Teorema de Gabriel para representações de quivers II

Adriana Mayumi Shiguihara

Instituto de Matemática e Estatística Universidade de São Paulo

14 de maio de 2021

O que veremos

1 Recapitulação

- 2 O teorema de Gabriel
 - Parte 3

3 Referências

Um *quiver* é um grafo orientado.

Notação:
$$Q = (Q_0, Q_1, s, t)$$

- Q₀ são os vértices;
- Q₁ são as arestas;
- Orientação dada por $s, t: Q_1 \rightarrow Q_0$: $\alpha \in Q_1$ sai de $s(\alpha)$ e chega em $t(\alpha)$.

Q sem a orientação é denotado por $\Gamma(Q)$.

Convenções

- k é um corpo algebricamente fechado.
- Todos os espaços vetoriais têm dimensão finita.
- Todos os quivers são finitos e conexos.
- Grafos de Dynkin são os grafos de tipo A, D ou E:

$$\diamond A_n, n \geqslant 0$$
:

Convenções

V é uma representação de Q se associa

- **k**-espaço vetorial V_i a cada vértice i;
- transformação linear $V_{s(\alpha)} \rightarrow V_{t(\alpha)}$ a cada aresta α .

Notação: $V = (V_i; V_{\alpha})_{i \in Q_0, \alpha \in Q_1}$.

Exemplo

$$0 \xrightarrow{0} \mathbf{k} \xrightarrow{\begin{bmatrix}1\\0\end{bmatrix}} \mathbf{k}^2$$

é uma representação de

$$\begin{array}{c|c} \alpha & \beta \\ \hline 1 & 2 & 3 \end{array}$$

Soma direta de V, W de Q:

$$V \oplus W := (V_i \oplus W_i; V_\alpha \oplus W_\alpha),$$

em que

$$V_{\alpha} \oplus W_{\alpha}(v, w) = (V_{\alpha}(v), W_{\alpha}(w)).$$

Uma representação é *indecomponível* se não é soma direta de representações não nulas.

V, W representações de Q.

 $\rho = (\rho_i)_{i \in Q_0}$ é um *morfismo de representações* $V \to W$ se cada $\rho_i \colon V_i \to W_i$ é **k**-linear e

$$egin{array}{ccc} V_{oldsymbol{s}(lpha)} & \stackrel{V_{lpha}}{\longrightarrow} & V_{t(lpha)} \ & & & & \downarrow^{
ho_{t(lpha)}} \ & & & & \downarrow^{
ho_{t(lpha)}} \ & & & & & \downarrow^{
ho_{t(lpha)}} \ & & & & & & W_{t(lpha)} \ \end{array}$$

comuta para toda aresta α .

Temos assim a *categoria das representações* de Q, denotada por rep Q.

Teorema de Krull–Schmidt(–Remak–Azumaya?)

Teorema

Q um quiver, $V \in \text{rep } Q$ não nula.

Existem $V^1, V^2, \dots, V^r \in \text{rep } Q$ indecomponíveis tais que

$$V \cong V^1 \oplus V^2 \oplus \cdots \oplus V^r$$
.

Além disso, V^1, V^2, \dots, V^r são únicas.

Forma simétrica de Euler

Definição

A forma simétrica de Euler de Q (em \mathbb{R}^{Q_0}), denotada $(\cdot, \cdot)_Q$, é dada pela matriz

$$2 \operatorname{Id}_n - A$$

em que A é a matriz de adjacência de $\Gamma(Q)$. Ou seja,

$$(x,y)_Q := 2 \left(\sum_{i \in Q_0} x_i y_i \right) - \left(\sum_{\alpha \in Q_1} x_{s(\alpha)} y_{t(\alpha)} + x_{t(\alpha)} y_{s(\alpha)} \right).$$

Forma de Tits

Definição

A *forma de Tits* de Q é a forma quadrática $q_Q \colon \mathbb{Z}^{Q_0} \to \mathbb{Z}$ definida por

$$q_Q(x) := \frac{1}{2}(x,x)_Q,$$

ou seja,

$$q_Q(x) := \sum_{i \in Q_0} x_i^2 - \sum_{\alpha \in Q_1} x_{s(\alpha)} x_{t(\alpha)}.$$

Exemplo

$$\begin{array}{cccc}
 & \alpha & \beta \\
 & 2 & 3
\end{array}$$

$$q_Q(x) = x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_2x_3$$

Teorema de Gabriel

Teorema (Gabriel, 1972)

Q um quiver conexo. São equivalentes:

- Q tem tipo finito.
- $\Gamma(Q)$ é grafo de Dynkin.
- g_Q é positiva definida.

Teorema de Gabriel 2

Teorema (Gabriel, 1972)

Seja Q tal que $\Gamma(Q)$ é grafo de Dynkin. Então $V\mapsto \operatorname{d}(V)$ induz bijeção entre as classes de rep. indecomponíveis de Q e as raízes positivas de Q.

Contexto

- **1972** Pierre Gabriel (*Unzerlegbare Darstellungen I*):
 - $\diamond Q$ é de tipo finito $\iff \Gamma(Q)$ é Dynkin;
 - Estabelece correspondência entre raízes e indecomponíveis a posteriori.
- **1973** I. N. Bernstein, I. M. Gel'fand, e V. A. Ponomarev (*Coxeter functors and Gabriel's theorem*):

"In this paper we try to remove to some extent the 'mystique' of this correspondence."

 $\Gamma(Q)$ Dynkin \implies tipo finito

Resumo

- Definir sistema de raízes;
- Definir *funtores reflexão* rep $Q \rightarrow \text{rep } Q'$, em que Q' é um certo quiver com $\Gamma(Q') = \Gamma(Q)$;
- Provar bijeção entre raízes positivas e classes de representações indecomponíveis usando um resultado que associa os dois conceitos acima.

Sistema de raízes

E um \mathbb{R} -e.v. com p.i. (\cdot, \cdot) .

Definição

Um *sistema de raízes* é um conjunto finito $R \subset E \setminus \{0\}$ tal que

- ⋄ span R = E
- $\diamond \ \forall \alpha, \beta \in \mathbf{R},$

$$\frac{\mathbf{2}(\alpha,\beta)}{(\alpha,\alpha)} \in \mathbb{Z}$$

 $\diamond \ \forall \alpha, \beta \in R$,

$$\beta - \frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha =: s_{\alpha}(\beta) \in R$$

Sistema de raízes

Observação

- Com o p.i. euclidiano, $s_{\alpha}(\beta)$ é reflexão de β pelo hiperplano ortogonal a α .
- $\mathbf{s}_{\alpha} \mathbf{s}_{\alpha}(\beta) = \beta$ para todo $\beta \in \mathbf{E}$.

Sistema de raízes

Motivação para a definição

- g uma álgebra de Lie semissimples
- Existe um R ⊂ h* que é sistema de raízes com um certo produto interno
- Podemos recuperar g a partir de R

Nosso sistema de raízes

Proposição

Se $\Gamma(Q)$ é Dynkin, então $(\cdot,\cdot)_Q$ é produto interno em \mathbb{R}^{Q_0} .

Lembrando:

$$(x,x)_Q := 2\left(\sum_{i\in Q_0} x_i^2 - \sum_{\alpha\in Q_1} x_{s(\alpha)} x_{t(\alpha)}\right).$$

Nosso sistema de raízes

Proposição

O conjunto

$$R = \{x \in \mathbb{Z}^{Q_0} \mid (x, x)_Q = 2\}$$

é sistema de raízes de \mathbb{R}^{Q_0} com o p.i. $(\cdot,\cdot)_Q$.

- R é finito.
- span $R = \mathbb{R}^{Q_0}$, pois a base canônica $\alpha_1, \dots, \alpha_n$ está contida em R:

$$(\alpha_i, \alpha_i)_Q = 2(1^2 - 0) = 2.$$

Nosso sistema de raízes

■ Se $\alpha, \beta \in R$,

$$2\frac{(\alpha,\beta)_Q}{(\alpha,\alpha)_Q}=(\alpha,\beta)_Q\in\mathbb{Z}.$$

■ Se $\alpha, \beta \in R$,

$$s_{\alpha}(\beta) = \beta - (\alpha, \beta)_{Q} \alpha \in R.$$

Chamamos os elementos de R de raízes de Q.

Proposição

Toda raiz é positiva ou negativa.

 $(x \in \mathbb{Z}^{Q_0} \text{ \'e } positivo \text{ se } x \neq 0 \text{ e } x_i \geqslant 0 \text{ para todo } i.)$

Raízes simples e reflexões simples

Definição

- Para cada $i \in Q_0$, dizemos que α_i é a i-ésima raiz simples.
- lacksquare $s_i := s_{\alpha_i}$ são as *reflexões simples*.
- O grupo W gerado pelas reflexões simples é chamado grupo de Weyl.
- Chamamos

$$c = s_n \cdots s_1$$

de elemento de Coxeter.

Raízes simples e reflexões simples

Observação

 \mathbf{W} é um grupo finito que permuta os elementos de R.

Elemento de Coxeter

Proposição

Seja $\beta \in \mathbb{Z}^{Q_0}$. Existe $k \geqslant 0$ tal que

$$c^k(\beta) \geqslant 0.$$

- ⋄ W é finito $\implies \exists M > 0$ tal que $c^M = 1$.
- \diamond Sejam $\beta > 0$, $\gamma := (1 + c + \cdots + c^{M-1})\beta$.
- $\diamond \ \textit{c} \gamma = \gamma$
- \diamond s_i số muda a i-ésima coord. $\Longrightarrow s_i \gamma = \gamma$ $\Longrightarrow \gamma - (\gamma, \alpha_i)_Q \alpha_i = \gamma \Longrightarrow (\gamma, \alpha_i)_Q = 0 \quad \forall i$
- $\diamond \beta + c\beta + \cdots + c^{M-1}\beta = 0$

Funtores reflexão

Sejam Q um quiver e $i \in Q_0$.

■ Se $i \in poço/fonte$, definimos $S_i^+(Q)/S_i^-(Q)$ como o quiver obtido invertendo as arestas ligadas a $i \iff i$ vira fonte/poço).

Definimos os funtores reflexão

$$F_i^+$$
: rep $Q \to \operatorname{rep} S_i^+(Q)$,

para i poço, e

$$F_i^-$$
: rep $Q \to \operatorname{rep} S_i^-(Q)$,

para i fonte.

Definição de F_i^+

Nos objetos: Seja $V \in \operatorname{rep} Q$.

F_i⁺ mantém os espaços vetoriais dos vértices ≠ i e troca V_i por

$$(F_i^+V)_i := \ker \varphi_i$$

$$\varphi_i(x_1, x_2, x_3) = V_{\alpha}(x_1) + V_{\beta}(x_2) + V_{\gamma}(x_3)$$

Definição de F_i^+

■ F_i^+ mantém as transformações lineares das arestas longe de i e, para α que chega em i, coloca

$$(F_i^+V)_i=\pi_{\alpha}|_{\ker\varphi_i},$$

em que π_{α} é a projeção

$$\bigoplus_{t(\beta)=i} V_{s(\beta)} \twoheadrightarrow V_{s(\alpha)}.$$

Definição de F_i^+

Nos morfismos: Seja $\rho = (\rho_i)$: $V \to W$ morfismo em rep Q. F_i^+ mantém as transformações lineares nos vértices $\neq i$ e troca ρ_i por

$$(F_i^+
ho)_i := \left(\bigoplus_{t(\alpha)=i}
ho_{s(\alpha)} \right) \bigg|_{\ker \varphi_i}$$

Funtores reflexão

Lema

 $V \in \text{rep } Q$ indecomponível, i poço. Então vale um dos dois:

- V = S(i)
- $\sum_{i=1}^{\infty} F_{i}^{+} V$ é indecomponível,

$$F_i^- F_i^+ V \cong V$$

е

$$d(F_i^+V) = s_i(dV).$$

Vale análogo para i fonte.

Uma numeração admissível (invertida)

Q acíclico com n vértices.

Podemos numerar os vértices de Q de modo que, se existe aresta $i \rightarrow j$, então $i \geqslant j$.

- 1 Atribua a um poço o número 1.
- 2 Repita os passos abaixo até terminar a numeração:
 - **2.1** Se k é o menor número ainda não atribuído, remova os vértices 1, 2, ..., k-1.
 - **2.2** Atribua a um poço o número *k*.

Uma numeração admissível (invertida)

Funtores de Coxeter

Q com numeração admissível ⇒ faz sentido aplicar

$$\Phi^+ := F_n^+ F_{n-1}^+ \cdots F_1^+, \qquad \Phi^- := F_1^- F_2^- \cdots F_n^-.$$

 Φ^+, Φ^- são chamados *funtores de Coxeter*.

$$\Phi^+, \Phi^-$$
: rep $Q \to \text{rep } Q$

Definimos, para $1 \le j \le n, k \ge 0$,

$$V^{(kn+j)} := F_j^+ \cdots F_1^+ (\Phi^+)^k V.$$

$\Gamma(Q)$ Dynkin \implies tipo finito

Ideia da prova

- $V \in \text{rep } Q$ é indecomponível \Longrightarrow d $V \in R_+$.
- Seja W ∈ rep Q indecomponível com d W = d V. Então W ≅ V.
- [V] → d V é injeção das classes de indecomp. em R₊, que é finito.

$\Gamma(Q)$ Dynkin \implies tipo finito

Lembrete

 $V \in \text{rep } Q \text{ indecomponivel, } i \text{ poço. Se } V \neq S(i), \text{ então } F_i^+ V \text{ \'e}$ indecomponivel e

$$\mathsf{d}(F_i^+ V) = s_i(\mathsf{d}\ V).$$

Assuma numeração admissível.

$\Gamma(Q)$ Dynkin \Longrightarrow tipo finito

A seq.

$$dV$$
, $s_1(dV)$, $s_2s_1(dV)$, ..., $s_j\cdots s_2s_1c^k(dV)$, ...

se mantém positiva enquanto $V^{(kn+j-1)} \neq S(j)$ (\iff d $V^{(kn+j-1)} \neq \alpha_i$)

$$\operatorname{rep} Q \xrightarrow{F_1^+} \operatorname{rep} S_1^+(Q) \xrightarrow{F_2^+} \cdots \xrightarrow{F_j^+} \operatorname{rep} Q^{(kn+j)} \\
\downarrow^{d} \qquad \qquad \downarrow^{d} \qquad \qquad \downarrow^{d} \\
\mathbb{R}^{Q_0} \xrightarrow{s_1} \mathbb{R}^{Q_0} \xrightarrow{s_2} \cdots \xrightarrow{s_j} \mathbb{R}^{Q_0}$$

Lembrete

Existe $m \ge 0$ tal que $c^m(d V) > 0$.

$\Gamma(Q)$ Dynkin \implies tipo finito

Seja kn + j mínimo tal que $s_{j+1}s_j \cdots s_1c^k(d V) \geqslant 0$.

$$V^{(kn+j)} = S(j+1)$$

$$\mathbf{s}_j \cdots \mathbf{s}_1 \mathbf{c}^k (\mathsf{d} \ \mathbf{V}) = \mathsf{d} \ \mathbf{V}^{(kn+j)} = \alpha_{j+1}$$

 \blacksquare kn + j só depende de d V.

Seja $W \in \text{rep } Q$ indecomp. com d W = d V. Como a seq.

$$dW$$
, $s_1(dW)$, $s_2s_1(dW)$, ..., $s_j\cdots s_2s_1c^k(dW)$, ...

é a mesma que para d V, valem as mesmas propriedades para W.

$\Gamma(Q)$ Dynkin \Longrightarrow tipo finito

Lembrete

 $V \in \operatorname{rep} Q$ indecomponível, i poço. Se $V \neq S(i)$, então V é indecomponível e

$$V \cong F_i^- F_i^+ V.$$

$$F_{j}^{+}\cdots F_{1}^{+}(\Phi^{+})^{k}W = S(j+1) = F_{j}^{+}\cdots F_{1}^{+}(\Phi^{+})^{k}V$$

$\Gamma(Q)$ Dynkin \implies tipo finito

Ficou provado que

- se $V \in \text{rep } Q$ é indecomponível, então d $V \in R_+$;
- se $W \in \text{rep } Q$ é indecomp. tal que d W = d V, então $V \cong W$.

Ou seja, a função que vai das classes de representações indecomponíveis nas raízes positivas de *Q* dada por

$$[V] \mapsto dV$$

está bem def. e é injetora .

Portanto, *Q* tem tipo finito.

Bijeção entre classes de indecomp. e R_+

Falta provar que a função é sobrejetora, ou seja, que toda raiz positiva é vetor dimensão de alguma rep. indecomponível.

Bijeção entre classes de indecomp. e R₊

Seja $\alpha \in R_+$.

Queremos $V \in \text{rep } Q$ indecomp. tal que d $V = \alpha$.

- $\exists k \geq 0$ tal que $c^k(\alpha) \geq 0$.
- Seja kn + j máximo tal que

$$s_1(\alpha), s_2(\alpha), \ldots, s_j s_{j-1} \cdots s_1 c^k(\alpha) =: \beta$$

são positivas. Então $\beta > 0$ e $s_{j-1}(\beta) \geqslant 0$.

Bijeção entre classes de indecomp. e R_+

Observação

- R é estável por reflexões simples.
- $\blacksquare R = R_- \sqcup R_+.$
- \mathbf{s}_i só muda a coordenada i.
- $\blacksquare \ \beta > 0, s_{j+1}(\beta) < 0 \implies \beta = N\alpha_{j+1} \implies \beta = \alpha_{j+1}$
- Ou seja, $s_j \cdots s_1 c^k(\alpha) = d S(j+1)$.
- Ou ainda,

$$\alpha = c^k s_1 \cdots s_j (d S(j+1)).$$

 $\alpha = d((\Phi^{-})^{k}F_{1}^{-}\cdots F_{j}^{-}S(j+1))$?

Bijeção entre classes de indecomp. e R₊

Definamos

$$V := (\Phi^{-})^{k} F_{1}^{-} \cdots F_{j}^{-} S(j+1).$$

Provaremos que V é indecomp. e $\alpha = d V$.

$$s_j \cdots s_1 c^k(\alpha) = \alpha_{j+1}$$

$$\operatorname{rep} Q \xleftarrow{F_1^-} \cdots \xleftarrow{F_{j-1}^-} \operatorname{rep} Q^{(kn+j-1)} \xleftarrow{F_j^-} \operatorname{rep} Q^{(kn+j-1)} \\ \downarrow^{\operatorname{d}} \qquad \qquad \downarrow^{\operatorname{d}} \downarrow \qquad \qquad \downarrow^{\operatorname{d}} \downarrow \\ \mathbb{R}^{Q_0} \xleftarrow{s_1} \cdots \xleftarrow{s_{j-1}} \mathbb{R}^{Q_0} \xleftarrow{s_j} \mathbb{R}^{Q_0}$$

Referências

- I N Bernstein, I M Gel'fand, and V A Ponomarev. COXETER FUNCTORS AND GABRIEL's THEOREM. Russian Mathematical Surveys, 28(2):17–32, apr 1973.
- Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina. *Introduction to representation theory*, volume 59 of *Student Mathematical Library*.

American Mathematical Society, Providence, RI, 2011. With historical interludes by Slava Gerovitch.