mpi* - lycée montaigne informatique

Informatique - MPI

Question 1.

 \square 1.1. Si n est un entier naturel non nul, notons u_n la valeur du dernier chiffre de 2^n dans sa représentation décimale. On peut écrire :

$$u_n = 2^n \bmod 10$$

On montre (le faire) alors que :

$$u_{n+1} = (2u_n) \bmod 10$$

Ce qui permet de calculer le dernier chiffre de 2^n s par l'algorithme récursif non terminal suivant.

```
let rec dernier_chiffre n =
if n = 0 then 1
else 2 * (dernier_chiffre (n-1)) mod 10
```

□ 1.2.

- Terminaison : la valeur de n décroît et le cas n=0 met un terme aux appels.
- Correction : par induction.
- Complexités temporelle et spatiale : linéaire.

Question 2.

□ 2.1. Fonction récursive terminale dernier_chiffre : int -> int.

```
let dernier_chiffre n =
let rec aux acc i =
   if i = 0 then acc
   else 2 * (aux acc (i-1)) mod 10
   in aux 1 n
```

2.2.

- ullet Terminaison : la valeur de i décroît et le cas i=0 met un terme aux appels récursifs de la fonction **aux**.
- Correction : par induction.
- Complexité temporelle linéaire; complexité spatiale constante.

Question 3.

□ 3.1. Observons les résultats des calculs suivants.

n	1	2	3	4	5	6	7	8	9
$n \bmod 4$	1	2	4	0	1	2	4	0	1
2^n	2	4	8	16	32	64	128	256	512
$2^n \mod 10$	2	4	8	6	2	4	8	6	2

Il semble que pour $n \geqslant 1$, les derniers chiffres de 2^n suivent un cycle d'ordre 4.

- Si $n \mod 4 = 0$ alors $2^n \mod 10 = 6$.
- Si $n \mod 4 = 2$ alors $2^n \mod 10 = 4$.
- Si $n \mod 4 = 1$ alors $2^n \mod 10 = 2$.
- Si $n \mod 4 = 3$ alors $2^n \mod 10 = 8$.

Justifions ces résultats en écrivant n sous la forme i+4j avec $i\in\{1,2,3,4\}$ et $j\in\mathbb{N}$. Pour j=0, le résultat est évident. Pour $j\geqslant 1$, on a $2^{4j}=16^j=6^j$ mod 10 puis 6^j mod 10=6 mod 10. En effet, pour j=1, $6^j=6$. Si le résultat est vrai pour un entier $j\geqslant 1$ fixé, alors 6^{j+1} mod $10=36\times 6^{j-1}$ mod $10=(30+6)\times 6^{j-1}$ mod $10=6\times 6^{j-1}$ mod $10=6^j$ mod 10, qui vaut 10=60 par hypothèse de récurrence. Ce qui établit le résultat. Finalement :

$$2^{i+4j} \bmod 10 = 6 \times 2^i \bmod 10 = \begin{cases} 2 & \text{si } i = 1 \\ 4 & \text{si } i = 2 \\ 8 & \text{si } i = 3 \\ 6 & \text{si } i = 4 \end{cases}$$

□ 3.2. Le résultat de la question précédente permet l'écriture du code suivant.

mpi* - lycée montaigne informatique

- Terminaison : toujours (pas d'appels récursifs).
- Correction : par récurrence.
- Complexités temporelle et spatiale : constantes.