数学笔记

BeBop

 $July\ 24,\ 2024$

Contents

Ι	知识整理	5
1	微分流形	7
	1.1 向量丛结构群的约化	7
	1.1.1 流形可定向与结构群可约化至 GL ⁺ (k, ℝ)	8
	1.1.2 黎曼度量与结构群可约化至正交群 O(k)	8
	$1.1.3$ 复向量丛与近复结构,与结构群可约化至 $\mathrm{GL}(k,\mathbb{C})$	8
	1.2 向量处分类定理	9
	1.2.1 同伦的映射拉回同构的向量丛 (纤维丛)	9
II	杂题集萃	11
2	组合论	13
	2.1 图论	13
	2.1.1 一个关于二部图的小问题	13

4 CONTENTS

Part I 知识整理

Chapter 1

微分流形

1.1 向量丛结构群的约化

定义 1.1.1 (向量丛的定义). 设 E, M 为微分流形, $\pi: E \to M$ 为光滑满射, 且有 M 的开覆盖 $\{U_{\alpha}\}$ 及微分同胚 $\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$, 满足:

- 1. $\psi(\pi^{-1}(p)) = \{p\} \times \mathbb{R}^k, \ \forall p \in U_\alpha,$
- 2. 当 $U_{\alpha} \cap U_{\beta} \neq \emptyset$ 时,存在光滑映射 $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k,\mathbb{R})$,使得 $\psi_{\beta} \circ \psi_{\alpha}^{-1}(p,v) = (p,g_{\beta\alpha}(p)v)$.

则称:

- $E \neq M$ 上的光滑向量丛, k 为向量丛的秩, π 为丛投影;
- $\{(U_{\alpha}, \psi_{\alpha})\}$ 为局部平凡化, $g_{\beta\alpha}$ 为连接函数, $GL(k, \mathbb{R})$ 为结构群;
- $E_n := \pi^{-1}(p)$ 为点 p 上的纤维.

对每个 E_p , 由条件I可知 E_p 上可自然定义一个线性空间结构, 这看似依赖于局部平凡化 ψ_{α} 的选取, 不过由条件2可知线性结构并不依赖局部平凡化的选取.

若存在 $\mathrm{GL}(k,\mathbb{R})$ 的闭 Lie 子群 H, 使得 $g_{\beta\alpha}(p)\in H$, $\forall p\in U_{\alpha}\cap U_{\beta}$, 则称结 构群**可约化到子群** H.

连接函数 $g_{\beta\alpha}$ 在向量丛的定义中占据很重要的地位, 容易证明它满足性质:

$$g_{\alpha\alpha} = 1, \ \forall U_{\alpha}, \qquad g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = 1, \ \forall U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset.$$

反之,若有一族光滑函数 $\{g_{\alpha\beta}\}$ 满足以上性质,定义商空间 $E:=\sqcup_{\alpha}(U_{\alpha}\times\mathbb{R}^{k})/\sim$,其中等价关系定义为: $(p,v_{\alpha})\in U_{\alpha}\times\mathbb{R}^{k}$, $(q,v_{\beta})\in U_{\beta}\times\mathbb{R}^{k}$

$$(p, v_{\alpha}) \sim (q, v_{\beta}) \Leftrightarrow p = q, \ v_{\beta} = g_{\beta\alpha}(p)v_{\alpha}.$$

E 的拓扑由商拓扑给出, 记 [p,v] 为 (p,v) 的等价类, 定义 $\pi: E \to M, \pi([p,v]) = p$. 则 E 在投影映射 π 下成为 M 上的秩 k 的向量丛.

1.1.1 流形可定向与结构群可约化至 GL⁺(k, ℝ)

略

$oldsymbol{1.1.2}$ 黎曼度量与结构群可约化至正交群 O(k)

流形 M 上的黎曼度量是指光滑 (0,2)-张量场 g, g 在每个点的切空间处都是内积. 下面就来说明 n 维流形 M 上存在黎曼结构与切丛 TM 的结构群可约化至正交群 O(n) 是等价的.

 1° . 设 (M,g) 为一个黎曼流形, 取 M 的一个局部坐标覆盖 $\{(U_{\alpha}; x_{\alpha}^{1}, \ldots, x_{\alpha}^{n})\}$, 于是 $\frac{\partial}{\partial x_{\alpha}^{1}}, \ldots, \frac{\partial}{\partial x_{\alpha}^{n}}$ 成为 U_{α} 上的一组标架, 因为 U_{α} 上有度量结构, 我们可对标 架做 Gram-Schmidt 正交化得到单位正交标架 $e_{1\alpha}, \ldots, e_{n\alpha}$, 令局部平凡化映射 为

$$\psi_{\alpha}: TU_{\alpha} \to U_{\alpha} \times \mathbb{R}^{n}$$
$$(p, a^{i}e_{i\alpha}|_{p}) \mapsto (p, a^{i}e_{i})$$

其中 e_1, \ldots, e_n 表示 \mathbb{R}^n 上的自然基底. 当 $U_\alpha \cap U_\beta \neq \emptyset$ 时, 对每个点 $p \in U_\alpha \cap U_\beta$, 因为 $\{e_{i\alpha}|_p\}$ 和 $\{e_{i\beta}|_p\}$ 都是 T_pM 的一组标准正交基, 所以转移函数 $g_{\beta\alpha}(p)$ 是正交矩阵, 因此结构群可被约化至 O(n).

 2° . 假设 TM 的结构群可约化至正交群, 设 $\{(U_{\alpha}, \psi_{\alpha})\}$ 是对应的平凡化, 即 ψ_{α} 是从 TU_{α} 到 $U_{\alpha} \times \mathbb{R}^{n}$ 的微分同胚, 令 $e_{i\alpha} = \psi^{-1}(U_{\alpha} \times \{e_{i}\})$, 其中 $\{e_{i}\}$ 为 \mathbb{R}^{n} 的自然基底. 我们得到了 TU_{α} 上处处线性无关的一组向量场 $\{e_{i\alpha}\}$, 命这组向量场构成 TU_{α} 的一个单位正交标架场, 这能唯一确定 TU_{α} 上的黎曼度量. 若 $U_{\alpha} \cap U_{\beta} \neq \emptyset$, 对 $\forall p \in U_{\alpha} \cap U_{\beta}$,

$$\langle e_{i\alpha}, e_{j\alpha} \rangle_p = \langle \psi_{\alpha}(e_{i\alpha}|_p), \psi_{\alpha}(e_{j\alpha}|_p) \rangle$$

$$= \langle g_{\alpha\beta}(p)\psi_{\beta}(e_{i\beta}|_p), g_{\alpha\beta}(p)\psi_{\beta}(e_{j\beta}|_p) \rangle$$

$$= \langle \psi_{\beta}(e_{i\beta}|_p), \psi_{\beta}(e_{j\beta}|_p) \rangle$$

$$= \langle e_{i\beta}, e_{j\beta} \rangle_p$$

所以不同平凡化定义的黎曼结构是相容的,因此能定义一个整体的黎曼度量 g. 注意到我们能用单位分解在任意微分流形上构造黎曼度量,这表明任意微分流形切丛的结构群都能约化到正交群.

1.1.3 复向量丛与近复结构,与结构群可约化至 $GL(k,\mathbb{C})$

设 M 是 m 维流形, M 上的复向量丛 E 在定义上仅需要把纤维 \mathbb{R}^k 改为 \mathbb{C}^k 、结构群改为 $\mathrm{GL}(k,\mathbb{C})$.

但如果把 \mathbb{C}^k 视为 \mathbb{R}^{2k} , 则结构群可约化至 $\mathrm{GL}(2k,\mathbb{R})$ 的子群

$$\left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \mid |A|^2 + |B|^2 > 0 \right\}$$

我们仍把这个子群记为 $GL(k,\mathbb{C})$. 可以证明实的秩为 2k 的向量丛 E 为复的秩为 k 的向量丛当且仅当结构群可约化至 $GL(k,\mathbb{C})$.

我们也可以从近复结构的视角理解复向量丛, 若实的秩为 2k 的向量丛 E 上存在自同构 J (即 $\pi \circ J = \pi$), 使得 $J^2 = -\mathrm{id}$, 则称 J 为 M 的近复结构. 可以证明 M 为复向量丛当且仅当 M 上存在近复结构.

一方面若 M 为复向量丛,则可以逐点定义 $J_p(p,v)=(p,\sqrt{-1}v)$,因为转移映射是复线性变换,所以 J_p 良定,且 $J_p^2=-\mathrm{id}$;另一方面我们可以适当修改平凡化 ψ_α 使得 J 可局部表示为

$$J_{\alpha}(p, v_{\alpha}) = \left(p, \begin{pmatrix} & -I_k \\ I_k & \end{pmatrix} v_{\alpha}\right)$$

因为 $g_{\alpha\beta} \cdot J_{\beta} = J_{\alpha} \cdot g_{\alpha\beta}$, 所以

$$\begin{pmatrix} & -I_k \\ I_k & \end{pmatrix} \cdot g_{\alpha\beta}(p) = g_{\alpha\beta}(p) \cdot \begin{pmatrix} & -I_k \\ I_k & \end{pmatrix} \Rightarrow g_{\alpha\beta}(p) = \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$$

从而结构群可约化至 $GL(k,\mathbb{C})$.

1.2 向量从分类定理

1.2.1 同伦的映射拉回同构的向量从(纤维从)

定义 1.2.1 (拉回丛的定义). 设 $f: X \to Y$, 且有向量丛 $p: E \to Y$, 则可以定义 X 上的拉回丛 $p': f^*E \to X$, 其中

$$f^*E := \{(x, e) \in X \times E \mid f(x) = p(e)\}$$

为 $X \times E$ 的子集, 且赋予子拓扑结构. 丛投影为映射到第一个分量的投影映射. 每根纤维的线性结构由 E 上每根纤维的线性结构给出.(有模糊的地方)

命题 1.2.2 (同伦的映射拉回同构的向量丛). 现有向量丛 $p: E \to Y$, 设 $f \simeq g: X \to Y$ 为同伦的光滑映射, 则拉回丛 f^*E 与 g^*E 丛同构.

在证明之前,我们先分析一下命题. 设 $H: X \times [0,1] \to Y$ 是从 f 到 g 的光滑伦移,即 $H|_{X \times \{0\}} = f$, $H|_{X \times \{1\}} = g$. 则有 $X \times [0,1]$ 上的拉回丛 H^*E ,且 $H^*E|_{X \times \{0\}} = f^*E$, $H^*E|_{X \times \{1\}} = g^*E$. 因此为了证明 $f^*E \cong g^*E$,只需证明:

命题 1.2.3 (向量丛在柱空间的上下底的限制是同构的). 当 X 仿紧时, 对任意 $X \times [0,1]$ 上的向量丛 $E, E|_{X \times \{0\}} \cong E|_{X \times \{1\}}$.

证明. 我们需要两个关于向量丛的事实:

- (1): 若 $p: E \to X \times [a,b]$ 在 $X \times [a,c]$ 和 $X \times [c,b]$ 上分别是平凡的,则 E 在整个 $X \times [a,b]$ 上平凡. 只需分别写出在 $X \times [a,c]$ 和 $X \times [c,b]$ 上的平凡化 h_1 和 h_2 ,并修改 h_2 使得它们在 $p^{-1}(X \times \{c\})$ 上匹配,则 h_1 和修改后的 h_2 合并成整个 $X \times [a,b]$ 上的平凡化.
- (2): 对于向量丛 $p: E \to X \times [0,1]$, 存在 X 的开覆盖 $\{U_{\alpha}\}$ 使得 E 在每个 $U_{\alpha} \times [0,1]$ 上都是平凡的. 对任意 $x \in X$, 存在 $U_{x,1}, \ldots, U_{x,k}$ 以及 $0 = t_0 < t_1 < \cdots < t_k = 1$ 使得 E 在 $U_{x,i} \times [t_{i-1}, t_i]$ 上平凡,令 $U_x = U_{x,1} \cap \cdots \cap U_{x,k}$,则由 (1) 知 E 在 $U_x \times [0,1]$ 上平凡.

下面我们来证明该命题,

Part II

杂题集萃

Chapter 2

组合论

2.1 图论

2.1.1 一个关于二部图的小问题

问题 2.1.1. 设有二部图 (U,V), U 的顶点数为 12, 且对任意 U 的 10 顶点子集 X, 集合 $\{v \mid v$ 与某个u相邻, $u \in X\}$ 大小为 20; 对任意 U 的 8 顶点子集 Y, 集合 $\{v \mid v$ 与某个u相邻, $u \in Y\}$ 大小为 16. 证明: 集合 $\{v \mid v$ 与某个u相邻, $u \in U\}$ 大小为 24.

证明. 对 U 的任意子集 X, 记 $V_X = \{v \mid v = x \}$ 和邻, $u \in X\}$,并记 $n(X) = |V_X|$,特别地,当 X 仅有一个元素,即 $X = \{u\}$ 时,n(X) 写为 $n(u) = \deg(u)$. 继续记 U_n 为 U 的某个顶点数为 n 的子集,则题设可写为:

$$n(U_{10}) = 20, \quad \forall U_{10} \subset U$$

 $n(U_8) = 16, \quad \forall U_8 \subset U$

对 U 的任意子集 X, Y,

$$n(X \cup Y) = |V_X \cup V_Y| = |V_X| + |V_Y| - |V_X \cap V_Y|$$

 $\leq |V_X| + |V_Y| - |V_{X \cap Y}| = n(X) + n(Y) - n(X \cap Y)$

于是

$$n(X) + n(Y) \geqslant n(X \cup Y) + n(X \cap Y)$$

我们将反复使用这个不等式推导出结论.

对 $\forall U_6$, 存在 U_8 , U_8' 使得 $U_8 \cap U_8' = U_6$, 则 $|U_8 \cup U_8'| = 10$, 于是

$$32 = n(U_8) + n(U_8') \geqslant n(U_8 \cup U_8') + n(U_6) = 32 + n(U_6)$$

即 $n(U_6) \leq 12$.

对 $\forall U_4$, 存在 U_6 , U_6' 使得 $U_6 \cap U_6' = U_4$, 则 $|U_6 \cup U_6'| = 8$, 于是

$$24 \geqslant n(U_6) + n(U_6') \geqslant n(U_6 \cup U_6') + n(U_4) = 16 + n(U_4)$$

即 $n(U_4) \leq 8$.

对 $\forall U_2$, 存在 U_4 , U_6 使得 $U_4 \cap U_6 = U_2$, 则 $|U_4 \cup U_6| = 6$, 于是

$$20 \geqslant n(U_4) + n(U_6) \geqslant n(U_4 \cup U_6) + n(U_2) = 16 + n(U_2)$$

 $\mathbb{P} n(U_2) \leqslant 4.$

另一方面对 $\forall U_2$, 存在 U_8 使得 $U_2 \cap U_8 = \emptyset$, 则 $|U_2 \cup U_8| = 10$, 于是

$$16 + n(U_2) = n(U_8) + n(U_2) \geqslant n(U_10) = 20$$

即 $n(U_2) \ge 4$. 于是 $n(U_2) = 4$, 从而前面的不等式全为等式, 进而 $n(U_4) = 8$, $n(U_6) = 12$. 对任意不相交的 U_2, U_2' ,

$$8 = n(U_2 \cup U_2') = n(U_2) + n(U_2') - |V_{U_2} \cap V_{U_2'}| = 8 - |V_{U_2} \cap V_{U_2'}|$$

推出 $|V_{U_2} \cap V_{U_2'}| = 0$,也即 $V_{U_2} \cap V_{U_2'} = \emptyset$,到此就能推出 n(U) = 24 了. 进一步研究二部图 (U,V),由上述不相交性质可知对任意不同两点 u,u', $V_u \cap V_{u'} = \emptyset$,于是 $n(u) + n(u') = n(\{u,u'\}) = 4$,可推出所有的 n(u) = 2. 设 $U = \{u_1, \ldots, u_{12}\}$,二部图的连接情况为 $E = \{(u_i, v_{2i-1}), (u_i, v_{2i})\}_{1 \leqslant i \leqslant 12}$.