Frederick Robinson Fall 2003

1 Explain carefully how the classical "divergence theorem"

$$\iint\limits_{S} \vec{V} \cdot \vec{n} d(\text{area}) = \iiint\limits_{V} \text{div } \vec{V} d(\text{volume})$$

(V a bounded volume in \mathbb{R}^3 , S = boundary of V) follows from Stokes' Theorem for differential forms.

- 2 Without using deRham's Theorem, prove:
- 2.1 every closed 1-form on S^2 is exact.
- 2.2 a two-form Ω is exact on S^2 if and only if

$$\int_{S^2} \Omega = 0.$$

- 3 Show that the set of all lines in \mathbb{R}^2 has a natural structure as a differentiable manifold. What (already familiar) manifold is it?
- 4 Show that S^3 is the union of two solid tori $(S^1 \times 2\text{-disc})$ with an embedded torus $(S^1 \times S^1)$ as their common boundary. (Hint: Express \mathbb{R}^3 with a solid torus removed as a union of circles and a single straight line and then add a point at infinity.)
- 5 Suppose M is a compact manifold (with empty boundary).
- 5.1 Prove that, if $f:M\to\mathbb{R}$ is a C^{∞} function, then f has at least two critical points.
- 5.2 A C^{∞} function on $S^1 \times S^1$ cannot have only two critical points. Prove this (e.g.) by deforming a homotopically nontrivial S' along the gradient flow of $f: M \to \mathbb{R}$.
- 6.1 Prove carefully that a group of homeomorphisms of S^{2n} , each of which has no fixed points (unless it is the identity map) contains at most two elements.
- **6.2** Give a counterexample for some S^{2n+1} , $n \ge 1$.
- 7 Find the homology groups with \mathbb{Z} coefficients, of \mathbb{RP}^n , $n=2,3,4,\ldots$ by some systematic rigorous method.
- 8 Find the homology and the fundamental group of $S^1 \times S^1$ with two points removed.
- Prove that if a compact (empty boundary) manifold X has S^{2n+1} , $n \ge 1$, as a covering space, then X is orientable.
- 10 Suppose M is a compact manifold (empty boundary). Prove that

$$H_n(M,\mathbb{Z})\simeq\mathbb{Z}.$$

(You may assume M is triangulated.)