CMIP6-DICAD TP3

ICON Klimaprojektionen der Atmosphäre mit einer feineren Gitterweite über Europa

Vera Maurer
Christian Steger
Barbara Früh
Deutscher Wetterdienst
Abt. Klima- und Umweltberatung

ICON-EUclim

ICON global	ICON-EU nest	
operationell seit 2014	operationell seit Mai 2016, COSMO-EU seit Dez. 2016 abgeschaltet	
R3B7 (ca. 13 km)	R3B8 (ca. 6.5 km) 659156 Gitterzellen	
2-way-nesting		

2

Milestones DWD

- → ICON-EUclim (MPI-ESM2, zunächst nur Atmosphärenteil, mit EU-Nest)
 - → Testsimulationen mit ICON in Klimakonfiguration mit höher aufgelöstem Nest sowie mehreren Nesting-Schritten
 - → Kosten-Nutzen Abschätzung Anzahl Nests / gröbste horizontale Auflösung
 - → Klimasimulationen mit endgültiger Modellkonfiguration, konformer Datenerzeugung (bis November 2019)
 - → Vergleich mit CMIP6-AMIP und CMIP6-CORDEX
- → ScenarioMIP (Christian)
 - → Realisierung zusätzlicher RCP-Szenarien mit MPI-ESM1-HR (in Absprache mit DKRZ)

Aufbau von ICON-EUclim, mögliche Modellvergleiche

- → Nesting-Strategie (R2B6-7-8 oder R3B5-6-7)
- historische Simulationen:
 - → Vergleich mit Beobachtungsdaten (global / regional), Reanalysen
 - → Vergleich ICON-NWP, ICON-LAM, 1-way / 2-way nesting, MPI-ESM2 (gekoppelt!), Globalsimulation mit hoher Auflösung...
- CORDEX-Simulationen
- CORDEX Hindcasts (1989 2008)?

CMIP6-CORDEX

- → Fragestellungen (Gutowski et al., 2016):
 - → "added value" der Regionalisierung, v.a. auch durch statistisches Downscaling
 - → regionale anthropogene Einflüsse (z.B. durch Landnutzung, Aerosolemissionen)
 - → Koordination der Entwicklung gekoppelter **RCMs**
 - → höchster erwarteter "added value" durch höhere Modellauflösung im Niederschlag (Extremwerte, MCS)
 - → lokale Windsysteme (z.B. Mistral, Bora), Sturmsysteme

CMIP6-CORDEX

- → geplante horizontale Auflösung: 10 – 20 km
- → Modellgebiet:
 22°W 45°E, 27°N 72°N
 (ICON-EU:
 23.5°W 62.5°E, 29.5°N 70.5°N)
- geplante Experimente:
 - → 30 Jahre von piControl
 - → 1950 2014 von historical
 - → 2015 2100 (RCP8.5, 4.5, 2.6)

EURO-CORDEX Modellgebiet / Orographie

Aktueller Stand

- → icon-aes-dev
 - → AMIP-Setup läuft am DWD für verschiedene Auflösungen (R2B4 / 6 / 7)
 - → Laufzeit im Vergleich zu NWP-Version sehr hoch (3 Monate auf 20 Knoten für R2B4 [20480 Gitterzellen]: walltime 29 min; NWP: ca. 3 min)
 - multithreading und asynchronous I/O bringen keine Verbesserung!
 - → momentan fehlende Randdaten: Datensätze für Landmodell und SSO nur interpoliert (am MPI in Vorbereitung: neue Datensätze für R2B6, R2B8; extpar?)
 - → Einbau des Nests: momentan für R2B6-7 (äußeres CORDEX-Gebiet)

Aktueller Stand

- icon-aes-dev
 - → Anpassungen im Modellcode:
 - → Infrastruktur zur Initialisierung /
 Integration mehrerer Modellgebiete
 dank NWP-Version prinzipiell
 vorhanden
 - aber: Unterschiede in Initialisierung; z.B. einlesen SST / SIC auf mehreren Modellgebieten noch nicht möglich

Zusammenfassung

- Entwicklung von ICON-EUclim mit Modellgebieten ähnlich wie operationelles ICON-EU und ECHAM-Physik (ungekoppelt)
- Modellvergleiche mit anderen CMIP6-AMIP-Simulationen sowie CMIP6-CORDEX
- weitere Vergleiche mit Simulationen mit anderen Setups (z.B. Nesting ohne feedback, LAM)
- → aktuell läuft icon-aes-dev am DWD in verschiedenen Auflösungen (Laufzeitoptimierung möglich?)
- prinzipiell Infrastruktur zum Rechnen mit R2B6-7 vorhanden, aber weitere Anpassungen im Modellcode notwendig

