

Kobe Metropolis Theme

A MTFX Beamer Template for Kobe University

Daina Chiba

March 15, 2021

Kobe University

Outline

Basic building blocks

Items, maths, citations, and figures

Code and output

References

Basic building blocks

Four colors in the Kobe logo

Figure 1: Kobe Logo

- Brick is the symbol color of the university.
- Green represents the mountain.
- Blue represents the ocean.
- Gray is for characters.

Highlighting texts with blocks

Four types of blocks are available:

This is a block without a title. So there is no title in this block.
This is a block without a title. So there is no title in this block.
This is a block without a title. So there is no title in this block.
This is a block without a title. So there is no title in this block.
This is a block without a title. So there is no title in this block.

Block Title

A default block with a title

Block Title

An alert block with a title

Block Title

An example block with a title

What you need to typeset this template

Metropolis theme

Available at github.com/matze/mtheme

Kobe logo files

- Available from Kobe's website (internal access only)
- · Download the following three:
 - 1. 01_logo_basic/02_logo_clearback.png
 - 2. 01_logo_basic/10_set_en_clearback.png
 - 3. 04_logo_white/10_set_en_clearback.png
- Save these logo files under their respective sub-directories
 (i.e., 01_logo_basic or 04_logo_white) placed under the
 figures/ directory located in the same directory that
 contains the .tex file.

This template is indebted to ...

- · Matthias Vogelgesang for Metropolis theme
- Yuki Yanai for KobeBeamer
- Satoshi Murashige for a command to highlight equations (see slide 7 of this template)

Items, maths, citations, and figures

We can display items one by one.

• Item number one

- Item number one
- Item number two

- · Item number one
- Item number two
- Item with a dash

- Item number one
- Item number two
- Item with a dash

We can display items one by one.

- Item number one
- · Item number two
- Item with a dash

Numbered items:

1. Item number one

We can display items one by one.

- Item number one
- Item number two
- Item with a dash

Numbered items:

- 1. Item number one
- 2. Item number two

We can display items one by one.

- Item number one
- · Item number two
- Item with a dash

Numbered items:

- 1. Item number one
- 2. Item number two
- 3. Item number three

A slide with equations

Probability density function of $\mathcal{N}(\mu, \sigma)$:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Posterior probability (highlight added later):

$$p(\theta|x) \propto p(x|\theta) \times p(\theta)$$

Probability density function of $\mathcal{N}(\mu, \sigma)$:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Posterior probability (highlight added later):

$$p(\theta|x) \propto p(x|\theta) \times p(\theta)$$
Likelihood Prior

Security dilemma:

State A arms

A slide with a table

Table 1: Security dilemma (stag hunt)

	$\neg Arm$	Arm	
$\neg Arm$	3,3	0,2	
Arm	2,0	1,1	

A slide with a citation

To cite a source, we use the cite function as follows:

```
\cite{citekeyhere}
\citep{citekeyhere} (in parentheses)
```

Let's try citing one:

- cite: Fearon (1995) argues ...
- citep: ... bargaining approach (Fearon, 1995)

Code and output

A slide with a computer code chunk

Show some R code:

```
# Unload packages and clear the memory space
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
rm(list = ls())

# Load packages and data
library("tidyverse")
data("iris")

# Linear regression
fit <- lm(Sepal.Length ~ Sepal.Width + Species, data = iris)</pre>
```

A slide with a figure

Code to produce the figure


```
# Kobe colors (brick, green, and blue)
kobe colors <- c("#c40000", "#16832e", "#0e2f92")</pre>
# Plot: require ggplot2 and data(iris)
p <- ggplot(iris, aes(x = Sepal.Width, y = Sepal.Length.</pre>
                 color = Species))
p + geom point() + geom smooth() +
 facet wrap(~Species) + guides(color = "none") +
 scale color manual(values = kobe colors) +
 labs(x = "Sepal Width", y = "Sepal Length",
     caption = "Source: Iris data") +
 theme(
   panel.background = element_rect(fill = "transparent",
                            color = NA).
   plot.background = element rect(fill = "transparent",
                           color = NA))
```

A slide a regression table

Table 2: Predicting sepal length of iris

		Species		
	setosa	versicolor	virginica	
Sepal Width	0.655***	0.387*	0.330*	
	(0.092)	(0.205)	(0.174)	
Petal Length	0.238	0.908***	0.946***	
	(0.208)	(0.165)	(0.091)	
Petal Width	0.252	-0.679	-0.170	
	(0.347)	(0.435)	(0.198)	
Constant	2.352***	1.896***	0.700	
	(0.393)	(0.507)	(0.534)	
Observations	50	50	50	
\mathbb{R}^2	0.575	0.605	0.765	
Note:	*p<0.1; **p<0.05; ***p<0.01			

References

References

Fearon, James D. 1995. "Rationalist Explanations for War." 49(3):379–414.