Hazard Analysis MECHTRON 4TB6

Team 25, Formulate
Ahmed Nazir, nazira1
Stephen Oh, ohs9
Muhanad Sada, sadam
Tioluwalayomi Babayeju, babayejt

Table 1: Revision History

Date	Developer(s)	Change
10/12/2022 Date2	Ahmed Name(s)	Added FMEA analysis Description of changes

Contents

1	Introduction	1
2	Scope and Purpose of Hazard Analysis	1
3	System Boundaries and Components	1
4	Critical Assumptions	1
5	Failure Mode and Effect Analysis	2
6	Safety and Security Requirements	3
7	Roadmap	3

1 Introduction

A hazard is the combination of a system property with an environmental condition that can cause harm to the intended user.

Hazard analysis is a critical consideration in the design of all systems. When done correctly, hazards to the end user are identified and can be mitigated or eliminated completely. While it is not possible to guarantee the safety of a system, applying hazard analysis methods is a neccessary step in supporting the safety of the system.

Formulate's area of work combines hardware and software sub-systems and as a result, requires hazard analysis to obtain a comprehensive understanding of the overall system.

2 Scope and Purpose of Hazard Analysis

In this document, Formulate details the hazards a user can experience through the Failure Mode and Effect Analysis method. As a result, the group systematically outlined the hazards and measures that were considered to mitigate or eliminate the hazard.

3 System Boundaries and Components

The device that is referred to in this document is made up of 5 major components that hazard and failure analysis would have to be done for:

- 1. Hardware
- 2. Desktop Application
- 3. Database
- 4. Data Website Analytics
- 5. The Physical Device

Each component has there own system boundaries based on the software and hardware we use. Since this is the case we will have to design the system based on the type of the test that is required to be performed by the MAC Formula Electric Team. An example of this would be if the client had to test their motor at an operating speed we would choose hardware components that are within that temperature range to avoid any failure reading the data correctly or damaging the component.

4 Critical Assumptions

5 Failure Mode and Effect Analysis

Component	Ref	Failure Mode	Effects of Failure	Cause of Failure	Recommended Actions
Hardware	H1.1	Sensor data is not sent to PC	Test data is not captured by our device	 Wi-Fi Module is broken USB Device is not connected Device is not connected to Wi-Fi network 	Using the LCD display show the systems connectivity
	H1.2	System does not have power	Device is off and not operational	 Battery died Power cables are disconnected Too much current is drawn from Arduino 	 Add a battery indicator to the screen to alert the user if the battery is low Make the sensors get their power directly from the power source and not the arduino
	H1.3	Hardware falls off the mount	 Hardware device breaks/gets damaged Sensors capture in- correct data Potential injury to those in vehicle 	 User didn't affix Hardware properly Mounting mechanism failed 	The mounting mechanism should give the user feedback when the device is mounted correctly
	H1.4	Display turns off	Cannot view the status of the device	 LCD display failure LCD is improperly connected Arduino is drawing too much current 	
	H1.5	Threshold alert not displaying	User will not be notified	 Sensor failure Refer to H1.4 Threshold not set up by user in the Desktop App 	
Desktop Application	H2.1	App cant see hardware device	Refer to H1.1	• Refer to H1.1 • COM Port is being used by another application	

	H2.2	Data from the hardware device is lost	Test results will all be lost	 Application suddenly closes during test Hardware device disconnects from PC 	Store last test data into local storage
	H2.3	Cannot view live data	User will not be able to see data during test runs	Sensors are not connectedRefer to H1.1	
	H2.4	Data cannot be sent to database	Test results will all be lost and will not be viewable in the ana- lytics platform	 Database failure Connection failure PC not connected to the internet 	
Database	H3.1	Too much data is sent to the database	The database is getting overloaded with data causing it to crash or freeze	User submits too much data within a very short time period	Add a cool down timer after the user submits the data to the database so they wont be able to spam it con- stantly
Data Analytics Website	H4.1	User cannot login	User will not have access to dashboard	User does not have an accountUser's credentials don't match	
	H4.2	User cannot view the dash-board	Users cannot view KPIs of tests	• User does not have required permissions	
	H4.3	Data not being displayed		Database failureAuthentication error	

6 Safety and Security Requirements

7 Roadmap

All these requirements will try be implemented during the course of the capstone. The safety and security requirements are important for a complete and safe testing device. As this is the case most, but hopefully all of them will be implemented but if we can not implement all of them due to our time constraint the ones essential to the design will be implemented while the others that only improve user functionality will be added towards the end.