# 项目方式讲解WAF建设

宜人贷/刘铁铮



### 自我介绍

- 十年以上的安全从业经历
- 在安全厂商、百度做过安全研究
- 在支付公司负责过企业安全建设
- 当前在宜人贷负责安全架构,完成办公网安全产品、WAF产品建设



### 目录

- 需求
- 方案设计
- 技术实现
  - > WAF基础功能
  - ➤ WAF扩展功能
  - ▶ WAF运营后台
  - > 功能和性能测试
- 经验总结





### 我们遇到了哪些问题?

### 商业产品的扩容、扩展问题

- 扩容,商业盒子产品必然会面临的问题;
- 扩展,商业WAF产品通常只具备传统web安全防御能力,很难与其他安全产品有效联动、形成合力

# 真实的需求是什么?

 $-\sqrt{\sqrt{}}$ 

业务上需求

真实需求

隐性需求

扩容:业务体量增加,解决扩容问题

扩展:业务风控提前,与风控、反欺诈系统联动

安全团队能力输出,内部的影响力

外部的安全品牌建设





### WAF产品功能组成



WAF的基础功能

传统WEB安全防御

WAF的扩展功能

CC防御、反爬虫和会话分析

与风控和反欺诈系统联动

数据分析、情报数据

WAF的运营平台

配置管理、规则管理

报表、日志、健康状况管理

数据分析平台管理、告警查询



### 设计-主流WAF产品分析



### 设计-框架和数据流图







### WAF基础功能



### 执行流程

- 1. 利用nginx(openresty),解析流量
- 2. 配置信息、规则、黑白名单由运营后台同步到redis
- 3. 利用LUA在各个执行阶段分段处理
  - ① 在init-worker阶段定时同步redis数据
  - ② 在access阶段执行规则判定和动作执行
  - ③ 在header阶段将sessionid写入cookie,以便后续流程的多维分析
  - ④ 在body阶段执行敏感数据过滤
  - ⑤ 在log阶段完成日志的输出



# WAF基础功能 - 规则推送



- 规则来源
  - ① Modsecurity规则集提取
  - ② 商业WAF规则
  - ③ 宜人贷自积累的行业内规则

- 规则推送
  - ① 规则评估
  - ② Timer执行
  - ③ Redis写入



### WAF基础功能 - 规则优化

 $- \wedge \sqrt{ }$ 

- 规则执行效率
  - ① systemtap-toolkit 工具调优正则
  - ② 先匹配字符串, 匹配后再执行正则匹配

```
$ ./ngx-pcre-stats -p 24528 --total-time-top --luajit20
Tracing 24528 (/path/to/nginx/sbin/nginx)...
Hit Ctrl-C to end.
^C
Top N regexes with longest total running time:
1. pattern /WEB_ATTACK/: 15103us (total data size: 82184)
2. pattern / _cf__\d+/: 11143us (total data size: 25916)
3. pattern /[^\x01-\xff]/: 10233us (total data size: 102825)
```

```
$ ./ngx-pcre-stats -p 24528 --worst-time-top --luajit20
Tracing 24528 (/path/to/nginx/sbin/nginx)...
Hit Ctrl-C to end.
^C
Top N regexes with worst running time:
1. pattern /\.cookie\b.*?\;\W*?domain\W*?\=/: 98us (data size: 36)
2. pattern /(Content-Length|Transfer-Encoding)/: 89us (data size: 14)
3. pattern / __cf__\d+/: 63us (data size: 8)
4. pattern /[^\x01-\xff]/: 53us (data size: 13)
5. pattern /\b(background|dynsrc|href|lowsrc|src)\b\W*?=/: 53us (data size: 5147)
```

| "ma<br>"rı<br>"ke |       | "regex",<br>IAVA 获取参数",<br>\\bget(7:runti | ime paramet | er inputstrea | am reader) write)\\s*?\\                                       | <u>("</u> , |
|-------------------|-------|-------------------------------------------|-------------|---------------|----------------------------------------------------------------|-------------|
| 匹配条件              | 匹配字段  |                                           | 逻辑          |               | 匹配内容                                                           |             |
|                   | param | ~                                         | 包含          | V )           |                                                                | ×           |
|                   | param | ~                                         | 正则          | · V           | \bget(?:runtimelparameterlinput<br>streamlreader)lwrite)\s*?\( | ×           |
|                   | 添加条件  |                                           |             |               |                                                                |             |



### WAF扩展功能 - 流处理服务

传统WAF vs WAF扩展

采用流计算方案 – 实时消费消息队列 对接各个微服务 – 扩展性

配置服务器

规则服务器

流处理服务
(Flink + CEP)

状态系统查询

计数服务

会话分析服务

数据分析服务

业务安全接入

情报数据服务

### WAF扩展功能 - 为什么选择Flink?

- 1、纯流式系统
- 2、高吞吐
- 3、内置CEP复杂事件规则引擎



### WAF扩展功能 - 计数服务

- 标准Bloom Filter & Counting Bloom Filter
  - ① 布隆算法是一种高效利用空间的概率数据结构,用于检测一个元素是否属于一个集合;
  - ② 优点:实现简单,占用空间小,速度极快
  - ③ 缺点:有一定的误差



### WAF扩展功能 – 会话分析



- ① SID合法性校验
- ② 指定域名的上下文分析
- ③ 相同SID下的基础安全规则触碰次数
- ④ Session封禁,不伤IP



### WAF扩展功能-状态系统



- 业务安全提前做,触碰如下规则写入状态系统,为后续业务风控提前准备数据
  - ① 请求IP的情报信息
  - ② 请求IP or 设备指纹的请求频率计数
  - ③ 请求IP or 设备指纹的访问时段规则



### 运营后台



多级配置,灵活降级

Da 全局配置

● 域名防御

☑ 域名防护配置

□ 域名规则配置

域名黑名单设置

web应用防护规则配置

CC攻击防护规则配置

● 告警查询

⋒ 报表功能

☑ 系统状态监控

敏感数据防泄露规则配置

域名接入,规则管理

告警查询,报表输出

系统健康状况监控





## 日志和告警

### 告警日志 状态日志





# 功能和性能测试

无规则测试

CPU 负载

30条规则测试

延时

50条规则测试

|                  | <del>9-2</del> /\ |              |                                           |            |                     |          |                |            |                  |        |            |         |                         |
|------------------|-------------------|--------------|-------------------------------------------|------------|---------------------|----------|----------------|------------|------------------|--------|------------|---------|-------------------------|
| 规则数量             | 请求数量              | <b>并</b> 安粉書 | MQ超时                                      | MQ超时<br>数量 | 超时时间<br>是否算入<br>总时间 | QPS      | 各阶段平均用时(单位:毫秒) |            |                  |        |            |         |                         |
| 入元火!! XX 重       |                   | <b>开及</b> 数重 | •                                         |            |                     | •        | access阶段       | send MQ    | header_f         | body_f | log阶段      | 总时间(毫秒) | 百江                      |
|                  | 50w               | 30           | 200ms                                     | 9000       | 否                   | 3000     | 0.29           | 0.13       | 0.01             |        | 0.011      | 0.55    |                         |
|                  | 50w               | 20           | 200ms                                     | 5000       | 否                   | 3800     | 0.31           | 0.15       | 0.01             |        | 0.011      | 0.57    |                         |
|                  | 25w               | 10           | 200ms                                     | 500        | 否                   | 4100     | 0.27           | 0.1        | 0.01             |        | 0.011      | 0.54    |                         |
|                  | 50w               | 30           | 2000ms                                    | 250        | 否                   | 4800     | 1              | 0.89       | 0.01             |        | 0.011      | 1.32    |                         |
|                  | 50w               | 20           | 2000ms                                    | 85         | 否                   | 5000     | 1              | 0.91       | 0.01             |        | 0.011      | 1.33    |                         |
|                  | 50w               | 20           | 20000ms                                   | 85         | 否                   | 5000     | 1              | 0.91       | 0.01             |        | 0.011      | 1.33    |                         |
|                  | =0.11             | 10           | 200                                       | 200        |                     | 5450     |                | 244        | 2.24             |        | 0.11       | 0.50    |                         |
|                  | 50W               | 10           | 200ms                                     | 300        | 否                   | 5159     | 0.27           | 0.14       | 0.01             |        | 0.11       | 0.53    |                         |
|                  | 50W               | 20           | 200ms                                     | 340        | 否                   | 5859     | 0.58           | 0.45       | 0.01             |        | 0.11       | 0.84    |                         |
|                  | 50W               | 30           | 200ms                                     | 450        | 否                   | 6021     | 0.38           | 0.26       | 0.01             |        | 0.11       | 0.65    | 100% 7000               |
| 30               | 50W               | 10           | 20000ms                                   | 0          | 否                   | 4929     | 0.34           | 0.21       | 0.01             |        | 0.11       | 0.6     | 100% 7000ms<br>99%<5ms  |
|                  | 50W               | 20           | 20000ms                                   | 0          | 否                   | 5400     | 1              | 0.96       | 0.01             |        | 0.11       | 1.38    | 100% 10639ms            |
|                  | 3000              | 20           | 200001113                                 |            |                     |          |                |            |                  |        |            |         | 99%<10ms                |
|                  | 50W               | 30           | 20000ms                                   | 0          | 否                   | 4900     | 2.86           | 2.73       | 0.01             |        | 0.11       | 3.11    | 100% 10639ms            |
|                  | 0011              | 00           | 200001110                                 |            | -                   | 1000     | 2.00           | 2.10       | 0.02             |        | 0.111      | 0.11    | 99%<12ms                |
|                  |                   |              |                                           | × 1        |                     | 0        |                |            |                  |        |            |         |                         |
|                  | 30w               | 10           | 20000ms                                   | 0          | 否                   | 5381     | 1.48           | 1.21       | 0.01             |        | 0.11       | 2.86    | 100% 5238ms             |
|                  | Augusta 77.00     |              | 8                                         |            |                     |          |                |            |                  |        |            |         | 99%<4ms                 |
|                  | 30w               | 20           | 20000ms                                   | 0          | 否                   | 5900     | 0.66           | 0.39       | 0.01             |        | 0.11       | 1.69    | 100% 7482ms             |
|                  |                   |              |                                           |            |                     |          |                |            |                  |        |            |         | 99%<6ms<br>100% 13199ms |
|                  | 30w               | 30           | 20000ms                                   | 0          | 否                   | 5900     | 2.7            | 2.45       | 0.01             |        | 0.09       | 4.46    | 99%<9ms                 |
|                  |                   |              |                                           |            | 87-151              |          |                |            |                  |        |            |         | 100% 566ms              |
|                  | 30w               | 10           | 20000ms                                   | 0          | 否                   | 3700     | 1.17           | 0.12       | 0.01             |        | 0.16       | 2.72    | 99%<6ms                 |
| 50               | 10121             | 12/2/        | 1000000                                   |            |                     |          | 10.00          |            | 020202           |        | (2)(1)     | 12020   | 100% 2825ms             |
|                  | 30w               | 20           | 20000ms                                   | 0          | 否                   | 5100     | 1.3            | 0.4        | 0.01             |        | 0.14       | 3.94    | 99%<10ms                |
|                  | 30w               | 30           | 20000ms                                   | 0          | 否                   | 4700     | 2.17           | 1.22       | 0.01             |        | 0.13       | 5.94    | 100% 9378ms             |
|                  | 30W               | 30           | 200001115                                 | U          | Ħ.                  | 4700     | 2.17           | 1.22       | 0.01             |        | 0.13       | 5.94    | 99%<15ms                |
|                  |                   |              |                                           |            |                     |          |                |            |                  |        |            |         |                         |
| 100<br>有复杂规<br>则 | 30w               | 10           | 20000ms                                   | 0          | 否                   | 800      | 9.66           | 0.11       | 0.01             |        | 0.08       | 15.8    | 100% 1018ms             |
|                  | 5011              | 10           | 200001113                                 | •          | н                   | 000      | 3.00           | 0.11       | 0.01             |        | 0.00       | 10.0    | 99%<31ms                |
|                  | 30w               | 20           | 20000ms                                   | 0          | 否                   | 815      | 9.47           | 0.12       | 0.01             |        | 0.08       | 27.1    | 100% 662ms              |
|                  | GGS(E)            |              | 1-3,5,5,5,0,000                           | 20-0       |                     | (3.3.3.) |                | 262ms-1    | 2533555          |        | 1514.51451 |         | 99%<68ms                |
|                  | 30w               | 30           | 20000ms                                   | 0          | 否                   | 793      | 9.83           | 0.21       | 0.01             |        | 0.08       | 38.6    | 100% 1074ms             |
| 76<br>无复杂规<br>则  | 5025-501          | 50,925       | 200000000000000000000000000000000000000   | 1000       | 0.000               | ******   | A-4-5-5-5-5    | CONTROL OF | College Co.      |        | 0000000    |         | 99%<110ms               |
|                  | 30w               | 10           | 20000ms                                   | 0          | 否                   | 775      | 9.58           | 0.1        | 0.01             |        | 0.08       | 15.2    | 100% 191ms<br>99%<32ms  |
|                  | 200.000           | pproper to   | A000-00-00-00-00-00-00-00-00-00-00-00-00  |            | Secretary.          |          | Septem 1       |            | Constitution and |        | 24000      |         | 100% 1263ms             |
|                  | 30w               | 20           | 20000ms                                   | 0          | 否                   | 815      | 10             | 0.21       | 0.01             |        | 0.1        | 27.5    | 99%<78ms                |
|                  | 100 CONT.         | 00000        | 0.<br>0.000.000.0000000000000000000000000 |            |                     | 2000     |                |            |                  |        |            |         | 100% 367ms              |
|                  | 30w               | 30           | 20000ms                                   | 0          | 否                   | 794      | 9.83           | 0.21       | 0.01             |        | 0.08       | 38.6    | 99%<100ms               |
|                  |                   |              | \                                         | 1          |                     |          |                |            |                  |        | P I        | 10      |                         |



# 经验总结



### 团队

- $\bigwedge$
- 安全团队,特别是中小互联网公司的安全团队,在研发安全产品的过程中需要规避一些问题:
  - ① 产品化,一个拿到生产环境使用的产品,健壮性、易用性、扩展性缺一不可
  - ② 项目制,分工明确,有计划,这往往是大多安全团队比业务研发团队欠缺的
  - ③ 好产品是迭代出来的,要抗的住压力,耐得住寂寞
  - ④ 需要充分的需求分析、设计、评审
  - ⑤ 需要足够多的测试
  - ⑥ 需要具备产品、研发、数据分析、安全运营能力
  - ⑦创造比破坏困难的多

### 规则策略和纵深防御

Im

- 规则策略
  - ① 宁漏报不误拦,影响业务的锅背不起
  - ② 规则的数量和复杂程度影响到nginx的性能,规则和性能需要达到一种平衡
  - ③ WAF属于典型的CPU密集型系统,95%的拦截发在在10%的规则上面,重点规则需要重点优化
  - ④ 规则和业务匹配,就是说java后台就别上php的一些规则了
- 纵深防御和安全数据分析
  - ① WAF产品做为流量入口,需要和其他安全系统联动,形成合力,重点解决真正危害业务的攻击行为
  - ② 把机器学习算法模型作为规则的有效补充

### 参考资料

http://www.modsecurity.org

https://github.com/openresty/openresty-systemtap-toolkit

https://en.wikipedia.org/wiki/Bloom\_filter

https://en.wikipedia.org/wiki/Hidden\_Markov\_model

https://data-artisans.com/blog/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink



# THANKS 2018 携程安全沙龙