1. Derivation of the Sliced Score Matching (SSM) loss

Setup:

- Let $\mathbf{x} \in \mathbb{R}^d$ be drawn from the data density $p(\mathbf{x})$.
- We have a model with score-function $S(\mathbf{x}; \theta) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$.
- The original (full) score matching loss is:

$$L_{SM} = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\frac{1}{2} \parallel S(\mathbf{x}; \theta) \parallel_2^2 + \nabla_{\mathbf{x}} \cdot S(\mathbf{x}; \theta) \right].$$

(Here $\nabla_{\mathbf{x}} \cdot S = \operatorname{tr}(\nabla_{\mathbf{x}} S)$.

Motivation for SSM:

- In high dimension d, computing the trace of the Jacobian (or Hessian) of the model score is costly.
- To avoid full-dimensional trace, choose a random direction vector $\mathbf{v} \sim p(\mathbf{v})$ (for example isotropic Gaussian or uniform on sphere) and project the score onto \mathbf{v} .
- Use the property that for a matrix $A \in \mathbb{R}^{d \times d}$,

$$\mathbb{E}_{\mathbf{v}}[\mathbf{v}^T A \mathbf{v}] = \operatorname{tr}(A)$$
 (if \mathbf{v} is appropriate).

Derivation steps:

Start with the original loss written as

$$L_{SM} = \mathbb{E}_{\mathbf{x}} \left[\frac{1}{2} \| S(\mathbf{x}; \theta) \|^2 + \text{tr } (\nabla_{\mathbf{x}} S(\mathbf{x}; \theta)) \right].$$

Replace the tr $(\nabla_x S)$ term by using a random vector \mathbf{v} :

tr
$$(\nabla_{\mathbf{x}}S) = \mathbb{E}_{\mathbf{v}} [\mathbf{v}^T (\nabla_{\mathbf{x}}S) \mathbf{v}]$$

(assuming vis zero-mean isotropic).

Also project $S(\mathbf{x}; \theta)$ to $\mathbf{v}^T S(\mathbf{x}; \theta)$. So define the following expectation:

$$L_{SSM} = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \ \mathbb{E}_{\mathbf{v} \sim p(\mathbf{v})} \left[\frac{1}{2} (\mathbf{v}^T S(\mathbf{x}; \theta))^2 + \mathbf{v}^T (\nabla_{\mathbf{x}} S(\mathbf{x}; \theta)) \mathbf{v} \right].$$

Recognize that

$$\mathbf{v}^{T} (\nabla_{\mathbf{x}} S(\mathbf{x}; \theta)) \mathbf{v} = \mathbf{v}^{T} \nabla_{\mathbf{x}} (\mathbf{v}^{T} S(\mathbf{x}; \theta))$$

because \mathbf{v} is constant with respect to \mathbf{x} .

So the second term can be rewritten as

$$\mathbf{v}^T \nabla_{\mathbf{x}} (\mathbf{v}^T S(\mathbf{x}; \theta)).$$

Multiply inside the expectation by 2 (preserving equivalence for optimization up to constant factor) to get the form:

$$L_{SSM} = \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{v}} [\| \mathbf{v}^T S(\mathbf{x}; \theta) \|^2 + 2 \mathbf{v}^T \nabla_{\mathbf{x}} (\mathbf{v}^T S(\mathbf{x}; \theta))].$$

That matches form:

$$L_{SSM} = \mathbb{E}_{x \sim p(x)} \; \mathbb{E}_{v \sim p(v)} [\parallel v^T S(x;\theta) \parallel^2 + 2 \; v^T \nabla_x (v^T S(x;\theta))].$$

2. Brief explanation of SDE (Stochastic Differential Equation)

Definition:

- A Stochastic Differential Equation (SDE) describes how a random variable (or vector) \mathbf{x}_t evolves over continuous time t under both deterministic drift and random diffusion.
- The general ("Itô") form is

$$d\mathbf{x}_t = f(\mathbf{x}_t, t) dt + g(\mathbf{x}_t, t) d\mathbf{W}_t$$

where:

- o $f(\mathbf{x}_t, t)$ is the **drift** term (deterministic rate of change).
- o $g(\mathbf{x}_t, t)$ is the **diffusion** coefficient (controls the strength of random perturbation).
- \circ **W**_t is a (vector) Wiener process (Brownian motion).

Usage in generative models / score-based modelling:

- In score-based generative modelling, one defines a forward SDE that
 gradually adds noise to the data distribution (so that as tgrows the
 distribution becomes nearly a simple reference, e.g., Gaussian).
- Then one defines or derives a reverse-time SDE that uses the model's estimated score function $\nabla_x \log p_t(x)$ to reverse the process and generate clean samples from noise.
- Benefits of using SDEs: continuous time formalism, flexibility in noise scheduling, theoretically rigorous connection to score matching.