June 2006 Intake Paper 1 (FM1) [Examination date: 30 August 2007]

1.
$$(xy)^{2n} = (x^2 + y^2)^{n-1}(x^n + y^n)^2$$

2. $128n^4 + 576n^3 + 908n^2 + 585n$

3. $\frac{e+1}{4}$

4. $y = e^{-3x}(A\cos 4x + B\sin 4x) + e^x$

5. SHOW

6. $\mathbf{r} = s\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \ \mathbf{r} = s\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

7. $2605u^4 - 2331u^3 + 847u^2 - 142u + 9 = 0$

8. $357\frac{1095}{3136}\pi$

8. $357\frac{1095}{3136}\pi$

19. $I_4 = \frac{1}{2}\tan x \sec x + \frac{1}{2}\ln|\sec x + \tan x| + C$;

Asymptotes: $y = 5$, $x = 1$ and $x = -9$.

Turning points: Minimum $\left(-1, 12\frac{1}{2}\right)$ and Maximum $\left(4\frac{1}{3}, 7\frac{7}{10}\right)$.

The curve crosses the axes at points: $\left(0, 13\frac{1}{3}\right), \left(-\frac{17 + \sqrt{385}}{2}, 0\right)$ and $\left(-\frac{17 - \sqrt{385}}{2}, 0\right)$.

10. $\frac{10}{25} - \frac{10}{20} \frac{\sin n\theta}{2}$

110. a) $y = x\sqrt{2} + \frac{\pi}{4}(1-\sqrt{2})$; (b) -1