Problem 2a:

Naive expansion on original equation

$$\begin{split} &\text{govEq = Expand} \left[\varepsilon * \left(x^3 - x^2 \right) + 4 * x^2 - 3 \; x - 1 \right] \\ &-1 - 3 \; x + 4 \; x^2 - x^2 \; \varepsilon + x^3 \; \varepsilon \\ &\text{naive = Collect} \left[\text{Expand} \left[\text{govEq /. } x \rightarrow \left\{ x_o + \varepsilon * x_1 + \varepsilon^2 * x_2 \right\} \right], \; \varepsilon \right]; \\ &\text{Extract the O(1) equation} \\ &\text{Collect} \left[\text{Normal} \left[\text{Series} \left[\text{naive /. Thread} \left[\varepsilon \rightarrow k * \varepsilon \right], \; \left\{ k, \; 0, \; 0 \right\} \right] \right] \; /. \; k \rightarrow 1, \; \varepsilon \right] \\ &\left\{ -1 - 3 \; x_o + 4 \; x_o^2 \right\} \\ &\text{Solve} \left[\% = 0, \; x_o \right] \\ &\left\{ \left\{ x_o \rightarrow -\frac{1}{4} \right\}, \; \left\{ x_o \rightarrow 1 \right\} \right\} \end{split}$$

We expect 3 roots but only recovered 2.

Search for last root by rescaling

Use scale x -> t $(4/\epsilon)$

$$\begin{split} & \text{Expand} \left[\varepsilon * \left(x^3 - x^2 \right) + 4 * x^2 - 3 \; x - 1 \right] \; / . \; x \to t * 4 \; / \; \varepsilon \\ & - 1 + \frac{64 \; t^2}{\varepsilon^2} + \frac{64 \; t^3}{\varepsilon^2} - \frac{12 \; t}{\varepsilon} - \frac{16 \; t^2}{\varepsilon} \\ & \text{Expand} \left[\left(- 1 + \frac{64 \; t^2}{\varepsilon^2} + \frac{64 \; t^3}{\varepsilon^2} - \frac{12 \; t}{\varepsilon} - \frac{16 \; t^2}{\varepsilon} \right) * \; \varepsilon^2 \right] \\ & 64 \; t^2 + 64 \; t^3 - 12 \; t \; \varepsilon - 16 \; t^2 \; \varepsilon - \varepsilon^2 \\ & \text{naiveRS} \; = \\ & \text{Collect} \left[\text{Expand} \left[64 \; t^2 + 64 \; t^3 - 12 \; t \; \varepsilon - 16 \; t^2 \; \varepsilon - \varepsilon^2 \; / . \; t \; - > \left\{ t_0 + \varepsilon * \; t_1 + \varepsilon^2 * \; t_2 \right\} \right], \; \varepsilon \right]; \\ & \text{Collect} \left[\text{Normal} \left[\text{Series} \left[\text{naiveRS} \; / . \; \text{Thread} \left[\varepsilon \to k * \varepsilon \right], \; \left\{ k, \; 0, \; 0 \right\} \right] \; / . \; k \to 1, \; \varepsilon \right] \\ & \left\{ 64 \; \left(t_0^2 + t_0^3 \right) \right\} \\ & \text{Solve} \left[\% = 0, \; t_0 \right] \\ & \left\{ \left\{ t_0 \to -1 \right\}, \; \left\{ t_0 \to 0 \right\}, \; \left\{ t_0 \to 0 \right\} \right\} \end{split}$$

We find a double root at 0.

Proceed by using gage function

gageRS = Collect[Series[64 t² + 64 t³ - 12 t
$$\epsilon$$
 - 16 t² ϵ - ϵ ² /.
t -> {t₀ + ϵ ^{1/2} * t₁ + ϵ * t₂ + ϵ ^{3/2} * t₃ + ϵ ² * t₄}, { ϵ , 0, 3}], ϵ];

Pursue 0 roots

Collect[Normal[Series[gageRS /. Thread[$\epsilon \rightarrow k \star \epsilon$], $\{k, 0, 1\}$]] /. $k \rightarrow 1$, ϵ] /. $t_o \rightarrow 0$ $\left\{ 64 \in t_1^2 \right\}$

$t_1 = 0$

Collect[Normal[Series[gageRS /. Thread[$\epsilon \rightarrow k \star \epsilon$], {k, 0, 2}]] /. k \rightarrow 1, ϵ] /. $\{t_o \rightarrow 0, t_1 \rightarrow 0\}$ $\{ \in^2 (-1 - 12 t_2 + 64 t_2^2) \}$

$$\left\{\left\{t_2 \rightarrow -\frac{1}{16}\right\}, \left\{t_2 \rightarrow \frac{1}{4}\right\}\right\}$$

Pursue -1 root

Collect[Normal[Series[gageRS /. Thread[$\epsilon \rightarrow k * \epsilon$], $\{k, 0, 1\}$]] /. $k \rightarrow 1$, ϵ] /. $t_o \rightarrow -1$ $\{64\sqrt{\epsilon}\ t_1 + \epsilon\ (-4 - 128\ t_1^2 + 64\ t_2)\}$

$t_1 = 0$

Collect[Normal[Series[gageRS /. Thread[$\epsilon \rightarrow k * \epsilon$], {k, 0, 1}]] /. k \rightarrow 1, ϵ] /. $\{t_0 \rightarrow -1, t_1 \rightarrow 0\}$

$$\left\{\in\ \left(-\,4\,+\,64\,\,t_2\right)\,\right\}$$

Solve[$% = 0, t_2$]

$$\left\{\left\{\mathsf{t}_2 \to \frac{1}{16}\right\}\right\}$$

Compile Solutions

Expand
$$\left[\left(-1 + \epsilon * \frac{1}{16} \right) * \frac{4}{\epsilon} \right]$$

$$\frac{1}{4} - \frac{4}{\epsilon}$$

Expand
$$\left[\left(0 + \epsilon * - \frac{1}{16} \right) * \frac{4}{\epsilon} \right]$$

Expand
$$\left[\left(0 + \epsilon * \frac{1}{4} \right) * \frac{4}{\epsilon} \right]$$

1

Note: This equation recovered all the simple roots from the naive expansion and the re-scaled equation.