<u>תרגול – קצב גידול של פונקציות</u>

1. הוכח או הפרך את הטענות הבאות:

$$2n^4 + n = O(n^5)$$
 .

$$\sqrt{n} + \left(\frac{n}{\alpha}\right)^2 = \Theta(n^2)$$
 ...

$$\binom{n}{5} = \Omega(n^5)$$
 .

$$(\ln n^2)^n = O(2^n)$$
 .7

$$2^{\frac{n}{2}} = \Theta(2^n) \quad .$$
ה.

$$(n!)^{(n!)} = o(n^n) \quad .$$

עבור
$$1 < k \in N$$
 עבור ($\sqrt{\log n}$) $^{\log n} = \Omega(n^k)$. . .

ת.
$$1 < k \in N$$
 עבור $e^{\frac{1}{n}} = \Omega(n^k)$.ח

עבור
$$1 < k \in \mathbb{N}$$
 עבור $k^{\log n} = o(n^2)$.ט

$$(2 + \frac{1}{\ln n})^{n^2} = \Theta(3^n)$$

2. מצא הערכה אסימפטוטית (חסם הדוק) לפונקציות הבאות, הוכח!

$$(n^n + 3)^5$$
 .x

$$\sum_{k=1}^{n} k^2 \quad .$$

$$\binom{n}{4}$$
 .λ

$$\sum_{k=1}^{n} k^2$$
 ... $\sum_{k=0}^{n} \frac{n^{\log n}}{2^k}$... $\sum_{k=0}^{n} \frac{n^{\log n}}{2^k}$...

$$O$$
 מצא רק - $\sum_{i=1}^n \sum_{j=1}^n \frac{1}{i+j}$.ה

3. הוכח או הפרך את התכונות הבאות:

$$f+g=\Theta(g)$$
 אז $f=0$

$$f\cdot g=\Theta(g^2)$$
 אז $f=0(g)$ אם .כ.

טרנזיטיבי.
$$0(f)$$
 טרנזיטיבי.

$$0(f)^{O(f)} = O(f^f)$$
 :ד. לכל

4. לכל אחת מ 2 הפונקציות הבאות, קבע והוכח האם הראשונה גדולה מהשנייה, קטנה או שווה

$$g = n^{\log n}$$
 , $f = 2^n$.

$$g = n^2!$$
, $f = (n!)^2$.2

$$g=n^n$$
, $f=n!\cdot 2^n$.

$$g=3^n$$
 , $f=\lfloor \log n \rfloor !$.т

$$g = n^2!$$
 , $f = 2^{n!}$.ה

$$g=n!^n$$
 , $f=n^{n!}$.

$$g = \binom{n^2}{n}$$
, $f = \binom{2n}{n}^n$.r