Abhranil Mitra

SLOT: A2/TA2

SCHOOL OF MECHANICAL ENGINEERING

CONTINUOUS ASSESSMENT TEST - I

WINTER SEMESTER 2022-2023

Programme Name & Branch: B.Tech & Mechanical

Course Code: BMEE211L

Course Name: Engineering Optimization

Faculty Name(s): S.G. PONNAMBALAM, SUDHAKARA PANDIAN R, SIVAPRASAD DARLA, SOUMEN PAL

Emp.ID(s): 17048, 16099, 10251, 12538

Contact Number(s): 9841237976, 9384181977, 9486463612, 8148095638

 $Email(s): \underline{ponnambalam.g@vit.ac.in}, \underline{sudhakarapandian.r@vit.ac.in}, \underline{sivaprasaddarla@vit.ac.in}, \underline{sivaprasaddarla@vit.a$

soumenpal@vit.ac.in

Class Number(s): VL2022230500955, 950, 953, 959

Exam Duration: 90 minutes

Maximum Marks: 50

General instruction(s):

Q.No	Question	Marks
1/	A firm can produce three types of clothes say, A,B and C. Three kinds of wool are required for it say red, green and blue. One unit length of type Acloth needs 2 yard of red wool and 3 yards of blue; one unit length of type B cloth needs 3 yards of red wool, 2 yards of green and 2 yards of blue; and one unit length of type C needs 5 yards of green and 4 yards of blue wool. The firm has a stock of only 8 yards of red wool, 10 of green 15 of blue. It is assumed that the income obtained from one unit length of type A is Rs.3, of type B cloth is Rs.5 and of type C cloth is Rs.4. Formulate LPP.	10
2.	Use graphical method to solve the following problem:	10

	subject to	(1 + 2x ₂	\$						
		$2x_1 - 3x_2$							
		$(1 + X_2 \ge$							
		(1, X ₂ ≥ (
		2, 1,2 = 1							
1									
<i>/</i> 5.	Use Big M meth	od to	solve Lii	near P	rograi	mming			
	riobiem.					6			
	Minimize $Z = 4$	$x_1 + x_2$							
	Subject to $3x_1 +$	$x_2 = 3$					10	,	4
	4x ₁ +	$3x_2 \ge 6$	j				10	1	7
	$x_1 + 2$	2x ₂ ≤ 3							
	X ₁ , X ₂	2 ≥ 0							
4.	A transportatio	n prob	lem inv	olving	three	sources			
/	and four destin	ations	is show	n in ta	able be	elow.			
	The cell entries	repres	ent the	cost	of				
	transportation					al			
	basicfeasible so	olution	using fo	ollowi	ng				
	methods.		_						
	V		Corner	Rule	(4)				
	ii) VAN	1		1	(6)	Ţ	10	2	4
	Destination/	D1	D2	D3	D4	SUPPLY			
	Source								
	S1	3	2	7	6	50			
	S2	7	5	2	3	60			
	S3	2	5	4	5	25			
· ,,,,,,,	DEMAND	60	40	20	15		TO C NO. 17.5		
5/	Find the optim	al solu	tion for	the t	ranspo	ortation			
/	problem given	in Que	stion N	lo: 4 u	sing N	/IODI			
	الم ما						10	2	5
	Lica the Initial	Basic F	easible	Soluti	ion ob	tained by			
	Vogel's Approx	kimatio	n Meth	nod.					
	1060.5.41								

*****End of Question Paper****

SCHOOL OF MECHANICAL ENGINEERING CONTINUOUS ASSESSMENT TEST - I

WINTER SEMESTER 2022-2023

SLOT:A1+TA1

Programme Name & Branch

Course Code Course Name

Faculty Name(s)

: B.Tech & Mechanical

:BMEE211L

:Engineering Optimization Engineering Option G, Dr. Mohankumar K V, Dr.

: Dr. Rajyaiakshini oʻ, RavitejaBuddala, Dr.John Rajan A, Dr. DegaNagaraju

:VL2022230500946,0947, 0944, 0948

Max. Marks:50

Class Number(s)

General instruction(s): Answer All Questions

Graph Sheets required

	Question	Marks
- 1	A factory produces four different products, and that the daily produced amount of the first product is x_1 , the amount produced of the second product is x_2 , and so on. The profit per unit of product is \$20, \$12, \$40, and \$25 for the first, second, third, and fourth product, respectively.	
	 Due to manpower constraints, the total number of units produced per day can' exceed fifty. For each unit of the first product, three units of the raw material "A" ar consumed. Each unit of the second product requires two units of the raw material "A" and one unit of the raw material "B". Each unit of the third product needs one unit of "A" and two units of "B". Finally, each unit of the fourth product. 	e w
	 Trequires three units of "B". Due to the transportation and storage constraints, the factory can consume up to one hundred units of the raw material A and ninety units of "B" per day. Formulate LPP. 	1
+	Solve the following LPP using Graphical Approach	
	Minimize: Z = 5 X ₁ + 8 X ₂ Subject to:	
	3 X ₁ + 2 X ₂ ≥ 3	
	X_1+4 $X_2 \ge 4$	
		10
	$X_1 \ge 0$, $X_2 \ge 0$	
- 1		

SCHOOL OF MECHANICAL ENGINEERING CONTINUOUS ASSESSMENT TEST - I

WINTER SEMESTER 2022-2023

SLOT:A1+TA1

3.	Find the optimal solution for the given LPP using Big M Method.							
	Minimize Subject to		1 + 2 X ₂					10
	2 X	1 + X2≤ 2	2					
	3	X1+4 X2	≥ 12					
							- 1	
	Find the	≥0,X ₂ ; initial b	asic feasib	le solutio	n of the g	riven transportation	problem using	
· ·	Find the	initial b	asic feasib	le solutio od and Vo	n of the g gel's Appr	given transportation oximation method.	problem using	7
99	Find the North Wes	initial b st Corne D1	asic feasib r rule meth	D3	gel's Appr	oximation method.	problem using	10
•	Find the North Wes	initial b st Corne D1	asic feasib r rule meth D2	od and Vo	D4	Capacity Capacity	problem using	10
	Find the North Wes	initial b st Corne D1	asic feasib r rule meth	D3	D4	Capacity 7	problem using	10