HW11

April 27, 2025

- 1 Chem 30324, Spring 2025, Homework 11
- 2 Due May 3, 2025
- 2.1 What to do with ethylene?
- 2.1.1 Ethylene (C_2H_4) is an important commodity chemical. Partial oxidation to ethylene oxide (oxirane) is a useful way to introduce additional functionalization:

$$C_2H_4(g)+\frac{1}{2}O_2(g)\to C_2H_4O(g)$$

- 2.1.2 At 500 K over an appropriate catalyst, the reaction is first-order in ethylene, half-order in O_2 , zero order in products, and has a rate constant of 0.8 bar^{-1/2} s⁻¹. You plan to study the reaction in an isothermal, contant pressure reactor, starting with a 20 mole % excess of ethylene $(n_{C2H4}/n_{O2}=1.2)$ at 2 bar total pressure.
- 2.1.3 1. Draw the structure of ethylene oxide.
- 2.1.4 2. Is the reaction as written an elementary step? Why or why not?
- 2.1.5 3. Write down the rate law for the formation of ethylene oxide.
- 2.1.6 4. Create an ICE table for this reaction. My advice is to create the table in terms of *moles* of species and an advancement ξ . What is the maximum possible value of ξ ?
- 2.1.7 5. Define a conversion X as ξ/ξ_{max} , so $0 \le X \le 1$ Plot the partial pressures of all species vs X. *Hint*: Recall the partial pressure is Py_i , and $y_i = N_i/N_{\text{tot}}$ from the ICE table.
- 2.1.8 6. Plot the forward reaction rate vs X. Be sure to include appropriate units.
- 2.1.9 7. The apparent activation energy of the reaction is 60 kJ mol⁻¹. What is the reaction prefactor? Include appropriate units.
- 2.1.10 8. The apparent activation energy of the reaction is 60 kJ mol⁻¹. Estimate the rate constant at 550 K.
- 2.1.11 9. From the information given, can you predict the rate law for the reverse reaction?
- 2.2 Rate constants from scratch
- 2.2.1 In 1996, Schneider and co-workers used quantum chemistry to compute the reaction pathway for unimolecular decomposition of trifluoromethanol, a reaction of relevance to the atmospheric degradation of hydrofluorocarbon refrigerants (*J. Phys. Chem.* 1996, 100, 6097- 6103, doi:10.1021/jp952703m):

$$CF_3OH \rightarrow COF_2 + HF$$

Following are some of the reported results, computed at 298 K:

	$\mathrm{CF_3OH}$	$[CF_3OH]^{\ddagger}$	$C(O)F_2$	HF
$E^{ m elec}$ (Hartree)	-412.90047	-412.82771	-312.57028	_
				100.31885
ZPE (Hartree)	0.02889	0.02313	0.01422	0.00925
U^{trans} (kJ mol ⁻¹)	3.7	3.7	3.7	3.7
$U^{\rm rot} \ (\mathrm{kJ} \ \mathrm{mol}^{-1})$	3.7	3.7	3.7	2.5
U^{vib} (kJ mol ⁻¹)	4.3	4.1	1.2	0
$q^{\rm trans}/V~({\rm m}^{-3})$	7.72×10^{32}	7.72×10^{32}	1.59×10^{32}	$8.65 \times$
				10^{31}
$q^{ m rot}$	61830	68420	679	9.59
$q^{ m vib}$	2.33	2.28	1.16	1

- 2.2.2 10. Provide a rough sketch of what you expect the transition state to look like.
- 2.2.3 11. Based on the data in the table, create a potential energy surface for the unimolecular decomposition reaction. Indicate on the PES the location of the reactants, the products, and the transition state. Also indicate relevant zero point energies, the 0 K reaction energy, and the activation energy.
- 2.2.4 12. Using data from the table and harmonic transition state theory, compute the first-order rate constant for CF_3OH decomposition at 298 K, in s^{-1} .
- 2.2.5 13. Based on your computed rate constant, what is the half-life of CF_3OH at 298 K?
- 2.2.6 14. Experiments reveal that the CF₃OH comes to equilibrium far faster than the unimolecular rate would suggest. Provide a possible explanation for this observation (other than that Schneider calculations are incorrect!).