11 Structuri algebrice

11.1 Operații binare. Grupoizi. Semigrupuri. Monoizi

P 1. Fie (M, \cdot) un grupoid în care sunt verificate relațiile:

- i) $x \cdot x = x$, $(\forall) x \in M$.
- ii) $(x \cdot y) \cdot z = (y \cdot z) \cdot x$, $(\forall) x, y, z \in M$.

Arătați că operația · este comutativă.

P 2. Fie (M, \cdot) un grupoid în care sunt verificate relațiile:

- i) $(x \cdot y) \cdot y = x$, $(\forall) x, y \in M$.
- ii) $x \cdot (x \cdot y) = y$, $(\forall) x, y \in M$.

Arătați că operația · este comutativă.

P 3. Fie (M, \cdot) un grupoid în care sunt verificate relațiile:

- i) $(x \cdot y) \cdot x = y \cdot x$, $(\forall) x, y \in M$.
- ii) $(\exists)u \in M : x \cdot u = x, (\forall)x \in M.$
- iii) $x \cdot x = u, (\forall) x \in M.$

Arătați că |M| = 1.

P 4. Fie (M, \cdot) un grupoid în care sunt verificate relațiile:

- i) $(a \cdot b) \cdot (c \cdot d) = (a \cdot c) \cdot (b \cdot d), (\forall) a, b, c, d \in M.$
- ii) $a \cdot a = a$, $(\forall) a \in M$.

Arătați că

- a) $a \cdot (b \cdot c) = (a \cdot b) \cdot (a \cdot c), (\forall) a, b, c \in M.$
- b) $(a \cdot b) \cdot c = (a \cdot c) \cdot (b \cdot c), (\forall) a, b, c \in M.$
- c) Dacă în plus operația admite un element neutru, atunci ea este asociativă și comutativă.

P 5. Fie (M, \cdot) un grupoid în care sunt verificate relațiile:

- i) $a \cdot (a \cdot b) = b$, $(\forall)a, b \in M$.
- ii) $a \cdot b = b \cdot a$, $(\forall) a, b \in M$.
- iii) $(a \cdot b) \cdot (c \cdot d) = (a \cdot c) \cdot (b \cdot d), (\forall) a, b, c, d \in M.$

Arătați că

a) $((a \cdot b) \cdot c) \cdot d = ((a \cdot d) \cdot c) \cdot b, (\forall) a, b, c, d \in M.$

Dacă în plus este verificată relația

iv) $(a \cdot b) \cdot c = a \cdot (b \cdot c) \Longrightarrow a = c$

arătați că

- b) $a \cdot a = b \cdot b \Longrightarrow a = b$.
- c) $(a \cdot a) \cdot (b \cdot b) = c \cdot c \Longrightarrow a \cdot b = c$.

Dacă în plus mulțime
a ${\cal M}$ este finită, arătați că

- d) |M| este un număr impar.
- **P 6.** Fie (M,\cdot) un semigrup cu proprietatea că există un element $a\in M$ astfel încât

$$(\forall)x \in M (\exists)y \in M : x = a \cdot y \cdot a$$
.

Arătați că (M, \cdot) este un monoid.

P 7. Fie (M, \cdot, u) un monoid.

- a) Arătați că $a, b \in U(M) \Longrightarrow a \cdot b \in U(M)$.
- b) Dacă există un element $z \in M \setminus \{u\}$ care este absorbant la dreapta(i.e., $x \cdot z = z$, $(\forall)x \in M$), iar u, z sunt singurele elemente idempotente din M, arătați că

$$a \cdot b \in U(M) \Longrightarrow a, b \in U(M)$$
.

 \mathbf{P} 8. Pe multimea \mathbb{N}^* a numerelor naturale nenule se consideră operația binară * definită prin

$$m * n = m^n$$
 , $(\forall) m, n \in \mathbb{N}^*$.

Determinați toate tripletele $(m, n, p) \in \mathbb{N}^* \times \mathbb{N}^* \times \mathbb{N}^*$ cu proprietatea că (m * n) * p = m * (n * p).

P 9. Fie $a, b, c \in \mathbb{Z}$, $b \neq 0$. Definim pe \mathbb{Z} o operație binară * prin

$$x * y = axy + b(x + y) + c$$
 , $(\forall)x, y \in \mathbb{Z}$.

Arătați că

- a) ($\mathbb{Z}, *$) este semigrup dacă și numai dacă $ac + b b^2 = 0$.
- b) (\mathbb{Z} ,*) este monoid dacă şi numai dacă $ac + b b^2 = 0$ şi b|c.

P 10. Fie $n \in \mathbb{N}^*$ un număr natural nenul și $a, b \in \mathbb{Z}^*$ două numere întregi fixate. Definim pe \mathbb{Z}_n o operație binară * prin

$$\widehat{x} * \widehat{y} = \widehat{ax + by}$$
 , $(\forall) x, y \in \mathbb{Z}$.

Arătați că

- a) operația * este comutativă dacă și numai dacă n|a-b.
- b) operația * este asociativă dacă și numai dacă n|a(a-1) și n|b(b-1).
- c) operația * admite un element neutru dacă și numai dacă * coincide cu operația de adunare pe \mathbb{Z}_n .
- **P 11.** Fie (M,\cdot) un semigrup finit cu proprietatea că

$$x, y \in M \land (\exists) a, b \in M : x = a \cdot y \land y = b \cdot x \Longrightarrow x = y$$
.

Arătați că M conține cel puțin un element absorbant la dreapta.

11.2 Grupuri

P 12. Fie (G,\cdot) un grupoid în care sunt verificate proprietățile:

- 1) $(a \cdot b) \cdot c = a \cdot (b \cdot c), (\forall) a, b, c \in G;$
- $2)\ (\exists)u\in G:u\cdot a=a\cdot u=a,\,(\forall)a\in G;$
- 3) $(\forall)a \in G(\exists)a' \in G: a \cdot a' = u \vee a' \cdot a = u.$

Arătați că (G, \cdot) este un grup.

P 13. Fie (S,\cdot) un semigrup finit în care sunt valabile proprietatea de simplificare la stânga

$$(\forall)a \in S, x, y \in S : a \cdot x = a \cdot y \Longrightarrow x = y$$

și proprietatea de simplificare la dreapta

$$(\forall)a \in S, x, y \in S : x \cdot a = y \cdot a \Longrightarrow x = y.$$

Arătați că (S, \cdot) este un grup.

P 14. Fie (G,\cdot) un grupoid în care sunt verificate proprietățile:

- 1) $a \cdot (b \cdot c) = (b \cdot a) \cdot c$, $(\forall) a, b, c \in G$;
- 2) $(\exists)u \in G : u \cdot a = a, (\forall)a \in G;$
- 3) $(\forall)a \in G(\exists)a' \in G: a' \cdot a = u.$

Arătați că (G, \cdot) este un grup abelian.

P 15. Fie G o mulțime în care sunt definite o operație binară $(a,b) \mapsto a \cdot b$ și o operație unară $a \mapsto a'$, astfel încât pentru orice $a,b,c,d,e \in G$ este adevărată implicația

$$(a \cdot b) \cdot c = (a \cdot d) \cdot e \Longrightarrow b = d \cdot (e \cdot c')$$
.

Arătați că (G, \cdot) este un grup.

 ${f P}$ 16. Determinați tablele Cayley ale grupurilor următoare:

$$(\mathbb{Z}_2,+), (\mathbb{Z}_3,+), (\mathbb{Z}_4,+), (S_3,\cdot), \langle a,b| a^2=b^2=(ab)^2=1\rangle.$$

P 17. Verificați dacă grupoizii cu următoarele table Cayley sunt grupuri:

P 18. Completați următoarea tablă Cayley a unui grup:

	a	b	c	d	e	f
\overline{a}		b				
$a \\ b$		c	a	e		
c						
d		f		a		
e						
f						

P 19. Fie (G,\cdot) un grup și $a,b\in G$ cu proprietatea că $a\cdot b=b\cdot a$. Arătați că $a^m\cdot b^n=b^n\cdot a^m, (\forall)m,n\in\mathbb{Z}$.

P 20. Fie (G,\cdot) un grup cu proprietatea că $x^2=1$, $(\forall)x\in G$. Arătați că grupul (G,\cdot) este abelian.

P 21. Fie (G,\cdot) un grup cu proprietatea că $(x\cdot y)^2=x^2\cdot y^2$, $(\forall)x,y\in G$. Arătați că grupul (G,\cdot) este abelian.

P 22. Fie (G,\cdot) un grup cu proprietatea că $(x\cdot y)^{-1}=x^{-1}\cdot y^{-1}$, $(\forall)x,y\in G$. Arătați că grupul (G,\cdot) este abelian.

P 23. Fie (G,\cdot) un grup cu proprietatea că există $k \in \mathbb{Z}$ astfel încât $(x \cdot y)^i = x^i \cdot y^i$, $(\forall)x,y \in G$, $(\forall)i \in \{k-1,k,k+1\}$. Arătați că grupul (G,\cdot) este abelian.

P 24. Fie (G,\cdot) un grup finit și $A,B\subseteq G$ cu proprietatea că |A|+|B|>|G|. Arătați că $A\cdot B=G$.

P 25. Fie $\mathbb{T} := \{z \in \mathbb{C} | |z| = 1\}$. Arătați că $\mathbb{T} \leq (\mathbb{C}^*, \cdot)$.

P 26. Fie $n \in \mathbb{N}^*$ și $U_n := \{z \in \mathbb{C} | z^n = 1\}$. Arătați că $U_n \leq \mathbb{T}$.

P 27. Fie p un număr prim și $U_{p^{\infty}}:=\bigcup_{k=0}^{\infty}U_{p^k}.$ Arătați că $U_{p^{\infty}}\leq\mathbb{T}.$

P 28. Fie p un număr prim şi $\mathbb{Q}_p := \left\{ \frac{m}{p^k} | m \in \mathbb{Z}, k \in \mathbb{N} \right\}$, respectiv $\mathbb{Q}_{p'} := \left\{ \frac{m}{n} | m \in \mathbb{Z}, n \in \mathbb{N}^*, (n, p) = 1 \right\}$. Arătaţi că $\mathbb{Q}_p, \mathbb{Q}_{p'} \leq (\mathbb{Q}, +)$ şi $\mathbb{Q}_p \cap \mathbb{Q}_{p'} = \mathbb{Z}$.

P 29. Fie (G,\cdot) un grup finit cu $|G| \equiv 0 \pmod{2}$. Arătați că există $x \in G$ cu ord(x) = 2.

P 30. Fie (G,\cdot) un grup și $x,y\in G$ elemente oarecare. Arătați că $ord(x\cdot y)=ord(y\cdot x)$.

P 31. Fie (G,\cdot) un grup și $x\in G$ un element de ordin finit $ord(x)=n\in\mathbb{N}^*$. Arătați că

$$|x^m| = \frac{n}{(m,n)}$$
 , $(\forall) m \in \mathbb{Z}$.

P 32. Fie (G, \cdot) un grup, iar $x, y \in G$ elemente de ordine finite ord(x) = m, ord(y) = n, cu proprietatea că $x \cdot y = y \cdot x$ și (m, n) = 1. Arătați că $ord(x \cdot y) = m \cdot n$.

P 33. Fie (G,\cdot) un grup, iar $x\in G$ un element de ordin finit $ord(x)=m\cdot n$, unde $m,n\in\mathbb{N}^*$ sunt relativ prime, (m,n)=1. Arătați că există $y,z\in G$ cu ord(y)=m,|z|=n, astfel încât $x=y\cdot z=z\cdot y$.

P 34. Fie (G,\cdot) un grup abelian finit cu |G|=n. Arătați că $g^n=1, (\forall)g\in G$.

P 35. Demonstrați mica teoremă a lui Fermat:

Dacă $p \in \mathbb{N}^*$ este un număr prim, iar $a \in \mathbb{Z}$ nu se divide prin p, atunci $a^{p-1} \equiv 1 \pmod{p}$.

P 36. Demonstrati teorema lui Euler:

Dacă $n \in \mathbb{N}^*$, iar $a \in \mathbb{Z}$ este coprim cu n, atunci $a^{\varphi(n)} \equiv 1 \pmod{n}$.

P 37. Arătați că în orice grup abelian finit, produsul tuturor elementelor este egal cu produsul tuturor elementelor de ordin 2.

P 38. Demonstrați teorema lui Wilson:

Dacă p este un număr prim, atunci $(p-1)! \equiv -1 \pmod{p}$.

P 39. Fie (G,\cdot) un grup și $A\subseteq G$. Arătați că normalizatorul în G al submultimii A

$$N_G(A) := \{ g \in G | gA = Ag \}$$

este un subgrup al lui G.

P 40. Fie (G,\cdot) un grup și $A\subseteq G$. Arătați că centralizatorul în G al submulțimii A

$$C_G(A) := \{ g \in G | ga = ag, (\forall) a \in A \}$$

este un subgrup al lui G, cu $C_G(A) \subseteq N_G(A)$.

 \mathbf{P} 41. Arătați că pentru orice grup G, centrul său

$$Z(G) := \{ g \in G | gx = xg, (\forall) x \in G \}$$

este un subgrup al lui G.

P 42. Fie (G,\cdot) un grup, $H \leq G$ şi $g \in G$. Dacă |g| = n şi $g^m \in H$, unde $n, m \in \mathbb{N}^*$, (m,n) = 1, atunci $g \in H$.

P 43. Fie (G,\cdot) un grup și $H,K \leq G$, cu $H \leq K$. Arătați că

$$[G:H] = [G:K] \cdot [K:H]$$
.

P 44. Fie (G,\cdot) un grup și $H,K,L\leq G$, cu $H\leq K$. Arătați că

$$[K:H] > [K \cap L:H \cap L].$$

P 45. Fie (G,\cdot) un grup și $H,K\leq G$. Arătați că

$$[G:K] \ge [H:H\cap K] \, .$$

P 46. Fie (G,\cdot) un grup și $H,K\leq G$. Arătați că

$$[G:H]\cdot [G:K]\geq [G:H\cap K].$$

P 47. Fie (G, \cdot) un grup și $H, K \leq G$ finite. Arătați că

$$|HK| \cdot |H \cap K| = |H| \cdot |K|.$$

P 48. Fie (X,d) un spațiu metric. O funcție bijectivă $\varphi: X \longrightarrow X$ se numește izometrie a spațiului metric (X,d) dacă

$$((x)\varphi,(y)\varphi)d = (x,y)d, \quad (\forall)x,y \in X.$$

a) Arătați că $Izom(X) = \{ \varphi \in S_X | \varphi - izometrie \} \leq S_X$.

b) Dacă $Y \subseteq X$, arătați că $S_X(Y) = \{ \varphi \in Izom(X) | (Y) = (Y)\varphi \} \le Izom(X)$.

c) Fie $n \in \mathbb{N}, n \geq 3$, și $[A_1 A_2 \dots A_n]$ un poligon regulat cu n laturi în planul euclidian \mathcal{P} . Determinați grupul $S_{\mathcal{P}}([A_1A_2...A_n])$. Acest grup se notează în general cu D_n și se numește grupul diedral de grad n.

P 49. Determinați ordinele grupurilor următoare prezentate în termeni de generatori și relații:

a) $G = \langle x, y | x^3 = y^2 = (xy)^2 = 1 \rangle$. b) $G = \langle x, y | x^3 = y^2 = (xy)^3 = 1 \rangle$.

c) $G = \langle x, y | xy^2 = y^3 x, yx^3 = x^2 y \rangle$.

P 50. Fie (G,\cdot) un grup și $H \leq G$. Arătați că $H \leq G$ dacă și numai dacă

$$(\forall)a,b\in G: ab\in H \iff ba\in H.$$

- **P 51.** Fie (G,\cdot) un grup și $H,K \leq G$, cu $H \cap K = 1$. Arătați că hk = kh, $(\forall)h \in H, k \in K$.
- **P 52.** Fie (G,\cdot) un grup și $H \leq Z(G)$. Arătați că $H \leq G$. În particular, $Z(G) \leq G$.
- **P 53.** Fie (G, \cdot) un grup, $G' = \langle [a, b] | a, b \in G \rangle$ subgrupul său comutator și $H \leq G$, cu $G' \leq H$. Arătați că $H \leq G$. În particular, $G' \leq G$.
- **P 54.** Fie (G,\cdot) un grup și $G^{[2]}=\langle a^2|\ a\in G\rangle$. Arătați că $G^{[2]} \triangleleft G$.
- **P 55.** Fie (G,\cdot) un grup și $a\in G$ un element cu proprietatea că a este unicul element de ordin 2 din G. Arătaţi că $a\in Z(G)$.
- **P 56.** Fie (G,\cdot) un grup şi $g \in G$. Arătați că aplicația $i_g: G \longrightarrow G: x \longmapsto gxg^{-1}$ este un automorfism al grupului G(numit automorfismul interior al grupului G, asociat elementului g). Verificați că $i_g \cdot i_h = i_{gh}$ şi $i_{g^{-1}} = (i_g)^{-1}$.
- **P 57.** Fie (G, \cdot) un grup şi $H \leq G$. Arătaţi că $H^x \leq G$. Dacă H este abelian(resp. ciclic, generat de elementul a), atunci H^x este de asemenea abelian(resp. ciclic, generat de elementul a^x).
- **P 58.** Fie $Inn(G) := \{i_g | g \in G\}$ mulţimea automorfismelor interioare. Arătaţi că $Inn(G) \leq Aut(G)$ şi $Inn(G) \cong G/Z(G)$.
- **P 59.** Fie \mathbb{K} un corp şi $n \in \mathbb{N}^*$. Fie $GL_n(\mathbb{K}) = \{A \in \mathcal{M}_n(\mathbb{K}) | det(A) \neq 0\}$ grupul liniar general de grad n peste corpul \mathbb{K} , iar $SL_n(\mathbb{K}) = \{A \in \mathcal{M}_n(\mathbb{K}) | det(A) = 1\}$ grupul liniar special de grad n peste corpul \mathbb{K} . Arătaţi că $SL_n(\mathbb{K}) \leq GL_n(\mathbb{K})$ şi $GL_n(\mathbb{K})/SL_n(\mathbb{K}) \cong \mathbb{K}^*$.
- **P 60.** Fie (G,\cdot) un grup și $H \subseteq G$, cu |G/H| = n. Arătați că
- a) $g^n \in H$, $(\forall) g \in G$.
- b) dacă $g^m \in H$, unde $m \in \mathbb{Z}$, astfel încât (m, n) = 1, atunci $g \in H$.
- **P 61.** Fie (G,\cdot) un grup și $H \leq G$, cu |H|=m, iar $n\in\mathbb{N}^*$, cu (m,n)=1. Arătați că
- a) dacă $x \in G$ are |x| = n, atunci |xH| = n în grupul factor G/H.
- b) dacă $x \in G$ are proprietatea că |xH| = n în grupul factor G/H, atunci există $y \in xH$, astfel încât |y| = n.
- **P 62.** Fie (G,\cdot) un grup, $H \leq G$ și $N \leq G$, astfel încât |H|=m, [G:N]=n, cu $m,n \in \mathbb{N}^*, (m,n)=1.$ Arătați că $H \subseteq N.$
- **P 63.** Fie (G,\cdot) un grup, $H \leq G$ și $N \subseteq G$, astfel încât |N| = m, [G:H] = n, cu $m,n \in \mathbb{N}^*$, (m,n) = 1. Arătați că $N \subseteq H$.
- **P 64.** Fie (G,\cdot) un grup şi $\emptyset \neq A \subseteq G$. Arătați că $C_G(A) \subseteq N_G(A)$ şi $N_G(A)/C_G(A)$ este izomorf cu un subgrup al grupului simetric S_A al mulțimii A.
- **P 65.** Fie (G,\cdot) un grup, $H\leq G$ și $core_G(H)=\bigcap_{x\in G}H^x$. Arătați că
- a) $core_G(H) \subseteq G$ și $core_G(H) \subseteq H$.
- b) dacă $K \subseteq G$, cu $K \subseteq H$, atunci $K \subseteq core_G(H)$.
- c) $G/core_G(H)$ este izomorf cu un subgrup al grupului simetric $S_{(G/H)_s}$ al mulţimii $(G/H)_s$ a claselor laterale la stânga ale lui H în G.
- d) dacă [G:H]=n, atunci $[G:core_G(H)]\mid n!$.
- e) $H \subseteq G \iff H = core_G(H)$.
- **P 66.** Fie (G,\cdot) un grup finit, p cel mai mic divizor prim al ordinului grupului G și $H \leq G$, astfel încât [G:H] = p. Arătați că $H \leq G$.
- **P 67.** Fie (G, \cdot) un grup. Arătați că G/G' este abelian, iar dacă $H \subseteq G$, atunci G/H este abelian dacă și numai dacă $G' \subseteq H$.
- **P 68.** Fie (G,\cdot) un grup și $H,K\leq G$. Comutatorul subgrupurilor H și K este $[H,K]=\langle [h,k]|\,h\in H,k\in K\rangle$. Arătați că
- a) $H \subseteq G \iff [H, G] \subseteq H$.
- b) dacă $K \leq G$ și $K \leq H \leq G$, atunci $H/K \leq Z(G/K) \iff [H,G] \leq K$.
- **P 69.** Fie (G,\cdot) un grup și $H \leq Z(G)$. Arătați că dacă G/H este un grup ciclic, atunci G este abelian.
- **P 70.** Fie (G,\cdot) un grup cu proprietatea că grupul tuturor automorfismelor Aut(G) este ciclic. Arătați că G este abelian.

Grupuri de permutări

P 71. Fie permutarea $\alpha \in S_5$, $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$. Calculați α^2 și α^3 . Determinați cel mai mic $k \in \mathbb{N}^*$ cu proprietatea că $\alpha^k = id$.

P 72. În grupul S_3 considerăm permutările $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ şi $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. Calculați α^2 , α^3 , β^2 , $\alpha\beta$ şi $\alpha^2\beta$. Arătați că , împreună cu α şi β , acestea sunt toate permutările din S_3 . Verificați că $\alpha^2 = \alpha^{-1}$, $\beta = \beta^{-1}$ şi $\beta\alpha = \alpha^2\beta$.

- **P 73.** Determinați toate ciclurile de lungime 3 din S_4 .
- **P 74.** Câte cicluri de lungime l se află în S_n .
- **P 75.** Două permutări $\alpha, \beta \in S_n$ se numesc disjuncte dacă

$$(\alpha(i)-i)\cdot(\beta(i)-i)=0\,,\quad (\forall)i=\overline{1,n}\,.$$

Dacă $\alpha, \beta \in S_n$ sunt două permutări disjuncte, arătați că

- a) $\alpha(i) \neq i \Longrightarrow \beta(\alpha(i)) = \alpha(i)$.
- b) $\alpha\beta = \beta\alpha$.
- P 76. Descompuneți următoarele permutări în produse de cicluri disjuncte:

- P 77. Descompuneți permutările de la exercițiul precedent în produse de transpoziții.
- **P** 78. Determinați paritățile tuturor permutărilor din S_3 și din S_4 .
- **P 79.** Determinați ordinul maxim pe care îl poate avea o permutare din S_n , pentru $n = \overline{2,10}$.
- P 80. Verificați identitățile următoare:
- a) (a,b)(a,b) = id, (a,b)(a,c) = (a,c,b), (a,b)(c,d) = (a,d,c)(a,b,c);
- b) $(i_1, i_2, i_3, \dots, i_{l-1}, i_l) = (i_1, i_l)(i_1, i_{l-1}) \dots (i_1, i_3)(i_1, i_2);$
- c) $(i,j) = (i,i+1)(i+1,i+2)\dots(j-2,j-1)(j-1,j)(j-2,j-1)\dots(i+1,i+2)(i,i+1), (\forall)i < j;$ d) $\alpha(i_1,i_2,\dots,i_l)\alpha^{-1} = (\alpha(i_1),\alpha(i_2),\dots,\alpha(i_l)).$
- **P 81.** Fie (G,\cdot) un grup și $M\subseteq G, M\neq\emptyset$. Arătați că subgrupul $\langle M\rangle$ generat de M este cea mai mică submulțime $H \subseteq G$ cu proprietatea că $M \subseteq H$ şi $H \cdot (M \cup M^{-1}) \subseteq H$. Arătați că dacă grupul G este finit, atunci $\langle M \rangle$ este cea mai mică submulțime a lui G cu proprietatea că $M \subseteq H$ și $H \cdot M \subseteq H$.
- **P 82.** Arătați că dacă (G,\cdot) este un grup finit, iar $M\subseteq G, M\neq\emptyset$, atunci algoritmul următor permite determinarea subgrupului generat de M:
 - 1) $S := \{1\}$
 - 2) $H := \{1\}$
 - $S := S \cdot M \setminus H$
 - 4) if $S = \emptyset$, then $\text{stop}[\Longrightarrow H = \langle M \rangle]$
 - 5) $H := H \cup S$, go to 3)

(alternativ putem descrie algoritmul prin următoarele recurențe:

$$S_0 := \{1\}, H_0 := \{1\},$$

$$S_{n+1} := S_n \cdot M \setminus H_n, (\forall) n \in \mathbb{N}$$
if $S_{n+1} = \emptyset$, then $\langle M \rangle = H_n$,
else $H_{n+1} := H_n \cup S_{n+1}$

care conduc de asemenea la subgrupul generat de submulțimea nevidă M).

- **P 83.** Utilizați algoritmul din problema precedentă pentru a construi subgrupul $\langle M \rangle \leq S_4$, generat de $M = \{(1,2,3),(2,3,4)\}$.
- **P 84.** Determinați toate subgrupurile grupurilor S_3 și S_4 . Construiți diagramele Hasse ale laticelor subgrupurilor lui S_3 şi S_4 .

P 85. În grupul S_3 considerăm subgrupurile $H_1 = \langle (1,2) \rangle$ și $H_2 = \langle (1,2,3) \rangle$. Determinați $(S_3/H_1)_s, (S_3/H_1)_d, (S_3/H_2)_s,$ $(S_3/H_2)_d$.

P 86. Arătați că dacă (G,\cdot) este un grup, iar $H \leq G$ are [G:H]=2, atunci $(G/H)_s=(G/H)_d$.

P 87. Arătați că:

- a) $S_n = \langle (i, i+1) | i = \overline{1, n-1} \rangle;$
- b) $S_n = \langle (1, i) | i = \overline{2, n} \rangle;$
- c) $S_n = \langle (1,2), (1,2,\ldots,n-1,n) \rangle;$
- d) $S_n = \langle (1, 2), (2, 3, \dots, n-1, n) \rangle;$
- e) $S_n = \langle (1, 2, \dots, n-1), (1, 2, \dots, n-1, n) \rangle;$ f) $A_n = \langle (i, j, k) | 1 \le i < j < k \le n \rangle;$
- g) $A_n = \langle (1,2,i) | i = \overline{3,n} \rangle$.
- **P 88.** a) Arătați că elementele grupului altern A_5 au formele id, (i,j)(k,l), (i,j,k), sau (i,j,k,l,m).
- b) Arătați că A_5 conține 20 de 3-cicluri, 24 de 5-cicluri și 15 produse de câte două transpoziții disjuncte.
- **P 89.** Fie $\sigma = (1, 2, \dots, m)$. Arătați că
- a) σ^k este un ciclu de lungime m dacă și numai dacă (k, m) = 1.
- b) Dacă (k, m) = d, atunci σ^k este un produs de d cicluri de lungimi egale.
- **P 90.** Fie $p, q, r, s \in S_8$ permutările date de următoarele produse de cicluri:

$$p = (1, 4, 3, 8, 2)(1, 2)(1, 5),$$
 $q = (1, 2, 3)(4, 5, 6, 8),$ $r = (1, 2, 8, 7, 4, 3)(5, 6),$ $s = (1, 3, 4)(2, 3, 5, 7)(1, 8, 4, 6).$

Calculați qpq^{-1} și $r^{-2}sr^2$.

P 91. Determinați numărul permutărilor $\sigma \in S_n$ ale căror descompuneri în cicluri disjuncte conțin k_1 cicluri de lungime $1, k_2$ cicluri de lungime $2, \ldots, k_n$ cicluri de lungime n.

P 92. Arătați că grupul altern A_n poate fi generat de ciclurile

- a) (1, 2, 3) și (1, 2, 3, ..., n) dacă n este impar.
- b) (1,2,3) şi (2,3,...,n) dacă n este par.
- **P 93.** Fie $m, n \in \mathbb{N}^*$ cu m < n-1 și $G = \langle \sigma_{m+1}, \sigma_{m+2}, \dots, \sigma_n \rangle \leq S_n$, unde

$$\sigma_{m+1} = (1, 2, \dots, m, m+1), \quad \sigma_{m+2} = (1, 2, \dots, m, m+2), \quad \dots, \quad \sigma_n = (1, 2, \dots, m, n).$$

Arătați că $G = S_n$ dacă m este impar, respectiv $G = A_n$ dacă m este par.

11.4 Acțiuni de grupuri

P 94. Arătați că aplicația $\alpha: G \times G \longrightarrow G: (x,g) \longmapsto g^{-1}xg$ definește o acțiune la dreapta a grupului G pe propria sa multime-suport, actiunea prin conjugare.

P 95. Arătați că pentru acțiunea prin conjugare a unui grup G pe el însuși.

$$Stab_G(x) = C_G(x)$$
 , $(\forall) x \in G$.

P 96. Fie (G, \cdot) un grup finit, iar \mathcal{K} un sistem de reprezentanți ai claselor sale de conjugare. Arătați că

- 2) $|G| = |Z(G)| + \sum_{x \in K \setminus Z(G)} [G : C_G(x)].$

P 97. Fie $H \leq G$ şi $\alpha: G \times (G/H)_s \longrightarrow (G/H)_s: (g,xH) \longmapsto gxH$. Arătați că α este o acțiune și determinați $Stab_G(xH)$.

P 98. Fie X o mulțime nevidă și $G \leq S_X$. Arătați că $\alpha: G \times X \longrightarrow X: (x, f) \longmapsto f(x)$ este o acțiune a grupului G pe multimea X.

P 99. Arătați că $\alpha: \mathcal{P}^*(G) \times G \longrightarrow \mathcal{P}^*(G): (A,g) \longmapsto A^g (:=g^{-1}Ag)$ este o acțiune la dreapta a grupului G pe mulțimea $\mathcal{P}^*(G)$ a submulțimilor sale nevide.

P 100. Fie $\alpha: M \times G \longrightarrow M$ o acțiune la dreapta a unui grup G pe o mulțime $M, x \in M, g \in G$ și $y = x \cdot g$. Arătați că

$$Stab_G(y) = Stab_G(x)^g$$

P 101. Fie $p \in \mathbb{N}^*$ un număr prim, iar G un grup finit. Grupul G se numește p-grup dacă există $n \in \mathbb{N}$, astfel încât $|G| = p^n$. Arătați că dacă G este un p-grup netrivial, atunci $Z(G) \neq 1$.

P 102. Arătați că orice grup de ordin p^2 , unde p este un număr prim, este abelian.

P 103. Fie (G, \cdot) un grup neabelian de ordin p^3 , unde p este un număr prim, iar k(G) numărul claselor sale de conjugare. Arătați că

$$k(G) = p^2 + p - 1.$$

- **P 104.** Determinați clasele de conjugare ale grupului cuaternionilor Q_8 .
- **P 105.** Determinați clasele de conjugare ale grupului diedral D_n .
- **P 106.** (teorema lui Cauchy) Fie (G,\cdot) un grup finit, iar $p \in \pi(G)$. Arătați că există $x \in G$ cu |x| = p.
- **P 107.** Fie (G,\cdot) un grup finit și $H \leq G$. Arătați că
- $1)\ |\ \bigcup\ H^g| \leq |G| [G:H] + 1$
- $\bigcup_{g \in G} H = G \iff H = G.$ 2) $\bigcup_{g \in G} H^g = G \iff H = G.$

P 108. Fie $\sigma \in S_n$ o permutare a cărei descompunere în cicluri disjuncte este formată din k_1 cicluri de lungime 1, k_2 cicluri de lungime $2, \ldots, k_n$ cicluri de lungime n. Arătați că

$$|\sigma^{S_n}| = \frac{n!}{k_1! k_2! \dots k_n! \cdot 1^{k_1} 2^{k_2} \dots n^{k_n}}.$$

P 109. Determinați ecuația claselor pentru fiecare dintre grupurile S_4 , A_5 , S_5 , A_6 și S_6 . Arătați că A_5 este un grup $simplu(i.e. singurele sale subgrupuri normale sunt 1 si <math>A_5)$.

11.5Inele și corpuri

P 110. Care dintre următoarele algebre universale sunt inele, inele comutative, inele unitare, inele fără divizori ai lui zero, corpuri?

- a) $(\mathbb{Z}, +, \cdot), (2\mathbb{Z}, +, \cdot);$
- b) $(\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot);$
- c) $(\mathbb{Z}_n, +, \cdot);$
- d) $(\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}, +, \cdot);$
- e) $(\mathbb{Z}[i] = \{a + b \ i | \ a, b \in \mathbb{Z}\}, +, \cdot);$
- f) $(\mathcal{M}_n(\mathbb{Z}), +, \cdot);$
- g) $(\mathcal{P}(M), \Delta, \cap)$;
- h) $(\mathbb{Z} \times \mathbb{Z}, \oplus, \odot)$, unde $(a, b) \oplus (c, d) := (a + c, b + d)$, $(a, b) \odot (c, d) := (ac + bd, ad + bc)$.

P 111. Fie (G, +) un grup abelian și $End(G) = \{f : G \longrightarrow G | f - \text{endomorfism al grupului } G\}$. Definim o operație de adunare pe End(G) prin $a^{f+g} := a^f + a^g$, $(\forall)a \in G$, $f,g \in End(G)$. Arătați că $(End(G),+,\circ)$ este un inel unitar.

P 112. Fie

$$C = \left\{ A \in \mathcal{M}_2(\mathbb{R}) | A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a, b \in \mathbb{R} \right\}.$$

Arătați că $(\mathcal{C}, +, \cdot)$ este un corp izomorf cu $(\mathbb{C}, +, \cdot)$.

P 113. Fie

$$\mathcal{H}_1 = \left\{ A \in \mathcal{M}_2(\mathbb{C}) | A = \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}, z, w \in \mathbb{C} \right\}.$$

Arătați că $(\mathcal{H}_1, +, \cdot)$ este un inel cu diviziune necomutativ (i.e., un corp strâmb).

P 114. Fie

$$\mathcal{H}_2 = \left\{ A \in \mathcal{M}_4(\mathbb{R}) | A = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix}, a, b, c, d \in \mathbb{R} \right\}.$$

- a) Pentru $A \in \mathcal{H}_2$, calculați det(A).
- b) Arătați că $\mathcal{H}_2 \leq \mathcal{M}_2(\mathbb{R})$ și că $(\mathcal{H}_2, +, \cdot)$ este un corp strâmb.
- c) Arătați că $\mathcal{H}_2 \cong \mathcal{H}_1$.

P 115. Fie $(R, +, \cdot)$ un inel și $a \in R$ un element cu proprietatea că există $b \in R \setminus \{0\}$, astfel încât aba = 0. Arătați că $a \in D(R)$.

- **P 116.** Fie $(R, +, \cdot)$ un inel fără element unitate și $S \leq R$, astfel încât S are element unitate. Arătați că $D(R) \neq \{0\}$.
- **P 117.** Fie $(R, +, \cdot)$ un inel în care există un unic element unitate la stânga 1_s . Arătați că inelul R este unitar.
- **P 118.** Fie $(R, +, \cdot)$ un inel finit în care există elemente $a \in R \setminus D_s(R)$ și $b \in R \setminus D_d(R)$. Arătați că inelul R este unitar.
- **P 119.** Fie $(R, +, \cdot)$ un inel finit în care există un element $a \in R \setminus D(R)$. Arătați că
- a) R este unitar;
- b) $R = U(R) \cup D(R)$.
- **P 120.** Fie $(R, +, \cdot)$ un inel nenul finit fără divizori ai lui zero. Arătați că R este inel cu diviziune.
- **P 121.** $U(\mathbb{Z}_n) = \{\hat{k} \in \mathbb{Z}_n | (k, n) = 1\}.$
- **P 122.** Fie $(R, +, \cdot)$ un inel unitar și $a \in R$ cu proprietatea că există un invers la stânga $b \in R$ al elementului a care nu este și invers la dreapta.
- a) Arătați că a nu este inversabil la dreapta.
- b) Dacă $L_a \subseteq A$ este mulțimea inverselor la stânga ale elementului a, arătați că funcția

$$\varphi: L_a \longrightarrow L_a: t \longmapsto at + b - 1$$

este injectivă, dar nesurjectivă.

- c) Deduceți că mulțimea L_a este infinită.
- **P 123.** Fie $(R, +, \cdot)$ un inel unitar finit. Arătați că un element al său este inversabil la stânga dacă și numai dacă este inversabil la dreapta.
- **P 124.** Fie $(R, +, \cdot)$ un inel unitar, iar $a, b \in R$, astfel încât $1 ab \in U(R)$. Arătați că $1 ba \in U(R)$.
- **P 125.** Fie $(R, +, \cdot)$ un inel unitar, iar $e \in I(R)$ un element idempotent. Arătați că $1 e \in I(R)$.
- **P 126.** Fie $(R, +, \cdot)$ un inel, iar $e, f \in I(R)$ două elemente idempotente ortogonale(i.e., cu ef = fe = 0). Arătați că $e + f \in I(R)$.
- **P 127.** Fie $n \in \mathbb{Z}$, cu $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$. Arătați că $|I(\mathbb{Z}_n)| = 2^r$.
- **P 128.** Fie $(R, +, \cdot)$ un inel cu proprietatea că $x^2 = x$, $(\forall)x \in R$. Arătați că R este comutativ.
- **P 129.** Fie $(R, +, \cdot)$ un inel cu proprietatea că $x^6 = x$, $(\forall)x \in R$. Arătați că R este comutativ.
- **P 130.** Fie $(R, +, \cdot)$ un inel cu proprietatea că $x^2 x \in Z(R)$, $(\forall)x \in R$. Arătați că R este comutativ.
- **P 131.** Fie $(R, +, \cdot)$ un inel cu proprietatea că $(x + y)^2 = x^2 + y^2$, $(\forall)x, y \in R$. Arătați că R este comutativ.
- **P 132.** Fie $n \in \mathbb{Z}$, cu $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$. Determinați $N(\mathbb{Z}_n)$.
- **P 133.** Fie $(R, +, \cdot)$ un inel comutativ. Arătați că $N(R) \subseteq R$.
- **P 134.** Fie $(R, +, \cdot)$ un inel unitar și $x \in N(R)$. Arătați că $1 x, 1 + x \in U(R)$.
- **P 135.** Fie $(R, +, \cdot)$ un inel unitar comutativ, $u \in U(R)$ și $x \in N(R)$. Arătați că $u + x \in U(R)$.

P 136. Fie $(R,+,\cdot)$ un inel comutativ fără elemente nilpotente (i.e., N(R)=0). Dacă $x,y\in R$ sunt elemente cu proprietatea că $x^2 = y^2$ și $x^3 = y^3$, arătați că x = y.

P 137. Fie $(R, +, \cdot)$ un inel. Arătați că

$$N(R) = 0 \iff [(\forall)x \in R : x^2 = 0 \iff x = 0].$$

P 138. Fie $(R,+,\cdot)$ un inel cu (N(R)=0. Arătați că

- a) $(\forall)a,b \in R : ab = 0 \iff ba = 0.$
- b) $I(R) \subseteq Z(R)$.
- **P 139.** Fie $(R, +, \cdot)$ un inel cu proprietatea că $x^4 = x$, $(\forall)x \in R$. Arătați că R este comutativ.
- **P 140.** Fie $(R, +, \cdot)$ un inel cu proprietatea că $x^3 = x$, $(\forall)x \in R$. Arătați că R este comutativ.

11.6 Serii formale şi polinoame

P 141. Fie $(R,+,\cdot)$ un inel unitar comutativ. Dacă $f=\sum_{n=0}^{\infty}a_{n}X^{n}$, arătaţi că

$$f \in U(R[[X]]) \iff a_0 \in U(R)$$
.

- **P 142.** Calculați inversa seriei $1 X \in \mathbb{R}[[X]]$.
- **P 143.** Determinați dezvoltările în serie de puteri ale lui x ale funcțiilor $\frac{1}{1-x}$, $\frac{1}{1+x}$, $\frac{1}{(1-x)^2}$, ln(1+x), $ln\left(\frac{1+x}{1-x}\right)$, $\frac{1}{1+x^2}$ arctg(x).

P 144. Arătați că

- a) $ln(2) = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n} + \dots$ b) $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots + \frac{(-1)^{n-1}}{2n-1} + \dots$

P 145. Demonstrați identitățile:

- a) $(1+X)(1+X^2)(1+X^4)\dots(1+X^{2^n})\dots = 1+X+X^2+X^3+\dots+X^n+\dots$ b) $(1+X+X^2+\dots+X^9)(1+X^{10}+X^{20}+\dots+X^{90})\dots(1+X^{10^n}+X^{2\cdot 10^n}+\dots+X^{9\cdot 10^n})\dots = 1+X+X^2+X^3+\dots+X^n+\dots$
- P 146. a) Demonstrați identitatea

$$(1+X)(1+X^2)(1+X^3)\dots(1+X^n)\dots = \frac{1}{1-X}\cdot\frac{1}{1-X^3}\cdot\frac{1}{1-X^5}\cdot\dots\cdot\frac{1}{1-X^{2n-1}}\cdot\dots$$

- b) Fie $n \in \mathbb{N}^*$ un număr natural nenul oarecare. Arătați că numărul de moduri în care se poate scrie n ca sumă de numere naturale nenule distincte este egal cu numărul de moduri în care se poate scrie n ca sumă de numere naturale impare(nu neapărat distincte).
- P 147. Determinați funcția generatoare pentru șirul numerelor lui Fibonacci, definit de relațiile

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$, $(\forall) n \in \mathbb{N}, n \ge 2$.

P 148. Determinați funcția generatoare pentru șirul numerelor lui Catalan, definit de relațiile

$$T_0 = 0$$
, $T_1 = 1$, $T_n = T_1 \cdot T_{n-1} + T_2 \cdot T_{n-2} + \dots + T_{n-1} \cdot T_1$, $(\forall) n \in \mathbb{N}, n \ge 2$.

P 149. Fie $(R, +, \cdot)$ un inel unitar comutativ și $f = a_0 + a_1 X + \cdots + a_n X^n \in R[X]$. Arătați că

$$f \in N(R[X]) \iff a_0, a_1, \dots, a_n \in N(R)$$
.

P 150. Fie $(R, +, \cdot)$ un inel unitar comutativ și $f = a_0 + a_1 X + \cdots + a_n X^n \in R[X]$. Arătați că

$$f \in U(R[X]) \iff a_0 \in U(R), a_1, \dots, a_n \in N(R)$$
.

- **P 151.** Dacă $(R, +, \cdot)$ un inel integru, arătați că U(R[X]) = U(R).
- **P 152.** Dacă $(\mathbb{K}, +, \cdot)$ este un corp, arătați că $U(\mathbb{K}[X]) = \mathbb{K} \setminus \{0\}$.
- **P 153.** Fie $(R, +, \cdot)$ un inel unitar comutativ fără elemente nilpotente și $f = a_0 + a_1 X + \cdots + a_n X^n \in R[X]$. Arătați că

$$f \in D(R[X]) \iff (\exists)b \in R \setminus \{0\} : a_i \cdot b = 0, \ (\forall)i = \overline{0,n}.$$

- **P 154.** Determinați polinoamele ireductibile de grad cel mult 5 din $\mathbb{Z}_2[X]$.
- **P 155.** Determinați polinoamele monice ireductibile de grad cel mult 3 din $\mathbb{Z}_3[X]$.