Ура!

Винни-Пух:)

10/9/2017

Истинная зависимость имеет вид

$$y_i = \beta_1 + \beta_x x_i + \beta_w w_i + u_i$$

Ошибка u_i некоррелирована с регрессорами x_i и w_i .

Проблема в том, что w_i не наблюдаемы.

Оценить β_w мы не надеемся! Мы думаем, есть ли возможность оценить состоятельно хотя бы β_x .

Есть два способа!

Способ 1. Раздобыли proxy для w. Требования к прокси-переменной.

Для удобства записи требований временно предположим, что мы разложили пропущенную переменную на ту часть, которая связана с прокси, и часть, некоррелированную с прокси:

$$w_i = \delta_1 + \delta_p prox y_i + \nu_i$$

- 1. Прокси коррелированна с пропущенной переменной, $Cov(proxy_i, w_i) \neq 0$ или $\delta_p \neq 0$.
- 2. Ошибка u_i некоррелирована с прокси $proxy_i$
- 3. Ошибка ν_i некоррелирована с прокси $proxy_i$ и x_i .

Использование прокси переменной. Строим банальную регрессию y_i на константу, x_i и $proxy_i$. При этом $\hat{\beta}_x$ состоятельная для β_x , а $\hat{\beta}_1$ не состоятельна для β_1 и $\hat{\beta}_{proxy}$ несостоятельная для β_w .

Способ 2. Раздобыли инструмент inst для x. Требования к инструментальной переменной.

- 1. Инструментальная переменная коррелирована с включенным регрессором, $Cov(inst,x) \neq 0$.
- 2. Инструментальная переменная некоррелирована с хвостиком $\beta_w w_i + u_i$, $Cov(inst, \beta_w w_i + u_i) = 0$.

Использование инструментальной переменной. Двухшаговый МНК. Строим регрессию x на константу и inst. Получаем \hat{x} . Строим регрессию y на константу и \hat{x} . При этом $\hat{\beta}_x$ состоятельная для β_x .