Elementos de Probabilidades e Teoria de Números

Teoria de Números - folha 1			
I AORIA DE MILIMAROS - TOINA I	T NI /	C. II 1	
	 LACTIS DA IVIIMATOS	- t∩ina i -	

- 1. Determine o quociente e o resto na divisão de :
 - (a) 310156 por 197;
 - (b) 32 por 45;
 - (c) 0 por 28;
 - (d) -19 por 6;
 - (e) -234 por -9.
- 2. Na divisão de 392 por 45, determine:
 - (a) o maior inteiro que se pode somar ao dividendo sem alterar o quociente;
 - (b) o maior inteiro que se pode subtrair ao dividendo sem alterar o quociente.
- 3. Diga, justificando, se as afirmações seguintes são verdadeiras para quaisquer $a,b,c\in\mathbb{Z}$:
 - (a) Se $a \mid bc$, então $a \mid b$ ou $a \mid c$.
 - (b) Se $a \mid b + c$, então $a \mid b$ ou $a \mid c$.
 - (c) Se $a^2 \mid b^3$, então $a \mid b$.
- 4. Mostre que, se $a \mid (2x-3y)$ e $a \mid (4x-5y)$, então $a \mid y$, para quaisquer inteiros $a, x \in y$.
- 5. Seja $n\in\mathbb{N}$. Mostre que se $(n+1)\mid (n^2+1)$ então n=1. [Sugestão: tenha em conta que $n^2+1=n(n+1)-(n-1)$.]
- 6. Sejam $x,y\in\mathbb{Z}$ dois números ímpares. Mostre que $2\mid (x^2+y^2)$ mas $4\nmid (x^2+y^2)$.
- 7. Utilizando o Algoritmo da Divisão, mostre que
 - (a) o quadrado de um inteiro é da forma 3k ou 3k+1, para certo inteiro não negativo k;
 - (b) $3a^2 1$ não é um quadrado perfeito, para todo o inteiro a.
- 8. Mostre que, para todo o inteiro a, um dos inteiros a e a+2 ou a+4 é divisível por a.
- 9. Seja $n \in \mathbb{N}$. Mostre que $3 \mid n(2n^2 + 7)$.
- 10. Prove que, para todo o inteiro $n \geq 1$, $\frac{n(n+1)(2n+1)}{6}$ é um inteiro.
- 11. Prove que o produto de quatro inteiros consecutivos é divisível por 24.