Logistic Regression

Friday, 23 December 2022

12:22 AM

Mathematical Intuition

But for Logistic Regression

To overcome this

Odds: Probability of getting something upon Probability of not Finding something

To overcome this

$$\log \frac{P}{1 - P} = \beta + \beta_1 x_1$$

$$-\infty to \infty$$

Solving this $\log \frac{P}{1 - P} = \frac{P}{1 - P} = e^{\beta}$ $P = e^{\beta + \beta x}$ $P(1 + e^{\beta + \beta x})$

$$\rightarrow$$
 $-\infty$ to ∞

$$\beta + \beta x + \beta x + \beta x$$

$$-P * e^{\beta + \beta x}$$
$$) = e^{\beta + \beta x}$$

Interpretation is possible because stats model can give you sum

$$P = \frac{e^{\beta + \beta x}}{1 + e^{\beta + \beta x}}$$
 We always get Probability values, after this we class using a P threshold

Binary Classification: We have only 2 sub categories in dependent column Multiclass Classification: We have more than 2 subcategories in dependent column

Model Performance Methods

• Performance can be calculated by comparing 2 models

Maximum Log Likelihood

$$LL = \sum_{i=1}^{N} y \log P(y) + (1 - y) \log(1 - P(y))$$

- Gives Performance of model
- Higher is better
- It is boundless
- · Value always in negative

Deviance

Deviance = -2 * LL

Lower is better

Two Types of Deviance:

Null Deviance: When not a single in

value always ill liegative

Log Loss Function

$$Log \ Loss = \frac{-1}{n} * LL$$

- Always in positive
- Lower is better

Bayesian Information Criteria

$$BIC = -2LL + k \log n$$

- K is total no features
- N is total no rows
- It accounts both rows and features to calculate model performance

Feature is considered while calcula

Residual Deviance: When all indep Are considered while calculating LL

Akaike Information Criteria/AIC

$$AIC = -2LL + 2k$$

- K is total no of features
- It accounts features in calculate performance
- Lower is better

Model Evaluation

Confusion Matrix

Predicted

Actual

	False	True
False	TN	FP
True	FN	TP

Confusion Matrix

Predicted

Confusion Matrix?

	Actual	
	False	
False	TN	
True	FP	

Given Errors:

Category	Actual	Predicted
Accepted	450	600
Rejected	550	400

Confusion Matrix Trans

	Actual			
	Rejected	A		
Rejected	T400			
Accepted	FO			

ting LL endent features

ating model

True

FN

TP

osed

ccepted

F150

T450

Accuracy

$$Accuracy = \frac{Total\ True\ Prediction}{Total\ Values} = \frac{TP + TN}{TP + FN + FP + TN}$$

- Higher is better
- In percentage
- Chances are that model identifies TP but not TN, in such case

Precision

F1 SCORE

$$Precision = \frac{True \ Positive}{Total \ Predicted \ Positive \ Values} = \frac{TP}{TP + FP} \qquad F1 = \frac{-2PR}{P + R}$$

$$F1 = \frac{-2PR}{P+R}$$

<u>Recall</u>

It is the harmonic

$$Recall = \frac{True\ Positive}{Total\ Actual\ Values} = \frac{TP}{TP + FN}$$

Higher is better

Probability Threshold

The value used to determine which class observed value should be classified as, Changing can render all above calculation as useless, To over come this

True Prediction Rate/TPR

mean of precision & recall

this threshold

False Prediction Rate

$$FPR = \frac{False\ Positive\ Prediction}{Total\ Actual\ Negative\ Values} = \frac{FP}{FP + TN}$$

Our main objective is to decrease FPR, Increase TPR

Receiver Operating Characteristics/Area under Curve

- When TPR plotted on y and FPR on x, Area formed under curve will evaluate model independent of threshold
- It can also be used to figure the best Probability Threshold for model

ì

performance

nce