量子场论 (I) 笔记

陈炎柯*

版本: 1.00

更新时间: October 5, 2020

^{*}chenyanke@stu.pku.edu.cn, 个人主页 http://yankechen.xyz

写在前面

本笔记是在北京大学 2020 年秋季学期马滟青 (助理教授) 老师所授的《量子场论 (I)》课程所记录。课程的主要参考教材有:Michael E. Peskin 和 Daniel V. Schroeder 所著的《An introduction to Quantum Feild Theory》,郑汉青老师所著的《量子场论 (上)》以及刘川老师的讲义。作为笔记可能会省略很多推导过程,主要记录思路和结果。可能会有很多笔误,后续有时间再慢慢修改。

笔记模板来自 ElegantIATeX Group,模板下载地址: https://ddswhu.me/resource/ 随课程进行每周更新。

2020.10.05 更新至 2.1 节

Contents

1	场观	场观点的必要性		
2	经典	场论		5
	2.1	场方程	<u>.</u>	5
		2.1.1	分析力学	6
		2.1.2	经典场: 无穷多自由度	6
		2.1.3	Lagrangian 场论	6
		2.1.4	Noether 定理	7

1 场观点的必要性

(相对论性) 量子场论是描述高能、微观、多粒子系统的。

低能微观系统由非相对论性的量子力学描述,在正则量子化方法下:

$$E \to i \frac{\partial}{\partial t}, \quad \vec{p} \to -i \vec{\nabla}$$
 (1.1)

根据 $E = \frac{p^2}{2m}$,可以很容易的得到 Schrödinger 方程:

$$(i\frac{\partial}{\partial t} + \frac{1}{2m}\nabla^2)\varphi(x) = 0 \tag{1.2}$$

处理高能系统时,一个很自然的方法推广方法是将能动量关系式改为 $E^2 = \vec{p}^2 + m^2$,将量子力学推广到相对论情况,可以得到 Klein-Gordon 方程:

$$(\partial_{\mu}\partial^{\mu} + m^2)\varphi(x) = 0 \tag{1.3}$$

但是相对论性的量子力学存在着很多问题,首先是**负能量**问题。 $E=\pm\sqrt{\vec{p}^2+m^2}$,且为了保证解在 Hilbert 空间的完备性,不能随意舍弃负能解。系统的能量没有下界永远无法达到一个稳定的状态。

另一个问题是**负概率密度**问题,我们知道,在量子力学下,通过 Schrödinger 方程我们可以得到概率流的连续性方程:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{j} = \partial_{\mu} j^{\mu} = 0, \quad \rho = \varphi^* \varphi, \quad \vec{j} = \frac{-i}{2m} \left(\varphi^* \nabla \varphi - \varphi \nabla \varphi^* \right)$$
 (1.4)

在相对论情况下同样有类似的:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{j} = \partial_{\mu} j^{\mu} = 0, \quad \rho = \frac{i}{2m} \left(\varphi^* \frac{\partial \varphi}{\partial t} - \varphi \frac{\partial \varphi^*}{\partial t} \right), \quad \vec{j} = \frac{-i}{2m} \left(\varphi^* \nabla \varphi - \varphi \nabla \varphi^* \right) \quad (1.5)$$

应用于平面波解 $\varphi = Ne^{-ip \cdot x}$ 时,得到:

$$j^{\mu} = |N|^2 \frac{p^{\mu}}{m} = |N|^2 (E, \vec{p}) \tag{1.6}$$

伴随着负的能量,同样出现了负的概率密度,这显然是不合理的。

Dirac 认为, 负的概率密度来自于时间的二阶导数, 如果将方程化成一阶能解决问题, 提出 Dirac 方程:

$$(\not p - m)\psi = (i\partial \!\!\!/ - m)\psi = (i\partial_{\mu}\gamma^{\mu} - m)\psi = 0 \tag{1.7}$$

可以得到正定的概率流密度和连续性方程:

$$\partial_{\mu}j^{\mu} = 0, \quad j^{\mu} = \bar{\psi}\gamma^{\mu}\psi, \quad \bar{\psi} = \psi^{\dagger}\gamma^{0}$$
 (1.8)

但是依然没有办法解释负能量问题,Dirac 为此提出 Dirac 海的概念。认为真空是负能量态被填满的 Dirac 海,给予能量可以激发出空穴(反粒子。显然 Dirac 海解释也存有很多缺陷:

- 无法解释 Boson。
- Dirac 海是一个无穷多自由度的多粒子体系,用单粒子的方程来描述显然是不合理的。

同样相对论性量子力学也无法满足微观因果性的要求,考虑一个自由单粒子传播的振幅:

$$U(t) = \langle \vec{x} | e^{-iHt} | \vec{x_0} \rangle \tag{1.9}$$

非相对论情况下:

$$U(t) = \langle \vec{x} | e^{-i(\vec{p}^2/2m)t} | \vec{x_0} \rangle = \left(\frac{m}{2\pi i t}\right)^{3/2} e^{im(\vec{x} - \vec{x_0})^2/2t}$$
(1.10)

这个表达式在任意的 \vec{x} , t 下都是非零的。这个可以在非相对论情况下是可以理解的。但是在相对论情况下:

$$U(t) = \langle \vec{x} | e^{-it\sqrt{\vec{p}^2 + m^2}} | \vec{x_0} \rangle \sim e^{-m\sqrt{(\vec{x} - \vec{x_0})^2 - t^2}} (\text{when } (\vec{x} - \vec{x_0})^2 \gg t^2)$$
 (1.11)

是个小量但同样是非零的,这在相对论情况下不满足因果律的要求显然是不正确的。同时相对论性量子力学也无法解释粒子的产生与衰变,例如 $n\to p+e^-+\bar{\nu}_e$,这必然是一个多粒子的体系,因此引入场的概念是非常重要的。

量子场论的解决方案为:

- 不要求单粒子的概率守恒, 但是要求总系统的幺正性。
- 运动方程由经典场方程给出。
- 对经典场进行量子化。
- 提出反粒子使得 $E_+ > 0$,不再有负能量,同时微观因果律可以得到保证。
- 重整化方案解决发散问题。
- QED,QCD,EW 理论都得到了实验的验证,预言了胶子、Higgs 粒子、 W^{\pm}

得到量子场论,有两条路线:

- (1). 非相对论量子力学 $\xrightarrow{\text{H对论}\text{L}}$ 相对论量子力学 $\xrightarrow{\text{S}\text{M}\text{L}}$ 量子场论
- (2). 经典力学 $\xrightarrow{\text{$g$}\text{$h$}\text{$k$}}$ 经典场论 $\xrightarrow{\text{$g$}\text{$h$}\text{$k$}}$ 量子场论

由于相对论性量子场论自身有不自洽的很多问题,这门课程以第二条线路作为主线路。

2 经典场论

2.1 场方程

2.1.1 分析力学

经典力学下,最小作用量原理和牛顿定律是等价的。系统的作用量为:

$$S = \int_{t_1}^{t_2} L(q, \dot{q}) dt \tag{2.1}$$

由最小作用量原理可以给出 Euler-Lagrange 方程:

$$\delta S = 0 \Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0$$
 (2.2)

定义共轭动量 $p = \frac{\partial L}{\partial q}$,对 L 做 Legendre 变换可以得到 Hamitonian 及正则方程:

$$H \equiv p\dot{q} - L, \quad \dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$
 (2.3)

2.1.2 经典场: 无穷多自由度

当系统为有限多自由度时, $q \to q_i$, $\dot{q} \to \dot{q}_i$ 。当系统为无穷多自由度时,在连续性极限下,不使用 i 而使用空间坐标 \vec{x} 来标记每个自由度,采用场的观点:"场"即为分布在空间各个位置的一个量。场 $\phi(x)$ 代表第 i 个点的 q_i 在体积 ΔV 中的平均:

$$\begin{array}{cccc} \text{many-particle system} & \to & \text{field} \\ q_i & \to & \phi(x) \\ \text{numbering by } i & \to & \text{numbering by } x \\ \sum_{i=1}^{\infty} \Delta V & \to & \int d^3 \vec{x} \end{array}$$

2.1.3 Lagrangian 场论

在用场的观点描述时,作用量可以写为:

$$S = \int dt \int d^3 \vec{x} \mathcal{L} (\phi(x), \partial_{\mu} \phi(x)) \equiv \int d^4 x \mathcal{L} (\phi(x), \partial_{\mu} \phi(x))$$
 (2.4)

其中 \mathcal{L} 为场的 Lagrangian 密度,后面不再做名字上的区分,也将其称为 Lagrangian,在构造 Lagrangian 时,应满足要求:

(1). \mathcal{L} 有局域性。(2). 场不超过一阶导数。(3). \mathcal{L} 是 Lorentz 标量。此时应用最小作用量原理,可以得到场的 Euler-Lagrange 方程:

$$\delta S = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} = 0$$
 (2.5)

Example 2.1 实标量场:

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2$$
 (2.6)

通过 Euler-Lagrange 方程可以再次得到 K-G 方程。:

$$(\partial_{\mu}\partial^{\mu} + m^2)\phi = 0 \tag{2.7}$$

Hamitonian 场论

定义共轭动量:

$$\pi = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} \tag{2.8}$$

通过 Legendre 变化得到系统的 Hamitionian 密度和 Hamitonian(再后续同样不对名称区分):

$$\mathcal{H} = \pi \dot{\phi} - \mathcal{L}, \quad H = \int d^3 \vec{x} \mathcal{H}$$
 (2.9)

对 Hamitonian 做变分有:

$$\delta \mathcal{H} = \dot{\phi} \delta \pi + \pi \delta \dot{\phi} - \delta \mathcal{L} = \dot{\phi} \delta \pi - \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \partial^{i} \left(\frac{\partial \mathcal{L}}{\partial (\partial^{i} \phi)} \right) \delta \phi = \dot{\phi} \delta \pi - \dot{\pi} \delta \phi$$
 (2.10)

同时 $\mathcal{H}(\phi, \nabla \phi, \pi)$ 的变分也可写成:

$$\delta \mathcal{H} = \left(\frac{\partial \mathcal{H}}{\partial \phi} - \nabla \cdot \left(\frac{\partial \mathcal{H}}{\partial (\nabla \phi)}\right)\right) \delta \phi + \frac{\partial \mathcal{H}}{\partial \pi} \delta \pi \tag{2.11}$$

故可以得到正则方程:

$$\dot{\phi} = \frac{\partial \mathcal{H}}{\partial \pi}, \quad \dot{\pi} = -\frac{\partial \mathcal{H}}{\partial \phi} + \nabla \cdot \left(\frac{\partial \mathcal{H}}{\partial (\nabla \phi)}\right)$$
 (2.12)

Example 2.2 实标量场的 Hamitonian:

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 \tag{2.13}$$

 ϕ 的共轭动量为 $\pi = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \dot{\phi}$,可以得到其 Hamitonian 为:

$$\mathcal{H} = \frac{1}{2}\pi^2 + \frac{1}{2}(\nabla\phi)^2 + \frac{1}{2}m^2\phi^2$$
 (2.14)

2.1.4 Noether 定理

在经典场论中,每一种使得作用量不变的连续对称变换均会导致存在一个守恒流和运动常数。这一结论叫做 Noether 定理。通过某种变换会使得场发生变化:

$$\phi(x) \to \phi'(x) = \phi(x) + \alpha \Delta \phi(x)$$
 (2.15)

其中 α 是一个无穷小参数。如果该变换不改变 Lagranian,则显然作用量是不改变的。但是有时 Lagrangian 也会发生变化,如果需要作用量不变,则 Lagrangian 的变化必须是一个全微分形式:

$$\mathcal{L}(x) \to \mathcal{L}(x) + \alpha \partial_{\mu} \mathcal{J}^{\mu}(x)$$
 (2.16)

场发生一定改变时, Lagrangian 的变化为:

$$\alpha \Delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} (\alpha \Delta \phi) + \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \partial_{\mu} (\alpha \Delta \phi) = \alpha \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \Delta \phi \right) + \alpha \left[\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \right] \Delta \phi$$
(2.17)

对比可得守恒流:

$$\partial_{\mu}j^{\mu}(x) = 0, \quad j^{\mu}(x) = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \Delta \phi - \mathcal{J}^{\mu}$$
 (2.18)

以及运动常数:

$$Q \equiv \int j^0 d^3x, \quad \frac{d}{dt}Q = 0 \tag{2.19}$$

Remark 这一小部分马老师上课时采用的是郑汉青老师讲义中的观点讲的。郑汉青老师的讲义中对这部分的讨论更加 general 一些也更复杂一点,而 Peskin 书中对这部分的讨论更加简明易懂一些,我这里就把 Peskin 书上的这部分搬运过来了。

全局 U(1) 对称性

考虑复标量场的 Lagrangian:

$$\mathcal{L} = \left| \partial_{\mu} \phi \right|^2 - m^2 |\phi|^2 \tag{2.20}$$

进行全局的 U(1) 变换 $\phi \to e^{i\alpha}\phi$ 时,显然 Lagrangian 是不变的,即:

$$\Delta \mathcal{L} = 0 \Rightarrow \mathcal{J}^{\mu} = 0 \tag{2.21}$$

得到的守恒流为:

$$j^{\mu} = i \left[\left(\partial^{\mu} \phi^* \right) \phi - \phi^* \left(\partial^{\mu} \phi \right) \right] \tag{2.22}$$

时空平移对称性

考虑一个无穷小的时空平移:

$$x^{\mu} \to x^{\mu} - a^{\mu} \tag{2.23}$$

或者描述为场变换为:

$$\phi(x) \to \phi(x+a) = \phi(x) + a^{\mu} \partial_{\mu} \phi(x) \tag{2.24}$$

Lagrangian 同样是一个标量,按同样的方式变化:

$$\mathcal{L} \to \mathcal{L} + a^{\mu} \partial_{\mu} \mathcal{L} = \mathcal{L} + a^{\nu} \partial_{\mu} \left(\delta^{\mu}_{\nu} \mathcal{L} \right) \tag{2.25}$$

或者写为:

$$a^{\nu}\Delta\phi = a^{\nu}\partial_{\nu}\phi, \quad a^{\nu}\Delta\mathcal{L} = a^{\nu}\partial_{\mu}\mathcal{J}^{\mu} = a^{\nu}\partial_{\mu}\left(\delta^{\mu}_{\nu}\mathcal{L}\right)$$
 (2.26)

可以得到时空平移守恒流:

$$T^{\mu}_{\nu} \equiv \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\phi\right)} \partial_{\nu}\phi - \mathcal{L}\delta^{\mu}_{\nu} \tag{2.27}$$

即场的能-动张量。相应可以得到的运动常数为能量和动量:

$$H = \int T^{00} d^3x = \int \mathcal{H} d^3x, \quad P^i = \int T^{0i} d^3x$$
 (2.28)

Remark 注意这里的 P^i 是场带有的 (物理) 动量,不要与正则动量混淆。