CE232 DIGITAL SYSTEM

Topic 1. Introduction and Number Systems

Prepared by Nabila Husna Shabrina

Contact: nabila.husna@umn.ac.id

Subtopic

1.1 Introduction to Digital System

1.2 Number Systems

1.3 Number Based Conversion

1.4 Arithmetic Number Systems

1.5 Binary Coding

- Digital systems have such a prominent role in everyday life
- Digital systems can represent and manipulate discrete elements of information
 - Examples of discrete sets are the 10 decimals digits, the 26 letters of the alphabet, etc
- Discrete elements of information are represented in a digital system by physical quantities called signals

Digital vs Analog signal

Why Digital signal?

- Can convey information with less noise, distortion, and interference
- More flexible
- More secure
- More accurate

Digital systems

Example of digital systems: computer, calculator, digital watch etc

- A digital system is a system that manipulates discrete elements of information
- Commercial product are made with digital circuits, because, like digital computer, most digital devices are programmable
- By changing the program in a programmable device, the same underlying hardware can be used for many different applications, therefore dramatic cost reduction can be achieved
- Equipment built with digital integrated circuits can perform at a speed of hundreds of millions of operations per second

- A digital system is an interconnection of digital modules
- To understand the operation of each digital module, it is necessary to have a basic knowledge of digital circuits and their logical function

Commonly occurring number

Nan	ne	Radix	Digits
Bin	ary	2	0,1
Oct	al	8	0,1,2,3,4,5,6,7
Dec	cimal	10	0,1,2,3,4,5,6,7,8,9
Hex	adecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Number System and Codes

• Weighted: there is weight in the position

Example: Decimal, binary, octal, hexadecimal

Unweighted

Example: Gray code

Decimal Number

- Base (also called radix) = $10 \rightarrow 10$ digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- Digit Position → integer & fraction
- Digit Weight \rightarrow Weight = $(Base)^{Position}$
- Magnitude → Sum of "Digit x Weight"

Example

$$(7392)_{10} = 7000 + 300 + 90 + 2$$
$$= 7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$$

Generally, the notation can be written as

$$10^5a_5 + 10^4a_4 + 10^3a_3 + 10^2a_2 + 10^1a_1 + 10^0a_0 + 10^{-1}a_{-1} + 10^{-2}a_{-2} + 10^{-3}a_{-3}$$

With the coefficient a_j are any of the 10 digit (0,1,2,...9) and the subscript j gives the place value

Example

$$(523.74)_{10} = 500 + 20 + 3 + 0.7 + 0.04$$

= $5 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 7 \times 10^{-1} + 4 \times 10^{-2}$

Binary

- Base = $2 \rightarrow 2$ digits $\{0, 1\}$, called binary digits or "bits"
- Weights \rightarrow Weight = $(Base)^{Position}$
- Magnitude → Sum of "Bit x Weight"
- Groups of bits
 - 4 bits = Nibble
 - 8 bits = Byte

Example

11010.11, can be written as

$$1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} = 26.75$$

In general, a number expressed in a base r-system has coefficient multiplied by powers of r_____

$$a_n \cdot r^n + a_{n-1} \cdot r^{n-1} + \dots + a_2 \cdot r^2 + a_1 \cdot r + a_0 + a_{-1} \cdot r^{-1} + a_{-2} \cdot r^{-2} + \dots + a_{-m} \cdot r^{-m}$$

Special powers of 2

- 2¹⁰ (1024) is Kilo, denoted "K"
- 2²⁰ (1,048,576) is Mega, denoted "M"
- ²³⁰ (1,073, 741,824)is Giga, denoted "G"
- ²⁴⁰ (1,099,511,627,776) is Tera, denoted "T"

Octal

- Base = $8 \rightarrow 8$ digits { 0, 1, 2, 3, 4, 5, 6, 7 }
- Weight = (Base) Position
- Magnitude → Sum of "Digit x Weight"
- For example $(127.4)_8$ can be written as

$$(127.4)_8 = 1 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 4 \times 8^{-1} = (87.5)_{10}$$

Hexadecimal

- Base = $16 \rightarrow 16$ digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
- Weight = (Base) Position
- Magnitude → Sum of "Digit x Weight"
- For example, $(B65F)_{16}$ can be written as

$$(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46,687)_{10}$$

Convert ded	cimal to	binary
-------------	----------	--------

	Integer Quotient		Remainder	Coefficient
41/2 =	20	+	1	$a_0 = 1$
20/2 =	10	+	0	$a_1 = 0$
10/2 =	5	+	0	$a_2 = 0$
5/2 =	2	+	1	$a_3 = 1$
2/2 =	1	+	0	$a_4 = 0$
1/2 =	0	+	1	$a_5 = 1$

Therefore, the answer is $(41)_{10} = (101001)_2$

The process can be written more conveniently as follows

Integer	Remainder
41	
20	1
10	0
5	0
2	1
1	0
0	1 101001 = answer

Conversion of decimal fraction to binary

- Multiplication is used instead of division
- Integers are used instead of remainders

Integer		Fraction	Coefficient
1	+	0.3750	$a_{-1} = 1$
0	+	0.7500	$a_{-2} = 0$
1	+	0.5000	$a_{-3} = 1$
1	+	0.0000	$a_{-4} = 1$
	1	1 +	1 + 0.3750 0 + 0.7500 1 + 0.5000

Therefore, the answer is $(0.6875)_{10} = (0.1011)_2$

Convert Decimal to Octal

The division is done by 8

Integer	Remainder
153	
19	1
2	3
0	$2 = (231)_8$

Conversion of decimal fraction to octal

- Example : convert $(0.513)_{10}$ to octal

$$0.513 \times 8 = 4.104$$

$$0.104 \times 8 = 0.832$$

$$0.832 \times 8 = 6.656$$

$$0.656 \times 8 = 5.248$$

$$0.248 \times 8 = 1.984$$

$$0.984 \times 8 = 7.872$$

The answer, to seven significant figures, is obtained from the integer part of the products. Therefore, the answer is $(0.513)_{10} = (0.406517 \dots)_8$

 The conversion of decimal numbers with both integer and fraction parts is done by combining the integer and the fraction separately and then combining the answer

For example
$$(41.6875)_{10} = (101001.1011)_2$$
 $(153.513)_{10} = (231.406517)_8$

Convert Decimal to Hexadecimal

Key point: divide integer part by 16 and multiply fractional part by 16

Example. Convert $(254)_{10}$ to hexadecimal

Integer	Remainder
254	14
15	15

$$\rightarrow$$
 $(FE)_{16}$

Convert Decimal fraction to Hexadecimal

Key point: divide integer part by 16 and multiply fractional part by 16

Example. Convert $(25.625)_{10}$ to hexadecimal

Integer	Remainder
25	9
1	1

Fractional	
0.625 x 16	10.00

$$\rightarrow$$
 (19. A)₁₆

Convert Binary to Octal / Octal to Binary

• $8 = 2^3$, group of 3 bits represent an octal digit

$$(10110.11)_2 \rightarrow (26.6)_8$$

$$(37.45)_8 \rightarrow (0111111100101)_2$$

Octal	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Convert Binary to Hexadecimal/Hexadecimal to Binary

• $16 = 2^4$, group of 4 bits represent an octal digit

 $(000110001001.11)_2 \rightarrow (189.C)_{16}$

 $(CAFE.31)_{16} \rightarrow (11001010111111110.00110001)_2$

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
А	1010
В	1011
С	1100
D	1101
Е	1110
F	1111

Convert Octal to Hexadecimal/Hexadecimal to Octal

Key point: use binary as intermediate step

Example.

$$(CAD)_{16} \rightarrow ()_{8}$$
?

$$(CAD)_{16} \rightarrow (11001010101)_2$$

 $(11001010101)_2 \rightarrow (6255)_8$

Example of numbers with different bases

Numbers with Different Bases

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

1.4 Arithmetic Number Systems

1.4 Arithmetic Number Systems

Decimal Addition and Subtraction

Binary Addition and Subtraction

Octal Addition and Subtraction

Hexadecimal Addition and Subtraction

Hexadecimal Addition and Subtraction

- The digital data is represented, stored and transmitted as group of binary bits. This group is also called as **binary code**.
- It is a representation for numbers, letters or words
- Advantages of binary codes
 - suitable for the computer applications.
 - suitable for the digital communications

BCD

- Each decimal digit is represented by a 4-bit binary number
- In BCD code only first ten of these are used (0000 to 1001)
- The remaining 1010 to 1111 are invalid in BCD
- BCD is a fast system but less the code is less efficient compared to binary

BCD Addition

- Sum \leq 9, Final carry 0 \rightarrow answer is correct
- Sum \leq 9, Final carry 1 \rightarrow answer is incorrect \rightarrow add 6 (0110)
- Sum > 9, Final carry $0 \rightarrow$ answer is incorrect \rightarrow add 6 (0110)

Question, Why add by 6?

Example of decimal to BCD conversion $(123)_{10} = (0001\ 0010\ 0101)_{BCD}$

BCD addition

Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Gray code

- In Gray Code only one bit will change each time the decimal number is incremented
- The gray code is called as a unit distance code
- Also known as reflected binary code (RBC)
- Two successive values differ in only 1 bit
- Binary is converted to Gray code to reduce switching operation

Gray Code

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

Decimal	BCD	Gray
0	0 0 0 0	0 0 0 0
1	0 0 0 1	0 0 0 1
2	0 0 1 0	0 0 1 1
3	0 0 1 1	0 0 1 0
4	0 1 0 0	0 1 1 0
5	0 1 0 1	0 1 1 1
6	0 1 1 0	0 1 0 1
7	0 1 1 1	0 1 0 0
8	1 0 0 0	1 1 0 0
9	1 0 0 1	1 1 0 1

References

M. Morris Mano, Digital Design, 5th ed, Prentice Hall, 2012, Chapter 1

Assignment 1

Access: https://quizizz.com/join?gc=07358489

Deadline Wednesday, 26th 2021 23.45 PM

1 attempt only

Participant's name: NIM(without zero)_Name

Next Topic: Boolean Algebra and Canonical Form