Generic analysis of local convergence

Cong Ma
University of Chicago, Autumn 2021

Outline

- Low-rank matrix sensing
- Phase retrieval
- Low-rank matrix completion

Low-rank matrix sensing

- Groundtruth: rank-r matrix $M^{\star} \in \mathbb{R}^{n_1 \times n_2}$
- Observations:

$$y_i = \langle \boldsymbol{A}_i, \boldsymbol{M}^* \rangle, \quad \text{for } 1 \le i \le m$$

ullet Goal: recover $oldsymbol{M}^{\star}$ based on linear measurements $\{oldsymbol{A}_i,y_i\}_{1\leq i\leq m}$

How many measurements are needed

- $m \ge n_1 n_2$ "generic" measurements suffice given theory of solving linear equations
- But M^{\star} only has $O((n_1+n_2)r)$ degrees of freedom. Ideally, one hope for using only $O((n_1+n_2)r)$ measurements

Recovery is possible if $\{A_i\}$'s satisfy restricted isometry property

Restricted isometry property (RIP)

Define linear operator $\mathcal{A}: \mathbb{R}^{n_1 \times n_2} \mapsto \mathbb{R}^m$ t obe

$$\mathcal{A}(\boldsymbol{M}) = [m^{-1/2} \langle \boldsymbol{A}_i, \boldsymbol{M} \rangle]_{1 \le i \le m}$$

Definition 8.1

The operator ${\cal A}$ is said to satisfy r-RIP with RIP constant $\delta_r < 1$ if

$$(1 - \delta_r) \| \boldsymbol{M} \|_{\mathsf{F}}^2 \le \| \mathcal{A}(\boldsymbol{M}) \|_2^2 \le (1 + \delta_r) \| \boldsymbol{M} \|_{\mathsf{F}}^2$$

holds simultaneously for all M of rank at most r.

- Many random designs satisfy RIP with high probability
- For instance, when A_i is composed of i.i.d. $\mathcal{N}(0,1)$ entries, \mathcal{A} obeys r-RIP with constant δ_r as soon as $m\gtrsim (n_1+n_2)r/\delta_r^2$

An optimization-based method

Consider the simple case when M^{\star} is psd and rank 1, i.e.,

$$oldsymbol{M}^\star = oldsymbol{x}^\star oldsymbol{x}^{\star op}$$

Then least-squares estimation yields

Gradient descent

Starting from $oldsymbol{x}^0$, one proceeds by

$$\begin{aligned} \boldsymbol{x}^{t+1} &= \boldsymbol{x}^t - \eta \nabla f(\boldsymbol{x}^t) \\ &= \boldsymbol{x}^t - \frac{\eta}{m} \sum_{i=1}^m \left(\langle \boldsymbol{A}_i, \boldsymbol{x}^t \boldsymbol{x}^{t\top} \rangle - y_i \right) \boldsymbol{A}_i \boldsymbol{x}^t \end{aligned}$$

Here we made simplifying assumption that A_i is symmetric

- Under random design, when $m \to \infty$, this mirrors PCA problem with loss $\frac{1}{4} \| \boldsymbol{x} \boldsymbol{x}^\top \boldsymbol{x}^\star \boldsymbol{x}^{\star \top} \|_{\mathrm{F}}^2$; GD works locally
- How about finite-sample case?

RIP helps

Local convergence of gradient descent

Theorem 8.2

Suppose that A obeys 4-RIP with constant $\delta_4 \leq 1/44$. If $\|x^0 - x^*\|_2 < \|x^*\|_2/12$, then GD with $\eta = 1/(3\|x^*\|_2^2)$ obeys $\|\boldsymbol{x}^t - \boldsymbol{x}^{\star}\|_2 \le (\frac{11}{12})^t \|\boldsymbol{x}^0 - \boldsymbol{x}^{\star}\|_2, \quad \text{for } t = 0, 1, 2, \dots$

• local linear convergence within basin of attraction
$$\{x \mid ||x - x^*||_2 < ||x^*||_2 / 12\}$$

 $\{x \mid \|x - x^{\star}\|_{2} < \|x^{\star}\|_{2}/12\}$

Proof of Theorem 8.2

In view of theory of gradient descent for locally strongly convex and smooth functions, it suffices to prove that

$$0.25 \|\boldsymbol{x}^{\star}\|_{2}^{2} \boldsymbol{I}_{n} \leq \nabla^{2} f(\boldsymbol{x}) \leq 3 \|\boldsymbol{x}^{\star}\|_{2}^{2} \boldsymbol{I}_{n}$$

holds for all

$$\{ \boldsymbol{x} \mid \| \boldsymbol{x} - \boldsymbol{x}^{\star} \|_{2} \le \| \boldsymbol{x}^{\star} \|_{2} / 12 \}$$

To analyzing spectral properties of $\nabla^2 f(\boldsymbol{x})$, we focus on quadratic forms

$$oldsymbol{z}^{ op}
abla^2 f(oldsymbol{x}) oldsymbol{z}$$

Proof of Theorem 8.2 (cont.)

Simple calculations show

$$\boldsymbol{z}^{\top} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{z} = \frac{1}{m} \sum_{i=1}^{m} \langle \boldsymbol{A}_{i}, \boldsymbol{x} \boldsymbol{x}^{\top} - \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top} \rangle (\boldsymbol{z}^{\top} \boldsymbol{A}_{i} \boldsymbol{z}) + 2(\boldsymbol{z}^{\top} \boldsymbol{A}_{i} \boldsymbol{x})^{2},$$

which admits a more "compact" expression

$$\begin{split} \boldsymbol{z}^\top \nabla^2 f(\boldsymbol{x}) \boldsymbol{z} &= \langle \mathcal{A}(\boldsymbol{x} \boldsymbol{x}^\top - \boldsymbol{x}^\star \boldsymbol{x}^{\star\top}), \mathcal{A}(\boldsymbol{z} \boldsymbol{z}^\top) \rangle \\ &+ \frac{1}{2} \langle \mathcal{A}(\boldsymbol{z} \boldsymbol{x}^\top + \boldsymbol{x} \boldsymbol{z}^\top), \mathcal{A}(\boldsymbol{z} \boldsymbol{x}^\top + \boldsymbol{x} \boldsymbol{z}^\top) \rangle \end{split}$$

RIP preserves inner product

Lemma 8.3

Suppose that A satisfies 2r-RIP with constant $\delta_{2r} < 1$, then

$$|\langle \mathcal{A}(\boldsymbol{X}), \mathcal{A}(\boldsymbol{Y}) \rangle - \langle \boldsymbol{X}, \boldsymbol{Y} \rangle| \leq \delta_{2r} \|\boldsymbol{X}\|_{\mathrm{F}} \|\boldsymbol{X}\|_{\mathrm{F}}$$

Proof of Theorem 8.2 (cont.)

Apply Lemma 8.3 to obtain

$$\begin{aligned} \left| \langle \mathcal{A}(\boldsymbol{x} \boldsymbol{x}^{\top} - \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}), \mathcal{A}(\boldsymbol{z} \boldsymbol{z}^{\top}) \rangle - \langle \boldsymbol{x} \boldsymbol{x}^{\top} - \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}, \boldsymbol{z} \boldsymbol{z}^{\top} \rangle \right| \\ & \leq \delta_{4} \|\boldsymbol{x} \boldsymbol{x}^{\top} - \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\|_{F} \|\boldsymbol{z} \boldsymbol{z}^{\top}\|_{F} \leq 3\delta_{4} \|\boldsymbol{x}^{\star}\|_{2}^{2} \|\boldsymbol{z}\|_{2}^{2}, \end{aligned}$$

while last relation uses $\|x-x^\star\|_2 \leq \|x^\star\|_2$. Similarly, one has

$$\begin{aligned} \left| \langle \mathcal{A}(\boldsymbol{z}\boldsymbol{x}^\top + \boldsymbol{x}\boldsymbol{z}^\top), \mathcal{A}(\boldsymbol{z}\boldsymbol{x}^\top + \boldsymbol{x}\boldsymbol{z}^\top) \rangle - \|\boldsymbol{z}\boldsymbol{x}^\top + \boldsymbol{x}\boldsymbol{z}^\top\|_{\mathrm{F}}^2 \right| \\ &\leq \delta_4 \|\boldsymbol{z}\boldsymbol{x}^\top + \boldsymbol{x}\boldsymbol{z}^\top\|_{\mathrm{F}}^2 \leq 4\delta_4 \|\boldsymbol{x}\|_2^2 \|\boldsymbol{z}\|_2^2 \leq 16\delta_4 \|\boldsymbol{x}\|_2^2 \|\boldsymbol{z}\|_2^2 \end{aligned}$$

Proof of Theorem 8.2 (cont.)

Define

$$g(oldsymbol{x},oldsymbol{z})\coloneqq \langle oldsymbol{x}oldsymbol{x}^ op - oldsymbol{x}^\staroldsymbol{x}^{\star op},oldsymbol{z}oldsymbol{z}^ op
angle + rac{1}{2}\|oldsymbol{z}oldsymbol{x}^ op + oldsymbol{x}oldsymbol{z}^ op \|_{ ext{F}}^2$$

Key conclusion so far: when $\|x-x^\star\|_2 \le \|x^\star\|_2$, $z^\top \nabla^2 f(x) z$ is close to g(x,z)

It boils down to upper and lower bounding $g(\boldsymbol{x},\boldsymbol{z})$ —a much easier task

Spectral initialization

Construct

$$\boldsymbol{M} = \frac{1}{m} \sum_{i=1}^{m} y_i \boldsymbol{A}_i$$