

Swati Mishra

Applications of Machine Learning (4AL3)

Fall 2024

ENGINEERING

Review

Review

 Convolutional neural networks are very similar to neural networks that use convolutional operation in place of general matrix multiplication in at least one of the layers.

- Convolutional neural networks are very similar to neural networks that use convolutional operation in place of general matrix multiplication in at least one of the layers.
- Convolution is an operation on two functions of a real valued argument.

$$s(t) = (x * w)(t)$$

- Convolutional neural networks are very similar to neural networks that use convolutional operation in place of general matrix multiplication in at least one of the layers.
- Convolution is an operation on two functions of a real valued argument.

$$s(t) = (x * w)(t)$$

feature map

- *x* is an input function
- w is a kernel or filter

- Convolutional neural networks are very similar to neural networks that use convolutional operation in place of general matrix multiplication in at least one of the layers.
- Convolution is an operation on two functions of a real valued argument.

$$s(t) = (x * w)(t)$$

- *x* is an input function
- w is a kernel or filter

feature map

Discreet convolution:

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

- Convolutional neural networks are very similar to neural networks that use convolutional operation in place of general matrix multiplication in at least one of the layers.
- Convolution is an operation on two functions of a real valued argument.

$$s(t) = (x * w)(t)$$

- *x* is an input function
- w is a kernel or filter

feature map

Discreet convolution:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n).$$

Input data

Kernel

popularly called as "filter"

aw + bx + ey + fz

*

а	b	С	d
е	f	g	h
i	j	k	_

W	X
У	Z

Α	В	

$$A = aw + bx + ey + fz$$

$$B = bw + cx + fy + gz$$

а	b	С	d	
е	f	g	h	
i	j	k	I	

W	Х
У	Z

Α	В	O

$$A = aw + bx + ey + fz$$

$$B = bw + cx + fy + gz$$

$$C = cw + dx + gy + hz$$

а	b	С	d	
е	f	g	h	
i	j	k	I	

*

W	х
У	Z

:

Α	В	O

$$A = aw + bx + ey + fz$$

$$B = bw + cx + fy + gz$$

$$C = cw + dx + gy + hz$$

Very efficient for parallelization!

Convolutional Operation: Advantage

- Convolutional operation has an advantage of matrix multiplication.
- The image on the right was formed by taking each pixel in the original image and subtracting the value of its neighboring pixel on the left.

а	b	С	d
е	f	g	h
i	j	k	-

W	X
У	Z

Α	

The image on the right was formed by taking each pixel in the original image and subtracting the value of its neighboring pixel on the left.

Operation we want to do: A = b - a

$$A = b - a$$

$$A = aw + bx + ey + fz$$

а	b	С	d
е	f	g	h
i	j	k	I

1	-1	
0	0	

b - a	

The image on the right was formed by taking each pixel in the original image and subtracting the value of its neighboring pixel on the left.

$$A = aw + bx + ey + fz$$

Neural Networks: Architecture

Convolutional NN: Architecture

Transformation of simple image to tensor can be very

Conv-1:

Height = 224

Width = 224

Depth = 64

Picture Source: https://learnopencv.com/understanding-convolutional-neural-networks-cnn/

Neural Networks: Architecture

Depth and width are different for CNNs

- The dimensionality of the hidden layers is called width.
- The number of the hidden layers is called the depth.

Input Layer

Hidden Layer(s)

Output Layer

Conv-1:

Height = 224

Width = 224

Depth = 64

This depth is NOT the depth of the network!

Picture Source: https://learnopencv.com/understanding-convolutional-neural-networks-cnn/

а	b	С	d	m
е	f	g	h	n
i	j	k	I	0

What do we do in this case?

$$A = aw + bx + ey + fz$$

$$B = bw + cx + fy + gz$$

$$C = cw + dx + gy + hz$$

а	b	С	d	m
е	f	g	h	n
i	j	k	I	0

?

$$A = aw + bx + ey + fz$$

$$B = bw + cx + fy + gz$$

$$C = cw + dx + gy + hz$$

Make the convolution "valid" by not computing last column or use a sliding window operation.

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- Activation function = ReLU Activation

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- Activation function = ReLU Activation

- Filters do not have the same weights
- Filters look at the same region.

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- Activation function = ReLU Activation

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- Activation function = ReLU Activation

Typically, neural networks have 3 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- Activation function = ReLU Activation

Layer stacking order: INPUT - CONV

For 3 filters the size of convolutional layer = 28x28x3

Typically, neural networks have 3 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- ReLU Layer element wise

Layer stacking order: INPUT – CONV -RELU

For 3 filters the size of convolutional layer = 28x28x3

Output of ReLU Layer?

Typically, neural networks have 3 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- ReLU Layer element wise

Max Pooling operation

Layer stacking order: INPUT - CONV - RELU-POOL

Pooling layer: down samples the input along height and width.

Typically, neural networks have 3 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- ReLU Layer element wise

Layer stacking order: INPUT – CONV –RELU-POOL

Pooling layer: down samples the input along height and width. Also called **detector**.

Typically, neural networks have 3 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- ReLU Layer element wise

Max Pooling operation

Layer stacking order: INPUT – CONV –RELU-POOL

Pooling layer: down samples the input along height and width.

Output of Pooling Layer?

Typically, neural networks have 3 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- ReLU Layer element wise

Max Pooling operation

Layer stacking order: INPUT - CONV - RELU-POOL

Pooling layer: down samples the input along height and width.

Output of Pooling Layer = 16x16x3

Typically, neural networks have 3 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- ReLU Layer element wise

Max Pooling operation

Layer stacking order: INPUT - CONV - RELU-POOL

A pooling unit that pools over multiple features that are learned with separate parameters can learn to be invariant to transformations of the input.

Typically, neural networks have 3 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- ReLU Layer element wise

Layer stacking order: CONV – RELU –POOL-FC

Fully connected layer computes class scores and is like just another neural network.

Typically, neural networks have 3 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- ReLU Layer element wise

Layer stacking order: CONV – RELU –POOL-FC

Output of fully connected layer: 1x1xN

N of classes = 10 digits

Typically, neural networks have 3 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- RelU activation Layer

Popular CIFAR-100 architecture:

[INPUT - CONV - RELU - POOL - FC]

[INPUT - CONV - RELU - POOL - FC]

:

CIFAR100

```
CLASS torchvision.datasets.CIFAR100(root: Union[str, Path], train: bool = True, transform:

Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False) [SOURCE]
```

CIFAR100 Dataset.

This is a subclass of the CIFAR10 Dataset.

Special-members:

```
\_getitem\_(index: int) \rightarrow Tuple[Any, Any]
```

Parameters:

index (int) - Index

Returns:

(image, target) where target is index of the target class.

Return type:

tuple

Picture Source: https://learnopencv.com/understanding-convolutional-neural-networks-cnn/

Readings

Required Readings:

Introduction to Statistical Learning

• Chapter 10 – Section 10.3 page 406 - 412

Supplemental Readings (Not required but recommended):

Deep Learning

• Chapter 9 – page 330 - 340

Thank You

