Pracovní úkoly

- 1. Proměřte vstupní charakteristiku křemíkového tranzistoru BD 139 (NPN) v zapojení se společným emitorem pro nulový proud kolektorem ($R = \infty$) a odpor $R = 1000 \Omega$.
- 2. Proměřte výstupní charakteristiku tranzistoru BD 139 pro proudy bází I_B= 0,1 mA, 0,2 mA a 0,3 mA.
- 3. Změřte závislost kolektorového proudu I_{CE} na proudu bází I_{BE} pro kolektorové napětí $U_{CE} = 2 \ V$, 6 V a 10 V.
- 4. Pomocí lineární regrese určete činitel proudového zesílení α v zapojení se společným emitorem.

Teoretická část

Tranzistor je polovodičová součástka tvořená dvěma P-N přechody, existují tedy tranzistory typu NPN a PNP (v našem případě jsme použili tranzistor typu NPN). Z tranzistoru jsou vyvedeny tři elektrody (ke každému typu polovodiče jedna). Tyto elektrody se nazývají emitor, báze a kolektor. Tranzistor je možné zapojit různými způsoby, v našem případě použijeme zapojení se společným emitorem. Při tomto zapojení pracuje tranzistor jako zesilovač proudu. Velmi malé změny proudu v bázovém obvodu vyvolají velké změny proudu v kolektorové části. Takovéto zesílení proudu lze popsat činitelem proudového zesílení α. Pro tento činitel platí vzorec, dle [1]:

$$\alpha = \left(\frac{\Delta I_{CE}}{\Delta I_B}\right)_{U_{CE} = konst.} \tag{1}$$

Kde I_{CE} je velikost proudu v kolektorové části, I_B je velikost proudu v bázové části a U_{CE} je napětí v části kolektorové. Činitel α lze spočíst za pomocí lineární regrese. A to tak, že pokud na osu x vyneseme velikost proudu I_B a na osu y velikost proudu I_{CE} , pak směrnice grafu bude odpovídat činiteli α .

Tranzistor lze popsat vstupní a výstupní V-A charakteristikou. Vstupní charakteristika je určena závislostí bázového proudu I_B na napětí v bázové části obvodu U_B . Výstupní charakteristika je naopak určena závislostí kolektorového proudu I_{CE} na napětí v kolektorové části U_{CE} .

Metoda měření

Nejprve jsme měřili vstupní charakteristiku tranzistoru, použili jsme zapojení obvodu dle schématu 1. Napětí v kolektorové části jsme nastavili na 5 V. Charakteristiku jsme změřili pro odpor nastavený na 1000 Ω a pro odpor odpovídající nekonečnu jsme obvod v místě odporu rozepnuli.

Poté jsme proměřili výstupní charakteristiku tranzistoru, obvod byl zapojen dle schématu 2. Odpor jsme nastavili na 20000 Ω a měřili jsme pro různé proudy bází (0.1; 0.2; 0.3 mA).

Pro měření posledního úkolu jsme opět použili obvod zapojený dle schématu 2. Velikost bázového proudu jsme regulovali pomocí napětí na zdroji a také za pomocí odporové dekády.

Pomůcky

- Tranzistor BD 139 (NPN)
- Multimetry MXD 4660A (použit pro měření U_B a I_B)
- Multimetry Keithley 2100 (použity pro měření U_{CE} a I_{CE})
- Odporová dekáda
- Vodiče
- Laboratorní zdroj

Schémata

Schéma 1: zapojení se společným emitorem pro měření vstupní charakteristiky[1]

Schéma 2: zapojení se společným emitorem pro měření výstupní charakteristiky [1]

Výsledky měření

Laboratorní podmínky by neměly ovlivnit výsledky měření.

Graf č. 1 zachycuje vstupní charakteristiku tranzistoru, v grafu jsou pro srovnání uvedeny hodnoty pro obě velikosti odporu. Naměřené hodnoty jsou proloženy hladkou křivkou.

Graf 1: Vstupní charakteristika tranzistoru pro odpor $1000~\Omega$ a nekonečný odpor

Graf č. 2 obsahuje výstupní charakteristiku tranzistoru pro různé proudy bází. Graf č. 3 poté ukazuje výstupní charakteristiku v okolí počátku, hodnoty v tomto grafu jsou proloženy hladkou křivkou.

Graf 2: Výstupní charakteristika tranzistoru při $I_B = (0.1; 0.2; 0.3)$ mA

Graf 3: Výstupní charakteristika tranzistoru pro nízká napětí U_{CE} a různé proudy I_B

Grafy č. 4, 5 a 6 obsahují závislost kolektorového proudu I_{CE} na bázovém proudu I_B , při různém kolektorovém napětí U_{CE} . Naměřené hodnoty jsou proloženy přímkou, jejíž rovnice je v každém grafu uvedena.

Graf 4: Závislost kolektorového proudu na bázovém při kolektorovém napětí 2 V

Graf 5: Závislost kolektorového proudu na bázovém při kolektorovém napětí 6 V

Graf 6: Závislost kolektorového proudu na bázovém při kolektorovém napětí $10~\mathrm{V}$

Pro určení činitele proudového zesílení α jsme použili data pro všechna kolektorová napětí. Graf č. 7 zachycuje data použitá pro lineární regresi. Koeficient α jsme tedy určili jako (146.7 \pm 0.5). Chybu jsme určili jako chybu lineární regrese.

Graf 7: Data použitá pro určení koeficientu α

Diskuse

Chyba měření při určování vstupní charakteristiky byla daná jednak chybou přístrojů, jednak vlivem různých částí obvodu (odpor vodičů, nedokonalé kontakty...). Naměřená vstupní charakteristika odpovídá teoretické a v podstatě vypadá jako V-A charakteristika polovodičové diody.

Chyba měření výstupní charakteristiky nebyla ovlivněna přesností přístrojů, které byly velice přesné, ale spíše různými nedokonalostmi v obvodu. Naměřená výstupní charakteristika odpovídá teoretické.

Nepřesnost přístrojů neměla příliš velký vliv ani na chybu měření závislosti I_{CE} na I_B . I zde přesnost měření nepříznivě ovlivňovali nedokonalosti v obvodu. Z grafů 4-6 plyne, že se zvyšujícím se kolektorovým napětím U_{CE} se zvyšuje i činitel proudového zesílení α , což odpovídá zjištěné výstupní charakteristice (viz graf 2).

Závěr

Naměřené vlastnosti a charakteristiky odpovídají teoretickým předpokladům. Činitel proudového zesílení tranzistoru jsme určili jako:

$$\alpha = (146.7 \pm 0.5)$$

Literatura

[1] Měření vlastností tranzistoru. *Fyzikální praktikum* [online]. [cit. 31.12.2016]. Dostupné z: http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_203.pdf