Amoritized Analysis

CLRS (Chap. 17)

Bound $\sum a_i$ by $\sum t_i$ where a_i is a moritized cost and t_i is real cost

Costs only considered in sequences.

Prove bounds on average running-time of the worst case, **not** the average case.

Aggregate Analysis

- All operations considered to be same running time.
- Multipop stack example: can only be O(n) since can only pop what you push.

Banker / Accounting

- Different operations can have different running times
- Difference of \$a_i t_i\$ is *credit*, that can help 'pay' for future operations
- "Total credit must be non-negative at all times"
 - Negative credit is like undercharging earlier operations with the promise of paying the
- Stack example
 - Pushing uses one dollar *immediately*
 - Popping has no charge, we use credit (we take the dollar off the plate at the top of
 - "charging push operation a little bit more, we can charge pop nothing"
 - there is always a positive number of credit since pushing adds one dollar.

Physicist / Potential

_

Dynamic Tables

Okasaki