1. Given the problem

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = xy, \quad 0 < x < \pi, \quad 0 < y < \pi/2$$

$$u(0, y) = \cos y, \quad u(\pi, y) = -\cos y, \quad 0 \le y \le \pi/2,$$

$$u(x, 0) = \cos x, \quad u(x, \pi/2) = 0, \quad 1 \le y \le 2$$

To calculate u(x, y) by using $h = k = 0.1\pi$.

```
Environment updated. Reloading u(0.63, 0.94) = 0.32696
u(0.00, 0.00) = 1.00000

u(0.31, 0.00) = 0.95106

u(0.63, 0.00) = 0.80902
                                                               u(0.94, 0.94) = 0.21852

u(1.26, 0.94) = 0.11007
                                                               u(1.57, 0.94) = 0.000000

u(1.88, 0.94) = -0.11007

u(2.20, 0.94) = -0.21852
u(0.94, 0.00) = 0.58779

u(1.26, 0.00) = 0.30902

u(1.57, 0.00) = 0.00000
u(1.88, 0.00) = -0.30902

u(2.20, 0.00) = -0.58779
                                                               u(2.51, 0.94) = -0.32696
                                                               u(2.83, 0.94) = -0.44381
u(2.51, 0.00) = -0.80902
                                                               u(3.14, 0.94) = -0.58779
u(2.83, 0.00) = -0.95106

u(3.14, 0.00) = -1.00000
                                                               u(0.00, 1.26) = 0.30902
                                                              u(0.31, 1.26) = 0.30902

u(0.31, 1.26) = 0.22989

u(0.63, 1.26) = 0.16673

u(0.94, 1.26) = 0.11007

u(1.26, 1.26) = 0.05504

u(1.57, 1.26) = 0.00000
u(0.00, 0.31) = 0.95106
u(0.31, 0.31) = 0.79083

u(0.63, 0.31) = 0.63061
u(0.94, 0.31) = 0.44381

u(1.26, 0.31) = 0.22989

u(1.57, 0.31) = 0.00000
                                                               u(1.88, 1.26) = -0.05504
u(1.88, 0.31) = -0.22989

u(2.20, 0.31) = -0.44381
                                                               u(2.20, 1.26) = -0.11007
                                                              u(2.20, 1.20) = -0.11607

u(2.51, 1.26) = -0.16673

u(2.83, 1.26) = -0.22989

u(3.14, 1.26) = -0.30902

u(0.00, 1.57) = 0.00000

u(0.31, 1.57) = 0.00000

u(0.63, 1.57) = 0.00000
u(2.51, 0.31) = -0.63061
u(2.83, 0.31) = -0.79083

u(3.14, 0.31) = -0.95106
u(0.00, 0.63) = 0.80902
u(0.31, 0.63) = 0.63061

u(0.63, 0.63) = 0.47879
u(0.94, 0.63) = 0.32696

u(1.26, 0.63) = 0.16673

u(1.57, 0.63) = 0.00000
                                                               u(0.94, 1.57) = 0.000000
                                                               u(1.26, 1.57) = 0.00000
u(1.88, 0.63) = -0.16673

u(2.20, 0.63) = -0.32696
                                                               u(1.57, 1.57) = 0.000000
                                                              u(1.88, 1.57) = 0.00000

u(2.20, 1.57) = 0.00000

u(2.51, 1.57) = 0.00000

u(2.83, 1.57) = 0.00000

u(3.14, 1.57) = 0.00000
u(2.51, 0.63) = -0.47879
u(2.83, 0.63) = -0.63061

u(3.14, 0.63) = -0.80902
u(0.00, 0.94) = 0.58779
u(0.31, 0.94) = 0.44381
```

2. Given the problem

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} = \frac{1}{4K} \frac{\partial T}{\partial t} \; , \;\; \frac{1}{2} \leq r \leq 1 \; , \;\; 0 \leq t \; ,$$

$$T(1,t) = 100 + 40t$$
, $0 \le t \le 10$; $\frac{\partial T}{\partial r} + 3T = 0$ at $r = \frac{1}{2}$

$$T(r,0) = 200(r-0.5), 0.5 \le r \le 1,$$

and use $\Delta t = 0.5$, $\Delta r = 0.1$, and K = 0.1 to calculate T(r, t)

- By (a) the forward-difference method
 - (b) the backward-difference method
 - © the Crank-Nicolson algorithm.

➤ Environment updated. Reloading shell		Backward Difference			Crank-Nicolson		
·	time	r=0.5	r=1.0	time	r=0.5	r=1.0	
orward Difference	0.00	0.000	120.000	0.00	0.000	120.000	
time r=0.5 r=1.0	0.50	216.533	120,000	0.50	129.162	120.000	
0.00 0.000 120.000	1.00	477.853	140.000	1.00	317.956	140.000	
0.50 15.385 120.000	1.50	861.374	160.000	1.50	569.989	160.000	
1.00 28.205 140.000	2.00	1419.625	180.000	2.00	931.124	180.000	
1.50 26.585 160.000	2.50	2222.146	200.000	2.50	1430.993	200.000	
2.00 152.091 180.000	3.00	3364.815	220.000	3.00	2116.968	220.000	
2.50 -1314.279 200.000	3.50	4980.816	240.000	3.50	3048.998	240.000	
3.00 18801.702 220.000	4.00	7255.393	260.000	4.00	4308.243	260.000	
3.50 -302288.456 240.000 4.00 5472330.735 260.000	4.50	10446.274	280.000	4.50	6001.338	280.000	
4.50 -103866990.259 280.000				5.00	8270,623	300.000	
5.00 1987346117.551 300.000	5.00	14912.035	300.000	5.50	11304.419	320.000	
5.50 -37736904592.534 320.000	5.50	21151.576	320.000	6.00	15353.140	340.000	
5.00 708241212190.765 340.000	6.00	29859.030	340.000	6.50	20748.814	360.000	
5.50 -13141591993979.787 360.000	6.50	42000.164	360.000	7.00	27932.395	380.000	
7.00 241476291238962.938 380.000	7.00	58918.680	380.000	7.50	37488.967	400.000	
7.50 -4401988935641867.500 400.000	7.50	82484.110	400.000	8.00	50195.249	420.000	
3.00 79739913600003616.000 420.000	8.00		420.000	8.50	67082.064	440.000	
3.50 -1437265966172255744.000 440.000		160978.159	440.000	9.00	89517.698	460.000	
9.00 25804674882183323648.000 460.000		224561.091	460.000		119318.198	480.000	
9.50 -461876510844660219904.000 480.000	9.50	313052.114	480.000		158894.037	500.000	

3. Given the problem

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} = 0, \quad \frac{1}{2} \le r \le 1, \quad 0 \le t \le \pi / 3,$$

$$T(r,0) = 0$$
, $T(r, \pi/3) = 0$, $T(1/2, \theta) = 50$, $T(1, \theta) = 100$.

```
theta = 0.00, T(r=0.5) = 0.00, T(r=1.0) = 0.00
theta = 0.10, T(r=0.5) = 50.00, T(r=1.0) = 100.00
theta = 0.21, T(r=0.5) = 50.00, T(r=1.0) = 100.00
theta = 0.31, T(r=0.5) = 50.00, T(r=1.0) = 100.00
theta = 0.42, T(r=0.5) = 50.00, T(r=1.0) = 100.00
theta = 0.52, T(r=0.5) = 50.00, T(r=1.0) = 100.00
theta = 0.63, T(r=0.5) = 50.00, T(r=1.0) = 100.00
theta = 0.73, T(r=0.5) = 50.00, T(r=1.0) = 100.00
theta = 0.84, T(r=0.5) = 50.00, T(r=1.0) = 100.00
theta = 0.94, T(r=0.5) = 50.00, T(r=1.0) = 100.00
```

4. Given the problem

$$\frac{\partial^2 p}{\partial t^2} = \frac{\partial^2 p}{\partial x^2}, \quad 0 \le x \le 1, \quad 0 \le t$$

$$p(0, t) = 1, \quad p(1, t) = 2, \quad p(x, 0) = \cos(2\pi x), \quad \frac{\partial p}{\partial t}(x, 0) = 2\pi \sin(2\pi x), \quad 0 \le x \le 1$$

To calculate *p* by using $\Delta x = \Delta t = 0.1$.

```
Environment updated. Reloading shell...

t=0.0, p(x=0.5) = -1.000

t=1.0, p(x=0.5) = 4.000

t=2.0, p(x=0.5) = -1.000

t=3.0, p(x=0.5) = 4.000

t=4.0, p(x=0.5) = -1.000

t=5.0, p(x=0.5) = -1.000

t=6.0, p(x=0.5) = -1.000

t=7.0, p(x=0.5) = 4.000

t=8.0, p(x=0.5) = -1.000

t=9.0, p(x=0.5) = 4.000

t=0.0, p(x=0.5) = -1.000
```