Entropy-Based Measures (II): Normalized Mutual Information (NMI)

Mutual information:

- Quantifies the amount of shared info between $I(C,T) = \sum_{i=1}^{r} \sum_{i=1}^{k} p_{ij} \log(\frac{p_{ij}}{p_C \cdot p_T})$ the clustering C and partitioning T
- \square Measures the dependency between the observed joint probability p_{ii} of C and T, and the expected joint probability p_{Ci} . p_{Ti} under the independence assumption
- □ When C and T are independent, $p_{ij} = p_{Ci}$. p_{Ti} , I(C, T) = 0. However, there is no upper bound on the mutual information

$$NMI(\mathcal{C},\mathcal{T}) = \sqrt{\frac{I(\mathcal{C},\mathcal{T})}{H(\mathcal{C})} \cdot \frac{I(\mathcal{C},\mathcal{T})}{H(\mathcal{T})}} = \frac{I(\mathcal{C},\mathcal{T})}{\sqrt{H(\mathcal{C}) \cdot H(\mathcal{T})}}$$
 \tag{Value range of NMI: [0,1]. Value close to 1 indicates a good clustering

Entropy of clustering C:
$$H(C) = -\sum_{i=1}^{r} p_{C_i} \log p_{C_i}$$

Entropy of partitioning T: $H(T) = -\sum_{i=1}^{n} p_{T_i} \log p_{T_j}$

Pairwise Measures: Four Possibilities for Truth Assignment

- ☐ Four possibilities based on the agreement between cluster label and partition label
- \square TP: true positive—Two points \mathbf{x}_i and \mathbf{x}_i belong to the same partition T, and they also in the same cluster C

$$TP = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i = y_i \text{ and } \hat{y}_i = \hat{y}_i\}|$$

where y_i : the true partition label, and \hat{y}_i : the cluster label for point \mathbf{x}_i

- □ FP: false positive $FP = |\{(\mathbf{x}_i, \mathbf{x}_j) : y_i \neq y_j \text{ and } \hat{y}_i = \hat{y}_j\}|$
- □ *TN*: true negative $TN = |\{(\mathbf{x}_i, \mathbf{x}_j) : y_i \neq y_j \text{ and } \hat{y}_i \neq \hat{y}_j\}|$

Pairwise Measures: Jaccard Coefficient and Rand Statistic

- □ Jaccard coefficient: Fraction of true positive point pairs, but after ignoring the true negatives (thus asymmetric)
- □ Jaccard = TP/(TP + FN + FP) [i.e., denominator ignores TN]
- □ Perfect clustering: *Jaccard* = 1

Rand Statistic:

- \square Rand = (TP + TN)/N
- Symmetric; perfect clustering: Rand = 1
- Fowlkes-Mallow Measure:
- Geometric mean of precision and recall

$$FM = \sqrt{prec \times recall} = \frac{TP}{\sqrt{(TP + FN)(TP + FP)}}$$

Using the above formulas, one can calculate all the measures for the green table (leave as an exercise)

Cluster C₁ C₂ C₃

Cluster C₁ C₂

C\T	T ₁	T ₂	T ₃	Sum
C_1	0	20	30	50
C_2	0	20	5	25
C_3	25	0	0	25
m_j	25	40	35	100