UNIVERSITY OF RUHUNA

FACULTY OF ENGINEERING

Department of Electrical & Information Engineering,

EE5351: Control System Design

Laboratory Session-1

The Quanser QUBEServo^{3®} is a direct drive rotary servo system. Its motor armature circuit schematic is shown in Figure 1.1 and the electrical and mechanical parameters are given in Table 1.1.

Figure 1.1: QUBEServo3® DC motor and load

The DC motor shaft is connected to the load hub. The hub is a metal disk used to mount the disk and has a moment of inertia of J_h . A disk load is attached to the output shaft with a moment of inertia of J_d .

Terminal Resistance (R _m)	$8.4~\Omega$
Rotor inductance (L _m)	1.16 mH
Equivalent rotor inertia (J _{eq})	2.09x10 ⁻⁵ kgm ²
Torque constant (\mathbf{k}_t)	0.042 Nm/A
Voltage constant (km)	0.042 Nm/A

Table 1.1 QUBEServo3® System Parameters

- Q1) You are required to obtain the transfer function of the DC motor and load.
 - i) Write the dynamic equations of the DC motor and load.
 - ii) Obtain the transfer function of the DC motor and load for speed control $[\omega_m(s)/V_m(s)]$ and position control $[\theta_m(s)/V_m(s)]$ separately.
 - iii) Obtain the time domain speed response for applied input voltage of 3V using MATLAB® and Simulink® separately.
 - iv) Due to the negligible rotor inductance, obtain the simplified transfer functions of the transfer functions obtained in part (ii).
 - v) Model the simplified transfer function in Simulink® as a block diagram.
 - vi) Obtain the state space model of the DC motor and load by taking armature current (i_m) and rotor speed (ω_m) as state variables.

- vii) Obtain the simplified state space model of the DC motor and load by taking rotor position (θ_m) and rotor speed (ω_m) as state variables.
- viii) Using Simulink®, plot the time domain speed responses related to the transfer functions/ block diagrams obtained in part (ii), (iv), (v), (vi) and (vii) in a single plot for applied input voltage of 3V.
- Q2) Consider the Simulink® model named as "QUBEServo3_DCM_Speed.mdl" given in LMS.
 - i) Obtain the time domain speed response for applied input voltage of 3V.
 - ii) Compare and contrast the results obtained in Q1 part (vi) and Q2 part (i).
- Q3) Consider the Simulink® model named as "QUBEServo3_DCM_Position.mdl" given in LMS.
 - i) Modify the model as a unity feedback system with a reference input (θ_d) of 1 rad. Add a gain block with unity gain $(k_p=1)$.
 - ii) Calculate the steady state error of the position control system.
 - iii) Increase the proportional gain (k_p) from 1 to 2 in the step of 0.25 and calculate the steady state error and the system overshoot for each k_p value.

Note:

- Students are supposed to include comments in the MATLAB scripts.
- Answers should be prepared in MS word document.
- All MATLAB commands typed, results obtained in the MATLAB command window,
 MATLAB .m files and SIMULINK models should be copied to your document and to a zipped folder. Graphs should be with titles, axis labeled and gridlines.