Задача 0.1. Нека $\Sigma = \{0\}$ е еднобуквена азбука. Ще казваме, че език $L \subseteq \Sigma^*$ е аритметична прогресия, ако има $a, d \in \mathbb{N}$, така че $L = \{0^{a+nd} \mid n \in \mathbb{N}\}$. Да се докаже, че:

- 1. ако L е аритметична прогресия, то L е регулярен.
- 2. ако L_1, L_2, \ldots, L_m са аритметчини прогресии, то $\bigcup_{i=1}^m L_i$ е регулярен.
- 3. ако $L \subseteq \{0\}^*$ е регулярен, то има $m \in \mathbb{N}$ и аритметични прогресии L_1, \dots, L_m , за които $L = \bigcup_{i=1}^m L_i$.

Задача 0.2. Нека $A_i = \langle \Sigma, Q_i, s_i, \delta_i, F_i \rangle$ за i = 1, 2 са тотални крайни детерминирани автомати. Разглеждаме конструкцията:

1.
$$Q^{(0)} = \{(s_1, s_2)\}, L_0 = Q^{(0)}, \delta^{(0)} = \emptyset, i = 0.$$

- 2. Ако $L_i \neq \emptyset$, направи:
 - (a) $L_{i+1} = \emptyset$.
 - (6) $Q_{i+1} = Q_i$.
 - (a) $\delta_{i+1} = \delta_i$.
 - (г) за всяко $(p_1, p_2) \in L_i$ и всяка буква $a \in \Sigma$, нека $(q_1, q_2) = (\delta_1(p_1, a), \delta_2(p_2, a))$:

$$\begin{array}{lcl} \delta_{i+1} & = & \delta_{i+1} \cup \{\langle (p_1,p_2),a,(q_1,q_2)\rangle\} \\ \\ L_{i+1} & = & \begin{cases} L_{i+1} \cup \{(q_1,q_2)\} \ a\kappao \ (q_1,q_2) \not \in Q_{i+1} \\ \\ L_{i+1}, \ unaue \end{cases} \\ \\ Q_{i+1} & = & \begin{cases} Q_{i+1} \cup \{(q_1,q_2)\} \ a\kappao \ (q_1,q_2) \not \in Q_{i+1} \\ \\ Q_{i+1}, \ unaue \end{cases} \end{array}$$

- (∂) увеличи i на i+1, премини на 2.
- 3. върни $\mathcal{A} = \langle \Sigma, Q^{(i)}, (s_1, s_2), \delta^{(i)}, F \rangle$, където $F = \{(p_1, p_2) \in Q_1 \times Q_2 \mid p_1 \in F_1 \text{ или } p_2 \in F_2 \}$

Да се докаже, че:

- 1. за всяко $i, Q^{(i+1)} = Q^{(i)} \cup L_{i+1} \ u \ L_{i+1} \cap Q^{(i)} = \emptyset.$
- 2. за всяко $i, Q^{(i)} = \bigcup_{j=0}^{i} L_{j} \subseteq Q_{1} \times Q_{2}.$
- 3. за всяко $i,\, \delta^{(i+1)}$ е графика на тотална функция $\delta^{(i+1)}: Q^{(i)} o Q^{(i+1)}.$
- 4. има $i \leq |Q_1||Q_2$, за което $L_i = \emptyset$ и за това $i, \delta^{(i)}$ е тотална функция от $Q^{(i)}$ в $Q^{(i)}$.
- 5. $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$.

Задача 0.3. Нека $A_i = \langle \Sigma, Q_i, I_i, \Delta_i, F_i \rangle$ за i = 1, 2 са крайни автомати с $\Delta_i \subseteq Q_i \times \Sigma \times Q_i$.

1. Ако $Q_1 \cap Q_2$, да се докаже, че $\mathcal{A}_{\circ} = \langle \Sigma, Q_1 \cup Q_2, I, \Delta, F_2 \rangle$ има език $\mathcal{L}(\mathcal{A}_{\circ}) = \mathcal{L}(\mathcal{A}_1) \circ \mathcal{L}(\mathcal{A}_2)$, където:

$$I = \begin{cases} I_1, & \text{and } I_1 \cap F_1 = \emptyset, I_1 \cup I_2, & \text{and } I_1 \cap F_2 \neq \emptyset. \\ \Delta = \Delta_1 \cup \Delta_2 \cup \{\langle p, a, s_2 \rangle \mid s_2 \in I_2 \& \exists f_1 \in F_1(\langle p, a, f_1 \rangle \in \Delta_1)\}. \end{cases}$$

2. Да се докаже, че $A_* = \langle \Sigma, Q_1 \cup \{s_*\}, I_1 \cup \{s_*\}, \Delta, F \cup \{s_*\} \rangle$ има език $\mathcal{L}(A_*) = \mathcal{L}(A)^*$, където:

$$\Delta = \Delta_1 \cup \{\langle p, a, s_1 \rangle \mid s_1 \in I_1 \& \exists f_1 \in F_1(\langle p, a, f_1 \rangle \in \Delta_1)\}.$$

Задача 0.4. Нека $L \subseteq \Sigma^*$ е регулярен. Да се докаже, че:

- 1. $Pref(L) = \{u \in \Sigma^* \mid \exists v(uv \in L)\},\$
- 2. $Suff(L) = \{u \in \Sigma^* \mid \exists v(vu \in L)\},\$
- 3. $Inf(L) = \{u \in \Sigma^* \mid \exists v, w(vuw \in L)\}$

са регулярни.

Задача 0.5. Нека $L, L_1 \subseteq \Sigma^*$ са регулярни. Да се докаже, че:

- 1. $L_1^{-1}L = \{u \in \Sigma^* \mid L_1\{u\} \cap L \neq \emptyset\},\$
- 2. $LL_1^{-1} = \{ u \in \Sigma^* \mid \{u\}L_1 \cap L \neq \emptyset \}.$

са регулярни. Да се докаже, че регулярността на L_1 не е съществена, тоест резултатът е в сила и без това условие.

Задача 0.6. Нека $h: \Sigma^* \to \Omega^*$ е хомоморфизъм. Да се докаже, че:

- 1. ако $L \subseteq \Sigma^*$ е регулярен, то u $h(L) = \{h(u) | u \in L\}$ е регулярен.
- 2. ако $L \subseteq \Omega^*$ е регулярен, то и $h^{-1}(L) = \{u \in \Sigma^* \mid h(u) \in L\}$ е регулярен.

Упътване 0.1.

Упътване 0.2. 1. Запишете $0^{a+nd}=0^a(0^d)^n$, заключете $\{0^{a+nd}\mid n\in\mathbb{N}\}=\{0^a\}\{(0^d)^n\mid n\in\mathbb{N}\}$.

- 2. Регулярните езици са затворени относно обединение.
- 3. Използвайте Теоремата на Kleene и Теоремата за детерминизация, за да обосновете, че L се разпознава от краен детерминиран автомат над $\{0\}$. Изследвайте структурата на краен детерминиран автомат над $\{0\}$.

Упътване 0.3. Обосновете, че тъй като в A_1 няма ε -преходи, то $\varepsilon \in \mathcal{L}(A_1)$ точно когато $I_1 \cap F_1 \neq \emptyset$.

Използвайте, че ако $w \neq \varepsilon$ и $w \in \mathcal{L}(\mathcal{A}_1)$, то w = w'a и има успешен път в \mathcal{A}_1 от вида:

$$s \stackrel{w'}{\longrightarrow}^* p \stackrel{a}{\longrightarrow}^* f$$
, където $s \in I_1, f \in F_1$.

Обосновете, че ако в \mathcal{A}_1 няма ε -преходи, то $p \stackrel{a}{\longrightarrow}^* f$ е еквивалентно на $\langle p,a,f_1 \rangle \in \Delta_1.$

Упътване 0.4. Разгледайте краен автомат, който разпознава L и модифицирайте този автомат, така че да представя точно префиксите/суфиксите/инфиксите на L.

Упътване 0.5. 1. Разгледайте краен автомат, който разпознава L. Съобразете, че, за да получите краен автомат, който разпознава $L_1^{-1}L$ е достатъчно да, в кои състояние завършва път от начално с етикет от L_1 . Колко са тези състояния?

1. Покажете, че $\{h(a)\}$ е регулярен за всяко $a \in \Sigma$ и след това използвайте, че:

$$h(L_1 \cup L_2) = h(L_1) \cup h(L_2); \quad h(L_1 \circ L_2) = h(L_1) \circ h(L_2); \quad h(L_1^*) = h(L_1)^*.$$

2. Покажете, че $h(\Sigma)^* \cap L$ е регулярен. Постройте краен автомат за $\{h(a)\}$ за $a \in \Sigma \cup \{\varepsilon\}$ със състояния:

$$\{(a,i) \mid 0 \le i \le |h(a)| + 1\}.$$

От тези $|\Sigma|$ автомата приложете конструкцията за обединение и итерация, за да получите автомат за $h(\Sigma)^*$. Разгледайте конструкцията за сечение на $h(\Sigma)^* \cap L$ и в нея заменете преходите $\langle ((a,0),p),_,((a,1),q)\rangle$ с $\langle ((a,0),p),a,((a,1),q)\rangle$, а останалите с $\langle ((a,i),p),\varepsilon,((a,i+1),q)\rangle$ за $i\geq 1$. Аргументирайте, че полученият автомат разпознава точно $h^{-1}(L)$.