AVL Trees:Insertion

COP 3502 – Computer Science I

- Recall the basics of Binary Search Trees
 - The goal of a BST is to provide O(log n) lookup, insertion, deletion, etc.
 - However, this goal is only accomplished on a "complete" binary tree
 - a tree where all levels are filled with the possible exception of the last level, which is filled from left to right
 - Given a complete BST, the height of the tree is approximately log n, where n is the number of nodes
 - Remember:
 - If a BST is not complete, the height is NOT necessarily logn

- Recall the basics of Binary Search Trees
 - The height of a BST depends on the order of insertion
 - Example:
 - Inserting values 1, 2, 3, 4, 5, 6, and 7 into an initially empty BST results in what?
 - Each new values ends up going to the "right" of the previous value
 - So we end up with a completely right-skewed tree
 - This "tree" has degenerated into a linked list with respect to the running time of operations

Recall the basics of Binary Search Trees

© Jonathan Cazalas AVL Trees: Insertion page 4

- This "tree" is just a linked list in binary tree clothing.
- It takes 2 tests to locate 12, 3 to locate 14, and 8 to locate 52.
- Hence, the search effort for this binary tree is O(n).

Balanced BST

- We want to maintain balance in our BSTs
- Is there a way, regardless of the insertion order of elements, to maintain this balance?
 - To guarantee a height of log(n)?
- Basically, can we keep this balance?
- Short answer: yes!
- AVL Trees:
 - G.M. Adelson-Velskii and E.M. Landis
 - Published their algorithm in 1962 in a paper entitled
 "An algorithm for the organization of information."

- Definition:
 - An AVL tree is a BST in which the heights of the subtrees, of any given node, differ by no more than 1
 - For EVERY node in a BST, you must check the height of the left and right subtree of that node
 - If the height of those subtrees differ by no more than 1, then that BST is an AVL tree
- Thus, an AVL tree is a balanced BST

- This BST is an AVL tree.
- It takes 2 tests to locate 18, 3 to locate 12, and 4 to locate 8.
- Hence, the search effort for this binary tree is O(log₂n).

- For a tree with 1000 nodes, the worst case for a completely unbalanced tree is 1000 tests.
 - Again, degenerating to a linked list
- However, the worst case for a balanced tree is 10 tests.
 - HUUUUUGE difference
- Hence, balancing a tree can lead to significant improvements.

- AVL Trees: Formal Definition
 - 1) All empty trees are also, by definition, AVL trees
 - 2) If T is a non-empty BST with T_L and T_R as its left and right subtrees, respectively, then T is an AVL tree if and only if:
 - 1) T_L and T_R are also AVL trees
 - 2) $|h_L h_R| <= 1$
 - where h_L and h_R are the heights of T_L and T_R, respectively

#hL for node containing 1 = -1hR for node containing 1 = -1So, BF for node containing 1 = -1 - (-1) = 0

AVL Tree

#hL for node containing 7 = -1
hL for node containing 7 = 0
So, BF = -1-0 = -1
An AVL Tree

- AVL trees are height-balanced BSTs
- All nodes in an AVL tree have a Balance Factor (BF)
- Balance factor of a node = height of the left subtree minus the height of the right subtree
 - BF = hL hR
 - or BF = hR hL

- An AVL tree can have only balance factors of -1, 0, or 1 at every node
- For every node in a BST, the height of the left and right subtrees can differ by no more than 1

© Jonathan Cazalas AVL Trees: Insertion page 12

Skewed AVL Trees

Notice that the definition of an AVL tree does NOT require that all leaf nodes be on the same level or even adjacent levels

As such, it is possible to construct AVL trees that are quite skewed as shown below:

© Jonathan Cazalas AVL Trees: Insertion page 13

- AVL Trees: Implementation
 - To implement an AVL tree, simply associated a BF with each node, "x"


```
struct AVLTreeNode{
    int data;
    int BF;
    struct AVLTreeNode *left;
    struct AVLTreeNode *right;
};
```

- \blacksquare x->bf = h_L h_R
- Again, in an AVL-tree, BF can be one of {-1, 0, 1}

- AVL Trees: Good News & Bad News
 - Good News
 - Search is O(log n) = O(height)
 - Bad News
 - Insert and delete may cause the tree to be unbalanced

No longer an AVL Tree

- Insertion into an AVL Tree
 - Insertion into an AVL tree is just like inserting into a standard BST
 - You simply do a search, going left or right at every step, in the tree until you find the correct leaf node
 - You then insert in either the left or right child of that node
 - Once the new node is inserted, the balance MUST be checked and restored if the tree has become unbalanced
 - It often turns out that the new node can be inserted without affecting the height of the subtree
 - If this happens, then the balance of the root will not change

- Insertion into an AVL Tree
 - Once the new node is inserted, the balance MUST be checked and restored if the tree has become unbalanced
 - Even if the insertion caused one of the subtrees to increase in height, it may be that the shorter of the subtrees changed in height.
 - So only the balance factor of the root will change
 - The only case that causes difficulty:
 - Inserting a new node into a subtree of the root, which is taller than the other subtree, and the height of the taller subtree increases
 - So one subtree will have a height 2 more than the other

- Insertion into an AVL Tree
 - Thus, an AVL tree can become unbalanced due to an insertion in one of four ways:
 - (two of which are symmetric to the others)
 - 1) Inserting a new node into the right subtree of a right child
 - 2) Inserting a new node into the left subtree of a left child
 - This is the symmetric case
 - 3) Inserting a new node into the left subtree of a right child
 - 4) Inserting a new node into the right subtree of a left child
 - This is the symmetric case
 - The first two cases are easier to handle (as the require only one rotation), so we will go over them first

Restoring Balance in an AVL Tree

Problem

 Inserting a new node may cause the BF of some node, on the path from the root to the insertion point, to become 2 or -2

Solution:

- First insert the node following typical rules of a BST
- Then, from that insertion point, <u>BACK UP towards the</u> <u>root</u>, updating the BFs of all nodes along the path to root
- If a node ends up with a BF of 2 or -2, you must adjust the tree by rotating around deepest such node

Restoring Balance in an AVL Tree

© Jonathan Cazalas AVL Trees: Insertion page 20

Four Cases of Imbalance: LL Imbalance

Red values are balance factors

Four Cases of Imbalance: RR Imbalance

Red values are balance factors

Node around which rotation will be performed

Four Cases of Imbalance: LR Imbalance

Red values are balance factors

Node around which rotation will be performed

Four Cases of Imbalance: RL Imbalance

Red values are balance factors

Node around which rotation will be performed

AVL Balance Factor:

- We will learn more about Insertion technique in another pdf/ppt file.
- To align with the next pdf, some slides are removed from the original pdf file

- Balancing AVL Trees:
 - Whenever we insert a node into a tree or delete a node from a tree, the resulting tree may become unbalanced.
 - When we detect that a tree has become unbalanced, we must rebalance it.
 - AVL trees are balanced by rotating nodes either to the left or to the right.

- Insertion into AVL Trees (Summary)
 - We insert following standard rules of a BST
 - Then we trace back up to the root of the tree
 - As we back out of the tree, constantly check the balance factor of each node
 - When a node is out of balance, we balance it and continue backing up out of the tree
 - Note:
 - Not all inserts will produce an out of balance tree

- Summary of AVL Trees:
 - Arguments for using AVL trees:
 - 1) Search/insertion/deletion is **O(log N)** since AVL trees are <u>always balanced</u>.
 - The height balancing adds no more than a <u>constant</u> factor to the <u>speed of insertion</u>.
 - Arguments against using AVL trees:
 - 1) Requires extra space for <u>balancing factor</u>
 - It may be OK to have a <u>partially balanced</u> tree that would give performance similar to AVL trees without requiring the balancing factor
 - Splay trees (something we won't be covering in CS1)

AVL Trees:Insertion

COP 3502 – Computer Science I