

PROJECTO DE UMA LIGAÇÃO EM FEIXES HERTZIANOS

Setúbal – Carcavelos

Disciplina de Sistemas de Comunicações, Ano lectivo 2017/2018

Docentes Paula Rodrigues e António Rodrigues

Miguel Gonçalves 84613 LETI
Pedro Maria 84618 LETI

Índice

1. Introdução	
1.1 – Especificações do projecto	
1.2 – Ferramentas a utilizar	
2. Percurso com repetidor passivo	4
3. Percurso com repetidor activo	6
3.1 – Optimização do percurso no troço maior	7
3.2 – Optimização do percurso no troço menor	g
4. Solução optimizada	10
4.1 – Especificações do projecto	10
4.2 – Análise dos custos	11
Anexo A – Percurso com repetidor passivo	13
Anexo B – Troço maior do percurso com repetidor activo	33
Anexo C – Troco menor com repetidor passivo	30

1. Introdução

O objectivo deste trabalho é projectar uma ligação bidireccional de feixes hertzianos digitais entre as localidades de Setúbal e Carcavelos, no âmbito da disciplina de Sistemas de Comunicações. O projecto deve minimizar o custo de uma chamada telefónica de 3 minutos de duração, ao mesmo tempo que garanta as normas de qualidade e fiabilidade da ITU-R.

Para tal, serão estudados vários parâmetros que irão influenciar o custo do projecto e o custo das chamadas telefónicas: localização do emissor, repetidor e receptor; altura dos mastros; diâmetro das antenas; escolha de repetidor passivo ou repetidor activo; faixa de frequências a usar; largura de banda do canal a usar e consequente escolha da modulação.

1.1 – Especificações do projecto

O sinal a enviar é um sinal PDH/E-2, de frequência igual a 8 Mbits/s, que suporta até 120 canais telefónicos.

A potência máxima do emissor em watts segue a fórmula $p = p0 * f^b$, onde p0, no caso do nosso grupo, é igual a 9 W, f é a frequência em GHz e b é igual a 1,4.

O factor de ruído do receptor em dB é dado pela fórmula F = F0 + alfa * f, onde F0 é igual a 4.0 dB; alfa consiste no factor de excesso de banda dos filtros de Nyquist e no nosso grupo é igual a 0,2; e f consiste na frequência em GHz

É possível colocar o emissor e o receptor num raio de 1 km à volta das áreas urbanas de Setúbal e Carcavelos, respectivamente, com a condição de se situarem ambos em locais de fácil acesso por estrada e alimentação por parte da rede eléctrica, e de não estarem colocados em cima de monumentos protegidos.

O repetidor, quer activo quer passivo, não precisa de ter fácil acesso por estrada, embora não possa igualmente ser colocado em cima dos monumentos indicados. Não é necessário que o emissor, o repetidor e o receptor formem uma linha recta, embora seja aconselhável que o repetidor não se desvie muito da mesma. Caso se opte por usar um repetidor passivo,

este deverá ser do tipo "costas-com-costas". Não será possível utilizar igualação nem diversidade caso se opte por um repetidor passivo. Pode considerar-se o rendimento de abertura de todas as antenas 0,5; e o rendimento devido a perdas na antena igual a 1. O diâmetro máximo da antena é 4,5 metros.

Pode-se considerar que os encargos de exploração anuais consistirão em 15% dos custos iniciais do projecto. Igualmente não serão considerados encargos com terrenos e direitos de passagem, os quais teriam obrigatoriamente de ser considerados num projecto real. A taxa de utilização anual é definida pela ANACOM, dependendo da faixa de frequências usada.

O projecto terá uma duração de 25 anos, tendo-se um valor residual nulo. O tráfego médio por canal telefónico será dado em Erlang pela fórmula 0.2 + 0.02 * t, onde t vem em anos e t=1 define o ano inicial. A taxa interna de retorno a preços constantes será 10%, e a taxa de inflação manter-se-á igualmente constante e igual a 3%.

1.2 – Ferramentas a utilizar

Todas as ferramentas a utilizar na realização do projecto são inteiramente digitais. O script Feixer do programa Mathematica será usado para obter os parâmetros da ligação, como por exemplo a margem de segurança face às diferentes cláusulas da ITU-R.

O programa Google Earth será usado para obter as coordenadas da localização do receptor, repetidor e emissor, assim como auxiliar à escolha do melhor percurso da ligação. Um script fornecido pelos docentes da disciplina será usado para obter o perfil topográfico da ligação de modo a poder ser inserido no Feixer, dados os pontos de origem, destino e passagem.

Será também utilizado o Excel para se efectuarem cálculos repetitivos relacionados com o custo inicial da ligação e com o custo de uma chamada de 3 minutos.

Por último, mas não menos importante, serão usados os slides e outros documentos disponíveis na página da disciplina para se obter toda a teoria e fórmulas necessárias ao desenvolvimento do projecto.

2. Percurso com repetidor passivo

A 1ª tarefa no âmbito do projecto consistiu em obter um percurso directo entre Setúbal e Carcavelos com recurso ao script fornecido pelos docentes. Obtido esse percurso, e seguindo os passos do 4º guião laboratorial, obtiveram-se os parâmetros de uma ligação directa por feixes hertzianos entre as 2 localidades, conforme visto na Figura 1, rapidamente se verificando que tal ligação não conseguia cumprir as cláusulas da ITU-R independentemente da frequência usada. Importa notar que devido aos catálogos de guias de ondas presentes no Feixer, apenas frequências de 2 a 27 GHz podem ser usadas.

Figura 1 – Ligação directa entre Setúbal (esquerda) e Carcavelos (direita). A 1ª elipsóide de Fresnel mais pequena corresponde a uma frequência de 2 GHz, a elipsóide maior a uma frequência de 27 GHz. O cume mais alto foi truncado pelo Feixer, situando-se ligeiramente abaixo dos 300 metros

Assim, procedeu-se à colocação de um repetidor passivo no cume do monte mais alto do perfil topográfico, situado em localização real na Serra da Arrábida. Como na tentativa anterior, a altura dos metros do emissor e receptor era 30 metros, enquanto a altura dos mastros do repetidor era 10 metros. Igualmente foram varridas todas as frequências entre 2 e 27 GHz, com um salto de 1 GHz. O diâmetro das antenas do emissor e do receptor era 3 metros. Usou-se uma largura de banda de 14 MHz e modulação 2-PSK.

Todavia, conforme visto na Figura 2, o raio directo era obstruído pelo cume situado cerca do quilómetro 32 do percurso, correspondente em

localização real à zona da Costa da Caparica. A ordem de grandeza da área das antenas do repetidor necessária para o cumprimento das cláusulas da ITU-R era assim 10³.

Uma vez que o repetidor era do tipo "costas com costas", a área efectiva a de cada uma das suas antenas é dada pela fórmula a = pi*(D/2)² * n, onde a é a área efectiva em m², D é o diâmetro da antena em metros, e n o rendimento de abertura da antena que neste projecto é igual a 0,5. Dado o diâmetro máximo das antenas, 4,5 metros, tem-se que a área efectiva máxima da mesma é 7,952 m². Dessa forma, uma área efectiva necessária com ordem de grandeza igual a 10³ era um claro sinal de que o percurso não era o ideal.

Figura 2 – Ligação entre Setúbal e Carcavelos recorrendo a um repetidor passivo, com uma obstrução no troço maior na zona da Costa da Caparica

Tendo-se mostrado que o percurso directo não era viável, procedeu-se à deslocação do emissor e do receptor para outros pontos da área urbana de Setúbal e Carcavelos, respectivamente, em busca de um percurso directo com apenas 1 obstrução. Tendo-se encontrado esse percurso, procedeu-se ao cálculo dos seus diferentes parâmetros com recurso ao Feixer. A altura dos mastros, diâmetro das antenas, varrimento das frequências, largura de banda e modulação mantiveram-se inalterados. Obteve-se para a frequência óptima, neste caso de 7 GHz, uma área efectiva com uma ordem de grandeza de 10^2 , ainda bastante acima do máximo possível.

Por fim, não se conseguindo melhor com um percurso directo, experimentou-se deslocar o repetidor para o cume de um monte próximo do

percurso directo. Novamente a altura dos mastros, diâmetro das antenas, varrimento das frequências, largura de banda e modulação mantiveram-se inalterados. A frequência óptima manteve-se a mesma, 7 GHz, e a área efectiva da antena necessária para cumprir as cláusulas da ITU-R desceu para cerca de 21 m², ainda 3 vezes acima do máximo possível. Concluiu-se assim que a realização do projecto não era possível com um repetidor passivo, e optou-se pelo uso de um repetidor activo. O Anexo A mostra o output do Feixer na melhor situação encontrada com o uso de um repetidor passivo. Na Figura 3 pode ver-se o perfil do melhor percurso encontrado.

Figura 3 – Ligação entre Setúbal e Carcavelos com o repetidor ligeiramente desviado do percurso directo

O comprimento da ligação com percurso directo sem ajuste das posições do emissor e receptor era 42,627 km. O comprimento da ligação com percurso directo e ajuste das posições do emissor e receptor era 40,997 km. O comprimento da ligação com ajuste da posição do emissor, repetidor e receptor era 41,012 km.

3. Percurso com repetidor activo

Tendo-se visto que a realização do projecto com repetidor passivo não era possível, passou-se à realização do mesmo com recurso a repetidor activo utilizando o mesmo percurso que dera os melhores resultados com repetidor passivo. Dessa forma, procedeu-se primeiramente ao estudo da frequência óptima para o troço maior e posterior optimização dos parâmetros dessa

ligação, passando-se posteriormente à optimização dos parâmetros da ligação do troço menor usando a frequência óptima encontrada para o troço maior.

3.1 – Optimização do percurso no troço maior

O troço maior decorre de um cume na Serra da Arrábida, onde está instalado o repetidor, até ao receptor que está localizado em Carcavelos. O comprimento total do troço é 38,245 km.

Começou-se por se procurar a frequência óptima para o troço. Dessa forma, o Feixer foi corrido para o troço tendo como parâmetros a altura dos mastros de emissão e recepção igual a 30 metros; altura dos mastros do repetidor igual a 10 metros; diâmetro de todas as antenas igual a 4,5 metros; largura de banda de cada canal igual a 14 MHz e modulação 2-PSK. A frequência óptima encontrada foi 2 GHz.

Figura 4 – Troço maior da ligação entre Setúbal e Carcavelos, com a 1ª elipsóide de Fresnel para a frequência óptima de 2 GHz. O repetidor na Serra da Arrábida encontra-se à esquerda e Carcavelos encontra-se à direita

De seguida criou-se uma folha Excel que calculasse tanto o custo inicial da ligação como o custo de uma chamada de 3 minutos em função do diâmetro das antenas; altura dos mastros; faixa de frequências; largura de banda de cada canal e comprimento da ligação. Sendo a faixa de frequências e o comprimento da ligação fixos, os 3 parâmetros a alterar iriam ser o diâmetro das antenas, a altura dos mastros e a largura de banda de cada canal.

A altura dos mastros podia assumir qualquer valor entre 10 e 80 metros, embora as fórmulas do custo dos mesmos fossem distintas para alturas inferiores ou superiores a 30 metros, sendo o custo bastante superior no último caso. O diâmetro das antenas podia assumir um dos seguintes valores: 0,6; 1; 1,5; 2; 3 e 4,5 metros. De acordo com as normas da ANACOM, para a frequência de 2 GHz a largura de banda poderia tomar um dos seguintes valores: 1,75; 3,5; 7 e 14 MHz.

Dado o grande número de combinações possível, por forma a acelerar o processo da obtenção dos parâmetros óptimos decidiu-se proceder da seguinte forma: 2 dos parâmetros em jogo foram fixados no seu valor mínimo, enquanto o 3º valor tomava todos os valores possíveis para o mesmo. Por exemplo, a altura dos mastros assumia a altura mínima de 10 metros e a largura de banda o valor mínimo de 1,75 MHz, enquanto o diâmetro das antenas era variado entre todos os valores possíveis de 0,6 e 4,5 metros. Depois fixava-se a altura dos mastros e o diâmetro das antenas e variava-se a largura de banda, e por fim fixava-se a largura de banda e o diâmetro das antenas e variava-se a altura dos mastros.

Dado que a altura dos mastros podia variar de forma contínua e não discreta, usaram-se saltos de 1 metro entre 10 e 30 metros. Considerou-se desnecessário recorrer a mastros superiores a 30 metros, já que com os 3 parâmetros indicados no seu máximo obtinha-se uma margem de segurança de cerca de 20 dB.

No Excel obtiveram-se os custos iniciais da ligação e de uma chamada telefónica de 3 minutos para todas as combinações possíveis seguindo os procedimentos acima, num total de cerca de 40. O objectivo era descobrir qual o valor mínimo do parâmetro a ser variado que garantisse a margem de segurança de 3 dB para cada uma das combinações, e para cada combinação obter o custo da ligação e o custo da chamada telefónica de 3 minutos. De entre as 3 combinações, a que apresentasse menor custo seria considerada a ideal e portanto a aplicar no troço maior.

Tendo-se corrido o Feixer com alguns dos diferentes valores possíveis, chegou-se assim à conclusão de que uma solução óptima consistia em usar mastros de 10 metros de altura, antenas de 3 metros de diâmetro e largura de banda igual a 1,75 MHz, garantindo uma margem de segurança de 2,998 dB,

o que se pode considerar igual a 3 dB. O Anexo B consiste no output do Feixer para estes parâmetros.

3.2 – Optimização do percurso no troço menor

O troço menor decorre de Setúbal, onde está localizado o emissor, até a um cume na Serra da Arrábida, onde está localizado o repetidor. O comprimento do troço é 2,734 km.

Dado que se trata da mesma ligação, a faixa de frequências e a largura de banda do canal têm de ser iguais nos 2 troços. Tendo-se visto para o troço maior que a melhor faixa de frequências era 2 GHz e a largura de banda que permitia o menor custo era 1,75 MHz, os mesmos parâmetros foram aplicados ao troço menor da ligação.

Figura 5 – Troço menor da ligação entre Setúbal e Carcavelos, com a 1ª elipsóide de Fresnel para a frequência óptima de 2 GHz. Setúbal encontra-se à esquerda e o repetidor na Serra da Arrábida encontra-se à direita

Restava assim descobrir os valores óptimos para os restantes 2 parâmetros: o diâmetro das antenas e a altura dos mastros. Verificou-se que os valores mínimos para os 2 parâmetros, respectivamente 0,6 metros e 10 metros, eram suficientes para cumprir as cláusulas da ITU-R, garantindo até uma margem de segurança de 42 dB, muito acima dos 3 dB requeridos. Tal facto pode ser explicado pelo reduzido comprimento do troço, face ao comprimento do troço maior. Dessa forma completou-se a optimização de toda a ligação.

4. Solução optimizada

4.1 – Especificações do projecto

Foi possível concretizar o projecto recorrendo a mastros de altura igual a 10 metros. Não sendo a altura dos mastros superior a 30 metros, reduziuse assim o custo do projecto.

O emissor está situado nas coordenadas (38°31'12.33"N, 8°54'45.44"W), a sudoeste de Setúbal, a pouco mais de meio quilómetro da área urbana da cidade.

O repetidor está situado nas coordenadas (38°32'0.70"N, 8°56'20.31"W), num cume da Serra da Arrábida.

O receptor está situado nas coordenadas (38°41'1.27"N, 9°20'4.15"W), a sudeste de Carcavelos, a pouco mais de 300 metros da área urbana da localidade.

As antenas da ligação têm as características indicadas na Tabela 1.

Antena	Diâmetro (m)	Ângulo de fogo (°)	Ângulo de azimute (°)
Emissor	0,6	5,402	1,317
Receptor do repetidor	0,6	-5,421	181,337
Emissor do repetidor	3	-0,668	1,482
Receptor	3	0,410	181,799

Tabela 1 – Características das antenas da ligação

O comprimento dos guias corresponde à soma das alturas dos mastros mais uma folga tanto no mastro do emissor como no mastro do receptor, folga essa que neste projecto é igual a 10 metros. Dessa forma, o comprimento dos guias é igual a 10*4+10*2=60 metros. Dado que as frequências são as mesmas, os guias são todos EW17, tendo uma atenuação de 0,234 dB.

Como referido acima, toda a ligação utiliza uma faixa de frequências de 2 GHz e uma largura de banda por canal de 1,75 MHz.

Sendo a potência do emissor dada em watts por p0 * f^b, com p0 igual a 9 W, f igual a 2 GHz e b igual a 1,4 é possível concluir que a potência do emissor é igual a 23,75 W.

O factor de ruído da ligação é igual a 9,4 dB. Isto corresponde a uma relação portadora/ruído no troço maior igual a 70,4577 dB, e no troço menor igual a 68,8781 dB.

Dada a largura de banda de 1,75 MHz, a modulação usada nos 2 troços da ligação é a 64-QAM.

4.2 – Análise dos custos

Sendo o custo de uma antena dado pela fórmula 1000+75*D³, onde D é o diâmetro da antena em metros, o custo total das antenas ascende a 8082,40€.

Para mastros com altura entre 10 e 30 metros, o custo em função da altura é dado pela expressão 4000+600*h, sendo h a altura do mastro. Dessa forma, pode concluir-se que o custo dos mastros do projecto é igual a 40.000€.

Tendo o projecto 60 metros de guias de onda, e sendo a fórmula do seu custo dada por 15*(1+10/f)*Iguias, onde f é a faixa de frequências e Iguias o comprimento total dos guias de onda, é possível concluir que os guias irão custar 5400€.

Tendo-se um repetidor activo no projecto, são necessários 4 pares emissor/receptor que irão custar 140.000€ e 3 abrigos / sistemas de alimentação de energia que irão custar 180.000€.

Dessa forma, o custo inicial do projecto ascende a 373.482,40€.

A largura de banda é igual a 1,75 MHz, o que a uma taxa de 48,5*raiz(l) euros por megahertz, onde l é o comprimento da ligação, dá uma taxa anual de 543,33€ euros.

A taxa de inflação é igual a 3%, e a taxa interna de retorno é igual a 10%. O número de canais telefónicos é 120. É possível efectuar 175.392 chamadas telefónicas de 3 minutos no decurso de 1 ano.

Com estes valores, é possível calcular a evolução do preço de uma chamada telefónica de 3 minutos usando esta ligação ao longo dos 25 anos de duração do projecto. Os valores estão presentes na Tabela 2, sendo ilustrados pelo gráfico presente na Figura 6.

Ano	Custo (cêntimos)
1	2,343872
2	2,14855
3	1,983277
4	1,841614
5	1,71884
6	1,611412
7	1,516623
8	1,432366
9	1,356979
10	1,28913
11	1,227743
12	1,171936
13	1,120982
14	1,074275
15	1,031304
16	0,991638
17	0,954911
18	0,920807
19	0,889055
20	0,85942
21	0,831697
22	0,805706
23	0,781291
24	0,758312
25	0,736646

Tabela 2 – Evolução do custo de uma chamada telefónica de 3 minutos em cêntimos usando a ligação projectada ao longo dos 25 anos de duração do projecto

Figura 6 – Evolução do custo de uma chamada telefónica de 3 minutos em cêntimos usando a ligação projectada ao longo dos 25 anos de duração do projecto

Anexo A – Percurso com repetidor passivo

Segue-se o output do Feixer para o percurso optimizado, altura das antenas de emissão e recepção igual a 30 metros; altura das antenas do repetidor igual a 10 metros; diâmetro de todas as antenas igual a 4,5 metros; largura de banda igual a 14 MHz e modulação 2-PSK.

FEIXER - Programa de Feixes Hertzianos

- 1. Elementos de Propagação
 - 1.1 Perfil do percurso

1.1.1 Perfil do percurso com Terra plana

Perfil em Terra plana

O percurso tem uma percentagem de cotas inferiores a 100 m de rc=86.7188%.

A distância total da ligação é de 41.012 km.

1.1.2 Perfil do percurso com Terra esférica

O coeficiente entre o raio aparente e o real da Terra na condição 1 é k= 4/3.

O raio equivalente da Terra é Subscript[r, eq]= 8493.33 km.

1.2 Frequência da ligação

Frequência inicial: 2 GHz.

Incremento de frequência: 1 GHz.

Frequência final: 27 GHz.

São 26 as frequências em utilização:

 $f \hspace{-0.05cm}=\hspace{-0.05cm} \{2,\hspace{-0.05cm} 3,\hspace{-0.05cm} 4,\hspace{-0.05cm} 5,\hspace{-0.05cm} 6,\hspace{-0.05cm} 7,\hspace{-0.05cm} 8,\hspace{-0.05cm} 9,\hspace{-0.05cm} 10,\hspace{-0.05cm} 11,\hspace{-0.05cm} 12,\hspace{-0.05cm} 13,\hspace{-0.05cm} 14,\hspace{-0.05cm} 15,\hspace{-0.05cm} 16,\hspace{-0.05cm} 17,\hspace{-0.05cm} 18,\hspace{-0.05cm} 19,\hspace{-0.05cm} 20,\hspace{-0.05cm} 21,\hspace{-0.05cm} 22,\hspace{-0.05cm} 23,\hspace{-0.05cm} 24,\hspace{-0.05cm} 25,\hspace{-0.05cm} 26,\hspace{-0.05cm} 27 \hspace{-0.05cm} \} \hspace{0.5cm} \text{GHz}.$

Os comprimentos de onda em utilização são:

 $\label{lembda} $$ \color= \{0.149896, 0.0999308, 0.0749481, 0.0599585, 0.0499654, 0.0428275, 0.0374741, 0.0333103, 0.0299792, 0.0272539, 0.0249827, 0.023061, 0.0214137, 0.0199862, 0.018737, 0.0176349, 0.0166551, 0.0157786, 0.0149896, 0.0142758, 0.0136269, 0.0130345, 0.0124914, 0.0119917, 0.0115305, 0.0111034\} m.$

1.3 Altura dos mastros das antenas

Altura do mastro de emissão: 30 m.

Altura do mastro de recepção: 30 m.

1.4 Características das antenas

O diâmetro da antena emissora é de 4.5 m, sendo o seu rendimento de \[Eta]e=0.5 .

O diâmetro da antena receptora é de 4.5 m, sendo o seu rendimento de \[Eta]r= 0.5.

A área física da antena de emissão é afe=15.9043 m^2, correspondendo a uma área efectiva de Subscript[aef, e]=7.95216 m^2.

A área física da antena de recepção é afr=15.9043 m^2, correspondendo a uma área efectiva de Subscript[aef, r]=7.95216 m^2.

Ganho da antena de emissão:

 $ge = \{36.4811, 40.003, 42.5017, 44.4399, 46.0236, 47.3625, 48.5223, 49.5454, 50.4605, 51.2884, 52.0442, 52.7394, 53.3831, 53.9824, 54.5429, 55.0695, 55.566, 56.0356, 56.4811, 56.9049, 57.309, 57.6951, 58.0648, 58.4193, 58.76, 59.0878\} dBi.$

Ganho da antena de recepção:

 $gr = \{36.4811, 40.003, 42.5017, 44.4399, 46.0236, 47.3625, 48.5223, 49.5454, 50.4605, 51.2884, 52.0442, 52.7394, 53.3831, 53.9824, 54.5429, 55.0695, 55.566, 56.0356, 56.4811, 56.9049, 57.309, 57.6951, 58.0648, 58.4193, 58.76, 59.0878\} dBi.$

A atenuação em espaço livre entre antenas é:

 $L0 = \{130.727, 134.248, 136.747, 138.685, 140.269, 141.608, 142.768, 143.791, 144.706, 145.534, 146.29, 146.985, 147.629, 148.228, 148.788, 149.315, 149.811, 150.281, 150.727, 151.15, 151.554, 151.941, 152.31, 152.665, 153.005, 153.333\} \, dB.$

1.5 Atenuação de obstáculo

O obstáculo principal está à distância de 2.734 km, a que corresponde o ponto 18 dos 256 do ficheiro de entrada.

Atenuação de obstáculo calculada pelo método 1, entre a antena emissora e receptora:

 $\label{eq:Aobst} Aobst = \{47.104, 48.8718, 50.1255, 51.0977, 51.8919, 52.5632, 53.1446, 53.6574, 54.116, 54.5309, 54.9096, 55.2579, 55.5804, 55.8806, 56.1615, 56.4252, 56.6739, 56.9091, 57.1323, 57.3445, 57.5469, 57.7403, 57.9254, 58.1029, 58.2735, 58.4377\} \ dB.$

1.6 Atenuação atmosférica

Pressão atmosférica: p= 1013 milibar.

Temperatura do ambiente: T= 25 °C.

Humidade relativa: H= 85 %.

Atenuação específica do oxigénio:

 $\label{eq:condition} $$ \Gamma]ox=\{0.00613408,0.00643819,0.00658242,0.0066868,0.00678432,0.00688744,0.00700223,0.00713234,0.00728049,0.00744897,0.00763999,0.00785577,0.00809866,0.00837119,0.0086761,0.00901644,0.0093956,0.00981733,0.0102859,0.010806,0.0113831,0.0120234,0.0127337,0.0135221,0.0143977,0.0153713\} $$ dB/km.$

A pressão parcial do vapor de água saturado é es=31.6703 hPa.

A pressão parcial do vapor de água no ar húmido é e=26.9198 hPa.

A concentração de vapor de água é \[Rho]=19.5559 g/m^3.

Atenuação específica do vapor de água:

 $\label{eq:condition} $$ \Gamma]_{va=\{0.000612794,0.00138691,0.00248687,0.00393098,0.00574584,0.00796937,0.0106553,0.0138802,0.0177543,0.0224386,0.0281731,0.0353225,0.0444541,0.0564712,0.0728415,0.0959746,0.129761,0.17991,0.252132,0.342577,0.420211,0.440365,0.403362,0.347554,0.298569,0.262533\} $$ dB/km.$

Atenuação da atmosfera:

 $aatmos = \{0.276703, 0.320923, 0.37195, 0.435456, 0.513887, 0.609308, 0.724171, 0.861768, 1.02673, 1.22575, 1.46877, 1.77083, 2.15529, 2.65932, 3.3432, 4.30589, 5.70708, 7.78108, 10.7623, 14.493, 17.7005, 18.5533, 17.0649, 14.8085, 12.8354, 11.3974\} \ dB.$

1.7 Distribuição da indisponibilidade

Comprimento do circuito fictício de referência da ligação: 280 km.

Fracção da indisponibilidade máxima para a chuva: 0.1.

Fracção da indisponibilidade máxima para o equipamento: 0.4.

Fracção da indisponibilidade máxima para outras causas: 0.5.

A indisponibilidade máxima para a ligação é Subscript[\[ScriptCapitalI], máx]= {3.36*10^(-4)}.

A fracção da indisponibilidade devida à precipitação é \[ScriptCapitalI]chuva= \{3.36*10^(-5)\}.

A fracção da indisponibilidade devida ao equipamento é Subscript[\[ScriptCapitalI], equip]= \[\[\] \(1.344*10^(-4)\)\].

A fracção da indisponibilidade devida a outras causas é Subscript[\[ScriptCapitalI], outros]= {1.68*10^(-4)}.

1.8 Atenuação provocada por hidrometeoritos

Antenas utilizando polarização horizontal:

Intensidade de precipitação: 42 mm/h.

Fracção de tempo no ano em que o valor da intensidade de precipitação é excedido: {3.36*10^(-5)} %.

Valor de \[Kappa] à frequência imposta é:

 $\label{eq:continuous} $$ \left\{ 1.54*10^{-4}, 3.57562*10^{-4}, 6.5*10^{-4}, 1.12106*10^{-3}, 1.75*10^{-3}, 3.01*10^{-3}, 4.54*10^{-3}, 6.92396*10^{-3}, 1.01*10^{-2}, 1.39759*10^{-2}, 1.88*10^{-2}, 2.38982*10^{-2}, 2.98432*10^{-2}, 3.67*10^{-2}, 4.30953*10^{-2}, 5.01144*10^{-2}, 5.77762*10^{-2}, 6.60988*10^{-2}, 7.51*10^{-2}, 8.38026*10^{-2}, 2.9.30379*10^{-2}, 1.02812*10^{-1}, 1.13131*10^{-1}, 1.24*10^{-1}, 1.35458*10^{-1}, 1.47481*10^{-1}, 1.474$

Valor de \[Alpha] à frequência imposta é:

 $\label{eq:loss} $$ \left(Alpha \right) = \{ 0.963, 1.05542, 1.121, 1.22391, 1.308, 1.332, 1.327, 1.30008, 1.276, 1.24516, 1.217, 1.1944, 1.17348, 1.154, 1.14166, 1.13007, 1.11914, 1.10881, 1.099, 1.09069, 1.08277, 1.0752, 1.06795, 1.061, 1.0524, 1.04412 \}. $$ \left(\frac{1.0524, 1.04412}{1.0081, 1.0$

O coeficiente de atenuação por unidade de comprimento:

 $\label{lemma} $$ [0.00563261,0.0184743,0.0429117,0.108729,0.232406,0.437255,0.647303,0.892708,1.19011,1.46751,1.77686,2.07576,2.39714,2.74092,3.07348,3.42255,3.78789,4.1693,4.56658,4.93994,5.32432,5.71953,6.12537,6.54168,6.91995,7.30458 \}.$

O comprimento eficaz do percurso é Def=12.8157 km.

Atenuação da chuva não excedida em mais de 0.01% do tempo:

 $\begin{aligned} & \text{Ar} = & \{0.072186, 0.236762, 0.549945, 1.39344, 2.97846, 5.60374, 8.29566, 11.4407, 15.2521, 18.8072, 22.7717, 26.6023, 30.7211, 35.1268, 39.3889, 43.8625, 48.5446, 53.4326, 58.524, 63.3089, 68.2351, 73.2999, 78.5011, 83.8364, 88.6842, 93.6135 \} & \text{dB}. \end{aligned}$

Atenuação da chuva não excedida em mais de Panual= {3.36*10^(-5)} % do tempo:

 $achuva = \{0.105959, 0.347532, 0.807239, 2.04537, 4.37194, 8.22547, 12.1768, 16.7933, 22.3879, 27.6063, 33.4256, 39.0483, 45.0941, 51.5611, 57.8172, 64.3837, 71.2564, 78.4313, 85.9048, 92.9283, 100.159, 107.594, 115.228, 123.06, 130.176, 137.411\} \ dB.$

1.9 Atenuação dos guias

Folga dada: 10 m.

O guia elíptico utilizado à frequência de 2 GHz tem a designação EW17.

O guia elíptico utilizado à frequência de 3 GHz tem a designação EW28.

O guia elíptico utilizado à frequência de 4 GHz tem a designação EW34.

O guia elíptico utilizado à frequência de 5 GHz tem a designação EW43.

O guia elíptico utilizado à frequência de 6 GHz tem a designação EW52.

O guia elíptico utilizado à frequência de 7 GHz tem a designação EW63.

O guia elíptico utilizado à frequência de 8 GHz tem a designação EW77.

O guia elíptico utilizado à frequência de 9 GHz tem a designação EW85.

O guia elíptico utilizado à frequência de 10 GHz tem a designação EW90.

O guia elíptico utilizado à frequência de 11 GHz tem a designação EW90.

O guia elíptico utilizado à frequência de 12 GHz tem a designação EW127.

O guia elíptico utilizado à frequência de 13 GHz tem a designação EW127.

O guia elíptico utilizado à frequência de 14 GHz tem a designação EW132.

O guia elíptico utilizado à frequência de 15 GHz tem a designação EW132.

O guia elíptico utilizado à frequência de 16 GHz tem a designação EW180.

O guia elíptico utilizado à frequência de 17 GHz tem a designação EW180.

O guia elíptico utilizado à frequência de 18 GHz tem a designação EW180.

O guia elíptico utilizado à frequência de 19 GHz tem a designação EW180.

O guia elíptico utilizado à frequência de 20 GHz tem a designação EW220.

O guia elíptico utilizado à frequência de 21 GHz tem a designação EW220.

O guia elíptico utilizado à frequência de 22 GHz tem a designação EW220.

O guia elíptico utilizado à frequência de 23 GHz tem a designação EW220.

O guia elíptico utilizado à frequência de 24 GHz tem a designação EW240.

O guia elíptico utilizado à frequência de 25 GHz tem a designação EW240.

O guia elíptico utilizado à frequência de 26 GHz tem a designação EW240.

O guia elíptico utilizado à frequência de 27 GHz tem a designação EW240.

O guia de emissão tem uma atenuação de:

 $Age = \{0.468, 0.832, 0.8428, 1.116, 1.556, 1.71931, 2.26, 4.12, 4.24, 4., 4.72, 4.50992, 6.4, 6.12, 8.64283, 8.16, 7.84, 7.64, 11.92, 11.56, 11.24, 11.0354, 13.8, 13.424, 13.08, 12.8\} dB.$

O guia de recepção tem uma atenuação de:

Agr={0.468,0.832,0.8428,1.116,1.556,1.71931,2.26,4.12,4.24,4.,4.72,4.50992,6.4,6.12,8.64283,8.16,7.84,7.64,11.92, 11.56,11.24,11.0354,13.8,13.424,13.08,12.8} dB.

1.10 Introdução de repetidor passivo

1.10.1 Características do repetidor passivo

Número de repetidores passivos: 1.

O obstáculo principal corresponde ao ponto 18 dos 256 do ficheiro de entrada.

Pontos de implantação física dos repetidores passivos: {18}.

Área efectiva do repetidor passivo: {7.952} m^2.

Rendimento do repetidor passivo: \[Eta]rep= {1}.

Altura do mastro de recepção do repetidor passivo: {10} m.

Altura do mastro de emissão do repetidor passivo: {10} m.

A zona distante da antena de maior dimensão é:

Subscript[d,

 $\begin{aligned} \min] = & \{270.187, 405.28, 540.374, 675.467, 810.561, 945.654, 1080.75, 1215.84, 1350.93, 1486.03, 1621.12, 1756.21, 1891.31, 2026.4, 2161.5, 2296.59, 2431.68, 2566.78, 2701.87, 2836.96, 2972.06, 3107.15, 3242.24, 3377.34, 3512.43, 3647.52\} \ m. \end{aligned}$

O repetidor 1 está na zona distante para $f = \{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\}$ GHz.

O repetidor 1 não está na zona distante para f= {21,22,23,24,25,26,27} GHz.

É necessário introduzir um factor correctivo de atenuação, introduzido na atenuação suplementar.

Ganho do repetidor é grep={72.9621,80.0057,85.0033,88.8797,92.0469,94.7248,97.0445,99.0906,100.921,102.577,104.088,105.479,106.7 66,107.965,109.086,110.139,111.132,112.071,112.962,113.81,114.618,115.39,116.129,116.838,117.52,118.175} dB.

No troço 1 a atenuação de espaço livre é:

 $\begin{aligned} &\text{L0} \!=\! \{ 107.204, \! 110.726, \! 113.225, \! 115.163, \! 116.747, \! 118.086, \! 119.246, \! 120.269, \! 121.184, \! 122.012, \! 122.767, \! 123.463, \! 124.106, \! 124.706, \! 125.266, \! 125.793, \! 126.289, \! 126.759, \! 127.204, \! 127.628, \! 128.032, \! 128.418, \! 128.788, \! 129.143, \! 129.483, \! 129.811 \} \end{aligned} \\ &\text{dR}$

No troço 2 a atenuação de espaço livre é:

 $L0 = \{130.127, 133.649, 136.148, 138.086, 139.67, 141.009, 142.169, 143.192, 144.107, 144.935, 145.69, 146.386, 147.029, 147.629, 148.189, 148.716, 149.212, 149.682, 150.127, 150.551, 150.955, 151.341, 151.711, 152.066, 152.406, 152.734\} \ dB.$

A atenuação de espaço livre total no percurso é:

 $L0 = \{237.332,244.375,249.373,253.249,256.417,259.094,261.414,263.46,265.291,266.946,268.458,269.848,271.136,\\272.334,273.455,274.508,275.501,276.441,277.332,278.179,278.987,279.76,280.499,281.208,281.889,282.545\} dB.$

1.10.2 Atenuação de obstáculo

No troço 1, a atenuação devida à presença de obstáculos é:

No troço 2, a atenuação devida à presença de obstáculos é:

No percurso completo, a atenuação total devida à presença de obstáculos é:

1.11 Desvanecimento rápido

Valor de Subscript[c, 0]: 6.

Valor de Subscript[c, Lat]: 0.

Valor de Subscript[c, Long]: 3.

Tempo em que o gradiente médio da refractividade é inferior a -100 N/km: pL= 20 %.

Latitude do percurso colocada: \[Eta]Lat= 42\[Degree].

Classificação do percurso: terrestre.

O factor geoclimático no mês mais desfavorável, no percurso terrestre é K= {2.24138*10^(-7)}.

Troço 1 da ligação:

O módulo da inclinação é Subscript[\[Epsilon], p]=84.4916 miliradianos.

 $qt = \{14.4723, 14.1626, 13.9429, 13.7724, 13.6332, 13.5154, 13.4134, 13.3235, 13.243, 13.1702, 13.1037, 13.0426, 12.986, 12.9333, 12.884, 12.8377, 12.794, 12.7527, 12.7136, 12.6763, 12.6407, 12.6068, 12.5743, 12.5431, 12.5131, 12.4843\}.$

A fracção de tempo calculada pelo 2º método da Rec. P.530-8 é:

 $PA2 = \{\{9.68754*10^{(-11)}, 1.38974*10^{(-10)}, 1.79527*10^{(-10)}, 2.18968*10^{(-10)}, 2.57544*10^{(-10)}, 2.57544*10^{(-10)}, 2.95416*10^{(-10)}, 3.32696*10^{(-10)}, 3.69465*10^{(-10)}, 4.05786*10^{(-10)}, 4.41709*10^{(-10)}, 4.77274*10^{(-10)}, 5.12515*10^{(-10)}, 5.47458*10^{(-10)}, 5.82127*10^{(-10)}, 6.16543*10^{(-10)}, 6.50723*10^{(-10)}, 6.84683*10^{(-10)}, 7.18435*10^{(-10)}, 7.51993*10^{(-10)}, 7.85366*10^{(-10)}, 8.18565*10^{(-10)}, 8.51598*10^{(-10)}, 8.84474*10^{(-10)}, 9.17199*10^{(-10)}, 9.4978*10^{(-10)}, 9.82224*10^{(-10)}\}\}.$

Troço 2 da ligação:

O módulo da inclinação é Subscript[\[Epsilon], p]=8.90851 miliradianos.

qt={3.72903,3.41932,3.19957,3.02912,2.88985,2.7721,2.6701,2.58013,2.49965,2.42685,2.36038,2.29924,2.24263,2.18992,2.14062,2.09431,2.05065,2.00935,1.97016,1.93289,1.89735,1.8634,1.83088,1.7997,1.76974,1.7409}.

A fracção de tempo calculada pelo 2º método da Rec. P.530-8 é:

 $PA2 = \{\{2.64629*10^{<}-5), 3.79628*10^{<}-5), 4.90404*10^{<}-5), 5.98141*10^{<}-5), 7.03518*10^{<}-5), 8.06971*10^{(-5)}, 9.08805*10^{(-5)}, 1.00924*10^{(-4)}, 1.10846*10^{(-4)}, 1.20659*10^{(-4)}, 1.30374*10^{(-4)}, 1.40001*10^{(-4)}, 1.49546*10^{(-4)}, 1.59016*10^{(-4)}, 1.68418*10^{(-4)}, 1.77754*10^{(-4)}, 1.87031*10^{(-4)}, 1.96251*10^{(-4)}, 2.05417*10^{(-4)}, 2.14534*10^{(-4)}, 2.23603*10^{(-4)}, 2.32626*10^{(-4)}, 2.41606*10^{(-4)}, 2.50546*10^{(-4)}, 2.59446*10^{(-4)}, 2.68308*10^{(-4)}\}\}.$

Ligação total:

A fracção de tempo calculada pelo 2º método da Rec. P.530-8, correspondente à ligação total é:

 $PA2 = \{ \{ 2.6463*10^{\circ}(-5), 3.7963*10^{\circ}(-5), 4.90406*10^{\circ}(-5), 5.98143*10^{\circ}(-5), 7.0352*10^{\circ}(-5), 8.06974*10^{\circ}(-5), 9.08808*10^{\circ}(-5), 1.00925*10^{\circ}(-4), 1.10847*10^{\circ}(-4), 1.2066*10^{\circ}(-4), 1.30375*10^{\circ}(-4), 1.40001*10^{\circ}(-4), 1.49546*10^{\circ}(-4), 1.59017*10^{\circ}(-4), 1.68418*10^{\circ}(-4), 1.77755*10^{\circ}(-4), 1.87031*10^{\circ}(-4), 1.96251*10^{\circ}(-4), 2.05418*10^{\circ}(-4), 2.14535*10^{\circ}(-4), 2.23603*10^{\circ}(-4), 2.32627*10^{\circ}(-4), 2.41607*10^{\circ}(-4), 2.50547*10^{\circ}(-4), 2.59447*10^{\circ}(-4), 2.68309*10^{\circ}(-4) \} \}.$

1.12 Reflexões no terreno

O perfil com as zonas de reflexão é para a frequência de 2 GHz.

O valor da relação ps/pd para a frequência de 2 GHz é de -21.1276 dB.

O valor da relação ps/pd para a frequência de 3 GHz é de -25.9459 dB.

O valor da relação ps/pd para a frequência de 4 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 5 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 6 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 7 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 8 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 9 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 10 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 11 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 12 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 13 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 14 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 15 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 16 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 17 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 18 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 19 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 20 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 21 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 22 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 23 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 24 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 25 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 26 GHz é de -\[Infinity] dB.

O valor da relação ps/pd para a frequência de 27 GHz é de -\[Infinity] dB.

1.13 Potência de recepção

A potência de emissão é:

 $pe = \{5.32801, 2.86273, 1.11359, -0.243155, -1.35169, -2.28895, -3.10083, -3.81697, -4.45757, -5.03707, -5.56611, -6.05278, -6.50337, -6.92285, -7.31525, -7.68386, -8.03139, -8.36013, -8.67199, -8.96865, -9.25149, -9.52176, -9.78053, -10.0287, -10.2672, -10.4967\} \ dBW.$

Atenuação suplementar colocada: 0 dB.

A potência de recepção, em condições ideais de propagação, dada pela fórmula de Friis é:

 $\begin{aligned} pr = & \{-87.292, -83.4859, -80.3101, -78.4004, -77.3001, -75.9815, -75.67, -78.1976, -77.4129, -76.0557, -76.7562, -75.7343, -79.0621, -78.2271, -83.2279, -82.5403, -82.6561, -83.7196, -94.6816, -97.1414, -99.1837, -99.1254, -102.686, -99.2162, -96.1122, -93.6881\} \ dBW. \end{aligned}$

3. Feixes Hertzianos Digitais

3.1 Sinal digital

Ritmo binário: Subscript[f, b]= 8 Mbits/s.

Factor de excesso de banda: \[Beta]=0.2.

O número mínimo de níveis na modulação é de {1.6085,1.6085

3.3 Largura de banda em rádio-frequência

3.4 Tipo de modulação da portadora

Modulação colocada: PSK.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 2 e n^o niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^(C/(10 Subscript[N, 0]))]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 3 e n^o niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^(C/(10 Subscript[N, 0]))]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 4 e n° niveis = 2 é Subscript[P, ber]= $\text{Erfc}[\text{Sqrt}[10^{\circ}(\text{C}/(10 \text{ Subscript}[\text{N}, 0]))]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 5 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))}]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 6 e n° niveis = 2 é Subscript[P, ber]= $\text{Erfc}[\text{Sqrt}[10^{\circ}(\text{C}/(10 \text{ Subscript}[\text{N}, 0]))]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f=7 e n° niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{\circ}(C/(10 \ Subscript[N, 0]))]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 8 e n° niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{\circ}(C/(10 \ Subscript[N, 0]))]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 9 e n^o niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^(C/(10 Subscript[N, 0]))]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 10 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))}]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f=11 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))]}]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 12 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))}]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 13 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))]}]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 14 e nº niveis = 2 é Subscript[P, ber] = $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))}]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 15 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))}]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 16 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))}]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 17 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))]}]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 18 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))]}]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 19 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))}]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 20 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))}]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 21 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))}]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 22 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))]}]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 23 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))]}]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 24 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))]}]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 25 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))]}]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 26 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))}]]$.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 27 e nº niveis = 2 é Subscript[P, ber]= $Erfc[Sqrt[10^{(C/(10 Subscript[N, 0]))]}]$.

3.5 Relação portadora/ruído em rádio-frequência (cip)

A temperatura vista pelas antenas é de 293 K.

O factor de ruído da ligação é:

Subscript[n,

f]={9.4,9.6,9.8,10.,10.2,10.4,10.6,10.8,11.,11.2,11.4,11.6,11.8,12.,12.2,12.4,12.6,12.8,13.,13.2,13.4,13.6,13.8,14.,14. 2,14.4} dB.

Temperatura observada pela antena: T= 293 K.

O ruído térmico é Subscript[n, 0]= $\{-134.9, -$

O ruído aos terminais do desmodulador é:

 $Subscript[n, \quad ruido] = \{-125.5, -125.3, -125.1, -124.9, -124.7, -124.5, -124.3, -124.1, -123.9, -123.7, -123.5, -123.3, -123.1, -122.9, -122.7, -122.5, -122.3, -122.1, -121.9, -121.7, -121.5, -121.3, -121.1, -120.9, -120.7, -120.5\} \ dBW.$

A relação portadora/ruído em condições ideais de propagação é:

(C/NSubscript[), rf]= {38.2075,41.8137,44.7894,46.4992,47.3995,48.518,48.6296,45.902,46.4867,47.6439,46.7434,47.5653,44.0375,44.67 25,39.4717,39.9592,39.6434,38.3799,27.2179,24.5582,22.3159,22.1742,18.414,21.6834,24.5874,26.8115} dB.

3.6 Recomendações da ITU

O valor de berSESR é de 0.0001

O valor de n é de 2000.

O valor de Nb é de 4000.

O valor de rber é de 1.*10^-12

3.7 Desvanecimento

Distância da ligação introduzida: 41.012 km.

O factor de ocorrência de desvanecimento profundo é:

 $kt = \{0.262545, 0.376639, 0.486542, 0.593431, 0.697978, 0.800616, 0.901648, 1.0013, 1.09973, 1.19709, 1.29348, 1.38898, 1.48368, 1.57764, 1.67091, 1.76355, 1.85558, 1.94705, 2.038, 2.12844, 2.21842, 2.30794, 2.39704, 2.48573, 2.57403, 2.66196\}$

3.8 Margem Uniforme

A margem uniforme correspondente a Subscript[ber, SESR] é MuSESR={29.4175,33.0237,35.9994,37.7092,38.6095,39.728,39.8396,37.112,37.6967,38.8539,37.9534,38.7753,35. 2475,35.8825,30.6817,31.1692,30.8534,29.5899,18.4279,15.7682,13.5259,13.3842,9.62402,12.8934,15.7973,18.021 5} dB.

A margem uniforme correspondente a rber é Murber={24.1554,27.7616,30.7373,32.4471,33.3474,34.4659,34.5775,31.8499,32.4346,33.5918,32.6913,33.5132,29 .9854,30.6204,25.4196,25.9071,25.5913,24.3278,13.1658,10.5061,8.2638,8.12206,4.36192,7.6313,10.5353,12.7594} dB.

3.9 Margem Selectiva

Assinatura introduzida: 0.1 MHz.

A margem selectiva é Ms=49.0309 dB.

3.10 Margens críticas

3.10.1 Cláusula SESR

Valor da norma SESR = 0.00016

f=2 - Cláusula não cumprida, sesr=0.000303512

f=3 - Cláusula não cumprida, sesr=0.000192449

f=4 - Cláusula cumprida, sesr=0.000128312

f=5 - Cláusula cumprida, sesr=0.000107984

f=6 - Cláusula cumprida, sesr=0.000104863

- f=7 Cláusula cumprida, sesr=0.0000952433
- f=8 Cláusula cumprida, sesr=0.000104828
- f=9 Cláusula não cumprida, sesr=0.000207217
- f=10 Cláusula não cumprida, sesr=0.00020065
- f=11 Cláusula não cumprida, sesr=0.000170825
- f=12 Cláusula não cumprida, sesr=0.000223384
- f=13 Cláusula não cumprida, sesr=0.00020151
- f=14 Cláusula não cumprida, sesr=0.000461741
- f=15 Cláusula não cumprida, sesr=0.000426876
- f=16 Cláusula não cumprida, sesr=0.00144908
- f=17 Cláusula não cumprida, sesr=0.00136935
- f=18 Cláusula não cumprida, sesr=0.00154773
- f=19 Cláusula não cumprida, sesr=0.00216419
- f=20 Cláusula não cumprida, sesr=0.0292948
- f=21 Cláusula não cumprida, sesr=0.0564223
- f=22 Cláusula não cumprida, sesr=0.0985318
- f=23 Cláusula não cumprida, sesr=0.105908
- f=24 Cláusula não cumprida, sesr=0.261411
- f=25 Cláusula não cumprida, sesr=0.127708
- f=26 Cláusula não cumprida, sesr=0.0677774
- f=27 Cláusula não cumprida, sesr=0.0420143

A relação portadora/ruído necessária para cumprir a cláusula SESR é (C/NSubscript[), CIP_SESR]={41.0309,42.6378,43.7883,44.6887,45.4308,46.0636,46.6164,47.1082,47.5518,47.9565,48.3291,48.674 6,48.9973,49.3002,49.5859,49.8565,50.1138,50.3592,50.594,50.8193,51.0358,51.2446,51.4461,51.6411,51.83,52.01 34} dB.

3.10.2 Cláusula BBER

 $Par \hat{a} metros \ Subscript[\[Alpha], 1] \ e \ Subscript[\[Alpha], 2]$

Valor da norma BBER = 0.00002

- f=2 Cláusula não cumprida, bber=0.000227421
- f=3 Cláusula não cumprida, bber=0.00014296
- f=4 Cláusula não cumprida, bber=0.0000939084
- f=5 Cláusula não cumprida, bber=0.0000779151
- f=6 Cláusula não cumprida, bber=0.0000749157
- f=7 Cláusula não cumprida, bber=0.0000670079
- f=8 Cláusula não cumprida, bber=0.0000736226

- f=9 Cláusula não cumprida, bber=0.00015035
- f=10 Cláusula não cumprida, bber=0.000144792
- f=11 Cláusula não cumprida, bber=0.000121667
- f=12 Cláusula não cumprida, bber=0.000160774
- f=13 Cláusula não cumprida, bber=0.000143664
- f=14 Cláusula não cumprida, bber=0.000339535
- f=15 Cláusula não cumprida, bber=0.000312659
- f=16 Cláusula não cumprida, bber=0.00108332
- f=17 Cláusula não cumprida, bber=0.00102262
- f=18 Cláusula não cumprida, bber=0.00115665
- f=19 Cláusula não cumprida, bber=0.00162116
- f=20 Cláusula não cumprida, bber=0.022087
- f=21 Cláusula não cumprida, bber=0.0425505
- f=22 Cláusula não cumprida, bber=0.0743159
- f=23 Cláusula não cumprida, bber=0.0798796
- f=24 Cláusula não cumprida, bber=0.197185
- f=25 Cláusula não cumprida, bber=0.0963241
- f=26 Cláusula não cumprida, bber=0.0511138
- f=27 Cláusula não cumprida, bber=0.0316785

A relação portadora/ruído necessária para cumprir a cláusula BBER é (C/NSubscript[), CIP_BBER]={48.9444,50.5916,51.7776,52.7093,53.4792,54.1364,54.7107,55.221,55.6805,56.0987,56.4823,56.836 8,57.1662,57.4739,57.7626,58.0344,58.2912,58.5345,58.7657,58.9858,59.1959,59.3967,59.5892,59.7738,59.9512,6 0.1219} dB.

3.10.3 Cláusula ESR

Valor da norma ESR = 0.006

- f=2 Cláusula cumprida, esr=0.000506814
- f=3 Cláusula cumprida, esr=0.000323021
- f=4 Cláusula cumprida, esr=0.000216607
- f=5 Cláusula cumprida, esr=0.000182433
- f=6 Cláusula cumprida, esr=0.00017664
- f=7 Cláusula cumprida, esr=0.000160134
- f=8 Cláusula cumprida, esr=0.000175316
- f=9 Cláusula cumprida, esr=0.000343572
- f=10 Cláusula cumprida, esr=0.00033214
- f=11 Cláusula cumprida, esr=0.000282348

- f=12 Cláusula cumprida, esr=0.000368439
- f=13 Cláusula cumprida, esr=0.000331773
- f=14 Cláusula cumprida, esr=0.000760316
- f=15 Cláusula cumprida, esr=0.000702258
- f=16 Cláusula cumprida, esr=0.00238702
- f=17 Cláusula cumprida, esr=0.00225502
- f=18 Cláusula cumprida, esr=0.00254855
- f=19 Cláusula cumprida, esr=0.00356435
- f=20 Cláusula não cumprida, esr=0.0482928
- f=21 Cláusula não cumprida, esr=0.0930161
- f=22 Cláusula não cumprida, esr=0.16244
- f=23 Cláusula não cumprida, esr=0.174599
- f=24 Cláusula não cumprida, esr=0.430969
- f=25 Cláusula não cumprida, esr=0.21054
- f=26 Cláusula não cumprida, esr=0.111734
- f=27 Cláusula não cumprida, esr=0.0692591

A relação portadora/ruído necessária para cumprir a cláusula ESR é (C/NSubscript[), CIP_ESR]={27.3804,28.9488,30.062,30.9256,31.6314,32.2283,32.7455,33.2018,33.6101,33.9796,34.3169,34.6273, 34.9148,35.1824,35.4329,35.6682,35.8901,36.1001,36.2993,36.4888,36.6696,36.8424,37.0078,37.1666,37.3191,37.4659} dB.

3.10.4 Cláusula SESR devido à chuva

Valor da norma SESR = 0.00016

- f=2 Cláusula cumprida, sesrchuva=0
- f=3 Cláusula cumprida, sesrchuva=0
- f=4 Cláusula cumprida, sesrchuva=0
- f=5 Cláusula cumprida, sesrchuva=0
- f=6 Cláusula cumprida, sesrchuva=0
- f=7 Cláusula cumprida, sesrchuva=0
- f=8 Cláusula cumprida, sesrchuva=0
- f=9 Cláusula cumprida, sesrchuva=0
- f=10 Cláusula cumprida, sesrchuva=0
- f=11 Cláusula cumprida, sesrchuva=0.
- f=12 Cláusula cumprida, sesrchuva=0.
- f=13 Cláusula cumprida, sesrchuva=0.
- f=14 Cláusula cumprida, sesrchuva=0.

- f=15 Cláusula cumprida, sesrchuva=0.
- f=16 Cláusula cumprida, sesrchuva=0.
- f=17 Cláusula cumprida, sesrchuva=0.
- f=18 Cláusula cumprida, sesrchuva=0.
- f=19 Cláusula cumprida, sesrchuva=0.
- f=20 Cláusula cumprida, sesrchuva=0.
- f=21 Cláusula cumprida, sesrchuva=0.
- f=22 Cláusula cumprida, sesrchuva=0.
- f=23 Cláusula cumprida, sesrchuva=0.
- f=24 Cláusula cumprida, sesrchuva=0.
- f=25 Cláusula cumprida, sesrchuva=0.
- f=26 Cláusula cumprida, sesrchuva=0.
- f=27 Cláusula cumprida, sesrchuva=0.

3.10.5 Cláusula BBER devido à chuva

Parâmetros Subscript[\[Alpha], 1] e Subscript[\[Alpha], 2]

Valor da norma BBER = 0.00002

- f=2 Cláusula cumprida, bberchuva=4.*10^-9
- f=3 Cláusula cumprida, bberchuva=4.*10^-9
- f=4 Cláusula cumprida, bberchuva=4.*10^-9
- f=5 Cláusula cumprida, bberchuva=4.*10^-9
- f=6 Cláusula cumprida, bberchuva=4.*10^-9
- f=7 Cláusula cumprida, bberchuva=4.*10^-9
- f=8 Cláusula cumprida, bberchuva=4.*10^-9
- f=9 Cláusula cumprida, bberchuva=4.*10^-9
- f=10 Cláusula cumprida, bberchuva=4.*10^-9
- f=11 Cláusula cumprida, bberchuva=4.*10^-9
- f=12 Cláusula cumprida, bberchuva=4.*10^-9
- f=13 Cláusula cumprida, bberchuva=4.*10^-9
- f=14 Cláusula cumprida, bberchuva=4.*10^-9
- f=15 Cláusula cumprida, bberchuva=4.*10^-9
- f=16 Cláusula cumprida, bberchuva=4.*10^-9
- f=17 Cláusula cumprida, bberchuva=4.*10^-9
- f=18 Cláusula cumprida, bberchuva=4.*10^-9
- f=19 Cláusula cumprida, bberchuva=4.*10^-9

- f=20 Cláusula cumprida, bberchuva=4.*10^-9
- f=21 Cláusula cumprida, bberchuva=4.*10^-9
- f=22 Cláusula cumprida, bberchuva=4.*10^-9
- f=23 Cláusula cumprida, bberchuva=4.*10^-9
- f=24 Cláusula cumprida, bberchuva=4.*10^-9
- f=25 Cláusula cumprida, bberchuva=4.*10^-9
- f=26 Cláusula cumprida, bberchuva=4.*10^-9
- f=27 Cláusula cumprida, bberchuva=4.*10^-9

3.10.6 Cláusula ESR devido à chuva

Valor da norma ESR = 0.006

- f=2 Cláusula cumprida, esrchuva=8.*10^-6
- f=3 Cláusula cumprida, esrchuva=8.*10^-6
- f=4 Cláusula cumprida, esrchuva=8.*10^-6
- f=5 Cláusula cumprida, esrchuva=8.*10^-6
- f=6 Cláusula cumprida, esrchuva=8.*10^-6
- f=7 Cláusula cumprida, esrchuva=8.*10^-6
- f=8 Cláusula cumprida, esrchuva=8.*10^-6
- f=9 Cláusula cumprida, esrchuva=8.*10^-6
- f=10 Cláusula cumprida, esrchuva=8.*10^-6
- f=11 Cláusula cumprida, esrchuva=8.*10^-6
- f=12 Cláusula cumprida, esrchuva=8.*10^-6
- f=13 Cláusula cumprida, esrchuva=8.*10^-6
- f=14 Cláusula cumprida, esrchuva=8.*10^-6
- f=15 Cláusula cumprida, esrchuva=8.*10^-6
- f=16 Cláusula cumprida, esrchuva=8.*10^-6
- f=17 Cláusula cumprida, esrchuva= $8.*10^{-6}$
- f=18 Cláusula cumprida, esrchuva=8.*10^-6
- f=19 Cláusula cumprida, esrchuva=8.*10^-6
- f=20 Cláusula cumprida, esrchuva=8.*10^-6
- f=21 Cláusula cumprida, esrchuva=8.*10^-6
- f=22 Cláusula cumprida, esrchuva=8.*10^-6
- f=23 Cláusula cumprida, esrchuva=8.*10^-6
- f=24 Cláusula cumprida, esrchuva=8.*10^-6
- f=25 Cláusula cumprida, esrchuva=8.*10^-6

- f=26 Cláusula cumprida, esrchuva=8.*10^-6
- f=27 Cláusula cumprida, esrchuva=8.*10^-6

3.10.7 Cláusula da indisponibilidade devido à chuva

- f=2 Cláusula cumprida, (C/N)=38.2075 dB; (C/N)min=7.44097 dB
- f=3 Cláusula cumprida, (C/N)=41.8137 dB; (C/N)min=7.68254 dB
- f=4 Cláusula cumprida, (C/N)=44.7894 dB; (C/N)min=8.14225 dB
- f=5 Cláusula cumprida, (C/N)=46.4992 dB; (C/N)min=9.38038 dB
- f=6 Cláusula cumprida, (C/N)=47.3995 dB; (C/N)min=11.707 dB
- f=7 Cláusula cumprida, (C/N)=48.518 dB; (C/N)min=15.5605 dB
- f=8 Cláusula cumprida, (C/N)=48.6296 dB; (C/N)min=19.5118 dB
- f=9 Cláusula cumprida, (C/N)=45.902 dB; (C/N)min=24.1283 dB
- f=10 Cláusula cumprida, (C/N)=46.4867 dB; (C/N)min=29.7229 dB
- f=11 Cláusula cumprida, (C/N)=47.6439 dB; (C/N)min=34.9413 dB
- f=12 Cláusula cumprida, (C/N)=46.7434 dB; (C/N)min=40.7606 dB
- f=13 Cláusula cumprida, (C/N)=47.5653 dB; (C/N)min=46.3833 dB
- f=14 Cláusula não cumprida, (C/N)=44.0375 dB; (C/N)min=52.4291 dB
- f=15 Cláusula não cumprida, (C/N)=44.6725 dB; (C/N)min=58.8961 dB
- f=16 Cláusula não cumprida, (C/N)=39.4717 dB; (C/N)min=65.1522 dB
- f=17 Cláusula não cumprida, (C/N)=39.9592 dB; (C/N)min=71.7187 dB
- f=18 Cláusula não cumprida, (C/N)=39.6434 dB; (C/N)min=78.5914 dB
- f=19 Cláusula não cumprida, (C/N)=38.3799 dB; (C/N)min=85.7663 dB
- f=20 Cláusula não cumprida, (C/N)=27.2179 dB; (C/N)min=93.2398 dB
- f=21 Cláusula não cumprida, (C/N)=24.5582 dB; (C/N)min=100.263 dB
- f=22 Cláusula não cumprida, (C/N)=22.3159 dB; (C/N)min=107.494 dB
- f=23 Cláusula não cumprida, (C/N)=22.1742 dB; (C/N)min=114.929 dB
- f=24 Cláusula não cumprida, (C/N)=18.414 dB; (C/N)min=122.563 dB
- f=25 Cláusula não cumprida, (C/N)=21.6834 dB; (C/N)min=130.395 dB
- f=26 Cláusula não cumprida, (C/N)=24.5874 dB; (C/N)min=137.511 dB
- f=27 Cláusula não cumprida, (C/N)=26.8115 dB; (C/N)min=144.746 dB

A relação portadora/ruído necessária para cumprir a cláusula da indisponibilidade devido à chuva é (C/NSubscript[), CIP_ind]={7.44097,7.68254,8.14225,9.38038,11.707,15.5605,19.5118,24.1283,29.7229,34.9413,40.7606,46.3833,52.4291,58.8961,65.1522,71.7187,78.5914,85.7663,93.2398,100.263,107.494,114.929,122.563,130.395,137.511,144.7 46} dB.

3.10.8 C/N necessária para cumprimento da ligação

O C/N necessário para a cláusula SESR é:

(C/NSubscript[),

SESR]={41.0309,42.6378,43.7883,44.6887,45.4308,46.0636,46.6164,47.1082,47.5518,47.9565,48.3291,48.6746,48. 9973,49.3002,49.5859,49.8565,50.1138,50.3592,50.594,50.8193,51.0358,51.2446,51.4461,51.6411,51.83,52.0134} dB

O C/N necessário para a cláusula BBER é:

(C/NSubscript[),

BBER]={48.9444,50.5916,51.7776,52.7093,53.4792,54.1364,54.7107,55.221,55.6805,56.0987,56.4823,56.8368,57.1 662,57.4739,57.7626,58.0344,58.2912,58.5345,58.7657,58.9858,59.1959,59.3967,59.5892,59.7738,59.9512,60.1219 } dB.

O C/N necessário para a cláusula ESR é:

(C/NSubscript[),

$$\begin{split} & ESR] = \{ 27.3804, 28.9488, 30.062, 30.9256, 31.6314, 32.2283, 32.7455, 33.2018, 33.6101, 33.9796, 34.3169, 34.6273, 34.9148, 35.1824, 35.4329, 35.6682, 35.8901, 36.1001, 36.2993, 36.4888, 36.6696, 36.8424, 37.0078, 37.1666, 37.3191, 37.4659 \} \\ & dB. \end{split}$$

O C/N necessário para as cláusulas da chuva é:

O C/N necessário para a cláusula indisponibilidade é:

(C/NSubscript[),

$$\begin{split} \text{IND} &= \{7.44097, 7.68254, 8.14225, 9.38038, 11.707, 15.5605, 19.5118, 24.1283, 29.7229, 34.9413, 40.7606, 46.3833, 52.4291, 58.8961, 65.1522, 71.7187, 78.5914, 85.7663, 93.2398, 100.263, 107.494, 114.929, 122.563, 130.395, 137.511, 144.746\} \end{split}$$

A relação Sinal-Ruído mínima necessária para cumprir todas as cláusulas é:

(C/NSubscript[),

 $\label{eq:NECmin} $$ NECmin] = \{48.9444, 50.5916, 51.7776, 52.7093, 53.4792, 54.1364, 54.7107, 55.221, 55.6805, 56.0987, 56.4823, 56.8368, 57.1662, 58.8961, 65.1522, 71.7187, 78.5914, 85.7663, 93.2398, 100.263, 107.494, 114.929, 122.563, 130.395, 137.511, 144.746\} $$ dB.$

A relação Sinal-Ruído da ligação em condições ideais de propagação é:

(C/NSubscript[),

CIP]={38.2075,41.8137,44.7894,46.4992,47.3995,48.518,48.6296,45.902,46.4867,47.6439,46.7434,47.5653,44.0375,44.6725,39.4717,39.9592,39.6434,38.3799,27.2179,24.5582,22.3159,22.1742,18.414,21.6834,24.5874,26.8115} dB.

A margem de segurança da ligação ((C/NSubscript[), CIP]-(C/NSubscript[), NECmin]) é:

 $\{-10.7369, -8.77789, -6.98814, -6.21013, -6.07967, -5.61836, -6.08105, -9.31903, -9.19384, -8.45476, -9.73892, -9.27146, -9.19387, -14.2236, -25.6805, -31.7595, -38.9479, -47.3864, -66.0219, -75.7051, -85.1783, -92.7545, -104.149, -108.711, -112.923, -117.935\} \ dB.$

A frequência óptima é f=7 GHz (Subscript[M, seg]=-5.61836 dB).

Não é possível cumprir as recomendações da ITU para as frequência assinaladas a "*".

3.10.9 Gráfico da margem crítica

A margem crítica para a cláusula SESR é: (10Log[SESR/sesr])

Subscript[m, SESR]={-6.40246,-1.84659,2.20712,3.93191,4.22522,5.1874,4.22853,-2.58591,-2.26389,-0.654654,-3.33717,-2.30668,-10.5983,-9.8132,-22.0351,-21.4692,-22.6937,-26.0463,-52.0999,-58.6545,-64.2296,-64.9515,-73.9867,-66.8233,-60.4881,-55.7059} dB.

A margem crítica para a cláusula BBER é:

 $Subscript[m, BBER] = \{-24.3107, -19.6684, -15.4659, -13.5989, -13.2063, -12.0908, -13.0322, -20.1723, -19.7957, -18.0555, -20.8426, -19.7175, -28.3184, -27.4938, -39.9205, -39.3439, -40.5755, -43.9517, -70.0701, -76.6271, -82.2035, -82.9254, -91.9616, -84.7974, -78.4608, -73.6766\} \ dB.$

A margem crítica para a cláusula ESR é:

Subscript[m,

ESR]={24.7137,29.218,33.2143,34.9313,35.254,36.235,35.3293,28.6012,28.9396,30.5637,27.9024,28.9506,20.6578, 21.4521,9.21716,9.78602,8.56236,5.20779,-20.8552,-27.4101,-32.9855,-33.7074,-42.7428,-35.5792,-29.2436,-24.461} dB.

A margem crítica para a cláusula BBER devido à chuva é:

Subscript[m

BBERCH]={85.1719,85.17

A margem crítica para a cláusula ESR devido à chuva é:

Subscript[m,

 $ESRCH] = \{66.2007, 66.2007,$

A margem crítica para a cláusula indisponibilidade é:

Subscript[m,

$$\begin{split} &\text{IND} = & \{30.7665, 34.1311, 36.6472, 37.1188, 35.6925, 32.9576, 29.1178, 21.7737, 16.7638, 12.7026, 5.98282, 1.18196, -8.39165, -14.2236, -25.6805, -31.7595, -38.9479, -47.3864, -66.0219, -75.7051, -85.1783, -92.7545, -104.149, -108.711, -112.923, -117.935\} \ dB. \end{split}$$

A margem crítica da ligação é:

 $\{-24.3107, -19.6684, -15.4659, -13.5989, -13.2063, -12.0908, -13.0322, -20.1723, -19.7957, -18.0555, -20.8426, -19.7175, -28.3184, -27.4938, -39.9205, -39.3439, -40.5755, -47.3864, -70.0701, -76.6271, -85.1783, -92.7545, -104.149, -108.711, -112.923, -117.935\} \ dB.$

A frequência óptima é f=7 GHz (Subscript[M, crit]=-12.0908 dB).

3.11 Dimensões do repetidor passivo

Diâmetro optimizado da antena emissora: 4.5 m.

Diâmetro optimizado da antena receptora: 4.5 m.

Para f= 2, a área efectiva do repetidor passivo terá de ser de 38.6651 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 3, a área efectiva do repetidor passivo terá de ser de 30.8582 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 4, a área efectiva do repetidor passivo terá de ser de 25.1121 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 5, a área efectiva do repetidor passivo terá de ser de 22.9606 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 6, a área efectiva do repetidor passivo terá de ser de 22.6183 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 7, a área efectiva do repetidor passivo terá de ser de 21.4484 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 8, a área efectiva do repetidor passivo terá de ser de 22.6219 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 9, a área efectiva do repetidor passivo terá de ser de 32.8419 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 10, a área efectiva do repetidor passivo terá de ser de 32.3719 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 11, a área efectiva do repetidor passivo terá de ser de 29.7313 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 12, a área efectiva do repetidor passivo terá de ser de 34.4685 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 13, a área efectiva do repetidor passivo terá de ser de 32.6625 m^2 para cumprir a margem de segurança desejada de 3 dB.

Para f= 14, a área efectiva do repetidor passivo terá de ser de 50.9229 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 15, a área efectiva do repetidor passivo terá de ser de 57.764 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 16, a área efectiva do repetidor passivo terá de ser de 216.024 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 17, a área efectiva do repetidor passivo terá de ser de 434.963 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 18, a área efectiva do repetidor passivo terá de ser de 995.116 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 19, a área efectiva do repetidor passivo terá de ser de 2629.02 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 20, a área efectiva do repetidor passivo terá de ser de 22468.2 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 21, a área efectiva do repetidor passivo terá de ser de 68506.8 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 22, a área efectiva do repetidor passivo terá de ser de 203887. m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 23, a área efectiva do repetidor passivo terá de ser de 487754. m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 24, a área efectiva do repetidor passivo terá de ser de 1.81107*10^6 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 25, a área efectiva do repetidor passivo terá de ser de 3.06223*10^6 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 26, a área efectiva do repetidor passivo terá de ser de 4.97319*10^6 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Para f= 27, a área efectiva do repetidor passivo terá de ser de 8.85532*10^6 m^2 para cumprir a margem de segurança desejada de 3 dB.

(Atenção que a área fisica não deve exceder os 35 m^2.)

Anexo B – Troço maior do percurso com repetidor activo

1.1.1 Perfil do percurso com Terra plana

O percurso tem uma percentagem de cotas inferiores a 100 m de rc=91.0156%.

A distância total da ligação é de 38.245 km.

1.1.2 Perfil do percurso com Terra esférica

O coeficiente entre o raio aparente e o real da Terra na condição 1 é k= 4/3.

O raio equivalente da Terra é Subscript[r, eq]= 8493.33 km.

1.2 Frequência da ligação

Frequência inicial: 2 GHz.

Incremento de frequência: 0 GHz.

A frequência de utilização é f= {2} GHz.

O comprimento de onda em utilização é \[Lambda]={0.149896} m.

1.3 Altura dos mastros das antenas

Altura do mastro de emissão: 10 m.

Altura do mastro de recepção: 10 m.

1.4 Características das antenas

O diâmetro da antena emissora é de 3 m, sendo o seu rendimento de \[Eta]e=0.5 .

O diâmetro da antena receptora é de 3 m, sendo o seu rendimento de $\[\text{Eta} \] \text{r} = 0.5$.

A área física da antena de emissão é afe=7.06858 m^2, correspondendo a uma área efectiva de Subscript[aef, e]=3.53429 m^2.

A área física da antena de recepção é afr=7.06858 m $^{\circ}2$, correspondendo a uma área efectiva de Subscript[aef, r]=3.53429 m $^{\circ}2$.

Ganho da antena de emissão:

ge={32.9593} dBi.

Ganho da antena de recepção:

gr={32.9593} dBi.

A atenuação em espaço livre entre antenas é:

L0={130.12} dB.

1.5 Atenuação de obstáculo

O obstáculo principal está à distância de 37.045 km, a que corresponde o ponto 248 dos 256 do ficheiro de entrada.

O 1º obstáculo secundário está à distância de 26.996 km, a que corresponde o ponto 181.

Atenuação de obstáculo calculada pelo método 1, entre a antena emissora e receptora:

Aobst={3.22413} dB.

1.6 Atenuação atmosférica

Pressão atmosférica: p= 1013 milibar.

Temperatura do ambiente: T= 25 °C.

Humidade relativa: H= 85 %.

Atenuação específica do oxigénio:

 $\Gamma]ox = \{0.00613408\} dB/km.$

A pressão parcial do vapor de água saturado é es=31.6703 hPa.

A pressão parcial do vapor de água no ar húmido é e=26.9198 hPa.

A concentração de vapor de água é $\[\text{Rho}\]$ =19.5559 g/m^3.

Atenuação específica do vapor de água:

 $Gamma va = \{0.000612794\} dB/km.$

Atenuação da atmosfera:

 $aatmos={0.258034} dB.$

1.7 Distribuição da indisponibilidade

Comprimento do circuito fictício de referência da ligação: 280 km.

Fracção da indisponibilidade máxima para a chuva: 0.1.

Fracção da indisponibilidade máxima para o equipamento: 0.4.

Fracção da indisponibilidade máxima para outras causas: 0.5.

A indisponibilidade máxima para a ligação é Subscript[\[ScriptCapitalI], máx]= {3.36*10^(-4)}.

A fracção da indisponibilidade devida à precipitação é \[ScriptCapitalI]chuva= \{3.36*10^(-5)\}.

A fracção da indisponibilidade devida ao equipamento é Subscript[\[ScriptCapitalI], equip]= {1.344*10^(-4)}.

A fracção da indisponibilidade devida a outras causas é Subscript[\[ScriptCapitalI], outros]= {1.68*10^(-4)}.

1.8 Atenuação provocada por hidrometeoritos

Antenas utilizando polarização horizontal:

Intensidade de precipitação: 42 mm/h.

Fracção de tempo no ano em que o valor da intensidade de precipitação é excedido: {3.36*10^(-5)} %.

Valor de \[Kappa] à frequência imposta é:

 $[Kappa] = \{ \{1.54*10^{-4}\} \}.$

Valor de \[Alpha] à frequência imposta é:

 $[Alpha] = \{0.963\}.$

O coeficiente de atenuação por unidade de comprimento:

 $[Gamma] = \{0.00563261\}.$

O comprimento eficaz do percurso é Def=12.5324 km.

Atenuação da chuva não excedida em mais de 0.01% do tempo:

```
Ar=\{0.0705901\} dB.
Atenuação da chuva não excedida em mais de Panual= {3.36*10^(-5)} % do tempo:
achuva={0.103616} dB.
         1.9 Atenuação dos guias
Folga dada: 10 m.
O guia elíptico utilizado à frequência de 2 GHz tem a designação EW17.
O guia de emissão tem uma atenuação de:
Age=\{0.234\} dB.
O guia de recepção tem uma atenuação de:
Agr = \{0.234\} dB.
         1.10 Introdução de repetidor passivo
                            1.10.1 Características do repetidor passivo
Número de repetidores passivos: 0.
         1.11 Desvanecimento rápido
Os calculos seguintes são para uma ligação em raio directo.
Valor de Subscript[c, 0]: 6.
Valor de Subscript[c, Lat]: 0.
Valor de Subscript[c, Long]: 3.
Tempo em que o gradiente médio da refractividade é inferior a -100 N/km: pL= 20 %.
Latitude do percurso colocada: \[Eta]Lat= 42\[Degree] .
Classificação do percurso: terrestre.
  O factor geoclimático no mês mais desfavorável, no percurso terrestre é K= {2.24138*10^(-7)}.
  O módulo da inclinação da ligação é Subscript[\[Epsilon], p]=9.413 miliradianos.
  O parâmetro Subscript[q, t] calculado com um desvanecimento de {25} dB, é:
  qt = {3.79136}.
Ligação total:
  A fracção de tempo calculada pelo 2º método da Rec. P.530-8, correspondente à ligação total é:
 PA2 = \{ \{2.4609*10^{-5}\} \}.
         1.12 Reflexões no terreno
```

O número de divisões utilizadas entre dois pontos para o cálculo de reflexões é de 1 .

Atenção, este processamento demora algum tempo!!!

O perfil com as zonas de reflexão é para a frequência de 2 GHz.

O valor da relação ps/pd para a frequência de 2 GHz é de -\[Infinity] dB.

1.13 Potência de recepção

A potência de emissão é:

 $pe={5.32801} dBW.$

Atenuação suplementar colocada: 0 dB.

A potência de recepção, em condições ideais de propagação, dada pela fórmula de Friis é:

pr={-62.8234} dBW.

3. Feixes Hertzianos Digitais

3.1 Sinal digital

Ritmo binário: Subscript[f, b]= 8 Mbits/s.

Largura de banda para a transmissão: Subscript[largura, b]= 1.75 MHz.

Factor de excesso de banda: \[Beta]=0.2.

O número mínimo de níveis na modulação é de 44.8089 por palavra de código.

3.3 Largura de banda em rádio-frequência

Número de níveis por palavra: m= 64.

A largura de banda em rádiofrequência é Subscript[b, rf]=1.6 MHz.

3.4 Tipo de modulação da portadora

Modulação colocada: QAM.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 2 e n° niveis = 64 é Subscript[P, ber]= 7/24 Erfc[1/7 Sqrt[2^(-1+C/(10 Subscript[N, 0])) 5^(C/(10 Subscript[N, 0]))]].

3.5 Relação portadora/ruído em rádio-frequência (cip)

A temperatura vista pelas antenas é de 293 K.

Factor de ruído Relação portadora/ruído em RF

O factor de ruído da ligação é:

Subscript[n, f]= $\{9.4\}$ dB.

Temperatura observada pela antena: T= 293 K.

O ruído térmico é Subscript[n, 0]={-142.681} dBW.

O ruído aos terminais do desmodulador é:

Subscript[n, ruído]={-133.281} dBW.

A relação portadora/ruído em condições ideais de propagação é:

 $(C/NSubscript[), rf] = \{70.4577\} dB.$

3.6 Recomendações da ITU

O valor de berSESR é de 0.0001

O valor de n é de 2000.

O valor de Nb é de 4000.

O valor de rber é de 1.*10^-12

3.7 Desvanecimento

Distância da ligação introduzida: 38.245 km.

O factor de ocorrência de desvanecimento profundo é:

 $kt = \{0.204176\}$

3.8 Margem Uniforme

A relação portadora/ruído correspondente a Subscript[ber, SESR] é (C/NSubscript[), SESR]={27.981} dB.

A relação portadora/ruído correspondente a rber é (C/NSubscript[), rber]={33.7528} dB.

A relação portadora/ruído correspondente a ber=10^-3 é (C/NSubscript[), ind]={26.2288} dB.

A margem uniforme correspondente a Subscript[ber, SESR] é MuSESR={42.4767} dB.

A margem uniforme correspondente a rber é Murber={36.7048} dB.

3.9 Margem Selectiva

Assinatura introduzida: 0.1 MHz.

A margem selectiva é Ms=49.0309 dB.

3.10 Margens críticas

3.10.1 Cláusula SESR

Valor da norma SESR = 0.00016

f=2 - Cláusula cumprida, sesr=0.0000140957

A relação portadora/ruído necessária para cumprir a cláusula SESR é (C/NSubscript[), CIP_SESR]={59.1097} dB.

3.10.2 Cláusula BBER

Parâmetros Subscript[\[Alpha], 1] e Subscript[\[Alpha], 2]

Valor da norma BBER = 0.00002

f=2 - Cláusula cumprida, bber=0.0000103982

A relação portadora/ruído necessária para cumprir a cláusula BBER é (C/NSubscript[), CIP_BBER]={67.4595} dB.

3.10.3 Cláusula ESR

Valor da norma ESR = 0.006

f=2 - Cláusula cumprida, esr=0.0000309957

A relação portadora/ruído necessária para cumprir a cláusula ESR é (C/NSubscript[), CIP_ESR]={45.6892} dB.

3.10.4 Cláusula SESR devido à chuva

Valor da norma SESR = 0.00016

f=2 - Cláusula cumprida, sesrchuva=0

3.10.5 Cláusula BBER devido à chuva

 $Par \hat{a} metros \ Subscript[\setminus [Alpha], 1] \ e \ Subscript[\setminus [Alpha], 2]$

Valor da norma BBER = 0.00002

f=2 - Cláusula cumprida, bberchuva=4.*10^-9

3.10.6 Cláusula ESR devido à chuva

Valor da norma ESR = 0.006

f=2 - Cláusula cumprida, esrchuva=8.*10^-6

3.10.7 Cláusula da indisponibilidade devido à chuva

f=2 - Cláusula cumprida, (C/N)=70.4577 dB; (C/N)min=26.3324 dB

A relação portadora/ruído necessária para cumprir a cláusula da indisponibilidade devido à chuva é (C/NSubscript[), CIP_ind]={26.3324} dB.

3.10.8 C/N necessária para cumprimento da ligação

C/N necessária para cumprir as recomendações

O C/N necessário para a cláusula SESR é:

(C/NSubscript[), SESR]={59.1097} dB.

O C/N necessário para a cláusula BBER é:

(C/NSubscript[), BBER]={67.4595} dB.

O C/N necessário para a cláusula ESR é:

(C/NSubscript[), ESR]={45.6892} dB.

O C/N necessário para as cláusulas da chuva é:

(C/NSubscript[), chuva]={0.} dB.

O C/N necessário para a cláusula indisponibilidade é:

(C/NSubscript[), IND]={26.3324} dB.

A relação Sinal-Ruído mínima necessária para cumprir todas as cláusulas é:

(C/NSubscript[), NECmin]={67.4595} dB.

A relação Sinal-Ruído da ligação em condições ideais de propagação é:

(C/NSubscript[), CIP]={70.4577} dB.

A margem de segurança da ligação ((C/NSubscript[), CIP]-(C/NSubscript[), NECmin]) é:

{2.99817} dB.

A frequência óptima é f=2 GHz (Subscript[M, seg]=2.99817 dB).

Não é possível cumprir as recomendações da ITU para as frequência assinaladas a "*".

Anexo C – Troço menor do percurso com repetidor passivo

- 1. Elementos de Propagação
 - 1.1 Perfil do percurso

1.1.1 Perfil do percurso com Terra plana

O percurso tem uma percentagem de cotas inferiores a 100 m de rc=38.2813%.

A distância total da ligação é de 2.734 km.

1.1.2 Perfil do percurso com Terra esférica

O coeficiente entre o raio aparente e o real da Terra na condição 1 é k=4/3 .

O raio equivalente da Terra é Subscript[r, eq]= 8493.33 km.

1.2 Frequência da ligação

Frequência inicial: 2 GHz.

Incremento de frequência: 0 GHz.

A frequência de utilização é f= {2} GHz.

O comprimento de onda em utilização é \[Lambda]={0.149896} m.

1.3 Altura dos mastros das antenas

Altura do mastro de emissão: 10 m.

Altura do mastro de recepção: 10 m.

1.4 Características das antenas

O diâmetro da antena emissora é de 0.6 m, sendo o seu rendimento de \[Eta]e=0.5.

O diâmetro da antena receptora é de 0.6 m, sendo o seu rendimento de \[Eta]r= 0.5.

A área física da antena de emissão é afe=0.282743 m^2, correspondendo a uma área efectiva de Subscript[aef, e]=0.141372 m^2.

A área física da antena de recepção é afr=0.282743 m^2, correspondendo a uma área efectiva de Subscript[aef, r]=0.141372 m^2.

Ganho da antena de emissão:

ge={18.9799} dBi.

Ganho da antena de recepção:

gr={18.9799} dBi.

A atenuação em espaço livre entre antenas é:

L0={107.204} dB.

1.5 Atenuação de obstáculo

O percurso não tem obstáculo.

Atenuação de obstáculo calculada pelo método 1, entre a antena emissora e receptora: $Aobst=\{0\} dB.$ 1.6 Atenuação atmosférica Pressão atmosférica: p= 1013 milibar. Temperatura do ambiente: T= 25 °C. Humidade relativa: H= 85 %. Atenuação específica do oxigénio: $Gamma]ox = \{0.00613408\} dB/km.$ A pressão parcial do vapor de água saturado é es=31.6703 hPa. A pressão parcial do vapor de água no ar húmido é e=26.9198 hPa. A concentração de vapor de água é \[Rho]=19.5559 g/m^3. Atenuação específica do vapor de água: $\Gamma]va=\{0.000612794\}\ dB/km.$ Atenuação da atmosfera: aatmos={0.0184459} dB. 1.7 Distribuição da indisponibilidade Comprimento do circuito fictício de referência da ligação: 280 km. Fracção da indisponibilidade máxima para a chuva: 0.1. Fracção da indisponibilidade máxima para o equipamento: 0.4. Fracção da indisponibilidade máxima para outras causas: 0.5 . A indisponibilidade máxima para a ligação é Subscript[\[ScriptCapitalI], máx]= {3.36*10^(-4)}. A fracção da indisponibilidade devida à precipitação é \[ScriptCapitalI]chuva= \{3.36*10^(-5)\}. A fracção da indisponibilidade devida ao equipamento é Subscript[\[ScriptCapitalI], equip]= {1.344*10^(-4)}. A fracção da indisponibilidade devida a outras causas é Subscript[\[ScriptCapitalI], outros]= {1.68*10^(-4)}. 1.8 Atenuação provocada por hidrometeoritos Antenas utilizando polarização horizontal: Intensidade de precipitação: 42 mm/h. Fracção de tempo no ano em que o valor da intensidade de precipitação é excedido: {3.36*10^(-5)} %. Valor de \[Kappa] à frequência imposta é:

 $[Kappa] = \{ \{1.54*10^{-4}\} \}.$

Valor de \[Alpha] à frequência imposta é:

 $[Alpha]=\{0.963\}.$

O coeficiente de atenuação por unidade de comprimento:

 $[Gamma] = \{0.00563261\}.$

O comprimento eficaz do percurso é Def=2.3843 km.

Atenuação da chuva não excedida em mais de 0.01% do tempo:

 $Ar=\{0.0134298\} dB.$

Atenuação da chuva não excedida em mais de Panual= {3.36*10^(-5)} % do tempo:

achuva={0.019713} dB.

1.9 Atenuação dos guias

Folga dada: 10 m.

O guia elíptico utilizado à frequência de 2 GHz tem a designação EW17.

O guia de emissão tem uma atenuação de:

Age= $\{0.234\}$ dB.

O guia de recepção tem uma atenuação de:

 $Agr = \{0.234\} dB.$

1.10 Introdução de repetidor passivo

1.10.1 Características do repetidor passivo

Número de repetidores passivos: 0.

1.10.2 Atenuação de obstáculo

1.11 Desvanecimento rápido

Os calculos seguintes são para uma ligação em raio directo.

Valor de Subscript[c, 0]: 6.

Valor de Subscript[c, Lat]: 0.

Valor de Subscript[c, Long]: 3.

Tempo em que o gradiente médio da refractividade é inferior a -100 N/km: pL=20 %.

Latitude do percurso colocada: $\[Eta]Lat= 42\[Degree]$.

Classificação do percurso: terrestre.

O factor geoclimático no mês mais desfavorável, no percurso terrestre é K= {2.24138*10^(-7)} .

O módulo da inclinação da ligação é Subscript[\[Epsilon], p]=94.733 miliradianos.

O parâmetro Subscript[q, t] calculado com um desvanecimento de $\{25\}$ dB, é:

 $qt = \{14.6083\}.$

Ligação total:

A fracção de tempo calculada pelo 2º método da Rec. P.530-8, correspondente à ligação total é:

```
PA2 = \{\{8.26837*10^{-11}\}\}.
```

1.12 Reflexões no terreno

O número de divisões utilizadas entre dois pontos para o cálculo de reflexões é de 1 .

Atenção, este processamento demora algum tempo!!!

O perfil com as zonas de reflexão é para a frequência de 2 GHz.

O valor da relação ps/pd para a frequência de 2 GHz é de -11.0694 dB.

1.13 Potência de recepção

A potência de emissão é:

 $pe={5.32801} dBW.$

Atenuação suplementar colocada: 0 dB.

A potência de recepção, em condições ideais de propagação, dada pela fórmula de Friis é:

 $pr=\{-64.403\} dBW.$

3. Feixes Hertzianos Digitais

3.1 Sinal digital

Ritmo binário: Subscript[f, b]= 8 Mbits/s.

Largura de banda para a transmissão: Subscript[largura, b]= 1.75 MHz.

Factor de excesso de banda: $\Beta]=0.2$.

O número mínimo de níveis na modulação é de 44.8089 por palavra de código.

3.3 Largura de banda em rádio-frequência

Número de níveis por palavra Largura de banda em RF

Número de níveis por palavra: m= 64.

A largura de banda em rádiofrequência é Subscript[b, rf]=1.6 MHz.

3.4 Tipo de modulação da portadora

Modulação colocada: QAM.

A taxa de erros binária em função da relação C/Subscript[N, 0] para a f = 2 e n° niveis = 64 é Subscript[P, ber]= 7/24 Erfc[1/7 Sqrt[2^(-1+C/(10 Subscript[N, 0])) 5^(C/(10 Subscript[N, 0]))]].

3.5 Relação portadora/ruído em rádio-frequência (cip)

A temperatura vista pelas antenas é de 293 K.

O factor de ruído da ligação é:

Subscript $[n, f] = \{9.4\} dB$.

Temperatura observada pela antena: T= 293 K.

O ruído térmico é Subscript[n, 0]={-142.681} dBW.

O ruído aos terminais do desmodulador é:

Subscript[n, ruído]={-133.281} dBW.

A relação portadora/ruído em condições ideais de propagação é:

 $(C/NSubscript[), rf] = \{68.8781\} dB.$

3.6 Recomendações da ITU

O valor de berSESR é de 0.0001

O valor de n é de 2000.

O valor de Nb é de 4000.

O valor de rber é de 1.*10^-12

3.7 Desvanecimento

Distância da ligação introduzida: 2.734 km.

O factor de ocorrência de desvanecimento profundo é:

 $kt = \{0.0000136733\}$

3.8 Margem Uniforme

A relação portadora/ruído correspondente a Subscript[ber, SESR] é (C/NSubscript[), SESR]={27.981} dB.

A relação portadora/ruído correspondente a rber é (C/NSubscript[), rber]={33.7528} dB.

A relação portadora/ruído correspondente a ber=10^-3 é (C/NSubscript[), ind]={26.2288} dB.

A margem uniforme correspondente a Subscript[ber, SESR] é MuSESR={40.8971} dB.

A margem uniforme correspondente a rber é Murber={35.1253} dB.

3.9 Margem Selectiva

Assinatura introduzida: 0.1 MHz.

A margem selectiva é Ms=49.0309 dB.

3.10 Margens críticas

3.10.1 Cláusula SESR

Valor da norma SESR = 0.00016

f=2 - Cláusula cumprida, sesr=1.28307*10^-9

A relação portadora/ruído necessária para cumprir a cláusula SESR é (C/NSubscript[), CIP_SESR]={17.2985} dB.

3.10.2 Cláusula BBER

 $Par \hat{a} metros \ Subscript[\[\][Alpha], 1] \ e \ Subscript[\[\][Alpha], 2]$

Valor da norma BBER = 0.00002

f=2 - Cláusula cumprida, bber=4.98013*10^-9

A relação portadora/ruído necessária para cumprir a cláusula BBER é (C/NSubscript[), CIP_BBER]={25.5374} dB.

3.10.3 Cláusula ESR

Valor da norma ESR = 0.006

f=2 - Cláusula cumprida, esr=8.00213*10^-6

A relação portadora/ruído necessária para cumprir a cláusula ESR é (C/NSubscript[), CIP_ESR]={3.94564} dB.

3.10.4 Cláusula SESR devido à chuva

Valor da norma SESR = 0.00016

f=2 - Cláusula cumprida, sesrchuva=0

3.10.5 Cláusula BBER devido à chuva

Parâmetros Subscript[\[Alpha], 1] e Subscript[\[Alpha], 2]

Valor da norma BBER = 0.00002

f=2 - Cláusula cumprida, bberchuva=4.*10^-9

3.10.6 Cláusula ESR devido à chuva

Valor da norma ESR = 0.006

f=2 - Cláusula cumprida, esrchuva=8.*10^-6

3.10.7 Cláusula da indisponibilidade devido à chuva

f=2 - Cláusula cumprida, (C/N)=68.8781 dB; (C/N)min=26.2485 dB

A relação portadora/ruído necessária para cumprir a cláusula da indisponibilidade devido à chuva é (C/NSubscript[), CIP_ind]={26.2485} dB.

3.10.8 C/N necessária para cumprimento da ligação

O C/N necessário para a cláusula SESR é:

(C/NSubscript[), SESR]={17.2985} dB.

O C/N necessário para a cláusula BBER é:

(C/NSubscript[), BBER]={25.5374} dB.

O C/N necessário para a cláusula ESR é:

 $(C/NSubscript[), ESR]={3.94564} dB.$

O C/N necessário para as cláusulas da chuva é:

(C/NSubscript[), chuva]={0.} dB.

O C/N necessário para a cláusula indisponibilidade é:

(C/NSubscript[), IND]={26.2485} dB.

A relação Sinal-Ruído mínima necessária para cumprir todas as cláusulas é:

(C/NSubscript[), NECmin]={26.2485} dB.

A relação Sinal-Ruído da ligação em condições ideais de propagação é:

(C/NSubscript[), CIP]={68.8781} dB.

A margem de segurança da ligação ((C/NSubscript[), CIP]-(C/NSubscript[), NECmin]) é:

{42.6296} dB.

A frequência óptima é f=2 GHz (Subscript[M, seg]=42.6296 dB).

Não é possível cumprir as recomendações da ITU para as frequência assinaladas a "*".