LECTURE 7, MORE ON NONDIVERGENCE OF UNIPOTENT FLOWS

RUNLIN ZHANG

CONTENTS

1. Summary and definitions	1
2. Nondivergence and flags	2
3. The proof	4
Step 1	4
Step 2	5
Step 3	6
Good and bad points 1	6
Good and bad points 2	6
Good and bad points 3	7
Warp-up	7
References	8

Notations

- $X_N := \{ \text{ unimodular lattices in } \mathbb{R}^N \} \cong \operatorname{SL}_N(\mathbb{R}) / \operatorname{SL}_N(\mathbb{Z});$
- for a discrete subgroup Δ in \mathbb{R}^N , let $\|\Delta\| := \operatorname{Vol}(\Delta_{\mathbb{R}}/\Delta)$ where $\Delta_{\mathbb{R}}$ denotes the \mathbb{R} -linear span of Δ in \mathbb{R}^N ;
- for $\Lambda \leq \mathbb{R}^N$, sys $(\Lambda) := \inf_{\nu \neq 0 \in \Lambda} \|\nu\|$;
- for $\delta > 0$, $\mathcal{C}_{\delta} := \{ \Lambda \in X_N : \operatorname{sys}(\Lambda) \ge \delta \};$
- $Prim^k(\Lambda) := \{ primitive subgroups of \Lambda of rank k \};$
- $\operatorname{Prim}(\Lambda) := \bigcup_{k=0}^{\operatorname{rank}(\Lambda)} \operatorname{Prim}^k(\Lambda)$.

1. SUMMARY AND DEFINITIONS

We would like to illustrate the main ideas behind [Kle10, Section 3] using X_4 as an example. The discussion can be generalized to X_N and even to $G(\mathbb{R})/G(\mathbb{Z})$ for other semisimple algebraic groups G. Warning: our presentation (and sometimes definitions!) differs from [Kle10, Section 3] and is "less careful" in many ways.

The discussion is useful beyond unipotent flows on X_N . We would like to mention [EMS97, MW02] here.

Definition 1.1. Fix (C, α) two positive constants. A map $\phi : I \to SL_N(\mathbb{R})$ is said to be (C, α) -good at $\Lambda \in X_N$ if for every primitive subgroup Δ of Λ , every interval $J \subset I$, every $\rho \in (0,1)$ (the case $\rho \geq 1$ is rather trivial), define $M(J,\Delta) := \sup_{s \in J} \|\phi_s.\Delta\|$, then we have

$$\frac{1}{|J|} \left| \left\{ s \in J \, \middle| \, \left\| \phi_s.\Delta \right\| \le \rho \cdot M(J,\Delta) \right\} \right| \le C \cdot \rho^{\alpha}.$$

Date: 2022.03.

The main examples for us are unipotent flows.

Lemma 1.2. There are constants C_N , $\alpha_N > 0$, depending only on N such that for every nilpotent matrix u in $\mathfrak{sl}_N(\mathbb{R})$ and for every (finite or infinite) interval I in \mathbb{R} , $\phi(t) := \exp(t.u)$ is (C_N, α_N) -good at every $\Lambda \in X_N$.

Proof. Exercise or see [Kle10].

Theorem 1.3. Fix $C, \alpha, \varepsilon, \delta$ positive constants. There exists a constant $\kappa = \kappa(C, \alpha, \varepsilon, \delta) > 0$ such that the following holds. Let $\Lambda \in X_N$ and $\phi : I \to SL_N(\mathbb{R})$. Assume

- ϕ is (C, α) -good at Λ ;
- $\sup_{t \in I} \|\phi_t \cdot \Delta\| \ge \delta$ for every $\Delta \in \text{Prim}(\Lambda)$,

then

2

$$\frac{1}{|I|} \operatorname{Leb} \left\{ s \in I \, \middle| \, \phi_s. \Lambda \notin \mathscr{C}_{\kappa} \right\} \leq \varepsilon.$$

In the case of unipotent flows and infinite I, if the condition fails, then Λ contains a primitive subgroup fixed by the unipotent flow with small norm.

2. Nondivergence and flags

The key notion is being (δ, ρ) -protected, which provides a sufficient condition to guarantee non-divergence.

Definition 2.1.

A subset \mathscr{F} of $Prim(\Lambda)$ is said to be a **flag** if for every two element Δ_1 and Δ_2 in \mathscr{F} , either $\Delta_1 \subset \Delta_2$ or $\Delta_1 \supset \Delta_2$. The **length** of a flag \mathscr{F} is simply the cardinality of \mathscr{F} .

Definition 2.2.

Let $\delta, \rho \in (0,1)$. Let $\Lambda \in X_N$ and $\mathscr{F} = \{\Delta_1 \leq \Delta_2 \leq ... \leq \Delta_l\}$ be a flag in $Prim(\Lambda)$. We say that Λ is weakly (δ, ρ) -protected by \mathscr{F} iff

- 1. $\rho \cdot \delta \leq ||\Delta_i|| \leq \delta$ for every i = 1, ..., l;
- 2. $\|\Delta\| \ge 0.5\delta$ for every $\Delta \notin \mathcal{F}$ comparable with \mathcal{F} , i.e. $\mathcal{F} \cup \{\Delta\}$ is still a flag.

Now given a map $\phi: I \to \mathrm{SL}_N(\mathbb{R})$. We say that $s \in I$ is weakly (δ, ρ) -protected by \mathscr{F} iff

- 1. $\rho \cdot \delta \leq \|\phi_s.\Delta_i\| \leq \delta$ for every i = 1,..,l;
- 2. $\|\phi_s.\Delta\| \ge 0.5\delta$ for every $\Delta \notin \mathcal{F}$ comparable with \mathcal{F} .

That is to say, ϕ_s . Λ is (δ, ρ) -protected by ϕ_s . \mathscr{F} .

I shall drop the word "weakly" later. But keep in mind our definition is different from [Kle10] where 0.5δ is replaced by δ .

From the definition, such a flag is not allowed to contain $\{0\}$ or Λ . Thus the maximal possible length is N-1.

One may wish to compare with the definition of Siegel sets.

Lemma 2.3 (Criterion of non-divergence in terms of flags). Fix δ , $\rho \in (0,1)$. Assume for some reason that $\rho < 0.5$. Then there exists a constant $\theta = \theta(\delta, \rho) > 0$ (from the proof, can take $\theta = \rho^N \delta$) such that if $\Lambda \in X_N$ is (δ, ρ) -protected by some flag $\mathscr F$ of $Prim(\Lambda)$, then $\|\Delta\| \ge \theta$ for every primitive subgroup $\Delta \le \Lambda$. In particular $sys(\Lambda) \ge \theta$.

Proof of a Special Case Done in The Class. Say $\mathscr{F} = \{\Delta_1 \leq \Delta_2\}$, which gives a filtration of Λ . For $v \in \Lambda$, there are three cases. We will show $||v|| \geq \rho \delta$.

Case 1. $v \in \Lambda \setminus \Delta_2$.

Then $\Delta_3 + \mathbb{Z}.\nu$ is compatible with \mathscr{F} , though it may not be primitive. $((\Delta_3)_{\mathbb{R}} + \mathbb{R}.\nu) \cap \Lambda$ is a primitive subgroup compatible with \mathscr{F} and contains $\Delta_2 + \mathbb{Z}.\nu$. Thus

$$\|\Delta_2 + \mathbb{Z} \cdot v\| \ge \|((\Delta_2)_{\mathbb{R}} + \mathbb{R} \cdot v) \cap \Lambda\| \ge 0.5\delta.$$

On the other hand

$$\|\Delta_2 + \mathbb{Z} \cdot v\| \le \|\Delta_2\| \cdot \|v\| \le \delta \|v\|$$
.

Combined together gives $||v|| \ge 0.5$.

Case 2. $v \in \Delta_2 \setminus \Delta_1$.

Either $\Delta_1 + \mathbb{Z}.v$ has the same rank as Δ_2 or not. Anyway, we always have,

$$\|\Delta_1 + \mathbb{Z} \cdot v\| \ge \min\{\rho \delta, 0.5\delta\} = \rho \delta.$$

On the other hand

$$\|\Delta_1 + \mathbb{Z} \cdot v\| \le \|\Delta_1\| \cdot \|v\| \le \delta \|v\|$$
.

Combined together gives $||v|| \ge \rho$.

Case 3. $v \in \Delta_1$.

Then either $\mathbb{Z}.v$ has the same rank as Δ_1 , in which case $\|\mathbb{Z}.v\| \ge \|\Delta_1\| \ge \rho\delta$ or $\mathbb{Z}.v$ has smaller rank than Δ_1 , in which case $\|\mathbb{Z}.v\| \ge 0.5\delta \ge \rho\delta$.

Proof in General. [Read this only if you feel necessary!] Let $\mathscr{F} = \{\Delta_1 \leq \Delta_2 \leq ... \leq \Delta_l\}$ be the flag and Δ is a primitive subgroup of Λ . Let $V_k := \mathbb{R}^N/(\Delta_k)_\mathbb{R}$ and π_k be the natural quotient map $\mathbb{R}^N \to V_k$.

Note that if $\Delta' \leq \Lambda$ is contained in Δ_k for $k \in \{1, ..., l\}$, then

$$\left\|\pi_{k-1}(\Delta')\right\|_{V_{k-1}} = \left\|\pi_{k-1}(\Delta' + \Delta_{k-1})\right\|_{V_{k-1}} = \frac{\left\|\Delta' + \Delta_{k-1}\right\|}{\left\|\Delta_{k-1}\right\|} \ge \rho.$$

[rmk: actually, we see from the proof that unless $\Delta' + \Delta_{k-1} = \Delta_k$, we would have $\|\pi_{k-1}(\Delta')\|_{V_{k-1}} = 1$.] By convention $\|\{0\}\|_V = 1$ for all Euclidean spaces V.

$$\begin{split} \delta \left\| \pi_{k-1}(\Delta' + \Delta_{k-1}) \right\|_{V_{k-1}} &\geq \left\| \pi_{k-1}(\Delta' + \Delta_{k-1}) \right\|_{V_{k-1}} \cdot \left\| \Delta_{k-1} \right\| = \left\| \Delta' + \Delta_{k-1} \right\| \geq \rho \delta \\ & \Longrightarrow \left\| \pi_{k-1}(\Delta' + \Delta_{k-1}) \right\|_{V_{k-1}} \geq \rho. \end{split}$$

Let a be the largest index such that Δ_a is contained in Δ . By default, $\Delta_0 := \{0\}$ if $\Delta_1 \neq \{0\}$. If a = l, then we are done with $\theta = \rho \delta$. Assume otherwise.

$$\begin{split} \|\Delta\| &= \|\pi_{a+1}(\Delta)\|_{V_{a+1}} \cdot \|\Delta \cap \Delta_{a+1}\| = \|\pi_{a+1}(\Delta + \Delta_{a+1})\|_{V_{a+1}} \cdot \|\pi_a(\Delta \cap \Delta_{a+1})\|_{V_a} \cdot \|\Delta_a\| \\ &= \|\pi_{a+2}(\Delta)\|_{V_{a+2}} \cdot \|\pi_{a+1}(\Delta + \Delta_{a+1}) \cap \pi_{a+1}(\Delta_{a+2})\|_{V_{a+1}} \cdot \|\pi_a(\Delta \cap \Delta_{a+1})\|_{V_a} \cdot \|\Delta_a\| \\ &= \|\pi_{a+2}(\Delta)\|_{V_{a+2}} \cdot \|\pi_{a+1}\left((\Delta + \Delta_{a+1}) \cap \Delta_{a+2}\right)\|_{V_{a+1}} \cdot \|\pi_a(\Delta \cap \Delta_{a+1})\|_{V_a} \cdot \|\Delta_a\| \\ &= \|\pi_{a+2}(\Delta)\|_{V_{a+2}} \cdot \|\pi_{a+1}\left(\Delta \cap \Delta_{a+2}\right)\|_{V_{a+1}} \cdot \|\pi_a(\Delta \cap \Delta_{a+1})\|_{V_a} \cdot \|\Delta_a\| \\ &\dots \\ &= \|\pi_{a+k-1}\left(\Delta \cap \Delta_{a+k}\right)\|_{V_{a+k-1}} \cdot \dots \cdot \|\pi_{a+1}\left(\Delta \cap \Delta_{a+2}\right)\|_{V_{a+1}} \cdot \|\pi_a(\Delta \cap \Delta_{a+1})\|_{V_a} \cdot \|\Delta_a\| \\ &= \|\pi_{a+k-1}\left(\Delta \cap \Delta_{a+k}\right)\|_{V_{a+k-1}} \cdot \dots \cdot \|\pi_{a+1}\left(\Delta \cap \Delta_{a+2}\right)\|_{V_{a+1}} \cdot \|\pi_a(\Delta \cap \Delta_{a+1})\|_{V_a} \cdot \|\Delta_a\| \end{split}$$

where k is the smallest positive integer such that Δ is contained in Δ_{a+k} . By invoking the key observation above we have

$$\|\Delta\| \ge \rho^k \delta$$
.

So we are done by taking $\theta := \rho^N \delta$.

3. The proof

Instead of proving by induction, we have decided to unfold this process. This makes the proof much longer but hopefully less mysterious. Here is a guide for Step 1-3.

Step 1. By assumption for every $\Delta \in Prim(\Lambda)$,

$$\sup_{s\in I} \|\phi_s.\Delta\| \geq \delta.$$

Consider the open subset

$$I' := \{ s \in I \mid \exists \Delta \in \operatorname{Prim}(\Lambda), \|\phi_s.\Delta\| < 0.9\delta \}$$

Write it as a disjoint union of open intervals

$$I'=\bigsqcup_{a\in\mathscr{I}_0}I_a.$$

Thus for every $\Delta \in \text{Prim}(\Lambda)$,

$$\sup_{t\in I'} \|\phi_{s}.\Delta\| \ge 0.9\delta.$$

For $a \in \mathcal{I}_0$, consider (the 0.9 here is just to get a finite cover later, but it is not necessary to do so)

$$\mathcal{A}_a := \left\{ (x, \Delta) \in I_a \times \operatorname{Prim}(\Lambda) \mid \|\phi_x.\Delta\| < 0.9\delta \right\}.$$

For each $(x, \Delta) \in \mathcal{A}_a$, define

 $I(x,\Delta) := \text{ the connected component of } \{s \in I_a \mid ||\phi_s.\Delta|| < \delta\} \text{ containing } x.$

For every $x \in I_a$, pick some Δ_x such that $I_x := I(x, \Delta_x)$ is maximal among (the finitely many) $I(x, \Delta)$ as (x, Δ) varies in \mathcal{A}_a . By this choice, I_x and Δ_x satisfy

- 1. for every $\Delta \in \text{Prim}(\Lambda)$, $\sup_{s \in I_x} \|\phi_s.\Delta\| \ge 0.9\delta$;
- 2. $\sup_{s \in I_x} \|\phi_s \cdot \Delta_x\| \le \delta$.

 I_a admits a finite sub-covering by I_x 's and by passing to a further sub-covering, we assume

$$I_a = \bigcup_{x \in \mathcal{I}_a} I_x$$
 with multiplicity ≤ 2

where \mathscr{I}_a is certain finite subset of I_a (finiteness is not important, multi ≤ 2 is). Also define

$$\mathscr{P}_x := \{ \Delta \in \operatorname{Prim}(\Lambda) \mid \Delta \text{ is comparable to } \Delta_x \}.$$

Step 2. Consider the open subset of I_x :

$$I_x' := \{ s \in I_x \mid \exists \Delta \in \mathscr{P}_x, \| \phi_s \Delta \| < 0.8\delta \}.$$

Write it as a disjoint union of open intervals

$$I_x' = \bigsqcup_{b \in \mathscr{I}_x} I_b.$$

For $b \in \mathcal{I}_x$, consider

$$\mathcal{A}_b := \left\{ (y, \Delta) \in I_b \times \mathcal{P}_x \, \middle| \, \left\| \phi_y . \Delta \right\| < 0.8 \delta \right\}.$$

For each $(y, \Delta) \in \mathcal{A}_b$, define

$$I(y, \Delta) :=$$
 the connected component of $\{s \in I_b \mid ||\phi_s, \Delta|| < 0.9\delta\}$ containing y.

For every $y \in I_b$, pick some Δ_y such that $I_{x,y} := I(y, \Delta_y)$ is maximal among (the finitely many) $I(y, \Delta)$ as (y, Δ) varies in \mathscr{A}_b . By this choice, $I_{x,y}$ and Δ_y satisfy

- 1. for every $\Delta \in \mathcal{P}_x$, $\sup_{s \in I_{x,y}} \|\phi_s \Delta\| \ge 0.8\delta$;
- 2. $\sup_{s \in I_{x,y}} \|\phi_s \cdot \Delta_y\| \le 0.9\delta$.

Similarly,

$$I_b = \bigcup_{y \in \mathscr{I}_b} I_{x,y}$$
 with multiplicity ≤ 2

where \mathcal{I}_b is some finite subset of I_b . Also define

$$\mathscr{P}_{x,y} := \{ \Delta \in \operatorname{Prim}(\Lambda) \mid \Delta \text{ is comparable to } \{\Delta_x, \Delta_y \} \}.$$

Step 3. Consider the open subset of $I_{x,y}$:

$$I'_{x,y} := \left\{ s \in I_{x,y} \,\middle|\, \exists \Delta \in \mathscr{P}_{x,y}, \, \left\| \phi_s.\Delta \right\| < 0.7\delta \right\}.$$

Write it as a disjoint union of open intervals

$$I'_{x,y} = \bigsqcup_{c \in \mathscr{I}_{x,y}} I_c.$$

For $c \in \mathscr{I}_{x,y}$, consider

$$\mathcal{A}_c := \left\{ (z, \Delta) \in I_c \times \mathcal{P}_{x, y} \, \middle| \, \left\| \phi_z . \Delta \right\| < 0.7 \delta \right\}.$$

For each $(z, \Delta) \in \mathcal{A}_c$, define

$$I(z, \Delta) := \text{ the connected component of } \{s \in I_c \mid ||\phi_s, \Delta|| < 0.8\delta \} \text{ containing } z.$$

For every $z \in I_c$, pick some Δ_z such that $I_{x,y,z} := I(z,\Delta_z)$ is maximal among (the finitely many) $I(z, \Delta)$ as (z, Δ) varies in \mathcal{A}_c . By this choice, $I_{x, \gamma, z}$ and Δ_z satisfy

- 1. for every $\Delta \in \mathcal{P}_{x,y}$, $\sup_{s \in I_{x,y,z}} \|\phi_s.\Delta\| \ge 0.7\delta$;
- 2. $\sup_{s \in I_{x,y,z}} \|\phi_s \cdot \Delta_z\| \le 0.8\delta$.

Similarly,

$$I_c = \bigcup_{z \in \mathcal{I}_c} I_{x,y,z}$$
 with multiplicity ≤ 2

where \mathscr{I}_c is certain finite subset of I_c . Now $\{\Delta_x, \Delta_y, \Delta_z\}$ is already a complete flag modulo $\{0\}$ and Λ .

Good and bad points 1. For x, a, y, b, z, let

$$I_{x,y,z}(\text{good}) := \{ s \in I_{x,y,z} \mid || \phi_s \Delta_z || \ge \rho \delta \}, \quad I_{x,y,z}(\text{bad}) := I_{x,y,z} \setminus I_{x,y,z}(\text{good}).$$

By (C, α) -goodness, we choose $\rho \in (0, 1)$ such that

$$\left|I_{x,y,z}(\text{bad})\right| \leq (0.01\varepsilon)\left|I_{x,y,z}\right|$$
.

Thus

$$\begin{split} \left| I_{x,y}'(\mathsf{bad}) \right| &:= \left| \bigsqcup_{c \in \mathscr{I}_{x,y}} \bigcup_{z \in \mathscr{I}_c} I_{x,y,z}(\mathsf{bad}) \right| \leq \sum_c \sum_z \left| I_{x,y,z}(\mathsf{bad}) \right| \leq \sum_c \sum_z (0.01\varepsilon) \cdot \left| I_{x,y,z} \right| \\ &\leq \sum_c 2(0.01\varepsilon) \cdot \left| I_c \right| = (0.02\varepsilon) \cdot \left| I_{x,y}' \right|. \end{split}$$

Define $I'_{x,y}(good) := I'_{x,y} \setminus I'_{x,y}(bad)$, so $I'_{x,y} = I'_{x,y}(good) \sqcup I'_{x,y}(bad)$. So far, we have the following regarding each $I_{x,y}$:

- 1. $s \in I_{x,y} \setminus I'_{x,y} \Longrightarrow \|\phi_s.\Delta\| \ge 0.7\delta, \ \forall \Delta \in \mathscr{P}_{x,y};$
- 2. $s \in I'_{x,y}(\text{good}) \implies \exists \Delta_z \in \mathscr{P}_{x,y}, \rho \delta \leq \|\phi_s.\Delta_z\| \leq 0.8\delta;$ 3. $\left|I'_{x,y}(\text{bad})\right| \leq 2\delta \cdot \left|I'_{x,y}\right|.$

Good and bad points 2. Define

$$I_{x,y}(good) := \{ s \in I_{x,y} \mid ||\phi_s.\Delta_y|| \ge \rho \delta \}, \quad I_{x,y}(bad) := I_{x,y} \setminus I_{x,y}(good).$$

And ρ is chosen such that

$$|I_{x,y}(\text{bad})| \leq (0.01\varepsilon) |I_{x,y}|.$$

Thus,

$$\begin{aligned} \left| I_{x}'(\text{bad}) \right| &:= \left| \bigsqcup_{b \in \mathscr{I}_{x}} \bigcup_{y \in \mathscr{I}_{b}} I_{x,y}(\text{bad}) \right| \leq \sum_{b} \sum_{y} \left| I_{x,y}(\text{bad}) \right| \leq \sum_{b} \sum_{y} (0.01\varepsilon) \cdot \left| I_{x,y} \right| \\ &\leq \sum_{b} 2(0.01\varepsilon) \cdot \left| I_{b} \right| = (0.02\varepsilon) \cdot \left| I_{x}' \right|. \end{aligned}$$

Define $I'_{x}(good)$ by imposing $I'_{x} = I'_{x}(good) \sqcup I'_{x}(bad)$.

So far, regarding I_x we have:

1.
$$s \in I_x \setminus I_x' \Longrightarrow \|\phi_s.\Delta\| \ge 0.8\delta, \ \forall \Delta \in \mathscr{P}_x;$$

1.
$$s \in I_x \setminus I_x' \Longrightarrow \|\phi_s.\Delta\| \ge 0.8\delta, \ \forall \Delta \in \mathcal{P}_x;$$

2. $s \in I_x'(\text{good}) \cap I_{x,y} \Longrightarrow \rho\delta \le \|\phi_s.\Delta_y\| \le 0.9\delta;$
3. $|I_x'(\text{bad})| \le 2\delta \cdot |I_x'|.$

3.
$$|I'_r(\text{bad})| \leq 2\delta \cdot |I'_r|$$
.

Good and bad points 3. Finally, define

$$I_x(good) := \{ s \in I_x \mid ||\phi_s.\Delta_x|| \ge \rho \delta \}, \quad I_x(bad) := I_x \setminus I_x(good).$$

And ρ is chosen such that

$$|I_x(\text{bad})| \leq 0.01\varepsilon |I_x|$$
.

Thus,

$$\begin{aligned} \left| I'(\text{bad}) \right| &:= \left| \bigsqcup_{a \in \mathscr{I}_0} \bigcup_{x \in \mathscr{I}_a} I_x(\text{bad}) \right| \le \sum_a \sum_x |I_x(\text{bad})| \le \sum_a \sum_x 0.01 \varepsilon \cdot |I_x| \\ &\le \sum_a 2 \cdot 0.01 \varepsilon \cdot |I_a| = (0.02\varepsilon) \cdot \left| I' \right|. \end{aligned}$$

Define I'(good) by imposing $I' = I'(good) \sqcup I'(bad)$. Here we have:

1.
$$s \in I \setminus I' \Longrightarrow \|\phi_s.\Delta\| \ge 0.9\delta, \forall \Delta \in Prim(\Lambda);$$

2.
$$s \in I'(good) \cap I_x \Longrightarrow \rho \delta \le \|\phi_s \cdot \Delta_x\| \le \delta;$$

3.
$$|I'(\text{bad})| \leq 2\delta \cdot |I'|$$
.

Warp-up. Now we collect all the bad points together and let

$$I(\mathrm{bad}) := I'(\mathrm{bad}) \cup \left(\bigcup_{a \in \mathscr{I}_0, x \in \mathscr{I}_a} I'_x(\mathrm{bad})\right) \cup \left(\bigcup_{a \in \mathscr{I}_0, x \in \mathscr{I}_a} \bigcup_{b \in \mathscr{I}_x, y \in \mathscr{I}_b} I'_{x,y}(\mathrm{bad})\right)$$

We have

$$\left| \bigcup_{a,x,b,y} I'_{x,y}(\text{bad}) \right| \leq \sum_{a,x,b \in \mathscr{I}_x} \sum_{y \in \mathscr{I}_b} \left| I'_{x,y}(\text{bad}) \right| \leq (0.02\varepsilon) \cdot \sum_{a,x,b} \sum_{y} \left| I_{x,y} \right|$$

$$\leq (0.04\varepsilon) \cdot \sum_{a,x,b \in \mathscr{I}_x} |I_b| \leq (0.04\varepsilon) \cdot \sum_{a,x} |I_x|$$

$$\leq (0.08\varepsilon) \cdot |I|$$

and

$$\left| \bigcup_{a \in \mathcal{I}_0, x \in \mathcal{I}_a} I_x'(\text{bad}) \right| \leq \sum_{a \in \mathcal{I}_0} \sum_{x \in \mathcal{I}_a} \left| I_x'(\text{bad}) \right| \leq (0.02\varepsilon) \cdot \sum_{a \in \mathcal{I}_0} \sum_{x \in \mathcal{I}_a} \left| I_x \right|$$

$$\leq (0.04\varepsilon) \cdot \sum_{a \in \mathcal{I}_0} \left| I_a \right| \leq (0.04\varepsilon) \cdot |I|.$$

Hence

$$|I(\text{bad})| \le (0.14\varepsilon) \cdot |I| < \varepsilon |I|.$$
 (1)

Let $s \in I \setminus I(bad)$.

Case 1. $s \in I \setminus I'$, then $\|\phi_s \cdot \Delta\| \ge 0.9\delta > 0.5\delta$, $\forall \Delta \in Prim(\Lambda)$ so it is (ρ, δ) -protected by the trivial flag.

RUNLIN ZHANG

8

Case 2. $s \in I' \setminus I(bad) = (\sqcup I_a) \setminus I(bad) = (\sqcup_a \cup_x I_x) \setminus I(bad)$. Say $s \in I_x \setminus I(bad)$. Then $\rho \delta \leq \|\phi_s.\Delta_x\| \leq \delta$.

Case 2.1. $s \in I_x \setminus I_x'$. Then $\|\phi_s.\Delta\| \ge 0.8\delta > 0.5\delta$ for all $\Delta \in \mathscr{P}_x$. This means that s is (ρ, δ) -protected by $\{\Delta_x\}$.

Case 2.2. $s \in I_x' \setminus I(\text{bad}) = (\sqcup I_b) \setminus I(\text{bad}) = (\sqcup_b \cup_y I_{x,y}) \setminus I(\text{bad})$. Say $s \in I_{x,y} \setminus I(\text{bad})$. Then $\rho \delta \leq \|\phi_s.\Delta_v\| \leq \delta$.

Case 2.2.1. $s \in I_{x,y} \setminus I'_{x,y}$. Then $\|\phi_s.\Delta\| \ge 0.7\delta > 0.5\delta$ for all $\Delta \in \mathscr{P}_{x,y}$. This means that s is (ρ, δ) -protected by $\{\Delta_x, \Delta_y\}$.

Case 2.2.2. $s \in I'_{x,y} \setminus I(\text{bad}) = \sqcup_c I_c \setminus I(\text{bad}) = \sqcup_c \cup_z I_{x,y,z} \setminus I(\text{bad})$. Say $x \in I_{x,y,z} \setminus I(\text{bad})$, then

$$\rho\delta \leq \|\phi_{s}.\Delta_{z}\| \leq \delta.$$

Thus *s* is (ρ, δ) -protected by $\{\Delta_x, \Delta_y, \Delta_z\}$.

Now every $s \in I \setminus I(\text{bad})$ falls into one of the cases 1, 2.1, 2.2.1 and 2.2.2, so it is (ρ, δ) -protected. Hence Lem.2.3 implies if $s \in I \setminus I(\text{bad})$ then $\phi_s.\Lambda \in \mathscr{C}_\theta$ with $\theta = \theta(\delta, \rho)$. Now we take $\kappa := \theta$. Combining with Equa.1, we are done.

REFERENCES

- [EMS97] A. Eskin, S. Mozes, and N. Shah, Non-divergence of translates of certain algebraic measures, Geom. Funct. Anal. 7 (1997), no. 1, 48–80. MR 1437473
- [Kle10] Dmitry Kleinbock, Quantitative nondivergence and its Diophantine applications, Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc., vol. 10, Amer. Math. Soc., Providence, RI, 2010, pp. 131–153. MR 2648694
- [MW02] Yair Minsky and Barak Weiss, Nondivergence of horocyclic flows on moduli space, J. Reine Angew. Math. 552 (2002), 131–177. MR 1940435