Introduction to Reinforcement Learning

Lecture 3: Policy Gradients & Model-Based RL

Shimon Whiteson
Dept. of Computer Science
University of Oxford

(based on material from Rich Sutton & Andrew Barto)

February 20, 2019

Policy gradient methods

• Optimise π_{θ} with gradient ascent on expected return:

$$J_{\theta} = \mathbb{E}_{s \sim \rho(s), a \sim \pi_{\theta}(s, \cdot)} \left[Q^{\pi}(s, a) \right]$$

where
$$\rho(s) = p(s_0 = s)$$

- Useful when:
 - Greedification is hard, e.g., continuous actions
 - Stochastic policies are preferred, e.g., partial observability
 - Optimal policies are simpler than optimal value functions
 - ▶ Prior knowledge is easier to express about policies
- Typically converges to local optimum
- Gradient estimates typically have high variance

Simple case

• One-step MDP with $s \sim \rho(\cdot)$:

$$J_{\theta} = \mathbb{E}_{s \sim \rho, a \sim \pi_{\theta}(s, \cdot)} [R_{s}^{a}]$$
$$= \sum_{s} \rho(s) \sum_{a} \pi_{\theta}(s, a) R_{s}^{a}$$

• Take the gradient:

$$\nabla_{\theta} J_{\theta} = \sum_{s} \rho(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(s, a) R_{s}^{a}$$

$$= \sum_{s} \rho(s) \sum_{a} \pi_{\theta}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(s, a)}{\pi_{\theta}(s, a)} R_{s}^{a}$$

$$= \sum_{s} \rho(s) \sum_{a} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) R_{s}^{a}$$

$$= \mathbb{E}_{s \sim \rho, a \sim \pi_{\theta}(s, \cdot)} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) R_{s}^{a} \right]$$

• Sampling yields the likelihood ratio or score function estimator

Policy gradient theorem & REINFORCE

• The *policy gradient theorem* [Sutton et al. 2000] uses an unrolling argument to extend this to general MDPs:

$$abla_{ heta} J_{ heta} = \mathbb{E}_{s \sim
ho^{\pi}(s), a \sim \pi_{ heta}(s, \cdot)} \left[
abla_{ heta} \log \pi_{ heta}(s, a) Q^{\pi}(s, a) \right]$$

where $\rho^{\pi}(s)$ is the discounted ergodic occupancy measure:

$$\rho^{\pi}(s) = \sum_{i=0}^{\infty} \gamma^{i} p(s_{i} = s \mid \pi)$$

Using sample returns yields REINFORCE [Williams 1992]:

$$abla_{ heta} J_{ heta} pprox g(au) = \sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(s_t, a_t) R_t$$

Actor-Critic Methods [Sutton et al. 00]

• Reduce variance in $g(\tau)$ by learning a *critic* Q(s, a):

$$g(au) = \sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(s_t, a_t) Q(s_t, a_t)$$

Control variates

- Control variates reduce variance in Monte Carlo sampling
- Let \hat{x} be an unbiased estimator of x: $\mathbb{E}[\hat{x}] = x$, where x is unknown
- Let \hat{y} be an unbiased estimator of y: $\mathbb{E}[\hat{y}] = y$, where y is known
- Another unbiased estimator of x is:

$$\hat{x}' = \hat{x} - \lambda(\hat{y} - y),$$

with variance:

$$Var(\hat{x}') = Var(\hat{x}) + \lambda^2 Var(\hat{y}) - 2\lambda Cov(\hat{x}, \hat{y})$$

• If \hat{x} and \hat{y} are sufficiently correlated, then $\exists \lambda, Var(\hat{x}') < Var(\hat{x})$

Baselines

• Policy gradient methods use a control variate called a *baseline* b(s):

$$g(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) (Q(s_t, a_t) - b(s_t))$$

• Estimator remains unbiased if b does not depend on a:

$$\mathbb{E}_{a \sim \pi_{\theta}(s,\cdot)} \left[\nabla_{\theta} \log \pi_{\theta}(s,a) b(s) \right] = \mathbb{E}_{a \sim \pi_{\theta}(s,\cdot)} \left[\frac{\nabla_{\theta} \pi_{\theta}(s,a)}{\pi_{\theta}(s,a)} b(s) \right]$$

$$= \sum_{a} \pi_{\theta}(s,a) \frac{\nabla_{\theta} \pi_{\theta}(s,a)}{\pi_{\theta}(s,a)} b(s)$$

$$= b(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(s,a)$$

$$= b(s) \nabla_{\theta} \sum_{a} \pi_{\theta}(s,a)$$

$$= b(s) \nabla_{1} = 0$$

Advantage functions

• Common choice of baseline is the value function: b(s) = V(s):

$$g(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) A(s_t, a_t)$$

where A(s, a) = Q(s, a) - V(s) is the advantage function

- Q(s, a) is often harder to learn than V(s)
- Replace it with a bootstrap target: $r_t + \gamma V(s_{t+1})$
- TD error $r_t + \gamma V(s_{t+1}) V(s)$ is an unbiased estimate of $A(s_t, a_t)$:

$$g(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) (r_t + \gamma V(s_{t+1}) - V(s_t))$$

Generalised advantage estimation (1) [Schulman et al. 2015]

• Target used in TD error estimate of advantage could bootstrap later:

$$\hat{\mathcal{A}}_{t}^{(k)} = \sum_{i=0}^{k-1} \gamma^{i} r_{t+i} + \gamma^{k} V(s_{t+k}) - V(s_{t})$$

• Let $\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$ be the TD error and note that:

$$\hat{A}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2}) - V(s_{t})$$

$$= r_{t} + \gamma V(s_{t+1}) - V(s_{t}) + \gamma r_{t+1} + \gamma^{2} V(s_{t+2}) - \gamma V(s_{t+1})$$

$$= \delta_{t} + \gamma \delta_{t+1}$$

• More generally:

$$\hat{A}_t^{(k)} = \sum_{i=0}^{k-1} \gamma^i \delta_{t+i}$$

Generalised advantage estimation (2) [Schulman et al. 2015]

Now define the generalised advantage estimator:

$$\hat{A}_{t}^{GAE(\gamma,\lambda)} = (1-\lambda) \Big(\hat{A}_{t}^{(1)} + \lambda \hat{A}_{t}^{(2)} + \lambda^{2} \hat{A}_{t}^{(3)} + \cdots \Big)$$

$$= (1-\lambda) \Big(\delta_{t} + \lambda (\delta_{t} + \gamma \delta_{t+1}) + \lambda^{2} (\delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \delta_{t+2}) + \cdots \Big)$$

$$= (1-\lambda) \Big(\delta_{t} (1+\lambda+\lambda^{2}+\cdots) + \gamma \delta_{t+1} (\lambda+\lambda^{2}+\cdots) + \cdots \Big)$$

$$= (1-\lambda) \Big(\delta_{t} \frac{1}{1-\lambda} + \gamma \delta_{t+1} \frac{\lambda}{1-\lambda} + \cdots \Big)$$

$$= \sum_{i=0}^{\infty} (\gamma \lambda)^{i} \delta_{t+i}$$

Deep Actor-Critic Methods

- Actor and critic are both deep neural networks
 - Convolutional and recurrent layers
 - Actor and critic share layers
- Both trained with stochastic gradient descent
 - ► Actor trained on policy gradient
 - Critic trained on $TD(\lambda)$ or $Sarsa(\lambda)$
- Asynchronous advantage actor-critic (A3C) [Mnih et al. 2016]
 - Multiple asynchronous actors
 - ▶ Shared convnet, softmax layer for π , linear layer for V
 - ▶ Gradient based on *k*-step TD-error:

$$g(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \left(\sum_{i=0}^{k-1} \gamma^i r_{t+i} + \gamma^k V(s_{t+k}) - V(s_t)\right)$$

Performance Collapse

- Steps in parameter space are unbounded in policy space
- Example due to Agustinus Kristiadi¹:

¹https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/

Performance Collapse

• Another example, due to Joshua Achiam²

$$\pi_{\theta}(a) = egin{cases} \sigma(\theta) & a = 1 \\ 1 - \sigma(\theta) & a = 2 \end{cases}$$

Can cause irrevocable performance collapse

2http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_ advanced_pg.pdf

Natural policy gradients [Kakade 2001]

Maximise objective for fixed KL (ignoring s for simplicity):

$$\operatorname*{arg\,max}_{\Delta\theta}J(\theta+\Delta\theta)$$
 s. t. $\mathrm{KL}(\pi_{\theta}||\pi_{\theta+\Delta\theta})=C$

• Approximate KL with second-order Taylor expansion:

$$\mathit{KL}(\pi_{ heta} || \pi_{ heta + \Delta heta}) pprox rac{1}{2} \Delta heta^{ op} \mathbf{F} \Delta heta,$$

where **F** is the *Fisher information matrix*:

$$\begin{aligned} \mathbf{F} &= \mathsf{Cov}(\nabla_{\theta} \log \pi_{\theta}(a)) = \mathbb{E}_{\mathbf{a}} \left[(\nabla_{\theta} \log \pi_{\theta}(a)) (\nabla_{\theta} \log \pi_{\theta}(a))^{\top} \right] \\ &= \nabla_{\theta'}^{2} \mathsf{KL}(\pi_{\theta} || \pi_{\theta'})|_{\theta' = \theta} = \nabla_{\theta'}^{2} \mathsf{KL}(\pi_{\theta'} || \pi_{\theta})|_{\theta' = \theta} \end{aligned}$$

Result is an update based on the natural gradient:

$$\nabla_N J(\theta) = \mathbf{F}^{-1} \nabla J(\theta)$$

Trust Region Policy Optimisation [Schulman et al. 2015]

- Computing and inverting **F** is intractable for large NNs
- Instead, solve $\mathbf{F}\nabla_N J(\theta) = \nabla J(\theta)$ using *conjugate gradient* method
- Requires only cheaper matrix-vector product function $f(\mathbf{v}) = \mathbf{F}\mathbf{v}$
- Quadratic approx. may violate *trust region*: $KL(\pi_{\theta}||\pi_{\theta+\Delta\theta}) \leq C$
- Backtracking line search iterates on *j* to find update:

$$\begin{aligned} \theta_{i+1} &= \theta_i + \alpha^j \Delta_i \\ \text{s. t. } \mathcal{L}(\theta_i, \theta_{i+1}) &\geq 0, \\ \text{KL}(\pi_{\theta_i} || \pi_{\theta_{i+1}}) &\leq C, \end{aligned}$$

where Δ_i is the CG update and for $\tau \sim \pi_{\theta_i}$:

$$egin{aligned} \mathcal{L}(heta_i, heta_{i+1}) &= \sum_{t=0}^T \gamma^t rac{\pi_{ heta_{i+1}}(s_t, a_t)}{\pi_{ heta_i}(s_t, a_t)} A^{\pi_{ heta_i}}(s_t, a_t) \ &pprox J(heta_{i+1}) - J(heta_i) \end{aligned}$$

Proximal Policy Optimisation [Schulman et al. 2017]

- TRPO still requires conjugate gradient descent and line search
- Solve unconstrained optimisation problem instead with adaptive λ_i :

$$\theta_{i+1} = \underset{\theta}{\operatorname{arg\,max}} \, \mathcal{L}(\theta_i, \theta) + \lambda_i \mathsf{KL}(\pi_{\theta_i} || \pi_{\theta}),$$

• Or optimise a clipped objective weighted by $r_t^{\theta} = \frac{\pi_{\theta}(a_t, s_t)}{\pi_{\theta_i}(a_t, s_t)}$:

$$\mathcal{L}_{\textit{clip}}(heta_i, heta) = \sum_{t=0}^{T} \left[\min(r_t^{ heta} A^{\pi_{ heta_i}}, ext{clip}(r_t^{ heta}, 1 - \epsilon, 1 + \epsilon) A^{\pi_{ heta_i}})
ight]$$

Deterministic policy gradients [Silver et al. 2014]

• Given continuous actions and a deterministic policy $\pi(s)$, the deterministic policy gradient theorem says:

$$abla_{ heta} J_{ heta} = \mathbb{E}_{s \sim
ho^{\pi}(s)} \Big[
abla_{ heta} \pi_{ heta}(s)
abla_{a} Q^{\pi}(s, a = \pi(s)) \Big]$$

ullet Estimated from a au gathered with a stochastic exploration policy:

$$abla_{ heta}J_{ heta}pprox g(au) = \sum_{t=0}^{T}
abla_{ heta}\pi_{ heta}(s_{t})
abla_{ extit{a}}Q(s_{t}, extit{a} = \pi(s_{t})),$$

where Q is an off-policy critic trained with Q-learning, not Sarsa

Expected policy gradients [Ciosek & Whiteson 2018]

• Reexamine the policy gradient theorem:

$$abla_{ heta}J = \mathbb{E}_{s \sim
ho(s)}\left[\int_{a}
abla_{ heta}\pi_{ heta}(s,a)Q(s,a)da
ight] = \mathbb{E}_{s \sim
ho(s)}\left[I(s)\right]$$

- ullet Can often solve $I(s)=\int_a
 abla_ heta \pi_ heta(s,a)Q(s,a)da$ analytically for fixed s
- Theoretical equivalences, e.g., for a Gaussian policy and quadratic critic, mean update equivalent to DPG
- Discrete actions are easy: $I(s) = \sum_{a} \nabla \pi Q(a, s)$
- In practice: works well for continuous actions; not worth it for discrete actions because *Q*-function is hard to learn

Model-based reinforcement learning

- Planning methods require prior knowledge of the MDP
- Temporal difference methods are model-free or direct reinforcement learning methods
- Model-based or indirect reinforcement learning assumes no prior knowledge but learns a model of the MDP and then plans on it
- A model is anything the agent can use to predict how the environment will respond to its actions

Types of models

- A *full* or *distribution* model is a complete description of $P_{ss'}^a$ and $R_{ss'}^a$: space complexity is $O(|S|^2|A|)$
- A sample or generative model can be queried to produce samples r and s' given any s and a
- A trajectory or simulation model can simulate a complete episode but cannot jump to an arbitrary state

Planning, learning, and acting

- Model-based methods make fuller use of experience: lower sample complexity
- Model-free methods are simpler and not affected by modelling errors
- Can also be combined

Random-sample one-step tabular Q-planning

Do forever:

- 1. Select a state, $s \in \mathcal{S}$, and an action, $a \in \mathcal{A}(s)$, at random
- 2. Send s, a to a sample model, and obtain a sample next state, s', and a sample next reward, r
- 3. Apply one-step tabular Q-learning to s, a, s', r: $Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a') Q(s, a)]$

Dyna architecture

Dyna-Q (1)

Initialize Q(s, a) and Model(s, a) for all $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$ Do forever:

- (a) $s \leftarrow \text{current (nonterminal) state}$
- (b) $a \leftarrow \varepsilon$ -greedy(s, Q)
- (c) Execute action a; observe resultant state, s', and reward, r
- (d) $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') Q(s,a)]$
- (e) $Model(s, a) \leftarrow s', r$ (assuming deterministic environment)
- (f) Repeat N times:
 - $s \leftarrow \text{random previously observed state}$
 - $a \leftarrow \text{random action previously taken in } s$
 - $s', r \leftarrow Model(s, a)$
 - $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') Q(s, a)]$

Dyna-Q (2)

Dyna-Q+

- Use an exploration bonus
- For each state-action pair, keep track of n, number of steps since it was visited
- Add an extra reward for transitions caused by state-action pairs based on how long ago they were visited: $r + \kappa n$
- Agent will plan how to visit long unvisited states: good for nonstationary tasks

Vanilla model-based reinforcement learning

- Repeat:
 - Take exploratory action (based on greedy policy)
 - Use resulting immediate reward and state to update a maximum-likelihood model:

$$\hat{P}_{ss'}^{a} = \frac{n_{ss'}^{a}}{n_{s}^{a}}, \hat{R}_{ss'}^{a} = \frac{1}{n_{ss'}^{a}} \sum_{i=1}^{n_{ss'}^{a}} r_{i}$$

- Solve the model using value iteration
- Update greedy policy
- Computationally expensive
- But don't have to plan to convergence or plan on every step

- Use vanilla model-based RL
- However, for all (s, a) for which $n_s^a < m$:
 - ▶ Remove all transitions from (s, a) from model
 - Add transition of prob. 1 to artificial, terminal jackpot state
 - ▶ Immediate reward on this transition is R_{max}
- Plan on altered model
- Remove artificial transitions once $n_s^a \ge m$
- Agent will plan how to visit insufficiently visited states: efficient exploration

Full versus sample backups (1)

Value estimated	Full backups (DP)	Sample backups (one-step TD)
$V^{\pi}(s)$	policy evaluation	S a a a a a a a a a a a a a a a a a a a
$V^*(s)$	value iteration	
$Q^{\pi}(a,s)$	Q-policy evaluation	s,a r s' a' Sarsa
$Q^*_{(a,s)}$	max Q-value iteration	max A'

Full versus sample backups (2)

Prioritised sweeping (1)

- Which states or state-action pairs should be generated during planning?
- Work backwards from states whose values have just changed:
- Maintain a queue of state-action pairs whose values would change a lot if backed up, prioritized by the size of the change
- When a new backup occurs, insert predecessors according to their priorities
- Always perform backups from first in queue

Prioritised sweeping (2)

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty Do forever:

- (a) $s \leftarrow \text{current (nonterminal) state}$
- (b) $a \leftarrow policy(s, Q)$
- (c) Execute action a; observe resultant state, s', and reward, r
- (d) $Model(s, a) \leftarrow s', r$
- (e) $p \leftarrow |r + \gamma \max_{a'} Q(s', a') Q(s, a)|$.
- (f) if $p > \theta$, then insert s, a into PQueue with priority p
- (g) Repeat N times, while PQueue is not empty:

$$s, a \leftarrow first(PQueue)$$

$$s', r \leftarrow Model(s, a)$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$

Repeat, for all \bar{s} , \bar{a} predicted to lead to s:

$$\bar{r} \leftarrow \text{predicted reward}$$

$$p \leftarrow |\bar{r} + \gamma \max_a Q(s, a) - Q(\bar{s}, \bar{a})|.$$

if $p > \theta$ then insert \bar{s}, \bar{a} into *PQueue* with priority p

Prioritised sweeping (3)

Reinforcement learning theory (1)

Model-free temporal difference methods such as Q-learning and Sarsa are guaranteed to converge to the optimal policy in the limit under the following conditions:

- \bigcirc S and A are finite
- 2 $\sum_t \alpha_t^{sa} = \infty$ and $\sum_t (\alpha_t^{sa})^2 < \infty$
- \bullet $\gamma < 1$

Reinforcement learning theory (2)

 R_{max} is an example of a *PAC-MDP* algorithm, for which the following *probably approximately correct* guarantee holds:

- Let A be a PAC-MDP algorithm and A_t be the policy of A at timestep t
- Sample complexity of A is the number of timesteps t such that $V^{A_t}(s_t) < V^*(s_t) \epsilon$
- With probability at least $1-\delta$, the sample complexity of A is less than some polynomial in the quantities $(|S|, |A|, R_{\text{max}}, 1/\epsilon, 1/\delta, 1/(1-\gamma))$

Reinforcement learning theory (3)

- PAC guarantees are very general but only apply to states the agent actually visits: do not consider that exploration phase may have doomed the agent to a "hell" region.
- Stronger but less general guarantees are possible by bounding the regret: the expected cumulative return of an optimal policy minus the cumulative return of the algorithm
- Bounding regret requires making reachability assumptions, e.g., UCRL2 has reget linear in the diameter: the maximum average number of steps needed to reach any s' from any s

Reinforcement learning theory (4)

- In principle, we can compute a <u>Bayes-optimal</u> policy for balancing exploration and exploitation
- Problem of learning in an MDP is cast as one of planning in a POMDP where the hidden state corresponds to the unknown model parameters: $s_{POMDP} = (s_{MDP}, T, R)$
- We will return to this idea when we have studied POMDPs

Pseudocounts [Bellemare et al. 2106]

- ullet Let $\hat{\mu}(s)$ be a generative model of the on-policy distribution $\mu(s)$
- Let $\hat{\mu}'(s)$ be the updated model after a new visit to s
- ullet Suppose that $\hat{\mu}$ was count-based such that

$$\hat{\mu}(s) = \frac{c(s)}{C}$$
 $\hat{\mu}(s) = \frac{c(s)+1}{C+1}$

where c(s) is the number visits to s and C is the total state visits

- Solve this linear system to find c(s) and C
- Give a bonus inversely proportional to pseudocount

TreeQN [Farquhar et al. 2017]

