Делимость

Определение

Пусть $a,b\in\mathbb{Z}$, $b\neq 0$. Тогда a делится на b (обозначение: $a\ \dot{:}\ b$) или, что то же самое, b делит a (обозначение: $b\ |\ a$), если a=bc, где $c\in\mathbb{Z}$.

Если $a \\cdot b$, то $b \\cdot general a$.

Свойство 1

Если a : b и b : c, то a : c.

Доказательство. Тогда a=kb и b=nc, где $k,n\in\mathbb{Z}$, откуда следует a=knc.

Свойство 2

Пусть $a,b \ d$, $a \ x,y \in \mathbb{Z}$. Тогда $ax+by \ d$.

Доказательство. Тогда a=kd и b=nd, где $k,n\in\mathbb{Z}$, откуда следует ax+by=(kx+ny)d.

Свойство 3

Пусть $a, d \in \mathbb{N}$, $a \in d$. Тогда $a \geq d$.

Доказательство. Тогда a=kd, где $k\in\mathbb{N}$, откуда следует $a=kd\geq d$.

Алгебра. Глава

2. Целые числа.

Д. В. Карпов

Целые числа.Д. В. Карпов

Алгебра. Глава

Теорема о делении с остатком

Теорема 1

Пусть $a \in \mathbb{Z}$, $b \in \mathbb{N}$. Тогда существуют единственные такие $q, r \in \mathbb{Z}$, что $0 \le r < b$ и a = bq + r.

• Число r называется остатком от деления a на b.

Доказательство. \exists . Пусть q — такое целое число, что $bq \leq a < b(q+1)$, а r=a-bq. Тогда $0 \leq r < b$ (вычтем из всех трех частей первого неравенства bq).

イロトイプトイミトイミト ミ かくで

- ! Пусть $a = bq_1 + r_1 = bq_2 + r_2$, причем $0 \le r_1 < b$ и $0 \le r_2 < b$.
- ullet НУО $r_1 > r_2$. Тогда $0 < r_1 r_2 < b$.
- ullet С другой стороны, $r_1-r_2=b(q_2-q_1)\geq b.$ Противоречие.

 $\begin{array}{l} bq \leq a < b(q+1)| \, -bq \\ 0 \leq r < bq + b - bq \ \, \Longrightarrow \ \, 0 \leq r < b \end{array}$

 $r1 > r2 \implies 0 < r1 - r2 < b$ (т.к. $r1 != r2 \implies$ один из них будет больше) $r1 - r2 = a - bq1 - a + bq2 = b(q2 - q1) \ge b$ (т.к. q2 != q1 - количество раз, сколько b входит b a

нод

Определение

Алгебра. Глава 2. Целые числа.

Д. В. Карпов

Пусть $a_1, \ldots, a_n \in \mathbb{Z}$. Обозначим через $\mathrm{OD}(a_1, \ldots, a_n)$ множество всех общих делителей этих чисел, а через (a_1, \ldots, a_n) — их НОД (наибольший из общих делителей).

Свойство 1

Если $b \in \mathbb{N}$. $a \in b$, то $\mathrm{OD}(a,b)$ — это все делители b и (a,b)=b.

Пример: b = 4, a = 16, очевидно, что OD (1,2,4)

Доказательство. • Если d — общий делитель a и b, то d — делитель b.

ullet Если d — делитель b, то $a \ \dot{} \ d$ по свойству 1 делимости. Значит, d — общий делитель a и b.

Также рассмотрим на примере: 1, 2, 4 – общие делители 4 и 16, то 1, 2, 4 – делители 4

1, 2, 4 — делители $4, \Rightarrow 1,2,4$ — делители a, \Rightarrow это общие делители

Свойство 2

Пусть $a,b,c,k \in \mathbb{Z}$, c=a+kb. Тогда $\mathrm{OD}(a,b)=\mathrm{OD}(c,b)$, а следовательно, и (a,b)=(c,b).

Доказательство. \bullet Пусть $d \in \mathrm{OD}(a,b)$. Тогда $c \in d$, а значит, $d \in \mathrm{OD}(c,b)$.

ullet Наоборот, если $d\in \mathrm{OD}(c,b)$, то a=c-kb \dot{b} \dot{c} d, а значит, $d\in \mathrm{OD}(a,b)$.

c = 2 + 4*3 = 14 OD(a,b) = 1 = OD(14, 3) = 1Пример 2: a = 2, b = 6, k = 4c = 2 + 4*6 = 26

Пример: a = 2, b = 3, k = 4

Если $d \in OD(a,b) \Longrightarrow c = a + kb \vdots d$ $\Longrightarrow d \in OD(c,b)$

OD(a,b) = 1, 2 = OD(26, 6) = 1,2

Если $d \in OD(c,b) \Rightarrow a = c - kb : d$ => $d \in OD(a,b)$