Group Assignment 1

Simon Yu

2025-10-05

Table of contents

1. Visualise the number of tickers on each exchange that have had at least one trading	
day with a volume of more than 100000	3
2. Visualize on one line plot the close prices of each ticker (SBUX, WEN, PBPB,	
CMG), over the period	4
Finally, considering only the ticker you analysed with the highest mean daily return	
over the period:	6
3. Visualise on one line plot the high and low prices, in the year 2021	6
4. Visualise volume using a bar plot, over the entire period	8
5. Visualise, using a scatter (point) plot, the relationship between simple daily returns	
and volume, in the year 2021	10

List of Figures

List of Tables

```
library(dplyr)
library(ggplot2)
library(PerformanceAnalytics)
library(lubridate)
library(scales)
```

```
data <- read.csv("compustat_food_bev.csv")

# filter data for Starbucks (SBUX)
sbux_data <- filter(data, tic == "SBUX")

# filter data for Wendy's (WEN)
wen_data <- filter(data, tic == "WEN")

# filter data for Potbelly (PBPB)
pbpb_data <- filter(data, tic == "PBPB")

# filter data for Chipotle (SMG)
cmg_data <- filter(data, tic == "CMG")</pre>
```

1. Visualise the number of tickers on each exchange that have had at least one trading day with a volume of more than 100000.

A tibble: 4×2

	exchg	tic_num
	<int></int>	<int></int>
1	11	16
2	12	1
3	14	36
4	19	1

2. Visualize on one line plot the close prices of each ticker (SBUX, WEN, PBPB, CMG), over the period.

Close Price Trends

Finally, considering only the ticker you analysed with the highest mean daily return over the period:

3. Visualise on one line plot the high and low prices, in the year 2021.

```
# add a new column called daily_return for the tickers we analyzed
# drop the rows whose daily_return values are NA
sbux_data <- mutate(sbux_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
sbux_data <- filter(sbux_data, !is.na(daily_return))
wen_data <- mutate(wen_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
wen_data <- filter(wen_data, !is.na(daily_return))

pbpb_data <- mutate(pbpb_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
pbpb_data <- filter(pbpb_data, !is.na(daily_return))</pre>
```

```
cmg_data <- mutate(cmg_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
cmg_data <- filter(cmg_data, !is.na(daily_return))

# calulate mean daily return for the tickers we analyzed
sbux_mean_daily_return <- mean(sbux_data$daily_return)
wen_mean_daily_return <- mean(wen_data$daily_return)
pbpb_mean_daily_return <- mean(pbpb_data$daily_return)
cmg_mean_daily_return <- mean(cmg_data$daily_return)

# demonstrate the calulating result
print(paste("mean daily return for SBUX:", sbux_mean_daily_return))
print(paste("mean daily return for WEN :", wen_mean_daily_return))
print(paste("mean daily return for PBPB:", pbpb_mean_daily_return))
print(paste("mean daily return for CMG :", cmg_mean_daily_return))</pre>
```

[1] "mean daily return for SBUX: 0.000291046723931376"
[1] "mean daily return for WEN : 0.000116474712706267"
[1] "mean daily return for PBPB: 0.00127986776777774"
[1] "mean daily return for CMG : 0.000674687634951914"

Apparently, PBPB has the highest mean daily return among the four tickers. Let's visualize the high and low prices of PBPB in 2021.

4. Visualise volume using a bar plot, over the entire period.

ggplot(annual_volume, aes(year, volume)) +

```
# add a new column called year to pbpb_data to represent the year of each observation
# group the pbpb_data by year and calculate the annual trading volume (cshtrd) for each year
annual_volume <- pbpb_data %>%
    mutate(year = year(datadate)) %>%
    group_by(year) %>%
    summarise(volume = sum(cshtrd))

# demonstrate the calulating result table
print(annual_volume)

# plot the result using column chart
# we add scale_y_continuous to make y axis labels more readable
# by scaling down the numbers and adding "M" suffix to represent million
```

```
geom_col(fill = "dark blue") +
scale_y_continuous(labels = label_number(scale = 1e-6, suffix = "M")) +
labs(x = "Year", y = " Trading Volume",
    title = "Trading Volume for PBPB from 2020 to 2023")
```

Trading Volume for PBPB from 2020 to 2023

5. Visualise, using a scatter (point) plot, the relationship between simple daily returns and volume, in the year 2021.

```
# add a new column called model to pbpb_data_2021 to store the predicted daily return values
lm_return_volume <- lm(formula = daily_return ~ cshtrd, data = pbpb_data_2021)
pbpb_data_2021$model <- predict(lm_return_volume)

# Plot a scatter plot with regression line
ggplot(pbpb_data_2021, aes(cshtrd, daily_return)) +
    geom_point() +
    geom_line(aes(y = model, colour = "Regression Line")) +
    labs(title = "Daily Return vs Volume in 2021",
        colour = "", x = "Volume", y = "Daily Return")</pre>
```

Daily Return vs Volume in 2021

