Time Series Analysis

Homework of week 6

Hanbin Liu 11912410

6.27

```
set.seed(996)
series <- arima.sim(n = 72, list(ar = c(0.7, -0.4)))
```

(a)

```
ACF <- ARMAacf(ar = c(0.7, -0.4), lag.max = 20)
plot(y = ACF[-1], x = 1:20, xlab = 'Lag', ylab = 'ACF', type = 'h', ylim = c(-0.4, 0.6))
abline(h = 0)
```


(b)

```
acf(series, xlim = c(1, 20), ylim = c(-0.4, 0.6))
```

Series series

The lag 1 sample ACF matches well and the "damped sine wave" is somewhat apparent but the values at large lags do not die out like the theoretical ACF.

(c)
$$\phi_{11} = Corr(Y_t, Y_{t-1}) = \rho_1 = 0.5. \ \phi_{22} = Corr(Y_t - \rho_1 Y_{t-1}, Y_{t-2} - \rho_1 Y_{t-1}) = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2} = -0.4. \ \phi_{kk} = 0, \ k > 2.$$
 PACF <- c(0.5, -0.4, rep(0,18))
$$\text{plot}(\mathbf{y} = \text{PACF}, \ \mathbf{x} = 1:20, \ \text{xlab} = \text{'Lag'}, \ \text{ylab} = \text{'PACF'}, \ \text{type} = \text{'h'}, \ \text{ylim} = \text{c(-0.4, 0.6)})$$
 abline(h = 0)

(d)

Same to (b).

(e)

```
pacf(series, xlim = c(1, 20), ylim = c(-0.4, 0.6))
```


This sample pacf matches the theoretical pacf quite well.

6.29

```
set.seed(555)
series \leftarrow arima.sim(n = 60, list(ar = 0.4, ma = -0.6))
```

(a)

```
ACF <- ARMAacf(ar = 0.4, ma = -0.6, lag.max = 20)
plot(y = ACF[-1], x = 1:20, xlab = 'Lag', ylab = 'ACF', type = 'h', ylim = c(-0.3, 0.3))
abline(h = 0)
```


(b)

```
acf(series, xlim = c(1, 20), ylim = c(-0.3, 0.3))
```


The pattern matches somewhat at the first few lags but there is a lot of spurious autocorrelation at higher lags.

(c)

```
library(TSA)
eacf(series)
```

This sample EACF seems to point the mixed ARMA(1,1). Yes.

(d)

```
set.seed(777)
series <- arima.sim(n = 60, list(ar = 0.4, ma = -0.6))
#
ACF <- ARMAacf(ar = 0.4, ma = -0.6, lag.max = 20)
plot(y = ACF[-1], x = 1:20, xlab = 'Lag', ylab = 'ACF', type = 'h', ylim = c(-0.3, 0.3))
abline(h = 0)</pre>
```



```
#
acf(series)
```



```
#
eacf(series)
```

part(b): the pattern matches somewhat at the first few lags but there is a lot of spurious autocorrelation at higher lags. \setminus part(c): this sample EACF seems to point to an MA(1) or AR(1) model rather than the mixed ARMA(1,1).

(e)

```
set.seed(1234)
series <- arima.sim(n = 36, list(ar = 0.4, ma = -0.6))
#</pre>
```

```
ACF <- ARMAacf(ar = 0.4, ma = -0.6, lag.max = 20) plot(y = ACF[-1], x = 1:20, xlab = 'Lag', ylab = 'ACF', type = 'h', ylim = c(-0.3, 0.3)) abline(h = 0)
```



```
#
acf(series)
```



```
## eacf(series, ar.max = 7, ma.max = 10)

## AR/MA
## 0 1 2 3 4 5 6 7 8 9 10
## 1 x 0 0 0 0 0 0 0 0 0 0 0
## 2 x x 0 0 0 0 0 0 0 0 0
## 3 x 0 0 0 0 0 0 0 0 0
## 4 x 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0
## 6 x 0 0 0 0 0 0 0 0 0
## 7 x 0 0 0 0 0 0 0 0
```

part(b): the pattern matches somewhat at the first few lags but there is a lot of spurious autocorrelation at higher lags. \setminus part(c): this sample EACF seems to point to an ARMA(0,0) model(white noise) rather than the mixed ARMA(1,1).

(f)

```
set.seed(105)
series <- arima.sim(n = 120, list(ar = 0.4, ma = -0.6))
#</pre>
```

```
ACF <- ARMAacf(ar = 0.4, ma = -0.6, lag.max = 20) plot(y = ACF[-1], x = 1:20, xlab = 'Lag', ylab = 'ACF', type = 'h', ylim = c(-0.3, 0.3)) abline(h = 0)
```



```
#
acf(series)
```



```
#
eacf(series)
```

part(b): the pattern matches somewhat at the first few lags (except lag = 3) but there is a lot of spurious autocorrelation at higher lags. \setminus part(c): this sample EACF seems to point to an MA(1) model rather than the mixed ARMA(1,1).

6.36

(a)

```
data(robot)
plot(robot, type = 'o', ylab = 'Robot End Position')
```


From this plot we might try a stationary model but there is also enough "drift" that we might also suspect nonstationarity.

(b)

acf(robot)

Series robot

pacf(robot)

Series robot

These plots are are not especially definitive, but the pacf suggests possibly an AR(3) or AR(6) model for the series.

(c)

eacf(robot)

The EACF suggests an ARMA(1,1) model.

(d)

```
plot(armasubsets(y = robot, nar = 14, nma = 14, y.name = 'Robot', ar.method = 'ols'))
```

Reordering variables and trying again:

The best model here includes a lag 1 AR term but lags 3 and 12 in the MA part of the model.