

Zewail City of Science and Technology Real-Time Embedded System & Microcontroller Design [NANENG 410] Embedded Systems [CIE 408] Spring 2025 PRACTICAL LAB 2

Basic I/O Operations with PIC and Interrupt (Seven Segments Application)

Practical Lab 2

Objective:

In this Lab we are going to learn how to use the GPIO peripherals in the PIC microcontroller and the Interrupts, and integrate this knowledge in a practical example.

Requirements:

> Software:

- 1. MPLAB
- 2. Simulide
- 3. PICSimLab

7-Segment

A 7-segment display is commonly used in electronic display devices for decimal numbers from 0 to 9

The use of light-emitting diodes (LEDs) in seven-segment displays made it more popular

7-Segment Display Pinout

7-Segment Display Types

Common Anode and Common Cathode 7 Segment LED Display

1. Common Anode 7 Segment Display:

All the Negative terminals (Anode) of all the 8 LEDs are connected. All the positive terminals are left alone.

2. Common Cathode 7 Segment Display:

All the positive terminals (Cathode) of all the 8 LEDs are connected together. All the negative thermals are left alone.

7-Segment Display Codes

The below table shows the 0-9 codes for the seven-segment LED display.

Number	gfedcba	Hex code
0	1000000	C0
1	1111001	F9
2	0100100	A4
3	0110000	В0
4	0011001	99
5	0010010	92
6	0000010	82
7	1111000	F8
8	0000000	80
9	0010000	90

Experiment Steps:

1. Prepare the Circuit in the SimulIDE

a. Add the PIC16F887 and the 7 segment.

A: D4
B: D5
C: D0
D: D1
E: D2
F: D3
G: D6

b. add two switches on Port B pin0 and pin1

2. Open MPLAP IDE:

a. Open MPLAP, create a project, create main.c and device_config.c and copy the configurations from LAB1 to the device config.c of LAB2

b. in main.c, we'll start with making all pins of the GPIO digital pins.

```
#include "xc.h"
int main()
{
    //[1]Configure all I/O to be digital
    ANSEL = 0;
    ANSELH = 0;
    return 0;
}
```

c. configure port D to be output.

```
#include "xc.h"
int main()
{
    //[1]Configure all I/O to be digital
    ANSEL = 0;
    ANSELH = 0;
    //[2]Cinfigure Port D to be output
    TRISD = Ob000000000;
return 0;
}
```

d. Configure Port B pin0 & pin1 to be input

```
#include "xc.h"
int main()

{
    //[1]Configure all I/O to be digital
    ANSEL = 0;
    ANSELH = 0;
    //[2]Cinfigure Port D to be output
    TRISD = Ob000000000;
    //[3]Configure Port B pin0 & pinl to be input
    TRISB = Ob000000011;

return 0;
}
```

e. Enable the Global interrupt and allow the interrupt on data change to PORTB Pin0&Pin1.

```
#include "xc.h"
 int main()
] {
     //[1]Configure all I/O to be digital
     ANSEL = 0 ;
     ANSELH = 0;
     //[2]Cinfigure Port D to be output
     TRISD = 0b00000000;
     //[3]Configure Port B pin0 & pin1 to be input
     TRISB = 0b00000011;
     //[4] Enable Global interrupt
     INTCON |= 1<<7; // set bit 7 in INTCON_REG "GIE"</pre>
     //[5] Enable interrupts for portB
     INTCON |= 1<<3; // set bit 3 in INTCON_REG "RBIE"</pre>
     //[6] Enable interrupts on datachange for PortB Pin0&Pin1
     IOCB0 = 1;  // interrupt on PORTB pin0 change is enabled
     IOCB1 = 1;
                    // interrupt on PORTB pinl change is enabled
  return 0;
```

f. Write a while loop that counts from 1 to 3 on the 7seg.

g. Write the ISR function to turn on and off the 7 Segments using the external switches.

```
void __interrupt() ISR(void) {
   if (0 == ((PORTB >> 0) & 1)) {
      TRISD = 0xFF;
   }
   if (0 == ((PORTB >> 1) & 1)) {
      TRISD = 0x00;
   }
   INTCON &= ~ 1 << 0;
}</pre>
```

3. Test the output on the simulIDE:

Multiplexed Two Digits 7seg Display Unit

Two multiplexed 7seg digits are added to **Betamini** kit.

Segment	MCU pins
Α	D4
В	D5
C	DO
D	D1
E	D2
F	D3
G	D6
DOT	D7
Common	MCU pins
Com 1	C5
Com 2	C4

Tring code in Kit

Burning Code in Kit

You Have a PiC Kit 2 programmer

To download

https://fares-pcb.com/product/pic-development-kit-betamini/?attachment_id=23197&download_file=inv661k497vmy

" If You have a problem with install You can try this "

Open control panel >

Select Uninstall programs

Then check on

Wait the windows to download the framework then install the programmer software

Lab report:

Submit a PDF file with Code, snapshots and "Small Video for the practical work" of the work you did and upload the project file.