

Institute for Operations Research ETH Zurich HG G21-22

Prof. Dr. Rico Zenklusen and Assistants Contact: math.opt@ifor.math.ethz.ch

Fall 2019

Mathematical Optimization – Problem set 12

https://moodle-app2.let.ethz.ch/course/view.php?id=4844

Problem 1: Laminar cut families and total unimodularity

Let G = (V, A) be a directed graph and let $\mathcal{F} \subseteq 2^V$ be a laminar family. Show that the matrix $M \in \{0, 1\}^{\mathcal{F} \times A}$, where the row corresponding to $S \in \mathcal{F}$ is given by $\chi^{\delta^+(S)}$, is totally unimodular.

Problem 2: Uncrossing directed cuts

Let G = (V, A) be a directed graph, and assume that there exists a vertex $r \in V$ such that $(v, r) \in A$ for every $v \in V \setminus \{r\}$. We call a cut $S \subsetneq V$, $S \neq \emptyset$, directed if $\delta^-(S) = \emptyset$. Let \mathcal{C} be the set of all directed cuts, i.e., $\mathcal{C} = \{S \subsetneq V \colon S \neq \emptyset, \ \delta^-(S) = \emptyset\}$. We are interested in subsets $U \subseteq A$ of arcs hitting all directed cuts. More precisely, we say that a subset of the arcs $U \subseteq A$ is feasible if $|U \cap \delta^+(C)| \geq 1$ for every directed cut $C \in \mathcal{C}$. We then denote the set of feasible subsets by \mathcal{D} , i.e., $\mathcal{D} = \{U \subseteq A \colon |U \cap \delta^+(C)| \geq 1 \ \forall C \in \mathcal{C}\}$. We want to show that

$$P = \{x \in [0,1]^A : x(\delta^+(C)) \ge 1 \ \forall C \in \mathcal{C}\}$$

is the polytope corresponding to \mathcal{D} , i.e., $P = \text{conv}(\{\chi^D : D \in \mathcal{D}\})$.

(a) Show that P describes the correct set of integral points, i.e., $P \cap \{0,1\}^A = \{\chi^D : D \in \mathcal{D}\}.$

To prove that P is the correct description, it remains to show that P is integral. Let y be a vertex of P and define

$$\mathcal{F} = \{C \in \mathcal{C}: y(\delta^+(C)) = 1\}$$
, $A_0 = \{a \in A: y(a) = 0\}$, and $A_1 = \{a \in A: y(a) = 1\}$.

Thus, the entire system of y-tight constraints, to which y is the unique solution, is given by

$$\begin{cases} x(\delta^{+}(C)) &= 1 & \forall C \in \mathcal{F} \\ x(a) &= 0 & \forall a \in A_{0} \\ x(a) &= 1 & \forall a \in A_{1} \end{cases}$$
 (S₀)

(b) Let \mathcal{H} be a maximal laminar subfamily of \mathcal{F} . Show that the system

$$\begin{cases} x(\delta^{+}(H)) &= 1 & \forall H \in \mathcal{H} \\ x(a) &= 0 & \forall a \in A_{0} \\ x(a) &= 1 & \forall a \in A_{1} \end{cases}$$
 (S₁)

is equivalent to the system (S_0) .

(c) Show that the system (S_1) is totally unimodular. Use this to conclude that P is indeed integral.

Problem 3: Cutting integer polyhedra

- (a) Let $P \subseteq \mathbb{R}^n_{\geq 0}$ be an integral polyhedron with $P + \mathbb{R}^n_{\geq 0} = P$. Let $c \in \mathbb{Z}^n_{\geq 0}$ such that $x \leq c$ for each vertex of P. Prove that $P \cap \{x \in \mathbb{R}^n_{\geq 0} : x \leq c\}$ is an integral polyhedron.
- (b) Use part (a) to show the following: If $P \subseteq \mathbb{R}^n$ is a $\{0,1\}$ -polytope and $Q := \text{dom}(P) \cap [0,1]^n$, then Q is a $\{0,1\}$ -polytope.

Problem 4: Minimum-volume ellipsoid containing half-ball

Recall that an ellipsoid in \mathbb{R}^n is a set of the form

$$E(a, A) = \{ x \in \mathbb{R}^n : (x - a)^T A^{-1} (x - a) \le 1 \} ,$$

where $a \in \mathbb{R}^n$ is the center of the ellipsoid and $A \succ 0$ is a positive definite matrix in $\mathbb{R}^{n \times n}$. Let $H_B = \{x \in \mathbb{R}^n : x_1 \geq 0\}$. In class (see Lemma 6.7), it is proved that the ellipsoid $E_B = E(\overline{a}, \overline{A})$ defined by

$$\overline{a} = \begin{pmatrix} \frac{1}{n+1} & 0 & 0 & \cdots & 0 \end{pmatrix}^T$$
 and $\overline{A} = \begin{pmatrix} \left(\frac{n}{n+1}\right)^2 & 0 & \cdots & 0 \\ 0 & \frac{n^2}{n^2-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{n^2}{n^2-1} \end{pmatrix}$

contains the half-ball $E(0,I) \cap H_B$. In this problem, we prove that E_B is in fact the minimum minimum-volume ellipsoid containing $E(0,I) \cap H_B$ by showing the following claims.

(a) Let e_i denote the *i*-th unit vector in \mathbb{R}^n . Consider the set $S \subseteq \mathbb{R}^n$ defined by

$$S = \{e_1, e_2, -e_2, e_3, -e_3, \cdots, e_n, -e_n\}$$
.

Note that S contains all the unit vectors and their negatives, except for $-e_1$. Observe that any ellipsoid enclosing $E(0,I) \cap H_B$ also encloses S.

(b) Write a semi-definite convex program to compute the minimum-volume ellipsoid enclosing S. For our purposes, it is convenient to consider a semi-definite convex program of the form

$$\min \quad f(x,X)
g_i(x,X) \leq b_i \quad \forall i \in [m]
X \geq 0 ,
x \in \mathbb{R}^n
X \in \mathbb{R}^{n \times n}$$
(1)

where $f: \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ and $g_i: \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ for $i \in [m]$ are convex functions, and $b_i \in \mathbb{R}$ for $i \in [m]$.

Hint: Use the constraints of your convex program to enforce $(x-a)^TA^{-1}(x-a) \leq 1$ for all $x \in S$. Note, however, that this constraint is not convex in a and A. Show that it is enough to find a positive definite $D \in \mathbb{R}^{n \times n}$ and $p \in \mathbb{R}^n$ such that $\|Dx - p\|_2^2 \leq 1$ for all $x \in S$ (which is a convex constraint in D and p), and to then use $A = D^TD$ and $a = D^{-1}p$. Moreover, for a suitable objective function, observe that the volume of the ellipsoid E(a, A) is proportional to $\det(D)$, and use the convex function $X \to -\log \det X$.

- (c) Show that if the convex program from part (b) has an optimal solution, then it is unique. This implies a minimum-volume ellipsoid containing S is uniquely defined, given that it exists.
- (d) The Karush-Kuhn-Tucker (KKT) conditions are a sufficient optimality condition for a convex program of the form given in (1). These conditions state that (x^*, X^*) is an optimal solution of (1) if (x^*, X^*) is feasible and there exist non-negative multipliers $\lambda_1, \ldots, \lambda_m$ such that

$$\nabla f(x^*,X^*) + \sum_{i\in[m]} \lambda_i \nabla g_i(x^*,X^*) = 0 ,$$
 and
$$\lambda_i(b_i - g_i(x^*,X^*)) = 0 \quad \forall i\in[m] .$$

Use the KKT conditions to prove that our candidate E_B is indeed the minimum volume ellipsoid enclosing S, and conclude that it is also the minimum volume ellipsoid containing $E(0, I) \cap H_B$.

Programming exercises

Complete the notebook 12_forestPolytopeSeparation.ipynb, where you design and implement a separation oracle for the forest polytope.