Clase 5

Marzo 2025

Código por Teams

Intro a Haskell

Tipos:

- Funcionales
- Árboles
- Abstractos de datos

Expresiones:

- Valores: 3, \x->x
- A evaluar: 3+3
- Otro?

Tipos funcionales

ox tipo	\propto	+1	Po		7	5 ti	p		
a :: a		0	· (–	> 1	3	+ip	5		
f:x→B a:	×								
fa::B									

Currificación

$$f:: \alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \beta$$

$$f:: \alpha_1 \to (\alpha_2 \to \cdots \to \alpha_n \to \beta)$$
devuelve un tipo funcional

```
Prelude> :t (+)
(+) :: Num a => a -> a -> a
Prelude> sumaDos = (+) 2
Prelude> :t sumaDos
sumaDos :: Num a => a -> a
Prelude> sumaDos 3
Prelude>
```

Tipos de recursión

- Primitiva
- Estructural
- Bien fundada
- Por cola

Ejemplo recursión bien fundada

$$sumInt J h = \sum_{i=d}^{n} i$$

SumInt :; Int -- h Si otherwise = (Sun Int

Teoría de conjuntos

Definir conjuntos

- Pertenencia: $4 \epsilon A, 5 \epsilon A$
- Extensión: A = {4,5}
- Comprensión: $A = \{x \mid x \in Z, 3 < x < 6\}$
- Inducción : N = O | S N

Conceptos que ya conocen

- unión
- intersección
- diferencia
- diferencia simétrica (XOR)
- complemento
- inclusión
- conjunto potencia
- producto cartesiano

Producto Cartesiano

$$A \times B = \{(x, y) : x \in A \land y \in B\}$$

$$\{1,2\} \times \{\#,!\} = \{(1,\#),(1,!),(2,\#),(2,!)\}$$

Relación

Cualquier subconjunto de un producto cartesiano

$$R \subseteq A \times B$$

- A es el dominio y B el codominio
- Cuando el dominio y codominio son iguales $(R \subseteq A \times A)$ se llama relación **binaria** en A

Funciones

Caso especial de relaciones

Donde cada elemento del dominio está relacionado con a lo sumo un elemento del codominio

Funciones Parciales vs. Totales

Si están o no definidas para todos los elementos en el dominio

Total $f: A \to B$

Parcial $f: A \hookrightarrow B$

Definiciones

- Función Inyectiva
- Función Sobreyectiva
- Función Biyectiva

¿Cómo comparo tamaños de conjuntos?

menor conjunto con uno assesso del mayor, como en la ugura-

Esto se puede definir formalmente de la siguiente forma:

Definición 2.1. Sean A y B conjuntos. Diremos que A es de menor o igual tamaño que B—lo cual se escribirá $A \leq B$ — si y sólo si existe una función total inyectiva de A en B.

Definición 2.2 (Igualdad de tamaño o equipolencia). Sean A y B conjuntos. Diremos que A es del mismo tamaño que B—lo cual se escribirá $A \sim B$ — si y sólo si $A \leq B$ y $B \leq A$. En tal caso también se dirá que A y B son equipolentes.

Definición 3.2 (Conjuntos contables). A es contable si y sólo si $A \leq \mathbb{N}$.

Definición 3.3 (Conjuntos numerables). A es numerable si y sólo si $A \sim \mathbb{N}$.

¿Qué conjuntos son numerables?

Hay funciones no programables

¿Sabemos cuáles son?