# CSC343 Worksheet 2 Solution

June 12, 2020

### 1. Exercise 2.4.1:

a)  $\sigma_{speed \geq 3.0}$  (Movies)

Models 1005, 1006, 1013 have speed greater than 3.0

|               | model | speed | ram  | hd  | price |
|---------------|-------|-------|------|-----|-------|
|               | 1001  | 2.66  | 1024 | 250 | 2114  |
|               | 1002  | 2.10  | 512  | 250 | 995   |
|               | 1003  | 1.42  | 512  | 80  | 478   |
|               | 1004  | 2.80  | 1024 | 250 | 649   |
| <b>-</b>      | 1005  | 3.20  | 512  | 250 | 630   |
| <b>→</b>      | 1006  | 3.20  | 1024 | 320 | 1049  |
|               | 1007  | 2.20  | 1024 | 200 | 510   |
|               | 1008  | 2.20  | 2048 | 250 | 770   |
|               | 1009  | 2.00  | 1024 | 250 | 650   |
|               | 1010  | 2.80  | 2048 | 300 | 770   |
|               | 1011  | 1.86  | 2048 | 160 | 959   |
|               | 1012  | 2.80  | 1024 | 160 | 649   |
| $\rightarrow$ | 1013  | 3.06  | 512  | 80  | 529   |

## Notes:

- $\bullet$  Select
  - Is indicated by  $\sigma$
  - Syntax:  $\sigma_{\text{QUERY}}$ SCHEMA\_NAME
  - e.g  $\sigma_{length \ge 100 \text{ AND } studioName= 'Fox'}$  (Movies)

#### **Relation - Movies**

| title        | year | length | in Color | studioName | producerC# |
|--------------|------|--------|----------|------------|------------|
| Star Wars    | 1977 | 124    | sciFi    | Fox        | 12345      |
| Galaxy Quest | 1999 | 104    | comedy   | DreamWorks | 67890      |

b)  $\pi_{maker}(\sigma_{hd>100}(\text{Product} \bowtie \text{Laptop}))$ 

Makers A, E, F, G make laptops with hard-disk of at least 100GB.



Figure 2.20: Sample data for Product

#### Notes:

- Project
  - Syntax:  $\pi_{A_1,A_2,\cdots,A_n}(\text{Rel})$ 
    - \*  $A_1, \dots, A_n$  represents attributes
  - Picks certain columns
  - e.g

What are the titles and years of movies made by Fox that are at least 100 minutes long?

$$\pi_{title,year}(\sigma_{length \geq 100 \text{ AND } studioName = 'Fox'}) (Movies)$$

• Cross-Product / Cartesian Product

- Combines two relations
- Syntax: Relation  $1 \times \text{Relation } 2$
- e.g. Names and GPAs of students with HS>1000 who applied to CS and were rejected

 $\pi_{sName,GPA}(\sigma_{Student.sID=Apply.sID} \ {\bf AND} \ _{HS>1000} \ {\bf AND} \ _{major=`cs'} \ {\bf AND} \ _{dec=`R'}) (Student \times Apply)$ 



#### • Natural Join

- Enforce equality on all attributes with the same name
- Eliminiate one copy of duplicate attributes
- Is symbolized by  $\bowtie$
- Syntax: Relation  $1 \bowtie \text{Relation } 2$
- e.g.

Names and GPAs of students with HS > 1000 who applied to CS and were rejected.

 $\pi_{sName,GPA}(\sigma_{HS>1000 \text{ AND } major=`cs' \text{ AND } dec=`R'}(\text{Student} \bowtie \text{Apply}))$ 



- e.g.2.

Names and GPAs of students with HS>1000 who applied to CS at college with enr>20,000 and were rejected

 $\pi_{sName,GPA}(\sigma_{HS>1000~{\bf AND}~enr>20000~{\bf AND}~major=`cs'~{\bf AND}~dec=`R'}({\rm Student}\bowtie({\rm Apply}\bowtie{\rm College}))$ 



- Union Operator
  - Syntax  $R \cup S$
  - Is the set of elements that are in R or S or both.

- An element appears only once in the union even if it is present in both R and S.
- Is like **UNION** keyword in SQL
- e.g.

List of college and student names

$$\pi_{cName}(\text{College}) \cup \pi_{sName}(\text{Student})$$

- Difference Operator
  - Syntax: R S
  - Is also called the *difference* of R and S
  - is the set of elements that are in R but not in S.
  - Is like **EXCEPT** keyword in SQL
  - e.g.

IDs and names of students who didn't apply anywhere

$$\pi_{sID}(Student) - \pi_{sID}(Apply)$$

- Intersection Operator
  - Syntax:  $R \cap S$
  - Is also canned the *intersection* of R and S
  - Is the set of elements that are in both R and S
  - e.g.

Names that are both a college name and a student name

$$\pi_{cName}(\text{College}) - \pi_{sName}(\text{Student})$$

c)

$$\pi_{model,price}(\sigma_{maker='B'}(Product \bowtie (\pi_{model,price}(Laptop) \cup \pi_{model,price}(PC) \cup \pi_{model,price}(Printer)))$$
 (1)

The price and model number of all products made by manufacturer B are

- 1. model 1004, price 649
- 2. model 1005, price 630
- 3. model 1006, price 1049

#### 4. model 2007, price 1429



Figure 2.20: Sample data for Product

d)  $\pi_{model}(\sigma_{color=\text{true } \mathbf{AND} \ type=\text{`laser'}}(\text{Printer}))$ 

Model 3003, and 3007 are color laster printers

|               | model | color | type    | price |
|---------------|-------|-------|---------|-------|
|               | 3001  | true  | ink-jet | 99    |
|               | 3002  | false | laser   | 239   |
| $\rightarrow$ | 3003  | true  | laser   | 899   |
|               | 3004  | true  | ink-jet | 120   |
|               | 3005  | false | laser   | 120   |
|               | 3006  | true  | ink-jet | 100   |
| $\rightarrow$ | 3007  | true  | laser   | 200   |

(c) Sample data for relation Printer

e)  $\pi_{maker}(\text{Product} \bowtie (\pi_{model}(\text{Laptops}) - \pi_{model}(\text{PC})))$ 

Manufacturers F and G produce laptops but not PCs

| ma  | ker   mod | lei type  | _ |
|-----|-----------|-----------|---|
| A   | 100       | 1 pc      |   |
| A   | 1002      | 2 pc      |   |
| A   | 1003      | 3 pc      |   |
| A   | 2004      | 4 laptop  |   |
| A   | 2008      | 5 laptop  |   |
| A   | 2006      | 6 laptop  |   |
| В   | 1004      | 4 pc      |   |
| В   | 1008      | 5 pc      |   |
| В   | 1006      | 6 pc      |   |
| В   | 200       | 7 laptop  |   |
| С   | 1007      | 7   pc    |   |
| D   | 1008      | 8 pc      |   |
| D   | 1009      | 9 pc      |   |
| D   | 1010      | 0   pc    |   |
| D   | 3004      | 4 printer |   |
| D   | 3008      | 5 printer |   |
| E   | 101       | 1 pc      |   |
| E   | 1013      | 2 pc      |   |
| E   | 1013      | 3 pc      |   |
| E   | 200       | 1 laptop  |   |
| E   | 2003      | 2 laptop  |   |
| E   | 2003      | 3 laptop  |   |
| E   | 300       | 1 printer |   |
| E   | 3002      | 2 printer |   |
| E   | 3003      | 3 printer |   |
| F F | 2008      | 8 laptop  |   |
| F F | 2009      | 9 laptop  |   |
| G   | 2010      |           |   |
| Н   | 3006      | 6 printer |   |
| Н   | 3007      | 7 printer |   |

Figure 2.20: Sample data for Product

| model | speed | ram  | hd  | screen | price |
|-------|-------|------|-----|--------|-------|
| 2001  | 2.00  | 2048 | 240 | 20.1   | 3673  |
| 2002  | 1.73  | 1024 | 80  | 17.0   | 949   |
| 2003  | 1.80  | 512  | 60  | 15.4   | 549   |
| 2004  | 2.00  | 512  | 60  | 13.3   | 1150  |
| 2005  | 2.16  | 1024 | 120 | 17.0   | 2500  |
| 2006  | 2.00  | 2048 | 80  | 15.4   | 1700  |
| 2007  | 1.83  | 1024 | 120 | 13.3   | 1429  |
| 2008  | 1.60  | 1024 | 100 | 15.4   | 900   |
| 2009  | 1.60  | 512  | 80  | 14.1   | 680   |
| 2010  | 2.00  | 2048 | 160 | 15.4   | 2300  |

(b) Sample data for relation Laptop

| model | speed | ram  | hd  | price |
|-------|-------|------|-----|-------|
| 1001  | 2.66  | 1024 | 250 | 2114  |
| 1002  | 2.10  | 512  | 250 | 995   |
| 1003  | 1.42  | 512  | 80  | 478   |
| 1004  | 2.80  | 1024 | 250 | 649   |
| 1005  | 3.20  | 512  | 250 | 630   |
| 1006  | 3.20  | 1024 | 320 | 1049  |
| 1007  | 2.20  | 1024 | 200 | 510   |
| 1008  | 2.20  | 2048 | 250 | 770   |
| 1009  | 2.00  | 1024 | 250 | 650   |
| 1010  | 2.80  | 2048 | 300 | 770   |
| 1011  | 1.86  | 2048 | 160 | 959   |
| 1012  | 2.80  | 1024 | 160 | 649   |
| 1013  | 3.06  | 512  | 80  | 529   |

(a) Sample data for relation PC

## **Correct Solution:**

## Relational Algebra:

 $\pi_{maker}(\sigma_{type=\text{`laptop'}} \text{ and } type<>\text{`PC'}(\text{Product}))$ 

# Query Result:



Manufacturers F and G produce laptops but not PCs

f) 
$$\pi_{hd}(\sigma_{hd=hd2}(\pi_{hd}(PC) \times \rho_{\pi_{hd}(PC)(hd2)}(\pi_{hd}(PC))))$$

## Query Result:

| hd  |
|-----|
| 250 |
| 80  |
| 160 |

# 2. a) **Answer:**

## b) **Answer:**



# c) Answer:



# d) Answer:

