Appl. No.: 09/827,278 Amdt. Dated April 21, 2008

Reply to Office Action of February 5, 2008

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

(CURRENTLY AMENDED) An apparatus, comprising:

a multilayer structure comprising:

a free layer;

having an antiferromagnetic layer between [[a]] first and second layers agency, the first and second layers neighboring the antiferromagnetic layer, the antiferromagnetic layer having exchange anisotropy that helps pin the magnetization direction of the first layer and helps pin the magnetization direction of the second layer, such that the first layer comprises a pinned layer and the second layer comprises a pinned keeper layer, the pinned layer producing first pole densities and resulting first field that are approximately canceled by a second field within the free layer resulting from second pole densities produced by the pinned keeper layer, wherein said the magnetization direction of said the first layer is antiparallel to said the magnetization direction of said the second layer.

- 3. CANCELED
- 4. CANCELED
- CANCELED
- (CURRENTLY AMENDED) The apparatus of claim [[5]] \(\frac{1}{2}\) wherein the
 resistance associated with each of the layers of said larger multilayer structure is such that
 most of the current flow through said sensor flows through said antiferromagnetic layer.
- (ORIGINAL) The apparatus of claim 6 wherein said current flow is centered along the thickness of said antiferromagnetic layer.

SJO919990038US2

Appl. No.: 09/827,278 Amdt. Dated April 21, 2008

Reply to Office Action of February 5, 2008

((CURRENTLY AMENDED) The apparatus of claim [[5]] 1 wherein the
resistance associated with each of the layers of said larger multilayer structure are such
that more current flows through said sensor outside said antiferromagnetic layer than
inside said antiferromagnetic layer.

- (ORIGINAL) The apparatus of claim 8 wherein said antiferromagnetic layer material is an oxide.
- (CURRENTLY AMENDED) The apparatus of claim [[5]] 1 wherein said pinned layer and/or said pinned keeper layer is a hard magnetic layer.
 - 11. (CURRENTLY AMENDED) An apparatus, comprising:
 - a) a disk: and
- b) a head configured to be disposed over said disk, said head comprising, a multilayer structure, said multilayer structure comprising:

a free laver:

having an antiferromagnetic layer between [[a]] first and second layer layers, the first and second layers neighboring the antiferromagnetic layer, the antiferromagnetic layer having exchange anisotropy that helps pin the magnetization direction of the first layer and helps pin the magnetization direction of the second layer, such that the first layer comprises a pinned layer and the second layer comprises a pinned keeper layer, the pinned layer producing first pole densities and resulting first field that are approximately canceled by a second field within the free layer resulting from second pole densities produced by the pinned keeper layer, wherein said magnetization direction of said first layer is antiparallel to said magnetization direction of said second layer.

- CANCELED
- 14. CANCELED
- 15 CANCELED

SJO919990038US2

Appl. No.: 09/827,278

Amdt. Dated April 21, 2008

Reply to Office Action of February 5, 2008

16. (CURRENTLY AMENDED) The apparatus of claim [[15]] 11 wherein the resistance associated with each of the layers of said larger multilayer structure is such that most of the current flow through said sensor flows through said antiferromagnetic layer.

17. (PREVIOUSLY PRESENTED) The apparatus of claim 16 wherein said

current flow is centered along the thickness of said antiferromagnetic layer.

18. (CURRENTLY AMENDED) The apparatus of claim [[15]] 11 wherein

the resistance associated with each of the layers of said larger multilayer structure are such that more current flows through said sensor outside said antiferromagnetic layer

than inside said antiferromagnetic layer.

19. (PREVIOUSLY PRESENTED) The apparatus of claim 18 wherein said

antiferromagnetic layer material is an oxide.

(WITHDRAWN) A method comprising:

cooling a multilayer structure having an antiferromagnetic layer from a temperature above an antiferromagnetic blocking temperature to a temperature below said antiferromagnetic blocking temperature while a first magnetic field is established within a first layer to pin the magnetization direction of said first layer and while a second magnetic field is established within a second layer to pin the magnetization

direction of said second layer.

21. (WITHDRAWN) The method of claim 20 wherein said first field is

antiparallel to said first field.

22. (WITHDRAWN) The method of claim 21 wherein said first and second

fields are formed by directing a current through said multilayer structure, said first and

second fields antiparallel to each other.

SJO919990038US2

- 4 -

Appl. No.: 09/827,278

Amdt. Dated April 21, 2008

Reply to Office Action of February 5, 2008

23. (WITHDRAWN) The method of claim 21 wherein said first and second fields are at least partially formed by directing more current outside said multilayer structure than inside said multilayer structure.

24. (WITHDRAWN) The method of claim 23 further comprising applying an external magnetic field, said external magnetic field fully forming said first and second magnetic fields when combined with fields produced by said current.