${\bf Part~II}$ ${\bf Devices-Diode,~BJT,~MOSFETs}$

Semiconductor

- Semiconductor
 - The number of charge carriers available to conduct current¹ is between that of conductors and that of insulators.
 - Semiconductor is basically a pn junction where the p-type silicon contacts with the n-type silicon.
 - * Different types of silicon are created by implanting different dopings.

4.1 Intrinsic Silicon

- Figure 4.1 shows the 2-D structure of the intrinsic silicon.
 - Each atom shares each of its 4 valence electrons with a neighboring atom.
 - Atoms are held in their positions by <u>covalent bounds</u>.
 - * Covalent bounds are <u>intact</u> at sufficient low temperature.
 - · No free electrons are available to conduct current.
 - * Covalent bounds may be <u>broken</u> by <u>thermal ionization</u>.
- Thermal ionization at room temperature (Figure 4.2)
 - An electron leaves its parent atom; thus, a positive charge is left with the atom.
 - * The ionization results in free electrons and holes in equal numbers.
 - * At room temperature, the silicon has 1.5×10^{10} carries/cm³ and about 5×10^{22} atoms/cm³.
 - · The concentration of free electrons n is equal to the concentration of free holes p.

$$n = p = n_i \tag{4.1}$$

· n_i is the number of free electrons (or holes) per cm³ in <u>intrinsic silicon</u> at a given temperature.

$$n_i^2 = BT^3 e^{-E_G/kT} (4.2)$$

 $^{^{1}}$ The current of 1 ampere is defined as 1 coulomb of electric charge (which consists of about 6.242×10^{18} electrons) drifts every second at the same velocity through the imaginary plane through which the conductor passes.

Figure 4.1: Two-dimensional representation of the silicon crystal.

Figure 4.2: Electrons and holes generated by thermal ionization.

- · B is a material dependent parameter = 5.4×10^{31} for silicon.
- · E_G is the bandgap energy=1.12 electron volts (eV), representing the minimum energy required to break a covalent bound and generate an electron-hole pair.
- · k is Boltzmann's constant = 1.38×10^{-23} joules/kelvin.
- · T is absolute temperature in Kelvins = $273 + \text{temperature in } ^{\circ}\text{C}$.
- An electron from a neighboring atom may be attracted and create a new hole.
 - * <u>Ionization rate</u> is equal to <u>recombination rate</u> in thermal equilibrium.
- The process repeats with a hole moves through the silicon and conducts current.

* Holes and electrons move through silicon by <u>diffusion</u> and <u>drift</u> mechanisms.

Figure 4.3: Illustration of diffusion mechanism: (a) a bar of intrinsic silicon, and (b) the hole concentration profile.

• Diffusion mechanism

- Random motion due to thermal agitation.
- Non-uniform concentrations of free electrons and holes cause a net flow of charge (or <u>diffusion current</u>).
- The current density of the <u>hole diffusion current</u> at any point.

$$J_p = -qD_p \frac{dp}{dx} \tag{4.3}$$

- * J_p in A/cm² is the current density, i.e., the current per unit area of the plane perpendicular to the x-axis.²
- * p is the concentration of free holes.
- * q is the magnitude of electron charge= $1.6 \times 10^{-19}C$.
- * D_p is the diffusion constant of holes=12cm²/s.
- * A negative (dp/dx) results in a positive current in the x direction.
- The magnitude of the <u>electron diffusion current</u> at any point.³

$$J_n = qD_n \frac{dn}{dx} \tag{4.4}$$

- * J_n in A/cm² is the current density, i.e., the current per unit area of the plane perpendicular to the x-axis.
- * n is the concentration of free electrons.
- * q is the magnitude of electron charge= $1.6 \times 10^{-19} C$.
- * D_n is the diffusion constant of electrons=34cm²/s.

²The unit of J_p can be derived from the formulation $J_p = -q(\text{charge})D_p(\text{cm}^2/\text{s})dp(\text{difference of the number of the holes/cm}^3)/dx(\text{cm}) = (\text{charges/s})/\text{cm}^2 = A/\text{cm}^2.$

³To double check.

- * A negative (dn/dx) results in a negative current in the x direction.
- Drift mechanism
 - <u>Carrier drift</u> occurs when an <u>electric field</u> is applied across a piece of silicon.
 - Free electrons and holes are accelerated by <u>electric field</u> and acquire a <u>drift velocity</u> (superimposed on the velocity of thermal motion).

$$v_{drift} = u_p E \tag{4.5}$$

- * u_p is the mobility of holes in cm²/V·s = 480.
- * E is the strength of electric field in V/cm.
- The current density of holes in A/cm^2 .

$$J_{p-drift} = qpu_p E (4.6)$$

- The current density of electrons in A/cm².

$$J_{n-drift} = qnu_n E (4.7)$$

- * u_n is the mobility of electrons in cm²/V·s = 1350.
- The <u>total</u> drift current density in A/cm^2 .

$$J_{drift} = q(pu_p + nu_n)E \tag{4.8}$$

- * A form of Ohm's law with the resistivity $\rho = 1/q(pu_p + nu_n)$ in $\Omega \cdot cm$.
- Einstein relationship

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = V_T \tag{4.9}$$

4.2 Doped Silicon

- Doped silicon
 - Achieved by introducing a small number of impurity atoms.
- \bullet In *n*-type silicon, the majority of carriers are the negatively charged <u>electrons</u>.
 - Achieved by implanting pentavalent impurity (also known as <u>donor</u>).
 - In thermal equilibrium
 - * The concentration of free electrons $n_{n0} \simeq N_D$.
 - * The product of electron and hole concentrations remains constant.
 - · p_{n0} is a function of temperature.

$$n_{n0}p_{n0} = n_i^2 (4.10)$$

Figure 4.4: Doped n-type and p-type semiconductor.

- In p-type silicon, the majority of carriers are the positively charged <u>holes</u>.
 - Achieved by implanting <u>trivalent</u> impurity (also known as acceptor).
 - In thermal equilibrium
 - * The concentration of free holes $p_{p0} \simeq N_A$.
 - * The product of electron and hole concentrations remains constant.
 - · n_{p0} is a function of temperature.

$$n_{p0}p_{p0} = n_i^2 (4.11)$$

- A piece of p-/n-type silicon is electrically neutral.
 - The majority of free carriers are neutralized by bound charges associated with impurity atoms.

Diode

A two-terminal device with a <u>nonlinear</u> i - v characteristic.

- Main applications
 - Rectifier.
 - Generation of DC voltages from AC power.
 - Generation of signals of various waveforms.
- Circuit symbol

Figure 5.1: The symbol of diode.

5.1 Physical Structure

• Diode is basically a pn junction device.

5.1.1 The pn Junction Under Open Circuit

- Figure 5.2 shows the pn junction with open circuit.
- Diffusion current I_D .
 - Generated by the movement of majority carriers.
 - Electrons diffuse across the junction from the n side to the p side.
 - Holes diffuse across the junction from the p side to the n side.
 - The two currents add together to form a diffusion current I_D with direction from p side to n side.
- Depletion region.
 - Electrons diffuse across the junction and combine with majority holes.

Figure 5.2: (a) The pn junction with no applied voltage (open-circuited terminals). (b) The potential distribution along an axis perpendicular to the junction.

- * In p-type silicon, there will be <u>a region depleted of holes</u> and containing uncovered bound negative charge.
- Holes diffuse across the junction and combine with majority electrons.
 - * In *n*-type silicon, there will be a region depleted of electrons and containing uncovered bound positive charge.
- The bound charges on both sides of the depletion region forms a junction built-in voltage.

$$V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right) \tag{5.1}$$

- * N_A and N_D are the doping concentrations of the p side and the n side, respectively.
- * The built-in voltage V_0 for silicon at room temperature is $0.6 \sim 0.8V$.
- * The electric field acts as a barrier that must be overcome for holes and electrons to diffuse.
- Depletion regions exist in both sides with equal among of charges.
 - * The depletion layer will extend deeper into the more lightly doped material.

$$qx_p A N_A = qx_n A N_D$$

$$\frac{x_n}{x_p} = \frac{N_A}{N_D}$$

$$(5.2)$$

Figure 5.3: The pn junction excited by a constant-current source I in the reverse direction. To avoid breakdown, I is kept smaller than IS. Note that the depletion layer widens and the barrier voltage increases by VR volts, which appears between the terminals as a reverse voltage.

* The width of the depletion region of an open-circuit junction is typically in the range of 0.1um to 1um.

$$W_{dep} = x_n + x_p = \sqrt{\frac{2\varepsilon_s}{q}(\frac{1}{N_A} + \frac{1}{N_D})V_0}$$
 (5.3)

- Drift current $I_{S_{drift}}$.
 - Achieved by the movement of thermally generated minority carriers.
 - Electrons in p-silicon diffuse to the depletion region and got swept to the n-silicon.
 - Holes in n-silicon diffuse to the depletion region and got swept to the p-silicon.
 - The two currents add together to form a drift current $I_{S_{drift}}$ with direction from n side to p side.
 - $I_{S_{drift}}$ depends on temperature instead of the built-in voltage V_0 .
- In thermal equilibrium and under open circuit condition, $I_{S_{drift}} = I_D$.
 - If $I_D > I_{S_{drift}}$, the uncovered bound charges will increase and the voltage across the depletion region will increase. This in turn causes I_D to decrease.
 - If $I_{S_{drift}} > I_D$, the uncovered bound charges will decrease and the voltage across it will decrease. This in turn causes $I_{S_{drift}}$ to decrease.

5.1.2 The pn Junction Under Reverse-Bias

- Figure 5.3 depicts the pn junction with reverse bias.
- Electrons flows from the *n*-side to the *p*-side through the external circuit.
 - Electrons leaving the *n*-side cause an increase in the positive bound charges.
 - Holes leaving the p-side cause an increase in the negative bound charges.

- A increase in the width of, and the charges stored in, the depletion region.
 - * A higher barrier voltage results in the decrease of I_D .
- In thermal equilibrium, $I_{S_{drift}} I_D = I$.
- Depletion capacitance
 - As the voltage across the pn junction changes, the charges stored in the depletion layer changes.¹
 - The charges q_J stored in the depletion layer.
 - * A function of V_R .
 - * A is the cross-sectional area of the junction.

$$q_{J} = q_{N}$$

$$= qN_{D}x_{n}A$$

$$= q\frac{N_{D}N_{A}}{N_{D} + N_{A}}W_{dep}A$$

$$= q\frac{N_{D}N_{A}}{N_{D} + N_{A}}A\sqrt{\frac{2\varepsilon_{s}}{q}(\frac{N_{A} + N_{D}}{N_{A}N_{D}})(V_{0} + V_{R})}$$

$$(5.4)$$

- The depletion capacitance.

$$C_j = \frac{dq_J}{dV_R} = \frac{C_{j0}}{\sqrt{1 + \frac{V_R}{V_0}}}$$
 (5.5)

- * The capacitance varies with the bias point.
- * C_{j0} is the value of C_j with no voltage applied.

Figure 5.4: The charge stored on either side of the depletion layer as a function of the reverse voltage VR.

¹Capacitance $C = \Delta Q/\Delta V$.

5.1.3 The pn Junction in the Breakdown Region

- A sufficiently high junction voltage develops and many carriers are created by zener or avalanche mechanism so as to support any value of reverse current.
 - It is not a destructive process as long as the maximum power dissipation is not exceeded.

• Zener effect

- It occurs when the breakdown voltage $V_Z < 5V$.
- Electric field in the depletion regions increases to a point where it can break covalent bounds and generate electron-hole pairs.
 - * The holes will be swept into the n side.
 - * The electrons will be swept into the p side.
 - * These electrons and holes constitute a reverse current across the junction.

• Avalanche effect

- It occurs when the breakdown voltage $V_Z < 7V$.
- Minority carriers gain sufficient energy by the electric field to break the covalent bounds.
 - * The carriers may have sufficient energy to cause other carriers to be liberated in another ionizing collision.

5.1.4 The pn Junction Under Forward Bias Conditions

Figure 5.5: The pn junction excited by a constant-current source supplying a current I in the forward direction. The depletion layer narrows and the barrier voltage decreases by V volts, which appears as an external voltage in the forward direction.

- Figure 5.5 depicts the pn junction with forward bias.
- The barrier voltage is reduced since majority carriers neutralize some of the uncovered bound charge.
 - Majority carriers are supplied to both sides through the external circuit.
 - Holes are injected into the n-side and electrons are injected into the p-side.

- * The concentration of minority carriers at both sides will exceed the thermal equilibrium, p_{n0} and n_{p0} .
- * The excess concentration decreases exponentially as one moves away from the junction.
- * In the steady state, the concentration profile of excess minority carriers remains constant.
- Diffusion current I_D increases until the equilibrium is achieved with I_D $I_{S_{drift}} = I$.

Figure 5.6: Minority-carrier distribution in a forward-biased pn junction. It is assumed that the p region is more heavily doped than the n region.

• Diffusion capacitance

In steady state, a certain amount of excess minority-carrier charge is stored in
each of the p and n bulk region. If the terminal voltage changes, this charge
will have to change before a steady state is achieved.

$$C_d = \frac{\tau_T}{V_T} I \tag{5.6}$$

- * τ_T is the mean transit time of the diode, which is related to the excess minority carrier life time τ_p and τ_n .
- * I is the diode current.
 - The diffusion capacitance is negligibly small when the diode is reverse bias.

• Depletion capacitance

- As the voltage across the pn junction changes, the charge stored in the depletion layer changes.

$$C_j = 2C_{j0} \tag{5.7}$$

5.2 Characteristics

Figure 5.7: The diode i - v relationship with some scales expanded and others compressed.

5.2.1 Forward Bias

- Forward region of operation is entered when the terminal voltage v is positive.
- The i-v curve in forward region is closely approximated by

$$i = I_S(e^{v/nV_T} - 1) (5.8)$$

 $-I_S$ is called <u>saturation current</u> (or <u>scale current</u>).

$$I_S = Aqn_i^2 \left(\frac{D_p}{L_p N_D} + \frac{D_n}{L_n N_A} \right) \tag{5.9}$$

- * A function of temperature.
 - · n_i is the concentration of electrons in intrinsic silicon, which depends on the temperature as suggested by Eq. (4.2).
 - · Generally, I_S doubles in value for every 5 °C rise in temperature.
- * A factor proportional to the cross-sectional area of the diode.
 - \cdot A is the cross-sectional area of the pn junction.

- V_T is called thermal voltage, which is $\simeq 25 \text{mV}$ in room temperature (20 °C).

$$V_T = \frac{kT}{q} \tag{5.10}$$

- * $k = \text{Boltzmann's constant} = 1.38 \times 10^{-23} \text{ joules/kelvin.}$
- * T = Absolute temperature in Kelvins = 273 + temperature in °C.
- * q = Magnitude of electronic charge = 1.60×10^{-19} in coulomb.
- -n is a value between 1 and 2
 - * A value depends on the material and physical structure of the diode.
 - * By default, n = 1 unless otherwise specified.
- If $i \gg I_S$, the i-v curve in forward regions can be further <u>approximated</u> by the exponential relationship.

$$i \simeq I_S e^{v/nV_T} \tag{5.11}$$

- The logarithmic form of i v characteristic.
 - * The $\underline{v-i}$ curve is a straight line on semilog paper² with a slope of $2.3nV_T$.

$$v \simeq nV_T \ln(\frac{i}{I_S}) = 2.3nV_T \log_{10}(\frac{i}{I_S})$$
 (5.12)

- A factor of 10 increases in current leads to the increase of voltage drop by a factor of $2.3nV_T$, which is $\simeq 60\text{mV}$ in room temperature and with n=1.

$$V_2 - V_1 \simeq nV_T \ln(\frac{I_2}{I_1})$$
 (5.13)
 $\frac{I_2}{I_1} \simeq e^{(V_2 - V_1)/nV_T}$

- Cut-in Voltage
 - A consequence of the exponential i-v relationship.
 - * When $v \ll nV_T$, the current i is negligible.
 - * When $v \gg nV_T$, the current i grows exponentially. (Fully Conducting)
 - * Example: Cut-in voltage V_{cut_in} in Figure 5.7 is 0.5V.
 - Cut-in voltage varies with temperature for a given diode.
- Fully Conducting
 - The voltage v is greater than V_{cut_in} and the current i grows exponentially.
 - Voltage drop varies with temperature for a given diode.

5.2.2 Reverse Bias

• Reverse-bias is entered when the terminal voltage v is made negative.

²The vertical axis is a linear axis for v and the horizontal axis is a log axis for i.

Figure 5.8: The temperature dependency of the diode forward characteristic.

- The reverse current i approximates $-I_s$.
 - The term e^{v/nV_T} in Eq. (5.8) becomes negligible as $v \longrightarrow -\infty$.
 - A function of temperature.
 - * The reverse current doubles in value for every 10 °C rise in temperature.
 - A large part of reverse current is due to leakage effects.
 - * Leakage currents are proportional to the junction area.
 - * Real diodes exhibit reverse currents that are much larger than I_s .

5.2.3 Breakdown Region

- Breakdown region is entered when the reverse voltage exceeds breakdown voltage V_{ZK} .
- The reverse current *i* increases rapidly with very small increase in voltage drop.
 - A good property for voltage regulation.

5.3 Model

5.3.1 Large Signal Model

Ideal Diode

- Forward biased
 - Short circuit with zero voltage drop when v > 0.
- Reverse biased
 - Open circuit with zero current when v < 0.

Exponential Model

• The most accurate description of the diode operation in forward region.

Model i - v GraphEquivalent Circuit Ideal v_D Ideal ∇ v_D v_D Exponential 0.5 V 0 i_D i_D ▼ Ideal Slope = $\frac{1}{r_D}$ v_D V_{D0} v_D Piecewise-linear (a) (b) i_D ▼ Ideal $V_D = 0.7 \text{ V}$ v_D $V_D = 0.7 \text{ V}$ Constant Voltage Drop (b) Slope = $1/r_d$ v_d v_D 0 Small Signal V_D 0

Table 5.1: Comparison of the models in the diode forward region.

Figure 5.9: The i-v characteristic of the ideal diod.

Figure 5.10: The characteristic of the ideal diod with positive and negative voltages applied.

- The most difficult one to use due to nonlinear nature.
- Pencil-and-paper solutions: (1) graphical analysis, and (2) iterative analysis.

Example 5.1 Given the circuit to be analyzed as in Figure 5.11, find out the I_D and V_D using graphical analysis.

Figure 5.11: A simple circuit used to illustrate graphical analysis with exponential model.

1. Assume V_{DD} is greater than 0.5V so that the diode operates in forward bias region.

$$I_D = I_S e^{V_D/nV_T} \tag{5.14}$$

2. Further, writing a Kirchhoff loop equation, we can obtain the other equation that governs the circuit operation.

$$I_D = \frac{V_{DD} - V_D}{R} {(5.15)}$$

- 3. Graphical analysis is performed by plotting Eq. (5.14) and Eq. (5.15) on the i-v plane. The solution is the coordinate of the intersection of the two lines.
 - The line specified by Eq. (5.15) is also known as the <u>load line</u>.

Figure 5.12: Graphical analysis for the circuit given in Figure 5.11.

Piecewise Linear Model

• A simpler model easier for analysis.

$$i_D(v_D) = \begin{cases} 0 & if \quad v_D < V_{D0} \\ (v_{D-V_{D0}})/\gamma_D & if \quad v_D \ge V_{D0} \end{cases} .$$
 (5.16)

Constant Voltage Drop Model

- The simplest model for analysis.
 - Forward-conducting diode exhibits a voltage drop V_D of 0.7V.
 - The model frequently employed in the initial phase of analysis and design.

Figure 5.13: The piecewise linear model of the diod forward i-v characteristic.

Figure 5.14: The constant voltage drop model of the diod forward i-v characteristic.

5.3.2 Small Signal Model

- Small signal model is used for the applications in which a diode is biased to operate in the <u>forward</u> region and a small ac signal is superimposed on the dc quantities.
- Small signal analysis
 - Determine the dc bias point (or quiescent point) using the large signal models.
 - * The constant voltage drop model is commonly used.
 - Determine the small signal operation around the dc bias point by modeling the diode with a resistance.
 - * The resistance is the slope of the tangent to the exponential i-v curve.

Example 5.2 Consider the circuit in Figure 5.15, where the dc voltage V_D is applied to the diode and a time varying signal $v_d(t)$ is further superimposed to the dc voltage V_D , and the corresponding graphical representation, find out the $i_D(t)$ and $v_D(t)$ of the diode.

1. The dc operation point of the diode can be found as follows:

$$I_D = I_s e^{V_D/nV_T} (5.17)$$

Figure 5.15: Circuit for the development of the diode small signal model and the corresponding graphical representation.

2. When the small signal $v_d(t)$ is applied, the instantaneous diode current $i_D(t)$ will be

$$i_D(t) = I_s e^{(V_D + v_d(t))/nV_T}$$

$$= I_s e^{V_D/nV_T} \times e^{v_d(t)/nV_T}$$

$$= I_D \times e^{v_d(t)/nV_T}$$
(5.18)

3. If the amplitude of the signal $v_d(t)$ is kept sufficiently small, the exponential term in Eq. (5.18) can be expanded in a series.³ The small signal approximation is obtained by truncating the series after the first two terms.

$$i_D(t) = I_D \times e^{v_d(t)/nV_T} \simeq I_D \times \left(1 + \frac{v_d(t)}{nV_T}\right)$$
 (5.19)

- Valid for signals whose amplitudes are sufficiently small, e.g., 10mV for the case n=2 and 5mV for n=1.4
- The <u>ac current</u> in Eq. (5.19), defined as follows, is <u>proportional</u> to the signal $v_d(t)$.

$$i_d(t) \equiv I_D \times \frac{v_d(t)}{nV_T} \tag{5.20}$$

• The diode small-signal resistance (or incremental resistance)⁵, $v_d(t)/i_d(t) =$

³The fourier expansion of $e^x =$.

⁴The magnitude is approximately $(1/5) \times nV_T$.

⁵Only the ac component is considered.

 nV_T/I_D , is inverse proportional to the bias current I_D .

Conclusion 5.3 For diode, the small signal analysis can be performed <u>separately</u> from the dc analysis.

• After the dc analysis is performed, the small signal equivalent circuit is obtained by <u>eliminating all dc sources</u> (i.e., short-circuiting dc voltage sources and open-circuiting ac current sources.) and replacing the diode with its small-signal resistance.

Example 5.4 Consider the circuit shown in Figure 5.16 (a) for the case in which $R = 10K\Omega$. The power supplier V^+ has a dc value of 10V on which it is superimposed a 60Hz sinusoid of 1-V peak amplitude. Calculate the dc voltage of the diode and the amplitude of the sine-wave signal appearing across it. Assume the diode to have a 0.7-V drop at 1-mA current and n=2.

Figure 5.16: Example of separating small signal analysis from dc analysis.

1. Consider dc signal only as in Figure 5.16 (b), the dc current of the diode is

$$I_D = \frac{10 - 0.7}{10} = 0.93mA$$

2. Since the dc current is very close to 1mA, the diode voltage will be very close to the assumed 0.7V. At this quiescent point, the diode incremental resistance γ_d is

$$\gamma_d = \frac{nV_T}{I_D} = \frac{2 \times 25}{0.93} = 53.8 \,\Omega$$

3. Now we remove the dc source and replace the diode with incremental resistance as in Figure 5.16 (c). Then, the peak amplitude of v_d can be calculated as follows.

$$v_d(peak) = v_s \times \frac{\gamma_d}{R + \gamma_d} = 5.35 mV.$$

4. As compared with $nV_T = 50mV$, the peak amplitude of v_d is quite small. The use of the small-signal model is justified.

5.3.3 Circuit Analysis with Diodes

Analysis of a circuit including diodes normally goes through the following procedure.

- Make plausible assumptions.
- Apply linear circuit analysis.
- Check solution and repeat the process if necessary.

Example 5.5 Resolve the current I and the voltage V for the two circuits in Figure ??.

Case A

1. Diodes D_1 and D_2 are assumed to be forward biased and replaced with short circuits. It follows that $V_B = 0$ and V = 0. Consequently,

$$I_{D2} = \frac{10 - 0}{10} = 1$$
mA.

2. Further, writing a node equation at the node B.

$$I + 1 = \frac{0 - (-10)}{5} \Rightarrow I = 1$$
mA.

3. Thus, both D_1 and D_2 are conducting as originally assumed.

Case B

1. Diodes D_1 and D_2 are assumed to be forward biased and replaced with short circuits. It follows that $V_B = 0$ and V = 0. Consequently,

$$I_{D2} = \frac{10 - 0}{5} = 2$$
mA.

2. Further, writing a node equation at the node B.

$$I + 2 = \frac{0 - (-10)}{10} \Rightarrow I = -1$$
mA.

3 Since this is not possible, the assumption is invalid. To obtain a consistent solution, the assumption is modified in such a way that D_1 is off. As a result,

$$I_{D2} = \frac{10 - (-10)}{15} = 1.33$$
mA.

$$V = V_B = -10 + 1.33 \times 10 = 3.3$$
V.

5.4 Special Diodes

5.4.1 Zener diode

Figure 5.17: Symbol of Zener diode and its i-v characteristics.

- Zener diodes are specifically designed to operate in breakdown region.
 - The steep i-v characteristic is ideal for voltage regulators⁶.

 $^{^6}$ Voltage regulators need to provide constant dc output voltages in the face of changes in load current and system power-supply voltage.

Figure 5.18: Model for the Zener diode.

- Parameters of Zener diodes.
 - The voltage V_Z across the diode at a testing current I_{ZT} . (The operating point)
 - The incremental resistance γ_z at the operation point.
 - The knee current I_{ZK} .
 - * The i-v curve for currents greater than I_{ZK} is almost a straight line.
- Model of Zener diodes in breakdown region is specified in Eq. (5.21).
 - Applied for $I_Z > I_{ZK}$ and $V_Z > V_{Z0}$.
 - V_{Z0} is the intersection of the straight line of slope $1/\gamma_z$ and the voltage axis.

$$V_Z = V_{Z0} + \gamma_z I_Z \tag{5.21}$$

5.4.2 Switching Controlled Rectifier (SCR)

5.4.3 LED/Varactors

5.5 Applications

5.5.1 Regulator

Example 5.6 Use of the Zener diode as a Shunt Regulator which appears in parallel with the load. The 6.8-V Zener diode in Figure 5.19 is specified to have $V_Z = 6.8V$ at $I_Z = 5mA, \gamma_Z = 20 \Omega$, and $I_{ZK} = 0.2mA$. The supply voltage V^+ is normally 10V but can vary by $\pm 1V$.

- 1. From Eq. (5.21) and the given conditions, V_{Z0} can be derived as 6.7V.
- 2. The V_o with no loading.

$$I_Z = I = \frac{10 - 6.7}{0.5 + 0.2} = 6.35 mA$$

 $V_o = V_{Z0} + \gamma_Z \times I_Z = 6.83 V$

Figure 5.19: Use of Zener diode as a Shut Regulator.

3. The line regulation $(\Delta V_o/\Delta V^+)$ due to the $\pm 1V$ change of power supply.

$$\Delta V_o = \Delta V^+ \times \frac{\gamma_Z}{R + \gamma_Z}$$

$$\frac{\Delta V_o}{\Delta V^+} = \frac{\gamma_Z}{R + \gamma_Z} = \frac{20}{500 + 20} = 38.5 \text{mV/V}$$

- 4. The <u>load regulation</u> $(\Delta V_o/\Delta I_L)$ as a load resistor draws a current $I_L = 1mA$.
 - Assume the total current I does not change significantly when the load is connected.

$$\Delta V_o = \gamma_Z \times \Delta I_Z = 20 \times -1 = -20 mV.$$

$$\frac{\Delta V_o}{\Delta I_Z} = -20 mV/mA$$

- 5. The change of V_o when a load resistor $R_L = 2K\Omega$ is connected.
 - Assume the total current I does not change significantly when the load is connected.
 - The approximation of the load current is as follows and the change of V_o can be obtained accordingly.

$$\Delta I_Z = \frac{6.8}{2} = 3.4mA.$$

$$\Delta V_o = \gamma_Z \times \Delta I_Z = 20 \times -3.4 = -68mV.$$

- The accurate number from circuit analysis is $\Delta V_o = -70 mV$.
- 6. The change of V_o when a load resistor $R_L = 0.5 K \Omega$ is connected.
 - It is impossible that the load would draw a current of 6.8/0.5 = 13.6mA. Thus,

the diode must be cut-off. Accordingly, the V_o can be obtained as follows:

$$V_o = V^+ \times \frac{R}{R + R_L} = 5V.$$

- 7. The minimum value of R_L for which the diode still operates in the breakdown region.
 - The minimum voltage supply is around 9V. At this point, the lowest current supplied is (9-6.7)/0.5 = 4.6mA and thus the load current is 4.6-0.2 = 4.4mA. The corresponding value of $R_L = 6.7/4.4 = 1.5K\Omega$.

5.5.2 Rectifier

- A diode rectifier is an essential building block of the dc power supply.
- Figure 5.20 depicts the block diagram of the dc power supply.
 - Power transformer
 - * To step the line voltage down to the required value.
 - * To minimize the risk of electric shock by providing electrical isolation between the equipment and the power line.
 - Diode rectifier
 - * Convert input sinusoid to a unipolar output.
 - * Two parameters must be specified in selecting the diodes.
 - · The largest current the diode is expected to conduct.
 - The largest reverse current that is expected to withstand without breakdown. (Peak inverse voltage)
 - Filter
 - * Convert pulsating waveform to a constant output.
 - Voltage regulator
 - * To reduce the ripple
 - * To stabilize the dc output as the load current changes.

Figure 5.20: Block diagram of a dc power supply.

Half-Wave Rectifier

- Utilize alternate half-cycles of the input sinusoid.
- Figure 5.21 shows an example of half-wave rectifier.
 - PIV= V_S .
 - It may not function properly when the input signal is small.

$$v_o = \begin{cases} 0 & if \quad V_S < V_{D0} \\ \frac{R}{R + \gamma_D} \times (V_S - V_{D0}) & if \quad V_S \ge V_{D0} \end{cases}$$
 (5.22)

Figure 5.21: Circuit of half-wave rectifier.

Full-Wave Rectifier

- Utilize both halves of the input sinusoid.
- Figure 5.22 shows an example of full-wave rectifier.
 - When the input voltage is positive, both of the signals v_S will be positive.
 - * D_1 will conduct and D_2 will be reverse biased.
 - When the input voltage is negative, both of the signals v_S will be negative.
 - * D_1 will be reverse biased and D_2 will conduct.
 - $-v_o$ is unipolar since the current always flows through R in the same direction.
 - PIV= $2V_S V_D$.
 - A center-tapped transform is required.
- Figure 5.23 shows another implementation of full-wave rectifier.
 - When the input voltage is positive, the signals v_S will be positive.
 - * D_1 and D_2 will conduct; D_3 and D_4 will be reverse biased.
 - When the input voltage is negative, the signals v_S will be negative.

Figure 5.22: Circuit of full-wave rectifier using center-tapped transformer.

- * D_3 and D_4 will conduct; D_1 and D_2 will be reverse biased.
- $-v_o$ is unipolar since the current always flows through R in the same direction.
- PIV= $v_o + v_{D2}$ (forward)= $V_S 2V_D + V_D = V_S V_D$.
- Advantages
 - * PIV is about half the value for the center-tapped implementation.
 - * A center-tapped transform is not required.
 - * Less turns are required for the secondary winding of the transformer.

Figure 5.23: Circuit of the bridge rectifier.

The Peak Rectifier

- The peak rectifier reduces the variation of output voltage by introducing a capacitor.
- Figure 5.24 shows the circuit of the peak rectifier.
 - The capacitor charges to the peak of the input V_P .
 - The diode cuts off and the capacitor discharges through the load R.

Figure 5.24: Circuit of the peak rectifier.

* The output $v_o(t)$ during the discharge.⁷

$$v_o(t) = V_P e^{-t/RC} \tag{5.23}$$

* The voltage drop V_{γ} due to the discharge.⁸

$$V_P - V_\gamma \simeq V_P e^{-T/RC}$$

 $\Rightarrow V_\gamma = V_P (1 - e^{-T/RC}) \simeq V_P \frac{T}{RC}$ (5.24)

- · To keep V_{γ} small, we must select a capacitor C so that $RC \gg T$.
- * The alternative expression of V_{γ} .

$$V_{\gamma} \simeq V_P \frac{T}{RC} = \frac{I_L}{fC} \tag{5.25}$$

- · $I_L = V_P/R$ is the load current when V_γ is small.
- f = 1/T is the frequency of the voltage supplier.
- · To keep V_{γ} small, we can either select a large capacitor C or increase the frequency of the voltage supplier.
- The discharge continues until v_I exceeds the capacitor voltage.

⁷The node equation when the diode is cut off: $C \frac{dv_o(t)}{dt} + \frac{v_o(t)}{R} = 0$.

⁸ $e^x =$

5.5.3 Limiting

• Limiter (also known as clipper) limits the voltage between the two output terminals.

Figure 5.25: Transfer characteristic for a limiter circuit.

• Eq. (5.26) and Figure 5.25 show the transfer function of limiter.

$$v_{o} = \begin{cases} L_{-} & if & v_{I} < L_{-}/K \\ Kv_{I} & if & L_{-}/K \le v_{I} \le L_{+}/K \\ L_{+} & if & v_{I} > L_{+}/K \end{cases}$$
 (5.26)

- Diode can be combined with resistors to implement limiters.
 - Figure 5.26 (a) and (b) are single limiters.
 - * Single limiter works for either positive or negative peak.
 - Figure 5.26 (c) is a double limiter.
 - * Double limiter works for both positive and negative peaks.
 - Figure 5.26 (d) shows that the threshold and saturation current can be controlled by using strings of diodes and/or by connecting a dc voltage in series with the diode.
 - Figure 5.26 (e) shows another double limiter using <u>double-anode Zener</u>.

5.5.4 Clamping

- Diodes can be used for the circuit of <u>dc restorer</u> (also known as clamped capacitor).
- Figure 5.27 shows an example of dc restorer with no load.
 - When $v_I = -6V$, the capacitor will charge to a voltage v_C .
 - * v_C is equal to the magnitude of the most negative peak, i.e., 6V.
 - * The polarity of v_C is indicated as in Figure 5.27.

Figure 5.26: A varity of basic limiting circuits.

- * The diode is turned off and the capacitor retains its voltage indefinitely.
- When $v_I = 4V$, the output $v_C = v_I + v_C = 10V$.
- Figure 5.28 shows the example of dc restorer with a load resistor R.
 - As $t_0 < t < t_1$, the output voltage falls exponentially with time constant RC.
 - At t_1 , the input decreases by V_a and the output attempts to follow.
 - * The diode conduct heavily and quickly discharge the capacitor.
 - At the end of the period t_1 to t_2 , the output voltage is around -0.5V.

Figure 5.27: The clamped capacitor or dc restorer with a square-wave input and no load.

Figure 5.28: The dc restorer with a load resistor R.

5.5.5 Digital Logic

• Diodes can also be used for logic gates as shown in Figure 5.29.

Figure 5.29: Digital logic gates: (a) OR gate; (b) AND gate. (Positive logic system)