APPLICATION OF MACHINE LEARNING IN PREDICTING EMPLOYEE ATTRITION

SPRING 2023

AGENDA

Introduction
Objective
Responsibility Matrix

Executive Summary

Literature review

Descriptive Analysis

Data Preprocessing

Exploratory Data Analysis

Feature Engineering

Model Building

Model Evaluation

Future work

Findings & recommendations

PROBLEM BACKGROUND

U.S. employee annual voluntary turnover is likely to jump nearly 20% this year, from 31.9 million employees quitting their jobs to 37.4 million quitting in 2022, according to Gartner, Inc

The SHRM Human Capital Benchmarking report found that the average employee turnover rate in 2017 was 18%, and less than 50% of organizations have a succession plan.

Reports say that, if a company's employee turnover rate is more than 15% per year, the company has a high employee turnover rate.

INTRODUCTION

Background

We use a fictitious dataset put up by IBM data scientists for our analysis.

Source of data is from Kaggle.com

Methodologies

Identify significant variables for predicting attrition

Building and assessing predictive models using various ML techniques

Basic Stats

23434 observations for 37 variables Contains data related to employee performance measures and attrition.

Source

We use a dataset put up by IBM data scientists for our analysis.

Source of data is from Kaggle.com

INTRODUCTION

Goal

Building and assessing predictive models using various ML techniques

Data

- 23434 observations on 37 variables
- Contains data related to employee performance measures and attrition.

OBJECTIVE

The goal is to find how the company's objective factors influence in attrition of employees, and what kind of working environment is most likely to cause attrition.

Provide recommendations to prevent employees from attrition.

To create industry-specific predictive algorithms, use it to check the accuracy and compare it with the accuracy of the existing models

EXECUTIVE SUMMARY

Language used: R

IDE used: JupyterLab

Models built for this research:

- 1) Logistic Regression using regularization
- 2) Random Forest
- 3) Gradient Boosting(xgBoost)

Performance evaluation techniques used:- Accuracy score, roc_auc curve, precision, recall, FI-score

LITERATURE REVIEW

REFERENCE	TOPIC	METHOD	STRENGTH	WEAKNESS
<u>Raman 2019</u>	Predictive Analytics	Correlation analysis, Sentimental Analysis, Word Count Analysis	Good for business school model.	Just specific for one sector area, like the academic sector only. It doesn't apply to other sectors
Mansur, Norshuda 2021	Machine learning for predicting Employee attrition	Classification method, SVM, J48, MLP	Choose one classification method among others to give the better result.	Very few factors used. Not used wide range of predictors to get the perfect response accuracy.
Setiawan 2020	HR analytics: Employee attrition analysis using logistic regression	Logistic regression.	They worked with the improvement of HR for evaluating some factors which makes employee attrition. And showed great visualizations.	Did not use different techniques for getting better accuracy and did not describe which factors are most significant.
<u>Sriram 2019</u>	Factors affecting High Employee Attrition in Manufacturing Firms – A Case Study	ANOVA, Multiple regression	They used ANOVA for predicting employee attrition based on just two main factors.	Did not use wide range of factors to get true result. Did not give a clear picture on the regression result.
Narayana Darapaneni; Raghavendra Naga Turaga; A detailed analysis of Al models	A Detailed Analysis of Al Models for Predicting Employee Attrition Risk	SVM, Random Forest, Logistic regression, Boosting, Ensemble Average	The robust solution uses xTreme Gradient Boosting which helps to identify the usefulness of each feature in the model.	The models in this paper doesn't adapt well to influencing factors. Imbalance in the data pertaining to each target variable. Needs bigger data sample for higher accuracy.

PROJECT TIMELINE

PREDICTS BINARY OUTCOME

PREDICTS
DEPENDENT DATA
VARIABLE

DOESN'T REQUIRE NORMALIZING/ SCALING BASED ON STATISTICAL ANALYSIS METHOD REDUCE THE COMPLEXITY
BY IMPOSING A PENALTY

I. LOGISTIC REGRESSION USING REGULARIZATION

PERFORMS BOOTSTRAPPING AND AGGREGATION

TAKES MAJORITY VOTE FOR FINAL PREDICTION

PREVENTS OVERFITTING
OF DATA

II. RANDOM FOREST

USED FOR BOTH CLASSIFICATION & REGRESSION

HANDLES HUGE DATA WITH MANY VARIABLES

ITERATIVE PROCESS CORRECTING EARLIER TREES MISTAKES

III. XGBOOST

PHASE I, STEP I - DESCRIPTIVE ANALYSIS

```
> str(df_cleaned_new)
'data.frame': 5699 obs. of 21 variables:
$ attrition
                          : Factor w/ 2 levels "No", "Yes": 2 2
$ business_travel
                          : Factor w/ 3 levels "Non-Travel","
$ department
                         : Factor w/ 3 levels "R&D","HR","Sal
$ distance from home
                         : int 1661168228...
                          : Factor w/ 5 levels "Bachelors","Bel
$ education
$ education_field
                          : Factor w/ 5 levels "Human Resources
$ environment_satisfaction : int 2 1 1 4 1 1 3 1 1 3 ...
                         : Factor w/ 2 levels "Female","Male"
$ gender
$ job_involvement
                         : int 3 3 3 3 3 2 2 2 2 2 2 ...
$ job_role
                          : Factor w/ 9 levels "Healthcare Rep
$ marital_status
                          : Factor w/ 3 levels "Divorced","Mar
$ monthly_income
                          : int 5993 5993 5993 14756 19566 23
$ over_time
                          : Factor w/ 2 levels "No","Yes": 2 2
$ percent_salary_hike
                          : int 11 11 11 14 11 21 23 23 23 23
$ relationship_satisfaction : int 111341444 ...
$ stock_option_level
                           : int 0003001111
```

```
table(df_cleaned_new$attrition)
 No Yes
744 955
perc_attrition_rate <- (sum(df_cleaned_new$attrition== "Yes")</pre>
/length(df_cleaned_new$attrition))*100
print(perc_attrition_rate)
17 16.75733
```

- □ 5699 employees
- 21 feature variables
- No NaN values
- ☐ Turnover rate of 16.75%

PHASE I, STEP I – DESCRIPTIVE ANALYSIS

Overview of Target variable – "Attrition"

		Category	job_satisfaction	percent_salary_hike	monthly_income	distanc	ce_from_home	years	_at_company	years_since_last_promotion
Stayed	\Longrightarrow	No	2.752308	15.22584	6615.188		8.586998	_	7.112920	2.205518
Left the	\Longrightarrow	Yes	2.586370	15.01748	5512.757		10.069630		6.013926	2.006815
company					Lower monthlincome	'7	Higher # of tr hours	avel	Less Tenure	d

'Yes' indicates employees who are attrited 'No' indicates not attrited employees

PHASE II – STEP I DATA CLEANING

Changed inappropriate values to NAs

• Eg:- "", "missing", "na", "Test", "TEST", "TESTING", "Other"

Removed duplicated rows

• 1000 duplicate rows removed

Remove Redundant Columns

- Employee Count

- Over18

- StandardHours

Constant values

- DailyRate

- HourlyRate

- MonthlyRate

Poor correlation, deemed unnecessary

Data Type Conversion

Factor

Attrition

BusinessTravel

Department

Education

EducationField

MaritalStatus

Gender

Department

EmployeeSource

<u>Integer</u>

DistanceFromHome

HourlyRate

MonthlyIncome

PercentSalaryHike

Ordinal

PerformanceRating

RelationshipSatisfaction

JobInvolvement

SPECIFIC DATA CLEANING

- From the data summary, we see that:
 - Dropped the unnecessary levels
 - Dropped NA values
 - Re-factored levels

	department	gender
1296	: 1	1 : 1
Human Resources	: 1019	2 : 1
Research & Develo	pment:15350	Female: 9400
Sales	: 7151	Male :14120
NA's	: 11	NA's : 10

SPECIFIC DATA CLEANING

PHASE II – STEP II – EDA

- # of Male & Female employees in R&D are higher than other departments
- ☐ Female employees have higher average monthly comparatively

EDA - NUMBER OF PROJECTS

Projects vs Hours

Projects vs Evaluation

- ☐ Employees that stayed had 200 average monthly hours, regardless of # of projects
- ☐ Employees that left had increased hours as number of projects increased in count
- ☐ Employees that left with high project count had better evaluation rating(around 0.9)
- ☐ Employees that stayed had consistent evaluation(0.7) even when projects count increased

CLUSTER ANALYSIS

- ☐ Shows the clusters groups from each categorical variable from the attrited employees.
- ☐ Female graduates with low-income account for the highest amount of attrition

R LIBRARIES USED FOR PROJECT

KEY POINTS

- Total data points after cleaning/pre-processing: 5699 observations x 21 features
- % for Training & Testing:
 - 75% Training
 - 25% Testing
- Technique used for sampling: Bootstrap sampling
- **Algorithm Type :** Classification
- Method used for Model evaluation: Confusion matrix, ROC_AUC,
 Accuracy

PHASE III – STEP I FEATURE SELECTION

- ☐ Normalize/scale data
- Removes highly correlated & near zero variance features
- Assigns dummy variables using one-hot encoding
- ☐ Handles class imbalance

PHASE III – STEP II MODEL BUILDING

PERFORMANCE CHECK FOR LOGISTIC REGRESSION(GLMNET)

PERFORMANCE CHECK FOR LOGISTIC REGRESSION(GLMNET)

XGBOOST CLASSIFIER

- Extreme gradient Boosting algorithm with 3 parameters
- xgBoost further speeds up the training process by using parallel processing
- ☐ Better performance is achieved with 800 trees & 4 response variable at each leaf node

A tibble: 1 × 4			
mtry <dbl></dbl>	trees <dbl></dbl>	loss_reduction <dbl></dbl>	
4	800	0.01	Preprocessor1_Model4

id <chr></chr>	.pred_No <dbl></dbl>	.pred_Yes <dbl></dbl>	.row <int></int>	.pred_class <fctr></fctr>	attrition <fctr></fctr>	.config <chr></chr>
train/test split	0.3193222284	6.806778e-01	1	Yes	Yes	Preprocessor1_Mod
train/test split	0.1134401783	8.865598e-01	2	Yes	Yes	Preprocessor1_Mod
train/test split	0.9992475510	7.524490e-04	5	No	Yes	Preprocessor1_Mo
train/test split	0.9998456240	1.543760e-04	7	No	No	Preprocessor1_Mo
train/test split	0.7819626927	2.180373e-01	17	No	No	Preprocessor1_Mo
train/test split	0.9957861304	4.213870e-03	26	No	No	Preprocessor1_Mo
train/test split	0.9964895844	3.510416e-03	29	No	No	Preprocessor1_Mo
train/test split	0.9782382250	2.176178e-02	31	No	No	Preprocessor1_Mo
train/test split	0.9833704233	1.662958e-02	36	No	No	Preprocessor1_Mo
train/test split	0.0569363683	9.430636e-01	38	Yes	No	Preprocessor1_Mo

MODEL EVALUATION

CONFUSION MATRIX THRESHOLD LEVELS

	Implication	Criticality
True Positive	Correctly predicted employee will leave.	High - Allows company to retain the employees who will leave via early intervention OR avoid hiring such employees in the selection stage to decrease attrition rates.
True Negative	Correctly predicted employee will not leave.	Low - Generally, not a critical issue for the company.
False Positive	Predicted employee will leave but did not leave.	Medium - Loss of potential talent
False Negative	Predicted employee will not leave but left.	High - The company would have hired and exhausted resources on investing in employees who would leave. This increases attrition rates and hurts the productivity of the company.

EVALUATION METHODS

□ **Precision:** What proportion of positive identification was correct

□ **Recall:** What proportion of actual positive were identified correctly

☐ **FI Score:** It is the harmonic mean of precision and recall.

□ **Accuracy:** how many observations, both positive and negative, were correctly classified.

$$ACC = TP/(TP + FN)$$

Legend:-True positives(TP) False positives(FP) True negatives(TN) False negatives(FN) Penalized Logistic regression

Random Forest

xgBoost

Precision	Recall	FI-score
0.54	0.69	0.69

Precision	Recall	FI-score
0.96	0.67	0.80

0.77 0.87
0.77 0.87

COMPARISON OF FI-SCORE FOR PENALIZED LOGISTIC REGRESSION, RANDOM FOREST & xgBOOST

BEST MODEL

Random Forest Classifier

CONFUSION MATRIX FOR 3 MODELS

ROC_AUC CURVE

- ☐ Used for measuring model performance
- ☐ Higher the better(Close to 1)
- ☐ The ROC curve is created by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR)
- ☐ xgBOOST classifier with a higher ROC AUC value indicates better performance.

WHAT WE FOUND INFLUENCE EMPLOYEES TO LEAVE

Top 5 influencing factors are,

- ☐ Monthly income (Satisfactory pay)
- Distance from home
- Percent Salary Hike
- ☐ Work environment satisfaction (Working conditions)
- Years since last promotion

CONCLUSION

- □ We predicted the feature variable "attrition" using 3 supervised models.
- □ Out of the 3 main models, xgBoost Classifier is the best with an accuracy of 89%, followed by Random Forest model with an accuracy of 88% and Logistic Regression model with the least accuracy of 83%.
- □ Therefore, boosted ensemble trees proves more accurate than other models.

RECOMMENDATIONS

- □ Develop learning programs/training
- □ Providing transportation allowances
- □ Promotions opportunities for income below \$40K
- □ Offer higher stock options

FUTURE WORK

- □ Overcome the weakness b/w more model parameters and computational time
- □ Reverse engineer the problem to find what made employees stay
- With more updated data, the algorithms can be re-trained to find high-risk employees based on probabilistic labels assigned to each feature variable

THANK YOU