Parallel and Distributed Computing CS3006

Week 4, Lecture 2

Decomposition Techniques

February 14 2024

Original slides by: Dr. Rana Asif Rehman Additions for Spring 2024 by: Dr. Abdul Qadeer

2 Agenda

- A Quick Review
- Decomposition Techniques
 - Recursive
 - Data-decomposition
 - Exploratory
 - Speculative
 - Hybrid

Quick Review to the Previous Lecture

- Parallel Algorithm Design Life Cycle
- Tasks, Decomposition, and Task-dependency graphs
- Granularity
 - Fine-grained
 - Coarse-grained
- Concurrency
 - Max-degree of concurrency
 - Critical path length
 - Average-degree of concurrency

- The process of decomposing larger problems into smaller tasks for concurrent executions, is known to as decomposition.
- The techniques that facilitate this decomposition are known to as decomposition techniques.
- Common techniques:
 - Recursive
 - Data-decomposition
 - Exploratory decomposition
 - Speculative decomposition
 - Hybrid
- Recursive and data decompositions are relatively general purpose
- Exploratory and speculative are special purpose in nature

1. Recursive Task Decomposition

- Recursive decomposition is a method for inducing concurrency in the problems that can be solved using divide and conquer strategy
- Divides each problem into a set of independent subproblems
- Each one of these subproblems is solved by recursively applying a similar division into smaller subproblems followed by a combination of their results
- A natural concurrency exists as different subproblems can be solved concurrently.

Recursive Decomposition (Example: Quick sort)

Figure 3.8 The quicksort task-dependency graph based on recursive decomposition for sorting a sequence of 12 numbers.

```
    procedure SERIAL_MIN (A, n)
    begin
    min = A[0];
    for i := 1 to n - 1 do
    if (A[i] < min) min := A[i];</li>
    endfor;
    return min;
    end SERIAL_MIN
```

Recursive Decomposition

(Modifying simple problem to support recursive decomposition)

Algorithm 3.1 A serial program for finding the minimum in an array of numbers A of length n.

```
procedure RECURSIVE_MIN (A, n)
     begin
     if (n = 1) then
        min := A[0];
5.
     else
6.
        lmin := RECURSIVE\_MIN(A, n/2);
        rmin := RECURSIVE_MIN (&(A[n/2]), n - n/2);
8.
        if (lmin < rmin) then
           min := lmin;
10.
        else
11.
           min := rmin;
12.
        endelse:
     endelse;
     return min;
     end RECURSIVE_MIN
```

Algorithm 3.2 A recursive program for finding the minimum in an array of numbers A of length n.

Recursive Decomposition (Modifying simple problem to support recursive decomposition)

Figure 3.9 The task-dependency graph for finding the minimum number in the sequence {4, 9, 1, 7, 8, 11, 2, 12}. Each node in the tree represents the task of finding the minimum of a pair of numbers.

2. Data Decomposition

- Powerful and commonly used method
- Two step procedure:
 - 1. Partition data on which computation is to be performed
 - 2. This data partitioning is used to induce a partitioning of the computations into tasks.

Partitioning output data

- Used where each element of the output can be computed independently of others as a function of the input.
- Partitioning of the output data automatically induces a decomposition of the problems into tasks
- each task is assigned the work of computing a portion of the output

Data Decomposition (Partitioning Output Data)

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \rightarrow \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

$$(a)$$

$$\text{Task 1: } C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$$

$$\text{Task 2: } C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2}$$

$$\text{Task 3: } C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1}$$

$$\text{Task 4: } C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}$$

$$(b)$$

Figure 3.10 (a) Partitioning of input and output matrices into 2×2 submatrices. (b) A decomposition of matrix multiplication into four tasks based on the partitioning of the matrices in (a).

Data Decomposition (Partitioning Output Data)

Decomposition I Decomposition II Task 1: $C_{1,1} = A_{1,1}B_{1,1}$ Task 1: $C_{1,1} = A_{1,1}B_{1,1}$ Task 2: $C_{1,1} = C_{1,1} + A_{1,2}B_{2,1}$ Task 2: $C_{1,1} = C_{1,1} + A_{1,2}B_{2,1}$ Task 3: $C_{1,2} = A_{1,1}B_{1,2}$ Task 3: $C_{1,2} = A_{1,2}B_{2,2}$ Task 4: $C_{1,2} = C_{1,2} + A_{1,2}B_{2,2}$ Task 4: $C_{1,2} = C_{1,2} + A_{1,1}B_{1,2}$ Task 5: $C_{2,1} = A_{2,2}B_{2,1}$ Task 5: $C_{2,1} = A_{2,1}B_{1,1}$ Task 6: $C_{2,1} = C_{2,1} + A_{2,2}B_{2,1}$ Task 6: $C_{2,1} = C_{2,1} + A_{2,1}B_{1,1}$ Task 7: $C_{2,2} = A_{2,1}B_{1,2}$ Task 7: $C_{2,2} = A_{2,1}B_{1,2}$ Task 8: $C_{2,2} = C_{2,2} + A_{2,2}B_{2,2}$ Task 8: $C_{2,2} = C_{2,2} + A_{2,2}B_{2,2}$

Figure 3.11 Two examples of decomposition of matrix multiplication into eight tasks.

(a) Transactions (input), itemsets (input), and frequencies (output)

(b) Partitioning the frequencies (and itemsets) among the tasks

task 1 task 2

CS3006 - Spring 2024 Computing itemset frequencies in a transaction database.

Data Decomposition

Partitioning input data

- In many algorithms, it is not possible or desirable to partition the output data.
 - The output may be a single unknown value. Such as in case of finding sum, minimum, maximum or frequencies of a number.
- It is sometimes possible to partition the input data, and then use this partitioning to induce concurrency
- A task is created for each partition of the input data and this task performs as much computation as possible using these local data
- Then local solutions are combined to generate a global solution

Partitioning input data

(a) Partitioning the transactions among the tasks

Database Transactions	A, B, C, E, G, H	temsets	A, B, C	set Frequency	1
	B, D, E, F, K, L		D, E		2
	A, B, F, H, L		C, F, G		0
T e	D, E, F, H		A, E		1
apas	F, G, H, K,		C, D		0
Data		_	D, K	tems	1
_			B, C, F	=	0
			C, D, K		0

sactions		Itemsets	A, B, C	0
			D, E	ģ 1
			C, F, G	0 <u>fe</u>
Database Transaction:	A, E, F, K, L		A, E	E 1
	B, C, D, G, H, L		C, D	est 1
	G, H, L		D, K	1 temset
	D, E, F, K, L		B, C, F	= 0
	F, G, H, L		C, D, K	0

task 1 task 2

Data Decomposition

Partitioning both input and output data

- Consider the problems where output datapartitioning is possible
- Here, partitioning the input also, can offer additional concurrency
- The next example shows 4-way decomposition of the previous example based on both input-output partitioning.

Figure 3.13 Some decompositions for computing itemset frequencies in a transaction database.

Stage I

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \rightarrow \begin{pmatrix} \begin{pmatrix} D_{1,1,1} & D_{1,1,2} \\ D_{1,2,2} & D_{1,2,2} \\ D_{2,1,1} & D_{2,1,2} \\ D_{2,2,2} & D_{2,2,2} \end{pmatrix}$$

Stage II

$$\begin{pmatrix} D_{1,1,1} & D_{1,1,2} \\ D_{1,2,2} & D_{1,2,2} \end{pmatrix} + \begin{pmatrix} D_{2,1,1} & D_{2,1,2} \\ D_{2,2,2} & D_{2,2,2} \end{pmatrix} \rightarrow \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

A decomposition induced by a partitioning of D

Task 01: $D_{1,1,1} = A_{1,1}B_{1,1}$ Task 02: $D_{2,1,1} = A_{1,2}B_{2,1}$ Task 03: $D_{1,1,2} = A_{1,1}B_{1,2}$ Task 04: $D_{2,1,2} = A_{1,2}B_{2,2}$ Task 05: $D_{1,2,1} = A_{2,1}B_{1,1}$ Task 06: $D_{2,2,1} = A_{2,2}B_{2,1}$ Task 07: $D_{1,2,2} = A_{2,1}B_{1,2}$ Task 08: $D_{2,2,2} = A_{2,2}B_{2,2}$ Task 09: $C_{1,1} = D_{1,1,1} + D_{2,1,1}$ Task 10: $C_{1,2} = D_{1,1,2} + D_{2,1,2}$ Task 11: $C_{2,1} = D_{1,2,1} + D_{2,2,1}$ $C_{2,2} = D_{1,2,2} + D_{2,2,2}$ Task 12:

Figure 3.15 A decomposition of matrix multiplication based on partitioning the intermediate three-dimensional matrix.

Figure 3.16 The task-dependency graph of the decomposition shown in Figure 3.15.

Estimating Number of Operations

- O(n^3/8) operations for multiplying two n/2 X n/2 matrices
 - Above is by each of the 8 tasks
- $ightharpoonup O(n^2/4)$ for addition of two n/2 X n/2 matrices
 - Above is by each of the 4 tasks
- Note we traded more space to hold intermediate matrices to achieve better concurrency
 - A typical space-speed tradeoff!

Owner Compute Rule

- Task decomposition based on data-partitioning is widely known as owner compute rule.
- Two types of partitioning hence, two definitions:
- 1. If we assign partitions of the input data to tasks:
 - The rule means that a task performs all the computations that can be done using these data
- 2. If we assign partition of output data to the tasks:
 - The rule means that a task computes all the data in the partition assigned to it (portion of the output).

3. Exploratory Decomposition

Specially used to decompose the problems having underlying computation like search-space exploration.

Steps:

- 1. Partition the search space into smaller parts
- 2. Search each one of these parts concurrently, until the desired solutions are found.

3. Exploratory Decomposition

Figure 3.17 A 15-puzzle problem instance showing the initial configuration (a), the final configuration (d), and a sequence of moves leading from the initial to the final configuration.

Figure 3.18 The states generated by an instance of the 15-puzzle problem.

Figure 3.19 An illustration of anomalous speedups resulting from exploratory decomposition.

4. Speculative Decomposition

- Usually used in the problems where different input values or output of previous stage causes many computationally intensive branches.
- Speculation is something like Gamble or Risk or preliminary guess.
- Steps:
 - Speculate(guess) the output of previous stage
 - Start performing computations in the next stage before even the completion of the previous stage.
 - After availability of the output of previous stage, if speculation was correct than most of the computation for next step would have already been done.

4. Speculative Decomposition

- Switch (the programming construct) Example Algorithm:
- 1: Calculate expression for the switch condition > task 0
- 2: Case 0: Multiply vector **b** with matrix **A** \rightarrow task 1
- 3: Case 1: Multiply vector \mathbf{c} with matrix $\mathbf{A} \rightarrow \text{task } 2$
- 4: Case 2: Multiply vector **d** with matrix **A** → task 3
- 5: display result → task 4

4. Speculative Decomposition

Figure 3.20 A simple network for discrete event simulation.

5. Hybrid Decomposition

- Decomposition technique are not exclusive
 - We often need to combine them together

Figure 3.21 Hybrid decomposition for finding the minimum of an array of size 16 using four tasks.

Parallel Execution Style: Fork-Exec Idiom

Fork-Exec Idiom

- A versatile way to make multiple executing elements
- Usually address space is not shared among multiple processes (but more on that later!)
- Let's discuss it at a blog that I wrote a while ago
 - https://www.educative.io/blog/fork-exec-linux
 - We can execute example code there as well
- Few kinds of processing can be done using this model
 - But using a variant of fork (called clone) we can make threads sharing the address space
 - Suitable for shared-memory model to execute tasks

Questions

31

References

- 1. Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). *Introduction to parallel computing* (Vol. 110). Redwood City, CA: Benjamin/Cummings.
- 2. Quinn, M. J. Parallel Programming in C with MPI and OpenMP,(2003).