

Politechnika Wrocławska

Struktury danych i złożoność obliczeniowa Wykład 3.

Prof. dr hab. inż. Jan Magott

Metody konstrukcji algorytmów:

- Siłowa (ang. brute force),
- "Dziel i zwyciężaj" (ang. divide-and-conquer),
- Zachłanna (ang. greedy),
- Transformacyjna konstrukcja algorytmu,
- Programowanie dynamiczne,
- Przeszukiwanie z powrotami i metoda podziałów i ograniczeń,
- Algorytmów genetycznych.

- 1. Dziel: Podziel problem na podproblemy,
- 2. Zwyciężaj: Podproblemy rozwiąż rekurencyjnie lub bezpośrednio, jeśli są odpowiednio małe,
- 3. Scal: Połącz rozwiązania podproblemów w celu wyznaczenia rozwiązania problemu.

n - liczba elementów,

Uzasadnienie formuł:

 $\lceil n/2 \rceil$ ($\lfloor n/2 \rfloor$) - liczba elementów lewej (prawej) części,

$$n$$
 parzyste czyli $n=2k, k \in N_+$, $[2k/2]=k=[2k/2]$

$$n$$
 nieparzyste czyli $n=2k+1, k \in N_+,$ $\lceil \frac{2k+1}{2} \rceil = k+1, \qquad \lfloor \frac{2k+1}{2} \rfloor = k$


```
MERGE(A, p, q, r)
```

- $n_1 \leftarrow q p + 1$
- $2 \quad n_2 \leftarrow r q$
- utwórz tablice $L[1...n_1+1]$ i $R[1...n_2+1]$
- for $i \leftarrow 1$ to n_1
- do $L[i] \leftarrow A[p+i-1]$
- 6 for $j \leftarrow 1$ to n_2
- do $R[j] \leftarrow A[q+j]$
- 8 $L[n_1+1] \leftarrow \infty$
 - $R[n_2+1] \leftarrow \infty$
- $10 \quad i \leftarrow 1$
- 11 $j \leftarrow 1$
- 12 for $k \leftarrow p$ to r
- 13 do if $L[i] \leq R[j]$
- 14 then $A[k] \leftarrow L[i]$ 15 $i \leftarrow i + 1$
- 16 else $A[k] \leftarrow R[j]$
- $j \leftarrow j + 1$ 17

- Tablice A[p..q] i A[q+1..r]
 - są posortowane,
 - ∞ jest wartownikiem większym od każdego z elementów tablicy A,
 - MERGE scala powyższe tablice w posortowaną tablicę A[p..r].
 - Złożoność czasowa $\Theta(n)$, gdzie n = r - p + 1.
 - Źródło: [CLRS, Wprowadzenie do algorytmów]


```
i \leftarrow 1

j \leftarrow 1

for k \leftarrow p to r

do if L[i] \leq R[j]

then A[k] \leftarrow L[i]

i \leftarrow i + 1

else A[k] \leftarrow R[j]

j \leftarrow j + 1
```

Niezmiennik pętli:

Przed wykonaniem pętli dla k, tablica A[p..k-1] zawiera k-p najmniejszych elementów tablic $L[1..n_1+1]$ i $R[1..n_2+1]$ będących posortowanymi. L[i], R[j] są najmniejszymi elementami tablic L, R, które jeszcze nie zostały skopiowane do tablicy R.


```
MERGE-SORT(A, p, r)

1 if p < r

2 then q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)

Scal
```

Źródło: [CLRS, Wprowadzenie do algorytmów]


```
T(i)
Merge-Sort(A, p, r)
1 \quad \text{if } p < r
2 \quad \text{then } q \leftarrow \lfloor (p+r)/2 \rfloor \qquad \text{Dziel} \qquad \Theta(1)
3 \quad \text{Merge-Sort}(A, p, q)
4 \quad \text{Merge-Sort}(A, q+1, r) \qquad \text{Zwyciężaj} \qquad 2 \cdot T(i/2)
5 \quad \text{Merge}(A, p, q, r) \qquad \text{Scal} \qquad \Theta(i)
```

T(i) – czas sortowania i elementów, gdy 1 < i

$$T(i) = 2 \cdot T(i/2) + \Theta(i)$$


```
T(1)
Merge-Sort(A, p, r)
1 \quad \text{if } p < r
2 \quad \text{then } q \leftarrow \lfloor (p+r)/2 \rfloor
3 \quad \text{Merge-Sort}(A, p, q)
4 \quad \text{Merge-Sort}(A, q+1, r)
5 \quad \text{Merge}(A, p, q, r)
```

$$T(1)$$
 – czas sortowania i elementów, gdy $1 = i$ $T(1) = \Theta(1)$

$$T(i) = \begin{cases} \Theta(1) & \text{jeśli } i = 1\\ 2 \cdot T\left(\frac{i}{2}\right) + \Theta(i) & \text{jeśli } i > 1 \end{cases}$$

$$T(i) = \begin{cases} c & \text{jeśli } i = 1\\ 2 \cdot T\left(\frac{i}{2}\right) + c \cdot i & \text{jeśli } i > 1 \end{cases}$$

$$T(i) = \begin{cases} c & \text{jeśli } i = 1\\ 2 \cdot T\left(\frac{i}{2}\right) + c \cdot i & \text{jeśli } i > 1 \end{cases}$$

$$T(i) = c \cdot i$$

$$i > 1$$

$$T\left(\frac{i}{2}\right) T\left(\frac{i}{2}\right)$$

Dyskretny problem plecakowy - wersja decyzyjna

Dane:

Skończony zbiór elementów $A = \{a_1, a_2, ..., a_n\}$.

Rozmiar $\mathbf{s}(a_i)>0$ i waga (wartość) $\mathbf{w}(a_i)>0$ elementu a_i .

Pojemność plecaka b > 0 i stała y > 0.

Zadanie:

Czy istnieje podzbiór $A' \subset A$ taki, że:

$$\sum_{a_i \in A'} s(a_i) \le b$$
$$\sum_{a_i \in A'} w(a_i) \ge y ?$$

Dyskretny problem plecakowy - wersja optymalizacyjna

Dane:

Skończony zbiór elementów $A = \{a_1, a_2, ..., a_n\}$.

Rozmiar $\mathbf{s}(a_i)>0$ i waga (wartość) $\mathbf{w}(a_i)>0$ elementu a_i .

Pojemność plecaka b > 0 i stała y > 0.

Zadanie:

Wyznacz podzbiór $A' \subset A$ taki, że:

$$\sum_{a_i \in A'} s(a_i) \le b$$

$$\sum_{a_i \in A'} w(a_i)$$

Algorytm zachłanny dla wersji optymalizacyjnej

- 1. Dla każdego elementu $i \in \{\overline{1,n}\}$ oblicz $p_i = w(a_i)/s(a_i)$. $A' = \emptyset$ i S = 0.
- 2. Wyznacz sekwencję $\sigma = <\sigma(1),...,\sigma(n)>$ taką, że $p_{\sigma(j)} \ge p_{\sigma(j+1)}$ dla $j \in \{\overline{1,n-1}\}.$
- 3. Dla $j \in \{\overline{1,n}\}$ wykonuj: Jeżeli $S + s(a_{\sigma(j)}) \le b$, to $A' \coloneqq A' \cup \{a_{\sigma(j)}\}$ i $S \coloneqq S + s(a_{\sigma(j)})$.
- 4. Stop

i	$s(a_i)$	$w(a_i)$
1	1	9
2	2	8
3	6	7
4	7	10
5	1	8
6	4	7

i	$s(a_i)$	$w(a_i)$	$w(a_i)/s(a_i)$
1	1	9	9
2	2	8	4
3	6	7	1,17
4	7	10	1,43
5	1	8	8
6	4	7	1,75

$$\sigma = <1, 5, 2, 6, 4, 3>$$


```
S = <1.5.2.6.4.3>
S← 0
Weź a_1 i sprawdź czy S + s(a_1) \le b czyli 0 + 1 \le 12.
          Zatem A' \leftarrow \{a_1\} i S \leftarrow 1.
Weź a_5 i sprawdź czy S + s(a_5) \le b czyli 1 + 1 \le 12.
          Zatem A' \leftarrow \{a_1, a_5\} i S \leftarrow 2.
Weź a_2 i sprawdź czy S + s(a_2) \le b czyli 2 + 2 \le 12.
          Zatem A' \leftarrow \{a_1, a_5, a_2\} i S \leftarrow 4.
Weź a_6 i sprawdź czy S + s(a_6) \le b czyli 4 + 4 \le 12.
          Zatem A' \leftarrow \{a_1, a_5, a_2, a_6\} i S \leftarrow 8.
Weź a_4 i sprawdź czy S + s(a_4) \le b czyli 8 + 7 \le 12.
          Zatem A' \leftarrow \{a_1, a_5, a_2, a_6\} i S \leftarrow 8.
Weź a_3 i sprawdź czy S + s(a_3) \le b czyli 8 + 6 \le 12.
```

Zatem $A' \leftarrow \{a_1, a_5, a_2, a_6\}$ i $S \leftarrow 8$.

- 1. Dla każdego elementu $i \in \{\overline{1,n}\}$ oblicz $p_i = w(a_i)/s(a_i)$. $A' \leftarrow \emptyset$ i $S \leftarrow 0$.
- 2. Wyznacz sekwencję $\sigma = <\sigma(1), ..., \sigma(n)>$ taką, że $p_{\sigma(j)} \ge p_{\sigma(j+1)}$ dla $j \in \{\overline{1,n-1}\}.$
- 3. Dla $j \in \{\overline{1,n}\}$ wykonuj: Jeżeli $S + s(a_{\sigma(j)}) \leq b$, to $A' \leftarrow A' \cup \{a_{\sigma(j)}\}$ i $S \leftarrow S + s(a_{\sigma(j)})$.
- 4. Stop

- 1. Dla każdego elementu $i \in \{\overline{1,n}\}$ oblicz $p_i = w(a_i)/s(a_i)$. $A' \leftarrow \emptyset$ i $S \leftarrow 0$. O(n)
- 2. Wyznacz sekwencję $\sigma = <\sigma(1), ..., \sigma(n)>$ taką, że $p_{\sigma(j)} \ge p_{\sigma(j+1)}$ dla $j \in \{\overline{1,n-1}\}.$
- 3. Dla $j \in \{\overline{1,n}\}$ wykonuj: Jeżeli $S + s(a_{\sigma(j)}) \leq b$, to $A' \leftarrow A' \cup \{a_{\sigma(j)}\}$ i $S \leftarrow S + s(a_{\sigma(j)})$.
- 4. Stop

- 1. Dla każdego elementu $i \in \{\overline{1,n}\}$ oblicz $p_i = w(a_i)/s(a_i)$. $A' \leftarrow \emptyset$ i $S \leftarrow 0$. O(n)
- 2. Wyznacz sekwencję $\sigma = \langle \sigma(1), ..., \sigma(n) \rangle$ taką, że $p_{\sigma(j)} \geq p_{\sigma(j+1)}$ dla $j \in \{\overline{1, n-1}\}.$ $O(n \log n)$
- 3. Dla $j \in \{\overline{1,n}\}$ wykonuj: Jeżeli $S + s(a_{\sigma(j)}) \leq b$, to $A' \leftarrow A' \cup \{a_{\sigma(j)}\}$ i $S \leftarrow S + s(a_{\sigma(j)})$.
- 4. Stop

- 1. Dla każdego elementu $i \in \{\overline{1,n}\}$ oblicz $p_i = w(a_i)/s(a_i)$. $A' \leftarrow \emptyset$ i $S \leftarrow 0$. O(n)
- 2. Wyznacz sekwencję $\sigma = \langle \sigma(1), ..., \sigma(n) \rangle$ taką, że $p_{\sigma(j)} \geq p_{\sigma(j+1)}$ dla $j \in \{\overline{1, n-1}\}.$ $O(n \log n)$
- 3. Dla $j \in \{\overline{1,n}\}$ wykonuj: Jeżeli $S + s(a_{\sigma(j)}) \le b$, to $A' \leftarrow A' \cup \{a_{\sigma(j)}\}$ i $S \leftarrow S + s(a_{\sigma(j)})$.
- 4. Stop

Złożoność obliczeniowa algorytmu

$$O(n) + O(n \log n) + O(n) = O(n \log n)$$

Czy rozwiązanie:

$$A' = \{a_1, a_5, a_2, a_6\}$$

zajętość plecaka:

$$S = 8$$

sumaryczna wartość zapakowanych elementów:

$$\sum_{a_i \in X} w(a_i) = 9 + 8 + 8 + 7 = 32$$

jest optymalnym?

i	$s(a_i)$	$w(a_i)$
1	1	9
2	2	8
3	6	7
4	7	10
5	1	8
6	4	7

Lepszym rozwiązaniem jest:

$$A' = \{a_1, a_5, a_2, a_4\}$$

zajętość plecaka:

$$S = 11$$

sumaryczna wartość zapakowanych elementów:

$$\sum_{a_i \in X} w(a_i) = 9 + 8 + 8 + 10 = 35$$

Ciągły problem plecakowy - wersja decyzyjna

Dane:

Skończony zbiór produktów $A = \{a_1, a_2, ..., a_n\}$.

Rozmiar $s(a_i) \in N$ i wartość $w(a_i) \in N$ elementu a_i .

Pojemność plecaka b > 0 i stała y > 0.

Zadanie:

Czy istnieje taki zbiór wartości $x_1, x_2, ..., x_n \in [0,1]$, że:

$$\sum_{i \in \{1, n\}} s(a_i) \cdot x_i \le b$$

$$\sum_{i\in\{1,n\}} w(a_i) \cdot x_i \ge y ?$$

Czy algorytm zachłanny oparty na $p_i = w(a_i)/s(a_i)$ da rozwiązanie?

Przykłady interpretacji

Dyskretny problem plecakowy

- Ładowanie sztabek złota do plecaka,
- Ładowanie bloków betonowych na platformę.

Ciągły problem plecakowy

- Ładowanie złotego piasku,
- Ładowanie substancji sypkich na platformę do przewozu materiałów różnych gatunków.

Przykład 1.

Wyznaczanie najmniejszej wspólnej wielokrotnej (NWW) liczb $m, n \in \mathbb{N}$ poprzez **redukcję problemu:**

$$NWW(m,n) = (m \cdot n)/NWP(m,n)$$

Przykład 2.

Startujemy od mało efektywnego (**naiwnego**) algorytmu i **konstruujemy algorytm efektywniejszy**.

Problem: Wyznaczenie pary najbliższych spośród n elementów tablicy.

- Metoda siłowa o złożoności $O(n^2)$,
- Transformacja do postaci:
 - 1. Wstępne sortowanie tablicy: $O(n \log n)$,
 - 2. Skanowanie tablicy z wyznaczaniem najmniejszej różnicy między sąsiednimi elementami: O(n), Sumaryczny koszt: $O(n \log n)$.

Przykłady 3.

Startujemy od mało efektywnego (**naiwnego**) algorytmu i **konstruujemy algorytm efektywniejszy**.

Problem:

Dane: Posortowane niemalejąco tablice A, B o n elementach $A[i], B[j] \in N$, $i, j \in \{\overline{1, n}\}$, liczba $x \in N$.

Pytanie: Czy istnieją takie $A[i], B[j], i, j \in \{\overline{1,n}\}, \dot{z}e$:

$$A[i] + B[j] = x$$
?


```
Problem:
```

Dane: Posortowane niemalejąco tablice A, B o n elementach $A[i], B[j] \in N$, $i, j \in \{\overline{1, n}\}$, liczba $x \in N$.

Pytanie: Czy istnieją takie $A[i], B[j], i, j \in \{\overline{1, n}\}, \dot{z}e$:

$$A[i] + B[j] = x ?$$

Metoda siłowa

```
BOOLEAN EQUAL-SUM-BF(A,B,n)
for i\leftarrow 1 to n
for j\leftarrow 1 to n
do if (A[i]+B[j]=x) then return true
return false
```

return false

Transformacyjna konstrukcja algorytmu

```
Dane: Posortowane niemalejąco tablice A, B o n elementach
A[i], B[j] \in N, i, j \in \{\overline{1, n}\}, \text{liczba } x \in N.
Pytanie: Czy istnieją takie A[i], B[j], i, j \in \{\overline{1, n}\}, \dot{z}e:
A[i] + B[j] = x?
Efekt transformacji
BOOLEAN EQUAL-SUM-TR(A, B, n)
  i \leftarrow 1
  j \leftarrow n
  while(i \le n and j > 0)
          do if (A[i] + B[j] = x) then return true
                    else if (A[i] + B[j] < x) then i \leftarrow i + 1
                               else j \leftarrow j - 1
```


Wyróżniona para liczb A[k], B[l] spełniająca wymagania:

$$k = min\{i: (\exists j \in \{\overline{1,n}\})(A[i] + B[j] = x)\},\ l = max\{j: (\exists i \in \{\overline{1,n}\})(A[i] + B[j] = x)\}.$$

Groźba pominięcia pary A[i] + B[j] = xPominięcie wyróżnionej pary gdy: przy warunku $i < k \land j = l$ nastąpi $j \leftarrow l - 1$ lub przy warunku $i = k \land l < j$ nastąpi $i \leftarrow k + 1$.

Niezmiennik: Nie pominięto wyróżnionej pary tzn. $i \le k \land l \le j$.

Inicjowanie: Przed pierwszym wykonaniem pętli dla $i = 1 \land j = n$, wyróżniona para nie została pominięta.

Niezmienniczość: Nie pominięto wyróżnionej pary przed (i+n-j) - tym wykonaniem pętli, to:

Jeśli A[i] + B[j] = x, tzn. i = k, j = l i nastąpi wyjście z pętli z wartością **true**

albo

Jeśli $A[i] + B[j] \neq x$, to zmiana wartości zmiennych i, j nie spowoduje pominięcia wyróżnionej pary.

Kończenie: Dla i=k, j=l następuje wyjście z pętli z wartością **true.**


```
BOOLEAN EQUAL-SUM-TR(A, B, n)
 i \leftarrow 1
 j \leftarrow n
 while(i \le n and j > 0)
        do if (A[i] + B[j] = x) then return true
               else if (A[i] + B[j] < x) then i \leftarrow i + 1
                             else j \leftarrow j - 1
 return false
                          X = 18
            16 16 16 ... 16
                                            17
     A:
                                                               O(n)
             1 3 3 ... 3
     B:
```