Computación Científica II Laboratorio 2

Paola Arce - Raquel Pezoa Profesoras Hernán Sarmiento - Camilo Zambrano Ayudantes de Laboratorio

Universidad Técnica Federico Santa María Departamento de Informática Valparaíso-Santiago, 15 de octubre de 2012

1. Reglas del Juego

- Los laboratorios se desarrollarán individualmente.
- El laboratorio está conformado por dos entregables: Los códigos y un informe.

1.1. Informe

El informe debe contener la siguiente estructura:

- Introducción
- Objetivos
- Desarrollo (respuesta a las preguntas planteadas)
- Conclusiones
- Anexos

Además, deben tener presentes las siguientes consideraciones:

- Serán evaluadas la ortografía y redacción del informe.
- En los anexos deben ir los casos de prueba que se utilizaron, especificando claramente input y resultados (en caso de que el ejercicio lo requiera).
- El informe debe estar elaborado en LATEX, de forma **obligatoria**. Asimismo, se tendrá en consideración el correcto uso del formato (en especial ecuaciones y otras fórmulas matemáticas).

1.2. Código

- El código implementado puede ser realizado en MATLAB, Octave o Python.
- Se evaluará el orden (indentación y claridad) y la documentación del código.

- No se permite el uso parcial o total de códigos encontrados en internet o en libros. Si se utiliza una biblioteca externa o una función que corresponda a un recurso a utilizar por su código, debe incluir una referencia a éste, de lo contrario será considerado como copia.
- Debe respetarse el input solicitado en el ejercicio, en caso contrario el ejercicio no se revisará y será evaluado con nota cero (0).

2. Preguntas

2.1. Interpolación Polinomial

Se define la función:

$$f(x) = \frac{10\log(x^2 + x + 1)}{10x^3 - 20x^2 + x - 2} \qquad x \in [-1, 1]$$
 (1)

1. Desarrolle una función que permita calcular la interpolación polinomial para la ecuación (1), de acuerdo al siguiente comando:

donde x_{int} representa el punto a analizar, n un número entero que particiona el respectivo dominio y pol que identifica uno de los siguientes métodos tal como sigue:

Polinomio interpolador	pol
Diferencias divididas	diff
Splines	spl

Suponiendo que se tiene la siguiente partición:

$$x_0 = -1 < x_1 < \dots < x_{n-1} < x_n = 1 \tag{2}$$

La data a interpolar será:

x_0	$f(x_0)$
x_1	$f(x_1)$
x_{n-1}	$f(x_{n-1})$
x_n	$f(x_n)$

2. Realice un benchmark comparativo entre los distintos polinomios interpoladores a través del programa desarrollado anteriormente. Para ello, utilice los puntos $x=\frac{-1}{2},\frac{-1}{4},0,\frac{1}{4},\frac{1}{2}$ con $n=2^m$ para m=1,2,3,...,5 completando la siguiente tabla:

n	х	y_k	yint	pol	Error relativo	Tiempo de Cómputo
2	-1/2	f(-1/2)		diff		
	-1/4	f(-1/4)		diff		
	0	f(0)		diff		
	1/4	f(1/4)		diff		
	1/2	f(1/2)		diff		
2	-1/2	f(-1/2)		spl		
	-1/4	f(-1/4)		spl		
	0	f(0)		spl		
	1/4	f(1/4)		spl		
	1/2	f(1/2)		spl		

2.2. Métodos de integración numérica

Como usted debe haber visto en clases, existen diversos métodos para realizar la integración numérica de una función. Uno de estos métodos corresponde a la **Cuadratura de Gauss**¹.

Su tarea consistirá en obtener mediante el método de Cuadratura de Gauss, la Función de Error de Gauss² usando para ello los Polinomios de Legendre³ para n tal que $4 \le n \le 7$. De acuerdo a lo anterior, usted tendrá que obtener las raíces para cada uno de los Polinomios de Legendre solicitados y las constantes c_i (ver sección 2.3).

En base a ello responda lo siguiente:

1. Usando los algoritmos programados para obtener las raíces de un Polinomio de Legendre y para obtener las constantes, genere una función $erf_teo(y, n)$ que obtenga el **valor estimado** de la Función de Error de Gauss para un valor y cualquiera, mediante el método de Cuadratura de Gauss, usando como apoyo las raíces del Polinomio de Legendre $P_n(x)$. La función de Error de Gauss está definida por:

$$\operatorname{erf}(y) = \frac{2}{\sqrt{\pi}} \int_0^y e^{-x^2} dx$$

Hint 1: Se pide calcular el valor de erf(y), utilizando la Cuadratura de Gauss.

Hint 2: Recuerde que el dominio por regla de la cuadratura corresponde al intervalo [-1,1].

- 2. Considere los Polinomios de Legendre con n tal que $4 \le n \le 7$. Genere una tabla que contenga las raíces obtenidas para cada Polinomio de Legendre en el intervalo determinado.
- 3. Considere y = 10 y los Polinomios de Legendre con n tal que $4 \le n \le 7$. Genere una tabla que contenga los c_i y los valores de erf(y) obtenidos para cada Polinomio de Legendre en el intervalo mencionado.
- 4. ¿Cómo cambian los valores de la función conforme crece n? Adjunte un gráfico que muestre los cambios en el valor de la función bajo la condición de aumento de n.
- 5. Genere una función erf_real(y) que obtenga el valor real (entregado por algún comando de matlab o python, ver sección 2.3) de la integración de la función.

¹http://www.hpc.cl/cc2/clase12-RP.html

²http://en.wikipedia.org/wiki/Error_function

 $^{^3 \}rm http://www.hpc.cl/cc2/clase12-RP.html$

6. Calcule el error relativo para y = 10, esto es:

$$\frac{|\operatorname{erf_t}(y,n) - \operatorname{erf_r}(y)|}{\operatorname{erf_r}(y)}$$

Donde erf_t corresponde a su Función de Error de Gauss teórica obtenida en el punto 1 y erf_r a la real, obtenida en el punto 5.

2.3. Observaciones:

- 1. **Python** Numpy y Scipy son buenas alternativas para realizar ésta actividad. Para integrar puede utilizar el módulo scipy.integrate.quad, para encontrar las raíces de un polinomio utilizar el módulo numpy.roots y para encontrar los coeficientes de cada Polinomio de Legendre, puede utilizar el módulo scipy.special.legendre.
- 2. Matlab En Matlab puede utilizar la función legendre (n, X)⁴ para obtener los polinomios asociados de Legendre, y a partir de ello obtener la información necesaria para calcular las raíces de cada polinomio. Para integrar, puede ocupar la función quad⁵ o int⁶.

3. Conclusiones

Determinar los efectos del trabajo realizado mediante el estudio de los distintos método utilizados a largo de la experiencia. Es de gran importancia que las hipótesis y el producto de éstas, estén apoyadas de manera concreta a través del análisis de resultados elaborado anteriormente.

4. Sobre la entrega

- El plazo máximo de entrega (del código y del informe impreso) es el día 23 de Octubre del 2012, a las 23:55. El informe y el código en versión digital deben ser subidos a la plataforma Moodle. También se solicita una versión impresa de su informe, la cual debe entregarse en Secretaría de Informática el mismo día de la entrega digital.
- El plazo máximo de entregas atrasadas es el día 26 de Octubre del 2012. **Todo trabajo entregado** en versión digital y/o versión impresa después de esa fecha automáticamente tendrá nota cero.
- El archivo debe llamarse lab2-nombre-apellido.tar.gz, y en su interior debe contener una carpeta llamada apellido que contenga los archivos .pdf y .tex correspondientes al informe y los archivos correspondientes al código.
- Se sancionará con 15 puntos menos en la nota del laboratorio por cada día de atraso
- Las copias serán sancionadas con nota cero (0) para todos los grupos involucrados.

⁴En el sitio http://mathworld.wolfram.com/AssociatedLegendrePolynomial.html se explica que son los polinomios asociados de Legendre, de modo que pueda fácilmente trabajar con la función presentada

⁵http://www.mathworks.com/help/matlab/ref/quad.html

 $^{^6} http://www.mathworks.com/help/symbolic/mupad_ref/numeric-int.html\\$

5. Evaluación

Item	Puntaje			
Interpolación Polinomial	35 puntos			
Métodos de Integración Numérica	30 puntos			
Conclusiones				
Redacción y Ortografía				
Estructura Informe (Introducción, Objetivos, Conclusiones, Anexos)	5 puntos			
Total	100			