Caleb Jones Shibu

Linkedin: https://www.linkedin.com/in/caleb-jones-shibu

Github: https://github.com/CalebUAz Github portfolio: https://calebuaz.github.io

EDUCATION

University of Arizona

Tucson, Az

Aug 2021 - Dec 2023 Masters in Computer Science (Fully-funded) Courses: Advance Topics in Artificial Intelligence, Principles of Machine Learning, Design and Analysis Of Algorithms, Computer Vision,

Computer Security, Software engineering, Advanced-Data Visualization

Padre Conceicao College of Engineering

Bachelor of Computer Science

Aug 2014 - May 2018

Email: calebshibu@gmail.com

Mobile: +1-646-226-2199

SKILLS SUMMARY

• Languages: (Proficient) Python and MATLAB; (Familiar) C, C++, SQL, HTML, CSS, Django, PostgreSQL, BASH

• Tools: TensorFlow, Plotly, IPython, Excel, Keras, Scikit-learn, Bash, SSH, GCP

Experience

University of Arizona

Tucson, Az

Graduate Research Assistant - ToMCAT

Aug 2021 - Current

- o Baseline Task: Developed network-based finger tapping and imaging rating application using PyGame for the baseline task for Theory of Mind Computer Architecture for Teams (ToMCAT).
- Data Acquisition: Acquired fNIRS & EEG data from multiple subjects.
- Real-Time Physio Visualization: Developed a tool using PyQT5 that plots EEG and fNIRS signals which are multicasted over the network using LSL in real-time.
- Data conversion and labeling: Developed a script that converts XDF files (contains EEG, fNIRS, and Eye-tracking data) into labeled CSV files. Calculated channel quality and filtered out the motion artifacts from the fNIRS signals
- o Conference paper: Conducted classification experiments and authored a paper that was submitted to and accepted by NeurIPS 2023 conference.

Sree Chitra Tirunal Institute for Medical Sciences & Technology

Kerala, India

Project Scientist

January 2021 - July 2021

- o Neurofeedback game: Using Python built an application that filtered fNIRS signals in real-time, predicted brain state in real-time using a deep learning model and model predictions were input to a PyGame.
- o xAI fNIRS system: Using DeepSHAP developed an explainable AI application for fNIRS signal classification .

St. Jude Children's Research Hospital

Memphis, TN

Research intern

September 2020 - January 2021

o Active vs Passive brain activation: Developed Deep learning-based classification of Active and Passive brain state associated with single trial lower limb motor preparation for stroke patients.

Sree Chitra Tirunal Institute for Medical Sciences & Technology

Kerala, India

Research intern

June 2019 - September 2020

- o Machine Learning Based Classification of fNIRS signals: Created handcrafted features for fNIRS signals using PCA and ICA for improving the classification accuracy of Machine learning classifiers like SVM and KNN for fNIRS signal classification.
- o Deep Learning Based Classification of fNIRS signals: Developed a sliding window-based CNN and LSTM Deep Learning model for fNIRS signals by treating signals as an image which boosted the classification from 55% to 97% and solved the issue of data scarcity by increasing the dimension of the dataset. A part of this work was presented at IEEE conference in Japan.

Goa, India

Academic Projects

- Grocify: A web application, developed using Django and React and deployed on the Google Cloud Platform, enhances the grocery list-making experience and is accessible on both PC and mobile devices. (May '23)
- ToMCAT-offline-Viz: PyQt5-based GUI not only visualizes the TOMCAT dataset but also presents detailed views of EEG and fNIRS signals, providing a thorough understanding of brain activities. Moreover, it offers a topological perspective, mapping these neural signals in a spatial context. This enhances the user's comprehension of cognitive processes and aids researchers in observing how team interactions evolve across various tasks and environments. (May '23)
- Data poisoning in Machine Learning: Explored an approach to poison a Machine Learning Model by attaching a Trojan Net which makes the model misclassify with high accuracy (Dec '22)
- Multi-Modal emotion recognition: Currently working on a diffusion-based deep neural network that classifies emotions from a multimodal dataset. (Aug '22 Dec '23)
- fNIRS data augmentation with GANs: Using Python implemented a GAN model which generated synthetic fNIRS data to solve issues related to fNIRS data acquisition and model training. (Nov '21)
- Explainable medical image classification: Developed a model which was able to classify Covid19 chest X-ray with an accuracy of 90% and ISIC Skin cancer dataset with an accuracy of 70%. The model classification was explained using LIME, GradCam HeatMap, and Saliency Maps. (Nov '21)

PUBLICATIONS

Shibu, Caleb Jones, Sujesh Sreedharan, Arun KM, and Chandrasekharan Kesavadas. "Comparison of classification performance of handpicked, handcrafted, and automated-features for fNIRS-BCI system". In: 2020 5th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). IEEE, 2020, pp. 152–157

Shibu, Caleb Jones; Sujesh Sreedharan; Arun KM; Chandrasekharan Kesavadas; Ranganatha Sitaram. "Explainable artificial intelligence model to predict brain states from fNIRS signals". In: Frontiers in Human Neuroscience Brain-Computer Interfaces (2023)