WKBJ METODEN OG FYSISK OPTIKK MEK4320

Geir Pedersen

Department of Mathematics, UiO

December 4, 2014

WKBJ; example: LSW

Linear shallow water theory(indices mark differentiation)

$$\eta_{tt} - \nabla \cdot (c_0^2 \nabla \eta) = 0 \tag{1}$$

where $c_0^2 = gh(x, y)$.

In ray theory

$$\eta(x,y,t) = A(x,y,t)e^{i\chi(x,y,t)}, \qquad (2)$$

where $\vec{k} \equiv \nabla \chi$, $\omega \equiv -\frac{\partial \chi}{\partial t}$.

Slow varations of \vec{k} and $\omega \Rightarrow$ ray equations.

We now insert (2) in (1):

$$A_{tt} - i(2\omega A_t + \omega_t A) - \omega^2 A =$$

$$\nabla \cdot (c_0^2 \nabla A) + i \left(c_0^2 \nabla A \cdot \vec{k} + \nabla \cdot (c_0^2 A \vec{k}) \right) - c_0^2 k^2 A$$
(3)

So far: exact, but nothing is achieved either - so far.

Scaling; transformation to non-dimensional form

Scales

Typical wavelength: λ_c

Typical length scale for medium change L_c

Small parameter $\frac{\lambda_c}{L_c} = \epsilon \ll 1$.

Typical wave speed: $c_c = \sqrt{gh_c}$

Typical amplitude: A_c – no significance as long as in linear regime

Typical phase: $\chi \sim L_c/\lambda_c = \epsilon^{-1}$

Rescaling

All derivatives explicit in (3) are with respect to slow variation.

Fast variation inherent in definitions of \vec{k} and ω , only.

$$\vec{\kappa} = \lambda_c \vec{k}$$
, $\hat{\omega} = \lambda_c \omega / c_c$, $\hat{A} = A/A_c$, $\hat{c} = c_0/c_c$, $\hat{x} = x/L_c$, $\hat{t} = c_c t/L_c$.

Rescaling of (3)

$$\epsilon^{2}\hat{A}_{\hat{t}\hat{t}} - i\epsilon(2\hat{\omega}\hat{A}_{\hat{t}} + \hat{\omega}_{\hat{t}}\hat{A}) - \hat{\omega}^{2}\hat{A} =
\epsilon^{2}\hat{\nabla} \cdot (c^{2}\hat{\nabla}\hat{A}) + i\epsilon\left(c^{2}\hat{\nabla}\hat{A} \cdot \vec{\kappa} + \hat{\nabla} \cdot (c^{2}\hat{A}\vec{\kappa})\right) - c^{2}\kappa^{2}\hat{A} \tag{4}$$

Leading terms: O(1) no slow differentiations

Next order: $O(\epsilon)$ one slow differentiation

Second order: $O(\epsilon^2)$ two slow differentiations

Leading order

$$\hat{\omega}^2 = c^2 \kappa^2 \Rightarrow \text{ restored scales } \omega^2 = c_0^2 k^2 = W^2.$$

With $\vec{k}_t + \nabla \omega = 0$, $\partial k_i / \partial x_j = \partial k_j / \partial x_i$: ray theory retrieved

$$\frac{\partial k_i}{\partial t} + \vec{c}_g \cdot \nabla k_i = -\frac{\partial W}{\partial x_i}, \quad i = 1, 2$$
 (5)

$$\frac{\partial \omega}{\partial t} + \vec{c}_g \cdot \nabla \omega = 0 \tag{6}$$

with $\vec{c}_g = c_0 \vec{k}/k$. Now \vec{k} and ω is settled.

Next order; $O(\epsilon)$ relative size

Original scales restored

$$-2\omega A_t - \omega_t A = c_0^2 \nabla A \cdot \vec{k} + \nabla \cdot (c_0^2 A \vec{k}).$$

With $\omega = c_0 k$ and $\vec{c}_g = c_0 \vec{k}/k$ (then $c_0^2 \vec{k} = \omega \vec{c}_g$):

$$-2\omega A_t - \omega_t A = 2\omega \vec{c}_g \cdot \nabla A + A\vec{c}_g \cdot \nabla \omega + \omega A \nabla \cdot \vec{c}_g.$$

Next step multiply with A/ω and regroup

$$-(A^2)_t - \frac{A^2}{\omega} \left(\omega_t + \vec{c}_g \cdot \nabla \omega \right) = \nabla \cdot (\vec{c}_g A^2).$$

Due to (6) terms within last parentheses on l.h.s cancel out:

$$(A^2)_t = -\nabla \cdot (\vec{c}_g A^2). \tag{7}$$

With $E = \frac{1}{2}\rho gA^2$ (energy density) and $\vec{F} = \vec{c}_g E$ (energy flux) equation (7) reads

$$E_t + \nabla \cdot \vec{F} = 0, \tag{8}$$

Averaged energy conservation, as in uniform medium.

Remarks

Remark 1

Similar WKBJ approaches apply to most linear wave equations \Rightarrow result with interpretation as energy conservation is general.

Remark 2

By means of (6) we have

$$(G(\omega)E)_t + \nabla \cdot (G(\omega)\vec{F}) = 0,$$

for any $G(\omega)$.

Remark 3

If we have coupling with a background current it is the wave action (E over some frequency) which is conserved.

Remark 4

To include higher order in ϵ we must expand $A = A_0 + \epsilon A_1 + ...$

OPTIKK;OPPSUMMERING

Stråleteori (geometrisk optikk)

Harmonisk bølge, uniformt medium \Rightarrow dispersjonsrelasjon $\omega = W(\vec{k}; H...)$

Langsom variasjon av medium og bølgetog \Rightarrow lokale k og ω oppfyller dispersjonsrelasjonen (tilnærmet)

Fysisk optikk

Harmonisk bølge, uniformt medium⇒

$$\vec{F} = c_g E, E = E(A^2, ...)$$

Langsom variasjon etc. $\Rightarrow \vec{F} = \vec{c}_g E$ (tilnærmet)

GEOMETRISK OPTIKK; likninger

Strålelikninger

Fra
$$\omega = -\frac{\partial \chi}{\partial t}$$
, $\vec{k} = \nabla \chi$ og $\omega = W(\vec{k}, x_i, t)$
$$\frac{\partial k_i}{\partial t} + \vec{c}_g \cdot \nabla k_i = -\frac{\partial W}{\partial x_i}, \quad i = 1, 2...$$

$$\frac{\partial \omega}{\partial t} + \vec{c}_g \cdot \nabla \omega = \frac{\partial W}{\partial t}$$

Skrevet som Hamiltons kanoniske likninger

$$\begin{array}{rcl} \frac{\mathrm{d}k_i}{\mathrm{d}t} & = & -\frac{\partial W}{\partial x_i}, & i = 1, 2.. \\ \\ \frac{\mathrm{d}x_i}{\mathrm{d}t} & = & \frac{\partial W}{\partial k_i} = (c_g)_i, & i = 1, 2.. \\ \\ \frac{\mathrm{d}\omega}{\mathrm{d}t} & = & \frac{\partial W}{\partial t} \end{array}$$

FYSISK OPTIKK

Transportlikning

Generell energilikning

$$\frac{\partial E}{\partial t} + \frac{\partial F}{\partial x} = 0$$

Innsatt tilnærmelsen $F = c_g E$:

$$\frac{\partial E}{\partial t} + \frac{\partial (c_g E)}{\partial x} = 0$$

der $E = E(A^2, ...)$

Flere dimensjoner

$$\frac{\partial E}{\partial t} + \nabla \cdot (\vec{c}_g E) = 0 \tag{9}$$

...

Utregning av bølgefelt

- $\mathbf{0}$ \vec{k} og ω finnes fra stråleteori
- 2 Transportlikning (9) løses for A

Uniformt medium

$$\omega=W(\vec{k})\Rightarrow \vec{c}_g=c_g(\vec{k})$$
 Strålelikninger
$$\frac{\mathrm{d}k_i}{\mathrm{d}t}=0,\quad i=1,2..$$

$$\frac{\mathrm{d}x_i}{\mathrm{d}t}=0,\quad i=1,2..$$

$$\frac{\mathrm{d}\omega}{\mathrm{d}t}=0$$

 $ec{k}$ og ω bevart langs karakteristikk \mathcal{C} : $\frac{\mathrm{d} ec{r}}{\mathrm{d} t} = ec{c}_g$ $\Rightarrow ec{c}_g$ bevart $\Rightarrow \mathcal{C}$ er rette linjer

Uniformt medium: bølger fra konsentrert forstyrrelse

Alle
$$\mathcal{C}$$
 gjennom $x = t = 0 \Rightarrow c_g = x/t$
 $c_g(k) = x/t \Rightarrow k = k(x/t) \Rightarrow \chi = \int k dx$

Uendelig dyp; stråleteori

$$W = \sqrt{gk} \Rightarrow x/t = c_g = \frac{1}{2}\sqrt{g/k} \Rightarrow k = \frac{1}{4}g\frac{t^2}{x^2} \Rightarrow \chi = -\frac{1}{4}g\frac{t^2}{x} + f(t)$$
Videre $\frac{\partial \chi}{\partial t} = -\omega = -\sqrt{gk} \Rightarrow \chi = -\frac{1}{4}g\frac{t^2}{x} + \text{const}$

Fasefunksjon som fra stasjonær fase.

Uendelig dyp; transportlikning

$$\frac{\partial A^2}{\partial t} + \nabla \cdot (\vec{c}_g A^2) = 0$$

med $c_g = x/t$ omskrives til

$$\frac{\partial xA^2}{\partial t} + \frac{x}{t} \frac{\partial (xA^2)}{\partial x} = 0$$

Generell løsning xA^2 konstant langs $C \Rightarrow$

$$A = x^{-\frac{1}{2}} G\left(\frac{x}{t}\right) = t^{-\frac{1}{2}} \hat{G}\left(\frac{x}{t}\right)$$

Konsistent med stasjonær fase (spektrum $\Rightarrow G$) Tolkning: Energi mellom to C bevart.

Example; inhomogeneous medium

GEOMETRY AND WAVEFIELD.

Plane waves incident on sloping bottom.

Eksempel continues: Green's lov

Plant, normalt infall, h = h(x), $\vec{k} = k\vec{\imath}$

Geometrisk optikk (stråleteori) $\Rightarrow \omega = \text{konst.}, \ k = \omega/c_0, \ \chi = \int k dx$

Transportlikning for plane bølger \Rightarrow

$$\frac{\partial F}{\partial x} = 0 \Rightarrow F = \text{konst.} \Rightarrow c_0 A^2 = \text{konst.}$$

Konstant energifluks

Stråleteori + transportlikning \Rightarrow Greens lov:

$$A = A_0 \left(\frac{h}{h_0}\right)^{-\frac{1}{4}},\tag{10}$$

der A_0 og h_0 beskriver en referansetilstand.

Sammenlikning med nøyaktig numerisk løsning

$$\eta = \hat{\eta}(x)e^{-i\omega t} \Rightarrow \mathsf{ODE}$$
:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(gh(x)\frac{\mathrm{d}\hat{\eta}}{\mathrm{d}x}\right)+\omega^2\hat{\eta}=0.$$

For en x_a slik at $x_a < x_\ell$ (ikom. +refl. bølge)

$$\hat{\eta} = A_0 e^{ik_\ell x} + R e^{-ik_\ell x}, \quad \mathrm{der} \quad \omega = \sqrt{gh_\ell} k_\ell.$$

Gir randbetingelse

$$\frac{\mathrm{d}\hat{\eta}}{\mathrm{d}x} + ik_{\ell}\hat{\eta} = 2iA_0k_{\ell}e^{ik_{\ell}x}, \quad \text{for} \quad x = x_{\mathsf{a}}.$$

Ved $x = xb > x_r$ bare transmittert bølge $\hat{\eta} = Te^{ik_rx}$

$$\frac{\mathrm{d}\hat{\eta}}{\mathrm{d}x} - ik_r\hat{\eta} = 0, \quad \mathrm{der} \quad \omega = \sqrt{gh_r}k_r.$$

2 ordens ODE og 2 randbet. for kompleks $\hat{\eta}$. Tolker: $A = |\hat{\eta}|$

Gentle slope

 $x = x_l = 5$: amplitude 1, periode 8.

$$h_r = 0.2, x_r - x_l = 200$$

Steep slope

 $x = x_l = 5$: amplitude 1, periode 8.

$$h_r = 0.3, x_r - x_l = 10$$

