The goal is to practice evaluating limits

-numerically

- graphically
This sheet is a 1.5 class sheet. Day 1: pp1-2; Day 2: pg3.

1) Remind students that in \$2.1 we used

Msec ≈ mtan

as Q -> P, m -> m PQ tano P

This was a type of limit.

- 2) State the definition of work problem #2.
- 3) Have the Students work #3,4,5 + put on board, ASK them how to split the work.

(Get Students to split #3 into the jobs of two

groups b/c it looks hard.)

- #3 answer should feel shakey.

phasize - limits do not always exist

· Emphasize

- limits do not care what happens @ X=a - infinite limits do not exist

· Use the last two problems on page I to motivate

one-sided limits. Go back twik those in

4) Work #7+#8. (I put on screen. Get students to

tell me answers.) Emphasize that v. asymptotes correspond to infinite limits. Things to add if there is time on day 1

- · What do the graphs of #1-4 look like? Does this confirm our numerical work?
- · What is the algebraic limit from the example from 2.1?

On day 2, have students put their answers on board for both problems.

For #9 emphasize that knowing that x=-5
makes the denominator 0 is not sufficient:
See #'s 2 and 3 from page 1.
Checking the limit is infinite is essential.

For #10, emphasize that there are multiple correct answers.

1. DEFINITION: Two-Sided Limit

Notation:
$$\lim_{x\to a} f(x) = L$$

Words: the limit of f(x), as x approaches a, is L.

It means: As the x-values get closer t closer to a (larger t smaller than a) the y-values of f(x) get close to L. Infact, the y's can be forced arbitrarily close to L.

Evaluate the limits below numerically. Estimate the limit to 4 decimal places, if possible.

1

$$2. \lim_{x \to 0} \frac{\sin(x)}{x} = \boxed{1}$$

X	Sin(x)/x		
0.1	0.99833		
0.01	0.99998		
0.001	0.99999		
0	DNE		
- 0.001	0.99999		
-0.01	0.99998		
-0.1	0.99833		
4. $\lim_{x \to -1} \frac{ x+1 }{x+1} = \boxed{\mathbf{DNE}}$			

3.
$$\lim_{x \to 2} \frac{\cos(x)(x-2)}{3x^2 - 5x - 2} = \boxed{0.0594}$$

×	$\cos(x)(x-2)/(3x^2-5x-2)$
2.1	-0.069157
2.01	-0.060486
2.001	-0.05955
2.00001	-0.05945
2.	
1.99999	-0.059448
1.999	-0.05 9345
1.99	-0.058397
1.9	-0.04825
•••	1 [

$$5. \lim_{x \to 1} \frac{1}{x - 1} = \boxed{\mathcal{D}_{NE}}$$

X	[x+1]/	(x+1)
-0.9	1	from page2
-0.99	1	
-0.999	1	_ X->-1+ x+1
-0.9999	1	
-1	DNE	_
-1 -1.0001	DNE -1	- lina x+1 + 1
	DNE -1	$\lim_{x \to -1^-} \frac{ x+1 }{x+1} = 1$
-1.0001	DNE -1 -1	$\lim_{x \to -1^-} \frac{ x+1 }{x+1} = 1$
-1.0001 -1.001	DNE -1 -1 -1	$\lim_{x \to -1^{-}} \frac{ x+1 }{ x+1 } = 1 - 1$

X	1/(x-1)	from page 2
1.1	10	- - -
1.0	100	$\lim_{x\to 1^+} \frac{1}{x-1} = +\infty$
1.001	1000	.
1.000	10,000	
1	DNE	
0.9999	-10,000	lim 1 = -00
0.999	-1000	x->1- x-1
0.99	-100	
0.9	-10	
	2-2 The L	imit of a Function

6. DEFINITION: One-Sided Limits

Notation:

lim f(x)=L x-values approach x=a only on the right or above or from x-values larger than x=a.

Limits can also be evaluated graphically.

7. The function g(x) is graphed below. Use the graph to fill in the blanks.

- (a) $\lim_{x \to 4^{-}} g(x) = \underline{\begin{array}{c} 16 \\ \\ \text{(b)} \lim_{x \to 4^{+}} g(x) = \underline{\begin{array}{c} 4 \\ \\ \text{(c)} \lim_{x \to 4} g(x) = \underline{\begin{array}{c} 2005 \\ \\ \text{(d)} g(4) = \underline{\begin{array}{c} 16 \\ \\ \text{(e)} \lim_{x \to 8} g(x) = \underline{\begin{array}{c} 5 \\ \\ \text{(f)} g(8) = \underline{\begin{array}{c} -5 \\ \end{array}} \\ \end{array}}$

- (f) g(8) =___

8. The function h(x) is graphed below. Use the graph to fill in the blanks.

- (a)
- (b) $\lim_{x \to 4^+} h(x) =$ ______
- (d) h(4) =
- (e) $\lim_{x \to 8} h(x) =$ ______

9. Find any vertical asymptotes of $f(x) = \frac{2}{x+5}$ and *justify* your answer using a limit.

Justification:

$$\lim_{X \to -5^+} \frac{2}{x+5} = +\infty$$

as
$$x = -5^+$$
 (#\$ like -4.9,-4.99)
 $x + 5 \to 0^+$

10. Sketch the graph of an function that satisfies *all* of the given conditions. Compare your answer with that of your neighbor.

$$\lim_{x \to 0^{-}} f(x) = 1 \quad \lim_{x \to 0^{+}} f(x) = -2 \quad \lim_{x \to 4^{-}} f(x) = 3 \quad \lim_{x \to 4^{+}} f(x) = 0$$

$$f(0) = -2 f(4) = 1$$

