CSGE602055 Operating Systems CSF2600505 Sistem Operasi Week 08: Scheduling

Rahmat M. Samik-Ibrahim

University of Indonesia

http://os.vlsm.org/
Always check for the latest revision!

REV160 04-Sep-2018

Operating Systems 2018-2 (Room 3114) R/M (Tu/Th 13-15) \mid I (Tu/Th 15-17)

Week	Schedule	Topic	OSC10	
Week 00	04 Sep - 12 Sep 2018	Overview 1	Ch. 1, 18	
Week 01	13 Sep - 19 Sep 2018	Overview 2 & Scripting	Ch. 1, 2	
Week 02	20 Sep - 26 Sep 2018	Security, Protection, Privacy,	Ch. 16, 17	
		& C-language		
Week 03	27 Sep - 03 Oct 2018	File System & FUSE	Ch. 13, 14, 15	
Week 04	04 Oct - 10 Oct 2018	Addressing, Shared Lib, & Pointer	Ch. 9	
Week 05	11 Oct - 17 Oct 2018	Virtual Memory	Ch. 10	
Reserved	18 Oct - 19 Oct 2018			
Mid-Term	20 Oct - 27 Oct 2018	MidTerm (UTS): TBA		
Week 06	30 Oct - 05 Nov 2018	Concurency: Processes & Threads	Ch. 3, 4	
Week 07	06 Nov - 12 Nov 2018	Synchronization & Deadlock	Ch. 6, 7, 8	
Week 08	13 Nov - 21 Nov 2018	Scheduling	Ch. 5	
Week 09	22 Nov - 28 Nov 2018	Disks, BIOS, Loader, & Systemd	Ch. 11	
Week 10	29 Nov - 05 Dec 2018	I/O & Programming	Ch. 12	
Reserved	06 Dec - 14 Dec 2018			
Final	15 Dec - 22 Dec 2018	Final (UAS): TBA	This schedule is	
Extra	12 Jan 2019	Extra assignment	subject to change.	

The Weekly Check List

```
Resources: https://os.vlsm.org/
    ☐ (THIS) Slides — https://github.com/UI-FASILKOM-OS/
       SistemOperasi/tree/master/pdf/
    ☐ Demos — https://github.com/UI-FASILKOM-OS/
       SistemOperasi/tree/master/demos/
    ☐ Extra — BADAK.cs.ui.ac.id:///extra/
       Problems — rms46.vlsm.org/2/195.pdf, 196.pdf, ..., 205.pdf
☐ Text Book: any recent/decent OS book. Eg. (OSC10) Silberschatz
  et. al.: Operating System Concepts, 10<sup>th</sup> Edition, 2018.
☐ Encode your QRC with image size of approximately 250×250 pixels:
  "OS182 CLASS ID SSO-ACCOUNT Your-Full-Name"
  Special for Week 00, mail your embedded QRC to:
  operatingsystems@vlsm.org
  With Subject: OS182 CLASS ID SSO-ACCOUNT Your-Full-Name
☐ Write your Memo (with QRC) every week.
Login to badak.cs.ui.ac.id via kawung.cs.ui.ac.id for at least
  10 minutes every week. Copy the weekly demo files to your own home
  directory.
  Eg. (Week00): cp -r /extra/Week00/W00-demos/ W00-demos/
```

Agenda

- Start
- 2 Schedule
- 3 Agenda
- 4 Week 08
- Scheduling
- 6 CPU Burst: How Long (When)?
- MultiProcessor Schedulling
- The Two State Model
- The End

Week 08 Scheduling: Topics¹

- Preemptive and non-preemptive scheduling
- Schedulers and policies
- Processes and threads
- Deadlines and real-time issues

Week 08 Scheduling: Learning Outcomes¹

- Compare and contrast the common algorithms used for both preemptive and non-preemptive scheduling of tasks in operating systems, such as priority, performance comparison, and fair-share schemes. [Usage]
- Describe relationships between scheduling algorithms and application domains. [Familiarity]
- Discuss the types of processor scheduling such as short-term, medium-term, long-term, and I/O. [Familiarity]
- Describe the difference between processes and threads. [Usage]
- Compare and contrast static and dynamic approaches to real-time scheduling. [Usage]
- Discuss the need for preemption and deadline scheduling. [Familiarity]
- Identify ways that the logic embodied in scheduling algorithms are applicable to other domains, such as disk I/O, network scheduling, project scheduling, and problems beyond computing. [Usage]

¹Source: ACM IEEE CS Curricula 2013

Week 08: Scheduling

- Reference: (OSC10-ch05 demo-w08)
- Scheduling
 - Basic Concepts
 - WARNING: It's just a BURST
 - IO Burst
 - CPU Burst
 - CPU Burst vs. Freq (See next slide)
 - Criteria: Utilization, throughput, {turnaround, waiting, response} time.
 - (Burst) Algorithm
 - FCFS, SJF, RR, Priority, Multilevel Queue.
 - Preemptive / Non-preemptive (Cooperative) Scheduling
 - I/O Bound / CPU Bound Processes
- Thread Scheduling
 - User-level \rightarrow Process-Contention Scope (PCS): many to many/one.
 - $\bullet \ \, \mathsf{Kernel\text{-}level} \to \mathsf{System\text{-}Contention} \ \, \mathsf{Scope} \ (\mathsf{SCS}) \text{: one to one}.$
- Standard Linux Scheduling
 - Completely Fair Scheduler (CFS).
 - Real Time Scheduling.

CPU Burst: How Long (When)?

©2013 Silberschatz, Galvin and Gagne Operating System Concepts - 9th Edition

MultiProcessor Schedulling

- Asymmetric Multiprocessing vs. Symmetric Multiprocessing (SMP).
- Processor Affinity: soft vs. hard.
- NUMA: Non-Uniform Memory Access.
- Load Balancing
- Multicore Processors
- Real Time Schedulling: Soft vs. Hard.
- Big O Notation
 - O(1)
 - O(log N)
 - O(N)

The Two State Model

- CPU State I/O State CPU State . . .
 - n: processes in memory.
 - p: I/O time fraction.
 - p^n : probability n processes waiting for I/O.
 - $1 p^n$: CPU utilization of n processes.
 - $\left[\frac{(1-p^n)}{n}\right]$: CPU utilization of ONE processes.
- Example: $p = 60\% \Rightarrow$ CPU Utilization Per Process: $\left\lfloor \frac{1 (60\%)^n}{n} \right\rfloor$

CPU Utilization	tion Multiprogramming (%)				
N	1	2	3	4	5
Per Process	40	32	26	21	18

For 5 concurrent processes:
 If total time is 100 seconds; for each processs, the CPU time will be 18 seconds.

The End

- \square This is the end of the presentation.
- extstyle ext
- This is the end of the presentation.