STERIBOT

YOUR GUARDIAN OF PURITY IN THE BATTLE OF GERMS

TEAM MEMBERS

FARIDA AMR

20P6363

HANYA HOSSAM

20P3687

SALMA AMR

20P4526

AHMED HASSABOU

19P4007

MOSTAFA SALEH

20P4538

MOHAMED MOHANNA

19P6218

TABLE OF CONTENTS

01

Project Plan

02

Design

Recap

03

Calculations and

Analysis

04

Simulation

Progress

05

Process

Flow

0-0-0-0-0

Project Gantt Chart

TASK	PROGRESS	START	END	DAYS
Learning Phase				
Project Kickoff	100%	9/2/24	10/2/24	2
Task Decision	100%	11/2/24	14/2/24	4

CAD Design				
Chassis and Wheels Fixation	100%	16/2/24	17/2/24	2
Body Design	100%	17/2/24	18/2/24	2
Design Revision	100%	19/2/24	20/2/24	2
Actuator Sizing	100%	21/2/24	22/2/24	2
Presentation Preparation	100%	23/2/24	23/2/24	1

Simulation				
Environment Building	100%	24/2/24	26/2/24	3
Line Follower Simulation	100%	27/2/24	2/3/24	5
Obstacle Avoidance Simulation	100%	2/3/24	5/3/24	4
Vision Module Simulation	50%	6/3/24	9/3/24	4
2nd Task Simulation	0%	10/3/24	13/3/24	4
Submission Preparation	100%	13/3/24	15/3/24	3
Simulation Revision	100%	14/3/24	14/3/24	1

Hardware					
Chassis	100%	24/2/24	24/2/24	1	
Shafts	100%	25/2/24	25/2/24	1	
Body 3D Printing	40%	26/2/24	2/3/24	6	
Miscellaneous 3D Printing	100%	1/3/24	2/3/24	2	
Assembly	0%	17/3/24	20/3/24	4	

Software					01
Open Loop Control For Wheels	0%	21/3/24	25/3/24	5	Project Plan
Raspberry PI Startup	0%	26/3/24	28/3/24	3	
Closed Loop Control For Wheels	0%	29/3/24	1/4/24	4	
Line Follower Control	0%	1/4/24	4/4/24	4	
Obstacle Avoidance Module	0%	5/4/24	9/4/24	5	
Vision Module	0%	10/4/24	15/4/24	6	
Email Module	0%	16/4/24	19/4/24	4	
Major Task Submission Preparation	0%	16/4/24	19/4/24	4	
IoT Module	0%	20/4/24	27/4/24	8	
Overall Functionality Revision	0%	28/4/24	2/5/24	5	
Testing For Corner Cases	0%	3/5/24	10/5/24	8	
Final Submission and Poster Preparation	0%	10/5/24	12/5/24	3	
GUI	0%	21/3/24	27/4/24	38	

O2
Design
Recap

CAD

Design

Electrical

O2Design Recap

Roll Calculations

```
03
Calculations & Analysis
```



```
% Roll Calculations
% Variables
       = 4.13419
Mass
                  ; % L
       = 215.02
                             ==> Wheel base
               ; % L1
L1
       = 107.35
                             ==> Rear wheel to Cg
       = 107.67
                  ; % L2
L2
                             ==> Front wheel to Cg
       = 9.81
                     % g
g
                             ==> Acceleration due to gravity
       = 59.78
                     % hcg
                             ==> Height of Cg
hcg
       = 350
                             ==> Wheel track
                      % W
```


 $\begin{array}{c} \\ \\ \end{array}$

Roll Calculations

```
O3
Calculations
& Analysis
```

```
% Stability in the longitudinal direction
% Static weight
Nr = Mass * q * L2 / L; % Nr ==> Reaction on rear wheel
Nf = Mass * g * L1 / L; % Nf ==> Reaction on front wheel
% Weight transfer in the longitudinal direction
                       % a ==> Max acceleration without flipping
syms a ;
                       % Nfd ==> Static Weight + Weight transfer
syms Nfd;
syms Nrd;
                       % Nrd ==> Static Weight - Weight transfer
% Taking moment about front wheel
Nrd = Nr + Mass * a * hcg / L;
% Taking moment about front wheel
Nfd = Nf - Mass * a * hcg / L;
% Longitudinal roll over condition
a = vpasolve(Nfd == 0 , a);
```


Roll Calculations

```
O3
Calculations
& Analysis
```

```
% Stability in the lateral direction
% Static weight
Nout = Mass * q / 2; % Nout ==> Reaction on outer wheel
Nin = Mass * q / 2; % Nin ==> Reaction on inner wheel
% Weight transfer in lateral direction
                      % v ==> Max velocity without turning over a certain ¥
syms v ;
corner
                      % No ==> Static Weight + Weight transfer
syms No ;
                      % Ni ==> Static Weight - Weight transfer
syms Ni ;
R = 0.3;
                      % R ==> Corner radius
% Taking moment about inner wheel
No = Nout + Mass * v^2 * hcg / W / R;
% Taking moment about front wheel
Ni = Nin - Mass * v^2 * hcg / W / R;
% Lateral roll over condition
v = max(vpasolve(Ni == 0 , v));
```

Roll Calculations

O3
Calculations
& Analysis

MATLAB Variable: a Page 1
Mar 1, 2024 5:33:10 AM

val =

17.616318166610905824350091179247

MATLAB Variable: v Mar 1, 2024

Page 1 5:33:28 AM

val =

2.9351898709375401163780432476832

Actuator Sizing SW

Actuator Sizing SW

O3
Calculations & Analysis

Actuator Sizing SW

O3
Calculations
& Analysis


```
% Actuator Sizing
% Constants
Rw
         0.0325; % Wheel Radius
Miu r
       = 0.04;
                  % Coefficient of rolling resistance
          1.0335; % Total Mass per wheel
          9.81; % Acceleration due to gravity
q
          0.27; % Coefficient of drag (Assumed)
Cd
Ro air = 1.2; % Density of air
Αf
          0.031; % Frontal area
          0.2;
V
                  % Robot Velocity
       = 3.87e-5;% Wheel Inertia
Jwheel
          2.59e-7:% Shaft Inertia
Jshaft =
       = 0.25; % step time
eta
         0.9;
                  % Efficiency
Miu f
           0.3;
                  % Coefficient of friction
```

03

Calculations & Analysis


```
O3
Calculations
& Analysis
```

```
% Formulas
Teffort max = Miu f * M * g;
Rr
   = Miur * M * g;
   = (1/2) * Cd * Af * Ro air * (V^2);
Tr
   = (Rr + Ra) * Rw;
Jload eff = (Jwheel / eta) + ( Jshaft / eta);
Jlinear eff = M * (Rw^2);
Jmotor = Jload eff;
Jtotal = Jmotor + Jload eff + Jlinear eff;
alpha 1 = ((V/Rw) / t);
Tm
       = Tr + (Jtotal * alpha 1);
Teffort = Tm / Rw;
Tm pos acc = Tr + (Jtotal * alpha 1);
Tm zero acc = Tr;
Tm neg acc = Tr + (Jtotal * -alpha 1);
Tm_rms = sqrt(((Tm_pos_acc^2)*t) + ((Tm_zero_acc^2)*2*t) + ((Tm_neg_acc^2) \checkmark
*t));
```


03

Calculations & Analysis

O3
Calculations
& Analysis

0.0244

Bearing Selection

```
% Bearing Selection
% Variables
Mt = 0.044;
                         ==> Wheel Mass
                  % Mt
g = 9.81;
                 % g
                        ==> Acceleration due to gravity
L1 = 22.5;
                      ==> Distance between wheel and bearing 1
                % L1
L2 = 21
                 % L2
                       ==> Distance between bearing 1 and bearing 2
L = L1 + L2;
                 % L
                         ==> Distance between bearing 1 and wheel
% Measuring reaction on bearing in the vertical plane
                % Bx1 ==> Reaction force on bearing 1
syms Bx1;
                % Bx2 ==> Reaction force on bearing 2
syms Bx2;
% Taking moment about bearing 1
Mb1 = Mt * q * L - Bx2 * L2;
Bx2 = vpasolve(Mb1 == 0, Bx2);
% Taking moment about bearing 2
Mb2 = Mt * q * L1 - Bx1 * L2;
Bx1 = abs(vpasolve(Mb2 == 0, Bx1));
% No force in the horizontal plane
Bv1 = 0;
                % By1 ==> Reaction force on bearing 1 in the horizontal plane
                 % By2 ==> Reaction force on bearing 2 in the horizontal plane
응응응응용
% So the reaction force on each bearing will be the vertical plane forces
88888
```

O3

Calculations & Analysis

Bearing Selection

```
% From strandard
X = 1:
Y = 0;
Co = 5.2;
                  % Co
                          ==> Maximum static load the bearing can handle
V = 1;
                  % V
                         ==> Constant depend on whether the shaft is fixed or &
rotating
% Calculate bearing rev per million life B
Lh = 10000;
                 % Lh ==> Number of bearing working hours
N = 100;
                 % N ==> the shaft rotational speed in rpm
B = Lh * N * 60 / 10 ^ 6;
% Bearing 1 calculation
Fr1 = sqrt(Bx1^2 + By1^2); % Radial force on bearing 1
Fa1 = 0;
                         % axial force on bearing 1
Fe1 = X * V * Fr1 + Y * Fa1;
C1calc = Fe1 * (B^{(1/3)}) % calculate static load on bearing 1
if (C1calc < Co)
   disp('Bearing 1 Valid!')
else
   disp('Invalid Bearing 1 Selection!')
end
% Clcalc < Co ==> bearing is suitable
```

03

Calculations & Analysis

Bearing Selection

```
O3
Calculations
& Analysis
```


HHHHH

Bearing Selection

>> Bearing_Selection

C1calc =

1.8105144306794230842694304328688

Bearing 1 Valid!

C2calc =

>>

3.5003278993135515088276269272797

Bearing 2 Valid!

03

Calculations & Analysis

Wheel Shaft

A shaft with $\Phi 8$ is selected for the critical area

Length [mm]

Chassis Analysis

Calculations & Analysis

Chassis Analysis

O3
Calculations & Analysis

Chassis Analysis

O3
Calculations
& Analysis

Chassis Analysis

03

Calculations & Analysis

O4 Simulation Progress

Environment

04

Simulation Progress

Model Importing

Q4Simulation Progress

Sensors Insertion

Q4Simulation Progress

Simulation Video

Software Architecture

ROS Architecture

Components Architecture

Logic Flow

Perception MCU Flow

Control MCU Flow

Master Flow

-0-0-0-0-0

Extra Details ??

05 Process Flow

That's
It For
Today