1 ŠTEVILA

- 1. Naravna števila
 - Kaj so naravna števila. Množica naravnih števil.
 - Peanovi aksoimi. Aksiom popolne indukcije.
 - Operaciji na množici naravnih števil.
 - Urejenost množice naravnih števil.
- 2. Cela števila
 - Zakaj potrebujemo celi števili?
 - Množica celih števil.
 - Operacije na množice celih števil.
 - Urejenost množice celih števil. Ali je dobra?
- 3. Racionalna števila
 - Zakaj potrebujemo racionalna števila?
 - Ulomek. Kadar dva različna ulomka predstavljata isto racionalno število?
 - Definicija. Racionalno število. Oznaka.
 - Množica racionalnih števil.
 - Seštevanje in množenje racionalnih števil. Ali sta dobro definirani?
 - Ali na vsakem odprtem intervalu $(a,b),\ a,b\in\mathbb{Q}$ leži racionalno število? Ali racionalna števila napolnijo številsko premico?
- 4. Lastnosti računskih operacij
 - Aksiomi seštevanja.
 - \bullet Kako rečemo množice A z operacijo +, ki izpolnjuje aksiome seštevanja?
 - Trditev. Naj bo število $a \in A$. Koliko nasprotnih števil lahko ima a?
 - Trditev. Pravilo krajšanja za seštevanje.
 - Posledica. Ali je -0 = 0?
 - Dokaz. Vse dokažemo z uporabo aksiom.
 - **Definicija.** Odštevanje. Ali je asociativno oz. komutativno? Ali je (A, -) Abelova?
 - Aksiomi množenja.
 - Kako rečemo množice $A \setminus \{0\}$ z operacijo ·, ki izpolnjuje aksiome množenja?
 - Trditev. Naj bo število $a \in A$, $a \neq 0$. Koliko obratnih števil lahko ima a?
 - Trditev. Pravilo krajšanja za množenje.
 - **Posledica.** Ali je $1^{-1} = 1$?
 - Dokaz. Vse dokažemo z uporabo aksiom.
 - Aksioma polja.
 - Kako rečemo množice $(A, +, \cdot)$, ki izpolnjuje aksiome seštevanja, množenja in polja?
 - Aksioma urejenosti.
 - Kako rečemo množice $(A, +, \cdot, <)$, ki izpolnjuje aksiome seštevanja, množenja, polja in urejenosti?
 - *Primer*. Ali je $(\mathbb{Q}, +, \cdot, <)$ urejeni komutativni obseg?
 - **Definicija.** Urejenost v urejenem komutativnem obsegu.
 - Trditev. Naj bo A urejeni obseg. Ali je 1 pozitivno število? Ali ima A neskončno elementov?
 - **Dokaz.** (1) Enostavno s protislovjem z uporabo aksiom.
 - (2) Poglejmo vsoto vsih pozitivnih členov.
 - **Trditev.** Kaj sledi iz aksiome A11 za poljubni števili $a, b \in A$?
 - **Trditev.** 4 lastnosti relacije <.
 - **Dokaz.** Definicija urejenosti in aksiomi.
 - **Definicija.** Relacija \geq .

- 5. Dedekindov aksiom in realna števila
- o Realna števila
 - Zakaj potrebujemo realna števila?
 - *Primer*. Ali je rešitev enačbe $x^2 = 2$ racionalno število?
 - Dedekindov pristop za definicijo realnega števila.
 - Definicija. Rez.
 - *Primer*. $A = \{ p \in \mathbb{Q}; \ p < 0 \}$. Ali je A rez?
 - **Definicija.** Množica realnih števil.
 - Trditev. Preslikava, ki vloži množico racionalnih števil v množico realnih števil. Ali je injektivna?
 - **Definicija.** Vsota realnih števil. Oznaka.
 - Trditev. Ali je vsota realnih števil realno število?
 - Dokaz. Pokažemo, da je rez.
 - **Definicija.** Pozitivno realno število.
 - **Definicija.** Produkt realnih števil.
 - **Trditev.** $(\mathbb{R}, +, \cdot, <)$ izpolnjuje aksiome A1 A4.
 - **Dokaz.** Preverimo aksiome z uporabo definicji reza. Enota je 0^* , inverz od A je $-A = \{p \in \mathbb{Q}; \text{ obstaja } r \in \mathbb{Q}, r > 0, -p - r \notin A\}.$
 - **Trditev.** $(\mathbb{R}, +, \cdot, <)$ izpolnjuje aksiome A1 A12.
 - Trditev. Ali je urejeni obseg \mathbb{R} vsebuje urejeni obseg \mathbb{Q} kot podobseg? Zakaj?
 - **Dokaz.** Čemu je enako $(p+q)^*$, $(p\cdot q)^*$ in kadar je $p < q, p, q \in \mathbb{Q}$?
- Dedekindov aksiom
 - Definicija. Navzgor (navzdol) omejena množica. Zgornja (spodnja) meja množice.
 - **Definicija.** Natančna zgornja/spodnja meja množice (supremum/infimum). Kaj natančno velja za supremum/infimum?
 - **Definicija.** Maksimum/minimum množice.
 - Primer. Kako sta povezana maksumum in supremum množice?
 - *Primer*. Določi supremum množice, če obstaja.
 - $-B = \{x \in \mathbb{Q}, \ x < 0\} \subset \mathbb{Q}.$
 - $-C = \{x \in \mathbb{Q}, x^2 < 0\} \subset \mathbb{Q}.$
 - Dedekindov aksiom.
 - *Opomba*. Ali je \mathbb{Q} izpolnjuje Dedekindov aksiom?
 - **Izrek.** Ali je vsaka navzgor omejena podmnožica v ℝ ima supremum?
 - **Dokaz.** Izberimo poljubno neprazno navzgor omejeno podmnožico \mathcal{A} v \mathbb{R} . Definiramo $C := \bigcup_{A \in \mathcal{A}} A$. Pokažemo, da je $C \in \mathbb{R}$ in $C = \sup \mathcal{A}$.
 - Posledica. Ali je vsaka navzdol omejena podmnožica v \mathbb{R} ima infimum?
 - Posledica. Ali je R izpolnjuje Dedekindov aksiom?
 - **Izrek.** Ali je $(\mathbb{R}, +, \cdot, <)$ izpolnjuje aksiome A1 A13? Ali vsebuje \mathbb{Q} kot podobseg?
- o Posledice Dedekindovega aksioma
 - Posledica 1. Ali je množica celih števil navzgor omejena?
 - **Dokaz.** Če je $M = \sup \mathbb{Z}$, potem M 1 ni $\sup \mathbb{Z}$.
 - Posledica 2. Ali za vsak $a \in \mathbb{R}$ obstaja $b \in \mathbb{Z}$, da velja b > a?
 - Dokaz. Protislovje s prvo posledico.
 - Posledica 3. Arhimedska lastnost.
 - **Dokaz.** Sledi iz posledice 2.
 - Posledica 4. Naj bo $a \in \mathbb{R}, a > 0$. Ali obstaja $n \in \mathbb{N}$ za katero valja $\frac{1}{n} < a$?
 - **Dokaz.** Sledi iz posledice 2.
 - Posledica 5. Ali je \mathbb{Q} povsod gosta v \mathbb{R} ?
 - Dokaz. Definicija realnega števila.
- o Intervali
 - Definicija. Zaprti (odprti) interval. Polodprti interval. Neskončni intervali.
 - **Definicija.** Naj bo $a \in \mathbb{R}$. ϵ -okolica števila a. Okolica števila a.

- o Decimalni ulomki
 - Ali vsakemu realnemu številu lahko priredimo neskončen decimanli zapis?
 - Množica decimalnih približkov števila x.
 - Trditev. Čemu je enak supremum množice decimalnih približkov števila x?
 - **Dokaz.** Po konstrukciji x je zgornja meja. Recimo, da je $y = \sup A < x$. Potem obstaja $p \in \mathbb{N}$, da $x y > \frac{1}{10^p}$. Vzemimo $z = n_0 + \frac{n_1}{10} + \ldots + \frac{n_p}{10^p}$ in izračunamo x z.
 - **Definicija.** Zapis števila x kot neskončen decimalni ulomek.
 - Trditev. Ali je zapis števila $x \in \mathbb{R}$ kot neskončen decimalni ulomek enoličen? Kaj velja za dva različna zapisa števila x?
 - **Dokaz.** (1) Naj bo \mathcal{A} množica decimalnih približkov števila x. Pokažemo, da je y natančna zgornja meja od \mathcal{A} tako, da pokažemo, da $y \frac{1}{10^p}$ ni zgornja meja za noben $pin\mathbb{N}$.
 - (2) Obstaja najmanjši indeks $k \in \mathbb{N}_0$: $n_k \neq m_k$. Recimo, da $n_k < m_k$. Pokažemo, da edina možnost je $m_k = n_k + 1$ in da $m_{k+l} = 0$ za vse $l \in \mathbb{N}$ in da $n_{k+j} = 9$ za vse $j \in \mathbb{N}$.
 - Trditev. Karakterizacija racionalnega števila (decimalni zapis).
 - Dokaz. (⇒) Iz periodičnega decimalnega zapisa dobimo ulomek.
 - (\Leftarrow) Vemo, da $x \in \mathbb{Q} \Rightarrow x = \frac{m}{n}$. Pogledamo ostanki pri deljenju.
- o Uporaba Dedekinovega aksioma za uvedbo korenov in logaritma
 - Izrek. Naj bo $x \in \mathbb{R}, x > 0, n \in \mathbb{N}$. Koliko rešitev ima enačba $y^n = x$?
 - **Izrek.** Naj bo $x \in \mathbb{R}$, x > 0 in $b \in \mathbb{R}$, b > 0, $b \neq 1$. Koliko rešitev ima enačba $b^y = x$?
- Absolutna vrednost
 - **Definicija.** Absolutna vresnost števila $x \in \mathbb{R}$.
 - Trditev. 8 lastnosti absolutne vrednosti.
 - **Posledica.** Oceni ||x| |y|| in $|x_1 + x_2 + ... + x_n|$.
 - **Dokaz.** Najprej pokažemo, da $|x-y| \le |x| + |y|$, nato pa pišemo |x| = |(x+y) y|.

- 6. Kompleksna števila
 - Zakaj potrebujemo kompleksna števila?
 - Definicija. Kompleksno število. Množica kompleksnih števil.
 - Opomba. Kadar sta kompleksna števila enaKa? Seštevanje in množenje kompleksnih števil.
 - **Izrek.** Ali je $(\mathbb{C}, +, \cdot)$ polje?
 - **Dokaz.** Preverimo aksiome A1 A8.
 - *Opomba*. Ali lahko v C vpeljamo ureditve, za kateri bi bila urejeni obseg?
 - Trditev. Preslikava, ki vloži množico realnih števil v množico kompleksnih števil. Ali je injektina? S čim lahko enačimo urejene pare oblike (a,0)? Zakaj?
 - **Definicija.** Imaginarna enota.
 - Opomba. Čemu je enako i^2 ? Algebraični zapis kompleksnega števila.
 - **Definicija.** Naj bo $z \in \mathbb{C}$. Realni del in imaginarni del z. Konjugirano število z. Absolutna vresnost z.
 - Trditev. 2 lastnosti konjugiranja. Čemu je enako Rez in Imz? Čemu je enako $|z|^2, z \in \mathbb{C}$?
 - Dokaz. Poračunamo.
 - Trditev. 6 lastnosi absolutne vrednosti kompleksnega števila.
 - Dokaz. Poračunamo.
 - Izrek. Osnovni izrek algebre. [Brez dokaza]
- o Geometrijska interpretacija kompleksnega števila
 - Kako predstavimo kompleksno število?
 - S čim se ujema seštevanje kompleksnih števil?
 - Kaj je absolutna vrednost kompleksnega števila?
 - Kako lahko interpretiramo trikotniško neenakost?
- o Polarni zapis kompleksnega števila števila
 - Kako je podana lega točke v izbranem koordinatnem sistemu?
 - Kako dobimo razdalje do izhodišča in polarni kot?
 - Kaj vemo, če je kompleksno število podano v polarnem zapisu?
 - **Definicija.** Polarni zapis kompleksenga števila.
 - **Definicija.** Argument kompleksnega števila.
 - *Opomba*. Kaj lahko povemo o številu $\cos \phi + i \sin \phi$?
- o Množenje kompleksnih števil
 - Formula za množenje komplekšnih števil v polarnem zapisu.
- o Potenciranje
 - Moivreova formula za potenciranje kompleksnega števila.
- Konjugiranje
 - Konjugiranje v polarnem zapisu.
- o Korenjenje kompeksnih števil
 - **Definicija.** n-ti koreni kompleksnega števila z.
 - Formula za korenjenje v polarnem zapisu.
 - Kaj sestavljajo rešitve enačbe $w^n = z$?
 - Opomba. Kaj je rešitve enačbe $w^n = 1$?

O MNOŽICAH IN PRESLIKAVAH

- 1. O množicah in preslikavah
 - **Definicija.** Preslikava f iz množice A v množico B. Zapis.
 - Domena preslikave f ali definicijsko območje od f. Kodomena preslikave f. Zaloga vrednosti preslikave f.
 - **Definicija.** Surjektivna, injektivna, bijektivna preslikava.
 - **Definicija.** Inverzna preslikava.
 - *Opomba*. Ali je inverzna preslikava res preslikava?
 - Definicija. Ekvipolentni ali enako močni množici.
 - *Opomba*. Kadar končni množici imata enako moč?
 - **Definicija.** Števno neskončna množica.
 - Trditev. Množici Z in Q sta števno neskončni.
 - Dokaz. Po definiciji.
 - Trditev. Množica \mathbb{R} ni števno neskončna.
 - Dokaz. S protislovjem z uporabo Cantorjeva diagonalnega postopka.

ŠTEVILSKA ZAPOREDJA 2

- 1. Stevilska zaporedja
 - **Definicija.** Zaporedje. *n*-ti člen zaporedja. Zapis.
 - Definicija. Navzgor (navzdol) omejeno zaporedje. Zgornja (spodnja) meja zaporedja. Natančna zgornja (spodnja) meja. Oznaki.
 - **Definicija.** Zaporedje konvergira proti $a \in \mathbb{R}$. Konvergentno/divergentno zaporedje. Limita zaporedja.
 - Opomba. Recimo, da zaporedje konvergira proti a. Kaj lahko povemo o zunajnosti ε -okolice od a?
 - Opomba. Kaj če zaporedje ni konvergira proti a?
 - *Primer.* Obravnavaj konvergenco zaporedji:
 - $-a_n=1, n\in\mathbb{N}.$

 - $-a_n = \frac{1}{n}, n \in \mathbb{N}.$ $b_n = (-1)^n, n \in \mathbb{N}.$
 - Trditev. Koliko limit lahko ima konvergentno zaporedje?
 - **Dokaz.** Izračunamo |a-b| z uporabo definicije limite, kjer a in b limiti zaporedja $(a_n)_n$.
 - **Trditev.** Ali je vsako konvergentno zaporedje omejeno?
 - **Dokaz.** Definicija limite. Koliko členov leži izven ϵ -okolice?
 - *Opomba*. Ali je vsako omejeno zaporedje konvergentno?
- 2. Stekališča
 - Definicija. Stekališče zaporedja.
 - *Opomba.* Definicija stekališča s ϵ -okolicami. Koliko stekališč lahko ima konvergentno zaporedje?
 - *Primer.* Obravnavaj primeri:
 - Določi stekališča zaporedja $(-1)^n$.
 - Ali obstaja zaporedje, ki ima natanko $m \in \mathbb{N}$ stekališč?
 - Ali obstaja zaporedje, ki ima za stekališče vsa naravna števila?
 - Ali obstaja zaporedje, katerega množica stekališč je ℝ?
 - Ali obstaja zaporedje, katerega množica stekališč je ℚ?
 - **Trditev.** Zadosten pogoj, da bi bilo število s stekališče (okolice od s).
 - **Dokaz.** Definicija stekališča. Členi v okolici najdemo induktivno.
 - Izrek. Kaj lahko povemo o omejenom zaporedju?
 - **Dokaz.** Definiramo $S = \{u \in \mathbb{R}; a_n < u \text{ izpolnjeno za kvečjemu končno mnogo členov } (a_n)_n \}$. Pokažemo, da ima S supremum in ta supremum je stekališče.
- 3. Monotona zaporedja
 - Definicija. Naraščajoče/padajoče zaporedje. Strogo naraščajoče/padajoče zaporedje. Monotono zaporedje.
 - Izrek. Karakterizacija konvergence pri monotonih zaporedjih.
 - **Dokaz.** (\Leftarrow) Definiramo $A = \{a_n; n \in \mathbb{N}\}$. Pokažemo, da ima ta množica supremum in ta supremum je limita zaporedja $(a_n)_n$.
 - (\Rightarrow) Že vemo.
 - Opomba. Čemu je enaka limita naraščajočega/padajočega zaporedja? Ali je vsako naraščajoče zaporedje navzdol omejeno?
 - Primer. Obravnavaj konvergenco zaporedja: $a_n = \frac{1}{\sqrt{n}}$.
- 4. Podzaporedja
 - **Definicija.** Podzaporedje zaporedja $(a_n)_n$.
 - **Definicija.** Rep zaporedja.
 - *Primer.* Naj bo $b_n = (-1)^n$. Določi stekališča danega zaporedja. Ali obstaja podzapodja, ki konvergirajo k danim stekališčam?
 - Trditev. Kaj lahko povemo o konvergence podzaporedja konvergentnega zaporedja?
 - Dokaz. Po definiciji limite in podzaporedja.
 - Posledica. Kaj lahko povemo o konvergence repa konvergentnega zaporedja?
 - **Izrek.** (1) Naj bo s stekališče zaporedja $(a_n)_n$. Ali vedno obstaja konvergentno podzaporedje z limito s? (2) Recimo, da s limita podzaporedja zaporedja $(a_n)_n$. Kaj je s za $(a_n)_n$?
 - **Dokaz.** (1) Induktivno konstruiramo strogo naraščajoče zaporedje $(n_i)_i$ tako, da $a_{n_k} \in (s \frac{1}{k}, s + \frac{1}{k})$ za vsak $k = 1, \ldots, j$. Pokažemo po definiciji, da je podzaporedje konvergira proti s.
 - (2) Po definiciji podzaporedja, limite in stekališča.

- 5. Računanje z zaporedji
 - Trditev. Konvergenca vsote, razlike in produkta zaporedij.
 - **Dokaz.** Enostavno po definicije limite.
 - Posledica. Kaj se zgodi s konvergenco, če konvergentno zaporedje pomnožimo z $\lambda \in \mathbb{R}$?
 - Opomba. Ali ustrezni pravili veljajo za končno mnogo zaporedij?
 - Trditev. Konvergenca zaporedja obratnih vrednosti.
 - Dokaz. Enostavno po definicije limite.
 - Posledica. Konvergenca kvocienta zaporedij.
 - **Dokaz.** Obratna vrednost in nato produkt.
 - **Trditev.** Naj bosta $(a_n)_n$ in $(b_n)_n$ konvergentni zaporedji. Recimo, da velja $a_n \leq b_n$ za vse $n \in \mathbb{N}$. Kaj lahko povemo o limitah teh zaporedij?
 - Dokaz. Enostavno s protislovjem.
 - Opomba. Ali iz $a_n < b_n$ za vse $n \in \mathbb{N}$ sledi, da je $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$?
 - Primer. Obravnavaj konvergenco zaporedja podanega rekurzivno: $x_1 = 2, x_{n+1} = x_n \frac{x_n^2 2}{2x_n}$.
 - Izrek. Izrek o sendviču.
 - Dokaz. Definicija limite.
 - Primer. Obravnavaj konvergenco zaporedja $b_n = \sqrt{n+1} \sqrt{n}$.
 - Izrek. O vloženih intervalih.
 - **Dokaz.** Pokažemo, da zaporedji $(a_n)_n$ in $(b_n)_n$ konvergentni in velja $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$. Definiramo $c = \lim_{n\to\infty} a_n$.
- 6. Cauchyjev pogoj
 - Definicija. Cauchyjev pogoj. Cauchyjevo zaporedje.
 - Trditev. Ali je omejeno zaporedje, ki ima eno samo stekališče s konvergentno?
 - **Dokaz.** Naj bo $\epsilon > 0$. S protislovjem pokažemo, da zunaj $(s \epsilon, s + \epsilon)$ leži kvečjemu končno mnogo členov zaporedja.
 - *Opomba*. Zakaj potrebujemo omejenost v prejšnji trditvi?
 - Izrek. Karakterizacija konvergence zaporedja z Cauchyjevim pogojem.
 - **Dokaz.** (\Rightarrow) Enostavno po definicijam.
 - (⇐) 1. Pokažemo, da je vsako Cauchyjevo zaporedje omejeno.
 - 2. Pokažemo, da Cauchyjevo zaporedje nima dveh različnih stekališč s in t (poiščemo prostislovje z $\epsilon = \frac{1}{3}|s-t|$) in uporabimo prejšnjo trditev.
- 7. Zgornja limita, spodnja limita, limita neskončno
 - **Definicija.** Zaporedje $(a_n)_n$ konvergira proti $\pm \infty$.
 - Definicija. Zgornja limita (limes superior). Spodnja limita (limes inferior). Oznake.
 - *Opomba*. Zakaj je definicija dobra?
 - Trditev. Karakterizacija limes superioira.
 - Dokaz. (⇒) Definicija limes superiora, stekališča in prejšnje trditve.
 - (\Leftarrow) Ali je s največje stekališče?
 - Posledica. Ali je limes superior stekališče zaporedja?
 - **Trditev.** Čemu je enak $\limsup_{n\to\infty} a_n$?
 - **Dokaz.** Najprej pokažemo, da je zaporedje $\sup_{k\geq n} a_k$ konvergentno in določimo njegovo limito. Nato pokažemo na podlage prejšnje trditve, da je ta limita enaka $\limsup_{n\to\infty} a_n$.
 - Trditev. Naj bosta $(a_n)_n$ in $(b_n)_n$ omejeni zaporedji. Recimo, da velja $a_n \leq b_n$ za vse $n \in \mathbb{N}$. Kaj lahko povemo o limes superiorah in limes inferiorah teh zaporedij?
 - **Definicija.** Limes superior in limes inferior za neomejena zaporedja (navzgor neomejeno, navzdol neomejeno, omejeno navzdol in neomojeno navzgor, omejeno navzor in neomejeno navzdol).

- 8. Primeri posebnih zaporedij
 - **Trditev.** Naj bo $a \in \mathbb{R}$. Obravnavaj konvergenco zaporedja $a_n = a^n$.
 - **Dokaz.** (1) $a \in (0,1)$: Pokažemo, da zaporedje $(a_n)_n$ padajoče in navzdol omejeno. $a \in (-1,0)$: Ocenimo $-|a_n| \le a_n \le |a_n|$.
 - (2) Pokažemo, da zaporedje je naraščajoče in navzdol omejeno z 1. Kaj je edina možna limita?
 - **Trditev.** Naj bo $x \in \mathbb{R}$, x > 0. Obravnavaj konvergenco zaporedja $a_n = \sqrt[n]{x}$.
 - **Dokaz.** (1) x > 1: Pokažemo, da zaporedje $(\sqrt[n]{x})_n$ je padajoče in navzdol omejeno. Pokažemo, da je 1 spodnja meja in ocenimo $L = \lim_{n \to \infty} \sqrt[n]{x}$.
 - (2) $x < 1 \Rightarrow x = \frac{a}{b}$.
 - **Trditev.** Obravnavaj konvergenco zaporedja $a_n = \sqrt[n]{n}$.
 - **Dokaz.** Z pomočjo binomske formule in zapisa $n = (\sqrt[n]{n})^n = (1 + (\sqrt[n]{n} 1))^n$ ocenimo izraz $\sqrt[n]{n} 1$.
 - **Izrek.** Obravnavaj konvergenco zaporedja $\left(\left(1+\frac{1}{n}\right)^n\right)_n$.
 - **Dokaz.** Najprej izračunamo $\binom{n}{k}\frac{1}{n^k}.$ Nato s pomočjo binomske formule pokažemo, da je zaporedje naraščajoče. Z istim trikom in vsoto geometrijske vreste pokažemo, da je zaporedje navzgor omejeno.
 - Definicija. Eulerjevo število.
- Opomba. Določi $\lim_{m\to-\infty} \left(1+\frac{1}{m}\right)^m$. 9. Definicija potence pri realnem eksponentu
- - **Definicija.** Definicija potence pri racionalnem eksponentu.
 - *Opomba*. Kaj velja za računanje z racionalnimi potencami (3 lastnosti + monotonost)?
 - **Trditev.** Naj bo $a \in \mathbb{R}$, a > 0. Ali lahko za vsak $\epsilon > 0$ najdemo $\delta > 0$, za katero velja: če je $h \in \mathbb{Q}$, $|h| < \delta$, potem $|a^h - 1| < \epsilon$?
 - **Dokaz.** Uporabimo znani limiti: $\lim_{n\to\infty} \sqrt[n]{a}$ in $\lim_{n\to\infty} \sqrt[n]{\frac{1}{a}}$.
 - **Trditev.** Naj bo $a \in \mathbb{R}$, a > 0. Denimo, da zaporedje $(q_n)_n$, $q_n \in \mathbb{Q}$ konvergira proti $x \in \mathbb{R}$. Ali potem kovergira zaporedje $(a^{q_n})_n$. Kaj če je $x \in \mathbb{Q}$?
 - **Dokaz.** Pokažemo, da je zaporedje $(a^{q_n})_n$ Cauchyjevo. Izraz za limito dokažemo po definiciji. Pri dokazu uporabimo prejšnjo trditev.
 - Trditev. Naj bo $a \in \mathbb{R}$, a > 0. Denimo, da imata zaporedja $(q_n)_n, q_n \in \mathbb{Q}$ in $(r_n)_n, r_n \in \mathbb{Q}$ enako limito. Ali potem $\lim_{n\to\infty} a^{q_n} = \lim_{n\to\infty} a^{r_n}$?
 - **Dokaz.** Pokažemo, da je $\lim_{n\to\infty}(a^{q_n}-a^{r_n})=0$. Pri dokazu uporabimo predprejšnjo trditev.
 - **Definicija.** Definicija potence pri realnem eksponentu.
 - **Trditev.** Dokaži, da za vse $x, y \in \mathbb{R}$ in vse $a \in \mathbb{R}$, a > 0 velja:
 - $(1) a^x \cdot a^y = a^{x+y}.$
 - $(2) a^x \cdot b^x = (a \cdot b)^x.$
 - Dokaz. Poračunamo.
 - **Trditev.** Naj bo $a \in \mathbb{R}$, a > 0. Določi limito zaporedja $b_n = \frac{1}{n^a}$.
 - **Dokaz.** Definicija limite in arhimedska lastnost.
 - **Trditev.** Naj bo $\alpha \in \mathbb{R}$, $q \in \mathbb{R}$, q > 1. Določi limito zaporedja $a_n = \frac{n^{\alpha}}{a^n}$.
 - **Dokaz.** Pokažemo, da je padajoče in navzdol omejeno. Limito izračunamo iz rekuzivne zveze.
- 10. Zaporedja kompleksnih števil
 - Definicija. Zaporedje kompleksnih števil. Zapis.
 - **Definicija.** Zaporedje kompleksnih števil konvergira proti $z \in \mathbb{C}$.
 - Trditev. Karakterizacija konvergence zaporedja kompleksnih števil (realni in imaginarni del).
 - **Dokaz.** Enostavno z izračunom absolutne vrednosti števila $z \in \mathbb{C}$.
 - Trditev. Konvergenca vsote, razlike, produkta in kvocienta zaporedij kompleksnih števil.
 - **Dokaz.** Podobno kot pri realnih zaporedjih.
 - Definicija. Cauchyjevo zaporedje.
 - Izrek. Karakterizacija konvergence zaporedja kompleksnih števil (Cauchyjev pogoj).
 - **Dokaz.** Podobno kot pri prejšnje karakterizacije pokažemo, da $(z_n)_n$ je Cauchyjevo natanko takrat, ko $(\text{Re } z_n)_n$ in $(\text{Im } z_n)_n$ sta Cauchyjevi.

ŠTEVILSKE VRSTE

- 1. Osnovni definiciji
 - Definicija. Številska vrsta, splošni člen vrste.
 - **Definicija.** Zaporedje delnih vsot.
 - Definicija. Konvergentna vrsta, vsota vrste.
 - *Primer.* Obravnavaj konvergenco:
 - Geometrijske vrste $\sum_{n=0}^{\infty}aq^{n}.$
 - Vrste $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Razcep na delne ulomke.
 - **Trditev.** Cauchyjev pogoj za konvergenco vrste $\sum_{n=1}^{\infty} a_n$.
 - Dokaz. Definicija konvergence vrste + Cauchyjev pogoj za zaporedja.
 - **Posledica.** Konvergenca zaporedja $(a_n)_n$.
 - Dokaz. Definicija limite zaporedja + prejšnja trditev.
 - Ostanek vrste. **Trditev** o ostanku vrste.
 - **Dokaz.** Vsota konvergentnih zaporedij.
 - **Trditev.** Lastnosti seštevanja in množenja s konstanto konvergentnih vrst.
 - Dokaz. Uporabimo znane lastnosti za računanje s konvergentimi zaporedji.
 - *Opomba*. Ali konvergentne številske vrste sestavljajo vektorski prostor?

2. Vrste z nenegativnimi členi

- Vrsta z nenagitivnimi členi. Kaj lahko povemo o zaporedju delnih vsot?
- Trditev. Karakterizacija konvergence vrste z nenegativnimi členi.
 - Dokaz. Definicija konvergence vrste + opazka o zaporedju delnih vsot.
- **Primer.** Harmonična vrsta $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - **Dokaz.** Ocena za $\frac{1}{m+1} + \ldots + \frac{1}{2m}$ in za podzaporedje $(s_{2^k})_k$.
- Trditev. Primerjalni kriterij za konvergenco vrst. Majoranta.
 - Dokaz. Karakterizacija konvergence vrste z nenagitivnimi členi.
- *Primer.* Konvergenca vrste $\sum_{n=1}^{\infty} \frac{1}{n^p}$, $p \in \mathbb{R}$. Riemannova zeta funkcija.
 - **Dokaz.** Konvergenco za p > 1 pokažemo z oceno $(s_{2^k})_k$ z ustrezno geometrijsko vrsto.
- **Izrek.** D'Alembertov-kvocientni kriterij za konvergenco vrst.
 - **Dokaz.** Konvergenco pokažemo z oceno člena a_{n+1} z členom a_1 . Divergenco z dokazom: $\lim_{n\to\infty} a_n \neq 0$.
- Izrek. Cauchyjev-korenski kriterij za konvergenco vrst.
 - Dokaz. Konvergenco pokažemo z ustrezno geometrijsko vrsto. Divergenco z dokazom: $\lim_{n\to\infty} a_n \neq 0$.
- Izrek. Raabejev kriterij za konvergenco vrst.
 - Dokaz. Konvergenca. Zapišemo q = 1 + s, s > 0. Po definiciji pokažemo, da konvergira vrsta z splošnim členom $b_n = na_n - (n+1)a_{n+1}$.
 - Divergenca. Ocenimo člen a_{n+1} z členom a_1 .

3. Absolutna konvergenca

- **Definicija.** Absolutno konvergentna vrsta.
- **Izrek** o absolutno konvergentni vrsti.
 - Dokaz. Cauchyjev pogoj za vrste.
- Izrek. Leibnizev kriterij za konvergenco alternirajočih vrst. Ocena ostanka.
- **Dokaz.** Konvergenca. Pokažemo, da sodi in lihi členi zaporedja delnih vsot konvergirajo k iste limite. Ocena. Ocenimo razliki $s_{2n} - s_{2n+2k}$ in $s_{2n} - s_{2n+2k+1}$. Podobno za lihe delne vsote.

 • Primer. Konvergenca vrste $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$. Kaj primer pove?

4. Preureditve vrst

- Preureditev vrste.
- **Izrek** o preureditve absolutno konvergentne vrste.
 - **Dokaz!** Po definiciji pokažemo, da $\lim(s'_n s_n) = 0$, kjer je s'_n n-ta delna vsota preurejene vrste. Namig. Naj bo za števili M in N velja: $\{1,2,\ldots,N\}\subset\{\pi(1),\pi(2),\ldots,\pi(M)\}$. Kako lahko zapišemo *M*-to delno vsoto preurejene vrste?
- **Definicija.** Pogojno konvergentna vrsta.
- **Izrek** o preureditve pogojno konvergentne vrste (Riemann).
 - **Dokaz.** Razbijemo n-to delno vsoto na vsoto vseh pozitivnih členov $p_{k(n)}$ ter vsoto vseh nasprotnih vrednosti negativnih členov $q_{m(n)}$. Pokažemo, da vrsti $\sum_{k=1}^{\infty} p_{k(n)}$ in $\sum_{m=1}^{\infty} q_{m(n)}$ divergirata. od tod konstruiramo vrsto z želeno vsoto.

5. Množenje vrst

- Vrsta, ki je sestavljena iz vseh produktov.
- Trditev o vrste, ki je sestavljena iz vseh produktov členov absolutno konvergentnih vrst.
 - Dokaz. Izberimo nek vrstni red in z oceno pokažemo, da vrsta absolutno konvergira. Za izračun vsote vrste spet izberimo ustrezen vrstni red seštevanja.

6. Dvakratne vrste

- **Definicija.** Dvakratna vrsta.
- Trditev o konvergence dvakratnih vrst (brez dokaza).

4 FUNKCIJE REALNE SPREMENLJIVKE

4.1 FUNKCIJE

- 1. Osnovni definiciji in trditvi
 - **Definicija.** Realna funkcija realne spremenljivke, definicijsko območje funkcije.
 - Opomba. Katera podatka sta združena v besedi funkcija? Kadar sta funkciji enaki?
 - *Dogovor*. Ali lahko podamo funkcijo samo s predpisom?
 - Primer. (1) Določi definicijsko območje funkciji z predpisom $f(x) = \sqrt{x}$. (2) Ali predpisa $f(x) = \ln(x-1) + \ln(x+1)$ in $g(x) = \ln(x^2-1)$ določata enaki funkciji?
 - Definicija. Razšeritev in zožitev funkcije. Oznaka za zožitev.
 - **Definicija.** Graf funkcije.
 - Opomba. Funkcija in njen graf. Katere podmnožice $S \subset \mathbb{R}^2$ so grafi?
 - Definicija. Naraščajoča (padajoča) funkcija. Monotona funkcija.
- 2. Opercaije s funkcijami
 - **Definicija.** Kompozitum funkcij.
 - *Primer.* Določi $g \circ f$ in $f \circ g$, če obstaja: $f(x) = x^2 + 1$, $g(x) = \ln x^2$.
 - **Definicija.** Inverzna funkcija.
 - Opomba. Predpis za inverzno preslikavo. Kako pridemo od injektivne preslikave do bijektivne preslikave?
 - *Primer.* Določi f^{-1} , če obstaja: $f(x) = \frac{2x+3}{3x-1}$.
 - *Opomba*. Kako dobimo graf inverzne funkcije?
 - Definicija. Navzgor omejena funkcija, omejena funkcija, supremum funkcije, maksimum funkcije.
 - **Definicija.** Ničla funkcije.
 - **Definicija.** Vsota, razlika, produkt in kvocient funkcij.
 - **Definicija.** Funkciji $\max\{f,g\}$, $\min\{f,g\}$.
 - **Definicija.** Funkciji $\sup_{\gamma \in \Gamma} f_{\gamma}$ in $\inf_{\gamma \in \Gamma} f_{\gamma}$.
 - Primer. Določi funkciji $\sup_{\gamma \in \Gamma} f_{\gamma}$ in $\inf_{\gamma \in \Gamma} f_{\gamma}$, če je $f_{\gamma}(x) = \frac{1}{1 + \gamma x^2}, \ \gamma \in (0, \infty).$

4.2 ZVEZNOST

- 1. Osnovni definiciji
 - **Definicija.** Zveznost funkcije f v točke $a \in D$.
 - Primer. Zveznost funkcij $\sin \frac{1}{x}$ in $x \sin \frac{1}{x}$ v točkah $a \in \mathbb{R}$.
 - **Definicija.** δ -okolica točke a v D. Okolica točke a v D.
 - **Definicija (ekivalentna).** Zveznost funkcije f v točke $a \in D$ ($\varepsilon \delta$ okolici).
 - **Definicija (ekivalentna).** Zveznost funkcije f v točke $a \in D$ (okolici).
- 2. Opis zveznosti z zaporedji
 - **Izrek.** Karakterizacija zveznosti v točke *a* z zaporedji.
 - Dokaz. (⇒) Definicija zveznosti ter definicija limite zaporedja.
 - (\Leftarrow) S protislovjem najdemo zaporedje x_n , ki konvergira proti a, vendar $f(x_n)$ ne konvergira proti f(a).
 - Izrek. Zveznost v točke a vsote, razlike, produkta in kvocienta zveznih v točke a funkcij.
 - Dokaz. Karakterizacija + pravila za računanje z zaporedji.
 - **Izrek.** Zveznost v točke a kompozituma funkcij.
 - Dokaz. Karakterizacija.
 - **Definicija.** Zvezna funkcija.
 - Primer. Zveznost konstant. Zveznost f(x) = x. Zveznost polinomov in racionalnih funkcij.

3. Limita funkcije

- Motivacija. Prebodena okolica.
- **Definicija.** Limita funkcije f, ko gre x proti a. Oznaka.
- Opomba. Vplivnost vrednosti f(a) na limito funkcije f, ko gre x proti a.
- Trditev. Karakterizacija zveznosti v točke a z limito funkcije f, ko gre x proti a.
 - Dokaz. Definicija limite in zveznosti.
- Izrek. Karakterizacija limite funkcije f, ko gre x proti a z zaporedji.
 - **Dokaz.** Podobno kot pri zveznosti.
- *Opomba*. Pravila za računanje s funkcijskimi limitami.
- Izrek. Pravila za računanje s funkcijskimi limitami.
 - Dokaz. Karakterizacija limite z zaporedji.
- **Definicija.** Leva (desna) limita funkcije v točki a.
- Trditev. Karakterizacija obstoja limite funkcije v točki a z levo in desno limitama.
 - **Dokaz.** Iz definicij limite ter leve in desne limite.
- Izrek. Obstoj leve in desne limite monotone funkcije na [a, b]. Karakterizacija zveznosti v točki $c \in (a, b)$ monotone na intervale [a, b] funkcije f z levo in desno limitama.
 - **Dokaz.** Kaj vemo o naraščajoče funkcije? Ali obstaja sup $\{f(x); x \in (a, c)\}$. Zakaj iz predpostavk izreka sledi zveznost?
- **Definicija.** Skok funkcije f v točke $c \in D$.
- Izrek. Koliko točk nezveznosti lahko ima monotona na intervale [a, b] funkcije f?
 - **Dokaz.** Pokažemo, da obstaja injektivna preslikava $r: \mathcal{N} \to \mathbb{Q}$, kjer \mathcal{N} množica vseh točk nezveznosti.
- **Definicija.** Limita L funkcije f, ko gre x čez vse meje (proti neskončno).
- *Opomba*. Kaj je v tem primeru y = L?.
- **Definicija.** Cauchyjev pogoj pri točke a (v ∞).
- *Opomba*. Karakterizacija obstoja limite s Cauchyjevem pogojem.
 - Dokaz. Podobno kot pri zaporedj pokažemo, da če funkcija ima limito, potem izpolnjuje Cauchyjev pogoj. Obratno brez dokaza.
- **Definicija.** Limita funkcije f, ko gre x proti a enaka neskončno.
- Primer. $\lim_{x \to 0} \frac{\sin x}{x} = 1$, $\lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e$, $\lim_{h \to 0} \frac{a^h 1}{h} = \ln a$.
 - **Dokaz.** (1) Z pomočjo enotske krožnice dokažemo, da $\sin x \le x \le \tan x$.
 - (2) Uporabimo znano limito zaporedja.
 - (3) Vpeljamo $a^h 1 = \frac{1}{x}$.

- 4. Enakomerna zveznost
 - **Definicija.** Enakomerno zvezna funkcija f na D.
 - *Primer.* Ali je funkcija $f(x) = \frac{1}{x}$ enakomerno zvezna?
 - Opomba. Ali je vsaka enakomerno zvezna funkcija na D, tudi zvezna na D? Ali je vsaka zvezna funkcija na D, tudi enakomerno zvezna na D?
 - **Lema** o pokritjih.
 - **Dokaz.** Definiramo $S = \{c \in [a, b]; \text{ interval } [a, c] \text{ lahko pokrijemo s končno mnogo članicami } O_x\}$. Pokažemo, da ima ta množica maksimum in velja: $\max S = b$.
 - Posledica leme o pokritjih.
 - **Dokaz.** Za vsak $x \in [a, b]$ obstaja $\lambda(x)$, da je $x \in I_{\lambda(x)}$. Za vsak $x \in [a, b]$ definiramo $\delta(x) > 0$ tako, da je $(x \delta(x), x + \delta(x)) \subset I_{\lambda(x)}$.
 - **Izrek** o zvezne funkcije f na zaprtem intervalu [a, b].
 - **Dokaz!** Definiramo ustrezno pokritije intervala [a, b], nato uporabimo lemo o pokritjih in vzemimo $\delta = \min \{\delta(x_1), \ldots, \delta(x_m)\}$. Na koncu upoštevamo definicijo enakomerne zveznosti.
- 5. Lastnosti zveznih funkcij na zaprtem intervalu
 - **Izrek.** Metod bisekcije.
 - Dokaz. Na vsakem koraku gledamo vrednost v središču intervala. Tako bodisi najdemo ničlo, bodisi dobimo zaporedje vloženih intervalov.
 - **Izrek** o omejenosti zvezne funkcije f na zaprtem intervalu [a, b].
 - **Dokaz!** Omejenost dokažimo z protislovjem. Definiramo zaporedje $x_n \in [a, b], f(x_n) \ge n$. To, da f doseže maksimum tudi pokažemo s protislovjem z definicijo supremuma in funkcijo $\frac{1}{\sup f f}$.
 - *Opomba*. Kaj pove izrek?
 - Posledica. Ali je zvezna funkcija na zaprtem intervalu [a, b] zavzame vse vrednosti med minimumom in maksimumom?
 - **Dokaz.** Naj bo $c \in (\min f, \max f)$. Definiramo funkcijo g(x) = f(x) c. Ali ta funkcija ima ničlo?
 - **Izrek** o inverze strogo monotone zvezne funkcije na zaprtem intervalu [a, b].
 - **Dokaz.** Recimo, da je f strogo naraščajoča. Po definiciji pokažemo, da je funkcija f^{-1} zvezna v točki $y_0 \in [f(a), f(b)]$. Definiramo $\delta = \min\{|y_0 f(f^{-1}(y_0) \epsilon)|, |y_0 f(f^{-1}(y_0) + \epsilon)|\}$.
 - Primer. Zveznost inverzne funkcije od funkcije $f(x) = x^n, n \in \mathbb{N}$.
 - Posledica. Zveznost funkcije $x \mapsto x^r$ na $(0, \infty)$ (ali $[0, \infty)$, če je r > 0) za vsak $r \in \mathbb{Q}$.
 - Dokaz. Kompozitum zveznih funkcij.
- 6. Zveznost posebnih funkcij
 - **Trditev.** Monotonost eksponentne funkcije $x \mapsto a^x$.
 - **Dokaz.** Z definicijo realne eksponente pokažemo, da iz $x_1 > x_2$ sledi $a^{x_1-x_2} > 0$.
 - Izrek. Zveznost eksponentne funkcije $x \mapsto a^x$.
 - **Dokaz.** Zveznost v točke a=0 pokažemo po definiciji z znano oceno za izraz $|a^h-1|$. Zveznost v ostalih točkah $x_0 \in \mathbb{R}$ pokažemo z prevodom ocene $|a^x-a^{x_0}|$ na zveznost v točke 0.
 - Posledica. $(a^x)^y = a^{xy}$
 - **Dokaz.** Upoštevamo definicijo eksponentne funkcije ter ustrezne zveznosti.
 - **Definicija.** Logaritemska funkcija z osnovo a, naravni logaritem.
 - Trditev. $\log_a(xy) = \log_a(x) + \log_a(y)$. $\log_a(x^{\lambda}) = \lambda \log_a(x)$.
 - Dokaz. Definicija logaritma.
 - **Izrek.** Zveznost logaritemske funkcije.
 - **Dokaz.** Izrek o inverze zvezne strogo monotone funkcije.
 - **Posledica.** Zveznost funkcije $x \mapsto x^y$ za vsak $y \in \mathbb{R}$.
 - Dokaz. $x^y = e^{\ln x^y}$.
 - Izrek. Zveznost sinusa, kosinusa, tangensa in kotangensa.
 - **Dokaz.** Dovolj, da pokažemo zveznost sinusa z upoštevanjem definicije sinusa ter definiciji zveznosti.
 - Izrek. Zveznost arkus sinusa, arkus kosinusa, arkus tangensa in arkus kotangensa.
 - Dokaz. Izrek o inverze zvezne strogo monotone funkcije.

4.3 ODVOD

- 1. Osnovni definiciji in trditvi
 - **Definicija.** Odvod funkcije f v točki a. Odvedljiva v točki a funkcija.
 - *Opomba*. Diferenčni kvocient.
 - Geometrijski pomen odvoda.
 - *Primer*. Določi odvod, če obstaja:
 - $f(x) = x^2, \ a = 3.$
 - $-g(x) = \sqrt[3]{x}, \ a = 0.$
 - -h(x) = |x|, a = 0.
 - $-q(x) = x \sin \frac{1}{x}, \ q(0) = 0, \ a = 0.$
 - **Izrek** o zveznosti v točki a odvedljive v točki a funkcije f.
 - **Dokaz.** Z diferenčnim kvocientom pokažemo, da $\lim_{x\to a} f(x) = f(a)$.
 - *Opomba*. Ali v prejšnjem izreku velja implikacija v nasprotno smer?
 - **Definicija.** Levi (desni) odvod funkcije f v točki a.
 - Trditev. Karakterizacija odvedljivosti funkcije f v točki a z levim in desnim odvodami.
 - Dokaz. Že vemo od prej (karakterizacija obstoja limite).
 - **Definicija.** Odvdeljiva na (a, b) funkcija f. Odvedliva na [a, b] funkcija f.
 - *Primer*. Kjer je odvedljiva funkcija arcsin?
 - **Definicija.** Odvod funkcije f.
 - **Definicija.** Zvezno odvedljiva funkcija. Množica vseh zveznih funkcij na I. Množica vseh zvezno odvedljivih funkcij na I.
 - **Definicija.** Odsekoma zvezna funkcija f.
 - **Definicija.** Odsekoma zvezno odvedljiva funkcija f.
 - *Opomba*. Kaj pomeni odsekoma zvezna odvedlivost?

2. Diferencial

- Naj bo funkcija f definirana v okolici točke a in odvedljiva v točki a. Funkcija o(h). Kaj pomeni, da je $\lim_{h\to 0} \frac{o(h)}{h} = 0$? Aproksimacija razlike f(a+h) f(a).
- **Definicija.** Diferenciabilna v točki a funkcija f. Diferencial funkcije f v točki a.
- *Opomba*. Enoličnost diferenciala.
- **Izrek.** Karakterizacija diferenciabilnosti v točki a funkcije f.
 - **Dokaz.** (\Leftarrow) Začetna izpeljava.
 - (\Rightarrow) Pri izračunu odvoda upoštevamo, da $\mathcal{L}(h) = c \cdot h$.
- Zapis: $f' = \frac{df}{dx}$.
- 3. Pravila za odvajanje
 - Odvod konstante.
 - Trditev. Pravila za odvod vsote, razlike, produkta in kvocientna dveh odvedljivih v točki a funkcij.
 - Dokaz. Vsota in razlika: Definicija odvoda v točke a.
 - Produkt in kvocient: Prištejemo in odštejemo ustrezen nič.
 - Posledica. Pravilo za odvod funkcije pomnožene s konstanto.
 - **Dokaz.** Odvod produkta in nato konstante.
 - **Posledica.** Pravilo za odvod produkta *n* funkcij.
 - Dokaz. Z indukcijo.
 - Trditev. Odvod kompozicije.
 - **Dokaz.** Z izračunim pokažemo, da je $g \circ f$ diferenciabilna v točki a.
 - **Izrek** o odvedlivosti inverzne funkcije.
 - **Dokaz.** Z uporabo diferenčnega kvocienta izračunamo odvod funkcije f^{-1} v točki f(c).
 - *Opomba*. Pravilo za odvod inverzne funkcije.

- 4. Odvodi elementarnih funkcij
 - Odvod konstante, odvod funkcije f(x) = x.
 - Dokaz. Po definiciji.
 - Odvod funkcije $f(x) = x^q$ za $q \in \mathbb{Q}$ $(\mathbb{N} \to \mathbb{Z} \to \frac{1}{n} \to \mathbb{Q}).$
 - **Dokaz.** $n \in \mathbb{N}$: Odvod produkta. $m \in \mathbb{Z}$: Odvod kvocienta. $q = \frac{1}{n}, n \in \mathbb{N}$: Izrek o odvode inverza. $q \in \mathbb{Q}$: Odvod kompozicije.
 - Odvod logaritma.
 - Dokaz. Po definiciji.
 - Odvod eksponentne funkcije.
 - Dokaz. Izrek o odvode inverza.
 - Odvod potenčne funkciji z realnim eksponentom.
 - **Dokaz.** Kompozitum eksponente in logaritma.
 - Odvod kotnih funkcij.
 - **Dokaz.** Sinus: Definicija + razlika sinusov. Cosinus: $\cos x = \sin(\frac{\pi}{2} x)$. Tangens: $\tan x = \frac{\sin x}{\cos x}$
 - Odvod ciklometričnih funkcij.
 - Dokaz. Izrek o odvode inverza.
- 5. Odvodi višjega reda
 - **Definicija.** Drugi odvod funkciji f na intervalu I. n-ti odvod funkciji f.
 - Primer. Določi vsi odvodi funkcij: $f(x) = e^x$ in $g(x) = x^k$, $k \in \mathbb{N}$.
 - Oznake: C(I), $C^1(I)$, $C^r(I)$, $r \in \mathbb{N}$, $C^{\infty}(I) = \bigcap_{r \in \mathbb{N}} C^r(I)$. Lastnosti teh množic (vsobavonost, vektorski prostor).
 - Trditev o preslikave, ki funkcije priredi njen odvod.
 - Primer. Naj bo $g(x) = \begin{cases} x^2 \sin \frac{1}{x}; & x \neq 0 \\ 0; & x = 0 \end{cases}$. Določi vse r, da $g \in C^r(\mathbb{R})$.
- 6. Rollov in Lagrangeev izrek
 - Definicija. Lokalni maksimum, lokalni minimum. Lokalni ekstrem.
 - **Izrek** o odvodu funkcije $f:[a,b]\to\mathbb{R}$ v točki lokalnega ekstrema.
 - Dokaz. Ocenimo limito diferenčnega kvocienta z leve in desne z uporabo definicije ekstrema.
 - **Definicija.** Stacionarna ali kritična točka funkcije f.
 - Izrek. Rollov izrek.
 - **Dokaz.** Uporabimo lastnost zvezne funkcije na zaprtem intervalu ter prejšnjo trditev.
 - Izrek. Lagrangeev izrek.
 - **Dokaz.** Definiramo funkcijo $F(x) = f(x) f(a) + A \cdot (x a)$. Določimo konstanto A tako, da bo F(b) = 0 in uporabimo Rollov izrek.
 - Opomba. Kaj se zgodi, če zapišemo a = x in b = x + h v Lagrangeevem izreku?
 - Posledica. Opis monotonosti funkciji f, ki je odvedljiva na odprtem intervalu I z odvodom.
 - **Dokaz.** (\Rightarrow) Lagrangeev izrek.
 - (⇐) Definicija odvoda.
 - *Opomba*. Ali pri stroge monotonosti velja obrat?
 - Posledica. Kakšna je funkcija, ki je odvedljiva na I, če za vse $x \in I$ velja f'(x) = 0?
 - **Dokaz.** (1) in (2) iz prejšnje posledice.
 - Posledica. Naj bo $f:(a,b)\to\mathbb{R}$ zvezna na $(a,b),\,c\in(a,b)$ in f je odvedljiva na (a,c) in (c,b). Kadar ima funkcija f v točki c ekstrem?
 - Dokaz. Min: Izberimo $x \in (a,c)$ in z ustreznim zaporedjem (f je zvezna) pokažemo, da $f(c) \leq f(x)$.
 - *Opomba*. Ali velja obratno?
 - Posledica. Zadosten pogoj za lokalni ekstrem odvedljive funkcije $f:(a,b)\to\mathbb{R}$. Kadar funkcija nima ekstrema v stacionarni točki?
 - Kako poiščemo globalni ekstremi zvezne na [a, b] funkciji f?
 - Trditev. Kaj lahko sklepamo iz tega, da $f''(x) \ge 0$ (ali $f''(x) \le 0$) za $\forall x$ v neki okolici stacionarne točke c?
 - Dokaz. Uporabimo opis monotonosti.
 - Posledica. Opis stacionarne točke z drugim odvodom.
 - Dokaz. Zveznost + prejšnja trditev.
 - **Trditev.** Naj bo funkcija f definirana na [a, b]. Kdaj bo v točkah a, b lokalni minimum/maksimum?
 - Dokaz. Po definiciji levega oziroma desnega odvoda.

7. Konveksnost in konkavnost

- **Definicija.** Konveksna funkcija.
- Geometrijski pomen konveksnosti.
- Opomba. Konveksna kombinacija. Pogoj za konveksnost z uporabo konveksne kombinacije.
- Definicija. Konkavna funkcija.
- *Opomba*. Karakterizacija konveksnosti s konkavnostju.
- **Izrek.** Karakterizacija konveksnosti z tangentami.
 - **Dokaz.** (\Rightarrow) Izberimo poljubne točke $a, x \in I$. Vzemimo y, ki leži strogo med x in a. Uporabimo definicijo konveksnosti in izračunamo odnostranski odvod v točke a.
 - (\Leftarrow) Izberimo poljubni točki $a,b\in I,\ a< b$ in $x\in (a,b)$. Vzemimo tangento v točke x in uporabimo oceno v točkah a in b, nato seštejemo neeančbe tako, da izognemo odvoda.
- **Izrek.** Karakterizacija konveksnosti odvedljive na odprtem intervalu I funkcije z odvodom.
 - **Dokaz.** (\Rightarrow) Naj bo $a, b \in I$, a < b in $k = \frac{f(b) f(a)}{b a}$. Z pomočjo definiciji konveksnosti in odnostranskega odvoda ocenimo f'(a) in f'(b) s k.
 - (⇐) Uporabimo prejšni izrek + Lagrangeev izrek.
- Posledica. Karakterizacija konveksnosti dvakrat odvedljive na odprtem intervalu I funkcije z drugim odvodom.
- **Definicija.** Prevoj (sedlo) funkcije f v točki a
- *Primer.* Kako natančno narišemo graf poljubne funkcije?

8. L'Hospitalovi izreki

- Lema (Cauchyjev izrek). Posplošen Lagrangeev izrek.
 - **Dokaz.** Najprej dokažemo, da $g(b) g(a) \neq 0$. Definiramo $F(x) = (f(x) f(a)) \frac{f(b) f(a)}{g(b) g(a)}(g(x) g(a))$ in uporabimo Rollov izrek.
- *Opomba*. Zakaj to je posplošen Lagrangeev izrek?
- Izrek 1 (L'Hospitalovo pravilo) Računanje limite oblike $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{0}{0}$.
 - **Dokaz.** Zvezno razširimo funkciji f in g na interval [a,b). Izberimo točko $x \in (a,b)$ in uporabimo lemo. Dobimo izraz za $\frac{f(x)}{g(x)}$. Po definiciji limite pokažemo, da izrek sledi.
- Izrek 2 (L'Hospitalovo pravilo) Računanje limite oblike $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\infty}{\infty}$.
- **Dokaz.** Denimo, da $\lim_{x\downarrow a} \frac{f'(x)}{g'(x)} = B$. Naj bo $\epsilon > 0$. Po definiciji limite obstaja $b' \in (a,b)$, da velja $B-\epsilon < \frac{f'(c)}{g'(c)} < B+\epsilon$. Izberimo nek $x\in (a,b')$ in uporabimo lemo na intervale [x,b']. Dobimo oceno za izraz $\frac{f(x)-f(b')}{g(x)-g(b')}$. Pomnožimo neenakost z $\frac{g(x)-g(b')}{g(x)}$ na intervalu, kjer g(x)>g(b') in g(x)>0.

 Posledica 1. Računanje limite oblike $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\frac{0}{0}$.
- - **Dokaz.** Lahko predpostavimo, da je A>0. Definiramo $F(t)=f(\frac{1}{t})$ in $G(t)=g(\frac{1}{t})$ za $t\in(0,\frac{1}{A})$. Preverimo predpostavki izreka 1. Posledica sledi.
- **Posledica 2.** Računanje limite oblike $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\frac{\infty}{\infty}$.
 - Dokaz. Podobno.
- *Opomba*. Kdaj lahko uporabimo L'Hospitalovi pravili?

- 9. Uporaba odvoda v geometriji
 - **Definicija.** Eksplicitno/parametrično podana krivulja v kartezičnih koordinatah.
 - *Opomba*. Kateri izmed zgornjih zapisov je splošnejši?
 - Primer.
 - Krožnica. Implicitna in parametrična oblika.
 - Elipsa. Implicitna in parametrična oblika.
 - Hiperbola. Implicitna in parametrična oblika.
 - Kriveulja K je podana z enačbo $y^2 = x^3$. Določi parametrično obliko.
 - Cikloida. Parametrična oblika.
 - Nariši krivuljo, ki je parametrično podana: $x(t) = t^2 1$, $y(t) = t^3 t$, $t \in \mathbb{R}$.
 - **Definicija.** Krivulja K podana kot množica točk s polarnima koordinatama.
 - Krožnica v polarnih koordinatah.
 - Premica v polarnih koordinatah.
 - Arhimedska spirala v polarnih koordinatah.
 - **Definicija.** Pot v ravnini. Tir poti. Paramtetrizacija od tira poti.
 - *Opomba*. Koliko parametrizacij ima tir poti (če ima vsaj eno)?
 - **Definicija.** Zvezna preslikava $F: I \to \mathbb{R}^2$. Odvedljiva pot. Zvezno odvedljiva pot.
 - *Opomba.* Geometrijski pomen odvoda poti.
 - **Izrek.** Naj bo $F: I \to \mathbb{R}^2$ zvezno odvedljiva pot, $t_0 \in I$ in denimo, da je $\dot{F}(t_0) \neq 0$. Kaj če je $\dot{\alpha}(t_0) \neq 0$?
 - **Dokaz.** Iz zveznosti $\dot{\alpha}$ dobimo $\delta > 0$. Predpostavimo, da $\dot{\alpha} > 0$, torej $\alpha(t)$ je strogo naraščajoča na $(t_0 - \delta, t_0 + \delta)$. Zdaj lahko definiramo interval U. Pokažemo, da obstaja $\alpha^{-1}: U \to \mathbb{R}$, ki je zvezno odvedljiva, in da $(x, f(x)) = (\alpha(t), \beta(t))$ za ustrezen t.
 - Odvod $(f(\alpha(t)))'$ izračunamo z odvajanjem obeh stran enačbe $f(\alpha(t)) = \beta(t)$.
 - **Posledica.** Kaj lahko povemo o funkciji f iz prejšnjega izreka, če je α in β dvakrat zvezno odvedljivi na (t_0, t_1) in $\dot{\alpha}(t) \neq 0$ za vse $t \in (t_0, t_1)$?
 - **Dokaz.** Izračunamo $(f'(\alpha(t)))'$ kot odvod kompozicije.
 - Definicija. Kritična točka poti. Regularna točka poti. Regularna parametrizacija. Gladka krivulja. Gladek lok.
 - *Primer.* Določji kritični točki poti in nariši njen tir poti.

$$- \ \alpha(t) = \begin{cases} 0, & t \le 0 \\ t^2, & t > 0 \end{cases}, \ \beta(t) = \begin{cases} t^2, & t \le 0 \\ 0, & t > 0 \end{cases}$$

- $-\alpha(t) = t^{3}, \ \beta(t) = t^{2}.$ $-\alpha(t) = t^{3}, \ \beta(t) = t^{3}.$
- $-\alpha(t) = t^2, \ \beta(t) = t^2.$
- Od česa je odvisna tangenta na tir poti? Enačba tangente na tir poti. Enačba normale.

4.4 NEDOLOČENI INTEGRAL

Vsaka odvedljiva funkcija f na intervalu I določa funkcijo f' na I. Denimo, da je poznamo predpis za funkcijo f'. Kako dobimo predpis za f? Ali je vsaka funkcija g na I odvod kakšne funkcije f na I?

- 1. Primitivna funkcija in nedoločeni integral
 - **Definicija.** Primitivna funkcija.
 - *Opomba.* (1) Recimo, da je *F* primitivna funkcija od *f* na množici *I*. Kako dobimo novo primitivno funkcijo? (2) Recimo, da sta *F* in *G* primitivni funkciji na intervalu *I*. Kaj lahko povemo o teh funkcijiah?
 - **Definicija.** Nedoločeni integral funkcije f. Integrand. Oznaka.
 - Trditev. Recimo, da je F primitivna funkcija od f na intervalu I. Kaj je njen nedoločeni integral?
 - *Opomba.* (1) Kako razumemo zapis nedoločenega integrala?
 - (2) Kakšna je nasprotna operacija integriranja?
 - *Primer*. Funkcija, ki nima primitivne funkcije.
 - Dokaz. Z protislovjem.
- 2. Pravila za integriranje
 - Trditev. Osnovne računske operaciji z integrali.
 - Dokaz. Enostavno.
 - Trditev. Uvedba nove spremenljivke v nedoločeni integral.
 - Dokaz. Odvod kompozicije.
 - Trditev. Integracija po delih.
 - **Dokaz.** Odvod produkta.

4.5 DOLOČENI INTEGRAL

Naj bo $f:[a,b]\to\mathbb{R}$ nenagitivna funkcija. Potem graf funkcije f omejuje območje A nad intervalom [a,b]. Če je f konstanta znamo izračunati ploščino A. Kaj če je f ni konstanta?

- 1. Riemannova vsota in Riemannov integral
 - Kako v splošnem izračanumo ploščino lika A?
 - *Primer*. Izračunaj ploščino pod grafom $f(x) = x^2$ na [0,1].
 - **Definicija.** Delitev D intervala [a, b]. Oznaka za dolžino i-tega podintervala. Velikost delitve. Testna točka. Usklajena izbira testnih točk T_D .
 - **Definicija.** Riemannova vsota funkcije f na [a,b] pridružena delitvi D in usklajeni izbiri testnih točk T_D .
 - **Definicija.** Riemannov integral funkcije f na [a,b]. Določeni integral funkcije f na [a,b]. Kako pravimo funkcije, če integral obstaja? Oznaka.
 - *Primer*. Integrabilnost konstante.
 - **Dokaz.** Izračunamo $R(f, D, T_D)$.
 - **Trditev.** Potreben pogoj za integrabilnost.
 - **Dokaz.** Recimo, da f ni omejena. Potem vsaj na enem izmed podintervalov delitve neomejena. Na tem intervalu lahko za vsak $n \in \mathbb{N}$ najdemo testno točko t_j^m , da $f(t_j^m) \geq n$. Izračunamo $R(f, D, T_D^m)$ in upoštevamo definicijo Riemannova integrala.
 - Opomba. Ali v prejšni trditvi velja implikacija v obratno smer?
 - Primer. Omejena funkcija, ki ni Riemannovo integrabilna.
- 2. Darbouxove vsote in Darbouxov integral.
 - Predpostavka o funkcije, ki jo potrebujem. Oznake, ki jih potrebujemo (infumumi in supremumi). Kaj velja za te oznake?
 - **Definicija.** Spodnja Darbouxova vsota prirejena delitvi D. Zgornja Darbouxova vsota prirejena delitvi D.
 - Opomba. Kakšna zveza med s(D), S(D) in $R(f, D, T_D)$? Ali velja še več?
 - **Definicija.** Finejša delitev od delitve D.
 - Trditev. Kako so povezane Darbouxove vsote od delitve D in od finejše delitve D' od delitve D?
 - **Dokaz.** Dovolj je dokazati za primer $D' = D \cup \{y\}$. Recimo, da je $y \in [x_j x_{j-1}]$. Definiramo m'_j in m''_j . V kakšni zvezi m'_j , m''_j in m_j ? Izračunamo s(D). Za S(D) podobno.
 - Trditev. Kako sta povezana spodnja in zgornja Darbouxove vsote od poljubnih delitev D_1, D_2 ?
 - **Dokaz.** Delitev $D_1 \cup D_2$ je finejša od obeh. Uporabimo prejšnjo trditev.
 - Opomba. Ali obstajata sup množice spodnjih Darbouxovih vsot in inf množice zgornjih Darbouxovih vsot?
 - Posledica. Kaj pove prejšnja trditev o številah iz prejšnje opombe?
 - **Definicija.** Darbouxovo integrabilna funkcija f na [a,b]. Darbouxov integral funkcije f na [a,b].

- Trditev. Karakterizacija Darbouxove integrabilnosti.
 - **Dokaz.** (\Rightarrow) Izberimo $\epsilon > 0$ in uporabimo lastnosti števil s in S. Dobimo delitve D_1 in D_2 . Delitev $D_1 \cup D_2$ je finejša od obeh. Pokažemo, da $S(D_1 \cup D_2) s(D_1 \cup D_2) < \epsilon$.
 - (⇐) Uporabimo predpostavke in definiciji števil s in S za oceno izraza S-s.
- Izrek. Ali je vsaka zvezna funkcija f na [a, b] Darbouxovo integrabilna?
 - **Dokaz.** Karakterizacija. Delitev dobimo iz dejstva, da f enakomerno zvezna na [a, b].
- Opomba. Recimo, da je $f:[a,b]\to R$ omejena funkcija, ki je zvezna samo na intervalu (a,b). Ali je Darbouxovo integrabilna?
- Izrek. Ali je vsaka monotona funkcija f na [a, b] Darbouxovo integrabilna?
 - **Dokaz.** Karakterizacija. Vzemimo ekvidistančno delitev (vsi intervali so enako dolgi).
- **Izrek.** Aditivnost domene.
 - **Dokaz.** (\Rightarrow) Karakterizacija. Vzemimo $\overline{D} = D \cup \{c\}$. Izračunamo $S(\overline{D}) s(\overline{D})$. (\Leftarrow) Karakterizacija. $D = D_1 \cup D_2$ je delitev [a, b].
- Posledica. Naj bo f omejena na [a, b] in denimo, da za $r \in \mathbb{N}$ obstajajo $c_0, c_1, c_2, \ldots, c_r$, da je $a = c_0 < c_1 < c_2 < \ldots < c_r = b$, da je funkcija f na (c_{i-1}, c_i) zvezna za vse $i = 1, \ldots, r$. Ali je f Darbouxovo integrabilna?
- Posledica. Ali je vsaka odsekoma zvezna funkcija na [a, b] je Darbouxovo integrabilna?
- Trditev. Naj bo funkcija f Darbouxovo integrabilna na [a, b]. Kaj lahko povemo o dovolj majhnih delitvah?
 - **Dokaz!** Predpostavimo $M-m \neq 0$. Naj bo $\epsilon > 0$. Obstaja delitev $D_0 = \{x_0, x_1, \dots, x_r\}$: $S(D_0) s(D_0) < \frac{\epsilon}{2}$. Definiramo $\delta = \frac{\epsilon}{2r(M-m)}$. Vzemimo delitev D, za katero velja $\delta(D) < \delta$ in razbijemo vsoto S(D) s(D) na vsoto po členih delitve D, ki ne vsebujejo nobene od točk delitve D_0 v svoji notranosti (ocenimo jo z finejšo delitvo $D_0 \cup D$) in vsote vseh ostalih členov. Ocenimo vsako vsoto po sebej.
- Izrek. Riemannova in Darbouxova integrabilnost. Zveza.
 - **Dokaz.** (⇒) Karakterizacija. Za vsak i = 1, ..., n obstaja $t_i, s_i : 0 \le M_i f(t_i) < \frac{\epsilon}{b-a}$ in $0 \le f(s_i) m_i < \frac{\epsilon}{b-a}$. Ocenimo |S(D) I| in |s(D) I| (prištejemo in odštejemo ustrezno $R(f, D, T_d)$). (⇐) Delto dobimo iz prejšnje trditve. Uporabimo oceno za $R(f, D, T_d)$ z Darbouxovami vsoti.
- **Izrek.** Kadar je kompozitum $F = g \circ f$ integrabilen?
 - **Dokaz.** Naj bo $\epsilon > 0$. Iz enakomerne zveznosti g dobimo $\delta > 0$. Iz integrabilnosti f dobimo tako delitev D, da $S_f(D) s_d(d) < \epsilon \delta$. Razbijemo vsoto $S_f(D) s_f(d)$ na Σ' , kjer $M_i m_i \geq \delta$. Isto naredimo z vsoto $S_{g \circ f}(D) s_{g \circ f}(D)$ in jo ocenimo.
- Posledica. Naj bo f integrabilna na [a,b]. Integrabilnost |f| in f^n , $n \in \mathbb{N}$ na [a,b]
- o Lastnosti določenega integrala
 - Trditev. 6 lastnosti določenega integrala. Dogovora.
 - **Dokaz.** Vsota, razlika, množenje s skalarji: Riemannov integral (vsota).

Produkt: f^2 , g^2 , $(f+g)^2$ so integrabilni.

Monotonost: Riemannove vsote (podobno kot za limite).

Trikotniška neenakost: $-|f(x)| \le f(x) \le |f(x)|$ za vse $x \in [a, b]$.

- 3. Osnovni izrek analize
 - **Definicija.** Integral kot funkcija zgornje meje.
 - Osnovni izrek analize.
 - **Dokaz!** (1) Naj bo $x, x' \in [a, b]$. Z oceno za |F(x) F(x')| pokažemo, da je F enakomerno zvezna na [a, b] (Lipschitzeva).
 - (2) Po definicije limite z upoštevanjem zveznosti f v točki x pokažemo, da $\lim_{h\to 0} \frac{F(x+h) F(x)}{h} = f(x)$.
 - Posledica. Ali vsaka zvezna funkcija na [a, b] ima primitivno funkcijo?
 - *Opomba*. Ali vsaka integabilna funkcija ima primitivno funkcio?
 - Osnovni izrek integralnega računa. Leibnizova formula.
 - **Dokaz!** f je zvezna, potem integral kot funkcija zgornje meje je primitivna funkcija od f. Izrek sledi. V spolšnem: Izberimo poljubno delitev D in uporabimo Lagrangeev izrek na intervalu $[x_{i-1}, x_i]$ za izračun $F(x_i) F(x_{i-1})$ ter seštejemo.
 - *Opomba*. Ali zgornji izrek velja za vse zvezne funkcije?
 - Primer. Nezvezna integrabilna funkcija, ki ima primitivno funkcijo: $F(x) = x^2 \sin \frac{1}{x}$, F(0) = 0.

- 4. Uvedba nove spremenljivke in integracija po delih v določenem integralu
 - Izrek. Naj bo ϕ zvezno odvedljiva funkcija na [a,b] in f zvezna funkcija na Z_{ϕ} . Uvedba nove spremenljivke v določenem integralu.
 - Dokaz. Osnovni izrek analize, odvod komozicije in Leibnizova formula.
 - Izrek. Integracija po delih v določenem integralu.
 - Dokaz. Odvod produkta.
 - Izrek. Naj bo ϕ zvezno odvedljiva, naraščajoča funkcija na [a,b] in f integrabilna funkcija na $[\phi(a),\phi(b)]$. Uvedba nove spremenljivke v določenem integralu.
 - **Dokaz!** Oglejmo Riemannovo vsoto $R((f \circ \phi)\phi', \overline{D}, T_{\overline{D}})$. Kako ta Riemannova vsota povezana z Riemannovo vsoto $R(f, D, T_D)$? Enakost integralov pokažemo po definiciji Riemannova integrala z upoštavnjem lastnosti zveznih funkcij na zaprtem intervalu ter z uporabo Lagrangeeva izreka.

5. Povprečna vrednost

Naj bo $x_1, x_2, \ldots, x_n \in \mathbb{R}$. Potem povprečna vrednost je $\frac{1}{n}(x_1 + x_2 + \ldots + x_n)$. Kaj če je teh x-ov neskončno? Kako lahko izračunamo povprečno temperaturo?

- **Definicija.** Povprečna vrednost funkcije f.
- Opomba. Kaj je geometrijski pomen povprečne vrednosti, če je f nenegativna funkcija?
- Izrek. Ocena za povprečno vrednost μ . Kaj lahko povemo, če je f zvezna?
 - **Dokaz.** (1) Monotonost integrala.
 - (2) Lastnost zvezne funkcije na zaprtem intervalu.
- **Izrek.** Kaj velja za integral $\int_a^b f(x)g(x) dx$, če sta f in g integrabilni na [a,b] in g povsod istega znaka? Kaj lahko povemo, če je f zvezna?
 - **Dokaz.** (1) Monotonost integrala.
 - (2) Lastnost zvezne funkcije na zaprtem intervalu.
- **Izrek.** Kaj velja za integral $\int_a^b f(x)g(x) dx$, če je f zvezna funkcija na [a,b] in g nenegativna, padajoča in zvezno odvedljiva funkcija na [a,b]?
 - **Dokaz!** Osnovni izrek analize. Integracija po delih. Naredimo oceno za $\int_a^b f(x)g(x) dx$.
- *Primer*. Oceni integral $\int_a^b \frac{\sin x}{x} dx$.

4.6 POSPLOŠENI INTEGRAL

Recimo, da je funkcija f na intervalu [a,b] neomejena ali sam interval $[a,\infty)$ neomejen. Potem funkcija f ni integrabilna po Riemannu. Ali sploh lahko definiramo $\int_a^b f(x) \, dx$ ali $\int_a^\infty f(x) \, dx$?

- 1. Posplošeni integral na omejenem intervalu
 - **Definicija.** Posplošeni integral funkcije f na intervalu [a, b]. Posplošeno integrabilna funkcija f na [a, b]. Konvergenten/divergenten integral.
 - *Opomba.* (1) Ali je integrabilna funkcija tudi posplošena integrabilna? Ali integrala sta enaka? Kaj je pogoj iz definicije?
 - *Primer*. Konvergenca $\int_0^1 \frac{1}{x^p} dx$ in $\int_0^1 \ln x dx$.
 - Izrek. Kaj če je funkcija f absolutno integrabilna?
 - **Dokaz.** Pišemo $F(x) = \int_a^x f(t) dt$, $G(x) = \int_a^x |g(t)| dt$. Po predpostavki obstaja $\lim_{x \uparrow b} G(x) \Rightarrow G(x)$ izpolnjuje Cauchyjev pogoj pri b. Pokažemo, da je F(x) tudi izpolnjuje Cauchyjev pogoj pri b.
 - Izrek. Kriterij za konvergenco posplošenega integrala (konvergenca v polu).
 - **Dokaz.** Konvergenca: Dovolj pokazati, da konvergira $\int_a^b \left| \frac{f(x)}{(x-a)^s} \right|$. Naj bo $t \in (a,b]$. Pokažemo, da je limita $\lim_{t\downarrow a} \int_t^b \left| \frac{f(x)}{(x-a)^s} \right|$ obstaja (limita naraščajoče funkcije).

Divergenca: Navzdol ocenimo $(f(x) \ge m > 0)$ integral $\int_t^b \frac{f(x)}{(x-a)^s}$.

- *Opomba*. Kaj če je $\lim_{x \searrow a} f(x) \neq 0$?
- Primer. Obravnavaj konvergenco integala $\int_0^1 \frac{e^x}{x} dx$
- **Definicija.** Posplešena integrabilnost funkcije f na [a,b], ki ima končno mnogo "slabih" točk.
- *Primer*. Konvergenca $\int_{-1}^{1} \ln|x| dx$ in $\int_{-1}^{1} \frac{1}{x} dx$.

- 2. Posplošeni integral na neomejenem intervalu
 - **Definicija.** Posplošeni integral funkcije f na $[a, \infty]$. Posplošeno integrabilna funkcija f na $[a, \infty]$. Konvergenten, divergenten integral. Posplošeno integrabilna funkcija f na $[-\infty, \infty]$.
 - Primer. Konvergenca $\int_{1}^{\infty} \frac{1}{x^p} dx$.
 - *Opomba*. Ali konvergira integral $\int_0^\infty \frac{1}{x^p} dx$?
 - *Primer*. Naj bo r racionalna funkcija. Ali obstaja $\int_a^\infty r(x) dx$?
 - Izrek. Cauchyjev pogoj za konvegenco integrala na neomejenem intervalu.
 - **Dokaz.** Osnovni izrek analize in Cauchyjev pogoj v neskončnosti.
 - **Primer.** Konvergenca $\int_1^\infty \frac{\sin x}{x} dx$.
 - Izrek. Kaj če je funkcija f absolutno integrabilna?
 - **Dokaz.** Podobno kot prej
 - Primer. Ali integral $\int_1^\infty \frac{\sin x}{x} dx$ absolutno konvergira?
 - Izrek. Kriterij za konvergenco posplošenega integrala (konvergenca v neskončnosti).
 - **Dokaz.** Naj bo $M \in [a, \infty)$. V integral $\int_a^M \frac{g(x)}{x^p} dx$ uvedemo novo spremenljivko $t = \frac{1}{x}$ in prevedemo izrek na izrek o konvergence v polu.
 - *Primer.* (1) Funkcija iz trikotnikov. Ali kriterij deluje?
 - (2) Eulerjeva funkcija $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$. Določi definicijsko območje. Dokaži, da $\Gamma(n+1) = n!$ za vse $n \in \mathbb{N}$.
 - Izrek. Integralski kriterij za konvergenco vrst.
 - Dokaz. Najprej ocenimo integral z delnimi vsotami vrste, nato dokažemo ekvivalenco.
 - **Zgled.** Konvergenca $\int_1^\infty \frac{1}{x^p} dx$ in $\sum_{n=1}^\infty \frac{1}{n^p}$.

4.7 UPORABA INTEGRALA V GEOMETRIJI

- 1. Dolžina loka
 - **Definicija.** Dolžina poti F. Izmerljiva pot F.
 - Izrek. Naj bo $F = (\alpha, \beta)$ zvezno odvedljiva pot. Dolžina poti F.
 - **Dokaz.** Izberimo delitev D intervala [a, b]. 1. S pomočjo Lagrangeeva izreka izračunamo l(D).
 - 2. Ocenimo razliko $|R(\sqrt{\dot{\alpha}^2 + \dot{\beta}^2}, D, T_D) l(D)|$. 3. Z upoštevanjem enakomerne zveznosti $\dot{\alpha}^2$ in $\dot{\beta}^2$ ter integrabilnosti $\sqrt{\dot{\alpha}^2 + \dot{\beta}^2}$ ocenimo $|l(D) \int_a^b \sqrt{(\dot{\alpha}(x))^2 + (\dot{\beta}(x))^2} \, dx|$. 4. S pomočjo finejše delitve naredimo oceno za sup $\{l(D); D \text{ je delitev}\}$.
 - Posledica. Ali je zvezno odvedljiva pot izmerljiva?
 - Primer. Izračunaj dolžin enega loka cikloide $x(t) = at \sin t$, $y(t) = a \cos t$, a > 0.
 - Trditev. Dolžina grafa. Dolžina krivulje podane polarno.
 - **Dokaz.** Parametriziramo in poračunamo.
 - Primer. Obseg kroga s polmerom a.
 - Trditev. Naj bo $F:[a,b]\to\mathbb{R}^2$ in $G:[c,d]\to\mathbb{R}^2$ injektivni regularni parametrizaciji istega gladkega loka. Ali potem l(F)=l(G)?
 - **Dokaz.** Obstaja zvezno odvedljiva funkcija $\phi : [a, b] \to [c, d]$, da velja $G \circ \phi = F$ (zakaj?). Izračunamo dolžino poti F z uvedbo nove spremenljivke.
 - **Definicija.** Dolžina gladkega loka.
 - **Definicija.** Naravni parameter. Naravna parametrizacija.
 - **Izpeljava.** Ali ima vsak gladek lok z regularno parametrizacijo $F = (\alpha, \beta)$ naravno parametrizacijo?
 - **Dokaz.** Pišemo $\phi(t) = \int_a^t \sqrt{(\dot{\alpha}(s))^2 + (\dot{\beta}(s))^2} ds$. Pokažemo, da je ϕ bijektivna zvezno odvedljiva funkcija in definiramo $G = F \circ \phi^{-1}$. Pokažemo, da je G iskana parametrizacija.
 - **Definicija.** Ločna dolžina.
 - *Opomba*. Pitagorjev izrek in ločna dolžina.

2. Ploščine

- 2.1 Ploščine likov med grafoma
 - Trditev 1. Naj bosta $f, g : [a, b] \to \mathbb{R}$ zvezni funkciji in denimo, da je $f(x) \ge g(x)$ za vse $x \in [a, b]$. Kaj je ploščina lika med grafoma nad intervalom [a, b]?
 - Trditev 2. Naj bosta $f, g : [a, b] \to \mathbb{R}$ zvezni funkciji (lahko imata presečišča). Kaj je ploščina lika med grafoma nad intervalom [a, b]?
 - Trditev 3. Naj bosta $g:[c,d] \to \mathbb{R}$ zvezna funkcija nad y-osjo. Kaj je ploščina lika nad intervalom [c,d] na ordinatni osi?
 - Trditev 4. Ploščine med grafoma funkcij nad intervalom [c, d] na ordinatni osi.
 - Dokaz 1-4. Poračunamo.
- 2.2 Ploščina območja, ki je dano s krivuljo
 - Trditev 5. Naj bo $F:[a,b] \to \mathbb{R}^2$ zvezno odvedljiva pot. Kaj je ploščina lika, ki ga določa tir poti F([a,b]) nad intervalom [x(a),x(b)]?
 - Trditev 6. Naj bo $F:[a,b]\to\mathbb{R}^2$ zvezno odvedljiva pot. Kaj je ploščina lika, ki ga določa tir poti F([a,b]) nad intervalom [y(a),y(b)] na ordinatni osi?
 - **Skica dokaza 5-6.** Naj bo $D: a = t_0 < t_1 < \ldots < t_n = b$ poljubna delitev intervala [a,b] in S_D usklajen izbor testnih točk. Prevedemo z pomočjo Lagrangeeva izreka približek ploščine $pl(D, S_D) = \sum_{i=1}^n y(s_i)(x(t_i) x(t_{i-1}))$ na neko Riemannovo vsoto. Zakaj $pl(D, S_D)$ približek?
 - **Definicija.** Usmerjenost (orijentacija) loka K.
 - Definicija. Gladka enostavna sklenjena krivulja.
 - **Definicija.** Kadar je regularna parametrizacija F krivulje K določa pozitivno usmerjenost (orijentacijo)?
 - Trditev. Naj bo $F:[a,b]\to\mathbb{R}^2$ regularna parametrizacija gladke enostavne sklenjene krivulje K, ki določa pozitivno usmerjenost K. Kaj je potem ploščina območja D znotraj K?
 - **Dokaz.** Uporabimo 5-6. trditve.
 - Primer. Izračunaj ploščinao astroide $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}, \ a > 0.$
 - **Trditev.** Naj bo $r = r(\phi), \phi \in [\alpha, \beta]$ zvezno odvedljiva polarno podana krivulja. Kaj je potem ploščina območja D, ka ga določa krivulja skupaj z daljicama $\phi = \alpha, \ 0 \le r \le r(\alpha)$ in $\phi = \beta, \ 0 \le r \le r(\beta)$?
 - **Dokaz.** Krivuljo parametriziramo in uporabimo prejšnjo trditev.
- 3. Prostornina in površina rotacijskega telesa
 - Definicija. Rotacijska ploskev. Vrtenina.
 - Trditev. Kako izračunamo prostornino vrtenine?
 - **Dokaz.** Aproksimacija z valjem in Riemannova vsota.
 - Trditev. Kako izračunamo površino rotacijske ploskve?
 - **Dokaz.** Aproksimacija z prisekanem stožcem, Lagrangeev izrek in Riemannova vsota.

FUNKCIJSKA ZAPOREDJA IN VRSTE 4.8

- 1. Funkcijska zaporedja
 - Definicija. Funkcijsko zaporedje. Konvergenca po točkah. Limitna funkcija.
 - Zgled. Določi limitno funkcijo.
 - $-f_n(x)=x^n, n\in\mathbb{N}$ na [0,1]. Ali je limitna funkcija zvezna?
 - Naj bo g zvezna funkcija na $\mathbb{R}, g \equiv 0$ na $\mathbb{R} \setminus (0,1)$ in $\int_0^1 g(x) dx \neq 0$: $g_n(x) = ng(nx), n \in \mathbb{N}$. Ali je $\lim_{n\to\infty} \int_0^1 g_n(x) dx = \int_0^1 \lim_{n\to\infty} g_n(x) dx$?
 - Definicija. Enakomerna konvergenca.
 - Opomba. Ali je vsako enakomerno konvergentno funkcijsko zaporedje tudi konvergira po točkah?
 - *Primer.* $f_n(x) = \frac{x}{n}$, $n \in \mathbb{N}$ na \mathbb{R} . Ali je konvergenca enakomerna? Kaj če gledamo f_n na omejeni podmnožici
 - **Trditev.** Ekvivalentni pogoj za enakomerno konvergenco (zapordje $(d_{\infty}(f_n, f))_n$).
 - *Primer.* $f_n(x) = x^n$, $n \in \mathbb{N}$ na [0, 1]. Ali je konvergenca enakomerna?
 - Definicija. Enakomerno Cauchyjevo funkcijsko zaporedje.
 - Izrek. Karakterizacija enakomerne konvergence.
 - **Ideja dokaza.** Kot za zaporedja.
 - Izrek. Zadosten pogoj za zveznost limitne funkcije.
 - Dokaz. Definicija zveznosti v točki.
 - *Opomba*. Ali je dovolj konvergence po točkah?
- 2. Funkcijske vrste
 - Definicija. Funkcijska vrsta. Konvergenca po točkah. Vsota funkcijske vrste. Enakomerna konvergenca.
 - Posledica. Zadosten pogoj za zveznost vsote funkcijske vrste.
 - **Primer.** Dana vrsta: $f(x) = \sum_{n=1}^{\infty} x^n (1 x^n)$.
 - Dokaži, da vrsta konvergira po točkah na [0, 1].
 - Določi predpis za f.
 - Ali vrsta enakomerno konvergira na D_f ? (Pomagaj si z zveznostjo).
 - **Izrek.** Weierstrassov kriterij. M-test za enakomerno konvergenco vrst.
 - **Dokaz.** Pokažemo, da je vrsta enakomerno Cauchyjeva.
 - Posledica. Zadosten pogoj za enakomerno konvergenco vrst $\sum_{n=1}^{\infty} a_n \sin(nx)$ in $\sum_{n=1}^{\infty} a_n \cos(nx)$.
- 3. Integriranje in odvajanje funkcijskih zaporedij in vrst
 - Izrek. Zadosten pogoj za zamenjavo vrstnega reda integriranja in limite pri integriranju funkcijskih zapo-
 - **Dokaz.** Po definiciji pokažemo, da je integral na desni res limita številskega zaporedja.
 - *Opomba.* Ali je dovolj konvergence po točkah?
 - Posledica. Zadosten pogoj za zamenjavo vrstnega reda integriranja in vsote pri integriranju funkcijskih vrst.
 - Izrek. Zadosten pogoj za odvedljivost limitne funkcije funkcijskega zaporedja. Kaj velja za njen odvod?
 - Dokaz. Osnovni izrek analize + Newton-Leibnizova formula.
 - Posledica. Zadosten pogoj za odvedljivost vsote funkcijske vrste. Kaj velja za njen odvod?
- 4. Potenčne vrste
 - **Definicija.** Potenčna vrsta s središčem v c.
 - *Primer.* Geometrijska vrsta $\sum_{n=0}^{\infty} x^n$. Kje konvergira?
 - Izrek. Obstoj konvergenčnega polmera. Konvergenčni polmer.
 - **Dokaz.** Naj bo c=0. Recimo, da potenčna vrsta konvergira v $x=x_0\neq 0$. Naj bo $r\in (0,|x_0|)$. Pokažemo, da je vrsta absolutno in enakomerno konvergira na [-r, r].

Definiramo $R = \sup\{|x_0|; \text{ vrsta konvergira v } x_0\}.$

- **Posledica.** Kaj lahko povemo o vsote potenčne vrste s konvergenčnim polmerom R > 0?
- Izrek. Formuli za izračun konvergenčnega polmera.
 - **Dokaz.** Absolutna konvergenca in kvocientni kriterij.
- *Primer.* Določi konvergenčno območje!

 - $-\sum_{n=1}^{\infty} \frac{x^n}{n}.$ $-\sum_{n=1}^{\infty} n^n x^n.$

- **Izrek.** Cauchy-Hadamardov izrek o konvergenčnem polmeru.
 - **Dokaz.** Naj bo c = 0 in $a = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. Ločimo primeri:
 - 1) a=0. Pokažemo, da je R=0 (izberimo $x\neq 0$ in pokažemo, da vrsta divergira, ker členi ne grejo
 - 2) $a \in [0, \infty)$. Pokažemo, da vrsta konvergira za vse $|x| < \frac{1}{a}$ (absolutna konvergenca) in divergira za vse $|x| > \frac{1}{a}$ (členi ne grejo prito 0).
- *Primer.* Določi konvergenčno območje vrste $\sum_{n=1}^{\infty} n! x^{n!}$.
- Abelov izrek. Zadosten pogoj za zveznost potenčne vrste v kraišču definicijskega območja. brez dokaza
- **Izrek.** Odvajanje in integriranje potenčnih vrst.
 - Dokaz. Dovolj, da pokažemo, da konvergenčni polmer pri odvajanju in integriranju ne spremeni.
- Posledica. Kaj lahko povemo o odvedljivosti vsote potenčne vrste?
- *Primer*. Seštej!
 - $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}.$
 - $-f(x) = \sum_{n=1}^{\infty} n(x-1)^n.$
- 5. Taylorjeva formula in Taylorjeva vrsta
 - Naj bo $p \in \mathbb{R}_n[x]$ in naj bosta $a, h \in \mathbb{R}$. Izračunaj p(a+h). Kaj če v ta enakost vstavimo x = a+h?
 - **Definicija.** n-ti Taylorjev polinom funkcije f pri točke a. Oznaka.
 - *Opomba.* Naj bo f polinom stopnje n. Ali je $T_{n,a}(x) = f(x)$? Ali enakost velja v šplošnem (če f ni polinom)? Ostanek pri aproksimaciji f s Taylorjevim polinomom. Zapis.
 - Taylorjev izrek. Velikost ostanka.
 - **Dokaz.** Najprej pokažemo, da $R_{n,a}^{(k)}(a) = 0$ za $0 \le k \le n$. Fiksiramo $x \in I$ in pišemo: $\overline{R_{n,a}(x)} = s(x-a)^{n+1}$ za nek $s \in \mathbb{R}$. Za funkcijo $g(y) = R_{n,a}(y) - s(y-a)^{n+1}$ n-krat uporabimo Rollov izrek na intervalu med x in a in dobimo izraz za s.
 - *Primer.* Približno izračunaj $\sqrt{1.1}$ in oceni napako s T_1 .
 - **Definicija.** Taylorjeva vrsta.
 - *Opomba*. Kaj se lahko zgodi s prirejeno Taylorjevo vrsto funkcije f?
 - **Izrek.** Denimo, da je funkcija f vsota konvergenčne potenčne vrste z konvergenčnim polmerom R>0. Ali je potem funkcija f enaka svoje prirejene Taylorjeve vrste v točke a, |a| < R?
 - **Dokaz.** Vrsto $\sum_{n=0}^{\infty} c_n x^n$ radi bi s pomočjo binomske formule uredili po potencah x-a in s pomočjo
 - odvodov izračunali koeficienti.

 Primer. $f(x) = \begin{cases} \exp(-\frac{1}{x}), & x > 0; \\ 0, & x \le 0. \end{cases}$. Ali je f enaka vsoti prirejene Taylorjeve vrste na kakšnem intervalu,
 - **Definicija.** Realno analitična funkcija f na odprtem intervalu I. Oznaka.
 - Opomba. Ali je f vsota prirejene Taylorjeve vrste? Kakšna zveza med množico realno analitičnih funkcij na $I \text{ in } C^{\infty}(I)$?
 - Taylorjev izrek. Splošna oblika ostanka.
 - **Dokaz.** Naj bo $b, x \in I$ in $p \in \mathbb{N}$. Definiramo $F(x) = T_{n,x}(b) + (\frac{b-x}{b-a})^p R_{n,a}(b)$. Uporabimo Rollov izrek na intervalu med a in b.
- 6. Taylorjeve vrste osnovnih funkcij
 - Eksponentna funkcija (središče v 0).
 - **Izpeljava.** Izračunamo odvodi in ocenimo ostanek.
 - Sinus (središče v 0). Cosinus (središče v 0).
 - **Izpeljava.** Sinus: Izračunamo odvodi in ocenimo ostanek. Cosinus: $\cos x = (\sin x)'$.
 - Logaritem $\ln(x+1)$ (središče v 0).
 - Izpeljava. Enkrat odvajamo in zapišemo rezultat kot vsoto geometrijske vrste, nato integriramo po členih.
 - Posplošeni binomski koeficient. Binomska vrsta (središče v 0).
 - Izpeljava. Izračunamo odvodi in ocenimo ostanek.
 - Za $x \in (0,1)$ uporabimo običajno formulo za ostanek.
 - Za $x \in (-1,0)$ uporabimo pošplošeno formulo z p=1: ocenimo vsak člen posebej, to, da zaporedje $(a_k(x))_k$ konvergira proti 0 pokažemo s tem, da vrsta $\sum_{k=1}^{\infty} a_k(x)$ konvergira.
 - Koren $\sqrt{1+x}$ (središče v 0).

5 METRIČNI PROSTORI

- 1. Metrični prostori
 - **Definicija.** Metrični prostor. Metrika.
 - *Primer*. Pokaži, da so metrični prostori:
 - Realna števila z običajno metriko: $(\mathbb{R}, |\cdot|)$. **Diskretna metrika**.
 - Kompleksna števila z običajno metriko: $(\mathbb{C}, |\cdot|)$.
 - $-\mathbb{R}^n$ z evklidsko metriko $d_2(x,y) = \sqrt{(x_1-y_1)^2 + \ldots + (x_n-y_n)^2}$.
 - Naj bo (M,d) metrični prostor in $N \subset M$. Ali je $(N,d_{|N\times N})$ metrični prostor?
 - Naj bo M = C[a, b] in $d_{\infty}(f, g) = \max\{|f(x) g(x)|; x \in [a, b]\}$. Ali je metrični prostor?
 - **Definicija.** Odprta krogla. Zaprta krogla. Okolica točke.
 - *Primer.* Določi odprto in zaprto enotsko kroglo s središčem v 0:
 - $-(\mathbb{R}^2,d_2).$
 - Pokaži, da je metrični prostor: $(\mathbb{R}^2, d_{\infty}), d_{\infty}((x_1, x_2), (y_1, y_2)) = \max\{|x_1 y_1|, |x_2 y_2|\}.$
 - Definicija. Notranja točka. Zunanja točka. Robna točka. Notranjost. Rob. Oznake.
 - Opomba.
 - Karakterizacija notranji točke z okolicami.
 - Karakterizacija zunanji točki z okolicami.
 - Kako sta povezani zunanji in notranji točki?
 - Naj bo (M,d) metrični prostor. Kako lahko zapišemo množico M kot unijo?
 - *Primer*. Določi notranji, zunanji in robne točke:
 - $-A = [a, b] \subset \mathbb{R}, B = (a, b) \subset \mathbb{R}, (\mathbb{R}, |\cdot|).$
 - $-A = [a, b] \times \{0\} \subset \mathbb{R}^2, (\mathbb{R}^2, d_2).$
 - Opomba.
 - Ali je vsaka notranja točka množice A leži v A?
 - Ali lahko kakšna zunanja točka množice A leži v A?
 - Kje lahko leži robna točka množice A? Ali je robna točka množice A tut robna točka množice A^c ?
 - **Definicija.** Odprta podmnožica. Zaprta podmnožica.
 - Trditev. Karakterizacija odprtosti s komplementom.
 - Dokaz. Enostavno.
 - *Primer*. Obravnavaj odprtost oz. zaprtost podmnožic:
 - Naj bo (M,d) metrični prostor: $M \subset M$, $\emptyset \subset M$.
 - Naj bo (M, d) metrični prostor, $x \in M$: $A = \{x\}$.
 - $A = (1,3) \times \{0\} \subset \mathbb{R}^2, \ B = [1,3] \times \{0\} \subset \mathbb{R}^2, \ \mathbb{R}^2$ z običajno metriko.
 - Izrek. Naj bo O družina vseh odprtih množic metričnega prostora (M, d). Naštej 3 lastnosti.
 - **Dokaz.** Definicija preseka, unije in odprte množice.

Opomba. Zakaj dovoljujemo le presek končne družine odprtih množic?

- *Primer*. Števna družina odprtih množic, katere presek ni odprt.
- Izrek. Naj bo Z družina vseh zaprtih množic metričnega prostora (M, d). Naštej 3 lastnosti.
 - Dokaz. Prehod na komplement + prejšnji izrek.
- Posledica. Ali je vsaka končna podmnožica metričnega prostora zaprta?
- Trditev. Odprtost/zaprtost odprte in zaprte krogle.
 - **Dokaz.** Odprtost pokaemo po definciji $(r_1 = r d(a, x))$. Zaprtost s prehodom na komplement.
- **Definicija.** Zaprtje.
- Opomba. Ali je zaprtje zaprta množica? Čemu je enako zaprtje od zaprtja?
- *Primer.* Ali je zaprta krogla vedno enaka zaprtju odprte krogle? $M = \{a, b, c\}$, kjer a, b, c oglišča enakostraničnega trikotnika s stranico 1.
- **Definicija.** Omejena podmnožica. Stekališče množice.
- *Opomba*. Ali sta stekališče zaporedja in stekališče množice različna pojma? Ali končne množice lahko ima stekališča?
- **Izrek.** Karakterizacija stekališča z okolicami.
 - Dokaz. (⇒) Definicija stekališča množice.
 - (⇐) Induktivno najdemo neskončno členov.
- **Posledica.** Karakterizacija zaprtosti z stekališči.
 - **Dokaz.** (\Rightarrow) Kakšne so točke lahko stekališča množice A?
 - (⇐) Dokažemo kontro pozitivno obliko.

- **Posledica.** Ali je množica stekališč množice A zaprta množica?
 - **Dokaz.** Naj bo S množica stekališč množice A. Pokažemo, da je S^c odprt. Vzemimo $x \in S^c$. Lahko najdemo tak r_0 , da $K(x, r_0) \cap A \subset \{x\}$. Pokažemo, da ta krogla vsebovana v S^c .
- 2. Zaporedja v metričnih prostorih
 - **Definicija.** Zaporedje v metričnem prostoru. *n*-ti člen zaporedja. Oznake.
 - **Definicija.** Stekališče zaporedja.
 - **Definicija.** Konvergentno zaporedje. Limita zaporedja.
 - Trditev. (1) Ali je limita zaporedja tut stekališče zaporedja? Ali velja obrat?
 - (2) Ali lahko ima zaporedje več stekališč?
 - (3) Ali je limita ena sama? Ali je edino stekališče?
 - Dokaz. Kot za zaporedja.
 - Primer. Naj bo (\mathbb{R}^n, d_2) m. p. Kako je s konvergenco zaporedja $(x^{(m)})_m, \ x^{(m)} = (x_1^{(m)}, x_2^{(m)}, \dots, x_n^{(m)})$?
 - **Definicija.** Cauchyjev pogoj.
 - Izrek. Ali je vsako konvergentno zaporedje v metričnem prostoru izpolnjuje Cauchyjev pogoj?
 - Dokaz. Kot za zaporedja.
 - Opomba. Ali je vsako Cauchyjevo zaporedje v metrčnem prostoru konvergentno?
 - **Definicija.** Poln metrični prostor.
 - *Primer.* Polni in nepolni metrični prostori.
 - Izrek. Ali je konvergenca v C[a,b] z običajno metriko d_{∞} enakomerna konvergenca?
 - **Dokaz.** Definicija konvergence v metričnem prostoru in definicija enakomerne konvergence.
 - **Izrek.** Ali je metrični prostor $(C[a, b], d_{\infty})$ poln?
 - **Dokaz.** Najprej s pomočjo Cauchyjeva pogoja pokažemo, da Cauchyjevo zaporedje v C[a, b] konvergira po točkah proti f. Nato pokažemo, da konvergenca enakomerna in uporabi prejšnji izrek.
 - Primer. Množico C[a,b] opremimo z metriko: $d_1(f,g) = \int_a^b |f(x) g(x)| dx$. Ali je $(C[a,b],d_1)$ poln?

3. Kompaktnost

- **Definicija.** Pokritje. Odprto pokritje. Zaprto pokritje. Končno pokritje. Podpokritje.
- **Definicija.** Kompaktna podmnožica.
- *Primer*. Ali je zaprt/odprt interval kompakten? Ali je R z običajno metriko kompakten?
- **Izrek.** Kaj lahko povemo o vsake kompaktne podmnožice K metričnega prostora (M,d)?
 - **Dokaz.** Omejenost: Naj bo $a \in M$. Izberimo odprto pokritje $O_r = K(a, r), r > 0$.

Zaprtost: Pokažemo, da komplement odprt. Ustrezno pokritje: $O_r = \{x \in M; d(x,c) > r\} = (\overline{K}(c,r))^c$.

- Izrek. Kaj lahko povemo o vsake zaprte podmnožice Z v kompaktni množici K?
 - **Dokaz.** Izberimo poljubno odprto pokritje $\{O_{\lambda}\}_{{\lambda}\in\Lambda}$ in dodamo mu še Z^c . To je odprto porkitje od K.
- Izrek. Heine-Borel. Kompaktnost v \mathbb{R} .
 - Dokaz. Enostavno.
- Lema 1. Ali je presek zaporedja vloženih zaprtih intervalov prazen.
 - Dokaz. Vemo, da obstaja natanko ena točka v preseku.
- Lema 2. Ali je presek zaporedja padajočih kvadrov v \mathbb{R}^n .
- Lema 3. Ali je zaprt kvader $P = [a_1, b_1] \times ... \times [a_k, b_k]$ kompaktna podmnožica v \mathbb{R}^k ?
 - **Dokaz.** Konstruiramo zaporedje padajočih kvadrov, ki jih ne moremo pokriti z končno mnogo članicami pokritja $\{O_{\lambda}\}_{{\lambda}\in\Lambda}$. Pokažemo, da vsaj enega kvadra iz tega zaporedja lahko pokrijemo.
- Izrek. Splošen Heine-Borel. Kompaktnost v \mathbb{R}^n .
 - **Dokaz.** Kot pri n=1 z uporabo kompaktnosti zaprtega kvadra.
- Izrek. (1) Kaj ima vsaka neskončna podmnožica točk, ki leži v kompaktni podmnožici?
 - (2) Kaj ima vsako zaporedje $(a_n)_n$ v kompaktni podmnožici?
 - Dokaz. (1) Z protislovjem pokrijemo množico A kroglami s končnim številom elementov iz A.
- *Opomba*. Kje ležita stekališči iz prejšnjega izreka?
- Posledica. Ali ima vsako zaporedje v kompaktni množici K konvergentno podzapoedje z limito v K?
- Lema. Kaj velja, če ima Cauchyjevo zaporedje $(a_n)_n$ v metričnem prostoru stekališče?
 - Dokaz. Enostavno.
- Izrek. Ali je vsak kompakten metrični prostor poln?
 - Dokaz. Sledi iz prejšnjega izreka in prejšnji lemi.
- Izrek. Kaj lahko povemo o preseku padajočega zaporedja nepreacnih zaprtih množic v kompaktni množici?
 - **Dokaz.** Definiramo $V_j = M \setminus K_j$. Recimo,da $\bigcap_{j=1}^{\infty} = \emptyset$ in uporabimo komplement.

4. Podprostori metričnega prostora

Naj bo(M,d)metrični prostor in $A\subset M$ podmnožica.

- Metrični podprostor.
- Oznaka za kroglo s središčem v $a \in A$ in polmerom r v metričnem prostoru $(A, d_{|A \times A})$.
- Izrek. Karakterizacija odprtih množic v metričnem prostoru $(A, d_{|A \times A})$.
 - **Dokaz.** Za odprte množice $O \subset M$ velja: $\bigcup_{a \in O} K(a, r_a) = O$, kjer $K(a, r_a) \subset O$.
- Izrek. Karakterizacija zaprtih množic v metričnem prostoru $(A, d_{|A\times A})$.
 - Dokaz. S prehodom na komplemente.
- **Izrek.** Karakterizacija kompaktnih množic v metričnem prostoru $(A, d_{|A \times A})$.
 - Dokaz. Enostavno po definiciji kompaktnosti.
- 5. Preslikave med metričnimi prostori

Naj bosta (M,d) in (M',d') metrična prostora. Naj bo $D \subset M, D \neq \emptyset$. Obravnamo preslikave $f:D \to M'$.

- **Definicija.** Kadar je preslikava zvezna v točki $a \in D$?
- *Opomba*. Ekvivalente definicije.
- Izrek. Karakterizacija zveznosti v točki z zaporedji.
 - **Dokaz.** Enako kot v \mathbb{R} .
- **Definicija.** Zvezna preslikava na množici $A \subset D$. Zvezna preslikava.
- Izrek. Karakterizacija zveznosti z odprtimi množicami.
 - Dokaz. Karakterizacija zveznosti z okolicami.
- Posledica. Ali je kompozitum zveznih preslikav zvezna preslikava?
- Izrek. Karakterizacija zveznosti z zaprtimi množicami.
 - **Dokaz.** S prehodom na komplemente.
- Primer. Ali je zvezna preslikava slika odprte množice v odprte (konstantna preslikava)?
- **Definicija.** Kadar je preslikava f enakomerno zvezna?
- Opomba. Ali je enakomerno zvezna preslikava zvezna? Ali velja obratno?
- Izrek. Ali je zvezna preslikava na kompaktni množici enakomerno zvezna?
 - **Dokaz.** Kot v \mathbb{R} .
- Izrek. Ali je slika zvezne preslikave na kompaktni množici kompaktna množica?
 - Dokaz. Definicija kompaktnosti + karakterizacija zveznosti z praslikami.
- Izrek. Naj bo $f: K \to \mathbb{R}$ zvezna preslikava na kompaktni množici $K \subset M$, \mathbb{R} z običajno metriko. Kaj lahko povemo o f?
 - Dokaz. Omejenost sledi iz prejšnjega izreka.

To, da maksimum dosežen sledi iz dejstva, da je sup f(K) stekališče množice f(K) in zaprtosti f(K).

- 6. Banachovo skrčitveno načelo
 - **Definicija.** Skrčitev.
 - *Opomba*. Ali je vsaka skrčitev enakomerno zvezna preslikava?
 - **Izrek.** Banachovo skrčitveno načelo.
 - Opomba. Oceni $d(a, x_m)$.
- 7. Nadaljni primeri metričnih prostorov

Naj bo X realen ali kompleksen vektorski prostor in naj bo $||\cdot||: X \to \mathbb{R}$ norma na X. Potem je d(x,y) = ||x-y|| za vse $x,y \in X$ metrika na X. Pravimo ji **inducirana metrika.**

- Primer.
 - $-(\mathbb{R}^n, ||\cdot||_p)$ inducira metriko d_p na \mathbb{R}^n . $||x||_p = \sqrt[p]{|x_1|^p + |x_2|^p + \ldots + |x_n|^p}$.
 - $-(\mathbb{R}^n, ||\cdot||_{\infty})$ inducira metriko d_{∞} . $||x||_{\infty} = \max\{|x_i|; i = 1, \ldots, n\}$.
 - Naj bo $f \in C[a,b]$: $||f|| = \max\{|f(x)|; x \in [a,b]\}$. $(C[a,b], ||\cdot||)$ je normiran vektorski prostor. Inducira običajno (supremum) metriko na C[a,b].
- **Definicija.** Banachov prostor.
- Opomba. Ali je končnorazsežen vektorski prostor poln? Ali je $(C[a,b], ||\cdot||_{\infty})$ Banachov prostor?
- Naj bo X realen vektorski prostor s skalarnim produktom. Potem $||x|| = \sqrt{\langle x, x \rangle}$ definira normo na X. Ali je $(\mathbb{R}^n, \langle , \rangle), \langle x, y \rangle = \sum_{i=1}^n x_i y_i$ poln?
- **Definicija.** Hilbertov prostor.
- Primer.
 - $-(\mathbb{R}^n, \langle,\rangle)$ je Hilbertov prostor.
 - Izkaže se: $(C[a,b], \langle,\rangle)$ ni poln metrični prostor.