MS BGD MDI 720: Au delà du modèle linéaire

Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Syllabus

Modèle linéaire généralisés

Régression Polynomiale Régression polynomiale locale / Splines Modèles additifs (généralisés)

Robustesse

Moindres déviations absolues (Least Absolute Deviations)

Syllabus

Modèle linéaire généralisés

Régression Polynomiale

Régression polynomiale locale / Splines Modèles additifs (généralisés)

Robustesse

Moindres déviations absolues (Least Absolute Deviations)

Vrai signal: $f(x_i)$ pour i = 1, ..., n

Observations bruitées: $y_i = f(x_i) + \varepsilon_i$ pour $i = 1, \dots, n$

Modèle linéaire: pas bien adapté ici

Modèle linéaire: pas bien adapté ici

Modèle polynomial

Soit D le degré du polynôme:

$$y_i = \theta_0^{\star} + \sum_{d=1}^{D} \theta_d^{\star} x_i^d + \varepsilon_i$$

$$X = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^D \\ 1 & x_2 & x_2^2 & \dots & x_2^D \\ 1 & x_3 & x_3^2 & \dots & x_3^D \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^D \end{pmatrix}$$
 (matrice de Vandermonde)

De manière équivalente $X_{i,j}=x_i^{j-1}$ et $\boldsymbol{\theta}^\star=(\theta_0,\ldots,\theta_D)^\top\in\mathbb{R}^{D+1}$ et

$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}$$

Choix du degré

On peut utiliser la Validation Croisée (CV) pour choisir le degré

Choix du degré

On peut utiliser la Validation Croisée (CV) pour choisir le degré

Avantages/inconvénients de la régression polynomiale

Avantages

- flexibilité pour de faible degrés
- utile en estimation non-paramétrique
 cf. Green et Silverman (1994)Fan et Gijbels(1996)

Inconvénients

- les polynômes sont des fonctions globales (non localisées)
- le nombre de paramètres à estimer augmente vite avec la dimension et le degré

Plusieurs covariables: p = 2 et D = 2

Considérerons le cas $x_i \in \mathbb{R}^2$

Ainsi $x_i = [a_i, b_i]$. Un polynôme d'ordre 2 requiert de fixer :

$$[1, a_i, b_i, a_i^2, a_i b_i, b_i^2]$$

Les coefficients a_ib_i représentent les interactions entre les variables \mathbf{x}_1 et \mathbf{x}_2 .

Cela peut se modéliser de manière compacte:

$$y_i = \theta_0 + \theta^\top x_i + \frac{1}{2} x_i^\top \Theta x_i + \varepsilon_i$$

$$y_i = \theta_0 + \sum_{j=1}^p \theta_j x_{i,p} + \frac{1}{2} \sum_{1 \le j \le k \le p} \Theta_{j,k} x_{i,j} x_{i,k} + \varepsilon_i$$

où Θ est une matrice (symétrique) $p \times p$

Plusieurs covariables: p = 2 et D = 3

Considérerons le cas $x_i \in \mathbb{R}^2$ Ainsi $x_i = [a_i, b_i]$. Un polynôme d'ordre 2 requiert de fixer :

$$[1, a_i, b_i, a_i^2, a_i b_i, b_i^2, a_i^3, a_i^2 b_i, a_i b_i^2, b_i^3]$$

Les coefficients $a_ib_ic_i$ représentent les interactions entre les variables $\mathbf{x}_1, \mathbf{x}_2$ et \mathbf{x}_3 .

Cela peut se modéliser de manière compacte:

$$y_{i} = \theta_{0} + \sum_{j=1}^{p} \theta_{j} x_{i,p} + \frac{1}{2} \sum_{1 \leq j \leq k \leq p} \Theta_{j,k} \cdot x_{i,j} x_{i,k}$$
$$+ \frac{1}{6} \sum_{1 \leq j \leq k \leq \ell \leq p} \Theta_{j,k,\ell} \cdot x_{i,j} x_{i,k} x_{i,\ell} + \varepsilon_{i}$$

où Θ est une matrice (symétrique) $p \times p$, et Θ est un tenseur (symétrique) $p \times p \times p$

Représentation de tenseur 1D

Cas vectoriel

Représentation de tenseur 2D

Cas matriciel

Représentation de tenseur 3D

Cas tensoriel

Syllabus

Modèle linéaire généralisés

Régression Polynomiale

Régression polynomiale locale / Splines

Modèles additifs (généralisés)

Robustesse

Moindres déviations absolues (Least Absolute Deviations)

Splines (■ : cerces)

Définition:

Un **spline** f est une fonction polynomiale par morceaux sur un intervalle $[a,b], f:[a,b] \to \mathbb{R}$, composé de n sous-intervalles $[x_{i-1},x_i]$ avec $a=x_0 < x_1 < \cdots < x_{n-1} < x_n = b$. La restriction de f sur chaque intervalle $[x_{i-1},x_i]$ est un polynôme $P_i:[x_{i-1},x_i] \to \mathbb{R}$, ainsi $f(x)=P_1(x), \quad x_0 \leqslant t < x_1$ $f(x)=P_2(x), \quad x_1 \leqslant t < x_2$:

$$f(x) = P_i(x), \quad x_{n-1} \leqslant t \leqslant x_n.$$

Le plus haut degré des polynômes P_i est appelé l'ordre du spline f, et les x_i sont appelé les nœuds (\bowtie : knots)

Rem: les plus populaires sont les splines (cubiques) d'ordre 3 Rem: on privilégie des splines lisses : C^0, C^1, C^2 , etc.

statistiques

 computer vision, cf. courbes de Bézier dans Inkscape et autre logiciel de dessin vectoriel

- statistiques
- computer vision, cf. courbes de Bézier dans Inkscape et autre logiciel de dessin vectoriel
- analyse numérique

- statistiques
- computer vision, cf. courbes de Bézier dans Inkscape et autre logiciel de dessin vectoriel
- analyse numérique
- ▶ etc

- statistiques
- computer vision, cf. courbes de Bézier dans Inkscape et autre logiciel de dessin vectoriel
- analyse numérique
- etc.

Algorithmes

Approches standards pour ajuster des splines quand on observe des points (x_i,y_i) pour $i=1,\ldots,n$: chercher le spline avec courbure minimum, *i.e.*, résoudre:

$$\hat{f} \stackrel{\Delta}{=} SP_{\lambda}(\mathbf{y}) \in \underset{f \text{ est un spline}}{\arg\min} \left(\sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \int_{a}^{b} |f''(t)|^2 dt \right)$$

<u>Fait</u>: la solution est atteinte pour un spline cubique, et peut être obtenue par un moindre carré régularisé, avec $\Omega \in \mathbb{R}^{n \times n}$

$$\underset{g}{\operatorname{arg\,min}} \|\mathbf{y} - g\|^2 + \lambda g^{\top} \Omega g$$

voir détails dans Ch. 2, Green and Silverman (1994)

Note: avec cette régularisation les splines ont pour nœuds les x_i

Visual

Choix du paramètre de lissage

On peut utiliser la Validation Croisée (CV) pour choisir le niveau de lissage

Choix du paramètre de lissage

On peut utiliser la Validation Croisée (CV) pour choisir le niveau de lissage

MSE Spline = 0.2498 vs. MSE Polynomials = 2.1899

Syllabus

Modèle linéaire généralisés

Régression Polynomiale Régression polynomiale locale / Splines Modèles additifs (généralisés)

Robustesse

Moindres déviations absolues (Least Absolute Deviations)

Modèles additifs pour la régression

Avec les des fonctions réelles, *i.e.*, $f_i : \mathbb{R} \to \mathbb{R}$, le modèle s'écrit

$$y_i = \sum_{j=1}^{p} f_j(x_{i,j}) + \varepsilon_i$$

Cela peut être résumé comme suit:

$$\mathbf{y} = \sum_{j=1}^p f_j(\mathbf{x}_j) + \varepsilon$$
 avec la convention $f_j(\mathbf{x}_j) = \begin{pmatrix} f_j(x_{1,j}) \\ \vdots \\ f_j(x_{n,j}) \end{pmatrix}$ avec $\mathbf{x}_j = \begin{pmatrix} x_{1,j} \\ \vdots \\ x_{n,j} \end{pmatrix}$

Rem: potentiellement un des f_i encode la variable constante

Rem: GAM (Generalized Additive Models): extension aux modèles linéaires généralisés, e.g., régression logistique, $g(y_i) = \sum_{j=1}^p f_j(x_{i,j})$, avec g une fonction

Rétro-ajustement (Backfitting)

Algorithm: Rétro-ajustement d'un modèle additif

Input :
$$X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}$$
, $\mathbf{y} \in \mathbb{R}^n$

Rétro-ajustement (Backfitting)

Algorithm: Rétro-ajustement d'un modèle additif

Input : $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}$, $\mathbf{y} \in \mathbb{R}^n$

Initialize: $f_1 \equiv 0, \dots, f_p \equiv 0$ and $\mathbf{r} = \mathbf{y}$ (residual)

Rétro-ajustement (Backfitting)

Algorithm: Rétro-ajustement d'un modèle additif

Input : $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}, \ \mathbf{y} \in \mathbb{R}^n$

Initialize: $f_1 \equiv 0, \dots, f_p \equiv 0$ and $\mathbf{r} = \mathbf{y}$ (residual)

while not converged do

Algorithm: Rétro-ajustement d'un modèle additif

```
Input : X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}, \mathbf{y} \in \mathbb{R}^n
```

Initialize: $f_1 \equiv 0, \dots, f_p \equiv 0$ and $\mathbf{r} = \mathbf{y}$ (residual)

while not converged do

$$\quad \text{for } j=1,\dots,p \text{ do }$$

Algorithm: Rétro-ajustement d'un modèle additif

```
 \begin{array}{ll} \textbf{Input} & : X = \left[\mathbf{x}_1, \dots, \mathbf{x}_p\right] \in \mathbb{R}^{n \times p}, \ \mathbf{y} \in \mathbb{R}^n \\ \textbf{Initialize:} & f_1 \equiv 0, \dots, f_p \equiv 0 \ \text{and} \ \mathbf{r} = \mathbf{y} \ \text{(residual)} \\ \textbf{while not converged do} \\ & \textbf{for} \ j = 1, \dots, p \ \textbf{do} \\ & & \textbf{r} \leftarrow \mathbf{r} + f_j(\mathbf{x}_j)) \end{array} \\ & & \text{// Partial residual update}
```

Algorithm: Rétro-ajustement d'un modèle additif

```
 \begin{array}{ll} \hline \textbf{Input} & : X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}, \ \mathbf{y} \in \mathbb{R}^n \\ \text{Initialize:} & f_1 \equiv 0, \dots, f_p \equiv 0 \ \text{and} \ \mathbf{r} = \mathbf{y} \ \text{(residual)} \\ \textbf{while} & \textit{not converged do} \\ \hline & \textbf{for} & j = 1, \dots, p \ \textbf{do} \\ \hline & \mathbf{r} \leftarrow \mathbf{r} + f_j(\mathbf{x}_j)) & \textit{// Partial residual update} \\ \hline & f_j \leftarrow SP_{\lambda_j}(\mathbf{r}) & \textit{// update with spline (param. $\lambda_j$)} \\ \hline \end{array}
```

Algorithm: Rétro-ajustement d'un modèle additif

Algorithm: Rétro-ajustement d'un modèle additif

```
Input : X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}, \mathbf{y} \in \mathbb{R}^n

Initialize: f_1 \equiv 0, \dots, f_p \equiv 0 and \mathbf{r} = \mathbf{y} (residual)

while not converged do

for j = 1, \dots, p do

\mathbf{r} \leftarrow \mathbf{r} + f_j(\mathbf{x}_j) // Partial residual update

f_j \leftarrow SP_{\lambda_j}(\mathbf{r}) // update with spline (param. \lambda_j)

\mathbf{r} \leftarrow \mathbf{r} - f_j(\mathbf{x}_j) // Partial residual un-update

Output: f_1, \dots, f_p
```

Rem: Le Rétro-ajustement est une descente par coordonnée

GAM en action

où
$${f y}=f({f x})+arepsilon$$
 avec $f({f x})=f_1(x_1)+f_2(x_2)+f_3(x_3)$ et
$$f_1(x)=\cos(3x)$$

$$f_2(x)=x^3$$

$$f_3(x)=3\log(1+|x|)$$

GAM en action

où
$${f y}=f({f x})+arepsilon$$
 avec $f({f x})=f_1(x_1)+f_2(x_2)+f_3(x_3)$ et
$$f_1(x)=\cos(3x)$$

$$f_2(x)=x^3$$

$$f_3(x)=3\log(1+|x|)$$

Pros and cons of GAM

Pros

- can model non-linear effect automatically
- ▶ interpretation is possible : functions are 1D (can visualize!)
- can be extended to second order interactions of features (for small p)

Cons

- Stopping is not so simple (non-convex nature...)
- Proper tuning is hard: at least one parameter by feature

Plus de détails sur les GAM:

- ► Vidéo: https://vimeo.com/125940125
- ▶ Livre: Hastie and Tibshirani (1990)

Plus de détails sur les GAM:

- ► Vidéo: https://vimeo.com/125940125
- ▶ Livre: Hastie and Tibshirani (1990)

Syllabus

Modèle linéaire généralisés

Régression Polynomiale Régression polynomiale locale / Splines Modèles additifs (généralisés)

Robustesse

Moindres déviations absolues (Least Absolute Deviations)

Les moindres carrés historiquement

(a) Adrien-Marie Legendre: "Nouvelles méthodes pour la détermination des orbites des comètes". 1805

(b) Carl Friedrich Gauss: "Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium" 1809

et juste avant ...

Définition

L'estimateur des Moindres Déviations Absolues (: Least Absolute Deviations (LAD)) est donné par:

$$(\hat{\boldsymbol{\theta}}) \in \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \sum_{i=1}^n |y_i - x_i^{\top} \boldsymbol{\theta}|$$

avec $X = [x_1, \dots, x_n]^{\top}$ (description par ligne)

Rem: problème d'optimisation plus difficile que les moindres carrés; nécessite un algorithme d'optimisation adapté à l'optimisation non lisse (*i.e.*, fonctions non différentiables)

Rem: cet estimateur est moins sensible aux éléments atypiques (\ge : outliers), e.g., observations ayant un ε_i important

Paternité des Moindres déviations absolues

(c) **Ruđer Josip Bošković**:"???", 1757

(d) **Pierre-Simon de Laplace**: "Traité de mécanique céleste", 1799

LAD in action

LAD in action

Points non abordés: extensions possibles

- ▶ Robustesse: attache aux données ℓ_1 , régression quantile, moyennes tronquées, etc.
- ▶ Méthodes gloutones (greedy)
- boosting/bagging
- Point de vue bayesien
- Arbres / forêts (classification surtout)
- K-plus proches voisins
- SVM (classification)
- Réseaux de neurones (classification surtout)

References I

J. Fan and I. Gijbels.

Local polynomial modelling and its applications, volume 66 of Monographs on Statistics and Applied Probability.

Chapman & Hall, London, 1996.

P. J. Green and B. W. Silverman.

Nonparametric regression and generalized linear models, volume 58 of Monographs on Statistics and Applied Probability.

Chapman & Hall, London, 1994.

A roughness penalty approach.

T. J. Hastie and R. J. Tibshirani.
 Generalized additive models, volume 43.
 CRC press, 1990.