Sieťové aplikácie a správa sietí Generovanie NetFlow dát zo zachytenej sieťovej komunikácie

Krištof Šiška (xsiska
16) November 2022

Contents

Úvod	3
Netflow v5	3
Návrh aplikácie	4
Implementácia	5
Implementačné detaily	5
Testovanie	6
Spustenie aplikácie	7
${f Z}{ m droje}$	8

Úvod

Netflow je sieťový protokol vyvinutý spoločnosťou Cisco, ktorý zo zachytenej sieťovej komunikácie vytvára agregované flows. Tieto flows slúžia hlavne na analýzu sieťovej prevádzky, obsauhujú dôležité informácie ako napríklad objem dát, počiatok a cieľovú destináciu. Je využívaný na monitorovanie siete, pričom pomáha k jej bezpečnosti a údržbe.

Netflow v5

V tomto projekte bol implementovaný netflow exportér, ktorý využíva netflow verziu 5. Každá flow odoslaná na kolektor sa skladá z netflow headeru a netflow recordu. Podoba týchto 2 častí je popísaná nasledujúcimi obrázkami.

Table B-3 Version 5 Header Format

Bytes	Contents	Description
0-1	version	NetFlow export format version number
2-3	count	Number of flows exported in this packet (1-30)
4-7	SysUptime	Current time in milliseconds since the export device booted
8-11	unix_secs	Current count of seconds since 0000 UTC 1970
12-15	unix_nsecs	Residual nanoseconds since 0000 UTC 1970
16-19	flow_sequence	Sequence counter of total flows seen
20	engine_type	Type of flow-switching engine
21	engine_id	Slot number of the flow-switching engine
22-23	sampling_interval	First two bits hold the sampling mode; remaining 14 bits hold value of sampling interval

Table B-4 Version 5 Flow Record Format

Bytes	Contents	Description
0-3	srcaddr	Source IP address
4-7	dstaddr	Destination IP address
8-11	nexthop	IP address of next hop router
12-13	input	SNMP index of input interface
14-15	output	SNMP index of output interface
16-19	dPkts	Packets in the flow
20-23	dOctets	Total number of Layer 3 bytes in the packets of the flow
24-27	First	SysUptime at start of flow
28-31	Last	SysUptime at the time the last packet of the flow was received
32-33	srcport	TCP/UDP source port number or equivalent
34-35	dstport	TCP/UDP destination port number or equivalent
36	pad1	Unused (zero) bytes
37	tcp_flags	Cumulative OR of TCP flags
38	prot	IP protocol type (for example, TCP = 6; UDP = 17)
39	tos	IP type of service (ToS)
40-41	src_as	Autonomous system number of the source, either origin or peer
42-43	dst_as	Autonomous system number of the destination, either origin or peer
44	src_mask	Source address prefix mask bits
45	dst_mask	Destination address prefix mask bits
46-47	pad2	Unused (zero) bytes

Návrh aplikácie

Aplikácia bude rozdelená na 3 časti. Prvá časť bude slúžiť na spracovanie argumentov. Táto časť bude najľahšia na implementáciu a zaberie najmenej času

na testovaní. Druhá časť bude riešiť vytváranie a správu flowov zo zachytenej komunikácie. Tretia časť sa bude zaoberať odosielaním flowov na kolektor. Táto tretia časť zaberie najdlhší čas na testovanie.

Implementácia

Projekt bol implementovaný v jazyku c++ kvôli veľkej výhode oproti jazyku C v tomto konkrétnom projekte a to je výskyt dátovej štruktúry, ktorá je založená na key : value pároch. V c++ sa nazýva Map a je súčasťou štandardných knižníc. Každý vytvorený flow je uložený do tejto mapy, pričom je identifikovaný kľúčom zloženým z piatich parametrov, ktoré jasne identifikujú každú flow. Tento kľúč je dátového typu tuple a má nasledujúcu podobu :

std::tuple<std::string, std::string, u_int16_t, u_int16_t, int>

Postupne zprava tieto argumenty vyjadrujú: IP adresu zdroja, IP adresu destinácie, port zdroja, port destinácie a číslo protokolu. Aplikácia podporuje iba protokoly ICMP (č. prot. 1), TCP (č. prot. 6) a UDP (č. prot. 17). Každým spracovaným paketom sa dejú nasledujúce operácie:

- 1. Prebehne kontrola timerov a veľkosti cache. Pokiaľ došlo k porušeniu jedného z timerov alebo k prekročeniu veľkostnému limitu, pristúpime k odoslaniu daného flowu (v prípade prekročenia veľkosti odosielame najstarší flow). Pred odoslaním je však nutné zmeniť odosielané dáta do network byte orderu. Na to nám slúžia funkcie htons a htonl.
- 2. Prebehne aktualizácia mapy. Pokiaľ sa už v mape nachádza flow, ktorý ma identický kľúč s našim novo vytvoreným kľúčom z nového paketu, daná flow sa aktualizuje (zvýši sa počet paketov a bytov a zmení sa čas posledného paketu).
- 3. Prebehne kontrola TCP flagov. Pokiaľ spracovávaný paket má nastavený TCP FIN alebo TCP RST flag, automaticky bude exportovaný flow.

Samotná implementácia exportovania na kolektor je z časti inšpirovaná programom echo-udp-client2 od Petra Matouška.

Aplikácia po spustení skontroluje argumenty a pokúsi sa otvoriť súbor v pcap formáte (ak bol zadaný) na čítanie.

Implementačné detaily

Pri spracovaní ICMP paketov sú čísla zdrojového a cieľového portu 0, keďže ICMP je na 3. vrstve OSI modelu a porty sú využívané až vo štvrtej (transportnej) vrstve. Počet flowov v každom netflow pakete odoslaného na kolektor je 1, čo inak znamená že každá flow má svoj osobitný header. Je to spravené hlavne z dôvodu jednoduchosti implementácie a testovania. Parametre flowov, ktoré nám nie sú známe sú nastavené na 0.

Testovanie

Testovanie bolo prevedené pomocou **nfcapd** a následný výpis pomocou **nfdump** bol porovnávaný s paketmi zobrazenými cez program **wireshark**.

•

	XEvent Proto	Src IP Addr:Port	Dst IP Addr:Port	X-Src IP Addr:Port		X-Dst IP Addr:Port	In Byte Out	
2022-10-07 18:59:26.874 INVALID		104.70.109.120:443 ->		0.0.0.0:0		0.0.0.0:0	2566	0
2022-10-07 18:59:26.861 INVALID		100.69.167.92:41064 ->		0.0.0.0:0		0.0.0.0:0	4796	0
2022-10-07 18:59:30.198 INVALID		107.23.110.60:443 ->	20010011201102102002	0.0.0.0:0		0.0.0.0:0	52	0
2022-10-07 18:59:30.402 INVALID		192.0.73.2:443 ->		0.0.0.0:0		0.0.0.0:0	223	0
2022-10-07 18:59:30.070 INVALID		100.69.167.92:32992 ->		0.0.0.0:0		0.0.0.0:0	52	0
2022-10-07 18:59:30.402 INVALID		100.69.167.92:46476 ->	192.0.73.2:443	0.0.0.0:0		0.0.0.0:0	120	0
2022-10-07 18:59:32.138 INVALID	Ignore TCP	142.251.36.74:443 ->	100.69.167.92:48652	0.0.0.0:0		0.0.0.0:0	52	0
2022-10-07 18:59:32.119 INVALID	Ignore TCP	100.69.167.92:48652 ->	142.251.36.74:443	0.0.0.0:0		0.0.0.0:0	52	0
2022-10-07 18:59:34.014 INVALID	Ignore TCP	142.251.36.147:443 ->	100.69.167.92:38530	0.0.0.0:0		0.0.0.0:0	329	0
2022-10-07 18:59:33.994 INVALID	Ignore TCP	100.69.167.92:38530 ->	142.251.36.147:443	0.0.0.0:0		0.0.0.0:0	812	0
2022-10-07 18:59:43.409 INVALID	Ignore TCP	107.23.110.60:443 ->	100.69.167.92:32992	0.0.0.0:0		0.0.0.0:0	233	
2022-10-07 18:59:36.250 INVALID	Ignore TCP	142.250.102.188:5228 ->	100.69.167.92:46116	0.0.0.0:0		0.0.0.0:0	52	
2022-10-07 18:59:44.755 INVALID	Ignore TCP	142.251.36.147:443 ->	100.69.167.92:38530	0.0.0.0:0		0.0.0.0:0	381	0
2022-10-07 18:59:38.288 INVALID	Ignore TCP	142.251.36.74:443 ->	100.69.167.92:48654	0.0.0.0:0		0.0.0.0:0	52	
2022-10-07 18:59:36.234 INVALID	Ignore TCP	162.159.129.232:443 ->	100.69.167.92:45596	0.0.0.0:0		0.0.0.0:0	40	
2022-10-07 18:59:25.561 INVALID	Ignore TCP	162.159.135.234:443 ->	100.69.167.92:59936	0.0.0.0:0		0.0.0.0:0	2107	
2022-10-07 18:59:32.929 INVALID	Ignore TCP	3.65.102.105:443 ->	100.69.167.92:53686	0.0.0.0:0		0.0.0.0:0	372	0
2022-10-07 18:59:32.889 INVALID	Ignore TCP	3.65.102.105:443 ->	100.69.167.92:53694	0.0.0.0:0		0.0.0.0:0	320	0
2022-10-07 18:59:43.409 INVALID	Ignore TCP	100.69.167.92:32992 ->	107.23.110.60:443	0.0.0.0:0		0.0.0.0:0	168	0
2022-10-07 18:59:36.215 INVALID	Ignore TCP	100.69.167.92:46116 ->	142.250.102.188:5228	0.0.0.0:0		0.0.0.0:0	52	0
2022-10-07 18:59:44.742 INVALID	Ignore TCP	100.69.167.92:38530 ->	142.251.36.147:443	0.0.0.0:0		0.0.0.0:0	3699	0
2022-10-07 18:59:38.263 INVALID	Ignore TCP	100.69.167.92:48654 ->	142.251.36.74:443	0.0.0.0:0		0.0.0.0:0	52	0
2022-10-07 18:59:36.215 INVALID	Ignore TCP	100.69.167.92:45596 ->	162.159.129.232:443	0.0.0.0:0		0.0.0.0:0	40	0
2022-10-07 18:59:25.561 INVALID	Ignore TCP	100.69.167.92:59936 ->	162.159.135.234:443	0.0.0.0:0		0.0.0.0:0	400	0
2022-10-07 18:59:32.850 INVALID	Ignore TCP	100.69.167.92:53686 ->	3.65.102.105:443	0.0.0.0:0		0.0.0.0:0	424	0
2022-10-07 18:59:32.853 INVALID	Ignore TCP	100.69.167.92:53694 ->	3.65.102.105:443	0.0.0.0:0		0.0.0.0:0	424	Θ
Summary: total flows: 26, total bytes: 17870, total packets: 105, avg bps: 7394, avg pps: 5, avg bpp: 170								
Time window: 2022-10-07 18:59:25 - 2022-10-07 18:59:44								
Total flows processed: 26, Blocks skipped: 0, Bytes read: 2208								
Sys: 0.004s flows/second: 5658.		906s flows/second: 4061.2						

Spustenie aplikácie

Aplikácia je dodaná aj s makefilom. Prekladá sa príkazom make a spúšťa sa v nasledujúcej podobe :

```
./flow [-f < file>] [-c < netflow_collector>[:<port>]] [-a < active_timer>] [-i < inactive_timer>] [-m < count>]
```

Popis parametrov:

-f <file>

meno analyzovaného súboru alebo STDIN.

 $\text{-c} < \! \text{neflow_collector:port} \! > \!$

IP adresa, alebo hostname NetFlow kolektoru. voliteľne aj UDP port (127.0.0.1:2055, ak neni špecifikované),

 $\hbox{-a <- active_timer} >$

Interval v sekundách, po ktorom sa exportujú aktívne záznamy na kolektor (60, ak neni špecifikované),

 $\mbox{-i} < \mbox{inactive_timer} >$

Interval v sekundách, po jeho vypršaní sa exportujú neaktívne záznamy na kolektor (10, ak neni špecifikované),

-m < count >

Veľkosť flow-cache. Pri dosiahnutí max. velikosti dôjde k exportu najstaršieho záznamu v cachi na kolektor (1024, ak neni špecifikované).

 ${\bf K}$ projektu je dodaná aj manuálová stránka, ktorú je možné otvoriť nasledovným príkazom :

man -1 flow.1

Zdroje

https://en.wikipedia.org/wiki/NetFlow

http://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection_engine/

3-6/user/guide/format.html#wp1003394

https://www.flowmon.com/en/solutions/network-and-cloud-operations/

netflow-ipfix

https://www.kentik.com/kentipedia/what-is-netflow-overview/

https://moodle.vut.cz/pluginfile.php/502893/mod_folder/content/0/udp/

echo-udp-client2.c