Exercices produit scalaire et nombres complexes

Exercice 1

Simplifier l'expression suivante : $\cos(\frac{\pi}{2} - x) + \cos(\frac{\pi}{2} + x)$

Exercice 2

Donner la valeur exacte de $\sin(\frac{\pi}{8})$.

Exercice 3

Dans un repère orthonormé, on considère les trois vecteurs $\vec{u},\,\vec{v},\,\vec{w}$ de coordonnées

$$\vec{u} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \vec{v} \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \quad \vec{w} \begin{pmatrix} 2 \\ -4 \end{pmatrix}.$$

$A. \ \vec{u}\ = \sqrt{3}.$	B. $\cos(\vec{v}, \vec{w}) = \frac{-2}{\sqrt{20}}$.
C. \vec{u} et \vec{v} sont orthogonaux.	D. $\ \vec{v}\ > \ \vec{w}\ > \ \vec{u}\ $.

Quelles sont les affirmations exactes?

Exercice 4

Donner l'écriture exponentielle du complexe z=-2+2i.

Exercice 5

Soit $z_1 = 3e^{i\frac{\pi}{2}}$ et $z_2 = 3e^{-i\frac{\pi}{4}}$. Calculer $z_1 \times z_2$ et $\frac{z_1}{z_2}$.