

ĐẠI HỌC BÁCH KHOA HÀ NỘI TRƯỜNG CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

BÀI 21

TỔNG HỢP BỘ LỌC FIR PHA TUYẾN TÍNH SỬ DỤNG PHƯƠNG PHÁP CỬA SỐ

Khoa Kỹ thuật máy tính

■ Nội dung bài học

- 1. Thiết kế FIR dùng phương pháp cửa sổ.
- 2. Một số cửa sổ thường dùng.

☐ Mục tiêu bài học

Sau khi học xong bài này, các em sẽ nắm được những vấn đề sau:

- Phương pháp thiết kế bộ lọc FIR dùng phương pháp cửa sổ.
- Một số loại cửa sổ thường dùng và các thông số kỹ thuật của chúng.

1. Thiết kế FIR dùng cửa sổ

- Phương pháp:
 - Chọn bộ lọc lý tưởng thích hợp (Không nhân quả, chiều dài đáp ứng xung vô hạn)
 - Sau đó hạn chế chiều dài đáp ứng xung (bằng cách nhân với hàm cửa sổ) để có bộ lọc FIR nhân quả, pha tuyến tính.
- Đáp ứng tần số của bộ lọc thông thấp lý tưởng:

$$H_{d}(\omega) = \begin{cases} 1.e^{-j\alpha\omega}, & |\omega| \leq \omega_{C} \\ 0, & \omega_{C} < |\omega| \leq \pi \end{cases}$$

• ω_C : tần số cắt, α : độ trễ mẫu ($e^{-j\alpha\omega}$: tương ứng với trễ α mẫu trong miền thời gian)

Thiết kế FIR dùng cửa số

Đáp ứng xung có chiều dài vô hạn:

$$\begin{split} h_d(n) &= F^{-1} \big\{ H_d \big(e^{j\omega} \big) \big\} = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} H_d \big(e^{j\omega} \big) e^{j\omega n} d\omega \\ &= \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} 1 \cdot e^{-j\alpha n} \cdot e^{j\omega n} d\omega = \frac{\sin[\omega_C(n-\alpha)]}{\pi(n-\alpha)} \end{split}$$

- Để có bộ lọc FIR từ h_d(n), cần cắt h_d(n) cả về hai phía.
- Để có bộ lọc FIR pha tuyến tính, nhân quả, đáp ứng xung h(n) chiều dài M ta cần thực hiện:

$$h(n) = \begin{cases} h_d(n), & 0 \le n \le M-1 \\ 0, & n \text{ còn lại} \end{cases} \qquad \alpha = \frac{M-1}{2} \qquad \qquad h(n) = h_d(n). \, w(n)$$

Thiết kế FIR dùng cửa số

Đây là thao tác nhân với hàm cửa sổ:

$$w(n) = \begin{cases} 1 & 0 \le n \le M - 1 \\ 0, & n \text{ còn lại} \end{cases}$$

Trong miền tần số:

$$H(e^{j\omega}) = H_{d}(e^{j\omega}) * W(e^{j\omega})$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} W(e^{j\gamma}) H_{d}(e^{j(\omega-\gamma)}) d\gamma$$

Nhận xét

- Cửa sổ chữ nhật có chiều dài hữu hạn M nên búp sóng chính có bề rộng tỷ lệ với $\frac{1}{M}$, các búp phụ có chiều cao nhỏ hơn búp chính.
- Búp sóng chính tạo ra dải quá độ. Bề rộng búp chính quyết định độ rộng dải quá độ.
- Các búp phụ tạo ra các gợn sóng có dạng giống nhau trong dải thông và dải chắn

Cửa sổ chữ nhật

$$w(n) = \begin{cases} 1, & 0 \le n \le M - 1 \\ 0, & n \text{ còn lại} \end{cases}$$

Đáp ứng tần số và đáp ứng biên độ:

$$W(e^{j\omega}) = \left[\frac{\sin\left(\frac{\omega M}{2}\right)}{\sin\left(\frac{\omega}{2}\right)}\right] e^{-j\omega\frac{M-1}{2}} \rightarrow W_r(e^{j\omega}) = \frac{\sin\left(\frac{\omega M}{2}\right)}{\sin\left(\frac{\omega}{2}\right)}$$

• Đáp ứng biên độ $W_r(\omega)$ có điểm không đầu tiên tại $\omega=\omega_1$:

$$\frac{\omega_1 M}{2} = \pi \to \omega_1 = \frac{2\pi}{M}$$

Bề rộng búp chính $\Delta\Omega$ $2\omega_1=4\pi/M$

Cửa sổ chữ nhật

• Biên độ của búp phụ đầu tiên tại $\omega = 3\pi/M$ nên

$$|W_{\rm r}(\omega = 3\pi/M)| = \left| \frac{\sin\left(\frac{3\pi}{2}\right)}{\sin\left(\frac{3\pi}{2M}\right)} \right| \approx \frac{2M}{3\pi}, \qquad M \gg 1$$

Tỷ số biên độ đỉnh thứ cấp đầu tiên và đỉnh trung tâm (dB):

$$\lambda_R = 20.\log_{10} \frac{2M/3\pi}{M} \approx -13dB$$

• Các thông số kỹ thuật của cửa sổ chữ nhật: $\Delta\Omega = 4\pi / M$, $\lambda_R = -13dB$

2. Một số cửa sổ thường dùng

Cửa sổ Bartlett (tam giác):

$$w(n) = \begin{cases} \frac{2n}{M-1}, & 0 \le n \le \frac{M-1}{2} \\ 2 - \frac{2n}{M-1}, & \frac{M-1}{2} \le n \le M-1 \\ 0, & \text{otherwise} \end{cases}$$

Một số cửa sổ thường dùng

Cửa sổ Hanning:

$$w(n) = \begin{cases} 0.5 \left[1 - \cos\left(\frac{2\pi n}{M-1}\right) \right], & 0 \le n \le M-1 \\ 0, & \text{otherwise} \end{cases}$$

Một số cửa sổ thường dùng

• Cửa sổ Hamming:

$$w(n) = \begin{cases} 0.54 - 0.46\cos\left(\frac{2\pi n}{M-1}\right), & 0 \le n \le M-1 \\ 0, & \text{otherwise} \end{cases}$$

Một số cửa sổ thường dùng

Cửa sổ Blackman:

$$w(n) = \begin{cases} 0.42 - 0.5\cos\left(\frac{2\pi n}{M-1}\right) + 0.08\left(\frac{4\pi n}{M-1}\right), & 0 \le n \le M-1\\ 0, & \text{otherwise} \end{cases}$$

Thông số kỹ thuật của các cửa số

Loại cửa sổ	Bề rộng của búp sóng chính ΔΩ	Tỷ số biên độ đỉnh thứ cấp đầu tiên và đỉnh trung tâm λ_R
Cửa sổ chữ nhật	4π/M	-13 dB
Cửa sổ tam giác	8π/M	-26 dB
Cửa sổ Hanning	8π/M	-32 dB
Cửa sổ Hamming	8π/M	-43 dB
Cửa sổ Blackman	12π/M	-57dB

4. Tổng kết

- Thiết kế các bộ lọc số FIR bằng phương pháp cửa sổ từ bộ lọc số lý tưởng
- Mỗi cửa số được đặc trưng bởi hai tham số : bề rộng của búp sóng chính $\Delta\Omega$ và tỷ số biên độ đỉnh thứ cấp đầu tiên và đỉnh trung tâm λ_R
- Trong số các loại cửa sổ, cửa sổ chữ nhật tuy đơn giản nhất nhưng lại chất lượng kém nhất về độ suy giảm trong dải chắn

5. Bài tập

- Bài tập 1
 - ☐ Thiết kế bộ lọc thông thông dải có các tham số:
 - \square Tần số cắt dưới: $\omega 1s=0.2\pi$, As=60dB. Tần số thông dưới: $\omega 1p=0.35\pi$, Rp=1dB
 - \Box Tần số thông trên: $\omega 2p=0.65\pi$, Rp=1dB. Tần số cắt trên: $\omega 2s=0.8\pi$, As=60dB

5. Bài tập

- Bài tập 2
 - ☐ Thiết kế bộ lọc thông thấp FIR có các tham số sau:

$$\omega_{\rm p} = 0.2\pi, R_{\rm p} = 0.25 \text{ dB}, \omega_{\rm s} = 0.3\pi, \text{As} = 50 \text{ dB}$$

Bài học tiếp theo. BÀI

BỘ LỘC SỐ IIR

Tài liệu tham khảo:

- Nguyễn Quốc Trung (2008), Xử lý tín hiệu và lọc số, Tập 1, Nhà xuất bản Khoa học và Kỹ thuật, Chương 1 Tín hiệu và hệ thống rời rạc.
- J.G. Proakis, D.G. Manolakis (2007), Digital Signal Processing, Principles, Algorithms, and Applications, 4th Ed, Prentice Hall, Chapter 1 Introduction.

Chúc các bạn học tốt!