Academia Sabatina de Jóvenes Talento

Polinomios Clase #2

Encuentro: 2

Curso: Polinomios

Nivel: 5

Semestre: I

Fecha: 25 de marzo de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Contenido: Raíces de polinomios I

En esta segunda sesión abordaremos el tema de Raíces de polinomios, un tema muy interesante y extenso, que nos brinda una perspectiva diferente sobre estas expresiones. Veremos definiciones, teoremas, ejemplos, fórmulas, ejercicios y problemas que nos ayudarán a aventurarnos al mundo de las raíces de polinomios. Se espera que el estudiante logre comprender la teoría aquí expuesta y que en caso de preguntas o dudas se comunique con nosotros para ayudarle.

1. Desarrollo

1.1. Definiciones

Definición 1.1 (**Raíz de un Polinomio**). La raíz de un polinomio P(x) es un número r, tal que P(r) = 0. También, diremos que r es una solución de la ecuación P(x) = 0.

Ejemplo 1. Demuestre que u es raíz del polinomio $R(x) = x^2 - (u+17)x + 17u$.

Solución. Para demostrar que u es raíz¹ de R(x), basta probar que R(u) = 0. Lo cual es fácil ver cuando evaluamos $R(u) = u^2 - (u+17)u + 17u = u^2 - u^2 - 17u + 17u = 0$.

Definición 1.2 (Factor de un Polinomio). Sea P un polinomio con deg (P) = n y $a \in \mathbb{R}$. Entonces, (x - a) es un factor de P(x) si existe un polinomio² Q(x) tal que

$$P(x) = (x - a)Q(x).$$

Teorema 1.1 (**Teorema del factor**). Dado un polinomio P, de grado n y $a \in \mathbb{R}$, diremos que a es una raíz de P si y sólo si (x - a) es un factor de P(x). Es decir

$$P(a) = 0 \Leftrightarrow P(x) = (x - a)Q(x)$$

para algún polinomio Q(x).

 $^{^{1}}$ ¿Podés encontrar otra raíz de R(x)?

²¿Por qué $\deg(Q) = (n-1)$?

Si a_1, a_2 y a_3 son tres raíces distintas del polinomio cúbico P(x), por el **Teorema 1.1**,

$$P(x) = (x - a_1)Q(x)$$

Para algún Q(x), pero como $P(a_2) = (a_2 - a_1)Q(a_2) = 0$ y $a_2 \neq a_1$, entonces $Q(a_2) = 0$, es decir a_2 es raíz de Q, por lo tanto por el **Teorema 1.1**

$$Q(x) = (x - a_2)R(x)$$

Para algún R(x). Análogamente, tendremos que $R(x)=(x-a_3)S(x)$, para algún S constante. Así,

$$P(x) = c(x - a_1)(x - a_2)(x - a_3)$$
, con $c \in \mathbb{R}$.

Vemos que saber las raíces de P nos condujo a su factorización³. Y en general, para un polinomio P(x) de grado n y raíces r_i con $1 \le i \le n$, este puede ser expresado como:

$$P(x) = c(x - r_1)(x - r_2) \cdots (x - r_{n-1})(x - r_n), \text{ con } c \in \mathbb{R}.$$

Cantidad de raíces de un polinomio: Un polinomio de grado n tiene como máximo n raíces (o ceros). Así, por ejemplo, un polinomio P con deg (P) = 7, tiene a lo más 7 raíces.

Multiplicidad de raíces: Si existe $m \in \mathbb{N}$ y un polinomio Q(x) tal que

$$P(x) = (x - a)^m Q(x)$$

diremos que la raíz a tiene multiplicidad m. Si m=1 diremos que la raíz a es simple.

Ejemplo 2. Sea P(x) un polinomio con coeficientes enteros y suponga que P(1) y P(2) son ambos impares. Demuestre que no existe ningún entero n para el cual P(n) = 0.

Solución. Nos piden mostrar que P(x) no tiene raíces enteras, entonces supongamos por el contrario, que existe un entero n tal que P(n)=0. Entonces, por el **Teorema 1.1** P(x)=(x-n)Q(x), con Q(x) un polinomio con coeficientes enteros. Así podemos ver que, P(1)=(1-n)Q(1) y P(2)=(2-n)Q(2) son impares, pero (1-n) y (2-n) son enteros consecutivos, así que uno de ellos debe ser par. Por lo tanto, P(1) o bien P(2) tiene que ser par, lo cual contradice las condiciones del problema. Luego, n no existe.

Ejemplo 3. Sea M(x) un polinomio cúbico con coeficientes enteros y sean $a, b, c \in \mathbb{Z}$, con $a \neq b \neq c$ tal que M(a) = M(b) = M(c) = 2. Demostrar que no existe un $d \in \mathbb{Z}$ para el que M(d) = 3.

Solución. Sea N(x) = M(x) - 2, como a, b y c son raíces de N(x), es claro que $N(x) = \alpha(x-a)(x-b)(x-c)$, para algún entero α . Si para algún entero d se tiene que M(d) = 3, entonces $N(d) = \alpha(d-a)(d-b)(d-c) = 1$. Para que esto suceda los factores deben ser 1 o -1 y por lo tanto dos de ellos tendrían que ser iguales. Pero por la condición $a \neq b \neq c$ esto no puede ser, luego d no existe.

³Tema que se introduce en la sección 1.2.1.

1.2. Métodos para determinar raíces de polinomios

En este apartado nos centraremos en los métodos para la determinación de raíces de polinomios, particularmente para polinomios cuadráticos y cúbicos. Para determinar el valor de las raíces de polinomios se pueden utilizar diversos métodos, como por ejemplo; la factorización, las fórmulas de Cardano, la completación de cuadrados, fórmulas cuadráticas y cúbicas general, soluciones trigonométricas e hiperbólicas con valores auxiliares, métodos númericos, entre otros. El presente escrito, solo abordará algunos de estos métodos y se invita al lector complementar su aprendizaje con la búsqueda e investigación de otros métodos.

1.2.1. Factorización

Si un polinomio P(x) es equivalente al producto de otros polinomios con grado menor, entonces diremos que P(x) está factorizado. Por ejemplo, el polinomio $M(x) = 5x^3 + 4x^2 + 5x + 4$, es equivalente a $(5x+4)(x^2+1)$, así diremos que M(x) está factorizado y sus factores son (5x+4) y (x^2+1) .

Definición 1.3. Dado un polinomio cuadrático $P(x) = ax^2 + bx + c$ con $a, b, c \in \mathbb{R}$, este puede ser factorizado como

$$P(x) = \frac{(ax+m)(ax+n)}{a}$$
, donde $\begin{cases} m+n=b\\ mn=ac \end{cases}$

1.2.2. Completación de cuadrados

No todos los polinomios cuadráticos pueden ser factorizados fácilmente. Por ejemplo, al tratar de factorizar $x^2 + 6x - 1$ llegar directamente a $(x + 3 - \sqrt{10})(x - 3 - \sqrt{10})$ no resulta tan evidente, por lo cual podemos auxiliarnos en técnicas como la **completación de cuadrados**. Si se tiene el polinomio⁴ $P(x) = x^2 + bx$ entonces podemos expresarlo de la forma:

$$P(x) = \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2$$

Lo cual facilita aplicar la diferencia de cuadrados.

Ejemplo 4. Hallar las raíces del polinomio $R(r) = r^2 - 10r + 7$.

Solución. Utilizando la completación de cuadrados, tenemos que

$$R(r) = r^{2} - 10r + 7$$

$$= \left(r - \frac{10}{2}\right)^{2} - \left(\frac{10}{2}\right)^{2} + 7$$

$$= (r - 5)^{2} - 18 = \left(r - 5 + \sqrt{18}\right)\left(r - 5 - \sqrt{18}\right)$$

$$= \left[r - \left(5 - 3\sqrt{2}\right)\right]\left[r - \left(5 + 3\sqrt{2}\right)\right]$$

 $^{^4}$ ¿Cómo sería la fórmula si $P(x) = ax^2 + bx$?

De esta manera sabemos que R(r) tiene como raíces a $\left(5-3\sqrt{2}\right)$ y $\left(5+3\sqrt{2}\right)$.

1.2.3. Fórmula general

Cuando tenemos un polinomio cuadrático $P(x) = ax^2 + bx + c$ con $a \neq 0$, podemos encontrar los valores para sus dos raíces en función de los coeficientes, a esta fórmula le conoceremos como fórmula general

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \land x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

Demostración: Al completar cuadrado en P(x) tenemos que

$$P(x) = ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a}\right] = a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b^{2} - 4ac}{4a^{2}}\right)\right]$$

$$= a\left[x + \frac{b}{2a} - \frac{\sqrt{b^{2} - 4ac}}{2a}\right]\left[x + \frac{b}{2a} + \frac{\sqrt{b^{2} - 4ac}}{2a}\right]$$

$$= a\left[x - \left(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\right)\right]\left[x - \left(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\right)\right]$$

Así, $\frac{-b-\sqrt{b^2-4ac}}{2a}$ y $\frac{-b+\sqrt{b^2-4ac}}{2a}$ son la raíces del polinomio.

1.2.4. Análisis del discriminante

Sea el polinomio cuadrático $P(x) = ax^2 + bx + c$ y sea $\Delta = b^2 - 4ac$. Diremos que Δ es el **discriminante** de P y que dependiendo de su signo se cumplirán los siguientes hechos:

• Si $\Delta > 0$, entonces P tiene dos raíces reales distintas, las cuales son:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \land x_2 = \frac{-b + \sqrt{\Delta}}{2a}.$$

- Si $\Delta = 0$, entonces P tiene una raíz real de multiplicidad 2, la cual es $x = -\frac{b}{2a}$
- Si $\Delta < 0$, entonces P no tiene raíces reales, sino raíces complejas conjugadas⁵.

⁵Vale aclarar que el presente curso no entrará de lleno con las raíces complejas. Aunque sí veremos algunos ejercicios y problemas bonitos.

Nos piden hallar las raíces del polinomio $P(x)=ax^3+bx^2+cx+d$. Para ello podemos plantear la ecuación

$$ax^3 + bx^2 + cx + d = 0$$
, con $a \neq 0$.

Al hacer la sustitución $y = x + \frac{b}{3a}$ nos da como resultado la ecuación de la forma $y^3 + py + q$, que desde ahora llamaremos la ecuación **Cúbica reducida**. La cual nos ayuda a obtener la expresión $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$ que llamaremos **discriminante** y que dependiendo de su signo se cumplirán los siguientes hechos:

- Si $\Delta > 0$, entonces P tiene una raíz real y dos raíces complejas.
- Si $\Delta = 0$, entonces P tiene una raíz real de multiplicidad tres en el caso de que p = q = 0 o bien dos raíces reales (de multiplicidad uno y dos, respectivamente) en el caso de que $p^3 = -q^3 \neq 0$.
- Si $\Delta < 0$, entonces P tiene tres raíces reales diferentes.

1.2.5. Método de Cardano

Si se hace y = A + B, elevando al cubo y reacomodano se obtiene:

$$y^3 - 3ABy - (A^3 + B^3) = 0$$

Así, al comparar coeficientes homólogos con la ecuación **cúbica reducida**, se obtiene que $3AB = -p \text{ y } A^3 + B^3 = -q$, y en base a estas dos ecuaciones podemos formar:

$$(A^3)^2 + q(A^3) - \frac{p^3}{27} = 0$$

la cual es una ecuación cuadrática en A^3 , que por la **fórmula general** podemos encontrar sus soluciones. Procediendo análogamente para B^3 , llegamos a

$$A = \sqrt[3]{\frac{-q - \sqrt{q^2 + \frac{4p^3}{27}}}{2}} = \sqrt[3]{\frac{-q}{4} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$$
$$B = \sqrt[3]{\frac{-q + \sqrt{q^2 + \frac{4p^3}{27}}}{2}} = \sqrt[3]{\frac{-q}{4} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$$

Así obtenemos que $y = \sqrt[3]{\frac{-q}{4}} - \sqrt{\Delta} + \sqrt[3]{\frac{-q}{4}} + \sqrt{\Delta}$. Finalmente, obtuvimos las soluciones de la ecuación **cúbica reducida** y por lo tanto las soluciones de la ecuación cúbica general. A este resultado le conoceremos como la fórmula o Método de Cardano para un polinomio cúbico.

Ejemplo 5. ¿Para qué valores de δ el polinomio $\delta x^2 + 2x + 1 - \frac{1}{\delta}$ tiene sus dos raíces iguales?

Solución. El polinomio tiene raíces iguales si el discriminante es nulo. Es decir , $\Delta = 4 - 4\delta(1 - \frac{1}{\delta})$ de donde es fácil ver que $\delta(1 - \frac{1}{\delta}) = 1$. Luego, $\delta = 2$ es la única posibilidad.

1.3. Agregados culturales y preguntas

- 1. Los números reales son un subconjunto de los números complejos. ($\mathbb{R} \subset \mathbb{C}$).
- 2. El Teorema Fundamental del Álgebra dice que cualquier polinomio de grado mayor a cero con coeficientes complejos tiene al menos una raíz compleja⁶.
- 3. **Pregunta:** ¿Cuántas raíces reales tiene el polinomio $P(x) = x^2 + 1$?

2. Ejercicios y Problemas

Ejercicio 1. Determina las raíces los siguientes polinomios con el método que más te guste

1.
$$x^2 + x - 20$$

4.
$$x^3 - 1331$$

7.
$$r^4 - 13r^2 + 36$$

2.
$$9t^2 + 88t - 20$$

5.
$$-21x^2 - 11x + 2$$

5.
$$-21x^2 - 11x + 2$$
 8. $x^3 - 9x^2 - 9x - 15$

3.
$$x^3 - 6x + 9$$

6.
$$(c+d)^2 - 18(c+d) + 65$$
 9. $12p^2 - 7p - 12$

9.
$$12p^2 - 7p - 12$$

Problema 2.1. Determine todos los posibles valores que puede tomar $\frac{x}{y}$ si $x,y\neq 0$ y $6x^2 + xy = 15y^2$.

Problema 2.2. Hallar $K \in \mathbb{R}$ tal que $x = K^2(x-1)(x-2)$ tiene raíces reales.

Problema 2.3. Encontrar todas las soluciones de la ecuación $m^2 - 3m + 1 = n^2 + n - 1$, con $m, n \in \mathbb{Z}^+$.

Problema 2.4. Sean a, b y c números reales positivos. Es posible que cada uno de los polinomios $P(x) = ax^2 + bx + c$, $Q(x) = bx^2 + cx + a$ y $R(x) = cx^2 + ax + b$ tenga sus dos raíces reales?

3. Problemas propuestos

Problema 3.1. Si $P(x) = x^4 + ax^3 + bx^2 + cx + d$ es un polinomio tal que P(1) = 10, $P(2) = 20 \text{ y } P(3) = 30, \text{ determine el valor de } \frac{P(12) + P(-8)}{10}.$

Problema 3.2. Sea P(x) un polinomio cuadrático. Demostrar que existen polinomios cuadráti- $\cos G(x)$ y H(x) tales que $P(x)P(x+1) = (G \circ H)(x)$.

Problema 3.3. Sea $P(x) = mx^3 + mx^2 + nx + n$ un polinomio cuyas raíces son a, b y c. Demostrar que

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}.$$

Problema 3.4. Sea P(x) un polinomio cúbico mónico tal que P(1) = 1, P(2) = 2 y P(3) = 3. Encontrar P(4).

⁶Este teorema lo veremos más adelante.

4. Extra

Problema 4.1. Sean a y b enteros. Determinar todas las soluciones de la ecuación

$$(ax - b)^2 + (bx - a)^2 = x,$$

si se sabe que tiene una solución entera.

Problema 4.2. Supóngase que el polinomio $5x^3+4x^2-8x+6$ tiene tres raíces reales a,b y c. Encuentra el valor de

$$a(1+b+c) + b(1+a+c) + c(1+a+b).$$

Referencias

[Bar89] Edward Barbeau. Polynomials. Springer, 1989.

[BGV14] Radmila Bulajich, José Gómez, and Rogelio Valdez. Álgebra. UNAM, 2014.

[CL22] Axel Canales and Ricardo Largaespada. Clase 2. Raíces de polinomios I. *Academia Sabatina de Jóvenes Talento*, Marzo 2022.

[Lul16] Lulú. Polinomios. OMMBC, 2016.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com