

I. Pen-and-paper

1)

$$\sqrt{|\Sigma_1|} = \sqrt{2 \times 2 - 1 \times 1} = \sqrt{4 - 1} = \sqrt{3}$$

$$\sqrt{|Z_2|} = \sqrt{2 \times 2 - 0 \times 0} = \sqrt{4} = 2$$

$$\sum_{2}^{-1} = \frac{1}{\left| \sum_{1} \right|} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$

$$p(x_{n}|c=1) = \frac{1}{2\pi \times ||\Sigma_{1}||} \cdot exp(-\frac{1}{2} \cdot (x_{n} - \mu_{1})^{T} \cdot \sum_{1}^{-1} \cdot (x_{n} - \mu_{1}))$$

$$= \frac{1}{2\pi \times ||\Sigma_{1}||} \cdot exp(-\frac{1}{2} \cdot (x_{n} - \mu_{1})^{T} \cdot \sum_{1}^{\frac{2}{3}} -\frac{1}{3} \cdot (x_{n} - \mu_{1}))$$

Aprendizagem 2021/22

Homework IV - Group 105

$$\begin{aligned} & \text{pana} \quad \chi_{1} \\ & (\chi_{1} - \mu_{1}) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi_{1} - \mu_{1})^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix} \\ & (\chi$$

p(x2 | c=1) = 0.00891057465492666

p(x3)c=1) = 0.03380376099157291

$$p(x_{N}|c=a) = \frac{1}{2\pi \times \sqrt{15z_{1}}} \cdot exp(-\frac{1}{a}(x_{N}-\mu_{z})^{T} \cdot \sum_{z=1}^{z} \cdot (x_{N}-\mu_{z}))$$

$$= \frac{1}{2\pi \times 2} \cdot \exp\left(-\frac{1}{2} \left(\chi_{N} - \mu_{2}\right)^{T} \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \cdot \left(\chi_{N} - \mu_{2}\right)\right)$$

para X1:

$$(\chi_1 - \mu_2) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$(x_1 - \mu_2)^T = [1 2]$$

$$p(x_1 \mid c = a) = \frac{1}{4\pi} \cdot e^{-\frac{1}{2}} \cdot \left[1 \quad a\right] \cdot \begin{bmatrix}\frac{1}{2} & 0\\ 0 & \frac{1}{2}\end{bmatrix} \cdot \begin{bmatrix}1\\ a\end{bmatrix}$$

$$= \frac{1}{4\pi} = 0.02279932731$$

$$\begin{split} p(x_{1}|c-2) &= 0.04826619631502696 \\ p(x_{3}|c-2) &= 0.0619349491542649 \\ p(x_{1},c=1) &= p(x_{1}|c=1). \ \Pi_{1} \\ p(x_{1},c=1) &= 0.033220369491948136 \\ p(x_{2},c=1) &= 0.0469588049586435 \\ p(x_{3},c=1) &= 0.01690188049586435 \\ p(x_{3},c=1) &= 0.01690188049586435 \\ p(x_{1},c=2) &= p(x_{1}|c=2). \ \Pi_{2} \\ p(x_{1},c=2) &= 0.0313308815361548 \\ p(x_{2},c=2) &= 0.03093349853913244 \\ p(c=1|x_{1}) &= \frac{p(x_{1},c=1)}{p(x_{1},c=1)+p(x_{1},c=2)} \\ p(c=1|x_{1}) &= 0.342393860293409 \\ p(c=1|x_{2}) &= 0.35239388936156 \\ p(c=1|x_{2}) &= 0.35233889360318926 \\ p(c=2|x_{1}) &= \frac{p(x_{1},c=2)}{p(x_{1},c=2)+p(x_{1},c=2)} \\ p(c=2|x_{1}) &= 0.84153803318926 \\ p(c=2|x_{2}) &= 0.84153803318926 \\ p(c=2|x_{3}) &= 0.84153803318926 \\ p(c=2|x_{3}) &= 0.640641126928363 \\ \end{pmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=1|x_{1}) \\ p(c=1|x_{2}) \\ p(c=1|x_{3}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_{3}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_{3}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_{3}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_{3}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_{3}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_{2}) \\ p(c=2|x_{3}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_{2}) \\ p(c=2|x_{2}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_{2}) \\ p(c=2|x_{2}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_{2}) \\ p(c=2|x_{2}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_{2}) \\ p(c=2|x_{2}) \end{bmatrix} \mathcal{P}_{C} &= \begin{bmatrix} p(c=2|x_{1}) \\ p(c=2|x_{2}) \\ p(c=2|x_$$

Aprendizagem 2021/22

Homework IV - Group 105

$$N_{1} = \sum P_{c_{1}} = 1.2515660629990821$$

$$N_{2} = \sum P_{c_{2}} = 1.748433937000918$$

$$Priors:$$

$$P(c=1) = \frac{N_{1}}{N_{1} + N_{2}} = 0.4171886876663607$$

$$P(c=2) = \frac{N_{2}}{N_{1} + N_{2}} = 0.5828113123336394$$

$$\mu_1 = \frac{p_{c_{1_1}} x_1 + p_{c_{1_2}} x_2 + p_{c_{1_3}} x_3}{N \cdot 1} =$$

$$0.7427875560298409 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 0.1558426196621275 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + 0.3529358873071136 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

1. 2515 6606 2 999 08 21

$$\mu_z = \frac{p_{c_{2_1}} x_1 + p_{c_{2_2}} x_2 + p_{c_{2_3}} x_3}{N_z} =$$

> Navo:

$$\begin{split} & \sum_{\mathbf{x}_{n_{11}}} = \left(\mathbf{x}_{n_{1}} - \mu_{1_{1}} \right)^{2} \\ & \sum_{\mathbf{x}_{n_{22}}} = \left(\mathbf{x}_{n_{2}} - \mu_{1_{2}} \right)^{2} \\ & \sum_{\mathbf{x}_{n_{12}}} = \sum_{\mathbf{x}_{n_{21}}} = \left(\mathbf{x}_{n_{1}} - \mu_{1_{1}} \right) \left(\mathbf{x}_{n_{2}} - \mu_{1_{2}} \right) \end{split}$$

$$\begin{split} & \sum_{\mathbf{x}_{1,1}} = (1 - 0.05006384)^2 = 0.06201902 \qquad \sum_{\mathbf{x}_{1,2}} = (2 - 1.01049108)^2 = 0.071404455 \\ & \sum_{\mathbf{x}_{1,2}} = \sum_{\mathbf{x}_{1,2}} = (1 - 0.05006384).(2 - 1.01049108) = 0.17146565 \\ & \sum_{\mathbf{x}_{1}} = \begin{bmatrix} 0.06201902 & 0.19146363 & \\ 0.19146363 & 0.49404963 \end{bmatrix} \\ & \sum_{\mathbf{x}_{1}} = \begin{bmatrix} 0.06201902 & 0.19146363 & \\ 0.19146363 & 0.49404963 \end{bmatrix} \\ & \sum_{\mathbf{x}_{2}} = \begin{bmatrix} 0.06201902 & 0.09406962 & \\ 0.0940962 & 0.09902669 & \\ 0.0940962 & 0.09902669 & \\ 0.0920699 & 0.032660894 & \\ 1.002000886 & \\ \end{bmatrix} \\ & \sum_{\mathbf{x}_{3}} = \begin{bmatrix} 0.06201902 & -0.032660894 & \\ -0.032660894 & \\ 1.02000886 & \\ \end{bmatrix} \\ & \sum_{\mathbf{x}_{3}} = \begin{bmatrix} 0.43600335 & 0.09951255 & \\ 0.09753255 & \\ 0.09753255 & \\$$

•

$$\sum_{2} = \frac{pc_{21} \mathcal{E}_{x_{1}} + pc_{2z} \mathcal{E}_{x_{2}} + pc_{2z} \mathcal{E}_{x_{3}}}{N^{2}} = \begin{bmatrix}
0.9989177 & -0.21530512 \\
-0.21530512 & 0.46747582
\end{bmatrix}$$

2)

a.

$$P(c=1| \lambda u) = \frac{P(c=1, \lambda u)}{P(\lambda u)}$$

$$P(\chi_N) = P(\chi_N, c=1) + P(\chi_N, c=2)$$

$$P(\chi_1) = P(\chi_1, c=1) + P(\chi_1, c=2) =$$

$$= 0.08164191541459763 + 0.007879382055204085 =$$

= 0.08952129746980171

$$P(c=1|\mathcal{X}_1) = \frac{0.08164191541459763}{0.08952129746980171} = 0.911983156208219$$

$$P(c=1|x_2) = 0.03923682864802956$$

 $P(c=1|x_3) = 0.3451861042649158$

$$P(c=2|nn) = \frac{P(c=2,nn)}{P(nn)}$$

$$P(x_N) = P(x_N, c=1) + P(x_N, c=2)$$

$$P(x_1) = P(x_1, c=1) + P(x_1, c=2) =$$

$$= 0.08164191541459763 + 0.007879382055204085 =$$

$$= 0.08952129746980171$$

$$P(c=2|x_1) = \frac{0.007879382055204085}{0.08952129746980171} = 0.08801684378917814$$

$$P(c=2|x_2) = 0.9607631713519704$$

$$P(c=2|x_3) = 0.6548138957350843$$

$$x_1 \in c=1 \quad \text{pero} \quad P(c=1|x_1) \Rightarrow P(c=2|x_2)$$

$$x_2 \in c=2 \quad \text{pero} \quad P(c=2|x_2) \Rightarrow P(c=1|x_2)$$

$$x_3 \in c=2 \quad \text{pero} \quad P(c=2|x_3) \Rightarrow P(c=1|x_3)$$

Aprendizagem 2021/22

Homework IV - Group 105

b.

ai= distância wédia de xi aos soptos no seu cluster bi = min (distância wédia de xi aos sontos noutro cluster)

$$s = 1 - \frac{a}{b}$$
 se $a < b$, $s = \frac{b}{a} - 1$ se vao

dist
$$(x_1, x_3) = \text{dist}(x_3, x_1) = \sqrt{(x_{1_1} - x_{3_1})^2 + (x_{1_2} - x_{3_2})^2} = \sqrt{4} = 2$$

dist $(x_1, x_2) = \sqrt{(x_{1_1} - x_{2_1})^2 + (x_{1_2} - x_{2_2})^2} = \sqrt{5}$
dist $(x_3, x_2) = \sqrt{(x_{3_1} - x_{2_1})^2 + (x_{3_2} - x_{2_2})^2} = \sqrt{5}$

$$\sqrt[3]{x}_{2} = 1 - \frac{\text{dist}(x_{2}, x_{3})}{\text{dist}(x_{1}, x_{2})} = 0$$

$$\frac{\text{dist}(x_{1}, x_{2})}{\text{dist}(x_{1}, x_{2})} = 0$$

$$/8_{x_3} = 1 - \frac{\text{dist}(x_3, x_2)}{\text{dist}(x_3, x_1)} = \frac{\text{dist}(x_3, x_2)}{\text{dist}(x_3, x_1)} = \frac{\sqrt{5}}{2} - 1 = 0.11803398875$$

$$C_{28} = \frac{8x_2 + 8x_3}{2} = 0.05901699437$$

II. Programming and critical analysis

3) Silhouette 0: 0.11362027575179426

Purity 0: 0.7671957671957672

Silhouette 1: 0.11403554201377068

Purity 1: 0.7632275132275133

Silhouette 2: 0.11362027575179426

Purity 2: 0.7671957671957672

4) Como podemos observar no código, foram utilizadas várias seeds possíveis, o que afeta a inicialização dos centroides e, alterando estes valores, iremos obter resultados diferentes, ou seja, não determinísticos.

5)

6) Number of primary components to explain 80% variability: 31

III. APPENDIX

```
from sklearn.preprocessing import MinMaxScaler
import warnings
import pandas as pd
import numpy as np
from scipy.io.arff import loadarff
from sklearn import cluster, metrics
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
```



```
def warn(*args, **kwargs):
   pass
warnings.warn = warn
# Reading the ARFF file
data = loadarff('pd_speech.arff')
df = pd.DataFrame(data[\theta])
df['class'] = df['class'].str.decode('utf-8')
# Scale the dataframe
scaler = MinMaxScaler()
df = scaler.fit_transform(df)
X_{list} = df[:, :-1]
df = pd.DataFrame(df)
X, y = df[list(df.columns[:-1])], df[[752]]
temp_y = y.to_numpy()
y_true = [int(x) for sublist in temp_y for x in sublist]
kmeans = []
kmeans_model = []
silhouettes = []
purities = []
for i in range(3):
    # Generate 3 KMeans clusterings with 3 different seeds (0, 1, 2)
    kmeans.append(cluster.KMeans(n clusters=3, random state=i))
    kmeans_model.append(kmeans[i].fit(X))
    y_pred = kmeans_model[i].labels
    confusion_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
    # Calculate silhouette and purity for the model
    silhouette = metrics.silhouette_score(X, y_pred)
    silhouettes.append(silhouette)
    print("Silhouette", str(i) + ":", silhouette)
    purity = np.sum(np.amax(confusion_matrix, axis=0)) / np.sum(confusion_matrix)
    purities.append(purity)
    print("Purity", str(i) + ":", purity)
# Fix random = 0
y_pred = kmeans_model[0].labels_
# Get the indexes for the 2 features with the biggest variances
variances = X.var().to_numpy()
indexes = np.argpartition(variances, -2)[-2:]
```



```
scatter_X = X_list[:, indexes[0]]
scatter_Y = X_list[:, indexes[1]]
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.set_title("Scatter plot of the original diagnoses")
for g in np.unique(y_true):
    # Select the indexes where we find the specified label
    ix = np.where(y_true == g)
    ax1.scatter(scatter_X[ix], scatter_Y[ix], label=g)
ax1.set_xlabel(X.columns[indexes[0]])
ax1.set ylabel(X.columns[indexes[1]])
ax2.set_title("Scatter plot of the k=3 clusters")
for g in np.unique(y_pred):
    ix = np.where(y_pred == g)
    ax2.scatter(scatter_X[ix], scatter_Y[ix], label=g)
ax2.set_xlabel(X.columns[indexes[0]])
ax2.set_ylabel(X.columns[indexes[1]])
plt.legend()
plt.show()
# Calculate number of primary components needed
components = \theta
size = len(X list[\theta])
for i in range(size):
    pca = PCA(n_components=i)
    pca.fit(X)
    if sum(pca.explained_variance_ratio_) > 0.8:
        components = i
        break
print("Number of primary components to explain 80% variability:", components)
```