Phys 425 Lecture 4

. peminders

· problem set 1 (10/3)

· Qviz 1 @ end of today.

Miller indices (h, k, l) spaces out w)

can define family of districe dhel =

lattice planes on lattice

derines the difference of $\frac{2\pi}{|G_{min}|}$ s defines the

us the reviprocal

lattle vector.

The Brillovin Zone

The BZ is the equivalent of the Wigner - Scitz cell in reciprocal space. — thes the entire space.

Ly just like any primitive, real lattice cell, the first Brillouin zone includes all physically distinct were vectors.

Characteriziny Crystal Structure

In the practical sense, you measure geometrical properties of the lattice via scattering.

L general Scattering experiment:

- Shoot EM wave into the sample (the cryptal)

- represent wave as place wave, &

P(T,t) = E0 (ik. 7-wt)

K 15 a wave #

(Vuror be 3 different wave #5 (= (x, ky, k2)

W= 277 P

r is position in space

· 11502/4

-experiment = Ghosting plane wave at sample

Dunscattered

 $V(\tilde{\Gamma})$ - sample can represent potential La latice potonical · wave scatters due to the potential

has some probability:

go Chrough,

elastic ollision (energy exchange)

Probability of scattering is given by Fermi's golden rule. gamma (capiral) s expectation value of potential interacting in both ways. > ' \ (\frac{1}{k},\frac{1}{k}) = 2T / (F) (F) (F) (F) S (FE) = collision

To F 25cmple 3 we will only got a match if equal to zero (R' | V(r) | R> = $\sqrt{\frac{1}{80mple}}$ $e^{i(\vec{k}-\vec{k})\cdot\vec{r}}$ $\sqrt{(\vec{r})}$ $d\vec{r}$ $e^{i(\vec{k}-\vec{k})\cdot\vec{r}}$ fourier transform of operator $e^{i(\vec{k}-\vec{k})\cdot\vec{r}}$ our sample. V is a periodic function then $\angle \vec{k}' |V| \vec{k} > = 0$ uness L'-L = a reappocal lattice rector WE ONLY SCATTER IF WE HIT AN ATOM. \Rightarrow X'-X=G In some hidden way, a law of conservation of "crystal momentum" Lave Condition

Thysically: a Lave condition talls us the condition of doserling constructive interference

60, in scattering experiments, intensity patterns will show maxima

that correlates two reciprocal

lattice vectors.

BeiGR=1

Once you get intensity pattern, construct the entire laptice.

I 人 (を(产))2

Once the waves scatter by 20, they can Interfere, but they have a difference in path length.

construction interference 2 d sin 0 = n2

incoming wave

Lave condition = lorage condition

Given a set of family of lattice planes, parameterized by the Miller indices. (h,k,l) $hkl = \frac{2}{25m\theta} = \frac{\alpha}{\sqrt{h^2 + k^2 + l^2}}$

$$\frac{\lambda}{1} = \frac{\lambda}{1}$$

$$\frac{\lambda}{1} + k^2 + \lambda^2$$