Package 'harbinger'

December 3, 2024

Title A Unified Time Series Event Detection Framework

URL https://github.com/cefet-rj-dal/harbinger,

Version 1.1.707

Description By analyzing time series, it is possible to observe significant changes in the behavior of observations that frequently characterize events. Events present themselves as anomalies, change points, or motifs. In the literature, there are several methods for detecting events. However, searching for a suitable time series method is a complex task, especially considering that the nature of events is often unknown. This work presents Harbinger, a framework for integrating and analyzing event detection methods. Harbinger contains several state-of-the-art methods described in Salles et al. (2020) <doi:10.5753/sbbd.2020.13626>.

```
License MIT + file LICENSE
```

```
https://cefet-rj-dal.github.io/harbinger/
Encoding UTF-8
RoxygenNote 7.3.2
Imports stats, daltoolbox, tsmp, dtwclust, rugarch, forecast, ggplot2,
     changepoint, strucchange, stringr, wavelets, hht, zoo, dplyr
NeedsCompilation no
Author Eduardo Ogasawara [aut, ths, cre]
       (<https://orcid.org/0000-0002-0466-0626>),
     Antonio Castro [aut],
     Antonio Mello [aut],
     Ellen Paixão [aut],
     Fernando Fraga [aut],
     Heraldo Borges [aut],
     Janio Lima [aut],
     Jessica Souza [aut],
     Lais Baroni [aut],
     Lucas Tavares [aut],
     Rebecca Salles [aut],
     Diego Carvalho [aut],
     Eduardo Bezerra [aut],
     Rafaelli Coutinho [aut],
     Esther Pacitti [aut],
```

2 Contents

Fabio Porto [aut], Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ) [cph]

Maintainer Eduardo Ogasawara <eogasawara@ieee.org>

Repository CRAN

Date/Publication 2024-12-03 20:00:03 UTC

Contents

detect
examples_anomalies
examples_changepoints
examples_harbinger
examples_motifs
hanct_dtw
hanct_kmeans
hanc_ml
hanr_arima
hanr_emd
hanr_fbiad
hanr_fft
hanr_garch
hanr_histogram
hanr_ml
hanr_red
hanr_remd
hanr_wavelet
han_autoencoder
harbinger
harutils
har_ensemble
har_eval
har_eval_soft
har_plot
hcp_amoc
hcp_binseg
hcp_cf_arima
hcp_cf_ets
hcp_cf_lr
hcp_chow
hcp_garch
hcp_gft
hcp_pelt
hcp_red
hcp_scp
hdis_mp
hdis_sax

detect 3

Index		44
	trans_xsax	
	-	
	mas	
	hmu_pca	
	hmo_xsax	
	hmo_sax	
	hmo_mp	

detect

Detect events in time series

Description

Event detection using a fitted Harbinger model

Usage

```
detect(obj, ...)
```

Arguments

obj harbinger object... optional arguments.

Value

a data frame with the index of observations and if they are identified or not as an event, and their type

```
\hbox{\#See examples of detectors for anomalies, change points, and motifs $$\#at $https://cefet-rj-dal.github.io/harbinger$
```

4 examples_anomalies

examples_anomalies

Time series for anomaly detection

Description

A list of time series for anomaly detection

- simple: a simple synthetic time series
- contextual: a contextual synthetic time series
- simple: a trend synthetic time series
- trend: a simple synthetic time series
- multiple: a multiple anomalies synthetic time series
- sequence: a sequence synthetic time series
- tt: a train-test synthetic time series
- tt_warped: a warped train-test synthetic time series

#'

Usage

```
data(examples_anomalies)
```

Format

A list of time series for anomaly detection.

Source

Harbinger package

References

Harbinger package

```
data(examples_anomalies)
serie <- examples_anomalies$simple</pre>
```

Description

A list of time series for change point

- simple: a simple synthetic time series
- sinusoidal: a sinusoidal synthetic time series
- incremental: a incremental synthetic time series
- abrupt: a abrupt synthetic time series
- volatility: a volatility synthetic time series

#'

Usage

```
data(examples_changepoints)
```

Format

A list of time series for change point detection.

Source

Harbinger package

References

Harbinger package

```
data(examples_changepoints)
serie <- examples_changepoints$simple</pre>
```

6 examples_harbinger

examples_harbinger

Time series for event detection

Description

A list of time series for event detection

- nonstationarity: a synthetic nonstationarity time series
- global_temperature_yearly: yearly global temperature of the world
- global_temperature_monthly: monthly global temperature of the world
- multidimensional: multidimensional time series with a change point
- seattle_week: Seattle weakly temperature in 2019
- seattle_daily: Seattle daily temperature in 2019

#'

Usage

```
data(examples_harbinger)
```

Format

A list of time series.

Source

Harbinger package

References

Harbinger package

```
data(examples_harbinger)
serie <- examples_harbinger$seattle_daily</pre>
```

examples_motifs 7

examples_motifs

Time series for change point detection

Description

A list of time series for change point

- simple: a simple synthetic time series
- mitdb100: sample of mitdb 100 time series
- mitdb102: sample of mitdb 102 time series

#'

Usage

```
data(examples_motifs)
```

Format

A list of time series for motif discovery.

Source

Harbinger package

References

Harbinger package

Examples

```
data(examples_motifs)
serie <- examples_motifs$simple</pre>
```

hanct_dtw

Anomaly detector using DTW

Description

Anomaly detection using DTW The DTW is applied to the time series. When seq equals one, observations distant from the closest centroids are labeled as anomalies. When seq is grater than one, sequences distant from the closest centroids are labeled as discords. It wraps the tsclust presented in the dtwclust library.

Usage

```
hanct_dtw(seq = 1, centers = NA)
```

8 hanct_kmeans

Arguments

seq sequence size centers number of centroids

Value

hanct_dtw object

Examples

```
library(daltoolbox)
#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series regression model
model <- hanct_dtw()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hanct_kmeans

Anomaly detector using kmeans

Description

Anomaly detection using kmeans The kmeans is applied to the time series. When seq equals one, observations distant from the closest centroids are labeled as anomalies. When seq is grater than one, sequences distant from the closest centroids are labeled as discords. It wraps the kmeans presented in the stats library.

Usage

```
hanct_kmeans(seq = 1, centers = NA)
```

Arguments

seq sequence size centers number of centroids

hanc_ml 9

Value

hanct_kmeans object

Examples

```
library(daltoolbox)
#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series regression model
model <- hanct_kmeans()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hanc_ml

Anomaly detector based on machine learning classification

Description

Anomaly detection using daltoolbox classification. A training and test set should be used. The training set must contain labeled events. A set of preconfigured of classification methods are described in https://cefet-rj-dal.github.io/daltoolbox/. They include: cla_majority, cla_dtree, cla_knn, cla_mlp, cla_nb, cla_rf, cla_svm

Usage

```
hanc_ml(model)
```

Arguments

model

DALToolbox classification model

Value

```
hanc_ml object
```

10 hanr_arima

Examples

```
library(daltoolbox)
#loading the example database
data(examples_anomalies)
#Using example tt
dataset <- examples_anomalies$tt</pre>
dataset$event <- factor(dataset$event, labels=c("FALSE", "TRUE"))</pre>
slevels <- levels(dataset$event)</pre>
# separating into training and test
train <- dataset[1:80,]</pre>
test <- dataset[-(1:80),]
# normalizing the data
norm <- minmax()</pre>
norm <- fit(norm, train)</pre>
train_n <- transform(norm, train)</pre>
# establishing decision tree method
model <- hanc_ml(cla_dtree("event", slevels))</pre>
# fitting the model
model <- fit(model, train_n)</pre>
# evaluating the detections during testing
test_n <- transform(norm, test)</pre>
detection <- detect(model, test_n)</pre>
print(detection[(detection$event),])
```

hanr_arima

Anomaly detector using ARIMA.

Description

Anomaly detection using ARIMA The ARIMA model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the ARIMA model presented in the forecast library.

Usage

hanr_arima()

Value

hanr_arima object

hanr_emd 11

Examples

```
library(daltoolbox)

#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series regression model
model <- hanr_arima()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hanr_emd

Anomaly detector using EMD

Description

Anomaly detection using EMD The EMD model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the EMD model presented in the hht library.

Usage

```
hanr_emd(noise = 0.1, trials = 5)
```

Arguments

noise nosie trials trials

Value

hanr_emd object

12 hanr_fbiad

Examples

```
library(daltoolbox)

#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series emd detector
model <- hanr_emd()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hanr_fbiad

Anomaly detector using FBIAD

Description

Anomaly detector using FBIAD

Usage

```
hanr_fbiad(sw_size = 30)
```

Arguments

sw_size

Window size for FBIAD

Value

hanr_fbiad object Forward and Backward Inertial Anomaly Detector (FBIAD) detects anomalies in time series. Anomalies are observations that differ from both forward and backward time series inertia doi:10.1109/IJCNN55064.2022.9892088.

```
library(daltoolbox)
#loading the example database
data(examples_anomalies)
```

hanr_fft 13

```
#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series regression model
model <- hanr_fbiad()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hanr_fft

Anomaly detector using FFT

Description

Anomaly detection using FFT The FFT model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the FFT model presented in the stats library.

Usage

```
hanr_fft()
```

Value

hanr_fft object

```
library(daltoolbox)

#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series fft detector
model <- hanr_fft()

# fitting the model
model <- fit(model, dataset$serie)</pre>
```

hanr_garch

```
detection <- detect(model, dataset$serie)
# filtering detected events
print(detection[(detection$event),])</pre>
```

hanr_garch

Anomaly detector using GARCH

Description

Anomaly detection using GARCH The GARCH model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the ugarch model presented in the rugarch library.

Usage

```
hanr_garch()
```

Value

hanr_garch object

```
library(daltoolbox)
#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series regression model
model <- hanr_garch()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hanr_histogram 15

hanr_histogram

Anomaly detector using histogram

Description

Anomaly detector using histogram

Usage

```
hanr_histogram(density_threshold = 0.05)
```

Arguments

density_threshold

It is the minimum frequency for a bin to not be considered an anomaly. Default value is 5%.

Value

hanr_histogram object histogram based method to detect anomalies in time series. Bins with smaller amount of observations are considered anomalies. Values below first bin or above last bin are also considered anomalies.>.

```
library(daltoolbox)
#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series regression model
model <- hanr_histogram()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

16 hanr_ml

hanr_ml

Anomaly detector based on machine learning regression.

Description

Anomaly detection using daltoolbox regression The regression model adjusts to the time series. Observations distant from the model are labeled as anomalies. A set of preconfigured regression methods are described in https://cefet-rj-dal.github.io/daltoolbox/. They include: ts_elm, ts_convld, ts_lstm, ts_mlp, ts_rf, ts_svm

Usage

```
hanr_ml(model, sw_size = 15)
```

Arguments

model DALToolbox regression model

sw_size sliding window size

Value

hanr_ml object

```
library(daltoolbox)

#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series regression model
model <- hanr_ml(ts_elm(ts_norm_gminmax(), input_size=4, nhid=3, actfun="purelin"))

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hanr_red 17

hanr_red

Anomaly and change point detector using RED

Description

Anomaly and change point detection using RED The RED model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the EMD model presented in the hht library.

Usage

```
hanr_red(sw_size = 30, noise = 0.001, trials = 5)
```

Arguments

sw_size sliding window size (default 30)

noise noise trials trials

Value

hanr_red object

```
library(daltoolbox)
library(zoo)

#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series emd detector
model <- hanr_red()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

18 hanr_remd

hanr_remd

Anomaly detector using REMD

Description

Anomaly detection using REMD The EMD model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the EMD model presented in the forecast library.

Usage

```
hanr_remd(noise = 0.1, trials = 5)
```

Arguments

noise nosie trials trials

Value

hanr_remd object

```
library(daltoolbox)
#loading the example database
data(examples_anomalies)
#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series emd detector
model <- hanr_remd()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hanr_wavelet 19

hanr_wavelet

Anomaly detector using Wavelet

Description

Anomaly detection using Wavelet The Wavelet model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the Wavelet model presented in the stats library.

Usage

```
hanr_wavelet(filter = "haar")
```

Arguments

filter

Availables wavelet filters: haar, d4, la8, bl14, c6

Value

hanr_wavelet object

```
library(daltoolbox)
#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series fft detector
model <- hanr_wavelet()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

20 harbinger

han_autoencoder

Anomaly detector using autoencoder

Description

Anomaly detector using autoencoder

Usage

```
han_autoencoder(
  input_size,
  encode_size,
  encoderclass = autoenc_encode_decode,
  ...
)
```

Arguments

input_size Establish the input size for the autoencoder anomaly detector. It is the size of the output also.

encode_size The encode size for the autoencoder.

encoderclass The class of daltoolbox encoder-decoder.

optional arguments for encoder-decoder class.

Value

han_autoencoder object histogram based method to detect anomalies in time series. Bins with smaller amount of observations are considered anomalies. Values below first bin or above last bin are also considered anomalies.>.

Examples

```
# setting up time series regression model
#Use the same example of hanr_fbiad changing the constructor to:
model <- han_autoencoder(3,1)</pre>
```

harbinger

Harbinger

Description

Ancestor class for time series event detection

Usage

```
harbinger()
```

harutils 21

Value

Harbinger object

Examples

```
#See examples of detectors for anomalies, change points, and motifs #at https://cefet-rj-dal.github.io/harbinger
```

harutils

Harbinger Utils

Description

Utility class that contains major distance measures, threshold limits, and outliers grouping functions

Usage

```
harutils()
```

Value

Harbinger Utils

Examples

See ?hanc_ml for an example of anomaly detection using machine learning classification

har_ensemble

Harbinger Ensemble

Description

Ensemble detector

Usage

```
har_ensemble(...)
```

Arguments

... list of detectors

Value

Harbinger object

22 har_eval

Examples

```
library(daltoolbox)
#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)

# setting up time series emd detector
model <- har_ensemble(hanr_fbiad(), hanr_arima(), hanr_emd())

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

har_eval

Evaluation of event detection

Description

Evaluation of event detection (traditional hard evaluation)

Usage

har_eval()

Value

har_eval object

```
library(daltoolbox)

#loading the example database
data(examples_anomalies)

dataset <- examples_anomalies$simple
head(dataset)

# setting up time change point using GARCH
model <- hcp_garch()</pre>
```

har_eval_soft 23

```
# fitting the model
model <- fit(model, dataset$serie)

# making detections
detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])

# evaluating the detections
evaluation <- evaluate(har_eval(), detection$event, dataset$event)
print(evaluation$confMatrix)

# ploting the results
grf <- har_plot(model, dataset$serie, detection, dataset$event)
plot(grf)</pre>
```

har_eval_soft

Evaluation of event detection

Description

Evaluation of event detection using SoftED doi:10.48550/arXiv.2304.00439

Usage

```
har_eval_soft(sw_size = 15)
```

Arguments

sw_size

tolerance window size

Value

```
har_eval_soft object
```

```
library(daltoolbox)

#loading the example database
data(examples_anomalies)

#Using the simple
dataset <- examples_anomalies$simple
head(dataset)

# setting up time change point using GARCH
model <- hcp_garch()</pre>
```

24 har_plot

```
# fitting the model
model <- fit(model, dataset$serie)

# making detections
detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])

# evaluating the detections
evaluation <- evaluate(har_eval_soft(), detection$event, dataset$event)
print(evaluation$confMatrix)

# ploting the results
grf <- har_plot(model, dataset$serie, detection, dataset$event)
plot(grf)</pre>
```

har_plot

Plot event detection on a time series

Description

It accepts as harbinger, a time series, a data.frame of events, a parameter to mark the detected change points, a threshold for the y-axis and an index for the time series

Usage

```
har_plot(
  obj,
  serie,
  detection,
  event = NULL,
  mark.cp = TRUE,
  ylim = NULL,
  idx = NULL,
  pointsize = 0.5,
  colors = c("green", "blue", "red", "purple")
)
```

Arguments

```
obj harbinger detector
serie time series
detection detection
event events
mark.cp show change points
ylim limits for y-axis
```

hcp_amoc 25

idx labels for x observations

pointsize default point size

colors default colors for event detection: green is TP, blue is FN, red is FP, purple

means observations that are part of a sequence.

Value

A time series plot with marked events

Examples

```
library(daltoolbox)
#loading the example database
data(examples_anomalies)
#Using the simple time series
dataset <- examples_anomalies$simple</pre>
head(dataset)
# setting up time change point using GARCH
model <- hanr_arima()</pre>
# fitting the model
model <- fit(model, dataset$serie)</pre>
# making detections
detection <- detect(model, dataset$serie)</pre>
# filtering detected events
print(detection[(detection$event),])
# evaluating the detections
evaluation <- evaluate(har_eval_soft(), detection$event, dataset$event)</pre>
print(evaluation$confMatrix)
# ploting the results
grf <- har_plot(model, dataset$serie, detection, dataset$event)</pre>
plot(grf)
```

hcp_amoc

At most one change (AMOC) method

Description

Change-point detection method that focus on identify one change point in mean/variance doi: 10.1093/biomet/57.1.1. It wraps the amoc implementation available in the changepoint library.

26 hcp_binseg

Usage

```
hcp_amoc()
```

Value

hcp_amoc object

Examples

```
library(daltoolbox)
#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
model <- hcp_amoc()

# fitting the model
model <- fit(model, dataset$serie)

# execute the detection method
detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hcp_binseg

Binary segmentation (BinSeg) method

Description

Change-point detection method that focus on identify change points in mean/variance doi:10. 2307/2529204. It wraps the BinSeg implementation available in the changepoint library.

Usage

```
hcp\_binseg(Q = 2)
```

Arguments

Q The maximum number of change-points to search for using the BinSeg method

Value

hcp_binseg object

hcp_cf_arima 27

Examples

```
library(daltoolbox)
#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
model <- hcp_binseg()

# fitting the model
model <- fit(model, dataset$serie)

# execute the detection method
detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hcp_cf_arima

Change Finder using ARIMA

Description

Change-point detection is related to event/trend change detection. Change Finder ARIMA detects change points based on deviations relative to ARIMA model doi:10.1109/TKDE.2006.1599387. It wraps the ARIMA model presented in the forecast library.

Usage

```
hcp_cf_arima(sw_size = NULL)
```

Arguments

sw_size

Sliding window size

Value

```
hcp_cf_arima object
```

28 hcp_cf_ets

Examples

```
library(daltoolbox)
#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
model <- hcp_cf_arima()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hcp_cf_ets

Change Finder using ETS

Description

Change-point detection is related to event/trend change detection. Change Finder ETS detects change points based on deviations relative to trend component (T), a seasonal component (S), and an error term (E) model doi:10.1109/TKDE.2006.1599387. It wraps the ETS model presented in the forecast library.

Usage

```
hcp_cf_ets(sw_size = 7)
```

Arguments

sw_size

Sliding window size

Value

```
hcp_cf_ets object
```

hcp_cf_lr 29

Examples

```
library(daltoolbox)
#loading the example database
data(examples_changepoints)
#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
model <- hcp_cf_ets()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hcp_cf_lr

Change Finder using LR

Description

Change-point detection is related to event/trend change detection. Change Finder LR detects change points based on deviations relative to linear regression model doi:10.1109/TKDE.2006.1599387.

Usage

```
hcp_cf_lr(sw_size = 30)
```

Arguments

sw_size

Sliding window size

Value

```
hcp_cf_lr object
```

Examples

```
library(daltoolbox)
```

#loading the example database
data(examples_changepoints)

30 hcp_chow

```
#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
model <- hcp_cf_lr()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hcp_chow

Chow test method

Description

Change-point detection method that focus on identifying structural changes doi:10.18637/jss.v007.i02. It wraps the Fstats and breakpoints implementation available in the strucchange library.

Usage

hcp_chow()

Value

hcp_chow object

```
library(daltoolbox)

#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
model <- hcp_chow()

# fitting the model
model <- fit(model, dataset$serie)

# execute the detection method</pre>
```

hcp_garch 31

```
detection <- detect(model, dataset$serie)
# filtering detected events
print(detection[(detection$event),])</pre>
```

hcp_garch

Change Finder using GARCH

Description

Change-point detection is related to event/trend change detection. Change Finder GARCH detects change points based on deviations relative to linear regression model doi:10.1109/TKDE.2006.1599387. It wraps the GARCH model presented in the rugarch library.

Usage

```
hcp_garch(sw_size = 5)
```

Arguments

sw_size

Sliding window size

Value

hcp_garch object

```
library(daltoolbox)

#loading the example database
data(examples_changepoints)

#Using volatility example
dataset <- examples_changepoints$volatility
head(dataset)

# setting up change point method
model <- hcp_garch()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

32 hcp_pelt

hcp_gft

Generalized Fluctuation Test (GFT)

Description

GFT detection method focuses on identifying structural changes doi:10.18637/jss.v007.i02. It wraps the breakpoints implementation available in the strucchange library.

Usage

```
hcp_gft()
```

Value

hcp_chow object

Examples

```
library(daltoolbox)
#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
model <- hcp_gft()

# fitting the model
model <- fit(model, dataset$serie)

# execute the detection method
detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hcp_pelt

Pruned exact linear time (PELT) method

Description

Change-point detection method that focus on identifying multiple exact change points in mean/variance doi:10.1080/01621459.2012.737745. It wraps the BinSeg implementation available in the change-point library.

hcp_red 33

Usage

```
hcp_pelt()
```

Value

hcp_pelt object

Examples

```
library(daltoolbox)
#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
model <- hcp_pelt()

# fitting the model
model <- fit(model, dataset$serie)

# execute the detection method
detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hcp_red

Anomaly and change point detector using RED

Description

Anomaly and change point detection using RED The RED model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the EMD model presented in the hht library.

Usage

```
hcp_red(
  sw_size = 30,
  noise = 0.001,
  trials = 5,
  red_cp = TRUE,
  volatility_cp = TRUE,
  trend_cp = TRUE
)
```

hcp_scp

Arguments

sw_size sliding window size (default 30)

noise noise

trials trials

red_cp red change point

volatility_cp volatility change point trend_cp trend change point

Value

hcp_red object

Examples

```
library(daltoolbox)

#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
model <- hcp_red()

# fitting the model
model <- fit(model, dataset$serie)

# execute the detection method
detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hcp_scp

Seminal change point

Description

Change-point detection is related to event/trend change detection. Seminal change point detects change points based on deviations of linear regression models adjusted with and without a central observation in each sliding window <10.1145/312129.312190>.

Usage

```
hcp_scp(sw_size = 30)
```

hdis_mp

Arguments

sw_size Sliding window size

Value

hcp_scp object

Examples

```
library(daltoolbox)
#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
model <- hcp_scp()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hdis_mp

Discord discovery using Matrix Profile

Description

Discord discovery using Matrix Profile doi:10.32614/RJ-2020-021

Usage

```
hdis_mp(mode = "stamp", w, qtd)
```

Arguments

mode mode of computing distance between sequences. Available options include:

"stomp", "stamp", "simple", "mstomp", "scrimp", "valmod", "pmp"

w word size

qtd number of occurrences to be classified as discords

36 hdis_sax

Value

```
hdis_mp object
```

Examples

```
library(daltoolbox)
#loading the example database
data(examples_motifs)

#Using sequence example
dataset <- examples_motifs$simple
head(dataset)

# setting up discord discovery method
model <- hdis_mp("stamp", 4, 3)

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hdis_sax

Discord discovery using SAX

Description

Discord discovery using SAX doi:10.1007/s10618-007-0064-z

Usage

```
hdis_sax(a, w, qtd = 2)
```

Arguments

a alphabet size
w word size

qtd number of occurrences to be classified as discords

Value

hdis_sax object

hmo_mp 37

Examples

```
library(daltoolbox)
#loading the example database
data(examples_motifs)

#Using sequence example
dataset <- examples_motifs$simple
head(dataset)

# setting up discord discovery method
model <- hdis_sax(26, 3, 3)

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hmo_mp

Motif discovery using Matrix Profile

Description

Motif discovery using Matrix Profile doi:10.32614/RJ-2020-021

Usage

```
hmo_mp(mode = "stamp", w, qtd)
```

Arguments

mode mode of computing distance between sequences. Available options include:

"stomp", "stamp", "simple", "mstomp", "scrimp", "valmod", "pmp"

w word size

qtd number of occurrences to be classified as motifs

Value

hmo_mp object

38 hmo_sax

Examples

```
library(daltoolbox)
#loading the example database
data(examples_motifs)

#Using sequence example
dataset <- examples_motifs$simple
head(dataset)

# setting up motif discovery method
model <- hmo_mp("stamp", 4, 3)

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hmo_sax

Motif discovery using SAX

Description

Motif discovery using SAX doi:10.1007/s10618-007-0064-z

Usage

```
hmo_sax(a, w, qtd = 2)
```

Arguments

a alphabet size
w word size

qtd number of occurrences to be classified as motifs

Value

hmo_sax object

hmo_xsax 39

Examples

```
library(daltoolbox)
#loading the example database
data(examples_motifs)

#Using sequence example
dataset <- examples_motifs$simple
head(dataset)

# setting up motif discovery method
model <- hmo_sax(26, 3, 3)

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hmo_xsax

Motif discovery using xsax

Description

Motif discovery using xsax doi:10.1007/s10618-007-0064-z

Usage

```
hmo_xsax(a, w, qtd)
```

Arguments

a alphabet size
w word size

qtd number of occurrences to be classified as motifs

Value

hmo_xsax object

hmu_pca

Examples

```
library(daltoolbox)
#loading the example database
data(examples_motifs)

#Using sequence example
dataset <- examples_motifs$simple
head(dataset)

# setting up motif discovery method
model <- hmo_xsax(37, 3, 3)

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])</pre>
```

hmu_pca

Multivariate anomaly detector using PCA

Description

Multivariate anomaly detector using PCA doi:10.1016/0098-3004(93)90090-R

Usage

hmu_pca()

Value

hmu_pca object

```
library(daltoolbox)

#loading the example database
data(examples_harbinger)

#Using the time series 9
dataset <- examples_harbinger$multidimensional
head(dataset)

# establishing hmu_pca method</pre>
```

mas 41

```
model <- hmu_pca()
# fitting the model using the two columns of the dataset
model <- fit(model, dataset[,1:2])
# making detections
detection <- detect(model, dataset[,1:2])
# filtering detected events
print(detection[(detection$event),])
# evaluating the detections
evaluation <- evaluate(model, detection$event, dataset$event)
print(evaluation$confMatrix)</pre>
```

mas

Moving average smoothing

Description

The mas() function returns a simple moving average smoother of the provided time series.

Usage

mas(x, order)

Arguments

x A numeric vector or univariate time series.

order Order of moving average smoother.

Details

The moving average smoother transformation is given by

$$(1/k) * (x[t] + x[t+1] + ... + x[t+k-1])$$

where k=order, t assume values in the range 1: (n-k+1), and n=length(x). See also the ma of the forecast package.

Value

Numerical time series of length length(x)-order+1 containing the simple moving average smoothed values.

References

R.H. Shumway and D.S. Stoffer, 2010, Time Series Analysis and Its Applications: With R Examples. 3rd ed. 2011 edition ed. New York, Springer.

42 trans_sax

Examples

```
#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)

# setting up change point method
ma <- mas(dataset$serie, 5)</pre>
```

trans_sax

SAX

Description

SAX

Usage

```
trans_sax(alpha)
```

Arguments

alpha

alphabet

Value

obj

```
library(daltoolbox)
vector <- 1:52
model <- trans_sax(alpha = 26)
model <- fit(model, vector)
xvector <- transform(model, vector)
print(xvector)</pre>
```

trans_xsax 43

 $trans_xsax$

XSAX

Description

XSAX

Usage

```
trans_xsax(alpha)
```

Arguments

alpha

alphabet

Value

obj

```
library(daltoolbox)
vector <- 1:52
model <- trans_xsax(alpha = 52)
model <- fit(model, vector)
xvector <- transform(model, vector)
print(xvector)</pre>
```

Index

* average	har_eval, 22			
mas, 41	har_eval_soft, 23			
* datasets	har_plot, 24			
examples_anomalies,4	harbinger, 20			
examples_changepoints, 5	harutils, 21			
examples_harbinger, 6	hcp_amoc, 25			
examples_motifs, 7	hcp_binseg, 26			
* moving	hcp_cf_arima, 27			
mas, 41	hcp_cf_ets, 28			
* series	hcp_cf_lr, 29			
mas, 41	hcp_chow, 30			
* smoother	hcp_garch, 31			
mas, 41	$hcp_gft, 32$			
* time	hcp_pelt, 32			
mas, 41	hcp_red, 33			
* transform	hcp_scp, 34			
mas, 41	hdis_mp, 35			
	hdis_sax,36			
detect, 3	hmo_mp, 37			
	hmo_sax, 38			
examples_anomalies,4	hmo_xsax, 39			
examples_changepoints, 5	hmu_pca, 40			
examples_harbinger,6				
examples_motifs, 7	ma, <i>41</i>			
	mas, 41			
han_autoencoder, 20				
$hanc_ml, 9$	trans_sax, 42			
hanct_dtw, 7	trans_xsax, 43			
hanct_kmeans, 8				
hanr_arima, 10				
hanr_emd, 11				
hanr_fbiad, 12				
hanr_fft, 13				
hanr_garch, 14				
hanr_histogram, 15				
$hanr_ml, 16$				
hanr_red, 17				
hanr_remd, 18				
hanr_wavelet, 19				
har_ensemble, 21				