IOI2020 中国国家集训队第一阶段作业 试题准备

江苏省常州高级中学 徐翊轩

November 18, 2019

Contents

1	Cod	leforces 573E Bear and Bowling	3
	1.1	题目大意	3
	1.2	数据范围	3
	1.3	算法标签	3
	1.4	解题过程	3
		1.4.1 贪心思路	3
		1.4.2 正确性证明	3
		1.4.3 分块解法 $O(N\sqrt{N}LogN)$	4
		1.4.4 算法优化 $O(N\sqrt{N} + NLogN)$	5
		1.4.5 平衡树解法 $O(NLogN)$	5
	1.5	数据生成	5
		1.5.1 随机数据	5
		1.5.2 边界情况	6
		1.5.3 针对性构造	6
	1.6	试题总结	7
2	Cod	deforces 704E Iron Man	7
	2.1	题目大意	7
	2.2	数据范围	7
	2.3	算法标签	7
	2.4	解题过程	7
		2.4.1 链上解法	7
		2.4.2 树链剖分	8

	2.5	数据生成 8
		2.5.1 边界数据 8
		2.5.2 随机数据 8
		2.5.3 溢出构造 9
	2.6	试题总结 g
3	AtC	Coder Regular Contest 103D Robot Arms 9
	3.1	题目大意 9
	3.2	数据范围 9
	3.3	算法标签 10
	3.4	解题过程 10
		3.4.1 判断无解
		3.4.2 构造算法
	3.5	数据生成 11
	3.6	试题总结

1 Codeforces 573E Bear and Bowling

1.1 题目大意

题目来源: https://codeforces.com/contest/573/problem/E

给定一个长度为 N 的整数序列 a_1,a_2,\ldots,a_N ,序列中可能包含负数。要求选定一个可以为空的子序列 b_1,b_2,\ldots,b_M ,最大化函数 $\sum_{i=1}^M i\cdot b_i$,求出此时该函数的值。

1.2 数据范围

对于所有的数据,保证 $1 \le N \le 10^5, |a_i| \le 10^7$ 。 时间限制 6s ,空间限制 256MB 。

1.3 算法标签

贪心、分块、凸包、动态规划、平衡树

1.4 解题过程

1.4.1 贪心思路

由于这是一个在序列上的最优化问题,采用贪心的策略往往能够得到不错的结果。

考虑依次向已经选择的子序列中加入一个数 a_i 的过程,如果在 i 的左侧已经有 k_i-1 个数被选取,并且 i 的右侧被选取的数之和为 suf_i ,那么,加入 a_i 将会带来 $k_i \cdot a_i + suf_i$ 的贡献,不妨记加入 a_i 的贡献为 Q_i 。

一个自然的贪心算法就出现了:我们每次选择 Q_i 最大的 a_i 加入答案,同时更新其余尚未加入答案的 Q_j ,直到所有元素都被加入答案,取贡献总和的历史最大值作为答案。

在下一节中, 我们将证明这个算法的正确性。

1.4.2 正确性证明

为了证明上述算法的正确性,我们首先需要证明如下引理。

引理 1: 如果 $a_i > a_j$, 并且 i < j, 那么 a_i 一定比 a_j 先被选取。

证明: 考虑上述引理首次不满足位置,即使得二元组 (i,j) 字典序最小的不满足的位置。如果 a_i,a_j 之间没有元素被选中,那么 $k_i=k_j,suf_i=suf_j$,因此 $Q_i=k_i\cdot a_i+suf_i>Q_j=k_j\cdot a_j+suf_j$, a_i 会先被选取。对于 a_i,a_j 之间每一个已经选中的元素 a_x ,其对 Q_i 的贡献为 a_x ,对 Q_j 的贡献为 a_j 。又因为 (i,j) 是引理首次不满足位置,而 i< x ,因此必然有 $a_x \geq a_i$,从而 $a_x > a_j$, Q_i 的增加量始终大于 Q_j 的增加量,所以 $Q_i > Q_j$,引理得证。

定理 1: 每次选择 Q_i 最大的 a_i 加入答案,同时更新其余尚未加入答案的 Q_j ,得到的每一个大小的序列都是对应大小的最优解。

证明: 假设定理不成立,那么,必然存在一个最早的时刻,使得我们选择了某个元素 a_i ,此后,对于某个大小 s ,我们无法通过选择更多的元素来得到 s 的最优解,无论我们在选择更多元素时使用的策略如何。令集合 A 表示该时刻之前已经选取的元素集合,那么,集合 $A \cup \{a_j\}$ 不是任何一个大小为 s 的最优解的子集。但是,存在一个集合 B $(A \cap B = \emptyset)$,使得 $|A \cup B| = s$,并且, $|A \cup B|$ 是一个大小为 s 的最优解,注意 B 应当不为空。

情况 1: B 中包含至少一个 a_i 左侧的元素

令 a_j 表示 B 中最靠右侧的一个使得 j < i 的元素。由于我们的贪心策略会首先选取 a_i ,由引理 1,我们知道 $a_i \ge a_j$ 。我们将证明将 $A \cup B$ 中的 a_j 替换为 a_i 不会使得方案变得更劣,从而选择 a_i 是合理的。

在选择 a_i 时, a_i 具有最大的 Q_i ,因此 $Q_i \geq Q_j$ 。考虑将 B 中除 a_j 以外的元素加入 A 中,并比较此时 Q_i,Q_j 的大小。对于每一个 a_x (x>i) ,其对 Q_i,Q_j 的贡献均为 a_x ,对于每一个 a_x (x<j) ,其对 Q_i 的贡献均为 a_i ,对 Q_j 的贡献均为 a_j ,并且,由 a_j 的选择方式,不存在 j < x < i 的 a_x 。因此, Q_i 的增加量始终大于 Q_j 的增加量, $Q_i > Q_j$,将 $A \cup B$ 中的 a_j 替换为 a_i 不会使得方案变得更劣。

情况 2: B 中的所有元素都在 a_i 的右侧

令 a_j 表示 B 中最靠左侧的一个元素,由于 B 中的所有元素都在 a_i 的右侧,有 j > i 。我们将证明将 $A \cup B$ 中的 a_j 替换为 a_i 不会使得方案变得更劣,从而选择 a_i 是合理的。

在选择 a_i 时, a_i 具有最大的 Q_i ,因此 $Q_i \geq Q_j$ 。同样考虑将 B 中除 a_j 以外的元素加入 A 中,并比较此时 Q_i,Q_j 的大小。对于每一个 a_x (x>j) ,其对 Q_i,Q_j 的贡献均为 a_x ,并且,由 a_j 的选择方式,不存在 x<j 的 a_x 。因此, Q_i 的增加量始终大于 Q_i 的增加量, $Q_i>Q_j$,将 $A\cup B$ 中的 a_i 替换为 a_i 不会使得方案变得更劣。

综上所述,假设不成立,从而定理1得证。

定理 1 的成立直接保证了上述贪策略的正确性,从而也导出了一个直接应用上述贪心策略的 $O(N^2)$ 算法,在下一节中,我们会讨论如何快速实现这个算法。

1.4.3 分块解法 $O(N\sqrt{N}LogN)$

考虑向答案中加入 a_i 对 Q 数组的影响,对于 j < i , a_i 对 Q_j 的贡献为 a_i ,而对于 j > i , a_i 对 Q_j 的贡献为 a_j ,因此,我们需要一个能够支持区间加,区间加对应 a_i ,以及询问全局最大值的数据结构。

考虑用分块维护这个结构,我们将每 $O(\sqrt{N})$ 个元素分为一块,在向答案中加入 a_i 时,对于 a_i 所在块左侧的块,进行整块加常数操作;对于 a_i 所在块右侧的块,进行整块加对应 a_i 操作,由此,我们需要在改变 k 的情况下维护若干一次函数 $k \cdot a_i + b_i$ 的最大值,可以通过在凸包上二分解决;对于 a_i 所在的块,可以暴力重建凸包。

每次向答案中加入 a_i 后,我们都需要重构一个大小为 $O(\sqrt{N})$ 的凸包,并且,在 $O(\sqrt{N})$ 个凸包上进行二分,这两部分的总时间复杂度均为 $O(N\sqrt{N}LogN)$ 。

参考程序: https://codeforces.com/contest/573/submission/63051778

1.4.4 算法优化 $O(N\sqrt{N} + NLogN)$

我们可以将上述算法的 O(LogN) 因子优化掉。

首先,由于 $k \cdot a_i + b_i$ 中的系数 k 是不断增加的,我们可以用单调指针代替二分, 其均摊复杂度是 O(1) 的。其次,在重构凸包时,我们不需要每次都对点集进行排序, 注意到 a_i 是始终不变的,我们只需要在刚开始对 a_i 进行一次排序即可。

由此,上述算法的时间复杂度被优化至了 $O(N\sqrt{N} + NLogN)$ 。

参考程序: https://codeforces.com/contest/573/submission/63051927

1.4.5 平衡树解法 O(NLogN)

考虑一个 $O(N^2)$ 的动态规划解法,记 $dp_{i,j}$ 表示在序列的前 i 个元素中选择恰好 j 个,可以产生的最大贡献,转移时,考虑是否选取 a_i ,则有

$$dp_{i,j} = \max\{dp_{i-1,j}, dp_{i-1,j-1} + j \cdot a_i\}$$

其中 $dp_{i-1,j}$ 表示不取 a_i , $dp_{i-1,j-1} + j \cdot a_i$ 表示选取 a_i 。

不妨记 $S_{i,j}$ 表示一种使得贡献取到 $dp_{i,j}$ 的选取方案集合。

注意到由定理 1 , $S_{i,j+1}$ 可以通过向 $S_{i,j}$ 中加入一个元素得到,存在最优解 $S_{i,j} \subset S_{i,j+1}$,因此,如果 $a_i \in S_{i,j}$,则有 $a_i \in S_{i,j+1}$ 。

这意味着**使得** $dp_{i-1,j-1} + j \cdot a_i \ge dp_{i-1,j}$ 的 j 是一段连续的后缀。

考虑用平衡树维护 dp 数组每一行的差分数组,在从 dp_{i-1} 计算 dp_i 时,可以首先二分得出转移的分界位置,然后对分界位置后方的元素整体 $+a_i$,并在分界位置插入一个新的元素。

时间复杂度 O(NLogN), 以下代码采用旋转式 Treap 实现了该算法。

参考程序: https://codeforces.com/contest/573/submission/63053271

1.5 数据生成

1.5.1 随机数据

测试点 1~25 是随机生成的,其中:

测试点 $1 \sim 10$ 首先随机生成了一个 $10\% \sim 90\%$ 之间的比例 r ,此后,输入的每个数 a_i 会以 r 的概率为正,1-r 的概率为负,其绝对值将在 $0 \sim 10^7$ 内等概率随机。本部分数据可以用于区分完全错误的算法,以及时间复杂度或常数过高的算法。

测试点 $11\sim 21$ 同样首先随机生成了一个 $10\%\sim 90\%$ 之间的比例 r ,此后,输入的每个数 a_i 会以 r 的概率为正,1-r 的概率为负,其绝对值将在 $0\sim \frac{10^7}{N}(N-i+1)$ 内等概率随机。本部分数据中,各个数值可能的范围线性递减,相比于测试点 $1\sim 10$,对正确的决策要求更高。

测试点 $21\sim 25$ 同样首先随机生成了一个 $10\%\sim 90\%$ 之间的比例 r ,此后,输入的每个数 a_i 会以 r 的概率为正,1-r 的概率为负,其绝对值将在 $0\sim \frac{10^7}{i}$ 内等概率随

机。本部分数据中,各个数值可能的范围以反比例函数递减,相比于测试点 11 ~ 21 ,在另一个角度对决策的正确性做出了要求。

测试点 1~25 主要可以区分完全错误的算法,以及无法在时空限制内通过的算法。

1.5.2 边界情况

测试点 26~30 是根据一些边界情况生成的, 其中:

测试点 $26\sim 28$ 首先随机生成了一个 $0\sim N$ 之间的数 r ,此后,输入的每个数 a_i 为负,当且仅当 $i\leq r$,其绝对值将在 $0\sim 10^7$ 内等概率随机。本部分数据可以用于将答案卡至很大,并且保证动态规划的两种转移的个数均取到 $O(N^2)$ 级别。

测试点 29 中,所有的 a_i 均为 -10^7 ,该数据可以检测选手是否考虑了不选任何数的情况。

测试点 30 中,所有的 a_i 均为 10^7 ,该数据将答案卡至最大,检查溢出问题。 测试点 $26\sim30$ 主要包含了包括答案溢出、转移次数在内的一些边界情况。

1.5.3 针对性构造

测试点 31~35 分别针对了 Codeforces 上的若干错误解法进行了构造。

错误解法 1: https://codeforces.com/contest/573/submission/27837319

这是一份明显错误的贪心代码,即使很小的数据也可以让它出错,但它通过了Codeforces上所有的测试数据。测试点 31 是针对该算法的 N=10 的构造。

错误解法 2: https://codeforces.com/contest/573/submission/27838890

错误解法 3: https://codeforces.com/contest/573/submission/51127450

这是两份贪心的代码,思想与上面一份代码并不相同,其中一份还包含了多次贪心的策略,可以通过构造许多相近的数字可以使它们提前停止,导致与正确答案相差很大。测试点 32,33 分别是针对该算法的 N=1000,N=100 的构造,测试点 32 同样卡掉了许多已经通过 Codeforces 上所有的测试数据的错误代码。

错误解法 4: https://codeforces.com/contest/573/submission/20924159

错误解法 5: https://codeforces.com/contest/573/submission/12773249

错误解法 6: https://codeforces.com/contest/573/submission/12856587

以上三份代码是测试点 $31 \sim 33$ 无法卡掉的代码,其使用的策略分别为贪心、以及随机化 + 卡时。其中错误解法 4 同样可以通过 Codeforces 上所有的测试数据。测试点 34,35 中, $N=10^5$,正数出现较少,大约为 1% ,并且正数的绝对值与负数差距很大,贪心和随机化难以得到最优解,可以将上述做法全部卡掉。

经过本部分的构造后,几乎所有的在 Codeforces 的错误代码,以及那些通过了 Codeforces 测试数据的错误贪心,包括许多红名用户的错误解法均无法通过本题的数据。值得一提的是,本场比赛当时通过本题的唯一一个提交同样是无法通过测试点 31~35 的错误代码:

提交链接: https://codeforces.com/contest/573/submission/12759251

1.6 试题总结

本题由一个贪心的思想出发,并通过说理证明了它的正确性,随后,便自然地导出了出题人期望的分块 + 凸包的解法。是一道兼具思维和代码难度的好题。

笔者没有拘泥于出题人的解法,而是继续思考,得出了一个复杂度更优的平衡树解法,从而可以在时限内通过十倍干原题数据规模的数据。

在数据生成方面,笔者进行了精心的构造,**卡掉了** Codeforces **上包括许多已经 通过的贪心、卡时解法在内的几乎全部错误解法**。

2 Codeforces 704E Iron Man

题目来源: https://codeforces.com/contest/704/problem/E

2.1 题目大意

给定一棵 N 个节点的树,以及树上的 M 条路径,第 i 条路径 (v_i,u_i) 具有属性 t_i,c_i ,表示一个在时刻 t_i 出现在节点 v_i ,以 c_i 条边每秒的速度沿最短路走向 u_i ,并在到达 u_i 后消失的物体。如果两个物体在某一时刻处在相同的位置,则会发生爆炸,这里的位置也可以是某一条边上。

要求求出第一次爆炸的时刻,或者判断不会发生爆炸。

2.2 数据范围

对于所有的数据,保证 $1 < N, M < 10^5$ 。

保证 $0 \le t_i \le 10^4, 1 \le c_i \le 10^4, 1 \le v_i, u_i \le N$ 。

时间限制 5s, 空间限制 256MB。

2.3 算法标签

树链剖分、扫描线、平衡树、实数处理

2.4 解题过程

2.4.1 链上解法

首先,我们可以考虑一下如何在链上解决这个问题。

引理 1: 在第一次爆炸前,除物体出现和消失的时刻外,物体位置的相对顺序不变。

证明:由于物体的移动是连续的,因此不存在在不产生爆炸,且没有物体消失和出现的情况下改变物体位置相对顺序的情况。

那么,由引理 1,可以考虑用平衡树维护物体位置的相对顺序,通过扫描线算法依次处理物体出现和消失的事件,直到第一次爆炸产生。

具体来说,维护一棵按照物体坐标排序物体的平衡树 T ,以及变量 goal ,代表在当前计算下,第一次爆炸出现的时刻。初始时 $goal=+\infty$,并会随着我们的计算不断更新。

对于物体 x 出现的事件,在 T 中插入 x ,并根据 x 与前驱和后继两对相邻关系更新 goal ;对于物体 x 消失的事件,从 T 中删除 x ,并根据 x 原有的前驱与后继这一对相邻关系更新 goal 。直到处理完所有的事件,或者下一个事件的时刻超过 goal ,结束计算,此时的 goal 即为答案。

该链上算法可以在 O(MLogM) 的时间内得出第一次爆炸出现的时刻。

2.4.2 树链剖分

回到原问题, 既然我们已经有了链上的解法, 不难用树链剖分将其拓展至树上。

对原树进行轻重链剖分,那么,每一条路径应当经过至多 O(LogN) 条重链、O(LogN) 条轻边。将一条路径拆分为 O(LogN) 段,在每一条重链和轻边上分别进行上面的扫描线算法,并将所得答案取最小值即可。

时间复杂度 $O(N + MLog^2N)$, 可以在时限内通过本题。

注意在拆分路径时,我们可能会遇到一些实数精度的问题。考虑到本题中,涉及除法的地方不多,分子和分母的乘积始终在六十四位整型范围内,以下参考程序通过手写有理数类避免了实数运算,同时确保了所造数据的正确性。

参考程序: https://codeforces.com/contest/704/submission/63060009

2.5 数据生成

2.5.1 边界数据

测试点 $1 \sim 10$ 是 Codeforces 中原有的十个较小的数据。

本部分数据涵盖了在节点处爆炸、不产生爆炸、答案超过 10⁴ 等多种边界情况,可以对程序实现细节的正确性作出检查。

2.5.2 随机数据

测试点 $11 \sim 50$ 是随机生成的,其中:

测试点 11~20中,树的形态是随机生成的;

测试点 21~30中,树的形态是一条链;

测试点 $31 \sim 40$ 中,树的形态是一条 $\frac{N}{2}$ 个点的链 + 一个菊花图;

测试点 $41 \sim 50$ 中,树的形态是在一条 $\frac{N}{2}$ 个点的链随机挂点生成的。

询问的生成方式根据测试点编号的个位数按照一定方式随机生成。

实际上,测试点 11~50 已经具备了卡掉多数错误算法的能力。

2.5.3 溢出构造

测试点 $51 \sim 55$ 对应了 t_i, c_i 较大的情况,可以检查可能出现的整型溢出问题。例如我校另一位集训队选手的代码:

https://codeforces.com/contest/704/submission/55959881

若在程序内的判断语句使用乘法,则可能由于不注意溢出事项而出错。

2.6 试题总结

本题是一道解法自然的数据结构题,考察选手树链剖分、扫描线等基本算法,难度偏向于实现方面。在数据生成方面,笔者沿用了 Codeforces 的若干数据,并生成了形式多样的随机数据。

3 AtCoder Regular Contest 103D Robot Arms

题目来源: https://atcoder.jp/contests/arc103/tasks/arc103_b

3.1 题目大意

给定平面上 N 个点 (X_i,Y_i) ,要求构造长度大小为 M 的整数数组 d_i ,以及 N 个长度为 M 的,仅由 L,R,U,D 组成的字符串 w_i ,需要满足如下条件:

$$1 \leq M \leq 40, 1 \leq d_i \leq 10^{12}$$
对于 $i = 1, 2, ..., N$, 令 $(x_{i,0}, y_{i,0}) = (0, 0)$;
若 $w_{i,j} = L$, $(x_{i,j}, y_{i,j}) = (x_{i,j-1} - d_j, y_{i,j-1})$;
若 $w_{i,j} = R$, $(x_{i,j}, y_{i,j}) = (x_{i,j-1} + d_j, y_{i,j-1})$;
若 $w_{i,j} = D$, $(x_{i,j}, y_{i,j}) = (x_{i,j-1}, y_{i,j-1} - d_j)$;
若 $w_{i,j} = U$, $(x_{i,j}, y_{i,j}) = (x_{i,j-1}, y_{i,j-1} + d_j)$ 。
$$(x_{i,N}, y_{i,N}) = (X_i, Y_i)$$

给出任意一组构造,或者判断无解。

3.2 数据范围

对于所有数据,保证输入的数均为整数,且 $1 \le N \le 1000$, $|X_i|, |Y_i| \le 10^9$ 。 时间限制 2s ,空间限制 1024MB 。

3.3 算法标签

二分图思想、构造算法

3.4 解题过程

3.4.1 判断无解

首先,我们可以初步考虑无解的情况。

引理 1: 若将各个点 (x,y) 按照 x+y 的奇偶性黑白染色,则对于确定的 d_i 数组,无论选择何种 w_i ,至多只能到达一种颜色的点。

证明: 由染色的方式,若 d_i 为偶数,则无论走向 L, R, U, D 中的哪一个方向,到达的点均与起始点同色;而若 d_i 为奇数,则无论走向 L, R, U, D 中的哪一个方向,到达的点均与起始点异色。

引理 1 给出了一个无解的充分条件,即存在颜色不同的点。

通过下一节的构造算法,我们可以看到,若引理1不能判断输入无解,我们都可以通过该算法构造出一组解,因此这个条件同样是必要的。

3.4.2 构造算法

由于题目对 M 的限制很紧,大约只有 $1 \times log_2(|X_i| + |Y_i|)$,可能的构造方式实际上不多。为了在限制内完成构造,可以想到采用 $d = \{1, 2, 4, 8, \dots\}$ 的构造方式。

记 D_i 表示 $\{2^0, 2^1, \dots, 2^i\}$, E_i 表示在 D_i 中多加入一个 2^0 得到的集合。

记 S_i 表示对于所有的 w 的设置方案, D_i 可以达到的点集。

记 T_i 表示对于所有的 w 的设置方案, E_i 可以达到的点集。

定理 1:

 $(x,y) \in S_i$, 当且仅当 $|x| + |y| \equiv 1 \pmod{2}$ 且 $|x| + |y| \leq 2^{i+1}$;

 $(x,y) \in T_i$, 当且仅当 $|x| + |y| \equiv 0 \pmod{2}$ 且 $|x| + |y| \leq 2^{i+1}$ 。

证明: 由引理 1 的证明, 定理 1 的必要性是显然的, 考虑证明其充分性。

考虑归纳法,验证得 $i \le 1$ 时,定理 1 成立,因此,我们只需要在定理 1 对 i-1 成立的条件下证明定理 1 对 i ($i \ge 2$) 成立。

由于问题在四个象限是对称的,不失一般性地,考虑 $x,y \ge 0$ 的情况。

因为 $x,y\geq 0$, $x+y\equiv 1\ (mod\ 2)$ 且 $x+y\leq 2^{i+1}$, $x\geq 2^i$ 与 $y\geq 2^i$ 中至少有一者成立,不失一般性地,令 $x>2^i$ 。

那么, $x-2^i > 0$,并且 $x-2^i + y \equiv 1 \pmod{2}$, $x-2^i + y < 2^i$ 。

因此 $(x-2^i,y) \in S_{i-1}$, 而 $D_i = D_{i-1} \cup \{2^i\}$, 从而 $(x,y) \in S_i$ 。

同样地,因为 $x,y \ge 0$, $x+y \equiv 0 \pmod{2}$ 且 $x+y \le 2^{i+1}$, $x \ge 2^i$ 与 $y \ge 2^i$ 中至 少有一者成立,不失一般性地,令 $x > 2^i$ 。

那么, $x-2^i \geq 0$,并且 $x-2^i+y \equiv 0 \pmod{2}, x-2^i+y \leq 2^i$ 。 因此 $(x-2^i,y) \in T_{i-1}$,而 $E_i = E_{i-1} \cup \{2^i\}$,从而 $(x,y) \in T_i$ 。 读者可以通过下图辅助理解以上证明过程。

由定理 1 的证明,对于不能判断无解的输入,我们也可以得到一个可行的构造。 时间复杂度 $O(N \times M)$,其中 M=40 。

参考程序: https://atcoder.jp/contests/arc103/submissions/8009289

3.5 数据生成

由于本题不存在针对随机数据的特殊解法,在保证点的颜色¹的情况下,随机数据的强度是足够的。本题的测试数据中:

测试点 $1 \sim 3$ 包含了 N = 1, 2 的特殊情况。

测试点 $4 \sim 15$ 中, $N = 10^3$, 其中:

测试点 4~5 的输入完全随机生成,对应了无解的情况。

测试点 6~10 的输入在保证输入点的颜色为黑的前提下随机生成。

测试点 11~15 的输入在保证输入点的颜色为白的前提下随机生成。

 $^{^{1}}$ 指引理 1 中 "将各个点 (x,y) 按照 x+y 的奇偶性黑白染色"中的颜色

3.6 试题总结

本题是一道有趣的构造题,难度不高,但构思精巧。 本题的数据采用随机的方式生成,但由于题目本身的性质,其强度是有保证的。

参考文献

- [1] Codeforces Round #318 [RussianCodeCup Thanks-Round] Editorial https://codeforces.com/blog/entry/20040
- [2] Codeforces Round #366 Editorial https://codeforces.com/blog/entry/46450
- [3] AtCoder Regular Contest 103 解説 https://img.atcoder.jp/arc103/editorial.pdf