Lösungsvorschlag zum 1. Übungstest

Beispiel 1

Betrachte die Menge

$$M := \underbrace{\left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}}_{:=M_1} \cup \underbrace{\left\{-2 - \frac{1}{2n} : n \in \mathbb{N}\right\}}_{:=M_2}$$

Ist diese Menge beschränkt? Für archimedisch angeordnet: Existieren Infimum, Minimum, Supermum, Maximum? Wenn ja, was ist ihr Wert? Wo genau wird archimedisch angeordnet verwendet?

Lösung:

obere Schranke: Sei $x \in M$. Fall 1: $x \in M_1$. Dann folgt $\exists n \in N : x = 1 - 1/n$. Mit Lemma 2.2.3 ix folgt aus $n \geq 0$ auch $1/n \geq 0$ sowie (Lemma 2.2.3 vi) $-1/n \leq -0 = 0$. Es gilt nun mit vorherigem und Lemma 2.2.3 v :

$$x = 1 - \frac{1}{n} \le 1 + 0 = 1$$

Fall 2: Für $x \in M_2$ gibt es ein $n \in \mathbb{N}$, sodass x = 2 - 1/2n. Wegen $2n \in \mathbb{N}$ folgt aus vorherigem auch $-1/2n \leq 0$ und wegen

$$x = -2 - \frac{1}{2n} \le -2 + 0 \le 0 \le 1$$

also mit der Transitivität $x \leq 1$. Somit ist 1 eine obere Schranke.

untere Schranke: Sei $x \in M$. Fall 1: $x \in M_1$. Dann folgt $\exists n \in N : x = 1 - 1/n$. Für alle $n \in \mathbb{N}$ gilt $n \geq 1$ und somit (Übungsaufgabe 2.3) $1/n \leq 1/1 = 1$ sowie wegen Lemma 2.2.3 v: $-1/n \geq -1$. Es gilt nun mit Lemma 2.2.3 v:

$$x = 1 - \frac{1}{n} \ge 1 - 1 = 0 \ge -\frac{5}{2}$$

Fall 2: Für $x \in M_2$ gibt es ein $n \in \mathbb{N}$, sodass x = 2 - 1/2n. Wegen 2 > 0 ist auch 1/2 > 0 und somit (Lemma 2.2.3 vii) $-1/2n \ge -1/2$. Daher:

$$x = -2 - \frac{1}{2n} \ge -2 - \frac{1}{2} = -\frac{5}{2}$$

Somit ist -5/2 eine untere Schranke.

Minimum: Mit n=1 sieht man, dass $-5/2 \in M_2 \subseteq M$. Da es auch eine untere Schranke ist, ist es direkt nach Definition 2.2.5 ii ein Minimum.

Infimum: Nach Bemerkung 2.2.6 ist ein Minimum einer Menge auch ihr Infimum.

Suprmemum: Wir wollen zeigen, dass sup M=1. Wir wissen bereits, dass es eine obere Schranke ist; wir müssen zeigen, dass es die kleinste ist. Sei s<1 beliebig. Da K archimedisch angeordnet ist, ist $\mathbb N$ unbeschränkt in K, also insbesondere nicht durch 1/(1-s) beschränkt (dieser Ausdruck ist wohldefiniert, da aus s<1 folgt $1-s\neq 0$). Somit gibt es ein $n_0\in\mathbb N$ sodass $n_0>1/(1-s)$. Für dieses n_0 gilt nun:

$$n_0 > \frac{1}{(1-s)} \iff \frac{1}{n_0} < 1-s \iff -1 + \frac{1}{n_0} < -s \iff 1 - \frac{1}{n_0} > s.$$

Wegen $1 - 1/n_0 \in M_1 \subseteq M$ ist s also keine obere Schranke.

Maximum: Nach Bemerkung 2.2.6 ist ein Maximum einer Menge auch ihr Supremum. Es kommt also nur 1 als Maximum in Frage. Wir zeigen, dass 1 kein Maximum ist, indem wir zeigen, dass $1 \notin M$. Wegen

$$1 - \frac{1}{n} = 1 \iff n - 1 = n \iff 1 = 0$$

ist $1 \notin M_1$ und wegen

$$2 - \frac{1}{2n} = 1 \iff 4n - 1 = 2n \iff 2n = 1 \iff n = 1/2$$

und $1/2 \notin \mathbb{N}$ ist auch $1 \notin M_2$, also insgesamt $1 \notin M$.

Beispiel 2

Berechnen Sie den Grenzwert der komplexwertigen Folge

$$z_n = \frac{1 + (-1)^n 2i}{3\sqrt{n} + i}.$$

Lösung:

Nach Definition konvergiert (z_n) gegen ein $z \in \mathbb{C}$, falls $\forall \varepsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : |z_n - z| < \varepsilon$. Wir vermuten, dass Grenzwert z = 0 ist. Dafür müssen wir also zeigen: $|z_n - 0| = |z_n| \to 0$.

Mit Übungsaufgabe 2.38 folgt für $w, z \in \mathbb{C}$: $|w \cdot z| = |w| \cdot |z|$, also $|a| = |\frac{a}{b}b| = |\frac{a}{b}||b|$, also |a/b| = |a|/|b| für $a, b \in \mathbb{C}, b \neq 0$. Es gilt:

$$0 \le |z_n| = \frac{|1 + (-1)^n 2i|}{|3\sqrt{n} + i|} = \frac{\sqrt{1^2 + (-1)^{2n} 2^2}}{\sqrt{3^2 \sqrt{n^2 + 1^2}}} = \frac{\sqrt{5}}{\sqrt{9n + 1}} \le \sqrt{\frac{5}{9}} \cdot \frac{1}{\sqrt{n}} \to 0,$$

wobei die Ungleichung aus $9n+1 \geq 9n$ und Lemma 2.4.10 folgt und die Konvergenz gegen 0 aus Beispiel 3.3.7 ii und Satz 3.3.5 ii folgt. Mit dem Einschlusssatz angewandt auf die reelle (!) Folge $|z_n|$ folgt nun $|z_n| \to 0$ und nach obigen Überlegungen $z_n \to 0$.