International Journal of Modern Physics A © World Scientific Publishing Company

P-WAVE CHARM MESONS AS A WINDOW TO THE D_{sJ} STATES*

STEPHEN GODFREY

Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, Ottawa, Canada K1S 5B6

In my talk I discussed the properties of the newly discovered $D_{sJ}^*(2317)$, $D_{sJ}(2460)$, X(3872), and SELEX $D_{sJ}^*(2632)$ states and suggested experimental measurements that can shed light on them. In this writeup I concentrate on an important facet of understanding the D_{sJ} states, the properties of the closely related D_0^* and D_1' states. These states are well described as the broad, j=1/2 non-strange charmed P-wave mesons.

Keywords: Charm Mesons; Charm-strange mesons; quark model.

1. Introduction

The last sixteen months has seen the discovery of the $D_{sJ}^*(2317)^1$, $D_{sJ}(2460)^2$, $X(3872)^3$, and $D_{sj}(2632)^4$ states. All of these states have properties significantly different from what was predicted beforehand for conventional $q\bar{q}$ states. This has led to considerable theoretical speculation that these states may be something new such as multiquark states or meson-molecules. Another point of view is that conventional $q\bar{q}$ explanations cannot yet be ruled out and there are diagnostic tests that should be applied to understand the nature of these newly discovered states. In my talk I discussed the $q\bar{q}$ possibilities for these new states and the quark model predictions that can be used to test them. Due to length restrictions I will restrict this writeup to new results on the D_0^* , D_1' , and D_{sJ} states and refer the interested reader to published work on the $X(3872)^5$ and SELEX $D_{sJ}^+(2632)^6$ states.

2. The D_{sJ} States and Their Nonstrange Partners

The four L=1 P-wave mesons can be grouped into two doublets characterized by the angular momentum of the light quark: j=3/2, 1/2. The j=3/2 $c\bar{s}$ states were predicted to be relatively narrow and are identified with the $D_{s1}(2536)$ and $D_{s2}(2573)$ states while the D_{s0}^* and $D_{s1}' j=1/2$ states were expected to have large S-wave widths decaying to DK and D^*K respectively⁷. Quite unexpectedly the Babar¹ and CLEO² collaborations discovered two charm-strange mesons in B-decay, decaying to $D_s^+\pi^0$ and $D_s^{*+}\pi^0$ which were below the DK and D^*K threshold respectively. Virtually all the theoretical effort has concentrated on these states ⁸.

^{*}Supported in part by the Natural Sciences and Engineering Research Council of Canada

2 Stephen Godfrey

However, their nonstrange partners can also hold important clues to the puzzle but have received almost no attention.

The measured properties of the L=1 charmed mesons are summarized in Table 1 along with quark model predictions 7,9,10 . The quark model gives a P-wave cog that is ~ 40 MeV too high but the splittings are in very good agreement with the measured masses. The width predictions are given for the pseudoscalar emission model with the flux-tube model giving qualitatively similar results 7 . We note that Belle 11 and FOCUS 12 measure $\Gamma(D_2^{*0})=37\pm4.0$ MeV and $\Gamma(D_1^0)=23.7\pm4.8$ MeV which are slightly larger than the PDG values. They attribute the difference from older results to taking into account interference with the broader D states. Overall the agreement between theory and experiment is quite good.

Table 1. Comparison of Quark Model Predictions^{7,9,10} to Experiment for the L=1 Charm Mesons.

State	Mas	s (MeV)	Width (MeV)		
	Theory ^{a}	Expt	Theory b,7,10	Expt	
D_2^*	2460	2459 ± 2 c	54	23 ± 5 c	
$\overline{D_1}$	2418	2422 ± 1.8 c	24	$18.9^{+4.6}_{-3.5}$ c	
D_1'	2428	2438 ± 30^{-d}	250	329 ± 84^{-d}	
D_0^*	2357	$2369 \pm 22~^e$	280	274 ± 32 e	

 $^{^{}a}$ The P-wave $\cos^{7,9}$ was adjusted down 42 MeV.

Radiative transitions probe the internal structure of hadrons 15,16,17 . Table 2 gives the quark model predictions for E1 radiative transitions between the 1P and 1S charm mesons 10 . Some of these transitions should be observable. The $D_1^0 \to D^{*0}\gamma$ and $D_1^0 \to D^0\gamma$ transitions are of particular interest since the ratio of these partial widths are a measure of the 3P_1 $^{-1}$ P_1 mixing angle in the charm meson sector and a good test of how well the HQL is satisfied.

The overall conclusion is that the quark model describes the P-wave charmed mesons quite well and models invoked to describe the $D_{sJ}^*(2317)$ and $D_{sJ}(2460)$ states must also explain their non-strange charmed meson partners.

Turning to the D_{sJ} states, the narrow j=3/2 states are identified with the $D_{s1}(2536)$ and $D_{s2}(2573)$ with their observed properties in good agreement with quark model predictions^{7,9}. The j=1/2 states were predicted to be broad and to decay to DK and D^*K and were not previously observed. But the $D_{sJ}^*(2317)$ is below DK threshold and the $D_{sJ}(2460)$ is below D^*K threshold so the only allowed strong decay is $D_{sJ}^{(*)} \to D_s^{(*)} \pi^0$ which violates isospin and is expected to have a small width^{15,16,17}. As a consequence, the radiative transitions are expected to have large BR's and are an important diagnostic probe to understand the nature

^b Using the masses from column 2.

^c Particle Data Group ¹³

^d Average of the Belle¹¹ and CLEO¹⁴ $D_1^{\prime 0}$ measurements

 $[^]e$ Average of the Belle 11 D_0^{*0} and FOCUS 12 D_0^{*0} and D_0^{*+} measurements.

Table 2. Partial widths and branching ratios for E1 transitions between 1Pand 1S charmed mesons. The widths are given in keV unless otherwise noted. The M_i and the total widths used to calculate the BR's are taken from Table 1. The matrix elements are calculated using the wavefunctions of Ref. 9.

Initial state	Final state	M_i (GeV)	M_f (GeV)	$k \pmod{MeV}$	$\langle 1P r nS\rangle$ (GeV ⁻¹)	Width (keV)	BR
D_2^{*+}	$D^{*+}\gamma$	2.459	2.010	408	2.367	57	0.25%
$D_2^{*0} \\ D_1^+$	$D^{*0}\gamma$	2.459	2.007	411	2.367	559	2.4%
$D_1^{\overline{+}}$	$D^{*+}\gamma$	2.422	2.010	377	2.367	8.8	5×10^{-4}
1	$D^+\gamma$	2.422	1.869	490	2.028	58	0.3%
D_1^0	$D^{*0}\gamma$	2.422	2.007	380	2.367	87	0.5%
-	$D^0\gamma$	2.422	1.865	493	2.028	571	3.0%
$D_{1}^{\prime +}$	$D^{*+}\gamma$	2.428	2.010	382	2.367	37	10^{-4}
-	$D^+\gamma$	2.428	1.869	494	2.028	15	4×10^{-5}
$D_{1}^{\prime 0}$	$D^{*0}\gamma$	2.428	2.007	385	2.367	369	0.1%
-	$D^0\gamma$	2.428	1.865	498	2.028	144	4×10^{-4}
D_{0}^{*+}	$D^{*+}\gamma$	2.357	2.010	321	2.345	27	10^{-4}
D_0^{*0}	$D^{*0}\gamma$	2.357	2.007	324	2.345	270	0.1%

of these states 15,16,17. Although there are discrepancies between the quark model predictions and existing measurements they can be accommodated by the uncertainty in theoretical estimates of $\Gamma(D_{sJ}^{(*)} \to D_s^{(*)} \pi^0)$ and by adjusting the $^3P_1 - ^1P_1$ mixing angle for the D_{s1} states. As in the case of the D_1 states, the radiative transitions to D_s and D_s^* can be used to constrain the ${}^3P_1 - {}^1P_1$ $(c\bar{s})$ mixing angle.

The problem with the newly found D_{sJ} states are the mass predictions. Once the masses are fixed the narrow widths follow. My view is that the strong coupling to DK (and D^*K) is the key to solving this puzzle.

References

- 1. B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 90, 242001 (2003).
- 2. D. Besson et al. [CLEO Collaboration], Phys. Rev. D 68, 032002 (2003).
- 3. S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001 (2003).
- 4. A. V. Evdokimov et al. [SELEX Collaboration], hep-ex/0406045.
- 5. T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004); E. J. Eichten, K. Lane and C. Quigg, Phys. Rev. D 69, 094019 (2004).
- 6. T. Barnes, F. E. Close, J. J. Dudek, S. Godfrey and E. S. Swanson, Phys. Lett. B (in press) hep-ph/0407120.
- 7. S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991).
- 8. For a recent review see P. Colangelo, F. De Fazio and R. Ferrandes, hep-ph/0407137.
- 9. S. Godfrey and N. Isgur, Phys. Rev. D **32**, 189 (1985).
- 10. S. Godfrey, in preparation.
- 11. K. Abe et al. [Belle Collaboration], Phys. Rev. D 69, 112002 (2004).
- 12. J. M. Link *et al.* [FOCUS Collaboration], Phys. Lett. B **586**, 11 (2004).
- 13. S. Eidelman et al. [Particle Data Group Collaboration], Phys. Lett. B 592, 1 (2004).
- 14. S. Anderson et al. [CLEO Collaboration], Nucl. Phys. A 663, 647 (2000).
- 15. S. Godfrey, Phys. Lett. B **568**, 254 (2003).
- 16. W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003).
- 17. P. Colangelo and F. De Fazio, Phys. Lett. B 570, 180 (2003).