МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени В.Ф.УТКИНА

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Методические указания к лабораторным работам

Компьютерное моделирование: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т. им. В.Ф.Уткина; Сост.: Г.В. Овечкин. Рязань, 2020. 24 с.

Излагаются методические рекомендации по выполнению лабораторных работ по дисциплине «Компьютерное моделирование».

Предназначены для бакалавров всех форм обучения направлений 09.03.04 «Программная инженерия» и 09.03.03 «Прикладная информатика» и всех желающих изучить основы компьютерного моделирования систем.

Библиогр.: 11 назв.

Компьютерное моделирование, генераторы случайных величин, обработка статистических данных, критерии согласия, метод Монте-Карло, планирование эксперимента

Рецензент: кафедра вычислительной и прикладной математики Рязанского государственного радиотехнического университета (зав. кафедрой д-р техн. наук, проф. Г.В. Овечкин)

Компьютерное моделирование

Составитель Овечкин Геннадий Владимирович

Подписано в печать 11.06.2020. Усл. печ. л. 1,5. Тираж 1 экз. Рязанский государственный радиотехнический университет 390005, Рязань, ул. Гагарина, 59/1. Редакционно-издательский центр РГРТУ.

ВВЕДЕНИЕ

Целью освоения дисциплины является приобретение базовых знаний и умений в соответствии с Федеральным государственным образовательным стандартом и формирование у студентов способности к применению компьютерного моделирования для исследования систем, посредством обеспечения этапов формирования компетенций, предусмотренных $\Phi\Gamma OC$.

В рамках данного курса рассматриваются вопросы роли и места компьютерного моделирования в разработке и совершенствовании систем различного назначения, даются основы моделирования случайных величин, явлений, процессов, изучаются технологии построения моделей и проведения имитационного моделирования, рассматриваются основы обработки и анализа результатов моделирования, изучаются вопросы планирования и проведения модельных экспериментов.

Лабораторные работы по дисциплине «Компьютерное моделирование» являются обязательным элементом учебной работы, предусмотренной учебными планами подготовки, реализуемыми в РГРТУ.

Подготовка к лабораторной работе: состоит в теоретической подготовке (изучение конспекта лекций, методических указаний к данной лабораторной работе и дополнительной литературы) и выполнении индивидуального задания. Выполнение каждой из запланированных работ заканчивается предоставлением Требования к содержанию отчета приведены в методических указаниях к лабораторным работам. Допускаясь к лабораторной каждый студент должен представить преподавателю «заготовку» отчета, содержащую: оформленный титульный лист, цель работы, задание, проект решения, полученные результаты, выводы.

Важным этапом является защита лабораторной работы. В процессе защиты студент отвечает на вопросы преподавателя, касающиеся теоретического материала, относящегося к данной работе, и проекта, реализующего его задание, комментирует полученные в ходе работы результаты. При подготовке к защите лабораторной работы рекомендуется ознакомиться со списком вопросов по изучаемой теме и попытаться самостоятельно на них ответить, используя конспект лекций и рекомендуемую литературу.

Лабораторная работа №1. Изучение базовых генераторов псевдослучайных чисел

Составить программу (подпрограмму) И отладить псевдослучайных чисел равновероятным генерирования распределением на интервале [0;1). Вариант задания выбирается из таблицы 1, в которой указаны тип генератора случайных чисел, начальные условия и пр. Для заданных объема выборки и числа участков разбиения интервала [0;1) построить гистограмму частот и статистическую функцию распределения, получить программным способом оценки математического ожидания, дисперсии, второго и третьего моментов. Выполните анализ полученных результатов. Теоретическая часть для данной лабораторной работы представлена в учебнике [1] на стр. 26-38 и 40-47.

Таблица 1. Варианты заданий к лабораторной работе №1

№ вар.	Тип датчика	Начальные данные	Объем выборки	Число участков разбиения
1.	Мультипликативный, формула (2.6)	$Y_0 = 4003, M = 4096$	256	16
2.	Универсальный, формула $(2.12), k = 3$	Y_k — любые	500	16
3.	Аддитивный, формула (2.8)	$Y_1 = 3215, Y_2 = 4073,$ m = 4096*4	5000	10
4.	Универсальный, формула $(2.12), k = 1$	<i>Y</i> – любое	1600	18
5.	Квадратичный конгруэнтный метод, формула (2.18)	<i>Y</i> − любое <i>I</i> = 12	5000	25
6.	Квадратичный метод Ковэю, формула (2.19)	$I = 9, Y_1$ из условия $Y_1 \mod 4 = 2$	5000	12
7.	Квадратичный конгруэнтный метод, формула (2.18)	<i>Y</i> − любое <i>I</i> = 12	7000	16
8.	Метод Макларена-Марсальи	k = 256	1000	21

№ вар.	Тип датчика	Начальные данные	Объем выборки	Число участков разбиения
9.	Смешанный, формула (2.7)	<i>Y</i> – любое	4000	16
10.	Аддитивный, формула (2.8)	$Y_1 = 4091, Y_2 = m - 5$ m = 4096*4	1000	16
11.	Обобщенный аддитивный, формула (2.9)	$r = 6;$ $x_1,, x_6$ из таблицы случайных чисел	6000	16
12.	Обобщенный аддитивный, формула (2.9)	$r=10;$ $x_1,, x_{10}$ из таблицы случайных чисел	6000	16
13.	Аддитивный, формула (2.8)	$Y_1 = 3971, Y_2 = 1013$ m = 4096*4	2000	21
14.	Метод Макларена-Марсальи	k = 64	2000	16
15.	Смешанный, формула (2.7)	<i>Y</i> = 3845	1000	16
16.	Обобщенный аддитивный, формула (2.9)	$r = 8;$ $x_1,, x_8$ из таблицы случайных чисел	6000	26
17.	Метод Макларена-Марсальи	k = 128	5000	26
18.	Смешанный, формула (2.7)	Y=4001	1500	16
19.	Универсальный, формула $(2.12), k = 2$	Y_k — любое	4000	21
20.	Мультипликативный, формула (2.6)	$Y_0 = 3091, M = 4096$	2000	21

- 1. Каким образом задается равномерно распределенная случайная величина?
- 2. Какие основные способы генерации случайных чисел Вы знаете?
- 3. В чем заключается конгруэнтный метод генерации равномерно распределенных случайных чисел?

- 4. Какие разновидности конгруэнтного метода генерации вы знаете?
- 5. Что такое период псевдослучайной последовательности? Опишите способы увеличения длины периода.
- 6. Сформулируйте основные принципы выбора составляющих датчиков случайных чисел для формирования сложного датчика.
- 7. Что такое гистограмма частот? Оценкой для какой функции она является? Способы ее построения.
- 8. Что такое статистическая функция распределения? Оценкой для какой функции она является? Способы ее построения.
- 9. Основные числовые характеристики случайных величин. Каким образом можно оценить их значение по известной выборке?

Лабораторная работа №2. Проверка качества генераторов псевдослучайных чисел

Используя результаты, полученные при выполнении лабораторной работы 1, проверить качество последовательности псевдослучайных чисел с помощью критерия Пирсона, Колмогорова, а также критерия, указанного в табл.2. Теоретическая часть для данной лабораторной работы представлена в учебнике [1] на стр. 48–63.

Таблица 2. Варианты заданий к лабораторной работе №2

№ вар.	Критерий
1.	Проверка качества по косвенным признакам
2.	Критерий числа серий, разделительный элемент $p = 0.25$
3.	Тест длины серий нулей, разделительный элемент $p = 0.3$
4.	Тест длины серий единиц, разделительный элемент $p = 0,4$
5.	Покер-тест, $k=2$
6.	Критерий коллекционера
7.	Покер-тест, $k = 8$
8.	Критерий числа серий, разделительный элемент $p = 0.5$
9.	Тест длины серий нулей, разделительный элемент $p = 0,5$
10.	Тест длины серий единиц, разделительный элемент $p = 0.25$
11.	Критерий коллекционера
12.	Тест длины серий нулей, разделительный элемент $p = 0,4$
13.	Тест числа серий, разделительный элемент $p = 0.45$
14.	Тест длины серий нулей, разделительный элемент $p = 0.45$

№ вар.	Критерий
15.	Тест длины серий единиц, разделительный элемент $p = 0,45$
16.	Тест числа серий, разделительный элемент $p = 0.6$
17.	Покер-тест, $k = 10$
18.	Проверка качества по косвенным признакам
19.	Тест длины серий нулей, разделительный элемент $p = 0.65$
20.	Тест длины серий единиц, разделительный элемент $p = 0,65$

- 1. Что позволяет проверять тест распределения на плоскости? В чем он заключается?
- 2. Для чего нужны критерии проверки датчиков псевдослучайных чисел?
 - 3. В чем сущность критерия χ 2 Пирсона?
- 4. При выполнении каких условий возможно применение критерия γ2 Пирсона?
- 5. Каким образом определяется число степеней свободы для критерия γ2?
 - 6. В чем заключается критерии Колмогорова?
- 7. С помощью какого критерия можно проверить независимость псевдослучайных величин, формируемых датчиком случайных чисел? В чем заключается данный критерий?
- 8. С помощью каких критериев можно проверить случайность цифр в генерируемой последовательности?

Лабораторная работа №3. Генерирование случайных величин с заданным законом распределения

Составить подпрограмму генерирования случайных величин в соответствии с вариантом задания, определяемым таблицей 3. По полученной с помощью подпрограммы выборке построить и проанализировать гистограмму частот и статистическую функцию распределения, оценить матожидание и дисперсию случайной величины. Соответствие эмпирических данных теоретическому распределению проверить с помощью критерия Пирсона или критерия Колмогорова. Объем выборки случайных величин не менее 1000. Количество интервалов разбиения k=15 или k=25. Теоретическая часть для данной лабораторной работы представлена в учебнике [1] на стр. 65-76.

Таблица 3. Варианты заданий к лабораторной работе №3

№ вар.	Закон распределения	Способ построения
1.	$F(x) = \begin{cases} 0.4(x-1)^3 + 0.4, & x \in [0;0.5); \\ 0.3x + 0.2, & x \in [0.5;1.5); \\ 0.4(x-1)^3 + 0.6, & x \in [1.5;2). \end{cases}$	Метод отбора
2.	$F(x) = \begin{cases} \sqrt{0.25 - (x - 0.5)^2}, & x \in [0; 0.5); \\ 0.3125x + 0.34375, & x \in [0.5; 1.3); \\ 1.25x - 0.875, & x \in [1.3; 1.5). \end{cases}$	Метод обратных функций
3.	$F(x) = \begin{cases} 0.25x^2, & x \in (0;1); \\ 1.14x - 0.89, & x \in [1;1.5); \\ 1 - 0.08(x - 3)^2, & x \in [1.5;3). \end{cases}$	Метод отбора
4.	$F(x) = \begin{cases} x, & x \in [0; 0.5); \\ 0.5, & x \in [0.5; 1); \\ 2(x-1)^2 + 0.5, & x \in [1; 1.5). \end{cases}$	Метод обратных функций
5.	$F(x) = \begin{cases} 0.3x, & x \in [0;0.5); \\ 3x - 1.35, & x \in [0.5;0.7); \\ 0.25x + 0.575, & x \in [0.7;1.7) \end{cases}$	Метод отбора
6.	$F(x) = \begin{cases} 0.2 \cdot 10^x - 0.2, & x \in [0; 0.3); \\ 1.5x - 0.25, & x \in [0.3; 0.7); \\ 0.25x + 0.625, & x \in [0.7; 1.5). \end{cases}$	Метод обратных функций
7.	$F(x) = \begin{cases} x^2, & x \in [0; 0.5); \\ 1.1x - 0.3, & x \in [0.5; 1); \\ 0.4x + 0.4, & x \in [1; 1.5). \end{cases}$	Метод обратных функций

8. Треугольное: Метод отбора 8. Треугольное: Метод отбора $f(x) = \begin{cases} 0, x \le a; \\ \frac{2(x-a)}{(b-a)(b-a)}, a < x \le c; \\ \frac{2(b-x)}{(b,a)(b-c)}, c < x \le b; \\ 0, x > b. \end{cases}$ $a=1; b=5; c=2.$ 9. $F(x) = \begin{cases} 0.15x, & x \in [0;1]; \\ 0.35x-0.2, & x \in [1;2]; \\ 0.875x-1.25, & x \in [2;2.4]; \\ 0.15x+0.49 & x \in [2.4;3.4]. \end{cases}$ 10. $F(x) = \begin{cases} 0.8x^2, & x \in [0;0.5]; \\ 0.7x-0.15, & x \in [0.5;1]; \\ 1-e^{-0.8x}, & x \in [1;\infty). \end{cases}$ 11. Треугольное (см. задание 7) метод отбора $a=0; b=10; c=5.$ 12. $F(x) = \begin{cases} 0.05x^3, & x \in [0;2]; \\ 1-2e^{-0.602x}, & x \in [2;\infty). \end{cases}$ 13. $F(x) = \begin{cases} \sqrt{x}, & x \in [0;0.25]; \\ 0.25x+0.4375, & x \in [0.25;2.25]. \end{cases}$ 14. $F(x) = \begin{cases} \frac{2(e-1)}{e}x, & x \in [0;0.5]; \\ 1-e^{-2x}, & x \in [0.5;\infty). \end{cases}$ 15. $F(x) = \begin{cases} 0.05x^3, & x \in [0;2]; \\ 1-2e^{-0.602x}, & x \in [0;2]; \\ 1-2e^{-0.602x}, & x \in [0;2]; \end{cases}$ 16. Meтод отбора метод отбора	№	Закон распределения	Способ
$f(x) = \begin{cases} 0, x \le a; \\ \frac{2(x-a)}{(b-a)(c-a)}, a < x \le c; \\ \frac{2(b-x)}{(b-a)(b-c)}, c < x \le b; \\ 0, x > b. \end{cases}$ $a=1; b=5; c=2.$ 9. $f(x) = \begin{cases} 0.15x, & x \in [0;1); \\ 0.35x-0.2, & x \in [1;2); \\ 0.875x-1.25, & x \in [2;2.4); \\ 0.15x+0.49 & x \in [2.4;3.4). \end{cases}$ 10. $f(x) = \begin{cases} 0.8x^2, & x \in [0;0.5); \\ 0.7x-0.15, & x \in [0.5;1); \\ 1-e^{-0.8x}, & x \in [1;\infty). \end{cases}$ 11. Треугольное (см. задание 7) метод обратных функций	вар. 8	Треугольное:	построения Метол отбора
9. $F(x) = \begin{cases} 0.15x, & x \in [0;1); \\ 0.35x - 0.2, & x \in [1;2); \\ 0.875x - 1.25, & x \in [2;2.4); \\ 0.15x + 0.49 & x \in [2.4;3.4). \end{cases}$ Метод обратных $F(x) = \begin{cases} 0.8x^2, & x \in [0;0.5); \\ 0.7x - 0.15, & x \in [0.5;1); \\ 1 - e^{-0.8x}, & x \in [1;\infty). \end{cases}$ Метод обратных $a=0; b=10; c=5.$ 11. Треугольное (см. задание 7) метод отбора $a=0; b=10; c=5.$ 12. $F(x) = \begin{cases} 0.05x^3, & x \in [0;2); \\ 1-2e^{-0.602x}, & x \in [2;\infty). \end{cases}$ Метод обратных by функций $f(x) = \begin{cases} \sqrt{x}, & x \in [0;0.25); \\ 0.25x + 0.4375, & x \in [0.25;2.25). \end{cases}$ Метод отбора $f(x) = \begin{cases} \frac{2(e-1)}{e}x, & x \in [0;0.5); \\ 1-e^{-2x}, & x \in [0;0.5]; \end{cases}$ Метод обратных by функций $f(x) = \begin{cases} \frac{2(e-1)}{e}x, & x \in [0;0.5;\infty). \end{cases}$		$0, x \leq a;$	
10. $F(x) = \begin{cases} 0.8x^2, & x \in [0;0.5); \\ 0.7x - 0.15, & x \in [0.5;1); \\ 1 - e^{-0.8x}, & x \in [1;\infty). \end{cases}$ Метод обратных функций $a=0; b=10; c=5.$ 12. $F(x) = \begin{cases} 0.05x^3, & x \in [0;2); \\ 1-2e^{-0.602x}, & x \in [2;\infty). \end{cases}$ Метод обратных функций $F(x) = \begin{cases} 0.05x^3, & x \in [0;2); \\ 1-2e^{-0.602x}, & x \in [0;0.25); \\ 0.25x + 0.4375, & x \in [0.25;2.25). \end{cases}$ Метод обратных функций $F(x) = \begin{cases} \frac{2(e-1)}{e}x, & x \in [0;0.5); \\ 1-e^{-2x}, & x \in [0,5:\infty). \end{cases}$ Метод обратных функций	9.		Метод отбора
$F(x) = \begin{cases} 0.0x, & x \in [0,0.5), \\ 0.7x - 0.15, & x \in [0.5;1); \\ 1 - e^{-0.8x}, & x \in [1;\infty). \end{cases}$ функций		$F(x) = \begin{cases} 0.35x - 0.2, & x \in [1;2); \\ 0.875x - 1.25, & x \in [2;2.4); \\ 0.15x + 0.49, & x \in [2.4;3.4). \end{cases}$	
11. Треугольное (см. задание 7) Метод отбора 12. $F(x) = \begin{cases} 0.05x^3, & x \in [0;2); \\ 1-2e^{-0.602x}, & x \in [2;\infty). \end{cases}$ Метод обратных функций 13. $F(x) = \begin{cases} \sqrt{x}, & x \in [0;0.25); \\ 0.25x + 0.4375, & x \in [0.25;2.25). \end{cases}$ Метод отбора 14. $F(x) = \begin{cases} \frac{2(e-1)}{e}x, & x \in [0;0.5); \\ 1-e^{-2x}, & x \in [0.5:\infty). \end{cases}$ Метод обратных функций	10.	$0.8x^2, x \in [0;0.5);$	Метод обратных
$a=0; b=10; c=5.$ 12. $F(x) = \begin{cases} 0.05x^3, & x \in [0;2); \\ 1-2e^{-0.602x}, & x \in [2;\infty). \end{cases}$ Метод обратных функций 13. $F(x) = \begin{cases} \sqrt{x}, & x \in [0;0.25); \\ 0.25x+0.4375, & x \in [0.25;2.25). \end{cases}$ Метод обратных $F(x) = \begin{cases} \frac{2(e-1)}{e}x, & x \in [0;0.5); \\ 1-e^{-2x}, & x \in [0.5;\infty). \end{cases}$ Метод обратных функций		$F(x) = \begin{cases} 0.7x - 0.15, & x \in [0.5;1); \\ 1 - e^{-0.8x}, & x \in [1;\infty). \end{cases}$	функций
12. $F(x) = \begin{cases} 0.05x^3, & x \in [0;2); \\ 1-2e^{-0.602x}, & x \in [2;\infty). \end{cases}$ Метод обратных функций $F(x) = \begin{cases} \sqrt{x}, & x \in [0;0.25); \\ 0.25x + 0.4375, & x \in [0.25;2.25). \end{cases}$ Метод обратных $F(x) = \begin{cases} \frac{2(e-1)}{e}x, & x \in [0;0.5); \\ 1-e^{-2x}, & x \in [0.5:\infty). \end{cases}$ Метод обратных функций	11.	Треугольное (см. задание 7)	Метод отбора
$F(x) = \begin{cases} 0.05x, & x \in [0, 2), \\ 1 - 2e^{-0.602x}, & x \in [2, \infty). \end{cases}$ функций $F(x) = \begin{cases} \sqrt{x}, & x \in [0; 0.25); \\ 0.25x + 0.4375, & x \in [0.25; 2.25). \end{cases}$ Метод обратных $F(x) = \begin{cases} \frac{2(e-1)}{e}x, & x \in [0; 0.5); \\ 1 - e^{-2x}, & x \in [0.5; \infty). \end{cases}$ функций		<i>a</i> =0; <i>b</i> =10; <i>c</i> =5.	
13. $F(x) = \begin{cases} \sqrt{x}, & x \in [0;0.25); \\ 0.25x + 0.4375, & x \in [0.25;2.25). \end{cases}$ Метод отбора 14. $F(x) = \begin{cases} \frac{2(e-1)}{e}x, & x \in [0;0.5); \\ 1-e^{-2x}, & x \in [0,5;\infty). \end{cases}$ функций	12.	$ (0.05x^3, x \in [0,2); $	Метод обратных
14. $F(x) = \begin{cases} \frac{2(e-1)}{e}x, & x \in [0;0.5); \\ 1-e^{-2x}, & x \in [0.5:\infty). \end{cases}$ Метод обратных функций		$f'(x) = \left\{ 1 - 2e^{-0.602x}, x \in [2, \infty). \right\}$	
$F(x) = \begin{cases} \frac{2(e^{-x})}{e}x, & x \in [0;0.5); \\ 1 - e^{-2x}, & x \in [0.5;\infty). \end{cases}$ функций		$F(x) = \begin{cases} \sqrt{x}, & x \in [0; 0.25); \\ 0.25x + 0.4375, & x \in [0.25; 2.25). \end{cases}$	
$F(x) = \begin{cases} x, & x \in [0, 0.5), \\ 1 - e^{-2x}, & x \in [0.5; \infty). \end{cases}$ функций $F(x) = \begin{cases} 0.05x^3, & x \in [0; 2); \\ 1 - 2e^{-0.602x}, & x \in [2; \infty). \end{cases}$ Метод отбора	14.	$\left(2\left(e-1\right)\right)$ $r \in \left[0:0.5\right)$	Метод обратных
15. $F(x) = \begin{cases} 0.05x^3, & x \in [0;2); \\ 1-2e^{-0.602x}, & x \in [2;\infty). \end{cases}$ Метод отбора		$F(x) = \begin{cases} e & x, & x \in [0, 0.5], \\ 1 - e^{-2x}, & x \in [0.5; \infty). \end{cases}$	функций
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	15.	$F(x) = \begin{cases} 0.05x^3, & x \in [0;2); \\ 1 - 2e^{-0.602x}, & x \in [2;\infty). \end{cases}$	Метод отбора

№	Закон распределения	Способ
вар.		построения
16.	$F(x) = \begin{cases} \sqrt{x}, & x \in [0; 0.25); \\ 0.25x + 0.4375, & x \in [0.25; 2.25). \end{cases}$	Метод обратных
	$\begin{cases} 0.25x + 0.4375, & x \in [0.25; 2.25). \end{cases}$	функций
17.	Треугольное (см. задание 7)	Метод отбора
	<i>a</i> =4; <i>b</i> =5; <i>c</i> =4.7.	
18.	$\left[1 - e^{-2x}, x \in [0; 1);\right]$	Метод обратных
	$F(x) = \begin{cases} 1 - e^{-2x}, & x \in [0;1); \\ \frac{x - 3 + 2e^2}{2e^2}, & x \in [1;3). \end{cases}$	функций
19.		Метод отбора
17.	$f(x) = \sqrt{R^2 - (x - a)^2}$;	тчетод отоора
	$R = \sqrt{\pi/2}; a = -2.$	
20.	$\left[0.4(x-1)^3+0.4, x \in [0;0.5);\right]$	Метод обратных
	$F(x) = \begin{cases} 0.4(x-1)^3 + 0.4, & x \in [0;0.5); \\ 0.3x + 0.2, & x \in [0.5;1.5); \\ 0.4(x-1)^3 + 0.6, & x \in [1.5;2). \end{cases}$	функций
	$0.4(x-1)^3 + 0.6$, $x \in [1.5;2)$.	
21.	$f(x) = \frac{\pi}{2}\sin(\pi x)$; $0 < x \le 1$.	Метод отбора
22.	Треугольное (см. задание 5)	Метод обратных
	<i>a</i> =–3; <i>b</i> =10; <i>c</i> =0.	функций

- 1. В чем заключается метод обратных функций?
- 2. В каких случаях возможно применение метода обратных функций?
- 3. В чем заключается метод кусочно-линейной аппроксимации? В каких случаях он применяется?
- 4. Какой метод формирования случайных чисел необходимо использовать в том случае, если неизвестно выражение для функции распределения? В чем он заключается?
- 5. В чем заключается метод отбора? В каких случаях он применяется?
 - 6. Геометрическая интерпретация метода отбора.

Лабораторная работа №4. Генерирование случайных величин с нормальным законом распределения

Составить подпрограмму генерирования случайных величин с законом распределения методом, основанным центральной предельной теореме, а также методом, определенным в соответствии с вариантом задания (табл. 4). Параметры закона распределения указаны в виде $N(\mu, \sigma^2)$. По полученной с помощью подпрограммы выборке построить и проанализировать гистограмму распределения, статистическую функцию матожилание и дисперсию случайной величины. Соответствие эмпирических данных теоретическому распределению проверить с помощью критерия Пирсона или критерия Колмогорова. Объем выборки случайных величин не менее 1000. Количество интервалов разбиения k = 15 или k = 25. Теоретическая часть для данной лабораторной работы представлена в учебнике [1] на стр. 76–83.

Таблица 4. Варианты заданий к лабораторной работе №4

№	Закон распределения	Способ построения
вар.		
1	Нормальный, N(3, 1)	Метод аппроксимации
2	Нормальный, N(0, 1)	Метод Бокса и Малера
3	Нормальный, N(3, 1)	Процедура Марсальи и Брея
4	Нормальный, N(-2, 0.81)	Метод аппроксимации
5	Нормальный, N(4.3, 0.5)	Метод Бокса и Малера
6	Нормальный, N(2, 0.9)	Процедура Марсальи и Брея
7	Нормальный, N(3.5, 0.9)	Метод аппроксимации
8	Нормальный, N(2, 0.2)	Метод Бокса и Малера
9	Нормальный, N(-1.5, 1.7)	Процедура Марсальи и Брея
10	Нормальный, N(0, 0.1)	Метод аппроксимации
11	Нормальный, N(2, 1)	Метод Бокса и Малера
12	Нормальный, N(-2, 1)	Процедура Марсальи и Брея
13	Нормальный, N(2, 1)	Метод аппроксимации
14	Нормальный, N(1, 0.7)	Метод Бокса и Малера

№ вар.	Закон распределения	Способ построения
15	Нормальный, N(5, 1)	Процедура Марсальи и Брея
16	Нормальный, N(4.7, 0.6)	Метод аппроксимации
17	Нормальный, N(1.5, 0.1)	Метод Бокса и Малера
18	Нормальный, N(-4,0.1)	Процедура Марсальи и Брея
19	Нормальный, N(3, 0.1)	Метод аппроксимации
20	Нормальный, N(2.75, 2.8)	Метод Бокса и Малера

- 1. Как выглядит функция плотности нормального закона распределения?
- 2. Какие существуют способы формирования последовательности случайных величин, отвечающих нормальному закону распределения?
- 3. В чем заключается метод аппроксимации для моделирования нормально распределенных случайных величин?
- 4. Каким образом используется центральная предельная теорема для формирования последовательности случайных величин, отвечающих нормальному закону распределения?
 - 5. В чем сущность метода Бокса и Малера?
 - 6. В чем сущность метода Марсальи и Брея?

Лабораторная работа №5. Генерирование случайных величин с часто используемыми законами распределения

Составить подпрограммы генерирования случайных величин, подчиненных распределению, указанному в варианте задания (таб. 5). По полученной с помощью подпрограммы выборке построить и проанализировать гистограмму частот и статистическую функцию распределения, оценить матожидание и дисперсию случайной величины. Соответствие эмпирических данных теоретическому распределению проверить с помощью критерия Пирсона или критерия Колмогорова. Объем выборки случайных величин не менее 1000. Количество интервалов разбиения k=15 или k=25. Теоретическая часть для данной лабораторной работы представлена в учебнике [1] на стр. 84–93.

Таблица 5. Варианты заданий к лабораторной работе №5

№	Закон распределения 1	Закон распределения 2
вар.	закон распределения т	Sakon paenpegestenna 2
1	Бета-распределение	Гамма-распределение
2	Гамма-распределение	Логарифмически-нормальное
2		распределение
3	Логарифмически-нормальное	Распределение Вейбулла
	распределение	
4	Распределение Вейбулла	Экспоненциальное
		распределение
5	Экспоненциальное	Бета-распределение
	распределение	
6	Бета-распределение	Логарифмически-нормальное
		распределение
7	Гамма-распределение	Распределение Вейбулла
8	Логарифмически-нормальное	Экспоненциальное
8	распределение	распределение
9	Распределение Вейбулла	Бета-распределение
10	Экспоненциальное	Гамма-распределение
10	распределение	
11	Бета-распределение	Распределение Вейбулла
12	Гамма-распределение	Экспоненциальное
		распределение
13	Логарифмически-нормальное	Бета-распределение
	распределение	
14	Распределение Вейбулла	Гамма-распределение
15	Экспоненциальное	Логарифмически-нормальное
13	распределение	распределение

№ вар.	Закон распределения 1	Закон распределения 2
	7	D 116
16	Бета-распределение	Распределение Вейбулла
17	Гамма-распределение	Экспоненциальное
17		распределение
1.0	Логарифмически-нормальное	Бета-распределение
18	распределение	
19	Распределение Вейбулла	Гамма-распределение
20	Экспоненциальное	Логарифмически-нормальное
20	распределение	распределение

- 1. Как выглядит функция плотности бета-распределения?
- 2. Как выглядит функция плотности гамма-распределения?
- 3. Как выглядит функция плотности логарифмически-нормального распределения?
 - 4. Как выглядит функция плотности распределения Вейбулла?
- 5. Каким образом осуществляется моделирование случайных величин, имеющих бета-распределение?
- 6. Каким образом осуществляется моделирование случайных величин, имеющих гамма-распределение?
- 7. Каким образом осуществляется моделирование случайной величины, имеющей логарифмически-нормальное распределение?
- 8. Какой метод используется для моделирования распределения Вейбулла?

Лабораторная работа №6. Моделирование методом Монте-Карло

Составить программу решения задачи, определенной соответствии вариантом задания, c помощью машинного моделирования (метод Монте-Карло). Построить доверительный интервал для полученных оценок, накрывающий точное значение оцениваемых вероятностей с надежностью β=0,95. Правильность результатов проверить аналитическим решением Теоретическая часть для данной лабораторной работы представлена в учебнике [1] на стр. 94-108 и 110-117.

Варианты заданий

- 1. Истребитель, вооруженный двумя ракетами, посылается на перехват воздушной цели. Вероятность вывода истребителя в такое положение, из которого возможна атака цели, равна p_1 . Если истребитель выведен в такое положение, он выпускает по цели обе ракеты, каждая из которых независимо от другой выводится в окрестность цели с вероятностью p_2 . Если ракета выведена в окрестность цели, она поражает ее с вероятностью p_3 . Оценить вероятность того, что цель будет поражена.
- 2. Производится стрельба двумя снарядами по k бакам с горючим (k>2), расположенным рядом друг с другом в одну линию. Каждый снаряд независимо от других попадает в первый бак с вероятностью p_1 во второй с вероятностью p_2 и т. д. Для воспламенения баков требуется два попадания в один и тот же бак или два попадания в соседние баки. Оценить вероятность воспламенения баков.
- 3. Производится стрельба по цели тремя снарядами. Снаряды попадают в цель независимо друг от друга. Для каждого снаряда вероятность попадания в цель равна p_0 . Если в цель попал один снаряд, он поражает цель (выводит ее из строя) с вероятностью p_1 ; если два снаряда с вероятностью p_2 ; если три снаряда с вероятностью p_3 . Оценить полную вероятность поражения цели.
- 4. Происходит воздушный бой между двумя самолетами: истребителем и бомбардировщиком. Стрельбу начинает истребитель: он дает по бомбардировщику один выстрел и сбивает его с вероятностью p_1 . Если бомбардировщик этим выстрелом не сбит, он стреляет по истребителю и сбивает его с вероятностью p_2 . Если истребитель этим выстрелом не сбит, он еще раз стреляет по бомбардировщику и сбивает его с вероятностью p_3 . Оценить вероятности следующих исходов боя:
 - А сбит бомбардировщик;
 - В сбит истребитель;
 - С сбит хотя бы один из самолетов.
- $5.\ N$ стрелков независимо один от другого ведут стрельбу каждый по своей мишени. Каждый из них имеет боезапас k патронов. Вероятность попадания в мишень при одном выстреле для i-го стрелка равна $p_i,\ (i=1,\ 2,\ ...,\ N)$. При первом же попадании в свою мишень стрелок прекращает стрельбу. Оценить вероятности следующих событий:
- A-y всех стрелков вместе останется неизрасходованным хотя бы один патрон;

- В ни у кого из стрелков не будет израсходован весь боезапас;
- С какой-либо один из стрелков израсходует весь боезапас, а все остальные – не весь.
- $6.\ N$ стрелков стреляют поочередно по одной мишени. Стрельба ведется до первого попадания. Вероятность попасть в мишень для каждого стрелка равна $p_i,\ (i=1,\ 2,\ ...,\ N)$. Выигравшим считается тот стрелок, который первым попадет в мишень. У каждого стрелка в запасе имеется n патронов. Оценить вероятность того, что выиграет i-й стрелок.
- 7. Происходит воздушный бой между бомбардировщиком и двумя атакующими его истребителями. Стрельбу начинает бомбардировщик; он дает по каждому истребителю одни выстрел и сбивает его с вероятностью p_1 . Если данный истребитель не сбит, то он независимо от судьбы другого стреляет по бомбардировщику и сбивает его с вероятностью p_2 .

Оценить вероятности следующих исходов боя:

- А сбит бомбардировщик;
- В сбиты оба истребителя;
- С сбит хотя бы один истребитель;
- D сбит хотя бы один самолет;
- Е сбит ровно один истребитель;
- F сбит ровно один самолет.
- 8. Человек, принадлежащий к определенной группе населения, с вероятностью p_1 оказывается брюнетом, с вероятностью p_2 шатеном, с вероятностью p_3 блондином и с вероятностью p_4 рыжим. Выбирается наугад группа из шести человек. Оценить вероятности следующих событий:
 - А в составе группы не меньше четырех блондинов;
 - B в составе группы хотя бы один рыжий;
 - С в составе группы равное число блондинов и шатенов.
- 9. Прибор состоит из трех узлов. При включении прибора с вероятностью p_1 появляется неисправность в первом узле, с вероятностью p_2 во втором узле, с вероятностью p_3 —в третьем узле. Неисправности в узлах возникают независимо друг от друга. Каждый из трех узлов безусловно необходим для работы прибора. Для того чтобы узел отказал, необходимо, чтобы в нем было не менее двух неисправностей. Оценить вероятность того, что прибор благополучно выдержит n включений.
- 10. Группа самолетов в составе: один ведущий и два ведомых, направляется на бомбометание по объекту. Каждый из них несет по одной бомбе. Ведущий самолет имеет прицел, ведомые не имеют и производят бомбометание по сигналу ведущего. По пути к объекту

группа проходит зону противовоздушной обороны, в которой каждый из самолетов, независимо от других, сбивается с вероятностью p. Если к цели подойдет ведущий самолет с обоими ведомыми, они поразят объект с вероятностью $P_{1,2}$. Ведущий самолет, сопровождаемый одним ведомым, поразит объект с вероятностью $P_{1,1}$. Один ведущий самолет, без ведомых, поразит объект с вероятностью $P_{1,0}$. Если ведущий самолет сбит, то каждый из ведомых, если он сохранился, выходит к объекту и поражает его с вероятностью $P_{0,1}$. Оценить полную вероятность поражения объекта с учетом противодействия.

11. Завод изготовляет изделия, каждое из которых с вероятностью p имеет дефект. В цехе имеются три контролера; изделие осматривается только одним контролером, с одинаковой вероятностью первым, вторым или третьим. Вероятность обнаружения дефекта (если он имеется) для i-го контролера равна p_i (i=1, 2, 3). Если изделие не было забраковано в цехе, то оно попадет в ОТК завода, где дефект, если он имеется, обнаруживается с вероятностью p_0 .

Оценить вероятности следующих событий:

- А изделие будет забраковано;
- В изделие будет забраковано в цехе;
- С изделие будет забраковано в ОТК завода.
- 12. Радиолокационная станция ведет наблюдение за объектом, который может применять или не применять помехи. Если объект не применяет помех, то за один цикл обзора станция обнаруживает его с вероятностью p_0 ; если применяет с вероятностью $p_1 < p_0$. Вероятность того, что во время цикла будут применены помехи, равна p и не зависит от того, как и когда применялись помехи в остальных циклах. Оценить вероятность того, что объект будет обнаружен хотя бы один раз за n циклов обзора.
- 13. Группа, состоящая из трех самолетов-разведчиков, высылает в район противника с целью уточнить координаты объекта, который предполагается подвергнуть обстрелу ракетами. Для поражения объекта выделено п ракет. При уточненных координатах объекта поражения вероятность его одной ракетой равна неуточненных $-p_2$. Каждый разведчик перед выходом в район объекта может быть сбит противовоздушными средствами противника; вероятность этого p_3 . Если разведчик не сбит, он сообщает координаты объекта по радио. Радиоаппаратура разведчика имеет надежность p_4 . Для уточнения координат достаточно приема сообщения от одного разведчика. Оценить вероятность поражения объекта с учетом деятельности разведки.
- 14. Из N стрелков можно выделить четыре группы: a_1 отличных стрелков, a_2 хороших, a_3 посредственных и a_4 плохих. Вероятность

- попадания в мишень при одном выстреле для стрелка i-и группы равна p_i (i=1, 2, 3, 4). Вызываются наугад два стрелка и стреляют по одной и той же мишени. Оценить вероятность хотя бы одного попадания в мишень.
- 15. Мишень состоит из яблока и двух колец. При одном выстреле вероятность попадания в яблоко равна p_0 , в первое кольцо p_1 , во второе p_2 ; вероятность непопадания в мишень p_3 . По мишени произведено пять выстрелов. Оценить вероятность того, что они дадут два попадания в яблоко и одно во второе кольцо.
- 16. Прибор состоит из 10 узлов. Надежность (вероятность безотказной работы в течение времени t) для каждого узла равна p. Узлы выходят из строя независимо один от другого. Оценить вероятность того, что за время t:
 - А откажет хотя бы один узел;
 - В откажет ровно один узел;
 - С откажут ровно два узла;
 - D откажет не менее двух узлов.
- 17. Производится четыре независимых выстрела по цели. Вероятности попадания при разных выстрелах различны и равны: p_1 , p_2 , p_3 , p_4 . Оценить вероятности $P_{0,4}$; $P_{1,4}$; $P_{2,4}$; $P_{3,4}$; $P_{4,4}$ ни одного, одного, двух, трех, четырех попаданий; вероятность $R_{1,4}$ хотя бы одного попадания; вероятность $R_{2,4}$ не менее двух попаданий.
- 18. Завод изготовляет изделия, каждое из которых должно подвергаться четырем видам испытаний. Первое испытание изделие проходит благополучно с вероятностью p_1 ; второе с вероятностью p_2 ; третье с вероятностью p_3 и четвертое с вероятностью p_4 . Оценить вероятность того, что изделие пройдет благополучно:
 - А все четыре испытания;
 - В ровно два испытания (из четырех);
 - С не менее двух испытаний (из четырех).
- 19. Завод изготовляет изделия, каждое из которых с вероятностью r (независимо от других) оказывается дефектным. При осмотре дефект, если он имеется, обнаруживается с вероятностью p. Для контроля из продукции завода выбирается n изделий. Оценить вероятность следующих событий:
 - А ни в одном из изделий не будет обнаружено дефекта;
 - B среди n изделий ровно в двух будет обнаружен дефект;
- C- среди n изделий не менее чем в двух будет обнаружен дефект.
- 20. Самолет обстреливается n независимыми выстрелами; каждый из выстрелов с вероятностью p_1 попадает в зону, где он поражает самолет немедленно; с вероятностью p_2 попадает в

топливный бак и с вероятностью p_3 не попадает в самолет вообще. Снаряд, попавший в топливный бак, оставляет в нем пробоину, через которую вытекает k литров горючего в час. Потеряв M литров горючего, самолет становится небоеспособным. Оценить вероятность того, что через час после обстрела самолет не будет боеспособен.

Контрольные вопросы

- 1. В чем отличие между дискретно и непрерывно распределенными случайными величинами?
- 2. Каким образом осуществляется моделирование дискретной случайной величины, заданной рядом распределения?
- 3. Каким образом задается распределение Бернулли? Приведите примеры случайных величин, для описания которых можно использовать распределение Бернулли? Как их моделировать?
- 4. Каким образом задается биномиальное распределение? Приведите примеры случайных величин, для описания которых можно использовать биномиальное распределение? Как их моделировать?
- 5. Каким образом задается геометрическое распределение? Приведите примеры случайных величин, для описания которых можно использовать геометрическое распределение? Как их моделировать?
- 6. Каким образом задается распределение Пуассона? Приведите примеры случайных величин, для описания которых можно использовать распределение Пуассона? Как их моделировать?
- 7. Каким образом осуществляется моделирование полной группы несовместных событий?
- 8. Какие события называются зависимыми? Как их моделировать?
 - 9. В чем сущность метода Монте-Карло?
- 10. От чего зависит точность результатов, полученных с помощью метода Монте-Карло?
- 11. Общая схема алгоритма моделирования по методу Монте-Карло.

Лабораторная работа №7. Моделирование случайных блужданий

Каждое задание предполагает разработку программной имитационной модели случайного блуждания, с помощью которой могут быть получены необходимые результаты. В результате проведения определенного количества экспериментов требуется построить статистическое распределение исследуемого параметра

(гистограмму и эмпирическую функцию распределения) и определить целесообразность аппроксимации полученного распределения одним из известных законов (нормальным, экспоненциальным, логарифмически-нормальным и др.). Теоретическая часть для данной лабораторной работы представлена в учебнике [1] на стр. 117–124.

Варианты заданий

- 1. Одномерное случайное блуждание. Составьте модель определения расстояния, на которое удалится пешеход за M=20 шагов.
- 2. Двумерное случайное блуждание. Составьте модель определения расстояния, на которое удалится пешеход за M=10 шагов.
- 3. Простое случайное блуждание с поглощающими экранами. Составьте машинную модель для определения времени блуждания.
- 4. Пчелы на квадратной решетке. «Рой» из N «пчел» изначально расположен в единичном круге с центром в начале координат. На каждом шаге по времени каждая пчела движется случайным образом равновероятно в одном из четырех направлений: на север, юг, восток и запад. Определите расстояние, на которое удаляется отдельная пчела за M=8 шагов. В течение каждого временного интервала каждая пчела делает шаг единичной длины. Усреднение выполняется по N пчелам.
- 5. Блуждания на треугольной решетке. Составьте имитационную модель случайного блуждания пчелы на треугольной решетке. На каждом шаге по времени пчела движется равновероятно в одном из шести возможных направлений. На какое расстояние удаляется пчела за M=8 шагов.
- 6. Модель падения дождевой капли. При воздействии случайных порывов легкого ветра падение дождевой капли можно моделировать случайным блужданием на квадратной решетке. Движение начинается с узла, расположенного на расстоянии h над горизонтальной линией (поверхностью земли). Вероятность p_{\downarrow} шага «вниз» больше вероятности p_{\uparrow} шага «вверх». Вероятности скачков целесообразно выбирать равными p_{\downarrow} =0,5; p_{\uparrow} =0,1; p_{\leftarrow} = p_{\rightarrow} =0,2. Определите время τ , за которое капля достигает горизонтальной прямой, и функциональную зависимость τ от h (4..6 значений).
- 7. Ограниченные случайные блуждания. Задача простого случайного блуждания с поглощающими экранами может быть рассмотрена в форме следующей модификации. Пусть одномерная решетка имеет поглощающие узлы (ловушки) в точках x=0 и x=a (a>0). Частица начинает движение из точки x_0 ($0< x_0 < a$) и с равной вероятностью переходит в ближайшие соседние узлы. Определите время τ прохода частицы до ее поглощения.

- 8. Блуждания на сотах. Составьте имитационную модель случайного блуждания на сотах. На каждом шаге по времени пчела движется равновероятно в одном из трех направлений. На какое расстояние удаляется пчела за M=8 шагов.
- 9. Случайные блуждания на трехмерной решетке. Оцените расстояние, на которое удаляется частица, равновероятно блуждающая по трехмерной решетке. Число шагов блуждания M=10. Параллельно исследуемому процессу определите удаление от начального состояния отдельно по всем трем составляющим координатам.
- 10. Персистентное случайное блуждание. В персистентном случайном блуждании вероятность перехода, или «скачка», зависит от последнего перехода. Рассмотрите одномерное случайное блуждание частицы, в котором шаги совершаются только в ближайшие соседние узлы. Предположим, что сделано k-1 шагов. Далее k-й шаг делается в том же направлении с вероятностью α , а шаг в противоположном направлении делается с вероятностью 1- α . Определите удаление частицы от исходного положения за M=8 шагов при α =0,2 и α =0,4.
- 11. Случайные блуждания с переменным шагом. Рассмотрите одномерное случайное блуждание со всеми допустимыми целочисленными длинами прыжков. Вероятность того, что длина шага равна j, имеет вид P(j)=exp(-j). Определите удаление от начального положения после 10 шагов.
- 12. Решетка с переменным шагом. Рассмотрите случайное блуждание на решетке, как в задании 11, с вероятностью распределения длины шагов $P(j) = a/j^2$. Здесь $a = 6/\pi^2$, j- положительное целое число. Определите удаление от начального положения после 8 шагов.
- 13. Непрерывное случайное блуждание. Одна из первых непрерывных моделей случайного блуждания предложена Рейли в 1919 г. В модели Рейли длина каждого шага a является случайной величиной, распределенной с плотностью вероятности p(a), и случайным направлением каждого шага. Определите удаление пешехода от исходной точки за 5 шагов, если плотность вероятности p(a) является равновероятной в пределах от 0,5 до 1,5 и направление движения выбирается равновероятно с точностью до одного градуса.

- 1. Каким образом осуществляется моделирование одномерного случайного блуждания?
- 2. Каким образом осуществляется моделирование двухмерного случайного блуждания?

- 3. Каким образом осуществляется моделирование простого случайного блуждания с поглощающими экранами?
- 4. Каким образом осуществляется моделирование персистентного случайного блуждания?
- 5. Каким образом осуществляется моделирование случайного блуждания на треугольной решетке?
- 6. Каким образом осуществляется моделирование случайного блуждания на сотах?

Лабораторная работа №8. Тактическое планирование эксперимента

предполагает разработку Кажлое задание программной имитационной модели случайного блуждания, с помощью которой могут быть получены необходимые результаты по двум частям лабораторной работы. В первой части работы выполняется планирование и получение результатов эксперимента по оценке среднего значения указанного параметра с заданной точностью при заданной достоверности. Во второй части выполняется планирование и получение результатов эксперимента для оценки с заданной точностью при заданной достоверности выборочной дисперсии указанного параметра. В процессе проведения пробного эксперимента при планировании строится статистическое распределение исследуемого параметра и определяется целесообразность аппроксимации этого распределения нормальным законом. В зависимости от выбирается подход для определения объема эксперимента. Варианты заданий берутся из лабораторной работы №7.

- 1. Что такое планирование машинного эксперимента?
- 2. В чем сущность тактического планирования компьютерного эксперимента?
- 3. Как влияют начальные условия на результаты моделирования?
- 4. Каким образом может решаться задача определения размера выборки, обеспечивающей заданную точность и минимальную стоимость эксперимента?
- 5. Каким образом осуществляется оценка среднего значения выборочной совокупности с заданной точностью?
- 6. Как использовать неравенство Чебышева для оценивания оптимального объема выборки?

- 7. Каким образом можно определить объем выборки при оценивании вероятности наступления события с заданной точностью?
- 8. Каким образом можно определить объем выборки при оценивании дисперсии с заданной точностью?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Основная учебная литература

- 1. Градов В.М., Овечкин Г.В., Овечкин П.В., Рудаков И.М. Компьютерное моделирование. Учебник. М.: Курс, 2017.
- 2. Салмина Н.Ю. Моделирование систем. Часть І [Электронный ресурс] : учебное пособие / Н.Ю. Салмина. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2013. 118 с. 978-5-4332-0146-0. Режим доступа: http://www.iprbookshop.ru/72137.html
- 3. Салмина Н.Ю. Моделирование систем. Часть II [Электронный ресурс]: учебное пособие / Н.Ю. Салмина. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2013. 114 с. 978-5-4332-0147-7. Режим доступа: http://www.iprbookshop.ru/72138.html
- 4. Боев В.Д. Компьютерное моделирование [Электронный ресурс] / В.Д. Боев, Р.П. Сыпченко. 2-е изд. Электрон. текстовые данные. М. : Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 525 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/73655.html

Дополнительная учебная литература

- 1. Рыжиков Ю.И. Имитационное моделирование. Теория и технология. СПб.: КОРОНА принт; М.: Альтекс-А, 2004. 384 с.
- 1. Советов Б.Я., Яковлев С.А. Моделирование систем. 3-е изд., перераб. и доп. Учебник для вузов. М.: Высшая школа, 2001.
- 2. Советов Б.Я., Яковлев С.А. Моделирование систем. Практикум. М.: Высшая школа, 2003.
- 3. Варфоломеев В.И. Алгоритмическое моделирование элементов экономических систем: Практикум. Учеб. пособие. М.: Финансы и статистика, 2000.
- 4. Казиев В. Введение в анализ, синтез и моделирование систем. М.: Бином, 2007.
- 5. Основы компьютерного моделирования систем / Артемкин Д.Е., Баринов В.В., Овечкин Г.В., Степнов И.М. // Под ред. А.Н. Пылькина. Учебное пособие. М., 2004 (193 экз. в БФ РГРТУ).

- 6. Компьютерное моделирование: Учебное пособие / Рязан. гос. радиотехн. ун-т; Сост. В.В.Золотарёв, Г.В.Овечкин, П.В.Овечкин. Рязань, 2008.
- 7. Дистанционный учебный курс "Компьютерное моделирование", [Электронный ресурс] используется в качестве информационной и методической поддержки учебного процесса, размещен в системе дистанционного обучения РГРТУ на базе Moodle по адресу http://cdo.rsreu.ru.

ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ»

- 1. Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://iprbookshop.ru/.
- 2. Электронная библиотека РГРТУ [Электронный ресурс]. Режим доступа: из корпоративной сети РГРТУ по паролю. URL: http://elib.rsreu.ru/

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
Лабораторная работа №1. Изучение базовых генераторов	
псевдослучайных чисел	4
Лабораторная работа №2. Проверка качества генераторов	
псевдослучайных чисел	6
Лабораторная работа №3. Генерирование случайных величин с	
заданным законом распределения	7
Лабораторная работа №4. Генерирование случайных величин с	
нормальным законом распределения	. 11
Лабораторная работа №5. Генерирование случайных величин с част	0
используемыми законами распределения	. 12
Лабораторная работа №6. Моделирование методом Монте-Карло	. 14
Лабораторная работа №7. Моделирование случайных блужданий	. 19
Лабораторная работа №8. Тактическое планирование эксперимента.	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	. 23
ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-	
ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ»	. 24