Combinatorics

ChanBong

 $January\ 23,\ 2023$

Contents

1	Lecture 8: Introduction								2									
	1.1	Examples on Generating Functions																2

23rd January, 2023

Lecture 8: Introduction

1.1 Examples on Generating Functions

- $(1-x)^{-r} = \sum_{n=0}^{\infty} {r+n-1 \choose r-1} x^n$
- $G_a(x) = \sum_{n=0}^{\infty} a_n x^m$ is generating function for $\{a_n\}$

Example 1.1: Find the generation function for $a_n = \binom{n}{2} = \frac{n(n-1)}{2}$ $a_n = \frac{1}{2}[b_n - c_n]; b_n = n^2, c_n = n$

Theorem 1.2 Addition and Multiplication of GF:

Given sequence $\{a_n\}$, $\{b_n\}$ and their generating functions $G_a(x)=\sum_{n=0}^\infty a_n x^m$ and $G_a(x)=\sum_{n=0}^\infty b_n x^m$

- Addition $G_a + G_b = \sum_{n=0}^{\infty} (a_n + b_n) x^m$
- Multiplication $G_a * G_b = \sum_{n=0}^{\infty} (c_n) x^m$, where $c_n = \sum_{k=0}^{n} a_k b_{n-k}$

Example 1.3:

• Do the examples in class.

Definition 1.1 Triangular Numbers: $T_n = 1 + 2 + ... + n = \binom{n+1}{2}$; $n \ge 1$