EE208 EXPERIMENT 7

STATE FEEDBACK DESIGN IN THE DIGITAL DOMAIN

GROUP NO. 9

ARYAN BANSAL – 2020EEB1162 HIYA KWATRA – 2020EEB1173 ISHAAN SETHI – 2020EEB1174

Objective

To design state feedback for a given digital state-space system, so as to realize performance specifications for different applications.

System

The discretized state open-loop space representation for an armature-controlled DC motor is described by:

$$\mathbf{F} = \begin{bmatrix} 1.0 & 0.1 & 0.0 \\ 0.0 & 0.9995 & 0.0095 \\ 0.0 & -0.0947 & 0.8954 \end{bmatrix} \; ; \quad \mathbf{g} = \begin{bmatrix} 1.622 \times 10^{-6} \\ 4.821 \times 10^{-4} \\ 9.468 \times 10^{-2} \end{bmatrix}$$

Corresponding to a sampling time of 0.01s.

Tasks

- 1. Design state feedback gain matrices for three applications, for which the closed loop discrete time eigenvalue specifications are respectively as follows:
 - a. 0.1, 0.4 \pm 0.4j
 - b. 0.4, 0.6 \pm 0.33j
 - c. All three eigenvalues at the origin.
- 2. For each case, discuss the response of the closed loop system for zero input with initial state vector as: $\mathbf{x_0} = [1 \ 1 \ 1]^T$.
- 3. Also examine the responses for step and ramp inputs.

MATLAB Functions Used

eye, ss, eig, place, acker, lsim, lsiminfo, initial, step, stepinfo, pzmap, stem

Pole placement

Open loop system

We have assumed the C and D matrices as follows:

```
% C and D matrices not given in the handout, setting D = 0 and
% C = identity matrix to view all states' time response.
C = eye(3);
D = 0;
```

The eigenvalues of the open-loop system are 1, 0.99, 0.9049.

Designing gain matrices

Designing the gain matrices in MATLAB is simple, and can be done with a single command - **place** or **acker** (for poles with multiplicity > 1).

Using this command, we obtain the following gain matrices corresponding to each application –

```
K_1 = 1e3 * [4.9268  1.4324  0.0137]

K_2 = 1e3 * [1.6985  0.7009  0.0101]

K_3 = 1e4 * [1.0527  0.2621  0.0017]
```

We can also see the actual poles placed –

```
>> pole(system_CL_1)
ans =
   0.4000 + 0.4000i
   0.4000 - 0.4000i
   0.1000 + 0.0000i
>> pole(system_CL_2)
ans =
   0.6000 + 0.3300i
   0.6000 - 0.3300i
   0.4000 + 0.0000i
>> pole(system_CL_3)
ans =
   1.0e-05 *
   0.2661 + 0.4609i
   0.2661 - 0.4609i
  -0.5322 + 0.0000i
```

For Applications 1 and 2 the poles are placed at the exact locations, but pole placement for Application 3 is inaccurate because of numerical limitations in MATLAB – placing multiple poles at the z-domain origin is bound to induce some numerical error.

Zero input responses with initial state $x_0 = [1 \ 1 \ 1]^T$

Application 1

- Settling time for all three states is around 0.08s.
- Steady-state values are 0, as is expected for natural response.
- General behavior is oscillatory.

- Settling times are respectively: 0.1153 s, 0.1299 s, and 0.1362 s.
- Comparing with Application 1, damping of complex poles is increased (0.685 from 0.566), but frequency is decreased (63 rad/s from 97 rad/s). For the real pole, frequency is decreased from 230 rad/s to 91.6 rad/s.

• Thus, even though damping is increased, the frequencies of all three poles have been reduced, hence settling time increases slightly.

- Settling time for all three states is approximately 0.03 s.
- All three poles are at origin, having a higher frequency, hence the settling times are lesser.

Step responses

Application 1

State	y_ss	Transient Time
x1	0.000203	0.0741
x2	0	0.0815
<i>x3</i>	0	0.0876

- Steady-state value for x2 and x3 is zero.
- Overall, the response is of very small magnitude.

State	y_ss	Transient Time
xI	0.000589	0.112
x2	0	0.128
<i>x3</i>	0	0.137

- Very similar response to that of Application 1.
- Transient Times have been increased, due to lesser frequency of poles, as discussed for the natural response case.

State	<i>y_ss</i>	Transient Time
xI	9.5*e-5	0.0296
x2	0	0.0298
<i>x3</i>	0	0.0298

- The response is very short-lived, due to high-frequency poles (in digital domain, poles near the origin are high-frequency).
- Similar to above cases, steady state-value is zero for x2 and x3.

Ramp responses

Application 1

Application 3

For all three cases, the responses are very similar so we shall discuss them together:

- State x1 follows the ramp input with some delay.
- State x2 settles down to a particular value. The settling times and peak overshoots change due to the difference in eigenvalues, as has been discussed before.
- State x3 settles down to 0, with the same reason for difference in settling times.

The various responses to initial-state, step-input and ramp-input differ because of:

- 1. Change in poles (i.e., CL eigenvalues), across different applications.
- 2. Change in zeros, across the states x1, x2, x3.

Conclusions

In this experiment we designed state feedback gain matrices for a given digital system to achieve the required specifications. We studied the CL system's natural response to a given initial state. We also studied the step and ramp responses for various CL eigenvalue placements.

MATLAB Script

https://drive.google.com/file/d/1yk6o-RC_tjPzFxO1kS5BJ6eMuyK6ig-F/view?usp=sharing