Санкт-Петербургский Национальный Исследовательский Университет ИТМО Факультет Программной Инженерии и Компьютерной Техники

Домашняя работа по физике. Вариант 2.

Выполнил студент группы Р3114: Гиниятуллин А. Р.

Преподаватель: Куксова П. А

Санкт-Петербург, 2022г.

- 2. Движение двух велосипедистов относительно оси ОХ описывается уравнениями $x_1 = 10t$ и $x_2 = 300$ 15t, координаты измеряются в метрах, время в секундах. На каком расстоянии L от начала координат велосипедисты встретятся?
- 19. Мяч брошен горизонтально с начальной скоростью v = 6.0 м/с. Определить радиус R кривизны его траектории через t = 1.2 с после начала движения.
 - 29. На рисунке 10 изображены тела, соединенные невесомой нитью, перекинутой через блок, закрепленный краю Массы на стола. тел, соответственно, $m_1 = 0.30$ кг и $m_2 = 0.50$ кг. Вся система находится в лифте, движущийся вверх с ускорением $a = 2.0 \text{ м/c}^2$. Коэффициент трения между телом m_1 и столом $\mu = 0.4$. Рассчитать силу Tнатяжения нити.

Рис. 10. К задаче 29.

43. Невесомая нить, перекинутая через блок в виде сплошного однородного цилиндра, соединяет два тела $m_1 = 0.50$ кг и $m_2 = 0.90$ кг. Масса цилиндра $m_3 = 0.20$ кг (рис. 14). Коэффициент трения тела массой m_1 , скользящего по горизонтальной поверхности стола, $\mu = 0.20$. Рассчитать силы натяжения нити T_1 и T_2 по обе стороны блока, а также величину a ускорения этих тел.

Рис. 14. К задаче 43.

- 62. Скатываясь по наклонной дорожке, велосипедист массы M = 55 кг делает «мертвую петлю» радиуса R = 3,8 м. (R расстояние от центра окружности до центра массы системы человек + велосипед). С какой минимальной высоты h должен съехать велосипедист, чтобы не оторваться от дорожки в верхней точке петли. Масса велосипеда m = 12 кг, причем на колеса приходится масса $m_0 = 3,0$ кг. Колеса считать обручами.
 - 64. Груз массой m = 6.0 кг падает на чашу пружинных весов жесткостью k = 20 Н/см с высоты h = 0.50 м. Рассчитать максимальную величину сжатия x_{max} пружины. Массой чаши пренебречь.

77. Система состоит из двух одинаковых вертикально расположенных кубиков, каждый массы m=5,0 г, между которыми находится прикрепленная к ним сжатая невесомая пружина жесткости k=5,0 Н/м. (см. рисунок 16). Кубики связаны нитью. Определить начальное сжатие Δl пружины, при котором нижний кубик подскочит после пережигания нити.

