

PROJECT 1

MaryJo Zaborowski DS 04222019

WHAT WAS THE PROJECT?

Data Science Project 1 involves the assessment of a data set from King's County, Washington, containing house sales data. The objective of this study is to develop a predictive model to support house pricing, using the techniques of linear regression.

My philosophy was to rigorously clean the data up front, to enable accelerated analytics.

My plan:

- 1. Inspect the data
 - a. review statistics (missing data, duplicates, extraneous values)
 - 2. Clean data and review content
 - 3. Check the data distribution
 - i. plot histograms with KDE
 - ii. view predictors vs. target with scatter plots
 - 4. Run a regression to establish a model
 - 5. Adjust the model to improve the predictive result by adding other independent variables and/or transforming the existing variables to improve upon their heteroscedascity and skew

WHAT WAS THE RESULT?

A linear regression model was developed using sqft_living to predict the sales price, however as a predictor of sales price, sqft_living performs inadequately.

The variable histogram showed skew and after running the model, R squared is 0.492, which means 49% of variance in house price(target variable) can be explained using the living square footage.

The residuals were conical in the plots, indicating heteroscedasticity, which breaks the assumption of normality in the data. This is confirmed by residuals in the QQ plot where the points follow a strongly nonlinear pattern, suggesting that the data are not distributed as a standard normal($X \sim N(0,1)$).

A second multivariate model was developed using log-transformed values for sqft_living and adding a new variable of bedrooms per bathroom. This model returned an R squared value of 0.361, which performs less predictively than the prior model.

Conclusion: These models are not predictive. Further transformation of the data and use of additional variables would be required to improve on these

DATA IN DETAIL

Model 1

OLS Regression Resu	ılts						
Dep. Variable:		price		R-squa	red:	0.492	
Model:		OLS	Adj.	R-squa	red:	0.492	
Method:	Leas	t Squares		F-statis	stic: 2.0	087e+04	
Date:	Tue, 07 l	May 2019	Prob (F-statis	tic):	0.00	
Time:		16:43:09	Log-	Likeliho	ood: -2.99	911e+05	
No. Observations:		21533			AIC: 5.9	982e+05	
Df Residuals:		21531		ı	BIC: 5.9	982e+05	
Df Model:		1					
Covariance Type:	r	nonrobust					
	coef s	std err	t	P> t	[0.02	5 0.975	1
Intercept -4.2186	+04 440	04.621	-9.575	0.000	-5.08e+04	4 -3.35e+04	4
sqft_living 279.9	9379	1.938 1	44.475	0.000	276.140	283.736	6
Omnibus: 1	4581.827	Durbi	n-Watso	n:	1.981		
Prob(Omnibus):	0.000	Jarque	-Bera (J	B): 516	6123.571		
Skew:	2.781		Prob(J	B):	0.00		
Kurtosis:	26.331		Cond. N	lo. 5	5.63e+03		

Model 1 vs. Model 2 OLS Regression Results

Model 2

OLS Regression R	esuits						
Dep. Variab	le:	price	R-	square	d:	0.361	
Mode	el:	OLS	Adj. R-	square	d:	0.361	
Metho	d: Leas	Least Squares		F-statistic:		6082.	
Dat	te: Wed, 08	May 2019	Prob (F-	statistic):	0.00	
Tim	ie:	08:45:17	Log-Li	kelihood	: -3.0	158e+05	
No. Observation	ns:	21533		AIC	: 6.	032e+05	
Df Residua	ls:	21530		віс	: 6.	032e+05	
Df Mod	el:	2					
Covariance Typ	e:	nonrobust					
	coef	std err	t	P> t	ro (025	0.9751
Intercept	-6.981e+06	7.8e+04	-89.508	0.000	-7.13e		33e+06
sqft_living	3.752e+06	3.76e+04	99.902	0.000	3.68e-	+06 3.8	33e+06
	-3.289e+04	3244.179	-10.140	0.000	-3.93e-		65e+04
bea_per_battr	0.2000.0.	52	101110	0.000	0.000		
Omnibus:	19438.802	Durbin-	-Watson:		1.976		
Prob(Omnibus):	0.000	Jarque-B	Bera (JB):	16806	36.367		
Skew:	4.012	ı	Prob(JB):		0.00		
Kurtosis:	45.530	C	ond. No.		125.		

WHAT DID I LEARN?

I was disappointed to not be further along in the exploration and analytics of this data. I feel I understand how to improve upon my result, but did not have the time (or skill yet) to execute as I planned. However, I gained some important learnings:

- 1. Creating a plan first: This was a good step that I took, allowing me to remain on task to the needed steps
- 2. Rethink time allocation: Time allocated (time management) between data cleaning and model refinement was not well balanced.
- 3. Build competency in dataframe manipulation: A majority of time and failure in the project was due to my inability to create the right code to transform data as desired. This was true in early data exploration (I attempted to use and transform the view, and location columns (zipcode, lat, and long). After unproductive hours, I moved on.)
- 4. Study problems solidify learning: This exercise was helpful to integrate learning about each of the course lessons, particularly python, list comprehension, linear regression and multivariate regression.