Задачи администрирования

Основы конфигурации и архитектура

Алексей Федин

О спикере:

- Системный аналитик
- Работает в IT с 2002 года
- Опыт администрирования и работы с сетями более 10 лет
- С 2008 года занимается проектированием и наладкой решений информационной безопасности в промышленности. Работал в компаниях: «PTCoфт», Positive Technologies, iGrids, ElcomSoft

Цели занятия

- Узнать, зачем нужно администрирование БД
- Познакомиться с архитектурой PostgreSQL
- Научиться выбирать версию PostgreSQL
- Познакомиться с настройками через графические утилиты и конфигурационные файлы

План занятия

- (1) Администрирование
- (2) Архитектура PostgreSQL
- (3) Выбор версии PostgreSQL
- (4) Конфигурационные файлы
- **5** DBeaver, pgAdmin, DataGrip
- 6 Итоги
- ig(${f 7}\,ig)$ Домашнее задание

^{*}Нажми на нужный раздел для перехода

Администрирование

Администрирование

Происходит от лат. administrare «помогать, прислуживать, заведовать»

Администратор баз данных (database administrator, DBA)

Должность, связанная с проектированием, разработкой и эффективным использованием баз данных

Примеры задач администрирования БД

- Онсталляция и обновление версий СУБД и прикладных инструментов
- Распределение памяти накопителей
- (
 ightarrow) Настройка подсистемы хранения данных
- (
 ightarrow) Создание первичных структур в БД для разрабатываемых приложений
- (
 ightarrow) Модификация структуры БД
- > Создание пользователей и ролей
- (
 ightarrow) Отслеживание доступа пользователей к БД и управление им
- → Мониторинг и оптимизация производительности базы данных
- (
 ightarrow) Резервное копирование и восстановление данных

Архитектура PostgreSQL

Классификация ИС по сфере применения

(>) Файл-серверные — на сервере хранятся и обрабатываются файлы

(o) **Клиент-серверные** — выделенный сервер обрабатывает запросы клиентов

Клиент-серверная модель

- Двухуровневая архитектура клиенты отправляют запросы в БД
- → Трёхуровневая архитектура клиенты обращаются к серверу приложений, который обращается к БД

Архитектура PostgreSQL

Процессы

- (→) Postmaster
- → Фоновые процессы
- → Backend-процессы
- (→) Клиентские процессы

Postmaster

Служба **postmaster** отвечает:

- → за инициализацию сервера
- выключение сервера
- восстановление
- запуск фоновых процессов

Фоновые процессы

Процесс	Назначение
logger	Ведение логов
checkpointer	Отслеживание checkpoint
writer	Периодическая запись буферов в файл
wal writer	Периодическая запись WAL-буферов в файл
autovacuum launcher	Обработка раздутых (bloat) таблиц
archiver	Архивирование WAL-файла
stats collector	Создание статистики работы БД

Backend-процессы

Обрабатывают запросы от пользовательского процесса и возвращают результат запроса

Клиентские процессы

Фоновый процесс, который назначается для каждого подключения внутреннего пользователя. Обычно процесс postmaster запускает отдельный дочерний процесс для обслуживания одного пользовательского подключения

Общая память

Общая память — память, используемая для кеширования данных БД и лога транзакций.

Основные компоненты общей памяти:

- Shared buffers буфер ввода-вывода
- WAL buffer временное хранилище изменений в БД

Выбор версии PostgreSQL

Что нужно учесть перед установкой

- 1 Тип и разрядность процессора
- (2) Операционную систему
- (3) Аппаратную конфигурацию сервера (объём памяти, мощность CPU)
- (4) Размер текущего хранилища данных и динамику его заполнения
- Тип хранилища данных
- б Файловую систему сервера
- 7 Точки монтирования
- (в) Требования по сетевому доступу

Тип и разрядность процессора

- → AMD64
- → ARM64
- (→) ppc64el

Операционная система

Аппаратная конфигурация сервера

- от общего объёма памяти желательно установить как 25% от общего объёма памяти сервера
- 2 Хранилище данных должно быть рассчитано минимум на 3–5 лет работы и поддерживать механизмы динамического изменения размера

Тип хранилища данных

→ NVMe

 \rightarrow SAN

 \rightarrow Cloud

Тип хранилища данных

Сравнение SAN и накопителей, подключённых напрямую:

- SAN имеет некоторую задержку при записи по сравнению с прямым хранилищем при прочих равных условиях
- в SAN может быть проще управлять большим количеством дисков
- SAN, как правило, имеют функции, которые упрощают резервное копирование, зеркалирование и создание снимков диска по сравнению с решениями для прямого хранения данных

ыбор в значительной степени зависит от того, сколько серверов вы можете подключить к SAN и как часто вам нужно выполнять процедуры резервного копирования и т. п.

Конфигурационные файлы

Postgresql.conf

Postgresql.conf — основной конфигурационный файл СУБД.

Примеры настроек в postgresql.conf:

- аудит
- аутентификация
- логирование
- производительность

Просмотр настроек:

postgres@postgres # show config_file;

Pg_hba.conf

Pg_hba.conf — файл с настройками аутентификации.

Просмотр настроек:

```
postgres@postgres # show hba_file;
```

Pg_ident.conf

Pg_ident.conf — файл с настройками ident-based-аутентификации

На каком этапе изменения вступают в силу

- (
 ightarrow) Postmaster требуется перезапуск сервера
- (>) Пользователи изменения применяются в новой сессии
- (\rightarrow) Backend изменения применяются в новой сессии
- (\Rightarrow) Superuser можно изменять superusers в реальном времени

Сетевые параметры

(→) listen_addresses — адрес сервера

(
ightarrow) max_connections — максимальное количество соединений

Настройки памяти

- → shared_buffers размер общей памяти в процентах
- (
 ightarrow) effective_cache_size максимальное количество памяти для page cache
- (
 ightarrow) work_mem помогает в случае частого использования сложных SQL-запросов
- () maintenance_work_mem размер памяти для операций VACUUM, CREATE INDEX и т. п.

Демонстрация работы

Работа с конфигурационными файлами

DBeaver, pgAdmin, DataGrip

Утилиты для работы с базами данных

DBeaver

DBeaver — универсальная утилита управления базами данных (как по количеству поддерживаемых СУБД, так и по количеству возможностей).

PgAdmin

PgAdmin — стандартный графический клиент для работы с сервером, через который мы в удобном виде можем создавать, удалять, изменять базы данных и управлять ими.

DataGrip

DataGrip — это кросс-платформенная IDE для работы с базами данных и SQL.

Демонстрация работы

Демонстрация настроек БД

Итоги

Сегодня мы:

- $ig(oldsymbol{1} ig)$ Узнали, кто такой администратор баз данных (DBA) и какие у него функции
- (2) Разобрались с архитектурой PostgreSQL
- (з) Научились выбирать версию PostgreSQL

Домашнее задание

Домашнее задание в виде теста будет у вас в личном кабинете

Задавайте вопросы и пишите отзыв о лекции

