Higher Education Teaching and Learning Series 2024/25

Incorporating A.I. for Continuous Assessment

Sam Povall
School of Engineering, University of Liverpool
Friday 18th July, 2025

Layout

- 1. Teaching Mathematics to non-mathematicians.
- 2. Assessment with A.I.
- 3. Student Results & Reflections.
- 4. Next Steps.

ENGG304 - Uncertainty, Reliability & Risk Theory

Question. How do we analyse a collection of random variables when their distributions are unknown?

1. First Order Second Moment (FOSM).

$$E[Y] = \mu_Y = g(\mu_X)$$
 and $Var[Y] = \sigma_Y^2 \approx \sigma_X^2 \left(\frac{dg}{dX}\right)_{X=\mu_Y}^2$

2. Second Order Second Moment (SOSM).

For further accuracy, we would include the second order term

$$E[Y] = \mu_Y + \frac{1}{2}\sigma_X^2 \left(\frac{d^2g}{dX^2}\right)_{X=\mu_Y}$$

- 3. Monte Carlo Simulations.
- 4. A.I.

Example - FOSM, SOSM & Monte Carlo

Analyse the probability of failure of

$$X = \frac{X_1 X_3}{X_2}$$

given

$$X_1 \sim N(500, 75^2)$$
 $X_2 \sim N(600, 120^2)$ and $X_3 \sim N(700, 210^2)$.

Solutions - FOSM and SOSM

FOSM Method.

$$\begin{split} \mu_{X} &\approx \frac{\mu_{X_{1}} \mu_{X_{3}}}{\mu_{X_{2}}} = \frac{500 \times 700}{600} = 583. \\ \sigma_{X}^{2} &= \sigma_{X_{1}}^{2} \left(\frac{\partial X}{\partial X_{1}}\right)^{2} + \sigma_{X_{2}}^{2} \left(\frac{\partial X}{\partial X_{2}}\right)^{2} + \sigma_{X_{3}}^{2} \left(\frac{\partial X}{\partial X_{3}}\right)^{2} \\ &= \sigma_{X_{1}}^{2} \left(\frac{X_{3}}{X_{2}}\right)^{2} + \sigma_{X_{2}}^{2} \left(-\frac{X_{1}X_{3}}{X_{2}^{2}}\right)^{2} + \sigma_{X_{3}}^{2} \left(\frac{X_{1}}{X_{2}}\right)^{2} \\ &= 51892.36 \Rightarrow \sigma_{X} \approx 227.8. \end{split}$$

SOSM method.

$$E[X] = \mu_X + \frac{1}{2}\sigma_X^2 \left(\frac{d^2X}{dX_i^2}\right)_{X=\mu_X} = 583 + \frac{1}{2}\sigma_{X_2}^2 \left(\frac{\partial^2X}{\partial X_2^2}\right) = 606.3.$$

Solutions - Monte Carlo

Name 📥

<u>₩</u> mu_1

Value

500

	⊞ mu_2	600
	⊞ mu_3	700
	⊞ n	1000000
	 	75
>> %This code is to run MC simulations to solve X=(X1X3)/(X2) where each Xi is normally distributed;	 	120
<pre>>> %First we declare the means and standard deviations; >> mu_1=500;</pre>	 	210
>> sd_1=75; >> mu_2=600; >> sd_2=120;	 X	1000000x1 double
>> mu_3=700; >> sd_3=210;	 	1000000x1 double
>> NWe define how many simulations we are going to run (at least 10,000); >> n=1000000; >> Now we define the normal distributions;	₩ x2	1000000x1 double
>> x1=normrnd(mu_1,sd_1,n,1); >> x2=normrnd(mu_2,sd_2,n,1);	₩ x3	1000000x1 double
>> x3=normrnd(mu_3,sd_3,n,1); >> \frac{1}{2}, we will define our problem function; >> \frac{1}{2}, x33, \text{ /x3, \text{	x_bar	610.3309
> % Results; >> x, bar-mean(X); >> x, destd(X);	x_sd	263.1841

Reliability Index β

The reliability index, β , is the number of standard deviations the mean is away from failure. That is

$$\beta = \frac{\mu}{\sigma}$$

For exact normally distributed variables, the probability of failure, *F*, can be approximated as

$$\mathbb{P}(F) \approx 1 - \phi(\beta)$$

Notice that as $\beta \to \infty$, $\phi(\beta) \to 1$, which would imply that the probability of failure is equal to 0. This would be the ideal scenario.

Student Results & Reflections

A summary of the 2023/24 cohort (72 students) and the 2024/25 cohort (38 students) along with a percentage of how many students correctly answered each section.

Weighting	Method	23/24 %	24/25 %
20%	FOSM	83	92
20%	SOSM	68	79
20%	Monte Carlo	90	100
10%	A.I.	100	100
30%	Conclusion	17	47

Next Steps

- 1. Continue to review areas A.I. is being used and assess the accuracy and limitations.
- 2. Attempt to incorporate A.I. into additional modules (ENGG198 first year Mathematical Engineering).
- 3. Continue to research how students are using A.I. for continuous assessment, focussing on whether it helps them learn or simply answers the question.

Thank you!