------ทบทวนเคมีทั่วไปเพื่อ ENT'

ปริมาณสารสัมพันธ์

สิ่งที่นักเรียนต้องรู้ คือ

ธาตุ → อะตอม → สัญลักษณ์ใช้ X สัญลักษณ์ของธาตุทั่วไป ดังนี้ X= H, C,

สัญลักษณ์นิวเคลียร์เขียนเป็น $^{\mathrm{A}}_{7}$ X อ่าน Z, X,A ตามลำดับ

A หมายถึง เลขมวล (Mass number) เท่ากับจำนวน Proton + neutron

X หมายถึง สัญลักษณ์ของธาตุทั่วไปเป็นจำนวนธาตุ 1 อะตอมสำหรับอ่านทั่วไป

Z หมายถึง เลขอะตอม (atomic number) เท่ากับ จำนวน Proton หรือประจุในนิวเคลียร์มีค่าเท่ากับ จำนวน electron ที่อยู่รอบ ๆ นิวเคลียร์

<u>สารประกอบ</u> สูตร = สัญลักษณ์ + กัน

สูตรของสารประกอบโดยทั่วไป ๆ ไปจะใช้ XY แทน

$$xy = x + y$$

เช่น น้ำ $= H_2O = 2H + O$

กรดกำมะถัน หรือ กรดซัลฟูริก ${\rm H_2SO_4}$

กรดซัลฟูริก =
$$H_2SO_4$$
 = [$2H + S + 4$ (0)] อะตอม

ธาตุ (อะตอม) มีค่าเป็นตัวเลข 3 ค่า คือ

1) จำนวนโมล = 1

2) จำนวนอะตอม = 6.02×10^{23} อะตอม (เลข Avogadro)

3) มวลอะตอม = Ar (Relative atomic mass)

= มวลเปรียบเทียบกับ ธาตุมาตรฐานเช่น "H", "C" และ "O" ดังนี้

มวล 1 อะตอมของธาตุ = Ar × 1amu

เรื่อง ปริมาณสารสัมพันธ์

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.ดร. บัญชา พูลโภคา

1 amu = 1 atomic mass unit
$$= 1 \times 1.66 \times 10^{-24} g$$

$$= มวล 1 อะตอมของ H (เดิม)$$

$$= 1 \times \frac{1}{12}$$
มวล 1 อะตอมของ 12 C ปัจจุบัน
$$= 1 \times \frac{1}{16}$$
มวล 1 อะตอมของ 16 O

มวล 1 อะตอมของธาตุหาได้จากมวลเฉลี่ยของธาตุไอโซโทปที่มีอยู่ในธรรมชาติ เช่น

1. จงหามวลอะตอมของ Ne ไอโซโทป ที่ได้จาก mass spectrum ของ Ne ดังนี้

ใอโซโทป	ปริมาณสาร (amu)
²⁰ Ne	114
²¹ Ne	0.2
²² Ne	11.2

มวลอะตอมของ Ne = เท่าใด

วิเคราะห์ใจทย์ กำหนดเลขมวลและปริมาณของไอโซโทป

วิธีทำ หามวลของไอโซโทปรวมกันแล้วเฉลี่ย ดังนี้

21
Ne = 0.2 × 21 = 4.2 amu

22
Ne = 11.2 × 22 = 246.4 amu

มวล 1 อะตอม = Ar × 1 amu

$$Ar = \frac{$$
มวลาอะตอม(เฉลี่ย)}{1amu} = \frac{20.18amu}{1amu} = 20.2

2. จงหามวลอะตอมของธาตุคาร์บอนที่มี 2 ไอโซโทป ตามผลการทดลองในตาราง

ใอโซโทป	ปริมาณ%	มวล(amu)
¹² C	89.98	12.00
¹³ C	1.11	13.003

วิเคราะห์โจทย์ กำหนดปริมาณเป็น % มวลของไอโซโทป ถามมวลอะตอม

วิธีทำ

- 1. หามวล 1 อะตอมของธาตุ ใอโซโทปเฉลี่ย
- 2. หามวลอะตอม (Ar)

จาก 1 สูตร

ตัวอย่างข้อสอบ ENT'

1. ธาตุ A 10^{10} ตะตอมมีมวล = a กรัม ถ้าใช้มวล B 1 อะตอมซึ่ง = b กรัม เป็นมาตรฐาน มวล อะตอมของธาตุ A เท่ากับเท่าไร

1)
$$\frac{a}{10^{10}}$$

2)
$$\frac{10^{-10} a}{b}$$

$$3) \quad \frac{10^{10} \text{ b}}{\text{a}}$$

วิเคราะห์โจทย์

ธาตุ A
$$10^{10}$$
 อะตอมมีมวล = a (g)

(ใช้ B เป็นธาตุมาตรฐาน)

หน้าที่

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.คร. บัญชา พูลโภคา

มวล1อะตอม

ธาตุ A
$$10^{10}$$
 อะตอมมีมวล = a (g)

ธาตุ A 1 อะตอมมีมวล =
$$\frac{a}{10^{10}}(g)$$
 = $a \cdot 10^{10} a \cdot (g)$
= $\frac{a}{10^{10}}$ = $10^{-10}(a)$

.. มวลอะตอม A
$$= \frac{$$
มวล1อะตอมA $}{$ มวล1อะตอมB $} = \frac{10^{-10} (a)}{b}$

ตอบข้อ 2

- 2. ธาตุ ก มีมวลอะตอม = 32 จงพิจารณาข้อใดถูกต้อง
 - 1) ธาตุ ก อะตอม มีมวล 32 g.
 - 2) ธาตุ ก อะตอมมีมวลเป็น 32 เท่าของ C- 12 1 อะตอม
 - 3) ธาตุ ก a อะตอมมีมวลเท่ากับ $32 \times 1.66 \times 10^{-24}$ a กรัม
 - 4) ธาตุ ก 32 g มีจำนวนอะตอมเท่ากับ 1.66×10^{24} อะตอม

<u>วิเคราะห์โจทย์</u> กำหนดให้ธาตุ ก. มีมวลอะตอม = 32

1 amu =
$$1.66 \times 10^{-24}$$
 g

Ar = Relative atomic mass = มวลอะตอม = 32

หมายเหตุ วิธีคิดลัด จากหลักข้อ 2 พิจารณาคำตอบข้อ 3 ได้ทันที่

- 3. ธาตุ X หนึ่งอะตอมมีมวลเป็น 4 เท่าของมวลของ C -12 หนึ่ง อะตอม ธาตุ X มีมวลอะตอมเท่าใด
 - 1) 4

เรื่อง ปริมาณสารสัมพันธ์

- 2) 24
- 3) 48
- 4) 96

<u>ว**ิเคราะห์โจทย์**</u> ให้ธาตุ X 1 อะตอม = 4 ×มวล 1 อะตอมของ ¹²C

ถามมวลอะตอมของธาตุ X

วิธีทำ ใช้หลัก มวล 1 อะตอมของ X = Ar × 1 amu

มวล 1 อะตอมของ C = 12 × 1 amu

.. มวล 1 อะตอมของ X = 4 x 12 x 1 amu

.. Ar = 48 = มวลอะตอม

<u>ตอบข้อ 3</u>

- 4. ออกซิเจน กี่กรัม จึงจะมีจำนวนอะตอมเท่ากับ 54 g ของธาตุ C
 - 1) 32
- 2) 54
- 3) 64
- 4) 72

<u>วิเคราะห์ใจทย์</u> กำหนด C 54 g = O กี่กรัม

วิสีทำ หลัก C = 12 แปลว่า

 $C = 12 g \, \vec{l} = 6.02 \times 10^{23}$ อะตอม = 1 โมล

 $O = 16 g \, \tilde{\text{A}} = 6.02 \times 10^{23}$ อะตอม = 1 โมล

(ให้หามวลของธาตุเป็นโมลจากสูตร)

จำนวนโมล =
$$\frac{\text{มวลเป็นกรัม}}{\text{มวลอะตอม}}$$

$$C = \frac{54(g)}{12}$$

$$O = \frac{x(g)}{16}$$

ถ้าจำนวนโมลเท่า จำนวนอะตอมจะเท่ากันด้วย

$$\therefore \frac{X}{16} = \frac{54}{12}, \quad X = \frac{54}{12} | 16$$

$$= \frac{3 \times 18}{3 \times 4} | 4 \times 4 = 18 \times 14 = 72$$

ตจาเข้อ 4

หมายเหตุ พยายามทำตัวเลขหรือแตกตัวเลขที่มีค่ามากเป็นค่าน้อยจะตัดเลขหารที่เท่ากัน เป็นค่า 1 ได้

- 5. เมื่อนำเนื้อปลาชนิดหนึ่งมา 100 กรัม นำไปวิเคราะห์พบว่ามีปรอท 0.2 ส่วนในล้านส่วน โดยมวล เนื้อปลานี้มีปรอทอยู่กี่อะตอม (Hg = 200)
- 1) 2×10^{-5} 2) 6×10^{13} 3) 2×10^{16} 4) 6×10^{16}

<u>์ ว**ิเคราะห์โจทย์**</u> ให้ปลา 10⁶g มีปรอท = 0.2 g ในล้านกรัมของเนื้อปลา ถามปลา100 g มีปรอท = กื่อะตอม (1ล้าน = 10^6) <u>วิธีทำ</u> เปลี่ยน q→ อะตอม จากหลักดังนี้ มวล Hg 200g มีจำนวน = 6.02×10^{23} อะตอม มวล Hg 0.2 g มีจำนวน = N อะตอม $\frac{\text{orgon}}{\text{orgon}} = \frac{\text{N}}{\text{N}} = \frac{6.02 \times 10^{23}}{\text{M}}$ $N = 0.2 \left| \frac{6.02 \times 10^{23}}{200} \right|$ เนื้อปลา 10^6 g มี Hg = $0.2 \left| \frac{6.02 \times 10^{23}}{200} \right|$ atom 100 g = X atom $\frac{\text{Hg}}{\text{valen}} = \frac{X}{100} = \frac{0.2 \times 6.02 \times 10^{23}}{200 \times 10^{6}}$ $X = \frac{10^{-1}}{10^{2}} \left| 6.02 \times 10^{23} \right| 10^{2} \left| 10^{-6} \right|$ = 6.02 × 10⁻¹⁶ <u>ตอบข้อ ง</u>

สารประกอบเป็นโมเลกุล มีสูตรทั่วไป xy = x + y สารประกอบอิออนิกเป็นของแข็งและเป็นผลึก จึงมีสูตรทั่วไป เช่นเดียวกัน ไม่เรียกเป็นโมเลกุล แต่จะเรียกเป็นสูตร (formula)

เรื่อง ปริมาณสารสัมพันธ์

สำหรับธาตุที่ทราบกันแล้วว่า 1 โมเลกุลมี 2 อะตอม เช่น H_2 , O_2 , F_2 , Cl_2 , Br_2 และ l_2 เรียกว่าเป็น โมเลกุลของธาตุไม่ใช่สารประกอบ มีค่าที่ใช้คำนวณ 4 ค่าดังนี้

- g แทน gas
- Mr = Relative molecular mass = มวลโมเลกุล และ 1 โมล ของสารประกอบ = (Mr) g = 6.02×10^{23} โมเลกุล $= 22.4 \text{ dm}^3 \text{ n}^{1} \text{ STP (g)}$

มวล 1 โมเลกุลของสาร = Mr x I amu

ก๊าซ X_2 ที่มีมวล 1 โมเลกุลเป็น 5 เท่าของมวล 1 อะตอมของ C-12 ถามว่า ตัวอย่าง 1 มวลอะตอมของธาตุ X เท่ากัน (C = 12)

1. 120

2. 60

3. 30

4. 15

<u>วิเคราะห์โจทย์</u> กำหนดมวล 1 โมเลกุลของ $X_2 = 5$ (X) มวล 1 อะตอมของ C-12 ถามมวลอะตอมของ X

<u>วิธีทำ</u> จากที่เรารู้ คือ

มวล 1 โมเลกุลของ $X_2 = Mr \times 1$ amu

โจทย์ มวล 1 โมเลกุล $X_2 = 5 \times$ มวล 1อะตอม ของ C - 12

แทนค่า มวล 1อะตอมของ C-12 = 12 amu

∴ มวล 1 โมเลกุลของ
$$X_2 = 5 \times 12$$
 amu คังนั้น Mr = 60

$$\mathsf{Mr} = \mathsf{Agms} = \mathsf{bnm} + \mathsf{bnm} = \Sigma$$
มวลอะตอม

$$60 = X_2 = X + X = X + X$$

$$2X = 60 , X = 30$$

<u>ตอบข้อ 3</u>

<u>ตัวอย่าง</u> 2 พิจารณา

- ก. ก๊าซคาร์บอนไดออกไซด์ 18×10^{23} โมเลกูล
- ข. โพแทสเซียมไอออน 1.5×10^{23} ไอออน
- ค. ฟกสฟกรัส 0.602 \times 10²³ กะตกม
- ง. ตะกั่ว 1 อะตอม

การเปรียบเทียบจำนวนโมลในข้อใดถูก

<u>ว**ิเคราะห์โจทย์**</u> โจทย์กำหนด ก. CO_2 , ข. K^+ , ค. P , ง. Pbถามจำนวนโมลของสาร

จำนวนอะตอม

6.02×10²³

จำนวนโมลของสารประกอบ

มวลเป็นกรัม ນວດ ໂນເດກຸດ

จำนวนโมเลกุล

วิธีทำ จากโจทย์

จำนวนโมลของ Pb มีค่าต่ำสุด จึงตอบข้อ 1 ได้ ทันที เครื่องหมาย ">" ใน โจทย์มีค่ามากกว่า ถ้าใช้สูตรจะได้ค่าดังนี้

จำนวนโมล (ก) =
$$\frac{18\times10^{23}}{6.02\times10^{23}}$$
 (ข) = $\frac{1.5\times10^{23}}{6.02\times10^{23}}$

$$(2) = \frac{1.5 \times 10^{23}}{6.02 \times 10^{23}}$$

$$(P) = \frac{0.60 \times 10^{23}}{6.02 \times 10^{23}} \qquad (1) = \frac{1}{6.02 \times 10^{23}}$$

$$(3) = \frac{1}{6.02 \times 10^{23}}$$

<u>ตัวอย่าง 3</u>

ก๊าซ XY_2 จำนวน 1.18 imes 10 24 โมเลกุล จะมีมวลกี่กรัม กำหนดให้มวลอะตอมของ X = a กำหนดให้มวลอะตอมของ Y = b

1.
$$\frac{1}{3}$$
 (a + 2b) กรัม

5.
$$\frac{(a+2b)}{1.81\times10^{24}}$$
 กรัม

ว<u>ิเคราะห์โจทย์</u> กำหนดจำนวนโมเลกุล มวลอะตอม ถามมีมวลกี่กรัม

วิธีทำ 1) หามวลโมเลกุล ตามหลัก

มวลโมเลกุล = สูตร =
$$XY_2$$
 = ธาตุ + ธาตุ = $X + 2Y$ = Σ มวลอะตอม = $a + 2b$

2)
$$6.02 \times 10^{23}$$
 โมเลกุล = (Mr) กรัม = 1 โมล

$$1.81 \times 10^{24}$$
 โมเลกุล = (A) g

3) จำนวนโมล =
$$\frac{A}{1.81 \times 10^{24}} = \frac{a + 2b}{6.02 \times 10^{23}}$$

$$A = \frac{1.81 \times 10}{6.02} (a + 2b)$$

$$= 3 (a + 2b)$$

<u>ตอบข้อ 2</u>

เอกสารประกอบการสอนโครงการเปิดประตูสู่มหาวิทยาลัย

เรื่อง ปริมาณสารสัมพันธ์

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.ดร. บัญชา พูลโภคา

<u>ตัวอย่าง 4</u> $S_8 1.60 \times 10^{-2} \text{ mol และ H}_2 S 2.00 \times 10^{-9} \text{ mol มี S อยู่กี่อะตอม$

	S ₈	H ₂ S
1	7.71×10^{22}	1.20×10^{15}
2	3.35×10^{24}	1.20×10^{14}
3	9.63×10^{23}	2.40×10^{14}
4	7.71×10^{23}	2.40×10^{13}

<u>วิเคราะห์โจทย์</u> กำหนด S $_8$ 1.60 imes 10 $^{-2}$ mol มี S กี่อะตอม H $_2$

$${ { \hat {\it 256 h i} } \over {\it 356 h i} }$$
 หลัก 1 ใมลของสารประกอบ = (มวลโมเลกุล) กรัม = (ธาตุ + ธาตุ) อะตอม มวลโมเลกุล = สูตร = S_8 = (ธาตุ + ธาตุ) = 8 อะตอม 1 Mol S_8 มี S = 6.02×10^{23} โมเลกุล = $6.02 \times 10^{23} \times 8$ อะตอม 1.6 \times 10 $^{-2}$ mol S_8 มี S = X อะตอม X 6.02 \times 10 23 \times 8

$$\begin{array}{ccc} X & = & \frac{6.02 \times 10^{23} \times 8}{1} \\ X & = & 6.02 \times 10^{23} \times 8 \times 1.6 \times 10^{-2} = 77.06 \times 10^{21} = 7.706 \times 10^{22} \end{array}$$

<u>ตอบข้อ 1</u>

ถ้าจะหา S ใน H₂S ก็จะได้ดังนี้

$$H_2S$$
 \longrightarrow S

1 mol \longrightarrow 1 mol อะตอม

1 mol \longrightarrow 6.02×10^{23} อะตอม

2.00 × 10^{-9} mol \longrightarrow Y อะตอม

 $\frac{Y}{2.00 \times 10^{-9}} = \frac{6.02 \times 10^{23}}{1}$
 $Y = 6.02 \times 10^{23} \ (2.00 \times 10^{-9})$ อะตอม $= 1.20 \times 10^{15}$ อะตอม

เกี่ยวกับไอโซโทปของธาตุ M มี ดังนี้

<u>ตัวอย่าง 5</u> ธาตุ M และ N เกิดสารประกอบที่มีสูตร MN₂ ซึ่งมีมวลโมเลกุลเท่ากับ 95.222 ข้อมูล

ใอโซโทป	มวลอะตอมของ	ร้อยละของไอโซโทป
²⁴ M	Х	Α
^{25}M	Υ	В
^{26}M	Z	С

ถ้ามวลอะตอมเฉลี่ยของธาตุ N = 35.456 ปริมาณร้อยละของไอโซโทป ²⁶M จะมีค่าเท่า ใด

1.
$$\frac{24.31-ax-by}{Z}$$

$$\frac{5977 - ax - by}{3}$$

2.
$$\frac{24.31 - (100 - by)x - by}{z - x}$$

4.
$$\frac{2431-ax-by}{7}$$

วิเคราะห์โจทย์

กำหนดมวลโมเลกุลและสูตรของสารและข้อมูลเกี่ยวกับไอโซโทป ถามร้อยละของ ธาตุไดโอโซโทปชนิดหนึ่ง

<u>วิธีทำ</u> X หลัก 1. หามวลอะตอมของธาตุที่ถาม

2. หาร้อยละของธาตุไอโซโทปจากสูตร

1) สารประกอบ = สูตร

ให้ a ,b = มวลอะตอมของ M, N ตามลำดับ

95.222
$$\rightarrow$$
 = a + 2 × 35.456

$$a = 95.222 - 70.912 = 24.31$$

เอกสารประกอบการสอนโครงการเปิดประตูสู่มหาวิทยาลัย เรื่อง ปริมาณสารสัมพันธ์ รศ.อินทิรา หาญท

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.ดร. บัญชา พูลโภคา

$$\Sigma\% imes$$
มวลอะตอมเฉลี่ยของไอโซโทป = $\dfrac{\Sigma\% imes$ มวล $\dfrac{100}{100}$ = $\dfrac{ax+by+cz}{100}$ = $\dfrac{ax+by+cz}{100}$ C = $\dfrac{2431-ax-by}{z}$

<u>ตอบข้อ 4</u>

ตัวอย่าง 6

จำนวนอนุภาค Na⁺ ไอออนและ O²⁻ ไอออน ของ Na₂O 97.5 กรัม เป็นไปดังข้อใด

Na ⁺	O ²⁻
1. 15.05 × 10 ²³	30.10×10^{23}
2. 30.10×10^{23}	15.05×10^{23}
3. 18.90×10^{23}	9.45×10^{23}
4. 9.45×10^{23}	18.90×10^{23}

<u>วิเคราะห์ โจทย์</u> กำหนดมวลของสารให้หาอนุภาคหรือไอออนบวกและไอออนลบของสูตรของสาร
<u>วิธีทำ</u> เขียนส่วนประกอบของสารแทนค่าอนุภาค เป็น โมล ก่อนและ ทุก ๆ 1 โมลของอนุภาค
มีจำนวนอนุภาค = 6.02 ×10²³ อนุภาค (อนุภาค เป็นอะตอมไอออนและโมเลกุลก็ได้)

Na₂O → 2 Na⁺ → O²⁻

1 โมล 2 โมล 1 โมล
(2 Na + O) 2 โมล 1 โมล
(2 × 23 + 16) 2 โมล 1 โมล
62 2 × 6.02 × 10²³ ไอออน 6.02 × 6 × 10²³ ไอออน
97.5 X Y

$$\frac{2 Na^{+}}{Na_{2}O} = \frac{X}{97.5} = \frac{2 \times 6.02 \times 10^{23}}{62}$$

เรื่อง ปริมาณสารสัมพันธ์

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.ดร. บัญชา พูลโภคา

$$X = 2 \times 6.02 \times 10^{23} \times \frac{97.5}{62} = 3.15 \times 6.02 \times 10^{23}$$
$$\frac{O^{2-}}{Na_2O} = \frac{Y}{97.5} = \frac{6.02 \times 10^{23}}{62}$$

$$Y = 60.2 \times 10^{23} \times \frac{97.5}{62} = 1.575 \times 6.02 \times 10^{23}$$

∴ มี Na⁺ = 18.93 ×10²³ และ 0²⁻ = 9.45 × 10²³

<u>ตอบข้อ 3</u>

ตัวอย่าง 7

จำนวนโมลของสารใด น้อยที่สุด

- 1. ก๊าซฮีเลียม 11.2 dm ³ ที่ STP 2. กำมะถันรอมมิก 76.8 กรัม
- 3. BrF₃ 82.2 กรัม

- 4. ปรอท 90.3 กรัม

<u>วิเคราะห์โจทย์</u> ให้หาจำนวนโมล ของธาตุใน สารประกอบ <u>วิธีทำ</u> หลัก ให้หาเป็นโมล

> มวลเป็นกรัม จำนวนโมลของ ธาตุ มวลอะตอม

= มวลเป็นกรับ มวลโมเลกุล จำนวนโมลของสารประกอบ

ตามข้อ 1. He = $\frac{1}{2}$ โมล

∵ มวลของ He 4 กรัม = 1 โมล = 22.4 dm³ ที่ STP

ตามข้อ 2. มี S₈ = 0.3 โมล

:: S₈ 8 \times 32 กรัม = 1 โมล

 $= 76.8 / 8 \times 32 = 0.3$

ตามข้อ 3 มี Br F₃ = 0.6 โมล

∵ มวลโมเลกุล Br F₃ = 80 + 19/3 = 137

Br F₃ 137 กรัม = 1 โมล

= 82.2/137 = 0.6 82.2

ตามข้อ 4 มี Hg = 0.45 โมล

∵ Hg 200 กรัม = 1 โมล

หน้าที่ 1

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.คร. บัญชา พูลโภคา

90.3 = 90.3 / 200 =

<u>ตอบข้อ 2</u>

<u>สารละลาย solution</u>

สารละลายประกอบด้วยตัวทำลายและตัวทุกละลาย เขียนเป็นสมการได้นี้

สารละลาย = ตัวละลาย + ตัวถูกละลาย

= solvent + salute

สารละลายเป็นได้ทั้งสามสถานะ คือของแข็ง ของเหลว และก๊าซ แต่ในที่นี้ จะพิจารณาแต่ สารละลาย ที่เป็นของเหลว

ตัวทำละลายที่หาง่ายและราคาถูก ได้แก่ น้ำ H_2O ดังนั้นสารละลายทั่วไปมักจะใช้ น้ำเป็นตัวทำ น้ำมีสูตรทางเคมี H_2O เขียน ag แทนซึ่งมาจาก aqueous (aquo) ตาม หลังสารเคมีที่เป็นสารละลายโดยมีน้ำเป็นตัวทำละลาย เช่น Cu^{2+} (cg)

การกำหนปริมาณของสารตัวถูกละลายในสารละลาย เรียกว่า หน่วยความเข้มข้น ซึ่งมีหลายชนิดได้แก่

- 1. ร้อยละ
- 2. โมล่าร์ = โมล / dm^3 (1)
- 3. โมแลล = โมล / 1 kg (ของตัวน้ำละลาย)
- 4. สัดส่วนโมล
- 5. ppm (Part per million)

1)

ตัวถูกละลาย 	g	Cm ³	g	Cm ³
สารละลาย	g	Cm ³	Cm ³	g
% หรือร้อยละ	มวล	ปริมาตร	มวล/ปริมาตร	ปริมาตร/มวล

ตัวถูกละลาย y โมล

3)
เข้มข้น Y โมล / 1 (ตัวทำละลาย)
ตัวทำละลาย 1 kg

สารละลาย = (a + b) โมล

สัดส่วนโมลของ A = X₁ =
$$\frac{a}{a+b}$$
 สัดส่วนโมลของ B = X₂ = $\frac{b}{a+b}$

$$X_1 + Y_2 = \frac{a}{a+b} + \frac{b}{a+b} = 1$$

5) ปริมาณตัวถูกละลาย 1 ส่วน

สารละลาย = 10⁶ ส่วน

ตัวอย่างข้อสอบ Ent' เกี่ยวกับตามเข้มข้นของสาร

กรดอินทรีย์ชนิดหนึ่งเป็นของเหลว มีความหนาแน่น 2.0 g / cm³ เมื่อละลายในน้ำ ได้ความเข้มข้นในหน่วยต่าง ๆ ดังนี้

ก. a โมแลล

- ข. b โมเลตต่อลูกบาศก์เดซิเมตร
- ค. X % โดยมวลต่อเมตร
- ง. Y % โดยมวลต่อปริมาตร

ถ้าความหนาแน่นของน้ำ = 1 g/cm³ การเปรียบเทียบค่า a, b, x, y ในข้อใดถูก

1. a > b : x > y

2. a < b : x = y

3. a > b : x < y

4. a > b : x < y

วิเคราะห์โจทย์ ให้ได้เปรียบเทียบ ความเข้มข้นที่มีหน่วยต่างกัน

 $\overline{\underline{2}}\overline{\underline{6}}\underline{\mathring{n}}\underline{\mathring{n}}$ สมมุติปริมาตรกรดอินทรีย์เหลว = 10 cm 3

ปริมาตรของน้ำ (ตัวทำละลาย) = 1000 cm³

มวลของกรด = ความหนาแน่น \times ปริมาตร = $\frac{2.0g}{1cm^3} \times 10cm^3 = 20g$

มวลของน้ำ = $\frac{1g}{1 \text{cm}^3} \times 1000 \text{cm}^3$ = 1000 g.

สมมุติ Mr ของกรด = A

ก. หน่วยโมแลล

$$\frac{$$
ตัวถูกละลาย}{ตัวกำละลาย $=\frac{20กรัม}{1000กรัม} \times \frac{1 โมล}{A(g)} = \frac{(20/A) โมล}{1000g} =$ a molal

ข. หน่วยเป็น $\operatorname{mol}/\operatorname{dm}^3$

$$\frac{\text{ตัวถูกละลาย}}{\text{สารละลาย}} = \frac{(20 \, / \, \text{A}) \text{โมล}}{(1000 + 10) \text{cm}^3} = \text{b mol } / \text{dm}^3$$

∴ a > b โอกาสถูกข้อ 1 กับ 4

ค. % โดยมวลต่อมวล

$$\frac{$$
ตัวถูกละลาย}{ สารละลาย} = $\frac{20 n \tilde{s} \lambda}{(1000 + 20)g} \times 100 = X \%$ โดยมวล / มวล

ง. Y % โดยมวล / ปริมาตร

ตัวถูกละลาย
สารละลาย
$$\frac{20 \, \text{กรัม}}{(1000 + 10) \text{cm}^3} \times 100 = Y \%$$
 โดยมวล / ปริมาตรแสดงว่าX < Yตอบข้อ 3

2. สารชนิดหนึ่งประกอบด้วย P, N และ CI โดยมี CI 59.2% P 28.8% นำสารนี้มา 1.2g ละลายใน เบนซิน 14.0 cm³ จะได้สารละลายที่มีจุดเยือกแข็ง 4.03°C (เบนซิลมีจุดเยือกแข็ง 5.48°C ความหนาแน่น 0.88g/cm³ และค่า Kf 5.12°C)

สูตรโมเลกุลของสารประกอบนี้คือข้อใด

1. PNCl₂

2. P₃N₃Cl₆

2. P₄ N₄Cl₈

4. (PNCl₂)₆

วิเคราะห์โจทย์ กำหนดปริมาณของธาตุให้ แสดงว่าต้องหาสูตรอย่างง่าย

กำหนด จุดเยือกแข็ง ใช้สูตร $\Delta extsf{T}$ = $ext{mk}$

วิธีทำ หาอัตราส่วนจำนวนโมลของธาตุแล้วทอนเป็นอย่างต่ำ จะได้สูตร

P : N : CI = 28.2 : 12.0 : 59.2 โดยมวล

= $\frac{28.8}{31} \cdot \frac{12}{14} \cdot \frac{59.2}{35.5}$ โดยโมล

= 0.929 : 0.857 : 1.667

= 1 : 1 : 2

สูตรอย่างง่าย = PNCI₂

$$\Delta T$$
 = mk = $\frac{W_1}{M_c}$ | $\frac{1000}{W_c}$ | K

 Δ T = ผลต่างของ T_{r} ของสารละลายกับตัวทำละลาย

= T, ตัวทำละลาย - T, สารละลาย

= 5.48 - 4.03 = 1.45

M. = มวลโมเลกุลของสารประกอบ

$$K_f = 5.12^{\circ}C$$

W₂ = มวลตัวทำละลาย

M. =
$$14 \text{ cm}^3 \times \frac{0.88 \text{g}}{1 \text{cm}^3}$$
 = 12.32 g.

แทนค่า 1.45 =
$$\frac{12}{M} \left| \frac{1000}{1232} \right|$$
 5.12

$$M = \frac{1.2}{1.45} \left| \begin{array}{c} \frac{1000}{12.32} \end{array} \right| 5.12 = 344$$

$$(PNCl_2)_n = (31 + 14 + 71)N = 344$$

n =
$$\frac{344}{116}$$
=3
ตอบข้อ 2

- 3. X เป็นของแข็งสีขาวมีจุดหลอมเหลว 180°C มีค่า K, เป็น 40°C / mol / kg ถ้าละลาย Y 0.64 กรัม ในสาร X 8.0 กรัม ได้สารละลายมีจุดเยือกแข็งเป็น $160\,^{\circ}$ C มวลโมเลกุลของสาร Y และความเข้มข้น ของสารละลายเป็น mol/kg คือ ข้อใด
 - 1) 80,0.5

2) 160, 0.5

3) 80,0.25

4) 160, 0.25

<u>วิเคราะห์โจทย์</u> K_f ของ X = 40 °C / mol / Kg

ถามมวลโมเลกุลของสาร Y และความเข้มข้นของสารละลาย เท่าใด

<u>วิธีทำ</u> ใช้สูตร $\Delta T_f = mk_f$

$$m = \frac{0.64}{M} \times \frac{1000}{W_0}$$

$$W_1 =$$
มวลของ $Y = 0.64\,g$
 M หรือ Mr ของ $Y = ?$
 $W_2 =$ มวลของ $X = 8.0g$
 $oldsymbol{\Delta}$ T. = จด F ของตัวทำ -จด F ของสารละลาย = 180

$$\Delta T_{\rm f} =$$
 จุด F ของตัวทำ -จุด F ของสารถะลาย = $180-160=20$ แทนค่า $20=\frac{0.64}{\rm M}\left|\frac{1000}{8}\right|40$, M = 160

โอกาสถูกข้อ 2,4

ความเข้มข้นของสารละลาย = เท่าใด

$$\frac{\text{molของY}}{\text{มวลเป็นกรัมX}} = \frac{0.64/160}{8} = \frac{M}{1000}$$

$$M = \frac{0.64}{160} \times \frac{1000}{8} = 0.5$$

<u>ตอบข้อ 2</u>

4. เมื่อเติมสาร A จำนวน 1 กรัม ลงไปในตัวทำละลาย 25 Cm³ สารละลายของตัวทำละลายที่ ได้มีจุดเดือดสูงกว่าจุดเดือดของตัวทำละลาย 1°C และจุดเยือกแข็งของตัวทำละลาย 2.5°C ถ้ามวลโมเลกุลของสาร A = X ตัวทำละลายนี้จะมีค่า K_b เป็นกี่เท่าของค่า K_f

4) 4.0

 ${f f rac{{f 2}}{{f les}}}$ กำหนดสารละลายมีจุดเดือดสูงกว่า ตัวทำละลาย = 1°C สารละลายมีจุดเดือดแข็งต่ำกว่าตัวทำละลาย = 2.5°C ถามตัวทำละลายมีค่า ${f K}_{\!_{D}} > {f K}_{\!_{D}}$ เท่าใด

<u>ตอบข้อ 2</u>

- 5. แนพธาลีนหลอมเหลวที่ 80°C สารละลายกรดเบนโซ ในแนพธาลีน 2 mol /kg ที่มีจุดหลอม เหลว 66.6°C สารละลายเฟนิลในเบนซีนที่มีจุดหลอมเหลว 76.6°C จะมีความเข้มข้น กี่โมลต่คกิโลกรัม
 - 1) 0.5
- 2) 2.3 3) 5.1
- 4) 7.0

<u>ว**ิเคราะห์โจทย์**</u> กำหนด แนพธาลีนมีจุดหลอมเหลว = 80°C กรดเบนโซอีกในแนพธาลีน มีจุดหลอมเหลว = 66°C เข้มข้น 2. mol / 1kg กรดเบนโซอีกในแนพธาลีน Δ T = mk $80 - 66 = 2.k_{f}$ $K_f = \frac{14}{2} = 7$ เฟนิลเบนซีนในแนพธาลีน Δ T = mK 80 - 76.6 = m.73.4 = 7m $m = \frac{3.4}{7} = 0.485 = 0.5$

<u>ตอบข้อ 1</u>

- 6. ถ้าละลายแนพธาลีน ($C_{10}H_8$) 1.00g ในเบนซีน (C_6H_6) 50.0 cm 3 สารละลายที่ได้จะมีจุด เยือกแข็งเท่าใด
 - 4.9X1000 50×0.879×128

 $3) \quad 5.51 + \frac{4.90 \times 1000}{50 \times 0.879 \times 78}$

ค) 5.51 -

วิเคราะห์โจทย์ กำหนด

 $C_{10}H_8 = 1.00 g C_6H_6 = 50.0 cm^3$ ถามสารละลายมีจุดเยือกแข็ง = ?

 $\overline{\mathbf{\hat{j}}}$ อีทำ ใช้สูตร 1) Δ T = mK

2) ΔT = FP ของสารละลาย –FP ของตัวทำละลาย

FP = freezing point

$$\Delta$$
T = FP สารละลาย - FP ตัวทำละลาย

$$\Delta$$
T = mK
= $\frac{W_1}{M_*} \left| \frac{1000}{W_0} \right| K_f$

$$W_1 =$$
มวลตัวถูกละลาย $C_{10}H_8 = 1.00g$

$$W_2 =$$
 มวลตัวทำละลาย $C_6 H_6 = d.v.g$

d = ความหนาแน่นของ
$$C_{\epsilon}H_{\epsilon}$$

$$V = ปริมาตรของสาร $C_6 H_6 = 50 \text{ cm}^3$$$

K_f = ค่าคงที่ของจุดเดือดแข็งของตัวทำละลายที่เข้มข้น 1 mol/kg พิจารณาคำตอบจากโจทย์โอกาสถูกข้อ ข และ ง

จากสูตร

$$\therefore$$
 W₂ = d × 50 g

<u>ข้อ ข น่าจะเป็นข้อถูก</u>

ข้อ ก , ค ไม่ถูกเพราะว่า จุด F สารละลาย = จุด F ตัวทำละลาย - $\Delta T_{_{\mathrm{f}}}$ ข้อ ง ไม่ถูก เพราะว่า

เลข 4.9 =
$$K_f$$
 ของ C_6H_6

ann
$$\Delta T = \frac{W_1}{M_1} \left| \frac{1000}{W_2} K \right|$$

$$M = \frac{W_{_1}}{128} \left| \frac{1000}{50 \times d} \right| K$$

M ของตัวถูกละลาย คือ C_{10} H_8

$$C_{10} H_8 = 12 \times 10 + 8 \times 1 = 120 + 8 = 128$$

เอกสารประกอบการสอนโครงการเปิดประตูสู่มหาวิทยาลัย เรื่อง ปริมาณสารสัมพันธ์ รศ.อินทิรา หาญท

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.คร. บัญชา พูลโภคา

7. ตัวทำละลายชนิดหนึ่ง มีตัวถูกละลาย 50 กรัม ในตัวทำละลาย 500 กรัม ถ้าค่า $K_{_{\! I}}=1.8$ และค่า $K_{_{\! D}}=0.5$ ตัวทำละลายนี้จะมีจุดเยือกแข็งและจุดเดือดเปลี่ยนไปอย่างไร (กำหนดให้มวลโมเลกุลของตัวถูกละลาย = 100)

จุดเยือกแข็ง	จุดเดือด	
ก. เพิ่มขึ้น 1.8 °C	ลดลง 0.5 [°] C	
ข. ลดลง 1.8 [°] C	เพิ่มขึ้น 0.5 °C	
ค. เพิ่มขึ้น 0.9°C	ลดลง 0.25 [°] C	
ง. ลดลง 0.9 [°] C	เพิ่มขึ้น 0.25°C	

2ิเคราะห์โจทย์ กำหนดสาร 50 กรัม มวลโมเลกุล = 100 ตัวทำละลาย 500 g ถามจุดเยือกแข็งและจุดเดือดเปลี่ยนแปลงอย่างไร

<u>วิธีทำ</u> 1. ให้หาว่าสารนี้เข้มข้นกี่โมล / 1 kg ตัวทำละลาย

2. ใช้สูตร Δ T = mK

1) โมลของสาร =
$$\frac{\text{มวลเป็นกรัม}}{\text{มวลโมเลกุล}}$$
 = $\frac{50}{100}$ = 0.5 โมล $\frac{\text{โมลของสาร}}{\text{กรัมของตัวทำละลาย}}$ = $\frac{0.5\,\text{โมล}}{500\text{กรัม}}$ = $\frac{\hat{n}\hat{l}\,\text{โมล}}{1000\text{กรัม}}$

2)
$$\Delta T = mK = 1. K$$

∴ จุดเยือกแข็งของสารละลาย = K_f และจุดเดือดของสารละลาย = K_b
 จึงตอบข้อ ข

การเตรียมสารละลาย

- หลัก 1. สารละลายเดิม เติมน้ำได้สารละลายใหม่ จางลง แต่มวลหรือจำนวนโมลเท่าเดิม
 - 2. สารละลายเดิม เติมมวลหรือโมลของตัวถูกละลาย สารละลายใหม่ จะเข้มข้น เ เพราะจำนวนมวลหรือโมลเพิ่ม

ตัวอย่าง

<u>หาปริมาณสารจากปฏิกิริยาเคมี</u>

- 1. ต้องเขียนสมการพร้อมดุล
- 2. จะหาปริมาณสารได้ ต้องรู้สูตรของสาร ถ้าทราบแต่มวลของสารใดสารหนึ่งใน ปฏิกิริยาจะหาตัวอื่น ไม่ได้

3. D = m/v (ความหนาแน่น = มวล / ปริมาตร)

ตัวอย่าง ข้อสอบ

สารละลายกรดไฮโดรคลอริกเข้มข้น 36.5% มวลต่อมวล ถ้าต้องการเตรียม กรดไฮโดรคลอริกเข้มข้น 0.23 mol / dm³ จำนวน 250 cm³ ต้องใช้ กรดไฮโดรคลอริกกี่ลูกบาศก์เซนติเมตร

2. 5.0

3. 10.0

วิเคราะห์โจทย์ กำหนด

HCI เดิม ——▶

HCI ใหม่

36.5% โดยมวล

0.23 โมล / dm³

$$D = 1.15 \text{ g/cm}^3$$

$$\text{lin} \text{ cm}^3$$

250 cm³

<u>วิธีทำ</u>

น้ำ HCI เข้มข้นเดิมมา 5 cm³ เติมน้ำครบ 250 cm³ จึงจะได้ HCI ใหม่เข้มข้น 0.23 M.

ตอบข้อ 2

สารละลาย NaOH 4.8 g / dm³ ถ้านำมา 100cm³ทำให้เป็นสารละลายเข้มข้น
 0.10 mol / dm³จะต้องเติมน้ำจนปริมาตรรวมทั้งหมดเป็นกี่ลูกบาศก์เซนติเมตร

- 1. 110
- 2. 120
- 3. 200
- 4. 210

.....

วิเคราะห์โจทย์ กำหนดโจทย์กำหนด

$$4.8 \text{ g} / \text{cm}^3 = 0.1 \text{ mol} / \text{dm}^3$$

$$100 \text{ cm}^3 = (V) \text{ cm}^3$$

(เติมน้ำ , mol เท่าเดิม , สารละลายจางลง)

$$mol NaOH$$
 เดิม = $\frac{4.8}{1000 cm^3}$ | $1000 cm^3$ | $\frac{1mol}{40g}$ = $\frac{4.8}{10 \times 40 mol}$ mol NaOH ใหม่ = $\frac{0.1 mol}{1000 cm^3}$ | $V cm^3$ = $\frac{0.1(V)}{1000}$ mol $\frac{0.1(V)}{1000}$ = $\frac{1.2}{100}$

- 3) สารละลายมีตัวถูกละลาย 240.0 g. ในน้ำ 2.0 kg. พบว่ามีจุดเยือกแข็ง –
- 3.72° C ถ้า K, ของน้ำ = 1.86° C ตัวถูกละลายเป็นสารใด
 - n. $C_{10}H_8$ 1. CH_3COOH 1. $C_2H_4O_4$

<u>วิเคราะห์โจทย์</u> กำหนดจุดเยือกแข็ง สารละลายให้หาสูตรของสารตัวถูกละลาย

$$\frac{2}{5}$$
 อีทำ ใช้สูตร 1. Δ T = mK

2. มวลโมเลกุล = สูตรโมเลกุล = Σ มวลอะตอม

$$\Delta T_{_{f}} = m K_{_{f}} = \frac{W_{_{1}}}{M_{_{1}}} \left| \begin{array}{c} 1000 \\ \overline{W}_{_{2}} \end{array} \right| K_{_{f}}$$

W₁ = มวลของตัวถูกละลาย = 240 g

W₂ = มวลของตัวทำละลาย = 2000 g = 2.0 kg

M₁ = มวลโมเลกุลของตัวถูกละลาย = เท่าใด

= สูตรของสาร = (ธาตุ + ธาตุ)

= Σ มวลอะตอม

K_f = อุณหภูมิคงที่ของน้ำในสารละลายที่เข้มข้น 1 mol / _{lka}=1.86°C

$$\Delta T_{\rm F} = {\sf FP}$$
ของตัวทำละลาย - ${\sf FP}$ ของสารละลาย = O - (-3.72) = $3.72^{\circ}{\sf C}$

แทนค่า
$$3.72=\frac{240}{M}\left|\frac{1000}{2000}\right|$$
 1.86
$$M=\frac{240}{3.72}\left|\frac{1}{2}\right|$$
 $1.86=60$ M มวลโมเลกุล = สูตร = ธาตุ + ธาตุ = Σ มวลอะตอม n) 60 $C_{10}H_8=10$ $C_{10}H_8=1$

4. ถ้านำสารละลายน้ำตาลเข้มข้น 3.0 mol / dm³ จำนวน 2.0 dm³ มาผสมกับสารละลายน้ำตาล ชนิดเดียวกันเข้มข้น 2.5 mol / dm³ จำนวน 3.0 dm³ แล้วนำมาเติมน้ำให้มีปริมาตร 10 dm³ ความ เข้มข้นของน้ำตาล จะมีค่ากี่โมล /dm³

1) 13.5

2) 5.5

3) 1.5

4) 1.35

วิเคราะห์โจทย์ กำหนด

สารละลายน้ำตาล + สารละลายน้ำตาล─►สารละลายผสม + น้ำ ─►สารละลายใหม่กี่โมล fdm³

3.0 M

2.5 M

 $2 \, dm^3$ $3 \, dm^3$ $5 \, dm^3$

10 dm³

<u>วิธีทำ</u> mol สารละลายผสม = mol แรก + molที่สอง

$$= \frac{3\text{mol}}{1\text{dm}^3} \times 2\text{dm}^3 + \frac{2.5\text{mol}}{1\text{dm}^3} \times 3\text{dm}^3$$

= 6 + 7.5 = 13.5 mol

mol สารละลายใหม่ = $\frac{\text{Xmol}}{\text{dm}^3} \times 10 \text{ dm}^3 = 10 \text{ mol}$

mol สารละลายผสม = molสารละลายใหม่

เอกสารประกอบการสอนโครงการเปิดประตูสู่มหาวิทยาลัย เรื่อง ปริมาณสารสัมพันธ์

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.ดร. บัญชา พูลโภคา

- 5. เมื่อนำสารละลายโพแทสเซียมไฮดรอกไซด์ 0.1 mol / dm³ จำนวน 500 cm³ และสารละลาย ์ โพแทสเซียมไฮดรอกไซด์ 2.0 mol / dm³ จำนวน 1500 cm³ มาผสมกัน แล้วเติมน้ำจนมีปริมาร เป็น 2500 cm³ ถ้านำสารละลายที่ได้ใหม่นี้มา 250 cm³ จะมีโพตัสเซียมไฮดรอกไซด์อยู่กี่กรัม
 - 1) 3.05
- 2) 17.1
- 3) 19.6

วิเคราะห์ใจทย์ กำหนด

<u>วิธีทำ</u> ผลรวมจำนวนโมลของเดิม = จำนวนโมลใหม่

หาจำนวนโมล ใช้สูตร จำนวนโมล =
$$\frac{MV}{1000}$$

$$\frac{0.1}{1000} \times 500 + \frac{2.0}{1000} \times 1500 = \frac{M}{1000} \times 2500$$

$$50 + 3000 = 2500 \text{ M}$$

$$M = \frac{3050}{2500} = 1.22 \text{ mol / dm}^3$$

นำสารละลายใหม่มา 250 cm³ มี KOH กี่กรัม

จำนวนกรัม KOH ใน 250 cm³ =
$$\frac{1.22\text{mol}}{1000\text{cm}^3}$$
 | 250 cm³ | $\frac{56\text{ g}}{1\text{mol}}$ = 17.08 ตอบข้อ 2

- 6. สารละลายกลูโคส ($C_3H_{12}O_6$ มีมวลโมเลกุล = 180) มีความเข้มข้น 0.396 โมแลล และมี ความหนาแน่น 1.16 กรัม ต่อลูกบาศก์เซนติเมตรจะมีความเข้มข้นกี่โมลาร์
 - 1) 0.428
- 2) 0.328
- 3) 0.488 4) 0.350

วิเคราะห์โจทย์ สารละลายมี
$$\frac{$$
ตัวละลาย $}{$ ตัวนำละลาย $=\frac{0.396 mol}{1000 g}$

ถามสารละลายเข้มข้นกี่โมลาร์และมีความหนาแน่น 1.16 กรัม / cm³

$${1\over 25}{1\over 6}{1\over 100}$$
 สารละลาย = ตัวทำละลาย + ตัวถูกละลาย = 1000 กรัม + 0.396 โมล + นามวลของตัวถูกละลาย $C_6H_{12}O_{16}$ = 0.396 โมล $\times {180n5} {1\over 10}$ = 71.28 กรัม

.. สารละลายมีมวล = 1000 + 71.28 = 1071.28 กรัม จากความหนาแน่นของสารละลายหางโริมาตรได้

$$(D = \frac{M}{V})$$
 $\therefore \frac{M}{D} = \frac{1071.28}{1.16} \text{cm}^3 = V \text{ cm}^3$

∴ สารละลาย 1071.28 / 1.16 cm³ มีกลูโคส = 0.696 โมล
 1000 = M โมล

$$\frac{M}{1000} = \frac{0.396}{1071.28} \times 1.16$$

$$\therefore M = \frac{0.396}{1071.28} \mid 1.16 \mid 1000 = 0.4287$$

ตอบข้อ 1 (ข้อสอบ Pre-olympic)

7. จงคำนวณหาปริมาตรของกรดซัลฟูริค (m L) เข้มข้น 96.0% (ความหนาแน่นเท่ากับ 1.83 g /mL) เพื่อใช้เตรียมสารละลายกรดซัลฟูริคเข้มข้น 3.0M จำนวน 2.00 L (กำหนด H = 1 O = 16 S = 32)

1) 135

2) 235

3) 335

4) 435

 วิเคราะห์โจทย์
 ให้เตรียมสารเป็น mol /dm³ จากสารที่มีความเข้มข้นเป็นร้อยละหรือเปอร์เซ็นต์

 วิธีทำ
 หาจำนวนโมลของสารที่กำหนดมาเท่ากับจำนวนโมลของสารที่ต้องการ

 (เตรียมสารชนิดนี้เป็นการเติมน้ำ)

โมลของสารเดิม =
$$\frac{96g}{100g}$$
 | $\frac{1\text{mol}}{(\text{H}_2\text{SO}_4)}$ | $\frac{1.83g}{1\text{cm}^3}$ = $\frac{96}{100}$ | $\frac{1}{98}$ | 1.83 | V

เรื่อง ปริมาณสารสัมพันธ์

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.ดร. บัญชา พูลโภคา

8. สารประกอบ $CaCO_3$ 3 $Ca_3(PO_4)_2$ จำนวน 5 กรัมจะมีฟอสฟอรัสอยู่กี่กรัม กำหนดมวล อะตอมของ C = 12 O = 16 P = 31 Ca = 40

- 1) 0.1

- 2) 0.5 3) 0.7 4) 0.9

<u>วิเคราะห์โจทย์</u> ตามธาตุในสารประกอบ

$$\frac{\widehat{\underline{35}}\mathring{n}\mathring{\underline{n}}}{\widehat{\underline{15}}\mathring{\underline{n}}\mathring{\underline{n}}} \quad \text{หลัก} \quad \text{สารประกอบ} = \text{ ธาตุ} + \text{ ธาตุ}$$

$$\operatorname{CaCO_3} 3 \operatorname{Ca_3}(\operatorname{PO_4})_2 \longrightarrow 3 \times 2 \operatorname{P}$$
มาตรฐาน $(40 \times 10 + 60 + 95 \times 6) \, \text{กรัม}$ $3 \times 2 \times 31 \, \text{กรัม}$
ถาม 5

$$\frac{3 \times 2 \times P}{\operatorname{CaCO_3} \operatorname{Ca_3}(\operatorname{PO_4})_2} = \frac{X}{5} = \frac{3 \times 2 \times 31}{1730} \, \text{,} \quad X = \frac{3 \times 2 \times 31 \times 5}{1730}$$

$$\operatorname{P} = 0.903 \, \text{กรัม} \, \left(\operatorname{CO_3}^{2^-} = 60 \, \text{,} \, \operatorname{PO_4}^{3^-} = 95 \, \right)$$
ตอบข้อ 4

9. การเตรียม KCIO4 สามารถทำได้ดังปฏิกิริยาต่อไปนี้

$$CI_2$$
 + 2KOH \longrightarrow KCI + KCIO + H_2O
3 KCIO \longrightarrow 2 KCI + KCIO₃
4 KCIO₃ \longrightarrow 3 KCIO₄ + KCI

จะต้องใช้ Cl₂ จำนวนกี่กรัม เพื่อเตรียม KClO₄ จำนวน 200 กรัม กำหนดมวลอะตอม H = 1, O = 16, CI = 35.5 K = 39

- 1) 205

- 2) 322 3) 409 4) 512

<u>วิเคราะห์โจทย์</u> กำหนดปฏิกิริยาหลายขั้นตอน ต้องดุลสมการ จึงจะหาปริมาณสารที่ใช้ได้ 2 = 10 จากสมการที่ 3 ใช้ $4 \times CIO_3$ เพื่อเตรียม 3 $1 \times CIO_4$

เอกสารประกอบการสอนโครงการเปิดประตูสู่มหาวิทยาลัย

เรื่อง ปริมาณสารสัมพันธ์

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.ดร. บัญชา พูลโภคา

ตามวิถีนี้ต้องใช้ 4 mol
$$\text{Cl}_2$$
 เพื่อเตรียม $\text{KCIO}_4 = 1 \text{ mol}$
$$\frac{\text{X(g)}}{71} \times 1 \text{mol} \text{Cl}_2 \qquad \text{เพื่อเตรียม} \qquad = \frac{200(\text{g})}{138.8(\text{g})} \times 1 \text{mol}$$

$$\frac{\text{Cl}_2}{\text{KClo}} = \frac{\text{X/71}}{20/138.5} = \frac{4}{1} \qquad \text{,} \qquad \text{x} = \frac{4}{1} \times \frac{200}{138.5} \times 71 = 410$$

$$\underline{\text{mauno}} \qquad 3 \qquad (\text{lnaifeundage})$$

$$(\text{Mr Cl}_2 = 71 \text{ ,} \text{MrKCIO}_4 = 138.5)$$

10. จากปฏิกิริยาต่อไปนี้

KI + H₂SO₄ → K₂SO₄ + I₂ + H₂S + H₂O (ยังไม่ได้ดุลสมการ) จะต้องใช้ปริมาตรกี่ลิตรของสารละลายกรดกำมะถันเข้มข้น 0.20 M เพื่อผลิตก๊าซ ไฮโดรเจนซัลไฟด์ 34.0 กรัม

วิเคราะห์โจทย์ กำหนดสมการ ต้องดุลสมการก่อนนำไปหาปริมาณของสารที่ต้องการ

<u>วิธีทำ</u> 1. หาเลข Oxidation ที่เปลี่ยนไป เท่ากัน ดังนี้

2. หาจำนวนอิเล็กตรอนที่เปลี่ยนไปเท่ากัน ดังนี้

บวกลด รับ 8e X 1

เอกสารประกอบการสอนโครงการเปิดประตูสู่มหาวิทยาลัย

รศ.อินทิรา หาญพงษ์พันธ์และ ผศ.ดร. บัญชา พูลโภคา

.....

$$8 \text{ KI} + 4 \text{ H}_2 \text{SO}_4 + 4 \text{ I}_2 + \text{ H}_2 \text{S} + \text{ H}_2 \text{O}$$

- ทำให้ K เท่ากันโดยเติม 4 หน้า K₂SO₄
- เพิ่ม H₂SO₄ ให้เป็น 5 H₂SO₄ เพื่อให้ S เท่ากัน
- เติม 4 H₂O เพื่อให้ H ให้เท่ากันดังนี้

$$8 \text{ KI} + 5 \text{ H}_2 \text{SO}_4 \rightarrow 4 \text{ K}_2 \text{SO}_4 + 4 \text{ I}_2 + \text{H}_2 \text{S} + \text{H}_2 \text{O}$$

$$5 \text{ mol H}_2\text{SO}_4$$
 พอดี 8 KI จะได้ $H_2\text{S} = 1 \text{ mol}$ $0.2 \text{ V mol H}_2\text{SO}_4$ พอดี 8 KI จะได้ $H_2\text{S} = \frac{34(g)}{34(g)} \times 1 \text{mol}$ $\frac{H_2\text{SO}_4}{H_2\text{S}} = \frac{0.2 \text{ V}}{1} = \frac{5}{1}, \text{V} = \frac{5}{0.2} = 25 \text{L}$

ตอบข้อ 4 (mol
$$H_2SO_4$$
 = m. V (L) mol H_2S = $\frac{g}{Mr}$ Mr