

#### A HellerVVA Problem: The Catch-22 for Simulated Testing of Fully Autonomous Systems



Dr. Daniel J. Porter

May 15th, 2020

#### **Institute for Defense Analyses**

4850 Mark Center Drive • Alexandria, Virginia 22311-1882

The ability to make valid inferences is the best defense against unintended behaviors.



### Inferring behavior requires understanding the decisions that causally drive those behaviors



#### We cannot generalize behavior from black boxes



### Perception, goals, and procedure selection are the basic decisions that drive behaviors





### Diagnosing unintended behavior will require unobtrusive instrumentation on decision processes



#### Correlation == Causation

(as least to Machine Learning)





### We ultimately want to validly generalize across information dimensions to avoid unintended behaviors







## Test points can help invalidate assumptions about decision making processes





### We have to <u>obtain</u>, <u>verify</u>, <u>validate</u>, <u>and accredit</u> models of system decision making



### We need to ensure the information dimensions varied in test are the causal drivers and not just correlated



### We need to ensure the information dimensions varied in test are the causal drivers and not just correlated



# How to obtain, verify, validate, and accredit system decision models

#### VV&A needs to happen for more than one thing



### Sensor physics can be valid without the environmental features being valid and representative



θ is a causal driver of threat perception



Behavioral sim doesn't vary barrel angle



#### VV&A needs to happen for more than one thing



#### **OVVA** requires iterative test and evaluation



#### **OVVA** requires iterative test and evaluation



#### System design alters how to obtain decision model



#### System design alters how to obtain decision model



#### System design alters how to obtain decision model



### Model induction has promising data-driven techniques, but may be insufficient for embedded full autonomy



church 0.146 0.091 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051



Full autonomy can change the information acquired





Need model to VV&A sim

Need sim for safety release



#### Sequential experimentation is (likely) the most efficient method for model induction

Experiments, data, and observations



Theories, hypotheses, expert opinion











Sub-symbolic, monolithic systems will demand much greater quantities of data to obtain decision models.

These data may be expensive for both time and resources.

#### System design alters how to obtain system model



### Modular architectures' decision models can be initially verified through cascading compositional verification



### Bayesian network models can quantify uncertainty in decision making across distributed modules





Propagating uncertainty across multiple modules provides uncertainty estimates in all or part of the decision model, supporting verification