1) F.S

$$x(t) = \sum_{k=-\infty}^{\infty} q_k e^{ik\omega_{e}t}$$

$$q_k = \frac{1}{T} \int x(t) e^{-ik\omega_{e}t} dt$$

Properties

6) Differentiation
$$\Rightarrow \frac{d}{dt} x(t) \xrightarrow{FS} j K wo Q K$$

8) Time Reversal
$$\Rightarrow x(-t) \xrightarrow{FS} Q - K$$

$$i+x(t) \rightarrow imag \Rightarrow q_{k} = -q_{-k}^*$$

Parsevals Theorem;

$$P = \frac{1}{T} \int |x(t)|^2 dt = \frac{2}{K} |a_K|^2$$

F.T
$$\chi(\omega) = \int_{0}^{\infty} \chi(t) e^{-j\omega t} dt$$

$$\chi(t) = \frac{1}{2\pi} \int_{0}^{\infty} \chi(\omega) e^{-j\omega t} d\omega$$

Properties:

1) Linearity
$$\Rightarrow$$
 $ax(t) + by(t) \stackrel{FT}{\longleftrightarrow} ax(\omega) + by(\omega)$

2) Time shifting
$$\Rightarrow \chi(t-t_0) \stackrel{FT}{\longleftarrow} e^{-j\omega t_0} \chi(\omega)$$

4) Time scaling
$$\Rightarrow \chi(at) \stackrel{FT}{ =} \frac{1}{191} \chi(\frac{\omega}{a})$$

5) Differentiation
$$\Rightarrow \frac{dx(t)}{dt} \stackrel{FT}{\rightleftharpoons} j_w x(w)$$

$$-jt \ \chi(t) \stackrel{FT}{\longrightarrow} \frac{d \ \chi(\omega)}{dt}$$

7) conjugate
$$\Rightarrow x^*(t) \stackrel{\text{FT}}{=} x^*(-\omega)$$

if $x(t)$ is real $\Rightarrow x^*(\omega) = x(-\omega)$

Trigonometric Fourier series:-

$$x(t) = Q_0 + \sum_{n=1}^{\infty} Q_n \cos n \omega_0 t + \sum_{n=1}^{\infty} b_n \sin n \omega_0 t ; t_1 \ge t \ge t_1 + T$$

$$Q_0 = \frac{1}{T} \int_{t_1} x(t) dt \qquad Q_n = \frac{2}{T} \int_{t_1} x(t) \cos n \omega_0 t dt \qquad n = 1, 2, 3 - \dots$$

$$b_n = \frac{2}{T} \int_{t_1} x(t) \sin n \omega_0 t dt \qquad n = 1, 2, 3 - \dots$$

Duality:

$$x(t) \stackrel{FT}{\leftarrow} \chi(\omega)$$

 $\chi(t) \stackrel{FT}{\leftarrow} \iota \pi \chi(-\omega) = \chi(-f)$

Hilbert Transform >

$$\hat{x}(t) = HT(x(t)) = x(t) + \frac{1}{11+}$$

$$\hat{\chi}(f) = \chi(f) \cdot (-isgnf)$$

$$\hat{x}(t) = \begin{cases} -ix(t); t>0 \\ ix(t); t<0 \end{cases}$$

Proper fiel;

i) Linearity
$$\Rightarrow$$
 HT{dx(t)+By(t)}= $d\hat{x}(t)+B\hat{y}(t)$

2) Time shift => HT{
$$x(t-t_0)$$
} = $\hat{x}(t-t_0)$

3) conjugate
$$\rightarrow \{\hat{x}(t)\}^* = -\hat{J} \operatorname{sgnf} \cdot \hat{x}(t) = -\hat{J} x^*(t); t>0$$

s) convolution
$$\Rightarrow$$
 HT{x(+)*y(+)} = $\hat{x}(t)*y(t) = \hat{y}(t)*x(t)$

Laplace Transform?
$$S = \sigma + j\omega$$

 $\chi(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$ (Bilateral)

vational
$$\chi(s) = \frac{a_0(s-z_1)...(s-z_m)}{b_6(s-p_1)...(s-p_n)}$$

* Poles lie outside of R.O.C (Region of Convergence)

$$\chi(t) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \gamma(s) e^{-st} ds$$

Properties:

i) linearity
$$\Rightarrow$$
 $ax_1(t) + bx_2(t) \stackrel{LT}{\Longleftrightarrow} a x_1(s) + bx_2(s)$

$$R' > R_1 R_2$$

v) Time Reversel
$$\Rightarrow x(-t) \stackrel{\text{lT}}{\Longleftrightarrow} x(-5)$$
; $R' = -R$

$$-tx(t) \stackrel{LT}{\longleftrightarrow} \frac{dx(s)}{dt}$$
 , $R = R$

vii) (onjugate)
$$\Rightarrow$$
 $x^*(t) \stackrel{LT}{\Longleftrightarrow} X'(s^*) ; R' = R$

viii) Integration =>
$$\int_{-\infty}^{t} x(\tau) d\tau \stackrel{\text{LT}}{\longleftrightarrow} \frac{1}{5} \chi(s) ; R' = R \cap (Re\{s\} > 0)$$

$$\chi(n) = \sum_{k=0}^{N-1} ik w_{0} n = \sum_{k=0}^{N-1} ik w_{0} n = \sum_{k=0}^{N-1} a_{k} e \Rightarrow syn \text{ the bis eq}$$

$$a_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-jk} \frac{2\pi n}{N}$$
 \Rightarrow Analysis eq

$$\frac{DTFT}{x(n) = \frac{1}{2\pi} \int \chi(w) e \ dw \Rightarrow \text{synthesio eq}}$$

$$\chi(\omega) = \sum_{n=-\infty}^{\infty} \chi(n) e^{-j\omega n}$$
 \Rightarrow Analysis

Properties of DTFT:

1) Linearity
$$\Rightarrow ax_1(n) + bx_2(n) \stackrel{DTFT}{\Longleftrightarrow} ax_1(\omega) + bx_2(\omega)$$

3) Time Yeversal =>
$$\chi(-n)$$
 2DTFT $\chi(-\omega)$

4) Convolution
$$\Rightarrow x_1(n) * x_2(n) \xrightarrow{\text{DTFT}} x_1(\omega) x_2(\omega)$$

6) Modulation theorem
$$\Rightarrow \chi(n) \cos \omega_0 n \stackrel{DTFT}{=} \frac{1}{2} \left[\chi(\omega + \omega_0) + \chi(\omega - \omega_0) \right]$$

*) Multiplication =>
$$x_1(n) x_2(n) \stackrel{DTFT}{=} \frac{1}{2\pi} \int_{X_1(\lambda) X_2(\omega-\lambda) d\lambda}$$

PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling Periodic Convolution	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$ $x^*(t)$ $x(-t)$ $x(\alpha t), \alpha > 0 \text{ (periodic with period } T/\alpha)$ $\int_T x(\tau)y(t - \tau)d\tau$	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M} a_{-k}^* a_{-k} a_k $Ta_k b_k$
Multiplication	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation	$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$
Integration	$\int_{-\infty}^{t} x(t) dt $ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} a_k = a_{-k}^* \\ \operatorname{Re}\{a_k\} = \operatorname{Re}\{a_{-k}\} \\ \operatorname{Im}\{a_k\} = -\operatorname{Im}\{a_{-k}\} \\ a_k = a_{-k} \\ \leqslant a_k = - \leqslant a_{-k} \end{cases}$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	x(t) real and even x(t) real and odd $\begin{cases} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	a_k real and even a_k purely imaginary and odd $\Re\{a_k\}$ $j \Im\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$

Properties of the Fourier Transform

Property	Signal	Fourier transform
	x(t)	$X(\omega)$
	$x_1(t)$	$X_1(\omega)$
	$x_2(t)$	$X_2(\omega)$
Linearity	$a_1 x_1(t) + a_2 x_2(t)$	$a_1X_1(\omega) + a_2X_2(\omega)$
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$
Frequency shifting	$e^{j\omega_0 t}x(t)$	$X(\omega-\omega_0)$
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Time reversal	x(-t)	$X(-\omega)$
Duality	X(t)	$2\pi x(-\omega)$
Time differentiation	$\frac{dx(t)}{dt}$	$j\omega X(\omega)$
Frequency differentiation	(-jt)x(t)	$\frac{dX(\omega)}{d\omega}$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\pi X(0)\delta(\omega) + \frac{1}{j\omega}X(\omega)$
Convolution	$x_1(t) * x_2(t)$	$X_1(\omega)X_2(\omega)$
Multiplication	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega)*X_2(\omega)$
Real signal	$x(t) = x_e(t) + x_o(t)$	$X(\omega) = A(\omega) + jB(\omega)$
	200	$X(-\omega) = X^*(\omega)$
Even component	$x_e(t)$	$Re\{X(\omega)\} = A(\omega)$
Odd component Parseval's relations	$x_o(t)$	$j \operatorname{Im}\{X(\omega)\} = jB(\omega)$
$\int_{-\infty}^{\infty} x_1$	$(\lambda)X_2(\lambda)d\lambda = \int_{-\infty}^{\infty} X_1(\lambda)x$	$_{2}(\lambda) d\lambda$
$\int_{-\infty}^{\infty} x_{1}(t)$	$x_2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(\omega) X$	$f_2(-\omega) d\omega$
$\int_{-\infty}^{\infty}$	$ x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2$	$ ^2 d\omega$

Common Fourier Transforms Pairs

x(t)	$X(\omega)$
$\delta(t)$	1
$\delta(t-t_0)$	$e^{-j\omega t_0}$
1	$2\pi\delta(\omega)$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
$\sin \omega_0 t$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
u(-t)	$\pi\delta(\omega)-\frac{1}{j\omega}$
$e^{-at}u(t), a>0$	$\frac{1}{j\omega + a}$
$te^{-at}u(t), a>0$	$\frac{1}{(j\omega+a)^2}$
$e^{-a t }, a>0$	$\frac{2a}{a^2+\omega^2}$
$\frac{1}{a^2+t^2}$	$e^{-a \omega }$
e^{-at^2} , $a>0$	$\sqrt{\frac{\pi}{a}} e^{-\omega^2/4a}$
$p_a(t) = \begin{cases} 1 & t < a \\ 0 & t > a \end{cases}$	$2a\frac{\sin \omega a}{\omega a}$
$\frac{\sin at}{\pi t}$	$p_a(\omega) = \begin{cases} 1 & \omega < a \\ 0 & \omega > a \end{cases}$
sgn t	$\frac{2}{j\omega}$
$\sum_{k=-\infty}^{\infty} \delta(t-kT)$	$\omega_0 \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0), \omega_0 = \frac{2\pi}{T}$

Hilbert transform pairs.

Time-domain signal

Hilbert transform

g(t)	$\hat{g}(t)$
$a_1g_1(t) + a_2g_2(t); a_1, a_2 \in \mathbb{C}$	$a_1\hat{g}_1(t) + a_2\hat{g}_2(t)$
$h(t-t_0)$	$\hat{h}(t-t_0)$
$h(at); a \neq 0$	$\operatorname{sgn}(a)\hat{h}(at)$
$\frac{\mathrm{d}}{\mathrm{d}t}h(t)$	$\frac{\mathrm{d}}{\mathrm{d}t}\hat{h}(t)$
$\delta(t)$	$\frac{1}{\pi t}$
$e^{\mathbf{j}t}$	$-\mathrm{j}e^{\mathrm{j}t}$
$e^{-\mathbf{j}t}$	je^{-jt}
$\cos(t)$	$\sin(t)$
rect(t)	$\frac{1}{\pi} \ln (2t+1)/(2t-1) $
$\operatorname{sinc}(t)$	$\frac{\pi t}{2}\operatorname{sinc}^{2}(t/2) = \sin(\pi t/2)\operatorname{sinc}(t/2)$
$1/(1+t^2)$	$t/(1+t^2)$

Property	Signal	Laplace Transform	ROC
	x(t)	X(s)	R
	$x_1(t)$	$X_1(s)$	R_1
	$x_2(t)$	$X_2(s)$	R ₂
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Shifting in the s-Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)
Conjugation	x*(t)	X*(s*)	R
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R
Differentiation in the s-Domain	-tx(t)	$\frac{d}{ds}X(s)$	R
Integration in the Time Domain	$\int_{-\infty}^{t} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{\Re e\{s\} > 0\}$

Initial- and Final-Value Theorems

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order singularities at t = 0, then

$$x(0^+) = \lim_{s \to \infty} sX(s)$$

If x(t) = 0 for t < 0 and x(t) has a finite limit as $t \longrightarrow \infty$, then

$$\lim_{t \to \infty} x(t) = \lim_{s \to \infty} sX(s)$$

LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS

$\delta(t)$ $u(t)$ $-u(-t)$ $\frac{t^{n-1}}{(n-1)!}u(t)$ $-\frac{t^{n-1}}{(n-1)!}u(-t)$ $e^{-\alpha t}u(t)$ $-e^{-\alpha t}u(-t)$	$ \frac{1}{\frac{1}{s}} $ $ \frac{1}{s^n} $ $ \frac{1}{s^n} $ $ \frac{1}{s+\alpha} $ $ \frac{1}{s+\alpha} $	All s $\Re e\{s\} > 0$ $\Re e\{s\} < 0$ $\Re e\{s\} > 0$ $\Re e\{s\} < 0$ $\Re e\{s\} > -\alpha$
$-u(-t)$ $\frac{t^{n-1}}{(n-1)!}u(t)$ $-\frac{t^{n-1}}{(n-1)!}u(-t)$ $e^{-\alpha t}u(t)$ $-e^{-\alpha t}u(-t)$	$\frac{\frac{1}{s}}{\frac{1}{s^n}}$ $\frac{1}{s^n}$ $\frac{1}{1}$	$\Re e\{s\} < 0$ $\Re e\{s\} > 0$ $\Re e\{s\} < 0$
$\frac{t^{n-1}}{(n-1)!}u(t)$ $-\frac{t^{n-1}}{(n-1)!}u(-t)$ $e^{-\alpha t}u(t)$ $-e^{-\alpha t}u(-t)$	$\frac{\frac{1}{s}}{\frac{1}{s^n}}$ $\frac{1}{s^n}$ $\frac{1}{1}$	$\Re e\{s\} > 0$ $\Re e\{s\} < 0$
$\frac{(n-1)!}{(n-1)!}u(t)$ $-\frac{t^{n-1}}{(n-1)!}u(-t)$ $e^{-\alpha t}u(t)$ $-e^{-\alpha t}u(-t)$	$\frac{1}{s^n}$ 1	$\Re e\{s\} < 0$
$e^{-\alpha t}u(t)$ $-e^{-\alpha t}u(-t)$	_1_	
$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} > -\alpha$
	1	1
n_1	$s + \alpha$	$\Re e\{s\} < -\alpha$
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} > -\alpha$
$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} < -\alpha$
$\delta(t-T)$	e^{-sT}	All s
$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2+\omega_0^2}$	$\Re e\{s\} > 0$
$[\sin \omega_0 t] u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$\Re e\{s\} > 0$
$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s ⁿ	All s
	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$[e^{-\alpha t} \cos \omega_0 t] u(t)$ $[e^{-\alpha t} \sin \omega_0 t] u(t)$ $u_n(t) = \frac{d^n \delta(t)}{dt^n}$ $\frac{\omega_0}{(s+\alpha)^2 + \omega_0^2}$ s^n

Property

Periodic signal

Fourier series coefficients

	$x[n]$ Periodic with period N and fundamental frequency $\omega_0 = 2\pi/N$	$ \left\{ \begin{array}{l} a_k \\ b_k \end{array} \right\} Periodic with period N$
Linearity Time shift Frequency Shift	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi/N)n_0}$
Conjugation Time Reversal	$x^*[n]$ $x[-n]$	a_{k-M} a_{-k}^* a_{-k}
Time Scaling	$x_{(m)}[n] = \begin{cases} x[n/m] & \text{if } n \text{ is a multiple of } m \\ 0 & \text{if } n \text{ is not a multiple of } m \end{cases}$	$\frac{1}{m}a_k$ (viewed as periodic with period mN)
Periodic Convolution	(periodic with period mN) $\sum_{r=(N)} x[r]y[n-r]$	Na_kb_k
Multiplication	x[n]y[n]	$\sum_{l=\langle N \rangle} a_l b_{k-l}$ $(1 - e^{-jk(2\pi/N)}) a_k$
First Difference	x[n] - x[n-1]	$(1 - e^{-jk(2\pi/N)})a_k$
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ \stackrel{?}{\triangleleft} a_k = -\stackrel{?}{\triangleleft} a_{-k} \end{cases}$
Real and Even Signals	x[n] real and even	a_k real and even
Real and Odd Signals	x[n] real and odd	$\boldsymbol{a_k}$ purely imaginary and odd
Even-Odd Decomposition of Real Signals	$x_e[n] = \mathcal{E}v\{x[n]\}$ $[x[n] \text{ real}]$ $x_o[n] = \mathcal{O}d\{x[n]\}$ $[x[n] \text{ real}]$	$\Re e\{a_k\}$ $j\Im m\{a_k\}$
	D 11 D 1 D . 11 61 1	

Parseval's Relation for Periodic Signals
$$\frac{1}{N}\sum_{n=\langle N\rangle}|x[n]|^2=\sum_{k=\langle N\rangle}|a_k|^2$$

Properties of the Fourier Transform for Discrete-Time Signals

Property	Time Domain	Frequency Domain
Notation	x(n)	$X(\omega)$
	$x_1(n)$	$X_1(\omega)$
	$x_2(n)$	$X_2(\omega)$
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(\omega) + a_2X_2(\omega)$
Time shifting	x(n-k)	$e^{-j\omega k}X(\omega)$
Time reversal	x(-n)	$X(-\omega)$
Convolution	$x_1(n) * x_2(n)$	$X_1(\omega)X_2(\omega)$
Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$
		$=X_1(\omega)X_2^*(\omega)$
		[if $x_2(n)$ is real]
Wiener-Khintchine theorem	$r_{xx}(l)$	$S_{xx}(\omega)$
Frequency shifting	$e^{j\omega_0 n}x(n)$	$X(\omega-\omega_0)$
Modulation	$x(n)\cos\omega_0 n$	$\frac{1}{2}X(\omega+\omega_0)+\frac{1}{2}X(\omega-\omega_0)$
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda) X_2(\omega - \lambda) d\lambda$
Differentiation in		
the frequency domain	nx(n)	$j \frac{dX(\omega)}{d\omega}$
Conjugation	$x^*(n)$	$X^*(-\omega)$
Parseval's theorem	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi}$	$X_1(\omega)X_2^*(\omega)d\omega$

BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$

Signal	Fourier Transform
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$
$\delta[n]$	1
u[n]	$\frac{1}{1-\bar{e}^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$
$\delta[n-n_0]$	$e^{-j\omega n_0}$
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$

Property	DTFS	CTFS	DTFT	CTFT	
Synthesis	$x[n] = \sum_{k=< N>} a_k e^{jk\Omega_0 n}$	$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega$	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$	
Analysis	$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\Omega_0 n}$	$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$	$X(e^{j\Omega}) = \sum_{-\infty}^{\infty} x[n]e^{-j\Omega n}$	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$	
Linearity	$\alpha x[n] + \beta y[n] \leftrightarrow$	$\alpha x(t) + \beta y(t) \leftrightarrow$	$\alpha x[n] + \beta y[n] \leftrightarrow$	$\alpha x(t) + \beta y(t) \leftrightarrow$	
2	$\alpha a_k + \beta b_k$	$\alpha a_k + \beta b_k$	$\alpha X(e^{j\Omega}) + \beta Y(e^{j\Omega})$	$\alpha X(j\omega) + \beta Y(j\omega)$	
Time Shifting	$x[n-n_0] \leftrightarrow a_k e^{-j2\pi n_0 k/N}$	$x(t-t_0) \leftrightarrow a_k e^{-jk\omega_0 t_0}$	$x[n-n_0] \leftrightarrow e^{-j\Omega n_0} X(e^{j\Omega})$	$x(t-t_0) \leftrightarrow e^{-j\omega t_0} X(j\omega)$	
Frequency Shift	$x[n]e^{j2\pi mn/N} \leftrightarrow a_{k-m}$	$x(t)e^{jm\omega_0t} \leftrightarrow a_{k-m}$	$x[n]e^{j\Omega_0n} \leftrightarrow X(e^{j(\Omega-\Omega_0)n})$	$x(t)e^{j\omega_0t} \leftrightarrow X(j(\omega-\omega_0))$	
Conjugation	$x^*[n] \leftrightarrow a^*_{-k}$	$x^*(t) \leftrightarrow a^*_{-k}$	$x^*[n] \leftrightarrow X^*(e^{-j\Omega})$	$x^*(t) \leftrightarrow X^*(-j\omega)$	
Time Reversal	$x[-n] \leftrightarrow a_{-k}$	$x(-t) \leftrightarrow a_{-k}$	$x[-n] \leftrightarrow X(e^{-j\Omega})$	$x(-t) \leftrightarrow X(-j\omega)$	
Convolution	$\sum_{r=0}^{N-1} x[r]y[n-r] \\ \leftrightarrow Na_k b_k$	$\int_T x(\tau)y(t-\tau)d\tau \\ \leftrightarrow Ta_kb_k$	$x[n] * y[n] \leftrightarrow X(e^{j\Omega})Y(e^{j\Omega})$	$x(t) * y(t) \leftrightarrow X(j\omega)Y(j\omega)$	
10000000000000000000000000000000000000	$x[n]y[n] \leftrightarrow \sum_{r=0}^{N-1} a_r b_{k-r}$	$x(t)y(t) \leftrightarrow a_k * b_k$	$x[n]y[n] \leftrightarrow$	$x(t)y(t) \leftrightarrow$	
Multiplication			$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\Omega-\theta)}) d\theta$	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$	
First Difference/ Derivative	$x[n] - x[n-1] \leftrightarrow (1 - e^{-j2\pi k/N})a_k$	$\frac{dx(t)}{dt} \leftrightarrow jk\omega_0 a_k$	$ x[n] - x[n-1] \leftrightarrow (1 - e^{-j\Omega}) X(e^{j\Omega}) $	$\frac{dx(t)}{dt} \leftrightarrow j\omega X(j\omega)$	
Running Sum/ Integration	$\frac{\sum_{k=-\infty}^{n} x[k] \leftrightarrow}{\frac{a_k}{1 - e^{-j2\pi k/N}}}$	$\int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \frac{a_k}{jk\omega_0}$	$\sum_{k=-\infty}^{n} x[k] \leftrightarrow \frac{X(e^{j\Omega})}{1-e^{-j\Omega}} + \pi X(e^{j0})\delta(\Omega)$	$\int_{-\infty}^{t} x(\tau)d\tau \leftrightarrow \frac{X(j\omega)}{j\omega} + \pi X(j0)\delta(\omega)$	
Parseval's Relation	$\frac{\frac{1}{N}\sum_{n=0}^{N-1} x[n] ^2}{=\sum_{k=0}^{N-1} a_k ^2}$	$ \frac{\frac{1}{T} \int_{T} x(t) ^{2} dt}{= \sum_{k=-\infty}^{\infty} a_{k} ^{2}} $	$\sum_{n=-\infty}^{\infty} x[n] ^2$ $= \frac{1}{2\pi} \int_{2\pi} X(e^{j\Omega}) ^2 d\Omega$	$\int_{-\infty}^{\infty} x(t) ^2 dt$ $= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$	
Real and even		Real and even			
signals		in frequency domain			
Real and odd	Purely imaginary and odd				
signals	in frequency domain				