Economics 103 – Statistics for Economists

Francis J. DiTraglia

University of Pennsylvania

Lecture # 14

Sampling Distributions and Estimation – Part I

Weighing a Random Sample

Bag Contains 100 Candies

Estimate total weight of candies by weighing a random sample of size 5 and multiplying the result by 20.

Your Chance to Win

The bag of candies and a digital scale will make their way around the room during the lecture. Each team (2 students) gets a chance to draw 5 candies and weigh them.

Team with closest estimate wins the bag of candy!

Weighing a Random Sample

Procedure

When the bag and scale reach your team, do the following:

- 1. Fold the top of the bag over and shake to randomize.
- 2. Randomly draw 5 candies without replacement.
- 3. Weigh your sample and record the result in grams.
- 4. Rodrigo will enter your result into his spreadsheet and multiply it by 20 to estimate the weight of the bag.
- 5. Replace your sample and shake again to re-randomize.
- 6. Pass bag and scale to next team.

Building a Bridge Between Probability and Statistics

Questions to Answer

- 1. How accurately do our sample statistics estimate the unknown population parameters?
- 2. How can we quantify the uncertainty in our estimates?

It will take many lectures to answer these questions. We'll start by "building a bridge" between probability and statistics. . .

Step 1: Random Variable as Model for Population

Treat Population as RV rather than list of objects

Old Way

Among 138 million voters, 69 million will vote for Hillary Clinton

New Way

Bernoulli(p = 1/2) RV

Old Way

List of heights for 97 million US adult males with mean 69 in and std. dev. 6 in

New Way

 $N(\mu = 69, \sigma^2 = 36) \text{ RV}$

In the second example, our model assumes that the distribution of height is symmetric and bell-shaped.

Recall: (Simple) Random Sample

Definition in Words

Select a sample of n objects from a population in such a way that:

- Each member of the population has the same probability of being selected
- The fact that one individual is selected does not affect the chance that any other individual is selected
- 3. Each sample of size n is equally likely to be selected

Definition in Math

$$X_1, X_2, \ldots, X_n \sim \text{iid } f(x) \text{ if continuous}$$

$$X_1, X_2, \dots, X_n \sim \text{iid } p(x) \text{ if discrete}$$

Random Sample Means Sample With Replacement

- ▶ Without replacement ⇒ dependence between samples
- ▶ But sample small relative to popn. ⇒ dependence negligible.
- ► This means our candy experiment (in progress) isn't bogus.

Step 2: iid RVs Represent Random Sampling from Popn.

Who Will Vote for Hillary Clinton Example

Poll random sample of 1000 registered voters:

$$X_1, \ldots, X_{1000} \sim \text{ iid Bernoulli}(p = 1/2)$$

Heights of US Males Example

Measure the heights of random sample of 50 US males:

$$Y_1, \dots, Y_{50} \sim \text{ iid } N(\mu = 69, \sigma^2 = 36)$$

Key Question

What do the properties of the population imply about the properties of the sample?

What does the population imply about the sample?

Suppose that exactly half of US voters plan to vote for Hillary Clinton. If you poll a random sample of 4 voters, what is the probability that *exactly half* are Hillary supporters?

Suppose that exactly half of US voters plan to vote for Hillary Clinton. If you poll a random sample of 4 voters, what is the probability that *exactly half* are Hillary supporters?

$$\binom{4}{2} (1/2)^2 (1/2)^2 = 3/8 = 0.375$$

The rest of the probabilities...

Suppose that exactly half of US voters plan to vote for Hillary Clinton and we poll a random sample of 4 voters.

```
P(\text{Exactly 0 Hillary Voters in the Sample}) = 0.0625
P(\text{Exactly 1 Hillary Voters in the Sample}) = 0.25
P(\text{Exactly 2 Hillary Voters in the Sample}) = 0.375
P(\text{Exactly 3 Hillary Voters in the Sample}) = 0.25
P(\text{Exactly 4 Hillary Voters in the Sample}) = 0.0625
```

You should be able to work these out yourself. If not, review the lecture slides on the Binomial RV.

Population Size is Irrelevant Under Random Sampling

Crucial Point

None of the preceding calculations involved the population size: I didn't even tell you what it was! We'll never talk about population size again in this course.

Why?

Draw with replacement \implies only the sample size and the *proportion* of Hillary supporters in the population matter.

(Sample) Statistic

Any function of the data *alone*, e.g. sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. Typically used to estimate an unknown population parameter: e.g. \bar{x} is an estimate of μ .

Step 3: Random Sampling \Rightarrow Sample Statistics are RVs

This is the crucial point of the course: if we draw a random sample, the dataset we get is random. Since a statistic is a function of the data, it is a random variable!

A Sample Statistic in the Polling Example

Suppose that exactly half of voters in the population support Hillary Clinton and we poll a random sample of 4 voters. If we code Hillary supporters as "1" and everyone else as "0" then what are the possible values of the sample mean in our dataset?

- (a) (0,1)
- (b) {0, 0.25, 0.5, 0.75, 1}
- (c) $\{0, 1, 2, 3, 4\}$
- (d) $(-\infty, \infty)$
- (e) Not enough information to determine.

Sampling Distribution

Under random sampling, a sample stat. is a RV. Thus it has PDF if continuous of PMF if discrete: this is called its *sampling* distribution.

Sampling Dist. of Sample Mean in Polling Example

$$p(0) = 0.0625$$

 $p(0.25) = 0.25$
 $p(0.5) = 0.375$
 $p(0.75) = 0.25$
 $p(1) = 0.0625$

Some New Terminology

- Under random sampling, a statistic is a RV
- In any real example, however, our dataset is fixed so a sample statistic is just a constant number
- We need some more precise terminology to make this distinction precise: Estimator vs. Estimate
- ▶ Use these terms instead of statistic from now on...

Estimator versus Estimate

Estimator

A function $T(X_1,...,X_n)$ of the RVs that represent the *procedure* of drawing a random sample, hence a RV itself.

Estimator versus Estimate

Estimator

A function $T(X_1,...,X_n)$ of the RVs that represent the *procedure* of drawing a random sample, hence a RV itself.

Sampling Distribution

The probability distribution (PMF of PDF) of an Estimator.

Estimator versus Estimate

Estimator

A function $T(X_1,...,X_n)$ of the RVs that represent the *procedure* of drawing a random sample, hence a RV itself.

Sampling Distribution

The probability distribution (PMF of PDF) of an Estimator.

Estimate

A function $T(x_1, ..., x_n)$ of the *observed data*, i.e. the *realizations* of the random variables we use to represent random sampling. Since its a function of constants, an estimate is itself a constant.

Procedure versus Result of the Procedure

Procedure = Random Variable

- \triangleright X_1, \ldots, X_n represents procedure of taking a random sample.
- $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ represents procedure of taking sample mean

Procedure versus Result of the Procedure

Procedure = Random Variable

- \triangleright X_1, \ldots, X_n represents procedure of taking a random sample.
- igl $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ represents procedure of taking sample mean

Sampling Dist. = Probabilistic Behavior of Procedure

If I repeat the procedure of taking the mean of a random sample over and over for many samples, what relative frequencies do I get for the sample means?

Procedure versus Result of the Procedure

Procedure = Random Variable

- \triangleright X_1, \ldots, X_n represents procedure of taking a random sample.
- igl $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ represents procedure of taking sample mean

Sampling Dist. = Probabilistic Behavior of Procedure

If I repeat the procedure of taking the mean of a random sample over and over for many samples, what relative frequencies do I get for the sample means?

Result of Procedure = Constant

- \triangleright x_1, \ldots, x_n is the result of sampling, the observed data.
- $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the result of taking sample mean

Why would I advise you not to play the lottery?

Why would I advise you not to play the lottery?

You may sometimes win, but if you play the lottery many times, on average you will lose money.

Why would I advise you not to play the lottery?

- You may sometimes win, but if you play the lottery many times, on average you will lose money.
- ▶ Let X be a random variable representing lottery winnings. I am arguing that E[X] - Cost of Ticket < 0</p>

Why would I advise you not to play the lottery?

- You may sometimes win, but if you play the lottery many times, on average you will lose money.
- ▶ Let X be a random variable representing lottery winnings. I am arguing that E[X] - Cost of Ticket < 0</p>

Procedure = Random Variable

Making a habit of playing the lottery. Expectation is negative.

Why would I advise you not to play the lottery?

- You may sometimes win, but if you play the lottery many times, on average you will lose money.
- ▶ Let X be a random variable representing lottery winnings. I am arguing that E[X] - Cost of Ticket < 0</p>

Procedure = Random Variable

Making a habit of playing the lottery. Expectation is negative.

Result of that Procedure = Constant

How much you win in a *particular* lottery. Could be greater than or less than cost of ticket in any *individual* instance.

Population: f(x)

Probability Distribution

Random Variables

$$X_1, X_2, \ldots, X_n \sim \text{iid } f(x)$$

M Replications, each containing n Observations

Random Variables

$$X_1, X_2, \ldots, X_n \sim \text{iid } f(x)$$

Random Variables Random Sample of Size n

Estimator

$$X_1, X_2, \ldots, X_n \sim \text{iid } f(x)$$

$$T(X_1,\ldots,X_n)$$

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Population: All Students in the Class

Popn. Mean = 67.5, Popn. Var. = 19.7

Choose n Students from Class List with Replacement

Choose n Students from Class List with Replacement

Sample 1

Choose n Students from Class List with Replacement

Repeat M times \rightarrow get M different sample means

Repeat M times \rightarrow get M different sample means

Sampling Dist: long run relative frequencies of the \bar{x}_i

Height of Econ 103 Students

Figure : Left: Population, Right: Sampling distribution of \bar{X}_5

Histograms of sampling distribution of sample mean \bar{X}_n

Random Sampling With Replacement, 10000 Reps. Each

Mean = 67.5, Var = 1.8

Mean = 67.5, Var = 0.8

Mean = 67.5, Var = 0.2

Population Distribution vs. Sampling Distribution of \bar{X}_n

Sampling Dist. of \bar{X}_n		
n	Mean	Variance
5	67.6	3.6
10	67.5	1.8
20	67.5	0.8
50	67.5	0.2

Two Things to Notice:

- 1. Sampling dist. "correct on average"
- 2. Sampling variability decreases with n

$$X_1, \ldots, X_9 \sim \text{ iid with } \mu = 5, \ \sigma^2 = 36.$$

Calculate:

$$E(\bar{X}) = E\left[\frac{1}{9}(X_1 + X_2 + \ldots + X_9)\right]$$

$$X_1, \ldots, X_n \sim \text{iid with mean } \mu$$

$$E[\bar{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right]$$

$$X_1, \ldots, X_n \sim \text{iid with mean } \mu$$

$$E[\bar{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] =$$

 $X_1, \ldots, X_n \sim \text{iid with mean } \mu$

$$E[\bar{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = 0$$

 $X_1, \ldots, X_n \sim \text{iid with mean } \mu$

$$E[\bar{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \frac{n\mu}{n} = \frac{n\mu}{n}$$

 $X_1, \ldots, X_n \sim \text{iid with mean } \mu$

$$E[\bar{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \frac{n\mu}{n} = \mu$$

 $X_1, \ldots, X_n \sim \text{iid with mean } \mu$

$$E[\bar{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \frac{n\mu}{n} = \mu$$

Hence, sample mean is "correct on average." The formal term for this is *unbiased*.

$$X_1, ..., X_9 \sim \text{ iid with } \mu = 5, \ \sigma^2 = 36.$$

Calculate:

$$Var(ar{X}) = Var\left[rac{1}{9}(X_1 + X_2 + \ldots + X_9)
ight]$$

$$Var[\bar{X}_n] = Var \left[\frac{1}{n} \sum_{i=1}^n X_i \right]$$

$$Var[\bar{X}_n] = Var\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n Var(X_i)$$

$$Var[\bar{X}_n] = Var\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n Var(X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \sigma^2 =$$

$$Var[\bar{X}_n] = Var\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n Var(X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \sigma^2 = \frac{n\sigma^2}{n^2} =$$

$$Var[\bar{X}_n] = Var\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n Var(X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \sigma^2 = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

 $X_1, \ldots, X_n \sim \text{iid}$ with mean μ and variance σ^2

$$Var[\bar{X}_n] = Var\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n Var(X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \sigma^2 = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Hence the variance of the sample mean decreases linearly with sample size.

Standard Error

Std. Dev. of estimator's sampling dist. is called standard error.

Standard Error of the Sample Mean

$$SE(\bar{X}_n) = \sqrt{Var(\bar{X}_n)} = \sqrt{\sigma^2/n} = \sigma/\sqrt{n}$$