## **Epidemics**

# Social Networks - July 2020

### MCQ Assignment - Week 10

- 1. In the percolation model (static view of the SIR model), assume that  $t_I = 1$ . For every edge  $E_{u,v}$  in the network, we toss a biased coin which shows head with a probability of p, which is the infection rate of the disease, i.e., the probability that v will become infected in the next iteration, given that u is infected. If head turns up, we assume an edge to be open, else blocked. According to this percolation model, a node w in the network will become infected
  - A. if and only if there is a path consisting of blocked edges from any of the initially infected nodes to w.
  - B. if and only if there is a path consisting of open edges from any of the initially infected nodes to w.
  - C. if and only if there is a path from any of the initially infected nodes to w. The path may consist of any edges- open/ blocked.
  - D. if and only if there does not exist any path from any of the initially infected nodes to w.

### ANSWER: B

In the percolation model, a node gets infected if and only if there is a path comprising of open edges from the initial infected node to this node.

- 2. Choose the correct statement from the following.
  - A. Both SIR and SIS model can run for an infinite number of steps on a network.
  - B. Both SIR and SIS model should come to an end after running for a finite number of steps on a network.
  - C. SIS model should come to an end after running for a finite number of steps on a network, while SIR model can keep running indefinitely on a network.
  - D. SIR model should come to an end after running for a finite number of steps on a network, while SIS model can keep running indefinitely on a network.

### ANSWER: D.

SIR model has a finite supply of nodes. Since, nodes can never be reinfected, the process should come to an end after a finite number of steps. An SIS epidemic, on the other hand, can run for an extremely long time as it cycles through the nodes potentially multiple times.

- 3. Suppose that a person carrying a new disease enters a population, and transmits it to each person he meets independently with a probability of p. Further, suppose that he meets k people while he is contagious. What is the expected number of secondary infections produced?
  - A. p
  - B. k
  - C.  $p \times k$
  - D.  $p^k$
  - **C.** Pr(Infecting one person)=p. There are k neighbors.

Expected number of secondary infections=  $pr(\text{first neighbor infected}) + pr(\text{second neighbor infected}) + ... + pr(k_{th} \text{neighbor infected})$ 

```
= p + p + \dots k \ times + \dots p= pk
```

4. Consider the network as shown in Figure 1. Initially, the two nodes shown in red color are infected. Assume that the probability of infection across every edge, i.e.  $p ext{ is } 2/3$  and the infectious period  $T_I$  is 1. What is the probability that the infection does not pass on from layer-1 to layer-2?



Figure 1: The network for SIR model

- A. 2/3
- B. 1/3
- C.  $(2/3)^4$
- D.  $(1/3)^4$
- **D.** The disease does not pass to layer-2 if all the 4 links from layer-1 to layer-2 fail in transmitting the

$$Pr(one\ link\ fails) = 1 - (2/3) = 1/3$$
  
 $Pr(All\ links\ fail) = (1/3)^4$ 

5. In a tree network (shown in Figure 2), given that the probability of infection across every edge is p and every node has k children, the basic reproductive number  $R_0$  is denoted by the formula



Figure 2: The tree network

- A.  $R_0 = p$
- B.  $R_0 = k$
- C.  $R_0 = p \times k$ D.  $R_0 = p^k$

C. In a tree network, given that the probability of infection across every edge is p and every node has kchildren, the basic reproductive number  $R_0$  is denoted by the formula pk. It is the expected number of secondary infections produced from an infected person.

- 6. Consider the following two cases:
  - Case 1- Basic reproductive number is less than 1.
  - Case 2- Basic reproductive number is greater than 1.

Choose the correct statement from the following:

- A. In case 1, the disease dies away with a probability 1; while in case 2, the disease persists in the population with a probability greater than 0.
- B. In case 1, the disease dies away with a probability greater than 0; while in case 2, the disease persists in the population with a probability equal to 1.
- C. In case 1, the disease persists in the population with a probability greater than 0; while in case 2, the disease dies away with a probability 1.
- D. In case 1, the disease persists in the population with a probability 1; while in case 2, the disease dies away with a probability greater than 0.
- **A.** When basic reproductive number,  $R_0 < 1$ , every infected person infects less than one instance of secondary infection, hence the disease dies away with a probability 1. When  $R_0 > 1$ , there is an increased chance that the disease will persist in the network. But still there is a very small probability of the disease dying away. Hence, the disease persists in the network with a positive probability.
- 7. Suppose the basic reproductive number is estimated to be  $R_0 = 1.5$  with standard error  $s.e.(R_0) = 0.1$ . If a vaccine giving 100% immunity is available next time and a fraction v = 0.2 of randomly selected individuals were vaccinated, an estimate of the new reproductive number would be
  - A. 1.0
  - B. 1.1
  - C. 1.2
  - D. 1.3

## ANSWER: C

An estimate of the new reproductive number would be R(U) = R(1-v) = 1.5 \* 0.8 = 1.2.

- 8. In the modelling of mitochondrial eve using Wright-Fischer number would be
  - A. Population size can be anything in any generation.
  - B. Population size doubles every generation.
  - C. Population size remains the same in every generation.
  - D. Population size halves every generation.

#### ANSWER: C

Population size remains the same in every generation.