

Karlsruher Institut für Technologie Institut für Technische Informatik (ITEC)

Rechnerorganisation im WS 2020/21

4. Übungsblatt

Abgabetermin: 14. Dezember, 13:15 Uhr

Prof. Dr. Jörg Henkel Dr.-Ing. Lars Bauer Roman Lehmann, M. Sc. Haid-und-Neu-Str. 7, Geb. 07.21 (Technologiefabrik)

Email: roman.lehmann@kit.edu

2 P.

Aufgabe 1 (3 Punkte)

Füllen Sie folgende Tabelle aus. Richtige Antworten werden mit 0.5 Punkten bewertet, falsche mit -0.5 Punkten. Nicht ausgefüllte Felder werden nicht bewertet.

	wahr	falsch
Bei der unmittelbaren Adressierung (immediate addressing) enthält		
der auszuführende Befehl bereits das als Operand zu verwendende		
Datenwort. Es ist also kein Hauptspeicherzugriff notwendig.		
Bei einer Keller-Architektur sind die Operanden einer arithmeti-		
schen Operation implizit bekannt. Es muss allerdings der Ort zum		
Speichern des Ergebnisses explizit spezifiziert werden.		
Alle Register einer CPU werden zusammengenommen als Prozes-		
sorstatuswort bezeichnet.		
Als Programmiermodell bezeichnet man die Gesamtheit der dem		
Programmierer zur Verfügung stehenden Register.		
Bei der register-indirekten Adressierung sind zwei Speicherzugriffe		
notwendig um den gewünschten Wert zu lesen bzw. zu schreiben.		
Deshalb handelt es sich dabei um ein zweistufiges Verfahren zur		
Speicheradressierung.		

Aufgabe 2 (4 Punkte)

1. Was versteht man unter einer ausgerichteten (aligned) Adresse bei Betrachtung einer 2 P. 32-Bit-Architektur?

2. Was gibt die Byte-Reihenfolge (byte order) an? Wie kann das Problem von eventuell verschiedenen nativen Byte-Reihenfolgen beim architekturübergreifenden Austausch von Daten gelöst werden?

Aufgabe 3 (3 Punkte)

Geben Sie für die folgenden Merkmale einer Prozessorarchitektur an, ob die jeweilige Eigenschaft eher für eine CISC- (Complex Instruction Set Computer) oder für eine RISC-Architektur (Reduced Instruction Set Computer) spricht.

Richtige Antworten werden mit 0.5 Punkten bewertet, falsche mit -0.5 Punkten. Nicht ausgefüllte Felder gehen nicht in die Bewertung ein.

	CISC	RISC
Erheblicher Einsatz von Pipelining		
Befehlsworte mit variabler Länge		
Viele (General Purpose) Register		
Mikroprogrammiertes Steuerwerk		
Unterstützung vieler Adressierungsarten		
Arithmetische Befehle können auf den Hauptspeicher zugreifen		

Aufgabe 4 (3 Punkte)

Welche Funktion hat das folgende MIPS-Programm:

```
.data
        .word 36, 20, 27, 15, 1, 62, 41
a:
        .word 7
n:
        .text
        .globl main
        li $t0, 0
main:
        li $s0, 0
        lw $s1, n
        bge $t0, $s1, m3
m1:
        mul $t1, $t0, 4
        lw $t2, a($t1)
        ble $t2, $s0, m2
        move $s0, $t2
m2:
        addi $t0, $t0, 1
        b m1
        move $a0, $s0
m3:
        li $v0, 1
        syscall
        li $v0, 10
```

syscall

3

Aufgabe 5 (7 Punkte)

1. Gegeben ist das folgende MIPS-Programmstück:

3 P.

anfang: addi \$t0, \$zero, 0

addi \$t1, \$zero, 1

schleife: slt \$t2, \$a0, \$t1 # if (\$a0<\$t1) then \$t2=1 else \$t2=0

bne \$t2, \$zero, ende
add \$t0, \$t0, \$t1
addi \$t1, \$t1, 2

j schleife

ende: add \$v0, \$t0, \$zero

Das Register a0 ist mit einer positiven Integerzahl n initialisiert. Das Register v0 wird für die Ausgabe des Ergebnisses verwendet.

- i.) Welche Funktion erfüllt das angegeben Programmstück?
- ii.) Welche Werte stehen im Register \$v0 nach Abarbeitung des Programmstücks, wenn das Register \$a0 mit 9 bzw. mit 10 initialisiert wird.
- 2. Beschreiben Sie die Funktion der folgenden MIPS-Befehle:

4 P.

- i.) lw \$s1, 100(\$s2)
- ii.) sw \$s1, 100(\$s2)
- iii.) jal mystery

Aufgabe 6 (5 Punkte)

- 1. Welcher Befehl des MIPS-Befehlssatz initiiert einen Systemaufruf? 1 P.
- 2. Geben Sie die Namen der Systemaufrufe mit den Nummern 1 bis 10 des MIPS- IP. Simulators MARS an.
- 3. In welchem Register wird die Nummer des auszuführenden Systemaufrufs übergeben? 1 P.
- 4. Geben Sie die Aufrufkonvention für die Systemaufrufe print_double und read_string von MARS an. Wie werden Parameter und Rückgabewerte übergeben?

Vorlesung Rechnerorganisation Wintersemester 2020/21

- Übungsblatt 4 -

Tutoriumsnummer

Name, Vorname:	
,	
Matrikelnummer:	
Studiengang:	
0 0	
Nama das Tutors	