Character-Level Chinese Dependency Parsing

Meishan Zhang (HIT), Yue Zhang (HIT), Wanxiang Che (HIT), Ting Liu (SUTD) 2014

Kedi LI, Laura DARENNE, Alice WALLARD & Liza FRETEL

M2 TAL Inalco 2023-2024

Que promet l'article ?

Objectif

- contourner l'absence de norme universelle pour la segmentation des mots chinois
- obtenir un arbre de dépendances à la segmentation flexible contenant à la fois une segmentation par mots et une segmentation par caractères

Quelles sont les données utilisées ?

Datasets

Chinese Treebank 5.0, 6.0, 7.0.

source pour CTB 5.0 et 6.0 : fils de presse (newswire)

source pour CTB 7.0 : fils de presse, blog, magazine d'information ; transcrip--tion oral provenant de la radio

		CTB50	CTB60	CTB70
Tuoinina	#sent	18k	23k	31k
Training	#word	494k	641k	718k
	#sent	350	2.1k	10k
Development	#word	6.8k	60k	237k
	#oov	553	3.3k	13k
	#sent	348	2.8k	10k
Test	#word	8.0k	82k	245k
	#oov	278	4.6k	13k

Table 2: Statistics of datasets.

Arbre de dépendance basique

(a) a word-based dependency tree

Arbre de dépendance avec leurs nouveaux modèles

(c) a character-level dependency tree investigated in this paper with both real intra- and inter-word dependencies

Choix du découpage des mots

Travaux précédents

- Hai Zhao. 2009. Character-level dependencies in chinese: Usefulness and learning. In Proceedings of the EACL, pages 879-887, Athens, Greece, March.
- Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting Liu.
 2013. Chinese parsing exploiting characters. In Proceedings of the 51st ACL, pages 125-134, Soa, Bulgaria, August.
- Yue Zhang and Stephen Clark. 2011. Syntactic processing using the generalized perceptron and beam search. Computational Linguistics, 37(1):105-151.

Deux systèmes d'analyse des dépendances basées sur les transitions

Arbre de dépendance avec leurs nouveaux modèles

(c) a character-level dependency tree investigated in this paper with both real intra- and inter-word dependencies

The arc-standard parser

step	action	stack	queue	dependencies
0	-	ϕ	林 业 …	ϕ
1	$SH_w(NR)$	林/NR	业 局 …	ϕ
2	SH_c	林/NR 业/NR	局 副 …	ϕ
3	AL_c	业/NR	局 副	$A_1 = \{ 林 ^ $
4	SH_c	业/NR 局/NR	副 局	A_1
5	AL_c	局/NR	副 局	$A_2 = A_1 \cup \{ \underline{\mathbb{W}} \cap \mathbb{B} \}$
6	PW	林业局/NR	副 局	A_2
7	$SH_w(NN)$	林业局/NR 副/NN	局 长	A_2
				• • •
12	PW	林业局/NR 副局长/NN	会上…	A_i
13	$AL_{\rm w}$	副局长/NN	会上…	$A_{i+1} = A_i \cup \{ 林业局/NR^{\cap} 副局长/NN \}$
		3.2.5		5.5.5

(a) character-level dependency parsing using the arc-standard algorithm

Construction des dépendances

```
état de transition
```

```
une pile (stack) + une file d'attente (queue)
```

- la pile : arbre de dépendance séquencé partiellement analysé
- la file d'attente : mots non traités.

Actions définissant les changements d'état entre les mots

- ALw arc-left
- ARw arc-right
- PR pop-root
- SHw last shift

Actions définissant les changements d'état au sein du mot

- ALc intra-word arc-left
- ARc intra-word arc-right
- PW pop-word
- SHc inter-word shift

The arc-eager parser

step	action	stack	deque	queue	dependencies
0	<u>=</u>	ϕ	- 22	林 业 …	235
1	$SH_c(NR)$	ϕ	林/NR	业 局 …	ϕ
2	AL_c	ϕ	ϕ	业/NR 局	$A_1 = \{ \bigstar ^ \Psi \}$
3	SH_c	ϕ	业/NR	局 副 …	A_1
4	AL_c	ϕ	ϕ	局/NR 副 ···	$A_2 = A_1 \cup \{ \underline{\Psi} \cap \overline{\beta} \}$
5	SH_c	ϕ	局/NR	副 局	A_2
6	PW	ϕ	林业局/NR	副 局	A_2
7	SH_{w}	林业局/NR	ϕ	副 局	A_2
				0.20	
13	PW	林业局/NR	副局长/NN	会 上 …	A_i
14	AL_w	ϕ	副局长/NN	会 上 …	$A_{i+1} = A_i \bigcup \{ 林业局/NR^{\cap} 副局长/NN \}$
					•••

(b) character-level dependency parsing using the arc-eager algorithm, t=1

Figure 3: Character-level dependency parsing of the sentence in Figure 1(c).

Construction des dépendances

```
état de transition
```

=

```
une pile (stack) + deux files d'attente (queue + deque)
```

Actions définissant les changements d'état entre les mots

- ALw arc-left
- ARw arc-right
- PR pop-root
- SHw last shift

Actions définissant les changements d'état au sein du mot

- ALc intra-word arc-left
- ARc intra-word arc-right
- PW pop-word
- SHc inter-word shift

L'expérience

Objectif : annotation en dépendance

à partir :

 analyseur syntaxique basé sur les transitions et règles de détermination de la tête des structures de mots : Zhang et Clark, 2009

- annotations des caractères intra-mots et : Zhang et al., 2013

corpus de référence : Chinese Penn tree Bank (CTB)

- annoté manuellement

métrique :

- précision
- rappel
- F1
- -> segmentation, étiquetage des POS, analyse des liens de dépendance
- -> analyse des liens de dépendance à l'intérieur des mots

Les modèles

Modèles de base (baseline)

2 chaînes de traitement : segmentation liées + POS + analyse syntaxique en dépendance des mots

- arc-standard (STD)
- arc-eager (EAG)

associées à des types d'annotations :

- extraites
- obtenues du modèle d'annotation Hatori et al. (2012)

-> Modèles étudiés

chaîne de traitement	annotation intra-mot	annotation inter-mots
STD	real	pseudo
STD	pseudo	real
STD	real	real
EAG	real	pseudo
EAG	pseudo	real
EAG	real	real

STD (real, real)	SEG	POS	DEP	WS
$\alpha = 1$	95.85	91.60	76.96	95.14
lpha=2	96.09	91.89	77.28	95.29
$\alpha = 3$	96.02	91.84	77.22	95.23
$\alpha = 4$	96.10	91.96	77.49	95.29
$\alpha = 5$	96.07	91.90	77.31	95.21

Table 3: Development test results of the characterlevel arc-standard model on CTB60.

EAG (r	EAG (real, real)		POS	DEP	WS
	t = 1	96.00	91.66	74.63	95.49
	t = 2	95.93	91.75	76.60	95.37
$\alpha = 1$	t = 3	95.93	91.74	76.94	95.36
	t = 4	95.91	91.71	76.82	95.33
	t = 5	95.95	91.73	76.84	95.40
	$\alpha = 1$	95.93	91.74	76.94	95.36
non althouseum	$\alpha = 2$	96.11	91.99	77.17	95.56
t = 3	$\alpha = 3$	96.16	92.01	77.48	95.62
THE PROPERTY OF THE PARTY OF TH	$\alpha = 4$	96.11	91.93	77.40	95.53
	$\alpha = 5$	96.00	91.84	77.10	95.43

Table 4: Development test results of the characterlevel arc-eager model on CTB60.

	SEG	POS	DEP	WS
STD (real, real)	96.10	91.96	77.49	95.29
STD (real, real)/wo	95.99	91.79	77.19	95.35
Δ	-0.11	-0.17	-0.30	+0.06
EAG (real, real)	96.16	92.01	77.48	95.62
EAG (real, real)/wo	96.09	91.82	77.12	95.56
Δ	-0.07	-0.19	-0.36	-0.06

Table 5: Feature ablation tests for the novel wordstructure features, where "/wo" denotes the corresponding models without the novel intra-word dependency features.

Résultats

STD (pipe)	97.53	93.28	79.72	 25	95.32	90.65	75.35		95.23	89.92	73.93	
STD (real, pseudo)	97.78	93.74	-	97.40	95.77 [‡]	91.24^{\ddagger}	-	95.08	95.59 [‡]	90.49 [‡]	-	94.97
STD (pseudo, real)	97.67	94.28 [‡]	81.63 [‡]		95.63 [‡]	91.40 [‡]	76.75 [‡]	_	95.53 [‡]	90.75 [‡]	75.63 [‡]	_
STD (real, real)	97.84	94.62 [‡]	82.14 [‡]	97.30	95.56 [‡]	91.39 [‡]	77.09 [‡]	94.80	95.51 [‡]	90.76 [‡]	75.70 [‡]	94.78
Hatori+ '12	97.75	94.33	81.56	77.0	95.26	91.06	75.93	<u></u>	95.27	90.53	74.73	5770
The arc-eager mode	ls											
EAG (pipe)	97.53	93.28	79.59	770	95.32	90.65	74.98	77.0	95.23	89.92	73.46	
EAG (real, pseudo)	97.75	93.88	_	97.45	95.63 [‡]	91.07 [‡]	_	95.06	95.50 [‡]	90.36 [‡]	_	95.00
EAG (pseudo, real)	97.76	94.36 [‡]	81.70 [‡]	-	95.63 [‡]	91.34^{\ddagger}	76.87 [‡]	-	95.39 [‡]	90.56^{\ddagger}	75.56 [‡]	-
EAG (real, real)	97.84	94.36 [‡]	82.07 [‡]	97.49	95.71 [‡]	91.51 [‡]	76.99 [‡]	95.16	95.47 [‡]	90.72 [‡]	75.76 [‡]	94.94

SEG

CTB60

DEP

WS

SEG

POS

CTB70

DEP

WS

POS

CTB50

DEP

WS

POS

SEG

Model

Table 6: Main results, where the results marked with ‡ denote that the p-value is less than 0.001 compared with the pipeline word-based models using pairwise t-test.

007

```
rappel:
```

- STD **67,98**%
- EAG **69,01**%

précision :

- STD **87,64**%
- EAG **89,07**%