Universidade Federal da Fronteira Sul Curso de Ciência da Computação Disciplina: Organização de Computadores

Atividade 05: Pipeline

- 1) Considerando o programa do arquivo "fibonacci.asm" (link abaixo):
- a) Identifique as linhas que possuem conflitos de dados e descreva qual é a causa do conflito.
- Linha 7 RAW registrador t0 é lido e a escrita da linha 7 não está pronta

 Ocorre porque é utilizada a pseudo-instrução LA que faz AUIPC e ADDI em t0
- Linha 8 RAW registrador t0 é lido e a escrita da linha 7 não está pronta
- Linha 11 RAW registrador a7 é lido e a escrita da linha 10 não está pronta
- Linha 13 RAW registrador a7 é lido e a escrita da linha 12 não está pronta
- Linha 27 RAW registrador t3 é lido e a escrita da linha 26 não está pronta
- Linha 34 RAW registrador t4 é lido e a escrita da linha 32 não está pronta
- b) Identifique as linhas que possuem conflitos de controle e descreva a causa do conflito
- Linha 9 instrução JAL altera o valor de PC provocando o desvio para a linha 24
- Linha 27 instrução BGT pode alterar o valor de PC provocando o desvio para a linha 31
- Linha 29 instrução RET altera o valor de PC provocando o desvio para a linha definida no endereço do registrador ra
- Linha 31 instrução BGT pode alterar o valor de PC provocando o desvio para a linha 38
- Linha 36 instrução J altera o valor de PC provocando o desvio para a linha 31
- Linha 39 instrução RET altera o valor de PC provocando o desvio para a linha definida no endereço do registrador ra
- c) Reescreva e apresente a função Fibonacci inserindo NOPs para resolver os conflitos de dados e de controle, considerando que o pipeline não faz detecção e tratamento dos conflitos. PS: deve-se inserir a menor quantidade de NOPs que mantém o programa funcional

```
fibonacci:
    addi t1, zero, 1
    addi t2, zero, 1
    addi t3, zero, 2
```

```
nop
      nop
      bgt a0, t3, calcula
      nop
      nop
      add s0, zero, t1
      ret
     nop
      nop
calcula:
      beq t3, a0, terminou
      nop
      nop
      add t4, t1, t2
      add t1, zero, t2
      nop
      add t2, zero, t4
      addi t3, t3, 1
      j calcula
      nop
      nop
terminou:
      add a0, zero, t4
      ret
```

d) Apresente o diagrama de tempo do Pipeline para a execução dos 20 primeiros ciclos de clock da função Fibonacci. Considere que o Pipeline com detecção e tratamento de conflitos

	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10	t11	t12	t13	t14	t15	t16	t17	t18	t19	t20
addi t1, zero, 1 #fib1	IF	ID	EX	МЕМ	WB															
addi t2, zero, 1 #fib2		IF	ID	EX	мем	WB														
addi t3, zero, 2			IF	ID	EX	МЕМ	WB													
bgt a0, t3, calcula				IF	ID	EX	МЕМ	WB												
add s0, zero, t1					#	EX														
ret						#=														
beq t3, a0, terminou							IF	ID	EX	МЕМ	WB									
add t4, t1, t2 #soma								IF	ID	EX	МЕМ	WB								
add t1, zero, t2									IF	ID	EX	МЕМ	WB							
add t2, zero, t4										IF	ID	EX	МЕМ	WB						
addi t3, t3, 1											IF	ID	EX	MEM	WB					
j calcula												IF	ID	EX	МЕМ	WB				
add a0, zero, t4													HF.	#						
ret														#F						
beq t3, a0, terminou															IF	ID	EX	МЕМ	WB	
add t4, t1, t2 #soma																IF	ID	EX	MEM	WB
add t4, t1, t2 #soma																	IF	ID	EX	МЕМ

- e) Em relação a execução da função fibonacci original no modo 5-Stage Processor:
- e1) Quantos NOPs são inseridos pelo simulador durante a execução da função devido a conflitos de dados

0 NOPs

No modo 5-Stage Processor os conflitos são todos resolvidos com *forwarding* (para esta implementação da função Fibonacci)

e2) Quantos NOPs são inseridos pelo simulador durante a execução da função devido a conflitos de controle

16 NOPs

São inseridos NOPs quando realiza o FLUSH devido aos desvios, eliminando as instruções já carregadas no pipeline e inserindo NOPs. São inseridos:

- 2 NOPs na linha 27;
- 10 NOPs da linha 36 (2 a cada iteração, ocorrendo 5 vezes);
- 2 NOPs na linha 31;
- 2 NOPs na linha 39.

e3) Qual o total de ciclos de clock que a função leva para executar?

A função Fibonnaci entra no pipeline no ciclo de clock 6, e sua última instrução sai do pipeline no ciclo de clock 61, totalizando 55 ciclos de clock para ser completada.

e4) Quantas instruções são executadas?

A primeira instrução da função Fibonacci a ser completada ocupa a 4ª posição, e a última ocupa a 41ª posição. Portanto a função Fibonacci é executada em 37 instruções.

e5) Qual a CPI da função?

CPI = 1,486

CPI = número de ciclos de clock / número de instruções finalizadas = 55 / 37