Topic 8 - Multiple Regression

STAT 525 - Fall 2013

STAT 525

Outline

- Data and Notation
- Model (special cases)
- Estimation

Topic 8

STAT 525

The Data and Model

- \bullet Still have single response variable Y
- Now have multiple explanatory variables
- Examples:
 - Blood Pressure vs Age, Weight, Diet, Smoking, Fitness Level
 - $\,-\,$ Traffic Count vs Time, Location, Population, Month
- Goal: There is a total amount of variation in Y (SSTO). We want to explain as much of this variation as possible using a linear model and our explanatory variables

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

• Have p-1 predictors $\longrightarrow p$ coefficients

STAT 525

Special Cases

• Polynomial of order p-1

$$Y_i = \beta_0 + \beta_1 X_i + \beta_1 X_i^2 + \dots + \beta_{p-1} X_i^{p-1} + \varepsilon_i$$

- Analysis of Variance
 - Predictors are sets of indicator or dummy variables (i.e., $X_{i,j} {=} 0$ or 1)
- Interaction of predictors

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$$

 ${\rm Topic}\ 8$

3

Topic 8

First Order Model with 2 Predictors

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i; \quad i = 1, ..., n$$

- β_0 is the intercept and β_1 and β_2 are the regression coefficients
- Meaning of regression coefficients
 - $-\beta_1$ describes change in <u>mean response</u> per unit increase in X_1 when X_2 is held constant
 - β_2 describes change in <u>mean response</u> per unit increase in X_2 when X_1 is held constant
- Variables X_1 and X_2 are additive. Value of X_1 does not affect the change due to X_2 . There is no *interaction*.

Topic 8

э

STAT 525

Qualitative Predictors

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$$

- Let $X_2 = 1$ if case from Purdue and $X_2 = 0$ otherwise
- Meaning of parameters:
 - Case from Purdue $(X_2 = 1)$:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 1 + \beta_3 X_1(1)$$

= $(\beta_0 + \beta_2) + (\beta_1 + \beta_3) X_1$

- Case from other location $(X_2 = 0)$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 0 + \beta_3 X_1(0)$$

= \beta_0 + \beta_1 X_1

- Have two regression lines
- β_2 and β_3 quantify the differences in intercepts and slopes

Interaction Model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$$

- Meaning of parameters:
 - Change in X_1 when $X_2 = x_2$

$$\Delta Y = (\beta_0 + \beta_1(X_1 + 1) + \beta_2 x_2 + \beta_3(X_1 + 1)x_2) - (\beta_0 + \beta_1 X_1 + \beta_2 x_2 + \beta_3 X_1 x_2)$$
$$= \beta_1 + \beta_3 x_2$$

- Change in X_2 when $X_1 = x_1$

$$\Delta Y = \beta_2 + \beta_3 x_1$$

• Rate of change for one variable affected by the other

Topic 8

STAT 525

Topic 8

Response Surface

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} \\ 1 & X_{21} & X_{22} \\ \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

- Find b to minimize (Y Xb)'(Y Xb)
- $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$
- Fitted values **HY** form response surface
- No longer a line but a (hyper)plane
- If $\varepsilon \sim N(0, \sigma^2 I) \longrightarrow \mathbf{Y} \sim \mathbf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$ which results in similar inference as before

First Order Model with 2 Predictors

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i; \quad i = 1, ..., n$$

• Consider the following data set

Case	X_1	X_2	Y
1	3	1	5
2	4	2	8
3	4	1	7
4	6	4	15

• Can show

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \begin{bmatrix} -2.786 \\ 2.143 \\ 1.214 \end{bmatrix}$$

Topic 8

STAT 525

STAT 525

Topic 8

Residuals

- $\mathbf{e} = \mathbf{Y} \hat{\mathbf{Y}} = (\mathbf{I} \mathbf{H})\mathbf{Y}$
- I H symmetric and idempotent
- Covariance Matrix

$$\sigma^2(\mathbf{e}) = \sigma^2(\mathbf{I} - \mathbf{H})(\mathbf{I} - \mathbf{H})'$$

= $\sigma^2(\mathbf{I} - \mathbf{H})$

- $Var(e_i) = \sigma^2(1 h_{ii})$ where $h_{ii} = \mathbf{X}_i'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i$
- Residuals are usually correlated $(-\sigma^2 h_{ij})$

Topic 8

Estimation of σ^2

- Similar approach as before
- Now p model parameters

$$s^{2} = \frac{\mathbf{e}'\mathbf{e}}{n-p}$$

$$= \frac{(\mathbf{Y} - \mathbf{X}\mathbf{b})'(\mathbf{Y} - \mathbf{X}\mathbf{b})}{n-p}$$

$$= \frac{\text{SSE}}{n-p}$$

$$= \text{MSE}$$

Topic 8

STAT 525

ANOVA TABLE

Source of

Variation	df	SS	MS
Regression		SSR	SSR/
Error		SSE	SSE/
Total	n-1	SSTO	

- F Test: Tests whether there is a regression relation between the dependent variable Y and the set of predictors
 - $H_0: \beta_1 = \beta_2 = \ldots = \beta_{p-1} = 0$ - H_a : at least one $\beta_k(k=1,\ldots,p-1)\neq 0$
- Coefficient of Determination (R^2) describes proportionate reduction in variation of Y for the set of X variables

STAT 525

Topic 8

Background Reading

- KNNL Sections 6.1-6.5
- knnl216.sas
- KNNL Sections 6.6-6.7

Topic 8