1 提交文件简要说明

本次实验使用超算 hpc 进行,代码改动集中在 model.py,并未对原有其他代码框架进行大幅更改。数据 预处理根据 data 目录下的 prepare_data.sh 文件进行,提取的数据保存在该目录下,并未从 stu168 拷贝原始数据集(可以软链接,但并不需要)。按照原有代码框架脚本,实验结果默认保存在 experiments/Crnn 目录下,超算运行日志保存在 slurm_logs 文件夹下。

2 任务理解

- 2.1 声音事件检测模型理解
- 2.2 弱监督情况下进行时间轴预测的难点
- 2.3 基线模型设计的原理
- 2.4 Crnn 模型实现

3 实验

3.1 数据预处理

将脚本 cp 到个人 hpc 目录后运行 data 文件夹下的 prepare_data.sh 脚本,将根据 stu168 用户下的 原始数据提取用于本次训练的后续相关数据。需要使用单线程数据处理脚本,并对 librosa 版本降级,从而成功提取数据。

3.2 实验结果和分析

baseline.yaml 中未提供大量的参数供调整,本任务的重点在于 Crnn 的模型搭建和结构调整,故本部分重点在于总结不同 Crnn 结构下的实验结果,并展示模型结构改进对评测指标的影响。本次任务最终提交的 model.py 即保留了最优情况下的模型参数配置,其脚本则为 run.sh 及相关的配置文件。

本次实验最开始我的直观想法是直接将 Crnn 所需要的神经网络模块,包括但不限于 fully connect, convolution, lstm, batchnorm 等融合在一起,不对参数进行细致的配置,直接使用 relu, sigmoid 等激活函数,在成功搭建后的初步实验结如下:

Metrics	f_measure	precision	recall
event_based	0.00743036	0.00666628	0.00990206
segment_based	0.196863	0.310598	0.161337
tagging_based	0.449451	0.568862	0.387041
mAP	0.5058306091886279		

表 1: 简单 Crnn 结构: 双层卷积

初步实验成功之后,进行模型结构调整,增加卷积层和 BatchNorm 层的个数,使用两种不同的池化方式,结果如下:

Metrics	f_measure	precision	recall
event_based	0.00831543	0.0116714	0.00656456
segment_based	0.226929	0.42916	0.156146
tagging_based	0.553278	0.630679	0.511583
mAP	mAP: 0.5788640257440317		

表 2: 改进 Crnn 结构: 三层卷积、batchnorm、两种 pooling

按照 slides 给出模型结构进行最终改进(此即提交文件中的模型结构),结果如下:

Metrics	f_measure	precision	recall
event_based	0.0108622	0.0139943	0.00960896
segment_based	0.231898	0.418706	0.163764
tagging_based	0.582452	0.628041	0.565621
mAP	mAP: 0.6098265732798768		

表 3: 最终 Crnn 结构: 模型结构保留在 model.py 中

模型结构确定,继续进行参数调整,包括但不限于各个卷积层的 in_channels, out_channels, LSTM 网络的隐层维度、层数(即提交文件中的默认参数),主要是增大卷积层 channel 的个数和 LSTM 网络隐层向量的维度,结果如下:

Metrics	f_measure	precision	recall
event_based	0.00938473	0.0115726	0.00811011
segment_based	0.240401	0.423576	0.172586
tagging_based	0.633284	0.637923	0.634307
mAP	mAP: 0.6330678570776226		

表 4: 最终 Crnn 参数: 模型参数是 model.py 中的默认参数