ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

Foglio 4*

Esempio 1. Sia $V = \mathcal{P}_5(\mathbb{R})$ lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V

$$V_s = \{ f \in V | f(x) = f(-x) \}$$

$$V_a = \{ f \in V | -f(x) = f(-x) \}$$

- (i) Dimostrare che $V_s \leq V$ e $V_a \leq V$.
- (ii) Determinare un insieme di generatori per V_s e V_a .
- Sol. (i) In primo luogo osserviamo che $V_s \neq \{\}$, infatti il polinomio nullo sta in V_s . Siano $f,g \in V_s$ e siano $\alpha,\beta \in \mathbb{R}$. Per mostrare che $V_s \leq V$ facciamo vedere che $\alpha f + \beta g \in V_s$ per ogni $f,g \in V_s$ e $\alpha,\beta \in \mathbb{R}$. Dal momento che $f,g \in V$ sia ha che $(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$. Analogamente $(\alpha f + \beta g)(-x) = \alpha f(-x) + \beta g(-x) = \alpha f(x) + \beta g(x) = (\alpha f + \beta g)(x)$ in cui la penultima uguaglianza vale poiché $f,g \in V_s$.
 - (ii) Il generico vettore di V è del tipo $f(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$. Ora $f(-x) = a_4x^4 a_3x^3 + a_2x^2 a_1x + a_0$. Ricordando che due polinomi sono uguali quando hanno i coefficienti uguali, si ricava che f(x) = f(-x) se e solo se $a_3 = 0 = a_1$. A questo punto, ricordando che $V = <1, x, x^2, x^3, x^4 >$ si ricava facilmente che un insieme di generatori di V_s è ad esempio $\{1, x^2, x^4\}$.

La parte per V_a è analoga ed è lasciata per esercizio.

Esempio 2. Sia V lo spazio vettoriale reale delle funzioni reali di variabile reale $f : \mathbb{R} \longrightarrow \mathbb{R}$. Sia $W = \{f \in V | f(1) = 0 \text{ opp. } f(4) = 0\}$. Si dica se $W \leq V$.

Sol. In primo luogo osserviamo che $W \neq \{\}$. Infatti la funzione nulla sta in W. Siano ora $f,g \in W$, ad esempio f(x) = x - 1 e g(x) = x - 4. È immediato osservare che $(f+g)(x) = f(x) + g(x) \neq W$, infatti $f(x) + g(x) = x - 1 + x - 4 = 2x - 5 \neq W$. Quindi $W \not \leq V$.

Esempio 3. Si consideri l'insieme \mathbb{R}_+^* dei reali strettamente positivi dotato delle seguenti operazioni: la "somma" dei due numeri sia l'usuale prodotto, cioè se $r, s \in \mathbb{R}_+^*$ la somma tra i due è data dal prodotto rs; il prodotto per scalari sia l'usuale esponenziazione, cioè se $r \in \mathbb{R}_+^*$ e $\alpha \in \mathbb{R}$ il prodotto per scalari è $\alpha(r) = r^{\alpha}$. Dimostrare che \mathbb{R}_+^* dotato di queste operazioni è un \mathbb{R} -spazio vettoriale. Determinare l'elemento neutro e l'opposto di ogni elemento. Tale spazio vettoriale ha dimensione finita?

Sol. È semplice osservare che vale la proprietà associativa (A1), dal momento che essa vale per l'usuale prodotto. Dalle regole del prodotto usuale si ricava che l'elemento neutro è l'1 (A2) e che l'opposto di ogni numero $r \in \mathbb{R}_+^*$ è dato dal reciproco (A3). Verifichiamo i rimanenti assiomi uno per uno.

- (M1) Siano $r \in \mathbb{R}_+^*$ e $\alpha, \beta \in \mathbb{R}$. $\alpha(\beta r) = \alpha(r^\beta) = (\hat{r^\beta})^\alpha = r^{\alpha\beta} = (\alpha\beta)r$.
- (M2) Siano $r \in \mathbb{R}_+^*$ e $\alpha, \beta \in \mathbb{R}$. $(\alpha + \beta)r = r^{\alpha + \beta} = r\alpha r^{\beta} = \alpha r + \beta r$, in cui la "+" nel primo membro è l'usuale somma sui reali.
- (M3) Siano $r,s\in\mathbb{R}_+^*$ e $\alpha\in\mathbb{R}$. $\alpha(r+s)=\alpha(rs)=(rs)^\alpha=r^\alpha s^\alpha=\alpha r+\alpha s$, in cui la "+" aprimo membro è la "somma" definita su \mathbb{R}_+^* .
- (M4) Sia $r \in \mathbb{R}_{+}^{*}$. $1r = r^{1} = r$.

^{*}Sono a grato a quanti mi indicheranno i molti errori presenti in questi fogli, al fine di fornire uno strumento migliore a quanti lo riterranno utile, e-mail: sansonetto@sci.univr.it

Esercizio 4. Dimostrare che l'insieme $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ non è un sottospazio vettoriale di \mathbb{R}^2 .

Esercizio 5. \mathbb{C} può essere pensato sia come a \mathbb{R} che come \mathbb{C} -spazio vettoriale. Qual' è la dimensione di \mathbb{C} come \mathbb{R} -spazio vettoriale? E come \mathbb{C} -spazio vettoriale? Determinare due diverse basi in entrambi i casi.

Esercizio 6. Dimostrare che gli spazi delle funzioni continue sui reali $C^0(\mathbb{R})$ e lo spazio delle funzioni continue con derivata continua sui reali $C^1(\mathbb{R})$ sono \mathbb{R} -spazi vettoriali. Che dimensione hanno? Dimostrare che lo spazio delle funzioni complesse è un \mathbb{C} -spazio vettoriale.

Esempio 7. Verificare che il sottoinsieme di \mathbb{R}^3 formato dai vettori $\mathbf{x} = (x_1, x_2, x_3)^T$ tale che

$$\Sigma = \begin{cases} x_1 - x_3 = 0 \\ x_1 + x_2 = 0 \end{cases}$$

è sottospazio vettoriale di \mathbb{R}^3 . Determinare un insieme di generatori, una base e la dimensione di Σ .

Sol. In primo luogo osserviamo che $\mathbf{0}=(0,0,0)\in \Sigma$. Siano, ora, $\mathbf{x},\mathbf{y}\in \Sigma$, e $\alpha,\beta\in \mathbb{R}$, mostriamo allora che $(\alpha\mathbf{x}+\beta\mathbf{y})\in \Sigma$. Infatti

$$\begin{cases} \alpha x_1 + \beta y_1 - (\alpha x_3 + \beta y_3) = \alpha (x_1 - x_3) + \beta (y_1 - y_3) = 0 \\ \alpha x_1 + \beta y_1 + \alpha x_2 + \beta y_2 = \alpha (x_1 + x_2) + \beta (y_1 + y_2) = 0 \end{cases}$$

e quindi $\Sigma \in \mathbb{R}^3$. Per determinare un insieme di generatori di Σ cerchiamo il numero di soluzioni di Σ . La matrice associata a Σ è

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

È semplice osservare che una forma ridotta di tale matrice è

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

e quindi il sistema ammette infinite soluzioni dipendenti da un parametro. In particolare lo spazio delle soluzioni è generato dal vettore $(1,-1,1)^T$ e quindi dim $\Sigma=1$.

Esercizio 8. Verificare che il sottoinsieme

$$r = \left\{ (x_1, x_2, x_3)^T \in \mathbb{R}^3 \middle| \begin{cases} 2x_1 - 32x_2 + x_3 = 0 \\ x_1 - x_3 = 0 \end{cases} \right\}$$

è un sottospazio di \mathbb{R}^3 e che $r = <(1, 1, 1)^T>$.

Esercizio 9. Dimostrare che il sottoinsieme delle funzioni di classe C^1 di \mathbb{R} in sè tali che $f'+f=0^1$ è un \mathbb{R} -spazio vettoriale.

Esercizio 10. Verificare che il sottoinsieme di \mathbb{R}^4 formato dai vettori $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$ tale che

$$\Sigma = \begin{cases} x_1 - x_4 = 0 \\ x_1 + x_2 = 0 \end{cases}$$

è sottospazio vettoriale di \mathbb{R}^4 . Determinare un insieme di generatori, una base e la dimensione di Σ .

Esercizio 11. Verificare che il sottoinsieme di \mathbb{R}^3 formato dai vettori $\mathbf{x} = (x_1, x_2, x_3)^T$ tale che

$$\Sigma = \begin{cases} x_1 + x_2 - x_3 = 0 \\ x_1 + x_2 + 3x_3 = 0 \end{cases}$$

è sottospazio vettoriale di \mathbb{R}^3 . Determinare un insieme di generatori, una base e la dimensione di Σ .

Esercizio 12. Si considerino i sottoinsiemi di \mathbb{R}^3 U e V rispettivamente formati dai vettori $\mathbf{x}=(x_1,x_2,x_3)^T$ tali che

$$\Sigma_U = \left\{ \begin{array}{l} x_1 - x_2 = 0 \\ x_2 + x_3 = 0 \end{array} \right.$$
 e $\Sigma_V = \left\{ \begin{array}{l} x_1 + x_2 = 0 \\ x_2 - x_3 = 0 \end{array} \right.$

1. Verificare che sono sottospazi di \mathbb{R}^3 .

¹Indichiamo con ' la derivata prima d f.

- 2. Determinarne la dimensione e una base di U e V.
- 3. Determinare la dimensione e una base dell'intersezione $U \cap V$.
- 4. U e V sono in somma diretta?

Esempio 13. Verificare se l'insieme

$$S = \left\{ \begin{bmatrix} 1\\0\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix} \right\}$$

è un insieme di generatori per \mathbb{C}^4 . Estrarre da S una base di \mathbb{C}^4 .

Sol. Per verificare che S è un insieme di generratori per \mathbb{C}^4 è sufficiente mostrare che la matrice A_S che ha per colonne i vettori di \mathbb{C}^4 abbia rango quattro, cioè che in S ci sono quattro vettori linearmente indipendenti. Si osservi che ciò equivale a dimostrare che ogni vettore \mathbf{v} di \mathbb{C}^4 si può scrivere come combinazione lineare degli elementi di S, cioè che il sistema

$$\mathbf{v} = \sum_{i=1}^{5} \alpha_i s_i$$

in cui $\alpha_i \in \mathbb{C}$ $i=1,\ldots,5$ e gli s_i $i=1,\ldots,5$ denotano gli elementi di S, ammette soluzione (è compatibile). Dalla teoria dei sistemi lineare si ricava facilmente che tale sistema ammette soluzione se la colonna dei termini noti non è mai dominante, cioè se la matrice delle incognite ha rango quattro. Ora

$$A_S = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 2 & 0 & 2 & 0 & 1 \end{bmatrix}$$

Applichiamo l'eliminazione di Gauss alla matrice A_S (moltiplicandola per le matrici elementari $E_{44}(-1)E_{43}(2)E_{42}(2)E_{41}(-2)$) ottenendo la matrice

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

che ha rango quattro avendo 4 colonne dominanti. Di conseguenza l'insieme S genera \mathbb{C}^4 . Inoltre una base di \mathbb{C}^4 estratta da S è data da

$$\mathcal{B}_{\mathbb{C}^4} = \left\{ \begin{bmatrix} 1\\0\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix} \right\}$$

Esempio 14. Sia $V = M_2(\mathbb{C})$ il \mathbb{C} -spazio vettoriale delle matrici complesse 2×2 e sia W il sottoinsieme delle matrici complesse simmetriche 2×2 .

- 1. Verificare che W è sottospazio di $M_2(\mathbb{C})$.
- 2. Si consideri l'insieme

$$S = \left\{ \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$

Provare che < S >= W ed estrarre da S una base di W

Sol. 1. È semplice verificare che W è \mathbb{C} -sottospazio di $M_2(\mathbb{C})$. Basta mostrare che per ogni \mathbf{w} , \mathbf{z} in W e ogni $\alpha, \beta \in \mathbb{C}$ si ha che $\alpha \mathbf{w} + \beta \mathbf{z} \in W$. Ciò si verifica semplicemente effettuando il calcolo e scrivendo espressamente il tipico elemento di W.

3

2. Sia \mathbf{w} il generico elemento di W,

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

Vogliamo verificare che ogni \mathbf{w} di W si scrive come combinazione lineare a coefficienti complessi degli elementi di S, ossia che

$$\mathbf{w} = \sum_{i=1}^{5} \alpha_i s_i$$

in cui $\alpha_i \in \mathbb{C}$ e s_i $i=1,\ldots,5$ denotano gli elementi di S. Ciò equivale a richiedere che il seguente sistema lineare ammetta soluzione per ogni \mathbf{w} in W

$$\begin{cases} \alpha_1 + 2\alpha_2 + \alpha_3 - \alpha_4 = a \\ 2\alpha_1 + 3\alpha_2 + \alpha_3 + \alpha_5 = b \\ \alpha_4 + \alpha_5 = c \end{cases}$$

Tale sistema ammette soluzione se e solo se la matrice dei termini noti non è dominante cioè se e solo se la matrice delle incognite (la matrice non-aumentata del sistema) ha rango massimo, cioè 4. Per mostrare ciò applichiamo l'eliminazione di Gauss alla matrice A_S delle incognite,

$$A_S = \begin{bmatrix} 1 & 2 & 1 & -1 & 0 \\ 1 & 3 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

ottenendo

$$\begin{bmatrix} 1 & 2 & 1 & -1 & 0 \\ 0 & 1 & 1 & -2 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Tale matrice ha rango massimo, infatti a tre colonne dominanti e quindi $W = \langle S \rangle$. Inoltre si ha che dim W = 3. Infine una base di W estratta dai vettori di S è data dai vettori corrispondenti alle colonne dominanti della forma ridotta di A_S , ad esempio dalla prima, seconda e quarta colonna, ricostruite come matrici, cioè dalle matrici s_1, s_2, s_4 di S.

Esercizio 15. Provare che il sottoinsieme W di \mathbb{C}^4 definito dai vettori $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$ tali che

$$\Sigma_W = \begin{cases} x_1 + x_2 + x_4 = 0\\ 2x_3 + 4x_4 = 0\\ 3x_2 + 6x_3 + x_4 = 0 \end{cases}$$

è \mathbb{C} -sottospazio di \mathbb{C}^4 . Determinare un insieme di generatori, la dimensione e una base di W. Sia, inoltre, $V = \{\mathbf{x} \in \mathbb{C}^4 | x_1 + x_2 = 0\}$; determinare la dimensione e una base di $W \cap V$. $W \in V$ sono in somma diretta?

Esercizio 16. Si consideri il sottoinsieme di \mathbb{C}^4

$$W = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 4 \\ 3 & 2 \end{bmatrix}, \begin{bmatrix} -3 & 7 \\ 9 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 2 \\ 3 & 0 \end{bmatrix}, \right\}$$

Determinare dim < W > e una base per < W >. Quindi completare tale base ad una base di \mathbb{C}^4 .

Esercizio 17. Si consideri lo spazio vettoriale reale delle funzioni continue di \mathbb{R} in sè.

- 1. Dimostrare che l'insime $\{1, \sin^2, \cos^2\}$ è linearmente dipendente.
- 2. Dimostrare che l'insieme $\{\sin nx, n \in \mathbb{N}^*\} \cap \{\cos nx, n \in \mathbb{N}^*\}$ è linearmente indipendente.
- 3. Cosa si può dire a riguardo dell'insieme $\{\sin(\alpha + nx), n \in \mathbb{N}^*, \alpha \in \mathbb{R}\}$?

Esercizio 18. Si consideri il sottospazio W di \mathbb{R}^3 determinato dalle soluzioni dell'equazione $x_1 + x_3 = 0$.

- 1. Determinare un sottospazio T di \mathbb{R} tale che $\mathbb{R}^3 = W \oplus T$.
- 2. È possibile determinare un altro sotospazio T' di \mathbb{R}^3 tale che $\mathbb{R}^3 = W \oplus T'$ e $T \cap T' = \mathbf{0}$. In caso affermativo effettuarne un esempio.

4

Esercizi di Algebra Lineare e complementi di Geometria

Esercizio 19. Si consideri i sottospazi di \mathbb{R}^4 $S_1=\{(x_1,x_2,x_3,x_4)\in\mathbb{R}^4|\ x_1=x_3\}\ S_2=\{(x_1,x_2,x_3,x_4)\in\mathbb{R}^4|x_2=-x_4\}$. Determinare la dimensione dei sottospazi $S_1,S_2,S_1\cap S_2$ e S_1+S_2 , quindi esibire una base di ciascuno di essi.

Esercizio 20. Sia $V=<(1,2,0)^T,\ (1,0,2)^T>$ sottospazio di \mathbb{R}^3 . Sia S_α , con $\alpha\in\mathbb{R}$, l'insieme delle soluzioni del sistema

$$\Sigma_{\alpha} = \begin{cases} \alpha x_1 + 3x_2 - x_3 = 0\\ \alpha x_1 + \alpha x_2 + x_3 = 0\\ x_1 - (\alpha - 1)x_3 = 0 \end{cases}$$

- 1. Determinare le soluzioni S_{α} di Σ_{α} .
- 2. S_{α} è sottospazio di \mathbb{R}^3 ? (Giustificare la risposta) Determinane una base.
- 3. Determinare la dimensione di V.
- 4. Dire per quali valori di α S_{α} e V sono in somma diretta.
- 5. Dire per quali valori di α $S_{\alpha} \cap V = \mathbf{0}$.