ВикипедиЯ

Функция неопределённости

Материал из Википедии — свободной энциклопедии

Функция неопределённости (ФН) — двумерная функция $\chi(\tau,f)$, представляющая собой зависимость величины отклика согласованного фильтра на сигнал, сдвинутый по времени на τ и по частоте на Δf относительно сигнала s(t), согласованного с этим фильтром. Иными словами, она характеризует степень различия откликов фильтра на сигналы с различной временной задержкой (дальность) и частотой (радиальная скорость). Используется для анализа разрешающей способности сигналов по дальности и радиальной скорости в радиолокации.

Функция неопределённости представляет собой корреляционный интеграл

$$\chi(\tau, \Delta f) = \int_{-\infty}^{\infty} s(t) s^*(t - \tau) e^{i2\pi \Delta f t} dt, \tag{1}$$

где * — операция комплексного сопряжения; i — мнимая единица.

Содержание

Вывод выражения

Свойства функции неопределённости

Функции неопределённости некоторых сигналов

Идеальная ФН

Прямоугольный импульс

ЛЧМ импульс

Литература

Вывод выражения

Основной операцией при согласованной фильтрации является вычисление взаимнокорреляционного интеграла между принимаемым f(t) и ожидаемым (оптимальным для фильтра) s(t) сигналом

$$y\left(t
ight) =\int\limits_{-\infty }^{\infty }f\left(au
ight) s^{st }\left(au -t
ight) d au .$$

Положим, что принимаемый сигнал имеет некоторый доплеровский сдвиг Δf обусловленный скоростью цели и задаётся выражением $f(t) = s(t) \, e^{i2\pi\Delta ft}$. Тогда отклик согласованного фильтра определяется как

$$y\left(t
ight) =\int\limits_{-\infty }^{\infty }s\left(au
ight) e^{i2\pi \Delta f au }s^{st }\left(au -t
ight) d au .$$

Осуществив замену переменных t= au и au=t окончательно можно записать

$$\chi(au,\Delta f) = \int_{-\infty}^{\infty} s(t) s^*(t- au) e^{i2\pi\Delta f t} \, dt \, .$$

Следует отметить, что существуют и другие формы записи выражения для функции неопределенности, представляющие собой абсолютное значение выражения (1), либо его квадрат.

Свойства функции неопределённости

Максимальное значение ФН находится в точке начала координат $(au = 0, \Delta f = 0)$ и количественно равно

$$|\chi\left(au,\Delta f\right)|\leq |\chi\left(0,0
ight)|=E$$

где
$$oldsymbol{E}=\int\limits_{-\infty}^{\infty}\left|s\left(t
ight)
ight|^{2}dt$$
 — энергия сигнала.

По модулю ФН симметрична относительно начала координат

$$|\chi(\tau, \Delta f)| = |\chi(-\tau, -\Delta f)|.$$

. Объём квадрата модуля ФН является постоянным и равен E^2 .

$$\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}\left|\chi\left(au,\Delta f
ight)
ight|^{2}d au df=\!E^{2}$$
 .

Если S(t) является преобразованием Фурье от сигнала s(t), то согласно теореме Парсеваля функция неопределенности может быть представлена в виде

$$\chi(au,\Delta f) = \int_{-\infty}^{\infty} S^*(f) S(f-\Delta f) e^{-i2\pi f au} \, df$$
 .

Функции неопределённости некоторых сигналов

Идеальная ФН

Идеальная ФН представляет собой дельта функцию

$$\chi(\tau, \Delta f) = \delta(\tau)\delta(\Delta f)$$

имеющую бесконечное значение в точке (0,0) и нулевое во всех остальных случаях. Идеальная Φ Н обеспечивает наилучшую разрешающую способность двух бесконечно близко расположенных целей. Является математической идеализацией. Примером сигнала с идеальной ФН может быть сигнал с бесконечной шириной спектра.

Прямоугольный импульс

Модуль Φ Н нормированного прямоугольного импульса длительностью T, заданного как

$$s(t) = rac{1}{\sqrt{T}} \mathrm{rect}\left(rac{t}{T}
ight),$$

где **rect()** — прямоугольная функция, на основании выражения (1) имеет вид

Модуль ФН прямоугольного импульса

$$\left|\chi(au,\Delta f)
ight|=\left|\left(1-rac{\left| au
ight|}{T}
ight)rac{\sin(\pi T\Delta f\left(1-\left| au
ight|/T
ight))}{\pi T\Delta f\left(1-\left| au
ight|/T
ight)}
ight|.$$

Сечение Φ H по оси времени при $\Delta f=0$ определяется выражением

$$|\chi(au,0)| = egin{cases} 1 - rac{| au|}{T}, & | au| \leq T \ 0, & ext{otherwise}. \end{cases}$$

Сечение Φ H по оси частот при au=0 определяется выражением

$$|\chi(0,\Delta f)| = igg|rac{\sin(\pi T \Delta f)}{\pi T \Delta f}igg|.$$

ЛЧМ импульс

Пусть ЛЧМ импульс задан выражением

$$s(t) = rac{1}{\sqrt{T}} \mathrm{rect}\left(rac{t}{T}
ight) e^{i\pi\mu t^2}$$
 ,

где $\mu=\pm B/T$ — крутизна ЛЧМ; B — девиация частоты. Тогда модуль ФН определяется как

Модуль ФН ЛЧМ импульса

$$|\chi(au,\Delta f)| = \left|\left(1-rac{| au|}{T}
ight)rac{\sin(\pi T(\Delta f\pm B(au/T))\left(1-| au|\left/T
ight))}{\pi T(\Delta f\pm B(au/T))\left(1-| au|\left/T
ight)}
ight|,$$

при $|\tau| \leq T$.

Литература

- 1. *Дудник, П. И.* Авиационные радиолокационные комплексы и системы: учебник для слушателей и курсантов ВУЗов ВВС / П. И. Дудник, Г. С. Кондратенков, Б. Г. Татарский, А. Р. Ильчук, А. А. Герасимов. Под ред. П. И. Дудника. М.: Изд. ВВИА им. проф. Н.Е. Жуковского, 2006. 1112 с. ISBN 5-903111-15-7.
- 2. *Лёзин, Ю. С.* Введение в теорию и технику радиотехнических систем: Учеб. пособие для вузов. М.: Радио и связь, 1986. 280 с.
- 3. *Mahafza, B. R.* Radar Systems Analysis and Design Using MATLAB / Bassem R. Mahafza. CHAPMAN&HALL/CRC, 2000. 532 c. ISBN 1-58488-182-8.

Источник — https://ru.wikipedia.org/w/index.php?title=Функция_неопределённости&oldid=87056653

Эта страница в последний раз была отредактирована 13 августа 2017 в 18:14.

Текст доступен по <u>лицензии Creative Commons Attribution-ShareAlike</u>; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.