Discrete Structures

Propositional Logic

Foundations of Logic: Overview

- Propositional logic:
 - Basic definitions.
 - Equivalence rules & derivations.
- Predicate logic
 - Predicates.
 - Quantified predicate expressions.
 - Equivalences & derivations.

Propositional Logic

Propositional Logic is the logic of compound statements built from simpler statements using Boolean connectives.

Applications:

- Design of digital electronic circuits.
- Expressing conditions in programs.
- Queries to databases & search engines.

Definition of a *Proposition*

A proposition (p, q, r, ...) is simply a statement (i.e., a declarative sentence) with a definite meaning, having a truth value that's either true (T) or false (F) (never both, neither, or somewhere in between).

Examples of Propositions

- "It is raining." (Given a situation.)
- "Beijing is the capital of China."
- **1** 1 + 2 = 3"
- The following are NOT propositions:
- "Who's there?" (interrogative, question)
- "La la la la." (meaningless interjection)
- "Just do it!" (imperative, command)
- "1 + 2" (expression with a non-true/false value)

Operators / Connectives

An operator or connective combines one or more operand expressions into a larger expression. (*E.g.*, "+" in numeric exprs.)

Unary operators take 1 operand (e.g., -3); Binary operators take 2 operands (eg 3×4).

Propositional or Boolean operators operate on propositions or truth values instead of on numbers.

The Negation Operator

The unary negation operator "¬" (NOT) transforms a prop. into its logical negation.

E.g. If
$$p =$$
"I have brown hair."
then $\neg p =$ "I do **not** have brown hair."

Truth table for NOT:

The Conjunction Operator

The binary conjunction operator " \wedge " (AND) combines two propositions to form their logical conjunction.

E.g. If p = "I will have salad for lunch." and q = "I will have steak for dinner.", then $p \wedge q =$ "I will have salad for lunch and I will have steak for dinner."

Conjunction Truth Table

- Note that a conjunction $p_1 \wedge p_2 \wedge ... \wedge p_n$ of n propositions will have 2^n rows in its truth table.
- ¬ and ∧ operations together are universal, i.e., sufficient to express any truth table!

p q p q	
F F F	
F T F	
T F F	
TTTT	

The Disjunction Operator

The binary disjunction operator " \vee " (OR) combines two propositions to form their logical disjunction.

```
E.g. p = "That car has a bad engine."

q = "That car has a bad carburetor."

p \lor q = "Either that car has a bad engine, or that car has a bad carburetor."
```

Disjunction Truth Table

- Note that $p \lor q$ means that p is true, or q is true, or **both** are true!
- So this operation is also called inclusive or, because it includes the possibility that both p and q are true.
- "¬" and "∨" together are also universal.

p	q	$p \lor q$	
F	F	F	
F	T	T	
T	F		
1	1		
T	T		
1	1	1	

A Simple Exercise

```
Let p = "It rained last night",

q = "The sprinklers came on last night,"

r = "The lawn was wet this morning."
```

Translate each of the following into English:

The Exclusive Or Operator

The binary exclusive-or operator " \oplus " (XOR) combines two propositions to form their logical "exclusive or" (exjunction?).

```
p = "I will earn an A in this course,"
q = "I will drop this course,"
p \oplus q = "I will either earn an A for this course, or I will drop it (but not both!)"
```

Exclusive-Or Truth Table

- Note that $p \oplus q$ means that p is true, or q is true, but **not both**!
- This operation is called exclusive or, because it excludes the possibility that both p and q are true.
- "¬" and "⊕" together are **not** universal.

p	q	$p \oplus q$
<u> </u>		$P \cup q$
F	F	F
	T	
F	T	1
T	F	
	1	1
T	T	R
_	-	4

Natural Language is Ambiguous

Note that <u>English</u> "or" is by itself ambiguous regarding the "both" case!

"Pat is a singer or Pat is a writer." -

"Pat is a man or Pat is a woman." -

Need context to disambiguate the meaning! For this class, assume "or" means inclusive.

<u>p</u>	q	p or q
F	F	F
F	T	
T	F	T
		_
1	1	undef. 15

The Implication Operator

The implication $p \rightarrow q$ states that p implies q. It is FALSE only in the case that p is TRUE but q is FALSE.

```
E.g., p = "I am elected."

q = "I will lower taxes."

p \rightarrow q = "If I am elected, then I will lower taxes"

(else it could go either way)
```

Implication Truth Table

- $p \rightarrow q$ is **false** only when p is true but q is **not** true.
- $p \rightarrow q$ does **not** imply that p causes q!
- $p \rightarrow q$ does **not** imply that p or q are ever true!
- E.g. "(1=0) \rightarrow cows can fly" is TRUE!

p	q	$p \rightarrow q$
F	F	T
F	T	T
Τ	F	F
1	T	1

Different Ways to Express $p \rightarrow q$

- If p, then q
- If p, q
- p is sufficient for q
- q if p
- q when p
- a necessary condition for p is q
- q unless ¬p
- p implies q
- P only if q
- a sufficient condition for q is p
- q whenever p
- q is necessary for p
- q follows from p

Examples of Implications

- "If this lecture ends, then the sun will rise tomorrow." *True* or *False*?
- "If Tuesday is a day of the week, then I am a penguin." True or False?
- "If 1+1=6, then George passed the exam." *True* or False?
- "If the moon is made of green cheese, then I am richer than Bill Gates." True or False?

Inverse, Converse, Contrapositive

Some terminology:

- The *inverse* of $p \rightarrow q$ is: $\neg p \rightarrow \neg q$
- The *converse* of $p \rightarrow q$ is: $q \rightarrow p$.
- The contrapositive of $p \rightarrow q$ is: $\neg q \rightarrow \neg p$.
- One of these has the same meaning (same truth table) as $p \rightarrow q$. Can you figure out which?

How do we know for sure?

Proving the <u>equivalence</u> of $p \rightarrow q$ and its contrapositive using truth tables:

p	q	$\neg q$	$\neg p$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
F	F		T	Γ	1
F	T	F	T	T	T
T	F	T	F	F	F
T	T	F	F	T	T

The biconditional operator

The biconditional $p \leftrightarrow q$ states that p is true if and only if (IFF) q is true. It is TRUE when both $p \rightarrow q$ and $q \rightarrow p$ are TRUE.

```
E.g. p = "It is raining."

q = "The home team wins."

p \leftrightarrow q = "If and only if it is raining, the home team wins."
```

Biconditional Truth Table

- $p \leftrightarrow q$ means that p and q have the **same** truth value.
- Note this truth table is the exact opposite of ⊕'s!
 - $p \leftrightarrow q \text{ means } \neg (p \oplus q)$
- $p \leftrightarrow q$ does **not** imply p and q are true, or cause each other.

 p	q	$p \leftrightarrow q$
F	F	T
F	7	F
Τ	B	F
$\hat{\mathbf{T}}$	Ā	
ļ ļ	4	<u> </u>

Boolean Operations Summary

 We have seen 1 unary operator (4 possible) and 5 binary operators (16 possible).

p	q	$\neg p$	$p \land q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	T	F	F	F	T	T
F	T	T	F	\mathbf{T}	Γ	\mathbf{T}	F
T	F	F	F	T	T	F	F
Τ	T	F	T	T	F	T	T

Precedence of Logical Operators

Operator	Precedence
—	1
^	2
	3
\rightarrow	4
\leftrightarrow	5

Expressions

- Use parentheses to group sub-expressions: "I just saw my old friend, and either he's grown or I've shrunk." = $f \land (g \lor s)$
 - $(f \land g) \lor s$ would mean something different
 - $f \land g \lor s$ would be ambiguous
- By convention, "¬" takes precedence over both "∧" and "∨".
 - $\neg s \land f$ means $(\neg s) \land f$, not $\neg (s \land f)$

Some Alternative Notations

Name:	not	and	or	xor	implies	iff
Propositional logic:	\neg	^	>	\oplus	\rightarrow	\leftrightarrow
Boolean algebra:	\overline{p}	pq	+	\oplus		
C/C++/Java (wordwise):	!	& &		!=		==
C/C++/Java (bitwise):	~	&		^		
Logic gates:	>0-		<u></u>	>>		

Translating English Sentences

You can access the Internet from campus only if you are a computer science major or you are not a freshman.

```
a = "You can access the Internet from campus"
c = "You are a computer science major"
f = "You are a freshman"
```

Answer: $a \rightarrow (c \lor \neg f)$

Translating English Sentences

You cannot ride the roller coaster if you are under
 4 feet tall unless you are older than 16 years old.

```
q = "You can ride the roller coaster"
r = "You are under 4 feet tall"
s = "You are older than 16 years old"
```

Answer: $(r \land \neg s) \rightarrow \neg q$

Bits and Bit Operations

- A bit is a binary (base 2) digit: 0 or 1.
- Bits may be used to represent truth values.
- By convention: 0 represents "true";
 1 represents "false".
- Boolean algebra is like ordinary algebra except that variables stand for bits, + means "or", and multiplication means "and".

Bit Strings

- A Bit string of length n is an ordered series or sequence of $n \ge 0$ bits.
- By convention, bit strings are written left to right:
 e.g. the first bit of "1001101010" is 1.
- When a bit string represents a base-2 number, by convention the first bit is the most significant bit. Ex. 1101₂=8+4+1=13.

Bitwise Operations

- Boolean operations can be extended to operate on bit strings as well as single bits.
- E.g.:
 01 1011 0110
 11 0001 1101
 11 1011 1111 Bit-wise OR
 01 0001 0100 Bit-wise AND
 10 1010 1011 Bit-wise XOR

Tautologies and Contradictions

A tautology is a compound proposition that is **true** no matter what the truth values of its atomic propositions are!

Ex. $p \lor \neg p$ [What is its truth table?]

A contradiction is a compound proposition that is **false** no matter what the truth values of its atomic propositions are!

Ex. $p \land \neg p$ [Truth table?]

Propositional Equivalence

Two syntactically (i.e., textually) different compound propositions may be semantically identical (i.e., have the same meaning). We call them equivalent.

Learn:

- Various equivalence rules or laws.
- How to prove equivalences using symbolic derivations.

Proving Equivalences

Compound propositions p and q are logically equivalent to each other IFF p and q contain the same truth values as each other in <u>all</u> rows of their truth tables.

Compound proposition p is logically equivalent to compound proposition q, written $p \Leftrightarrow q$, IFF the compound proposition $p \leftrightarrow q$ is a tautology.

Proving Equivalence via Truth Tables

Ex. Prove that $p \lor q \Leftrightarrow \neg(\neg p \land \neg q)$.

FF F T T T F F T	$\neg p \land \neg q \mid \neg (\neg p \land \neg q)$	$\neg p \land \neg q$	$\neg q$	$\neg p$	$p \lor q$	q	p
FTTFFFT	T	T	T	T	F	F	F
	F	F	F	T	T	T	F
TF T F T T	F	F	T	F	T	F	T
TTTFFFT	F	F	F	F	T	T	T

Equivalence Laws

- These are similar to the <u>arithmetic identities</u> you may have learned in algebra, but for propositional equivalences instead.
- They provide a <u>pattern or template</u> that can be used to match much more complicated propositions and to find equivalences for them.

Equivalence Laws - Examples

- Identity: $p \land T \Leftrightarrow p p \lor F \Leftrightarrow p$
- Domination: $p \lor T \Leftrightarrow T \qquad p \land F \Leftrightarrow F$
- Idempotent: $p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$
- Double negation: ¬¬p ⇔ p
- Commutative: $p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$
- Associative: $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

More Equivalence Laws

• Distributive: $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

• De Morgan's:
$$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$$

$$\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$$

More Equivalence Laws

• Absorption: $p\lor(p\land q)\Leftrightarrow p$ $p\land(p\lor q)\Leftrightarrow p$

• Trivial tautology/contradiction: $p \lor \neg p \Leftrightarrow \mathsf{T}$ $p \land \neg p \Leftrightarrow \mathsf{F}$

Defining Operators via Equivalences

Using equivalences, we can *define* operators in terms of other operators.

- Implication: $p \rightarrow q \Leftrightarrow \neg p \lor q$
- Biconditional: $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \Leftrightarrow \neg (p \oplus q)$
- Exclusive or: $p \oplus q \Leftrightarrow (p \lor q) \land \neg (p \land q)$ $p \oplus q \Leftrightarrow (p \land \neg q) \lor (q \land \neg p)$

An Example Problem

• Check using a symbolic derivation whether $(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow \neg p \lor q \lor \neg r$. $(p \land \neg q) \rightarrow (p \oplus r)$ [Expand definition of \rightarrow] $\Leftrightarrow \neg (p \land \neg q) \lor (p \oplus r)$ [Defn. of \oplus] $\Leftrightarrow \neg (p \land \neg q) \lor ((p \lor r) \land \neg (p \land r))$ [DeMorgan's Law] $\Leftrightarrow (\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r))$

Example Continued...

```
(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor commutes]
\Leftrightarrow (q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r)) [\lor associative]
\Leftrightarrow q \lor (\neg p \lor ((p \lor r) \land \neg (p \land r))) [distrib. \lor over \land]
\Leftrightarrow q \lor (((\neg p \lor (p \lor r)) \land (\neg p \lor \neg (p \land r)))
[assoc.] \Leftrightarrow q \lor (((\neg p \lor p) \lor r) \land (\neg p \lor \neg (p \land r)))
[trivial taut.] \Leftrightarrow q \lor ((\mathbf{T} \lor r) \land (\neg p \lor \neg (p \land r)))
[domination] \Leftrightarrow q \lor (\mathbf{T} \land (\neg p \lor \neg (p \land r)))
[identity] \Leftrightarrow q \lor (\neg p \lor \neg (p \land r)) \Leftrightarrow cont.
```

End of Long Example

```
q \lor (\neg p \lor \neg (p \land r))
[DeMorgan's] \Leftrightarrow q \lor (\neg p \lor (\neg p \lor \neg r))
[Assoc.] \Leftrightarrow q \lor ((\neg p \lor \neg p) \lor \neg r)
[Idempotent] \Leftrightarrow q \lor (\neg p \lor \neg r)
[Assoc.] \Leftrightarrow (q \lor \neg p) \lor \neg r
[Commut.] \Leftrightarrow \neg p \lor q \lor \neg r
Q.E.D. (quod erat demonstrandum)
```

References

- Sections 1.1 and 1.2 of the text book "Discrete Mathematics and its Applications" by Rosen, 6th edition.
- The <u>original slides</u> were prepared by Bebis