Inhaltsverzeichnis

Vorwort		
1	Beispiele normierter Räume	7
2	Funktionale und Operatoren	21
3	Dualräume und ihre Darstellungen	31
4	Kompakte Operatoren	37
5	Der Satz von Hahn-Banach	45

Der Satz von Hahn-Banach

Wir werden insbesondere zeigen, dass auf jedem normierten Raum ein stetiges lineares Funktional $\neq 0$ existiert.

{def5.1}

Definition 5.1

Sei X ein Vektorraum. Eine Abbildung $p: X \to \mathbb{R}$ heißtsublinear, falls

- i) $p(\lambda x) = \lambda p(x) \forall \lambda \ge 0, x \in X$
- ii) $p(x + y) = p(x) + p(y) \forall x, y \in X$

Beispiel

- i) Jede Halbnorm ist sublinear.
- ii) Jede lineare Abbildung $T: X \to \mathbb{R}$ auf einem reellen Vektorraum ist sublinear.
- iii) $(x_n)_n \mapsto \limsup_{n \to \infty} x_n$ ist sublinear auf dem reellen ℓ^{∞} und $(x_n)_n \mapsto \limsup_{n \to \infty} \operatorname{Re} x_n$ ist sublinear auf dem komplexen Raum ℓ^{∞} .

45

{satz

Satz 5.2 Satz von Hahn-Banach, Version der linearen Algebra

Sei X ein reeller Vektorraum und sei U ein Untervektorraum von X. Ferner seien $p: X \to \mathbb{R}$ sublinear und $l: U \to \mathbb{R}$ linear mit

$$l(x) \le p(x) \forall x \in U$$

Dann existiert eine lineare Fortsetzung $L: X \to \mathbb{R}, L|_U = l \text{ mit } L(x) \le p(x) \forall x \in X.$

Beweis:

i) Es gelte zusätzlich $\dim X/U=1$. Sei $x_0\in X/U$ beliebig. Dann lässt sich jedes $x\in X$ eindeutig schreiben als

$$x = i + \lambda x_0, \quad u \in U, \lambda \in \mathbb{R}$$

Sei r ein freier Parameter. Wir wählen den Ansatz

$$L_r(x) = l(u) + \lambda r$$

 L_r ist eine lineare Abbildung, welches l fortsetzt. Zu zeigen: $\exists r \in \mathbb{R}: L_r \leq p$. Es gilt

$$L_r \le p$$

$$\Leftrightarrow L_r(x) \le p(x) \forall x \in X$$

$$\Leftrightarrow l(u) + \lambda r \le p(u + \lambda x_0) \forall u \in U \forall \lambda \in \mathbb{R}$$
(*)

Nach Voraussetzung gilt (*) für $\lambda = 0$ und alle $u \in U$. Sei $\lambda > 0$. Dann gilt:

$$(*) \Leftrightarrow \lambda r \le p(u + \lambda x_0) - l(u) \forall u$$

$$\Leftrightarrow r \le p\left(\frac{u}{\lambda} + x_0\right) - l\left(\frac{u}{\lambda}\right) \forall u$$

$$\Leftrightarrow r \le \inf_{v \in U} (p(v + x_0) - l(v))$$

Analog für λ < 0:

$$(*) \Leftrightarrow -r \leq p \left(\frac{u}{-\lambda} - x_0\right) - l \left(\frac{u}{-\lambda}\right) \forall u$$
$$\Leftrightarrow r \geq l \left(\frac{u}{-\lambda}\right) - p \left(\frac{u}{-\lambda} - x_0\right) \forall u$$
$$\Leftrightarrow r \geq \sup_{w \in U} (l(w) - p(w - x_0))$$

Somit: $\exists r \in \mathbb{R}$:

$$L_r \le p \Leftrightarrow l(w) - p(w - x_0) \le p(v + x_0) - l(v) \forall v, w \in U$$
 (**)

(**) folgt aus: $\forall v, w \in U$:

$$l(w) + l(v) = l(w + v) \le p(w + v) = p(w - x_0 + x_0 + v) \le p(w - x_0) + p(v + x_0)$$

ii) Um die allgemeine Aussage zu beweisen, benötigen wir das Zornsche Lemma: Sei (A, \leq) eine halbgeordnete nichtleere Menge (d.h. \leq ist transitiv, reflexiv und antisymmetrisch) in der jede Kette (dies ist eine total geordnete Menge, also eine Teilmenge, für deren Elemente stets $x \leq y$ oder $y \leq x$ gilt) eine obere Schranke besitzt. Dann liegt jedes Element von A unter einem maximalen Element von A, also einem Element m mit $m \leq a \Rightarrow a = m$ (Das Zornsche Lemma ist äquivalent zum Auswahlaxiom und zum Wohlordnungssatz). Wir wählen

 $A = \{(V, L_V) \mid V \text{ ist ein Unterraum von } X \text{ mit } U \subseteq V \text{ und } L_V \colon V \to \mathbb{R} \text{ linear mit } L_V \leq p|_V \text{ und } L_V|_U = l\}$

Es gilt $A \neq \emptyset$, da $(U, l) \in A$. Wir wählen die Ordnung

$$(V_1, L_{V_1}) \le (V_2, L_{V_2}) \Leftrightarrow V_1 \subseteq V_2 \text{ und } L_{V_2}|_{V_1} = L_{V_1}$$

Ist $((V_i, L_{V_i})_{i \in I})$ total geordnet, so ist (V, L_V) mit

$$V = \bigcup V_i$$
 $L_V(x) = L_{V_i}(x)$ $x \in V_i$

als obere Schranke. Nach dem Zornschen Lemma gibt es also ein maximales Element. Sei nun $m = (X_0, L_{X_0})$ ein maximales Element. Wäre $X_0 \neq X$, so gäbe es nach i) eine echte Majorante von m, und m wäre nicht maximal. Also ist $X_0 = X$ und $L = L_{X_0}$ löst unser Fortsetzungsproblem.