HAI720

Programmation Algorithmique Efficace

Pascal Giorgi

Organisation

Enseignant:

Pascal Giorgi, pascal.giorgi@umontpellier.fr

Planning:

- CM: 8 séances 1h30 (jeudi 13h15)
- TP: 8 séance 3h: jeudi 15h (Imagine+GL); vendredi 8h ou 9h30 (Algo)

- 1 contrôle continu (TP noté)
- 1 examen terminal (avec 2nd session et max entre session)

Note module: max(ET, 0.7ET + 0.3CC)

Objectifs

- compréhension et exploitation fine des architectures de calcul
- voir des concepts algorithmiques en lien avec les caractéristiques des architectures modernes

Thématiques abordées

- mémoires: cache, calcul en-place
- pipeline de calcul: ILP, vectorisation
- parallelisme: calcul multithread, GPGPU
- ⇒ analyse d'algorithmes et de leurs implantations

L'analyse de complexité classique en temps des algorithmes n'est pas suffisante car elle ne reflète pas l'exécutions en pratique.

Exemple: le produit de matrice

complexité en $O(N^3)$ opérations

L'analyse de complexité classique en temps des algorithmes n'est pas suffisante car elle ne reflète pas l'exécutions en pratique.

```
Exemple: le produit de matrice complexité en O(N^3) opérations
```

L'analyse de complexité classique en temps des algorithmes n'est pas suffisante car elle ne reflète pas l'exécutions en pratique.

```
Exemple: le produit de matrice complexité en O(N^3) opérations
```

```
void matmul(double C[N][N], double A[N][N], double B[N][N]){
    for(size_t i = 0; i < N; i++)
        for(size_t j = 0; j < N; j++){
            C[i][j] = 0.;
            for(size_t k = 0; k < N; k++)
            C[i][j] + = A[i][k] * B[k][j];
    }
}</pre>
```

- ⇒ En pratique, on peut gagner un facteur 100 sur l'implantation de cette algorithme !!!
 - \blacksquare algorithmes de même complexité en $O(N^3)$, mais
 - mieux adaptés au calcul sur les processeurs modernes (cache, SIMD, pipeline, multi-coeur)

analyse compléxité = nbr. opérations de calcul

 $machine \ de \ turing \ d\'{e}terministe \ (bits) \ ou \ \textit{Word-RAM} \ (mot \ machine)$

⇒ Pourquoi cela ne reflète pas l'exécutions en pratique

analyse compléxité = nbr. opérations de calcul machine de turing déterministe (bits) ou *Word-RAM* (mot machine)

⇒ Pourquoi cela ne reflète pas l'exécutions en pratique

```
int a=1;
int b=2;
int c=a+b;
return c;
```

```
mov a, 1 ; create variable a
mov b, 2 ; create variable b
add c, a, b ; add into c
push c ; put return value in place
ret ; return
```

Question

■ les instructions sont exécutées séquentiellement les unes après autres ?

analyse compléxité = nbr. opérations de calcul machine de turing déterministe (bits) ou *Word-RAM* (mot machine)

⇒ Pourquoi cela ne reflète pas l'exécutions en pratique

```
int a=1;
int b=2;
int c=a+b;
return c;
```

```
mov a, 1 ; create variable a
mov b, 2 ; create variable b
add c, a, b ; add into c
push c ; put return value in place
ret ; return
```

Question

- les instructions sont exécutées séquentiellement les unes après autres ? FAUX
 - ⇒ le processeur peut changer l'ordre (out-of-order execution)
 - ⇒ 1 coeur peut exécuter plusieurs instructions en même temps (proc. superscalaire)

analyse compléxité = nbr. opérations de calcul

machine de turing déterministe (bits) ou Word-RAM (mot machine)

⇒ Pourquoi cela ne reflète pas l'exécutions en pratique

```
int a=1;
int b=2;
int c=a+b;
return c;
```

```
mov a, 1 ; create variable a
mov b, 2 ; create variable b
add c, a, b ; add into c
push c ; put return value in place
ret ; return
```

Question

- les instructions sont exécutées séquentiellement les unes après autres ? FAUX
 - ⇒ le processeur peut changer l'ordre (out-of-order execution)
 - ⇒ 1 coeur peut exécuter plusieurs instructions en même temps (proc. superscalaire)
- l'accès aux variables a toujours le même coût ?

analyse compléxité = nbr. opérations de calcul

machine de turing déterministe (bits) ou Word-RAM (mot machine)

⇒ Pourquoi cela ne reflète pas l'exécutions en pratique

```
int a=1;
int b=2;
int c=a+b;
return c;
```

```
mov a, 1 ; create variable a
mov b, 2 ; create variable b
add c, a, b ; add into c
push c ; put return value in place
ret ; return
```

Question

- les instructions sont exécutées séquentiellement les unes après autres ? FAUX
 - ⇒ le processeur peut changer l'ordre (out-of-order execution)
 - ⇒ 1 coeur peut exécuter plusieurs instructions en même temps (*proc. superscalaire*)
- l'accès aux variables a toujours le même coût ? FAUX
 - ⇒ cela dépend d'où se trouve la donnée dans la hierarchie mémoire

Microprocessor transistor counts 1971-2011 & Moore's law

	gravure (nm)
1977	8000
1985	1000
:	:
2006	65
2008	45
2010	32
2012	22
2014	14
2017	10

atome Si = 0.2 nm

perf énergétique \Rightarrow limite à \approx 4 GHz

la mémoire est moins rapide que le calcul

⇒ l'analyse de la complexité spatiale des algorithmes est primordiale !!!

À avoir bien en tête

Amélioration de performance: essentiellement via du parallélisme !!!

Loi d' Amdahl

L'amélioration des performances via du parallélisme est limitée par la proportion de code séquentiel:

$$SP_{max} = \frac{1}{fs}$$

- SP_{max} représente le facteur d'accélération maximum avec une infinité de ressources
- fs représente la proportion de code séquentiel

 \Rightarrow un code ayant 80% d'instructions séquentielles aura un $SP_{max}=1.25$

Plan: 1ère partie

- 1. Architecture matérielle et parallélisme d'instructions
- 2. Modèle de calcul SIMD: vectorisation sur les processeurs
- 3. Accès aux données: cache et complexité spatiale

Architecture matérielle et

parallélisme d'instructions

Comment quantifier :

- CR= fréquence du processeur (ex. 3Ghz)→ #cycles exécutés par seconde
- prog. CPU time= $\frac{\#(\text{cycle prog.})}{CR}$ en seconde

Comment quantifier :

- prog. CPU time= $\frac{\#(\text{cycle prog.})}{CR}$ en seconde
- \Rightarrow améliorer performances: \searrow #cycle prog ou \nearrow CR.

Comment quantifier:

- prog. CPU time= $\frac{\#(\text{cycle prog.})}{CR}$ en seconde
- \Rightarrow améliorer performances: \searrow #cycle prog ou \nearrow CR (limite à \approx 4 GHz).

Comment quantifier :

- prog. CPU time= $\frac{\#(\text{cycle prog.})}{CR}$ en seconde
- \Rightarrow améliorer performances: \searrow #cycle prog ou \nearrow ER (limite à \approx 4 GHz).

Quantités intéressantes:

- flops: nombre d'opérations en nombre flottant (flop) par seconde
- peak performance: maximum théorique de *Gflops* (liée à CR)
- Instruction Level Parallelism (ILP): #instructions pouvant être traiter en parallèle
- \Rightarrow proc. 3Ghz \rightarrow peak perf. = 3×10^9 flops = 3 Gflops si 1 op/cycle

Performance au niveau des instructions

$$CPI = \frac{\#(prog.cycles)}{\#(prog.instructions)}$$

CPI: Clock cycles per instruction

nombre moyen de cycles d'horloge par instruction exécutée

- chaque instruction à un nombre de cycle (latence) différent
- dépend de l'ILP de l'architecture et du programme

$$\Rightarrow$$
 prog. CPU time= $\frac{\#(prog.instructions) \times CPI}{CR}$

Performance des programmes: dépendance aux instructions

prog. CPU time=
$$\frac{\#prog.\ instructions \times CPI}{CR}$$

	#instructions	CPI	CR
Algorithme	X	Χ	
Langage Programmation	X	Χ	
Compilateur	X	Χ	
ISA	X	Χ	X
Design processeur		X	Χ

1 cœur CPU moderne:

- \Rightarrow peut faire plusieurs instructions en même temps (*ILP* > 1)
- ⇒ peut faire une instruction sur plusieurs données en même temps (vectorization)

Moteur d'exécution d'un coeur processeur

Théoriquement, on peut faire en même temps

- jusqu'a 8 instructions différentes
- jusqu'a 4 instruction identiques
- ⇒ besoin de recouvrir leur gestion

Parallelisme d'instruction

RISC: Restricted Instructions Set Computer

- instructions de taille fixe (e.g. 32 ou 64 bits)
- les opérandes sont uniquement des registres
- accès mémoire via des instructions dédiées (load/store)

Chaque instruction nécessite jusqu'a 5 cycles

- (IF) Fetch: charge l'instruction depuis la mémoire dédiée
- (ID) Decode: décode l'instruction et les registres des opérandes
- (EX) *Execute*: exécute l'instruction (ALU)
- (MEM) *Memory*: lecture/écriture des donnés en mémoire
- (WB) Write Back: écriture des données en registre
- ⇒ branching=2 cycles; store=4 cycles, others=5 cycles

Parallélisme instruction: pipeline matériel

■ pas de pipeline: $CPI = 5 \Rightarrow 3$ instructions en 15 cycles

Parallélisme instruction: pipeline matériel

■ pas de pipeline: $CPI = 5 \Rightarrow 3$ instructions en 15 cycles

lacktriangledown avec pipeline: $\mathit{CPI} = \frac{5 + \#\mathsf{instructions} - 1}{\#\mathsf{instructions}} = 1 + \epsilon$

IF	ID	EX	MEM	WB				
j	IF	ID	EX	MEM	WB			
<u>t</u>		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	WB

⇒ 5 instructions en 9 cycles: CPI=1.8

Parallélisme instruction: pipeline matériel

■ pas de pipeline: $CPI = 5 \Rightarrow 3$ instructions en 15 cycles

lacksquare avec pipeline: $\mathit{CPI} = \frac{5 + \#\mathsf{instructions} - 1}{\#\mathsf{instructions}} = 1 + \epsilon$

 $|MEM| WB \Rightarrow 5 \text{ instructions en 9 cycles: } CPI=1.8$

Dès que le pipeline est plein, $CPI=1 \Rightarrow plus compliqué en pratique$

Problème avec le pipeline

Pipeline stall (blocage)

- structural hazards: combinaison d'instructions non supportée
- data hazards: utilisation d'une donnée en production dans le pipeline
- control hazards: décision de branchement trop hative
- ⇒ Le pipeline gère les blocages en décalant le cycle prévu

Gestion du parallèlisme d'instructions

Dans le processeur

- ordonnancement dynamique *out-of-order* des instructions (en fonction des ports)
- Intel Skylake: considère 224 instructions pour réordonner

```
int a, b, c, d;
a = 2 - 1;
b = 1 + 1;
c = a + b; // doit attendre le calcul de a et de b
d = 8 / 2; // peut être exécuter sans délai
```

Quelles instructions en parallèle

Cela dépend de l'architecture du processeur

⇒ Holy grail: Agner Fog's website

Execution Unit (fp)	Latency [cycles]	Throughput [ops/cycle]	Gap [cycles/issue]
fma	5	2	0.5
mul	5	2	0.5
add	3	1	1
div (scalar) div (4-way)	14-20 25-35	1/13 1/27	13 27

- Gap = 1/throughput
- · Intel calls gap the throughput!
- Same exec units for scalar and vector flops
 - Same latency/throughput for scalar (one double) and AVX vector (four doubles) flops, except for div

- 2 unités de calcul $FMA^1 \rightarrow a \times b + c$: \Rightarrow débit de 2 FMA/cycle
- registre vectoriel de 256 bits ⇒ 4 op. double en même temps

x, y are vectors of doubles of length n, alpha is a double

```
for (i = 0; i < n; i++)
x[i] = x[i] + alpha*y[i];
```

- \Rightarrow #flop algorithme = 2n
 - runtime sans vectorisation: $\frac{n}{2}$
 - runtime avec vectorisation: $\frac{n}{8}$

¹ fused multiply and add

- 2 unités de calcul $FMA^1 \rightarrow a \times b + c$: \Rightarrow débit de 2 FMA/cycle
- registre vectoriel de 256 bits ⇒ 4 op. double en même temps

x, y are vectors of doubles of length n, alpha is a double

```
for (i = 0; i < n; i++)
  x[i] = x[i] + alpha*v[i]:
```

```
for (i = 0; i < n; i++)

alpha = x[i] + alpha*y[i];
```

- \Rightarrow #flop algorithme = 2n
 - runtime sans vectorisation: $\frac{n}{2}$

untime avec vectorisation: $\frac{n}{2}$

 \Rightarrow #flop algorithme = 2n

¹ fused multiply and add

- 2 unités de calcul $FMA^1 \rightarrow a \times b + c$: \Rightarrow débit de 2 FMA/cycle
- registre vectoriel de 256 bits ⇒ 4 op. double en même temps

x, y are vectors of doubles of length n, alpha is a double

- \Rightarrow #flop algorithme = 2n
 - runtime sans vectorisation: $\frac{n}{2}$
 - runtime avec vectorisation: $\frac{n}{8}$

```
for (i = 0; i < n; i++)
alpha = x[i] + alpha*y[i];
```

- \Rightarrow #flop algorithme = 2n
 - runtime sans vectorisation: n
 - runtime avec vectorisation: n

¹ fused multiply and add

Analyse d'ILP ⇒ borne inférieur sur le nbr de cycles

```
double f(double a, double b, double c){
    double r;
    r = (a + b) * (b + c) + (a * c);
    return r;
}
```

Combien de cycles pour exécuter la fonction f sur Haswell ?

Analyse d'ILP ⇒ borne inférieur sur le nbr de cycles

```
double f(double a, double b, double c){
    double r;
    r = (a + b) * (b + c) + (a * c);
    return r;
}
```

Combien de cycles pour exécuter la fonction f sur Haswell ?

- sans FMA :
- avec FMA :

Exemple: Haswell performance

Analyse d'ILP ⇒ borne inférieur sur le nbr de cycles

```
double f(double a, double b, double c){
    double r;
    r = (a + b) * (b + c) + (a * c);
    return r;
}
```

Combien de cycles pour exécuter la fonction f sur Haswell ?

- sans FMA: 12 cycles
- avec FMA:

Exemple: Haswell performance

Analyse d'ILP ⇒ borne inférieur sur le nbr de cycles

```
double f(double a, double b, double c){
    double r;
    r = (a + b) * (b + c) + (a * c);
    return r;
}
```

Combien de cycles pour exécuter la fonction f sur Haswell ?

- sans FMA: 12 cycles
- avec FMA: 10 cycles

Analyse de performances apriori

Besoin de connaître les complexités exactes des algorithmes pas avec des $O(\dots)$.

- besoin de compter séparément les additions, multiplications, divisions
- pas besoin de compter les opérations de contrôle (boucle, conditionnelle, ...)

Besoin de connaître l'architecture de son processeur:

- mapping des opérations sur les ports d'éxécution
- debit et latence des opérations

ATTENTION: le compilateur peut optimiser mais pas toujours, il faut l'aider !!!

ATTENTION: le compilateur peut optimiser mais pas toujours, il faut l'aider !!!

■ utiliser des variables supplémentaires

```
t4 = t0 + t1;
t4 = t4 + t2:
t4 = t4 + t3:
                                                \Rightarrow ILP=1.5
```

 \Rightarrow ILP=1

■ appel de fonctions ⇒ le compilateur ne peut pas toujours les simplifier

■ appel de fonctions ⇒ le compilateur ne peut pas toujours les simplifier

Problème:

les 2 codes ne sont pas identiques

```
long counter=0; long f() { return counter++;}
```

Le compilateur conserve les appels de fonction (à cause des effets de bord)

■ appel de fonctions ⇒ le compilateur ne peut pas toujours les simplifier

Problème:

les 2 codes ne sont pas identiques

```
long counter=0; long f() { return counter++;}
```

Le compilateur conserve les appels de fonction (à cause des effets de bord)

```
⇒ en fait, il peut inliner les appels avec l'option -finline ou à partir de -01
```

■ appel de fonctions ⇒ le compilateur ne peut pas toujours les simplifier

Problème:

les 2 codes ne sont pas identiques

```
long counter=0; long f() { return counter++;}
```

Le compilateur conserve les appels de fonction (à cause des effets de bord)

- ⇒ en fait, il peut *inliner* les appels avec l'option -finline ou à partir de -O1
- ⇒ mais pas toujours, cf lower1.cpp lower2.cpp

■ memory aliasing ⇒ 2 pointeurs peuvent méner à la même donnée

```
void twiddle(long *xp, long *yp){

*xp += *yp;

*xp += *yp;

}
```

```
void twiddle2(long *xp, long *yp){

*xp += 2 *yp;

}
```

■ memory aliasing ⇒ 2 pointeurs peuvent méner à la même donnée

```
void twiddle(long *xp, long *yp){

*xp += *yp;

*xp += *yp;

}
```

```
void twiddle2(long *xp, long *yp){
    *xp += 2 *yp;
}
```

Problème:

les 2 codes ne sont pas identiques

- $twiddle(\&x,\&x) \Rightarrow x \leftarrow 4x$
- $twiddle2(\&x,\&x) \Rightarrow x \leftarrow 3x$

le compilateur fait l'hypothèse que deux pointeurs mènent à la même donnée

Memory aliasing et performance

```
/* somme des lignes de la matrice a dans le vecteur b */

void sum_row (double **a, double *b, int n) {

int i, j;

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i][j];

}

9
```

 \Rightarrow la ligne 7 :b[i] += a[i][j]; impose une écriture dans la mémoire à chaque itération

En effet, on peut faire

```
1 double A[2][2] = {1,2,3,4};
double *B=& (A[0][0]);
sum_row(A,B,2);
```

Memory aliasing et performance

Suppression de l'aliasing (possible uniquement si la fonction veut l'interdire

```
/* somme des lignes de la matrice a dans le vecteur b */
void sum_row (double **a, double *b, int n) {
   int i, j;
   double res;
   for (i = 0; i < n; i++) {
      res = 0;
   for (j = 0; j < n; j++)
      res += a[i][j];
   b[i]=res;
}</pre>
```

- copie des données mémoires réutilisées dans une boucle vers des temporaires
- calcul effectué avec les temporaires et ré-écriture du résultat en mémoire à la fin

Memory aliasing et performance

Suppression de l'aliasing (possible uniquement si la fonction veut l'interdire

```
/* somme des lignes de la matrice a dans le vecteur b */
void sum_row (double **a, double *b, int n) {
   int i, j;
   double res;
   for (i = 0; i < n; i++) {
      res = 0;
      for (j = 0; j < n; j++)
            res += a[i][j];
      b[i]=res;
}</pre>
```

- copie des données mémoires réutilisées dans une boucle vers des temporaires
- calcul effectué avec les temporaires et ré-écriture du résultat en mémoire à la fin
- ⇒ améliore l'utilisation des registres CPU et favorise l'ILP

Pour exhiber plus de parallelisme on peut dérouler les boucles à la main sur quelques itérations:

```
1 /* somme des lignes de la matrice a dans le vecteur b */
  void sum_row (double **a, double *b, int n) {
    int i, j;
    double res1.res2:
    for (i = 0; i < n-1; i+=2) \{ // 2 | lignes à la fois
      res1 = res2 = 0
      for (j = 0; j < n; j++){
       res1 += a[i][j];
        res2 += a[i+1][j];
10
      b[i] = res1:
11
      b[i+1] = res2:
12
13
    // code pour la dernière ligne si n est impair
14
    res1=0:
15
    for (; i < n; i++)
     res1 += a[i][j];
17
    b[i] = res;
18
19 }
```

Premières optimisations: ex. réduction d'un vecteur

C'est le reduce dans map/reduce

⇒ réduction de n élément à un seul par application successive d'un opérateur binaire

$$v[0]$$
 OP $v[1]$ OP $v[2]$ OP ... OP $v[n-1]$

```
avec OP={+,*} et START= {0,1}

# define OP *
# define START 1
template< typename T>
void reduce(const vector<T> &V, T &res){
    res=START;
    for(size_t i=0;i< V.size();i++)
    res= res OP V[i];
}</pre>
```

Est-ce que ce code est efficace ? et comment l'optimiser ?

Premières optimisations: ex. réduction d'un vecteur

C'est le reduce dans map/reduce

⇒ réduction de n élément à un seul par application successive d'un opérateur binaire

$$v[0]$$
 OP $v[1]$ OP $v[2]$ OP ... OP $v[n-1]$

```
avec OP={+,*} et START= {0,1}

#define OP *
#define START 1
template< typename T>
void reduce(const vector<T> &V, T &res){
    res=START;
    for(size_t i=0;i< V.size();i++)
    res= res OP V[i];
}</pre>
```

Est-ce que ce code est efficace ? et comment l'optimiser ? https://godbolt.org

Optimisation de l'ILP

Règle générale:

- introduire de nouvelles variables c'est pas mauvais !!!
- supprimer les appels de fonction inutiles
- éviter les lecture/écritures en mémoire dans les boucles (pb aliasing)
- dérouler les boucles en exhibant du parallélisme d'instructions/données

Attention

L'utilisation de variables supplémentaires doit rester raisonnable

. ⇒ le nombre de registre CPU est de l'ordre de 16 ou 32 (au dela utilisation de la pile)

Optimisation de l'ILP

Note sur les branchements conditionnels

- si le pattern des branchements est régulier ⇒ pas de problème
- si le pattern des branchements n'est pas régulier ⇒ vidage du pipeline

Astuce: Pensez à utiliser des affectations conditionnelles

```
// reordonne a et b tel que a[i]<b[i]
void minmax(int* a, int* b, size_t n){

for(size_t i=0;i<n;i++)

if (a[i]>b[i]){

int tmp=a[i];

a[i]=b[i]; b[i]=tmp

}

}
```

```
// reordonne a et b tel que a[i]<br/>
void minmax(int* a, int* b, size_t n){
for(size_t i=0;i<n;i++){
    int min=(a[i]>b[i] ? b[i]: a[i]);
    int max=(a[i]>b[i] ? a[i]: b[i]);
    a[i]=min;
    b[i]=max;
}

9
}
```

Optimisation de l'ILP et compilateur

Cas d'étude \Rightarrow la somme préfixe d'un vecteur

vectorisation sur les processeurs

Modèle de calcul SIMD:

Catégorisation des architectures matérielles

Taxonomy de Flint (1966)

	single instruction	multiple instruction		
single data	SISD	MISD		
multiple data	SIMD	MIMD		

Extension vectorielle SIMD

- Extension du jeu d'instructions (ISA)
- type de données/instructions pour des calculs parallèles sur des petits vecteurs (2,4,8,...)
 ⇒ disponibles pour les entiers et flottants
- Noms: SSE, SSE2, SSE3, AVX, AVX2, AVX=512, ...

Extension vectorielle SIMD

- Extension du jeu d'instructions (ISA)
- type de données/instructions pour des calculs parallèles sur des petits vecteurs (2,4,8,...)

 ⇒ disponibles pour les entiers et flottants
- Noms: SSE, SSE2, SSE3, AVX, AVX2, AVX=512, ...

Pourquoi?

- utile dans les applications ayant un parallelisme à grain fin (multimédia)
 - ⇒ speedup de la taille du vecteur
- facile à designer dans les processeurs

Historique

Jeux d'instructions AVX

Introduction de registres de 256 bits (%ymm0,...,%ymm15)

- avec op. flottantes uniquement (AVX)
- avec op. flottantes et entières (AVX2)
- \Rightarrow AVX introduit les intructions VEX à 3 opérandes (c = a + b au lieu de a = a + b)
- \Rightarrow AVX2 introduit le FMA (d = c + a * b)

256 bit = 4 doubles = 8 float = 4 lona = 8 int = 16 short %vmm0 %ymm8 %ymm1 %ymm9 %vmm2 %ymm10 %ymm11 %vmm3 %ymm12 %vmm4 %ymm5 %ymm13 %vmm6 %ymm14 %ymm7 %ymm15

16 registres disponibles

Jeux d'instructions AVX

Plusieurs tailles de données et de vecteurs:

Integer vectors:

- 32-way byte
- 16-way 2 bytes
- 8-way 4 bytes
- 4-way 8 bytes

Floating point vectors:

- 8- way single
- 4-way double

Floating point scalars:

- single
- double

Tous les jeux d'instructions SIMD

Seule la taille, le nom des registres et les noms des instructions changent

- SSE : 16 registres de 128 bits (%xmm0,...,%xmm15)
- AVX : 16 registres de 256 bits (%ymm0,...,%ymm15)
- AVX-512 : 32 registres de 512 bits (%zmm0,...,%zmm32)

en pratique %xmm0= 128-bits LSB de %ymm0 et %ymm0= 256-bits LSB de %zmm0

⇒ 32 registres SSE et AVX sur une architecture AVX-512

Instruction d'addition SIMD : Exemple

SIMD: convention de nommage

Les fonctions assembleur suivent une convention de nommage qui dépend:

- du type de données (float double, int, unsigned int, unsigned long)
- des registres utilisés (SSE 128 bits, AVX 256 bits ou AVX-512 512 bits)

Addition sur les nombres flottants:

	ve	ctor	scalar		
	SSE	AVX	SSE	AVX	
float	addps	vaddps	addss	vadd <mark>s</mark> s	
double	add <mark>p</mark> d	vadd <mark>pd</mark>	add <mark>sd</mark>	vadd <mark>sd</mark>	

⇒ il faut toujours utiliser le bon type de registres: xmm=128bits,ymm=256bits,zmm=512bits

Exemple produit scalaire sur https://godbolt.org

Comment tirer partie du SIMD

⇒ besoin de parallelisme à grain fin (fine grained)

Quelles options:

- des bibliothèques vectorisées (pas toujours existant)
- auto-vectorisation par le compilateur
- utiliser des intrinsic dans vos programmes
- faire de l'assembleur

Comment tirer partie du SIMD

⇒ besoin de parallelisme à grain fin (fine grained)

Quelles options:

- des bibliothèques vectorisées (pas toujours existant)
- auto-vectorisation par le compilateur
- utiliser des intrinsic dans vos programmes
- faire de l'assembleur

Intrinsic SIMD

- exhibe les instructions SIMD au niveau C/C++
- correspond à des fonctions codées en assembleur
- inline à la compilation: aucun surcout
- \Rightarrow $\approx 6\,000$ intrinsic

type registres SSE (128 bits)

```
__m128 f; // float f0,f1,f2,f3
__m128d d; // double d0,d1
__m128i i; // 16xint8, 8xint16, 4xint32, 2xint64
```

type registres AVX/AVX2 (256 bits)

```
__m256 f; // float f0, f1, f2, f3, f4, f5, f6, f7
__m256d d; // double d0, d1, d2, d3
__m256i i; // 32xint8, 16xint16, 8xint32, 4xint64
```

⇒ on ne considérera que l'AVX dans la suite car toutes les machines récentes l'ont

Convention visuelle

Exemple d'intrinsinc

 \Rightarrow équivalent à __m256d $a = _m256_set_pd(4.0, 3.0, 2.0, 1.0);$

Difficultés avec les intrinsic SIMD

- l'alignement des données en mémoire est important: 256 bits = 32 octets
- réarrangement des données dans les registres potentiellement couteux (shuffle op.)
- pas de complétude dans les instructions disponibles
- plusieurs choix pour un même calcul: importance latences/débit des instructions
- ⇒ Holy grail: Intel's intrinsic guide

Tour d'horizon des instructions SIMD intéressantes

- load/store données
- arithmétique
- déplacement de données

Chargement de données: load

chargement de 4 double dans une registre de 256 bits:


```
a = _mm256_load_pd(p); // p 32-byte aligned

a = _mm256_loadu_pd(p); // p not aligned potential ralentissement
```

 \Rightarrow _mm256_load_ps(p) ou _mm256_loadu_ps(p) : chargement de 8 float à partir de p

Chargement de données: load

chargement de 4 double dans une registre de 256 bits:


```
a = _mm256_load_pd(p); // p 32-byte aligned

a = _mm256_loadu_pd(p); // p not aligned potential ralentissement
```

 \Rightarrow _mm256_load_ps(p) ou _mm256_loadu_ps(p) : chargement de 8 float à partir de p DANGER: _m256_load segfault si p mal aligné

Chargement de données: load

```
__m256d _mm256_load_pd (double const * mem_addr)
```

movapd

Synopsis

```
_m256d _mm256_load_pd (double const * mem_addr)
#include <immintrin.h>
Instruction: vmovapd ymm, m256
CPUID Flags: AVX
```

Description

Load 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from memory into dst. mem_addx must be aligned on a 32-byte boundary or a general-protection exception may be generated.

Operation

```
dst[255:0] := MEM[mem_addr+255:mem_addr]
dst[MAX:256] := 0
```

Performance

Architecture	Latency	Throughput (CPI)
Icelake	7	0.5
Skylake	7	0.5
Broadwell	1	0.5
Haswell	1	0.5
Ivy Bridge	1	1

Chargement de données conditionnel: maskload

chargement d'une sélection parmi 4 double dans une registre de 256 bits:

F	Performance							
	Architecture	Latency	Throughput (CPI)					
	Icelake	7	0.5					
	Skylake	7	0.5					

Chargement avec duplication de données : broadcast

chargement et duplication d'un ou deux double dans une registre de 256 bits:

Performance

Architecture	Latency	Throughput (CPI)
Icelake	7	0.5
Skylake	7	0.5

Chargement avec regroupement de données : gather

chargement et regroupement de 4 double dans une registre de 256 bits:

Performance: un peu mieux que 4 load

Enregistrement de données: store

Écriture d'un registre de 256 bits contenant 4 double en mémoire


```
_mm256_store_pd(p,a) // p 32-byte aligned

_mm256_storeu_pd(p,a) // p not aligned potential
```

potentiel ralentissement

DANGER: _m256_store segfault si p mal aligné

Enregistrement de données: store

```
void _mm256_store_pd (double * mem_addr, __m256d a)
```

vmovapd

Synopsis

```
void _mm256_store_pd (double * mem_addr, __m256d a)
#include <immintrin.h>
Instruction: vmovapd m256, ymm
CPUID Flags: AVX
```

Description

Store 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from a into memory. mem_addx must be aligned on a 32-byte boundary or a general-protection exception may be generated.

Operation

```
\texttt{MEM[mem\_addr} + 255 : \texttt{mem\_addr}] := a[255 : 0]
```

Performance

Architecture	Latency	Throughput (CPI)			
Skylake	5	1			
Broadwell	1	0.5			
Haswell	1	0.5			
Ivy Bridge	1	1			

Chargement de constantes

chargement et/ou réplication de données constantes

```
LSB 1.0 \ 2.0 \ 3.0 \ 4.0 a a = _mm256_set_pd(4.0, 3.0, 2.0, 1.0);
LSB 1.0 \ 1.0 \ 1.0 \ 1.0 b b = _mm256_set1_pd(1.0);
LSB 0 \ 0 \ 0 \ 0 c c = _mm256_set2ero_pd();
```

 \Rightarrow les constantes peuvent être remplacer par des variables simples double $a=...; \ _mm_set1_pd(a);$

SIMD load/store à retenir

- type d'instructions similaires : aligné ou non en mémoire
- débit pas forcemment identique (load ×2 par rapport au store)
- latence importante (\approx 7 cycles) sur architectures récentes
- chargement de constante

Allocation alignée sur 32 octets (AVX) de 1024 double:

- **double** * $ptr32 = static_cast < double* > std:: aligned_alloc(32, 1024); en C++17$
- **double** * $ptr32 = (double*) posix_memalign(32,1024); en C$

Exercice

Écrire une fonction qui créé une copie d'un tableau en utilisant des instructions AVX:

- pour des float
- pour des double

Arithmétique SIMD

Intrinsic	opération arithmétique correspondante
_mm256_add_pd	addition
_mm256_sub_pd	soustraction
_mm256_mul_pd	multiplication
_mm256_div_pd	division
_mm256_fmadd_pd	fma
_mm256_hadd_pd	addition intra-registre
_mm256_ceil_pd	arrondi entier supérieur
_mm256_floor_pd	arrondi entier inférieur
_mm256_max_pd	maximun
_mm256_min_pd	minimum
_mm256_sqrt_pd	racine carré
÷	:

Opérations classiques

$$c = _mm256_add_pd(a, b);$$

analogous:

CPI= 0.5 ou 1 pour $\{+,-,\times\}$ et $9 \le \mathit{CPI} \le 28$ pour \div

Graphiquement:

Avec du code SIMD:

Avec du code SIMD:

⇒ l'utilisation de _mm256_set_pd coûte trop cher !!!

Avec du code SIMD, mais plus efficace:

```
#include <immintrin.h>
  void addindex(double *x. int n) { // n multiple de 4 et x aligné sur 32 octets
    __m256d ind . x_vec . incr:
    ind = -mm256\_set\_pd(3, 2, 1, 0); // creation du vecteur d'indices initial
    incr = _mm256_set1_pd(4); // vecteur d'incrémentation d'indices
    for (int i = 0: i < n: i+=4) {
      x_{vec} = mm256\_load\_pd(x+i); // chargement des données de x+i (4 double)
      x\_vec = \_mm256\_add\_pd(x\_vec, ind); // addition des deux vecteurs
      ind = _mm256_add_pd(ind, incr); // incrémentation du vecteur d'indices
10
      \_mm256\_store\_pd(x+i, x\_vec); // stockage du résultat dans x+i
11
12
13
```

Opération intra-registre

$$c = _mm256_hadd_pd(a, b);$$

similaire

$$c = _mm256_hsub_pd(a, b);$$

Pas de croisement de données au-delà de 128-bits!!!

F	Performance							
	Architecture	Latency	Throughput (CPI)					
	Icelake	6	2					
	Skylake	7	2					

Opération de FMA

calcul de $d = a \times b + c$

similaire:

$$d = _mm256_fmsub_pd(a, b, c);$$

FMA scalaire (registre 128-bits)

Performance

Architecture	Latency	Throughput (CPI)
Icelake	4	0.5
Skylake	4	0.5
Knights Landing	6	0.5
Broadwell	5	0.5
Haswell	5	0.5

Calcul de $y_k = a + x_k^2$ avec des nombres complexes

```
struct Complex { double Im, Re;};

void f(Complex a, Complex *x, Complex *y, size_t n){
    for (size_t i=0; i<n; i++){
        y[i].Re = a.Re + x[i].Re * x[i].Im * x[i].Im;
        y[i].Im = a.Im + 2.0* x[i].Im;
}
</pre>
```

⇒ Comment introduire du SIMD dans ce code, avec du FMA ?

Calcul de $y_k = a + x_k^2$ avec des nombres complexes

```
struct Complex { double Im, Re;};

void f(Complex a, Complex *x, Complex *y, size_t n){
    for (size_t i=0; i<n; i++){
        y[i].Re = a.Re + x[i].Re * x[i].Im * x[i].Im;
        y[i].Im = a.Im + 2.0* x[i].Im;
}
</pre>
```

⇒ Comment introduire du SIMD dans ce code, avec du FMA ? pas possible, données non contigus: les parties réelles/imaginaires alternées en mémoire

Calcul de $y_k = a + x_k^2$ avec des nombres complexes

```
struct Complex { double Im, Re;};

void f(Complex a, Complex *x, Complex *y, size_t n){
    for (size_t i=0; i<n; i++){
        y[i].Re = a.Re + x[i].Re * x[i].Re - x[i].Im * x[i].Im;
        y[i].Im = a.Im + 2.0* x[i].Re * x[i].Im;
}
</pre>
```

Solution: Structure of Array vs Array of Structure

```
struct ComplexTab { double *Im, *Re; size_t n;};

void f(Complex a, ComplexTab& x, ComplexTab& y){ // assume x and y of same size

for (size_t i=0; i< x.n; i++){
    y.Re[i] = a.Re + x.Re[i] * x.Re[i] - x.Im[i] * x.Im[i];
    y.Im[i] = a.Im + 2.0* x.Re[i] * x.Im[i];
}
</pre>
```

Calcul de $y_k = a + x_k^2$ avec des nombres complexes

```
struct ComplexTab { double *Im, *Re; size_t n;};
3 // on déroule la boucle sur 4 niveau
  void f(Complex a, ComplexTab& x, ComplexTab& y){ // assume x.n==y.n= 0 mod 4
    for (size_t i=0: i < x.n: i+=4)
      v.Re[i] = a.Re + x.Re[i] * x.Re[i] - x.Im[i] * x.Im[i]
      v. Re[i+1] = a. Re + x. Re[i+1] * x. Re[i+1] - x. Im[i+1] * x. Im[i+1];
      y.Re[i+2] = a.Re + x.Re[i+2] * x.Re[i+2] - x.Im[i+2] * x.Im[i+2];
      y.Re[i+3] = a.Re + x.Re[i+3] * x.Re[i+3] - x.Im[i+3] * x.Im[i+3];
      y.Im[i] = a.Im + 2.0* \times .Re[i] * \times .Im[i];
10
      v.Im[i+1] = a.Im + 2.0* \times .Re[i+1] * \times .Im[i+1]:
11
      y.Im[i+2] = a.Im + 2.0* x.Re[i+2] * x.Im[i+2]:
12
      y.Im[i+3] = a.Im + 2.0* x.Re[i+3] * x.Im[i+3];
13
14
15
```

Calcul de $y_k = a + x_k^2$ avec des nombres complexes (FMA+AVX)

```
#include <immintrin.h>
  // on déroule la boucle sur 4 niveau
  void f(Complex \ a, Complex \ Tab \& x, Complex \ Tab \& v) \{ // assume x, n == 0 \mod 4 \}
    __m256d x_re, x_im, y_re, y_im, a_re, a_im, v2;
     a_re= _mm256_set1_pd(a.Re);
    a_im = _mm256_set1_pd(a.lm);
    v2 = _{mm256\_set1\_pd(2.0)}:
    for (size_t \ i=0; i< x.n : i+=4)
     x_re=_mm256_load_pd(x.Re+i):
10
11
       x_im=_mm256_load_pd(x.lm+i):
12
       y_re = _mm256_fmadd_pd(x_re, x_re, a_re);
       y_re = _mm256_fnmadd_pd(x_im, x_im, y_re);
14
       y_{im} = _{mm256\_mul\_pd(v2, x_re)};
15
       y_i = mm256_f madd_p d(y_i m, x_i m, a_i m);
16
17
       _{mm256\_store\_pd(v.Re+i,v_{re})};
18
       _{mm256\_store\_pd(y.Im+i,y\_im)};
19
20
```

Opération de comparaison

similaire:

etc.

Each field:

0xffff...f if true 0x0 if false

Return type: __m256d

F	Performance		
	Architecture	Latency	Throughput (CPI)
	Icelake	4	0.5
	Skylake	4	0.5
	Broadwell	3	1
	Haswell	3	1
	Ivy Bridge	3	1

Example

```
void fcond(double *x, size_t n) {
   int i;
   for(i = 0; i < n; i++) {
      if(x[i] > 0.5) x[i] += 1.;
      else x[i] -= 1.;
}
```


Example

```
void fcond(double *x, size_t n) {
   int i;
   for(i = 0; i < n; i++) {
      if(x[i] > 0.5) x[i] += 1.;
      else x[i] -= 1.;
}
```

```
#include <xmmintrin.h>
  void fcond_vec1(double *x, size_t n) {
    int i:
    __m256d vt. vmask. vp. vm. vr. ones. mones. thresholds:
    ones = _{mm256\_set1\_pd(1.)};
    mones = _{mm256\_set1\_pd(-1.)}:
    thresholds = \_mm256\_set1\_pd(0.5):
    for (i = 0; i < n; i+=4) {
       vt = _mm256\_load\_pd(x+i);
      vmask = -mm256\_cmp\_pd(vt. thresholds. \_CMP\_GT\_OQ):
10
       vp = _mm256\_and\_pd(vmask, ones);
11
      vm = _mm256\_andnot\_pd(vmask, mones);
12
            = _mm256\_add\_pd(vt, _mm256\_or\_pd(vp, vm));
13
       vr
       _{mm256\_store\_pd(x+i, vr)}:
14
15
```

Déplacement de données dans les registres vectoriels

Généralement, on génére un régistre en sélectionnant des données de 2 registres vectoriels

- unpack: sélection par position dans les voies 128-bits
- blendv: sélection entre registre par masque de bit
- shuffle : sélection intra registre par masque de bit
- permute: permutation de données intra registre

Sélection de données par position

Performance		
Architecture	Latency	Throughput (CPI)
Icelake	1	1
Skylake	1	1
Broadwell	1	1
Haswell	1	1
Ivy Bridge	1	1

⇒ Pas de croisement de données entre les lignes 128-bits !!!

Sélection de données par masquage (entre registre)

On sélectionne des données de 2 registres à partir d'un masque de bits

_	_m256d	_mm256	_blendv	_pd(m256d	a,	m256d	b,	m256d ma	ask)
---	--------	--------	---------	------	-------	----	-------	----	----------	------

\Rightarrow	Pas de	croisement	de	données	entre	les	lignes	128-bits	!!!
---------------	--------	------------	----	---------	-------	-----	--------	----------	-----

Performance					
Architecture	Latency	Throughput (CPI)			
Icelake	-	1			
Skylake	2	0.66			
Broadwell	2	2			
Haswell	2	2			
Ivy Bridge	1	1			

Sélection de données par masquage (intra registre)

On entrecroise des données de 2 registres en ne sélectionnant qu'une donnée sur deux des registres

m256	d _mm2	256_shuffle	_pd(m	n 256d a,	m256d	b, c	onst	int	mask)
→ D,	s do a	croicomont	do do	années :	ontro los	liar	205 1	20 h	ite l	

Architecture	Latency	Throughput (CPI)
Icelake	1	0.5
Skylake	1	1
Broadwell	1	1
Haswell	1	1
Ivy Bridge	1	1

Permutation de données intra registre

On permute/réplique des données à l'intérieur d'un même registre (sans déplacer hors 128-bits)

Performance			
Architecture	Latency	Throughput (CPI)	
Icelake	1	-	
Skylake	1	1	
Broadwell	1	1	
Haswell	1	1	
Ivy Bridge	1	1	

⇒ Pas de croisement de données entre les lignes 128-bits !!!

Permutation de données intra registre

On permute/réplique des données à l'intérieur d'un même registre (en déplacant hors 128-bits)

Performance			
Architecture	Latency	Throughput (CPI)	
Icelake	3	1	
Skylake	3	1	
Broadwell	3	1	
Haswell	3	1	

__m256d _mm256_permute4x64_pd(__m256d a, int mask)

⇒ ATTENTION: croisement de données entre les lignes 128-bits, un peu plus lent !!!!

Exercice: Comment améliorer ce code en SIMD?

```
void fcond(double *x, size_t n) {
   int i;
   for(i = 0; i < n; i++) {
      if(x[i] > 0.5) x[i] += 1.;
      else x[i] -= 1.;
}
```


Exercice: Comment améliorer ce code en SIMD?

```
void fcond(double *x, size_t n) {
   int i;
   for(i = 0; i < n; i++) {
      if(x[i] > 0.5) x[i] += 1.;
      else x[i] -= 1.;
}
```


Exercice: Comment améliorer ce code en SIMD?

SIMD sur les entiers en un slide

- registre: _*m128i* ou _*m256i* ou _*m512i*
- le nom des fonctions encodent: la taille et le type des données
 - ► $_mm256_add_epi32 \rightarrow add sur 8 int32_t$
 - ▶ $_mm256_add_epu16 \rightarrow add sur 16 \ uint32_t$
- cas particulier multiplication ⇒ 1 produit sur 2 ou résultat partiel


```
c= _mm256_mul_epi32 (a,b);
```

⇒ (permute + mul pour les autres !!!)

SIMD sur les entiers en un slide

- registre: _*m128i* ou _*m256i* ou _*m512i*
- le nom des fonctions encodent: la taille et le type des données
 - ▶ $_mm256_add_epi32 \rightarrow add sur 8 int32_t$
 - ightharpoonup _mm256_add_epu16 ightarrow add sur 16 _uint32_t
- cas particulier multiplication ⇒ 1 produit sur 2 ou résultat partiel

c= _mm256_mullo_epi32 (a,b);

Attention: pas de version hi en 32 bits !!!

Bilan sur l'utilisation des instructions SIMD

- utilisation de *load/store* qui respectent l'alignement des registres SIMD
 - \hookrightarrow 32 octets en AVX2
- minimiser les opérations de déplacement de données entre registres
 - → surtout celles qui dépassent les voies 128-bits
- minimiser les opérations arithmétiques lentes
 - \hookrightarrow ex. hadd et div
- sur les entiers de nombreuses fonctions mais pas toujours complètes
 - \hookrightarrow ex. mul pas sur 64 bits et pas de FMA du tout !!!

Accès aux données: cache et

compléxité spatiale

Principe de localité

Localité temporelle

si un zones mémoire d'adresse X est accédée par le programme, alors un nouvel accès mémoire d'adresse X interviendra très probablement.

⇒ une même données est référencée plusieurs fois dans un laps de temps assez court

Localité spatiale

si un zones mémoire d'adresse X est accédée par le programme, alors un nouvel accès mémoire proche de X interviendra très probablement.

⇒ 2 données proches en mémoire sont référencées dans un laps de temps assez court

Principe de localité: exemple

```
int sum=0;
for(size_t i=0;i<n;i++)
sum+=a[i];</pre>
```

- sum : localité temporelle (réutiliser à chaque intruction de la boucle)
- a[i] : localité spatiale (incrément de 1 en mémoire)

```
int sumarray_row(int A[M][N]) {
   int res=0;
   for(size_t i=0;i<M;i++)
   for(size_t j=0;j<N;j++)
       res+=A[i][j];
   return res;
}</pre>
```

Bonne localité ? quel type ?

```
int sumarray_row(int A[M][N]) {
   int res=0;
   for(size_t i=0;i<M;i++)
   for(size_t j=0;j<N;j++)
        res+=A[i][j];
   return res;
}</pre>
```

Bonne localité ? quel type ?

- res : localité temporelle
- a[i][j] : localité spatiale

OK

OK (toujours un incrément de 1 en mémoire)

```
int sumarray_col(int A[M][N]) {
   int res=0;
   for(size_t j=0;j<N;j++)
   for(size_t i=0;i<M;i++)
       res+=A[i][j];
   return res;
}</pre>
```

Bonne localité ? quel type ?

```
int sumarray_col(int A[M][N]){
   int res=0;
   for(size_t j=0;j<N;j++)
   for(size_t i=0;i<M;i++)
       res+=A[i][j];
   return res;
}</pre>
```

Bonne localité ? quel type ?

- res : localité temporelle
- a[i][j] : localité spatiale

OK

KO (distance de O(N) en mémoire)

```
int sumarray3D(int A[M][N][N]) {
   int res=0;
   for(size_t i=0;i<N;i++)
   for(size_t j=0;j<M;j++)
        for(size_t k=0;k<N;k++)
        res+=A[j][i][k];
   return res;
}</pre>
```

⇒ Comment obtenir une bonne localité spatiale ? (accés mémoire à distance 1)

```
int sumarray3D(int A[M][N][N]){
   int res=0;
   for(size_t i=0;i<N;i++)
   for(size_t j=0;j<M;j++)
        for(size_t k=0;k<N;k++)
        res+=A[j][i][k];
   return res;
}</pre>
```

⇒ Comment obtenir une bonne localité spatiale ? (accés mémoire à distance 1)

Pouquoi se soucier de la localité

- les architectures exhibent des mémoires à différent débit: RAM vs caches vs registres
- les données sont déplacées par paquet entre chaque mémoire
 - → besoin d'en tirer partie dans les programmes

Hierarchie mémoire des processeurs

plus une donnée est loin dans la hierachie, plus son accès est couteux !!!

prog. efficace ⇒ minimisation des accès mémoire couteux

Rapport entre arithmétique et mémoire

Définition:

Soit I(n) l'intensité opérationnelle d'un programme P ayant des entrées de tailles O(n), alors

$$I(n) = \frac{W(n)}{Q(n)}$$

- W(n) = nombre d'opérations arithmétique du programme (e.g. #flop)
- $\mathbf{Q}(n) = \text{nombre d'octets transférés entre la mémoire et les caches}^2$

 $^{^{2}}$ on considère que les caches sont froids (vide) au début du programme

• flops: W(n) = 2n

- flops: W(n) = 2n
- \blacksquare accès mémoire $\geq 2n$ (lecture des données à minima)

- flops: W(n) = 2n
- \blacksquare accès mémoire $\geq 2n$ (lecture des données à minima)
- nbr octets chargés $Q(n) \ge 2n * 8 = 16n$

- flops: W(n) = 2n
- \blacksquare accès mémoire $\geq 2n$ (lecture des données à minima)
- nbr octets chargés $Q(n) \ge 2n * 8 = 16n$

$$I(n) = \frac{W(n)}{Q(n)} \le \frac{1}{8}$$

```
/* matrix multiplication; A, B, C are n x n matrices of doubles */

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

C[i*n+j] += A[i*n+k]*B[k*n+j];
```

■ flops: $W(n) = 2n^3$

```
/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

C[i*n+j] += A[i*n+k]*B[k*n+j];
```

- flops: $W(n) = 2n^3$
- lacksquare accès mémoire $\geq 3n^2$ (lecture des données à minima)

- flops: $W(n) = 2n^3$
- \blacksquare accès mémoire $\geq 3n^2$ (lecture des données à minima)
- nbr octets chargés $Q(n) \ge 3n^2 * 8 = 24n^2$

- flops: $W(n) = 2n^3$
- \blacksquare accès mémoire $\geq 3n^2$ (lecture des données à minima)
- nbr octets chargés $Q(n) \ge 3n^2 * 8 = 24n^2$

$$I(n) = \frac{W(n)}{Q(n)} \le \frac{n}{12}$$

Rapport entre arithmétique et mémoire

Un programme est caractérisé de :

- \blacksquare memory bound: quand I(n) est petit
- compute bound: quand *I*(*n*) est grand

e.g. O(f(n))

Impact sur les performances:

- memory bound ⇒ limité par le débit mémoire du CPU en octet/s (Byte/s)
- compute bound ⇒ limité par le peak arithmétique du CPU en GFlop/s

Roofline model

Modèle théorique permettant de caractériser a priori les performances d'un code.

- I= intensité opérationnelle
- \blacksquare $\beta =$ débit en GByte/s de la mémoire
- \blacksquare $\pi=$ peak performance du processeur en GFlops/s
- \Rightarrow performance = min($\beta \times I, \pi$)

Roofline model (en vrai)

Cache processeur

Définition (Wikipédia)

Un cache de processeur est une mémoire plus petite et plus rapide, située au plus près d'une unité centrale de traitement qui stocke des copies des données à partir d'emplacements de la mémoire principale qui sont fréquemment utilisés avant leurs transmissions aux registres du processeur.

Il exploite:

- localité temporelle par nature
- localité spatiale par conception: copie des données en bloc (ex. 64 octets sur Intel core)

Concept général d'un cache

Concept général d'un cache: hit

Concept général d'un cache: miss

Concept général d'un cache: miss

- Replacement policy: quel bloc on remplace
- Block mapping: où on place le bloc

Différent défaut de cache (cache miss)

cache hit

⇒ accès à une donnée présente dans le cache (ex. L1, L2 ou L3)

cache miss (défauts de cache)

⇒ accès à une donnée non-présente dans le cache (ex. L1, L2 ou L3)

Différent défaut de cache (cache miss)

```
cache hit
```

⇒ accès à une donnée présente dans le cache (ex. L1, L2 ou L3)

cache miss (défauts de cache)

⇒ accès à une donnée non-présente dans le cache (ex. L1, L2 ou L3)

classification des défauts de cache:

- obligatoire (cold miss)
 - \hookrightarrow 1er chargement des blocs de données
- capacité (capacity miss)
 - \hookrightarrow jeu de données supérieur à la taille du cache
- conflit (conflict miss)
 - \hookrightarrow pas de problème de taille mais de placement des blocs au même endroit

- adressage direct (direct mapped cache)
 - $\hookrightarrow 1$ seule possibilité de placement

- adressage direct (direct mapped cache)
 - \hookrightarrow 1 seule possibilité de placement
- adressage associatif à E-voie(*E-way set-associative cache*)
 - \hookrightarrow E possibilités de placement

- adressage direct (direct mapped cache)
 - \hookrightarrow 1 seule possibilité de placement
- adressage associatif à E-voie(*E-way set-associative cache*)
 - $\hookrightarrow \mathsf{E} \ \mathsf{possibilit\acute{e}s} \ \mathsf{de} \ \mathsf{placement}$
- adressage associatif complet (*fully associative cache*)
 - → toutes les possibilités de placement

- adressage direct (direct mapped cache)
 - \hookrightarrow 1 seule possibilité de placement
- adressage associatif à E-voie(*E-way set-associative cache*)
 - \hookrightarrow E possibilités de placement
- adressage associatif complet (*fully associative cache*)
 - → toutes les possibilités de placement
- ⇒ via le codage binaire des adresses des données

Direct mapped cache

B = taille d'un bloc mémoire

Direct mapped cache: exemple 1

On considère (E=1, S=8, B=4 double), des caches froids et la place de a[0][0].

a[0][0]

```
double
         sumarray_row(double a[8][8]){
  double res=0;
  for (size_t i = 0; i < 8; i++)
                                                                                S = 8 = nbr bloc
      for (size_t \ j=0; j<8; j++)
         res+=a[i][i]:
  return res:
                                                             B = 32 octets = 4 double
```

⇒ Comment se remplit le cache ? combien de cache miss ?

Direct mapped cache: exemple 2

On considère (E=1, S=8, B=4 double), des caches froids et la place de a[0][0].

```
a[0][0]
double
         sumarray_col(double a[8][8]){
  double res=0;
  for (size_t \ j=0; j<8; j++)
                                                                                S = 8 = nbr bloc
      for (size_t i = 0; i < 8; i++)
         res+=a[i][i]:
  return res:
                                                             B = 32 octets = 4 double
```

⇒ Comment se remplit le cache ? combien de cache miss ?

Cache associatif

Différentes politiques de choix/remplacement:

- Least Recently Used (LRU),
- Least Frequently Used (LFU),
- Random

Associative cache: exemple

On considère (E=2, S=4, B=4 double), des caches froids et la place de a[0][0].

```
double
          sumarray_col(double a[8][8]){
     double res=0:
     for (size_t j=0; j<8; j++)
        for (size_t i = 0; i < 8; i++)
            res += a[i][i]:
     return res:
  double sumarray_row(double a[8][8]){
    double res=0:
     for (size_t i = 0; i < 8; i++)
        for (size_t \ j=0; j<8; j++)
13
            res+=a[i][i]:
14
     return res:
15
16
```


 \Rightarrow Comment se remplit le cache ? combien de cache miss ? avec politique LRU

Design general d'un cache

Lecture en cache

lecture d'une donnée en cache:

 \Rightarrow trouver set; trouver tag dans le set; si valid lire donnée à l'offset sinon aller niveau supérieur

double lecture du tableau

x = x[0], x[1], ..., x[7]

for
$$(j=0; j<2; j++)$$

for $(i=0; i<8; i++)$
 $cout << x[i];$

- cache
 - **■** E=1
 - S=2
 - B=16 (2 double)

- \blacksquare pattern d'accès à x : 0123456701234567
- Hit/Miss en cache :

double lecture du tableau

$$x = x[0], x[1], ..., x[7]$$

for $(j=0; j<2; j++)$

for $(i=0; i<8; i++)$
 $cout << x[i];$

cache

- E=1
- S=2
- B=16 (2 double)

- pattern d'accès à x : 0123456701234567
- Hit/Miss en cache : МНМНМНМНМНМНМНМН

Résultats: 8 miss et 8 hit ⇒ localité spatiale: OUI, localité temporelle: NON

double lecture du tableau

$$x = x[0], x[1], ..., x[7]$$

for $(j=0; j < 2; j++)$

for $(i=0; i < 8; i++)$
 $cout << x[i];$

cache

- E=1
- S=2
- B=16 (2 double)

- pattern d'accès à x : 0123456701234567
- Hit/Miss en cache : МНМНМНМНМНМНМНМН

Résultats: 8 miss et 8 hit \Rightarrow localité spatiale: OUI, localité temporelle: NON

Peut-on faire mieux comme pattern d'accès ?

double lecture du tableau

$$x = x[0], x[1], \dots, x[7]$$

$$for (j=0; j < 2; j++)$$

$$for (i=0; i < 8; i++)$$

$$cout << x[i];$$

cache

- E=1
- S=2
- B=16 (2 double)

- lacktriangle pattern d'accès à x : 0123456701234567
- Hit/Miss en cache : МНМНМНМНМНМНМНМН

Résultats: 8 miss et 8 hit \Rightarrow localité spatiale: OUI, localité temporelle: NON

Peut-on faire mieux comme pattern d'accès ? oui !!!

double lecture du tableau

$$x = x[0], x[1], ..., x[7]$$

for $(j=0; j<2; j++)$

for $(i=0; i<8; i++)$
 $cout << x[i];$

cache

- E=1
- S=2
- B=16 (2 double)

- pattern d'accès à x : 0123456701234567
- Hit/Miss en cache : МНМНМНМНМНМНМНМН

Résultats: 8 miss et 8 hit \Rightarrow localité spatiale: OUI, localité temporelle: NON

Peut-on faire mieux comme pattern d'accès ? oui !!!

Résultats: 4 miss et 12 hit ⇒ localité spatiale: OUI, localité temporelle: OUI

double lecture du tableau

$$x = x[0], x[1], ..., x[7]$$

for $(j=0; j<2; j++)$

for $(i=0; i<8; i++)$
 $cout << x[i];$

cache

- E=1
- S=2
- B=16 (2 double)

- pattern d'accès à x : 0123456701234567
- Hit/Miss en cache : МНМНМНМНМНМНМНМН

Résultats: 8 miss et 8 hit \Rightarrow localité spatiale: OUI, localité temporelle: NON

Peut-on faire mieux comme pattern d'accès ? oui !!!

Résultats: 4 miss et 12 hit ⇒ localité spatiale: OUI, localité temporelle: OUI

Pourquoi résultat optimal ?

double lecture du tableau

$$x = x[0], x[1], ..., x[7]$$

for $(j=0; j<2; j++)$

for $(i=0; i<8; i++)$
 $cout << x[i];$

cache

- E=1
- S=2
- B=16 (2 double)

- pattern d'accès à x : 0123456701234567
- Hit/Miss en cache : МНМНМНМНМНМНМНМН

Résultats: 8 miss et 8 hit \Rightarrow localité spatiale: OUI, localité temporelle: NON

Peut-on faire mieux comme pattern d'accès ? oui !!!

Résultats: 4 miss et 12 hit ⇒ localité spatiale: OUI, localité temporelle: OUI

Pourquoi résultat optimal ? 8 double = 4 miss \times 2 double (seulement des cold miss)

Écriture en cache

Gestion plus compliquée que la lecture: cohérence des données

Quoi faire après un write hit:

- write-through: écriture directe dans la mémoire
- write-back: délègue l'écriture à l'éviction du bloc en cache

Quoi faire après un write miss:

- write-allocate: charge la donnée en cache et simule un write hit
- no write-allocate: écriture directe dans la mémoire

Mesure de performance avec les caches

- miss rate: taux d'échec des accès en cache
 - ⇒ #cache miss / #accès mémoire
- hit rate: taux de succès des accès en cache
 - \Rightarrow 1 miss rate
- hit time: temps de transfert d'une donné du cache au CPU
 - ⇒ quelques cycles pour le cache L1
- miss penalty: temps additionnel à cause d'un miss
 - ⇒ L1 miss: 10 cycles; L2 miss: 50 cycles; L3 miss: 200 cycles

Et dans la vrai vie les caches c'est comment ?

Core Cache Size/ Latency/ Bandwidth

Metric	Nehalem	Sandy Bridge	Haswell
L1 Instruction Cache	32K, 4-way	32K, 8-way	32K, 8-way
L1 Data Cache	32K, 8-way	32K, 8-way	32K, 8-way
Fastest Load-to-use	4 cycles	4 cycles	4 cycles
Load bandwidth	16 Bytes/cycle	32 Bytes/cycle (banked)	64 Bytes/ cycle
Store bandwidth	16 Bytes/cycle	16 Bytes/cycle	32 Bytes/ cycle
L2 Unified Cache	256K, 8-way	256K, 8-way	256K, 8-way
Fastest load-to-use	10 cycles	11 cycles	11 cycles
Bandwidth to L1	32 Bytes/cycle	32 Bytes/cycle	64 Bytes/ cycle
L1 Instruction TLB	4K: 128, 4-way 2M/4M: 7/thread	4K: 128, 4-way 2M/4M: 8/thread	4K: 128, 4-way 2M/4M: 8/thread
L1 Data TLB	4K: 64, 4-way 2M/4M: 32, 4-way 1G: fractured	4K: 64, 4-way 2M/4M: 32, 4-way 1G: 4, 4-way	4K: 64, 4-way 2M/4M: 32, 4-way 1G: 4, 4-way
L2 Unified TLB	4K: 512, 4-way	4K: 512, 4-way	4K+2M shared: 1024, 8-way
All caches use 64-byte lines			

¹⁵ Intel® Microarchitecture (Haswell); Intel® Microarchitecture (Sandy Bridge); Intel® Microarchitecture (Nehalem)

²source: nextimpact.com

Approche théorique: Ideal Cache model

- seulement 2 niveaux de mémoire: cache (rapide), mémoire (lent)
- transfert de données par ligne (bloc) de *B* mots

Analyse d'algorithmes:

nombre de transferts de lignes avec la mémoire (avec un cache vide au début)

 \Rightarrow cache complexity MT(n)

Ideal Cache model

Hypothèses fortes:

- le cache est Fully Associative → placement libre des lignes
- le cache est haut (*Tall cache asumption*) $\rightarrow M \in \Omega(B^2)$
- lacktriangle la politique d'éviction des lignes est optimale ightarrow ligne la plus tardive dans le futur

Ideal Cache model

Objectif: minimisation de la complexité en cache MT(n)

- lacktriangle cache aware algorithm: adaptation du comportement en fonction des valeurs de B et M
- lacktriangle cache oblivious algorithm: ne connait pas les valeurs de B et M

Parcourir un tableau de n mots contigüs en mémoire

 \Rightarrow complexité en cache: $MT(n) = \lceil n/B \rceil + 1$

Parcourir un tableau de n mots contigüs en mémoire

 \Rightarrow complexité en cache: $\mathsf{MT}(n) = \lceil n/B \rceil + 1$

Remarques

- \blacksquare MT(n) correspond au nombre de cache miss
 - ⇒ complexité optimale(cold miss uniquement)

Parcourir un tableau de n mots contigüs en mémoire

 \Rightarrow complexité en cache: $\mathsf{MT}(n) = \lceil n/B \rceil + 1$

Remarques

- MT(n) correspond au nombre de cache miss
 - ⇒ complexité optimale(cold miss uniquement)
- $MT(n) = \lceil n/B \rceil$ si cache aware \rightarrow en alignant le tableau sur les limites des lignes de cache

Parcourir un tableau de n mots contigüs en mémoire

 \Rightarrow complexité en cache: $MT(n) = \lceil n/B \rceil + 1$

Remarques

- \blacksquare MT(n) correspond au nombre de cache miss
 - ⇒ complexité optimale(cold miss uniquement)
- $MT(n) = \lceil n/B \rceil$ si cache aware \rightarrow en alignant le tableau sur les limites des lignes de cache
- ⇒ ex: fonction reduce: for i in range(n): sum +=T[i]

Renversement d'un tableau

En considérant un tableau de n mots contigüs en mémoire

```
void reverse(int *T, int n){
for(int i=0;i<n/2;i++)
swap(T[i],T[n-i-1]);
}</pre>
```

 \Rightarrow complexité en cache: $MT(n) = \lceil n/B \rceil + 1$ si $M/B \ge 2$

Renversement d'un tableau

En considérant un tableau de n mots contigüs en mémoire

```
void reverse(int *T, int n){

for(int i=0;i<n/2;i++)

swap(T[i],T[n-i-1]);
}</pre>
```

 \Rightarrow complexité en cache: $MT(n) = \lceil n/B \rceil + 1$ si $M/B \ge 2$

Preuve:

- T[i] et T[n-i-1] tiennent dans au plus deux lignes de caches diférentes
- le tableau T tiens dans au plus $\lceil n/B \rceil + 1$ blocs

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 |Count=prefixsum(Count[:-1])|
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
     Output[Count[key(x)]] = x
     Count[key(x)] +=1
13 return Output
```

tri d'un tableau T de n éléments ayant une clé entière dans [0,k[Complexité en cache

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 |Count=prefixsum(Count[:-1])|
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
     Output[Count[key(x)]] = x
     Count[key(x)] +=1
13 return Output
```

tri d'un tableau T de n éléments ayant une clé entière dans [0,k[

```
# histogramme des clés

Count= [0]*k

for x in T:

Count[key(x)] +=1

# position de la première valeur pour chaque clés

Count.insert(0,0)

Count=prefixsum(Count[:-1])

# positionnement des valeurs dans le résultat

Output= [0]*n

for x in T:

Output[Count[key(x)]] = x

Count[key(x)] +=1

return Output
```

Complexité en cache ligne 2: $\lceil k/B \rceil + 1$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 |Count=prefixsum(Count[:-1])|
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
     Output[Count[key(x)]] = x
     Count[key(x)] +=1
13 return Output
```

Complexité en cache ligne 2: $\lceil k/B \rceil + 1$ ligne 3: $\lceil n/B \rceil + 1$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 |Count=prefixsum(Count[:-1])|
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
     Output[Count[key(x)]] = x
     Count[key(x)] +=1
13 return Output
```

Complexité en cache

```
ligne 2:  \lceil k/B \rceil + 1  ligne 3:  \lceil n/B \rceil + 1  ligne 4:  n
```

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 |Count=prefixsum(Count[:-1])|
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
     Output[Count[key(x)]] = x
     Count[key(x)] +=1
13 return Output
```

Complexité en cache ligne 2: $\lceil k/B \rceil + 1$

ligne 3: $\lceil n/B \rceil + 1$ ligne 4: n

ligne 6,7: $\lceil k/B \rceil + 1$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 |Count=prefixsum(Count[:-1])|
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
     Output[Count[key(x)]] = x
     Count[key(x)] +=1
13 return Output
```

Complexité en cache

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 |Count=prefixsum(Count[:-1])|
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
     Output[Count[key(x)]] = x
     Count[key(x)] +=1
13 return Output
```

Complexité en cache

```
ligne 2:  \lceil k/B \rceil + 1  ligne 4:  \lceil n/B \rceil + 1  ligne 6,7:  \lceil k/B \rceil + 1  ligne 9:  \lceil n/B \rceil + 1  ligne 10:  \lceil n/B \rceil + 1
```

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 |Count=prefixsum(Count[:-1])|
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
     Output[Count[key(x)]] = x
     Count[key(x)] +=1
13 return Output
```

Complexité en cache

```
      ligne 2:
      \lceil k/B \rceil + 1

      ligne 3:
      \lceil n/B \rceil + 1

      ligne 4:
      n

      ligne 6,7:
      \lceil k/B \rceil + 1

      ligne 9:
      \lceil n/B \rceil + 1

      ligne 10:
      \lceil n/B \rceil + 1

      ligne 11,12:
      2n
```

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 |Count=prefixsum(Count[:-1])|
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
     Output[Count[key(x)]] = x
     Count[key(x)] +=1
13 return Output
```

Complexité en cache

```
      ligne 2:
      \lceil k/B \rceil + 1

      ligne 3:
      \lceil n/B \rceil + 1

      ligne 4:
      n

      ligne 6,7:
      \lceil k/B \rceil + 1

      ligne 9:
      \lceil n/B \rceil + 1

      ligne 10:
      \lceil n/B \rceil + 1

      ligne 11,12:
      2n
```

total: $3n + 3\lceil n/B \rceil + 2\lceil k/B \rceil + 5$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 Count=prefixsum(Count[:-1])
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
    Output[Count[key(x)]] = x
    Count[kev(x)] +=1
13 return Output
```

Complexité en cache

```
      ligne 2:
      \lceil k/B \rceil + 1

      ligne 3:
      \lceil n/B \rceil + 1

      ligne 4:
      n

      ligne 6,7:
      \lceil k/B \rceil + 1

      ligne 9:
      \lceil n/B \rceil + 1

      ligne 10:
      \lceil n/B \rceil + 1

      ligne 11,12:
      2n
```

total: $3n + 3\lceil n/B \rceil + 2\lceil k/B \rceil + 5$

 \Rightarrow Complexité en temps: O(n+k)

Complexité en cache: $MT(n, k) = O(n + \lceil k/B \rceil)$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

```
1 # histogramme des clés
2 Count = [0] * k
3 for x in T:
     Count[key(x)] +=1
5 # position de la première valeur pour chaque clés
6 Count.insert(0,0)
7 Count=prefixsum(Count[:-1])
8 # positionnement des valeurs dans le résultat
9 Output = [0] * n
10 for x in T.
    Output[Count[key(x)]] = x
    Count[kev(x)] +=1
13 return Output
```

Complexité en cache

```
ligne 2:  \lceil k/B \rceil + 1  ligne 3:  \lceil n/B \rceil + 1  ligne 4:  n  ligne 6,7:  \lceil k/B \rceil + 1  ligne 9:  \lceil n/B \rceil + 1  ligne 10:  \lceil n/B \rceil + 1  ligne 11,12:  2n
```

total:
$$3n + 3\lceil n/B \rceil + 2\lceil k/B \rceil + 5$$

 \Rightarrow Complexité en temps: O(n+k)

Complexité en cache: $MT(n, k) = O(n + \lceil k/B \rceil)$

loin de l'optimal: $O(\frac{n+k}{B})$

Comment obtenir une meilleure localité spatiale

Technique de découpage en blocs

on décompose en plusieurs problèmes plus petits ayant des bonnes propriétés pour les caches:

- soit les sous-problèmes tiennent dans le cache
- soit les sous-problèmes n'engendrent que des cold miss

Comment obtenir une meilleure localité spatiale

Technique de découpage en blocs

on décompose en plusieurs problèmes plus petits ayant des bonnes propriétés pour les caches:

- soit les sous-problèmes tiennent dans le cache
- soit les sous-problèmes n'engendrent que des *cold miss*

Pour le tri par comptage, on découpe le problème sur m plages de valeurs de clé

$$[0, k[=[k_0, k_1[+[k_1, k_2[+[k_2, k_3] + \cdots + [k_{m-1}, k_m[$$

en séparant l'entrée en m tableaux de taille $n_1, n_2, \ldots n_m$

 \Rightarrow si max (n_i) + max $(k_i - k_{i-1})$ < M uniquement des cold miss

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for x in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum (Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
     BucketedInput[Bucket[q]] = x
     Bucket[q]+=1
```

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for x in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum (Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
     BucketedInput[Bucket[q]] = x
     Bucket[q]+=1
```

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for x in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum (Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
     BucketedInput[Bucket[q]] = x
     Bucket[q]+=1
```

Complexité en cache ligne 2: $\lceil m/B \rceil + 1$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for x in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum (Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
     BucketedInput[Bucket[q]] = x
     Bucket[q]+=1
```

Complexité en cache

ligne 2: $\lceil m/B \rceil + 1$ ligne 3: $\lceil n/B \rceil + 1$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for x in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum (Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
     BucketedInput[Bucket[q]] = x
     Bucket[q]+=1
```

Complexité en cache

ligne 2: $\lceil m/B \rceil + 1$ ligne 3: $\lceil n/B \rceil + 1$ ligne 5: $\lceil m/B \rceil + 1$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for x in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum (Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
     BucketedInput[Bucket[q]] = x
     Bucket[q]+=1
```

```
ligne 2:  \lceil m/B \rceil + 1  ligne 3:  \lceil n/B \rceil + 1  ligne 5:  \lceil m/B \rceil + 1  ligne 7,8:  \lceil m/B \rceil + 1
```

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for x in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum (Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
    BucketedInput[Bucket[q]] = x
    Bucket[q]+=1
```

```
ligne 2:  \lceil m/B \rceil + 1 
ligne 3:  \lceil n/B \rceil + 1 
ligne 5:  \lceil m/B \rceil + 1 
ligne 7,8:  \lceil m/B \rceil + 1 
ligne 10:  \lceil n/B \rceil + 1
```

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for x in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum(Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*kev(x)//k
     BucketedInput[Bucket[q]] = x
    Bucket[q]+=1
```

•	
ligne 2:	$\lceil m/B \rceil + 1$
ligne 3:	$\lceil n/B \rceil + 1$
ligne 5:	$\lceil m/B ceil + 1$
ligne 7,8:	$\lceil m/B ceil + 1$
ligne 10:	$\lceil n/B \rceil + 1$
ligne 11:	$\lceil n/B \rceil + 1$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for x in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum(Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
     BucketedInput[Bucket[q]] = x
    Bucket[q]+=1
```

ligne 2	2:	$\lceil m/B \rceil + 1$
ligne 3	3:	$\lceil n/B \rceil + 1$
ligne !	5:	$\lceil m/B \rceil + 1$
ligne	7,8:	$\lceil m/B \rceil + 1$
ligne :	10:	$\lceil n/B \rceil + 1$
ligne :	11:	$\lceil n/B \rceil + 1$
ligne '	14.	$\lceil m/B \rceil + 1$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for \times in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum (Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
     BucketedInput[Bucket[q]] = x
     Bucket[q]+=1
```

```
ligne 2:
                                              \lceil m/B \rceil + 1
                                               \lceil n/B \rceil + 1
ligne 3:
ligne 5:
                                              \lceil m/B \rceil + 1
                                              \lceil m/B \rceil + 1
ligne 7.8:
                                               \lceil n/B \rceil + 1
ligne 10:
ligne 11:
                                               \lceil n/B \rceil + 1
                                              \lceil m/B \rceil + 1
ligne 14:
ligne 13:
\sum_{i}(\lceil n_i/B \rceil + 1) < \lceil n/B \rceil + 2m
```

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>[(i-1)k/m, ik/m]
2 Bucket = [0]*m
3 for \times in T:
     q=m*key(x)//k
     Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum (Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
     BucketedInput[Bucket[q]] = x
     Bucket[q]+=1
```

Complexité en cache

```
ligne 2:
                                              \lceil m/B \rceil + 1
                                               \lceil n/B \rceil + 1
ligne 3:
ligne 5:
                                              \lceil m/B \rceil + 1
                                              \lceil m/B \rceil + 1
ligne 7.8:
                                               \lceil n/B \rceil + 1
ligne 10:
ligne 11:
                                               \lceil n/B \rceil + 1
                                              \lceil m/B \rceil + 1
ligne 14:
ligne 13:
\sum_{i}(\lceil n_i/B \rceil + 1) < \lceil n/B \rceil + 2m
```

total: $4\lceil m/B \rceil + 3\lceil n/B \rceil + 2m$

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

 \Rightarrow génération de m buckets en supposant m + mB < M

```
1 \# histogramme nbr de clés dans <math>\lceil (i-1)k/m, ik/m \rceil
2 Bucket = [0]*m
3 for x in T:
     q=m*key(x)//k
      Bucket[q]+=1 \# a \ la \ fin \ on \ a \ ni= Bucket[i]
6 # calcul des indices de début de chaque bucket
7 Bucket.insert(0,0)
8 Bucket=prefixsum(Bucket)
9 # placement des éléments de T dans les buckets
10 BucketedInput = [0]*n
11 for x in T:
     q=m*key(x)//k
     BucketedInput[Bucket[q]] = x
     Bucket[q]+=1
```

```
Complexité en cache
```

```
ligne 2:
                                              \lceil m/B \rceil + 1
                                               \lceil n/B \rceil + 1
ligne 3:
                                              \lceil m/B \rceil + 1
ligne 5:
                                              \lceil m/B \rceil + 1
ligne 7.8:
                                               \lceil n/B \rceil + 1
ligne 10:
ligne 11:
                                               \lceil n/B \rceil + 1
                                              \lceil m/B \rceil + 1
ligne 14:
ligne 13:
\sum_{i}(\lceil n_i/B \rceil + 1) < \lceil n/B \rceil + 2m
```

 \Rightarrow Complexité en temps: O(n+m)

Complexité en cache: $O(m + \lceil n/B \rceil)$

total: $4\lceil m/B \rceil + 3\lceil n/B \rceil + 2m$

plus le coût de trier les m sous-tableaux de taille $\approx n/m$ avec des clés d'amplitude k/m

Tri linéaire par comptage: bucketing

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

- lacksquare génération de m buckets en supposant m+mB < M
 - \Rightarrow Complexité en temps: O(n+m)
 - \Rightarrow Complexité en cache: $O(m + \lceil n/B \rceil)$
- trier les m buckets de taille $\approx n/m$ avec des clés d'amplitude k/m

³valeur réaliste avec la taille des caches en vrai

Tri linéaire par comptage: bucketing

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

- lacksquare génération de m buckets en supposant m+mB < M
 - \Rightarrow Complexité en temps: O(n+m)
 - \Rightarrow Complexité en cache: $O(m + \lceil n/B \rceil)$
- trier les m buckets de taille $\approx n/m$ avec des clés d'amplitude k/m si on suppose³ n/m < M et k/m < M on obtient:
 - \Rightarrow Complexité en temps: $m \times O(n/m + k/m) = O(n+k)$
 - \Rightarrow Complexité en cache: $m \times O(n/(Bm) + \lceil k/(Bm) \rceil) = O(\lceil n/B \rceil + \lceil k/B \rceil)$

³valeur réaliste avec la taille des caches en vrai

Tri linéaire par comptage: bucketing

tri d'un tableau T de n éléments ayant une clé entière dans [0, k[

- lacksquare génération de m buckets en supposant m+mB < M
 - \Rightarrow Complexité en temps: O(n+m)
 - \Rightarrow Complexité en cache: $O(m + \lceil n/B \rceil)$
- trier les m buckets de taille $\approx n/m$ avec des clés d'amplitude k/m si on suppose³ n/m < M et k/m < M on obtient:
 - \Rightarrow Complexité en temps: $m \times O(n/m + k/m) = O(n+k)$
 - \Rightarrow Complexité en cache: $m \times O(n/(Bm) + \lceil k/(Bm) \rceil) = O(\lceil n/B \rceil + \lceil k/B \rceil)$

Au total: $MT(n, k, m) = O(m + \lceil n/B \rceil + \lceil k/B \rceil)$ au lieu de $O(n + \lceil k/B \rceil)$

³valeur réaliste avec la taille des caches en vrai

Multiplication de matrices

 $Z = X \times Y$ avec des matrices de taille $n \times n$ stockées par lignes (Z initialisée avec des zéros)

```
for i in range(n):
    for j in range(n):
        for k in range(n):
        Z[i,j]+=X[i,k]*Y[k,j]
```

- $MT(n) = O(n^2/B)$ si $3n^2 < M$ $\hookrightarrow X,Y,Z$ tiennent dans le cache
- $MT(n) = O(n^3/B)$ si $n(1+B) < M \le 3n^2$ \hookrightarrow une ligne de X et B colonnes de Y tiennent dans le cache
- $MT(n) = O(n^3)$ si $3 < M/B \le n$ \hookrightarrow une colonne de Y ne tient pas dans le cache

Multiplication de matrices: amélioration via le stockage

 $Z = X \times Y$ avec des matrices de taille $n \times n$ (Z initialisée avec des zéros)

```
for i in range(n):
for j in range(n):
for k in range(n):

Z[i,j]+=X[i,k]*Y[k,j]
```

- X et Z stockées par ligne
- Y stockée par colonne

- $MT(n) = O(n^2/B)$ si $3n^2 < M$ $\hookrightarrow X,Y,Z$ tiennent dans le cache
- MT(n) = $O(n^3/B + n^2)$ si $n(1+B) < M \le 3n^2$ \hookrightarrow une ligne de X et B colonnes de Y tiennent dans le cache
- $MT(n) = O(n^3/B + n^2)$ si $3 < M/B \le 3n^2/B$ \hookrightarrow une seule ligne de cache par matrice

Multiplication de matrices: amélioration via les boucles

 $Z = X \times Y$ avec des matrices de taille $n \times n$ stockées par lignes (Z initialisée avec des zéros)

```
1 for i in range(n):
2 for k in range(n):
3 for j in range(n):
4 Z[i,j]+=X[i,k]*Y[k,j]
```

- X, Y, Z stockées en ligne
- on inverse les boucles k et j

- $MT(n) = O(n^2/B)$ si $3n^2 < M$ $\hookrightarrow X,Y,Z$ tiennent dans le cache
- $MT(n) = O(n^3/B + n^2)$ si $n(1+B) < M \le 3n^2$ \hookrightarrow une ligne de X et B colonnes de Y tiennent dans le cache
- $MT(n) = O(n^3/B + n^2)$ si $3 < M/B \le 3n^2/B$ \hookrightarrow une seule ligne de cache par matrice

Multiplication de matrices: amélioration via les boucles

 $Z = X \times Y$ avec des matrices de taille $n \times n$ stockées par lignes (Z initialisée avec des zéros)

```
for i in range(n):
    for k in range(n):
    for j in range(n):
        Z[i,j]+=X[i,k]*Y[k,j]
```

- X, Y, Z stockées en ligne
- on inverse les boucles k et j

- $MT(n) = O(n^2/B)$ si $3n^2 < M$ $\hookrightarrow X,Y,Z$ tiennent dans le cache
- $MT(n) = O(n^3/B + n^2)$ si $n(1+B) < M \le 3n^2$ \hookrightarrow une ligne de X et B colonnes de Y tiennent dans le cache
- $MT(n) = O(n^3/B + n^2)$ si $3 < M/B \le 3n^2/B$ \hookrightarrow une seule ligne de cache par matrice

Toutes ces améliorations exploitent peu la localité temporelle !!!

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \le M$

```
for i in range(0,n,b):
    for k in range(0,n,b):
        for j in range(0,n,b):
            blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \le M$

```
for i in range(0,n,b):
    for k in range(0,n,b):
        for j in range(0,n,b):
            blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

■ complexité en temps identique: $(\frac{n}{b})^3 * 2b^3 = O(n^3)$

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \leq M$

```
for i in range(0,n,b):
    for k in range(0,n,b):
        for j in range(0,n,b):
            blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

- complexité en temps identique: $(\frac{n}{b})^3 * 2b^3 = O(n^3)$
- les données de blockMatrixMul
 - ▶ tiennent en cache
 - ▶ mais sont contigües par paquet ⇒ b tableaux contigüs de b données

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \leq M$

```
for i in range(0,n,b):
    for k in range(0,n,b):
        for j in range(0,n,b):
            blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

- complexité en temps identique: $(\frac{n}{b})^3 * 2b^3 = O(n^3)$
- les données de blockMatrixMul
 - ► tiennent en cache
 - ▶ mais sont contigües par paquet ⇒ b tableaux contigüs de b données

Combien de cache miss pour lire un bloc $b \times b$?

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \leq M$

```
for i in range(0,n,b):
    for k in range(0,n,b):
        for j in range(0,n,b):
            blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

- complexité en temps identique: $(\frac{n}{b})^3 * 2b^3 = O(n^3)$
- les données de blockMatrixMul
 - ▶ tiennent en cache
 - ▶ mais sont contigües par paquet ⇒ b tableaux contigüs de b données

Combien de cache miss pour lire un bloc $b \times b$? $O(b^2/B)$ cache miss

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \leq M$

```
for i in range(0,n,b):
    for k in range(0,n,b):
    for j in range(0,n,b):
        blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

- complexité en temps identique: $(\frac{n}{b})^3 * 2b^3 = O(n^3)$
- les données de blockMatrixMul
 - ► tiennent en cache
 - ▶ mais sont contigües par paquet ⇒ b tableaux contigüs de b données

Combien de cache miss pour lire un bloc $b \times b$? $O(b^2/B)$ cache miss

```
\Rightarrow B^2 < cM (Tall cache) et cM \le b^2 \le M/3 pour une constante c \le 1/3
```

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \le M$

```
for i in range(0,n,b):
    for k in range(0,n,b):
        for j in range(0,n,b):
            blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

- complexité en temps identique: $(\frac{n}{b})^3 * 2b^3 = O(n^3)$
- les données de blockMatrixMul
 - ▶ tiennent en cache
 - ▶ mais sont contigües par paquet ⇒ b tableaux contigüs de b données

Combien de cache miss pour lire un bloc $b \times b$? $O(b^2/B)$ cache miss

- \Rightarrow $B^2 < cM$ (Tall cache) et $cM \le b^2 \le M/3$ pour une constante $c \le 1/3$
- \Rightarrow $b(\lceil b/B \rceil + 1)$ lignes de cache, donc $MT(b) = b^2/B + 2b \le b^2/B + 2bB/B < 3b^2/B$

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \le M$

```
for i in range(0,n,b):
    for k in range(0,n,b):
        for j in range(0,n,b):
            blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \le M$

```
for i in range(0,n,b):
    for k in range(0,n,b):
        for j in range(0,n,b):
            blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

■ complexité en temps identique: $(\frac{n}{b})^3 \times 2b^3 = O(n^3)$

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \leq M$

```
for i in range(0,n,b):

for k in range(0,n,b):

for j in range(0,n,b):

blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

- complexité en temps identique: $(\frac{n}{b})^3 \times 2b^3 = O(n^3)$
- complexité en cache: $MT(n) = (\frac{n}{b})^3 \times O(\frac{b^2}{B}) = O(\frac{n^3}{B\sqrt{M}})$

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \leq M$

```
for i in range(0,n,b):
    for k in range(0,n,b):
        for j in range(0,n,b):
            blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

- complexité en temps identique: $(\frac{n}{b})^3 \times 2b^3 = O(n^3)$
- complexité en cache: $MT(n) = (\frac{n}{b})^3 \times O(\frac{b^2}{B}) = O(\frac{n^3}{B\sqrt{M}}) \Rightarrow \text{optimal [Hong, Kung 1981]}$

Découpage en bloc de taille $b \times b$ qui tiennent dans le cache: $3b^2 \leq M$

```
for i in range(0,n,b):
for k in range(0,n,b):
for j in range(0,n,b):
blockMatrixMul(Z[i:i+b,j:j+b], X[i:i+b,k:k+b], Y[k:k+b,j:j+b])
```

On a $(\frac{n}{b})^3$ produits de matrices plus petits $(b \times b)$

- complexité en temps identique: $(\frac{n}{b})^3 \times 2b^3 = O(n^3)$
- complexité en cache: $MT(n) = (\frac{n}{b})^3 \times O(\frac{b^2}{B}) = O(\frac{n^3}{B\sqrt{M}}) \Rightarrow \text{optimal [Hong, Kung 1981]}$

Remarques

- nécessite un cache haut (tall cache): c'est le cas en pratique
- nécessite de connaître la taille du cache: cache aware
- et si on ne connait pas la taille du cache ? ⇒ cache oblivious

Cache oblivious: aucune connaissance des caches

⇒ l'objectif est de tirer partie des caches de manière intrinsèque au niveau algorithmique

Cache oblivious: aucune connaissance des caches

⇒ l'objectif est de tirer partie des caches de manière intrinsèque au niveau algorithmique

Diviser pour régner

- permet souvent d'avoir les meilleures complexités en temps: ex. tri de tableau
- la plupart du temps donne des algorithmes cache oblivious
 - ⇒ la taille décroit durant les appels récursifs et rentre en cache à un certain moment

Cache oblivious: aucune connaissance des caches

⇒ l'objectif est de tirer partie des caches de manière intrinsèque au niveau algorithmique

Diviser pour régner

- permet souvent d'avoir les meilleures complexités en temps: ex. tri de tableau
- la plupart du temps donne des algorithmes cache oblivious
 - ⇒ la taille décroit durant les appels récursifs et rentre en cache à un certain moment

Ex: produit de matrice

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \times \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix} = \begin{pmatrix} X_{11}Y_{11} + X_{12}Y_{21} & X_{11}Y_{12} + X_{12}Y_{22} \\ X_{21}Y_{11} + X_{22}Y_{21} & X_{21}Y_{12} + X_{22}Y_{22} \end{pmatrix}$$

⇒ 8 produits de matrice de taille moitiée

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \times \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix} = \begin{pmatrix} X_{11}Y_{11} + X_{12}Y_{21} & X_{11}Y_{12} + X_{12}Y_{22} \\ X_{21}Y_{11} + X_{22}Y_{21} & X_{21}Y_{12} + X_{22}Y_{22} \end{pmatrix}$$

```
def MultRecAdd(Z, X, Y):
     n=Z.nrows()
     if n==1:
        Z[0.0] += X[0.0] * Y[0.0]
     else :
         S1, S2 = slice(0, n//2), slice(n//2, n)
        X11.X12.X21.X22 = X[S1.S1].X[S1.S2].X[S2.S1].X[S2.S2]
         Y11, Y12, Y21, Y22 = Y[S1, S1], Y[S1, S2], Y[S2, S1], Y[S2, S2]
         Z11, Z12, Z21, Z22 = Z[S1, S1], Z[S1, S2], Z[S2, S1], Z[S2, S2]
10
         MultRecAdd(Z11, X11, Y11), MultRecAdd(Z11, X12, Y21)
         MultRecAdd(Z12 . X11 . Y12) . MultRecAdd(Z12 . X12 . Y22)
11
         MultRecAdd(Z21 . X21. Y11) . MultRecAdd(Z21 . X22. Y21)
12
         MultRecAdd(Z22 . X21 . Y12) . MultRecAdd(Z22 . X22 . Y22)
13
        Z[S1,S1], Z[S1,S2], Z[S2,S1], Z[S2,S2]= Z11,Z12,Z21,Z22
14
```

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \times \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix} = \begin{pmatrix} X_{11}Y_{11} + X_{12}Y_{21} & X_{11}Y_{12} + X_{12}Y_{22} \\ X_{21}Y_{11} + X_{22}Y_{21} & X_{21}Y_{12} + X_{22}Y_{22} \end{pmatrix}$$

```
def MultRecAdd(Z, X, Y):
     n=Z.nrows()
     if n==1:
        Z[0.0] += X[0.0] * Y[0.0]
     else :
        S1. S2 = slice(0.n//2). slice(n//2.n)
        X11.X12.X21.X22 = X[S1.S1].X[S1.S2].X[S2.S1].X[S2.S2]
         Y11, Y12, Y21, Y22 = Y[S1, S1], Y[S1, S2], Y[S2, S1], Y[S2, S2]
        Z11, Z12, Z21, Z22 = Z[S1, S1], Z[S1, S2], Z[S2, S1], Z[S2, S2]
10
         MultRecAdd(Z11, X11, Y11), MultRecAdd(Z11, X12, Y21)
        MultRecAdd(Z12, X11, Y12), MultRecAdd(Z12, X12, Y22)
11
         MultRecAdd(Z21, X21, Y11), MultRecAdd(Z21, X22, Y21)
12
         MultRecAdd(Z22 . X21 . Y12) . MultRecAdd(Z22 . X22 . Y22)
13
        Z[S1,S1], Z[S1,S2], Z[S2,S1], Z[S2,S2]= Z11,Z12,Z21,Z22
14
```

Complexité en temps:
$$T(n) = 8T(n/2)$$
 avec $T(1) = 2$

$$\Rightarrow T(n) = 8^{\log_2(n)} \times T(1) = 2n^3$$

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \times \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix} = \begin{pmatrix} X_{11}Y_{11} + X_{12}Y_{21} & X_{11}Y_{12} + X_{12}Y_{22} \\ X_{21}Y_{11} + X_{22}Y_{21} & X_{21}Y_{12} + X_{22}Y_{22} \end{pmatrix}$$

```
def MultRecAdd(Z, X, Y):
     n=Z.nrows()
     if n==1:
        Z[0.0] += X[0.0] * Y[0.0]
     else :
        S1. S2 = slice(0.n//2). slice(n//2.n)
        X11.X12.X21.X22 = X[S1.S1].X[S1.S2].X[S2.S1].X[S2.S2]
         Y11, Y12, Y21, Y22 = Y[S1, S1], Y[S1, S2], Y[S2, S1], Y[S2, S2]
        Z11, Z12, Z21, Z22 = Z[S1, S1], Z[S1, S2], Z[S2, S1], Z[S2, S2]
10
         MultRecAdd(Z11, X11, Y11), MultRecAdd(Z11, X12, Y21)
        MultRecAdd(Z12, X11, Y12), MultRecAdd(Z12, X12, Y22)
11
         MultRecAdd(Z21, X21, Y11), MultRecAdd(Z21, X22, Y21)
12
         MultRecAdd(Z22 . X21 . Y12) . MultRecAdd(Z22 . X22 . Y22)
13
        Z[S1,S1], Z[S1,S2], Z[S2,S1], Z[S2,S2]= Z11,Z12,Z21,Z22
14
```

Complexité en temps:
$$T(n) = 8T(n/2)$$
 avec $T(1) = 2$

$$\Rightarrow T(n) = 8^{\log_2(n)} \times T(1) = 2n^3$$

$$MT(n) = \begin{cases} O(n^2/B) & \text{si } n^2 \le M/3 \\ 8 \times MT(n/2) & \text{sinon} \end{cases}$$

$$MT(n) = \begin{cases} O(n^2/B) & \text{si } n^2 \le M/3 \\ 8 \times MT(n/2) & \text{sinon} \end{cases}$$

$$\Rightarrow \mathsf{MT}(n) = 8^{\log_2(n) - \log_2(\sqrt{M/3})}$$

$$MT(n) = \begin{cases} O(n^2/B) & \text{si } n^2 \le M/3 \\ 8 \times MT(n/2) & \text{sinon} \end{cases}$$

$$\Rightarrow \mathsf{MT}(n) = 8^{\log_2(n) - \log_2(\sqrt{M/3})} = \frac{2^{3\log_2(n)}}{2^{3/2\log_2(M/3)}}$$

$$MT(n) = \begin{cases} O(n^2/B) & \text{si } n^2 \le M/3 \\ 8 \times MT(n/2) & \text{sinon} \end{cases}$$

$$\Rightarrow \mathsf{MT}(n) = 8^{\log_2(n) - \log_2(\sqrt{M/3})} = \frac{2^{3\log_2(n)}}{2^{3/2\log_2(M/3)}} = O\left(\frac{n^3}{B\sqrt{M}}\right)$$

Comme avec le modèle *cache aware*, on sait que si $n^2 \le M/3$ alors $MT(n) = O(n^2/B)$. Par conséquent on a la récurrence suivante:

$$MT(n) = \begin{cases} O(n^2/B) & \text{si } n^2 \le M/3 \\ 8 \times MT(n/2) & \text{sinon} \end{cases}$$

$$\Rightarrow \mathsf{MT}(n) = 8^{\log_2(n) - \log_2(\sqrt{M/3})} = \frac{2^{3\log_2(n)}}{2^{3/2\log_2(M/3)}} = O\left(\frac{n^3}{B\sqrt{M}}\right)$$

Remarques

- même complexité qu'avec le modèle cache aware (optimal)
- pas besoin de connaître la taille du cache, l'algorithme est auto-adaptatif
- la gestion de plusieurs niveaux de cache est implicite