5. Experiment

5.1 Part A:

Refer to circuit in Figure 1.

a) Refer to the circuit. Derive Boolean expression for output F and G.

$$F = (\overline{A}(\overline{AD}))(\overline{A} + BC)$$

b) Simplify equation output F using laws, rules and De Morgan Theorem, and write the equation in

$$F = (\bar{A}(\bar{A}D))(\bar{A} + BC)$$

$$= (\bar{A} + (\bar{A}D))(\bar{A} + BC)$$

$$= (A + \bar{A}D)(\bar{A} + BC)$$

$$= A\bar{A} + ABC + \bar{A}\bar{A}D + \bar{A}BCD$$

$$= ABC + \bar{A}\bar{A}D + \bar{A}BCD$$

$$= ABC + \bar{A}D + \bar{A}BCD$$

c) Simplify equation output G using laws, rules and De Morgan Theorem, and write the equation in Product of Sum (POS)

$$G = (\bar{A} + BC)(\bar{A}D)$$

$$= (\bar{A} + BC)(\bar{A} + \bar{D})$$

$$= (\bar{A} + BC)(\bar{A} + \bar{D})$$

$$= (\bar{A} + BC)(\bar{A} + \bar{D})$$

$$= (\bar{A} + B)(\bar{A} + C)(\bar{A} + \bar{D})$$

simulate the circuit and construct the truth table and complete the following.

Truth table for output circuit F and G shown in Figure 1

	snown in		put	Inj	A
out	Out		C	В	
G	F	D	0	0	0
<u> </u>	0	0	0	0	0
0		11	1	0	0
7.9	0	0		0	0
1		1	1	1	0
0	1	0	0		0
	0	1	0	1	0
0			1	1	
1	0	0	1	1	0
0	1	1		0	1
0	0	0	0	0	1
	0	1	0	0	1
0		0	1		1
0	0	1	1	0	
0	0		0	1	1
0	0	0	0	1	1
C	0	1	1	1	1
	l	0		1	1
	1	1	1		

d) Using Deeds, draw circuit in Figure 1. Simulate and complete the waveform output F and G by

e) Write Boolean equation for output F using Sigma notation.

f) Write Boolean equation for output G using Pi notation.

Experimental steps

 Construct Truth Table in Table 1 for the LRT operations. Use variables S, S1, S2, and S3 as INPUTS and OPEN and ALARM as OUTPUTS.

Table 1

	INP		OUTPUT		
S	S1	S2	S3	OPEN	ALARM
0	0	0	0	0	0
0	0	0	1	0	l __
0	0	Ĭ	0	0	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	0	
1	0	0	1	Α	0
1	0	1	0	1	0
1	0	1	1.	0	0
1	1	0	0	1	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	C

ii) Use K-Map to get optimized SOP Boolean equations for the OPEN and ALARM circuits OPEN

ABCO	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11		0	0	0
10	0		0	

Experimental steps

 Construct Truth Table in Table 1 for the LRT operations. Use variables S, S1, S2, and S3 as INPUTS and OPEN and ALARM as OUTPUTS.

Table 1

	INP	UT		OUTPUT		
S	S1	S2 S3		OPEN	ALARM	
0	0	0	0	0	0	
0	0	0	1	0	1	
0	0	1	0	0	1	
0	0	1	1	0	0	
0	1	0	0	0	l	
0	1	0	0 1	0	0	
0	1			0	0	
0	1	1		0	0	
1	0	0	0	0	1	
1	0	0	1	1	0	
1	0	1	0	1	0	
1	0	1	1.	0	0	
1	1	0	0	- <u>C</u>	0	
1	1	0	1	0	0	
1	1	1	0	0	0	
2 1	1	1	1	0	0	

ii) Use K-Map to get optimized SOP Boolean equations for the OPEN and ALARM circuit OPEN

ABCO	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11		0	0	0
10	0		0	

00	00	01	11	10
AB 00	0		0	
01		o	0	0
11	0	o	0	0
10	1	0	0	0

= ABCO + ABCO + ABCO + ABCO

iii) From equations in (ii), draw your final OPEN and ALARM circuits using Deeds Simulator.

iv) Simulate the circuit design in (iii) and construct Truth Table in Table 2.

Table 2

	INP	UT		OUTP	UT
S	S1	S2	S3	OPEN	ALARM
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	0	V
0	0	1	1	0	0
0	1	0	0	0	Ĵ.
0	1	0	1	0	0
0	1	1	0 0	0	0
0	1	1		0	0
1	0	0	0	0	\\
1	0	0	1	ı	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	1	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

Compare the answer of Table 2 and Table 1. What is your conclusion?

Both output on Table 2 and Table 1 are equivalent.

 Use dual symbol to convert, AND-OR circuit to NAND gates only. Draw the final circuit using Deeds Simulator.

OPEN

vi) Simulate the final NAND gates design in (v) and construct Truth Table in Table 3.

Table 3

		INPUT		OUTPUT	
S	S1	S2	S3	OPEN	ALARM
0	0	0 0		0	0
0	0	0	1	0	١
0	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	0	١
0	1	0	0 1 0	1 0	
0	1	1	0	0	0
0	1	1	1	0	0
l	0	0	0	0	1
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0 0	1	
1	1	0 1		0	0
1	1	1	0	0	0
1	1	1	1	0	0

Compare the answer of Table 2 and Table 3. What is your conclusion?

The	output	ìn	Table	2	and	Table	3	are	equivalence. Thus,	
NAN	D gate	and	and	AN	0-0R	gate	(Are	equivalence.	
								1,000		

Fully	
Completed	

Partially	
Completed	

Checked by:
