Tipuri de Funcții

Seminar de Logică Matematică și Computațională

Claudia MUREŞAN

Universitatea din București, Facultatea de Matematică și Informatică c.muresan@yahoo.com, cmuresan@fmi.unibuc.ro, claudia.muresan@unibuc.ro

2021–2022, Semestrul I

Exercitiul 1. Fie T o multime și $A, B \in \mathcal{P}(T), A \neq \emptyset \neq B$. Pentru orice $X \in \mathcal{P}(T)$, notăm cu: $\overline{X} := T \setminus X$. Considerăm funcția $f: \mathcal{P}(T) \to \mathcal{P}(A) \times \mathcal{P}(B)$, definită prin: oricare ar fi $X \in \mathcal{P}(T)$, $f(X) = (X \cap A, X \cap B)$. Să se demonstreze că:

- (i) f e injectivă ddac $A \cup B = T$;
- (ii) f e surjectivă ddacă $A \cap B = \emptyset$;
- (iii) f e bijectivă ddacă $A = \overline{B}$ ddacă $B = \overline{A}$ (adică f e bijectivă ddacă A si B sunt părți complementare ale $lui\ T$).

Rezolvare: Cum A și B sunt nevide și sunt incluse în T, rezultă că T e nevidă.

Să mai observăm că, pentru orice $X \in \mathcal{P}(T)$, avem $X \cap A \in \mathcal{P}(A)$ și $X \cap B \in \mathcal{P}(B)$, așadar $f(X) \in \mathcal{P}(B)$ $\mathcal{P}(A) \times \mathcal{P}(B)$, deci f e corect definită (adică este într-adevăr o funcție de la $\mathcal{P}(T)$ la $\mathcal{P}(A) \times \mathcal{P}(B)$).

(i) "\(\infty \)": Ipoteza acestei implicații este că $A \cup B = T$.

Fie
$$X,Y\in\mathcal{P}(T)$$
 astfel încât $f(X)=f(Y)$, adică $(X\cap A,X\cap B)=(Y\cap A,Y\cap B)$, i. e.:
$$\begin{cases} X\cap A=Y\cap A \text{ şi}\\ X\cap B=Y\cap B, \end{cases}$$
 prin urmare: $X=X\cap T=X\cap (A\cup B)=(X\cap A)\cup (X\cap B)=(Y\cap A)\cup (Y\cap B)=Y\cap (A\cup B)=Y\cap T=Y,$ asadar f este injectivă.

 \Rightarrow ": Ipoteza acestei implicații este că f e injectivă.

Presupunem prin absurd că $A \cup B \neq T$, așadar $A \cup B \subseteq T$ întrucât $A \cup B \subseteq T$, prin urmare $T \setminus (A \cup B) \neq \emptyset$, adică există un element $u \in T \setminus (A \cup B)$, prin urmare $u \notin A$ și $u \notin B$, așadar $\{u\} \cap A = \{u\} \cap B = \emptyset$ (deoarece $\{u\}$ nu are elemente în comun cu A sau cu B – a se revedea definiția intersecției de mulțimi).

Cum multimea $\{u\}$ are un element, avem $\{u\} \neq \emptyset$. Dar: $f(\{u\}) = (\{u\} \cap A, \{u\} \cap B) = (\emptyset, \emptyset) = (\emptyset \cap A, \emptyset \cap B) = (\emptyset, \emptyset)$ $f(\emptyset)$. Am obținut o contradicție cu faptul că f e injectivă.

Aşadar $A \cup B = T$.

(ii) "\(\iff \)": Ipoteza acestei implicații este că $A \cap B = \emptyset$.

Să considerăm un element arbitrar (V, W) al imaginii $\mathcal{P}(A) \times \mathcal{P}(B)$ a lui f: fie $V \in \mathcal{P}(A)$ și $W \in \mathcal{P}(B)$, arbitrare. Atunci avem:

 $V \cup W \subseteq A \cup B \subseteq T$, aşadar $V \cup W \in \mathcal{P}(T)$;

cum $V \subseteq A$ şi $W \subseteq B$, rezultă că $V \cap A = V$ şi $W \cap B = W$;

 $V \cap B \subseteq A \cap B = \emptyset$ şi $W \cap A \subseteq A \cap B = \emptyset$, aşadar $V \cap B = W \cap A = \emptyset$;

prin urmare: $f(V \cup W) = ((V \cup W) \cap A, (V \cup W) \cap B) = ((V \cap A) \cup (V \cap B), (W \cap A) \cup (W \cap B)) =$ $(V \cup \emptyset, \emptyset \cup W) = (V, W).$

Aşadar f e surjectivă.

" \Longrightarrow ": Ipoteza acestei implicații este că f e surjectivă.

Presupunem prin absurd că $A \cap B \neq \emptyset$, ceea ce înseamnă că există $v \in A \cap B$, adică $v \in A$ și $v \in B$.

Atunci, pentru orice pereche din imaginea lui f, elementul v apartine fie ambilor membrii ai perechii, fie niciunuia dintre membrii perechii. Aşadar nicio pereche din $\mathcal{P}(A) \times \mathcal{P}(B)$ cu v aparținând unuia singur dintre membrii perechii nu se află în imaginea lui f, ceea ce contrazice faptul că f e surjectivă. Să redactăm acest rationament, de exemplu, pentru perechea $(\emptyset, \{v\})$.

Cum $v \in B$, avem că $(\emptyset, \{v\}) \in \mathcal{P}(A) \times \mathcal{P}(B)$. Prin ipoteza acestei implicații, f este surjectivă, așadar există

un
$$Z \in \mathcal{P}(T)$$
 cu $f(Z) = (\emptyset, \{v\})$, adică $(Z \cap A, Z \cap B) = (\emptyset, \{v\})$, i.e.
$$\begin{cases} Z \cap A = \emptyset \text{ și} \\ Z \cap B = \{v\}. \end{cases}$$
Prin urmare $v \in Z \cap B \subseteq Z$, așadar $v \in Z$, iar, cum $v \in A$, rezultă că $v \in Z \cap A = \emptyset$, ceea ce contrazice

dediniția mulțimii vide.

Aşadar $A \cap B = \emptyset$.

(iii) Conform (i), (ii) și caracterizării părților complementare ale unei mulțimi, avem:

$$f$$
 e bijectivă d
dacă f e injectivă și surjectivă d
dacă $\begin{cases} A \cup B = T \text{ și} \\ A \cap B = \emptyset \end{cases}$ d
dacă $A = \overline{B}$ d
dacă $B = \overline{A}$.