IN THE SPECIFICATION:

Please further amend the first paragraph on page 2, line 6 to page 4, line 9, as follows:

(Currently amended) According to one aspect of the present invention there is provided an inhibitor of ras farnesylation of Formula I

$$S \longrightarrow \mathbb{R}^2$$
 $(\mathbb{R}^3)_p$

wherein:

R¹ is selected from H; -C₁₋₄alkyl; -CO-C₁₋₄alkyl; -CO-O-C₁₋₄alkyl;

-CO-O-C₂₋₄alkenyl; -C₁₋₄alkylene-CONR⁴R⁵ (wherein R⁴ and R⁵ are independently selected from H and C₁₋₄alkyl); -C₁₋₄alkylene-COOR⁶ (wherein R⁶ is selected from H and C₁₋₄alkyl); -C₁₋₃alkylene-Ph and -CO-O(CH₂)_nPh wherein the phenyl groups in -C₁₋₃alkylene-Ph and -CO-O(CH₂)_nPh are optionally substituted by R^a and/or R^b and R^a and R^b are independently selected from C₁₋₄alkyl, halogen, hydroxy, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, amino, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkanoylamino, nitro, cyano, carboxy, carbamoyl, C₁₋₄alkoxycarbonyl, thiol, C₁₋₄alkylsulfanyl, C₁₋₄alkylsulfinyl,C₁₋₄alkylsulfonyl and sulfonamido; and n=0-4;

 \mathbf{R}^2 is selected from H; -C₁₋₄alkyl; -COC₁₋₄alkyl; and -COOC₁₋₄alkyl; and

-C₁₋₃alkylene-Ph optionally substituted on the phenyl ring by R^a and/or and or R^b;

R³ is selected from H; OH; CN; CF₃; NO₂; -C₁₋₄ alkyl; -C₁₋₄alkylene-R⁷;

-C₂₋₄alkenylene-R⁷; -C₂₋₄alkynylene-R⁷; R⁷; OR⁷ (where R⁷ is selected from phenyl, naphthyl, a 5-10 membered monocyclic or bicyclic heteroaryl ring containing up to 5 heteroatoms selected from O, N and S and any aryl ring in R⁷ is optionally substituted by R^a and/or R^b);

 $C_{2\text{-4}}$ alkenyl; halogen; -(CH_2)_y $COOR^8$ (where y = 0-3 and R^8 represents H, $C_{1\text{-4}}$ alkyl, or $C_{2\text{-4}}$ alkenyl); - $CONR^9R^{10}$ (where R^9 and R^{10} independently represent H, $C_{1\text{-4}}$ alkyl, $C_{2\text{-4}}$ alkenyl, - $O\text{-}C_{1\text{-4}}$ alkyl, - $O\text{-}C_{2\text{-4}}$ alkenyl or - $C_{1\text{-3}}$ alkylenePh (wherein Ph is optionally substituted by R^a and R^b as hereinabove defined); - $CON(R^{11})OR^{12}$ (where R^{11} and R^{12} independently represent H, $C_{1\text{-4}}$ alkyl or $C_{2\text{-4}}$ alkenyl); a group of Formula II: - $CONR^{13}$ - $CR^{13a}R^{14}$ - $COOR^{17}$, (where R^{13} and R^{13a} are independently H or $C_{1\text{-4}}$ alkyl, R^{17} is H or $C_{1\text{-6}}$ alkyl, R^{14} is selected from the side chain of a lipophilic amino acid, carbamoyl $C_{1\text{-4}}$ alkyl, R^{14} 0 is elected from the side chain of R^{13} 0 configuration at the chiral alpha carbon in the corresponding free amino acid; a lactone of formula:

 C_{1-4} alkyl monosubstituted on carbon with =N-OH;

a group of Formula -X-R¹⁵ (where X is selected from O, CO, CH₂, S, SO, SO₂ and R¹⁵ is selected from C_{1-6} alkyl, phenyl, naphthyl, a 5-10 membered monocyclic or bicyclic heteroaryl ring containing up to 5 heteroatoms selected from O, N and S and any aryl ring in R¹⁵ is optionally substituted by R^a and/or R^b;

p is 0-3 in which R³ values can be the same or different:

G is a linking moiety selected from the following groups written from left to right in Formula I:

(wherein the piperazine and perhydro-1,4-diazepine rings are optionally substituted); $-\text{CO-NR}^{16}\text{-}; -\text{CH}_2\text{-NR}^{16}\text{-}; -\text{CH}_2\text{S-}; -\text{CH}_2\text{O-}; -\text{CH}_2\text{-CHR}^{16}; -\text{CH=CR}^{16}\text{-}; -\text{CH}_2\text{NR}^{16}\text{-T-}; \\ -\text{CH}_2\text{NR}^{16}\text{-SO}_2\text{-}; -\text{CH}_2\text{-NR}^{16}\text{-CO-T}^1\text{-}; -\text{CO-NR}^{16}\text{-T-}; -\text{CH}_2\text{S-T-}; -\text{CH}_2\text{O-T-} \text{ (where R}^{16} \text{ is selected from H, C}_{1\text{-4}\text{alkyl}}, C_{1\text{-4}\text{alkylene-Z}}, -\text{CO-C}_{1\text{-4}\text{alkylene-Z}}, -\text{CO-C}_{1\text{-6}\text{alkyl}}, -\text{COZ}, Z \text{ and } \\ -\text{COZ} = -\text{COZ}_{1\text{-6}\text{alkyl}}, -\text{C$

Z is selected from -O-C₁₋₄alkyl, phenyl, naphthyl, a 5-10 membered monocyclic or bicyclic heteroaryl ring containing up to 5 heteroatoms selected from O, N and S and any aryl ring in R^{16} is optionally substituted by R^a and/or R^b as hereinabove defined;

where, T represents $-(CH_2)_m$ - where m is 1-4 and T is optionally monosubstituted with any value of R^{16} other than H; and

where T^1 represents $-(CH_2)_{m^1}$ - wherein m^1 is 0-4 and T^1 is optionally monosubstituted with any value of R^{16} other than H);

A is selected from phenyl; naphthyl; a 5-10 membered monocyclic or bicyclic heteroaryl ring containing up to 5 heteroatoms where the heteroatoms are independently selected from O, N & S;

or a -S-S- dimer thereof when R^2 =H; or a \underline{N} -oxide thereof; or a pharmaceutically acceptable salt, prodrug or solvate thereof.