SAMM Assessment spreadsheet

Software Development Plan for SecureSync

1. Governance

Strategy & Metrics:

Create & Promote: Establish a security roadmap for SecureSync, outlining the security objectives and goals. Define KPIs for measuring security effectiveness.

Measure & Improve: Continuously evaluate security metrics and implement strategies for improvement.

Policy & Compliance:

Policy & Standards: Create security policies adhering to relevant regulations. Define standards for encryption, access control, and data storage.

Compliance Management: Monitor compliance regularly to ensure SecureSync follows international security standards.

Education & Guidance:

Training & Awareness: Regular cybersecurity training for all employees and developers involved with SecureSync.

Organization & Culture: Foster a security-first culture within the development team by embedding security into development workflows.

2. Design

Threat Assessment:

Application Risk Profile: Identify potential threats for SecureSync by conducting threat modeling exercises to assess application vulnerabilities.

Threat Modeling: Use data flow diagrams to map out potential attack vectors and define mitigations.

• Security Requirements:

Software Requirements: Define security requirements for data encryption, access controls, and secure API development.

Supplier Security: Ensure third-party services and dependencies integrated into SecureSync follow robust security standards.

Secure Architecture:

Architecture Design: Define a secure architecture for SecureSync, using a layered defense model to mitigate risks across different components.

Technology Management: Select technologies that support encryption, access control, and scalability.

3. Implementation

Secure Build:

Build Process: Integrate security testing, automating static analysis, and vulnerability scanning.

Software Dependencies: Ensure that third-party libraries used by SecureSync are vetted and updated regularly to avoid vulnerabilities.

• Secure Deployment:

Deployment Process: Use secure deployment processes including role-based access control, environment hardening, and containerization for scalability and security.

Secret Management: Implement secrets management to protect sensitive keys and credentials.

• Defect Management:

- Defect Tracking: Establish defect tracking for all security vulnerabilities found during development.
- Metrics & Feedback: Analyze metrics from defects to identify security trends and weak spots in the software development lifecycle.

4. Verification

Architecture Assessment:

Architecture Validation: Periodic reviews of the architecture to ensure it aligns with security policies and standards.

Architecture Compliance: Ensure the architecture complies with regulations.

• Requirements-driven Testing:

Control Verification: Use automated tests to verify security controls, including authentication mechanisms, encryption, and access control lists.

Misuse/Abuse Testing: Conduct penetration testing and simulate misuse scenarios to identify potential security gaps.

Security Testing:

Scalable Baseline: Implement scalable security testing as part of the QA process for SecureSync.

Deep Understanding: Focus on deep vulnerability assessments for critical components such as database encryption and access control mechanisms.

5. Operations

Incident Management:

Incident Detection: Set up real-time monitoring and alerting systems to detect unusual activity or breaches.

Incident Response: Develop an incident response plan for SecureSync that includes procedures for containment, eradication, and recovery.

• Environment Management:

Configuration Hardening: Regularly harden configurations for servers, databases, and cloud services to reduce attack surfaces.

Patch & Update: Ensure timely patching of all systems, libraries, and third-party components.

• Operational Management:

Data Protection: Regularly audit data protection mechanisms, ensuring encryption is applied to all sensitive data, both at rest and in transit.

Legacy Management: Develop a plan for managing legacy systems, including deprecating insecure technologies or protocols.