DSIP – Lecturer 06 Image Enhancement in the Spatial Domain

Basic Relationships Between Pixels

- Neighborhood
- Adjacency
- Connectivity
- Paths
- Regions and boundaries

Contents

- Relationship between Pixels
- Distance Measures Operations
- Practice Examples

Image Enhancement:

- Image Enhancement: is the process that improves the quality of the image for a specific application
- Image enhancement:
- Improving the interpretability or perception of information in images for human viewers
- 2. Providing 'better' input for other automated image processing techniques.

Image Enhancement Methods

Spatial Domain Methods (Image Plane)

Techniques are based on direct manipulation of pixels in an image

Frequency Domain Methods

Techniques are based on modifying the Fourier transform of the image.

Combination Methods

There are some enhancement techniques based on various combinations of methods from the first two categories

Spatial Domain Methods

- The term *spatial domain* refers to the aggregate of pixels composing an image. Spatial domain methods are procedures that operate directly on these pixels.
- Spatial domain processes will be denoted by the expression:

$$g(x,y) = T[f(x,y)]$$

Where f(x,y) in the input image, g(x,y) is the processed image and T is as operator on f, defined over some neighborhood of f(x,y)

• In addition, **T** can operate on a set of input images.

- The simplest form of *T*, is when the neighborhood of size 1X1 (that is a single pixel).
- In this case, g depends only on the value of f at (x,y), and T becomes a grey-level (also called intensity or mapping) transformation function of the form:

$$s = T(r)$$

Where, r and s are variables denoting the grey levels of f(x,y) and g(x,y) at any point (x,y).

Examples of Enhancement Techniques:

Contrast Stretching:

If T(r) has the form as shown in the figure below, the effect of applying the transformation to every pixel of f to generate the corresponding pixels in g would:

Produce higher contrast than the original image, by:

- Darkening the levels below m in the original image
- Brightening the levels above m in the original image

So, Contrast Stretching: is a simple image enhancement technique that improves the contrast

in an image by 'stretching' the range of intensity values it desired range of values.

Typically, it uses a linear function

Examples of Enhancement Techniques

Thresholding

Is a limited case of contrast stretching, it produces a two-level (binary) image.

Some fairly simple, yet powerful, processing approaches can be formulated with grey-level transformations. Because enhancement at any point in an image depends only on the gray level at that point, techniques in this category often are referred to as *point processing*.

Examples of Enhancement Techniques

Larger neighborhoods allow considerable more flexibility. The general approach is to use a function of the values of f in a predefined neighborhood of (x,y) to determine the value of g at (x,y).

One of the principal approaches in this formulation is based on the use of so-called masks (also referred to as filters)

So, a mask/filter: is a small (say 3X3) 2-D array, such as the one shown in the figure, in which the values of the mask coefficients determine the nature of the process, such as *image sharpening*. Enhancement techniques based on this type of approach often are referred to as *mask processing* or *filtering*.

Some Basic Intensity (Gray-level) Transformation Functions

- Grey-level transformation functions (also called, intensity functions), are considered the simplest of all image enhancement techniques.
- The value of pixels, before an after processing, will be denoted by *r* and *s*, respectively. These values are related by the expression of the form:

$$s = T(r)$$

where T is a transformation that maps a pixel value r into a pixel value s.

Some Basic Intensity (Gray-level) Transformation Functions

Consider the following figure, which shows three basic types of functions used frequently for image enhancement:

Some Basic Intensity (Gray-level) Transformation Functions

- The three basic types of functions used frequently for image enhancement:
 - Linear Functions:
 - Negative Transformation
 - Identity Transformation
 - Logarithmic Functions:
 - Log Transformation
 - Inverse-log Transformation
 - Power-Law Functions:
 - nth power transformation
 - nth root transformation

Linear Functions

Identity Function

- Output intensities are identical to input intensities
- This function doesn't have an effect on an image, it was included in the graph only for completeness
- Its expression:

s = r

Linear Functions

- Image Negatives (Negative Transformation)
 - The negative of an image with gray level in the range [0, L-1], where L = Largest value in an image, is obtained by using the negative transformation's expression:

$$s = L - 1 - r$$

Which reverses the intensity levels of an input image, in this manner produces the equivalent of a photographic negative.

• The negative transformation is suitable for enhancing white or gray detail embedded in dark regions of an image, especially when the black area are dominant in size

Logarithmic Transformations

Log Transformation

The general form of the log transformation:

$$s = c \log (1+r)$$

Where c is a constant, and $r \ge 0$

- Log curve maps a narrow range of low gray-level values in the input image into a wider range of the output levels.
- Used to expand the values of dark pixels in an image while compressing the higher-level values.
- It compresses the dynamic range of images with large variations in pixel values.

Logarithmic Transformations

Logarithmic Transformations

- Inverse Logarithm Transformation
 - Do opposite to the log transformations
 - Used to expand the values of high pixels in an image while compressing the darker-level values.

Power-Law Transformations

Power-law transformations have the basic form of:

$$s = c.r^{v}$$

Where c and ^v are positive constants

Power-Law Transformations

 Different transformation curves are obtained by varying ^γ (gamma)

Power-Law Transformations

 Variety of devices used for image capture, printing and display respond according to a power law. The process used to correct this power-law response phenomena is called gamma correction.

Why power laws are popular?

- A cathode ray tube (CRT), for example, converts a video signal to light in a nonlinear way. The light intensity I is proportional to a power (γ) of the source voltage VS
- For a computer CRT, γ is about 2.2
- Viewing images properly on monitors requires γ -correction

Gamma Correction

Gamma Measuring Applet:

http://www.cs.cmu.edu/~efros/java/gamma/gamma.html

Power-Law Transformation

 In addition to gamma correction, power-law transformations are useful for general-purpose contrast manipulation.

Power-Law Transformation

 Another illustration of Power-law transformation

Piecewise-Linear Transformation Functions

- **Principle Advantage:** Some important transformations can be formulated only as a piecewise function.
- **Principle Disadvantage:** Their specification requires more user input that previous transformations
- Types of Piecewise transformations are:
 - Contrast Stretching
 - Gray-level Slicing
 - Bit-plane slicing

- One of the simplest piecewise linear functions is a contrast-stretching transformation, which is used to enhance the low contrast images.
- Low contrast images may result from:
 - Poor illumination
 - Wrong setting of lens aperture during image acquisition.

Dr. B. S. Daga , Fr.CRCE , Mumbai

- Figure 3.10(a) shows a typical transformation used for contrast stretching. The locations of points (r1, s1) and (r2, s2) control the shape of the transformation function.
- If r1 = s1 and r2 = s2, the transformation is a linear function that produces no changes in gray levels.
- If r1 = r2, s1 = 0 and s2 = L-1, the transformation becomes a *thresholding* function that creates a binary image. As shown previously.
- Intermediate values of (r1, s1) and (r2, s2) produce various degrees of spread in the gray levels of the output image, thus affecting its contrast.
- In general, $r1 \le r2$ and $s1 \le s2$ is assumed, so the function is always increasing.

- Figure 3.10(b) shows an 8-bit image with low contrast.
- Fig. 3.10(c) shows the result of contrast stretching, obtained by setting (r1, s1) = $(r_{min}, 0)$ and $(r2, s2) = (r_{max}, L-1)$ where r_{min} and r_{max} denote the minimum and maximum gray levels in the image, respectively. Thus, the transformation function stretched the levels linearly from their original range to the full range [0, L-1].
- Finally, Fig. 3.10(d) shows the result of using the *thresholding function* defined previously, with r1=r2=m, the mean gray level in the image.

Gray-level Slicing

- This technique is used to highlight a specific range of gray levels in a given image. It can be implemented in several ways, but the two basic themes are:
 - One approach is to display a high value for all gray levels in the range of interest and a low value for all other gray levels. This transformation, shown in Fig 3.11 (a), produces a binary image.
 - The second approach, based on the transformation shown in Fig 3.11 (b), brightens the desired range of gray levels but preserves gray levels unchanged.
 - Fig 3.11 (c) shows a gray scale image, and fig 3.11 (d) shows the result of using the transformation in Fig 3.11 (a).

Gray-level Slicing

7/24/2020

Dr. B. S. Daga , Fr.CRCE , Mumbai

Bit-plane Slicing

- Pixels are digital numbers, each one composed of bits. Instead
 of highlighting gray-level range, we could highlight the
 contribution made by each bit.
- This method is useful and used in image compression.

 Most significant bits contain the majority of visually significant data.

HW:

Assignment

- Write an M-function, that
 - inputs an image, a low value, a high value and a range of gray levels of interest
 - (f, low, high, from, to)
 - Outputs a two images (g, h)
 - Applies the two approaches of Gray-level slicing on image f, and produces images g and h respectively.