Sample Complexity for Topology Estimation in Networks of LTI Systems

Vincent Tan*† and Alan Willsky†

Department of Electrical and Computer Engineering, University of Wisconsin-Madison*

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology[†]

IFAC (August 31, 2011)

• Tree network $T = (V, \mathcal{E})$ with p nodes and p - 1 directed arcs

• Tree network $T = (V, \mathcal{E})$ with p nodes and p-1 directed arcs

2/19

• Tree network $T = (V, \mathcal{E})$ with p nodes and p - 1 directed arcs

• Tree network $T = (V, \mathcal{E})$ with p nodes and p-1 directed arcs

 $p = 4, \mathcal{V} = \{1, 2, 3, 4\}$ and $\mathcal{E} = \{(1, 2), (2, 3), (2, 4)\}$

2/19

• Tree network $T = (V, \mathcal{E})$ with p nodes and p - 1 directed arcs

 $p = 4, \mathcal{V} = \{1, 2, 3, 4\}$ and $\mathcal{E} = \{(1, 2), (2, 3), (2, 4)\}$

• Tree network $T = (V, \mathcal{E})$ with p nodes and p-1 directed arcs

 $p = 4, \mathcal{V} = \{1, 2, 3, 4\}$ and $\mathcal{E} = \{(1, 2), (2, 3), (2, 4)\}$

$$P_{X_1,X_2,X_3,X_4} = P_{X_1}P_{X_2|X_1}P_{X_3|X_2}P_{X_4|X_2}$$

• Observe discrete-time process $X_i := \{X_i[n]\}_{n=0}^{\infty}$ at each node $i \in \mathcal{V}$

- Observe discrete-time process $X_i := \{X_i[n]\}_{n=0}^{\infty}$ at each node $i \in \mathcal{V}$
- How long do we need to observe the processes (X_1, \ldots, X_p) in order to get a good estimate of the undirected tree network \mathcal{T} ?

- Observe discrete-time process $X_i := \{X_i[n]\}_{n=0}^{\infty}$ at each node $i \in \mathcal{V}$
- How long do we need to observe the processes (X_1, \ldots, X_p) in order to get a good estimate of the undirected tree network \mathcal{T} ?
- Materassi and Innocenti (TAC-2011) provided an algorithm

- Observe discrete-time process $X_i := \{X_i[n]\}_{n=0}^{\infty}$ at each node $i \in \mathcal{V}$
- How long do we need to observe the processes (X_1, \ldots, X_p) in order to get a good estimate of the undirected tree network \mathcal{T} ?
- Materassi and Innocenti (TAC-2011) provided an algorithm
- We analyze a related algorithm here

- Observe discrete-time process $X_i := \{X_i[n]\}_{n=0}^{\infty}$ at each node $i \in \mathcal{V}$
- How long do we need to observe the processes (X_1, \ldots, X_p) in order to get a good estimate of the undirected tree network \mathcal{T} ?
- Materassi and Innocenti (TAC-2011) provided an algorithm
- We analyze a related algorithm here
- Many applications in system identification and model selection

Intimately related to graphical models in machine learning

- Intimately related to graphical models in machine learning
- Graph structure $G = (\mathcal{V}, \mathcal{E})$ represents the joint distribution of a random vector (X_1, \dots, X_p) : $\mathcal{V} = \{1, \dots, p\}$ and $\mathcal{E} \subset \binom{\mathcal{V}}{2}$
- Node $i \in \mathcal{V}$ corresponds to random variable/process X_i .
- Edge set \mathcal{E} corresponds to conditional independencies.

- Intimately related to graphical models in machine learning
- Graph structure $G = (\mathcal{V}, \mathcal{E})$ represents the joint distribution of a random vector (X_1, \dots, X_p) : $\mathcal{V} = \{1, \dots, p\}$ and $\mathcal{E} \subset \binom{\mathcal{V}}{2}$
- Node $i \in \mathcal{V}$ corresponds to random variable/process X_i .
- Edge set \mathcal{E} corresponds to conditional independencies.

- Intimately related to graphical models in machine learning
- Graph structure $G = (\mathcal{V}, \mathcal{E})$ represents the joint distribution of a random vector (X_1, \dots, X_p) : $\mathcal{V} = \{1, \dots, p\}$ and $\mathcal{E} \subset \binom{\mathcal{V}}{2}$
- Node $i \in \mathcal{V}$ corresponds to random variable/process X_i .
- Edge set \mathcal{E} corresponds to conditional independencies.

Kalman filter, hidden Markov models, Bayesian networks...

$$P(\mathbf{x}) = \prod_{i \in \mathcal{V}} P_i(x_i) \prod_{(i,j) \in \mathcal{E}} \frac{P_{i,j}(x_i, x_j)}{P_i(x_i) P_j(x_j)}$$

$$= P_1(x_1) \frac{P_{1,2}(x_1, x_2)}{P_1(x_1)} \frac{P_{1,3}(x_1, x_3)}{P_1(x_1)} \frac{P_{1,4}(x_1, x_4)}{P_1(x_1)}$$

For trees, directed model is equal to the undirected model

For trees, directed model is equal to the undirected model

Tree-structured Graphical Models: Tractable Learning and Inference

For trees, directed model is equal to the undirected model

Tree-structured Graphical Models: Tractable Learning and Inference

- Maximum-Likelihood learning of tree structure is tractable
 - Chow-Liu Algorithm (1968)

For trees, directed model is equal to the undirected model

Tree-structured Graphical Models: Tractable Learning and Inference

- Maximum-Likelihood learning of tree structure is tractable
 - Chow-Liu Algorithm (1968)
- Inference on Trees is tractable
 - Sum-Product Algorithm (Pearl 1988)

Let us observe the p Gaussian WSS processes for N time steps

$${X_1[n]}_{n=0}^{N-1}, {X_2[n]}_{n=0}^{N-1}, \dots, {X_p[n]}_{n=0}^{N-1}$$

Let us observe the p Gaussian WSS processes for N time steps

$${X_1[n]}_{n=0}^{N-1}, {X_2[n]}_{n=0}^{N-1}, \dots, {X_p[n]}_{n=0}^{N-1}$$

Theorem

Let $\varepsilon > 0$. If \mathcal{T} is a tree and mutual information rates on the edges are uniformly bounded away from zero, and if

Let us observe the p Gaussian WSS processes for N time steps

$${X_1[n]}_{n=0}^{N-1}, {X_2[n]}_{n=0}^{N-1}, \dots, {X_p[n]}_{n=0}^{N-1}$$

Theorem

Let $\varepsilon > 0$. If \mathcal{T} is a tree and mutual information rates on the edges are uniformly bounded away from zero, and if

$$N = O\left(\log^{1+\varepsilon}\left(\frac{p}{\delta^{1/3}}\right)\right),$$

Let us observe the p Gaussian WSS processes for N time steps

$${X_1[n]}_{n=0}^{N-1}, {X_2[n]}_{n=0}^{N-1}, \dots, {X_p[n]}_{n=0}^{N-1}$$

Theorem

Let $\varepsilon > 0$. If $\mathcal T$ is a tree and mutual information rates on the edges are uniformly bounded away from zero, and if

$$N = O\left(\log^{1+arepsilon}\left(rac{p}{\delta^{1/3}}
ight)
ight), \qquad ext{then} \qquad \mathbb{P}(\hat{\mathcal{T}}_N
eq \mathcal{T}) < \delta$$

• Given observations $\{X_1[n]\}_{n=0}^{N-1}, \dots, \{X_p[n]\}_{n=0}^{N-1}$, learn \mathcal{T} , a tree

- Given observations $\{X_1[n]\}_{n=0}^{N-1}, \dots, \{X_p[n]\}_{n=0}^{N-1}$, learn \mathcal{T} , a tree
- $\mathcal{M}_{\text{Tree}}$: Set of probability measures associated to tree processes

- Given observations $\{X_1[n]\}_{n=0}^{N-1}, \dots, \{X_p[n]\}_{n=0}^{N-1}$, learn \mathcal{T} , a tree
- \mathcal{M}_{Tree} : Set of probability measures associated to tree processes
- Consider the problem

$$\inf_{\nu \in \mathcal{M}_{\mathsf{Tree}}} D(\mu \, || \, \nu), \qquad D(\mu \, || \, \nu) := \int \log \frac{d\mu}{d\nu} \, d\nu$$

where μ is an estimate of the probability measure of (X_1, \ldots, X_p)

- Given observations $\{X_1[n]\}_{n=0}^{N-1}, \dots, \{X_p[n]\}_{n=0}^{N-1}$, learn \mathcal{T} , a tree
- M_{Tree}: Set of probability measures associated to tree processes
- Consider the problem

$$\inf_{\nu \in \mathcal{M}_{\mathsf{Tree}}} D(\mu \, || \, \nu), \qquad D(\mu \, || \, \nu) := \int \log \frac{d\mu}{d\nu} \, d\nu$$

where μ is an estimate of the probability measure of (X_1, \ldots, X_p)

$$\inf_{\nu \in \mathcal{M}_{\mathsf{Tree}}} D(\mu \,||\, \nu)$$

$$\inf_{\nu \in \mathcal{M}_{\mathsf{Tree}}} D(\mu \,||\, \nu)$$

Lemma (Chow-Liu for processes)

The measure that achieves the minimum is Markov on \mathcal{T}^* given by

$$\mathcal{T}^* = \underset{\mathcal{T} \in \textit{Tree}}{\arg\max} \ \sum_{(i,j) \in \mathcal{T}} I_{\mu}(X_i; X_j),$$

$$\inf_{\nu \in \mathcal{M}_{\mathsf{Tree}}} D(\mu \,||\, \nu)$$

Lemma (Chow-Liu for processes)

The measure that achieves the minimum is Markov on \mathcal{T}^* given by

$$\mathcal{T}^* = \underset{\mathcal{T} \in \textit{Tree}}{\arg\max} \ \sum_{(i,j) \in \mathcal{T}} I_{\mu}(X_i; X_j),$$

The problem is a a max-weight spanning tree problem

$$\inf_{\nu \in \mathcal{M}_{\mathsf{Tree}}} D(\mu \,||\, \nu)$$

Lemma (Chow-Liu for processes)

The measure that achieves the minimum is Markov on \mathcal{T}^* given by

$$\mathcal{T}^* = \underset{\mathcal{T} \in \textit{Tree}}{\arg\max} \ \sum_{(i,j) \in \mathcal{T}} I_{\mu}(X_i; X_j),$$

- The problem is a a max-weight spanning tree problem
- The mutual information rate for Gaussian processes is

$$I(X_i; X_j) := -\frac{1}{4\pi} \int_0^{2\pi} \log \left(1 - |\gamma_{i,j}(\omega)|^2\right) d\omega$$

• $\gamma_{i,j}(\omega)$ is the coherence function between X_i and X_j

Problem Statement

ullet Error event is $\left\{\hat{\mathcal{T}}_{\!N}
eq \mathcal{T}\right\}$

ullet Error event is $\left\{\hat{\mathcal{T}}_{\!N}
eq \mathcal{T}\right\}$

ullet Error event is $\left\{\hat{\mathcal{T}}_{N}
eq \mathcal{T}\right\}$

Bound the error probability

$$\mathbb{P}(\hat{\mathcal{T}}_N \neq \mathcal{T})$$

ullet Error event is $\left\{\hat{\mathcal{T}}_{\!N}
eq \mathcal{T}\right\}$

Bound the error probability

$$\mathbb{P}(\hat{\mathcal{T}}_N \neq \mathcal{T})$$

• How do errors occur?

ullet Error event is $\left\{\hat{\mathcal{T}}_{N}
eq \mathcal{T}\right\}$

Bound the error probability

$$\mathbb{P}(\hat{\mathcal{T}}_N \neq \mathcal{T})$$

- How do errors occur?
- The order of the estimated MI rates relative to the true ones is important

Correct Structure

$I(X_i;X_j)$		5	4	3	2	1
$\hat{I}(X_i;X_j)$	6.2	5.6	4.5	2.8	2.2	1.1

Correct Structure

$I(X_i;X_j)$			4	3	2	1
$\hat{I}(X_i;X_j)$	6.2	5.6	4.5	2.8	2.2	1.1

Incorrect Structure!

$I(X_i;X_j)$	6	5	4	3	2	1
$\hat{I}(X_i;X_j)$	6.3	4.9	3.5	3.6	2.2	1.1

Correct Structure

$I(X_i;X_j)$	6	5	4	3	2	1
$\hat{I}(X_i;X_j)$	6.2	5.6	4.5	2.8	2.2	1.1

Incorrect Structure!

$I(X_i;X_j)$	6	5	4	3	2	1
$\hat{I}(X_i;X_j)$	6.3	4.9	3.5	3.6	2.2	1.1

Structure Unaffected

$I(X_i; X_j)$	6	5	4	3	2	1
$\hat{I}(X_i;X_i)$	5.5	5.6	4.5	3.0	2.2	1.1

Correct Structure

$I(X_i;X_j)$	6	5	4	3	2	1
$\hat{I}(X_i;X_j)$	6.2	5.6	4.5	2.8	2.2	1.1

Incorrect Structure!

$I(X_i;X_i)$	6	5	4	3	2	1
$\hat{I}(X_i;X_j)$			3.5	3.6	2.2	1.1

Structure Unaffected

$I(X_i;X_j)$	6	5	4	3	2	1
$\hat{I}(X_i;X_i)$	5.5	5.6	4.5	3.0	2.2	1.1

Estimate mutual information rates and ensure $\hat{I}(X_i; X_j) \approx I(X_i; X_j)$

Estimating the Mutual Information Rates I

• Given $\{X_1[n]\}_{n=0}^{N-1},\ldots,\{X_p[n]\}_{n=0}^{N-1}$, estimate $\{I(X_i;X_j)\}_{(i,j)\in\mathcal{V}}$ using Bartlett's procedure

Estimating the Mutual Information Rates I

- Given $\{X_1[n]\}_{n=0}^{N-1},\ldots,\{X_p[n]\}_{n=0}^{N-1}$, estimate $\{I(X_i;X_j)\}_{(i,j)\in\mathcal{V}}$ using Bartlett's procedure
- Divide each length-N realization $\{X_j[n]\}_{n=0}^{N-1}$ into L non-overlapping segments of length M such that $LM \approx N$

Estimating the Mutual Information Rates I

- Given $\{X_1[n]\}_{n=0}^{N-1},\ldots,\{X_p[n]\}_{n=0}^{N-1}$, estimate $\{I(X_i;X_j)\}_{(i,j)\in\mathcal{V}}$ using Bartlett's procedure
- Divide each length-N realization $\{X_j[n]\}_{n=0}^{N-1}$ into L non-overlapping segments of length M such that $LM \approx N$

• Compute the length-M discrete Fourier transform for each signal segment, i.e., $\tilde{X}_i^{(l)}[k] = \mathcal{F}(X_i^{(l)}[n])$

Estimating the Mutual Information Rates II

 Estimate the time-averaged periodograms using Bartlett's averaging procedure on the L signal segments, i.e.,

$$\hat{\Phi}_{X_i}[k] := rac{1}{L} \sum_{l=0}^{L-1} \left| \tilde{X}_i^{(l)}[k] \right|^2$$

$$\hat{\Phi}_{X_i,X_j}[k] := rac{1}{L} \sum_{l=0}^{L-1} \left(\tilde{X}_i^{(l)}[k] \right)^* \tilde{X}_j^{(l)}[k]$$

Estimating the Mutual Information Rates II

 Estimate the time-averaged periodograms using Bartlett's averaging procedure on the L signal segments, i.e.,

$$\hat{\Phi}_{X_i}[k] := rac{1}{L} \sum_{l=0}^{L-1} \left| \tilde{X}_i^{(l)}[k] \right|^2$$

$$\hat{\Phi}_{X_i,X_j}[k] := rac{1}{L} \sum_{l=0}^{L-1} \left(\tilde{X}_i^{(l)}[k] \right)^* \tilde{X}_j^{(l)}[k]$$

• Estimate the magnitude-squared coherences:

$$|\hat{\gamma}_{i,j}[k]|^2 := \frac{|\hat{\Phi}_{X_i,X_j}[k]|^2}{\hat{\Phi}_{X_i}[k]\hat{\Phi}_{X_j}[k]}.$$

Estimating the Mutual Information Rates II

 Estimate the time-averaged periodograms using Bartlett's averaging procedure on the L signal segments, i.e.,

$$\hat{\Phi}_{X_i}[k] := rac{1}{L} \sum_{l=0}^{L-1} \left| \tilde{X}_i^{(l)}[k] \right|^2$$

$$\hat{\Phi}_{X_i,X_j}[k] := rac{1}{L} \sum_{l=0}^{L-1} \left(\tilde{X}_i^{(l)}[k] \right)^* \tilde{X}_j^{(l)}[k]$$

• Estimate the magnitude-squared coherences:

$$|\hat{\gamma}_{i,j}[k]|^2 := \frac{|\hat{\Phi}_{X_i,X_j}[k]|^2}{\hat{\Phi}_{X_i}[k]\hat{\Phi}_{X_i}[k]}.$$

Estimate the MI rates by using the Riemann sum:

$$\hat{I}(X_i; X_j) := -\frac{1}{2M} \sum_{k=0}^{M-1} \log \left(1 - |\hat{\gamma}_{i,j}[k]|^2 \right).$$

• With the estimated $\{\hat{I}(X_i; X_j)\}_{(i,j) \in \mathcal{V}}$, we run a max-weight spanning tree procedure to learn $\hat{\mathcal{T}}$

- With the estimated $\{\hat{I}(X_i; X_j)\}_{(i,j) \in \mathcal{V}}$, we run a max-weight spanning tree procedure to learn $\hat{\mathcal{T}}$
- This procedure is efficient

$$O(p^2(N\log M + \log p)).$$

- With the estimated $\{\hat{I}(X_i; X_j)\}_{(i,j) \in \mathcal{V}}$, we run a max-weight spanning tree procedure to learn $\hat{\mathcal{T}}$
- This procedure is efficient

$$O(p^2(N\log M + \log p)).$$

But not clear how to tradeoff between number of signal segments
 L and length of each segment M

- With the estimated $\{\hat{I}(X_i; X_j)\}_{(i,j) \in \mathcal{V}}$, we run a max-weight spanning tree procedure to learn $\hat{\mathcal{T}}$
- This procedure is efficient

$$O(p^2(N\log M + \log p)).$$

- But not clear how to tradeoff between number of signal segments
 L and length of each segment M
- For convenience, we let $M = M_L$ be a function of L

Concentration of MI Rate

Lemma (Concentration of MI Rate)

If the number of DFT points M_L satisfies

$$\lim_{L\to\infty} M_L = \infty, \qquad \lim_{L\to\infty} L^{-1} \log M_L = 0,$$

Concentration of MI Rate

Lemma (Concentration of MI Rate)

If the number of DFT points M_L satisfies

$$\lim_{L\to\infty} M_L = \infty, \qquad \lim_{L\to\infty} L^{-1} \log M_L = 0,$$

then for any $\eta > 0$, we have

$$\mathbb{P}\left(|\hat{I} - I| > \eta\right) \leq \exp\left[-(L - 1) \min_{\omega \in [0, 2\pi)} \varphi(\gamma(\omega); \eta)\right]$$

Concentration of MI Rate

Lemma (Concentration of MI Rate)

If the number of DFT points M_L satisfies

$$\lim_{L\to\infty} M_L = \infty, \qquad \lim_{L\to\infty} L^{-1} \log M_L = 0,$$

then for any $\eta > 0$, we have

$$\mathbb{P}\left(|\hat{I} - I| > \eta\right) \leq \exp\left[-(L - 1) \min_{\omega \in [0, 2\pi)} \varphi(\gamma(\omega); \eta)\right]$$

We can choose $M=\lceil L^{\varepsilon} \rceil, \varepsilon>0$ to satisfy above condition

Recall that the optimization for the tree structure is

$$\mathcal{T}^* = \underset{\mathcal{T} \in \mathsf{Tree}}{\arg\max} \ \sum_{(i,j) \in \mathcal{T}} \hat{I}(X_i; X_j),$$

where $\hat{I}(X_i; X_j)$ are the estimated mutual information rates

Lemma

$$\left\{\hat{\mathcal{T}}_{N} \neq \mathcal{T}\right\} = \bigcup_{(k,l) \notin \mathcal{E}} \bigcup_{(i,j) \in \textit{Path}(k,l)} \left\{\hat{I}(X_{k}; X_{l}) \geq \hat{I}(X_{i}; X_{j})\right\}$$

Possible to bound $\mathbb{P}(\hat{\mathcal{T}}_N \neq \mathcal{T})$ by using the union bound

Main Result

Theorem

If $\mathcal T$ is a tree and mutual information rates on the edges are uniformly bounded away from zero, and if

Main Result

Theorem

If $\mathcal T$ is a tree and mutual information rates on the edges are uniformly bounded away from zero, and if

$$N = O\left(\log^{1+\varepsilon} p\right),\,$$

Main Result

Theorem

If $\mathcal T$ is a tree and mutual information rates on the edges are uniformly bounded away from zero, and if

$$N = O\left(\log^{1+\varepsilon} p\right), \qquad ext{then} \qquad \mathbb{P}(\hat{\mathcal{T}}_N
eq \mathcal{T}) o 0$$

 We have proposed a framework for learning networks comprising dynamical systems and stochastic processes

- We have proposed a framework for learning networks comprising dynamical systems and stochastic processes
- We showed that if observation time N is almost logarithmic in the number of nodes p,

$$\lim_{N\to\infty}\mathbb{P}(\hat{\mathcal{T}}_N\neq\mathcal{T})=0$$

- We have proposed a framework for learning networks comprising dynamical systems and stochastic processes
- We showed that if observation time N is almost logarithmic in the number of nodes p,

$$\lim_{N\to\infty}\mathbb{P}(\hat{\mathcal{T}}_N\neq\mathcal{T})=0$$

• Future work I: Is $N = O(\log^{1+\varepsilon}(\frac{p}{\delta^{1/3}}))$ optimal?

- We have proposed a framework for learning networks comprising dynamical systems and stochastic processes
- We showed that if observation time N is almost logarithmic in the number of nodes p,

$$\lim_{N\to\infty} \mathbb{P}(\hat{\mathcal{T}}_N \neq \mathcal{T}) = 0$$

- Future work I: Is $N = O(\log^{1+\varepsilon}(\frac{p}{\delta^{1/3}}))$ optimal?
- Future work II: Estimate directed tree

- We have proposed a framework for learning networks comprising dynamical systems and stochastic processes
- We showed that if observation time N is almost logarithmic in the number of nodes p,

$$\lim_{N\to\infty} \mathbb{P}(\hat{\mathcal{T}}_N \neq \mathcal{T}) = 0$$

- Future work I: Is $N = O(\log^{1+\varepsilon}(\frac{p}{\delta^{1/3}}))$ optimal?
- Future work II: Estimate directed tree