BIOINFORMATICS PIPELINE FOR SCRNA-SEQ: FROM RAW DATA TO INSIGHTS

Jerry Li Ph.D.

Research Support Analyst

Digital Research Services, IST

jiarui.li@ualberta.ca

May 8, 2025

Outline

1. Day 1: Introduction to scRNA-seq

- The principle
- The history
- Wet Lab pipeline
- Input Data preprocessing

2. Day 2: scRNA-seq Analysis

- QC
- Normalized expression
- Clustering
- Marker genes and cell-type annotation

Objectives

 Understand the principles and workflow of single-cell RNA sequencing (scRNA-seq)

 Learn the importance of quality control in scRNA-seq and the rationale behind it

 Gain hands-on experience running one of the most widely used analysis pipelines

Note

- The slides can be found in Github: https://github.com/ualberta-rcg/scRNA-seq
- Apptainer container and sample FASTQ: https://drive.google.com/drive/folders/18vXOcOPEPUGW85fM6ZbCxKQJQuHnanQD
- Workshop Cluster https://tinyurl.com/kzyxwbbz

Login by ssh

• Our workshop cluster

ssh user80@spring2025-uofa.c3.ca

The Alliance cluster

ssh username@cedar.alliancecan.ca

Your own system

Prep Sample FASTQ

cp -r projects/def-sponsor00/scRNA-seq/Sample_FASTQ/ .

Install Cellranger if you are using the Alliance or your own system

https://www.10xgenomics.com/support/software/cell-ranger/downloads#download-links

```
wget -0 cellranger-9.0.1.tar.gz "https://cf.10xgenomics.com/releases/cell-exp/cellranger-9.0.1.tar.gz?Expires=1746585246&Key-Pair-Id=APKAI7S6A5RYOXBWRPDA&Signature=LT7~WaW0pcQeHJx3HB7Wq51i-JPiwNOee3NBE0vfdKjtxn0DZAe1-RA-2jIj1aBgeDFlictRWD-hJcqCUgaqiyxfzxdS9Pn-~MctYr9oYswolGHzFJR-a9E0pg7RPxHlP5OKPhjWPIUV8z~Z3P2REfgaRTHT2RhOa1Q3Vl01bdj5CQF63tK~qRNgfXpDI1r-La2tGCtJPOqlagYkmMOHJcR-fVM1xFs-BIu7lkY4aW1I1BRch2MjruGvddvtJwU7S-kFx-jYkNawVoO0xYePrpqUMotrJGeJ-JF-~hacQ4whBy3Hl6re4U7RDn7vYi92Eir~XXHr0h9rfnfns~GTJw__"
```

tar -xf cellranger-9.0.1.tar.gz

Download Materials if you are using the Alliance or your own system

https://drive.google.com/drive/folders/18vXOcOPEPUGW85fM6ZbCxKQJQuHnanQD?usp=sharing

Install Apptainer if you are using your own system

https://apptainer.org/docs/admin/main/installation.html

Day 1. Introduction to scRNA-seq

scRNA-seq Wet Lab Pipeline

The Milestone of scRNA-seq

Single Cell Isolation

Droplet-based

S. Steven Potter, Nature Reviews Nephrology volume 14, pages479–492 (2018)

Plate-based Probst et al., BMC Genomics, 23: 860 (2022)

Microwell-based Han et al., Cell, 172(5): 1091-1107.e17 (2018)

scRNA-seq Wet Lab Pipeline

Protocol	Туре	Transcript Coverage	UMI Support	Throughput	Cost per Cell	Special Features / Use Cases
10x Chromium	Droplet-based	3' end or 5' end	Yes	Very High (> 1M cells)	\$0.10-\$0.50	Standard for most scRNA-seq studies; fast and scalable
Smart-seq3	Plate-based	Full-length (with 5' UMI)	Yes (5' only)	Low	\$6–\$10	Full length script, isoform detection
Microwell-seq	Microwell-based	3' end	Yes	Medium	\$0.01-\$0.05	Used in Mouse Cell Atlas; optimized for bulk processing

Why 10x Genomics is preferred over others?

- Fully automated
- Consistent and well support
- Can be integrated to multi-modal data such as Assay for Transposase-Accessible Chromatin (ATAC)
- Ease to use and no need custom setup

10x Chromium 3' scRNA-seq - GEM Formation

10x Chromium 3' scRNA-seq - Reverse Transcription

10x Chromium 3' scRNA-seq – Second Strand cDNA

10x Chromium 3' scRNA-seq - Adding sequencing adapter

10x Chromium 3' scRNA-seq - Sample, Cell, Molecule

10x Chromium 3' scRNA-seq - GEM Formation

10x Chromium 3' scRNA-seq - In Real World

10x Chromium 3' scRNA-seq - In Real World

Doublets/multiplets

Ambient RNA

- Sample type
- Tissue dissociation strategy
- Storage and transport conditions
- Wet-lab strategy
- Whether you did a good job

Broken/dead cells

10x Chromium 3' scRNA-seq – Multiplets vs. Throughput

Multiplet Rate (%)	# of Cells Loaded	# of Cells Recovered
~0.4%	~825	~500
~0.8%	~1,650	~1,000
~1.6%	~3,300	~2,000
~2.4%	~4,950	~3,000
~3.2%	~6,600	~4,000
~4.0%	~8,250	~5,000
~4.8%	~9,900	~6,000
~5.6%	~11,550	~7,000
~6.4%	~13,200	~8,000
~7.2%	~14,850	~9,000
~8.0%	~16,500	~10,000

10x Chromium 3' scRNA-seq - One Sample

10x Chromium 3' scRNA-seq – Multiple Sample

10x Chromium 3' scRNA-seq – Multiplex

10x Chromium 3' scRNA-seq – Sequencing Report

The Pipeline of scRNA-seq Analysis

Input Preprocessing by Cell Ranger

Optional Tools:

Cell Ranger Most popular

STARsolo Open source so you can adjust the parameters, like the tolerance of mismatches

Alevin Super fast

Install Cellranger

https://www.10xgenomics.com/support/software/cell-ranger/downloads#download-links

```
wget -0 cellranger-9.0.1.tar.gz "https://cf.10xgenomics.com/releases/cell-exp/cellranger-9.0.1.tar.gz?Expires=1746585246&Key-Pair-Id=APKAI7S6A5RYOXBWRPDA&Signature=LT7~WaW0pcQeHJx3HB7Wq51i-JPiwNOee3NBE0vfdKjtxn0DZAe1-RA-2jIj1aBgeDFlictRWD-hJcqCUgaqiyxfzxdS9Pn-~MctYr9oYswolGHzFJR-a9E0pg7RPxHlP50KPhjWPIUV8z~Z3P2REfgaRTHT2RhOa1Q3Vl01bdj5CQF63tK~qRNgfXpDI1r-La2tGCtJPOqlagYkmMOHJcR-fVM1xFs-BIu7lkY4aW1I1BRch2MjruGvddvtJwU7S-kFx-jYkNawVoO0xYePrpqUMotrJGeJ-JF-~hacQ4whBy3Hl6re4U7RDn7vYi92Eir~XXHr0h9rfnfns~GTJw__"
```

```
tar -xf cellranger-9.0.1.tar.gz
cp -r projects/def-sponsor00/scRNA-seq/Sample_FASTQ/ .
```


Base calling & demultiplexing

Figure 2 BCL Conversion Input Files from the MiniSeg or NextSeg System

Your Input File: Compressed Fastq

FASTQ From NCBI SRA

```
Cell Ranger requires FASTQ file names to follow the bcl2fastq file naming convention.

[Sample Name] _S1_L00 [Lane Number] _ [Read Type] _001.fastq.gz
```

```
SRR9291388_S1_L001_R1_001.fastq.gz  # Read1
SRR9291388_S1_L001_R2_001.fastq.gz  # Read2
SRR9291388_S1_L001_I1_001.fastq.gz  # Index
```


Alignment & quantification – Build The Reference

```
cd
cp -r projects/def-sponsor00/scRNA-seq/Sample_FASTQ/ .
export PATH=/project/def-sponsor00/scRNA-seq/cellranger-9.0.1/bin:$PATH
```

```
cd Sample_FASTQ/ref
cellranger mkref --genome tp53 --fasta tp53.fa --genes tp53.gtf
```

For human reference genome:

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest

Alignment & quantification

```
cd $HOME/Sample_FASTQ
vi cellranger.sh
```

```
cellranger count \
                                                        # Name of the output folder
  --id output tp53 \
  --transcriptome ref/tp53 \
                                                        # Path to reference genome built for Cell Ranger
  --fastqs fastq \
                                                        # Folder containing FASTQ files
  --sample tp53test \
                                                        # Sample ID in FASTQ file names
                                                        # Number of CPU cores
  --localcores 1 \
  --localmem 2 \
                                                        # Amount of memory (GB)
  --create-bam true \
                                                        # whether create a bam file
  --chemistry=SC3Pv4
                                                        # only for testing in this case, delete it when
                                                          you run your analysis
```

```
sbatch cellranger.sh
```


Alignment & quantification – check the output

```
cd $HOME/Sample_FASTQ/output_tp53
du -h | tail -1
du -h ../fastq
```

The output is 10x larger than the input!

Factors affect the output size:

- Number of cells
- 2. Sequencing depth
- 3. Size of the reference genome
- 4. Introns included?
- 5. Bam files generated?

Alignment & quantification - Sequencing Depth

Cells per sample 5,000 - 20,000

Reads per cell 20,000 – 100,000

Total reads per sample 100M – 1B

Genes detected per cell A few hundreds to thousands

Factors affecting the sequencing depth:

- Transcriptome size and complexity
- The nature of sample: FFPE, fresh, frozen?
- Genes of interest: highly or lowly expressed? Isoform-specific transcripts?
- Your budget

Alignment & quantification – Computational Resources

Cells × Reads	Cores	RAM	Time
~3k cells, 100M reads	8 cores	32 GB	~1–1.5 hrs
~10k cells, 500M reads	16 cores	64 GB	~2–4 hrs
~50k cells, 1B+ reads	32 cores	128 GB	4–8+ hrs

Understand The Output

Understand The Output

What Cellranger does?

Step	Description	Customization?
Read Alignment	Uses STAR aligner (optimized for spliced transcripts)	No
UMI Filtering	Removes PCR duplicates using UMI + barcode info	No
Barcode Correction	Fixes barcode errors based on whitelist and Levenshtein distance	No
Quality Filtering	Removes low-quality reads, adapters, unaligned reads	No

- Can I just keep on going with the data analysis without checking anything?
 NO
- Two files to check: web_summary.html matrix_summary.csv

Number of Cells

Number of cells

Cells

4,999

Multiplet Rate (%)	# of Cells Loaded	# of Cells Recovered
~0.4%	~825	~500
~0.8%	~1,650	~1,000
~1.6%	~3,300	~2,000
~2.4%	~4,950	~3,000
~3.2%	~6,600	~4,000
~4.0%	~8,250	~5,000
~4.8%	~9,900	~6,000
~5.6%	~11,550	~7,000
~6.4%	~13,200	~8,000
~7.2%	~14,850	~9,000
~8.0%	~16,500	~10,000

Median Genes Per Cell

Median genes per cell

Cell	Type	/ Sam	ple
------	------	-------	-----

Fresh PBMCs

Solid tissue

FFPE or nuclei

Expected Range

1,000-2,500

500-1,500

200-800

Median genes per cell

696

Median UMI Counts per Cell

Median UMI counts per cell
 Reflects effective sequencing depth per cell.

Fresh PBMCs: ~5,000–15,000 FFPE or nuclei: ~1,000–5,000

Median UMI counts per cell

1,145

Sequencing Saturation

- Sequencing saturation = 1 (Unique UMIs / Total Reads)
 - <50% You can benefit from deeper sequencing
 - 50-70% Still can get some new UMIs
 - >70% No need to sequence more

Sequencing Saturation

Sequencing saturation = 1 – (Unique UMIs / Total Reads)

• <50% You can benefit from deeper sequencing

• 50-70% Still can get some new UMIs

• >70% No need to sequence more

Sequencing saturation

83.69%

Confidently Mapped Reads in Cells

Usually > 60%

71.30%

Are these metrics enough for QC?

No, when:

Low alignment rate (<70%)

Unexpected cell types / bad clusters

Custom genome / annotation

Exonic vs intronic reads

Could mean contamination, degraded RNA, poor annotation, or library issue
Maybe ambient RNA wasn't properly removed or mapping is off
STAR may fail to align properly; misannotation or poor reference
Important for snRNA-seq (nuclei-based), where you expect more intronic reads

Summary

- The principle, history and pipeline of scRNA-seq
- Understand the data from the wet lab
- Did input preprocessing via CellRanger
- Assessed the quality of CellRanger outputs

Question?

Day 2. scRNA-seq Analysis

Notes

• The full code can be found at:

https://github.com/ualberta-rcg/scRNA-seq

• The slides list those codes that you need to make changes when running your own projects. They are highlighted in red, for example:

```
.....
raw_dat <- Seurat::Read10X(data.dir = "/usr/local/10x_data/sample_raw_feature_bc_matrix")
.....</pre>
```


Start Rstudio

```
cd $HOME
cp $HOME/projects/def-sponsor00/scRNA-seq/rstudio4.3/scRNA-seq.sif .
cp $HOME/projects/def-sponsor00/scRNA-seq/Job_scripts/test_cluseter.sh .
sbatch test_cluseter.sh
```


The Pipeline of scRNA-seq Analysis

The Pipeline of scRNA-seq Analysis

```
filter_dat <- Seurat::Read10X("filtered_feature_bc_matrix/")
seur_obj <- Seurat::CreateSeuratObject(filter_dat, min.cells=5, min.features=100)
seur_obj <- Seurat::NormalizeData(seur_obj)
seur_obj <- Seurat::FindVariableFeatures(seur_obj)
seur_obj <- Seurat::ScaleData(seur_obj)
seur_obj <- Seurat::RunPCA(seur_obj)
seur_obj <- Seurat::FindNeighbors(seur_obj)
seur_obj <- Seurat::FindClusters(seur_obj)</pre>
```

- These steps are not overwriting existing data, but add data into "seur_obj"
- Raw "seur_obj" is still available
- "seur obj" will get bigger and bigger during analysis
- It can store multiple samples, so the size could be MB to GB

Quality Control

Quality Control

There are multiple tools for each step!!!!!!

(Code) Step 1: Load the raw matrix

```
.....
raw_dat <- Seurat::Read10X(data.dir = "/usr/local/10x_data/sample_raw_feature_bc_matrix")
.....</pre>
```

	AAACCTGAGATAGGAG-1	AAACCTGAGATCCTGT-1	AAACCTGAGATTACAA-1	• • •
TP53	6	0	2	
KRAS	3	0	7	
•••				

Quality Control

QC1: Remove empty droplets

- Three methods:
 - Cell Ranger Strategy
 - Knee/Inflection
 - Poisson

QC1: Remove empty droplets

Barcode Rank Plot

Knee: min 2nd derivative (Max curve bending)

Inflection: 2nd derivative = 0

QC1: Remove empty droplets

Summary of three methods

Method	Based on	Sensitivity	Specificity	Best for
Cell Ranger Strategy	Proprietary + knee-like model + internal heuristics	High	Variable	Large cell recovery
Knee/Inflection	Max curve bending (min 2nd derivative) / 2nd derivative = 0	Low-Medium	Medium-High	Explore visually
Poisson	Statistical background noise model	Low	High	Low quality sample (FFPE)

(Code) Step 2: Identify the empty droplets

e.out <- emptyDrops(raw_dat, lower=100, niters=10000, ignore=NULL, retain=2*br.out\$knee)</pre>

Step 3: Filter Out Ambient RNA (QC2)

Step 3: Filter out ambient RNA (QC2)

- There are multiple tools/ways.
 We are using DecontX today because:
 - It is easy to be integrated into the pipeline.
 - It doesn't need GPU.
 - The syntax is simple and clean.
- Group cells into clusters and estimates clusterspecific expression profiles
- For each cell, tune the cell-specific contamination fraction to make the gene expression profile match the observation and the cluster as much as possible.

Step 4: Identify Dead/Broken Cells (QC3)

Step 4: Identify the dead / broken cells (QC3)

Through Mitochondrial genes.

Consideration
Human PBMCs / tumors / organs
Low-input / fragile tissues (e.g., FFPE, brain)
Visual inspection

Choose your genes based on your project, for example, for PBMC sample, you may want to remove those red blood cells with high hemoglobin mRNAs (>0.5-1%).

Step 4: Identify dead/broken cells (QC3)

```
.....
is.mt <- grepl("^MT-", rowData(sce)$Symbol)
.....
.....
cell_filter_detect <- sce$detected < 100
cell_filter_MT <- sce$subsets_Mito_percent > 30
```


Step 5: Gene Expression Normalization

Step 5: Gene Expression Normalization

seur_filtered <- NormalizeData(seur_filtered, normalization.method = "LogNormalize", scale.factor = 10000)</pre>

Cell	Gene	UMIS	Scaling	Log Transformation
Alaba	А	40	40/(40+10)*10000 = 8000	log(1+8000) = 3.90
Alpha	В	10	10/(40+10)*10000 = 2000	log(1+2000) = 3.30
Doto	А	5	5/(5+15)*10000 = 2500	log(1+2500) = 3.40
Beta	В	15	15/(5+15)*10000 = 7500	log(1+7500) = 3.88

Step 6: Feature Selection

Step 6: Feature Selection - Identify highly variable genes

```
seur_filtered <- FindVariableFeatures(seur_filtered, selection.method = "vst", nfeatures = 500)</pre>
```

Identify the most xxxx highly variable genes through "Variance Stabilizing Transformation" (VST).

Step 6: Feature Selection - Identify highly variable genes

```
seur_filtered <- FindVariableFeatures(seur_filtered, selection.method = "vst", nfeatures = 500)</pre>
```

Identify the most xxxx highly variable genes through "Variance Stabilizing Transformation" (VST).

How to determine "nfeatures"?

Total genes detected per cell	Suggested <i>nfeatures</i>	
< 500	300–500	
~1000	500–1000	
>2000	Up to 2000	

summary(seur filtered\$nFeature originalexp)

Step 6: Feature Selection - Identify highly variable genes

seur_filtered <- FindVariableFeatures(seur_filtered, selection.method = "vst", nfeatures = 500)</pre>

Identify the most xxxx highly variable genes through "Variance Stabilizing Transformation" (VST).

- This is arbitrary.
- You can play with the number and see which makes more sense.
- Usually, it wouldn't change much from 2000 to 2100, but it usually worth testing 400, 500, 600.

How to determine "nfeatures"?

Total genes detected per cell	Suggested nfeatures
< 500	300–500
~1000	500–1000
>2000	Up to 2000

summary(seur_filtered\$nFeature_originalexp)

Step 7: Dimensionality Reduction

Step 7: Dimensionality Reduction

- Principle Component Analysis (PCA) is the most popular way to reduce dimensionality.
- Why do we want to reduce dimensionality?
 - Remove noise
 - Speed up computation
 - Visualize the data
 - Reveal biological structure
- Determine how many PCs via ElbowPlot

```
ElbowPlot(seur_filtered)
PCs <- 7</pre>
```


Step 8: Cell Clustering

Step 8: Cell Clustering

```
seur_filtered <- FindNeighbors(seur_filtered, dims = 1:PCs)
seur_filtered <- FindClusters(seur_filtered, resolution = 0.3)</pre>
```

Resolution value	Effect
0.1	Large, coarse clusters
0.3	Moderate clusters (default-ish)
0.8	Smaller, finer clusters
≥1.0	Many small clusters (may over-split)

R package DoubletFinder

• R package DoubletFinder

Parameter	Description
nEXP	Expected number of doublets
pN	how many artificial doublets are generated relative to the number of non- empty droplets

• R package DoubletFinder

Parameter	Description
nEXP	Expected number of doublets
pN	how many artificial doublets are generated relative to the number of non- empty droplets

• R package DoubletFinder

Parameter	Description
nEXP	Expected number of doublets
pN	how many artificial doublets are generated relative to the number of non- empty droplets
рК	the neighborhood size parameter, which determines for a droplet, how many nearby droplets are included to calculate its doublet score

pK is too small

• R package DoubletFinder

Parameter	Description
nEXP	Expected number of doublets
pN	how many artificial doublets are generated relative to the number of non- empty droplets
pK	the neighborhood size parameter, which determines for a droplet, how many nearby droplets are included to calculate its doublet score

• R package DoubletFinder

Parameter	Description
nEXP	Expected number of doublets
pΝ	how many artificial doublets are generated relative to the number of non- empty droplets
pK	the neighborhood size parameter, which determines for a droplet, how many nearby droplets are included to calculate its doublet score
ВС	Bimodality Coefficient

pK is just right

A series of pK are tested. The best pK is the one that generates highest BC.

Cell Type Annotation

Step 11: Visualization of Cell Clusters

```
seur_filtered <- RunUMAP(seur_filtered, dims = 1:PCs)
picture <- DimPlot(seur_filtered, reduction = "umap", group.by = "seurat_clusters", label = TRUE, label.size = 5)
ggsave("umap_cluster_plot.png", plot = p, width = 8, height = 6, dpi = 300)</pre>
```


Step 12: Marker Gene Identification

markers <- FindAllMarkers(seur_filtered, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)

• min.pct = 0.25 Only test genes expressed in ≥25% of cells in either cluster

• Logfc.threshold = 0.25 Only report genes with >1.2-fold change in average expression ($log_2X >= 0.25$)

Situation	Suggested Change
You have rare or small clusters	Lower min.pct to 0.1
You're interested in subtle expression differences*	Lower logfc.threshold to 0.1 or 0.15
You're doing exploratory marker discovery	Lower both slightly to get more candidates

^{*} Early development stage, immune cell activation, autoimmune disease, drug responses/resistance etc

Step 12: Marker Gene Identification

Top 3 highly expressed genes in each cluster

Step 13: Automated Cell-Type Annotation by SingleR

Keep In Mind:

- A good understanding of your sample is essential
 - How was it prepared?
 - What are the expected cell types?
 - Are there canonical marker genes?
- A good understanding of the methodology can help you:
 - Optimize the parameters
 - Assess your results
 - Develop new methods
- There are multiple options/tools for each step. Each has pros & cons with different focus and strength.
 When choosing the tools, you may want to ask:
 - Does it do a good job with your sample and project?
 - Is it easy to integrated into my pipeline?
 - Does it need customization? If so, does it worth my time?

Question?

Thank you!

