3.1: Construya el diagrama de transición del AFD a partir de la tabla 3.8.

	0	1
*q0	Q2	Q1
q1	Q1	Q2
q2	Q1	Q3
q3	Q3	Q1

Diagrama:

Elaborar los ejercicios de la pagina 49 de la a) a la g) (3.2)con expresiones regulares, del libro Teoría de la computación de Carrión Viramontes:

a) El lenguaje donde toda cadena tiene exactamente dos bs.

Expresión regular: ((a+b)* b (a+b)* b (a+b)*)

También puede ser: (a+b)* b^2 (a+b)*

b) El lenguaje de las cadenas no vacías, donde toda a está entre dos bs.

Expresión regular: (b (a+b)* b)

c) El lenguaje donde toda cadena contiene el sufijo aba.

Expresión regular: ((a+b)* aba)

d) El lenguaje donde ninguna cadena contiene las subcadenas aa ni bb.

Expresión regular: ((a+b)* (ba+b) (a+b)*)

e) El lenguaje donde toda cadena contiene la subcadena baba.

Expresión regular: ((a+b)* baba (a+b)*)

f) El lenguaje donde toda cadena contiene por separado a las cadenas ab y ba.

Expresión regular: ((a+b)* (ab+ba) (a+b)*)

g) Toda cadena es de longitud impar y contiene una cantidad par de as.

Expresión regular: ((ba+ab) (ba+ab)* (a+ba+ab))

