MA427 Lecture 6 Total unimodularity

Giacomo Zambelli

18 February, 2019

Today's lecture

- ► Facility location
- ► Matching and assignment
- ► Totally unimodular matrices
- ► Network flow problems

MILP Formulations

$$z_I = \max c^{\top} x$$
 $Ax \le b$
 $x \ge 0$
 $x_i \in \mathbb{Z}, \quad i \in I.$

$$X = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0, x_i \in \mathbb{Z} \text{ for all } i \in I\}$$

A formulation for the above (MILP) is a system

$$A'x \le b'$$
$$x \ge 0$$

such that

$$X = \{x \in \mathbb{R}^n : A'x \le b', x \ge 0, x_i \in \mathbb{Z} \text{ for all } i \in I\}.$$

MILP Formulations

Two formulations for X:

$$Ax \le b$$

 $x \ge 0$ and $A'x \le b$
 $x \ge 0$

The first formulation is better than the second if the polyhedron determined by the first system of constraints is contained in the one determined by the second system.

Note: if $Ax \le b$, $x \ge 0$ is a better formulation than $A'x \le b'$, $x \ge 0$, then $z_1 < z_1 < z_1'$.

Better formulations give tighter lower-bounds.

Facility location

- n locations, m customer.
- $ightharpoonup d_i$: demand of customer i, i = 1, ..., m.
- ► Costs:
 - $ightharpoonup c_{ij}$: unit cost of servicing *i* from *j*;
 - f_j : operating/fixed cost in location j;

Facility location

- n locations, m customer.
- $ightharpoonup d_i$: demand of customer $i, i = 1, \ldots, m$.
- Costs:
 - $ightharpoonup c_{ij}$: unit cost of servicing *i* from *j*;
 - f_j : operating/fixed cost in location j;

Variables:

$$x_j = \begin{cases} 1 & \text{if facility is built at } j; \\ 0 & \text{otherwise.} \end{cases}$$

 \triangleright y_{ij} : fraction of annual demand d_i provided from j to i;

Facility location: two possible formulations

Aggregated formulation

Facility location: two possible formulations

Aggregated formulation

Disaggregated formulation

Facility location: comparing formulations

The disaggregated formulation is better than the aggregated one, because if (x, y) satisfies the disaggregated constraints, it also satisfies the aggregated ones.

$$y_{1j} \leq x_j$$

$$y_{2j} \leq x_j$$

$$\vdots$$

$$y_{mj} \leq x_j$$

$$\sum_{i} y_{ij} \leq mx_j$$

Strictly better: consider n = 2, m = 4

Ideal formulations

Given a set $X \subseteq \mathbb{R}^n$, the convex hull of X, denoted by conv(X), it the minimal convex set containing X.

Theorem (Fundamental theorem of Integer Programming)

Given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, let $X = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0, x_i \in \mathbb{Z} \text{ for } i \in I\}$. Then $\operatorname{conv}(X)$ is a polyhedron.

 \Longrightarrow there exists $\tilde{A} \in \mathbb{Q}^{\tilde{m} \times n}$ and $\tilde{b} \in \mathbb{Q}^{\tilde{m}}$ such that $\operatorname{conv}(X) = \{x \in \mathbb{R}^n : \tilde{A}x \leq \tilde{b}, \, x \geq 0\}.$

 $\tilde{A}x \leq \tilde{b}, x \geq 0$ is the ideal formulation for X.

Ideal formulations

Ideal formulations

Theorem For any $c \in \mathbb{R}^n$, let

$$z_I = \max c^{\top} x$$
 and $\tilde{z} = \max c^{\top} x$
 $x \in X$ $x \in \operatorname{conv}(X)$

Then $z_l = \tilde{z}$. Furthermore, all vertices of $\operatorname{conv}(X)$ are elements of X.

Matchings and assignment problem

Graph G = (V, E): finite set V of elements, called *nodes*, and a set E of unordered pairs of nodes, called *edges*.

Matching in G: set of edges $M \subseteq E$ such that the elements of M are pairwise disjoint.

Maximum cardinality matching problem: Find a matching of G with the largest possible number of elements

Perfect matching: if every node of G belongs to exactly one edge of M.

Perfect matchings: a formulation

Perfect matching problem: Given weights c_e on the edges, find a perfect matching of minimum total weight.

$$\begin{aligned} & \min \sum_{e \in E} c_e x_e \\ & \sum_{u: uv \in E} x_{uv} = 1, \quad v \in V \\ & x_{uv} \geq 0, \qquad uv \in E \\ & x_{uv} \in \mathbb{Z}, \qquad uv \in E. \end{aligned}$$

Not an ideal formulation for arbitrary graphs!

- ▶ A graph G = (V, E) is said to be bipartite if its node set V can be partitioned into two disjoint sets V_1 , V_2 such that every edge $uv \in E$, exactly one node among u and v is in V_1 , and he other is in V_1 .
- ▶ The pair V_1 , V_2 is a bipartition of G.

► The graph on the left is bipartite, the graph on the right is not.

Given a bipartite graph G=(V,E) with bipartition V_1,V_2 such that $|V_1|=|V_2|$ and costs c_e on every edge $e\in E$, assign to every node u in V_1 exactly one node v in V_2 so that $uv\in E$, every element of V_2 is assigned to exactly one element of V_1 , and the total cost of the pairs selected is minimized.

In other words, find a perfect matching of minimum total cost.

Given a bipartite graph G=(V,E) with bipartition V_1,V_2 such that $|V_1|=|V_2|$ and costs c_e on every edge $e\in E$, assign to every node u in V_1 exactly one node v in V_2 so that $uv\in E$, every element of V_2 is assigned to exactly one element of V_1 , and the total cost of the pairs selected is minimized.

In other words, find a perfect matching of minimum total cost.

$$\min \sum_{uv \in E} c_{uv} x_{uv}$$

$$\sum_{v: uv \in E} x_{uv} = 1, \quad u \in V_1,$$

$$\sum_{u: uv \in E} x_{uv} = 1, \quad v \in V_2,$$

$$x_{uv} \geq 0, \quad uv \in E$$

$$x_{uv} \in \mathbb{Z}, \quad uv \in E$$

Ideal formulation for bipartite graphs.

$$\begin{array}{rcl} \min \sum_{uv \in E} c_{uv} x_{uv} \\ \sum_{v:uv \in E} x_{uv} &=& 1, \quad u \in V_1, \\ \sum_{u:uv \in E} x_{uv} &=& 1, \quad v \in V_2, \\ x_{uv} &\geq& 0, \quad uv \in E \\ x_{uv} &\in& \mathbb{Z}, \quad uv \in E \end{array}$$

It is of the form

$$\min c^T x$$
 $A(G) x = 1$
 $x \ge 0$
 $x \in \mathbb{Z}^{|E|}$

How does the matrix A(G) look? Incidence matrix of G: 0,1 matrix A(G) with |V| rows and |E| columns, where

$$a_{v,e} = \begin{cases} 1 & \text{if } v \in e, \\ 0 & \text{otherwise.} \end{cases}$$
 $v \in V, e \in E.$

Incidence matrix

Incidence matrix of G: 0,1 matrix A(G) with |V| rows and |E| columns, where

$$a_{v,e} = \begin{cases} 1 & \text{if } v \in e, \\ 0 & \text{otherwise.} \end{cases}$$
 $v \in V, e \in E.$

		v_1v_5	$v_1 v_7$	v_2v_6	<i>V</i> ₂ <i>V</i> ₈	<i>V</i> 3 <i>V</i> 5	<i>V</i> 3 <i>V</i> 6	<i>V</i> ₄ <i>V</i> ₅	V4 V7	<i>V</i> 4 <i>V</i> 8
-	v_1	1	1	0	0	0	0	0	0	0
	<i>v</i> ₂	0	0	1	1	0	0	0	0	0
	<i>V</i> 3	0	0	0	0	1	1	0	0	0
	<i>V</i> ₄	0	0	0	0	0	0	1	1	1
	<i>V</i> ₅	1	0	0	0	1	0	1	0	0
	<i>v</i> ₆	0	0	1	0	0	1	0	0	0
	V7	0	1	0	0	0	0	0	1	0
	<i>v</i> ₈	0	0	0	1	0	0	0	0	1

$$\min_{G} c^{T} x$$

$$A(G) x = \mathbf{1}$$

$$x \ge 0, x \in \mathbb{Z}^{|E|},$$

$$\begin{aligned} \min c^T x \\ A(G) & x = \mathbf{1} \\ x \ge 0, & x \in \mathbb{Z}^{|E|}, \end{aligned}$$

Definition

A matrix A is said totally unimodular if, for every square submatrix B of A, $\det(B) \in \{0, +1, -1\}$.

$$\min_{G} c^{T} x$$

$$A(G) x = \mathbf{1}$$

$$x \ge 0, x \in \mathbb{Z}^{|E|},$$

Definition

A matrix A is said totally unimodular if, for every square submatrix B of A, $det(B) \in \{0, +1, -1\}$.

Theorem

Let $A \in \mathbb{R}^{m \times n}$ be totally unimodular matrix, and let $b \in \mathbb{Z}^m$. Then all basic solutions of

$$Ax = b$$
$$x \ge 0$$

are integer.

$$\min_{G} c^{T} x$$

$$A(G) x = \mathbf{1}$$

$$x \ge 0, x \in \mathbb{Z}^{|E|},$$

Definition

A matrix A is said totally unimodular if, for every square submatrix B of A, $det(B) \in \{0, +1, -1\}$.

Theorem

Let $A \in \mathbb{R}^{m \times n}$ be totally unimodular matrix, and let $b \in \mathbb{Z}^m$. Then all basic solutions of

$$Ax = b$$
$$x \ge 0$$

are integer.

Theorem

The incidence matrix of a bipartite graph is totally unimodular.

General graphs

If a graph G is not bipartite, then A(G) is not totally unimodular.

Example:

	ab	ac	bc
а	1	1	0
b	1	0	1
С	0	1	1

The incidence matrix in this case has determinant -2, hence it is not totally unimodular.

Theorem

Let $A \in \mathbb{R}^{m \times n}$ be a totally unimodular matrix. Given a vector $b \in \mathbb{Z}^m$, all vertices of the polyhedron $\{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ are integer. Similarly, all vertices of the polyhedron $\{x \in \mathbb{R}^n : Ax \leq b\}$ are integer.

Fractional feasibility implies integer feasibility

Corollary

If A is a TU matrix, and the system $\{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ is feasible, then it must have an integer feasible solution.

Example: Let G = (V, E) be a bipartite graph such that every node has exactly k incident edges for some integer $k \ge 1$. (Called a k-uniform bipartite graph.)

Fractional feasibility implies integer feasibility

Corollary

If A is a TU matrix, and the system $\{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ is feasible, then it must have an integer feasible solution.

Example: Let G = (V, E) be a bipartite graph such that every node has exactly k incident edges for some integer $k \ge 1$. (Called a k-uniform bipartite graph.)

Show that G has a perfect matching.

Theorem

Let $A \in \mathbb{R}^{m \times n}$ be a totally unimodular matrix. The following hold

- i) Submatrices of A are T.U.
- ii) A^{\top} is T.U.
- iii) If matrix A' is obtained from A by multiplying one row or column by -1, then A' is T.U.
- iv) The matrix (A|-A), obtained by juxtaposing the matrices A and -A, is T.U.
 - v) The matrix (A|e) is T.U., where e is a unit vector (one entry 1, all others 0).
- vi) The matrix (A|I), obtained by juxtaposing the matrix A and the identity matrix I, is T.U.

$$\left[\begin{array}{cccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array}\right]$$

Corollary

Let $A \in \mathbb{R}^{m \times n}$ be a totally unimodular matrix. Given vector $b, d \in \mathbb{Z}^m$ and $\ell, u \in \mathbb{Z}^n$ all vertices of the polyhedron

$$\{x \in \mathbb{R}^n : b \le Ax \le d, \ \ell \le x \le u\}$$

are integer.

Network problems

Theorem

Let A be a matrix with all entries in $\{0,1,-1\}$, such that in every column of A there is exactly one entry of value 1, one entry of value -1, and all other entries with value 0. Then A is totally unimodular.

Example

$$\left[\begin{array}{ccc} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{array}\right]$$

Network problems

Directed graph G = (V, E), source $s \in V$, sink $t \in V$, edge capacities $u : E \to \mathbb{R}$.

Maximum flow problem: find a vector $x : E \to \mathbb{R}$ such that

- ▶ the total incoming amount equals the total outgoing amount at every node $v \in V \setminus \{s, t\}$
- ▶ the flow on every edge is between 0 and the upper bound: 0 < x < u.
- Maximize the total amount of flow leaving s.

Network problems

Directed graph G=(V,E), costs $c:E\to\mathbb{R}$, lower and upper capacity bounds $\ell,u:E\to\mathbb{R}$.

Feasible circulation: vector $x : E \to \mathbb{R}$ such that

- ▶ the total incoming amount equals the total outgoing amount at every node $v \in V$.
- ▶ it is between the upper and lower bounds: $\ell \le x \le u$.

Find a minimum cost feasible circulation.

Perfect matchings: ideal formulation [Edmonds, 1965]

For every graph G, the ideal formulation for the maximum weight perfect matching problem is

$$\begin{array}{rcl} \min \sum_{e \in E} c_e x_e \\ \sum_{u: uv \in E} x_{uv} &=& 1 & v \in V, \\ \sum_{e \in E[U]} x_e &\leq & \frac{|U|-1}{2} & U \subseteq V, \, |U| \text{ odd,} \\ x_e &\geq & 0 & e \in E. \end{array}$$

where $E[U] := \{uv \in E : u, v \in U\}.$