Agenda 04/20:

- Concatenated front and back torso curves:
 - Rescaled curve coordinates to align the deepest point of each curve with the corresponding "Depth" measurement in our dataset
 - Used predicted coefficients, along with the depth and anterior-posterior-length measurements, to produce plots of the front and back curves, and combined them to create a complete curve

Training Back R-Square:	[0.24]	0.41	0.52	0.43]
Testing Back R-Square:	[0.05	0.17	0.31	0.34]
Training Front R-Square:	[0.58	0.4	0.63	0.41]
Testing Front R-Square:	[0.38	0.22	0.33	0.33]

- Found inconsistencies between the anterior-posterior-length measurements in the dataset and the values calculated from the rescaled plot (to be discussed during next meeting)
- PCA and K-means for African American and White group;
- Heatmap across different races display;
- Logistic Regression and Random Forest race prediction;
- Report progress check.

Notes 04/20:

To-do:

- Create a list of the inconsistencies between the anterior-posterior length in the original dataset and in the predicted values (percentage errors)
 - These inconsistencies may not affect the analysis much, but it's still important to find their source
- What is the heatmap telling us?
 - Dendrograms tell us the similarities between features
 - The first four features share characteristics, and so do the last eight features
 - Cluster is not telling us the features have good predictive ability
- o Produce same results on the imbalanced data set
 - Consider plotting a Precision Recall (PR) Curve
- Logistic regression does not allow for interactions could explain why it is not performing as well as Random Forest and XG Boost methods
- o Repeat analysis for White vs. As. American
- Leave races with small sample sizes out leave a note in "Limitations" section on report
- Comment from Dr. Basu: As long as you reproduce some of the analyses (e.g. the logistic and RF fit) on White-Asian, we should be good on the analysis fronts.
 Some of the caveats such as spline fits, discrepancy in anterior-posterior distance, could be listed as potential limitations but not necessarily addressed in this report.

Agenda 03/30:

- PCA and K-means
- Logistic regression race prediction
- Random Forest race prediction
- Heatmap across African American and White group

Notes 03/30:

- Use R^2 values for predicted curve performance in addition to MAPE (sensitive to small values)
- Don't be alarmed by large MAPE value could be a good thing; may be additional information embedded in the curves, predicted coefficients don't necessarily need to equal the true coefficients
- Remove race as a variable from heatmaps
- Normalize variables properly before creating heatmap (don't use min/max values)
- Presentation/Report
 - o Include boxplots in presentation
 - O Share presentation with Drs. Basu and Baytar
 - o Final presentation will be in a recorded format

Agenda 03/23:

- Curve Fitting
 - o Discuss:
 - Literature Reviews;
 - Prediction of coefficients;
 - Predictors:
 - o BMI, Height, Max_Hip, Anterior_posterior_Length, Depth, Crotch_curve_length_at_back_waist

	Coef1	Coef2	Coef3	Coef4
MAPE_train	0.1399	0.2387	0.1204	1.4367
MAPE_test	0.1573	0.2973	0.1517	0.3978

- Graphs of the predicted curve
 - MPS_Curve/Analysis/Curve_Fitting/03_23_23_Curve_Fitting/Plot /Predict_Curve
- o Ask questions:
 - Assure the fitting curves going below or above actual curves at the bottom part?

Notes 03/23:

- Use K-means / theoretical clustering to group subjects based on features (selected 4 features, all features, etc.)
- See if there is any overlap in clustering for different ethnic groups (Race)
- Look into using heat maps for more than 3 predictors
- Logistic regression, random trees consider these as well.
- Use principal component analysis as well.
- Area under ROC curve (R package: AUC)

Agenda 03/16:

- Curve Fitting
 - o Discuss:
 - Literature Reviews that we have done so far.
 - o Ask questions:
 - Are there any viable smoothing techniques other than conreg() that Dr. Basu would recommend?
 - How to avoid the fitting curves going below actual curves at the bottom part?

Notes 03/16:

- Literature reviews
 - For each paper, consider the question the researchers are asking!
 - Dr. Baytar will (hopefully) provide more guidance about what to look for in each paper
 - Show the client you are interested/invested in his/her domain of expertise.
 - For each paper, consider:
 - 1. What problem are you solving?
 - 2. Why is this problem important/significant to solve?
 - 3. If it is SO important, why has not people solved it yet? In other words, what is hard/challenging about this problem?
 - 4. What is your solution?
 - 5. How did you know it worked (simulated data: matched ground truth? real data: did better than existing alternatives?)
 - Prepare a bullet-point summary of each.
 - (Second paper had descriptions on metrics)
 - Consolidate all summaries into one file!

Agenda 03/09:

- Curve Fitting
 - o Discuss:
 - Removal of non-convexity from curves and whether the curves look acceptable to Dr. Baytar
 - How the fitted curves change for different model parameters
 - How to find the relationship between the coefficients and waist features
 - o Ask questions:
 - Conreg function in R was giving us trouble are there alternative methods for removing non-convexity?
 - How should we assess the goodness of fit of our curves? RMSE?

Notes 03/09:

- Highlights from papers recently uploaded to Box:
 - o Focus on paper written by Xu
- Paper summary:
 - o 1 to 2 slides summarized high level what those papers wrote about (Bullet points)
 - o May include some screenshots from the papers
- Curve fitting:
 - o Trade-off between Complexity and error
 - o 90% fit is ok

Next step:

- Literature Review
- Sent some Conreg function sample codes to Dr. Basu

Agenda 03/02:

- Curve Fitting
 - o fixed the model so that the model can fit the starting (top) point well
 - o reduced the number of parameters to 5
 - o uploaded the code and all the plots to the box under Analysis/03_02_23_Curve_Fitting folder

Notes on meeting 03/02:

- Generate spreadsheet with four curve parameters for each individual
- Don't use Google Docs in Box anymore; instead use Docx (Word)
- Provide the ID number in each graph of the lower torso curve
- Try to fit some curves to the torso plots exactly (or almost exactly)
- Members other than Fanjun: use conreg() function to modify curves to remove non-convexity
- Communicate with Fatma; ask her to answer two questions (reminder email)
- Metrics for assessing the goodness of fit of the curve (RMSE)

Agenda 02/23:

- Review univariate summary statistics and pairwise correlations between major explanatory variables
- Present histograms for each variable and for the residuals in the linear models
- Show pairwise correlation plots and a correlation table for numerical explanatory variables
- Discuss new feature for the difference between the length of the front and back crotch and our spline model
- Talk about new findings after adding the weight variable and compare the BMIs of different races

Notes on meeting 02/23:

- Put the notes and agenda on the same file
 - Makes it more continuous
- Recap what we discussed last meeting first
- Residual plot to check error (systematic or randomness)
- QQ plot for better diagnostic for normality
- If highly correlated, we can't trust that variable even it is statistically significant
- 11 pieces is too complex
- tradeoff between interpretation and accuracy
- Starting point (Top) match!
- Try to use four numbers of polynomials to represent the curves, and to see if the numbers change across different BMI, Race, etc.
- Clean data (check for NA values) once and for all
- Knitting is a large advantage if possible, go through knitted file rather than the Rmd file itself
- Start writing up report
- Everything should be uploaded to Box!

Agenda 02/16:

Discuss tasks:

- Prepare univariate summary statistics and pairwise correlations.
 - o Prepare histograms of each variable
 - Look at the residuals is there systematic error or randomness?
- Create a feature with front/back crotch (difference between them, indicator function) model the asymmetry
- Incorporate both **height and weight** in model
- (Split curve at midpoint and rotate by 90 degrees, fit polynomial function to each part)

Ask questions:

- How should the splines be constructed?
 - o How many knots in each region?

Agenda 02/09:

- Present on progress made
 - Try to find the relationships between numerical dependent variables (find the association between BMI, Height and columns D-I)
 - Import curve files into R
 - Do paired t test to see BMI difference in different races
- Next plans
 - Extract features from the curve
 - Create some new features from the curve (Angle, slope, length on part of the curve, convex/concave)
 - create other variables like weight?
 - Divide the curve into 3 parts: front, middle, back
- o Ask Dr. Baytar
 - How were the quantitative variables collected? (G-K columns)
 - How is the curve generated? (by side? Front? Back?)
 - What does the curve represent in the real world?
 - How does the .txt file connect to the .csv file?
 - Do the numbers stand for the subject ID? Some are missing.
 - What's the unit for each variable?

Notes on meeting 02/09:

- Dr. Baytar had a personal conflict
- Presented on linear regression
 - Crotch curve length:
 - BMI, height had positive coefficients (and significant) makes sense
 - R^2 is around 0.5 (reasonably strong fit)
 - o Depth:
 - Similar patterns positive association with BMI, max hip
 - Significant effects from racial groups (Asian, Other)
 - Even adjusting for other vars, we see some difference in race
 - Anterior/posterior length:
 - RaceAsian and RaceWhite are significant; why is RaceWhite negative here
 - High R^2 (around 0.88)
 - o Depth and Anterior-posterior length have positive correlation.
 - There is still significant variability in the body types of two people that have the same BMI and height
 - Good practice for multivariate analysis: prepare univariate summary statistics and pairwise correlations.
 - Prepare histograms of each variable
 - Look at the residuals is there systematic error or randomness?
 - Create a feature with front/back crotch (difference between them, indicator function)
 model the asymmetry
 - Incorporate both height and weight in model
- Questions for / answers from Dr. Baytar:
 - Brief description of dependent variables:
 - Anterior/posterior length: straight-line distance between front and back where LH side is front, RH is back
 - Crotch curve length / Trochanter: length of entire torso curve (from front to back)
 - Sum of front crotch and back crotch
 - Max_hip: hip circumference at the widest point of lower body
 - Depth: horizontal line to lowest point
 - Midpoint: point that splits front and back crotch (?)
 - O What to look for in a curve:
 - Flatness length of flat region vs. entire length
 - Abdomen part is easily squished
 - Units for independent variables:
 - Height in mm
 - Weight in kg

Task list:

- Prepare univariate summary statistics and pairwise correlations.
 - o Prepare histograms of each variable
 - o Look at the residuals is there systematic error or randomness?
- Create a feature with front/back crotch (difference between them, indicator function) model the asymmetry
- Incorporate both **height and weight** in model
- (Split curve at midpoint and rotate by 90 degrees, fit polynomial function to each part)

Agenda 02/02:

- 1. Review the five tasks we completed and discuss improvements to be made
 - a. Starting draft report Aristotle
 - b. Reviewing and summarizing data in spreadsheets Diane
 - c. Script in R that appends spreadsheets for different body types Zongjie, Wenxuan
 - d. Script in R Markdown that provides summary data Aristotle
 - e. Summarizing articles Aristotle (Gu), Fanjun (McKinney)
- 2. Discuss next steps on project
 - a. Begin data analysis
 - i. Plot out data
 - ii. Determine which techniques we want to use regression (linear, polynomial), machine learning (lasso, ridge, etc.), curve estimation
- 3. Ask questions
 - a. How to analyze crotch curves in R or using other software

Notes from Meeting 2/2:

1. Presentation

- a. Starting draft report Aristotle
- b. Reviewing and summarizing data in spreadsheets Diane
- c. Script in R that appends spreadsheets for different body types Zongjie, Wenxuan
- d. Script in R Markdown that provides summary data Aristotle
- e. Summarizing articles Aristotle (Gu), Fanjun (McKinney)

2. Some Findings from Data:

- a. Features of the curve are different from different races;
- b. Higher BMI implies wider curve;
- c. The higher the depth, the longer the vertical length of the curve;

3. TO DO LIST:

- a. Ask for Dr. Fatma Baytar next week:
 - i. How do we get those numbers for each variable? (D-I columns)
 - ii. How does the curve come from? (by side?Front?Back?)
 - iii. How does the txt file connect to the csv file? (probably the number stands for the subject id? Some are missing though)

b. Tasks:

- i. First focus on at White and African American's data;
- ii. Try to find the relationships between numerical dependent variables; (find the association between BMI, Height and columns D-I)
- iii. Extract features from the curve; (coding activities)
- iv. Create some new features from the curve; (Angle, slope, length on part of the curve, convex/concave)
- v. create other variables like weight?
- vi. Spline might be helpful. (divide the curve into 3 parts: front, middle, back)
- vii. Try to do pair t test or other statistical tests to see if there is a significant difference in BMI

Agenda 01/26:

- Listen to and take notes on client presentation
 - o Think about which programming language we will use
 - Get access to data
 - o Sign NDAs if any
- Discuss frequency with which we will meet with advisor and clients

Our group:

- Meet weekly on Zoom Tuesday at 5:30 pm
- Meet biweekly in person Tuesday at 5:30 pm
- Location: Olin or Uris Library

Notes from Meeting 01/26:

Dr. Fatma Baytar: Prof. in Dept. of Fiber Science and Apparel Design (Human Ecology)

1. Presentation

- o Body shape analysis to inform customized pattern-making for women's pants particularly
- Pants are the most problematic garments to fit (either because of tightness, looseness, mismatch with body type)
- One pattern shape doesn't fit all
 - The current fashion system assumes bodies are standard and makes people feel bad about themselves
- o Pant components:
 - Two tubular shapes ((front + back) + (front + back))
 - Crotch curves should be close to person's body shape
- o In general, researchers take many measurements to draft pant patterns:
 - Circumference measurements:
 - 1. Waist arc
 - 2. Hip arc
 - 3. Upper thigh
 - 4. Mid thigh
 - 5. Knee
 - 6. Calf
 - 7. Ankle
 - 8. Foot entry
- When drafting pants patterns, crotch curve is randomly drawn.
- Dr. Baytar's friend who runs a company has reported having a lot of trouble with rise shapes, esp. with non-flat/curvy body types

- o In this case, researchers collected data using CAESAR 3D body scan database
 - Women between 18-45

O Questions:

- 1. How can we extract features of the curves?
- 2. Are there any associations among height, weight, basic measurements (e.g., hip) and curve features that may help us group the curve shapes based on a few inputs and suggest using certain shapes when drafting patterns?
- 2. Scheduling and Logistics
 - a. Programming language: R
 - b. Zoom meetings
 - i. Meet with Dr. Baytar once every two weeks Thursday 4:15-5:15 pm
 - ii. Meet with Dr. Basu once every week Thursday 4:15-5:15 pm
 - iii. Dr. Basu will attend biweekly meetings and is willing to meet more frequently than that if necessary
- 3. Next steps
 - a. Send calendar invite(Aristotle)
 - b. Create folder structure (zongjie)