Results

Notes:

- Some of this is already in or was based on the blogpost/interface code. Hit show to see code. I switch between R and Python - Some of this won't make it to the paper. You can probably skip preprocessing unless you want to check certain things, example: did we make sure to remove judgments based on X condition - If you want to clarify/comment anything do so at https://github.com/sm11197/sm11197.github.io/blob/main/debate-0923.Rmd) or message me elsewhere

Preprocessing

Importing, filtering, and adding columns

We have 3 sets of data from the interface:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import re
pd.options.mode.chained_assignment = None # default='warn'
# Load summaries that can be downloaded from the interface
data_path = "/Users/bila/git/for-debate/debate/save/official/summaries/"
debates = pd.read_csv(data_path + "debates.csv", keep_default_na=True)
sessions = pd.read_csv(data_path + "sessions.csv", keep_default_na=True)
turns = pd.read csv(data path + "turns.csv", keep default na=True)
print(f' {debates.shape} - Debates');
   (632, 29) - Debates
print(f'{sessions.shape} - Sessions, which has multiple rows (of participants) for each debate');
## (1863, 46) - Sessions, which has multiple rows (of participants) for each debate
print(f'{turns.shape} - and Turns, which has multiple rows (of participant turns) for each debate')
## (6220, 16) - and Turns, which has multiple rows (of participant turns) for each debate
# Only include debates within a given period
debates["Start time"] = pd.to_datetime(debates["Start time"], unit="ms")
debates["End time"] = pd.to datetime(debates["End time"], unit="ms")
debates["Last modified time"] = pd.to_datetime(debates["Last modified time"], unit="ms")
debates = debates[
```

```
(debates["Start time"] > pd.to_datetime("10/02/23", format="%d/%m/%y")) &
    (debates["End time"] < pd.to_datetime("01/09/23", format="%d/%m/%y"))
### for filtering to when we had AI debates: 16/07/23
# Filter sessions & turns to only the selected debates
sessions = sessions.merge(debates[["Room name"]], how="inner", on="Room name")
turns = turns.merge(debates[["Room name"]], how="inner", on="Room name")
print(f'We have {len(debates)} debates when filtering out the initial pilots last fall')
## We have 583 debates when filtering out the initial pilots last fall
# Secondary analysis: Question Difficulty
# Create new columns with bin labels
debates['Untimed annotator context bins'] = pd.cut(debates['Untimed annotator context'].round(), bins=[
debates['Speed annotator accuracy bins'] = pd.cut(debates['Speed annotator accuracy'], bins=[-0.999, 0.
## respectively, those speed annotator accuracies probably mean 0 right, 1 right, 2 right
debates['Final_Accuracy'] = debates['Final probability correct'] > 0.5
print(f'Average accuracy per context required by question:\n{debates.groupby("Untimed annotator context
## Average accuracy per context required by question:
##
                                   Proportion_True Total_Count
## Untimed annotator context bins
## 1
                                          0.781250
                                                             64
## 2
                                                             246
                                          0.711382
## 3
                                          0.702857
                                                             175
## 4
                                          0.632653
                                                             98
##
## <string>:2: FutureWarning: The default of observed=False is deprecated and will be changed to True in
print(f'Average accuracy per difficulty based on speed annotator accuracy:\n{debates.groupby("Speed ann
## Average accuracy per difficulty based on speed annotator accuracy:
                                  Proportion_True Total_Count
## Speed annotator accuracy bins
## 0
                                         0.728682
                                                           129
## 0.2
                                         0.697509
                                                           281
                                         0.694118
                                                           170
## 0.4
## Hm, this seems less likely to be a good indicator of question difficulty
## <string>:2: FutureWarning: The default of observed=False is deprecated and will be changed to True in
# Determine settings for each row
def setups(row):
    if 'GPT-4' in (row['Honest debater'], row['Dishonest debater']):
        if row['Is single debater']:
            return "AI Consultancy " + ("Honest" if row['Has honest debater'] else "Dishonest")
        else:
           return "AI Debate"
```

```
else:
    if row['Is single debater']:
        return "Human Consultancy " + ("Honest" if row['Has honest debater'] else "Dishonest")
    else:
        return "Human Debate"

debates['Setting'] = debates.apply(setups, axis=1)
# Agregate settings - the 4 that we normally talk about:
debates['Final_Setting'] = debates['Setting'].str.replace(' Honest', '').str.replace(' Dishonest', '')
```

Merging, filtering for judgments

```
# Merge sessions with debates, so we have each judge's final probability correct and the debate's metad
source = sessions.merge(
        debates[["Room name", "Debater A", "Debater B", "Honest debater", "Dishonest debater",
                 "Is single debater", 'Has honest debater',
                 "Final_Setting", "Setting",
                 "Question", "Article ID",
                 "Speed annotator accuracy bins", "Untimed annotator context bins",
                 "Speed annotator accuracy", "Untimed annotator context", "Is offline",
                 'End time', 'Last modified time']],
       how="left",
        on="Room name",
print(f'After merging debates with sessions, we have the following participant counts for those debates
## After merging debates with sessions, we have the following participant counts for those debates:
## Role
                    549
## Judge
## Debater B
                    487
## Debater A
                    458
## Offline Judge
                    223
## Name: count, dtype: int64
#[source['Is over'] == True] to check for completed online/offline debates
# Filter out incomplete judgments
judgments = source[source['Final probability correct'].notnull()]
print(f'After filtering to judges that have finalized their judgment, we have the following judgments p
## After filtering to judges that have finalized their judgment, we have the following judgments per ro
## Role
## Judge
                    508
## Offline Judge
                    214
## Name: count, dtype: int64
## for a total of 722 judgments.
```

print(f'Of those judgments, we have this much for each setting (not consolidating honest - dishonest co.

```
## Of those judgments, we have this much for each setting (not consolidating honest - dishonest consult
## Setting
## Human Debate
                                  413
## AI Debate
                                   92
## Human Consultancy Dishonest
                                   68
## AI Consultancy Honest
                                   56
## Human Consultancy Honest
                                   53
## AI Consultancy Dishonest
                                   40
## Name: count, dtype: int64
judgments['Final_Accuracy'] = judgments['Final probability correct'] > 0.5
print(f'Of those judgments, we have this much for each setting (aggregated):\n{judgments.groupby("Final
## Of those judgments, we have this much for each setting (aggregated):
                      Proportion_True Total_Count
## Final_Setting
## AI Consultancy
                             0.802083
## AI Debate
                             0.782609
                                                92
## Human Consultancy
                             0.719008
                                               121
## Human Debate
                             0.876513
                                               413
# Remove judges who see the story more than once
judgments['base_room_name'] = judgments['Room name'].str.extract('(.*)\d+$', expand=False).fillna(judgm
judgments = judgments.sort_values(by=['base_room_name', 'End time']).groupby(['Participant', 'base_room_
print(f'1. We then filter to judgments where the judge has only seen a story once, and now we have this
## 1. We then filter to judgments where the judge has only seen a story once, and now we have this much
##
                      Proportion_True Total_Count
## Final Setting
## AI Consultancy
                             0.802083
                                                96
## AI Debate
                             0.782609
                                                92
## Human Consultancy
                             0.719008
                                               121
## Human Debate
                             0.867374
                                               377
# Filter to online judges only
judgments_online = judgments[judgments["Role"] == "Judge"]
print(f'2. We\'ll make a copy of the online judgments only leaving us with the following judgments:\n{j
## 2. We'll make a copy of the online judgments only leaving us with the following judgments:
                      Proportion_True Total_Count
## Final_Setting
## AI Consultancy
                             0.797872
                                                94
## AI Debate
                             0.791209
                                                91
## Human Consultancy
                             0.709091
                                               110
## Human Debate
                             0.861538
                                               195
judgments_online = judgments_online[judgments_online['Untimed annotator context bins'].isin(['2', '3',
```

print(f'3. We then filter to judgments which require more than a sentence or two, and now we have this

```
## 3. We then filter to judgments which require more than a sentence or two, and now we have this much
##
                      Proportion_True Total_Count
## Final Setting
## AI Consultancy
                              0.806452
                                                  93
## AI Debate
                              0.781609
                                                  87
## Human Consultancy
                              0.700935
                                                 107
## Human Debate
                              0.838710
                                                 155
## This is where debate accuracy drops
pd.set_option('display.max_columns', None)
total_counts_for_setting = judgments_online.groupby('Final_Setting').size()
result = judgments_online.groupby(["Final_Setting", "Untimed annotator context bins"]).agg(
    Proportion_True=pd.NamedAgg(column='Final_Accuracy', aggfunc=lambda x: x.mean()),
    Context_Count=pd.NamedAgg(column='Final_Accuracy', aggfunc='size'),
    Proportion_All_Context=pd.NamedAgg(column='Final_Setting', aggfunc=lambda x: len(x) / total_counts_
)
## <string>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in
print(f'Are the difficult questions equally enough distributed amongst settings?:\n{result}')
## Are the difficult questions equally enough distributed amongst settings?:
                                                       Proportion_True \
## Final_Setting
                     Untimed annotator context bins
## AI Consultancy
                      1
                                                                   NaN
##
                      2
                                                              0.823529
                      3
##
                                                              0.826087
##
                      4
                                                              0.736842
## AI Debate
                      1
                                                                   NaN
##
                      2
                                                              0.777778
##
                      3
                                                              0.772727
##
                      4
                                                              0.800000
## Human Consultancy 1
                                                                   NaN
                                                              0.634146
##
                      2
##
                                                              0.708333
##
                      4
                                                              0.833333
## Human Debate
                     1
                                                                   NaN
##
                      2
                                                              0.890411
##
                      3
                                                              0.816667
##
                                                              0.727273
##
                                                       Context_Count \
##
## Final_Setting
                     Untimed annotator context bins
## AI Consultancy
                     1
                                                                   0
##
                      2
                                                                  51
##
                      3
                                                                  23
                      4
                                                                  19
##
## AI Debate
                                                                   0
                      1
                                                                  45
##
                      2
##
                      3
                                                                  22
                                                                  20
##
## Human Consultancy 1
                                                                   0
```

41

2

##

```
## Human Debate
                                                                        0
                                                                       73
##
                       2
##
                       3
                                                                       60
                       4
                                                                       22
##
##
##
                                                           Proportion_All_Context
## Final_Setting
                       Untimed annotator context bins
## AI Consultancy
                       1
                                                                                NaN
##
                       2
                                                                          0.548387
                       3
                                                                          0.247312
##
##
                       4
                                                                          0.204301
## AI Debate
                       1
                                                                                NaN
                       2
                                                                          0.517241
##
##
                       3
                                                                          0.252874
                                                                          0.229885
##
                       4
## Human Consultancy 1
                                                                                NaN
                                                                          0.383178
##
                       2
##
                       3
                                                                          0.448598
##
                       4
                                                                          0.168224
## Human Debate
                       1
                                                                                NaN
##
                                                                          0.470968
                       2
                       3
##
                                                                          0.387097
##
                       4
                                                                          0.141935
pd.reset_option('display.max_columns')
```

48

18

So question difficulty isn't perfectly balanced... but consultancies have a different relationship with question difficulty anyway? **need a second opinion**

Trying to balance the data

1. Balancing honest & dishonest consultancies

3

4

2. Question weights

##

##

Balancing honest & dishonest consultancies

```
def balance_consultancies(df, sample_setting, random_state):
    """
    Sample distinct questions, then use common questions, ensure equal counts.
    """
    consult_df = df[df['Setting'].str.contains(sample_setting, na=False)]
    honest_df = consult_df[consult_df['Setting'].str.contains('Honest')]
    dishonest_df = consult_df[consult_df['Setting'].str.contains('Dishonest')]
    sample_column_name = f'{sample_setting} Sample'
    df[sample_column_name] = False
    # Separate into distinct and common questions
    # First, let's extract the combinations of 'Article ID' and 'Question' for both honest and dishonest honest_combinations = set(honest_df[['Article ID', 'Question']].itertuples(index=False, name=None))
    dishonest_combinations = set(dishonest_df[['Article ID', 'Question']].itertuples(index=False, name=None))
```

```
# Identifying the common and distinct combinations
common_combinations = honest_combinations.intersection(dishonest_combinations)
distinct_honest_combinations = honest_combinations - common_combinations
distinct_dishonest_combinations = dishonest_combinations - common_combinations
# Filtering the original dataframes based on these combinations to get distinct and common datafram
common_honest_df = honest_df[honest_df.set_index(['Article ID', 'Question']).index.isin(common_comb
common_dishonest_df = dishonest_df[dishonest_df.set_index(['Article ID', 'Question']).index.isin(common_dishonest_df = dishonest_df[dishonest_df.set_index(['Article ID', 'Question']).index.isin(common_dishonest_df.set_index(['Article ID', 'Question']).index.isin(['Article ID', 'Question']
distinct_honest_df = honest_df[honest_df.set_index(['Article ID', 'Question']).index.isin(distinct_
distinct_dishonest_df = dishonest_df[dishonest_df.set_index(['Article ID', 'Question']).index.isin(
def extract_correct_index(sample_df):
      if isinstance(sample_df.index, pd.MultiIndex):
           return sample_df.index.get_level_values(2)
      else:
           return sample_df.index
# Get distinct consultancies
sample_size = min(len(distinct_honest_df.groupby(['Question', 'Article ID'])), len(distinct_dishone
honest_sample = distinct_honest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sample(1, :
dishonest_sample = distinct_dishonest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.samp
df.loc[extract_correct_index(honest_sample), sample_column_name] = True
df.loc[extract_correct_index(dishonest_sample), sample_column_name] = True
# Drop sampled questions from distinct dataframes
honest_remove_distinct = set(honest_sample[['Article ID', 'Question']].itertuples(index=False, name
dishonest_remove_distinct = set(dishonest_sample[['Article ID', 'Question']].itertuples(index=False
distinct_honest_df = distinct_honest_df[~distinct_honest_df.set_index(['Article ID', 'Question']).id
distinct_dishonest_df = distinct_dishonest_df.set_index(['Article ID', 'Ques'
honest_distinct_remaining = len(distinct_honest_df.groupby(['Question', 'Article ID']))
dishonest_distinct_remaining = len(distinct_dishonest_df.groupby(['Question', 'Article ID']))
# Sample from remaining distinct questions, using common questions for the other (bigger count) set
if honest_distinct_remaining > dishonest_distinct_remaining:
      sample_size = min(honest_distinct_remaining, len(common_dishonest_df.groupby(['Question', 'Arti
     honest_sample = distinct_honest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sample
      dishonest_sample = common_dishonest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sa
      df.loc[extract_correct_index(dishonest_sample), sample_column_name] = True
      df.loc[extract_correct_index(honest_sample), sample_column_name] = True
      dishonest_remove_common = set(dishonest_sample[['Article ID', 'Question']].itertuples(index=Fal
      common_dishonest_df = common_dishonest_df.set_index(['Article ID', 'Questi
      common_honest_df = common_honest_df[~common_honest_df.set_index(['Article ID', 'Question']).ind
else:
      sample_size = min(dishonest_distinct_remaining, len(common_honest_df.groupby(['Question', 'Arti
     honest_sample = common_honest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sample(1
      dishonest_sample = distinct_dishonest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.
      df.loc[extract_correct_index(dishonest_sample), sample_column_name] = True
      df.loc[extract_correct_index(honest_sample), sample_column_name] = True
     honest_remove_common = set(honest_sample[['Article ID', 'Question']].itertuples(index=False, na
      common_dishonest_df = common_dishonest_df(~common_dishonest_df.set_index(['Article ID', 'Questi
      common_honest_df = common_honest_df[~common_honest_df.set_index(['Article ID', 'Question']).ind
# Remaining independent samples from common_honest_df
if len(common_honest_df) or len(common_dishonest_df) > 0:
      sample_size = min(len(common_honest_df.groupby(['Question', 'Article ID'])), len(common_dishone
     honest_sample = common_honest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sample(1
      dishonest_sample = common_dishonest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sa
      df.loc[extract_correct_index(honest_sample), sample_column_name] = True
      df.loc[extract_correct_index(dishonest_sample), sample_column_name] = True
```

```
return df
# Run the sampling to balance the consultancies
judgments_online = balance_consultancies(judgments_online, 'Human Consultancy', random_state = 123)
judgments_online = balance_consultancies(judgments_online, 'AI Consultancy', random_state = 123)
# Create one sample column for easier indexing, create mask
#sample_columns = [col for col in judgments_online.columns if 'Sample' in col]
#judgments_online['Sample'] = judgments_online[sample_columns].any(axis=1)
#consultancy_balanced = (~judgments_online['Setting'].str.contains('Consultancy', case=False, na=False)
#print(f'Accuracy after balancing consultancies:\n{judgments_online[consultancy_balanced].groupby(["Fin
#from statsmodels.stats.proportion import proportions_ztest
def run_experiment(judgments_online):
    judgments_online['Sample'] = False
    judgments_online = balance_consultancies(judgments_online, 'Human Consultancy')
    judgments_online = balance_consultancies(judgments_online, 'AI Consultancy')
    sample_columns = [col for col in judgments_online.columns if 'Sample' in col]
    judgments_online['Sample'] = judgments_online[sample_columns].any(axis=1)
    consultancy_balanced = (~judgments_online['Setting'].str.contains('Consultancy', case=False, na=Fal
   result = judgments_online[consultancy_balanced].groupby(["Final_Setting"])["Final_Accuracy"].agg(Pr
   return result
# Number of iterations
\#num\_iterations = 1000
# Store results from each iteration
\#results = []
\#p\_vals = []
# Run the experiment multiple times
#for _ in range(num_iterations):
    result = run_experiment(judgments_online.copy()) # Use a copy to ensure original data remains unc
#
    results.append(result)
    # Run the proportions test
#
#
    group_human_debate = result.loc['Human Debate']
    group_human_consultancy = result.loc['Human Consultancy']
     count = [group_human_debate.Proportion_True * group_human_debate.Total_Count, group_human_consulta
#
#
    nobs = [group\_human\_debate.Total\_Count, group\_human\_consultancy.Total\_Count]
     z_stat, p_val = proportions_ztest(count, nobs)
#
     p\_vals.append(p\_val)
# Calculate the average of the results
#average_result = pd.concat(results).groupby(level=0).mean()
\#print(f' \setminus nAverage\ accuracy\ after\ \{num\_iterations\}\ iterations: \setminus n\{average\_result\}')
#print(f'pval mean: {np.mean(p_vals)}')
```

Balance debates

```
def balance_debates(df, sample_setting, random_state):
    debates_df = df[df['Setting'].str.contains(sample_setting, na=False)]
    sample_column_name = f'{sample_setting} Sample'
    df[sample column name] = False
    def extract_correct_index(sample_df):
        if isinstance(sample_df.index, pd.MultiIndex):
            return sample_df.index.get_level_values(2)
        else:
            return sample_df.index
    # Get distinct consultancies
    sample_size = len(debates_df.groupby(['Question', 'Article ID']))
    sample_debates = debates_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sample(1, random_
    df.loc[extract_correct_index(sample_debates), sample_column_name] = True
    return df
# Run the sampling to balance the consultancies
judgments_online = balance_debates(judgments_online, 'Human Debate', random_state = 123)
judgments_online = balance_debates(judgments_online, 'AI Debate', random_state = 123)
```

Question weights

```
# Create one sample column for easier indexing, create mask
sample_columns = [col for col in judgments_online.columns if 'Sample' in col]
consultancy_sample_columns = [col for col in judgments_online.columns if 'Consultancy Sample' in col]
judgments_online['Sample'] = judgments_online[sample_columns].any(axis=1)
judgments_online['Consultancy Sample'] = judgments_online[consultancy_sample_columns].any(axis=1)
consultancy_balanced = (~judgments_online['Setting'].str.contains('Consultancy', case=False, na=False))
print(f'Accuracy per setting (aggregated) after balancing:\n{judgments_online[consultancy_balanced].gro
## Accuracy per setting (aggregated) after balancing:
                      Proportion_True Total_Count
## Final_Setting
## AI Consultancy
                             0.815789
                                                76
## AI Debate
                             0.781609
                                                87
## Human Consultancy
                             0.707317
                                                82
## Human Debate
                             0.838710
                                               155
def question_weights(data, columns, weight_column_name, consultancy_sample=None, debate_sample=None):
    # O. Make a copy of the original data for weight calculations
   working_data = data.copy()
    # 0.1. Custom filtering based on the 'Setting' column
    consultancy_condition = working_data['Setting'].str.contains('Consultancy', case=False, na=False)
    debate_condition = ~consultancy_condition
    if consultancy_sample is not None:
        consultancy_condition &= (working_data['Sample'] == consultancy_sample)
```

if debate_sample is not None: # uncomment if we want to sample debates

```
debate_condition &= (working_data['Sample'] == debate_sample)
    combined_mask = consultancy_condition | debate_condition
    working_data = working_data[combined_mask]
    # 1. Calculate the frequency of each question in the dataset
    question_frequency = working_data.groupby(columns).size()
    # 2. Invert the frequency to get the weight for each question
   question_weights = 1 / question_frequency
    # 3. Normalize the weights
    #question_weights = question_weights / question_weights.sum() * len(question_weights)
    # 4. Assign the calculated weights to the original data and fill missing values with O
    data.loc[combined_mask, weight_column_name] = data[combined_mask].set_index(columns).index.map(ques
    data[weight_column_name].fillna(0, inplace=True)
   return data
judgments_online = question_weights(
   data=judgments_online,
    columns=['Article ID', 'Question'],
    weight_column_name='initial_question_weights'
judgments_online = question_weights(
    data=judgments_online,
    columns=['Article ID', 'Question', 'Final_Setting'],
    weight_column_name='initial_question_weights_grouped_setting'
def print_weight_summary_by_setting(df, weight_column, consultancy_sample=None):
    consultancy_condition = df['Setting'].str.contains('Consultancy', case=False, na=False)
    if consultancy_sample is not None:
        consultancy_condition &= (df['Sample'] == consultancy_sample)
    for setting in df['Setting'].unique():
        total_weight = df[df['Setting'] == setting][weight_column].sum()
        print(f"Total {weight_column} for {setting}: {total_weight:.2f}")
   print("\n")
print('Unsampled (initial) weights, by group setting')
## Unsampled (initial) weights, by group setting
print_weight_summary_by_setting(judgments_online, 'initial_question_weights_grouped_setting')
## Total initial_question_weights_grouped_setting for AI Consultancy Dishonest: 32.50
## Total initial_question_weights_grouped_setting for Human Debate: 107.00
## Total initial_question_weights_grouped_setting for AI Debate: 75.00
## Total initial_question_weights_grouped_setting for Human Consultancy Dishonest: 34.67
## Total initial_question_weights_grouped_setting for Human Consultancy Honest: 26.33
## Total initial_question_weights_grouped_setting for AI Consultancy Honest: 49.50
# Recalculate weights for balanced consultancies, all debates
judgments_online = question_weights(
    data=judgments_online,
    columns=['Article ID', 'Question'],
    weight_column_name='sampled_consultancies_all_debates_weights',
```

```
consultancy_sample=True
)
judgments online = question weights(
    data=judgments online,
    columns=['Article ID', 'Question', 'Final Setting'],
    weight_column_name='sampled_consultancies_all_debates_weights_grouped_setting',
    consultancy_sample=True
judgments_online = question_weights(
    data=judgments_online,
    columns=['Article ID', 'Question', 'Setting'],
    weight_column_name='sampled_consultancies_all_debates_weights_setting',
    consultancy_sample=True
print('Consultancy balanced weights, by no/yes group setting')
## Consultancy balanced weights, by no/yes group setting
print_weight_summary_by_setting(judgments_online[consultancy_balanced], 'sampled_consultancies_all_deba
## Total sampled_consultancies_all_debates_weights for AI Consultancy Dishonest: 28.07
## Total sampled_consultancies_all_debates_weights for Human Debate: 82.48
## Total sampled_consultancies_all_debates_weights for AI Debate: 66.52
## Total sampled consultancies all debates weights for Human Consultancy Honest: 16.52
## Total sampled_consultancies_all_debates_weights for Human Consultancy Dishonest: 16.00
## Total sampled consultancies all debates weights for AI Consultancy Honest: 36.42
print_weight_summary_by_setting(judgments_online[consultancy_balanced], 'sampled_consultancies_all_deba
## Total sampled_consultancies_all_debates_weights_grouped_setting for AI Consultancy Dishonest: 38.00
## Total sampled_consultancies_all_debates_weights_grouped_setting for Human Debate: 107.00
## Total sampled_consultancies_all_debates_weights_grouped_setting for AI Debate: 75.00
## Total sampled_consultancies_all_debates_weights_grouped_setting for Human Consultancy Honest: 30.50
## Total sampled_consultancies_all_debates_weights_grouped_setting for Human Consultancy Dishonest: 30.
## Total sampled_consultancies_all_debates_weights_grouped_setting for AI Consultancy Honest: 38.00
print_weight_summary_by_setting(judgments_online[consultancy_balanced], 'sampled_consultancies_all_deba
## Total sampled_consultancies_all_debates_weights_setting for AI Consultancy Dishonest: 38.00
## Total sampled_consultancies_all_debates_weights_setting for Human Debate: 107.00
## Total sampled_consultancies_all_debates_weights_setting for AI Debate: 75.00
## Total sampled_consultancies_all_debates_weights_setting for Human Consultancy Honest: 41.00
## Total sampled_consultancies_all_debates_weights_setting for Human Consultancy Dishonest: 41.00
## Total sampled consultancies all debates weights setting for AI Consultancy Honest: 38.00
judgments_online = question_weights(
    data=judgments_online,
    columns=['Article ID', 'Question', 'Final_Setting'],
    weight column name='sampled consultancies debates weights grouped setting',
    consultancy_sample=True,
```

```
debate_sample=True
)
judgments_online = question_weights(
   data=judgments_online,
   columns=['Article ID', 'Question'],
   weight_column_name='sampled_consultancies_debates_weights',
   consultancy_sample=True,
   debate_sample=True
)
```

Note: we are not balancing between settings, and some of the counts of the debate settings are on the same questions

Load into R environment

```
set.seed(123)
judgments <- py$judgments</pre>
judgments_online <- py$judgments_online</pre>
# Convert the Accuracy column to a factor for better plotting
judgments_online$Final_Accuracy_char <- as.logical.factor(as.character(judgments_online$Final_Accuracy)</pre>
judgments_online$Participant <- as.factor(judgments_online$Participant)
judgments_online$Setting <- as.factor(judgments_online$Setting)</pre>
subset_dishonest <- judgments_online[judgments_online$`Human Consultancy Sample` == TRUE & judgments_on
subset_honest <- judgments_online[judgments_online$`Human Consultancy Sample` == TRUE & judgments_onlin
table(subset_dishonest$sampled_consultancies_all_debates_weights_grouped_setting, subset_dishonest$Fina
##
##
         FALSE TRUE
##
     0.5
            11
##
     1
             7
                 13
table(subset_honest$sampled_consultancies_all_debates_weights_grouped_setting, subset_honest$Final_Accu
##
         FALSE TRUE
##
     0.5
             5
                 16
##
     1
                 19
             1
table(subset_dishonest$sampled_consultancies_all_debates_weights_grouped_setting)
##
## 0.5
         1
## 21 20
table(subset_honest$sampled_consultancies_all_debates_weights_grouped_setting)
```

```
##
## 0.5
       1
## 21 20
subset_human_consultancies <- judgments_online[judgments_online$ Human Consultancy Sample == TRUE & ju
table(subset_human_consultancies\sampled_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies
##
##
         FALSE TRUE
##
     0.5
            16
     1
             8
                 32
##
table(judgments_online$Final_Setting, judgments_online$sampled_consultancies_all_debates_weights_groupe
##
##
                        0 0.5 1
##
                          0 76
                       17
    AI Consultancy
##
    AI Debate
                        0 24 63
##
    Human Consultancy 25 42 40
##
    Human Debate
                        0 96 59
table(judgments_online$Final_Setting, judgments_online$sampled_consultancies_debates_weights)
##
##
                        0 0.2 0.25 0.333333333333333 0.5 1
                                                       1 61
##
     AI Consultancy
                       17
                                 9
                           1
     AI Debate
                                 9
                                                   3
                                                      1 61
##
                       12
                            1
                                 9
                                                  32 32 7
##
    Human Consultancy 25
                          2
    Human Debate
                                                  15 20 62
                       48
```

Results

Accuracy

Difference in proportions

```
# Make a function to easily try out different weights
acc_diff_test <- function(design, Setting){
    print(design)
    freq_table <- svytable(~Final_Setting+Final_Accuracy, design)
    chisq_result <- svychisq(~Final_Setting+Final_Accuracy, design, statistic = "Chisq")
    print(chisq_result)
    pairwise_result <- pairwise.prop.test(freq_table, p.adjust.method="none", alternative="two.sided")
    print(pairwise_result)
    freq_table <- cbind(freq_table, Accuracy = (freq_table[,2] / (freq_table[,1]+freq_table[,2]))*100)
    print(freq_table)
}</pre>
```

```
## [1] "Really raw"
acc_diff_test(svydesign(ids = ~1, data = judgments))
## Warning in svydesign.default(ids = ~1, data = judgments): No weights or
## probabilities supplied, assuming equal probability
## Independent Sampling design (with replacement)
## print(design)
##
##
   Pearson's X^2: Rao & Scott adjustment
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 15.218, df = 3, p-value = 0.001657
##
##
##
  Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq_table
##
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
                     0.88133
## Human Consultancy 0.20924
                                    0.36922
                                    0.05977
                                              0.00026
## Human Debate
                     0.14538
## P value adjustment method: none
##
                     FALSE TRUE Accuracy
## AI Consultancy
                       19 77 80.20833
## AI Debate
                       20
                            72 78.26087
                     34 87 71.90083
## Human Consultancy
## Human Debate
                       50 327 86.73740
print("Raw")
## [1] "Raw"
acc_diff_test(svydesign(ids = ~1, data = judgments_online))
## Warning in svydesign.default(ids = ~1, data = judgments_online): No weights or
## probabilities supplied, assuming equal probability
## Independent Sampling design (with replacement)
## print(design)
##
  Pearson's X^2: Rao & Scott adjustment
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 7.4336, df = 3, p-value = 0.05973
##
##
## Pairwise comparisons using Pairwise comparison of proportions
```

```
##
## data: freq_table
##
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
                     0.820
## Human Consultancy 0.120
                                    0.269
## Human Debate
                     0.634
                                    0.352
                                              0.012
##
## P value adjustment method: none
##
                     FALSE TRUE Accuracy
## AI Consultancy
                       18
                            75 80.64516
                             68 78.16092
## AI Debate
                        19
## Human Consultancy
                        32
                            75 70.09346
## Human Debate
                        25 130 83.87097
print("Balanced consultancies")
## [1] "Balanced consultancies"
acc_diff_test(svydesign(ids = ~1, data = subset(judgments_online, `Consultancy Sample` == TRUE | !grepl
## Warning in svydesign.default(ids = ~1, data = subset(judgments_online,
## 'Consultancy Sample' == : No weights or probabilities supplied, assuming equal
## probability
## Independent Sampling design (with replacement)
## print(design)
##
##
   Pearson's X^2: Rao & Scott adjustment
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 5.9826, df = 3, p-value = 0.1132
##
##
## Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq_table
##
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
                     0.729
## Human Consultancy 0.159
                                    0.352
                                              0.027
## Human Debate
                     0.803
                                    0.352
## P value adjustment method: none
                    FALSE TRUE Accuracy
## AI Consultancy
                       14
                             62 81.57895
## AI Debate
                        19
                             68 78.16092
## Human Consultancy
                       24 58 70.73171
## Human Debate
                        25 130 83.87097
```

```
print("Balanced consultancies, question weights (grouped settings)")
## [1] "Balanced consultancies, question weights (grouped settings)"
acc_diff_test(svydesign(ids = ~1, data = subset(judgments_online, `Consultancy Sample` == TRUE | !grepl
## Independent Sampling design (with replacement)
## print(design)
##
## Pearson's X^2: Rao & Scott adjustment
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 3.7897, df = 3, p-value = 0.3186
##
##
## Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq_table
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
                     0.89
## Human Consultancy 0.37
                                    0.58
## Human Debate
                     0.74
                                    0.47
                                              0.13
## P value adjustment method: none
##
                    FALSE TRUE Accuracy
## AI Consultancy
                     14.0 62.0 81.57895
## AI Debate
                      15.5 59.5 79.33333
## Human Consultancy 16.0 45.0 73.77049
## Human Debate
                      16.5 90.5 84.57944
acc_diff_test(svydesign(ids = ~1, data = subset(judgments_online, `Consultancy Sample` == TRUE | !grepl
## Independent Sampling design (with replacement)
## print(design)
##
## Pearson's X^2: Rao & Scott adjustment
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 7.6386, df = 3, p-value = 0.09546
##
##
## Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq_table
##
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
                     1.000
## Human Consultancy 0.409
                                    0.446
## Human Debate
                     0.335
                                    0.286
                                              0.059
```

##

```
## P value adjustment method: none
##
                         FALSE
                                   TRUE Accuracy
## AI Consultancy
                     13.200000 51.28333 79.52959
## AI Debate
                     14.016667 52.50000 78.92759
## Human Consultancy 9.866667 22.65000 69.65659
## Human Debate
                     10.850000 71.63333 86.84583
print("Balanced consultancies sampled debates, question weights (grouped settings)")
## [1] "Balanced consultancies sampled debates, question weights (grouped settings)"
acc diff test(svydesign(ids = ~1, data = subset(judgments online, `Sample` == TRUE), weights = ~sampled
## Independent Sampling design (with replacement)
## print(design)
##
   Pearson's X^2: Rao & Scott adjustment
##
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 3.4707, df = 3, p-value = 0.3286
##
##
## Pairwise comparisons using Pairwise comparison of proportions
## data: freq_table
##
##
                     AI Consultancy AI Debate Human Consultancy
                     0.97
## AI Debate
## Human Consultancy 0.37
                                    0.51
## Human Debate
                     0.67
                                    0.49
                                              0.11
##
## P value adjustment method: none
                     FALSE TRUE Accuracy
## AI Consultancy
                             62 81.57895
                        14
## AI Debate
                        15
                             60 80.00000
## Human Consultancy
                             45 73.77049
                        16
## Human Debate
                        16
                             91 85.04673
acc_diff_test(svydesign(ids = ~1, data = judgments_online, weights = ~sampled_consultancies_debates_wei
## Independent Sampling design (with replacement)
## print(design)
##
   Pearson's X^2: Rao & Scott adjustment
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 4.5119, df = 3, p-value = 0.3283
##
##
## Pairwise comparisons using Pairwise comparison of proportions
## data: freq_table
```

```
##
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
## Human Consultancy 0.37
                                    0.51
## Human Debate
                     0.67
                                    0.49
                                              0.11
##
## P value adjustment method: none
                     FALSE TRUE Accuracy
## AI Consultancy
                        14
                             62 81.57895
## AI Debate
                        15
                             60 80.00000
## Human Consultancy
                        16
                             45 73.77049
## Human Debate
                        16
                             91 85.04673
design = svydesign(ids = ~1, data = subset(judgments_online, `Human Consultancy Sample` == TRUE | !grep
acc_diff_test(design)
## Independent Sampling design (with replacement)
## svydesign(ids = ~1, data = subset(judgments_online, 'Human Consultancy Sample' ==
       TRUE | !grepl("Consultancy", Final_Setting) & !grepl("AI",
       Final_Setting)), weights = ~sampled_consultancies_all_debates_weights_grouped_setting)
##
##
##
   Pearson's X^2: Rao & Scott adjustment
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 4.104, df = 1, p-value = 0.05155
##
##
##
  Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq table
##
                Human Consultancy
## Human Debate 0.13
## P value adjustment method: none
                     FALSE TRUE Accuracy
## Human Consultancy 16.0 45.0 73.77049
## Human Debate
                      16.5 90.5 84.57944
print("Now trying manually tests that aren't pairwise + cobfidence intervals for the table")
## [1] "Now trying manually tests that aren't pairwise + cobfidence intervals for the table"
## To maybe do: refactor this into function?
final_table <- svytable(~Final_Setting+Final_Accuracy,</pre>
                        design = svydesign(ids = ~1,
                                           data = subset(judgments_online, `Consultancy Sample` == TRUE
                                           weights = ~sampled_consultancies_all_debates_weights_grouped
final_table
```

Final_Accuracy

##

```
## Final_Setting
                       FALSE TRUE
     AI Consultancy
##
                         14.0 62.0
                         15.5 59.5
##
     AI Debate
##
    Human Consultancy 16.0 45.0
##
     Human Debate
                         16.5 90.5
# Add accuracy
final_table <- cbind(final_table, Accuracy = (final_table[,2] / (final_table[,1]+final_table[,2]))*100)
# Calculate the difference in accuracy for each row compared to "Human Debate"
difference_with_debate <- final_table[,"Accuracy"] - final_table["Human Debate", "Accuracy"]</pre>
# Bind the difference column to the final table
final_table <- cbind(final_table, difference_with_debate)</pre>
# Loop through each setting
ci_lowers <- c()</pre>
ci_uppers <- c()</pre>
p_values <- c()</pre>
# Loop through each setting
for (setting in rownames(final_table)) {
  # Use prop.test to compare the setting's accuracy with "Human Debate"
  results <- prop.test(c(final_table["Human Debate", "TRUE"], final_table[setting, "TRUE"]), c((final_t
  # Extract the confidence interval and store it as a string in the format "lower - upper"
  ci_lower <- results$conf.int[1] * 100 # Multiply by 100 to convert to percentage</pre>
  ci_upper <- results$conf.int[2] * 100 # Multiply by 100 to convert to percentage
  ci_lowers <- c(ci_lowers, ci_lower)</pre>
  ci_uppers <- c(ci_uppers, ci_upper)</pre>
  p_values <- c(p_values, results$p.value)</pre>
final_table <- cbind(final_table, ci_lowers, ci_uppers, p_values)</pre>
final_table
##
                     FALSE TRUE Accuracy difference_with_debate ci_lowers
## AI Consultancy
                      14.0 62.0 81.57895
                                                        -3.000492 -9.205452
## AI Debate
                      15.5 59.5 79.33333
                                                        -5.246106 -7.324725
## Human Consultancy 16.0 45.0 73.77049
                                                      -10.808947 -3.465654
## Human Debate
                                                         0.000000 -9.677288
                      16.5 90.5 84.57944
##
                     ci_uppers p_values
## AI Consultancy
                     15.206436 0.7372949
## AI Debate
                     17.816936 0.4731832
## Human Consultancy 25.083549 0.1329563
## Human Debate
                      9.677288 1.0000000
# Display the updated table using knitr::kable
knitr::kable(final_table, booktab = TRUE, digits = c(rep(1,6),3),
             col.names = c("# Incorrect (weighted)", "# Correct (weighted)", "Accuracy", "Difference",
                 # Incorrect
                                 # Correct
                                                                  95% CI
                                                                               95% CI
                                                                                           p-
```

```
# Incorrect
                                     # Correct
                                                                          95% CI
                                                                                          95% CI
                                                                                                       n-
                    (weighted)
                                     (weighted)
                                                  AccuracyDifference Lower Limit
                                                                                     Upper Limit
                                                                                                    value
Human
                          16.0
                                           45.0
                                                    73.8
                                                             -10.8
                                                                                             25.1
                                                                                                    0.133
                                                                              -3.5
Consultancy
Human
                                           90.5
                                                    84.6
                          16.5
                                                               0.0
                                                                              -9.7
                                                                                              9.7
                                                                                                    1.000
Debate
```

```
print("Second table, human settings only")
## [1] "Second table, human settings only"
human_only <- subset(judgments_online, `Human Consultancy Sample` == TRUE | !grep1("Consultancy", Final
human_only$Setting <- droplevels(human_only$Setting)</pre>
table(human_only$Setting)
##
## Human Consultancy Dishonest
                                   Human Consultancy Honest
##
                                                          41
##
                  Human Debate
##
                            155
final_table <- svytable(~Setting+Final_Accuracy,</pre>
                         design = svydesign(ids = ~1,
                                            data = human_only,
                                            weights = ~sampled_consultancies_all_debates_weights_setting
final_table
##
                                 Final_Accuracy
## Setting
                                  FALSE TRUE
##
     Human Consultancy Dishonest 18.0 23.0
##
     Human Consultancy Honest
                                    6.0 35.0
     Human Debate
                                   16.5 90.5
##
# Add accuracy
final_table <- cbind(final_table, Accuracy = (final_table[,2] / (final_table[,1]+final_table[,2]))*100)
# Calculate the difference in accuracy for each row compared to "Human Debate"
difference_with_debate <- final_table[,"Accuracy"] - final_table["Human Debate", "Accuracy"]</pre>
# Bind the difference column to the final_table
final_table <- cbind(final_table, difference_with_debate)</pre>
# Loop through each setting
ci_lowers <- c()</pre>
ci_uppers <- c()</pre>
p_values <- c()</pre>
# Loop through each setting
for (setting in rownames(final_table)) {
  # Use prop.test to compare the setting's accuracy with "Human Debate"
 results <- prop.test(c(final_table["Human Debate", "TRUE"], final_table[setting, "TRUE"]), c((final_t
  # Extract the confidence interval and store it as a string in the format "lower - upper"
```

```
ci_upper <- results$conf.int[2] * 100 # Multiply by 100 to convert to percentage</pre>
  ci_lowers <- c(ci_lowers, ci_lower)</pre>
  ci_uppers <- c(ci_uppers, ci_upper)</pre>
  p_values <- c(p_values, results$p.value)</pre>
final_table <- cbind(final_table, ci_lowers, ci_uppers, p_values)</pre>
final table
##
                               FALSE TRUE Accuracy difference_with_debate
## Human Consultancy Dishonest 18.0 23.0 56.09756
                                                               -28.4818783
## Human Consultancy Honest
                                6.0 35.0 85.36585
                                                                 0.7864144
## Human Debate
                               16.5 90.5 84.57944
                                                                 0.0000000
                               ci_lowers ci_uppers
                                                         p_values
## Human Consultancy Dishonest 10.134444 46.829313 0.0005598759
## Human Consultancy Honest -14.374115 12.801286 1.00000000000
## Human Debate
                                -9.677288 9.677288 1.0000000000
# Display the updated table using knitr::kable
knitr::kable(final_table, booktab = TRUE, digits = c(rep(1,6),3),
             col.names = c("# Incorrect (weighted)", "# Correct (weighted)", "Accuracy", "Difference",
```

ci_lower <- results\$conf.int[1] * 100 # Multiply by 100 to convert to percentage</pre>

	# Incorrect (weighted)	# Correct (weighted)	Accurac	yDifference	95% CI Lower Limit	95% CI Upper Limit	p- value
Human	18.0	23.0	56.1	-28.5	10.1	46.8	0.001
Consultancy							
Dishonest							
Human	6.0	35.0	85.4	0.8	-14.4	12.8	1.000
Consultancy							
Honest							
Human Debate	16.5	90.5	84.6	0.0	-9.7	9.7	1.000

```
## Design-based KruskalWallis test
##
## data: fpc ~ Final_Setting
## t = 2.4508, df = 235, p-value = 0.01499
## alternative hypothesis: true difference in mean rank score is not equal to 0
## sample estimates:
## difference in mean rank score
##
                       0.0969166
svyranktest(fpc~Final_Setting,
            svydesign(ids = ~1, data = subset(judgments_online, `Human Consultancy Sample` == TRUE | !g
            test = "median")
##
## Design-based median test
## data: fpc ~ Final_Setting
## t = 2.7708, df = 235, p-value = 0.00604
## alternative hypothesis: true difference in mean rank score is not equal to 0
## sample estimates:
## difference in mean rank score
##
                         0.19427
# TODO: check test for human consultancy & human debate, make table. Might have to rebuild package to g
# see calibration for confident mistakes
# Note: see publication in help page for more
# The rest is stuff i tried
judgments_online %>%
  ggplot() +
  geom_boxplot(aes(x = Final_Setting, y = fpc)) +
 labs(y = "fpc", x = "Setting")+
 theme_minimal()
```



```
consultancy_design <- svydesign(ids = ~1, data = subset(judgments_online, `Consultancy Sample` == TRUE</pre>
human_consultancy_design <- svydesign(ids = ~1, data = subset(judgments_online, `Human Consultancy Samp
svyranktest(fpc~Final_Setting, human_consultancy_design)
##
## Design-based KruskalWallis test
## data: fpc ~ Final_Setting
## t = 2.4508, df = 235, p-value = 0.01499
## alternative hypothesis: true difference in mean rank score is not equal to 0
## sample estimates:
## difference in mean rank score
##
                       0.0969166
judgments_online %>% group_by(Final_Setting) %>% summarise(fpcmed = median(fpc),
                                                            fpcmean = mean(fpc))
## # A tibble: 4 x 3
     Final_Setting
                       fpcmed fpcmean
```

```
## <chr>
                       <dbl>
                               <dbl>
## 1 AI Consultancy
                        0.96 0.764
                        0.99 0.754
## 2 AI Debate
## 3 Human Consultancy 0.87 0.672
## 4 Human Debate
                        0.95 0.792
svyranktest(fpc~Final_Setting, consultancy_design, test = "median")
##
## Design-based median test
## data: fpc ~ Final_Setting
## df = 3, Chisq = 13.969, p-value = 0.003272
svyranktest(fpc~Final_Setting, consultancy_design, test = "wilcoxon")
##
##
  Design-based KruskalWallis test
## data: fpc ~ Final_Setting
## df = 3, Chisq = 12.446, p-value = 0.006514
svyranktest(fpc~Final_Setting, consultancy_design, test = "vanderWaerden")
##
## Design-based vanderWaerden test
## data: fpc ~ Final_Setting
## df = 3, Chisq = 9.8037, p-value = 0.02133
weighted_mannwhitney(fpc ~ Final_Setting + sampled_consultancies_all_debates_weights_grouped_setting, j
## Warning in summary.glm(glm.object): observations with zero weight not used for
## calculating dispersion
##
## # Weighted Kruskal-Wallis test
##
     comparison of fpc by Final_Setting
##
##
     Chisq=3.00 df=12 p-value=0.006
weighted_mannwhitney(fpc ~ Final_Setting + sampled_consultancies_all_debates_weights_grouped_setting, j
## Warning in summary.glm(glm.object): observations with zero weight not used for
## calculating dispersion
##
## # Weighted Kruskal-Wallis test
##
##
     comparison of fpc by Final_Setting
    Chisq=3.00 df=12 p-value=0.006
##
```

Logistic regression

```
#judgments_online$Final_Setting <- relevel(judgments_online$Final_Setting, ref = "Human Debate")</pre>
model1 <- glm(Final_Accuracy ~ relevel(factor(Final_Setting), 'Human Debate'), family = 'binomial', dat</pre>
summary(model1)
##
## Call:
  glm(formula = Final_Accuracy ~ relevel(factor(Final_Setting),
       "Human Debate"), family = "binomial", data = judgments_online)
## Coefficients:
##
                                                                    Estimate
## (Intercept)
                                                                      1.6487
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                     -0.2215
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                     -0.3736
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                     -0.7969
                                                                    Std. Error
                                                                        0.2184
## (Intercept)
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                        0.3414
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                        0.3392
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                        0.3038
##
                                                                    z value
## (Intercept)
                                                                      7.549
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                     -0.649
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                     -1.102
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                     -2.623
##
                                                                              Pr(>|z|)
## (Intercept)
                                                                    0.000000000000438
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                               0.51644
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                               0.27067
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                               0.00871
##
## (Intercept)
                                                                    ***
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
## relevel(factor(Final_Setting), "Human Debate")AI Debate
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 457.45 on 441 degrees of freedom
## Residual deviance: 450.23 on 438 degrees of freedom
## AIC: 458.23
## Number of Fisher Scoring iterations: 4
```

##

table(model1\$fitted.values > 0.5)

```
## TRUE
## 442
table(judgments_online$Final_Accuracy)
## FALSE
         TRUE
##
      94
           348
model2 <- glm(Final_Accuracy ~ relevel(factor(Participant), 'Aliyaah Toussaint') + relevel(factor(Final_
summary(model2)
##
## Call:
  glm(formula = Final_Accuracy ~ relevel(factor(Participant), "Aliyaah Toussaint") +
##
       relevel(factor(Final_Setting), "Human Debate"), family = "binomial",
       data = judgments online)
##
##
## Coefficients:
##
                                                                          Estimate
## (Intercept)
                                                                           2.19432
## relevel(factor(Participant), "Aliyaah Toussaint")Adelle Fernando
                                                                          -0.79600
## relevel(factor(Participant), "Aliyaah Toussaint")Anuj Jain
                                                                          -0.89691
## relevel(factor(Participant), "Aliyaah Toussaint")David Rein
                                                                          -0.43887
## relevel(factor(Participant), "Aliyaah Toussaint")Emmanuel Makinde
                                                                         -17.76039
## relevel(factor(Participant), "Aliyaah Toussaint")Ethan Rosen
                                                                          -0.24841
## relevel(factor(Participant), "Aliyaah Toussaint") Jackson Petty
                                                                          -0.55820
## relevel(factor(Participant), "Aliyaah Toussaint")Jessica Li
                                                                          -0.16347
## relevel(factor(Participant), "Aliyaah Toussaint")Julian Michael
                                                                          -0.08063
## relevel(factor(Participant), "Aliyaah Toussaint")Julien Dirani
                                                                          13.37175
## relevel(factor(Participant), "Aliyaah Toussaint")Max Layden
                                                                          13.37175
## relevel(factor(Participant), "Aliyaah Toussaint")Noor Mirza-Rashid
                                                                          -1.27803
## relevel(factor(Participant), "Aliyaah Toussaint")Reeya Kansra
                                                                          -0.96379
## relevel(factor(Participant), "Aliyaah Toussaint")Salsabila Mahdi
                                                                          -0.17942
## relevel(factor(Participant), "Aliyaah Toussaint")Sam Jin
                                                                          -0.01031
## relevel(factor(Participant), "Aliyaah Toussaint")Sean Wang
                                                                           0.17177
## relevel(factor(Participant), "Aliyaah Toussaint")Shlomo Kofman
                                                                          -1.13135
## relevel(factor(Participant), "Aliyaah Toussaint")Shreeram Modi
                                                                          -1.16733
## relevel(factor(Participant), "Aliyaah Toussaint")Vishakh Padmakumar
                                                                          -0.40256
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                          -0.27193
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                          -0.42241
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                          -0.74485
##
                                                                        Std. Error
## (Intercept)
                                                                           0.49853
## relevel(factor(Participant), "Aliyaah Toussaint")Adelle Fernando
                                                                           0.63661
## relevel(factor(Participant), "Aliyaah Toussaint")Anuj Jain
                                                                           0.53893
## relevel(factor(Participant), "Aliyaah Toussaint")David Rein
                                                                           0.77471
## relevel(factor(Participant), "Aliyaah Toussaint")Emmanuel Makinde
                                                                        1455.39762
## relevel(factor(Participant), "Aliyaah Toussaint")Ethan Rosen
                                                                           1.17957
## relevel(factor(Participant), "Aliyaah Toussaint") Jackson Petty
                                                                           0.66085
## relevel(factor(Participant), "Aliyaah Toussaint")Jessica Li
                                                                           0.64365
```

0.75783

relevel(factor(Participant), "Aliyaah Toussaint")Julian Michael

```
## relevel(factor(Participant), "Aliyaah Toussaint")Julien Dirani
                                                                        1029.12159
## relevel(factor(Participant), "Aliyaah Toussaint")Max Layden
                                                                        1029.12159
## relevel(factor(Participant), "Aliyaah Toussaint")Noor Mirza-Rashid
                                                                           0.97393
## relevel(factor(Participant), "Aliyaah Toussaint")Reeya Kansra
                                                                           0.58143
## relevel(factor(Participant), "Aliyaah Toussaint")Salsabila Mahdi
                                                                           0.90289
## relevel(factor(Participant), "Aliyaah Toussaint")Sam Jin
                                                                           0.56587
## relevel(factor(Participant), "Aliyaah Toussaint")Sean Wang
                                                                           0.67879
## relevel(factor(Participant), "Aliyaah Toussaint")Shlomo Kofman
                                                                           0.50759
## relevel(factor(Participant), "Aliyaah Toussaint")Shreeram Modi
                                                                           0.63420
## relevel(factor(Participant), "Aliyaah Toussaint")Vishakh Padmakumar
                                                                           1.18962
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                           0.39222
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                           0.39204
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                           0.36432
##
                                                                        z value
## (Intercept)
                                                                          4.402
## relevel(factor(Participant), "Aliyaah Toussaint")Adelle Fernando
                                                                         -1.250
## relevel(factor(Participant), "Aliyaah Toussaint")Anuj Jain
                                                                         -1.664
## relevel(factor(Participant), "Aliyaah Toussaint")David Rein
                                                                         -0.566
## relevel(factor(Participant), "Aliyaah Toussaint")Emmanuel Makinde
                                                                         -0.012
## relevel(factor(Participant), "Aliyaah Toussaint")Ethan Rosen
                                                                         -0.211
## relevel(factor(Participant), "Aliyaah Toussaint") Jackson Petty
                                                                         -0.845
## relevel(factor(Participant), "Aliyaah Toussaint")Jessica Li
                                                                         -0.254
## relevel(factor(Participant), "Aliyaah Toussaint")Julian Michael
                                                                         -0.106
## relevel(factor(Participant), "Aliyaah Toussaint")Julien Dirani
                                                                          0.013
## relevel(factor(Participant), "Aliyaah Toussaint")Max Layden
                                                                          0.013
## relevel(factor(Participant), "Aliyaah Toussaint")Noor Mirza-Rashid
                                                                         -1.312
## relevel(factor(Participant), "Aliyaah Toussaint")Reeya Kansra
                                                                         -1.658
## relevel(factor(Participant), "Aliyaah Toussaint")Salsabila Mahdi
                                                                         -0.199
## relevel(factor(Participant), "Aliyaah Toussaint")Sam Jin
                                                                         -0.018
## relevel(factor(Participant), "Aliyaah Toussaint")Sean Wang
                                                                          0.253
## relevel(factor(Participant), "Aliyaah Toussaint")Shlomo Kofman
                                                                         -2.229
## relevel(factor(Participant), "Aliyaah Toussaint")Shreeram Modi
                                                                         -1.841
## relevel(factor(Participant), "Aliyaah Toussaint")Vishakh Padmakumar
                                                                         -0.338
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                         -0.693
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                         -1.077
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                         -2.045
##
                                                                         Pr(>|z|)
## (Intercept)
                                                                        0.0000107
## relevel(factor(Participant), "Aliyaah Toussaint")Adelle Fernando
                                                                           0.2112
## relevel(factor(Participant), "Aliyaah Toussaint")Anuj Jain
                                                                           0.0961
## relevel(factor(Participant), "Aliyaah Toussaint")David Rein
                                                                           0.5711
## relevel(factor(Participant), "Aliyaah Toussaint")Emmanuel Makinde
                                                                           0.9903
## relevel(factor(Participant), "Aliyaah Toussaint")Ethan Rosen
                                                                           0.8332
## relevel(factor(Participant), "Aliyaah Toussaint") Jackson Petty
                                                                           0.3983
## relevel(factor(Participant), "Aliyaah Toussaint")Jessica Li
                                                                           0.7995
## relevel(factor(Participant), "Aliyaah Toussaint")Julian Michael
                                                                           0.9153
## relevel(factor(Participant), "Aliyaah Toussaint")Julien Dirani
                                                                           0.9896
## relevel(factor(Participant), "Aliyaah Toussaint")Max Layden
                                                                           0.9896
## relevel(factor(Participant), "Aliyaah Toussaint")Noor Mirza-Rashid
                                                                           0.1894
## relevel(factor(Participant), "Aliyaah Toussaint")Reeya Kansra
                                                                           0.0974
## relevel(factor(Participant), "Aliyaah Toussaint")Salsabila Mahdi
                                                                           0.8425
## relevel(factor(Participant), "Aliyaah Toussaint")Sam Jin
                                                                           0.9855
## relevel(factor(Participant), "Aliyaah Toussaint")Sean Wang
                                                                           0.8002
## relevel(factor(Participant), "Aliyaah Toussaint")Shlomo Kofman
                                                                           0.0258
```

```
## relevel(factor(Participant), "Aliyaah Toussaint")Shreeram Modi
                                                                          0.0657
## relevel(factor(Participant), "Aliyaah Toussaint")Vishakh Padmakumar
                                                                          0.7351
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                          0.4881
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                          0.2813
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                          0.0409
##
## (Intercept)
## relevel(factor(Participant), "Aliyaah Toussaint")Adelle Fernando
## relevel(factor(Participant), "Aliyaah Toussaint")Anuj Jain
## relevel(factor(Participant), "Aliyaah Toussaint")David Rein
## relevel(factor(Participant), "Aliyaah Toussaint")Emmanuel Makinde
## relevel(factor(Participant), "Aliyaah Toussaint")Ethan Rosen
## relevel(factor(Participant), "Aliyaah Toussaint") Jackson Petty
## relevel(factor(Participant), "Aliyaah Toussaint")Jessica Li
## relevel(factor(Participant), "Aliyaah Toussaint")Julian Michael
## relevel(factor(Participant), "Aliyaah Toussaint")Julien Dirani
## relevel(factor(Participant), "Aliyaah Toussaint")Max Layden
## relevel(factor(Participant), "Aliyaah Toussaint")Noor Mirza-Rashid
## relevel(factor(Participant), "Aliyaah Toussaint")Reeya Kansra
## relevel(factor(Participant), "Aliyaah Toussaint")Salsabila Mahdi
## relevel(factor(Participant), "Aliyaah Toussaint")Sam Jin
## relevel(factor(Participant), "Aliyaah Toussaint")Sean Wang
## relevel(factor(Participant), "Aliyaah Toussaint")Shlomo Kofman
## relevel(factor(Participant), "Aliyaah Toussaint")Shreeram Modi
## relevel(factor(Participant), "Aliyaah Toussaint")Vishakh Padmakumar
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
## relevel(factor(Final_Setting), "Human Debate")AI Debate
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 457.45 on 441 degrees of freedom
## Residual deviance: 429.05 on 420 degrees of freedom
## AIC: 473.05
##
## Number of Fisher Scoring iterations: 14
```

LMER.

```
##
## Scaled residuals:
      Min
               1Q Median
## -2.5652 -0.2013 0.5015 0.5654 0.9255
## Random effects:
                             Variance Std.Dev.
## Groups
           Name
## Final_Setting (Intercept) 0.00272 0.05215
## Residual
                             0.09799 0.31304
## Number of obs: 686, groups: Final_Setting, 4
## Fixed effects:
              Estimate Std. Error df t value Pr(>|t|)
                          0.02948 3.33321 25.68 0.00006 ***
## (Intercept) 0.75723
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
ranef(random.intercept.model)
## $Final_Setting
                     (Intercept)
## AI Consultancy
                     0.002319435
                    -0.001131440
## AI Debate
## Human Consultancy -0.056960042
## Human Debate
                   0.055772047
##
## with conditional variances for "Final_Setting"
ranova(random.intercept.model)
## ANOVA-like table for random-effects: Single term deletions
##
## 'Final probability correct' ~ (1 | Final_Setting)
                      npar logLik
                                      AIC
                                             LRT Df Pr(>Chisq)
                         3 -182.00 370.00
## <none>
## (1 | Final_Setting)
                         2 -187.23 378.46 10.456 1
                                                    0.001222 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
random.intercept.model = lmer(`Final probability correct` ~ (1 | Participant) + (1 | Final_Setting),
                             data = judgments, REML = TRUE)
judgments$random.intercept.preds = predict(random.intercept.model)
summary(random.intercept.model)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 'Final probability correct' ~ (1 | Participant) + (1 | Final_Setting)
##
     Data: judgments
## REML criterion at convergence: 357.9
##
```

```
## Scaled residuals:
##
      Min 1Q Median
                             3Q
                                      Max
## -2.7461 -0.1555 0.4368 0.5996 1.1083
## Random effects:
## Groups
                             Variance Std.Dev.
                 Name
## Participant (Intercept) 0.002215 0.04707
## Final_Setting (Intercept) 0.002718 0.05213
## Residual
                             0.095721 0.30939
## Number of obs: 686, groups: Participant, 19; Final_Setting, 4
## Fixed effects:
              Estimate Std. Error
                                      df t value
                                                   Pr(>|t|)
## (Intercept) 0.75549
                          0.03211 4.44845 23.52 0.00000772 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
ranef(random.intercept.model)
## $Participant
##
                       (Intercept)
## Adelle Fernando
                     -0.0231887667
## Aliyaah Toussaint 0.0445495902
## Anuj Jain
                    -0.0460548530
## David Rein
                     0.0107246587
## Emmanuel Makinde -0.0115704647
## Ethan Rosen -0.0171199427
## Jackson Petty
                    -0.0051104119
## Jessica Li
                    -0.0047621455
## Julian Michael
                     0.0348708056
## Julien Dirani
                    -0.0008138972
## Max Layden
                    -0.0038287458
## Noor Mirza-Rashid -0.0117445230
## Reeya Kansra -0.0261229696
## Salsabila Mahdi
                     0.0321800144
## Sam Jin
                     0.0480694982
## Sean Wang
                      0.0477306783
## Shlomo Kofman
                    -0.0519667486
## Shreeram Modi
                     0.0020512016
## Vishakh Padmakumar -0.0178929784
##
## $Final_Setting
                      (Intercept)
## AI Consultancy
                     0.0012586597
## AI Debate
                    -0.0009034629
## Human Consultancy -0.0564188188
## Human Debate
                     0.0560636219
## with conditional variances for "Participant" "Final_Setting"
ranova(random.intercept.model)
```

ANOVA-like table for random-effects: Single term deletions

BRMS

Efficiency

Quotes %, caveats

```
characters = turns.merge(
        debates[["Room name", "Question", "Story length",
                 "Untimed annotator context", "Untimed annotator context bins",
                 "Setting", "Final_Setting", "Final_Accuracy",
                 "Is offline"]],
       how="left",
        on="Room name",
   )
# Filtering for specific roles
characters = characters['Role (honest/dishonest)'].isin(['Honest debater', 'Dishonest debate
# Extracting the spans
def extract_spans(span_str):
    """Extract numerical spans from the given string."""
    if pd.isna(span_str):
        return []
    spans = re.findall(r' << (\d+) - (\d+) >> ', span_str)
   return [(int(start), int(end)) for start, end in spans]
# Merging overlapping spans
def merge_overlapping_spans(span_str):
    if not isinstance(span_str, str):
        return span_str
```

```
spans = extract_spans(span_str)
    if not spans:
        return span_str
    spans.sort(key=lambda x: x[0])
   merged = [spans[0]]
    for current in spans:
       previous = merged[-1]
        if current[0] <= previous[1]:</pre>
            upper_bound = max(previous[1], current[1])
            merged[-1] = (previous[0], upper_bound)
        else:
           merged.append(current)
    return ' '.join(f'<<{start}-{end}>>' for start, end in merged)
# Aggregating function to concatenate quote spans
def custom_join(series):
   return ' '.join(filter(lambda x: isinstance(x, str), series))
# Identify questions with more than one setting and filter out the characters dataframe
questions_with_multi_settings = characters.groupby("Question").filter(lambda x: len(x["Setting"].unique
filtered_characters = characters[characters["Question"].isin(questions_with_multi_settings)]
# Aggregating data
aggregates = {
    'Quote length': 'sum',
    'Story length': 'mean',
    'Num previous judging rounds': 'max',
    'Participant quote span': custom_join
# Grouping by 'Room name' and aggregating
characters_agg_by_room = filtered_characters.groupby('Room name').agg(aggregates).reset_index()
# Merging the aggregated results with the original data to reintroduce the desired columns
characters_agg = characters_agg_by_room.merge(
   filtered_characters[['Room name', 'Setting', 'Final_Setting', 'Question', 'Untimed annotator contex
    on='Room name'
)
# Merge overlapping spans after the aggregation
characters_agg["merged_quote_spans"] = characters_agg["Participant quote span"].apply(merge_overlapping
# Functions to compute and compare spans across settings
def extract_numbers_from_span(span_str):
    spans = extract_spans(span_str)
   numbers = set()
   for start, end in spans:
       numbers.update(range(int(start), int(end)+1))
   return numbers
def quote_length(span_str):
  spans = extract_spans(span_str)
  numbers = set()
  for start, end in spans:
```

```
numbers.update(range(int(start), int(end)))
  return numbers
characters_agg["quote_length"] = characters_agg["Participant quote span"].apply(lambda row: len(quote_l
\#characters\_agg["merged\_quote\_length"] = characters\_agg["Participant quote span"].apply(lambda row: length")
#print(characters_agg["merged_quote_length"][1])
#print((characters_agg["merged_quote_length"]==characters_agg["quote_length"]).value_counts())
#print((characters_agg['quote_length'].fillna(0)/characters_agg['Story length'].fillna(0)).describe())
def convert_to_span_format(numbers):
    sorted_numbers = sorted(list(numbers))
    spans = []
    if sorted_numbers:
        start = sorted_numbers[0]
        end = sorted_numbers[0]
        for num in sorted_numbers[1:]:
            if num == end + 1:
                end = num
            else:
                spans.append((start, end))
                start = end = num
        spans.append((start, end))
   return ' '.join(f'<<{start}-{end}>>' for start, end in spans)
def compute_span_differences(dataframe):
    differences = {}
    for question, group in dataframe.groupby("Question"):
        settings = group["Setting"].unique()
        if len(settings) > 1:
            for i in range(len(settings)):
                for j in range(i+1, len(settings)):
                    setting_1 = settings[i]
                    setting_2 = settings[j]
                    room_1 = group[group["Setting"] == setting_1]["Room name"].values[0]
                    room_2 = group[group["Setting"] == setting_2]["Room name"].values[0]
                    acc_1 = group[group["Setting"] == setting_1]["Final_Accuracy"].values[0]
                    acc_2 = group[group["Setting"] == setting_2]["Final_Accuracy"].values[0]
                    span_str_1 = group[group["Setting"] == setting_1]["merged_quote_spans"].values[0]
                    span_str_2 = group[group["Setting"] == setting_2]["merged_quote_spans"].values[0]
                    numbers_1 = extract_numbers_from_span(span_str_1)
                    numbers_2 = extract_numbers_from_span(span_str_2)
                    diff_1 = numbers_1 - numbers_2
                    diff_2 = numbers_2 - numbers_1
                    key = (question, setting_1, room_1, acc_1, setting_2, room_2, acc_2)
                    value = (convert_to_span_format(diff_1), convert_to_span_format(diff_2))
                    differences[key] = value
   return differences
span_differences_all = compute_span_differences(characters_agg)
#print(span_differences_all.keys())
```

```
\#for span in span_differences_all[('Why were Jorgenson and Ganti not put to death?', 'Human Consultancy \# print(len(quote_length(span)))
```

```
##
                                                 Settings
                                                                Average_Span_Difference
## 0
        AI Consultancy Dishonest - AI Consultancy Honest
                                                                              137.416667
## 1
                    AI Consultancy Dishonest - AI Debate
                                                                              141.500000
## 2
       AI Consultancy Dishonest - Human Consultancy D...
                                                                             169.833333
## 3
       AI Consultancy Dishonest - Human Consultancy H...
                                                                              96.384615
## 4
                 AI Consultancy Dishonest - Human Debate
                                                                             129.153846
## 5
        AI Consultancy Honest - AI Consultancy Dishonest
                                                                             202.916667
                       AI Consultancy Honest - AI Debate
## 6
                                                                             189.750000
## 7
       AI Consultancy Honest - Human Consultancy Dish...
                                                                             211.333333
## 8
        AI Consultancy Honest - Human Consultancy Honest
                                                                             177.416667
## 9
                    AI Consultancy Honest - Human Debate
                                                                             197.833333
## 10
                    AI Debate - AI Consultancy Dishonest
                                                                              85.083333
                       AI Debate - AI Consultancy Honest
## 11
                                                                              65.500000
                 AI Debate - Human Consultancy Dishonest
## 12
                                                                              94.500000
## 13
                    AI Debate - Human Consultancy Honest
                                                                              78.000000
## 14
                                AI Debate - Human Debate
                                                                              88.062500
## 15
       Human Consultancy Dishonest - AI Consultancy D...
                                                                              340.166667
       Human Consultancy Dishonest - AI Consultancy H...
## 16
                                                                              315.000000
## 17
                 Human Consultancy Dishonest - AI Debate
                                                                             404.750000
## 18
       Human Consultancy Dishonest - Human Consultanc...
                                                                             334.815789
## 19
              Human Consultancy Dishonest - Human Debate
                                                                             300.847826
## 20
       Human Consultancy Honest - AI Consultancy Dish...
                                                                              280.692308
        Human Consultancy Honest - AI Consultancy Honest
## 21
                                                                             293.333333
## 22
                    Human Consultancy Honest - AI Debate
                                                                             299.083333
       Human Consultancy Honest - Human Consultancy D...
## 23
                                                                             272.763158
## 24
                 Human Consultancy Honest - Human Debate
                                                                             255.380952
## 25
                 Human Debate - AI Consultancy Dishonest
                                                                             179.153846
## 26
                    Human Debate - AI Consultancy Honest
                                                                             201.250000
                                Human Debate - AI Debate
## 27
                                                                             188.625000
```

```
Human Debate - Human Consultancy Dishonest ...
                                                                           163.956522
## 29
                Human Debate - Human Consultancy Honest ...
                                                                           147.880952
##
## [30 rows x 3 columns]
filtered df = split span df[
    (split_span_df["Setting 1"] == "Human Debate") &
    ((split_span_df["Setting 2"] == "Human Consultancy Honest") | (split_span_df["Setting 2"] == "Human
1
print(filtered_df.groupby(['Setting 2','Acc_1','Acc_2'])['Span Difference Count'].describe())
##
                                            count
                                                        mean
                                                                      75%
                                                                             max
## Setting 2
                              Acc_1 Acc_2
## Human Consultancy Dishonest False False
                                             5.0 187.200000
                                                                  275.00 293.0
                                                              ... 236.25
                                    True
                                             8.0 149.625000
                                                                           275.0
##
                              True False
                                            16.0 148.687500
                                                              ... 182.00 358.0
##
                                    True
                                            17.0 178.235294 ... 233.00 526.0
## Human Consultancy Honest
                              False False
                                             4.0 144.750000 ... 257.25 267.0
##
                                    True
                                            12.0 122.416667 ... 164.75 325.0
##
                              True False
                                             4.0 197.000000
                                                                   224.25 273.0
##
                                    True
                                            22.0 153.409091 ... 195.00 394.0
##
## [8 rows x 8 columns]
# Calculate the IQR and bounds for each group in 'Setting 2'
grouped = filtered_df.groupby('Setting 2')['Span Difference Count']
Q1 = grouped.quantile(0.25)
Q3 = grouped.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Filter out the outliers based on the computed bounds
filtered no outliers = filtered df[
    (filtered df['Setting 2'].map(lower bound) <= filtered df['Span Difference Count']) &
    (filtered_df['Setting 2'].map(upper_bound) >= filtered_df['Span Difference Count'])
]
filtered_no_outliers
```

```
##
                                                 Question
                                                                                                   Setti
## 0
        By the end of the passage. what can we underst...
                                                                    Human Debate - Human Consultancy Hon-
## 2
        By the end of the passage. what can we underst... ...
                                                                Human Debate - Human Consultancy Dishon
## 30
       Did the questions Tremaine needed answers to g... ...
                                                                    Human Debate - Human Consultancy Hon-
## 32
        Did the questions Tremaine needed answers to g... ...
                                                                Human Debate - Human Consultancy Dishon
## 60
       From the information the story provides, do yo...
                                                                    Human Debate - Human Consultancy Hon-
## ..
                                                           . . .
## 510 Why was the main character daydreaming about b...
                                                                Human Debate - Human Consultancy Dishon
                  Why was the murderer trying to kill Bo?
                                                                   Human Debate - Human Consultancy Hon-
## 514
                                                           . . .
                  Why was the murderer trying to kill Bo? ... Human Debate - Human Consultancy Dishon
## 516
```

```
## 544
           Why were Jorgenson and Ganti not put to death? ... Human Debate - Human Consultancy Dishon
## 546
           Why were Jorgenson and Ganti not put to death? ...
                                                                      Human Debate - Human Consultancy Hon-
##
## [87 rows x 10 columns]
print(filtered_no_outliers.groupby(['Setting 2','Acc_1','Acc_2'])['Span Difference Count'].describe())
##
                                                                           75%
                                              count
                                                            mean
                                                                                  max
## Setting 2
                                Acc_1 Acc_2
                                                                       275.00
  Human Consultancy Dishonest False False
                                                5.0
                                                     187.200000
                                                                                293.0
##
                                       True
                                                8.0
                                                     149.625000
                                                                       236.25
                                                                                275.0
##
                                True
                                      False
                                               16.0
                                                     148.687500
                                                                       182.00
                                                                                358.0
##
                                       True
                                               16.0 156.500000
                                                                       220.25
                                                                                289.0
## Human Consultancy Honest
                                False False
                                                4.0
                                                     144.750000
                                                                       257.25
                                                                                267.0
                                                     122.416667
                                                                       164.75
                                                                                325.0
##
                                       True
                                               12.0
##
                                True False
                                                4.0
                                                     197.000000
                                                                       224.25
                                                                                273.0
##
                                       True
                                               22.0 153.409091
                                                                       195.00 394.0
##
## [8 rows x 8 columns]
characters<- py$characters_agg
span_difference_debate_consultancies<-py$filtered_df</pre>
ggplot(span_difference_debate_consultancies) +
 geom_boxplot(aes(x = `Setting 2`, y = `Span Difference Count`))
   500 -
   400 -
Span Difference Count
   300 -
   200 -
```

Human Consultancy Dishonest
Setting 2
Human Consultancy Honest

100 -

0 -

```
filtered_outliers <- characters %>%
  group_by(Final_Setting) %>%
  mutate(Q1 = quantile(quote_length, 0.25),
        Q3 = quantile(quote_length, 0.75),
        IQR = Q3 - Q1,
        lower_bound = Q1 - 1.5 * IQR,
        upper_bound = Q3 + 1.5 * IQR)

ggplot(characters) +
  geom_boxplot(aes(x = Final_Setting, y = `Quote length`)) +
  labs(y = "Total Quote Length (characters)")+
  theme_minimal()
```



```
filtered <- characters %>%
  group_by(Final_Setting) %>%
mutate(Q1 = quantile(quote_length, 0.25),
        Q3 = quantile(quote_length, 0.75),
        IQR = Q3 - Q1,
        lower_bound = Q1 - 1.5 * IQR,
        upper_bound = Q3 + 1.5 * IQR) %>%
  filter(quote_length > 0 & quote_length < 750) %>%
  select(-Q1, -Q3, -IQR, -lower_bound, -upper_bound)
filtered %>%
  ggplot() +
  geom_boxplot(aes(x = Final_Setting, y = quote_length)) +
```

```
labs(y = "Total Quote Length in a Debate/Consultancy (unique tokens)", x = "Setting")+
theme_minimal()
```



```
characters %>%
  ggplot() +
  geom_boxplot(aes(x = Final_Setting, y = quote_length)) +
  labs(y = "Total Quote Length in a Debate/Consultancy (unique tokens)", x = "Setting")+
  theme_minimal()
```


pairwise.t.test(filtered\$quote_length, filtered\$Final_Setting)

```
##
   Pairwise comparisons using t tests with pooled SD
##
## data: filtered$quote_length and filtered$Final_Setting
##
##
                     AI Consultancy AI Debate
                                                    Human Consultancy
## AI Debate
                     0.04290
## Human Consultancy 0.00017
                                    0.00000000018 -
## Human Debate
                     0.80222
                                    0.00443
                                                   0.00000019213
##
## P value adjustment method: holm
filtered %>% group_by(Final_Setting) %>% summarise(avground = median(quote_length))
## # A tibble: 4 x 2
     Final_Setting
##
                       avground
     <chr>
                          <dbl>
## 1 AI Consultancy
                           160
## 2 AI Debate
                           118.
## 3 Human Consultancy
                           296
## 4 Human Debate
                           181
```

```
characters %>% group_by(Final_Setting) %>% summarise(avground = median(quote_length))
```

```
characters <- characters %>%
  group_by(`Room name`,) %>%
  mutate(`Max judge rounds by room` = max(`Num previous judging rounds`, na.rm = TRUE)) %>%
  ungroup()
ggplot(characters) +
  geom_boxplot(aes(x = Final_Setting, y = `Max judge rounds by room`)) +
  labs(y = 'Max Judging Rounds') +
  theme_minimal()
```


pairwise.t.test(characters\$`Max judge rounds by room`, characters\$Final_Setting)

```
##
## Pairwise comparisons using t tests with pooled SD
##
```

```
## data: characters$'Max judge rounds by room' and characters$Final_Setting
##
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
                     0.137
                                     0.914
## Human Consultancy 0.055
                                               0.0000020
## Human Debate
                     0.0000003
                                     0.002
## P value adjustment method: holm
filtered <- characters %>%
  group by (Final Setting) %>%
  mutate(Q1 = quantile(`Max judge rounds by room`, 0.25),
         Q3 = quantile(`Max judge rounds by room`, 0.75),
         IQR = Q3 - Q1,
         lower_bound = Q1 - 1.5 * IQR,
         upper_bound = Q3 + 1.5 * IQR) %>%
  filter(`Max judge rounds by room` >= lower_bound & `Max judge rounds by room` <= upper_bound) %>%
  select(-Q1, -Q3, -IQR, -lower_bound, -upper_bound)
filtered %>%
  ggplot() +
  geom_boxplot(aes(x = Final_Setting, y = `Max judge rounds by room`), outlier.shape = NA) +
  labs(y = "Rounds", x = "Setting")+
  theme_minimal()
   10.0
    7.5
Rounds
    5.0
    2.5
              Al Consultancy
                                   Al Debate
                                                   Human Consultancy
                                                                         Human Debate
```

Setting

```
characters %>%
  ggplot() +
  geom_boxplot(aes(x = Final_Setting, y = `Max judge rounds by room`)) +
  labs(y = "Rounds", x = "Setting")+
  theme_minimal()
```


pairwise.t.test(filtered\$quote_length, filtered\$Final_Setting)

```
##
   Pairwise comparisons using t tests with pooled SD
##
## data: filtered$quote_length and filtered$Final_Setting
##
##
                     AI Consultancy
                                      AI Debate
                                                       Human Consultancy
                     0.192
## AI Debate
## Human Consultancy 0.00000150627713 0.00000000000097 -
## Human Debate
                     0.560
                                      0.018
                                                       0.0000000003675
##
## P value adjustment method: holm
filtered ">" group_by(Final_Setting) ">" summarise(avground = mean(`Max judge rounds by room`))
## # A tibble: 4 x 2
   Final_Setting
                       avground
```

Length of debates, stratified

```
per_turn = turns.merge(
        debates[["Room name", "Honest debater", "Dishonest debater", "Question", "Article ID",
                 "Speed annotator accuracy", "Untimed annotator context", "Untimed annotator context bins
        how="left",
        on="Room name",
    )
print(per_turn.groupby('Final_Setting')['Num previous judging rounds'].mean())
## Final_Setting
## AI Consultancy
                        4.173252
## AI Debate
                        2.986231
## Human Consultancy
                        2.759310
## Human Debate
                        1.475072
## Name: Num previous judging rounds, dtype: float64
# Calculate the IQR and bounds for each group in 'Setting 2'
grouped = per_turn.groupby('Setting')['Num previous judging rounds']
Q1 = grouped.quantile(0.25)
Q3 = grouped.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Filter out the outliers based on the computed bounds
filtered_no_outliers = per_turn[
    (per_turn['Setting'].map(lower_bound) <= per_turn['Num previous judging rounds']) &</pre>
    (per_turn['Setting'].map(upper_bound) >= per_turn['Num previous judging rounds'])
٦
filtered_no_outliers
```

```
##
                               Room name ... Final_Accuracy
## 0
                              ambition-8 ...
                                                           True
## 1
                              ambition-8 ...
                                                           True
## 2
                              ambition-8 ...
                                                           True
## 3
                              ambition-8 ...
                                                           True
## 4
                              ambition-8 ...
                                                           True
## ...
                                      . . . . . . . . . . . .
                                                           . . .
## 6013
                           break-a-leg-3 ...
                                                           True
## 6014
                           break-a-leg-3 ...
                                                           True
```

```
## 6015 the-absurdity-of-family-love-2 ...
                                                        True
## 6016 the-absurdity-of-family-love-2 ...
                                                        True
## 6017 the-absurdity-of-family-love-2 ...
                                                        True
##
## [5875 rows x 27 columns]
for setting in filtered_no_outliers['Setting'].unique():
  per_turn_setting = filtered_no_outliers[filtered_no_outliers['Setting'] == setting]
 print(setting)
  # Calculate the maximum 'Num previous judging rounds' for each combination of 'Room name' and 'Partic
  per_turn_setting['Max judge rounds by room'] = per_turn_setting.groupby(['Room name', 'Participant'])
  ## Just based on the number of rounds
  for i in range(1, per_turn_setting['Max judge rounds by room'].max() + 1):
      max_rounds = per_turn_setting[(per_turn_setting['Max judge rounds by room'] == i) & (per_turn_set
     print(len(max rounds))
      # Group by 'Num previous judging rounds' and calculate the mean of 'Probability correct'
      average_pc_per_round = max_rounds.groupby('Num previous judging rounds')['Probability correct'].m
      # Create a new DataFrame with 'Num previous judging rounds' and 'Average pc per round'
     probability_correct_round = pd.DataFrame({'Num previous judging rounds': average_pc_per_round.ind
                                                'Average pc per round': average_pc_per_round.values})
      # Plotting the data with label for the line
     plt.plot(probability_correct_round['Num previous judging rounds'], probability_correct_round['Ave
  plt.title(f"Probability Correct for Setting: {setting}")
  plt.xlabel('Num previous judging rounds')
  plt.ylabel('Average pc per round')
  plt.legend()
  plt.show()
```


Probability Correct for Setting: Human Consultancy Honest


```
strat <- py$per_turn</pre>
strat <- strat %>%
  group_by(`Room name`, Participant) %>%
 mutate(`Max judge rounds by room` = max(`Num previous judging rounds`, na.rm = TRUE)) %>%
 ungroup()
strat <- strat %>%
  mutate(`Max judge rounds bin` = cut(`Max judge rounds by room`,
                                      breaks = seq(0, max(`Max judge rounds by room`, na.rm = TRUE) + 3
                                      labels = FALSE,
                                      include.lowest = TRUE,
                                      right = FALSE))
# Plot using ggplot2
strat %>%
  group_by(Setting, `Num previous judging rounds`, `Max judge rounds bin`) %>%
  summarize(
    `Average Probability Correct` = mean(`Probability correct`, na.rm = TRUE),
   n = n(),
   se = sqrt(`Average Probability Correct` * (1 - `Average Probability Correct`) / n)
  ) %>%
  mutate(
   lower_ci = `Average Probability Correct` - 1.96 * se,
   upper_ci = `Average Probability Correct` + 1.96 * se
  ggplot(aes(x = `Num previous judging rounds`, y = `Average Probability Correct`, col = as.factor(`Max
  geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci, fill = as.factor(`Max judge rounds bin`), group = a
```

```
labs(title = "Average Probability Correct Each Round, \nstratified by Max Round Binned",
    x = "Round",
    y = "Average Intermediate Probability Correct") +
geom_line() +
facet_wrap(~Setting) +
theme_bw() +
theme(legend.position = "none")
```

'summarise()' has grouped output by 'Setting', 'Num previous judging rounds'.
You can override using the '.groups' argument.

Average Probability Correct Each Round, stratified by Max Round Binned

'summarise()' has grouped output by 'Setting', 'Num previous judging rounds'.

You can override using the '.groups' argument.

Warning: Removed 10 rows containing missing values ('geom_line()').

Average Probability Correct by Percentage of Completion

Time (offline judging..?)

1.169167

1.836600 5.664767

min

25%

50%

```
## 75%
              13.967783
## max
            4369.697933
## Name: Offline judging time, dtype: float64
## Only 13...
# Filter out rows with NaT values
valid_judging_time = judgments["Offline judging time"].dropna()
# Calculate summary statistics
summary_stats = valid_judging_time.describe()
print(summary_stats)
## count
            203.000000
## mean
            255.826710
## std
           1372.208730
## min
              0.667467
## 25%
               2.867950
## 50%
              5.176250
## 75%
             10.295583
           14202.493917
## max
## Name: Offline judging time, dtype: float64
# Filter judgments with offline judging time above 65 minutes
filtered_judgments = judgments[(judgments["Offline judging time"] < 65) & (judgments["Untimed annotator
# Print filtered judgments
# print("Filtered judgments with offline judging time above 65 minutes:")
print(filtered_judgments['Offline judging time'].describe())
## count
         193.000000
## mean
            8.013787
## std
             9.410150
## min
             0.667467
## 25%
              2.850450
             5.107450
## 50%
## 75%
              8.716300
## max
             64.173267
## Name: Offline judging time, dtype: float64
# Create the histogram
plt.hist(filtered_judgments['Offline judging time'], bins=10)
# Set labels and title
plt.xlabel("Offline Judging Time (minutes)")
plt.ylabel("Frequency")
plt.title("Histogram of Offline Judging Time")
# Display the histogram
plt.show()
```

Histogram of Offline Judging Time


```
aggregates = {
    'Final probability correct': 'mean',
    'Untimed annotator context': 'mean'
}
filtered_judgments = filtered_judgments.groupby('Offline judging time').agg(aggregates).reset_index()
```

Analysis

Question Difficulty

confounder rounds, quotes

```
judgments["Number of judge continues bins"] = pd.cut(
    judgments["Number of judge continues"],
    bins=[0, 3, 6, 9, float('inf')], # bin edges
    labels=['1-3', '4-6', '7-9', '10+'], # labels for the resulting bins
    right=True # includes the right edge of the bin
)
aggregated_df = judgments.groupby(["Setting", "Number of judge continues bins"])["Final_Accuracy"].agg(
    Proportion_True=lambda x: x.mean(),
    Total_Count="size"
).reset_index()
```

<string>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in

\

```
pd.set_option('display.max_columns', None)
print(aggregated_df)
```

##		Setting Number of judge continues bi	ns
##	0		-3
##	1	· ·	-6
##	2	AI Consultancy Dishonest 7	-9
##	3	AI Consultancy Dishonest	0+
##	4	AI Consultancy Honest	-3
##	5	AI Consultancy Honest 4	-6
##	6	AI Consultancy Honest 7	-9
##	7	AI Consultancy Honest	0+
##	8	AI Debate 1	-3
##	9	AI Debate 4	-6
##	10	AI Debate 7	-9
##	11		0+
##		3	-3
##		3	-6
##		3	-9
##		,	0+
##		ÿ	-3
##		3	-6
##		· ·	-9
##		3	0+
##			-3
##			-6
##			-9
##	23	Human Debate	0+
##		Proportion True Total Count	
##	0	Proportion_True Total_Count 0.962963 27	
##		0.833333 6	
##		1.000000 2	
##		0.400000 5	
##		0.740741 27	
##		0.777778 18	
##		1.000000 3	
##		0.625000 8	
##	8	0.843137 51	
##	9	0.740741 27	
##	10	0.700000 10	
##	11	0.500000 4	
##	12	0.483871 31	
##	13	0.655172 29	
##	14	0.833333 6	
##	15	0.500000 2	
##	16	0.928571 28	
##	17	0.833333 18	
##	18	1.000000 5	
##	19	0.500000 2	
##	20	0.871069 318	
##	21	0.859649 57	

```
## 22
              1.000000
## 23
                                  0
                   NaN
pd.reset_option('display.max_columns')
total_counts_for_setting = judgments.groupby('Final_Setting').size()
result = judgments.groupby(["Final_Setting", "Untimed annotator context bins", "Number of judge continu
    Proportion_True=pd.NamedAgg(column='Final_Accuracy', aggfunc=lambda x: x.mean()),
    Context_Count=pd.NamedAgg(column='Final_Accuracy', aggfunc='size'),
    Proportion_Context=pd.NamedAgg(column='Final_Setting', aggfunc=lambda x: len(x) / total_counts_for_
).reset index()
## <string>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in
print(f'Is it number of rounds (meaning more evidence) that confounds the consultancy accuracy?:\n{resu
## Is it number of rounds (meaning more evidence) that confounds the consultancy accuracy?:
##
       Final_Setting ... Proportion_Context
## 0
       AI Consultancy
                                          NaN
      AI Consultancy
                                     0.010417
## 1
## 2
      AI Consultancy
                                          NaN
## 3
      AI Consultancy ...
                                          NaN
## 4
      AI Consultancy
                                     0.291667
## ..
                                           . . .
## 59
        Human Debate ...
                                          NaN
                                     0.076923
## 60
       Human Debate ...
        Human Debate ...
                                     0.018568
## 61
        Human Debate ...
## 62
                                          NaN
## 63
        Human Debate ...
                                          NaN
##
## [64 rows x 6 columns]
judgments$`Untimed annotator context bins` <- as.factor(judgments$`Untimed annotator context bins`)</pre>
bootstrap_mean <- function(data, indices) {</pre>
 return(mean(data[indices], na.rm = TRUE))
}
judgments_online %>%
  group_by(`Untimed annotator context bins`, Final_Setting) %>%
  do({
   boot_result <- boot(data = .$Final_Accuracy, statistic = bootstrap_mean, R = 1000)</pre>
      mean_accuracy = mean(boot_result$t, na.rm = TRUE),
      lower_ci = quantile(boot_result$t, 0.025),
      upper_ci = quantile(boot_result$t, 0.975)
   )
  }) %>%
  ggplot(aes(x = `Untimed annotator context bins`, y = mean_accuracy, color = Final_Setting, group = Fi
  geom_line() +
  geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci, fill = Final_Setting, color = NULL), alpha = 0.25)
  labs(y = "Average Final Accuracy", x = "Untimed Annotator Context") +
```

```
theme_minimal() +
facet_wrap(~ Final_Setting)
```


Judge Skill

Judge "Experience"

```
judgments_online %>%
  group_by(Final_Setting, Participant) %>%
  arrange(`End time`) %>%
  mutate(count=row_number()) %>%
  group_by(Final_Setting, count) %>%
  do({
   boot_result <- boot(data = .$Final_Accuracy, statistic = bootstrap_mean, R = 1000)</pre>
   data.frame(
      mean_accuracy = mean(boot_result$t, na.rm = TRUE),
      lower_ci = quantile(boot_result$t, 0.025, na.rm = TRUE),
      upper_ci = quantile(boot_result$t, 0.975, na.rm = TRUE)
   )
  }) %>%
  ggplot(aes(x = count, y = mean_accuracy, color = Final_Setting, group = Final_Setting)) +
  geom_line() +
  geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci, fill = Final_Setting, color = NULL), alpha = 0.25)
```

```
labs(y = "Average Final Accuracy", x = "Judging Counts") +
theme_minimal() +
facet_wrap(~ Final_Setting)
```



```
subset(judgments_online, judgments_online['Setting'] == 'Human Debate') %>%
  group_by(`Untimed annotator context bins`, Participant) %>%
  arrange(`End time`) %>%
  mutate(count=row_number()) %>%
  group_by(`Untimed annotator context bins`, count) %>%
  do({
   boot_result <- boot(data = .$Final_Accuracy, statistic = bootstrap_mean, R = 1000)</pre>
   data.frame(
     mean_accuracy = mean(boot_result$t, na.rm = TRUE),
     lower_ci = quantile(boot_result$t, 0.025, na.rm = TRUE),
      upper_ci = quantile(boot_result$t, 0.975, na.rm = TRUE)
   )
  }) %>%
  ggplot(aes(x = count, y = mean_accuracy, color = `Untimed annotator context bins`, group = `Untimed a
  geom_line() +
  geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci, fill = `Untimed annotator context bins`, color = NU
  labs(y = "Average Final Accuracy", x = "Judging Counts") +
  theme minimal() +
  facet_wrap(~ `Untimed annotator context bins`)
```


Calibration

S: (1) debaters didnt learn calibration -> calibration over time? S: (2) dishonest debater tricks

```
library(ggplot2)
library(dplyr)
correctColor = "#008000"
incorrectColor = "#DC143C"
# Segregate confidently correct and confidently wrong
judgments_online$confidence_label <- case_when(</pre>
  judgments_online$`Final probability correct` > 0.95 ~ "Confidently Correct",
judgments_online$`Final probability correct` < 0.05 ~ "Confidently Wrong",</pre>
  TRUE ~ "Neutral"
)
# Filter out only the rows with confidently correct and confidently wrong labels
filtered_data <- judgments_online %>%
  filter(confidence_label != "Neutral")
# Count the occurrences for each setting and confidence label
count_data <- filtered_data %>%
  group_by(`Final_Setting`, confidence_label) %>%
  summarise(count = n())
```

```
## 'summarise()' has grouped output by 'Final_Setting'. You can override using the
## '.groups' argument.
```

```
# Plot
ggplot(count_data, aes(x = `Final_Setting`, y = count, fill = confidence_label)) +
   geom_bar(stat = "identity", position = "dodge") +
   scale_fill_manual(values = c("Confidently Correct" = correctColor, "Confidently Wrong" = incorrectCol
   labs(title = "Confident Mistakes and Correct by Setting", y = "Count", x = "Setting") +
   theme_minimal()
```

Confident Mistakes and Correct by Setting


```
# Calculate the color value for each row
judgments_online$color_value <- log2(judgments_online$`Final probability correct`) - (0.05 * judgments_online$'
# Count the occurrences for each setting and 'Final probability correct' value
count_data <- judgments_online %>%
    group_by(`Final_Setting`, `Final probability correct`, color_value) %>%
    summarise(count = n())
```

'summarise()' has grouped output by 'Final_Setting', 'Final probability
correct'. You can override using the '.groups' argument.

```
# Plot
ggplot(count_data, aes(x = `Final_Setting`, y = count, fill = color_value, group = `Final probability c
geom_bar(stat = "identity", position = "stack") +
scale_fill_gradient(low = "#DC143C", high = "#008000") + # Adjust as needed
```

Distribution of Final Probabilities by Setting


```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.calibration import calibration curve
def calibration_plot(df, setting_name, ax=None):
   df['outcome'] = pd.Series(df['Final probability correct'] > 0.5, dtype=int)
   df['confidence'] = df['Final probability correct'].apply(lambda x: x if x > 0.5 else 1 - x)
   df['bins'] = pd.cut(df['confidence'], [0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99])
    # Group by bins and calculate the mean outcome
    df_grouped = df.groupby('bins')['outcome'].mean().reset_index()
    # Compute standard error in each bin
    std_error = df.groupby('bins')['outcome'].apply(lambda x: x.std() / np.sqrt(len(x)) if len(x) > 1 e
   df_grouped['std_error'] = df['bins'].cat.categories.map(std_error)
    if ax is None:
       plt.rcParams.update({'font.size': 16})
       fig, ax = plt.subplots(figsize=(8, 6))
    # Plot the calibration curve with error bars
    ax.plot(df_grouped['bins'].apply(lambda x: x.mid), df_grouped['outcome'], marker='o', linewidth=2,
    ax.errorbar(df_grouped['bins'].apply(lambda x: x.mid), df_grouped['outcome'], yerr=df_grouped['std_
    ax.set_xlabel('Final judge probability')
    ax.set_ylabel('Accuracy')
```

```
ax.set_title(f'Judge calibration for {setting_name}')
    ax.plot([0.5, 1], [0.5, 1], linestyle='--', color='gray', label='Perfect Calibration')
   ax.grid(True)
    ax.legend()
    # Calculate ECE
   actual_labels = df['outcome'].values
    predicted_probs = df['Final probability correct'].values
   prob true, prob pred = calibration curve(actual labels, predicted probs, n bins=10)
   ece = np.mean(np.abs(prob_pred - prob_true) * (prob_true.size / len(actual_labels)))
   print(f"Expected Calibration Error (ECE) for {setting_name}: {ece:.4f}")
   plt.show()
   plt.rcParams.update({'font.size': plt.rcParamsDefault['font.size']})
# Loop through each unique setting and create a calibration plot
for setting in judgments_online['Final_Setting'].unique():
    setting_df = judgments_online[judgments['Final_Setting'] == setting].copy()
    calibration_plot(setting_df, setting)
## Expected Calibration Error (ECE) for AI Consultancy: 0.0213
## Expected Calibration Error (ECE) for Human Debate: 0.0152
## Expected Calibration Error (ECE) for AI Debate: 0.0268
## Expected Calibration Error (ECE) for Human Consultancy: 0.0220
## <string>:4: UserWarning: Boolean Series key will be reindexed to match DataFrame index.
## <string>:7: FutureWarning: The default of observed=False is deprecated and will be changed to True in
## <string>:9: FutureWarning: The default of observed=False is deprecated and will be changed to True in
## <string>:4: UserWarning: Boolean Series key will be reindexed to match DataFrame index.
## <string>:7: FutureWarning: The default of observed=False is deprecated and will be changed to True in
## <string>:9: FutureWarning: The default of observed=False is deprecated and will be changed to True in
## <string>:4: UserWarning: Boolean Series key will be reindexed to match DataFrame index.
## <string>:7: FutureWarning: The default of observed=False is deprecated and will be changed to True in
## <string>:9: FutureWarning: The default of observed=False is deprecated and will be changed to True in
## <string>:4: UserWarning: Boolean Series key will be reindexed to match DataFrame index.
## <string>:7: FutureWarning: The default of observed=False is deprecated and will be changed to True in
## <string>:9: FutureWarning: The default of observed=False is deprecated and will be changed to True in
```


Judge Involvement

Judge Mistakes

Debater Skill

```
## [1] "Participant"
## [2] "base_room_name"
## [3] "Room name"
## [4] "Room start time"
## [5] "Role"
## [6] "Is turn"
## [7] "Is over"
## [8] "Number of judge continues"
```

```
## [9] "Final probability correct"
## [10] "Offline judging start time"
## [11] "Offline judging end time"
## [12] "other"
## [13] "factual informativeness (comparative).1"
## [14] "factual informativeness (comparative).2"
## [15] "facts versus semantics (single)"
## [16] "factual accuracy (single)"
## [17] "clarity.1"
## [18] "clarity.2"
## [19] "factual accuracy.1"
## [20] "factual accuracy.2"
## [21] "judge reasoning"
## [22] "reason for outcome"
## [23] "protocol"
## [24] "evidence use.1"
## [25] "evidence use.2"
## [26] "evidence in story.1"
## [27] "evidence in story.2"
## [28] "other factors"
## [29] "judge adaptation (single)"
## [30] "evidence in debate.1"
## [31] "evidence in debate.2"
## [32] "interface"
## [33] "evidence in debate (single)"
## [34] "facts versus semantics.1"
## [35] "facts versus semantics.2"
## [36] "clash.1"
## [37] "clash.2"
## [38] "identity guesses.Judge"
## [39] "identity guesses.Debater A"
## [40] "identity guesses.Debater B"
## [41] "judge adaptation.1"
## [42] "judge adaptation.2"
## [43] "subjective correctness"
## [44] "evidence use (single)"
## [45] "factual informativeness (total)"
## [46] "judge strategies"
## [47] "clarity (single)"
## [48] "Debater A"
## [49] "Debater B"
## [50] "Honest debater"
## [51] "Dishonest debater"
       "Is single debater"
## [52]
## [53] "Has honest debater"
## [54] "Final_Setting"
## [55]
       "Setting"
## [56] "Question"
## [57] "Article ID"
## [58] "Speed annotator accuracy bins"
## [59]
       "Untimed annotator context bins"
## [60] "Speed annotator accuracy"
## [61] "Untimed annotator context"
## [62] "Is offline"
```

```
## [63] "End time"
## [64] "Last modified time"
## [65] "Final Accuracy"
## [66] "random.intercept.preds"
dishonest <- judgments[!is.na(judgments$`Dishonest debater`), ]</pre>
model3 <- glm(Final_Accuracy ~ relevel(factor(`Dishonest debater`), 'Shlomo Kofman') + relevel(factor(F
summary(model3)
##
## Call:
## glm(formula = Final_Accuracy ~ relevel(factor('Dishonest debater'),
       "Shlomo Kofman") + relevel(factor(Final_Setting), "Human Debate"),
       family = "binomial", data = judgments[!is.na(judgments$'Dishonest debater'),
##
##
           ])
##
## Coefficients: (1 not defined because of singularities)
                                                                              Estimate
## (Intercept)
                                                                               0.52739
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Adelle Fernando
                                                                               0.95584
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Aliyaah Toussaint
                                                                               2.41514
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Anuj Jain
                                                                               1.47707
## relevel(factor('Dishonest debater'), "Shlomo Kofman")David Rein
                                                                               1.41852
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Emmanuel Makinde
                                                                               17.03868
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Ethan Rosen
                                                                               1.45361
## relevel(factor('Dishonest debater'), "Shlomo Kofman")GPT-4
                                                                               0.75355
## relevel(factor('Dishonest debater'), "Shlomo Kofman") Jackson Petty
                                                                               2.08187
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jessica Li
                                                                               0.53268
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julian Michael
                                                                               2.41705
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julien Dirani
                                                                               1.55205
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Max Layden
                                                                              17.03868
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Noor Mirza-Rashid
                                                                              -0.05738
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Reeya Kansra
                                                                               1.44916
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Salsabila Mahdi
                                                                               1.47874
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sam Jin
                                                                               1.30012
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sean Wang
                                                                               1.43988
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Shreeram Modi
                                                                               1.45605
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Vishakh Padmakumar
                                                                              17.03868
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                               0.66498
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                                    NΑ
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                              -1.33091
##
                                                                            Std. Error
## (Intercept)
                                                                               0.66115
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Adelle Fernando
                                                                               0.73718
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Aliyaah Toussaint
                                                                               1.23691
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Anuj Jain
                                                                               0.84884
## relevel(factor('Dishonest debater'), "Shlomo Kofman")David Rein
                                                                               0.90447
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Emmanuel Makinde
                                                                            2797.44202
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Ethan Rosen
                                                                               0.84947
## relevel(factor('Dishonest debater'), "Shlomo Kofman")GPT-4
                                                                               0.70782
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jackson Petty
                                                                               0.98698
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jessica Li
                                                                               0.74081
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julian Michael
                                                                               1.22055
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julien Dirani
                                                                               1.24985
```

```
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Max Layden
                                                                            3956.18038
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Noor Mirza-Rashid
                                                                               0.87300
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Reeya Kansra
                                                                               0.90748
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Salsabila Mahdi
                                                                               0.79085
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sam Jin
                                                                               0.93690
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sean Wang
                                                                               0.75579
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Shreeram Modi
                                                                               0.75586
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Vishakh Padmakumar 863.30958
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                               0.54080
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                                    NA
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                               0.32388
                                                                            z value
## (Intercept)
                                                                              0.798
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Adelle Fernando
                                                                              1.297
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Aliyaah Toussaint
                                                                              1.953
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Anuj Jain
                                                                              1.740
## relevel(factor('Dishonest debater'), "Shlomo Kofman")David Rein
                                                                              1.568
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Emmanuel Makinde
                                                                              0.006
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Ethan Rosen
                                                                              1.711
## relevel(factor('Dishonest debater'), "Shlomo Kofman")GPT-4
                                                                              1.065
## relevel(factor('Dishonest debater'), "Shlomo Kofman") Jackson Petty
                                                                              2.109
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jessica Li
                                                                              0.719
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julian Michael
                                                                              1.980
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julien Dirani
                                                                              1.242
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Max Layden
                                                                              0.004
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Noor Mirza-Rashid
                                                                             -0.066
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Reeya Kansra
                                                                              1.597
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Salsabila Mahdi
                                                                              1.870
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sam Jin
                                                                              1.388
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sean Wang
                                                                              1.905
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Shreeram Modi
                                                                              1.926
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Vishakh Padmakumar
                                                                              0.020
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                              1.230
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                                 NA
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                             -4.109
                                                                             Pr(>|z|)
## (Intercept)
                                                                               0.4251
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Adelle Fernando
                                                                               0.1948
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Aliyaah Toussaint
                                                                               0.0509
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Anuj Jain
                                                                               0.0818
## relevel(factor('Dishonest debater'), "Shlomo Kofman")David Rein
                                                                               0.1168
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Emmanuel Makinde
                                                                               0.9951
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Ethan Rosen
                                                                               0.0870
## relevel(factor('Dishonest debater'), "Shlomo Kofman")GPT-4
                                                                               0.2871
## relevel(factor('Dishonest debater'), "Shlomo Kofman") Jackson Petty
                                                                               0.0349
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jessica Li
                                                                               0.4721
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julian Michael
                                                                               0.0477
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julien Dirani
                                                                               0.2143
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Max Layden
                                                                               0.9966
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Noor Mirza-Rashid
                                                                               0.9476
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Reeya Kansra
                                                                               0.1103
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Salsabila Mahdi
                                                                               0.0615
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sam Jin
                                                                               0.1652
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sean Wang
                                                                               0.0568
```

```
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Shreeram Modi
                                                                              0.0541
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Vishakh Padmakumar
                                                                              0.9843
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                              0.2188
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                                  NΑ
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                           0.0000397
##
## (Intercept)
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Adelle Fernando
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Aliyaah Toussaint
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Anuj Jain
## relevel(factor('Dishonest debater'), "Shlomo Kofman")David Rein
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Emmanuel Makinde
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Ethan Rosen
## relevel(factor('Dishonest debater'), "Shlomo Kofman")GPT-4
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jackson Petty
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jessica Li
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julian Michael
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julien Dirani
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Max Layden
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Noor Mirza-Rashid
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Reeya Kansra
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Salsabila Mahdi
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sam Jin
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sean Wang
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Shreeram Modi
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Vishakh Padmakumar
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
## relevel(factor(Final_Setting), "Human Debate")AI Debate
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                           ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 541.37 on 576 degrees of freedom
## Residual deviance: 487.85 on 555 degrees of freedom
## AIC: 531.85
## Number of Fisher Scoring iterations: 16
result <- judgments_online %>%
  group_by(`Dishonest debater`) %>%
  summarize(
    Win_Rate = sum(Final_Accuracy == "FALSE") / n()
  ) %>%
  ungroup() %>%
  arrange(desc(Win_Rate))
result
## # A tibble: 20 x 2
##
      'Dishonest debater' Win_Rate
                             <dbl>
## 1 Shlomo Kofman
                            0.545
```

```
## 2 Salsabila Mahdi
                            0.357
## 3 Jessica Li
                            0.353
## 4 Noor Mirza-Rashid
                            0.333
## 5 Adelle Fernando
                            0.296
## 6 Sean Wang
                            0.28
## 7 Reeya Kansra
                            0.273
## 8 Sam Jin
                            0.25
## 9 Shreeram Modi
                            0.24
## 10 GPT-4
                            0.192
## 11 <NA>
                            0.184
## 12 Anuj Jain
                            0.143
## 13 Julian Michael
                            0.125
## 14 Aliyaah Toussaint
                            0.111
## 15 Ethan Rosen
                            0.0909
## 16 Jackson Petty
                            0.0769
## 17 David Rein
## 18 Julien Dirani
                            0
## 19 Max Layden
## 20 Vishakh Padmakumar
result1 <- judgments_online %>%
  group_by(`Honest debater`) %>%
  summarize(
    Win_Rate = sum(Final_Accuracy == "TRUE") / n()
  ) %>%
  ungroup() %>%
  arrange(desc(Win_Rate))
result1
## # A tibble: 20 x 2
##
      'Honest debater'
                         Win_Rate
##
      <chr>
                            <dbl>
## 1 Julian Michael
## 2 Julien Dirani
                            1
## 3 Noor Mirza-Rashid
## 4 Sean Wang
                            0.96
## 5 Jessica Li
                            0.923
## 6 Salsabila Mahdi
                            0.917
## 7 Adelle Fernando
                            0.905
## 8 Reeya Kansra
                            0.9
```

9 Vishakh Padmakumar

10 Shlomo Kofman

13 Shreeram Modi

17 Jackson Petty

19 Aliyaah Toussaint

20 Emmanuel Makinde

11 Anuj Jain

12 David Rein

14 Ethan Rosen

15 GPT-4

18 Sam Jin

16 <NA>

0.857

0.833

0.8

0.8

0.8

0.786

0.775

0.680

0.667

0.667

0.625

```
# Filter for high win rate debaters
high_win_rate_debaters <- result1 %>%
  filter(Win Rate > 0.90) # Set the threshold for high win rate
# Filter original data for debates with 'Debate' in Final_Setting
filtered_data <- judgments_online %>%
  filter(grepl("Debate", Final_Setting))
# Find cases where high win rate debaters lost
cases_high_win_rate_lost <- filtered_data %>%
  filter(`Honest debater` %in% high_win_rate_debaters$`Honest debater` & Final_Accuracy != "TRUE")
cases_high_win_rate_lost
##
       Participant
                             base_room_name
                                                            Room name
## 146
         Anuj Jain
                             survival-type-
                                                      survival-type-5
## 214 Ethan Rosen the-great-nebraska-sea- the-great-nebraska-sea-0
## 289 Jessica Li
                                        rx-
       Room start time Role Is turn Is over Number of judge continues
## 146
         1681159356736 Judge
                                FALSE
                                         TRUE
                                                                        2
## 214
         1683321454611 Judge
                                FALSE
                                         TRUE
                                                                        2
## 289
         1683298141840 Judge
                                FALSE
                                         TRUE
       Final probability correct Offline judging start time
## 146
                             0.33
                                                          NaN
## 214
                             0.01
                                                          NaN
## 289
                             0.01
                                                          NaN
       Offline judging end time other factual informativeness (comparative).1
## 146
                             NaN <NA>
## 214
                                  <NA>
                                                                               1
                             {\tt NaN}
## 289
                             {\tt NaN}
                                  <NA>
       factual informativeness (comparative).2 facts versus semantics (single)
## 146
                                               4
## 214
                                               1
                                                                              NaN
                                               2
## 289
                                                                              NaN
       factual accuracy (single) clarity.1 clarity.2 factual accuracy.1
## 146
                              NaN
                                           3
                                                     3
## 214
                                           2
                                                     2
                              NaN
                                                                       NaN
## 289
                              NaN
                                           4
                                                     1
                                                                       NaN
       factual accuracy.2 judge reasoning
## 146
                      {\tt NaN}
## 214
                                         1
                      NaN
## 289
                       NaN
##
                                                                                             reason for out
## 214 I thought "like" was over-technical compared to what these questions typically ask for. I was wr
## 289
                                    B's last arg was literally 2 sentences, and A's ev was very convinci
       protocol evidence use.1 evidence use.2 evidence in story.1
## 146
           <NA>
                            NaN
                                           NaN
                                                                 NaN
## 214
           <NA>
                            NaN
                                            NaN
                                                                 NaN
## 289
           <NA>
                            NaN
                                           NaN
       evidence in story.2 other factors judge adaptation (single)
                                     <NA>
## 146
                        NaN
                                                                 NaN
## 214
                        NaN
                                     <NA>
                                                                 NaN
```

```
## 289
                       {\tt NaN}
                                     <NA>
                                                                 NaN
       evidence in debate.1 evidence in debate.2 interface
## 146
                           2
## 214
                           3
                                                2
                                                        <NA>
## 289
                           4
       evidence in debate (single) facts versus semantics.1
## 146
## 214
                                NaN
## 289
                                NaN
##
       facts versus semantics.2 clash.1 clash.2 identity guesses.Judge
## 146
                               3
                                       3
                                               3
                               3
                                                                    <NA>
## 214
                                       4
                                               4
## 289
                               3
                                               2
                                       4
                                                                     <NA>
       identity guesses. Debater A identity guesses. Debater B judge adaptation. 1
## 146
                              <NA>
                                                          <NA>
## 214
                              <NA>
                                                          <NA>
                                                                                 4
## 289
                              <NA>
                                                          <NA>
                                                                                 4
       judge adaptation. 2 subjective correctness evidence use (single)
## 146
                        3
                                                                     NaN
                                              NaN
                         3
## 214
                                              NaN
                                                                     NaN
## 289
                        2
                                              NaN
       factual informativeness (total) judge strategies clarity (single)
## 146
                                      3
                                                     <NA>
## 214
                                                     <NA>
## 289
                                      3
                                                     <NA>
                                                                       NaN
             Debater A
                              Debater B Honest debater Dishonest debater
## 146 Adelle Fernando
                            Ethan Rosen Adelle Fernando
                                                               Ethan Rosen
## 214 Salsabila Mahdi
                              Sean Wang
                                              Sean Wang
                                                           Salsabila Mahdi
          Reeya Kansra Adelle Fernando Adelle Fernando
                                                              Reeya Kansra
       Is single debater Has honest debater Final_Setting
                                                                 Setting
## 146
                   FALSE
                                        TRUE Human Debate Human Debate
## 214
                   FALSE
                                        TRUE Human Debate Human Debate
## 289
                   FALSE
                                        TRUE Human Debate Human Debate
## 146 How did the planet of Niobe compare to others that Earth was exploring?
                                                   How is this article written?
         What were the specialties of the Red and Green Doctors, respectively?
##
       Article ID Speed annotator accuracy bins Untimed annotator context bins
## 146
            51395
## 214
            50893
                                             0.2
                                                                                3
## 289
            60412
                                             0.2
                                                                                3
       Speed annotator accuracy Untimed annotator context Is offline
                      0.1666667
## 146
                                                  2.750000
                                                                 FALSE
## 214
                      0.2000000
                                                  3.333333
                                                                 FALSE
                      0.2000000
                                                  2.800000
##
                  End time Last modified time Final_Accuracy
## 146 2023-04-17 17:12:59 2023-04-28 12:29:25
                                                          FALSE
## 214 2023-05-08 17:14:28 2023-06-22 15:20:58
                                                          FALSE
  289 2023-06-22 15:18:02 2023-06-22 15:18:02
                                                         FALSE
       Human Consultancy Sample AI Consultancy Sample Human Debate Sample
## 146
                           FALSE
                                                 FALSE
                                                                      FALSE
## 214
                          FALSE
                                                 FALSE
                                                                       TRUE
## 289
                          FALSE
                                                 FALSE
                                                                       TRUE
       AI Debate Sample Sample Consultancy Sample initial_question_weights
```

```
## 146
                  FALSE FALSE
                                             FALSE
                                                                   0.5000000
## 214
                  FALSE
                          TRUF.
                                             FALSE.
                                                                   0.2000000
## 289
                  FALSE
                          TRUE
                                             FALSE
                                                                   0.3333333
##
       initial_question_weights_grouped_setting
## 146
## 214
                                             0.5
## 289
##
       sampled_consultancies_all_debates_weights
## 146
                                        0.5000000
## 214
                                        0.2500000
## 289
                                        0.3333333
##
       sampled_consultancies_all_debates_weights_grouped_setting
## 146
## 214
                                                               0.5
## 289
                                                               0.5
##
       sampled_consultancies_all_debates_weights_setting
## 146
                                                      0.5
## 214
                                                      0.5
                                                      0.5
## 289
       sampled_consultancies_debates_weights_grouped_setting
## 146
## 214
## 289
       sampled_consultancies_debates_weights Final_Accuracy_char fpc
##
## 146
                                                               NA 0.33
                                    0.0000000
## 214
                                    0.3333333
                                                               NA 0.01
## 289
                                    0.5000000
                                                                NA 0.01
##
        confidence_label color_value
## 146
                 Neutral
                           -1.849462
## 214 Confidently Wrong
                           -6.743856
## 289 Confidently Wrong
                            -6.743856
# Filter for high win rate debaters
high_win_rate_debaters <- result %>%
  filter(Win_Rate > 0.20) # Set the threshold for high win rate
# Filter original data for debates with 'Debate' in Final_Setting
filtered data <- judgments online %>%
  filter(grepl("Debate", Final_Setting))
# Find cases where high win rate debaters lost
cases_high_win_rate_lost <- filtered_data %>%
  filter(`Dishonest debater` %in% high_win_rate_debaters$`Dishonest debater` & Final_Accuracy != "FALSE
cases_high_win_rate_lost
##
              Participant
                                               base_room_name
          Adelle Fernando
## 21
                                                    monopoly-
## 43
          Adelle Fernando
                                             tollivers-orbit-
        Aliyaah Toussaint
## 78
## 81
        Aliyaah Toussaint
                                         stranger-from-space-
```

the-long-remembered-thunder-

the-starsent-knaves-

the-princess-and-the-physicist-

91

94

99

Aliyaah Toussaint

Aliyaah Toussaint

Aliyaah Toussaint

```
## 113
                Anuj Jain
                                                  cosmic-yoyo-
## 136
                Anuj Jain
                                         out-of-the-iron-womb-
## 140
                Anuj Jain
                                              planet-of-dread-
## 149
                Anuj Jain
                                        the-air-of-castor-oil-
## 177
               David Rein
                                                      monopoly-
## 179
               David Rein
                                     peggy-finds-the-theatre-
## 185
               David Rein
                                           stalemate-in-space-
## 186
               David Rein
                                          stranger-from-space-
## 191
               David Rein
                                       the-great-nebraska-sea-
## 202
              Ethan Rosen
                                                  cosmic-yoyo-
## 211
              Ethan Rosen
                                          stranger-from-space-
## 215
              Ethan Rosen
                                          the-man-who-was-six-
## 216
              Ethan Rosen
                                            the-monster-maker-
## 219
            Jackson Petty atom-mystery-young-atom-detective-
## 236
            Jackson Petty
                                                      muck-man-
## 240
            Jackson Petty
## 241
            Jackson Petty
                                             silence-isdeadly-
## 254
            Jackson Petty
                              the-princess-and-the-physicist-
## 270
               Jessica Li
                                              doctor-universe-
## 276
               Jessica Li
                                         how-to-make-friends-1
## 290
               Jessica Li
                                             silence-isdeadly-
## 306
               Jessica Li
                              the-princess-and-the-physicist-
## 324
           Julian Michael
                                                      monopoly-
                                          stranger-from-space-
## 331
           Julian Michael
## 332
           Julian Michael
                                                survival-type-
## 338
           Julian Michael
                                            the-monster-maker-
## 342
           Julian Michael
                                  the-spicy-sound-of-success-
  348
            Julien Dirani
                                          manners-and-customs-
## 356
        Noor Mirza-Rashid
                                              doctor-universe-
  366
        Noor Mirza-Rashid
                                                        volpla-
## 378
             Reeya Kansra
                                          how-to-make-friends-
## 387
             Reeya Kansra
                                                     muck-man-
## 401
             Reeya Kansra
                                            the-monster-maker-
## 411
                                                  break-a-leg-
          Salsabila Mahdi
## 414
          Salsabila Mahdi
                                                  cosmic-yoyo-
## 421
          Salsabila Mahdi
                                          manners-and-customs-
## 424
          Salsabila Mahdi
                                                     muck-man-
## 425
          Salsabila Mahdi
                                              planet-of-dread-
## 429
          Salsabila Mahdi
                                             silence-isdeadly-
## 431
          Salsabila Mahdi
                                          stranger-from-space-
## 433
          Salsabila Mahdi
                                           the-happy-castaway-
## 436
          Salsabila Mahdi
                                         the-reluctant-heroes-
## 439
          Salsabila Mahdi
                                          the-starsent-knaves-
## 448
                  Sam Jin
                                           coming-of-the-gods-
## 510
                  Sam Jin
                                        venus-is-a-mans-world-
## 533
                                          lost-in-translation-
                Sean Wang
## 538
                Sean Wang
                                     peggy-finds-the-theatre-
## 544
                Sean Wang
                                                survival-type-
                                                 the-cool-war-
## 550
                 Sean Wang
## 561
                 Sean Wang
                                                        volpla-
## 598
            Shlomo Kofman
                                         out-of-the-iron-womb-
## 602
            Shlomo Kofman
                                           pied-piper-of-mars-
## 606
            Shlomo Kofman
                                                            rx-
## 626
            Shlomo Kofman
                                              the-starbusters-
```

```
## 637
            Shreeram Modi
                                                  cosmic-yoyo-
## 641
            Shreeram Modi
                                                in-the-garden-
## 647
            Shreeram Modi
                                     peggy-finds-the-theatre-
            Shreeram Modi
## 648
                                    phone-me-in-central-park-
## 658
            Shreeram Modi
                                          the-man-who-was-six-
## 677 Vishakh Padmakumar
                                           stalemate-in-space-
## 679 Vishakh Padmakumar
                                        the-air-of-castor-oil-
## 680 Vishakh Padmakumar
                                     the-desert-and-the-stars-
## 683 Vishakh Padmakumar
                                            the-monster-maker-
##
                                  Room name Room start time Role Is turn Is over
## 21
                                 monopoly-1
                                               1680552464768 Judge
                                                                      FALSE
                                                                                TRUE
## 43
                                                                                TRUE
                          tollivers-orbit-1
                                               1681765942714 Judge
                                                                      FALSE
  78
##
                                        rx-3
                                               1683298141840 Judge
                                                                      FALSE
                                                                                TRUE
## 81
                                                                                TRUE
                      stranger-from-space-0
                                               1683298716462 Judge
                                                                      FALSE
## 91
             the-long-remembered-thunder-1
                                               1689876270711 Judge
                                                                      FALSE
                                                                                TRUE
## 94
          the-princess-and-the-physicist-4
                                               1682112300045 Judge
                                                                      FALSE
                                                                                TRUE
## 99
                                                                                TRUE
                      the-starsent-knaves-2
                                               1688757372245 Judge
                                                                      FALSE
## 113
                              cosmic-vovo-0
                                               1681159027164 Judge
                                                                      FALSE
                                                                                TRUE
## 136
                     out-of-the-iron-womb-0
                                               1689876275997 Judge
                                                                      FALSE
                                                                                TRUE
## 140
                          planet-of-dread-2
                                               1680829456935 Judge
                                                                      FALSE
                                                                                TRUE
## 149
                    the-air-of-castor-oil-5
                                               1680552962919 Judge
                                                                      FALSE
                                                                                TRUE
## 177
                                               1680552464768 Judge
                                                                      FALSE
                                                                                TRUE
                                 monopoly-2
## 179
                                               1682110072206 Judge
                                                                      FALSE
                                                                                TRUE
                 peggy-finds-the-theatre-4
## 185
                       stalemate-in-space-0
                                               1677532762430 Judge
                                                                      FALSE
                                                                                TRUE
## 186
                                                                      FALSE
                                                                                TRUE
                      stranger-from-space-4
                                               1683298716462 Judge
## 191
                  the-great-nebraska-sea-1
                                               1683321454611 Judge
                                                                      FALSE
                                                                                TRUE
## 202
                              cosmic-yoyo-3
                                               1681159027164 Judge
                                                                      FALSE
                                                                                TRUE
## 211
                                                                                TRUE
                      stranger-from-space-5
                                               1683298716462 Judge
                                                                      FALSE
                                                                                TRUE
## 215
                      the-man-who-was-six-1
                                               1676313105423 Judge
                                                                      FALSE
                                                                                TRUE
## 216
                        the-monster-maker-4
                                               1681159292566 Judge
                                                                      FALSE
## 219 atom-mystery-young-atom-detective-0
                                               1689949095893 Judge
                                                                      FALSE
                                                                                TRUE
## 236
                                 muck-man-5
                                               1687546720669 Judge
                                                                      FALSE
                                                                                TRUE
## 240
                                        rx-4
                                               1683298141840 Judge
                                                                      FALSE
                                                                                TRUE
## 241
                                                                                TRUE
                         silence-isdeadly-3
                                               1688157095546 Judge
                                                                      FALSE
## 254
          the-princess-and-the-physicist-0
                                               1682112300045 Judge
                                                                      FALSE
                                                                                TRUE
## 270
                          doctor-universe-0
                                                                                TRUE
                                               1680206097221 Judge
                                                                      FALSE
## 276
                     how-to-make-friends-11
                                               1681724583153 Judge
                                                                      FALSE
                                                                                TRUE
## 290
                         silence-isdeadly-2
                                               1688157095546 Judge
                                                                      FALSE
                                                                                TRUE
## 306
          the-princess-and-the-physicist-2
                                               1682112300045 Judge
                                                                      FALSE
                                                                                TRUE
## 324
                                               1680552464768 Judge
                                                                                TRUE
                                 monopoly-0
                                                                      FALSE
## 331
                      stranger-from-space-1
                                               1683298716462 Judge
                                                                                TRUE
                                                                      FALSE
## 332
                            survival-type-4
                                               1681159356736 Judge
                                                                      FALSE
                                                                                TRUE
## 338
                        the-monster-maker-3
                                                                                TRUE
                                               1681159292566 Judge
                                                                      FALSE
## 342
              the-spicy-sound-of-success-4
                                                                                TRUE
                                               1679607458871 Judge
                                                                      FALSE
## 348
                      manners-and-customs-1
                                                                                TRUE
                                               1676043334730 Judge
                                                                      FALSE
## 356
                                                                                TRUE
                          doctor-universe-5
                                               1680206097221 Judge
                                                                      FALSE
## 366
                                                                                TRUE
                                   volpla-2
                                               1680205817615 Judge
                                                                      FALSE
## 378
                      how-to-make-friends-0
                                                                                TRUE
                                               1681724583153 Judge
                                                                      FALSE
## 387
                                 muck-man-7
                                               1687546765239 Judge
                                                                      FALSE
                                                                                TRUE
## 401
                                                                                TRUE
                        the-monster-maker-1
                                               1681159292566 Judge
                                                                      FALSE
## 411
                                                                      FALSE
                                                                                TRUE
                              break-a-leg-5
                                               1682110823449 Judge
## 414
                                                                                TRUE
                              cosmic-yoyo-2
                                               1681159027164 Judge
                                                                      FALSE
## 421
                      manners-and-customs-0
                                               1676043281654 Judge
                                                                      FALSE
                                                                                TRUE
## 424
                                                                                TRUE
                                 muck-man-4
                                               1687546720669 Judge
                                                                      FALSE
```

```
## 425
                          planet-of-dread-1
                                                1680829456935 Judge
                                                                       FALSE
                                                                                 TRUE
## 429
                         silence-isdeadly-6
                                                1688157095546 Judge
                                                                       FALSE
                                                                                 TRUE.
## 431
                      stranger-from-space-2
                                                1683298716462 Judge
                                                                       FALSE
                                                                                 TRUE
## 433
                                                                                 TRUE
                       the-happy-castaway-2
                                                1679606564549 Judge
                                                                       FALSE
## 436
                     the-reluctant-heroes-2
                                                1682965111772 Judge
                                                                       FALSE
                                                                                 TRUE
## 439
                      the-starsent-knaves-0
                                                1688757372245 Judge
                                                                       FALSE
                                                                                 TRUE
## 448
                       coming-of-the-gods-2
                                                1689020073883 Judge
                                                                       FALSE
                                                                                 TRUE
## 510
                    venus-is-a-mans-world-0
                                                                                 TRUE
                                                1691058680973 Judge
                                                                       FALSE
## 533
                      lost-in-translation-3
                                                1678404069200 Judge
                                                                       FALSE
                                                                                 TRUE
## 538
                  peggy-finds-the-theatre-0
                                                                                 TRUE
                                                1682090000149 Judge
                                                                       FALSE
## 544
                            survival-type-0
                                                1681159356736 Judge
                                                                       FALSE
                                                                                 TRUE
## 550
                                                                                 TRUE
                             the-cool-war-0
                                                1689949097911 Judge
                                                                       FALSE
## 561
                                                                                 TRUE
                                    volpla-3
                                                1680205817615 Judge
                                                                       FALSE
## 598
                     out-of-the-iron-womb-1
                                                                                 TRUE
                                                1689876275999 Judge
                                                                       FALSE
## 602
                       pied-piper-of-mars-8
                                                1689278492513 Judge
                                                                       FALSE
                                                                                 TRUE
## 606
                                        rx-5
                                                1683298141840 Judge
                                                                       FALSE
                                                                                 TRUE
## 626
                                                1689371609880 Judge
                                                                                 TRUE
                          the-starbusters-3
                                                                       FALSE
## 637
                              cosmic-vovo-1
                                                1681159027164 Judge
                                                                       FALSE
                                                                                 TRUE
## 641
                            in-the-garden-6
                                                1680206043370 Judge
                                                                       FALSE
                                                                                 TRUE
                  peggy-finds-the-theatre-2
## 647
                                                1682090000149 Judge
                                                                       FALSE
                                                                                 TRUE
## 648
                 phone-me-in-central-park-5
                                                1678684819928 Judge
                                                                       FALSE
                                                                                 TRUE
## 658
                      the-man-who-was-six-5
                                                1676645924826 Judge
                                                                       FALSE
                                                                                 TRUE
## 677
                       stalemate-in-space-2
                                                1677792427135 Judge
                                                                       FALSE
                                                                                 TRUE
## 679
                    the-air-of-castor-oil-4
                                                1680552962919 Judge
                                                                       FALSE
                                                                                 TRUE
## 680
                 the-desert-and-the-stars-2
                                                                                 TRUE
                                                1677792315334 Judge
                                                                       FALSE
   683
                        the-monster-maker-5
                                                1681159292566 Judge
                                                                       FALSE
                                                                                 TRUE
##
       Number of judge continues Final probability correct
                                 4
                                                         0.70
## 21
                                 2
## 43
                                                         0.90
## 78
                                                         0.99
                                 1
## 81
                                 4
                                                         0.99
## 91
                                 3
                                                         0.98
## 94
                                                         0.99
                                 4
## 99
                                 4
                                                         0.85
## 113
                                 4
                                                         0.99
## 136
                                 4
                                                         0.99
## 140
                                 2
                                                         0.99
## 149
                                 3
                                                         0.85
                                 3
## 177
                                                         0.85
                                 4
## 179
                                                         0.90
## 185
                                 2
                                                         0.99
## 186
                                 4
                                                         0.95
## 191
                                 3
                                                         0.95
## 202
                                 2
                                                         0.90
## 211
                                 2
                                                         0.95
                                 2
## 215
                                                         0.80
## 216
                                 2
                                                         0.99
## 219
                                 6
                                                         0.80
                                 7
## 236
                                                         0.99
## 240
                                 3
                                                         0.90
## 241
                                 3
                                                         0.99
## 254
                                 4
                                                         0.95
## 270
                                 2
                                                         0.70
## 276
                                 2
                                                         0.99
```

	290				1				0.99
	306				2				0.99
	324				3				0.99
##	331				2				0.99
##	332				2				0.99
##	338				3				0.99
##	342				4				0.99
##	348				3				0.85
##	356				4				0.85
	366				3				0.95
	378				3				0.98
	387				4				0.88
	401				2				0.96
	411				2				0.99
	414				2				0.99
					3				
	421								0.99
	424				3				0.99
	425				3				0.99
	429				4				0.99
	431				2				0.99
	433				3				0.99
	436				4				0.99
##	439				6				0.95
	448				3				0.99
##	510				3				0.99
##	533				2				0.98
##	538				2				0.90
##	544				1				0.98
##	550				3				0.99
##	561				2				0.95
##	598				1				0.94
##	602				4				0.91
	606				4				0.86
	626				3				0.97
	637				4				0.95
	641				2				0.99
	647				1				0.99
	648				2				0.99
	658				3				0.99
	677				3				0.80
	679				2				0.75
	680				3				0.75
	683				5				
##	003	Offline	indaina	a+ a m+		Offline	indaina	an d	0.80
	01	OIIIIIlle	Juaging	Start		OTITINE	judging	ena	
##					NaN				NaN
	43				NaN NaN				NaN
	78				NaN N-N				NaN N-N
##					NaN				NaN
##					NaN				NaN
	94				NaN				NaN
	99				NaN				NaN
	113				NaN				NaN
##	136				NaN				NaN
##	140				NaN				NaN

##	149	NaN	NaN
##	177	NaN	NaN
##	179	NaN	NaN
##	185	NaN	NaN
##	186		
##	191	NaN	NaN NaN
		NaN	NaN NaN
##	202	NaN	NaN N-N
##	211	NaN	NaN N-N
##	215	NaN	NaN N-N
##	216	NaN	NaN
##	219	NaN	NaN
##	236	NaN	NaN
##	240	NaN	NaN
##	241	NaN	NaN
##	254	NaN	NaN
##	270	NaN	NaN
##	276	NaN	NaN
##	290	NaN	NaN
##	306	NaN	NaN
##	324	NaN	NaN
##	331	NaN	NaN
##	332	NaN	NaN
##	338	NaN	NaN
##	342	NaN	NaN
##	348	NaN	NaN
##	356	NaN	NaN
##	366	NaN	NaN
##	378	NaN	NaN
##	387	NaN	NaN
	401	NaN	NaN
##	411	NaN	NaN
##	414	NaN	NaN
##	421	NaN	NaN
##	424	NaN	NaN
##	425	NaN	NaN
##	429	NaN	NaN
##	431	NaN	NaN
##	433	NaN	NaN
##	436	NaN	NaN
##	439	NaN	NaN
##	448	NaN	NaN
##	510	NaN	NaN
##	533	NaN	NaN
##	538	NaN	NaN
##	544	NaN	NaN
##	550	NaN	NaN
##	561	NaN	NaN
##	598	NaN	NaN
##	602	NaN	NaN
##	606	NaN	NaN
##	626	NaN	NaN
##	637	NaN	NaN
##	641	NaN	NaN
##	647	NaN	NaN

```
## 648
                      1682713008576
                                                 1682713141741
## 658
                                 NaN
                                                            NaN
## 677
                                 NaN
                                                            NaN
## 679
                                 NaN
                                                            NaN
## 680
                                 NaN
                                                            NaN
## 683
                                 NaN
                                                            NaN
##
                                                                                     other
## 21
                                                                                       <NA>
## 43
                                                                                       <NA>
## 78
                                                                                       <NA>
## 81
                                                                                       <NA>
## 91
                                                                                       <NA>
## 94
                                                                                       <NA>
## 99
                                                                                       <NA>
## 113
                                                                                       <NA>
## 136
                                                                                       <NA>
## 140
                                                                                       <NA>
## 149
                                                                                       <NA>
## 177
                                                                                       <NA>
## 179
                                                                                       <NA>
                                                                                       <NA>
## 185
## 186
                                                                                       <NA>
## 191
                                                                                       <NA>
## 202
                                                                                       <NA>
## 211
                                                                                       <NA>
## 215
                                                                                     nope.
                                                                                       <NA>
## 216
## 219
                                                                                       <NA>
## 236
                                                                                       <NA>
## 240
                                                                                       <NA>
## 241
                                                                                       <NA>
## 254
                                                                                       <NA>
## 270
                                                                                       <NA>
## 276
                                                                                       <NA>
## 290
                                                                                       <NA>
## 306
                                                                                       <NA>
## 324
                                                                                       <NA>
## 331
                                                                                       <NA>
## 332 Maybe I could have decided sooner, even. but first round is a lot to go for.
## 338
                                                                                       <NA>
## 342
                                                                                       <NA>
## 348
                                                                                       <NA>
## 356
                                                                                       <NA>
## 366
                                                                                       <NA>
## 378
                                                                                       <NA>
## 387
                                                                                       <NA>
## 401
                                                                                       <NA>
## 411
                                                                                       <NA>
## 414
                                                                                       <NA>
## 421
                                                                                       <NA>
## 424
                                                                                       <NA>
## 425
                                                                                       <NA>
## 429
                                                                                       <NA>
## 431
                                                                                       <NA>
```

##	433		<na></na>
##	436		<na></na>
##	439		<na></na>
	448		<na></na>
	510		<na></na>
	533		<na></na>
##	538		<na></na>
##	544		<na></na>
##	550		<na></na>
	561		<na></na>
			<na></na>
	598		
	602		<na></na>
##	606		<na></na>
##	626		<na></na>
##	637		<na></na>
	641		<na></na>
	647		<na></na>
	648		<na></na>
	658		<na></na>
##	677		<na></na>
##	679		<na></na>
##	680		<na></na>
	683		<na></na>
##		factual informativanage (comparativa) 1	Mil
		factual informativeness (comparative).1	
	21	2	
	43	2	
##	78	3	
##	81	3	
##	91	1	
	94	4	
	99	1	
	113	2	
	136	4	
##	140	4	
##	149	1	
##	177	3	
	179	NaN	
	185	2	
	186	1	
	191	1	
##	202	3	
##	211	4	
##	215	3	
	216	2	
	219	3	
	236	3	
	240	3	
##	241	4	
##	254	3	
	270	2	
	276	2	
	290	2	
	306	1	
##	324	2	

```
## 331
                                                  2
## 332
                                                  1
## 338
                                                  1
## 342
                                                  3
## 348
                                                  4
                                                  2
## 356
## 366
                                                  1
## 378
                                                  4
                                                  3
## 387
## 401
                                                  4
## 411
                                                  3
## 414
                                                  3
## 421
                                                  1
## 424
                                                  3
## 425
                                                  2
## 429
                                                  3
## 431
                                                  3
## 433
                                                  3
## 436
                                                  3
                                                  3
## 439
## 448
                                               {\tt NaN}
## 510
                                               NaN
## 533
                                                  3
## 538
                                                  4
                                                  2
## 544
## 550
                                                  3
## 561
                                                  3
## 598
                                                  4
## 602
                                                  2
                                                  2
## 606
## 626
                                                  2
## 637
                                                  3
## 641
                                                  3
## 647
                                                  3
## 648
                                                  1
## 658
                                                  2
                                                  2
## 677
## 679
                                                  2
## 680
                                                  2
## 683
                                                  0
       factual informativeness (comparative).2 facts versus semantics (single)
## 21
                                                  2
                                                                                   NaN
                                                  2
## 43
                                                                                   NaN
## 78
                                                  4
                                                                                   NaN
## 81
                                                  3
                                                                                   NaN
## 91
                                                  3
                                                                                   NaN
                                                  2
## 94
                                                                                   NaN
## 99
                                                  3
                                                                                   NaN
## 113
                                                  2
                                                                                   NaN
                                                  3
## 136
                                                                                   NaN
## 140
                                                  3
                                                                                   NaN
                                                  3
## 149
                                                                                   {\tt NaN}
## 177
                                                  3
                                                                                   NaN
## 179
                                               NaN
                                                                                   NaN
```

	185	2	NaN
##	186	1	NaN
##	191	1	NaN
##	202	4	NaN
##	211	2	NaN
##	215	2	NaN
	216	2	NaN
	219	3	NaN
	236	3	NaN
	240	3	NaN
	241	4	NaN
	254	3	NaN
	270	3	NaN
	276	3	NaN
	290	4	NaN
	306	0	NaN
	324	4	NaN
	331	3	NaN
	332	4	NaN
	338	4	NaN
	342	4	NaN
	348	4	NaN
	356	1	NaN
	366	2	NaN
	378	4	NaN
	387	4	NaN
##	401	4	NaN
##	411	3	NaN
##	414	3	NaN
##	421	3	NaN
##	424	3	NaN
##	425	2	NaN
##	429	2	NaN
##	431	3	NaN
##	433	3	NaN
##	436	3	NaN
##	439	3	NaN
##	448	NaN	NaN
	510	NaN	NaN
	533	2	NaN
	538	4	NaN
	544	2	NaN
	550	3	NaN
	561	3	NaN
	598	2	NaN
	602	2	NaN
	606	3	NaN
	626	4	NaN
	637	3	NaN
		3 1	
	641		NaN NaN
	647	3 3	NaN NaN
	648		NaN
	658	3	NaN Nan
##	677	2	NaN

##	679 680 683					2 1 3			NaN NaN NaN
##		factual	accuracy	(single)	clarity.1		factual	accuracy.1	
##	21		J	NaN	1	1		NaN	
##	43			NaN	2	3		NaN	
##	78			NaN	3	4		NaN	
##	81			NaN	3	3		NaN	
##	91			NaN	1	3		NaN	
##	94			NaN	2	4		NaN	
##	99			NaN	1	3		NaN	
##	113			NaN	2	2		NaN	
##	136			NaN	4	3		NaN	
##	140			NaN	3	3		NaN	
##	149			NaN	1	2		NaN	
##	177			NaN	2	2		NaN	
##	179			NaN	NaN	NaN		NaN	
	185			NaN	3	4		NaN	
	186			NaN	3	3		NaN	
	191			NaN	2	2		NaN	
	202			NaN	4	4		NaN	
	211			NaN	4	1		NaN	
	215			NaN	4	4		NaN	
	216			NaN	4	4		NaN	
	219			NaN	3	3		NaN	
	236			NaN	2	3		NaN	
	240			NaN	3	3		NaN	
	241			NaN	4	4		NaN	
	254			NaN	3	2		NaN	
	270			NaN	4	4		NaN	
	276			NaN	3	4		NaN	
	290			NaN	3	4		NaN	
	306			NaN	1	0		NaN	
	324			NaN N-N	0	3		NaN N-N	
	331 332			NaN NaN	3	4		NaN	
	338			NaN NaN	3	4		NaN	
	342			NaN NaN	1 1	2		NaN NaN	
	348			NaN	4	4		NaN	
	356			NaN	1	1		NaN	
	366			NaN	2	2		NaN	
	378			NaN	4	4		NaN	
	387			NaN	4	4		NaN	
	401			NaN	4	4		NaN	
	411			NaN	3	3		NaN	
	414			NaN	3	3		NaN	
	421			NaN	2	3		NaN	
	424			NaN	3	3		NaN	
	425			NaN	3	3		NaN	
	429			NaN	3	3		NaN	
	431			NaN	3	3		NaN	
	433			NaN	3	3		NaN	
	436			NaN	3	3		NaN	
	439			NaN	3	3		NaN	

##	448		NaN	NaN	NaN	NaN
##	510		NaN	NaN	NaN	NaN
##	533		NaN	2	3	NaN
##	538		NaN	4	4	NaN
##	544		NaN	4	4	NaN
##	550		NaN	4	4	NaN
	561		NaN	3	3	NaN
	598		NaN	1	4	NaN
	602		NaN	3	2	NaN
	606		NaN	2	3	NaN
	626		NaN	1	4	NaN
	637		NaN	2	2	NaN
	641		NaN	2	1	NaN
	647		NaN	3	3	NaN
	648			2	3	
			NaN N-N			NaN
	658		NaN	2	2	NaN
	677		NaN	3	2	NaN
	679		NaN	3	2	NaN
	680		NaN	3	1	NaN
	683		NaN	0	3	NaN
##		factual accuracy.2	judge rea	_		
##		NaN		3		
##	43	NaN		3		
##	78	NaN		4		
##	81	NaN		3		
##	91	NaN		4		
##	94	NaN		4		
##	99	NaN		4		
##	113	NaN		2		
##	136	NaN		4		
##	140	NaN		4		
##	149	NaN		4		
##	177	NaN		3		
##	179	NaN		NaN		
##	185	NaN		4		
##	186	NaN		4		
	191	NaN		4		
	202	NaN		4		
	211	NaN		4		
	215	NaN		4		
	216	NaN		4		
	219	NaN		3		
	236	NaN		4		
	240	NaN		4		
	241	NaN		4		
	254	NaN NaN		3		
	270	NaN		4		
	276			4		
		NaN				
	290	NaN		4		
	306	NaN NaN		4		
	324	NaN NaN		4		
	331	NaN		4		
	332	NaN		4		
##	338	NaN		4		

## 342	NaN	4
## 348	NaN	4
## 356	NaN	4
## 366	NaN	3
## 378	NaN	4
## 387	NaN	4
## 401	NaN	4
## 411	NaN	3
## 414	NaN	3
## 421	NaN	NaN
## 424	NaN	3
## 425	NaN	3
## 429	NaN	3
## 431	NaN	3
## 433	NaN	3
## 436	NaN	4
## 439	NaN	3
## 448	NaN	NaN
## 510	NaN	NaN
## 533	NaN	3
## 538	NaN	4
## 544	NaN	4
## 550	NaN	4
## 561	NaN	4
## 598	NaN	4
## 602	NaN	3
## 606	NaN	4
## 626	NaN	4
## 637	NaN	3
## 641	NaN	3
## 647	NaN NaN	3
## 648	NaN NaN	3
## 658 ## 677	NaN NaN	2
## 677 ## 670	NaN NaN	3
## 679 ## 680	NaN NaN	2 4
## 680 ## 683	NaN NaN	3
## 003	NaN	3
## ## 21		
## 43		
## 43		
## 81		
## 91		
## 94		
## 99		
## 113		
## 136		
## 140		
## 149		
## 177		
## 179		
## 185		
## 186		
## 191		

```
## 202
## 211
## 215
## 216
## 219
## 236
## 240
## 241
## 254
## 270
## 276
## 290
## 306
## 324
## 331
## 332
## 338
## 342
## 348
## 356
## 366
## 378
                                   I think I continued the debate for an extra round just to see if any
## 387
## 401
                                                                                      Accidentally voted
## 411
## 414
## 421
## 424
## 425
## 429
## 431
## 433
## 436
## 439
## 448
## 510
## 533
## 538
## 544
## 550
## 561
## 598
## 602
## 606
## 626
## 637
## 641
## 647
## 648
## 658
## 677
## 679
## 680
## 683 I think the factor which convinces me is that the evidence presented seems compelling that the m
```

##		-	${\tt evidence}$	use.1	${\tt evidence}$	use.2	${\tt evidence}$	in	story.1
##		<na></na>		NaN		NaN			NaN
##		<na></na>		NaN		NaN			NaN
##		<na></na>		NaN		NaN			NaN
##		<na></na>		NaN		NaN			NaN
##		<na></na>		NaN		NaN			NaN
##		<na></na>		NaN		NaN			NaN
##		<na></na>		NaN		NaN			NaN
	113	<na></na>		NaN		NaN			NaN
	136	<na></na>		NaN		NaN			NaN
	140	<na></na>		NaN		NaN			NaN
	149	<na></na>		NaN		NaN			NaN
	177	<na></na>		NaN		NaN			NaN
	179	<na></na>		NaN		NaN			NaN
	185	<na></na>		NaN		NaN			NaN
	186	<na></na>		NaN		NaN			NaN
	191	<na></na>		NaN		NaN			NaN
	202	<na></na>		NaN		NaN			NaN
	211	<na></na>		NaN		NaN			NaN
	215	nope.		NaN		NaN			NaN
	216	<na></na>		NaN N-N		NaN N-N			NaN N-N
	219	<na></na>		NaN NaN		NaN NaN			NaN NaN
	236240	<na></na>		NaN NaN		NaN NaN			NaN NaN
	240	<na></na>		NaN		NaN			NaN NaN
	254	<na></na>		NaN		NaN			NaN NaN
	270	<na></na>		NaN NaN		NaN NaN			NaN NaN
	276	<na></na>		NaN		NaN			NaN
	290	<na></na>		NaN		NaN			NaN
	306	<na></na>		NaN		NaN			NaN
	324	<na></na>		NaN		NaN			NaN
	331	<na></na>		NaN		NaN			NaN
	332	<na></na>		NaN		NaN			NaN
	338	<na></na>		NaN		NaN			NaN
	342	<na></na>		NaN		NaN			NaN
	348	<na></na>		NaN		NaN			NaN
##	356	<na></na>		NaN		NaN			NaN
##	366	<na></na>		NaN		NaN			NaN
##	378	<na></na>		NaN		NaN			NaN
##	387	<na></na>		NaN		NaN			NaN
##	401	<na></na>		NaN		NaN			NaN
##	411	<na></na>		NaN		NaN			NaN
##	414	<na></na>		NaN		NaN			NaN
##	421	<na></na>		NaN		NaN			NaN
##	424	<na></na>		NaN		NaN			NaN
	425	<na></na>		NaN		NaN			NaN
	429	<na></na>		NaN		NaN			NaN
	431	<na></na>		NaN		NaN			NaN
	433	<na></na>		NaN		NaN			NaN
	436	<na></na>		NaN		NaN			NaN
	439	<na></na>		NaN		NaN			NaN
	448	<na></na>		NaN N-N		NaN N-N			NaN N-N
	510	<na></na>		NaN N-N		NaN N-N			NaN N-N
##	533	<na></na>		NaN		NaN			NaN

##	538	<na></na>		NaN	NaN	NaN
##	544	<na></na>		${\tt NaN}$	NaN	NaN
##	550	<na></na>		${\tt NaN}$	NaN	NaN
##	561	<na></na>		${\tt NaN}$	NaN	NaN
##	598	<na></na>		${\tt NaN}$	NaN	NaN
##	602	<na></na>		${\tt NaN}$	NaN	NaN
##	606	<na></na>		${\tt NaN}$	NaN	NaN
##	626	<na></na>		${\tt NaN}$	NaN	NaN
##	637	<na></na>		${\tt NaN}$	NaN	NaN
##	641	<na></na>		${\tt NaN}$	NaN	NaN
##	647	<na></na>		${\tt NaN}$	NaN	NaN
##	648	<na></na>		${\tt NaN}$	NaN	NaN
##	658	<na></na>		${\tt NaN}$	NaN	NaN
##	677	<na></na>		${\tt NaN}$	NaN	NaN
##	679	<na></na>		${\tt NaN}$	NaN	NaN
	680	<na></na>		${\tt NaN}$	NaN	NaN
##	683	<na></na>		${\tt NaN}$	NaN	NaN
##		evidence	in story.2			
##			NaN			
##			NaN			
##			NaN			
##			NaN			
##			NaN			
##			NaN			
##			NaN			
	113		NaN			
	136		NaN NaN			
	140		NaN NaN			
	149		NaN NaN			
	177179		NaN NaN			
	185		NaN			
##	186		NaN			
	191		NaN			
	202		NaN			
	211		NaN			
	215		NaN			
	216		NaN			
	219		NaN			
	236		NaN			
	240		NaN			
	241		NaN			
	254		NaN			
	270		NaN			
	276		NaN			
	290		NaN			
	306		NaN			
	324		NaN			
	331		NaN			
	332		NaN			
	338		NaN			
	342		NaN			
	348		NaN			
	356		NaN			
			11011			

## 366	NaN
## 378	NaN
## 387	NaN
## 401	NaN
## 411	NaN
## 414	NaN
## 421	NaN
## 424	NaN
## 425	NaN
## 429	NaN
## 431	NaN
## 433	NaN
## 436	NaN
## 439	NaN
## 448	NaN
## 510	NaN
## 533	NaN
## 538	NaN
## 544	NaN
## 550	NaN
## 561	NaN
## 598	NaN
## 602	NaN
## 606	NaN
## 626	NaN
## 637	NaN
## 641	NaN
## 647	NaN
## 648	NaN
## 658	NaN
## 677	NaN
## 679	NaN
## 680	NaN
## 683	NaN
##	
## 21	
## 43	
## 78	
## 81	
## 91	
## 94	
## 99	
## 113	
## 136	
## 140	
## 149	
## 177	
## 179	
## 185	
## 186	
## 191	
## 202	
## 211 ## 215	
ガガーノート	

215

```
## 216
## 219
## 236
## 240
## 241
## 254
## 270
## 276
## 290
## 306
## 324
## 331
## 332
## 338
## 342
## 348
## 356
## 366
## 378
## 387
## 401
## 411
## 414
## 421
## 424
## 425
## 429
## 431
## 433
## 436
## 439
## 448
## 510
## 533
## 538
## 544
## 550
## 561
## 598
## 602
## 606
## 626
## 637
## 641
## 647
## 648
## 658
## 677
## 679 I definitely dropped the ball here and got back to judging the debate after a few weeks. I think
## 680
                                                       I sensed towards the end that the dishonest debate
## 683
       judge adaptation (single) evidence in debate.1 evidence in debate.2
##
## 21
                              NaN
                                                      2
                                                                            2
## 43
                              NaN
                                                      2
                                                                           3
```

##	78	NaN	1	4
##		NaN	3	3
##		NaN	2	3
##		NaN	1	3
##		NaN	1	4
	113	NaN	2	2
##	136	NaN	4	3
##	140	NaN	4	3
##	149	NaN	2	3
	177	NaN	3	2
	179	NaN	NaN	NaN
	185	NaN	0	3
	186	NaN	3	2
	191	NaN	2	3
	202	NaN	3	4
	211	NaN	4	0
	215	NaN	4	1
	216	NaN	0	4
	219	NaN	3	2
	236	NaN NaN	2	4
	240	NaN	4	2
	241254	NaN	2	4 2
	270	NaN NaN	2	4
	276	NaN	2	4
	290	NaN	2	4
	306	NaN	2	0
	324	NaN	0	3
	331	NaN	1	4
	332	NaN	0	3
	338	NaN	0	3
	342	NaN	3	4
	348	NaN	2	4
##	356	NaN	2	1
##	366	NaN	1	3
##	378	NaN	4	4
##	387	NaN	2	4
	401	NaN	4	4
	411	NaN	3	3
	414	NaN	3	2
	421	NaN	1	3
	424	NaN	2	3
	425	NaN	3	3
	429	NaN	3	3
	431	NaN	4	3
	433	NaN NaN	3	2
	436	NaN	3 2	3
	439 448	NaN NaN	NaN	NaN
	510	NaN NaN	nan NaN	nan NaN
	533	NaN	Nan 3	nan 1
	538	NaN	1	4
	544	NaN	0	3
	550	NaN	4	3
			•	9

	561	NaN		2	4
	598	NaN		4	2
	602	NaN		2	2
	606	NaN		1	4
	626	NaN		1	4
##	637	NaN		2	2
##	641	NaN		3	1
##	647	NaN		1	3
##	648	NaN		2	4
##	658	NaN		2	2
##	677	NaN		4	1
##	679	NaN		3	1
##	680	NaN		3	1
##	683	NaN		4	2
##					interface
##	21				<na></na>
##	43				<na></na>
##	78				<na></na>
##	81				<na></na>
##	91				<na></na>
##	94				<na></na>
##	99				<na></na>
##	113				<na></na>
##	136				<na></na>
##	140				<na></na>
	149				<na></na>
	177				<na></na>
##	179				<na></na>
##	185	I accidentally	entered the	probabilities	
##	186	v		•	<na></na>
##	191				<na></na>
	202				<na></na>
	211				<na></na>
	215			The interface	
	216				<na></na>
	219				<na></na>
	236				<na></na>
	240				<na></na>
	241				<na></na>
	254				<na></na>
	270				<na></na>
	276				<na></na>
	290				<na></na>
	306				<na></na>
	324				<na></na>
	331				<na></na>
	332				<na></na>
	338				<na></na>
	342				<na></na>
	348				<na></na>
	356				<na></na>
	366				<na></na>
	378				<na></na>
	387				<na></na>
σ π					711U

```
## 401
                                                                              <NA>
## 411
                                                                              <NA>
## 414
                                                                              <NA>
## 421
                                                                              <NA>
## 424
                                                                              <NA>
## 425
                                                                              <NA>
## 429
                                                                              <NA>
## 431
                                                                              <NA>
## 433
                                                                              <NA>
## 436
                                                                              <NA>
## 439
                                                                              <NA>
## 448
                                                                              <NA>
## 510
                                                                              <NA>
## 533
                                                                              <NA>
## 538
                                                                              <NA>
## 544
                                                                              <NA>
## 550
                                                                              <NA>
## 561
                                                                              <NA>
## 598
                                                                              <NA>
## 602
                                                                              <NA>
## 606
                                                                              <NA>
## 626
                                                                              <NA>
## 637
                                                                              <NA>
## 641
                                                                              <NA>
## 647
                                                                              <NA>
## 648
                                                                              <NA>
## 658
                                                                              <NA>
## 677 Quote limits seemed to hamper both debaters? Unclear if they agree
## 679
                                                                              <NA>
## 680
                                                                              <NA>
## 683
                                                                              <NA>
##
       evidence in debate (single) facts versus semantics.1
## 21
                                   NaN
                                                                  3
## 43
                                                                 3
                                   {\tt NaN}
                                                                  2
## 78
                                   NaN
## 81
                                                                  1
                                   NaN
## 91
                                   {\tt NaN}
                                                                 3
## 94
                                   {\tt NaN}
                                                                 2
## 99
                                                                  2
                                   NaN
                                                                 2
## 113
                                   {\tt NaN}
## 136
                                   NaN
                                                                  4
## 140
                                   NaN
                                                                  1
## 149
                                   NaN
                                                                 3
## 177
                                   NaN
                                                                  1
## 179
                                   NaN
                                                               NaN
                                                                  2
## 185
                                   NaN
## 186
                                   NaN
                                                                  2
## 191
                                   NaN
                                                                  3
## 202
                                                                 0
                                   NaN
## 211
                                                                 0
                                   NaN
## 215
                                                                  0
                                   {\tt NaN}
## 216
                                                                  0
                                   {\tt NaN}
## 219
                                                                 2
                                   NaN
## 236
                                   NaN
                                                                  1
```

```
## 240
                                     NaN
                                                                      1
## 241
                                                                      0
                                     NaN
## 254
                                     \mathtt{NaN}
                                                                      1
## 270
                                     {\tt NaN}
                                                                      2
## 276
                                                                      2
                                     NaN
## 290
                                     NaN
                                                                      3
## 306
                                     NaN
                                                                      4
## 324
                                                                      0
                                     {\tt NaN}
## 331
                                     NaN
                                                                      0
## 332
                                     {\tt NaN}
                                                                      0
## 338
                                     NaN
                                                                      0
## 342
                                                                      0
                                     NaN
## 348
                                     NaN
                                                                      3
## 356
                                     NaN
                                                                      1
## 366
                                     {\tt NaN}
                                                                      2
                                                                      3
## 378
                                     NaN
## 387
                                     NaN
                                                                      4
## 401
                                                                      1
                                     NaN
## 411
                                     NaN
                                                                      3
## 414
                                     \mathtt{NaN}
                                                                      1
## 421
                                     {\tt NaN}
                                                                      1
## 424
                                     NaN
                                                                      1
## 425
                                                                      2
                                     {\tt NaN}
## 429
                                     NaN
                                                                      1
## 431
                                     NaN
                                                                      1
## 433
                                     NaN
                                                                      1
## 436
                                     {\tt NaN}
                                                                      2
## 439
                                     NaN
                                                                      2
## 448
                                                                   NaN
                                     NaN
## 510
                                                                   NaN
                                     NaN
## 533
                                                                      2
                                     NaN
## 538
                                     NaN
                                                                      3
## 544
                                                                      3
                                     NaN
## 550
                                                                      2
                                     {\tt NaN}
                                                                      2
## 561
                                     NaN
## 598
                                                                      2
                                     NaN
## 602
                                     {\tt NaN}
                                                                      2
## 606
                                     {\tt NaN}
                                                                      2
## 626
                                     NaN
                                                                      0
## 637
                                     {\tt NaN}
                                                                      1
## 641
                                     NaN
                                                                      1
## 647
                                                                      3
                                     NaN
## 648
                                     NaN
                                                                      2
## 658
                                     NaN
                                                                      3
## 677
                                     NaN
                                                                      1
## 679
                                                                      2
                                     NaN
## 680
                                     NaN
                                                                      2
## 683
                                     NaN
                                                                      1
##
        facts versus semantics.2 clash.1 clash.2 identity guesses.Judge
## 21
                                    3
                                                       2
                                             1
                                                                                <NA>
## 43
                                    2
                                              2
                                                       2
                                                                                <NA>
## 78
                                    1
                                              1
                                                       4
                                                                                <NA>
## 81
                                                       3
                                                                                <NA>
                                    1
                                              3
## 91
                                    1
                                                       3
                                                                                <NA>
                                              0
```

##	94	1	1	4	<na></na>
##	99	3	1	3	<na></na>
##	113	2	2	2	<na></na>
##	136	3	4	3	<na></na>
##	140	3	3	2	<na></na>
##	149	1	2	2	<na></na>
##	177	3	2	2	<na></na>
##	179	NaN	NaN	NaN	<na></na>
##	185	1	2	3	<na></na>
##	186	1	4	2	<na></na>
##	191	3	3	3	<na></na>
	202	0	3	4	<na></na>
##	211	4	4	1	<na></na>
	215	1	3	2	<na></na>
##	216	0	0	4	<na></na>
##	219	2	3	2	<na></na>
##	236	1	3	3	<na></na>
	240	1	4	3	<na></na>
##	241	0	3	4	<na></na>
##	254	3	3	2	<na></na>
##	270	0	2	2	<na></na>
##	276	0	2	4	<na></na>
	290	0	1	2	<na></na>
##	306	3	1	0	<na></na>
	324	0	1	4	<na></na>
	331	0	1	4	<na></na>
	332	0	0	4	<na></na>
	338	0	0	4	<na></na>
	342	0	2	4	<na></na>
	348	1	4	4	<na></na>
	356	2	1	1	<na></na>
	366	1	2	3	<na></na>
	378	0	4	4	<na></na>
	387	4	4	4	<na></na>
	401	0	4	4	<na></na>
	411	2	3	3	<na></na>
##	414	2	3	3	<na></na>
	421	1	2	3	<na></na>
	424	1	3	3	<na></na>
	425	2	3	3	<na></na>
	429	1	3	2	<na></na>
	431	2	3	2	<na></na>
	433	1	3	3	<na></na>
	436	2	3	3	<na></na>
	439	1	2	2	<na></na>
	448	NaN	NaN	NaN	<na></na>
	510	NaN	NaN	NaN	<na></na>
	533	1	3	3	<na></na>
	538	3	4	2	<na></na>
	544	0	0	0	<na></na>
	550	1	4	2	<na></na>
	561	0	4	4	<na></na>
	598	1	2	2	<na></na>
##	602	2	3	3	<na></na>

```
## 606
                                  2
                                           3
                                                    2
                                                                           <NA>
## 626
                                  0
                                                    4
                                                                           <NA>
                                           0
## 637
                                  3
                                           3
                                                    3
                                                                           <NA>
## 641
                                  3
                                           2
                                                    0
                                                                           <NA>
                                  2
                                           2
## 647
                                                    3
                                                                           <NA>
## 648
                                  1
                                           2
                                                    4
                                                                           <NA>
## 658
                                  3
                                           1
                                                    3
                                                                           <NA>
                                                                           <NA>
## 677
                                  3
                                           4
                                                    2
## 679
                                  3
                                           3
                                                    2
                                                                           <NA>
## 680
                                  3
                                                    2
                                                                           <NA>
## 683
                                  3
                                           1
                                                    3
                                                                           <NA>
##
        identity guesses.Debater A identity guesses.Debater B judge adaptation.1
## 21
                                 <NA>
                                                                <NA>
                                                                                         2
## 43
                                 <NA>
                                                                <NA>
## 78
                                 <NA>
                                                                <NA>
                                                                                         2
                                                                                         3
## 81
                                 <NA>
                                                                <NA>
## 91
                                 <NA>
                                                                <NA>
                                                                                         2
## 94
                                 <NA>
                                                                <NA>
                                                                                         1
## 99
                                 <NA>
                                                                                         0
                                                                <NA>
## 113
                                 <NA>
                                                                                         2
                                                                <NA>
## 136
                                 <NA>
                                                                <NA>
                                                                                         4
## 140
                                 <NA>
                                                                <NA>
                                                                                         3
## 149
                   Emmanuel Makinde
                                                                <NA>
                                                                                         1
## 177
                                 <NA>
                                                                <NA>
                                                                                         1
## 179
                                 <NA>
                                                                <NA>
                                                                                      NaN
## 185
                                 <NA>
                                                                <NA>
                                                                                         2
## 186
                                 <NA>
                                                                <NA>
                                                                                         2
## 191
                                 <NA>
                                                                <NA>
                                                                                         4
                                                                                         2
## 202
                                 <NA>
                                                                <NA>
## 211
                                 <NA>
                                                                <NA>
                                                                                         4
## 215
                                                                                         4
                                 <NA>
                                                                <NA>
## 216
                                 <NA>
                                                                <NA>
                                                                                         2
## 219
                                 <NA>
                                                                <NA>
                                                                                         3
## 236
                                                                                         3
                                 <NA>
                                                                <NA>
## 240
                                                                                         4
                                 <NA>
                                                                <NA>
## 241
                                                                                         2
                                 <NA>
                                                                <NA>
## 254
                                 <NA>
                                                                <NA>
                                                                                         3
## 270
                                 <NA>
                                                                <NA>
                                                                                         3
## 276
                                                                                         2
                                 <NA>
                                                                <NA>
## 290
                                 <NA>
                                                                <NA>
                                                                                         2
## 306
                                 <NA>
                                                                <NA>
                                                                                         1
## 324
                                                                                         2
                       Reeya Kansra
                                                          Sean Wang
## 331
                       Reeya Kansra
                                                          Sean Wang
                                                                                         0
## 332
                                 <NA>
                                                                                         4
                                                                <NA>
## 338
                                 <NA>
                                                                <NA>
                                                                                         0
                                                                                         2
## 342
                                 <NA>
                                                                <NA>
## 348
                                 <NA>
                                                                <NA>
                                                                                         3
                                                                                         2
## 356
                                 <NA>
                                                                <NA>
## 366
                                 <NA>
                                                                <NA>
                                                                                         3
## 378
                                                   Adelle Fernando
                                                                                         4
                          Jessica Li
                                                                                         4
## 387
                      Julien Dirani
                                                        Ethan Rosen
## 401
                                                                                         4
                   Emmanuel Makinde
                                                   Adelle Fernando
## 411
                                 <NA>
                                                                                         3
                                                                <NA>
## 414
                                 <NA>
                                                                <NA>
                                                                                         2
```

шш	404	ATA >	ATA S	0
	421 424	<na> Shlomo Kofman</na>	<na> Sam Jin</na>	3
	425	Jessica Li		3
	429	Jessica Li Jessica Li	Anuj Jain Shreeram Modi	3
	431	Jessica Li <na></na>	Shreeram Modi	3
	433	<na></na>	<na></na>	3
	436	<na></na>	<na></na>	4
	439	Sean Wang	Reeya Kansra	3
	448	<na></na>	<pre>neeya Nansia <na></na></pre>	NaN
	510	<na></na>	<na></na>	NaN
	533	<na></na>	<na></na>	2
	538	<na></na>	<na></na>	4
	544	<na></na>	<na></na>	2
	550	<na></na>	<na></na>	3
	561	<na></na>	<na></na>	3
	598	<na></na>	<na></na>	2
	602	<na></na>	<na></na>	3
	606	<na></na>	<na></na>	2
	626	<na></na>	<na></na>	0
	637	<na></na>	<na></na>	3
##	641	<na></na>	<na></na>	2
##	647	<na></na>	<na></na>	2
##	648	<na></na>	<na></na>	1
##	658	<na></na>	<na></na>	1
##	677	<na></na>	<na></na>	4
##	679	<na></na>	<na></na>	3
	680	<na></na>	<na></na>	4
	683	<na></na>	<na></na>	1
##		index adaptation O subjective		
			correctness evidence use (si	_
	21	1	NaN	NaN
##	43	1 3	NaN NaN	NaN NaN
## ##	43 78	1 3 4	NaN NaN NaN	NaN NaN NaN
## ## ##	43 78 81	1 3 4 3	NaN NaN NaN NaN	NaN NaN NaN NaN
## ## ## ##	43 78 81 91	1 3 4 3 3	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN
## ## ## ##	43 78 81 91 94	1 3 4 3 3 4	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN
## ## ## ## ##	43 78 81 91 94 99	1 3 4 3 3 4 4	NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN
## ## ## ## ## ##	43 78 81 91 94 99 113	1 3 4 3 3 4 4 4 2	NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN
## ## ## ## ## ##	43 78 81 91 94 99 113 136	1 3 4 3 3 4 4 4 2 3	NaN NaN NaN NaN NaN NaN NaN	NaN
## ## ## ## ## ##	43 78 81 91 94 99 113 136 140	1 3 4 3 3 4 4 4 2 3 2	NaN NaN NaN NaN NaN NaN NaN NaN	NaN
## ## ## ## ## ## ##	43 78 81 91 94 99 113 136	1 3 4 3 3 4 4 4 2 3	NaN NaN NaN NaN NaN NaN NaN	NaN
## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 149	1 3 4 3 3 4 4 4 2 3 2 2	NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN
## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 149	1 3 4 3 3 4 4 4 2 3 2 2 2	NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN
## ## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 149 177	1 3 4 3 3 4 4 4 2 3 2 2 2 1 NaN	NaN	NaN
## ## ## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 149 177 179	1 3 4 3 3 4 4 4 4 2 3 2 2 1 NaN 2 2 2 4	NaN	NaN
## ## ## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 149 177 179 185 186 191 202	1 3 4 3 3 4 4 4 4 2 3 2 2 1 NaN 2 2 4 4 4	NaN	NaN
## ## ## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 149 177 179 185 186 191 202 211	1 3 4 3 3 4 4 4 4 2 3 2 2 1 NaN 2 2 4 4 4 1	NaN	NaN
## ## ## ## ## ## ## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 149 177 179 185 186 191 202 211 215	1 3 4 3 3 4 4 4 4 2 3 2 2 1 NaN 2 2 4 4 4 1	NaN	NaN
## ## ## ## ## ## ## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 147 177 185 186 191 202 211 215 216	1 3 4 3 3 4 4 4 4 2 3 2 2 1 NaN 2 2 2 4 4 4 1 4 4	NaN	NaN
## ## ## ## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 149 177 179 185 186 191 202 211 215 216 219	1 3 4 3 3 4 4 4 4 2 3 2 2 1 NaN 2 2 2 4 4 4 1 4 1 4 4 2	NaN	NaN
## ## ## ## ## ## ## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 149 177 179 185 186 191 202 211 215 216 219 236	1 3 4 3 3 4 4 4 4 2 3 2 2 1 NaN 2 2 4 4 4 1 4 4 2 4 2 4	NaN	NaN
## ## ## ## ## ## ## ## ## ## ## ## ##	43 78 81 91 94 99 113 136 140 149 177 179 185 191 202 211 215 216 219 236 240	1 3 4 3 3 4 4 4 4 2 3 2 2 1 NaN 2 2 4 4 4 1 4 2 4 2 4 2	NaN	NaN
######################################	43 78 81 91 94 99 113 136 140 149 177 179 185 186 191 202 211 215 216 219 236	1 3 4 3 3 4 4 4 4 2 3 2 2 1 NaN 2 2 4 4 4 1 4 4 2 4 2 4	NaN	NaN

##	270	4		NaN	NaN
##	276	4		NaN	NaN
##	290	2		NaN	NaN
##	306	0		NaN	NaN
##	324	4		NaN	NaN
##	331	4		NaN	NaN
##	332	4		NaN	NaN
##	338	4		NaN	NaN
##	342	3		NaN	NaN
##	348	3		NaN	NaN
##	356	2		NaN	NaN
##	366	3		NaN	NaN
##	378	4		NaN	NaN
##	387	4		NaN	NaN
##	401	4		NaN	NaN
##	411	3		NaN	NaN
##	414	3		NaN	NaN
##	421	4		NaN	NaN
	424	3		NaN	NaN
##	425	3		NaN	NaN
	429	2		NaN	NaN
	431	3		NaN	NaN
##	433	2		NaN	NaN
	436	3		NaN	NaN
	439	3		NaN	NaN
	448	NaN		NaN	NaN
	510	NaN		NaN	NaN
	533	3		NaN	NaN
	538	4		NaN	NaN
	544	2		NaN	NaN
	550	3		NaN	NaN
	561	3		NaN	NaN
	598	2		NaN	NaN
	602	3		NaN	NaN
	606	3		NaN	NaN
	626	4		NaN	NaN
	637	3		NaN	NaN
	641	1		NaN	NaN
	647	2		NaN	NaN
	648	4		NaN	NaN
	658	3		NaN	NaN
	677	1		NaN	NaN
	679	0		NaN	NaN
	680	2		NaN	NaN
	683	3		NaN	NaN
##		factual informativeness	(total)		11011
##	21	Idoudal informativeness	1		
##			2		
##			3		
##			3		
##			3		
##			3		
##			3		
	113		2		
π π	110		2	-	

##	136	4
##	140	3
##	149	3
##	177	1
##	179	NaN
##	185	1
##	186	1
##	191	1
##	202	4
##	211	3
##	215	2
##	216	0
##	219	3
##	236	4
##	240	4
##	241	4
##	254	3
##	270	3
##	276	4
##	290	3
##	306	0
##	324	4
##	331	3
##	332	4
##	338	3
##	342	3
##	348	3
##	356	2
##	366	2 4
## ##	378	4
##	387	4
##	401	3
##	411 414	3
##	421	3
##	424	3
##	424	3
##	429	3
##	431	3
##	433	3
##	436	4
##	439	3
##	448	NaN
##	510	NaN
##	533	3
##	538	4
##	544	0
##	550	3
##	561	4
##	598	4
##	602	3
##	606	3
##	626	4
##	637	3
"		o .

```
## 641
## 647
                                      3
## 648
                                      3
## 658
                                      3
## 677
                                      1
                                      2
## 679
## 680
                                      3
## 683
                                      3
##
## 21
## 43
## 78
## 81
## 91
## 94
## 99
## 113
## 136
## 140
## 149
## 177
## 179
## 185
                          I said this to debater A: Are there any other resources mentioned, or context
## 186
## 191
## 202
## 211
## 215
## 216
## 219
## 236
## 240
## 241
## 254
## 270
## 276
## 290
## 306
## 324
## 331
## 332
## 338
## 342
## 348
## 356
## 366
## 378
## 387
## 401
## 411
## 414
## 421
## 424
## 425
```

```
## 429
## 431
## 433
## 436
## 439
## 448
## 510
## 533
## 538
## 544
## 550
## 561
## 598
## 602
## 606
## 626
## 637
## 641
## 647
## 648
  658 Yes. I indicated particular pieces of evidence that both were missing and that would help me gre
## 677
## 679
## 680
## 683
       clarity (single)
                                   Debater A
                                                       Debater B
                                                                      Honest debater
##
  21
                     NaN
                                 Ethan Rosen
                                                       Sean Wang
                                                                          Ethan Rosen
##
   43
                     NaN
                                  Jessica Li
                                                     Ethan Rosen
                                                                          Ethan Rosen
## 78
                     NaN
                                Reeya Kansra
                                                  Julian Michael
                                                                       Julian Michael
## 81
                     NaN
                               Shreeram Modi
                                                                        Shreeram Modi
                                                       Sean Wang
## 91
                     NaN
                               Shlomo Kofman
                                                       Sean Wang
                                                                            Sean Wang
## 94
                     NaN
                                   Sean Wang
                                                       Anuj Jain
                                                                            Anuj Jain
## 99
                     NaN
                            Adelle Fernando
                                                   Shreeram Modi
                                                                        Shreeram Modi
                                                                   Noor Mirza-Rashid
## 113
                     NaN
                          Noor Mirza-Rashid
                                                       Sean Wang
## 136
                     NaN
                               Shreeram Modi
                                                 Adelle Fernando
                                                                        Shreeram Modi
## 140
                     NaN
                                                      Jessica Li
                                Reeya Kansra
                                                                        Reeya Kansra
## 149
                     NaN
                            Salsabila Mahdi
                                                      Jessica Li
                                                                           Jessica Li
## 177
                     NaN
                                 Ethan Rosen
                                                    Reeya Kansra
                                                                          Ethan Rosen
## 179
                     NaN
                                Reeya Kansra
                                                   Jackson Petty
                                                                        Jackson Petty
## 185
                     NaN
                               Shreeram Modi
                                                     Ethan Rosen
                                                                          Ethan Rosen
## 186
                               Shreeram Modi
                                                 Adelle Fernando
                                                                        Shreeram Modi
                     NaN
## 191
                     NaN
                                                 Salsabila Mahdi
                                                                      Salsabila Mahdi
                                   Sean Wang
## 202
                     NaN
                            Adelle Fernando
                                                       Sean Wang
                                                                            Sean Wang
## 211
                     NaN
                                   Sean Wang
                                                   Shreeram Modi
                                                                            Sean Wang
## 215
                     NaN
                                  David Rein
                                                       Sean Wang
                                                                           David Rein
## 216
                          Noor Mirza-Rashid
                                                   Shreeram Modi
                                                                        Shreeram Modi
                     NaN
## 219
                     NaN
                                   Anuj Jain
                                                          Sam Jin
                                                                            Anuj Jain
## 236
                     NaN
                                     Sam Jin
                                                   Shlomo Kofman
                                                                        Shlomo Kofman
## 240
                     NaN
                            Adelle Fernando
                                                    Reeya Kansra
                                                                      Adelle Fernando
## 241
                     NaN
                                     Sam Jin
                                                                            Anuj Jain
                                                       Anuj Jain
## 254
                     NaN
                                                    Reeya Kansra
                                   Anuj Jain
                                                                            Anuj Jain
## 270
                     NaN
                                Reeya Kansra
                                                       Anuj Jain
                                                                            Anuj Jain
## 276
                     NaN
                            Adelle Fernando
                                                     Ethan Rosen
                                                                          Ethan Rosen
## 290
                     NaN
                            Adelle Fernando
                                                         Sam Jin
                                                                              Sam Jin
```

```
## 306
                     NaN
                                   Anuj Jain
                                                       Sean Wang
                                                                            Anuj Jain
## 324
                     NaN
                                Reeya Kansra
                                                       Sean Wang
                                                                            Sean Wang
## 331
                     NaN
                               Shreeram Modi
                                                       Sean Wang
                                                                            Sean Wang
## 332
                                                     Ethan Rosen
                     NaN
                             Adelle Fernando
                                                                          Ethan Rosen
## 338
                     NaN
                               Shreeram Modi
                                                       Anuj Jain
                                                                            Anuj Jain
## 342
                     NaN
                                  Jessica Li
                                                       Anuj Jain
                                                                            Anuj Jain
## 348
                                                      Jessica Li
                                                                           Jessica Li
                     NaN
                                   Sean Wang
## 356
                     NaN
                                Reeya Kansra
                                                   Shreeram Modi
                                                                         Reeya Kansra
## 366
                     NaN
                               Shreeram Modi
                                                 Salsabila Mahdi
                                                                      Salsabila Mahdi
## 378
                     NaN
                             Salsabila Mahdi
                                                     Ethan Rosen
                                                                          Ethan Rosen
## 387
                     NaN
                                     Sam Jin
                                                   Shlomo Kofman
                                                                        Shlomo Kofman
## 401
                     NaN
                                               Noor Mirza-Rashid
                                                                            Anuj Jain
                                   Anuj Jain
## 411
                                                                            Anuj Jain
                     NaN
                                                        Anuj Jain
                                   Sean Wang
## 414
                     NaN
                                   Sean Wang
                                                 Adelle Fernando
                                                                      Adelle Fernando
## 421
                     NaN
                               Shreeram Modi
                                                  Julian Michael
                                                                       Julian Michael
## 424
                     NaN
                               Shlomo Kofman
                                                          Sam Jin
                                                                              Sam Jin
## 425
                     NaN
                                                                           Jessica Li
                                  Jessica Li
                                                   Shreeram Modi
## 429
                     NaN
                                     Sam Jin
                                                 Adelle Fernando
                                                                              Sam Jin
                                                                        Shreeram Modi
## 431
                     NaN
                               Shreeram Modi
                                                 Adelle Fernando
## 433
                     NaN
                          Aliyaah Toussaint
                                                 Adelle Fernando
                                                                   Aliyaah Toussaint
                         Vishakh Padmakumar
## 436
                     NaN
                                                   Shreeram Modi Vishakh Padmakumar
## 439
                     NaN
                                     Sam Jin
                                                 Adelle Fernando
                                                                      Adelle Fernando
## 448
                     NaN
                             Adelle Fernando
                                                       Jessica Li
                                                                      Adelle Fernando
## 510
                     NaN
                                   Anuj Jain
                                                   Shlomo Kofman
                                                                            Anui Jain
## 533
                                                 Salsabila Mahdi
                                                                      Salsabila Mahdi
                     NaN
                               Shreeram Modi
## 538
                     NaN
                             Salsabila Mahdi Vishakh Padmakumar Vishakh Padmakumar
## 544
                     NaN
                             Adelle Fernando
                                                   Jackson Petty
                                                                        Jackson Petty
## 550
                     NaN
                                  Jessica Li
                                                   Shlomo Kofman
                                                                           Jessica Li
## 561
                     NaN
                               Shreeram Modi
                                               Aliyaah Toussaint
                                                                   Aliyaah Toussaint
## 598
                     NaN
                               Shreeram Modi
                                                 Adelle Fernando
                                                                      Adelle Fernando
## 602
                     NaN
                                  Jessica Li
                                                        Sean Wang
                                                                           Jessica Li
## 606
                     NaN
                             Adelle Fernando
                                                    Reeya Kansra
                                                                         Reeya Kansra
## 626
                     NaN
                                     Sam Jin
                                                 Adelle Fernando
                                                                      Adelle Fernando
## 637
                                                 Adelle Fernando
                     NaN
                                   Sean Wang
                                                                            Sean Wang
## 641
                     NaN
                                  David Rein
                                                       Jessica Li
                                                                           David Rein
## 647
                     NaN
                             Salsabila Mahdi Vishakh Padmakumar Vishakh Padmakumar
## 648
                     NaN
                                   Sean Wang
                                                     Ethan Rosen
                                                                          Ethan Rosen
## 658
                     NaN
                                   Sean Wang
                                                  Julian Michael
                                                                       Julian Michael
## 677
                     NaN
                              Julian Michael
                                                       Jessica Li
                                                                       Julian Michael
## 679
                     NaN
                                  Jessica Li
                                                 Salsabila Mahdi
                                                                      Salsabila Mahdi
## 680
                     NaN
                              Julian Michael
                                                 Salsabila Mahdi
                                                                       Julian Michael
##
   683
                     NaN
                                                   Shreeram Modi
                                                                            Anuj Jain
                                   Anuj Jain
       Dishonest debater
                          Is single debater Has honest debater Final Setting
## 21
                                                                   Human Debate
               Sean Wang
                                       FALSE
                                                             TRUE
## 43
                                                             TRUE
                                                                   Human Debate
               Jessica Li
                                       FALSE
## 78
                                                             TRUE
                                                                   Human Debate
            Reeya Kansra
                                       FALSE
## 81
                Sean Wang
                                       FALSE
                                                             TRUE
                                                                   Human Debate
## 91
                                                                   Human Debate
           Shlomo Kofman
                                       FALSE
                                                             TRUE
## 94
                Sean Wang
                                       FALSE
                                                             TRUE
                                                                   Human Debate
## 99
                                                             TRUE
         Adelle Fernando
                                       FALSE
                                                                   Human Debate
                                                                   Human Debate
## 113
                                       FALSE
                                                             TRUE
                Sean Wang
## 136
                                                             TRUE
                                                                   Human Debate
         Adelle Fernando
                                       FALSE
## 140
               Jessica Li
                                       FALSE
                                                             TRUE
                                                                   Human Debate
## 149
                                                                   Human Debate
         Salsabila Mahdi
                                       FALSE
                                                             TRUE
```

	177	Reeya Kansra	FALSE TRUE Human Debate
##	179	Reeya Kansra	FALSE TRUE Human Debate
##	185	Shreeram Modi	FALSE TRUE Human Debate
##	186	Adelle Fernando	FALSE TRUE Human Debate
##	191	Sean Wang	FALSE TRUE Human Debate
	202	Adelle Fernando	FALSE TRUE Human Debate
	211	Shreeram Modi	FALSE TRUE Human Debate
	215	Sean Wang	FALSE TRUE Human Debate
		Noor Mirza-Rashid	FALSE TRUE Human Debate
	219	Sam Jin	FALSE TRUE Human Debate
	236	Sam Jin	FALSE TRUE Human Debate
	240	Reeya Kansra	FALSE TRUE Human Debate
	241	Sam Jin	FALSE TRUE Human Debate
	254	Reeya Kansra	FALSE TRUE Human Debate
	270	Reeya Kansra	FALSE TRUE Human Debate
	276	Adelle Fernando	FALSE TRUE Human Debate
	290	Adelle Fernando	FALSE TRUE Human Debate
	306	Sean Wang	FALSE TRUE Human Debate
	324	Reeya Kansra	FALSE TRUE Human Debate
	331	Shreeram Modi	FALSE TRUE Human Debate
	332	Adelle Fernando	FALSE TRUE Human Debate
	338	Shreeram Modi	FALSE TRUE Human Debate
##	342	Jessica Li	FALSE TRUE Human Debate
##	348	Sean Wang	FALSE TRUE Human Debate
##	356	Shreeram Modi	FALSE TRUE Human Debate
##	366	Shreeram Modi	FALSE TRUE Human Debate
	378	Salsabila Mahdi	FALSE TRUE Human Debate
	387	Sam Jin	FALSE TRUE Human Debate
##	401	Noor Mirza-Rashid	FALSE TRUE Human Debate
##	411	Sean Wang	FALSE TRUE Human Debate
##	414	Sean Wang	FALSE TRUE Human Debate
##	421	Shreeram Modi	FALSE TRUE Human Debate
##	424	Shlomo Kofman	FALSE TRUE Human Debate
##	425	Shreeram Modi	FALSE TRUE Human Debate
##	429	Adelle Fernando	FALSE TRUE Human Debate
##	431	Adelle Fernando	FALSE TRUE Human Debate
##	433	Adelle Fernando	FALSE TRUE Human Debate
##	436	Shreeram Modi	FALSE TRUE Human Debate
##	439	Sam Jin	FALSE TRUE Human Debate
##	448	Jessica Li	FALSE TRUE Human Debate
##	510	Shlomo Kofman	FALSE TRUE Human Debate
##	533	Shreeram Modi	FALSE TRUE Human Debate
##	538	Salsabila Mahdi	FALSE TRUE Human Debate
##	544	Adelle Fernando	FALSE TRUE Human Debate
##	550	Shlomo Kofman	FALSE TRUE Human Debate
##	561	Shreeram Modi	FALSE TRUE Human Debate
##	598	Shreeram Modi	FALSE TRUE Human Debate
##	602	Sean Wang	FALSE TRUE Human Debate
	002	_	FALSE TRUE Human Debate
##	606	Adelle Fernando	TALDE INCE Human Debate
		Adelle Fernando Sam Jin	FALSE TRUE Human Debate
##	606		
## ##	606 626	Sam Jin	FALSE TRUE Human Debate
## ## ##	606 626 637	Sam Jin Adelle Fernando	FALSE TRUE Human Debate FALSE TRUE Human Debate
## ## ## ##	606 626 637 641	Sam Jin Adelle Fernando Jessica Li	FALSE TRUE Human Debate FALSE TRUE Human Debate FALSE TRUE Human Debate

	658		Sean Wang	FALSE	TRUE		Debate
	677		Jessica Li	FALSE	TRUE		Debate
	679		Jessica Li	FALSE	TRUE	Human	Debate
##	680	Sal	sabila Mahdi	FALSE	TRUE	Human	Debate
##	683	Sl	nreeram Modi	FALSE	TRUE	Human	Debate
##			Setting				
##	21	${\tt Human}$	Debate				
##	43	Human	Debate				
##	78	Human	Debate				
##	81	Human	Debate				
##	91	Human	Debate				
##	94	Human	Debate				
##	99	Human	Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate				
			Debate Debate				
			Debate				
			Debate Debate				
			Debate				
			Debate				
			Debate				
##	433	nullafi	Dengte				

```
## 436 Human Debate
## 439 Human Debate
## 448 Human Debate
## 510 Human Debate
## 533 Human Debate
## 538 Human Debate
## 544 Human Debate
## 550 Human Debate
## 561 Human Debate
## 598 Human Debate
## 602 Human Debate
## 606 Human Debate
## 626 Human Debate
## 637 Human Debate
## 641 Human Debate
## 647 Human Debate
## 648 Human Debate
## 658 Human Debate
## 677 Human Debate
## 679 Human Debate
## 680 Human Debate
## 683 Human Debate
##
## 21
                                                                                                   Which i
## 43
                                                                                                      Whic
## 78
                                                                                              How did Eart
## 81
                                                                                          Why does Koroby
## 91
                                                                                Did the questions Tremain
## 94
                                                                                  Why did the physicist a
## 99
                                                                                           What was the bl
## 113
                                                                                                 What is 1
## 136
                                                                                                    Why wa
## 140
## 149
                                                                      Why was the main character daydream
## 177
                                                                      Generally, which of the following b
## 179
                                                                                 Which of these sets of d
## 185
                                                                                              What was the
## 186
## 191
## 202
                                                                                   Why do Bob and Quezy h
## 211
## 215
                                                                                  Why was Dr. Crander so
## 216
                                                                                 What is not a type techn
## 219
                                                      What best describes how the overall tone changed f
## 236
                                                                          What would best describe Asa's
## 240
                                                                                        Why did the Earth
## 241
                                                                                Who are the four to blame
## 254
                                                                     What did Zen think of the plan the r
## 270
                                                                    Why is Grannie Annie so concerned abo
## 276
                                                                                           How many compan
## 290
                                                                                Who are the four to blame
```

What was the population of

Which i

Why does Koroby

306

324

331

```
## 332
                                                                   How did the planet of Niobe compare to
## 338
                                                                           Which best describes the relat
## 342
                                                                        What is the relationship between
## 348
                                                                                              What is the
## 356
                                                                                                   Why is
## 366
                                                                                      What does the narrat
## 378
## 387
                                                                               What happens to a changeling
## 401
                                                      What makes the protagonists become less concerned a
## 411
                                                            Why was the approach that Charlie took to eng
## 414
                                                                                    Why do Bob and Quezy h
## 421
                                                                                                Why is Jor
## 424
                                                                          What would best describe Asa's
## 425
## 429
                                                                             What is Androka's motivation
## 431
                                 Which of the following is not a reason why Koroby is impressed by the s
## 433 Johnathan doesn't tell the Interstellar Cosmography Society about the twenty-seven women who are
                                                                                          How many people
## 439
                                                                                           What was the bl
## 448
## 510
                                                                  What was the relationship like between
## 533
                                                                         Why did Korvin have to word his
## 538
                                                                                    How would you describe
## 544
## 550
                                                                                             Why did Pashk
## 561
                                                                                      What does the narrat
## 598
                                                                                                     Why wa
## 602
                                                What would be the main reason Mr. Ranson wants to find the
## 606
                                                                                        Why did the Earth
## 626
                                                                                                 How did H
## 637
                                                                                                 What is 1
## 641
                                                                     What is likely to happen to the crew
## 647
## 648
                                                                What is the true explanation for Charles
## 658
                                      If Dan and Erica had been seen together before the accident, what
## 677
                                                                  Of the following situations, what was t
## 679
                                                                      Why was the main character daydream
## 680
                                                                                      What is the style of
## 683
                                                                                  What is not a type techn
##
       Article ID Speed annotator accuracy bins Untimed annotator context bins
## 21
            61499
                                               0
## 43
            61053
                                               0
                                                                                4
## 78
            60412
                                               0
                                                                                2
## 81
            62314
                                             0.2
                                                                                3
## 91
            52844
                                             0.2
## 94
                                             0.2
                                                                                2
            51126
## 99
            52855
                                             0.2
                                                                                3
                                                                                3
## 113
            63527
                                               0
## 136
            63633
                                             0.2
                                                                                4
                                                                                2
## 140
            43046
                                             0.4
                                                                                2
## 149
            51688
                                             0.2
## 177
            61499
                                             0.2
                                                                               3
## 179
            55933
                                             0.4
                                                                               3
```

0.2

2

185

63862

	186	62314	0.2	3
	191	50893	0.2	3
	202	63527	0.2	2
	211	62314	0.2	3
	215	51295	0.4	3
	216	62569	0.4	3
	219	53269	0.2	4
	236	61467	0.4	2
	240	60412	0.2	3
	241	61481	0.2	3
	254	51126	0	2
	270	63109	0.2	2
	276	50818	0.2	3
	290	61481	0.2	3
	306	51126	0.2	2
	324	61499	0	4
	331	62314	0.2	3
	332	51395	0.2	3
	338	62569	0.2	3
	342	51351	0.2	3
	348	61430	0	2
	356	63109	0.2	3
	366	51201	0	3
	378	50818	0.4	4
	387	61467	0.4	2
	401	62569	0	2
	411	51320	0.2	2
	414	63527	0.2	2
	421	61430	0.4	2
	424	61467	0.4	2
	425	43046	0.4	3
	429	61481	0	3
	431	62314	0.2	2
	433	63401	0.2	2
	436	51483	0.2	2
	439	52855	0.2	3
	448	63523	0.2	3
	510	51150	0.2	3
	533	30029	0.4	2
	538	55933	0	4
	544	51395	0.2	2
	550	51256	0.4	3
	561	51201	0	3
	598	63633	0.2	4
	602	62085	0.2	2
	606	60412	0.2	3
	626	63855	0	2
	637	63527	0	3
	641	61007	0.2	2
	647	55933	0.2	2
	648	63631	0.2	3
	658	51295	0.4	4
	677	63862	0.4	3
##	679	51688	0.2	2

	680	61285	0.4	
	683	62569	0.4	T
##	0.1	-	Untimed annotator context	
##	21	0.0000000	3.666667 3.666667	FALSE
	43 78	0.0000000	2.00000	FALSE FALSE
	81	0.2000000	3.000000	FALSE
	91	0.2000000	4.000000	FALSE
	94	0.2000000	1.800000	FALSE
	99	0.2000000	2.600000	FALSE
	113	0.000000	3.000000	FALSE
	136	0.2000000	4.000000	FALSE
	140	0.4000000	1.600000	FALSE
##	149	0.2000000	2.333333	FALSE
##	177	0.2000000	3.333333	FALSE
##	179	0.400000	3.333333	FALSE
##	185	0.2000000	2.000000	FALSE
##	186	0.2000000	2.600000	FALSE
##	191	0.2000000	3.333333	FALSE
##	202	0.2000000	1.666667	FALSE
##	211	0.2000000	2.600000	FALSE
##	215	0.4000000	3.000000	FALSE
##	216	0.4000000	3.000000	FALSE
	219	0.2000000	3.666667	FALSE
	236	0.4000000	2.333333	FALSE
	240	0.2000000	2.600000	FALSE
	241	0.2000000	3.333333	FALSE
	254	0.000000	2.200000	FALSE
	270	0.2000000	1.666667	FALSE
	276	0.2000000	3.40000	FALSE
	290	0.2000000	3.333333	FALSE
	306	0.2000000	2.200000	FALSE
	324	0.0000000	3.666667	FALSE
	331	0.2000000	3.000000	FALSE
	332 338	0.1666667 0.2000000	2.750000 3.000000	FALSE FALSE
	342	0.1666667	2.800000	FALSE
	348	0.000000	1.600000	FALSE
	356	0.2000000	2.666667	FALSE
	366	0.000000	2.600000	FALSE
	378	0.400000	3.600000	FALSE
	387	0.4000000	2.000000	FALSE
	401	0.000000	2.000000	FALSE
	411	0.1666667	2.400000	FALSE
	414	0.2000000	1.666667	FALSE
##	421	0.400000	2.200000	FALSE
##	424	0.400000	2.333333	FALSE
##	425	0.4000000	3.200000	FALSE
##	429	0.000000	3.333333	FALSE
##	431	0.2000000	2.200000	FALSE
##	433	0.2000000	2.200000	FALSE
##	436	0.2000000	2.200000	FALSE
##	439	0.2000000	2.600000	FALSE
##	448	0.2000000	3.400000	FALSE

```
## 510
                      0.2000000
                                                  3.000000
                                                                 FALSE
## 533
                      0.4000000
                                                  1.800000
                                                                 FALSE
## 538
                      0.0000000
                                                  4.000000
                                                                 FALSE
## 544
                      0.2000000
                                                                 FALSE
                                                  2.250000
## 550
                      0.4000000
                                                  3.000000
                                                                 FALSE
## 561
                      0.0000000
                                                  2.600000
                                                                 FALSE
## 598
                      0.2000000
                                                  4.000000
                                                                 FALSE
## 602
                      0.2000000
                                                  2.333333
                                                                 FALSE
## 606
                      0.2000000
                                                  2.600000
                                                                 FALSE
## 626
                      0.0000000
                                                  2.000000
                                                                 FALSE
## 637
                      0.0000000
                                                  3.000000
                                                                 FALSE
## 641
                      0.2000000
                                                  1.666667
                                                                 FALSE
## 647
                      0.2000000
                                                  2.000000
                                                                 FALSE
                                                                 FALSE
## 648
                      0.2000000
                                                  2.666667
## 658
                      0.4000000
                                                  3.666667
                                                                 FALSE
## 677
                      0.400000
                                                  3.400000
                                                                 FALSE
## 679
                      0.2000000
                                                                 FALSE
                                                  2.333333
## 680
                      0.400000
                                                  2.000000
                                                                 FALSE
##
  683
                      0.4000000
                                                  3.000000
                                                                 FALSE
##
                  End time Last modified time Final Accuracy
##
  21
       2023-04-10 16:16:41 2023-04-28 11:30:24
                                                          TRUF.
       2023-05-21 14:03:16 2023-05-26 10:54:34
                                                           TRUE
       2023-05-19 15:40:18 2023-05-19 16:20:39
## 78
                                                           TRUE
       2023-06-22 17:38:01 2023-06-23 11:56:33
## 81
                                                           TRUE
## 91
       2023-07-27 16:36:48 2023-07-27 16:36:48
                                                          TRUF.
       2023-06-29 18:36:11 2023-06-29 18:41:52
                                                          TRUE
       2023-07-13 17:57:20 2023-07-31 15:39:55
                                                          TRUE
## 99
## 113 2023-04-21 16:43:34 2023-04-21 16:48:05
                                                          TRUE
## 136 2023-07-24 15:45:08 2023-07-24 15:45:08
                                                          TRUE
## 140 2023-04-17 16:40:55 2023-06-12 16:25:09
                                                          TRUE
## 149 2023-04-10 17:33:21 2023-04-12 17:18:09
                                                           TRUE
## 177 2023-04-18 15:05:57 2023-04-28 10:25:57
                                                          TRUE
## 179 2023-07-20 15:41:51 2023-07-20 15:41:51
                                                          TRUE
## 185 2023-02-27 17:02:34 2023-04-28 16:44:08
                                                          TRUE
## 186 2023-05-12 16:09:16 2023-05-12 16:09:16
                                                           TRUE
## 191 2023-05-09 16:15:12 2023-05-19 16:52:53
                                                          TRUF.
## 202 2023-04-14 18:04:29 2023-04-29 18:16:46
                                                          TRUE
## 211 2023-05-12 16:15:12 2023-05-18 11:38:29
                                                          TRUE
## 215 2023-02-13 16:41:56 2023-02-13 16:41:56
                                                           TRUE.
## 216 2023-04-14 16:31:19 2023-05-01 16:31:54
                                                          TRUF.
## 219 2023-07-28 15:39:59 2023-07-28 15:39:59
                                                          TRUE
## 236 2023-06-26 17:15:36 2023-06-26 17:15:36
                                                           TRUE
## 240 2023-06-16 16:50:59 2023-06-23 23:14:19
                                                          TRUE
## 241 2023-07-17 16:33:07 2023-07-17 16:33:07
                                                          TRUE
## 254 2023-07-17 15:04:00 2023-07-17 15:04:00
                                                           TRUE
## 270 2023-04-14 17:10:57 2023-04-28 16:50:44
                                                           TRUE
## 276 2023-05-15 16:10:35 2023-05-15 16:10:35
                                                           TRUE
## 290 2023-07-06 15:47:04 2023-07-06 15:47:04
                                                          TRUE
## 306 2023-06-29 17:10:29 2023-07-17 18:30:49
                                                          TRUE
## 324 2023-05-01 17:55:02 2023-05-11 16:49:22
                                                           TRUE
## 331 2023-05-05 11:55:03 2023-05-11 15:50:12
                                                          TRUE
## 332 2023-04-15 06:30:53 2023-04-29 17:56:08
                                                          TRUE
## 338 2023-06-22 18:58:39 2023-06-22 18:58:39
                                                          TRUF.
## 342 2023-06-26 15:43:46 2023-06-26 15:57:14
                                                          TRUE
```

```
## 348 2023-02-24 11:44:11 2023-04-28 16:45:16
                                                          TRUE
## 356 2023-04-21 16:49:20 2023-04-21 16:49:20
                                                          TRUE.
  366 2023-05-12 10:15:53 2023-05-12 10:15:53
                                                          TRUE
## 378 2023-05-12 11:42:59 2023-06-12 16:33:57
                                                          TRUE
## 387 2023-07-07 17:37:10 2023-07-07 17:37:10
                                                          TRUE
## 401 2023-04-21 16:27:51 2023-04-21 16:27:51
                                                          TRUE
## 411 2023-04-28 13:51:32 2023-05-12 10:49:32
                                                          TRUE
## 414 2023-04-14 16:42:51 2023-06-12 16:48:26
                                                          TRUE
## 421 2023-02-17 11:51:02 2023-05-15 17:10:36
                                                          TRUE
## 424 2023-06-26 18:59:34 2023-06-26 18:59:34
                                                          TRUE
## 425 2023-04-14 17:20:04 2023-04-28 10:10:59
                                                          TRUE
## 429 2023-07-06 17:58:47 2023-07-06 17:58:47
                                                          TRUE
## 431 2023-05-12 11:47:45 2023-06-12 16:01:09
                                                          TRUE
## 433 2023-04-07 16:34:58 2023-04-07 16:34:58
                                                          TRUE
## 436 2023-05-11 14:57:46 2023-05-11 14:57:46
                                                          TRUE
## 439 2023-07-13 13:02:18 2023-07-13 13:02:18
                                                          TRUE
## 448 2023-07-14 16:51:09 2023-07-14 16:51:09
                                                          TRUE
## 510 2023-08-04 16:36:03 2023-08-04 16:36:03
                                                          TRUE
## 533 2023-03-10 11:53:42 2023-04-13 16:46:04
                                                          TRUE
## 538 2023-04-28 10:13:44 2023-06-12 16:24:31
                                                          TRUE
## 544 2023-04-17 17:06:13 2023-04-18 13:42:45
                                                          TRUE
## 550 2023-08-03 16:36:15 2023-08-03 16:36:15
                                                          TRUE
## 561 2023-04-17 17:45:31 2023-04-29 22:45:31
                                                          TRUE
## 598 2023-07-24 17:40:02 2023-07-24 17:40:02
                                                          TRUE.
## 602 2023-07-17 19:39:59 2023-07-17 19:39:59
                                                          TRUE
  606 2023-07-07 18:12:21 2023-07-07 21:30:24
                                                          TRUE
## 626 2023-07-17 19:00:09 2023-07-17 19:00:09
                                                          TRUE
  637 2023-04-17 18:48:16 2023-04-18 14:26:39
                                                          TRUE
## 641 2023-05-12 10:16:04 2023-05-12 10:16:04
                                                          TRUE
## 647 2023-04-24 17:33:24 2023-05-24 16:28:55
                                                          TRUE
## 648 2023-03-20 17:06:51 2023-04-28 16:39:55
                                                          TRUE
  658 2023-02-22 17:30:45 2023-02-22 17:30:45
                                                          TRUE
  677 2023-03-07 21:04:25 2023-04-28 17:01:26
                                                          TRUE
  679 2023-06-22 21:37:32 2023-06-22 21:37:32
                                                          TRUE
  680 2023-03-07 17:00:26 2023-04-28 17:38:19
                                                          TRUE
  683 2023-04-21 11:01:01 2023-06-12 16:05:11
                                                          TRUE
##
       Human Consultancy Sample AI Consultancy Sample Human Debate Sample
## 21
                          FALSE
                                                 FALSE
                                                                      FALSE
## 43
                          FALSE
                                                 FALSE
                                                                      FALSE
## 78
                          FALSE
                                                                      FALSE
                                                 FALSE
## 81
                          FALSE
                                                 FALSE
                                                                      FALSE
## 91
                          FALSE
                                                 FALSE
                                                                       TRUE
## 94
                          FALSE
                                                 FALSE
                                                                      FALSE
## 99
                          FALSE
                                                 FALSE
                                                                      FALSE
## 113
                          FALSE
                                                 FALSE
                                                                      FALSE
## 136
                          FALSE
                                                                      FALSE
                                                 FALSE
## 140
                          FALSE
                                                 FALSE
                                                                       TRUE
## 149
                          FALSE
                                                 FALSE
                                                                      FALSE
## 177
                          FALSE
                                                 FALSE
                                                                      FALSE
## 179
                          FALSE
                                                 FALSE
                                                                      FALSE
## 185
                          FALSE
                                                                       TRUE
                                                 FALSE
## 186
                          FALSE
                                                 FALSE
                                                                      FALSE
## 191
                         FALSE
                                                 FALSE
                                                                      FALSE
## 202
                          FALSE
                                                 FALSE
                                                                      FALSE
```

	211				FALSE		FALSE	TRUE
	215				FALSE		FALSE	TRUE
	216				FALSE		FALSE	FALSE
	219				FALSE		FALSE	TRUE
	236				FALSE		FALSE	FALSE
	240				FALSE		FALSE	FALSE
	241				FALSE		FALSE	FALSE
	254				FALSE		FALSE	FALSE
	270				FALSE		FALSE	TRUE
	276				FALSE		FALSE	TRUE
	290				FALSE		FALSE	TRUE
	306				FALSE		FALSE	FALSE
	324				FALSE		FALSE	TRUE
	331				FALSE		FALSE	TRUE
	332				FALSE		FALSE	TRUE
	338				FALSE		FALSE	TRUE
	342				FALSE		FALSE	FALSE
	348				FALSE		FALSE	TRUE
	356				FALSE		FALSE	TRUE
	366				FALSE		FALSE	FALSE
##	378				FALSE		FALSE	TRUE
##	387				FALSE		FALSE	FALSE
##	401				FALSE		FALSE	FALSE
##	411				FALSE		FALSE	FALSE
##	414				FALSE		FALSE	TRUE
##	421				FALSE		FALSE	TRUE
##	424				FALSE		FALSE	TRUE
##	425				FALSE		FALSE	TRUE
##	429				FALSE		FALSE	FALSE
##	431				FALSE		FALSE	TRUE
##	433				FALSE		FALSE	TRUE
##	436				FALSE		FALSE	TRUE
##	439				FALSE		FALSE	TRUE
##	448				FALSE		FALSE	TRUE
##	510				FALSE		FALSE	TRUE
##	533				FALSE		FALSE	TRUE
##	538				FALSE		FALSE	TRUE
##	544				FALSE		FALSE	TRUE
##	550				FALSE		FALSE	TRUE
##	561				FALSE		FALSE	TRUE
##	598				FALSE		FALSE	TRUE
##	602				FALSE		FALSE	TRUE
##	606				FALSE		FALSE	TRUE
##	626				FALSE		FALSE	TRUE
##	637				FALSE		FALSE	TRUE
##	641				FALSE		FALSE	TRUE
##	647				FALSE		FALSE	TRUE
##	648				FALSE		FALSE	TRUE
##	658				FALSE		FALSE	TRUE
##	677				FALSE		FALSE	TRUE
##	679				FALSE		FALSE	TRUE
##	680				FALSE		FALSE	TRUE
##	683				FALSE		FALSE	TRUE
##		ΑI	Debate	Sample	Sample Consul	tancy	Sample initial_	question_weights

## 21	FALSE	FALSE	FALSE	0.5000000
## 43	FALSE	FALSE	FALSE	0.5000000
## 78	FALSE	FALSE	FALSE	0.5000000
## 81	FALSE	FALSE	FALSE	0.2500000
## 91	FALSE	TRUE	FALSE	0.1666667
## 94	FALSE	FALSE	FALSE	0.5000000
## 99	FALSE	FALSE	FALSE	0.2500000
## 113	FALSE	FALSE	FALSE	0.3333333
## 136	FALSE	FALSE	FALSE	0.1428571
## 140	FALSE	TRUE	FALSE	1.0000000
## 149	FALSE	FALSE	FALSE	0.2500000
## 177	FALSE	FALSE	FALSE	0.5000000
## 179	FALSE	FALSE	FALSE	0.5000000
## 185	FALSE	TRUE	FALSE	1.0000000
## 186	FALSE	FALSE	FALSE	0.5000000
## 191	FALSE	FALSE	FALSE	0.2000000
## 202	FALSE	FALSE	FALSE	0.5000000
## 211	FALSE	TRUE	FALSE	0.5000000
## 215	FALSE	TRUE	FALSE	1.0000000
## 216	FALSE	FALSE	FALSE	0.5000000
## 219	FALSE	TRUE	FALSE	0.1666667
		FALSE		
## 236	FALSE		FALSE	0.5000000
## 240	FALSE	FALSE	FALSE	0.5000000
## 241	FALSE	FALSE	FALSE	0.2500000
## 254	FALSE	FALSE	FALSE	0.5000000
## 270	FALSE	TRUE	FALSE	1.0000000
## 276	FALSE	TRUE	FALSE	0.5000000
## 290	FALSE	TRUE	FALSE	0.2500000
## 306	FALSE	FALSE	FALSE	0.5000000
## 324	FALSE	TRUE	FALSE	0.5000000
## 331	FALSE	TRUE	FALSE	0.2500000
## 332	FALSE	TRUE	FALSE	0.5000000
## 338	FALSE	TRUE	FALSE	0.5000000
## 342	FALSE	FALSE	FALSE	0.5000000
## 348	FALSE	TRUE	FALSE	1.0000000
## 356	FALSE	TRUE	FALSE	0.3333333
## 366	FALSE	FALSE	FALSE	0.2500000
## 378	FALSE	TRUE	FALSE	0.3333333
				0.5000000
## 387	FALSE	FALSE	FALSE	
## 401	FALSE	FALSE	FALSE	0.2500000
## 411	FALSE	FALSE	FALSE	0.5000000
## 414	FALSE	TRUE	FALSE	0.5000000
## 421	FALSE	TRUE	FALSE	1.0000000
## 424	FALSE	TRUE	FALSE	0.5000000
## 425	FALSE	TRUE	FALSE	0.3333333
## 429	FALSE	FALSE	FALSE	0.2000000
## 431	FALSE	TRUE	FALSE	1.0000000
## 433	FALSE	TRUE	FALSE	0.3333333
## 436	FALSE	TRUE	FALSE	1.0000000
## 439	FALSE	TRUE	FALSE	0.2500000
## 448	FALSE	TRUE	FALSE	0.2000000
## 510	FALSE	TRUE	FALSE	0.1666667
## 533	FALSE	TRUE	FALSE	0.5000000
## 538	FALSE	TRUE	FALSE	0.5000000

```
## 544
                   FALSE
                            TRUE
                                                FALSE
                                                                       1.0000000
## 550
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.2500000
## 561
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.2500000
## 598
                   FALSE
                                                FALSE
                                                                       0.1428571
                            TRUE
## 602
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.5000000
## 606
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.5000000
## 626
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.2500000
## 637
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.3333333
## 641
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.3333333
## 647
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.5000000
## 648
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.2000000
## 658
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.3333333
## 677
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.3333333
## 679
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.2500000
## 680
                   FALSE
                            TRUE
                                                FALSE
                                                                       1.000000
## 683
                   FALSE
                            TRUE
                                                FALSE
                                                                       0.5000000
##
       initial_question_weights_grouped_setting
## 21
## 43
                                                0.5
## 78
                                                0.5
## 81
                                                0.5
## 91
                                                1.0
## 94
                                                0.5
## 99
                                                0.5
## 113
                                                0.5
## 136
                                                0.5
## 140
                                                1.0
## 149
                                                0.5
## 177
                                                0.5
## 179
                                                0.5
## 185
                                                1.0
## 186
                                                0.5
## 191
                                                0.5
## 202
                                                0.5
## 211
                                                0.5
## 215
                                                1.0
## 216
                                                0.5
## 219
                                                1.0
## 236
                                                0.5
## 240
                                                0.5
## 241
                                                0.5
## 254
                                                0.5
## 270
                                                1.0
## 276
                                                0.5
## 290
                                                0.5
## 306
                                                0.5
## 324
                                                0.5
## 331
                                                0.5
## 332
                                                0.5
## 338
                                                0.5
## 342
                                                0.5
## 348
                                                1.0
## 356
                                                1.0
## 366
                                                0.5
```

```
## 378
                                               0.5
## 387
                                               0.5
## 401
                                               0.5
## 411
                                               0.5
## 414
                                               0.5
## 421
                                               1.0
## 424
                                               0.5
## 425
                                               0.5
## 429
                                               0.5
## 431
                                               1.0
## 433
                                               1.0
## 436
                                               1.0
## 439
                                               0.5
## 448
                                               1.0
## 510
                                               1.0
## 533
                                               1.0
## 538
                                               0.5
## 544
                                               1.0
## 550
                                               1.0
## 561
                                               0.5
## 598
                                               0.5
## 602
                                               1.0
## 606
                                               0.5
## 626
                                               0.5
## 637
                                               0.5
## 641
                                               0.5
## 647
                                               0.5
## 648
                                               0.5
## 658
                                               1.0
## 677
                                               1.0
## 679
                                               0.5
## 680
                                               1.0
##
  683
                                               0.5
##
       sampled_consultancies_all_debates_weights
## 21
                                         0.5000000
## 43
                                         0.5000000
## 78
                                         0.5000000
## 81
                                         0.3333333
## 91
                                         0.2000000
## 94
                                         0.5000000
## 99
                                         0.2500000
## 113
                                         0.3333333
## 136
                                         0.1666667
## 140
                                         1.000000
## 149
                                         0.2500000
## 177
                                         0.5000000
## 179
                                         0.5000000
## 185
                                         1.0000000
## 186
                                         0.5000000
## 191
                                         0.2500000
## 202
                                         0.5000000
## 211
                                         0.5000000
## 215
                                         1.0000000
## 216
                                         0.5000000
```

```
## 219
                                         0.2000000
## 236
                                         0.5000000
## 240
                                         0.5000000
## 241
                                         0.2500000
## 254
                                         0.5000000
## 270
                                         1.0000000
## 276
                                         0.5000000
## 290
                                         0.2500000
## 306
                                         0.5000000
## 324
                                         0.5000000
## 331
                                         0.3333333
## 332
                                         0.5000000
## 338
                                         0.5000000
## 342
                                         0.5000000
## 348
                                         1.0000000
## 356
                                         0.5000000
## 366
                                         0.3333333
## 378
                                         0.3333333
## 387
                                         0.5000000
## 401
                                         0.2500000
## 411
                                         0.5000000
## 414
                                         0.5000000
## 421
                                         1.0000000
## 424
                                         0.5000000
## 425
                                         0.3333333
## 429
                                         0.3333333
## 431
                                         1.0000000
## 433
                                         0.5000000
## 436
                                         1.0000000
## 439
                                         0.2500000
## 448
                                         0.3333333
## 510
                                         0.2000000
## 533
                                         0.5000000
## 538
                                         0.5000000
## 544
                                         1.0000000
## 550
                                         0.2500000
## 561
                                         0.3333333
## 598
                                         0.1666667
## 602
                                         0.5000000
## 606
                                         0.5000000
## 626
                                         0.2500000
## 637
                                         0.3333333
## 641
                                         0.3333333
## 647
                                         0.5000000
## 648
                                         0.2500000
## 658
                                         0.5000000
## 677
                                         0.5000000
## 679
                                         0.2500000
## 680
                                         1.0000000
   683
##
                                         0.5000000
##
       sampled_consultancies_all_debates_weights_grouped_setting
## 21
                                                                0.5
## 43
                                                                 0.5
```

78

0.5

##	81	0.5
	91	1.0
	94	0.5
	99	0.5
	113	0.5
	136	0.5
	140 149	1.0
	149 177	0.5 0.5
	179	0.5
	185	1.0
	186	0.5
	191	0.5
	202	0.5
##	211	0.5
##	215	1.0
##	216	0.5
	219	1.0
	236	0.5
	240	0.5
	241	0.5
	254	0.5
	270	1.0
	276	0.5
	290 306	0.5 0.5
	324	0.5
	331	0.5
	332	0.5
	338	0.5
	342	0.5
##	348	1.0
##	356	1.0
	366	0.5
	378	0.5
	387	0.5
	401	0.5
	411	0.5
	414	0.5
	421 424	1.0 0.5
	424	0.5
	429	0.5
	431	1.0
	433	1.0
	436	1.0
	439	0.5
##	448	1.0
	510	1.0
	533	1.0
	538	0.5
	544	1.0
	550	1.0
##	561	0.5

```
## 598
                                                                  0.5
## 602
                                                                  1.0
## 606
                                                                  0.5
                                                                  0.5
## 626
## 637
                                                                  0.5
## 641
                                                                  0.5
## 647
                                                                  0.5
## 648
                                                                  0.5
## 658
                                                                  1.0
## 677
                                                                  1.0
## 679
                                                                  0.5
## 680
                                                                  1.0
## 683
                                                                  0.5
##
       {\tt sampled\_consultancies\_all\_debates\_weights\_setting}
## 21
                                                         0.5
## 43
                                                         0.5
## 78
                                                         0.5
## 81
                                                         0.5
## 91
                                                         1.0
## 94
                                                         0.5
## 99
                                                         0.5
## 113
                                                         0.5
## 136
                                                         0.5
## 140
                                                         1.0
## 149
                                                         0.5
## 177
                                                         0.5
## 179
                                                         0.5
## 185
                                                         1.0
## 186
                                                         0.5
## 191
                                                         0.5
## 202
                                                         0.5
## 211
                                                         0.5
## 215
                                                         1.0
## 216
                                                         0.5
## 219
                                                         1.0
## 236
                                                         0.5
## 240
                                                         0.5
## 241
                                                         0.5
## 254
                                                         0.5
## 270
                                                         1.0
## 276
                                                         0.5
## 290
                                                         0.5
## 306
                                                         0.5
## 324
                                                         0.5
## 331
                                                         0.5
## 332
                                                         0.5
## 338
                                                         0.5
## 342
                                                         0.5
## 348
                                                         1.0
## 356
                                                         1.0
## 366
                                                         0.5
## 378
                                                         0.5
## 387
                                                         0.5
```

401

0.5

```
## 411
                                                          0.5
## 414
                                                          0.5
## 421
                                                          1.0
## 424
                                                          0.5
## 425
                                                          0.5
## 429
                                                          0.5
## 431
                                                          1.0
## 433
                                                          1.0
## 436
                                                          1.0
## 439
                                                          0.5
## 448
                                                          1.0
## 510
                                                          1.0
## 533
                                                          1.0
## 538
                                                          0.5
## 544
                                                          1.0
## 550
                                                          1.0
## 561
                                                          0.5
## 598
                                                          0.5
## 602
                                                          1.0
## 606
                                                          0.5
## 626
                                                          0.5
## 637
                                                          0.5
## 641
                                                          0.5
## 647
                                                          0.5
## 648
                                                          0.5
## 658
                                                          1.0
## 677
                                                          1.0
## 679
                                                          0.5
## 680
                                                          1.0
## 683
                                                          0.5
##
       {\tt sampled\_consultancies\_debates\_weights\_grouped\_setting}
## 21
## 43
                                                                0
## 78
                                                                0
## 81
                                                                0
## 91
                                                                1
## 94
                                                                0
## 99
                                                                0
## 113
                                                                0
## 136
                                                                0
## 140
                                                                1
## 149
                                                                0
## 177
                                                                0
## 179
                                                                0
## 185
                                                                1
## 186
                                                                0
## 191
                                                                0
## 202
                                                                0
## 211
                                                                1
## 215
                                                                1
## 216
                                                                0
## 219
                                                                1
## 236
                                                                0
## 240
                                                                0
```

```
## 241
                                                                 0
## 254
                                                                 0
## 270
                                                                 1
## 276
                                                                 1
## 290
                                                                 1
## 306
                                                                 0
## 324
                                                                 1
## 331
                                                                 1
## 332
                                                                 1
## 338
                                                                 1
## 342
                                                                 0
## 348
                                                                 1
## 356
                                                                 1
## 366
                                                                 0
## 378
                                                                 1
## 387
                                                                 0
## 401
                                                                 0
## 411
                                                                 0
## 414
                                                                 1
## 421
                                                                 1
## 424
                                                                 1
## 425
                                                                 1
## 429
                                                                 0
## 431
                                                                 1
## 433
                                                                 1
## 436
                                                                 1
## 439
                                                                 1
## 448
                                                                 1
## 510
                                                                 1
## 533
                                                                 1
## 538
                                                                 1
## 544
                                                                 1
## 550
                                                                 1
## 561
                                                                 1
## 598
                                                                 1
## 602
                                                                 1
## 606
                                                                 1
## 626
                                                                 1
## 637
                                                                 1
## 641
                                                                 1
## 647
                                                                 1
## 648
                                                                 1
## 658
                                                                 1
## 677
                                                                 1
## 679
                                                                 1
## 680
                                                                 1
## 683
##
       {\tt sampled\_consultancies\_debates\_weights\ Final\_Accuracy\_char}
## 21
                                      0.000000
                                                                    NA 0.70
## 43
                                      0.000000
                                                                    NA 0.90
## 78
                                      0.000000
                                                                    NA 0.99
## 81
                                                                    NA 0.99
                                      0.000000
## 91
                                      0.2500000
                                                                    NA 0.98
## 94
                                      0.000000
                                                                    NA 0.99
```

##	99	0.000000	NA	0.85
##	113	0.000000	NA	0.99
##	136	0.000000	NA	0.99
##	140	1.0000000	NA	0.99
##	149	0.000000	NA	0.85
##	177	0.000000	NA	0.85
##	179	0.000000	NA	0.90
##	185	1.0000000	NA	0.99
##	186	0.000000	NA	0.95
##	191	0.000000	NA	0.95
##	202	0.000000	NA	0.90
##	211	1.0000000	NA	0.95
##	215	1.0000000	NA	0.80
##	216	0.000000	NA	0.99
##	219	0.2500000	NA	0.80
##	236	0.000000	NA	0.99
##	240	0.000000	NA	0.90
##	241	0.000000	NA	0.99
##	254	0.000000	NA	0.95
##	270	1.0000000	NA	0.70
##	276	1.0000000	NA	0.99
##	290	0.3333333	NA	0.99
##	306	0.000000	NA	0.99
##	324	1.0000000	NA	0.99
##	331	0.5000000	NA	0.99
##	332	1.0000000	NA	0.99
	338	1.0000000	NA	0.99
	342	0.000000	NA	0.99
	348	1.0000000	NA	0.85
##	356	0.5000000	NA	0.85
##	366	0.000000	NA	0.95
	378	0.5000000		0.98
	387	0.000000		0.88
	401	0.000000		0.96
	411	0.000000		0.99
	414	1.0000000		0.99
	421	1.0000000		0.99
	424	1.0000000		0.99
	425	0.5000000		0.99
	429	0.000000		0.99
	431	1.0000000		0.99
	433	0.5000000		0.99
	436	1.0000000		0.99
	439	0.3333333		0.95
	448	0.3333333		0.99
	510	0.2500000		0.99
	533	0.5000000		0.98
	538	1.0000000		0.90
	544	1.0000000		0.98
	550	0.2500000		0.99
	561	0.5000000		0.95
	598	0.2500000		0.94
	602	0.5000000		0.91
##	606	1.0000000	NA	0.86

```
## 626
                                    0.3333333
                                                               NA 0.97
## 637
                                    0.5000000
                                                               NA 0.95
## 641
                                    0.5000000
                                                               NA 0.99
## 647
                                                               NA 0.99
                                    1.0000000
## 648
                                    0.3333333
                                                               NA 0.99
## 658
                                                               NA 0.99
                                    0.5000000
## 677
                                                               NA 0.80
                                    0.5000000
## 679
                                                               NA 0.75
                                    0.3333333
## 680
                                    1.0000000
                                                               NA 0.75
## 683
                                    1.0000000
                                                               NA 0.80
          confidence_label color_value
## 21
                   Neutral -0.71457317
## 43
                   Neutral -0.25200309
## 78
       Confidently Correct -0.06449957
       Confidently Correct -0.21449957
## 81
## 91
       Confidently Correct -0.17914635
## 94
       Confidently Correct -0.21449957
## 99
                   Neutral -0.43446525
## 113 Confidently Correct -0.21449957
## 136 Confidently Correct -0.21449957
## 140 Confidently Correct -0.11449957
## 149
                   Neutral -0.38446525
## 177
                   Neutral -0.38446525
## 179
                   Neutral -0.35200309
## 185 Confidently Correct -0.11449957
## 186
                   Neutral -0.27400058
## 191
                   Neutral -0.22400058
## 202
                   Neutral -0.25200309
## 211
                   Neutral -0.17400058
## 215
                   Neutral -0.42192809
## 216 Confidently Correct -0.11449957
## 219
                   Neutral -0.62192809
## 236 Confidently Correct -0.36449957
## 240
                   Neutral -0.30200309
## 241 Confidently Correct -0.16449957
## 254
                   Neutral -0.27400058
## 270
                   Neutral -0.61457317
## 276 Confidently Correct -0.11449957
## 290 Confidently Correct -0.06449957
## 306 Confidently Correct -0.11449957
## 324 Confidently Correct -0.16449957
## 331 Confidently Correct -0.11449957
## 332 Confidently Correct -0.11449957
## 338 Confidently Correct -0.16449957
## 342 Confidently Correct -0.21449957
## 348
                   Neutral -0.38446525
## 356
                   Neutral -0.43446525
## 366
                   Neutral -0.22400058
## 378 Confidently Correct -0.17914635
                   Neutral -0.38442457
## 401 Confidently Correct -0.15889369
## 411 Confidently Correct -0.11449957
## 414 Confidently Correct -0.11449957
## 421 Confidently Correct -0.16449957
```

```
## 424 Confidently Correct -0.16449957
## 425 Confidently Correct -0.16449957
## 429 Confidently Correct -0.21449957
## 431 Confidently Correct -0.11449957
## 433 Confidently Correct -0.16449957
## 436 Confidently Correct -0.21449957
                   Neutral -0.37400058
## 448 Confidently Correct -0.16449957
## 510 Confidently Correct -0.16449957
## 533 Confidently Correct -0.12914635
## 538
                   Neutral -0.25200309
## 544 Confidently Correct -0.07914635
## 550 Confidently Correct -0.16449957
## 561
                   Neutral -0.17400058
## 598
                   Neutral -0.13926734
## 602
                   Neutral -0.33606155
## 606
                   Neutral -0.41759144
## 626 Confidently Correct -0.19394335
                   Neutral -0.27400058
## 637
## 641 Confidently Correct -0.11449957
## 647 Confidently Correct -0.06449957
## 648 Confidently Correct -0.11449957
## 658 Confidently Correct -0.16449957
## 677
                   Neutral -0.47192809
## 679
                   Neutral -0.51503750
## 680
                   Neutral -0.56503750
## 683
                   Neutral -0.57192809
# Fit the random intercept model and only remove missing values for 'Dishonest debater'
random_intercept_model <- lmer(`Final probability correct` ~ (1|`Dishonest debater`),</pre>
                                data = dishonest,
                                REML = TRUE)
# Summary of the model
summary(random_intercept_model)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 'Final probability correct' ~ (1 | 'Dishonest debater')
      Data: dishonest
##
##
## REML criterion at convergence: 302.1
## Scaled residuals:
                1Q Median
                                        Max
## -2.5213 -0.1985 0.5027 0.6588
                                   0.8225
## Random effects:
                                  Variance Std.Dev.
## Groups
                      Name
## Dishonest debater (Intercept) 0.001765 0.04201
                                  0.096628 0.31085
## Number of obs: 577, groups: Dishonest debater, 20
## Fixed effects:
```

```
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 0.78325  0.01719 7.54926  45.58 0.000000000172 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

dishonest$random.intercept.preds = predict(random_intercept_model)
plot(dishonest$random.intercept.preds, dishonest$^Final probability correct^)
```


Debater "Experience", ratings - how many wins?

AI vs Humans

Old vs New

possibly unnessary

Finally, these are how many we get correct in each setting

```
judgments_online <- py$judgments_online
table(judgments_online$Final_Accuracy, judgments_online$Final_Setting)</pre>
```

```
## ## AI Consultancy AI Debate Human Consultancy Human Debate ## FALSE 18 19 32 25 ## TRUE 75 68 75 130
```

table(judgments_online\$Final_Accuracy, judgments_online\$Setting)

```
##
##
           AI Consultancy Dishonest AI Consultancy Honest AI Debate
##
     FALSE
     TRUE
                                   33
                                                           42
                                                                     68
##
##
##
           Human Consultancy Dishonest Human Consultancy Honest Human Debate
##
     FALSE
                                      26
                                                                  6
     TRUE
                                      33
                                                                 42
##
                                                                              130
```

```
ggplot(judgments_online, aes(x = Final_Setting, fill = Final_Accuracy)) +
  geom_bar(position = "fill") +
  scale_fill_manual(values = c("TRUE" = "green", "FALSE" = "red")) +
  labs(title = "Judgments by Setting, overall", x = "Setting", y = "Proportion", fill = "Final_Accuracy
  theme_minimal() +
  theme(axis.text.x = element_text())
```

Judgments by Setting, overall

Sneak peak of accuracy differences between judges, but we won't get to that again until models

```
ggplot(judgments_online, aes(x = Final_Setting, fill = Final_Accuracy)) +
  geom_bar(position = "fill") +
  scale_fill_manual(values = c("TRUE" = "green", "FALSE" = "red")) +
  labs(title = "Judgments by Setting, per judge", x = "Setting", y = "Proportion", fill = "Final_Accuratheme_minimal() +
```

Judgments by Setting, per judge

Al Consultancy Al DebateHuman Consultarlı Debate
Setting