Section 5.4 Orthopondity D.B. Szyll (122)
We say that x, y eV are orthogonal
(or perpendicular) if $(x,y) = 0$.
In the standard inner product in R
This is $(x,y)=x^Ty=\sum_{i=1}^n x_iy_i=0$ and it wresponds to 90°
Pythagoras theorem (in IR", or in any V).
1/x-y/y
$\mathcal{J}_{X}^{T}y=0 \qquad (X,y)=0$
Proof: x 2 + y 2 = x-y 2 Proof: x 2 + y 2 - x-y 2 =
(x,x) + (y,y) + (x,x) - (y,y) + 2(x,y) = 0 $ (x,x) + (y,y) + (x,x) - (y,y) + 2(x,y) = 0$
g.l.d.

Examples

xry =0

$$X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $y = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $Y = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

or
$$p(x)=1$$
 $q(x)=x-\frac{1}{2}$
 $(p,q)=\int p(x) q(x) dx = \int (x-\frac{1}{2}) dx$
 $=\frac{x^2-\frac{1}{2}x}{2} = \frac{1}{2} = \frac{1}{2} = 0 - 0 = 0$

- '	-	,
Sec	M	5.2

Matrix Norm. IR a vector space. same definition of norm for any vector space. We saw $\|A\|_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$ We also ask that I/ABI/ \(\text{IIAI/ I/Bh.} Matrix norm as operator from R" to R" gR 12ª 1/A11 = sup 1/Ax11 = sup 1/Ax4 largest lenth of voctor in the image Special cose, let U be a matrix whose columns are or Numormal.

This implies that UTU = I

