January 25, 2015 (unfinished); Comments are welcome! junyongkim@snu.ac.kr, http://www.junyongkim.com/

Petersen, Mitchell A., 2009, "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," *Review of Financial Studies*, vol. 22, no. 1, pp. 436–480

Table 1. (Replication, 1,000 simulated panel data with 5,000 observations)

| $\begin{array}{c} Avg(\beta_{OLS}) \\ Std(\beta_{OLS}) \\ Avg(SE_{OLS}) \\ \% \ Sig(T_{OLS}) \\ Avg(SE_C) \\ \% \ Sig(T_C) \end{array}$ |     | Source of independent variable volatility                    |                                                              |                                                              |                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                         |     | 0%                                                           | 25%                                                          | 50%                                                          | 75%                                                          |
| Source of residual volatility                                                                                                           | 0%  | 0.9988<br>0.0281<br>0.0283<br>[0.0090]<br>0.0283<br>[0.0070] | 0.9999<br>0.0293<br>0.0283<br>[0.0150]<br>0.0283<br>[0.0140] | 1.0005<br>0.0296<br>0.0283<br>[0.0150]<br>0.0283<br>[0.0140] | 1.0011<br>0.0296<br>0.0284<br>[0.0100]<br>0.0283<br>[0.0100] |
|                                                                                                                                         | 25% | 0.9984<br>0.0281<br>0.0283<br>[0.0080]<br>0.0283<br>[0.0070] | 1.0006<br>0.0353<br>0.0283<br>[0.0430]<br>0.0353<br>[0.0120] | 1.0017<br>0.0405<br>0.0283<br>[0.0760]<br>0.0412<br>[0.0120] | 1.0027<br>0.0449<br>0.0283<br>[0.1090]<br>0.0463<br>[0.0100] |
|                                                                                                                                         | 50% | 0.9984<br>0.0283<br>0.0283<br>[0.0120]<br>0.0283<br>[0.0130] | 1.0009<br>0.0405<br>0.0283<br>[0.0710]<br>0.0411<br>[0.0070] | 1.0021<br>0.0494<br>0.0283<br>[0.1420]<br>0.0508<br>[0.0070] | 1.0032<br>0.0567<br>0.0283<br>[0.2000]<br>0.0591<br>[0.0080] |
|                                                                                                                                         | 75% | 0.9985<br>0.0285<br>0.0283<br>[0.0130]<br>0.0283<br>[0.0140] | 1.0011<br>0.0452<br>0.0283<br>[0.1200]<br>0.0462<br>[0.0070] | 1.0024<br>0.0570<br>0.0283<br>[0.2040]<br>0.0589<br>[0.0080] | 1.0036<br>0.0666<br>0.0283<br>[0.2880]<br>0.0695<br>[0.0070] |

Table 2. (Replication, 1,000 simulated panel data with 5,000 observations)

| $\begin{array}{c} Avg(\beta_{FM}) \\ Std(\beta_{FM}) \\ Avg(SE_{FM}) \\ \% \ Sig(T_{FM}) \end{array}$ |     | Source of independent variable volatility |                                        |                                        |                                        |  |
|-------------------------------------------------------------------------------------------------------|-----|-------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--|
|                                                                                                       |     | 0%                                        | 25%                                    | 50%                                    | 75%                                    |  |
| Source of residual volatility                                                                         | 0%  | 0.9988<br>0.0283<br>0.0276<br>[0.0290]    | 1.0000<br>0.0295<br>0.0278<br>[0.0310] | 1.0006<br>0.0298<br>0.0279<br>[0.0280] | 1.0011<br>0.0297<br>0.0279<br>[0.0300] |  |
|                                                                                                       | 25% | 0.9984<br>0.0281<br>0.0276<br>[0.0230]    | 1.0007<br>0.0355<br>0.0269<br>[0.0620] | 1.0018<br>0.0406<br>0.0261<br>[0.1220] | 1.0027<br>0.0449<br>0.0252<br>[0.1800] |  |
|                                                                                                       | 50% | 0.9984<br>0.0283<br>0.0276<br>[0.0290]    | 1.0009<br>0.0406<br>0.0259<br>[0.1200] | 1.0022<br>0.0494<br>0.0241<br>[0.2220] | 1.0033<br>0.0568<br>0.0220<br>[0.3120] |  |
|                                                                                                       | 75% | 0.9985<br>0.0286<br>0.0275<br>[0.0370]    | 1.0012<br>0.0452<br>0.0249<br>[0.1800] | 1.0025<br>0.0570<br>0.0219<br>[0.3220] | 1.0036<br>0.0667<br>0.0184<br>[0.4760] |  |

Figure 2. (Replication, 1,000 simulated panel data with 5,000 observations)

# Figure 2



# Figure 2



Figure 2



Figure 3. (Replication, 1,000 simulated panel data with 5,000 observations)

## Figure 3



Figure 4. (Replication, 1,000 simulated panel data with 5,000 observations)

Figure 4



(NOTE: IMPERFECT! SAS does not provide a panel Newey-West Standard Error!)

Table 3. (Replication, 1,000 simulated panel data with 5,000 observations)

| $\begin{array}{c} Avg(\beta_{OLS}) \\ Std(\beta_{OLS}) \\ Avg(SE_{OLS}) \\ \% \ Sig(T_{OLS}) \\ Avg(SE_C) \\ \% \ Sig(T_C) \end{array}$ |     | Source of independent variable volatility                    |                                                              |                                                              |                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                         |     | 0%                                                           | 25%                                                          | 50%                                                          | 75%                                                          |
| Source of residual volatility                                                                                                           | 0%  | 0.9983<br>0.0281<br>0.0283<br>[0.0080]<br>0.0274<br>[0.0220] | 0.9993<br>0.0277<br>0.0283<br>[0.0120]<br>0.0272<br>[0.0320] | 0.9993<br>0.0281<br>0.0286<br>[0.0100]<br>0.0270<br>[0.0360] | 0.9992<br>0.0290<br>0.0292<br>[0.0130]<br>0.0266<br>[0.0440] |
|                                                                                                                                         | 25% | 0.9998<br>0.0272<br>0.0282<br>[0.0070]<br>0.0275<br>[0.0210] | 0.9950<br>0.1637<br>0.0282<br>[0.6510]<br>0.1421<br>[0.0360] | 0.9938<br>0.2298<br>0.0284<br>[0.7540]<br>0.1942<br>[0.0530] | 0.9932<br>0.2898<br>0.0288<br>[0.8040]<br>0.2388<br>[0.0720] |
|                                                                                                                                         | 50% | 1.0001<br>0.0270<br>0.0280<br>[0.0070]<br>0.0274<br>[0.0190] | 0.9933<br>0.2309<br>0.0279<br>[0.7550]<br>0.1989<br>[0.0350] | 0.9916<br>0.3246<br>0.0280<br>[0.8270]<br>0.2731<br>[0.0560] | 0.9908<br>0.4092<br>0.0284<br>[0.8610]<br>0.3365<br>[0.0730] |
|                                                                                                                                         | 75% | 1.0004<br>0.0270<br>0.0278<br>[0.0080]<br>0.0270<br>[0.0200] | 0.9920<br>0.2828<br>0.0275<br>[0.8050]<br>0.2427<br>[0.0350] | 0.9900<br>0.3975<br>0.0275<br>[0.8630]<br>0.3339<br>[0.0570] | 0.9891<br>0.5011<br>0.0278<br>[0.8860]<br>0.4116<br>[0.0740] |

Table 4. (Replication, 1,000 simulated panel data with 5,000 observations)

| $\begin{array}{c} Avg(\beta_{FM}) \\ Std(\beta_{FM}) \\ Avg(SE_{FM}) \\ \% \ Sig(T_{FM}) \end{array}$ |     | Source of independent variable volatility |                                        |                                        |                                        |
|-------------------------------------------------------------------------------------------------------|-----|-------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                                                                                       |     | 0%                                        | 25%                                    | 50%                                    | 75%                                    |
| Source of residual volatility                                                                         | 0%  | 0.9993<br>0.0281<br>0.0275<br>[0.0240]    | 0.9993<br>0.0284<br>0.0284<br>[0.0300] | 0.9991<br>0.0307<br>0.0311<br>[0.0260] | 0.9989<br>0.0366<br>0.0375<br>[0.0200] |
|                                                                                                       | 25% | 0.9999<br>0.0272<br>0.0276<br>[0.0170]    | 0.9966<br>0.1354<br>0.1241<br>[0.0270] | 0.9973<br>0.1855<br>0.1712<br>[0.0320] | 1.0001<br>0.2566<br>0.2394<br>[0.0340] |
|                                                                                                       | 50% | 1.0002<br>0.0270<br>0.0274<br>[0.0170]    | 0.9956<br>0.1905<br>0.1729<br>[0.0250] | 0.9966<br>0.2616<br>0.2399<br>[0.0300] | 1.0007<br>0.3620<br>0.3362<br>[0.0350] |
|                                                                                                       | 75% | 1.0005<br>0.0271<br>0.0271<br>[0.0200]    | 0.9949<br>0.2333<br>0.2108<br>[0.0260] | 0.9962<br>0.3205<br>0.2929<br>[0.0330] | 1.0013<br>0.4433<br>0.4107<br>[0.0350] |

Figure. (Does not exist in the original paper—just for comparison)

## The SAS System



## The SAS System



# The SAS System



OLS is miserable; Fama-MacBeth is noticeable!

### SAS Code

```
resetline;
ods html close;
ods graphics off;
ods listing;
%let NSAMPLE=1000;
%let SIGMAX=1;
%let SIGMAEPS=2;
%macro FIRMEFFECT(INDS=,TIMES=,START=,FINISH=,INTERVAL=);
%do SOURCEX=&START. %to &FINISH. %by &INTERVAL.;
%do SOURCEEPS=&START. %to &FINISH. %by &INTERVAL.;
proc printto;
run;
%put INDS=&INDS. TIMES=&TIMES. SOURCEX=0.&SOURCEX. SOURCEε=0.&SOURCEEPS.;
proc printto log="nul:";
run;
data _01;
 do SAMPLE=1 to &NSAMPLE.;
 do IND=1 to &INDS.;
   MU=&SIGMAX.*sqrt(0.&SOURCEX.)*rannor(1);
   GAMMA=&SIGMAEPS.*sqrt(0.&SOURCEEPS.)*rannor(2);
   do TIME=1 to &TIMES.;
     X=MU+&SIGMAX.*sqrt(1-0.&SOURCEX.)*rannor(3);
     EPS=GAMMA+&SIGMAEPS.*sqrt(1-0.&SOURCEEPS.)*rannor(4);
     Y=X+EPS;
     output;
   end;
 end;
 end;
run;
proc reg noprint outest=_02 tableout;
 model Y=X/noint;
 by SAMPLE;
run;
proc transpose out= 02(rename=(COL1=BETAOLS COL2=SEOLS));
 var X;
 by SAMPLE;
 where TYPE in ("PARMS", "STDERR");
```

```
run;
ods listing close;
ods results off;
ods output parameterestimates=_03;
proc surveyreg data= 01;
 model Y=X/noint;
 cluster IND;
 by SAMPLE;
run;
ods listing;
ods results on;
proc sort data= 01;
 by SAMPLE TIME IND;
run;
proc reg noprint outest=_04;
 model Y=X/noint;
 by SAMPLE TIME;
run;
proc means noprint;
 var X;
 by SAMPLE;
 output out= 05 mean=BETAFM stderr=SEFM;
run;
data 02;
 merge 02 03(where=(Parameter="X")) 05;
 by SAMPLE;
 TOLS=(BETAOLS-1)/SEOLS;
 SIGTOLS=(abs(TOLS)>2.58);
 SEC=StdErr;
 TC=(BETAOLS-1)/SEC;
 SIGTC=(abs(TC)>2.58);
 TFM=(BETAFM-1)/SEFM;
 SIGTFM=(abs(TFM)>2.58);
 keep SAMPLE BETAOLS SEOLS TOLS SIGTOLS SEC TC SIGTC BETAFM SEFM TFM SIGTFM;
run;
proc means data=_02 noprint;
 var BETAOLS SEOLS SIGTOLS SEC SIGTC BETAFM SEFM SIGTFM;
 output out= 06
   mean=BETAOLS SEOLS SIGTOLS SEC SIGTC BETAFM SEFM SIGTFM
   std=S_BETAOLS S_SEOLS S_SIGTOLS S_SEC S_SIGTC S_BETAFM S_SEFM S_SIGTFM;
run;
```

```
%if &SOURCEX.=50 and &SOURCEEPS.=50 and &INTERVAL.=25 %then %do;
goptions xpixels=800 ypixels=400 border;
title "Figure 2";
proc univariate data= 02;
 var TOLS TC TFM;
 histogram/normal(mu=0 sigma=1) midpoints=-7 to 7 vaxislabel="Percentile";
run;
goptions;
title "The SAS System";
%end;
data 06;
 retain BETAOLS S_BETAOLS BETAFM S_BETAFM;
 UNDEROLS=1-SEOLS/S BETAOLS;
 UNDERC=1-SEC/S BETAOLS;
 UNDERFM=1-SEFM/S BETAFM;
 INDS=&INDS.;
 TIMES=&TIMES.;
 SOURCEX=0.&SOURCEX.;
 SOURCEEPS=0.&SOURCEEPS.;
run;
proc append base=_07 data=_06;
run;
%end;
%end;
%mend;
/**/
proc printto log="nul:";
run;
%FIRMEFFECT(INDS=500, TIMES=10, START=0, FINISH=75, INTERVAL=25);
proc printto;
run;
proc transpose out=_03;
 var BETAOLS--UNDERFM;
```

```
by INDS TIMES SOURCEX SOURCEEPS;
run;
title "Table 1";
proc print noobs;
 var _NAME_ COL1;
 where TIMES=10 and _NAME_ in ("BETAOLS", "S_BETAOLS", "SEOLS", "SIGTOLS", "SEC", "SIGTC");
 by SOURCEX SOURCEEPS;
 format COL1 8.4;
run;
title "Table 2";
proc print noobs;
 var NAME COL1;
 where TIMES=10 and NAME in ("BETAFM", "S_BETAFM", "SEFM", "SIGTFM");
 by SOURCEX SOURCEEPS;
 format COL1 8.4;
run;
title "The SAS System";
proc sql;
 create table _A01_02 as select * from _02;
 create table A01 03 as select * from 03;
 drop table _07;
quit;
/**/
proc printto log="nul:";
run;
%FIRMEFFECT(INDS=1000,TIMES=5,START=50,FINISH=50,INTERVAL=1);
%FIRMEFFECT(INDS=500, TIMES=10, START=50, FINISH=50, INTERVAL=1);
%FIRMEFFECT(INDS=250, TIMES=20, START=50, FINISH=50, INTERVAL=1);
%FIRMEFFECT(INDS=125,TIMES=40,START=50,FINISH=50,INTERVAL=1);
%FIRMEFFECT(INDS=100, TIMES=50, START=50, FINISH=50, INTERVAL=1);
proc printto;
run;
goptions xpixels=800 ypixels=600 border;
title "Figure 3";
symbol i=join v=circle;
legend position=(bottom center outside) frame;
proc gplot;
```

```
plot UNDEROLS*TIMES UNDERC*TIMES UNDERFM*TIMES/overlay legend=legend1;
run;
goptions;
title "The SAS System";
symbol;
legend;
proc sql;
 create table AO2 O2 as select * from O2;
 create table _A02_07 as select * from _07;
 drop table _01,_02,_03,_04,_05,_06,_07;
quit;
/**/
proc printto log="nul:";
run;
%FIRMEFFECT(INDS=500, TIMES=10, START=25, FINISH=25, INTERVAL=1);
proc printto;
run;
proc sort data= 01;
 by SAMPLE IND TIME;
run;
%macro NEWEYWEST;
%do NWLAG=0 %to 9;
proc printto;
run;
%put NWLAG=&NWLAG.;
proc printto log="nul:";
run;
ods listing close;
ods results off;
ods output parameterestimates= 08;
proc model data= 01;
 Y=BETAO+BETA1*X;
 parameters BETAO BETA1;
 fit Y/gmm kernel=(bart,%eval(&NWLAG.+1),0) vardef=n;
 by SAMPLE;
```

```
run;
ods listing;
ods results on;
proc sql;
 create table _08 as
 select &NWLAG. as NWLAG, SAMPLE, StdErr as SENW label=""
 from _08(where=(Parameter="BETA1"));
quit;
proc append base=_09 data=_08;
run;
%end;
%mend:
proc printto log="nul:";
run;
%NEWEYWEST;
proc printto;
run;
proc means noprint;
 var SENW;
 by NWLAG;
 output out=_10 mean=SENW;
run;
proc sql;
 create table _03 as
 select NWLAG, S BETAOLS+1e-4 as S BETAOLS, SEOLS, SEC-1e-4 as SEC, SENW
 from 06, 10
 where _06._TYPE_=_10._TYPE_;
quit;
goptions xpixels=800 ypixels=600 border;
title "Figure 4";
symbol i=join v=circle;
legend position=(bottom center outside) frame;
proc gplot;
 plot S BETAOLS*NWLAG SEOLS*NWLAG SEC*NWLAG SENW*NWLAG/overlay legend=legend1;
run;
goptions;
```

```
title "The SAS System";
symbol;
legend;
proc sql;
 create table A03 03 as select * from 03;
 create table A03 09 as select * from 09;
 drop table _01,_02,_03,_04,_05,_06,_07,_08,_09,_10;
quit;
/**/
%macro TIMEEFFECT(INDS=,TIMES=,START=,FINISH=,INTERVAL=);
%do SOURCEX=&START. %to &FINISH. %by &INTERVAL.;
%do SOURCEEPS=&START. %to &FINISH. %by &INTERVAL.;
proc printto;
run;
%put INDS=&INDS. TIMES=&TIMES. SOURCEX=0.&SOURCEX. SOURCEε=0.&SOURCEEPS.;
proc printto log="nul:";
run;
data 01;
 do SAMPLE=1 to &NSAMPLE.;
 do TIME=1 to &TIMES.;
   ZETA=&SIGMAX.*sqrt(0.&SOURCEX.)*rannor(1);
   DELTA=&SIGMAEPS.*sqrt(0.&SOURCEEPS.)*rannor(2);
   do IND=1 to &INDS.;
     X=ZETA+&SIGMAX.*sqrt(1-0.&SOURCEX.)*rannor(3);
     EPS=DELTA+&SIGMAEPS.*sqrt(1-0.&SOURCEEPS.)*rannor(4);
     Y=X+EPS;
     output;
   end;
 end;
 end;
run;
proc reg noprint outest=_02 tableout;
 model Y=X/noint;
 by SAMPLE;
run;
proc transpose out= 02(rename=(COL1=BETAOLS COL2=SEOLS));
 var X;
 by SAMPLE;
```

```
where _TYPE_ in ("PARMS", "STDERR");
run;
ods listing close;
ods results off;
ods output parameterestimates= 03;
proc surveyreg data= 01;
 model Y=X/noint;
 cluster TIME;
 by SAMPLE;
run;
ods listing;
ods results on;
proc reg noprint data= 01 outest= 04;
 model Y=X/noint;
 by SAMPLE TIME;
run;
proc means noprint;
 var X;
 by SAMPLE;
 output out=_05 mean=BETAFM stderr=SEFM;
run;
data 02;
 merge 02 03(where=(Parameter="X")) 05;
 by SAMPLE;
 TOLS=(BETAOLS-1)/SEOLS;
 SIGTOLS=(abs(TOLS)>2.58);
 SEC=StdErr;
 TC=(BETAOLS-1)/SEC;
 SIGTC=(abs(TC)>2.58);
 TFM=(BETAFM-1)/SEFM;
 SIGTFM=(abs(TFM)>2.58);
 keep SAMPLE BETAOLS SEOLS TOLS SIGTOLS SEC TC SIGTC BETAFM SEFM TFM SIGTFM;
run;
proc means data=_02 noprint;
 var BETAOLS SEOLS SIGTOLS SEC SIGTC BETAFM SEFM SIGTFM;
 output out= 06
   mean=BETAOLS SEOLS SIGTOLS SEC SIGTC BETAFM SEFM SIGTFM
   std=S BETAOLS S SEOLS S SIGTOLS S SEC S SIGTC S BETAFM S SEFM S SIGTFM;
run;
%if &SOURCEX.=50 and &SOURCEEPS.=50 and &INTERVAL.=25 %then %do;
```

```
goptions xpixels=800 ypixels=400 border;
title "Figure 2";
proc univariate data= 02;
 var TOLS;
 histogram/normal(mu=0 sigma=1) midpoints=-50 to 50 by 5 vaxislabel="Percentile";
run;
proc univariate data=_02;
 var TC TFM;
 histogram/normal(mu=0 sigma=1) midpoints=-6 to 6 vaxislabel="Percentile";
run;
goptions;
title "The SAS System";
%end;
data 06;
 retain BETAOLS S BETAOLS BETAFM S BETAFM;
 set 06;
 UNDEROLS=1-SEOLS/S BETAOLS;
 UNDERC=1-SEC/S BETAOLS;
 UNDERFM=1-SEFM/S BETAFM;
 INDS=&INDS.;
 TIMES=&TIMES.;
 SOURCEX=0.&SOURCEX.;
 SOURCEEPS=0.&SOURCEEPS.;
run;
proc append base= 07 data= 06;
run;
%end;
%end;
%mend;
/**/
proc printto log="nul:";
run;
%TIMEEFFECT(INDS=500, TIMES=10, START=0, FINISH=75, INTERVAL=25);
proc printto;
run;
```

```
proc transpose out= 03;
 var BETAOLS--UNDERFM;
 by INDS TIMES SOURCEX SOURCEEPS;
run;
title "Table 3";
proc print noobs;
 var _NAME_ COL1;
 where TIMES=10 and NAME in ("BETAOLS", "S BETAOLS", "SEOLS", "SIGTOLS", "SEC", "SIGTC");
 by SOURCEX SOURCEEPS;
 format COL1 8.4;
run;
title "Table 4";
proc print noobs;
 var _NAME_ COL1;
 where TIMES=10 and _NAME_ in ("BETAFM", "S_BETAFM", "SEFM", "SIGTFM");
 by SOURCEX SOURCEEPS;
 format COL1 8.4;
run;
title "The SAS System";
proc sql;
 create table _A04_02 as select * from _02;
 create table _A04_03 as select * from _03;
 drop table _07;
quit;
```