COM120 – SISTEMAS OPERACIONAIS – EP05 ESCALONAMENTO

Matheus Martins Batista¹ Carlos Minoru Tamaki²

1- I) **FIFO** não preemptivo:

Ordem de execução x Tempo:

P0 →	P1 →	P2 →	P3 →	P4
0-60	60-85	85-100	100-115	115-125

Processo x Tempo

Legenda: Cinza – Tempo de espera (Tempo ocioso desde a chegada)

II) **SJF** não preemptivo:

Ordem de execução x Tempo:

P 0→	P2 →	P 4→	P3 →	P1
0-60	60-75	75-85	85-100	100-125

Processo x Tempo

Legenda: Cinza – Tempo de espera (Tempo ocioso desde a chegada)

¹ Graduando em Ciências da Computação pela Universidade Federal de Itajubá – E-mail: matmb@unifei.edu.br

² Professor orientador. Mestre em Ciência e Tecnologia da Computação. Docente na Universidade Federal de Itajubá – E-mail: minoru@unifei.edu.br

III) **Round Robin** (Quantum = 10) não preemptivo por prioridade:

Ordem de execução

	P 0→											
0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	70-75	75-80	90 - 100	100 - 105	105- 125

Processo x Tempo

Legenda: Cinza – Tempo de espera (Tempo ocioso desde a chegada)

IV) **FIFO** preemptivo por prioridade

Ordem de execução:

P 0→	P2 →	P 1→	P3 →	P4
0-60	60-75	75-100	100-115	115-125

Processo x Tempo

Legenda: Cinza – Tempo de espera (Tempo ocioso desde a chegada)

2 - Processos que trabalham com um sistema de prioridades (IV) estão sujeitos a sofrer com Inanição (*Starvation*), já que um processo de prioridade baixa é constantemente adiado e pode nunca ser executado. O SJF (II) é um caso de prioridade onde o menor tempo de execução define a prioridade mais alta e está sujeito a inanição de tarefas mais longas. Se o fluxo de tarefas curtas chegando ao sistema for elevado, as tarefas mais longas nunca serão escolhidas para receber o processador, esperando na fila sem poder executar indefinidamente. Esse impasse pode ser resolvido através de técnicas de envelhecimento de tarefas (*Aging*), com o

passar do tempo as prioridades dos processos que ainda não foram executados são incrementadas.

3 - Processos, tempo de execução e prioridade:

$$D - 4min - 1(menor)$$

$$E - 8min - 4$$

Caso I RR (Quantum de 1 minuto):

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow A \rightarrow B \rightarrow D \rightarrow E \rightarrow A \rightarrow B \rightarrow D \rightarrow E \rightarrow A \rightarrow B \rightarrow E \rightarrow A \rightarrow E \rightarrow E \rightarrow A \rightarrow A \rightarrow A \rightarrow A$$

Turnaround - B(23min) + E(27min) + A(30min) + C(8min) + D(17min)
(23 + 27 + 30 + 8 + 17)
$$/5 = 21min$$

Caso II FIFO (10,6,2,4,8):

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$$

Turnaround –
$$A(10min) + B(16min) + C(18min) + D(22min) + E(30min)$$

(10 + 16 + 18 + 22 + 30) /5 = 19.2 min

Caso III SJF:

$$C \rightarrow D \rightarrow B \rightarrow E \rightarrow A$$

Turnaround -
$$C(2min) + D(6min) + B(12min) + E(20min) + A(30min)$$

(2 + 6 + 12 + 20 + 30) /5 = 14min

Caso IV Tarefas Múltiplas:

$$B \rightarrow E \rightarrow A \rightarrow C \rightarrow D$$

Turnaround – B(6min) + E(14min) + A(24min) + C(26min) + D(30min)

$$(6 + 14 + 24 + 26 + 30) / 5 = 20min$$

Legenda: Cinza – Tempo de espera (Tempo ocioso desde a chegada)

Legenda: Cinza – Tempo de espera (Tempo ocioso desde a chegada)

REFERÊNCIAS

SILBERSCHATZ, Abraham; GALVIN, Peter Baer; GAGNE, Greg. **Fundamentos de sistemas operacionais**. 9. ed. [*S. l.*]: Livros Técnicos e Científicos Editora, 2015. Cap. 6, p. 330-361, 1012 p. ISBN 978-1-1180-6333-0.

MORENO, Edson. **Sistemas Operacionais**. [S. 1.], 22 ago. 2012. Disponível em: https://www.inf.pucrs.br/~emoreno/undergraduate/CC/sisop/class_files/Aula04.pdf. Acesso em: 16 out. 2021.

MAZIERO, Carlos. **Escalonamento de processos**. [S. l.], 11 dez. 2012. Disponível em: https://joaoricardao.files.wordpress.com/2012/07/algoritmos_escalonamento.pdf. Acesso em: 16 out. 2021.

JOHANN, Marcelo. **Algoritmos de Escalonamento**. [S. 1.], 17 set. 2010. Disponível em: http://www.inf.ufrgs.br/~johann/sisop1/aula10.scheduling.pdf. Acesso em: 16 out. 2021.