Christophe Vestri

Plan du cours

- 6 janvier : Intro, github, Capteur/Geoloc en HTML5
- 13 janvier: carto/geo, leaflet, rest Api
- 26 janvier: 2D/3D: Canvas, WebGL et Three.js
- 2 février: Three.js
- 9 février : Projets, exam ou autres exercices

Plan Cours 3

- Rappel dernier cours
- Questions Three.js et réponses
- Exercices:
 - ThreeJs (semaine dernière)
 - Géolocalisation

Html5

- Acces capteur caméra:
- DeviceOrientation, DeviceMotion
- Caméra, Audio, Géolocalisation
- touchevents/mouse/...

 https://developers.google.com/web/fund amentals/native-hardware/deviceorientation/

Leafletjs

- <u>leafletjs</u> est une librairie Opensource pour afficher des cartes interactives utiles à la navigation (comme google maps)
- Seulement 33Ko, Tous les browsers
 - Map controls
 - Layers
 - Interaction Features
 - Custom maps

- Qu'est-ce que Three.js
 - Couche abstraite et haut niveau de WebGL
 - Librairie javascript pour créer des scènes 3D
 - Cross-plateforme et gratuit
 - Rendus en webGL, CSS3D et SVG
 - https://threejs.org/

- http://davidscottlyons.com/threejs-intro/

Questions/Solution Three.js

- Texture
 - Il faut <u>serveur local</u>
- OrbitControl
 - Attention aux workflow modules -> sinon JS files link
- Modèles
 - GLTFLoader
 - Ne pas oublier l'éclairage

Fichiers Locaux/distants

- Avoir python (miniconda ou autre)
- Se placer dans le répertoire html
- python3 -m http.server
- http://localhost:8000/

http://duspviz.mit.edu/tutorials/localhost-servers/

Utile aussi: chrome.exe --allow-file-access-from-files

Courses/Exemples

- https://threejs.org/
- http://davidscottlyons.com/threejs-intro/
- https://threejs.org/examples/
- https://codepen.io/rachsmith/post/beginningwith-3d-webgl-pt-1-the-scene

- Exercice 2 (1h30) :
 - Créez une scène + caméra + light + renderer
 - Créez un objet générique (sphère ou cube)
 - Texturez cet objet
 - Téléchargez un objet 3D
 - Animez les objets avec les DeviceEvents:
 DeviceOrientation, DeviceMotion
 - Ajoutez Fog/pluie ou particules
- Bonus, mettre un contexte: compas/gyro, système solaire.... ou Physique, animation...

- Exercice 3 (2h): Geolocalisation sur terre
 - Créez une scène + caméra + light + renderer
 - Créez une sphère de rayon 1
 - Texturez cet objet avec image de planète terre
 - Créer une fonction Lat/Lon to cartésien
 - Récupérer votre position et afficher un marqueur
 - Récupérer les positions de plusieurs pays et afficher des marqueurs (couleur différente)
- Bonus: mettre un modèle 3D à la place du marqueur à notre position, drapeau du pays