# Basic concept of Machine Leanring

Jeonghun Yoon

### Machine learning

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, imporves with experience E.

Machine Learing by Tom M.Mitchell

컴퓨터 프로그램은 다양한 기능을 수행한다. 그 기능을 잘 수행했는지 그러지 못했는지에 대해 성능을 평가 할 수 있다.

머신러닝은 컴퓨터가 수행하는 기능을, dataset을 통하여 더 나은 성능을 낼 수 있도록 개선하는 것이다.

# Machine learning



### Machine learning

(Easy version)

머신 러닝은 과거 경험에서 학습을 통해 얻은 지식을 미래의 결정에 이용하는 전산학의 한 분야이다.

머신 러닝의 목표는 관측된 패턴을 일반화하거나 주어진 예제를 통해 새로운 규칙을 생성해내는 것이다.

머신러닝은 크게 세 가지 범주로 분류된다.

- Supervised Learning algorithm
- Unsupervised Learning algorithm
- Reinforcement Learning algorithm

#### Supervised Learning algorithm

- Random sample vectors  $\mathbf{x}'s$  와 각각에 대응하는 t가 관찰되었을 때, 제공된 dataset을 사용하여 모든  $\mathbf{x}$ 에 대해 정답인 t를 유추해 낼 수 있도록 일반화시키는 알고리즘(예제를 통한 학습 알고리즘)
- Roughly P(t|x)
- Classification, Regression, ...
- Input, target

#### Unsupervised Learning algorithm

- Random sample vectors x's가 관찰되었을 때, x의 distribution or dataset 구조의 useful properties를 찾고자 하는 알고리즘
- Roughly P(x)
- Density estimation, Clustering, Dimensional reduction
- Input

#### Reinforcement Learning algorithm

- Machine 또는 agent가 주변 환경의 feedback으로부터 행동을 학습하는 알고리즘
- 강화학습에서 agent는 지도를 받는 것이 아니라 스스로 일련의 결정을 내린 후, 그 결과에 따라 마지막에 +1 이나 -1의 보상 reward를 받음
- 보편적인 머신러닝 알고리즘보다는 인공지능 기법에 더 가깝다.

### 통계 모델링과 머신 러닝의 차이점

통계 모델링과 머신 러닝 간에는 근본적인 유사점이 있지만, 실제 적용에 있어서는 때때로 그 점이 분명하지 않을 때가 있다.

| 통계 모델링                                                                              | 머신 러닝                                                                 |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 변수 간의 관계를 수학식을 통해 정량화                                                               | 규칙 기반 프로그래밍(rule-based programming)에 의존하지 않고 데이터로부터 학습 가능한 알고리즘       |
| 데이터에 맞는 모델 적합화를 수행하기 전 <mark>미리</mark><br>곡선의 형태를 <mark>가정</mark> 해야 함(예: 선형, 다항 등) | 머신 러닝 알고리즘은 주어진 데이터로부터 복잡한 패턴을 스스로 학습하는 알고리즘이므로 곡선의 형태를 미리 가정할 필요가 없음 |
| 통계 모델은 85%의 정확도와 90%의 신뢰 수준<br>으로 결과를 예측함                                           | 머신 러닝은 결과를 정확도 85%로 예측함                                               |
| 통계 모델링에서는 P value 같은 다양한 매개변<br>수 진단이 수행됨                                           | 머신 러닝 모델은 어떠한 통계적 유의성 진단도<br>수행하지 않음                                  |

# 통계 모델링과 머신 러닝의 차이점

| 통계 모델링                                                                                                                 | 머신 러닝                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 데이터는 70:30 (때에 따라 다르게 split 가능)으로 나뉘어 각각 훈련 집합과 테스트 집합이 됨.<br>모델은 훈련 집합에서 개발되고 테스트 집합으로 테스트함.                          | 데이터는 50:25:25(때에 따라 다르게 split 가능)<br>으로 나뉘어 각각 훈련 데이터, 검증 데이터, 테<br>스트 데이터가 됨.<br>모델은 훈련 데이터에서 개발되고, 초매개변수<br>hyperparameter는 검증 데이터를 통해 튜닝되고 최종<br>적으로 테스트 데이터에 관해 평가함. |
| 통계 모델은 훈련 데이터라 불리는 단일 데이터<br>만으로도 개발 가능함.<br>진단은 전체 정확도 뿐만 아니라 개별 변수 단위<br>에 관해서도 수행되기 때문임.<br>통계 모델링은 보토 연구 목적으로 사용됨. | 변수에 관한 진단이 없기 때문에 머신 러닝 알고리즘은 이중 검증을 위해 훈련 데이터와 검증 데이터라 불리는 두 데이터 세트에 관해 학습이 이뤄짐.  머신 러닝은 실제 환경에서 구현하기 적합함                                                               |

### 머신 러닝 모델 개발 순서

- 1. 해결하고자 하는 문제의 정의
- 2. 데이터 수집
- 3. 데이터 준비와 결측 값 / 이상 값 처리
- 4. 데이터 분석(Exploratory Data Analysis)과 feature engineering
- 5. 모델 선택
- 6. 훈련 및 검증 데이터에 이용하여 모델 훈련 및 Hyperparameter 튜닝
- 7. 테스트 데이터를 사용하여 모델의 최종 테스트
- 8. 모델 배포 및 서비스에 활용

### 머신 러닝 모델 개발 순서

### 데이터 수집

● 머신 러닝 데이터는 구조화된 소스, 웹 스크래핑, API, 채팅 등을 통해 집적 수집한다. 머신 러닝은 구조화된 데이터(table data, DB data 등)와 비구조화 데이터(음성, 이미지, 텍스트)를 모두 처리 할 수 있다.

### 데이터 준비와 결측 값 / 이상 값 처리

● 데이터를 모델에서 사용할 수 있도록 알맞게 가공한다. 결측 값<sub>missing value, null value</sub> 또는 이상 값<sub>abnormal value</sub>는 데이터 및 해결하고자 하는 문제의 성질에 맞게 평균 값, 중간 값 등으로 대체한다.

### 데이터 분석(EDA)과 feature engineering

● 변수들 사이에 숨겨진 패턴 및 관계를 찾아내려면 데이터를 분석해야 한다. 올바른 feature engineering과 적절한 비지니스 지식을 동원한다면 많은 문제를 해결할 수 있고, 모델이 잘 학습되는 데에 큰 도움이 된다.

### 머신 러닝 모델 개발 순서

### 훈련 및 검증 데이터에 이용하여 모델 훈련

● Feature engineering이 끝난 후 모델을 학습하는 단계이다. 데이터를 3개 집합(훈련, 검증, 테스트)로 분리한다. 훈련 데이터에서 머신 러닝 모델을 훈련 시키고, overfitting과적합을 피하기 위해 검증 데이터를 대상으로 모델의 hyperparameter를 튜닝하는 과정을 거친다.

### 테스트 데이터를 사용한 모델 테스트

● 모델이 훈련 데이터와 검증 데이터를 상대로 충분히 좋은 성능을 발휘하면 새로운<sub>unseen</sub> 테스트 데이터를 대상으로 성능 점검을 수행한다. 이 테스트에서 충분히 성능이 인정되면 마지막 단계로 넘어간다.

### 모델 배포 및 서비스에 활용

● 학습된 머린 러닝 모델을 배포하고, 학습된 머신 러닝 알고리즘을 서비스에 적용한다.

#### Input / Input vector / Features / Feature vectors / 입력 / 특성

• 입력 벡터는 머신러닝 알고리즘의 입력으로 주어진 데이터를 의미한다. Input data가 총 m차원이면,  $\mathbf{x} = (x_1, x_2, ..., x_m)$ 라고 표현한다. 벡터의 요소인  $x_i$ 는 entity이다.

### Output / Output vector / 출력값

● 출력 벡터는 머신러닝 알고리즘의 출력 결과 데이터를 의미한다. 출력 벡터의 각 entity는 알고리즘의 종류에 따라서 연속적인 실수값이 될 수 있고, 불연속적인 정수값이 될 수 있다. 또한 1차원이 될 수도 있고 다차원이 될 수도 있다. 출력은 회귀모형을 설명할 때는 ŷ라고 표현하겠다.

#### Target / Label / 목표값 / 라벨

● 목표값은 입력 벡터와 함께 pair로 주어진, 즉  $\mathbb{X}$ 에 associate / assign 된 데이터를 의미한다. 실수값, 정수값을 가질 수 있다. 타겟은 회귀모형을 설명할 때는 y라고 표현하겠다. Supervised learning에서는  $(\mathbb{X}_1, y_1), (\mathbb{X}_2, y_2), ..., (\mathbb{X}_n, y_n)$ 이 모델의 학습에 사용된다.

#### Training set

● 알고리즘을 학습할 때 사용되는 input dataset (supervised learning의 경우는 target도 training set에 포함)

#### Validation set

● 알고리즘을 학습할 때, 알고리즘의 성능을 (중간에) 측정하여 성능이 나쁜 알고리즘을 구별해내고(prune) 좋은 알고리즘을 선택할 수 있도록 하는 과정에서 사용되는 dataset

#### Test set

● 학습된 알고리즘을 최종 테스트하여 알고리즘의 성능을 평가할 때 사용하는 dataset



#### Hypothesis

● 우리가 찾고자하는 알고리즘을 의미한다. 머신러닝 알고리즘을 학습하는 것은, 결국 머신러닝 알고리즘이 존재하는 전체 셋 (hypothesis set)에서 최상의 머신러닝 알고리즘(hypothesis)을 찾는 것이다.



Model의 학습 정도를 표현할 때, Hypothesis를 사용하여 수학적으로 표기하는 경우가 많다.

손실 함수loss function 또는 비용 함수cost function

- 모수 $(\theta)$ 의 값을 실수 $L(\theta)$ 로 mapping 하는 함수이다. 구하고자 하는 모수(파라미터)를  $\theta$ 라고 할 때, loss function은  $L(\cdot)$ 로 주어질 것이다.
- 모수에 대응되는 실수는, 우리가 모수를 사용했을 때 예측 값과 실제 값과의 거리를 나타낸다고 생각하면 된다. (정확히는 거리가 아니지만, 그렇게 생각하면 이해하기 쉽다.) 즉, 모수를 선정할 때 기준이 되는 값이다.



 $\theta_1$  을 사용했을 때 손실 함수의 값 L이 더 작다. 따라서  $\theta_1$  을 사용한다.

### 대표적인 손실 함수

- 제곱 손실<sub>Squared loss</sub> : 회귀에서 많이 사용함
  - MSE
  - RMSE
- Cross entropy : 분류모델에서 많이 사용함
- 힌지 손실<sub>Hinge loss</sub> : SVM(분류 모델)에서 사용함

지도 학습 (입력 변수와 목표 변수가 주어진다.)

- 회귀 모형 (목표 변수가 연속적인 값이다.)
  - 단순 선형 회귀 모형
  - Lasso, Ridge 회귀
  - 의사결정 트리 회귀
  - Bagging 회귀
  - Random forest 회귀
  - Boosting 회귀
  - SVM 회귀

지도 학습 (입력 변수와 목표 변수가 주어진다.)

- 분류 모형 (목표 변수가 이산값을 가진다.)
  - 로지스틱 회귀
  - 의사결정 트리(분류기 트리)
  - Bagging 분류
  - Random forest 분류
  - 부스팅 분류(Adaboost, Gradient boost, Xgboost)
  - SVM 분류
  - Perceptron

비지도 학습 (목표 변수가 주어지지 않는다.)

- 주성분 분석(PCA)
- K-means clustering

### 강화 학습

- 마르코프 결정 프로세스
- 몬테카를로 기법
- 시간차 학습

### 선형 회귀

- 이 방법은 고객의 소득 같은 연속 변수의 예측에 사용된다. 모델은 최적의 선을 fitting하기 위해, 손실 함수의 값이 선형 방적식의 계수들  $\beta_i's$ 에 관해 최소화되도록 한다. 선형 회귀는 높은 bias와 낮은 variance 오류의 특징을 가진다.
- 선형 방정식의 기본적인 식 :  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$

### Lasso / Ridge 회귀

● 이 기법은 선형 방정식의 계수에 penalty를 적용한 규제화 과정을 통해 과적합 문제를 통제한다. Ridge 회귀는 계수의 제곱의 합, Lasso는 계수의 절대값에 penalty 를 적용한다. 또한 penalty 의 양을 조절할 수 있다. Ridge 회귀는 계수의 크기를 최소화하는 반면, Lasso 회귀는 계수를 제거하려고 노력한다. 즉 계수의 값이 0이 나올 수 도 있다.

### 의사결정 트리 분류

● 각 레벨에는 이진 분할을 적용한다. 분할은 각 레벨의 부류가 최대한 순수한 부류<sub>class</sub>만 남을 때까지 반복한다. 분류 오류율은 단순히 그 구역의 훈련 관측 값 중 가장 일반적인 부류에 속하지 않는 관측 값들의 비율이다. 즉 그지역의 훈련 관측 값 중 많았던 부류가 A 였다면, 그 지역의 관측 값 중 A 부류가 아닌 부류의 비율이다. 의사결정 트리는 fitting 과정에서 높은 분산으로 인한 overfitting 문제를 겪는다. 가지치기(pruning)을 통해 overfitting 문제를 감소시킬 수 있다. 의사결정 트리는 낮은 bias와 높은 variance 오류의 특징을 가진다.

### Bagging 분류 / 회귀

● Bagging은 의사결정 트리에 앙상블을 적용해 variance 오류를 최소화하는 동시에 bias에 의한 오류 성분이 증가하지 않도록 하는 기술이다. Bagging은 복원 추출을 통해 표본을 선택하고, 모든 변수(열)은 각 표본에 관해 의사결정 트리를 개별적으로 fitting한다. 그 후 투표(회귀의 경우, 출력값의 평균)를 통해 최종 결과를 ensemble한다.

#### Random Forest

● 이 방법은 Bagging과 흡사한데, 한 가지 차이가 있다. Bagging은 각 표본 별로 모든 변수(열)를 선택하지만 Random forest는 몇 개의 열만 선택한다. 전체 변수를 선택하지 않고 일부만 선택하는 이유는 각 개별 트리의 표본을 추출할 때 많은 수의 변수가 항상 트리의 상위 계층에 나타나 결과적으로 분할 후에도 모든 트리가 유사하게 자라게 돼 앙상블의 취지에 반하기 때문이다. 이 방법은 bias와 variance 오류가 모두 낮은 특징이 있다.

### Boosting 분류 / 회귀

● Boosting 은 순차 알고리즘으로 결정 그루터기(단일 레벨 결정 트리 또는 하나의 root와 2개의 단말 노드를 가진 트리) 같은 약한 분류기에 적용한 후 그 결과를 앙상블함으로써 강력한 분류기로 탈바꿈하기 위해 적용한다. 알고리즘은 모든 관측값에 동일한 가중값을 할당하고 시작한다. 그 후 후속 반복 작업에서 잘못 분류된 관측값에는 가중값을 증가시키고 제대로 분류된 관측값은 가중값을 감소시킨다. 결국 모든 개별 분류기는 더 강력한 분류기로 합쳐진다. Boosting은 overffiting 문제가 있을 수 있지만, 매개변수를 세밀히 튜닝함으로써 스스로 학습하는 최고의 머신 러닝 모델을 얻을 수 있다.

#### SVM

이 방법은 부류 사이의 경계를 가장 넓게 형성하는 초평면을 학습해서 경계 간의 간격(margin)이 최대가 되게 한다. 비선형으로 분리 가능한 부류의 경우 관측값을 높은 차원의 공간으로 옮기기 위해 커널(kernel)을 사용한다.
 그 후 초평면을 이용해 이를 선형 분리한다.

#### 추천 엔진

● 이 방법은 협업 필터링 알고리즘(Collaborative filtering algorithm)을 사용해서 특정 고객이 과거에 사용한 적이 없는 상품 중 구매 확률이 높은 아이템을 찾아내기 위해 비슷한 성향의 고객이 가진 구매 취향을 파악하는 기법이다. 이 문제를 풀기 위해 교대 최소 자승법(Alternating least squares, ALS)을 활용한다.

#### PCA

• 이 기법은 주성분을 원래 변수 대신 계산해 전체 차원을 낮추는 기술이다. 무엇을 주성분으로 할 것인지는 데이 터의 분산이 최대값이 되는 것으로 판단한다. 결과적으로 전체 분산의 x%를 차지하는 최상위 n개 성분을 선택해 다음 단계 모델링 프로세스에서 사용하거나, 비지도학습으로 탐색적 요인 분석(Exploratory Data Analysis)를 수 행한다.

### K-means clustering

● 이 기법은 비지도학습 알고리즘의 하나로, 주로 분할에 활용된다. K-means clustering은 주어진 데이터를 k 개의 군집으로 분류하는데, 각 군집 내의 분산은 최소화시키되, 군집 간의 분산은 최대화시키는 것이 목표다.

#### Markov decision process

● Markov decision process(MDP)는 강화학습에서 결과가 통제 되지 않은 임의의 영향을 부분적으로 받는 환경이나 상황에서 에이전트의 결정을 모델링하기 위한 수학적 프레임워크를 제공한다. 이 모델은 시스템을 통제하기위해 에이전트가 취할 수 있는 상태와 행동의 집합으로 환경을 모델링한다. 에이전트의 총 수익이 최대화되도록시스템을 통제하는 것이 이 모델의 목표다

#### Monte Carlo method

● Monte Carlo method는 환경에 관한 모든 지식을 필요로 하지 않는다. 이 기법은 실 데이터나 시뮬레이션 환경에 서 추출된 표본의 상태 순서, 행동, 보상 데이터를 기반으로 한다. 이 기법은 주어진 표본에서 순차적으로 마지막 결과까지 공간을 탐색하고 해당 값을 갱신한다.

### 시간차 학습

● Temporal difference learning은 강화학습의 핵심이다. 시간차 학습은 몬테카를로와 동적 프로그래밍 아이디어를 조합한 것이다. 시간차 학습은 몬테카를로와 비슷하게 환경의 역학을 모델링하지 않고도 원시 경험으로부터 바로 학습 할 수 있다. 또 동적 프로그래밍처럼 이 기법은 최종 결과를 기다리지 않고 다른 학습 결과에 일부 의존해계산을 갱신한다. 이 방법은 통계나 머신 러닝을 통틀어 좋은 방법이고, 알파고 같은 게임에 주로 이용된다.