- 2. Pivot $R_n = \widehat{\theta}_n \theta$
- 3. Let $H(r) = \mathbb{P}[R_n \leq r]$ be the CDF of R_n
- 4. Let $R_{n,b}^* = \hat{\theta}_{n,b}^* \hat{\theta}_n$. Approximate H using bootstrap:

$$\widehat{H}(r) = \frac{1}{B} \sum_{b=1}^{B} I(R_{n,b}^* \le r)$$

- 5. $\theta_{\beta}^* = \beta$ sample quantile of $(\widehat{\theta}_{n,1}^*, \dots, \widehat{\theta}_{n,B}^*)$
- 6. $r_{\beta}^* = \text{beta sample quantile of } (R_{n,1}^*, \dots, R_{n,B}^*), \text{ i.e., } r_{\beta}^* = \theta_{\beta}^* \widehat{\theta}_n$
- 7. Approximate 1α confidence interval $C_n = (\hat{a}, \hat{b})$ where

$$\hat{a} = \widehat{\theta}_n - \widehat{H}^{-1} \left(1 - \frac{\alpha}{2} \right) = \widehat{\theta}_n - r_{1-\alpha/2}^* = 2\widehat{\theta}_n - \theta_{1-\alpha/2}^*$$

$$\hat{b} = \widehat{\theta}_n - \widehat{H}^{-1} \left(\frac{\alpha}{2} \right) = \widehat{\theta}_n - r_{\alpha/2}^* = 2\widehat{\theta}_n - \theta_{\alpha/2}^*$$

Percentile interval

$$C_n = \left(\theta_{\alpha/2}^*, \theta_{1-\alpha/2}^*\right)$$

16.3 Rejection Sampling

Setup

- We can easily sample from $g(\theta)$
- We want to sample from $h(\theta)$, but it is difficult
- We know $h(\theta)$ up to a proportional constant: $h(\theta) = \frac{k(\theta)}{\int k(\theta) d\theta}$
- Envelope condition: we can find M > 0 such that $k(\theta) \leq Mg(\theta) \quad \forall \theta$

Algorithm

- 1. Draw $\theta^{cand} \sim g(\theta)$
- 2. Generate $u \sim \text{Unif}(0,1)$
- 3. Accept θ^{cand} if $u \leq \frac{k(\theta^{cand})}{Mg(\theta^{cand})}$
- 4. Repeat until B values of θ^{cand} have been accepted

Example

- We can easily sample from the prior $g(\theta) = f(\theta)$
- Target is the posterior $h(\theta) \propto k(\theta) = f(x^n \mid \theta) f(\theta)$
- Envelope condition: $f(x^n \mid \theta) < f(x^n \mid \widehat{\theta}_n) = \mathcal{L}_n(\widehat{\theta}_n) \equiv M$
- Algorithm
 - 1. Draw $\theta^{cand} \sim f(\theta)$

- 2. Generate $u \sim \text{Unif}(0,1)$
- 3. Accept θ^{cand} if $u \leq \frac{\mathcal{L}_n(\theta^{cand})}{\mathcal{L}_n(\widehat{\theta}_n)}$

16.4 Importance Sampling

Sample from an importance function g rather than target density h. Algorithm to obtain an approximation to $\mathbb{E}\left[q(\theta)\,|\,x^n\right]$:

- 1. Sample from the prior $\theta_1, \ldots, \theta_n \stackrel{iid}{\sim} f(\theta)$
- 2. $w_i = \frac{\mathcal{L}_n(\theta_i)}{\sum_{i=1}^B \mathcal{L}_n(\theta_i)} \quad \forall i = 1, \dots, B$
- 3. $\mathbb{E}\left[q(\theta) \mid x^n\right] \approx \sum_{i=1}^B q(\theta_i) w_i$

17 Decision Theory

Definitions

- Unknown quantity affecting our decision: $\theta \in \Theta$
- Decision rule: synonymous for an estimator $\widehat{\theta}$
- Action $a \in \mathcal{A}$: possible value of the decision rule. In the estimation context, the action is just an estimate of θ , $\widehat{\theta}(x)$.
- Loss function L: consequences of taking action a when true state is θ or discrepancy between θ and $\widehat{\theta}$, $L: \Theta \times \mathcal{A} \to [-k, \infty)$.

Loss functions

- Squared error loss: $L(\theta, a) = (\theta a)^2$
- Linear loss: $L(\theta, a) = \begin{cases} K_1(\theta a) & a \theta < 0 \\ K_2(a \theta) & a \theta \ge 0 \end{cases}$
- Absolute error loss: $L(\theta, a) = |\theta a|$ (linear loss with $K_1 = K_2$)
- L_p loss: $L(\theta, a) = |\theta a|^p$
- Zero-one loss: $L(\theta, a) = \begin{cases} 0 & a = \theta \\ 1 & a \neq \theta \end{cases}$

17.1 Risk

Posterior risk

$$r(\widehat{\theta} \mid x) = \int L(\theta, \widehat{\theta}(x)) f(\theta \mid x) d\theta = \mathbb{E}_{\theta \mid X} \left[L(\theta, \widehat{\theta}(x)) \right]$$

(Frequentist) risk

$$R(\theta, \widehat{\theta}) = \int L(\theta, \widehat{\theta}(x)) f(x \mid \theta) dx = \mathbb{E}_{X \mid \theta} \left[L(\theta, \widehat{\theta}(X)) \right]$$

Bayes risk

$$r(f, \widehat{\theta}) = \iint L(\theta, \widehat{\theta}(x)) f(x, \theta) \, dx \, d\theta = \mathbb{E}_{\theta, X} \left[L(\theta, \widehat{\theta}(X)) \right]$$
$$r(f, \widehat{\theta}) = \mathbb{E}_{\theta} \left[\mathbb{E}_{X|\theta} \left[L(\theta, \widehat{\theta}(X)) \right] \right] = \mathbb{E}_{\theta} \left[R(\theta, \widehat{\theta}) \right]$$
$$r(f, \widehat{\theta}) = \mathbb{E}_{X} \left[\mathbb{E}_{\theta|X} \left[L(\theta, \widehat{\theta}(X)) \right] \right] = \mathbb{E}_{X} \left[r(\widehat{\theta}|X) \right]$$

17.2 Admissibility

• $\widehat{\theta}'$ dominates $\widehat{\theta}$ if

$$\forall \theta : R(\theta, \widehat{\theta}') \le R(\theta, \widehat{\theta})$$

$$\exists \theta : R(\theta, \widehat{\theta}') < R(\theta, \widehat{\theta})$$

• $\widehat{\theta}$ is inadmissible if there is at least one other estimator $\widehat{\theta}'$ that dominates it. Otherwise it is called admissible.

17.3 Bayes Rule

Bayes rule (or Bayes estimator)

- $r(f, \widehat{\theta}) = \inf_{\widetilde{\theta}} r(f, \widetilde{\theta})$
- $\widehat{\theta}(x) = \inf r(\widehat{\theta} \mid x) \ \forall x \implies r(f, \widehat{\theta}) = \int r(\widehat{\theta} \mid x) f(x) \ dx$

Theorems

- Squared error loss: posterior mean
- Absolute error loss: posterior median
- Zero-one loss: posterior mode

17.4 Minimax Rules

Maximum risk

$$\bar{R}(\hat{\theta}) = \sup_{\theta} R(\theta, \hat{\theta}) \qquad \bar{R}(a) = \sup_{\theta} R(\theta, a)$$

Minimax rule

$$\sup_{\theta} R(\theta, \widehat{\theta}) = \inf_{\widetilde{\theta}} \bar{R}(\widetilde{\theta}) = \inf_{\widetilde{\theta}} \sup_{\theta} R(\theta, \widetilde{\theta})$$

$$\widehat{\theta} = \text{Bayes rule } \wedge \exists c : R(\theta, \widehat{\theta}) = c$$

Least favorable prior

$$\widehat{\theta}^f = \text{Bayes rule } \wedge R(\theta, \widehat{\theta}^f) \leq r(f, \widehat{\theta}^f) \ \forall \theta$$

18 Linear Regression

Definitions

- \bullet Response variable Y
- Covariate X (aka predictor variable or feature)

18.1 Simple Linear Regression

Model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 $\mathbb{E}\left[\epsilon_i \mid X_i\right] = 0, \ \mathbb{V}\left[\epsilon_i \mid X_i\right] = \sigma^2$

Fitted line

$$\widehat{r}(x) = \widehat{\beta}_0 + \widehat{\beta}_1 x$$

Predicted (fitted) values

$$\widehat{Y}_i = \widehat{r}(X_i)$$

Residuals

$$\hat{\epsilon}_i = Y_i - \widehat{Y}_i = Y_i - \left(\widehat{\beta}_0 + \widehat{\beta}_1 X_i\right)$$

Residual sums of squares (RSS)

$$\operatorname{RSS}(\widehat{\beta}_0, \widehat{\beta}_1) = \sum_{i=1}^n \widehat{\epsilon}_i^2$$

Least square estimates

$$\widehat{\beta}^T = (\widehat{\beta}_0, \widehat{\beta}_1)^T : \min_{\widehat{\beta}_0, \widehat{\beta}_1} RSS$$

$$\begin{split} \widehat{\beta}_0 &= \bar{Y}_n - \widehat{\beta}_1 \bar{X}_n \\ \widehat{\beta}_1 &= \frac{\sum_{i=1}^n (X_i - \bar{X}_n) (Y_i - \bar{Y}_n)}{\sum_{i=1}^n (X_i - \bar{X}_n)^2} = \frac{\sum_{i=1}^n X_i Y_i - n \bar{X} \overline{Y}}{\sum_{i=1}^n X_i^2 - n \overline{X^2}} \\ \mathbb{E} \left[\widehat{\beta} \, | \, X^n \right] &= \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} \\ \mathbb{V} \left[\widehat{\beta} \, | \, X^n \right] &= \frac{\sigma^2}{n s_X^2} \begin{pmatrix} n^{-1} \sum_{i=1}^n X_i^2 & -\overline{X}_n \\ -\overline{X}_n & 1 \end{pmatrix} \\ \widehat{\operatorname{se}}(\widehat{\beta}_0) &= \frac{\widehat{\sigma}}{s_X \sqrt{n}} \sqrt{\frac{\sum_{i=1}^n X_i^2}{n}} \\ \widehat{\operatorname{se}}(\widehat{\beta}_1) &= \frac{\widehat{\sigma}}{s_X \sqrt{n}} \end{split}$$

where $s_X^2 = n^{-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ and $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\epsilon}_i^2$ (unbiased estimate). Further properties:

• Consistency: $\widehat{\beta}_0 \stackrel{P}{\to} \beta_0$ and $\widehat{\beta}_1 \stackrel{P}{\to} \beta_1$