Mid-term Assignment Data Warehousing & Data Mining

Name: Parvez, Fuad Al

ID: 17-35187-2

Sec: A

To

Dr. Mahbub Chowdhury Mishu

Department of Computer Science

American International University Bangladesh (AIUB)

I am Choosing Naïve Bayes classification technique.

Naïve Bayes: It is a classification technique based on Bayes' Theorem with an assumption of independence among predictors. In simple terms, a Naïve Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature. The category is determined on the basis of a training set of data which contains observations whose category membership is already known. Bayes Theorem helps us to find the probability of a hypothesis given our prior knowledge.

Choosing Dataset: I have selected this dataset from Kaggle website.

Here,

Total number of Attribute: 5

- Favorite Color Data type Nominal (categorical)
- Favorite Music Genre Data type Nominal (categorical)
- Favorite Beverage Data type Nominal (categorical)
- Favorite Soft Drink Data type Nominal (categorical)
- Gender Data type Nominal (categorical)

Gender represents class attribute.

Total instance: 119

Favorite Color	Favorite	Favorite	Favorite Soft	Gender
	Music Genre	Beverage	Drink	
Cool	Rock	Vodka	7up	Male
Neutral	Hip-hop	Wine	Sprite	Female
Warm	Folk	Whiskey	Coca cola	
	Jazz	Not Drink	Pepsi	
	Pop	Beer	Fanta	
	Electronic	Other	Other	
	R&B and soul			
	Blues	_		

WEKA Process:

Step 1: Original Dataset or Train Dataset

Step 2: Test Dataset

I have made this test dataset by using Weka. Weka can simply make test dataset from any train dataset.

Step 3: Import train dataset

Import train dataset into WEKA. (File name: train dataset.csv)

Step 4: Train Dataset analysis

By using Naïve Bayes algorithm & training set, my train dataset accuracy is 70.5882%

Correctly Classified Instances 84 70.5882 %

Incorrectly Classified Instances 35 29.4118 %

Attribute	Female	Male	
	(0.54)	(0.46)	
Favorite Color			
Cool	36.0	33.0	
Neutral	5.0	9.0	
Warm	26.0	16.0	
[total]	67.0 5		
Favorite Music Genre			
Rock	20.0	17.0	
Hip hop	6.0	10.0	
Folk	5.0	4.0	
Jazz	6.0	2.0	
Pop	24.0	11.0	
Electronic	4.0		
R&B and soul	5.0	9.0	
Jazz/Blues	2.0	1.0	
[total]	72.0		
Favorite Beverage			
Vodka	6.0	10.0	
Wine	12.0	8.0	
Whiskey	11.0		
Not drink	13.0	15.0	
Beer	13.0 13.		
Other	15.0 9		
[total]	70.0 6:		
Favorite Soft Drink			
7UP/Sprite	14.0	11.0	
Coca Cola/Pepsi	32.0	27.0	
Fanta	15.0	12.0	
Other	7.0	9.0	
[total]	68.0	59.0	

Step 5: Test Dataset Analysis from Train Dataset

Import test dataset into WEKA. (File name: test dataset 2.csv)

After run the test dataset, my test dataset accuracy is 75%

Correctly Classified Instances 15 75 %

Incorrectly Classified Instances 5 25 %

Attribute	Female	1
	(0.54)	(0.
Favorite Color		
Cool	36.0	33
Neutral	5.0	9
Warm	26.0	16
[total]	67.0	58.
Favorite Music Genre		
Rock	20.0	17.
Hip hop	6.0	10.
Folk	5.0	4.
Jazz	6.0	2.
Pop	24.0	11.
Electronic	4.0	9.
R&B and soul	5.0	9.
Jazz/Blues	2.0	1.
[total]	72.0	63.
Favorite Beverage		
Vodka	6.0	10.
Wine	12.0	8.
Whiskey	11.0	6.
Not drink	13.0	15.
Beer	13.0	13.
Other	15.0	9.
[total]	70.0	61.
Favorite Soft Drink		
7UP/Sprite	14.0	11.
Coca Cola/Pepsi	32.0	27.
Fanta	15.0	12.
Other	7.0	9.
[total]	68.0	59.

Step 6: Cross Validation Analysis

The accuracy of cross validation is 60.50%. I took 15 Folds to test the dataset.

Correctly Classified Instances 72 60.5042 %

Incorrectly Classified Instances 47 39.4958 %

Attribute	Female	Male
	(0.54)	(0.46)
Favorite Color		
Cool	36.0	33.0
Neutral	5.0	9.0
Warm	26.0	16.0
[total]	67.0	58.0
Favorite Music Genre		
Rock	20.0	17.0
Hip hop	6.0	10.0
Folk	5.0	
Jazz	6.0	2.0
Pop	24.0	11.0
Electronic	4.0	9.0
R&B and soul	5.0	9.0
Jazz/Blues	2.0	1.0
[total]	72.0	63.0
Favorite Beverage		
Vodka	6.0	10.0
Wine	12.0	
Whiskey	11.0	6.0
Not drink	13.0	15.0
Beer	13.0	13.0
Other	15.0	
[total]	70.0	61.0
Favorite Soft Drink		
7UP/Sprite	14.0	11.0
Coca Cola/Pepsi	32.0	27.0
Fanta	15.0	12.0
Other	7.0	
[total]	68.0	59.0

Step 7: Percentage Split Analysis

The accuracy of my dataset's percentage split is 62.5%

Correctly Classified Instances 30 62.5 %

Incorrectly Classified Instances 18 37.5 %

Attribute	Female	Male
	(0.54) (0.46)
Favorite Color		
Cool	36.0	33.0
Neutral	5.0	9.0
Warm	26.0	16.0
[total]	67.0	58.0
Favorite Music Genre		
Rock	20.0	17.0
Hip hop	6.0	10.0
Folk	5.0	4.0
Jazz	6.0	2.0
Pop	24.0	11.0
Electronic	4.0	9.0
R&B and soul	5.0	9.0
Jazz/Blues	2.0	1.0
[total]	72.0	63.0
Favorite Beverage		
Vodka	6.0	10.0
Wine	12.0	8.0
Whiskey	11.0	6.0
Not drink	13.0	15.0
Beer	13.0	13.0
Other	15.0	9.0
[total]	70.0	61.0
Favorite Soft Drink		
7UP/Sprite	14.0	11.0
Coca Cola/Pepsi	32.0	27.0
Fanta		12.0
Other	7.0	9.0
[total]	68.0	59.0

Step 8: Predict the result

Here, I will take test dataset but gender attribute will remain empty as I will predict this.


```
Classifier output
  === Predictions on test set ===
               actual predicted error prediction
         1
                   1:?
                       1: Female
                                       0.642
                                        0.806
          2
                   1:?
                          2:Male
          3
                   1:?
                       1:Female
                                        0.693
          4
                   1:?
                          2:Male
                                        0.507
          5
                   1:?
                        1:Female
                                        0.503
          6
                   1:?
                        1:Female
                                        0.566
          7
                   1:2
                        1:Female
                                        0.821
          8
                   1:?
                       1: Female
                                       0.822
          9
                   1:?
                       1:Female
                                        0.738
        10
                   1:? 1:Female
                                       0.693
        11
                   1:?
                          2:Male
                                       0.533
        12
                   1:?
                        1:Female
                                       0.833
        13
                   1:?
                        1:Female
                                       0.775
        14
                   1:?
                          2:Male
                                       0.724
        15
                          2:Male
                                       0.913
                   1:2
        16
                                        0.852
                   1:?
                        1:Female
        17
                   1:?
                        1:Female
                                       0.748
         18
                   1:?
                         1:Female
                                        0.815
        19
                   1:?
                          2:Male
                                        0.622
        20
                   1:?
                                        0.636
                       1: Female
  === Evaluation on test set ===
```


Reason for choosing Naïve Bayes:

- Better algorithm for working with text classification.
- Relatively simple approach.
- Independent assumption.
- Dataset analysis accuracy is good enough.

Reason for choosing the Dataset:

The dataset I have been choose from Kaggle is good dataset. As the dataset contains 5 Attribute with 119 instances, so it is kind of average big data. Big dataset analysis showed me much better idea.

Discussion:

- As I have used WEKA software for the first time, faced some difficulties by using it.
- Some types of data were not working in WEKA, so chosen a relevant simple dataset was challenging.
- As WEKA could accept .csv format file, I have used this type of data file in excel.
- WEKA runtime is so fast.
- As I have learned 3 classifier technique, it was more challenging which one to use. Finally, I have selected the Naïve Bayes.
- I have checked train dataset accuracy, test set accuracy, cross validation, percentage split & prediction of a target attribute.