# MAXIMUM LIKELIHOOD DECISION (ML Decision)

# MATCHED FILTER

Received Signal r(t) = g(t) + n(t) AWGN

g(t) is known to the receiver (exists for  $0 \le t \le T$ )

(Additive White Gaussian Noise)



OPTIMAL (FILTER)
in the sense that the SIGNAL TO NOISE RATIO at the output is MAXIMIZED



# Matched filter & Correlator



# Digital Communication Receiver

Received Signal r(t) = g(t) + n(t)g(t) is known to the receiver (exists for  $0 \le t \le T$ )







Dr. Mala John

Department of Electronics Engineering





# Digital Communication Receiver

Received Signal r(t) = g(t) + n(t)g(t) is known to the receiver (exists for  $0 \le t \le T$ )







Dr. Mala John

Department of Electronics Engineering

#### MATCHED FILTER



$$f_{R}(\mathbf{r} | \mathbf{s}_{k}) = (\pi N_{0})^{-N/2} \exp \left[ -\frac{1}{N_{0}} \sum_{j=1}^{N} (\mathbf{r}_{j} - s_{kj})^{2} \right] \qquad k = 1, 2, \dots, M$$

$$\ln \left[ f_{R}(\mathbf{r} | \mathbf{s}_{k}) \right] = -\frac{N}{2} \ln(\pi N_{0}) - \frac{1}{N_{0}} \sum_{j=1}^{N} (\mathbf{r}_{j} - s_{kj})^{2} \qquad k = 1, 2, \dots, M$$

 $P(\mathbf{s}_{i} \text{ sent} | \mathbf{r}) \ge P(\mathbf{s}_{k} \text{ sent} | \mathbf{r}), \text{ for all } k \ne i$ 

**RECEIVER** 

P(s<sub>m</sub> sent/when 'r' is received) --- is maximum

Decision S<sub>m</sub> - Transmitted symbol



Maximum a posteriori decision

$$P\left(s_{m} \; transmitted \; \middle| 'r' is \; received \right) = \frac{P\left('r' is \; received \; \middle| \; s_{m} \; transmitted \; \right) \; P\left(s_{m} \; Transmitted \right)}{P\left(\middle| 'r' is \; received \right)}$$

 $\mathbb{P}(\slash r'r')$  is received ) has no role to play in decision process

 $f_R$  ('r'is received  $|s_m|$  transmitted)

When the transmitted symbols are equiprobable

Find out  $\S_m$  that maximises the conditional probability ML Decision (Maximum likelihood decision)  $P\left('r'is\ received\ |s_m\ transmitted\right)$ equivalently  $\text{Find out }\S_m \text{ that maximises the conditional probability density function}$ 



TRANSMITTED SYMBOL SET 
$$\{S_1(t), S_2(t), \dots, S_M(t)\}$$
  
 $r(t) = S_k(t) + n(t)$ 

### Maximum a posteriori probability (MAP) Decision

MAP Decision  $P[S_j(t) \text{ sent } / \overline{r}] > P[S_k(t) \text{ sent } / \overline{r}]$  for all  $k \neq j$ 

MAP Decision Received Symbol is S<sub>i</sub>(t)

### **ML Decision**

If the symbols are equiprobable i.e.  $P(s_1) = P(S_2) = ... = P(S_M)$ MAP Decision  $\rightarrow$  ML Decision (Maximum Likelihood Decision)

ML Decision  $f_{R/S_i}(\overline{r}/S_i(t)) > f_{R/S_k}(\overline{r}/S_k(t))$  for all  $k \neq j$ 

ML Decision Received Symbol is S<sub>i</sub>(t)

Dr. Mala John

Department of Electronics Engineering

ML Decision (Maximum likelihood decision)

equivalently

MATCHED FILTER

BANK OF CORRELATORS  $\bar{r} = \begin{pmatrix} s_{k1} + \tilde{n}_{1} \\ s_{k2} + \tilde{n}_{2} \\ & \end{pmatrix}$ MATCHED FILTER

MIL DECISION

MAXIMUM LIKELIHOOD DECISION

Find out  $S_m$  that maximises the conditional probability density function

$$f_R$$
 ('r'is received |  $s_m$  transmitted)

$$f_{R}^{c}(\mathbf{r}, |\mathbf{s}_{k}) = (\pi N_{0})^{-N/2} \exp\left[-\frac{1}{N_{0}} \sum_{j=1}^{N} (\mathbf{r}_{j} - s_{kj})^{2}\right] \qquad k = 1, 2, \dots, M$$

Which sm maximises this function?

Log Likelihood function  $\ln \left[ f_{\mathbf{R}}(\mathbf{r} | \mathbf{s}_k) \right] = -\frac{N}{2} \ln(\pi N_0) - \frac{1}{N_0} \sum_{j=1}^{N} (\mathbf{r}_{ij} - s_{kj})^2 \qquad k = 1, 2, \dots, M$ 





$$\ln \left[ f_{R}(\mathbf{r} | \mathbf{s}_{k}) \right] = -\frac{N}{2} \ln(\pi N_{0}) - \frac{1}{N_{0}} \sum_{j=1}^{N} (\mathbf{r}_{j} - \mathbf{s}_{kj})^{2} \qquad k = 1, 2, \dots, M$$

set 
$$\hat{\mathbf{s}} = \mathbf{s}$$
, if

Log likelihood function

 $\ln[f_{R}(\mathbf{r} | \mathbf{s}_{k})]$  is maximum for k = i

$$-\frac{1}{N_0} \sum_{j=1}^{N} (\mathbf{r}_{j}^{r} - s_{kj})^2 \text{ is maximum for } k = i$$

$$\sum_{j=1}^{N} (\mathbf{r}_{j}^{r} - s_{kj})^2 \text{ is minimum} \quad |\text{for } k = i$$

$$\text{ML DECISION} \quad |\text{BOUNDARY}|$$

### MAXIMUM LIKELIHOOD (ML) DECISION



$$\overline{r} = \begin{pmatrix} s_{k1} + \tilde{n}_1 \\ s_{k2} + \tilde{n}_2 \\ . \\ . \\ s_{kN} + \tilde{n}_N \end{pmatrix}$$





Dr. Mala John Department of Electronics Engineering