Estudos do vigor de sementes de soja por modelos generalizados e diferentes funções de ligação

Maria Márcia Pereira Sartori¹, Amanda Rithieli Pereira dos Santos², Deoclecio Jardim Amorim³ Rute Quelvia de Faria⁴, Edvaldo Aparecido Amaral da Silva⁵

Introdução

Sementes de com qualidade fisiológica superior permitem à rápida e uniforme emergência das plântulas, e consequentemente o estabelecimento do estande (França Neto et al.,2010; Marcos Filho, 2015ab; Pizá et al. 2018). Dados gerados pelo teste vigor nem sempre atendem às suposições exigidas pela análise de regressão linear: normalidade dos resíduos, independência e homocedastidade dos erros. Todavia, modelos lineares generalizados (MLG) possibilitam utilizar outras distribuições para os erros e uma função de ligação relacionando a média da variável resposta à combinação linear das variáveis explicativas (Mccullagh; Nelder1989; Hay; Mead; Bloomberg, 2014; Murphey et al., 2015). Dentre os possíveis modelos que podem ser propostos, a diretriz é selecionar aquele que forneça as informações mais precisas acerca do problema exposto (Emiliano; Vivanco; Menezes, 2014). Portanto, neste trabalho, teve-se o objetivo de avaliar os parâmetros de vigor da sementes de soja obtidos por modelos lineares generalizados, investigando qual função de ligação, Probit, Logit, Cauchy e Complemento Log-Log, são as mais adequadas para predizer o T₅₀.

Material e métodos

A germinação das sementes de soja foi realizada utilizando-se quatro repetições de 20 sementes. Foram utilizadas 10 cultivares comerciais de soja. Assim, as sementes foram distribuídas em folhas de papel tipo "germitest" umedecidas com a quantidade de água equivalente a 2,5 vezes o peso do papel, o teste foi realizado em placas de "Petri" e estas foram mantidas em câmara de germinação Biochemical Oxigen Demand (B.O.D), regulada para a temperatura de 25 °C. A contagem das sementes germinadas foi efetuada em intervalos regulares de 3, 6, 12 e 24 horas até 204 horas, adotando-se como critério de germinação a protrusão da raiz primária ≥ 2 mm. Os resultados foram expressos em números de dias para que 50% das sementes germinem.

Os resultados foram expressos na forma de probabilidade acumulada. As funções de ligação utilizadas para a regressão binomial na forma canônica e sua inversa estão descritas a seguir:

```
Probit \to g(\mu_i) = \phi^{-1}(p), \mu_i = \phi(p);

Logit \to g(\mu_i) = \log p/(1-p)), \mu_i = \exp(p)/(1+\exp(p));

Complemento \log \log \to g(\mu_i) = \log [-\log (1-p)], \mu_i = 1-\exp(-\exp(p));

Cauchy \to g(\mu_i) = \tan (\pi (p-(1/2)), \mu_i = \pi \csc^2(\pi p).
```

¹ Departamento de produção e Melhoramento Vegetal FCA/UNESP/Botucatu. email: maria.mp.sartori@unesp.br

² Departamento de produção e Melhoramento Vegetal FCA/UNESP/Botucatu. email: amandarithieli@hotmail.com

³ Departamento de produção e Melhoramento Vegetal FCA/UNESP/Botucatu. email: deocleciojardim@hotmail. com

⁴ Departamento de produção e Melhoramento Vegetal FCA/UNESP/Botucatu. email: rute.faria@ifgoiano.edu.br

⁵ Departamento de produção e Melhoramento Vegetal FCA/UNESP/Botucatu. email: amaral.silva@ unesp.br

As funções Probit, Logit e Cauchy apresentam simetria com relação ao eixo y, no entanto, a função Complemento log log é uma função assimétrica, então foi determinado fator de correção para determinar o T₅₀ dessa função.

O melhor modelo por cultivar foi eleito conforme os critérios: AIC, BIC e se contido no Intervalo de Interesse (II) do T_{50} . Utilizou-se o programa R (3.5.2) para todos os ajustes.

Resultados e discussão

O valor experimental de 50% ocorre entre dois valores amostrados, assim definiu-se intervalo interesse (II), como sendo o intervalo formado entre esses momentos, ou seja, intervalo de tempo onde o valor de 50% de sementes germinadas ocorre (Tabela 1). Para a função Complemento log log não foi possível estimar nenhum T_{50} dentro do intervalo de interesse (Tabela 2), mesmo utilizando o fator de correção que foi definido como sendo de 0,36651.

Observa-se que apenas 30% dos lotes avaliados foram estimados pela função Probit de forma correta e 40% pela função Logit (Tabelas 3 e 4), o que mostra uma baixa capacidade de estimativa adequada dessas funções. Das funções avaliadas a Cauchy foi a que permitiu uma estimativa mais adequada, determinando o T_{50} de forma correta em 70% dos lotes avaliados (Tabela 5).

Tabela 1. Intervalo de Interesse e porcentagem da germinação, obtidos experimentalmente para 10 lotes de soia.

Lotes	Identificação	Intervalo de Interesse (II) do T ₅₀	Porcentagem de germinação
1	DS5916 IPRO	30 a 36	45 e 69
2	DS59716 IPRO	30 a 36	24 e 59
3	CD2620 IPRO	36 a 42	39 e 54
4	CD2620 IPRO	30 a 36	19 e 61
5	CD2687 RR	42 a 48	39 e 60
6	CD2737 RR	24 a 30	37 e 75
7	CD251 RR	30 a 36	40 e 51
8	CD251 RR	24 a 30	34 e 76
9	CD2820 IPRO	30 a 36	34 e 57
10	CD2820 IPRO	48 a 60	38 e 70

Fonte: próprio autor. Origem: lotes 1 a 5: Produzidas na cidade de Rio verde – GO, e destinadas ao cultivo na região sul. Safra 2016/2017; lote 6: Produzidas na cidade de Rio Verde – GO, e destinadas para cultivo na região centro-oeste. Safra 2016/2017; lotes 7 a 10: Produzida na cidade de Rio Verde – GO, e destinadas para cultivo na região centro-oeste e região norte. Safra 2016/2017.

Tabela 2. Coeficientes linear e angular, T₅₀, avaliação do intervalo de interesse, AIC e BIC encontrado pela função Complemento Log log, para 10 lotes de soja.

	Complemento Log log						
Lotes	Intercepto	Coef. Angular	T ₅₀	Verificação de II	BIC	AIC	
1	4,4968	0,1179	38,15	incorreto	257,72	253,53	
2	5,6759	0,1466	38,72	incorreto	124,33	120,14	
3	1,5694	0,0119	131,90	incorreto	499,88	495,69	
4	1,3569	0,0105	129,27	incorreto	555,18	550,99	
5	1,7693	0,0197	89,70	incorreto	589,77	585,58	
6	0,6104	0,0143	42,56	incorreto	641,09	636,91	
7	1,1320	0,0139	81,19	incorreto	709,57	705,38	
8	0,6252	0,0110	56,58	incorreto	662,49	658,31	
9	1,1499	0,0176	65,15	incorreto	628,52	624,33	
10	2,1639	0,0235	92,27	incorreto	455,92	451,73	

Fonte: próprio autor

Tabela 3. Coeficientes linear e angular, T₅₀ , avaliação do intervalo de interesse, AIC e BIC encontrado pela função Probit, para 10 lotes de soja.

	P 0100 100113000 1	room, para ro rote.	o are soja.			
	Probit					
Lotes	Intercepto	Coef. Angular	P 50	Verificação de II	BIC	AIC
1	3,6452	0,1094	33,33	correto	229,90	225,71
2	4,4746	0,1291	34,66	correto	108,95	104,76
3	1,1165	0,0122	91,72	incorreto	457,46	453,27
4	0,9364	0,0108	86,46	incorreto	520,92	516,74
5	1,6556	0,0268	61,77	incorreto	465,27	461,09
6	0,9056	0,0322	28,13	correto	510,50	506,31
7	0,9449	0,0182	51,95	incorreto	633,03	628,84
8	0,4817	0,0156	30,94	incorreto	604,78	600,59
9	1,5740	0,0383	41,14	incorreto	457,38	453,19
10	2,5223	0,0407	61,97	incorreto	270,90	266,71

Fonte: próprio autor

Para os lotes 1 e 2 os valores de T_{50} foram avaliados de forma correta (dentro de II) pela função Probit, Logit e Cauchy (Tabelas 3, 4 e 5), no entanto, observamos que o menores valores de AIC e BIC foram encontrados para a função Probit (Tabela 3), definindo este como melhor modelo.

Podemos ressaltar que para os lotes 3, 4 e 7 não foi possível estimar um valor de T_{50} viável (dentro do II) por nenhuma das funções de ligação avaliadas, o que mostra a necessidade de mais estudos sobre diferentes funções de ligação.

Tabela 4. Coeficientes linear e angular, T₅₀, avaliação do intervalo de interesse, AIC e BIC encontrado pela função I ogit para 10 lotes de soia

encontrac	io pera runção i	Logit, para 10 lotes	ue soja.						
		Logit							
Lotes	Intercepto	Coef. Angular	P 50	Verificação de II	BIC	AIC			
1	6,3603	0,1921	33,11	correto	233,19	229,01			
2	7,9723	0,2301	34,65	correto	110,61	106,42			
3	1,8289	0,0263	69,59	incorreto	455,95	451,77			
4	3,3009	0,0591	55,90	incorreto	415,49	411,31			
5	1,5251	0,0182	83,68	incorreto	519,06	514,87			
6	2,8447	0,1021	27,87	correto	384,99	380,81			
7	1,8237	0,0379	48,18	incorreto	594,35	590,16			
8	1,1200	0,0355	31,53	incorreto	559,66	555,47			
9	3,8374	0,1010	38,01	incorreto	366,88	362,69			
10	5,4303	0.0954	56,91	correto	217.29	213.11			

Fonte: próprio autor

Tabela 5. Coeficientes linear e angular, T₅₀, avaliação do intervalo de interesse, AIC e BIC encontrado pela função Cauchy, para 10 lotes de soja.

eme omerac	io pera rangao	caacity, para 10 10to	es ac soja.			
	Cauchy					
Lotes	Intercepto	Coef. Angular	P 50	Verificação de II	BIC	AIC
1	9,0169	0,2822	31,95	correto	272,68	268,49
2	13,8040	0,3941	35,02	correto	143,11	138,92
3	1,8770	0,0268	70,08	incorreto	438,92	434,73
4	1,5063	0,0230	65,48	incorreto	500,67	496,48
5	7,4608	0,1607	46,43	correto	310,34	306,16
6	9,4188	0,3590	26,24	correto	165,55	161,36
7	3,6363	0,0925	39,32	incorreto	457,45	453,26
8	5,2373	0,1876	27,92	correto	275,73	271,54
9	6,9509	0,1935	35,92	correto	302,25	298,06
10	11,0634	0,2139	51,71	correto	189,61	185,42

Fonte: próprio autor

Conclusão

A avaliação da germinação na forma de proporções considerando a pressuposição de resposta binomial é satisfatória. A função complemento log log não proporcionou nenhum resultado viável e as funções Logit e Probit apresentaram resultados muito aquém ao necessário para esse tipo de avaliação. A função Cauchy foi a única função de ligação que possibilitou resultados adequados para a avaliação do T_{50} , no entanto, apresentou 80% de acertos, sendo que dois destes lotes foram

melhor representados pela função Probit, assim podemos afirmar que a escolha da função de ligação dependerá das características de cada lote e espécie.

Agradecimentos

A CNPq e FAPESP.

Referencias Bibliográficas

EMILIANO, P. C.; VIVANCO, M. J. F.; MENEZES, F. S. Information criteria: how do they behave in different models? Computational Statistics & Data Analysis, Cambridge, v. 69, p. 141-153, 2014.

FRANÇA NETO, J. B.; KRZYZANOWSKI, F. C.; HENNING, A. A.; PÁDUA, G. P Tecnologia de produção de soja de alta qualidade. *Informativo ABRATES*, v.20, n.3, p.26-32, 2010. HAY, F. R.; MEAD, A.; BLOOMBERG, M. Modelling seed germination in response to continuous variables: use and limitations of Probit analysis and alternative approaches. Seed Science Research, v.24, n.3, p.165-186, 2014.

MARCOS FILHO, J. Fisiologia de sementes de plantas cultivadas. Piracicaba, Fealq, 2015a, 659 p.

MARCOS-FILHO, J. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, v.72, n.4, p.363-374, 2015b.

McCULLAGH, P.; NELDER, J. A. Generalized linear models, Londres: Chapman and hall, 1989. 511p.

MURPHEY, M.; KOVACH, K.; ELNACASH, T.; HE, H.; BENTSINK, L.; DONOHUE, K. DOG1-imposed dormancy mediates germination responses to temperature cues. Environmental And Experimental Botany, v. 112, p.33-43, 2015.

PIZÁ, M. C. P.; PREVOSTO, L.; ZILI, C.; CEJAS, E.; KELLY, H.; BALEASTRASSE, K. Effects of non-thermal plasmas on seed-borne *Diaporthe/Phomopsis* complex and germination parameters of soybean seeds. Innovative Food Science & Emerging Technologies, v. 49, p.82-91, 2018.