

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6690/01)

June 2009 6690 Decision Mathematics D2 Mark Scheme

Question Number	Scheme		
Q1 (a) (b)	There are more tasks than people. Adds a row of zeros	B1 B1	(1) (1)
	$\begin{bmatrix} 15 & 11 & 14 & 12 \\ 13 & 8 & 17 & 13 \\ 14 & 9 & 13 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 3 & 1 \\ 5 & 0 & 9 & 5 \\ 5 & 0 & 4 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \rightarrow \begin{bmatrix} 3 & 0 & 2 & 0 \\ 4 & 0 & 8 & 4 \\ 4 & 0 & 3 & 5 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ $Either \begin{bmatrix} 3 & 3 & 2 & 0 \\ 1 & 0 & 5 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix}$ $Or \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 6 & 4 \\ 2 & 0 & 1 & 5 \\ 0 & 3 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 5 & 3 \\ 1 & 0 & 0 & 4 \\ 0 & 4 & 0 & 2 \end{bmatrix}$	B1;M1	A1
	$\begin{bmatrix} 0 & 3 & 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 & 0 & 2 \end{bmatrix}$ J-4, M-2, R-3, (D-1)	A1	(6)
(d)	Minimum cost is (£)33.	B1	(1)
			[9]

Question Number	Scheme	Ma	rks
Q2 (a)	In the classical problem each vertex must be visited only once. In the practical problem each vertex must be visited at least once.	B2, 1,	0 (2)
(b)	A F D B E C A {1 4 6 3 5 2 } 21 + 38 + 58 + 36 + 70 + 34 = 257	M1 A1 A1	(3)
(c)	257 is the better upper bound, it is lower.	B1ft	(1)
(d)	R.M.S.T. C 34 A 21 F 38 D 67 E	M1 A1	
	Lower bound is $160 + 36 + 58 = 254$	M1A1	(4)
(e)	Better lower bound is 254, it is higher	B1ft	
(f)	254 < optimal ≤ 257	B1	(2)
	Notes: (a) 1B1: Generous, on the right lines bod gets B1 2B1: cao, clear answer. (b) 1M1:Nearest Neighbour each vertex visited once (condone lack of return to start) 1A1: Correct route cao – must return to start. 2A1: 257 cao (c) 1B1ft: ft their lowest. (d) 1M1: Finding correct RMST (maybe implicit) 160 sufficient 1A1: cao tree or 160. 2M1:Adding 2 least arcs to B, 36 and 58 only 2A1: 254 (e) 1B1ft: ft their highest (f) 1B1: cao		[12]

Question Number	Scheme				
Q3 (a)	Row minima {-5, -4, -2} row maximin = -2 Column maxima {1, 6, 13} col minimax = 1 -2 ≠ 1 therefore not stable. Column 1 dominates column 3, so column 3 can be deleted.				
(c)	A plays 1 A plays 2 A plays 3 B plays 1 5 -1 2 B plays 2 -6 4 -3	B1 B	1 (2)		
(d)	Let B play row 1 with probability p and row 2 with probability (1-p) If A plays 1, B's expected winnings are 11p – 6 If A plays 2, B's expected winnings are 4 – 5p If A plays 3, B's expected winnings are 5p – 3	M1 A	1		
	11p - 6 5p - 3 1 p - 6 5p - 3 1 p - 6 5p - 3	M1 A	1		
	$5p-3=4-5p$ $10p=7$ $p = \frac{7}{10}$	M1			
	B should play 1 with a probability of 0.7 2 with a probability of 0.3 and never play 3	A1			
	The value of the game is 0.5 to B	A1	(7) [13]		

Question Number		Scheme	Mark	(S
Q4	(a)	Value of cut $C_1 = 34$; Value of cut $C_2 = 45$	B1; B1	(2)
	(b)	S B F G T or S B F E T – value 2 Maximum flow = 28	M1 A1 A1=B1	(3)
		Notes: (a) 1B1: cao 2B1: cao (b) 1M1: feasible flow-augmenting route and a value stated 1A1: a correct flow-augmenting route and value 1A1=B1: cao		[5]
Q5	(a)		D2 4 0	
	()	x = 0, y = 0, z = 2	B2,1,0	(2)
	(b)	x = 0, y = 0, z = 2 $P - 2x - 4y + \frac{5}{4}r = 10$	M1 A1	(2)
				[4]
		Notes: (a) 1B1: Any 2 out of 3 values correct 2B1: All 3 values correct. (b) 1M1: One equal sign, modulus of coefficients correct. All the right ingredients. 1A1: cao – condone terms of zero coefficient		

Question Number	Scheme		
Q6 (a)	The supply is equal to the demand	B1	(1)
(b)	A B C	B1	(1)
	X 16 6 Y 9 8		
	Z 15		
(c)	A B C X 16- θ 6+ θ	M1 /	41
	$\begin{array}{c ccccc} Y & 9-\theta & 8+\theta \\ \hline Z & \theta & 15-\theta \end{array}$		
	Value of $\theta = 9$, exiting cell is YB	A1	(3)
(d)	17 8 20 A B C		
	0 X 7 15 -5 Y 17	M1 <i>A</i>	Δ1
	-11 Z 9 6	,,,,	
	XC = 7 - 0 - 20 = -13 YA = 16 + 5 - 17 = 4		
	YB = 12 + 5 - 8 = 9 ZB = 10 + 11 - 8 = 13	A1	(3)
	A B C		
	$\begin{array}{c cccc} X & 7 - \theta & 15 & \theta \\ \hline Y & & & 17 \end{array}$		
	$ Z 9+\theta 6-\theta $ Value of $\theta = 6$, entering cell XC, exiting cell ZC	M1 /	4 1
	A B C		
	X 1 15 6	A1	(3)
	Z 15	B1	(1)
			[12]

estion mber				Scheme		Marks
(a)	Stage	State (in £1000s)	Action (in £1000s)	Dest. (in £1000s)	Value (in £1000s)	
		250	250	0	300*	
	1	200	200	0	240*	
		150	150	0	180*	
		100	100	0	120*	
		50	50	0	60*	
		0	0	0	0*	
		250	280	0	200 + 0 = 280	
			200 150	50 100	235 + 60 = 295	
			100	150	190 + 120 = 310*	4444 44
			50	200	125 + 180 = 305 $65 + 240 = 305$	1M1 A1
			0	250	65 + 240 = 305 0 + 300 = 300	
		200				
	2	200	200	50	235 + 0 = 235	
			150		190 + 60 = 250*	A1
			100	100	125 + 120 = 245	
			50	150	65 + 180 = 245	
			0	200	0 + 240 = 240	
		150	150	0	190 + 0 = 190*	2M1
			100	50	125 + 60 = 185	
			50	100	65 + 120 = 185	A1
			0	150	0 + 180 = 180	
		100	100	0	125 + 0 = 125*	A1
		100	50	50	65 + 60 = 125*	A
			0	100	0 + 120 = 120	
		50		0	65 + 0 = 65*	
		30	50	50	0 + 60 = 60	
		0	0		0 + 00 = 0*	3M1
	2			0		A1ft
	3	250	250	0	300 + 0 = 300 230 + 65 = 295	
			200 150	50 100	230 + 65 = 295 170 + 125 = 295	
			100	150	170 + 125 = 295 110 + 190 = 300	
			50	200	55 + 250 = 305	
			0	250	0 + 310 = 310*	
	Movim	um income £31	-	230	0 + 310 – 310.	B1
	iviaxiiill	ani meome 23 i	Scheme	1 2	2 3	B1 (1
			Invest (in £10		$\frac{3}{50}$	
			mvest (m £100	003) 100 1.	,	
(b)	Stage: S	Scheme being	considered			B1
		Money availab				B1
		Amount choses				B1

Question Number	Scheme	Marks
Q8	E.g. Add 6 to make all elements positive $\begin{bmatrix} 4 & 14 & 5 \\ 13 & 10 & 3 \\ 7 & 1 & 10 \end{bmatrix}$	B1
	Let Laura play 1, 2 and 3 with probabilities p_1 , p_2 and p_3 respectively Let $V = \text{value of game} + 6$	B1
	e.g. Maximise P = V Subject to: $V-4p_1-13p_2-7p_3 \leq 0$ $V-14p_1-10p_2-p_3 \leq 0$ $V-5p_1-3p_2-10p_3 \leq 0$ $p_1+p_2+p_3 \leq 1$	B1 M1 A3,2ft,1ft ,0
	$p_1, p_2, p_3 \ge 0$ $p_1, p_2, p_3 \ge 0$	(7)
	Notes: 1B1: Making all elements positive 2B1: Defining variables 3B1: Objective, cao word and function 1M1: At least one constraint in terms of their variables, must be going down columns. Accept = here. 1A1ft: ft their table. One constraint in V correct. 2A1ft: ft their table. Two constraints in V correct. 3A1: CAO all correct.	[7]
	Alt using x_i method Now additionally need: let $x_i = \frac{p_i}{v}$ for 2B1 minimise $(P) = x_1 + x_2 + x_3 = \frac{1}{v}$	
	subject to:	
	$4x_1 + 13x_2 + 7x_3 \ge 1$	
	$14x_1 + 10x_2 + x_3 \ge 1$	
	$5x_1 + 3x_2 + 10x_3 \ge 1$	
	$x_i \ge 0$	