CONCEPTOS GENERALES

1) A-2. Dado el circuito de la figura A-2, donde se utiliza un transistor TBJ de Si, tipo NPN. Se considera $v_s = \stackrel{\wedge}{V_s} sen(\omega t)$:

Fig. A-2

Fig. A-2a

a) Dibujar los circuitos equivalentes para continua y señal del amplificador (sin reemplazar el transistor por su modelo incremental en el circuito de alterna) y suponiendo los capacitores de acople de reactancia despreciable. Justificar por que en el circuito de alterna o señal
se admite que las fuentes de alimentación de continua se comportan como cortocircuitos.

6 lay - 2 play cap#3

2) A-6. En el circuito de la Fig. A-2 se reemplaza al TBJ por un MOSFET de canal N inducido donde:

$$V_T = + 2 \text{ V}$$
; $k' = (\mu_n \text{ C}'_{ox})/2 = 0.05 \text{ mA/V}^2$; $W/L = 10$; $\lambda = 0.008 \text{ V}^{-1}$ y se conoce:

$$V_{\text{GG}}$$
 = 4,45 V ; V_{DD} = 12V ; R_{D} = 2 K Ω ; R_{L} = 3 K Ω ; R_{G} = 4 M Ω ; R_{s} = 20 K Ω

(Redibujar el circuito completo con V_{GG} en lugar de V_{BB} , V_{DD} por V_{CC} , R_{G} por R_{B} y R_{D} por R_{C} .)

- a) Obtener la ecuación de la recta de carga estática en base al circuito de continua, hallando su pendiente y su ordenada y abscisa al origen. Trazarla en el mismo gráfico en que se construya un juego de características estáticas del transistor en el plano $I_D = f(V_{DS}; V_{GS}^*)$. Hallar el punto de reposo Q $(I_{DQ}; V_{DSQ})$, indicándolo sobre el diagrama.
 - Definir V_{DS} de estrangulamiento incipiente V_{DSE} y dibujar en el diagrama la curva que representa el lugar geométrico de los puntos que cumplen con esa condición.
- b) Obtener la ecuación de la recta de carga dinámica, hallando su pendiente y su ordenada y abscisa al origen. Trazarla en el mismo grafico del punto a).
- **3)** A-9. Para el circuito de la figura A-2, con $V_{BB}=6.7$ V; $V_{CC}=12$ V; $R_{C}=2$ K Ω ; $R_{L}=3$ K Ω ; $R_{B}=400$ K Ω ; $R_{S}=0.4$ K Ω ; transistor TBJ de Si, tipo NPN con: $\beta_{F}\approx\beta_{o}=200$; $V_{A}=120$ V; $r_{x}=50\Omega$:

En el circuito de señal dibujado en el problema **A-2**, reemplazar al transistor por su modelo circuital incremental o de pequeña señal, despreciando los efectos reactivos del transistor. Indicar todos los sentidos de referencia de corrientes y de tensiones referidas a común.

- a) Determinar las condiciones que permiten despreciar r_x , r_o y r_μ . Indicar si son aplicables a este caso aceptando un error del 10% respecto a la solución exacta.
- b) Hallar la expresión por inspección y el valor de la amplificación de tensión referida a bornes de base y emisor con las consideraciones del punto anterior: $A_v = v_o / v_i = v_{ce} / v_{be}$.
- c) Definir y hallar las expresiones por inspección y el valor de las impedancias de entrada vista desde el terminal de base $-R_{ib}$ y vista desde el generador de señal $-R_i$ (v_s ; R_s).
- d) Hallar las impedancias de salida vista desde el terminal de colector R_{oc} ("vista" desde R_{ca}) y vista desde la carga de señal útil - R_o ("vista" desde R_L).
- e) Hallar la expresión de la amplificación de tensión referida a la tensión que entrega el generador de excitación en vacío: $A_{vs} = v_o / v_s = v_{ce} / v_s$
- **4) A-10.** Repetir el problema **A-9** con el MOSFET del problema **A-6**. Analizar las similitudes y diferencias con el transistor bipolar y la diferencia de los valores en sus parámetros.
- 5) A-11. En el circuito del problema A-9:
 - a) Con $v_s = 0$, hallar:
 - I) la potencia de continua disipada en el colector del transistor P_d ($v_s=0$) = P_e -.
 - II) la potencia de continua disipada en R_c.
 - III) la potencia entregada por la fuente de alimentación Vcc -Pcc-.
 - IV) la potencia de continua entregada por la fuente V_{BB}. Compararla con la de III).
 - b) Se aplica una tensión de excitación $v_s = \hat{V}_s sen(\omega t)$ con una amplitud de 20 mV.

Admitiendo que el circuito se comporta linealmente para la señal alterna, justificar que:

$$\mathbf{i}_{\mathrm{C}} = \mathbf{I}_{\mathrm{C_{Q}}} + \mathbf{i}_{\mathrm{c}} = \mathbf{I}_{\mathrm{C_{Q}}} + \overset{\wedge}{\mathbf{I}_{\mathrm{c}}} \operatorname{sen}(\omega t) \qquad \qquad \mathbf{v}_{\mathrm{CE}} = \mathbf{V}_{\mathrm{CE_{Q}}} + \overset{\wedge}{\mathbf{v}_{\mathrm{ce}}} = \mathbf{V}_{\mathrm{CE_{Q}}} + \overset{\wedge}{\mathbf{V}_{\mathrm{ce}}} \operatorname{sen}(\omega t + \pi)$$

Determinar:

- I. la potencia media de alterna disipada en la carga $R_{ca} = R_{c}//R_{L}$ que en éste caso coincide con la entregada por el transistor entre colector y emisor P_{ce} -.
- II. la potencia media total entregada por la fuente de alimentación V_{cc}.
- III. la potencia media total disipada en colector del transistor $-P_d$ -.
- IV. la potencia media de excitación alterna que el generador de señal entrega al circuito de base diodo base-emisor: P_{be} -.
- c) Sobre el plano I_C-V_{CE}, trazar: las rectas de carga estática y dinámica e indicar las áreas que miden las potencias calculadas en los ítem I a III de a) y b). Definir rendimiento de colector της. Extraer conclusiones relativas al funcionamiento de un amplificador en clase A. Trazar las curvas correspondientes a potencia de disipación constante. ¿Qué utilidad tienen?.
- d) Indicar el significado de la ganancia de potencia del transistor: $G_p = P_{ce} / P_{be}$ y su relación con las amplificaciones de tensión y corriente.

- **6)** A-18. Para el amplificador de la Fig. A-9: $V_{BB}=2~V$; Transistor de Si NPN: $\beta_F=100~; V_{CE(sat)}\approx 0V$
 - a) Hallar el punto de reposo Q: (I $_{CQ}$;V $_{CEQ}$), I $_{BQ}$, V $_{EQ}$, V $_{BQ}$ y V $_{CQ}$ para:

I)
$$R_B = 100 \text{ K}\Omega$$
 II) $R_B = 50 \text{ K}\Omega$ III) $R_B = 5 \text{ K}\Omega$ IV) $R_B = 100 \Omega$

b) Trazar el lugar geométrico de los distintos puntos Q obtenidos sobre el plano $I_c - V_{CE}$ (curva de carga). Analizar la relación entre esta curva de carga y la RCE.

Fig. A-9

7) A-21. En el siguiente amplificador con MOSFET de canal N preformado, se conocen:

Fig. A-11

- a) Hallar el punto de reposo.
- b) Determinar la ecuación del lugar geométrico de los puntos correspondientes a los valores de V_{DSE} para los que se tiene *estrangulación incipiente*. Graficarlo en el diagrama $I_D V_{DS}$.
- c) Trazar las RCE y RCD sobre las características b). Indicar los valores de las abscisas y las ordenadas al origen de ambas. Obtener la $\hat{V_o}$ máxima sin recorte en ambos semiciclos.
- **8)** A-23. Con un MOSFET de canal inducido se construye el siguiente circuito, que se utiliza como atenuador con transferencia variable controlada por tensión. (k = 0,3 mA/V²; $V_T = +2 V$; $R=10 K\Omega$) Si se varía V_{GS} entre 2V y 10V, hallar los límites entre los cuales puede variar la transferencia de este divisor de tensión, para señales alternas de pequeña amplitud.

