131,072-word × 8-bit High Speed CMOS Static RAM

# **HITACHI**

Rev. X January 1995

The Hitachi HM628128A is a CMOS static RAM organized 128 kword  $\times$  8 bit. It realizes higher density, higher performance and low power consumption by employing 0.8  $\mu$ m Hi-CMOS process technology.

It offers low power standby power dissipation; therefore, it is suitable for battery back-up systems. The device, packaged in a 525-mil SOP (460-mil body SOP) or a 600-mil plastic DIP, or a  $8\times 20$  mm TSOP with thickness of 1.2 mm, is available for high density mounting. TSOP package is suitable for cards, and reverse type TSOP is also provided.

#### **Features**

- · High speed
  - Fast access time: 55/70/85/100 ns (max)
- · Low power
  - Active: 75 mW (typ)
  - Standby: 10 μW (typ)
- Single 5 V supply
- Completely static memory
   No clock or timing strobe required
- · Equal access and cycle times
- DataSheet4 Common data input and output
  Three state output
  - Directly TTL compatible All inputs and outputs
  - Capability of battery back up operation
     2 chip selection for battery back up

DataShe



## **Ordering Information**

| Type No.                                                                      | Access time                       | Package                                   | Type No.                                                                  | Access time                       | Package                                                     |          |
|-------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|---------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------|----------|
| HM628128ALP-5<br>HM628128ALP-7<br>HM628128ALP-8<br>HM628128ALP-10             | 55 ns<br>70 ns<br>85 ns<br>100 ns | 600-mil 32-pin<br>plastic DIP<br>(DP-32)  | HM628128ALT-5<br>HM628128ALT-7<br>HM628128ALT-8<br>HM628128ALT-10         | 55 ns<br>70 ns<br>85 ns<br>100 ns | 8 mm × 20 mm<br>32-pin TSOP<br>(normal type)<br>(TFP-32D)   |          |
| HM628128ALP-5L<br>HM628128ALP-7L<br>HM628128ALP-8L<br>HM628128ALP-10L         | 55 ns<br>70 ns<br>85 ns<br>100 ns |                                           | HM628128ALT-5L<br>HM628128ALT-7L<br>HM628128ALT-8L<br>HM628128ALT-10L     | 55 ns<br>70 ns<br>85 ns<br>100 ns |                                                             |          |
| HM628128ALP-5SL<br>HM628128ALP-7SL<br>HM628128ALP-8SL<br>HM628128ALP-10SL     | 55 ns<br>70 ns<br>85 ns<br>100 ns | -                                         | HM628128ALT-5SL<br>HM628128ALT-7SL<br>HM628128ALT-8SL<br>HM628128ALT-10SL | 55 ns<br>70 ns<br>85 ns<br>100 ns | -                                                           |          |
| HM628128ALFP-5<br>HM628128ALFP-7<br>HM628128ALFP-8<br>HM628128ALFP-10         | 55 ns<br>70 ns<br>85 ns<br>100 ns | 525-mil 32-pin<br>plastic SOP<br>(FP-32D) | HM628128ALR-5<br>HM628128ALR-7<br>HM628128ALR-8<br>HM628128ALR-10         | 55 ns<br>70 ns<br>85 ns<br>100 ns | 8 mm × 20 mm<br>32-pin TSOP<br>(reverse type)<br>(TFP-32DR) |          |
| HM628128ALFP-5L<br>HM628128ALFP-7L<br>HM628128ALFP-8L<br>HM628128ALFP-10L     | 55 ns<br>70 ns<br>85 ns<br>100 ns | -                                         | HM628128ALR-5L<br>HM628128ALR-7L<br>HM628128ALR-8L<br>HM628128ALR-10L     | 55 ns<br>70 ns<br>85 ns<br>100 ns | -                                                           | DataShee |
| HM628128ALFP-5SL<br>HM628128ALFP-7SL<br>HM628128ALFP-8SL<br>HM628128ALFP-10Sl | 70 ns<br>85 ns                    | DataSheet                                 | HM628128ALR-5SL<br>HM628128ALR-7SL<br>HM628128ALR-8SL<br>HM628128ALR-10SL | 55 ns<br>70 ns<br>85 ns<br>100 ns | -                                                           |          |

et4U.com

#### **Pin Arrangement**



#### **Pin Description**

| Pin name    | Function      | Pin name | Function      |
|-------------|---------------|----------|---------------|
| A0 – A16    | Address       | OE       | Output enable |
| I/O0 – I/O7 | Input/output  | NC NC    | No connection |
| CS1         | Chip select 1 |          | Power supply  |
| CS2         | Chip select 2 |          | Ground        |
| WE          | Write enable  |          |               |

ataShee www.DataSheet4U.com

#### **Block Diagram**



#### **Function Table**

| CS1 | CS2 | ŌĒ | WE | Mode           | V <sub>CC</sub> current            | I/O pin | Ref. cycle      |
|-----|-----|----|----|----------------|------------------------------------|---------|-----------------|
| Н   | Χ   | Χ  | Χ  | Standby        | I <sub>SB</sub> , I <sub>SB1</sub> | High-Z  | _               |
| Χ   | L   | Χ  | Χ  | Standby        | I <sub>SB</sub> , I <sub>SB1</sub> | High-Z  | _               |
| L   | Н   | Н  | Н  | Output disable | I <sub>CC</sub>                    | High-Z  | _               |
| L   | Н   | L  | Н  | Read           | I <sub>CC</sub>                    | Dout    | Read cycle      |
| L   | Н   | Н  | L  | Write          | Icc                                | Din     | Write cycle (1) |
| L   | Н   | L  | L  | Write          | Icc                                | Din     | Write cycle (2) |

Note: X: H or L

DataSheet4U.com

## **Absolute Maximum Ratings**

| Parameter                                         | Symbol          | Value                              | Unit |
|---------------------------------------------------|-----------------|------------------------------------|------|
| Supply voltage relative to V <sub>SS</sub>        | V <sub>CC</sub> | -0.5 to +7.0                       | V    |
| Voltage on any pin relative to V <sub>SS</sub> *1 | $V_{T}$         | $-0.5^{*2}$ to $V_{CC} + 0.3^{*3}$ | V    |
| Power dissipation                                 | P <sub>T</sub>  | 1.0                                | W    |
| Operating temperature                             | Topr            | 0 to +70                           | °C   |
| Storage temperature                               | Tstg            | -55 to +125                        | °C   |
| Storage temperature under bias                    | Tbias           | –10 to +85                         | °C   |

- Note: 1. With respect to  $V_{SS}$ 
  - 2. -3.0 V for pulse half-width  $\leq 30 \text{ ns}$
  - 3. Maximum voltage is 7.0V.

## **Recommended DC Operating Conditions** (Ta = 0 to +70°C)

|          | Parameter          | Symbol             | Min                               | Тур             | Max                   | Unit |          |
|----------|--------------------|--------------------|-----------------------------------|-----------------|-----------------------|------|----------|
|          | Supply voltage     | Vcc                | 4.5                               | 5.0             | 5.5                   | V    |          |
|          |                    | $V_{SS}$           | 0                                 | 0               | 0                     | V    |          |
| et4U.com | Input voltage      | $V_{IH}$           | 2.2                               | _               | $V_{CC} + 0.3$        | V    | DataShee |
|          | (HM628128A-7/8/10) | V <sub>IL</sub>    | -0.3 <sup>*1</sup>                | _               | 0.8                   | V    |          |
|          | Input voltage      | V <sub>IH</sub> Da | ata <b>3<del>11</del>e</b> et4U.c | om <del>-</del> | V <sub>CC</sub> + 0.3 | V    |          |
|          | (HM628128A-5)      | V <sub>IL</sub>    | -0.3 <sup>*1</sup>                |                 | 0.8                   | V    |          |

Note: 1. -3.0 V for pulse half-width  $\leq 30 \text{ ns}$ 

**DC Characteristics** (Ta = 0 to +70°C,  $V_{CC} = 5 \text{ V} \pm 10\%$ ,  $V_{SS} = 0 \text{ V}$ )

|  | Parameter                            | Symbol                                                                         | Min                                                                                                                                                          | Typ*1 | Max | Unit | Test conditions                                                                                                                                                  |                |
|--|--------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|  | Input leakage current                | I <sub>LI</sub>                                                                | _                                                                                                                                                            | _     | 1.0 | μΑ   | Vin = V <sub>SS</sub> to V <sub>CC</sub>                                                                                                                         | _              |
|  | Output leakage current               | llol                                                                           | _                                                                                                                                                            | _     | 1.0 | μА   |                                                                                                                                                                  |                |
|  | Operating power supply current: DC   | I <sub>CC</sub>                                                                | _                                                                                                                                                            | 15    | 30  | mA   | $\overline{CS1} = V_{IL}, CS2 = V_{IH},$ $Others = V_{IH}/V_{IL}$ $I_{I/O} = 0 \text{ mA}$                                                                       |                |
|  | Operating power supply current       | rrent (HM628128 $\overline{CS1} = V_{IL}, CS$<br>A-7/8/10) Others = $V_{IH}/V$ | $\frac{\text{Min cycle, duty} = 100\%,}{\overline{\text{CS1}}} = V_{\text{IL}}, \ \text{CS2} = V_{\text{IH}},\\ \text{Others} = V_{\text{IH}}/V_{\text{IL}}$ |       |     |      |                                                                                                                                                                  |                |
|  |                                      | I <sub>CC1</sub><br>(HM628128<br>A-5)                                          | _                                                                                                                                                            | 50    | 80  | mA   | $I_{I/O} = 0 \text{ mA}$                                                                                                                                         |                |
|  |                                      | I <sub>CC2</sub>                                                               | _                                                                                                                                                            | 15    | 25  | mA   | Cycle time = 1 $\mu$ s, duty = 100%, $I_{I/O}$ = 0 mA, $\overline{CS1} \le 0.2$ V, $CS2 \ge V_{CC} - 0.2$ V $V_{IH} \ge V_{CC} - 0.2$ V, $V_{IL} \le 0.2$ V      | _              |
|  | Standby power supply current: DC     | I <sub>SB</sub>                                                                | _                                                                                                                                                            | 1     | 2   | mA   | (1) $\overline{\text{CS1}} = \text{V}_{\text{IH}}$ , CS2 = V <sub>IH</sub> or (2) CS2 = V <sub>IL</sub>                                                          | _<br>_ DataShe |
|  | Standby power supply current (1): DC | I <sub>SB1</sub><br>(L version)                                                | _                                                                                                                                                            | 2     | 100 | μA   | $\begin{array}{l} 0 \text{ V} \leq \text{Vin} \leq \text{V}_{CC} \text{ ,} \\ \text{(1) } \overline{\text{CS1}} \geq \text{V}_{CC} - 0.2 \text{ V,} \end{array}$ |                |
|  |                                      | I <sub>SB1</sub><br>(L-L/L-SL<br>version)                                      | _                                                                                                                                                            | 2     | 50  | μA   | CS2 $\geq$ V <sub>CC</sub> - 0.2 V or<br>(2) 0 V $\leq$ CS2 $\leq$ 0.2 V                                                                                         | _              |
|  | Output voltage                       | V <sub>OL</sub>                                                                | _                                                                                                                                                            | _     | 0.4 | V    | I <sub>OL</sub> = 2.1 mA                                                                                                                                         | _              |
|  |                                      | V <sub>OH</sub>                                                                | 2.4                                                                                                                                                          | _     | _   | V    | I <sub>OH</sub> = −1.0 mA                                                                                                                                        | _              |

Note: 1. Typical values are at  $V_{CC} = 5.0 \text{ V}$ ,  $T_{a} = +25^{\circ}\text{C}$  and specified loading.

## Capacitance $(Ta = 25^{\circ}C, f = 1.0 \text{ MHz})^{*1}$

| Parameter                | Symbol           | Min | Тур | Max | Unit | Test conditions        |
|--------------------------|------------------|-----|-----|-----|------|------------------------|
| Input capacitance        | Cin              | _   | _   | 8   | pF   | Vin = 0 V              |
| Input/output capacitance | C <sub>I/O</sub> | _   | _   | 10  | pF   | V <sub>I/O</sub> = 0 V |

Note: 1. This parameter is sampled and not 100% tested.

#### AC Characteristics (Ta = 0 to +70°C, $V_{CC}$ = 5 V ± 10%, unless otherwise noted.)

#### **Test Conditions**

 $\bullet~$  Input pulse levels: ~0.8~V~to~2.4~V~(HM628128A-7/8/10)

0 V to 3 V (HM628128A-5)

LIMESOASOA

• Input rise and fall times: 5 ns

• Input and output timing reference levels: 1.5 V

• Output load: 1 TTL Gate and CL (100 pF) (HM628128A-7/8/10)

1 TTL Gate and CL (30 pF) (HM628128A-5) (Including scope & jig)

#### Read Cycle

|                                    |                  | HM6 | 28128A | <u>.</u>   |                     |                 |     |     |     | _    |         |
|------------------------------------|------------------|-----|--------|------------|---------------------|-----------------|-----|-----|-----|------|---------|
|                                    |                  | -5  |        | -7         |                     | -8              |     | -10 |     |      |         |
| Parameter                          | Symbol           | Min | Max    | Min        | Max                 | Min             | Max | Min | Max | Unit | Notes   |
| Read cycle time                    | t <sub>RC</sub>  | 55  | _      | 70         | _                   | 85              | _   | 100 | _   | ns   |         |
| Address access time                | $t_{AA}$         | _   | 55     | _          | 70                  | _               | 85  | _   | 100 | ns   |         |
| Chip selection to                  | t <sub>CO1</sub> | _   | 55     | _          | 70                  | _               | 85  | _   | 100 | ns   |         |
| output valid                       | t <sub>CO2</sub> | _   | 55     | _          | 70                  | _               | 85  | _   | 100 | ns   |         |
| Output enable to output valid      | t <sub>OE</sub>  | _   | 30     | _          | 35                  | _               | 45  | _   | 50  | ns   |         |
| Chip selection to                  | t <sub>LZ1</sub> | 5   | Data   | 10<br>Shee | t4 <del>II</del> co | <sub>m</sub> 10 | _   | 10  | _   | ns   | 2, 3    |
| output in low-Z                    | $t_{LZ2}$        | 5   | _      | 10         | _                   | 10              | _   | 10  | _   | ns   | 2, 3    |
| Output enable to output in low-Z   | t <sub>OLZ</sub> | 5   | _      | 5          | _                   | 5               | _   | 5   | _   | ns   | 2, 3    |
| Chip deselection to                | t <sub>HZ1</sub> | 0   | 20     | 0          | 25                  | 0               | 30  | 0   | 35  | ns   | 1, 2, 3 |
| output in high-Z                   | $t_{HZ2}$        | 0   | 20     | 0          | 25                  | 0               | 30  | 0   | 35  | ns   | 1, 2, 3 |
| Output disable to output in high-Z | t <sub>OHZ</sub> | 0   | 20     | 0          | 25                  | 0               | 30  | 0   | 35  | ns   | 1, 2, 3 |
| Output hold from address change    | t <sub>OH</sub>  | 5   | _      | 10         | _                   | 10              | _   | 10  | _   | ns   |         |

et4U.com

DataShe

#### Read Timing Waveform \*4



- Notes: 1. t<sub>HZ</sub> and t<sub>OHZ</sub> are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.
  - 2. At any given temperature and voltage condition, tHZ max is less than tLZ min both for a given device and from device to device.
  - 3. This parameter is sampled and not 100% tested.
  - 4. WE is high for read cycle.

## Write Cycle

|                                 |                  | HM62 | HM628128A |     |     |     |     |     |     |      |       |
|---------------------------------|------------------|------|-----------|-----|-----|-----|-----|-----|-----|------|-------|
|                                 |                  | -5   |           | -7  |     | -8  |     | -10 |     | -    |       |
| Parameter                       | Symbol           | Min  | Max       | Min | Max | Min | Max | Min | Max | Unit | Notes |
| Write cycle time                | t <sub>WC</sub>  | 55   | _         | 70  | _   | 85  | _   | 100 | _   | ns   |       |
| Chip selection to end of write  | t <sub>CW</sub>  | 50   | _         | 60  | _   | 75  | _   | 80  | _   | ns   |       |
| Address setup time              | t <sub>AS</sub>  | 0    | _         | 0   | _   | 0   | _   | 0   | _   | ns   |       |
| Address valid to end of write   | t <sub>AW</sub>  | 50   | _         | 60  | _   | 75  | _   | 80  | _   | ns   |       |
| Write pulse width               | t <sub>WP</sub>  | 40   | _         | 50  | _   | 55  | _   | 60  | _   | ns   |       |
| Write recovery time             | t <sub>WR</sub>  | 0    | _         | 0   | _   | 0   | _   | 0   | _   | ns   |       |
| Write to output in high-Z       | t <sub>WHZ</sub> | 0    | 20        | 0   | 25  | 0   | 30  | 0   | 35  | ns   | 10    |
| Data to write time overlap      | t <sub>DW</sub>  | 25   | _         | 30  | _   | 35  | _   | 40  | _   | ns   |       |
| Data hold from write time       | t <sub>DH</sub>  | 0    | _         | 0   | _   | 0   | _   | 0   | _   | ns   |       |
| Output active from end of write | t <sub>OW</sub>  | 5    | _         | 5   | _   | 5   | _   | 5   | _   | ns   | 10    |

DataSheet4U.com

#### Write Timing Waveform (1) (OE Clock)



et4U.com

DataSheet4U.com

#### Write Timing Waveform (2) (OE low Fixed)



- Notes: 1. A write occurs during the overlap of a low  $\overline{CS1}$ , a high CS2, and a low  $\overline{WE}$ . A write begins at the latest transition among  $\overline{CS1}$  going low, CS2 going high, and  $\overline{WE}$  going low. A write ends at the earliest transition among  $\overline{CS1}$  going high, CS2 going low, and  $\overline{WE}$  going high.  $t_{WP}$  is measured from the beginning of write to the end of write.
  - 2.  $t_{CW}$  is measured from the later of  $\overline{CS1}$  going low or CS2 going high to the end of write.
  - 3. t<sub>AS</sub> is measured from the address valid to the beginning of write.
  - t<sub>WR</sub> is measured from the earliest of CS1 or WE going high or CS2 going low to the end of write cycle.
  - 5. During this period, I/O pins are in the output state; therefore, the input signals of the opposite phase to the outputs must not be applied.
  - 6. If the  $\overline{\text{CS1}}$  goes low simultaneously with  $\overline{\text{WE}}$  going low or after the  $\overline{\text{WE}}$  going low, the outputs remain in a high impedance state.
  - 7. Dout is the same phase of the latest written data in this write cycle.
  - 8. Dout is the read data of next address.
  - 9. If CS1 is low and CS2 high during this period, I/O pins are in the output state. Therefore, the input signals of opposite phase to the outputs must not be applied to them.
  - 10. This parameter is sampled and not 100% tested.

DataSheet4U.co111. In the write cycle with OE low fixed, two must satisfy the following equation to avoid a problem of the com-

data bus contention.

 $t_{WP} \ge t_{DW} \min + t_{WHZ} \max$ 

## **Low V**<sub>CC</sub> **Data Retention Characteristics** (Ta = 0 to +70°C)

| Parameter                            | Symbol                                 | Min    | Тур | Max                 | Unit | Test conditions*4                                                                                                                          |
|--------------------------------------|----------------------------------------|--------|-----|---------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>CC</sub> for data retention   | $V_{DR}$                               | 2.0    | _   | _                   | V    | $\overline{CS1} \ge V_{CC} - 0.2 \text{ V},$ $CS2 \ge V_{CC} - 0.2 \text{ V or}$ $0 \text{ V} \le CS2 \le 0.2 \text{ V}$ $Vin>0 \text{ V}$ |
|                                      | I <sub>CCDR</sub> (L version)          | _      | 1   | 50 <sup>*1</sup>    | μΑ   | $\frac{V_{CC}}{CS1} = 3.0 \text{ V, Vin} \ge 0 \text{ V}$ $\frac{V_{CC}}{CS1} \ge V_{CC} - 0.2 \text{V}$                                   |
|                                      | I <sub>CCDR</sub><br>(L-L version      | <br>n) | 1   | 30*2                | μΑ   | $^{-}$ CS2 $\geq$ V <sub>CC</sub> $-$ 0.2 V or 0 V $\leq$ CS2 $\leq$ 0.2 V                                                                 |
|                                      | I <sub>CCDR</sub><br>(L-SL<br>version) | _      | 1   | 15 <sup>*3</sup> μΑ |      | _                                                                                                                                          |
| Chip deselect to data retention time | t <sub>CDR</sub>                       | 0      | _   | _                   | ns   | See retention waveform                                                                                                                     |
| Operation recovery time              | t <sub>R</sub>                         | 5      | _   | _                   | ms   |                                                                                                                                            |

 $Low\ V_{CC}\ Data\ Retention\ Timing\ Waveform\ (1)\ (CSI\ Controlled)$ 



#### Low V<sub>CC</sub> Data Retention Timing Waveform (2) (CS2 Controlled)



DataSheet4U.com www.DataSheet4U.com

12

et4U.com

DataShe

Notes: 1. 20  $\mu$ A max at Ta = 0 to 40°C (L-version).

- 2.  $6 \mu A \text{ max at Ta} = 0 \text{ to } 40^{\circ} \text{C (L-L-version)}.$
- 3.  $3 \mu A \max \text{ at Ta} = 0 \text{ to } 40^{\circ} \text{C (L-SL-version)}.$
- 4. CS2 controls address buffer,  $\overline{WE}$  buffer,  $\overline{CS1}$  buffer,  $\overline{OE}$  buffer, and Din buffer. If CS2 controls data retention mode, Vin levels (address,  $\overline{WE}$ ,  $\overline{OE}$ ,  $\overline{CS1}$ , I/O) can be in the high impedance state. If  $\overline{CS1}$  controls data retention mode, CS2 must be  $CS2 \ge V_{CC} 0.2$  V or 0 V  $\le CS2 \le 0.2$  V. The other input levels (address,  $\overline{WE}$ ,  $\overline{OE}$ , I/O) can be in the high impedance state.

et4U.com

DataSheet4U.com

DataSheet4U.com