Aprendizaje por refuerzo

Clase 21: RL multi-agente

Antes de empezar

https://cinvescomp.cinvestav.mx/CC2023/

Antes de empezar

Comentarios tarea 4

Comentarios de proyecto

- (40 puntos) Implementación (idealmente notebook en colab):
- (30 puntos) Científico: resumen en extenso en inglés de 4 páginas (https://neurips.cc/Conferences/2022/PaperInformation/ StyleFiles)
- (30 puntos) Presentación 15 minutos y 5 de preguntas
- Entrega 24 de mayo

- (40 puntos) Implementación (idealmente notebook en colab):
 - · Código del método utilizado
 - Pruebas de pruebas generación de exactamente los mismos resultados que los presentados en las otras partes (fijar semillas y parámetros)

- (30 puntos) Científico: resumen en extenso en inglés de 4 páginas (https://neurips.cc/Conferences/2022/PaperInformation/StyleFiles)
 - Abstract
 - El problema
 - ¿Por qué es interesante?
 - ¿Qué hicieron?
 - ¿Cuál fue el resultado?
 - Introducción
 - Describir en mayor detalle la parte del abstract
 - Trabajos relacionados
 - · Metodología
 - Descripción de los métodos utilizados
 - Descripción de los datos/problema
 - Setup experimental
 - Equipo
 - Parámetros
 - Número de ejecuciones
 - Resultados y discusión
 - Gráfica de convergencia en los problemas
 - Tabla de resultados (calidad y tiempo)
 - Comparación de métodos
 - Discusión de observaciones relevantes de los resultados (¿funcionó?, ¿por qué?)
 - · Conclusiones y trabajo futuro

- (30 puntos) Presentación 15 minutos y 5 de preguntas
 - Relevancia a ciencias de la computación
 - Relevancia del tema
 - Originalidad
 - Diapositivas
 - Presentación
 - Replicabilidad
 - Robustez
 - Preguntas
 - Confianza del revisor

Para el día de hoy...

- Forma normal de juegos
- RL multi-agente
- Juegos de Markov

Forma normal de un juego

- Un conjunto de jugadores/agentes ${\mathcal I}$
- Un conjunto de acciones conjuntas $a=(a_i), a_i \in \mathcal{A}$, es la acción del agente $i \in \mathcal{I}$
- Recompensa/pagos $r_i(a)$ es la recompensa recibida por el agente i con la acción a
- Cuando un juego en su forma normal se repite un número de veces (finito/infinito) se llama juego repetido

Estrategias

- Estrategia/política: $\pi_i \in \Delta(\mathcal{A}_i)$: $\pi_i(a_i)$ es la probabilidad que un agente i seleccione la acción a_i
 - Pura (determinista): solo se juega una acción
 - Mixta (estocástica): una distribución sobre un conjunto de acciones
- Perfil: una estrategia para cada jugador $\pi = (\pi_i)_i$
- Cada jugador desea maximizar su pago/recompensa
- El pago esperado de cada jugador i cuando se usa un perfil π

$$r_i(\pi) = \sum_{a} r_i(a) \prod_{j \in \mathcal{I}} \pi_j(a_j)$$

Un caso especial: juegos de dos jugadores

- El pago de juegos de dos jugadores puede ser representado con una matriz
- Dilema del prisionero: cada agente elige cooperar o acusar al otro

Estrategia dominante

- Una estrategia dominante π_i para un jugador i es una estrategia que es la mejor respuesta a todo π_{-i}
- $r_i(\pi_i, \pi_{-i}) \ge r_i(\tilde{\pi}_i, \pi_{-i}), \forall \tilde{\pi}, \pi_{-i}$
- En un equilibrio, cada jugador adopta una estrategia dominante
- Es posible que no exista una estrategia dominante ni un equilibrio

Equilibrio de Nash

- En un equilibrio de Nash π^* , ningún jugador puede mejorar su recompensa esperada cambiando su política, si el resto mantiene la suya
- π^* es la mejor respuesta para cada agente i si los otros agentes se quedan con π_{-1}^*
- Para cada agente

$$r_i(\pi^*) \ge r_i(\pi_i, \pi_{-1}^*) \ \forall \pi_i$$

• Toda estrategia dominante es un equilibrio de Nash

Piedra-papel y tijera

- No existe una estrategia dominante
- Un equilibrio de Nash es cada jugador usar una estrategia mixta con $\frac{1}{3}$ para cada opción
- Teorema: para un juego con jugadores y acciones finitas, existe un equilibrio de Nash con estrategia mixta

Un juego más...

- Cada jugador anota un número $i \in [0,100]$
- El número que anoten es el número que consideren será $\frac{2}{3}$ de la media de los valores que los jugadores adivinen
- El jugador que se encuentre más cerca, gana

Juego de Markov

- Es una tupla $G = (N, S, A, P, \{R_i\}_{i \in \mathbb{N}}, \delta)$
- Donde
 - $N = \{1, ..., n\}$ es un conjunto de jugadores
 - S es el espacio de estados
 - $A = A_1 \times \cdots \times A_n$ es el espacio de acciones donde A_i es el conjunto de acciones de i
 - Para estados $s \in S$ y $a \in A$, $P(\cdot, s, a)$ es la distribución de probabilidad $P_{i,s \to s'}^a$
 - Para estados $s \in S$ y $a \in A$, $R_i(s'|s,a)$ es la recompensa $R^a_{i,s \to s'}$
 - $\delta \in (0,1)$ es un factor de descuento

El juego

- El juego inicia en s_1
- ullet En cualquier momento, el juego se encuentra en algún estado s_t
- Cada jugador elige una acción simultáneamente $a_t = (a_{t1}, \dots a_{tN}) \in A$
- El siguiente estado es determinado por $P(\cdot, s_t, a)$
- Los jugadores obtienen recompensas $r_t = (r_{t1}, ... r_{tN})$ donde $r_{ij} = R_i(s'|s,a)$ es el pago de i
- En cada tiempo, todos los jugadores pueden observar la historia

Ejemplo: grid world

- Tenemos dos jugadores: Mario (M) y Bowser (B)
- Estados
 - M: {1,2,4,5}
 - B: {2,3,5,6}
- Cada celda solo puede tener un agente
- Quien llegue a la celda 5 gana
- Existen movimientos probabilistas
- Si ambos agentes desean entrar al mismo lugar necesitan pelear donde M tiene $\frac{2}{5}$ de probabilidad de ganar

Modelado como juego de Markov

- Estados: $(\{1,2,4\} \times \{2,3,6\} \cup \{q_1,q_2\}\{(2,2)\})$
- Acciones: $A_1 = \{r, u\}, A_2 = \{l, u\}$

Transiciones y recompensas

From state	Action	To state	Probability	payoff
(1,3)	(u, u)	(1,3)	2/9	(0,0)
(1,3)	(u, u)	(4,3)	4/9	(0,0)
(1,3)	(u, u)	(1,6)	1/9	(0,0)
(1,3)	(u, u)	(4,6)	2/9	(0,0)
(1,3)	(r, l)	(1,2)	3/5	(-c,c)
(1,3)	(r, l)	(2,3)	2/5	(c,-c)
(1,3)	(u,l)	(1,2)	1/3	(0,0)
(1,3)	(u, l)	(4,2)	2/3	(0,0)
(1,3)	(r, u)	(2,3)	2/3	(0,0)
(1,3)	(r, u)	(2,6)	1/3	(0,0)
(4,6)		92	3/5	(-1-c,1+c)
(4,6)		91	2/5	(1+c,-1-c)
(4,2)		92	1/4	(-1,1)
(4,2)		91	3/4	(1,-1)
(2,6)		92	3/4	(-1,1)
(2,6)		91	1/4	(1,-1)
(1,2),(1,6)		92	1	(-1,1)
(2,3),(4,3)		91	1	(1,-1)

Utilidad

- Cada jugador recibe recompensa descontada de sus estrategias
- Para un jugador i, dada el estado inicial $s \in S, V_i^{\pi}(s)$ es la recompensa esperada para el jugador i para cualquier jugada iniciando en s y consistente con π

$$V_i^{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1,i} | s_0 = s \right]$$

Proposición

- En un juego de Markov, supongamos que todos los oponentes del jugador *i* juegan una estrategia de Markov. Entonces, la mejor respuesta del jugador *i* es jugar una estrategia de Markov
- El valor de una estrategia se calcular de la misma forma que en MDPs

Estrategia óptima para un solo jugador

• Idea: identificar la respuesta óptima del jugador i a la estrategia de Markov $\bar{\pi}$ de los oponentes

$$V_i^*(s) = \max_{a \in A_i} \sum_{s' \in S} P_{s \to s'}^{a, \overline{\pi}(s)} \left(R_{s \to s'}^{a, \overline{\pi}(s)} + \gamma V_i^*(s') \right)$$

Regresamos al ejemplo

- Solo importa la decisión en (1,3)
- Existen 4 estrategias de Markov

•
$$\pi((1,3)) = (r,l)$$

•
$$\pi((1,3)) = (r,u)$$

•
$$\pi((1,3)) = (u,l)$$

•
$$\pi((1,3)) = (u,u)$$

El resultado

- Solo importa la decisión en (1,3)
- Existen 4 estrategias de Markov

•
$$\pi((1,3)) = (r,l)$$

•
$$\pi((1,3)) = (r,u)$$

•
$$\pi((1,3)) = (u,l)$$

•
$$\pi((1,3)) = (u,u)$$

Mario,Bowser	1	u
r	$\left(-\frac{\gamma+c}{5},\frac{\gamma+c}{5}\right)$	$(\frac{\gamma}{2}, -\frac{\gamma}{2})$
и	(0,0)	$\left(\frac{13\gamma - 2c\gamma}{45 - 10\gamma}, -\frac{13\gamma - 2c\gamma}{45 - 10\gamma}\right)$

Equilibrio perfecto de Markov

- Dado un juego de Markov, una estrategia $\pi=(\pi_1,...,\pi_n)$ es un equilibrio perfecto de Markov si
 - Cada π_i es un estrategia de Markov
 - Cada $s \in S, \pi(s) = (\pi_1(s), ..., \pi_n(s))$ es un equilibrio de Nash para le juego que inicia en s
- Dadas las misma condiciones del equilibrio de Nash se puede garantizar la existencia de este equilibrio

Un algoritmo para resolver el problema para juegos de suma cero de dos jugadores

```
Shapley Value Iteration (S, A, P, R, \gamma)
INPUT: A 2-player zero-sum Markov game (S, A, P, R, \gamma)
OUTPUT: Optimal strategy profile \pi^* = (\pi_1^*, \pi_2^*)
   \forall s \in S \colon \text{Set } V(s) \leftarrow 0
   repeat
         for s \in S do
               T(s) \leftarrow \sum_{s' \in S} P_{s \to s'}^{(a_1, a_2)} \left( R_{1, s \to s'}^{(a_1, a_2)} + \gamma V(s') \right)
               V'(s) \leftarrow \operatorname{val}(T(s))
          end for
          Set V \leftarrow V'
    until V converges
   for s \in S do
         Set T(s) \leftarrow \sum_{s' \in S} P_{s \to s'}^{(a_1, a_2)} \left( R_{1, s \to s'}^{(a_1, a_2)} + \gamma V(s') \right)
          Find \alpha_1 \in \Delta(A_1), \alpha_2 \in \Delta(A_2) such that \alpha_1^T T(s) \alpha_2 = \operatorname{val}(T(s))
          Set \pi_1^*(s) = \alpha_1 and \pi_2^*(s) = \alpha_2
   end for
   return \pi^*
```

Para la otra vez...

• RL multi-agente II

