END SEMESTER EXAMINATION: NOVEMBER-DECEMBER, 2023

APPLIED MATHEMATICS - III

Time: 3 Hrs. Maximum Marks: 60

Note: Attempt questions from all sections as directed.

SECTION - A (24 Marks)

Attempt any four questions out of five. Each question carries 06 marks.

Find the function if its sine transform is $\frac{e^{-s}}{}$.

Solve px + qy = pq by Charpit method. $p \times + qy = pq \text{ by Charpit method.}$ Solve (D² - DD' - 2D'²) z = (y-1) e^x

4. Find the Fourier series of the function defined as

$$f(x) = \begin{cases} x + \pi & \text{for } 0 < x < \pi \\ -x - \pi & -\pi < x < 0 \end{cases} \text{ and } f(x + 2\pi) = f(x).$$

- 5. (a) Find the Fourier cosine transform of $F(x) = e^{-x^{2/2}}$. (3)
 - (b) Form the partial differential equation from (3)

$$z = f(x^2 - y^2)$$

SECTION - B (20 Marks)

Attempt any two questions out of three.

Each question carries 10 marks.

- 6. Classify and Write down the canonical form of one-dimensional wave equation $\partial^2 z/\partial x^2 \partial^2 z/\partial y^2 = 0$.
- Obtain the constant terms and the coefficients of the first sine and cosine terms in the Fourier series of f(x) as given in the following table.

X	0	1	2	3	4	5
f(x)	9	18	24	28	26	20

8. (a) Solve

(5)

$$p(1+q) = qz$$

(b) Obtain a Fourier expression for (8)

$$f(x) = x^3$$
 for $-\pi < x < \pi$.

SECTION - C (16 Marks) (Compulsory)

(a) A tightly stretched string with fixed end points x = 0 and x = 1 is initially in a position given by

 $y = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from

this position find the displacementy (x,t). (10)

(b) Solve
$$(y + z)p - (x + z)q = x - y$$
. (6)

(b) Solve (y+z)p - (x+z)q = x-y. (6) xy + 2z - xy - 2z + 2+2y