

Lecture 4: Matrix Decompositions

Yi, Yung (이용)

Mathematics for Machine Learning KAIST EE

April 2, 2021

April 2, 2021 1 / 45

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

Summary

- How to summarize matrices: determinants and eigenvalues
- How matrices can be decomposed: Cholesky decomposition, diagonalization, singular value decomposition
- How these decompositions can be used for matrix approximation

April 2, 2021 3 / 45

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(1) April 2, 2021 4 / 45

Determinant: Motivation (1)

• For
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \ \mathbf{A}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

- **A** is invertible iff $a_{11}a_{22} a_{12}a_{21} \neq 0$
- Let's define $det(\mathbf{A}) = a_{11}a_{22} a_{12}a_{21}$.
- Notation: det(A) or |whole matrix|
- What about 3×3 matrix? By doing some algebra (e.g., Gaussian elimination),

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} \\ -a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33}$$

L4(1) April 2, 2021 5 / 45

Determinant: Motivation (2)

KAIST EE

• Try to find some pattern ...

$$\begin{aligned} &a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} \\ &- a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33} = \\ &a_{11}(-1)^{1+1}\det(\boldsymbol{A}_{1,1}) + a_{12}(-1)^{1+2}\det(\boldsymbol{A}_{1,2}) \\ &+ a_{13}(-1)^{1+3}\det(\boldsymbol{A}_{1,3}) \end{aligned}$$

- $\mathbf{A}_{k,j}$ is the submatrix of \mathbf{A} that we obtain when deleting row k and column j.

source: www.cliffsnotes.com

- This is called Laplace expansion.
- Now, we can generalize this and provide the formal definition of determinant.

L4(1) April 2, 2021 6 / 45

Determinant: Formal Definition

Determinant

For a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, for all $j = 1, \dots, n$,

- 1. Expansion along column j: $\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det(\mathbf{A}_{k,j})$
- 2. Expansion along row j: $\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{jk} \det(\mathbf{A}_{j,k})$
 - All expansion are equal, so no problem with the definition.
- Theorem. $det(\mathbf{A}) \neq 0 \iff rk(\mathbf{A}) = n \iff \mathbf{A}$ is invertible.

L4(1) April 2, 2021 7 / 45

Determinant: Properties

- (1) $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$
- (2) $det(\mathbf{A}) = det(\mathbf{A}^{\mathsf{T}})$
- (3) For a regular \boldsymbol{A} , $\det(\boldsymbol{A}^{-1}) = 1/\det(\boldsymbol{A})$
- (4) For two similar matrices $\boldsymbol{A}, \boldsymbol{A}'$ (i.e., $\boldsymbol{A}' = \boldsymbol{S}^{-1}\boldsymbol{A}\boldsymbol{S}$ for some \boldsymbol{S}), $\det(\boldsymbol{A}) = \det(\boldsymbol{A}')$
- (5) For a triangular matrix T, $det(T) = \prod_{i=1}^{n} T_{ii}$
- (6) Adding a multiple of a column/row to another one does not change $det(\mathbf{A})$
- (7) Multiplication of a column/row with λ scales $\det(\mathbf{A})$: $\det(\lambda \mathbf{A}) = \lambda^n \mathbf{A}$
- (8) Swapping two rows/columns changes the sign of det(A)
 - Using (5)-(8), Gaussian elimination (reaching a triangular matrix) enables to compute the determinant.

L4(1)

¹This includes diagonal matrices.

Trace

• Definition. The trace of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defined as

$$\operatorname{tr}(\boldsymbol{A}) := \sum_{i=1}^n a_{ii}$$

- $tr(\boldsymbol{A} + \boldsymbol{B}) = tr(\boldsymbol{A}) + tr(\boldsymbol{B})$
- $tr(\alpha \mathbf{A}) = \alpha tr(\mathbf{A})$
- $\operatorname{tr}(\boldsymbol{I}_n) = n$

L4(1) April 2, 2021 9 / 45

Invariant under Cyclic Permutations

- $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A})$ for $\boldsymbol{A} \in \mathbb{R}^{n \times k}$ and $\boldsymbol{B} \in \mathbb{R}^{k \times n}$
- tr(AKL) = tr(KLA), for $A \in \mathbb{R}^{a \times k}$, $K \in \mathbb{R}^{k \times l}$, $L \in \mathbb{R}^{l \times a}$
- $\operatorname{tr}(\boldsymbol{x}\boldsymbol{y}^{\mathsf{T}}) = \operatorname{tr}(\boldsymbol{y}^{\mathsf{T}}\boldsymbol{x}) = \boldsymbol{y}^{\mathsf{T}}\boldsymbol{x} \in \mathbb{R}$
- A linear mapping $\Phi: V \mapsto V$, represented by a matrix **A** and another matrix **B**.
 - \circ **A** and **B** use different bases, where $\mathbf{B} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$

$$\operatorname{\mathsf{tr}}({\boldsymbol{\mathcal{B}}}) = \operatorname{\mathsf{tr}}({\boldsymbol{\mathcal{S}}}^{-1}{\boldsymbol{\mathcal{A}}}{\boldsymbol{\mathcal{S}}}) = \operatorname{\mathsf{tr}}({\boldsymbol{\mathcal{A}}}{\boldsymbol{\mathcal{S}}}{\boldsymbol{\mathcal{S}}}^{-1}) = \operatorname{\mathsf{tr}}({\boldsymbol{\mathcal{A}}})$$

 Message. While matrix representations of linear mappings are basis dependent, but their traces are not.

L4(1) April 2, 2021 10 / 45

Background: Characteristic Polynomial

• Definition. For $\lambda \in \mathbb{R}$ and a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, the characteristic polynomial of \mathbf{A} is defined as:

$$egin{aligned} &
ho_{oldsymbol{A}}(\lambda) := \det(oldsymbol{A} - \lambda oldsymbol{I}) \ & = c_0 + c_1 \lambda + c_2 \lambda^2 + \dots + c_{n-1} \lambda^{n-1} + (-1)^n \lambda^n, \ & ext{where } c_0 = \det(oldsymbol{A}) \text{ and } c_{n-1} = (-1)^{n-1} \operatorname{tr}(oldsymbol{A}). \end{aligned}$$

• Example. For
$$\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$$
,

$$p_{\mathbf{A}}(\lambda) = \begin{vmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{vmatrix} = (4 - \lambda)(3 - \lambda) - 2 \cdot 1$$

L4(1) April 2, 2021 11 / 45

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(2) April 2, 2021 12 / 45

Eigenvalue and Eigenvector

• Definition. Consider a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then, $\lambda \in real$ is an eigenvalue of \mathbf{A} and $\mathbf{x} \in \mathbb{R}^n \setminus \{0\}$ is the corresponding eigenvector of \mathbf{A} if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

- Equivalent statements
 - \circ λ is an eigenvalue.
 - $(\mathbf{A} \lambda \mathbf{I}_n)\mathbf{x} = 0$ can be solved non-trivially, i.e., $\mathbf{x} \neq 0$.
 - $\operatorname{rk}(\boldsymbol{A} \lambda \boldsymbol{I}_n) < n$.
 - $\det(\mathbf{A} \lambda \mathbf{I}_n) = 0 \iff$ The characteristic polynomial $p_{\mathbf{A}}(\lambda) = 0$.

L4(2) April 2, 2021 13 / 45

Example

- For $\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$, $p_{\mathbf{A}}(\lambda) = \begin{vmatrix} 4 \lambda & 2 \\ 1 & 3 \lambda \end{vmatrix} = (4 \lambda)(3 \lambda) 2 \cdot 1 = \lambda^2 7\lambda + 10$
- Eigenvalues $\lambda = 2$ or $\lambda = 5$.
- Eigenvector E_5 for $\lambda = 5$

$$\begin{pmatrix} 4-\lambda & 2 \\ 1 & 3-\lambda \end{pmatrix} \mathbf{x} = 0 \implies \begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \implies E_5 = \operatorname{span}[\begin{pmatrix} 2 \\ 1 \end{pmatrix}]$$

- Eigenvector E_2 for $\lambda=2$. Similarly, we get $E_2={\sf span}[\begin{pmatrix}1\\-1\end{pmatrix}]$
- Message. Eigenvectors are not unique.

L4(2) April 2, 2021 14 / 45

Properties (1)

- If x is an eigenvector of A, so are all vectors that are collinear².
- E_{λ} : the set of all eigenvectors for eigenvalue λ , spanning a subspace of \mathbb{R}^n . We call this eigensapce of \mathbf{A} for λ .
- E_{λ} is the solution space of $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = 0$, thus $E_{\lambda} = \ker(\mathbf{A} \lambda \mathbf{I})$
- Geometric interpretation
 - The eigenvector corresponding to a nonzero eigenvalue points in a direction stretched by the linear mapping.
 - The eigenvalue is the factor of stretching.
- Identity matrix I: one eigenvalue $\lambda = 1$ and all vectors $\mathbf{x} \neq 0$ are eigenvectors.

Properties (2)

15 / 45

- \boldsymbol{A} and $\boldsymbol{A}^{\mathsf{T}}$ share the eigenvalues, but not necessarily eigenvectors.
- For two similar matrices $\boldsymbol{A}, \boldsymbol{A}'$ (i.e., $\boldsymbol{A}' = \boldsymbol{S}^{-1}\boldsymbol{A}\boldsymbol{S}$ for some \boldsymbol{S}), they possess the same eigenvalues.
 - \circ Meaning: A linear mapping Φ has eigenvalues that are independent of the choice of basis of its transformation matrix.
 - Symmetric, positive definite matrices always have positive, real eigenvalues.

determinant, trace, eigenvalues: all invariant under basis change

L4(2) April 2, 2021 16 / 45

 $^{^2}$ Two vectors are collinear if they point in the same or the opposite direction.

April 2, 2021

Examples for Geometric Interpretation (1)

1. $\mathbf{A} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{pmatrix}$, $\det(\mathbf{A}) = 1$

$$\circ \ \lambda_1=\tfrac{1}{2}, \lambda_2=2$$

- eigenvectors: canonical basis vectors
- area preserving, just vertical horizontal) stretching.

2.
$$\mathbf{A} = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$$
, $\det(\mathbf{A}) = 1$

$$\lambda_1 = \lambda_2 = 1$$

- eigenvectors: colinear over the horiontal line
- area preserving, shearing

3.
$$m{A} = \begin{pmatrix} \cos(\frac{\pi}{6}) - \sin(\frac{\pi}{6}) \\ \sin(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) \end{pmatrix}$$
, $\det(m{A}) = 1$

- Rotation by $\pi/6$ counter-clockwise
- only complex eigenvalues (no eigenvectors)
- area preserving

L4(2) April 2, 2021 17 / 45

Examples for Geometric Interpretation (2)

4.
$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
, $\det(\mathbf{A}) = 0$

$$\lambda_1 = 0, \lambda_2 = 2$$

- $\,{}^{\circ}\,$ Mapping that collapses a 2D onto 1D
- area collapses

5.
$$\mathbf{A} = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}$$
, $\det(\mathbf{A}) = 3/4$

$$\lambda_1 = 0.5, \lambda_2 = 1.5$$

• area scales by 75%, shearing and stretching

Properties (3)

- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, n distinct eigenvalues \implies eigenvectors are linearly independent, which form a basis of \mathbb{R}^n .
 - Converse is not true.
 - \circ Example of n linearly independent eigenvectors for less than n eigenvalues???
- Determinant. For (possibly repeated) eigenvalues λ_i of $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$\det(\mathbf{A}) = \prod_{i=1}^n \lambda_i.$$

• Trace. For (possibly repeated) eigenvalues λ_i of $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_{i}.$$

• Message. det(A) is the area scaling and tr(A) is the circumference scaling

L4(2) April 2, 2021 19 / 45

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(3) April 2, 2021 20 / 45

LU Decomposition

Source: http://mathonline.wikidot.com/

- The Gaussian elimination is the processing of reaching an upper triangular matrix
- Gaussian elimination: multiplying the matrices corresponding to two elementary operations ((i) row multiplication by a and (ii) adding two rows downward)
- The above elementary operations are the low triangular matrices (LTM), and their inverses and their product are all LTMs.

•
$$(\boldsymbol{E}_{k}\boldsymbol{E}_{k-1}\cdot\boldsymbol{E}_{1})\boldsymbol{A}=\boldsymbol{U} \implies \boldsymbol{A}=\underbrace{(\boldsymbol{E}_{1}^{-1}\cdots\boldsymbol{E}_{k-1}^{-1}\boldsymbol{E}_{k}^{-1})}_{\boldsymbol{L}}\boldsymbol{U}$$

L4(3) April 2, 2021 21 / 45

Cholesky Decomposition

- A real number: decomposition of two identical numbers, e.g., $9 = 3 \times 3$
- Theorem. For a symmetric, positive definite matrix \mathbf{A} , $\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathsf{T}}$, where
 - \circ $\emph{\textbf{\textit{L}}}$ is a lower-triangular matrix with positive diagonals
 - Such a L is unique, called Cholesky factor of A.
- Applications
 - (a) factorization of covariance matrix of a multivariate Gaussian variable
 - (b) linear transformation of random variables
 - (c) fast determinant computation: $\det(\mathbf{A}) = \det(\mathbf{L}) \det(\mathbf{L}^{\mathsf{T}}) = \det(\mathbf{L})^2$, where $\det(\mathbf{L}) = \prod_i I_{ii}$. Thus, $\det(\mathbf{A}) = \prod_i I_{ii}^2$.

L4(3) April 2, 2021 22 / 45

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(4) April 2, 2021 23 / 45

Diagonal Matrix and Diagonalization

• Diagonal matrix. zero on all off-diagonal elements, $m{D} = \begin{pmatrix} d_1 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & d_n \end{pmatrix}$

$$oldsymbol{D}^k = egin{pmatrix} d_1^k & \cdots & 0 \ dots & & dots \ 0 & \cdots & d_n^k \end{pmatrix}, \quad oldsymbol{D}^{-1} = egin{pmatrix} 1/d_1 & \cdots & 0 \ dots & & dots \ 0 & \cdots & 1/d_n \end{pmatrix}, \quad \det(oldsymbol{D}) = d_1 d_2 \cdots d_n$$

- Definition. $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix \mathbf{D} , i.e., \exists an invertible $\mathbf{P} \in \mathbb{R}^{n \times n}$, such that $\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$.
- Definition. $\mathbf{A} \in \mathbb{R}^{n \times n}$ is orthogonally diagonalizable if it is similar to a diagonal matrix \mathbf{D} , i.e., \exists an orthogonal $\mathbf{P} \in \mathbb{R}^{n \times n}$, such that $\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{P}^{\mathsf{T}} \mathbf{A} \mathbf{P}$.

L4(4) April 2, 2021 24 / 45

Power of Diagonalization

- $A^k = PD^kP^{-1}$
- $\det(\boldsymbol{A}) = \det(\boldsymbol{P}) \det(\boldsymbol{D}) \det(\boldsymbol{P}^{-1}) = \det(\boldsymbol{D}) = \prod_i d_{ii}$
- Many other things ...
- Question. Under what condition is **A** diagonalizable (or orthogonally diagonalizable) and how can we find **P** (thus **D**)?

L4(4) April 2, 2021 25 / 45

Diagonalizablity, Algebraic/Geometric Multiplicity

- Definition. For a matrix $\mathbf{A} \in realnn$ with an eigenvalue λ_i ,
 - the algebraic multiplicity α_i of λ_i is the number of times the root appears in the characteristic polynomial.
 - the geometric multiplicity ζ_i of λ_i is the number of linearly independent eigenvectors associated with λ_i (i.e., the dimension of the eigenspace spanned by the eigenvectors of λ_i)
- Example. The matrix $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ has two repeated eigenvalues $\lambda_1 = \lambda_2 = 2$, thus $\alpha_1 = 2$. However, it has only one distinct unit eigenvector $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, thus $\zeta_1 = 1$.
- Theorem. $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable $\iff \sum_i \alpha_i = \sum_i \zeta_i = n$.

L4(4) April 2, 2021 26 / 45

Orthogonally Diagonaliable and Symmetric Matrix

Theorem. $\mathbf{A} \in \mathbb{R}^{n \times n}$ is orthogonally diagonalizable $\iff \mathbf{A}$ is symmetric.

- Question. . How to find P (thus D)?
- Spectral Theorem. If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric,
 - (a) the eigenvalues are all real
 - (b) the eigenvectors to different eigenvalues are perpendicular.
 - (c) there exists an orthogonal eigenbasis
- For (c), from each set of eigenvectors, say $\{x_1, \ldots, x_k\}$ associated with a particular eigenvalue, say λ_j , we can construct another set of eigenvectors $\{x'_1, \ldots, x'_k\}$ that are orthonormal, using the Gram-Schmidt process.
- Then, all eigenvectors can form an orthornormal basis.

L4(4) April 2, 2021 27 / 45

Example

• Example. $\mathbf{A} = \begin{pmatrix} \frac{3}{2} & \frac{2}{3} & \frac{2}{2} \\ \frac{2}{2} & \frac{2}{3} & \frac{3}{2} \end{pmatrix}$. $p_{\mathbf{A}}(\lambda) = -(\lambda - 1)^2(\lambda - 7)$, thus $\lambda_1 = 1, \lambda_2 = 7$

$$\textit{E}_1 = \text{span}[\left(\begin{smallmatrix} -1 \\ 1 \\ 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} -1 \\ 0 \\ 1 \end{smallmatrix}\right)], \quad \textit{E}_7 = \text{span}[\left(\begin{smallmatrix} 1 \\ 1 \\ 1 \end{smallmatrix}\right)]$$

- \circ $(111)^{\mathsf{T}}$ is perpendicular to $(-110)^{\mathsf{T}}$ and $(-101)^{\mathsf{T}}$
- \circ $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$ (for $\lambda=1$) and $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ (for $\lambda=7$) are the orthogonal basis in \mathbb{R}^3 .
- After normalization, we can make the orthonormal basis.

L4(4) April 2, 2021 28 / 45

Eigendecomposition

- Theorem. The following is equivalent.
 - (a) A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be factorized into $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$, where $\mathbf{P} \in \mathbb{R}^{n \times n}$ and \mathbf{D} is the diagonal matrix whose diagonal entries are eigenvalues of \mathbf{A} .
 - (b) The eigenvectors of \boldsymbol{A} form a basis of \mathbb{R}^n (i.e., The n eigenvectors of \boldsymbol{A} are linearly independent)
- The above implies the columns of P are the n eigenvectors of A (because AP = PD)
- ${m P}$ is an orthogonal matrix, so ${m P}^{\sf T} = {m P}^{-1}$
- **A** is symmetric, then (b) holds (Spectral Theorem).

L4(4) April 2, 2021 29 / 45

Example of Orthogonal Diagonalization (1)

- Eigendecomposition for $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
- Eigenvalues: $\lambda_1 = 1, \lambda_2 = 3$
- (normalized) eigenvectors: ${m p}_1=rac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix},\ {m p}_2=rac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}.$
- p_1 and p_2 linearly independent, so A is diagonalizable.
- $\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$
- $\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$. Finally, we get $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$

L4(4) April 2, 2021 30 / 45

Example of Orthogonal Diagonalization (2)

•
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

• Eigenvalues: $\lambda_1 = -1, \lambda_2 = 5$ $(\alpha_1 = 2, \alpha_2 = 1)$

$$\bullet \ E_{-1} = \operatorname{span} \begin{bmatrix} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix} \xrightarrow{\operatorname{Gram-Schmidt}}$$

$$\operatorname{span} \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}]$$

•
$$E_5 = \operatorname{span}\left[\frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}\right]$$

•
$$E_5 = \text{span}\left[\frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}\right]$$
• $P = \begin{pmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3}\\1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3}\\0 & 2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}$
• $D = P^T A P = \begin{pmatrix} -1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 5 \end{pmatrix}$

•
$$\mathbf{D} = \mathbf{P}^{\mathsf{T}} \mathbf{A} \mathbf{P} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

L4(4) April 2, 2021 31 / 45

Eigendecomposition: Geometric Interpretation

Question. Can we generalize this beautiful result to a general matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$?

L4(4) April 2, 2021 32 / 45

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(5) April 2, 2021 33 / 45

Storyline

- Eigendecomposition (also called EVD: EigenValue Decomposition): (Orthogoanl) Diagonalization for symmetric matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$.
- Extensions: Singular Value Decomposition (SVD)
 - 1. First extension: diagonalization for non-symmetric, but still square matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$
 - 2. Second extension: diagonalization for non-symmetric, and non-square matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$
- Background. For $\mathbf{A} \in \mathbb{R}^{m \times n}$, a matrix $\mathbf{S} := \mathbf{A}^{\mathsf{T}} \mathbf{A} \in \mathbb{R}^{n \times n}$ is always symmetric, positive semidefinite.
 - Symmetric, because $\mathbf{S}^{\mathsf{T}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{S}$.
 - Positive semidefinite, because $\mathbf{x}^{\mathsf{T}}\mathbf{S}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = (\mathbf{A}\mathbf{x})^{\mathsf{T}}(\mathbf{A}\mathbf{x}) \geq 0$.
 - If $rk(\mathbf{A}) = n$, then symmetric and positive definite.

L4(5) April 2, 2021 34 / 45

Singular Value Decomposition

• Theorem. $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \in [0, \min(m, n)]$. The SVD of \mathbf{A} is a decomposition of the form

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}},$$

$$\varepsilon A = \varepsilon U \varepsilon \Sigma V^{\top} s$$

with an orthogonal matrix $\boldsymbol{U} = \begin{pmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_m \end{pmatrix} \in \mathbb{R}^{m \times m}$ and an orthogonal matrix $\boldsymbol{V} = \begin{pmatrix} \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_n \end{pmatrix} \in \mathbb{R}^{n \times n}$. Moreoever, Σ s an $m \times n$ matrix with $\Sigma_{ii} = \sigma_i \geq 0$ and $\Sigma_{ij} = 0, \ i \neq j$, which is uniquely determined for \boldsymbol{A} .

- Note
 - The diagonal entries σ_i , i = 1, ..., r are called singular values.
 - \circ u_i and v_i are called left and right singular vectors, respectively.

L4(5) April 2, 2021 35 / 45

SVD: How It Works (for $\mathbf{A} \in \mathbb{R}^{n \times n}$)

KAIST EE

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ with rank $r \leq n$. Then, $\mathbf{A}^T \mathbf{A}$ is symmetric.
- Orthogonal diagonalization of A^TA:

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{\mathsf{T}}.$$

- $m{D} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ and an orthogonal matrix $m{V} = (m{v}_1 \cdots m{v}_n)$, where $\lambda_1 \geq \cdots \geq \lambda_r \geq \lambda_{r+1} = \cdots \lambda_n = 0$ are the eigenvalues of $m{A}^T m{A}$ and $\{m{v}_i\}$ are orthonormal.
- All λ_i are positive $\forall \mathbf{x} \in \mathbb{R}^n, \|\mathbf{A}\mathbf{x}\|^2 = \mathbf{A}\mathbf{x}^\mathsf{T}\mathbf{A}\mathbf{x} = \mathbf{x}^\mathsf{T}\mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{x} = \lambda_i \|\mathbf{x}\|^2$

•
$$\operatorname{rk}(\mathbf{A}) = \operatorname{rk}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \operatorname{rk}(D) = \operatorname{rk}(D)$$

• Choose $\boldsymbol{U}' = (\boldsymbol{u}_1 \ \cdots \boldsymbol{u}_r)$, where

$$u_i = \frac{Av_i}{\sqrt{\lambda_i}}, \ 1 \leq i \leq r.$$

- We can construct $\{u_i\}$, $i = r + 1, \dots, n$, so that $\boldsymbol{U} = (\boldsymbol{u}_1 \cdots \boldsymbol{u}_n)$ is an orthonormal basis of \mathbb{R}^n .
- Define $\Sigma = \left(egin{array}{ccc} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{array} \right)$
- Then, we can check that $\boldsymbol{U}\Sigma = \boldsymbol{A}\boldsymbol{V}$.
- Similar arguments for a general $\mathbf{A}\mathbb{R}^{m\times n}$ (see pp. 104)

L4(5) April 2, 2021 36 / 45

Example

$$\bullet \ \mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}$$

•
$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{pmatrix} 5 & -2 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \mathbf{V}\mathbf{D}\mathbf{V}^{\mathsf{T}},$$

$$\mathbf{D} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \, \mathbf{V} = \begin{pmatrix} \frac{5}{\sqrt{30}} & \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{30}} \\ 0 & \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix}$$

• $\operatorname{rk}(\mathbf{A}) = 2$ because we have two singular values $\sigma_1 = \sqrt{6}$ and $\sigma_2 = 1$

$$\bullet \ \Sigma = \begin{pmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

•
$$\pmb{u}_1 = \pmb{A}\pmb{v}_1/\sigma_1 = \begin{pmatrix} rac{1}{\sqrt{5}} \\ rac{-2}{\sqrt{5}} \end{pmatrix}$$

•
$$\mathbf{u}_2 = \mathbf{A}\mathbf{v}_2/\sigma_2 = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$

•
$$\boldsymbol{U} = \begin{pmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

• Then, we can see that $\mathbf{A} = \mathbf{U} \Sigma V^{\mathsf{T}}$.

L4(5) April 2, 2021 37 / 45

EVD $(\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1})$ vs. SVD $(\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^{\mathsf{T}})$

- SVD: always exists, EVD: square matrix and exists if we can find a basis of eigenvectors (such as symmetric matrices)
- P in EVD is not necessarily orthogonal (only true for symmetric A), but U and V are orthogonal (so representing rotations)
- Both EVD and SVD: (i) basis change in the domain, (ii) independent scaling of each new basis vector and mapping from domain to codomain, (iii) basis change in the codomain. The difference: for SVD, different vector spaces of domain and codomain.
- SVD and EVD are closely related through their projections
 - The left-singular (resp. right-singular) vectors of \mathbf{A} are eigenvectors of $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ (resp. $\mathbf{A}^{\mathsf{T}}\mathbf{A}$)
 - \circ The singular values of ${\pmb A}$ are the square roots of eigenvalues of ${\pmb A}{\pmb A}^{\sf T}$ and ${\pmb A}^{\sf T}{\pmb A}$
 - When \boldsymbol{A} is symmetric, EVD = SVD (from spectral theorem)

L4(5) April 2, 2021 38 / 45

Different Forms of SVD

• When $rk(\mathbf{A}) = r$, we can construct SVD as the following with only non-zero diagonal entries in Σ :

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$$

We can even truncate the decomposed matrices, which can be an approximation of
 A: for k < r

$$\boldsymbol{A} \approx \boldsymbol{\widetilde{\boldsymbol{U}}} \boldsymbol{\Sigma} \boldsymbol{\Sigma} \boldsymbol{\widetilde{\boldsymbol{V}}}^{\mathsf{T}}$$

We will cover this in the next slides

L4(5) April 2, 2021 39 / 45

Matrix Approximation via SVD

- $\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$, where \mathbf{A}_i is the outer product³ of \mathbf{u}_i and \mathbf{v}_i
- Rank k-approximation: $\hat{\mathbf{A}}(k) = \sum_{i=1}^k \sigma_i \mathbf{A}_i, k < r$

L4(6) April 2, 2021 40 / 45

³If u and v are both nonzero, then the outer product matrix uvv^T always has matrix rank 1. Indeed, the columns of the outer product are all proportional to the first column.

How Close $\hat{A}(k)$ is to A?

- Definition. Spectral Norm of a Matrix. For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\|\mathbf{A}\|_2 := \max_{\mathbf{x}} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$
 - \circ As a concept of length of \boldsymbol{A} , it measures how long any vector \boldsymbol{x} can at most become, when multiplied by \boldsymbol{A}
- Theorem. Eckart-Young. For $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r and $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank k, for any k < r, we have:

$$\hat{\boldsymbol{A}}(k) = \arg\min_{\mathbf{rk}(\boldsymbol{B})=k} \|\boldsymbol{A} - \boldsymbol{B}\|_2$$
, and $\|\boldsymbol{A} - \hat{\boldsymbol{A}}(k)\|_2 = \sigma_{k+1}$

- Quantifies how much error is introduced by the SVD-based approximation
- $\hat{A}(k)$ is optimal in the sense that such SVD-based approximation is the best one among all rank-k approximations.
- In other words, it is a projection of the full-rank matrix \boldsymbol{A} onto a lower-dimensional space of rank-at-most-k matrices.

L4(6) April 2, 2021 41 / 45

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(7) April 2, 2021 42 / 45

Phylogenetic Tree of Matrices

L4(7) April 2, 2021 43 / 45

Questions?

L4(7) April 2, 2021 44 / 45

Review Questions

1)

L4(7) April 2, 2021 45 / 45