# Approximating likelihood ratios with calibrated classifiers

Gilles Louppe
ATLAS ML workshop

March 31, 2016

#### Joint work with



Kyle Cranmer New York University



Juan Pavez
Federico Santa María University

See (Cranmer et al., 2015) for full details.

# Likelihood-free setup

- Complex simulator p parameterized by  $\theta$ ;
- Samples  $\mathbf{x} \sim p$  can be generated on-demand;
- ... but the likelihood  $p(\mathbf{x}|\theta)$  cannot be evaluated!



# Simple hypothesis testing

- Assume some observed data  $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ ;
- Test a null  $\theta = \theta_0$  against an alternative  $\theta = \theta_1$ ;
- The Neyman-Pearson lemma states that the most powerful test statistic is

$$\lambda(\mathcal{D}; \theta_0, \theta_1) = \prod_{\mathbf{x} \in \mathcal{D}} \frac{\rho_{\mathbf{X}}(\mathbf{x}|\theta_0)}{\rho_{\mathbf{X}}(\mathbf{x}|\theta_1)}.$$

• ... but neither  $p_{\mathbf{X}}(\mathbf{x}|\theta_0)$  nor  $p_{\mathbf{X}}(\mathbf{x}|\theta_1)$  can be evaluated!

## Straight approximation

- 1. Approximate  $p_{\mathbf{X}}(\mathbf{x}|\theta_0)$  and  $p_{\mathbf{X}}(\mathbf{x}|\theta_1)$  individually, using density estimation algorithms;
- 2. Evaluate their ratio  $r(\mathbf{x}; \theta_0, \theta_1)$ .

Works fine for low-dimensional data, but because of the curse of dimensionality, this is in general too difficult a problem!

$$\frac{p_{\mathbf{x}}(\mathbf{x}|\theta_0)}{p_{\mathbf{x}}(\mathbf{x}|\theta_1)} = r(\mathbf{x};\theta_0,\theta_1)$$

When solving a problem of interest, do not solve a more general problem as an intermediate step. – Vladimir Vapnik

# Approximating likelihood ratios with classifiers

• Theorem: The likelihood ratio is invariant under the change of variable  $\mathbf{U} = s(\mathbf{X})$ , provided  $s(\mathbf{x})$  is monotonic with  $r(\mathbf{x})$ .

$$r(\mathbf{x}; \theta_0, \theta_1) = \frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)} = \frac{p_{\mathbf{U}}(s(\mathbf{x})|\theta_0)}{p_{\mathbf{U}}(s(\mathbf{x})|\theta_1)}$$

- Well, a classifier trained to distinguish  $\mathbf{x} \sim p_0$  from  $\mathbf{x} \sim p_1$  yields a decision function  $s(\mathbf{x})$  which is monotonic with  $r(\mathbf{x})$ .
- Estimating  $p(s(\mathbf{x})|\theta)$  is now easy, since the change of variable  $s(\mathbf{x})$  projects  $\mathbf{x}$  in a 1D space, where only the informative content of the ratio is preserved.
- Disentangle training from calibration.

# Inference and composite hypothesis testing

Approximated likelihood ratios can be used for inference, since

$$\begin{split} \hat{\theta} &= \arg\max_{\theta} p(\mathcal{D}|\theta) \\ &= \arg\max_{\theta} \prod_{\mathbf{x} \in \mathcal{D}} \frac{p(\mathbf{x}|\theta)}{p(\mathbf{x}|\theta_1)} \\ &= \arg\max_{\theta} \prod_{\mathbf{x} \in \mathcal{D}} \frac{p(s(\mathbf{x};\theta,\theta_1)|\theta)}{p(s(\mathbf{x};\theta,\theta_1)|\theta_1)} \end{split} \tag{1}$$

where  $\theta_1$  is fixed and  $s(\mathbf{x}; \theta, \theta_1)$  is a family of classifiers parameterized by  $(\theta, \theta_1)$ .

Accordingly, generalized (or profile) likelihood ratio tests can be evaluated in the same way.

# Parameterized learning

For inference, we need to build a family  $s(\mathbf{x}; \theta, \theta_1)$  of classifiers.

- One could build a classifier s independently for all  $\theta, \theta_1$ . But this is computationally expensive and would not guarantee a smooth evolution of  $s(\mathbf{x}; \theta, \theta_1)$  as  $\theta$  varies.
- Solution: build a single parameterized classifier instead, where parameters are additional input features (Baldi et al., 2016).

```
 \begin{split} \mathcal{T} &:= \{\}; \\ \text{while } & \operatorname{size}(\mathcal{T}) < \textit{N} \  \  \, \text{do} \\ & \operatorname{Draw} \  \, \theta_0 \sim \pi_{\Theta_0}; \\ & \operatorname{Draw} \  \, \mathbf{x} \sim p(\mathbf{x}|\theta_0); \\ & \mathcal{T} := \mathcal{T} \cup \{((\mathbf{x},\theta_0,\theta_1),y=0)\}; \\ & \operatorname{Draw} \  \, \theta_1 \sim \pi_{\Theta_1}; \\ & \operatorname{Draw} \  \, \mathbf{x} \sim p(\mathbf{x}|\theta_1); \\ & \mathcal{T} := \mathcal{T} \cup \{((\mathbf{x},\theta_0,\theta_1),y=1)\}; \\ & \text{end while} \\ & \operatorname{Learn a single classifier} \  \, \mathbf{s}(\mathbf{x};\theta_0,\theta_1) \  \, \text{from } \mathcal{T}. \end{split}
```

### Example: Inference from multidimensional data

# Let assume 5D data x generated from the following process $p_0$ :

- 1.  $\mathbf{z} := (z_0, z_1, z_2, z_3, z_4)$ , such that  $z_0 \sim \mathcal{N}(\mu = \alpha, \sigma = 1)$ ,  $z_1 \sim \mathcal{N}(\mu = \beta, \sigma = 3)$ ,  $z_2 \sim \mathsf{Mixture}(\frac{1}{2}\,\mathcal{N}(\mu = -2, \sigma = 1), \frac{1}{2}\,\mathcal{N}(\mu = 2, \sigma = 0.5))$ ,  $z_3 \sim \mathsf{Exponential}(\lambda = 3)$ , and  $z_4 \sim \mathsf{Exponential}(\lambda = 0.5)$ ;
- x := Rz, where R is a fixed semi-positive definite 5 × 5 matrix defining a fixed projection of z into the observed space.

Our goal is to infer the values  $\alpha$  and  $\beta$  based on  $\mathcal{D}$ .



Observed data  $\mathcal D$ 

• Check out (Louppe et al., 2016) to reproduce this example.

### Example: Inference from multidimensional data

### Recipe:

- 1. Build a single parameterized classifier  $s(\mathbf{x}; \theta_0, \theta_1)$ , in this case a 2-layer NN trained on 5+2 features, with the alternative fixed to  $\theta_1 = (\alpha = 0, \beta = 0)$ .
- 2. Find the approximated MLE  $\hat{\alpha}, \hat{\beta}$  by solving Eqn. 1.
  - Solve Eqn. 1 using likelihood scans or through optimization.
  - Since the generator is inexpensive,  $p(s(\mathbf{x}; \theta_0, \theta_1)|\theta)$  can be calibrated on-the-fly, for every candidate  $(\alpha, \beta)$ , e.g. using histograms.
- 3. Construct the log-likelihood ratio (LLR) statistic

$$-2\log\Lambda(\alpha,\beta) = -2\log\frac{p(\mathcal{D}|\alpha,\beta)}{p(\mathcal{D}|\hat{\alpha},\hat{\beta})}$$



# Summary

- We proposed an approach for approximating LR in the likelihood-free setup.
- Evaluating likelihood ratios reduces to supervised learning.
   Both problems are deeply connected.
- Alternative to Approximate Bayesian Computation, without the need to define a prior over parameters.

### References

- Baldi, P., Cranmer, K., Faucett, T., Sadowski, P., and Whiteson, D. (2016). Parameterized Machine Learning for High-Energy Physics. arXiv preprint arXiv:1601.07913
- Cranmer, K., Pavez, J., and Louppe, G. (2015). Approximating likelihood ratios with calibrated discriminative classifiers. arXiv preprint arXiv:1506.02169.
- Louppe, G., Cranmer, K., and Pavez, J. (2016). carl: a likelihood-free inference toolbox. http://dx.doi.org/10.5281/zenodo.47798, https://github.com/diana-hep/carl.



# Likelihood ratio of mixtures

# Diagnostics

# Applications in High Energy Physics