Tutorial 04

$$N \equiv 2 \pmod{5}$$

$$N \equiv 3 \pmod{6}$$

Using chinese remainder theorom;

$$b_1$$
 N_1 a_2 $b_1 N_1 a_2$ $M = n_1 \times n_2$
 a_2 a_3 a_4 a_5 a_5 a_5 a_5 a_6 a_7 a_8 a_8 a_9 a_9

$$\therefore N = \sum_{i=1}^{2} b_i N_i x_i \pmod{M}$$

$$\begin{array}{ccc}
N &=& 2 \pmod{4} \\
N &=& 6 \pmod{12}
\end{array}$$

bi Ni
$$2i$$
 biNi $2i$
1 140 5 700 N = $3\times4\times5\times7$
1 105 1 105 = 420
1 84 4 336
0 60 2 120

$$x = \sum_{i=1}^{4} D_i N_i x_i \pmod{N}$$

=
$$(700+105+336+120) \pmod{420}$$

= $1261 \pmod{420}$
= $1 \pmod{420}$

$$\begin{array}{ccc} (4) & \chi & \equiv & 3 \pmod{5} \\ & \chi & \equiv & 1 \pmod{7} \\ & \chi & \equiv & 6 \pmod{6} \end{array}$$

bì Ni
$$\chi$$
i bì Nì χ i
3 56 | 1 | 1848 | N = 5 x 7 x 8
1 40 3 | 120 | = 280
6 35 3 630

$$x = \sum_{i=1}^{3} b_i N_i x_i \cdot (\text{mod } N)$$