

Examen Final de Algebra I 2014-2015 Ciencia de la Computación

Grupo:

1. Dados los polinomios
$$p(x) = x^4 + (a-3)x^3 - (3a-1)x^2 + (3+2a)x - 2$$
, $h(x) = x^3 + i$ y $q(x) = x^4 + (a-3)x^3 - 3ax^2 + (2a+6)x - 4$

- 1.1. Demuestre que el máximo común divisor de p(x) y q(x) no depende del valor del parámetro a.
- 1.2. Descomponga, si es posible, h(x) en factores irreducibles de $\mathbb{R}[x]$ y $\mathbb{C}[x]$.
- 1.3. Determine para que valores naturales del parámetro n el número complejo $z = h\left(\left(\frac{-1+\sqrt{3}i}{2i}\right)^n\right)$ no pertenece a ninguno de los ejes coordenados.
- 2. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{cases} x + y + 2z - kt = 7 \\ -2x + 2y + 2z + t = k \\ -x + ky + 4z - 2t = 0 \end{cases}$$

2.1. Clasifíquelo en compatible determinado, compatible indeterminado o incompatible de acuerdo a los valores del

parámetro real k

2.2. Considere el sistema anterior para k=0. Diga cómo puede alterarse el rango de la matriz de los coeficientes del

sistema anterior si se le agrega la ecuación $y + pt = 2014^{2015}$ según el valor del parámetro p.

- 3. En el espacio vectorial $E = \mathbb{R}_3[x]$, sea $S = \{ax^2 + bx + c : c a = 2b\}$.
 - 3.1. Demuestre que S es un subespacio vectorial de E.
 - 3.2. A partir de un sistema l.i. maximal de S que, contenga al vector $x^2 + 2x 2$; complete, de ser posible, a una base de E.
 - 3.3. Considere la base $A = \{1, x, x^2\}$ de E, y la matriz $P = \begin{pmatrix} 1 & 0 & k \\ 2 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.
 - 3.3.1 ¿Para qué valores del parámetro $k \in \mathbb{R}$, P representa la matriz de cambio de coordenadas de una base B a la base A? Justifique.
 - 3.3.2 Para el valor de k=1 calcular B y la matriz de cambio de coordenadas de la base A a la base B.
- 4. En $M_2(\mathbb{C})$ como \mathbb{C} -espacio se tiene el conjunto $V=\{A\in M_2(\mathbb{C}): \mathrm{tr} A=0\}$ y el subespacio $W=\langle \begin{pmatrix} 1 & 2 \\ i & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \rangle.$
 - 4.1. Caracterice y halle la dimensión de V + W y $V \cap W$.
 - 4.2. Diga si la suma V + W es directa.
 - 4.3. ¿Existirá un subespacio Z de $M_2(\mathbb{C})$ tal que para algún $k \in \mathbb{C}$ se cumpla que $\begin{pmatrix} 2 & 4 \\ 2i & k \end{pmatrix} \in Z$ y $M_2(\mathbb{C}) = W \oplus Z$?
 - 4.4. Encuentre un suplementario de W en $M_2(\mathbb{C})$.
- 5. Diga Verdadero o Falso según corresponda. Justifique adecuadamente su respuesta.
 - 5.1. Sean $p(x), q(x) \in \mathbb{C}[x]$ de grado $\leq n$ tales que para más de n valores α_i , se tiene $p(\alpha_i) = q(\alpha_i), \forall i \Rightarrow p(x) = q(x)$.
 - 5.2. ___ Toda matriz de orden 2 conmuta con su matriz de cofactores.
 - 5.3. El conjugado de toda raíz n —ésima de la unidad es también una raíz n —ésima de la unidad.
 - 5.4. Sea E un espacio vectorial de dimensión finita y F, G subespacios de E, tales que $\dim(F+G)=\dim F+\dim G \wedge E=F+G \implies E=F \oplus G$.