第一次作业

3.实现下列各数的转换

```
1. (25.8125)D == (?)B == (?)O == (?)H
```

```
1 (25.8125)D == (00011001.1101)B == (31.64)0 == (19.D)H
```

2.
$$(101101.011)B == (?)D == (?)O == (?)8421$$

```
1 (101101.011)B == (45.375)D == (55.3)0 == (0100 0101 . 0011 0111 0101)8421
```

3.
$$(0101\ 1001\ 0110\ .\ 0011)8421 == (?)10 == (?)B == (?)H$$

$$4. (4E.C)H == (?)D == (?)B$$

```
1 (4E.C)H == (78.75)D == (1001110.11)B
```

4. 假定机器数为8位(1位符号,7位数值),写出下列各二进制数的原码表示。

数值	原码
+0.1001	0000.1001
-0.1001	1000.1001
+1.0	0001.0000
-1.0	1001.0000
+0.010100	00.010100
-0.010100	10.010100

数值	原码
+0	00000000
-0	10000000

5. 假定机器数为8位(1位符号,7位数值),写出下列各二进制数的补码和移码(偏执常数为128)

数值	原码	补码	移码
+1001	00001001	00001001	10001001
-1001	10001001	11110111	01110111
+1	00000001	00000001	10000001
-1	10000001	11111111	01111111
+0.010100	00.010100	00.010100	
-0.010100	10.010100	10.010100	
+0	00000000	00000000	10000000
-0	10000000	00000000	10000000

6.已知下列数值的补码,求数值

1.
$$[x] == 1110\ 0111$$

 $x = -(00011001)B = -25$

$$2.[x] == 1000\ 0000$$

$$x = -127$$

3.
$$[x] == 0101 \ 0010$$

$$x = 82$$

$$x = -(00101101)B = -45$$

7.在32为计算机中运行一个C语言程序,在该程序中出现了一些变量,已知这些变量在某一时刻的机器数(16进制表示)如下,请写出他们对应的真值

1. inx x: FFFF 0006H

$$x == -(0000 FFFAH) == -(65530D)$$

2. short y: DFFCH

$$x == -(2004H) == -(8196D)$$

3. unsigned z: FFFF FFFAH

a == 4294967290

4. char c: 2AH

c == 42

5. float a: C448 0000H

6. double b: C024 8000 0000 0000H

 $0xC024800000000000 == 1\ 100\ 0000\ 0010\ 0100\ 1000\ 0000\ 0000\ 0000\ 0000$

 $0000\ 0000\ 0000\ 0000\ 0000\ 0000$

 $b == -1 * (1.01001)B * (2 ^ 3)D == -10.25$

12.请写出下列几种情况所能表示的数的范围

1.16位无符号整数

0 -- 2 ^ 16 - 1

2.16位原码定点小数

-7.9375 -- 7.9375

- 3.16位移码定点整数
 - -16384 -- 16383
- 4.16位补码定点整数
 - -2 ^ 16 -- 2 ^ 16 1
- 5. 下述格式的浮点数(基数为2, 移码的偏执常数为128)

符号S	阶码	尾数F
1位	8位移码	7位原码数值部分

-1 * 2 ^ 383 * 1.111111 -- +1 * 2 ^ 383 * 1.111111

14.设一个变量的值为4098

要求分别用32位补码整数和IEEE754单精度浮点格式表示该变量(结果用十六进制形式表示),并说明哪段二进制序列在两种表示中完全相同,为什么会相同?

补码 IEEE754

补码	IEEE754
00001002	49001000

补码首位1之后的几位和IEEE754的前几位尾数相同,因为IEEE754中规格化的尾数就是原码首位1的之后的元素

17.假定在一个程序中定义了变量x、y和i

其中x和y是float类型变量,i是short类型变量(补码表示)。程序执行到某一时刻,x=-0.125、y=7.5、i=100,它们都被写到了贮存(按字节编址),起地址分别是100、108和112。请分别画出在大端机器和小端机器上变量x、y和i中的每个字节在主存的存放位置。

 $x == -0.001 == 1\ 1111\ 1100\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

 $i == 1100100 == 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0110\ 0100$

ADDRESS	VALUE
100	1 1111 110
101	0 0000 000
102	0 0000 000
103	0 0000 000
108	1 1000 000
109	1 1110 000
110	0 0000 000
111	0 0000 000
112	0000 0000
113	0000 0000
114	0000 0000
115	0110 0100

ADDRESS	VALUE
100	0 0000 000
101	0 0000 000
102	0 0000 000
103	1 1111 110

ADDRESS	VALUE
108	0 0000 000
109	0 0000 000
110	1 1110 000
111	1 1000 000
112	0110 0100
113	0000 0000
114	0000 0000
115	0000 0000