REC'D 13 APR 2004

WIPO

PCT

23. 3. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 3月26日

出 願 番 号
Application Number:

特願2003-085100

[ST. 10/C]:

[JP2003-085100]

出 願 人
Applicant(s):

住友化学工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年12月17日

今井康

【書類名】

特許願

【整理番号】

P155156

【提出日】

平成15年 3月26日

【あて先】

特許庁長官殿

【国際特許分類】

CO7C 15/10

【発明者】

【住所又は居所】

千葉県市原市姉崎海岸5の1 住友化学工業株式会社内

【氏名】

辻 純平

【発明者】

【住所又は居所】

千葉県市原市姉崎海岸5の1 住友化学工業株式会社内

【氏名】

石野 勝

【特許出願人】

【識別番号】

000002093

【氏名又は名称】

住友化学工業株式会社

【代理人】

【識別番号】

100093285

【弁理士】

【氏名又は名称】

久保山 隆

【電話番号】

06-6220-3405

【選任した代理人】

【識別番号】

100113000

【弁理士】

【氏名又は名称】

中山亨

【電話番号】

06-6220-3405

【選任した代理人】

【識別番号】

100119471

【弁理士】

【氏名又は名称】

榎本 雅之

【電話番号】

06-6220-3405

【手数料の表示】

【予納台帳番号】 010238

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 0212949

【プルーフの要否】 要

【発明の名称】 αーメチルスチレンの製造方法

【特許請求の範囲】

【請求項1】 活性アルミナの存在下、脱水反応によりクミルアルコールから α — メチルスチレンを製造する方法であって、クミルアルコールを含有する反応原料中の有機酸濃度が $10 \sim 1000$ wtppmであることを特徴とする α — メチルスチレンの製造方法。

【請求項2】 原料中の有機酸がギ酸、酢酸、プロピオン酸から選ばれる少なくとも一種である請求項1記載の製造方法。

【請求項3】 製造方法が下記の工程を含むプロピレンオキサイドの製造方法の一部である請求項1記載の製造方法。

酸化工程:クメンを酸化することによりクメンハイドロパーオキサイドを得る 工程

エポキシ化工程:クメンハイドロパーオキサイドを含むクメン溶液と過剰量の プロピレンとを、液相中、固体触媒の存在下に反応させることにより、プロピレ ンオキサイド及びクミルアルコールを得る工程

脱水工程:固体触媒の存在下、エポキシ化工程で得たクミルアルコールを脱水 することにより α - メチルスチレンを得る工程

水添工程:固体触媒の存在下得、αーメチルスチレンを水添してクメンとし、 酸化工程の原料として酸化工程へリサイクルする工程

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、αーメチルスチレンの製造方法に関するものである。更に詳しくは、本発明は、低コストで効率的に高いクミルアルコール転化率を得ることができるという特徴を有するαーメチルスチレンの製造方法に関するものである。

[0002]

【従来の技術】

活性アルミナの存在下、クミルアルコールを脱水してαーメチルスチレンを製

[0003]

【特許文献1】

特公昭52-39017号公報

[0004]

【発明が解決しようとする課題】

かかる現状において、本発明が解決しようとする課題は、低コストで効率的に 高いクミルアルコール転化率を得ることができるという特徴を有する α ーメチル スチレンの製造方法を提供する点にある。

[0005]

【課題を解決するための手段】

すなわち、本発明は、活性アルミナの存在下、脱水反応によりクミルアルコールから α — メチルスチレンを製造する方法であって、クミルアルコールを含有する反応原料中の有機酸濃度が $10 \sim 1000 \, \mathrm{wtppm}$ であることを特徴とする α — メチルスチレンの製造方法に係るものである。

[0006]

【発明の実施の形態】

活性アルミナによるクミルアルコールの脱水反応の好ましい実施態様は次のと
・
おりである。

[0007]

脱水反応は通常、クミルアルコールを触媒に接触させることで行われる。反応は気相中あるいは溶媒を用いて液相中で実施できる。生産性や省エネルギーの観点から反応は液相で実施するのが好ましい。溶媒は、反応体及び生成物に対して実質的に不活性なものでなければならない。溶媒は使用されるクミルアルコール溶液中に存在する物質からなるものであってよい。たとえばクミルアルコールが、生成物であるクメンとからなる混合物である場合には、特に溶媒を添加するこ

となく、これを溶媒の代用とすることも可能である。その他、有用な溶媒は、アルカン(たとえばオクタン、デカン、ドデカン)や、芳香族の単環式化合物(たとえばベンゼン、エチルベンゼン、トルエン)などがあげられる。脱水反応温度は一般に $50\sim450$ ℃であるが、 $150\sim300$ ℃の温度が好ましい。一般に圧力は $10\sim1000$ k P a であることが有利である。平衡反応を考えた場合はできるだけ低圧の方が有利である。脱水反応は、スラリー又は固定床の形の触媒を使用して有利に実施できる。

[0008]

本発明の最大の特徴は、活性アルミナの存在下、クミルアルコールを含有する原料中に有機酸を10~1000wtppm存在させて反応を行う点にある。原料中の有機酸濃度はさらに好ましくは50~1000wtppmである。有機酸を存在させることにより活性アルミナの活性が向上し、高いクミルアルコール転化率が得られる。有機酸としては有機カルボン酸が好ましく、ギ酸、酢酸、プロピオン酸から選ばれる少なくとも1種であることが好ましい。1000wtppmを超える過大な有機酸の存在は装置腐食等の問題のために好ましくない。

[0009]

本発明の方法は、下記の脱水工程および水添工程として行われ得る。

酸化工程:クメンを酸化することによりクメンハイドロパーオキサイドを得る 工程

エポキシ化工程:クメンハイドロパーオキサイドを含むクメン溶液と過剰量のプロピレンとを、液相中、固体触媒の存在下に反応させることにより、プロピレンオキサイド及びクミルアルコールを得る工程

脱水工程:固体触媒の存在下、エポキシ化工程で得たクミルアルコールを脱水 することにより α ーメチルスチレンを得る工程

水添工程:固体触媒の存在下得、αーメチルスチレンを水添してクメンとし、酸化工程の原料として酸化工程へリサイクルする工程

[0010]

酸化工程は、クメンを酸化することによりクメンハイドロパーオキサイドを得る工程である。クメンの酸化は、通常、空気や酸素濃縮空気などの含酸素ガスに

よる自動酸化で行われる。この酸化反応は添加剤を用いずに実施してもよいし、アルカリのような添加剤を用いてもよい。通常の反応温度は50~200℃であり、反応圧力は大気圧から5MPaの間である。添加剤を用いた酸化法の場合、アルカリ性試薬としては、NaOH、KOHのようなアルカリ金属化合物や、アルカリ土類金属化合物又はNa2CO3、NaHCO3のようなアルカリ金属炭酸塩又はアンモニア及び(NH4)2CO3、アルカリ金属炭酸アンモニウム塩等が用いられる。

[0011]

エポキシ化工程は、酸化工程で得たクメンハイドロパーオキサイドと過剰量の プロピレンとを、液相中、固体触媒の存在下に反応させることにより、プロピレ ンオキサイド及びクミルアルコールを得る工程である。

[0012]

触媒としては、目的物を高収率及び高選択率下に得る観点から、チタン含有珪素酸化物からなる触媒が好ましい。これらの触媒は、珪素酸化物と化学的に結合したTiを含有する、いわゆるTiーシリカ触媒が好ましい。たとえば、Ti化合物をシリカ担体に担持したもの、共沈法やゾルゲル法で珪素酸化物と複合したもの、あるいはTiを含むゼオライト化合物などをあげることができる。

[0013]

エポキシ化工程の原料物質として使用されるクメンハイドロパーオキサイドは 、希薄又は濃厚な精製物又は非精製物であってよい。

[0014]

エポキシ化反応は、プロピレンとクメンハイドロパーオキサイドを触媒に接触させることで行われる。反応は、溶媒を用いて液相中で実施される。溶媒は、反応時の温度及び圧力のもとで液体であり、かつ反応体及び生成物に対して実質的に不活性なものでなければならない。溶媒は使用されるハイドロパーオキサイド溶液中に存在する物質からなるものであってよい。たとえばクメンハイドロパーオキサイドがその原料であるクメンとからなる混合物である場合には、特に溶媒を添加することなく、これを溶媒の代用とすることも可能である。その他、有用な溶媒としては、芳香族の単環式化合物(たとえばベンゼン、トルエン、クロロ

ベンゼン、オルトジクロロベンゼン)及びアルカン (たとえばオクタン、デカン、ドデカン)などがあげられる。

[0015]

エポキシ化反応温度は一般に0~200℃であるが、25~200℃の温度が 好ましい。圧力は、反応混合物を液体の状態に保つのに充分な圧力でよい。一般 に圧力は100~10000kPaであることが有利である。

[0016]

固体触媒は、スラリー状又は固定床の形で有利に実施できる。大規模な工業的操作の場合には、固定床を用いるのが好ましい。また、回分法、半連続法、連続法等によって実施できる。

[0017]

エポキシ化工程へ供給されるプロピレン/クメンハイドロパーオキサイドのモル比は2/1~50/1であることが好ましい。該比が過小であると反応速度が低下して効率が悪く、一方該比が過大であるとリサイクルされるプロピレンの量が過大となり、回収工程において多大なエネルギーを必要とする。

[0018]

脱水工程は、エポキシ化工程で得たクミルアルコールを脱水してαーメチルスチレンを得る工程であり、前記のとおりである。本脱水工程では、次の水添工程にて使用される水素を不活性気体として使用することが可能である。

[0019]

水添工程は、脱水工程で得られた α - メチルスチレンを水添することによりクメンを得、該クメンを酸化工程の原料として酸化工程へリサイクルする工程である。

[0020]

水添触媒としては、周期律表10族又は11族の金属を含む触媒をあげることができ、具体的にはニッケル、パラジウム、白金、銅をあげることができるが、 芳香環の核水添反応の抑制、高収率の観点からパラジウムまたは銅が好ましい。 銅系触媒としては銅、ラネー銅、銅・クロム、銅・亜鉛、銅・クロム・亜鉛、銅・シリカ、銅・アルミナ等があげられる。パラジウム触媒としては、パラジウム ・アルミナ、パラジウム・シリカ、パラジウム・カーボン等があげられる。

[0021]

水添反応は通常、 $\alpha-$ メチルスチレンと水素を触媒に接触させることで行われる。反応は、溶媒を用いて液相又は気相中で実施できる。溶媒は、反応体及び生成物に対して実質的に不活性なものでなければならない。溶媒は使用される $\alpha-$ メチルスチレン溶液中に存在する物質からなるものであってよい。たとえば $\alpha-$ メチルスチレンが、生成物であるクメンとからなる混合物である場合には、特に溶媒を添加することなく、これを溶媒の代用とすることも可能である。その他、有用な溶媒は、アルカン(たとえばオクタン、デカン、ドデカン)や、芳香族の単環式化合物(たとえばベンゼン、エチルベンゼン、トルエン)などがあげられる。水添反応温度は一般に $0\sim500$ ℃であるが、 $30\sim400$ ℃の温度が好ましい。一般に圧力は $100\sim1000$ 0 k P a であることが有利である。

[0022]

上記の特徴的な方法とすることにより、本発明が解決しようとする課題が解決 できる。

[0023]

【実施例】

次に、実施例により本発明を説明する。

実施例1

活性アルミナを充填した固定床流通反応器に、25重量%のクミルアルコールを含むクメン溶液(ギ酸<math>200ppm含有)を1.6g/minで、水素を105Ncc/minで流通させた。この時のLHSVは9h-1、圧力は1.0MPaG、温度200℃であった。得られた反応液におけるクミルアルコールの脱水転化率は97%であった。

[0024]

実施例2

25重量%のクミルアルコールを含むクメン溶液(ギ酸130ppm含有)を 用いた以外は実施例1と同様の方法で実施した。得られた反応液におけるクミル アルコールの脱水転化率は93%であった。

実施例3

25重量%のクミルアルコールを含むクメン溶液(ギ酸60ppm含有)を用いた以外は実施例1と同様の方法で実施した。得られた反応液におけるクミルアルコールの脱水転化率は85%であった。

[0026]

実施例4

25重量%のクミルアルコールを含むクメン溶液(ギ酸30ppm含有)を用いた以外は実施例1と同様の方法で実施した。得られた反応液におけるクミルアルコールの脱水転化率は74%であった。

[0027]

比較例1

25重量%のクミルアルコールを含むクメン溶液(ギ酸5ppm含有)を用いた以外は実施例1と同様の方法で実施した。得られた反応液におけるクミルアルコールの脱水転化率は46%であった。

[0028]

【発明の効果】

以上説明したとおり、本発明により、低コストで効率的に高いクミルアルコール転化率を得ることができるという特徴を有する α ーメチルスチレンの製造方法を提供することができた。

【要約】

【課題】 低コストで効率的に高いクミルアルコール転化率を得ることができる という特徴を有する α ーメチルスチレンの製造方法。

【解決手段】 活性アルミナの存在下、脱水反応によりクミルアルコールから α ーメチルスチレンを製造する方法であって、クミルアルコールを含有する反応原料中の有機酸濃度が $10\sim1000$ wt ppmであることを特徴とする α ーメチルスチレンの製造方法。

好ましい具体例として、製造方法が下記の工程を含むプロピレンオキサイドの 製造方法の一部である場合をあげることができる。

酸化工程:クメンを酸化してクメンハイドロパーオキサイドを得る

エポキシ化工程:クメンハイドロパーオキサイドとプロピレンからプロピレン オキサイド及びクミルアルコールを得る

脱水工程: クミルアルコールを脱水することにより α ーメチルスチレンを得る

水添工程:αーメチルスチレンを水添してクメンとする

【選択図】 なし

特願2003-085100

出願人履歴情報

識別番号

[000002093]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

大阪府大阪市中央区北浜4丁目5番33号

氏 名 住友化学工業株式会社