复旦大学计算机科学技术学院

2020~2021 学年第二学期期末考试试卷

A S	卷 [B券	□ C 卷
M	TET	DE	- C-W

课程名称:	计算理论基础	_ 课程代码:	COMP130023.01	*
开课院系:	计算机科学技术学院	_ 考试形式:	闭卷	
姓名:	学号:		k:	

提示:请同学们乘持诚实守信宗旨,谨守考试纪律,摒弃考试作弊。学生如有违反学校 考试纪律的行为,学校将按《复旦大学学生纪律处分条例》规定予以严肃处理。

题号	1	2	3	4	5	6	7	总分
得分							E.	

- 1、下述语言哪个是正规集,哪个不是正规集?如果是,请写出其正规表达式, 并构造接受语言的相应有穷自动机;如果不是,请证明你的结论。(20分)
- (1) {a"b" | n, m 为正整数且 n+m 可被 3 整除};
- (2) $\{a''wb''|n$ 为正整数, $n\ge 1$ 且 $w\in\Sigma''\}$ (其中给定 Σ 为字母表且 $a\notin\Sigma$ 与 $b\notin\Sigma$)。

- 2、下述语言哪个是上下文无关语言,哪个不是上下文无关语言?如果是,请写 出产生语言的 Chomsky 范式形式上下文无关文法,并以实现层次描述将文法转 为等价的 PDA:如果不是,请证明你的结论。(20分)
- (1) {xy | x, y ∈ {0, 1}°, 且x = y 但 x≠y}
- (2) {a"b" | n, m 为正整数,存在正整数1,有 n≠lm}。

3、试述 $\{<M_1, M_2> \mid M_1 与 M_2$ 是图灵机且 $L(M_1) \cup L(M_2) = \{0, 1\}^*\}$ 是否可判定,并证明你的结论。(10分)

4、给定字母表 $\Sigma=\{0,1\}$, $L=\{w\mid w$ 所包含的 0 的个数是 $\}$ 的个数的两倍 $\}$,请以实现层次描述给出判定该语言的图灵机。 $(10\, \%)$

5、支配集(Dominating Set): 给定无向图 G=(V,E), 称 $D\subseteq V$ 是图 G 的一个支配 集,当且仅当对任意 $v\in V$, 要么 $v\in D$, 要么 v 至少与 D 中的一个顾点相邻。请证明支配集问题是 NP 完全问题。(10 分)

- 6、给定图 G=(V, E)与正整数 k, 若存在一个函数 $c: V->\{1, ..., k\}$, 使得每条边 $\{u,v\}\in E$ 都有 $c(u)\ne c(v)$, 则称 G 是 k 可着色的。k 潜色问题即判定一个图是否是 k 可着色的。(20 分)
- (1) 请证明 3 着色问题可多项式时间归约至 4 着色问题。
- (2) 假设 P=NP, 说明存在一个多项式时间算法, 针对图 G 可计算 G 的 3 替色, 或者报告 G 是不可 3 替色。

- 7、说明下述问题属于 PSPACE 类。(10 分)
 - 输入:非确定图灵机 M和 l" (n 为正整数);

问题: M 在空输入下是否每一种可能计算都超过 n 步 (即超过 n 步 停机)?