Предмет исследования операций

Лекция по дисциплине «Исследование операций» (9 сентября 2019 г.)

Содержание

- 1 Определение исследования операций
- 2 Исследование операций и смежные области
- 3 Классы моделей исследования операций
- 4 Общая постановка задачи исследования операций
- 5 Задача нелинейного программирования
- 6 Задача линейного программирования
- Геометрический метод решения задач линейного программирования

Исследование операций

Исследование операций: определения

<u>Т.</u> Саати:

Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими методами.

Исследование операций

Основные понятия исследования операций

Операция

всякое мероприятие (система действий), объединенное единым замыслом и направленное к достижению какой-то цели.

Цель исследования операций

предварительное количественное обоснование оптимальных решений.

Основные понятия исследования операций

Решение

всякий определенный выбор зависящих от нас параметров.

Оптимальным называется решение, по тем или другим признакам предпочтительнее перед другими.

Элементы решения

параметры, совокупность которых образует решение.

Множеством допустимых решений называются заданные условия, которые фиксированы и не могут быть нарушены.

Основные понятия исследования операций

Показатель эффективности

количественная мера, позволяющая сравнивать по эффективности разные решения.

Все решения принимаются всегда на основе информации, которой располагает лицо принимающее решение (ЛПР).

Каждая задача в своей постановке должна отражать структуру и динамику знаний ЛПР о множестве допустимых решений и о показателе эффективности.

Задача называется статической, если принятие решения происходит в наперед известном и не изменяющемся информационном состоянии.

Задача называется динамической - если информационные состояния в ходе принятия решения сменяют друг.

Классификация по зависимости параметров задачи от времени

- Статическая задача. Принятие решения происходит при условии, что все параметры задачи заранее известны и не изменяются но времени. Процедура принятия решения осуществляется один раз.
- Динамическая задача. В процессе принятия решения параметры задачи изменяются по времени. Процедура принятия решения осуществляется поэтапно и может быть представлена и виде процесса, зависящего от времени, в том числе непрерывно. Пример – навигационная задача.

Классификация в зависимости от достоверности информации о задаче

- Детерминированная задача. Все параметры задачи заранее известны. Для решения детерминированных задач в основном применяются методы математического программирования.
- Недетерминированная задача. Не все параметры задачи заранее известны. Оптимальное решение недетерминированной задачи отыскать практически невозможно. Однако некоторое "приемлемое" решение отыскать можно.
 - Стохастическая задача. Для отыскания оптимального решения стохастической задачи применяется один из следующих приемов:
 - искусственное сведение к детерминированной задаче (неизвестные параметры заменяются их средними значениями);
 - "оптимизация в среднем" (вводится и оптимизируется некоторый статистический критерий).
 - Задача в условиях (полной) неопределенности. Статистические данные о неизвестных параметрах отсутствуют. Задачи в условиях неопределенности в основном изучаются в рамках теории игр.

Классификация по виду критерия оптимальности

Однокритериальные задачи.

- Задачи линейного программирования. Целевая функция линейная, множество допустимых решений – выпуклый многогранник.
- Задачи квадратичного программирования. Целевая функция квадратичная, а множество допустимых решений – выпуклый многогранник.
- Задачи стохастического программирования. Это задачи линейного программирования с неизвестными числовыми параметрами, о которых имеются статистические данные.
- Задачи дискретного программирования. Множество допустимых решений – дискретное множество.
- Задачи целочисленного программирования. Множество допустимых решений – точки целочисленной решетки.
- Задачи булева программирования. Множество допустимых решений – 0-1 матрицы.

Общая постановка задачи исследования операций

$$f(x, y, z) \rightarrow \max$$

 $g_i(x, y, z) \leqslant 0, i \in [1, M]$
 $x \in X, y \in Y, z \in Z.$

где

х — вектор контролируемых факторов,

у — вектор случайных факторов,

z — вектор неопределенных факторов,

Х, У, Z есть подмножества некоторых векторных пространств.

Если все эти пространства конечноменрые, то мы имеем задачу конечномерной оптимизации, если хотя бы одно из этих пространств бесконечномерное, то задачу бесконечномерной оптимизации.

Общая постановка задачи исследования операций

Важными разделами исследования операций являются:

- ullet математическое программирование $(X
 eq \emptyset, Y = Z = \emptyset);$
- ullet стохастическое программирование $(X
 eq \emptyset, Y
 eq \emptyset, Z = \emptyset);$
- ullet теория игр и робастная оптимизация $(X
 eq \varnothing, Z
 eq \varnothing)$.

Основные обозначения

R – множество действительных чисел.

 R^n – арифметическое векторное пространство размерности n, множество всех векторов- столбцов вида $x=(x_1,\dots,x_n)^T$, где $x_i\in R$ для всех $i;\ R^1=R$.

Мы будем рассматривать только модели, для которых выполнено предположение:

В модели конечное число переменных, все они принимают действительные значения.

Задача математического программирования

Математическое программирование — область математики, изучающая оптимизационные процессы посредством поиска экстремума функции при заданных ограничениях.

Задача математического программирования

f(x) o max при условии $x \in X \subseteq R^n$.

Задачу минимизации на множестве $X\subseteq R^n$ можно привести к задаче максимизации, используя следующую теорему.

Теорема о замене минимизации максимизацией

Точка x_0 минимизирует функцию f(x) на множестве , если и только если она максимизирует функцию -f(x) на том же множестве.

Задача нелинейного программирования

$$f(x) \to \max$$

$$g_i(x) \leqslant 0, \ i \in [1, m_1]$$

$$g_j(x) = 0, \ j \in [m_1 + 1, m]$$

$$x \in \mathbb{R}^n$$
(1)

В этой задаче m ограничений.

Вектор $x \in R^n$ является допустимым решением задачи, если он удовлетворяет ограничениям $g_i, g_j.$

Задача линейного программирования

Линейным программированием (ЛП) Т. Купманс в 1951 г. предложил назвать оптимизацию (максимизацию или минимизацию) линейной функции при линейных ограничениях (равенствах и/или нестрогих неравенствах).

Несколько ранее, в 1947 г., Дж. Данциг разработал метод решения задач ЛП — симплекс-метод.

Еще раньше (начиная с 1939 г.) были опубликованы работы Л. В. Канторовича, посвященные теории и приложениям ЛП.

В 1975 году. Л. В. Канторович и Т. Купманс получили Нобелевскую премию по экономике «за вклад в теорию оптимального использования ресурсов».

Задача линейного программирования

$$f(x) = \sum_{j=1}^{n} c_j \cdot x_j o \max(\min)$$

$$\sum_{j} a_{ij} \cdot x_j = b_i, i \in [1; m_1]$$

$$\sum_{j} a_{ij} \cdot x_j \geqslant b_i, i \in [m_1 + 1; m_2]$$

$$\sum_{j} a_{ij} \cdot x_j \leqslant b_i, i \in [m_2 + 1; m]$$

$$x_j \geqslant (\leqslant) 0$$

Задача линейного программирования в стандартной форме

$$f(x) = \sum_{j=1}^{n} c_j \cdot x_j \rightarrow \max(\min)$$

 $\sum_{j} a_{ij} \cdot x_j \leqslant (\geqslant) b_i, i \in [1; m]$
 $x_j \geqslant 0$

Задача линейного программирования в канонической форме

$$f(x) = \sum_{j=1}^{n} c_j \cdot x_j o \max(\min)$$
 $\sum_{j} a_{ij} \cdot x_j = b_i, i \in [1; m]$
 $x_j \geqslant 0$

Рассмотрим ЗЛП с двумя переменными:

$$f(x) = c_1 \cdot x_1 + c_2 \cdot x_2 \to \max(\min)$$

при условиях

$$a_{i1} \cdot x_1 + a_{i2} \cdot x_2 \leqslant (\geqslant) b_i, i \in [1; m]$$

 $x_j \geqslant 0$

Множество точек называется выпуклым, если оно вместе с произвольными двумя своими точками содержит весь отрезок, соединяющий эти точки.

Справедливо утверждение: пересечение любого числа выпуклых множеств есть выпуклое множество.

Каждое неравенство системы ограничений геометрически определяет полуплоскость с граничной прямой $a_{i1}\cdot x_1+a_{i2}\cdot x_2=b_i$, или $x_1=0$, или $x_2=0$.

Рассмотрим, например, неравенство $3 \cdot x_1 + 4 \cdot x_2 \leqslant 12$

Рассмотрим, например, неравенство $3 \cdot x_1 + 4 \cdot x_2 \leqslant 12$

Алгоритм решения ЗЛП геометрическим методом.

- Строится многоугольник решений.
- Строится вектор набла, перпендикулярно ему проводятся линии уровня и при этом учитывают, что оптимальное решение ЗЛП находится в угловой точке многоугольника решений.
- Первая точка встречи линии уровня с многоугольником решений определяет минимум целевой функции.
- Последняя точка встречи линии уровня с многоугольником решений определяет максимум целевой функции.
- Если линия уровня параллельна одной из сторон многоугольника решений, то экстремум достигается во всех точках этой стороны .
 ЗЛП в этом случае имеет бесконечное множество решений.
- Для нахождения координаты точки экстремума решают систему из двух уравнений прямых, дающих в пересечении эту точку.

Пример 1. Экономико-математическая модель задачи о планировании производства

На заводе имеются запасы трех видов сырья: S_1 , S_2 и S_3 , из которого можно наладить производство двух видов товаров: T_1 и T_2 . Запасы сырья, норма его расхода на производство единицы товаров, а также прибыль от реализации единицы каждого товара приведены в таблице (цифры условные).

Сырье Товары	S_1	S_2	S_3	Прибыль
T_1	3	1	1	25
T_2	3	2	4	34
Запасы	126	48	72	

Необходимо составить такой план производства товаров, при котором прибыль от их реализации будет максимальной.

Пример 1. Экономико-математическая модель задачи о диете

Имеются два вида продуктов: P_1 и P_2 . Содержание в 1 кг питательных веществ A, B и C, ежесуточные потребности организма V в них и стоимость S 1 кг продуктов приведены в таблице

Витамины Продукты	A	В	С	S
P_1	1	3	1	8
P_2	3	1	8	16
V	6	9	8	

Составить такую ежесуточную диету, которая обеспечивает необходимое количество питательных веществ при минимальных затратах на продукты.

