Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 22 Linear Transformations.

Concepts & Notation

- (Sec. 3.1) linear transformation, range, rank, null space, nullity.
- (Sec. 3.2) L(V, W), linear operator, invertible linear transformation, non-singular linear transformation.
- (Sec. 3.3) isomorphism.
- (Sec. 3.4) matrix of T relative to (ordered) bases, similar matrices.
- (Sec. 3.5) linear functional.

Review

- 1. (Claim:) If V and W are finite-dimensional vector spaces over a field \mathbb{F} with dim $V = \dim W$, and $T: V \to W$ is a linear transformation then the following are equivalent:
 - (a) T is invertible,
 - (b) T is non-singular,
 - (c) T is onto (that is, the range of T is W).

New

2. If T an isomorphism of a vector space V onto a vector space W, why is T invertible and non-singular?

3. (Claim:) Every linear transformation T from an n-dimensional vector space V to an m-dimensional vector space W can be represented by a matrix A (with respect to specific bases for V and W; in particular, different bases yield different A's).

We argued that if the bases are $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$ for V and \mathcal{B}' for W, and $\alpha \in V$ and:

$$[T(\alpha)]_{\mathcal{B}'} = A[\alpha]_{\mathcal{B}},$$

then:

$$A = [[T(\alpha_1)]_{\mathcal{B}'}[T(\alpha_2)]_{\mathcal{B}'} \dots [T(\alpha_n)]_{\mathcal{B}'}].$$

(**Notation:**) If V is a finite-dimensional vector space with basis $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$, and T is a linear transformation from V to itself, then $[T]_{\mathcal{B}}$ is the matrix A in:

$$[T(\alpha)]_{\mathcal{B}} = A[\alpha]_{\mathcal{B}}.$$

4. (**Example:**) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1, 0)$. Let $\mathcal{B} = \{(1, 0), (0, 1)\}$ be the standard basis for \mathbb{R}^2 . Find $[T]_{\mathcal{B}}$.

5. (**Example:**) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1, 0)$. $\mathcal{B}' = \{(1, 1), (2, 1)\}$ is basis for \mathbb{R}^2 . Find $[T]_{\mathcal{B}'}$.

6. What is the relationship between $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{B}'}$?