Conception et réalisation de l'électronique embarquée et du cockpit d'un véhicule de compétition du Formula Student

Version 2.8

Conception et réalisation de l'électronique embarquée et du cockpit d'un véhicule de compétition du Formula Student

Écurie Piston Sport Auto – EPSA

Conception et réalisation de l'électronique embarquée et du cockpit d'un véhicule de compétition du Formula Student Département SEISM – Système Électronique Instrumenté Sécurisé et Monitoré

D	irec	teur	de	PE	:		

ARZ

Sommaire:

Arthur RODRIGUEZ

L'Écurie Piston Sport Auto

Membres:

Le Formula Student

Corentin LEPAIS CLS

La gestion d'un projet EPSA

Romain MARTIN

RMN

Le projet Optimus IV.

Bruno MOREIRA NABINGER

BMN

Le projet Invictus V.

Martin GOMEZ PINTADO MGZ

I. Écurie Piston Sport Auto – EPSA

II. Le Formula Student La philosophie du championnat

"It's not about getting faster; it's about getting smarter"
Formula Student Germany

"Courses taught me theory, competitions made me an engineer"
Phillip Tischler [HAHN,2018]

[Formula Student Germany, 2013]

II. Le Formula StudentLes épreuves statiques

Design Event, 150 points Justification des choix d'ingénierie du véhicule

Cost and Manufacturing Event, 100 points Prise en compte du coup du véhicule en ce qui concerne les décisions techniques

Presentation Event, 75 points
Présentation d'un Business plan conçu autour du prototype

Scrutering

Vérification du respect du règlement

Vérification des capacité de freinage du véhicule

Tilt test

Test de non retournement

[EPSA - Olympix, 2017]

Les épreuves dynamiques

II. Le Formula Student

[FSAE - SkidPad, 2012]

Acceleration Event, 75 points Accélération du véhicule sur 75m

Skidpad Event, 75 points Evaluation de la manœuvrabilité du véhicule sur un circuit en 8

Autocross Event, 100 points Evaluation de la manœuvrabilité du véhicule sur un circuit de 1km environ

Endurance and Effiency Event, 325 et 100 points Evaluation de la fiabilité et de la consommation du véhicule sur une séance de 22km

[OptimumLap – Autocross Germany

III. Écurie Piston Sport Auto – EPSA La gestion d'un projet EPSA

Travail intergénérationnel

III. Écurie Piston Sport Auto – EPSA L'organisation de l'équipe

Motorisation Instrumentée				
Directeur	Aimery SAULIÈRE			
Membres	Mathieu JACQUET			
	Côme ARCHINARD			

SEISM					
Directeur	Corentin LEPAIS				
Membres	Romain MARTIN				
	Bruno MOREIRA NABINGER				

IV. Le projet Optimus

[EPSA, 2019]

IV. Le projet Optimus Les secteurs d'activité du département SEISM

[EPSA, 2018]

IV. Le projet Optimus Tableau du bord

IV. Le projet Optimus Passage de vitesse

IV. Le projet OptimusAcquisition de données

Capteurs présents:

Pour le fonctionnement du véhicule

Motorisation (TMAP, Guillotine, ...)

Pour le réglages du véhicule

- Liaison au sol (Débattement de suspension, ...)
- Motorisation (Lambda, pression d'essence, ...)

Pour l'entraînement des pilotes

- IHM (Angle du volant, pression de freins, ...)
- GPS
- ..

IV. Le projet Optimus Bilan de connaissance

Bilan technique:

- Maitrise logiciel : CATIA, Arduino, Eagle
- Intégration :
 - Modéliser le faisceau sur CATIA
 - Réaliser des test unitaires du faisceau
- REX:
 - Tableau de bord
 - Passage de niveau
 - Acquisition de données

Bilan des essais:

- Mettre en place la télémétrie
- Préparer l'utilisation des capteurs

Bilan managérial :

- Gestion d'une équipe de 40 personnes
- Outils de travail collaboratifs :
 - GitHub
 - Slack
 - EPSABox

V. Le projet Invictus

1. Les objectifs du véhicule

Epreuve	Meilleurs résultats		Prévision
Business Event	63/75	Atomix v1.0	50/75
Design Event	106/150	Dynamix v1.0	100/150
Cost Event	94/100	Vulcanix	90/100
Acceleration	60/100	Dynamix v2.0	50/100
Skid-Pad	45/75	Kinétix	35/75
Autocross	41/125	Atomix v2.0	40/125
Endurance	160/275	Dynamix v2.0	120/275
Efficiency	6/100	Atomix v1.0	15/100
	480/1000	Dynamix v2.0	
Total	575/1000	Composite	500/1000

V. Le projet Invictus2. Le concept

Configuration retenue lors du Top PréDim :

- Roue 13"
- Kit aérodynamique (ouïes, ailes avant et arrière)

Concept aérodynamique d'un véhicule de Formula Student (Optimus avec ailes avant et arrière)

[EPSA, 2019]

V. Le projet Invictus Passage de vitesse

—Motoreducteur (BG45x15 PI)

—Pneumatique I: Geartronics Paddleshift

—Comparaison : shifter (solénoïde)

Architecture choisi: Motoréducteur

Critères:

- Prix: 733,00€ TTC
- Temps de Conception
- Maîtrise par l'écurie
- Risques
- Points FS (Design Event)

V. Le projet Invictus Acquisition de données

Capteurs prévus:

Reprise des capteurs d'Optimus (mutualisation de ces éléments)

Ajout de capteurs déjà possédés :

- Température de pneus
- Température de freins

Ajout de capteur en lien avec la configuration du véhicule (kit aérodynamique)

- Capteurs de garde au sol
- Sondes pitots

- ..

[OptimumG Seminar : Data Driven Performance Engineering, 2019]

V. Le projet Invictus Bilan d'avancement

Etat du projet : sous contrôle

Top Appro: 27/06/2018

Franchi conditionnellement

Prochains objectifs:

Top Saison: 21 septembre 2018

Conception et réalisation de l'électronique embarquée et du cockpit d'un véhicule de compétition du Formula Student

