

Importance of Visualization									
		1		II		III		IV	
☐ There are four datasets on the		x	У	X	У	x	У	x	У
		10	8,04	10	9,14	10	7,46	8	6,58
right are known as Anscombe's		8	6,95	8	8,14	8	6,77	8	5,76
Quartet		13	7,58	13	8,74	13	12,74	8	7,71
		9	8,81	9	8,77	9	7,11	8	8,84
		11	8,33	11	9,26	11	7,81	8	8,47
		14	9,96	14	8,1	14	8,84	8	7,04
☐ It was developed by statistician		6	7,24	6	6,13	6	6,08	8	5,25
Francis Anscombe		4	4,26	4	3,1	4	5,39	19	12,5
		12	10,84	12	9,13	12	8,15	8	5,56
		7	4,82	7	7,26	7	6,42	8	7,91
☐ These four datasets share the		5	5,68	5	4,74	5	5,73	8	6,89
	SUM	99,00	82,51	99,00	82,51	99,00	82,50	99,00	82,51
same descriptive statistics.	AVG	9,00	7,50	9,00	7,50	9,00	7,50	9,00	7,50
	STDEV	3,32	2,03	3,32	2,03	3,32	2,03	3,32	2,03
							S sc	FND 1	KIR

Matplotlib

Figures

- Overall window/page that everything is drawn on.
- May have multiple independent Figures
- Figures may contain multiple Axes

Axes

- The area where we plot data and any labels associated with it
- Set up Axes with a call to subplot (which places Axes on a regular grid)
- Axes and Subplot are synonymous in most cases
- Each Axes has an XAxis and a YAxis

5

Session-7
Part-B: Model Tuning

Overfitting and Underfitting

Overfitting: Good performance on the training data, poor generalization to other data.

Underfitting: Poor performance on the training data and poor generalization to other data.

Underfitted

Good Fit/Robust

Overfitted

7

Regularization

A technique that helps appropriately distribute weights among features

- Motivation: Overfitting often caused by overly-complex models capturing idiosyncrasies in training set
- Regularization: Adding penalty score for complexity to cost function

$$cost_{reg} = cost + \frac{\lambda}{2} penalty$$

- Two standard types:
 - L1 regularization: $penalty = \|\overrightarrow{w}\|_1 = \sum_{j=1}^m \left|w_j\right|$
 - L2 regularization: $penalty = \|\vec{w}\|_2^2 = \sum_{j=1}^m w_j^2$

Regularization – Ridge and Lasso

Goal of Regularization is to significantly reduce the variance of the model, without substantial increase in its bias

☐ Lasso (L1)

- Can estimate coefficient of least important features exactly equal to zero when the tuning parameter λ
 is sufficiently large.
- Therefore, the lasso method also performs variable selection

☐ Ridge regression (L2)

- Shrinks the coefficients for least important predictors, very close to zero.
- · But it will never make them exactly zero. In other words, the final model will include all predictors

C

Regularization – Ridge and Lasso (Contd.)

Goal of Regularization is to significantly reduce the variance of the model, without substantial increase in its bias

