PROBABILITY AND STATISTICS

CHAPTER 7: ANALYSIS OF VARIANCE (ANOVA)

Dr. Phan Thi Huong

HoChiMinh City University of Technology
Faculty of Applied Science, Department of Applied Mathematics
Email: huongphan@hcmut.edu.vn

HCM city — 2021.

Introduction

EXAMPLE 1

A manufacturer of paper used for making grocery bags is interested in improving the tensile strength of the product. Product engineering thinks that tensile strength is a function of the hardwood concentration in the pulp and that the range of hardwood concentrations of practical interest is between 5 and 20%. A team of engineers responsible for the study decides to investigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to make up six test specimens at each concentration level, using a pilot plant. All 24 specimens arc tested on a laboratory tensile tester, in random order. The data from this experiment are shown in the Table below.

INTRODUCTION

Hardwood	Observations							
Concentration (%)	1	2	3	4	5	6	Totals	Averages
5	7	8	15	11	9	10	60	10.00
10	12	17	13	18	19	15	94	15.67
15	14	18	19	17	16	18	102	17.00
20	19	25	22	23	18	20	<u>127</u>	<u>21.17</u>
							383	15.96

TABLE 1: Tensile Strength of Paper (psi)

INTRODUCTION

• Question: does the hardwood concentration affect the tensile strength of the bags?

INTRODUCTION

- Question: does the hardwood concentration affect the tensile strength of the bags?
- Statistical problem: comparing the tensile strength means between 4 groups of hardwood concentration.

Introduction

- Question: does the hardwood concentration affect the tensile strength of the bags?
- Statistical problem: comparing the tensile strength means between 4 groups of hardwood concentration.
- The experiment is carried out in random order (a completely randomized design).

Introduction

- Question: does the hardwood concentration affect the tensile strength of the bags?
- Statistical problem: comparing the tensile strength means between 4 groups of hardwood concentration.
- The experiment is carried out in random order (a completely randomized design).
- \bullet \Rightarrow we need a statistical technique called ANOVA.

THE ANALYSIS OF VARIANCE - THE DEFINITIONS

- The levels of the factor are sometimes called treatments.
- The response for each of the a treatments is a random variable.
- The observed data would appear as shown in the Table below.

Treatment	(Observ	atior	Totals	Averages	
1	<i>y</i> ₁₁	<i>y</i> ₁₂	•••	y_{1n}	y_1 .	\bar{y}_1 .
2	y_{21}	y_{22}	• • •	y_{2n}	y_2 .	$ar{y}_2$.
÷	÷	:	:::	÷	:	:
k	y_{k1}	y_{k2}	•••	y_{kn}	y_k .	\bar{y}_{k} .
					<i>y</i>	<i>y</i>

Where

$$y_{i.} = \sum_{j=1}^{n} y_{ij}, \quad \bar{y}_{i.} = y_{i.}/n, \qquad i = 1, 2, ..., k$$

 $y_{..} = \sum_{i=1}^{k} \sum_{j=1}^{n} y_{ij}, \quad \bar{y}_{..} = y_{..}/N, \quad N = kn$

THE ANALYSIS OF VARIANCE - THE MODELS

Considering the model:

$$Y_{ij} = \mu + \tau_i + \epsilon_{ij} \tag{1}$$

where i = 1, 2, ..., k and j = 1, 2, ..., n. In the formula,

- μ is a parameter common to all treatments called the overall mean,
- τ_i is a parameter associated with the ith treatment called the ith treatment effect.
- and ϵ_{ij} a random error component.

THE ANALYSIS OF VARIANCE - THE MODELS

The model is also written as

$$Y_{ij} = \mu_i + \epsilon_{ij} \begin{cases} i = 1, 2, ..., k \\ j = 1, 2, ... n \end{cases}$$
 (2)

where $\mu_i = \mu + \tau_i$ is the mean of the ith treatment.

- \Rightarrow each treatment defines a population that has mean μ_i .
- \Rightarrow if $\varepsilon_{ij} \sim N(0, \sigma^2)$, each treatment can be thought of as a normal population with mean μ_i and variance σ^2 .

THE ANALYSIS OF VARIANCE - THE ASSUMPTIONS

The Assumptions of the ANOVA for the fixed-effects and single factor model:

- The populations are normally distributed.
- The population has equal variances, e.i. $\varepsilon_{ij} \sim N(0, \sigma^2)$.
- The samples are random and independent.

THE ANALYSIS OF VARIANCE - THE HYPOTHESES

• The null hypothesis:

$$H_0: \tau_1 = \tau_2 = \dots = \tau_k = 0$$

Changing the levels of the factor has no effect on the mean. response.

• The alternative hypothesis:

$$H_1: \tau_i \neq 0$$
 for at least one i

There exists the difference between the levels of the factor.

THE ANALYSIS OF VARIANCE - THE VARIATION

The ANOVA partitions the total variability in the sample data into two component parts.

The sum of squares identity is

$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{\cdot \cdot})^2 = n \sum_{i=1}^{k} (\bar{y}_{i \cdot} - \bar{y}_{\cdot \cdot})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i \cdot})^2$$

or

$$SST = SSB + SSE$$

THE ANALYSIS OF VARIANCE - THE TOTAL VARIATION

• SST describes the total variability in the data: $SST = \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^2$.

• A computational formula:

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n} y_{ij}^{2} - \frac{y_{..}^{2}}{N}$$

THE ANALYSIS OF VARIANCE - THE VARIATION BETWEEN TREATMENTS MEANS

• *SSB* describes the total variability between treatment means: $SSB = n\sum_{i=1}^{k} (\bar{y}_{i\cdot} - \bar{y}_{\cdot\cdot})^2$.

• A computational formula:

$$SSB = \sum_{i=1}^{k} \frac{y_{i}^{2}}{n} - \frac{y_{i}^{2}}{N}$$

THE ANALYSIS OF VARIANCE - THE VARIATION WITHIN TREATMENTS

• *SSE* describes the total variability of observation within treatments: $SSE = \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2$.

• A computational formula:

$$SSE = SST - SSB$$
.

THE ANALYSIS OF VARIANCE - THE MEAN SQUARES

- The mean square for treatment: $MSB = \frac{SSB}{k-1}$
- The mean square for errors: $MSE = \frac{SSE}{k(n-1)}$
- The expected value of the treatment sum of squares is

$$E(SSB) = (k-1)\sigma^2 + n\sum_{i=1}^k \tau_i^2$$

• and the expected value of the error sum of squares is

$$E(SSE) = k(n-1)\sigma^2$$

- \Rightarrow if H0 is true, MSB is an unbiased estimator of σ^2 .
- \Rightarrow MSE is an unbiased estimator of σ^2 regardless of whether or not H0 is true.

THE ANALYSIS OF VARIANCE - THE ANOVA F-TEST

$$\begin{cases} H_0: H_0: \tau_1 = \tau_2 = \dots = \tau_k = 0 \\ H_1: \tau_i \neq 0 \quad \text{with at least one i} \end{cases}$$

• The test statistic:

$$F_0 = \frac{MSB}{MSE} = \frac{SSB/(k-1)}{SSE/[k(n-1)]}$$
(3)

- F_0 has a Fisher distribution with (k-1) and k(n-1) degrees of freedom, $F_0 \sim f_{k-1,k(n-1)}$.
- Given α , we would reject H0 if $f_0 > f_{k-1,k(n-1),\alpha}$.

THE ANALYSIS OF VARIANCE - THE ANOVA F-TEST

Source of variation	SS	df	MS	F
Treatments	SSB	<i>k</i> – 1	MSB	
Error	SSE	k(n-1)	MSE	$f_0 = \frac{MSB}{MSE}$
Total	SST	<i>kn</i> – 1		

TABLE 2: Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

MULTIPLE COMPARISONS METHODS FOLLOWING ANOVA.

- When the null hypothesis $H_0: \tau_1 = \tau_2 = \dots = \tau_k$ is rejected in the ANOVA, we know that some of the treatment or factor-level means are different. However, the ANOVA does not identify which means are different.
- To identify which pairs of treatment means are different, we use multiple comparisons methods. Here we describe a very simple one, Fisher's least significant difference (LSD) method.
- The Fisher LSD method compares all pairs of means with the null hypothesest $H_0: \mu_i = \mu_j$ (for all $i \neq j$).

MULTIPLE COMPARISONS METHODS FOLLOWING ANOVA.

THEOREM 2.1

If the assumption of ANOVA is adapted, then

$$T = \frac{(\bar{Y}_i - \bar{Y}_j) - (\mu_i - \mu_j)}{\sqrt{\frac{2MSE}{n}}}$$

follows Student distribution with k(n-1) degrees of freedom.

THE FISHER LSD METHOD FOR CONFIDENCE INTERVALS.

 $100(1-\alpha)\%$ CI for $\mu_i - \mu_j$ is given by

$$\bar{y}_i - \bar{y}_j - t_{k(n-1),\alpha/2} \sqrt{\frac{2MSE}{n}} \leq \mu_i - \mu_j \leq \bar{y}_i - \bar{y}_j + t_{k(n-1),\alpha/2} \sqrt{\frac{2MSE}{n}}$$

MULTIPLE COMPARISONS METHODS FOLLOWING ANOVA.

THE FISHER LSD METHOD FOR HYPOTHESIS TESTS.

Consider the hypotheses:

$$H0: \mu_i - \mu_j = 0$$

$$H1: \mu_i - \mu_j \neq 0$$

The test statistic value: $t_0 = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{\frac{2MSE}{n}}} \longrightarrow t - test$

Particularly, H0 is rejected when

$$|\bar{y}_i - \bar{y}_j| > t_{\alpha/2}^{k(n-1)} \sqrt{\frac{2MSE}{n}}$$

where $LSD = t_{\alpha/2}^{k(n-1)} \sqrt{\frac{2MSE}{n}}$ is called the least significant difference.

EXAMPLE

A manufacturer of paper used for making grocery bags is interested in improving the tensile strength of the product. Product engineering thinks that tensile strength is a function of the hardwood concentration in the pulp and that the range of hardwood concentrations of practical interest is between 5 and 20%. A team of engineers responsible for the study decides to investigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to make up six test specimens at each concentration level, using a pilot plant. All 24 specimens arc tested on a laboratory tensile tester, in random order. The data from this experiment are shown in the Table below.

EXAMPLE

Hardwood	Observations							
Concentration (%)	1	2	3	4	5	6	Totals	Averages
5	7	8	15	11	9	10	60	10.00
10	12	17	13	18	19	15	94	15.67
15	14	18	19	17	16	18	102	17.00
20	19	25	22	23	18	20	<u>127</u>	<u>21.17</u>
							383	15.96

TABLE 3: Tensile Strength of Paper (psi)

EXAMPLE

- Does the hardwood concentration affect the tensile strength of the bags?
- Find the confidence interval for the different means of tensile strength of the bags between two hardwood concentration levels 10 and 15.
- Interpret the multiple comparison result.