第三节

定积分的物理应用

- 一、主要内容
- 一二、典型例题
- 三、同步练习
- 四、同步练习解答

一、主要内容

(一) 平面物质线段的质量

已知在闭区间[a,b]上的物质直线段L,线密度为 $\mu(x)$,且 $\mu(x)$ 是连续函数,求线段L的质量.

取积分变量为 x, $\forall [x,x+dx] \subset [a,b]$,质量元素: $dM = \mu(x)dx$

从而线段L的质量为 $M = \int_a^b \mu(x) dx$.

(二)功

1. 变力沿直线所作的功 $O \overline{a} x$

问题: 设物体在连续变力 F(x) 作用下沿 x 轴从 x = a 移动到 x = b ,力的方向与运动方向平行,求变力所作的功 .

由物理学,已知常力 F_0 将质点从点a移至b,所作的功为:

$$W_0 = F_0 \cdot (b - a)$$

现在F(x)是变力,如何求功 W?

功W具有可用定积分计算的量的三个特征, 故可考虑用定积分的"元素法"来计算.

$$1^{\circ} \forall [x,x+dx] \subset [a,b]$$

功元素:
$$dW = F(x)dx$$

($\Delta W \approx dW$)

$$2^{\circ} W = \int_{a}^{b} F(x) dx$$

- 注 当力的方向与质点的运动方向一致时, W 为正; 当力的方向与质点的运动方向相 反时, W为负.
- 2. 从容器中抽出液体作的功

(三)液体侧压力

设液体密度为 ρ ,

深为 h 处的压强: $p = g \rho h$

·当平板与水面平行时, 平板一侧所受的压力为 P = pA

当平板不与水面平行时,所受侧压力问题就需用定积分来解决。

(四) 引力问题

回顾: 两质点的引力

质量分别为 m_1, m_2 的质点,相距r,

二者间的引力:

大小:
$$F = k \frac{m_1 m_2}{r^2}$$

方向: 沿两质点的连线

若考虑物体对质点的引力,则需用积分解决.

 m_1

 m_2

二、典型例题

例1 一金属棒长3(m), 离棒左端x(m)处的线密度为 $\mu(x) = \frac{1}{\sqrt{1+x}}(kg/m)$,问:x为何值时,[0,x]一段的质量为全棒的一半?

解 [0, x]上一段的质量为

$$M(x) = \int_0^x \mu(x) dx$$

$$= \int_0^x \frac{1}{\sqrt{1+x}} dx = 2\sqrt{1+x} \Big|_0^x$$

$$= 2(\sqrt{1+x} - 1)$$

$$M(x) = 2(\sqrt{1+x}-1)$$

而全棒的质量为M(3) = 2,

故依题意有

$$M(x) = \frac{1}{2}M(3)$$

$$\therefore x = \frac{5}{4} \text{ (m)}.$$

- 例2 自地面垂直地向上发射火箭. 设火箭的质量为m, 求:
- (1) 火箭离开地面距离为h 时,克服地球引力所作的功W;
- (2) 若要火箭飞离地球,火箭的初始速度 v_0 至少为多少?
- 解(1) 1° 建立坐标系(如图)

设地球的质量为M,

半径为R.

地平面

2° 由万有引力定律,

地球对位于点产处的火箭 的引力:

$$F_1(r) = -k \frac{mM}{(r+R)^2}$$

:. 用于克服地球引力的外力:

$$F(r) = -F_1(r) = k \frac{mM}{(r+R)^2}$$

r+R

$$3^{\circ} \forall [r,r+dr] \subset [0,h]$$

功元素:
$$dW = F(r)dr = k \frac{mM}{(r+R)^2}dr$$

地平面

4°
$$W = \int_0^h F(r) dr = k \int_0^h \frac{mM}{(r+R)^2} dr$$

 $= kmM(-\frac{1}{r+R})\Big|_0^h$
 $= kmM(\frac{1}{R} - \frac{1}{R+h}) = mgR^2(\frac{1}{R} - \frac{1}{R+h})$

$$\therefore$$
 在地球表面,即 $r=0$ 时, $F(0)=k\frac{mM}{R^2}=mg$

$$\therefore k = \frac{R^2g}{M}.$$

(2) 当火箭飞离地球时, 即 $h \rightarrow +\infty$ 时,

$$W_{\infty} = \lim_{h \to +\infty} W = k \int_0^{+\infty} \frac{mM}{(r+R)^2} dr = mgR$$

曲
$$\frac{1}{2}mv_0^2 \ge W_\infty = mgR$$

得
$$v_0 \geq \sqrt{2gR}$$
,

将
$$R = 6.371 \times 10^6 (m)$$
,

$$g = 9.8 \, (\frac{m}{s^2})$$

代入得 $v_0 \ge 11.2 (km/s)$ 第二宇宙速度

若要火箭飞离地球, 则火箭的初始动能至 少要等于火箭飞离地 球时克服地球引力所 作的功(即由此功全部 转化成的火箭的位能)

例3 一圆柱形蓄水池 高为5米,底半径为3 米,池内盛满了水.

问: 要把池内的水全部

吸出, 需作多少功?

分析 把一桶重量为P的水 (看成质点),提到高度为h的地方,克服重力 所作的功为: $W = P \cdot h$

然而,现在的情形是将池内的水连续不断地

抽出,而不是象提水桶那样,整体一下子提到某一高度。在水被抽出的过程中,液面到池口的距离是一个变量.

解决的方法: 把池中的水分成若干层,则"把池中的水抽空所作的功"

一"分别把每层水从池中抽出所作的功的和"。

$$\mathbb{F}^{p} \qquad W = \sum_{i=1}^{n} \Delta W_{i}$$

而 "把每层水从池中抽出所作的功 ΔW_i "

≈ "把这层水看成一个整体从池中提到池口 所作的功".

解 建立坐标系如图

取x为积分变量, $x \in [0,5]$

取任一小区间[x,x+dx],

这一薄层水的重力元素为: $dP = 9.8\pi \cdot 3^2 dx$

功元素: $\mathbf{d}w = x \cdot \mathbf{d}P = 88.2\pi \cdot x \cdot \mathbf{d}x$,

$$w = \int_0^5 88.2\pi \cdot x \cdot dx$$

$$=88.2\pi \left[\frac{x^2}{2}\right]_0^5 \approx 3462 \quad (千焦).$$

例4 一水平横放的半径为R的圆桶,内盛半桶密度为 ρ 的液体,求桶的一个端面所受的侧压力.

解 建立坐标系如图.所论半圆的方程为 $y = \sqrt{R^2 - x^2}$

$$(0 \le x \le R)$$

利用对称性,侧压力元素

$$dP = p \cdot 2\sqrt{R^2 - x^2} dx$$
 小窄条上各点的

端面所受侧压力为

小窄条上各点的
压强近似相等
$$p = g \rho x$$

$$P = \int_0^R 2g \rho x \sqrt{R^2 - x^2} dx = \frac{2g \rho}{3} R^3$$

注 1° 当桶内充满液体时,小窄条上的压强 近似为为 $\mathbf{g} \rho(\mathbf{R} + \mathbf{x})$,

侧压力元素 $dP = 2g \rho (R+x) \sqrt{R^2 - x^2} dx$,

故端面所受侧压力为

$$P = \int_{-R}^{R} 2g \rho(R+x) \sqrt{R^2 - x^2} dx$$

$$= 4R g \rho \int_{0}^{R} \sqrt{R^2 - x^2} dx$$

$$= 4R g \rho \cdot \frac{\pi R^2}{4} = \pi g \rho R^3.$$

2°对于选定的坐标系,平板边界曲线的方程,水深,积分区间一定要匹配!

例5 设有一长度为I,线密度为 μ 的均匀细直棒,在其中垂线上距a单位处有一质量为m的质点M,试计算该棒对质点的引力.

解 建立坐标系如图. 细棒上小段

[x,x+dx]对质点的引力大小为

$$dF = k \frac{m \mu dx}{a^2 + x^2}$$

故垂直分力元素为

$$\mathbf{d}F_{v} = -\mathbf{d}F\cos\alpha$$

$$= -k \frac{m \mu dx}{a^2 + x^2} \cdot \frac{a}{\sqrt{a^2 + x^2}} = -k m \mu a \frac{dx}{(a^2 + x^2)^2}$$

棒对质点的引力的垂直分力为

$$F_{y} = -2k \, m \, \mu a \int_{0}^{\frac{l}{2}} \frac{\mathrm{d}x}{(a^{2} + x^{2})^{\frac{3}{2}}}$$

$$= -k \, m \, \mu a \left[\frac{x}{a^{2} \sqrt{a^{2} + x^{2}}} \right]_{0}^{\frac{l}{2}}$$

$$= -\frac{2k \, m \, \mu l}{a} \frac{1}{\sqrt{4a^{2} + l^{2}}}$$

利用对称性

棒对质点引力的水平分力 $F_x = 0$.

故棒对质点的引力大小为 $F = \frac{2k m\mu l}{a} \frac{1}{\sqrt{4a^2 + l^2}}$

注 1° 当细棒很长时,可视 l 为无穷大,此时引力大小为 $\frac{2km\mu}{a}$ 方向与细棒垂直且指向细棒.

 2° 若考虑质点沿 y 轴从 a 处移到 b(a < b) 处时,克服引力作的功,则有

$$\mathbf{d}W = -\frac{2k \, m \, \mu \, l}{y} \frac{1}{\sqrt{4 \, y^2 + l^2}} \, \mathrm{d}y \frac{\frac{\chi + \mathrm{d} \, x}{-\frac{l}{2}}}{-\frac{l}{2}}$$

$$W = -2km\mu l \int_a^b \frac{\mathrm{d}y}{y\sqrt{4y^2 + l^2}}$$

3° 当质点位于棒的左端点垂线上时,

$$dF_{y} = -dF \cdot \cos \alpha = -km\mu a \frac{dx}{(a^{2} + x^{2})^{3/2}}$$

$$dF_x = dF \cdot \sin \alpha = km \mu \frac{x dx}{(a^2 + x^2)^{3/2}}$$

$$\therefore F_{y} = -k m \mu a \int_{0}^{l} \frac{\mathrm{d}x}{(a^{2} + x^{2})^{3/2}}$$

$$F_{x} = k m \mu \int_{0}^{l} \frac{x \, dx}{(a^{2} + x^{2})^{3/2}}$$

引力大小为
$$F = \sqrt{F_x^2 + F_y^2}$$

三、同步练习

- 1. 在底面积为 S 的圆柱形容器中盛有一定量的气体,在等温条件下,由于气体的膨胀,把容器中的一个面积为 S 的活塞从点 a 处移动到点 b 处 (如图),求移动过程中气体压力所作的功.
- 2. 在一个带+q电荷所产生的电场作用下,一个单位正电荷沿直线从距离点电荷a处移动到b处(a < b), 求电场力所作的功.

- 3. 用铁锤把钉子钉入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比,铁锤在第一次锤击时将铁钉击入1厘米,若每次锤击所作的功相等,问第n次锤击时又将铁钉击入多少?
- 4. 以每秒 a 的流量往半径为 R 的半球形水池内注水.
- (1) 求在池中水深 h(0 < h < R)时水面上升的速度;
- (2) 若再将满池水全部抽出,至少需作功多少?

- 5. 将直角边各为a及2a的直角三角形薄板垂直地浸人水中,斜边朝下,直角边的边长与水面平行,且该边到水面的距离恰等于该边的边长,求薄板所受的侧压力.
- 6. 斜边为定长的直角三角形薄板,垂直放置于水中,并使一直角边与水面相齐,问斜边与水面交成 锐角 θ 取多大时,薄板所受的压力P最大.
- 7. 设星形线 $x = a\cos^3 t$, $y = a\sin^3 t$ 上每一点处线密度的大小等于该点到原点距离的立方,在点O处有一单位质点,求星形线在第一象限的弧段对这质点的引力.

四、同步练习解答

1. 在底面积为 S 的圆柱形容器中盛有一定量的气体,在等温条件下,由于气体的膨胀,把容器中的一个面积为 S 的活塞从点 a 处移动到点 b处 (如图),求移动过程中气体压力所作的功.

解建立坐标系如图.

由波义耳—马略特定律知

压强p 与体积V成反比,

$$\mathbb{RP} \quad p = \frac{k}{V} = \frac{k}{xS},$$

故作用在活塞上的力为

$$F(x) = p \cdot S = \frac{k}{x}$$

$$orall [x,x+dx] \subseteq [a,b]$$
功元素为 $dW = F(x)dx = \frac{k}{x}dx$
所求功为 $W = \int_a^b \frac{k}{x}dx$
 $= k \left[\ln x\right]_a^b$
 $= k \ln \frac{b}{a}$.

2. 在一个带+q电荷所产生的电场作用下,一个单位正电荷沿直线从距离点电荷a处移动到b处 (a < b), 求电场力所作的功.

解 当单位正电荷距离原点 r 时, 由库仑定律电场力为

$$F = k \frac{q}{r^2} + q + 1$$
则为的元素为 $dW = \frac{kq}{r^2} dr$,

所求功为
$$W = \int_a^b \frac{kq}{r^2} dr = kq \left[-\frac{1}{r} \right]_0^a = kq \left(\frac{1}{a} - \frac{1}{b} \right)$$

3. 用铁锤把钉子钉入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比,铁锤在第一次锤击时将铁钉击入1厘米,若每次锤击所作的功相等,问第n次锤击时又将铁钉击入多少?

解 建立坐标系如图,则 木板对铁钉的阻力为 f(x) = kx,

第一次锤击时所作的功为 $w_1 = \int_0^1 f(x) dx = \frac{k}{2},$

第一次锤击时所作的功为 $w_1 = \int_0^1 f(x) dx = \frac{k}{2}$, 设n次击入的总深度为h 厘米

n次锤击所作的总功为

$$w_h = \int_0^h f(x) dx = \int_0^h kx dx = \frac{kh^2}{2},$$

依题意知,每次锤击所作的功相等.

$$\therefore w_h = nw_1 \implies \frac{kh^2}{2} = n \cdot \frac{k}{2},$$

n次击入的总深度为 $h=\sqrt{n}$,

第n次击入的深度为 $\sqrt{n}-\sqrt{n-1}$.

- 4. 以每秒 a 的流量往半径为 R 的半球形水池内注水.
- (1) 求在池中水深 h(0 < h < R)时水面上升的速度;
- (2) 若再将满池水全部抽出,至少需作功多少?

解 如图所示建立坐标系.

半圆的方程为

$$x^{2} + (y - R)^{2} = R^{2} \quad (0 \le y \le R).$$

于是对半圆上任一点,有

$$x^{2} = R^{2} - (y - R)^{2} = 2Ry - y^{2} \ (0 \le y \le R).$$

(1)因已知半球可看作此半圆绕y轴旋转而成的立体,故半球内高为h的球缺的体积即水 深为h时水池内水的体积为

$$V(h) = \int_0^h \pi x^2 dy = \int_0^h \pi (2Ry - y^2) dy$$

又设水深h时已注水的时间为t,

则有 V(h) = at,

$$\mathbb{F} \int_0^h \pi (2Ry - y^2) dy = at$$

$$\mathbb{P} \int_0^h \pi (2Ry - y^2) dy = at$$

两边对t求导,得

$$\pi(2Rh-h^2)\frac{\mathrm{d}h}{\mathrm{d}t}=a,$$

故所求速度为
$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{a}{\pi(2Rh - h^2)}$$
.

(2) 将满池的水全部抽出所 需的最小功即将 池内水全部提升到池沿 高度所需的功.

$\forall [y, y + d y] \subset [0, R]$

相应于 [y,y+dy]的那层水之

体积元素:
$$dV = \pi x^2 dy$$

= $\pi (2Ry - y^2) dy$

重力元素: $dP = \rho \pi (2Ry - y^2) dy$

位于位置 y,相应于 [y,y+dy]的那层水到

池口的距离: R-y

功元素:

$$\mathbf{d}W = \mathbf{d}P \cdot (R - y) = \rho \pi (2Ry - y^2)(R - y)\mathbf{d}y$$

$$(\rho = 1 \operatorname{吨}/ \mathbb{R}^3 - \chi \operatorname{hh} \operatorname{hh} \operatorname{hh} \operatorname{hh}.$$

故将满池水全部提升到池沿高度所需功为

$$W = \int_0^R \rho \pi (2Ry - y^2)(R - y) dy$$

$$= \pi \int_0^R (2R^2y - 3Ry^2 + y^3) dy$$

$$= \frac{\pi}{4} R^4.$$

思考:

若建立坐标系(如图),又如何求功W?

$$\mathbf{R} \quad \forall [x, x + \mathbf{d} x] \subset [0, R]$$

相应于 [x,x+dx]的那层水之

体积元素:
$$dV = \pi y^2 dx$$

= $\pi (R^2 - x^2) dx$

重力元素: $dP = \rho \pi (R^2 - x^2) dx$

位于位置 x,相应于 [x,x+dx]的那层水到

池口的距离: x

功元素
$$dW = dP \cdot x$$

$$= \rho \pi (R^2 - x^2) x dx$$

$$W = \int_0^R \rho \pi (R^2 - x^2) x dx$$

$$= -\frac{\rho \pi}{2} \int_0^R (R^2 - x^2) d(R^2 - x^2)$$

$$= -\frac{\rho \pi}{2} \cdot \frac{1}{2} (R^2 - x^2)^2 \Big|_0^R = \frac{\pi}{4} \rho R^4.$$

5. 将直角边各为a及2a的直角三角形薄板垂直地浸人水中,斜边朝下,直角边的边长与水面平行,且该边到水面的距离恰等于该边的边长,求薄板所受的侧压力.

解 建立坐标系如图

面积元素: dA = 2(a-x)dx,

压力元素:
$$dP = (x + 2a) \cdot \gamma 2(a - x) dx$$

压力:
$$P = \int_0^a 2(x+2a)(a-x)\gamma dx = \frac{7}{3}\gamma a^3$$
.

6. 斜边为定长的直角三角形薄板,垂直放置于水中,并使一直角边与水面相齐,问斜边与水面交成锐角 θ取多大时,薄板所受的压力P最大.

则其方程为 $y = -\cot\theta \cdot x + l\cos\theta$ x + dx $P = \int_0^l \sin\theta \rho gyx dx$ $l\sin\theta$ 解选取坐标系如图。设斜边长为1, $= \rho g \int_{0}^{l\sin\theta} (-x^{2}\cot\theta + lx\cos\theta) dx$ $=\frac{\rho g l^3}{6} (\cos \theta - \cos^3 \theta)$

$$P = \frac{\rho g l^3}{6} (\cos \theta - \cos^3 \theta)$$

$$\Rightarrow \frac{\mathrm{d}P}{\mathrm{d}\theta} = 0$$
, \mathbb{P}

$$-\sin\theta + 3\cos^2\theta\sin\theta = 0$$

$$\therefore \theta \in (0,\frac{\pi}{2})$$
,故得唯一驻点

$$\theta_0 = \arccos \frac{\sqrt{3}}{3}$$

由实际意义可知最大值存在,故此唯一驻点 θ_0 即为所求。

7. 设星形线 $x = a\cos^3 t$, $y = a\sin^3 t$ 上每一点处线密度的大小等于该点到原点距离的立方,在点O处有一单位质点,求星形线在第一象限的弧段对这质点的引力.

解 如图. $dF = k \frac{(x^2 + y^2)^{\frac{3}{2}} ds}{x^2 + y^2} = k(x^2 + y^2)^{\frac{1}{2}} ds$

$$dF_{x} = dF \cdot \cos \alpha$$

$$= k(x^{2} + y^{2})^{\frac{1}{2}} \cdot \frac{x}{\sqrt{x^{2} + y^{2}}} ds$$

$$= kx ds$$

$$dF_{v} = dF \cdot \sin \alpha = k y ds$$

$$\mathbf{d} s = \sqrt{[x'(t)]^2 + [y'(t)]^2} \, \mathbf{d} t$$

$$F_{x} = k \int_{0}^{\frac{\pi}{2}} a \cos^{3} t \cdot \sqrt{[3a \cos^{2} t \cdot (-\sin t)]^{2} + [3a \sin^{2} t \cdot \cos t]^{2}} dt$$

$$= 3a^{2}k \int_{0}^{\frac{\pi}{2}} \cos^{4} t \cdot \sin t dt = \frac{3}{5}k a^{2}$$

同理
$$F_y = \frac{3}{5}ka^2$$

故星形线在第一象限的弧段对该质点

引力大小为
$$F = \frac{3}{5}\sqrt{2}ka^2$$

