# SOFTWARE ENGINEERING CO3001

**COURSE OUTLINE** 

Truong Tuan Anh

WEEK 1



#### AIMS

- ✓ The goal of this course is to provide undergraduate students with
  - Knowledge (concepts, terms, processes, models)
  - Skill (methods, techniques)
- ✓ for requirement, analysis, design, implementation and testing of software-intensive systems.



# Menti.com

Write the first three words coming to your mind when hearing "software engineering" / công nghệ phân mềm



#### OUTLINE

- ✓ An introductory course to the field of software engineering.
- ✓ The goal is to provide techniques, methods and processes for the development of software-intensive systems.
- ✓ Help getting familiar with software engineering activities: requirements elicitation, software specification, architectural & detailed design using design patterns.
- ✓ Also cover software implementation and software testing
- ✓ Use extensively the UML modeling language



# STUDENT LEARNING OUTCOMES

#### Knowledge:

- ✓ L.O.1. Understand that software systems need to be developed methodologically and professionally;
- ✓ L.O.2. Elicit requirements & perform architectural design;

#### Competence:

- ✓ L.O.3. Cary out detailed design, coding, testing;
- ✓ L.O.4. Use the UML language effectively in software development.



# STUDENT LEARNING OUTCOMES

| No.   | Course learning outcomes                                                   |
|-------|----------------------------------------------------------------------------|
| L.O.1 | Understand that software systems need to be developed methodologically and |
|       | professionally;                                                            |
|       | L.O.1.1 Understand principles and concepts of software engineering         |
|       | L.O.1.2 Understand methods and techniques of software engineering          |
| L.O.2 | Elicit requirements & perform architectural design                         |
|       | L.O.2.1 Requirements elicitation                                           |
|       | L.O.2.2 Architectural design                                               |
| L.O.3 | Cary out detailed design, coding, testing                                  |
|       | L.O.3.1 Detailed design                                                    |
|       | L.O.3.2 Coding                                                             |
|       | L.O.3.3 Testing                                                            |
| L.O.4 | Use the UML language effectively in software development                   |
|       | L.O.4.1 UML use-case diagram                                               |
|       | L.O.4.2 UML sequence diagram                                               |
|       | L.O.4.3 UML class diagram                                                  |
|       | L.O.4.4 UML activity diagram (or UML state-chart diagram)                  |



Feb 2020 COURSE OUTLINE

# TEXTBOOK/REFERENCE BOOK

- ✓ [1] Ian Sommerville (2015), Software Engineering (10th ed.), ISBN 978-0133943030, Pearson
- [2] G. Booch, J. Rumbaugh, I. Jacobson (1998), The Unified Modeling Language User Guide, Addison-Wesley.
- ✓ [3] E.J. Braude (2001), Software Engineering: An Object-Oriented Perspective, ISBN 978-0-471-32208-5, John Wiley.
- [4] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable Object-Oriented Software, ISBN 978-0201633610, AddisonWesley Professional (Nov. 10, 1994)
- √ [5] State-of-the-art articles on Software Engineering





# TEACHING ACTIVITIES

- ✓ Read materials before the lectures
- ✓ Attend lectures
- ✓ Student presentation
- ✓ Group assignment
- √ Final exam



### **EVALUATION**

- ✓ In-class/online activities/quizzes: 10%
- ✓ Student presentation: 10%
- ✓ Group-based project: 30%
- ✓ Final writing exam: 50%



#### QUIZZES

- ✓ Online, every week. Two categories:
  - Before the lecture:
    - Read slides, prepare yourself and take the quizzes before the lecture.
    - The questions are simple, just review the content of the coming lecture.
  - After the lecture (named "... advanced"):
    - Summarize the content of the lecture, give to cases for you to apply the knowledge of the lecture.
    - The questions are some more advanced. Take your time to reflect the lecture before taking the quizzes.
- ✓ Duration limit of 10', valid in a few days.
  - You can take a quiz twice to get the highest score.
- ✓ Please check the video course website regularly:
  - http://e-learning.hcmut.edu.vn/user/index.php?id=72288



#### **PROJECT**

- ✓ Project:
- √ Group project
  - Team work
- ✓ Deliveries:
  - #1: Requirement elicitation: Functional/non-functional requirement, use-case and Wireframes
  - #2: Requirement analysis: Sequence, activity or state-chart diagrams
  - #3: Architectural design: Overall architecture, class diagram, implementation diagram
  - #4: First Demo
  - #5: Final Demo



# STUDENT PRESENTATION

- ✓ Final:
  - Overview of project outcomes
  - Reasons behind technical decisions
  - Identified risk and project constraints



# TENTATIVE SCHEDULE

| Wk | Topic                                    | Reading               | Quiz   | Project Milestone |  |  |
|----|------------------------------------------|-----------------------|--------|-------------------|--|--|
| 1  | Ch1. Introduction                        | Ch1[1], Ch0[3], IEEE  | Quiz#1 |                   |  |  |
| 2  | Ch2. Software process                    | Ch2[1], Ch1[3]        | Quiz#2 | Proj Introduction |  |  |
| 3  | Ch3. Req. engineering                    | Ch4[1], Ch3-4[3], [2] | Quiz#3 |                   |  |  |
| 4  | Ch4. Req. engineering (cont.)            | Ch4[1], Ch3-4[3], [2] |        | Proj#1            |  |  |
| 5  | Review Project #1                        |                       |        |                   |  |  |
| 6  | Ch6. System modeling                     | Ch5[1], [2]           | Quiz#5 | Proj#2            |  |  |
| 7  | Review Project #2                        |                       |        |                   |  |  |
|    | Midterm break                            |                       |        |                   |  |  |
| 8  | Ch7. Architecture design                 | Ch6[1], Ch5[3]        | Quiz#6 |                   |  |  |
| 9  | Ch8. Design and Implementation           | Ch7[1], Ch6[3], [2]   | Quiz#7 | Proj#3            |  |  |
| 10 | Ch9. Quality assurance                   | Ch7[1], Ch6[3], [2]   | Quiz#8 |                   |  |  |
| 11 | Ch10. Agile Software Development         | Ch3[1]                | Quiz#9 | Proj#4            |  |  |
| 12 | Review Project #3, #4                    |                       |        |                   |  |  |
| 13 | Ch11. Continuous Integration/ Deployment |                       |        |                   |  |  |
| 14 | Student presentation                     |                       |        | Proj#5            |  |  |
| 15 | Ch12. Advanced topics in SE              | SE & Course Review    |        |                   |  |  |



Feb 2020 COURSE OUTLINE

#### CONTACT

- ✓ Lecturers team
  - Trương Tuấn Anh (<u>anhtt@</u>hcmut.edu.vn)
  - Mai Đức Trung (<u>mdtrung@hcmut.edu.vn</u>)
  - Trần Trương Tuấn Phát (phatttt@hcmut.edu.vn)
- ✓ Course website:
  - http://lms.hcmut.edu.vn



# REFERENCE SOURCES OF THE SLIDES

- ✓ Slides in this course are adapted mainly from Sommerville 2015 [1]. Some slides are adapted from Braude 2001 [2].
- ✓ Slides of chapter "7.3. More on Implementation" are adapted from Braude 2001 [2].

[2] E.J. Braude (2001), Software Engineering: An Object-Oriented Perspective, ISBN 978-0-471-32208-5, John Wiley.



<sup>[1]</sup> Ian Sommerville (2015), Software Engineering (10th ed.), ISBN 978-0133943030, Pearson https://iansommerville.com/software-engineering-book/slides