Lab 10: Electronic Photo Album

National Chiao Tung University Chun-Jen Tsai 12/04/2015

Lab 10: Electronic Photo Album

- □ In this lab, you will implement an electronic photo album that reads pictures from the SD card and display the photo on LCD screen through the VGA interface
 - User use the WEST/EAST buttons to browse through all the photos on the SD card
 - WEST button select the previous photo, EAST select the next photo
 - If the user reaches the last photo, the system goes back to show the first photo
- □ You will demo the design to your TA during the lab hours on 12/28

VGA – Old Soldiers Never Die

□ VGA stands for Video Graphics Array; it's a video interface originally designed for CRT display:

VGA Scanning Pattern

□ A VGA display scans the entire screen pixel-by-pixel:

VGA Interface Pin Assignment

- □ VGA uses HD15 (a.k.a. D-sub) connectors
 - Pin #1 Red (0 ~ 0.7V)
 - Pin #2 Green (0 ~ 0.7V)
 - Pin #3 Blue (0 ~ 0.7V)
 - Pin #6, 7, 8, 10, 11 Ground
 - Pin #13 Horizontal Sync (2.5V)
 - Pin #14 Vertical Sync (2.5V)

HD-15 male

VGA Signal Timing (1/2)

- □ Horizontal Retrace Cycles (for 640x480@60Hz):
 - $1/31.77\mu s = 31476 Hz$
 - \blacksquare 31476/60 = 525 lines/frame

Parameters	А	В	С	D	E
Time	31.77μs	3.77µs	1.89μs	25.17μs	0.94µs

VGA Signal Timing (2/2)

- □ Vertical Retrace Cycles (for 640x480@60Hz):
 - 1/16.66ms = 60 Hz (frames/second)

Parameters	0	Р	Q	R	S
Time	16.66ms	64µs	1.02ms	15.25ms	0.35ms

Sync Timing in Pixel Clocks

□ The Horizontal Sync (HS) and Vertical Sync (VS) signal in pixel clock ticks are as follows:

Format	Sync Type	Clock	Total	T _{RGB}	T _{FP}	T _{SW}	T _{BP}
VGA 640x480@60Hz	HS (pixels)	25.175MHz	794	640	13	95	46
	VS (lines)		528	480	13	2	33
XGA 1024x768@60Hz	HS (pixels)	65MHz	1344	1024	24	136	160
	VS (lines)		806	768	9	6	23

Vertical Timing of VGA Modes

VGA Mode	Lines Total	Line Width	Sync (µs)	Pulse (line)	T (μs)	BP (line)	T _{ACTI}	ve (line)	Τ (<i>μ</i> s)	FP (line)	Whole fram (µs)	ne period (line)
640x480@60Hz	525	31.78 <i>μ</i> s	63	2	953	30	15328	484	285	9	16683	525
640x480@72Hz	520	26.41 <i>μ</i> s	79	3	686	26	12782	484	184	7	13735	520
800x600@56Hz	625	28.44 <i>μ</i> s	56	1	568	20	17177	604		-1*	17775	625
800x600@60Hz	628	26.40 <i>μ</i> s	106	4	554	21	15945	604		-1*	16579	628
800x600@72Hz	666	20.80 <i>μ</i> s	125	6	436	21	12563	604	728	35	13853	666

Notes:

- Active area is actually an active area added with 4 overscan border lines (in some other VGA timing tables those border lines are included in back and front porch)
- Note that when the active part of VGA page is widened, it passes by the rising edge of the vertical sync signal in some modes (marked with *)

Horizontal Timing of VGA Modes

VGA Mode	Pixel Clock	Sync Pulse		T _{BP} (pix)	T _{ACTIVE} (pix)	T _{FP} (pix)	Whole line period (pix)
640x480@60Hz	25.175MHz	3.81 <i>µ</i> s 96 pix		45	646	13	800
640x480@72Hz	31.5MHz	1.27 <i>μ</i> s 40 pix		125	646	21	832
800x600@56Hz	36MHz	2 <i>µ</i> s	72 pix	125	806	21	1024
800x600@60Hz	40MHz	3.2 <i>µ</i> s	128 pix	85	806	37	1056
800x600@72Hz	50MHz	2.4 <i>µ</i> s	120 pix	61	806	53	1040

Notes:

• Active area is actually an active area added with 6 overscan border pixels (in some other VGA timing tables those border pixels are included in back and front porch)

Digital-to-Analog Conversion

- □ VGA is an analog interface
 - 0v stands for the darkest pixel, 0.7v stands for the brightest
 - The transition from darkest pixel to brightest pixel is not linear
- □ A video DAC IC is usually used for converting digital picture to analog VGA signals
 - The most popular DAC is the ADV 7125 IC by Analog Devices

Simple VGA Interface Circuit

□ A resister network can be used as a 3×3-bit VGA DAC:

VGA Controller for Lab 10

☐ The Verilog code of a VGA synchronization controller will be provided for this lab:

Spartan-3e uses a dirt-cheap 3-bit RGB VGA DAC!

VGA Sync Controller Interfaces

☐ The I/O port of the VGA controller module:

```
module vga_sync
(
  input clk,
  input reset,
  output wire oHS,
  output wire oVS,
  output wire visible,
  output wire p_tick,
  output wire [9:0] pixel_x,
  output wire [9:0] pixel_y
);
```

What's in Lab 10 Sample Code

- ☐ In Lab 10, a sample circuit that shows eight video test screens will be provided
 - Users use WEST and EAST button to select different screens

What Are the Photos for Lab10?

□ Eight true color (8-bit per channel) photos in PPM format will be stored on the SD card for lab 10:

Color Reduction

☐ In your circuit, after reading each photo, you must convert the color depth to 1-bit per channel


```
R <= (R_8_bit > 128)? 1 : 0;
G <= (G_8_bit > 128)? 1 : 0;
B <= (B_8_bit > 128)? 1 : 0;
```

Reading the Photos From SD Card

□ All the photos stored on the SD card are in PPM format

Header (15 bytes)

RGB data (320x240x3 bytes),
Each pixel has 3 bytes, in
R, G, B order

- ☐ The 15-byte header is in ASCII format:
 - "P6→320 240→255→", where → stands for 0x0A
- □ Thus, you can search for the following hex codes to locate a photo:
 - 50 36 0A 33 32 30 20 32 34 30 0A 32 35 35 0A

Video Frame Buffer Structure

□ The video frame buffer is a 3-bit memory declared as:

```
reg [2:0] vbuf[320*240-1:0];
```

- ☐ The buffer will be synthesized as a single-port Block RAM (BRAM) if its read/write follow the following rules
 - If the write operations only happen at clock edges
 - If there is only one read or write operation at each clock edge
 - If the read/write data width is less than or equal to 64 (well, this actually depends on the FPGA model, but 64 should be safe for all Xilinx FPGAs)
- □ BRAM is a single-cycle memory, which means it can output different data items at every clock cycles!

Sending Frame Buffer Content to VGA

☐ The frame buffer can be connected to the VGA controller as follows:

Image Scaling

- □ The size of our frame buffer is of 320×240 pixels, but the VGA resolution is of 640×480 pixels → we must blow up the photo by 2× in each dimension
- □ A simple scaling algorithm can be used:
 - Each scanline in the frame buffer is used repeatedly for two horizontal scanlines
 - Each pixel in a scanline is repeated for two pixel-clock cycles

References

□ Chapter 6 of *Spartan-3E Starter Kit Board User Guide, UG230 (v1.0)*.