CS 475/575 -- Spring Quarter 2017

Project #1

OpenMP: Numeric Integration with OpenMP

Professor Mike Bailey

Xiao Tan

In this project, I run my program on server (flip.engr.oregonstate.edu). After I run my program, I got the volume is around 25.32, which is got when I set subdivisions as 8192, this result should be the most precise in my results.

After I run my script, I got several results of the performances of different threads or subdivisions, the following table shows the result I've got.

	16	32	64	128	256	512	1024	2048	4096	8192
1	13.41	13.4	13.52	13.47	13.44	13.43	13.44	13.38	13.44	13.44
2	22.93	25.6	26.49	14.03	13.86	26.74	26.78	26.78	26.87	26.88
4	34.27	46.63	49.79	50.98	50.92	51.4	51.49	51.47	51.49	51.47
8	41.25	54.78	61.95	63.17	63.59	62.71	76.28	102.21	102.24	102.57
16	35.75	76.06	107.12	121.12	125.44	126.05	125.63	125.98	126.22	130.64

The first column is the numbers of threads, and row presents the numbers of subdivisions.

I saw when the subdivision rise, the performance will be some increase till they got a boundary. Moreover, when the threads numbers increased twice between the previous one, the performance will be double, I think it because threads doubled, so that system can spilt tasks to half, two threads can work parallel. However, 16 thread is different, it not increases that much, I presume that because the parallel portion not be dominant that much, sequential portion got more dominant while increasing to 16 threads.

According to the Inverse Amdahl equation $F = \frac{n}{n-1} \frac{T_1 - T_n}{T_1}$, use the data shows in the previous table, and T = 1/P, so that when $n = 2, 4, 8, 16, F_p = 1, 0.985, 0.99, 0.95$. so $\overline{F} = 0.98$

Furthermore, according to the speed-up equation $S = \frac{T_1}{T_n}$, so the maximum speed-up I ever got is 9.7 while I set threads number is 16.