Next steps:

Generate code with df

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings ("ignore")
df=pd.read_csv("Walmart.csv")
            Store Date Weekly_Sales Holiday_Flag Temperature Fuel_Price
                                                                                  CPI Unemploy
                     05-
       0
                    02-
                            1643690.90
                                                   0
                                                             42.31
                                                                          2.57 211.10
                   2010
                     12-
                    02-
                            1641957.44
                                                             38.51
                                                                          2.55 211.24
                   2010
                     19-
                            1611968.17
                                                             39.93
                                                                          2.51 211.29
                   2010
                     26-
                    02-
                           1409727.59
                                                   0
                                                             46.63
                                                                          2.56 211.32
                   2010
                     05-
                            1554806.68
                                                   0
                                                             46.50
                                                                          2.62 211.35
                    03-
                   2010
                                       View recommended plots
              Generate code with df
 Next steps:
df.rename({"Store":"Tienda", "Date":"Fecha","Weekly_Sales":"VentasSem", "Holiday_Flag": "Vacacion", "Temperature": "Temperatura","Fuel
            Tienda Fecha VentasSem Vacacion Temperatura PrecioFule
                                                                             CPI Desempleo
                           1643690.90
                                                        42.31
                                                                      2.57 211.10
                     2010
                       12-
                       02-
                           1641957.44
                                                        38.51
                                                                      2.55 211.24
                                                                                         8.11
                     2010
                       19.
                           1611968.17
                       02-
                                                        39.93
                                                                      2.51 211.29
                                                                                        8.11
                     2010
                       26-
                           1409727.59
                                              0
                       02-
                                                        46.63
                                                                      2.56 211.32
                                                                                         8.11
                     2010
                       05-
                       03-
                           1554806.68
                                                        46.50
                                                                      2.62 211.35
                                                                                         8.11
                     2010
```

2. Obtenga los descriptivos resumen de la base de datos e identifique a las variables numéricas y categóricas. ¿Hay algo que le llame la atención?

View recommended plots

```
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 6435 entries, 0 to 6434
     Data columns (total 8 columns):
                       Non-Null Count Dtype
          Column
      0
          Tienda
                       6435 non-null
                                        int64
          Fecha
                       6435 non-null
                                        object
                       6435 non-null
          Vacacion
                       6435 non-null
                                        int64
          Temperatura 6435 non-null
                                        float64
          PrecioFule
                       6435 non-null
                       6435 non-null
6435 non-null
          CPI
                                        float64
          Desempleo
                                        float64
     dtypes: float64(5), int64(2), object(1)
     memory usage: 402.3+ KB
df.describe()
```

	Tienda	VentasSem	Vacacion	Temperatura	PrecioFule	CPI	Desempleo	
count	6435.00	6435.00	6435.00	6435.00	6435.00	6435.00	6435.00	ıl.
mean	23.00	1046964.88	0.07	60.66	3.36	171.58	8.00	
std	12.99	564366.62	0.26	18.44	0.46	39.36	1.88	
min	1.00	209986.25	0.00	-2.06	2.47	126.06	3.88	
25%	12.00	553350.10	0.00	47.46	2.93	131.74	6.89	
50%	23.00	960746.04	0.00	62.67	3.44	182.62	7.87	
75%	34.00	1420158.66	0.00	74.94	3.73	212.74	8.62	
max	45.00	3818686.45	1.00	100.14	4.47	227.23	14.31	

3. Evalúe si la base contiene datos perdidos

```
df.isna().sum()

Tienda 0
Fecha 0
VentasSem 0
Vacacion 0
Temperatura 0
PrecioFule 0
CPI 0
Desempleo 0
dtype: int64
```

4. Evalúe si alguna de las variables contiene datos atípicos (outliers) o De ser el caso, detalle cuáles y qué método estadístico aplicarán para corregir.

```
# Box plots
fig, axs = plt.subplots(3,3, figsize = (15,10))
plt1 = sns.boxplot(df['Tienda'], ax = axs[0,0])
plt2 = sns.boxplot(df['Desempleo'], ax = axs[0,1])
plt3 = sns.boxplot(df['VentasSem'], ax = axs[0,2])
plt1 = sns.boxplot(df['Temperatura'], ax = axs[1,1])
plt2 = sns.boxplot(df['PrecioFule'], ax = axs[1,2])
plt3 = sns.boxplot(df['CPI'], ax = axs[2,0])
plt.tight_layout()
```



```
# Calculamos el Quartil 1 y Quartil 3 que son aquellos que nos permiten estimar los límites de los datos atípicos
Q1 = df.Desempleo.quantile(0.25)
Q3 = df.Desempleo.quantile(0.75)
IQR = Q3 - Q1 #rango intercuartil
print(IQR)
```

1.7309999999999999

```
\# Ahora removemos aquellas observaciones que se encuentran por fuera del rango: 1.5 x IOR
```

```
df = df[\sim((df['Desempleo'] < (Q1 - 1.5 * IQR)) | (df['Desempleo'] > (Q3 + 1.5 * IQR)))]
df.shape
```

```
(5954, 8)
```

```
# Box plots
fig, axs = plt.subplots(3,3, figsize = (15,10))
plt1 = sns.boxplot(df['Tienda'], ax = axs[0,0])
plt2 = sns.boxplot(df['Desempleo'], ax = axs[0,1])
plt3 = sns.boxplot(df['VentasSem'], ax = axs[0,2])
plt1 = sns.boxplot(df['Temperatura'], ax = axs[1,1])
plt2 = sns.boxplot(df['PrecioFule'], ax = axs[1,2])
plt3 = sns.boxplot(df['CPI'], ax = axs[2,0])
plt.tight_layout()
```


df

	Tienda	Fecha	VentasSem	Vacacion	Temperatura	PrecioFule	CPI	Desempleo
0	1	05- 02- 2010	1643690.90	0	42.31	2.57	211.10	8.11
1	1	12- 02- 2010	1641957.44	1	38.51	2.55	211.24	8.11
2	1	19- 02- 2010	1611968.17	0	39.93	2.51	211.29	8.11
3	1	26- 02- 2010	1409727.59	0	46.63	2.56	211.32	8.11
4	1	05- 03- 2010	1554806.68	0	46.50	2.62	211.35	8.11

Next steps: Generate code with df

View recommended plots

5. Grafique las distribuciones de las variables y a priori comente sobre ellas.

```
pd.options.display.float_format = '{:.2f}'.format
df.describe()
```

	Tienda	VentasSem	Vacacion	Temperatura	PrecioFule	CPI	Desempleo	
count	5954.00	5954.00	5954.00	5954.00	5954.00	5954.00	5954.00	ılı
mean	22.74	1050893.92	0.07	60.29	3.34	174.92	7.72	
std	13.09	572191.29	0.26	18.45	0.46	39.03	1.24	
min	1.00	209986.25	0.00	-2.06	2.47	126.06	4.31	
25%	11.00	554147.17	0.00	46.76	2.89	132.76	6.89	
50%	22.00	951379.13	0.00	62.39	3.42	189.81	7.85	
75%	34.00	1436132.69	0.00	74.66	3.72	213.76	8.49	
max	45.00	3818686.45	1.00	100.14	4.47	227.23	10.93	

 $\label{eq:df['Fecha'] = pd.to_datetime(df['Fecha'], format="%d-%m-%Y")} df['Fecha'] = pd.to_datetime(df['Fecha'], format="%d-%m-%Y")$ df

	Tienda	Fecha	VentasSem	Vacacion	Temperatura	PrecioFule	CPI	Desempleo
0	1	2010- 02-05	1643690.90	0	42.31	2.57	211.10	8.11
1	1	2010- 02-12	1641957.44	1	38.51	2.55	211.24	8.11
2	1	2010- 02-19	1611968.17	0	39.93	2.51	211.29	8.11
3	1	2010- 02-26	1409727.59	0	46.63	2.56	211.32	8.11
4	1	2010- 03-05	1554806.68	0	46.50	2.62	211.35	8.11
6430	45	2012- 09-28	713173.95	0	64.88	4.00	192.01	8.68
6431	45	2012- 10-05	733455.07	0	64.89	3.98	192.17	8.67

Next steps: Generate code with df View recommended plots

```
def season_getter(quarter):
    quarter_to_season = {1: 'Invierno', 2: 'Primavera', 3: 'Verano', 4: 'Otoño'}
    return quarter_to_season.get(quarter, 'Invalid Quarter')
```

```
import calendar
\mbox{\tt\#} Use the 'assign' method to add multiple columns in a single line
df = df.assign(
    Año=df['Fecha'].dt.year,
    quarter=df['Fecha'].dt.quarter,
Estacion=df['Fecha'].dt.quarter.map(season_getter),
    Mes=df['Fecha'].dt.month,
    Mes_nombre=df['Fecha'].dt.month_name(),
    Semana=df['Fecha'].dt.isocalendar().week,
    Dia_semana=df['Fecha'].dt.day_name())
```

df.head(5)

	Tienda	Fecha	VentasSem	Vacacion	Temperatura	PrecioFule	CPI	Desempleo	Año
0	1	2010- 02-05	1643690.90	0	42.31	2.57	211.10	8.11	2010
1	1	2010- 02-12	1641957.44	1	38.51	2.55	211.24	8.11	2010
2	1	2010- 02-19	1611968.17	0	39.93	2.51	211.29	8.11	2010
3	1	2010- 02-26	1409727.59	0	46.63	2.56	211.32	8.11	2010
4	1	2010- 03-05	1554806.68	0	46.50	2.62	211.35	8.11	2010

Next steps: Generate code with df View recommended plots

df.dtypes

Tienda	int64
Fecha	<pre>datetime64[ns]</pre>
VentasSem	float64
Vacacion	int64
Temperatura	float64
PrecioFule	float64
CPI	float64
Desempleo	float64
Año	int64
quarter	int64
Estacion	object
Mes	int64

```
object
UInt32
Mes nombre
Semana
Dia_semana
                          object
```

dtype: object

```
sns.countplot(data=df, x="Vacacion", palette='pastel')
plt.xlabel('Vacacion')
plt.ylabel('Count')
plt.title('Count of Observations by Holiday Flag')
plt.xticks(ticks=[0, 1], labels=['No Vacacion', 'Vacacion'])
```



```
var_cuantitativas = df.select_dtypes('number').columns
var_cualitativas =df.select_dtypes('object').columns
```

df[var_cualitativas]

	Estacion	Mes_nombre	Dia_semana	\blacksquare
0	Invierno	February	Friday	ıl.
1	Invierno	February	Friday	
2	Invierno	February	Friday	
3	Invierno	February	Friday	
4	Invierno	March	Friday	
6430	Verano	September	Friday	
6431	Otoño	October	Friday	
6432	Otoño	October	Friday	
6433	Otoño	October	Friday	
6434	Otoño	October	Friday	
5954 rc	ws × 3 colur	nns		

df['Mes_nombre'] = pd.Categorical(df['Mes_nombre'])
df['Dia_semana'] = pd.Categorical(df['Dia_semana']) df['quarter'] = pd.Categorical(df['quarter'])
df['Semana'] = pd.Categorical(df['Semana'])

print(df.dtypes)

Tienda	int64
Fecha	<pre>datetime64[ns]</pre>
VentasSem	float64
Vacacion	int64
Temperatura	float64
PrecioFule	float64
CPI	float64
Desempleo	float64
Año	int64
quarter	category
Estacion	object
Mes	int64
Mes_nombre	category
Semana	category
Dia_semana	category
dtype: object	

```
df.plot(subplots=True, figsize=(12,15))
plt.title('Evolución de las ventas Walmart')
plt.show()
```



```
plt.figure(figsize=(10,5))
plt.plot(df.VentasSem)
plt.title("Evolución de Ventas Walmart")
plt.xlabel("tiempo")
plt.ylabel("VentasSem")
plt.show()
```


df [["VentasSem", "Temperatura", "PrecioFule", "Desempleo", "CPI", "Estacion", "Vacacion"]].describe()

	VentasSem	Temperatura	PrecioFule	Desempleo	CPI	Vacacion	
count	5954.00	5954.00	5954.00	5954.00	5954.00	5954.00	ılı
mean	1050893.92	60.29	3.34	7.72	174.92	0.07	
std	572191.29	18.45	0.46	1.24	39.03	0.26	
min	209986.25	-2.06	2.47	4.31	126.06	0.00	
25%	554147.17	46.76	2.89	6.89	132.76	0.00	
50%	951379.13	62.39	3.42	7.85	189.81	0.00	
75%	1436132.69	74.66	3.72	8.49	213.76	0.00	
max	3818686.45	100.14	4.47	10.93	227.23	1.00	

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='VentasSem', kde=True,bins = 15, color = 'r')
plt.title('Distribution of VentasSem')
plt.xlabel('Median Value of VentasSem')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='Temperatura', kde=True,bins = 15, color = 'r')
plt.title('Temperatura')
plt.xlabel('Median Value of Temperatura')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='PrecioFule', kde=True,bins = 15, color = 'r')
plt.title('Precio Fule')
plt.xlabel('Median Value of Precio Fule')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='Desempleo', kde=True,bins = 15, color = 'r')
plt.title('Desempleo')
plt.xlabel('Median Value of PrecioFule')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='CPI', kde=True,bins = 15, color = 'r')
plt.title('CPI')
plt.xlabel('Median Value of CPI')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```


6. Obtenga las correlaciones entre los datos de corte numérico

df.corr().style.background_gradient(cmap='coolwarm')

	Tienda	VentasSem	Vacacion	Temperatura	PrecioFule	CPI	Desemple
Tienda	1.000000	-0.321986	0.000616	-0.022126	0.049860	-0.205025	0.309472
VentasSem	-0.321986	1.000000	0.036725	-0.061389	0.011257	-0.087443	-0.074999
Vacacion	0.000616	0.036725	1.000000	-0.156881	-0.076853	-0.003215	0.009751
Temperatura	-0.022126	-0.061389	-0.156881	1.000000	0.147560	0.218762	0.026236
PrecioFule	0.049860	0.011257	-0.076853	0.147560	1.000000	-0.142689	-0.104268
CPI	-0.205025	-0.087443	-0.003215	0.218762	-0.142689	1.000000	-0.216206
Desempleo	0.309472	-0.074999	0.009751	0.026236	-0.104268	-0.216206	1.000000
Año	-0.004488	-0.034163	-0.055937	0.086933	0.782773	0.087913	-0.241649
Mes	0.006684	0.074620	0.123563	0.232973	-0.032352	-0.002694	-0.01169 ⁴

7. Comente que variable escogerán como variable dependiente y que variables introducirán a su modelo.

La variable dependiente es Ventas Semanales, introduciré a mi modelo la variable Vacacion, Estacion, Año, Tienda, Mes

8. Indique que tipo de modelación realizarán y porqué

```
df=df[['Semana', 'VentasSem', 'CPI','Tienda','Vacacion','Desempleo', "PrecioFule","Temperatura"]]
df
```

	Semana	VentasSem	CPI	Tienda	Vacacion	Desempleo	PrecioFule	Temperatura
0	5	1643690.90	211.10	1	0	8.11	2.57	42.31
1	6	1641957.44	211.24	1	1	8.11	2.55	38.51
2	7	1611968.17	211.29	1	0	8.11	2.51	39.93
3	8	1409727.59	211.32	1	0	8.11	2.56	46.63
4	9	1554806.68	211.35	1	0	8.11	2.62	46.50
6430	39	713173.95	192.01	45	0	8.68	4.00	64.88
6431	40	733455.07	192.17	45	0	8.67	3.98	64.89
6432	41	734464.36	192.33	45	0	8.67	4.00	54.47
6433	42	718125.53	192.33	45	0	8.67	3.97	56.47
6434	43	760281.43	192.31	45	0	8.67	3.88	58.85
5954 rc	ows x 8 co	lumne						

Next steps: Generate code with df

View recommended plots

df.describe()

	VentasSem	CPI	Tienda	Vacacion	Desempleo	PrecioFule	Temperatura	\blacksquare
count	5954.00	5954.00	5954.00	5954.00	5954.00	5954.00	5954.00	ıl.
mean	1050893.92	174.92	22.74	0.07	7.72	3.34	60.29	
std	572191.29	39.03	13.09	0.26	1.24	0.46	18.45	
min	209986.25	126.06	1.00	0.00	4.31	2.47	-2.06	
25%	554147.17	132.76	11.00	0.00	6.89	2.89	46.76	
50%	951379.13	189.81	22.00	0.00	7.85	3.42	62.39	
75%	1436132.69	213.76	34.00	0.00	8.49	3.72	74.66	
max	3818686.45	227.23	45.00	1.00	10.93	4.47	100.14	

```
pip install linearmodels
```

```
Requirement already satisfied: linearmodels in /usr/local/lib/python3.10/dist-packages (5.4)
Requirement already satisfied: numpy>=1.22.0 in /usr/local/lib/python3.10/dist-packages (from linearmodels) (1.25.2)
Requirement already satisfied: pandas>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from linearmodels) (1.5.3) Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from linearmodels) (1.11.4)
Requirement already satisfied: statsmodels>=0.12.0 in /usr/local/lib/python3.10/dist-packages (from linearmodels) (0.14.1)
Requirement already satisfied: mypy-extensions>=0.4 in /usr/local/lib/python3.10/dist-packages (from linearmodels) (1.0.0)
Requirement already satisfied: Cython>=0.29.37 in /usr/local/lib/python3.10/dist-packages (from linearmodels) (3.0.9)
Requirement already satisfied: pyhdfe>=0.1 in /usr/local/lib/python3.10/dist-packages (from linearmodels) (0.2.0)
Requirement already satisfied: formulaic>=0.6.5 in /usr/local/lib/python3.10/dist-packages (from linearmodels) (1.0.1)
Requirement already satisfied: setuptools-scm[tom1]<9.0.0,>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from linearmodels) (
Requirement already satisfied: interface-meta>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from formulaic>=0.6.5->linearmode
Requirement already satisfied: typing-extensions>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from formulaic>=0.6.5->linearm
Requirement already satisfied: wrapt=1.0 in /usr/local/lib/python3.10/dist-packages (from formulaic>=0.6.5->linearmodels) (1.14.1 Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.3.0->linearmodels
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.3.0->linearmodels) (2023.4)
Requirement already satisfied: packaging>=20 in /usr/local/lib/python3.10/dist-packages (from setuptools-scm[tom1]<9.0.0,>=8.0.0-> Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from setuptools-scm[tom1]<9.0.0,>=8.0.0-> lin
Requirement already satisfied: tomli>=1 in /usr/local/lib/python3.10/dist-packages (from setuptools-scm[toml]<9.0.0,>=8.0.0->linea
Requirement already satisfied: patsy>=0.5.4 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.12.0->linearmodels) (0 Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from patsy>=0.5.4->statsmodels>=0.12.0->linearmodel
```

```
from linearmodels import PooledOLS
import statsmodels.api as sm
```

```
df.set_index(['Semana', "Vacacion"], inplace=True)
```

from linearmodels import PanelOLS

CPI

```
X = sm.tools.tools.add_constant(df.CPI)
y = df.VentasSem

modelo_fe = PanelOLS(y, X, entity_effects = True)
resultados_fe = modelo_fe.fit()
```

```
resultados_fe
```

```
PanelOLS Estimation Summary
       Dep. Variable: VentasSem
                                           R-squared:
                                                          0.0078
         Estimator: PanelOLS
                                      R-squared (Between): 0.0018
                                       R-squared (Within): 0.0078
     No. Observations: 5954
                     Wed, Mar 20 2024 R-squared (Overall): 0.0076
           Date:
           Time:
                      04:55:07
                                         Log-likelihood
                                                          -8.722e+04
       Cov. Estimator: Unadjusted
                                           F-statistic:
                                                          46 292
          Entities:
                      52
                                            P-value
                                                          0.0000
         Avg Obs:
                      114.50
                                          Distribution:
                                                          F(1,5901)
                      82.000
         Min Obs:
         Max Obs:
                     126.00
                                       F-statistic (robust): 46.292
                                            P-value
                                                          0.0000
       Time periods: 2
                                          Distribution:
                                                          F(1,5901)
         Avg Obs:
                     2977.0
         Min Obs:
                      418.00
         Max Obs:
                      5536.0
                         Parameter Estimates
           Parameter Std. Err. T-stat P-value Lower CI Upper CI
     const 1.272e+06 3.329e+04 38.210 0.0000 1.207e+06 1.337e+06
      CPI -1263.7 185.74
                             -6.8038 0.0000 -1627.8
                                                      -899.61
     F-test for Poolability: 5.5497
     P-value: 0.0000
     Distribution: F(51,5901)
     Included effects: Entity
     id: 0x7b6c10ede020
modelo1 = PooledOLS(y, X)
resultados_pooled_OLS = modelo1.fit(cov_type='clustered', cluster_entity=True)
# Store values for checking homoskedasticity graphically
predicciones_pooled_OLS = resultados_pooled_OLS.predict().fitted_values
residuos_pooled_OLS = resultados_pooled_OLS.resids
resultados_pooled_OLS
                      PooledOLS Estimation Summary
       Dep. Variable: VentasSem
                                           R-squared:
                                                          0.0076
                                      R-squared (Between): 0.0019
         Estimator:
                     PooledOLS 8 4 1
     No. Observations: 5954
                                       R-squared (Within): 0.0078
                      Wed, Mar 20 2024 R-squared (Overall): 0.0076
           Date:
                                         Log-likelihood
                     04:55:08
           Time:
                                                         -8.736e+04
       Cov. Estimator: Clustered
                                           F-statistic:
                                                          45.862
          Entities:
                                            P-value
                                                          0.0000
                      52
                     114.50
         Avg Obs:
                                          Distribution:
                                                          F(1,5952)
         Min Obs:
                      82.000
                                       F-statistic (robust): 387.95
         Max Obs:
                     126.00
                                            P-value
                                                          0.0000
       Time periods: 2
                                          Distribution:
                                                          F(1,5952)
                      2977.0
         Avg Obs:
                      418.00
         Min Obs:
         Max Obs:
                      5536.0
                         Parameter Estimates
           Parameter Std. Err. T-stat P-value Lower CI Upper CI
     const 1.275e+06 2.535e+04 50.294 0.0000 1.225e+06 1.325e+06
      CPI -1282.0 65.089 -19.696 0.0000 -1409.6 -1154.4
     id: 0x7b6c10eb4cd0
from linearmodels import RandomEffects
modelo_re = RandomEffects(y, X)
resultados re = modelo re.fit()
resultados_re
```

```
RandomEffects Estimation Summary
```

 Dep. Variable:
 VentasSem
 R-squared:
 0.0140

 Estimator:
 RandomEffects
 R-squared (Between):
 0.0045

 No. Observations:
 5954
 R-squared (Within):
 0.0078

 Date:
 Wed, Mar 20 2024
 R-squared (Overall):
 0.0075

 Time:
 04:55:08
 Log-likelihood
 -8.725e+04

Cov. Estimator: Unadjusted

 Entities:
 52
 P-value
 0.0000

 Avg Obs:
 114.50
 Distribution:
 F(1,5952)

Min Obs: 82.000

Max Obs: 126.00 **F-statistic (robust):** 46.491

P-value 0.0000

Time periods: 2 Distribution: F(1,5952)

 Avg Obs:
 2977.0

 Min Obs:
 418.00

 Max Obs:
 5536.0

Parameter Estimates

 Parameter
 Std. Err.
 T-stat
 P-value
 Lower CI
 Upper CI

 const
 1.278e+06
 3.676e+04
 34.783
 0.0000
 1.206e+06
 1.351e+06

 CPI
 -1267.7
 185.92
 -6.8185
 0.0000
 -1632.2
 -903.24

id: 0x7b6c0f17e8c0

Desempleo

```
X2 = sm.tools.tools.add_constant(df.Desempleo)
y2 = df.VentasSem
modelo_fe = PanelOLS(y2, X2, entity_effects = True)
resultados_fe = modelo_fe.fit()
resultados_fe
```

PanelOLS Estimation Summary

 Dep. Variable:
 VentasSem
 R-squared:
 0.0063

 Estimator:
 PanelOLS
 R-squared (Between):
 -0.0115

 No. Observations:
 5954
 R-squared (Within):
 0.0063

 Date:
 Wed, Mar 20 2024
 R-squared (Overall):
 0.0056

 Time:
 04:55:08
 Log-likelihood
 -8.722e+04

Cov. Estimator: Unadjusted

 Entities:
 52
 P-value
 0.0000

 Avg Obs:
 114.50
 Distribution:
 F(1,5901)

Min Obs: 82.000

Max Obs: 126.00 F-statistic (robust): 37.500

P-value 0.0000 **Distribution:** F(1,5901)

 Time periods:
 2

 Avg Obs:
 2977.0

 Min Obs:
 418.00

 Max Obs:
 5536.0

Parameter Estimates

 const
 1.327e+06
 5847.2
 -6.1237
 0.0000
 1.238e+06
 1.417e+06

 Desempleo -3.581e+04
 5847.2
 -6.1237
 0.0000
 -4.727e+04
 -2.434e+04

F-test for Poolability: 5.6171 P-value: 0.0000 Distribution: F(51,5901)

Included effects: Entity id: 0x7b6c117029e0

```
modelo1 = PooledOLS(y2, X2)
resultados_pooled_OLS = modelo1.fit(cov_type='clustered', cluster_entity=True)
```

```
# Store values for checking homoskedasticity graphically
predicciones_pooled_OLS = resultados_pooled_OLS.predict().fitted_values
residuos_pooled_OLS = resultados_pooled_OLS.resids
```

resultados_pooled_OLS

PooledOLS Estimation Summary

0.0056 Dep. Variable: VentasSem R-squared: Estimator: PooledOLS R-squared (Between): -0.0112 No. Observations: 5954 R-squared (Within): 0.0063 Wed, Mar 20 2024 R-squared (Overall): 0.0056 Date: Time: 04:55:09 Log-likelihood -8.736e+04

Cov. Estimator: Clustered

F-statistic: 33.668

Entities: 52 P-value 0.0000 114.50 F(1,5952) Avg Obs: Distribution:

Min Obs: 82.000

Max Obs: 126.00 F-statistic (robust): 415.17

P-value 0.0000

Time periods: 2 Distribution: F(1,5952)

2977 0 Avg Obs: Min Obs: 418.00 Max Obs: 5536.0

Parameter Estimates

Parameter Std. Err. T-stat P-value Lower CI Upper CI **const** 1.318e+06 2.531e+04 52.059 0.0000 1.268e+06 1.367e+06 **Desempleo** -3.454e+04 1695.0 -20.376 0.0000 -3.786e+04 -3.121e+04

id: 0x7b6c0f2e56c0

from linearmodels import RandomEffects modelo_re = RandomEffects(y2, X2) resultados_re = modelo_re.fit() resultados_re

RandomEffects Estimation Summary

Dep. Variable: VentasSem 0.0116 R-squared: Estimator: RandomEffects R-squared (Between): -0.0087 No. Observations: 5954 R-squared (Within): 0.0063 Date: Wed, Mar 20 2024 R-squared (Overall): 0.0055 Time: 04:55:09 Log-likelihood -8.725e+04

Cov. Estimator: Unadjusted

F-statistic: 69.730 Entities: 52 P-value 0.0000 Avg Obs: 114.50 Distribution: F(1,5952)

Min Obs: 82.000 F-statistic (robust): 37.056 Max Obs: 126.00 P-value 0.0000

Time periods: 2 Distribution: F(1,5952)

Avg Obs: 2977.0 418.00 Min Obs: Max Obs: 5536.0

Parameter Estimates

Parameter Std. Err. T-stat P-value Lower CI Upper CI 1.332e+06 4.906e+04 27.145 0.0000 1.236e+06 1.428e+06 **Desempleo** -3.559e+04 5846.0 -6.0873 0.0000 -4.705e+04 -2.413e+04

id: 0x7b6c1a3e3b80

PrecioFule

X3 = sm.tools.tools.add constant(df.PrecioFule) y3 = df.VentasSem modelo_fe = PanelOLS(y3, X3, entity_effects = True) resultados_fe = modelo_fe.fit() resultados_fe

```
PanelOLS Estimation Summary
```

 Dep. Variable:
 VentasSem
 R-squared:
 0.0011

 Estimator:
 PanelOLS
 R-squared (Between):
 -0.0324

 No. Observations:
 5954
 R-squared (Within):
 0.0011

 Date:
 Wed, Mar 20 2024
 R-squared (Overall):
 -0.0004

 Time:
 04:55:09
 Log-likelihood
 -8.724e+04

Cov. Estimator: Unadjusted

 F-statistic:
 6.5383

 52
 P-value
 0.0106

 114.50
 Distribution:
 F(1,5901)

Min Obs: 82.000

Entities:

Avg Obs:

Max Obs: 126.00 F-statistic (robust): 6.5383

P-value 0.0106

Time periods: 2 Distribution: F(1,5901)

 Avg Obs:
 2977.0

 Min Obs:
 418.00

 Max Obs:
 5536.0

Parameter Estimates

 const
 9.086e+05
 5.611e+04
 16.195
 0.0000
 7.987e+05
 1.019e+06

 PrecioFule
 4.26e+04
 1.666e+04
 2.5570
 0.0106
 9939.8
 7.526e+04

F-test for Poolability: 5.6519 P-value: 0.0000 Distribution: F(51,5901)

Included effects: Entity id: 0x7b6c0ed87100

modelo1 = PooledOLS(y3, X3)
resultados_pooled_OLS = modelo1.fit(cov_type='clustered', cluster_entity=True)
Store values for checking homoskedasticity graphically
predicciones_pooled_OLS = resultados_pooled_OLS.predict().fitted_values
residuos_pooled_OLS = resultados_pooled_OLS.resids

resultados_pooled_OLS

PooledOLS Estimation Summary

 Dep. Variable:
 VentasSem
 R-squared:
 0.0001

 Estimator:
 PooledOLS
 R-squared (Between): -0.0122

 No. Observations:
 5954
 R-squared (Within):
 0.0006

 Date:
 Wed, Mar 20 2024
 R-squared (Overall):
 0.0001

 Time:
 04:55:10
 Log-likelihood
 -8.738e+04

Cov. Estimator: Clustered

 Entities:
 52
 P-value
 0.3852

 Avg Obs:
 114.50
 Distribution:
 F(1,5952)

Min Obs: 82.000

 Max Obs:
 126.00
 F-statistic (robust):
 1.4532

 P-value
 0.2281

Time periods: 2 Distribution: F(1,5952)

 Avg Obs:
 2977.0

 Min Obs:
 418.00

 Max Obs:
 5536.0

Parameter Estimates

 Parameter const
 Std. Err.
 T-stat
 P-value loss
 Lower CI L

id: 0x7b6c0ec7f280

from linearmodels import RandomEffects
modelo_re = RandomEffects(y3, X3)
resultados_re = modelo_re.fit()
resultados_re

RandomEffects Estimation Summary

 Dep. Variable:
 VentasSem
 R-squared:
 0.0065

 Estimator:
 RandomEffects
 R-squared (Between):
 -0.0253

 No. Observations:
 5954
 R-squared (Within):
 0.0011

 Date:
 Wed, Mar 20 2024
 R-squared (Overall):
 -0.0003

 Time:
 04:55:10
 Log-likelihood
 -8.727e+04

Cov. Estimator: Unadjusted

 Entities:
 52
 P-value
 0.0000

 Avg Obs:
 114.50
 Distribution:
 F(1,5952)

Min Obs: 82.000

Max Obs: 126.00 F-statistic (robust): 5.0604
P-value 0.0245

Time periods: 2 Distribution: F(1,5952)

 Avg Obs:
 2977.0

 Min Obs:
 418.00

 Max Obs:
 5536.0

Parameter Estimates

 Parameter
 Std. Err.
 T-stat
 P-value
 Lower CI
 Upper CI

 const
 9.332e+05
 5.815e+04
 16.047
 0.0000
 8.192e+05
 1.047e+06

 PrecioFule
 3.721e+04
 1.654e+04
 2.2495
 0.0245
 4782.8
 6.963e+04

id: 0x7b6c0ec8d390

Temperatura

```
X4 = sm.tools.tools.add_constant(df.Temperatura)
y4 = df.VentasSem
modelo_fe = PanelOLS(y4, X4, entity_effects = True)
resultados_fe = modelo_fe.fit()
resultados_fe
                       PanelOLS Estimation Summary
       Dep. Variable: VentasSem
                                           R-squared:
                                                          0.0023
         Estimator:
                     PanelOLS
                                      R-squared (Between): 0.0344
                                       R-squared (Within): 0.0023
      No. Observations: 5954
                      Wed, Mar 20 2024 R-squared (Overall): 0.0034
           Date:
           Time:
                      04:55:10
                                         Log-likelihood
                                                         -8.724e+04
       Cov. Estimator: Unadjusted
                                           F-statistic:
                                                          13.868
          Entities:
                                                          0.0002
                      52
                                            P-value
         Avg Obs:
                     114.50
                                          Distribution:
                                                          F(1,5901)
         Min Obs:
                      82.000
                     126.00
                                       F-statistic (robust): 13.868
         Max Obs:
                                            P-value
                                                          0.0002
       Time periods: 2
                                          Distribution:
                                                          F(1,5901)
         Avg Obs:
                      2977.0
         Min Obs:
                      418 00
         Max Obs:
                     5536.0
                            Parameter Estimates
                 Parameter Std. Err. T-stat P-value Lower CI Upper CI
                 1.203e+06 4.137e+04 29.068 0.0000 1.121e+06 1.284e+06
         const
     Temperatura -2515.6 675.53 -3.7239 0.0002 -3839.9 -1191.3
     F-test for Poolability: 5.3599
     P-value: 0.0000
     Distribution: F(51.5901)
     Included effects: Entity
     id: 0x7b6c0ec8dc90
modelo1 = PooledOLS(y4, X4)
resultados_pooled_OLS = modelo1.fit(cov_type='clustered', cluster_entity=True)
# Store values for checking homoskedasticity graphically
predicciones_pooled_OLS = resultados_pooled_OLS.predict().fitted_values
residuos_pooled_OLS = resultados_pooled_OLS.resids
resultados_pooled_OLS
                      PooledOLS Estimation Summary
       Dep. Variable: VentasSem
                                           R-squared:
                                                          0.0038
         Estimator: PooledOLS
                                      R-squared (Between): 0.0394
      No. Observations: 5954
                                      R-squared (Within): 0.0022
           Date:
                      Wed, Mar 20 2024 R-squared (Overall): 0.0038
           Time:
                      04:55:11
                                         Log-likelihood
                                                         -8.737e+04
       Cov. Estimator: Clustered
                                           F-statistic:
                                                          22.516
          Entities:
                      52
                                            P-value
                                                          0.0000
                      114.50
                                          Distribution:
                                                          F(1,5952)
         Avg Obs:
         Min Obs:
                      82.000
         Max Obs:
                      126.00
                                       F-statistic (robust): 4.6577
                                           P-value
                                                          0.0310
       Time periods: 2
                                          Distribution:
                                                          F(1,5952)
         Avg Obs:
                      2977.0
         Min Obs:
                      418.00
         Max Obs:
                      5536.0
                            Parameter Estimates
                 Parameter Std. Err. T-stat P-value Lower Cl Upper Cl
               1.166e+06 6.582e+04 17.711 0.0000 1.037e+06 1.295e+06
      Temperatura -1903.4 881.95
                                    -2.1582 0.0310 -3632.3
     id: 0x7b6c0f2e7b20
from linearmodels import RandomEffects
modelo_re = RandomEffects(y4, X4)
resultados_re = modelo_re.fit()
```

resultados_re

```
RandomEffects Estimation Summary
```

 Dep. Variable:
 VentasSem
 R-squared:
 0.0080

 Estimator:
 RandomEffects
 R-squared (Between):
 0.0372

 No. Observations:
 5954
 R-squared (Within):
 0.0023

 Date:
 Wed, Mar 20 2024
 R-squared (Overall):
 0.0035

 Time:
 04:55:11
 Log-likelihood
 -8.726e+04

Cov. Estimator: Unadjusted

 F-statistic:
 47.946

 52
 P-value
 0.0000

 114.50
 Distribution:
 F(1,5952)

Min Obs: 82.000

Entities:

Avg Obs:

Max Obs: 126.00 **F-statistic (robust):** 15.647

P-value 0.0001

Time periods: 2 Distribution: F(1,5952)

 Avg Obs:
 2977.0

 Min Obs:
 418.00

 Max Obs:
 5536.0

Parameter Estimates

 const
 1.196e+06
 4.016e+04
 29.783
 0.0000
 1.117e+06
 1.275e+06

 Temperatura
 -2359.0
 596.36
 -3.9557
 0.0001
 -3528.1
 -1189.9

id: 0x7b6c18176fe0

Vacation

```
modelo1 = PooledOLS(y5, X5)
resultados_pooled_OLS = modelo1.fit(cov_type='clustered', cluster_entity=True)
# Store values for checking homoskedasticity graphically
predicciones_pooled_OLS = resultados_pooled_OLS.predict().fitted_values
residuos_pooled_OLS = resultados_pooled_OLS.resids
resultados_pooled_OLS
```

PooledOLS Estimation Summary

 Dep. Variable:
 VentasSem
 R-squared:
 0.0013

 Estimator:
 PooledOLS
 R-squared (Between):
 0.0282

 No. Observations:
 5954
 R-squared (Within):
 0.0000

 Date:
 Wed, Mar 20 2024
 R-squared (Overall):
 0.0013

 Time:
 04:55:11
 Log-likelihood
 -8.738e+04

Cov. Estimator: Clustered

 F-statistic:
 8.0384

 Entities:
 52
 P-value
 0.0046

 Avg Obs:
 114.50
 Distribution:
 F(1,5952)

Min Obs: 82.000

 Max Obs:
 126.00
 F-statistic (robust):
 0.9377

 P-value
 0.3329

 Time periods:
 45
 Distribution:
 F(1,5952)

 Avg Obs:
 132.31

Min Obs: 17.000 Max Obs: 143.00

Parameter Estimates

 Parameter
 Std. Err.
 T-stat
 P-value
 Lower CI
 Upper CI

 const
 1.045e+06
 1.448e+04
 72.201
 0.0000
 1.017e+06
 1.073e+06

 Vacacion
 8.224e+04
 8.493e+04
 0.9684
 0.3329
 -8.425e+04
 2.487e+05

id: 0x7b6c0eca98a0

from linearmodels import RandomEffects
modelo_re = RandomEffects(y5, X5)
resultados_re = modelo_re.fit()
resultados re

RandomEffects Estimation Summary

 Dep. Variable:
 VentasSem
 R-squared:
 0.0056

 Estimator:
 RandomEffects
 R-squared (Between):
 0.0309

 No. Observations:
 5954
 R-squared (Within):
 0.0000

 Date:
 Wed, Mar 20 2024
 R-squared (Overall):
 0.0012

 Time:
 04:55:11
 Log-likelihood
 -8.727e+04

Cov. Estimator: Unadjusted

 Entities:
 52
 P-value
 0.0000

 Avg Obs:
 114.50
 Distribution:
 F(1,5952)

Min Obs: 82.000

 Max Obs:
 126.00
 F-statistic (robust):
 1.5277

 P-value
 0.2165

 Time periods:
 45
 Distribution:
 F(1,5952)

Avg Obs: 132.31 Min Obs: 17.000 Max Obs: 143.00

Parameter Estimates

 Parameter
 Std. Err.
 T-stat
 P-value
 Lower CI
 Upper CI

 const
 1.05e+06
 2.026e+04
 51.823
 0.0000
 1.01e+06
 1.09e+06

 Vacacion
 9.098e+04
 7.361e+04
 1.2360
 0.2165
 -5.332e+04
 2.353e+05

id: 0x7b6c0ecd34c0

```
from scipy.stats import pearsonr
pearson_coef, p_value = pearsonr(df['Desempleo'], df['VentasSem'])
\label{print} {\tt print("The\ Pearson\ Correlation\ Coefficient\ is",\ pearson\_coef,\ "with\ a\ P-value\ of\ P\ =",\ p\_value)}
     The Pearson Correlation Coefficient is -0.07499880002681349 with a P-value of P = 6.872292803910042e-09
# Correlations with weekly sales
corr = df[['VentasSem', 'Temperatura', 'PrecioFule', 'CPI', 'Desempleo']].corr()['VentasSem'].sort_values(ascending = False)
corr = corr.to_frame()
corr.style.background_gradient(cmap="RdYlBu")
                  VentasSem
       VentasSem
                    1.000000
       PrecioFule
                    0.011257
      Temperatura
                   -0.061389
       Desempleo
                   -0.074999
          CPI
                   -0.087443
import numpy.linalg as la
from scipy import stats
import numpy as np
def hausman(fe, re):
    b = fe.params
    B = re.params
    v_b = fe.cov
    v_B = re.cov
    df = b[np.abs(b) < 1e8].size
    chi2 = np.dot((b - B).T, la.inv(v_b - v_B).dot(b - B))
    pval = stats.chi2.sf(chi2, df)
    return chi2, df, pval
    hausman = hausman(resultados_fe, resultados_re)
import statsmodels.stats.api as sms
import statsmodels.api as sm
from statsmodels.formula.api import ols
from statsmodels.compat import lzip
regresion = ols("VentasSem~Desempleo + Temperatura + PrecioFule + CPI", data=df)
results = regresion.fit()
```

OLS Regression Results

print(results.summary())

Dep. Variable: Model: Method: Date: We Time: No. Observations: Df Residuals: Df Model: Covariance Type:		VentasSem OLS Least Squares 1, 20 Mar 2024 04:55:11 5954 5949 4 nonrobust	F-stat: Prob (-squared:	:):	0.018 0.018 27.65 8.80e-23 -87327. 1.747e+05
=========				- 1.1		
	coet	std err	t	P> t 	[0.025	0.975]
Intercept	1.757e+06	9.26e+04	18.969	0.000	1.58e+06	1.94e+06
Desempleo -	4.464e+04	6153.835	-7.254	0.000	-5.67e+04	-3.26e+04
Temperatura -	1096.5001	417.716	-2.625	0.009	-1915.375	-277.626
PrecioFule -	1.021e+04	1.67e+04	-0.610	0.542	-4.3e+04	2.26e+04
CPI -	1492.9428	202.871	-7.359	0.000	-1890.644	-1095.242
Omnibus: 357.375		Durhin	======= -Watson:		0.112	
Prob(Omnibus):		0.000 Jarque-Bera (JB):			425.020	
Skew:			0.654 Prob(JB):			5.11e-93
Kurtosis:		2.989	•	•		2.41e+03
						=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.41e+03. This might indicate that there are strong multicollinearity or other numerical problems.

El Modelo de Regresión Lineal por Sklearn

```
from sklearn.linear_model import LinearRegression
var_cuantitativas = df.select_dtypes('number').columns
var_cualitativas =df.select_dtypes('object').columns
from sklearn.preprocessing import LabelEncoder
```

```
# creating instance of labelencoder
labelencoder = LabelEncoder()
df[var_cualitativas] = df[var_cualitativas].apply(labelencoder.fit_transform)
X = df[df.columns.difference(["VentasSem"])]
y = df.VentasSem
from sklearn.model selection import train test split
X_train , X_test , y_train , y_test = train_test_split(X , y , test_size = 0.50,random_state =123)
print(X_train.shape,"",type(X_train))
print(y_train.shape,"\t ",type(y_train))
print(X_test.shape,"",type(X_test))
print(y_test.shape,"\t ",type(y_test))
     (2977, 5) <class 'pandas.core.frame.DataFrame'>
     (2977,)
                        <class 'pandas.core.series.Series'>
     (2977, 5) <class 'pandas.core.frame.DataFrame'>
     (2977,)
                        <class 'pandas.core.series.Series'>
modelo_regresion = LinearRegression()
modelo_regresion.fit(X_train, y_train)
      LinearRegression
     LinearRegression()
predicciones_train = modelo_regresion.predict(X_train)
predicciones_test = modelo_regresion.predict(X_test)
from sklearn.metrics import mean_squared_error, mean_absolute_error
MSE_train = mean_squared_error(y_train, predicciones_train)
MSE_test = mean_squared_error(y_test, predicciones_test)
print(MSE train)
print(MSE test)
     279481493491.08575
     290850755242.375
RMSE train = np.sqrt(MSE train)
RMSE_test = np.sqrt(MSE_test)
print(RMSE_train)
print(RMSE_test)
     528660.0925841535
     539305.8086488361
MAE_train = mean_absolute_error(y_train, predicciones_train)
MAE_test = mean_absolute_error(y_test, predicciones_test)
print(MAE_train)
print(MAE_test)
     440593.6151924199
     441573.7213534314
from sklearn.metrics import r2_score
r_square_train = r2_score(y_train, predicciones_train)
r_square_test = r2_score(y_test, predicciones_test)
print('El R^2 del subconjunto de entrenamiento es:' , r_square_train)
\label{lem:print}  \text{print('El R^2 del subconjunto de prueba es:' , r\_square\_test)} 
     El R^2 del subconjunto de entrenamiento es: 0.12815867820026305
     El R^2 del subconjunto de prueba es: 0.1288592511731088
# Print the Intercept:
print('intercepto:', modelo_regresion.intercept_)
# Print the Slope:
print('pendiente:', modelo_regresion.coef_)
     intercepto: 1852475.9196077145
     pendiente: [ -2173.78725405 -1497.74103337 -1809.58087583 -793.00108395
   -15149.25033586]
fig, ax = plt.subplots()
ax.plot(y_train.values)
ax.plot(predicciones_train)
plt.title("Valores observados vs. predichos en train set");
```


fig, ax = plt.subplots()
ax.plot(y_test.values)
ax.plot(predicciones_test)
plt.title("Valores observados vs. predichos en test set");

 ${\it from sklearn.preprocessing import StandardScaler}$

sc = StandardScaler()

X_train_std = sc.fit_transform(X_train)
X_test_std = sc.transform(X_test)

modelo_regresion_std = LinearRegression()
modelo_regresion_std.fit(X_train_std, y_train)

▼ LinearRegression