Title

Benevolent Tomato

Theorem 1. The characteristic polynomial ch(z) always has a real root.

Theorem 2. If $f \ge 1/N$, then ch(z) has a unique positive, real root that has a magnitude strictly greater than any of the other complex roots.

Proof. Consider the polynomial

$$h(z) := (z-1)\operatorname{ch}_N(z) = z^{N+1} - (f+1)z^N + f$$
 (0.1)

which has a simpler algebraic expression. We split the polynomial h(x) into two summands, and invoke Rouche's Theorem ([?] p91). Let $C_{1+\epsilon}$ be a circular contour centered at the origin with radius $1+\epsilon$ for arbitrarily small ϵ . Write

$$h(z) = (z^{N+1} + f) + (1+f)z^{N}$$
(0.2)

and Taylor expand the two summands at z = 1.

$$(z^{N+1} + f) = 1 + f + (N+1)\epsilon \tag{0.3}$$

$$z^{N}(1+f) = (1+N\epsilon)(1+f) = 1+f+N(1+f)\epsilon \tag{0.4}$$

By assumption, $f \geq 1/N$, which implies $(N+1) \leq N(1+f)$. The modullus of the two terms along the contour can be compared as follows.

$$|z^{N+1} + f| \le |(1+f)z^N|$$
 (0.5)

By Rouche's theorem, h(z) has the same number of roots as the term that has a larger modullus in the countour $C_{1+\epsilon}$, which is the summand $(1-f)z^N$. It is trivial to see that this summand has N roots inside the countour, and by fundamental theorem of algebra, h(z) has N+1 roots.

We know that $\operatorname{ch}_N(z)$ is positive somewhere in the interval $[1,\infty)$. We consider the following:

$$\operatorname{ch}_N(1) = 1 - fN \le 0.$$
 (0.6)

By the Intermediate Value Theorem, we conclude that the one root outside the unit circle is a positive real value. \Box

Theorem 3. If f < 1/N, then all the roots of $ch_N(z)$ have a modulus strictly less than 1.

Proof. It suffices to show that

$$\widetilde{h}(z) = h(1/z)z^{N+1} = fz^{N+1} - (f+1)z + 1$$
 (0.7)

has exactly one root within the unit circle which comes from multiplying (z-1). Again, consider the countour $C_{1+\epsilon}$ and split $\widetilde{h}(z)$ into two summands.

$$\tilde{h}(z) = (fz^{N+1} + 1) - (f+1)z$$
 (0.8)

Taylor expand the two summands at z=1, and notice that under the condition f<1/N, the second summand has a larger modulus along the contour $C_{1+\epsilon}$.

$$fz^{N+1} + 1 = f(1 + (N+1)\epsilon) + 1 \tag{0.9}$$

$$(f+1)z = (f+1)(1+\epsilon) (0.10)$$

Clearly, the second summand has one root inside the contour $C_{1+\epsilon}$, which originates from (z-1). By Rouche's theorem, $\tilde{h}(z)$ has exactly one root inside the unit circle, i.e. z=1, and all other roots have a modullus greater than 1. Consequently, $\operatorname{ch}_N(z) = h(z)/(z+1)$ has all of its roots strictly inside the unit circle.

Theorem 4 (Bounds for the dominant eigenvalue). Given that $f \geq 1/N$, the dominant eigenvalue of L_f of order N is given by

$$1 + f - \frac{1}{N} \le \lambda_{\text{max}} < 1 + f.$$
 (0.11)

Proof. The upper bound is trivial:

$$ch_N(1+f) = f > 0. (0.12)$$

We have $\operatorname{ch}_N(0) = -f < 0$, and thus by the Intermediate Value Theorem the maximum root is bounded.

To obtain the lower bound, we write $f=1/N+\epsilon$ for some $\epsilon\geq 0$. With some algebra listed below, we compute $\operatorname{ch}_N(z)$ at the claimed lower bound. If we show that this value is less than zero, the dominating root must be greater than the purported lower bound. We find

$$\operatorname{ch}_{N}\left(1+f-\frac{1}{N}\right) = -\left(1+f-\frac{1}{N}\right)^{N}\left[\frac{1}{fN-1}\right] + \frac{fN}{fN-1}.$$
 (0.13)

We wish to bound this value by zero. It suffices to show

$$fN - \left(1 + f - \frac{1}{N}\right)^N \le 0,$$
 (0.14)

which, using the ϵ substitution, converts to

$$1 + N\epsilon - (1 + \epsilon)^N > 0. \tag{0.15}$$

Expanding the power term by the binomial theorem, we see that inequality indeed holds. $\hfill\Box$