Identifying Drivers of Outcomes: Linear Models

Luis Francisco Gomez Lopez

FAEDIS

2023-10-31

Contents

- Please Read Me
- Purpose
- Amusement park survey
- References

Please Read Me

• This presentation is based on (Chapman and Feit 2019, chap. 7)

Purpose

• Apply linear modeling to understand a response variable and make predictions of forecasts

- weekend: whether the visit was on a weekend
- num.child: number of children in the visit.
- **distance**: how far the customer traveled to the park in miles
- rides: satisfaction with rides using a scale [0, 100]
- games: satisfaction with games using a scale [0, 100]
- wait: satisfaction with waiting times using a scale [0, 100]
- clean: satisfaction with cleanliness using a scale [0, 100]
- overall: overall satisfaction rating using a scale [0, 100]

Import data

```
amusement_park <- read_csv("http://goo.gl/HKnl74")
amusement_park > head(n = 5)
```

```
# A tibble: 5 x 8
  weekend num.child distance rides games wait clean overall
                          <dhl> <dhl> <dhl> <dhl> <dhl> <dhl> <dhl> <dhl> <dhl> <dh</pre>
  <chr>>
                <dh1>
                                                               <dh1>
                          115.
                                                                   47
1 yes
2 yes
                           27.0
                                                  76
                                                                   65
3 no
                           63.3
                                          80
                                                70
                                                        88
                                                                   61
4 yes
                           25.9
                                     88
                                         72
                                                  66
                                                         89
                                                                   37
5 no
                           54.7
                                                  74
                                                                   68
```

Transform data

```
amusement park <- amusement park |>
 mutate(weekend = factor(x = weekend,
                         labels = c('no', 'yes'),
                          ordered = FALSE).
        num.child = as.integer(num.child),
         # logarithmic transform
        logdist = log(distance, base = exp(x = 1)))
amusement park |> head(n = 5)
# A tibble: 5 x 9
 weekend num.child distance rides games wait clean overall logdist
```

<fct></fct>	<int></int>	<db1></db1>						
1 yes	0	115.	87	73	60	89	47	4.74
2 yes	2	27.0	87	78	76	87	65	3.30
3 no	1	63.3	85	80	70	88	61	4.15
4 yes	0	25.9	88	72	66	89	37	3.25
5 no	4	54 7	84	87	74	87	68	4 00

Summarize data

• Ups the table is really big!!! Try it in your console to see the complete table

amusement_park |> skim()

Table 1: Data summary

Name	amusement_park
Number of rows	500
Number of columns	9
Column type frequency:	
factor	1
numeric	8
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts	
weekend	0	1	FALSE	2	no: 259, yes: 241	

Correlation matrices

• Pearson correlation coefficients for samples in a tibble

```
<db1>
                               <db1>
                                              <db1>
                                                              <db1>
  <chr>>
                      <db1>
                                      <db1>
                                                     <dbl>
1 num.child NA
                    -0.0403 0.00466 -0.0210 -0.0135 0.319
                                                           -0.00459
2 rides
           -0.0403 NA
                             0.455
                                     0.314
                                             0.790
                                                    0.586 -0.0110
           0.00466 0.455 NA
                                     0.299
                                             0.517
                                                    0.437
                                                            0.00187
3 games
          -0.0210 0.314
                             0.299
                                             0.368
                                                    0.573
                                                            0.0175
4 wait
                                    NA
5 clean
          -0.0135
                     0.790
                            0.517 0.368 NA
                                                    0.639
                                                            0.0221
6 overall
           0.319
                     0.586
                             0.437
                                     0.573
                                             0.639 NA
                                                            0.0763
            -0.00459 -0.0110 0.00187
                                     0.0175
                                            0.0221
                                                    0.0763 NA
7 logdist
```

- Correlation matrices
 - Pearson correlation coefficients for samples in a tibble

correlation_matrix |> autoplot(triangular = "lower")

Bivariate Association: the base R way

```
plot(overall~rides, data=amusement_park,
     xlab="Satisfaction with Rides", ylab="Overall Satisfaction")
abline(reg = lm(formula = overall~rides, data = amusement park),
      col = 'blue')
```


Bivariate Association: the tidyverse way

```
amusement_park |> ggplot(aes(x = rides, y = overall)) +
 geom_point() +
 geom smooth(method = 'lm'.
              color = 'blue',
              se = FALSE) +
 labs(x = "Satisfaction with Rides".
       v = "Overall Satisfaction")
```


• Linear Model with a Single Predictor

Linear Model with a Single Predictor

$$\begin{split} overall_i &= \beta_0 + \beta_1 rides_i + \epsilon_i \text{ where } \epsilon_i \sim \mathcal{N}(0, \sigma^2) \text{ and } i = 1, \dots, 500 \\ &\widehat{overall_i} = \hat{\beta}_0 + \hat{\beta}_1 rides_i \text{ and } \hat{\sigma}^2 \text{ where } i = 1, \dots, 500 \\ &\widehat{overall_i} - \widehat{overall_i} = \hat{\epsilon}_i \text{ where } i = 1, \dots, 500 \end{split}$$

```
model1 <- lm(formula = overall ~ rides, data = amusement park)
model1
Call:
lm(formula = overall ~ rides, data = amusement_park)
```

Coefficients: (Intercept) rides -94.962 1.703

Linear Model with a Single Predictor

ls.str(model1)

```
assign : int [1:2] 0 1
call : language lm(formula = overall ~ rides, data = amusement park)
coefficients: Named num [1:2] -95 1.7
df residual : int 498
effects: Named num [1:500] -1146.2 -207.9 11.5 -17.9 20.3 ...
fitted.values: Named num [1:500] 53.2 53.2 49.8 54.9 48.1 ...
model : 'data frame':
                       500 obs. of 2 variables:
$ overall: num 47 65 61 37 68 27 40 30 58 36 ...
$ rides : num 87 87 85 88 84 81 77 82 90 88 ...
ar : List of 5
$ gr : num [1:500, 1:2] -22.3607 0.0447 0.0447 0.0447 0.0447 ...
$ graux: num [1:2] 1.04 1.01
$ pivot: int [1:2] 1 2
$ tol : num 1e-07
$ rank : int 2
rank: int 2
residuals : Named num [1:500] -6.22 11.78 11.18 -17.93 19.89 ...
terms : Classes 'terms', 'formula' language overall ~ rides
xlevels : Named list()
```

Linear Model with a Single Predictor

summary(model1)

```
Call:
lm(formula = overall ~ rides, data = amusement_park)
Residuals:
   Min
           10 Median 30
                                 Max
-33 597 -10 048 0 425 8 694 34 699
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -94.9622 9.0790 -10.46 <2e-16 ***
         1.7033 0.1055 16.14 <2e-16 ***
rides
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 12.88 on 498 degrees of freedom
Multiple R-squared: 0.3434, Adjusted R-squared: 0.3421
F-statistic: 260.4 on 1 and 498 DF. p-value: < 2.2e-16
```

Linear Model with a Single Predictor

model1\$coefficients

```
(Intercept)
                  rides
-94.962246
               1.703285
# Make some predictions
# We want to forecast the overall satisfaction rating
# if the satisfaction with rides is 95
-94.962246 + 1.703285*95
```

[1] 66.84983

- Linear Model with a Single Predictor
 - Std. Frror column
 - Indicates uncertainty in the coefficient estimate
 - We can build a confidence interval

```
summary(model1)$coefficients[, 2]
(Intercept)
                 rides
 9.0790049 0.1055462
confint(model1, level = 0.95)
                 2.5 % 97.5 %
(Intercept) -112.800120 -77.124371
rides
              1.495915
                        1.910656
```

• Linear Model with a Single Predictor

```
par(mfrow=c(2,2))
plot(model1)
```


par(mfrow=c(1,1))

- Linear Model with a Single Predictor
 - **Linearity**: plot (1,1)
 - Reference line should be flat and horizontal
 - Normality of residuals: plot (1, 2)
 - Dots should fall along the line
 - Homogeneity of variance: plot (2,1)
 - Reference line should be flat and horizontal
 - Influential observations: plot (2, 2)
 - Points should be inside the contour lines

Linear Model with Multiple Predictors

$$\begin{split} overall_i &= \beta_0 + \beta_1 rides_i + \beta_2 games_i \\ &+ \beta_3 wait_i + \beta_4 clean_i + \epsilon_i \\ &\text{where } \epsilon_i \sim \mathcal{N}(0, \sigma^2) \text{ and } i = 1, \dots, 500 \end{split}$$

```
model2 <- lm(formula = overall ~ rides + games + wait + clean.
             data = amusement park)
model2
Call:
```

```
lm(formula = overall ~ rides + games + wait + clean, data = amusement_park)
Coefficients:
(Intercept)
                  rides
                                               wait
                                                           clean
                                games
                  0.5291
                               0.1533
                                             0.5533
                                                          0.9842
 -131.4092
```

21 / 46

• Linear Model with Multiple Predictors

```
par(mfrow=c(2,2))
plot(model2)
```


par(mfrow=c(1,1))

Linear Model with Multiple Predictors

summary (model2)

```
Call:
lm(formula = overall ~ rides + games + wait + clean, data = amusement park)
Residuals:
   Min
           10 Median
                        30
                              Max
-29.944 -6.841 1.072 7.167 28.618
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -131.40919 8.33377 -15.768 < 2e-16 ***
rides
            0.15334 0.06908 2.220 0.026903 *
games
            wait
            0.98421 0.15987 6.156 1.54e-09 ***
clean
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.59 on 495 degrees of freedom
Multiple R-squared: 0.5586, Adjusted R-squared: 0.5551
F-statistic: 156.6 on 4 and 495 DF. p-value: < 2.2e-16
```

Linear Model with Multiple Predictors

$$\begin{split} H_0: \beta_1 &= 0 \\ H_1: \beta_1 \neq 0 \\ t_{rides} &= \frac{\hat{\beta}_1 - \beta_1}{\widehat{Var}(\hat{\beta}_1)} = \frac{0.529078 - 0}{0.14207176} = 3.724019 \end{split}$$

model2\$coefficients

```
(Intercept)
                rides
                                                          clean
                                games
                                              wait
-131.4091939
               0.5290780
                            0.1533361
                                         0.5533264
                                                      0.9842126
# Calculate the variance-covariance matrix, extract
# the diagonal and calculate the standard deviaton of
# the parameters
model2 |> vcov() |> diag() |> sgrt()
```

```
(Intercept) rides
                           games
                                                 clean
8.33376643 0.14207176 0.06908486 0.04781282 0.15986712
```

• Linear Model with Multiple Predictors

Linear Model with Multiple Predictors

```
2.5 %
                              97.5 %
(Intercept) -147.78311147 -115.0352764
rides
             0.24993998
                         0.8082161
             0.01760038 0.2890718
games
wait
             0.45938535 0.6472675
clean
             0.67011082 1.2983144
```

confint(model2, level = 0.95)

Linear Model with Multiple Predictors

```
library(coefplot) # Remember to install the package if it is not installed
coefplot(model = model2,
         # The intercept is relatively large: -131.4092
        intercept = FALSE.
        ylab="Rating of Feature",
        xlab="Association with Overall Satisfaction",
        lwdOuter = 1.5)
```


Comparing models

```
summary(model1)$r.squared
```

[1] 0.3433799 summary(model2)\$r.squared

[1] 0.558621 summary(model1)\$adj.r.squared

[1] 0.3420614 summary(model2)\$adj.r.squared

[1] 0.5550543

Comparing models

Base R way

```
plot(x = amusement_park$overall, y = fitted(model1),
     col = "red", xlim = c(0,100), ylim = c(0,100),
     xlab = "Actual Overall Satisfaction",
     vlab = "Fitted Overall Satisfaction")
points(x = amusement_park$overall, y = fitted(model2),
      col = "blue")
legend(x = "topleft", legend = c("Model 1", "Model 2"), col = c("red", "blue"), pch = 1)
```


Comparing models

• Tidymodels and tidyverse way: Prepare data

model1 augment <- augment(x = model1) |> mutate(model = "Model 1") model2_augment <- augment(x = model2) |> mutate(model = "Model 2")

```
models performance <- model1 augment |> bind rows(model2 augment)
models performance |> glimpse()
Rows: 1,000
 Columns: 12
 $ overall
                                    <dbl> 47, 65, 61, 37, 68, 27, 40, 30, 58, 36, 71, 48, 75, 46, 59,~
 $ rides
                                    <dbl> 87, 87, 85, 88, 84, 81, 77, 82, 90, 88, 93, 79, 94, 81, 86,~
 $ .fitted
                                    <dbl> 53.22359, 53.22359, 49.81702, 54.92688, 48.11373, 43.00388,~
 $ resid
                                    <dbl> -6.2235914, 11.7764086, 11.1829795, -17.9268769, 19.8862650~
$ .hat
                                    <dbl> 0.002089430, 0.002089430, 0.002048063, 0.002311576, 0.00222~
                                    <dbl> 12.88964, 12.88182, 12.88289, 12.86751, 12.86171, 12.87260,~
$ .sigma
 $ .cooksd
                                    <dbl> 2.449537e-04, 8.770564e-04, 7.751689e-04, 2.249493e-03, 2.6~
$ .std.resid <dbl> -0.48371422, 0.91529407, 0.86915315, -1.39348008, 1.5457218~
                                    <chr> "Model 1", 
$ model
                                    $ games
                                    $ wait
 $ clean
```

- Comparing models
 - Tidymodels and tidyverse way: Visualize

```
models_performance |>
  ggplot() +
  geom_point(aes(x = overall, y = .fitted,
                 color = model)) +
  labs(x = "Actual Overall Satisfaction".
       v = "Fitted Overall Satisfaction")
```


495 55532 3 27080 80.463 < 2.2e-16 *** Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Comparing models

Analysis of variance (anova) for nested models¹

```
anova_lm <- anova(model1, model2, test = "F")
anova_lm
Analysis of Variance Table
Model 1: overall ~ rides
Model 2: overall ~ rides + games + wait + clean
 Res.Df
          RSS Df Sum of Sq
                                      Pr(>F)
     498 82612
```

¹This statistical analysis only make sense for nested models that are fitted with the same data where the convention is to include the models from smallest to largest. See ?anova.lm

Comparing models

$$H_0:\beta_0=\beta_1=\beta_2=\beta_3=\beta_4=0$$

$$H_1:$$
 At least one $eta_j
eq 0$ for $j=0,1,2,3,4$

$$F = \frac{\frac{RSS_1 - RSS_2}{p_2 - p_1}}{\frac{RSS_2}{n - p_2}} = \frac{\frac{82611.81 - 55531.53}{5 - 2}}{\frac{55531.53}{500 - 5}} = 80.46323$$

Predictions

$$\begin{split} overall_j &= \hat{\beta}_0 + \hat{\beta}_1 rides_j + \hat{\beta}_2 games_j \\ &+ \hat{\beta}_3 wait_j + \hat{\beta}_4 clean_j \end{split}$$

```
coef(model2) |> enframe(name = "coef")
# A tibble: 5 x 2
 coef
              value
 <chr>
             <db1>
1 (Intercept) -131.
2 rides 0.529
3 games 0.153
4 wait
          0.553
5 clean
         0.984
```

Predictions

Manual

- [1] 6.11525
 - Predictions
 - Matrix multiplication

```
coef(model2) %*% c(1, 30, 10, 57, 90)
```

35 / 46

Predictions

predict

```
# New data
new_data <- tibble(rides = c(30, 70),
                   games = c(10, 80),
                   wait = c(57, 60).
                   clean = c(90, 93))
# Result
predict(object = model2, newdata = new data) |>
 enframe(name = "observation", value = "overall pred") |>
 bind_cols(new_data)
```

```
# A tibble: 2 x 6
 observation overall_pred rides games wait clean
 <chr>
                     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 1
                      6.12
                             30
                                    10
                                          57
                                                90
                                   80
22
                    42.6
                             70
                                          60
                                                93
```

- Standardizing the predictors
 - Compare the effect that different predictor variables have on a response variable
 - It must be interpreted in terms of standard deviations
 - One standard deviation in x variable is associated with a standard deviation increase of decrease depending on the value of the estimated parameter

```
amusement park std <- amusement park |>
 select(-distance) |>
 mutate(across(rides:logdist,
              .fns = ~scale(x = .x,
                            center = TRUE.
                            scale = TRUE)[,1]))
amusement_park_std |> head()
# A tibble: 6 x 8
 weekend num.child rides
                        games
                                 wait clean overall logdist
       <int> <dbl> <dbl>
                                   <dbl> <dbl> <dbl> <dbl>
                                                         <db1>
 <fct>
                0 0.211 -0.698 -0.919
                                         0.215 -0.268
                                                       1.79
1 yes
2 ves
                2 0.211 -0.0820 0.567 -0.176 0.865 0.323
                1 -0.155 0.164 0.00966 0.0199 0.614
                                                       1.19
3 no
                0 0.394 -0.821 -0.362 0.215 -0.898
                                                         0.280
4 yes
```

0.381 -0.176

-1.74

4 -0 338 1 03

5 -0.887 0.0411 -2.03

5 no

6 no

1.05

-1.53

1.04

0.145

Standardizing the predictors

```
model2_std <- lm(formula = overall ~ rides + games + wait + clean,
            data = amusement park std)
summary(model2 std)
Call:
lm(formula = overall ~ rides + games + wait + clean, data = amusement_park_std)
Residuals:
    Min
              10 Median
                               30
                                       Max
-1 88578 -0 43082 0 06749 0 45136 1 80231
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.607e-16 2.983e-02 0.000 1.000000
          1.820e-01 4.888e-02 3.724 0.000219 ***
rides
          7.844e-02 3.534e-02 2.220 0.026903 *
games
wait
       3 753e-01 3 243e-02 11 573 < 2e-16 ***
        3.170e-01 5.150e-02 6.156 1.54e-09 ***
clean
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.667 on 495 degrees of freedom
Multiple R-squared: 0.5586. Adjusted R-squared: 0.5551
F-statistic: 156.6 on 4 and 495 DF. p-value: < 2.2e-16
```

Using factors as predictors

```
model3 <- lm(formula = overall ~ rides + games + wait + clean + weekend + logdist + num.child.
           data = amusement_park_std)
tidy(model3)
# A tibble: 8 x 5
 term
            estimate std.error statistic p.value
 <chr>>
               <dh1>
                       <dh1>
                                <db1>
                                        <dh1>
1 (Intercept) -0.373 0.0465
                               -8.01 8.41e-15
2 rides
            0.213 0.0420 5.07 5.57e- 7
3 games
            0.0707 0.0303 2.34 1.99e- 2
4 wait
            0.381 0.0278 13.7 1.45e-36
            0.297 0.0441 6.72 4.89e-11
5 clean
6 weekendves -0.0459 0.0514
                               -0.893 3.73e- 1
           0.0647 0.0257 2.52 1.22e- 2
7 logdist
            0.227 0.0171
8 num.child
                               13.3 1.37e-34
```

```
# A tibble: 1 x 12
```

glance(model3)

```
r.squared adj.r.squared sigma statistic p.value df logLik
                                                                  AIC
     <dh1>
                   <dh1> <dh1>
                                   <dh1>
                                             <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
     0.679
                   0.674 0.571
                                   148. 5.97e-117
                                                       7 -425, 868, 906,
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

- Using factors as predictors
 - Overall satisfaction is about the same regardless the number of children

```
amusement_park_std <- amusement_park_std |>
 mutate(num.child.factor = factor(num.child))
model4 <- lm(formula = overall ~ rides + games + wait + clean + weekend + logdist + num.child.factor,
            data = amusement_park_std)
tidv(model4) |> slice(1, 2, 8:12)
# A tibble: 7 x 5
  term
                  estimate std.error statistic p.value
  <chr>>
                     <dh1>
                              <dh1>
                                        <dh1>
                                                 <dh1>
1 (Intercept)
                    -0.691
                             0.0449
                                       -15.4 7.00e-44
2 rides
                    0.223
                           0.0354
                                         6.30 6.61e-10
3 num child factor1
                   1.02
                            0.0713 14.3 8.96e-39
4 num child factor?
                   1.04 0.0564 18.4 8.77e-58
5 num.child.factor3
                   0.980
                           0.0702
                                        14.0 1.75e-37
6 num child factor4
                   0.932
                            0.0803
                                       11.6 1.22e-27
7 num child factor5
                   1.00
                             0.104
                                        9.66 2.50e-20
glance(model4)
```

Using factors as predictors

Preparing data

```
amusement park std <- amusement park std |>
 mutate(has.child = factor(x = num.child > 0, labels = c("No", "Yes")))
model5 <- lm(formula = overall ~ rides + games + wait + clean + logdist + has.child,
           data = amusement park std)
tidy(model5) |> slice(1, 2, 7)
# A tibble: 3 x 5
 term
       estimate std.error statistic p.value
 <chr>
              <dh1>
                      <dh1>
                                <dh1>
                                          <dh1>
1 (Intercept) -0.702
                        0.0391 -18.0 6.68e-56
2 rides
          0.223 0.0351 6.34 5.12e-10
3 has.childYes 1.01 0.0468 21.5 1.08e-72
glance(model5)
```

```
# A tibble: 1 x 12
 r.squared adj.r.squared sigma statistic p.value df logLik AIC
                                                                  BTC.
     <dbl>
                  <db1> <db1>
                                <db1> <db1> <db1> <db1> <db1> <db1> <db1>
     0.774
           0.771 0.478 282. 1.03e-155 6 -337. 690. 724.
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

- Using factors as predictors
 - Maybe having children and the visits on weekends are important for the scores so an interaction will be useful

```
model6 <- lm(formula = overall ~ rides + games + wait + clean + weekend + logdist +
                                has.child + rides:has.child + games:has.child + wait:has.child +
                                clean:has.child + rides:weekend + games:weekend + wait:weekend +
                                clean: weekend, data = amusement park std)
tidy(model6) |> slice(9:16)
# A tibble: 8 x 5
                    estimate std.error statistic p.value
  term
  <chr>>
                       <dh1>
                                 <dh1>
                                          <db1>
                                                   <dh1>
1 rides:has_childYes
                     0.0578
                                0.0731
                                         0.792 4.29e- 1
                                0.0528
                                        -1.21 2.26e- 1
2 games:has.childYes -0.0640
                                0.0472 7.42 5.21e-13
3 wait:has_childYes
                     0.351
4 clean has childYes -0.00185
                                0.0797
                                         -0.0233 9.81e- 1
                     0.0618
                                0.0678 0.912 3.62e- 1
5 rides:weekendyes
6 games:weekendyes
                    0.0185
                               0.0490 0.377 7.06e- 1
7 wait:weekendves
                    0.0352
                                0.0445 0.791 4.29e- 1
8 clean:weekendyes
                    -0.0273
                                0.0710
                                        -0.385 7.01e- 1
glance(model6)
# A tibble: 1 x 12
 r.squared adj.r.squared sigma statistic p.value
                                                     df logLik
                                                                 AIC
     <dbl>
                   <dbl> <dbl>
                                  <db1>
                                            <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
```

0.796 0.452

0.802

15 -304 643 714

130 3 69e-159

Using factors as predictors

Only an interaction was significant

```
model7 <- lm(formula = overall ~ rides + games + wait + clean + logdist + has.child +
                      wait:has.child. data = amusement park std)
tidy(model7)
# A tibble: 8 x 5
  term
                   estimate std.error statistic p.value
  <chr>>
                      <dh1>
                                <dh1>
                                          <1dh>>
                                                   <dh1>
                    -0.693
1 (Intercept)
                               0.0368
                                         -18.8 6.91e-60
2 rides
                     0.213
                               0.0331
                                           6.42 3.24e-10
3 games
                     0.0487
                               0.0239
                                           2 03 4 25e- 2
                     0.151
                               0.0369
                                         4.09 4.98e- 5
4 wait
5 clean
                     0.302
                               0.0349
                                         8.68 5.94e-17
6 logdist
                     0.0292
                               0.0203
                                         1.44 1.50e- 1
                              0.0442
7 has.childYes
                     0.998
                                          22.6 4.02e-78
                               0.0438
8 wait:has.childYes
                     0.347
                                           7.92 1.59e-14
glance(model7)
# A tibble: 1 x 12
 r.squared adj.r.squared sigma statistic p.value df logLik
                                                                 AIC
```

<dh1> <dh1>

0.797 0.451

<dh1>

i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

280. 2.96e-167

<dh1>

0.800

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl< <dbl> <dbl> <dbl> <dbl< <dbl > <db > <bb > <db > <db > <db > <bb >

7 -307, 632, 670,

Using factors as predictors

Final model

```
library(dotwhisker) # Remember to install the package if it is not installed
tidv(model7) |>
 dwplot(ci = 0.95.
        dot args = list(size = 2, color = "black"), whisker args = list(color = "red"),
        vline = geom vline(xintercept = 0, color = "black", linetype = 2)) +
 labs(x = "Association with Overall Satisfaction", y = "Rating of Feature")
```


Formula syntax

Formula in R	Statistical Model
$y \sim x$ $y \sim -1 + x$ $y \sim x + z$ $y \sim x + z + x \cdot z$	$y_{i} = \beta_{0} + \beta_{1}x_{i} + \varepsilon_{i}$ $y_{i} = \beta_{1}x_{i} + \varepsilon_{i}$ $y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}z_{i} + \varepsilon_{i}$ $y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}z_{i} + \beta_{3}x_{i}z_{i} + \varepsilon_{i}$ $y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}z_{i} + \beta_{3}x_{i}z_{i} + \varepsilon_{i}$ $y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}z_{i} + \beta_{3}x_{i}z_{i} + \varepsilon_{i}$
$y \sim x^*z$ $y \sim (x + z + w)^2$ $y \sim (x + z + w)^2 - x:z$ $y \sim x + I(x^2)$	$\begin{aligned} y_i &= \beta_0 + \beta_1 x_i + \beta_2 z_i + \beta_3 x_i z_i + \varepsilon_i \\ y_i &= \beta_0 + \beta_1 x_i + \beta_2 z_i + \beta_3 w_i + \beta_4 x_i z_i + \beta_5 x_i w_i + \beta_6 w_i z_i + \varepsilon_i \\ y_i &= \beta_0 + \beta_1 x_i + \beta_2 z_i + \beta_3 w_i + \beta_4 x_i w_i + \beta_5 w_i z_i + \varepsilon_i \\ y_i &= \beta_0 + \beta_1 x_i + \beta_1 x_i^2 + \varepsilon_i \end{aligned}$

Try the following models using tidy:

```
lm(formula = overall ~ rides, data = amusement_park_std) |> tidy()
lm(formula = overall ~ -1 + rides, data = amusement park std) |> tidv()
lm(formula = overall ~ rides + has.child, data = amusement_park_std) |> tidy()
lm(formula = overall ~ rides + has.child + has.child, data = amusement park std) |> tidy()
lm(formula = overall ~ (rides + has.child + weekend)^2.
   data = amusement_park_std) |> tidy()
lm(formula = overall ~ (rides + has.child + weekend)^2 - rides:has.child,
  data = amusement park std) |> tidv()
lm(formula = overall ~ rides + I(rides^2) - rides:has.child. data = amusement park std) |> tidy()
```

References

Chapman, Chris, and Elea McDonnell Feit. 2019. R For Marketing Research and Analytics. 2nd ed. 2019. Use R! Cham: Springer International Publishing: Imprint: Springer. https://doi.org/10.1007/978-3-030-14316-9.

46 / 46