M. ASJAUN

1103210181

Member 4: Computer Vision Hugging Face Course (Chapters 1-4)

Link yt: https://youtu.be/mOWp9bL4InY

1. Vision dan Computer Vision

• Pengertian Vision:

- Proses menangkap cahaya, mengubahnya menjadi sinyal listrik di mata, lalu merekonstruksi di otak untuk memahami lingkungan.
- o Penting untuk evolusi manusia dan perkembangan kognitif.

• Pendekatan Pemrograman Tradisional vs Machine Learning:

- o Pemrograman berbasis aturan sulit menangkap konteks dan nuansa objek.
- o Machine Learning memungkinkan sistem belajar dari data untuk memahami pola.

2. Gambar dalam Computer Vision

• Definisi Gambar:

- o Representasi visual dari objek, adegan, atau konsep.
- Secara matematis digambarkan sebagai fungsi 2D: F(X,Y)F(X, Y)F(X,Y).

• Jenis Gambar:

o 2D, 3D, dan gambar khusus seperti RGB, biner, atau 4D untuk biomedis.

• Representasi Gambar di Komputer:

o Matriks numerik 2D atau graf untuk pemrosesan data.

3. Teknik dan Proses dalam Imaging

Akuisisi Gambar:

 Melibatkan sensor untuk menangkap energi (cahaya atau gelombang) dan mengubahnya menjadi sinyal digital.

Teknologi Sensor:

o CCD, Strip Sensor, atau teknologi pemindaian 3D seperti MRI.

Kompresi Gambar:

 Mengurangi ukuran data dengan metode seperti Huffman Coding dan Run-Length Encoding.

4. Computer Vision: Definisi dan Evolusi

• Definisi:

 Mengembangkan metode untuk mengakuisisi, memproses, dan memahami data visual.

Evolusi:

o Dari metode berbasis aturan sederhana ke CNN dan deep learning modern.

• Aplikasi Utama:

o Scene recognition, object detection, image captioning, dan pelacakan objek.

5. Model dan Arsitektur dalam Computer Vision

GoogLeNet:

 Arsitektur dengan modul Inception untuk efisiensi parameter dan menangkap skala fitur.

MobileNet:

 Menggunakan depthwise separable convolutions untuk efisiensi pada perangkat dengan sumber daya terbatas.

• Swin Transformer:

o Model berbasis hierarki patch untuk menangkap konteks global dan lokal.

6. Multimodal Models

• Konsep Multimodalitas:

 Penggabungan berbagai modalitas (teks, gambar, suara) untuk memahami informasi lebih baik.

• Model CLIP:

 Melatih teks dan gambar dalam ruang embedding yang sama melalui contrastive learning.

• BLIP (Bootstrapping Language-Image Pre-training):

o Meningkatkan kinerja melalui penyaringan data gambar-teks (CapFilt).