under Graduate Homework In Mathematics

Functional Analysis 10

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

2023年12月19日

ROBEM I Let $f \in \mathcal{X}^*$, $f \neq 0$, let $d := \inf\{\|x\| : f(x) = 1, x \in \mathcal{X}\}$, prove: $\|f\| = \frac{1}{d}$.

SOUTION. First of all d > 0, that is because f is continue, $\exists \delta > 0$, $\forall ||x|| < \delta$, $|f(x)| \le 1$. So $d \ge \delta$. Besides, $\exists x \ne 0$, such that $f(x) \ne 0$, then $\{x \in \mathcal{X} : f(x) = 1\}$ is not empty.

- 1. $\forall \|x\| = 1$, $|f(x)| \le \frac{1}{d}$: if not, $\exists \|x\| = 1$, $|f(x)| > \frac{1}{d}$, let $x = \frac{x}{f(x)}$, so $f(\frac{x}{f(x)}) = 1$, $\left\| \frac{x}{f(x)} \right\| = \frac{\|x\|}{|f(x)|} = \frac{1}{|f(x)|} < d$. So $\inf\{\|x\| : f(x) = 1\} < d$.
- 2. $||f|| \ge \frac{1}{d}$: Since $\exists \{x_n\}_{n=1}^{\infty}$, such that $f(x_n) = 1$, $\lim_{n \to \infty} ||x_n|| = d$. Then, $y_n := \frac{x_n}{||x_n||}$, so $||y_n|| = 1$, $|f(y_n)| = \frac{|f(x_n)|}{||x_n||} = \frac{1}{||x_n||} \to \frac{1}{d}$.

ROBEM II Let $f \in \mathcal{X}^*$, prove: $\forall \varepsilon > 0$, $\exists x_0 \in \mathcal{X}$, such that $f(x_0) = ||f||$, and $||x_0|| < 1 + \varepsilon$.

ROBEM III Let $T: \mathcal{X} \to \mathcal{Y}$ is linear, let $N(T) := \{x \in \mathcal{X} : Tx = 0\}$.

- 1. If $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, prove: N(T) is closed subspace of \mathcal{X} .
- 2. Can we infer $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ throught that N(T) is closed subspace in \mathcal{X} .
- 3. If f is a linear functional, prove: $f \in \mathcal{X}^* \iff N(f)$ is closed subspace in \mathcal{X} .
- SOUTION. 1. $\forall x, y \in \mathcal{X}, a, b \in \mathbb{K}, f(ax + by) = af(x) + bf(y) = 0.$ So $ax + by \in N(T)$. $\{x_n\}_{n=1}^{\infty} \subset N(T), \lim_{n \to \infty} x_n = x.$ Since $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, then $f(x) = \lim_{n \to \infty} f(x_n) = 0.$ Therefore, N(T) is closed.
- 2. No. Consider $\mathcal{X}:=l^1$, where the norm on \mathcal{X} is $||x||:=\sup_{n\geq\infty}|x(n)|$, x(n) is the n-th number of x. a such that a(k)=1, k=1, a(k)=-1, k=2, a(k)=0, k>2. $f:\mathcal{X}\to\mathbb{K}$, $f(x)=\sum_{n=1}x(n)$. Let $T:\mathcal{X}\to\mathcal{X}$, T(x)=x-af(x). Since $x\in l^1$, then $|f(x)|=|\sum_{n\in\mathbb{N}_+}x(n)|\leq\sum_{n\in\mathbb{N}_+}|x(n)|<\infty$ So $\sum_{n\in\mathbb{N}_+}|x(n)-f(x)a(n)|\leq\sum_{n\in\mathbb{N}_+}|x(n)|+|f(x)|<\infty$. Terefore, T is well-defined. Besides, T is linear obviously. And $\forall x\in N(T), x=af(x)\iff x(n)=f(x)a(n), n\in\mathbb{N}_+$, and $f(x)=\sum_{n\in\mathbb{N}_+}x(n)=0$. Therefore, $N(T)=\{\theta\}$. Besides, \mathcal{X} can be a disstance space, then N(T) is closed. However, $||f||=\infty$, that is because $f(x_n)=n$, where $x_n(k)=\mathbbm{1}_{k\leq n}$. So $||x_n||=1$, $||f(x_n)||=n\to\infty$, $n\to\infty$. And $\forall x:||x||=1, ||af(x)||=||x-T(x)||\leq ||x||+||T(x)||=1+||T(x)||$, thus, $||T||=\infty$.
- 3. By Item 1, we only need to prove N(T) is closed $\implies T \in \mathcal{X}^*$.
 - (a) If $N(T) = \mathcal{X}$, then ||T|| = 0, so $T \in \mathcal{X}^*$.

(b) $f(N(T)) \subseteq \mathcal{X}$, $\exists x \in \mathcal{X} \setminus N(T)$, such that $T(x) \neq 0$. So $x_0 := \frac{x}{T(x)} \in \mathcal{A} := \{x : T(x) = 1\}$. Obviously, $x_0 + N(T) \subset \mathcal{A}$, $\forall y \in \mathcal{A}$, $T(y - x_0) = T(y) - T(x_0) = 1 - 1 = 0$. Therefore, $\mathcal{A} \subset x_0 + N(T)$. Let $d := \inf\{\|x\| : x \in \mathcal{A}\}$. So $d \geq 0$. If d = 0, then $\{x_n\}_{n=1}^{\infty} \subset \mathcal{A}$, $\|x_n\| \to 0$, $n \to \infty$. Consider $y_n = x_n - x_0 \in N(T)$, then $\|y_n\| = \|x_n - x_0\| \leq \|x_n\| + \|x_0\| \to \|x_0\|$, $n \to \infty$. Then $\{y_n\}_{n=1}^{\infty} \subset N(T)$ is bounded. Besides, N(T) is closed, then $\exists \{y_{n_k}\}_{k=1}^{\infty} \subset \{y_n\}_{n=1}^{\infty}$ such that $\exists y_0 \in N(T), y_{n_k} \to y_0, k \to \infty$. For convenience's sake, assume $\lim_{n\to\infty} y_n = y_0$. So $\lim_{n\to\infty} \|x_n\| = \lim_{n\to\infty} \|x_0 + y_n\| = \lim_{n\to\infty} \|x_0 + y_0\| = 0$. Therefore, $x_0 + y_0 = 0$, then $x_0 \in N(T)$, i.e. $T(x_0) = 0$. Contradiction! Thus d > 0. Same as \mathbb{R}^{OBEM} I, then $\|T\| = \frac{1}{d} < \infty$. Therefore, $T \in \mathcal{L}(\mathcal{X}, \mathbb{K})$.