Design and Modeling of Fluid Power Systems ME 597/ABE 591 Lecture 10

Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems

MAHA Fluid Power Research Center Purdue University

Contents

- Proportional valves servovalves
- Electromechanical actuators overview
- Pilot operated proportional valves
- Internal feedback systems
- Pressure flow metering characteristics

Experimental determination of:

- Flow gain, pressure gain
- Dynamic characteristics

- Linearization of pressure/flow characteristics

Proportional Valves

Circuit simplification

PURDUE

Velocity control

with one way restrictor valve

with proportional valve

Electromechanical actuators

as input device of proportional & servovalves

Proportional valves

Direct operated

Direct operated with internal closed position control loop

© Dr. Monika Ivantysynova

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Pilot operated proportional valves

Servovalve

Single and Two-stage electrohydraulic servovalves

or Jet Flapper system

Flapper nozzle system

PURDUE

Double jet flapper valve

Measured curve

Jet Flapper system

Good linear behavior

Servovalve with mechanical feedback

Servovalve with mechanical force feedback

Servovalve with hydraulic force feedback

Servovalve with electrical position feedback

Single stage servovalve

Pressure – flow curve measurement

Power Supply

Pressure – flow curve

Measurement of flow gain

Power supply

Measurement of pressure gain

Power Supply

Measurement of frequency response

Linearization of pressureflow curve

Using Taylor Series expansion

$$Q = B \cdot y \sqrt{\frac{1}{2}} \Phi_0 - p_L \cdot sign \Phi$$

$$Q = C_Q \cdot y - C_{Q,p} \cdot p_L$$

SV - Linear model

$$\ddot{y} + 2 d \omega_0 \cdot \dot{y} + \omega_0^2 \cdot y = \bigvee_{SV} \omega_0^2 \cdot i$$

$$Q_L = C_Q \cdot y - C_{Q,p} \cdot p_L$$

Valve controlled actuator

