TD6

IPESUP - PC

13 décembre 2023

1 Mouvement d'une perle sur une tige en rotation

Une petite perle, qu'on assimilera à un point matériel M, glisse sans frottement sur une tige horizontale (axe Ox) tournant à vitesse constante ω_0 autour de la verticale (Oz). La perle est liée au point O par un ressort de raideur k et de longueur à vide l_0 . À l'instant initial, le ressort n'est ni comprimé ni tendu et la perle a une vitesse nulle par rapport à la tige.

On note $\omega^2 = \frac{k}{m}$ et $a = \frac{\omega}{\omega_0}$

FIGURE 1 – Schéma du ressort

- 1. Etablir les équations du mouvement.
- 2. La figure 2 donne l'allure de la trajectoire de la perle pour différentes valeurs de a. Donner les conditions sur a pour obtenir chacune des trois allures. On supposera désormais qu'on a a > 1

Figure 2 – Trajectoires possibles de la perle

- 3. Montrer que le ressort est toujours tendu
- 4. Déterminer la force exercée par la tige sur la perle

2 Etude d'un sismographe

Le sismographe vertical, représenté figure 3, est constitué d'une masse m suspendue à un ressort dont l'autre extrémité Ω est liée à un bâti rigide solidaire du sol en vibration. Un dispositif d'acquisition permet d'enregistrer le mouvement de la masse m par rapport au bâti. On souhaite que ce mouvement reproduise le plus fidèlement possible celui du sol par rapport au référentiel d'étude \mathcal{R} supposé galiléen. On appelle $\mathcal{R}_{\mathcal{S}}$ le référentiel lié au bâti rigide Le sol est supposé horizontal. Son mouvement vertical est décrit par une vibration de la forme : $Z_s(t) = Z_0 cos(\omega t)$.

Le ressort, de masse négligeable, de constante de raideur k, de longueur au repos L_0 , a pour longueur L(t) à l'instant t. Un amortisseur relié au ressort, exerce sur la masse m une action mécanique modélisée par la force : $\vec{f_r} = -\lambda \vec{v}_{/\mathcal{R}_S}(M)$, où $\vec{v}_{/\mathcal{R}_S}(M)$ est la vitesse de la masse m dans le référentiel \mathcal{R}_S .

Figure 3 – Schéma d'un sismographe simple

On note L_1 la longueur du ressort quand la masse m est à l'équilibre en l'absence de secousse sismique. La masse m se situe alors à la cote z repérée par rapport au bâti. On repère dans la suite la position de la masse m par : $x(t) = z(t) - z_1$, où z(t) est également repéré par rapport au bâti du sismographe.

1. Établir l'équation différentielle vérifiée par $\boldsymbol{x}(t)$ lors d'un séisme. L'écrire sous la forme :

$$\frac{d^2x}{dt^2} + \frac{\omega_0}{Q}\frac{dx}{dt} + \omega_0^2 x = \omega^2 Z_0 cos(\omega t)$$

Donner les expressions de ω_0 et Q.

On cherche la réponse du sismographe sous la forme : $x(t) = X_0 cos(\omega t + \phi)$. En posant : $u = \frac{\omega}{\omega_0}$, montrer que :

$$\frac{X_0}{Z_0} = \frac{u^2}{\sqrt{(1-u^2)^2 + \frac{u^2}{Q^2}}}$$

Figure 4 – Réponse fréquentielle d'un sismographe

- 2. Vérifier que l'allure du graphe sur la figure 4 est compatible, à haute et basse fréquence, avec l'expression calculée. Comment peut-on qualifier ce filtre?
- 3. Comment faut-il choisir la pulsation propre ω_0 par rapport à la pulsation ω de la secousse sismique? Justifier physiquement ce résultat.
- 4. Quel est le meilleur choix pour le paramètre Q, en terme de fidélité de la réponse et de durée du régime transitoire?
- 5. Quel est l'ordre de grandeur de l'allongement du ressort à l'équilibre pour un sismographe optimisé pour détecter des ondes sismiques dont la période est de l'ordre de la seconde?