

Image Analysis and Object Recognition

Exercise Sessions
Summer Semester 2024

(Course materials for internal use only!)

Computer Vision in Engineering – Prof. Dr. Rodehorst M.Sc. Mariya Kaisheva mariya.kaisheva@uni-weimar.de

Contact Data

M. Sc. Mariya Kaisheva

E-Mail: mariya.kaisheva@uni-weimar.de

Office: Schwanseestraße 143, room 1.15

Phone: +49 (0) 36 43/58 38 65

Consultation Hours: on request

Biweekly meetings:

- Thursdays starting at **11:15** (starting time was updated after the first lab class)
- Lecture Hall 6, Coudraystraße 9 A

Six assignments:

- to be solved in small groups (3 members per group)
- serve as exam prerequisite

Final project:

- to be solved in small groups (groups stay the same throughout the semester)
- required for the full completion of the course

Course materials:

- Moodle
- University webpage

Course materials on Moodle:

- lecture slides
- exercise class materials
- assignment submissions
- exam preparation materials

learning materials will be uploaded on a regular basis

Course materials on Moodle:

- lecture slides
- exercise class materials
- assignment submissions
- exam preparation materials
- message board
- discussion forum

If you are looking for group members, **use the forum** to inform your classmates.

Agenda

Topics:

Assignment 1. Image enhancement, Binarization, Morphological operators

Assignment 2. Gradient of Gaussian filtering, Förstner interest operator

Assignment 3. Shape detection based on Hough-voting

Assignment 4. Filtering in the frequency domain, Fourier descriptors for shape recognition

Assignment 5. Image segmentation using clustering

Assignment 6. Convolutional neural networks for image classification

Final Project. - Will be announced during the last exercise class -

Agenda

Start date and submission deadlines:

Assignment 1. 18.04-24 – 01.05.24

Assignment 2. 02.05.24 – 15.05.24

Assignment 3. 16.05.24 – 29.05.24

Assignment 4. 30.05.24 – 12.06.24

Assignment 5. 13.06.24 – 26.06.24

Assignment 6. 27.06.24 – 10.07.24

Final Project. 11.07.24 – 22.09.24

Wednesday by 23:00

(Central European Time)

Small groups

- 3 people per group
- group **members stay the same** during the semester
- group selection via Moodle –
 will be possible until 28th of April

Disclaimer: All students who have previously completed the assignments, please contact me as soon as possible!

Necessary software

- licensed product
- installed in the LiNT-Pool (room 2.17 in S143)

Check the <u>university webpage</u>* for

information on MATLAB licences

needed for the lab classes:image processing toolbox

- free software
- required packages: general, control, signal, image

Deliverables

- with each submission provide:
 - well commented source code (*.m files)
 - images used as input (if applicable)
 - short documentation (if applicable)
- upload using Moodle
- only one submission per group needed
- do NOT include personal data like names and student IDs in the submitted code file(s)

Assignment evaluation

- no direct effect on the final grade
- exam admission: at least 5 successfully completed assignments
- grading on a **pass-fail** principle
- successfully acquired exam admission may be preserved (within 5 years time period) until future exam attendance
- plagiarism will be sanctioned **work independently**

