Работу выполнил Бурнышев Павел, 676 гр. под руководством

Алескерова И. А.

Маршрут Х № 2

16 сентября 2017 г.,

Лабораторная работа № 3.2.5:

Вынужденные колебания в электрическом контуре

Цель работы:

Исследование вынужденных колебаний и процессов их установления.

В работе используются:

Генератор звуковой частоты, осциллограф, вольтметр, частотометр, емкость, индуктивность, магазин сопротивлений, универсальный мост.

Теория

В работе исследуются колебания, возникающие в электрическом колебательном контуре под воздействием внешней ЭДС, гармонически изменяющейся по времени.

Уравнение, описывающее внешние колебания

Рис. 1: Последовательный контур с внешней ЭДС

Сумма падений напряжения на элементах цепи равна ЭДС самоиндукции, сложенной с ЭДС источника:

$$RI + U_c = -L\frac{dI}{dt} + \varepsilon_0 \cos \Omega t, U_c = \frac{q}{C}.$$
 (1)

Продифференцируем уравнение по t:

$$-\varepsilon_0 \sin(\Omega t)\Omega = L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I.$$

Воспользуемся методом комплексных переменных, заменив $\sin(\Omega t)$ на $e^{i\Omega t}$, после чего получим уравнение в комплексной форме:

$$-\varepsilon_0 \frac{\Omega}{L} \sin \Omega t = \ddot{\mathbf{I}} + 2\gamma \mathbf{I} + \omega_0^2 I,$$

где
$$\gamma = \frac{R}{2L}, \omega_0^2 = \frac{1}{LC}.$$

Общим решением данного уравнения является фунцкия, состоящая из двух синусоид:

$$I = Be^{-\gamma t}\sin(\omega t - \theta) + \frac{\varepsilon_0 \Omega}{L\rho}\sin(\Omega t - \psi), \tag{2}$$

где $\tan \psi = \frac{2\gamma\Omega}{\omega_0^2 - \Omega^2},$ а константы B и θ определяются из начальных условий.

Первая синусоида — с частотой собственных колебаний контура ω и амплитудой, экспоненциально убывающей со временем. Вторая синусоида — с частотой внешнего источника Ω и постоянной амплитудой. Со временем собственные колебания затухают, и устанавливаются вынужденные колебания. Амплитуда этих колебаний становится максимальной при совпадении Ω — частоты внешнего сигнала с внутренней частотой контура ω_0 (это явление называется **резонансом**).

В случае резонанса амплитуда вынужденных колебаний достигает значения $I_{res} = \frac{\varepsilon_0}{2\gamma L} = \frac{\varepsilon_0}{R}$. Зависимость амплитуды установившихся колебаний от частоты внешнего напряжения называется **резонансной кривой**.

Резонансная кривая колебательного контура

Для исследования резонансной кривой тока в контуре можно снять зависимость напряжения на резисторе R_0 от частоты генератора при постоянной амплитуде выходного напряжения. Но импеданс контура будет включать в себя выходной импеданс генератора, который будет обязательно должен быть много меньше импеданса контура. Для устранения этой проблемы мы можем использовать схему, представленную на рисунке 2. В этой схеме синусоидальный сигнал с генератора подается на параллельный колебательный контур через разделительный конденсатор C_1 . Напряжение с емкости контура C поступает на осциллограф.

Рис. 2: Установка для исследования вынужденных колебаний

Зависимость амлитуды напряжения от частоты генератора совпадает с резонансной кривой для после-

довательного контура в случае если импеданс возбуждающей и измеряющей цепей будет много больше импеданса самого контура, то есть должно выполняться условие:

$$Z_{C_1} = \frac{1}{\Omega C_1} \gg |Z|_{\text{pes}} = \frac{Q}{\Omega C}, R_{os} \gg \frac{Q}{\Omega C}$$

Стоит заметить, что ширина резонансной кривой определяет добротность контура.

Процессы установления и затухания колебаний

Добротность контура также можно определить по скорости нарастания амплитуды вынужденных колебаний при резонансе или по скорости затухания свободных. При подаче на контур синусоид конечной длины можно наблюдать установление и затухание колебаний в контуре. Логарифмический декремент затухания при этом будет находиться по следующей формуле:

$$\Theta = \frac{1}{n} \ln \frac{U_0 - U_k}{U_0 - U_{k+n}} \tag{3}$$

Рис. 3: Нарастание и затухание вынужденных колебаний

Энергетический смысл добротности – отношение запасенной в контуре энергии W к потерям за период ΔW_T , умноженное на 2Π . Запасенная энергия находится в индуктивности L и емкости C, потери связаны с резистором R, тогда $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$. Отсюда получаем:

$$Q = \frac{\omega_0}{2\gamma} = \frac{\Pi}{\Theta} \tag{4}$$

Экспериментальная установка

Схема установки для исследования вынужденных колебаний приведена на рисунке 4. Колебательный контур состоит из емкости C=0.1 мкф, индуктивности L=100 м Γ н и переходного сопротивления R.

Рис. 4: Схема экспериментальной установки

Идеальная схема, на рисунке 4 не соответствует действительности, так как элементы цепи имеют паразитные сопротивления и емкости. Измерим все величины с помощью RLC – моста:

$$R=103\pm 1{
m Om}; C=0.099\pm 0.002{
m mk}$$
 Ф; $L=99.97\pm 2{
m m}$ Гн; $R_L=31.7\pm 1{
m Om}.$

Задания

Подготовка приборов к работе

Соберем схему согласно рисунку 4, подключив контур к клеммам и настроив осциллограф и генератор сигнала согласно техническим описаниям.

Исследование резонансных кривых

1. Рассчитаем резонансную частоту контура:

$$\begin{split} \nu_0 &= \frac{1}{2\pi\sqrt{LC}} = 1.568\Gamma\text{ц} \approx 1.57\Gamma\text{ц} \\ \delta(C) &= 0.02C; \delta(L) = 0.02L \Rightarrow \delta\nu = \nu_0\sqrt{(\frac{\delta C}{C})^2 + (\frac{\delta L}{L})^2} \simeq 50\Gamma\text{ц}. \end{split}$$

Получаем, что $\nu_0 \in (1.57 \pm 0.05)$ к Γ ц.

2. Меняя частоту генератора в обе стороны от резонансной, снимем зависимость показаний вольтметра U от показаний частотометра ν . Расчет добротности ведется на уровне 0.7 от резонансной. Снимаем

по ≈ 30 значений для сопротивления R=0 ом (за 1 V принимаем 30 делений), аналогично для R=100 ом(за 100 mV принимаем 10 делений). Резонанс осуществился при показаниях вольтметра в 13.5 делений и частоте 1568 Γ ц.

Таблицы с данными, по которым был построен график, располагаются в приложении: 1 таблица—для сопротивления R=0, вторая — для R=100 ом.

Рис. 5: Резонансные кривые для R=0 ом(синий цвет) и R=100 ом(красный цвет)

3. Определим добротность по формуле $Q=\frac{w_0}{2\Delta\Omega}$, расчет добротности ведется на уровне 0.7 от резонансной амплитуды. Погрешность определится формулой: $\delta Q=Q\sqrt{(\frac{\delta\omega_0}{\omega_0})^2+(\frac{\delta\Omega}{\Omega})^2}$. Получим результаты:

$$Q_{R_0} = 24.6 \pm 1.4; Q_{R_{100}} = 10.3 \pm 1.8$$

Процессы установления и затухания колебаний

1. Для расчета добротности по скорости нарастания амплитуды измерений воспользуемся графиком. Составим две таблицы: для возрастания амплитуды и убывания:

Таблица 1: Зависимость добротности от скорости нарастания колебаний.

R, om	0	0	0	100	100	100
U_n , MB	82	202	216	45	74	91
U_{n+k} , MB	167	245	331	67	86	94
k	3	2	1	3	2	1
Q	28.8	24.1	14.2	22.2	13.7	8.9

Таблица 2: Зависимость добротности от скорости убывания колебаний.

R, om	0	0	0	100	100	100
U_n , мВ	315	230	113	83	59	45
U_{n+k} , MB	328	261	202	94	79	53
k	1	2	3	3	2	1
Q	28.3	28.8	24.0	10.9	9.7	12.1

$$\sigma Q = \sqrt{\sigma_{syst}^2 + \sigma_{sl}}$$

• R = 0, нарастание:

$$\sigma_{syst} = 4.1, \sigma sl = 3.9 \Rightarrow Q \in (28.8 \pm 5.7)$$

• R = 100, нарастание:

$$\sigma_{syst} = 1.8, \sigma sl = 2.0 \Rightarrow Q \in (10.1 \pm 0.3)$$

• R=0, затухание:

$$\sigma_{syst} = 3.2, \sigma sl = 1.3 \Rightarrow Q \in (27.3 \pm 3.4)$$

• R = 100, затухание:

$$\sigma_{syst} = 1.9, \sigma sl = 0.8 \Rightarrow Q \in (9.5 \pm 0.4)$$

2. Возможно найти теоретическое значение добротности с помощью параметров контура : L, C, R, измеренных с помощью RLC-моста:

$$R=103\pm 1{
m Om}; C=0.099\pm 0.002{
m mk\Phi}; L=99.97\pm 2{
m mFh}; R_L=31.7\pm 1{
m Om}$$

Воспользуемся формулой (4):

$$Q = \frac{1}{R + R_L} \sqrt{\frac{L}{C}}$$

С погрешностью, равной

$$\delta Q = Q\sqrt{\frac{\delta(R+R_L)}{R+R_L})^2 + (\frac{\delta L}{L})^2 + (\frac{\delta C}{C})^2}$$

• R = 0: $Q = 26.8 \pm 1.1$

•
$$R = 100$$
: $Q = 10.1 \pm 0.5$

Вывод

При исполнении этой лабораторной работы были исследованы резонансные кривые, способы нахождения добротности контура, установлена связь между добротностью и скоростью нарастания или убывания амплитуды колебаний.

Приложение

Таблица 3: $U(\nu), R = 0$ ом, $U_0 = 13.5$ дел, $\nu_0 = 1568$ к Γ ц

10	олица 3: $U(\nu)$, $R = 0$ ом, $U_0 = 13.5$ дел, $\nu_0 = 1568$ к						
	U, дел	ν , Гц	$\frac{\nu}{\nu_0}$	$\frac{U}{U_0}$	$\delta(\frac{\nu}{\nu_0})$	$\delta(\frac{U}{U_0})$	
Ī	13.5	1586	1.00	1.00	0.04	0.01	
	12	1577	0.99	0.89	0.04	0.01	
	11	1581	1.00	0.81	0.04	0.01	
	10	1585	1.00	0.74	0.04	0.01	
	9	1590	1.00	0.67	0.04	0.01	
	8	1595	1.01	0.59	0.04	0.01	
	7	1601	1.01	0.52	0.04	0.02	
	6	1609	1.01	0.44	0.04	0.02	
	5	1621	1.02	0.37	0.04	0.02	
	4	1637	1.03	0.30	0.04	0.03	
	3	1669	1.05	0.22	0.04	0.03	
	2	1729	1.09	0.15	0.04	0.05	
	13	1572	0.99	0.96	0.04	0.01	
	12.5	1575	0.99	0.93	0.04	0.01	
	11.5	1579	1.00	0.85	0.04	0.01	
	10.5	1584	1.00	0.78	0.04	0.01	
	9.5	1587	1.00	0.70	0.04	0.01	
	8.5	1592	1.00	0.63	0.04	0.01	
	7.5	1598	1.01	0.56	0.04	0.02	
	13.5	1568	0.99	1.00	0.04	0.01	
	12	1557	0.98	0.89	0.04	0.01	
	11	1553	0.98	0.81	0.04	0.01	
	10	1549	0.98	0.74	0.04	0.01	
	9	1545	0.97	0.67	0.04	0.01	
	8	1540	0.97	0.59	0.03	0.01	
	7	1535	0.97	0.52	0.03	0.02	
	6	1530	0.96	0.44	0.03	0.02	
	5	1520	0.96	0.37	0.03	0.02	
	4	1504	0.95	0.30	0.03	0.03	
	3	1482	0.93	0.22	0.03	0.03	
	2	1436	0.91	0.15	0.03	0.05	
	1	1292	0.81	0.07	0.03	0.10	
	13	1561	0.98	0.96	0.04	0.01	
	12.5	1559	0.98	0.93	0.04	0.01	
	11.5	1555	0.98	0.85	0.04	0.01	
	10.5	1551	0.98	0.78	0.04	0.01	
	9.5	1547	0.98	0.70	0.04	0.01	
	8.5	1540	0.97	0.63	0.03	0.01	
	7.5	1530	0.96	0.56	0.03	0.02	

Таблица 4: $U(\nu), R=100$ ом, $U_0=13.5$ дел, $\nu_0=1568$ к Γ ц

J.	ица 4. С	$(\nu), n -$		$C_0 - 1$	голодел,	$\nu_0 - 1500$
	U, дел	ν, Гц	$\frac{\nu}{\nu_0}$	$\frac{U}{U_0}$	$\delta(\frac{\nu}{\nu_0})$	$\delta(\frac{U}{U_0})$
	8.6	1568	1.00	0.99	0.01	0.01
	8.2	1604	1.02	0.94	0.01	0.01
	8	1619	1.03	0.92	0.01	0.01
	7.6	1632	1.04	0.87	0.01	0.01
	7.2	1646	1.05	0.83	0.01	0.01
	6.8	1661	1.06	0.78	0.01	0.01
	6.4	1674	1.07	0.74	0.01	0.01
	6	1688	1.08	0.69	0.01	0.01
	5.6	1706	1.09	0.64	0.01	0.01
	5.2	1724	1.10	0.60	0.01	0.01
	4.8	1747	1.11	0.55	0.01	0.01
	4.4	1775	1.13	0.51	0.01	0.01
	4	1805	1.15	0.46	0.01	0.01
	3.6	1849	1.18	0.41	0.01	0.01
	3.2	1901	1.21	0.37	0.01	0.01
	2.8	1914	1.22	0.32	0.01	0.01
	8.6	1566	1.00	0.99	0.01	0.01
	8.2	1541	0.98	0.94	0.01	0.01
	8	1535	0.98	0.92	0.01	0.01
	7.6	1522	0.97	0.87	0.01	0.01
	7.2	1509	0.96	0.83	0.01	0.01
	6.8	1499	0.96	0.78	0.01	0.01
	6.4	1490	0.95	0.74	0.01	0.01
	6	1478	0.94	0.69	0.01	0.01
	5.6	1467	0.94	0.64	0.01	0.01
	5.2	1455	0.93	0.60	0.01	0.01
	4.8	1443	0.92	0.55	0.01	0.01
	4.4	1428	0.91	0.51	0.01	0.01
	4	1412	0.90	0.46	0.01	0.01
	3.6	1393	0.89	0.41	0.01	0.01
	3.2	1371	0.87	0.37	0.01	0.01
	2.8	1344	0.86	0.32	0.01	0.01