

FUNCTIONAL SAFETY COURSE #1

Awareness of Functional Safety

- Introduction to Safety
- What is Functional Safety
- Functional Safety Standards & history
- General approach for risk management
- Systematic & Random failures, types of faults
- > Risk management in the automotive
- Safety goals and safety integrity levels
- The ISO26262 standard

01. INTRODUCTION TO SAFETY **SECURE CONNECTIONS** Renault Group FOR A SMARTER WORLD

Examples of accidents

The Ford Pinto Case

JAL B - 787

Tesla Crash

Tesla's Fatal Crash

Examples of accidents

Examples of accidents

Road Traffic Accidents: The Causes

Critical Reasons	Number	%
Driver	2,046,000	94%
Vehicles	44,000	2%
Environment	52,000	2%
Unknown	47,000	2%
Total	2,189,000	100%

Data source: NMVCCS

Driver-Related Critical Reasons	Number	%
Recognition Error	845,000	41%
Decision Error	684,000	33%
Performance Error	210,000	11%
Non-performance Error (e.g. Sleep)	145,000	7%
Other	162,000	8%
Total	2,046,000	100%

Every year!

- ~1.3 M fatalities
- >50 M people seriously injured
- >\$3 trillion cost of road accidents
- >90% caused by human mistakes

We need to get the *Human Factor* out of the equation!

02. WHAT IS FUNCTIONAL SAFETY?

Renault Group

SECURE CONNECTIONS FOR A SMARTER WORLD

Awareness of Functional Safety

What is Functional Safety?

Functional safety is the absence of unreasonable risk due to hazards caused by malfunctioning behavior of electrical or electronic systems

What is Functional Safety?

Everyone involved in the development of a safety related project should be able to demonstrate freedom from negligence in case of product liability.

/!\ Not only the safety people involved in the project (manager, architect, assessor)

Legal Consequences

Do you have to fulfill ISO 26262 by law? NO

However, in a Court of Law after a car accident you could be asked:

Did you follow the state of the art? Are you free from negligence?

- Functional safety standards are considered by law the minimum level of "state of the art" and have to be fulfilled
- Freedom of negligence must also be adhered to

03.

FUNCTIONAL SAFETY STANDARDS & HISTORY

Renault Group

SECURE CONNECTIONS FOR A SMARTER WORLD

Functional Safety Standards: History

Functional Safety Standard Landscape

04.

GENERAL APPROACH FOR RISK MANAGEMENT

Renault Group

SECURE CONNECTIONS FOR A SMARTER WORLD

Functional Safety: A Bit Of Wording

Fault: abnormal condition or defect which may lead to a failure

Failure: inability of an element to perform a function

Safety Mechanism: detects failure and allow the system to react in accordance (i.e. bring the system in a safe state)

Safe State: it is the operating mode of the system, hardware, component without unreasonable level of risk

Fault tolerant time (FTTI): Is the maximum time a system may consume to detect and handle a fault, before resulting in a hazard

Hazard and Risk Analysis

Mitigation

SAFE System

Hazard and Risk Analysis

- Identify the potential malfunctions of the system (failure modes)
- Assess the effects of these malfunctions and their impact on Safety
- Identify the list of feared events
- Classify their criticality (based on standards)
- Define/Calculate the characteristics of the feared event (Safe state, FTTI)

- Define a Safety Architecture
- Identify mitigation measures
 - Detection measures
 - Control measures
- Implement the "Safety Mechanisms"

Mitigation

- Verify the implementation of the Safety mechanisms
- Verify the effectiveness of the Safety mechanisms

SAFE System

05.

RISK MANAGEMENT IN THE AUTOMOTIVE

Automotive example

Characteristics of A Safe System

Safety FUNCTIONAL SECURITY SAFETY Zero accidents by system hacks Zero accidents due to system VEHICLE failures SAFETY Zero accidents by human error (ADAS & SOTIF)

SOTIF: Safety of the intended functionality

Zero components failures
(robust product)

Renault Group

DEVICE

RELIABILITY

What is the level of injury?

How often is it likely to happen?

Can the hazard be controlled

Functional Safety - Integrity Level Evaluation

E = Exposure

Class	Description	
E0	Incredible	
E1	Very low probability	
E2	Low probability	
E3	Medium probability	
E4	High probability	

C = Controllability

Class	Description	
C0	Controllable in general	
C1	Simply controllable	
C2	Normally controllable	
C3	Difficult to control or uncontrollable	

S = Severity

Class	Description	
S0	No injuries	
S1	Light and moderate injuries	
S2	Severe and life-threatening injuries (survival probable)	
S3	Life-threatening injuries (survival uncertain), fatal injuries	

			C1 – SIMPLE	C2 – NORMAL	C3 – DIFFICULT
S1 LIGHT		E1 (very low)	QM	QM	QM
	LICUT	E2 (low)	QM	QM	QM
	LIGHT	E3 (medium)	QM	QM	A
		E4 (high)	QM	Α	В
S2 S	SEVERE	E1 (very low)	QM	QM	QM
		E2 (low)	QM	QM	A
		E3 (medium)	QM	A	В
		E4 (high)	A	В	С
0.0	FATAL	E1 (very low)	QM	QM	A
		E2 (low)	QM	Α	В
S3		E3 (medium)	A	В	С
		E4 (high)	В	С	D

(QM: "quality managed" → no requirements from standar<mark>d ap</mark>plied explicitly

Example of System and Corresponding Safety integrity Level

Application / System	ASIL
Wiper	Α
Computer Vision – mono / stereo camera	В
Radar	В
Lighting – low beam	В
Battery Management system	D
Chassis dynamic – suspension / damping	С
Gateway – ADAS controller - Fusion	D
Transmission – Dual Clutch Automatic Gearbox	D
Braking – Electro-mechanic	D
Airbag – (unwanted deployment)	D
Electric Power steering	D

Functional Safety - Risk Management

Functional Safety – Risk Management

<u>ANALYZE HAZARD & RISK (HARA)</u>
DEFINE <u>SAFETY GOALS (SG)</u>
EVALUATE <u>AUTOMOTIVE SAFETY INTEGRITY LEVEL (ASIL A, B, C or D)</u>

INDENTIFY FAULTS
IMPLEMENT MEASURES TO MITIGATE THE RISK

(in development)

- Process
- Traceability
- Best practices
- Lessons learned
- Verification & validation

DETECT HW RANDOM FAULTS

(in operation)

- Safety concept / architecture
- Embedded Safety mechanisms
- Quantitative & qualitative analysis
- Fault injection
- Documentation

06.

SYSTEMATIC & RANDOM FAILURES, TYPES OF FAULTS

Types of failures

Failure: inability of an element to perform a function

Systematic failure: it can be eliminated by applying a strong process, by reviews, by verifications and by testing

Random failure: can occur unpredictably during the lifetime of a system, hardware, integrated circuit component.

Systematic & Random Failures

For both HW and SW

- Process
- Safety management
- Best practices
- Lessons learned
- Verification & validation

Only for HW

- System safe state
- Safety architecture
- Quantitative & qualitative analysis
- Documentation

Functional Safety - Types of Faults

Single Point Fault

Latent Fault

Transient Fault

Group

Common Cause Fault

07.

ISO 26262 STANDARD

Renault Group

SECURE CONNECTIONS FOR A SMARTER WORLD

Functional Safety ISO 26262 - 2018 Overview

Part 1: Vocabulary

Part 2: Management of Functional Safety

Part 3: Concept Phase

Part 4: Product development at system level

Part 5: Product development at HW level

Part 6: Product development at SW level

Part 7: Production, operation, service and decommissioning

Part 8: Supporting processes

Part 9: Automotive Safety Integrity Level (ASIL) oriented and safety oriented analyses

Part 10: Guideline on ISO 26262

Part 11: Guideline on application of ISO26262 to semiconductors

Part 12: Adaptation of ISO26262 for motorcycles

Part 2: Safety Management

- Safety Lifecycle
- Safety Culture
- Competence Management
- Quality Management
- Tailoring

Part 3: Concept Phase

Car OEM / Tier1

- Item definition
- HARA
- FSC

10. Guidelines on ISO 26262

11. Guidelines on application of ISO 26262 to semiconductors

Part 4: Product Development at the System Level

Car OEM / Tier1

- Technical Safety Requirements
- System Architectural Design
- Technical Safety Concept

Part 5: Product development at the hardware level

- HW Safety Requirements
- HW Architecture Design
- HW Metrics
- HW Verification

NXP

Part 6: Product development at the software level

- SW Safety Requirements
- SW Architecture Design
- SW Verification

Part 7: Production, operation, service and decommissioning

- Change management
- Field monitoring

Part 8: Supporting Processes

- Requirements Management
- Change/Config/Doc Management
- Distributed Development
- SW Tools
- Verification & Validation

Part 9: Automotive safety integrity level (ASIL) – oriented and

safety oriented analysis

- FMEA, FMEDA, FTA, DFA
- ASIL decomposition

Part 11: Guidelines on application of ISO26262 to semiconductors

Conclusion

- Functional safety is part of the overall Safety
- Functional safety is about RISK assessment, prevention, protection
- Car OEMs set risk of HAZARD and SAFETY GOALS at System Level
- There are market driven reasons that mean that functional safety
 is a requirement for the future of EVERY safety related automotive development
- ISO 26262 process and ASIL definition provide the FRAMEWORK and EVIDENCES to demonstrate that safety objectives are met

SECURE CONNECTIONS FOR A SMARTER WORLD