Desafio 03 - Equipamento defeituoso

Ellian dos Santos Rodrigues <esr2>

Para esse desafio foi necessário achar uma forma de descobrir o "object" defeituoso se baseando apenas nos seus valores em cada "Band". A forma que encontrei foi, com python, normalizar os valores e somar os desvios absolutos para achar o maior.

	Object 1	Object 2	Object 3	Object 4
Band 1	375	135	458	475
Band 2	57	47	53	73
Band 3	245	267	242	227
Band 4	1472	1494	1462	1582
Band 5	105	66	103	103
Band 6	54	41	62	64
Band 7	193	209	184	235
Band 8	147	93	122	160
Band 9	1102	674	957	1137
Band 10	720	1033	566	874
Band 11	253	143	171	265
Band 12	685	586	750	803
Band 13	488	355	418	570
Band 14	198	187	220	203
Band 15	360	334	337	365
Band 16	1374	1506	1572	1256
Band 17	156	139	147	175

1. NORMALIZAR OS DADOS com Z-SCORE

Primeiro normalizei os dados com a fórmula:

$$z=(x-\mu)/\sigma$$

Onde:

- x é o valor da célula.
- μ é a média da linha para aquela banda.
- σ é o desvio padrão da coluna.

Abaixo está a tabela com todos os valores normalizados com z-score:

```
=== Dados Normalizados ===
        Object 1 Object 2 Object 3 Object 4
Band 1 -0.209072 -0.614594 -0.004760 -0.062392
Band 2 -0.911521 -0.797967 -0.867204 -0.929034
Band 3 -0.496237 -0.339534 -0.464730 -0.597037
Band 4 2.214159 2.217270 2.133248 2.324107
Band 5 -0.805491 -0.758375 -0.760729 -0.864359
Band 6 -0.918148 -0.810470 -0.848038 -0.948437
Band 7 -0.611103 -0.460394 -0.588240 -0.579790
Band 8 -0.712715 -0.702113 -0.720269 -0.741477
Band 9 1.396843 0.508566 1.057856 1.364765
Band 10 0.553020 1.256645 0.225225 0.797783
Band 11 -0.478565 -0.597924 -0.615924 -0.515116
Band 12 0.475706 0.325193 0.617051 0.644719
Band 13 0.040541 -0.156161 -0.089940 0.142411
Band 14 -0.600058 -0.506237 -0.511579 -0.648777
Band 15 -0.242206 -0.199921 -0.262428 -0.299533
Band 16 1.997681 2.242275 2.367492 1.621308
Band 17 -0.692834 -0.606259 -0.667032 -0.709140
```

2. NORMALIZAR OS DADOS

Nesta etapa basta calcular a soma dos desvios absolutos e pegar o maior valor

Ou seja, no caso seria o "Object 4"

3. Outra forma

Outra alternativa mais simples é tirar a média dos objetos e verificar qual o valor mais distante dos outros. Com alguns comando simples no excel encontrei a média dos objectos:

Object 1	Object 2	Object 3	Object 4
469.6470588	429.9411765	460.2352941	503.9411765

Perceba que os objetos 1 e 3 possuem uma média semelhante, apenas o objeto 2 e 4 estão distantes da média (460).