

USB 双端口快充协议控制器

产品概述

OM5236 是一款集成 USB Type-C 和 PD3.2 协议,UFCS 融合快充协议,QC2.0/3.0/3.0+协议,FCP/HVSCP 协议,PE2.0 协议,AFC 协议,USB BC1.2 等多协议双端口快充控制器。

OM5236 内置的 Type-C 协议可以支持设备插入唤醒,识别正反插,并实现连接。

OM5236 可以支持远超 PD 规范要求的线材内阻,从而支持各类长度的 Type-C 线缆。

OM5236 集成两路低阻抗 VBUS 通路开关 MOS 和两个电流检测电阻。也集成了反馈网络,以及恒压环路和恒流环路光耦驱动电路(TL431),进一步节省方案外围器件成本。

OM5236的轻载判断电流低至10uA,可支持各种小电流设备供电。

OM5236采取智能策略:针对非快充5V设备,在双口与单口转换过程中,5V电源不间断,确保设备不停止工作;针对快充设备,在双口切到单口时,会让设备重新进入快充模式。

OM5236具有独特的Over-Power超功率技术,让前端ACDC电源超额定功率工作,并自动调整功率,过程中不会唤醒手机等充电设备,提供更好的充电体验。

特性

- 支持 USB Type-C 协议
 - DFP(Source)角色,广播 3A 电流
- 支持 USB Power Delivery(PD)3.2 协议 以及 PPS 协议
 - 通过 PD 3.2 SPR 认证(TID: 13735)
 - OM5236B 支持 5V/9V/12V
 - OM5236D 支持 5V/9V/12V/15V/20V
- 支持多种快充协议
 - UFCS 融合快充协议
 - Quick Charge 2.0/3.0/3.0+协议
 - 小米 CHARGE TURBO 27W 协议
 - 华为 FCP/HVSCP 协议
 - OPPO 充电协议
 - 三星 AFC 5V/9V/12V 协议
 - MTK PE2.0 协议
 - USB BC1.2 DCP 协议
 - Apple 2.4A 充电规范
- 支持激活手机显示充电图标
- 内置双路 10mOhm VBUS 通路开关 MOS
- 内置双路 5mOhm 电流检测电阻
- 内置反馈电阻
- 集成光耦驱动电路以及 CV/CC 环路
- 支持最大 400mΩ 内阻线缆

- 轻载判断阈值低至 10uA, 时间低至 2s
- 独立双口模式,一个端口提供 5V 另一 个端口快充
- 支持任意小电流设备充电
- 智能识别非快充和快充设备
 - 非快充设备不断电,不会停止工作
 - 快充设备自动恢复快充
- 上电C/A口立即进入快充状态,无需等 待A口轻载时间
- 支持3A带载启动
- 按电压段分别设置线损补偿
- 具备多重安全保护
 - 输入过压/欠压保护
 - 输出过流/短路保护
 - 过温保护
 - CC脚过压保护
- ESD特性±4KV
- Package: ESSOP10

应用

- AC-DC 适配器
- USB 充电设备

1. 应用简图

A+C 双端口 AC-DC 应用原理图

2. 引脚定义

OM5236 引脚图

PIN	名称	描述
1	VBUSC	Type-C 口 VBUS 输出
2	ОРТО	光耦驱动引脚
3	GND	电源地
4	DMA	Type-A 口数据端口 DM
5	DPA	Type-A 口数据端口 DP
6	CC1	Type-C 口配置通路 CC1
7	DMC	Type-C 口配置通路 DM
8	DPC	Type-C 口配置通路 DP
9	CC2	Type-C 口配置通路 CC2
10	VBUSA	Type-A 口 VBUS 输出
EPAD	VIN	输入电压引脚,靠近 IC 需放置滤波电容,推荐 1uF

3. 订购信息

PDP	PDO 和 APDO 配置	程序名	包装
OM5236B	PDO: 5V/3A, 9V/2.22A, 12V/1.67A	B1	
OM5236BP	PDO: 5V/3A, 9V/2.22A, 12V/1.67A	BP	ESSOP10
UIVI5230BP	APDO: 3.3-5.9V/3A, 3.3-11V/2A	DP	
OM5236BPS25	PDO: 5V/3A, 9V/2.77A, 12V/2.1 A	PS	4K/盘
UIVI3230BP323	APDO: 3.3-5.9V/3A, 3.3-11V/2.75A	P3	
OME226DD20	PDO: 5V/3A, 9V/3A, 12V/2.5A	P3	
OM5236BP30	APDO: 3.3-5.9V/3A, 3.3-11V/3A	P3	

印字说明:

第一行,OM5236:芯片型号;

第二行,PYWWXZZ: P 表示封装信息,Y 表示生产年份(5: 2025,6: 2026),WW 表示生产周(01-52),X 表示芯片批号,ZZ 表示程序编号*。

^{*}不同批次程序编号可能有不同。

4. 规格参数

1) 极限工作参数

参数		最小值	最大值	单位
	VIN/VBUSC/VBUSA /OPTO/CC1/CC2	-0.3	32	V
耐压	DMA/DPA/DMC/ DPC	-0.3	12	V
结温	Tı	-40	150	°C
存储温度	T _{STG}	-65	150	°C

超出极限工作范围值可能会造成器件永久性损坏。长期工作在极限额定值下可能会影响器件的可靠性。

2) ESD 性能

符号	参数	值	单位
V_{ESD}	нвм	±4000	V

ESD 测试基于人体放电模型 (HBM)。

3) 推荐工作条件

参数		最小值	典型值	最大值	单位
V _{IN}	输入电压	3.3	5	21	V
C _{IN}	输入电压高频滤波电容		1		μF
T _A	工作环境温度	-40	25	125	°C

4) 热阻值

符号	参数	值	单位
$R_{ heta JA}$	结温和周围温度之间的热阻(1)	40	°C/W

5) 电气特性

如无特殊说明,下述参数均在该条件下取得: V_{IN}=5V, V_{BUS}=5V, T_a=25℃

Parameters	Symbol	Condition	Min	Тур	Max	Unit		
POWER								
芯片内部工作电压	V_{DD}		3.15	3.30	3.45	V		
静态工作电流	I _{NOSW}	V _{IN} =5V	350	450	550	uA		
VIN 欠压下门限	V_{UVLO_FALL}		2.8	3.0	3.2	V		
VIN 欠压上门限	V_{UVLO_RISE}		3.2	3.4	3.6	V		
输入过压保护	V _{IN_OVP}	相对目标值		+24%		V		
输出过流保护	I _{OCP}	相对目标值		+10%+0.25		Α		
输出恒流配置	Icc	相对目标值		+10%		Α		
输出短路保护	I _{VBUS_SHORT}			5.75		Α		
过温关断温度	T_{SD}			150		°C		
过温关断迟滞量	T _{SD_HYS}			30		°C		

		T			1	
Fault 检测打嗝间隔时间	T _{HICUP}			1		S
轻载检测阈值				10		uA
轻载检测时间			2	4	4	S
负载插入检测阈值			10	15	20	mA
内置开关导通阻抗	R_{DSON}			10		mΩ
内置开关软起时间	T_{SOFT}			4		ms
输出调压步进电压	V_{STEP}			20		mV
输出调压步进时间	T_{STEP}			100		us
输出线补电压	V_{COMP}	支持输出 9V 以 上关闭线补功能		60		mV/A
VIN 和 VBUS 放电能力	IDISCHARGE			60		mA
TYPEC&PD						
CC RP 上拉电阻	Rp	V _{DD} =3.3V		5.6		kΩ
DED 继令长测语店	V_{DET1}	检测的上限阈值		2.6		V
DFP 锁定检测阈值	V_{DET2}	检测的下限阈值		0.8		٧
DFP 锁定滤波时间	T_PD			150		ms
BMC TX 高电平	V _{TXH_PD}		1.05	1.15	1.20	٧
BMC TX 低电平	V_{TXL_PD}		-75		75	mV
BMC TX 上升沿时	T _{RISE_PD}	10% - 90%	300		600	ns
BMC TX 下降沿时	T_{FALL_PD}	10% - 90%	300		600	ns
BIT 的间隔时间	T _{UI_PD}		3.05	3.30	3.70	us
BMC TX 输出阻抗	R _{TX}		33	50	75	Ω
HVDCP				-		•
数据线 0V 检测阈值	V _{OV_REF}			0.45		V
数据线 3.3V 检测阈值	V _{3.3V_REF}			2		٧
D+漏泄电阻	R _{DAT_LKG}			700		kΩ
D-下拉电阻	R _{DM_DWN}			20		kΩ
DP 与 DM 之间电阻	R_{DM_DP}				40	Ω
设备连接检测滤波时间	T _{HVDCP}			160		ms
APPLE 2.4A				-		•
DPDM 输出电压	V_{DP}/V_{DM}			2.7		٧
2 74 75 74 46 4	R _{2.7V_DOWN}	110ΚΩ 接地		2.54		V
2.7V 驱动能力	R _{2.7V_UP}	110KΩ接3.3V		2.74		V
FCP&HVSCP		-		•		_
DM TX 高电平	V_{TXH_FCP}			1.85		V
DM TX 低电平	V_{TXL_FCP}				0.3	V
DV 4V 2011 5 20 14-	V _{RX1_FCP}	逻辑 1 检测阈值		1.2		V
RX 检测阈值	V _{RX2_FCP}	逻辑 0 检测阈值		0.8		V
BIT 的间隔时间	T _{UI_FCP}			160		us

FCP 数据上升沿时间	T _{RISE_PD}	10% - 90%	1	2.5	us
FCP 数据上升沿时间	T_{FALL_PD}	10% - 90%	1	2.5	us

5. 应用信息

1) 功能描述

cv/cc 功能

OM5236 内部集成分压电阻来检测输入电压 VIN,通过内部运算放大器实现 CV 功能。CV 环路具有软启动功能,控制 VIN 启动速度。

OM5236 采样经过 VBUS 通路的电流,通过内部运算放大器实现 CC 功能。

CV/CC 电路根据充电协议需求来限定输出的电压和电流,当输出电流小于设定值,处于 CV 模式,当输出电流大于设定值,处于 CC 模式,通过降低输出电压使输出电流恒定。

欠压和过压保护

OM5236 上电默认到 5V, 上电后一直检测 VIN 电压范围, 若 VIN 高于设定值的 24%则代表过压, 此时数字会复位并断开内部开关管, VIN 低于 3V 则代表欠压, 此时整个芯片复位。

过流和短路保护

VBUS 的电流高于协议设定值的 10%+0.25A 时则代表过流, CC 的恒流点一般低于过流保护点,设置在协议设定值的 10%,当 VBUS 过流达到恒流点时先拉低 VBUS 电压,若电流还是过大则直接复位数字并断开内部开关管。短路保护是 VBUS 的快速过流保护设置在 5.75A,响应速度在 20us 以内。

过温保护

OM5236 内部集成 OTP 温度保护,当芯片温度超过 150℃时,关闭内部开关管。迟滞 30℃,当温度降到 120℃以下,重新开启检测协议锁定。

保护打嗝功能

发生保护后,数字复位并断开内部开关管,当保护信号解除后数字会延时 1s 再开启协议的检测,若锁定则再开启内部开关管。当保护信号一直存在则会看到内部开关管每隔 1s 开启一次。

双口独立工作模式

当 OM5236 判断为小电流设备时,会关闭功率管,打开内部备用电源给小电流设备充电; 当 OM5236 判断为大电流设备时,会关闭备用电源,打开功率管切回 ACDC 主电源给设备快 充。这样实现了一个口给小电流设备充电,另外一个口仍有快充的功能。

9-bit ADC

OM5236 内部集成 9-bit ADC,实时采样输出电流以及输入/输出电压信息,送给数字控制器。

线补功能

V1.2 8 / 10

OM5236 的输出电压带有线补功能,输出电流增大后会相应的提高输出电压,用以补偿充电线阻抗引起的电压下降。OM5236 默认线补为 60mV/A,通过采样内部开关管导通时的电压得到输出电流。

DISCHARGE 功能

OM5236 集成 VIN 和 VBUS 双通路的 Discharge 功能,放电能力约为 60mA。在协议调压过程中,数字电路会根据协议的要求打开或关闭 Discharge 功能。

2) PCB layout 注意事项

- 1. 输入电压滤波电容 C_{IN} 尽可能的靠近输入引脚 VIN 和芯片的 GND 引脚放置,以提高滤波效果。
- 2. PCB 布局时尽量避免协议芯片与发热器件(如同步整流芯片)摆放在一起。

V1.2 9 / 10

6. 封装信息

	MILLMETER			
SYMBOL	MIN	NOM	MAX	
A			1.50	
A1	0.02	0.05	0.08	
A2	1. 30	1.40	1.50	
A3	0. 70	0.75	0.80	
b	0.35	_	0.45	
c	0.20	0.24		
D	4.80	4. 90	5.00	
D1	3. 10REF			
е	1	. 00BSC	;	
E	6.05	6. 15	6. 25	
E1	3. 82	3. 92	4. 02	
E2	2	. 20REF	,	
L	0. 50	_	0.70	
L1	1.15REF			
h	0.30	0.40	0.50	
θ	0	_	8°	
g	0.15REF			
•				