Middle East Technical University Department of Electrical and Electronics Engineering

EE 230 Spring 2011

PROBABILITY AND RANDOM VARIABLES

Instructors and Schedule

Section	Instructor	Office		
1	Aydın Alatan		Tue 13:40-15:30 EA 209	Fri. 12: ⁴⁰ -13: ³⁰ EA 209
2	Fatih Kamışlı	C 108		Fri. 12: ⁴⁰ -13: ³⁰ EA 312
3	Ali Özgür Yılmaz	EZ 11	Tue 13: ⁴⁰ -15: ³⁰ EA 310	Fri. 12: ⁴⁰ -13: ³⁰ EA 310
4	Tolga Çiloğlu		Mon 15: ⁴⁰ -16: ³⁰ EA 312	
5	Elif Uysal-Bıyıkoğlu	D 208	Mon 15: ⁴⁰ -16: ³⁰ EA 310	Thu 13 ⁴⁰ -15: ³⁰ EA 207

Textbook

• Introduction to Probability, 2nd Edition, Dimitri Bertsekas, John N. Tsitsiklis, Athena Scientific, 2008.

References

- A First Course in Probability, S.Ross, MacMillan Publishing Co
- Probability and Random Processes with Applications to Signal Processing. 3rd Edition, H. Stark, J.W.Woods, Prentice Hall, 2002.
- Probability Random Variables and Stochastic Processes, A.Papoulis, McGraw Hill
- Probability Random Variables and Random Signal Principles, P.Z. Peebles, McGraw Hill
- Introduction to Probability and Statistical Applications, P.L.Meyer, Addison-Wesley.

Course Outline

1. Sample Space and Probab	bility (~9 lectures)	
----------------------------	----------------------	--

- a. Sets
- b. Probabilistic Models
- c. Conditional Probability
- d. Total Probability and Bayes's Theorem
- e. Independence
- f. Counting
- 2. <u>Discrete Random Variables</u> (~9 lectures)
 - a. Basic Concepts
 - b. Probability Mass Function
 - c. Functions of Random Variables
 - d. Expectation, Mean and Variance
 - e. Joint PMFs of multiple random variables
 - f. Conditioning
 - g. Independence
- 3. General Random Variables (~9 lectures)
 - a. Continuous Random Variables and PDFs
 - b. Cumulative Distribution Functions

- c. Normal Random Variables
- d. Joint PDFs of Multiple Random Variables
- e. Conditioning
- f. The continuous Bayes's Rule
- 4. Further Topics on Random Variables (~9 lectures)
 - a. Derived Distributions
 - b. Covariance and Correlation
 - c. Conditional Expectation and Variance
 - d. Transforms
 - e. Sums of Independent Random Variables
 - f. Sum of a Random Number of Independent Random Variables
- 5. <u>Limit Theorems</u> (~3 lectures)
 - a. The Markov and Chebychev Inequalities
 - b. The Weak Law of Large Numbers
 - c. Convergence in Probability
 - d. The Central Limit Theorem
- 6. The Bernoulli and Poisson Processes (~3 lectures)
 - a. The Bernoulli Process
 - o. Poisson Process

Homeworks and Project

10 homework assignments with 3 questions on each. 1 Project

Grading Policy

Midterm Examinations: TBD% (TBD % + TBD %)

Final Examination: TBD %

Homework +Project+ Attendance: TBD%