Lecture 6: Generating random variables –

transformations

Ciaran Evans

Logistics

- Nice work on HW 1!
- Extra office hours today, 12pm 1pm and 2pm 4pm
- Upcoming due dates:
 - HW 2: Friday 10am
 - HW 1 resubmissions: next Monday (February 3)
 - Challenge 1 (command line): next Friday (Feb 7) 10am
- New challenges released:
 - Challenge 2: Mersenne Twister (due Feb 28)
 - Challenge 3: Generating Poisson random variables (due Feb 28)
- Remember: you do not have to do all challenges! Pick and choose ones of interest

Previously

Methods to generate $U \sim Uniform(0,1)$:

- ► Linear congruential generator
- Mersenne twister
- lots of other variants and alternatives

Now we want to generate random variables with *other* distributions.

Question: If I have a uniform random variable, how can I get other random variables?

Inverse transform method (continuous r.v.) Let F be the cof of a continuous r.v., and suppose F is invertible Let un uniform (0,1), and x = F-1 (W) Then P(X = t) = F(t) ie. X NF

PE: Hw 1

Example

Suppose we want to generate
$$X \sim Exponential(\theta)$$

$$F(x) = 1 - e^{-\Theta x}$$

$$F'(u) = -\frac{1}{\Theta} \log(1-u)$$

So: to generate $\times \sim Exponential(\Theta)$

$$V \sim Uni \text{ form } (O_1)$$

$$V = -\frac{1}{\Theta} \log(1-U)$$

$$V = -\frac{1}{\Theta} \log(1-U)$$

Since $U \geq 1-U$ have $V = U$

Example

Generating $X \sim Exponential(1)$:

```
# generate 1000 samples
u \leftarrow runif(1000) Simple uniform
x \leftarrow -log(u) transform interse coff
```

Question: How can I check that the samples match the desired Exponential(1) distribution?

```
one option: calculate empirical cof,
compare to true
Exponential(i) cof

(visually or a hypothesis test
e.g. Kalmogarar-Smirner
(US) test)
```

Example

Generating $X \sim Exponential(1)$:

```
LOOKS GOOD!
```

```
# generate 1000 samples
u <- runif(1000)
x <- -log(u)</pre>
```


Discrete case

Suppose that we want to generate $X \sim Bernoulli(p)$

$$F(x) = P(X = x) = 0$$

Challenge: Fis

be ! now shall we define F

Solution:
$$F^{-1}(u) = \inf_{x \in \mathbb{Z}} \{ t : F(t) \ge u \}$$
 inf $(0,1) = 0$

$$F(t) = 1 - p \quad t \in [0,1)$$

$$F(t) = 1 \quad t \in [0,1-p]$$

$$F(t) \ge 1 - p \quad \inf_{x \in \mathbb{Z}} \{ t : F(t) \ge u \} = 0$$

$$F(t) \ge 1 - p \quad \text{then } F(t) \ge 1 - p \ge u \quad \text{for any}$$

$$F(t) \ge 1 - p \quad \text{then } F(t) \ge 1 - p \ge u \quad \text{for any}$$

$$F(t) \ge 1 - p \quad \text{then } F(t) \ge u = 0$$

$$F^{-1}(u) = \begin{cases} 0 & \text{if } u \in [0,1-p] \\ 0 & \text{if } u \in [0,1-p] \end{cases}$$

$$F(x = 0) = p(u \in [0,1])$$

$$F^{-1}(u) = \begin{cases} 0 & \text{if } u \in [0,1-p] \\ 0 & \text{if } u \in [0,1-p] \end{cases}$$

$$F(x = 0) = p(u \in [0,1])$$

$$F^{-1}(u) = \begin{cases} 0 & \text{if } u \in [0,1-p] \\ 0 & \text{if } u \in [0,1-p] \end{cases}$$

Summarize inverse transform method Let X be some r.v. with cof F o) Define F'(w)= inf{t: F(t)>u}

1) Generate Un Uniform (0,1)

2) X= F-1 (W)

Then XNF

Generating a Normal random variable

Suppose we want to simulate $X \sim N(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}x^2\right\}$$
 $F_X(t) = ?$

Box-Muller Transformation

Box-Muller in practice

```
# generate 1000 samples
u1 <- runif(1000)
u2 <- runif(1000)
x1 \leftarrow sqrt(-2*log(u1)) * cos(2*pi*u2)
x2 \leftarrow sqrt(-2*log(u1)) * sin(2*pi*u2)
    0.8
    9.0
    0.4
                                                 Empirical cdf X1
                                                 N(0, 1) cdf
    0.2
```

Box-Muller in practice

Other Normals

Suppose that $Z \sim N(0,1)$. How do I get $X \sim N(\mu, \sigma^2)$?

A few other transformations

- ▶ If $X \sim N(\mu, \sigma^2)$, then $e^X \sim Lognormal(\mu, \sigma^2)$
- ▶ If $Z_1, ..., Z_k \stackrel{iid}{\sim} N(0,1)$, then

$$\sum_{i=1}^k Z_i^2 \sim ?$$

▶ If $V_1 \sim \chi^2_{d_1}$ and $V_2 \sim \chi^2_{d_2}$ are independent, then

$$\frac{V_1/d_1}{V_2/d_2} \sim ?$$

Your turn

Practice questions on the course website:

https://sta379-s25.github.io/practice_questions/pq_6.html

- Practice with inverse transform method
- Start in class. You are welcome to work with others
- Practice questions are to help you practice. They are not submitted and not graded
- Solutions are posted on the course website