Machine Learning – CS643

Dr. Sheikh Faisal Rashid

- Assistant Professor: Computer Science, UET Lahore
- Director: Artificial Intelligence Research Lab (AIRL), KICS
- Vice President: Pakistan Pattern Recognition Society (PPRS)
- Visiting Researcher DFKI, Germany
- □ shfaisal@gmail.com

Department of Computer Science and Engineering UET, Lahore

Overview

- □ Pattern Classification
 - Introduction
 - Concepts
 - Design Cycle

- More than a program
 - OUsually, we think a program is something written by an experienced person.

- More than a program
 - OUsually, we think a program is something written by an experienced person.
 - Often, the program isn't complete without "experience" of its own.

More than a program

- OUsually, we think a program is something written by an experienced person.
- Often, the program isn't complete without "experience" of its own.
- The idea of writing programs that use data (experience) to create better programs than people can write directly.

- Pattern classification systems make decisions
- Decisions are usually made autonomously
- Decisions are not pre-programmed
- Decision "rules" are derived from data

SE, AI, PR

- Software Engineering
- Manual creation of specifications, manual implementation, full control over details of execution.
- Artificial Intelligence (Rule-Based Systems)
- O Manual creation of specifications, specifications are directly executable (rule interpreters, etc.). Details of execution are automated.
- Pattern Recognition, Machine Learning
- Programmer chooses category of application, but detailed specifications are automatically derived from data. Execution is automated.

Fish Classification: An example

- "Sorting incoming Fish on a conveyor according to species using optical sensing"
- Species
 - ∘Sea bass
 - ○Salmon

Problem Analysis

- set up a camera and take some sample images to extract features
- feature types
 - length (positive real number)
 - lightness (positive real number)
 - width (positive real number)
 - number of fins (non-negative integer)
 - shape of fins (one-of a set of possible categories)
 - o position of the mouth (one of a set of possible categories)
 - 0 ...
- base the decision of which kind of fish it is on these measurements

Overall classifier

Preprocessing

- raw camera image may be 1024 x 1024 pixels
 - >1 million numbers
- contains lots of irrelevant data
 - background
 - o dirt
 - O ...
- feature extraction
 - o data reduction—computational efficiency
 - o remove irrelevant variation
- feature measurements are passed to the classifier

Feature Vector

- collection of measurements like an "object" or "structure" or "database record"
- example

```
{ length = 21cm,

lightness = 0.73,

width = 8.3cm,

number_of_fins = 3,

shape_of_fins = {square, triangular, square},

position_of_the_mouth = {front} }
```

Dataset

like a spreadsheet table (with millions of rows...)

training data: class + features

test data: features only

	A	В	С	D	E	F	G
1	class	length	lightness	width	#fins	shapes	mouth
2		28.59	0.35	15.99	2	s,s	f
3	2	22.18	0.37	13.31	1	t	b
4	1	16.29	0.28	16.89	2	t,t	f
5	2	29.87	0.46	14.49	1	t	b
6	2	27.65	0.43	13. 1 1	2	s,s	f
7	2 2 2 2	29.75	0.57	13.70	2	5,5	f
8	2	26.43	0.30	13.54	1	s	f
9	1	24.13	0.25	12.50	1	t	f
10	2	27.25	0.47	14.05	1	t	f
11	2 2 2	24.13	0.32	12.23	1	t	f
12	2	22.48	0.58	14.14	1	t	f
13	1	21.14	0.48	16.16	1	t	f
14	1	16.11	0.44	15.75	2	t,t	f
15	1	21.26	0.34	12.71	2	t,t	f
16	2	28.54	0.51	17.00	1	S	f
17	1	18.99	0.25	12.31	1	s	f
18	2	26.98	0.39	16.50	2	t,t	f
19	1	20.50	0.29	16.56	2	t,s	f
20	1	22.67	0.45	15.61	2	t,t	f
21	1	17.20	0.37	16.03	2	t,s	b
22	1	21.38	0.26	12.08	2	t,t	f
23	1	20.73	0.41	14.93	2	t,s	f

Histogram

frequency of each feature

• "binned" for real-valued features

let us guess a classifier by eye

Decision Rule

A Decision Rule is a function mapping feature vectors into classes

Decision(features) =
IF features.length<11 THEN return "salmon"
ELSE return "sea bass"

Empirical Error Rate

fraction of misclassified samples among total samples "empirical" because it is estimated from a data sample

Finding Good Features / Boundaries

using lightness, we can separate the two classes better than using length moving the decision boundary changes the error rate

Decision Theory

- Threshold decision boundary and cost relationship
 - Move our decision boundary toward smaller values of lightness in order to minimize the cost (reduce the number of sea bass that are classified salmon!)

Task of decision theory

Multiple Features

Adopt the lightness and add the width of the fish

Fish
$$x^T = [x_1, x_2]$$
Lightness Width

Multiple Features

Scatterplot

Linear Decision Function

```
Decision(features) =

IF features.lightness * 0.6 + features.width * 0.11 – 21.3 < 0

THEN return "salmon"

ELSE return "sea bass"
```

decision function depends on two numerical features

feature values enter linearly into the decision function

Generalization

decision boundaries that work perfectly on a few samples...

Overfitting

... may fail to generalize well to new data (overtraining) ensuring good generalization is a key problem in pattern recognition

Avoid overtraining

choose a tradeoff between...

- performance on the training data
- "complexity" of the classifier / decision boundary

decision boundary is too complex

arrent trees and trees

Pattern Recognition Systems

Pattern Classification, Chapter 1

Pattern Recognition Systems

- Sensing
 - Use of a transducer (camera or microphone)
 - PR system depends of the bandwidth, the resolution sensitivity distortion of the transducer
- Segmentation and grouping
 - Patterns should be well separated and should not overlap

Pattern Recognition Systems

- Feature extraction
 - Discriminative features
 - Invariant features with respect to translation, rotation and scale.
- Classification
 - Use a feature vector provided by a feature extractor to assign the object to a category
- Post Processing
 - Exploit context input dependent information other than from the target pattern itself to improve performance

- Data collection
- □ Feature Choice
- Model Choice
- Training
- Evaluation
- Model Selection
- Computational Complexity

- Data Collection
 - How do we know when we have collected an adequately large and representative set of examples for training and testing the system?

- Feature Choice
 - Depends on the characteristics of the problem domain.
 - Simple to extract, invariant to irrelevant transformation insensitive to noise.

- Model Choice
 - Unsatisfied with the performance of our fish classifier and want to jump to another class of model

- Training
 - Use data to determine the classifier.
 - Many different procedures for training classifiers and choosing models

- Evaluation
 - Measure the error rate (or performance and switch from one set of features to another one

Cross-Validation

- Computational Complexity
 - What is the trade-off between computational ease and performance?
 - (How an algorithm scales as a function of the number of features, patterns or categories?)

Important terminology

- Training data
 - Data samples
 - Target vectors
- Learning / Training
 - Machine takes training data and automatically learns mapping from data samples to target vectors
- Test data
 - Target vectors are concealed from the machine
 - Machine predicts the target vectors based on previously learned model
 - Accuracy can be evaluated by comparing the predicted vectors to the actual vectors

Example

Handwritten Digit Recognition

Problem Statement

- □ Consider a 28 x 28 pixel image
- Represented by a 784 dimensional vector x
- Goal: build a machine that takes the vector x as input and produces the identity of digit 0,...,9 as the output

Machine Learning

□ Tom Mitchel's definition of Machine Learning: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Examples

Example 1: A Chess learning problem

- Task T: playing chess
- Performance measure P: percent of games won against opponents
- Training Experience E: playing practice games against itself

Examples

Example 2: Autonomous Vehicle Problem

- Task T: driving on a public highway/roads using vision sensors
- Performance Measure P: percentage of time the vehicle is involved in an accident
- Training Experience E: a sequence of images and steering commands recorded while observing a human driver