NSWI090: Počítačové sítě I (verze 4.0)

Lekce 1: Základní pojmy a paradigmata počítačových sítí

Jiří Peterka

o čem je tato přednáška?

· o zákonitostech a souvislostech

- o věcech, které existují nezávisle na naší vůli
 - např. fyzikální zákony

ano, budeme se zabývat

· o principech, postupech, metodách, technikách

- co už vymysleli lidé, co je stále ještě obecné a abstraktní, dá se realizovat mnoha různými způsoby
 - např. princip přepojování paketů, metody potvrzování,

o technologiích a protokolech

- jak konkrétně implementovat určitý postup, metodu atd.
 - např. technologie Ethernetu, protokol IP,
- co a jak je definováno (technickými) standardy

jen v roli konkrétních příkladů

o produktech a službách

- co už je konkrétně implementováno a někomu nabízeno / někým používáno
 - např. služba Skype, MS Windows (produkt),

ne (nebo jen zcela minimálně)

přenos, zpracování, uchovávání

přenos:

- "to, co se přenáší, se nemění"
 - mohou se přenášet jednotlivé bity/byty, nebo celé bloky dat
- zajímá nás:
 - na jakou vzdálenost se přenáší?
 - jak rychle se přenáší? (přenosová rychlost)
 - jak dlouho trvá přenos jednoho bitu?
 - za jak dlouho je k dispozici přijatý bit?
 - kolik se toho přenese? (přenosový výkon)
 - kolik užitečných dat se přenese za delší časový úsek
 - jak spolehlivý je přenos?
 - jak často dochází k chybám či ztrátám?
 - pokud k nějaké chybě/ztrátě dojde, co se děje?

zpracování:

- "to, co se zpracovává, se nepřenáší"
 - vzdálenost není podstatná
- zajímá nás:
 - jak probíhá zpracování
 - podle jakého algoritmu, programu atd.
 - jaký je časový průběh zpracování
 - po jakých kvantech se data zpracovávají
 - po kolika bitech/bytech/slovech

uchovávání:

- zvláštní forma zpracování?
 - nemění obsah, zachovává dostupnost a čitelnost v čase

kanál, okruh, spoj

(přenosová) cesta, spoj

- obecné pojmy, zahrnující všechny varianty prostředků pro přenos
 - bez ohledu na technickou realizaci
- jejich hlavním atributem je:
 - přenosová kapacita
 - celková schopnost přenášet data
- dílčími atributy jsou:
 - přenosová rychlost, zpoždění, spolehlivost přenosu, ...
- (přenosový) kanál
 - termín ze světa telekomunikací
 - jednosměrná přenosová cesta
- (přenosový) okruh
 - obousměrná přenosová cesta
 - okruh může být:
 - skutečný (fyzický)
 - virtuální / emulovaný
 - pouze se chová jako "skutečný" okruh

simplexní

- umožňuje přenos jen v jednom směru
 - například klasické TV a R vysílání
- "kanál je vždy simplexní"

- (plně) duplexní
 - umožňuje přenos v obou směrech, a to současně
 - plně duplexní okruh = umožňuje komunikovat oběma směry současně

- poloduplexní
 - umožňuje přenos v obou směrech, ale nikoli současně

uzel, síť, infrastruktura

kanál, okruh, cesta, spoj

"to, co přenáší"

uzel:

- "to, co má smysl propojovat"
 - servery
 - (hostitelské) počítače
 - terminály
 - periferie
 - například tiskárny, plottery, externí disky,
 - mobily, PDA
 - •

aktivní síťový prvek

- "to, pomocí čeho se propojuje"
 - například opakovače, přepínače, směrovače, brány,
 - v rámci počítačových sítí
 - ústředny, brány,
 - v rámci telekomunikačních sítí

• (počítačová, telekomunikační) síť:

 soustava uzlů, vzájemně propojených pomocí přenosových okruhů /cest / spojů

přenosová infrastruktura

- obecné označení pro sítě, používané pro přenos
 - termín spíše z oblasti telekomunikací

služby, technologie

sítě poskytují svým uživatelům služby:

- například:
 - hlasové služby
 - interaktivní: telefonování
 - pevná telefonie, mobilní telefonie, IP telefonie
 - neinteraktivní: distribuce rozhlasu
 - rozhlasové vysílání, internetová rádia
 - obrazové služby
 - interaktivní: videokonference
 - neinteraktivní: video na žádost nebo s pevným programovým schématem
 - YouTube vs. TV vysílání
 - služby přenosu zpráv
 - elektronická pošta, messaging, EDI,
 - přenos souborů
 - vzdálené přihlašování
 - brouzdání (WWW)
 - •

uživatelé (obvykle) ani nepotřebují vědět, jaká konkrétní technologie je využívána pro poskytování jimi využívaných služeb služby mohou být poskytovány na různé úrovni / vrstvě

- pro koncové uživatele jsou určeny služby na nejvyšší (aplikační) vrstvě
- služba vyšší úrovně využívá ke svému fungování služeb nižší úrovně

příklad: elektronická pošta využívá ke svému fungování službu nižší vrstvy, zajišťující spolehlivý přenos dat mezi dvěma koncovými uzly

tato služba využívá službu ještě nižší vrstvy, zajišťující přenos mezi sousedními uzly

technologie:

je konkrétní technické řešení, které umožňuje poskytovat určité služby

- může být definováno pomocí standardů/doporučení
 - např. Ethernet, Wi-Fi, GSM, 3G/UMTS, x DSL, ATM, ...
- může být proprietární (zná jen vlastník)
 - např. technologie, použitá pro realizaci služby Skype

příklady služeb a technologií

služba

- přístup k Internetu
 - v pevném místě
- mobilní přístup k Internetu
- služba
 - pevná hlasová služba
 - mobilní hlasová služba
- služba
 - IP telefonie
 - hlas je přenášen po IP síti
 - např. UPC Telefon
 - internetová telefonie
 - hlas je přenášen po veřejném Internetu
 - např. Skype

pevné technologie:

- xDSL (Digital Subscriber Line)
 - rodina technologií, využívajících místní smyčky pro vysokorychlostní přenos dat
 - ADSL, VDSL, SHDSL,
- PLC (PowerLine Communications)
 - technologie pro přenos dat po silových rozvodech (230 V)
- WiMAX (IEEE 802.16)
 - technologie pro bezdrátové přenosy
- DOCSIS
 - technologie pro datové přenosy skrze kabelové sítě
- mobilní technologie:
 - NMT, GSM, GPRS, EDGE, CDMA, 3G/UMTS, HSPA, LTE,
 - pro poskytování mobilních hlasových či datových služeb
- hlasové technologie (obecně):
 - VoD (Voice over Data)
 - obecné označení pro technologie přenosu hlasu (telefonování) po datových sítích
 - VOIP (Voice over IP)
 - obecné označení pro technologie přenosu hlasu (telefonování) prostřednictvím protokolu IP

síťová paradigmata

paradigma

- konkrétní představa / názor na to, jak má být něco významného řešeno, jak to má fungovat, co je lepší/efektivnější/vhodnější
 - jde o "základní principy"
 - jde o odpovědi na základní otázky
 - •

konkrétní paradigmata se mohou týkat:

- toho, jak přenášet data
 - proudový vs. blokový přenos
 - přepojování okruhů vs. přepojování paketů
 - spojovaný vs. nespojovaný přenos
 - spolehlivý vs. nespolehlivý přenos
- toho, co mají nabízet přenosové služby
 - garantované vs. negarantované služby
 - best effort vs. QoS
- toho, kam umístit inteligenci
 - "chytrá síť" vs. "hloupá síť"
- toho, jak hospodařit s dostupnými zdroji
 - vyhrazená vs. sdílená přenosová kapacita

- toho, jak se vyvíjí dostupné zdroje
 - přenosová kapacita
 - Gilderův zákon
 - výpočetní, přepojovací kapacita
 - Mooreův zákon
 -
- toho, co je/není potřeba nějak usměrňovat, řídit, diktovat ...
 - regulace vs. liberalizace
-

–

proudový a blokový přenos

jde o to:

- zda přenášet data jako souvislý proud (bez jakéhokoli logického členění),
- nebo zda tato data nějak členit (do vhodně velkých bloků)

proudový přenos

- přenášená data nejsou nijak členěna
 - tvoří "souvislý proud" (stream)
 - na úrovni bitů, bytů, slov,

představa:

- přenosová cesta se chová jako roura
 - z jedné strany se do ní data vkládají,
 z druhé strany z ní ve stejném pořadí
 zase vystupují

– má smysl / je vhodné:

- tam, kde je 1 příjemce a 1 odesilatel
 - přenos "bod-bod"
- odesilatelem je "ten, kdo vkládá"
- příjemcem je "ten, kdo vyjímá"

blokový přenos

- data jsou pro potřeby přenosu členěna na vhodně velké celky
 - bloky (odsud: blokový přenos)
- bloky mohou (ale někdy nemusí) být opatřeny údaji, které identifikují odesilatele a příjemce

představa blokového přenosu

rámce, buňky, pakety, segmenty, zprávy

 přenášené bloky (u blokového přenosu) se konkrétně pojmenovávají podle vrstvy, na které jsou přenášeny

přenáší se jednotlivé bity, nikoli celé bloky

přepojování okruhů

- anglicky: circuit switching
- jde o:
 - obecný princip, jak přenášet data, s efektem vyhrazené přenosové kapacity

podstata:

mezi komunikujícími stranami se vytvoří (souvislý) přenosový okruh

- okruh je vyhrazený
 - komunikující strany jej mají výhradně ke své dispozici
 - pokud jej nevyužijí, jeho kapacita nemůže být přenechána někomu jinému
 - a bez užitku "propadá"
- okruh je přímý
 - i když ve skutečnosti prochází přes další uzly, přenášená data se v nich nijak nezdržují
 - doba přenosu (přenosové zpoždění) je konstantní a malá

garantuje podmínky přenosu

chová se jako roura

- co se z jedné strany odešle (vloží), to se z druhé strany zase vyjme (vybere)
 - odesilatelem je "ten, kdo je na jednom konci"
 - příjemcem je "ten, kdo je na druhém konci"
- přenášená data
 - nemusí být členěna na jakékoli celky, ale mohou být přenášena jako proud
 - pak jde o: proudový přenos
 - mohou být členěna na logické celky (bloky)
 - pak jde o: blokový přenos

používá se hlavně v telekomunikacích

představa přepojování okruhů

- původně:
 - docházelo k mechanickému spojování kontaktů (zástrčky/zdířky, relé, ...)
 - tomu se také říkalo: komutace
- dnes:
 - přepojování zajišťují elektronické obvody
- ale: stále se hovoří o "komutaci"
 - komutace okruhů
 - komutované připojení

telefonní síť dodnes pracuje na principu přepojování okruhů

přepojování paketů

- anglicky: packet switching
- jde o:
 - obecný princip, jak přenášet data, na bázi sdílené přenosové kapacity
- podstata:
 - žádná přenosová kapacita se nevyhrazuje
 - ale zůstává společná
 - odesilatel předá odesílaná data k doručení
 - musí být členěna na bloky (např. na pakety) a opatřena identifikací příjemce
 - proudový přenos zde nemá smysl
 - k přenosu se přijímají bloky (pakety) od všech odesilatelů
 - manipuluje se vždy s celými bloky (pakety)
 - odsud "přepojování paketů"
 - rozhoduje se podle identifikace příjemce, kterou si každý blok nese
 - ve své hlavičce

NEgarantuje podmínky přenosu

- k přenosu jednotlivých bloků (paketů) se vždy využívá celá dostupná přenosová kapacita
 - pro všechny různé odesilatele, pro všechny různé příjemce
 - proto musí být jednotlivé bloky (pakety) označeny identifikací odesilatele a příjemce

od X pro

historická odbočka

- přepojování paketů bylo (ve své době) velmi revoluční myšlenkou
 - která se objevila v 60. letech minulého století/tisíciletí
 - v důsledku "šoku ze Sputniku" (1957)
 - USA se lekly, že je někdo technologicky předbíhá, začaly rozvíjet vědu
 - požadavkem byla větší robustnost a odolnost (proti poruchám a výpadkům)
 - důsledek: nepřenášet data jako jeden velký proud (pomocí přepojování okruhů),
 - ale "rozbít" je na menší částí (bloky, pakety) a ty přenášet samostatně
 - přepojování paketů navrhl Paul Baran z Rand Corporation (1964)
 - termín "paket" a "přepojování paketů" poprvé použil Donald Davies, v listopadu 1965

- tuto myšlenku bylo třeba někde ověřit
 - vzniká síť ARPANET
 - pro otestování smysluplnosti přepojování paketů
 - dopadlo kladně: bylo ověřeno, že přepojování paketů funguje a je efektivní
 - další osud sítě ARPANET
 - po otestování nebyla zrušena, ale předána "na hraní" akademické komunitě
 - časem z ní "vyrostl" dnešní celosvětový Internet
 - ARPANET byl jeho první zárodečnou sítí

z historie Internetu Na počátku byl ARPANET

představa přepojování paketů

pouze blokový přenos

- data musí být přenášena po blocích
 - paketech, rámcích, buňkách
- přenášené bloky dat musí být opatřeny vhodnou identifikací příjemce a odesilatele

variabilní zpoždění

- přenášené bloky dat se v přepojovacích uzlech mohou zdržet různou dobu
- záleží to na souběhu všech datových bloků v daném přepojovacím uzlu, od všech odesilatelů
 - to nelze nikdy předem odhadnout

přepojovací logika

 rozhoduje o tom, kudy a kam bude konkrétní blok (paket) předán

srovnání:

- zpoždění při přenosu je podstatně větší než u přepojování okruhů
- zpoždění není rovnoměrné
 - na rozdíl od přepojování okruhů
- zpoždění není predikovatelné

mechanismus Store&Forward

jde o: způsob fungování přepojovacího uzlu při přepojování paketů

STORE

- na vstupu se každý blok nejprve celý načte a uloží do vstupní fronty (bufferu)
- procesor (CPU)
 - postupně načítá jednotlivé bloky ze vstupních front a rozhoduje, co s nimi provést dál

FORWARD

- procesor rozhodl, že daný blok má být předán dál (forwarded) v určitém výstupním směru
- je zařazen do příslušné výstupní fronty
 (bufferu), kde čeká, až bude moci být odeslán

· důsledek:

- nelze předem odhadnout, jak dlouho se konkrétní datový blok zdrží při průchodu přepojovacím uzlem
 - záleží to na souběhu s ostatními bloky, na velikosti front, na rychlosti procesoru přepojovacího uzlu atd.
- kvůli tomu je přenosové zpoždění nerovnoměrné !!!
 - může být i "značně nerovnoměrné"

spojovaný vs. nespojovaný přenos

spojovaný přenos

- angl.: connection oriented
- strany, které komunikují, mezi sebou nejprve naváží spojení
 - domluví se, že vůbec chtějí spolu komunikovat
 - mohou se domluvit i na dalších parametrech vzájemné komunikace
 - v rámci navázání spojení je nalezena (a vyznačena) trasa přenosu
 - mohou/nemusí být vyhrazeny i určité zdroje - např. přenosová kapacita
- pak probíhá vlastní přenos dat
 - po trase (cestě), nalezené při navazování spojení
- na konci je třeba spojení zase ukončit (rozvázat)
 - vrátit přidělené zdroje, zrušit vytyčenou trasu,

nespojovaný přenos

- angl. connectionless
- komunikující strany mezi sebou nenavazují žádné spojení
 - neověřují si, že druhá strana vůbec existuje a chce komunikovat
 - není hledána žádná "jedna" (apriorní) trasa mezi nimi
- vzájemná komunikace probíhá skrze zasílání samostatných "zpráv" (tzv. datagramů)
 - každý datagram je přenášen samostatně
 - vhodná trasa přenosu je pro něj hledána vždy znovu, nezávisle na přenosu ostatních datagramů
- na konci není třeba nic ukončovat (rozvazovat, rušit)
 - konec komunikace může být "do ztracena …."

spojovaný přenos

- jde o obecné paradigma přenosu, ale také vzájemné komunikace!!!
- funguje "stavově"
 - komunikující strany přechází mezi různými stavy
 - minimálně:
 - spojení není navázáno
 - spojení je navázáno
 - musí být zajištěn korektní
 (a koordinovaný) přechod mezi stavy
 - nesmí např. dojít k tomu, že jedna strana považuje spojení za navázané a druhá nikoli
 - deadlock, uváznutí
 - musí být explicitně ošetřovány nestandardní situace
 - např. výpadek spojení je třeba nejprve detekovat, pak zrušit spojení a navázat nové

- přenášené bloky dat obsahují (ve své hlavičce) identifikátor spojení
 - a jsou přenášené podle tohoto ID
- spojovaná komunikace zachovává "pořadí"
 - při postupném přenosu jednotlivých bloků dat jsou všechny přenášeny stejnou cestou
 - proto: nemůže se měnit jejich pořadí

nespojovaný přenos

- jde o obecné paradigma přenosu, ale také vzájemné komunikace!!!
- funguje "bezestavově"
 - komunikující strany NEpřechází mezi různými stavy
 - jejich stav se v průběhu komunikace nemění
 - NEmusí být explicitně ošetřovány změny stavů a nestandardní situace
 - jednoduše se pokračuje dále
- terminologie:

 bloky dat, přenášené nespojovaným způsobem, jsou často označovány jako datagramy

- každý blok v sobě nese plnou adresu svého příjemce
 - ne ID spojení to není navazováno
- nespojovaná komunikace nemusí (nutně) zachovávat pořadí
 - každý blok je přenášen samostatně a nezávisle na přenosu ostatních bloků
 - každý blok může být přenášen jinou cestou
 - proto se může měnit pořadí, v jakém jsou doručovány
 - ani se dopředu nezjišťuje, zda příjemce vůbec existuje

virtuální okruhy vs. datagramová služba

- přepojování okruhů má vždy spojovaný charakter !!!!
 - je to dáno jeho podstatou, nelze to změnit
- přepojování paketů může fungovat jak spojovaně, tak i nespojovaně !!!
- virtuální okruhy
 - označení pro <u>spojovaný</u> způsob fungování přepojování paketů
- princip:

VCI

- při navazování spojení se cesta vytyčí pouze virtuálně (logicky)
 - nikoli fyzicky, jako u (skutečného) přepojování okruhů
 - proto "virtuální okruhy"
 - v jednotlivých přestupních bodech se pouze "poznačí", kudy tato cesta vede
 - vyznačená cesta (virtuální okruh) dostane přidělený vhodný identifikátor
 - VCI, Virtual Circuit Identifier
- každý blok přenášených dat (paket) nese ve své hlavičce identifikátor virtuálního okruhu
 - podle toho je přenášen vždy po stejném
 (jediném) virtuálním okruhu

datagramová služba

 označení pro <u>nespojovaný</u> způsob fungování přepojování paketů

princip:

- odesilatel ani nezjišťuje, zda příjemce vůbec existuje a zda s ním chce komunikovat
 - a jen mu odesílá jednotlivé datagramy
- každý jednotlivý blok dat (datagram) v sobě nese úplnou adresu svého příjemce
 - každý uzel, přes který datagram prochází, se podle této adresy rozhoduje, kudy ho pošle dál
 - pokaždé se rozhoduje znovu, jen podle momentální situace, a bez ohledu na předchozí historii
 - pokud se změní podmínky (například průchodnost přenosových cest), může rozhodnutí dopadnout jinak

různé datagramy mohou cestovat různou
plná adresa
příjemce

tělo datagramu

tělo paketu

spolehlivý vs. nespolehlivý přenos

pozorování:

- přenosy nejsou nikdy ideální, vždy může dojít k nějakému poškození přenášených dat
 - včetně jejich úplné ztráty

otázka:

– když už k něčemu dojde, jak se zachovat?

varianta: postarat se o nápravu

- ten, kdo data přenáší, považuje za svou povinnost postarat se o nápravu
- vyžaduje to:
 - rozpoznat, že k chybě došlo (detekce chyb)
 - vyžádat si nový přenos dat (skrze vhodné potvrzování)

výsledkem je:

- spolehlivá přenosová služba
- resp. spolehlivý přenos

jaký to má smysl?

- varianta: nechat to být, pokračovat dál ...
 - ten, kdo přenáší, nepovažuje za svou povinnost postarat se o nápravu
 - když už se něco pokazí či ztratí
 - a jednoduše pokračuje dál
 - poškozená data zahodí

výsledkem je:

- nespolehlivá přenosová služba
- resp. nespolehlivý přenos

nezahazuje nic sám, o své vůli (ale jen to, co už se poškodilo)

princip zajištění spolehlivosti

poškození

data ACK

skrze potvrzování / žádosti o opakování přenosu

- příjemce musí detekovat, že přijatá data jsou poškozena
 - vyžaduje vhodné mechanismy detekce chyb (parita, kontrolní součty, CRC)
- příjemce informuje odesilatele o výsledku:
 - buďto: potvrdí, že data byla přijata v pořádku
 - nebo: vyžádá si opakovaný přenos poškozených (event. ztracených) dat

ACK

data

musí k tomu existovat vhodné mechanismy pro tzv. potvrzování

kladné potvrzení

již jednou odeslaných dat kladné potvrzení

opakované odeslání

· otázka:

odesilatel

příjemce

 dokáží detekční mechanismy detekovat skutečně všechny chyby a poškození?

data ACK

· odpověď:

nedokáží, detekují jen některé

data

- nejlepší je CRC (Cyclic Redundancy Check)
 - detekuje "většinu" chyb (99,99999%)

důsledek:

- spolehlivost není absolutní, ale vždy jen relativní
 - má vždy jen určitou míru/velikost

"vyšší spotřeba zdrojů"

ACK

záporné potvrzení

je zapotřebí větší výpočetní kapacita

data

- na detekci, na generování potvrzení,
- je větší spotřeba přenosové kapacity
 - posílají se potvrzení
 - některá data se přenáší opakovaně

důsledek opakovaných přenosů:

- narušuje se plynulost doručování dat
 - vznikají prodlevy

proč nespolehlivé přenosy?

- jaký smysl mají nespolehlivé přenosové služby?
 - kdo by používal takové přenosové služby, které občas ztrácí data, a nenamáhají se to napravit?
- argumenty proti spolehlivým přenosům:
 - jsou drahé
 - se zajištěním spolehlivosti je vždy spojena nenulová režie
 - stojí to výpočetní i přenosovou kapacitu
 - zajištění spolehlivosti výrazně nabourává pravidelnost doručování dat
 - tím, jak se chybně přenesená data musí posílat znovu
 - spolehlivost není nikdy absolutní
 - vždy je relativní, konkrétní aplikace mohou požadovat vyšší spolehlivost
 - pak je výhodnější, pokud si ji zajistí samy

- argumenty pro nespolehlivé přenosy
 - jsou levnější/efektivnější
 - pokud je spolehlivost požadována, lze ji zajistit na vyšších úrovních (vrstvách)
 - kde to může být levnější/výhodnější
 - zejména výpočetní kapacita je výrazně levnější v koncových uzlech než ve vnitřních uzlech sítě (směrovačích)
 - pokud je spolehlivost zajišťována na vyšších vrstvách, nemá smysl ji zajišťovat současně i na nižších úrovních
 - zbytečně se sčítá, případně násobí
 - některým aplikacím více vadí nerovnoměrnost v doručování jejich dat
 - než občasná chyba v těchto datech či jejich výpadek

požadavky aplikací a služeb

multimediální aplikace

např. přenos živého zvuku a obrazu

vyžadují:

- pravidelnost doručování
 - co nejmenší kolísání zpoždění při přenosu (angl: jitter)
- co nejmenší celkové zpoždění při přenosu (angl. latency)
 - platí pouze pro interaktivní služby
 - například telefonování: do 200 ms
 - neinteraktivní služby snesou i podstatně větší zpoždění

proč?

- protože jednotlivé části přenášených dat jsou zpracovávány průběžně
 - zvuk je přehráván, obraz zobrazován ...
 - nerovnoměrnosti v doručování způsobují nerovnoměrnosti ve zpracování
 - analogie "trhaného zvuku" či měnící se rychlosti posunu filmového pásu

datové aplikace

např. přenos souborů, email, WWW

nevyžadují:

- ani malé zpoždění,
- ani pravidelnost doručování
- spíše kladou důraz na celkovou efektivnost

proč?

- protože jednotlivé části přenášených dat nejsou zpracovávány průběžně, ale až po doručení poslední části
 - např. zpracování souboru, emailu
- protože nepracují s "bezprostřední interaktivitou"
 - jako např. telefonie
 - u WWW jen "reakční doba"

garantované vs. negarantované služby

přenosy (přenosové služby) mohou fungovat různými způsoby

"Best Effort"

- z pohledu toho, jak se chovají vůči přenášeným datům
- garantované přenosové služby
 - garantují, že bude vždy dostatek zdrojů pro přenos (všech) právě přenášených dat
 - dostatek přenosové i přepojovací kapacity
 - jak toho dosáhnout?
 - potřebné zdroje (přenosová a přepojovací kapacita) musí být dopředu vyhrazeny
 - podle maxima požadavků na přenos!!!
 - přenosová infrastruktura musí být dimenzována na součet maxim !!!
 - jak realizovat?
 - pomocí přepojování okruhů
 - to vyhrazuje kapacitu pro jednotlivé přenosové okruhy

je to drahé!!!

- negarantované přenosové služby
 - NEgarantují, že vždy bude dostatek zdrojů pro přenos všech dat
 - nevýhoda:
 - může se stát, že v některých situacích (časových okamžicích) nebude dostatek zdrojů pro přenos všech dat
 - pak se musí některé požadavky krátit

- výhoda:
 - přenosovou infrastrukturu lze dimenzovat podle průměru požadavků

je to levnější!!!

- jak realizovat?
 - pomocí přepojování paketů
 - kapacita zůstává společná

princip "Best Effort"

u negarantovaných služeb:

- co dělat, když se nedostávají zdroje pro zpracování paketu?
 - přenosová kapacita
 - nelze přenést!
 - kapacita front
 - nelze zařadit do fronty!
 - výpočetní kapacita
 - nelze zpracovat!
 - rozhodnout, kam dále poslat

(jediné možné) řešení

některé pakety je nutné zahodit

otázka

- ale které ??????
- podle čeho mezi nimi vybírat?

možnosti

- nevybírat a krátit rovnoměrně
 - princip "Best Effort"
- krátit podle priorit

princip "Best Effort"

- "maximální snaha ale nezaručený výsledek"
- je to obecné paradigma, netýká se jen přenosu

podstata:

- přenosová síť měří všem datům stejně
 - ke všem se chová stejně

fungování:

- dokud jí stačí zdroje, přenosová síť vyhoví všem požadavkům na přenos
 - odsud: maximální snaha
- ale pokud jí zdroje nestačí, přenosová síť krátí všechny požadavky na přenos (tj. zahazuje bloky dat) rovnoměrně
 - bez ohledu na jakákoli další kritéria

· u přepojování paketů

- nelze predikovat, kdy zdroje dojdou
 - proto: nezaručený výsledek

Quality of Service (QoS)

- společné označení pro "cokoli jiného", než je Best Effort
 - jakékoli jiné fungování přenosové sítě, než na principu "Best Effort"

• fakticky: které něco garantuje, nebo které rozlišuje mezi různými druhy provozu a nabízí jim různé "zacházení"

- principiální možnosti realizace:
 - garantovat
 - "absolutní QoS", garantuje stejné podmínky vždy, bez ohledu na ostatní přenosy
 - upřednostňovat
 - "relativní QoS", zajišťuje jiné (lepší) podmínky než pro jiné druhy přenosu
 - obvykle: systém priorit

- QoS na principu rezervace zdrojů
 - má-li požadované podmínky garantovat, musí k tomu vždy mít dostupné zdroje
 - zdroje musí být předem vyhrazeny, resp. rezervovány
 - je to velmi podobné jako přepojování okruhů
 - a stejně neekonomické/neefektivní
- QoS na principu prioritizace
 - nemá za cíl garantovat podmínky
 - nepotřebuje rezervovat (vyhrazovat) žádné zdroje
 - vlastně jen jinak hospodaří s těmi zdroji, které má běžně k dispozici
 - přiděluje je podle priorit
 - a také je negarantuje
 - pokud by všechny přenosy měly stejnou prioritu, stává se z toho Best Effort

příklady

protokoly TCP/IP

- fungují negarantovaným způsobem, stylem Best Effort
 - podporu QoS lze zavést dodatečně
 - na principu rezervace: IntServ, Integrated Services
 - na principu prioritizace: DiffServ,
 Differentiated Services
 - ale je to problematické
 - nelze realizovat ve veřejném Internetu

(síťový) protokol IP

- funguje nespojovaně, nespolehlivě
- (transportní) protokol UDP
 - funguje nespojovaně, nespolehlivě
 - stejně jako protokol IP
- (transportní) protokol TCP
 - funguje spojovaně, spolehlivě
 - tj. odlišně od IP i UDP

Ethernet

- funguje nespojovaně, nespolehlivě, stylem Best Effort
- X.25 (protokol pro veřejné datové sítě)
 - funguje spojovaně, spolehlivě

• ATM

- funguje spojovaně, nespolehlivě
- dokáže fungovat stylem Best Effort i nabízet různé varianty QoS
 - na principu rezervace zdrojů
 - garantuje "maximum"
 - garantuje "minimum"
 -

Frame Relay

- funguje spojovaně, nespolehlivě
- nabízí QoS
 - na principu rezervace
 - garantuje "minimum"

svět spojů vs. svět počítačů

- svět spojů (a telekomunikací) je podstatně starší než svět počítačů
 - oba světy se výrazně liší v mnoha aspektech, které určují charakter jimi budovaných a používaných sítí
 - oba světy si tradičně budovaly jiné (samostatné a oddělené) sítě
 - což je značně neefektivní a neekonomické
- svět spojů (a telekomunikací)
 - telekomunikační sítě:
 - vychází z paradigmatu "chytré sítě"
 - nejčastěji fungují na principu přepojování okruhů
 - dokáží nabízet garantované přenosové služby
 - podporují QoS
 - jsou dimenzovány "podle maxima"
 - přenáší data spojovaným a spolehlivým způsobem

- svět počítačů
 - počítačové sítě:
 - vychází z paradigmatu "hloupé sítě"
 - nejčastěji fungují na principu přepojování paketů
 - fungují stylem Best Effort
 - bez podpory QoS
 - jsou dimenzovány "podle průměru"
 - přenáší data (nejčastěji) nespojovaným a nespolehlivým způsobem

teprve v poslední době dochází ke konvergenci (snaze budovat společné sítě)

"telekomunikační" síťové paradigma

aneb: "chytrá síť, hloupá koncová zařízení"

- představa "světa spojů":
 - maximum funkcí má zajišťovat již sama síť
 - veškerá inteligence je soustředěna do sítě
 - koncová zařízení mohou být velmi jednoduchá
 - "hloupá", bez vlastní inteligence
 - bez nutnosti nastavování, konfigurace, ...
 - síť (typicky) funguje na principu přepojování okruhů
 - nabízí garantovaný charakter služeb
 - QoS
 - preferuje spolehlivé a spojované služby
- příklady:
 - telefonní síť

příklady konvergence

- počítačová síť se servery uvnitř sítě, na koncích počítače NC
- cloud computing

výhody:

- snazší (centrální) management
- koncová zařízení mohou být"blbovzdorná"
-

nevýhody:

- prvky, realizující inteligenci sítě, jsou obvykle jednoúčelové, a proto drahé
 - např. směrovače, brány, ...
- je to složité, těžkopádné ...

"počítačové" síťové paradigma

aneb: "hloupá síť, chytré uzly"

představa "světa počítačů":

- přenosová síť se má soustředit na svůj "základní byznys"
 - má hlavně přenášet data, co nejrychleji a nejefektivněji
 - už nemá zdržovat dalšími funkcemi
- veškerá inteligence (a funkce) je soustředěna do koncových uzlů
 - typicky: univerzálních počítačů
 - zde se "další funkce" realizují snáze a efektivněji, a lze je také lépe přizpůsobit konkrétním potřebám

příklady:

- celosvětový Internet
 - je spíše "minimalistický" co do způsobu fungování svých přenosových služeb

předpoklad:

- přenosová síť bude fungovat nespojovaně, nespolehlivě, na principu "best effort"
 - nejjednodušším možným způsobem
- žádné "další funkce"
 - jako např. zabezpečení apod.

výhody:

- celkově efektivnější a pružnější řešení
- lze snáze přizpůsobovat měnícím se potřebám, stačí změnit chování koncových uzlů

jiný pohled: hloupá vs. chytrá síť

ve světě spojů:

- vlastníkem a uživatelem sítě jsou různé subjekty
 - ten, kdo síť vlastní a provozuje (operátor) nebývá současně jejím uživatelem
 - příklad: tzv. veřejná datová síť (VDS)
 - vlastníkem je operátor, uživatelem se může stát kdokoli, kdo je ochoten za to zaplatit
 - vlastník (VDS) sítě má snahu prodávat co "nejbohatší" služby
- proto je tendence volit řešení "chytrá síť, hloupé uzly"
 - budovat "inteligentní síť", nabízející co nejvíce funkcí
- psychologický prvek:
 - vlastník sítě se bojí prodávat nespolehlivou přenosovou službu
 - bojí se: "kdo by si koupil službu, která zahazuje přenášené pakety?"
 - proto VDS typicky funguje spolehlivě (a také spojovaně, často nabízí i QoS)

ve světě počítačů:

- vlastník a provozovatel často splývají, nebo se provoz sítě neodehrává na ryze komerční bázi,
 - příklad: Internet
- při volbě koncepce sítě rozhodují spíše technické faktory, než faktory komerční
 - vlastník sítě není tlačen k tomu, aby prodával co nejdokonalejší služby
 - nemusí nic prodávat, naopak chce síť sám používat
- přednost dostává koncepce "hloupá síť, chytré uzly"
 - inteligence se soustřeďuje do koncových uzlů, přenosová síť je max. jednoduchá
- příklad: Internet a protokoly TCP/IP
 - IP je velmi jednoduchý a přímočarý
 - nespolehlivý, nespojovaný, best effort, ...

hospodaření s dostupnými zdroji

• připomenutí: dostupné (disponibilní) zdroje

 jsou zejména: přenosová kapacita (kapacita přenosových okruhů) a přepojovací kapacita (kapacita vnitřních uzlů sítě, přes které prochází přenášená data, souvisí s jejich výpočetní kapacitou)

svět spojů a telekomunikací

- vychází z předpokladu, že dostupných zdrojů je málo
 - ne tolik, aby se dostalo na všechny současně
- prodává hlavně "vyčlenění zdrojů"
 - nechává si platit za to, že uživateli vyčlení k výhradnímu využití určité zdroje
 - v jakém rozsahu?
 - na jak dlouho?
 - nezajímá se o to, jak "hodně" či "málo" jsou vyčleněné zdroje skutečně využity
 - efektivnost ponechává na uživateli/zákazníkovi
 - garantuje dostupnost vyčleněných zdrojů
- zpoplatňuje uživatele podle vyčleněných zdrojů
 - po minutách/hodinách
 - v závislosti na charakteru a velikosti poskytnutých zdrojů

svět počítačů (počítačových sítí)

- vychází z předpokladu, že zdrojů je dostatek
 - resp. že dostupnost zdrojů není hlavním omezujícím faktorem
- prodává hlavně "využití zdrojů", resp.
 "poskytnuté služby"
 - tedy efekt (pro zákazníka)
- zpoplatňuje uživatele podle "skutečné konzumace"
 - např. podle objemu skutečně přenesených dat
 - · nebo paušálně

efektivnější, vede na lacinější služby

tendence k neefektivnosti, služby jsou drahé

jak se vyvíjí zdroje ve světě počítačů?

Mooreův zákon:

- výpočetní kapacita se zdvojnásobuje každých 18 (24) měsíců
 - formuloval Gordon Moore, spoluzakladatelIntelu, v roce 1965
 - jako předpověď, v článku pro časopis Electronics
 - na základě 3leté zkušenosti
 - říká:

- původně: počet tranzistorů na jednotku plochy se zdvojnásobí přibližně každých 12 měsíců
 - za stejnou (nižší) cenu
- později: zdvojnásobí se každých cca 18 měsíců
- dnes spíše: každých 24 měsíců
- očekává se, že to bude platit cca do roku 2017

– důsledek:

 cena počítače o stejné "výpočetní síle" klesne na polovinu každých 18 (24) měsíců

"diskový zákon"

- paměťová kapacita se zdvojnásobuje každých 12 měsíců
 - kapacita pro uchovávání dat

Gilderův zákon:

- přenosová kapacita se ztrojnásobuje každých 12 měsíců
 - formuloval George Gilder, hi-tech vizionář, novinář ... v roce 1993
 - ve své knize Telecosm
 - srovnání:
 - přenosová kapacita roste ještě mnohem rychleji, než výpočetní kapacita

regulace vs. liberalizace

- světy spojů a počítačů se liší i v pohledu na to, co a jak má či nemá být regulováno
 - souvisí to s odlišnou historií a tradicí, i s odlišným pohledem na dostupnost zdrojů
- svět spojů je podstatně starší
 - vznikal v době, kdy možnost komunikace byla považována za strategickou záležitost
 - stát ji chtěl mít ve svých rukou
 - proto tendence k regulaci
 - stát direktivně rozhodoval o tom, kdo může poskytovat jaké služby, i komu a za jaké služby
 - cenová regulace, jiné než tržní ceny
 - existence monopolů
 - představa: monopol bude nejlépe rozvíjet služby i infrastrukturu
 - postupně dochází k liberalizaci
 - končí monopol, šanci dostávají další hráči
 - alternativní operátoři
 - z dříve monopolního operátora je tzv. inkumbent

- svět počítačů je podstatně mladší
 - vznikal v době, kdy už byl dostatek zdrojů, a možnost komunikace nebyla považována za strategickou
 - stát již nevnímá počítačové komunikace jako strategické
 - není tendence k regulaci
 - od počátku liberalizováno
 - spíše:
 - potřeba standardizace a koordinace
 - někdo musí "sjednocovat"
 technická řešení a nejrůznější
 parametry, aby byla možná
 kompatibilita a interoperabilita