University of Mumbai Examination First Half 2022

Examinations Commencing from 3rd June 2022

Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester III

Course Code: CSC301 and Course Name: Engineering Mathematics-III

Time: 2hour 30 minutes Max. Marks: 80

1. Option	In the Fourier series of $f(x) = \sqrt{1 - \cos x}$ in $(0,2\pi)$ the value of a_0 is
Option	
	$2\sqrt{3}$
A:	
Option	$\frac{\pi}{6\sqrt{2}}$
B:	3,5,8,8,8,8, 2,0 ,8,9,9,9,9,8,2,9,8,8,9,9,9,9,9,9,9,9,9,9
Option	
C:	
Option	$\frac{1}{2\sqrt{2}}$
D:	$\frac{1}{2}$
2.	The formula of complex form of Fourier series for function $f(x)$ in $(-l, l)$ is
Option A:	$\sum_{-\infty}^{\infty} C_n e^{inx} \text{where } C_n = \frac{1}{2l} \int_{-l}^{l} f(x) e^{-in\pi x/l} \ dx$
Option B:	$\sum_{-\infty}^{\infty} C_n e^{in\pi x/l}$ where $C_n = \frac{1}{2l} \int_{-l}^{l} f(x) e^{-in\pi x/l} dx$
Option C:	$\sum_{-\infty}^{\infty} C_n e^{inx}$ where $C_n = \frac{1}{2l} \int_{-l}^{l} f(x) e^{-in\pi x/l} dx$
Option D:	$\sum_{-\infty}^{\infty} C_n e^{ix}$ where $C_n = \frac{1}{2l} \int_{-l}^{l} f(x) e^{-in\pi x/l} dx$
S. E. S. S.	<u> </u>
2035	Evaluate $\int_0^\infty e^{-3t} t^5 dt$
Option	
ASS	$\frac{\overline{s}^5}{8}$
Option	120
B :	$\frac{1}{8}$
Option	$\frac{120}{2}$
C;	729 60
Option	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 D: 5	729
4.	If $f(z) = u + iv$ is analytic then
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	u is harmonic but v may or may not be harmonic.
A:	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
7 7127 72 2 2 1 2 2	v is harmonic but u may or may not be harmonic.
	u and v both need not be harmonic.

C:	
Option	u and v both harmonic.
D:	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	IC VI - ((V)
5.	If $Var(X) = 4$ then $Var(3x+5)$ is
Option	
A:	
Option	
B:	
Option	
C:	36
Option D:	
D.	
6.	TC V 1 41 - C-11 : 1 -1 : 104 - 4: -2: 10 -1: 2
0.	If X has the following probability distribution
	X: 0 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	P(X = x): k 2k 5k
	Then the value of k is
Option	1/6
A:	
Option	
B:	444466444746656666666666666666666666666
Option	
C:	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Option	
D:	
7.	Find Inverse L.T. of $\frac{3}{9s^2-16}$.
Option	
A:	$\frac{1}{4}\sinh\left(\frac{3t}{4}\right)$
Option	$\frac{1}{4}\sin\left(\frac{3t}{4}\right)$
B: -	$\overline{4}^{\text{SIII}}(\overline{4})$
Option	$\frac{1}{\sinh\left(\frac{4t}{t}\right)}$
C:	$\frac{1}{4}\sinh\left(\frac{\pi}{3}\right)$
Option	$\frac{1}{4}\sin\left(\frac{4t}{3}\right)$
5 D	$\overline{4}^{\sin(\overline{3})}$
2233	
8.00	L^{-1} is
	Ls(s+4)]
Option	$\frac{1}{-}(e^{-4t}-1)$
A:	4 4
Option	$\frac{1}{2}(1-a^{-4t})$
B :	$\frac{\frac{1}{4}(e^{-4t} - 1)}{\frac{1}{4}(1 - e^{-4t})}$
Option	$(e^{-4t}-1)$
\$ C :0	
Option	1 (-4t 11)
D :	$\frac{1}{4}(e^{-4t}+1)$
5000	**************************************
9.8	Find the Laplace transform of $\frac{sint}{t}$
MAN ST	t t

Option			$cot^{-1}s$	
A:				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Option			$cot^{-1}t$	
B:				275234223475
Option			$tan^{-1}s$	\$50000 500 500 500 500 500 500 500 500 5
C:			O	
Option			$tan^{-1}t$	
D:				* * * * * * * * * * * * * * * * * * *
			V 70	
10.	Find	L[(sin3t)(sin5t)]		
10. Option	Find	L[(sin3t)(sin5t)]	1 _[s	
	Find	L[(sin3t)(sin5t)]	$\frac{1}{2} \left[\frac{s}{s^2 + 4} + \frac{1}{s^2 + 64} \right]$	
Option	Find	L[(sin3t)(sin5t)]	3iV 3V 3V 3O1 32 1A	
Option A:	Find	L[(sin3t)(sin5t)]	$\frac{1}{2} \left[\frac{1}{s^2 + 4} + \frac{1}{s^2 + 64} \right]$	
Option A: Option	Find	L[(sin3t)(sin5t)]	$\frac{1}{2} \left[\frac{s^2 + 4}{s^2 + 64} \right]$	
Option A: Option B:	Find	L[(sin3t)(sin5t)]	$\frac{2}{5} \left[\frac{s^2 + 4}{s^2 + 64} \right]$ $\frac{1}{2} \left[\frac{s}{s^2 - 4} - \frac{1}{s^2 - 64} \right]$	
Option A: Option B: Option	Find	L[(sin3t)(sin5t)]	$ \frac{2}{s^{2}+4} + \frac{1}{s^{2}+64} $ $ \frac{1}{2} \begin{bmatrix} s & 1 \\ s^{2}-4 & s^{2}-64 \end{bmatrix} $ $ \frac{1}{5} \begin{bmatrix} s & s & 1 \\ s^{2}-64 & s^{2}-64 \end{bmatrix} $	
Option A: Option B: Option C:	Find	L[(sin3t)(sin5t)]	$ \frac{2}{s^{2}+4} + \frac{1}{s^{2}+64} $ $ \frac{1}{2} \begin{bmatrix} s & 1 \\ s^{2}-4 & s^{2}-64 \end{bmatrix} $ $ \frac{1}{5} \begin{bmatrix} s & s & 1 \\ s^{2}-64 & s^{2}-64 \end{bmatrix} $	

Q2	Solve any Four out of Six 5 marks each				
A	If $L\{\sin \sqrt{t}\}=\frac{\sqrt{\pi}}{2s\sqrt{s}}e^{-1/(4s)}$, find $L\{\sin 2\sqrt{t}\}$.				
В	If $v = 3x^2y + 6xy - y^3$, show that v is harmonic function and find the corresponding analytic function.				
C	If the mean of the following distribution is 16. Find m, n and variance. $X : 8, 12, 16, 20, 24$ $P(X) : 1/8 m n 1/4 1/12$				
D	Evaluate the Fourier coefficients a_0 and a_n of $f(x) = \frac{1}{2}(\pi - x)$ in $(0, 2\pi)$.				
ES	Find $L^{-1}\left(\log\left(1+\frac{a}{c}\right)\right)$.				
F	The Regression lines of a sample are $x + 6y = 6$ and $3x + 2y = 10$. Find the coefficient of correlation between x and y.				
Q3	Solve any Four out of Six 5 marks each				
A	Find the inverse Laplace transform of $\frac{s+29}{(s+4)(s^2+9)}$				
В	marks of 6 students in Statistics and Mathematics in a test: Marks: Statistics : 40, 42, 45, 35, 36, 39				
\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Marks: Mathematics: 46, 43, 44, 39, 40, 43 $\int_{0}^{\infty} e^{-t} \cdot \frac{\sin^{2} t}{t} dt = \frac{1}{4} \log 5$ By using Laplace transform, prove that				

D	Evaluate the Fourier coefficients a_0 and b_3 of $f(x) = x$ in $(0, 2\pi)$.					
Е	Show that the function, $f(z) = \sinh z$ is analytic and find $f'(z)$ in terms of z.					
F	The probability density function of a random variable X is					
	X 0 1 2 3 4 5 6					
	P(X=x) k 3k 5k 7k 9k 11k 13k					
	Find $P(X<4)$, $P(3< x \le 6)$.					
Q4	Solve any Four out of Six 5 marks each					
A	Find the Fourier series for $f(x)$ in $(0,2\pi)$					
	$\begin{cases} x, & 0 < x \le \pi \end{cases}$					
	where $f(x) = \begin{cases} x, & 0 < x \le \pi \\ 2\pi - x, & \pi \le x < 2\pi \end{cases}$					
В	SS S S S S S S S S S S S S S S S S S S					
	Using convolution theorem, find the inverse Laplace transform of $(s-2)^4(s+3)$					
C	State true or false with justification. "If two lines of regression are $x+3y-5=0$ and					
	4x+3y-8=0, then the correlation coefficient is $+0.5$ ".					
D	Find $L(t e^{-3t} \cos 2t \cos 3t)$					
Е	A continuous random variable has the following probability density function					
	$f(x) = \begin{cases} \frac{x}{4} + k, & 0 \le x \le 2\\ 0, & elsewhere \end{cases}$					
	$f(x) = \begin{cases} 4 \\ 0 \end{cases}$					
	Evaluate k and $P(1 \le X \le 2)$					
F	From the following data calculate Karl Pearson's coefficient of correlation (r)					
	between X and Y.					
	X 18 20 34 52 12					
	Y 39 23 35 18 46					
	10. 14. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10					