ECE 382N-Sec (FA25):

L2: Side Channels in Public Clouds

Neil Zhao neil.zhao@utexas.edu

Previously on ECE 382N: Sharing Resource => Side Channel

^{*}Characters are based on https://xkcd.com/2176 and https://xkcd.com/1808 (under a CC Attribution-NonCommercial 2.5 License)

Two Steps of a Side-Channel Attack

Step 1: Co-location

Victim

Attacker

Victim

Attacker

Attacker

Three Common Co-location Scenarios

Why Public Cloud?

- Public cloud fundamentally relies sharing hardware resources among tenants
- Your VMs are (very likely) always co-located with someone else's VMs
 - Unlike the local setting, the attacker doesn't need to trick you to visit a malicious website or download a malicious app
- Moreover,
 - You cannot control who your "neighbors" are
 - You don't even know who your "neighbors" are

Why Side Channels in Public Cloud is Hard?

Challenge 1: Co-location with the victim in a vast datacenter

Why Side Channels in Public Cloud is Hard?

Challenge 2: Production cloud is noisy

Why Side Channels in Public Cloud is Hard?

Challenge 3: Modern clouds (e.g., FaaS) are dynamic

Cloud Vendors Claim Side-Channel Attacks are Impractical

Example: AWS Whitepaper – The Security Design of the AWS Nitro System (Nov. 2022)

Paraphrased:

"Last-level cache (LLC) Prime+Probe is impractical due to the noise; therefore, our side-channel mitigations are very strong even if we do not protect VMs against LLC Prime+Probe"

Let's Start with Co-location

CCS '09

Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party Compute Clouds

Thomas Ristenpart* Eran Tromer† Hovav Shacham* Stefan Savage*

*Dept. of Computer Science and Engineering University of California, San Diego, USA {tristenp,hovav,savage}@cs.ucsd.edu

3085 citations to date

TComputer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, USA
tromer@csail.mit.edu

Tips:

- Be the first
- Find a catchy title
- Form a strong team

Threat Model

- Attacker-victim co-location is possible (i.e., not sole-tenancy)
- Cloud vendors are trusted
- The attacker is a normal cloud user
 - Has access to typical cloud interfaces available to any customer
 - Can launch many VM instances (20 concurrent VMs)
 - Can run arbitrary code within these VM instances
- The attacker can interact with the victim (e.g., trigger the victim's execution) and has prior knowledge about the victim
- May target a group of users or a specific victim

Launching an EC2 VM on AWS (in 2009)

These three parameters determine where a VM is placed

Networking of VMs in AWS (in 2009)

Hypothesis: a VM's internal IP depends on its where the VM is placed

Cloud Cartography

- Method: Launch VMs with different instance types in different zones, record their internal IPs
- Overall findings:
 - Different availability zones use distinct ranges of internal IP addresses
 - An IP /24 prefix (e.g., 10.252.10.*) mostly corresponds to a specific instance type

Network-Based Co-location Checks

VMs 1 and 2 are likely co-located if they have:

- The same IP address of the management Xen VM (i.e., Dom0)
 - By tracerouting from VM1 to VM2
- Small network round-trip time
 - By pinging VM2 from VM1
- Numerically-close internal IP addresses (within 7)
 - By resolving both VMs' domain names within EC2

Verifying Co-location With a Covert Channel

Send a random 5-bit message

Shared Hard Disk

EC2 VM Placement (in 2009)

Empirical observations

- VMs from the same account never co-locate
 - Good for reliability
 - Also good for the attacker!
- Placement locality:
 - Sequential locality: A new VM prefers the host of a recently terminated VM
 - Parallel locality: Two VMs launched around the same time prefer the same host

Brute-Force Placement

Abusing Placement Locality

Parallel locality: Two VMs launched around the same time prefer the same host

40% of the time the attacker succeeds

Prime+Trigger+Probe

- Coarse-grained information leakage
- Can detect co-location without network-based techniques
- Can detect keystrokes (in a local environment) with a time resolution of 13ms

Gaming the OS Thread Scheduler

Focused mostly on Linux Completely Fair Scheduler (CFS)

Some Follow-Up Work (Around 2015)

Seriously, get off my cloud! Cross-VM RSA Key Recovery in a Public Cloud

Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui, Thomas Eisenbarth, Berk Sunar Worcester Polytechnic Institute, Worcester, MA, USA Email:{msinci, bgulmezoglu, girazoki, teisenbarth, sunar}@wpi.edu

Demonstrated LLC Prime+Probe on AWS

Some Follow-Up Work (Around 2015)

A Placement Vulnerability Study in Multi-Tenant Public Clouds

Venkatanathan Varadarajan, *University of Wisconsin—Madison;* Yinqian Zhang, The Ohio State University; Thomas Ristenpart, Cornell Tech; Michael Swift, University of Wisconsin—Madison

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/varadarajan

High-speed covert channel -> Fast co-location detection

A Measurement Study on Co-residence Threat inside the Cloud

Zhang Xu, College of William and Mary; Haining Wang, University of Delaware; Zhenyu Wu, NEC Laboratories America

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/xu

Revisited network-based co-location tests

What Changed from 2009 and 2015

- Virtual private cloud => network isolation between tenants, cloud vendors hide traceroute information
- More servers => Harder to co-located
- More powerful hardware => More tenants on the same node and thus more noise
- The widespread of non-inclusive LLC
- Container + Function-as-a-Service (FaaS)
 - Short lifetime
 - High background noise

Cloud vendor automatically launches a container instance (The instance placement is managed by the vendor)

Cloud vendor launches more instances to handle traffic increases

Cloud vendor automatically terminates idle instances

Fog of War: Container Instance Placement

Idea: Fingerprint Host → Reverse Engineer Placement Behavior

Accurate host fingerprinting

Understand container placement

Idea: Fingerprint Host → Reverse Engineer Placement Behavior

Accurate host fingerprinting

Understand container placement

Insight 1: Physical Host's Boot Time as Fingerprint

Challenge: Host Information is Hidden Due to Sandboxing

Insight 2: Bypassing Software Protection by Asking the Hardware

Derive Boot Time From Timestamp Counter

Verifying Co-Location

Scalability issue: it requires $O(N^2)$ pairwise tests to verify N containers

^{*} Evtyushkin et al., Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations (CCS '16)

 A_1, A_2, A_3 do not co-locate with any other instance (i.e., they are *single instances*)

A₄ and A₅ are co-located

 A_3 , A_4 , A_5 are co-located

 A_2, A_3, A_4, A_5 are co-located? Not sure!

 A_2, A_3, A_4, A_5 are co-located? Not sure!

Batch Testing Strategies

Truly not co-located

Truly co-located

Batch test all instances at once

Batch test 3 instances at once

If fingerprints are accurate, they can provide hints on which instances are likely co-located

All false positives are identified, proceed to find false negatives

4 batch tests instead of $9 \times 8/2 = 36$ pairwise tests

More discussion in the post-lecture reading

Host Fingerprints are Highly Accurate

For each pair of container instances

- **False positive (FP):** same fingerprints but not co-located
- **False negative (FN):** different fingerprints but co-located
- Measure accuracy in three data center regions (us-central1/east1/west1)
- Repeat measurements five times in each data center region

Average FN rate: 0.00%

Average FP rate: 0.02%

© 14 out of 15 measurements generate perfect fingerprints (no FP nor FN)

Understanding Instance Placement Policy

Observation 1: An Account Has a Preferred Set of Hosts

Why: Affinity scheduling to reduce communication overhead

Observation 2: Different Accounts Have Different Preferred Hosts

Implication: Low chance of co-location with a target user

Observation 3: Repeated Launches Spread Instances

Observation 3: Repeated Launches Spread Instances

Observation 3: Repeated Launches Spread Instances

Why: Repeated launches ⇒ User has high demand ⇒ Load balance

Evaluation: Co-Location with Victims

Victim coverage: Percentage of victim instances that are co-located with the attacker

High Victim Coverage and Low Attack Cost

Average Victim Instance Coverage (3 repetitions in each region)

Takeaway: High victim coverage and low attack cost

LLC Prime+Probe Attack with an Eviction Set

Eviction set ⇒ Monitor memory accesses to an LLC set with **Prime+Probe**

An Unprivileged Attacker Does Not Know the Target Set

Target set: An LLC set accessed by the victim in a secret-dependent manner

Step 1: Build Many Eviction Sets

Attacker needs an eviction set for every LLC set in the system

Step 2: Identify Target LLC Set to Monitor

Attacker collects an access trace from *each* LLC set ⇒ Checks whether the access trace matches victim's access behavior

Step 2: Identify Target LLC Set to Monitor

Attacker collects an access trace from *each* LLC set ⇒ Checks whether the access trace matches victim's access behavior

Step 3: Extract Information from the Victim

Attacker monitors the target set and extracts the sensitive information

Victim: Elliptic Curve Digital Signature Algorithm (ECDSA)

Target victim: A vulnerable ECDSA program from OpenSSL 1.0.1e

Setup: The victim runs in a container owned by a different Google account

Simplified victim code

```
for bit in secret_nonce {
    // ...
    if (!bit) {
        Fetch Victim Address;
    }
    // ...
    Fetch Victim Address;
}
```

Expected Access Trace from the Target Set

Actual Access Traces Collected in Google Cloud

New Technique: Identify Target Set via Spectral Analysis

Intuition: Victim accesses are periodic ⇒ Spectral analysis

New Technique: Identify Target Set via Spectral Analysis

Intuition: Victim accesses are periodic ⇒ Spectral analysis

Result: Find the target set in ~3 minutes, 74% success rate

Legends

- Attacker Container
- Victim Container
- :: Task Running
- ✓ Task Completed
- X Task Failed
- Victim Found

Attack stage:

Not Started

Preflight Next Repeat Reset

Running Time: 0.0s

Attacker Count: 0

Server Count: 0

Cost: \$0

Attack Traces:

WebSocket Status: Connected

Mode: Live Switch

Extracted Traces

Percentage of Secret Bits Extracted: 88.4%; Error rate: 2.8%;

Next Two Lectures: Defenses to Side Channel

- Partitioning => Limit the sharing
- Randomization => Obfuscate the usage
- Detection => Catch the offender

A Few Announcements and Reminders

- Please sign up for paper discussion if you haven't
 - Will randomly map students to papers after Weds
- I will go over some of the paper reviews next lecture and answer the discussion questions. I'll grade them later this week
- May further reduce the reading load
 - 2 pre-lecture + 1 review / week or
 - 2 reviews / week