V= {1,2,3,4,53

E = { a, ... , m }

waph:

2)

Es it is planar, as me have found one to structure that is able to be embedded.

VI de company of the company of the

(i) Fundamental cut sets +

{cb3 {.cfe3 {.egh3 {.nph3 {cd3

- (ii) { kb3 (t) { cd3 = { bd3 x } } { kghy (t) { cff3 = { hgcf3 / } There two we non { nph3 (t) { egh3 = { npge3 / } fundamental.
- (iii) Vertex connectivity 1 = (taking out vs Which disconnects the Edge connectivity 2 graph into two components)

 the minimum degree in the graph is two.

(iv) No., its not non-seperable. There is an edge required between $v_4 & v_4$ on $v_4 & v_8$ to make it non-seperable.

Yes there is a dual : the given graph is planan.

er

(vii)

	^	1	14								in the
	ru	6	c	d	e	+	9	h	9	P	r
V		0	Q		0	0	0	0	0	0	0
٧2	1	1		,	O.						
V ₃	0	1	1						0		
Vy		σ.					0	O			
V ₅			!								
CALA.					10						0
VA			0		0	0	0	F .	01		
V 8			O.					0	. 1	0 1	; i
	-			_		- 8	1	O	1		