Алгебра Домашнее задание В.Мозговой

31 декабря 2021 г.

Задачи

1.1 1 Диофантовы уравнения

1)

Рассмотрим ax + by = k, разделим все, если возможно(иначе корней нет), на $\gcd(a,b)$, Получим $\frac{a}{\gcd(a,b)}x + \frac{b}{\gcd(a,b)}y = \frac{k}{\gcd(a,b)} = a_0x + b_0y = k_0$, теперь $\gcd(a_0,b_0) = 1$

По алгоритму евклида найдем 1 пару a_1 , b_1 при которой равенство выполнено, тогда все решения можно

$$\begin{cases} x_n = a_1 + n \cdot \frac{a}{\gcd(a,b)} = a_1 + n \cdot a_0 \\ y_n = b_1 - n \cdot \frac{b}{\gcd(a,b)} = b_1 - n \cdot b_0 \end{cases} \qquad n \in \mathbb{Z}$$

$$\gcd(\mathbf{a},\mathbf{b}) = \mathrm{HOJ}(\mathbf{a},\mathbf{b}) = (\mathbf{a},\mathbf{b})$$

2)

Рассмотрим ax + by + cz = k. Если $k \mod \gcd(a, b, c) = 0$, то у уравнения есть решения, иначе их нет.

Пусть $p=\gcd(a,b)$, и $a^\star=\frac{a}{p}$ $b^\star=\frac{b}{p}$ Тогда решим уравнение $a^\star u+b^\star v=c$ – его решения u_0 и v_0 (по (1) пункту)

 z_0 и t_0 – решения cz+pt=d (по (1) пункту)

 x_0 и y_0 – решения $a^*x + b^*y = t_0$ (по (1) пункту)

Тогда решения системы это:

$$\begin{cases} x = x_0 + b^*k - u_0 m \\ y = y_0 - a^*k - v_0 m \\ z = z_0 + pm \end{cases}$$

$$k \ m \in \mathbb{Z}.$$

1.2 2

Докажем что все конечные поля одинакового порядка изоморфны

Рассмотрим поля A и B порядка p^n . Пусть $a \in A$ и $b \in B$ – примитивные элементы полей. Ненулевых элементов в A и B ровно $p^n - 1$.

У многочлена $x^{p^n-1}-1$ ровно p^n-1 ненулевых корней. Все эти корни различны и лежат как в A, так и в B. Тогда, так как порядки полей совпадают, то некий $\alpha \in A$ перешел в $\beta \in B$. И тогда $\alpha^k = \beta$, а это отоношение задает изоморфизм полей.

2:

+	0	1
0	0	1
1	1	0

×	0	1
0	0	0
1	0	1

4:

+	0	1	x	x+1
0	0	1	x	x+1
1	1	0	x+1	x
x	x	x+1	0	1
x+1	x+1	x	1	0

×	0	1	x	x+1
0	0	0	0	0
1	0	1	x	x+1
x	0	x	0	1
x+1	0	x+1	1	0

8:

+	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
1	1	0	x+1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
x	x	x+1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
x+1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x+1
$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x+1	x
$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	x+1	0	1
$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x+1	x	1	0

×	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	0	0	0	0	0	0	0
1	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
x	0	x	x^2	$x^2 + x$	x+1	1	$x^2 + x + 1$	$x^2 + 1$
x+1	0	x+1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x
x^2	0	x^2	x+1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x+1	$x^2 + x$
$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x+1	x	x^2
$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^2 + x$	x^2	x+1

3:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

×	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

9:

+	0	1	2	x	x+1	x+2	2x	2x+1	2x+2
0	0	1	2	x	x+1	x+2	2x	2x + 1	2x+2
1	1	2	0	x+1	x+2	x	2x+1	2x+2	2x
2	2	0	1	x+2	x	x+1	2x+2	2x + 1	2x
x	x	x+1	x+2	2x	2x+1	2x+2	0	1	2
x+1	x+1	x+2	x	2x+1	2x+2	2x	1	2	0
x+2	x+2	x	x+1	2x+2	2x	2x+1	2	0	1
2x	2x	2x+1	2x+2	0	1	2	x	x+1	x+2
2x+1	2x+1	2x+2	2x	1	2	0	x+1	x+2	x
2x+2	2x+2	2x	2x + 1	2	0	1	x+2	x	x+1

×	0	1	2	x	x+1	x+2	2x	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	x	x+1	x+2	2x	2x+1	2x+2
2	0	2	1	2x	2x+2	2x+1	x	x+2	x+1
x	0	x	2x	2	x+2	2x+2	1	x+1	2x+1
x+1	0	x+1	2x+2	x+2	2x	1	2x+1	2	x
x+2	0	x+2	2x+1	2x+2	1	x	x+1	2x	2
2x	0	2x	x	1	2x + 1	x+1	2	2x+2	x+2
2x + 1	0	2x + 1	x+2	x+1	2	2x	2x+2	x	1
2x+2	0	2x+2	x+1	2x+1	x	2	x+2	1	2x

5:

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

7:

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

1.3 3

Приводимые в \mathbb{F}_3 приводимы и в \mathbb{F}_9 .

В \mathbb{F}_3 неприводимые это $x^2 + 1$; $x^2 + x + 2$; $x^2 + 2x + 2$

В \mathbb{F}_9 $y^2 + 1 = 0$; $y^2 + y + 2$ имеет корень (x+1); $y^2 + 2y + 2$ имеет корень (x+2).

1.4 4

Покажем, что в $F_{16} = F[y]/(y^2 + y(x+1) + 1)$ есть корни.

Заметим, что если любое уравнение можно свести к $x^2+x+c=0$ или $x^2+c=0$. Докажем это: пусть уравнение вида $ax^2+bx+c=0$ (считаем a не нулевым), тогда оно эквивалентно уравнению $x^2+\frac{b}{a}x+\frac{c}{a}$. Сделаем замену переменных: $z\cdot\frac{b}{a}=x$. Тогда уравнение эквивалентно $z^2+z+\frac{c\cdot a^2}{b^2}=0$ с заменой корней (при $b\neq 0$, иначе эквивалентно уравнению вида $x^2+c=0$). Заметим, что $x^2+x+c=0$ имеют корни в F16:

$$x^{2} + x = 0$$
 $x = 0;$ $x = 1$
 $x^{2} + x + 1 = 0$ $x = \overline{x};$ $x = \overline{x+1}$

Примечание:

 $(y\cdot\overline{x}+\alpha)^2=y^2\cdot\overline{x+1}+\alpha^2=y\cdot\overline{x}+\overline{x+1}+\alpha^2$, поэтому решение двух оставшихся уравнений сводится к двум первым: $(y\cdot\overline{x}+\alpha)^2+(y\cdot\overline{x}+\alpha)+c=\alpha^2+\alpha+\overline{x+1}+c$

$$x^2 + x + \overline{x} = 0$$
 $x = y \cdot \overline{x} + \overline{x};$ $x = y \cdot \overline{x} + \overline{x+1}$
 $x^2 + x + \overline{x+1} = 0$ $x = y \cdot \overline{x};$ $x = y \cdot \overline{x} + 1$

Покажем, что у уравнений вида $x^2 + c = 0$ есть решения:

 $0 \cdot 0 = 0$, откуда $x^2 + 0 = 0$ имеет корень.

 $1 \cdot 1 = 1$, откуда $x^2 + 1 = 0$ имеет корень.

 $\overline{x} \cdot \overline{x} = \overline{x+1}$, откуда $x^2 + \overline{x+1} = 0$ имеет корень.

 $\overline{x+1} \cdot \overline{x+1} = \overline{x}$, откуда $x^2 + \overline{x} = 0$ имеет корень.

1.5 5

Рассмотрим группу обратимых для n = 12 $\mathbb{Z}/12\mathbb{Z}$, это $\{1, 5, 7, 11\}$.

Заметим, что $5 \cdot 5 = 25 = 1$, $7 \cdot 7 = 49 = 1$, $11 \cdot 11 = -1 \cdot -1 = 1$, откуда следует, что эта группа не циклична.

1.6 6

Докажем, что существует первообразный корень в $\mathbb{Z}/p\mathbb{Z}$.

(1) **Теорема Ферма**: $\alpha^{p-1} = 1$ при $\alpha \neq 0$. Доказательство:

Рассмотрим всевозможные произведения α на другие элемента поля. Так как это поле, значит в нём нет делителей 0, откуда не может быть такого, что $\alpha \cdot x = \alpha \cdot y$ при $x \neq y$, поэтому всевозможные произведения различны. Откуда следует, что $\alpha \cdot 2\alpha \cdot \dots \cdot (p-1)\alpha = (p-1)! \Leftrightarrow a^{p-1}(p-1)! = (p-1)! \Leftrightarrow a^{p-1} = 1 \ ((p-1)! \neq 0).$

(2) **Лемма**: $n = \sum \phi(i)$, где i пробегает по всем делителям n (Здесь мы работаем в натуральных числах). Доказательство:

Будем говорить, что $\alpha \in [1,n]$ принадлежит множеству M_i (где i – делитель n), если $\frac{\alpha}{\frac{n}{i}}$ целое, меньше i и взаимнопросто с i. Нетрудно видеть, что каждое α может принадлежать не более 1 множеству, так как то, что $\alpha \in M_{i_1} \Leftrightarrow (\alpha, n) = \frac{n}{i_1}$. Также видно, что любое α принадлежит хоть какому то множеству.

Теперь заметим, что в каждом множестве M_i ровно $\phi(i)$ элементов, так как таких $\alpha: \frac{\alpha}{n/i} \in Z$ - $i(\frac{n}{i}, \frac{2n}{i}, ..., \frac{in}{i})$, при этом среди чисел в промежутке [1, i] взаимнопростых $\phi(i)$. Откуда следует то, что и требовалось доказать.

(3) **Замечание**: элементов порядка k либо 0, либо $\phi(k)$. Доказательство:

Предположим есть хотя бы 1. (элемент g) Тогда элементы вида $g, g^2, g^3, ..., g^k$ различны и являются корнями уравнения $x^k-1=0$, откуда следует, что других корней нет, при этом если $\alpha\in[1,k]$ не взаимнопросто с k (пусть $(\alpha,k)=y$), то порядок у $g^\alpha=\frac{k}{y}$, что не равно k. Поэтому элементов порядка k ровно $\phi(k)$.

Следствие (1), (2) и (3):

Заметим, что если k - не делитель p-1, то чисел порядка k - ноль, так как порядок не может быть больше чем p-1 (иначе среди чисел $g,\ g^2,\ ...,\ g^i$ найдутся 2 одинаковых, тогда разделим одно на другое и получим, что порядок меньше, чем предполагался – противоречие), при этом любое число в степени p-1 равно 1. Теперь рассмотрим все k, которые делят p-1. Заметим, что для всякого k количество чисел порядка k не

больше чем $\phi(k)$, при этом сумма всех $\phi(i)$, где i делит p-1, равна p-1, то есть $(\sum_{i\mid p-1}\phi(i)=p-1)$, и всякое ненулевой элемент принадлежит хоть какому то порядку, откуда следует, что для всякого k количество чисел порядка k ровно $\phi(k)$.

Откуда есть элементы порядка p-1, что и требовалось доказать.

Пусть первообразный корень это g, и $g^{p-1}=1+pk$. Рассмотрим числа вида $(g+pt)^{p-1}$ $\forall t\in Z$. Тогда $(g+pt)^{p-1}=1+p\cdot(k+(p-1)g^{p-2}\cdot t+p\cdot X)$. Заметим, что существует такое t_1 , что $k+(p-1)g^{p-2}\cdot t_1+p\cdot X=1$ (mod $\mathbb{Z}/p^{n-1}\mathbb{Z}$), так как существует обратное у $(p-1)\cdot g^{p-2}$ (назовем его t_0). Рассмотрим $t_1=t_0\cdot(1-k-p\cdot X)$, заметим, что 1+p принадлежит показателю вида p^{α} , так как $g+pt_1$ принадлежит показателю вида $p^{\beta}\cdot (p-1)$, так как все возможные непустые показатели являются делителями $p^{n-1}\cdot (p-1)$, при этом $(g+pt_1)^{p-1}\neq 1$.

Рассмотрим $(1+p)^{p^{\alpha}}=1+p^{\alpha+1}\cdot(1+p\cdot Y)=1+p^{\alpha+1}\cdot u_{\alpha}$, где u_{α} взаимнопросто с p. Предположим, что $(1+p)^{p^{\alpha}}=1$, тогда $p^{\alpha+1}=0$, откуда $\alpha+1=n$, поэтому 1+p принадлежит показателю p^{n-1} , следовательно $g+pt_1$ принадлежит показателю $p^{n-1}\cdot(p-1)$, и тогда $g+pt_1$ — первообразный корень.