

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

FEBRUARY/MARCH 2011

MEMORANDUM

MARKS: 150

This memorandum consists of 20 pages.

DBE/Feb.-Mar. 2011

QUESTION 1

$x^{2} - x = 12$ $x^{2} - x - 12 = 0$ $(x - 4)(x + 3) = 0$ $x = 4 \text{ or } x = -3$	✓ standard form ✓ factors ✓ answers	(3)
OR x(x-1) = 12 4(3) = 12	✓ factors	
By inspection $x = 4$ or $x = -3$	✓✓ answers	(3)
	✓ substitution into correct formula	
	✓ 65	
x = 1,27 or $x = -2,77$	✓✓ answers	(4)
$7x^{2} + 18x - 9 > 0$ (7x - 3)(x + 3) > 0	✓ factors	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\checkmark \frac{3}{7}$ and -3	
$x < -3 \text{ or } x > \frac{3}{7}$ OR	✓ correct intervals	(4)
$2x - y = 7$ $y = 2x - 7$ Substitute $y = 2x - 7$ into $x^2 + xy = 21 - y^2$ $x^2 + x(2x - 7) = 21 - (2x - 7)^2$	✓ $y = 2x - 7$ ✓ substitution ✓ multiplication	
$x^{2} + 2x^{2} - 7x = 21 - 4x^{2} + 28x - 49$ $7x^{2} - 35x + 28 = 0$	✓ standard form	
$x^{2} - 5x + 4 = 0$ $(x - 4)(x - 1) = 0$ $x = 4 \text{ or } x = 1$ $y = 1 \text{ or } y = -5$	✓ factors ✓ <i>x</i> -answers ✓ <i>y</i> -answers	(7)
	$(x-4)(x+3) = 0$ $x = 4 \text{ or } x = -3$ OR $x(x-1) = 12$ $4(3) = 12$ $(-3)(-4) = 12$ By inspection $x = 4 \text{ or } x = -3$ $2x^2 + 3x - 7 = 0$ $x = \frac{-3 \pm \sqrt{3})^2 - 4(2)(-7)}{2(2)}$ $= \frac{-3 \pm \sqrt{65}}{4}$ $x = 1,27 \text{ or } x = -2,77$ $7x^2 + 18x - 9 > 0$ $(7x-3)(x+3) > 0$ $\frac{+ 0 - 0 + -3}{37}$ OR $x \in (-\infty; -3) \cup \left(\frac{3}{7}; \infty\right)$ $2x - y = 7$ $y = 2x - 7$ Substitute $y = 2x - 7$ into $x^2 + xy = 21 - y^2$ $x^2 + x(2x - 7) = 21 - (2x - 7)^2$ $x^2 + 2x^2 - 7x = 21 - 4x^2 + 28x - 49$ $7x^2 - 35x + 28 = 0$ $x^2 - 5x + 4 = 0$ $(x-4)(x-1) = 0$ $x = 4 \text{ or } x = 1$	$x^{2} - x - 12 = 0$ $(x - 4)(x + 3) = 0$ $x = 4 \text{ or } x = -3$ OR $x(x - 1) = 12$ $4(3) = 12$ $(-3)(-4) = 12$ By inspection $x = 4 \text{ or } x = -3$ $2x^{2} + 3x - 7 = 0$ $x = \frac{-3 \pm \sqrt{(3)^{2} - 4(2)(-7)}}{2(2)}$ $= \frac{-3 \pm \sqrt{65}}{4}$ $x = 1,27 \text{ or } x = -2,77$ $7x^{2} + 18x - 9 > 0$ $(7x - 3)(x + 3) > 0$ $7x^{2} + 18x - 9 > 0$ $(7x - 3)(x + 3) > 0$ $7x^{2} + 18x - 9 > 0$ $(7x - 3)(x + 3) > 0$ $x = (-\infty; -3) \cup (\frac{3}{7}; \infty)$ $2x - y = 7$ $y = 2x - 7$ Substitute $y = 2x - 7$ into $x^{2} + xy = 21 - y^{2}$ $x^{2} + x(2x - 7) = 21 - (2x - 7)^{2}$ $x^{2} + x(2x - 7) = 21 - (2x - 7)^{2}$ $x^{2} - 35x + 28 = 0$ $x^{2} - 5x + 4 = 0$ $(x - 4)(x - 1) = 0$ $x = 4 \text{ or } x = 1$ Indication In standard form In standard form

	OR	
		7 + v
	2x - y = 7	$\checkmark x = \frac{7+y}{2}$
	$x = \frac{7+y}{2}$	
		✓ substitution
	Substitute $x = \frac{7+y}{2}$ into $x^2 + xy = 21 - y^2$	✓ multiplication
	$\left(\frac{7+y}{2}\right)^2 + \left(\frac{7+y}{2}\right)y = 21 - y^2$	
	$\frac{49 + 14y + y^2}{4} + \frac{7y + y^2}{2} = 21 - y^2$	
	$49 + 14y + y^2 + 2(7y + y^2) = 84 - 4y^2$	
	$49 + 14y + y^2 + 14y + 2y^2 = 84 - 4y^2$	✓ standard form
	$7y^2 + 28y - 35 = 0$	✓ factors
	$y^2 + 4y - 5 = 0$	\checkmark x-answers
	(y+5)(y-1) = 0	✓ y-answers
	y = -5 or $y = 1$	(7)
	x=1 $x=4$	
1.3	$\left(\sqrt[5]{\sqrt{35}+\sqrt{3}}\right)\left(\sqrt[5]{\sqrt{35}-\sqrt{3}}\right)$	✓
	$= \sqrt[5]{(\sqrt{35} + \sqrt{3})(\sqrt{35} - \sqrt{3})}$	$\sqrt[5]{(\sqrt{35}+\sqrt{3})(\sqrt{35}-\sqrt{3})}$
	$=\sqrt[5]{35-3}$	✓ ⁵ √35-3
	$=\sqrt[5]{32}$	
	= 2	✓ answer
		(3)
		[21]

2.1	39	✓ answer	(1)
2.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ formula ✓ $a = 1$	(1)
	3(1) + b = 6 b = 3 a + b + c = 3 1 + 3 + c = 3 c = -1 $T_n = n^2 + 3n - 1$	$\checkmark b = 3$ $\checkmark c = -1$	(4)
	OR $2a = 2$ $a = 1$ $c = 3 - 4 = -1$ $T_n = n^2 + bn - 1$ $3 = (1)^2 + b(1) - 1 \text{ (using } T_1 = 3)$ $b = 3$ $T_n = n^2 + 3n - 1$	√ a = 1 $ √ c = -1 $ ✓ formula $ √ b = 3$	(4)
2.3	$n^2 + 3n - 1 > 269$ $n^2 + 3n - 270 > 0$ (n+18)(n-15) > 0 The first value of n is 16 The term is $16^2 + 3(16) - 1 = 303$	√ n2 + 3n - 1 > 269 ✓ factors $ √ n = 16 $ ✓ answer	(4) [9]

 $S_{\infty} = 8 + \frac{8}{\sqrt{2}} + \dots$

$$r = \frac{1}{\sqrt{2}}$$
 and

$$s_{\infty} = \frac{a}{1 - r}$$

$$=\frac{8}{1-\frac{1}{\sqrt{2}}}$$

$$=\frac{8\sqrt{2}}{\sqrt{2}-1}$$

$$= \frac{8\sqrt{2}(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}$$

$$=8\sqrt{2}\sqrt{2}+8\sqrt{2}$$

$$=16+8\sqrt{2}$$

OR

$$S_{\infty} = 8 + \frac{8}{\sqrt{2}} + \dots$$

$$r = \frac{1}{\sqrt{2}}$$
 and

$$s_{\infty} = \frac{a}{1 - r}$$

$$=\frac{8}{1-\frac{1}{\sqrt{2}}}$$

$$=\frac{8\left(1+\frac{1}{\sqrt{2}}\right)}{\left(1-\frac{1}{\sqrt{2}}\right)\left(1+\frac{1}{\sqrt{2}}\right)}$$

$$=\frac{8\left(1+\frac{1}{\sqrt{2}}\right)}{\frac{1}{2}}$$

$$=16\left(1+\frac{1}{\sqrt{2}}\right)$$

$$=16+\frac{16\sqrt{2}}{2}$$

$$=16+8\sqrt{2}$$

 $\checkmark r = \frac{1}{\sqrt{2}}$

✓ substitution

 \checkmark rationalisation

 $\checkmark \ simplification$

 $\checkmark r = \frac{1}{\sqrt{2}}$

✓ substitution

✓ rationalisation✓ simplification

(4)

NSC – Memorandum

3.2.1	$5 + 15 + 45 + \dots + T_{20}$ $= \sum_{n=1}^{20} 5(3)^{n-1}$	✓ ✓ answer (2)
	OR $5 + 15 + 45 + + T_{20}$ $= 5 \sum_{n=0}^{19} (3)^n$	✓ ✓ answer (2)
	OR $5 + 15 + 45 + + T_{20}$ $= 5 \sum_{i=l}^{l+19} (3)^{i-l}$ for any $l \in \mathbb{Z}$	✓ ✓ answer (2)
3.2.2	$5+15+45++T_{20}$ $=\frac{5(3^{20}-1)}{3-1}$	✓ formula ✓ substitution
	= 8 716 961 000	✓ answer (3) [9]

QUESTION 4

4.1.1	$S_{23} = \frac{23}{2}(5(23) + 9)$	✓ substitution	
	= 1426	✓ answer	(2)
4.1.2	$T_{23} = S_{23} - S_{22}$	✓ statement	
	$=1426 - \frac{22}{2}(5(22) + 9)$	$\checkmark S_{22} = 1309$	
	=1426-1309		
	= 117	✓ answer	(2)
4.2	Arithmetic Seguence: $12 \cdot 12 + d \cdot 12 + 2d$	((3)
4.2	Arithmetic Sequence: 12 ; $12 + d$; $12 + 2d$ Geometric Sequence: 12 ; $12r$; $12r^2$ 12 + d = 12r		
	d = 12r - 12	✓ equation	
	$12 + 12r + 12r^2 = 12 + 12 + d + 12 + 2d + 3$	✓ equation	
	$12r^2 = 12 + 2(12r - 12) + 3$		
	$12r^2 = 12 + 24r - 24 + 3$		
	$12r^2 - 24r + 9 = 0$	✓ standard form	
	$4r^2 - 8r + 3 = 0$	✓ factors	
	(2r-3)(2r-1) = 0	• Tactors	
	$r = \frac{3}{2}$ or $r = \frac{1}{2}$	✓ answers	
	2 2 2		(6)

OR The 3^{rd} term of GP = $3 + 3^{\text{rd}}$ term of AP $12r^2 = 3 + 12 + 2d$	✓ equation ✓ equation
$12r^2 = 15 + 24r - 24$ $12r^2 - 24r + 9 = 0$	✓ standard form
$4r^2 - 8r + 3 = 0$	✓ factors
$(2r-3)(2r-1) = 0$ $r = \frac{3}{2} or r = \frac{1}{2}$	✓ answers [11]
$r - \frac{1}{2}$ or $r - \frac{1}{2}$	

5.1	x = 1	✓✓ answers
	y = -2	(2)
5.2	y-intercept:	
	$y = \frac{3}{0-1} - 2 = -5$	✓ y = -5
	x-intercept: $\left(\frac{5}{2};0\right)$	✓ substitute $y = 0$
	$0 = \frac{3}{x-1} - 2$	Substitute y = 0
	$2 = \frac{3}{x - 1}$ $2x - 2 = 3$	
	2x = 5 5	✓ answer (3)
	$x = \frac{5}{2}$	
5.3	4 y	✓ asymptotes ✓ y-intercept ✓ shape (3)
	-7 -6 -5 -4 -3 -2 -1 O 2 3 4 5 6 7 8	
	2 (1;-2)	
	-3- -4- -5- -6-	
	-7	

5.4	$-f(x) = \frac{-3}{x-1} + 2$ $y \in R - \{2\} \text{OR} y \in (-\infty; 2) \cup (2; \infty) \text{ OR } y \in R; y \neq 2$	✓ answer	(1)
5.5	$g(x) = \frac{-3}{x+1} - 2$ $= \frac{3}{-x-1} - 2$ Reflection of f about the y-axis.	✓ manipulation ✓ answer	
	OR (i) horizontal shift 2 units to the left followed by (ii) reflection in <i>x</i> -axis, followed by (iii) vertical downward shift of 4 units		(2) [11]

6.1	$\frac{x}{2} - \frac{7}{2} = 0$	$\frac{x}{2} - \frac{7}{2} = 0$	
	$ \begin{array}{l} x = 7 \\ C(7; 0) \end{array} $		(1)
	OR		
	$y = \frac{7}{2} - \frac{7}{2}$	✓ substitution ✓ answer	
	y = 0 $C(7; 0)$		(2)
6.2	x- coordinate of B is $3-4=-1$	✓ answer	(1)

6.3 OPTION 1

 $f(x) = a(x-3)^2 + q$

At B and C: 0 = 16a + q

 $-\frac{7}{2} = 9a + q$ At E:

Solving simultaneously gives

 $a = \frac{1}{2}$ and q = -8

✓ substitution

✓ substitution

✓ substitution

 $\checkmark \checkmark a = \frac{1}{2}$ $\checkmark q = -8$

OPTION 2

f(x) = a(x+1)(x-7)

y = a(x+1)(x-7)

-3.5 = a(0+1)(0-7)

-3.5 = -7a

 $a=\frac{1}{2}$

 $f(x) = \frac{1}{2}(x+1)(x-7)$

 $=\frac{1}{2}(x^2-6x-7)$

 $= \frac{1}{2} [(x-3)^2 - 16]$

 $=\frac{1}{2}(x-3)^2-8$

✓ substitution

(6)

✓ substitution

✓ $a = \frac{1}{2}$ ✓ substitution

√ simplification

✓ answer

OPTION 3

Axis of symmetry: x = 3 or $x = \frac{-1+7}{2} = 3$

 $f(x) = \frac{1}{2}(x-3)^2 + q$

 $0 = \frac{1}{2}(7-3)^2 + q$

 $y = \frac{1}{2}(x-3)^2 - 8$

 $\checkmark \checkmark \checkmark a = \frac{1}{2}$

✓ substitution

✓ substitution

✓ answer

(6)

(6)

Copyright reserved

Please turn over

	OPTION 4		
	$a=\frac{1}{2}$		
	Axis of symmetry: $x = 3$		
		$\checkmark \checkmark \checkmark a = \frac{1}{2}$	
	$f(x) = \frac{1}{2}(x-3)^2 + q$	2	
	q = f(3)		
	$q = \frac{1}{2}(3+1)(3-7)$	✓ substitution	
	q = -8	Substitution	
	$y = \frac{1}{2}(x-3)^2 - 8$		
		✓ substitution	
		✓ answer	
6.4	1 -	✓ answer	(6)
0.4	$h(x) = -f(x) = \frac{-1}{2}(x-3)^2 + 8$	answer	(1)
6.5	$1 - f(x) = -\frac{1}{2}(x - 3)^2 + 9$		
	$1 - f(x) = -\frac{1}{2}(x - 3) + \frac{1}{2}$	✓ method	
	Maximum value is 9.	✓ answer	
			(2)
	OR		
	Maximum value = $1 - (-8)$		
	= 9		
	OR		
	$t(x) = -\frac{1}{2}x^2 + 3x + \frac{9}{2}$		
	t'(x) = -x + 3 = 0		
	Max $V_{at x=3} = -\frac{1}{2}(3)^2 + 3(3) + \frac{9}{2} = 9$		
6.6			
	$f(x^2-2)=0$		
	f(x) = 0 if $x = -1$ or $x = 7$		
	$f(x^2 - 2) = 0$ if $x^2 - 2 = -1$ or $x^2 - 2 = 7$	✓ substitution ✓ simplification	
	$\therefore x^2 = 1 \qquad \text{or} x^2 = 9$	✓ answer	
	$\therefore x = 1 \text{ or } x = -1 \qquad \text{or } x = 3 \text{ or } x = -3$	✓ answer	(4)
			(+)

$\frac{1}{2}(x^2 - 2 - 3)^2 - 8 = 0$ $\frac{1}{2}(x^2 - 5)^2 = 8$	✓ substitution	
$(x^{2}-5)^{2} = 16$ $x^{2}-5=4 or x^{2}-5=-4$ $x^{2}=9 or x^{2}=1$ $x=3 or x=-3 or x=1 or x=-1$	✓ simplification ✓ factors ✓ answer	(1)
OR $f(x^{2}-2) = 0$ $\frac{1}{2}(x^{2}-2-3)^{2}-8=0$	✓ substitution	(4)
$\frac{1}{2}(x^2 - 5)^2 = 8$ $(x^2 - 5)^2 - 16 = 0$ $(x^2 - 5 - 4)(x^2 - 5 + 4) = 0$	✓ simplification	
$(x^{2} - 9)(x^{2} - 1) = 0$ $(x - 3)(x + 3)(x - 1)(x + 1) = 0$ $x = 3 \text{ or } x = -3 \text{ or } x = 1 \text{ or } x = -1$	✓ factors ✓ answer	
	- answer	(4) [15]

7.1	Decreasing function Since $0 < a < 1$	OR	As x increases, $f(x)$ decreases	✓ decreasing ✓ a < 1	(2)
7.2	$f^{-1}: x = \left(\frac{1}{3}\right)^{y}$ $y = \log_{\frac{1}{3}} x$ OR $f^{-1}: x = \left(\frac{1}{3}\right)^{y}$ $y = -\log_{3} x$	OR	$ \begin{array}{c} \downarrow \\ \downarrow \\$	$\checkmark x = \left(\frac{1}{3}\right)^{y}$ $\checkmark y = \log_{\frac{1}{3}} x \text{ or }$ $y = -\log_{3} x$	(2)
7.3	y = -5			✓ answer	(1)

7.4	Reflection about $y = x$.	✓ reflection about $y = x$
	Reflection about the <i>x</i> -axis.	✓ reflection about <i>y</i> -axis
		(2)
	OR	
	Deflection about the waying	✓ reflection about a axis
	Reflection about the <i>y</i> -axis. Then reflection about the line $y = x$.	✓ reflection about <i>y</i> -axis ✓ reflection about $y = x$
	Then reflection about the line $y - x$.	(2)
	OR	(2)
	Reflection about the line $y = -x$ followed by reflection about the	✓ rotation through 90°
	y-axis.	✓ clockwise direction
		(2)
	OR	
	Potation through 000 in a alcolavian direction	
	Rotation through 90° in a clockwise direction.	
	OR	
	Rotation through 90° in an anti-clockwise direction.	✓ answer
	Reflection through the origin.	✓ answer (2)
		[7]

8.1	$A = P(1+i)^n$	
	$1711,41 = 1430,77 \left(1 + \frac{i}{12}\right)^{18} \qquad \left[\frac{1711,41}{18}\right]^{\frac{1}{18}}$	✓ substitution
	$\left[\left(1 + \frac{i}{12} \right)^{18} = 1,196146131 \mathbf{OR} \begin{bmatrix} 1430,77 \\ = 1,00999 \end{bmatrix} \right]$	$\checkmark \left(1 + \frac{i}{12}\right)^{18} = 1,196146131$
	$1 + \frac{i}{12} = 1,009999937$	
	i = 0,1199992431 = 12%	$\checkmark 1 + \frac{i}{12} = 1,009999937$
	Rate = 12, 00% p.a. compounded monthly.	✓ answer (4)

8.2.1

$$P_{v} = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$800000 = \frac{10000 \left[1 - \left(1 + \frac{0.14}{12} \right)^{-n} \right]}{\frac{0.14}{12}}$$

$$1 - \left(1 + \frac{0.14}{12}\right)^{-n} = \frac{14}{15} \quad (= 0.933333)$$

$$\left(1 + \frac{0.14}{12}\right)^{-n} = \frac{1}{15} \quad (= 0.066666666)$$

$$\log\left(1 + \frac{0.14}{12}\right)^{-n} = \log\frac{1}{15}$$

$$-n\log\left(1+\frac{0,14}{12}\right) = \log\frac{1}{15} \quad \left(-n = \frac{\log\frac{1}{15}}{\log\left(1+\frac{0,14}{12}\right)}\right)$$
$$= -233,47$$

n = 233.47

∴ the loan will be paid off at the end of the 234th month

✓ substitute into P_v

$$\checkmark i = \frac{0,14}{12}$$

✓ using logs

✓ answer

OR

Balance outstanding after 233rd month

$$= 800000 \left(1 + \frac{0,14}{12}\right)^{233} - \frac{10000 \left[\left(1 + \frac{0,14}{12}\right)^{233} - 1\right]}{\frac{0,14}{12}}$$

= R4 660,04 which is less than R10 000 Therefore the loan will be paid off after 234 months. ✓ substitution into P formula

√ 234

✓ answer

✓ argument

(4)

(4)

OR

Total value of the loan after 234 payments

$$= \frac{10000 \left(1 - \left(1 + \frac{0.14}{12}\right)^{-234}\right)}{\frac{0.14}{12}}$$

= R800350.21

> R800 000 and the differences is less than R10 000 Therefore the loan will be paid off after 234 months.

✓ substitution into F formula

√ 234

✓ answer

✓ argument

(4)

Copyright reserved

Please turn over

8.2.2 Balance Outstanding after 119 months

$$=800000\left(1+\frac{0.14}{12}\right)^{119}-\frac{10000\left[\left(1+\frac{0.14}{12}\right)^{119}-1\right]}{\frac{0.14}{12}}$$

= R629 938,11

Total Payable at the end of the 123rd month

$$= 629 938,11 \left(1 + \frac{0,14}{12}\right)^4$$
$$= R659 853,68$$

New instalment:

$$659 853,68 = \frac{x \left[1 - \left(1 + \frac{0,14}{12}\right)^{-111}\right]}{\frac{0,14}{12}}$$
$$x = R10 632,39$$

$$800000 \left(1 + \frac{0,14}{12}\right)^{119}$$

$$10000 \left[\left(1 + \frac{0,14}{12}\right)^{119} - 1\right]$$

✓ 629938,11
$$\left(1+\frac{0,14}{12}\right)^4$$

$$\checkmark$$
 substitution into P_{y}

(7) **[15]**

9.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$h \to 0 \qquad h$ $= \lim_{h \to 0} \frac{1 - 3(x + h)^2 - (1 - 3x^2)}{h}$	✓ substitution into formula
	$\lim_{h \to 0} \frac{h}{h}$ $= \lim_{h \to 0} \frac{1 - 3x^2 - 6xh - 3h^2 - 1 + 3x^2}{h}$	$\checkmark 1-3x^2-6xh-3h^2$ $\checkmark h(-6x-3h)$
	$= \lim_{h \to 0} \frac{-6xh - 3h^2}{h}$	$\checkmark h(-6x-3h)$
	$= \lim_{h \to 0} \frac{h(-6x - 3h)}{h}$	
	$= \lim_{h \to 0} (-6x - 3h)$ $= -6x$	✓ answer
		(4)
9.2	$D_x \left[4 - \frac{4}{x^3} - \frac{1}{x^4} \right]$	
	$=D_x \left[4 - 4x^{-3} - x^{-4} \right]$	✓ simplification
	$=12x^{-4}+4x^{-5}$	✓✓ answer (3)
9.3	$y = \left(1 + \sqrt{x}\right)^2$	
	$y = 1 + 2\sqrt{x} + x$	
	$y = 1 + 2x^{\frac{1}{2}} + x$	✓ expansion
	$\frac{dy}{dx} = x^{-\frac{1}{2}} + 1$	$\sqrt{x^{-\frac{1}{2}}}$
		(3)
		[10]

10.1	(-6)(-3)(+2) = 36	✓ (-6)(-3)(+2)
	y-intercept is 36	\checkmark y-intercept is 36 (1)
	OR	
	$g(x) = (x-6)(x^2-x-6)$	
	$g(x) = x^3 - 7x^2 + 36$ y-intercept: (0;36)	✓ trinomial
		✓ 36 (1)
10.2	g(x) = 0 x = 6 or $x = 3$ or $x = -2intercepts are (6; 0) and (3; 0) and (-2; 0)$	✓ $g(x) = 0$ ✓ all x-intercepts (2)
10.3	$g(x) = (x-6)(x^{2} - x - 6)$ $= x^{3} - 7x^{2} + 36$ $g'(x) = 3x^{2} - 14x$ $0 = x(3x - 14)$ $x = 0 \text{ or } x = \frac{14}{3}$ Turning points are (0; 36) and $\left(\frac{14}{3}; -\frac{400}{27}\right)$	$\checkmark x^3 - 7x + 36$ $\checkmark g'(x) = 3x^2 - 14x$ $\checkmark g'(x) = 0$ $\checkmark \text{ answers}$ $\checkmark \checkmark \text{ points}$ (6)
10.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓ x-intercepts ✓ ✓ turning points ✓ shape (4)

$x < -2 or 0 < x < 3 or \frac{14}{3} < x < 6$ $1 \text{ mark for each inequality}$	10.5	g(x).g'(x<0	
		$x < -2$ or $0 < x < 3$ or $\frac{14}{3} < x < 6$	

$$\begin{array}{c|c}
N(0;b) & y \\
Q & P(x;y) \\
\hline
O & R & M(0;b)
\end{array}$$

11.1	$m = -\frac{b}{a}$	$\checkmark m = -\frac{b}{a}$
	$y = mx + b$ $y - b = \frac{-b}{a}(x - 0)$ $y = ma + b$ $0 = ma + b$ $y = \frac{-b}{a} + b$ $y = \frac{-b}{a} + b$ $y = -\frac{b}{a}x + b$ $y = -\frac{b}{a}x + b$	✓ answer (2)
11.2	A = xy	✓ area formula ✓ substitution
	$A = x \left(\frac{-bx}{a} + b \right)$	Substitution
	$= -\frac{b}{a}x^2 + bx$	
	$\frac{dA}{dx} = -\frac{2b}{a}x + b$	$\checkmark \frac{dA}{dx} = -\frac{2b}{a}x + b$ $\checkmark \frac{dA}{dx} = 0$
	$0 = -\frac{2b}{a}x + b$ $-ba = -2bx$	$\checkmark \frac{dA}{dx} = 0$
	$x = \frac{a}{2}$	✓ <i>x</i> -value
	$y = -\frac{b}{a} \left(\frac{a}{2}\right) + b$	
	$=\frac{b}{2}$	✓ y-value
	$P\left(\frac{a}{2}; \frac{b}{2}\right)$ which is the midpoint of MN	(6)
	OR	

$x_{\perp}y_{\perp}$	
$\frac{x}{a} + \frac{y}{b} = 1$	
$\frac{y}{x} = 1 - \frac{x}{x}$	
b a	
To maximise xy, we maximise	
$\frac{xy}{ab} = \frac{x}{a} \left(\frac{y}{b} \right) = \frac{x}{a} \left(1 - \frac{x}{a} \right)$	
This is a maximum when $\frac{x}{a} = \frac{1}{2}$ i.e. $x = \frac{a}{2}$	
By the midpoint theorem, P is then the midpoint of MN.	
	(6)
	[8]

12.1	<i>x</i> ≥ 1	✓ x≥1	
12.1	$y \le 12$	$\checkmark y \le 12$	
	$\begin{vmatrix} y \le 12 \\ x + y \ge 10 \end{vmatrix}$	$\checkmark x + y \ge 10$	
		$\checkmark x + y \le 15$	
	$x + y \le 15$	$\checkmark \checkmark y \ge 2x$	
	$y \ge 2x$		(6)
	$x, y \in N_0$		
12.2	15 13 12 11 10 9 8 (5;8) 7 6 6	\checkmark x≥1; \checkmark y≤12 \checkmark x+y≤15 \checkmark x+y≥10 \checkmark y≥2x \checkmark feasible region	(7)
12.2	No. The point (5 : 9) lies outside the feesible region	√ No	
12.3	No. The point (5; 8) lies outside the feasible region OR 8 is not greater than 2(5) =10	✓ No ✓ Reason	(2)

12.4	I = 600x + 900y	✓ objective
	2 I	function
	$y = -\frac{2}{3}x + \frac{2}{900}$	
	Maximum Income at(3; 12)	✓ search line
	3 single bedrooms and 12 double bedrooms	✓ answer
	OR	
	To optimise profit, the group must build as many rooms as possible and	
	then, as many double rooms as possible. So 15 rooms, 12 double rooms,	(2)
	hence 3 single rooms.	(3)
		[18]

TOTAL: 150

