Value Iteration Convergence

Review

Review

• How do we reason about the **future consequences** of actions in an MDP?

Review

- How do we reason about the **future consequences** of actions in an MDP?
- What are the basic **algorithms for solving MDPs**?

Guiding Questions

Guiding Questions

- Does value iteration always converge?
- Is the value function unique?
- Can there be multiple optimal policies?
- Is there always a deterministic optimal policy?

Value Iteration: The Bellman Operator

Value Iteration: The Bellman Operator

Algorithm: Value Iteration

while
$$\|V-V'\|_{\infty}>\epsilon$$

$$V \leftarrow V'$$

$$V' \leftarrow B[V]$$

return V'

$$|5|=3$$
 $V=\begin{bmatrix} 0.4\\ 0.9\\ 1.2 \end{bmatrix}$

Value Iteration: The Bellman Operator

<u>Algorithm: Value Iteration</u>

while
$$\|V-V'\|_{\infty} > \epsilon$$
 $V \leftarrow V'$ $V' \leftarrow B[V]$ return V'

$$B[V](s) = \max_{a \in A} \left(R(s,a) + \gamma E\left[V(s')
ight]
ight)$$

Value Iteration Convergence

Value Iteration Convergence

Theorem 1: Let $\{V_1, \ldots, V_\infty\}$ be a sequence of value functions for a discrete MDP generated by the recurrence $V_{k+1} = B[V_k]$. If $\gamma < 1$, then $\lim_{k \to \infty} V_k = V^*$.

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

1. d(x,y) = 0 if and only if x = y

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

- 1. d(x,y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x)

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

1.
$$d(x,y) = 0$$
 if and only if $x = y$

2.
$$d(x,y) = d(y,x)$$

3.
$$d(\underline{x},\underline{y}) \leq d(\underline{x},z) + d(z,\underline{y})$$

<u>Definition</u>: A *contraction mapping* on metric space (M,d) is a function $f:M\to M$ satisfying

$$d(f(x), f(y)) \le \alpha d(x, y)$$

for some α , $0 \le \alpha \le 1$ and all x and y in M.

<u>Definition</u>: A *contraction mapping* on metric space (M,d) is a function f:M o M satisfying

$$d(f(x), f(y)) \le \alpha d(x, y)$$

for some α , $0 \le \alpha \le 1$ and all x and y in M.

<u>Definition</u>: x^* is said to be a *fixed point* of f if $f(x^*) = x^*$.

<u>Definition</u>: A *contraction mapping* on metric space (M,d) is a function f:M o M satisfying

$$d(f(x), f(y)) \le \alpha d(x, y)$$

for some α , $0 \le \alpha \le 1$ and all x and y in M.

<u>Definition</u>: x^* is said to be a *fixed point* of f if $f(x^*) = x^*$.

$$M = \mathbb{R}^2 \qquad f(x) = \begin{bmatrix} \frac{x_2}{2} + 1 \\ \frac{x_1}{2} + \frac{1}{2} \end{bmatrix}$$

Script: contraction_mapping.jl

Banach's Theorem

.

Banach's Theorem

Theorem (Banach): If f is a contraction mapping on metric space (M,d), then

- 1. f has a single, unique fixed point x^* .
- 2. If $\{x_k\}$ is a sequence defined by $x_{k+1}=f(x_k)$, then $\lim_{k\to\infty}x_k=x^*$.

Lemma 1: $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$ is a metric space.

Lemma 1: $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$ is a metric space.

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

- 1. d(x,y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) \leq d(x,z) + d(z,y)$

Lemma 1: $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$ is a metric space.

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

- 1. d(x,y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$

Proof:

Lemma 1: $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$ is a metric space.

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

1.
$$d(x,y) = 0$$
 if and only if $x = y$

- 2. d(x, y) = d(y, x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$

Proof: Note:

Note: $\|x-y\|_{\infty} = \max_i |x_i-y_i|$

Lemma 1: $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$ is a metric space.

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

1.
$$d(x,y) = 0$$
 if and only if $x = y$

- 2. d(x, y) = d(y, x)
- 3. $d(x, y) \le d(x, z) + d(z, y)$

Proof: Note: $\|x-y\|_{\infty} = \max_i |x_i-y_i|$

1. $\max |x-y|=0$ iff $x_i=y_i \quad \forall i$

Lemma 1: $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$ is a metric space.

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

1.
$$d(x,y) = 0$$
 if and only if $x = y$

2.
$$d(x, y) = d(y, x)$$

3.
$$d(x, y) \le d(x, z) + d(z, y)$$

Proof: Note: $\|x-y\|_{\infty} = \max_i |x_i-y_i|$

1.
$$\max |x-y|=0 ext{ iff } x_i=y_i \quad orall i$$

2.
$$|x-y| = |-(x-y)| = |y-x|$$

$$\therefore \max |x-y| = \max |y-x|$$

Lemma 1: $(\mathbb{R}^{|S|}, ||\cdot||_{\infty})$ is a metric space.

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

1.
$$d(x,y) = 0$$
 if and only if $x = y$

- 2. d(x, y) = d(y, x)
- 3. $d(x, y) \le d(x, z) + d(z, y)$

Proof: Note: $||x-y||_{\infty} = \max_i |x_i-y_i|$

1.
$$\max |x-y|=0 ext{ iff } x_i=y_i \quad orall i$$

2.
$$|x - y| = |-(x - y)| = |y - x|$$

 $\therefore \max |x - y| = \max |y - x|$

3. $\max |x - z| = \max |x - y + y - z|$

Lemma 1: $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$ is a metric space.

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

1.
$$d(x,y) = 0$$
 if and only if $x = y$

- 2. d(x, y) = d(y, x)
- 3. $d(x, y) \le d(x, z) + d(z, y)$

Proof: Note: $||x-y||_{\infty} = \max_i |x_i-y_i|$

1.
$$\max |x-y|=0 ext{ iff } x_i=y_i \quad orall i$$

2.
$$|x - y| = |-(x - y)| = |y - x|$$

 $\therefore \max |x - y| = max|y - x|$

3.
$$\max |x - z| = \max |x - y + y - z|$$

 $\leq \max(|x - y| + |y - z|)$

Lemma 1: $(\mathbb{R}^{|S|}, ||\cdot||_{\infty})$ is a metric space.

<u>Definition</u>: Let M be a set. A *metric* on M is a function $d: M \times M \to [0, \infty)$ which satisfies the following three conditions for all $x, y, z \in M$:

1.
$$d(x,y) = 0$$
 if and only if $x = y$

- 2. d(x, y) = d(y, x)
- 3. $d(x, y) \le d(x, z) + d(z, y)$

Proof: Note: $||x-y||_{\infty} = \max_i |x_i-y_i|$

1. $\max |x-y|=0$ iff $x_i=y_i \quad \forall i$

2.
$$|x - y| = |-(x - y)| = |y - x|$$

 $\therefore \max |x - y| = \max |y - x|$

3. $\max |x - z| = \max |x - y + y - z|$ $\leq \max(|x - y| + |y - z|)$ $\leq \max |x - y| + \max |y - z|$

Lemma 2: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

Lemma 2: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

Proof

Lemma 2: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

Proof

$$\|B[V_1] - B[V_2]\|_{\infty} = \max_{s \in S} |B[V_1](s) - B[V_2](s)|$$

<u>Lemma 2</u>: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

$$egin{aligned} \|B[V_1] - B[V_2]\|_{\infty} &= \max_{s \in S} |B[V_1](s) - B[V_2](s)| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s')
ight) - \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \end{aligned}$$

<u>Lemma 2</u>: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

$$egin{aligned} \|B[V_1] - B[V_2]\|_{\infty} &= \max_{s \in S} |B[V_1](s) - B[V_2](s)| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s')
ight) - \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &\leq \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \end{aligned}$$

<u>Lemma 2</u>: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

$$egin{aligned} \|B[V_1] - B[V_2]\|_{\infty} &= \max_{s \in S} |B[V_1](s) - B[V_2](s)| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s')
ight) - \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &\leq \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight| \ &= \max_{s \in S} \left| R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight| \ &= \max_{s \in S} \left| R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight| \ &= \max_{s \in S} \left| R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight| \ &= \max_{s \in S} \left| R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight| \ &= \max_{s \in S} \left| R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight| \ &= \max_{s \in S} \left| R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_2(s') \right| \ &= \max_{s \in S} \left| R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight| \ &= \max_{s \in S} \left| R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight| \ &$$

<u>Lemma 2</u>: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

$$egin{aligned} \|B[V_1] - B[V_2]\|_{\infty} &= \max_{s \in S} |B[V_1](s) - B[V_2](s)| \ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s')
ight) - \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &\leq \max_{s \in S} \left| \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V_1(s') - R(s,a) - \gamma \sum_{s' \in S} T(s'|s,a) V_2(s')
ight)
ight| \ &\leq \max_{s \in S, a \in A} \left| \gamma \sum_{s' \in S} T(s'|s,a) \left(V_1(s') - V_2(s')
ight)
ight| \ &\qquad \qquad |\max(x)| \leq \max|x| \end{aligned}$$

<u>Lemma 2</u>: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

$$\begin{split} \|B[V_1] - B[V_2]\|_{\infty} &= \max_{s \in S} |B[V_1](s) - B[V_2](s)| \\ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_1(s') \right) - \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_2(s') \right) \right| \\ &\leq \max_{s \in S} \left| \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_1(s') - R(s, a) - \gamma \sum_{s' \in S} T(s'|s, a) V_2(s') \right) \right| \\ &\leq \max_{s \in S, a \in A} \left| \gamma \sum_{s' \in S} T(s'|s, a) \left(V_1(s') - V_2(s') \right) \right| \\ &\leq \max_{s \in S, a \in A} \gamma \sum_{s' \in S} T(s'|s, a) \left| V_1(s') - V_2(s') \right| \\ &\leq \max_{s \in S, a \in A} \gamma \sum_{s' \in S} T(s'|s, a) \left| V_1(s') - V_2(s') \right| \end{split}$$

<u>Lemma 2</u>: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

$$\begin{split} \|B[V_1] - B[V_2]\|_{\infty} &= \max_{s \in S} |B[V_1](s) - B[V_2](s)| \\ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_1(s') \right) - \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_2(s') \right) \right| \\ &\leq \max_{s \in S} \left| \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_1(s') - R(s, a) - \gamma \sum_{s' \in S} T(s'|s, a) V_2(s') \right) \right| \\ &\leq \max_{s \in S, a \in A} \left| \gamma \sum_{s' \in S} T(s'|s, a) \left(V_1(s') - V_2(s') \right) \right| \\ &\leq \max_{s \in S, a \in A} \gamma \sum_{s' \in S} T(s'|s, a) |V_1(s') - V_2(s')| \\ &\leq \max_{s \in S, a \in A} \gamma \sum_{s' \in S} T(s'|s, a) |V_1 - V_2|_{\infty} \end{split}$$

<u>Lemma 2</u>: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

$$\begin{split} \|B[V_1] - B[V_2]\|_{\infty} &= \max_{s \in S} |B[V_1](s) - B[V_2](s)| \\ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_1(s') \right) - \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_2(s') \right) \right| \\ &\leq \max_{s \in S} \left| \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_1(s') - R(s, a) - \gamma \sum_{s' \in S} T(s'|s, a) V_2(s') \right) \right| \\ &\leq \max_{s \in S, a \in A} \left| \gamma \sum_{s' \in S} T(s'|s, a) \left(V_1(s') - V_2(s') \right) \right| \\ &\leq \max_{s \in S, a \in A} \gamma \sum_{s' \in S} T(s'|s, a) \left| V_1(s') - V_2(s') \right| \\ &\leq \max_{s \in S, a \in A} \gamma \sum_{s' \in S} T(s'|s, a) \|V_1 - V_2\|_{\infty} \\ &= \gamma \|V_1 - V_2\|_{\infty} \max_{s \in S, a \in A} \sum_{s' \in S} T(s'|s, a) \end{split}$$

<u>Lemma 2</u>: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

$$\begin{split} \|B[V_1] - B[V_2]\|_{\infty} &= \max_{s \in S} |B[V_1](s) - B[V_2](s)| \\ &= \max_{s \in S} \left| \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_1(s') \right) - \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_2(s') \right) \right| \\ &\leq \max_{s \in S} \left| \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V_1(s') - R(s, a) - \gamma \sum_{s' \in S} T(s'|s, a) V_2(s') \right) \right| \\ &\leq \max_{s \in S, a \in A} \left| \gamma \sum_{s' \in S} T(s'|s, a) \left(V_1(s') - V_2(s') \right) \right| \\ &\leq \max_{s \in S, a \in A} \gamma \sum_{s' \in S} T(s'|s, a) \left| V_1(s') - V_2(s') \right| \\ &\leq \max_{s \in S, a \in A} \gamma \sum_{s' \in S} T(s'|s, a) \|V_1 - V_2(s') \| \\ &\leq \max_{s \in S, a \in A} \gamma \sum_{s' \in S} T(s'|s, a) \|V_1 - V_2\|_{\infty} \\ &= \gamma \|V_1 - V_2\|_{\infty} \max_{s \in S, a \in A} \sum_{s' \in S} T(s'|s, a) \\ &= \gamma \|V_1 - V_2\|_{\infty} \end{split}$$

Theorem 1: Let $\{V_1, \ldots, V_\infty\}$ be a sequence of value functions for a discrete MDP generated by the recurrence $V_{k+1} = B[V_k]$. If $\gamma < 1$, then $\lim_{k \to \infty} V_k = V^*$.

Theorem 1: Let $\{V_1, \ldots, V_\infty\}$ be a sequence of value functions for a discrete MDP generated by the recurrence $V_{k+1} = B[V_k]$. If $\gamma < 1$, then $\lim_{k \to \infty} V_k = V^*$.

Lemma 2: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

<u>Theorem 1</u>: Let $\{V_1, \ldots, V_\infty\}$ be a sequence of value functions for a discrete MDP generated by the recurrence $V_{k+1} = B[V_k]$. If $\gamma < 1$, then $\lim_{k \to \infty} V_k = V^*$.

Lemma 2: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

<u>Theorem (Banach)</u>: If f is a contraction mapping on metric space (M, d), then

- 1. f has a single, unique fixed point x^* .
- 2. If $\{x_k\}$ is a sequence defined by $x_{k+1}=f(x_k)$, then $\lim_{k \to \infty} x_k = x^*$.

<u>Theorem 1</u>: Let $\{V_1, \ldots, V_\infty\}$ be a sequence of value functions for a discrete MDP generated by the recurrence $V_{k+1} = B[V_k]$. If $\gamma < 1$, then $\lim_{k \to \infty} V_k = V^*$.

Proof:

Lemma 2: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

<u>Theorem (Banach)</u>: If f is a contraction mapping on metric space (M, d), then

- 1. f has a single, unique fixed point x^* .
- 2. If $\{x_k\}$ is a sequence defined by $x_{k+1}=f(x_k)$, then $\lim_{k\to\infty}x_k=x^*$.

<u>Theorem 1</u>: Let $\{V_1, \ldots, V_\infty\}$ be a sequence of value functions for a discrete MDP generated by the recurrence $V_{k+1} = B[V_k]$. If $\gamma < 1$, then $\lim_{k \to \infty} V_k = V^*$.

Pro

Lemma 2: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

<u>Theorem (Banach)</u>: If f is a contraction mapping on metric space (M, d), then

- 1. f has a single, unique fixed point x^* .
- 2. If $\{x_k\}$ is a sequence defined by $x_{k+1}=f(x_k)$, then $\lim_{k \to \infty} x_k = x^*$.

Proof:

By Lemma 2 and Banach's theorem (part 2), repeated application of the Bellman operator always has a fixed point limit, \hat{V} .

<u>Theorem 1</u>: Let $\{V_1, \ldots, V_\infty\}$ be a sequence of value functions for a discrete MDP generated by the recurrence $V_{k+1} = B[V_k]$. If $\gamma < 1$, then $\lim_{k \to \infty} V_k = V^*$.

Proof:

Lemma 2: B is a γ contraction mapping on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$.

<u>Theorem (Banach)</u>: If f is a contraction mapping on metric space (M, d), then

- 1. f has a single, unique fixed point x^* .
- 2. If $\{x_k\}$ is a sequence defined by $x_{k+1}=f(x_k)$, then $\lim_{k o \infty} x_k = x^*$.

By Lemma 2 and Banach's theorem (part 2), repeated application of the Bellman operator always has a fixed point limit, \hat{V} .

By Banach's theorem (part 1), $\hat{V}=B[\hat{V}]$. Since \hat{V} satisfies Bellman's equation, it is optimal and $\hat{V}=V^*$.

<u>Theorem</u>: Policy iteration converges to an optimal policy for a finite MDP in finite time.

<u>Theorem</u>: Policy iteration converges to an optimal policy for a finite MDP in finite time.

<u>Theorem</u>: Policy iteration converges to an optimal policy for a finite MDP in finite time.

Proof (sketch):

1. The policy will either improve or stay the same at each iteration

<u>Theorem</u>: Policy iteration converges to an optimal policy for a finite MDP in finite time.

- 1. The policy will either improve or stay the same at each iteration
- 2. The policy will stay the same if and only if $V^{\pi} = V^*$

<u>Theorem</u>: Policy iteration converges to an optimal policy for a finite MDP in finite time.

- 1. The policy will either improve or stay the same at each iteration
- 2. The policy will stay the same if and only if $V^{\pi} = V^*$
- 3. There are a finite number of possible policies

<u>Theorem</u>: Policy iteration converges to an optimal policy for a finite MDP in finite time.

- 1. The policy will either improve or stay the same at each iteration
- 2. The policy will stay the same if and only if $V^{\pi} = V^*$
- 3. There are a finite number of possible policies
- 4. By (1), (2), and (3), the policy will improve until it finds the optimal policy, and it will always find the optimal policy.

Is there always a deterministic optimal policy?

Guiding Questions

Guiding Questions

- Does value iteration always converge?
- Is the value function unique?
- Can there be multiple optimal policies?
- Is there always a deterministic optimal policy?

Break

Conservation MDP