

ARITHMETIC Chapter 1

Teoría de Conjuntos

MOTIVATING STRATEGY

¿Qué característica tiene los integrantes de cada grupo?

1.- Idea de Conjunto

POR EXTENSIÓN

A={2; 3; 5; 7; 11; 13}

POR COMPRENSIÓN

A={x/x es número primo menor a 14}

CARDINAL DE UN CONJUNTO

n(A) = 6

2.-Relación de Pertenencia (∈)

$$\checkmark$$
 $\mathbf{7} \in A$

$$\checkmark$$
 Ø \notin A

3.-Relación de inclusión (⊂)

$$\checkmark$$
 {7} $\subset A$

$$\checkmark$$
 $\mathbf{A} \subset N$

$$\checkmark$$
 {2; 7} \subset N

$$\checkmark \quad \emptyset \subset N$$

4.-Relación de Igualdad

Dos conjuntos son iguales si tienen los mismos elementos.

5.-Conjunto unitario

A= {x/x es un número primo y par}

B= {x/x es la capital del Perú}

$$A = \{2\}$$

6.- Subconjuntos de un conjunto

Dado el conjunto

```
F={fresa, papaya, piña}
```

Sus subconjuntos serán:

- √ {fresa}; {papaya}; {piña}
- √ {fresa, papaya}; {fresa, piña}; {papaya, piña}
- √ {fresa, papaya, piña}
- √ ø

EN GENERAL:

 n° de subconjuntos= $2^{n(F)}$

 n° de subconjuntos propios= $2^{n(F)}$ -1

7.- Conjunto Potencia

Dado el conjunto

F={fresa; papaya; piña}

El conjunto potencia del conjunto "F" seria:

```
P(F)={ {fresa}; {papaya}; {piña}; {fresa, papaya}; {fresa, piña}; {papaya, piña}; {fresa, papaya, piña}; Ø }
```

De igual forma: $n(P(F))=2^{n(F)}=$ $2^3=8$

Determine por extensión el conjunto $A=\{x-1 \mid x \in \mathbb{Z}; 4 < x < 9\}$

RESOLUCIÓN

Dado que "x" pertenece al conjunto de los \mathbb{Z} , los valores que toma son:

Remplazando los valores "x" en la forma del elemento el conjunto "A" sería:

2. Determine por comprensión el conjunto B={6;9;12;15;18;21;24}

RESOLUCIÓN

Los elementos se podrían expresar de la siguiente forma:

Donde los valores 2; 3; 4; 5; 6; 7; 8 se reemplazarían por una variable

Dado el conjunto $B=\{x+3 \mid x \in \mathbb{Z}^+, x^2 < 25\}$, calcule la suma de los elementos del conjunto B.

RESOLUCIÓN

Por condición: $x^2 < 25$ x < 5

∴Suma de elementos es 22

RESOLUCIÓN

Sabiendo que el conjunto $A = \{a+7; a+2b-1; 10\}$ es un conjunto unitario, calcule: $a^2 + b^2$.

Por ser UNITARIO:

$$.3^2+4^2=9+16=25$$

RESOLUCIÓN

5. Dado los conjuntos iguales:A={3a+1; 2b+1}

B={15; b}

Calcule: a + b

Por ser CONJUNTOS IGUALES:

$$3a+1 = b$$

 $3a+1 = 7$
 $3a = 6$
 $a = 3$

$$a+b=3+7=10$$

RESOLUCIÓN

6. Determine el número de Subconjuntos que tiene $A=\{x/x \in \mathbb{Z}, 2 < x < 8\}$

Por condición:

 N° de Subconjuntos: $2^{n(A)} = 2^{5}$

∴ N° de Subconjuntos=32

RESOLUCIÓN

7. En un torneo de ajedrez participaron 7 jugadores. Si jugaron todos contra todos ¿Cuántos partidos se realizaron?

Por condición:

Se tiene 7 jugadores

 N° de Partidos realizados $2^{n(A)} - 1 = 2^{7} - 1$

∴N° de Partidos realizados = 127

8. Juanita se pone a preparar jugo, para ello cuenta con 6 frutas diferentes en su nevera. ¿Cuánto juegos diferentes puede preparar Juanita?

RESOLUCIÓN

Por condición: Se tiene 6 frutas diferentes

N° de Jugos diferentes $2^{n(A)} - 1 = 2^6 - 1$

∴N° de Jugos diferentes = 63