Jet Info

ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ

№ 10 (161)/2006

О контентной фильтрации Продолжение темы

A 9

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ

О контентной фильтрации

Продолжение темы

Алексей Отт, руководитель группы разработки продуктов

СОДЕРЖАНИЕ

Введение	3
Новые тенденции в области информационной безопасности	3
Современные угрозы	4
Фильтрация интернет-трафика	5
Подходы к категоризации сайтов и данных	6
Фильтрация трафика в мире Web 2.0	7
Интеграция с внешними системами	7
HTTPS и другие виды шифрованного трафика	9
Фильтрация почтового трафика	12
Фильтрация мгновенных сообщений	12
Фильтрация VoIP	13
Фильтрация peer-to-peer	14
Unified Threat Management	15
Перехват данных	16
Продукты компании «Инфосистемы Джет»	16
СМАП «Дозор-Джет»	17
СКВТ «Дозор-Джет»	
Межсетевой экран Z-2	
Система определения типов	21
Модуль определения типов и распаковки данных для Lotus/Cerberus	
201/41011011140	24

Введение

В настоящее время контентную фильтрацию нельзя выделить в отдельную область компьютерной безопасности, настолько она переплелась с другими направлениями. В обеспечении компьютерной безопасности контентная фильтрация очень важна, поскольку позволяет вычленять потенциально опасные вещи и корректно их обрабатывать. Подходы, появившиеся при разработке продуктов для контентной фильтрации, находят применение в продуктах для предотвращения вторжений (IDS), распространения вредоносного кода и других негативных действий.

На основе новых технологий и продуктов в области контентной фильтрации создаются дополнительные услуги для пользователей, повышается качество защиты и обеспечивается возможность не только обрабатывать существующие угрозы, но и предотвращать целые классы угроз.

Новые тенденции в области контентной фильтрации

Одна из общих тенденций развития продуктов информационной безопасности — стремление реализовать различные функции в одном устройстве или программном решении. Как прави-

ло, разработчики стараются выполнить решения, которые кроме функций контентной фильтрации еще выполняют и функции антивируса, межсетевого экрана и/или системы обнаружения и предотвращения вторжений. С одной стороны, это позволяет снизить затраты компаний на покупку и сопровождение систем безопасности, но с другой — функциональность таких систем часто оказывается ограниченной. Например, во многих продуктах функции фильтрации Web-трафика сведены только к проверке адресов сайтов относительно какой-либо базы данных категорий сайтов.

К этому же направлению можно отнести и развитие продуктов в соответствии с концепцией Unified Threat Management, которая обеспечивает унифицированный подход к предотвращению угроз независимо от того, какой из протоколов или какие данные обрабатываются. Этот подход позволяет избежать дублирования функций защиты, а также обеспечить актуальность данных с описанием угроз для всех контролируемых ресурсов.

В существующих уже достаточно давно областях контентной фильтрации — контроле почты и Интернет-трафика — также происходят изменения, появляются новые технологии. В продуктах для контроля почтового обмена стала выходить на первый план функция защиты от фишинга. А в продуктах для контроля Интернеттрафика происходит смещение от использования заранее подготовленных баз адресов к категоризации по содержимому, что является очень актуальной задачей при работе с разнообразными портальными решениями.

Кроме двух указанных выше областей, возникают и новые области применения контентной фильтрации — некоторое время назад начали появляться продукты для контроля за передачей мгновенных сообщений (instant messaging) и peer-to-peer (p2p) соединений. В настоя-

щее время активно разрабатываются также продукты для контроля за VoIP-трафиком.

Во многих странах активно стали развивать средства для перехвата и анализа многих видов информации, которая используется для различного вида расследований (lawful interception). Данные мероприятия проводятся на государственном уровне и наиболее часто привязываются к расследованию террористических угроз. Такие системы перехватывают и анализируют не только данные, передаваемые по каналам Интернет, но также и по другим видам связи — телефонным линиям, радиоканалам и т.п. Наиболее известной системой для перехвата информации является Echelon — система, использовавшаяся американской разведкой для сбора информации. В России также существуют различные реализации системы оперативно-розыскных мероприятий (СОРМ), которые используются для захвата и анализа информации в интересах спецслужб.

В качестве одной из тенденций на рынке продуктов контентной фильтрации можно отметить массовую консолидацию компаний-производителей таких решений. Хотя эта тенденция в большей мере отражает организационную сторону процесса, но она может привести к появлению новых продуктов и направлений для компаний, у которых этих направлений не было, либо они занимали незначительную часть сектора рынка таких компаний.

Иллюстрацией вышесказанного могут служить следующие случаи объединения/поглощения компаний:

- компания Secure Computing, которая в прошлом году купила компанию Cyberguard, обладающую хорошим набором средств фильтрации Интернет-трафика, летом объединилась с другой компанией CipherTrust, имеющей большой опыт разработки средств для фильтрации почтового трафика;
- компания MailFrontier, производившая средства для защиты почтового трафика, была поглощена компанией SonicWall, у которой до этого не было решений с таким качеством разработки;
- в конце июля компания SurfControl, известная своими решениями в области контентной фильтрации, купила компанию BlackSpider, которая предоставляла расширенные сервисы в части компьютерной безопасности;
- в конце августа текущего года произошло самое грандиозное поглощение — компания Internet Security Systems (ISS) подписала

- соглашение о слиянии с компанией IBM. Это слияние является примером большого интереса к информационной безопасности со стороны крупных компаний-разработчиков программного обеспечения;
- компания Microsoft за последние несколько лет провела поглощение нескольких компаний, занимавшихся информационной безопасностью. Самым крупным из них было поглощение компании Sybari с ее линейкой средств защиты от вирусов и другого вредоносного кода, а также средств для контентной фильтрации почтовых и мгновенных сообщений. Поглощение Sybari и других компаний позволяет Microsoft успешно конкурировать на новом для нее рынке компьютерной безопасности.

Стоит также отметить, что в последние годы начали появляться продукты для контентной фильтрации с открытым исходным кодом. В большинстве случаев они не достигают такого функционала как коммерческие приложения, однако есть конкретные решения и области применения, где они могут составить реальную угрозу.

Современные угрозы

Современная ИТ-инфраструктура подвергается множеству атак, целью которых становятся и простые пользователи, и компании независимо от их размера. Наиболее актуальными являются следующие виды угроз:

- Фишинг (Phishing) распространившиеся в последнее время способы перехвата важных данных пользователей (паролей, номеров кредитных карт и т.п.) с помощью техник социальной инженерии, когда пользователя ложным письмом или сообщением от той или иной организации пытаются заставить ввести определенные данные на сайте, контролируемом злоумышленником;
- **Spyware & Malware** различные средства, позволяющие перехватывать данные или устанавливать контроль над компьютером. Существует множество разновидностей та-

ких средств, которые различаются по степени опасности для компьютера — от простого показа рекламных сообщений до перехвата данных, вводимых пользователями, и захвата контроля над операциями с компьютером;

- вирусы и другой вредоносный код вирусы, черви и троянцы давно известная угроза для ИТ-инфраструктуры. Но с каждым годом появляются новые модификации вредоносного кода, которые часто эксплуатируют уязвимости в существующем программном обеспечении, что позволяет им распространяться автоматически;
- SPAM/SPIM нежелательные сообщения, передаваемые с помощью электронной почты (SPAM) или средств обмена мгновенными сообщениями (SPIM) заставляют пользователей тратить свое время на обработку нежелательной корреспонденции. В настоящее время СПАМ составляет более 70% всех передаваемых почтовых сообщений;
- атаки на инфраструктуру ИТ-инфраструктура компаний имеет очень важное значение, атаки с целью выведения ее из строя предельно опасны. Для них могут быть задействованы целые сети компьютеров, зараженных каким-либо вирусом, используемым для перехвата управления. Например, некоторое время назад был распространен вирус, содержавший в себе код, который должен был в определенное время начать распределенную атаку на сайты компании Microsoft с целью выведения их из строя. Зараженными оказались несколько миллионов компьютеров, и только ошибка в коде вируса не позволила выполнить планируемую атаку;
- утечка бизнес-информации предотвращение таких утечек является одной из главных задач продуктов контентной фильтрации. Утечка важной информации может нанести компании непоправимый ущерб, порой сравнимый с потерей основных средств производства. Поэтому во многих продуктах развиваются средства для определения каналов скрытой передачи данных, таких например, как применение стеганографии;
- угроза судебного преследования этот вид угроз крайне актуален для компаний, если их сотрудники могут пользоваться файлообменными сетями, скачивая и/или распространяя музыку, фильмы и другое содержимое, защищенное авторским правом. Судеб-

ное преследование возможно и за распространение клеветнической и/или порочащей информации, касающейся третьих лиц.

Первым пяти видам угроз подвергаются как домашние компьютеры, так и компьютеры корпоративных сетей. А вот последние две угрозы являются особенно актуальными для компаний всех видов.

Фильтрация Интернеттрафика

В последнее время в области фильтрации Интернет-трафика происходят различные изменения, обусловленные появлением новых технологий фильтрации и изменением технологий, которые используются для построения Интернетсайтов.

Одной из наиболее важных тенденций развития продуктов контентной фильтрации в части контроля Интернет-трафика является переход от использования баз данных категорий сайтов к определению категории сайта по его содержимому. Это стало особенно актуально с развитием различных порталов, которые могут содержать наполнение разных категорий, изменяющееся во времени.

Ставшие в последнее время популярными технологии и инструменты построения Интернет-сайтов, такие как Ajax, Macromedia Flash и другие, требуют внесения изменений и в технологии фильтрации Интернет-трафика.

Использование шифрованных каналов для взаимодействия с Интернет-сайтами обеспечивает защиту данных от перехвата третьими лицами, но в то же время, по этим каналам передачи данных могут происходить утечка важной информации или проникновение вредоносного кода в компьютерные системы.

Актуальной остается проблема интеграции средств защиты с системами, обеспечивающими функционирование ИТ-инфраструктуры, такими как прокси-серверы, веб-серверы, почтовые серверы, серверы каталогов и т.п. Разными компаниями и некоммерческими организа-

циями разрабатываются протоколы для взаимодействия между различными системами. О современном положении дел в этой области пойдет речь ниже.

Подходы к категоризации сайтов и данных

Категоризация сайтов и данных, на них размещенных, может выполняться разными способами. В настоящее время выделяются следующие виды категоризации:

- использование предопределенных баз категорий сайтов с регулярным обновлением списков сайтов и категорий;
- категоризация данных на лету путем анализа содержимого страниц;
- использование данных о категории, информацию о принадлежности к которой предоставляет сам сайт.

Каждый из этих методов имеет свои достоинства и недостатки.

Предопределенные базы категорий сайтов

Использование заранее подготовленных баз адресов сайтов и связанных с ними категорий — давно используемый и хорошо зарекомендовавший себя метод. В настоящее время такие базы предоставляют многие компании, такие как Websence, Surfcontrol, ISS/Cobion, Astaro AG, NetStar и другие. Некоторые компании используют эти базы только в своих продуктах, другие позволяют подключать их к продуктам третьих фирм. Наиболее полными считаются базы, предоставляемые компаниями Websence, Surfcontrol и ISS/Cobion, они содержат информацию о миллионах сайтов на разных языках и в разных странах, что особенно актуально в эпоху глобализации.

Категоризация данных и формирование баз категорий обычно производится в полуавтоматическом режиме — сначала выполняются анализ содержимого и определение категории с помощью специально разработанных средств, которые даже могут включать в себя системы распознавания текстов в картинках. А на втором этапе полученная информация часто проверяется людьми, принимающими решение о том, к какой категории можно отнести тот или иной сайт. Многие компании автоматически пополняют

базу категорий по результатам работы у клиентов, если обнаруживается сайт, не отнесенный еще ни к какой из категорий.

В настоящее время используются два способа подключения предопределенных баз категорий сайтов:

- использование локальной базы категорий с регулярным ее обновлением. Данный метод очень удобен для больших организаций, имеющих выделенные серверы фильтрации и обслуживающие большое количество запросов;
- использование базы категорий, размещенной на удаленном сервере. Данный метод часто применяется в различных устройствах небольших межсетевых экранах, ADSL-модемах и т.п. Использование удаленной базы категорий немного увеличивает нагрузку на каналы, но обеспечивает использование актуальной базы категорий.

К преимуществам применения предопределенных баз категорий можно отнести то, что предоставление или запрет доступа производится еще на этапе выдачи запроса клиентом, что может существенно снизить нагрузку на каналы передачи данных. А главный недостаток использования данного подхода — задержки в обновлении баз категорий сайтов, поскольку для анализа потребуется некоторое время. Кроме того, некоторые сайты достаточно часто меняют свое наполнение, из-за чего информация о категории, хранящаяся в базе адресов, становится неактуальной.

Категоризация данных на лету

Категоризация сайтов на лету также осуществляется самыми разными способами. Особенно часто используются методы, основанные на статистическом подходе к анализу содержания. Один из простых вариантов реализации такого решения - использование байесовских алгоритмов, которые себя достаточно хорошо зарекомендовали в борьбе со спамом. Однако у этого варианта есть свои недостатки - необходимо его периодически доучивать, корректировать словари в соответствии с передаваемыми данными. Поэтому некоторые компании применяют более сложные алгоритмы определения категории сайта по содержимому в дополнение к простым способам. Например, компания ContentWatch предоставляет специальную библиотеку, которая выполняет анализ данных согласно лингвистической информации о том или

ином языке и на основании этой информации может определять категорию данных.

Категоризация данных на лету позволяет быстро реагировать на появление новых сайтов, поскольку информация о категории сайта не зависит от его адреса, а только от содержания. Но такой подход имеет и недостатки — необходимо проводить анализ всех передаваемых данных, что вызывает некоторое снижение производительности системы. Второй недостаток необходимость поддержания актуальных баз категорий для различных языков. Тем не менее, некоторые продукты применяют этот подход с одновременным использованием баз категорий сайтов. Сюда можно отнести использование Virtual Control Agent в продуктах компании SurfControl, механизмы определения категорий данных в СКВТ «Дозор-Джет».

Данные о категории, предоставляемые сайтами

Кроме баз данных адресов и категоризации содержимого на лету существует и другой подход к определению категории сайтов — сайт сам сообщает о том, к какой категории он относится. Этот подход в первую очередь предназначен для использования домашними пользователями, когда, например, родители или учителя могут задать политику фильтрации и/или отслеживать, какие сайты посещаются.

Существует несколько путей реализации данного подхода к категоризации ресурсов:

- PICS (Platform for Internet Content Selection) спецификация, разработанная консорциумом W3 около десяти лет назад и имеющая различные расширения, направленные на обеспечение надежности рейтинговой системы. Для контроля может использоваться специальное разработанное программное обеспечение, доступное для загрузки со страницы проекта.
 - Более подробную информацию о PICS можно найти на сайте консорциума W3.org (http://www.w3.org/PICS/).
- ICRA (Internet Content Rating Association) новая инициатива, разрабатываемая независимой некоммерческой организацией с тем же названием. Основная цель данной инициативы защита детей от доступа к запрещенному содержимому. Данная организация имеет соглашения с множеством компаний (крупные телекоммуникационные и компании-разработчики ПО) для обеспечения более надежной защиты.

ICRA предоставляет программное обеспечение, которое позволяет проверять специальную метку, возвращаемую сайтом, и принимать решение о доступе к этим данным. Программное обеспечение работает только на платформе Microsoft Windows, но благодаря открытой спецификации существует возможность создания реализаций фильтрующего ПО и для других платформ.

Цели и задачи, решаемые данной организацией, а также все необходимые документы можно найти на сайте ICRA—http://www.icra.org/.

К достоинствам этого подхода можно отнести то, что для обработки данных нужно только специальное программное обеспечение и нет необходимости обновлять базы адресов и/или категорий, так как вся информация передается самим сайтом. Но недостатком является то, что сайт может указывать неправильную категорию, а это приведет к неправильному предоставлению или запрещению доступа к данным. Однако эту проблему можно решить (и она уже решается) за счет использования средств подтверждения правильности данных, таких как цифровые подписи и т. п.

Фильтрация трафика в мире Web 2.0

Массовое внедрение так называемых технологий Web 2.0 сильно усложнило контентную фильтрацию веб-трафика. Поскольку во многих случаях данные передаются отдельно от оформления, существует возможность пропуска нежелательной информации к пользователю или от пользователя. В случае работы с сайтами, применяющими такие технологии, необходимо делать комплексный анализ передаваемых данных, определяя передачу дополнительной информации и учитывая данные, собранные на предыдущих этапах.

В настоящее время ни одна из компаний, выпускающих средства для контентной фильтрации веб-трафика, не позволяет производить комплексный анализ данных, передаваемых с использованием технологий АЈАХ.

Интеграция с внешними системами

Во многих случаях достаточно острым становится вопрос об интеграции систем контентного

Рис.1. Схема взаимодействия серверов и клиентов ІСАР

анализа с другими системами. При этом системы контентного анализа могут выступать как клиентами, так и серверами или в обеих ролях сразу. Для этих целей было разработано несколько стандартных протоколов — Internet Content Adaptation Protocol (ICAP), Open Pluggable Edge Services (OPES). Кроме того, некоторые производители создавали собственные протоколы для обеспечения взаимодействия конкретных продуктов друг с другом или со сторонним программным обеспечением. Сюда можно отнести протоколы Cisco Web Cache Coordination Protocol (WCCP), Check Point Content Vectoring Protocol (CVP) и другие.

Некоторые протоколы — ICAP и OPES — разработаны так, что могут использоваться для реализации как сервисов контентной фильтрации, так и других сервисов — переводчики, размещение рекламы, доставка данных, зависящая от политики их распространения, и т.п.

Протокол ІСАР

В настоящее время протокол ICAP пользуется популярностью среди авторов ПО для контентной фильтрации и создателей программного обеспечения для определения вредоносного содержимого (вирусы, spyware/malware). Однако стоит отметить, что ICAP в первую очередь разрабатывался для работы с HTTP, что накладывает много ограничений на его использование с другими протоколами.

ICAP принят группой Internet Engineering Task Force (IETF) в качестве стандарта. Сам протокол определяется документом «RFC 3507» с некоторыми дополнениями, изложенными в документе «ICAP Extensions draft». Эти документы и дополнительная информация доступны с сервера ICAP Forum — http://www.i-cap.org.

Архитектура системы при использовании протокола ICAP изображена на рисунке 1. В качестве клиента ICAP выступает система, через которую передается трафик. Система, выполняющая анализ и обработку данных, называется сервером ICAP. Серверы ICAP могут выступать в роли клиентов для других серверов, что обеспечивает возможность стыковки нескольких сервисов для коллективной обработки одних и тех же данных.

Для взаимодействия между клиентом и сервером используется протокол, похожий на протокол HTTP версии 1.1, и те же способы кодирования информации. Согласно стандарту ICAP может обрабатывать как исходящий (REQ-MOD — Request Modification), так и входящий (RESPMOD — Response Modification) трафик. Решение о том, какие из передаваемых данных будут обрабатываться, принимается клиентом ICAP, в некоторых случаях это делает невозможным полный анализ данных. Настройки клиента полностью зависят от его реализации, и во многих случаях невозможно их изменить.

После получения данных от клиента сервер ICAP выполняет их обработку, а если это

О контентной фильтрации (Ст. 1111)

необходимо, то и модификацию данных. Затем данные возвращаются клиенту ICAP, и он их передает дальше серверу или клиенту, в зависимости от того, в каком направлении они передавались.

Наиболее широкое применение протокол ICAP нашел в продуктах для защиты от вредоносного кода, поскольку он позволяет использовать эти проверки в различных продуктах и не зависит от платформы, на которой выполняется клиент ICAP.

К недостаткам использования ICAP можно отнести следующее:

- дополнительные сетевые взаимодействия между клиентом и сервером несколько замедляют скорость передачи данных между внешними системами и потребителями информации;
- существуют проверки, которые необходимо выполнять не на клиенте, а на сервере ICAP, такие как определение типа данных и т.п. Это актуально, поскольку во многих случаях клиенты ICAP ориентируются на расширение файла или на тип данных, сообщенный внешним сервером, что может стать причиной нарушения политики безопасности;
- затрудненная интеграция с системами, использующими протоколы, отличные от HTTP, не позволяет использовать ICAP для глубокого анализа данных.

Προτοκολ OPES

В отличие от ICAP протокол OPES разрабатывался с учетом особенностей конкретных протоколов. Кроме того, при его разработке учитывались недостатки протокола ICAP, такие как отсутствие установления подлинности клиентов и серверов, отсутствие аутентификации и др.

Так же как и ICAP, OPES принят группой Internet Engineering Task Force в качестве стандарта. Структура взаимодействия сервисов, протокол взаимодействия, требования к сервисам и решения по обеспечению безопасности сервисов изложены в документах RFC 3752, 3835, 3836, 3837 и других. Список регулярно пополняется новыми документами, описывающими применение OPES не только к обработке интернет-трафика, но и к обработке почтового трафика, а в будущем, возможно, и других видов протоколов.

Структура взаимодействия серверов OPES и клиентов (OPES Processor) изображена на рисунке 2 (См. стр. 10). В общих чертах она

подобна схеме взаимодействия серверов и клиентов ICAP, но есть и существенные отличия:

- имеются требования к реализации клиентов ОРЕЅ, что делает возможным более удобное управление ими — задание политик фильтрации и т.п.;
- потребитель данных (пользователь или информационная система) может оказывать влияние на обработку данных. Например, при использовании автоматических переводчиков получаемые данные могут автоматически переводиться на тот язык, который используется пользователем;
- системы, предоставляющие данные, также могут оказывать влияние на результаты обработки;
- серверы обработки могут использовать для анализа данные, специфичные для протокола, по которому данные были переданы клиенту OPES;
- некоторые серверы обработки данных могут получать более важные данные, если они находятся в доверительных отношениях с клиентом OPES, потребителями и/или поставщиками информации.

Все перечисленные возможности зависят исключительно от конфигурации, применяемой при внедрении системы. За счет этих возможностей использование OPES более перспективно и удобно, чем использование протокола ICAP. В скором будущем ожидается появление продуктов, поддерживающих OPES наравне с протоколом ICAP. Пионером в разработке и использовании OPES является компания Secure Computing со своей линейкой продуктов Webwasher.

Поскольку в настоящее время нет полноценных реализаций, использующих OPES, то нельзя делать окончательные выводы о недостатках данного подхода, хотя теоретически пока остается лишь один недостаток — увеличение времени обработки за счет взаимодействия между клиентами и серверами OPES.

HTTPS и другие виды шифрованного трафика

По расчетам некоторых аналитиков, до 50% Интернет-трафика передается в зашифрованном виде. Проблема контроля шифрованного трафика сейчас актуальна для многих организаций, поскольку пользователи могут применять шиф-

Рис. 2. Схема взаимодействия клиентов и серверов OPES

рацию для создания каналов утечки информации. Кроме того, шифрованные каналы могут использоваться и вредоносным кодом для проникновения в компьютерные системы.

Существует несколько задач, связанных с обработкой шифрованного трафика:

- анализ данных, передаваемых по зашифрованным каналам;
- проверка сертификатов которые, используются серверами для организации шифрованных каналов.

Актуальность этих задач возрастает с каждым днем.

Контроль передачи шифрованных данных

Контроль передачи данных, пересылаемых по зашифрованным каналам, является, наверное, самой важной задачей для организаций, сотруд-

ники которых имеют доступ к Интернет-ресурсам. Для реализации этого контроля существует подход, называемый «Man-in-the-Middle» (в некоторых источниках его также называют «Main-in-the Middle»), который может использоваться злоумышленниками для перехвата данных. Схема обработки данных для данного метода дана на рисунке 3.

Процесс обработки данных выглядит следующим образом:

- в Интернет-броузер пользователя устанавливается специально выписанный сертификат для установления соединения с проксисервером;
- при установлении соединения с проксисервером он использует известный сертификат для расшифровки передаваемых данных;
- расшифрованные данные анализируются так же, как и обычный HTTP-трафик;

О контентной фильтрации JET INTO

Рис. 3. Процесс обработки шифрованных данных

- прокси-сервер устанавливает соединение с сервером, на который должны быть переданы данные, и использует для шифрации канала сертификат сервера;
- возвращаемые от сервера данные расшифровываются, анализируются и передаются пользователю, зашифрованные сертификатом прокси-сервера.

При использовании данной схемы обработки шифрованных данных могут возникать проблемы, связанные с подтверждением истинности пользователя. Кроме того, требуется выполнение работы по установке сертификата в Интернет-броузеры всех пользователей.

Сейчас на рынке предлагаются следующие продукты для контроля передачи шифрованных данных: Webwasher SSL Scanner компании Secure Computing, Breach View SSL^{TM} , WebCleaner.

Проверка подлинности сертификатов

Вторая задача, возникающая при использовании шифрованных каналов передачи данных, — проверка подлинности сертификатов, предо-

ставляемых серверами, с которыми работают пользователи.

Злоумышленники могут осуществлять атаку на информационные системы, создавая ложную запись в DNS, перенаправляющую запросы пользователя не на тот сайт, который им необходим, а на созданный самими злоумышленниками. С помощью таких подставных сайтов могут быть украдены важные данные пользователей, такие как номера кредитных карт, пароли и т.п., а также под видом обновлений программного обеспечения может быть загружен вредоносный код.

Для предотвращения подобных случаев и существует специализированное программное обеспечение, выполняющее проверку соответствия сертификатов, предоставленных сервером, тем данным, о которых они сообщают. В случае несовпадения система может заблокировать доступ к таким сайтам или осуществить доступ после явного подтверждения пользователем. Обработка данных при этом выполняется практически тем же способом, что и при анализе данных, передаваемых по шифрованным каналам, только в этом случае анализируются не данные, а сертификат, предоставляемый сервером.

Фильтрация почтового трафика

При использовании электронной почты, организации сталкиваются с необходимостью обеспечения защиты как для входящего, так и для исходящего трафика. Но задачи, решаемые для каждого из направлений, довольно сильно различаются. Для входящего трафика необходимо обеспечить контроль вредоносного кода, фишинга и нежелательной почты (спама), в то время как в исходящей почте контролируется содержимое, передача которого может привести к утечке важной информации, распространению компрометирующих материалов и тому подобных вещей.

Большинство продуктов, существующих на рынке, предоставляют контроль только входящего трафика. Это осуществляется за счет интеграции с антивирусными системами, реализации различных механизмов защиты от нежелательной почты и фишинга. Многие из этих функций уже встраиваются в почтовые клиенты, но полностью решить задачу они не могут.

Защита от фишинга чаще всего осуществляется путем сравнения получаемых почтовых сообщений с имеющейся базой адресов сайтов и сообщений. Такие базы предоставляются поставщиками программного обеспечения.

Для защиты пользователей от спама в настоящее время существует несколько способов:

- сравнение получаемых сообщений с имеющейся базой сообщений. При сравнении могут применяться различные методики, включая использование генетических алгоритмов, которые позволяют вычленить ключевые слова даже в случае их искажения;
- динамическая категоризация сообщений по их содержимому. Позволяет очень эффективно определять наличие нежелательной корреспонденции. Для противодействия этому методу распространители спама используют рассылку сообщений в виде изображения с текстом внутри и/или наборы слов из словарей, которые создают шум, мешающий работе данных систем. Однако в будущем возможны антиспамовые системы, способные распознавать текст внутри изображений и таким образом определять их содержимое;
- серые, белые и черные списки доступа позволяют описывать политику приема почтовых сообщений с известных или неизвестных сайтов. Применение серых списков во

многих случаях помогает предотвратить передачу нежелательных сообщений за счет специфики работы ПО, рассылающего спам. Для ведения черных списков доступа могут использоваться как локальные базы данных, управляемые администратором, так и глобальные, пополняемые на основе сообщений пользователей со всего мира. Однако использование глобальных баз данных чревато тем, что в них могут попасть целые сети, в том числе и содержащие «хорошие» почтовые сервера.

Для борьбы с утечками информации используются самые разные способы, основанные на перехвате и глубоком анализе сообщений в соответствии со сложной политикой фильтрации. В этом случае возникает необходимость корректного определения типов файлов, языков и кодировок текстов, проведения семантического анализа передаваемых сообщений.

Еще одно из применений систем для фильтрации почтового трафика — создание шифрованных потоков почты, когда система автоматически подписывает или шифрует сообщение, а на другом конце соединения производится автоматическая расшифровка данных. Этот функционал очень удобен, если вы хотите обрабатывать всю исходящую почту, но она должна доходить до адресата в зашифрованном виде.

Фильтрация мгновенных сообщений

Средства для передачи мгновенных сообщений (Instant messaging) постепенно переходят в разряд активно используемых инструментов во многих компаниях. Они обеспечивают быстрое взаимодействие с сотрудниками и/или клиентами организаций. Поэтому совершенно закономерно, что развитие средств, которые, кроме прочего, могут оказаться и каналом для утечки информации, привело к появлению инструментов для контроля передаваемой информации.

В настоящее время для обмена мгновенными сообщениями наиболее часто используются протоколы MSN (Microsoft Network), AIM

О контентной фильтрации (Ст. 1111)

(AOL Instant Messaging), Yahoo! Chat, Jabber и их корпоративные аналоги — протоколы Microsoft Live Communication Server (LCS), IBM SameTime и Yahoo Corporate Messaging Server. На территории СНГ широкое распространение получила система ICQ, которая сейчас принадлежит компании AOL и использует практически такой же протокол, что и AIM. Все указанные системы выполняют практически одно и то же — передают сообщения (как через сервер, так и напрямую) и файлы.

Теперь почти у всех систем появились возможности и для звонков с компьютера на компьютер и/или на обычные телефоны, что создает определенные трудности для систем контроля и требует поддержки VoIP для реализации полноценных прокси-серверов.

Обычно продукты для контроля IM-трафика реализуются как прикладной шлюз, выполняющий разбор передаваемых данных и блокирующий передачу запрещенных данных. Однако есть и реализации в виде специализированных серверов IM, которые осуществляют необходимые проверки на уровне сервера.

Наиболее востребованные функции продуктов для контроля IM-трафика:

- управление доступом по отдельным протоколам:
- контроль используемых клиентов и т.п.;
- контроль доступа отдельных пользователей:
 - разрешение пользователю общения только в пределах компании;
 - разрешение пользователю общения только с определенными пользователями вне компании;
- контроль передаваемых текстов;
- контроль передачи файлов. Объектами контроля являются:
 - размер файла;
 - тип и/или расширение файла;
- направление передачи данных;
- контроль наличия вредоносного содержимого;
- определение SPIM;
- сохранение передаваемых данных для последующего анализа.

В настоящее время контроль за передачей мгновенных сообщений позволяют выполнять следующие продукты:

• CipherTrust IronIM компании Secure Computing. Данный продукт имеет поддержку протоколов AIM, MSN, Yahoo! Chat, Microsoft LCS и IBM SameTime. Сейчас это одно из самых полных решений;

- IM Manager компании Symantec (разработан компанией IMLogic, которая была поглощена Symantec). Этот продукт имеет поддержку следующих протоколов Microsoft LCS, AIM, MSN, IBM SameTime, ICQ и Yahoo! Chat;
- Antigen for Instant Messaging компании Microsoft также позволяет работать практически со всеми популярными протоколами для передачи мгновенных сообщений;
- Webwasher Instant Message Filter, компании Secure Computing.

Продукты других компаний (ScanSafe, ContentKeeper) обладают меньшими возможностями по сравнению с перечисленными выше. Стоит отметить, что две российские компании — «Гран При» (продукт «SL-ICQ») и «Мера.ру» (продукт «Сормович») — предоставляют продукты для контроля за передачей сообщений с использованием протокола ICQ.

Фильтрация VoIP

Растущая популярность средств для передачи звуковой информации между компьютерами (называемых также Voice over IP (VoIP)) заставляет принимать меры к контролю передачи такой информации. Есть разные реализации для звонков с компьютера на компьютер и/или на обычные телефоны.

Существуют стандартизированные протоколы для обмена такой информацией, сюда можно отнести Session Instatiation Protocol (SIP), принятый IETF и Н.323, разработанный ITU. Эти протоколы являются открытыми, что делает возможным их обработку.

Кроме того, существуют протоколы, разработанные конкретными компаниями, которые не имеют открытой документации, что сильно затрудняет работу с ними. Одной из самых популярных реализаций является Skype, завоевавший широкую популярность во всем мире. Эта система позволяет выполнять звонки между компьютерами, делать звонки на стационарные и мобильные телефоны, а также принимать звонки со стационарных и мобильных телефонов. В последних версиях поддерживается возможность обмена видеоинформацией.

Большинство имеющихся на данный момент продуктов можно разделить на две категории:

- продукты, которые позволяют определить и блокировать VoIP-трафик;
- продукты, которые могут определить, захватить и проанализировать VoIP-трафик.

К первой категории можно отнести следующие продукты:

- продукты компании «Dolphian», позволяющие определить и разрешить или запретить VoIP-трафик (SIP и Skype), который инкапсулирован в стандартный HTTP-трафик;
- продукты компании Verso Technologies;
- разные виды межсетевых экранов, обладающие такой возможностью.

Ко второй категории продуктов относятся:

- продукт российской компании «Сормович» поддерживает захват, анализ и сохранение голосовой информации, которая передается по протоколам H.323 и SIP;
- библиотека с открытым кодом Oreka (http://oreka.sourceforge.net/) позволяет определить сигнальную составляющую звукового трафика и выполнить захват передаваемых данных, которые затем можно проанализировать другими средствами;
- недавно стало известно, что разработанный фирмой ERA IT Solutions AG продукт позволяет перехватывать VoIP-трафик, передаваемый при помощи программы Skype. Но для выполнения такого контроля необходимо установить специализированный клиент на компьютер, на котором работает Skype.

- распространение данных, защищенных авторским правом, что может привести к судебному преследованию;
- снижение производительности труда;
- повышенная нагрузка на каналы передачи данных.

Существует большое количество сетей, работающих в формате peer-to-peer. Есть сети, имеющие центральные серверы, используемые для координации пользователей, а есть сети полностью децентрализованные. Во втором случае их особенно трудно контролировать с помощью таких стандартных средств как межсетевые экраны.

Для решения данной проблемы многие фирмы создают продукты, позволяющие детектировать и обрабатывать p2p-трафик. Для обработки p2p-трафика существуют следующие решения:

- SurfControl Instant Messaging Filter, который обрабатывает p2p наравне c обработкой мгновенных сообщений;
- пакет Websense Enterprise также предоставляет пользователям средства для контроля p2p-трафика;
- Webwasher Instant Message Filter позволяет контролировать доступ к различным р2рсетям.

Использование этих или других, не перечисленных здесь, продуктов резко сокращает риски, связанные с доступом пользователей к p2p-сетям.

Фильтрация peer-to-peer

Использование сотрудниками различных peerto-peer (p2p) сетей несет следующие угрозы для организаций:

- распространение вредоносного кода;
- утечка информации;

Unified Threat Management

Решения, соответствующие концепции Unified Threat Management, предлагаются многими производителями средств защиты. Как правило, они построены на базе межсетевых экранов, которые кроме основных функций выполняют еще и функции контентной фильтрации данных. Как правило, эти функции сосредоточены на предотвращении вторжений, проникновения вредоносного кода и нежелательных сообщений.

Многие из таких продуктов реализуются в виде аппаратно-программных решений, которые не могут полностью заменить решения для фильтрации почтового и интернет-трафика, поскольку работают лишь с ограниченным числом возможностей, предоставляемых конкретными протоколами. Обычно их используют для того, чтобы избежать дублирования функций в разных продуктах, и для обеспечения гарантий, что все прикладные протоколы будут обрабатываться в соответствии с одной базой известных угроз.

Наиболее популярными решениями концепции Unified Threat Management являются следующие продукты:

- SonicWall Gateway Anti-Virus, Anti-Spyware and Intrusion Prevention Service обеспечивает антивирусную и другую защиту данных, передаваемых по протоколам SMTP, POP3, IMAP, HTTP, FTP, NetBIOS, протоколам Instant Messaging и многим потоковым протоколам, применяемым для передачи аудиои видеоинформации;
- серия устройств ISS Proventia Network Multi-Function Security, выполненных в виде программно-аппаратных комплексов, обеспечивает блокировку вредоносного кода, нежелательных сообщений и вторжений. В поставку включено большое число проверок (в том числе и для VoIP), которые могут быть расширены пользователем;
- аппаратная платформа Network Gateway Security компании Secure Computing, кроме защиты от вредоносного кода и нежелательных сообщений, также имеет поддержку VPN. В составе этой платформы объединены практически все решения Secure Computing.

Существуют и другие продукты, но перечисленные выше имеют массовое распространение.

Перехват данных

Перехват данных (Lawful interception) практически всегда использовался спецслужбами для сбора и анализа передаваемой информации. Од-

нако в последнее время вопрос перехвата данных (не только Интернет-трафика, но и телефонии, и других видов) стал очень актуальным в свете борьбы с терроризмом. Даже те государства, которые всегда были против таких систем, стали использовать их для контроля за передачей информации.

Поскольку перехватываются различные виды данных, часто передаваемые по высокоскоростным каналам, то для реализации таких систем необходимо специализированное программное обеспечение для захвата и разбора данных и отдельное программное обеспечение для анализа собранных данных. В качестве такового может использоваться ПО для контентной фильтрации того или иного протокола.

Пожалуй, самой известной из таких систем является англо-американская система Echelon, которая долго использовалась для перехвата данных в интересах различных ведомств США и Англии.

Среди российских продуктов можно упомянуть решения от компании «Сормович», позволяющее захватывать и анализировать почтовый, звуковой и Интернет-трафик.

Продукты компании «Инфосистемы Джет»

«Инфосистемы Джет» работают на рынке контентной фильтрации уже больше шести лет. Начало было положено системой для фильтрации почтового трафика, затем разработки перешли в другие области применения контентной фильтрации, и компания не собирается останавливаться на достигнутом.

В последние полгода произошло несколько событий, связанных с продуктами контентной фильтрации, выпускаемыми компанией. Речь идет о выходе четвертой версии системы мониторинга и архивирования почтовых сообщений (СМАП) «Дозор-Джет» и начале разработки второй версии системы контроля веб-трафика (СКВТ) «Дозор-Джет». Оба продукта имеют много отличий и нововведений по сравнению с предыдущими версиями.

Кроме названных продуктов в компании разработано другое программное обеспечение, также связанное с проблемами контентной фильтрации, — библиотеки определения типов данных и модуля определения типов и распаковки данных для Lotus/Cerberus.

СМАП «Дозор-Джет»

Итак, в четвертой версии СМАП «Дозор-Джет» реализованы новые возможности, обеспечивающие более высокий уровень фильтрации почтовых потоков. Изменения, затронувшие систему, можно разделить на несколько разделов:

- общие изменения;
- изменения в подсистеме фильтрации;
- изменения в подсистеме управления;
- изменения в модулях расширения.

Некоторые изменения кардинально отличают данный продукт от тех, что предлагаются другими компаниями. Об этом будет рассказано в соответствующих разделах.

Переход на новую версию осуществляется без потери наработанных политик фильтрации — для этого разработаны средства миграции данных и документация по их использованию.

Дополнительную информацию о СМАП «Дозор-Джет» можно найти на продуктовом сайте компании «Инфосистемы Джет»: http://www.jetsoft.ru/ или из других выпусков бюллетеня Jet Info, электронная версия: http://www.jetinfo.ru/.

Общие изменения

К общим изменениям относятся такие, которые затрагивают все части системы, например:

- поддержка Unicode все части системы используют Unicode в качестве внутренней кодировки данных. Это изменение позволяет использовать систему в многоязычных средах и поддерживать разные языки как для обработки писем, так и для пользовательского интерфейса. Есть возможность мгновенного переключения языка подсистемы управления. В настоящий момент для нее реализована поддержка русского, английского и японского языков;
- переработана схема базы данных, что позволило повысить скорость закладки сообщений в архив и ускорить поиск по архиву;
- отправка сообщений выделена в отдельную подсистему, это повысило надежность обра-

- ботки сообщений и упростило интеграцию с внешними почтовыми системами;
- в поставке системы теперь идут типовые политики, в которых находятся наиболее часто используемые условия, пометки и другие объекты политики фильтрации;
- в качестве баз данных используются Oracle 10g и PostgreSQL 8.х, что позволило увеличить объемы хранения без существенного изменения требований к серверам баз данных. Кроме того, в настоящее время ведется работа над модулем взаимодействия с Microsoft SQL Server для предприятий, на которых не используется СУБД Oracle.

Эти изменения существенное повлияли на архитектуру системы и позволили исключить большую часть ограничений и недостатков, существовавших в предыдущих версиях.

Изменения в подсистеме фильтрации

Изменения в подсистеме фильтрации оказали существенное влияние на производительность системы. К ним можно отнести:

- новый парсер писем реализует механизмы «ленивой» распаковки писем и объектов. Этот механизм существенно повышает производительность, поскольку распаковка письма и объектов, его составляющих, производится только в том случае, когда имеется соответствующее условие (проверка типа файла, наличие текста в файле, наличие ошибок распаковки).
- Новая система определения типов позволяет очень точно определять типы передаваемых данных, и выбирать соответствующие обработчики.
- Новая система определения языков и кодировок корректно определяет кодировку и язык текстовых объектов и преобразует их во внутреннее представление подсистемы фильтрации Unicode.
- В новой версии пометки привязываются не к письму, как это было раньше, а к объектам письма, что позволяет создавать более сложные политики фильтрации, например, все ли файлы зашифрованы, или определять, какой файл вызвал ошибку распаковки.
- В подсистеме фильтрации появились новые условия фильтрации:
 - условие для проверки времени суток делает возможным реализацию отложенной доставки сообщений, для некоторых

Рис. 4. Общий вид интерфейса пользователя системы

их видов, например, содержащих файлы с аудио- и видеоинформацией;

- условие для проверки дня недели может использоваться для выявления необычной активности в нерабочие дни.
- Также были реализованы и новые действия:
 - отложенная доставка писем обычно используется вместе с другими условиями, такими как размер письма или время отправки, и обеспечивает отправку писем после указанного времени;
 - приоритетная доставка писем обеспечивает ускоренную доставку некоторых видов писем.
- Новые распаковщики и конвертеры:
 - добавлена поддержка архивов 7zip, deb, rpm и сріо;
 - добавлен анализатор текстовых файлов, который позволяет выделить из текста бинарные данные закодированные с помощью base64, uuencode и quoted-printable. Эта утилита корректно обрабатывает неправильно пересылаемые письма (forwarded) и те случаи, когда пользователи стараются закодировать пересылаемые данные для обмана системы;

- корректно обрабатываются файлы, гаг, присоединенные к файлам других типов MS Word, tiff, jpeg и другие;
- сделано извлечение текстовых комментариев из всех типов архивов и файлов mp3.
- Антивирусная поддержка теперь реализуется только с помощью протокола ICAP, что позволяет использовать следующие антивирусы: Symantec, Trendmicro, DrWeb, Clamav (с помощью программы с-icap), Kaspersky ICAP Server и другие, имеющие поддержку ICAP.
- Появилась возможность подключения модулей предварительной обработки сообщений, и теперь для обработки сообщений можно применять антиспамовые системы сторонних производителей.

Изменения в подсистеме управления

Интерфейс управления системой претерпел кардинальные изменения. Он получил новый дизайн, для его реализации использована технология Ајах, что увеличило скорость отклика на действия пользователя системы. Общий вид нового интерфейса пользователя представлен на рисунке 4.

Рис. 5. Вид результатов поиска писем

Рис. 6. Просмотр подробной информации о письме

Jet Info

Рис. 7. Работа со списками слов

Изменения в подсистеме управления:

- работа интерфейса существенно ускорена за счет более тесной интеграции с webсервером.
- Изменена навигация в интерфейсе пользователя, разделы интерфейса сгруппированы по функциям.
- Полностью переработана подсистема поиска писем (рис. 5):
 - при поиске по архиву используется механизм сессий, который сохраняет результаты поиска и затем выполняет с ними указанные действия;
 - за счет механизма сессий ускорена работа с выбранными данными — навигация по списку писем, показ писем и действия над ними;
 - реализован подробный показ письма показываются извлеченные текстовые части, можно осуществлять доступ к файлам в архивах (рис. 6);
 - для построения запросов используется новый интерфейс, который позволяет искать по большему количеству параметров, в том числе и по всем заголовкам сообщения (рис. 7);

- полнотекстовый поиск по архиву теперь входит в состав базовой системы и не требует отдельной установки;
- Раздел управления политиками безопасности также претерпел большие изменения, что улучшило работу с политиками. Изменен механизм работы со списками слов теперь можно работать с ними, не создавая файл с ключевыми словами, а редактируя список прямо в веб-интерфейсе (рис. 7).
- Расширен набор утилит командной строки, теперь с их помощью можно выполнять отправку писем, выгрузку отдельного письма и другие действия.
- Интерфейс системного администратора расширен редактором уровней отладки, что позволяет выполнять практически все действия из веб-интерфейса.

Изменения в модулях расширения

Изменения в базовой системе не могли не затронуть дополнительных модулей, используемых для расширения функций системы. Ниже приводятся изменения по каждому модулю системы:

- модуль анти-спамовой защиты пришел на смену модулю категоризации, он позволяет реализовать не только проверки относительно байесовских категорий, но и другие методы проверки наличия спама; все работы с байесовскими категориями теперь производятся через веб-интерфейс.
- Модуль сегментирования архива почтовых сообщений полностью переработан, чтобы обеспечить удобство работы с сегментами и сделать возможной автоматическое управление сегментами.
- Модуль реконструкции переписан для использования новых возможностей — теперь можно удалять части писем основываясь не только на типе части письма, но и на пометках, установленных на эту часть.
- Модуль полнотекстового поиска по архиву теперь входит в базовую поставку системы.
- Модуль поддержки ЭЦП обеспечивает проверку ЭЦП письма, установить ЭЦП на письмо и зашифровать/расшифровать письмо. Поддерживаются разные алгоритмы шифрации, в том числе и ГОСТ.

СКВТ «Дозор-Джет»

Система контроля веб-трафика (СКВТ) «Дозор-Джет» — сравнительно новый продукт компании, но уже хорошо зарекомендовавший себя у пользователей. С момента его выпуска прошло полтора года, в настоящее время ведется активная разработка второй версии СКВТ «Дозор-Джет». В ней запланированы следующие изменения:

- кардинально переработан интерфейс пользователя:
 - для ускорения работы пользователей применяется технология Ајах, интерфейс становится более похожим на интерфейс 4-й версии СМАП «Дозор-Джет»;
 - интерфейс пользователя поддерживает работу с разными языками — в настоящий момент это русский, английский и японский;
 - управление вспомогательными утилитами (выгрузка данных из базы, резервное копирование и т.п.) производится через вебинтерфейс с возможностью настройки работы по расписанию.
- В подсистеме фильтрации:
 - добавлена фильтрация по любому из заголовков запросов или ответов;
 - добавлена фильтрация по командам протокола HTTP;

- пользователь может быть аутентифицирован по нескольким признакам имя/пароль, IP-адрес, MAC-адрес;
- для установления категории сайта используются как внешние базы категорий сайтов, так и семантический анализ содержимого сайтов. Система поддерживает работу с базами категорий сайтов от компаний NetStar и ISS/Cobion;
- реализована поддержка протокола ICAP для взаимодействия с антивирусным программным обеспечением;
- для анализа текста в исходящих документах могут использоваться внешние конвертеры;
- реализовано оповещение администратора при срабатывании заданных условий;
- POST-запросы могут сохраняться в базу данных и могут быть проанализированы позднее.
- Сильно переработана подсистема отчетности:
 - добавлены новые типовые отчеты Тор-N пользователей по трафику, Тор-N самых посещаемых сайтов, Тор-N наиболее активно используемых форматов файлов и другие;
 - реализована возможность автоматической генерации отчетов по расписанию;
 - вывод результатов в различные форматы HTML с картинками, PDF, CSV.

Вторая версия СКВТ «Дозор-Джет» планируется к выпуску на российский рынок в первом квартале 2007 года.

Межсетевой экран Z-2

Межсетевой экран Z-2 можно отнести к средствам, реализующим концепцию UTM. Система имеет в своем составе базовые средства контентной фильтрации передаваемых данных, включая их антивирусную проверку для всех протоколов, для которых существуют анализаторы протоколов.

В новой версии реализована антивирусная проверка передаваемых данных через ICAP в шлюзах HTTP, FTP, SMTP и POP3, что позволяет легко интегрироваться с рядом популярных AV-решений.

Для шлюза SMTP протокола реализована поддержка протокола SPF и механизма серых списков доступа (graylisting). В сочетании с другими возможностями по обработке SMTP пото-

ка это позволяет значительно сократить количество нежелательных писем до их обработки средствами контентной фильтрации, снижая нагрузку на них.

В качестве дополнительных возможностей можно выделить ограничение полосы пропускания в зависимости от типа содержимого в HTTP-шлюзе.

- модуль определения текста и методов его кодирования;
- модуль определения исполняемых файлов MS-DOS (.com-файлы).
- Явное отображение сигнатур в mime-типы позволяет избежать дублирования информации (что присутствует в стандартной утилите file).

Система определения типов

Определение типов данных играет важную роль при разработке продуктов контентной фильтрации. Многие компании используют для этой цели широко распространенную утилиту file, хорошо известную пользователям UNIX-подобных операционных систем. Однако у этой утилиты есть многочисленные недостатки, которые приводят к частым ошибкам в определении типов. Поэтому компанией разработана собственная система определения типов, позволяющая сделать эту операцию очень точной.

Новая система определения типов данных обладает следующими возможностями:

- специализированный язык описания проверок типов данных позволяет реализовать очень сложные проверки. Это полноценный язык программирования со следующими возможностями:
 - поддерживаются типы данных: числа (big & little endian), строки, символы, списки;
 - поддержка множества операций сравнения, арифметические, битовые, логические;
 - поддерживается прямая и косвенная адресация проверяемых данных, что позволяет анализировать информацию, основываясь на информации, считанной на предыдущих этапах анализа;
 - поддержка условных операторов позволяет сделать условия более гибкими;
 - форматированный вывод позволяет управлять выводом результатов;
 - возможность расширения языка проверок позволяет проанализировать даже очень сложные структуры.
- Возможно подключение дополнительных модулей анализа. На данный момент существуют следующие дополнительные модули анализа:
 - модуль определения типов для OLE-файлов Microsoft Visio, Project, Word, Excel, PowerPoint;

Модуль определения типов и распаковки данных для Lotus/Cerberus

Данный модуль является дополнением к программному обеспечению Cerberus для Lotus Domino, которое выполняет функции по анализу сообщений, передаваемых в рамках работы системы Lotus Domino. Однако эта система обладает малыми возможностями по анализу типов передаваемых данных. Для ее решения и разработан данный модуль.

Модуль позволяет выполнять следующие задачи:

- вести список разрешенных и запрещенных типов данных;
- для разрешенных типов данных можно указать дополнительную команду обработки данного типа файлов, например, распаковать архив или извлечь текст из файлов Microsoft Word.

Функционирует модуль под управлением операционной системы Microsoft Windows и в данное время успешно применяется в одном из крупнейших российских банков.

Заключение

Развитие информационных систем приводит к возникновению все новых и новых угроз. Поэтому развитие продуктов контентной фильтрации не только не отстает, но иногда даже и предвосхищает возникновение новых угроз, уменьшая риски для защищаемых информационных систем.

НОВОСТИ КОМПАНИИ

«Дозор-Джет»

демонстрирует рекордные продажи

Компания «Инфосистемы Джет» объявляет о достижении рекордного уровня продаж линейки продуктов «Дозор-Джет». За первые три квартала 2006 года объём продаж составил \$3,5 млн, что уже превышает уровень продаж системы за весь 2005 год.

Со времени создания «Дозор-Джет» в 1999 году к настоящему моменту осуществлено более 200 внедрений системы в компаниях практически всех вертикальных рынков. Основными покупателями «Дозор-Джет» являются:

- кредитно-финансовые организации (Министерство финансов РФ, Центральный банк РФ, Сбербанк РФ и 14 его региональных филиалов, а также более 40 коммерческих банков);
- компании топливно-энергетического комплекса, добывающей и обрабатывающей промышленности, среди которых – РусАл, ОАО «ЛУ-КОЙЛ», Ямбургаздобыча, ТНК-ВР и еще 30 различных предприятий; «МТС», ОАО «Межрегиональный ТранзитТелеком» и другие крупные компании;
- инвестиционные, консалтинговые организации и страховые компании (Росгосстрах, Ингосстрах, Интеррос, «АльфаСтрахование» и другие);
- федеральные органы власти и государственные организации (Министерство обороны РФ, Министерство экономического развития РФ, Федеральная служба по финансовому мониторингу, ФЭК России, Департамент финансов г. Москвы, УМНС по г. Москве и еще более десяти организаций);
- научные организации и высокотехнологичные компании;
- компании, осуществляющие ритейл и дистрибуцию.

«По итогам трех кварталов 2006 года мы достигли рекордных продаж линейки продуктов «Дозор-Джет», – отметил Олег Слепов, менеджер по продвижению продуктов безопасности компании «Инфосистемы Джет». – Такого успеха удалось добиться благодаря

тому, что уникальные функциональные возможности системы позволяют решать задачи наших клиентов и реализовать любую сколь угодно сложную политику использования Интернет-ресурсов, в том числе накапливать и анализировать большие объемы информации. Говоря об обработке данных необходимо особо отметить интеллектуальные возможности системы «Дозор-Джет». Обработанная информация в дальнейшем применяется для оптимизации политики информационной безопасности и повышения эффективности фильтрации Интернет-трафика».

Анализ структуры продаж программного продукта «Дозор-Джет» показал, что 55% всех внедрений осуществлены в крупных организациях (от 1 000 до 15 000 сотрудников), 28% – в средних компаниях (от 300 до 1 000 сотрудников), 17% – в организациях малого бизнеса (до 300 сотрудников).

Диаграмма №1: Статистика продаж «Дозор-Джет» среди организаций различного масштаба

Аналитические данные компании «Инфосистемы Джет» позволяют выделить основные задачи, стоящие перед крупными компаниями и решаемые с помощью системы «Дозор-Джет»:

- 1. Реализация политики использования Интернетресурсов; в этом качестве «Дозор-Джет» применяется в 38% организаций.
- 2. Фильтрация трафика с целью обеспечения безопасности обмена данными в сетях общего пользования, в том числе для защиты от инсайдеров и предотвращения утечек конфиденциальной информации – в 25% организаций.

О контентной фильтрации

3. Создание архива корпоративной корреспонденции – в 19% организаций.

4. Другие задачи – в 18% организаций.

Благодаря мощной фильтрации наибольшая эффективность системы «Дозор-Джет» проявляется при ее использовании на больших потоках данных. В настоящее время эта система работает в организациях, объем почтового трафика которых достигает 40 гигабайт в день, а количество пользователей превышает 15 000 человек.

«Дозор-Джет» в полной мере выполняет перечисленные выше задачи и является системой промышленного уровня, применяемой для фильтрации больших объемов данных, и предназначенной для контроля и управления информационным обменом, осуществляемым по каналам Интернет.

Диаграмма №2: Задачи, решаемые с помощью «Дозор-Джет»

Jet Info

Издается с 1995 года

Издатель: компания «Инфосистемы Джет»

Главный редактор: Дмитриев В.Ю. (vlad@jet.msk.su) Редактор: Лапина И.К. (lapina@jet.msk.su)

Россия, 127015, Москва, Б. Новодмитровская, 14/1 тел. (495) 411 76 01

факс (495) 411 76 02

email: JetInfo@jet.msk.su http://www.jetinfo.ru

Подписной индекс по каталогу Роспечати 32555

