COLUMBIA UNIVERSITY

DEPARTMENT OF BIOSTATISTICS P8109 – STATISTICAL INFERENCE

Exercise Sheet 1

Date due: MON Feb 10, 2020.

No late assignments will be accepted.

Question 1

Calculate $\Pr\left\{\sum_{i=1}^{6} Z_i^2 \le 6\right\}$ where Z_i 's are i.i.d. N(0, 1) r.v.'s.

Question 2

If X is a random variable that has an F-distribution with ν_1 numerator and ν_2 denominator degrees of freedom, show that Y = 1/X has an F-distribution with ν_2 numerator and ν_1 denominator degrees of freedom

Question 3

Let

$$T = \frac{Z}{\sqrt{W/v}},$$

where $Z \sim N(0, 1)$ and W is an independent χ^2_{ν} -distribution.

- (a) Write down the distribution of T.
- (b) Using the result that

$$\mathcal{E}W^{\alpha} = \frac{\Gamma\left(\frac{\nu}{2} + \alpha\right)}{\Gamma\left(\frac{\nu}{2}\right)} 2^{\alpha} \quad \text{for } \nu > -2\alpha ,$$

show that:

(i)
$$\&T = 0$$
 for $v > 1$;

(ii)
$$var T = v / (v - 2)$$
 if $v > 2$.

Question 4

The following is a proof of the Central Limit Theorem for the Poisson distribution, i.e. if $X \sim \text{Poisson}(\lambda)$, then as $\lambda \to \infty$, $(X - \lambda)/\sqrt{\lambda} \xrightarrow{D} Z \sim N(0,1)$:

(a) Define $X^* = (X - \lambda) / \sqrt{\lambda}$. Show that:

$$\xi e^{tX^*} = e^{-t\sqrt{\lambda}} \xi e^{tX/\sqrt{\lambda}}.$$

(b) Show that:

$$\mathcal{E}e^{tX^*} = e^{-t\sqrt{\lambda}-\lambda} \sum_{x=0}^{\infty} \frac{\left(\lambda e^{t/\sqrt{\lambda}}\right)^x}{x!}.$$

(c) By using the fact that $\sum_{i=0}^{\infty} a^i / i! \equiv e^a$, show that

$$\mathcal{E}e^{tX^*} = \exp\left\{-t\sqrt{\lambda} - \lambda + \lambda e^{t/\sqrt{\lambda}}\right\}.$$

(d) Hence show that

$$\mathcal{E}e^{tX^*} \to e^{t^2/2}$$
 as $\lambda \to \infty$.

Question 5

Prove that if $X \sim \text{binomial}(n, p)$, then

$$\frac{X - np}{\sqrt{np(1-p)}} \xrightarrow{D} Z \sim N(0,1).$$

Hint: You may want to use the fact that X can be written as the sum of n i.i.d. Bernoulli r.v.'s, i.e. $X = Z_1 + Z_2 + ... + Z_n$, where $Z_i = 1$ with prob. p and $Z_i = 0$ with prob. 1-p.

Question 6

Let $Y_1,...,Y_5$ be a random sample of size 5 from a normal population with mean 0 and variance 1. Let $\overline{Y} = (\sum_{i=1}^5 Y_i)/5$ and Y_6 be another independent observation from the same population. What is the distribution of:

- (a) \overline{Y} ;
- (b) $U = \sum_{i=1}^{5} Y_i^2$;
- (c) $V = \sum_{i=1}^{5} (Y_i \overline{Y})^2$;
- (d) $W = \sum_{i=1}^{5} (Y_i \overline{Y})^2 + Y_6^2$.

Question 7

The coefficient of variation (CV) for a random sample $Y_1, ..., Y_n$ is defined by

$$CV = \frac{S}{\overline{Y}},$$

where S is the sample standard deviation and \overline{Y} is the sample mean. CV measures the amount of variation as a proportion of the sample mean. Suppose each $Y_i \sim N(0, \sigma^2)$ for i = 1, ..., 10.

- (a) By using $F_{1,\nu} \equiv t_{\nu}^2$, find the distribution of $10\overline{Y}^2/S^2$ in terms of the *F*-distribution.
- (b) Find the distribution of $S^2/(10\overline{Y}^2)$.
- (c) Find the number c such that

$$\Pr\left\{-c \le \frac{S}{\overline{Y}} \le c\right\} = .95.$$

Question 8

Consider a sequence of i.i.d. r.v.'s $Z_1,...,Z_n$ where each $Z_i \sim N(0, 1)$.

- (a) Write down the relationship between the Z_i 's and W, where $W \sim \chi_{n-1}^2$
- (b) Now consider another sequence of i.i.d. r.v.'s $X_1,...,X_n$ where each $X_i \sim N(\mu,\sigma^2)$ and let

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

- (i)Write down the relationship between S^2 and W.
- (ii)Use the Central Limit Theorem to show that

$$\frac{S^2 - \sigma^2}{\sigma^2 \sqrt{2/(n-1)}} \xrightarrow{D} Z_i \sim N(0, 1).$$

Question 9

Verify if each of the following distributions belongs to the exponential family:

- (a) binomial(n, p);
- (b) gamma(α, β).

Question 10

(a) Consider a r.v. X with expectation μ and let h(X) be a function of X with continuous second derivative. Show that

$$\mathcal{E}h(X) \approx h(\mu) + \frac{1}{2}h^{\prime\prime}(\mu)\operatorname{var}(X).$$

(b) The probability of success P of a new medical procedure is estimated to be $P_s = .368$ based on n = 378 observations. Ignoring second derivatives in the formula in (a) above, find estimates for the expectation and variance of the odds of success:

$$\widehat{O} = \frac{P_s}{1 - P_s}.$$

ANSWERS

Q1 .57681**Q7** c = 49.04 **Q10** (b) .58, 3.86×10^{-3}

Dr. P Gorroochurn: 01/30/2020