UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 PRACTICA 13

Problema 1. Considere las matrices:

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad E = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$$

1.1) Calcular:

a)
$$A \cdot B$$
 b) $(AB)C$ c) $B \cdot A$ d) $(AB - BA)^t$

e)
$$(BD - I)(A \cdot C^2 + I)$$
 f) $[C^2(AB - DB)][I - A]$

1.2) Resuelva las ecuaciones matriciales:

a)
$$A + B = B$$
 b) $-2X + C = D$ c) $(A - \frac{2}{3}X)^t = 2D$

d)
$$AX = B$$
 e) $X \cdot E = A$ f) $EXA = D$

g)
$$(2C + XA)^{-1} = E$$
.

[En práctica] 1.1 (e), 1.2(c), 1.2(g)

Problema 2. Encuentre todas las matrices diagonales A de orden 3 tales que $A^2 = I_3$.

Problema 3. Encuentre todas las matrices triangulares superiores A de orden 3 tales que $A^2 = I_3$.

[En práctica]

Problema 4. a) Sea $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 5 \\ -3 & 5 & 10 \end{pmatrix}$. Determine si existen matrices L y U tales que $L \cdot U = A$, donde L es matriz triangular inferior con unos en su diagonal principal;

U es matriz triangular superior.

b) Sea $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 6 & 4 \\ -1 & 4 & -6 \end{pmatrix}$. Determine si existen matrices L, D y U

 $A = L \cdot D \cdot U$ donde L es matriz triangular inferior con unos en su diagonal principal, D es matriz diagonal y U es matriz triangular superior con unos en su diagonal.

- c) Sea $A=\begin{pmatrix}4&2&4\\2&10&-1\\4&-1&21\end{pmatrix}$. Determine si existe una matriz L tal que $A=L\cdot L^t$ donde L es matriz triangular inferior
- d) Sea $M = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}$. Calcule \sqrt{M} ; es decir calcule A tal que $A^2 = M$. [En práctica] (a), (d)

Problema 5. Sea $P(\theta) = \begin{pmatrix} cos\theta & -sen\theta \\ sen\theta & cos\theta \end{pmatrix}$. Pruebe que:

a)
$$P(\theta_1) \cdot P(\theta_2) = P(\theta_1 + \theta_2)$$

a)
$$P(\theta_1) \cdot P(\theta_2) = P(\theta_1 + \theta_2)$$
 b) $(P(\theta))^n = P(n\theta), \forall n \in \mathbb{N}$

c)
$$(P(2\pi/n))^n = I_2, \quad \forall n \in \mathbb{N}.$$

[En práctica] (a), (b)

Problema 6. Probar que $\forall n \in \mathbb{N} : A^n = B$; donde

$$A = \left(egin{array}{ccc} 1 & x & y \ 0 & 1 & x \ 0 & 0 & 1 \end{array}
ight), \quad B = \left(egin{array}{ccc} 1 & nx & ny + rac{n(n-1)}{2} \cdot x^2 \ 0 & 1 & x \ 0 & 0 & 1 \end{array}
ight)$$

Problema 7. Si $f(x) = \sum_{i=0}^{n} a_i x^i$ es un polinomio; entonces se define

$$f(A) = \sum_{i=0}^{n} a_i A^i; \quad \operatorname{con} A^\circ = I_n, \quad A \in M_{n \times n}(I\!\! R). \text{ Probar que si } D \in M_{n \times n}(I\!\! R); \quad \operatorname{con} D$$

matriz diagonal y $d_{ii}=d_i$ $1\leq i\leq n$ y f es polinomio de grado n entonces f(D) es diagonal; es decir f(D) = M es diagonal, con $m_{ii} = f(d_i)$, $1 \le i \le n$

[En práctica]