### Capítulo 1

# Relatividad especial

## 1.1 Transformación de vectores

Digamos que un vector transforma

$$X_i' = a_{ij}X_j$$

de manera que se verifique que las leyes físicas sean invariantes frente a rotaciones propias. El módulo no cambia  $|X'|^2 = |X|^2$ .

Einstein postula que:

- Todos los sistemas inerciales son equivalentes (no se puede hablar de espacio absoluto).
- La velocidad de la luz en un sistema inercial es constante. No depende del estado de movimiento del observador.

Las ecuaciones vistas hasta ahora son igualdades vectoriales. Toda ley física debe ser covariante de un sistema inercial a otro.

Para una magnitud tensorial de 2do rango la traza del mismo debe ser invariante y además satisface

$$a_{ij}a_{ik} = \delta_{jk}.$$

Transformación ortogonal. En la época de Maxwell se postuló que las ondas EM viajaban con velocidad c respecto al espacio absoluto (el éter). Pero esta idea muere con Einstein en 1905.

Sea un sistema S' que se mueve con velocidad  $\boldsymbol{v}$  de otro S en forma paralela a un eje (ver figura).



Figura 1.1

Se verifica entonces la transformación de Lorentz

$$x^{1'} = x^1$$

$$x^{2'} = x^2$$

$$x^{3'} = \gamma [x^3 - \beta x^0]$$

$$x^{0'} = \gamma [x^0 - \beta x^3]$$

donde son

$$\gamma = \frac{1}{(1 - v^2/c^2)^{1/2}} \qquad x^0 = ct$$

A la transformación [1] se le puede dar forma de rotación en funciones hiperbólicas como sigue definiendo

$$\beta \equiv \tanh(\eta)$$
  $\gamma \equiv \cosh(\eta)$   $\gamma \cdot \beta = \sinh(\eta)$ 

y con esta nueva notación puede escribirse

$$x^{0'} = x^0 \cosh(\eta) - x^3 \sinh(\eta)$$
$$x^{3'} = -x^0 \sinh(\eta) + x^3 \cosh(\eta)$$

donde seguimos viendo que las leyes son lineales en las coordenadas (el espacio es isótropo)

Debiéramos dar ideas de estas cosas importantes de relatividad especial

$$\begin{pmatrix} x^{0'} \\ x^{3'} \end{pmatrix} = \begin{pmatrix} \cosh(\eta) & \sinh(\eta) \\ -\sinh(\eta) & \cosh(\eta) \end{pmatrix} \begin{pmatrix} x^0 \\ x^3 \end{pmatrix}$$

y no es otra cosa que una rotación en eje  $\hat{0}, \hat{3}$  con el ángulo  $\eta = (\beta)$ . O sea, son rotaciones en funciones hiperbólicas. Notemos que se verifica la invariancia del módulo de la transformación

$$(x^{0'})^2 - ((x^{1'})^2 + (x^{2'})^2 + (x^{3'})^2) = (x^0)^2 - ((x^1)^2 + (x^2)^2 + (x^3)^2)$$

o en una notación más feliz

$$(ct')^2 - (x'^2 + y'^2 + z'^2) = (ct)^2 - (x^2 + y^2 + z^2)$$

Estamos queriendo generar una estructura geométrica para pasar entre sistemas inerciales.

Este espacio 4D es el de Minkowski y no es euclídeo.

$$\begin{pmatrix} x^{0'} \\ x^{1'} \\ x^{2'} \\ x^{3'} \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta\gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix}$$

La transformación inversa se obtiene tomando los reemplazos

$$x^{i'} \to x^i$$
 ,  $x^i \to x^{i'}$  ,  $\beta \to -\beta$ 

El elemento invariante de línea es

$$ds^{2} = (dx^{0})^{2} - (dx^{1})^{2} - (dx^{2})^{2} - (dx^{3})^{2} = ds'^{2}$$

o bien

$$ds^2 = g_{\alpha\beta}dx^{\alpha}dx^{\beta}$$

que es el tensor de la métrica. Se verifica

$$g_{\alpha\beta} = g^{\alpha\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

#### Cuadrivectores en el espacio 4D

Un cuadrivector contravariante es

$$A^{\mu} = (A^0, \mathbf{A})$$

mientras que el covariante es

$$A_{\mu}=(A^0,-\boldsymbol{A})$$

y vemos que las partes temporales son las mismas cambiando el signo de la espacial. Las reglas de transformación son

$$A^{\prime \alpha} = \frac{\partial x^{\prime \alpha}}{\partial x^{\beta}} A^{\beta} \qquad A^{\prime \alpha}_{\alpha} = \frac{\partial x^{\beta}}{\partial x^{\prime \alpha}} A_{\beta}$$

luego el producto interno es

$$\widetilde{A} \cdot \widetilde{B} \equiv A_{\alpha} B^{\alpha}$$

donde estamos usando convención de suma de Einstein, que significa que

$$\widetilde{A} \cdot \widetilde{B} = A^0 B^0 - \mathbf{A} \cdot \mathbf{B}$$

que es invariante por ser un escalar de Lorentz,

$$A_{\alpha}B^{\alpha} = A'_{\alpha}B'^{\alpha}$$

#### Intervalos entre eventos

Los intervalos deben ser invariantes relativistas y de Lorentz, si el intervalo es temporal se tiene

$$x^0 > x^i x_i \Rightarrow \delta s^2 > 0$$

y los eventos pueden estar conectados causalmente

$$x^0 < x^i x_i \Rightarrow \delta s^2 < 0$$

y los eventos no pueden estar conectados causalmente. Se cumple

$$\delta s^2 = (x^0)^2 - [(x^1)^2 + (x^2)^2 + (x^3)^2]$$

#### Operadores diferenciales

Tenemos la derivada respecto a una coordenada contravariante

$$\partial_{\alpha} \equiv \frac{\partial}{\partial x^{\alpha}} = \left(\frac{\partial}{\partial x^{0}}, \boldsymbol{\nabla}\right)$$

que es la derivada covariante, y también la derivada respecto de una coordenada covariante

$$\partial^{\alpha} \equiv \frac{\partial}{\partial x_{\alpha}} = \left(\frac{\partial}{\partial x^{0}}, -\nabla\right)$$

que es la derivada contravariante. Note la asimetría entre derivo respecto de arriba y es derivada abajo y viceversa. La notación abreviada puede inducir a confusiones.

La cuadridivergencia de un cuadrivector es un invariante,

$$\partial_{\alpha}A^{\alpha} = \frac{\partial A^0}{\partial x^0} + \boldsymbol{\nabla} \cdot \boldsymbol{A}$$

$$\partial^{\alpha}A_{\alpha}=\frac{\partial A^{0}}{\partial x^{0}}-\boldsymbol{\nabla}\cdot(-\boldsymbol{A})$$

y aquí vemos  $\partial_{\alpha}A^{\alpha}=\partial^{\alpha}A_{\alpha}$ . Esto nos lleva al D'Alembertiano

$$\Box \equiv \partial_{\alpha} \partial^{\alpha} = \frac{\partial^2}{\partial x^{0^2}} - \nabla^2$$

S es el intervalo entre los eventos 1 y 2, y es un invariante lorentziano

$$s^2 = c^2(t_1 - t_2)^2 - |\boldsymbol{x}_1 - \boldsymbol{x}_2|^2$$

El intervalo es temporal si  $s^2 > 0$  en cuyo caso se tiene

$$c\delta t > |\boldsymbol{x}_1 - \boldsymbol{x}_2|$$

lo cual significa que existe frame inercial donde  $x_1=x_2$  los eventos ocurren en el mismo sitio de manera que pueden estar conectados causalmente; puesto que  $c\delta t>0$  y  $t_2>t_1$ . Por el contrario si  $c^2<0$  se tiene

$$c\delta t < |\boldsymbol{x}_1 - \boldsymbol{x}_2|$$

y existe entonces frame inercial donde los dos eventos son en el mismo sitio  $x_1=x_2$  y entonces  $c\delta t<0$  y  $t_2< t_1$  de manera que no pueden estar conectados causalmente.



Figura 1.2

Según se interpreta claramente del gráfico de la figura [ampliar].

$$x'^0 = \gamma(x^0-\beta x^3) \qquad x'^3 = \gamma(x^3-\beta x^0)$$

y si ahora es  $x'^0 = 0$  entonces para un observador en S' se tiene

$$0=\gamma(x^0-\beta x^3)$$

o bien  $x^0 = \beta x^3$  y aquí es  $x'^3 = 0$  de modo que

$$\frac{x^3}{\beta} = x^0$$

y entonces a de la figura puede ser causado por un suceso en el origen pero b no tiene conexión causal con el origen.

# 1.1.1 Transcurso del tiempo en un sistema con V grande

Sea v/c no despreciable

$$c\Delta t' = \gamma (c\Delta t - \beta \Delta z) \qquad \gamma > 1$$
 
$$\Delta t' = \gamma \Delta t \left( 1 - \beta \frac{\Delta z}{c\Delta t} \right)$$

pero si en S' la partícula está en reposo es v=dz/dt de manera que



Figura 1.3

$$\Delta t' = \gamma \Delta t (1 - \beta^2)$$

$$\Delta t' = \Delta t (1-\beta^2)^{1/2}$$

de modo que  $\Delta t' < \Delta t,$  en S' el tiempo transcurre más lentamente.

#### Número de onda y conteo

Un proceso de conteo (discreto) es invariante lorentziano

$$x'^3 = \gamma(x^3 - \beta x^0)$$

siendo v entre sistemas SS'. El número de crestas es

$$\begin{split} \#_s &= \frac{z_1 - z}{\lambda} = \frac{k}{2\pi}(z_1 - z) = \frac{k}{2\pi}(ct - z) = \frac{1}{2\pi}(\omega t - kz) \\ \#'_s &= \frac{1}{2\pi}(\omega' t' - k' z') \end{split}$$

y se puede generalizar

$$\begin{aligned} & \boldsymbol{k}' \cdot \boldsymbol{x}' - \omega' t' = \boldsymbol{k} \cdot \boldsymbol{x} - \omega t \\ & - \left( \boldsymbol{k}' \cdot \boldsymbol{x}' - \frac{\omega' x'^0}{c} \right) = - \left( \boldsymbol{k} \cdot \boldsymbol{x} - \frac{\omega x^0}{c} \right) \end{aligned}$$

es un invariante lorentziano como

$$k_{\alpha}x^{\alpha} = k^{\alpha}x_{\alpha}$$

donde el cuadrivector de onda se define

$$k^{\alpha} = \left(\frac{\omega}{c}, \mathbf{k}\right).$$

## 1.2 Forma covariante del electromagnetismo

Partimos de la ecuación de continuidad para la carga,

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{J} = 0$$

la cual con la definición del cuadrivector corriente

$$J^{\mu}=(c\rho, \pmb{J})$$

se puede escribir como

$$\partial_{\mu}J^{\mu} = \frac{\partial c\rho}{\partial ct} + \boldsymbol{\nabla}\cdot\boldsymbol{J} = 0.$$

La formulación covariante empleaba el gauge de Lorentz (así las ecuaciones son validas en cualquier sistema inercial), el gauge de Lorentz era

$$\frac{1}{c}\frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{A} = 0$$

siendo el cuadripotencial

$$A^{\mu} = (\phi, \mathbf{A})$$

y entonces

$$\partial_{\mu}A^{\mu} = \frac{\partial \phi}{\partial ct} + \boldsymbol{\nabla} \cdot \boldsymbol{A} = \frac{1}{c} \frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{A} = 0.$$

Se podía ver que resultan ecuaciones de onda inhomogéneas para los potenciales

$$\mathbf{\nabla}^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\frac{4\pi}{c} \mathbf{J}$$

que viene a ser

$$\partial_{\mu}\partial^{\mu} = \Box \boldsymbol{A} = \frac{4\pi}{c}\boldsymbol{J}$$

y para el potencial  $\phi$ 

$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -4\pi \phi$$

que desemboca en

$$\partial_{\mu}\partial^{\mu} = \Box \phi = \frac{4\pi}{c}(c\rho)$$

Al aplicar el D'Alembertiano a un cuadrivector obtenemos otro cuadrivector

$$\Box A^{\mu} = \frac{4\pi}{c} J^{\mu}.$$

Los campos  $\boldsymbol{E},\,\boldsymbol{B}$  forman parte de un tensor de segundo rango antisimétrico llamado tensor de intesidad de campo

$$F^{\alpha\beta}=\partial^{\alpha}A^{\beta}-\partial^{\beta}A^{\alpha}$$

que matricialmente se puede ver como

$$F^{\alpha\beta} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$

También se suele definir un tensor de intensidad de campo dual

$$\mathcal{F}^{\alpha\beta} = \frac{1}{2} \varepsilon^{\alpha\beta\gamma\delta} F_{\gamma\delta}$$

que no es otra cosa que

$$\mathcal{F}^{\alpha\beta} = \begin{pmatrix} 0 & -B_x & -B_y & -B_z \\ B_x & 0 & E_z & -E_y \\ B_y & -E_z & 0 & E_x \\ B_z & E_y & -E_x & 0 \end{pmatrix}$$

y donde  $\varepsilon^{\alpha\beta\gamma\delta}$  es el tensor de Levi-Civita de cuatro dimensiones, que es nulo cuando se repite un índice. Entonces las ecuaciones de Maxwell en forma covariante explícita resultan

$$\partial_{\alpha} \mathcal{F}^{\alpha\beta} = 0$$
  $\qquad \qquad \partial_{\alpha} F^{\alpha\beta} = \frac{4\pi}{c} J^{\alpha}.$ 

#### 1.2.1 Transformación de los campos

L transformación de Lorentz era

$$ct' = \gamma [ct - \boldsymbol{\beta} \cdot \boldsymbol{x}]$$
  
 $\mathbf{x'}_{\parallel} = \gamma [\mathbf{x}_{\parallel} - \beta ct]$   
 $\mathbf{x'}_{\perp} = \mathbf{x}_{\perp}$ 

con  $\beta = v/c$  y donde la transformación de los campos E, B



Figura 2.4

$$egin{aligned} m{E}' &= m{E}_{\parallel} + \gamma \left( m{E}_{\perp} + m{eta} imes m{B} 
ight) \\ m{B}' &= m{B}_{\parallel} + \gamma \left( m{B}_{\perp} - m{eta} imes m{E} 
ight) \end{aligned}$$

que se pueden poner como

$$\begin{split} & \boldsymbol{E}' = -\frac{\gamma^2}{\gamma + 1} \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \boldsymbol{E}) + \gamma \left( \boldsymbol{E} + \boldsymbol{\beta} \times \boldsymbol{B} \right) \\ & \boldsymbol{B}' = -\frac{\gamma^2}{\gamma + 1} \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \boldsymbol{B}) + \gamma \left( \boldsymbol{B} - \boldsymbol{\beta} \times \boldsymbol{E} \right) \end{split}$$

y recordemos que la transformación de Galileo era

$$E' = E + \frac{1}{c}V \times B$$
  $B' = B - \frac{1}{c}V \times E$ 

siendo el segundo término el que da origen a las corrientes de Foucault al mover un conductor en el seno de un campo B.



Figura 2.5

Según la figura superior la transformación de los campos satisface

$$\begin{split} E_x' &= \gamma (E_x - \beta B_y) \qquad B_x' = \gamma (B_x + \beta E_y) \\ E_y' &= \gamma (E_y + \beta B_x) \qquad B_y' = \gamma (B_y - \beta E_x) \\ E_z' &= E_z \qquad B_z' = B_z \end{split}$$

Las contracciones del producto escalar entre el tensor de intensidad son invariantes. Así, por ejemplo,

$$\begin{split} F^{\alpha\beta}F_{\alpha\beta} &= 2(B^2 - E^2) \\ \mathcal{F}^{\alpha\beta}\mathcal{F}_{\alpha\beta} &= 2(E^2 - B^2) \\ \mathcal{F}^{\alpha\beta}F_{\alpha\beta} &= -4\; \pmb{B}\cdot \pmb{E} \end{split}$$

Sea

$$\mathcal{F}^{\alpha\beta}F_{\alpha\beta} = -4\,\boldsymbol{B}\cdot\boldsymbol{E} = 0,$$

entonces  $E \perp B$  o alguno de los campos es nulo en todo sistema inercial. Para una carga que se mueve con velocidad v se tiene B=0 en un sistema en el que q está en reposo de manera que

$$\mathbf{B} \cdot \mathbf{E} = \mathbf{B}' \cdot \mathbf{E}' = 0$$

siempre y entonces  $E' \perp B'$  para cualquier sistema inercial S'.

Un sistema electromagnético dependiente del tiempo intercambiará  $\boldsymbol{p}$  con el campo entonces no vale el principio de acción y reacción ,

$$\frac{d\boldsymbol{P}_{M}}{dt} + \frac{d\boldsymbol{P}_{c}}{dt} = \int_{S(v)} \overline{T} \cdot d\boldsymbol{S}$$

mientras que

$$\frac{d\mathbf{P}_c}{dt} = \frac{d}{dt} \left( \frac{1}{4\pi c} \int \mathbf{E} \times \mathbf{B} dV \right)$$

#### 1.2.2 Covarianza con medios materiales

En presencia de medios materiales puede definirse

$$G^{\alpha\beta} = \begin{pmatrix} 0 & -D_x & -D_y & -D_z \\ D_x & 0 & -H_z & H_y \\ D_y & H_z & 0 & -H_x \\ D_z & -H_y & H_x & 0 \end{pmatrix}$$

у

$$F^{\alpha\beta} \to G^{\alpha\beta}, \quad E_i \to D_i, \quad B_i \to H_i$$

si las relaciones constitutivas son

$$D = E + 4\pi P \qquad \qquad H = B - 4\pi M$$

desde

$$G^{\alpha\beta} = F^{\alpha\beta} + R^{\alpha\beta}$$

y con

$$\partial_{\alpha}G^{\alpha\beta} = \frac{4\pi}{c}J^{\beta}$$

donde la información de  $P_i$  y  $M_i$  está en el tensor  $R^{\alpha\beta}.$  Recordemos que los campos transforman según

$$\boldsymbol{P}' = \boldsymbol{P}_{\parallel} + \gamma \left(\boldsymbol{P}_{\perp} - \boldsymbol{\beta} \times \boldsymbol{M}\right)$$

$$\boldsymbol{M}' = \boldsymbol{M}_{\parallel} + \gamma \left( \boldsymbol{M}_{\perp} + \boldsymbol{\beta} \times \boldsymbol{P} \right)$$

Entonces de un sistema inercial a otro una P da origen a una M y viceversa.

## 1.3 Principio de Hamilton y relatividad

Habiéndonos situado en un espacio de Minkowski, tenemos la acción

$$S = -\alpha \int_{a}^{b} ds,$$

siendo  $\alpha$  una constante a fijar luego, y ds un arco en el espacio minkowskiano. La acción debe ser un invariante pues es un extremo.

$$ds = \sqrt{c^2 dt^2 - dx^2 - dy^2 - dz^2} = c dt \sqrt{1 - v^2/c^2}$$

de manera que

$$S = -\alpha \int_{t_1}^{t_2} c dt \sqrt{1 - v^2/c^2} = \int_{t_1}^{t_2} \mathcal{L} dt$$

y donde  $\mathcal{L}$  es el lagrangiano,

$$\mathcal{L} = -\alpha c \left(1 - v^2/c^2\right)^{1/2} \approx -\alpha c + \frac{\alpha v^2}{2c}$$

y luego

$$\mathcal{L} \to T = \frac{mv^2}{2}$$
 (baja velocidad)

de manera que fijamos el valor de la constante a partir de este límite de baja velocidades,

$$\mathcal{L} = -mc^2 \left(1 - v^2/c^2\right)^{1/2}$$

es el lagrangiano relativista.

A partir de las ecuaciones de Euler-Lagrange es

$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \frac{\partial \mathcal{L}}{\partial v_i}$$

y haciendo el álgebra,

$$p_i = \frac{mv}{\sqrt{1 - v^2/c^2}}$$

que es el momento relativista. Entonces

$$\frac{d\mathbf{P}}{dt} = m\frac{d}{dt} \left( \frac{\mathbf{v}}{\sqrt{1 - v^2/c^2}} \right).$$

Para un movimiento circular, el módulo de la velocidad permanece constante.

$$\frac{d|\boldsymbol{v}|}{dt} = 0 \quad \Rightarrow \quad \frac{d\boldsymbol{P}}{dt} = \left(\frac{m}{\sqrt{1 - v^2/c^2}}\right) \frac{d\boldsymbol{v}}{dt} = m \, \gamma \, \frac{d\boldsymbol{v}}{dt}$$

si en cambio es  $\frac{d|\mathbf{v}|}{dt} \neq 0$  se tiene

$$\frac{d\mathbf{P}}{dt} = m\left(\left(\frac{1}{\sqrt{1 - v^2/c^2}}\right)\frac{d\mathbf{v}}{dt} + \mathbf{V}(1 - v^2/c^2)^{-3/2}\frac{v}{c^2}\frac{dv}{dt}\right)$$
$$\frac{d\mathbf{P}}{dt} = m\gamma\frac{d\mathbf{v}}{dt} + m\mathbf{v}\gamma^3\frac{v}{c^2}\frac{dv}{dt}$$

donde el primer término en el RHS está asociado a la variación en la dirección y el segundo a la variación en la magnitud (hemos usado con  $\gamma^3 v^2/c^2 > \gamma$ ?). De esto se desprende que la inercia es mayor para variar la longitud de  $\boldsymbol{v}$  que su dirección. Es más fácil cambiar dirección que rapidez.

Entonces

$$E = \mathbf{p} \cdot \mathbf{v} - \mathcal{L} = m\gamma v^2 + mc^2 \gamma^{-1} = m\gamma c^2$$

y esta es la energía relativista de una partícula libre. Veamos el límite de bajas velocidades, es decir que si  $v/c \ll 1$  entonces

$$\gamma = \sqrt{1 - v^2/c^2} \approx 1 + \frac{v^2}{2c^2},$$

y resulta

$$E\approx mc^2+\frac{mv^2}{2}=E_0+\frac{mv^2}{2}$$

donde  $E_0$  es una energía en reposo, que no depende de  $\boldsymbol{v}$  y podemos expresar la energía cinética como

$$E - mc^2 = \frac{mv^2}{2} = T.$$

Si es

$$p = mw$$

con  $\boldsymbol{w} = \gamma \boldsymbol{v}$  entonces

$$E^2 = m^2 \gamma^2 c^4$$
  $p^2 = m^2 \gamma^2 v^2$ 

У

$$\frac{E^2}{c^2} = m^2 c^2 \gamma^2$$

$$\frac{E^2}{c^2} - p^2 = m^2 \gamma^2 (c^2 - v^2) = m^2 c^2$$

y esta es la relación fundamental entre energía y momento

$$\frac{E^2}{c^2} = p^2 + m^2 c^2.$$

Para partículas con  $m_0=0$  y v=c será

$$\frac{E^2}{c^2} = p^2 \qquad \qquad p = \frac{h\nu}{c} = k\hbar.$$

La formulación hamiltoniana comenzará a partir de

$$\mathcal{H} = \sqrt{p^2 + m^2 c^2} \, c,$$

sobre el que se puede operar para obtener el límite clásico (de bajas velocidades) como

$$\mathcal{H} = \left(1 + \frac{p^2}{m^2 c^2}\right)^{1/2} mc^2$$

y si se cumple  $p/(mc) \ll 1$  entonces

$$\mathcal{H} \approx mc^2 + \frac{p^2}{2m^2}$$

donde el último término es el hamiltoniano de la mecánica clásica para nuestra partícula libre.

El cuadrimomento se define como

$$p^{\mu}=(m\Gamma c,m\Gamma \pmb{u}), \qquad \Gamma\equiv\frac{1}{\sqrt{1-v^2/c^2}}$$

o bien

$$p^{\mu}=(E/c, \pmb{p})$$

siendo

$$p^{\mu}p_{\mu}=\frac{E^{2}}{c^{2}}-p^{2}=m^{2}c^{2}$$

el invariante asociado a la conservación (del cuadrimomento).

## 1.3.1 Partícula en un campo electromagnético

Dado que es de la mecánica clásica  $\mathcal{L}=T-V$  la acción correspondiente la podemos expresar como

$$S = S_0 + S_i nter = \int_{t_1}^{t_2} T dt - \int_{t_1}^{t_2} V dt$$

es decir la suma de una parte libre y una de interacción. Luego

$$S_{inter}^{NR} = \int_{t_1}^{t_2} -e\phi dt = -\int_{t_1}^{t_2} \frac{e\phi}{c} d(ct) = -\int_{x_1}^{x_2} \frac{eA^0}{c} dx^0$$

si usamos los cuadrivectores

$$A^{\mu} = (\phi, \mathbf{A})$$
  $x^{\mu} = (ct, \mathbf{x})$ 

y generalizamos

$$S_{inter} = -\frac{e}{c} \int_{x_1}^{x_2} A_{\mu} dx^{\mu}$$

tendremos

$$S_inter = \frac{e}{c} \int_{x_1}^{x_2} \left( \boldsymbol{A} \cdot d\boldsymbol{x} - c\phi dt \right) = \frac{e}{c} \int_{x_1}^{x_2} \left( \boldsymbol{A} \cdot \boldsymbol{v} - c\phi \right) dt$$

y finalmente el lagrangiano de una partícula en un campo electromagnético es

$$\mathcal{L} = -mc^2\sqrt{1 - v^2/c^2} + \frac{e}{c}\boldsymbol{A}\cdot\boldsymbol{v} - e\phi$$

donde el primer término es el lagrangiano de partícula libre y la interacción viene luego. Esta lagrangiano no es invariante de medida; sin embargo no perjudica porque en las ecuaciones de movimiento sólo entran las derivadas del mismo. Recordemos además que  $\mathcal L$  no es invariante relativista pero la acción S sí lo es.

Para construir el hamiltoniano necesitamos el momento conjugado,

$$P = \frac{\partial \mathcal{L}}{\partial v} = p + \frac{e}{c}A = m\gamma v + \frac{e}{c}A$$

y siguiendo la prescripción usual  $\mathcal{H} = \frac{\partial \mathcal{L}}{\partial v} v - \mathcal{L}$ ,

$$\begin{split} H = (m\gamma \pmb{v} + \frac{e}{c} \pmb{A}) \pmb{v} + mc^2 (1 - v^2/c^2)^{1/2} - \frac{e}{c} \pmb{A} \cdot \pmb{v} + e\phi = \\ m\gamma v^2 + e\phi + mc^2 (1 - v^2/c^2)^{1/2} \end{split}$$

у

$$H = m\gamma v^2 + e\phi + \frac{mc^2}{\gamma}$$

de manera que el hamiltoniano en un campo es

$$H = m\gamma c^2 + e\phi$$

$$P = m\gamma v + \frac{e}{c}A$$
  $H = m\gamma c^2 + e\phi$ 

У

$$\begin{split} \left( \boldsymbol{p} - \frac{e}{c} \boldsymbol{A} \right)^2 &= m^2 \gamma^2 v^2 \qquad \left( \frac{H}{c} - \frac{e}{c} \phi \right)^2 = m^2 \gamma^2 c^2 \\ \left( \frac{H}{c} - \frac{e}{c} \phi \right)^2 - \left( \boldsymbol{p} - \frac{e}{c} \boldsymbol{A} \right)^2 &= m^2 \gamma^2 (c^2 - v^2) = mc^2, \end{split}$$

con ustedes el invariante. Entonces el cuadrimomento de una partícula en un campo electromagnético, sometida a un potencial electromagnético es

$$p^{\mu} = \left(\frac{H - e\phi}{c}, \boldsymbol{p} - \frac{e}{c}\boldsymbol{A}\right)$$

que es un caso particular del xxxx.

Para el caso de H es

$$H = c\sqrt{m^2c^2 + (\boldsymbol{p} - \frac{e}{c}\boldsymbol{A})} + e\phi$$

y el no relativista

$$H^{nr} = mc^2(1 + \frac{1}{m^2c^2}(\boldsymbol{p} - \frac{e}{c}\boldsymbol{A})^2)^{1/2} + e\phi$$

usando la aproximación de baja velocidad,

$$H^{nr}\approx mc^2+\frac{1}{2m}(\boldsymbol{p}-\frac{e}{c}\boldsymbol{A})^2+e\phi$$

donde tiro el término de reposo  $mc^2$  y

$$H^{nr} pprox rac{1}{2m} (oldsymbol{p} - rac{e}{c} oldsymbol{A})^2 + e\phi$$

Aplicando las ecuaciones de Euler-Lagrange al lagrangiano electromagnético hallado se llega a

$$\frac{d\boldsymbol{P}}{dt} = \frac{d}{dt}(m\gamma\boldsymbol{v}) = e\left(\boldsymbol{E} + \frac{1}{c}\boldsymbol{v} \times \boldsymbol{B}\right)$$

qu es la fuerza de Lorentz con la corrección relativista. Es la misma expresión hallada otrora pero sin tener en cuanta la relatividad.

Si E = 0 entonces

$$\frac{d\mathbf{P}}{dt} = m\gamma \frac{d\mathbf{v}}{dt} \quad \text{pues} \quad \frac{dv}{dt} = 0$$

y el campo B sólo variará la dirección de v, no su módulo. El radio de giro de una partícula ciclotrón es mayor con la aproximación relativista que con la newtoniana porque su inercia es mayor  $\gamma > 1$ . Planteamos

$$|\mathbf{F}| = evB$$

que desde el punto de vista relativista significa

$$evB = m\gamma \frac{d\mathbf{v}}{dt}$$

mientras que clásicamente

$$m\frac{v^2}{r} = evB$$

y sale el radio de giro desde acá

$$r_B = \frac{m\gamma v}{eB} \qquad \qquad r_B^{nr} = \frac{mv}{eB}$$

y luego  $r_B > r_B^{nr}$ .

## 1.3.2 Cambio de gauge

El cambio de gauge es una transformación

$$A'^\mu = A^\mu - \partial^\mu f$$

entonces

$$A'0 = \phi - \partial^0 f \qquad \qquad A' = A + \nabla f$$

El cambio de gauge no es invariante pero  $\delta S=0$  sí es invariante. La cuadridensidad de fuerza de Lorentz

$$f^{\beta} = -\partial_{\alpha} T^{\alpha\beta}.$$

## 1.3.3 Especie de tiro oblicuo

La situación física es la depicted en la figura bajo estas líneas

$$\frac{d\mathbf{P}}{dt} = e\mathbf{E} = \frac{1}{t}(m\gamma\mathbf{v})$$

que lleva a un sistema hartocomplicado de resolver que es

$$\begin{split} \frac{dP_x}{dt} &= m\frac{d}{dt}\left(\frac{v_x}{\sqrt{1-(v_x^2+v_y^2)/c^2}}\right) = eE\\ \frac{dP_y}{dt} &= m\frac{d}{dt}\left(\frac{v_y}{\sqrt{1-(v_x^2+v_y^2)/c^2}}\right) = 0 \end{split}$$



Figura 3.6

Cualitativamente vemos que  $v_x$  crece a medida que ingresa en la zona de campo  $\boldsymbol{E}$  entonces como  $v_y$  es constante se tiene que  $\gamma$  aumenta y aumenta la inercia de modo que disminuye  $|\boldsymbol{v}|$  y describe aproximadamente una parábola.

#### 1.3.4 cuadrivelocidad

 $m{u}$  no transforma como cuadrivector (¿que u?), pero lo que sí transforma así es

$$W^{\mu} = (\Gamma c, \Gamma \boldsymbol{u})$$

donde  $\Gamma \equiv 1/(1-u^2/c^2)^{1/2}$ . Luego tenemos la fórmula de Einstein de suma de velocidades, que tiene como límite a c,

$$u_{\parallel} = \frac{u_{\parallel}' + v}{1 + \frac{\boldsymbol{v} \cdot \boldsymbol{u}'}{c^2}} \qquad \qquad u_{\perp} = \frac{u_{\perp}'}{\gamma \left(1 + \frac{\boldsymbol{v} \cdot \boldsymbol{u}'}{c^2}\right)}$$

De esta manera el cuadrimomento es

$$p^{\mu} = (m\Gamma c, m\Gamma u)$$
  $\Rightarrow$   $mW^{\mu} = p^{\mu}.$ 



Figura 3.7