

다섯째마당 딥러닝 활용하기

22장 캐글로 시작하는 새로운 도전

- 1 캐글 가입 및 대회 선택하기
- 2 데이터 획득하기
- 3 학습하기
- 4 결과 제출하기
- 5 최종 예측 값 제출하기

캐글로 시작하는 새로운 도전

모두의 달러닝

• 캐글로 시작하는 새로운 도전

캐글로 시작하는 새로운 도전

- 캐글로 시작하는 새로운 도전
 - 캐글은 2010년 4월부터 지금까지 전 세계 데이터 과학자 15만 명 이상이 참가해 온 데이터 분석 경진대회
 - '데이터 사이언스를 스포츠처럼!'이라는 구호 아래 데이터 분석 기술을 스포츠와 같이 경쟁할 수 있게 만든 것이 특징
 - 대회는 상금과 함께 상시 열리고 있으며, 각 경쟁마다 풀어야 할 과제와 평가 지표 그리고 실제 데이터가 주어짐
 - 주어진 데이터를 사용해 정해진 시간 안에 가장 높은 정확도로 예측하는 것이 목표
 - 분석 결과를 업로드하면 보통 몇 분 안에 채점이 끝나며, 평가 지표에 근거해 참가자 간의 순위가 매겨짐
 - 실제 데이터를 사용해 다양한 기술을 구현하므로 자신의 데이터 과학 수준을 확인할 수 있을 뿐만 아니라 최신 기술과 트렌드를 배울 수 있는 기회를 제공

캐글로 시작하는 새로운 도전

- 캐글로 시작하는 새로운 도전
 - 이 장에서 우리는 캐글에 가입하는 방법과 캐글에 예측된 결과를 업로드하는 방법을 배울 것
 - 앞서 '15장. 실제 데이터로 만들어 보는 모델'에서 사용한 데이터가 실은 캐글에서 배포하는 유명 벤치마크 학습셋
 - 이제 우리가 실행한 학습의 결과를 캐글에 업로드하고 평가 지표에 따른 순위를 확인해 보자

- 캐글로 시작하는 새로운 도전
 - 캐글에 참여하는 순서는 다음과 같음

- 캐글 가입 및 대회 선택하기
 - 먼저 캐글 웹 사이트에 방문해 회원 가입을 함
 - 구글 계정이 있으면 간단히 회원에 가입할 수 있음

▼ 그림 22-1 | 캐글 웹 사이트

- 캐글 가입 및 대회 선택하기
 - 가입이 완료되면, 캐글에 공지된 대회 중 참가할 만한 대회를 선택
 - 메인 화면에서 Competitions를 클릭하면 현재 진행 중인 경진대회의 목록이 보임

무의

▼ 그림 22-2 | 경진대회 목록 확인하기

- 캐글 가입 및 대회 선택하기
 - 우리는 스터디를 목적으로 하므로 캐글에서 누구나 테스트할 수 있게끔 준비한 HousePrices - Advanced Regression Techniques를 클릭
 - 해당 대회로 바로 이동하는 주소는 https://www.kaggle.com/c/house-pricesadvanced-regression-techniques

▼ 그림 22-3 | House Prices 폴더로 이동

모두의 답러닝 전쟁 3만

- 데이터 획득하기
 - 해당 경진대회에 접속을 완료하면 대회에 대한 내용을 숙지하고 Data를 클릭해
 - ▼ 그템이텀에 접근하기

- 데이터 획득하기
 - 데이터 화면이 나오면 I understand and agree를 클릭해 데이터를 내려받을 준비
- ▼ 그림 22-5 | 데이터를 내려받을 준비

무의 답라님

- 데이터 획득하기
 - 데이터 화면이 바뀌고 해당 데이터에 대한 설명이 나옴
 - Download All을 클릭
- ▼ 그림 22-6 | 데이터 내려받기

모두의 답리닝

- 데이터 획득하기
 - 내려받은 데이터를 확인해 보자
 - ▼ 그림 22-7 | 데이터 확인하기
 - data_description.txt
 - sample_submission.csv
 - test.csv
 - train.csv

- 데이터 획득하기
 - data_description.txt 파일은 내려받은 데이터의 각 속성이 무엇을 의미하는지 설명하고 있음
 - train.csv 파일은 집 값과 해당 집이 어떤 속성을 가졌는지 정리된 파일
 - test.csv 파일은 이 train.csv 파일을 이용해 학습한 결과를 테스트하기 위한 데이터
 - train.csv 파일과 모든 항목이 같지만 맨 마지막 집 값(SalePrice) 항목만 빠져 있음
 - 이 항목을 예측하는 것이 우리의 과제
 - sample_submission.csv 파일은 Id와 SalePrice 두 개의 열만 존재하는 파일
 - 각 Id별로 우리가 예측한 SalePrice를 채워 넣어 캐글에 업로드하면 됨

- 학습하기
 - 데이터를 확인했으면 이제 딥러닝 또는 머신 러닝 기법을 활용해 모델을 만들고 학습을 시작하면 됨
 - 여기서는 15장에서 실시한 학습 모델을 가져와 어떻게 테스트셋에 적용하는지 공부해 보자

- 학습하기
 - 먼저 필요한 라이브러리를 불러옴
 - 케라스의 load_model과 판다스를 불러오자

from tensorflow.keras.models import load_model
import pandas as pd

- 학습하기
 - 캐글에서 배포하는 house_test.csv 파일은 data 폴더에 이미 저장되어 있음
 - 해당 테스트셋을 불러오자

```
kaggle_test = pd.read_csv("./data/house_test.csv")
```


▼ 그림 22-8 | kaggle_test 파일 내용 미리 보기

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities
0	1461	20	RH	80.0	11622	Pave	NaN	Reg	LvI	AllPub
1	1462	20	RL	81.0	14267	Pave	NaN	IR1	LvI	AllPub
2	1463	60	RL	74.0	13830	Pave	NaN	IR1	LvI	AllPub
3	1464	60	RL	78.0	9978	Pave	NaN	IR1	LvI	AllPub
4	1465	120	RL	43.0	5005	Pave	NaN	IR1	HLS	AllPub

1454	2915	160	RM	21.0	1936	Pave	NaN	Reg	Lvl	AllPub
1455	2916	160	RM	21.0	1894	Pave	NaN	Reg	LvI	AllPub
1456	2917	20	RL	160.0	20000	Pave	NaN	Reg	LvI	AllPub
1457	2918	85	RL	62.0	10441	Pave	NaN	Reg	LvI	AllPub

- 학습하기
 - 테스트셋의 속성은 학습셋과 동일한 상태로 변형되어야 해당 모델을 적용할 수 있음
 - 이를 위해 학습셋과 동일하게 전처리되어야 함
 - 먼저 카테고리형 변수를 0과 1로 이루어진 변수로 바꾸어 주겠음

kaggle_test = pd.get_dummies(kaggle_test)

- 학습하기
 - 결측치를 전체 칼럼의 평균으로 대체해 채워 줌

```
kaggle_test = kaggle_test.fillna(kaggle_test.mean())
```


- 학습하기
 - 업데이트된 데이터 프레임을 출력해 보면 그림 22-9와 같음

▼ 그림 22-9 | 수정된 데이터 프레임 보기

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd
0	1461	20	80.0	11622	5	6	1961	1961
1	1462	20	81.0	14267	6	6	1958	1958
2	1463	60	74.0	13830	5	5	1997	1998
3	1464	60	78.0	9978	6	6	1998	1998
4	1465	120	43.0	5005	8	5	1992	1992
		***	***		***	***		
1454	2915	160	21.0	1936	4	7	1970	1970
1455	2916	160	21.0	1894	4	5	1970	1970
1456	2917	20	160.0	20000	5	7	1960	1996
1457	2918	85	62.0	10441	5	5	1992	1992
1458	2919	60	74.0	9627	7	5	1993	1994

- 학습하기
 - 이제 학습에 사용된 열을 K_test로 저장

```
cols_kaggle = ['OverallQual','GrLivArea','GarageCars','GarageArea',
'TotalBsmtSF']
K_test = kaggle_test[cols_kaggle]
```


- 학습하기
 - 앞서 15장에서 만든 모델을 불러옴

```
model = load_model("./data/model/Ch15-house.hdf5")
```


- 학습하기
 - model.predict()를 이용해 불러온 모델에 조금 전 만든 K_test를 적용하고 예측 값을 만들어 봄

```
ids = [] # ID와 예측 값이 들어갈 빈 리스트를 만듭니다.

Y_prediction = model.predict(K_test).flatten()

for i in range(len(K_test)):
   id = kaggle_test['Id'][i]
   prediction = Y_prediction[i]
   ids.append([id, prediction])
```


- 학습하기
 - 테스트 결과의 저장 환경을 설정
 - 앞서 만든 내용과 중복되지 않도록 현재 시간을 이용해 파일명을 만들어 저장
 - 파일은 별도 폴더에 저장

```
import time

timestr = time.strftime("%Y%m%d-%H%M%S")

filename = str(timestr) # 파일명을 연월일-시분초로 정합니다.

outdir = './' # 파일이 저장될 위치를 지정합니다.
```


- 학습하기
 - 앞서 만들어진 실행 번호와 예측 값을 새로운 데이터 프레임에 넣고 이를 csv

```
df = pd.DataFrame(ids, columns=["Id", "SalePrice"])
df.to_csv(str(outdir + filename + '_submission.csv'), index=False)
```

모두의 답려님

- 학습하기
 - 모든 내용을 한 번에 정리하면 다음과 같음

실습 | 캐글에 제출할 결과 만들기


```
from tensorflow.keras.models import load_model

import pandas as pd

import time

# 깃허브에 준비된 데이터를 가져옵니다.
!git clone https://github.com/taehojo/data.git

# 캐글에서 내려받은 테스트셋을 불러옵니다.
kaggle_test = pd.read_csv("./data/house_test.csv")
```


• 학습하기

```
# 카테고리형 변수를 0과 1로 이루어진 변수로 바꿉니다.

kaggle_test = pd.get_dummies(kaggle_test)

# 결측치를 전체 칼럼의 평균으로 대체해 채워 줍니다.

kaggle_test = kaggle_test.fillna(kaggle_test.mean())

# 집 값을 제외한 나머지 열을 저장합니다.

cols_kaggle = ['OverallQual','GrLivArea','GarageCars','GarageArea','TotalBsmtSF']

K_test = kaggle_test[cols_kaggle]
```


• 학습하기

```
# 앞서 15장에서 만든 모델을 불러옵니다.
model = load_model("./data/model/Ch15-house.hdf5")
# ID와 예측 값이 들어갈 빈 리스트를 만듭니다.
ids = []
# 불러온 모델에 K_test를 적용하고 예측 값을 만듭니다.
Y_prediction = model.predict(K_test).flatten()
for i in range(len(K_test)):
   id = kaggle_test['Id'][i]
   prediction = Y_prediction[i]
   ids.append([id, prediction])
```


• 학습하기

```
# 테스트 결과의 저장 환경을 설정합니다.

timestr = time.strftime("%Y%m%d-%H%M%S")

filename = str(timestr) # 파일명을 연월일-시분초로 정합니다.

outdir = './' # 파일이 저장될 위치를 지정합니다.

# Id와 집 값을 csv 파일로 저장합니다.

df = pd.DataFrame(ids, columns=["Id", "SalePrice"])

df.to_csv(str(outdir + filename + '_submission.csv'), index=False)
```

3 학습하기

- 학습하기
 - 이 코드를 실행해 구글 코랩 폴더에 (연도)(월)(일)-(시)(분)(초)_submission.csv 파일이 만들어졌다면 결과를 캐글에 제출할 준비가 됨

모두의 딥러닝 계정3판

- 결과 제출하기
 - 다시 경진대회 웹 페이지로 돌아가서 이번에는 Submit Predictions를 클릭
 - ▼ 그림 22-10 | 결과 제출하기

- 결과 제출하기
 - ① 하루에 몇 번의 제출이 가능한지, 제출 횟수는 언제 리셋되는지에 대한 설명과 함께 예측 결과를 요약하고 업로드할 수 있는 페이지가 나옴
 - ② 를 눌러 조금 전 예측한 csv 파일을 선택
 - ③ 해당 제출본이 어떤 모델이었는지 차후에 확인할 수 있도록 제출 전 간단히 모델에 대한 설명을 추가
 - Make Submission을 클릭해 제출을 마침

▼ 그림 22-11 | 결과 업로드하기

- 결과 제출하기
 - 모든 과정을 무사히 마쳤다면 그림 22-12와 같이 작업이 완료되었다는 안내가 나옴
 - Jump to your position on the leaderboard를 클릭하면 내가 만든 예측 정확도와 순위가 표시

▼ 그림 22-12 | 내 예측 순위 보기

- 결과 제출하기
 - 순위와 함께 이것이 내 몇 번째 제출인지, 이전 결과와 비교해서 어떤 차이가 있는지 알려줌
 - 결과를 이전 결과와 비교하고 또 다른 참가자들과 비교해 가면서, 모델을 지속적으로 업데이트
 - Code나 Discussion 메뉴를 선택하면 타 참가자들이 제출한 코드나 토론 내용 등이 나타남
 - 이를 읽어 보면 이전에 발견하지 못한 것들을 찾고 내 구현 방법을 업데이트하는
 데 도움이 될 만한 기술적 조언들을 얻을 수 있음
 - 실제 대회라면 수정 후 제출을 대회 종료일까지 반복
 - 하루에 결과를 제출할 수 있는 횟수에 제한이 있으므로 전략을 잘 수립하는 것이 중요

- 최종 예측 값 제출하기
 - 우리가 제출한 대회는 상금이 걸린 실제 대회가 아니므로 최종 예측 값 제출의 개념이 없음
 - 상금과 마감일이 정해진 대회라면 마감 전에 그동안 제출했던 결과 중 하나를 최종 예측 값으로 결정해 제출
 - My Submissions를 클릭하면 그동안 제출한 결과를 한눈에 볼 수 있는데 학습용 대회는 'Public Score' 열 하나만 보이지만, 실제 대회에서는 'Use for Final Score'열이 있음
 - 여기에 체크하면 내 최종 결과가 제출

▼ 그림 22-13 | 학습용 대회

▼ 그림 22-14 | 실제 대회

- 최종 예측 값 제출하기
 - 최종 결과를 제출하면 며칠 후 모든 참가자의 결과를 합산해서 계산한 최종 순위가 발표