MEET 5 - MARCH 1999

ROUND 4 – Algebra 2

1.	b=	

CALCULATORS ARE NOT ALLOWED ON THIS ROUND

1. Given the quadratic equation in x, $x^2 - ax + b = 0$, such that the difference of its roots is 1, find b in terms of a.

2. The solution for x for the equation, $2^{2x-3} = 3^{2-x}$, can be put in the form $\log_b a$ where a and b are positive integers. Under these conditions, find the smallest possible value for a+b.

3. Solve the following equation for x: $\sqrt[3]{8x+16} + \sqrt[3]{x^2+4x+4} = 15$

MEET 5 – MARCH 2000

ROUND 4 – Algebra 2

CALCULATORS ARE NOT ALLOWED ON THIS ROUND

1. Given a rectangle whose length is 8 cm longer than its width and the ratio of its area to its perimeter equals 3 cm²: 2 cm, find the number of square centimeters in the area of this rectangle.

2. Solve the following equation for x. Put the result in simplest radical form.

$$\log_3 2 + \log_9 7 = \log_{27} x$$

3. Given the function, f, such that $f(x) = kx^2 + 6x + 4k$, find all real k such that the minimum value of f is positive.

MEET 5 – MARCH 2001

ROUND 4 – Algebra 2

1.	

CALCULATORS ARE NOT ALLOWED ON THIS ROUND

1. Find all values for x satisfying the following equation: $\log_{\frac{2}{3}}(x+3) = -2 + \log_{\frac{2}{3}}(x-2)$

2. Find the ordered pair (x, y), where x and y are rational, satisfying the following equation: $12^{x+y} = 6 \cdot 18^{x-2y}$

3. Find all values for x satisfying the following inequality: $\frac{x}{|x-2|} > 2$

MEET 5 – MARCH 2002

	ND 4 – Algebra 2 ems submitted by Maimonides.
	1.
	2
	3
	CALCULATORS ARE NOT ALLOWED ON THIS ROUND
1.	Solve the following equation for x: $\log_{25} x = 18\log_{x^4} 5$.
2.	Four positive numbers form a geometric sequence. The sum of these four numbers
	divided by the sum of first two numbers is 37. If the first number is a , find the fourth number in terms of a .

3. If *k* is added to each of the numbers 4, 124, and 316, the results are the squares of consecutive terms of an arithmetic sequence. Solve for *k*.

GREATER BOSTON MATHEMATICS LEAGUE MEET 5 – MARCH 2006

ROUND 4 - Algebra 2: Open

1.				

CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

1. Evaluate:
$$\frac{4 \ln e^3 + 8 \ln \frac{1}{\sqrt[3]{e}}}{\log_{16} 8 - \log_9 243}$$

(Note:
$$ln = log_e$$
)

2. Find all values of $x, x \in \Re$, which make the following statement true.

$$\sqrt{2x-1} = 4\sqrt[4]{2x-1} - 3$$

3. The roots of the equation $3x^2 - 7x - 1 = 0$ are r_1 and r_2 . Find the equation whose roots are $\frac{1}{2r_1}$ and $\frac{1}{2r_2}$. Write the equation in the form $Ax^2 + Bx + C = 0$, where A, B and C are integers and the GCF(A, B, C) =1.

GREATER BOSTON MATHEMATICS LEAGUE MEET 5- March 2007

ROUND 4 – Algebra 2: Open	1
	2
	3.

CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

1. Solve the following equation for x. Put the result in simplest radical form.

$$\frac{1}{\log_4 9} + \log_9 11 = \log_3 x$$

2. The positive odd integer are arranged in a pattern indicated in the diagram below. What number will be found in the 20th row, 16th column?

			\leftarrow	column	s⇔	
		1_	2	<u>3</u>	4	<u>5</u>
rows (ĵ	1 2 3 4 5	1 3 7 13 21	5 9 15 23	11 17 25	19 27	29

3. Given the equation $4x^2 + kx + 2 = 0$. Find <u>all</u> values of k for which 3 times the positive difference of the roots equals the sum of the roots.

MEET 5 – MARCH 2008

ROUND 4 - Algebra 2: Open

1.	
2.	

CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

1. Compute the exact value in simplified form. $\left(2 \cdot \sqrt[3]{343} + 7^{0}\right)^{-1} \cdot \sqrt{\frac{1}{81} + \frac{1}{144}}\right)^{-\frac{1}{3}}$

2.

3. Find all values of x which satisfy $x^2 + 2 \le |x^2 - 3x - 4|$.

MEET 5 – FEBRUARY 2009

ROUND 4 - Algebra 2: Open

1.	 				 	
2.	 		· · · · · · · · · · · · · · · · · · ·		 	
i.	(,		,	,	

CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

1. If $\log 5 = m$ and $\log 7 = p$, find $\log \sqrt[4]{\frac{392}{25}}$ in terms of m and p. Note: The above expressions are common logs, i.e. base 10.

2. Factor completely over the integers: $4^{x+1} - 2^{x+5} - 36$

3. The equation $x^2 - 2ax + 6b = 0$ has <u>positive</u> integral roots p and q, where p > q. Twelve times the sum of the roots equals five times the product of the roots. Determine the quadruple (a, b, p, q) for which this is true.

MEET 5 - FEBRUARY 2010

ROUND 4 - Algebra 2: Open

1.	
2.	
3.	

CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

1. Determine the integer k for which the sum of the following natural numbers is 627.

$$4k-10$$
, $4k-9$, $4k-8$, ... $4k+9$, $4k+10$, $4k+11$

2. Find all values of x, $x \in \{\text{real numbers}\}$, such that

$$\log_4 \sqrt{2} + \log_9 \sqrt[3]{3} = \log_{64} \sqrt{2} + (\log_{4} 16)(\log_{x} A)$$

3. The three roots of the following equation form an arithmetic sequence. Find all rational values of k for which this is true.

$$4x^3 - 48x^2 + k^2x - 5k - x = 0$$

MEET 5 - MARCH 2011

ROUND 4 - Algebra 2: Open

- 1. x =
- 3. _____

CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

Given: $L_1:\{(x,y) | 3x+5y=28\}$ and $L_2:\{(x,y) | 4x-7y=10\}$ Find the value of the x-intercept of the line through $P(P \in L_1 \cap L_2)$ whose x-intercept is three times its y-intercept.

2. The equation $2x^3 + 6x^2 + Kx + J = 0$ has one root twice the other, while the third root is 3. Compute the ordered pair (K, J).

3. Solve for x over the reals. $\frac{x-1}{3x} - \frac{x}{x-1} + \frac{1}{x^2 - x} < 0$

Created with

ROUND 4

- 1. Since the difference of the roots is 1, call the roots r and r+1; 2r+1=a and r, r+1, r=1, and r=1, r=1, and r=1
- $2^{2x-3} = 3^{2-x} \Rightarrow (2x-3)\log 2 = (2-x)\log 3 \Rightarrow 2x \log 2 3\log 2 = 2 \log 3 x \log 3 \Rightarrow x (2\log 2 + \log 3) = 3\log 2 + 2\log 3 \Rightarrow x \log 12 = \log 72 \Rightarrow x = \log_{12} 72 \Rightarrow a+b=84$
- $\sqrt[3]{8x+16} + \sqrt[3]{x^2+4x+4} = 15 \Rightarrow \sqrt[3]{8(x+2)} + \sqrt[3]{(x+2)^2} = 15 \Rightarrow$ $(x+2)^{3/3} + 2(x+2)^{3/3} 15 = 0 \Rightarrow (x+2)^{3/3} + 5(x+2)^{3/3} 3) = 0 \Rightarrow$ $(x+2)^{3/3} = -5 \text{ or } 3 \Rightarrow x+2 = -125 \text{ or } 27 \Rightarrow x = -127 \text{ or } 25$

- 1. Call the width of the rectangle $x \Rightarrow$ length is $x + 8 \Rightarrow$ area is x(x + 8) and the perimeter is 4x+16; $\frac{x^2+8x}{4x+16} = \frac{3}{2} \Rightarrow x^2+8x = 6x+24 \Rightarrow x^2+2x-24=0 \Rightarrow$ $(x+6)(x-4)=0 \Rightarrow x=4 \Rightarrow area=4 \cdot 12=48$
- Ņ $\frac{\left(\log 2 + \frac{\log 7}{2\log 3} + \frac{\log 7}{2\log 3}\right) 6\log 3 = \left(\frac{\log x}{3\log 3}\right) 6\log 3 \Rightarrow 6\log 2 + 3\log 7 = 2\log x \Rightarrow$ $\log \left(2^6 \cdot 7^3\right) = \log x^2 \Rightarrow x = \sqrt{2^6 \cdot 7^3} = 2^3 \cdot 7\sqrt{7} = 56\sqrt{7} \quad \text{[Note x must be greater than 0.]}$ $\log_3 2 + \log_9 7 = \log_{27} x \Rightarrow \frac{\log 2}{\log 3} + \frac{\log 7}{\log 9} = \frac{\log x}{\log 27} \Rightarrow \frac{\log 2}{\log 3} + \frac{\log 7}{2\log 3} = \frac{\log x}{3\log 3}$
- $\Rightarrow x = -\frac{3}{k} \Rightarrow f\left(-\frac{3}{k}\right) = k\left(-\frac{3}{k}\right)^2 + 6\left(-\frac{3}{k}\right) + 4k = \frac{9}{k} \frac{18}{k} + 4k = 4k \frac{9}{k};$ $4k \frac{9}{k} > 0 \Rightarrow \frac{4k^2 9}{k} > 0 \Rightarrow \frac{(2k 3)(2k + 3)}{k} > 0; \text{ key numbers for this inequality are}$ greater than 0 in relation to these conditions are: $k > \frac{3}{2}$ $-\frac{3}{2}$, $0,\frac{3}{2}$; Since the parabola opens up, k>0, The values for k that makes the fraction The minimum value for the quadratic function occurs at its vertex. $\Rightarrow x = -\frac{b}{2a}$

ROUND 4

- $\left(\bigcap \right) \quad 1. \quad \log_{2/3}(x+3) = -2 + \log_{2/3}(x-2) \to 2 = \log_{2/3}(x-2) \log_{2/3}(x+3) \to 2 = \log_{2/3}(x+3) = -2 + \log_{2/3}(x+3) = 2 = \log_{2/3} \left(\frac{x - 2}{x + 3} \right) \to \frac{x - 2}{x + 3} = \frac{4}{9} \to 9x - 18 = 4x + 12 \to 5x = 30 \to x = 6$
- $\Rightarrow \begin{cases} 2x + 2y = 1 + x 2y \\ x + y = 1 + 2x 4y \end{cases} \Rightarrow \begin{cases} x + 4y = 1 \\ -x + 5y = 1 \end{cases} \Rightarrow 9y = 2 \Rightarrow y = \frac{2}{9} \Rightarrow x = \frac{1}{9} \Rightarrow (x, y) = \left(\frac{1}{9}, \frac{2}{9}\right)$ $12^{x+y} = 6 \cdot 18^{x-2y} \rightarrow \left(2^2 \cdot 3\right)^{x+y} = (2 \cdot 3)\left(2 \cdot 3^2\right)^{x-2y} \rightarrow 2^{2x+2y} \cdot 3^{x+y} = 2^1 \cdot 3^1 \cdot 2^{x-2y} \cdot 3^{2x-4y}$
- inequality is $\frac{4}{3} < x < 4$ and $x \ne 2$ or equivalently $\frac{4}{3} < x < 2$ or 2 < x < 4if x < 2: $x > 2(2-x) \rightarrow x > 4-2x \rightarrow 3x > 4 \rightarrow x > \frac{4}{3}$; therefore the solution to the if x > 2: $x > 2(x-2) \rightarrow x > 2x-4 \rightarrow -x > -4 \rightarrow x < 4$; $\frac{x}{|x-2|} > 2 \rightarrow x \neq 2$ and since $|x-2| > 0 \rightarrow x > 2|x-2|$;

- ROUND 4 Algebra 2

 1. $\log_{25} x = 18\log_{x^4} 5 \Rightarrow \frac{\log x}{\log 25} = \frac{18\log 5}{\log x^4} \Rightarrow \frac{\log x}{2\log 5} = \frac{18\log 5}{4\log x} \Rightarrow (\log x)^2 = 9(\log 5)^2 \Rightarrow$ $\frac{(1+r)(1+r^2)}{1+r} = 37 \Rightarrow 1+r^2 = 37 \Rightarrow r=6 \Rightarrow \text{ fourth term is } 216a.$ $\log x = \pm 3 \log 5 \implies \log x = \log 5^{\pm 3} \implies x = 5^{\pm 3} = 125, \frac{1}{125}$
- $2d^2 = 72 \Rightarrow d = \pm 6 \Rightarrow \pm 12a + 36 = 192 \Rightarrow a = \pm 13 \Rightarrow 124 + k = 169 \Rightarrow k = 45$ $(i)4+k=(a-d)^2$, (ii) 124+ $k=a^2$, and (iii) 316+ $k=(a+d)^2 \Rightarrow$ $(ii)-(i):120=2ad-d^2$ and $(iii)-(ii):192=2ad+d^2$. Subtracting these equations:

ROUND 4 - Algebra 2: Open

1. =
$$\frac{4(3)+8(-\frac{1}{3})}{\frac{3}{4}-\frac{5}{2}}$$
 12 = $\frac{144-32}{9-30}$ = $\frac{112}{-21}$ = $\frac{16}{3}$

2. Let
$$y = \sqrt[4]{2x-1}$$
. Then the original equation becomes $y^2 = 4y - 3 \Rightarrow y^2 - 4y + 3 = 0$
 $\Rightarrow (y-3)(y-1) = 0 \Rightarrow y = 3$ or $1 \Rightarrow 2x - 1 = 81$ or $1 \Rightarrow x = 1, 41$

3. Normalized equation:
$$x^2 - \frac{7}{3}x - \frac{1}{3} = 0 \rightarrow r_1 + r_2 = \frac{7}{3}$$
, $r_1r_2 = -\frac{1}{3}$ sum of new roots: $\frac{1}{2r_1} + \frac{1}{2r_2} = \frac{r_1 + r_2}{2r_1r_2} = \frac{7}{2} = -\frac{7}{2}$ product of new roots: $\frac{1}{2r_1} \cdot \frac{1}{2r_2} = \frac{1}{4r_1r_2} = \frac{3}{4} = -\frac{3}{4}$

New equation:
$$x^2 + \frac{7}{2}x - \frac{3}{4} = 0 \Rightarrow 4x^2 + 14x - 3 = 0$$

ROUND 4 - Algebra 2: Open

1.
$$\log_9 4 + \log_9 11 = \log_9 44 = \log_1 x = \log_9(x^2) \Rightarrow x^2 = 44 \Rightarrow x = +2\sqrt{11}$$
 (The negative root is rejected since the argument of the log function must be positive.)

- 2. The gaps between the values in the first column (1, 3, 7, 13, ...) are increasing by 2. This tells us that the rule generating these values is quadratic, namely $An^2 + Bn + C$ (1, 1), (2, 3) and (3, 7) $\Rightarrow A + B + C = 1$, 4A + 2B + C = 3 and 9A + 3B + C = 7 Subtracting, 3A + B = 2, 5A + B = 4 and subtracting again $\Rightarrow (A,B,C) = (1,-1,1) \Rightarrow n^2 n + 1$. Thus, the first entry in row 20 is $20^2 20 + 1 = 381$. To find the entry in the 16^{th} column, add 30. $\Rightarrow 411$.
- 3. The sum of the roots is -k/4. Since the roots of a quadratic in general are $\frac{-b\pm\sqrt{b^2-4ac}}{2}$ $4x^2+6x-2=2(2x+1)(x+1)=0$ has a root sum of -3/2 and a positive root difference of +1/2. Thus, k=+6 is extraneous and the only value of k is -6. Thus, $3\left(\frac{\sqrt{k^2-32}}{4}\right) = -\frac{k}{4} \Rightarrow 9(k^2-32) = k^2 \Rightarrow 8k^2 = 9(32) \Rightarrow k = \pm 6$. However, for k = +6, the positive difference between the roots is $\frac{\sqrt{b^2-4ac}}{a}$ (provided a>0).

ROUND 4

1.
$$\left(\left(2 \cdot \sqrt[3]{343} + 7^0 \right)^{-1} \cdot \sqrt{\frac{1}{81} + \frac{1}{144}} \right)^{-\frac{1}{3}} = \left(\frac{1}{2 \cdot 7 + 1} \cdot \sqrt{\frac{81 + 144}{81 \cdot 144}} \right)^{\frac{1}{3}}$$

$$= \left(\frac{1}{15} \cdot \frac{15}{9 \cdot 12} \right)^{\frac{1}{3}} = \left(4 \cdot 27 \right)^{\frac{1}{3}} = \frac{3\sqrt[3]{4}}{2 \cdot 7 + 1}$$

3. Since
$$|x^2 - 3x - 4| = |(x + 1)(x - 4)| = \begin{cases} x^2 - 3x - 4 & \text{if } x \le -1 \text{ or } x \ge 4 \\ -x^2 + 3x + 4 & \text{if } -1 < x < 4 \end{cases}$$
, the original equation is equivalent to:

For $x \le -1$ or $x \ge 4$, $x^2 + 2 < x^2 - 3x - 4 \Rightarrow 3x < -6 \Rightarrow x < -7$ (expectable)

equivalent to: For
$$x \le 4$$
, $x^2 + 2 \le x^2 - 3x - 4 \Rightarrow 3x < -6 \Rightarrow \underline{x} \le -2$ (acceptable) For $-1 < x < 4$, $x^2 + 2 \le -x^2 + 3x + 4 \Rightarrow 2x^2 - 3x - 2 \le 0 \Rightarrow (2x + 1)(x - 2) \le 0 \Rightarrow -1/2 \le \underline{x} \le 2$ (acceptable)

ROUND 4

1.
$$\log \sqrt[4]{\frac{392}{25}} = \log \left(\left(\frac{8.49}{25} \right)^{\frac{1}{4}} \right) = \frac{1}{4} (\log 8 + \log 49 - \log 25) = \frac{1}{4} (3(1-m) + 2p - 2m)$$

$$= \frac{3 + 2p - 5m}{4}$$

2.
$$4^{x+1} - 2^{x+5} - 36 = (2^{x+1})^2 - 2^4 2^{x+1} - 36 = (2^{x+1} - 18)(2^{x+1} + 2) = 2(2^x - 9)2(2^x + 1)$$

= $4(2^x - 9)(2^x + 1)$

The sum of the roots is 2a and the product of the roots is 6b.

Thus,
$$12(2a) = 5(6b)$$
 $4a = 5b \Rightarrow \begin{cases} p+q = 2a \\ pq = 6b \end{cases}$
Dividing, $\frac{p+q}{pq} = \frac{a}{3b} = \frac{4a}{12b} = \frac{5b}{12b} = \frac{5}{12} \Rightarrow 12(p+q) = 5pq \Rightarrow 12q = 5pq - 12p$

$$\Rightarrow p = \frac{12q}{5q - 12} \text{ Since } p \text{ and } q \text{ are both positive integers, we start with } q = 3.$$

$$q = 3 \Rightarrow p = \frac{36}{15 - 12} = 12 \quad q = 4 \Rightarrow p = \frac{48}{20 - 12} = 6 \quad q = 6 \Rightarrow p = \frac{72}{30 - 12} = 4$$

$$q=3 \Rightarrow p=\frac{36}{15-12}=12$$
 $q=4 \Rightarrow p=\frac{48}{20-12}=6$ $q=6 \Rightarrow p=\frac{72}{30-12}=4$
Since $p>q$, the search is over and $(p,q)=(6,4)\Rightarrow (a,b)=(5,4)\Rightarrow \underbrace{(5,4,6,4)}$

ROUND 4

1. This progression is arithmetic with common difference of 1 and contains 22 terms Excluding 4k+11, the sum of the first and last, the second and next to last, etc. always produces sums of 8k. Thus the sum is $10(8k)+4k+(4k+11)=88k+11=627 \Rightarrow k=7$.

ROUND 4 - continued

2. First note that the last term is equivalent to $\log_x 4$.

$$(\log_{A^2} 16)(\log_x A) = \frac{4\log_2}{\log(A^2)} \frac{\log A}{\log x} = \frac{2\log_2 2}{\log_x 2} = \frac{\log_4 4}{\log_x x} = \log_x A$$

$$4^{4} = 2^{\frac{1}{2}}, 9^{8} = 3^{\frac{1}{3}} \text{ and } 64^{c} = 2^{\frac{1}{2}} \Rightarrow \frac{1}{4} + \frac{1}{6} = \frac{1}{12} + \log_{c} 4 \Rightarrow \frac{1}{3} = \log_{c} 4 \Rightarrow x = 4^{3} = \frac{64}{6}$$

3. Let $(r_1, r_2, r_3) = (a - d, a, a + d)$, where a and d denote the first term and common difference of the arithmetic progression respectively. Then the sum of the roots (call it S) is simply 3a. Rewriting the equation, we have

$$4x^3 - 48x^2 + k^2x - 5k - x = 0 \implies 4x^3 + (-48)x^2 + (k^2 - 1)x - 5k = 0$$

equation are 4-d, 4 and 4+d. Since 4 is a root we have Using the root-coefficient relationships, $S = \frac{+48}{4} = 12 = 3a \implies a = 4$ and the roots of the

$$\frac{4(4^{3}) - 48(4^{2}) + (k^{2} - 1)4 - 5k = 0}{16 \cdot 16 - 48 \cdot 16} \rightarrow 4k^{2} - 5k - 32 \cdot 16 - 4 = 0 \rightarrow 4k^{2} - 5k - 516 = 0$$

$$\Rightarrow (k - 12)(4k + 43) = 0 \rightarrow k = -\frac{43}{4}, 12$$

ROUND 4

1.
$$(4)3x + 5y = 28 \rightarrow 41y = 112 - 30 = 82 \rightarrow P(x, y) = P(6, 2)$$

 $(-3)4x - 7y = 10$

Suppose the x-intercept (a) is located at (a, 0) and the y-intercept (b) is located at (0, b).

Thus,
$$a = 3b$$
 and the slope $m = \frac{b-0}{0-a} = \frac{b}{-a} = \frac{b}{-3b} = -\frac{1}{3}$.

Substituting, $a + 3(0) = 12 \Rightarrow a = \underline{12}$. The equation of the required line is $(y-2) = -\frac{1}{3}(x-6) \rightarrow 3y-6 = -x+6 \rightarrow x+3y=12$

Suppose the roots are a_1 , a_2 and a_3 . The sum of the roots is $\left(-\frac{6}{2}\right) = -3$.

⇒
$$a_1 + a_2 + a_3 = a_1 + 2a_1 + 3 = 3a_1 + 3 = -3$$
 ⇒ $a_1 = -2$, $a_2 = -4$ and $a_3 = 3$.
 $(x+2)(x+4)(x-3) = (x^2 + 6x + 8)(x-3) = x^3 + 3x^2 - 10x - 24 = 0$

Multiply through be 2 to get a lead coefficient of 2, $2x^3 + 6x^2 - 20x - 48 = 0$. Thus, (K, J) = (-20, -48).

Alternate Method:

The original equation must be satisfied by
$$x = -2 \rightarrow -16 - 2K + 24 + J = 0 \rightarrow -2K + J = -8$$
 (1) The original equation must be satisfied by $x = 3 \rightarrow 54 + 3K + 54 + J = 0 \rightarrow 3K + J = -108$ (2) Subtracting (2) from (1), $-5K = 100 \rightarrow K = -20$ Substituting is (2), $-60 + J = -108 \rightarrow J = -48$ Thus, $(J, K) = (-20, -48)$.

$$3. \quad \frac{x-1}{3x} - \frac{x}{x-1} + \frac{1}{x^2 - x} < 0 \Rightarrow \frac{(x-1)^2 - x(3x) + 3}{3x(x-1)} < 0 \Rightarrow \frac{-2x^2 - 2x + 4}{3x(x-1)} < 0 \Rightarrow \frac{-2(x+2)(x-1)}{3x(x-1)} < 0$$

Canceling the common factor and dividing through by -2, $\frac{x+2}{x} > 0$, provided $x \ne 1$.

Thus, x < -2 or x > 0 and $x \ne 1$.