biphenyl.

2.11 Types of absorption bands

Following types of bands originate as a result of the possible transitions in a compound.

(a) K*-Bands. K-bands originate from a compound containing a conjugated system. Such type of bands arise in compounds like dienes, polyenes, enones etc. K-bands also appear in an aromatic compound which is substituted by a chromophore. The intensity of K-band, is usually more than 10⁴. The K-band absorption due

Table T₂-2. K-band Transitions

Compound	Transition	$(\lambda_{max}m\mu)$	Emax
Butadiene 1.3	$\pi - n^*$	217	21,000
Acrolein**	$\pi - \pi^{\pm}$	210	11,500
Styrene**	$\pi - \pi^*$	214	12,000
Acetophenone	$\pi - \pi^{\ddagger}$	240	13,000
2, 3 dimethyl		9.00	
butadiene	$\pi - \pi^{*}$	226	21,400
Pentadiene 1, 3	$\pi - \pi^*$	223	22,600

^{*}Konjugierte-German.

^{**}For acrolein, styrene, acetophenone etc, bands other than K-bands alro appear,

to onjugated 'enes' and 'enones' are effected differently by changing the polarity of the solvent.

(b) R*band. Such type of bands originate due to $n \rightarrow \pi^*$ trane sition of a single chromophoric group and having at least one lone

Table T2-3. R-band Transitions

Lubie	12	$\lambda_{max}(m\mu)$	\in max
Compound	Transition	279	15
Acetone	n→::*	293	~12
Acetaldehyde	<i>n</i> →=.*	315	14
Acrolein	$n \rightarrow \pi^*$ $n \rightarrow \pi^*$	319	50
Acetophenone	11 -7	320	~14
Methyl Vinyl Ketone	<i>n</i> →::*	909	~ 14
Crotonaldehyde	$n \rightarrow \pi^{\pm}$	322	lled for-

pair of electrons on the hetero atom. R-bands are also called forbidden bands. These are less intense with ∈ max value below 100.

(c) B-band. Such type of bands arise due to $\pi \rightarrow \pi^*$ transition in aromatic or hetero-aromatic molecules. Benzene shows

Table T2-4. B-band Transitions

G-man-d	Transition	$\lambda_{max}(\mathbf{m}\mu)$	Emor
Compound	30 10 c	255	215
Benzene	1 π π × π × π × π × π × π × π × π × π ×	282	450
Styrene	*	262	174
Toluene		270	1450
Phenol	π-π*	278	1110
Acetophenoue	π in the second	280	1500
Benzaldehyde	$\pi - \pi^*$	270	800
Benzoic acid	Charter of the second of	280	1(x)0
Nitro-benzene	MAG 14T	312	289
Naphthalene	* - *		2510
Quinolino	$\pi = \pi^*$	315	4000

absorption peaks between 230-270mm When a chromophoric group is attached to the benzene ring, the B-bands are observed at longer wave-lengths than the more intense K-bands. For example, K-hand appears at $244m\mu$, \in max 12000 and B-band at $282 m\mu$, Emas 450. Out of K, B and R-bands which appear in the spectrum of a aromatic compound, K-band appears at a longer wave-length. For example, in acctophenone R-band $(n \rightarrow \pi^*)$, forbidden) appears at

to onjugated 'enes' and 'enones' are effected differently by changing the polarity of the solvent.

(b) R*band Such type of bands originate due to $n \rightarrow \pi^*$ trane sition of a single chromophoric group and having at least one lone

Table T2-3. R-band Transitions

Compound	Transition	$\lambda_{max}(\mathbf{m}\mathbf{\mu})$	\in max
Acetone	$n \rightarrow \pi^*$	279	15
Acetaldehyde	$n \rightarrow \pi^+$	293	~12
Acrolein	n→=	315	14
Acetophenone	$n \rightarrow \pi^{*}$	319	50
Methyl Vinyl Ketone	n->:-*	320	~14
Crotonaldehyde	$n \rightarrow \pi^{\phi}$	322	~14

pair of electrons on the hetero atom. R-bands are also called forbidden bands. These are less intense with \in_{max} value below 100.

(c) **B-band.** Such type of bands arise due to $\pi \rightarrow \pi^*$ transition in aromatic or hetero-aromatic molecules. Benzene shows

Table T2-4. B-band Transitions

Compound	Transition	$\lambda_{mux}(mu\mu)$	\in max	
Benzene	$\pi - \pi^{*}$	255	215	
Styrene	$\pi - \pi^*$	282	450	
Toluene	$\pi - \pi^{*}$	262	174	
Phenol	$\pi - \pi^{\phi}$	270	1450	
Acetophenone	$\pi - \pi^*$	278	1110	
Benzaldehyde	Vento Hank 70	280	1500	
Benzoic acid	$\pi - \pi^*$	270	800	
Nitro-benzene	$\frac{1}{\pi} - \frac{1}{\pi} $	280	1000	
Naphthalene	1) = + Accepted	312	289	
Quinolino	$\pi - \pi^*$	315	2500	

absorption peaks between $230-270m\mu$ When a chromophoric group is attached to the benzene ring, the B-bands are observed at longer wave-lengths than the more intense K-bands. For example, K-band appears at $244m\mu$, $\in_{max} 12000$ and B-band at $282 m\mu$, $\in_{max} 450$. Out of K, B and R-bands which appear in the spectrum of a aromatic compound, K-band appears at a longer wave-length. For example, in acetophenone R-band $(n \to \pi^*$, forbidden) appears at

^{*}R-band of $n\to\pi^*$ transition is most characteristic for a carbonyl group of aldehyde or ketone. For aldehydes, it usually appears at higher wavelengths compared to a ketone but at lower value of $\in m_{\theta}x$

Ultra-Violet and Visible Spectroscopy

319 mu Emax 50 while K and B-bands appear at 240 and 278 mu.

The fine spectrum of B-band in case of respectively.

- (i) substituted aromatic compounds and
- by the use of polar solvents

___ Fffects

may be missing.

Such bands originate due to the electronic transitions in the benzonoid system of three ethylenic bonds which (d) E-bands. are in closed cyclic conjugation. These are further characterised as

Table T. - 5. E-band Transitions

Compound	E ₁ -band		E ₂ -band	
	λ _{ma} r	\in_{max}	$\lambda_{mg,z}$	Emaz
	(174 µ)		(200 tr)	
Benzene	184	60,000	204	79,00
Naphthalene	221	133,000	286	9,300
Anthracene	256	180,000	375	9,000
	234	10,800	288	760
Pyrrole	~ 270	6,300	~204	600
Thiophene	288	40,000	270	3,162
Quinoline	200	in the late	11 11 11 11	e ot 184 and

E1 and E2-bands, E1 and E2 bands of benzene appear at 184 and 204 mu respectively. E, band which appears at lower wave-length is usually more intense than the E2-band for the same compound which appears at longer wave-length.

Scanned with CamScan

It has been found that increase in polarity of the solvent generally shifts $n\to\pi^*$ and $n\to\sigma^*$ bands to shorter wavelengths and $\pi\to\pi^*$ bands to longer wavelengths.

Following points may also be noted in connection with the effect of solvent polarity on the various types of bands.

- (i) K-band. The K-band absorption due to conjugated 'enes' and 'enones' are effected differently by changing the polarity of the solvent. Usually, K-bands due to conjugated dienes are not effected by changing the polarity of the solvent while these bands due to 'enones' show a red shift by increasing the polarity of the solvent.
- (ii) R-band. The absorption shifts to lower wavelength (blue shift) with the increase in polarity of the solvent.
- (iii) **B-band**. The position as well as the intensity of the **B-band** is not shifted by increasing the polarity of the solvent. But in heterocyclic aromatic compounds, a marked hyperchromic shift (increase in $\in max$) is observed by increasing the polarity of the solvent.

2:13 Conjugated dienes

The wave-length of absorption is shifted to higher values (Bathochromic shift), if two or more chromophoric groups are present in conjugation in a molecule. For example, ethylene (one double bond) absorbs at $170m\mu$ ($\pi \rightarrow \pi^*$ transition) while butadiene (two double bonds in conjugation) absorbs at $217 m\mu$. The bathochromic shift is more pronounced if the double bonds are in conju-