

- Python divides the operators in the following groups:
 - >Arithmetic operators
 - >Assignment operators
 - >Comparison operators
 - >Logical operators
 - > Identity operators
 - > Membership operators
 - >Bitwise operators

- Python divides the operators in the following groups:
 - >Arithmetic operators

```
Operator Name
                     Example
       Addition
                    x + y
+
       Subtraction
                     x - y
       Multiplication x * y
       Division
                    x/y
%
       Modulus
                     x % y
**
       Exponentiation x ** y
       Floor division x // y
```

Arithmetic Operators on ints and floats

```
    i+j → the sum
    i-j → the difference if both are ints, result is int if either or both are floats, result is float
    i*j → the product
    i/j → division result is float
```

- Python divides the operators in the following groups:
 - >Assignment operators

Operator	Example	Same As
=	x = 5	x = 5
+=	x += 3	x = x + 3
_=	x -= 3	x = x - 3
*=	x *= 3	x = x * 3
/=	x /= 3	x = x / 3
%=	x %= 3	x = x % 3
**_	x **= 3	x = x ** 3

- Python divides the operators in the following groups:
 - >Comparison operators

_			
	Operator	r Name	Example
	==	Equal	x == y
	!=	Not equal	x != y
	>	Greater than	x > y
	<	Less than	x < y
	>= (Greater than or equal to	$x \ge y$
	<=]	Less than or equal to	$x \le y$

• Python divides the operators in the following groups:

>Logical operators

Opera	tor Description	Example
and	Returns True if both statements are true	x < 5 and $x < 10$
or	Returns True if one of the statements is true	x < 5 or x < 4
not	Reverse the result, returns False if the result is true	not(x < 5 and x < 10)

• Python divides the operators in the following groups:

>Logical operators

A	В	A and B	A or B
True	True	True	True
True	False	False	True
False	True	False	True
False	False	False	False

- Python divides the operators in the following groups:
 - > Identity operators

1	

Operator	Description	Example
is Retur	ns true if both variables are the same object	x is y
is not Retur	ns true if both variables are not the same object	x is not y

• Python divides the operators in the following groups:

> Membership operators

Operator	Description	Example
in Retur	ns True if	10 in list1
a varia	able/value found	
in the	sequence	
not in Return	ns True if	10 not in list1
a variabl	e/value not found	
in the	sequence	

此题未设置答案,请点击右侧设置按钮

Bitwise _____ outputs 1 if either of the bits is 1 and outputs 0 if both of the bits are 1.

- A OR
- B AND
- C XOR
- D NOT

• Python divides the operators in the following groups:

>Bitwise operators

Op	erator Name	Description
&	AND	Sets to 1 if both bits are 1
	OR	Sets to 1 if one of two bits is 1
^	XOR	Sets to 1 if only one of two bits is 1
~	NOT	Inverts all the bits
<<	left shift	Shift left from the right, shift 1 bit means multiply by 2
>>	right shift	Shift right from left and keep the sign, shift 1 bit means divided by 2

• Arithmetic Shift:

Both an arithmetic left shift and a logical left shift (<<) correspond to a multiplication by 2 when there is no overflow.

• Arithmetic Shift:

With numbers in twos complement notation, right arithmetic and logic shift (<<) corresponds to a division by 2, with floor truncation for odd numbers

$$x \gg y$$

Returns x by $2**y$.