A Framework for Feature Selection in Clustering

Daniela M. Witten and Robert Tibshirani

Stanford University

Wentao Wu

Problem

- Clustering: Given $X_{n \times p}$, identify K clusters.
- ullet Sparse Clustering: Underlying clusters only differ on q < p features.
 - improve accuracy and interpretation
 - cheaper prediction

Motivating Example


```
X_1 \sim N \left[ \begin{pmatrix} -0.5 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0.78 \\ 0.78 & 1 \end{pmatrix} \right]
X_2 \sim N \left[ \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0.78 \\ 0.78 & 1 \end{pmatrix} \right]
```

```
#K-means
cl <- kmeans(x,2)
plot(x,col=cl$cluster, main='Standard K-
means')
#Sparse K-means
km.perm <- KMeansSparseCluster.permute(x,K
=2,wbounds=seq(3,7,len=15),nperms=5)
km.out <- KMeansSparseCluster(x,K=2,wbounds=km.perm$bestw)
plot(x,col=km.out[[1]]$Cs, main='Sparse K-
means')</pre>
```

Proposed Framework

Sparse Clustering

$$\max_{\Theta \in D} \qquad \qquad \sum_{j=1}^p w_j f_j(X_j, \Theta)$$
 subject to
$$\|w\|^2 \le 1, \ \|w\|_1 \le s, \ w_j \ge 0$$

- w_j is a weight corresponding to feature j, also indicates contribution.
- $w_1 = w_2 = \ldots = w_p$, reduces to the traditional clustering.
- L_1 penalty results in sparsity.
- L₂ penalty avoids trivial solution, (at most one element of w is nonzero).

- Alternating Iterative Algorithm
- Holding w fixed, optimize with respect to Θ .
 - Standard clustering procedure to a weighted version of the data.
- Holding Θ fixed, optimize with respect to w.

0

$$\max_{w} \qquad \qquad w^{T} a$$
 subject to
$$\|w\|^{2} \leq 1, \ \|w\|_{1} \leq s, \ w_{j} \geq 0$$

$$\max_{w} \qquad \qquad w^{T} a$$
 subject to
$$\|w\|^{2} \leq 1, \ \|w\|_{1} \leq s, \ w_{j} \geq 0$$

Introducing Lagrangian multipliers λ_1 for $||w||^2 - 1 \le 0$, λ_2 for $||w||_1 - s \le 0$ and μ_j for $w_j \ge 0$. We obtain the KKT condition:

$$w^{T}w - 1 \le 0$$
 $\sum w_{j} - s \le 0$ $\mu_{j}w_{j} \le 0$ $w_{j} \ge 0$ $\lambda_{1}(w^{T}w - 1) = 0$ $\lambda_{2}(\sum w_{j} - s) = 0$ $\mu_{j}w_{j} = 0$ $-a + \lambda_{1}w_{j} + \lambda_{2} - \mu_{j} = 0$

Based on the last equation, $\mu_j = -a + \lambda_1 w_j + \lambda_2$. Thus, $(-a + \lambda_2 + \lambda_1 w_j)w_j = 0$.

- Case 1: $\sum w_j s < 0$. Thus, $\lambda_2 = 0$. If a < 0, then $w_j = 0$. Otherwise, $w_j = \frac{a}{\lambda_1}$, where λ_1 make sure that $w^T w = 1$.
- Case 2: $\sum w_j s = 0$. Thus, $\lambda_2 \ge 0$. If a < 0, then $w_j = 0$. Otherwise, $w_j = \frac{a \lambda_2}{\lambda_1}$, where λ_1 ensures that $w^T w = 1$ and λ_2 ensures $\sum w_j s = 0$.

In summary,

$$w = \frac{S(a_+, \Delta)}{\|S(a_+, \Delta)\|^2}$$

- $a = f_j(X_j, \Theta)$.
- $S(x,c) = sign(x)(|x|-c)_+$.
- $\Delta = 0$ if that results in $||w||_1 \le s$, otherwise, $\Delta > 0$ is chosen to yield $||w||_1 = s$.

```
FindDelta <- function(a, l1bound) {
2
    #Find optimal delta which statisfy w constrains
4
    #if already statisfies, return 0
    if(12n(a) = 0 \mid | sum(abs(a/12n(a))) < = 11bound) return(0)
6
    #binary search lo is 0. hi is maximum absolute element of a
    delta.lo <- 0
    delta.hi <- max(abs(a))-1e-5
8
9
    iter <- 1
    while(iter <= 15 && (delta.hi-delta.lo)>(1e-4)){
      #cal S(a.delta)
      su <- soft(a,(delta,lo+delta,hi)/2)
      if (sum (abs (su/12n(su)))<11bound) {
14
        #if stasifies the 11 bound, try a smaller delta
        delta.hi <- (delta.lo+delta.hi)/2
      } else {
17
        #if not, try last delta
        delta.lo <- (delta.lo+delta.hi)/2
       iter <- iter+1
    return((delta.lo+delta.hi)/2)
```

Sparse K-Means Clustering

Sparse K-Means

$$\max_{C_1, C_2, \dots, C_K, w} \qquad \sum_{j=1}^p w_j \left(\frac{1}{n} \sum_{i=1}^n \sum_{i'=1}^n d_{i,i',j} - \sum_{k=1}^K \frac{1}{n_k} \sum_{i,i' \in C_k} d_{i,i',j} \right)$$
subject to
$$\|w\|^2 \le 1, \quad \|w\|_1 \le s, \quad w_i \ge 0$$

- w is the weight for each feature.
- K is the number of clusters.
- n_k is the number of observations in cluster k.
- C_k contains the indices of the observations in cluster k.
- $d_{i,i',j}$ is the dissimilarity measure between observation i and i' along feature j.

Optimize Sparse K-Means Clustering

- **1** Initialize w as $w_i = \frac{1}{\sqrt{p}}$, where $i = 1, \dots, p$.
- ② Iterative until convergence $\frac{\sum_{j=1}^{p}|w_{j}^{r}-w_{j}^{r-1}|}{\sum_{j=1}^{p}|w_{j}^{r}-1|}<10^{-4}$.
 - Holding w fixed, optimize with respect to C_1, \ldots, C_K . Applying the standard K-means algorithm to the $n \times n$ dissimilarity matrix with (i, i') element $\sum_i w_i d_{i,i',j}$.
 - **9** Holding C_1, \ldots, C_K fixed, optimize with respect to w by applying

$$w = \frac{S(a_+, \Delta)}{\|S(a_+, \Delta)\|^2}$$

where
$$a_j = \frac{1}{n} \sum_{i=1}^n \sum_{i'=1}^n d_{i,i',j} - \sum_{k=1}^K \frac{1}{n_k} \sum_{i,i' \in C_k} d_{i,i',j}$$

3 The clusters are given by C_1, \ldots, C_K and the feature weights corresponding to this clustering are given by w_1, \ldots, w_p .

Optimization

```
UpdateC <- function(x, K, w, C=NULL){
    #num of row
    n \le nrow(x)
4
    #remove zero-weight features
5
    x < -x[,w!=0];
6
    xr <- sweep(x, 2, sqrt(w[w!=0]), "*");</pre>
    if(!is.null(C)){
8
       #num of colomn
9
       p \leftarrow ncol(x)
       #attach cluster information
11
       xr <- data.frame(data=xr, clu=C)
12
       #calculate cluster mean
       mu <- aggregate(xr,by=list(xr$clu),FUN=mean)</pre>
14
       #cal new dist including the cluster mean
       xr <- as.matrix(xr[,1:p])
16
       mu <- mu[.1:p+1]
17
       mu <- as.matrix(mu)
       distmat <- as.matrix(dist(rbind(xr, mu)))[1:n, (n+1):(n+K)]
       #get the cluster
       c_n <- apply(distmat, 1, which.min)</pre>
       #do the clustering
       if(length(unique(c_n)) == K){
         kc <- kmeans(xr,centers=mu)
       }else{
         kc <- kmeans(xr,centers=K, nstart=10)
    }else{
       kc <- kmeans(xr, centers=K, nstart=10)
```

Optimization

```
UpdateW <- function(x, C, l1bound){
    #calculate WCSS

wcss.feature <- CalWCSS(x, C)$wcss.feature

#calculate TSS

tss.feature <- CalWCSS(x, rep(1, nrow(x)))$wcss.feature

#find delta
delta <- FindDelta(-wcss.feature+tss.feature, l1bound)

#soft operation

wu.unscaled <- soft(-wcss.feature+tss.feature,delta)

return(wu.unscaled/l2n(wu.unscaled))
}</pre>
```

Tuning Parameter

- s the L_1 bound on w.
- Use gap statistics.
- Gap statistic measures the strength of the clustering obtained on the real data relative to the clustering obtained on null data that does not contain subgroups.

Tuning Parameter

- **①** Obtain permuted datasets X_1, \ldots, X_B by independently permuting the observations within each feature.
- For each candidate tuning parameter value s:
 - Compute O(s) the objective obtained by performing sparse K-means with tuning parameter s on the data X.
 - \bullet For $b=1,\ldots,B$, compute $O_b(s)$.
 - 3 Calculate $gap(s) = \log (O(s)) \frac{1}{B} \sum_{b=1}^{B} \log (O_b(s))$.
- 3 Choose s^* as the smallest value for which $gap(s^*)$ is within a standard deviation of the largest value of gap(s).

Simulation

- Three Clusters: C_1 , C_2 , C_3 .
- Each cluster contains 20 observations.
- p = 100, q = 50: 100 features, the underlying clusters depend on the first 50 features.
- $X_{ij} \sim N(\mu_{ij}, 1)$.
- If $i \in C_k$ and $j \le q$, $\mu_{ij} = \mu_{c_k}$, where $\mu_{c_1} = 0, \mu_{c_2} = 0.6, \mu_{c_3} = 1.2$.
- If j > q, $\mu_{ij} = 0$ regardless of i.
- Metric: Rand index

Simulation-Different S

Simulation-Different p

Simulation-Tuning

```
1 k.perm <- SparseKMeansTuning(x,K=3,wbounds=seq(3,10,len=15), nperm=10)
```


Simulation-Tuning

```
1 k.perm <- SparseKMeansTuning(x,K=3,wbounds=seq(3,10,len=15), nperm=10)
```


Sparse Hierarchical Clustering

Sparse Hierarchical

$$\begin{array}{ll} \max_{U} & \{ \sum_{j} \sum_{i,i'} w_{j} d_{i,i',j} U_{i,i'} \} \\ \text{subject to} & \sum_{i,i'} U_{i,i'}^{2} \leq 1, \ \|w\|^{2} \leq 1, \ \|w\|_{1} \leq s, \ w_{j} \geq 0 \end{array}$$

- $U_{i,i'} \propto \sum_j w_j d_{i,i'j}$.
- ullet Performing hierarchical clustering on U results in the sparse hierarchical clustering.

- Initialize w as $w_1 = \ldots = w_p = \frac{1}{\sqrt{p}}$.
- 2 Iterate until convergence:
 - Update $u = \frac{Dw}{\|Dw\|_2}$.
 - Q Update $w = \frac{S(a_+, \Delta)}{\|S(a_+, \Delta)\|_2}$ where $a = D^T u$ and $\Delta = 0$ if this results in $\|w\|_1 \le s$; otherwise, $\Delta > 0$ is chosen such that $\|w\|_1 = s$.
- 3 Rewrite u as a $n \times n$ matrix U.
- **4** Perform hierarchical clustering on the $n \times n$ dissimilarity matrix U.

The End