ABE 201 Biological Thermodynamics 1

Module 4
Degree of Freedom Analysis
and
Multiple Unit Operations

Summary

- Defining Systems in Complex Processes
 - Boundaries must be contiguous
 - Boundaries define what's in and what's out!
 - Careful selection of system boundaries can be used to solve complex problems

- Degree of Freedom Analysis
 - Determine if a unique solution is possible for the system as you have defined it.
 - The number of equations must equal or exceed the number of unknown variables

Tactical Garbage to Energy Reactor (TGER)

Tactical Garbage to Energy Reactor (TGER)

TGER

 How many unit operations are shown in the process flow diagram?

How many systems can be defined?

Tactical Garbage to Energy Reactor (TGER)

Pharmaceutical Recovery

After synthesis, a pharmaceutical is recovered from solvent at steady state. The starting material (feed) is made at 4521 kg/h and contains 3% (w/w) drug and the remainder is solvent. It is mixed with recycled solvent and unrecovered drug before processing.

In the first processing step, 50% of the solvent is removed by evaporation, leaving the drug behind and concentrated in the remaining solvent.

In the second step, the mixture (2573 kg/h) is cooled causing 95% of the drug entering the second step to crystalize and precipitate from solution.

In the third step, the crystalized drug is filtered out. The filter cake is 75% drug and 25% solvent. The remaining solvent with un-crystalized drug is recycled where it is blended with the feed and fed to the evaporator.

What is the mass flow rate of the recycled solvent and drug?

	1	2	3	4	5	6	7
m (kg/h)	4521	m_2	m_3	2573	m ₅	m ₆	m ₇
x _d	0.03	X _{2d}	0	X _{4d}	X _{5d}	X _{6d}	0.75
X _s	0.97	X _{2s}	1	X _{4s}	X _{5s}	x _{6s}	0.25

	1	2	3	4	5	6	7
m (kg/h)	4521	m_2	m_3	2573	m_5	m_6	\mathfrak{M}_7
x _d	0.03	X _{2d}	0	X _{4d}	X ₅₀	X ₆₀	0.75
X _s	0.97	X _{2s}	1	X _{4s}	X _{5s}	X _{6s}	0.25

$$DOF = V - B - P - C = 6 - 2 - 0 - 3 = 1$$

$$x_{7d}^*m_7 = (0.95)^*(x_{4d}^*m_4)$$

	1	2	3	4	5	6	7
m (kg/h)	4521	m_2	m_3	2573	m_5	m_6	m ₇
x _d	0.03	X _{2d}	0	x_4d	X _{5a}	X _{6d}	0.75
X _s	0.97	X _{2s}	1	X _{4s}	X _{5s}	X _{6s}	0.25

$$DOF = V - B - P - C = 6 - 2 - 0 - 3 = 1$$

	1	2	3	4	5	6	7
m (kg/h)	4521	m_2	m_3	2573	m_5	m_6	m ₇
x _d	0.03	X _{2d}	0	X _{4d}	X _{5d}	X _{6d}	0.75
X _s	0.97	X _{2s}	1	X _{4s}	X _{5s}	X _{6s}	0.25

$$DOF = V - B - P - C = 2 - 2 - 0 - 0 = 0$$

$$0 = In - Out$$

Total Mass

$$0 = (m_1) - (m_3 + m_7)$$

$$0 = 4521 - (m_3 + m_7)$$
 $m_3 = 4340.6$ kg/h

Drug Mass

$$0 = (x_{1d}*m_1) - (x_{3d}*m_3 + x_{7d}*m_7)$$

$$0 = (0.03*4521) - (0 + 0.75*m_7)$$

 $m_7 = 180.4 \text{ kg/h}$

Solvent Mass

$$0 = (x_{1s}^* m_1) - (x_{3s}^* m_3 + x_{7s}^* m_7)$$

$$0 = (0.97*4521) - (m_3 + 0.25*m_7)$$

$$x_{7d}^*m_7 = (0.95)^*(x_{4d}^*m_4)$$

	1	2	3	4	5	6	7
m (kg/h)	4521	m_2	4340.6	2573	m_5	m_6	180.4
x _d	0.03	X _{2d}	0	x_4d	X ₅₀	X _{6d}	0.75
X _s	0.97	X _{2s}	1	X _{4s}	X _{5s}	X _{6s}	0.25

$$DOF = V - B - P - C = 5 - 2 - 0 - 3 = 0$$

$$0 = In - Out$$

Total Mass

$$0 = (m_4) - (m_7 + m_6)$$

$$0 = 2573 - (180.4 + m_6)$$

$$m_6 = 2392.6 \text{ kg/h}$$

Example

Waste water treatment slurry (50.% solids) is processed at a rate of 100. kg/hr.

The slurry is mixed with a recycle stream and goes into a settling tank where some of the solids settle out to form a sludge (90.% solids) which is removed from the bottom by a conveyor.

The upper layer (40.% solids) is pumped from the far side of the settling tank at 125 kg/hr. A portion is recycled to dilute the incoming waste while the remainder is pumped through a hydrocyclone that produces a heavy cake (98% solids) and a light effluent (1.0% solids). Assume steady-state operation.

Questions

- What percent of effluent is being recycled?
- What is the flow rate of clarified effluent from the hydrocyclone?
- What is the total flow rate of high solids streams (sludge + heavy cake)?

	1	2	3	4	5	6	7	8
m	100	m_2	m_3	125	m_5	m_6	m_7	m ₈
X _s	0.5	X _{2s}	0.9	0.4	0.4	0.4	0.01	0.98
X _w	0.5	X _{2w}	0.1	0.6	0.6	0.6	0.99	0.02

$$DOF = V - B - P - C = 2 - 2 - 0 - 0 = 0$$

Acc = In - Out + Gen - Con

 $m_3 = 20 \text{ kg/h}$

 $m_5 = 80 \text{ kg/h}$

Total Mass

$$0 = (m_1) - (m_3 + m_5)$$

$$0 = 100 - (m_3 + m_5)$$

Solids Mass

$$0 = (x_{1s}*m_1) - (x_{3s}*m_3 + x_{5s}*m_5)$$

$$0 = (50) - (0.9*m_3 + 0.4*m_5)$$

Water Mass

$$0 = (x_{1w}^*m_1) - (x_{3w}^*m_3 + x_{5w}^*m_5)$$

$$0 = (50) - (0.1*m_3 + 0.6*m_5)$$

	1	2	3	4	5	6	7	8
m	100	m_2	20	125	80	m_6	\mathfrak{m}_7	m ₈
X _s	0.5	X _{2s}	0.9	0.4	0.4	0.4	0.0	0.98
X _w	0.5	X _{2w}	0.1	0.6	0.6	0.6	0.99	0.02

$$DOF = V - B - P - C = 3 - 2 - 0 - 1 = 0$$

Acc = In - Out + Gen - Con

Total Mass

$$m2 = 145 \text{ kg/h}$$

$$0 = (m_2) - (m_3 + m_4)$$

$$0 = m_2 - (20 + 125)$$

Solids Mass

$$0 = (x_{2s} * m_2) - (x_{3s} * m_3 + x_{4s} * m_4)$$

$$0 = x_{2s}(145) - (0.9*20 + 0.4*125)$$

$$x_{2s} = 0.469$$

$$x_{2w} = 1 - x_{2s} = 0.531$$

	1	2	3	4	5	6	7	8
m	100	145	20	125	80	m_6	m_7	m ₈
X _s	0.5	0.469	0.9	0.4	0.4	0.4	0.0	0.98
X _w	0.5	0.531	0.1	0.6	0.6	0.6	0.99	0.02

% recycled = $M_6 / M_4 = 45/125 = 36\%$

	1	2	3	4	5	6	7	8
m	100	145	20	125	80	45	m ₇	m ₈
X _s	0.5	0.469	0.9	0.4	0.4	0.4	0.01	0.98
X _w	0.5	0.531	0.1	0.6	0.6	0.6	0.99	0.02

Acc = In - Out + Gen - Con

Total Mass

$$0 = (m_5) - (m_7 + m_8)$$
 $m_7 = 47.8 \text{ kg/h}$ $m_8 = 32.2 \text{ kg/h}$

$$0 = 80 - (m_7 + m_8)$$
 Total sludge =

Solids Mass
$$m_3 + m_8 = 20.0 + 32.2$$

$$0 = (x_{5s}*m_5) - (x_{7s}*m_7 + x_{8s}*m_8) = 52.2$$
kg/h

$$0 = (0.4*80) - (0.01*m7 + 0.98*m8)$$

Water Mass

$$0 = (x_{1w}^*m_1) - (x_{7w}^*m_7 + x_{8w}^*m_8)$$

$$0 = (0.6*80) - (0.99*m_7 + 0.02*m_8)$$