arg Cys

7/45

5 15 10 Glu Arg Leu Pro Asp Gly Arg Gly Thr Tyr Gln Cys Lys Ala Asn Val 30 20 25 Phe Leu Ser Leu Arg Ala Ala Asp Cys Leu Ala Ala 40 35 <210> 17 <211> 44 <212> PRT <213> Mouse <400> 17 Ser Leu Ala Leu Cys Val Lys Asp Val Thr Pro Asn Leu Gln Ser Cys 5 10 15 Gln Arg Gln Leu Asn Ser Arg Gly Thr Phe Gln Cys Lys Ala Asp Val 30 20 Phe Leu Ser Leu His Glu Thr Asp Cys Gln Ser Thr 35 40 <210> 18 <211> 44 <212> PRT <213> Rat <400> 18 Ser Leu Ala Leu Cys Val Lys Asp Val Thr Pro Asn Leu Gln Ser Cys 5 10 15 Gln Arg Gln Leu Asn Ser Arg Gly Thr Phe Gln Cys Lys Ala Asp Val 25 30 20 Phe Leu Ser Leu His Lys Ala Glu Cys Gln Ser Ala

40

35

<210> 19 ⟨211⟩ 101 <212> PRT <213> Human <400> 19 Trp Tyr Lys Pro Ala Ala Gly His Ser Ser Tyr Ser Val Gly Arg Ala 5 10 15 Ala Gly Leu Leu Ser Gly Leu Arg Arg Ser Pro Tyr Ala Arg Arg Ser 20 25 30 Gln Pro Tyr Arg Gly Ala Glu Pro Pro Gly Gly Ala Gly Ala Ser Pro 35 40 45 Glu Leu Gln Leu His Pro Arg Leu Arg Ser Leu Ala Val Cys Val Gln 50 55 60 Asp Val Ala Pro Asn Leu Gln Arg Cys Glu Arg Leu Pro Asp Gly Arg 70 75 65 Gly Thr Tyr Gln Cys Lys Ala Asn Val Phe Leu Ser Leu Arg Ala Ala 85 90 95 Asp Cys Leu Ala Ala 100 101 <210> 20 <211> 98 <212> PRT <213> Mouse <400> 20 Trp Tyr Lys Pro Ala Ala Gly Pro His His Tyr Ser Val Gly Arg Ala 5 10 15

Ser Gly Leu Leu Ser Ser Phe His Arg Phe Pro Ser Thr Arg Arg Ser

Glu Ser Pro Ala Leu Arg Val Gly Thr Gly Pro Leu Arg Asn Leu Glu Met Arg Pro Ser Val Arg Ser Leu Ala Leu Cys Val Lys Asp Val Thr Pro Asn Leu Gln Ser Cys Gln Arg Gln Leu Asn Ser Arg Gly Thr Phe Gln Cys Lys Ala Asp Val Phe Leu Ser Leu His Glu Thr Asp Cys Gln Ser Thr <210> 21 <211> 98 <212> PRT <213> Rat <400> 21 Trp Tyr Lys Pro Ala Ala Gly Ser His His Tyr Ser Val Gly Arg Ala Ala Gly Leu Leu Ser Ser Phe His Arg Phe Pro Ser Thr Arg Arg Ser Glu Ser Pro Ala Leu Arg Val Gly Thr Val Pro Leu Arg Asn Leu Glu Met Arg Pro Ser Val Arg Ser Leu Ala Leu Cys Val Lys Asp Val Thr Pro Asn Leu Gln Ser Cys Gln Arg Gln Leu Asn Ser Arg Gly Thr Phe

Gln Cys Lys Ala Asp Val Phe Leu Ser Leu His Lys Ala Glu Cys Gln

10/45

90 95 85 Ser Ala 98 <210> 22 <211> 125 <212> PRT <213> Human <400> 22 Met Ala Arg Ser Ala Thr Leu Ala Ala Ala Ala Leu Ala Leu Cys Leu 5 15 10 Leu Leu Ala Pro Pro Gly Leu Ala Trp Tyr Lys Pro Ala Ala Gly His 20 25 30 Ser Ser Tyr Ser Val Gly Arg Ala Ala Gly Leu Leu Ser Gly Leu Arg 40 45 35 Arg Ser Pro Tyr Ala Arg Arg Ser Gln Pro Tyr Arg Gly Ala Glu Pro 55 60 Pro Gly Gly Ala Gly Ala Ser Pro Glu Leu Gln Leu His Pro Arg Leu 75 70 65 Arg Ser Leu Ala Val Cys Val Gln Asp Val Ala Pro Asn Leu Gln Arg 95 90 85 Cys Glu Arg Leu Pro Asp Gly Arg Gly Thr Tyr Gln Cys Lys Ala Asn 105 110 100 Val Phe Leu Ser Leu Arg Ala Ala Asp Cys Leu Ala Ala 115 120 125 <210> 23 <211> 119 <212> PRT

11/45

<213> Mouse <400> 23 Met Ala Arg Cys Arg Thr Leu Val Ala Ala Ala Leu Ala Leu Leu Leu Pro Pro Ala Leu Ala Trp Tyr Lys Pro Ala Ala Gly Pro His His Tyr Ser Val Gly Arg Ala Ser Gly Leu Leu Ser Ser Phe His Arg Phe Pro Ser Thr Arg Arg Ser Glu Ser Pro Ala Leu Arg Val Gly Thr Gly Pro Leu Arg Asn Leu Glu Met Arg Pro Ser Val Arg Ser Leu Ala Leu Cys Val Lys Asp Val Thr Pro Asn Leu Gln Ser Cys Gln Arg Gln Leu Asn Ser Arg Gly Thr Phe Gln Cys Lys Ala Asp Val Phe Leu Ser Leu His Glu Thr Asp Cys Gln Ser Thr <210> 24 <211> 119 <212> PRT <213> Rat <400> 24 Met Val Arg Cys Arg Thr Leu Val Ala Ala Ala Leu Ala Leu Leu Leu

Thr Pro Ala Leu Ala Trp Tyr Lys Pro Ala Ala Gly Ser His His Tyr

Ser Val Gl	y Arg Ala	Ala Gly	Leu L	eu Ser	Ser	Phe	His	Arg	Phe	Pro	
3	85		40				45				
Ser Thr Ar	g Arg Ser	Glu Ser	Pro A	la Leu	Arg	Val	Gly	Thr	Val	Pro	
50		55				60					
Leu Arg As	n Leu Glu	Met Arg	Pro Se	er Val	Arg	Ser	Leu	Ala	Leu	Cys	
65		70			75					80	
Val Lys As	p Val Thr	Pro Asn	Leu G	ln Ser	Cys	G1n	Arg	Gln	Leu	Asn	
	85			90					95		
Ser Arg Gl	y Thr Phe	Gln Cys	Lys Al	la Asp	Val	Phe	Leu	Ser	Leu	His	
	100		10	05				110			
Lys Ala Gl	u Cys Gln	Ser Ala									
11	5	119									
<210> 25											
<211> 69											
<212> DNA											
<213> Huma	n										
<400> 25										•	
tggtacaagc	cagcggcgg	gg gcacag	ctcc t	actcgg	tgg	gccg	cgcc	gc g	gggc	tgctg	60
tccggcctc											69
<210> 26											
<211> 72											
<212> DNA											
<213> Mouse	3										
<400> 26											
tggtacaagc	ccgcggcgg	g acccca	ccac t	actcgg	tgg ;	gccg	cgcc	tc g	gggc	tactg	60
tcgagtttcc	ac										72
<210> 27									1		

<211> 72	
<212> DNA	
<213> Rat	
<400> 27	
tggtacaagc ccgcggcggg atcccaccac tactcggtgg gccgcgctgc ggggctactg	60
tcgagtttcc ac	72
⟨210⟩ 28	
⟨211⟩ 87	
<212> DNA	
<213> Human	
<400> 28	
tggtacaagc cagcggcggg gcacagctcc tactcggtgg gccgccgccgg ggggctgctg	60
teeggeetee geaggteece gtaegeg	87
<210> 29	
<211> 87	
<212> DNA	
<213≻ Mouse	
<400> 29	
tggtacaagc ccgcggcggg accccaccac tactcggtgg gccgcgcctc ggggctactg	60
tcgagtttcc acaggttccc gtccacg	87
<210> 30	
<211> 87	
<212> DNA	
<213> Rat	
<400> 30	
tggtacaagc ccgcggcggg atcccaccac tactcggtgg gccgcgctgc ggggctactg	60
tcgagtttcc acaggttccc atccacg	87

<210≻ 31		
⟨211⟩ 39		
<212> DNA		
<213> Human		
⟨400⟩ 31		
tggtacaagc cagcggcggg gcacagctcc	tactcggtg	39
⟨210⟩ 32		
⟨211⟩ 42		
<212> DNA		
<213> Human		
⟨400⟩ 32		
tggtacaagc cagcggcggg gcacagctcc	tactcggtgg gc	42
⟨210⟩ 33		
⟨211⟩ 39		
<212> DNA		
<213> Mouse		
⟨400⟩ 33		
tggtacaagc ccgcggcggg accccaccac	tactcggtg	39
⟨210⟩ 34		
⟨211⟩ 42		
<212> DNA		
<213≻ Mouse		
⟨400⟩ 34		
tggtacaagc ccgcggcggg accccaccac	tactcggtgg gc	42
⟨210⟩ 35		
⟨211⟩ 39		
<212> DNA		

<213> Rat	
⟨400⟩ 35	•
tggtacaagc ccgcggcggg atcccaccac tactcggtg	39
<210> 36	•
<211> 42 ⁻	
<212> DNA	
<213> Rat	
⟨400⟩ 36	·
tggtacaagc ccgcggcggg atcccaccac tactcggtgg gc	42
⟨210⟩ 37	
<211> 210	
<212> DNA	
<213> Human	
⟨400⟩ 37	
tcccagccct acagagggc ggaacccccg ggcggggccg gcgcct	eccc ggagetgcaa 60
ctgcacccca ggctgcggag cctcgctgtg tgcgtccagg acgtcg	eccc aaacctgcag 120
aggtgcgagc ggctccccga cggccgcggg acctaccagt gcaagg	egaa egtetteetg 180
tccctgcgcg cagccgactg cctcgccgcc	210
⟨210⟩ 38	
<211≻ 201	
<212> DNA	
<213> Mouse	
<400> 38	
tccgagtctc cagcactccg ggtgggaacc ggacctctgc gcaatt	taga gatgcgcccc 60
agcgtaagga gccttgccct gtgtgtcaaa gatgtgaccc cgaacc	tgca gagctgccag 120
cggcaactca acagccgagg gactttccag tgtaaagcgg acgtct	cett gtegetgeae 180
gagactgatt gccagagcac c	201

<210> 39	
⟨211⟩ 201	
<212> DNA	
<213> Rat	
<400> 39	
tccgagtctc cagcactccg ggtgggaacc gtacctctgc gcaacttgga gatgcgccca	60
agcgtaagaa gccttgccct gtgtgtcaaa gatgtgaccc cgaacctgca gagctgccag	120
cggcaactca acagccgagg gactttccag tgtaaggcgg acgtcttctt gtcgctgcac	180
aaggctgaat gccaaagcgc c	201
⟨210⟩ 40	
〈211〉 132	
<212> DNA	
<213> Human	
<400> 40	
agcctcgctg tgtgcgtcca ggacgtcgcc ccaaacctgc agaggtgcga gcggctcccc	60
gacggccgcg ggacctacca gtgcaaggcg aacgtcttcc tgtccctgcg cgcagccgac	120
tgcctcgccg cc	132
⟨210⟩ 41	
<211> 132 ·	
<212> DNA	
<213> Mouse	
<400> 41	
agcettgeec tgtgtgteaa agatgtgaec eegaacetge agagetgeea geggeaacte	60
aacagccgag ggactttcca gtgtaaagcg gacgtcttct tgtcgctgca cgagactgat	120
tgccagagca cc	132
⟨210⟩ 42	
⟨211⟩ 132	

<212> DNA				
⟨213⟩ Rat				
<400> 42				
agccttgccc tgtgtgtcaa agatgtgac	c ccgaacctgc	agagctgcca	gcggcaactc	60
aacagccgag ggactttcca gtgtaaggc	g gacgtcttct	tgtcgctgca	caaggctgaa	120
tgccaaagcg cc	•			132
⟨210⟩ 43				
⟨211⟩ 303				
<212> DNA				
<213> Human				
⟨400⟩ 43				
tggtacaagc cagcggcggg gcacagctc	c tactcggtgg	gccgcgccgc	ggggctgctg	60
tccggcctcc gcaggtcccc gtacgcgcg	g cgctcccagc	cctacagagg	ggcggaaccc	120
ccgggcgggg ccggcgcctc cccggagct	g caactgcacc	ccaggctgcg	gagcctcgct	180
gtgtgcgtcc aggacgtcgc cccaaacct	g cagaggtgcg	agcggctccc	cgacggccgc	240
gggacctacc agtgcaaggc gaacgtctt	c ctgtccctgc	gcgcagccga	ctgcctcgcc	300
gcc				303
⟨210⟩ 44				
⟨211⟩ 294				
<212> DNA				
⟨213⟩ Mouse				
⟨400⟩ 44				
tggtacaagc ccgcggcggg accccacca	c tactcggtgg	gccgcgcctc	ggggctactg	60
tcgagtttcc acaggttccc gtccacgcg	a cgctccgagt	ctccagcact	ccgggtggga	120
accggacctc tgcgcaattt agagatgcg	c cccagcgtaa	ggagccttgc	cctgtgtgtc	180
aaagatgtga ccccgaacct gcagagctg	c cagcggcaac	tcaacagccg	agggactttc	240
cagtgtaaag cggacgtctt cttgtcgct	g cacgagactg	attgccagag	cacc	294

<210> 45						
<211> 294						
<212> DNA						
<213> Rat						
<400> 45						
tggtacaagc ccgcggcg	gg atcccaccac	tactcggtgg	gccgcgctgc	ggggctactg	60	•
tcgagtttcc acaggttc	cc atccacgcga	cgttccgagt	ctccagcact	ccgggtggga	120	
accgtacctc tgcgcaac	tt ggagatgcgc	ccaagcgtaa	gaagccttgc	cctgtgtgtc	180	
aaagatgtga ccccgaac	ct gcagagctgc	cagcggcaac	tcaacagccg	agggactttc	240	
cagtgtaagg cggacgtc	tt cttgtcgctg	cacaaggctg	aatgccaaag	cgcc	294	
<210> 46						
<211> 375						
<212> DNA						
<213> Human						
<400> 46						
atggcccggt ccgcgaca	ct ggcggccgcc	gccctggcgc	tgtgcctgct	gctggcgccg	60	
cctggcctcg cgtggtac	aa gccagcggcg	gggcacagct	cctactcggt	gggccgcgcc	120	
gcggggctgc tgtccggc	ct ccgcaggtcc	ccgtacgcgc	ggcgctccca	gccctacaga	180	
ggggcggaac ccccgggc	gg ggccggcgcc	tcccggagc	tgcaactgca	ccccaggctg	240	
cggagcctcg ctgtgtgc	gt ccaggacgtc	gccccaaacc	tgcagaggtg	cgagcggctc	300	
cccgacggcc gcgggacc	ta ccagtgcaag	gcgaacgtct	tcctgtccct	gcgcgcagcc	360 ·	
gactgcctcg ccgcc					375	
<210> 47						
⟨211⟩ 357						
<212> DNA						
<213> Mouse						
<400> 47						

atggcccggt	gtaggacgct	ggtggccgct	gccctggcgc	tgctcctgcc	gccagccctc	60
gcgtggtaca	agcccgcggc	gggaccccac	cactactcgg	tgggccgcgc	ctcggggcta	120
ctgtcgagtt	tccacaggtt	cccgtccacg	cgacgctccg	agtctccagc	actccgggtg	180
ggaaccggac	ctctgcgcaa	tttagagatg	cgcccagcg	taaggagcct	tgccctgtgt	240
gtcaaagatg	tgaccccgaa	cctgcagagc	tgccagcggc	aactcaacag	ccgagggact	300
ttccagtgta	aagcggacgt	cttcttgtcg	ctgcacgaga	ctgattgcca	gagcacc	357
<210> 48			•			
<211> 357						
<212> DNA		,				
<213> Rat						
<400> 48						
atggtccggt	gtaggacgct	ggtggccgcc	gccctggcgc	tgctcctgac	gccagccctc	60
gcgtggtaca	agcccgcggc	gggatcccac	cactactcgg	tgggccgcgc	tgcggggcta	120
ctgtcgagtt	tccacaggtt	cccatccacg	cgacgttccg	agtctccagc	actccgggtg	180
ggaaccgtac	ctctgcgcaa	cttggagatg	cgcccaagcg	taagaagcct	tgccctgtgt	240
gtcaaagatg	tgaccccgaa	cctgcagagc	tgccagcggc	aactcaacag	ccgagggact	300
ttccagtgta	aggcggacgt	cttcttgtcg	ctgcacaagg	ctgaatgcca	aagcgcc	357
<210> 49						
⟨211⟩ 328						
<212> PRT						
<213> Human	ı					
< 400> 49						
Met Asp Asr	n Ala Ser Ph	ne Ser Glu I	Pro Trp Pro	Ala Asn Ala	a Ser Gly	
1	5		10		15	
Pro Asp Pro	Ala Leu Se	er Cys Ser A	Asn Ala Ser	Thr Leu Ala	Pro Leu	
	20	2	25	30		

Pro Ala Pro Leu Ala Val Ala Val Pro Val Val Tyr Ala Val Ile Cys

		35					40					45			
Ala	Val	Gly	Leu	Ala	Gly	Asn	Ser	Ala	Val	Leu	Tyr	Val	Leu	Leu	Arg
	50					55					60				
Ala	Pro	Arg	Met	Lys	Thr	Val	Thr	Asn	Leu	Phe	Ile	Leu	Asn	Leu	Ala
65					70					75					80
Ile	Ala	Asp	Glu	Leu	Phe	Thr	Leu	Val	Leu	Pro	Ile	Asn	Ile	Ala	Asp
				85					90					95	
Phe	Leu	Leu	Arg	Gln	Trp	Pro	Phe	Gly	Glu	Leu	Met	Cys	Lys	Leu	Ile
			100					105					110		
Val	Ala	Ile	Asp	Gln	Tyr	Asn	Thr	Phe	Ser	Ser	Leu	Tyr	Phe	Leu	Thr
		115					120					125			
Va1	Met	Ser	Ala	Asp	Arg	Tyr	Leu	Val	Val	Leu	Ala	Thr	Ala	Glu	Ser
	130					135					140				
Arg	Arg	Val	Ala	Gly	Arg	Thr	Tyr	Ser	Ala	Ala	Arg	Ala	Val	Ser	Leu
145					150					155					160
Ala	Val	Trp	Gly	Ile	Val	Thr	Leu	Val	Val	Leu	Pro	Phe	Ala	Val	Phe
				165					170					175	
Ala	Arg	Leu	Asp	Asp	Glu	G1n	Gly	Arg	Arg	Gln	Cys	Val	Leu	Val	Phe
			180					185					190		
Pro	G1n	Pro	Glu	Ala	Phe	Trp	Trp	Arg	Ala	Ser	Arg	Leu	Tyr	Thr	Leu
		195					200					205			
Val	Leu	Gly	Phe	Ala	Ile	Pro	Val	Ser	Thr	Ile	Cys	Val	Leu	Tyr	Thr
	210					215					220				
Thr	Leu	Leu	Cys	Arg	Leu	His	Ala	Met	Arg	Leu	Asp	Ser	His	Ala	Lys
225					230					235					240
Ala	Leu	Glu	Arg	Ala	Lys	Lys	Arg	Val	Thr	Phe	Leù	Val	Val	Ala	Ile
				245					250					255	

Leu Ala Val Cys Leu Leu Cys Trp Thr Pro Tyr His Leu Ser Thr Val	
260 265 270	
Val Ala Leu Thr Thr Asp Leu Pro Gln Thr Pro Leu Val Ile Ala Ile	
275 280 285	
Ser Tyr .Phe Ile Thr Ser Leu Ser Tyr Ala Asn Ser Cys Leu Asn Pro	
290 295 300	
Phe Leu Tyr Ala Phe Leu Asp Ala Ser Phe Arg Arg Asn Leu Arg Gln	
305 310 315 320	
Leu Ile Thr Cys Arg Ala Ala Ala	
325 328	
<210> 50	
<211> 1000	
<212> DNA	
<213> Human	
<400> 50	
atcgatatgg acaacgcetc gttctcggag ccctggcccg ccaacgcatc gggcccggac	60
ccggcgctga gctgctccaa cgcgtcgact ctggcgccgc tgccggcgcc gctggcggtg	120
gctgtaccag ttgtctacgc ggtgatctgc gccgtgggtc tggcgggcaa ctccgccgtg	180
ctgtacgtgt tgctgcgggc gccccgcatg aagaccgtca ccaacctgtt catcctcaac	240
ctggccatcg ccgacgagct cttcacgctg gtgctgccca tcaacatcgc cgacttcctg	300
ctgcggcagt ggcccttcgg ggagctcatg tgcaagctca tcgtggctat cgaccagtac	360
aacaccttct ccagcctcta cttcctcacc gtcatgageg ccgaccgcta cctggtggtg	420
ttggccactg cggagtcgcg ccgggtggcc ggccgcacct acagcgccgc gcgcgcggtg	480
agcctggccg tgtgggggat cgtcacactc gtcgtgctgc ccttcgcagt cttcgcccgg	540
ctagacgacg agcagggccg gcgccagtgc gtgctagtct ttccgcagcc cgaggccttc	600
tggtggcgcg cgagccgcct ctacacgctc gtgctgggct tcgccatccc cgtgtccacc	660
atctgtgtcc tctataccac cctgctgtgc cggctgcatg ccatgcggct ggacagccac	720

gccaaggccc tggagcgcgc caagaagcgg gtgaccttcc tggtggtggc aatcctggcg 780 840 gtgtgcctcc tctgctggac gccctaccac ctgagcaccg tggtggcgct caccaccgac ctcccgcaga cgccgctggt catcgctatc tcctacttca tcaccagcct gagctacgcc 900 aacagctgcc tcaacccctt cctctacgcc ttcctggacg ccagcttccg caggaacctc 960 1000 cgccagctga taacttgccg cgcggcagcc tgacactagt <210> 51 ⟨211⟩ 33 <212> DNA <213> Artificial Sequence <220> <223> Primer **<400> 51** 33 gtcgacatgg cccggtccgc gacactggcg gcc ⟨210⟩ 52 ⟨211⟩ 33 <212> DNA <213> Artificial Sequence ⟨220⟩ <223> Primer ⟨400⟩ 52 33 gctagcagcg gtgccaggag aggtccgggc tca ⟨210⟩ 53 ⟨211⟩ 33 <212> DNA <213> Artificial Sequence ⟨220⟩ <223> Primer

<400> 53		
gtcgacagct ccatggcccg gtgtaggacg	ctg	33
<210> 54		
<211≻ 33		
<212> DNA	·	
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 54		
gctagctcag gtgctctggc aatcagtctc	gtg 3	3
<210> 55		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 55		
cacggctcca tggtccggtg taggacg		27
<210> 56		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 56	-	
cagcgtcgag gtttgggttg gggttca		27
<210> 57		

<211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 57 ategatatgg acaacgcete gtteteggag ec 32 <210> 58 ⋅ ⟨211⟩ 32 <212> DNA <213> Artificial Sequence ⟨220⟩ <223> Primer ⟨400⟩ 58 actagtgtca ggctgccgcg cggcaagtta tc 32 <210> 59 ⟨211⟩ 329 <212> PRT <213> Rat **<400> 59** Met His Asn Leu Ser Leu Phe Glu Pro Gly Arg Gly Asn Val Ser Cys 5 15 10 Gly Gly Pro Phe Leu Gly Cys Pro Asn Glu Ser Asn Pro Ala Pro Leu 20 25 30 Pro Leu Pro Gln Pro Leu Ala Val Ala Val Pro Val Val Tyr Gly Val 35 40 45

Ile Cys Ala Val Gly Leu Ala Gly Asn Ser Ala Val Leu Tyr Val Leu

	50)				55	5				60)				
Leu	Arg	g Thi	r Pro	o Ar	g Met	t Lys	Thi	· Val	Thr	Asn	Va]	Phe	e Ile	e Lei	ı Asn	
65					70)				75	;				80	
Leu	Ala	Ile	e Ala	a Asp	o Glu	ı Leu	Phe	Thr	Leu	Val	Leu	Pro) I1e	e Asr	ille	
				85	5				90)				95	;	
Ala	Asp	Phe	e Leu	ı Lei	ı Arg	Arg	Trp	Pro	Phe	Gly	Glu	Va]	l Met	. Cys	Lys	
			100)				105					110)		
Leu	Ile	Va]	Ala	\ Val	Asp	Gln	Tyr	Asn	Thr	Phe	Ser	Ser	Leu	Tyr	Phe	
		115	5	•			120	•				125	5			
Leu	Ala	Val	Met	Ser	Ala	Asp	Arg	Tyr	Leu	Val	Val	Leu	Ala	Thr	Ala	
	130					135					140					
Glu	Ser	Arg	Arg	Val	Ser	Gly	Arg	Thr	Tyr	G1y	Ala	Ala	Arg	Ala	Val	
145					150	•				155					160	
Ser	Leu	Ala	Val	Trp	Ala	Leu	Val	Thr	Leu	Val	Val	Leu	Pro	Phe	Ala	
				165					170					175		
Val	Phe	Ala	Arg	Leu	Asp	Glu	Glu	Gln	Gly	Arg	Arg	G1n	Cys	Val	Leu	
			180			•		185					190			
Val	Phe	Pro	Gln	Pro	Glu	Ala	Phe	Trp	Trp	Arg	Ala	Ser	Arg	Leu	Tyr	
		195					200					205				
Thr	Leu	Val	Leu	Gly	Phe	Ala	Ile	Pro	Val	Ser	Thr	Ile	Cys	Ala	Leu	
:	210					215					220					
Tyr :	Ile	Thr	Leu	Leu	Cys	Arg	Leu	Arg	Ala	Ile	G1n	Leu	Asp	Ser	His	
225					230					235.					240	
Ala I	Lys	Ala	Leu	Asp	Arg	Ala	Lys	Lys	Arg	Val	Thr	Leu	Leu	Va1	Va1	
				245					250					255		
la]	[le	Leu	Ala	Val	Cys	Leu	Leu	Cys	Trp	Thr	Pro	Tyr	His	Leu	Ser	
			260					265					270			

Thr Ile Val Ala Leu Thr Thr Asp Leu Pro Gln Thr Pro Leu Val Ile 275 280 285 Gly Ile Ser Tyr Phe Ile Thr Ser Leu Ser Tyr Ala Asn Ser Cys Leu 290 295 300 Asn Pro Phe Leu Tyr Ala Phe Leu Asp Asp Ser Phe Arg Arg Ser Leu 320 305 310 315 Arg Gln Leu Val Ser Cys Arg Thr Ala 325 329

<210> 60

<211> 987

<212> DNA

<213> Rat

<400> 60

60 atgcacaact tgtcgctctt cgagcctggc aggggcaatg tgtcttgcgg cggcccattt 120 ttgggetgte etaaegagte gaaeceageg eetetgeeae tgeegeagee tetggeggta 180 gcagtgcctg tggtctacgg ggtgatctgc gcggtgggac tggcgggcaa ctccgcggtg ctgtacgtac tgctgcgcac gccgcgcatg aagactgtta ccaacgtgtt cattctcaac 240 300 ctggctatcg cggacgagct cttcaccctc gtgctgccca tcaacatcgc ggacttcctg 360 ctgaggcgct ggcccttcgg ggaagtcatg tgcaagctca tcgtggctgt cgaccagtac 420 aacactttct ctagcctcta cttcctcgcc gtcatgagcg cagaccgcta cctggttgtc 480 ctggccacag ccgagtcgcg ccgggtgtcc gggcgcactt atggtgcagc gcgggctgtc agtctggcgg tgtgggcgct ggtgacattg gtcgtgctgc cttttgcggt attcgcccgg 540 600 ctggacgaag agcagggtcg gcgtcagtgc gtgctggtct tcccgcagcc tgaggccttc 660 tggtggcgcg ccagccgtct gtacactcta gtgttgggct tcgccatccc ggtgtccacc atotgogoco totatatoac cotgttgtgo cgactgogtg ctatocagot agacagocac 720 gccaaggccc tggaccgtgc caagaagcgc gtgaccttgt tggtggtggc gattctggct 780 gtgtgcctcc tctgctggac accgtaccac ctgagcacca tagtggcgct caccaccgac

ctcccgcaaa	caccgttggt	catcggcatc	tcttacttca	tcaccagtct	gagctatgcc	900
aacagctgcc	tcaacccttt	cctctatgcc	ttcctggacg	acagcttccg	caggagcctg	960
cggcagctgg	tgtcatgccg	cacagec				987
<210> 61						
<211> 28						
<212> DNA						
<213> Arti	ficial Seque	ence				
<223> Prim	er					
<400> 61				•		
actgatatgc	acaacttgtc	gctcttcg	28			
<210> 62						
<211> 28						
<212> DNA						
<213> Arti	ficial Seque	ence				
<223> Prim	er	1				
<400> 62		·				
actagttcag	gctgtgcggc	atgacacc	28			
<210> 63						
<211> 22						
<212> DNA						
<213> Arti	ficial Seque	ence				
<223> Prim	er					
<400> 63						
ctgtcgagtt	tccacaggtt	cc	22			
<210> 64						
<211> 20						
<212> DNA						

28/45

<213> Artificial Sequence <223> Primer <400> 64 20 ttgcgcagag gtacggttcc <210> 65 <211> 26 <212> DNA <213> Artificial Sequence <223> Primer <400> 65 cgtgccaaga aacgcgtgac cttgtt 26 <210> 66 <211> 23 <212> PRT <213> Bovine <400> 66 Trp Tyr Lys Pro Thr Ala Gly Gln Gly Tyr Tyr Ser Val Gly Arg Ala 1 10 15 Ala Gly Leu Leu Ser Gly Phe 20 <210> 67 <211> 29 <212> PRT <213> Bovine <400> 67 Trp Tyr Lys Pro Thr Ala Gly Gln Gly Tyr Tyr Ser Val Gly Arg Ala

10

15

1

5

29/45

Ala Gly Leu Leu Ser Gly Phe His Arg Ser Pro Tyr Ala 25 20 <210> 68 <211> 13 <212> PRT <213> Bovine <400> 68 Trp Tyr Lys Pro Thr Ala Gly Gln Gly Tyr Tyr Ser Val 1 5 10 ⟨210⟩ 69 <211> 14 <212> PRT <213> Bovine <400> 69 Trp Tyr Lys Pro Thr Ala Gly Gln Gly Tyr Tyr Ser Val Gly 5 1 10 <210> 70 <211> 67 <212> PRT <213> Bovine <400> 70 Ser Glu Pro Arg Gly Gly Thr Arg Ser Leu Gly Gly Val Gly Thr Phe 1 5 10 15 Arg Glu Met Arg Pro Asn Leu Arg Ser Leu Ala Val Cys Val Glu Glu 20 25 30 Val Thr Pro Asn Leu Gln Ser Cys Glu Pro Leu Pro Asp Gly Arg Ala

40

45

35

Thr Phe GIn	Cys	Lys	Ala	Asp	Val	Phe	Leu	Ser	Leu	Ser	Ala	Ser	Asp
50				55					60				
Cys Arg Lys													
65													
<210> 71													
<211> 43													
<212> PRT													
<213> Bovine	•												
<400> 71													
Ser Leu Ala	Val	Cys	Val	Glu	Glu	Val	Thr	Pro	Asn	Leu	Gln	Ser	Cys
1		5					10					15	
Glu Pro Leu	Pro	Asp	Gly	Arg	Ala	Thr	Phe	G1n	Cys	Lys	Ala	Asp	Val
	20					25					30		
Phe Leu Ser	Leu	Ser	Ala	Ser	Asp	Cys	Arg	Lys					
35					40								
<210> .72													
⟨211⟩ 98													
<212> PRT													
<213≻ Bovine	€												
<400> 72													
Trp Tyr Lys	Pro	Thr	Ala	Gly	Gln	Gly	Tyr	Tyr	Ser	Val	G1y	Arg	Ala
1		5					10					15	
Ala Gly Leu	Leu	Ser	Gly	Phe	His	Arg	Ser	Pro	Tyr	Ala	Arg	Arg	Ser
	20					25					30		
Glu Pro Arg	Gly	Gly	Thr	Arg	Ser	Leu	Gly	Gly	Val	G1y	Thr	Phe	Arg
35					40					45			
Glu Met Arg	Pro	Asn	Leu	Arg	Ser	Leu	Ala	Val	Cys	Val	G1u	Glu	Val

31/45

Thr Pro Asn Leu Gln Ser Cys Glu Pro Leu Pro Asp Gly Arg Ala Thr Phe Gln Cys Lys Ala Asp Val Phe Leu Ser Leu Ser Ala Ser Asp Cys Arg Lys <210> 73 <211> 122 <212> PRT <213> Bovine <400> 73 Met Ala Gly Pro Ala Met Leu Val Ala Ala Ala Leu Ala Leu Cys Leu Leu Leu Ala Ser Pro Gly Leu Ala Trp Tyr Lys Pro Thr Ala Gly Gln Gly Tyr Tyr Ser Val Gly Arg Ala Ala Gly Leu Leu Ser Gly Phe His Arg Ser Pro Tyr Ala Arg Arg Ser Glu Pro Arg Gly Gly Thr Arg Ser Leu Gly Gly Val Gly Thr Phe Arg Glu Met Arg Pro Asn Leu Arg Ser Leu Ala Val Cys Val Glu Glu Val Thr Pro Asn Leu Gln Ser Cys Glu Pro Leu Pro Asp Gly Arg Ala Thr Phe Gln Cys Lys Ala Asp Val Phe Leu Ser Leu Ser Ala Ser Asp Cys Arg Lys

⟨210⟩ 74	
<211> 69	
<212> DNA	
<213> Bovine	
<400> 74	
tggtacaagc cgacggcggg gcaggggtac tactccgtgg gccgcgccgc	60
tccggcttc	69
<210> 75	
<211> 87	•
<212> DNA	
<213> Bovine	
<400> 75	
tggtacaagc cgacggggg gcaggggtac tactccgtgg gccgcgccgc	60
tccggcttcc acaggtcgcc gtacgca	87
<210> 76	
<211> 39	
<212> DNA	
<213≻ Bovine	
<400> 76	
tggtacaagc cgacggcggg gcaggggtac tactccgtg	39
<210> 77	
<211> 42	
<212> DNA	
<213> Bovine	
<400> 77	
tggtacaagc cgacggcggg gcaggggtac tactccgtgg gc	42
/910\ 79	

. 33/45

⟨211⟩ 201						
<212> DNA						
<213≻ Bovir	ie					
<400> 78						
tccgagcccc	gcgggggcac	gcgatccctg	ggaggggtcg	gcactttccg	ggagatgcgc	60
cccaacctgc	ggagtcttgc	cgtgtgcgtc	gaggaggtca	ccccaacct	gcagagctgc	120
gagccactcc	ccgacggccg	cgccactttc	cagtgcaagg	ccgacgtctt	cctgtcgctc	180
agcgcctcgg	actgtcgcaa	g				201
<210≻ 79						
⟨211⟩ 129						
<212> DNA						
<213> Bovin	ie					
< 400> 79						
agtcttgccg	tgtgcgtcga	ggaggtcacc	cccaacctgc	agagctgcga	gccactcccc	60
gacggccgcg	ccactttcca	gtgcaaggcc	gacgtcttcc	tgtcgctcag	cgcctcggac	120
tgtcgcaag						129
<210≻ 80						
<211> 294					•	
<212> DNA						
<213> Bovin	е					
<400> 80						
tggtacaagc	cgacggcggg	gcaggggtac	tactccgtgg	gccgcgccgc	ggggctgctg	60
tccggcttcc	acaggtcgcc	gtacgcacgg	cgctccgagc	cccgcggggg	cacgcgatcc	120
ctgggagggg	tcggcacttt	ccgggagatg	cgccccaacc	tgcggagtct	tgccgtgtgc	180
gtcgaggagg	tcacccccaa	cctgcagagc	tgcgagccac	tccccgacgg	ccgcgccact	240
ttccagtgca	aggccgacgt	cttcctgtcg	ctcagcgcct	cggactgtcg	caag	294
<210≻ 81						

34/45

<211> 366	
<212> DNA	
<213> Bovine	
<400> 81	
atggccggc ccgcgatgct ggtggccgcc gctctggcgc tgtgcttact gctg	gcgtcc 60
cctggcctcg cgtggtacaa gccgacggcg gggcaggggt actactccgt gggc	cgcgcc 120
geggggetge tgteeggett ceaeaggteg eegtaegeae ggegeteega geee	cgcggg 180
ggcacgcgat ccctgggagg ggtcggcact ttccgggaga tgcgcccaa cctg	cggagt 240
cttgccgtgt gcgtcgagga ggtcaccccc aacctgcaga gctgcgagcc actc	cccgac 300
ggccgccacctttccagtg caaggccgac gtcttcctgt cgctcagcgc ctcg	gactgt 360
cgcaag	366.
<210> 82	
<211> 30	•
<212> DNA	
<213> Artificial Sequence	
<223> Primer	
<400> 82	
cccatggccg ggcccgcgat gctggtcgcc 30	
<210≻ 83	
<211≻ 30	
<212> DNA	
<213> Artificial Sequence	
<223> Primer	
<400≻ 83	
tcacttgcga cagtccgagg cgctgagcga 30	
⟨210⟩ 84	

⟨211⟩ 333

<212	2> Pl	RT							•						
<213	3> H	uman													
<400)> 8	4										·			
Met	Gln	Ala	Ala	Gly	His	Pro	Glu	Pro	Leu	Asp	Ser	Arg	G1y	Ser	Phe
1				5					10					15	
Ser	Leu	Pro	Thr	Met	Gly	Ala	Asn	Val	Ser	Gln	Asp	Asn	G1y	Thr	G1y
			20					25					30		
His	Asn	Ala	Thr	Phe	Ser	Glu	Pro	Leu	Pro	Phe	Leu	Tyr	Val	Leu	Leu
		35					40					45			
Pro	Ala	Val	Tyr	Ser	Gly	Ile	Cys	Ala	Val	Gly	Leu	Thr	Gly	Asn	Thr
	50					55					60				
Ala	Val	Ile	Leu	Val	Ile	Leu	Arg	Ala	Pro	Lys	Met	Lys	Thr	Val	Thr
65					70					75					80
Asn	Val	Phe	Ile	Leu	Asn	Leu	Ala	Val	Ala	Asp	G1y	Leu	Phe	Thr	Lev
				85					90					95	
Val	Leu	Pro	Val	Asn	Ile	Ala	Glu	His	Leu	Leu	G1n	Tyr	Trp	Pro	Phe
			100					105					110		
G1y	Glu	Leu	Leu	Cys	Lys	Leu	Val	Leu	Ala	Val	Asp	His	Tyr	Asn	Ile
		115					120					125			
Phe	Ser	Ser	Ile	Tyr	Phe	Leu	Ala	Val	Met	Ser	Val	Asp	Arg	Tyr	Leu
	130					135					140				
Val	Val	Leu	Ala	Thr	Val	Arg	Ser	Arg	His	Met	Pro	Trp	Arg	Thr	Tyr
145					150					155					160
Arg	Gly	Ala	Lys	V al	Ala	Ser	Leu	Cys	Val	Trp	Leu	Gly	Val	Thr	Val
				165					170					175	
Leu	Val	Leu	Pro	Phe	Phe	Ser	Phe	Ala	G1y	Va1	Tyr	Ser	Asn	Glu	Leu
			180					185					190		

PCT/JP02/05915

G1n	Val	Pro	Ser	Cys	Gly	Leu	Ser	Phe	Pro	Trp	Pro	Glu	Gln	Val	Trp	
		195					200					205				
Phe	Lys	Ala	Ser	Arg	Val	Tyr	Thr	Leu	Val	Leu	Gly	Phe	Val	Leu	Pro	
	210					215					220					
Val	Cys	Thr	Ile	Cys	Val	Leu	Tyr	Thr	Asp	Leu	Leu	Arg	Arg	Leu	Arg	
225					230					235					240	
Ala	Val	Arg	Leu	Arg	Ser	G1y	Ala	Lys	Ala	Leu	Gly	Lys	Ala	Arg	Arg	
				245					250					255		
Lys	Val	Thr	Val	Leu	Val	Leu	Val	Val	Leu	Ala	Val	Cys	Leu	Leu	Cys	
			260					265					270			
Trp	Thr	Pro	Phe	His	Leu	Ala	Ser	Val	Val	Ala	Leu	Thr	Thr	Asp	Leu	
		275					280					285				
Pro	G1n	Thr	Pro	Leu	Val	Ile	Ser	Met	Ser	Tyr	Val	Ile	Thr	Ser	Leu	
	290					295					300					
Ser	Tyr	Ala	Asn	Ser	Cys	Leu	Asn	Pro	Phe	Leu	Tyr	Ala	Phe	Leu	Asp	
305					310					315					320	
Asp	Asn	Phe	Arg	Lys	Asn	Phe	Arg	Ser	Ile	Leu	Arg	Cys				
				325					330			333				
<210)> 8	5														
<21	l> 10)23														
<212	2> D1	NΑ														
<213	3> Hı	ıman														
<400)> 8	5														
atc	gatta	aca a	atgca	aggco	eg et	gggc	cacco	c aga	agcco	ectt	gaca	gcag	gg (gctc	cttctc	60
cct	ccca	acg a	atggg	gtgco	ca ac	gtct	ctca	a gga	acaat	tggc	act	gcca	aca a	atgco	cacctt	120
ctc	gago	ca o	ctgc	egtte	ec to	etate	gtgct	t cci	tgccc	egcc	gtgt	acto	cg į	ggato	ctgtgc	180
toto	raaa	eta a	acto	rcaac	ea ce	rocc o	tcat	t cci	ttots	atc	ctaa	10000	ege (ccaas	zat.gaa	240

gacggtgacc	aacgtg	ttca	tcctgaad	cct g	gccgt	egce	gace	ggct	ct	tcacg	ctggt	300
actgcccgtc	aacatc	gcgg a	agcacct	gct g	cagta	ctgg	ccct	tcgg	gg	agcte	ctctg	360
caagctggtg	ctggcc	gtcg a	accacta	caa c	atctto	ctcc	agca	tcta	ct	tccta	gccgt	420
gatgagcgtg	gaccga	tacc	tggtggt	gct g	gccac	cgtg	aggt	ccce	cc :	acate	ccctg	480
gcgcacctac	cggggg	gcga a	aggtcgc	cag c	ctgtgi	tgtc	tggc	tggg	cg	tcacg	gtcct	540
ggttctgccc	ttcttc	tctt	tcgctgg	cgt c	tacago	caac	gago	tgca	gg	tccca	agctg	600
tgggctgagc	ttcccg	tggc	ccgagca	ggt c	tggtto	caag	gcca	gccg	gtg	tctac	acgtt	660
ggtcctgggc	ttcgtg	ctgc	ccgtgtg	cac c	atctg	tgtg	ctct	acac	ag	accto	ctgcg	720
caggctgcgg	gccgtg	cggc	tccgctc	tgg a	gccaa	ggct	ctag	gcaa	gg	ccagg	cggaa	780
ggtgaccgtc	ctggtc	ctcg	togtgot	ggc c	gtgtg	cctc	ctct	gctg	ga	cgccc	ttcca	840
cctggcctct	gtcgtg	gccc	tgaccac	gga c	ctgcc	ccag	acco	cact	gg	tcato	agtat	900
gtcctacgtc	atcacc	agcc	tcagcta	cgc c	aactc	gtgc	ctga	acco	ct	tcctc	tacgc	960
ctttctagat	gacaac	ttcc	ggaagaa	ctt c	cgcag	cata	ttgc	ggtg	ct.	gaagg	gcact	1020
agt												1023
<210> 86												
<211> 331												•
<212> PRT												
<213> Bovi	ne											
< 400> 86												
Met His Ası	n Ala S	er Ty	r Trp G	ly Pr	o Glu	Arg	Ala	Asn	Thr	Ser	Cys	
		5			10					15		
Pro Ala Pro	Ala P	ro Th	r Leu G	ly Cy	s Pro	Asn	Ala	Ser	Gly	Pro	Ala	
	20			2	5				30			
Pro Pro Lei	ı Pro P	ro Pro	Leu A	la Va	l Ala	Val	Pro	Val	Val	Tyr	Ala	
35	5		4	10				45				
Val Ile Cv	a Ala V	al Gly	z Leu A	la Gl	v Asn	Ser	Ala	Val	Len	Phe	Va1	

55

60

Í

50

Leu Leu Arg Ala Pro Arg Arg Lys Thr Val Thr Asn Leu Phe Ile Leu Asn Leu Ala Val Ala Asp Glu Leu Phe Thr Leu Val Pro Pro Val Asn Ile Ala Asp Phe Leu Leu Arg Arg Trp Pro Phe Gly Glu Leu Leu Cys Lys Leu Val Val Ala Val Asp Gln Tyr Asn Thr Phe Ser Ser Leu Tyr Phe Leu Thr Val Met Ser Ala Asp Arg Tyr Leu Val Val Leu Ala Thr Ala Glu Ser Arg Arg Val Ala Gly Arg Thr Tyr Gly Ala Ala Arg Ala Val Ser Leu Ala Val Trp Gly Val Ala Thr Leu Val Val Leu Pro Phe Ala Val Phe Ala Arg Leu Asp Glu Glu Gln Gly Arg Arg Gln Cys Val Leu Val Phe Pro Gln Pro Glu Ala Leu Trp Trp Arg Ala Ser Arg Leu Tyr Thr Leu Val Leu Gly Phe Ala Ile Pro Val Ser Thr Ile Cys Val Leu Tyr Thr Ser Leu Leu Cys Arg Leu Arg Ala Ile Arg Leu Asp Ser His Ala Lys Ala Leu Asp Arg Ala Lys Lys Arg Val Thr Val Leu Val Val Ala Ile Leu Ala Val Cys Leu Leu Val Trp Thr Pro Tyr His Leu Ser Thr Val Val Ala Leu Thr Thr Asp Leu Pro Gln Thr Pro Leu Val

275 280 285

Ile Ala Val Ser Tyr Phe Ile Thr Ser Leu Ser Tyr Ala Asn Ser Cys

290 295 300

Leu Asn Pro Phe Leu Tyr Ala Phe Leu Asp Asp Ser Phe Arg Arg Ser 305 310 315 320

Leu Arg Gln Leu Leu Ala Cys Arg Thr Thr Ser

325 330

<210> 87

<211> 993

<212> DNA

<213> bovine

<400> 87

atgcacaacg cgtcgtactg ggggccggag cgcgccaaca cgtcgtgccc cgcgcccgca 60 cccacgctcg gctgtcccaa cgcgtccggg ccggcgccgc cgctgccgcc gccgctggcc 120 gtagccgtgc ccgttgtgta cgcggtgatc tgcgcagtgg gactggcggg caactcggcg 180 gtactgttcg tgctgctgcg ggcgccgcgc aggaagaccg tcaccaacct gttcatcctc 240 aacctggccg tggccgacga gcttttcacg ctcgtgccgc ctgtcaacat cgccgacttt 300 ctgctgaggc gctggccctt cggggagctc ctatgcaagc tcgtcgtggc cgtcgatcag 360 tacaacacct tctccagcct ctatttcctc acggtcatga gcgccgaccg ctacctggtg 420 gtgctggcca ccgccgagtc gcgccgggtg gccggccgca cgtacggcgc cgcgcgcgc 480 gtgagcctgg ccgtctgggg ggtcgcgacc ctggtggtgc tgcccttcgc ggtgttcgcg 540 cggctcgacg aggagcaggg ccggcgccag tgcgtactgg tcttcccgca gcccgaggcc 600 ttgtggtggc gcgcgagccg cctgtacacg ctggtgctcg gcttcgccat cccagtgtcc 660 accatctgcg teetetacac etegetgetg tgeeggetge gegeeatacg eetegacage 720 cacgccaagg ccctggaccg cgccaagaag cgggtgaccg tcctggtggt ggccatcctg 780 gccgtgtgcc tcctcgtctg gacgccctac cacctgagca ccgtggtggc gctcaccacc 840 gacctcccgc agacgccgct ggtcatcgcc gtgtcctact tcatcaccag cctgagctac

gcca	acag	ct e	cctc	aacc	c tt	tcct	ctac	gcc	ttcc	tgg	acga	cago	tt (ccgcc	ggagc	960
ctcc	gcca	gc t	gctg	gcgt	gc	gcac	cacc	tcc	:							993
<210	> 88	}										•				
<211	> 33	6														
<212	> PR	T														
<213	> Bo	vine	•													
<400	> 88	3														
Met	Met	Glu	Ala	Thr	G1y	Leu	G1u	Gly	Leu	Glu	Ser	Thr	Ser	Ser	Pro	
				5					10					15		
Cys	Pro	Gly	Ser	Thr	G1y	Thr	Gly	Leu	Ser	Trp	Asp	Asn	Gly	Thr	Arg	
			20					25					30			
His	Asn	Ala	Thr	Phe	Pro	Glu	Pro	Leu	Pro	Ala	Leu	Tyr	Val	Leu	Leu	
		35					40					45				
Pro	Val	Val	Tyr	Ser	Val	Ile	Cys	Ala	Val	Gly	Leu	Val	Gly	Asn	Ala	
	50					55	•				60					
Ala	Val	Ile	Cys	Val	Ile	Leu	Arg	Ala	Pro	Lys	Met	Lys	Thr	Val	Thr	
65					70					75					80	
His	Val	Phe	Ile	Leu	Asn	Leu	Ala	Ile	Ala	Asp	Gly	Leu	Phe	Thr	Leu	
				85					90					95		
Val	Leu	Pro	Thr	Asn	Ile	Ala	Glu	His	Leu	Leu	Gln	Arg	Trp	Pro	Phe	
			100					105					110	•		
Gly	Glu	Val	Leu	Cys	Lys	Leu	Val	Leu	Ala	Ile	Asp	His	Cys	Asn	Ile	
		115					120					125				
Phe	Ser	Ser	Val	Tyr	Phe	Leu	Ala	Ala	Met	Ser	Ile	Asp	Arg	Tyr	Leu	
	130					135					140					
Val	Val	Leu	Ala	Thr	Ala	Arg	Ser	Arg	Arg	Met	Pro	Arg	Arg	Thr		
145					150					155					160	

His Arg Ala Lys Val Ala Ser Leu Cys Val Trp Leu Gly Val Thr Val

Ala Val Leu Pro Phe Leu Thr Phe Ala Gly Val Tyr Asn Asn Glu Leu 180 185 190

Gln Val Thr Ser Cys Gly Leu Ser Phe Pro Arg Pro Glu Arg Ala Trp
195 200 205

Phe Gln Ala Ser Arg Ile Tyr Thr Leu Val Leu Gly Phe Val Val Pro 210 215 220

Met Cys Thr Leu Cys Val Leu Tyr Ala Asp Leu Leu Arg Arg Leu Arg 225 230 235 240

Ala Leu Arg Leu His Ser Gly Ala Lys Ala Leu Gly Lys Ala Lys Arg
245 250 255

Lys Val Ser Leu Leu Val Leu Ala Val Leu Ala Val Gly Leu Leu Cys 260 265 270

Trp Thr Pro Phe His Leu Ala Ser Ile Val Ala Leu Thr Thr Asp Leu
275 280 285

Pro Gln Thr Pro Leu Val Ile Ile Val Ser Tyr Val Val Thr Ser Leu
290 295 300

Ser Tyr Thr Ser Ser Cys Leu Asn Pro Phe Leu Tyr Ala Phe Leu Asp 305 310 315 320

His Ser Phe Arg Lys Ser Leu Arg Thr Ala Cys Arg Cys Gln Gly Ala
325
330
335

<210> 89

<211> 1008

<212> DNA

<213> bovine

<400> 89

atgatggagg	ccactgggct	ggaaggcctg	gaaagcacaa	gctcccctg	cccaggtagc	60
acaggcaccg	gcctctcatg	ggacaatggc	accagacaca	atgccacctt	ccccgagccg	120
ctgcctgccc	tctacgtgct	gctgccggtg	gtatactctg	tcatctgtgc	cgtggggctg	180
gtgggcaacg	cagccgtcat	ctgtgtgatc	ctgagggctc	ccaagatgaa	gacagtgacc	240
cacgtgttca	tcctgaacct	ggccatcgcc	gacgggctct	tcacgctggt	gctgcccacc	300
aatattgctg	agcacctgct	gcagcgctgg	ccctttgggg	aggtgctctg	caagctggtg	360
ctggccattg	accactgcaa	catcttctcc	agtgtctact	tcctggccgc	catgagtata	420
gaccgctacc	tggtggttct	ggccacggca	cgctcccgcc	gcatgccccg	gcgcaccgtc	480
cacagggcga	aggtcgccag	cctgtgcgtc	tggctgggtg	tcacagtcgc	agtgctgccc	540
ttccttacct	tcgcaggcgt	gtacaacaat	gagctgcagg	tcacaagttg	tgggctgagt	600
ttcccgcggc	ccgagagggc	ctggttccag	gcaagccgca	tctacacgct	ggtgctgggc	660
ttcgtggtgc	ccatgtgcac	cctctgcgtg	ctctacgcag	acctgctgcg	gaggctaagg	720
gccctgcggc	tccactccgg	agccaaggct	ctgggcaagg	ccaagcggaa	ggttagcctc	780
ctggtcctgg	ccgtgctggc	cgtgggcctg	ctctgctgga	cgcccttcca	cctggcctca	840
attgtggccc	tgaccacaga	cctgccccag	acaccgctgg	tcatcatcgt	ctcctatgtg	900
gtcaccagcc	tcagctacac	cagctcctgc	ctcaacccct	tcctctatgc	cttcctggat	960
cacagcttcc	ggaagagcct	ccgcaccgca	tgtcggtgcc	agggggca		1008
<210≻ 90						

⟨211⟩ 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 90

cgctcccagc cctacaga

18

⟨210⟩ 91

⟨211⟩ 20

43/45

<212> DNA <213> Artificial Sequence <220> <223> Primer <400> 91 tcgccttgca ctggtaggtc 20 <210> 92 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 92 24 agcctcgctg tgtgcgtcca ggac ⟨210⟩ 93 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 93 22 tgcgtgctat ccagctagac ag ⟨210⟩ 94 <211> 22 <212> DNA <213> Artificial Sequence

<220>

<223> Primer	
<400> 94	
agaggaggca cacagccaga at	22
<210> 95	
⟨211⟩ 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
⟨400⟩ 95	
cgtgccaaga aacgcgtgac cttgtt	26
<210> 96	
<211≻ 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
⟨400⟩ 96	
gtcgaccgag tgtctgtcct cgccaggatg	30
<210> 97	
⟨211⟩ 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 97	
gctagctcct tgttatcggg ctcaggaggt ggt	33

45/45

<210> 98 ⟨211⟩ 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 98 33 gtcgaccatg atggaggcca ctgggctgga agg <210> 99 ⟨211⟩ 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 99 33 gctagcttat gcccctggc accgacatgc ggt <210> 100 <211> 23 <212> PRT <213> Human <400> 100 Trp Tyr Lys His Val Ala Ser Pro Arg Tyr His Thr Val Gly Arg Ala 1 5 10 15

Ala Gly Leu Leu Met Gly Leu

20

23

International application No. PCT/JP02/05915

A.	CLASSIFICATION	OF SUBJECT MATTE	R
----	----------------	------------------	---

Int.Cl' C07K14/47, C07K14/705, C12N15/12, C12N1/21, C12N1/19, C12N5/10, C12P21/02, C07K16/18, C07K16/28, C12Q1/68, A61K38/17, A61K39/395, G01N33/53, G01N33/577

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
REGISTRY(STN), CA(STN), SwissProt/PIR/GeneSeq, MEDLINE(STN),
WPI (DIALOG), BIOSIS (DIALOG)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	O'DOWD, B.F. et al., The cloning and chromosomal mapping of two novel human opioid-somatostatin-like receptor genes, GPR7 and GPR8, expressed in discrete areas of the brain. Genomics 1995, Vol.28, No.1, pages 84 to 91	80-129, 137-138, 145-146, 166-185, 189-191
х	WO 95/12670 A1 (Alcoholism & Drug Addiction Res. Found.), 11 May, 1995 (11.05.95), & AU 9480560 A & EP 726949 A1 & US 5591602 A & JP 9-507022 A & DE 69427921 E	80-129, 137-138, 145-146, 166-185, 189-191
P,X	WO 02/44368 A1 (Takeda Chemical Industries, Ltd.), 06 June, 2002 (06.06.02), (Family: none)	1-57,69-70, 126-129, 156-165, 186-188

(=====,	
Further documents are listed in the continuation of Box C.	See patent family annex.
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family
Date of the actual completion of the international search 12 September, 2002 (12.09.02)	Date of mailing of the international search report 01 October, 2002 (01.10.02)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

International application No.
PCT/JP02/05915

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
P,A	WO 01/98494 A1 (Takeda Chemical Industries, Ltd.), 27 December, 2001 (27.12.01), & AU 200174562 A	1-57,69-70, 80-129, 137-138, 145-146, 156-191

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

International application No.
PCT/JP02/05915

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: .
 2. X Claims Nos.: 58-68, 71-79, 130-136, 139-144, 147-155 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Although the compounds as set forth in claims 58 to 62, 71 to 73, 130 to 133, 139 to 141 and 147 to 149 involve any compounds obtained by the screening method, no specific compound is disclosed in the description as the above compounds. Therefore, these claims are (continued to extra sheet) 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
It is recognized that the inventions as set forth in claims 1 to 57, 69 to 70, 80 to 129, 137 to 138, 145 to 146 and 156 to 191 are classified into the following three groups: inventions relating to the GPR7 ligand (claims 1 to 57, 69 to 70, 156 to 165 and 186 to 188 and parts of claims 126 to 129); inventions relating to bovine GPR7 (claims 80 to 102, 137 to 138 and 166 to 175 and parts of claims 126, 128 and 189 to 191); and inventions relating to bovine GPR8 (claims 103 to 125, 145 to 146, 176 to 185 and parts of claims 127, 129 and 189 to 191). Therefore, the inventions as set forth in claims 1 to 57, 69 to 70, 80 to 129, 137 to 138, 145 to 146 and 156 to 191 are classified into the above three groups of inventions. (Continued to extra sheet.)
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.
 As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.
PCT/JP02/05915

Continuation of Box No.I-2 of continuation of first sheet(1)

not sufficiently supported by the description. The same applies to claims 63 to 68, 74 to 79, 134 to 136, 142 to 144 and 150 to 155.

Continuation of Box No.II of continuation of first sheet(1)

These groups of inventions are not considered as relating to a group of inventions so linked as to form a single general inventive concept.

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1 C07K 14/47, C07K 14/705, C12N 15/12, C12N 1/21, C12N 1/19, C12N 5/10, C12P 21/02, C07K 16/18, C07K 16/28, C12Q 1/68, A61K 38/17, A61K 39/395, G01N 33/53, G01N 33/577

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1⁷ C07K 14/47, C07K 14/705, C12N 15/12, C12N 1/21, C12N 1/19, C12N 5/10, C12P 21/02, C07K 16/18, C07K 16/28, C12Q 1/68, A61K 38/17, A61K 39/395, G01N 33/53, G01N 33/577

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

REGISTRY (STN), CA (STN), SwissProt/PIR/GeneSeq, MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG)

	C. 関連すると認められる文献				
	引用文献の		関連する		
L	カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号		
	Х	O'DOWD, B. F. et al. The cloning and chromosomal mapping of two novel human opioid-somatostatin-like receptor genes, GPR7 and GPR8, expressed in discrete areas of the brain. Genomics 1995, Vol. 28, No. 1, p. 84-91	80-129, 137- 138, 145-146 , 166-185, 189-191		
	Х	WO 95/12670 A1 (ALCOHOLISM & DRUG ADDICTION RES. FOUND.) 1995. 05. 11 & AU 9480560 A & EP 726949 A1 & US 5591602 A & JP 9-507022 A & DE 69427921 E	80-129, 137- 138, 145-146 , 166-185, 189-191		

|×| C欄の続きにも文献が列挙されている。

┃ ┃ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 12.09.02 国際調査報告の発送日 12.09.02

国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 特許庁審査官 (権限のある職員) 高堀 栄二

4B 9281

電話番号 03-3581-1101 内線 3448

東京都千代田区段が関三丁目4番3号

C (続き) . 関連すると認められる文献					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示		関連する 請求の範囲の番号		
Р, Х	₩0 02/44368 A1 (武田薬品工業株式会社) (ファミリーなし)	2002. 06. 06	1-57, 69-70, 126-129, 156 -165, 186-188		
P, A	WO 01/98494 A1 (武田薬品工業株式会社) & AU 200174562 A	2001. 12. 27	1-57, 69-70, 80-129, 137- 138, 145-146 , 156-191		
	·				
	·	•			

第 I 欄 請求の範囲の一部の調査ができないときの意見(第 1 ページの 2 の続き)					
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。					
1. 請求の範囲 は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、					
2. 区 請求の範囲 <u>58-68, 71-79, 130-136, 139-144, 147-155</u> は、有意義な国際調査をすることができる程度まで所定 の要件を満たしていない国際出願の部分に係るものである。つまり、					
請求の範囲58-62、71-73、130-133、139-141、147-149に記載の化 合物は、スクリーニング方法により得られるあらゆる化合物を包含するものであるが、明細書には、上 記化合物として具体的なものが記載されておらず、明細書による十分な裏付けを欠いている。請求の範 囲63-68、74-79、134-136、142-144、150-155も同様である。					
3. 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。					
第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)					
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。					
請求の範囲1-57、69-70、80-129、137-138、145-146、156-191に記載された発明は、GPR7のリガンドに係る発明(請求の範囲1-57、69-70、156-165、186-188及び請求の範囲126-129の一部)、ウシGPR7に係る発明群(請求の範囲80-102、137-138、166-175及び請求の範囲126、128、189-191の一部)、ウシGPR8に係る発明群(請求の範囲103-125、145-146、176-185及び請求の範囲127、129、189-191の一部)の3つの発明群に区分されると認められる。したがって、請求の範囲1-57、69-70、80-129、137-138、145-146、156-191に記載された発明は、上記3つの発明群に区分され、当該発明群が単一の一般的発明概念を形成するように連関している一群の発明であるとは認められない。					
1. X 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。					
2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。					
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。					
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。 .					
追加調査手数料の異議の申立てに関する注意					