0.1 合同标准型的应用

引进标准型的目的是为了简化问题的讨论.应用对称矩阵的合同标准型(复相合标准型)可以简化二次型和对称矩阵(Hermite型和 Hermite矩阵)有关问题的讨论.其方法是先对标准型证明所需结论,若结论在合同(复相合)变换下不变,就可以过渡到一般的情形.这种做法和相抵标准型、相似标准型是完全类似的.

命题 0.1 (对称矩阵的秩 1 分解)

秩等于r的对称矩阵可以表成r个秩等于1的对称矩阵之和.

 $\dot{\mathbf{L}}$ 这里没说是在哪个数域上的对称矩阵,因此我们应该考虑一般数域.只能使用对称矩阵的合同标准型. 证明 设 \mathbf{C} 是可逆矩阵,使得

$$C'AC = \text{diag}\{a_1, \cdots, a_r, 0, \cdots, 0\},\$$

其中 $a_i \neq 0 (1 \leq i \leq r)$, 则

$$A = (C^{-1})'a_1E_{11}C^{-1} + \cdots + (C^{-1})'a_rE_{rr}C^{-1},$$

其中 E_{ii} 是第 (i,i) 元素为 1, 其余元素全为 0 的基础矩阵, 从而每个 $(C^{-1})'a_iE_{ii}C^{-1}$ 都是秩等于 1 的对称矩阵. \square

命题 0.2

设A为n阶复对称矩阵且秩等于r. 求证: A 可分解为A = T'T. 其中T 是秩等于r 的 n 阶复矩阵.

证明 A 合同于对角矩阵,即存在可逆矩阵 C,使得

$$A = C' \operatorname{diag}\{c_1, \cdots, c_r, 0, \cdots, 0\}C$$

其中 $c_i \neq 0$ (1 $\leq i \leq r$). 令 $d_i = \sqrt{c_i}$ (取定一个平方根即可),

$$D = \text{diag}\{d_1, \dots, d_r, 0, \dots, 0\},\$$

则 A = (DC)'(DC). 令 T = DC 即得结论.

命题 0.3

求证: 任-n 阶复矩阵 A 都相似于一个复对称矩阵.

证明 由命题??可得 A = BC, 其中 B, C 都是复对称矩阵, 并且可以随意指定 B, C 中的一个为非异阵. 不妨设 C 是非异阵, 则由命题 0.2可得 C = T'T, 其中 T 是非异复矩阵. 于是 A = BC = BT'T 相似于 $T(BT'T)T^{-1} = TBT'$, 这是一个复对称矩阵.

命题 0.4

设实二次型 f 和 g 的系数矩阵分别是 A 和 A^{-1} , 求证: f 和 g 有相同的正负惯性指数.

证明 设 $C'AC = \text{diag}\{a_1, a_2, \cdots, a_n\}, 则$

$$C^{-1}A^{-1}(C^{-1})' = (C'AC)^{-1} = \text{diag}\{a_1^{-1}, a_2^{-1}, \cdots, a_n^{-1}\}.$$

因为 a_i 和 a_i^{-1} 有相同的正负性, 所以 A 和 A^{-1} 有相同的正负惯性指数.

命题 0.5

设 f 是 n 元实二次型, 其系数矩阵 A 满足 |A| < 0, 求证: 必存在一组实数 a_1, a_2, \cdots, a_n , 使得

$$f(a_1,a_2,\cdots,a_n)<0.$$

证明 设 C 是可逆矩阵, 使得 C'AC = B 为对角矩阵. 注意到 $|A||C|^2 = |B|$, 故 |B| < 0. 因为对调对角矩阵的主对角元后得到的矩阵和原矩阵合同, 故不失一般性, 可设 B 的主对角元前 r 个为负, 后 n-r 个为正, 于是 r 必是

奇数. 作 n 维列向量 $\alpha = (1, \dots, 1, 0, \dots, 0)'$, 其中有 $r \uparrow 1$. 又令 $(a_1, a_2, \dots, a_n)' = \mathbf{C}\alpha$, 则 $f(a_1, a_2, \dots, a_n) = (\mathbf{C}\alpha)' \mathbf{A}(\mathbf{C}\alpha) = \alpha' \mathbf{B}\alpha < 0$.

也可用反证法来证明, 若结论不成立, 则 f 是半正定型, 从而 A 是半正定阵, 于是 $|A| \ge 0$, 矛盾!

命题 0.6

如果实二次型 $f(x_1,x_2,\dots,x_n)$ 仅在 $x_1=x_2=\dots=x_n=0$ 时为零,证明: f 必是正定型或负定型.

证明 设f的正负惯性指数分别为p,q,秩为r,我们分情况来讨论.

若 f 是不定型, 即 p > 0 且 q > 0, 则存在可逆线性变换 x = Cy, 使得 f 可化简为如下规范标准型:

$$f = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$
.

取 $y = (b_1, b_2, \dots, b_n)'$, 其中 $b_1 = b_{p+1} = 1$, 其他 b_i 全为零, 则 $x = Cy = (a_1, a_2, \dots, a_n)'$ 是一个非零列向量, 但 $f(a_1, a_2, \dots, a_n) = 0$, 这与假设矛盾, 所以 f 不是不定型.

若 f 是半正定型, 但非正定型, 即 p = r < n, 则存在可逆线性变换 x = Cy, 使得 f 可化简为如下规范标准型:

$$f = y_1^2 + \dots + y_r^2.$$

取 $y = (b_1, b_2, \dots, b_n)'$, 其中 $b_n = 1$, 其他 b_i 全为零,则 $x = Cy = (a_1, a_2, \dots, a_n)'$ 是一个非零列向量,但 $f(a_1, a_2, \dots, a_n) = 0$, 这与假设矛盾,所以 f 不是非正定型的半正定型. 同理可证 f 也不是非负定型的半负定型.

综上所述,f 必是正定型或负定型.

命题 0.7

设 A 为 n 阶实对称矩阵, 若 A 半正定, 求证: A* 也半正定.

证明 因为A半正定,故存在非异阵C,使得

$$C'AC = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.$$

若 r = n,则 A 是正定阵,上式两边同取伴随可得 $C^*A^*(C^*)' = I_n^* = I_n$,故 A^* 也是正定阵. 若 r = n - 1,则上式两边同取伴随可得

$$C^*A^*(C^*)' = \begin{pmatrix} I_{n-1} & O \\ O & 0 \end{pmatrix}^* = \begin{pmatrix} O & O \\ O & 1 \end{pmatrix},$$

因此 A^* 的正惯性指数为 1, 秩也为 1, 从而是半正定阵. 若 r < n-1, 则由定理??可知 $A^* = 0$, 结论自然成立. \square

命题 0.8 (正定和半正定阵的判定准则之一)

设 A 为 n 阶实对称矩阵, 求证:

- (1) A 是正定阵的充要条件是存在 n 阶非异实矩阵 C, 使得 A = C'C.
- (2) A 是半正定阵的充要条件是存在 n 阶实矩阵 C, 使得 A = C'C. 特别地, $|A| = |C|^2 \ge 0$.

证明 (1) 由定理??可知, A 是正定阵当且仅当 A 合同于 I_n , 即存在非异实矩阵 C, 使得 $A = C'I_nC = C'C$.

(2) 由定理??可知, A 是半正定阵当且仅当 A 合同于 diag{ I_r , O}, 即存在非异实矩阵 B, 使得 A = B' diag{ I_r , O}B. 令 $C = \text{diag}\{I_r, O\}B$,则 A = C'C. 反之,若 A = C'C,其中 C 是实矩阵,则对任一 n 维实列向量 α , $\alpha'A\alpha = \alpha'C'C\alpha = (C\alpha)'(C\alpha) \ge 0$,由定义可知 A 为半正定阵.

例题 0.1 设 A 为 n 阶正定实对称矩阵, α , β 为 n 维实列向量, 证明: $\alpha' A \alpha + \beta' A^{-1} \beta \ge 2\alpha' \beta$, 且等号成立的充要条件是 $A \alpha = \beta$.

证明 由命题 0.8可设 A = C'C, 其中 C 为非异实矩阵, 则 $A^{-1} = C^{-1}(C')^{-1}$. 再设 $C\alpha = (a_1, a_2, \dots, a_n)', (C')^{-1}\beta = (b_1, b_2, \dots, b_n)'$ 为 n 维实列向量, 则

$$\alpha' A \alpha + \beta' A^{-1} \beta = \alpha' C' C \alpha + \beta' C^{-1} (C')^{-1} \beta$$

$$= (C\alpha)'(C\alpha) + ((C')^{-1}\beta)'((C')^{-1}\beta)$$

$$= \sum_{i=1}^{n} (a_i^2 + b_i^2) \ge 2\sum_{i=1}^{n} a_i b_i = 2(C\alpha)'((C')^{-1}\beta) = 2\alpha'\beta,$$

等号成立的充要条件是 $a_i = b_i (1 \le i \le n)$, 即 $C\alpha = (C')^{-1}\beta$, 也即 $A\alpha = \beta$.

例题 0.2 设 A 为 n 阶正定实对称矩阵, α , β 为 n 维实列向量, 证明: $(\alpha'\beta)^2 \leq (\alpha'A\alpha)(\beta'A^{-1}\beta)$, 且等号成立的充要条件是 $A\alpha$ 与 β 成比例.

证明 由命题 0.8可设 A = C'C, 其中 C 为非异实矩阵,则 $A^{-1} = C^{-1}(C')^{-1}$. 再设 $C\alpha = (a_1, a_2, \dots, a_n)', (C')^{-1}\beta = (b_1, b_2, \dots, b_n)'$ 为 n 维实列向量,则由 Cauchy - Schwarz 不等式可得

$$(\alpha'\beta)^{2} = ((C\alpha)'((C')^{-1}\beta))^{2} = \left(\sum_{i=1}^{n} a_{i}b_{i}\right)^{2} \leq \left(\sum_{i=1}^{n} a_{i}^{2}\right) \left(\sum_{i=1}^{n} b_{i}^{2}\right)$$

$$= ((C\alpha)'(C\alpha))(((C')^{-1}\beta)'((C')^{-1}\beta)) = (\alpha'A\alpha)(\beta'A^{-1}\beta),$$

等号成立的充要条件是 a_i 与 b_i 对应成比例, 即 $C\alpha$ 与 $(C')^{-1}\beta$ 成比例, 也即 $A\alpha$ 与 β 成比例.

命题 0.9

设 A 为 n 阶实对称矩阵, 证明:

- (1) 若 A 可逆, 则 A 为正定阵的充要条件是对任意的 n 阶正定实对称矩阵 B, tr(AB) > 0;
- (2) A 为半正定阵的充要条件是对任意的 n 阶半正定实对称矩阵 B, $tr(AB) \ge 0$.

证明 证法一: (1) 先证必要性. 由命题 0.8可设 A = C'C, 其中 C 为非异实矩阵, 则由迹的交换性可得 tr(AB) = tr(C'CB) = tr(CBC'). 由 B 的正定性可知 CBC' 为正定阵, 又由于命题??(2), 故 tr(AB) = tr(CBC') > 0.

再证充分性. 用反证法, 若可逆实对称矩阵 A 不正定, 则存在非异实矩阵 C, 使得 $A = C' \operatorname{diag}\{I_p, -I_q\}C$, 其中负惯性指数 q > 0. 令 $B = C^{-1} \operatorname{diag}\{I_p, cI_a\}(C^{-1})'$, 其中正数 C > p/q, 则 C = P/q, C =

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}\left(\boldsymbol{C}'\operatorname{diag}\{\boldsymbol{I}_{p}, -c\boldsymbol{I}_{q}\}(\boldsymbol{C}')^{-1}\right) = \operatorname{tr}(\operatorname{diag}\{\boldsymbol{I}_{p}, -c\boldsymbol{I}_{q}\}) = p - cq < 0,$$

这与假设矛盾!

(2) 由(1) 同理可证.

证法二: (2) 先证必要性. 设 $\mathbf{A} = (a_{ij}), \mathbf{B} = (b_{ij})$ 为半正定阵,则由命题??可知 $\mathbf{A} \circ \mathbf{B} = (a_{ij}b_{ij})$ 也为半正定阵, 于是

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ki} b_{ki} = \sum_{i=1}^{n} a_{ij} b_{ij} = \alpha'(\boldsymbol{A} \circ \boldsymbol{B}) \alpha \ge 0.$$

其中 $\alpha = (1, 1, \dots, 1)'$. 再证充分性. 令 $\mathbf{x} = (x_1, x_2, \dots, x_n)' \in \mathbb{R}^n$, 则 $\mathbf{B} = \mathbf{x}\mathbf{x}' = (x_i x_i)$ 为半正定阵, 于是

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \sum_{i,j=1}^{n} a_{ij} x_i x_j = \boldsymbol{x}' \boldsymbol{A} \boldsymbol{x} \ge 0$$

由x 的任意性即得A 为半正定阵.

(1) 的必要性与 (2) 的必要性的证明完全类似, 下证充分性. 对任意的半正定阵 B 和任意的正实数 t, $B+tI_n$ 为正定阵, 从而 $\operatorname{tr}(A(B+tI_n))>0$. 令 $t\to 0^+$, 可得 $\operatorname{tr}(AB)\geq 0$, 于是由 (2) 的结论可知 A 为半正定阵, 又 A 可逆, 故由推论??可知 A 为正定阵.

命题 0.10

设 A, B 都是 n 阶半正定实对称矩阵,证明: AB = O 的充要条件是 tr(AB) = 0.

证明 必要性显然, 下证充分性. 由命题 0.8可设 A = C'C, B = DD', 其中 C,D 是 n 阶实矩阵, 则由迹的交换性可得

$$0 = \operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{C}'\boldsymbol{C}\boldsymbol{D}\boldsymbol{D}') = \operatorname{tr}(\boldsymbol{D}'\boldsymbol{C}'\boldsymbol{C}\boldsymbol{D}) = \operatorname{tr}\left((\boldsymbol{C}\boldsymbol{D})'(\boldsymbol{C}\boldsymbol{D})\right),$$

再由迹的正定性可知 CD = 0, 于是 AB = C'(CD)D' = 0.