2 Donner le nom de la grandeur réglée.	0,5 0,5	Α		
·	0,5			0,5
3 Donner le nom de l'organe de réglage.		Α		0,5
	0,5	Α		0,5
4 Donner le nom de la grandeur réglante.	0,5	В		0,375
5 Donner le nom d'une perturbation.	0,5	В		0,375
6 Donner le nom des éléments intervenants dans la boucle de régulation.	0,5	Α		0,5
7 Sur la capture d'écran ci-dessus, donner la valeur de la consigne.	0,5	Α		0,5
8 Sur la capture d'écran ci-dessus, donner la valeur de la mesure.	0,5	Α		0,5
9 En déduire la valeur de l'erreur statique.	1	Α		1
10 Enregistrer la réponse du système à un échelon de commande de 5%.	1	Α		1
11 Le système est-il stable ?	1	Α		1
12 Le système est-il intégrateur ?	1	В		0,75
13 Expliquer l'évolution de la mesure.	1	Α		1
14 Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ?	1	Α		1
Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?	1	С		0,35
Quel doit être le sens d'action du régulateur ? Justifier votre réponse.	1	Α		1
17 Enregistrer l'évolution de la mesure pour un gain égal au gain critique Ac.	1	Α		1
18 Donner la valeur du gain critique ainsi que celle de la période des oscillations.	1	С		0,35
19 En déduire les réglages du régulateur PID.	1	С		0,35
20 Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.	1	Α		1
Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.	1	Х		0
22 Déterminer des réglages du correcteur PID permettant une réponse à ±10% la plus rapide possible.	1			0
23 Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.	1			0
Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.	1			0
25 Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.	1	Note		0

Blanchon

TD2 Steamer - Régulation à un élément

2

Dans un premier temps, installer le logiciel <u>steamer</u> sur votre ordinateur. Lancer le logiciel pour répondre aux questions suivantes :

Le <u>fichier aide</u> pour bien débuter.

I. Analyse de la boucle

Q1 : Donner le nom de la boucle de régulation.	0.5
Régulation de niveau	
Q2 : Donner le nom de la grandeur réglée.	0.5
Niveau de la cuve	
Q3 : Donner le nom de l'organe de réglage.	0.5
LV	
Q4 : Donner le nom de la grandeur réglante.	0.5
FT2	
Q5 : Donner le nom d'une perturbation.	0.5
FT1	
Q6 : Donner le nom des éléments intervenants dans la boucle de régulation.	0.5
LV, LIC, LT	

II. Boucle ouverte

Attendre que la mesure se stabilise vers 50%, puis mettre le système dans l'état initial et manuel en cliquant sur les boutons :

On pourra régler le défilement sur 4s/carreau.

On pourra réinitialiser le graphe.

Q10: Enregistrer la réponse du système à un échelon de commande de 5%.

Q11: Le système est-il stable?

1

Non car X est en constante augmentation

Q12 : Le système est-il intégrateur ?

1

Le système est intégrateur car quand l'entrée reste constante alors la sortie niveau est une droite croissante.

Q13: Expliquer l'évolution de la mesure.

1

Au début on observe un tassement et par la suite la mesure augmente jusqu'a saturation

Q14 : Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ?

1

 $T(p=0) = l'infini \rightarrow Erreur statique nulle$

Q15 : Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?

1

A cause du système intégrateur

III. Réglage de la boucle - Méthode de Ziegler&Nichols

Q16 : Quel doit être le sens d'action du régulateur ? Justifier votre réponse.

Le procédé est direct donc le régulateur est inverse car a l'ouverture de la vanne la mesure augmente.

Q17 : Enregistrer l'évolution de la mesure pour un gain égal au gain critique A_c.

Q18 : Donner la valeur du gain critique ainsi que celle de la période des oscillations.

Le gain critique est 29

Q19: En déduire les réglages du régulateur PID.

Gain= 16, Ti(s) 49, Td(s)=0 PID MIXTE

Q20 : Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.

1

1

Q21: Mesurer les performances (temps de réponse à $\pm 10\%$, valeur du premier dépassement) de votre réglage. Faire apparaitre les constructions sur l'enregistrement précédent.

Q24: Mesurer les performances (temps de réponse à $\pm 10\%$, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.

déterminés.

?

Q25 : Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.

