Floating Point Add/Sub

Floating point adder subtractor that support single precision/double precision and custom precision floating point in binary format

1. Features

Fully pipelined architecture with adjustable latency

Single precision, double precision and custom non-standard precision

Compliant with IEEE754 binary format with the following exceptions:

- Subnormal numbers are not supported and will be rounded to be zero before calculation is carried out. Subnormal results are rounded to zero.
- Only round-to-neatest even is supported

2. Interface

Parameter	Ю	Required	Description and Default value
pTechnology		Y	Possible values: "ALTERA"
pFamily		Y	Possible values: "CYCLONE" "ARRIA II GX"
pPrecision		Y	Possible Values 0: Custom precision, widths of mantissa and exponent are defined by pWidthMan and pWidthExp 1: Single Precision 2: Double Precision
pWidthExp		Y	Width of Exponent for custom Precision, do not assign if pPrecision = 1 or 2
pWidthMan		Y	Width of Mantissa for custom Precision, do not assign if pPrecision = 1 or 2
pPipelineBarrelShifte r		Y	Latency of the denormalizer shifter Default = 1
pPipelineNormalizer		Y	Latency of the normalizer shifter Default = 1 Total Latency of the Adder is pPipelineBarrelShifter+ pPipelinNormalizer+5

Name	Size	Required	Description
iv_InputA	I[S-1:0]	Y	Input A following IEEE754 binary format of
			single or double precision
iv InputB	I[S-1:0]	Y	S = pWidthMan+pWidthExp+1 Input B following IEEE754 binary format of
IV_IIIPULD	[3-1.0]	<u>I</u>	single or double precision
i SubNotAdd		Υ	Operation
_			1: Subtraction
			0: Addition
i_Dv		Y	Data valid input
o4_InputID	O[3:0]	N	ID of the input, this is to track input and
			output values
			When i_Dv is asserted, a non-zero ID is
			returned in the same cycle at o4_InputID.
			When i_Dv is deasserted, o4_InputID = 0
o4_OutputID	O[3:0]	N	ID of the output, non-zero values indicate
	_		valid data
ov_Result	O[S-	Y	Floating point output Result
	1:0]		
o_Overflow	0	N	Overflow flag
o_NAN	0	N	Not a number flag
o_Underflow	0	N	Underflow flag
o_PINF	0	N	Positive infinity
o_NINF	0	N	Negative Infinity
i_Clk		Y	Clock input
i_ClkEn		Y	Clock enable input, deassert this signal to
			shutdown the whole engine
i_Arst		Y	Async active high reset

3. Performance

Table Area and Performance for Altera Devices

Device	Setting	Post-fit	Register	DSP block	Post Fit Max	
		LEs/LUT LAB/ALUT			Frequency (MHz)	
Cyclone III	Single	766/668	428	6 x 9-bit	169	
	Precision					
	Latency = 7					
	SpeedGradeC8					
Cyclone IV	Single	765/665	428	6 x 9-bit	165	
GX	Precision					
	Latency = 7					
Caralana W.CV	SpeedGradeC8	F20	420	1 27 1:4	107	
Cyclone V GX	Single Precision	538	429	1 x 27-bit	197	
	Latency = 7 SpeedGradeC8					
Arria II GX	Single	538	452	4 x 18-bit	186	
Ailla II GA	Precision	330	432	4 X 10-01t	100	
	Latency = 7					
	SpeedGradeC6					
	Single	538	494	4 x 18-bit	240	
	Precision					
	Latency = 8					
	SpeedGradeC8					
Cyclone III	Double	1876/1581	947	12 x 9-bit	128	
	Precision					
	Latency = 10					
0 1 777	SpeedGradeC8	1001/1501		40.011	120	
Cyclone IV	Double	1891/1581	947	12 x 9-bit	130	
GX	Precision					
	Latency = 10					
Cyclone V GX	SpeedGradeC8 Double	1310	1184	3 x 27-bit	183	
Cyclone v GA	Precision	1510	1104	3 X 2/-DIL	103	
	Latency = 10					
	SpeedGradeC8					
Arria V GX ¹	Double	1314	1188	3 x 27 bit	259	
	Precision				-35	
	Latency = 10					
	SpeedGradeC4					
Note)sp2 Webpack Bu		
			(1) Quartus	II 12.0sp2 SE Bu	ild 263 8/2/2012	

4. Verification

This core has been verified against Intel CPU's result in real-time with 10 million random numbers. The test cases includes but not limits to the following:

Case	Op	Input A	Input B	Result	Flag
Substraction results in	-	32'h01000000	32'h00800001	Subnormal	Underflow
Subnormal Number				Zero	
Substraction results in	-	32'h01000000	32'h00BFFFF	Underflow	Underflow
Subnormal Number				Zero	
Addition results in	+	32'h7F7FFFFF	32'h7F000001	32'h7F80000	Overflow
Infinity					
Addition results in	+	32'h7F7FFFFF	32'h7F7FFFFF	32'h7F80000	Overflow
Infinity					
Substraction results in	+	32'hFF7FFFFF	32'hFF000001	32'hFF80000	Overflow
Infinity					
Substraction results in	-	32'hFF7FFFFF	32'h7F7FFFFF	32'hFF80000	Overflow
Infinity					

Verification algorithm:

```
for(T=0;T<10000000;T++)
    *(unsigned *)(&valA)=rand();
    *(unsigned *)(&valB)=rand();
    //Check The exponent part is not zero
    if(((*(unsigned*)&valA)&0x7F800000)==0) {T--;continue;}
    if(((*(unsigned*)&valB)&0x7F800000)==0) {T--;continue;}
if(((*(unsigned*)&valA)&0x7F800000)==0x7F800000) {T--;continue;}
    if(((*(unsigned*)&valB)&0x7F800000)==0x7F800000) {T--;continue;}
    *(TYPE*)virt addr=valA;
                                      //Sendvalue to FPGA
    *(TYPE*)(virt_addr+4)=valB;
                                      //Sendvalue to FPGA
    wait(200);
    ref=valA+valB;
                                       //Read back value from FPGA
    res=*(TYPE*)(virt addr+12);
    stat=*(unsigned *)(virt_addr+16);
    if(ref!=res && stat==0)
        printf("%1.10e + %1.10e = %1.10e, %1.10e, \n", valA, valB, ref, res, (ref-res));
        printf("%08X %08X %08X %08X\n",*(unsigned*)&valA,*(unsigned*)&valB,*(unsigned*)&ref,*(unsigned*)&res);
    if((T&0xFFFF)==0) {printf(".");fflush(0);}
}
```

5. Revision History

Date	Author	Core's	Description
		Revision	
15/09/12	JeffLieu	1.0	Initial release
23/09/12	JeffLieu	1.0	Add details for Data valid signal and Input ID/Output ID Add performance for Arria V GX device