sine basis 06

Statistics: p-values adjusted for search volume

p immed majoritum in itematic												
set-level		cluster-level				peak-level					mm mm mm	
p	С	p_{FWE-c}	<i>g</i> corrFDR-co	orr E	puncorr	p_{FWE-c}	g corrFDR-co	T orr	(Z_{\equiv})	$p_{ m uncorr}$		
		0.366	0.014	122	0.002	1.000 0.748 0.895 1.000	0.592 0.038 0.052 0.746	2.88 4.30 4.16 2.67	2.86 4.26 4.13 2.66	0.002 0.000 0.000 0.004	-40 -50 -50 -46	8 28 -42 6 -40 26 -40 16
		0.981	0.081	64	0.018	0.831 1.000	0.047 0.380	4.23 3.14	4.19 3.12	0.000 0.001	50 48	-60 -18 -52 -20
		0.256	0.010	135	0.001	0.868 0.966 1.000	0.051 0.067 0.153	4.19 4.05 3.63	4.16 4.01 3.60	0.000 0.000 0.000	-8 -2 -18	-42 42 -48 46 -44 44
		0.720	0.029	93	0.006	0.883 1.000	0.051 0.746	4.18 2.67	4.14 2.66	0.000 0.004	-44 -40	-74 -14 -86 -10
		1.000 0.987 0.999 1.000 1.000	0.179 0.085 0.133 0.210 0.287	44 62 51 40 32	0.043 0.019 0.031 0.052 0.079	0.939 0.990 0.998 0.999 0.999	0.061 0.080 0.102 0.106 0.109	4.10 3.95 3.86 3.85 3.83	4.07 3.92 3.83 3.82 3.80	0.000 0.000 0.000 0.000 0.000	12 -2 12 44 -24	-20 40 -4 68 -54 54 44 4 -2 10
		0.046	0.002	195	0.000	0.999 1.000 1.000	0.109 0.158 0.185	3.82 3.61 3.52	3.79 3.58 3.50	0.000 0.000 0.000	66 54 64	-38 14 -42 22 -28 14
			0.026		0.005	0.999 1.000	0.111 0.234	3.80 3.41	3.77 3.39	0.000	22 22	8 -4 4 -12
		1.000	0.328	29	0.093	1.000	0.119	3.76	3.74	0.000	32	-58 -22