LICENCE ELECTROTECHNIQUE - U.S.D.B.1 S5 - RESEAUX ELECTRIQUES

EXAMEN 2014/2015

- Un moteur de 10 kW avec un rendement de η = 82%, cos ϕ = 0,7 est raccordé sur un Iréseau 380 V à 50 Hz.
 - 1. Déterminer et tracer le triangle des puissances.
 - 2. On veut augmenter le facteur de puissance à $\cos \phi$ ' = 0,96. Calculer l'énergie réactive de la batterie de condensateurs à brancher en parallèle.
 - En déduire la valeur de la capacité nécessaire.
 - Une installation triphasée équilibrée absorbe une puissance active de 20 kW à cos ϕ = 0,707 sous une tension de 380 V entre phases. La longueur de la ligne d'alimentation est de 1800 m et elle est composée de 3 conducteurs de phase dont les caractéristiques sont : 0, 3 Ω /km pour la résistance (R) et 0,4 Ω /km pour la réactance inductive (ω L).
 - 1. Déterminer la tension au départ de la ligne en utilisant le théorème de Boucherot
 - 2. Tracer le diagramme vectoriel des tensions
 - Vérifier le résultat par une formule simplifiée.
 - Soit la charge triphasée couplée en triangle de la figure 1.
 - 1- Calculer les courants J1, J2, J3 et leurs déphasages respectifs.
 - Tracer le diagramme vectoriel des tensions et des courants de phases.
 - 3- Calculer les courants de ligne I1, I2 et I3.
 - Soit le réseau de la figure 2 où une centrale électrique triphasée avec une tension de ligne de 6,6 kV ∠0° est située en A. elle alimente deux postes, en B et en C avec les lignes de transmission AB et AC. Ces deux postes (sous-stations) sont également interconnectés par la

Les impédances des lignes sont $Z_{BC} = (1,5+j2) \Omega$, $Z_{AC} = (2+j1,2) \Omega$ et $Z_{AB} = (1+j2,5) \Omega$

Le poste B absorbe une charge I_B de 150 A avec un F.P. = 0 ,7 en retard.

Le poste C absorbe une charge I_C de 100 A avec un F.P. = 0,9 en retard.

- 1. Calculer les courants I, I1 et I2 dans chacune des trois lignes en appliquant les deux lois
- 2. La ligne BC est supprimée : Déterminer la différence de potentiel entre les postes B et C si les charges absorbées sont maintenues constantes.
- 3. Donner le circuit équivalent de Thévenin entre B et C puis vérifier la valeur du courant I dans la ligne BC.

LICENCE LAND EN ELECTROTECHNIQUE - U.S 19 B.

RESEAUX ELECTRIQUES (F54R)

EXAMEN 2009/2010

- I- Soit le réseau de la figure 1. (4,5 pts)
 - 1- Déterminer le nombre de mailles m et le nombre de nœuds n et les identifier. (1 pt)
 - 2. Combien d'équations sont nécessaires pour calculer les courants de branche. (0,5 pts)
 - 3- Appliquer la méthode des potentiels de nœuds pour résoudre ce circuit. (3 pts)
- II- Soit la charge triphasée couplée en triangle de la figure 2. (5,5 pts)
 - 1- Calculer les courants J1, J2, J3 et leurs déphasages respectifs. (1,5 pts)
 - Tracer le diagramme vectoriel des tensions et des courants de phases. (1,5 pts)
 - .3. Calculer les courants de ligne I1, I2 et I3. (2,5 pts)
- III- <u>Une installation d'abonné est alimentée sous une tension 220 V alternative.</u> (5,5 pts) Elle comprend: un circuit composé de 10 tubes fluorescents (caractéristiques: 35 W; 0,6 A); un circuit composé de 3 radiateurs de puissance unitaire 500 W et un moteur de puissance utile 750 W, de rendement $\eta = 0,75$ et dont le F.P. = 0,7. Déterminer:
 - Les puissances active, réactive, apparente de chaque circuit. (2,5 pts)
 - 2- Le facteur de puissance et le courant absorbé pour chaque circuit. (1,5 pts)
 - 3- Les puissances active, réactive, apparente et le F.P. de l'installation lorsque les 3 circuits sont en service. En déduire l'intensité totale. (1,5 pts)
- IV- La figure 3 représente la structure générale d'un système turbo-alternateur. (4,5 pts)
 - 1- Identifier les différentes parties du système, numérotées de 1 à 10. (2,5 pts)
 - 2- Décrire le principe de fonctionnement général du système. (2 pts)

EXAMEN 2009/2010

ABC D

LICENCE IMP EN ELECTROTECHNIQUE

RESEAUX ELECTRIQUES (PSAR)

EXAMEN 2009/2010 - CORRIGE

- 2- <u>branches</u>: DABG; DF; FG; GLK; FK; DCHK

 nbre d'équations pour résoudre le circuit = nbre de courants incomms = nbre de

 branches = 6.
- 3- Par la méthode des potentiels de nœuds: 3 équations aux nœuds + 3 équations par la loi d'ohm = 6 équations.

 Vo = V1, Ve = V2, Vr = V3, Vn = V4.

Version 1: on pose $V_K = V_4 = 0 \text{ V}$

10/1 + 10/3		1/1 + 1/1 + 1/3	- 1/1	- 1/1	V
- 10/1	=	- 1/1	1/1 + 1/5 + 1/2	- 1/5	V
- 5/2		- 1/1	- 1/5	1/1 + 1/2 + 1/5	V

LICENCE LMD EN ELECTROTECHNIQUE - U.S.D.B. RESEAUX ELECTRIQUES (FEAR)

EXAMEN 2009/2010 - CORRIGE

- Version 2: on pose $V_F = V_3 = 0 \text{ V}$.

10/1 + 10/3		1/1 + 1/1 + 1/3	1/1	- 1/3	V
- 10/1	=	- 1/1	1/1 + 1/5 + 1/2	- 1/2	Va
5/2 - 10/3		- 1/3	- 1/2	1/3 + 1/2 + 1/2	V.

- Version 3: $V_G = V_2 = 0 \text{ V}$.

	$\frac{10/1 + 10/1}{-5/2}$ $\frac{5/2 - 10/1}{-5/2}$	= -1/1	1/1 + 1/2 + 4/5		V_1 V_2
		- 1.5	- 1/2	1/3 + 1/2 + 1	/2 [V ₃]
v	$V_G = 0 \text{ V}$		-000-	- L	
		2,19 A	DAAA/	10 V	921
10000	_^^^ <u>^</u>	2 .	1 + 3,95 V	0.1 . 0.1	50
1.	67 A	3,86	AVVVIA	$\frac{1}{5}\Omega$ $\sqrt{\sqrt{\frac{0}{1}}}$	9A 0V
	1	+ 7,81 V		3- 0-	
0 V			2 0		40 A
- 1				. 4 27	8
			5 V 3,0	07 A	2Ω
			1		
			+ 2,81 V		

RESEAUX ELECTRIQUES (F54R)

EXAMEN 2009/2010 - CORRIGE

Soit la charge triphasée de la figure 2. II-

1- Source de tension de 400 Vtriphasée \Rightarrow U_{12} ; U_{23} ; U_{31} déphasés de 120° Charge couplée en triangle \Rightarrow $V_1 = U_{12}$; $V_2 = U_{23}$; $V_3 = U_{31}$

 $J_1 = V_1 / R_1 + 4 A_2$ V_1 et J_1 en phase $J_2 = V_2 / N(R_2^2 + X_2^2) = 6.32 \text{ Å}$; V_2 en avance sur J_2 de θ_2 = arctg $X_2 / R_2 = 71.57^\circ$

 $J_3 = V_3 / X_3 = V_3 \omega C_3 = 2\pi f V_3 C_3 = 3,77 A$

Par rapport à V₁:

 $J_1 = [V_1 \angle 0^\circ] / [R_1 \angle 0^\circ] = -$ 4 A ZOO

 $J_2 = [V_2 \angle -120^{\circ}] / [\sqrt{(R_2^2 + X_2^2)} \angle -71,57^{\circ}] = 0$ 6,32 A ∠191,57°

 $J_3 = [V_3 \angle + 120^\circ] \times [2\pi f C_3 \angle + 90^\circ] =$ 3,77 A ∠210°

12 Le diagramme vectoriel des tensions et des courants de phases.

 $[V_3; J_2 = 48.45^{\circ}]$ $[V_3; J_3 = 90^\circ]$ $[V_1; V_3 = 120^\circ]$ $J_2 = 6,32 \text{ A}$ $J_1 = 4 A$ $[J_2; J_3 = 41,57^{\circ}]$ $[J_2; V_2 = 71,57^{\circ}]$ $=U_{12} = 400 \text{ V}$ $J_3 = 3,77 A$ $[J_3; V_2 = 30^\circ]$ $[V_2; V_1 = 120^\circ]$

LICENCE LMD EN ELECTROTECHNIQUE - U.S.D.B.

RESEAUX ELECTRIQUES (F54R)

EXAMEN 2009/2010 - CORRIGE

3- Les courants de ligne I1, I2 et I3 sont calculés à partir de la différence vectorielle des courants de phase

$$I_1 = J_1 - J_3 = [4 \land \angle 0^\circ] - [3,77 \land \angle 210^\circ] = 07,50 \land I_2 = J_2 - J_1 = [6,32 \land \angle 191,57^\circ] - [4 \land \angle 0^\circ] = 07,50 \land 10,27 \land 10,$$

$$I_3 = J_3 - J_2 = [3,77 \text{ A } \angle 210^\circ] - [6,32 \text{ A } \angle 191,57^\circ] = 04,30 \text{ A}$$

III- Une installation d'abonné est alimentée sous une tension 220 V alternative.

1- Les puissances de chaque circuit,

Eclairage:

 $Pe = 10 \times 35 = 350 \text{ W}$

 $Se = 10 \times (UI) = 10 \times 220 \times 0,6 = 1320 \text{ VA}$

 $Qe = \sqrt{(Se^2 - Pe^2)} = 1273 \text{ VAr}$

James Com

Pe = 3×500 = 1500 W

Qc = 0 VAr Sc = Pc = (520 VA

moteur: (F.P. = $\cos \phi m = 0.7 \Rightarrow \phi m = 45^{\circ} \Rightarrow \sin \phi m = 0.7$)

 $Pm = Pu / \eta = 750 / 0.75 = 1000 W$

 $Sm = Pm / cos \phi m = 1000 \times 0,7 = 1429 \text{ VA}$

 $Qm = Sm \sin \phi m = 1429 \times 0.7 = 1000 \text{ VAr}$

 Le factaur, de puissance et le courant absorbé pour chaque circuit. (1,5 pts) Eclairage:

 $\cos \phi m = \text{Pe/Se} = 350 / 1320 = 0.27$; Ie = Se/U = 1320 / 220 = 6 A

chauffnge;

 $\cos \phi c = Pc / Sc = 1500 / 1500 = 1$; Ic = Sc / U = 1500 / 220 = 6.8 A