1. Concat Names

Write a program that reads two names and a delimiter. It should print the names joined by the delimiter.

Examples

Input	Output
John Smith	John->Smith
Jan White <->	Jan<->White
Linda Terry =>	Linda=>Terry

Hints

Read the data:

```
first name = input()
last name = input()
delimiter = input()
```

Print:

```
print(f'{first name}{delimiter}{last name}')
```

2. Convert Meters to Kilometers

You will be given an integer that represents a distance in meters. Write a program that converts meters to kilometers formatted to the second decimal point.

Examples

Input	Output
1852	1.85
798	0.80

Hints

First, we read the input number:

```
meters = int(input())
```

Then, we convert it to km:

```
kilometers = meters/1000
```

Finally, print the number formatted to the second decimal point:

```
print(f'{kilometers:.2f}')
```


3. Pounds to Dollars

Write a program that converts British pounds (integer) to US dollars formatted to the 3rd decimal point.

1 British Pound = 1.31 Dollars.

Examples

Input	Output
80	104.800
39	51.090

Hints

Read the pounds:

Convert them to dollars:

Finally, print the number formatted to the third decimal point:

4. Centuries to Minutes

Write a program that reads an integer number of centuries and converts it to years, days, hours, and minutes.

Examples

Input	Output	
1	1 centuries = 100 years = 36524 days = 876576 hours = 52594560 minutes	
5	5 centuries = 500 years = 182621 days = 4382904 hours = 262974240 minutes	

Hints

Assume that one year has 365.2422 days on average (the Tropical year).

5. Special Numbers

Write a program that reads an integer n. Then, for all numbers in the range [1, n], prints the number and if it is special or not (True / False). A number is special when the sum of its digits is 5, 7, or 11.

Examples

Input	Output
15	1 -> False
	2 -> False
	3 -> False
	4 -> False
	5 -> True
	6 -> False
	7 -> True

	<pre>8 -> False 9 -> False 10 -> False 11 -> False 12 -> False 13 -> False 14 -> True 15 -> False</pre>
6	1 -> False 2 -> False 3 -> False 4 -> False 5 -> True 6 -> False

Hints

First, we read the data:

```
n = int(input())
```

Iterate from 1 to **n** (we write **n+1** because the for loop in Python iterates from 1 to **n-1** by default):

```
for num in range(1, n + 1):
    sum_of_digits = 0
    digits = num
```

To calculate the sum of digits of given number num, you might repeat the following: sum the last digit (num % 10) and remove it (sum = sum / 10) until num reaches 0.

```
while digits > 0:
    sum_of_digits += digits % 10
    digits = int(digits / 10)
```

Finally, print the result:

```
if (sum_of_digits == 5) or (sum_of_digits == 7) or (sum_of_digits == 11):
    print(f'{num} -> True')
else:
    print(f'{num} -> False')
```

Next Happy Year 6.

You are saying goodbye to your best friend: "See you next happy year". Happy Year is the year with only distinct digits, for example, 2018. Write a program that receives an integer number and finds the next happy year.

Examples

Input	Output
8989	9012
1001	1023

