

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

APPLIED COMPUTATIONAL METHODS LABORATORY LAB – 6 Report

Rajiv Harlalka 20MA20073 Department of Mathematics

```
Nefine input parameters

n=20; % number of inner nodes in one direction.

a_amp = 12; % amplitude for the function a(x_1,x_2)

f_amp = 1; % we can choose f=1, 50, 100

x_0=0.5;
c_w=1;
c_y=1;
    c - 2e+05(1,917)
for i=1:n
for j=1:n
C(i,j) = 1 + a_amp*exp(-((i*h-x_0)^2/(2*c_x^2)...
+(j*h-y_0)^2/(2*c_y^2)));
and
     end
end
     % create diagonal matrix from C
D = zeros(n^2,n^2);
    for i=1:n
for j=1:n
D(j+n*(i-1),j+n*(i-1)) = C(i,j);
    % If is Gaussian function.
f=zeros(n^2,1);
for i=:n
for j=:n
f(n*(i-1)+j)=f_amp*exp(-((i*h-x_0)^2/(2*c_x^2)...
+(j*h-y_0)^2/(2*c_y^2)));
and
     % Compute vector of right hand side
% b = D^(-1)*f computed as b(i,j)=f(i,j)/a(i,j)
b=zeros(n^2,1);
     D==cro((i = j=3)

for i=1:n

for j=1:n

b(n*(i-1)+j)=f(n*(i-1)+j)/C(i,j); % Use coefficient matrix C or
    err = 1; k=0; sch = 0; tol=10^(-9);
V = zeros(n,n);
V_old = zeros(n,n);
F=vec2mat(b,n)';
X=diag(ones(1,n-1),-1);
X=X+X';
     blackindex = invhilb(n) < 0;
redindex = fliplr(blackindex);</pre>
   V(tell
ReV;
V(blackindex)=0;
v(blackindex)=0;
redf = F; redf(blackindex)=0;
blackF = F; blackF(redindex)=0;
blackF = F; blackF(redindex)=0;
     U=L';
Dinv=diag(diag(S).^(-1));
    Dinv*(-L);

L = Dinv*(-L);

U = Dinv*(-U);

D=diag(ones(1,n*n));

omegas = 1.05:0.05:1.95;

for omega = omegas
     R=V;
V(blackindex)=0;
```

```
sch = sch+1;
while(err>tol)
         R = (1 - omega)*R + omega*(X*B + B*X + h^2*redF)/4;
B = (1- omega)*B + omega*(X*R + R*X + h^2*blackF)/4;
          b = (1- omega)^b + omega^(x
k=k+1;
V_new =R+B;
err = norm(V_new - V_old);
V_old = V_new;
       RSOR = int(0 - omega+1)*((1-omega)*0 + omega*1);
lambda = max(abs(eig(RSOR)));
mu = (lambda + omega - )/(sart(lambda)*omega);
disp('-- Relaxation parameter in SOR method -------')
      end
disp('-- Number of iterations in SOR method -----')
       k;
iterations(sch) = k;
spectral_radius(sch)= radius;
omega_optimal(sch) = omega_opt;
end
       %% plotting
xi=@ih:1;
yi=@ih:1;
yi=@ih:1;
subplot (2,2,1)
surf(x1,y1,V_new) % same plot as above, (x1, y1 are vectors)
       surf(x1,y1,V_new) % same plot as above, (x1, y1 a
view(2)
colorbar
xlabel('x_1')
ylabel('x_2')
zlabel('u(x_1,x_2)')
title(['solution u(x_1,x_2) in SOR method ',...
', N = ',num2str(n),', iter. = ',num2str(k)])
subplot (2,2,2)
surf(x1,y1,V_new) % same plot as above
colorbar
xlabel('x_1')
ylabel('x_2')
zlabel('u(x_1,x_2)')
title(['solution u(x_1,x_2) in SOR method',...
', N = ',num2str(n),', iter. = ',num2str(k)])
% Plotting a(x,y)
         % Plotting alx.yl
Z.a= zeros(n-2);
for i=1:(n-2)
for j=1:(n-2)
for j=1:(n-2)
= 1 + a_amp*exp(-{(i*h-x_0)^2/(2*c_x^2)...
*(j*h-y_0)^2/(2*c_y^2))};
   \[ \frac{1}{2} = \frac{1}{2} \text{crost(n.c.)}, \\ \frac{1}{2} = \frac{1}{2} \text{for } = \frac{1}{2} \text{for } = \frac{1}{2} \text{for } = \frac{1}{2} \text{for } \text{j.c.} \\ \frac{1}{2} = \frac{1}{2} \text{mp*exp(-((xl(i)-x_0)^2/(2*c_x^2)... + (yl(i)-y_0)^2/(2*c_y^2)));} \\ \frac{1}{2} = \frac{1}{2} \text{mp*exp(-(xl(i)-x_0)^2/(2*c_y^2)));} \\ \frac{1}{2} = \frac{1}{2} \text{mp*exp(-(xl(i)-x_0)^2/(2*c_y^2));} \\ \frac{1
+(y1(j)-y_0) --,
end
subplot (2,2,4)
surf(x1,y1,Z_f)
xlabel('x_1')
ylabel('x_2')
zlabel('f(x_1,x_2')')
title( 'f(x_1,x_2)') vith A_f = ',num2str(f_amp)])
s.glor_convergence of SOR depending on omega
          figure(2)
plot(omegas, iterations,'b o-', 'LineWidth',2)
       hold on plottomega.optimal, iterations, 'r o ', 'LineWidth',2) xlabel('Relaxation parameter \omega') ylabel('Number of iterations in SOR') legend('SOR(\omega') \( \computed \) optimal \( \omega') \) title(['Mesh: ',num2str(n),' by ',num2str(n),' points']) \( \int \) nut convergence of SOB demending on pumen.
         figure(3)
plot(omegas, spectral_radius,'b o-', 'LineWidth',2)
xlabel('Relaxation parameter \omega')
ylabel('Spectral radius \rho(R_{50R(\omega)})')
legend('\rho(R_{50R(\omega)})')
title(['Mesh: ',num2str(n),' by ',num2str(n),' points'])
```

Output:
Relaxation parameter in SOR method
Computed optimal relaxation parameter
omega_opt =
- - ·
1.7406
1.7 100
omogo comogo ent
omega < omega_opt
ans =
0.4864
Number of iterations in SOR method
Relaxation parameter in SOR method
Computed optimal relaxation parameter
omega_opt =
1.7406
omega < omega ont
omega < omega_opt

1.7406
omega < omega_opt
ans =
0.4626
Number of iterations in SOR method
Relaxation parameter in SOR method
Computed optimal relaxation parameter
omega_opt =
1.7406
omega < omega_opt
ans =
0.4490
Number of iterations in SOR method
Relaxation parameter in SOR method

Number of iterations in SOR method
Relaxation parameter in SOR method
Computed optimal relaxation parameter
omega_opt =
1.7406
omega < omega_opt
ans =
0.3894
November of iterations in COD months of
Number of iterations in SOR method
Relaxation parameter in SOR method
Computed optimal relaxation parameter
omega_opt =
4 7406
1.7406

omega < omega_opt
ans =
0.3626
Number of iterations in SOR method
Relaxation parameter in SOR method
Computed optimal relaxation parameter
omega_opt =
1.7406
omega < omega_opt
ans =
0.3317
Number of iterations in SOR method
Relaxation parameter in SOR method
Computed optimal relaxation parameter

Number of iterations in SOR method
Relaxation parameter in SOR method
Computed optimal relaxation parameter
omega_opt =
1.7406
omega < omega_opt
ans =
0.2032
Number of iterations in SOR method
Relaxation parameter in SOR method
Computed optimal relaxation parameter
omega_opt =
4.7406
1.7406
omaga comaga ont
omega < omega_opt

```
ans =
  0.1350
-- Number of iterations in SOR method -----
-- Relaxation parameter in SOR method -----
-- Computed optimal relaxation parameter -----
omega_opt =
  1.7500
-- omega opt < omega < 2.0 -----
-- Number of iterations in SOR method -----
-- Relaxation parameter in SOR method -----
-- Computed optimal relaxation parameter -----
omega_opt =
  1.8000
-- omega_opt < omega < 2.0 -----
-- Number of iterations in SOR method -----
-- Relaxation parameter in SOR method -----
```

Computed optimal relaxation parameter
omega_opt =
1.8500
omega_opt < omega < 2.0
Number of iterations in SOR method
Relaxation parameter in SOR method
Computed optimal relaxation parameter
omega_opt =
1.9000
omega_opt < omega < 2.0
Number of iterations in SOR method
Relaxation parameter in SOR method
Computed optimal relaxation parameter
omega_opt =
1.9500

- -- omega_opt < omega < 2.0 -----
- -- Number of iterations in SOR method -----

Plot SOR Solution

Plot SOR Iterations and Spectral Radius

