WHAT IS CLAIMED IS:

A compound represented by the formula

$$\begin{array}{c|c}
X^1 & X^2 \\
R^1 & X^2 \\
R^3 & R^4 \\
Z^1 & Z^2 & Z^3
\end{array}$$

5 or a pharmaceutically acceptable salt or solvate thereof, wherein:

the dotted line represents an optional double bond;

 X^{1} is R^{5} -(C_{1} - C_{12})alkyl, R^{6} -(C_{3} - C_{12})cycloalkyl, R^{7} -aryl, R^{8} -

heteroaryl or R^{10} - $(C_3$ - $C_7)$ heterocycloalkyl;

 X^2 is -CHO, -CN, -NHC(=NR²⁶)NHR²⁶, -CH(=NOR²⁶), -NHOR²⁶,

10 R⁷-aryl, R⁷-aryl(C₁-C₆)alkyl, R⁷-aryl(C₁-C₆)alkenyl, R⁷-aryl(C₁-C₆)-alkynyl, -(CH₂) $_{v}$ OR¹³, -(CH₂) $_{v}$ COOR²⁷, -(CH₂) $_{v}$ CONR¹⁴R¹⁵, -(CH₂) $_{v}$ NR²¹R²² or -(CH₂) $_{v}$ NHC(O)R²¹, wherein v is zero, 1, 2 or 3 and wherein q is 1 to 3 and a is 1 or 2;

or X1 is

$$R^{12}$$
 $N \neq 0$
 R^{11}
 R^{12}
 $N \neq 0$
 R^{11}
 $N \neq 0$
 $N \neq 0$

15

$$\begin{array}{c|c}
R^{12} & N & R^{12} &$$

and X² is hydrogen;

or X^1 and X^2 together form a spiro group of the formula

$$R^{11}$$
 N R^{16} R^{11} N R^{12} $R^$

m is 1 or 2;

n is 1, 2 or 3, provided that when n is 1, one of R^{16} and R^{17} is $-C(O)R^{28}$;

p is 0 or 1;

5

10

15

20

25

30

35

Q is -CH₂-, -O-, -S-, -SO-, -SO₂- or -NR¹⁷-;

 R^1 , R^2 , R^3 and R^4 are independently selected from the group consisting of hydrogen and (C₁-C₆)alkyl, or (R^1 and R^4) or (R^2 and R^3) or (R^2 and R^4) together can form an alkylene bridge of 1 to 3 carbon atoms:

R⁵ is 1 to 3 substituents independently selected from the group consisting of H, R⁷-aryl, R⁶-(C₃-C₁₂)cycloalkyl, R⁸-heteroaryl, R¹⁰-(C₃-C₇)heterocycloalkyl, -NR¹⁹R²⁰, -OR¹³ and -S(O)₀₋₂R¹³;

R⁶ is 1 to 3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, R⁷-aryl, -NR¹⁹R²⁰, -OR¹³ and -SR¹³;

 R^7 is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C_1-C_6) alkyl, R^{25} -aryl, (C_3-C_{12}) cycloalkyl, -CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -SO₂R¹⁹, -SOR¹⁹, -SR¹⁹, -NO₂, -CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -COCF₃, -OCOR¹⁹, -OCO₂R¹⁹, -COOR¹⁹, -(C₁-C₆)alkyl-NHCOCC(CH₃)₃, -(C₁-C₆)alkyl-NHCOCF₃,

 $-(C_1-C_6)$ alkyl-NHSO₂- $-(C_1-C_6)$ alkyl, $-(C_1-C_6)$ alkyl-NHCONH- $-(C_1-C_6)$ -

alkyl or $-(CH_2)_f - N N - R^{19}$, wherein f is 0 to 6; or R^7 substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

 $\rm R^8$ is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C₁-C₆)alkyl, R²⁵-aryl, (C₃-C₁₂)cycloalkyl, -CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -NO₂, -CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -OCO₂R¹⁹ and -COOR¹⁹;

 R^9 is hydrogen, (C₁-C₆)alkyl, halo, -OR¹⁹, -NR¹⁹R²⁰, -NHCN, -SR¹⁹ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{10} is H, (C₁-C₆)alkyl, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

R¹¹ is independently selected from the group consisting of H, R⁵-(C₁-C₆)alkyl, R⁶-(C₃-C₁₂)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl,

 R^{12} is H, (C₁-C₆)alkyl, halo, -NO₂, -CF₃, -OCF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{13} is H, (C₁-C₆)alkyl, R^7 -aryl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰ or -(C₁-C₆)alkyl-SR¹⁹;

R¹⁴ and R¹⁵ are independently selected from the group

consisting of H, R^5 -(C_1 - C_6)alkyl, R^7 -aryl and wherein q and a are as defined above;

:

5

10

15

20

25

30

 R^{16} and R^{17} are independently selected from the group consisting of hydrogen, $R^5\text{-}(C_1\text{-}C_6)$ alkyl, $R^7\text{-}$ aryl, $(C_3\text{-}C_{12})$ cycloalkyl, $R^8\text{-}$ heteroaryl, $R^8\text{-}$ heteroaryl, $R^8\text{-}$ heteroaryl, $R^8\text{-}$ heterocycloalkyl, $R^8\text{-}$ and $R^8\text{-}$

 R^{19} and R^{20} are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, aryl and aryl(C₁-C₆)alkyl;

R²¹ and R²² are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl(C₁-C₆)alkyl, (C₃-C₇)heterocycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)-heterocycloalkyl, R⁷-aryl, R⁷-aryl(C₁-C₆)alkyl, R⁸-heteroaryl(C₁-C₁₂)alkyl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -(C₁-C₆)alkyl-SR¹⁹, -(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl-O-(C₁-C₆)alkyl and -(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl;

R¹⁸ is hydrogen or (C₁-C₆)alkyl;

 Z^1 is R⁵-(C₁-C₁₂)alkyl, R⁷-aryl, R⁸-heteroaryl, R⁶-(C₃-C₁₂)cycloalkyl, R¹⁰-(C₃-C₇)heterocycloalkyl, -CO₂(C₁-C₆)alkyl, CN or -C(O)NR¹⁹R²⁰; Z^2 is hydrogen or Z^1 ; Z^3 is hydrogen or (C₁-C₆)alkyl; or Z^1 , Z^2 and Z^3 , together with the carbon to which they are attached, form the group

$$R^{24} \xrightarrow{A} \xrightarrow{R^{23}} R^{24} \xrightarrow{A} \xrightarrow{Q} \xrightarrow{(CHR^{23})_{u}} R^{24} \xrightarrow{A} \xrightarrow{R^{24}} R^{23} \xrightarrow{R^{24}} \xrightarrow{R^{24}} A \xrightarrow{Q} \xrightarrow{R^{24}} A \xrightarrow{Q} \xrightarrow{R^{24}} A \xrightarrow{R^{4$$

R²⁴ ()_s

5

10

15

20

:

or $\[\] \] \] \] R^{23}$, wherein r is 0 to 3; w and u are each 0-3, provided that the sum of w and u is 1-3; c and d are independently 1 or 2; s is 1 to 5; and ring A is a fused R^7 -phenyl or R^8 -heteroaryl ring;

 R^{23} is 1 to 3 substituents independently selected from the group consisting of H, (C_1-C_6) alkyl, $-OR^{19}$, $-(C_1-C_6)$ alkyl- OR^{19} , $-NR^{19}R^{20}$ and $-(C_1-C_6)$ alkyl- $NR^{19}R^{20}$;

R²⁴ is 1 to 3 substituents independently selected from the group consisting of R²³, -CF₃, -OCF₃, NO₂ or halo, or R²⁴ substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

 R^{25} is 1-3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy and halo;

 $\rm R^{26}$ is independently selected from the group consisting of H, (C1-C6)alkyl and $\rm R^{25}\text{-}C_6H_4\text{-}CH_2\text{-};}$

 $R^{27} \text{ is H, } (C_1\text{-}C_6)\text{alkyl, } R^7\text{-}\text{aryl}(C_1\text{-}C_6)\text{alkyl, or } (C_3\text{-}C_{12})\text{cycloalkyl; } \\ R^{28} \text{ is } (C_1\text{-}C_6)\text{alkyl, } \text{-}(C_1\text{-}C_6)\text{alkyl}(C_3\text{-}C_{12})\text{cycloalkyl, } R^7\text{-}\text{aryl, } \\ R^7\text{-}\text{aryl-}(C_1\text{-}C_6)\text{alkyl, } R^8\text{-}\text{heteroaryl, } \text{-}(C_1\text{-}C_6)\text{alkyl-}\text{NR}^{19}\text{R}^{20}, \\ \text{-}(C_1\text{-}C_6)\text{alkyl-}\text{OR}^{19} \text{ or } \text{-}(C_1\text{-}C_6)\text{alkyl-}\text{SR}^{19}; \\ \end{cases}$

provided that when X1 is

or X1 and X2 together are

N-()m

and Z1 is R7-phenyl, Z2 is not hydrogen or (C1-C3)alkyl;

provided that when Z^1 , Z^2 and Z^3 , together with the carbon to which they are attached, form

$$Z^3$$
 R^{24}
 A
 CHR^{23}), and X^1 and X^2 together are

provided that when R² and R⁴ form an alkylene bridge, Z¹, Z² and Z³, together with the carbon to which they are attached, are not

5

10

15

- 2. A compound of claim 1 wherein Z^1 and Z^2 are each R^7 -aryl.
- 3. A compound of claim 2 wherein Z^1 and Z^2 are each R^7 -phenyl.
- 4. A compound of claim 3 wherein R^7 is selected from the group consisting of (C_1-C_6) alkyl and halo.
- 5. A compound of claim 1 wherein R¹, R², R³ and R⁴ are each hydrogen.
- 6. A compound of claim 1 wherein R¹ and R³ are each hydrogen and R² and R⁴ are an alkylene bridge of 2 or 3 carbons.
 - 7. A compound of claim 1 wherein X^1 is R^7 -aryl and and X^2 is OH or -NC(O) R^{28} .
- 25 8. A compound of claim 7 wherein X¹ is R⁷-phenyl.

and X² is

- 9. A compound of claim 1 wherein X¹ is hydrogen.
- 10. A compound of claim 9 wherein R¹² is hydrogen and R¹¹ is (C₁-C₆)alkyl, -(C₁-C₆) alkyl(C₃-C₁₂)cycloalkyl, -(C₁-C₆)alkyl-OR¹⁹ or -(C₁-C₆)alkyl-NR¹⁹R²⁰.
 - 11. A compound of claim 1 wherein $\,X^1\,$ and $\,X^2\,$ together form the spirocyclic group

10

- 12. A compound of claim 11 wherein m is 1, R^{17} is phenyl and R^{16} is $-(C_1-C_6)$ alkyl- OR^{19} or $-(C_1-C_6)$ alkyl- OR^{19} 0.
- 15 13. A compound selected from the group consisting of

14. A pharmaceutical composition comprising a therapeutically effective amount of compound of claim 1 in combination with a pharmaceutically acceptable carrier.

5

20

- 15. A pharmaceutical composition comprising: a therapeutically effective amount of a nociceptin receptor ORL-1 agonist; a therapeutically effective amount of a second agent selected from the
 10 group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H₃ inhibitors, β-adrenergic receptor agonists, xanthine derivatives, α-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, NK₁, NK₂ and NK₃ tachykinin receptor antagonists, and GABA_B agonists; and a pharmaceutically acceptable carrier.
 - 16. A method of treating pain, anxiety, asthma, depression or alcohol abuse comprising administering an effective amount of a compound of claim 1 to a mammal in need of such treatment.
 - 17. A method of treating cough comprising administering an effective amount of a nociceptin receptor ORL-1 agonist to a mammal in need of such treatment.
- The method of claim 17, wherein in addition to the nociceptin receptor ORL-1 agonist, an effective amount of a second agent for treating cough, allergy or asthma symptoms selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H₃ inhibitors, β-adrenergic receptor agonists, xanthine derivatives, α-adrenergic receptor agonists, mast cell stabilizers, antitussives, expectorants, NK₁, NK₂ and NK₃ tachykinin receptor antagonists, and GABA_B agonists is administered.