Exercício: Revisão da tentativão 1

Vale 1,00 ponto(s).

Esta questão vale até 2 pontos de a tititos de la sciplina seus p. br/mod/quiz/review.php?...

resultados corretos e ter uma estrutura clara e elegante, bem como seguir as regras de boa programação discutidas na disciplina de Introdução à Física Computacional I. Programas que apenas produzirem os resultados corretos ganham 1 ponto de bônus.

Como discutimos na aula 8, a caminhada aleatória é um modelo para o movimento browniano. Neste exercício, em vez de supor que a partícula browniana movimenta-se em uma rede quadrada, a ideia é supor que a partícula pode se descolar continuamente por uma superfície plana, saindo da origem, e que a cada passo de tempo seu vetor posição varia de uma quantidade $\Delta \vec{r} = \hat{\imath} x + \hat{\jmath} y$, sendo x e y variáveis aleatórias gaussianas com média 0 e variância 1, em unidades arbitrárias.

Escreva dois programas para implementar esse modelo. Adote unidades em que o passo de tempo tenha duração $\Delta t=1$.

- 1. O primeiro programa deve realizar um caminhada com $1000\,$ passos e exibir a trajetória ao final da caminhada.
- 2. O segundo programa deve implementar o cálculo da distância média à origem como função do tempo. Isso deve ser feito realizando $M=10^4$ caminhadas independentes, cada uma de duração total T=1000, e registrando o valor médio da distância à origem a cada passo de tempo entre t=0 e t=T. Não se esqueça de retornar a partícula para a origem ao final de cada caminhada. Ao final, faça um gráfico da distância média $R(t)=\sqrt{x^2(t)+y^2(t)}$ como função do tempo. Você deve obter um comportamento do tipo $R(t)\propto t^{1/2}$, como o mostrado na figura abaixo. Esse é um comportamento característico de processos difusivos.

Como o comportamento que você observou muda quando modificamos a variância dos números aleatórios sorteados? Discuta no campo de texto.

Envie seus programas pelo campo a seguir.

Modificações na variância mostram que a distáncia quadrática média em função do tempo são funções lineares com diferentes coeficientes angulares.

R(t)∝σ√t

Questao1 2.py

Histórico de respostas

Passo	Hora	Ação	Estado	Pontos
1	19/05/2020 22:41	Iniciada	Ainda não respondida	
2	19/05/2020 22:43	Salvou: Modificações na variância mostram que a distáncia quadrática média em função do tempo são funções lineares com diferentes coeficientes angulares. $R(T) \propto \Sigma \sqrt{T}$	Resposta salva	
3	19/05/2020 22:43	Tentativa finalizada	Completo	