SET & INPUT

SYMBOL	DESCRIPTION	
Т	Number of Teams. T = 36	
P	Matches to play. P = 8	
F	Rankings. F = 4	
N	Nationality	
f_t	Ranking of the team $t \in T$, $f_t \in F$	
n_t	Nationality of the team $t \in \mathit{T}$, $n_t \in \mathit{N}$	
s_t	City of the team $t \in T$	
lat_t	Latitude of the team s_t , $t \in T$	
lon_t	Longitude of the team s_t , $t \in T$	
$u_{i,p}$	€ (0,1), unavailability variable	
b_t	€ (0,1), popolarity variable	

VARIABLES

SYMBOL	DESCRIPTION	
$x_{\mathrm{i,j,p}}$	$\begin{cases} 1, & \text{if team } i \text{ plays home against} \\ & \text{team } j \text{ in the p slot } (i \neq j) \\ 0, & \text{otherwise} \end{cases}$	
$h_{i,p}$	$\left\{ egin{array}{ll} 1, & ext{ if team i plays home in slot p} \ 0, & ext{ otherwise (away)} \end{array} ight.$	

Boolean variables for the soft constraint count:

$$d^{S1}{}_{i,p}$$
 , $d^{S2,h}{}_{i,p}$, $d^{S2,a}{}_{i,p}$, $d^{S3}{}_{i,f}$, $d^{S5}{}_{i,n}$, $d^{S6}{}_p$, $d^{S7}{}_i$

Int. variable for the distance soft constraint count: d^{S4}

$$(i, j \in T; p \in P; f \in F; n \in N)$$

HARD CONSTRAINTS

	TEXT	MATH
H1	Each team plays against each other AT MOST one time (<i>cut round robin</i>)	$\sum_{p \in P} (x_{i,j,p} + x_{j,i,p}) \le 1 \forall i, j \in T, i < j$
H2	Each team plays one match per slot (time constrained)	$\sum_{j \in T \setminus \{i\}} (x_{i,j,p} + x_{j,i,p}) = 1 \forall i \in T, p \in P$
НЗ	Half of the matches at home (and half away)	$\sum_{j \in T \setminus \{i\}} x_{i,j,p} = h_{i,p} \qquad \forall i \in T, p \in P$ $\sum_{j \in T \setminus \{i\}} x_{j,i,p} = 1 - h_{i,p} \qquad \forall i \in T, p \in P$ $\sum_{p \in P} h_{i,p} = \frac{ P }{2} \qquad \forall i \in T$
Н4	Teams with the same city don't play at home in the same slot	$h_{i,p} + h_{j,p} \le 1 \forall i,j \in T , \forall p \in P \mid i < j, s_i = s_j$

HARD CONSTRAINTS

	TEXT	MATH
Н5	2 opponent teams per ranking (for each team and ranking)	$\sum_{p \in P} \sum_{j \in T \setminus \{i\} \mid f_j = f} \left(x_{i,j,p} + x_{j,i,p} \right) = \frac{ P }{ F } \forall i \in T, \forall f \in F$
Н6	1 match home and 1 away against teams of the same ranking	$\sum_{p \in P} \sum_{j \in T \setminus \{i\} \mid f_j = f} x_{i,j,p} = \sum_{p \in P} \sum_{j \in T \setminus \{i\} \mid f_j = f} x_{j,i,p} \forall i \in T, \forall f \in F$
Н7	No national derby	$\sum_{p \in P} (x_{i,j,p} + x_{j,i,p}) = 0 \qquad \forall i, j \in T \mid i < j, n_i = n_j$
Н8	Maximum two home or away matches in a row (for each team)	$h_{i,p} + h_{i,p+1} + h_{i,p+2} \le 2 $ $\forall i \in T, p \in \{1,, P - 2\}$ $(1 - h_{i,p}) + (1 - h_{i,p+1}) + (1 - h_{i,p+2}) \le 2$
Н9	First two and last two matches, for each team, must be played in alternation home/away	$h_{i,1} + h_{i,2} = 1 \forall i \in T$ $h_{i, P -1} + h_{i, P } = 1 \forall i \in T$
H10	Maximum two opponent teams of the same nationality (for each team)	$\sum_{p \in P} \sum_{j \in T \setminus \{i\} \mid n_j = n} (x_{i,j,p} + x_{j,i,p}) \le 2 \qquad \forall i \in T, \forall n \in N$

SOFT CONSTRAINTS

	TEXT	MATH
S1	Unavailability of the teams (at home) must be respected	$h_{i,p} \ - \ d^{S1}{}_{i,p} \ \le \ 0 \qquad \qquad \forall \ i \in T, p \in P \mid u_{i,p} = 1$
S2	Break constraint: alternation home/away	
S3	Simmetrical calendar, according to the rankings	$\sum_{p \in \{1, \dots, P /2\}} \sum_{j \in T \mid f_j = f} (x_{i,j,p} + x_{j,i,p}) + d^{S3}_{i,f} \ge 1 \qquad \forall i \in T, \forall f \in F$
S4	Total distance must be as short as possible (*)	$dist_{tot} - M * d^{S4} \le 0.9 * dist_{avg} * P * T / 2$
S5	Variability, as regards different nations	$\sum_{p \in P} \sum_{j \in T \setminus \{i\} \mid n_j = n} \left(x_{i,j,p} + x_{j,i,p} \right) - d^{S5}_{i,n} \le 1 \qquad \forall i \in T, \forall n \in N$
S6	At least one big match per slot	$\sum_{i \in T \mid b_i = 1} \sum_{j \in T \mid i < j, b_j = 1} (x_{i,j,p} + x_{j,i,p}) + d^{S6}_p \ge 1 \qquad \forall p \in P$
S7	Visibility also for the «small teams»	$\sum_{p \in P} \sum_{j \in T \setminus \{i\}, b_j = 1} (x_{i,j,p} + x_{j,i,p}) + d^{S7}_i \ge 1 \qquad \forall i \in T \mid b_i = 0$

*distance: different auxiliary variables have been used. Next page

SOFT CONSTRAINTS: distance focus - S4

$$distance_{i,j} = \arccos(\sin lat_i * \sin lat_j + \cos lat_i * \cos lat_j * \cos(lon_j - lon_i)) * R \quad \forall i,j \in T$$
 R=6371 km

Total distance during the tournament:

$$dist_{tot} = \sum_{p \in P} \sum_{i \in T} \sum_{j \in T \mid i < j} distance_{i,j} * (x_{i,j,p} + x_{j,i,p})$$

Average distance between each team:

$$dist_{avg} = \sum_{i \in T} \sum_{j \in T \mid i \neq j} \frac{distance_{i,j}}{(n-1)(n-1)}$$

S4 constraint:
$$dist_{tot} - M * d^{S4} \le 0.9 * dist_{avg} * |P| * |T| / 2$$

Where:

- M is the scale factor (=1000 km) for the d^{S4} count
- |P| * |T| / 2 total number of matches (144 for the UEFA CL 2024/25)
 - $dist_{avg} * |P| * |T| / 2$ is the total average expected distance

OBJECTIVE FUNCTION

Minimization of the violations to the SOFT contraints

$$min \ w_1 \sum_{p \in P} \sum_{i \in T} d^{S1}_{i,p} + w_2 \sum_{p \in P} \sum_{i \in T} (d^{S2,h}_{i,p} + d^{S2,a}_{i,p})$$

$$+ w_3 \sum_{f \in F} \sum_{i \in T} d^{S3}_{i,f} + w_4 d^{S4} + w_5 \sum_{n \in N} \sum_{i \in T} d^{S5}_{i,n} + w_6 \sum_{p \in P} d^{S6}_{p} + w_7 \sum_{i \in T} d^{S7}_{i}$$

$$d^{S1}_{i,p}$$
, $d^{S2,h}_{i,p}$, $d^{S2,a}_{i,p}$, $d^{S3}_{i,f}$, d^{S4} , $d^{S5}_{i,n}$, d^{S6}_{p} , d^{S7}_{i}

Auxiliary variables for the violations count

 $W_1, W_2, W_3, W_4, W_5, W_6, W_7$

Weight of each component (subjective)

REFERENCES

BIBLIOGRAPHY

- David Van Bulck, Dries Goossens, "The Fifth International Timetabling Competition (ITC2021): Sports Timetabling", Dicembre 2022
- Dirk Briskorn, Andreas Drexl, Frits C.R. Spieksma, "Round robin tournaments and three index assignment", Marzo 2006
- Roberto Maria Rosati, Matteo Petris, Luca Di Gaspero, Andrea Schaerf, "Multi-neighborhood simulated annealing for the sports timetabling competition ITC2021", Giugno 2022
- "Regulations of the UEFA Champions League, 2024/25 Season", da uefa.com
- Mike Wright, "50 years of OR in sport", Febbraio 2009
- Riccardo Guidetti, "La ricerca operativa a supporto delle decisioni in enologia", Settembre 2009
- Alessio Puppato, Barbara Fuoco, Andrea Rossi, Michele Lanzetta, "Scheduling: modelli, algoritmi e simulazione", Gennaio 2005
- Jeffrey W. Herrmann, "Handbook of Production Scheduling", 2006
- Tim B. Swartz, Paramjit S. Gill, David Beaudoin, Basil M. DeSilva, "Optimal barring orders in one-day cricket", Novembre 2004
- Bart H. Boon, Gerard Sierksma, "Team formation: Matching quality supply and quality demand", 2003
- Mark J. Dixon, Michael E. Robinson, "A birth process model for association football matches", 1998
- András Gyimesi, "Competitive Balance in the Post-2024 Champions League and the European Super League: A Simulation Study", 2024
- Adle Ben Salem, Thomas Buchholtzer, Mathieu Tanré, "The drawing of the teams in the future Champions League", 2024
- Buraimo, B., & Simmons, R., "A tale of two audiences: Spectators, television viewers and outcome uncertainty in Spanish football", 2007
- Groot, L., "Economics, uncertainty and European football: Trends in competitive Balance", 2008

SITOGRAPHY

- CPLEX Optimization Studio website https://www.ibm.com/it-it/products/ilog-cplex-optimizationstudio
- Union of European Football Associations (UEFA) website https://it.uefa.com/
- Footballflick.com https://footballflick.com/blogs/news/the-new-uefa-champions-league-2024-format
- Deloitte.com https://www.deloitte.com/uk/en/services/financial-advisory/analysis/deloitte-football-money-league.html