AEEM 3042 – Integrated Aircraft Engineering

Block 2a Material Review

Finite Wing Drag

$$C_{D_0} \sim f(M, h)$$

$$C_{D_L} \sim f(C_L, M, c.g.)$$

Aircraft Drag Polar

Aircraft Thrust

Piston engine / propeller

$$T_{A} = SHP_{SL} \left(\frac{\eta_{P}}{V}\right) \left(\frac{\rho}{\rho_{SL}}\right)$$

Turboprop

$$T_{A} = ESHP_{SL} \left(\frac{\eta_{P}}{V}\right) \left(\frac{\rho}{\rho_{SL}}\right)$$

High-bypass turbofan

$$T_{A} = T_{SL} \left(\frac{0.1}{M} \right) \left(\frac{\rho}{\rho_{SL}} \right)$$

Low-bypass turbofan & Turbojet

$$T_{A} = T_{SL} \left(\frac{\rho}{\rho_{SL}} \right)$$

Afterburner

$$T_{A} = T_{SL} \left(\frac{\rho}{\rho_{SL}} \right) (1 + 0.7 \text{ M})$$

Aircraft Fuel Flow

Piston engine / propeller

FFR = SHP c

 $c\left(\frac{lb}{HPhr}\right)$

Turboprop

FFR = ESHP c

High-bypass turbofan

 $\begin{aligned} \text{FFR} &= \text{T } c_{t_{SL}} \left(\frac{a}{a_{SL}} \right) \\ \text{FFR} &= \text{T } c_{t_{SL}} \left(\frac{a}{a_{SL}} \right) \end{aligned} c_{t} \left(\frac{\text{lb}}{\text{lb}_{t} \text{ hr}} \right) \end{aligned}$

Low-bypass turbofan & Turbojet

 $FFR = T c_{t_{SL}} \left(\frac{a}{a_{SL}} \right)$ **Afterburner**

Aircraft Weights

Basic Mission Takeoff Gross Weight = OW + Mission Payload + Mission Fuel

Maximum Fuel – full capacity
Mission Fuel – specific mission capability

Maximum Payload – full capacity loadout Mission Payload – specific mission loadout

Maximum Takeoff Gross Weight = OW + Maximum Payload + Maximum Fuel

- or -

Maximum Takeoff Gross Weight could be set by other factors (landing gear limit, c.g. limits, etc)

Flight Envelope

Stall Speed

$$C_L = \frac{n \ W}{q \ S} = \frac{n \ W}{\frac{1}{2} \ \rho \ V^2 \ S}$$

$$C_{L_{max}} = \frac{n W}{\frac{1}{2} \rho V_{stall}^2 S} \longrightarrow V_{stall} = \sqrt{\frac{2}{\rho} \frac{W}{S} \frac{n}{C_{L_{max}}}}$$

Limit Speed

Maximum Mach Number

Maximum dynamic pressure (max $q = q_{max}$) Maximum KEAS

At any altitude, an aircraft's maximum velocity is constrained to the least of these speeds

$$V_{max} = \sqrt{rac{2}{
ho}} \; q_{max}$$
 - or - $V_{max} = M_{max} \; a$

$$q_{max} = \left(\frac{q}{M^2}\right)_{SL} \left(\frac{Max \ KEAS}{a_{SL}}\right)^2$$

Small Angle Approximation Assumption for Angle of Attack (α)

Thrust Required

$$T = D$$

$$L = W$$

The amount of Thrust Required is dependent on:

- Velocity
- Altitude
- Weight
- Aerodynamics (Aspect Ratio, Wing Sweep, etc)

Thrust Required

Thrust Required

Minimum Drag occurs where the Drag due to Lift and Zero Lift Drag curves intersect

$$C_{D_0} = K C_L^2$$

Minimum Drag also occurs where L/D is maximum

L/D is one of the most important parameters affecting aircraft performance

Lift to Drag Ratio

12000

Minimum Drag

$$\left(\frac{L}{D}\right)_{max} = \left(\frac{C_L}{C_D}\right)_{max} = \sqrt{\frac{1}{4 \ C_{D_0} \ K}}$$

$$\left(\frac{D}{W}\right)_{min} = \left(\frac{T_{req}}{W}\right)_{min} = \sqrt{4 \ C_{D_0} K}$$

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{\kappa}{c_{D_0}}} \frac{w}{s}\right)^{1/2}$$

Steady Flight Summary

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$

$$\left(\frac{L}{D}\right)_{max} = \left(\frac{C_L}{C_D}\right)_{max} = \sqrt{\frac{1}{4 C_{D_0} K}}$$

$$\left(\frac{\mathbf{D}}{\mathbf{W}}\right)_{\min} = \left(\frac{\mathbf{T}_{req}}{\mathbf{W}}\right)_{\min} = \sqrt{4 \, C_{D_0} K}$$

$$T = D$$

$$L = W$$

Minimum Drag & Max L / D occur where the Drag due to Lift and Zero Lift Drag curves intersect

$$C_{D_0} = K C_L$$

$$L = W$$

Range = How <u>FAR</u> can an aircraft fly?

Fuel Consumed per Mile Flown (lb_{fuel} / NM)

Jet Aircraft

$$\frac{lb_{fuel}}{NM} \propto c_t \frac{T_{req}}{V}$$

$$L = W$$

Endurance = How LONG can an aircraft fly?

Fuel Consumed per Hour (lb_{fuel} / hr)

Jet Aircraft

$$\frac{lb_{fuel}}{hr} \propto c_t T_{req}$$

$$R = \frac{Zero Lift Drag}{Drag Due to Lift}$$

$$R = 1$$
 $C_{D_0} = C_{D_L} = K C_L^2$

$$\operatorname{Max} \frac{\operatorname{C}_{\operatorname{L}}}{\operatorname{C}_{\operatorname{D}}} = \sqrt{\frac{1}{4 \operatorname{C}_{\operatorname{D}_{\operatorname{0}}} \operatorname{K}}}$$

$$R = \frac{1}{3}$$
 $C_{D_0} = \frac{1}{3} C_{D_L} = \frac{1}{3} K C_L^2$

Max
$$\frac{C_L^{3/2}}{C_D} = \frac{1}{4} \left(\frac{3}{K C_{D_0}^{1/3}} \right)^{3/4}$$

$$R = 3$$
 $C_{D_0} = 3 C_{D_L} = 3 K C_L^2$

Max
$$\frac{C_L^{1/2}}{C_D} = \frac{3}{4} \left(\frac{1}{3 \text{ K } C_{D_0}^{3}} \right)^{1/4}$$

		Jet Aircraft					
R = 1/3	$\text{Max } \frac{C_L^{3/2}}{C_D}$						
R = 1	$\mathbf{Max} \; \frac{\mathbf{C_L}}{\mathbf{C_D}}$	Minimum D	Maximum Endurance				
R = 3	$\text{Max } \frac{C_L^{-1/2}}{C_D}$	Minimum D/V	Maximum Range				

$$V_{L/D_{max}} = V_{(HP/V)_{min}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$

$$V_{(D/V)_{min}} = \left(\frac{2}{\rho} \sqrt{\frac{3 \text{ K}}{C_{D_0}}} \frac{\text{W}}{\text{S}}\right)^{1/2} = 1.3161 \text{ V}_{L/D_{max}}$$

Range for Jet Aircraft

$$R = \frac{V}{c_t} \frac{L}{D} \int_{W_1}^{W_0} \frac{dW}{W} \longrightarrow R = \frac{V}{c_t} \frac{L}{D} \ln \frac{W_0}{W_1}$$

Breguet Range Equation

Range Factor =
$$\frac{V}{c_t} \frac{L}{D}$$

Maximize Range Factor = Maximize Range

Fly at maximum V (L / D)

Minimize C_t

Carry a lot of fuel

Endurance for Jet Aircraft

$$c_t = \frac{Fuel\ Flow}{Thrust} = -\frac{\dot{W_f}}{T}$$

$$\dot{W}_{f} = \frac{dW}{dt}$$

$$\frac{L}{D} = \frac{W}{T}$$

$$V = \frac{ds}{dt}$$

$$\bullet \bullet \bullet \longrightarrow E = \frac{1}{c_t} \frac{L}{D} \int_{W_1}^{W_0} \frac{dW}{W} \longrightarrow E = \frac{1}{c_t} \frac{L}{D} \ln \frac{W_0}{W_1}$$

"Endurance Factor"

To Maximize Endurance:

Fly at maximum L/D

Minimize C_t

Carry a lot of fuel

Steady Flight for Jet Aircraft

Range & Endurance – Jet Aircraft

	Maximize	Calculate	Performance Equation
R = 1/3	$\operatorname{Max} \frac{\operatorname{C_L}^{3/2}}{\operatorname{C_D}}$		
R = 1	$\operatorname{Max} \frac{\operatorname{C_L}}{\operatorname{C_D}}$	Maximum Endurance	$E(hr) = \frac{1}{c_t} \frac{L}{D} \ln \frac{W_0}{W_1}$
R = 3	$Max \frac{C_L^{-1/2}}{C_D}$	Maximum Range	$R(NM) = \frac{V}{c_t} \frac{L}{D} \ln \frac{W_0}{W_1}$

Range is the total distance traversed by an airplane (measured with respect to the ground)

Endurance is the amount of time that an airplane can stay in the air

BD-5J Range & Endurance

Hand calculation checks to make sure this data makes sense

SEA LEVEL						10,000 FT					
	AIRCR	AFT & AT	MOSPHERIC	CDATA			AIRCRA	AFT & AT	MOSPHERIC	CDATA	
Weight	900	lb	QMS	1481.4	lb/ft^2	Weight	900	lb	QMS	1018.7	lb/ft^2
Altitude	0	ft	а	1116.5	ft/sec	Altitude	10,000	ft	а	1077.4	ft/sec
			rho	0.00237688	slugs/ft^3				rho	0.00175527	slugs/ft^3
	ENDURAN	CE CALC	JLATIONS				ENDURAN	CE CALCI	JLATIONS		
			EF	Endu	rance				EF	Endu	rance
Max (CL/CD)	14.1990		10.9223	1.2865	hr	Max (CL/CD)	14.1990		11.3184	1.3331	hr
Velocity	187.81	ft/sec		77.2	min	Velocity	218.55	ft/sec		80.0	min
	0.168	Mach		143.1	NM		0.203	Mach		172.6	NM
	RANGE	CALCULA	ATIONS				RANGE	CALCULA	ATIONS		
			RF	Rar	nge				RF	Rai	nge
MAX (CL^0.5/CD)	21.4739		1385.19	163.2	IVM	MAX (CL^0.5/CD)	21.4739		1670.36	196.7	NM
Velocity	247.18	ft/sec		1.1141	hr	Velocity	287.64	ft/sec		1.1545	hr
	0.221	Mach		66.8	min		0.267	Mach		69.3	min

For the same fuel weight: Endurance Time > Range Time

BD-5J Range & Endurance

Hand calculation checks to make sure this data makes sense

SEA LEVEL						10,000 FT					
	AIRCRA	AFT & AT	MOSPHERIC	CDATA			AIRCRA	AFT & AT	MOSPHERIC	C DATA	
Weight	900	lb	QMS	1481.4	lb/ft^2	Weight	900	lb	QMS	1018.7	lb/ft^2
Altitude	0	ft	а	1116.5	ft/sec	Altitude	10,000	ft	а	1077.4	ft/sec
			rho	0.00237688	slugs/ft^3				rho	0.00175527	slugs/ft^3
	ENDURAN	CE CALCI	JLATIONS				ENDURAN	CE CALC	JLATIONS		
			EF	Endu	rance				EF	Endu	rance
Max (CL/CD)	14.1990		10.9223	1.2865	hr	Max (CL/CD)	14.1990		11.3184	1.3331	hr
Velocity	187.81	ft/sec		11.2	Min	Velocity	218.55	ft/sec		80.0	min
	0.168	Mach		143.1	NM		0.203	Mach		172.6	NM
	RANGE	CALCULA	ATIONS				RANGE	CALCULA	ATIONS		
			RF	Kar	ige				RF	Rai	nge
MAX (CL^0.5/CD)	21.4739		1385.19	163.2		MAX (CL^0.5/CD)	21.4739		1670.36	196.7	NM
Velocity	247.18	ft/sec		1.1141	111	Velocity	287.64	ft/sec		1.1545	hr
	0.221	Mach		66.8	min		0.267	Mach		69.3	min

For the same fuel weight: Max Range > Endurance Range

BD-5J Range & Endurance

Hand calculation checks to make sure this data makes sense

SEA LEVEL						10,000 FT					
	AIRCRA	AFT & ATI	MOSPHERIO	C DATA			AIRCR	AFT & AT	MOSPHERIC	C DATA	
Weight	900	lb	QMS	1481.4	lb/ft^2	Weight	900	lb	QMS	1018.7	lb/ft^2
Altitude	0	ft	а	1116.5	ft/sec	Altitude	10,000	ft	а	1077.4	ft/sec
			rho	0.00237688	slugs/ft^3				rho	0.00175527	slugs/ft^3
	ENDURAN	CE CALCU	JLATIONS				ENDURAN	CE CALCI	JLATIONS		
			EF	Endu	rance				EF	Endu	rance
Max (CL/CD)	14.1990		10.9223	1.2865	hr	Max (CL/CD)	14.1990		11.3184	1.3331	hr
Velocity	187.81	ft/sec		77.2	min	Velocity	218.55	ft/sec		80.0	min
	0.168	Mach		143.1	NM		0.203	Mach		172.6	NM
	RANGE	CALCULA	TIONS				RANGE	CALCULA	ATIONS		
			RF	Rai	ige				RF	Rai	nge
MAX (CL^0.5/CD)	21.4739		1385.19			MAX (CL^0.5/CD)	21.4739		1670.36	196.7	NM
Velocity		ft/sec		1.1141	hr	Velocity	287.64	ft/sec		1.1545	hr
	2,221	Macii		66.0	min		0.267	Mach		69.3	min

Velocity X Time = Range (247.18)(3600/6076.4) X 1.1141 = 163.2

Total Energy = Potential Energy + Kinetic Energy

$$E = PE + KE$$

$$E = mgh + \frac{1}{2}mV^2$$

$$\frac{E}{W} = h + \frac{1}{2g}V^2$$

$$E_s = h + \frac{1}{2g}V^2$$
 (always in ft)

$$E_s = h + \frac{1}{2g} V^2$$

Flight Condition									
Alt	0	ft							
Mach	0.75								
Atr	Atmospheric Data								
а	1116.45	ft/sec							
Specific	Energy Calc	ulations							
h	0	ft							
V	837.34	ft/sec							
E _s	10,896	ft							

Flight Condition								
Alt	10,000	ft						
Mach	0.75							
Atmospheric Data								
а	1077.39	ft/sec						
Specific	Energy Calc	ulations						
h	10,000	ft						
V	808.04	ft/sec						
E _s	20,147	ft						

What is the relationship between E_s and P_s?

$$\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{E}_{\mathrm{s}} = \frac{\mathrm{d}}{\mathrm{dt}} (\mathbf{h} + \frac{1}{2\mathrm{g}} \mathbf{V}^2)$$

$$\dot{E}_{S} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_{S}$$
 (always in ft/sec)

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

$$P_s > 0$$
 accelerating / climbing flight $T > D$

$$P_s = 0$$
 sustained flight $T = D$

$$P_s < 0$$
 decelerating / descending flight $T < D$

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

Fli	ght Condition	on	Aircraft Data				
Wt	60,000	lb	CD0	0.0150			
Alt	0	ft	K	0.08			
Mach	0.75		Thrust	27,700	lb		
g's	1.0		S	950	sq ft		
Atr	mospheric Da	ata	Performance Data				
QMS	1481.4	lb/sqft	CL	0.0758			
а	1116.45	ft/sec	CD	0.0155			
			Т	27,700	lb		
			D	12,238	lb		
			V	837.34	ft/sec		
			W	60,000	lb		
			P _s	215.78	ft/sec		

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

Fli	ght Condition	on		Aircraft Data	l		
Wt	60,000	lb	CD0	0.0150			
Alt	0	ft	K	0.08			
Mach	0.75		Thrust	27,700	lb		
g's	3.5		S	950	sq ft		
Atr	mospheric Da	ata	Performance Data				
QMS	1481.4	lb/sqft	CL	0.2653			
а	1116.45	ft/sec	CD	0.0206			
			Т	27,700	lb		
			D	16,331	lb		
			V	837.34	ft/sec		
			W	60,000	lb		
			P _s	158.66	ft/sec		

Min & Max Velocity

Min & Max Velocity

$$T_A = D = q S (C_{D_0} + K C_L^2)$$

$$V_{max} = \left[\frac{\left(\frac{T}{W}\right)\left(\frac{W}{S}\right) + \left(\frac{W}{S}\right)\sqrt{\left(\frac{T}{W}\right)^2 - 4C_{D_0}K}}{\rho \ C_{D_0}} \right]^{1/2}$$

$$V_{min} = \left[\frac{\left(\frac{T}{W}\right)\left(\frac{W}{S}\right) - \left(\frac{W}{S}\right)\sqrt{\left(\frac{T}{W}\right)^2 - 4C_{D_0}K}}{\rho \ C_{D_0}} \right]^{1/2}$$

Minimum Velocity Constraints

We already know about Minimum Velocity where T=D, what else would be considered a minimum velocity?

- 1. Velocity for maximum lift ($C_{L_{max}}$) or stall speed (V_{stall})
- 2. Buffet limitations
- 3. Stability and control constraints

$$C_{L} = \frac{W}{qS} = \frac{W}{\frac{1}{2} \rho V^{2} S}$$

$$C_{L_{max}} = \frac{W}{\frac{1}{2} \rho V_{stall}^2 S} \longrightarrow V_{stall} = \sqrt{\frac{2}{\rho} \frac{W}{S} \frac{1}{C_{L_{max}}}}$$

Maximum Velocity Constraints

We already know about Maximum Velocity where T=D, what else would be considered a maximum velocity?

- 1. Velocity for maximum dynamic pressure (q_{max})
- 2. Velocity for maximum Mach number (M_{max})
- 3. Stability and control constraints

At any altitude, an aircraft's maximum velocity is constrained to the lesser of these two speeds:

$$V_{max} = \sqrt{rac{2}{
ho}} \; q_{max}$$
 - or - $V_{max} = M_{max} \; a$

Steady Climbing Flight

$$\sum F_{x} = T \cos \alpha - D - W \sin \theta = \frac{d(mV)}{dt} = \dot{m}V + mV$$

$$\Sigma F_z = L + T \sin \alpha - W \cos \theta = 0$$

Steady Climb = Not Accelerating

Steady Climb = Constant Weight

Steady Climbing Flight

$$R/C = V \sin \theta = \frac{(T-D) V}{W}$$

$$R/C = V \left(\frac{T}{W}\right) - \frac{q C_{D_0}}{(W/S)} - \frac{W}{S} q$$

Fundamental Parameters

Speed and Altitude

Drag Polar Characteristics

Steady Climbing Flight

Maximum Climb Angle (jet aircraft)

$$\sin\theta_{max} = \left(\frac{\mathtt{T}}{\mathtt{W}}\right) - \frac{\mathtt{1}}{(\mathtt{L/D)}_{\;max}} = \left(\frac{\mathtt{T}}{\mathtt{W}}\right) - \sqrt{4\;C_{D_0}K}$$

Dominated by thrust term

$$V_{\theta_{max}} = \sqrt{\frac{2}{\rho} \left(\frac{K}{C_{D_0}}\right)^{1/2} \left(\frac{W}{S}\right) cos \, \theta_{max}}$$

Dominated by aero terms

Maximum Rate of Climb

Maximum Rate of Climb (jet aircraft)

$$(R/C)_{max} = \left[\left(\frac{W}{S} \right) \frac{Z}{3 \rho C_{D_0}} \right]^{1/2} \left(\frac{T}{W} \right)^{3/2} \left[1 - \frac{Z}{6} - \frac{Z}{2 Z (T/W)^2 (L/D)_{max}^2} \right]$$

where
$$Z = 1 + \sqrt{1 + \frac{3}{(T/W)^2 (L/D)^2_{max}}}$$

Maximum Rate of Climb

Maximum Rate of Climb (jet aircraft)

$$V_{(R/C)_{max}} = \left[\left(\frac{T}{W} \right) \left(\frac{W}{S} \right) \frac{Z}{3 \ \rho \ C_{D_0}} \right]^{1/2}$$

where
$$Z = 1 + \sqrt{1 + \frac{3}{(T/W)^2 (L/D)^2_{max}}}$$

Time to Climb

$$\frac{dh}{dt} = R/C \longrightarrow dt = \frac{dh}{R/C} \longrightarrow t = \int_{h_1}^{h_2} \frac{dh}{R/C}$$

$$t_{min} = \int_{h_1}^{h_2} \frac{dh}{(R/C)_{max}}$$

Time to Climb

<u>Alternative Method in Textbook</u> – assume linear R/C_{max} vs Altitude

Calculate the maximum Rate of Climb at Sea Level Calculate the maximum Rate of Climb at 30,000 ft Derive the linear relationship R/C_{max} = $a + b \Delta h$

$$\mathbf{t_{min}} = \int_{\mathbf{h_1}}^{\mathbf{h_2}} \frac{\mathbf{dh}}{(\mathbf{R/C})_{max}} = \int_{\mathbf{h_1}}^{\mathbf{h_2}} \frac{\mathbf{dh}}{\mathbf{a} + \mathbf{b} \, \Delta \mathbf{h}}$$

$$t_{\min} = \frac{1}{b} [\ln(a + b \Delta h) - \ln a]$$

Time to Climb

Easier Method

$$\mathbf{t_{min}} = \frac{\Delta \mathbf{h}}{(\mathbf{R/C})_{avg}}$$

At Sea Level: $(R/C)_{max} = 179.8 \text{ ft/sec}$ At 30,000 ft: $(R/C)_{max} = 111.0 \text{ ft/sec}$

$$t_{min} = \frac{(30,000-0)}{(179.8+111.0)/2}$$

$$t_{min} = 206.3 \text{ sec} = 3.44 \text{ min}$$

Steady Descending Flight

$$\Sigma F_{x} = T - D + W \sin \theta = \frac{d(mV)}{dt} = \dot{m}V + \dot{m}\dot{V}$$

$$\Sigma F_z = L - W \cos \theta = 0$$

Steady Descent = Not Accelerating

Steady Descent = Constant Weight

Steady Gliding Flight

$$V_H$$
 θ
 $V_V = R / D$

$$\tan \theta_{\min} = \frac{1}{(L/D)_{\max}}$$

Minimum descent angle = Maximum glide range

$$V_{\theta_{min}} = \sqrt{\frac{2}{\rho} \left(\frac{K}{C_{D_0}}\right)^{1/2} \left(\frac{W}{S}\right) \cos \theta}$$

$$V_{(L/D)_{max}} = \sqrt{\frac{2}{\rho} \left(\frac{K}{C_{D_0}}\right)^{1/2} \left(\frac{W}{S}\right)}$$

$$V_{\theta_{min}} \approx V_{(L/D)_{max}}$$

Steady Gliding Flight

$$\tan \theta_{\min} = \frac{1}{(L/D)_{\max}} = \frac{h}{R}$$

Steady Flight

$$R = \frac{Zero\ Lift\ Drag}{Drag\ Due\ to\ Lift}$$

Max Endurance Max Glide Range

$$R = 1 C_{D_0} = C_{D_L} = K C_L^2 Max \frac{C_L}{C_D}$$

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$

Max Range

$$R = 3$$
 $C_{D_0} = 3 C_{D_L} = 3 K C_L^2$ $Max \frac{C_L^{-1/2}}{C_-}$ $V = 1.3161 V_{L/D_{max}}$

$$\operatorname{Max} \frac{\operatorname{C}_{L}^{1/2}}{\operatorname{C}_{D}}$$

$$V = 1.3161 \ V_{L/D_{max}}$$

Min Sink Rate

$$R = \frac{1}{3}$$
 $C_{D_0} = \frac{1}{3} C_{D_L} = \frac{1}{3} K C_L^2$ $Max \frac{C_L^{3/2}}{C_D}$ $V = 0.7598 V_{L/D_{max}}$

$$\operatorname{Max} \frac{\operatorname{C}_{L}^{3/2}}{\operatorname{C}_{D}}$$

$$V = 0.7598 V_{L/D_{max}}$$

Aircraft Flight Ceiling

How high can an airplane fly in steady, level flight?

Upper altitude limit = ceiling

Ceiling	R / C Capability
Absolute	0 ft / min
Service	100 ft / min
Cruise	300 ft / min
Combat	500 ft / min

Estimating Absolute Ceiling

Calculate the maximum Rate of Climb at Sea Level

Calculate the maximum Rate of Climb at another altitude

Derive the linear relationship $R/C_{max} = a + b h$ and solve for h where $R/C_{max} = 0$

At Sea Level: $(R/C)_{max} = 4,600$ ft/min

At 30,000 ft: $(R/C)_{max} = 1,600$ ft/min

a = 4,600 b = -0.1

 $(R/C)_{max} = 4,600 - 0.1 h$ $h = [4,600 - (R/C)_{max}] / 0.1$

When $(R/C)_{max} = 0$, then h = 46,000 ft

AEEM 3042 – Aircraft Performance & Design

Course Exams

Will be done online via Canvas:

Exam #1 – Thursday, January 27 at 2:00 pm ET

Exam #2a – Tuesday, February 17 at 2:00 pm ET

Exam #2b - Thursday, March 10 at 2:00 pm ET

Start the exam between 2:00 and 2:15 pm ET

You will have 90 minutes to complete the exam

Allowable resources include your notes, calculator, lecture slides, reference materials, spreadsheets

Academic Integrity = no help from other students!!

Questions are randomly selected

Exam will be graded automatically

Students will know their exam grade immediately

Questions during the exam should be e-mailed to the instructor

AEEM 3042 – Aircraft Performance & Design

Course Exam Tips

Be ready to take this exam!

There are 15 questions to answer (~100 points each):

- True / False

- Multiple Choice

Matching

- Numerical values

Answers do not depend on any previous calculations, which means that there is no partial credit

You can answer the questions in any order

You can review any of the questions at any time

Do not hit the "Submit" button until you have finished

Questions?