0.1 Anelli di polinomi in più variabili

Vogliamo ora generalizzare il concetto di anello di polinomi ad un numero qualsiasi di variabili, anche infinito. Sia X un insieme non vuoto e sia $\mathcal{F}^{\times} = \mathcal{F}^{\times}(X,\mathbb{N})$ l'insieme delle funzioni $\alpha \colon X \to \mathbb{N}$ che hanno supporto finito.

Definizione

Sia X un insieme. Denotiamo con $M=\operatorname{mon}\{X\}$ l'<u>insieme dei monomi di X</u>, cioè $M=\{X^{\underline{\alpha}}:\underline{\alpha}\in\mathcal{F}^{\times}\}$ dove $X^{\underline{\alpha}}=\prod_{x\in X}x^{\underline{\alpha}(x)}$.

Poiché abbiamo scelto $\underline{\alpha}$ con supporto finito, osserviamo che ogni monomio di X è il prodotto di un numero finito di elementi di X, anche nel caso in cui X sia un insieme infinito. Inoltre, analogamente al caso dei polinomi in n variabili, M è un monoide commutativo ed esiste una corrispondenza biunivoca tra i monomi di M e le funzioni di \mathcal{F}^{\times} .

Sia R un anello commutativo e sia $\mathcal{F}^{\times}(\mathcal{F}^{\times},R)=\{f\colon \mathcal{F}^{\times}\to R: |\operatorname{supp}(f)|<\infty\}$, cioè l'insieme delle funzioni che associano ad ogni funzione di \mathcal{F}^{\times} un elemento dell'anello R, e che sono diverse da 0_R solo per un numero finito elementi di \mathcal{F}^{\times} . Al variare di $\underline{\alpha}\in\mathcal{F}^{\times}$, sia $r_{-}\in\mathcal{F}^{\times}(\mathcal{F}^{\times},R)$ la funzione che associa ad ogni $\underline{\alpha}\in\mathcal{F}^{\times}$ l'elemento $r_{\underline{\alpha}}\in R$. Osserviamo che possiamo definire un polinomio a variabili in X ponendo

$$f(X) = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} X^{\underline{\alpha}}.$$

Infatti, f(X) è la somma di un numero finito di monomi non nulli, ognuno con un numero finito di variabili e preceduto dal relativo coefficiente r_{α} .

Sia $R[X] = \left\{ \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} X^{\underline{\alpha}} : r_{\underline{-}} \in \mathcal{F}^{\times}(\mathcal{F}^{\times}, R) \right\}$. Presi due elementi $f(X) = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} X^{\underline{\alpha}}$ e $g(X) = \sum_{\beta \in \mathcal{F}^{\times}} s_{\underline{\beta}} X^{\underline{\beta}}$ di R[X], definiamo su R[X] le operazioni binarie di somma e prodotto

$$f(X) + g(X) = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} (r_{\underline{\alpha}} + s_{\underline{\alpha}}) X^{\underline{\alpha}}$$

$$f(X) \cdot g(X) = \sum_{\underline{\gamma} \in \mathcal{F}^{\times}} t_{\underline{\gamma}} X^{\underline{\gamma}}$$

dove abbiamo posto $\underline{\gamma} = \underline{\alpha} + \underline{\beta}$ e $t_{\underline{\gamma}} = \sum_{\underline{\alpha} + \underline{\beta} = \underline{\gamma}} r_{\underline{\alpha}} s_{\underline{\beta}}$. In modo del tutto analogo a quanto

visto nel caso di $R[x_1,\ldots,x_n]$, si dimostra che tali operazioni sono ben poste e che R[X] dotato di tali operazioni di somma e prodotto è un anello commutativo con elemento neutro il polinomio nullo $\sum_{\underline{\alpha} \in \mathcal{F}^{\times}} 0_{\underline{\alpha}} X^{\underline{\alpha}} = 0_R$ e unità il monomio banale $X^{\underline{0}} = 1_R$.

Definizione

Sia R un anello commutativo e sia X un insieme non vuoto. Allora, l'insieme R[X] è detto anello dei polinomi a coefficienti in R e a variabili in X.

¹Notare come a differenza dei polinomi in n variabili, ora richiediamo esplicitamente che tali funzioni $\underline{\alpha}$ abbiano supporto finito. Infatti, nel caso dei polinomi in n variabili, X è un insieme finito con n elementi, quindi ogni funzione $\underline{\alpha} \colon X \to \mathbb{N}$ ha in realtà supporto finito perché supp $(\underline{\alpha}) \subseteq X$, che è finito. Dunque, se $|X| < \infty$, non vi è differenza tra $\mathcal{F}^{\times}(X, \mathbb{N}) = \mathcal{F}(X, \mathbb{N})$.

Anche per gli anelli di polinomi in più variabili vale la Proprietà universale.

Teorema 1.3.1: Proprietà universale

Sia X un insieme e sia R un anello commutativo. Allora, per ogni anello commutativo $S \supseteq R$ e per ogni mappa $\varphi \colon X \to S$ esiste un unico omomorfismo di anelli $\phi \colon R[X] \to S$

tale che
$$\phi(X^{\underline{\delta}_x}) = \varphi(x) \, \forall x \in X \, e \, \phi_{|_R} = \mathrm{id}_R$$
, dove $\underline{\delta}_x \colon X \to \mathbb{N}$, $\underline{\delta}_x(y) = \begin{cases} 1 & \text{se } y = x \\ 0 & \text{se } y \neq x \end{cases}$

 $\label{eq:definition} \textit{Dimostrazione.} \text{ Siano } f = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} X^{\underline{\alpha}} \text{ e } g = \sum_{\beta \in \mathcal{F}^{\times}} s_{\underline{\beta}} X^{\underline{\beta}} \text{ due elementi di } R[X]. \text{ Per ognitive of } f = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} X^{\underline{\alpha}} \text{ e } g = \sum_{\beta \in \mathcal{F}^{\times}} s_{\underline{\beta}} X^{\underline{\beta}} \text{ due elementi di } R[X].$

monomio
$$X^{\underline{\alpha}} \in M$$
, sia $\phi(X^{\underline{\alpha}}) = \prod_{x \in X} \varphi(x)^{\underline{\alpha}(x)}$, e sia quindi $\phi(f) = \sum_{\alpha \in F^{\times}} r_{\underline{\alpha}} \phi(X^{\underline{\alpha}})$. Poiché

monomio $X^{\underline{\alpha}} \in M$, sia $\phi(X^{\underline{\alpha}}) = \prod_{x \in X} \varphi(x)^{\underline{\alpha}(x)}$, e sia quindi $\phi(f) = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} \phi(X^{\underline{\alpha}})$. Poiché $r_{\underline{\alpha}} \in R \subseteq S$ per ipotesi e $\phi(f) \in S$ perché somma di prodotti di elementi di S, che in quanto anello è chiuso rispetto a somma e prodotto, ϕ è ben definita. Inoltre, $\phi(X^{\underline{\delta}_x}) = \varphi(x)$ e $\phi(\rho) = \rho$ per ogni $\rho \in R$, quindi ϕ soddisfa le condizioni richieste. Mostriamo ora che è un omomorfismo di anelli. Infatti,

$$\phi\left(f+g\right) = \sum_{\alpha \in \mathcal{F}^{\times}} (r_{\underline{\alpha}} + s_{\underline{\alpha}}) \phi(X^{\underline{\alpha}}) = \sum_{\alpha \in \mathcal{F}^{\times}} r_{\underline{\alpha}} \phi(X^{\underline{\alpha}}) + \sum_{\alpha \in \mathcal{F}^{\times}} s_{\underline{\alpha}} \phi(X^{\underline{\alpha}}) = \phi(f) + \phi(g)$$

per la proprietà distributiva del prodotto rispetto alla somma, essendo S un anello, e

$$\phi(f \cdot g) = \sum_{\gamma \in \mathcal{F}^{\times}} \sum_{\underline{\alpha} + \underline{\beta} = \underline{\gamma}} r_{\underline{\alpha}} s_{\underline{\beta}} \ \phi(X^{\underline{\gamma}}) = \left(\sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} \phi(X^{\underline{\alpha}}) \right) \cdot \left(\sum_{\beta \in \mathcal{F}^{\times}} s_{\underline{\beta}} \phi(X^{\underline{\beta}}) \right) = \phi(f) \cdot \phi(g)$$

perché $\phi(X^{\underline{\gamma}}) = \prod_{x \in X} \varphi(x)^{\underline{\gamma}(x)} = \prod_{x \in X} \varphi(x)^{\underline{\alpha}(x)} \cdot \prod_{x \in X} \varphi(x)^{\underline{\beta}(x)} = \phi(X^{\underline{\alpha}}) \cdot \phi(X^{\underline{\beta}})$. Poiché $\phi(0_R) = 0_S$ e $\phi(1_R) = 1_S$, concludiamo che ϕ è un omomorfismo di anelli.

Mostriamo ora che ϕ è unico. Sia $\psi \colon R[X] \to S$ un omomorfismo di anelli tale che $\psi(X^{\underline{\delta}_x}) = \varphi(x)$ e $\psi_{|_{\mathcal{D}}} = \mathrm{id}_R$. Allora, per ogni monomio $X^{\underline{\alpha}} \in M$ vale

$$\psi(X^{\underline{\alpha}}) = \psi\left(\prod_{x \in X} x^{\underline{\alpha}(x)}\right) = \prod_{x \in X} \psi\left(x^{\underline{\alpha}(x)}\right) = \prod_{x \in X} \psi(X^{\underline{\delta}_x})^{\underline{\alpha}(x)} = \prod_{x \in X} \varphi(x)^{\underline{\alpha}(x)} = \phi(X^{\underline{\alpha}}).$$

Poiché ψ è un omomorfismo, per ogni $f=\sum_{\alpha\in\mathcal{F}^{\times}}r_{\underline{\alpha}}X^{\underline{\alpha}}\in R[X]$ si ha che

$$\psi(f) = \psi\left(\sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} X^{\underline{\alpha}}\right) = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} \psi(r_{\underline{\alpha}} X^{\underline{\alpha}}) = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} \psi(r_{\underline{\alpha}}) \psi(X^{\underline{\alpha}}) = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} \phi(X^{\underline{\alpha}}) = \phi(f)$$

essendo $\psi(r_{\underline{\alpha}})=r_{\underline{\alpha}}$ perché $r_{\underline{\alpha}}\in R$ e $\psi(X^{\underline{\alpha}})=\phi(X^{\underline{\alpha}})$ per quanto appena mostrato. Dunque, ψ coincide con ϕ , che risulta quindi essere unico.

In modo del tutto analogo al Teorema 1.1.4 è possibile mostrare che, a meno di isomorfismi, R[X] è l'unico anello contenente R avente questa proprietà.

 $[\]frac{1}{2}\underline{\delta}_x$ è la funzione tale che per ogni $x \in X$ si abbia $X^{\underline{\delta}_x} = x$. Infatti, $X^{\underline{\delta}_x} = \prod_{x \in X} y^{\underline{\delta}_x(y)} = x^{\underline{\delta}_x(x)} = x^1 = x$ perché tutti gli altri termini del prodotto hanno esponente 0, essendo per definizione $\underline{\delta}_x(y) = 0$ se $y \neq x$.

Sia R[x] l'anello dei polinomi a coefficienti in R nella variabile x. Possiamo considerare R[x] stesso come anello dei coefficienti per l'anello dei polinomi nella variabile y, cioè

$$(R[x])[y] = \left\{ \sum_{i=0}^{n} f_i y^i : f_i \in R[x], n \in \mathbb{N} \right\}.$$

Poiché ogni polinomio di (R[x])[y] può essere visto come un polinomio in due variabili di R[x,y] e ogni polinomio di R[x,y] può essere pensato come un polinomio di (R[x])[y] raccogliendo i termini dello stesso grado in y, questo suggerisce che $(R[x])[y] \simeq R[x,y]$.

Esempio. Sia $f(y)=(x^2+1)y^2+(2x)y+3\in (\mathbb{Z}[x])[y]$. Allora, possiamo vedere f(y) come un polinomio in due variabili $g(x,y)=x^2y^2+y^2+2xy+3\in \mathbb{Z}[x,y]$. Viceversa, preso $p(x,y)=xy^2+2xy+3y+4\in \mathbb{Z}[x,y]$, raccogliendo i termini dello stesso grado in y possiamo pensare p(x,y) come un polinomio $q(y)=(x)y^2+(2x+3)y+4\in (\mathbb{Z}[x])[y]$. \square

In generale, se X e Y sono insiemi non vuoti e (R[X])[Y] è l'anello dei polinomi a coefficienti in R[X] e a variabili in Y, detta $X \sqcup Y$ l'unione disgiunta, vale il teorema seguente.

Teorema 1.3.2

Sia R un anello commutativo e siano X e Y non vuoti. Allora, $R[X \sqcup Y] \simeq (R[X])[Y]$.

Dimostrazione. Sia S un anello commutativo tale che $R \subseteq R[X] \subseteq S$ e sia $\varphi_X \colon X \to S$ definita come $\varphi_X(x) = X^{\underline{\delta}_x}$. Presa una qualunque funzione $\varphi_Y \colon Y \to S$, sia $\widetilde{\varphi} \colon X \sqcup Y \to S$ l'unica mappa tale che $\widetilde{\varphi}_{|X} = \varphi_X$ e $\widetilde{\varphi}_{|Y} = \varphi_Y$. Allora, per il Teorema 1.3.1 esiste un unico omomorfismo $\widetilde{\phi} \colon R[X \sqcup Y] \to S$ tale che $\widetilde{\phi}(Z^{\underline{\delta}_z}) = \widetilde{\varphi}(z)$ per ogni $z \in X \sqcup Y$ e $\widetilde{\phi}_{|R} = \mathrm{id}_R$. Per ogni $\underline{\alpha} \in \mathcal{F}^\times(X, \mathbb{N})$, sia $\underline{\widetilde{\alpha}} \in \mathcal{F}^\times(X \sqcup Y, \mathbb{N})$ l'unica funzione tale che $\underline{\widetilde{\alpha}}_{|X} = \underline{\alpha}$ e $\underline{\widetilde{\alpha}}_{|Y} = \underline{0}$. Allora, possiamo pensare ogni monomio $X^{\underline{\alpha}}$ di R[X] come monomio $Z^{\underline{\widetilde{\alpha}}}$ di $R[X \sqcup Y]$, da cui

$$\widetilde{\phi}(Z^{\underline{\tilde{\alpha}}}) = \widetilde{\phi}\left(\prod_{z \in X \sqcup Y} z^{\underline{\tilde{\alpha}}(z)}\right) = \prod_{z \in X \sqcup Y} \widetilde{\phi}\left(z^{\underline{\tilde{\alpha}}(z)}\right) = \prod_{z \in X \sqcup Y} \widetilde{\phi}\left(Z^{\underline{\delta}_z}\right)^{\underline{\tilde{\alpha}}(z)} = \prod_{z \in X \sqcup Y} \widetilde{\varphi}(z)^{\underline{\tilde{\alpha}}(z)}$$

$$= \prod_{x \in X} \varphi_X(x)^{\underline{\alpha}(x)} \cdot \prod_{y \in Y} \varphi_Y(y)^{\underline{0}} = \prod_{x \in X} (X^{\underline{\delta}_x})^{\underline{\alpha}(x)} \cdot 1_R = X^{\underline{\alpha}}$$

per come abbiamo definito $\widetilde{\varphi}$ e $\underline{\widetilde{\alpha}}$ ed usando il fatto che $\widetilde{\phi}$ è un omomorfismo. Quindi, preso $f = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} X^{\underline{\alpha}} \in R[X]$, pensando f come elemento $\widetilde{f} = \sum_{\overline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\widetilde{\alpha}}} Z^{\underline{\widetilde{\alpha}}} \in R[X \sqcup Y]$ si ha che

$$\widetilde{\phi}(\widetilde{f}\,) = \sum_{\underline{\widetilde{\alpha}} \in \mathcal{F}^{\times}} \widetilde{\phi}(r_{\underline{\widetilde{\alpha}}}) \widetilde{\phi}(Z^{\underline{\widetilde{\alpha}}}) = \sum_{\underline{\widetilde{\alpha}} \in \mathcal{F}^{\times}} r_{\underline{\widetilde{\alpha}}} \, \widetilde{\phi}(Z^{\underline{\widetilde{\alpha}}}) = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} X^{\underline{\alpha}} = f$$

perché $\widetilde{\phi}(r_{\underline{\widetilde{\alpha}}}) = r_{\underline{\widetilde{\alpha}}}$ essendo $\widetilde{\phi}_{|R} = \mathrm{id}_R$, da cui $\widetilde{\phi}_{|R[X]} = \mathrm{id}_{R[X]}$. Inoltre, per ogni $y \in Y$ si ha che $\widetilde{\phi}(Z^{\underline{\delta}_y}) = \widetilde{\varphi}(y) = \varphi_Y(y)$. Poiché $R[X \sqcup Y]$ è un anello commutativo contenente R[X] che soddisfa la proprietà universale di (R[X])[Y], per la generalizzazione del *Teorema 1.1.4* possiamo effettivamente concludere che $R[X \sqcup Y] \simeq (R[X])[Y]$.

Ricordiamo che l'unione disgiunta di una famiglia di insiemi $\{A_i\}_{i\in I}$ è l'insieme $\bigsqcup_{i\in I} A_i = \bigcup_{i\in I} (A \times \{i\})$. d esempio, presi $A_0 = \{3,4,5\}$ e $A_1 = \{5,6\}$, si ha che $A_0 \sqcup A_1 = \{(3,0),(4,0),(5,0),(5,1),(6,1)\}$.

Ad esempio, presi $A_0 = \{3,4,5\}$ e $A_1 = \{5,6\}$, si ha che $A_0 \sqcup A_1 = \{(3,0),(4,0),(5,0),(5,1),(6,1)\}$.

⁴Infatti, abbiamo appena mostrato che per ogni anello $S \supseteq R[X]$ e per ogni mappa $\varphi_Y \colon Y \to S$, esiste un unico omomorfismo $\widetilde{\phi} \colon R[X \sqcup Y] \to S$ tale che $\widetilde{\phi}(Z^{\underline{\delta}_y}) = \varphi_Y(y)$ per ogni $y \in Y$ e $\widetilde{\phi}_{|R[X]} = \mathrm{id}_{R[X]}$.

Nel caso in cui l'insieme delle variabili sia finito, vale il corollario seguente.

Corollario 1.3.3

Sia *n* un intero positivo. Allora, $R[x_1, ..., x_n] \simeq (\cdots ((R[x_1])[x_2])\cdots)[x_n]$.

Dimostrazione. Procediamo per induzione sul numero n di variabili. Chiaramente, se n=1 allora $R[x_1] \simeq R[x_1]$. Supponiamo quindi che la tesi sia vera per un certo intero $n \geq 1$. Detti $X = \{x_1, \dots, x_n\}$ e $Y = \{x_{n+1}\}$, per il Teorema 1.3.2 si ha che $R[X \sqcup Y] \simeq (R[X])[Y]$ da cui $R[x_1, \dots, x_{n+1}] \simeq (R[x_1, \dots, x_n])[x_{n+1}] \simeq ((\cdots ((R[x_1])[x_2])\cdots)[x_n])[x_{n+1}]$.

Possiamo quindi estendere agli anelli di polinomi in più variabili anche la *Proposizione 1.1.1*. Per fare ciò, osserviamo innanzitutto che ogni polinomio di R[X] è la somma di un numero finito di monomi non nulli, ognuno con un numero finito di variabili. Dunque, ogni polinomio di R[X] può essere pensato come un polinomio in un numero finito di variabili, o meglio, per ogni $f \in R[X]$ esiste un sottoinsieme delle variabili $X_f \subseteq X$ finito tale che $f \in R[X_f]$.

Proposizione 1.3.4

Sia X un insieme non vuoto e sia R un dominio di integrità. Allora, anche l'anello dei polinomi R[X] è un dominio di integrità.

Dimostrazione. Siano $f,g \in R[X]$ e siano $X_f,X_g \subseteq X$ finiti tali che $f \in R[X_f]$ e $g \in R[X_g]$. Osserviamo innanzitutto che $X_f \cup X_g$ è un sottoinsieme finito di X e $f \cdot g \in R[X_f \cup X_g]$. Dunque, detto $X_f \cup X_g = \{x_1,\ldots,x_n\}$, per dimostrare che R[X] è un dominio di integrità è sufficiente provare che $R[x_1,\ldots,x_n]$ è un dominio di integrità. Per fare ciò, procediamo per induzione sul numero di variabili. Se n=1, per la Proposizione 1.1.1 sappiamo che $R[y_1]$ è un dominio di integrità. Supponiamo quindi che la tesi valga per un certo intero $n \geq 1$. Allora, per il Corollario 1.3.3 si ha che $R[y_1,\ldots,y_{n+1}] \simeq (R[y_1,\ldots,y_n])[y_{n+1}]$, ed essendo $R[y_1,\ldots,y_n]$ un dominio di integrità per ipotesi induttiva, per la Proposizione 1.1.1 anche $(R[y_1,\ldots,y_n])[y_{n+1}]$ è un dominio di integrità, da cui lo è pure $R[y_1,\ldots,y_{n+1}]$. Dunque, R[Y] è un dominio di integrità per ogni insieme finito Y, ed in particolare lo è per $Y = X_f \cup X_g$. Per l'arbitrarietà di $f,g \in R[X]$, possiamo concludere che R[X] è un dominio di integrità.

Concludiamo con un'osservazione che acquisirà importanza quando passeremo allo studio dell'estensione di campi. Preso un anello commutativo R e un qualunque oggetto $x \notin R$, l'anello dei polinomi R[x] è il più piccolo anello contenente R e x. Infatti, se S è un anello contenente R e x, per la chiusura di S rispetto a somma e prodotto esso conterrà tutte le potenze non negative $\{x^0, x^1, x^2, ...\}$ di x e tutte le combinazioni lineari tra potenze di x ed elementi di R, cioè tutti gli elementi della forma $a_n x^n + ... + a_1 x + a_0$ con $a_0, ..., a_n \in R$. In generale, se X è un insieme non vuoto, possiamo quindi vedere R[X] come la più piccola "estensione" di R contenente X, cioè come il più piccolo anello contenente sia R che X.

⁵Più formalmente, preso $f = \sum_{\underline{\alpha} \in \mathcal{F}^{\times}} r_{\underline{\alpha}} X^{\underline{\alpha}} \in R[X]$ sappiamo che $\Omega_f = \operatorname{supp}(r_{-}) \subseteq \mathcal{F}^{\times}$ è finito, quindi

esiste solo un numero finito di funzioni $\underline{\alpha} \in \mathcal{F}^{\times}$ per cui il monomio $X^{\underline{\alpha}}$ ha un coefficiente $r_{\underline{\alpha}}$ non nullo. Poiché ogni $\underline{\alpha} \in \mathcal{F}^{\times}$ ha supporto finito, $X_f = \bigcup_{\underline{\alpha} \in \Omega_f} \operatorname{supp}(\underline{\alpha})$ è finito in quanto unione finita di insiemi finiti.

⁶Se il polinomio $f \cdot g$ si annulla in R[X], allora si annulla anche pensato come polinomio di $R[X_f \cup X_g]$. Dunque, se $R[X_f \cup X_g]$ è un dominio di integrità per ogni $f,g \in R[X]$, allora anche R[X] deve essere un dominio di integrità. Infatti, se esistessero $f,g \in R[X]$ divisori dello zero, per quanto appena detto essi sarebbero divisori dello zero anche in $R[X_f \cup X_g]$, il che contraddice la definizione di dominio di integrità.