

Parcial 1

28 de febrero de 2020

Ejercicio 1

Sea S es el conjunto de las matrices reales de la forma $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, y R son todas las matrices 2×2 con coeficientes reales. Demuestre que S es un subanillo de R o justifique lo contrario.

Solución. Vamos a monstrar que S es un subanillo de R utilizando el segundo test de subanillo que hemos visto en clase. Sean

$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \qquad y \qquad B = \begin{pmatrix} c & d \\ -d & c \end{pmatrix},$$

donde todos los coeficientes son reales dos elementos de S. Primero queremos monstrar que si A y $B \in S$ entonces $A - B \in S$. Tenemos

$$A - B = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} - \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a - c & b - d \\ -b + d & a - c \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix},$$

donde $\alpha = a - c$ y $\beta = b - d$. Notamos que, siendo a, b, c y d reales, y siendo los reales un anillo, también a-c, b-d son reales.

Ahora, consideramos el producto AB:

$$AB = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} ac - bd & ad + bc \\ -bc - ad & -bd + ac \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix},$$

donde $\alpha = ac - bd$ y $\beta = ad + bc$. Notamos que, siendo a, b, c y d reales, y siendo los reales un anillo, también ac - bd, ad + bc son reales.

En conclusión, por el segundo test de subanillo S es un subanillo de R.

Ejercicio 2

Sea $I \subset \mathbb{Z}[i]$ un ideal distinto del ideal cero (0). Demuestre que I contiene un entero distinto de 0.

Solución. Sea $I \subset \mathbb{Z}[i]$ un ideal distinto del ideal cero. Entonces existe en I un elemento z = a + bidistinto de 0, con $a, b \in \mathbb{Z}$. Consideramos el producto

$$(a-bi)(a+bi) = a^2 + b^2.$$

Siendo $z=a+bi\in I$ e I un ideal, $a^2+b^2\in I$. El hecho que $z\neq 0$ nos asegura que por lo menos uno de sus coeficientes sea distinto de 0. Esto implica que $I\ni a^2+b^2\neq 0$, como queríamos. \square

Ejercicio 3

- 1. Demuestre que \mathbb{Z}_{10} es isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_5$;
- 2. Demuestre que \mathbb{Z}_8 no es isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_4$.

Solución. Procedemos por pasos:

1. Hemos visto en clase que un homomorfísmo de \mathbb{Z} o \mathbb{Z}_n en cualquier otro anillo está determinado por la imagen de 1 o de $[1]_n$. En particular podemos construir un homomorfísmo

$$\varphi \colon \mathbb{Z}_{10} \to \mathbb{Z}_2 \times \mathbb{Z}_5$$
$$1 \mapsto (1,1)$$

y extendiendo la definición por homomorfísmo a todos $n \in \mathbb{Z}_{10}$: $\varphi(n) = (n, n)$. Para monstrar que es un isomorfísmo podemos simplemente cálcular las imagenes de los elementos de \mathbb{Z}_{10} :

$$\varphi(0) \equiv (0,0), \qquad \varphi(1) \equiv (1,1), \qquad \varphi(2) \equiv (0,2), \qquad \varphi(3) \equiv (1,3), \qquad \varphi(4) \equiv (0,4),$$

$$\varphi(5) \equiv (1,0), \qquad \varphi(6) \equiv (0,1), \qquad \varphi(7) \equiv (1,2), \qquad \varphi(8) \equiv (0,3), \qquad \varphi(9) \equiv (1,4).$$

- 2. Como hemos visto en clase, vamos a monstrar que todos los homomorfísmos $\varphi \colon \mathbb{Z}_8 \to \mathbb{Z}_2 \times \mathbb{Z}_4$ no son inyectivos, y por eso no son isomorfísmos. Como antes, para construir un homomorfísmo solo tenemos que decidir la imágen de 1.
 - Si $\varphi(1) = (0,0)$, todo ker $\varphi = \mathbb{Z}_8$;
 - Si $\varphi(1) = (1,0)$, hav $\varphi(2) = (2,0) \equiv (0,0) = \varphi(0)$.
 - Si $\varphi(1) = (0, a)$, con a = 1, 2, 3, hay $\varphi(4) = (0, 4a) \equiv (0, 0) = \varphi(0)$;
 - Si $\varphi(1) = (1, 1)$, hay $\varphi(4) = (4, 4) \equiv (0, 0) = \varphi(0)$;
 - Si $\varphi(1) = (1, 2)$, hav $\varphi(2) = (2, 4) \equiv (0, 0) = \varphi(0)$;
 - Si $\varphi(1) = (1,3)$, hay $\varphi(4) = (8,16) \equiv (0,0) = \varphi(0)$.

Notése que se habría podido simplemente notar que, si $\varphi(1) = (a,b) \in \mathbb{Z}_2 \times \mathbb{Z}_4$ tenemos $\varphi(4) = (4a, 4b) \equiv (0, 0) = \varphi(0).$

Ejercicio 4

Consideramos el anillo cociente $\mathbb{Z}[i]/(2+i)$, donde $(2+i) = \{(a+bi)(2+i), a, b \in \mathbb{Z}\}$ es el ideal generado por el elemento 2 + i.

- 1. Demuestre que, en el cociente, 5 = 0.
- 2. Demuestre que $\mathbb{Z}[i]/(2+i)$ es isomorfo a \mathbb{Z}_5 .

Solución. Procedemos por pasos:

- 1. Por brevidad, escribimos $R=\mathbb{Z}[i]$ y $\overline{R}=\mathbb{Z}[i]/(2+i)$. Notamos que, en el cociente \overline{R} hay 2+i=0. Equivalentemente i=-2. Ahora, en R hay $i^2=-1$ y entonces eso sigue siendo cierto en \overline{R} también: $-1 = i^2 = (-2)^2 = 4$. De otra manera, 5 = 0 en \overline{R} .
- 2. Consideramos el homomorfísmo $\varphi \colon \mathbb{Z} \to \overline{R} = \mathbb{Z}[i]/(2+i)$ que manda un entero n en su coset módulo I=(2+i). Siendo la composición de la inclusión $\iota\colon\mathbb{Z}\to\mathbb{Z}[i]$ y del homomorfísmo natural $\pi \colon \mathbb{Z}[i] \to \mathbb{Z}[i]/(2+i)$, φ es un homomorfísmo. Vamos a monstrar que es sobreyectivo y que $\ker \varphi = 5\mathbb{Z}$.

Mauro Artigiani 2020-I

Primero, siendo i=-2 en \overline{R} , sabemos que el entero de Gauss a+bi está en el mismo coset del entero de Gauss $a-2b\in\mathbb{Z}$. Esto muestra que φ es sobrevectivo.

Ahora, el primer punto nos asegura que $5\mathbb{Z} \subseteq \ker \varphi$. Vamos a monstrar la otra inclusión. Sea $n \in \mathbb{Z}$ tal que $\varphi(n) = 0$ en \overline{R} . Entonces, n es divisible por 2+i, es decir existe un $a+bi \in \mathbb{Z}[i]$ tal que

$$n = (a+bi)(2+i) = 2a + ai + 2bi - b = (2a-b) + (a+2b)i.$$

Siendo $n \in \mathbb{Z}$, su parte imaginaria es necesariamente igual a 0. Esto implica que a+2b=0 o, equivalentemente, que a=-2b. Entonces

$$n = (2(-2b) - b) + (-2b + 2b)i = -5b,$$

es decir $n \in 5\mathbb{Z}$. Hemos demonstrado que $\ker \varphi \subseteq 5\mathbb{Z}$ y entonces $\ker \varphi = 5\mathbb{Z}$. Por el primer teorema de isomorfismo: $\mathbb{Z}[i]/(2+i) = \operatorname{Im}(\varphi) \cong \mathbb{Z}/\ker \varphi = \mathbb{Z}/5\mathbb{Z} = \mathbb{Z}_5$, como queríamos.