Geostatistics

Kriging with drifts Likelihood-based approaches

Nicolas Desassis

freely adapted from Thomas Romary's course

nicolas.desassis@minesparis.psl.eu Mines Paris PSL University Centre for geosciences and geoengineering

ATHENS Geostatistics 2024

Reminder on second order stationary RF

Definition: second order stationarity

A RF is second order stationary if its first two moments exist, are finite and are translantion invariant

- Expectation independent from x: $\mathbb{E}(Z(x)) = m$
- Covariance independent from *x*:

$$Cov(Z(x), Z(x+h)) = C(h)$$

- $\rightarrow C$ is called the **covariance function**
- ullet Consequently, the variance is independent from x

$$\mathbb{V}(Z(x)) = \mathsf{Cov}(Z(x), Z(x)) = C(0)$$

NB: we also talk about weak stationarity

Reminder on second order RF

Second order random function

A RF ${\cal Z}$ is a second order RF if its first two moments exist and are finite

For a second order random function Z, $x,y \in \mathcal{X}$, we can define

- the expectation $m(x) = \mathbb{E}(Z(x))$
- the variance $\mathbb{V}(Z(x)) = \mathbb{E}((Z(x) m(x))^2)$
- the covariance $\operatorname{Cov}(Z(x),Z(y)) = \mathbb{E}((Z(x)-m(x))(Z(y)-m(y))$

Reminder on second order RF

Second order random function

A RF ${\cal Z}$ is a second order RF if its first two moments exist and are finite

For a second order random function Z, $x,y \in \mathcal{X}$, we can define

- the expectation $m(x) = \mathbb{E}(Z(x))$
- the variance $V(Z(x)) = \mathbb{E}((Z(x) m(x))^2)$
- • the covariance $\mathrm{Cov}(Z(x),Z(y)) = \mathbb{E}((Z(x)-m(x))(Z(y)-m(y)))$

Several approaches to deal with non-stationarity

- relax the stationary assumption on the expectation
 Universal Kriging or kriging with external drifts
- relax the stationary assumption on the covariance
 non-stationary covariance functions

The model is given by

$$Z(x) = m(x) + Y(x)$$

where the drift m(x) admits a functional representation

$$m(x) = \sum_{l=0}^{L} \beta_l f_l(x)$$

Y(x) is centered and generally $f_0 = 1$

The universal kriging system can be obtained with the standard recipe

Predictor
$$Z^*(x_0) = \sum_{i=1}^n \lambda_i Z(x_i) = \Lambda^t Z$$

Unbiasedness condition

$$\mathbb{E}(Z^*(x_0)) = \mathbb{E}(Z(x_0))$$

$$\iff \sum_{l=0}^{L} \sum_{i=1}^{n} \lambda_i \beta_l f_l(x_i) = \sum_{l=0}^{L} \beta_l f_l(x_0)$$

$$\iff \sum_{l=0}^{L} \beta_l \left(\sum_{i=1}^{n} \lambda_i f_l(x_i) - f_l(x_0)\right) = 0$$

whatever the values of the unknown β_l . Hence the *universality* conditions

$$f_l(x_0) = \sum_{i=1}^n \lambda_i f_l(x_i), \ \forall \ l \in \{0, \dots, L\}$$

Predictor
$$Z^*(x_0) = \sum_{i=1}^n \lambda_i Z(x_i) = \Lambda^t Z$$

Unbiasedness condition

$$\mathbb{E}(Z^*(x_0)) = \mathbb{E}(Z(x_0))$$

$$\iff \sum_{l=0}^{L} \sum_{i=1}^{n} \lambda_i \beta_l f_l(x_i) = \sum_{l=0}^{L} \beta_l f_l(x_0)$$

$$\iff \sum_{l=0}^{L} \beta_l \left(\sum_{i=1}^{n} \lambda_i f_l(x_i) - f_l(x_0) \right) = 0$$

whatever the values of the unknown β_l . Hence the *universality* conditions

$$f_l(x_0) = \sum_{i=1}^n \lambda_i f_l(x_i), \ \forall \ l \in \{0, \dots, L\}$$

Prediction variance $\sigma_E^2 = \mathbb{V}(Z^*(x_0) - Z(x_0))$

The universality conditions being met σ_E^2 do not depend on m(x) anymore, therefore

$$\sigma_E^2 = C(0) - 2\sum_{i=1}^n \lambda_i C_{i0} + \sum_{i,j} \lambda_i \lambda_j C_{ij}$$

We minimise

$$Q = \sigma_E^2 + 2\sum_{l=0}^{L} \mu_l \left(\sum_{i=1}^{n} \lambda_i f_l(x_i) - f_l(x_0) \right)$$

Prediction variance $\sigma_E^2 = \mathbb{V}(Z^*(x_0) - Z(x_0))$

The universality conditions being met σ_E^2 do not depend on m(x) anymore, therefore

$$\sigma_E^2 = C(0) - 2\sum_{i=1}^n \lambda_i C_{i0} + \sum_{i,j} \lambda_i \lambda_j C_{ij}$$

We minimise

$$Q = \sigma_E^2 + 2\sum_{l=0}^{L} \mu_l \left(\sum_{i=1}^{n} \lambda_i f_l(x_i) - f_l(x_0) \right)$$

The universal kriging system writes

$$\begin{cases} \sum_{j=1}^{n} \lambda_j C_{ij} + \sum_{l=0}^{L} \mu_l f_l(x_i) = C_{i0} & \forall i \in \{1, \dots, n\} \\ \sum_{i=1}^{n} \lambda_i f_l(x_i) = f_l(x_0) & \forall l \in \{0, \dots, L\} \end{cases}$$

and the universal kriging variance is

$$\sigma_{UK}^2 = C(0) - \sum_{i=1}^n \lambda_i C_{i0} - \sum_{l=1}^L \mu_l f_l(x_0)$$

Matrix representation

$$f_0 = \begin{pmatrix} f_{00} \\ \vdots \\ f_{0L} \end{pmatrix}, F = \begin{pmatrix} f_{10} & \dots & f_{1L} \\ \vdots & \ddots & \vdots \\ f_{n0} & \dots & f_{nL} \end{pmatrix}, \mu = \begin{pmatrix} \mu_0 \\ \vdots \\ \mu_L \end{pmatrix}$$

and

$$Z^*(x_0) = \Lambda^t z$$

The kriging system and variance writes

$$\begin{pmatrix} C & \mathbf{F} \\ \mathbf{F}^t & 0 \end{pmatrix} \begin{pmatrix} \Lambda \\ \mu \end{pmatrix} = \begin{pmatrix} C_0 \\ f_0 \end{pmatrix} \text{ et } \sigma_{UK}^2 = \mathbf{C}(0) - \Lambda^t \mathbf{C}_0 - \mu^t f_0$$

Solution

We solve the universal kriging system through the block matrix inversion formula

Block matrix inversion

Noting $S=(D-CA^{-1}B)$ (Schur complement of block A, assumed inversible), we have

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}BS^{-1}CA^{-1} & -A^{-1}BS^{-1} \\ -S^{-1}CA^{-1} & S^{-1} \end{pmatrix}$$

Hence

$$\Lambda = C^{-1}C_0 + C^{-1}F(F^tC^{-1}F)^{-1}(F^tC^{-1}C_0 - f_0)$$
$$\mu = (F^tC^{-1}F)^{-1}(f_0 - F^tC^{-1}C_0)$$

Exercise

Propose an estimator of the drift coefficients β_l and give the variance of the estimator.

We consider linear estimator of the form

$$\beta_l^{\star} = \sum_{i=1}^{n} \lambda_i^{(l)} Z(x_i) = \Lambda_l^t Z$$

The unbiasedness condition writes

$$\sum_{i=1}^{n} \lambda_i^{(l)} \left(\sum_{k=0}^{L} \beta_k f_k(x_i) \right) = \beta_l$$

$$\sum_{k=0}^{L} \beta_k \left(\sum_{i=1}^{n} \lambda_i^{(l)} f_k(x_i) - \delta_{lk} \right) = 0$$

And we deduce the L unbiasedness conditions:

$$\forall l \in \{0, \dots, L\}, \qquad \sum_{i=1}^{n} \lambda_i^{(l)} f_k(x_i) = \delta_{lk}$$

Exercise

Propose an estimator of the drift coefficients β_l and give the variance of the estimator.

We consider linear estimator of the form

$$\beta_l^{\star} = \sum_{i=1}^n \lambda_i^{(l)} Z(x_i) = \Lambda_l^t Z$$

The unbiasedness condition writes

$$\sum_{i=1}^{n} \lambda_i^{(l)} \left(\sum_{k=0}^{L} \beta_k f_k(x_i) \right) = \beta_l$$

$$\sum_{k=0}^{L} \beta_k \left(\sum_{i=1}^{n} \lambda_i^{(l)} f_k(x_i) - \delta_{lk} \right) = 0$$

And we deduce the L unbiasedness conditions:

$$\forall l \in \{0, \dots, L\}, \qquad \sum_{i=1}^{n} \lambda_i^{(l)} f_k(x_i) = \delta_{lk}$$

The kriging system for the $l^{\rm th}$ coefficient is:

$$\left(\begin{array}{cc} C & F \\ F^t & 0 \end{array}\right) \left(\begin{array}{c} \Lambda_l \\ \mu \end{array}\right) = \left(\begin{array}{c} \mathbf{0} \\ e_l \end{array}\right)$$

where the $k^{
m th}$ term of e_l is δ_{lk}

Block matrix inversion

Noting $S = (D - CA^{-1}B)$ (Schur complement of block A assumed inversible), we have

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}BS^{-1}CA^{-1} & -A^{-1}BS^{-1} \\ -S^{-1}CA^{-1} & S^{-1} \end{pmatrix}$$

$$\beta_l^{\star} = \Lambda_l^t Z = e_l^t \left(F^t C^{-1} F \right)^{-1} F^t C^{-1} Z$$

$$\beta^* = (\mathbf{F}^t C^{-1} \mathbf{F})^{-1} \mathbf{F}^t C^{-1} \mathbf{f}$$
$$\beta^*) = (\mathbf{F}^t C^{-1} \mathbf{F})^{-1}$$

The kriging system for the l^{th} coefficient is:

$$\left(\begin{array}{cc} C & F \\ F^t & 0 \end{array}\right) \left(\begin{array}{c} \Lambda_l \\ \mu \end{array}\right) = \left(\begin{array}{c} \mathbf{0} \\ e_l \end{array}\right)$$

where the k^{th} term of e_l is δ_{lk}

Block matrix inversion

Noting $S = (D - CA^{-1}B)$ (Schur complement of block A, assumed inversible), we have

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}BS^{-1}CA^{-1} & -A^{-1}BS^{-1} \\ -S^{-1}CA^{-1} & S^{-1} \end{pmatrix}$$

$$\beta_l^{\star} = \Lambda_l^t Z = e_l^t \left(F^t C^{-1} F \right)^{-1} F^t C^{-1} Z$$

$$\beta^* = (F^t C^{-1} F)^{-1} F^t C^{-1} Z$$
$$(\beta^*) = (F^t C^{-1} F)^{-1}$$

The kriging system for the l^{th} coefficient is:

$$\left(\begin{array}{cc} C & F \\ F^t & 0 \end{array}\right) \left(\begin{array}{c} \Lambda_l \\ \mu \end{array}\right) = \left(\begin{array}{c} \mathbf{0} \\ e_l \end{array}\right)$$

where the k^{th} term of e_l is δ_{lk}

Block matrix inversion

Noting $S = (D - CA^{-1}B)$ (Schur complement of block A, assumed inversible), we have

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}BS^{-1}CA^{-1} & -A^{-1}BS^{-1} \\ -S^{-1}CA^{-1} & S^{-1} \end{pmatrix}$$

$$\beta_l^{\star} = \Lambda_l^t Z = e_l^t \left(F^t C^{-1} F \right)^{-1} F^t C^{-1} Z$$

$$\beta^* = (F^t C^{-1} F)^{-1} F^t C^{-1} Z$$
$$\beta^*) = (F^t C^{-1} F)^{-1}$$

The kriging system for the $l^{\rm th}$ coefficient is:

$$\left(\begin{array}{cc} C & F \\ F^t & 0 \end{array}\right) \left(\begin{array}{c} \Lambda_l \\ \mu \end{array}\right) = \left(\begin{array}{c} \mathbf{0} \\ e_l \end{array}\right)$$

where the k^{th} term of e_l is δ_{lk}

Block matrix inversion

Noting $S=(D-CA^{-1}B)$ (Schur complement of block A, assumed inversible), we have

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}BS^{-1}CA^{-1} & -A^{-1}BS^{-1} \\ -S^{-1}CA^{-1} & S^{-1} \end{pmatrix}$$

$$\beta_l^{\star} = \Lambda_l^t Z = e_l^t \left(F^t C^{-1} F \right)^{-1} F^t C^{-1} Z$$

$$\beta^{\star} = \left(\mathbf{F}^{t} C^{-1} \mathbf{F}\right)^{-1} \mathbf{F}^{t} C^{-1} Z$$
$$\mathbf{V}(\beta^{\star}) = \left(\mathbf{F}^{t} C^{-1} \mathbf{F}\right)^{-1}$$

Additivity relationship

We can decompose the UK predictor into

$$Z^*(x_0) = m^*(x_0) + R^*(x_0)$$

where

$$m^{\star}(x_0) = \sum_{l=0}^{L} \beta_l^{\star} f_l(x_0)$$

is the drift estimated at the target location and $R^\star(x_0)$ is the simple kriging (with mean 0) of the residuals

$$R(x_i) = Z(x_i) - m^*(x_i)$$

This property is also valid for the variance

$$\sigma_{UK}^2 = \mathbb{V}(m^*(x_0)) + \sigma_{SK}^2$$

Additivity relationship

We can decompose the UK predictor into

$$Z^*(x_0) = m^*(x_0) + R^*(x_0)$$

where

$$m^{\star}(x_0) = \sum_{l=0}^{L} \beta_l^{\star} f_l(x_0)$$

is the drift estimated at the target location and $R^\star(x_0)$ is the simple kriging (with mean 0) of the residuals

$$R(x_i) = Z(x_i) - m^*(x_i)$$

This property is also valid for the variance

$$\sigma_{UK}^2 = \mathbb{V}(m^*(x_0)) + \sigma_{SK}^2$$

Variogram fitting in the presence of a drift

① Compute the OLS estimator of β

$$\widehat{\beta}_{OLS} = (F^t F)^{-1} F^t \mathbf{Z}$$

2 get the estimated residuals

$$\widehat{y}_i = (\mathbf{Z} - F\widehat{\beta}_{OLS})_i$$

- lacktriangledown fit the variogram of \widehat{y}_i
- **4** Compute the GLS estimator of β

$$\widehat{\beta}_{GLS} = (F^t C_{\widehat{\boldsymbol{\rho}}}^{-1} F)^{-1} F^t C_{\widehat{\boldsymbol{\rho}}}^{-1} \mathbf{Z}$$

get the estimated residuals

$$\widehat{y}_i = (\mathbf{Z} - F\widehat{\beta}_{GLS})_i$$

Back to 3 or stop

Drawbacks

- Inherent drawbacks from the empirical variogram approach
- The variogram of the estimated residuals is biased (even when computed with the true parameters value!)

$$\mathbb{E}\left[\frac{1}{2}(Y^*(x_i) - Y^*(x_j))^2\right] = \gamma(x_i - x_j) - \frac{1}{2}(F_i - F_j)^t (F^t C_\theta^{-1} F)^{-1} (F_i - F_j)$$

Universal Kriging of the Cobalt concentration: residuals variogram

auxiliary variable : rocktype

Universal Kriging of the Cobalt concentration: variography

structure 0.67nugget + 9.2exponential(0.75)

Universal Kriging of the Cobalt concentration

RMSE on the validation set: 3.89

Standard error of the Universal Kriging of the Cobalt concentration

RMSE on the validation set: 3.89

Principle of Maximum likelihood estimation

Let (z_1,\ldots,z_n) be an i.i.d. sample from a parametric pdf f_{θ} , $\theta\in\Theta$

The likelihood of (z_1, \ldots, z_n) is

$$l(z_1, \dots, z_n; \theta) = \prod_{i=1}^n f_{\theta}(z_i)$$

Generally more convenient to work with the log-likelihood

$$L(z_1, \dots, z_n; \theta) = \log l(z_1, \dots, z_n; \theta) = \sum_{i=1}^n \log(f_{\theta}(z_i))$$

The Maximum likelihood estimator (MLE) of θ is

$$\widehat{\theta} = \operatorname*{argmax}_{\theta \in \Theta} l(z_1, \dots, z_n; \theta) = \operatorname*{argmax}_{\theta \in \Theta} L(z_1, \dots, z_n; \theta)$$

Exercise

Let (z_1,\ldots,z_n) be an i.i.d. sample from $\mathfrak{N}(\mu,\sigma^2)$

- compute the log-likelihood
- ${f 2}$ compute the MLE of μ
- **3** compute the MLE of σ^2

Some (asymptotic) properties of MLE

- Consistency (i.e. $\widehat{\theta} \xrightarrow{\mathbb{P}} \theta$)
- Asymptotic normality
- Efficiency (achieves the Cramer-Rao bound)

The Gaussian spatial model

We consider the model

$$Z(x) = F(x)^{t} \beta + Y(x), x \in \mathfrak{X} \subset \mathbb{R}^{d}$$

where

- $F(x) \in \mathbb{R}^p$ is a vector of covariates
- $\beta \in \mathbb{R}^p$ is a vector of unknown parameters
- \bullet Y(x) is a zero-mean Gaussian process with covariance

$$Cov(Y(x_1), Y(x_2)) = C(x_1, x_2; \theta)$$

where $\theta \in \Theta$ is a set of parameters

In the isotropic stationary case, generally, $\theta=(\sigma,\kappa,a)$

$$C(x_1, x_2; \boldsymbol{\theta}) = \boldsymbol{\sigma}^2 R_{\kappa} \left(\frac{\|x_1 - x_2\|}{\boldsymbol{a}} \right)$$

with R a correlation function

The Gaussian spatial model

$$Z$$
 is sampled at $(x_1,\ldots,x_n)\in\mathfrak{X}^{n\times d}$

Let
$$Z = (Z(x_1), \dots, Z(x_n)) \in \mathbb{R}^n$$

We have

$$Z \sim \mathcal{N}\left(F\beta, \sigma^2 C(\kappa, a)\right)$$

- $F_{ik} = F_k(x_i)$, $1 \le k \le p$, $1 \le i \le n$
- $C_{ij}(\kappa, \mathbf{a}) = \mathbf{R}_{\kappa} \left(\frac{\|x_i x_j\|}{\mathbf{a}} \right)$, $1 \le i, j \le n$

Classical approach

① compute the OLS estimate of β

$$\widehat{\beta}_{OLS} = (F^t F)^{-1} F^t \mathbf{Z}$$

compute the estimated residuals

$$\widehat{y}_i = (\mathbf{Z} - F\widehat{\beta}_{OLS})_i$$

- $oldsymbol{3}$ fit the variogram of \widehat{y}_i
- $oldsymbol{0}$ compute the GLS estimate of eta

$$\widehat{\beta}_{GLS} = (F^t C_{\widehat{\theta}}^{-1} F)^{-1} F^t C_{\widehat{\theta}}^{-1} Z$$

ompute the estimated residuals

$$\widehat{y}_i = (\mathbf{Z} - F\widehat{\beta}_{GLS})_i$$

o go back to step 3

Maximum likelihood estimation

Under the Gaussian hypothesis, the likelihood of Z is

$$l(\beta, \theta; \mathbf{Z}) = (2\pi)^{-n/2} |C_{\theta}|^{-1/2} \exp\left(-\frac{\|\mathbf{Z} - F\beta\|_{C_{\theta}^{-1}}^2}{2}\right)$$

where $||A||_B^2 = A^t B A$

MLE of β and θ are defined as

$$(\widehat{\beta}_{ML}, \widehat{\theta}_{ML}) = \underset{\beta \in \mathbb{R}^p, \theta \in \Theta}{\operatorname{argmax}} \ l(\beta, \theta; \mathbf{Z}) = \underset{\beta \in \mathbb{R}^p, \theta \in \Theta}{\operatorname{argmax}} \ L(\beta, \theta; \mathbf{Z})$$

$$L(\beta, \theta; \mathbf{Z}) = \log(l(\beta, \theta; \mathbf{Z}))$$

$$= -\frac{n}{2} \log(2\pi) - \frac{1}{2} \log|C_{\theta}| - \frac{\|\mathbf{Z} - F\beta\|_{C_{\theta}^{-1}}^{2}}{2}$$

Profile log-likelihood

It is easy to see (exercise) that for fixed θ

$$\widehat{\beta}_{ML} = (F^t C_\theta^{-1} F)^{-1} F^t C_\theta^{-1} \mathbf{Z}$$

Then, plugging $\widehat{\beta}_{ML}$ into L

$$L(\theta; \mathbf{Z}) = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \log|C_{\theta}| - \frac{\|\mathbf{Z}\|_{P(\theta)}^{2}}{2}$$

$$P(\theta) = C_{\theta}^{-1} - C_{\theta}^{-1} F (F^t C_{\theta}^{-1} F)^{-1} F^t C_{\theta}^{-1}$$

Optimizing the log-likelihood

- Non-linear, constrained (over Θ) optimization problem
- Grid search
- Gradient descent algorithms

$$\theta^{(k+1)} = \theta^{(k)} + M^{(k)}g^{(k)}$$

- $M^{(k)}$ is a $m \times m$ matrix
- $g^{(k)} = \frac{\partial L(\theta; \mathbf{Z})}{\partial \theta}|_{\theta = \theta^{(k)}}$
- 2 examples
 - Newton-Raphson: $M^{(k)}=(B^{(k)})^{-1}$, $B^{(k)}_{ij}=-\frac{\partial^2 L(\theta;\mathbf{Z})}{\partial \theta_i \partial \theta_j}|_{\theta=\theta^{(k)}}$
 - $\bullet \ \ \text{Fisher scoring:} \ \ M^{(k)} = (B^{(k)})^{-1}, \ B^{(k)}_{ij} = \mathbb{E}\left[-\frac{\partial^2 L(\theta; \mathbf{Z})}{\partial \theta_i \partial \theta_j}|_{\theta = \theta^{(k)}}\right]$

Some asymptotic results

Fisher information matrix

$$\mathfrak{I}(\theta) = \mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} L(\beta, \theta) \left(\frac{\partial}{\partial \theta} L(\beta, \theta) \right)^t \right)$$

More precisely

$$\mathcal{I}_{j,k}(\theta) = \frac{1}{2} \operatorname{Tr} \left(C_{\theta}^{-1} C_{\theta}^{j} C_{\theta}^{-1} C_{\theta}^{k} \right)$$

where
$$C_{\theta}^{j} = \frac{\partial C_{\theta}}{\partial \theta_{j}}$$

provides an estimate of the inverse covariance matrix of the estimated covariance parameters (under particular assumptions)

Computational issues and approximations

When n is large, the evaluation of L becomes computationally demanding

$$L(\beta, \theta; \mathbf{Z}) = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \log |C_{\theta}| - \frac{\|\mathbf{Z} - F\beta\|_{C_{\theta}^{-1}}^{2}}{2}$$

storage scales with $O(n^2)$ computation time scales with $O(n^3)$

Computational issues and approximations

Several solutions

- profile with respect to the scale parameter
- assume/enforce sparsity of the covariance matrix (small range, compact support)
- approximate likelihood
- composite likelihood

Example – dataset

Example - variogram cloud

Example – several directions

Example – variogram fitting (isotropic)

Example - Comparison

Example – Summary

	ML	REML	OLS	WLS	True
β	0.78	0.75			0
$ au^2$	0	0	0.16	0.19	0
σ^2	0.75	0.85	0.99	1.27	1
range	0.55	0.63	1.60	2.49	0.9

Example – Prediction

Example – Prediction standard deviation

Example – Prediction MSE

We have separated the sample into a learning dataset of size 80 and a validation dataset of size 20

The prediction MSE is computed at the validation location

ML	REML	OLS	WLS	True
0.23	0.25	0.47	0.54	0.28

Pros and cons for the MLE

Pros

- No tedious parameterization for the fitting procedure
- Statistical properties of the estimators

Cons

- Gaussian assumption
- Computationally intensive

Beyond Gaussian

Transformed Gaussian random field

- Strictty monotonic transforms, $Z(x) = \phi(Y(x))$, Y is a GRF
- Lognormal model

$$\log(Z(x)) = \mu + \sigma Y(x), \ x \in \mathcal{X}$$

Box - Cox transform

$$\frac{Z(x)^{\lambda} - 1}{\lambda} = Y(x)$$

- Truncated Gaussian process $Z(x) = \phi(Y(x)) \mathbb{1}_{Y(x)>v}$
- Latent gaussian model example logit for (0,1) data

$$\mathbb{P}(Z = 0) = \frac{1}{1 + \exp(-F(x)^{t}\beta - Y(x))}$$

References

- Matheron, G. (1970). La théorie des variables régionalisées, et ses applications: Fascicule 5. Les Cahiers du Centre de Morphologie Mathématique, Ecole des Mines de Paris.
- Mardia, K. V., & Marshall, R. J. (1984). Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika, 71(1), 135-146.
- Kitanidis, P. K., & Lane, R. W. (1985). Maximum likelihood parameter estimation of hydrologic spatial processes by the Gauss-Newton method. Journal of Hydrology, 79(1), 53-71.
- Stein, M. L. (2012). Interpolation of spatial data: some theory for kriging. Springer Science & Business Media.
- Gelfand, A. E., Diggle, P., Guttorp, P., & Fuentes, M. (Eds.).
 (2010). Handbook of spatial statistics. CRC press.