Megression equation

•		
	High temp. in °C	Iced tea orders
	×	y
22nd (Mon.)	29	77
23rd (Tues.)	28	62
24th (Wed.)	34	93
25th (Thurs.)	31	84
26th (Fri.)	25	59

Step 1 find The sum of squares of x, $S_{xx}: (x-\bar{x})^2$ The sum of squares of y, Syy: (y-ȳ)2

The sum of products of x and y, $S_{(xy)}: (x-\overline{x})(y-\overline{y})$

	High temp. in °C x	Iced tea orders y	x-X	y- 3	(x-x)2	(y-9)²	(×-×)(y-j
22nd (Mon.)	29	77	-0.4	2		<u> </u>	
23rd (Tues.)	28	62	-1.4	-13	1. %	169	18.2
24th (Wed.)	34	93	4-6	18	21.16	324	<i>82</i> . 2
25th (Thurs.)	31	84	1.6	9	2.56	81	14.4
26th (Fri.)	25	59	-4.4	-16	19.36	2 56	70.4
Sum	147	375			45.2	834	185
Average	29.4	75			•	b	<u> </u>
•	√ ₹	√ <u>u</u>			S _{xx}	Syy	Sxy

Step 2 Find the residual sum of squares, Se y is the observed value

g is the estimated value based on our regression equation

y-g is called the residual and is written as e.

	High temp. in °C x	Iced tea orders y	Prediction g = au + b	Residuals (e) y-ŷ	Squared residuals
22nd (Mon.)	29	77	a × 29 +6	77-(a×29+b)	[77-(a×29+b)]2
23rd (Tues.)	28	62	a x 28 + b	62-(0×28+b)	[62 - (0×28+b)]2
24th (Wed.)	34	93	ax 34 +b	93 - (ax 34 +b)	
25th (Thurs.)	31	84	ax 31 tb		[93 - (ax 34 +b)]
26th (Fri.)	25	59	a x 25 + 6	84 - (ax 31 +b) 59 - (ax 25 +b)	[4-(ax31+b)]2 [9-(ax25+b)]
Sum	147	375	147a + 5b	375 ~ (147a + 5b)	Ser
Average	29.4	75	294a + b	75-(29.4a+b)	= 5 _e
	Į Ķ	$\frac{4}{9}$	= xa+b	= ÿ- (xa+b)	5

Se = [77-(ax29+b)]2+ [62-(ax28+b)]2+ [93-(ax34+b)]4+ [84-(ax31+b)]4+ [99-(ax25+b)]

Step 3 Differentiate Se with respect to a and b, and set it equal to 0 differentiating $y \cdot (ax+b)^n$ with respect x $dy = n(ax+b)^{n-1} \times a$ dx

$$\frac{dy}{dx} = n (ax+b)^{n-1} \times a$$

· Differentiale with respect to a

$$\frac{dS_e}{d_6} = 2[77 - (29a+b)] \times (-29) + 2[62 - (a 28+b)] \times (-28) + 2[93 - (a 34+b)] \times (-34) + 2[M - (a 31+b)] \times (-31) + 2[99 - (a 25+b)] \times (-25)$$

· Differentiate with respect to b

$$\frac{dS_e}{db} = 2[77 - (29a+b)] \times (-1) + 2[62 - (0 28+b)] \times (-1) + 2[93 - (a 24+b)] \times (-1) + 2[94 - (a 31+b)] \times (-1) + 2[99 - (a 25+b)] \times (-1)$$

Step 6

$$0 = \frac{5_{mg}}{5_{mx}} = \frac{185}{45.2} = 2.4.09$$

$$0 = \frac{1}{9} - \frac{1}{8} = \frac{1}{45.2}$$

$$0 = \frac{1}{9} - \frac{1}{8} = \frac{1}{45.2} = \frac{1}{45.25}$$

$$0 = \frac{1}{9} - \frac{1}{8} = \frac{1}{45.25} = \frac{1}{45.$$