TC - naming - Serial position analysis (v5)

```
# do this in calling R script
# library(qqplot2)
# library(fmsb) # for TestModels
# library(lme4)
# library(kableExtra)
# library(MASS) # for dropterm
# library(tidyverse)
# library(dominanceanalysis)
# library(cowplot) # for multiple plots in one figure
# library(formatters) # to wrap strings for plot titles
# library(pals) # for continous color palettes
# load needed functions
# source(pasteO(RootDir, "/src/function_library/sp_functions.R"))
# do this in the calling R script
# for testing - set by calling script normally
# ppt_parms <- read.csv(config$patient_param_file)</pre>
# CurPat <- ppt_parms$patient</pre>
# CurTask <- ppt_parms$task</pre>
# MinLength <- ppt_parms$min_length
# MaxLength <- ppt_parms$max_length</pre>
# RemoveFinalPosition <- ppt_parms $ remove_final_position
# create patient directory if it doesn't already exist
if(!dir.exists(pasteO(RootDir,"/output/",CurPat))){
  dir.create(pasteO(RootDir, "/output/", CurPat), showWarnings = TRUE)
TablesDir <- paste0(RootDir,"/output/",CurPat,"/tables/")</pre>
if(!dir.exists(TablesDir)){
  dir.create(TablesDir,showWarnings = TRUE)
FigDir <- pasteO(RootDir,"/output/",CurPat,"/fig/")</pre>
if(!dir.exists(FigDir)){
  dir.create(FigDir,showWarnings = TRUE)
ReportsDir <- pasteO(RootDir, "/output/", CurPat, "/reports/")</pre>
if(!dir.exists(ReportsDir)){
  dir.create(ReportsDir,showWarnings = TRUE)
}
results_report_DF <- data.frame(Description=character(), ParameterValue=double())
ModelDatFilename<-paste0(RootDir,"/data/",CurPat,"/",CurPat,"_",CurTask,"_posdat.csv")
if(!file.exists(ModelDatFilename)){
  print("**ERROR** Input data file not found")
  print(sprintf("\tfile: ",ModelDatFilename))
 print(sprintf("\troot dir: ",RootDir))
```

```
PosDat<-read.csv(ModelDatFilename)</pre>
# may already be done in datafile
# if(RemoveFinalPosition){
  PosDat <- PosDat[PosDat$pos < PosDat$stimlen,] # remove final position
# }
PosDat <- PosDat[PosDat$stimlen >= MinLength,] # include only lengths with sufficient N
PosDat <- PosDat[PosDat$stimlen <= MaxLength,]</pre>
# include only correct and nonword errors (not no response, word or w+nw errors)
PosDat <- PosDat[(PosDat\err_type == "correct") | (PosDat\err_type == "nonword"), ]
PosDat <- PosDat[(PosDat$pos) != (PosDat$stimlen), ]</pre>
# make sure final positions have been removed
PosDat$stim_number <- NumberStimuli(PosDat)</pre>
PosDat$raw_log_freq <- PosDat$log_freq</pre>
PosDat$log_freq <- PosDat$log_freq - mean(PosDat$log_freq) # centre frequency
PosDat$CumErr <- CalcCumErrFromPreserved(PosDat)</pre>
# plot distribution of complex onsets and codas
# across serial position in the stimuli -- do complexities concentrate
# on one part of the serial position curve?
# syll_component = 1 is coda
# syll_component = S is satellite
# get counts of syllable components in different serial positions
syll_comp_dist_N <- PosDat %>% mutate(pos_factor = as.factor(pos), syll_component_factor = as.factor(sy
syll_comp_dist_perc <- syll_comp_dist_N %>% ungroup() %>%
 mutate(across(0:S, ~ . / total))
kable(syll_comp_dist_N)
```

pos_factor	О	Р	V	1	S	total
1	220	12	27	NA	NA	259
2	26	NA	189	12	32	259
3	100	NA	56	99	4	259
4	138	NA	64	16	12	230
5	59	NA	77	20	9	165
6	63	NA	19	31	8	121
7	45	NA	16	3	3	67
8	14	NA	6	4	1	25
9	9	NA	NA	NA	NA	9

kable(syll comp dist perc)

pos_factor	O	Р	V	1	S	total
1	0.8494208	0.046332	0.1042471	NA	NA	259
2	0.1003861	NA	0.7297297	0.0463320	0.1235521	259
3	0.3861004	NA	0.2162162	0.3822394	0.0154440	259
4	0.6000000	NA	0.2782609	0.0695652	0.0521739	230
5	0.3575758	NA	0.4666667	0.1212121	0.0545455	165
6	0.5206612	NA	0.1570248	0.2561983	0.0661157	121

pos_factor	O	Р	V	1	S	total
7	0.6716418	NA	0.2388060	0.0447761	0.0447761	67
8	0.5600000	NA	0.2400000	0.1600000	0.0400000	25
9	1.0000000	NA	NA	NA	NA	9

```
# get percentages only from summary table
syll_comp_perc <- syll_comp_dist_perc[,2:(ncol(syll_comp_dist_perc)-1)]</pre>
syll_comp_perc$pos <- as.integer(as.character(syll_comp_dist_perc$pos_factor))</pre>
syll_comp_perc <- syll_comp_perc %>% rename("Coda" ="1","Satellite"="S")
# pivot to long format for plotting
syll_comp_plot_data <- syll_comp_perc %>% pivot_longer(cols=seq(1:(ncol(syll_comp_perc)-1)),
            names_to="syll_component", values_to="percent") %>% filter(syll_component %in% c("Coda", "Sa
# plot satellite and coda occurances across position
syll_comp_plot <- ggplot(syll_comp_plot_data,</pre>
                         aes(x=pos,y=percent,group=syll_component,
                             color=syll_component,
                             linetype = syll_component,
                             shape = syll_component)) +
  geom_line() + geom_point() + scale_color_manual(name="Syllable component", values = palette_values) +
syll_comp_plot <- syll_comp_plot + scale_y_continuous(name="Percent of segment types") + scale_linetype
  scale_shape_discrete(name="Syllable component")
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_pos_of_syll_complexities_in_stimuli.png"),plot=syll_comp_plot
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_point()`).
syll_comp_plot
## Warning: Removed 4 rows containing missing values or values outside the scale range (`geom_line()`).
```

Removed 4 rows containing missing values or values outside the scale range (`geom_point()`).

```
0.3 -
Percent of segment types
                                                                          Syllable component
   0.2 -
                                                                              Coda
                                                                              Satellite
  0.1 -
  0.0
                2
                                     5
                                                           8
                               Word position
# len/pos table
pos_len_summary <- PosDat %>% group_by(stimlen,pos) %>% summarise(preserved = mean(preserved))
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
min_preserved_raw <- min(as.numeric(unlist(pos_len_summary$preserved)))</pre>
max_preserved_raw <- max(as.numeric(unlist(pos_len_summary$preserved)))</pre>
preserved_range <- (max_preserved_raw - min_preserved_raw)</pre>
min_preserved <- min_preserved_raw - (0.1 * preserved_range)</pre>
max_preserved <- max_preserved_raw + (0.1 * preserved_range)</pre>
pos_len_table <- pos_len_summary %>% pivot_wider(names_from = pos, values_from = preserved)
write.csv(pos_len_table,paste0(TablesDir,CurPat,"_",CurTask,"_preserved_percentages_by_len_position.csv
pos_len_table
## # A tibble: 7 x 10
## # Groups:
                stimlen [7]
                             `3`
                      `2`
                                     `4`
                                            `5`
                                                    `6`
                                                                   .8,
                                                                         `9`
##
       <int> <dbl> <dbl> <dbl>
                                  <dbl>
                                          <dbl>
                                                 <dbl>
                                                         <dbl>
                                                                 <dbl> <dbl>
           4 0.966 0.897 0.966 NA
                                         NA
## 1
                                                NA
                                                        NA
                                                               NA
                                                                        NA
                                                                        NA
## 2
           5 0.908 0.938 0.923
                                  0.892 NA
                                                NA
                                                        NA
                                                               NA
## 3
           6 0.807 0.761 0.784
                                  0.693
                                          0.602 NA
                                                        NA
                                                               NA
                                                                        NA
           7 0.889 0.870 0.802
                                  0.765
                                          0.704
                                                 0.728 NA
                                                                        NA
## 4
                                                               NA
## 5
           8 0.877 0.845 0.786
                                  0.817
                                          0.806
                                                 0.75
                                                         0.762 NA
                                                                        NA
## 6
           9 0.984 0.875 0.766
                                 0.766
                                         0.719
                                                 0.797
                                                         0.75
                                                                 0.688
                                                                        NA
          10 0.937 0.849 0.587 0.587
## 7
                                         0.603
                                                 0.5
                                                         0.603 0.5
                                                                         0.5
```

0.4 -

len/pos table

pos_len_N <- PosDat %>% group_by(stimlen,pos) %>% summarise(preserved = mean(preserved), N=n()) %>% dply.

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
pos_len_N_table <- pos_len_N %>% pivot_wider(names_from = pos, values_from = N)
write.csv(pos_len_N_table,paste0(TablesDir,CurPat,"_",CurTask,"_N_by_len_position.csv"))
pos_len_N_table
## # A tibble: 7 x 10
## # Groups:
              stimlen [7]
              `1`
                    `2`
                          `3`
                                `4`
                                      `5`
                                            `6`
                                                  `7`
                                                        .8.
                                                              -9-
    stimlen
##
      ## 1
          4
               29
                     29
                           29
                                 NA
                                       NA
                                             NA
                                                   NA
                                                         NA
                                                               NA
## 2
          5
               65
                     65
                           65
                                 65
                                       NA
                                             NΔ
                                                   NΑ
                                                         NΑ
                                                               NΑ
## 3
          6
               44
                     44
                           44
                                 44
                                       44
                                             NA
                                                   NA
                                                         NA
                                                               NA
## 4
          7
                                                               NA
               54
                     54
                           54
                                 54
                                       54
                                             54
                                                   NA
                                                         NA
                                             42
## 5
          8
               42
                     42
                           42
                                 42
                                       42
                                                   42
                                                         NA
                                                               NA
## 6
          9
               16
                     16
                           16
                                 16
                                       16
                                             16
                                                   16
                                                         16
                                                               NA
## 7
         10
               9
                      9
                            9
                                  9
                                              9
                                                          9
                                                                9
obs linetypes <- c("solid", "solid", "solid", "solid",
                     "solid", "solid", "solid", "solid")
pred_linetypes <- "dashed"</pre>
pos_len_summary$stimlen<-factor(pos_len_summary$stimlen)</pre>
pos_len_summary$pos<-factor(pos_len_summary$pos)</pre>
# len_pos_plot <- qqplot(pos_len_summary,aes(x=pos,y=preserved,qroup=stimlen,shape=stimlen,color=stimle
len_pos_plot <- plot_len_pos_obs_predicted(PosDat,</pre>
                                          pasteO(CurPat),
                                          NULL,
                                          c(min_preserved,max_preserved),
                                          palette_values,
                                          shape values,
                                          obs_linetypes,
                                          pred_linetypes)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_percent_preserved_by_length_pos.png"),
      plot=len_pos_plot,device="png",unit="cm",width=15,height=11)
```

len_pos_plot

Length and position

```
# length and position
LPModelEquations<-c("preserved ~ 1",</pre>
            "preserved ~ stimlen",
            "preserved ~ pos",
            "preserved ~ stimlen + pos",
            "preserved ~ stimlen*pos",
            "preserved ~ I(pos^2)+pos",
            "preserved ~ stimlen + I(pos^2) + pos",
            "preserved ~ stimlen * (I(pos^2) + pos)"
)
LPRes<-TestModels(LPModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 7
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                              I(pos^2)
                   stimlen
                                                pos
       3.4650
                   -0.1423
                                0.0261
                                            -0.4005
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1245 AIC: 1367
## log likelihood: -622.544
## Nagelkerke R2: 0.06143366
## % pres/err predicted correctly: -404.4203
## % of predictable range [ (model-null)/(1-null) ]: 0.04222235
## ***********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos
       2.9989
                   -0.1247
                               -0.1859
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                      1298
## Residual Deviance: 1248 AIC: 1369
## log likelihood: -623.7784
## Nagelkerke R2: 0.05861699
## % pres/err predicted correctly: -404.9615
## % of predictable range [ (model-null)/(1-null) ]: 0.04094385
## *********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos stimlen:pos
      3.52112
                  -0.19317
                              -0.34440
                                            0.02002
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1247 AIC: 1370
## log likelihood: -623.4173
## Nagelkerke R2: 0.0594415
## % pres/err predicted correctly: -405.0324
## % of predictable range [ (model-null)/(1-null) ]: 0.04077624
## **********
## model index: 8
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
```

```
##
## Coefficients:
##
       (Intercept)
                             stimlen
                                             I(pos^2)
                                                                    pos stimlen:I(pos^2)
                          -0.1179943
                                            0.0300570
                                                             -0.3706408
                                                                               -0.0000415
##
         3.3262518
##
       stimlen:pos
        -0.0075552
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1388 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1245 AIC: 1371
## log likelihood: -622.5133
## Nagelkerke R2: 0.06150363
## % pres/err predicted correctly: -404.3236
## % of predictable range [ (model-null)/(1-null) ]: 0.04245082
## *********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
##
       2.2957
                   -0.2325
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1254 AIC: 1378
## log likelihood: -626.9605
## Nagelkerke R2: 0.05133276
## % pres/err predicted correctly: -407.7824
## % of predictable range [ (model-null)/(1-null) ]: 0.03427957
## ***********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
                  I(pos^2)
## (Intercept)
                                    pos
##
      2.51751
                   0.01579
                               -0.36625
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1253 AIC: 1379
## log likelihood: -626.486
## Nagelkerke R2: 0.05242125
## % pres/err predicted correctly: -407.7274
## % of predictable range [ (model-null)/(1-null) ]: 0.03440942
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
```

```
## Coefficients:
## (Intercept)
                     stimlen
        3.0110
##
                     -0.2236
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                         1298
## Residual Deviance: 1271 AIC: 1387
## log likelihood: -635.5173
## Nagelkerke R2: 0.03157967
## % pres/err predicted correctly: -412.2753
## % of predictable range [ (model-null)/(1-null) ]: 0.02366538
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
##
          1.44
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1393 Residual
## Null Deviance:
                         1298
## Residual Deviance: 1298 AIC: 1421
## log likelihood: -648.9827
## Nagelkerke R2: 0
## % pres/err predicted correctly: -422.2927
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
BestLPModel<-LPRes$ModelResult[[1]]</pre>
BestLPModelFormula<-LPRes$Model[[1]]</pre>
LPAICSummary<-data.frame(Model=LPRes$Model,</pre>
                        AIC=LPRes$AIC,
                        row.names = LPRes$Model)
LPAICSummary $DeltaAIC <- LPAICSummary $AIC - LPAICSummary $AIC [1]
LPAICSummary $AICexp <-exp(-0.5*LPAICSummary $DeltaAIC)
LPAICSummary $AICwt <-LPAICSummary $AICexp/sum(LPAICSummary $AICexp)
LPAICSummary$NagR2<-LPRes$NagR2
LPAICSummary <- merge(LPAICSummary, LPRes Coefficient Values, by='row.names', sort=FALSE)
LPAICSummary <- subset(LPAICSummary, select = -c(Row.names))</pre>
write.csv(LPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_len_pos_model_summary.csv"),row.names = FA
kable(LPAICSummary)
Model
                         DeltaAl&ICexpAlCwt NagR2 (Interceps)imlen
                                                                         stimlen:plopos^2)stimlen:I(pos^2)
                   AIC
                                                                   pos
preserved \sim
                   1367.4\mathbf{79}.00000\mathbf{0}.000000\mathbf{005}3251\mathbf{55}06143\mathbf{37}465048
                                                                           NA
                                                                                0.0260954
stimlen + I(pos^2)
                                                           0.142314664005349
+ pos
preserved ~
                   1369.01B.533279.464570724739070586120998930
                                                                           NA
                                                                                  NA
                                                                                           NA
stimlen + pos
                                                           0.124749661859006
```

```
preserved \sim
                   1371.323.845598.146197207785230615036326252
                                                                              - 0.0300570-4.15e-
stimlen * (I(pos^2)
                                                           0.117994337064030075552
                                                                                            05
+ pos
                   1378.21B0.733185004670000248690513328295727 NA
                                                                                  NA
                                                                                           NA
preserved ~ pos
                                                                           NA
                                                                  0.2324707
                   1379.0291.549323003105200165360524223517509 NA
preserved \sim
                                                                           NA
                                                                                0.0157920
                                                                                           NA
                                                                  0.3662451
I(pos^2) + pos
preserved ~
                   1387.4920.014803000045100002400315797011001
                                                                    NA
                                                                           NA
                                                                                  NA
                                                                                           NA
stimlen
                                                           0.2236432
preserved \sim 1
                   1421.3753.897593000000000000000000000000440066 NA
                                                                   NA
                                                                           NA
                                                                                  NA
                                                                                           NA
print(BestLPModelFormula)
## [1] "preserved ~ stimlen + I(pos^2) + pos"
print(BestLPModel)
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
## Coefficients:
                                 I(pos^2)
## (Intercept)
                     stimlen
                                                    pos
##
        3.4650
                     -0.1423
                                    0.0261
                                                -0.4005
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
## Null Deviance:
                         1298
## Residual Deviance: 1245 AIC: 1367
PosDat$LPFitted<-fitted(BestLPModel)</pre>
fitted_len_pos_plot <- plot_len_pos_obs_predicted(PosDat, PosDat$patient[1],
                           NULL,palette_values=palette_values)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
# len/pos table
fitted_pos_len_summary <- PosDat ">" group_by(stimlen,pos) ">" summarise(fitted = mean(LPFitted))
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
fitted_pos_len_table <- fitted_pos_len_summary %>% pivot_wider(names_from = pos, values_from = fitted)
fitted_pos_len_table
## # A tibble: 7 x 10
## # Groups:
               stimlen [7]
                `1`
                      `2`
                            `3`
                                    `4`
                                           `5`
                                                  `6`
                                                                 .8.
                                                                         `9`
##
     stimlen
       <int> <dbl> <dbl> <dbl> <dbl> <dbl>
                                                <dbl>
                                                        <dbl>
                                                                     <dbl>
```

AIC DeltaAl@ICexpAICwt NagR2 (Interceps)imlen

1370.172.6996140.259290313807610594435521122

pos stimlen:plopos^2)stimlen:I(pos^2)

 $0.0200172\,\mathrm{NA}$

0.19317283444016

Model

1

2

3

5

4 0.926 0.900 0.873 NA

5 0.915 0.887 0.857

preserved ~

stimlen * pos

NA

NA

MΔ

NA

NΑ

NA

NΔ

NΔ

NA NA

NA

NΑ

NΑ

0.828 NA

8 0.876 0.836 0.796 0.758 0.726 0.703 0.690 NA

6 0.903 0.872 0.838 0.806 0.779 NA

7 0.890 0.855 0.818 0.783 0.754 0.732 NA

```
## 7
                               10 0.841 0.793 0.746 0.702 0.666 0.641 0.626 0.624 0.634
fitted_pos_len_summary$stimlen<-factor(fitted_pos_len_summary$stimlen)</pre>
fitted_pos_len_summary$pos<-factor(fitted_pos_len_summary$pos)</pre>
 \textit{\# fitted\_len\_pos\_plot <- ggplot(pos\_len\_summary, aes(x=pos, y=preserved, group=stimlen, shape=stimlen, color aes(x=pos, y=preserved, group=stimlen, shape=stimlen, sha
 \textit{\# fitted\_len\_pos\_plot <- fitted\_len\_pos\_plot + geom\_line(data=fitted\_pos\_len\_summary, \ aes(x=pos,y=fitted\_pos\_len\_summary, \ aes(x=pos,y=fitted\_pos\_len\_summary, \ aes(x=pos,y=fitted\_pos\_plot) } 
\# geom\_point(data=fitted\_pos\_len\_summary, aes(x=pos, y=fitted, group=stimlen, shape=stimlen)) + <math>ggtitle(pas)
fitted_len_pos_plot <- plot_len_pos_obs_predicted(PosDat,</pre>
                                                                                                                                     pasteO(PosDat$patient[1]),
                                                                                                                                      "LPFitted",
                                                                                                                                     NULL,
                                                                                                                                     palette_values,
                                                                                                                                     shape_values,
                                                                                                                                      obs_linetypes,
                                                                                                                                      pred_linetypes = c("longdash")
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
```

ggsave(paste0(FigDir,CurPat,"_",CurTask,"_percent_preserved_by_length_pos_wfit.png"),plot=fitted_len_po

9 0.859 0.816 0.772 0.731 0.697 0.673 0.659 0.657 NA

6

length and position without fragments to see if this changes position 2 influence

```
# first number responses, then count resp with fragments - below we will eliminate fragments
# and re-run models
# number responses
resp num<-0
prev_pos<-9999 # big number to initialize (so first position is smaller)
resp_num_array <- integer(length = nrow(PosDat))</pre>
for(i in seq(1,nrow(PosDat))){
  if(PosDat$pos[i] <= prev_pos){ # equal for resp length 1</pre>
    resp_num <- resp_num + 1</pre>
 resp_num_array[i] <-resp_num</pre>
  prev_pos <- PosDat$pos[i]</pre>
PosDat$resp_num <- resp_num_array
# count responses with fragments
resp_with_frag <- PosDat %>% group_by(resp_num) %>% summarise(frag = as.logical(sum(fragment)))
num_frag <- resp_with_frag %>% summarise(frag_sum = sum(frag), N=n())
num_frag
## # A tibble: 1 x 2
    frag sum
##
        <int> <int>
## 1
           34
                259
num_frag$percent_with_frag[1] <- (num_frag$frag_sum[1] / num_frag$N[1])*100
## Warning: Unknown or uninitialised column: `percent with frag`.
print(sprintf("The number of responses with fragments was %d / %d = %.2f percent",
              num_frag$frag_sum[1],num_frag$N[1],num_frag$percent_with_frag[1]))
## [1] "The number of responses with fragments was 34 / 259 = 13.13 percent"
write.csv(num_frag,paste0(TablesDir,CurPat,"_",CurTask,"_percent_fragments.csv"),row.names = FALSE)
# length and position models for data without fragments
NoFragData <- PosDat %>% filter(fragment != 1)
NoFrag_LPRes<-TestModels(LPModelEquations,NoFragData)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 7
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
```

```
##
## Coefficients:
## (Intercept)
                   stimlen
                               I(pos^2)
                                                 pos
      3.09491
                                0.04973
##
                  -0.08855
                                            -0.37799
## Degrees of Freedom: 1279 Total (i.e. Null); 1276 Residual
## Null Deviance:
                       923.2
## Residual Deviance: 917.4
                               AIC: 1018
## log likelihood: -458.685
## Nagelkerke R2: 0.008878885
## % pres/err predicted correctly: -274.2048
## % of predictable range [ (model-null)/(1-null) ]: 0.005854815
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
##
      2.39282
                  -0.06592
##
## Degrees of Freedom: 1279 Total (i.e. Null); 1278 Residual
## Null Deviance:
                       923.2
## Residual Deviance: 921.7
                               AIC: 1019
## log likelihood: -460.8534
## Nagelkerke R2: 0.002304555
## % pres/err predicted correctly: -275.2258
## % of predictable range [ (model-null)/(1-null) ]: 0.002166419
## ************
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos stimlen:pos
##
      3.65540
                  -0.23314
                               -0.44507
                                             0.05743
##
## Degrees of Freedom: 1279 Total (i.e. Null); 1276 Residual
## Null Deviance:
                       923.2
## Residual Deviance: 918.5
                               AIC: 1021
## log likelihood: -459.2562
## Nagelkerke R2: 0.007149291
## % pres/err predicted correctly: -274.6197
## % of predictable range [ (model-null)/(1-null) ]: 0.004355845
## ***********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
```

```
##
        1.944
##
## Degrees of Freedom: 1279 Total (i.e. Null); 1279 Residual
## Null Deviance:
                       923.2
## Residual Deviance: 923.2
                               AIC: 1021
## log likelihood: -461.6117
## Nagelkerke R2: 0
## % pres/err predicted correctly: -275.8255
## % of predictable range [ (model-null)/(1-null) ]: 0
## *********
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
##
     2.394774
                 -0.063127
                              -0.006367
##
## Degrees of Freedom: 1279 Total (i.e. Null); 1277 Residual
## Null Deviance:
                       923 2
## Residual Deviance: 921.7
## log likelihood: -460.8449
## Nagelkerke R2: 0.002330403
## % pres/err predicted correctly: -275.2369
## % of predictable range [ (model-null)/(1-null) ]: 0.0021264
## ***********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
##
      2.49981
                   0.04222
                               -0.34856
##
## Degrees of Freedom: 1279 Total (i.e. Null); 1277 Residual
## Null Deviance:
                       923.2
## Residual Deviance: 919.6
                               AIC: 1021
## log likelihood: -459.8191
## Nagelkerke R2: 0.005443207
## % pres/err predicted correctly: -275.0744
## % of predictable range [ (model-null)/(1-null) ]: 0.002713345
## ***********
## model index: 8
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
        (Intercept)
                             stimlen
                                              I(pos^2)
                                                                         stimlen:I(pos^2)
                                                                    pos
                            -0.03650
                                              -0.07775
##
           2.56045
                                                                0.25166
                                                                                  0.01456
##
       stimlen:pos
##
          -0.06907
```

```
##
 ## Degrees of Freedom: 1279 Total (i.e. Null); 1274 Residual
 ## Null Deviance:
                                                                                     923.2
                                                                                                                  AIC: 1022
 ## Residual Deviance: 916.2
 ## log likelihood: -458.1101
 ## Nagelkerke R2: 0.01061836
 ## % pres/err predicted correctly: -274.0756
 ## % of predictable range [ (model-null)/(1-null) ]: 0.006321326
 ## **********
 ## model index: 3
 ##
 ## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
                          data = PosDat)
 ##
 ##
 ## Coefficients:
 ## (Intercept)
                                                                                      pos
                          2.03171
                                                                     -0.02678
 ##
 ##
 ## Degrees of Freedom: 1279 Total (i.e. Null); 1278 Residual
 ## Null Deviance:
                                                                                     923.2
 ## Residual Deviance: 922.9
                                                                                                                  AIC: 1023
 ## log likelihood: -461.4408
 ## Nagelkerke R2: 0.0005197044
 ## % pres/err predicted correctly: -275.7553
 ## % of predictable range [ (model-null)/(1-null) ]: 0.0002536354
 ## **********
 NoFragBestLPModel<-NoFrag_LPRes$ModelResult[[1]]
 NoFragBestLPModelFormula <- NoFrag_LPRes $Model[[1]]
 NoFragLPAICSummary <- data.frame (Model=NoFrag_LPRes$Model,
                                                                                   AIC=NoFrag_LPRes$AIC,
                                                                                  row.names = NoFrag_LPRes$Model)
 NoFragLPAICSummary $DeltaAIC <- NoFragLPAICSummary $AIC-NoFragLPAICSummary $AIC [1]
 NoFragLPAICSummary$AICexp<-exp(-0.5*NoFragLPAICSummary$DeltaAIC)
 NoFragLPAICSummary $AICwt <- NoFragLPAICSummary $AICexp/sum(NoFragLPAICSummary $AICexp)
 NoFragLPAICSummary$NagR2<-NoFrag_LPRes$NagR2
 NoFragLPAICSummary <- merge(NoFragLPAICSummary, NoFrag_LPRes CoefficientValues, by='row.names', sort=FALS
 NoFragLPAICSummary <- subset(NoFragLPAICSummary, select = -c(Row.names))
 write.csv(NoFragLPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_no_fragments_len_pos_model_summary.c
 kable(NoFragLPAICSummary)
 Model
                                                                                DeltaAMCexpAICwt NagR2 (Interceps)imlen
                                                                                                                                                                                                                                                     stimlen:plopos^2)stimlen:I(pos^2)
                                                                                                                                                                                                                                    pos
 preserved ~
                                                                1018.20 \\ \underline{0}.00000 \\ \underline{0}.00000 \\ \underline{0} \\
                                                                                                                                                                                                                                                             NA
                                                                                                                                                                                                                                                                               0.0497330
                                                                                                                                                                                                                                                                                                                     NA
 stimlen + I(pos^2)
                                                                                                                                                                                                      0.08855493779868
+ pos
 preserved \sim
                                                                1019.21 \pm 0139 \mathbf{23}.60232 \mathbf{31} 21624 \mathbf{03} 00230 \mathbf{26} 392822
                                                                                                                                                                                                                                   NA
                                                                                                                                                                                                                                                                                     NA
                                                                                                                                                                                                                                                                                                                     NA
                                                                                                                                                                                                                                                             NA
 stimlen
                                                                                                                                                                                                       0.0659167
                                                                1020.832.633175.268048409623260071493655399
                                                                                                                                                                                                                                             - 0.0574337 NA
                                                                                                                                                                                                                                                                                                                     NA
 preserved ~
 stimlen * pos
                                                                                                                                                                                                       0.2331410.4450670
```

NA

NA

NA

1020.952.751698.252625009069550000000943531 NA

preserved ~ 1

```
preserved ~
                                                   1021.263.069474.215512307737050023324394774
                                                                                                                                                              0.06312660063675
stimlen + pos
preserved \sim
                                                   1021.347.147463.207270307441260054432499805 NA
                                                                                                                                                                                                         NA 0.0422180
                                                                                                                                                                                                                                                     NA
I(pos^2) + pos
                                                                                                                                                                                 0.3485641
preserved ~
                                                   1022.37   0.17018   3.12429   5804462   3701061   24560454
                                                                                                                                                                               0.2516605
stimlen * (I(pos^2)
                                                                                                                                                              0.0365027
                                                                                                                                                                                                   0.0690698.0777499
+ pos
                                                   1022.5149.319630.115346404141080005127031709 NA
                                                                                                                                                                                                         NΑ
                                                                                                                                                                                                                            NA
                                                                                                                                                                                                                                                     NA
preserved ~ pos
                                                                                                                                                                                0.0267761
# plot no fragment data
NoFragData$LPFitted<-fitted(NoFragBestLPModel)
nofrag_obs_len_pos_plot <- plot_len_pos_obs_predicted(NoFragData, NoFragData$patient[1],</pre>
                                                                          NULL,palette_values=palette_values)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
# len/pos table
nofrag_fitted_pos_len_summary <- NoFragData %% group_by(stimlen,pos) %% summarise(fitted = mean(LPFit
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
nofrag_fitted_pos_len_table <- nofrag_fitted_pos_len_summary %>% pivot_wider(names_from = pos, values_f
nofrag_fitted_pos_len_table
## # A tibble: 7 x 10
## # Groups:
                                          stimlen [7]
                                           `1`
                                                           `2`
                                                                             `3`
                                                                                                 `4`
                                                                                                                    `5`
                                                                                                                                        `6`
                                                                                                                                                                                `8`
##
              stimlen
                    <int> <dbl> <dbl> <dbl> <dbl>
                                                                                                              <dbl>
                                                                                                                                  <dbl>
                                                                                                                                                      <dbl>
##
## 1
                               4 0.918 0.899 0.886 NA
                                                                                                           NA
                                                                                                                               NA
                                                                                                                                                   NΑ
                                                                                                                                                                       NA
                                                                                                                                                                                           NΑ
                               5 0.911 0.890 0.877 0.874 NA
## 2
                                                                                                                               NA
                                                                                                                                                   NΑ
                                                                                                                                                                       NA
                                                                                                                                                                                           NΑ
## 3
                                                                                                                                                                                           NΑ
                               6 0.903 0.881 0.867 0.864 0.872 NA
                                                                                                                                                                       NΔ
                               7 0.895 0.872 0.857 0.853
                                                                                                              0.862 0.881 NA
                                                                                                                                                                                           NΑ
## 5
                               8 0.887 0.862 0.846 0.842 0.851
                                                                                                                                0.871 0.898 NA
                                                                                                                                                                                           NA
                               9 0.878 0.851 0.834 0.829 0.839
## 6
                                                                                                                                 0.861 0.890 0.921 NA
                            10 0.868 0.839 0.821 0.817 0.827 0.850 0.881 0.914 0.945
## 7
fitted_pos_len_summary$stimlen<-factor(nofrag_fitted_pos_len_summary$stimlen)
fitted_pos_len_summary$pos<-factor(nofrag_fitted_pos_len_summary$pos)</pre>
\#\ fitted\_len\_pos\_plot <-\ ggplot(pos\_len\_summary, aes(x=pos,y=preserved, group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, shape=stimlen,
\# fitted_len_pos_plot <- fitted_len_pos_plot + geom_line(data=fitted_pos_len_summary, aes(x=pos,y=fitted_pos_len_summary)
 \# \ geom\_point(data=fitted\_pos\_len\_summary, aes(x=pos,y=fitted,group=stimlen,shape=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen,group=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,gr
nofrag_fitted_len_pos_plot <- plot_len_pos_obs_predicted(NoFragData,</pre>
                                                                                                                       paste0(NoFragData$patient[1]),
                                                                                                                       "LPFitted",
                                                                                                                       NULL,
                                                                                                                       palette_values,
                                                                                                                       shape_values,
                                                                                                                       obs_linetypes,
                                                                                                                       pred_linetypes = c("longdash")
```

AIC DeltaAMCexpAICwt NagR2 (Interceps)imlen

stimlen:plopos^2)stimlen:I(pos^2)

pos

Model

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"no_fragments_percent_preserved_by_length_pos_wfit.png"),plot=n
nofrag_fitted_len_pos_plot
```

`summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.

TC 1.0 (Developed) (Develope

back to full data

```
results_report_DF <- AddReportLine(results_report_DF, "min preserved", min_preserved)
results_report_DF <- AddReportLine(results_report_DF, "max preserved", max_preserved)
print(sprintf("Min/max preserved range: %.2f - %.2f", min_preserved, max_preserved))
```

```
## [1] "Min/max preserved range: 0.45 - 1.03"

# find the average difference between lengths and the average difference
# between positions taking the other factor into account

# choose fitted or raw -- we use fitted values because they are smoothed averages
# that take into account the influence of the other variable
table_to_use <- fitted_pos_len_table
# take away column with length information
table_to_use <- table_to_use[,2:ncol(table_to_use)]

# take averages for positions
# don't want downward estimates influenced by return upward of U
# therefore, for downward influence, use only the values before the min
# take the difference between each value (differences between position proportion correct) **NOTE** pro
# average the difference in probabilities</pre>
```

```
# in case min is close to the end or we are not using a min (for non-U-shaped)
# functions, we need to get differences _first_ and then average those (e.g.
# if there is an effect of length and we just average position data,
# later positions) will have a lower average (because of the length effect)
# even if all position functions go upward
table_pos_diffs <- t(diff(t(as.matrix(table_to_use))))</pre>
ncol pos diff matrix <- ncol(table pos diffs)</pre>
first col mean <- mean(as.numeric(unlist(table pos diffs[,1])))</pre>
potential_u_shape <- 0</pre>
if(first_col_mean < 0){ # downward, so potential U-shape</pre>
  # take only negative values from the table
 filtered_table_pos_diffs<-table_pos_diffs</pre>
 filtered_table_pos_diffs[table_pos_diffs >= 0] <- NA
 potential_u_shape <- 1</pre>
}else{
  # upward - use the positive values
  # take only negative values from the table
 filtered_table_pos_diffs<-table_pos_diffs
  filtered_table_pos_diffs[table_pos_diffs <= 0] <- NA
}
average_pos_diffs <- apply(filtered_table_pos_diffs,2,mean,na.rm=TRUE)
OA_mean_pos_diff <- mean(average_pos_diffs,na.rm=TRUE)</pre>
table len diffs <- diff(as.matrix(table to use))
average_len_diffs <- apply(table_len_diffs,1,mean,na.rm=TRUE)</pre>
OA_mean_len_diff <- mean(average_len_diffs,na.rm=TRUE)</pre>
CurrentLabel <- "mean change in probability for each additional length: "
print(CurrentLabel)
## [1] "mean change in probability for each additional length: "
print(OA_mean_len_diff)
## [1] -0.02103576
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,OA_mean_len_diff)
CurrentLabel <- "mean change in probability for each additional position (excluding U-shape): "
print(CurrentLabel)
## [1] "mean change in probability for each additional position (excluding U-shape): "
print(OA mean pos diff)
## [1] -0.02577169
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,OA_mean_pos_diff)
if(potential_u_shape){ # downward, so potential U-shape
  # take only positive values from the table
  filtered_pos_upward_u<-table_pos_diffs
  filtered_pos_upward_u[table_pos_diffs <= 0] <- NA
  average pos u diffs <- apply(filtered pos upward u,
                                2, mean, na.rm=TRUE)
  OA_mean_pos_u_diff <- mean(average_pos_u_diffs,na.rm=TRUE)</pre>
```

```
if(is.nan(OA_mean_pos_u_diff) | (OA_mean_pos_u_diff <= 0)){</pre>
    print("No U-shape in this participant")
    results_report_DF <- AddReportLine(results_report_DF, "U-shape", 0)
    potential_u_shape <- FALSE</pre>
  }else{
    results report DF <- AddReportLine(results report DF, "U-shape", 1)
    CurrentLabel <- "Average upward change after U minimum"
    print(CurrentLabel)
    print(OA mean pos u diff)
    results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, OA_mean_pos_u_diff)
    CurrentLabel <- "Proportion of average downward change"
    prop_ave_down <- abs(OA_mean_pos_u_diff/OA_mean_pos_diff)</pre>
    results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, prop_ave_down)
}else{
  print("No U-shape in this participant")
  results_report_DF <- AddReportLine(results_report_DF, "U-shape", 0)
}
## [1] "Average upward change after U minimum"
## [1] 0.01005083
if(potential_u_shape){
  n_rows<-nrow(table_to_use)</pre>
  downward_dist <- numeric(n_rows)</pre>
  upward_dist <- numeric(n_rows)</pre>
  for(i in seq(1,n_rows)){
    current row <- as.numeric(unlist(table to use[i,1:9]))</pre>
    current_row <- current_row[!is.na(current_row)]</pre>
    current_row_len <- length(current_row)</pre>
    row_min <- min(current_row,na.rm=TRUE)</pre>
    min pos <- which(current row == row min)</pre>
    left_max <- max(current_row[1:min_pos],na.rm=TRUE)</pre>
    right max <- max(current row[min pos:current row len])</pre>
    left_diff <- left_max - row_min</pre>
    right_diff <- right_max - row_min</pre>
    downward_dist[i]<-left_diff</pre>
    upward_dist[i]<-right_diff
  print("differences from left max to min for each row: ")
  print(downward_dist)
  print("differences from min to right max for each row: ")
  print(upward_dist)
  # Use the max return upward (min of upward_dist) and then the
  # downward distance from the left for the same row
  print(" ")
  biggest_return_upward_row <- which(upward_dist == max(upward_dist))</pre>
  CurrentLabel <- "row with biggest return upward"</pre>
  print(CurrentLabel)
  print(biggest_return_upward_row)
```

```
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, biggest_return_upward_row)
  print(" ")
  CurrentLabel <- "downward distance for row with the largest upward value"
  print(CurrentLabel)
  print(downward_dist[biggest_return_upward_row])
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, downward_dist[biggest_return_upwa
  CurrentLabel <- "return upward value"
  print(upward_dist[biggest_return_upward_row])
  results_report_DF <- AddReportLine(results_report_DF,</pre>
                                     CurrentLabel,
                                     upward_dist[biggest_return_upward_row])
  print(" ")
  # percentage return upward
  percentage_return_upward <- upward_dist[biggest_return_upward_row]/downward_dist[biggest_return_upwar
  CurrentLabel <- "Return upward as a proportion of the downward distance:"
  print(CurrentLabel)
  print(percentage_return_upward)
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,</pre>
                       percentage_return_upward)
}else{
  print("no U-shape in this participant")
## [1] "differences from left max to min for each row: "
## [1] 0.05248156 0.08759338 0.12432303 0.15830407 0.18538775 0.20231510 0.21696373
## [1] "differences from min to right max for each row: "
## [1] " "
## [1] "row with biggest return upward"
## [1] 7
## [1] " "
## [1] "downward distance for row with the largest upward value"
## [1] 0.2169637
## [1] 0.01005083
## [1] " "
## [1] "Return upward as a proportion of the downward distance:"
## [1] 0.04632491
FLPModelEquations<-c(
  # models with log frequency, but no three-way interactions (due to difficulty interpreting and small
            "preserved ~ stimlen*log_freq",
           "preserved ~ stimlen+log_freq",
           "preserved ~ pos*log_freq",
           "preserved ~ pos+log_freq",
           "preserved ~ stimlen*log_freq + pos*log_freq",
           "preserved ~ stimlen*log freq + pos",
           "preserved ~ stimlen + pos*log_freq",
           "preserved ~ stimlen + pos + log_freq",
           "preserved ~ (I(pos^2)+pos)*log_freq",
           "preserved ~ stimlen*log_freq + (I(pos^2) + pos)*log_freq",
            "preserved ~ stimlen*log_freq + I(pos^2) + pos",
```

```
"preserved ~ stimlen + (I(pos^2) + pos)*log_freq",
            "preserved ~ stimlen + I(pos^2) + pos + log_freq",
            # models without frequency
            "preserved ~ 1",
            "preserved ~ stimlen",
            "preserved ~ pos",
            "preserved ~ stimlen + pos",
            "preserved ~ stimlen*pos",
            "preserved ~ I(pos^2)+pos",
            "preserved ~ stimlen + I(pos^2) + pos",
            "preserved ~ stimlen * (I(pos^2) + pos)"
)
FLPRes<-TestModels(FLPModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 11
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
        (Intercept)
                                                                 I(pos^2)
                              stimlen
                                               log_freq
                                                                                        pos
                              0.04908
            2.48453
                                               -0.19636
                                                                  0.03151
                                                                                   -0.46412
##
## stimlen:log_freq
##
            0.09138
## Degrees of Freedom: 1393 Total (i.e. Null); 1388 Residual
## Null Deviance:
                        1298
## Residual Deviance: 1151 AIC: 1269
```

```
## log likelihood: -575.6639
## Nagelkerke R2: 0.1647977
## % pres/err predicted correctly: -370.1816
## % of predictable range [ (model-null)/(1-null) ]: 0.123109
## **********
## model index: 10
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
         (Intercept)
                                                                    I(pos^2)
                               stimlen
                                                 log_freq
                                                                                            pos
                                                                     0.04797
##
            2.71905
                               0.02585
                                                  0.04007
                                                                                       -0.56091
                                             log_freq:pos
##
   stimlen:log_freq log_freq:I(pos^2)
##
            0.06835
                               0.01517
                                                 -0.09069
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1386 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1149 AIC: 1271
## log likelihood: -574.5203
## Nagelkerke R2: 0.1672334
## % pres/err predicted correctly: -369.159
## % of predictable range [ (model-null)/(1-null) ]: 0.1255246
## *********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
        (Intercept)
                             stimlen
                                              log_freq
                                                                     pos
                                                                          stimlen:log_freq
##
           1.94449
                             0.06759
                                              -0.16390
                                                                -0.20690
                                                                                   0.08687
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1389 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1155 AIC: 1271
## log likelihood: -577.2653
## Nagelkerke R2: 0.1613805
## % pres/err predicted correctly: -371.1765
## % of predictable range [ (model-null)/(1-null) ]: 0.1207585
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
##
        (Intercept)
                             stimlen
                                              log_freq
                                                                     pos
                                                                          stimlen:log_freq
##
           1.95262
                             0.05772
                                              -0.16540
                                                                -0.19150
                                                                                   0.07737
      log_freq:pos
##
##
           0.01817
## Degrees of Freedom: 1393 Total (i.e. Null); 1388 Residual
## Null Deviance:
                       1298
```

```
## Residual Deviance: 1154 AIC: 1273
## log likelihood: -577.0529
## Nagelkerke R2: 0.1618342
## % pres/err predicted correctly: -370.7254
## % of predictable range [ (model-null)/(1-null) ]: 0.1218241
## *********
## model index: 9
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
        (Intercept)
                              I(pos^2)
                                                                   log_freq I(pos^2):log_freq
                                                     pos
                               0.05137
##
            2.82695
                                                 -0.56896
                                                                    0.51607
                                                                                       0.02113
##
       pos:log_freq
##
           -0.11650
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1388 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1153 AIC: 1273
## log likelihood: -576.499
## Nagelkerke R2: 0.1630166
## % pres/err predicted correctly: -370.8521
## % of predictable range [ (model-null)/(1-null) ]: 0.1215249
## **********
## model index: 12
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
         (Intercept)
                               stimlen
                                                 I(pos^2)
                                                                                      log_freq
                                                                        pos
##
            2.93787
                              -0.01672
                                                  0.05266
                                                                   -0.57354
                                                                                       0.50988
## I(pos^2):log_freq
                          pos:log_freq
##
            0.02123
                              -0.11645
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1387 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1153 AIC: 1275
## log likelihood: -576.4519
## Nagelkerke R2: 0.1631173
## % pres/err predicted correctly: -370.6639
## % of predictable range [ (model-null)/(1-null) ]: 0.1219694
## ***********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
   (Intercept)
                         pos
                                  log_freq pos:log_freq
       2.19221
##
                    -0.16190
                                   0.27164
                                                 0.04556
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
```

```
## Null Deviance:
## Residual Deviance: 1159 AIC: 1276
## log likelihood: -579.6622
## Nagelkerke R2: 0.1562508
## % pres/err predicted correctly: -372.5019
## % of predictable range [ (model-null)/(1-null) ]: 0.1176273
## **********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
                               log_freq
##
       2.3036
                                 0.4408
                   -0.1946
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1163 AIC: 1278
## log likelihood: -581.3261
## Nagelkerke R2: 0.1526794
## % pres/err predicted correctly: -374.6905
## % of predictable range [ (model-null)/(1-null) ]: 0.1124569
## **********
## model index: 7
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
   (Intercept)
                     stimlen
                                       pos
                                                log_freq pos:log_freq
##
      2.146240
                    0.008158
                                 -0.164807
                                                0.274814
                                                              0.045287
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1389 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1159 AIC: 1278
## log likelihood: -579.6504
## Nagelkerke R2: 0.156276
## % pres/err predicted correctly: -372.5696
## % of predictable range [ (model-null)/(1-null) ]: 0.1174673
## model index: 13
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                               I(pos^2)
                                                 pos
                                                         log_freq
##
     2.696066
                 -0.002579
                               0.027098
                                           -0.422184
                                                         0.445259
## Degrees of Freedom: 1393 Total (i.e. Null); 1389 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1160 AIC: 1279
## log likelihood: -580.0402
```

```
## Nagelkerke R2: 0.1554401
## % pres/err predicted correctly: -374.1164
## % of predictable range [ (model-null)/(1-null) ]: 0.1138132
## **********
## model index: 8
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                                           log_freq
                                    pos
##
      2.21445
                   0.01566
                               -0.19990
                                            0.44495
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1163 AIC: 1280
## log likelihood: -581.2825
## Nagelkerke R2: 0.152773
## % pres/err predicted correctly: -374.7935
## % of predictable range [ (model-null)/(1-null) ]: 0.1122137
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                             stimlen
                                             log_freq stimlen:log_freq
                                                                0.08094
##
           1.97986
                            -0.04699
                                             -0.13392
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1181 AIC: 1293
## log likelihood: -590.3006
## Nagelkerke R2: 0.1332693
## % pres/err predicted correctly: -379.9381
## % of predictable range [ (model-null)/(1-null) ]: 0.1000599
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                   stimlen
                               log_freq
                   -0.0927
##
       2.2376
                                 0.4351
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                      1298
## Residual Deviance: 1188 AIC: 1300
## log likelihood: -593.8912
## Nagelkerke R2: 0.1254332
## % pres/err predicted correctly: -383.095
## % of predictable range [ (model-null)/(1-null) ]: 0.09260183
```

```
## ************
## model index: 20
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                               I(pos^2)
                                                 pos
##
       3.4650
                   -0.1423
                                 0.0261
                                             -0.4005
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1245 AIC: 1367
## log likelihood: -622.544
## Nagelkerke R2: 0.06143366
## % pres/err predicted correctly: -404.4203
## % of predictable range [ (model-null)/(1-null) ]: 0.04222235
## model index: 17
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
       2.9989
                   -0.1247
                                -0.1859
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1248 AIC: 1369
## log likelihood: -623.7784
## Nagelkerke R2: 0.05861699
## % pres/err predicted correctly: -404.9615
## % of predictable range [ (model-null)/(1-null) ]: 0.04094385
## **********
## model index: 18
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos stimlen:pos
      3.52112
                                             0.02002
##
                  -0.19317
                               -0.34440
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1247 AIC: 1370
## log likelihood: -623.4173
## Nagelkerke R2: 0.0594415
## % pres/err predicted correctly: -405.0324
## % of predictable range [ (model-null)/(1-null) ]: 0.04077624
## model index: 21
##
```

```
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                             stimlen
                                             I(pos^2)
                                                                    pos stimlen:I(pos^2)
         3.3262518
                          -0.1179943
                                            0.0300570
                                                             -0.3706408
                                                                              -0.0000415
##
##
       stimlen:pos
        -0.0075552
##
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1388 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1245 AIC: 1371
## log likelihood: -622.5133
## Nagelkerke R2: 0.06150363
## % pres/err predicted correctly: -404.3236
## % of predictable range [ (model-null)/(1-null) ]: 0.04245082
## *********
## model index: 16
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
##
       2.2957
                   -0.2325
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1254 AIC: 1378
## log likelihood: -626.9605
## Nagelkerke R2: 0.05133276
## % pres/err predicted correctly: -407.7824
## % of predictable range [ (model-null)/(1-null) ]: 0.03427957
## *********
## model index: 19
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
##
      2.51751
                   0.01579
                               -0.36625
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1253 AIC: 1379
## log likelihood: -626.486
## Nagelkerke R2: 0.05242125
## % pres/err predicted correctly: -407.7274
## % of predictable range [ (model-null)/(1-null) ]: 0.03440942
## *********
## model index: 15
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
```

```
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
       3.0110
                   -0.2236
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1271 AIC: 1387
## log likelihood: -635.5173
## Nagelkerke R2: 0.03157967
## % pres/err predicted correctly: -412.2753
## % of predictable range [ (model-null)/(1-null) ]: 0.02366538
## **********
## model index: 14
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1393 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1298 AIC: 1421
## log likelihood: -648.9827
## Nagelkerke R2: 0
## % pres/err predicted correctly: -422.2927
## % of predictable range [ (model-null)/(1-null) ]: 0
## *********
BestFLPModel<-FLPRes$ModelResult[[1]]</pre>
BestFLPModelFormula<-FLPRes$Model[[1]]</pre>
FLPAICSummary <- data.frame (Model=FLPRes$Model,
                       AIC=FLPRes$AIC,row.names=FLPRes$Model)
FLPAICSummary $DeltaAIC <- FLPAICSummary $AIC - FLPAICSummary $AIC [1]
FLPAICSummary $AICexp <-exp(-0.5*FLPAICSummary $DeltaAIC)
FLPAICSummary$AICwt<-FLPAICSummary$AICexp/sum(FLPAICSummary$AICexp)
FLPAICSummary$NagR2<-FLPRes$NagR2
FLPAICSummary <- merge(FLPAICSummary,FLPRes$CoefficientValues,
                          by='row.names',sort=FALSE)
FLPAICSummary <- subset(FLPAICSummary, select = -c(Row.names))</pre>
write.csv(FLPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_freq_len_pos_model_summary.csv"),row.name
kable(FLPAICSummary)
```

Model	$AIC\ Delta \textbf{AIC} eA plCwN agR \textbf{(2} nterseipn) dag_fstein plwg_frosclolog \underline{fr} \textbf{(2} pws \textbf{(2)} ps^2) we grave a place of the place$
preserved ~ stimlen * log_freq + I(pos^2) + pos	1268. 860000000000000000000000000000000000
preserved ~ stimlen * log_freq + (I(pos^2) + pos) * log_freq	1270. 7.894033878.11892007672.3349053 25 8454 0 070 3883524 NA - 0.047 963 2 0.0151 66 A NA 0.5609114 0.0906855
preserved ~ stimlen * log_freq + pos	1271 2454 8 9727 2 753350395138954485 675938 0.0868692 NA
preserved ~ stimlen * log_freq + pos * log_freq	1272. 496.93235285.26335283952.623 577242 0.0773726 NA 0.018 1860 NA NA NA NA 0.1653992 0.1914959
preserved ~ (I(pos^2) + pos) * log_freq	1273. 4225 395B13 G 8B56036632.82695A 0.51606A7 NA 0.051 G .7020133KA NA NA 0.568956B65005
preserved \sim stimlen + $(I(pos^2) + pos) *$ log_freq	1274 .5.6928925776028597323.1937 872 0.509 874 5 NA 0.052 6602 123 3 6A NA NA 0.0167178 0.573 6 35264539
preserved ~ pos * log_freq	1275. 79.92701028637/9403050250922NA 0.271 6NA 9 - 0.045 560 5 NA NA NA NA NA NA 0.1619038
preserved ~ pos + log_freq	1277 8 69 40 101 10 4225 6 1165 28 730 8 60 A 0.440 77 9 6 - NA
preserved ~ stimlen + pos * log_freq	1278 .236497 609 258745 84 562.7 666 240 08 05278 48 1.3 7 - 0.045 287 5 NA NA NA NA NA NA NA NA
preserved ~ stimlen + I(pos^2) + pos + log_freq	1278 .9559 2 7 9807 4 .7898 7 01 552 .4896066 0.445 258 7 - NA NA 0.027 098 0 NA NA NA 0.0025788 0.4221843
preserved ~ stimlen + pos + log_freq	1280. 267 0 039589.48716555527.2304450 15 0644949N7 8 - NA
preserved ~ stimlen * log_freq	1292 2396 3 001120000133326933 859 - 0.0809 37 7A NA
preserved ~ stimlen + log_freq	1300 .310.33082000000000000000000000000000000000

```
preserved ~
            1367.987.961830000000000000133865048 NA NA
                                                  - NA NA 0.0260934 NA NA NA
                                                  0.4005349
stimlen +
                                    0.1423146
I(pos^2) +
pos
preserved ~
            - NA NA NA NA
                                                                        NA
                                                                             NA NA
                                                 0.1859006
stimlen + pos
                                    0.1247496
preserved ~
            1370.1079.302993200000000099345251122 NA NA
                                                   - NA NA NA NA
                                                                        NA
                                                                             0.0200N72
stimlen * pos
                                    0.1931728
                                                 0.3444016
preserved ~
            1371.B225.458900000000000000130326252 NA NA
                                                  - NA NA 0.0300\$70
                                                                        NA
stimlen *
                                    0.1179943
                                                  0.3706408
                                                                             0.0074552e-
                                                                                   05
(I(pos^2) +
pos)
            1378.203.346500000000000012322572 A NA NA
                                                   - NA NA NA NA
                                                                        NA
                                                                             NA NA
preserved ~
                                                 0.2324707
pos
            1379.029.16264000000000000002222137500A NA NA
                                                   - NA NA 0.0157920
                                                                        NA
                                                                             NA NA
preserved ~
                                                  0.3662451
I(pos^2) +
pos
preserved ~
            NA
                                                                             NA
                                                                                 NA
stimlen
                                    0.2236432
NA
                                                 NA NA NA NA NA
                                                                             NA
                                                                                 NA
print(BestFLPModelFormula)
## [1] "preserved ~ stimlen * log_freq + I(pos^2) + pos"
print(BestFLPModel)
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
       (Intercept)
                            stimlen
                                                             I(pos^2)
##
                                            log_freq
                                                                                   pos
           2.48453
                            0.04908
                                            -0.19636
                                                              0.03151
##
                                                                              -0.46412
## stimlen:log_freq
##
           0.09138
## Degrees of Freedom: 1393 Total (i.e. Null); 1388 Residual
## Null Deviance:
                      1298
## Residual Deviance: 1151 AIC: 1269
# do a median split on frequency to plot hf/ls effects (analysis is continuous)
median_freq <- median(PosDat$log_freq)</pre>
PosDat$freq_bin[PosDat$log_freq >= median_freq]<-"hf"
PosDat$freq_bin[PosDat$log_freq < median_freq]<-"lf"</pre>
PosDat$FLPFitted<-fitted(BestFLPModel)
HFDat <- PosDat[PosDat$freq_bin == "hf",]</pre>
LFDat <- PosDat[PosDat$freq_bin == "lf",]
HF_Plot <- plot_len_pos_obs_predicted(HFDat,paste0(CurPat," - High frequency"), "FLPFitted",c(min_preser
```

AIC Delta AIC expl CwN ag R 2nterstiph) long_fstimlen bys_pford lolog from the post 20 your fate in the stiph long from the long

Model

`summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
LF_Plot <- plot_len_pos_obs_predicted(LFDat,paste0(CurPat, " - Low frequency"), "FLPFitted",c(min_preser
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
library(ggpubr)
Both_Plots <- ggarrange(LF_Plot, HF_Plot) # labels=c("LF", "HF", ncol=2)
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_line()`).
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_frequency_effect_length_pos_wfit.png"),device="png",unit="cm"
print(Both_Plots)
```


"preserved ~ CumPres",
"preserved ~ CumErr",

"preserved ~ (I(pos^2)+pos)",

```
"preserved ~ pos",
 "preserved ~ stimlen",
 "preserved ~ 1"
MERes<-TestModels(MEModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
        2.436
##
                    -1.796
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                       1298
## Residual Deviance: 795.6
                               AIC: 855.4
## log likelihood: -397.7858
## Nagelkerke R2: 0.4994372
## % pres/err predicted correctly: -233.1762
## % of predictable range [ (model-null)/(1-null) ]: 0.4467748
## ************
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
       0.8994
                    0.3130
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1247 AIC: 1367
## log likelihood: -623.4325
## Nagelkerke R2: 0.05940678
## % pres/err predicted correctly: -407.3372
## % of predictable range [ (model-null)/(1-null) ]: 0.03533132
## *********
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
```

```
## Coefficients:
## (Intercept)
                       pos
##
       2.2957
                   -0.2325
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1254 AIC: 1378
## log likelihood: -626.9605
## Nagelkerke R2: 0.05133276
## % pres/err predicted correctly: -407.7824
## % of predictable range [ (model-null)/(1-null) ]: 0.03427957
## ***********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
##
      2.51751
                   0.01579
                               -0.36625
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1253 AIC: 1379
## log likelihood: -626.486
## Nagelkerke R2: 0.05242125
## % pres/err predicted correctly: -407.7274
## % of predictable range [ (model-null)/(1-null) ]: 0.03440942
## ***********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
##
       3.0110
                   -0.2236
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1271 AIC: 1387
## log likelihood: -635.5173
## Nagelkerke R2: 0.03157967
## % pres/err predicted correctly: -412.2753
## % of predictable range [ (model-null)/(1-null) ]: 0.02366538
## **********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
         1.44
```

```
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1393 Residual
## Null Deviance:
                        1298
## Residual Deviance: 1298 AIC: 1421
## log likelihood: -648.9827
## Nagelkerke R2: 0
## % pres/err predicted correctly: -422.2927
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
BestMEModel<-MERes$ModelResult[[ BestModelIndexL1 ]]</pre>
BestMEModelFormula<-MERes$Model[[BestModelIndexL1]]</pre>
MEAICSummary<-data.frame(Model=MERes$Model,</pre>
                       AIC=MERes$AIC,row.names=MERes$Model)
MEAICSummary $DeltaAIC <- MEAICSummary $AIC - MEAICSummary $AIC [1]
MEAICSummary$AICexp<-exp(-0.5*MEAICSummary$DeltaAIC)</pre>
MEAICSummary$AICwt<-MEAICSummary$AICexp/sum(MEAICSummary$AICexp)
MEAICSummary$NagR2<-MERes$NagR2</pre>
MEAICSummary <- merge(MEAICSummary, MERes$CoefficientValues,</pre>
                           by='row.names',sort=FALSE)
MEAICSummary <- subset(MEAICSummary, select = -c(Row.names))</pre>
write.csv(MEAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_model_summary.csv"),row.names
kable(MEAICSummary)
```

Model	AIC	DeltaAl	& ICexp	AICw	rtNagR2	(Intercept)	CumPres	CumEr	r I(pos^2)	pos	stimlen
preserved ~	855.445	0.0000	1	1	0.49943	72 .4364904	NA	-	NA	NA	NA
CumErr							1	.79552	1		
preserved \sim	1367.34	7511.901	7 0	0	0.05940	6 8 .89935230	.3130078	NA	NA	NA	NA
CumPres											
preserved \sim pos	1378.21	3522.767	0	0	0.05133	28 .2957272	NA	NA	NA	-	NA
									(0.232470)7
preserved \sim	1379.02	9523.583	8 0	0	0.05242	1 3 .5175094	NA	NA	0.015792	-	NA
$(I(pos^2) + pos)$									(0.366245	51
preserved ~	1387.49	4532.049	2 0	0	0.03157	93.0110009	NA	NA	NA	NA	-
stimlen											0.2236432
preserved ~ 1	1421.37	7565.932	0 0	0	0.00000	00.4400659	NA	NA	NA	NA	NA

```
if(DoSimulations){
    BestMEModelFormulaRnd <- BestMEModelFormula
    if(grepl("CumPres", BestMEModelFormulaRnd)) {
        BestMEModelFormulaRnd <- gsub("CumPres", "RndCumPres", BestMEModelFormulaRnd)
    }else if(grepl("CumErr", BestMEModelFormulaRnd)) {
        BestMEModelFormulaRnd <- gsub("CumErr", "RndCumErr", BestMEModelFormulaRnd)
    }

    RndModelAIC<-numeric(length=RandomSamples)
    for(rindex in seq(1,RandomSamples)) {
        # Shuffle cumulative values
        PosDat$RndCumPres <- ShuffleWithinWord(PosDat, "CumPres")
        PosDat$RndCumErr <- ShuffleWithinWord(PosDat, "CumErr")</pre>
```

```
BestModelRnd <- glm(as.formula(BestMEModelFormulaRnd),</pre>
                           family="binomial",data=PosDat)
      RndModelAIC[rindex] <- BestModelRnd$aic</pre>
    }
    ModelNames<-c(paste0("***",BestMEModelFormula),</pre>
                  rep(BestMEModelFormulaRnd,RandomSamples))
    AICValues <- c(BestMEModel$aic,RndModelAIC)
    BestMEModelRndDF <- data.frame(Name=ModelNames,AIC=AICValues)</pre>
    BestMEModelRndDF <- BestMEModelRndDF %>% arrange(AIC)
    BestMEModelRndDF <- rbind(BestMEModelRndDF,</pre>
                               data.frame(Name=c("Random average"),
                                           AIC=c(mean(RndModelAIC))))
    BestMEModelRndDF <- rbind(BestMEModelRndDF,</pre>
                               data.frame(Name=c("Random SD"),
                                           AIC=c(sd(RndModelAIC))))
    write.csv(BestMEModelRndDF,
              pasteO(TablesDir,CurPat,"_",CurTask,
                      "_best_main_effects_model_with_random_cum_term.csv"),
              row.names = FALSE)
syll_component_summary <- PosDat %>%
  group_by(syll_component) %>% summarise(MeanPres = mean(preserved),
                                           N = n())
write.csv(syll_component_summary,paste0(TablesDir,CurPat,"_",CurTask,"_syllable_component_summary.csv")
kable(syll_component_summary)
```

syll_component	MeanPres	N
1	0.7767696	185
O	0.8142398	674
P	1.0000000	12
S	0.8260870	69
V	0.8050661	454

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ***********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
##
        2.397
                    -1.811
##
## Degrees of Freedom: 1312 Total (i.e. Null); 1311 Residual
## Null Deviance:
                       1229
## Residual Deviance: 764
                          AIC: 825.6
## log likelihood: -381.9967
## Nagelkerke R2: 0.4906012
## % pres/err predicted correctly: -224.1786
## % of predictable range [ (model-null)/(1-null) ]: 0.4404203
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
##
       0.8557
                    0.3569
##
## Degrees of Freedom: 1312 Total (i.e. Null); 1311 Residual
## Null Deviance:
                      1229
## Residual Deviance: 1172 AIC: 1291
## log likelihood: -585.8296
## Nagelkerke R2: 0.07018623
## % pres/err predicted correctly: -384.4349
## % of predictable range [ (model-null)/(1-null) ]: 0.04217579
## *********
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                       pos
##
       2.2920
                   -0.2351
## Degrees of Freedom: 1312 Total (i.e. Null); 1311 Residual
## Null Deviance:
                       1229
## Residual Deviance: 1186 AIC: 1310
## log likelihood: -592.9824
## Nagelkerke R2: 0.05293062
## % pres/err predicted correctly: -387.1168
## % of predictable range [ (model-null)/(1-null) ]: 0.0355112
## *********
```

```
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
                  I(pos^2)
## (Intercept)
                                   pos
      2.50125
                   0.01478
##
                              -0.36073
##
## Degrees of Freedom: 1312 Total (i.e. Null); 1310 Residual
## Null Deviance:
                       1229
## Residual Deviance: 1185 AIC: 1311
## log likelihood: -592.579
## Nagelkerke R2: 0.05390895
## % pres/err predicted correctly: -387.0584
## % of predictable range [ (model-null)/(1-null) ]: 0.03565627
## *********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                   -0.236
##
        3.086
## Degrees of Freedom: 1312 Total (i.e. Null); 1311 Residual
## Null Deviance:
                       1229
## Residual Deviance: 1200 AIC: 1316
## log likelihood: -600.1116
## Nagelkerke R2: 0.03554419
## % pres/err predicted correctly: -390.6939
## % of predictable range [ (model-null)/(1-null) ]: 0.02662172
## **********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
        1.423
## Degrees of Freedom: 1312 Total (i.e. Null); 1312 Residual
## Null Deviance:
                       1229
## Residual Deviance: 1229 AIC: 1352
## log likelihood: -614.4495
## Nagelkerke R2: -3.653336e-16
## % pres/err predicted correctly: -401.4067
## % of predictable range [ (model-null)/(1-null) ]: 0
## *********
write.csv(SimpSyllMEAICSummary,
         pasteO(TablesDir,CurPat,"_",CurTask,
```

"_OV1_main_effects_model_summary.csv"),row.names = FALSE) kable(SimpSyllMEAICSummary)

```
DeltaAI&ICexpAICwtNagR2 (Intercept)CumPresCumErr I(pos^2)
Model
                   AIC
                                                                                             stimlen
                                                                                       pos
preserved ~
                 825.62840.0000
                                            0.4906012.3974765 NA
                                                                                       NA
                                                                                                NA
CumErr
                                                                     1.810908
preserved \sim
                 0.0701862.85569030.3568525 NA
                                                                               NA
                                                                                       NA
                                                                                                NA
CumPres
preserved \sim pos
                 1309.705484.0768
                                            0.0529300.2920052 NA
                                                                       NA
                                                                               NA
                                                                                                NA
                                                                                     0.2351169
                                            0.0539090.5012546 NA
                                                                                                NA
preserved ~
                 1310.683485.0553
                                                                       NA
                                                                             0.0147797
(I(pos^2) + pos)
                                                                                     0.3607258
preserved \sim
                 1315.696 {\color{red}6} 90.0682
                                            0.0355443.0857641 NA
                                                                                       NA
                                                                       NA
                                                                               NA
stimlen
                                                                                             0.2360316
                                                                                       NA
preserved \sim 1
                 1351.623625.9946 0
                                            0.00000000.4228721 NA
                                                                       NA
                                                                               NA
                                                                                                NA
```

```
# main effects models for data without satellite or coda positions
# (tradeoff -- takes away more complex segments, in addition to satellites, but
# also reduces data)
keep_components = c("0","V")
OVData <- PosDat[PosDat$syll component %in% keep components,]
OVData <- OVData %>% select(stim number,
                            stimlen, stim, pos,
                            preserved,syll_component)
OVData$CumPres <- CalcCumPres(OVData)</pre>
OVData$CumErr <- CalcCumErrFromPreserved(OVData)</pre>
SimpSyllMEAICSummary2<-EvaluateSubsetData(OVData, MEModelEquations)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
        2.320
                     -1.922
##
##
## Degrees of Freedom: 1127 Total (i.e. Null); 1126 Residual
## Null Deviance:
                        1040
## Residual Deviance: 693.9
                                AIC: 757.8
## log likelihood: -346.9625
## Nagelkerke R2: 0.4389645
```

```
## % pres/err predicted correctly: -204.5465
## % of predictable range [ (model-null)/(1-null) ]: 0.3938825
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
##
       2.2712
                   -0.2254
## Degrees of Freedom: 1127 Total (i.e. Null); 1126 Residual
## Null Deviance:
                       1040
## Residual Deviance: 1005 AIC: 1113
## log likelihood: -502.4396
## Nagelkerke R2: 0.05137904
## % pres/err predicted correctly: -326.5834
## % of predictable range [ (model-null)/(1-null) ]: 0.03401884
## **********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
      2.49698
                   0.01668
##
                               -0.36571
##
## Degrees of Freedom: 1127 Total (i.e. Null); 1125 Residual
## Null Deviance:
                       1040
## Residual Deviance: 1004 AIC: 1114
## log likelihood: -501.9691
## Nagelkerke R2: 0.05272035
## % pres/err predicted correctly: -326.4303
## % of predictable range [ (model-null)/(1-null) ]: 0.03447051
## *************
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
                   CumPres
## (Intercept)
                    0.3332
       1.0017
##
## Degrees of Freedom: 1127 Total (i.e. Null); 1126 Residual
## Null Deviance:
                       1040
## Residual Deviance: 1008 AIC: 1114
## log likelihood: -504.0995
## Nagelkerke R2: 0.04663743
## % pres/err predicted correctly: -328.6099
## % of predictable range [ (model-null)/(1-null) ]: 0.02804328
## *************
```

```
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
       2.9509
                   -0.2143
##
##
## Degrees of Freedom: 1127 Total (i.e. Null); 1126 Residual
## Null Deviance:
                      1040
## Residual Deviance: 1020 AIC: 1122
## log likelihood: -510.0001
## Nagelkerke R2: 0.02966939
## % pres/err predicted correctly: -330.6628
## % of predictable range [ (model-null)/(1-null) ]: 0.02198951
## **********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
        1.454
## Degrees of Freedom: 1127 Total (i.e. Null); 1127 Residual
## Null Deviance:
                       1040
## Residual Deviance: 1040 AIC: 1147
## log likelihood: -520.1714
## Nagelkerke R2: -3.686046e-16
## % pres/err predicted correctly: -338.1199
## % of predictable range [ (model-null)/(1-null) ]: 0
## *********
write.csv(SimpSyllMEAICSummary2,
         paste0(TablesDir,CurPat,"_",CurTask,
                "_OV_main_effects_model_summary.csv"),row.names = FALSE)
kable(SimpSyllMEAICSummary2)
```

Model	AIC DeltaAI	ICex	pAICv	vtNagR2 (Intercept	t)CumPresC	CumEr	$r I(pos^2)$	pos	stimlen
preserved ~	757.78690.0000	1	1	0.438964 3 .320475	NA	_	NA	NA	NA
CumErr					1	.92161	1		
preserved $\sim pos$	$1113.350 \\ 355.5639$	0	0	$0.051379 \\ 0.271217$	NA	NA	NA	-	NA
							0.	.22536	74
preserved \sim	$1114.026 \\ 356.2394$	0	0	$0.052720 \\ 3.496979$	NA	NA	0.0166812	-	NA
$(I(pos^2) + pos)$							0.	.36570	70
preserved \sim	$1114.128 \\ 556.3417$	0	0	$0.046637 \\ 4.001709$	0.3332493	NA	NA	NA	NA
CumPres									
preserved \sim	$1122.197 \\ 964.4110$	0	0	0.029669 2 .950899	NA	NA	NA	NA	-
stimlen									0.2142998
preserved ~ 1	$1147.412 \textcolor{red}{3} 89.6255$	0	0	0.0000000 0. 453572	NA	NA	NA	NA	NA

plot prev err and prev cor plots PrevCorPlot<-PlotObsPreviousCorrect(PosDat,palette_values,shape_values)</pre>

`summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
print(PrevCorPlot)

PrevErrPlot<-PlotObsPreviousError(PosDat,palette_values,shape_values)</pre>

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)


```
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"_PrevCorPlot_Obs")

ggsave(filename=paste0(PlotName,".tif"),plot=PrevCorPlot,device="tiff",compression = "lzw")

## Saving 6.5 x 4.5 in image

PlotName<-paste0(FigDir,CurPat,"_",CurTask,"_PrevErrPlot_Obs")

ggsave(filename=paste0(PlotName,".tif"),plot=PrevErrPlot,device="tiff",compression = "lzw")

## Saving 6.5 x 4.5 in image

# plot prev err and prev cor with predicted values

MEModel<-MERes$ModelResult[[ BestModelIndexL1 ]]

PosDat$MEPred<-fitted(MEModel)

PrevCorPlot<-PlotObsPredPreviousCorrect(PosDat,"preserved","MEPred",palette_values,shape_values)

## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.

## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.

print(PrevCorPlot)
```


PrevErrPlot<-PlotObsPredPreviousError(PosDat, "preserved", "MEPred", palette_values, shape_values)

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)

ggsave(filename=paste0(PlotName,".tif"),plot=PrevCorPlot,device="tiff",compression = "lzw")
Saving 6.5 x 4.5 in image
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"PrevErrPlot_ObsPredME")
ggsave(filename=paste0(PlotName,".tif"),plot=PrevErrPlot,device="tiff",compression = "lzw")</pre>

Saving 6.5 x 4.5 in image

```
5
```

```
CumAICSummary <- NULL
#######
# level 2 -- Add position squared (quadratic with position)
#######
# After establishing the primary variable, see about additions
BestMEFactor <- BestMEModelFormula
OtherFactor<-"I(pos^2) + pos"
OtherFactorName<-"quadratic_by_pos"
if(!grepl("pos", BestMEFactor, fixed = TRUE)){ # if best model does not include pos
  AICSummary <- TestLevel 2 Models (PosDat, BestMEFactor, Other Factor, Other Factor Name)
 CumAICSummary <- AICSummary</pre>
 kable(AICSummary)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                     CumErr
                               I(pos^2)
                                                  pos
      2.21522
                  -2.00658
                                0.04824
                                             -0.09832
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
## Null Deviance:
                        1298
## Residual Deviance: 773.9
                               AIC: 835.9
## log likelihood: -386.9528
## Nagelkerke R2: 0.5171889
## % pres/err predicted correctly: -228.6815
## % of predictable range [ (model-null)/(1-null) ]: 0.4573931
```

```
5
```

```
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
##
        2.436
                    -1.796
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                       1298
## Residual Deviance: 795.6
                              AIC: 855.4
## log likelihood: -397.7858
## Nagelkerke R2: 0.4994372
## % pres/err predicted correctly: -233.1762
## % of predictable range [ (model-null)/(1-null) ]: 0.4467748
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
##
      2.51751
                   0.01579
                              -0.36625
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                       1298
## Residual Deviance: 1253 AIC: 1379
## log likelihood: -626.486
## Nagelkerke R2: 0.05242125
## % pres/err predicted correctly: -407.7274
## % of predictable range [ (model-null)/(1-null) ]: 0.03440942
## *********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	$I(pos^2)$	pos
$\overline{\text{preserved} \sim \text{CumErr} + \text{I}(\text{pos}^2) +}$	835.9081	0.00000	1.00e+00	0.9999428	0.5171889	2.215219	-2.006576	0.0482412	-0.0983183
DOS									

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	$I(pos^2)$	pos
preserved ~ CumErr	855.4450	19.53686	5.72 e-05	0.0000572	0.4994372	2.436490	-1.795521	NA	NA
$preserved \sim I(pos^2) + pos$	1379.0287	543.12062	0.00e+00	0.0000000	0.0524213	2.517509	NA	0.0157920	-0.3662451

```
#######
# level 2 -- Add length
#######
BestMEFactor <- BestMEModelFormula
OtherFactor <- "stimlen"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
 AICSummary <- TestLevel 2 Models (PosDat, Best MEFactor, Other Factor)
 CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
 kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ************
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                    CumErr
        2.436
                    -1.796
##
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                       1298
## Residual Deviance: 795.6
                               AIC: 855.4
## log likelihood: -397.7858
## Nagelkerke R2: 0.4994372
## % pres/err predicted correctly: -233.1762
## % of predictable range [ (model-null)/(1-null) ]: 0.4467748
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  CumErr
                               stimlen
##
      2.63082
                  -1.78791
                              -0.02877
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                       1298
## Residual Deviance: 795.3
                               AIC: 856.2
## log likelihood: -397.6659
## Nagelkerke R2: 0.4996353
## % pres/err predicted correctly: -233.0066
## % of predictable range [ (model-null)/(1-null) ]: 0.4471753
## *********
## model index: 3
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
       3.0110
                   -0.2236
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                      1298
## Residual Deviance: 1271 AIC: 1387
## log likelihood: -635.5173
## Nagelkerke R2: 0.03157967
## % pres/err predicted correctly: -412.2753
## % of predictable range [ (model-null)/(1-null) ]: 0.02366538
## *********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	stimlen
$preserved \sim CumErr$	855.4450	0.000000	1.000000	0.5920236	0.4994372	2.436490	-	NA
							1.795521	
preserved \sim CumErr +	856.1897	0.744674	0.689122	0.4079764	0.4996353	2.630815	-	
stimlen							1.787907	0.0287708
preserved \sim stimlen	1387.4942	532.049243	30.000000	0.0000000	0.0315797	3.011001	NA	-
								0.2236432

```
########
# level 2 -- add cumulative preserved
########

BestMEFactor<-BestMEModelFormula
OtherFactor<-"CumPres"

if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
    AICSummary<-TestLevel2Models(PosDat,BestMEFactor,OtherFactor)
    CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary,AICSummary)
    kable(AICSummary)
}

## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!</pre>
```

```
## Null Deviance:
                        1298
## Residual Deviance: 777.1
                                AIC: 836.5
## log likelihood: -388.5257
## Nagelkerke R2: 0.5146285
## % pres/err predicted correctly: -229.5703
## % of predictable range [ (model-null)/(1-null) ]: 0.4552933
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
##
         2.436
                     -1.796
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                        1298
## Residual Deviance: 795.6
                                AIC: 855.4
## log likelihood: -397.7858
## Nagelkerke R2: 0.4994372
## % pres/err predicted correctly: -233.1762
## % of predictable range [ (model-null)/(1-null) ]: 0.4467748
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumPres
##
        0.8994
                     0.3130
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                        1298
## Residual Deviance: 1247 AIC: 1367
## log likelihood: -623.4325
## Nagelkerke R2: 0.05940678
## % pres/err predicted correctly: -407.3372
## % of predictable range [ (model-null)/(1-null) ]: 0.03533132
## **********
Model
                        AIC
                              DeltaAIC AICexp
                                                AICwt
                                                         NagR2 (Intercept) CumErr
                                                                                    CumPres
                              0.00000 1.00e+00 0.9999228 0.5146285 1.9883135
                                                                                    0.2502792
preserved \sim \text{CumErr} +
                     836.5063
CumPres
                                                                           1.758781
preserved \sim CumErr
                     855.4450 18.93863
                                        7.72e-
                                              0.0000772 \ 0.4994372 \ 2.4364904
                                                                                        NA
                                           05
                                                                           1.795521
                     1367.3467 530.84033 0.00e + 00 0.0000000 0.0594068 0.8993523
preserved \sim CumPres
                                                                               NA
                                                                                    0.3130078
```

```
BestMEFactor <- BestMEModelFormula
OtherFactor<-"pos"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
 AICSummary <- TestLevel 2 Models (PosDat, Best MEFactor, Other Factor)
 CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
 kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                    pos
##
       1.7380
                   -2.0091
                                 0.2503
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                       1298
## Residual Deviance: 777.1
                               AIC: 836.5
## log likelihood: -388.5257
## Nagelkerke R2: 0.5146285
## % pres/err predicted correctly: -229.5703
## % of predictable range [ (model-null)/(1-null) ]: 0.4552933
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
        2.436
                    -1.796
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                       1298
## Residual Deviance: 795.6
                               AIC: 855.4
## log likelihood: -397.7858
## Nagelkerke R2: 0.4994372
## % pres/err predicted correctly: -233.1762
## % of predictable range [ (model-null)/(1-null) ]: 0.4467748
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
```

```
## Coefficients:
## (Intercept)
                      pos
       2.2957
##
                  -0.2325
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                      1298
## Residual Deviance: 1254 AIC: 1378
## log likelihood: -626.9605
## Nagelkerke R2: 0.05133276
## % pres/err predicted correctly: -407.7824
## % of predictable range [ (model-null)/(1-null) ]: 0.03427957
## *************
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	pos
preserved ~ CumErr	836.5063	0.00000	1.00e+00	0.9999228	0.5146285	1.738034	-	0.2502792
+ pos							2.009060	
$preserved \sim CumErr$	855.4450	18.93863	7.72e-	0.0000772	0.4994372	2.436490	-	NA
			05				1.795521	
preserved $\sim pos$	1378.2126	541.70624	0.00e+00	0.0000000	0.0513328	2.295727	NA	-
								0.2324707

CumAICSummary <- CumAICSummary %>% arrange(AIC)
BestModelFormulaL2 <- CumAICSummary\$Model[BestModelIndexL2]
write.csv(CumAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_plus_one_model_summary.csv")
kable(CumAICSummary)</pre>

Model	AIC	DeltaAI@ICexp AICw	rt NagR2	(Intercept()	umEr	rrI(pos^2) pos	stimlen	CumPres
preserved ~	835.908	10.0000001.00000000999	9420851718	8 92152194	-	0.04824	12 -	NA	NA
CumErr +				2	.00657	76	0.09831	.83	
$I(pos^2) + pos$									
preserved ~	836.506	30.0000001.00000000999	922851462	857380343	-	NA	0.25027	'92 NA	NA
CumErr + pos				2	.00906	30			
preserved \sim	836.506	3 0.0000001.000000 0 0999	922851462	8 59883135	-	NA	NA	NA	0.2502792
CumErr +				1	.75878	31			
CumPres									
preserved \sim	855.445	019.53686 0 .00005 7 2000	05 72 49943	7224364904	-	NA	NA	NA	NA
CumErr				1	.79552	21			
preserved \sim	855.4450	0.0000001.0000000592	023649943	7224364904	-	NA	NA	NA	NA
CumErr				1	.79552	21			
preserved \sim	855.4450	018.93862 9 .00007 7 2000	0772249943	7224364904	-	NA	NA	NA	NA
CumErr				1	.79552	21			
preserved \sim	855.4450	018.93862 9 .00007 7 2000	0772249943	7224364904	-	NA	NA	NA	NA
CumErr				1	.79552	21			
preserved \sim	856.189'	70.7446740.68912200407	97 6 0449963	5236308153	-	NA	NA	-	NA
CumErr + stimlen				1	.78790)7		0.02877	08
preserved \sim	1367.346	553 0.8403 61 000000000000	0000005940	63 8993523	NA	NA	NA	NA	0.3130078
CumPres									
preserved $\sim pos$	1378.212	26 41.7062 45 00000000000	0000005133	28 2957272	NA	NA	-	NA	NA
							0.23247	707	
preserved \sim	1379.028	\$54 3.1206 05 000000000000	0000005242	12 35175094	NA	0.01579	20 -	NA	NA
$I(pos^2) + pos$							0.36624	51	
preserved \sim	1387.49	43 32.0492 43 000000000000	0000003157	937 .0110009	NA	NA	NA	-	NA
stimlen								0.22364	32

```
# explore influence of frequency and length
if(grep1("stimlen", BestModelFormulaL2)){ # if length is already in the formula
  Level3ModelEquations<-c(
      BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
      paste0(BestModelFormulaL2," + log_freq")
}else if(grepl("log_freq",BestModelFormulaL2)){ # if log_freq is already in the formula
   Level3ModelEquations<-c(
      BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
      paste0(BestModelFormulaL2," + stimlen")
  )
}else{
  Level3ModelEquations<-c(
      BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
     paste0(BestModelFormulaL2," + log_freq"),
     paste0(BestModelFormulaL2," + stimlen"),
     paste0(BestModelFormulaL2," + stimlen + log_freq")
 )
}
Level3Res<-TestModels(Level3ModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     CumErr
                                I(pos^2)
                                                  pos
                                                           stimlen
                                                                       log_freq
##
       2.63630
                   -1.91476
                                0.05892
                                             -0.14883
                                                          -0.05153
                                                                        0.28728
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1388 Residual
## Null Deviance:
                       1298
## Residual Deviance: 747.9
                                AIC: 808.3
## log likelihood: -373.9546
## Nagelkerke R2: 0.5381276
## % pres/err predicted correctly: -222.7119
## % of predictable range [ (model-null)/(1-null) ]: 0.471496
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
```

```
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               I(pos^2)
                    CumErr
                                                 pos
                                                         log_freq
##
      2.29464
                  -1.91394
                                0.05575
                                            -0.13839
                                                          0.30217
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1389 Residual
## Null Deviance:
                       1298
## Residual Deviance: 748.5
                               AIC: 808.6
## log likelihood: -374.2606
## Nagelkerke R2: 0.5376391
## % pres/err predicted correctly: -223.1016
## % of predictable range [ (model-null)/(1-null) ]: 0.4705752
## **********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                               I(pos^2)
                                                          stimlen
                                                 pos
       3.1651
                   -1.9963
                                 0.0578
                                             -0.1293
                                                          -0.1427
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1389 Residual
## Null Deviance:
                       1298
## Residual Deviance: 768.6
                               AIC: 827.5
## log likelihood: -384.3152
## Nagelkerke R2: 0.5214694
## % pres/err predicted correctly: -226.8604
## % of predictable range [ (model-null)/(1-null) ]: 0.4616954
## **********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               I(pos^2)
                    CumErr
                                                 pos
##
      2.21522
                  -2.00658
                                0.04824
                                            -0.09832
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
## Null Deviance:
                       1298
## Residual Deviance: 773.9
                               AIC: 835.9
## log likelihood: -386.9528
## Nagelkerke R2: 0.5171889
## % pres/err predicted correctly: -228.6815
## % of predictable range [ (model-null)/(1-null) ]: 0.4573931
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
```

```
## (Intercept)
##
          1.44
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1393 Residual
## Null Deviance:
                         1298
## Residual Deviance: 1298 AIC: 1421
## log likelihood: -648.9827
## Nagelkerke R2: 0
## % pres/err predicted correctly: -422.2927
## % of predictable range [ (model-null)/(1-null) ]: 0
BestModelL3<-Level3Res$ModelResult[[ BestModelIndexL3 ]]</pre>
BestModelFormulaL3<-Level3Res$Model[[BestModelIndexL3]]</pre>
AICSummary <- data.frame (Model=Level3Res$Model,
                        AIC=Level3Res$AIC,
                        row.names = Level3Res$Model)
AICSummary$DeltaAIC<-AICSummary$AIC-AICSummary$AIC[1]
AICSummary$AICexp<-exp(-0.5*AICSummary$DeltaAIC)
AICSummary$AICwt<-AICSummary$AICexp/sum(AICSummary$AICexp)
AICSummary$NagR2<-Level3Res$NagR2
AICSummary <- merge(AICSummary, Level3Res Coefficient Values,
                           by='row.names',sort=FALSE)
AICSummary <- subset(AICSummary, select = -c(Row.names))
write.csv(AICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_plus_one_len_freq_summary.csv")
kable(AICSummary)
Model
                               DeltaAI@ICexpAICwt NagR2(Intercep@umErf(pos^2) pos
                                                                                   log frestimlen
                        808.3368.0000000.0000000360965381276636298
                                                                   - 0.0589197 - 0.2872835 -
preserved \sim \text{CumErr} +
I(pos^2) + pos + stimlen
                                                                1.914758
                                                                            0.1488302
                                                                                         0.0515341
+ log freq
```

```
808.626 2.289428 3.86526 96 46386 7253763 2.1294635
                                                                              - 0.0557511 - 0.3021670NA
preserved \sim \text{CumErr} +
I(pos^2) + pos +
                                                                          1.913938
                                                                                         0.1383942
log_freq
                            827.51819.181268.0000684000036.5214694.65074
preserved \sim \text{CumErr} +
                                                                              - 0.0578008 -
                                                                                                 NΑ
I(pos^2) + pos + stimlen
                                                                          1.996306
                                                                                         0.1293206
                                                                                                        0.1426750
preserved \sim \text{CumErr} +
                            835.90827.571313.0000000000006517182215219
                                                                             - 0.0482412 -
                                                                                                  NA
                                                                                                          NA
I(pos^2) + pos
                                                                          2.006576
                                                                                         0.0983183
preserved \sim 1
                            1421.37603.04019.85000000000000000000000440066~\mathrm{NA}
                                                                                   NA
                                                                                          NA
                                                                                                  NA
                                                                                                          NA
```

```
# BestModelIndex is set by the parameter file and is used to choose
# a model that is essentially equivalent to the lowest AIC model, but
# simpler (and with a slightly higher AIC value, so not in first position)
BestModelL3<-Level3Res$ModelResult[[ BestModelIndexL3 ]]
BestModelFormulaL3<-Level3Res$Model[BestModelIndexL3]

BestModel<-BestModelL3
BestModelDeletions<-arrange(dropterm(BestModel),desc(AIC))</pre>
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
# order by terms that increase AIC the most when they are the one dropped
BestModelDeletions
## Single term deletions
##
## Model:
## preserved ~ CumErr + I(pos^2) + pos + stimlen + log_freq
          Df Deviance
                           AIC
          1 1160.08 1218.51
## CumErr
## log_freq 1 768.63 827.06
## I(pos^2) 1
                752.49 810.92
## <none>
                747.91 808.34
## stimlen 1
               748.52 806.95
## pos
                748.42 806.84
             1
###################################
# Single deletions from best model
#####################################
write.csv(BestModelDeletions,paste0(TablesDir,CurPat,"_",CurTask,"_best_model_single_term_deletions.csv
# plot prev err and prev cor with predicted values
PosDat$OAPred<-fitted(BestModel)</pre>
PrevCorPlot<-PlotObsPredPreviousCorrect(PosDat, "preserved", "OAPred", palette_values, shape_values)
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
print(PrevCorPlot)
```


PrevErrPlot<-PlotObsPredPreviousError(PosDat, "preserved", "OAPred", palette_values, shape_values)

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)


```
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"_ObsPred_BestFullModel")
ggsave(filename=paste(PlotName, "_prev_correct.tif", sep=""), plot=PrevCorPlot, device="tiff", compression =
## Saving 6.5 \times 4.5 in image
ggsave(filename=paste(PlotName,"_prev_error.tif",sep=""),plot=PrevErrPlot,device="tiff",compression = "
## Saving 6.5 \times 4.5 in image
if(DoSimulations){
  BestModelFormulaL3Rnd <- BestModelFormulaL3</pre>
  if(grepl("CumPres", BestModelFormulaL3Rnd)){
    BestModelFormulaL3Rnd <- gsub("CumPres", "RndCumPres", BestModelFormulaL3Rnd)</pre>
  if(grepl("CumErr",BestModelFormulaL3Rnd)){
    BestModelFormulaL3Rnd <- gsub("CumErr","RndCumErr",BestModelFormulaL3Rnd)</pre>
  }
  RndModelAIC<-numeric(length=RandomSamples)</pre>
  for(rindex in seq(1,RandomSamples)){
  # Shuffle cumulative values
    PosDat$RndCumPres <- ShuffleWithinWord(PosDat, "CumPres")</pre>
    PosDat$RndCumErr <- ShuffleWithinWord(PosDat, "CumErr")</pre>
    BestModelRnd <- glm(as.formula(BestModelFormulaL3Rnd),</pre>
                         family="binomial",data=PosDat)
    RndModelAIC[rindex] <- BestModelRnd$aic</pre>
  ModelNames<-c(paste0("***",BestModelFormulaL3),</pre>
```

```
rep(BestModelFormulaL3Rnd,RandomSamples))
  AICValues <- c(BestModelL3$aic,RndModelAIC)
  BestModelRndDF <- data.frame(Name=ModelNames,AIC=AICValues)</pre>
  BestModelRndDF <- BestModelRndDF %>% arrange(AIC)
  BestModelRndDF <- rbind(BestModelRndDF,</pre>
                           data.frame(Name=c("Random average"),
                                      AIC=c(mean(RndModelAIC))))
  BestModelRndDF <- rbind(BestModelRndDF,</pre>
                           data.frame(Name=c("Random SD"),
                                      AIC=c(sd(RndModelAIC))))
  write.csv(BestModelRndDF,paste0(TablesDir,CurPat,"_",CurTask,
                                   "_best_model_with_random_cum_term.csv"),
            row.names = FALSE)
}
# plot influence factors
num_models <- nrow(BestModelDeletions) - 1</pre>
# minus 1 because last
# model is always <none> and we don't want to include that
if(num_models > 4){
 last_model_num <- 4</pre>
}else{
  last_model_num <- num_models</pre>
FinalModelSet<-ModelSetFromDeletions(BestModelFormulaL3,
                                      BestModelDeletions,
                                      last_model_num)
PlotName<-pasteO(FigDir,CurPat,"_",CurTask,"_FactorPlots")</pre>
FactorPlot<-PlotModelSetWithFreq(PosDat,FinalModelSet,</pre>
                                 palette_values,FinalModelSet,PptID=CurPat)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ***********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     CumErr
         2.436
                     -1.796
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1392 Residual
## Null Deviance:
                        1298
## Residual Deviance: 795.6
                                AIC: 855.4
## log likelihood: -397.7858
```

```
## Nagelkerke R2: 0.4994372
## % pres/err predicted correctly: -233.1762
## % of predictable range [ (model-null)/(1-null) ]: 0.4467748
## **********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    {\tt CumErr}
                               log_freq
##
       2.4738
                   -1.6970
                                 0.2804
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1391 Residual
## Null Deviance:
                       1298
## Residual Deviance: 773.2
                               AIC: 831.4
## log likelihood: -386.5869
## Nagelkerke R2: 0.5177836
## % pres/err predicted correctly: -228.0491
## % of predictable range [ (model-null)/(1-null) ]: 0.4588871
## **********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
                                            I(pos^2)
## (Intercept)
                    CumErr
                               log_freq
                                             0.03834
      2.08780
                  -1.92617
                                0.30028
##
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1390 Residual
## Null Deviance:
                       1298
## Residual Deviance: 749
                           AIC: 806.8
## log likelihood: -374.4805
## Nagelkerke R2: 0.5372879
## % pres/err predicted correctly: -223.3098
## % of predictable range [ (model-null)/(1-null) ]: 0.4700835
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                               log_freq
                                            I(pos^2)
                                                          stimlen
##
      2.39479
                  -1.92793
                                0.28608
                                             0.04009
                                                         -0.04852
##
## Degrees of Freedom: 1393 Total (i.e. Null); 1389 Residual
## Null Deviance:
                       1298
## Residual Deviance: 748.4
                               AIC: 806.7
## log likelihood: -374.2076
## Nagelkerke R2: 0.5377237
## % pres/err predicted correctly: -222.9654
## % of predictable range [ (model-null)/(1-null) ]: 0.470897
```

```
## ***********
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 8 values. Consider specifying shapes manually if you need that many have
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 8 values. Consider specifying shapes manually if you need that many have
     them.
## Warning: Removed 2 rows containing missing values or values outside the scale range (`geom_point()`)
## Removed 2 rows containing missing values or values outside the scale range ('geom point()').
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 8 values. Consider specifying shapes manually if you need that many have
     them.
## Warning: Removed 2 rows containing missing values or values outside the scale range (`geom_point()`)
## Removed 2 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 8 values. Consider specifying shapes manually if you need that many have
    them.
```

difficult to discriminate

##

them.

Warning: Removed 2 rows containing missing values or values outside the scale range (`geom_point()`)

Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes

Removed 2 rows containing missing values or values outside the scale range (`geom_point()`).

i you have requested 8 values. Consider specifying shapes manually if you need that many have

Warning: Removed 2 rows containing missing values or values outside the scale range (`geom_point()`)
Removed 2 rows containing missing values or values outside the scale range (`geom_point()`).

ggsave(paste0(PlotName,".tif"),plot=FactorPlot,width = 360,height=400,units="mm",device="tiff",compress
use \blandscape and \elandscape to make markdown plots landscape if needed
FactorPlot

DA.Result<-dominanceAnalysis(BestModel)</pre>

Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm!

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
```

DAContributionAverage <- ConvertDominanceResultToTable (DA.Result)
write.csv (DAContributionAverage, paste0 (TablesDir, CurPat, "_", CurTask, "_dominance_analysis_table.csv"), rokable (DAContributionAverage)

	CumErr	$I(pos^2)$	pos	stimlen	\log_{freq}
McFadden	0.3617012	0.0117731	0.0125892	0.0076760	0.0452137
SquaredCorrelation	0.2904899	0.0102369	0.0114494	0.0072375	0.0410066
Nagelkerke	0.4547738	0.0160263	0.0179245	0.0113307	0.0641975

	CumErr	I(pos^2)	pos	stimlen	log_freq
Estrella	0.3663898	0.0119397	0.0127828	0.0078005	0.0459124

```
deviance_differences_df<-GetDevianceSet(FinalModelSet,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
write.csv(deviance_differences_df,paste0(TablesDir,CurPat,"_",CurTask,"_deviance_differences_table.csv"),row.names = FALSE)
deviance differences df
##
                                                                             model deviance
## CumErr + log_freq + I(pos^2) + stimlen CumErr + log_freq + I(pos^2) + stimlen 748.4153
## CumErr + log_freq + I(pos^2)
                                                     CumErr + log_freq + I(pos^2) 748.9611
## CumErr + log_freq
                                                                CumErr + log_freq 773.1739
## CumErr
                                                                           CumErr 795.5716
## null
                                                                             null 1297.9653
                                           deviance_explained percent_explained
## CumErr + log freq + I(pos^2) + stimlen
                                                     549.5501
                                                                       42.33935
## CumErr + log freq + I(pos^2)
                                                     549.0042
                                                                       42.29730
## CumErr + log_freq
                                                     524.7914
                                                                       40.43185
## CumErr
                                                     502.3937
                                                                       38.70625
## null
                                                       0.0000
                                                                        0.00000
                                           percent of explained deviance increment in explained
## CumErr + log freq + I(pos^2) + stimlen
                                                               100.00000
                                                                                      0.09932025
## CumErr + log freq + I(pos^2)
                                                                99.90068
                                                                                      4.40593355
## CumErr + log_freq
                                                                95.49475
                                                                                      4.07564592
                                                                91.41910
## CumErr
                                                                                     91.41910029
## null
                                                                      NA
                                                                                      0.00000000
kable(deviance differences df[,2:3], format="latex", booktabs=TRUE) %%
 kable_styling(latex_options="scale_down")
kable(deviance differences df[,c(4:6)], format="latex", booktabs=TRUE) %%
 kable_styling(latex_options="scale_down")
NagContributions <- t(DAContributionAverage[3,])</pre>
NagTotal<-sum(NagContributions)</pre>
NagPercents <- NagContributions / NagTotal</pre>
NagResultTable <- data.frame(NagContributions = NagContributions, NagPercents = NagPercents)</pre>
```

names(NagResultTable)<-c("NagContributions","NagPercents")</pre>

	deviance	deviance_explained
$CumErr + log_freq + I(pos^2) + stimlen$	748.4153	549.5501
$CumErr + log_freq + I(pos^2)$	748.9611	549.0042
$CumErr + log_freq$	773.1739	524.7914
CumErr	795.5716	502.3937
null	1297.9653	0.0000

	percent_explained	percent_of_explained_deviance	increment_in_explained
$\frac{1}{\text{CumErr} + \log_{\text{freq}} + I(\text{pos}^2) + \text{stimlen}}$	42.33935	100.00000	0.0993203
$CumErr + log_freq + I(pos^2)$	42.29730	99.90068	4.4059335
$CumErr + log_freq$	40.43185	95.49475	4.0756459
CumErr	38.70625	91.41910	91.4191003
null	0.00000	NA	0.0000000

```
write.csv(NagResultTable,paste0(TablesDir,CurPat," ",CurTask," nagelkerke contributions table.csv"),row.names = TRUE)
NagPercents
##
           Nagelkerke
## CumErr 0.80597528
## I(pos^2) 0.02840276
## pos
           0.03176682
## stimlen 0.02008083
## log_freq 0.11377431
sse_results_list<-compare_SS_accounted_for(FinalModelSet, "preserved ~ 1", PosDat, N_cutoff=10)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
```

```
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumcor_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
```

model	p_accounted_for	model_deviance
preserved ~ CumErr	0.9331940	795.5716
$preserved \sim CumErr + log_freq$	0.9436654	773.1739
$preserved \sim CumErr + log_freq + I(pos^2) + stimlen$	0.9612986	748.4153
$preserved \sim CumErr + log_freq + I(pos^2)$	0.9616078	748.9611

```
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
sse table<-sse results table(sse results list)</pre>
write.csv(sse table.paste0(TablesDir,CurPat," ",CurTask," sse results table.csv"),row.names = TRUE)
sse table
##
                                            model p accounted for model deviance diff CumErr
                                                        0.9331940
## 1
                               preserved ~ CumErr
                                                                        795.5716 0.00000000
## 2
                      preserved ~ CumErr+log freq
                                                        0.9436654
                                                                        773.1739 0.01047149
## 3 preserved ~ CumErr+log_freq+I(pos^2)+stimlen
                                                        0.9612986
                                                                        748.4153 0.02810464
## 4
             preserved ~ CumErr+log_freq+I(pos^2)
                                                        0.9616078
                                                                        748.9611 0.02841379
     diff_CumErr+log_freq diff_CumErr+log_freq+I(pos^2)+stimlen diff_CumErr+log_freq+I(pos^2)
##
## 1
              -0.01047149
                                                  -0.0281046418
                                                                                 -0.0284137935
               0.00000000
## 2
                                                  -0.0176331504
                                                                                 -0.0179423022
## 3
               0.01763315
                                                   0.000000000
                                                                                 -0.0003091517
               0.01794230
## 4
                                                   0.0003091517
                                                                                  0.000000000
kable(sse_table[,1:3], format="latex", booktabs=TRUE) %>%
  kable_styling(latex_options="scale_down")
write.csv(results_report_DF,paste0(TablesDir,CurPat,"_",CurTask,"_results_report_df.csv"),row.names = FALSE)
```

model	diff_CumErr	diff_CumErr+log_freq	diff_CumErr+log_freq+I(pos^2)+stimlen
preserved ~ CumErr	0.0000000	-0.0104715	-0.0281046
$preserved \sim CumErr + log_freq$	0.0104715	0.0000000	-0.0176332
$preserved \sim CumErr + log_freq + I(pos^2) + stimlen$	0.0281046	0.0176332	0.0000000
$preserved \sim CumErr + log_freq + I(pos^2)$	0.0284138	0.0179423	0.0003092

```
kable(sse_table[,c(1,4:6)], format="latex", booktabs=TRUE) %>%
  kable_styling(latex_options="scale_down")
```