

Figura 1: Imagen ULL

Práctica 10: Aproximación del número π

Yessica Sabrina Gómez Buso

11 de abril de 2014

Resumen

El objetivo de esta práctica es desarrollar un documento en IATEX sobre el número π .

1. Introducción

A lo largo de la historia han sido muchas las formas utilizadas por el ser humano para calcular aproximaciones cada vez más exactas del número π . En prácticas anteriores se ha estudiado como aproximar el número π mediante la integración.

Se fue mejorando dicha aproximación por la regla del punto medio.

1.1. Integración

$$\int_0^1 \frac{4}{1+x^2} \, dx = 4(atan(1) - atan(0)) = \pi$$

Esta integral¹ se puede aproximar numéricamente con una fórmula de cuadratura.

1.2. Regla del punto medio

Si se utiliza la regla del punto medio se obtiene:

$$\pi \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$
, con $f(x) = \frac{4}{(1+x^2)}$, $x_i = \frac{i-\frac{1}{2}}{n}$, para $i = 1, \dots, n$

Para

¹Cálculo matemático usualmente utilizado

2. Aplicación

Se ha escrito un programa en Python para poder hacer el cálculo del número $\pi.$

2.1. Ejemplo

Utilizando 4 subintervalos, los valores obtenidoss son: En forma de tabla:

Subintervalo	xi	fxi
0, 0.25	0.125	3.93846
0.25, 0.5	0.375	3.50685
0.5, 0.75	0.625	2.8764
0.75, 1	0.875	2.26549

Cuadro 1: Es una tabla del ejercicio anterior

El valor aproximado de PI es: 3.14680051839 En la tabla 1 aparece el ejemplo anterior. Para más información sobre LATEX véase [1]. También puede ver [2].

En la figura 1 aparece el logo de la Universidad.

Referencias

- [1] Leslie Lamport. LATEX: A Document Preparation System. Addison—Wesley Pub. Co., Reading, MA, 1986.
- [2] ACM LaTeX Style. http://www.acm.org/publications/latex_style/.