Planarity decision algorithm

Demoucron, Malgrange and Pertuiset (1964)

Start with from a graph ${\cal G}$

- ightharpoonup Take from a graph G a subgraph H
- ightharpoonup H is any cycle from G (so H is planar)
- \blacktriangleright We iteratively extend H to G
- \blacktriangleright We determine S, a set of
 - ightharpoonup edge not in H but endpoints are in H
 - ightharpoonup connected component in G, not in H, with the vertices of attachment
- lacktriangle We select a fragment S_i and a face which can accept S_i

- Choose a H
- 2. Compute all faces of H
- 3. Compute the fragments
- 4. If there are no fragments, the graph is planar
- 5. Compute admissible faces for fragments
- 6. If there is a fragment without an admissible face, the graph is not planar
- 7. If there is a fragment only one admissible face, embed it, go to 2
- 8. Chose a fragment and embed it

Graph G

02 03 03 03 05 05 05 05 05 05 05 05 05 05 05 05 05	$F_1 = 123945$ $F_2 = 567$ $F_3 = 6987$ $F_4 = 5496$ $F_5 = 1239875$	S_1 S_2 S_3	$F(S_1) = 1, 5$ $F(S_2) = 1, 5$ $F(S_3) = 2$
05 05 05 05 05 05	$F_1 = 123945$ $F_2 = 567$ $F_3 = 6987$ $F_4 = 465$ $F_5 = 496$ $F_6 = 1239875$	S_1 S_2 S_2	$F(S_1) = 1, 6$ $F(S_2) = 1, 6$
02 02 03 03 04 05 05 05 05 05 05 05 05 05 05 05 05 05	$F_1 = 125$ $F_2 = 23945$ $F_3 = 567$ $F_4 = 6987$ $F_5 = 465$ $F_6 = 496$ $F_7 = 1239875$	v_1 g_1 g_2	$F(S_1)=7$
27 C2	$F_1 = 125$ $F_2 = 23945$ $F_3 = 567$ $F_4 = 6987$ $F_5 = 465$ $F_6 = 496$ $F_7 = 123$ $F_8 = 139875$		