Week 7: Support Vector Machines Kernels

Non-linear Decision Boundary

High order polynomial features -> new features to reduce computational expense

Measure similarity using Euclidean distance squared

Kernel Given x, compute new feature depending on proximity to landmarks $l^{(1)}, l^{(2)}, l^{(3)}$ f2 = Similarly (x, l(1)) = exp(->1x-l(2)||2) f2 = Similarly (x, l(1)) = exp(-->1x-l(2)||2)

Kernels and Similarity

$$f_1 = \text{similarity}(x, \underline{l^{(1)}}) = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

If
$$\underline{x} \approx \underline{l^{(1)}}$$
:
$$f_1 \approx \exp\left(-\frac{0}{26^2}\right) \approx 1$$

If \underline{x} if far from $\underline{l^{(1)}}$:

$$f_1 = exp\left(-\frac{(large number)^2}{262}\right) \% 0.$$

Gaussian kernel graph vary by sigma squared

If training example is given

Inner boundary -> predict as 1
Outer boundary -> predict as 0

Choosing landmarks

Set landmarks exact same location as training data

Mapping training data with similarity function

Given example
$$\underline{x}$$
:

$$\Rightarrow f_1 = \text{similarity}(x, l^{(1)})$$

$$\Rightarrow f_2 = \text{similarity}(x, l^{(2)})$$

For training example $(\underline{x}^{(i)}, \underline{y}^{(i)})$:
$$x^{(i)} \Rightarrow x^{(i)} = \sin(x^{(i)}, \underline{y}^{(i)})$$

$$x^{(i)} \Rightarrow x^{(i)} = \cos(x^{(i)}, \underline{y}^{(i)})$$

M-dimensional x vector -> (M+1)-dimensional feature vector * f0 = 1

How to get value of theta

To get value of theta and minimize it, we can use cost-function

Why not use kernel in other algorithm?

- We 'can' use kernel in other algorithms such as logistic regression
- But computational tricks doesn't generalize to other algorithms
- As a result, computation will be very slow and expensive

Bias variance trade-off

$$\min_{\theta} C \sum_{i=1}^{m} [y^{(i)} (Cost_1(\theta^T f^{(i)}) + (1 - y^{(i)}) Cost_0(\theta^T f^{(i)})] + \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$

$$f_i = similarity(x, l^{(i)}) = k(x, l^{(i)}) = \exp(-\frac{||x - l^{(i)}||^2}{2\sigma^2})$$

Bias variance trade-off

- C (= $\frac{1}{\lambda}$). > Large C: Lower bias, high variance. (small λ) > Small C: Higher bias, low variance. (large λ)
- Large σ^2 : Features f_i vary more smoothly.

 Higher bias, lower variance. $(-\frac{\|x-y^{(i)}\|^2}{2})$

Small σ^2 : Features f_i vary less smoothly. Lower bias, higher variance.

Large C = small lambda = tendency to overfit Small C = large lambda = tendency to underfit

Small sigma = tendency to overfit Large sigma = tendency to underfit