Interdependent Evolution of Non-Spectral Opinions and Social Networks

Fabian Russmann and Stefan Rustler "Social State Physicists"

Zurich, December 18 2012

OVERVIEW

INTRODUCTION

INTRODUCTION Background and Motivation

THE MODEL
Initial Setup
Time Evolution Algorithm

RESULTS

Cluster Size Distribution Phase Transition and Critical Point Convergence Time Comparisons to Empirical Data

CONCLUSION

Summary References

BACKGROUND AND MOTIVATION

- ► Opinion Formation (e.g. voter models) is a common and very fundamental problem in the social sciences
- ► Goal: Modelling the *co*evolution of both opinions and the underlying social network
- Does our social network shape the opinion we hold or does our opinion determine who is part of our network?
- "Opinion" must be mutually exclusive and "non-spectral", e.g. brand preference, religious views...
- Preview: Analogies to statistical physics, e.g. phase transitions can be identified

INITIAL SETUP

- ► Random graph with *N* nodes (opinion holder) and *M* edges (social connection)
- ▶ Random opinion g_i ∈ G assigned to node i
- Nodes exchange information (opinion) via undirected edges
- Externally set parameters:
 - ► *N* number of nodes
 - $\gamma = \frac{N}{G}$ average number of nodes per opinion
 - $k_{avg} = \frac{2M}{N}$ average degree
 - Φ reconnection probability

INTRODUCTION

- 1. Pick a random node i with opinion g_i .
- 2. (a) With probability Φ select at random one of the nodes j that *i* is connected to.
 - ▶ If $g_i = g_i$, start over at step 1.
 - ► Otherwise, reconnect to a randomly chosen j' of same opinion, i.e. $g_{i'} = g_i$.
- 3. (b) Otherwise, with probability 1Φ randomly select one of the neighboring vertices j and change g_i to g_j .
- 4. Repeat until *consensus state* is achieved.

CLUSTER SIZE DISTRIBUTION

CONTINUOUS PHASE TRANSITION?

CLUSTER SIZE DISTRIBUTION

- Ordered phase
 - ▶ Low Φ , i.e. tendency to change opinion
 - Small clusters follow power law distribution
 - ► Existence of giant cluster
- ► Unordered phase
 - ▶ High Φ , i.e. tendency to keep opinion
 - ► Clusters follow Poisson-like distribution
 - No giant cluster!
- ► Phase transition
 - First guess: $\Phi_c = 0.35 \pm 0.05$
 - ▶ Power law behavior over the whole *s*-range

PHASE TRANSITION & CRITICAL POINT

- ► Really continuous phase transition
- ▶ Bigger N → more dramatic transition
- $\Phi_c = 0.32 \pm 0.02$ independent of system size *N*
- ▶ Weak agreement with $\Phi_c = 0.39 \pm 0.05$

CONVERGENCE TIME

- ▶ Iterations per node to reach consensus as function of Φ :
- ▶ "Divergence" at some Φ_c for different N
- ► Similar to divergent response functions in physics
- ► Supporting phase transition interpretation, but difficult to find direct analogy to τ_{avg}

COMPARISONS TO EMPIRICAL DATA

- ▶ Idea: Compare distributions of some "opinion" in real world to the model \rightarrow identify and interpret corresponding Φ
- ► Religion:

INTRODUCTION

► Worldwide distribution of religions follows power law: Neither adaptation nor reconnection dominate in the formation?

▶ Interpret Φ as an "intolerance indicator"?

► Mobile Web Browsers:

INTRODUCTION

- ► An example for opinion = brand preference
- ► Contrast between giant cluster and "softer" distribution
- ▶ Note: Plot is not a cluster size histogram!

▶ Interpret Φ as a "brand loyalty indicator"?

▶ Interdependent evolution of opinions and networks, combining two mechanisms of adaption and reconnection determined by Φ

- Holme's and Newman's work could be reproduced with more realistic assumptions
- Continuous phase transition
 - *N*-independent critical value $\Phi_c = 0.32 \pm 0.02$
 - ▶ Divergent convergence time at Φ_c

Outlook

- ▶ Variation of γ (diversity) and k_{avg} (density)
- Include analogue of "magnetic field" in model: "informed agents"?
- ► Make opinions *spectral*

INTRODUCTION

R. Albert, A.-L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys. 74:4798, 2002.

S. Brugger, C. Schwirzer. Opinion formation by "employed agents" in social networks. Project Report: Modelling and Simulating Social Systems with MATLAB, ETH Zurich, 2011.

C. Castellano, D. Vilone, and A. Vespignani. Incomplete ordering of the voter model on small-world networks. Europhys. Lett., 63:153158, 2003.

P. Erdős, A. Rényi. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5: 1761, 1960.

P. Holme, M. E. J. Newman. Nonequilibrium phase transition in the coevolution of networks and opinions. Physical Review E, vol. 74, Issue 5, id. 056108, 11/2006.

W. Nolting, Grundkurs Theoretische Physik 6: Statistische Physik, Springer Berlin Heidelberg, 5, Aufl. 2004.

Ouantcast, Ouantcast Review of 2009 Mobile Web Trends.

"https://www.guantcast.com/inside-guantcast/2010/01/guantcast-review-of-2009-mobile-web-trendsmobile-web-share-up-110-in-north-america-and-148-globally" Accessed December 13, 2012.

V. Sood, S. Redner. Voter model on heterogeneous graphs. Phys. Rev. Lett., 94:178701, 2005.

D. H. Zanette, S. C. Manrubia. Vertical transmission of culture and the distribution of family names. Physica A, 295:18, 2001.

A. Zheludev, Advanced solid state physics, Lecture, ETH Zurich, Fall 2012.