CSL003P1M : Probability and Statistics Lecture 27 (Inequalities-II)

Sumit Kumar Pandey

November 16, 2021

Markov's and Chebyshev's Inequality

Markov's Inequality

If X is a random variable that takes only nonnegative values, then for any value a>0,

$$P\{X \ge a\} \le \frac{E[X]}{a}$$

Chebyshev's Inequality

If X is a random variable with finite mean μ and variance σ^2 , then, for any value k>0,

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}$$

Exercise-1

Suppose that it is known that the number of items produced in a factory during a week is a random variable with mean 50.

- What can be said about the probability that this week's production will exceed 75?
- If the variance of a week's production is known to equal 25, then what can be said about the probability that the week's production will be between 40 and 60?

Solution: Let *X* be the number of items that will be produced in a week.

By Markov's inequality

$$P{X > 75} \le \frac{E[X]}{75} = \frac{50}{75} = \frac{2}{3}$$

Exercise-1

By Chebyshev's inequality,

$$P\{|X - 50| \ge 10\} \le \frac{\sigma^2}{10^2} = \frac{1}{4}$$

Hence,

$$P\{|X - 50| < 10\} \ge 1 - \frac{1}{4} = \frac{3}{4}$$

so the probability that this week's production will be between 40 and 60 is at least 0.75.

Chebyshev's Inequality

Chebyshev's Inequality

If Var(X) = 0, then

$$P\{X = E[X]\} = 1$$

In other words, the only random variables having variances equal to 0 are those which are constant with probability 1.

Proof: By Chebyshev's inequality, we have, for any $n \ge 1$,

$$P\left\{|X-\mu|>\frac{1}{n}\right\}=0$$

In discrete case, we can find a positive integer $n \ge 1$ such that $P\{X = x\} = 0$ for all $x \in [\mu - 1/n, \mu + 1/n]$ except μ .

One-Sided Chebyshev Inequality

If X is a random variable with mean 0 and finite variance σ^2 , then, for any a>0,

$$P\{X \ge a\} \le \frac{\sigma^2}{\sigma^2 + a^2}$$

Proof: Let b > 0 and note that

$$X \ge a$$
 is equivalent to $X + b \ge a + b$

Hence,

$$P{X \ge a} = P{X + b \ge a + b}$$

 $\le P{(X + b)^2 \ge (a + b)^2}$

where the inequality is obtained by noting that since a + b > 0, $X + b \ge a + b$ implies that $(X + b)^2 \ge (a + b)^2$.

One-Sided Chebyshev Inequality

Upon applying Markov's inequality, the preceding yields that

$$P\{X \ge a\} \le \frac{E[(X+b)^2]}{(a+b)^2} = \frac{\sigma^2 + b^2}{(a+b)^2}.$$

Letting $b = \sigma^2/a$. This value of b minimizes $(\sigma^2 + b^2)/(a + b)^2$. And thus the result.

One-Sided Chebyshev Inequality

Corollary

If $E[X] = \mu$ and $Var(X) = \sigma^2$, then, for a > 0,

$$P\{X \ge \mu + a\} \le \frac{\sigma^2}{\sigma^2 + a^2}$$
$$P\{X \le \mu - a\} \le \frac{\sigma^2}{\sigma^2 + a^2}$$

Proof:

- X has mean μ and variance σ^2 .
- Both $X \mu$ and μX have mean 0 and variance σ^2 .
- Hence, it follows from one-sided Chebyshev inequality that, for a > 0

$$P\{X - \mu \ge a\} \le \frac{\sigma^2}{\sigma^2 + a^2}$$
 and $P\{\mu - X \ge a\} \le \frac{\sigma^2}{\sigma^2 + a^2}$

Chernoff Bound

Chernoff Bound

$$P\{X \ge a\} \le e^{-ta}M(t)$$
 for all $t > 0$
 $P\{X \le a\} \le e^{-ta}M(t)$ for all $t < 0$

Proof: For t > 0

$$P\{X \ge a\} = P\{e^{tX} \ge e^{ta}\}$$

 $\le E[e^{tX}]e^{-ta}$ by Markov's inequality
 $= M(t)e^{-ta}$

Similarly, for t < 0,

$$P{X \le a} = P{e^{tX} \ge e^{ta}}$$

 $\le E[e^{tX}]e^{-ta}$ by Markov's inequality
 $= M(t)e^{-ta}$

Thank You