随机森林 基于R语言的组合方法

R语言简介

- 诞生于AT&T的贝尔实验室,是一种基于S 语言的开源实现
- 超过5000个统计、机器学习、数据可视化、 金融模型包
- 便捷的数据预处理和卓越的绘图功能
- SparkR和Rhadoop等开源项目支持;微软和0racle等公司也有专门的R语言包

实验数据集

- 选择kaggle中springleaf公司提供数据集
- 训练数据和测试数据均为920M
- 数据145232行,属性数目1934列
- ■每列熟悉数据均被隐去实际含义

实验数据集初探

```
VAR 1906
                            VAR 1908
               VAR 1907
                                      VAR 1909
Min. : 0.00
           Min. : 0.00 Min. : 0.00 Min. : 0.00
1st Qu.: 9.00
            1st Qu.: 2.00 1st Qu.: 2.00 1st Qu.: 1.00
Median:98.00
           Median: 98.00 Median: 98.00 Median: 98.00
Mean :67.93 Mean :66.31 Mean :69.57 Mean :66.27
3rd Qu.:98.00
            3rd Qu.:98.00 3rd Qu.:98.00 3rd Qu.:98.00
Max. :99.00
            Max. :99.00 Max. :99.00 Max. :99.00
 VAR 1910
             VAR 1911
                         VAR 1912
                                      VAR 1913
Min. : 0.00
            Min. : 0.0 Min. :
                                     2 Min. :
1st Qu.: 1.00
            1st Qu.: 1.0 1st Qu.:999999996 1st Qu.: 170410
Median:98.00
            Median :998.0 Median :99999998 Median :99999998
Mean :69.54 Mean :706.8 Mean :853533232 Mean :746632013
3rd Qu.:98.00 3rd Qu.:998.0 3rd Qu.:999999998 3rd Qu.:999999998
Max. :99.00 Max. :999.0 Max. :999999999 Max. :999999999
            VAR 1915
                               VAR 1916
 VAR 1914
                                            VAR 1917
Min. :
           75 Min. : 0 Min. : 1.0 Min. : 0.0
1st Qu.:999999996    1st Qu.:999999996    1st Qu.:120.0    1st Qu.:120.0
Median :999999998 Median :999999998 Median :998.0 Median :998.0
Mean :853533223 Mean :853529921 Mean :700.2 Mean :722.2
3rd Qu.:99999998 3rd Qu.:999999998 3rd Qu.:998.0 3rd Qu.:998.0
Max. :99999999 Max. :99999999 Max. :999.0 Max. :999.0
 VAR 1918 VAR 1919 VAR 1920
                                      VAR 1921
Min. : 0 Min. : 0 Min. : 0.0000 Min. : 0.00
1st Qu.:9996    1st Qu.: 110    1st Qu.: 0.0000    1st Qu.:98.00
Median: 9998 Median: 9998 Median: 0.0000 Median: 98.00
Mean :8952 Mean :6747 Mean : 0.7738
                                      Mean :77.37
3rd Qu.:9998 3rd Qu.:9998 3rd Qu.: 0.0000 3rd Qu.:98.00
Max. :9999 Max. :9999 Max. :99.0000 Max. :99.00
 VAR 1922
            VAR_1923 VAR_1924 VAR_1925
           0 Min. : 0 Min. : 0 Min. : 0.00
Min. :
1st Qu.:999999998 1st Qu.:999999998 1st Qu.:9998 1st Qu.: 0.00
Median: 999999998 Median: 999999998 Median: 9998 Median: 0.00
Mean :891456069 Mean :895608444 Mean :7905 Mean : 0.55
3rd Qu.:99999998 3rd Qu.:999999998 3rd Qu.:9998 3rd Qu.: 0.00
Max. :99999999 Max. :99999999 Max. :9990 Max. :99.00
            VAR 1927
 VAR 1926
                         VAR 1928
                                      VAR 1929
Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. :
1st Qu.:98.00 1st Qu.:98.00 1st Qu.:999999998
Median :98.00 Median :98.00 Median :998.0 Median :999999998
Mean :86.66 Mean :89.83 Mean :914.4 Mean :990449699
3rd Qu.:98.00
            3rd Qu.:98.00 3rd Qu.:998.0 3rd Qu.:99999998
Max. :99.00
            Max. :99.00
                         Max. :999.0 Max. :999999999
VAR 1930
            VAR 1931
                         VAR_1932
                                      VAR 1933 VAR 1934
Min. : 1.0
            Min. : 0.0 Min. : 0 Min. : 0 Min. :1.000
1st Qu.:998.0
            1st Qu.:998.0
                        1st Qu.:9998 1st Qu.:9998 1st Qu.:1.000
Median :998.0 Median :998.0 Median :9998 Median :9998 Median :3.000
```

数据预处理

- 对14W行数据进行采样 nsample=70000
- 非数值数据转化为 levels <- unique(c(train[[f]], test[层次变量[f]]))
- 数值类型进行标准化 $x = \frac{x-\mu}{\sigma}$ train[[f]]=scale(train[[f]], center=TRUE)
- 用-1替代空值(层次变量)

随机森林算法

- 随机森林是基于决策树设计的组合方法
- 有放回进行采样、随机选择属性、无剪枝 构建单个弱分类器
- 基于多个弱分类器投票构建模型组合形成 强分类器,并且模型不易过拟合
- 模型训练可以并行化计算,加速建模过程

随机森林参数设置

并行算法,构建480棵决策树 依据属性的重要性进行模型调整优化 机器计算能力受限结果预测准确率约为0.75

结合xgboost的pipline算法

- 训练模型中将数据集分为训练集和测试集, 对模型进行验证并提高准确率
- 并行计算和逻辑聚类结合,通过随机梯度 下降的方法提高模型的分类准确率
- 基于ROC和AUC度量模型评价其预测能力

```
watchlist <- list(eval = dval, train = dtrain)
param <- list( objective
                                    = "binary:logistic".
                                     = 0.020.
                max_depth
                eval metric
clf <- xgb. train(
                    params
                                         = param.
                    data
                                         = dtrain.
                                         = 415.
                    nrounds
                                         = 1.
                    verbose
                    early, stop, round
                                         = 20.
                    watchlist
                                         = watchlist.
                                         = TRUE)
                    maximize
```

算法的auc变化曲线和预测结果

	-71- 1/	レロン	au C X /	ТЩЖТ	HJW	【火】こ		lacktriangle
[11]	eval-auc:0.720622			1		target		
[12]	eval-auc:0.721407		ic:0.960037	2		0.32395	8	
[13]	eval-auc:0.722824		ic:0.961965	3	2			
[14]	eval-auc:0.724624	train-au	ic:0.963653		3	0.43958		
[15]	eval-auc:0.726442	train-au	c:0.965989	4	ь	0.23645		
[16]	eval-auc:0.727070	train-au	ic:0.966937	5	9	0.28229		
[17]	eval-auc:0.728312	train-au	ic:0.968329	6	10	0 587		
[18]	eval-auc:0.728671	traina	eval-auc:0.768487	train-auc:1.00000 7	11	$_0$ 1 II		target
[19]	eval-auc:0.730947	ti[193]	eval-auc:0.768481	train-auc:1.00000	12	0 2	1	0.240218
[20]	eval-auc:0.731960	ti[194]	eval-auc:0.768584	train-auc:1.00000	13	0 3	3	0.346543
[21]	eval-auc:0.732637	ti[195]	eval-auc:0.768621	train-auc:1.00000	15	4	6	0.206953
[22]	eval-auc:0.734317	+1		train-auc:1.00000110	17	0 5	9	0.173986
[23]	eval-auc:0.735399	[196]	eval-auc:0.768635		18	0 6	10	0.499799
[24]	eval-auc:0.736424	tl[197]	eval-auc:0.768642	train-auc:1.0000012		7	11	
[25]	eval-auc:0.736985	tl[198]	eval-auc:0.768677	train-auc:1.0000013	19	0 6	12	
[26]	eval-auc:0.738314	tl[199]	eval-auc:0.768762	train-auc:1.0000014	27	0	13	
[27]	eval-auc:0.738717	[200]	eval-auc:0.768781	train-auc:1.0000015	29	0		
[28]	eval-auc:0.739358	t[201]	eval-auc:0.768766	train-auc:1.00000 ₁₆	33	0 10	15	
[29]	eval-auc:0.740080	t1[202]	eval-auc:0.768850	train-auc:1.00000 ₁₇	34	0 11	17	
	eval-auc:0.740050	[203]	eval-auc:0.768840	train-auc:1.00000 ₁₈	39	0 12	18	0.874939
[30]	eval-auc:0.740755	t1[204]	eval-auc:0.768921	train-auc:1.00000 19	41	13	19	0.036539
[31]	eval-auc:0./41121	[205]	eval-auc:0.768953	train-auc:1.00000	44	0 14	27	0.164228
		[206]	eval-auc:0.769054	train-auc:1.000000	11	15	29	0.014214
		[207]	eval-auc:0.769089	train-auc:1.000000		16	33	0.499102
		[208]	eval-auc:0.769100	train-auc:1.000000		17	34	
54 B		[209]	eval-auc:0.769135	train-auc:1.000000		18	39	
200		[210]	eval-auc:0.769175	train-auc:1.000000		19		0.047543
		[211]	eval-auc:0.769190	train-auc:1.000000		20	44	
TO S		[212]	eval-auc:0.769221	train-auc:1.000000		20	44	0.013141

Pipline结果分析

- 结合xgboost和随机森林方法,提高准确率到0.77,相当于多分类正确3000行数据
- 共提交21次结果,最好结果为0.77257

†16	pirasakat	0.77266	13	Fri, 04 Sep 2015 17:44:41 (-8.4d)
↑42	Praveen	0.77265	8	Tue, 15 Sep 2015 07:06:30
↓58	sreewathsa k	0.77264	12	Wed, 09 Sep 2015 06:27:05
†39	LukasHeza	0.77257	2	Sat, 17 Oct 2015 19:01:22
†110	shell_BNU	0.77257	21	Thu, 17 Sep 2015 14:39:55 (-3.6d)
↑45	smr	0.77254	15	Mon, 19 Oct 2015 23:54:57 (-16.7h)
↓47	JumpingCat	0.77254	17	Thu, 08 Oct 2015 01:52:07 (-7d)

随机森林和xgboost的 pipeline算法

黄勇 201521210022