

An Assessment of Sharma et al.'s Counterfactual-Based Fairness Metric

Yochem van Rosmalen (y.m.vanrosmalen@students.uu.nl)

Florian van der Steen (f.a.vandersteen@students.uu.nl)

Sebastiaan Jans (s.j.j.jans@students.uu.nl)

Daan van der Weijden (d.j.weijden@students.uu.nl)

November 8, 2022

Utrecht University, The Netherlands

Outline

1. Fairness

Statistical Parity

Burden

2. Experiments

Synthetic Datasets

Taiwan Dataset

- 3. Conclusions
- 4. Future Work

Fairness

Fairness

- · What is fairness?
- Many aspects of fairness

Fairness

- · What is fairness?
- Many aspects of fairness metrics

Statistical Parity

Statistical/Demographic Parity (SP_S) [2]: Ratio of acceptance rates (AR_S).

$$SP_S = \frac{AR_{S=A}}{AR_{S=B}} = \frac{P(\hat{Y} = 1|S = A)}{P(\hat{Y} = 1|S = B)}$$

Perfect parity: $SP_S = 1$

80% rule [1]: $SP_S \ge 0.8$ is acceptable.

$$\frac{1/5}{2/5} = 0.5 < 0.8$$
No parity!

 $[\]frac{1}{5} = 0.5 < 0.8$

Ŷ: Model's prediction, S: Sensitive attribute/group

Burden

- · Sharma et al.'s CERTIFAI¹ framework [3]
- Cognitive Scale
- Multiple domains
- Model Agnostic
- Counterfactuals
 - Not causal!
 - Generated with genetic algorithm

¹Counterfactual Explanations for Robustness, Transparency, Interpretability, and Fairness of Artificial Intelligence models

Counterfactual generation

Evolutionary algorithm for the generation of realistic counterfactuals. Illustration adapted from [3].

Burden

- · Distance to counterfactual →individual recourse.
- Average distance to counterfactual over instances in a group s, with **c*** the found counterfactual(s):

$$Burden_{S=s} = \mathbb{E}_{S=s}[d(\mathbf{x}, \mathbf{c}^*)]$$

Experiments

Synthetic datasets

- · Goal: Highlighting theoretical difference between metrics
- · What the metrics measure:
 - Burden: Estimated distance to counterfactual
 - SP: Rate of favorably classified
- Approach:
 - Dataset D_A : $AR_{S=0} = AR_{S=1}$, Burden_{S=0} > Burden_{S=1}
 - · Dataset D_B : $AR_{S=0} > AR_{S=1}$, $Burden_{S=0} < Burden_{S=1}$

Results Synthetic Datasets

(a) D_A , where Burden and statpar disagree on the presence of unfairness.

(b) D_B , where Burden and statpar disagree on the direction of unfairness.

Real world dataset

- · Default of Credit Card Clients Data Set, "Taiwan" [4]
 - · Target: did the person default on loan?
 - · 30,000 instances (1000 counterfactuals)
 - 4 Sensitive attributes (dropped for training)
 - · All features concerning account balances
- Logistic Regression with 78% accuracy

Acceptance Rate		SP	Burden			
Dataset	S = 0	S = 1	0/1	S = 0	S = 1	0/1
D_A	0.500	0.500	1.00	11.6	4.65	2.49
D_B	0.571	0.667	0.857	3.31	11.0	0.302
Taiwan	0.967	0.948	1.02	1.38	0.940	1.47

Underprivileged group according to metric in **boldface**.

Conclusions

- Burden can provide more nuance than Statistical Parity
- · Computational cost of Burden is high
- · Burden can be used in addition to Statistical Parity

Concluding, be mindful when using a single fairness metric!

Future Work

Future Work

- Reduce computational complexity of Burden
- Find real-world datasets with SP and Burden disagree on the direction of unfairness
- Generate counterfactuals for a larger number of datapoints from the Taiwan dataset

References i

M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian.

Certifying and Removing Disparate Impact.

International Conference on Knowledge Discovery and Data Mining (KDD), 21(1):259—268, August 2015.

M. Hardt, E. Price, E. Price, and N. Srebro.

Equality of Opportunity in Supervised Learning.

Advances in Neural Information Processing Systems (NIPS), 29(1), 2016.

References ii

S. Sharma, J. Henderson, and J. Ghosh.

CERTIFAI: A Common Framework to Provide Explanations and Analyse the Fairness and Robustness of Black-Box Models.

In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES), pages 166––172, New York, NY, 2020. Association for Computing Machinery.

I.-C. Yeh and C.-h. Lien.

The Comparisons of Data Mining Techniques for the Predictive Accuracy of Probability of Default of Credit Card Clients.

Expert Systems with Applications, 36(2):2473—2480, March 2009.

Find the Project on GitHub!

github.com/yochem/bursting-burden