Abstraction Heuristics Extended with Counting Abstractions

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

ICAPS 2011 - Freiburg, June 2011

Introduction

- Abstractions is one of four main classes of heuristics
- ullet Abstractions are not dominated by the delete-free h^+
- Merge-and-shrink (MAS) heuristics are powerful abstractions
- Underlying model of MAS is quite general

Contribution

- Define counting abstractions (CA) within the model of MAS
- A CA tracks the number of atoms true at states in admissible manner; e.g. number of unachieved goals
- CAs can be defined with respect to any set of atoms; not bound to SAS⁺ variables
- CAs can be composed with standard MAS heuristics

Abstraction Heuristics

(Very) General Framework

abstractions → (labeled) transition systems

 $\textbf{compositions} \longrightarrow \textbf{synchronized products}$

Transition Systems

Abstract state space with transitions

Tuple $\mathcal{T} = \langle S, L, A, s_0, S_T \rangle$ where:

- S is finite set of states
- L finite set of labels (actions)
- labeled transitions $A \subseteq S \times L \times S$
- initial state $s_0 \in S$
- goals $S_T \subseteq S$

Minimum distances to goals denoted by h^T

Abstractions

Abstraction of $\mathcal{T} = \langle S, L, A, s_0, S_T \rangle$ is

- transition system $\mathcal{T}' = \langle S', L, A', s'_0, S'_T \rangle$ over same labels
- homomorphism $\alpha: S \to S'$; i.e.,
 - $-(s,\ell,t) \in A \implies (\alpha(s),\ell,\alpha(t)) \in A'$
 - $s_0' = \alpha(s_0)$
 - $-\alpha(S_T)\subseteq S_T$

If (T', α) is abstraction of T, $h^{T'}(\alpha(s)) \leq h^{T}(s)$

Thus, $h^{T'}$ is admissible heuristic for searching T

Synchronized Products

Abstractions (T', α') and (T'', α'') combined into abstraction $T' \otimes T'' = \langle S, L, A, s_0, s_T \rangle$ where:

- $S = S' \times S''$
- $\bullet \ ((s',s''),\ell,(t',t'')) \in A \ \mathrm{iff} \ (s',\ell,t') \in A' \ \mathrm{and} \ (s'',\ell,t'') \in A''$
- $s_0 = (s'_0, s''_0)$
- $\bullet \ S_T = S_T' \times S_T''$

Homomorphism is $\alpha(s) = (\alpha'(s), \alpha''(s))$

Thm: $\max\{h^{T'}, h^{T''}\} \leq h^{T' \otimes T''}$

Merge-and-Shrink Heuristics

- \bullet Start with abstractions corresponding to single SAS $^+$ variables
- Combine them (in some order) using synchronized products
- Control size of products by shrinking the abstractions

Atomic transition systems:

Composition: position + holding

Composition: position + holding + ball0

Counting

Atoms: of the form 'X = x' for SAS⁺ variable X and $x \in D_X$

Atoms: of the form 'X = x' for SAS⁺ variable X and $x \in D_X$

Fix set $\mathcal C$ of atoms. For state s, $\mathcal C(s) = |\{p \in \mathcal C: s \models p\}|$

Atoms: of the form 'X = x' for SAS⁺ variable X and $x \in D_X$

Fix set $\mathcal C$ of atoms. For state s, $\mathcal C(s) = |\{p \in \mathcal C : s \models p\}|$

Abstraction $(\mathcal{T}_{\mathcal{C}} = \langle S', A', s'_0, S'_T \rangle, \alpha)$ that counts \mathcal{C} is

- $S' = \{0, 1, \dots, |\mathcal{C}|\}$
- $(C(s), \ell, C(t)) \in A'$ iff $(s, \ell, t) \in A$
- $s_0' = \mathcal{C}(s_0)$
- $\bullet S'_T = \{\mathcal{C}(s) : s \in S_T\}$
- $\bullet \ \alpha(s) = \mathcal{C}(s)$

Thm: $\mathcal{T}_{\mathcal{C}}$ gives admissible estimates

Atoms: of the form 'X = x' for SAS⁺ variable X and $x \in D_X$

Fix set $\mathcal C$ of atoms. For state s, $\mathcal C(s) = |\{p \in \mathcal C : s \models p\}|$

Abstraction $(\mathcal{T}_{\mathcal{C}} = \langle S', A', s'_0, S'_T \rangle, \alpha)$ that counts \mathcal{C} is

- $S' = \{0, 1, \dots, |\mathcal{C}|\}$
- $(\mathcal{C}(s), \ell, \mathcal{C}(t)) \in A'$ iff $(s, \ell, t) \in A$
- $s'_0 = C(s_0)$
- $S'_T = \{ \mathcal{C}(s) : s \in S_T \}$
- $\alpha(s) = \mathcal{C}(s)$

Thm: $\mathcal{T}_{\mathcal{C}}$ gives admissible estimates

but cannot be computed without considering all states in ${\mathcal T}$

Idea: compute abstraction at representation level (SAS⁺ level)

Idea: compute abstraction at representation level (SAS⁺ level)

How: count for each operator how many atoms in C are deleted and how many are added; i.e., net difference

Idea: compute abstraction at representation level (SAS⁺ level)

How: count for each operator how many atoms in C are deleted and how many are added; i.e., net difference

But:

- if p is true and 'added', the count should not increase
- if p is false and 'deleted', the count should not decrease

Idea: compute abstraction at representation level (SAS⁺ level)

How: count for each operator how many atoms in C are deleted and how many are added; i.e., net difference

But:

- if p is true and 'added', the count should not increase
- if p is false and 'deleted', the count should not decrease

Solution: approximate the count in an admissible manner

Consider the sets (computed from SAS⁺ representation):

$$base_o = \mathcal{C} \cap \mathsf{pre}[o]$$

$$\delta_o^+ = \{X: X = X(\mathit{pre}[o]) \notin \mathcal{C} \land X = X(\mathit{post}[o]) \in \mathcal{C}\}$$

$$\delta_o^- = \{X : X = X(pre[o]) \in \mathcal{C} \land X = X(post[o]) \notin \mathcal{C}\}$$

$$\alpha_o = \{X : X(\mathit{pre}[o]) = \bot \land X = X(\mathit{post}[o]) \in \mathcal{C}\}$$

$$\beta_o = \mathsf{Vars}_{\mathcal{C}} \cap \{X : X(\mathit{pre}[o]) = \bot \land X = X(\mathit{post}[o]) \notin \mathcal{C}\}$$

Consider the sets (computed from SAS⁺ representation):

$$\begin{aligned} base_o &= \mathcal{C} \cap \mathit{pre}[o] \\ \delta_o^+ &= \{X : X = X(\mathit{pre}[o]) \notin \mathcal{C} \land X = X(\mathit{post}[o]) \in \mathcal{C} \} \\ \delta_o^- &= \{X : X = X(\mathit{pre}[o]) \in \mathcal{C} \land X = X(\mathit{post}[o]) \notin \mathcal{C} \} \\ \alpha_o &= \{X : X(\mathit{pre}[o]) = \bot \land X = X(\mathit{post}[o]) \in \mathcal{C} \} \\ \beta_o &= \mathsf{Vars}_{\mathcal{C}} \cap \{X : X(\mathit{pre}[o]) = \bot \land X = X(\mathit{post}[o]) \notin \mathcal{C} \} \end{aligned}$$

Thm: Let o be applicable at s, and s' = result(s, o). Then,

$$C(s) \ge |base_o|$$

$$C(s') = C(s) + |\delta_o^+| - |\delta_o^-| + k$$

where $-|\beta_o| \le k \le |\alpha_o|$

Approximation

Abstraction $\mathcal{A}_{\mathcal{C}} = (\langle S, L, A, s_0, S_T \rangle, \alpha)$ where

- $S = \{0, 1, \dots, |\mathcal{C}|\}$
- ullet L is set of SAS $^+$ operators
- $s_0 = \mathcal{C}(s_{init})$
- $S_T = \{v \in S : \mathcal{C}(s_{goal}) \leq v\}$
- $\langle v, o, v' \rangle \in A$ iff

$$v \ge |base_o|$$

$$v' = v + |\delta_o^+| - |\delta_o^-| + k$$

for some $-|\beta_o| \le k \le |\alpha_o|$ with $0 \le v' \le |\mathcal{C}|$

Thm: $A_{\mathcal{C}}$ is polytime computable and admissible

Atomic transition systems:

Composition: position + holding + #ballsA

Experimental Results: Gripper with 2 Arms (IPC)

Strategies: static (default) and LIFO

Counting: C_{init} , C_{goal} , and 3 random each with 2 atoms

Size: N = 50,000 nodes in abstraction

		static strategy		LIFO strategy	
inst.	$h^*(s_\circ)$	M&S	M&S-#	M&S	M&S-#
03	23	9,318	10,298	0	0
04	29	68,186	65,681	32,514	0
05	35	376,494	371,720	332,629	0
06	41	1,982,014	1,974,279	1,934,383	0
07	47	10,091,966	10,080,246	10,047,485	0

Lessons Learned

General abstractions:

- Function that maps states into domain generates abstraction
- Abstraction may not be effective
- Approximate abstraction with an effective abstraction

Counting abstractions:

- powerful abstractions
- can be combined with other abstractions
- ullet how to select good sets ${\mathcal C}$ of atoms is open issue

... see the paper for more interesting stuff ...

Thanks!