General topology

The Problems

Autumn 2020

Abstract topological spaces

Problem 1

Let $X \subseteq \mathbb{R}^n$ be a nonempty subspace, and let $S \subseteq X$ be a subset. Show that the following conditions are equivalent.

- There is a point $x \in X$ such that for every $N \in \mathbb{R}$, there exists $s \in S$ such that d(x, s) > N.
- For every point $x \in X$ and every $N \in R$, there exists $s \in S$ such that d(x,s) > N.

We'll say that *S* is *unbounded* if either (and therefore both) of these conditions is satisfied. Otherwise, we'll say that *S* is *bounded*.

Notation. The next two problems refer to the following notation. Let $X \subseteq \mathbf{R}^n$ be a nonempty subspace; denote by τ the subspace topology on X. Let X^+ be the set $X \cup \{\infty\}$, where $\infty \notin X$; define $\tau^+ : \mathbf{P}(X^+) \to \mathbf{P}(X^+)$ as follows: for any set $S \subseteq X^+$,

$$\tau^+(S) \coloneqq \begin{cases} \tau(S) & \text{if } S \subseteq X \text{ and } S \text{ is bounded;} \\ \tau(S) \cup \{\infty\} & \text{if } S \subseteq X \text{ and } S \text{ is unbounded;} \\ \tau(S \setminus \{\infty\}) \cup \{\infty\} & \text{if } \infty \in S. \end{cases}$$

Problem 2

Prove that τ^+ is a topology on X^+ .

Problem 3

Let $\phi: S^n \to (\mathbf{R}^n)^+$ be the map given by the rule

$$\phi(x_0, x_1, \dots, x_n) \coloneqq \begin{cases} \left(\frac{x_1}{1 - x_0}, \frac{x_2}{1 - x_0}, \dots, \frac{x_n}{1 - x_0}\right) & \text{if } x_0 \neq 1; \\ \infty & \text{otherwise.} \end{cases}$$

Prove that ϕ is a homeomorphism, where $(\mathbf{R}^n)^+$ is given the topology τ^+ described above.

(With this in mind, let's reflect on the 3-sphere S^3 , which is homeomorphic to $(\mathbf{R}^3)^+$. Now \mathbf{R}^3 is pretty easy to visualize, so all you have to imagine is that you've added a single point at ∞ to \mathbf{R}^3 . Try to picture it!)

Problem 4

Define the subspace

$$D^2 := \{x \in \mathbb{R}^2 : ||x|| \le 2\} \subset \mathbb{R}^2$$
.

Construct a homeomorphism from the *solid torus* $ST^2 = D^2 \times S^1 \subset \mathbb{R}^4$ and the subspace

$$S \coloneqq \{(x,y,z) \in {I\!\!R}^3: (2-\sqrt{x^2+y^2})^2 + z^2 \le 1\} \subset {I\!\!R}^3 \; .$$

(I suggest drawing a picture of this!)

Problem 5

Keep the notations from the previous problem. Consider the interior ιS of S as a subset of \mathbb{R}^3 , and therefore as a subset of $(\mathbb{R}^3)^+$, which is (as you've proved) homeomorphic to S^3 . Prove that $(\mathbb{R}^3)^+ \setminus \iota S$ is homeomorphic to ST^2 .

(Reflect on the meaning of the following claim: S^3 is the union of two solid tori along a torus T^2 .)

Problem 6

Let X be a topological space. Construct a topological space P_X and a continuous surjection $f: X \to P_X$ such that for every $p \in P_X$, the fiber $f^{-1}\{p\}$ is connected.

Problem 7

Construct a basis for the Cantor space *C* that consists of clopen subsets.

Extra problems (not to be handed in)

Problem 8

Let (X, d) be a metric space. Let D > 0. Define a new metric $d' : X \times X \to \mathbf{R}$ by the formula

$$d'(x, y) := \min(d(x, y), D)$$
.

Prove that the topology τ_d on X corresponding to d coincides with the topology $\tau_{d'}$ on X corresponding to d'.

Problem 9

The *Sierpiński topological space S* is the Alexandroff topological space attached to the poset $\{0,1\}$, where 0 < 1. For any topological space X, construct a bijection between the set $\mathscr{C} \subseteq P(X)$ of closed sets of X and the set Map(X,S) of continuous maps $X \to S$.

Problem 10

A *filtration* on a topological space *X* is a sequence of subsets

$$X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X$$

such that for each $i \in \mathbb{N}$, the subset $X_i \subseteq X$ is closed, and the union

$$\bigcup_{i \in N} X_i$$

is again X.

Construct a topological space Z such that for any topological space X, the set Map(X, Z) of continuous maps $X \to Z$ is in bijection with the set \mathcal{F} of filtrations on X.

Notation. let (X, τ) be a topological space. The formation of the *closure* is an operation

$$\tau \colon \boldsymbol{P}(X) \to \boldsymbol{P}(X)$$

on the power set P(X) (i.e., a map from P(X) to itself). The formation of the complement is an operation

$$\kappa \colon \mathbf{P}(X) \to \mathbf{P}(X)$$
.

Thus $\kappa(S) = X \setminus S$.

Please note that τ is inclusion-preserving, and κ is inclusion-reversing; also of course $S \subseteq \tau(S)$. Finally, please observe that τ is *idempotent*,³ and that κ is *involutive*.⁴

We are interested in the operations $P(X) \rightarrow P(X)$ that we can obtain by composing τ and κ repeatedly. For example, the *interior* operator is

$$\iota \coloneqq \kappa \tau \kappa \colon \mathbf{P}(X) \to \mathbf{P}(X)$$
.

Note that ι is inclusion-preserving⁵ and ι is idempotent.

Many of the most important kinds of subsets of topological spaces are identified using τ and κ . For example, a subset $S \subseteq X$ is *closed* if and only if it is its own closure: $S = \tau(S) = S$; it is *open* if and only if it is its own interior: $S = \iota(S) = \kappa \tau \kappa(S).$

Problem 11

Write down all the subsets of R (always with the standard topology) you can obtain by repeatedly applying the closure τ and the interior ι to the set

$$S \coloneqq \{-30\} \cup]-20, 0[\cup]0, 20[\cup (\mathbf{Q} \cap [25, 30[)].$$

Problem 12

A subset $S \subseteq X$ is said to be *dense* if $\tau(S) = X$. Find a countable dense subset of R.

Problem 13

A subset $S \subseteq X$ is said to be *co-dense* if it has empty interior, so that $\iota(S) = \emptyset$. Give an example of an uncountable co-dense subset $S \subseteq R$.

Problem 14

A subset $S \subseteq X$ is said to be *nowhere dense* if the interior of its closure is empty; that is, *S* is nowhere dense if $\iota\tau(S) = \emptyset$, or equivalently, $\kappa\tau\kappa\tau(S) = \emptyset$. Any nowhere dense subset of a topological space is co-dense, but give an example of a co-dense subset of **R** that is not nowhere dense.

 5 Indeed, if you write down a sequence of τ 's and κ 's, then that operator will be inclusionpreserving if and only if there are an even number of κ 's and inclusion-reversing if and only if there are an odd number of κ 's.

¹ That is, if $S \subseteq T$, then $\tau(S) \subseteq \tau(T)$.

² That is, if $S \subseteq T$, then $\kappa(S) \supseteq \kappa(T)$.

³ That is, $\tau^2 = \tau$

⁴ That is, $\kappa^2 = id$.

Problem 15

Show that if $T \subseteq X$ is a closed co-dense subset, then any subset $S \subseteq T$ is nowhere dense.

Problem 16

Let $Z\subseteq X$. Prove that Z is the closure of some open subset of X if and only if Z is the closure of its interior, so that $Z=\tau\iota(Z)$, or equivalently, $Z=\tau\kappa\tau\kappa(Z)$.

Problem 17

Show that

 $\tau\kappa\tau=\tau\kappa\tau\kappa\tau\kappa\tau\;.$

Deduce that

 $i\tau = i\tau i\tau$ and $\tau i = \tau i\tau i$

Problem 18

Let $S \subseteq X$. What is the maximum number of sets one can form by repeatedly applying the closure and complement operators to S?