

MATEMATIKAI ÉS INFORMATIKAI INTÉZET

Okos otthon hub és irányítóközpont

Készítette

Lovász Ákos

Programtervező informatikus BSc

Témavezető

Dr. Tajti Tibor

Egyetemi adjunktus

Tartalomjegyzék

1.	A re	endszer alapjai	4
	1.1.	A kiszolgáló hardver	4
	1.2.	Az Android alkalmazás	5
	1.3.	Node-RED	5
	1.4.	MQTT	5
	1.5.	Okos eszközök	6
2.	Hardver		
	2.1.	Orange Pi Zero	7
	2.2.	Okos eszközök	7
		2.2.1. ESP 8266	7
		2.2.2. Androidos eszköz	7
		2.2.3. Egyéb eszközök	8
3.	Szoftver		
	3.1.	Node-RED	9
	3.2.	MQTT	9
	3.3.	Android	9
	3.4.	Tesztelés	9
4.	A re	enszer működése	10
	4.1.	Első indítás	10
		4.1.1. Szerver	10
		4.1.2. Android	10
	4.2.	Telefon csatlakoztatása kiszolgálóhoz	10
	4.3.	Okos eszközök kezelése az alkalmazásban	10
	4.4.	Okos eszközök kezelése a webes felületen	10
5.	Tov	ábbfeilesztési lehetőségek	11

Bevezetés

Tanulmányaim folyamán számos technológiával ismerkedtem meg, melyek mindegyike rengeteg lehetőséget tárt fel előttem, viszont a szakmai gyakorlatom során kiemelkedően megragadta a fantáziámat az Andoid fejlesztés és a hardverprogramozás összekapcsolása által kialakult rendszerek lehetősége.

Az Android alkalmazások fejlesztése iránt mindig is érdeklődtem, egy-egy kisebb alkalmazást gyakorlásként már készítettem ezt megelőzően, de komolyabban itt kezdtem vele foglalkozni, megismerkedni a vele járó sajátosságokkal.

Az ilyen jellegű eszközök kapcsolata és kommunikációja már korai gondolataimban is az okos otthonok felépítésére emlékeztetett, ezért is gondoltam megfelelő táma választásnak.

A döntést követő kutatás során szembetűnő hátránya volt az okos otthon rendszereknek, hogy a legtöbb "márkás" megoldás elsősorban drága és csak felületes hozzáférést tesznek lehetővé, melyet teljes mértékben a rendszer gyártója határoz meg.

Az alternatív, olcsóbb rendszerek bár nyíltabb hozzáállással próbálnak előnyt szerezni, viszont sokszor erősen a technikai oldalába mélyednek, így egy átlagos felhasználónak bonyolultnak, nehezen kezelhetőnek tűnhetnek. Ezen felül gyakran futhatunk olyan problémába, hogy az általunk választott rendszerben lévő hiányosságokat csak más gyártótól származó eszköz nyújtana megoldást, viszont különböző gyártók eszközei nagyon ritkán kompatibilisek egymással.

Ezeket az észrevételeket figyelembe véve egyértelműnek tűnt, hogy van lehetőség egy olyan rendszer kivitelezésére, ami elsősorban olcsóbb, de ugyanakkor nem túlbonyolított, felhasználóbarát marad. Fontos a nyitottság, a bővíthetőség, és a széleskörű kompatibilitás lehetősége, hogy a felhasználó biztos lehessen abban, hogy a jövőben felmerülő hiányosságok egyszerűen pótolhatók.

A rendszer alapjai

A rendszer két fő komponensből áll. A kiszolgáló, mely egy Orange Pi Zero egykártyás számítógép, amin fut a Node-RED, egy olyan webes felületet biztosító szolgáltatás, mely grafikusan kezelhető komponensek összekapcsolásával teszi lehetővé a renszer működését befolyásolni, és a Mosquitto MQTT bróker, ami lehetővé teszi a Node-RED[1] és az Androidos alkamazás közötti kommunikációt.

1.1. A kiszolgáló hardver

(a) Orange Pi Zero[3]

1.1. ábra. A Node-RED-hez és az MQTT brókerhez használt eszköz

Az eszköz egy nyílt forráskódu egykártyás számítógép, amin Armbian[9] (ARM processzor architektúrára specializált Debian) operációs renszer fut, de lehetőséget nyújt Ubuntu, vagy akár Android operációs rendszer telepítésére is. Ezen fut a Node-RED

felület és a Mosquitto MQTT bróker, melyeket a helyi hálózaton bármely eszköz el tud érni, csupán az eszköz IP címét kell ismernie.

1.2. Az Android alkalmazás

Az Androidos alkalmazás célja a felhasználónak hozzáférést nyújtani az összes elérhető eszközhöz, azok állapotát megjeleníteni és felületet biztosítani azok irányítására, állapotuk megváltoztatására.

A kiszolgálóval való kommunikációt az Eclipse nyílt forráskódú Paho[6] Androidos kliens oldali MQTT implementációját használatba véve valósítja meg az alkalmazás.

A kommunikáció két irányú, azaz nem csak az alkalmazás tudja az okos eszközöket irányítani, hanem fogad üzeneteket a kiszolgálótól, így tud naprakész információt prezentálni az eszközök állapotáról a felhasználó számára.

A felület rugalmasságából adódóan az alkamazás nem kizárólag okos otthon kezelésére alkalmas, bármilyen MQTT protokoll alapú rendszeren való kommunikációra képes, viszont miven a fejlesztés során az okos otthonok kezelése volt az elsődleges szempont, így erre a célra használva a legoptimálisabb a felhasználói élmény.

1.3. Node-RED

A Node-RED egy nyílt forráskódú, "flow" alapú programozási eszköz az IBM Emerging Technologies[12] által fejlesztve az OpenJS Foundation[13] részeként. Ez egy Node.js alapú fejlesztési eszköz, aminek a felületét egy böngészőn keresztül lehet elérni ahol "node"-okat elhelyezve a felületen egy funkcióhálózatot létrehozva lehet úgymond programozni. Ez a funkcióhálózat egy "Deploy" gomb hatására bekerül a futási környezetbe, így effektíve az eddigi viselkedést felülírva, változtatásainkat elmentve.

1.4. MQTT

Az MQTT (Message Queueing Telemetry Transport)[4] egy OASIS szabványú kommunikációs protokoll, melyet IoT (Internet of Things) eszközök kommunikációjához fejlesztettek ki. A protokoll alapja a "Publish/Subscribe" alapú kommunikáció, azaz egy eszköznek lehetősége van egy adott "topic"-ra üzenetet továbbítani, vagy feliratkozni, azaz az adott "topic"-on beérkező üzeneteket megkapni. Ezek az üzenetek egy brókeren keresztül érik el céljukat, mivel a bróker tárolja hogy mely eszkör milyen témára iratkozott fel, ez alapján tudja a megfelelő klienseknek továbbítani a megfelelő üzenetet. Mivel az MQTT IoT eszközök kommunikációjához készült, így fejlesztése alatt különös figyelmet fordítottak az erőforrások megspórolásához, ezért ez a protokoll nagyon kevés erőforrást vesz igénybe, szinte bármilyen eszköz használatba tudja venni.

1.5. Okos eszközök

Okos eszköznek számít bármilyen berendezés, mely rendelkezik hálózati kommunikációra képes alkatrészekkel, ebben az esetben egy MQTT protokollt használatba vevő eszköz. Az MQTT protokoll rugalmasságából adódóan már a renszer tesztelése során is több eszköztípust vettem használatba, pédául Androidos tableteket, telefonokat és ESP D1 Mini mikrokontrollereket.

Hardver

2.1. Orange Pi Zero

Egy egykártyás számítógép az Orange Pi felhozatalából a Zero model, ami beépített WiFi modullal, Ethernet porttal, 512MB RAM-al és egy 4 magos ARM processzorral ellátva tesztjeim alapján egy kisebb ház okos eszközeinek ellátására elegendő, viszont természetesen van lehetőség erősebb hardveren futtatni a kiszolgáló szolgáltatásokat. Ezek a szolgáltatások Linux és Windows operációs rendszert futtató hardverek bármelykén képesek futni, így lehetőségünk van akár régi, már nem használt androidos telefonon, vagy ellentétsen, csak erre a célra kitűzött szervergépet kialakítani. Természetesen a végletek között rengeteg lehetőségünk van igényeink szerint válatsztani kiszolgáló hardvert, például egy Orange Pi Zero, Raspberry Pi 4, vagy Seeed Odyssey. Az Orange Pi Zero-ra esett a választásom alacsony ára mellett nyújtott lehetőségei tárháza miatt.

2.2. Okos eszközök

2.2.1. ESP 8266

Okos eszköz fejlesztéséra egy rendkívül olcsó lehetőség az ESP D1 Mini mikrokontroller, ami Arduino nyelven programozható, WiFi moduljának és a hivatalos Arduino MQTT könyvtárnak köszönhetően viszonylag egyszerűen okos otthon eszközzé lehet alakítani.

2.2.2. Androidos eszköz

Mivel az Androidos alkamazások bizonyos könyvtárai és fejlesztői eszközei az alkalmazott Android verziótól függnek, így az alkalmazás fejlesztése során kitűzött minimum Android verziót el kell érnie a használni kívánt eszköznek. Ebben az esetben a minimum támogatott Android verzió a Marshmallow, azaz Android 6.0. Ez a legrégebbi Android

megjelenés amit bevett szokásként támogatnak a modern alkamazások, ennél korábbi verziót támogatni nehézkes, általában nem éri meg, mivel a felhasználók kevesebb mint 1%-a használ olyan eszközt, ami 6.0-nál régebbi Androidot futtat.

2.2.3. Egyéb eszközök

Minden olyan okos eszköz integrálható a rendszerbe, amely képes MQTT protokollon keresztül kommunikálni egy helyi hálózaton.

Szoftver

nodered, mqtt, android

3.1. Node-RED

rooms, handling, ui

3.2. MQTT

mosquitto broker, bash generator

3.3. Android

this is the juice of the thesis

3.4. Tesztelés

A renszer működése

Itt írom le a kész rendszer működését,

4.1. Első indítás

hátugye nem minden létezik first start

4.1.1. Szerver

mostly preconfigured de a flow lehet kell noderedbe meg mqtt config idk, meg ezeket telepíteni

4.1.2. Android

alkalmazást telepíteni, először nincs user de onnan minden magától megy

4.2. Telefon csatlakoztatása kiszolgálóhoz

ip

4.3. Okos eszközök kezelése az alkalmazásban

4.4. Okos eszközök kezelése a webes felületen

Továbbfejlesztési lehetőségek

user access? felület új eszköztípusok felvételéhez? cloud service for out of home control

Köszönetnyilvánítás

Köszönöm a vscode-nak hogy van, Köszönöm magyarországnak hogy jobban teljesít Köszönöm a covidnak, hogy átmentem nummatból

Irodalomjegyzék

[1] Node Red forrás, https://nodered.org

[2] Node Red Dashboard forrás, https://flows.nodered.org/node/node-red-dashboard

[3] Orange Pi forrás, http://www.orangepi.org/

[4] MQTT protokol forrás, https://mqtt.org

[5] Mosquitto bróker forrás, https://mosquitto.org

[6] Paho Android MQTT implementáció, https://www.eclipse.org/paho/index.php

[7] Material design forrás https://material.io/components/

[8] Android fejlesztői dokumentáció https://developer.android.com/guide

[9] Armbian operációs rendszer https://www.armbian.com/

[10] IoT based Smart Environment Using Node-Red and MQTT
Deepthi, B. & Kolluru, Venkata Ratnam & Varghese, George & Narne,
Rajendraparasad & Srimannarayana, Nerella. (2020). IoT based Smart
Environment Using Node-Red and MQTT. Journal of Advanced Research in
Dynamical and Control Systems. 12. 10.5373/JARDCS/V12I5/20201684.
https://www.researchgate.net/publication/342327250_IoT_based_Smart_
Environment_Using_Node-Red_and_MQTT

[11] AndroidTMNotes for Professionals book https://books.goalkicker.com/AndroidBook/

[12] IMB Emerging Technologies https://emerging-technology.co.uk/

[13] OpenJS Foundation https://openjsf.org/