Hardware

8. ARM: Sběrnice & registry 3. ročník

Advanced Microcontroller Bus Architecture

Sběrnice AHB

- Advanced High-performance Bus
 - Nástupce ASB (první generace AMBA)
- Pro velmi rychlou komunikaci mezi:
 - CPU
 - RAM
 - DMA
- Podpora dávkového přenosu dat
- Most pro komunikaci s APB

Sběrnice APB

- Advanced Peripheral Bus
- Nabízí jednoduchý interface pro připojení pomalejší a low-power periférií k procesoru
 - Časovače
 - UART
 - I²C, SPI
- Periférie komunikují s CPU prostřednictvím mostu mezi AHB a APB

RCC->AHB1ENR

Využíváno pro aktivaci příslušného portu

7.3.10 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)

Address offset: 0x30

Reset value: 0x0010 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reser- ved	OTGH S ULPIE N	OTGH SEN	ETHM ACPTP EN	ETHM ACRXE N	ETHM ACTXE N	ETHMA CEN	Rese	erved	DMA2E N	DMA1E N	CCMDAT ARAMEN	Res.	BKPSR AMEN	Rese	erved
	rw	rw	rw	rw	rw	ΓW			rw	rw			rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved	i	CRCE N		Reserved	i	GPIOIE N	GPIOH EN	GPIOG EN	GPIOFE N	GPIOEEN	GPIOD EN	GPIOC EN	GPIO BEN	GPIO AEN
			rw			•	rw	rw	rw	rw	rw	rw	rw	rw	rw

GPIOx->MODER

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..I/J/K)

Address offset: 0x00

Reset values:

0xA800 0000 for port A

0x0000 0280 for port B

0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODER	R15[1:0]	MODER	R14[1:0]	MODER	R13[1:0]	MODER	R12[1:0]	MODE	R11[1:0]	MODE	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODER5[1:0]		MODER4[1:0]		MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

GPIOx->IDR

8.4.5 GPIO port input data register (GPIOx_IDR) (x = A..I/J/K)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
г	r	r	r	r	г	r	r	r	r	r	Γ	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDRy**: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input value of the corresponding I/O port.

GPIOx->ODR

8.4.6 GPIO port output data register (GPIOx_ODR) (x = A..I/J/K)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Resei	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	ГW	ΓW	rw	rw	ГW	rw						

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy**: Port output data (y = 0..15)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the

 $GPIOx_BSRR$ register (x = A..I/J/K).

GPIOx->BSRR

8.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..I/J/K)

Address offset: 0x18

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	W	w	w	w	w	w	W	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BS15	14 BS14	13 BS13	12 BS12	11 BS11	10 BS10	9 BS9	8 BS8	7 BS7	6 BS6	5 BS5	4 BS4	3 BS3	BS2	1 BS1	0 BS0

Bits 31:16 **BRy:** Port x reset bit y (y = 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x set bit y (y= 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit

KONEC

Zdroje

https://www.itwissen.info/AMBA-advancedmicrocontroller-bus-architecture.html [13. 2. 2019]