MA1522 Reference Notes

~github/reidenong/cheatsheets~, AY23/24 S1

Row Echelon Form

A matrix is in row echelon form if:

- (1) All zero rows are at the bottom of the matrix.
- (2) The leading entries are further to the right as we move down the rows.

It is in Reduced Row Echelon form if:

- (1) The leading entries are 1.
- (2) In each pivot column, all entries except the leading entry is zero.

Elementary Row Operations

- (1) Interchange two rows.
- (2) Multiply a row by a nonzero constant.
- (3) Add a multiple of one row to another row.

Two Linear systems have the same solution set if their augmented matrices are row equivalent.

If matrix B is obtained from matrix A by

$$A \xrightarrow{r_1} \xrightarrow{r_2} \dots \xrightarrow{r_k} B$$

Then

$$B = E_k E_{k-1} ... E_2 E_1 A$$

where E_i is the elementary matrix corresponding to r_i .

Systems of Linear Equations

The linear system of Ax = b is homogenous if b = 0. If there is a nontrivial solution, it has infinitely many solutions.

A linear system is consistent if it has at least one solution. A homogenous equation Ax = 0 is always consistent, as it has at least the trivial solution.

Types of Matrices

Scalar Matrices

A scalar matrix is a diagonal matrix where all diagonal entries are equal.

Triangular Matrices

Upper Triangular A where $a_{\{ij\}} = 0$ for i > j.

$$\begin{pmatrix} * & * & \dots & * \\ 0 & * & \dots & * \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & * \end{pmatrix}$$

Strictly Upper Triangular A where $a_{\{ij\}} = 0$ for $i \geq j$.

$$\begin{pmatrix} 0 & * & \dots & * \\ 0 & 0 & \dots & * \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Lower Triangular A where $a_{\{ij\}} = 0$ for i < j.

$$\begin{pmatrix} * & 0 & \dots & 0 \\ * & * & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ * & * & * & * \end{pmatrix}$$

Strictly Lower Triangular A where $a_{\{ij\}} = 0$ for $i \leq j$.

$$\begin{pmatrix} 0 & 0 & \dots & 0 \\ * & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ * & * & * & 0 \end{pmatrix}$$

Scalar Multiplication and Matrix Addition Properties:

(1) Commutative: A + B = B + A

(2) Associative: (A + B) + C = A + (B + C)

(3) Additive identity: A + 0 = A

(4) Additive inverse: A + (-A) = 0

(5) Distributive: c(A + B) = cA + cB

(6) Scalar addition: (c+d)A = cA + dA

(7) Associative: c(dA) = (cd)A

(8) If aA = 0, then a = 0 or A = 0

Matrix Multiplication

For multiplication of a $m \times n$ matrix A and a $n \times p$ matrix B,

$$AB_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Properties:

- (1) Associative: A(BC) = (AB)C
- (2) Left distributive: A(B+C) = AB + AC
- (3) Right distributive: (A + B)C = AC + BC
- (4) Commutes with scalar multiplication:

$$c(AB) = (cA)B = A(cB)$$

- (5) Not commutative: $AB \neq BA$ in general
- (6) Multiplicative Identity: $I_n A = A I_m = A$
- (7) Zero divisor: There exists nonzero matrices A and Bsuch that $AB = \mathbf{0}$
- (8) Zero matrix: A0 = 0A = 0

Block Multiplication

$$AB = A(b_1 \ b_2 \ \dots \ b_n) = (Ab_1 \ Ab_2 \ \dots \ Ab_n)$$

$$AB = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_m \end{pmatrix} B = \begin{pmatrix} a_1 B \\ a_2 B \\ \dots \\ a_m B \end{pmatrix}$$

Transpose

The transpose of a $m \times n$ matrix A is a $n \times m$ matrix A^T where $A_{ij}^T = A_{ii}$.

Properties:

$$(1) (A^T)^T = A$$

$$(2) (cA)^T = cA^T$$

$$(2) (cA)^T = cA^T$$

(3)
$$(A + B)^T = A^T + B^T$$

(4) $(AB)^T = B^T A^T$

$$(4) (AB)^T = B^T A^T$$

Inverse of a Matrix

A matrix A is invertible if there exists a unique matrix Bsuch that AB = BA = I.

Properties:

$$(1) (A^{-1})^{-1} = A$$

$$(2) (cA)^{-1} = c^{-1}A^{-1}, \forall c \in \mathbb{R}$$

$$(3) (A^{T})^{-1} = (A^{-1})^{T}$$

$$(3) (A^T)^{-1} = (A^{-1})^{2}$$

(4)
$$(AB)^{-1} = B^{-1}A^{-1}$$
 if A, B are both invertible

(5) Left Cancellation Law:
$$AB = AC \rightarrow B = C$$

(6) Right Cancellation Law:
$$BA = CA \rightarrow B = C$$

To find an inverse, consider

$$\left(A\ |\ I\right) \overset{RREF}{\longrightarrow} \left(I\ |\ A^{-1}\right)$$

Invertible Matrix Theorem

Let A be a $n \times n$ matrix. The following statements are equivalent:

- (1) A is invertible.
- (2) A has a left inverse
- (3) A has a right inverse
- (4) RREF of A is I_n
- (5) A can be expressed as a product of elementary matrices
- (6) Homogenous system Ax = 0 has only the trivial solution
- (7) for any b, the system Ax = b has a unique solution
- (8) The determinant of A is nonzero
- (9) The columns/rows of A are linearly independent
- (10) The columns/rows of A span \mathbb{R}^n

LU Decomposition

Suppose $A \xrightarrow{r_1} r_2 \dots \xrightarrow{r_k} U$, where each row operation is of the form $R_i + cR_i$ and U is a row echelon form of A. Then A can be decomposed into a unit lower triangular matrix and an upper triangular matrix.

$$A = LU = \begin{pmatrix} 1 & 0 & \dots & 0 \\ * & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ * & * & \dots & 1 \end{pmatrix} \begin{pmatrix} * & * & \dots & * \\ 0 & * & \dots & * \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & * \end{pmatrix}$$

$$L = E_1^{-1} E_2^{-1} \dots E_h^{-1}$$

To solve LUx = Ax = b, solve Ly = b, then Ux = y.

Determinant

Properties:

- $(1) \det(A^T) = \det(A)$
- (2) det(AB) = det(A) det(B) for A, B of same size
- (3) $\det(A^{-1}) = \frac{1}{\det(A)}$
- (4) $\det(cA) = c^n \det(A)$ for $n \times n$ matrix A
- $(5) \det(diag(a_1, a_2, ..., a_n)) = a_1 \cdot a_2 \cdot ... \cdot a_n$
- (6) Determinant and Row Elementary Operations:

$A \stackrel{R_i + cR_j}{\longrightarrow} B$	$\det(A) = \det(B)$	$\det(B) = \det(A)$
$A \stackrel{cR_i}{\longrightarrow} B$	$\det(A) = \frac{1}{c}\det(B)$	$\det(B) = c \det(A)$
$A \stackrel{R_i \leftrightarrow R_j}{\longrightarrow} B$	$\det(A) = -\det(B)$	$\det(B) = -\det(A)$

Finding Determinants:

1. for
$$n = 2$$
, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\det(A) = ad - bc$

2. for n = 3,
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
,
$$\det(A) = aei + bfg + cdh - ceg - bdi - afh$$

3. for $n \geq 3$, use Cofactor Expansion:

$$\det(A) = \sum_{j=1}^n a_{ij}A_{ij} = \sum_{j=1}^n a_{jk}A_{jk}$$

where A_{ij} is the (i,j) cofactor of A, given by

$$A_{ij} = (-1)^{i+j} \det(M_{ij})$$

where M_{ij} is the (i, j) matrix minor of A, the $(n-1) \times$ (n-1) matrix obtained by deleting the *i*th row and *j*th column of A.

Adjoint

With a order n square matrix A, the adjoint of A is

$$adj(A) = (A_{ij})^T = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$
$$= \begin{pmatrix} M_{11} & -M_{21} & \dots & \pm M_{n1} \\ -M_{12} & M_{22} & \dots & \mp M_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \pm M_{1n} & \mp M_{2n} & \dots & \pm M_{nn} \end{pmatrix}$$

Adjoint Formula:

$$A \cdot adj(A) = \det(A)I$$

Cramer's Rule

Let A be a invertible $n \times n$ matrix.

For any $b \in \mathbb{R}^n$, the unique solution of Ax = b is given

$$x_i = \frac{\det(A_i(b))}{\det(A)}$$

where $A_i(b)$ is the matrix obtained by replacing the ith column of A with b.

Linear Span

$$span(u_1 \ u_2 \ \dots \ u_n) = \{c_1u_1 + c_2u_2 + \dots + c_nu_n \mid c_i \in \mathbb{R}, \forall i\}$$

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \mid x_i \in \mathbb{R}, \forall i \right\}$$

 \mathbb{R}^n is the set of all vectors with n-coordinates.

Theorem:

- (1) $v \in span(u_1 \ u_2 \ \dots \ u_n) \leftrightarrow$ $(u_1 \ u_2 \ \dots \ u_n)x = v$ is consistent \leftrightarrow $(u_1 \ u_2 \ \dots \ u_n \mid v)$ is consistent.
- (2) $span(u_1 \ u_2 \ \dots \ u_n) = \mathbb{R}^n \leftrightarrow$

The reduced row echelon form of A has no zero rows.

Properties:

Let
$$S = \{u_1, u_2, ..., u_n\} \subseteq \mathbb{R}^n$$
.

- (1) Contains Origin: $\mathbf{0} \in span(S)$
- (2) Closed under addition: $\forall u, v \in span(S), u + v \in span(S)$
- (3) Closed under scalar multiplication: $\forall u \in span(S), \forall c \in \mathbb{R}, c \cdot u \in span(S)$
- (4) Contains all linear combinations:

$$\begin{split} \forall u_1, u_2, ..., u_n &\in span(S), \\ \forall c_1, c_2, ..., c_n &\in \mathbb{R}, \\ c_1u_1 + c_2u_2 + ... + c_nu_n &\in span(S) \end{split}$$

Span equality:

Let
$$S=\{u_1,u_2,...,u_k\}$$
 and $T=\{v_1,v_2,...,v_n\}$. Then,
$$span(T)\subseteq span(S) \leftrightarrow \\ \forall v\in T,v\in span(S) \leftrightarrow \\ (S\mid T) \text{ is consistent.}$$

For equality, we need to show that $span(S) \subseteq span(T)$ and $span(T) \subseteq span(S)$.

Subspaces

A subset $V \subseteq \mathbb{R}^n$ is a subspace if:

- (1) Contains Origin: $\mathbf{0} \in V$
- $\ensuremath{\text{(2)}}\ Closed\ under\ linear\ combination:}$

$$\forall u,v \in V, \forall c,d \in \mathbb{R}, cu+dv \in V$$

A subset $V \subseteq \mathbb{R}^n$ is a subspace if and only if it is a linear span, V = span(S) for some finite set $S = \{u_1, u_2, ..., u_n\}$.

Solution Sets of linear systems

Solution sets of linear systems can be expressed implicitly or explicitly.

Implicit form:

$$\left\{ x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \in \mathbb{R}^n \mid Ax = \mathbf{b} \right\}$$

Explicit form:

$$\{u + s_1v_1 + s_2v_2 + ... + s_kv_k \mid s_i \in \mathbb{R}, \forall i\}$$

where $u + s_1 v_1 + s_2 v_2 + ... + s_k v_k$ are the general solutions of Ax = b.

The solution set $V = \{u \mid Au = b\}$ is a subspace if and only if $\mathbf{b} = 0$, ie. the system is homogenous.

The solution set $W = \{w \mid Aw = b\}$ of a linear system Ax = b is given by $\mathbf{u} + V$, where

- (1) $V = \{v \mid Av = \mathbf{0}\}$ is the solution set of the homogenous
 - system Ax = 0 and
- (2) **u** is a particular solution of Au = b.

Linear Independence

A set of vectors $S=\{u_1,u_2,...,u_n\}$ is linearly independent if the only solution to $c_1u_1+c_2u_2+...+c_nu_n=\mathbf{0} \text{ is } c_1=c_2=...=c_n=0.$ A set is linearly independent iff the RREF of S has no non-pivot columns.

Special Cases:

- 1. $\{0\}$ is always linearly dependent.
- 2. $\{v_1, v_2\}$ is linearly dependent iff v_1 is a scalar multiple of v_2 .
- 3. $\{\} = \emptyset$ is linearly independent.
- 4. Any subset of \mathbb{R}^n containing more than n vectors must be linearly dependent.
- 6. Any superset of a linearly dependent set is linearly dependent.
- 7. Any subset of a linearly independent set is linearly independent.
- 8. A set S containing n vectors in \mathbb{R}^n is linearly independent iff it spans \mathbb{R}^n

Basis

Let $V\subseteq \mathbb{R}^n$ be a subspace. A set $B=\{u_1,u_2,...,u_k\}$ is a basis of V if:

- (1) B is linearly independent
- (2) B spans V, ie. span(B) = V

A subset $S=\{u_1,u_2,...,u_n\}\subseteq\mathbb{R}^n$ is a basis for \mathbb{R}^n iff |S|=n and $A=\begin{pmatrix}u_1&u_2&...&u_n\end{pmatrix}$ is an invertible matrix.

Coordinates Relative to a basis

With basis $S=\{u_1,u_2,...,u_n\}$, every vector $\boldsymbol{v}\in\mathbb{R}^n$ can be expressed uniquely as a linear combination of the basis vectors.

$$\boldsymbol{v} = c_1 u_1 + c_2 u_2 + \ldots + c_n u_n \leftrightarrow \left[\boldsymbol{v} \right]_s = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

Change of Basis / Transition Matrix

Suppose there exist bases $S=\{u_1,u_2,u_3\}$ and $T=\{v_1,v_2,v_3\}.$ Then, the transition matrix from T to S is

$$RREF(S \mid T) = (I_k \mid P_{T \to S})$$

Then $[w]_S = P_{T \to S}[w]_T$, and

$$T = S \times P_{T \to S}$$

Dimension

The dimension of a subspace $V \subseteq \mathbb{R}^n$ is the number of vectors in any basis of V. The dimension of a solution space $V = \{u \mid Au = 0\}$ is the number of non-pivot columns in the RREF of A.

Column and Row Space

The column space of a matrix A is the subspace of \mathbb{R}^m spanned by its column vectors.

$$v \in \operatorname{colspace}(A) \leftrightarrow Ax = v$$
 is consistent.

The row space of a matrix A is the subspace of \mathbb{R}^n spanned by its row vectors. Row operations preserve the row space of a matrix. The nonzero rows of the RREF of A form a basis for the row space of A.

Rank

rank(A) = dimension of colspace(A)

- = dimension of rowspace(A)
- = number of pivot columns in RREF
- = number of nonzero rows in RREF
- 1. $\operatorname{rank}(A^T) = \operatorname{rank}(A)$
- 2. $\operatorname{rank}(A_{m.n}) \leq \min(\mathbf{m}, \mathbf{n})$, with equality when full rank.
- 3. $rank(AB) \le min(rank(A), rank(B))$

Nullspace

Nullspace of A is the solution space to Ax = 0.

$$\begin{aligned} \operatorname{null}(A) &= \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}\} \\ &= \operatorname{null}(A^T A) \end{aligned}$$

$$\begin{aligned} \text{nullity}(A) &= \dim(\text{null}(A)) \\ &= \text{number of non-pivot columns in RREF} \end{aligned}$$

Then by the Rank-Nullity Theorem,

$$rank(A) + nullity(A) = number of columns in A$$

Dot Product, norm

$$u \cdot v = u^T v$$
$$\|u\| = \sqrt{u \cdot u}$$
$$\cos \theta = \frac{u \cdot v}{\|u\| \|v\|}$$

Where θ is the angle between u and v.

Orthogonality

Two vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal if $\boldsymbol{u}\cdot\boldsymbol{v}=0$. A set of vectors are orthogonal if every pair of vectors in the set are orthogonal. It is linearly independent if it does not have the zero vector.

A set of vectors is orthonormal if it is orthogonal and every vector in the set has norm 1. It is then guaranteed to be linearly independent.

Orthogonal Basis

A basis is orthogonal if it is a orthogonal set. Let $S=\{u_1,u_2,...,u_n\}$ be an orthogonal basis. Then for any $v\in V$,

$$v = \left(\frac{v \cdot u_1}{\left\|u_1\right\|^2}\right) u_1 + \left(\frac{v \cdot u_2}{\left\|u_2\right\|^2}\right) u_2 + \ldots + \left(\frac{v \cdot u_n}{\left\|u_n\right\|^2}\right) u_n$$

Orthogonal Projection

vector $n \in \mathbb{R}^n$ is orthogonal to subspace V if $\forall v \in V, n \cdot v = 0$.

Consider subspace $V\subseteq\mathbb{R}^n$. Every vector $w\in\mathbb{R}^n$ can be decomposed uniquely as w=v+n, where n is orthogonal to V and $v\in V$ is the orthogonal projection of w onto V.

Let subspace V have basis $S=\{v_1,...,u_n\}$. Let $A=(v_1...v_n)$. Then the orthogonal projection of w onto V is

$$\operatorname{proj} = A(A^T A)^{-1} A^T w = A\hat{w}$$

Where \hat{w} is a least Square solution of Ax = w. Alternatively, one can use the method above of expressing v as a linear combination of the (orthogonal) basis vectors to show the projection of w onto v

Gram-Schmidt Process

Let $S=\{u_1,u_2,...,u_n\}$ be a linearly independent set.

$$\begin{split} v_1 &= u_1 \\ v_2 &= u_2 - \left(\frac{u_2 \cdot v_1}{\|v_1\|^2}\right) v_1 \\ v_3 &= u_3 - \left(\frac{u_3 \cdot v_1}{\|v_1\|^2}\right) v_1 - \left(\frac{u_3 \cdot v_2}{\|v_2\|^2}\right) v_2 \\ & \vdots \\ v_n &= u_n - \left(\frac{u_n \cdot v_1}{\|v_1\|^2}\right) v_1 - \left(\frac{u_n \cdot v_2}{\|v_2\|^2}\right) v_2 - \ldots - \left(\frac{u_n \cdot v_{n-1}}{\|v_{n-1}\|^2}\right) v_{n-1} \end{split}$$

Then $S' = \{v_1, v_2, ..., v_n\}$ is an orthogonal basis for span(S).

Orthogonal Matrices

A square matrix A is orthogonal if $A^T = A^{-1} \leftrightarrow A^T A = I$.

Then the columns and rows of A form an orthonormal basis for \mathbb{R}^n .

OR Factorization

If matrix A has linearly independent columns, A can be uniquely written as A=QR, where Q is an orthogonal matrix and R is an invertible upper triangular matrix with +ve diagonals.

Algorithm for QR Factorization:

- (1) Gram-Schmidt on A to obtain orthonormal set Q.
- (2) $R = Q^T A$, ensuring R has +ve diagonals by multiplying the column of Q by -1 as needed.

Least Square Approximation

A vector $u \in \mathbb{R}^n$ is a least square solution to Ax = b if for every vector $v \in \mathbb{R}^n$, $\|Au - b\| \le \|Av - b\|$. The least square solution is given by the solution set of $A^TAx = A^Tb$.

Eigenvalues and Eigenvectors

With square matrix A, λ /v are eigenvalue/eigenvector if $v \neq 0$ and $Av = \lambda v$.

The nontrivial solutions to $(\lambda I - A)x = 0$ are the eigenvectors of A with eigenvalue λ . If λ is a eigenvalue of A, it is a eigenvalue of A^T as they share the same characteristic polynomial.

The algebraic multiplicity of λ is the number of times λ appears as a root of the characteristic polynomial of A.

The geometric multiplicity of λ is the dimension of the eigenspace of λ , null $(A-\lambda I)$.

geometric multiplicity \leq algebraic multiplicity, $\forall \lambda_i$

Diagonalization

A is diagonalizable if there exists invertible P such that $P^{-1}AP$ is a diagonal matrix.

A is diagonalizable iff

- (1) the characteristic polynomial of A splits into linear factors
- (2) the algebraic multiplicity of each eigenvalue equals its geometric multiplicity

If $A_{n\times n}$ diagonalizable, then $\bigcup^k S_{\lambda_k}=\mathbb{R}^n$, where S_{λ_k} is the basis for each eigenspace E_{λ_k} . The eigenvectors for A form a basis for \mathbb{R}^n , ie $\forall u\in\mathbb{R}^n, v=c_1v_1+\ldots+c_nv_n$ where v is the eigenvectors that form the basis for each eigenspace.

Algorithm for diagonalization:

- (1) Find Eigenvalues of A.
- (2) For each Eigenvalue, find a basis for its Eigenspace.
- (3) The bases of the Eigenvalues form the columns of P.
- (4) D is a diagonal matrix of Eigenvalues, where each align to their corresponding bases in P.

Powers of Diagonalizable matrices

$$A^{k} = P \cdot D^{k} \cdot P^{-1} = P \begin{pmatrix} \lambda_{1}^{k} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{k} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n}^{k} \end{pmatrix} P^{-1}$$

Orthogonally Diagonalizable / Symmetric

A is orthogonally diagonalizable if $A = PDP^T$ for some orthogonal matrix P. Algorithm is the same as diagonalization, except the basis of each eigenspace is change to an orthonormal basis. Then $A = A^T$.

Stochastic Matrices

- (1) A is square.
- (2) Sum of the columns of A is 1.
- (3) All entries of A are nonnegative.
- (4) 1 is an eigenvalue of A, as $A^{T}(1;...;1) = (1;...;1)$

A Markov chain is a sequence of probability vectors x_0,x_1,x_2,\dots such that $x_{k+1}=Ax_k$ for some stochastic matrix A.

Singular Value Decomposition

Every $m \times n$ matrix can be written as $A = U \Sigma V^T$, where

- (1) U is a order m orthogonal matrix
- (2) V is a order n orthogonal matrix
- (3) Σ is of the form

$$\Sigma_{m,n} = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$$

where D has the roots of the eigenvalues of A^TA .

SVD Algorithm (autoSVD):

- (1) find the eigenvalues of A^TA , arranging the nonzero ones in descending order with duplicates. Find Σ by using the roots of these eigenvalues.
- (2) Find an orthogonal basis for each eigenspace, then set $V=(v_1v_2...v_n)$ where v_i is the unit vector associated to the ith eigenvalue.
- (3) Let $u_i=\frac{1}{\sigma_i}Av_i$ for i = 1,2,...,r. Extend $\{u_1,...,u_r\}$ to an orthonormal basis $\{u_1,...,u_r,...,u_m\}$ of \mathbb{R}^m to get U.

Linear Transformations

 $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation if $\forall u, v \in \mathbb{R}^n$

- (1) T(u+v) = T(u) + T(v)
- (2) $T(cu) = cT(u), \forall c \in \mathbb{R}$
- (3) $T(\mathbf{0}) = \mathbf{0}$

Range of T:

$$R(T) = \{T(u) \mid u \in \mathbb{R}^n\}$$

$$\operatorname{rank}(T) = \dim(R(T)) = \dim(\operatorname{colspace}(A)) = \operatorname{rank}(A)$$

Kernel of T:

$$\ker(T) = \{ u \in \mathbb{R}^n \mid T(u) = \mathbf{0} \}$$

$$\operatorname{nullity}(T) = \dim(\ker(T)) = \operatorname{nullity}(A)$$

Rank-Nullity Theorem:

Let $T:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ be a linear transformation. Then

$$rank(T) + nullity(T) = n$$

One-to-One (Injective)

 $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is one-to-one if $T(u) = T(v) \rightarrow u = v$.

T is One-to-One
$$\leftrightarrow \ker(T) = \{\mathbf{0}\} \leftrightarrow \text{nullity}(T) = 0$$

Onto (Surjective)

 $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is onto if $R(T) = \mathbb{R}^m$.

T is Onto
$$\leftrightarrow R(T) = \mathbb{R}^m \leftrightarrow \operatorname{rank}(T) = m$$

Invertible Matrix Theorem (extended)

if invertible A describes a linear transformation T,

- (xi) rank(A) = n, ie. A has full rank
- (xii) $\operatorname{nullity}(A) = 0$
- (xiii) 0 is not an eigenvalue of A
- (xiv) T is one-to-one
- (xv) T is onto

Finding Standard Matrix A

we need $\{T(u_1),...,T(u_n)\}$ for a $\mathit{basis}\ \{u_1,...,u_n\}$ of $\mathbb{R}^n.$

Then

$$A = (T(u_1) \dots T(u_n))(u_1...u_n)^{-1}$$