University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn M. Ahmadi, P. Schneider

Algorithms Theory Exercise Sheet 1

Due: Monday, 5th of November, 2018, 14:15 pm

Exercise 1: O-Notation

(3+4+5 Points)

For a function f(n), the set O(f(n)) contains all functions g(n) that are asymptotically not growing faster than f(n). The set O(f(n)) contains all functions g(n) with $f(n) \in O(g(n))$. Finally, O(f(n)) contains all functions g(n) for which $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$. This is formalized as follows:

$$O(f(n)) := \{g(n) \mid \exists c > 0, n_0 \in \mathbb{N}, \ \forall n \ge n_0 : g(n) \le cf(n)\}
\Omega(f(n)) := \{g(n) \mid \exists c > 0, n_0 \in \mathbb{N} \ \forall n \ge n_0 : g(n) \ge cf(n)\}
\Theta(f(n)) := \{g(n) \mid \exists c_1, c_2 > 0, n_0 \in \mathbb{N} \ \forall n \ge n_0 : c_1f(n) \le g(n) \le c_2f(n)\}$$

State whether the following claims are correct or not. Prove or disprove with the definitions above.

- (a) $n! \in \Omega(n^2)$
- (b) $\sqrt{n^3} \in O(n \log n)$ **Hint**: For all $\varepsilon > 0$ there is an $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$: $\log_2 n \le n^{\varepsilon}$.
- (c) $2^{\sqrt{\log_2 n}} \in \Theta(n)$

Exercise 2: Sort Functions by Asymptotic Growth (5 Points)

Use the definition of the O-notation to give a sequence of the functions below, which is ordered by asymptotic growth (ascending). Between two consecutive elements g and f in your sequence, insert either \prec (in case $g \in O(f)$ and $f \notin O(g)$) or \simeq (in case $g \in O(f)$ and $f \in O(g)$).

Note: No formal proofs required, but you loose $\frac{1}{2}$ point for each error.

n^2	\sqrt{n}	$2^{\sqrt{n}}$	$\log(n^2)$
$2^{\sqrt{\log_2 n}}$	$\log(n!)$	$\log(\sqrt{n})$	$(\log n)^2$
$\log n$	$10^{100}n$	n!	$n \log n$
$2^n/n$	n^n	$\sqrt{\log n}$	n

Exercise 3: Master Theorem for Recurrences

(5 Points)

Use the *Master Theorem* for recurrences, to fill the following table. That is, in each cell write $\Theta(g(n))$, such that $T(n) \in \Theta(g(n))$ for the given parameters a, b, f(n). Assume $T(1) \in \Theta(1)$. Additionally, in each cell note the case you used (1st, 2nd or 3rd by the order given in the lecture). We filled out one cell as an example.

Note: You loose $\frac{1}{2}$ point if the complexity class is wrong and another $\frac{1}{2}$ if the case is wrong.

$T(n) = aT(\frac{n}{b}) + f(n)$	a=16,b=2	a = 1, b = 2	a = b = 3
f(n) = 1	$\Theta(n^4)$, 1st		
$f(n) = n^3$			
$f(n) = n^4 \log n$			

Exercise 4: Peak Element

(5+4 Points)

You are given an array A[1...n] of n integers and the goal is to find a peak element, which is defined as an element in A that is equal to or bigger than its direct neighbors in the array. Formally, A[i] is a peak element if $A[i-1] \leq A[i] \geq A[i+1]$. To simplify the definition of peak elements on the rims of A, we introduce sentinal-elements $A[0] = A[n+1] = -\infty$.

- (a) Give an algorithm with runtime $O(\log n)$ (measured in the number of read operations on the array) which returns the position i of a peak element.
- (b) Prove that your algorithm always returns a peak element, give a recurrence relation for the runtime and use it to prove the runtime.

Exercise 5: Frequent Numbers

(5+4 Points)

You are given an Array A[0...n-1] of n integers and the goal is to determine frequent numbers which occur at least n/3 times in A. There can be at most three such numbers, if any exist at all.

- (a) Give an algorithm with runtime $O(n \log n)$ (measured in number of array entries that are read) based on the divide and conquer principle that outputs the frequent numbers (if any exist).
- (b) Argue why your algorithm is correct, give a recurrence relation for the runtime and use it to prove the runtime.