6a Big-O notation

Friday, January 26, 2024 10:24

X-> po case
/"Big 0"

f = O(g) means asymptotically, f grows no faster than g f = o(g) means asymptotically, f grows slower than $x \cdot g$ $\forall x \in \mathbb{R}^{d}$ "little tornally: $f \cdot g$ positive real-valued finetions ($f \cdot g : \mathbb{R} \to \mathbb{R}^{d}$)

So... $f = o(g) \Rightarrow f = O(g)$

 $f = \mathcal{I}(g)$ means g = O(f) $f = \omega(g)$ means g = o(f)

f = O(g) means f = O(g) and g = O(f) $f \sim g$ is an even stronger version of thes

 $f = \widetilde{O}(g)$ means $\exists k \in \mathbb{N}$ 8t. $f = O(g \log^{k}(g))$

This is all setup for "competer scienc" where we ask
about, say, runtime as a function of problem size

"f(x)"

"x", x > 00

Ex: $h = O(h^2)$ $\log(h) = O(h)$ $h^2 \log(h) = O(h^3)$ $= \widetilde{O}(h^2)$

× > 0 Case

But analogous notation exists for "analysis" where "x" gets small i.e. f(h), $h \rightarrow 0$

Ex: $h^2 = O(h)$ (as $h \rightarrow 0$)

NOTTRUE in hom case