Beweise zur Vorlesung Approximationsalgorithmen

gelesen von Joachim Spoerhase

\LaTeX Xvon Andre Löffler

November 14, 2013

Contents

1	Vorlesung 1.1 Beweis zu Approximationsalgorithmus zu VertexCover	2 2
2	Vorlesung	2
3	Vorlesung	2
4	Vorlesung 4.1 Beweis zur Approximationsgüte vom Mehrwege-Schnitt	2 2
5	Vorlesung5.1Beweis zu LP-Runden: Ansatz II5.2Beweis zu Relaxierter komplementärer Schlupf5.3Beweis zu Primal-Dual-Schema für SetCover	2 2 2 3
6	Vorlesung6.1Beweis zu Unabhängige Mengen in H^2 6.2Beweis zu Faktor 2 für metrisches k -Zentrum6.3Beweis zu Satz 6.36.4Beweis zu Satz 6.46.5Beweis zu Satz 6.5	3 3 3 3 4

1 Vorlesung

1.1 Beweis zu Approximationsalgorithmus zu VertexCover

- Zulässigkeit: Der Algorithmus liefert eine Knotenüberdeckung. Beweis durch Widerspruch: Wäre e eine Kante die nicht überdeckt ist, dann wäre auch $M \cup \{e\}$ ein Matching, im Widerspruch zur Nicht-Erweiterbarkeit von M.
- Güte: Es gilt $|M| \leq \text{OPT}$. Die ausgegebene Knotenmenge V' hat Größe $|V'| \leq 2|M| \leq 2\text{OPT}$, also $\frac{|V'|}{\text{OPT}} \leq 2$.

2 Vorlesung

3 Vorlesung

4 Vorlesung

4.1 Beweis zur Approximationsgüte vom Mehrwege-Schnitt

 A_i ist isolierender Schnitt für S_i . $\sum_{i=1}^k (A_i) = 2$ OPT, da jede Kante aus A genau zwei Komponenten K_i, K_j inzident.

Für
$$i = 1, \dots, k$$
 gilt $c(C_i) \le c(A_i)$.
 $c(C) \le (1 - \frac{1}{k}) \sum_{i=1}^{k} c(C_i) \le c(A_i) = 2(1 - \frac{1}{k}) \text{OPT}$

5 Vorlesung

5.1 Beweis zu LP-Runden: Ansatz II

- Zulässigkeit: Sei $e \in U$. Da e in $\leq h$ Mengen liegt und $\sum_{S\ni e} x_S \geq 1$ gilt, muss eine dieser Mengen $x_S \geq \frac{1}{h}$ erfüllen. Diese Menge wird von Algorithmus gewählt.
- Güte: Sei $S \in \mathbb{S}$. Der Algorithmus erhöht x_S um Faktor $\leq h$. Somit erhöht sich der Beitrag $x_S \cdot c_S$ dieser Menge zur Zielfunktion um Faktor h.

5.2 Beweis zu Relaxierter komplementärer Schlupf

Jede Variable y_i hat einen Geldbetrag von $\alpha\beta b_i y_i$. D.h. die Variablen haben insgesamt $\alpha\beta\sum_{i=1}^m b_i y_i$ Geldeinheiten. Für jedes Paar x_j, y_i von Variablen trasferiert y_i insgesamt $\alpha a_{ij}x_jy_i$ an x_j .

Jedes y_i besitzt dafü genügend Geld, da $\sum_j \alpha a_{ij} x_j y_i \leq \alpha \beta b_i y_i$ wegen des relaxierten dualen Komplementären Schlupfs (CS).

Jedes x_j bekommt $\alpha x_j \sum_i a_{ij} y_i \ge c_j x_j$ wegen des primalen Komplementären Schlupfs.

Insgesamt erhalten die x_j also mindestens den Betrag $\sum_{j=1}^n c_j x_j$.

5.3 Beweis zu Primal-Dual-Schema für SetCover

- Zulässigkeit: ✓
- Güte: es werden die relaxierten CS-Bedingungen mit $\alpha=1$ und $\beta=h$ erfüllt.

Beispiel: h=n [[Bild mit n-1 überlappendenen Mengen, die allen einen Knoten überdecken und zusätzlich den Knoten e_n gemeinsam haben und Kosten 1 besitzen, alle umschlossen von einer großen Menge mit Kosten $1+\varepsilon$]] $\frac{h}{1+\varepsilon} \approx h$

6 Vorlesung

6.1 Beweis zu Unabhängige Mengen in H^2

Betrachte kleinste dominierende Menge D in H. Dann lassen sich die Knoten von H mit |D| Sternen überdecken. $\Rightarrow H^2$ lässt sich mit |D| Cliquen überdecken. Jede dieser Cliquen enthält höchstens einen Knoten aus U. $\Rightarrow |U| \leq |D| = \mathrm{dom}(H)$

6.2 Beweis zu Faktor 2 für metrisches k-Zentrum

Sei $\{e_1, \dots, e_{j^*}\}$ die Menge der Kanten mit Kosten $\leq OPT$. Der Graph G_{j^*} enthält dominierende Menge der Größe $\text{dom}(G_{j^*}) \leq k$.

$$\Rightarrow |U_{j^*}| \le \text{dom}(G_{j^*}) \le k$$

\Rightarrow j \le j^* \Rightarrow c(e_j) = c(e_{j^*}) = OPT

6.3 Beweis zu Satz 6.3

 U_j ist dominierende Menge in G_j^2 der Größe $\leq k$. Sei $v \in V$ beliebig. Dann gibt es einen Knoten u, der v in G_j^2 dominiert. \Rightarrow es existiert ein u-v-Weg in G_j , der höchstens zwei Kanten durchläuft und dessen Länge $\leq 2 \cdot c(e_j) \leq 2 \cdot OPT$

6.4 Beweis zu Satz 6.4

Angenommen, es gäbe einen $(2 - \varepsilon)$ -Approximationsalgorithmus $A \Rightarrow$ reduzieren von dominierender Menge.

Eingabe: Graph $G = (V, E), k \le |V|$

Frage: Existiert eine dominierende Menge und Größe $\leq k$.

Betrachte einen vollständigen Graphen G' mit Knotenmenge V.

$$c(u, v) = \begin{cases} 1 \text{ falls } (u, v) \in E \\ 2 \text{ falls } (u, v) \notin E \end{cases}$$

- angenommen, es existiert eine dominierende Menge in G mit Größe $\leq k$. $\Rightarrow OPT(G') \leq 1 \Rightarrow A(G') \leq 2 \varepsilon$
- angenommen, $dom(G) > k \Rightarrow OPT(G') \ge 2 \Rightarrow A(G') \ge 2$
- \Rightarrow wir können dominierende Menge in Glösen $\mbox{\em \colored}$

Definition 1 (leichtester Knoten). Mit $S_H(u)$ sei der leichteste Knoten aus $N_H(u) \cup \{u\}$ bezeichnet.

Lemma 1 (Leichteste Dominierende Menge). Sei U unabhängige Menge in H^2 von $S := \{S_H(u)|u \in U\}$. Dann gilt $w(S) \leq wdom(H)$, wobei wdom(H) das Gewicht der leichtesten dominierenden Menge in H ist.

Proof. Beweis Sei D günstigste dominierende Menge in $H. \Rightarrow$ Knoten von H lassen sich durch Sterne mit Zentrum in D überdecken. Diese Sterne sind Cliquen in H^2 . Jede dieser Cliquen enthält höchstens einen Knoten aus U. Sei $u' \in U$ beliebig und $v \in D$ das Zentrum des Sterns, der u' überdeckt.

$$S_H(u) \le x(v) \Rightarrow w(S) \le w(D) = \text{wdom}(H)$$

6.5 Beweis zu Satz 6.5

 $c(e_j) \leq OPT$ analog zu Lemma 6.2. Sei $v \in V$ beliebig, v wird in G_j^2 von einem Knoten u' dominiert.

 \Rightarrow Weg von v zu uüber ≤ 2 Kanten und zu $S_{G_j}(u)$ über ≤ 3 Kanten. $\Rightarrow ALG \leq 3 \cdot c(e_j) \leq 3 \cdot OPT$