Goemans and Williamson (1995) — "Goemans and Williamson Algorithm for MAXCUT and Gronthendieck's Inequality"

January 29, 2018; rev. February 8, 2018 Kevan Hollbach, Lily Li

1 Semi-Definite Programming Review

2 Goemans Williamson Algorithm (Standard SDP)

Let G = (V, E) be a weighted undirected graph with |V| = n and where each edge (i, j) has weight $w_{ij} \ge 0$. The goal of the MAXCUT problem is to find a partition (S, V - S) which maximizes the sum of the edge weights of edges crossing the partition.

We can formulate the problem as the following quadratic program:

Maximize: $\sum_{(i,j)\in E} \frac{w_{ij}(1-x_ix_j)}{2}$

Subject to: $x_i \in \{-1, +1\}, \text{ for } i \in [n]$

where x_i is associated with vertex v_i and $x_i x_j = 1$ if and only if v_i and v_j are placed in the same set. Let OPT denote the optimum solution to this quadratic program.

Next we introduce the vector programming relaxation of the above quadratic program:

Maximize: $\sum_{(i,j)\in E} \frac{w_{ij}(1-\mathbf{u_i}\cdot\mathbf{u_j})}{2}$

Subject to: $\|\mathbf{u}_i\|^2 = 1$ and $\mathbf{u}_i \in \mathbb{R}^n$, for $i \in [n]$.

To see that this is indeed a relaxation, take $\mathbf{u}_i = (\underbrace{x_i,0,...,0}_n)$ for each $i \in [n]$. Observe these \mathbf{u}_i 's satisfy the

constraints $(\|\mathbf{u}_i\|^2 = 1 \text{ and } \mathbf{u}_i \in \mathbb{R}^n)$ and $\mathbf{u_i} \cdot \mathbf{u_j} = x_i x_j$. Thus, if OPT_{VP} denotes the optimum solution to this vector program then $OPT_{VP} \geq OPT$.

The above vector program is equivalent to the following semidefinite program:

Maximize: $\sum_{(i,j) \in E} \frac{w_{ij}(1-x_{ij})}{2}$

Subject to: $x_{i,i} = 1 \text{ for } i \in [n] \text{ and } X \succeq 0$

where X has entry $x_i j$ in row i column j (two see that these two forms are equivalent remark that $X \succeq 0$ if and only if $X = U^T U$). Solve the semi-definite program in polynomial time and obtain some optimal solution X^* .

Cholesky factorize X^* into $(U^*)^TU^*$ and let the columns of U^* , $\mathbf{u}_i^* \in \mathbb{R}^n$, be the solutions to the vector program. We want to round each \mathbf{u}_i^* to some $x_i^* \in \{-1,+1\}$. Then $x_i = x_i^*$ will be a solution to our original quadratic program. Do this in the following randomized manner: pick $\mathbf{r} = (r_1,...,r_n)$ by drawing each r_i independently from the distribution $\mathcal{N}(0,1)$. Then let

$$x_i^* = \begin{cases} 1 & \mathbf{u}_i^* \cdot \mathbf{r} \ge 0 \\ -1 & \text{otherwise} \end{cases}.$$

It is helpful to have the geometric picture in mind: each \mathbf{u}_i^* is a vector which lies on the n-dimensional unit sphere. The hyper-plane with normal \mathbf{r} split the sphere in-half. All \mathbf{u}_i^* in the same half of the sphere gets mapped to the same value $c \in \{-1, 1\}$ and all the \mathbf{u}_i^* in the other half gets mapped to -c.

To show the constant of approximation we need to consider the probability that an edge e_{ij} gets cut. This is equivalent to the probability that \mathbf{u}_i and \mathbf{u}_j fall in different halves of the sphere cut by the hyper-plane normal to \mathbf{r} . Consider the projecting of the normalized vector \mathbf{r} onto the span of $\{\mathbf{u}_i, \mathbf{u}_j\}$. See Figure 1.

Figure 1: Shaded part denote regions where the normalized \mathbf{r} can lie such that $\mathbf{u}_i \cdot \mathbf{r}$ and $\mathbf{u}_i \cdot \mathbf{r}$ have different sign.

Thus the probability that $\mathbf{r} \cdot \mathbf{u}_i$ and $\mathbf{r} \cdot \mathbf{u}_j$ have different sign is $\frac{\theta}{\pi}$. Since $\theta = \arccos(\mathbf{u}_i \cdot \mathbf{u}_j)$,

$$Pr[e_{ij} \text{ is in the cut}] = \frac{\arccos(\mathbf{u}_i \cdot \mathbf{u}_j)}{\pi}.$$
 (1)

We state without proof that

$$\frac{\arccos(x)}{\pi} \ge 0.878 \frac{1-x}{2} \tag{2}$$

for $x \in [-1,1]$ — it helps to observe that the constant approximately minimizes $f(x) = \frac{2\arccos(x)}{\pi(1-x)}$ on the interval [-1,1]. Thus the expected sum of weights obtained by the algorithm is

$$\begin{split} \mathbb{E}[W] &= \sum_{(i,j) \in E} w_{ij} \Pr[(i,j) \text{ is in the cut}] \\ &= \sum_{(i,j) \in E} w_{ij} \frac{\arccos(\mathbf{u}_i \cdot \mathbf{u}_j)}{\pi} & \text{by 1} \\ &\geq 0.878 \cdot \left(\sum_{(i,j) \in E} w_{ij} \frac{1 - x_{ij}}{2}\right) & \text{by 2} \\ &= 0.878 \cdot OPT_{VP} \geq 0.878 \cdot OPT \end{split}$$

Since we can find a cut of size $0.878 \cdot OPT_{VP}$, $OPT \ge 0.878 \cdot OPT_{VP} \ge 0.878 \cdot OPT$.

3 SOS (Lassarre Hierarchy) Review

4 Pseudo-Distribution

Definition 1. Let $f: \{0,1\}^n \to \mathbb{R}$. The **formal expectation** of f with respect to another function μ (not necessarily a probability distribution since it could be negative is

$$\widetilde{\mathbb{E}}_{\mu} f = \sum_{x \in \{0,1\}^n} \mu(x) \cdot f(x)$$

A degree-d pseudo-distribution over $\{0,1\}^n$ is a function $\mu:\{0,1\}^n\to\mathbb{R}$ such that every formal expectation with respect to μ satisfies $\tilde{\mathbb{E}}_{\mu}1=1$ and for every polynomial f of degree at most $\frac{d}{2}$

$$\tilde{E}_{\mu}f^2 \geq 0.$$

Let a formal expectation with respect to a pseudo distribution μ of degree d is a degree d pseudo-expectation.

5 Vector Representation

Let y be a feasible solution in $SOS_t(K)$. We can equivalently represent y as vectors $\{v_I\}$, $|I| \leq t$, such that $y_{I \cup J} = \langle v_I, v_J \rangle$ for all $|I|, |J| \leq t$. This representation arises from the Cholesky decomposition of the moment matrix, $M_t(y)$, into

6 Goemans Williamson Algorithm (SOS t = 3)

We are now ready to present the GW algorithm through the lens of a level three SOS program. Let our graph G=(V,E) be as the above with |V|=n and where each edge (i,j) has weight $w_{ij} \geq 0$. Formulate MAXCUT as the following integer linear program:

$$\begin{array}{ll} \text{Maximize:} & \sum_{(i,j)\in E} w_{ij}z_{ij} \\ \text{Subject to:} & \max(x_i-x_j,x_j-x_i) \leq z_{ij} \leq \min(x_i+x_j,2-x_i-x_j) \text{ for } (i,j) \in E, \\ & x_i,z_{i,j} \in \{0,1\} \text{ for } i \in [n] \text{ and } (i,j) \in E \end{array}$$

where x_i is the indicator variable for a vertex chosen to be in set S of the partition and z_{ij} is the indicator variable for an edge crossing the cut (S, V - S). Observe that $z_{ij} = |x_i - x_j|$.

Let K be the feasible region of the LP relaxation of the above integer program. For any graph we can set $x_i = \frac{1}{2}$ and $z_{i,j} = 1$ in the LP and obtain a value of $\sum_{(i,j) \in E} w_{ij}$. In particular, since the max cut of a complete graph on n-vertices with unit weight edges is at most $\frac{|E|}{2}$ while the output to the relaxation is |E|, the integrality gap of this LP scheme is 2.

Suppose instead that we started with $\mathbf{y} \in SOS_3(K)$. Pay particular attention to the elements of \mathbf{y} indexed by the degree one monomials x_i and $z_{i,j}$, and the multinomials x_ix_j for all $(i,j) \in E$. Denoted these as y_i , ζ_{ij} , and y_{ij} respectively. \mathbf{y} has the form

$$\mathbf{y} = [y_{\emptyset}, y_1, ..., y_n, \zeta_{i,j}, ..., y_{i,j}, ...]$$

Lemma 2. For any edge $(i, j) \in E$, $\zeta_{i,j} = y_i + y_j - 2y_{i,j}$.

Proof.

Using the vector representation (add reference), there exists vectors \mathbf{v}_i such that $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = y_{i,j}$ for all $i, j \in [n]$. Recall however that the angle between any two vectors \mathbf{v}_i and \mathbf{v}_j is between 0 and $\frac{\pi}{2}$ so applying hyper-plane rounding on the \mathbf{v}_i 's would be sub-optimal (we want the vectors to be more spread out so that a random hyper-plane would be more likely to separate a pair of verticies belonging to different sets).

Perform the vector transformation $\mathbf{u}_i = 2\mathbf{v}_i - \mathbf{v}_{\emptyset}$. Observe that \mathbf{u}_i is a unit vector on the sphere centered at the origin. See Figure. In essence this transformation takes $[0,1]^n$ vectors \mathbf{v}_i to $[-1,1]^n$ vectors \mathbf{u}_i before rounding \mathbf{u}_i to ± 1 .

Lemma 3. The vectors $\mathbf{u}_i = 2\mathbf{v}_i - \mathbf{v}_{\emptyset}$ form a solution to the vector program (add reference to the above) where $\zeta_{i,j} = \frac{1 - \mathbf{u}_i \cdot \mathbf{u}_j}{2}$.

Proof. We need to show that \mathbf{u}_i is a unit vector and that $z_{i,j} = \frac{1 - \mathbf{u}_i \cdot \mathbf{u}_j}{2}$ holds. Observe that

$$\mathbf{u}_i^2 = (2\mathbf{v}_i - \mathbf{v}_\emptyset)^2 = 4\mathbf{v}_i^2 - 4\mathbf{v}_i\mathbf{v}_\emptyset + \mathbf{v}_\emptyset^2 = 1$$

since $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = y_i = \langle \mathbf{v}_i, \mathbf{v}_{\emptyset} \rangle$ and $\mathbf{v}_{\emptyset}^2 = y_{\emptyset} = 1$. Further

$$\frac{1 - \mathbf{u}_i \cdot \mathbf{u}_j}{2} = \frac{1 - (2\mathbf{v}_i - \mathbf{v}_\emptyset) \cdot (2\mathbf{v}_j - \mathbf{v}_\emptyset)}{2} = \mathbf{v}_i \cdot \mathbf{v}_\emptyset + \mathbf{v}_j \mathbf{v}_\emptyset - 2\mathbf{v}_j \cdot \mathbf{v}_i = y_i + y_j + 2y_{i,j} = \zeta_{i,j}.$$

7 Grothendieck's Inequality

Reference

Goemans, M. X. and Williamson, D. P. (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *Journal of the ACM (JACM)*, 42(6):1115–1145.