第七章 卤代烃(2)

主要内容

■影响亲核取代反应机理和反应速率的因素

(烷基结构的影响, 亲核试剂的影响,

溶剂极性的影响, 离去基团的影响)

■ 复习:卤代烷的亲核取代反应(S_N2和S_N1反应)

$$R - X + Nu - R - Nu + X^{\odot}$$

● S_N2 机理

动力学特点:反应速率 = k[RX][Nu] (双分子反应)

构型翻转

● S_N1 机理

动力学特点:反应速率 = k[RX]

(单分子反应)

消旋化

→碳正离子

影响亲核取代反应机理和反应速率的因素

一.底物结构对机理的影响

▶空间位阻效应

■ S_N2机理与烷基的结构

■ S_N2机理与取代基体积

$$R op Br + OC_2H_5 op E o$$

主要原因:空间位阻效应

■ S_N1机理与烷基的结构

→碳正离子稳定性

$$R - Br + \begin{cases} H_2O \\ HOC_2H_5 \end{cases} \xrightarrow{80\% \angle ee - x} \begin{cases} R - OH \\ R - OC_2H_5 \end{cases} + HBr$$
 $H_3C - Br < H_3C - CH_2 - Br < H_3C - CH_2 - Br < H_3C - CH_3 Br < H_3C - CH_3$

■ 苄基 (benzyl) 与烯丙基 (allyl) 卤代烃的亲核取代

• S_N1

R—CI +
$$\left\{\begin{array}{c} H_2O \\ HOC_2H_5 \end{array}\right\}$$
 $\left\{\begin{array}{c} R - OH \\ R - OC_2H_5 \end{array}\right\}$ + HCI R—OC₂H₅ + HCI R—OC₂

■ 桥头卤素难被取代

S_N2难: 无法翻转 (刚性结构)

位阻 (叔碳)

S_N1难: 碳正离子不是平面 (C-X难解离)

■ 总结: **R**结构对取代机理的影响

■ 注意反应条件改变对机理的影响

二. 亲核试剂对机理的影响

亲核试剂

- 亲核能力
- 浓度

•S_N1 机理
$$\xrightarrow{-X}$$
 $\left[R^{\oplus} \right]$ \xrightarrow{Nu} R—Nu

 $S_N 1$ 速率 = k[RX]

亲核能力、浓度与决速步骤无关

所有的亲核试剂都是碱, 所有的碱也都是亲核试剂

OH OR ON IC

RCOO₂ NH₃ H₂O

■问题1:如何衡量亲核试剂的亲核性?

■问题2:亲核性与碱性的关系如何?

定义

亲核性: 有未共用电子对的负离子和分子与正电性碳原子的反应能力

碱 性: 有未共用电子对的负离子和分子与质子的反应能力

测量方法

亲核性:测定亲核试剂与某一底物进行S_N2反应的相对速率,速率快者亲

核性强。(动力学参数)

碱性:测定碱与H2O的反应,平衡常数Kb大者碱性强。(热力学参数)

共轭酸碱理论: 酸是质子的给予体, 碱是质子的接受体。

- 一个酸释放质子后产生的酸根, 即为该酸的共轭碱;
- 一个碱与质子结合后形成的质子化合物,即为该碱的共轭酸。

化合物	рКа	共轭碱	化合物	рКа	共轭碱
(CH₃)₃C–H	71	(CH ₃)₃C [©]	H ₂ N–H	36	H ₂ N [⊙]
CH₃CH₂–H	62	CH ₃ CH ₂ [⊙]	HC≡C–H	26	HC≡C⊖
CH₃– <mark>H</mark>	60	CH₃ [©]	CH₃CH₂O–H	16	CH₃CH₂O [⊙]
			НО-Н	15.7	НО⊖

- 同种或同周期中心原子的亲核性与碱性顺序大致相同
 - ▶未共用电子对在氧原子上

$$RO^{\bigcirc} > HO^{\bigcirc} > ArO^{\bigcirc} > RCOO^{\bigcirc} > ROH > H_2O$$

>同一周期原子

$$R_3C^{\ominus} > R_2NH^{\ominus} > RO^{\ominus} > F^{\ominus}$$

■ 同族中心原子亲核性与碱性顺序不相一致(受溶剂影响)

■溶剂分类

非极性和 低极性溶剂

(非质子性溶剂)

烷烃,苯,醚类,酯类 (亲核试剂较难溶解,较少使用)

■一些溶剂的极性(介电常数)

▶质子性溶剂						
H ₂ O	нсоон	CH₃OH	C ₂ H ₅ OH	CH ₃ COOH		
80	59	33	24	6		

▶非质∃	子性溶剂		0	
DMSO	DMF	CH ₃ CN	CH₃CCH₃	
49	37	36	21	

• 质子性极性溶剂中同族元素的亲核性与碱性

• 非质子性极性溶剂中同族元素的亲核性与碱性

如: MX 在 DMSO 中

正离子被溶剂化了, 负离子完全释放出来。负 电荷密度大者亲核性较强 (与碱性顺序一致)。

$$H_3C$$
 \bigoplus CH_3 H_3C \bigoplus O \bigoplus CH_3 \bigoplus CH_3

■ 试剂的体积对亲核性的影响

三. 溶剂极性对反应机理的影响

极性大: 对极性大(电荷密度集中)体系有利。

极性小: 对极性小(电荷密度分散)体系有利。

■各种影响亲核取代机理的因素总结

 对S_N2有
 Nu^O : 强亲核性, 大浓度

 利的因素
 溶剂 : 非质子性, 低极性

R一X: 3°, 烯丙型, 苄基型

对S_N1有

利的因素

Nu : 弱亲核性 (避免S_N2)

溶剂 : 高极性

四. 离去基团对取代反应的影响

▶好离去基团的条件: 是稳定的弱碱

- 碘离子的亲核取代问题
- ▶ 利用碘离子促进(催化)反应行

碘离子的高亲核 性和好离去性

本次课小结:

几种影响亲核取代机理的因素

- 1. 烷基结构的影响
- 2. 亲核试剂的影响
- 3. 溶剂极性的影响
- 4. 离去基团对反应的影响