

# Sıralama Algoritmaları Genel Karşılaştırma

| Adı ≑                          | Ortalama + | En<br>Kötü * | Bellek \$ | Kararlı<br>mı? | Yöntem <b></b> |
|--------------------------------|------------|--------------|-----------|----------------|----------------|
| Kabarcık Sıralaması            | _          | O(n²)        | O(1)      | Evet           | Değiştirme     |
| Kokteyl Sıralaması             | _          | O(n²)        | O(1)      | Evet           | Değiştirme     |
| Tarak Sıralaması               | O(n log n) | O(n log n)   | O(1)      | Hayır          | Değiştirme     |
| Cüce Sıralaması                | _          | O(n²)        | O(1)      | Evet           | Değiştirme     |
| Seçmeli Sıralama               | O(n²)      | O(n²)        | O(1)      | Hayır          | Seçme          |
| Eklemeli Sıralama              | O(n + d)   | O(n²)        | O(1)      | Evet           | Ekleme         |
| Kabuk Sıralaması               | _          | O(n log² n)  | O(1)      | Hayır          | Ekleme         |
| Ağaç Sıralaması                | O(n log n) | O(n log n)   | O(n)      | Evet           | Ekleme         |
| Kütüphane Sıralaması           | O(n log n) | O(n²)        | O(n)      | Evet           | Ekleme         |
| Birleştirmeli Sıralama         | O(n log n) | O(n log n)   | O(n)      | Evet           | Birleştirme    |
| Yerinde Birleştirmeli Sıralama | O(n log n) | O(n log n)   | O(1)      | Evet           | Birleştirme    |
| Yığın Sıralaması               | O(n log n) | O(n log n)   | O(1)      | Hayır          | Seçme          |
| Rahat Sıralama                 | _          | O(n log n)   | O(1)      | Hayır          | Seçme          |
| Hızlı Sıralama                 | O(n log n) | O(n²)        | O(log n)  | Hayır          | Bölümlendirme  |
| İçgözlemle Sıralama            | O(n log n) | O(n log n)   | O(log n)  | Hayır          | Melez          |
| Sabir Siralamasi               | _          | O(n²)        | O(n)      | Hayır          | Ekleme         |
| İplik Sıralaması               | O(n log n) | O(n²)        | O(n)      | Evet           | Seçme          |

# 1. Ne kadar hızlı sıralayabiliriz?

- □n adet sayı O(n lgn) zamanda sıralayan çeşitli algoritmalar vardır.
  - ■Birleştirmeli ve bellek yığın (heap) sıralama bu <u>üst</u> sınıra en kötü durumda ulaşır.
  - Hızlı (quick) sıralama ise ortalama zamanda ulaşır.
- $\square$ Bu algoritmaların her biri için  $\Omega(n lgn)$  sürede çalışmasına sebep olan <u>n girdi sayıda bir sıra üretebiliriz.</u>
- □Bu algoritmalarda *belirledikleri sıralı düzen* sadece girdi elemanları arasındaki karşılaştırmaya dayanır.
- ☐ Bu algoritmalar karşılaştırmalı sıralama algoritmalardır.

# 2. Sıralama İçin Alt Sınırlar

- Karşılaştırma sıralamasında  $\langle a_1, a_2, \dots, a_n \rangle$  girdi dizisi hakkında düzenli bir bilgi edinmek için karşılaştırmalar kullanılır.
- Verilen  $a_i$  ve  $a_j$  elemanları göreceli bir düzene karar vermek için
- $a_i < a_j, a_i \le a_j, a_i = a_j, a_i \ge a_j$  veya  $a_i > a_j$  testlerinden birinden geçirilir.
  - Burada = olma veya > , < olma durumları yerine  $a_i \leq a_j, a_i \geq a_j$  değerlendirmemiz yeterli olacaktır.
- n tane sayı n! düzende karşımıza gelebilir.

### Alt Sınırı Nasıl Belirleriz?

❖Alt sınır belirlememizde karar ağaçlarından faydalanabiliriz.



\* Araya yerleştirme algoritmasına uyan bir karar ağacı örneği

Her iç boğumun etiketlenmesi i:j;  $i,j \in \{1,2,...,n\}$  için.

- Sol alt-ağaç  $a_i \le a_j$  ise, ardarda karşılaştırmaları gösterir.
- Sağ alt-ağaç  $a_i \ge a_j$  ise, ardarda karşılaştırmaları gösterir.



Her iç boğumun etiketlenmesi i:j;  $i,j \in \{1,2,...,n\}$  için:

- Sol alt-ağaç  $a_i \le a_j$  ise, ardarda karşılaştırmaları gösterir.
- Sağ alt-ağaç  $a_i \ge a_j$  ise, ardarda karşılaştırmaları gösterir.



Her iç boğumun etiketlenmesi i:j;  $i,j \in \{1, 2, ..., n\}$ için.

- Sol alt-ağaç  $a_i \le a_i$  ise, ardarda karşılaştırmaları gösterir.
- Sağ alt-ağaç  $a_i \ge a_j$  ise, ardarda karşılaştırmaları gösterir.



Her yaprakta  $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$  permütasyonu vardır bu  $a_{\pi(1)} \le a_{\pi(2)} \le \cdots \le a_{\pi(n)}$  sıralamasının tamamlanmış olduğunu gösterir.

# Karar-Ağacı Modeli

- O Bir karar ağacı her karşılaştırma sıralaması uygulanmasını modelleyebilir:
- Her n giriş boyutu için bir ağaç.
- Algoritmayı **iki elemanı karşılaştırdığında** bölünüyormuş gibi görün.
- Ağaç tüm olası komut izlerindeki karşılaştırmalar içerir.
- O Algoritmanın çalışma zamanı = Takip edilen yolun uzunluğu.
- O En kötü-durum çalışma zamanı = Ağacın boyu.

### Karar-ağacı sıralamasında alt sınır

**Teorem.** n elemanı sıralayabilen bir karar-ağacının yüksekliği (boyu)  $\Omega(n \lg n)$  olmalıdır.

*Kanıtlama*. Ağacın ≥ n! yaprağı olmalıdır, çünkü ortada n! olası permütasyon vardır. Boyu h olan bir ikili ağacın ≤  $2^h$  yaprağı olur. Böylece,  $n! \le 2^h$ .

```
∴ h \ge \lg(n!) (lg monoton artışlı)

\ge \lg ((n/e)^n) (Stirling'in formülü)

= n \lg n - n \lg e

= \Omega(n \lg n).
```

## Karar-ağacı sıralamasında alt sınır

### \*Doğal sonuç:

Yığın sıralaması ve birleştirme sıralaması asimptotik olarak en iyi karşılaştırma sıralaması algoritmalarıdır.

# 2. Doğrusal zamanda sıralama

# 2.1. Sayma sıralaması (Counting Sort):

Elemanlar arası karşılaştırma yoktur.

**Giriş:** A[1..n], burada A[j] $\in$ {1, 2, ..., k}.



k, küçük ise <u>iyi bir algoritma olur.</u>
k, büyük ise <u>çok kötü bir algoritma olur.</u>

Çıkış: B[1..n], sıralı.

Yedek depolama: C[1..k].





- ❖ Dizi girişi 1 ile 4 arasındadır.
- ❖O zaman k=4 olur.
- Bir başka ifade ile dizinin en büyük elemanı bulunur.



Dizinin elemanları ilk etapta sıfırlanır.

Döngü 1 for 
$$i \leftarrow 1$$
 to  $k$  do  $C[i] \leftarrow 0$ 





İlk elemandan başlanarak her bir elemandan kaç tane var sayılır.

for 
$$j \leftarrow 1$$
 to  $n$ 

Döngü 2 do  $C[A[j]] \leftarrow C[A[j]] + 1$  ▷  $C[i] = |\{\text{key} = i\}|$ 

Örnek: j=1 4 => C[4]=0+1=1



for 
$$j \leftarrow 1$$
 to  $n$   
do  $C[A[j]] \leftarrow C[A[j]] + 1$  ▷  $C[i] = |\{\text{key} = i\}|$  Döngü 2  
Örnek: j=2 1 => C[1]=0+1=1

for 
$$j \leftarrow 1$$
 to  $n$   
do  $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}| \quad \text{Döngü 2}$ 

for 
$$j \leftarrow 1$$
 to  $n$   
do  $C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{\text{key} = i\}|$  Döngü 2

for 
$$j \leftarrow 1$$
 to  $n$   
do  $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$  Döngü 2



for 
$$i \leftarrow 2$$
 to  $k$   
do  $C[i] \leftarrow C[i] + C[i-1]$   $\triangleright C[i] = |\{\text{key} \le i\}|$  Döngü 3

- Bir elemanın değeri bir önceki elemanın değeriyle toplanır ve elemana yazılır.
- ❖ Bir başka ifadeyle *C[i]*, i den küçük veya eşit olan elamanların sayısını içerir.

for 
$$i \leftarrow 2$$
 to  $k$   
do  $C[i] \leftarrow C[i] + C[i-1]$   $\triangleright C[i] = |\{\text{key} \le i\}|$  Döngü 3

- Bir elemanın değeri bir önceki elemanın değeriyle toplanır ve elemana yazılır.
- Bir başka ifadeyle C[i], i den küçük veya eşit olan elamanların sayısını içerir.

for 
$$i \leftarrow 2$$
 to  $k$   
do  $C[i] \leftarrow C[i] + C[i-1]$   $\triangleright C[i] = |\{\text{key} \le i\}|$  Döngü 3

- Bir elemanın değeri bir önceki elemanın değeriyle toplanır ve elemana yazılır.
- ❖ Bir başka ifadeyle *C[i],* i den küçük veya eşit olan elamanların sayısını içerir.

- A dizisinin sondan itibaren elemanı seçilir.
- ❖ A[j] elemanını çıktı dizisi B'de doğru pozisyona yerleştirir.





**Not:** Burada kısaca şu şekilde düşünülebilir.

Örneğin A[4]'teki yani 4'ü B'de atayacağım yerin indisi C'de tutulur.

Buda 5. sırada olduğunu gösterir. C' ise bu sıranın bir azaldığını gösterir.

for 
$$j \leftarrow n$$
 down to 1  
do  $B[C[A[j]]] \leftarrow A[j]$   
 $C[A[j]] \leftarrow C[A[j]] - 1$ 



for 
$$j \leftarrow n$$
 down to 1  
do  $B[C[A[j]]] \leftarrow A[j]$   
 $C[A[j]] \leftarrow C[A[j]] - 1$ 

- A dizisinin sondan birer birer azaltılarak elemanı seçilir.
- A[j] elemanını çıktı dizisi B'de doğru pozisyona yerleştirir.



for 
$$j \leftarrow n$$
 down to 1  
do  $B[C[A[j]]] \leftarrow A[j]$   
 $C[A[j]] \leftarrow C[A[j]] - 1$ 

- A dizisinin sondan birer birer azaltılarak elemanı seçilir.
- A[j] elemanını çıktı dizisi B'de doğru pozisyona yerleştirir.



for 
$$j \leftarrow n$$
 down to 1  
do  $B[C[A[j]]] \leftarrow A[j]$   
 $C[A[j]] \leftarrow C[A[j]] - 1$ 

### Çözümleme

```
\Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow 0 \end{cases}
\Theta(n) \quad \begin{cases} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \\ \mathbf{do} \ C[A[j]] \leftarrow C[A[j]] + 1 \end{cases}
\Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow C[i] + C[i-1] \end{cases}
\Theta(n) \begin{cases} \mathbf{for} \ j \leftarrow n \ \mathbf{down} \ \mathbf{to} \ 1 \\ \mathbf{do} \ B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases}
```

 $\Theta(n+k)$ 

**Not:** Bu döngüler iç içe değildir.

# Çalışma Zamanı

- o k = O(n) ise, sayma sıralaması O(n) süresi alır.
- Eğer k=n² veya k=2n çok kötü bir algoritma olur.
- o k tamsayı olmalı.
- $\circ$  Ama sıralamalar  $\Omega(n \lg n)$  süresi alıyordu! (karar ağacı)
- Hata nerede?
- O Yanıt:
- $\circ$  Karşılaştırma sıralaması  $\Omega$ (n lg n) süre alır.
- O Sayma sıralaması bir karşılaştırma sıralaması değildir.
- Aslında elemanlar arasında bir tane bile karşılaştırma yapılmaz!

### Sayma/Sayarak Sıralama

Sayma sıralaması *kararlı* bir sıralamadır: eşit eşit elemanlar arasındaki düzeni korur.



### Sayma/Sayarak Sıralamanın Avantaj ve Dezavantajları

#### ■ Avantajları:

- n ve k da doğrusaldır (lineer).
- \* Kararlı yapıdadır.
- Kolay uygulanır.

#### ■ Dezavantajları:

- Yerinde sıralama yapmaz.
- Ekstra depolama alanına ihtiyaç duyar.
- Sayıların küçük tam sayı olduğu varsayılır.
- Byte ise ek dizinin boyutu en fazla  $2^8$ = 256 olur fakat sayılar int ise yani 32 bit lik sayılar ise  $2^{32}$ = 4.2 milyar sayı eder oda yaklaşık **16 Gb yer tutar.**

# 2.2. Taban (Radix) sıralaması

- ☐ Radix Sort, sayıları basamaklarının üzerinde işlem yaparak sıralayan doğrusal sıralama algoritmalarından biridir.
- Birden fazla anahtara göre sıralama gerektiğinde kolaylıkla kullanılabilir.
- □ Örnekler:
- Tarihe göre sıralamada yıl, ay, gün'e göre sıralama yapılır. Tarih sıralamasında önce gün, sonra ay ve yıl' a göre kolayca sıralanır.
- Telefon numaralarının (+1-xxx-yyy-zzzz) sıralanması için kullanılabilir.
- Ondalıklı sayıların sıralanması
- Sözlüksel sıralamalarda da kullanılır.

# 2.2. Taban (Radix) sıralaması

- \*Basamak basamak sıralama.
- Kötü fikir: Sıralamaya er önemli basamaktan başlamak.
- İyi fikir: Sıralamaya en önemsiz basamaktan başlamak ve ek kararlı sıralama uygulamak.



# Taban (Radix) sıralaması -örnek

| 3 2 | 9 | 7 | 2 (           | )             | 7 | 2 | 0 | 3 | 29  |
|-----|---|---|---------------|---------------|---|---|---|---|-----|
| 4 5 | 7 | 3 | 5 5           | 5             | 3 | 2 | 9 | 3 | 5 5 |
| 65  | 7 | 4 | 3 6           | 5             | 4 | 3 | 6 | 4 | 36  |
| 83  | 9 | 4 | 5 7           | 7             | 8 | 3 | 9 | 4 | 5 7 |
| 43  | 6 | 6 | 5 7           | 7             | 3 | 5 | 5 | 6 | 5 7 |
| 72  | 0 | 3 | 2 9           | )             | 4 | 5 | 7 | 7 | 20  |
| 3 5 | 5 | 8 | 3 9           | )             | 6 | 5 | 7 | 8 | 39  |
|     | J |   | V             |               | J | ) |   | ) |     |
|     |   |   | $\overline{}$ | $\overline{}$ |   | \ |   |   |     |

# Taban (Radix) sıralaması – örnek 2

#### Basamak konumunda tümevarım

- Sayıların düşük düzeyli
   t 1 basamaklarına göre
   sıralandığını varsayın.
- t basamağında sıralama yapın.



#### Basamak konumunda tümevarım

- Sayıların düşük düzeyli
   t –1 basamaklarına göre
   sıralandığını varsayın.
- *t* basamağında sıralama yapın.
  - t basamağında farklı olan iki sayı doğru sıralanmış.



#### Basamak konumunda tümevarım

- •Sayıların düşük düzeyli t −1 basamaklarına göre sıralandığını varsayın.
- t basamağında sıralama yapın.
  - t basamağında farklı olan iki sayı doğru sıralanmış.
  - t basamağındaki iki eşit sayının girişteki sıraları muhafaza edilmiş ⇒ doğru sıra.



### Taban sıralamasının çözümlemesi

- Sayma sıralamasını ek kararlı sıralama varsayın.
- Herbiri b bit olan n bilgiişlem sözcüğünü sıralayın.
- Her sözcüğün basamak yapısı *b/r* taban-2<sup>r</sup> olarak görülebilir.

Örnek: 32-bit sözcük

 $r = 8 \Rightarrow b/r = 4$  ise, taban-28 basamak durumunda sıralama 4 geçiş yapar; veya  $r = 16 \Rightarrow b/r = 2$  ise, taban-216 basamakta 2 geçiş yapar.

Kaç geçiş yapmalıyız?

# Radixsort'un çalışma süresi

- **∜**Kaç geçiş var?
- ❖Geçiş başına ne kadar iş?

Örnek (32-bitlik sayılar için):

- En çok 3 geçiş (≥ 2000 sayının sıralanmasında).
- Birleştirme sıralaması /çabuk sıralama [1g 2000] en az 11 geçiş yaparlar.

**Dezavantajı:** Çabuk sıralamanın aksine, taban sıralamasının yer referansları zayıftır ve bu nedenle ince ayarlı bir çabuk sıralama, dik bellek sıradüzeni olan günümüz işlemcilerinde daha iyi çalışır.

\* Kısacası bellek gereksinimi, kullanımı çabuk sıralamadan kötüdür.

#### **❖Toplam zaman?**

**❖Sonuç olarak** 

K büyükse gerçekten doğrusal değildir.

Uygulamada RadixSort yalnızca çok sayıda öğe ve nispeten küçük anahtarlar içeren problemler için iyidir. Taban sıralamanın hesaplama karmaşıklığı aşağıdaki gibi formüle edilebilir.

$$T(n) = O(L^*(N+b))$$

- L, en büyük anahtardaki basamak sayısı veya en fazla uzunluğa sahip dizinin uzunluğudur.
- N sıralanacak öğelerin sayısıdır.
- •b sayı sisteminin tabanıdır.

|          | 5 <sup>th</sup> | 4 <sup>th</sup> | 3 <sup>rd</sup> | 2 <sup>nd</sup> | 1 <sup>st</sup> |
|----------|-----------------|-----------------|-----------------|-----------------|-----------------|
|          | pass            | pass            | pass            | pass            | pass            |
| String 1 | Z               | i               | p               | p               | У               |
| String 2 | Z               | a               | p               |                 |                 |
| String 3 | a               | n               | t               | S               |                 |
| String 4 | f               | 1               | a               | p               | S               |

□Bu örnekte karmaşıklık, kısaca O(N\*L) şeklindedir.

# 2.3. Kova Sıralama (BucketSort)

- Kova Sıralaması (ya da sepet sıralaması), sıralanacak bir diziyi parçalara <u>ayırarak</u> sınırlı <u>sayıdaki kovalara</u> (ya da sepetlere) atan bir sıralama algoritmasıdır.
- Ayrışma işleminin ardından her kova kendi içinde ya farklı bir algoritma kullanılarak ya da kova sıralamasını özyinelemeli olarak çağırarak sıralanır.

# 2.3. Kova Sıralama (BucketSort)

# Kova sıralaması aşağıdaki biçimde çalışır:

- Başlangıçta boş olan bir "kovalar" dizisi (belirli aralıklara bölerek) oluştur.
- 2. Asıl dizinin üzerinden geçerek her öğeyi ilgili aralığa denk gelen kovaya at.
- 3. Boş olmayan bütün kovaları sırala.
- 4. Boş olmayan kovalardaki bütün öğeleri yeniden diziye al.



# 2.3. Kova Sıralama (BucketSort)

- Kova sıralaması doğrusal zamanda çalışır.
- Girişin düzgün dağılımlı olduğu kabul edilir.
- Random olarak [0,1) aralığında oluşturulmuş giriş bilgileri olduğu kabul edilir.
- Temel olarak [0, 1) aralığını n eşit alt aralığa böler ve girişi bu aralıklara dağıtır.
- Aralıklardaki değerleri insert sort (araya sokma) ile sıralar.
- Aralıkları bir biri ardına <u>ekleyerek sıralanmış diziyi elde</u>
   <u>eder.</u>

## Örnek



Yukarıdaki şekilde n = 10 için BUCKET-SIRALAMA işlemi.

- (a) Giriş dizisi A[1..10] **(b)** Algoritmanın 8. satırından sonra sıralanmış listelerin (kovalar) B[0..9] dizisi. Kova *i*, yarı açık aralıktaki [i/10, i+1/10) değerleri tutar.
- (b) Sıralanan çıktı, B[0],B[1], ...B[9] listelerinin sırasına göre bir birleştirmeden oluşur.

# Karmaşıklık

```
BUCKET-SORT(A)
                                                                                           O(n^2)
                                                   En kötü durum performansı
O(n)
       1 \quad n = A.length
                                                                                         O(n+k)
                                                   Ortalama durum performansi
O(n) 2 let B[0..n-1] be a new array
O(n) 3 for i = 0 to n - 1
O(n)
                make B[i] an empty list
O(n) 5 for i = 1 to n
O(n)
               insert A[i] into list \mathcal{B}[\lfloor nA[i] \rfloor]
           for i = 0 to n \rightarrow 1
O(n)
                sort list B[i] with insertion sort
O(n_i^2) 8
          concatenate the lists B[0], B[1], \ldots, B[n-1] together in order
O(n)
```

Her i kovasının aynı  $E(n_i^2)$  değerine sahip olması şaşırtıcı değildir. A girdi dizisindeki her bir değerin herhangi bir kovaya düşme olasılığı eşit derecededir (1/n).

### **UYGULAMALAR**

- 1000 ile 100000 arasında sayılardan oluşan 100 elemanlı bir sayı dizisi oluşturunuz.
- Bu diziyi Radix sort algoritmasında en önemli ve en önemsiz basamaktan başlanarak iki farklı yaklaşım ile sıralayınız.
- Aradaki farklar neler?
- Her zaman en önemsiz sayı basamağından başlamak avantaj sağlar mı?
- 2. Yukarıda oluşturulan 100 elemanlı sayı dizisini counting sort algoritması ile sıralayınız.
- 3. Yukarıda oluşturulan 100 elemanlı sayı dizisini bucket sort algoritması ile sıralayınız.
- **4.** Yukarıda oluşturulan 100 elemanlı sayı dizisini sıralamak için en etkili algoritma hangisidir?
- 5. 10 kişinin adı ve soyadı ve de bu kişilerin doğum tarihini klavyeden girdikten sonra en genç olandan en yaşlı olana doğru bu kişileri listeleyen programı yazınız.

# Kaynakça

- Algoritmalar : Prof. Dr. Vasif NABİYEV, Seçkin Yayıncılık
- Algoritmalara Giriş: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Palme YAYINCILIK
- Algoritmalar : Robert Sedgewick , Kevin Wayne, Nobel Akademik Yayıncılık
- M.Ali Akcayol, Gazi Üniversitesi, Algoritma Analizi Ders Notları
- Doç. Dr. Erkan TANYILDIZI, Fırat Üniversitesi, Algoritma Analizi Ders Notları
- http://www.bilgisayarkavramlari.com