平成18年度 東京大学大学院

数理科学研究科 数理科学専攻 修士課程

専門科目 B (筆記試験)

平成17年8月30日(火) 11:00~15:00

問題は全部で18題ある。その中から3題を選んで解答すること。

- (1) 解答しようとする各間ごとに解答用紙を1枚使用すること. 各解答用紙の所定欄に各自の**氏名**, **受験番号**と解答する**問題の番号**を記入すること.
- (2) 各計算用紙の上部に各自の**受験番号**を明記すること。ただし氏名を記入してはならない。
- (3) 試験終了後に提出するものは、1題につき1枚、計**3枚の答案**、および**3枚の計算用紙**である。着手した問題数が3題にみたない場合でも、氏名と受験番号のみを記入した白紙の答案を補い、3枚とすること。指示に反したもの、**答案が3枚でないものは無効**とする。
- (4) 解答用紙の裏面を使用する場合は、表面の右下に「裏面使用」と明記すること.

B 第1問

 $K = \mathbf{R}(T)$ を実数体上の1変数有理関数体とし、 $n \ge 3$ を自然数とする. L を K 上の多項式 $X^n - T$ の最小分解体とする.

- (1) 拡大次数 [L:K] を求めよ.
- (2) n=4 とする. 中間体 $K \subset M \subset L$ で, [M:K]=4 であるものをすべて求め よ. それぞれの M について, K 上の Galois 拡大であるかどうか判定せよ.

B 第2問

体 K 上の 1 変数多項式環 K[X] を考える。K[X] の部分環 R が K を含むとき, R は K[X] の有限個の元 f_1, f_2, \ldots, f_n によって K 上生成される部分環であること, すなわち $R = K[f_1, f_2, \ldots, f_n]$ であることを示せ。

B 第3問

 $\mathbf{C}^3 = \{(x, y, z) \mid x, y, z \in \mathbf{C}\}$ 内の複素曲面

$$X \colon x^2 - x - y(z^2 + y) = 0$$

および X に含まれる複素直線

$$L \colon x = y = 0$$

について以下の問に答えよ.

- (1) L 内の点 (0,0,a) における X の接平面を T_a で表す. $T_a \cap X$ の既約成分の個数を a の値に従って求めよ (注意: L も個数にいれて答えること).
- (2) L と異なり L と交わる複素直線で、X に含まれるものをすべて求めよ

B 第4問

 $GL_2(\mathbf{C})$ を可逆な 2×2 複素行列全体のなす群とする。 \mathbf{C} 上の 2 変数多項式環

$$\mathbf{C}[x,y]$$
 への $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{C})$ の作用を

$$(R_X f)(x, y) = f(ax + by, cx + dy) \qquad (f(x, y) \in \mathbf{C}[x, y])$$

によって定義する. 2×2 行列 A, B を

$$A = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

とするとき,以下の問に答えよ.

- (1) A, B によって生成される $GL_2(\mathbf{C})$ の部分群の位数を求めよ.
- (2) 3次斉次多項式全体 $P_3 \subset \mathbf{C}[x,y]$ を、 R_A,R_B の作用についての不変かつ既約な部分空間の直和として表せ、

ここで**不変な部分空間** W とは

$$R_AW \subset W, \qquad R_BW \subset W$$

をみたす部分空間である. さらに不変な部分空間 W が**既約**であるとは, $W \neq \{0\}$ であり、W に含まれる不変な部分空間が $\{0\}$ と W に限られることをいう.

В第5問

 \mathbf{R}^2 の単位ベクトルを $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ として $\Gamma = \{m\mathbf{e}_1 + n\mathbf{e}_2 \mid m, n \in \mathbf{Z}\}$ とおく. $T = \mathbf{R}^2/\Gamma$ に商空間としての可微分多様体の構造を入れ,

$$\omega = dx \wedge dy$$

をT上の微分形式とみなす。ここで(x,y)は \mathbf{R}^2 の座標である。

- (1) T 上のベクトル場 $X=\frac{\partial}{\partial x}$ について,T 上の滑らかな実数値関数 H で,すべての T 上のベクトル場 Y に対して $\omega(X,Y)=dH(Y)$ をみたすものは存在しないことを示せ.
- (2) T上の滑らかなベクトル場

$$a(x,y)\frac{\partial}{\partial x} + b(x,y)\frac{\partial}{\partial y}$$

の生成する1径数変換群 (フロー) φ_t が,

$$\varphi_t^* \ \omega = \omega$$

をみたすための条件をa(x,y),b(x,y)で表せ.

(3) 上の(2)の条件をみたすT上のベクトル場 $a(x,y)\frac{\partial}{\partial x}+b(x,y)\frac{\partial}{\partial y}$ で、a(x,y),b(x,y)が定数関数ではないものの例を挙げよ.

В第6問

3次元ユークリッド空間内の単位球面を考える。単位球面上の円全体の集合を M とする。ただし、単位球面上の円とは、3次元ユークリッド空間内の平面と単位球面との共通部分で、空集合でも 1 点でもないものである。以下、n次元実射影空間を $\mathbf{R}P^n$ であらわす。

- (1) M から 2次元実射影空間 $\mathbf{R}P^2$ への全射を具体的に一つ構成せよ。全射であることも示せ。
- (2) M から 3 次元実射影空間 $\mathbf{R}P^3$ への単射で,像が $\mathbf{R}P^3$ の開集合となるものを具体的に一つ構成せよ.単射で,像が開集合であることも示せ.
- (3) M に (2) の対応で与えられる $\mathbf{R}P^3$ の開集合としての微分可能多様体の構造を考える。M は向き付け可能であるかどうか理由とともに述べよ。

B 第7問

C³ の部分集合

$$M = \{(z_1, z_2, z_3) \in \mathbf{C}^3 ; |z_1|^2 + |z_2|^2 = 2, |z_1|^2 - |z_3|^2 = 1, \operatorname{Im}(z_1 z_2 z_3) = 0\}$$

について以下の問に答えよ。ただし複素数 z の実部, 虚部をそれぞれ $\mathrm{Re}(z),\mathrm{Im}(z)$ で表す。

- (1) M は \mathbb{C}^3 の部分多様体であることを示せ.
- (2) \mathbf{C}^3 上の複素微分形式 $\omega = dz_1 \wedge dz_2 \wedge dz_3$ を考える。ただし $dz_i = dx_i + \sqrt{-1}dy_i, \ x_i = \mathrm{Re}(z_i), \ y_i = \mathrm{Im}(z_i)$ である。 $\iota \colon M \to \mathbf{C}^3$ を自然な埋め込みとする。また r > 0 に対して

$$B^+(r) = \{(z_1, z_2, z_3) \in \mathbb{C}^3 ; |z_1|^2 + |z_2|^2 + |z_3|^2 \le r^2, \operatorname{Re}(z_1 z_2 z_3) \ge 0\}$$

とする. このとき
$$M$$
 に適当に向きを定めて $g(r) = \int_{M\cap B^+(r)} \iota^*\omega$ を求めよ.

B 第8問

3次元ユークリッド空間 R³ の部分集合

$$Y = \{(x, y, z) \in \mathbf{R}^3; 9 \le x^2 + y^2 + z^2 \le 16, x^2 + z^2 \ge 1,$$
 かつ $y^2 + z^2 \ge 1\}$

の境界を X とし、連続写像

$$f: X \to X, \quad (x, y, z) \mapsto (-y, x, z)$$

を考える。

- (1) X の整係数ホモロジー群 $H_*(X; \mathbf{Z})$ を求めよ.
- (2) f が 1 次元整係数ホモロジー群に誘導する自己準同型 $f_*: H_1(X; \mathbf{Z}) \to H_1(X; \mathbf{Z})$ を表す行列の特性多項式を求めよ.

B 第9問

 ${f C}$ を複素平面とし、z=x+iy をその複素座標とする。 $\Delta^*=\{z\in{f C}\mid 0<|z|<1\}$ とおく

(1) C の開集合 D の点 $a \in D$ に対し、その境界までの距離 $\inf\{|\zeta - a| ; \zeta \in \partial D\}$ を $d(a,\partial D)$ と書く、f(z) を D 上の正則関数とするとき、任意の正数 $r < d(a,\partial D)$ に対し次の不等式が成り立つことを示せ、

$$|f(a)| \le \frac{1}{\pi r^2} \int_D |f(z)| \, dx dy$$

(2) f(z) を Δ^* 上の正則関数とし, $f(z)=\sum_{n=-\infty}^\infty a_n z^n$ を z=0 を中心とする Laurent 展開とする.このとき任意の $n\in \mathbf{Z}$ と任意の $r\in (0,\frac12)$ に対し次の不等式が成り立つことを示せ.

$$|a_n| \leq \frac{1}{\pi r^{n+2}} \int_{\Delta^*} |f(z)| \, dx dy$$

(3) f(z) を Δ^* 上の正則関数とし,

$$\int_{\Lambda^*} |f'(z)| \, dx dy < \infty$$

と仮定する. このとき f(z) は $\Delta^* \cup \{0\}$ 上の正則関数に拡張されることを示せ.

B 第10問

f(t) を R 上の実数値 C^2 級関数とし、 $u(x,y) = f(x^2 - y^2)$ と定義する.

- (1) $u_{xx} u_{yy} (u_{xy})^2$ を f, f', f'' を用いて表せ.
- (2) k を正の整数とする. u(x,y) が次の微分方程式を \mathbf{R}^2 上でみたすような f(t) を すべて求めよ.

$$u_{xx} u_{yy} - (u_{xy})^2 = -(x^2 - y^2)^{2k}$$

B 第11問

R上の Lebesgue 測度について,

$$L^2(\mathbf{R}) = \left\{ f \mid f \text{ は複素数値可測関数, } \int_{-\infty}^{\infty} |f(x)|^2 dx < \infty \right\}$$

とおく、また $f \in L^2(\mathbf{R})$ に対し、

$$||f||_2 = \left(\int_{-\infty}^{\infty} |f(x)|^2 dx\right)^{1/2}$$

とおく.

(1) $f \in L^2(\mathbf{R})$ とするとき,

$$(Tf)(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} f(x-n)$$

は \mathbf{R} 上ほとんどいたるところ収束し、 $L^2(\mathbf{R})$ の元を定めることを示せ.

(2) (1) の Tf の Fourier 変換を f の Fourier 変換を使って表せ. ただし $\mathbf R$ 上の Lebesgue 可積分関数 g(x) の Fourier 変換の定義は次の通りとする.

$$\widehat{g}(\xi) = \int_{-\infty}^{\infty} g(x) e^{-ix\xi} dx, \quad \xi \in \mathbf{R}, \ i = \sqrt{-1}.$$

(3) $f \in L^2(\mathbf{R})$ が $||f||_2 = 1$ の範囲を動くとき, $||Tf||_2$ の下限を求めよ.

B 第12問

 $L^1(\mathbf{R})$ により、 \mathbf{R} 上の Lebesgue 測度に関する複素数値 Lebesgue 可積分関数全体 からなる集合を表す。 $i=\sqrt{-1}$ とする。 $f\in L^1(\mathbf{R})$ に対してその Fourier 変換を

$$\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-ix\xi} dx$$

により定義する.

- (1) $\widehat{\psi}(\xi) = \frac{1}{\xi + i}$ をみたす $\psi \in L^1(\mathbf{R})$ を求めよ.
- (2) $f,g \in L^1(\mathbf{R})$ が $\widehat{f}(\xi) = \xi^2 \widehat{g}(\xi)$ をみたすとする. このとき

$$\widehat{h}(\xi) = \xi \,\widehat{g}(\xi)$$

をみたす $h \in L^1(\mathbf{R})$ が存在することを証明せよ.

B 第13問

(1) 区間 $(1,+\infty)$ 上の実数値関数 f(z) に関する非線形常微分方程式

$$2f \frac{d^2 f}{dz^2} - 3\left(\frac{df}{dz}\right)^2 = \frac{f^2}{z^2(z-1)^2}$$
 (a)

は、従属変数変換 $f(z) = F(\phi(z))$ をうまくとれば次の線形方程式に帰着できることを示せ、

$$\frac{d^2\phi}{dz^2} = -\frac{\phi}{4z^2(z-1)^2}$$
 (b)

- (2) 方程式 (b) の $\lim_{z\to +\infty}\frac{\phi(z)}{z}=1$ をみたす特殊解を求めよ.その特殊解を $\varphi(z)$ で表すとき, (b) の一般解を $\phi(z)=\varphi(z)\times\Phi(z)$ という形で求めよ.
- (3) $z_0 \in (1, +\infty)$, $f_0 \in (0, +\infty)$ とする.方程式 (a) の初期条件 $f(z_0) = f_0$ をみたす解の中に,次の2条件をみたす解 f(z) が存在するための, (z_0, f_0) に関する条件を求めよ.
 - (i) $\lim_{z \to +\infty} z^2 f(z) = 1$
 - (ii) f(z) は $(1,+\infty)$ 上に特異点をもたない

B 第14問

以下の連立常微分方程式の初期値問題を考える.

$$\frac{dx(t)}{dt} = -\beta x(t) v(t)$$

$$\frac{dy(t)}{dt} = \beta x(t) v(t) - \gamma y(t)$$

$$\frac{du(t)}{dt} = b - (\mu + \delta y(t)) u(t)$$

$$\frac{dv(t)}{dt} = \delta y(t) u(t) - \mu v(t)$$
(a)

$$x(0) = x_0 > 0, \ y(0) = y_0 \ge 0, \ u(0) = u_0 > 0, \ v(0) = v_0 \ge 0.$$
 (b)

ただし $\beta, \gamma, \delta, \mu, b$ は与えられた正の定数である。また $u_0+v_0=\frac{b}{\mu}$ であると仮定する。以下では方程式系 (a) が区間 $0 \le t < \infty$ において初期条件 (b) をみたす解をただ一つもつと仮定してよい。

- (1) 任意の t>0 について, $x(t)>0,\,y(t)\geq0,\,u(t)>0,\,v(t)\geq0$ であることを示せ.
- (2) 任意の $\alpha>0$ に対して, $P^*=\left(\alpha,0,\frac{b}{\mu},0\right)$ が平衡点になることを示せ. さら にパラメータ R_0 を

$$R_0 = \frac{\alpha\beta\delta b}{\gamma\,\mu^2}$$

と定めると、 P^* は $R_0 < 1$ のとき局所漸近安定であり、 $R_0 > 1$ のとき不安定であることを示せ、

(3) $x_{\infty} = \lim_{t \to \infty} x(t)$ と定める. x_{∞} が有限確定であることを示し、 x_{∞} を用いて積分

$$J = \int_0^\infty y(t)dt$$

を表せ、

(4) $x_{\infty} > 0$ であることを示せ.

B 第15問

R 上で定義された複素数値 C^{∞} 級関数の全体を $C^{\infty}(\mathbf{R})$ で表し、微分作用素 $\frac{d}{dx}$ を D で表す。D と $u \in C^{\infty}(\mathbf{R})$ で定まる微分作用素 $L = D^2 - u$ と $\lambda \in \mathbf{C}$ に対し、線形空間

$$V^{(\lambda)} = \{ y \in C^{\infty}(\mathbf{R}) \mid Ly = \lambda y \}$$

の基底 $y_1^{(\lambda)}(x), y_2^{(\lambda)}(x)$ を

$$y_1^{(\lambda)}(0) = 1,$$
 $(Dy_1^{(\lambda)})(0) = 0,$ $y_2^{(\lambda)}(0) = 0,$ $(Dy_2^{(\lambda)})(0) = 1$

によって定める. 以下のことを示せ.

- (1) 相異なる複素数 $\{\lambda_j\}_{j=1}^n$ に対し, 2n 個の関数 $\{y_1^{(\lambda_j)}(x), y_2^{(\lambda_j)}(x)\}_{j=1}^n$ は \mathbf{C} 上一次独立である。
- (2) $v, w \in C^{\infty}(\mathbf{R})$ が定める微分作用素 $P = D^3 + vD + w$ が LP = PL をみたすとする。このとき定数 $a_0, b_0, b_1, c_0, c_1, c_2, d_0$ が存在して,任意の $\lambda \in \mathbf{C}$ に対し次の 2 式が成り立つ。

$$Py_1^{(\lambda)} = a_0 y_1^{(\lambda)} + (c_0 + c_1 \lambda + c_2 \lambda^2) y_2^{(\lambda)}$$

$$Py_2^{(\lambda)} = (b_0 + b_1 \lambda) y_1^{(\lambda)} + d_0 y_2^{(\lambda)}$$

(3) 小問 (2) における微分作用素 P に対し、多項式 $f_1(t), f_2(t) \in \mathbf{C}[t]$ が存在して、微分作用素の等式

$$P^2 + f_1(L)P + f_2(L) = 0$$

が成り立つ.

B 第16問

f(x,y) を \mathbf{R}^2 上の C^2 級関数とし、正定数 h に対し、 3 点 $P_1(0,0)$ 、 $P_2(h,0)$ 、 $P_3(0,h)$ を頂点とする三角形領域を T で表す。 さらに g(x,y) は次の条件をみたす 1 次以下の多項式関数とする.

$$g(P_i) = f(P_i)$$
 $(i = 1, 2, 3)$

このとき次の評価式が成り立つことを示せ.

$$\begin{split} \sup_{(x,y)\in T} & \left| \frac{\partial f}{\partial x}(x,y) - \frac{\partial g}{\partial x}(x,y) \right| \\ & \leq 3h \sup_{(x,y)\in T} \max \left\{ \left| \frac{\partial^2 f}{\partial x^2}(x,y) \right|, \left| \frac{\partial^2 f}{\partial x \partial y}(x,y) \right|, \left| \frac{\partial^2 f}{\partial y^2}(x,y) \right| \right\} \end{split}$$

B 第17問

 $\{U_n,V_n\}_{n\in\mathbb{N}}$ を確率空間 (Ω,\mathcal{F},P) 上に定義された独立確率変数の族とし, U_n,V_n は

$$P(U_n > x) = e^{-\theta x}, \qquad P(V_n > x) = e^{-x} \qquad (x > 0)$$

によって分布が与えられるものとする。ここで θ は正の定数である。

$$X_n = \frac{U_n}{V_n}$$

とするとき,以下の問に答えよ.

- (1) X_n の分布の確率密度関数を求めよ.
- (2) 確率変数

$$Y_n = \frac{1}{n \log n} \sum_{j=1}^n X_j$$

に対して,

$$\overline{\lim_{n\to\infty}} Y_n = \infty \quad \text{a.s.}$$

となることを示せ、

(3) 定数 c を

$$c = \int_0^\infty (x+1)^{-2} e^{-x} dx$$

と定め, さらに

$$\Psi_n(t) = \frac{1}{n} \sum_{j=1}^{n} \exp(-tX_j)$$

とする. $\Psi_n(\widehat{\theta}_n)=c$ となる $\widehat{\theta}_n\in(0,\infty)$ が確率 1 で存在し、 $\widehat{\theta}_n\to\theta$ a.s. $(n\to\infty)$ となることを示せ.

B 第18問

任意の集合 S に対して、S の部分集合の全体を PS で表し、S の有限部分集合の全体を P*S で表す.

以下では A を集合とし、 φ を $\mathcal{P}A$ から $\mathcal{P}A$ への写像で 3条件

$$X \subseteq \varphi X$$
 $(X \in \mathcal{P}A),$ $\varphi(\varphi X) = \varphi X$ $(X \in \mathcal{P}A),$ $(X \in \mathcal{P}A),$ $Y \subseteq X \implies \varphi Y \subseteq \varphi X$ $(X, Y \in \mathcal{P}A)$

をみたすものとする(このような φ を $\mathcal{P}A$ 上の**閉作用子**と呼ぶ).また \mathcal{P}^*A の元 α,β が

$$\varphi \, \alpha \supseteq \bigcap_{y \in \beta} \varphi \{y\}$$

なる条件をみたすことを $\alpha \preceq \beta$ で表す. ただし $\beta = \emptyset$ の場合の $\bigcap_{y \in \emptyset} \varphi\{y\}$ は A を表す. さらに $\mathcal{P}A$ から $\mathcal{P}A$ への写像 ψ を次のように定める.

$$\psi X = \{ y \in A \mid \mathcal{P}^*X \text{ の元 } \alpha \text{ で } \alpha \leq \{ y \} \text{ をみたすものが存在する } \}$$
 $(X \in \mathcal{P}A)$

以下の間に答えよ.

- (1) $\alpha, \beta, \gamma \in \mathcal{P}^*A$ と $x \in A$ が $\alpha \preceq \{x\}$ と $\{x\} \cup \beta \preceq \gamma$ をみたせば $\alpha \cup \beta \preceq \gamma$ が成り立つことを示せ.
- (2) 各 $X \in \mathcal{P}A$ に対し、 ψX は次の 2 条件をみたす $Y \in \mathcal{P}A$ のなかで最小のものであることを示せ、
 - (a) $X \subseteq Y$
 - (b) $\alpha \in \mathcal{P}^*Y$ と $z \in A$ が $\alpha \preceq \{z\}$ をみたせば $z \in Y$ が成り立つ
- (3) ψ が $\mathcal{P}A$ の閉作用子であることを示せ、また任意の $X \in \mathcal{P}A$ に対して $\psi X \subseteq \varphi X$ が成り立つことを示せ、
- (4) $\varphi = \psi$ となる A, φ の例を、そうなる理由を添えて挙げよ。ただし $\varphi X \neq X$ 、 $\varphi Y \neq A$ となり空集合でない $X, Y \in \mathcal{P}A$ のある例に限る。