

Teach AI to play Atari iceHockey game using gameplay videos

Presenter: Xu Yangyang [u6325688] Supervisor: Dr. Penny Kyburz COMP8755

Content

- Problem statement & challenges
- Background
- Methods
- Q&A

Problem statement

Use historical gameplay videos to teach Al play game (choose action).

Challenges

Videos have different resolutions and sizes.

Youtube gameplay videos do not have action records.

Background - Reinforcement Learning

Markov Decision Process (MDP): (State, Actions, Transition Probabilities, Reward)

Forward Reinforcement Learning

Pavaloiu, A., & Kose, U. (2017). Ethical artificial intelligence-an open question. arXiv preprint arXiv:1706.03021.

Inverse Reinforcement Learning

Pavaloiu, A., & Kose, U. (2017). Ethical artificial intelligence-an open question. arXiv preprint arXiv:1706.03021.

Background - Related work [1]

	MONTEZUMA'S REVENGE	PITFALL!	PRIVATE EYE
Rainbow [19]	384.0	0.0	4,234.0
ApeX [22]	2,500.0	-0.6	49.8
DQfD [20]	4,659.7	57.3	42,457.2
Average Human [43]	4,743.0	6,464.0	69,571.0
Ours $(r_{\text{imitation}} \text{ only})$	37,232.7	54,912.4	98,212.5
Ours $(r_{\text{imitation}} + r_{\text{env}})$	58,175.1	76,812.5	98,763.2

Table 1: Comparison of our best policy (mean of 200 evaluation episodes) to previously published results across Montezuma's Revenge, Pitfall! and Private Eye. Our agent is the first to exceed average human-level performance on all three games, even without environment rewards.

Method - GAIL

Method - State representation

Current Object Detection Method:

One-Stage

YOLO(You Only Look Once)[3]

Total: 264 training images

Framework: Darknet[4]

	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7
Objects Types	Ball	Орр	Player	OppWstk	PlyWstk	OppRwd	PlyRwd
Training Data	151(12.5%)	184(15.2%)	190(15.7%)	185(15.3%)	188(15.6%)	156(12.9%)	154(12.7%)

References

- [1] Aytar, Yusuf, et al. "Playing hard exploration games by watching youtube." *Advances in Neural Information Processing Systems*. 2018.
- [2]Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. In *Advances in neural information processing systems* (pp. 4565-4573).
- [3] Pavaloiu, A., & Kose, U. (2017). Ethical artificial intelligence-an open question. arXiv preprint arXiv:1706.03021.
- [4]J. Redmon, "YOLO: Real-Time Object Detection", *Pjreddie.com*, 2019. [Online]. Available: https://pjreddie.com/darknet/yolo/. [Accessed: 08- Aug- 2019].