

Презентация научно-исследовательской работы:

«Полногеномный анализ вариантов нуклеотидной последовательности человека способных влиять на прохождение сплайсинга»

Гатупов Михаил группа 6113

Цель работы

Провести полногеномный поиск вариантов нуклеотидной последовательности, способных поразному влиять на прохождение сплайсинга в зависимости от геномного окружения.

•

Актуальность работы

- Сплайсинг мРНК играет важную роль в процессе создания белка в клетке. Нарушение сплайсинга зачастую приводит к созданию белка, неспособного правильно выполнять свою функцию, что в свою очередь, приводит к различным заболеваниям.
- Основным инструментом исследования влияния мутации в гене на сплайсинг в настоящее время является биоинформатика
- В этом году на основе алгоритмов машинного обучения был создан инструмент SpliceAl для анализа влияния мутаций на прохождение сплайсинга.

Поставленные задачи

- Создание альтернативной версии генома человека на основе частых однонуклеотидных полиморфизмов.
- Проведение глубокого мутагенеза последовательностей генов человека in silico.
- Оценка предсказаний прохождения сплайсинга в различном геномном окружении.

Задача 1: Создание альтернативной версии генома

- Исходный файл
- db_SNP (version 151)
 с полиморфизмами генома человека

- Убираем ненужные столбцы
- Делаем из столбца alleles два столбца

 $(A/G \rightarrow A G)$

Убираем слишком редкие полиморфизмы. Было отобрано 11,8 миллионов полиморфизмов.

(alleleFreqs > 0.01)

 Убираем все инсерции и делеции

(Используем столбцы ref и alt. В них должно быть по одному смысловому символу)

Было отобрано 10.5 миллионов полиморфизмов

 Сортируем полиморфизмы по порядку следования хромосом в геноме.

• Убираем всю лишнюю информацию — подготавливаем файл для замены оснований на месте полиморфизмов в геноме. (1 этап)

• Убираем всю лишнюю информацию — подготавливаем файл для замены оснований на месте полиморфизмов в геноме. (2 этап)

Последовательность генома человека hg19. В ней будут заменены основания, стоящие в позициях полиморфизмов

Получим геном человека с внесенными изменениями.

Проверим правильность его составления.

В альтернативный геном были добавлены последовательности, принадлежность которых к определенной хромосоме не установлена. Они оставлены неизменными.

Альтернативный геном

Ш Терминал ▼ Файл Правка Вид Поиск Терминал Справка taaccctaaccctaaccctaaccctaaccctaacccta accctaaccctaaccctaaccctaaccctaaccctaaccctaac cctaacccaaccctaaccctaaccctaaccctaaccctaacccc taaccctaaccctaaccctaaccctaaccctaaccctaaccctaa ccctaaccctaaccctaaccctaacccctaaccctaaa ccctaaaccctaaccctaaccctaaccctaaccccaaccccaac cccaaccccaaccccaaccctaaccctaaccctaacc ctaccctaaccctaaccctaaccctaaccctaacccc taaccctaaccctaaccctaaccctaaccctaaccct tctgacctgaggagaactgtgctccgccttcagagtaccaccgaaatctg tgcagaggacaacgcagctccgccctcgcggtgctctccgggtctgtgct gcgcaggcgcagaggcgcgcgcgcggcgcaggcgcagagaggcgcg ccgcgccggcgcaggcgcagaggcgcgccgccggcgcaggcgcaga cacatgctagcgcgtcggggtggaggcgtggcgcagggcgcgc gccgcgccggcgcaggcgcagagacacatgctaccgcgtccaggggtgga ggcgtggcgcaggcgcagaggcgcaccgcgccggcgcaggcgcagaga cacatgctagcgcgtccaggggtggaggcgtggcgcaggcgcagagacgc AAGCCTAGGGGGGGGGTTGGGGGGGGGGTGTGTTGCAGGAGCAAAGTCGC acggcgccgggctggggggggggggtggcgccgtgcacgcgcagaaa ctcacgtcacggtggcgcggcgcagagacgggtagaacctcagtaatccg aaaagccgggatcgaccgcccttgcttgcagccgggcactacaggaccc gcttgctcacggtgctgtgccagggcgccccctgctggcgactagggcaa ctgcagggctctcttgcttagagtggtggccagcgccccctgctggcgcc

Итог выполнения 1 задачи

- Из базы данных db_SNP (version 151) Было получено 11,8 млн SNP полиморфизмов с частотой более 1 %. Среди этих полиморфных вариантов были отобраны только однонуклеотидные замены. (их кол-во 10,5 млн).
- На основнии полученных полиморфизмов и генома hg19 был получен альтернативный геном.

Задача 2: Глубокий мутагенез in silico

⊡ Терминал ▼												
Файл	Правка	Вид	Поиск	Терминал	Справк							
#CHOM	POS	I	D	REF	ALT							
chr1	69090			T	A							
chr1	69090			T	G							
chr1	69090			T	C							
chr1	69091			A	T							
chr1	69091			Α	G							
chr1	69091			A	C							
chr1	69092			T	Α							
chr1	69092			T	G							
chr1	69092			T	C							
chr1	69093			G	Α							
chr1	69093			G	T							
chr1	69093			G	C							
chr1	69094			G	Α							
chr1	69094			G	T							
chr1	69094			G	C							
chr1	69095			T	Α							
chr1	69095			T	G							
chr1	69095			T	C							
chr1	69096			G	Α							
chr1	69096			G	T							
chr1	69096			G	C							

Глубокий мутагенез in silico

Список 20274 генов человека, полученных из базы данных GENCODE v 24

changed_genom.fa

Глубокий мутагенез in silico

• Сортируем гены по порядку следования хромосом в альтернативном геноме.

Глубокий мутагенез in silico

 Получаем итоговый файл для SpliceAI.
 Проверяем правильность его составления.

Полученный файл

⊡ Терминал ▼											
	100		_						gatupov@gatupov		
Файл	Правка	Вид Поис	к Термиі	нал Справ	ка		1000000000				
#CHOM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	SAMPLE		
chr1	69090		T	Α	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69090		T	G	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69090		T	C	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69091		Α	T	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69091		Α	G	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69091		Α	C	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69092		T	Α	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69092		T	G	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69092		T	C	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69093		G	А	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69093		G	T	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69093		G	C	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69094		G	Α	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69094		G	T	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69094		G	C	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69095		T	Α	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69095		T	G	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69095		T	C	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69096		G	Α	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69096		G	T	100	PASS	MQ=50	AF:GT	0.5:0/1		
chr1	69096		G	C	100	PASS	MQ=50	AF:GT	0.5:0/1		

Итог выполнения 2 задачи

- Из базы GENCODE v 24 были получены координаты проаннотированных 20274 генов человека.
- Для каждой нуклеотидной позиции генов человека были сгенерированы все возможные альтернативные варианты нуклеотидной последовательности (1.25 млрд вариантов)

Задачи следующего семестра

- Используя последовательность альтернативного генома и данные о глубоком мутагенезе с помощью SpliceAl получить предсказания для вариантов нуклеотидной последовательности на прохождение сплайсинга.
- Сравнить полученные данные с данными, полученными на основе референсного генома и найти варианты нуклеотидной последовательности, способные по-разному влиять на прохождение сплайсинга в зависимости от геномного окружения.

Спасибо за внимание!