Pattern Recognition Assignment 3

Names: ID:

Manar Amr Mohammed 18011842 Nour Waled Ali 18012006 Youssef Mohamed Hussein 18015031

Data Preprocessing

Feature space

Each sample has 88 features, 44 for zero-crossing-rate and 44 for Energy (rms).

audio sampling rate is adapted to generate a fixed number of features for all samples.

Data Augmentation

3 additional datasets (audio with noise, audio shifted to left, and audio shifted to right) are generated to increase data samples and reduce overfitting.

Original data	7442 samples	
Original data + noise	7442 samples	
Original data + random shift left	7442 samples	
Original data + random shift right	7442 samples	

Tuning and Validation

• Model 1

Dataset	Dropout	training accuracy	validation accuracy
original	0.1	0.99015	0.42599
original + noise	0.1	0.988	0.465
original + shift right	0.1	0.991	0.499
original + shift_left	0.1	0.99215	0.514688
original + noise + shift_right	0.5	0.992	0.514
original + noise + shift_left	0.5	0.9744554	0.5247016
original + noise + shift left + shift right	0.5	0.965	0.533

Results of the best parameters: train accuracy = 88% testing accuracy = 45.4%

f1-scores

SAD	ANG	DIS	FEA	HAP	NEU
0.487	0.635	0.372	0.33	0.383	0.5

confusion matrix

• Model 2

• The number of filters is increased to extract more low level features compared with model one.

Tuning

Dataset	Dropout	training accuracy	validation accuracy
original	0.1	0.94378	0.420975
original + noise	0.1	0.90858	0.452006
original + shift right	0.1	0.934768	0.469954
original + shift_left	0.1	0.945302	0.474755
original + noise + shift_right + shift_left	0.1	0.743265	0.515237
original + noise	0.5	0.75394	0.46718
original + shift_right	0.5	0.79298	0.5068
original + noise + shift left + shift right	0.5	0.738	0.517

Results of best parameters train accuracy = 61.6% testing accuracy =49%

f1-scores

SAD	ANG	DIS	FEA	HAP	NEU
0.533	0.675	0.422	0.311	0.394	0.55

confusion matrix

• model 3

To reduce overfitting:

- kernel weights initializer is set to random normal.
- L1 regularization is added.
- More dropout layers are added with dropout ratio = 0.1.

Tuning

Dataset	Dense	regularization factor	training accuracy	validation accuracy
original	100	1e-5	0.761	0.46
original + noise + shift_left	100	1e-5	0.585	0.485
original + shift_left	100	1e-7	0.71717	0.49625
original + noise + shift left + shift right	100	1e-7	0.646	0.488
original + noise	500	1e-5	0.533895	0.3971

Results of best parameters train accuracy = 56.17% testing accuracy = 47.5%

f1-scores

SAD	ANG	DIS	FEA	HAP	NEU
0.51	0.643	0.415	0.342	0.408	0.523

confusion matrix

Best Model

Best Model: model 2

model 2 and 3 have close testing accuracy.

Big Picture

Most confusing classes:

- Happy with Fear
- Sad with Neutral.

In general, Fear has high values and gets misclassified as other classes

Data Preprocessing

Feature space

Each sample is represented by (128x44) array representing its mel spectrogram (an offset 0.5 second is used)
Audio sampling rate is adapted to generate a fixed array size for all samples.

Best Model

PNG of model

loss: 2.2840 - accuracy: 0.5352

Big Picture

f1-scores

SAD	ANG	DIS	FEA	HAP	NEU
0.69	0.40	0.44	0.50	0.55	0.55

Confusing cases:

• Misidentifying angry, disappointed and happy as neutral.