LA FONCTION RACINE CARRÉE E05

EXERCICE N°2 (Le corrigé)

Écrire sous la forme $a\sqrt{b}$ où a et b sont deux entiers, b étant le plus petit possible.

$1) \qquad \sqrt{2} \times \sqrt{6}$	$2) \qquad \sqrt{3} \times \sqrt{6}$	$3) \qquad \sqrt{7} \times 3\sqrt{14}$	4) $7\sqrt{2} \times 5\sqrt{70}$
$\sqrt{2}\times\sqrt{6}$	$\sqrt{3}\times\sqrt{6}$	$\sqrt{7}\times3\sqrt{14}$	$7\sqrt{2}\times5\sqrt{70}$
$=\sqrt{2\times6}$	$=\sqrt{3\times6}$	$=3\sqrt{7\times14}$	$=7\times5\sqrt{2\times70}$
$=\sqrt{12}$	$=\sqrt{18}$	$=3\sqrt{7\times7\times2}$	$=35\sqrt{2\times2\times35}$
$=\sqrt{2^2\times3}$	$=\sqrt{3^2\times2}$	$=3\sqrt{7^2\times2}$	$=35\sqrt{2^2\times35}$
$=\sqrt{2^2}\times\sqrt{3}$	$=\sqrt{3^2}\times\sqrt{2}$	$=3\sqrt{7^2}\times\sqrt{2}$	$=35\sqrt{2^2}\times\sqrt{35}$
$=2\sqrt{3}$	$=3\sqrt{2}$	$=3\times7\times\sqrt{2}$	$=35\times2\sqrt{35}$
		$= 21\sqrt{2}$	$=70\sqrt{35}$

J'ai détaillé au maximum, vous avez bien sûr le droit d'aller plus vite.

Avec la question 4), on constante que les racines « simplifiées » au maximum peuvent avoir plusieurs chiffres sous le radical.

Pour vous en convaincre, on peut facilement créer un exemple :

$$\sqrt{2\times3\times5\times7\times11\times13}$$
 = $\sqrt{30030}$ ne peut pas être « simplifiée »

On ne prend que des nombres premiers tous distincts