Date: 20-09-15

Max Marks: 240

Time: 3 Hours

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

2011-P1-Model

ICON CENTRAL OFFICE, MADHAPUR-HYD
Sec: Sr.IPLCO
JEE-ADVANCE

PAPER-I Key & Solutions

CHEMISTRY

1	D	2	С	3	В	4	С	5	A	6	В
7	A	8	ABCD	9	ABC	10	BD	11	ACD	12	A
13	C	14	D	15	A	16	D	17	5	18	9
19	7	20	8	21	8	22	8	23	8		

PHYSICS

-		_										
	24	С	25	В	26	A	27	D	28	С	29	С
	30	В	31	BD	32	AD	33	A	34	ВС	35	В
	36	С	37	С	38	С	39	D	40	1	41	1
	42	5	43	5	44	2	45	1	46	2	Ç	

MATHS

47	В	48	С	49	В	50	В	51	2	52	C
53	A	54	ABC	55	AB	56	BD	57	A	58	С
59	В	60	A	61	В	62	A	63	6	64	9
65	2	66	9	67	3	68	6	69	8		

MATHS

47.
$$\sin(x_{n+1} - x_n) + 2^{-(n+1)} \sin x_n \sin x_{n+1} = 0$$

$$\Rightarrow \frac{\sin(x_{n+1} - x_n)}{\sin x_n \sin x_{n+1}} = -2^{-(n+1)} \Rightarrow \cot x_{n+1} = \cot x_n + 2^{-(n+1)} \Rightarrow \cot x_n = 1 - \frac{1}{2^n}$$

48.
$$f(x) = x^3 - 2x^2 - 3x + 3$$
, $g(x) = [h(x)]^2$; $h(x) = x^2 - x - 2$

49. The equation
$$f(x) = 2x^3 + 5x^2 - 6x - 2 = 0$$

We see that
$$f(-4)f(-3) < 0$$
; $f(-1)f(0) < 0$; $f(1)f(2) < 0$

Sum of fractional parts = sum of the roots – (sum of the integral parts) = $-\frac{5}{2}$ – (-4-1+1)=1.5

50. Slopes of the tangents at P and Q are given by $-\frac{4}{3}\cot\theta$ and $-\cot\theta$ respectively.

Hence
$$TanA = \left| \frac{\cot \theta}{3 + 4\cot^2 \theta} \right|$$

51. we have $f(x) = e^x$; $g(x) = 1 + k \tan^{-1} x$

Both are increasing functions for given k, and f(0)=g(0). Hence there is only solution.

- 52. For the curve $y = \ln |f(x)|$ is decreasing, we should have f'(x) > 0, f(x) < 0 or f'(x) < 0, f(x) > 0
- 53. $g(x) = f(\sin x) + f(\cos x)$ $\Rightarrow g''(x) = f''(\sin x)\cos^2 x + f''(\cos x)\sin^2 x f'(\sin x)\sin x f'(\cos x)\cos x$
- 54. Conceptual

55. We have
$$f'(x) = \frac{4}{x} + 2x - a$$

Solving f'(x) = 0, we get
$$x_1 = \frac{a - \sqrt{a^2 - 32}}{4}$$
; $x_2 = \frac{a + \sqrt{a^2 - 32}}{4}$

For $x_1 \in (0,1]$, we should have $a \ge 6$

Now,
$$g(a) = f(x_1) - f(x_2) = 4(\ln x_1 - \ln x_2) + (x_1^2 - x_2^2) - a(x_1 - x_2)$$

This gives
$$g(a) = 8 \ln(a - \sqrt{a^2 - 32}) - 20 \ln 2 + \frac{a\sqrt{a^2 - 32}}{4}$$

Now we can check that g'(a) is positive for a > 6

Hence g(a) is increasing in $[6,\infty)$. So, min g(a) = g(6) = 3-4 ln 2

56.
$$f(x) = (4a-5)(x+\log 5) + 2(a-8)\cot \frac{x}{2}\sin^2 \frac{x}{2}$$

$$\Rightarrow f(x) = (4a-5)(x+\log 5) + (a-8)\sin x$$

$$f'(x) = (4a-5) + (a-8)\cos x$$

If f(x) does not have critical points, then f'(x) = 0 does not have any solution in

R. Now, solving
$$f'(x) = 0 \Rightarrow \cos x = \frac{4a-5}{8-a}$$

$$\Rightarrow \left| \frac{4a-5}{8-a} \right| \le 1 \qquad \left[\because \left| \cos x \right| \le 1 \right]$$

$$\Rightarrow -1 \le \frac{4a-5}{8-a} \le 1$$

$$\Rightarrow -1 \le a \le \frac{13}{5}$$

57. Suppose $(3p,p^3)$ is on $27y = x^3$. Tangent at P is $y = p^2x - 2p^3$. If this line

touches $y = (x + a)^2$, then the equation $p^2x - 2p^3 = (x + a)^2$ should have equal roots.

Hence
$$(2a-p^2)^2 = 4(a^2+2p^3)$$
.

This gives $p^2(p^2-8p-4a)=0$ for some real p other than p=0. Hence

$$64+16a \ge 0 \Rightarrow a \ge -4$$
.

58, 59 & 60

$$f(x) = xe^{-x}$$

We have $pe^{-p} = qe^{-q} \Rightarrow pe^{m} = q, q - p = m$

Hence
$$p = \frac{m}{e^m - 1}; q = \frac{me^m}{e^m - 1}$$

$$f'(x) = (1-x)e^{-x} = 0 \Rightarrow \alpha = 1$$
. So, $QR = q-1, PR = 1-p$. Hence $QR - PR = q + p - 2$

We have
$$p+q-2=\frac{m}{e^m-1}+\frac{me^m}{e^m-1}-2=\frac{(m-2)e^m+m+2}{e^m-1}>0$$

$$f''(x) = (x-2)e^{-x} = 0 \Rightarrow \beta = 2$$

61&62

Sri Chaitanya IIT Academy

20-09-15_Sr.IPLCO_JEE-ADV_(2011_P1)_RPTA-7_Key&Sol's

We have
$$f(x) = \begin{vmatrix} xe^{bx}, & x \le 0 \\ x + bx^2 - x^3, & x > 0 \end{vmatrix}$$

So,
$$f'(x) = \begin{vmatrix} (1+bx)e^{bx}, & x \le 0 \\ 1+2bx-3x^2, & x > 0 \end{vmatrix}$$
 and $f''(x) = \begin{vmatrix} (2+bx)e^{bx}, & x \le 0 \\ 2b-6x, & x > 0 \end{vmatrix}$

For f'(x) to be increasing, we should have $b+2x>0, x \le 0$; 2b-6x>0, x>0

So, the interval is $\left(-\frac{2}{b}, \frac{b}{3}\right)$. We have $g(b) = \frac{b}{3} + \frac{2}{b}$. Hence $g'(b) = \frac{1}{3} - \frac{2}{b^2}$ and

$$g(b) = \left(\sqrt{\frac{b}{3}} - \sqrt{\frac{2}{b}}\right)^2 + \frac{2\sqrt{2}}{\sqrt{3}}$$

63. $f(x) = x^4 - \frac{244}{3}x^3 + 2ax^2$ will not have any local maxima if

 $f'(x) = 4x^3 - 244x^2 + 4ax = 0$ has only one real root. So, $4x^2 - 244x + 4a = 0$ should have complex roots. Number of values for a is 69.

64. Min 0, Max $\frac{1}{8}$

$$65. \qquad \lim_{x\to\pm\infty} \left(\frac{y}{x}\right) = \lim_{x\to\pm\infty} \left[\frac{\sqrt{1+x^2}}{x} \sin\left(\frac{1}{x}\right)\right] = 0 \text{ and } \lim_{x\to\infty} y = 1, \lim_{x\to-\infty} y = -1$$

66.
$$f\left(\frac{3}{2}\right) = 0 \Rightarrow \lim_{x \to \frac{3}{2}} \left|x^2 - 3x\right| + a \le 0$$
 Hence, $\left|4k\right| = 9$

- 67. $y = a\sqrt{x} + bx$ has slope $\frac{1}{2}$ at (9,0). Hence a = -3; b = 3. So, $\lambda = \frac{3}{5}$
- 68. The tangent at P(2,1) to curve $x = \sec^2 t$, $y = \cot t$ is given by

x + 2y = 4. It meets the curve again at $Q\left(5, -\frac{1}{2}\right)$. Hence $PQ = \frac{3\sqrt{5}}{2}$

69.
$$f(x) = \frac{195x(x^2+4)}{9x^4+97x^2+144} = \frac{13(5x)(3x^2+12)}{(3x^2+12)^2+(5x)^2}$$
 can be written as $f(x) = \frac{13}{\frac{3x^2+12}{5x} + \frac{5x}{3x^2+12}}$ for

$$x \neq 0 \text{ Then } \left| \frac{3x^2 + 12}{5x} \right| \ge \frac{12}{5}. \text{ Hence } |f(x)| \le \frac{60}{13}$$