4M x 1Bit CMOS Dynamic RAM with Fast Page Mode

DESCRIPTION

This is a family of 4,194,304 x 1bit Fast Page Mode CMOS DRAMs. Fast Page Mode offers high speed random access of memory cells within the same row. Power supply voltage (+5V or +3.3V), access time (-5, -6 or -7), power consumption(Normal or Low power), and package type (SOJ or TSOP-II) are optional features of this family. All of this family have $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh, $\overline{\text{RAS}}$ -only refresh and Hidden refresh capabilities. Furthermore, self-refresh operation is available in Low power version.

This 4Mx1 Fast Page Mode DRAM family is fabricated using Samsung's advanced CMOS process to realize high band-width, low power consumption and high reliability. It may be used as main memory for main frames and mini computers, personal computer and high performance microprocessor systems.

FEATURES

- Part Identification
 - KM41C4000D/D-L(5V, 1K Ref.)
 - KM41V4000D/D-L(3.3V, 1K Ref.)

Active Power Dissipation

Unit: mW

Speed	3.3V	5V
-5	-	470
-6	220	415
-7	200	360

Refresh Cycles

Part	Refresh	Refresh	Period
NO.	cycle	Normal	L-ver
KM41C4000D	1K	16ms	128ms
KM41V4000D	IIX	101113	1201113

Performance Range

Speed	trac	tcac	trc	tpc	Remark
-5	50ns	15ns	90ns	35ns	5V only
-6	60ns	15ns	110ns	40ns	5V/3.3V
-7	70ns	20ns	130ns	45ns	5V/3.3V

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden refresh capability
- Self-refresh capability (3.3V, L-ver only)
- · Fast parallel test mode capability
- TTL(5V)/LVTTL(3.3V) compatible inputs and outputs
- · Common I/O using early write
- · JEDEC Standard pinout
- Available in 26(20)-pin SOJ 300mil and TSOP(II) 300mil packages
- +5V±10% power supply(5V product)
- +3.3V±0.3V power supply(3.3V product)

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PIN CONFIGURATION (Top Views)

Pin Name	Pin function
A0 - A10	Address Inputs
D	Data In
Q	Data out
Vss	Ground
RAS	Row Address Strobe
CAS	Column Address Strobe
$\overline{\mathbb{V}}$	Read/Write Input
N.C	No Connection
Vcc	Power(+5V)
V 00	Power(+3.3V)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Units	
i arameter	Symbol	3.3V	5V	Office
Voltage on any pin relative to Vss	VIN, VOUT	-0.5 to +4.6	-1 to +7.0	V
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to +4.6	-1 to +7.0	V
Storage Temperature	Tstg	-55 to +150	-55 to +150	°C
Power Dissipation	Pp	600	600	mW
Short Circuit Output Current	los	50	50	mA

^{*} Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to Vss, TA= 0 to 70°C)

Parameter	Symbol		3.3V			5V		Units
Farameter	Symbol	Min	Тур	Max	Min	Тур	Max	Offics
Supply Voltage	Vcc	3.0	3.3	3.6	4.5	5.0	5.5	V
Ground	Vss	0	0	0	0	0	0	V
Input High Voltage	VIH	2.0	-	Vcc+0.3*1	2.4	-	Vcc+1.0*1	V
Input Low Voltage	VIL	-0.3 ^{*2}	-	0.8	-0.1 ^{*2}	-	0.8	V

^{*1 :} Vcc +1.3V/15ns(3.3V), Vcc +2.0V/20ns(5V), Pulse width is measured at Vcc

DC AND OPERATING CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

	Parameter	Symbol	Min	Max	Units
	Input Leakage Current (Any input 0≤VIN≤Vcc+0.3V, all other input pins not under test=0 Volt)	lı(L)	-5	5	uA
3.3V	Output Leakage Current (Data out is disabled, 0V≤Vouт≤Vcc)	lo(L)	-5	5	uA
	Output High Voltage Level(IOH=-2mA)	Vон	2.4	-	V
	Output Low Voltage Level(IoL=2mA)	Vol	-	0.4	V
	Input Leakage Current (Any input 0≤VIN≤Vcc+0.5V, all other input pins not under test=0 Volt)	lı(L)	-5	5	uA
5V	Output Leakage Current (Data out is disabled, 0V≤VouT≤Vcc)	lO(L)	-5	5	uA
	Output High Voltage Level(IoH=-5mA)	Voн	2.4	-	V
	Output Low Voltage Level(IoL=4.2mA)	Vol	-	0.4	V

^{*2: -1.3}V/15ns(3.3V), -2.0V/20ns(5V), Pulse width is measured at Vss

DC AND OPERATING CHARACTERISTICS (Recommend operating conditions unless otherwise noted.)

Symbol	ymbol Power Speed		М	ax	Unito
Symbol	Power	Speed	KM41V4000D	KM41C4000D	Units
Icc1	Don't Care	-5 -6	- 60	85 75	mA mA
1001	Don't Care	-7	55	65	mA
ICC2	Don't Care	Don't Care	1	2	mA
Іссз	Don't Care	-5 -6 -7	- 60 55	85 75 65	mA mA mA
ICC4	Don't Care	-5 -6 -7	- 45 40	65 55 45	mA mA mA
ICC5	Normal L	Don't Care	0.5 100	1 200	mA uA
ICC6	Don't Care	-5 -6 -7	- 60 55	85 75 65	mA mA mA
ICC7	L	Don't Care	200	300	uA
Iccs	L	Don't Care	150	-	uA

Icc1*: Operating Current (RAS and CAS cycling @trc=min.)

ICC2: Standby Current (RAS=CAS=W=VIH)

Icc3*: RAS-only Refresh Current (CAS=VIH, RAS, Address cycling @trc=min.)

Icc4*: Fast Page Mode Current (RAS=VIL, CAS, Address cycling @tpc=min.)

Icc5 : Standby Current ($\overline{RAS} = \overline{CAS} = \overline{W} = Vcc - 0.2V$)

Icc6*: CAS-Before-RAS Refresh Current (RAS and CAS cycling @trc=min)

Icc7: Battery back-up current, Average power supply current, Battery back-up mode
Input high voltage(VIH)=Vcc-0.2V, Input low voltage(VIL)=0.2V, CAS=0.2V,

DQ=Don't Care, Trc=125us(L-ver.), Tras=Trasmin~300ns

Iccs: Self refresh current

RAS=CAS=VIL, W=OE =A0 ~ A10=D=Vcc-0.2V or 0.2V

*Note: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as an average current. In Icc1, Icc3 Icc6 and Icc7, address can be changed maximum once while RAS=VIL. In Icc4, address can be changed maximum once within one fast page mode cycle time, tpc.

CAPACITANCE (TA=25°C, VCC=5V or 3.3V, f=1MHz)

Parameter	Symbol	Min	Max	Units
Input capacitance [D]	CIN1	-	5	pF
Input capacitance [A0 ~ A10]	CIN2	-	5	pF
Input capacitance [RAS, CAS, W]	Сімз	-	7	pF
Output capacitance [Q]	Соит	-	7	pF

AC CHARACTERISTICS (0°C≤TA≤70°C, See note 1,2)

 $\label{eq:total_condition} Test \ condition \ (5V \ device): Vcc=5.0V\pm10\%, \ Vih/Vil=2.4/0.8V, \ Voh/Vol=2.4/0.4V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Vih/Vil=2.2/0.7V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Voh/Vol=2.0/0.8V \\ Test \ condition \ (3.3V \ device): \ Vcc=3.3V\pm0.3V, \ Voh/Vol=2.0V, \ Voh/Vol=2.0$

Power-ster.	Cumbal	-5	;*1	-	6		7	Units	Notes
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Units	Notes
Random read or write cycle time	trc	90		110		130		ns	
Read-modify-write cycle time	trwc	110		130		150		ns	
Access time from RAS	trac		50		60		70	ns	3,4,10
Access time from CAS	tcac		15		15		20	ns	3,4,5
Access time from column address	taa		25		30		35	ns	3,10
CAS to output in Low-Z	tclz	0		0		0		ns	3
Output buffer turn-off delay	toff	0	12	0	12	0	17	ns	6
Transition time (rise and fall)	tτ	3	50	3	50	3	50	ns	2
RAS precharge time	trp	30		40		50		ns	
RAS pulse width	tras	50	10K	60	10K	70	10K	ns	
RAS hold time	trsh	15		15		20		ns	
CAS hold time	tcsH	50		60		70		ns	
CAS pulse width	tcas	15	10K	15	10K	20	10K	ns	
RAS to CAS delay time	trcd	20	35	20	45	20	50	ns	4
RAS to column address delay time	trad	15	25	15	30	15	35	ns	10
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address set-up time	tasr	0		0		0		ns	
Row address hold time	trah	10		10		10		ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	tcah	10		10		15		ns	
Column address to RAS lead time	tral	25		30		35		ns	
Read command set-up time	trcs	0		0		0		ns	
Read command hold time referenced to $\overline{\text{CAS}}$	trch	0		0		0		ns	8
Read command hold time referenced to RAS	trrh	0		0		0		ns	8
Write command hold time	twch	10		10		15		ns	
Write command pulse width	twp	10		10		15		ns	
Write command to RAS lead time	trwL	15		15		15		ns	
Write command to CAS lead time	tcwL	13		15		15		ns	

Note) *1 : 5V only

AC CHARACTERISTICS (0°C≤TA≤70°C, See note 2)

Parameter	Symbol	-5	;*1	-	6	-	7	Units	Notes
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Units	Notes
Data set-up time	tos	0		0		0		ns	9
Data hold time	tон	10		10		15		ns	9
Refresh period (Normal)	tref		16		16		16	ms	
Refresh period (L-ver)	tref		128		128		128	ms	
Write command set-up time	twcs	0		0		0		ns	7
CAS to W delay time	tcwp	15		15		20		ns	7
RAS to W delay time	trwd	50		60		70		ns	7
Column address to \overline{W} delay time	tawd	25		30		35		ns	7
CAS precharge to W delay time	tcpwd	30		35		40		ns	7
CAS set-up time (CAS-before-RAS refresh)	tcsr	10		10		10		ns	
CAS hold time (CAS-before-RAS refresh)	tchr	10		10		15		ns	
RAS to CAS precharge time	trpc	5		5		5		ns	
$\overline{\text{CAS}}$ precharge time ($\overline{\text{C}}$ -B- $\overline{\text{R}}$ counter test cycle)	t CPT	20		20		25		ns	
Access time from CAS precharge	t CPA		30		35		40	ns	3
Fast Page mode cycle time	tpc	35		40		45		ns	
Fast Page read-modify-write cycle time	t PRWC	53		60		70		ns	
CAS precharge time (Fast Page cycle)	tcp	10		10		10		ns	
RAS pulse width (Fast Page cycle)	tRASP	50	200K	60	200K	70	200K	ns	
RAS hold time from CAS precharge	trhcp	30		35		40		ns	
Write command set-up time (Test mode in)	twrs	10		10		10		ns	
Write command hold time (Test mode in)	twтн	10		10		10		ns	
W to RAS precharge time (C-B-R refresh)	twrp	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twrh	10		10		10		ns	
RAS pulse width (C-B-R self refresh)	trass	100		100		100		us	14,15,16
\overline{RAS} precharge time (\overline{C} -B- \overline{R} self refresh)	trps	90		110		130		ns	14,15,16
CAS Hold time (C-B-R self refresh)	tchs	-50		-50		-50		ns	14,15,16

Note) *1 : 5V only

CMOS DRAM

TEST MODE CYCLE (Note 11)

Parameter	Symbol	-4	5 ^{*1}	_	6	_	7	Units	Notes
Farameter	Syllibol	Min	Max	Min	Max	Min	Max	Uiilis	Notes
Random read or write cycle time	trc	95		115		135		ns	
Read-modify-write cycle time	trwc	113		135		160		ns	
Access time from RAS	trac		55		65		75	ns	3,4,10
Access time from CAS	tcac		18		20		25	ns	3,4,5
Access time from column address	taa		30		35		40	ns	3,10
RAS pulse width	tras	55	10K	65	10K	75	10K	ns	
CAS pulse width	tcas	18	10K	20	10K	25	10K	ns	
RAS hold time	trsh	18		20		25		ns	
CAS hold time	tсsн	55		65		75		ns	
Column Address to RAS lead time	tral	30		35		40		ns	
CAS to W delay time	tcwd	18		20		25		ns	7
RAS to W delay time	trwd	55		65		75		ns	7
Column Address to $\overline{\mathbb{W}}$ delay time	tawd	30		35		40		ns	7
Fast Page mode cycle time	tpc	40		45		50		ns	
Fast Page mode read-modify-write cycle	tprwc	58		65		75		ns	
RAS pulse width (Fast Page cycle)	trasp	55	200K	65	200K	75	200K	ns	
Access time from CAS precharge	t CPA		35		40		45	ns	3

Note) *1 : 5V only

NOTES

- 1. An initial pause of 200us is required after power-up followed by any 8 RAS-only refresh or CAS-before-RAS refresh cycles before proper device operation is achieved.
- 2. VIH(min) and VIL(max) are reference levels for measuring timing of input signals. Transition times are measured between VIH(min) and VIL(max) and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL(5V)/1 TTL(3.3V) loads and 100pF.
- 4. Operation within the tRCD(max) limit insures that tRAC(max) can be met. tRCD(max) is specified as a reference point only.

 If tRCD is greater than the specified tRCD(max) limit, then access time is controlled exclusively by tCAC.
- 5. Assumes that tRCD≥tRCD(max).
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 7. twcs, trwd, tcwd, tawd and tcpwd are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs\geqtures(min), the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If tcwd\geqturetcwd(min), trwd\geqtrevchamp(min), tawd\geqtrevchamp(min) and tcpwd\geqtrevchamp(min) then the cycle is a read-modify-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.
- 8. Either trch or trrh must be satisfied for a read cycle.
- 9. These parameters are referenced to \overline{CAS} falling edge in early write cycles and to \overline{W} falling edge in read-modify-write cycles.
- 10. Operation within the trad(max) limit insures that trac(max) can be met. trad(max) is specified as a reference point only.

 If trad is greater than the specified trad(max) limit, then access time is controlled by trad.
- 11. These specifiecations are applied in the test mode.
- 12. In test mode read cycle, the value of tRAC, tAA, tCAC is delayed by 2ns to 5ns for the specified values. These parameters should be specified in test mode cycles by adding the above value to the specified value in this data sheet.
- 13. toff(MAX) defines the time at which the output achieves the open circuit condition and are not referenced to output voltage level.
- 14. If tRASS≥100us, then RAS precharge time must use tRPs instead of tRP.
- 15. For RAS-only refresh and burst CAS-before-RAS refresh mode, 1024(1K) cycle of burst refresh must be executed within 16ms before and after self refresh, in order to meet refresh specification.
- 16. For distributed $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ with 15.6us interval, $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh should be executed with in 15.6us immediately before and after self refresh in order to meet refresh specification.

READ CYCLE

WRITE CYCLE (EARLY WRITE)

READ-WRITE / READ - MODIFY - WRTIE CYCLE

FAST PAGE READ CYCLE

FAST PAGE WRITE CYCLE (EARLY WRITE)

FAST PAGE READ - MODIFY - WRITE CYCLE

RAS - ONLY REFRESH CYCLE

NOTE : \overline{W} , DIN = Don't care DOUT = OPEN

CAS - BEFORE - RAS REFRESH CYCLE

NOTE: A = Don't care

HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

NOTE : DOUT = OPEN

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

CAS - BEFORE - RAS SELF REFRESH CYCLE

NOTE : A = Don't care

TEST MODE IN CYCLE

NOTE: D, A = Don't care

PLASTIC SMALL OUT-LINE J-LEAD

