

Apr 01, 2022

Purification of lysosomes using dextranconjugated SPIONs

William Hancock-Cerutti^{1,2,3,4,5}, Arun Kumar Tharkeshwar¹,

Shawn M Ferguson^{1,5}, Pietro De Camilli^{1,2,3,5}

¹Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA;

²Howard Hughes Medical Institute;

³Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medici ne, New Haven, Connecticut 06510, USA;

⁴Interdisciplinary Neuroscience Program and MD-PhD Program, Yale University School of Medicine, New Haven, Connecticut 06510, USA;

⁵Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20 815

dx.doi.org/10.17504/protocols.io.bp2l61dr1vqe/v1

This method describes the usage of dextran-conjugated superparamagnetic iron nanoparticles (SPIONs) to purify a lysosome fraction from cultured cells.

HC-Protocol-Lysosomepurification-SPIONS.docx

DOI

dx.doi.org/10.17504/protocols.io.bp2l61dr1vqe/v1

William Hancock-Cerutti, Arun Kumar Tharkeshwar, Shawn M Ferguson, Pietro De Camilli 2022. Purification of lysosomes using dextran-conjugated SPIONs. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.bp2l61dr1vqe/v1

_____ protocol,

Apr 01, 2022

Apr 01, 2022

60196

1

Citation: William Hancock-Cerutti, Arun Kumar Tharkeshwar, Shawn M Ferguson, Pietro De Camilli Purification of lysosomes using dextran-conjugated SPIONs https://dx.doi.org/10.17504/protocols.io.bp2l61dr1vge/v1