Some selected topics in Functional Data Analysis

Juhyun Park

ENSIIE, Evry, France

Motivation

What is functional data

Exploring funcional data
Principal Component Analysis (PCA)
Functional Principal Component Analysis

Smoothing methods

Section 1

Motivation

Forecasting challenges

- ▶ Novel time series data in high frequency
 - Advances in data processing, recording and storage of vast amounts of data gives observations on previously unobserved periods, recorded at higher, near continuous sampling frequencies
- ► Time series exhibit novel patterns and pose new challenges in the analysis

Examples of high frequency data

- Blood pressure of patients is constantly monitored and recorded over 24 hours
- ▶ EEG brain signals recorded continuously over a period of time
- Meteorological measurements (temperature, humidity..) monitored continuously
- Retail sales volumes store daily and intra-day sales observations or even transaction records (ticks)
- Bidding history at online auction sites such as eBay can be tracked continuously
- Stock market transactions are recorded (and executed) at millisecond intervals of tick-by-tick data

Forecasting gas consumption - zoomed in

Model multiple seasonal patterns... for ARIMA /Neural Networks /Smoothing?

- ▶ Daylight savings in summer ≠ winter?
- Leap years in AR-processes?
- ► Variable selection for high-frequency data?

A standard approach - discrete time series

Functional data view

Model multiple seasonal patterns... as functions!

- Model (smooth) transition between functions?
- ► Consider covariates (temperature, windspeed etc.) in transition

Advantages of functional data view

- Enrich information from discrete data to replicates of functions
 - Periodic, non-stationary behaviour
 - ► Smooth change between measurements
- Guided analysis by focusing on recovering the common functional structure while taking into account the variations among the replicates.
- ➤ Time series forecasting is built on limited number of past observations whereas functional data view encourages us to look at all the past observations.
- Functional data facilitates an analysis of the smooth transitions between these different groups, possibly formulated as having hierarchical (multi-level) structure

Section 2

What is functional data

Big picture: Statistical Learning

Statistical framework

- ▶ Population: the set of all possible *units* of interest
- Sample: a (random) subset of population

From finite sample, we would like to draw conclusions about the population.

Statistical analysis

- ▶ Data: multiple observation $\{x_i, i = 1, ..., n\}$
- ► Aim: understanding and characterizing variability in the sample of observations

What is the unit of the analysis

Multiple observation $\{X_1, \dots, X_n\}$, X_i characteristics of subject i

► Number: univariate analysis

$$X_i$$
: commuting distance in km, $x_i = 5.2$

► Vector: multivariate analysis

$$X_i = (distance(km), age (y)), x_i = (5.2, 32)$$

► Function: functional data analysis

$$X_i = \text{commuting trajectory}, \quad x_i = ?$$

- ► Shape analysis, image analysis, topological data analysis, manifold analysis ...
- Object Oriented Data Analysis

The unit of analysis is the whole trajectory, not the finite number of available observations!

Functional data

Most often, functional data refers to measurements on a curve but in a broader sense, it is also used to encompass images, tree-like objects and many other non-Euclidian objects arising in modern applications \rightarrow *Object Oriented Data Analysis*

Observations from functional data:

- repeated measurements available from multiple subjects
- often densely observed, though sparse observations are also dealt with.
- often represent the underlying continuous, possibly smooth, (physical or biological) process

Example: Growth curves

A sample of child's growth measurements (height) until 21 years

Example: Genome's cell cycle regulation

A sample of gene expression (mRNA levels) data measured every 7 minutes during 119 minutes

Example: Speech recognition

A sample of log-periodograms of speech recording of 32 ms for 5 classes of phonemes in the first 150 frequencies

Common characteristics of measurements

- ightharpoonup only discrete measurements are available: $X_j, j=1,\ldots,n$
- often replicates of functions are available:

$$X_{ij}, i = 1, \dots, n; j = 1, \dots, m$$

sampling points may vary from one record to another; $X_{ij}, i = 1, \dots, n; j = 1, \dots, n_i$

- measurement error may be present: $Y_{ij} = X_{ij} + \varepsilon_{ij}$
- ▶ values reflect a smooth variation that could be assessed at any time or as often as desired: $X_{ij} = f_i(t_{ij})$
- ▶ values are continuous in nature thus should be viewed as a *function*: $f_i(\cdot)$ is continuous
- functional features such as derivatives could be of main interest: $f_i(\cdot)$ differentiable

Estimating velocity curves for trunk length

Velocities of trunk length for 5 boys (above) and 5 girls (below). left = raw velocities, right = kernel estimated velocities.

Velocity estimation

Raw velocity:

$$\tilde{y}_j = \frac{y(t_j) - y(t_{j-1})}{t_j - t_{j-1}}$$
 $s_j = \frac{t_j + t_{j-1}}{2}$

Estimated velocity:

$$\tilde{y}(t) = \mathsf{smooth}\{(s_1, \tilde{y}_1), (s_2, \tilde{y}_2), \dots, (s_p, \tilde{y}_p)\}$$
 and evaluate at t

Function representation: uni-dimensional case

- ▶ Functions are infinite-dimensional objects: $f: \mathcal{I} \to \mathbb{R}$
- Finite observations are available: $f(t_1), \ldots, f(t_n), t_i \in \mathcal{I}$.
- Observations without error made on fine grid points: numerical interpolation on a finite grid

$$\boldsymbol{X} = (f(t_1), \dots, f(t_m))$$

Measurement error in data: Y_1, \ldots, Y_n , noisy observations of X_i :

$$Y_i(t) = X_i(t) + \varepsilon_i(t)$$

where ε_i 's are independent of X_i 's and are independent and identically distributed zero mean stationary processes. \Rightarrow statistical interpolation = smoothing

Function representation: without noise

Interpolation (linear, quadratic, cubic)

Function representation: with noise

Interpolation (linear, cubic)

Statistical interpolation (linear, cubic)

Vector vs Function

- Although a vector representation gives a convenient mean to represent/compute/manipulate function valued variables, they are not equivalent.
- Multivariate analysis deals with fixed dimension (number of available observations per curve), whereas functional data does not have a fixed dimension to begin with.
- ▶ Vector representation cannot account for the fact that future observations (test data) may not have the same representation as the available data (training data) for functional data
- ► For functional data, often the interest lies in derivatives of the functions!

Overview of functional data analysis

Features of data:

- similar pattern of variation among curves: share common structure or common shape
- complex relationship and complex variability
- interest in functional characteristics: nonlinear relationship, derivatives ...

Aims of the analysis:

- understand and characterize the common features of the homogeneous population
- discriminate and classify distinct populations
- extract maximal information with an efficient representation

Some references

- Ramsay, J. O. and Silverman, B. W. (1997, 2005) Functional Data Analysis
- ▶ Ramsay, J. O. and Silverman, B. W. (2002) Applied Functional Data Analysis: Methods and Case Studies
- ▶ Ramsay, J. O., Hooker, G., Gaves, S. (2005) Functional Data Analysis with R and Matlab
- ► Ferraty, F. and Vieu, P. (2006) Nonparametric Functional Data Analysis: Theory and Practice
- ▶ Hastie, T., Tibshirani, R. and Friedman, J. (2001, 2008) The Elements of Statistical Learning: Data Mining, Inference and Prediction

Section 3

Exploring funcional data

Multivariate data

Let $X=(X_1,\ldots,X_p)^{\top}\in\mathbb{R}^p$ be a p-dimensional random vector with mean μ and variance Σ . Then Σ is a $p\times p$ symmetric and positive-definite (excluding constant variable case) matrix.

Data:

$$X_i = (X_{i1}, \dots, X_{ip})^{\top} \qquad i = 1, \dots, n$$

Mean
$$\boldsymbol{\mu} = (\mu_1, \dots, \mu_p)$$
 and $\boldsymbol{\Sigma} = (\sigma_{ij})$ where $E[X_{ij}] = \mu_i \qquad \text{cov}(X_{ii}, X_{ik}) = \sigma_{ij}$

$$\Sigma = \mathsf{cov}(X) = \left(\begin{array}{cccc} \mathsf{var}(X_1) & \mathsf{cov}(X_1, X_2) & \dots & \mathsf{cov}(X_1, X_p) \\ \vdots & & \vdots & & \vdots \\ \mathsf{cov}(X_p, X_1) & \mathsf{cov}(X_p, X_2) & \dots & \mathsf{var}(X_p) \end{array} \right)$$

Sample mean and variance

- ▶ Sample mean for jth component: $\bar{X}_j = \frac{1}{n} \sum_{i=1}^n X_{ij}$.
- ► Sample mean vector:

$$\bar{X} = (\bar{X}_1, \dots, \bar{X}_p)^\top$$

- ightharpoonup Residual: $\tilde{X}_i = X_i \bar{X}$
- ► Sample covariance:

$$\Sigma_{n} = \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_{i} \tilde{X}_{i}^{\top}$$

$$= \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_{i1}^{2} & \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_{i1} \tilde{X}_{i2} & \dots & \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_{i1} \tilde{X}_{ip} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_{ip} \tilde{X}_{i1} & \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_{ip} \tilde{X}_{i2} & \dots & \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_{ip}^{2} \end{pmatrix}$$

Functional random variable

Population: let $X \in L^2(\mathcal{I})$ be the functional random variable on \mathcal{I} with

$$\mathrm{E}[X(t)] = \mu(t) \qquad \mathrm{cov}(X(s), X(t)) = \Gamma(s, t)$$

- ▶ Sample: $X_1, ..., X_n$, assume that these are independent and identically distributed as X.
- ▶ Sample mean: $\bar{X}(t) = \frac{1}{n} \sum_{i=1}^{n} X_i(t)$ for $t \in \mathcal{I}$
- ▶ Sample cov: for $(s,t) \in \mathcal{I} \times \mathcal{I}$

$$\hat{\Gamma}(s,t) = \frac{1}{n} \sum_{i=1}^{n} (X_i(s) - \bar{X}(s))(X_i(t) - \bar{X}(t))$$

- ► Sample variance: $\hat{v}(t) = \hat{\Gamma}(t,t)$
- ▶ Sample standard deviation: $\hat{s}(t) = \sqrt{\hat{v}(t)}$

Phoneme: mean and std function

Multivariate: Eigen-decomposition of covariance matrix

Let λ_k be the eigenvalue of Σ with the corresponding eigenvector u_k , that is, $\Sigma u_k = \lambda_k u_k$. Then

$$\begin{split} \Sigma &= UDU^\top = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_p] \mathsf{diag}(\lambda_1, \dots, \lambda_p) \left(\begin{array}{c} \boldsymbol{u}_1^\top \\ \vdots \\ \boldsymbol{u}_p^\top \end{array} \right) \\ &= \sum_{k=1}^p \lambda_k \boldsymbol{u}_k \boldsymbol{u}_k^\top \\ \mathsf{where} \ \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_p \geq 0 \ \mathsf{and} \ U^\top U = UU^\top = I_p. \end{split}$$

For sample covariance matrix:

$$\Sigma_n = U_n D_n U_n^{\top} = \sum_{k=1}^p \hat{\lambda}_k \hat{\boldsymbol{u}}_k \hat{\boldsymbol{u}}_k^{\top}$$

Variance decomposition

Total variation = Mean variation + Mean residual variation:

$$\sum_{i=1}^{n} ||X_i||^2 = \sum_{i=1}^{n} ||\bar{X}||^2 + \sum_{i=1}^{n} ||X_i - \bar{X}||^2$$

Decomposition of mean residual variation:

$$\begin{split} \sum_{i=1}^n \|X_i - \bar{X}\|^2 &= \sum_{i=1}^n (X_i - \bar{X})^\top (X_i - \bar{X}) \\ &= \operatorname{trace} \left(\sum_{i=1}^n (X_i - \bar{X}) (X_i - \bar{X})^\top \right) \\ \frac{1}{n} \sum_{i=1}^n \|X_i - \bar{X}\|^2 &= \operatorname{trace} (\Sigma_n) \\ &= \operatorname{trace} (U_n D_n U_n^\top) = \operatorname{trace} (D_n) \\ &= \sum_{i=1}^p \hat{\lambda}_j \end{split}$$

PCA - toy example

$$p = 2$$

PCA

Find direction of greatest variability

PCA data representation

Eigenvectors are orthonormal basis:

$$X_i = \mu + \sum_{k=1}^p \langle X_i - \mu, u_k \rangle u_k = \mu + \sum_{k=1}^p a_{ik} u_k$$
 where $a_{ik} \sim N(0, \lambda_k)$.

► Sample representation:

$$X_i = \bar{X} + \sum_{i=1}^p \langle X_i - \bar{X}, \hat{\boldsymbol{u}}_k \rangle \hat{\boldsymbol{u}}_k = \bar{X} + \sum_{k=1}^p \hat{a}_{ik} \hat{\boldsymbol{u}}_k$$

where $\hat{lpha}_{ik} \sim (0, \hat{\lambda}_k)$

▶ Dimension reduction: use K < p components

$$\hat{X}_i = \bar{X} + \sum_{i=1}^K \langle X_i - \bar{X}, \hat{\boldsymbol{u}}_k \rangle \hat{\boldsymbol{u}}_k = \bar{X} + \sum_{k=1}^K \hat{a}_{ik} \hat{\boldsymbol{u}}_k$$

Estimation of the inverse of covariance matrix:

$$\Sigma_n \approx \sum_{k=1}^K \hat{\lambda}_k \widehat{\boldsymbol{u}}_k \widehat{\boldsymbol{u}}_k^\top \,, \quad \widehat{\Sigma^{-1}} = \sum_{k=1}^K \frac{1}{\hat{\lambda}_k} \widehat{\boldsymbol{u}}_k \widehat{\boldsymbol{u}}_k^\top$$

Phoneme: (multivariate) PCA

Functional PCA

Karhunen-Lóeve decomposition:

Assume that $E[X_i(t)] = \mu(t)$, $cov(X_i(s), X_i(t)) = \Gamma(s, t)$

$$\Gamma(s,t) = \sum_{k=1}^{\infty} \lambda_k \phi_k(s) \phi_k(t)$$

where $\lambda_1 \geq \lambda_2 \geq \ldots \geq 0$ are eigenvalues and ϕ_1, ϕ_2, \ldots are the corresponding eigenfunctions.

Eigen-decomposition of the variance-covariance function:

$$\int_{\mathcal{I}} \Gamma(s,t)\phi_k(s) \, ds = \lambda_k \phi_k(t)$$

subject to $\int_{\mathcal{I}} \phi_k^2(t) = 1$ and $\int_{\mathcal{I}} \phi_k(t) \phi_\ell(t) = 0$ for $k \neq \ell$.

Functional PCA

Functional variable X_i can be expressed as

$$X_i(t) = \mu(t) + \sum_{k=1}^{\infty} \langle X_i, \phi_k \rangle \phi_k(t) = \mu(t) + \sum_{k=1}^{\infty} \xi_{ik} \phi_k(t)$$

where $\xi_{ik} \sim (0, \lambda_k)$.

Approximation based on FPCA:

$$X_{i}^{K}(t) = \mu(t) + \sum_{k=1}^{K} \xi_{ik} \phi_{k}(t)$$

Dimension reduction based on FPCA:

$$\hat{X}_{i}(t) = \hat{\mu}(t) + \sum_{k=1}^{K} \hat{\xi}_{ik} \hat{\phi}_{k}(t)$$

where $\hat{\xi}_{ik} \sim (0, \hat{\lambda}_k)$.

Functional PCA with noisy data

$$Y_{ij} = X_i(t_{ij}) + \varepsilon_i(t_{ij}), \quad X_i(t) = \mu(t) + \sum_{k=1}^K \xi_{ik} \phi_k(t)$$

Method 1: discretization on common grid

- ▶ Individual smoothing: $\hat{X}_i(t) = \mathsf{Smooth}(t, Y_{ij}, j = 1, \dots, n_i)$
- Interpolate at common grid points at t_1, \ldots, t_m : $X_i = (\hat{X}_i(t_1), \ldots, \hat{X}_i(t_m))^{\top}$
- Apply multivariate PCA (up to scaling factors correction)

Method 2: FPCA by regularization

- ▶ Single smoothing for mean: $\hat{\mu}(t) = Smooth(\frac{1}{n}\sum_{i=1}^{n}Y_{ij})$
- Residuals: $r_{ij} = Y_{ij} \hat{\mu}(t_{ij})$
 - lacktriangle Smooth covariance $(r_{ij}r_{ik})$ before eigen-decomposition
 - Smooth eigenfunction by regularization

Phoneme: FPCA eigenfun

Phoneme: FPCA vs PCA eigenfunc

Phoneme: FPCA eigenvalues

Phoneme: FPCA eigenfunctions (cont)

Section 4

Smoothing methods

Representing functions with noisy data

- ▶ Data: n noisy observations $(Y_i, i = 1, ..., n)$ available at fixed or random design points $(T_i \in [a, b])$
- \triangleright Assumption: data represent unknown smooth function (f)
- Statistical Model:

$$Y_i = f(T_i) + \varepsilon_i \qquad i = 1, \dots, n$$

where the error has mean zero and finite variance.

► The underlying function represents

$$f(t) = E[Y|T = t]$$
 $f(T) = E[Y|T]$

the conditional mean of Y given T = t.

- ightharpoonup Aim: recover $f(t), t \in [a, b]$ from finite number of noisy data
- ▶ Point estimation at t: $\hat{X}(t) = \hat{f}(t), t \in [a, b]$
- ⇒ Nonparametric regression problem

Nonparametric regression

Observed data: $(t_i,y_i):i=1,\ldots,n$ Find $f(\cdot)\in\mathcal{F}=\{f: \text{ continuous}\}$ that minimizes the squared error

$$\sum_{i=1}^{n} \{y_i - f(t_i)\}^2$$

- feasible set too large: can find an exact solution (overfit)
- need to impose contraints: use smoothness constraints
 - lacktriangle Local (polynomial) approximation: for t in the neighborhood t_0

$$f(t) \approx f(t_0) + f'(t_0)(t - t_0) + \dots + \frac{f^{(p)}(t_0)}{k!}(t - t_0)^p$$

= $\beta_0 + \beta_1(t - t_0) + \dots + \beta_p(t - t_0)^p$

▶ Global approximation: choose basis functions $\{\phi_1, \dots, \phi_k\}$ for all $t \in [a, b]$

$$f(t) \approx \alpha_1 \phi_1(t) + \alpha_2 \phi_2(t) + \dots + \alpha_k \phi_k(t)$$

Standard smoothing methods

Different ways to control smoothness in the function:

► Kernel smoothing or Local polynomial regression: minimize

$$\sum_{i=1}^{n} w_i \{ y_i - \beta_0 - \beta_1 (t_i - t) - \dots \beta_p (t_i - t)^p \}^2$$

- smoothing parameter: size of neighborhood (h)
- Regression splines: minimize

$$\sum_{i=1}^{n} \{y_i - a_1 \phi_1(t_i) - \ldots - a_k \phi_k(t_i)\}^2$$

- ullet smoothing parameter: number of basis functions k
- Smoothing splines: minimize

$$\sum_{i=1}^{n} \{y_i - a_1 \phi_1(t_i) - \dots - a_k \phi_k(t_i)\}^2 + \lambda P(f)$$

where P(f) is smoothness penalty, often $P(f) = \int_a^b \{f''(t)\}^2 dt$

• smoothing parameter: λ

Kernel smoothing: smoothing parameter

Smoothing splines: smoothing parameter

