

Tauchgangsplanung – Umkehrdruck

Ausgangsüberlegung

Bei welchem Druck ist spätestens der Aufstieg zu beginnen, damit die Restluft für den Aufstieg einschließlich Austauchpausen und Sicherheitsstopp reicht?

(hier: Versorgung eines Tauchers ohne Probleme)

- Berechnung des erforderlichen Luftvolumens für den Aufstieg einschließlich Austauchpausen (Dekostopps) und Sicherheitsstopp.
- In Abhängigkeit der Flaschengröße kann der notwendige Mindestdruck errechnet werden.

Bei dieser Berechnung wird der Reservedruck nicht mit eingeplant!

Beispiel

Aufstiegsberechnung bei Nullzeittauchgang

Aufstieg aus 40 m Tiefe:

4 min bis zur Oberfläche 3 min Sicherheitsstopp auf 5 m

7 min Gesamtaufstiegszeit

Gasverbrauch beim Aufstieg

Nullzeittauchgang (Atemminutenvolumen: 20 l/min)

Aufstieg aus 40 m Tiefe:

4 min x 5 bar x 20 l/min : 1 bar → 400 Liter

3 min x 1,5 bar x 20 l/min : 1 bar → 90 Liter

Gesamtvolumen Aufstieg → 490 Liter

Notwendiger Mindestdruck bei einer 10 Liter Flasche

Boyle-Mariotte: p x V = konstant

→ pDTG x VDTG = pOberfläche x VOberfläche

Gesucht: Druckdifferenz DTG (pdtg)

Notweniges Luftvolumen 490 Liter (VOberfläche)

Volumen DTG = 10 Liter (VDTG)

Umgebungsdruck Oberfläche: 1 bar (poberfläche)

 $p_{DTG} = p_{Oberfläche \ x \ V_{Oberfläche}} = 1 bar \ x \ 490 \ I = 49 bar$ $V_{DTG} \qquad \qquad 10 \ I$

Mindestdruck: 49 bar + 50 bar = 99 bar

Notwendiger Mindestdruck bei verschiedenen Flaschengrößen

Flaschen- größe	Luft- volumen	Druck- differenz	Reserve- druck	Mindest- dest- druck
10	490 l	49 bar	+ 50 bar	99 bar
12	490 I	41 bar	+ 50 bar	91 bar
14 l (2 x 7 l)	490 I	35 bar	+ 50 bar	85 bar
15 l	490 l	33 bar	+ 50 bar	83 bar
20 l (2 x 10 l)	490 l	25 bar	+ 50 bar	75 bar
24 l (2 x 12 l)	490 l	20 bar	+ 50 bar	70 bar

 $p_{DTG} = p_{Oberfläche \ X \ VOberfläche}$ V_{DTG}

Annahme für die Berechnung des Umkehrdrucks

Vollständiger Ausfall des Partner DTG auf 40 m Tiefe (hier: Problem und Versorgung von zwei Tauchern)

- Berechnung des erforderlichen Luftvolumens für den Aufstieg einschließlich Austauchphasen (Dekostopps) und Sicherheitsstopp.
- Berechnung des Umkehrdrucks in Abhängigkeit der Flaschengröße.

Ein Reservedruck muss bei diesem Szenario nicht im DTG verbleiben!

Aufstiegsberechnung bei Nullzeittauchgang

Aufstieg aus 40 m Tiefe:

1 min Problemlösung4 min bis zur Oberfläche3 min Sicherheitsstopp auf 5 m

8 min Gesamtaufstiegszeit

Gasverbrauch beim Aufstieg: **Nullzeittauchgang**Atemminutenvolumen: 20 l/min + 20 l/m (Partner)

Aufstieg aus 40 m Tiefe:

1 min x 5 bar x 40 l/min : 1 bar → 200 Liter

4 min x 5 bar x 40 l/min : 1 bar → 800 Liter

3 min x 1,5 bar x 40 l/min : 1 bar → 180 Liter

Gesamtvolumen Aufstieg → 1.180 Liter

Umkehrdruck bei einer 10 Liter Flasche

Boyle-Mariotte: p x V = konstant

→ pdtg x Vdtg = poberfläche x Voberfläche

Gesucht: Druckdifferenz DTG (**р**от**G**)

Notweniges Luftvolumen 1.180 Liter (Voberfläche)

Volumen DTG = **10 Liter** (**V**DTG)

Umgebungsdruck Oberfläche: 1 bar (Poberfläche)

 $p_{DTG} = p_{Oberfläche} \times V_{Oberfläche} = 1 bar \times 1.180 l = 118 bar$

VDTG **10** I

Umkehrdruck: 118 bar

Annahme für die Berechnung des Umkehrdrucks

Flächengröße	Luftvolumen	Druckdifferenz	Umkehrdruck
10 l	1.180 l	118 bar	118 bar
12	1.180 l	98 bar	98 bar
14 l (2 x 7 l)	1.180 l	84 bar	84 bar
15 l	1.180 l	79 bar	79 bar
20 l (2 x 10 l)	1.180 l	59 bar	59 bar
24 l (2 x 12 l)	1.180	49 bar	49 bar

pdtg = poberfläche x Voberfläche
Vdtg

Umkehrdruck bei verschiedenen Flaschengrößen und 40 m Tiefe

Flaschengröße	Luftvolumen	Druckdifferenz	Umkehrdruck	Mindestdruck
10 l	1.180 l	118 bar	118 bar	99 bar
12 l	1.180 l	98 bar	98 bar	91 bar
14 l (2 x 7 l)	1.180	84 bar	84 bar	85 bar
15 l	1.180	79 bar	79 bar	83 bar
20 l (2 x 10 l)	1.180	59 bar	59 bar	75 bar
24 l (2 x 12 l)	1.180	49 bar	49 bar	70 bar

Wir beenden bei Erreichen des Umkehrdrucks den Tauchgang und beginnen mit dem Austauchen.

Zum Vergleich: Mindestdruck ohne Probleme aber inklusive Reservedruck

Umkehrdruck = Voberfläche x 1 bar : VDTG

mit

VOberfläche = pmax. Tiefe x (tAufstieg + 1 min) x 2 x AMV : 1 bar

+ pStopp x tStopp x 2 x AMV : 1 bar

- **AMV** kann mit 20 l/min angesetzt werden (bei Bedarf natürlich auch höher), für **2** Personen also mit 40 l/min
- Druck der maximalen Tiefe pmax. Tiefe auch für den Aufstieg
- Zeit für den Aufstieg **t**Aufstieg noch um **+ 1 min** zur Problemlösung erhöhen
- Ggf. Luftvolumen f
 ür weitere Stopps addieren

Umkehrdruck bei verschiedenen Flaschengrößen und Tiefen

Wassertiefe	20 m	30 m	40 m
Luftvolumen	540 l	820 l	1.180 l
10 l	54 bar	82 bar	118 bar
12 l	45 bar	68 bar	98 bar
14 l (2 x 7 l)	39 bar	59 bar	84 bar
15 l	36 bar	55 bar	79 bar
17 l (2 x 8,5 l)	32 bar	48 bar	69 bar
20 l (2 x 10 l)	27 bar	41 bar	59 bar
24 l (2 x 12 l)	23 bar	34 bar	49 bar

Aufstiegsberechnung bei Dekotauchgang

Aufstieg aus 40 m Tiefe nach 15 min Grundzeit:

1 min Problemlösung

4 min bis zur Oberfläche

4 min Dekostopp auf 6

6 min Dekostopp auf 3 m

3 min Sicherheitsstopp auf 3 m

18 min Gesamtaufstiegszeit

Gasverbrauch beim Aufstieg: Dekotauchgang

Atemminutenvolumen: 20 l/min + 20 l/min (Partner)

Aufstieg aus 40 m Tiefe nach 15 min Grundzeit:

1 min x 5 bar x 40 l/min : 1 bar	\rightarrow	200 Liter
4 min x 5 bar x 40 l/min : 1 bar	\rightarrow	800 Liter
4 min x 1,6 bar x 40 l/min : 1 bar	\rightarrow	256 Liter
6 min x 1,3 bar x 40 l/min : 1 bar	\rightarrow	312 Liter
3 min x 1,3 bar x 40 l/min : 1 bar	\rightarrow	156 Liter
Gesamtvolumen Aufstieg	\rightarrow	1.724 Liter

Wie ist vorzugehen, wenn beide Tauchpartner unterschiedliche Flaschengrößen haben?

Annahme:

- Taucher A hat eine 15-Liter-DTG
- Taucher B hat eine Doppel-7-Liter-DTG

Bei unterschiedlichen Flaschengrößen ist aus Sicherheitsgründen vom ungünstigeren Fall auszugehen, d.h. es wird die kleinste vorhandene Flaschengröße angesetzt.

Hier: 2 x 7 Liter

Umkehrdruck bei einer 2 x 7 Liter Flasche

Boyle-Mariotte: $p \times V = konstant$

→ pDTG x VDTG = pOberfläche x VOberfläche

Gesucht: Druckdifferenz DTG (pDTG)

Notweniges Luftvolumen 1.724 Liter (VOberfläche)

Volumen DTG = 14 Liter (VDTG)

Umgebungsdruck Oberfläche: 1 bar (pOberfläche)

$$p_{DTG} = p_{Oberfläche} \times V_{Oberfläche} = 1 bar \times 1.724 l = 123 bar$$

V_{DTG} 14 I

Umkehrdruck: 123 bar

Kann dieser Tauchgang so durchgeführt werden?

Für die Grundzeit von 15 min auf 40 m erforderliches Luftvolumen:

15 min x 5 bar x 20 l/min : 1 bar = 1.500 l

Zuzüglich Gesamtvolumen Aufstiegt 1.724 l

Ergibt 3.224 I

d.h. der Flascheninhalt von 2.800 I reicht nicht aus!

Lösungsansätze:

- Tauchgang mit größerem DTG durchführen (z.B. Doppel-8,5 I-DTG)
- geplante Grundzeit reduzieren