CSE/ECE 848 Introduction to Evolutionary Computation

Module 3 - Lecture 14 - Part 4

Comparison of EC Methods:
Test Problems

Wolfgang Banzhaf, CSE
John R. Koza Chair in Genetic Programming

Test Problems

- Real world data sets
 - Often difficult to obtain, but see Kaggle
- Random variants of real world data sets
 - Synthetic data sets, constructed from real ones for purposes of public release
- Standard Benchmark test problems
 - Published, or online libraries
- Randomly generated instances
 - Self-generated or standardized and in the literature

https://en.wikipedia.org/wiki/Test_functions_for_optimization

Test functions for single-objective optimization [edit]				
Name	Plot	Formula	Global minimum	Search domain
Rastrigin function		$f(\mathbf{x}) = An + \sum_{i=1}^{n} \left[x_i^2 - A \cos(2\pi x_i) ight]$ where: $A = 10$	$f(0,\dots,0)=0$	$-5.12 \leq x_i \leq 5.12$
Ackley function		$f(x,y) = -20 \exp \left[-0.2 \sqrt{0.5 \left(x^2 + y^2 ight)} ight] onumber \ = \exp \left[0.5 \left(\cos 2\pi x + \cos 2\pi y ight) ight] + e + 20$	f(0,0)=0	$-5 \leq x,y \leq 5$
Sphere function	Market Ma	$f(\boldsymbol{x}) = \sum_{i=1}^n x_i^2$	$f(x_1,\dots,x_n)=f(0,\dots,0)=0$	$-\infty \leq x_i \leq \infty, \ 1 \leq i \leq n$
Rosenbrock function		$f(m{x}) = \sum_{i=1}^{n-1} \left[100ig(x_{i+1} - x_i^2ig)^2 + (1 - x_i)^2 ight]$	$ ext{Min} = egin{cases} n=2 & ightarrow & f(1,1)=0, \ n=3 & ightarrow & f(1,1,1)=0, \ n>3 & ightarrow & f(\underbrace{1,\ldots,1}_{n ext{ times}})=0 \end{cases}$	$-\infty \leq x_i \leq \infty, \ 1 \leq i \leq n$
Beale function		$f(x,y) = \left(1.5 - x + xy ight)^2 + \left(2.25 - x + xy^2 ight)^2 \ + \left(2.625 - x + xy^3 ight)^2$	f(3,0.5)=0	$-4.5 \leq x,y \leq 4.5$

Function Optimization Benchmarks II

Test functions for constrained optimization [edit]						
Name	Plot	Formula	Global minimum	Search domain		
Rosenbrock function constrained with a cubic and a line ^[10]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$f(x,y)=(1-x)^2+100(y-x^2)^2,$ subjected to: $(x-1)^3-y+1\leq 0$ and $x+y-2\leq 0$		$-1.5 \le x \le 1.5,$ $-0.5 \le y \le 2.5$		
Rosenbrock function constrained to a disk[11]		$f(x,y)=(1-x)^2+100(y-x^2)^2$, subjected to: $x^2+y^2\leq 2$	f(1.0,1.0)=0	$-1.5 \le x \le 1.5,$ $-1.5 \le y \le 1.5$		
Mishra's Bird function - constrained ^{[12][13]}		$f(x,y)=\sin(y)e^{\left[(1-\cos x)^2 ight]}+\cos(x)e^{\left[(1-\sin y)^2 ight]}+(x-y)^2$, subjected to: $(x+5)^2+(y+5)^2<25$	f(-3.1302468, -1.5821422) = -106.7645367	$-10 \leq x \leq 0, \ -6.5 \leq y \leq 0$		

Function Optimization Benchmarks III

Test functions for multi-objective optimization [edit] [further explanation needed]						
Name	Plot	Functions	Constraints	Search domain		
Binh and Korn function: ^[5]	(* * Parts bord)	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(x,y ight) = 4x^2 + 4y^2 \ f_2\left(x,y ight) = \left(x-5 ight)^2 + \left(y-5 ight)^2 \end{aligned} ight.$	$ ext{s.t.} = egin{cases} g_1\left(x,y ight) = (x-5)^2 + y^2 \leq 25 \ g_2\left(x,y ight) = (x-8)^2 + (y+3)^2 \geq 7.7 \end{cases}$	$0 \leq x \leq 5, \ 0 \leq y \leq 3$		
Chankong and Haimes function: ^[16]	(* * Parts Sur) (* * Parts Sur) (* * Parts Sur) (* * Parts Sur) (* * * Parts Sur) (* * * Parts Sur)	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(x,y ight) &= 2 + \left(x-2 ight)^2 + \left(y-1 ight)^2 \ f_2\left(x,y ight) &= 9x - \left(y-1 ight)^2 \end{aligned} ight.$	$ ext{s.t.} = egin{cases} g_1\left(x,y ight) = x^2 + y^2 \leq 225 \ g_2\left(x,y ight) = x - 3y + 10 \leq 0 \end{cases}$	$-20 \leq x,y \leq 20$		
Fonseca– Fleming function: ^[17]	(* Petts Suri	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(oldsymbol{x} ight) = 1 - \exp\left[-\sum_{i=1}^n\left(x_i - rac{1}{\sqrt{n}} ight)^2 ight] \ f_2\left(oldsymbol{x} ight) = 1 - \exp\left[-\sum_{i=1}^n\left(x_i + rac{1}{\sqrt{n}} ight)^2 ight] \end{aligned} ight.$		$-4 \leq x_i \leq 4, \ 1 \leq i \leq n$		

EC: F1 - F25

Unimodal Functions (5):

- \triangleright F_1 : Shifted Sphere Function
- \triangleright F_2 : Shifted Schwefel's Problem 1.2
- \triangleright F_3 : Shifted Rotated High Conditioned Elliptic Function
- \triangleright F_4 : Shifted Schwefel's Problem 1.2 with Noise in Fitness
- \triangleright F_5 : Schwefel's Problem 2.6 with Global Optimum on Bounds

Multimodal Functions (20):

- **Basic Functions** (7):
 - \Leftrightarrow F_6 : Shifted Rosenbrock's Function
 - \Rightarrow F_7 : Shifted Rotated Griewank's Function without Bounds
 - \Leftrightarrow F_8 : Shifted Rotated Ackley's Function with Global Optimum on Bounds
 - \Leftrightarrow F_9 : Shifted Rastrigin's Function
 - \Leftrightarrow F_{10} : Shifted Rotated Rastrigin's Function
 - \Leftrightarrow F_{11} : Shifted Rotated Weierstrass Function
 - $ightharpoonup F_{12}$: Schwefel's Problem 2.13
- > Expanded Functions (2):

2

- \Leftrightarrow F_{13} : Expanded Extended Griewank's plus Rosenbrock's Function (F8F2)
- \Leftrightarrow F_{14} : Shifted Rotated Expanded Scaffer's F6

Hybrid Composition Functions (11):

- \Leftrightarrow F_{15} : Hybrid Composition Function
- $ightharpoonup F_{16}$: Rotated Hybrid Composition Function
- \Leftrightarrow F_{17} : Rotated Hybrid Composition Function with Noise in Fitness
- \Leftrightarrow F_{18} : Rotated Hybrid Composition Function
- \Leftrightarrow F_{19} : Rotated Hybrid Composition Function with a Narrow Basin for the Global Optimum
- \Leftrightarrow F_{20} : Rotated Hybrid Composition Function with the Global Optimum on the Bounds
- $ightharpoonup F_{21}$: Rotated Hybrid Composition Function
- \Rightarrow F_{22} : Rotated Hybrid Composition Function with High Condition Number Matrix
- $ightharpoonup F_{23}$: Non-Continuous Rotated Hybrid Composition Function
- \Leftrightarrow F_{24} : Rotated Hybrid Composition Function
- \Leftrightarrow F_{25} : Rotated Hybrid Composition Function without Bounds

Combinatorial Optimization Benchmarks - General Criteria

- Test suites should contain problems resistant to hill-climbers
- Test problems should be non-linear, non-separable, nonsymmetric
- Test suites should contain scalable functions (eg dimensionality)
- Problems with scalable evaluation costs (eg, dimensional scaling in real world problems)
- Problems should have a canonical form

From: Whitley et al. Evaluating Evolutionary Algorithms Artificial Intelligence, 85(1-2):245–276, 1996

Libraries

- TSP lib http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
 Discrete and Combinatorial Optimization Problem Library
- CSP lib https://www.csplib.org/ Constraint Problems
- MIP lib http://miplib.zib.de/ Mixed Integer Problems

Shir et al. Compiling a Benchmarking Test-Suite for CombinatorialBlack-Box Optimization: A Position Paper, GECCO 2018 Companion

Genetic Programming Benchmarks - Earlier Practice

- Symbolic Regression
- Classification
- Binary Functions
- Predictive Modelling
- Path Finding and Planning
- Others

McDermott et al. Genetic Programming Needs Better Benchmarks, GECCO 2012

Genetic Programming Benchmarks - Criteria

- Tunably difficult
- Varied
- Relevant
- Fast
- Accommodating to Implementers
- Easy to interpret and compare
- Representation-independent
- Precisely-defined
- Current

McDermott et al. Genetic Programming Needs Better Benchmarks, GECCO 2012

GP Benchmarks

Symbolic Regression

McDermott et al. Genetic Programming Needs Better Benchmarks, GECCO 2012

Name	Vars	Objective Function	Training Set	Testing Set	Funct
Koza-1, Nguyen-2 [32, 4	5] 1	$x^4 + x^3 + x^2 + x$	U[-1, 1, 20]	None	Koza
Koza-2 [33]	1	$x^{5} - 2x^{3} + x$	U[-1, 1, 20]	None	Koza
Koza-3 [33]	1	$x^6 - 2x^4 + x^2$	U[-1, 1, 20]	None	Koza
Nguyen-1 [45]	1	$x^3 + x^2 + x$	U[-1, 1, 20]	None	Koza
Nguyen-3 [45]	1	$x^5 + x^4 + x^3 + x^2 + x$	U[-1, 1, 20]	None	Koza
Nguyen-4 [45]	1	$x^6 + x^5 + x^4 + x^3 + x^2 + x$	U[-1, 1, 20]	None	Koza
Nguyen-5 [45] Nguyen-6 [45]	1 1	$\sin(x^2)\cos(x) - 1$ $\sin(x) + \sin(x + x^2)$	U[-1, 1, 20]	None None	Koza Koza
Nguyen-6 [45] Nguyen-7 [45]	1	$\ln(x) + \sin(x + x^{-})$ $\ln(x + 1) + \ln(x^{2} + 1)$	U[-1, 1, 20] U[0, 2, 20]	None	Koza
Nguyen-8 [45]	1	\sqrt{x}	U[0, 4, 20]	None	Koza
Nguyen-9 [45]	2	$\sin(x) + \sin(y^2)$	U[0, 1, 20]	None	Koza
Nguyen-10 [45]	2	$2\sin(x)\cos(y)$	U[0, 1, 20]	None	Koza
Nguyen-11 [45] (Omit)	2	x^y	U[0, 1, 20]	None	Koza
Nguyen-12 [45] (Omit)	2	$x^4 - x^3 + \frac{y^2}{2} - y$	U[0, 1, 20]	None	Koza
Pagie-1 [50]	2	$\frac{1}{1+x^{-4}} + \frac{2}{1+y^{-4}}$	E[-5, 5, 0.4]	None	Koza
Korns-1 [30]	5	1.57 + (24.3 v)	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
Korns-2 [30]	5	$0.23 + 14.2 \frac{v+y}{3}$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
Korns-3 [30]	5	$0.23 + 14.2 \frac{v + y}{3 w} -5.41 + 4.9 \frac{v - x + \frac{y}{w}}{3 w}$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
Korns-4 [30]	5	$-3.41 + 4.5 \frac{3w}{3w}$ $-2.3 + 0.13 \sin(z)$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
Korns-5 [30]	5	$3 + 2.13 \ln(w)$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
Korns-6 [30]	5	$1.3 + 0.13 \sqrt{x}$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
Korns-7 [30]	5	$213.80940889(1 - e^{-0.54723748542 x})$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
Korns-8 [30]	5	$6.87 + 11\sqrt{7.23 x v w}$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
Korns-9 [30]	5	$\frac{\sqrt{x}}{\ln(y)} e^{\frac{z}{v^2}} \longrightarrow \frac{\sqrt{x}}{\ln y} \frac{e^z}{v^2}$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
Korns-10 [30]	5	$\frac{\sqrt{x}}{\ln(y)} e^{\frac{x^2}{2}} \longrightarrow \frac{\sqrt{x}}{\ln x} \frac{e^z}{v^2}$ $0.81 + 24.3 \frac{2}{4} \frac{y+3}{(v)^3+5} \frac{z^2}{(w)^4}$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
	5	$6.87 + 11\cos(7.23x^3)$	U[-50, 50, 10000]	U[-50, 50, 10000]	
Korns-11 [30] Korns-12 [30]	5	$2 - 2.1\cos(9.8x)\sin(1.3w)$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns Korns
Korns-13 [30]	5	$2 - 2.1 \cos(9.0x) \sin(1.0x)$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns
	5	$32 - 3 \frac{\tan(x)}{\tan(y)} \frac{\tan(z)}{\tan(v)}$			
Korns-14 [30] Korns-15 [30]	5	$22 - 4.2(\cos(x) - \tan(y)) \frac{\tanh(z)}{\sin(v)}$ $12 - 6 \frac{\tan(x)}{e^y} (\ln(z) - \tan(v))$	U[-50, 50, 10000]	U[-50, 50, 10000]	Korns Korns
Keijzer-1 [28]	1	$0.3 x \sin(2\pi x)$	U[-50, 50, 10000] E[-1, 1, 0.1]	U[-50, 50, 10000] E[-1, 1, 0.001]	Keijzei
Keijzer-2 [28]	1	$0.3 x \sin(2\pi x)$ $0.3 x \sin(2\pi x)$	E[-2, 2, 0.1]	E[-2, 2, 0.001]	Keijzei
Keijzer-3 [28]	2	$0.3 x \sin(2\pi x)$	E[-3, 3, 0.1]	E[-3, 3, 0.001]	Keijzei
Keijzer-4 [28]	1	$x^{3}e^{-x}\cos(x)\sin(x)(\sin^{2}(x)\cos(x)-1)$	E[0, 10, 0.05]	E[0.05, 10.05, 0.05]	Keijzei
Keijzer-5 [28]	3	$\frac{30xz}{(x-10)y^2}$	$x, y \longrightarrow z$: U[-1, 1, 1000] $z \longrightarrow y$: U[1, 2, 1000]	$x, y \longrightarrow z$: U[-1, 1, 10000] $z \longrightarrow y$: U[1, 2, 10000]	Keijzei
Keijzer-6 [28]	1	$\sum_{i=1}^{x} \frac{1}{i}$	E[1, 50, 1]	E[1, 120, 1]	Keijzei
Keijzer-7 [28]	1	$\ln x$	E[1, 100, 1]	E[1, 100, 0.1]	Keijzei
Keijzer-8 [28]	1	\sqrt{x}	E[0, 100, 1]	E[0, 100, 0.1]	Keijzei
Keijzer-9 [28]	1	$\operatorname{arcsinh}(x)$ i.e., $\ln(x+\sqrt{x^2+1})$	E[0, 100, 1]	E[0, 100, 0.1]	Keijzei
Keijzer-10 [28]	2	x^y	U[0, 1, 100]	E[0, 1, 0.01]	Keijzei
Keijzer-11 [28]	2	$xy + \sin((x-1)(y-1))$ $x^4 - x^3 + \frac{y^2}{2} - y$	U[-3, 3, 20]	E[-3, 3, 0.01]	Keijzei
Keijzer-12 [28]	2	$x^4 - x^3 + \frac{y}{2} - y$	U[-3, 3, 20]	E[-3, 3, 0.01]	Keijzei
Keijzer-13 [28]	2	$6\sin(x)\cos(y)$	U[-3, 3, 20]	E[-3, 3, 0.01]	Keijzei
Keijzer-14 [28]	2	$\frac{1}{2+x^2+y_2^2}$	U[-3, 3, 20]	E[-3, 3, 0.01]	Keijzei
Keijzer-15 [28]	2	$\frac{x^3}{5} + \frac{y^3}{2} - y - x$ $e^{-(x-1)^2}$	U[-3, 3, 20]	E[-3, 3, 0.01]	Keijzei
Vladislavleva-1 [64]	2	$1.2+(y-2.5)^2$	U[0.3, 4, 100]	E[-0.2, 4.2, 0.01]	Vladisl
Vladislavleva-2 [64]	1	$e^{-x}x^3(\cos x \sin x)(\cos x \sin^2 x - 1)$	$E[0.5, 10, 0.1] \longrightarrow E[0.05, 10, 0.1]$	E[-0.5, 10.5, 0.05]	Vladisl
Vladislavleva-3 [64]	2	$e^{-x}x^3(\cos x\sin x)(\cos x\sin^2 x - 1)(y - 5)$	x: E[0.05, 10, 0.1]	x: E[-0.5, 10.5, 0.05]	Vladis
		10	y: E[0.05, 10.05, 2]	y: E[-0.5, 10.5, 0.5]	
Vladislavleva-4 [64]	5	$\frac{5+(x-3)^2+(y-3)^2+(z-3)^2+(v-3)^2+(w-3)^2}{30\frac{(x-1)(z-1)}{v^2(x-10)}}$	U[0.05, 6.05, 1024]	U[-0.25, 6.35, 5000]	Vladisl
Vladislavleva-5 [64]	3	$30\frac{(x-1)(z-1)}{y^2(x-10)}$	x: U[0.05, 2, 300] y: U[1, 2, 300]	<i>x</i> : E[-0.05, 2.1, 0.15] <i>y</i> : E[0.95, 2.05, 0.1]	Vladisl
			z: U[0.05, 2, 300]	z: E[-0.05, 2.1, 0.15]	
Vladislavleva-6 [64]	2	$6\sin(x)\cos(y)$	U[0.1, 5.9, 30]	E[-0.05, 6.05, 0.02]	Vladisl
Vladislavleva-7 [64]	2	$(x-3)(y-3) + 2\sin((x-4)(y-4))$	U[0.05, 6.05, 300]	U[-0.25, 6.35, 1000]	Vladis
Vladislavleva-8 [64]	2	$\frac{(x-3)^4 + (y-3)^3 - (y-3)}{(y-2)^4 + 10}$	U[0.05, 6.05, 50]	E[-0.25, 6.35, 0.2]	Vladisl
Table 3: Symbolic l	Regre	ssion Benchmark Candidates. Va	riable names are, in order.	x. u. z. v. w. Some	

Table 3: Symbolic Regression Benchmark Candidates. Variable names are, in order, x, y, z, v, w. Some benchmarks intentionally omit variables from the function. U[a,b,c] is c uniform random samples drawn from a to b, inclusive, for the variable. E[a,b,c] is a grid of points evenly spaced (for this variable) with an interval of c, from a to b inclusive. Testing and training sets are independent. See Table 2 for function sets.

GP Benchmarks III

- Symbolic Regression
- Feynman equations, from Feynman's Lectures on Physics

Udrescu and Tegmark, Al Feynman: A physicsinspired method for symbolic regression, Science Advances, 6, 2020 SCIENCE ADVANCES | RESEARCH ARTICLE

Table 4. Tested Feynman equations, part 1. Abbreviations in the "Methods used" column: da, dimensional analysis; bf, brute force; pf, polyfit; ev, set two variables equal; ym, symmetry; sep, separability, setc.) or the preprocessing before brute force (e.g., bf-inverse means inverting the mystery function before bf).

Feynman Eq.	Equation	Solution Time (s)	Methods Used	Data Needed	Solved By Eureqa	Solved W/o da	Noise Toleranc
l.6.20a	$f = e^{-\theta^2/2}/\sqrt{2\pi}$	16	bf	10	No	Yes	10 ⁻²
1.6.20	$f = e^{-\frac{\theta^2}{2\sigma^2}/\sqrt{2\pi\sigma^2}}$	2992	ev, bf-log	10 ²	No	Yes	10⁻⁴
l.6.20b	$f = e^{\frac{-(6-6)^2}{2\sigma^2}} / \sqrt{2\pi\sigma^2}$	4792	sym–, ev, bf-log	10³	No	Yes	10-4
l.8.14	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	544	da, pf-squared	10²	No	Yes	10 ⁻⁴
l.9.18	$F = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$	5975	da, sym–, sym–, sep∗, pf-inv	10 ⁶	No	Yes	10 ⁻⁵
l.10.7	$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$	14	da, bf	10	No	Yes	10-4
l.11.19	$A = x_1 y_1 + x_2 y_2 + x_3 y_3$	184	da, pf	10 ²	Yes	Yes	10 ⁻³
l.12.1	$F = \mu N_n$	12	da, bf	10	Yes	Yes	10 ⁻³
l.12.2	$F = \frac{q_1 q_2}{4\pi \epsilon r^2}$	17	da, bf	10	Yes	Yes	10 ⁻²
l.12.4	$E_f = \frac{q_1}{4\pi\epsilon r^2}$	12	da	10	Yes	Yes	10 ⁻²
l.12.5	F = q₂E _f	8	da	10	Yes	Yes	10 ⁻²
l.12.11	$F = q(E_f + Bv \sin \theta)$	19	da, bf	10	Yes	Yes	10 ⁻³
l.13.4	$K = \frac{1}{2}m(v^2 + u^2 + w^2)$	22	da, bf	10	Yes	Yes	10 ⁻⁴
l.13.12	$U = Gm_1m_2(\frac{1}{r_2}-\frac{1}{r_1})$	20	da, bf	10	Yes	Yes	10 ⁻⁴
l.14.3	U = mgz	12	da	10	Yes	Yes	10 ⁻²
l.14.4	$U = \frac{k_{\text{spring}}x^2}{2}$	9	da	10	Yes	Yes	10 ⁻²
l.15.3x	$X_1 = \frac{x - ut}{\sqrt{1 - u^2/c^2}}$	22	da, bf	10	No	No	10 ⁻³
l.15.3t	$t_1 = \frac{t - ux/c^2}{\sqrt{1 - u^2/c^2}}$	20	da, bf	10 ²	No	No	10-4
l.15.10	$p = \frac{m_0 v}{\sqrt{1 - v^2/c^2}}$	13	da, bf	10	No	Yes	10-4
l.16.6	$V_1 = \frac{u+v}{1+uv/c^2}$	18	da, bf	10	No	Yes	10 ⁻³
l.18.4	$\Gamma = \frac{m_1 r_1 + m_2 r_2}{m_1 + m_2}$	17	da, bf	10	Yes	Yes	10 ⁻²
l.18.12	$\tau = rF \sin \theta$	15	da, bf	10	Yes	Yes	10 ⁻³
l.18.16	L = mrv sin θ	17	da, bf	10	Yes	Yes	10 ⁻³
l.24.6	$E = \frac{1}{4}m(\omega^2 + \omega_0^2)x^2$	22	da, bf	10	Yes	Yes	10 ⁻⁴
l.25.13	$V_e = \frac{q}{C}$	10	da	10	Yes	Yes	10 ⁻²