Devoir surveillé n° 10 Version 1

Durée : 3 heures, calculatrices et documents interdits

Dans tout le problème, on fixe un nombre entier $n \in \mathbb{N}^*$ et un nombre réel α .

Partie I: un résultat d'arithmétique

Remarque : <u>seul</u> le résultat de la question 4) est utilisé dans la suite du problème, à la question 14).

On considère l'ensemble suivant : $A_{n,\alpha} = \{ p \in \mathbb{N}^* \mid \exp(2i\pi np\alpha) = 1 \}.$

1) Montrer que $A_{n,\alpha}$ n'est pas l'ensemble vide si et seulement si α est un nombre rationnel (on veillera à montrer séparément les deux implications correspondant à cette équivalence).

Supposons à présent et jusqu'à la fin de cette partie que α soit un nombre rationnel non nul. Notons $p(\alpha)$ le plus petit élément de $A_{n,\alpha}$. Le but est de calculer $p(\alpha) = \min A_{n,\alpha}$.

2) Justifier l'égalité $p(\alpha) = p(-\alpha)$.

On pose $|\alpha| = \frac{r}{s}$ avec $(r, s) \in (\mathbb{N}^*)^2$ et $r \wedge s = 1$.

On note également $d = n \wedge s$. On définit les nombres entiers n' et s' par n = dn' et s = ds'.

- 3) Soit $p \in \mathbb{N}^*$. Montrer : $p \in A_{n,\alpha} \Leftrightarrow [\exists t \in \mathbb{N}^*, pn'r = s't]$.
- **4)** Montrer que $p(\alpha) = \frac{s}{n \wedge s}$.

Partie II: un ensemble de matrices

On note $\mathbb J$ l'ensemble de toutes les matrices du type $J_\lambda = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$ lorsque λ décrit $\mathbb C^*$.

On note également I la matrice diagonale d'ordre 3 dont les éléments diagonaux sont égaux à 1.

- 5) \mathbb{J} est-il un sous-espace vectoriel de $\mathscr{M}_3(\mathbb{C})$? Justifier la réponse donnée.
- 6) On note N la matrice J_0 . Calculer N^p pour tout $p \in \mathbb{N}$. En déduire que pour tout $\lambda \in \mathbb{C}^*$ il existe trois suites complexes u, v et w dont on exprimera le terme général à l'aide de λ , telles que : $\forall p \in \mathbb{N}$, $(J_{\lambda})^p = u_p \mathbf{I} + v_p N + w_p N^2$.

7) Soit $\lambda \in \mathbb{C}^*$. On pose : $\forall p \in \mathbb{N}, S_p = \sum_{k=0}^p \frac{1}{k!} (J_{\lambda})^k$.

Montrer qu'il existe une suite complexe x que l'on explicitera, telle que pour tout nombre entier p supérieur ou égal à 2 on ait :

$$S_p = x_p \mathbf{I} + x_{p-1} N + \frac{1}{2} x_{p-2} N^2.$$

On admettra le résultat suivant : si $z \in \mathbb{C}^*$, alors $\lim_{p \to +\infty} \sum_{k=0}^p \frac{z^k}{k!} = e^z$.

8) Pour $p \in \mathbb{N}$ on note $a_{i,j}(p)$ le coefficient de S_p situé sur la ligne i et sur la colonne j (avec $(i,j) \in \{1,2,3\}^2$).

Déterminer la matrice S dont le coefficient général $a_{i,j}$ vaut $\lim_{p\to +\infty} a_{i,j}(p)$.

Partie III: étude d'une application linéaire

On note E l'ensemble de toutes les applications linéaires définies sur \mathbb{R} et à valeurs dans \mathbb{C} . On rappelle que E est un \mathbb{C} -espace vectoriel pour les lois suivantes : si f et g sont deux telles applications et λ un nombre complexe, alors f+g et $\lambda \cdot f$ sont définies comme suit :

$$\forall x \in \mathbb{R}, (f+g)(x) = f(x) + g(x)$$
 et $(\lambda \cdot f)(x) = \lambda f(x).$

On note d'autre part [0] l'application nulle de \mathbb{R} dans \mathbb{C} .

9) Pour $f \in E$, on appelle $\varphi(f)$ l'application définie par : $\forall x \in \mathbb{R}, \varphi(f)(x) = f(x + 2\pi)$. Montrer avec soin que l'application $\varphi : f \mapsto \varphi(f)$ est un endomorphisme de E.

Pour $k \in \mathbb{N}$, on désigne par E_k le sous-ensemble de E constitué des applications du type $x \mapsto P(x)e^{i\alpha x}$ avec $P \in \mathbb{C}_k[X]$.

10) a) Montrer que E_n est le sous-espace vectoriel de E engendré par la famille $\mathscr{F} = (f_k)_{0 \le k \le n}$ où l'on note :

$$f_0: x \mapsto e^{i\alpha x}; f_1: x \mapsto xe^{i\alpha x}; \cdots; f_n: x \mapsto x^n e^{i\alpha x}.$$

Montrer alors que \mathscr{F} est une base de E_n .

b) Exprimer simplement E_{n+1} à l'aide de E_n et de la droite vectorielle

$$D_{n+1} = \{ \lambda \cdot f_{n+1} \mid \lambda \in \mathbb{C} \}.$$

- 11) a) Soit $k \in [0, n]$. Écrire $\varphi(f_k)$ comme une combinaison linéaire des éléments de \mathscr{F} .
 - **b)** En déduire : $\varphi(E_n) \subset E_n$.
- 12) On désigne par m l'endomorphisme de E_n défini par : pour $f \in E_n$, $m(f) = \varphi(f)$. On note M la matrice de m relativement à la base \mathscr{F} . Montrer que M est une matrice triangulaire supérieure d'ordre (n+1), que l'on présentera sous forme d'un tableau, en faisant seulement figurer les coefficients nuls, les coefficients diagonaux, ainsi que ceux situés juste au-dessus de la diagonale.

- 13) Calculer, pour $p \in \mathbb{N}$, le déterminant de l'endomorphisme m^p .
- 14) Pour $\alpha \in \mathbb{Q}^*$, donner le plus petit entier naturel non nul p tel que m^p soit de déterminant égal à 1.

Partie IV: changement de base

On reprend toutes les notations de la partie III.

On note id l'application identité de E_n .

On considère un nouvel endomorphisme : $\ell = m - (e^{2i\pi\alpha}) \cdot id$.

- **15)** a) Vérifier que $\ell(f_0)$ est l'application nulle [0].
 - b) Soit $k \in [0, n-1]$. Montrer que $\ell(f_{k+1})$ est un élément de E_k et que sa composante selon f_k vaut $2(k+1)\pi e^{2i\pi\alpha}$.
 - c) En déduire par récurrence que : $\forall k \in [0, n], E_k \subset \text{Ker}(\ell^{k+1}).$
 - d) Établir la propriété suivante :

$$\forall k \in [0, n], \ \ell^k(f_k) = (k!(2\pi)^k e^{2ik\pi\alpha}) \cdot f_0.$$

- e) En déduire : $\ell^n(f_n) \neq [0]$ et $\ell^{n+1}(f_n) = [0]$.
- **16)** Montrer que $\mathscr{B} = (\ell^n(f_n), \ell^{n-1}(f_n), \cdots, \ell(f_n), f_n)$ est une base de E_n .
- 17) Déterminer la matrice de ℓ relativement à la base \mathscr{B} .
- 18) En déduire la matrice de m dans la base \mathscr{B} . On note M' cette matrice.
- 19) On note \mathbb{J}_{n+1} l'ensemble des matrices carrées $A = (a_{i,j})_{(i,j) \in [\![1,n+1]\!]^2}$ à coefficients complexes vérifiant les quatre conditions suivantes :
 - $a_{1,1}$ est de module 1;
 - $-- \forall (i,j) \in [1, n+1]^2, a_{i,i} = a_{j,j};$
 - $\forall i \in [1, n], a_{i,i+1} = 1;$
 - $-- \forall (i,j) \in [1,n]^2, [j-i \notin \{0,1\} \Leftrightarrow a_{i,j}=0].$

Montrer que l'application qui à un nombre réel α associe la matrice M' est une surjection de \mathbb{R} dans \mathbb{J}_{n+1} .

— FIN —