What is Fourier Uniformity?

John D Mangual

I overheard that Fourier uniformity is a type of "size for sets" along with cardinality and dimension.¹ There was a recent big hoop-lah about the **capset bound**.

Any subset $A \subseteq \mathbb{F}_3^n$ with no arithmetic subset has size $< 2.756^n$

These problems clearly related to coding theory - the kind use to store movies and music in files and pass data over the internet². Or maybe information theory can learn from math

¹http://mathoverflow.net/a/43549/1358 " I have the vague feeling that ultimately, such notions of complexity should play as prominent a role in these sorts of combinatorial problems as existing notions of "size" for such sets, such as cardinality, dimension, or Fourier uniformity." - Terence Tao

²There is also result over \mathbb{Z}_4 that A w/o 3-term arithmetic sequence should have size $4^{0.926\,n}$.

https://quomodocumque.wordpress.com/2016/05/12/croot-lev-pach-on-ap-free-sets-in-z4zn/

Let $A \subset \mathbb{F}^n$

There is $V \leq \mathbb{F}^n$ with $\operatorname{codim} \ll \epsilon^{-1}$ and $x \in \mathbb{F}^n$ such that

$$A \approx x + V$$

The real definition of " \approx " is not so user-friendly. It says:

A is ϵ -uniform on the coset x+V if $\sup_{r\notin V^{\perp}}|(1_A\mu_{x+V})(r)|<\epsilon$

Google-searching³ has turns the phrases Fourier uniform or Fourier pseudorandom or possibly Fourier complexity.

I also wonder where these subset $A \subset \mathbb{F}^n$ come from? My guess is they are related to computer programs⁴.

³https://terrytao.wordpress.com/2010/04/08/254b-notes-2-roths-theorem/

⁴When I buy shoes on eBay, I have no predicting of the selection or availablity or the price. eBay has no prediction of where you are buying from - and share to ship it's products.

Hence, the title... Fourier Uniformity... on Subspaces

I have difficulty grasping the finer points of Fourier analysis over \mathbb{R} or even \mathbb{Z} . Finite field fourier anlysis was taught to me as one of the simplest cases⁵.

Green and Sanders write about Fourier analysis in several dimensions – in fact $n \to \infty$ dimensions.

Lastly, finite field's are not that simple, we could have \mathbb{F}_{17} or $\mathbb{F}_{48112959837082048697}$ but the cases I think Sanders has in mind like:

$$(\mathbb{Z}/2\mathbb{Z})^{10^8}, (\mathbb{Z}/3\mathbb{Z})^{10^7}, (\mathbb{Z}/4\mathbb{Z})^{10^6}$$

Instead of infinity, let n=5 be dimension of our space and p=101.

What could be a reasonable choice of A?

⁵What could be simpler then \mathbb{Z}_2 ?

Not genuinely random

I got away in school (and occasionally in the real world) by approximating an unpredictable situation by a uniformly random situation⁶

Now I am reading that unpredictible \neq random.

How much choice do I really have? Baskin-Robbins only has 31 flavors. If I don't want any of those... I am in trouble. Where does choice come from?

In real life there is a mix of choices we can make, and decisions made for us. How much choice did we have?

⁶I did! I should!

On to math⁷

Randomness extraction is an engineering term, and boolean functions are a highly theoretical way of looking at computer programs. Green-Sander's theorem basically says

any computer program over a data stream is essentially a line (or hyperplane)

How many tasks does a computer program has... it basically does **one** thing and hopefully it's pretty good.

⁷Theories of choice and fair division occupy thousands of pages in the Economics and Political theory literature, and we will ignore them all!

References

- (1) Fourier uniformity on subspaces Fourier Uniformity on Subspaces arXiv:1510.08739
- (2) What does $\operatorname{codim} V \ll_{\delta} 1$ mean if codimension can only be 0 or 1? http://math.stackexchange.com/q/1505341/4997