

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

CANDIDATE'S DECLARATION

We hereby declare that the work that is being presented in this report entitled "DEVELOPMENT OF GRID TIE INVERTER" in partial fulfillment of the requirement for the award of the degree of Bachelor of Technology in Electrical Engineering submitted to the Department of Electrical Engineering, Indian Institute of Technology Roorkee, INDIA is an authentic record of our own work carried under the guidance of Dr. Pramod Agarwal, Professor, Department of Electrical Engineering, Indian Institute of Technology Roorkee.

The matter embodied in this project report has not been submitted by us for the award of any other degree or diploma.

Date: Abhishek Choudhary

Place: IIT Roorkee Aditya Tomar

Akshay Sarin

(B. Tech. EE)

CERTIFICATE

This is to certify that the above statement made by the candidates is correct to the best of my knowledge.

Date: **Dr. Pramod Agarwal**

Place: IIT Roorkee Professor

Department of Electrical Engineering

IIT Roorkee

ACKNOWLEDGEMENT

We would like to express our sincere gratitude to Dr. Pramod Agarwal, Professor,

Department of Electrical Engineering, Indian Institute of Technology Roorkee for their

valuable guidance, support, encouragement and the inspirational support throughout the

Project. We express deep and sincere sense of gratitude to all teachers of EE department for

their encouraging and caring words and suggestions which have contributed towards

completion of this project. We are indebted to all our classmates for taking interest in

discussing our problems and encouraging us. We convey our deep sense of gratitude to the

Head of Electrical Engineering Department (HOD), who directly or indirectly helped us

during the work. Finally, we would like to express our deepest gratitude to the Almighty for

showering blessings on us during the course of work.

Date:

Place: IIT Roorkee

Abhishek Choudhary

Aditya Tomar

Akshay Sarin

(B. Tech. EE)

ABSTRACT

In this project, an inverter is designed to be a grid connected inverter from a direct supply of a dc source (photovoltaic (PV) cells). The developed inverter unit converts the DC input supply from the PV cells into a sinusoidal voltage output. This power inverter is also made capable to be a grid connected PV system by synchronizing circuit where the electricity produced by PV, which exceeded the load consumption can be feed back to the grid. The inverter is of a full-bridge topology using a step-up transformer. This report also presents the comparative study of the performance of the two main control techniques for Grid Connected Inverters (GCI), these are- sinusoidal pulse width modulation (SPWM) and hysteresis current controller (HCC). The L-C filter is implemented after the step-up transformer before the load to attenuate the harmonics component.

CONTENTS

CANDIDATES DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
CONTENTS	v
LIST OF FIGURES	vi
LIST OF TABLES	ix
List of Abbreviations	х
Chapter 1: Introduction	1
1.1 Introduction	1
1.2 Literature Review	2
1.3 A sample PV array used in industry	15
1.4 Project Description	17
Chapter 2: Methodology	
2.1 Introduction to Grid Tie Inverter	19
2.2 Solar Cell Modelling	21
2.3 Control Strategies	23
2.4 General Purpose Computations, constraints and constants	26
2.5 Power Circuit	30
2.6 SPWM Topology Simulation	30
2.7 HCC Topology	33
2.8 Discussions and Comments on simulation results	36
Chapter 3: Hardware Implementation of Single Phase Inverter	37
3.1 Power Circuit	37
3.2 Control Circuits	39
3.3 Power Supplies	44
3.4 Coupling Inductors	46
Chapter 4: EXPERIMENTAL SETUP AND RESULTS	47
4.1 Voltage sensing module	48
4.2 Phase Locked Loop and MPPT module Setup	48

4.3 Grid Tie setup	49
4.4 Comparison between HCC and SPWM techniques	54
Chapter 5: Future Scope	55
References	56
APPENDIX-A	58
APPENDIX-B	61
APPENDIX-C	64
APPENDIX-D	65

List of Figures

Figure	Page No.
Fig 1.2.2.1: Single Phase Half Bridge Inverter	3
Fig 1.2.2.1: Single Phase Full Bridge Inverter	4
Fig 1.2.6.1: SPWM Control Strategy	7
Fig 1.2.7.1: Hysteresis Current Controller Control Strategy	8
Fig 1.2.8.1: Flow chart for reference signal generation	9
Fig 1.2.9.1: High efficiency and reliability PV transformerless inverter topology	11
Fig 1.2.9.2: Gating signals of the proposed transformerless PV inverter[5]	11
Fig 1.2.9.3: Buck Boost/Boost grid tie inverter	13
Fig 1.2.9.4(a)	14
Fig 1.2.9.4(b) Subsystem	14
Fig 1.2.9.4(c) Subsystem	14
Fig 1.3.1: V-I characteristics of solar panel under different solar insolation	15
Fig 1.3.2: P-V characteristics of solar panel under different solar insolation	15
Fig 1.3.3 Flow diagram of MPPT Algorithm	17
Fig 2.2.1: Simulink model of solar cell	22
Fig 2.2.2: I-V characteristics Solar cell	23
Fig 2.2.2: PV Power- Voltage Curve for solar cell	23
FIG 2.3.1.1: Vector Waveform	24
Fig 2.4.1: Generation of unity sine template of required phase delay angle (δ)	27
Fig 2.4.2: HCC control Strategy	28
Fig 2.4.3: Generation of reference current for HCC strategy	28
Fig 2.4.4: SPWM control Strategy	28
Fig 2.4.5: Calculation of delta for PLL unity sine wave	28
Fig 2.4.6: Generation of reference signal for SPWM strategy	29

Fig 2.4.7: Selection between two strategies	29
Fig 2.6.1: Power circuit of modified topology of GTI	30
Fig 2.6.2: Freewheeling block for the power circuit	31
Fig 2.6.3: SPWM topology simulation results(20 kHz switching frequency)	31
Fig 2.6.4: SPWM topology-Grid Current (20 kHz switching frequency)	32
Fig 2.6.5: SPWM topology-Grid Current Harmonics (20 kHz switching frequency) Fig 2.6.6: THD vs mf	32 32
Fig 2.7.1: MATLAB Model for HCC topology	33
	33
Fig 2.7.2: Hysteresis Current Controller Control strategy	
Fig 2.7.3: Grid Voltage and grid current in HCC Simulation	34
Fig 2.7.4: Grid Current (amplified) in HCC Simulation	34
Fig 2.7.5: THD variation (grid current) in HCC Simulation	35
Fig 2.7.6: Grid Current THD with Hysteresis band variation	36
Fig 3.1.1: Voltage source inverter circuit with snubber circuit and freewheeling path	37
Fig 3.1.1.1: Snubber Circuit Diagram schematics and actual implementation	38
Fig 3.1.2.1: Pulse Amplification Circuit schematic and its actual implementation	38
Fig. 3.2.1.1 : Volatge sensing circuit using AD202 schematic and actual implemenation	39
Fig 3.2.2.1 : PLL implementation	40
Fig.3.2.3.1: MPPT module implementation	41
Fig.3.2.4.1.1: Triangular wave generation schematic	42
Fig.3.2.4.1.2: Triangular wave generation implementation and output wave	42
Fig 3.2.4.3.1: Deadband and SPWM core implementation	43
Fig 3.2.4.3.2: Deadband schematic	43
fig. 3.2.5.1 : current sensing circuit schematic	44
Fig 3.2.5.2 : HCC and Current sensing circuit implementation	44
Fig 3.3.1: ±12 Supply Circuit schematic [8]	45

Fig 3.3.2: +5 Volt Supply schematic	45
Fig 3.3.3: Power Supply implementation	46
Fig. 4.1: Full experimental setup for grid tied inverter	47
Fig. 4.1.1 : Voltage sensing module output	48
Fig. 4.2.1: Locking signal input to 4046	48
Fig. 4.2.2 : DAC0808 output without offset removal	49
Fig. 4.2.3 : PLL output without offset to be fed to MPPT module	49
Fig. 4.3.1.1: Voltage and Current Waveforms at PCC	51
Fig. 4.3.1.2 : Voltage and current waveforms at lower voltage at inverter terminals	51
Fig. 4.3.1.3 : Voltage harmonic spectrum at PCC	52
Fig. 4.3.2.1: Load Current waveform using HCC Strategy	54
Fig 5.1: MPPT implementation for grid tie PV inverter	55
Fig B.1.1: PLL Schematic	61
Fig B.1.2: PLL PCB	61

List of Tables

Table	Page No.
Table 1.2.2.1: Switching States of single phase half bridge inverter	3
Table 1.2.2.1: Switching States of single phase half bridge inverter	4
Table 1.2.9.1: Here operation in the boost and buck-boost mode is summarized	13
Table 2.1.1: SUMMARY OF THE MOST INTERESTING STANDARDS	21
DEALING WITH INTERCONNECTIONS OF PV SYSTEMS TO THE GRID	

List of Abbreviations

AC Alternating Current

DC Direct Current

HCC Hysteresis Current Controller

MPPT Maximum Power Point Tracking

PCC Point of Common Coupling

PD Phase Detector

PI Proportional Integral

PLL Phase Locked Loop

PV photovoltaic

SPWM Sinusoidal Pulse Width Modulation

THD Total Harmonic Distortion

VCO Voltage Controlled Oscillator

VSI Voltage Sourced Inverter