Summary of problem sets for instructor GEOG36 – Climate Extremes in a Warming Planet

Overview:

The problem sets were designed to introduce students to important concepts/applications in Python and to connect the lecture content. In order to keep the problem sets simple and not overwhelm the students, the problem sets were broken up into five separate, shorter assignments. The contents of the problem sets are outlined below to indicate after which lectures the problem sets should be introduced.

Overall objectives of the problem sets:

- 1. Demystify scientific computing and programming using Python
- 2. Recognize commonly used data in climate science
- 3. Apply Python computing methods to climate data
- 4. Interpret results generated from scientific computing

Content outline:

	Content	Total Quest & Points	Length
1	Learning objectives: 1. Explore basic principles of Python 2. Learn commonly used functions to explore simple, relevant climate data Python content: - Basic variables - Math - Working with lists Course content: - Units in climate science (force; temperature conversion) - Expensive disasters	5 questions Total Pts: 21 - Run ex. code: 5 - Correct answers: 11 - Comment annotations to responses: 5	30 – 45 min
2	Learning objectives: 1. Learn how to use open source packages 2. Explore additional data structures in Python Python content: - Numpy (data types, index, axis) - Pandas (data types, index, merge) Course content: - Different disaster reporting sources	8 questions Total Pts: 27 - Run ex. code: 5 - Correct answers: 17 - Comment annotations to responses: 5	1 – 1.5 hrs
3	Learning objectives: 1. Generate various types of plots to visualize climate data 2. Interpret results from generated plots Python content: - Matplotlib (Different types of plots) - Spatial plots - Installing outside packages Course content: - NAO/AO* - Disaster numbers - Wave height*	7 questions Total Pts: 27 - Run ex. code: 5 - Correct answers: 17 - Comment annotations to responses: 5	1 – 1.5 hrs

4	Learning objectives:	8 questions	45 min
	 Extend understanding of additional, useful functions Create own functions to calculate simple formulas 	Total Pts: 24 - Run ex. code: 5	– 1hr
	Python content: - Conditionals - For loops - Writing functions	Correct answers: 14Comment annotations to responses: 5	
	Course content:		
	 Latent heat Quantifying water as an energetic quantity Flood return periods Net radiation equations 		
5	Learning objectives:	4 questions	45 min
	 Explain data structures commonly used in climate science Accumulate and apply skills from previous problem sets Python content:	Total Pts: 21 - Run ex. code: 5 - Correct answers: 11	– 1hr
	Understanding climate data is storedSimple analysis larger real-life climate data	- Comment annotations to	
	Course content:	responses: 5	
	Heat waves*Surface pressure*		
	Total	120 points	4 - 5.75 hrs

*Note:

It would be worth reviewing that the links to download are accessible before distribution.