Linear Algebra and its Applications HW#9

- 1. If Q is an orthogonal matrix, so that $Q^{T}Q = I$, prove that $\det Q$ equals +1 or -1. What kind of box is formed from the rows (or columns) of Q?
- 2. What is the volume of the parallelepiped with the four of its vertices at (1, 1, 1), (0, 3, 3), (3, 0, 3) and (3, 3, 0)?
- 3. Let P be the projection matrix that projects any vector in \mathbb{R}^3 onto $x_1+x_2+x_3=0$. Find the eigenvalues and eigenvectors of P.
- 4. Suppose the matrix A has eigenvalues 0, 1, 2 with eigenvectors v_0 , v_1 , v_2 . Describe the nullspace and the column space. Solve the equation $Ax = v_1 + v_2$. Show that $Ax = v_0$ has no solution.
- 5. "Suppose $Ax=\lambda x$. If $\lambda=0$, then the eigenvector x is in the nullspace. If $\lambda\neq0$, then the eigenvector x is in the column space of A. The eigenvectors in the column space has r (rank of A) linearly independent vectors and the eigenvectors in the nullspace has n-r linearly independent vectors. Since n+(n-r)=n, any $n\times n$ matrix A must have n linearly independent eigenvectors." What is wrong in the statement to lead to the incorrect conclusion? Find a 2×2 example (from the internet) that shows the statement is incorrect. Is the statement correct when A is a projection matrix?
- 6. Show that the eigenvalues of A equal the eigenvalues of A^T . Show by an example that the eigenvectors of A and A^T are not the same.
- 7. A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2, Is this information enough to find: (a) the rank of B, (b) the determinant of B^TB , (c) the eigenvalues of B^TB ? How?
- 8. Which of these matrices cannot be diagonalized?

$$A_1 = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix} \quad A_2 = \begin{bmatrix} 2 & 0 \\ 2 & -2 \end{bmatrix} \quad A_3 = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$$

- 9. Find the matrix A whose eigenvalues are 1 and 4, and whose eigenvectors are (3, 1)^T, and (2, 1)^T, respectively. (Hint: $A = SAS^{-1}$)
- 10. Find all the eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

and write two different diagonalizing matrices S