1

The Supplementary Material of the Paper "A Stepwise Weight Adaptation Approach for MOEA/D"

I. SUPPLEMENTARY TABLES

TABLE I HV RESULTS (MEAN AND SD) OF MOEA/D-AWA AND SWA-MOEA/D-AWA.

SWA-MOEA/D-AWA.									
Problem	MOEA/D-AWA	SWA-MOEA/D-AWA							
DTLZ1	9.715E-01(2.3E-03) [†]	9.740E-01(4.1E-05)							
DTLZ2	7.421E+00(2.9E-04)	7.421E+00(2.6E-03)							
DTLZ3	7.415E+00(7.1E-03)	7.415E+00(4.0E-03)							
DTLZ5	2.188E-01(8.4E-05) [†]	2.196E-01(4.1E-05)							
DTLZ7	1.318E+01(5.5E-01) [†]	1.319E+01(9.6E-01)							
CDTLZ2	7.951E+00(4.8E-04) [†]	7.951E+00(1.9E-04)							
IDTLZ1	6.884E-01(4.7E-04)	6.882E-01(4.3E-04)							
IDTLZ2	6.723E+00(5.9E-03) [†]	6.726E+00(3.9E-03)							
ZDT3	4.815E+00(1.4E-04) [†]	4.815E+00(1.2E-04)							
FON1	3.062E+00(6.2E-05) [†]	3.062E+00(1.5E-03)							
SCH1	2.228E+01(6.9E-04) [†]	2.227E+01(9.1E-04)							
SCH2	3.822E+01(2.6E-03) [†]	3.826E+01(9.0E-04)							
SDTLZ1	1.657E+02(4.5E-01) [†]	1.662E+02(4.3E-03)							
SDTLZ2	1.326E+03(1.0E-02) [†]	1.326E+03(7.1E-02)							
VNT2	1.648E+03(4.6E-03) [†]	1.648E+03(6.7E-03)							
DTLZ1-5	9.988E-01(1.8E-04) [†]	9.989E-01(3.3E-04)							
DTLZ2-5	3.165E+01(1.4E-02) [†]	3.169E+01(5.0E-03)							
DTLZ5IM-5	8.575E+03(1.3E+00) [†]	8.579E+03(1.2E-01)							
DTLZ7-5	7.225E+01(7.9E+00)	7.737E+01(8.6E+00)							
DTLZ1-10	9.971E-01(2.0E-03) [†]	9.948E-01(3.5E-03)							
DTLZ2-10	9.588E-01(1.2E-02) [†]	9.436E-01(2.1E-02)							
DTLZ5IM-10	9.889E-02(8.8E-04) [†]	1.007E-01(3.2E-04)							
DTLZ7-10	1.834E-01(9.0E-03) [†]	2.048E-01(7.1E-03)							
IDTLZ1-10	7.355E-08(3.3E-08) [†]	3.062E-07(5.0E-07)							
+/=/-	14/4/6								

 $^{^{\}dagger}$ ' indicates that SWA-MOEA/D-AWA is of statistically significant difference from MOEA/D-AWA at a 0.05 level by Wilcoxon's rank sum test. The better mean for each case is highlighted in boldface. The symbols +,-, and = indicate that the results of SWA-MOEA/D-AWA is significantly better than, worse than, and equivalent to MOEA/D-AWA.

Table I shows the comparative HV results of MOEA/D-AWA and SWA-MOEA/D-AWA on the 24 test problems regarding the mean and standard deviation (SD) values. To have statistically sound conclusions, Wilcoxon's rank sum test at a 0.05 significance level was adopted to test the significance of the differences between evaluation results obtained by two competing algorithms. As can be seen from the table, SWA-MOEA/D-AWA wins on 14 test problems out of 24 test problems, while MOEA/D-AWA wins on 6 test problems.

Table II shows the comparative HV results of the two algorithms on the 24 test problems. In terms of HV, SWA-MOEA/D-AWA wins on 12 test problems out of 24 test problems. In contrast, AdaW wins on 4 test problems.

Table III shows the HV results of SWA-AdaW with the other five state-of-the-art algorithms. As can be seen from the table, SWA-AdaW ranks the best overall compared with

 $\label{thm:table II} \text{HV results (mean and SD) of AdaW and SWA-AdaW}.$

	•			
Problem	AdaW	SWA-AdaW		
DTLZ1	9.739E-01(1.4E-04) [†]	9.737E-01(2.8E-04)		
DTLZ2	7.410E+00(6.4E-03) [†]	7.414E+00(6.9E-03)		
DTLZ3	7.393E+00(2.7E-02) [†]	7.414E+00(4.3E-03)		
DTLZ5	2.197E-01(5.5E-05)	2.197E-01(1.2E-04)		
DTLZ7	1.349E+01(3.2E-02) [†]	1.351E+01(1.5E-02)		
CDTLZ2	7.952E+00(2.1E-04) [†]	7.951E+00(2.2E-04)		
IDTLZ1	6.864E-01(2.2E-03)	6.870E-01(1.1E-03)		
IDTLZ2	6.729E+00(4.0E-03)	6.728E+00(3.3E-03)		
ZDT3	4.815E+00(1.4E-03) [†]	4.815E+00(4.9E-04)		
FON1	$3.061E+00(4.2E-03)^{\dagger}$	3.053E+00(7.7E-03)		
SCH1	2.227E+01(7.6E-04) [†]	2.227E+01(8.9E-04)		
SCH2	3.825E+01(4.7E-03) [†]	3.826E+01(3.3E-03)		
SDTLZ1	1.402E+02(9.8E-02) [†]	1.430E+02(1.3E-02)		
SDTLZ2	7.481E+02(8.3E-01) [†]	7.557E+02(6.9E-01)		
VNT2	1.648E+03(6.0E-03)	1.648E+03(7.1E-03)		
DTLZ1-5	9.990E-01(4.0E-05)	9.990E-01(4.2E-05)		
DTLZ2-5	3.167E+01(1.1E-02) [†]	3.169E+01(1.1E-02)		
DTLZ5IM-5	8.579E+03(6.4E-01)	8.578E+03(2.0E+00)		
DTLZ7-5	8.497E+01(1.5E+00) [†]	8.588E+01(3.6E+00)		
DTLZ1-10	9.985E-01(7.7E-04)	9.978E-01(1.8E-03)		
DTLZ2-10	9.611E-01(1.2E-03) [†]	9.643E-01(1.1E-03)		
DTLZ5IM-10	1.009E-01(2.9E-04)	1.010E-01(2.7E-04)		
DTLZ7-10	1.749E-01(7.4E-03) [†]	1.831E-01(9.0E-03)		
IDTLZ1-10	3.893E-07(5.7E-07) [†]	5.948E-07(4.6E-07)		
+/=/-	12/8/4			

^{&#}x27;†' indicates that SWA-AdaW is of statistically significant difference from AdaW at a 0.05 level by Wilcoxon's rank sum test. The best mean for each case is highlighted in boldface. The symbols +, -, and = indicate that the results of SWA-AdaW is significantly better than, worse than, and equivalent to AdaW.

the five peer algorithms. SWA-AdaW outperforms MOEA/D, A-NSGA-III, DEA-GNG, iRVEA and RVEA-iGNG on 17, 20, 21, 21, and 13 test problems out of 24 test problems in total, respectively. In contrast, MOEA/D, A-NSGA-III, DEA-GNG, iRVEA, and RVEA-iGNG win on 5, 1, 2, 2, and 5 test problems, respectively.

 $\begin{tabular}{ll} TABLE~III\\ HV~results~(mean~and~SD)~of~the~six~algorithms. \end{tabular}$

THE RESIDENCE OF THE SHEET PROPERTY.							
Problem	MOEA/D	A-NSGA-III	DEA-GNG	iRVEA	RVEA-iGNG	SWU-AdaW	
DTLZ1	$9.741E-01(4.0E-05)^{\dagger}$	9.712E-01(2.6E-03) [†]	9.467E-01(1.8E-02) [†]	9.734E-01(5.4E-04) [†]	9.737E-01(1.2E-04)	9.737E-01(2.8E-04)	
DTLZ2	7.418E+00(4.3E-06)	7.415E+00(3.2E-03)	7.349E+00(2.6E-02) [†]	7.411E+00(1.4E-03) [†]	7.414E+00(3.5E-03)	7.414E+00(6.9E-03)	
DTLZ3	7.412E+00(5.3E-03) [†]	7.383E+00(1.9E-02) [†]	7.412E+00(5.3E-03) [†]	7.402E+00(2.3E-02) [†]	7.413E+00(4.3E-03)	7.414E+00(4.3E-03)	
DTLZ5	1.993E-01(6.0E-06) [†]	2.134E-01(1.8E-03) [†]	2.194E-01(2.1E-04) [†]	2.196E-01(7.9E-05) [†]	2.196E-01(6.0E-05) [†]	2.197E-01(1.2E-04)	
DTLZ7	1.313E+01(1.1E+00) [†]	1.334E+01(4.4E-02) [†]	1.307E+01(5.6E-01) [†]	1.343E+01(6.2E-02) [†]	1.317E+01(9.5E-01) [†]	1.351E+01(1.5E-02)	
CDTLZ2	7.907E+00(3.6E-03) [†]	7.936E+00(7.5E-03) [†]	7.909E+00(2.2E-02) [†]	7.949E+00(5.7E-04) [†]	7.950E+00(9.4E-04) [†]	7.951E+00(2.2E-04)	
IDTLZ1	6.678E-01(6.3E-05) [†]	6.676E-01(1.5E-03) [†]	6.637E-01(1.5E-02) [†]	6.814E-01(4.9E-03) [†]	6.878E-01(4.6E-04) [†]	6.870E-01(1.1E-03)	
IDTLZ2	6.638E+00(2.7E-03) [†]	6.614E+00(4.0E-02) [†]	6.584E+00(4.5E-02) [†]	6.696E+00(1.2E-02) [†]	6.691E+00(1.6E-02) [†]	6.728E+00(3.3E-03)	
ZDT3	4.731E+00(1.1E-01) [†]	4.814E+00(1.9E-04) [†]	4.812E+00(8.5E-04) [†]	4.763E+00(1.3E-01) [†]	4.791E+00(9.3E-02) [†]	4.815E+00(4.9E-04)	
FON1	3.062E+00(7.1E-05) [†]	3.058E+00(4.3E-03)	3.062E+00(1.3E-03) [†]	3.062E+00(1.4E-04) [†]	3.063E+00(5.7E-05) [†]	3.053E+00(7.7E-03)	
SCH1	2.197E+01(7.6E-03) [†]	2.225E+01(6.1E-03) [†]	2.227E+01(2.8E-03) [†]	2.227E+01(1.9E-03) [†]	2.228E+01(7.9E-04) [†]	2.227E+01(8.9E-04)	
SCH2	3.365E+01(5.4E-04) [†]	3.465E+01(9.3E-03) [†]	3.462E+01(5.4E-02) [†]	3.463E+01(2.0E-02) [†]	3.396E+01(4.3E-01) [†]	3.826E+01(3.3E-03)	
SDTLZ1	9.687E+01(3.5E-02) [†]	1.399E+02(5.6E-01)	1.265E+02(1.3E+01) [†]	1.367E+02(4.8E+00) [†]	1.392E+02(1.4E-01)†	1.430E+02(1.3E-02)	
SDTLZ2	4.858E+02(5.4E-02) [†]	7.392E+02(2.3E+00) [†]	7.333E+02(2.6E+00) [†]	7.404E+02(1.2E+00) [†]	7.410E+02(2.0E+00) [†]	7.557E+02(6.9E-01)	
VNT2	1.609E+03(2.1E-02) [†]	1.638E+03(1.0E+01) [†]	1.647E+03(1.2E+00) [†]	1.647E+03(1.2E+00) [†]	1.647E+03(3.3E-01) [†]	1.648E+03(7.1E-03)	
DTLZ1-5	9.990E-01(1.6E-05)	9.989E-01(1.1E-04) [†]	8.420E-01(1.1E-01) [†]	9.989E-01(3.8E-05) [†]	9.989E-01(3.6E-05) [†]	9.990E-01(4.2E-05)	
DTLZ2-5	3.170E+01(4.5E-05) [†]	3.170E+01(2.3E-03) [†]	3.085E+01(2.0E-01) [†]	3.168E+01(2.4E-03) [†]	3.168E+01(5.0E-03) [†]	3.169E+01(1.1E-02)	
DTLZ5IM-5	8.256E+03(7.1E+02) [†]	8.544E+03(3.4E+01) [†]	8.579E+03(2.0E-02) [†]	8.679E+03(2.4E-02) [†]	8.579E+03(1.9E-01) [†]	8.578E+03(2.0E+00)	
DTLZ7-5	8.034E+01(4.0E-01) [†]	7.889E+01(1.8E+00) [†]	7.510E+01(2.5E+00) [†]	8.351E+01(1.0E+00) [†]	8.523E+01(3.3E+00) [†]	8.588E+01(3.6E+00)	
DTLZ1-10	9.995E-01(3.4E-05) [†]	9.936E-01(2.1E-02) [†]	7.510E-01(9.7E-02) [†]	3.309E-01(3.3E-01) [†]	9.986E-01(3.3E-04)	9.978E-01(1.8E-03)	
DTLZ2-10	9.679E-01(1.9E-04) [†]	9.475E-01(4.1E-02) [†]	8.399E-01(2.9E-02) [†]	9.591E-01(1.4E-03) [†]	9.588E-01(1.2E-02)	9.642E-01(1.1E-03)	
DTLZ5IM-10	8.583E-02(3.4E-02) [†]	3.387E-02(3.1E-02) [†]	5.035E-03(1.9E-02) [†]	1.002E-01(3.3E-03)	1.008E-01(3.0E-04)	1.010E-01(2.7E-04)	
DTLZ7-10	7.477E-04(3.1E-03) [†]	1.768E-01(9.8E-03) [†]	1.886E-01(1.7E-02)	1.217E-01(3.0E-02) [†]	1.914E-01(5.9E-03)†	1.831E-01(9.0E-03)	
IDTLZ1-10	8.797E-09(4.5E-09) [†]	4.793E-07(5.8E-08) [†]	4.425E-07(1.5E-07) [†]	4.965E-07(7.3E-07) [†]	3.384E-07(2.0E-07) [†]	5.948E-07(4.6E-07)	
+/ = /-	17/2/5	20/3/1	21/1/2	21/1/2	13/6/5		

 $^{^{\}prime}$ † $^{\prime}$ indicates that SWA-AdaW is of statistically significant difference from the corresponding peer algorithm at a 0.05 level by Wilcoxon's rank sum test. The best mean for each case is highlighted in boldface. The symbols +,-, and = indicate that the results of SWA-AdaW is significantly better than, worse than, and equivalent to the corresponding peer algorithm.