DÉTECTION DU TOUCHÉ SUR UNE SURFACE MULTITOUCH 3D

Le 14 Juin 2012

Kévin BOURY, Téo MAZARS, Kévin POLISANO, Victor SABATIER

Plan de la soutenance

- 1. Contexte
- 2. Approche globale du problème
- 3. Explication des choix d'algorithmes et d'implémentation
- 4. Mesures des performances
- 5. Analyse critique
- 6. Démonstration

I) Contexte

Le cubtile

Caméra infrarouge type fish-eye

L'image brut en sortie du flux vidéo

Le cubtile développé par la société Immersion

Les problèmes identifiés

- Problème de latence : Mouvement de l'utilisateur -> le dispositif réagit en moins de 50 ms
- Problème de précision : estimation de la position en super-résolution

II) Approche du problème

Chaine de compilation à traiter pour la génération d'événements

III) Choix d'algorithme et d'implémentation

a) Traitement du flux vidéo

Framerate : ~ 85 images/seconde (dépend de la luminosité)

b) Transformation: explication

<u>But de la transformation</u>: redresser l'image déformée par la lentille + perspective en un carré

Pourquoi redresser?

b) Transformation : Méthodes de redressement utilisée

Pas accès aux paramètres de la caméra => transformation optique inverse impossible

Méthode ad-hoc : mapping de la surface par interpolation linéaire (discrétisation uniforme)

b) Transformation : Caractérisation empirique de la déformation

Mesures de la déformation

Approximation par un modèle mathématique quadratique

Répartition non-uniforme

b) Transformation : Amélioration du mapping

c) Sélection des candidats

Sélection des candidats

d) Extraction : problème

Calcul précision subpixel

• Pour repérer la tâche : point le plus éloigné des bords de la composante connexe

Niveau de gris de la ROI autour d'un point détecté

ROI seuillée

Gradient de la ROI

d) Extraction: justifications

d) Extraction : résultat

Cliquez

- Deuxiè
- Troisièr
 - Quatr
 - Cir

e) Identification

On veut pouvoir caractériser les mouvements

- apparitions
- mouvements
- disparitions

Type évenements Face	ID	CoordX	CoordY
-------------------------	----	--------	--------

Structure du paquet envoyé à l'IHM

e) Identification

Distance maximum d'identification

f) ARCHITECTURE GLOBALE

f) IHM: ARCHITECTURE

f) IHM: MATRICES

IV) Mesure des performances

a) Mesure de la latence

• Cliquez pour modifier les styles du texte du masque

Deuxième niveau

Latence

b) Mesure de la précision

Grille de discrétisation du projet Immersion

Grille de discrétisation de notre projet

V) Analyse critique

Notre approche

Vision par ordinateur

Techniquement

VI) Démonstration

Problème du docking

DÉTECTION DU TOUCHÉ SUR UNE SURFACE MULTITOUCH 3D

Le 14 Juin 2012

Kévin BOURY, Téo MAZARS, Kévin POLISANO, Victor SABATIER

