Lesson 2: Navigating Pathways Connecting Reactions for Short Syntheses

Mr Haynes

Gosford High School

Module 7: Organic Chemistry

Outline

- Recap & New Connections
- Planning Short Syntheses
- Paired Problem Solving
- Summary

Recap & Expanding the Map

Retrieval Practice: (Teacher asks questions, e.g., "Reagent for Haloalkane \rightarrow Alcohol?", "Product of alcohol dehydration?") Review:

Briefly show Chord Diagram from L1. Remind students of the connections learned. **New Reactions (Adding to our map):**

- Alcohol Oxidation [CHM_M7_ALC_N6]:
 - $\bullet \ \, \mathsf{Primary} \ \, \mathsf{Alcohol} \xrightarrow{ [O] } \mathsf{Aldehyde} \xrightarrow{ [O] } \mathsf{Carboxylic} \ \, \mathsf{Acid}$
 - Secondary Alcohol $\xrightarrow{[O]}$ Ketone
 - Tertiary Alcohol $\xrightarrow{[O]}$ No reaction (usually)
 - (Show these connections on the projected visualiser)
- Esterification [CHM_M7_ESTER_N1]:
 - Carboxylic Acid + Alcohol $\xrightarrow{H^+/\Delta}$ Ester + H₂O
 - (Show this connection on the visualiser)
- Ester Naming [CHM_M7_NOM_N11]: (Brief mention e.g., Alkyl Alkanoate)

From A to C via B: Planning Pathways

Often, we can't get from starting material (A) to target product (C) in one step. We need intermediate compounds (B). **The Strategy:**

- Identify Starting and Target Functional Groups.
- **Use the Chord Diagram Tool:** Find pathway(s) connecting Start to Target. Identify the intermediate functional group(s).
- Write out the sequence of reactions.
- 4 Add specific reagents and conditions for each step.

Modelling: Ethene to Ethanoic Acid

Problem: Convert Ethene (C₂H₄) to Ethanoic Acid (CH₃COOH). Teacher Modelling ("Think Aloud" - S6):

- "Start is Alkene, Target is Carboxylic Acid."
- Use "Look at the map (Chord Diagram)... Alkene connects to Alcohol. Alcohol connects to Aldehyde, which connects to Carboxylic Acid (for primary). So, the path is Alkene \rightarrow Alcohol \rightarrow Carboxylic Acid. Intermediate = Alcohol (Ethanol)."
- "Write the sequence:"
 - Step 1 (Alkene \rightarrow Alcohol): $CH_2 = CH_2 \longrightarrow CH_3CH_2OH$. "What reagent? Map hover/recall... Hydration." Reagent: H₂O / H⁺.
 - Step 2 (Alcohol → Acid): CH₃CH₂OH → CH₃COOH. "What reagent? Map hover/recall... Oxidation of primary alcohol." Reagent: Strong Oxidising Agent (e.g., $Cr_2O_7^{2-}/H^+$), shown as [O].
- "Check: Path makes sense, reagents identified."

(Show final written sequence clearly)

 H_2O/H^+ $CH_2CH_2OH_2OH_2OH_3CH_3CO$ P. Haynes (GHS)

Paired Problem Solving Activity

Now, work with your partner on the problems from Activity Sheet 2. **Instructions Recap**:

- Use the Chord Diagram tool to PLAN your route first.
- Write down the detailed steps on mini-whiteboard/paper/Worksheet
 2:
 - Structures (or names).
 - Reagents & Conditions for each arrow.
- Discuss your strategy with your partner. Use the metacognitive prompts!

(Teacher circulates, assists, and prompts using S6 questions)

Navigating Pathways: Key Takeaways

- We expanded our reaction map with Alcohol Oxidation and Esterification.
- We practiced using the map (visualiser) to plan short (2-3 step) synthesis pathways.
- The planning process: Identify Start/Target → Find Route via Intermediates (using map) → Add Reagents/Conditions.
- This moves us from knowing single reactions to connecting them.

Next Steps:

- Review drafted pathways.
- Preview Lesson 3: Tackling more complex synthesis problems and learning to communicate them using formal flowcharts (Syllabus requirement!).

Thank you!

Questions?