SC 617

Quiz-Week2

Gyandev Satyaram Gupta, 190100051

1. Consider a scalar valued function, f(t), that is $f(\cdot): \mathbb{R} \to \mathbb{R}$. Suppose f(t) is bounded from below and non-increasing. Then f(t) has a finite limit as $t \to \infty$. What is the finite limit?

Solution: Since f is bounded from below, its infimum f_m exists, i.e.,

$$f_m = inf_{0 < t < \infty} f(t)$$

which implies that there exists a sequence $\{t_n\} \in \mathbb{R}^+$ such that $\lim_{n\to\infty} f(t_n) = f_m$. This, in turn, implies that given any $\epsilon_0 > 0$ there exists an integer N > 0 such that

$$|f(t_n) - f_m| < \epsilon_0, \forall n \ge N$$

Because f is nonincreasing, there exists an $n_0 \ge N$ such that for any $t \ge t_{n_0}$ and some $n_0 \ge N$ we have

$$f(t) \le f(t_{n_0})$$

and

$$|f(t) - f_m| \le |f(t_{n_0}) - f_m| < \epsilon_0$$

for any $t \ge t_{n_0}$. Because $\epsilon_0 > 0$ is any given number, it follows that $\lim_{t \to \infty} f(t) = f_m$.

2. What is the definition of uniformly continuous?

Solution: A function $f:[0,\infty) \mapsto \mathbb{R}$ is uniformly continuous on $[0,\infty)$ if for any given $\epsilon_0 > 0$ there exists a $\delta(\epsilon_0)$ such that $\forall t_0, t \ [0,\infty)$ for which

$$|t - t_0| < \delta(\epsilon_0)$$

we have

$$|f(t) - f(t_0)| < \epsilon_0$$

3. If you have $\dot{\mathbf{e}}_1 = e_2$

$$\dot{\mathbf{e}}_2 = -k_1(t)e_1 - k_2(t)e_2$$

Can you prove convergence of $e_1, e_2 \to 0$ as the case discussed in class. Any additional assumption state it.

Solution: Assume that \dot{k}_1 is ≤ 0

 $k_1, k_2 > 0 \& bounded$

 \dot{k}_1 and \dot{k}_2 are bounded

Define an Energy Functional V(t) = $\frac{k_1(t)e_1^2(t)}{2} + \frac{e_2^2(t)}{2} \ge 0$

¹Ref. P. Ioannou and J. Sun, Robust Adaptive Control, Upper Saddle River, NJ: Prentice Hall 1996

$$\dot{ ext{V}} = k_1 e_1 \dot{ ext{e}}_1 + rac{k_1 e_1^2}{2} + e_2 e_2 \ \dot{ ext{V}} = k_1 e_1 \dot{ ext{e}}_1 + rac{k_1 e_1^2}{2} + e_2 (-k_1 e_1 - k_2 e_2) \ \dot{ ext{V}} = rac{\dot{ ext{k}}_1 e_1^2}{2} - k_2 e_2^2 \le 0$$

Lets use Barbalat's Lemma, to prove that as $t \to \infty$, $e_1 \to 0$, and, $e_2 \to 0$. Proof:

- 1. Since V (t) is lower bounded (V0) and non-increasing (V(t) \leq 0), implies that $V_{\infty} := \lim_{t \to \infty} V(t) < \infty$ (i.e. the limit exists).
- 2. $V(t) \leq V(0) \implies V$ is bounded and k_1, k_2 are also bounded $\implies e_1, e_2$ are
- bounded $\implies e_1, e_2 \in L_{\infty}$.

 3. $\int_0^{\infty} \frac{dV}{dt} dt = \int_0^{\infty} \frac{\dot{k}_1 e_1^2}{2} k_2 e_2^2 dt \implies V_{\infty} V(0) = \int_0^{\infty} \frac{\dot{k}_1 e_1^2}{2} k_2 e_2^2 dt \le -\int_0^{\infty} k_2 e_2^2 dt \implies \int_0^{\infty} k_2 e_2^2 dt \le V(0) V_{\infty} \text{ since } k_2 \text{ is lower bounded, take infimum to be } k_2^{inf}, \int_0^{\infty} e_2^2 dt \le (V(0) V_{\infty})/k_2^{inf} \text{ so } ||e_2||_2 \text{ bounded above by a finite quantity } \Rightarrow e_1 \in I$ finite quantity $\implies e_2 \in L_2$
- 4. Since $\dot{\mathbf{e}}_2 = k_2 e_2 k_1 e_1$ and e_1, e_2, k_1, k_2 are bounded $\implies \dot{\mathbf{e}}_2$ is bounded \implies

Now, $e_2 \in L_{\infty} \cap L_2$ and $\dot{e}_2 \in L_{\infty} \implies e_2$ is Uniformly Continuous, then, using the Corollary of Barbalat's Lemma, we can say that $e_2 \to 0$.

5. $\int_0^\infty \frac{de_2}{dt} dt = e_2(\infty) - e_2(0) = -e_2(0) \implies e_2$ is integrable.

Taking derivative of Equation $\dot{e}_2 = -k_1(t)e_1 - k_2(t)e_2 \implies \ddot{e}_2 = -k_1\dot{e}_1 - \dot{k}_1e_1 - \dot{k}_2e_1$ $k_2e_2-k_2\dot{e}_2$, all the term are bounded $\implies \ddot{e}_2 \in L_\infty \implies e_2$ is Uniformly Continuous.

Thus, using the Barbalat's Lemma we can say that $\dot{e}_2 \to 0$.

6. Since $\dot{e}_2 = -k_2 e_2 - k_1 e_1$, & as $t \to \infty, \dot{e}_2 \to 0, e_2 \to 0$ and k_1 and k_2 are bounded $\implies e_1 \to 0$