

ar XL - 37.622 19.0922 9.56tz 33.86

Ux1-x1 Dx1-x2 X2-x2 1x2-x1

- 4 (.003)(3)(3)(3)

- .09487 m

1 D3-73, D3-72, D3-73, D32-73, D32-73 D33-73 D33-73, D33-74 (5)(9)(2007)(3)(3)(3)(6)(6)(3)

. 30571m

3355 R. 6 20°C | × 7 = A TOTAL - 167741 CM 7 strands of 0.1548" diameter conductors $\rho(20C) = 10.66 \Omega \text{cmil/ft} M = 241.5$ - X - X Outside Diameter = 0.464" 3/0 Aluminum conductor Table A3 pg 923 167741CM x 5280&6 2×10-1 an DAB (1548in / mil) 10.66 20CH x

Rb - M(D-1 D1-2 D1-3 D1-4 D1-5 D1-1 D-7) (D22 D21 D23 D24 D25 D22 D2-7

3/0 Copper conductor

7 strands of 0.1548" diameter conductors

Outside Diameter = 0.464"

 $\rho_{(20C)} = 10.66 \,\Omega \text{cmil/ft}$ M = 241.5

Determine the resistance of the conductor per mile at 20°C and at 50°C.

Area (in cmil) = $7 \times D^2 = 7 \times 154.8^2 = 167,741$ cmils

(10.66 Ω cmil/ft / 167,741cmils) x 5280 ft/mile = 0.3355 Ω /mile

 $R(50^{\circ}C) = 0.3355 \times \frac{241.5 + 50}{241.5 + 20} = 0.374\Omega/mi$

Table A3 pg 816 reports $0.381\Omega/mi$ 0.381/0.374 = 1.019 1.9% increase due to spiraling

 $GMR \ [(D_{11}D_{12}D_{13}D_{14}D_{15}D_{16}D_{17})^6 \ x \ (D_{22}\ D_{21}D_{23}D_{24}D_{25}D_{26}D_{27})]^{1/49}$

 $GMR = [(0.7788r \times 2r \times 2r \times 2r \times 2\sqrt{3}r \times 2\sqrt{3}r \times 4r)^{6} \times (0.7788r \times 2r \times 2r \times 2r \times 2r \times 2r \times 2r \times 2r)]^{1/49}$

D = 0.1548" therefore r = 0.0774 GMR = 0.1685" = 0.01404' same as in the table

 $L_x = 2 \times 10^{-7} \ln(D_{xy}/GMR) = 2 \times 10^{-7} \ln(5/0.01404) = 1.17507 \mu H/m$

 $X_{Lx} = 2\pi 60 \text{ x } 1.17507 \text{ } \mu\text{H/m x } 1609 \text{ m/mile} = 0.7128 \Omega \text{ /mile}$

0r

 $X_L = 2\pi 60 \times 2 \times 10-7 \times 1609 \text{ m/mile [ln (Deq/Dsl)]}$

 $X_L = 0.121316 \ln (1/Dsl) + 0.121316 \ln Deq = 0.518 + 0.121316 \ln (5) = 0.713 \Omega/mile$

X_a = Inductive reactance in ohms per conductor per mile at 1 ft spacing

SIZE AWG <i>I</i> komil	STRANDS No.	STRANDING CLASS	STRAND DIAMETER (mils)	CROSS SECTION (sq inches)	CONDUCTOR DIAMETER (inches)	TOTAL WEIGHT (Ib/1000ft)	DC RE	SISTANCE A' (ohm/ft)	r 20°C ¹	NOMINAL 3 STRENG (lb)	STH ²	AMPACITY ³ (A)	GEOMETRIC MEAN RADIUS	INDUCTIVE REACTANCE ⁴ (ohm/mile)	CAPACITIVE REACTANCE (Mohm-mile
	STR						SOFT	MEDIUM HARD	HARD	MEDIUM HARD	HARD		(inches)		
20	1	Sólido	31.97	0.000801	0.0320	3.09	ĭ 10.2	10.5	10.6	N/A	N/A	15	0.0125	0.8337	0.1964
20	7	В	12.09	0.000801	0.0363	3.15	10.4	10.7	10.8	N/A	N/A	15	0.0132	0.8270	0.1927
18	1	Sólido	40.28	0.00127	0.0403	4.90	6.40	6.62	6.66	73	85	20	0.0157	0.8057	0.1895
18	7	В	15.24	0.00127	0.0457	5.00	6.53	6.76	6.79	N/A	N/A	21	0.0166	0.7989	0.1858
16	1	Sólido	50.83	0.00203	0.0508	7.81	4.02	4.16	4.18	117	135	27	0.0198	0.7775	0.1826
16	7	В	19.21	0.00203	0.0576	7.97	4.10	4.24	4.26	N/A	N/A	27	0.0209	0.7707	0.1789
14	1	Sólido	64.13	0.00323	0.0641	12.4	2.52	2.61	2.62	183	213	36	0.0250	0.7492	0.1757
14	7	В	24.25	0.00323	0.0728	12.7	2.57	2.66	2.68	N/A	N/A	37	0.0264	0.7425	0.1720
12	1	Sólido	80.83	0.00513	0.0808	19.8	1.59	1.64	1.65	291	339	48	0.0315	0.7212	0.1689
12	7	В	30.55	0.00513	0.0917	20.2	1.62	1.68	1.68	N/A	N/A	49	0.0333	0.7145	0.1652
10	1	Sólido	101.89	0.00815	0.102	31.4	1.00	1.03	1.04	463	526	64	0.0397	0.6931	0.1620
10	7	В	38.54	0.00815	0.116	32.0	1.02	1.05	1.06	N/A	N/A	65	0.0420	0.6863	0.1583
8	1	Sólido	128.50	0.0130	0.129	50.0	0.628	0.650	0.653	734	828	85	0.0501	0.6649	0.1551
8	7	В	48.58	0.0130	0.146	51.0	0.641	0.663	0.666	661	779	87	0.0529	0.6582	0.1514
6	1	Sólido	162.01	0.0206	0.162	79.4	0.395	0.409	0,411	1166	1286	113	0.0631	0.6368	0.1483
6	7	В	61.26	0.0206	0.184	81.0	0.403	0.417	0.419	1052	1225	116	0.0667	0.6300	0.1445
4	1	Sólido	204.33	0.0328	0.204	126	0.248	0.257	0.258	1856	1974	151	0.0796	0.6086	0.1414
4	7	В	77.24	0.0328	0.232	129	0.253	0.262	0.264	1671	1948	154	0.0841	0.6019	0.1376
2	7	В	97.40	0.0521	0.292	205	0.159	0.165	0.166	2657	3030	206	0.106	0.5738	0.1308
1	7	Α	109.37	0.0657	0.328	258	0.126	0.131	0.131	3349	3820	238	0.119	0.5597	0.1273
1	19	В	66.38	0.0657	0.332	258	0.126	0.131	0.131	3349	3905	239	0.126	0.5531	0.1270
1/0	7	Α	122.83	0.0829	0.369	326	0.100	0.104	0.104	4224	4764	276	0.134	0.5456	0.1239
1/0	19	В	74.57	0.0829	0.373	326	0.100	0.104	0.104	4224	4928	276	0.141	0.5390	0.1235
2/0	7	Α	137.91	0.105	0.414	411	0.0795	0.0822	0.0827	5324	5938	318	0.150	0.5316	0.1204
2/0	19	В	83.70	0.105	0.419	411	0.0795	0.0822	0.0827	5324	6141	319	0.159	0.5249	0.1201
3/0	7	Α	154.84	0.132	0.465	518	0.0630	0.0652	0.0656	6711	7399	368	0.169	0.5175	0.1170

Characteristics of aluminum cable, steel, reinforced (Aluminum Company of America) ACSR

			Aluman	<u> </u>		کانځ								8,0	's Resistance (Ohms per Conductor por Mile)	Ohms per	Conduct	ž ba	(ap	-	x _a Inductive Reactance (ohms per conductor per	r. Shunt Capacitive Reactance (megohms per
9	Cacula			Strand		Strand	Outside Distraction		Ultimate	£ 8	Geometric Mean Radius	Approx Current Carrying	25°C	25°C (77°F) Small Currents	mail Cum	ents	\$0.C (50°C (122°F) Current 75% Capacity	urrent Ap	Афргоя	mile at 1 ft spacing all currents)	conductor per mile at 1 ft spacing)
Word	Aluminum			(incrits)		(suches)	(inches)	AWG	(Spunds)	aile)		(amps)	ą¢	25 Hz	2H 05	2H 09	ક	25 H2	50 H2	50 Hz	2H09	60 Hz
Joree Thrasher Knwr Bluebrd Chukar	2515000 2317000 2167000 2156000 1781000	76 72 73 84 84	444	01819 01744 01735 01602 01456	91 7 61 91	0 0814 0 01157 0 0961 0 0874	1 880 1 802 1 735 1 767 1 602		61 700 57 300 49 800 60 300 51 000		0 0621 0 0595 0 0570 0 0588								-	0.0450 0.0482 0.0511 0.0505	0 337 0 342 0 348 0 344 0 355	0 0755 0 0778 0 0778 0 0774 0 0802
Falcor Parot Matin Pheasair Grackle	1590000 1510500 1431000 1351000 1272000 11192500	KKKKK		01716 01673 01628 01582 01535 01486	0.00000	0 1030 0 1004 0 0977 0 0949 0 0921	1 545 1 506 1 465 1 474 1 382	950 000 950 000 850 000 850 000 750 000	56 000 53 200 50 400 47 600 43 100	10237 9689 9160 8621 8682	0 0520 0 0507 0 0493 0 0479 0 0465	1 380 1 340 1 250 1 1 250 1 1 250	0.0587 0.0618 0.0652 0.0691 0.0734	0.0588 0.0619 0.0653 0.0692 0.0735	0 0590 0 0621 0 0655 0 0 0894 0 0 0737	0 0597 0 0652 0 0656 0 00695 0 0 0738	0.0646 0.0580 0.0718 0.0868	0.0656 0.0650 0.0729 0.00771 0.0819	0.0675 0.0710 0.0749 0.00840 0.08840	0.0684 0.0720 0.0803 0.08851 0.0906	0 359 0 367 0 365 0 372 0 372	0 0814 0 0821 0 0838 0 0847 0 0857
Finch Cullen Cardinal Canary Crane Condor	1113000 1033500 954000 900000 874500	REEEEE		01436 01384 01329 01291 01273	61	0.0862 0.1384 0.1329 0.1291 0.1273	1 293 1 246 1 196 1 167 1 167 1 093	700 000 650 000 660 000 566 000 550 000	40 200 37 100 34 200 32 300 31 400 28 500	7544 7019 6479 6112 5940 5399	0 0435 0 0470 0 0403 0 0391 0 0386 0 0368	011 1 050 1 050 0 006 006 006 006 006 006 006 006 0	0.0839 0.0903 0.0979 0.104 0.107	0 0840 0 0905 0 0980 0 104 0 107	0 0842 0 0907 0 0981 0 104 0 107	0 0844 0 0969 0 108 0 108	0 0924 0 0994 0 1078 0 1145 0 1178	0 0935 0 1005 0 1088 0 1155 0 1308	0 0 0 9 5 7 0 0 1 1 1 8 0 0 0 1 1 1 8 0 0 1 1 1 8 0 0 1 1 1 8 0 0 1 1 3 5 8 0 0 0 1 3 5 8 0 0 0 1 3 5 8 0 0 0 1 3 5 8 0 0 0 1 3 5 8 0 0 0 0 1 3 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0969 0 1035 0 1128 0 1128 0 1378	0 385 0 395 0 395 0 401	0 0867 0 0876 0 0890 0 0898 0 0903 0 0917
Drake Malard Crow Sterling Redwing	795 000 795 000 715 500 715 500 666 600	283488	~~~~~	01749 01678 01151 01659 01544	v 61 v 61 v	01360 00977 01151 01290 00926 01111	1 108 1 095 1 080 1 000	\$00,000 \$00,000 450,000 450,000 419,000	31 200 38 400 26 300 28 100 34 600 24 500	5770 6517 4859 5193 5655	0 0375 0 0393 0 0349 0 0355 0 0377	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0117	0131	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	0117	0 1288 0 1442 0 1442 0 1442 0 1541	0 1288 0 1452 0 1442 0 1447 0 1571	0 1288 0 1472 0 1442 0 1442 0 1591	0 1288 0 1288 0 1482 0 1442 0 1447	0 399 0 393 0 407 0 405 0 399	0 0912 0 0904 0 0937 0 0926 0 0943
Rook Grosbeak Egrer Praerock Squab Dove	636 000 636 000 636 000 605 000 605 000 556 500	228322	644644	0.1085 0.1564 0.1456 0.1059 0.1525	レレロレンレ	0 1085 0 1216 0 0874 0 1059 0 1 186	0977 0990 1019 0953 0966	400 000 400 000 400 000 380 500 350 000	23 600 25 800 31 500 22 500 24 100	4 319 4 616 5 2 13 4 109 4 39 1	0 0329 0 0335 0 0351 0 0327 0 0313	288888	01547	0147 0147 0155 0158	0144	0 147	0 1618 0 0 1618 0 0 1618 0 0 1 1695 0 0 1 700 0 0 1849 0	1638 1618 1618 1715 1720	0 1678 0 0 1618 0 0 1618 0 0 1755 0 0 1720 0	01688 01618 01775 01720	0 412 0 0 406 0 417 0 415 0 420	0 0950 0 0946 0 0937 0 0957 0 0953
tagic Hawk Hen Has Rus Lat	556 500 477 000 477 000 397 500 397 500	82828	~~~~	01367 01355 01261 01261 01236	~~~~	01362 01054 01261 00961 01151	0 953 0 858 0 783 0 783	350 000 300 000 300 000 250 000	27 200 19 430 73 300 16 190 19 880	4588 3467 3933 2885 3277	0 0328 0 0290 0 0304 0 0265	730 670 670 600	0 168 0 196 0 235 0 235	0 168 0 136 0 136 0 136	0 168 C 0 196 C 0 196 C	891 0 961 0 962 0	0 1849 0 0 216 0 216 0 259	0 1859 0 10 Seme	- 5 - 5 - 5	0 1859	0415 0430 0424 0441	0 0957 0 0988 0 0980 0 1015 0 1006
Linnet Oriole Ostisch Piper Partridge	336 400 336 400 300 000 366 800	28282	2222	01138 01059 01074 01000		0 0855 0 1059 0 0835 0 1000 0 0768	0 721 0 741 0 680 0 700 0 642	4/0 4/0 188 700 3/0	14050 17040 12650 15430 11250	2442 2774 2178 2473 1936	0 0244 0 0255 0 0230 0 0241 0 0217	530 530 490 600 600 600	0.278 0.278 0.311 0.311				0 306 0 308 0 342 0 385				0 451 0 445 0 458 0 467 0 465	0 1039 0 1032 0 1057 0 1049

^{*}Based on copper 97% aluminum 61% conductivity

*For conductor at 75.C are at 25.C wind 1.4 miles per hour (21/1/sec) frequency = 80 Hz

*Current Applica 75% Capacity is 75% of the Applica Current Carrying Capacity in Amps, and is approximately the current which will produce 50 C conductor temp (25.C rise) with 75°C air temp, wind 1.4 miles per hour

GHR: ?

37 All Aluminium

31 D, D, D

Mentental

Practical Tower Configurations

I fooled you (once again) into believing transmission lines will all have symmetrically spaced conductors.

In fact this is seldom the case!

Practical Tower Configurations

Practical Tower Configurations

Unbalance in the system

Κ| Η ''

Transposition

It is easily seen in the vertical or horizontal configurations that all symmetry is lost. Arranging the phase conductors in an equilateral triangle configuration is not very practical from a construction ease, maintenance or cost consideration.

$$D_{ab} \neq D_{bc} \neq D_{ca}$$

Symmetry is regained by employing TRANSPOSITION

Think of this as looking at a flat T-line configuration from the top or a vertical Tline configuration fromm the side.

Mentemen

Transposition

To keep the system balanced, the conductors are "rotated" over the length of a transmission line so each phase occupies each position on the tower for an equal distance.

Transposition

In a completely transposed each conductor spends 1/3 of the time in each of the three positions.

For a single conductor of radiur r in each of the phases:

Transposition

$$\overline{\lambda_a} = \frac{\lambda a_1 + \lambda a_2 + \lambda a_3}{3}$$

$$\lambda_a = \frac{2 \cdot 10^{-7}}{3} \left[3I_a \left(\ln \frac{1}{r'} \right) + I_b \left(\ln \frac{1}{D_{12} D_{23} D_{31}} \right) + I_c \left(\ln \frac{1}{D_{21} D_{32} D_{13}} \right) \right]$$

but lb + lc = -la and $D_{12}=D_{21}$, $D_{23}=D_{32}$, $D_{31}=D_{13}$

$$\lambda_a = \frac{2 \cdot 10^{-7}}{3} \left[3I_a \left(\ln \frac{1}{r'} \right) - I_a \left(\ln \frac{1}{D_{12} D_{23} D_{31}} \right) \right] = \frac{2 \cdot 10^{-7}}{3} \left[3I_a \left(\ln \frac{1}{r'} \right) + 3I_a \left(\ln 3 \sqrt{D_{12} D_{23} D_{31}} \right) \right]$$

$$\lambda_a = 2.10^{-7} \left[I_a \left(\ln \frac{\sqrt[3]{D_{12}D_{23}D_{31}}}{r'} \right) \right] \qquad L_a = \frac{\lambda_a}{I_a} = 2.10^{-7} \left(\ln \frac{\sqrt[3]{D_{12}D_{23}D_{31}}}{r'} \right) \right]$$

$$Deq = \sqrt[3]{D_{12}D_{23}D_{31}}$$
 (the GMD between the phases)

For solid conductors use r', for stranded conductors or bundles use the GMR of the phase

Michiganiech