

Analiza danych jakościowych

Bogna Zacny zima 2019/2020

Wydział Informatyki i Komunikacji Katedra Inżynierii Wiedzy

Agenda

- 1. Dane
- 2. Tablice kontyngencji
- 3. Wykres mozaikowy
- 4. Analiza korespondencji

Dane

Dane - skale

Dane - skale

Sex	Pclass	Survived
male	Ш	N
female	I	Υ
female	Ш	Υ
female	I	Υ
male	Ш	N
male	Ш	N
male	1	N
male	Ш	N
female	Ш	Υ
female	П	Υ

Sex	Pclass	Survived
103	3	0
105	1	1
105	3	1
105	1	1
103	3	0
103	3	0
103	1	0
103	3	0
105	3	1
105	2	1

Sex	Pclass	Survived
0	3	0
1	1	1
1	3	1
1	1	1
0	3	0
0	3	0
0	1	0
0	3	0
1	3	1
1	2	1

Sex_female	Sex_male	Pclass_1	Pclass_2	Pclass_3	Survived_0	Survived_1
0	1	0	0	1	1	0
1	0	1	0	0	0	1
1	0	0	0	1	0	1
1	0	1	0	0	0	1
0	1	0	0	1	1	0
0	1	0	0	1	1	0
0	1	1	0	0	1	0
0	1	0	0	1	1	0
1	0	0	0	1	0	1
1	0	0	1	0	0	1

Wyksztalcenie	Klasyka	Wiek
Niskie	Tak	Młody
Wysokie	Nie	Młody
Wysokie	Nie	Stary
Wysokie	Tak	Stary
Niskie	Nie	Stary
Niskie	Nie	Stary
Niskie	Tak	Młody
Wysokie	Tak	Stary
Niskie	Nie	Stary
Niskie	Nie	Stary

Wyksztalcenie	Klasyka	Wiek
Niskie	Tak	Młody
Wysokie	Nie	Młody
Wysokie	Nie	Stary
Wysokie	Tak	Stary
Niskie	Nie	Stary
Niskie	Nie	Stary
Niskie	Tak	Młody
Wysokie	Tak	Stary
Niskie	Nie	Stary
Niskie	Nie	Stary

Wyksztalcenie	Klasyka	Wiek
Niskie	Tak	Młody
Wysokie	Nie	Młody
Wysokie	Nie	Stary
Wysokie	Tak	Stary
Niskie	Nie	Stary
Niskie	Nie	Stary
Niskie	Tak	Młody
Wysokie	Tak	Stary
Niskie	Nie	Stary
Niskie	Nie	Stary

	Nie	Tak
Młody	1	2
Stary	5	2

Wyksztalcenie	Klasyka	Wiek
Niskie	Tak	Młody
Wysokie	Nie	Młody
Wysokie	Nie	Stary
Wysokie	Tak	Stary
Niskie	Nie	Stary
Niskie	Nie	Stary
Niskie	Tak	Młody
Wysokie	Tak	Stary
Niskie	Nie	Stary
Niskie	Nie	Stary

	Nie	Tak
Młody	1	2
Stary	5	2

	Nie	Tak
Niskie	4	2
Wysokie	2	2

Wyksztalcenie	Klasyka	Wiek
Niskie	Tak	Młody
Wysokie	Nie	Młody
Wysokie	Nie	Stary
Wysokie	Tak	Stary
Niskie	Nie	Stary
Niskie	Nie	Stary
Niskie	Tak	Młody
Wysokie	Tak	Stary
Niskie	Nie	Stary
Niskie	Nie	Stary

Klasyka	Wiek
Tak	Młody
Nie	Młody
Nie	Stary
Tak	Stary
Nie	Stary
Nie	Stary
Tak	Młody
Tak	Stary
Nie	Stary
Nie	Stary
	Tak Nie Nie Tak Nie Nie Tak Tak Nie Tak Tak Nie

Wyksztalcenie	Klasyka	Wiek	Freq
Niskie	Nie	Młody	0
Wysokie	Nie	Młody	1
Niskie	Tak	Młody	2
Wysokie	Tak	Młody	0
Niskie	Nie	Stary	4
Wysokie	Nie	Stary	1
Niskie	Tak	Stary	0
Wysokie	Tak	Stary	2

Wyksztalcenie	Klasyka	Wiek	Freq
Niskie	Nie	Młody	290
Wysokie	Nie	Młody	406
Niskie	Tak	Młody	110
Wysokie	Tak	Młody	194
Niskie	Nie	Stary	730
Wysokie	Nie	Stary	190
Niskie	Tak	Stary	170
Wysokie	Tak	Stary	210

Tablice kontyngencji

Dwuwymiarowe tablice kontyngencji 2x2

v		Υ	
X	y ₁	<i>y</i> ₂	n _i .
X 1	n ₁₁	n ₁₂	n ₁ .
X 2	n ₂₁	n ₂₂	n ₂ .
n .j	n . 1	n . 2	n

Dwuwymiarowe tablice kontyngencji IxJ

v		,	′	
X	y ₁		y ,	n _i .
X 1	n ₁₁		n _{1J}	n 1 .
÷	:	:	:	:
X _I	n ₁₁		n _{IJ}	n ₁ .
n .,	n . 1		n .,	n

Wielowymiarowe tablice kontyngencji

Z		z ₁							\boldsymbol{z}_k			
	v	Y							,	Y		
	Х	y ₁₁		y 11	n , . 1		Х	y _{1k}		y _{Jk}	n _{i·k}	
	X 11	n 111		n 1/1	n 1 • 1		X 1k	n _{11k}		n _{1Jk}	n 1 . k	
	:	:	:	:			:	:	:	:		
	X 11	n ₁₁₁		n _{IJ1}	n ,		X _{Ik}	n _{I1k}		n _{IJk}	n _{I•k}	
	n . j1	n . 11		n . ,,1	n 1	1	n . jk	n . 1k		n . Jk	n _k	

Mierniki siły zależności

• Współczynnik chi-kwadrat: $\chi^2 = \sum_{i=1}^I \sum_{j=1}^J \frac{(n_{ij} - m_{ij})^2}{m_{ij}}$

gdzie:
$$m_{ij} = \frac{n_{\cdot i} * n_{j \cdot}}{n}$$

- H_0 : zmienne kolumnowa i wierszowa tablicy kontyngencji sa niezależne
- ullet H_1 : zmienne kolumnowa i wierszowa tablicy kontyngencji sa zależne

Mierniki siły zależności

- Współczynnik fi (2×2) : $\phi = \sqrt{\frac{\chi^2}{n}}$
- Współczynnik kontyngencji: $C=\sqrt{\frac{\chi^2}{\chi^2+n}}$ Współczynnik V Cramera: $V=\sqrt{\frac{\chi^2}{n*min(I-1,J-1)}}$

	tak	nie
m	50	0
S	0	50

```
##
## Pearson's Chi-squared test
##
## data: kontyng
## X-squared = 100, df = 1, p-value < 2.2e-16</pre>
```

	tak	nie
m	50	0
S	0	50

```
    tak
    nie

    m
    25
    25

    s
    25
    25
```

data: kontyng

##

```
##
## Pearson's Chi-squared test
##
## data: kontyng
```

```
## Pearson's Chi-squared test
##
```

X-squared = 100, df = 1, p-value < 2.2e-16 ## X-squared = 0, df = 1, p-value = 1

	tak	nie
m	45	5
S	5	45

```
##
## Pearson's Chi-squared test
##
## data: kontyng
## X-squared = 64, df = 1, p-value = 1.244e-15
```

	tak	nie
m	45	5
S	5	45

```
    tak
    nie

    m
    35
    15

    s
    15
    35
```

```
##
## Pearson's Chi-squared test
##
## data: kontyng
```

```
## Pearson's Chi-squared test
```

##

##

data: kontyng

 $\# \ X$ -squared = 64, df = 1, p-value = 1.244e-15 $\# \ X$ -squared = 16, df = 1, p-value = 6.334e-05

	tak	nie
m	45	5
S	0	0

```
##
## Pearson's Chi-squared test
##
## data: kontyng
## X-squared = NaN, df = 1, p-value = NA
```

	tak	nie
m	45	25
S	5	5

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: kontyng
## X-squared = 0.27429, df = 1, p-value = 0.6005
```

	tak	nie
m	50	0
S	0	50

	tak	nie
m	25	25
S	25	25

```
## X^2 df P(> X^2)
## Likelihood Ratio 0 1 1
## Pearson 0 1 1
##
## Phi-Coefficient : 0
## Contingency Coeff.: 0
## Cramer's V : 0
```

	tak	nie
m	35	15
S	15	35

	tak	trochę	nie
podst	35	10	9
śred	15	38	7
wyz	2	4	44

Cramer's V : 0.591

```
## X^2 df P(> X^2)
## Likelihood Ratio 112.53 4 0
## Pearson 114.54 4 0
##
## Phi-Coefficient : NA
## Contingency Coeff:: 0.641
```

Kto słucha klasyki? (Czy zależność istnieje?)

	Nie	Tak
Niskie	1020	280
Wysokie	596	404

```
chisq.test(table(mozaikowy$Wyksztalcenie, mozaikowy$Klasyka))
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(mozaikowy$Wyksztalcenie, mozaikowy$Klasyka)
## X-squared = 95.333, df = 1, p-value < 2.2e-16</pre>
```

Kto słucha klasyki? (Czy zależność istnieje?)

	Nie	Tak
Młody	696	304
Stary	920	380

```
chisq.test(table(mozaikowy$Wiek, mozaikowy$Klasyka))
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(mozaikowy$Wiek, mozaikowy$Klasyka)
## X-squared = 0.31597, df = 1, p-value = 0.574
```

Kto słucha klasyki? (Jak silna jest zależność)

```
## X^2 df P(> X^2)

## Likelihood Ratio 95.923 1 0

## Pearson 96.234 1 0

##

## Phi-Coefficient : 0.205

## Contingency Coeff.: 0.2

## Cramer's V : 0.205
```

Siła związku - Kto słucha klasyki?

```
## X^2 df P(> X^2)
## Likelihood Ratio 0.36946 1 0.54330
## Pearson 0.36981 1 0.54311
##
## Phi-Coefficient : 0.013
## Contingency Coeff.: 0.013
## Cramer's V : 0.013
```

Wykres mozaikowy

Wykres mozaikowy - opis

Wykres mozaikowy stosowany aby prezentować kilkupoziomowe hierarchie, które na kolejnych poziomach dzielone są tymi samymi czynnikami.

	Wykształczenie			
	Niskie		Wysokie	
	Klasyka		Klasyka	
Wiek	Nie	Tak	Nie	Tak
Młody	290	110	406	194
Stary	730	170	190	210

Wykres mozaikowy - 0 wymiarów

[1] 2300

Wykres mozaikowy - 1 wymiar

Wiek	Freq	
Młody	43.47826	
Stary	56.52174	

Wykres mozaikowy - 1 wymiar

```
mosaic(~ Wiek, mozaikowy,
       gp = gpar(fill = c("skyblue4")),
       labeling = labeling_cboxed(tl_labels = TRUE,
                      boxes = F,
                      clip = TRUE,
                      pos labels = "center",
                      offset varnames = c(left = 0.2),
                      offset_labels = c(left = 1.5).
                      gp_labels=gpar(fontsize=20),
                      gp varnames=gpar(fontsize=24)),
       margins=unit(1, "lines"))
```

Wykres mozaikowy - 2 wymiary

	Niskie	Wysokie
Młody	17.39130	26.08696
Stary	39.13043	17.39130

Wykres mozaikowy - 2 wymiary

Wykres mozaikowy - 2 wymiary

```
mosaic(~ Wiek + Wyksztalcenie, mozaikowy,
       gp = gpar(fill = c("skyblue4")),
       labeling = labeling_cboxed(tl_labels = TRUE,
          boxes = F,
          clip = TRUE,
          pos labels = "center",
          offset varnames = c(left = -0.2),
          offset_labels = c(left = 1, 1),
          gp_labels=gpar(fontsize=20),
          gp varnames=gpar(fontsize=24)),
       margins=unit(c(7,1,1,3), "lines"))
```

Wykres mozaikowy - 3 wymiary

Wiek	Wyksztalcenie	Klasyka	Freq
Młody	Niskie	Nie	12.608696
Stary	Niskie	Nie	31.739130
Młody	Wysokie	Nie	17.652174
Stary	Wysokie	Nie	8.260870
Młody	Niskie	Tak	4.782609
Stary	Niskie	Tak	7.391304
Młody	Wysokie	Tak	8.434783
Stary	Wysokie	Tak	9.130435

Wykres mozaikowy - 3 wymiary

Wykres mozaikowy - 3 wymiary

```
mosaic(~ Wiek + Wyksztalcenie + Klasyka, mozaikowy,
       gp = gpar(fill = c("indianred2", "skyblue4")),
       labeling = labeling_border(
                  boxes = F.
                  clip = TRUE,
                  pos_labels = "center",
                  offset varnames = c(left = -0.1,
                                      top = -0.5,
                                       right = -0.5),
                  offset labels = c(left = 1, 1),
                  gp_labels=gpar(fontsize=20),
                  gp_varnames=gpar(fontsize=24)),
       margins=unit(c(7,7,1,7), "lines"))
```



```
mosaic(~ Pclass + Survived, dane_Titanic,
       gp = gpar(fill = c("indianred2", "skyblue4")),
       labeling = labeling_border(
                  boxes = F.
                  clip = TRUE,
                  pos labels = "center",
                  offset_varnames = c(left = 0.1,
                                      top = 0.3),
                  offset labels = c(left = 2, 2),
                  gp labels=gpar(fontsize=20),
                  gp_varnames=gpar(fontsize=24)),
       margins=unit(c(7,1,1,7), "lines"))
```


Wykres mozaikowy, przedstawia udział osób z różnych klas w rozbiciu na przeżycie. Pole każdego prostokąta odpowiada udziałowi określonej grupy klasa/przeżycie w populacji, wysokość prostokąta odpowiada udziałowi osób z danej klasy a szerokość udziałowi osób, które przeżyły lub nie.


```
mosaic(~ Sex + Pclass + Survived , dane_Titanic,
       gp = gpar(fill = c("indianred2", "skyblue4")),
       labeling= labeling_border(
                     rot labels = c(0,0,90,0),
                     just labels = c("left", "center",
                                  "center", "center"),
                     pos labels = "center",
                     offset varnames = c(left = 1.1),
                     offset labels = c(left = 0.5),
                     gp labels=gpar(fontsize=20),
                     gp_varnames=gpar(fontsize=24)),
       margins=unit(c(5,7,1,7), "lines"))
```

Analiza korespondencji

Analiza korespondencji - opis

Celem analizy korespondencji jest graficzne przedstawienie wyników analizy zależności zmiennych wielokategorialnych (liczba kategorii większa od 2) na mapie percepcji w niskowymiarowej przestrzeni

```
## [1] "Wife"
                       "Alternating" "Husband"
                                                     "Jointly"
                                          "Breakfeast" "Tidying"
##
   [1] "Laundry"
                  "Main_meal" "Dinner"
   [6] "Dishes"
                                                     "Finances"
##
                  "Shopping" "Official"
                                          "Driving"
  [11] "Insurance"
                  "Repairs" "Holidays"
## # A tibble: 6 x 4
##
     Wife Alternating Husband Jointly
##
    <int>
               <int>
                      <int>
                             <int>
## 1
    156
                 14
                          2
                                 4
                          5
## 2 124
                 20
                                 4
## 3 77
                 11
                                13
## 4 82
                 36
                         15
## 5 53
                 11
                          1
                                57
       32
                  24
                          4
                                53
## 6
```

	Wife	Husband	Jointly
Laundry	156	2	4
Repairs	0	160	2
Holidays	0	6	153

```
library("ca")
wynik <- ca(domowe_maly)</pre>
```

```
##
## Principal inertias (eigenvalues):
##
        value % cum% scree plot
##
   dim
## 1
      0.947364 51.7 51.7 ********
## 2 0.884446 48.3 100.0 *******
##
##
   Total: 1.831810 100.0
##
##
## Rows:
            mass qlt inr k=1 cor ctr k=2 cor c
##
      name
## 1 | Lndr | 335 1000 343 | -1349 971 644 | -232 29 3
## 2 | Rprs | 335 1000 330 | 888 437 279 | -1008 563,038
```

327 | 469 121 77 | 1264 879 59

3 | Hldv | 329 1000

	Wife	Husband	Jointly
Laundry	156	2	4
Repairs	0	160	2
Dishes	32	4	53

```
library("ca")
wynik <- ca(domowe_maly)</pre>
```

```
##
## Principal inertias (eigenvalues):
##
         value % cum%
##
   dim
                             scree plot
       0.924669 68.5 68.5 **********
## 1
      0.425811 31.5 100.0 ******
##
   2
##
##
   Total: 1.350480 100.0
##
##
## Rows:
            mass glt inr k=1 cor ctr k=2 cor ctr
##
      name
## 1 | Lndr | 392 1000 303 | -841 680 300 | -578 320 307
```

2 | Rprs | 392 1000 415 | 1193 997 604 | -63

283 | -640 232 96 | 1167 768 689

215 1000

3 | Dshs |

	Wife	Husband	Jointly
Laundry	156	2	4
Repairs	0	160	2
Finances	13	21	66

```
library("ca")
wynik <- ca(domowe_maly)</pre>
```

```
##
## Principal inertias (eigenvalues):
##
       value % cum% scree plot
##
   dim
## 1 0.867844 62.3 62.3 **********
## 2 0.525516 37.7 100.0 ******
##
##
   Total: 1.393360 100.0
##
##
## Rows:
     name mass qlt inr k=1 cor ctr k=2 cor ctr
##
## 1 | Lndr | 382 1000 365 | -1104 916 536 | -335 84 83
## 2 | Rprs | 382 1000 346 | 1021 826 459 | -468 174 155
```

3 | Fnnc | 236 1000 289 | 134 11 5 | 1301 989 759

	Wife	Husband	Jointly
Laundry	156	2	4
Repairs	0	160	2
Official	12	23	15

```
library("ca")
wynik <- ca(domowe_maly)</pre>
```

```
##
## Principal inertias (eigenvalues):
##
        value % cum% scree plot
##
   dim
      0.869322 83.3 83.3 *************
## 1
## 2 0.173676 16.7 100.0 ****
##
##
   Total: 1.042998 100.0
```

##

3 | Offc | 134 1000

Rows: mass qlt inr k=1 cor ctr k=2 cor ctr ## name## 1 | Lndr | 433 1000 447 | -1030 986 528 | -125 14 39

149 l

2 | Rprs | 433 1000 405 | 966 958 465 | -202 42 103

204 36 6 | 1057 964 860

2

l Mn m l

88

```
##
## Principal inertias (eigenvalues):
##
         value % cum% scree plot
##
   dim
## 1
       0.542889 48.7 48.7 ********
   2 0.445003 39.9 88.6 *******
##
        0.127048 11.4 100.0
##
                             ***
##
##
   Total: 1.114940 100.0
##
##
## Rows:
             mass qlt inr k=1 cor ctr k=2 cor ctr
##
       name
## 1 | Lndr | 101 925 120 | -992 740 183 | -495 185 6356
```

974 81 | -876 742 124 | -490 232 4

