UNCLASSIFIED

AD 295 013

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

(3-2-3 REPORT NO. TDR-169(3230-11)TN-6

Aerodynamic Influence Coefficients
from Slender-Body Theory:
Analytical Development
and Computational Procedure

31 OCTOBER 1962

Prepared by WILLIAM P. RODDEN and EDITH F. FARKAS

Aeromechanics Department

Aerodynamics and Propulsion Research Laboratory

and

GEORGE Y. TAKATA

Computation and Data Processing Center

Laboratories Division

Prepared for COMMANDER SPACE SYSTEMS DIVISION
UNITED STATES AIR FORCE

Inglewood, California

<u>A</u>

LABORATORIES DIVISION • AFROSPACIE CORPORATION CONTRACT NO. AF 04(695)-169

295 013

AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY: ANALYTICAL DEVELOPMENT AND COMPUTATIONAL PROCEDURE

Prepared by

William P. Rödden and Edith F. Farkas
Aeromechanics Department
Aerodynamics and Propulsion and Research Laboratory

and

George Y. Takata
Computation and Data Processing Center
Laboratories Division

AEROSPACE CORPORATION El Segundo, California

Contract No. AF 04(695)-169

31 October 1962

Prepared for

COMMANDER SPACE SYSTEMS DIVISION

UNITED STATES AIR FORCE

Inglewood, California

ABSTRACT

A method is reviewed for computing the aerodynamic influence coefficients (AICs) for slender bodies. The method is based on the unsteady slender-body theory by Miles and its extension to obtain the AICs by Rodden and Revell.

The simplicity of the slender-body theory permits the definition of a number of sets of AICs for use in transient analysis. The influence coefficients relating the transient aerodynamic forces to the body deflections and their first two derivatives are defined by the following relation:

$${F(t)} = (qS/\overline{c})([C_{hs}] h + [C_{hd}] h \overline{c}/v + [C_{hi}] (\overline{h}\overline{c}^2/v^2)$$

The matrices $[C_{hs}]$, $[C_{hd}]$, and $[C_{hi}]$ are seen to be steady, damping, and inertial AICs, respectively. The oscillatory AICs are defined by

$$\{F\} = \rho \omega^2 b_r^2 s[C_h]\{h\}$$

and are related to the above definitions through

$$2k_{r}^{2}(\overline{c}s/S)[C_{h}] = [C_{hs}] + ik_{r}(\overline{c}/b_{r})[C_{hd}] - k_{r}^{2}(\overline{c}/b_{r})^{2}[C_{hi}]$$

The Aerospace IBM 7090 Computer Program No. HM15 provides the AICs in printed and optional punched-card output formats. The program capacity is 50 control points and, in the oscillatory case, 50 values of reduced velocity.

CONTENTS

ABST	RACT.		ii
SYMBO	OLS .		v
I.	FORM	MULATION OF PROBLEM	1
	A	Introduction	1
	В.	Sign Convention	1
	C.	Derivation of Equations	1
	D.	References	12
II.	GENI	ERAL DESCRIPTION OF INPUT	13
	Α.	Units	13
	в.	Classes of Numerical Data and Limitations	13
III.	DATA	A DECK SETUP	15
	A	Loading Order	15
	B.	Input Data Description	15
	C.	Example Keypunch Forms	17
IV.	PROC	GRAM OUTPUT	21
	A	Printed Output	21
	B.	Punched Output	27
v.	PROC	CESSING INFORMATION	29
	A	Operation	29
	В.	Estimated Machine Time	29
	C.	Machine Components Used	29
VI.	PRO	GRAM NOTES	31
	A	Subroutines Used	31
	В.	Generalized Tapes	31

CONTENTS (Continued)

VII.	FLOW DIAGRAM	33
VIII.		35
	FIGURES	
1.	Slender-body geometry for AICs	3
2.	Cross section of finned region of slender body	11
3.	Five-segment body	13

SYMBOLS

b _r	Reference semichord
C_{h}	Element of oscillatory AIC matrix
C _{hd}	Element of damping AIC matrix
C _{hi}	Element of inertial AIC matrix
C _{hs}	Element of steady AIC matrix
ਣ	Reference chord
F	Control point force
h	Control point deflection
I	Momentum of cross-flow virtual mass
k _r	Reference reduced frequency, $k_r = \omega b_r/V$
q	Free stream dynamic pressure
R	Body radius in finned region
S	Reference area
S(x)	Body cross-sectional area
S _{n-1/2} , S _{n+1/2}	Cross-sectional area of aft and forward ends, respectively, of n'th body segment
s	Reference semispan
t	Time
v	Free stream velocity
w	Downwash
x, y, z	Cartesian coordinates
$\Delta_{\mathbf{n}}$	Length of n'th body segment

SYMBOLS (Continued)

ΔV_n	Volume of n'th body segment
ρ	Free stream density
ω	Circular frequency
[]	Square matrix
	Column matrix

SECTION I FORMULATION OF PROBLEM

A. Introduction

The simplest theory available for the estimation of unsteady aerodynamic loads on slender bodies is the momentum theory of Munk as extended to the unsteady case by Miles. The limitations of the so-called slender-body theory have also been summarized by Miles (Ref. 4, Table 2, p. 161). These are: (1) the fineness ratio must be much less than unity; (2) the Mach number must be much less than the reciprocal of the fineness ratio; and (3) the motion must be slowly varying, or, more specifically, in the oscillatory case the reduced frequency must be of order unity. Hence, we see that the slender-body theory can be useful in the supersonic flight regime provided that the body is sufficiently slender and the motion is not violent.

The present formulation is based on the derivation of the oscillatory aerodynamic influence coefficients (AICs) from slender-body theory given by Rodden and Revell. The simplicity of slender-body theory permits the extension of Ref. 5 to obtain a number of sets of AICs for use in transient analysis, and this extension is made in the present treatment.

B. Sign Convention

The standard NASA stability axis system is used throughout. The positive directions of x, y, and z are forward, starboard, and downward, respectively. Positive rotations are given by applying the right-hand rule to the coordinate directions. The vehicle is assumed to be moving in the positive x-direction; i. e., the relative wind is in the negative x-direction. The force sign convention is the same as the coordinate convention.

C. Derivation of Equations

The derivation of equations for the oscillatory case is given in Ref. 5 (pp. 60-72). However, Ref. 5 contains a mistake in sign that leads to the incorrect sign on the damping terms, so it becomes necessary to repeat the

derivation here with the correction. We shall present the derivation for the oscillatory case since, by properly identifying the various terms, we may indicate the results for the transient case. We define the transient influence coefficients to relate the aerodynamic forces to the body deflections and their first two derivatives by the following

$$\{F(t)\} = (qS/\bar{c}) \left([C_{hs}] \{h\} + [C_{hd}] \{h\bar{c}/V\} + [C_{hi}] \{h\bar{c}^2/V^2\} \right) . \tag{1}$$

The matrices [Chs], [Chd], and [Chi] are seen to be steady, damping, and inertial AICs, respectively. The oscillatory AICs are defined by

$$\{F\} = \rho \omega^2 b_r^2 s [C_h] \{h\} \qquad (2)$$

Equations (1) and (2) must be identical in the oscillatory case, so the following relationship must exist among the various AICs

$$2k_{r}^{2}(\bar{c}_{s}/S)[C_{h}] = [C_{hs}] + ik_{r}(\bar{c}/b_{r})[C_{hd}] - k_{r}^{2}(\bar{c}/b_{r})^{2}[C_{hi}] .$$
 (3)

The equations given by Bisplinghoff, Ashley, and Halfman⁶ provide a convenient basis for deriving the AICs of a slender body. The vertical force acting per unit length of the body is the reaction to the substantial rate of change of the momentum of the virtual mass per unit length of the body

$$\frac{\mathrm{dF}}{\mathrm{dx}} = -\frac{\mathrm{D}}{\mathrm{Dt}} \left(\frac{\mathrm{dI}}{\mathrm{dx}} \right) \tag{4}$$

where the substantial derivative operator is given by

$$\frac{D}{Dt} = -V \frac{\partial}{\partial x} + \frac{\partial}{\partial t}$$
 (5)

since the relative wind is moving in the negative x-direction (see Fig. 1).

Fig. 1. Slender-body geometry for AICs.

The momentum of the virtual mass per unit length is found from the local cross-sectional area and the downwash

$$\frac{dI}{dx} = \rho S(x)w(x, t)$$
 (6)

where the downwash is the substantial derivation of the deflection

$$w(x, t) = \frac{Dh}{Dt}$$
 (7a)

$$= -V \frac{\partial h}{\partial t} + \frac{\partial h}{\partial t} \qquad . \tag{7b}$$

If we assume harmonic motion and substitute Eqs. (5), (6), and (7b) into Eq. (4), we obtain

$$\frac{dF}{dx} = \rho V \frac{d}{dx} \left\{ S(x) \left(-V \frac{dh}{dx} + i\omega h \right) \right\} - i\omega \rho S(x) \left(-V \frac{dh}{dx} + i\omega h \right) \qquad (8)$$

To obtain the force on a specified length of the body, it is necessary to integrate Eq. (8) over that length. We consider the body to be divided into a

number of sections, not necessarily of equal length, as shown in Fig. 1. For the n'th section, the control point is taken at the midpoint of its length Δ_n . The aft end of the section is located at $x_{n-1/2} = x_n - \Delta_n/2$ and has the crosssection area $S_{n-1/2}$; the forward end of the section is located at $x_{n+1/2} = x_n + \Delta_n/2$ and has the cross-section area $S_{n+1/2}$. Carrying out the integration of Eq. (8) for the n'th section yields the following

$$F_{n} = \int_{x_{n-1/2}}^{x_{n+1/2}} \frac{dF}{dx} dx \tag{9a}$$

$$= \rho V \left[S(x) \left(-V \frac{dh}{dx} + i\omega h \right) \right]_{x_{n-1/2}}^{x_{n+1/2}} - i\omega \rho \int_{x_{n-1/2}}^{x_{n+1/2}} S(x) \left(-V \frac{dh}{dx} + i\omega h \right) dx \qquad (9b)$$

$$= \rho V \left[-V(S_{n+1/2} h'_{n+1/2} - S_{n-1/2} h'_{n-1/2}) + i\omega(S_{n+1/2} h_{n+1/2} - S_{n-1/2} h_{n-1/2}) \right]$$

$$- i\omega\rho \int_{x_{n-1/2}}^{x_{n+1/2}} S(x)(-Vh' + i\omega h) dx . \qquad (9c)$$

7

We resort to Lagrangian interpolation for the evaluation of the terms in Eq. (9c). For the first two terms, we choose parabolic interpolation

$$h = h_{n-1} \frac{(x - x_n)(x - x_{n+1})}{(x_{n-1} - x_n)(x_{n-1} - x_{n+1})} + h_n \frac{(x - x_{n-1})(x - x_{n+1})}{(x_n - x_{n-1})(x_n - x_{n+1})} + h_{n+1} \frac{(x - x_{n-1})(x - x_n)}{(x_{n+1} - x_{n-1})(x_{n+1} - x_n)} .$$
 (10)

The input to the program must be the coordinates of the endpoints (aft and forward) of each section, from which the control point locations are calculated by averaging. With a given total body length, it is not possible to specify the control point locations a priori.

For evaluation of the integral, we use only linear interpolation

$$h = h_n + h'_n(x - x_n)$$
 (11)

and

$$S(x) = (1/\Delta_n) \left[S_{n-1/2}(x_{n+1/2} - x) + S_{n+1/2}(x - x_{n-1/2}) \right] \qquad (12)$$

The three-point interpolation leads to three elements in each row of the AIC matrix. Therefore, from the definition of Eq. (2),

$$F_{n} = \rho \omega^{2} b_{r}^{2} s(C_{hn, n-1} h_{n-1} + C_{hn, n} h_{n} + C_{hn, n+1} h_{n+1}) \qquad (13)$$

By identifying Eq. (13) and Eq. (9c), after evaluating the integral of Eq. (9c) by means of Eqs. (11) and (12), we obtain the following relation for the AICs

$$C_{\text{hn}, n-1} h_{n-1} + C_{\text{hn}, n} h_n + C_{\text{hn}, n+1} h_{n+1} = (1/k_r^2 s) \left\{ (S_{n-1/2} h'_{n-1/2} - S_{n+1/2} h'_{n+1/2}) \right\}$$

+
$$i(k_{r}/b_{r})(S_{n+1/2}h_{n+1/2} - S_{n-1/2}h_{n-1/2} + h'_{n}\Delta V_{n})$$

- $(k_{r}^{2}/b_{r}^{2})[(\Delta_{n}^{2}/12)(S_{n-1/2} - S_{n+1/2})h'_{n} - h_{n}\Delta V_{n}])$, (14)

where ΔV_n is the volume of the n'th section.

If we evaluate the deflections in Eq. (10) at stations $x_{n-1/2}$ and $x_{n+1/2}$, and then, by differentiating Eq. (10), evaluate the slopes at stations $x_{n-1/2}$, x_n , $x_{n+1/2}$, then we may place the right-hand side of Eq. (14) in terms of the control point deflections h_{n-1} , h_n , and h_{n+1} . If we carry out this substitution,

the AICs are found by identifying the coefficients of the control point deflections on both sides of Eq. (14). The following results are obtained

$$C_{\text{hn, n-1}} = \left(\frac{1}{k_{r}^{2}} s D_{n-1} \right) \left\{ 2 S_{n+1/2} (\Delta_{n+1} - \Delta_{n}) - 2 S_{n-1/2} (3 \Delta_{n} + \Delta_{n+1}) + i (k_{r}/b_{r}) \right\}$$

$$\times \left[- S_{n+1/2} \Delta_{n} \Delta_{n+1} - S_{n-1/2} \Delta_{n} (2 \Delta_{n} + \Delta_{n+1}) - 2 \Delta V_{n} (\Delta_{n} + \Delta_{n+1}) \right]$$

$$- \left(\frac{k_{r}^{2}}{b_{r}^{2}} \right) \left(\Delta_{n}^{2}/6 \right) (S_{n+1/2} - S_{n-1/2}) (\Delta_{n} + \Delta_{n+1}) \right\} , \qquad (15)$$

where

$$D_{n-1} = (\Delta_{n-1} + \Delta_n)(\Delta_{n-1} + 2\Delta_n + \Delta_{n+1}) \qquad ; \tag{16}$$

$$C_{hn, n} = \left(1/k_{r}^{2} s D_{n}\right) \left[2 S_{n+1/2} (\Delta_{n-1} + 2 \Delta_{n} - \Delta_{n+1}) - 2 S_{n-1/2} (\Delta_{n-1} - 2 \Delta_{n} - \Delta_{n+1}) + i (k_{r}/b_{r}) \left[S_{n+1/2} \Delta_{n+1} (\Delta_{n-1} + 2 \Delta_{n}) - S_{n-1/2} \Delta_{n-1} (2 \Delta_{n} + \Delta_{n+1}) + 2 \Delta V_{n} (\Delta_{n+1} - \Delta_{n-1})\right] - \left(k_{r}^{2}/b_{r}^{2}\right) \left[\left(\Delta_{n}^{2}/6\right) (S_{n-1/2} - S_{n+1/2}) (\Delta_{n+1} - \Delta_{n-1}) - D_{n} \Delta V_{n}\right],$$

$$(17)$$

where

$$D_{n} = (\Delta_{n-1} + \Delta_{n})(\Delta_{n} + \Delta_{n+1}) \qquad ; \tag{18}$$

$$C_{\text{hn, n+1}} = \left(1/k_{\text{r}}^{2} \text{sD}_{\text{n+1}}\right) \left(2S_{\text{n-1/2}}(\Delta_{\text{n-1}} - \Delta_{\text{n}}) - 2S_{\text{n+1/2}}(\Delta_{\text{n-1}} + 3\Delta_{\text{n}}) + i(k_{\text{r}}/b_{\text{r}})\right)$$

$$\times \left[S_{\text{n+1/2}} \Delta_{\text{n}}(\Delta_{\text{n-1}} + 2\Delta_{\text{n}}) + S_{\text{n-1/2}} \Delta_{\text{n-1}} \Delta_{\text{n}} + 2\Delta V_{\text{n}}(\Delta_{\text{n-1}} + \Delta_{\text{n}})\right]$$

$$- \left(k_{\text{r}}^{2}/b_{\text{r}}^{2}\right) \left(\Delta_{\text{n}}^{2}/6\right) \left(S_{\text{n-1/2}} - S_{\text{n+1/2}}\right) \left(\Delta_{\text{n-1}} + \Delta_{\text{n}}\right) , \qquad (19)$$

where

$$D_{n+1} = (\Delta_{n-1} + 2\Delta_n + \Delta_{n+1})(\Delta_n + \Delta_{n+1})$$
 (20)

The above expressions are applicable for all intermediate sections of the body, sections which are centrally located as far as the interpolation and differentiation are concerned. The exceptions are the first and N'th sections. The counterpart of Eq. (14) for the first section is

$$C_{h1,1}h_{1} + C_{h1,2}h_{2} + C_{h1,3}h_{3} = (1/k_{r}^{2}s) |S_{1/2}h_{1/2}' - S_{3/2}h_{3/2}' + i(k_{r}/b_{r})$$

$$\times (S_{3/2}h_{3/2} - S_{1/2}h_{1/2} + h_{1}'\Delta V_{1}) - (k_{r}^{2}/b_{r}^{2}) |(\Delta_{1}^{2}/12) (S_{1/2} - S_{3/2})h_{1}' - h_{1}\Delta V_{1}|$$

$$(21)$$

Carrying out the evaluation of the appropriate deflections and slopes from Eq. (10) in terms of the first three control point deflections leads to the following coefficients for the first row of the AIC matrix

$$C_{h1,1} = \left(1/k_{r}^{2} s D_{1}\right) \left(2 S_{3/2} (3 \Delta_{2} + \Delta_{3}) - 2 S_{1/2} (4 \Delta_{1} + 3 \Delta_{2} + \Delta_{3}) + i(k_{r}/b_{r})\right)$$

$$\times \left[S_{3/2} \Delta_{2} (2 \Delta_{2} + \Delta_{3}) - S_{1/2} (2 \Delta_{1} + \Delta_{2}) (2 \Delta_{1} + 2 \Delta_{2} + \Delta_{3}) - 2 \Delta V_{1} (2 \Delta_{1} + 3 \Delta_{2} + \Delta_{3})\right]$$

$$- \left(k_{r}^{2}/b_{r}^{2}\right) \left[\left(\Delta_{1}^{2}/6\right) (S_{3/2} - S_{1/2}) (2 \Delta_{1} + 3 \Delta_{2} + \Delta_{3}) - D_{1} \Delta V_{1}\right], \quad (22)$$

where

$$D_1 = D_{n-1}$$
 with $n = 2$;

$$C_{h1,2} = \left(1/k_{r}^{2} s D_{2}\right) \left[2 S_{3/2} (\Delta_{1} - 2 \Delta_{2} - \Delta_{3}) + 2 S_{1/2} (3 \Delta_{1} + 2 \Delta_{2} + \Delta_{3}) + i(k_{r}/b_{r}) \right]$$

$$\times \left[S_{3/2} \Delta_{1} (2 \Delta_{2} + \Delta_{3}) + S_{1/2} \Delta_{1} (2 \Delta_{1} + 2 \Delta_{2} + \Delta_{3}) + 2 \Delta V_{1} (\Delta_{1} + 2 \Delta_{2} + \Delta_{3})\right]$$

$$- \left(k_{r}^{2}/b_{r}^{2}\right) \left(\Delta_{1}^{2}/6\right) (S_{1/2} - S_{3/2}) (\Delta_{1} + 2 \Delta_{2} + \Delta_{3}), \qquad (23)$$

where

$$D_2 = D_n \text{ with } n = 2$$
 ;

$$C_{h1,3} = (1/k_r^2 sD_3) \left[2S_{3/2}(\Delta_2 - \Delta_1) - 2S_{1/2}(3\Delta_1 + \Delta_2) + i(k_r/b_r) \left[-S_{3/2}\Delta_1\Delta_2 - S_{1/2}\Delta_1(2\Delta_1 + \Delta_2) - 2\Delta V_1(\Delta_1 + \Delta_2) \right] - (k_r^2/b_r^2) (\Delta_1^2/6) (S_{3/2} - S_{1/2})(\Delta_1 + \Delta_2) \right],$$
(24)

where

$$D_3 = D_{n+1}$$
 with $n = 2$.

Similarly, the counterpart of Eq. (14) for the N'th section is

$$C_{hN, N-2} h_{N-2} + C_{hN, N-1} h_{N-1} + C_{hN, N} h_{N} = \left(1/k_{r}^{2} s\right) \left[S_{N-1/2} h_{N-1/2}^{\prime} - S_{N+1/2} h_{N+1/2}^{\prime} + i(k_{r}/b_{r})(S_{N+1/2} h_{N+1/2} - S_{N-1/2} h_{N-1/2} + h_{N}^{\prime} \Delta V_{N}) - \left(k_{r}^{2}/b_{r}^{2}\right) \left[\left(\Delta_{N}^{2}/12\right) (S_{N-1/2} - S_{N+1/2}) h_{N}^{\prime} - h_{N} \Delta V_{N} \right] \right] , \qquad (25)$$

and we obtain the following coefficients for the last (N'th) row of the AIC matrix

$$C_{hN, N-2} = \left(1/k_r^2 s D_{N-2}\right) \left[2S_{N-1/2}(\Delta_{N-1} - \Delta_N) - 2S_{N+1/2}(3\Delta_N + \Delta_{N-1}) + i(k_r/b_r) \left[S_{N+1/2} \Delta_N(2\Delta_N + \Delta_{N-1}) + S_{N-1/2} \Delta_N \Delta_{N-1} + 2\Delta V_N(\Delta_N + \Delta_{N-1})\right] - \left(k_r^2/b_r^2\right) \left(\Delta_N^2/6\right) (S_{N-1/2} - S_{N+1/2})(\Delta_N + \Delta_{N-1})\right] , \qquad (26)$$

where

$$D_{N-2} = D_{n-1} \text{ with } n = N - 1$$

$$C_{hN, N-1} = \left(1/k_{r}^{2} s D_{N-1}\right) \left(2 S_{N+1/2} (3 \Delta_{N} + 2 \Delta_{N-1} + \Delta_{N-2}) + 2 S_{N-1/2} (\Delta_{N} - 2 \Delta_{N-1} - \Delta_{N-2})\right)$$

$$+ i(k_{r}/b_{r}) \left[-S_{N+1/2} \Delta_{N} (2 \Delta_{N} + 2 \Delta_{N-1} + \Delta_{N-2}) - S_{n-1/2} \Delta_{N} (2 \Delta_{N-1} + \Delta_{N-2})\right]$$

$$- 2 \Delta V_{N} (\Delta_{N} + 2 \Delta_{N-1} + \Delta_{N-2}) - (k_{r}^{2}/b_{r}^{2}) (\Delta_{N}^{2}/6) (S_{N+1/2} - S_{N-1/2}) (\Delta_{N} + 2 \Delta_{N-1} + \Delta_{N-2})$$

$$(27)$$

where

$$D_{N-1} = D_n \text{ with } n = N-1$$
;

$$C_{hN,N} = \left(1/k_{r}^{2} s D_{N}\right) \left[2 S_{N-1/2} (3 \Delta_{N-1} + \Delta_{N-2}) - 2 S_{N+1/2} (4 \Delta_{N} + 3 \Delta_{N-1} + \Delta_{N-2}) + i(k_{r}/b_{r}) \left[S_{N+1/2} (2 \Delta_{N} + \Delta_{N-1}) (2 \Delta_{N} + 2 \Delta_{N-1} + \Delta_{N-2}) - S_{N-1/2} \Delta_{N-1} (2 \Delta_{N-1} + \Delta_{N-2}) + 2 \Delta V_{N} (2 \Delta_{N} + 3 \Delta_{N-1} + \Delta_{N-2}) \right] - \left(k_{r}^{2}/b_{r}^{2}\right) \left[\left(\Delta_{N}^{2}/6\right) (S_{N-1/2} - S_{N+1/2}) + 2 \Delta V_{N} (2 \Delta_{N} + 3 \Delta_{N-1} + \Delta_{N-2}) - D_{N} \Delta V_{N}\right]\right],$$

$$\times (2 \Delta_{N} + 3 \Delta_{N-1} + \Delta_{N-2}) - D_{N} \Delta V_{N}\right],$$

$$(28)$$

where

$$D_{N} = D_{n+1} \text{ with } n = N - 1 \qquad .$$

To illustrate the assembly of the coefficients into the AIC matrix, we show the format below for a slender body having five degrees of freedom.

$$\begin{bmatrix} C_{h1,1} & C_{h1,2} & C_{h1,3} & 0 & 0 \\ C_{h2,1} & C_{h2,2} & C_{h2,3} & 0 & 0 \\ 0 & C_{h3,2} & C_{h3,3} & C_{h3,4} & 0 \\ 0 & 0 & C_{h4,3} & C_{h4,4} & C_{h4,5} \\ 0 & 0 & C_{h5,3} & C_{h5,4} & C_{h5,5} \end{bmatrix}$$
(29)

If we formally write each element of the oscillatory AIC matrix in the form

$$C_{h_{ij}} = (1/k_r^2 s D_j) [A_{ij} + i(k_r/b_r) B_{ij} - (k_r^2/b_r^2) C_{ij}]$$
, (30)

then the elements of the transient AIC matrices may be identified by comparison with Eq. (3). We see that the elements of the steady AIC matrix are given by

$$C_{hs_{ij}} = 2(\overline{c}/S) A_{ij}/D_{j} , \qquad (31)$$

the elements of the damping AIC matrix are given by

$$C_{hd_{ij}} = (2/S) B_{ij}/D_{j} , \qquad (32)$$

and, finally, the elements of the inertial AIC matrix are given by

$$C_{hi_{ij}} = (2/\bar{c}S) C_{ij}/D_{j}$$
 (33)

Before concluding this discussion, we note that, according to Miles (Ref 4, p. 169) the slender-body theory presented above may be applied to finned vehicles if an effective cross-section area in the finned region, whose geometry is shown in Fig. 2, is taken as

$$S_e = \pi(s^2 - R^2 + R^4/s^2)$$
 (34)

Fig. 2. Cross section of finned region of slender body.

D. References

- 1. M. M. Munk. "The Aerodynamic Forces on Airship Hulls." NACA Report No. 184, 1923.
- 2. J. W. Miles. "On Non-Steady Motion of Slender Bodies." Aeronautical Quarterly, 2 (1950), 183-194.
- 3. J. W. Miles. "Virtual Momentum and Slender Body Theory." Quarterly Journal of Mechanics and Applied Mathematics, 6 (1953), 286-289.
- 4. J. W. Miles. <u>The Potential Theory of Unsteady Supersonic Flow.</u> London: Cambridge University Press, 1959.
- 5. W. P. Rodden and J. D. Revell. "The Status of Unsteady Aerodynamic Influence Coefficients." Institute of the Aerospace Sciences S.M.F. Fund Paper No. FF-33, 23 January 1962.
- 6. R. L. Bisplinghoff, H. Ashley, and R. L. Halfman. <u>Aeroelasticity</u>. Reading: Addison-Wesley Publishing Co., Inc., 1955, p. 418.

SECTION II GENERAL DESCRIPTION OF INPUT

A. Units

Since all dimensional input is geometrical and the aerodynamic matrix is dimensionless, only a consistent set of length units is necessary: inches or feet.

B. Classes of Numerical Data and Limitations

The data required by the program are control indicators, geometry, and a set of reduced velocities. The example problem illustrates their use.

1. Example Problem

We consider the five-segment body shown in Fig. 3 computing the oscillatory case for the reduced velocities $(1/k_r)$ of 2.0 and 6.0, the transient case (steady, damping, and inertial AICs), and the steady case (steady AICs only).

Fig. 3. Five-segment body.

The geometrical data required as input to the program are listed below.

Segment No.	\times (ft)	S (sq ft)
1 (aft)	1	10
1 (forward), 2 (aft)	3	12
2 (forward), 3 (aft)	6	14
3 (forward), 4 (aft)	10	11
4 (forward), 5 (aft)	12	8
5 (forward)	15	0

$$\tilde{c} = 10.0 \text{ ft}$$

$$b_r = 5.0 \text{ ft}$$

$$s = 20.0 \text{ ft}$$

2. Program Restrictions and Options

a. The maximum number of segments into which a body may be subdivided must be ≤ 50 .

S = 200.0 sq ft

- b. The maximum number of $1/k_{r}$'s for one data deck must be \leq 50.
- c. If it is desired to compute the steady case, a zero value of $1/k_{\rm r}$ must be used, to compute the transient case a negative value of $1/k_{\rm r}$ must be used.

SECTION III DATA DECK SETUP

A. Loading Order

Input data decks punched from keypunch forms are loaded behind column binary deck HM15. Any number of complete decks may be stacked. The data for each deck must be in the following order:

- (1) Heading card
- (2) IX, KVBRW, IPUNCH
- (3) CBAR, BR, S, SREF
- (4) X(I) series
- (5) LOCAL AREA(I) series
- (6) $(1/k_r)_i$ series

B. Input Data Description

- The heading card may contain any information desired in Columns
 through 72. Column 1 is always left blank.
- (2) Control card (FORMAT 1814)
 - (a) IX = the number of control points; also the number of body segments, ≤ 50
 - (b) KVBRW = the number of reduced velocities to be listed in data item (6), ≤ 50
 - (c) IPUNCH = 0 or blank if the computed matrices are to be punched in cards;
 - ≠ 0 if no punched output is desired.

(3) Single parameters card (FORMAT 6E12.8)

- (a) $CBAR = \bar{c}$, reference chord
- (b) BR = b, reference semichord
- (c) S = s, reference semispan
- (d) SREF = S, reference area

The constants are tabulated in the order in which they are defined. CBAR and SREF are used in the steady and transient cases; BR and S (semispan) are necessary for computing oscillatory cases. When only one pair of the constants is needed, the two respective card fields for the other pair may contain zero or be left blank.

(4) X(I) Segment coordinate series, $I \le 51$ (FORMAT 6E12.8)

The x coordinates $(x_{n-1/2} \text{ and } x_{n+1/2})$ used in this series locate the aft and forward end of each body segment. The number of terms in the series is one more than the number of control points (I = 1, IX + 1). Begin the series with $x_{n-1/2}$ (aft end) of the aft body segment and list the consecutive coordinates through $x_{n+1/2}$ (forward end) of the foremost body segment (nose).

(5) LOCAL AREA (I) series (FORMAT 6E12.8)

These are the local cross-section areas $(S_{n-1/2} \text{ and } S_{n+1/2})$ at the aft and forward end of each body segment. The number of terms in this series is the same as in X(I). The areas are listed in the same order as the coordinates; begin with $S_{n-1/2}$ for the aft body segment and list the consecutive areas through $S_{n+1/2}$ for the foremost body segment.

(6) $(1/k_r)_i$ series (FORMAT 6E12.8)

This series consists of the reference reduced velocities for the oscillatory case and the codes for obtaining the steady and transient cases. To obtain the steady matrix $[C_{hs}]$ input $1/k_r = 0.0$ and for the

-

transient case ($[C_{hs}]$, $[C_{hd}]$, and $[C_{hi}]$) use $1/k_r$ = any negative number. The number of $1/k_r$'s in the series is set by KVBRW in the control card.

NOTE: Each new series starts on a new line (card).

C. Example Keypunch Forms

Example keypunch forms are given on the following pages. Columns 73 through 80 are reserved for data deck identification. This space may be used in any fashion; however, it is suggested that the last three columns be used for sequencing. In the example that follows, only the sequenced cards (lines) are to be used in the sample data deck; the lines with blank Columns 73 through 80 are for explanation of the input.

2		T	1 2						M		T	4	T	T	T	T			9
1		 -	0	 		+	+		 - :- -				+	 		+	 		-1
1		 	<u> </u>	ļ	<u> </u>	├ ─		 -	<u> </u>	! -		0				┺	 		Ŀ
12	0	Ì	0	1)	1	1	1	0	1	ì	0]	ì	1]	1]	2
1				 								0		1			 		~
1-		+		 									+			 			~
ے	(C)	<u></u>	(2)						(3)			3					L	L	121
2	-	T	_										1	T	1	1		T	127
10	H M 1 5 0 0 0		9 0 2 - 1 1 1 1						H M I 5 0 0 0			-						 	1.1
-												0 2 H		-					1
121	I.		I	1	i	L	1		r] I	1		l	1 .	1	ı	2 J
7		_	$\overline{}$									N							2
H		┼──	 	 	 	+	 		 -	 -	 -	 ``		 		+		 -	1-4
Ŀ			L	L	J	<u></u>		L	<u> </u>	i	L		J	J		1	<u> </u>	1	-
2					1	1	1		i			+	T	1	T	F			-
		 			1											-	+		-
Ŀ					ļ	 		<u> </u>						ļ		ļ		ļ	3
15		1	1	ŀ	ı	1	1		ı			1	1	ı	1		1	Į.	13 I
~															1				7
1 2					├──	 								├					-
13		I	I	L	L _	1			1	ŧ		i	ř.	1	1	1	T .	1	3
2		1			1		1								1				2
H					!							 				+	+		H
اغا								⊢ —		 -			 						ك
121				1		1	1	1	1	1		- 5	1	1	1	1	1 -	I	3
~									1			1			 		 		H
إعر		 		 	 	├	 							 	 		 		Ľ
اقا									L	L	L	<u> </u>		L	L	L		L	12
1.9		1	1]	1		1					2	T	T	1	I			9
1					 	 		 	 	 	 	1-2-	 	 		 	 	 	-
1						ļ	 					<u> </u>							لقا
[3]		1	l				L		L	I	i _	+02+	1	I	1	1	1		×
1		1				T	1	Γ	T			7	1	1	$\overline{}$	1			15
اح		 	 			 	 				 				 	 			
3			l																3
12		ı	1			1	1	1]		1		1	1	1	1	1		13
J -		T		ישי ו		$\overline{}$						1	1		1		Т		13
1	THE BRY	 	 	pauched	 	 		 	 		 	 		 	 	 	 	 	끧
12	œ			ــقـــا															121
S	100	[l	0							1	1			1	1			2
1=1	11.7			<u> </u>	i — —	1						$\overline{}$		-		1	 		1.1
اجا		 	ļ	- - -							 			 	├	├ ──	├	 	اخا
	_I		l	_ 0_	l		l			L		1 0			L			i	2
[2]						T						- +							15
<u> -</u>	<u> </u>			 	 		 												t:H
131		├ ──		<u> </u>			ļ	<u> </u>					——			-		-	11
-	>		ľ	17	1	1	1	1	34	ĺ		N .	1	1	ŀ			ı	-
13	0	card					1		0 +			+02							11
1	- - -	├- -Y					 					<u> </u>							1
لتا	<u> 6</u>	_=_		'0					_+_			_+							Ľ
Įσί	∞ ′	10	1	F # "	Γ													1	1
1				cards are			ļ — —					 				 			-
	<u></u> -			0_				- CO			<u></u>							 	
[🖺 [<u> </u>	_==	l	- 2		١	١.		,	,	1 2	1	1	1	1	1	1		2
ΕĪ	ш											1							Ξ
1		- 			 -				ļ			L							
×		, net																	
							ــــــــــــــــــــــــــــــــــــــ		0		_:::	ļ		-					8
ls Ì	Z	e e		- 12	 		 		- 8-		ij	0		2			 		8
15	Z	<u>0</u>		<u> </u>					0		- [j	0		21					8
5	Z W	Heading) jį					2 0 0		ordi	0		<u>21</u>					8 8
37 28 35	Z U	H		¥ 0 ≠					+200		coordi	0 - +		l ≤ 91)					37 M 38 &
K 27 K 35	S	H		¥ 0 *					+ 200		coordinates)	0 - +							M 37 M 38 48
15 M 37 M 35	S L E N D E R - B Ø D Y	 		-14-					+ 200			0 + 							5 35 37 38 38 48
35 16 37 28 39		H		-14-					+ 200			0 + 0							35 36 37 38 39 40
34 35 14 37 28 35		 		-14-					+200			0 - + - 0 +							34 35 36 37 38 39 40
33 38 38 38 38 38		 		-14-					+200			0 + - 0 +							33 34 35 36 37 38 38 40
2 33 34 35 34 37 38 39		 		-14-	<u> </u>				+200			0 + - 0 +							2 33 34 35 36 37 38 39 40
22 33 34 35 34 37 38 39		 		output, # 0 if	<u> </u>				+ 500			0 + 0 +							12 33 34 35 36 37 38 39 40
31 32 33 34 35 36 37 38 39	F R G N	 		output, #	<u>&</u>	99			+ 500			0 + - 0 +							31 32 33 34 35 36 37 38 39 40
30 (31 (32 (33 (34 (35 (34 (35 (34 (35 (34 (35 (34 (35 (35 (34 (35 (35 (35 (35 (35 (35 (35 (35 (35 (35	π 20 Σ	 		output, #	VI	20		- 80	+ 5 0 0		segment	0 + 0 +		I = IX + 1 ≤ 51					30 31 32 33 34 35 36 37 38 39 40
9 30 31 32 33 34 35 36 37 38 39	π 20 Σ	 		output, #	VI			- 80			segment	0 + 0 +		I = IX + I					1 30 31 32 33 34 35 36 37 38 38 38 38
5 29 30 31 32 33 34 35 36 31 38 39 39	π 20 Σ	 		output, #	VI	VI			0		segment	0 + 0 +		I = IX + I					79 30 31 32 33 34 35 36 37 38 39 30
28 29 30 31 32 33 34 35 34 37 38 39	π 20 Σ	 		output, #	VI	VI			0		segment	0 + 0 +		I = IX + I					36 75 36 37 32 33 34 33 38 37 38 38 38
77 28 29 30 31 32 33 34 35 36 37 38 39		 		output, #	VI	VI		- 10	0		segment	0 + 0 +		I = IX + I					77 28 78 39 31 32 33 34 35 36 37 38 38 40
* 77 28 29 30 31 32 33 34 35 16 37 38 39	π 20 Σ	 		output, #	VI	VI			0 . 0		segment	+ - 0 +		I = IX + I					4 27 38 39 30 31 32 33 34 35 36 37 38 39 40
5 26 27 28 29 30 31 32 33 34 35 34 37 38 39	A I C F R R	 		punched output, #	VI	VI			20.0		segment	- + - 0 +		I = IX + I					1 36 TO 30 30 30 30 30 30 30 30 30 30 30 30 30
25 26 27 28 29 30 31 32 33 34 35 34 37 38 39	A I C F R R	 		punched output, #	VI	VI		- 80	20.0		segment	+ - 0 +							15 h 17 h 28 20 31 32 33 34 35 h 37 h 38 40 40
24 25 26 26 27 30 39 30 31 32 33 34 35 34 37 38 39	A I C F R R	 		punched output, #	VI	VI			1+20.0		segment	- + - 0 +		I = IX + I					74 75 36 77 38 78 30 31 32 33 34 35 36 37 38 38 40
23 24 25 26 26 27 28 29 39 39 32 33 34 35 34 37 38 39	π 20 Σ	 		punched output, #	of 11/kg's, \$	points, ≤			1+20.0		segment	- + - 0 +		I = IX + I					23 24 25 26 27 28 39 39 30 32 33 34 35 36 37 38 39 40
72 23 24 25 24 77 28 29 30 31 32 33 34 35 34 37 38 39	Ø F A I C F R Ø	 		punched output, #	of 11/kg's, \$	points, ≤		- 80	0 1 + 2 0 . 0		segment	- + - 0 +		I = IX + I					2 23 24 25 36 37 38 39 39 39 34 35 36 37 38 39 40
22 23 24 25 24 27 28 29 30 31 32 33 34 35 34 37 38 39	R B I C F R B M	 		punched output, #	of 11/kg's, \$	points, ≤			1+20.0			- + - 0 +		I = IX + I					22 23 24 35 34 77 38 39 39 31 32 33 34 35 36 37 38 39 40
21 22 23 24 25 24 27 28 29 30 31 32 33 34 35 35 35 39 38 39	E R ØF A I C F R Ø	 		punched output, #	of 11/kg's, \$	points, ≤			0 1 + 2 0 . 0		(consecutive segment	- + - 0 +		I = IX + I					21 22 23 24 35 34 37 38 39 39 31 32 33 34 35 36 37 38 39 40
70 21 22 22 24 25 24 27 28 29 30 31 32 33 34 35 35 35 39 39 39	E R ØF A I C F R Ø	 		= 0 for punched output, #	of 11/kg's, \$	points, ≤		80	0 1 + 2 0 . 0		(consecutive segment	- + - 0 +		I = IX + I					10 21 22 22 24 25 24 27 28 29 30 31 22 33 24 33 24 37 28 39 40
3 20 21 22 23 24 25 34 27 28 29 30 31 32 33 34 35 34 35 34 39 39	E R ØF A I C F R Ø	 		= 0 for punched output, #	of 11/kg's, \$	points, ≤			0 1 + 2 0 . 0		(consecutive segment	- + - 0 +		I = IX + I					9 20 21 22 23 24 25 34 37 38 79 30 31 32 33 34 35 34 37 38 39 40
19 30 21 22 22 24 25 36 37 38 39 30 31 32 33 36 35 36 37 38 39	R B I C F R B M	 		= 0 for punched output, #	of 11/kg's, \$	VI			0 1 + 2 0 . 0		(consecutive segment	- + - 0 +		I = IX + I					19 70 21 22 22 24 25 34 27 38 79 30 31 32 33 34 35 36 37 38 39 40
16 19 20 21 22 22 24 25 28 27 28 29 30 31 32 33 26 35 26 37 28 39	USER ØF AIC FRØM	 		= 0 for punched output, #	of 11/kg's, \$	control points, <			0 1 + 2 0 . 0		(consecutive segment	- + - 0 +		I = IX + I					16 19 20 21 22 22 24 25 34 37 38 39 30 31 32 33 34 35 35 37 38 39 40
17 14 19 20 21 22 22 24 25 24 17 38 29 30 31 32 33 34 35 34 37 38 39	USER ØF AIC FRØM	 		= 0 for punched output, #	number of 1/kr's, <	control points, <		- M	0 1 + 2 0 . 0		(consecutive segment	9 +		I = IX + I					17 14 14 28 21 22 22 24 25 28 28 28 28 28 28 28 28 28 28 28 28 28
5 17 16 19 30 21 22 22 24 25 38 37 38 39 30 31 32 33 34 35 38 35 38 39 38 39	USER ØF AIC FRØM	 		= 0 for punched output, #	of 11/kg's, \$	of control points, <			0 1 + 2 0 . 0		series (consecutive segment	9 +		I = IX + I					4 17 18 19 20 21 22 22 24 15 36 37 38 39 30 31 32 33 34 35 36 37 38 39 40
16 17 18 19 20 21 22 22 24 25 38 27 38 39 30 31 32 33 34 35 38 39 38 39	USER ØF AIC FRØM	 		= 0 for punched output, #	= number of 1/kr's, <	of control points, <			0 1 + 2 0 . 0		series (consecutive segment	9 +		I = IX + I					14 17 16 19 20 21 22 22 24 25 28 20 28 20 20 21 22 23 24 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26
कार्यायायायायायायायायायायायायायायायायायाय	E R ØF A I C F R Ø	 		punched output, #	number of 1/kr's, <	er of control points, <			0 1 + 2 0 . 0		(I) series (consecutive segment	- + - 0 +		I = IX + I					ডি টিটটোটোল মিন্ড ছিছিছ ছিছিছ মিন্ত মিন্ত <mark>মিন্ত মিন্ত নি ল'ন ল'ন ল'ন গোল গোল জিছিছ ছিছিল ল'ন নিৰ্দিশ ল'ন যে যে যে যে যা স্থানি সালি সাল</mark>
	USER ØF AIC FRØM	 		= 0 for punched output, #	W = number of 1/kg's, \$	er of control points, <			+01+20.0		(I) series (consecutive segment	9 +		I = IX + I					
	FØR USER ØF AIC FRØM	 		= 0 for punched output, #	W = number of 1/kg's, \$	er of control points, <			+00-+20.0		series (consecutive segment	9+		I = IX + I					
	O FINE USER DE AIC FROM	 		= 0 for punched output, #	W = number of 1/kg's, \$	er of control points, <			+0-+20.0		(I) series (consecutive segment	9 +		I = IX + I					
	FØR USER ØF AIC FRØM	 	0	= 0 for punched output, #	W = number of 1/kg's, \$	er of control points, <			+00-+20.0		(I) series (consecutive segment	9+		I = IX + I					
	RO F BR DF AIIC	 	0	= 0 for punched output, #	W = number of 1/kg's, \$	of control points, <			+01+20.0		(I) series (consecutive segment	9+		I = IX + I					
	ARO FRER BF AIC FRE	 	0	= 0 for punched output, #	= number of 1/kr's, <	number of control points, <			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(I) series (consecutive segment	9+		I = IX + I					
	RO F BR DF AIIC	 	0	= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <			+01+20.0		(I) series (consecutive segment	9+		I = IX + I					
9 10 11 12 13 14 15 14 15 16 19 70 73 23 24 25 78 77 78 79 70 33 32 33 78 75 78 79	ARO FRER BF AIC FRE	 	ō	= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(I) series (consecutive segment	9+		I = IX + I					
1 1 2 1 1 0 6	CARO SER ØF AIC FR	 		= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(I) series (consecutive segment	9+		TONOTE I					
1 1 2 1 1 0 6	G CARO F BR USER BF AIC FR	 	0	= 0 for punched output, #	W = number of 1/kg's, \$	number of control points, <			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(I) series (consecutive segment	9+		TONOTE I	6	S.			
1 1 2 1 1 0 6	N G C A R O C F R B R F R B B R R B B R R B B R B R B	 		= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <		ď	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(I) series (consecutive segment	9+	4	TONOTE I	19)	25)	31.)	37)	7 8 9 10 11 12 13 14
1 [1 2] 11 01 6	N G C A R O C F R B R F R B B R R B B R R B B R R B B R B R	 		= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(I) series (consecutive segment	9+	(4)	I = IX + I	(19)	(25)	(31)	37)	7 8 9 10 11 12 13 14
1 [1 2] 11 01 6	ING CARO FER USER ØF AIC FR	 		= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <		ď	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(I) series (consecutive segment	9+	χ (τ)	TONOTE I	(19)	(25)	(31)	37)	6 7 8 9 10 11 12 13 14
3 6 7 8 9 10 11 12 13 14	DING CARD FOR USER OFF AIC FROM	 	4	= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <		ď	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(I) series (consecutive segment		(4)×	TONOTE I	(19)	(25)	(31)	37)	5 6 7 8 9 10 11 12 13 14
3 6 7 8 9 10 11 12 13 14	A DIING CARD FINE USER BE AIIC FRE	 		= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <		ď	0 . 0 . 0 . 0		(I) series (consecutive segment		(4.7x	TONOTE I	(19)	(25)	(31)	37)	6 7 8 9 10 11 12 13 14
3 6 7 8 9 10 11 12 13 14	A DIING CARD FINE USER BE AIIC FRE	 	4	= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <		ď	0 . 0 . 0 . 0		(I) series (consecutive segment		(4)X	TONOTE I	(61)	(25)	(31)	37)	4 5 6 7 8 9 10 11 12 13 14
3 6 7 8 9 10 11 12 13 14	EADING CARO FOR USER OF AIC FROM	 	4	= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <		ď	0 · · 0 · · · · · · · · · · · · · · · ·		(I) series (consecutive segment		(4) x	TONOTE I	(19)	(25)	(31)	37)	3 4 5 6 7 8 9 10 11 12 13 14
1 1 2 1 1 0 6	A DIING CARD FINE USER BE AIIC FRE	 	4	= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <		ď	0 · · · · · · · · · · · · · · · · · · ·		(I) series (consecutive segment		(¢)X	TONOTE I	(19)	(25)	(31)	37)	4 5 6 7 8 9 10 11 12 13 14
3 6 7 8 9 10 11 12 13 14	EADING CARO FOR USER OF AIC FROM	 	4	= 0 for punched output, #	W = number of 1/kg's, \$	= number of control points, <		ď	0 · · 0 · · · · · · · · · · · · · · · ·		(I) series (consecutive segment		(4)X	TONOTE I	(19)	(25)	(31)	37)	3 4 5 6 7 8 9 10 11 12 13 14

		,	,	,	,		·			,							·
	1	ļ	50005		1				<u> </u>			<u> </u>	9				
	-	 	<u> </u>	<u> </u>			-	<u> </u>					0			├	
 	ļ	ļ			<u> </u>			<u> </u>				_	0		<u> </u>	ļ	
		 	0	 									3				
-	1		LO.					<u> </u>			ļ		4)			 	
<u> </u>	ļ	ļ	_ ∑ I	ļ	<u> </u>			ļ	├				 I		ļ	├	
<u> </u>	1	<u></u>	₹	ļ	<u> </u>			L	<u> </u>				2			ļ	<u> </u>
L	ļ	 	I		<u> </u>		ļ.,	<u> </u>	<u> </u>				I		ļ		
					<u> </u>		<u> </u>	<u> </u>				L			<u> </u>	↓	
<u> </u>			<u> </u>		ł			<u> </u>									
								İ				L					
	T													I			
				1				1									
	1											l					
	1	·	0		_			—									
	 	 	<u> </u>	 -	 	 				 						\vdash	
	+	 	+	-				\vdash	 			 			-	 	_
	 	 	 	 	┼			┼	-							 	
	├─~	 	ļ	-	 	_		 				\vdash			├	 	
			-	ļ	ļ		<u> </u>	ļ				<u> </u>					
Ь—	├	⊢	-	 	-	 		 				├──			├	Ь—	
L	J		ļ			<u> </u>		├	⊢—	 -		ļ		ļ	ļ	ļ	
					ļ	ļ		L	 	 	<u> </u>	<u> </u>	L	<u> </u>		Ь	Ь
								l					ļ	L	ļ	L	
								L	L								
	T		I		1				L		L		\Box			ш	L
					T	· · · · · ·		I							I		I
	Ī	T	T	T	i			I	I			Ī —			I		[
	1		0	<u> </u>	1			\vdash							1		
	†	 	ا ب	 	t	 			!	 	 				1		
	 	 	00	 	 			 							· · · · ·	 	
	 	 		 	 -	 		 	 				-	<u> </u>			
	+		 	 	\vdash	 ;		┼	\vdash	— —					 	 	
	+		 	 	 			+	-	\vdash	\vdash		-	-	-		
	 			 			 	 		ļ	 	\vdash		 		-	₩-
	₩		-	1	├	<u> </u>		ļ	—						₩	-	
	↓		 		<u> </u>	<u> </u>		ļ		—	<u> </u>			ļ	ļ	↓	├ ──
	1	l	<u> </u>		<u> </u>			L									ļ
	1		Ī								l						
		l	l				L	L				(L	i		
	1	1	0				Ī	Ī					0	1	l		ŀ
			•	T									•				
 	1	t	—	 	t	≤ 51)	 	1				(reduced velocity series)	9		T	 	1
	 	 	=	 	 	un -	 	 	\vdash	 -			_ - _	 	\vdash		1
	 	=	 	-	-	V1		 	-					\vdash	·	†	
\vdash	 	 E -	 	1	 	 	 	 	l	 	 			 	 	<u> </u>	\vdash
		⊢⊊ −	 	 	 	 -		 	 	—						 	
	 		+02	-	\vdash	+-			\vdash	 	 	- 2	-	 	$\vdash \vdash$	 	
	+		ب.	-	-	<u> </u>			├	 	 	-	-			 	\vdash
ļ	├──	<u> </u>	+			X			├	\vdash				 	\vdash	+	
	ـــــــ	-	└					└	ļ			^		<u> </u>			<u> </u>
		43	L		<u> </u>	11		ļ	<u> </u>	L	(51)	ד	ļ	L	ļ	L	<u> </u>
	1	H				H			L			بو			 	L	L
	10	ਰ									_<	_ H					
l	X(51)	ď				Gi					l iai	_ - F				L	
Ι΄	1	0	T	1							AREA	Ð	0		L		
T		_#_	4	1	1	0	· -		l		4	۳.				1	I
<u> </u>	1	Ö	_			7	$\overline{}$	1					0				
		- m	+02+14		$\overline{}$	(NOTE:			1				0+			Ι	r
	t	 7 -	- ci			_		1					_				
	1	-	ò				 	t	1				0 +		l	1	
	+	*	1		 	\vdash		 					+		 	$\overline{}$	t
	 	H		 	 	\vdash	_	t	 -		=					$\overline{}$	<u> </u>
	+	- 5	 	-	 			 	 		15	$\overline{}$		\vdash	 	-	
	 =	ت	 			 	 	 		\vdash	=-			-	\vdash	 	
<u> </u>	X(50)	EA (I) (cross-section areas at X(I))	Ь—	 		<u> </u>	 				(95) YEE	$1/k_{\rm r}(J)$	—	<u> </u>	 	 	\vdash
l	ٻت.		ļ		_		 	 _ _ _	<u> </u>			<u> </u>		<u> </u>	<u> </u>		
	⊥× _	4	ļ	<u> </u>	ļ		<u> </u>				- 2	_	<u> </u>		├		├
		-G-	Ļ		<u> </u>	 	ļ	Ь——	<u> </u>		-				<u> </u>		├
			2		ļ						4				ļ	ļ	<u> </u>
		*	-+										3		L	<u> </u>	L
	\Box		+		\Box								-				
	1		-														
	1	4	1	1	1			T								I	
	 	6		1			-								-		
	1	장	 		8	8	16		~	3	6				8	6	16
	 _		 	<u>-</u>	=	1.9	25)	31	37	43)	(49)			2	13	61	(25
			 			_							_	_	_		
3)			⊢—	-			├──				-				 	 	-
(43)	4			1 2	1	1	L				_ ci_				il	(
X(43)	¥ \$	<u> </u>		 	 	_				1	100				11		
X(43)	X(49)		0	- 젊						•	- Z			1/k		-	/
X(43)	×		·	H H						•	ARE		0	/[-	1/1
X(43)	×			ARE -						1	AREA		2 . 0	/[]			1/

101																		
لف															L		L	2
*					1			_										
=																		2
12									-							i		
131				 			1	1					_				 	
늘				-	 	 	i		 		 					 	 	
12		<u> </u>		<u> </u>	├──				 					├──				
E.					——				 			<u> </u>						F
串				└		└	<u> </u>	-	1					<u> </u>				
2			i	<u> </u>							L			L		<u> </u>		2
اعا			l.,		L			l					l				l	~
2									[Г		1			2
1				$\overline{}$	1													2
1				 					 		i			— —				1
1				-	 	┼──			 							 	 	
1=		-			 	├──		 	 			 		_		 		
-				<u> </u>									├					1 3
إقا		L			└	ļ <u> </u>			├					ļ		⊢		
3					<u> </u>										└	<u> </u>	<u> </u>	3
3				L			- 10					<u> </u>					<u> </u>	2
3				1			P	1				l						3
=							H									Ι''''		=
9							cards											9
1			l						 							·		1
				 			7	_		 					 	 		
۳			-	 	 		<u> </u>	-		 				 		 		12
13		<u> </u>					⊢ ∺	├─-										
13					ļ		-5-	ļ			—		ļ		ļ			3
12		L					_ <u>ā</u> _	L			ļ	<u> </u>		ļ	<u> </u>		 	
اخا					L		ם,		L		_		L			L		7
2	1					1	0					I			l			3
8							-	I										25
ΞÌ						<u> </u>	U					1						=
9			·				4		1		 	l		——				
1	+				 	 	- -	 	 		 	 			 	 		 :
1							-2									 		<u>*</u>
131		50)			 -		<u>-a</u>		<u> </u>									- 1
9		_2_		Ь—		<u> </u>	0_	<u> </u>							ļ		ļ	- 0
3							- 20											3
₽	1	٠,	İ		<u></u>		Ē				l			L				1 2
3	ï	- 3≤		I			<u>-</u> =									i		3
च		~					-2											2
इ		3					팊											2
ᆸ																		
1		-3-							-			\vdash		-		_		
134			l															
					_		 p -		-							├		
M							2											R
		-11					E											R
25		<u>-</u>					blem											R R
34 37 38 3		(J) = KVBRW <					coblem											R R Si
35 34 37 38 3							problem											第
35 36 37 38 3							problem											# # # # # # # # # # # # # # # # # # #
33 34 35 34 37 38 3.							le problem	<u> </u>										# # # # # # # # # # # # # # # # # # #
22 33 34 35 34 37 38 3.							ple problem	6.9										22 25 25 25 25 25 25 25 25 25 25 25 25 2
1 32 33 34 35 34 37 38 3.							mple problem	006.)										7 R R R R R R R R R R R R R R R R R R R
0 31 32 33 34 35 34 37 38 3.							ample problem	0006.)										R R R R R R R R R R R R R R R R R R R
9 30 31 32 33 34 35 34 37 38 3.		(NOTE: (J) =					xample problem	50006.)										R R R R R R R R R R R R R R R R R R R
7 26 35 35 34 35 36 37 38 37							example problem	150006.)										# # # # # # # # # # # # # # # # # # #
E ME TE ME SE ME DE SE IE ME TE							e example problem	M150006.)										2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
77 78 78 78 78 33 78 78 78 78 78 78 78 78 78 78 78 78 78							he example problem	TM 150006.)										7 R R L
36 77 78 30 31 32 33 34 35 36 37 38 3							the example problem	HTM 1 50006.)										R R R R R R R R R R R R R R R R R R R
25 26 70 36 30 31 32 33 34 35 36 37 38 39							ir the example problem	h HD4150006.)										· 英
24 25 36 27 38 39 30 31 32 33 34 35 36 37 38 39							for the example problem	1gh FM150006.)										# R R R R R R R R R R R R R R R R R R R
23 24 25 36 27 38 28 30 31 32 33 34 35 36 37 38 39							t for the example problem	ough HM150006.)										# # # # # # # # # # # # # # # # # # #
22 23 24 25 26 27 38 39 30 31 32 33 34 35 36 37 38 38							ck for the example problem	rough HM150006.)										# # # # # # # # # # # # # # # # # # #
71 22 23 24 25 26 27 39 39 30 31 32 33 34 35 34 37 38 35							eck for the example problem	hrough HM150006.)										# # # # # # # # # # # # # # # # # # #
10 21 22 23 24 25 26 27 37 37 39 30 31 33 34 35 34 37 38 3.				6			deck for the example problem	through HM 150006.)										2
P 20 21 22 22 24 25 36 27 79 39 30 31 32 33 34 35 34 37 38 39				200			a deck for the example problem	1 through HM150006.)										
1 1 20 21 22 23 24 25 36 37 38 38 30 31 32 33 34 35 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38				(50)			ta deck for the example problem	01 through HM150006.)										
111 11 20 21 22 23 24 25 38 37 39 39 31 33 33 34 35 38 37 38 37				(05)			lata deck for the example problem	3001 through HW150006.)										# # # # # # # # # # # # # # # # # # #
17 11 19 20 21 22 22 24 25 26 27 37 37 37 30 30 21 32 33 34 35 36 37 38 37				(05)			data deck for the example problem	50001 through HM150006.)										* A R C R C R C R C R C R C R C R C R C R
15 17 18 19 20 21 22 22 24 25 36 27 39 39 39 30 31 32 33 34 35 36 37 38 39				/k_ (50)			e data deck for the example problem	150001 through HM150006.)										東 展 日 東 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日
<u>कारत सर्वार तर तर प्रत्य के कार्य कर कार्य कर कार्य कर कर कार्य कर अप तर तर कर /u>				1/k [±] (30)			he data deck for the example problem contains only the sequenced	A150001 through HM150006.)										2 12 12 12 12 12 12 12 12 12 12 12 12 12
14 15 15 17 18 19 20 21 22 22 24 28 28 28 28 28 28 30 12 28 28 28 30 30 30 30 30 30 30 30 30 30 30 30 30				1/4 (50)			The data deck for the example problem	TM150001 through HM150006.)										
13 14 15 15 17 18 18 20 21 22 22 24 28 28 27 28 28 20 21 22 24 28 30 30 30 30 30				1/4 (50)			(The data deck for the example problem	HM150001 through HM150006.)										
12 13 14 15 15 17 18 18 20 21 22 22 24 25 26 77 38 78 78 78 78 13 33 34 35 38 39 38 39				(80)			(The data deck for the example problem	HM150001 through HM150006.)										
11 12 13 14 15 15 17 16 18 20 21 22 23 24 25 36 27 75 29 30 31 32 33 34 35 36 37 38 39				1/4 (50)			(The data deck for the example problem	HM150001 through HM150006.)										
9 11 12 13 14 15 15 17 11 18 20 21 22 23 24 25 26 27 38 39 39 33 34 35 36 37 38 39 39		NOTE		(90)			(The data deck for the example problem	HM150001 through HM150006.)										
10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15		NOTE					(The data deck for the example problem	HM150001 through HM150006.)										
9 10 11 12 13 14 15 15 17 11 18 30 11 22 23 24 25 36 77 38 39 39 13 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15		NOTE	(3)				(The data deck for the example problem	HM150001 through HM15006.)										
8 9 10 11 12 13 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	(31)		(43)				(The data deck for the example problem	HM150001 through HM150006.)										
7 0 0 10 11 12 13 14 15 15 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	r (31)	NOTE	(43)				(The data deck for the example problem	HM150001 through HM15006.)										
6 7 8 9 10 11 12 13 14 15 15 14 10 18 18 15 15 12 12 12 12 12 12 12 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	k _r (31)	NOTE	(43)				(The data deck for the example problem	HM150001 through HM150006.)										
5 6 7 8 9 10 11 12 13 14	/k_ (31)	NOTE	(43)				(The data deck for the example problem	HM150001 HT0150006.)										
5 6 7 8 9 10 11 12 13 14	1/k (31)	NOTE	(43)	1/4, (49)			(The data deck for the example problem	HM150001 through HM15006.)										
5 6 7 8 9 10 11 12 13 14	1/k (31)	NOTE	(43)				(The data deck for the example problem	HM150001 through HM150006.)										
5 6 7 8 9 10 11 12 13 14	1/kg (31)	NOTE	(43)				(The data deck for the example problem	HM150001 through HM15006.)										
1 2 3 4 5 6 7 8 9 10 11 12 11 12 11 12 11 12 11 12 12 12 12	1/k _F (31)	NOTE	(43)				(The data deck for the example problem	HM150001 through HM150006.)										* A R A R A R A R A R A R A R A R A R A

SECTION IV PROGRAM OUTPUT

A. Printed Output

- 1. All input data.
- 2. The segment lengths [DELTA X (I)] and the control point coordinates XN (I), (Δ_n and x_n in Section I.C).
- 3. Each AIC matrix preceded by the associated $1/k_{_{\mbox{\scriptsize r}}}$ and the matrix size.
- 4. Sequencing number of the first and last punched cards (output) for each AIC matrix.
 - 5. Example problem printed output is given on the following pages.

HEADING CARD FOR USER OF AIC FROM SLENDER-BODY THEORY

AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY

INPUT DATA

	щ
	-
	-
	-
	CC
	ш
	>
S	_
Z	
$\overline{}$	111
Ö	щ
\vdash	S
\vdash	JCE
Ξ	2
CTI	ond
CTI	ond
ECTI	EDUC
ECTI	ond
ECTI	EDUC

02	01	02	03
666	0°4999999E	00000	000
CBAR=	B.R=	S=	SREF=

X(I)

X(1)		LOCAL AREA	
0.09999999E 0)]	9-6666660°0	0.2
0.30000000E 0	01	300C	
0.59999999E 0	10	.13999999E	02
0.0999999E	02	.11000000E	02
OE)2	8000000E	01
0.15000000E 0)2	•0	

OUTPUT DATA

(I)NX	01001	000
CONTROL POINT XN(I)	0.20000000E 01 0.45000000E 01	0.11000000E 01 0.11000000E 02 0.13500000E 02
DELTAX(I)	0.2000000E 01 0.30000000E 01 0.40000000E 01	0.2000000E 01 0.3000000E 01
CONTROL PT. NO.	3 2 1	4 N

AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY

1./KR= 0.2000000E 01

NUMBER OF CONTROL POINTS= 5

щ
S
Ø
ပ
>-
OR
0
-
×
-
-
ပ
0.5
0
HE
I
F

IMAGINARY	COLUMN 6	0 -0.10285714E-00 0.19000000E-00 1 -0.13238095E-00 0 -0.11878788E-00 1 0.50909089E-01
REAL	COLUMN 5	-0.37158729E-00 -0.79011904E 00 0.19765714E 01 -0.55121211E 00 -0.50303029E-01 COLUMN
IMAGINARY	COLUMN 4	0.59885713E 00 0.20800000E-00 -0.27428570E-00 0. COLUMN 10 0. 0. 0.16145454E-00 0.93090907E-01
REAL	COLUMN 3	0.73234285E 00 0.18154857E 01 -0.95718679E 00 0. 0. COLUMN 9 0. 0. 0.
IMAGINARY	COLUMN 2	-0.45599999E-00 -0.35799999E-00 0. 0. COLUMN 8 0. 0.3466666E-00 -0.1026666E-00
REAL	COLUMN 1	-0.31675555E-00 -0.94736665E 00 0. 0. COLUMN 7 0. -0.91938459E 00 0.10114666E 01 -0.52453332E 00

PUNCHED CARDS NOS. HM15 1 THRU HM15 13

AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY

1./KR=-0.30000000E 01

NUMBER OF CONTROL POINTS = 5

THE TRANSIENT CASE

COLUMN	COLUMN
COLUMN 5	COLUMN 5
0.	0.
0.	0.
-0.21090908E-00	0.80727270E-01
0.29090908E-00	0.46545453E-01
THE CHS MATRIX COLUMN 3 COLUMN 4 -0.18571428E-00 0. -0.39523809E-00 0. 0.93809521E 00 -0.45897435E-00 -0.27575757E-00 0.4866665E-00 -0.24242423E-01 -0.26666666E-00	THE CHD MATRIX COLUMN -0.51428570E-01 0.94999999E-01 0.66190474E-01 0.7333332E-00 -0.59393939E-01 0.2545454E-01 -0.15200000E-00
COLUMN 2	COEUMN 2
0.36571427E-00	0.29642856E-00
0.86857141E 00	0.10399999E-00
-0.47912087E-00	-0.13714285E-00
0.	0.
COLUMN 1	COLUMN 1
-0.179999996-00	-0.22799999E-00
-0.47333326-00	-0.17899999E-00
0.	0.
10646	10849

THE CHI MATRIX

	COLUMN				
	ľΛ			F-03	100
	COLUMN 0.	.0		0.21818181E-03	
	4		69E-03	65E-01	99E-02
	COLUMN 0.	°	0.71794869E-03	-0.19066665E-01	-0.43999999E-02
		-0.1/857142E-03	-0.50190474E-01	-0.15151514E-03	0.90909089E-03
	-0.45714284E-03		52341252E-03	ာ <mark>ိ</mark> ဇ	°
	COLUMN 1 -0.21622221E-01 0.34999996E-03	0.	ů c	, ,	

2497

PUNCHED CARDS NOS. HMI5 14 THRU HMI5 33

AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY

•
0
u,
ď
¥
`
0

NUMBER OF CONTROL POINTS = 5

THE STEADY CASE

COLUMN

COLUMN 5		•0	.0	-0.21090908E-00	0.29090908E-00
COLUMN 4	0°	0°	-0.45897435E-00		-0.2666666E-00
COLUMN 3	-0.18571428E-00	-0.39523809E-00	0.93809521E 00	-0.27575757E-00	-0.24242423E-01
COLUMN 2	0.36571427E-00	0.86857141E 00	-0.47912087E-00	0°	•0
COLUMN	-0.17999999E-00	-0.47333332E-00	•0	• 0	• 0

- 2645

PUNCHED CARDS NOS. HM15 34 THRU HM15 41

AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY

1./KR= 0.59999999E 01

NUMBER OF CONTROL POINTS= 5

THE OSCILLATORY CASE

	9	0000
NARY	z	-0.30857142E-00 0.56999999E 00 -0.39714285E-00 -0.3563636=00 0.15272727E-00
IMAGINARY	COLUMN	10857 16999 19714 15836 15272
	O	00000
	72	01
REAL	Z W	-0.33430158E 01 -0.71139284E 01 0.16986094E 02 -0.49633332E 01 -0.43818181E-00
R	COLUMN	.334301 .711392 .169860 .496333 .438181
		. , , ,
<u>۲</u>	4	0.17965714E 01 0.62399999E 00 -0.82285713E 00 0. CCLUMN 10 0. 0.
IMAGINARY	COLUMN	1796571. 62399999 82285713 COLUMN 48436362
IMA	COL	0.179 0.623 0.822 0. 0. CGL 0. 0.
		1
	e.	13E 0 28E 0 36E 0 9E 0
REAL	COLUMN	0.65837713E 01 0.15712628E 02 0.86231206E 01 0. 0. COLUMN 9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
	00	0.65837713E 01 0.15712628E 02 0.86231206E 01 0. COLUMN 9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
	2	
NARY	z	-0.13679999E 01 0. 0. 0. COLUMN 8 0. 0. 0.10399999E 01 0.10399999E 01 0.30799999E 00
IMAGINARY	COLUMN	136799 107399 103999 307999 911999
н	0	
	-	7 7 7 01 01 01 01 01
ΑĹ	Z ¥	-0.31967555E 01 0.00 0
REAL	COLUMN	319675 852069 COLUMN 826297 879813 479119
		00000 0000
		110m4v 110m4v

PUNCHED CARDS NOS. HM15 42 THRU HM15 54

B. Punched Output

- 1. A deck of punched cards (output) from this program is suitable as an input deck to other programs requiring AICs.
- 2. All punched output is sequenced in order on Columns 73 through 80 starting with HM150001. The data is punched in the following order:
 - a. Card 1 contains (1/k_r): (FORMAT 6E12.8).
- b. Card 2 contains IX, the size (number of control points) of the AIC matrix (FORMAT 1814).
- c. The AIC matrix punched in column binary form and its TRA card make up the remainder of the punched output for $(1/k_r)$.
- 3. The order of Statement 2 can be repeated for all reduced velocities per input deck if we note that in the transient case, the three matrices $[C_{hs}]$, $[C_{hd}]$, and $[C_{hi}]$, which must be considered in Statement 2.c, are punched in the order listed with a TRA card after each matrix.
- 4. Each AIC matrix is punched by columns. Column 1 starts in Orgin 1 and Column 2 in Location (1 + matrix size).
- 5. The oscillatory matrices are punched in the order Column 1 (real), Column 1 (imaginary); Column 2 (real), Column 2 (imaginary); ...; Column IX (real), Column IX (imaginary). In the steady, damping, and inertial matrices all columns are real and are punched in order.

SECTION V PROCESSING INFORMATION

A. Operation

STANDARD FORTRAN MONITOR system

B. Estimated Machine Time

T = time in minutes

IX = number of control points

KVBRW = number of reduced velocities per deck

m = number of decks of input data

T = 0.5 + 0.01 $\sum_{j=1}^{m} (IX)_{j} (KVBRW)_{j}$

C. Machine Components Used

A number of core storages

Standard FORTRAN input tape (N1)

Standard FORTRAN output print tape (N2)

Standard FORTRAN output punch tape (N3)

SECTION VI PROGRAM NOTES

A. Subroutines Used

BINPU: binary punch routine

MPUNCH: punch AIC matrix

MPRINT: prints AIC matrix

B. Generalized Tapes

Input, print, and punch tapes are defined as Units 2, 3, and 5, respectively; however, these may be altered by placing the desired units on symbolic cards HM150007, HM150008, and HM150009.

-33-

SECTION VIII SYMBOLIC LISTING

Some of the symbols used in the program are defined as follows:

FORTRAN symbols	<u>Definition</u>
A (I, J).	$[C_{ ext{hs}}]$, also the associated working array
B (I, J)	$[C_{ m hd}]$, also the associated working array
BR	${f b}_{f r}$
CBAR	c
C (I, J)	$[C_{ m hi}]$, also the associated working array
CH (I, J), CH (I, J + 1)	Respective real and imaginary parts of the oscillatory AIC Matrix
DFI, DF2,, DF9	D_1 , D_2 , D_3 , D_{N-2} , D_{N-1} , D_N , D_{n-1} , D_n , and D_{n+1} , respectively
DELTAX (I)	Δ_{n} for segment i, i = n
DELVOL (I)	ΔV_n for segment i, i = n
IX	Number of control points
S	s
LOCAL AREA (I)	Used in printed output only, see SVAR (below)
SREF	S
SVAR (I)	$S_{n-1/2}$ for segment i (i = 1, IX) and $S_{n+1/2}$ for segment IX
SVMINU (I)	S _{n-1/2} for segment i
KVBRW	Number of reduced velocities included in
	the data deck

FORTRAN symbols	Definition
X (I)	$x_{n-1/2}$ for segment i (i = 1, IX) and $x_{n+1/2}$ for segment IX
XKR (J)	$1/k_r$ for reduced velocity j, j = 1, KVBRW
XN (I)	Control point coordinate, segment i
XMINUS (I)	$X_{n-1/2}$ for segment i
XPLUS (I)	X _{n+1/2} for segment i

The complete symbolic listing is given on the following pages.

```
HM150016
                                                                                                                                                                                                                                                                                                                                                                                                     HM150020
                                                       HM150002
                                                                         HM150003
                                                                                                                                  HM150006
                                                                                                                                                                      HM150008
                                                                                                                                                                                        HM150009
                                                                                                                                                                                                           HM150010
                                                                                                                                                                                                                                                 HM150012
                                                                                                                                                                                                                                                                    HM150013
                                                                                                                                                                                                                                                                                      HM150014
                                                                                                                                                                                                                                                                                                         HM150015
                                                                                                                                                                                                                                                                                                                                                               HM150018
                                                                                                                                                                                                                                                                                                                                                                                  HM150019
                                                                                                                                                                                                                                                                                                                                                                                                                       HM150021
                                                                                                                                                                                                                                                                                                                                                                                                                                          HM150022
                                                                                                                                                                                                                                                                                                                                                                                                                                                            HM150023
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               HM150024
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 HM150025
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HM150026
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HM150028
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             HM150029
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                HM150030
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      HM150033
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HM150035
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              HM150036
                                                                                            HM150004
                                                                                                               HM150005
                                                                                                                                                   HM150007
                                                                                                                                                                                                                               HM150011
                                                                                                                                                                                                                                                                                                                                             HM150017
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       HM150027
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  HM150031
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HM150032
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HM150034
                                     HM150001
                                                      IDELVOL(50), DELTAX(50), XPLUS(50), XMINUS(50), A(50,50), B(50,50),
                                     DIMENSION SVAR(51) SVPLUS(50), SVMINU(50), X(51), XN(50),
AERODYNAMIC INFLUENCE
                                                                                                            DEFINE N2 TAPE TO BE WRITE OUTPUT TAPE NUMBER
DEFINE N3 TAPE TO BE PUNCH TAPE NUMBER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DELVOL(I)=(SVPLUS(I)+SVMINU(I))/2。*DELTAX(I)
                                                                                           DEFINE NI TAPE TO BE READ INPUT TAPE NUMBER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF(M1-1)109,109,112
WRITE OUTPUT TAPE N2,501,(TITLE(I),1=1,12)
                                                                                                                                                                                                                                                                                                                                                                                                                        N1;131; (XKR(L); L=1, KVBRW)
                                                                                                                                                                                                                                                                                                                                                                                  READ INPUT TAPE N1641, (SVAR(I), I=1, IX1)
                                                                                                                                                                                                                              READ INPUT TAPE N1;1, (TITLE(I), I=1,12)
                                                                                                                                                                                                                                                                                                                          READ INPUT TAPE NI, 40, CBAR, BR, S, SREF,
                                                                                                                                                                                                                                                                    READ INPUT TAPE NI,3, IX, KVBRW, IPUNCH
                                                                         2CH(50,50),C(50,50)(TITLE(12),XKR(50)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            XN(I)=(XPLUS(I)+XM-FNUS(I))/2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DELTAX(I)=XPLUS(I)+XMINUS(I)
                                                                                                                                                                                                                                                                                                                                                                FORMAT (4E12.8/(6E12.8))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FORMAT(1H1 31X,12A& //)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SVPLUS(I)=SVAR(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SVMINU(I)=SVAR(I)
                                                                                                                                                                                                                                                                                                                                                                                                                       READ INPUT TAPE
                                                                                                                                                                                                                                                                                                                                             1(X(I), I=1, IX1)
                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMAT (6E12.8)
                                                                                                                                                                                                                                                                                                                                                                                                     FORMAT (6E12.8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        KWINUS(I)=X(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     XPLUS(I)=X(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 21 I=1, IX
                                                                                                                                                                                                                                                 FORMAT(12A6)
                                                                                                                                                                                                                                                                                       FORMAT (1814)
                                                                                                                                                                                                                                                                                                                                                                                                                                                            REWIND N3
                                                                                                                                                                                                                                                                                                          [ X ] = [ X I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    [+]=N
                                                                                                                                                                        N2=3
                                                                                                                                                                                         N3=5
                                                                                                                                                     N1 = 2
                                                                                                                                                                                                               M1=1
                                                                                                                                                                                                                                                                                                                                                                                                                                           131
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                109
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 501
```

41

21

ں ں ں

COEFFICIENTS AERODYNAMIC INFLUENCE

```
HM150039
                                                                                                    HM150043
                                               HM150040
                                                                                   HM150042
                                                                                                                        HM 150044
                                                                                                                                           HM150045
                                                                                                                                                               HM150046
                                                                                                                                                                                                                       HM150049
                                                                                                                                                                                HM150047
                                                                                                                                                                                                     HM150048
                                                                                                                                                                                                                                          HM150050
                                                                                                                                                                                                                                                                               HM 1.50052
                                                                                                                                                                                                                                                                                                  HM150053
                                                                   HM150041
                                                                                                                                                                                                                                                             HM150051
                                                                                                                                                                                                                                                                                                                     HM150054
                                                                                                                                                                                                                                                                                                                                        HM.150055
                                                                                                                                                                                                                                                                                                                                                          HM150056
                                                                                                                                                                                                                                                                                                                                                                                                HM150058
                                                                                                                                                                                                                                                                                                                                                                                                                   HM150059
                                                                                                                                                                                                                                                                                                                                                                                                                                      HM150060
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           HM150062
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              HM150063
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  HM150065
                                                                                                                                                                                                                                                                                                                                                                             HM150057
                                                                                                                                                                                                                                                                                                                                                                                                                                                         HM150061
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1M150064
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      HM150066
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HM150067
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HM150068
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               HM150069
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  HM150070
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          HM150073
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       HM150072
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HM150071
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  H150075
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DF1=(DELTAX(1)+DEL(TAX(2))*(DELTAX(1)+2.*DELTAX(2)+DELTAX(3))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DF3=(DELTAX(1)+2.*DELTAX(2)+DELTAX(3))*(DELTAX(2)+DELTAX(3))
                                                                                                                                                      /51X,4H BR=1E15.8/52X,3H S=1E15.8/49X,6H SREF=1E15.8//)
                                                       FORMAT(1H1 29X,35H AERODYNAMIC INFLUENCE COEFFICIENTS
                   FORMAT(1H 29X,35H AERODYNAMIC INFLUENCE COEFFICIENTS
                                                                                                                                 47X,114,19H REDUGED VELOCITIES//49X,6H CBAR=1E15.8
                                                                                                                                                                                                                                                                                                            FORMAT(IH 17X, 16H CONTROL PT. NO. 17X, 10H DELTAX(I)
                                                                                                              FORMAT(1H 49X, 11H INPUT DATA//47X, 114, 9H SECTIONS/
                                                                                                                                                                       WRITE OUTPUT TAPE N2,115, (X(I), SVAR(I), I=1, IXI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DF2=(DELTAX(1)+DEL⊕AX(2))*(DELTAX(2)+DELTAX(3))
                                                                                            WRITE OUTPUT TAPE N2,4,1X,KVBRW,CBAR,BR,S,SREF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      A(1,1)=(2.*SVPLUS(1)*(3.*DELTAX(2)+DELTAX(3))-
                                                                                                                                                                                                                                                                      WRITE OUTPUT TAPE N2,45,((I,DELTAX(I),XN(I)),
                                                                                                                                                                                                                                                                                                                              14X,20H CONTROL ROINT XN(I),//(23X,114,22X,
                                                                                                                                                                                            FORMAT(IH 39X,5H XII),24X,12H LOCAL AREA//
                                                                                                                                                                                                                                                    FORMAT( // 52X,12H OUTPUT DATA //)
                                    25H FROM SLENDER≠BODY THEORY//)
                                                                            25H FROM SLENDER-BODY THEORY//)
                                                                                                                                                                                                               (35X, 1E15, 8, 18X, 1E15, 8))
WRITE OUTPUT TAPE N2,813
                                                                                                                                                                                                                                 WRITE OUTPUT TAPE N2,140
                                                                                                                                                                                                                                                                                                                                                   1E15.8,13X,1E15.8))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              COEFA=XKR(L)**2/S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DO 999 L=1,KVBRW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DO 100 I=1, IX
                                                                                                                                                                                                                                                                                                                                                                                      DO 22 I=1, IX
                                                                                                                                                                                                                                                                                                                                                                                                          22 J=1, IX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF(I-1)6,5,6
                                                                                                                                                                                                                                                                                                                                                                                                                              A(I, 1)=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                B(I, J)=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C(I,J)=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   KS=1X**2
                                                                                                                                                                                                                                                                                          11=1, IX)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        M=I-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (+ I = N
                                                                                                                                                                                                                                                                                                                                                                      J2=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           M1=2
                   813
                                                         814
                                                                                                                                                                                           115
                                                                                                                                                                                                                                                    140
                                                                                                                                                                                                                                                                                                                                                                    112
                                                                                                                                                                                                                                                                                                           45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              5
```

```
HM150088
                                                                                                                                                                                                                                                                                                                                                                                                                          HM150089
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              HM150095
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  HM150098
                                                                                                                                                                                                                                                                                                                                      HM150086
                                                                                                                                                                                                                                                                                                                                                                                                                                                    HM150090
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      HM150093
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    HM1 50094
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HM150096
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             HM150099
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HM150100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               HM150102
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           HM150103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HM150104
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 HM 150 105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               HM150106
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HM150108
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             HM150110
                                                                                                                                                                    HM150080
                                                                                                                                                                                                HM150081
                                                                                                                                                                                                                                                        HM150083
                                                                                                                                                                                                                                                                              HM150084
                                                                                                                                                                                                                                                                                                            HM 150085
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HM150092
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      HM 150097
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HM150101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 HM 150 109
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HM150112
                                                                                                                                                                                                                            HM150082
                                                                                                                                                                                                                                                                                                                                                                      HH150087
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                HM150091
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HM150107
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DF7=(DELTAX(M)+DELTAX(I))*(DELTAX(M)+2。*DELTAX(I)+DELTAX(N))
A(I,J)=1./DF7*(-2.*SVPLUS(I)*(DELTAX(I)-DELTAX(N))
                                                                                                                                                                                                                                                                                  2DELTAX(1)+2。*DELTAX(2)+DELTAX(3)}-2。*DELVOL(1)*(2。*DELTAX(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                      |*DELTAX(1)*(2.*DELTAX(1)*DELTAX(2))*2.*DELVOL(1)*(DELTAX(1)
                                                                                                                                                                                                                                                                                                                                                                    DELTAX(I)*(2°*DELTAX(I)*DELTAX(N)}+2°*DELVOL(I)*(DELTAX(I)
                                                                                                              |+2°+SVMINU(1)*(3°+BELTAX(1)+2°+DELTAX(2)+DELTAX(3)))/DF2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           B(I,J)=-1,/DF7*(SVPLUS(I)*DELTAX(I)*DELTAX(N)+SVMINU(I)*
                                                                                  A(1,2)=(2.+SVPLUS(1)+(DELTAX(1)-2.+DELTAX(2)-DELTAX(3))
                                                                                                                                                                                                                                                                                                                                                                                                                          B(1,3)=-1,/DF3*(SVRLUS(1)*DELTAX(1)*DELTAX(2)+SVMINU(1)
                                                        .2. *SVMINU(1) *(4. *DELTAX(1)+3. *DELTAX(2)+DELTAX(3)))/DF1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C(1,1)=1./DF1*(DF1*DELVOL(1)-DELTAX(1)**2/6.(SVPLUS(1)-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SVMINU(1))*(2.*DEL(TAX(1)+3.*DELTAX(2)+DELTAX(3)))*(-1.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C(1,2)=-1./DF2+(DE&TAX(1)++2/6.+(SVPLUS(1)-SVMINU(1))+
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C(1,3)=+1./DF3*(DELTAX(1)**2/6.*(SVPLUS(1)-SVMINU(1))*
                                                                                                                                                                                                                                                                                                                                                                                            2+2。*DELVOL(1)*(DEL@AX(1)+2。*DELTAX(2)+DELTAX(3)))/DF2
                                                                                                                                                                                                                                                                                                                                        B(1,2)=(SVPLUS(1)*DELTAX(1)*(2.*DELTAX(2)+DELTAX(3))
                                                                                                                                                                                                                                                    IDELTAX(3))-SVMINU(1)*(2.*DELTAX(1)+DELTAX(2))*(2.*
                                                                                                                                        A(1,3)=(-2,*SVPLUS(1))*(DELTAX(1)-DELTAX(2))-2,*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DF8=(DELTAX(M)+DELTAX(I))*(DELTAX(I)+DELTAX(N))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C(I,J)=+1,/DF7*(DELTAX(I)**2/6,*(SVPLUS(I)=
                                                                                                                                                                                                                          B(1,1)=(SVPLUS(1)*DELTAX(2)*(2.*DELTAX(2)+
AERODYNAMIC
                                                                                                                                                                    [-2.*SVMINU(I)*(3.*DELTAX(I)+DELTAX(N)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ((DELTAX(1)+2°*DELTAX(2)+DELTAX(3)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SVMINU(I))*(DELTAX#I)+DELTAX(N)))
                                                                                                                                                                                                                                                                                                              3+3 ° *DELTAX(2) +DELTAX(3)) / DF1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ((DELTAX(1)+DELTAX(2)))
                                                                                                                                                                                                IF (XKR(L))25,100,25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF(J-(M+1))11,11,12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF (XKR(L))30,97,30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF (J-M)97,9,10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF(I-IX)7,8,8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DO 97 J=1, IX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2+DELTAX(2)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2+DELTAX(N)))
                                                                                                                                                                                                                            25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             30
```

σ

AERODYNAMIC INFLUENCE COEFFICIENTS

```
HM150115
                                                                                                                                                                        HM150120
                                                         HM150116
                                                                                    HM150117
                                                                                                                  HM150118
                                                                                                                                             HM150119
                                                                                                                                                                                                                                 HM150122
                                                                                                                                                                                                                                                              HM150123
                                                                                                                                                                                                                                                                                          HM150124
                                                                                                                                                                                                                                                                                                                   HM150125
                                                                                                                                                                                                                                                                                                                                                HM150126
                                                                                                                                                                                                                                                                                                                                                                             HM150127
                                                                                                                                                                                                                                                                                                                                                                                                           HM150128
                                                                                                                                                                                                                                                                                                                                                                                                                                        HM150129
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 HM 1.50 130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          HM150132
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       HM150133
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HM 150 134
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              HM150135
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           HM150136
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  HM 150 138
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               HM150139
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HM150140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HM 150 142
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                HM150143
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HM150144
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HM150145
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    HM150146
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                HM150147
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               HM150148
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          HM150149
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    HM150150
                                                                                                                                                                                                    HM150121
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               HM150131
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HM150137
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      HM150141
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HM150151
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DELTAX(IX) + DELTAX( { X~-1 }) + SVMINU(IX) * DELTAX(IX) * DELTAX(IX-1) +
                                                                                                                                                                                                                                                                                       DF9=(DELTAX(M)+2.*BELTAX(I)+DELTAX(N))*(DELTAX(I)+DELTAX(N))
                          -DELTAX(N)}-2。*SVMfNU(I)*(DELTAX(M)-2。*DELTAX(I)-DELTAX(N)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DF6=(DELTAX(IX-2)+2.*DELTAX(IX-1)+DELTAX(IX))*(DELTAX(IX-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DF5=(DELTAX(IX-2)+BELTAX(IX-1))*(DELTAX(IX-1)+DELTAX(IX))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    I*DELTAX(IX-1)+DELTAX(IX-2))+2.*SVMINU(IX)*(DELTAX(IX)-2.*
                                                                                                                .DELTAX(I))-SVMINU(F)*DELTAX(M)*(2.*DELTAX(I)+DELTAX(N))
                                                                                                                                                                                                                                                                                                                 A(I,J)=1./DF9*(-2.*SVPLUS(I)*(DELTAX(M)+3.*DELTAX(I))+
                                                                                                                                                                                                                                                                                                                                                                                                                                    1DELTAX(I))+SVMINU(4)*DELTAX(M)*DELTAX(1)+2.*DELVOL(I)*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DELTAX(IX-1))-2。+SWMINU(IX)*(DELTAX(IX)-DELTAX(IX-1)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C(I,J)=1./DF9*(DELTAX(I)**2/6.*(SVPLUS(I)~SVMINU(I))
A(I,J)=1,/DF8*(2,*SVPLUS(I)*(DELTAX(M)+2,*DELTAX(I)
                                                                                                                                                                                                    I(SYPLUS(I)-SVMINU(#))*(DELTAX(N)-DELTAX(M)))*(-1°)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            A(IX,IX-1)=1./DF5*12.*SVPLUS(IX)*(3.*DELTAX(IX)+2.
                                                                                                                                                                                                                                                                                                                                                                                                       8(1, 1)=1,/DF9*(SVPLUS(1)*DELTAX(1)*(DELTAX(M)+2.*
                                                                                  B(I,J)=1./DF8*(SVPLUS(I)*DELTAX(N)*(DELTAX(M)+2.*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    A(IX,IX-2)=1./DF4*1-2.*SVPLUS(IX)*(3.*DELTAX(IX)+
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DF4=(DELTAX(IX-2)+0ELTAX(IX-1))*(DELTAX(IX-2)+2.*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         A(IX,IX)=1./DF6*(-2.*SVPLUS(IX)*(4.*DELTAX([X)+
                                                                                                                                                                        C(I,J)=1,/DF8*(DF8*DELVOL(I)+DELTAX(I)**2/6,*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          B(IX, IX-2)=1,/DF4* SVPLUS(IX)*DELTAX(IX)*(2.*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 22.*DELVOL(IX)*(DELTAX(IX)+DELTAX(IX-1)))
                                                                                                                                           2+2。*DELVOL(I)*(DELTAX(N)-DELTAX(M)))
                                                                                                                                                                                                                                                                                                                                                12. *SVMINU(I)*(DELTMX(M)-DELTAX(I))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        l*(DELTAX(M)+DELTAX(I)) )*(-1.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2DELTAX(IX-1)-DELTAX(IX-2)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DELTAX(IX-1)+DELTAX(IX)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2(DELTAX(M)+DELTAX(E)))
                                                                                                                                                                                                                                                              IF (J-(M+2))13,13,100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF(XKR(L))32,100,32
                                                                                                                                                                                                                                                                                                                                                                              IF (XKR.(L)) 14,97,14
                                                       IF(XKR(L))31,97,31
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2-1)+DELTAX(IX-2)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1+DELTAX(IX))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GO TO 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CONTINUE
```

12

31

14

76

α

```
HMI50163
                                                                                                                                                                                                                                                                               HM150164
                                                                                                                                                                                                                                                                                                      HM150165
                                                                                                                                                                                                                                                                                                                             HM150166
                                                                                                                                                                                                                                                                                                                                                                           HM-150168
                                                                                                                                                                                                                                                                                                                                                                                                HM150169
                                                                                                                                                                                                                                                                                                                                                                                                                       HM150170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HM150172
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HM150173
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 HM150174
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HM150175
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          HM150178
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 HM150179
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        HM150180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HM150182
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HM150183
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        HM150185
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               HM150186
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             HM150188
                                                                   HM150155
                                                                                           4M150156
                                                                                                                                        HM150158
                                                                                                                                                               HM150159
                                                                                                                                                                                    HM150160
                                                                                                                                                                                                                                  HM150162
                                                                                                                                                                                                                                                                                                                                                  HM150167
                                                                                                                                                                                                                                                                                                                                                                                                                                            HM150171
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               HM150176
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HM150177
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              HM150181
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HM150184
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      HM150187
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    HM150189
                        HM150153
                                               HM150154
                                                                                                                 HM150157
                                                                                                                                                                                                             1M150161
                        1DELTAX(IX)+2。*DELTAX(IX-1)+DELTAX(IX-2))+SVMINU(I)*DELTAX(IX)
                                            2*(2°*DELTAX(IX-1)+DELTAX([X-2))+2°*DELVOL([X)*(DELTAX([X)+
                                                                                                                 [*(2。*DELTAX(IX)+2。*DELTAX(IX-1)+DELTAX(IX-2))-SVMINU(IX)*
                                                                                                                                        2DELTAX(IX-1)*(2°*DELTAX(IX-1)+DELTAX(IX-2)}+2°*DELVOL(IX}
                                                                                          B(IX, IX)=1./DF6*(SWPLUS(IX)*(2.*DELTAX(IX)*DELTAX(IX-1))
                                                                                                                                                                                                                                                                                                    [*(SVPLUS(IX)~SVMINU(IX))*(2。*DELTAX(IX)+3。*DELTAX(IX-1)
                                                                                                                                                                                                                                                         SVMINU(IX))*(DELTAX(IX)+2.*DELTAX(IX-1)+DELTAX(IX-2)))
                                                                                                                                                                                                                                                                               C(IX,IX)=1./DF6*(D66*DELVOL(IX)*DELTAX(IX)**2/6.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMAT(1H 49X,7H 1)/KR=1E15.8//46X,10H NUMBER OF
                                                                                                                                                                                                                                  C(IX,IX-1)=1./DF5*&DELTAX(IX)**2/6.*(SVPLUS(IX)-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  TRANSIENT
                                                                                                                                                                                    C(IX,IX-2)=1./DF4**DELTAX(IX)**2/6.*(SVPLUS(IX)
B(IX,IX-1)=-1./DF54(SVPLUS(IX)*DELIAX(IX)*(2.*
                                                                                                                                                             3*(2°*DELTAX(IX)+3°*DELTAX(IX-1)+DELTAX(IX-2)))
                                                                                                                                                                                                           1-SVMINU(IX))*(DELTAX(IX)+DELTAX(IX-1)))*(-1.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  17H CONTROL POINTS =113//49X,14H THE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               WRITE OUTPUT TAPE N2,814
WRITE OUTPUT TAPE N2,78,XKR(L),IX
                                                                                                                                                                                                                                                                                                                                                                         WRITE OUTPUT TAPE N3,86,XKR(L),J
                                                                    32. *DELTAX(IX-1)+DE&TAX(IX-2)))
                                                                                                                                                                                                                                                                                                                                                                                                                                            WRITE OUTPUT TAPE N3,34,1X,J1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C(I,J)=COEFZ/CBAR*O(I,J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            A(I,J)=COEFZ*CBAR*A(I,J)
                                                                                                                                                                                                                                                                                                                                                                                              FORMAT (1E12.8,65X,113)
                                                                                                                                                                                                                                                                                                                             2+DELTAX(IX-2)))*(-1.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FORMAT(114,73X,113)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             B(I,J)=COEFZ*B(I,J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IF (XKR (L))46,46,71
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF (XKR(L))80,70,80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF (XKR(L))82,70,71
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 COEFZ=2,/SREF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DO 47 [=1, IX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DO 47 J=1, IX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00 81 I=1, IX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 J=1, IX
                                                                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             J1=J1+1
                                                                                                                                                                                                                                                                                                                                                                                                                          J1=J1+1
                                                                                                                                                                                                                                                                                                                                                     100
```

34

94

47

80

78

82

10/11/62

AERODYNAMIC INFLUENCE COEFFICIENTS

501 501 501 501 501	HM150197 HM150198 HM150199 HM150200 HM150201	HM150203 HM150204 HM150205 HM150206	HM150208 HM150209 HM150210 HM150211 HM150213	HM150214 HM150215 HM150216 HM150217 HM150219 HM150219	5022 5022 5022 5022 5022 5022
2 20 01 34	GD TD 702 833 J1=J2+1 702 J2=J1+(IX+IX/22)*3±4 302 WRITE OUTPUT TAPE N2,66 66 FORMAT(// 49X,15H THE CHD MATRIX /) CALL MPRINT(8,1X,50,N2)	02	WRITE OUTPUT TAPE WRITE OUTPUT TAPE 2 FORMAT(1H 49%,7H 1 1 17H CONTROL POIN CALL MPRINT(A,IX,I IF(IPUNCH)999,845,	145 IF(J1-2)847,846,843 146 J1=J2 6D TD 888 147 J1=J2+1 188 J2=J1+IX+IX/22*IX+2 WRITE DUTPUT TAPE N2,229,J1,J2	3 CHS=606060233062 CALL MRUNCH(A, IX, IX, 0, 0, 1, CHS, 50, N3) IF(XKR(L))79,999,79 79 CONTINUE B CHD=606060233024 B CHI=606060233031 CALL MPUNCH(B, IX, IX, 0, 0, 1, CHD, 50, N3)
8 8 8	Ø F F S	9 9			8 79 8

```
HM150250
                                                  HM150229
                                                                                                                     HM150233
                                                                                                                                                                         HM150236
                                                                                                                                                                                                           HM 150238
                                                                                                                                                                                                                           HM150239
                                                                                                                                                                                                                                                                                              HM150243
                                                                                                                                                                                                                                                                                                                HM150244
                                                                                                                                                                                                                                                                                                                               HM150245
                                                                                                                                                                                                                                                                                                                                                 HM150246
                                                                                                                                                                                                                                                                                                                                                                                  HM150248
                                                                                                                                                                                                                                                                                                                                                                                                  HM150249
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       HM150253
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          HM150256
                                                                                                                                      HM150234
                                                                                                                                                       HM150235
                                                                                                                                                                                        HM150237
                                                                                                                                                                                                                                            HM150240
                                                                                                                                                                                                                                                                            HM150242
                                                                                                                                                                                                                                                                                                                                                                  HM150247
                                                                                                                                                                                                                                                                                                                                                                                                                                      HM150251
                                                                                                                                                                                                                                                                                                                                                                                                                                                      HM150252
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        HM150254
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        HM150255
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HM150258
                                                                                    HM150231
                                                                                                      HM150232
                                                                                                                                                                                                                                                             HM150241
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HM150257
                                                                                                                                                                                                        FORMAT(1H 12X,4HREAL 11X,9HIMAGINARY 11X,4HREAL 10X,
                                                                                                                                                       16H CONTROL POINTS=113//48X,16H THE OSCILLATORY
                                                                                                                                      FORMAT(1H 49X,7H 11/KR=1E15.8//46X,10H NUMBER OF
                                                                                                                                                                                                                          9HIMAGINARY 10X, SHREAL 11X, 9HIMAGINARY //)
                                                                                                                                                                                                                                                                                                                CH(I,J)=COEFA*A(I,KZ)-(1,/(BR**2*S)*C(I,KZ))
                                                  FORMAT(/38X,24H PUNCHED CARDS NOS. HMI5113,
AERODYNAMIC
                                                                                                                                                                                                                                                                                                                                                                                                                                     CALL MPUNCH(CH, IX, EX2, 0, 0, 1, CHM, 50, N3)
                                  CALL MPUNCH(C, IX, IX, 0, 0, 1, CHI, 50, N3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                END(1,1,0,0,0,0,0,0,1,0,1,0,0,0,0)
                                                                                                   WRITE OUTPUT TAPE N2,814
WRITE OUTPUT TAPE N2,85,XKR(L),IX
                                                                                                                                                                                                                                                                                                                               CH(I, J+1)=XKR(L)/(BR*S)*B(I,KZ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          WRITE DUTPUT TAPE N2,229,J1,J2
                                                                                                                                                                                                                                                                                                                                                                 CALL MPRINT(CH, IX, 1X2, 50, N2)
                                                                                                                                                                                       WRITE GUTPUT TAPE N2,919
                                                                                                                                                                                                                                                                                                                                                                                  [F(IPUNCH)999,65,999
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        J2=J1+2+(IX+IX/22)#2
                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF(J1-2)887,889,887
                                                                   1 10H THRU HM15113)
                                                                                                                                                                                                                                                                                                                                                                                                                     CHM=606060233044
                                                                                                                                                                                                                                                                             DO 35 J=1, IX2, 2
                                                                                                                                                                                                                                                             DO 35 I=1, IX
                                                                                                                                                                         5H CASE//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           END FILE N3
                                                                                      60 TO 999
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GO TO 631
                                                                                                                                                                                                                                            IX2=2*IX
                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                                              KZ = J/2 + 1
                                                                                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           JJ = J2 + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        11=12
                                                   229
                                                                                                                                                                                                           919
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        889
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            666
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          887
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          631
                                                                                                                                        85
                                                                                                                                                                                                                                                                                                                                                   35
                                                                                                                                                                                                                                                                                                                                                                                                      65
                                                                                                       77
```

1.5
ICIEN
COEFFICI
NFLUENCE
AMIC IN
AERODYN

PAGE 8

10/11/62

-		N AND EQUIVALENCE STATEMENTS		SVMINU 12366 30116 XMINIS 12065 27441		N, OR EQUIVALENCE STATEMENTS	DEC OCT	1950	1946	DF4 1942 03626	1938	1934	1930	1926	1922	1918	FORMAT STATEMENTS	EFN LOC	12 34 033	22 66	2L 85	0	PE 814	
BY PROGRAM		N DIMENSION				DIMENSION,	00.1	. 03637	03633		03623	03617	03613	03607	03603	03577	PROGRAM	707				03540		
USED		NI 9NI	DEC 6953	12467	12316	COMMON	DEC	1951	1947	1943	1939	1935	1931	1927	1923	1919	SOURCE	EFN	4	45	78	131	813	
STORAGE NOT		LES APPEARING	3	SVAR	×	APPEARING IN CO		CHD	COEFA	0F3	DF7		5	KVBRM	Z	SREF	FOR		8)4	8) 1D	8) 2E	8)43	8) PD	
v	0CT 77461	R VARIABLES	0CT 22355			NOT APPE		0	0		0	0	0	0	0	0	AND LOCATIONS	707	03546	35	33	4	35	32
	DEC 32561	INS FOR	DEC 9453	12215 12015	12115	LES	DEC	1952	1948	1944	1940	1936	1932	1928	1924	1920	01.5	EFN	G	41	72	115	501	919
		STORAGE LOCATION	80	DELVOL	XPLUS	IS FOR VARIAB		CBAR	CHS	0F2		FONCH	XI	XX:	Σ	Z	SYMB		$\overline{}$	_	2	8)37	u.	S
	OCT 30264	STOR	OCT 27261	27605 30200	27751	LOCATIONS	၁	364	363	03631	362	362	361	561	360	360		\Box	03547	35	33	m (32	8
	DEC 12468		DEC 1953	165 416	265	STORAGE L	EC	95	94	1945	94	63	93	92	92	92		EFN	~	40	29	86	229	2
			∢	DELTAX SVPLUS	×	STO		BR	CHA	DEI	DE5	DF9	IX2	: : د	I				811	-	CO .	8)2M	-	22

10/11/62

			LOCATIONS	
PROGRAM	DEC OCT 2767 77777 1906 03562 1910 03566 1914 03572 656 01220 262 00406 15 00017 1473 02701 647 01207	DEC 0CT 5 00005 4 00004 RY	(STH) S AND OCTAL	IFN LOC 87 00350 116 01043 125 01212 133 01371 147 01665 166 02236 180 02334
IN SOURCE PR	4) 3)60)65 200 112 200 401 526	VECTOR (FIL) (STH) FROM LIBRARY	(RWT) FORMULA NUMBERS	EFN 112 6 10 13 32 80 834
IT APPEARING	642 642 642 642 643 9414 1114 113 546 546 546	IN TRANSFER DEC OCT 8 00010 3 00003 ES NOT OUTPUT	(RTN) INTERNAL FOR	FN LOC 66 00224 109 00606 122 01134 132 01355 140 01525 164 02222 179 02326
SYMBOLS NOT	3) A)103 C)64 C)103 C)900 D)11C D)32E D)51C	OF NAMES (EFT) (RWT) SUBROUTIN	(FPT) CORRESPONDING	EFN 1 109 25 30 12 8 47 301
IONS FOR OTHER	DEC DCT 1634 03142 1608 03110 1908 03564 1912 03570 1916 03574 844 01514 843 01513 1474 02702 842 01512	LOCATIONS DEC OCT 7 00007 2 00002 ENTRY POINTS TO	(FIL) ERS WITH	1FN LDC 63 00213 102 00452 119 01070 129 01265 138 01515 162 02207 172 02270 183 02342
LOCATION	2)	MPUNCH (RTN)	(EFT) FORMULA NUMB	EFN 21 21 31 46 46 702
	DEC 0CT 1896 03550 1652 03164 1907 03563 1911 03567 1915 03573 760 01370 1597 03075 559 01057 14 00016	DEC OCT 6 00006 0 00000 1 00001	MPUNCH EXTERNAL	IFN LDC 25 00020 93 00373 117 01047 126 01221 136 01434 153 02133 170 02260 182 02337
	(1) (2)(6) (2)(6) (2)(10) (2)(2)(11)(6) (3)(4)(11)(6) (4)(11)(6)(11)(6) (5)(11)(6)(11)(6) (6)(11)(6)(11)(6) (7)(11)(6)(11)(6) (7)(11)(6)(11)(6) (7)(11)(6)(11)(6) (7)(11)(6)(11)(6) (7)(11)(6)(11)(6) (7)(6) (7)	MPRINT (FPT) (TSH)	MPRINT (TSH)	EFN 2 22 22 7 110 1100 8133

1.

	AERODYNAMIC	INFLUENCE COEFFICIENTS 10/11/62	PAGE 11
0000 -342647633460 00 (FPT		00045 +000000003546 010	PZE 8)3
0001 -346362303460 00 (TSH	CD 1 (-1000000000000	STR
00002 -345163453460 00 JRTN)	BCD 1(RTN)	0000003614 0	STQ 1X
0003 -345166633460 00 4RWT	00	-100000000000	STR
0004 -346263303460 00 JSTH		0 109800000090-	STO KVBRW
0005 -342631433460 00 . (FIL	CD 1(F	-100000000000	STR
0006 -044751314563 00 NPRI	CD IMPRI	-060000003620 -01	IPUN
0007 -044764452330 00 MPUNC	CD IMPUN	+007400400002 01	(RIN)
0010 -342526633460 00 &EFT	CD 1	+007400403110 01	A)10
0011 +050000000000 00 \$\$	LA 2	-053400203570 01	C)102,
0012 +060100003171 01	10	-053400403614 01	
0013 +05000000000000000	LA (FP	-063400403566 01	5()
00 0100000000000 + 000		+050000003614 01	
0015 +060000077462 01	TZ 4)-2	+040000003145 01	ADD 21+3
0016 -053400203570 010 016	XD C)102	+060100003616 01	X
0017 -053400403566 010 B)40	XD C165	-050000003603 01	
0020 +050000003142 010 25		-063400403170 01	9
0021 +060100003603 0	10	+007400400001 0	(TS
0022 +050000003143 01	LA 2	+000000003545 01	PZE 8)18
0023 +060100003602 01	TO N	-053400403170 01	4 (9
0024 +050000003144 01	ΓA	-100000000000 0	STR
0025 +060100003601 01	T0 N	-060000003640 0	STO CEAR
0026 +050000003145 01	LA 2	-100000000000000	STR
0027 +060100003605 01		-060000003641 0	STQ BR
0030 -050000003603 01		-100000000000 00	STR
0031 -063400403170 01	(9 QX	-060000003576 0	STO S
0032 +007400400001 01		-100000000000 0	STR
0033 +0000000003547 01		-060000003577 01	S
0034 -053400403170 01	+(9 0x	-053400103145 0	2)
0035 -053400103145 010 3		+050000003616 01	CLA IX1
18 00 000000000001- 9800		+062200000107 01	40
0037 -060000127360 01		-100000000000	STR
0040 +1000011000041 010 31A		-060000130035 01	
10 9600014100036 01		+100001100107 010 40	
833	SS	-300000100104 010 40A	
0042 +007400400002 01		-063400403170 010 42	(9
43 -0500		+007400400002 01	TSX (RTN) 4
0044 +007400400001 01	SX (-053400403170 01	(9 Q

	AERODYNAMIC	DEFFICIENTS 1	
43A	CAL N1 SXD 6)+4,4	01000036	STO I CLA I
	SX (TSH)	+040000003145 010	
	2E 8	+060100003600 01	
	X Q X	-053400203600 01	
44V	XD 2)+3,	-063400203564 010	
	LA IXI	+050000230035 01	X+1,2
4	10 45 TD	+05010012/524 01	
	TO < V	+060100127442 010	
⋖	XI *+1°	+050000127524 01	XPLUS+
5A2	XL 45A	+030200127442 010	XMINUS
	y OX	+060100127606 01	DEL TAX+1
	SX	+050000127524 01	XPLUS+1
	9 QX	+030000127442 01	XMINUS
8A	AL N	+024100003152 01	
	7+(9 QX	-060000127752 01	
) XS	+050000230264 01	SVAR+1,
	8 3Z	+060100130201 01	SVPLUS+
	9 0x	+050000130264 01	SVAR+1,
⋖	Š	+060100130117 010	
	LA KVBR	+050000130201 01	SVPLUS+
	10 5	+030000130117 01	NAINO+
⋖	TR	+024100003152 01	3)
	TO XK	+026000127606 01	DEL TAX+
7	* IX	+060100127670 010	DELVOL+1,
A2	XL 504	63A	
⋖	9 0X	213 +100001100214 010 63	+
	SX (RTN)	214 -063400103617 010	-
	9 QX	215 -300000100162 01	55A
⋖	AL N	216 +050000003146 010 64	2)
	XD 6)+4	217 +060100003613 01	7
	X	220 +05000003605 01	Σ
	XD 6)+4,	221 +040200003145 01	2)
4	xD 2)+3	222 +010000000224 01	66A
	LA IX	0	87
	TD 63	224 -050000003602 01	Z
	QX	225 -063400403170 01	9

				•	AERODYNAMIC	INFLUENCE CO	COEFFICIENTS	10/11/62	PAGE 13
00226	4004000	010		TSX P7F	(STH),4	00274	-063400403170 +0074004000004	010	SXD 6)+4,4
023	05340040317			×	6)+4°4	10	, W		833.1
023	05340010314	-	~		3	2	-053400403170	010	6144
023	05600012736	-	€8A	۵	7	3	4		21+3
023	0000000000	00		F		M	-	,	ĭ X ĭ
023	10000110023	_	Ø	×	*+1,11,1	3	-	_	92
023	0001410023	$\overline{}$	68A2	×	68A,1,12	3	3	-	X+1
023	6340040317		0	8	6)+404	3	0	0	STR
023	00740040000	010		SX	(FIL),4	M	9	011	LOQ SVAR+1,1
024	05340040317	_		2	6)+484	3	0	00	STR
024	5000000360		FIA	A	N2	3	-	10 7	*
024	06340040317	$\overline{}$		2	6)+404	3	Ó	10 76A	16
024	00740040000	7		S	(STH),4	3	~	10 7	6)
024	00000000353	_		7	8)PD	3	0	~	(FIL)
024	0740040000	~		S	(FIL),4	3	~		•
024	05340040317			×	6)+404	3	0	_	Z
024	05000000360	_	72A	⋖	N2	M	~	_	4+(9
025	6340040317			×	61+4,4	3	0	-	-
025	00140040000	-		S	(STH) 94	3	_	-	ω
025	000000000347	~		7	8)4	3	0	010	(FIL)
025	05340040317			×	6)+404	3	7	-	7+(9
025	5600000361	10	73A	ā	×Ι	3	0	_	
025	10000000000	0		<u>-</u>		3	\vdash	-	9
025	02600000360	010		۵	KVBRW	3	0	-	ST
025	000000000	0		F		3	•		
026	05600000364	010		ã	CBAR	3	~	-	4 (9
026	10000000000	0		<u>-</u>		3	40010314	-4	5)+
026	5600000364	010		Õ	B R	3	5000000361	$\overline{}$	X
026	10000000000	0		-		M	220000034		84
026	05600000357	010		۵	S	(1)	540010000	00	PXD 0,1
026	0000000000	0		F		3	010000361	010	STO 1
026	05600000357	010		ā	SREF			82A	BSS
026	000000000	00		=		33	5600000361	10 84	rod I
027	06340040317	-		×		33	0000000000	0	
027	7 40040000	010		S	(FIL) o4	00336	+056000127606	010	LDQ DELTAX+1,1
027	5340040317	***		$\overline{\times}$	614494	33	10000000000	0	
027	500000360	بس	¥4.A	₹	N2	34	5600012775		

	AERODYNAMI C	INFLUENCE COEFFICIENTS 10/11/62	PAGE 14
0341 -100000000000000000	STR	03102 01	244A
0342 +100001100343 01	×	06 -053400203570 010 0)	
00343 -063400103617 010	SXD I,1	+056000127344 010 9	XKR+
0344 -300000100334 010 84	×	0 +026000127344 01	
0345 -063400403170 01	×	0411 +024100003576 01	FDP S
0346 +007400400005 01	S	-060000003633	ပ
0347 -053400403170 010	ΩX	3 +056000003614	
0350 +050000003145 01		+02000003614	H
0351 +060100003612 01	-	00415 +076700000021 00	ALS 17
0352 -053400103145 01	OX	+060100003610	¥
0353 +050000003614 01	LA I	-053400103145	
0354 +062200000377 01	-	-063400103567	SXD C)100,1
0355 +056000003614 01	1 00	+056000003614	-
0356 +020000003147 01	PY 2	00422 +020000003147 010	MPY 21+5
0357 +076700000021 00	LS 1	+07670000021	-
0360 +062200000374 01	TD 9	+062200001522	138
0361 +056000003614 0	1 00	-053400103145	7
0362 +020000003147 01	۵.	-063400103562	ບ ຶ ບ
0363 +076700000021 00	_	+050000003614	CLA IX
0364 +062200000375 01	\vdash	+062200002141	-
	S	-075400100000	
0365 +050000003153 010 9		+060100003617	
00366 +060100127262 010	2	+050000003617	_
0367 +050000003153 01	LA	+040200003145	
0370 +060100122356 01	10	+060100003604	STO M
0371 +050000003153 01	LA	-053400203604	Σ
0372 +060100110546 010	\vdash	-063400203565 010	Ĉ
93	S	+0500000030+	-
0373 +100062100374 010 93A	TXI *+1,1,50	0441 +040000003145	
0374 -300000100365 010 93	XL 90	0442 +060100003600	
0375 +200000100376 010 93A	+* XI	43 -053400203600	N , 2
0376 +100001100377 010	×	44 -063400203564	Ĉ
0377 -300000100365 01	×	0445 +050000003617	
0400 +050000003142 010 94	LA 2	0446 +040200003145 01	21+
	10 M1	0447 +010000000452 0	E 10
0402 -053400103145 01	XD 2 3+	0450 +012000001043 01	L 116
0403 -063400103563 01	XD C \\ 0.1	451 +002000001043 010	A 116
0404 +050000003607 01	LA KVB	0452 +056000003152 01	LDQ 3)

	AERODYNAMI	IC INFLUENCE COEFFICIENTS 10/11/62	PAGE 15
0453 +026000027604 01	MP DELT	521 +060100003553 01	0 13+
0454 +030000027605 01	AD D	522 +050000003551 0	CLA 11+1
0455 +030000027603 01	AD DELT	00523 +030000027603 01	E
0456 +060100003551 01	TO 1	524 +013100000000 0	XCA
0457 +050000027605 01	LAD	525 +02600003152	FAP 37
0460 +030000027504 01	AD DELTA	00526 +013100000000	XCA
00 000000000000000000000000000000000000	ပ	527 +026000030200 01	SV
0462 +026000003551 01	MP 1	530 +030200003553 01	4 1 2
0463 +060100003631 01	10	531 +024100003631 01	DF
0464 +050000027604 01	LA DELTAX-	00532 -060000027261 01	
0465 +030000027603 01	AD DELTA	00533 +056000003152 01	ሊነ
10 15500001090+ 9940	TO 1)+	534 +026000027604	DEL
0467 +050000027605 01	LA DEL	535 +060100003551 01	-4
0470 +030000027604 01	AD DELTA	536 +056000003154 01	3)+
0471 +013100000000 00	ပ	537 +026000027605 01	Ω
0472 +026000003551 01	MP 1	540 +030000003551 01	*
0473 +060100003630 01	TO D	541 +030000027603 01	۵
0474 +050000027604 01	LA DEL	00542 +013100000000	XCA
0475 +030000027603 01	AD DELTAX-	00543 +026000003152	FMP 33
0476 +060100003551 01	TO 1)+	544 +013100000000	XCA
0477 +056000003152 01	0	545 +02600030116 01	SVM
0500 +026000027604 01	MP DELTA	00546 +060100003553 01	+
0501 +030000027605 01	ΔD	547 +050000027605	
0502 +030000027603 01	AD DELTA	00550 +030200003551 01	نام. بستن سنند
0503 +013100000000 00	\circ	551 +030200027603 01	FSB DELTAX-2
0504 +026000003551 01	MP I)	552 +013100000000	XCA
0505 +060100003627 010	-	553 +02600003152	FMP 33
0506 +056000003154 01	00 31+	554 +0131000000000	XCA
0503 +026000027604 01	MP DEL	555 +026000030200 01	SVP
0510 +060100003551 01	10 13+	556 +030000003553 01	~
0511 +056000003155 01	00 3)	557 +024100003630	
0512 +026000027605 01	MP DEL	560 -060000027177 01	A-5
0513 +030000003551 01	AD 134	561 +056000003154 01	m
0514 +030000027603 01	A D	00562 +026000027605 01	DELT
0515 +013100000000 00	ပ	563 +030000027604 01	D DELTA
00516 +026000003152 010	FMP 33	64 +01310000	XCA
0517 +0131000000000 00	Ç	565 +026000003152	Σ.
0520 +026000030116 0	Σ	266 +0131000000000	(J

PAGE 16	SVM	DE SV	0 1 0 8	LDQ 3) FMP DELTAX-1 STO 1)+1 FAD DELTAX FAD DELTAX	2 0	FMP DELTAX FAD 13+1 FAD DELTAX-2 XCA FMP SVMINU	FMP DELTAX STO 1)+5 CLA 1)+1 FAD DELTAX=2 XCA FMP SVPLUS
10/11/62	010 000 010 010	000	010 010 010	010 110A 010 010 010	000 010 010 010	010 010 00 010	010 010 010 010 010
INFLUENCE COEFFICIENTS	00635 +026000030116 00636 +013100000000 00637 +026000003557 00640 +060100003560	00642 +030000027603 00643 +013100000000 00644 +026000030200 00645 +013100000000	00646 +026000027604 00647 +030200003560 00650 +030200003554 00651 +024100003631 00652 -060000022355	00653 +056000003152 00654 +026000027604 00655 +060100003551 00656 +030000027605 00657 +030000027603	00660 +013100000000 00661 +026000003152 00662 +013100000000 00663 +026000027667 00664 +060100003553 00665 +05600003152	00666 +026000027605 00667 +030000003551 00670 +030000027603 00671 +013100000000 00672 +026000030116	00674 +026000027605 00675 +060100003555 00676 +050000003551 00677 +030000027603 00700 +013100000000 00701 +026000030200
AERODYNAMIC			S S S S S S S S S S S S S S S S S S S	ZE 153A DQ 3)+2 MP DELTA TO 1)+1 DQ 3)		100 0 0 100 100 100 100 100 100 100 100	FAD 1)+2 FAD DELTAX-2 STO 1)+6 CLA 1)+2 FAD DELTAX-1 STO 1)+7 LDQ 1)+6
	0567 +026000030116 01 0570 +060100003552 01 0571 +050000027605 01 0572 +030200027604 01	0574 +026000003152 0 0575 +0131000000000 0 0576 +026000030200 0 0577 +076000000000 0	0600 +03020003552 010 0601 +024100003552 010 0602 -060000027115 010 0603 -053400203563 010 0604 +050000227344 010 108A	0605 +010000002133 01 0606 +056000003154 01 0607 +026000027604 01 0610 +060100003551 01 0611 +056000003152 01	0612 +026000027605 0 0613 +060100003552 0 0614 +0300000003551 0 0615 +0300000027603 0 0616 +013100000000 0	0620 +0131000000000 00 0621 +026000027667 01 0622 +060100003554 01 0623 +056000003152 01 0624 +026000027604 01	00626 +030000003552 010 00627 +030000027603 010 00630 +060100003556 010 00631 +050000003552 010 00633 +060100003557 010 00634 +056000003556 010

INFLUENCE COEFFICIENT 00751 +03000002 00752 +06010000 00753 +05000003 00754 +03020003
007 007 007 007
700 700 700
00765

'62 PAGE 18	SXD C)100	C 1 2 0 2 s	A LDQ 3)	LXD C)60,1	FMP DELTAX+1,1	LXD C)64,2	FAD DELTAX+1,2	C)62,4	DELT	1)+1	CLA DELTAX+1,2	DELTAX+1,				100 3	a	DELT		FMP 3)	XCA	FMP SVMINU+1,1	+ / [DELT	DEL		FMP 3)	XCA	FMP SVPLUS+1,1	CHS		۵	3	C 10	STO A+1,2	C)61	XKR &]
10/11/62	010 E)V	50	01	01	0	01	ö	01	0	01	0	01	00	0	01	0	010	01	00	010	00	01	010	01	0	00	010	00	010	00	01	01	0	01	010	01	0
INFLUENCE COEFFICIENTS	01065 -063400403567	01067 -063400103574	01070 +056000003152	01071 -053400103562	01072 +026000127606	01073 -053400203565	01074 +030000227606	01075 -053400403564	01076 +030000427606	01077 +060100003551	01100 +050000227606	01101 +030000127606	01102 +013100000000	01103 +026000003551	01104 +060100003623	01105 +056000003154	01106 +026000127606	01107 +030000427606	01110 +013100000000	01111 +026000603152	01112 +013100000000	01113 +026000130117	01114 +060100003552	01115 +050000127606	01116 +030200427606	01117 +013100000000	01120 +026000003152	01121 +013100000000	01122 +026000130201	01123 +076000000002	01124 +030200003552	01125 +024100003623	01126 +02600003156	01127 -053400203567	01130 +060100227262	01131 -053400203563	01132 +050000227344
AERODYNAMIC	FMP 3)+4	10	LA DEL	AD	TO 1)+	LA S	SB SVM	10	DO DEL	d X	10	00 1)+	MP 1)+	DP 3)+	MP 1)+	D dQ	MP 3)+	70 C	RA 153	LA	QB	2E 140	PL	XD 2)+3	XD C32	LA IX	10	0 0 X	io J	(9 OX	XD C1900	XD C)100°		NB	ZE E)	PL E)	RA
			114A																215A	16		116A1		3.17A								D)40N	₽4 8		218A1		
	010	, -	_	_	7	-	-		-	~	_	~	pund	حصدي	$\overline{}$	~	-	_	~	-			-	_	010	-	_	0	010		-	-4	_	ų-		$\overline{}$	(FREE
	01017 +026000003156	1021 +06010001046	1022 +05000002760	1023 +03000002760	1024 +06010000355	1025 +05000003020	1026 +03020003011	1027 +06010000355	1030 +05600002760	1031 +02600002760	1032 +06010000355	1033 +05600000355	1034 +02600000355	1035 +02410000315	1036 +02600000355	1037 +02410000362	1040 +02600000315	1041 +06010001040	1042 +00200000213	1043 +05000000361	1044 +04020000361	1045 +01000000152	1046 +01200000152	1047 -05340010314	1050 -06340010357	1051 +05000000361	1052 +06220000152	1053 -07540010000	1054 +06010000361	1055 -05340020316	1056 -06340020357	1057 -05340040356	1960 +0500000361	1061 +04020000360	1062 +01000000106	1063 +01200000120	1064 +00200000151

		AERODYNAMIC	INFLUENCE COEFFICIENTS 10/11/62	PAGE 19
1512	010 221A1	E D)718	01201 +024100003157 010	-
909/7/0000014 %5/	77 01	LA DELIANTIO	705000000070+	+ ~
135 +030000427606	~	₹	+024100003623	FDP DF7
136 +0131000000000	00	ت	+026000003156	3
137 +026000003152	010	X.	+060100210546	ڻ
140 +0131000000000	0	ũ	+002000001512 010 124	9
000127670	010	۵	01207 -063400403567 010 E)11	1001
142 +060100003552		=	-063400203575	006(3
43 +056000003152	010	ō	-063400103574	C1202,
144 +026000127606	010	Ī	+05000000360+	T
145 +030000427606	010	₹	+040000003145	ADD 21+3
146 +0131000000000	00	CA	+075000000000	CHS
T +026000130117	010	I	+040000003611	ADD J
150 +0131000000000	00	ũ	+010000001220	TZE D)112
151 +026000127606	010	d X	+012000001355	
152 +060100003554	010	101	-053400103562	
153 +056000427606	010	DO DELTAX+1,	+050000127606 010	
154 +026000130201	010	랖	-053400203564	
155 +013100000000	00	ت	+030000227606	FAD DELTAX+1,2
156 +026000127606	010	E D	+060100003551	
57 +030000003554	010	AD 1)+	-053430403565	
160 +030000003552	010	AD 1	+050000427606	DE
161 +024100003623	010	o do	+030000127606	DEL TAX+1
162 +026000003156	010	Ī	+013100000000	XCA
163 +076000000002	00	HS	+026000003551	FMP 11+1
164 -053400203567	010	2	01232 +060100003622 010	
165 +060100222356	010	10	+056000003152	
166 +050000127606	010 A23A	LA	+026000127606	FMP DELTAX+1,1
+030000427606	010	D DELTAX+1,	+060100003551	STO 11+1
170 +060100003551	010	1 0	+07.60000000000	CHS
171 +050000130201	010	LA	01237 +030000427606 010	DELTAX+1,
172 +030200130117	010	SB SVMINU+1,	+030200227606 0	FSB DELTAX+1,2
+060100003552	_	0	01241 +013100000000 00	XCA
6000127606		ã	242	FMP 3)
5 +026000127606	-	S E	243 +013100000000 0	XCA
176 +060100003553	010	10	244 +026000130117	۵
77 +056000003551	,	+ (1	45 +060100003553 0	_
200 +026000003553	_	MP 13+	+050000427606 0	CLA DELTAX+1,4

PAGE 20	~~ LL	3)+4	C)1	841,	3)	1)+1	DELTA	DELTAX+1,	+ 225	ر د ک	SWPLUS+	SVMINU+I+	ĭ) +3	DEL TAX+	DEL TAX+1,	+	1)+	134	33	+ 	+	0F8	DEL	+ (STO 1)+6	ф ,>== ,тф	3) +	DF8		C & 1	0171	≥		CHS		D 🖟 🔏	132A
0/11/62	00	0	0	0	0 130A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0 131A	132	0			0 132A1	0
INFLUENCE COEFFICIENTS 1	00003552 01	1317 +026000003156 01	1320 -053400103567 01	1321 +060100122356 01	1322 +050200003156 01	1323 +060100003551 01	1324 +050000227606 01	1325 +030200427606 01	1326 +060100003552 01	1327 -053400403562 01	1330 +050000430201 01	1331 +030200430117 01	1332 +060100003553 01	1333 +056000427606 01	1334 +026000427606 01	1335 +060100003554 01	1336 +056000003552 01	1337 +026000003554 01	1340 +024100003157 01	1341 +026000003553 01	1342 +060100003555 01	1343 +056000003622 01	1344 +026000427670 01	1345 +03000003555 01	1346 +060100003556 01	1347 +056000003551 01	1350 +026000003156 01	1351 +024100003622 01	1352 +026000003556 01	1353 +060100110546 01	1354 +002000001512 01	1355 +050000003604 01	1356 +040000003142 01	1357 +076000000000 0	1360 +04000003611 01	1361 +010000001370 01	1362 +012000001364 01
AERODYNAMIC	FAD 1)+1 FSB DELTAX+1,2	CA	Σ	CA	MP SV	SB 13+	DP DF8	E M	XD C)10	TO A	XD C)61	LA XKR+	ZE D)718	LA DELTAX+1	SB DELTAX+16	ပ	Σ	CA	09() ax	MP D	T 0 1	00 3	MP DEL	TO 11+3	AD DEL	CA	Σ	CA	MP DE	 	LA DE	AD 13	CA	Σ	CA	MP D	SB 1.)+
												28	128A1	29																							
	010	0		0		_				~	~	····	~	-	~	0		0	, -	~	_	_	_		-	0		0	_			·	0		0		
	7 +030000003551 0 +030200227606	+01310000000	+02600000315	3 +013100000000	4 +02600013020	5 +03020000355	6 +02410000362	7 +02600000315	0 -05340010356	1 +06010012726	2 -05340010356	3 +05000012734	+01000000151	5 +05000022760	6 +03020042760	7 +01310000000	0 +02600000315	1 +013100000000	2 -05340010356	3 +02600012767	4 +06010000355	5 +05600000315	6 +02600012760	7 +06010000355	0 +03000022760	1 +013100000000	2 +02600013011	3 +013100000000	4 +02600042760	5 +06010000355	6 +05000042760	403000000355	0 +013100000000	1 +02600013020	2 +01310000000	3 +02600022760	4 +03020000355

PAGE 21		8 AX+ 1		XCA FMD 3)	1	FMP DELVOL+1,1			SVMINU+ I s	FMP DELTAX*1,4	11+3		DEL TAX+	DELTAX+1,		FMP SVPLUS+101		DEL	FAD 11+3	+		3)+4	LXD C1100,2			,	DEL TAYAR	1)+2	SVPLUS+1,	SVM INU+1	1)+3	DELTA	FMP DELTAX+1,1
INFLUENCE COEFFICIENTS 10/11/62	-053400203563 +050000227344	+010000001512 010 135 +050000427606 010 136	+030000127606	01436 +013100000000 00 01437 +026000003152 010	+013100000000 00	+026000127670	+060100003552	01443 +056000127606 010	+026000130117	01446 +026000427606 010	+060100003553	+056000003152	+026000127606	01452 +030000427606 010	+0131000000000	+026000130201	+01310000000000	+026000127606	+030000003553	+030000003552	+024100003621	+026000003156	-053400203567	1000100222330 010	+050200003156	01466 +060100003551 010	707261000070	+060100003552	+050000130201 01	7 01	+060100003553 01	10 9	+02600012760
AERODYNAMIC	4 0 :	X Q	×		C)62.2					FAD DELTAX+1,4	DEL TAX+1;	XCA				FSB DELTAX+1,1		FMP 3)			STO 1)+2	31+2	DELIAX+1,			FRP 31	CMD CVD111541 1		⋖	90	a.	LXD C)100,2	0
	3 +002000001370 010 4 -063400201365 010 132	366 010 132A 567 010	7 +002000002131 010	-053400103562	2 -053400203564 010	+030000227606	+060100003551	6000003152	+026000127606	+030000427606	+030000227606	+0131000000000	+026000003551	+060100003621 010	+050000427606	+030200127606	+013100000000 00	+026000003152	1 +0131000000000	0117	+060100003552	4 +056	5 +026 5 +026		10+ 1	+070+		2 + 0.7 3 + 0.7	6 +03(5 +024100063621	6 +02600000315	203567	0 +060100227262

PAGE 22	FMP SVMINU+1,4 STO 1)+2	3	DELTAX+1,			FXP US		FMP SVPLUS+1,4		,=0	FDP DF4	FMP 33+4	LXD C)102,2	A+101,2	CLA DELTAX+2,4	DELTAX+1,	STO 13+1	DELTAX+3	DEL TAX+2,	XCA	p-4	u	ñ	FMP DELTAX+2,4	tured.		DEL TAX+1	DELTAX+3,	XCA	FMP 3)	⋖	٠,	~ O	or Or	۰	13+1	FAD DELTAX+3,4
INFLUENCE COEFFICIENTS 10/11/62	01544 +026000430117 010 01545 +0601000003552 010	546 +056000003154	547 +026000427606	550 +030000427607	51 +0131000000000	+026000003152	+0131000000000	+026000430201	+076000000002	+030200003552	+024100003626	+026000003156	-053400203570	+060100227426 010	+050000427607	+030000427606	+060100003551	+050000427610	+030000427607	+0131000000000	+026000003551	+060100003625	+056000003152	01574 +026000427607 010	0000003221	+07600000000000000	+030000457606	+030200427610	+0131000000000	+026000003152	+0131000000000	+026000430117	+060100003553 01	+056000003154 01	+026000427606 01	+030000003551	1 +030000427610 0
AERODYNAMIC	STO 1)+4 LDQ 1)+2	MP 1)+	О	긒	10	00	Z.	О	d.	10	XD C)100,	xD C1900	XD C1202,	55	×	XI *+1°1,	XD J,1	XI *+1,2	XL 118	ΧI	XD C)1	RA D)5	00	Σ	AD DELTAX+3,	AD	TO 1)+1	LA DELTAX+3	AD DELTAX+2,	CA	a. I	10	LA DELTAX+1,	SB	CA	X	ပ
	1473 +0601000035 1500 +0560000035	1501 +026000003554 01	1502 +024100003157 01	1503 +026000003553 01	1504 +060100003555 01	1505 +056000003551 01	1506 +026000003156 01	1507 +024100003621 01	1510 +026000003555 01	1511 +0.60100210546 01	512 -053400403567 010 D)7	1513 -053400203575 010 D)31	1514 -053400103574 010 Dill	Z38A	1515 +100062401516 010 138	1516 +100001101517 01	1517 -063400103611 01	1520 +100062201521 010	1521 -300000101060 01	1522 +200000401523 010 138A	1523 -063400403567 010	1524 +002000002131 01	1525 +056000003152 010 140	01526 +026000427607 010	1527 +030000427610 01	1530 +030000427606 01	1531 +060100003551 01	1532 +050000427610 01	1533 +030000427607 01	1534 +013100000000 00	1535 +026000003551 01	1536 +060100003626 010	1537 +050000427606 0	1540 +030200427607 01	1541 +013100000000 00	1542 +026000003152 0	1543 +01310000000000000

PAGE 23	+-00	D)11C	DEL T		FIXE 33	\$ 7 10 A 10 A	11+2	DEL	SYMINU+1,		Ö	1)+	3)	DEL TAX+1,	DEL		FMP SVPLUS+1,4		DE.	+ :	+	07.4	1110	100	3.	DEL	1)+1	DEL TAX+	DEL TAX+3,	XCA	FMP 3).	-	FMP DELVOL+1,4
INFLUENCE COEFFICIENTS 10/11/62	60 +026000003156 010 61 +060100227262 010 62 -053400103563 010	64 +010000002132 01	+050000427606 010 147 +030000427607 010	00 000000001810+ 19	70 +026000003152 0	71 +013100000000 00	73 +060100003552 0	74 +056000427607 01	75 +626000430117 01	76 +013100000000 00	77 +026000427606 01	00 +060100003553 0	01 +056000003152 01	02 +026000427606 01	03 +030000427607 01	04 +013100000000 00	05 +026000430201 0	06 +013100000000 00	07 +026000427606 0	10 +030000003553 01	11 +030000003552 01	12 +024 00003626 01	13 +020000003156 01	14 +060100222522 010	15 +056000003152 01	16 +026000427607 01	17 +060100003551 01	20 +030000427606 01	21 +030000427610 01	22 +013100000000 0	23 +026000003152 0	24 +0131000000000 00	25 +0
AERODYNAMIC		AD 1.)	MP D	TO A+	CLA DELTAX+2,	AD D	10 -1+ 00 -3)	MP DELTAX+2,	AD DELTAX+3	AD DELTAX+1;	Ç	ď.	TO 0F6	LDQ 3	X	TO 1)+1	AD	۷ :	X (CA	WAS AW	10 1)	יר מכו	۵. آ	AD I	AD DE	S	X	S	Σ	I	⋖	d O
	13100000000 00 26000003152 010 13100000000 00	260000003553 01	24100003625 0 26000003156 0	60100227344 01	50000427607 01	30000427606 01	56000003152 01	26000427607 01	30000427610 01	0000427606 01	13100000000 00	26000003551 01	60100003624 010	56000003154 01	26000427607 01	60100003551 01	30000427610 01	13100000000 00	26000003152 01	13100000000 00	26000430117 01	60100003553 01	26000003155 01	26000427606 01	30000003551 01	30000427610 01	13100000000 00	26000003152 01	13100000000 00	26000430201 01	76000000002 00	30000003553 01	4100003624 01

/62 PAGE 24	STO 1)+5 FAD DELTAX+3,4	V	FMP SVMINU+1,4	XCA	DEL	1)+	1)+	1)+	DEL	STO 1)+8	1)+	DEL	+	1)+	S	XCA		1)+				æ	ന		DEL TAX+	DEL TAX+2,		SVPLUS+	SVMINU+1,		_	DELTAX+1,			FMP 1)+4		
INFLUENCE COEFFICIENTS 10/11/62	01774 +060100003555 010 01775 +030000427610 010	1776 +013100000000 00	1777 +026000430117	2000 +0131000000000	2001 +026000427607	2002 +060100003557 01	2003 +050000003552 01	2004 +030000003555 01	2005 +030000427610 01	2006 +060100003560 01	2007 +050000003552 01	2010 +030000427607 01	2011 +060100003561 01	2012 +056000003560 01	2013 +026000430201 01	2014 +013100000000	2015 +026000003561 01	2016 +030200003557 01	2017 +030000003554 01	2020 +024100003624 01	2021 +026000003156 01	2022 +060100222356 01	2023 +050200003156 010 15	2024 +060100003551	2025 +050000427606 01	2026 +030000427607 01	2027 +060100003552 01	2030 +050000430201 01	2031 +030200430117 01	2032 +060100003553 01	2033 +056000427606 01	2034 +026000427606 01	2035 +060100003554 01	2036 +056000003552 01	2037 +026000003554 01	2040 +024100003157 01	2041 +026000003553 01
AERODYNAMIC	.0 STD 1)+3 0 CLA 1)+1	0 FA	XCA	0	F.M.D	XCA	0 FMP	0 STO	007 0	M.H. O	0 FAD	0 FAD	XCA	M. 0	×	O FMP DE	0 FAD 1	0 FAD 1)	0 FDP [0 FMP 3)	3	0 STO	0.149A LDQ 3)+2	₩.u	0 STO 1)+	0 (00 3)	O FMP DEL	0 STO	0 FAD 1)+1	0 FA	×C	P.W.	XC	O FMP	0 ST	0 100 3	₩
	01726 +060100003553 01 01727 +050000003551 01	1730 +030000427610 0	1731 +0131000000000 0	1732 -053400103562 0	1733 +026000130117 0	1734 +0131000000000 0	1735 +026000427606 0	1736 +060100003555 0	1737 +056000003152 0	1740 +026000427606 0	1741 +030000003551 0	1742 +030000427610 0	1743 +013100000000 0	1744 +026000430201 0	1745 +013100000000 0	1746 +026000427606 0	1747 +030000003555 0	1750 +030000003553 0	1751 +024100003625 0	1752 +026000003156 0	1753 +076000000000 0	1754 +060100222440 0	1755 +056000003154 0	1756 +026000427607 0	1757 +060100003551 0	1760 +056000003152 0	1761 +026000427606 0	1762 +060100003552 0	1763 +030000003551 0	1764 +030000427610 0	1765 +013100000000 0	1766 +026000003152 0	1767 +013100000000 0	1770 +026000427670 0	1771 +060100003554 0	1772 +056000003152 0	1773 +026000427607 0

PAGE 25	FMP DELTAX+1,4 STO 1)+5	1)+	1)+	3)+	1)+	1)+	<u>.</u>	DEL	1)+	1)+	1)	3)+	DF6	1)+	C+1	153	C)65,	9()	BSS	C) 100,	*+1,2,	C)10	*+1,11,	09()	I , 1	66	N3	7+(9	(ST	ω	6)+4,	9()	XKR+1	STR	LDQ J1		SXD 6)+4,4
10/11/62	010	~		_					-	-		_	~				10 D)5	10 0111	53	_	ه		,1	-	10		10 154			~	-	10		O	010	0	
COEFFICIENTS	0 +026000427606 1 +060100003555	2 +056000003553	3 +026000003555	4 +024100003157	5 +026000003554	6 +060100003556	7 +056000003624	0 +026000427670	1 +030000003556	2 +060100003557	3 +056000003551	4 +026000003156	5 +024100003624	6 +026000003557	7 +060100210546	0 +002000002133	1 -053400403566	2 -053400103562		3 -053400203567	4 +100001202135	5 -063400203567	6 +100001102137	7 -063400103562	0 -063400103617	1 -300000100433	2 -050000003601	3 -063400403170	4 +001400400004	5 +000000003357	6 -053400403170	7 -053400203563	0 +056000227344	1 -10000000000000	2 +056000003613	3 -100000000000	4 -063400403170
INFLUENCE	0211	21	21	21	21	21	21	2	21	21	21	5	21	21	21	2	21	21		2	21	21	21	2	21	21	2,1	7	21	21	21	5	21	21	0215	5	21
AERODYNAMIC	STO 1)+5 LDQ 1)+1	P 3)+	P DF	P 1)+5	1+0 0	03)	P DELTAX+	D DELTAX+	D DELTA	0 1)+1	A SVP	8 SVMI	0 1)+2	Q DELTAX+	P DELTAX+1,	0 1)+	Q 1)+	P 1)+	P 3)+	P 1)+	P DF	p 3)+	0 C+5	\$ 3)	+(1 0	0 37+	P DEL	0 1)+	O	۵.	Ω	۵	0	⋖	FSB SVMINU+1,4	0	œ
						1514																		152A													
	010	01	010	01	0	01	01	01	0	0.1	01	01	0	01	01	01	<u></u>	01	0.1	01	0	01	01	01	0	01	01	0	0	C	01	01	0	01	010	0	0
	+060100003555	02600000315	02410000362	02600000355	06010021071	05600000315	02600042760	03000042760	03000042761	05010000355	05000043020	03020043011	06010000355	05600042760	02600042760	06010000355	05600000355	02600000355	02410000315	02600000355	02410000362	02600000315	06010021063	0502000315	06010000355	0.5600000315	02600042760	06010000355	0560000315	02600042760	0300000355	03000042741	06010000355	05000043020	03020043011	06010000355	05600042760
	02042	204	204	204	204	202	205	205	205	205	205	205	205	206	206	205	200	206	206	206	206	207	207	207	207	207	207	207	207	210	210	210	210	210	210	210	210

	AERODYNAMIC	INFLUENCE COEFFICIENTS 10/11/62	PAGE 26
2155 +007400400005 0	×	62 010 164A LDQ	A+1,1
2156 -053400403170 010	S	2223 +02600003632 010 FMP	Ē
2157 +050000003613 01	LA	2224 +013100000000 00 XCA	
2160 +040000003145 01	00	2225 +02600003640 010 FMP	CBAR
2161 +060100003613 010	0	2226 +060100127262 010 ST0	1,1
2162 -050000003601 01	AL	2227 +100062102230 010 164A1 TXI	1
2163 -063400403170 01	+(9 QX	2230 -300000102222 010 164A2 TXL	164A,1
2164 +007400400004 01	SX (ST	2231 +200000102232 010 164A3 TIX	*+101
2165 +000000003354 01	3 2	2232 +100001102233 010 TXI	-
2166 -053400403170 01	+(9 QX	2233 -300000102222 010 164A4 TXL	A , 1
2167 +056000003614 01	0	2234 +050000227344 010 165A CLA	7+
2170 -100000000000 00	-	2235 +010000002435 010 165A1 TZE	193A
2171 +056000003613 0		2236 -053400103145 010 166A LXD	2)+3,1
2172 -100000000000 00	\vdash	2237 +050000003614 010 CLA	
2173 -063400403170 01	×	2240 +062200002264 010 STD	170A4
2174 +007400400005 01	S	2241 +056000003614 010 LDQ	IX
2175 -053400403170 01	×	2242 +020000003147 010 MPY	21+5
2176 +050000003613 01	LA	2243 +076700000021 00 ALS	17
2177 +040000003145 01	00	2244 +062200002261 010 STD	170A2
2200 +060100003613 01	10	2245 +056000003614 010 LDQ	XI
2201 +050000003152 0	LA	2246 +020000003147 010 MPY	21+5
2202 +024100003577 01	оb	2247 +076700000021 00 ALS	17
2203 -060000003632 01	TQ COE	2250 +062200002262 010 STD	170A3
2204 +050000227344 01	LA	167A	
2205 +0100000002207 010 161	ZE 162	2251 +050000003632 010 168A CLA	w
2206 +012000002621 01	PL 219	2252 +024100003640 010 FDP	CBAR
2207 -053400103145 01	XD 2)+		
2210 +050000003614 01	LA	2254 +060100110546 010 STO	_
2211 +062200002233 01	10	2255 +056000003632 010 169A LDQ	EF
2212 +056000003614 01	00	2256 +026000122356 010 FMP	8+1,1
2213 +020000003147 01	γ	2257 +060100122356 010 STO	
2214 +076700000021 00	rs	170A BSS	
2215 +062200002230 01	TD	2260 +100062102261 010 170A1 TXI	-
2216 +056000003614 0	000	2261 -300000102251 010 170A2 TXL	_
2217 +020000003147 01	ΡY	2262 +200000102263 010 170A3 TIX	*+1,1
220 +07670000002	_	2263 +100001102264 010 TXI	
2221 +062200002231 0	TD	A4 TXL	167A,1
	S	2265 +050000227344 010 171A CLA	7

PAGE 27		CLA J2	7	TRA 183A	CLA J2	7		-	G	7	CLM	-		CLA IX			7			ADD 2)+7		1844	c)65	N2	S	æ	<u>.</u>			മ	H	H	TSX 2)+5	Z	A) 10	ပ	١X،	X
INFLUENCE COEFFICIENTS 10/11/62	-063400403566 010	+050000003612 010 180	2335 +060100003613 01	+002000002342 010	2337 +050000003612 010 182	2340 +040000003145 01	02341 +060100003613 010	2342 +05000003614 01	2343 +076500000043	2344 +022100003150	2345 +0760000000000	2346 +076300000022	2347 -060000003551 01	+050000003614	2351 +040000003551 01	2352 +0131000000000	2353 +020000003143	2354 +076700000021	2355 +040000003613 01	2356 +040000003151 01	2357 +060100003612 01	+002000002362 01	2361 -063400403566 010 E)1	2362 -05000003602 01	2363 +007400400004 0	364 +000000003315 01	2365 +007400400005 010	18	2366 +007400400006 010 186	2367 +007400022355 01	2370 +007400003614 01	2371 +007400003614 01	2 +007400003147 01	2373 +007400003602 01	4 +007400403110 01	20	6 -053400403614 01	7 -053400403614 01
AERODYNAMIC	7	PL	AL	SX	37	S	AL	S) XS	37	DQ XKR	٦٣	0	-) XS	AL	XX	7	XX	S	S	×	××	XX	×	TSX N2	XX	2	2	XD IX,4	LA	3 2	P	RA E11	_	UB	7	PL 1	RA 182
-64	02266 +010000002435 01	2267 +012000002621 01	2270 -050000003602 01	2271 +007400400004 01	2272 +0000000003513 01	2273 +007400400005 01	02274 -050000003602 010 173A	2275 +007400400004 01	2276 +000000003351 01	2277 +056000227344 01	2300 -100000000000 0	2301 +056000003614 0	2302 -1000000000000 0	2303 +007400400005 01	2304 -050000003602 01	2305 +007400400004 01	2306 +000000003322 0	2307 +007400400005 01	376	7E 010 900000000100+ 0152	2311 +007400027261 01	2312 +007400003614 01	2313 +007400003614 01	2314 +007400003147 01	02315 +007400003602 010	2316 +007400403110 01	2317 -053400103570 01	2320 -053400403614 01	2321 -053400403614 01	2322 +050000003620 010 37	2323 +0100000003326 010 178	2324 +012000002361 01	2325 +002000002361 01	2326 +050000003613 01	2327 +040200003142 01	2330 +010000002333 01	2331 +012000002337 01	2332 +00200002337 01

PAGE 28	LDQ IX STR			-	_	_	~	Z	A)10	C 1102,	ľΧş	IΧ	C) 65	IPUNC	199	0 3	0)32		~	200	N	202	7	7	N	12	2	~		ന	~	CLM	_	7		
10/11/62	010	10	_		_	-	-	_	_	-	-	_		-	10 198A	_	_		-	10 199A	 -	_	_	10		10 202	-	4	_					010	0	010
INFLUENCE COEFFICIENTS	02446 +05600003614 02447 -1000000000000	2450 +00740040000	245	2452 +00740002726	2453 +00740000361	2454 +00740000361	2455 +00740000314	2456 +00740000360	2457 +00740040311	2460 -05340010357	2461 -05340040361	2462 -05340040361	2463 -06340040356	2464 +05000000362	2465 +01000000247	2466 +01200000307	2467 +00200000307	2470 +05000000361	2471 +04020000314	2472 +01000000247	2473 +01200000250	2474 +00200000250	2475 +05000000361	2476 +06010000361	2477 +00200000250	2500 +05000000361	2501 +040000000314	2502 +06010000361	2503 +05000000361	2504 +076500000004	2505 +02210000315	2506 +076000000000	2507 +07630000002	2510 +02000000361	02511 +07670000021	2512 +04000000361
AERODYNAMIC	CAL N2 SXD 6)+4,4	SX (STH	SX (FIL)	SX	SXC	SX	SX	S	SX	S	XD C)102	2	XD IX	XD IX,	AL	+(9 QX	SX (ST	3 2	+(9 QX	7 00	1 8	Q	F	2	SX	2	RA	AL	SX	37	SX	٩٢	SX	ZE 8)28	o a	
	187A			189A											\$90A					191A							192A	193				194A			195A	
	0 -050000003602 010 1 -063400403170 010	+00740040004 01	+00740040005 01	+007400400006 01	+007400010545 01	7 +007400003614 01	0 +007400003614 01	1 +007400003147 01	2 +007400003602 01	3 +007400403110 01	4 -053400103570 01	5 -053400403170 01	6 -053400403614 01	7 -053400403614 01	0 -050000003602 01	1 -063400403170 01	2 +00740040004 01	3 +000000003257 01	4 -053400403170 01	5 +056000003613 01	6 -100000000000 00	I +056000003612 0	0 -100000000000 00	1 -063400403170 01	2 +007400400005 01	3 -053400403170 01	4 +002000002532 01	5 -050000003602 01	6 +007400400004 01	7 +000000003513 01	0 +007400400005 01	1 -050000003602 01	2 +00740040004 01	3 +000000003302 0	4 +056000227344 01	5 -1000000000000000
	400	0	0	0	0	õ	7	7	7	7	\Box	\mathbf{T}	7	_	.7	Ŋ	7	2	7	Ŋ	7	3	m	Ω.	<u>C1</u>	Ξ.	Ü.	<u>ω</u>	ď.	Ū.	4	4	4	4	4	1

	AERODYNAMIC	INFLUENCE COEFFICIENTS 10/11/62	PAGE 29
2513 +040000003613 01	00	556 +060200003637 01	
2514 +040000003142 01	0	62 0	M
02515 +060100003612 010	10	560 +060200003636 010	SLW CHI
2516 -050000003602 01	AL N	214A	
2517 -063400403170 01	9 QX	+007400400007 010 215	
2520 +007400400004 01	S	+007400022355 01	TSX B
2521 +000000003257 01	2E 8	3614 01	Ħ
2522 -053400403170 01	×	+007400003614 0	
2523 +056000003613 01		+007400003146 01	2)+
2524 -100000000000 00	-	+007400003146 0	5
2525 +056000003612 0	0	+007400003145 01	2)+
2526 -100000000000 00	-	+007400003637 01	ပ
2527 -063400403170 01	×	+007400003147 01	TSX 2)+5
2530 +007400400005 0	S	+007400003601 01	Z
2531 -053400403170 01	×	+007400403110 01	A)10
206A	S	-053400103570 01	C) I
2532 -050000003160 010 2	⋖	-053400403614 01	ΙΧŷ
010	I	-053400403614 010	—
3 08A	S	-063400403170 010 2	6)+4
2534 +007400400007 010 209	S	+007400400007 010 2I7	TSX MPUNCH,4
2535 +007400027261 01	X	+007400010545 01	ں
2536 +007400003614 01	SX I	+007400003614 01	⊷
2537 +007400003614 01	SX I	+007400003614 01	
2540 +007400003146 01	SX 2	+007400003146 01	2)+
2541 +007400003146 01	SX 2)+	+007400003146 01	7
2542 +007400003145 01	SX	+007400003145 01	2)+
2543 +007400003634 01	S	+007400003636 01	CHI
0.2544 +007400003147 010	SX	+007400003147 01	7
2545 +007400003601 01	S	+007400003601 01	TSX N3
2546 +007400403110 01	SX A)10	+007400403110 01	A 3 10
2547 -053400103570 01	XD C	-053400103570 01	C)1
2550 -053400403614 01	Q X	-053400403170 -01	6)+48
2551 -053400403614 01	XD I	-053400403614 01	IΧ
2552 -063400403566 01	Š	-053400403614 01	×ř
2553 +050000227344 010 210	LA XK	-063400403566 01	C)65
2554 +010000003074 01	132	+002000003074 010 21	0)3
211	SS	621 -050000003602 010 219	AL NZ
12	⋖	07922 +00/400400004 010	TSX (SIH) 84

	AERODYNAMIC	INFLUENCE COEFFICIENTS 10/11/62	PAGE 30
+000000000513 01	ZE 8)	2671 -053400403553 01	11+3
+007400400005 010	TSX (FIL) p4	-063400403571 0	03
-050000003602 01	AL N2	2673 -053400403145 01	2)+31
+00740040004 01	SX (S	2674 -063400403573 01	C) 2
+000000003242 01	ZE 8)2	2675 +050000003614 01	
+056000227344 01	DQ XK	2676 +062200002770 01	7
-100000000000 00	-	2677 -075400400000 0	ő
+056000003614 0	\Box	2700 +060100003617 010	I
-100000000000 00	-	2701 -053400103563 010 015	C
+00740040005 01) XS	2702 -053400403567 010 D142	C)100
-050000003602 0	AL N2	2703 -053400203145 010 225	21+3,2
+00740040004 01	S) XS	2704 -063400203572 01	C) 20
+000000003213 01	2E 8)	2705 +050000003615 01	Χĩ
00740040005 01	SX (2706 +062200002756 01	22
+056000003142 01	00 2)	2707 -075400200000 00	ô
+020000003614 01	PΥΙ	2710 +060100003611 010	
+076700000021 00	LS 1	2711 +050000003611 01	
+060100003615 01	TO IX	2712 +076500000043 00	
-053400103145 01	XD 2)+3	2713 +022100003142 0	7
-063400103567 0	XD C)1	2714 +076000000000 0	
+050000003615 01	LA IX2	2715 +076300000022 0	LLS 18
+040200003145 01	UB 2)	2716 +013100000000 0	
+040000003142 01	DD 2	2717 +040000003145 01	7
+076500000043 00	RS 3	2720 +060100003606 01	¥
+022100003142 0	VP 2	2721 -063400403170 0	44 (9
+020000003142 01	PY 2	2722 +007400403125 01	A)103
+076500000022 00	RS 1	2723 -053400203571 01	C)103,
+020000003147 0	PY 2	2724 -053400403170 010	6)+40
+076300000043 00	LS 3	2725 +056000003641 01	Ω
+062200002757 01	TD 229	2726 +026000003641 01	ω
+050000003167 0	LA 6	2727 +0131000000000 0	XCA
+060100003553 01	TO 1)+	2730 +026000003576 01	S
+056000003606 01	D0 X	2731 +060100003552 01	17
+020000003147 01	PY 2	2732 +050000003156 01	33+
+076700000021 0	LS 1	2733 +024100003552 01	1 3 +
+040200003147 01	\rightarrow	2734 +026000210546	FMP C+1,2
+040000003553 0	DD 1)+	2735 +060100003553 01	+ (
+060100003553 01	TO 114	2736 +056000003633 01	COE

			Ā	AERODYNAMIC	INFLUENCE CO) EFFICIENTS	10/11/62	PAGE 31
02737	+026000227262 010	0	d ₩ L	A+1,2	03003	+010000003006	010 232A1	TZE 233A
4/7	030200003553 01	.	20	11+3	200	10500000710	٠,	٦ . ا ل
274	060100415452 01	1	10	CH+1,4	300	020000307	10	E) 12
274	056000003641 01	D 228A	O C	BR				
274	026000003576 01	c	J.	S	90020	-050000003163	34	3
274	0601000003551 01	C	10	1)+1	300	0602000363		
274	50000127344 01	C	LA	XKR+1,1			235A	BSS
274	024100003551 01	C	DP	1)+1	301	40040000	10 236	TSX MPUNCH,
274	26000222356 01	C	ďΣ	B+1,2	301	0740001545	-	
275	060100415370 01	C	10	H-4	301	1361	ri	-
		29	S		301	40000361	_	×
275	100144402752 01	0 229Al	X	+1948	301	3314	pared;	2)+
275	53400203572 01	C	Q	12000	301	+100000		23
275	100002202754 01	C	×	\$2	301	40000314		2 } +
275	063400203572 01	C	Š	2003	301	+00000+		ں
275	063400203611 01	0	QX	J ₉ 2	302	+00000+	 4	2)
275	00000202711 01	229	×	6 A	302	10000360	-	Z
275	00000402760 01	229 A	×I	-	302	+0040311	1	A) 102,
276	100001402761 01	C	×ĭ	1,40	302	+0020357	$\overline{}$	S
276	53400203571 01	0	X	103,	302	19604004		IXo
02762	100001202763 01	0	ΧI	*+1,201	03025	-063400403566	010	C) G
276	63400203571 01	C	2	103,	302	00000361	~~	٦
276	053400203573 01	C	Q Q	201,	302	20000314	~	7
276	00001202766 01	C	ΙX	1,2,	303	00000303	9	238
276	63400203573 01	0	Š	201,	303	00000303	~~ 1	Ŋ
276	63400203617 01		Q	٥2	303	00000303	10	240
277	300000202703 01	329	×	7	303	00000361		7
		330A	SS		303	19600001	10	_
277	10 900000000100	231	SX	MPRINIOH	303	10000304	_	7
277	007400015451 01	e	×s	CH	303	00000361	10 240	7
277	007400003614 01	c	×s	I×	303	00000314		7
02774	+007400003615 010	0	×	I X2	304	10000361	~~ ↓	7
277	007400003147 01	0	SX	2)+5	304	00000361	-	
277	007400003602 01	0	SX	N2	304	50000004		m
277	07400403110 01	C	×s	02,	304	10000315		7
300	053400203570 01	C	O _X	C)102,2	304	00000000		CLM
300	53400403614 01	C	ΩX	IΧ°μ	304	3000000	0	LLS 18
300	050000003620 01	0 232A	۲V	I PUNCH	304	30000355		

PAGE 32	ADD 1)+3 STO 1)+3	œ	∠	. T	8 2)+	0 11+3	0 () 1	A 1,	CLA 6)+3	0 1)+	Ø	8 6)+	0	0 1)+	Q KZ	۲ 2	S 17	8 2)+	0 11+3	0 C)1	A 1,	T +00000200000	T +00000300000	T +00000500	T +000001000000	T +000000000000	T +00006200000	T +00002600000	T +00000400000	T +20240000000	T +000000000000	T +20260000000	T +20340000000	T +20140000000	T +20360000000	T -20606023306	T -20606023302
INFLUENCE COEFFICIENTS 10/11/62	03114 +040000003553 010 03115 +060100003553 010	3116 +056000003614 01	3117 +020000003147 01	3120 +076700000021 0	3121 +040200003147 01	3122 +040000003553 0	3123 +060100003570 01	3124 +002000400001 00	3125 +050000003167 01	3126 +060100003553 01	3127 +050000003617 01	3130 +040200003167 01	3131 +040000003553 0	3132 +060100003553 01	3133 +056000003606 01	3134 +020000003147 01	3135 +076700000021 00	3136 +040200003147 01	3137 +040000003553 0	3140 +060100003571 01	3141 +002000400001 0	3142 +000002000000 0	3143 +000003000000 0	3144 +000005000000 0	3145 +000001000000 0	3146 +0000000000000 0	3147 +000062000000 0	3150 +000026000000 0	3151 +000004000000 0	3152 +202400000000 0	3153 +000000000000000000	3154 +202600000000 0	3155 +203400000000 0	3156 +201400000000 0	3157 +203600000000 0	3160 -206060233062 0	3161 -206060233024 0
AERODYNAMIC	03047 +050000003614 010 CLA IX 03050 +040000003551 010 ADD 1)+1	051 +013100000000 00 XC	052 +020000003142 010 MPY	053 +076700000021 00 AL	3054 +040000003142 010 ADD 2	3055 +040000003613 010 ADD J	3056 +060100003612 010 STO J	3057 -050000003602 010 242A CA	3060 -063400403170 010 SXD 6)	3061 +007400400004 010 TSX (ST	3062 +000000003257 010 PZE 8	3063 -053400403170 010 LXD	3064 +056000003613 010 243A LD	3065 -1000000000000 00 STR	3066 +056000003612 010 LD	3067 -10000000000000 00 ST	3070 -063400403170 010 SXD 6	3071 +007400400005 010 TSX	3072 -053400403170 010 LXD 6)	073 +002000003100 010 TRA 244	3074 -053400103563 010 D)32E LXD C)G	3075 -053400203570 010 D)22E LXD C	3076 +002000003100 010 TRA 244	3077 -063400403566 010 E)12E SXD C)G	244A BS	100 +100001103101 010 244A1 TXI *+	101 -063400103563 010 SXD C	102 -300000100407 010 244A2 TXL 96	103 -0500000003601 010 245A CAL	104 -063400403170 010 SXD 6)	105 +007400400010 010 TSX (106 -053400403170 010 LXD 6)	107 +0020000000000 010 246A TRA 2	110 +0500000003167 010 A)102 CLA 6	060100003553 010 STO 1!+	112 +050000003614 010 CLA IX	113 +040200003167 010 SUB 6

				A	AERODYNAMIC INFLUENC	E C0	EFFICIENTS	10/11/62	PAGE 33	
03162	-206060233031	000		100	-206060233031	03230	-206001063060	00	BCD 1 16H	
3164	233000000000	0	× 39	\circ	3300000000	3232	206060606060) ر	
3165	77777700000	0		ں	777500000	3233	2060606060	000	۵ ۵	
3166	000000000000	00		Ç	00000000000	3234	222551604626	00	O 1BER	
3167	000001000000	00		U	000010000	3235	03060456444	00	D 10H N	
3170	000000000000	00		ပ	0000000000	3236	10406677301	00	0 1/46	
3171	000000000000	00		ပ	00000000000	3237	250105331061	00	D 1E15.8	
3172	213460606060	00		Ç	**	3240	36142511301	00	D 1./KR=	
3173	052151706061	00		ပ	NARY	3241	77307306001	00	D 1X,7H	
3174	303144212731	00		S	IHIMAGI	3242	340130600411	00 8)2L	D 1(1H	
3175	200101677311	00		Ç	11X,	3243	010501310334	00	D 115113	
3116	043051252143	00		C	4HREA	3244	05164603044	00	D 1HRU H	
3177	306001006773	00		C	Y 10X	3245	00100306063	00	D 1 10H	
3200	212731452151	00		C	AGINA	3246	09090909090	00	۵	
3201	206011303144	00		S	1H6	3247	09090909090	00	٥	
3202	206060606060	00		C		3250	09090909090	00	0	
3203	206060606060	00		C		3251	336060606060	00	BCD 1,	
3204	010067736060	00		C	10X	3252	40105013103	00	O M	
3205	305125214360	00		ပ	1HREAL	3253	54662336030	00	D INOS.	
3206	200101677304	00		C	1X o	3254	32151246260	00	D 1CARD	
3207	273145215170	00		C	INAR	3255	52330252460	00	D 1NCH	
3210	331130314421	00		C	WIH6	3256	020430604764	00	D 124H	
3211	214360010167	00		C	111	3257	46103106773	00 8175	D 1(/38X	
3212	277304305125	00		S	X, 4	3260	22561613460	00	D 1SE//}	
3213	340130600102	9 00	NS C	C	1H 1	3261	212470602321	00	D 1ADY C	
3214	216225616134	00		C	E//	3262	32560626325	00	D THE ST	
3215	206005306023	00		C	π	3263	30106306063	00	D 1,16H	
3216	206060606060	00		C		3264	036161041167	00	D 13//4	
3217	206060606060	00		C		3265	36260130131	00	0 1TS =1	
3220	306060606060	00		ů		3266	36047463145	00	D 1L POI	
3221	034321634651	00		C	LATO	3267	34645635146	00	D 1 CONTR	
3222	256046622331	00		S	OS	3270	06001073060	00	0 1 17	
3223	010630606330	00		S	± H9	3271	06060606060	00	BCD 1	
3224	216104106773	00		C	748X	3272	06060616360	00	BCD 1	
3225	236213013103	00		C	115=113	32	060656060	00	BCD 1	
3226	36047463145	00		C	POI	3274	2551604626	00	0	
3227	234645635146	00		8C0	72	32	03060456444	00	BCD 10H NUM	

762 PAGE 34	D 10H NU	D 1/46X9	D 1E15.8	D 1./KR	D 1X o 7H	4 HI)1 O	0 1	D 13X,1	D lill49	0 1113	۵	D IIIE12	D 18}}	D lolE15	D 1.81	D 1 1E1	Δ	۵	O	D 12Xp	D leli4,	D 11/1(23	BCD 1XN(1),	INIOHI O	D INTROL	D 120H	D 1 14X	_	; ∩	DIXCI	D 1 DELT	D 17X,10	D I NO.	D 10F PT	D I CONT	BCD 1X8	IH I) I O
10/11/6						0 8						0 8																								0	00 8 3	
INFLUENCE COEFFICIENTS	3344 +00306045644	3345 -21040667730	3346 +25010533106	3347 +33614251130	3350 -27730730600	3351 -34013060041	3352 +34606060606	3353 +03677301310	3354 -34013104730	3355 +01310334606	3356 +10730605677	3357 -34012501023	3360 +10343460606	3361 -33012501053	3362 +33107301036	3363 -20600125010	3364 -20606060606	3365 -20606060606	3366 -20606060606	3367 +02677360606	3370 -33013104730	3371 -21617402036	3372 -27457431347	3373 -07463145636	3374 -05635146436	3375 +02003060234	3376 -20600104677	3377 20606060606	3400 -20606060606	3401 -27743134606	3402 20242543632	3403 +07677301003	3404 -20454633600	3405 -06436047633	3406 -20234645635	3407 -27736001063		3411 ~20616134606
AERODYNAMIC	CD 1/46X,	CD 1E15.8	CD 1°/KR≖	CD 1X,7H	CD 1(1H 4	CD 11X	CD 11 MAT	CD 1THE C	CD 1X,15	CD 1(//	0	CD IRIX /	CD 1HD MA	CD 1 1	CD 19X,15	BCD 1(//	CD 1IX /	CD IS MAT	CD 1THE C	CD 1X,15H	BCD 1(1H	CD IASE !!	CD 1 5H	0	2	CD 1	CD INS	CD THE TR	CD 1,14H	CD 13//49	CD TS = 1	CD IL POI	CD 1.CONTR	CD 1 17	3	ပ		ပ
					8128					8 \$ 23						8)22					80 ₹P.K																	
	3276 -210406677301 0	3277 +250105331061 0	3300 +336142511301 0	3301 -277307306001 0	3302 -340130600411 0	3303 +316760616134 0	3304 +316044216351 0	3305 -233025602330 0	3306 -277301053060 0	3307 -346161600411 0	3310 +34606060600	3311 -113167606160 0	3312 +302460442163 0	3313 ~206330256023 0	3314 +116773010530 0	3315 -346061616004 0	3316 +316760616034 0	3317 -226044216351 0	3320 -233025602330 0	3321 ~277301053060 0	3322 ~340130600411 0	3323 +216225616134 0	3324 -206005306023 0	3325 -206060606060 0	3326 206060606060 0	3327 ~206060606060 0	3330 -056231254563 0	3331 +302560635121 0	3332 -330104306063 0	3333 +036161041167 0	3334 -236260130131 0	3335 ~036047463145 0	3336 +234645635146 0	3337 -206001073060 0	3340 -206060606060 0	3341 -206060606060 0	03342 -206060606060 00	3343 +222551604626 0

	AERODYNAMIC	INFLUENCE COEFFICIENTS 10/11/62	/62 PAGE 35
12 -236024216321 00 13 -204664634764 00	BCD 1T DATA	03460 +013104730111 00	BCD 1114,19 BCD 1 47X
4 +026773010230 0	CD 12X,12	462 -2060606060	·
5 -346061616005 0	CD 1(//	463 -206060606060	BCD 1
6 +331034346060 0	CD 1.8)	3464 -226160606060	5
7 -277301250105 0	CD 1X, 1E1	3465 +252363314645	1ECT10
0 +053310730110 0	CD 15.8	3466 +047311306062	
1 +056773012501 0	CD 15X,1E	3467 +040767730131	147Xº1
2 -206060607403 0	CD 1 (3470 +242163216161	1DATA/
3 -206060606060 0		3471 +314547646360	N I
4 -206060606060 0		2 -277301013060	1X, 11
5 -206060606060 0		3473 -340130600411	1 (]
-216060606060	CD 1/	3474 -216134606060	BCD 1//)
7 -202151252161 0	CD 1 A	3475 -233025465170	1THE
0 -204346232143 0	CD 1 CO	3476 -002246247060	1-80D
1 -277301023060 0	CD 1X,	3477 -032545242551	LEN
2 -343134730204 0	CD 1(I),2	3500 +265146446062	1 FROM
3 -27730.5306067 0	CD X 5H	3501 -206002053060	7
4 -340130600311 0	CD 1(1H 3	3502 -206060606060	BCD 1
5 -216134606060 0	CD 1//3	3503 -206060606060	7
6 +012501053310 0	CD 11E15.	3504 #312545636260	1 I EN
7 -206251252613 0	CD 3 SREF	3505 -062526263123	10EF
0 +041167730630 0	CD 149X96	3506 +254523256023	IENC
1 +250105331061 0	CD 1E15.	3507 -203145264364	Z H
2 +033060621301 0	CD 13H S=	3510 -304521443123	YNA
3 +106105026773 0	CD 18/52X	3511 -202125514624	
4 +130125010533 0	CD 1=1E1	3512 +116773030530 00	8CD 19X,
5 -330430602251 0	CD 1,4H B	3513 -340130016002	1 (1H
6 -206061050167 0	CD 1 /51	3514 -216134606060	11
7 -206060606060	00	3515 -233025465170	1 THE
0 -206060606060 0		3516 -002246247060	1-8
1 +010533106060 0	CD 115	3517 -032545242551	1 LENDE
2 +222151130125 0	CD 1BAR=1	3520 +265146446062	hom
3 -277306306023 0	CD 1X,6H	3521 -206002053060	CD 1 2
4 +256261610411 0	CD 1ES//	3522 -206060606060	S
5 -034623316331 0	CD 1LOCIT	523 ~206060606060	
6 +232524606525 0	CD 1CED V	524 +254563626060	CD JENT
7 +306051252464 0	CD 1H RED	525 +252626312331	CD 1E

MPRINT

000000

```
MPRINT03
                                                                                                                                                        MPRINT15
                                                       MPRINT06
                                                                            MPRINT08
                                                                                       MPRINT09
                                                                                                                                               MPRINT14
                                                                                                                                                                    MPRINT16
                                                                                                                                                                                          MPRINT18
                                                                                                                                                                                                                                      MPRINT22
                                                                                                                                                                                                                                                                                             MPRINT28
                                MPRINT04
                                           MPR INTOS
                                                                 MPR I NTO 7
                                                                                                  MPRINT10
                                                                                                              MPRINTI
                                                                                                                        MPRINT12
                                                                                                                                   MPRINT13
                                                                                                                                                                               MPR INT 17
                                                                                                                                                                                                     MPRINT19
                                                                                                                                                                                                                MPRINT20
                                                                                                                                                                                                                           MPRINT21
                                                                                                                                                                                                                                                 MPR.INT23
                                                                                                                                                                                                                                                            MPRINT24
                                                                                                                                                                                                                                                                       MPRINT25
                                                                                                                                                                                                                                                                                  MPRINT27
                                                                                                                                                                                                                                                                                                       MPRINT29
                                                                                                                                                                                                                                                                                                                   MPR INT30
                                                                                                                                                                                                                                                                                                                                        MPRINT32
                                                                                                                                                                                                                                                                                                                                                     MPRINT33
                                                                                                                                                                                                                                                                                                                                                               MPRINT34
                                                                                                                                                                                                                                                                                                                                                                                     MPRINT36
                                                                                                                                                                                                                                                                                                                                                                                                                     MPRINT39
                                                                                                                                                                                                                                                                                                                              MPR INT31
                                MA = DIMENSIONED NUMBER OF ROWS
NTAPE = TAPE NUMBER FOR PRINTING
                                                                                                                                                                                                                                                                                                                                                                          (C(K) , K=1, N2)
                                                                                                                                                                                                                                                                                  (IT(I), I=1,N2)
                                                                                                                         114
(A,M,N,MA,NTAPE)
                                                                 SUBROUTINE MPRINT (A,M,N,MD,NTAPE )
                                                                                                                       (1H 5 4X, 6( 6X, 7HCOLUMN (1H 114, X) (6E 17.8)
                   MATRIX TO BE PRINTED NUMBER OF ROWS NUMBER OF COLUMNS
                                                                                                                                                                                                                                                                                                                                                                        WRITEOUTPUTTAPE NTAPE, 3, 1,
                                                                                       A(1), IT(6), C(6)
                                                                                                                                                                                                                                                                                 WRITEOUTPUTTAPE NTAPE, 2,
SUBROUTINE MPRING
                                                                                                 (IT,C)
                                                                                                                                                                                                                                                                                                                                                                                  IF (N3-N1) 10,11,11
                                                                                                                                                                                                     6,6,5
                                                                                                                                                                                                                                                                                                                             8 J=N4 v N3
                                                                                                                                                                                                                                                  I= N4,N3
                                                                                                                                                                                                                                                                                                                  L=MD*(N4-1)+I
                                                                                                                                                                                                                                                                                                                                                  C(K)=A(L)
                                                                                                                                                                                                                                                                                            9 I=1,8
                                                                                                 EQUIVALENCE
                       11 11
                                                                                                                                                                                                    IF (N3-N1)
                                                                                                                                                                                                                                                                                                                                                              L=L+MD
                                                                                                                                                                                                               N2=N1-N3+6
                                                                                       DIMENSION
                                                                                                                                                                                                                                                                      IT(K)=I
                                                                                                                                                                                                                                                                                                                                        K=K+1
                                                                                                                                                                                                                                                           K=K+1
                                                                                                                                                                                                                                                                                                                                                                                              10 N3=N3+6
                                                                                                                                                                                                                                                                                                                                                                                                          9+5N=5N
                                                                                                                       FORMAT
                                                                                                                                  FORMAT
                                                                                                                                                                                                                                                                                                       ∀
                                                                                                                                                                                                                                                                                                                              00
                                                                            LIST8
                                                                                                                                                                                                                           N3=N1
                                                                                                                                                                               N3=6
                                                                                                                                                                                                                                                                                                                                                                                                                     G0T0
                                                                                                                                                        N = I N
                                                                                                                                                                   N2=6
                                                                                                                                                                                          N4=1
                                                                                                                                                                                                                                      K=0
                                                                                                                                                                                                                                                00
                                                                                                                       2 6
                                                                                                                                                                                                      4 5
                                                                                                                                                                                                                                      9
                                                                                                                                                                                                                                                                      _
                                                                                                                                                                                                                                                                                                                                                               8 0
```

MPRINT40

MPRINT

11 RETURN END(1,1,0,0,0,0,0,1,0,1,0,0,0,0)

3	
PAGE	
1,62	
10/11	

MPRINT

STORAGE NOT USED BY PROGRAM

	DIMENSION AND EQUIVALENCE STATEMENTS	DEC OCT	DIMENSION, OR EQUIVALENCE STATEMENTS	DEC 0CT N1 182 00266	AM FORMAT STATEMENTS	EFN LOC	NG IN SOURCE PROGRAM	DEC 0CT 9) 173 00255 E)E 139 00213	ER VECTOR	DEC OCT	OUTPUT FROM LIBRARY
	DIMEN	100	DIMEN	00267 00267 00263	PROGRAM	707	APPEARING	00232 00232 00262	TRANSFER	OCT)T 0UT
	LES APPEARING IN	DEC	APPEARING IN COMMON®	DEC L 183 N4 179	ITIONS FOR SOURCE	A P	OTHER SYMBOLS NOT AP	DEC 6) 154 C)202 178	OF NAMES IN	DEC	TO SUBROUTINES NOT
0CT	FOR VARIABLES	0CT 00277	NOT APPE	00270 00270 00264	OLS AND LOCATIONS	LOC 00244	FOR OTH	00227 00227 00261	LOCATIONS	00000	POINTS TO
DEC OCT 32561 77461	S	DEC 191 0	BLES NO	DEC 184 C 180 O	BOLS AN	EFN 3 0	SNOI	DEC 151 0 177 0		DEC 0 0	ENTRY P
· · ·	STORAGE LOCATION	I	NS FOR VARIABLES	X W	SYMB	т 80	LOCAT	2) C) 62		(STH)	-
00£00	STOF	00277	STORAGE LOCATIONS	00271 00271 00265		LOC 00254		00256 00256 00260		0000 1	
DEC 192		DEC 191	RAGE L	DEC 185 C 181 C		EFN 2		DEC 174 (176 (DEC 0CT 1 00001	
		u	STO	N N		8 3 2		C) C)		(FIL)	

(STH)

NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS
AND
NUMBERS
FORMULA
INTERNAL
CORRESPONDING
WITH
NUMBERS
FORMULA
EXTERNAL

LOCATION	
AND OCTAL	EFN IFN LOC 7 17 00071 11 40 00223
NUMBERS	EFN I 7 11
FORMULA	4 3
INTERNAL	EFN IFN LOC 6 14 00053 10 37 00214
UMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATION	EFN I 6 10
H	N LOC 12 00045 30 00161
NUMBERS	1FN LOC 12 00049 30 0016
FUKMULA	EFN 5
EXIEKNAL FURMULA	N LOC 11 00040 29 00153
	EFN IF

000046 000047 000050 000051 000052 000054	+0402000022 +04000000022 +06010000026 +05000000026 +06010000023 +06010000023	010 010 010 010 010	13A 14A	SUB ADD STO CLA STO CLA STO	NON NON XX
000055 000056 000057 000060 000062 000065	-05340010027 -06340010026 -05340020026 +05000000026 +06220000007 -075400200007 +06010000027 +06010000023	010 010 010 0010 010 010	15A 16A	LXD SXD CLA STD STD STD STD STD	**************************************
00070 00071 00072 00073 00074	-06340040026 +05000000027 +06010040030 +10000120007 -06340020027 -3000020000	010 011 010 010	17A 17A1 17A2	SXD CLA STO TXI SXD	C 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
00016 000100 00100 00101 00103 00105 00106 00110 00111	-0500000000000000000000000000000000000	000 0010 0010 0010 0010 0010 0010		S X X X X X X X X X X X X X X X X X X X	NIAP (S)+4 (STH (S)+1 (N) (N) (S)+1 (N) (S)+1 (S)+1 (F) (F)(F) (F)(F)

1 Z вср PZE 97d SXD SXD CLA ADD STA CLA STA CLA CLA STA STA CLA STA STA CLA STO CLA STO BCD CLA STO CLA STO CLA STO SUB TZE TPL (STH) (FIL) 1141 10A 11 12A Y T ZA 84 V6 010 00 00 00 00 00 00 00 -346263303460 -342631433460 +000000000000+ +062100000030 000000000000+ 000000000000+ -044751314563 -063400100002 -063400200003 -063400400004 +040000000255 +050000400003 +062100000154 +062100000076 +060100000266 +060100000265 +05000400001 +062100000151 +050000400002 +062100000117 +05000400004 +062100000132 +05000400005 +050000000000 +060100000237 +0500000000000 +050000000227 +060100000264 +050000000230 +060100000263 +050000000264 +040200000266 +010000000053 +01200000045 +05000000256 +062100000161 +050000000227 +00200000053 MPRINT 00000 00002 50000 **40000** 90000 00000 00012 00013 00014 00016 00020 00025 00026 00034 20000 70000 00011 00015 00022 00023 00024 00000 00031 00032 00033 30035 96000 00040 10000 00043 0000 00017 00021 00042 20044 90000 00027 00037

PAGE 6	SXD 6)+4,4 TSX (STH),4 PZE 8)3 LXD 6)+4,4 LDQ 1 STR LXD 2)+1,1 CLA N2 STD 33A2 LDQ C+1,1 STR TXI *+1,1,1 TXL 33A,1 SXD 6)+4,4 LXD C)202,1 TXI *+1,1,1 SXD C)202,1 TXI *+1,1,1 SXD C)202,1 TXI *+1,1,1 SXD C)202,1 TXL 24A,1 CLA N3 SXD C)62,4 CLA N3 SUB N1 TXL 24A,1 CLA N3 SUB N1 TXL 24A,1 CLA N3 SYD C)62,4 CLA N3 SYD C)62,4 CLA N3 SYD C)62,4 CLA N3 SYD C)62,4 CLA N3 SYD C)62,4 CLA N3 SYD C)62,4 CLA N4 ADD 2) STO N3 CLA N4 ADD 2) STO N4 TXL 11A LXD \$+1,2 LXD \$+1,2 LXD \$+1,2 LXD \$+1,2 LXD \$+2,4 TRA 6,4
10/11/62	00162 -063400400236 010 00164 +00000000244 010 00165 -053400400236 010 00165 -053400400236 010 00171 -053400100230 010 32A 00171 +050000000000 01 00172 +06220000176 010 32A 00173 +056001100176 010 33A1 00174 -100000000000 01 00177 -063400400236 010 35A1 00175 +100001100173 010 33A2 00177 -063400400236 010 00201 -053400100262 010 00202 -053400100262 010 00203 +100001100264 010 35A1 00205 -063400100262 010 00206 -300000100123 010 35A1 00207 +05000000264 010 36A 00211 +010000000264 010 37A 00212 +012000000264 010 37A 00213 -063400400261 010 E)E 00214 +050000000264 010 37A 00215 +040000000263 010 00217 +050000000263 010 00217 +050000000263 010 00217 +050000000263 010 00217 +050000000263 010 00217 +050000000263 010 00217 +050000000263 010 00217 +050000000263 010 00221 +00000000263 010 00221 +000000000263 010 00221 +000000000000000000000000000000000
	LXD 6)+4,4 LXD 2)+1,1 SXD C)202,1 CLA M STD 35A2 PXD 0,1 STO 1 CLA 2)+2 STO K,2 SYD C)60,2 CLA N4 SYD C)60,2 CLA N4 SYD C)62,4 LXD MD MPY 1)+1 ADD 1 STO L LXD N4,2 CLA N3,2 CLA N3 SYD C)62,4 LXD N4,2 CLA N3 SYD C)62,4 LXD N4,2 CLA N3 SYD C)62,4 LXD C)62,4 LXD C)62,4 LXD C)62,4 LXD C)62,4 LXD C)62,4 LXD C)62,4 LXD C)62,4 LXD C)62,1 CLA K ADD 2)+1 SYD C)60,1 CLA C LXD C+1,1 SYD C+1,1 CLA L SYD C+1,1 CLA L SYD C+1,1 SYD C+1,1 SYD C+1,1 SYD C+1,1 CLA L SYD C+1,1 SYD C+1,1 CLA L SYD C+1,1 CLA L SYD C+1,1 CLA L SYD C+1,1 CLA L SYD C+1,1 SYD C+1,1 CLA L SYD C-1,1 SYD C-1,1 SYD C-1,1 SYD C-1,1 SYD C-1,1 SYD C-1,1 SYD C-1,1 SYD C-1,1 SYD C-1,1 SYD C-1,1
MPRINT	00114 -053400400236 010 23A 00116 -063400100262 010 23A 00115 -053400100262 010 23A 00115 -063400100262 010 00117 +0500000000000000000000000000000000000

+000001000000+

+233000000000

+0000000377777

+000001000000

0000000000000+

1(6E 17

1.8)

	0CT	C	ပ	Ü	C	ပ	ပ	S	S	C	ပ	ပ	S	Ü	Ç	ပ	Ç	Ç	S	S	ပ
		(9)										8)3								8)2	(<u>6</u>
	00																				
MPRINT	+000001000000+	23300000000	0000037777	000000000	00000100000	00000000000	00000000000	3103460603	4062560010	9090962290	0600131047	0606074013	1606060603	4606060616	0013104606	3644445606	3600730234	0067460066	22940	0606074013	0000000000
M P	00230	023	023	023	023	023	023	024	024	024	024	024	024	024	024	025	025	025	025	Ś	025

+000000000001

X9)9

1 LUMN

-81-

1	*BINPUOOS BINPUOOS BINPUOOS BINPUOOS BINPUOOS BINPUOII BINPUOII BINPUOII BINPUOII BINPUOII BINPUOII BINPUOII BINPUOII BINPUOII BINPUOII BINPUOII BINPUOII BINPUOII BINPUOII		BINPU024 BINPU025 BINPU025 BINPU025 BINPU027 BINPU028
PAGE	*		
10/11/62	######################################		LOC OF ARRAY WGRD CGUNT END=0 IF TRANSFER CARD
S ON TAPE. FIBII	**************************** SEQUENCE X		X1,1 X2,2 6,4 14D 1,4 AYRAY ARRAY ENO
E COL BIN CARDS	**************************************	(10S) (WRS) (RCH) (MTC) (WER)	BINPU SXA SXA CAL* STD CLA STA CAL*
BINPU ROUTINE TO WRITE	90000	TRANSFER VECTOR 00000 743146623460 00001 746651623460 00002 745123303460 00003 746663233460 00004 746625513460	00006 0634 00 1 00142 00007 0634 00 2 00143 00010 -0500 60 4 00006 00011 0622 00 0 00331 00012 0500 00 4 00001 00013 0621 00 0 00062 00014 -0500 60 4 00002

ie 2	BINPU030 BINPU031 BINPU032 BINPU033 BINPU035		1	BINPU049 BINPU050 BINPU051 BINPU053 BINPU053	8 INPU055 8 INPU056 8 INPU057 8 INPU059 8 INPU060 8 INPU061	BINPU063 BINPU064 BINPU065 BINPU066
PAGE		* *				
10/11/62	CONTROL WORD	ADD RELATIVE BIT 7-9, WORD COUNT=22 CONTROL WORD ESTABLISHED. ************************************	TO ITS NORMAL STATE 4TH, 5TH ARGS	TSXES IS IS ID FLAG BLANK SEQ. NO. NO NON-ZERO.	S IS SEQ NO. Q NO TO BCD	NEXT ARGUMENT 2 EXTRA ARGS. COUNT ZERO A TRANSFER CARD
	UP CON	ADD RELATIVE 7-9, WORD COUCONTROL WORD ************************************	BLSEQ FOR 4		THIS	T0 38T 3RD 8E
	SET (ADD RELAT 7-9, WORD CONTROL W ************************************	SET BITEST	NO MORE BIG, TH EQUAL, IS SEQ	NO SMALL, CGNVERT SAVE	MOVE TO AT MOST IS WORD MUST BE
FIBII		REL IMAGE 7-9, WORD C CIMAGE CONTROL WOR ************************************				
TAPE.	D1 LCCN CCUNT,0 3,4 18	REL IMAGE CIMAGE ****** FOURTH E WHETHE	2.5 BLSEQ 4,4 MSKPDT MSKTSX	62 4,4 618 63 BLSEQ *+2	*+2,4 COSEQ,4 **,4 SEQNO GS,4,-1 BCDID	65,4,-1 64,2,1 X4,4 END TRCD
ARDS ON	100 000 3,44 18	REL INA INA INA CINA CINA CINA ERMINE SET CEL	2,2 2,2 BLSE 4,4 MSKP	62 4,4 6,16 63 63 8LSE *+2	* 0 * 0 0 0	200×m+
N I	SUB STD SXA CLA*	0RA 0RA 0RA SEW + + EST DETER AND S	AXT STL CAL ANA ERA	TNZ CLA* LAS TRA STZ TNZ	P X X X X X X X X X X X X X X X X X X X	TXI TIX SXA NZT TRA
COL 8		* * * *			<u>ش</u>	625
O WRITE	00325 00066 000061 00003 000022	026 026 033 174	000 030 000 026 030	0005 0000 026 0005 0000	000000 00000 000172 00000 00053 00053	0005 0003 014 777 015
ĕ 10	000000				000000000	
ROUTINE	00040	0000	4 10 0 0 0	000000	4 0 4 4 7 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	777 000 4 0 0 0
	040 062 063 050 077	000	071 -062 -050 -032 032	000000	-075 -013 -013 -063 -063 -1060 -1060	1 1 2 C C C C C C C C C C C C C C C C C
BINPU	00016 00017 00020 00021 00022	000	~ N M M M M	~ t t m m m m	00043 00044 00045 00046 00047 00050	, ro, ro, ro, ro, ro,

PAGE 3

10/11/62

	* * * * * * * * * * * * * * * * * * * *	¥ 7 ¥	**************************************	*************************************	BINPU068 ***BINPU069 BINPU070 ***BINPU071
0057 0774 00 2 0002 0060 -0754 00 0 0000	NEXT	AXT PXD	22,2	CLEAR AC FOR CHECKSUM.	BINPUO72 BINPUO74 BINPUO74
00061 0774 00 4 00000 00062 0560 00 4 00000	COUNT	LDO	0 20 U U V W H U	MOVE ARRAY INTO CORE.	BINPU075 BINPU076
0064 0361 00 2 7777 0065 1 00001 4 0005		ACL TX1	CIMAGE+24,2 CIMAGE+24,2 *+1,4,1	ACCUMULATE CHECKSUM FOR BODY.	BINPUOT8
0066 3 00000 4 0016 0067 2 00001 2 0006	LOCN	TXH	OUT,4,** ARRAY,2,1	FINISH WHEN SPECIFIED BY NO. WORDS DESIRED.(2,4)	BINPU080 BINPU081
0070 0634 00 4 0006	Z.	SXA	COUNT # #	SET COUNT FOR NEXT LOOP.	BINPU082
0072 0602 00 0 7774		SLW	CIMAGE+1		BINPU084
	****	****	*************	***************************************	BINPU085
	*	EDIT	EDIT THE IDENTIFICATION FIELD	N FIELD.	BINPUOST
	* * *	****	**************	经运货条件 化苯基苯基苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯苯基苯基苯基苯基苯基	***BINPU088
0073 -0500 00 0 0026	EDIT	CAL	SEONO		BINPU090
0074 0560 00 0 0032		100	L(1)		BINPU091
0016 - 0500 00 0 0030		CAL	BCDID		BINPU093
0000 0 00 0 0000		197	9	•	BINPUOST
0100 -0600 00 0 0032 0101 -0130 00 0 0000		o io XCI	IDECO	SAVE FOR FINISHING.	BINPU095 RINPHO96
0102 0634 00 1 0012		SXA	SVI,1		BINPU097
0103 0774 00 2 0000		AXT	4,2		BINPU098
0104 0774 00 4 0000 0105 0774 00 1 0000	ABC	AXT AXT	2,4 3,1		BINPU099
0106 -0754 00 0 0000		P XD			BINPULOI
0107 -0114 01 0 0023 0110 -2 00001 1 0011		CAD	TAB, 1 *+3,1,1		BINPU102 BINPU103
00111 0767 00 0 00014 00112 0020 00 0 00107		ALS TRA	12		BINPU104 BINPU105

PAGE 4	BINPU106 RINPU107	BINPUIOS	BINDITIO	BINPUIL	1	**************************************	BINPU115	OTTOJNI OZNAZAZA	BINDOILS	BINPU119	BINPU120	BINPUIZI	BINPU122	BINPUIZS BINDUIZS	BINPO124	BINPUIS	BINPU127	BINPU128	BINPU129	BINPU130	BINPUIST	BINPUI32	BINPOISS	BINPOIS4	CCIOLNIZO	BINPULSO	BINPUISB	BINPU139	*******BINPU140	BINPU141	BINPU142	BINPU143
I 10/11/62	COL BIN AT LAST TO LAST+3	FINISH W/SAVED C(MO).			化光环 计光光 医电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电	IS BUILT, WITH THE BODY	+23, AND ID AT LAST THRU LAST+3. CARD ON TAPE. *******	*********************************			ESTABLISH 1/0 FOR TAPE 14.			SET (WER) FOR RETRY.				INCREMENT CARD COUNT.		TECT IE IACT CADO	NOT THE LANT CARD			ALL DONE, EXIT					在本本市市市中市市 1991年1991年1991年1991年1991年1991年1991年19	UPDATE THE CARD URIGIN.		
DS ON TAPE. FIBII	LAST+4,2 *+1,2,-1	ABC,4,1 IDLCD	ABC-1,2,0	***	************	ENTIRE CARD IMAGE IS	MAGE THRU CIMAGE+23, ***** WRITE THE CARD	**********		140	(TOS)	PUNCMD.4	\$ (RCH)	↑•0	_	5 (WER) , 4		L111	SEDNO) U	SWTCH	BPTES	\$ (TES)	**,1	**,2	5.**	2,4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	**************************************	A22	HUVALO	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
BIN CARDS	SLW	11X	HXL	AXT	*	111		*	NOP.	CAL	× X	AXC	XEC*	PXA	STA*	× 2.	רא ס	200	N IS	ZET	TRA	CAL	*MTS	AXT	AXT	AXT	A X	****		ACL	MIS	:
COL			i	2 N T	* * * *	•	• •	* * * *							į	BPIES								7	X2	×		***	WTC)		
BINPU ROUTINE TO WRITE	00113 0602 00 2 77734 00114 1 77777 2 00115	0116 0560 00 0 0032	0117 3 00000 2 0010	0150 0114 00 1 0000					00121 0761 00 0 00000	0123 0074 00 4 0000	0124 0522 60 0 0000	0125 -0774 00 4 0021	0126 0522 60 0 0000	3127 0754 00 4 000C	0130 0621 60 0 0000	132 -0500 00 00 0000	0133 0400 00 0 0030	0134 0114 06 0 0021	0135 0602 00 0 0026	7777 0 00 0250 010	1137 0020 00 0 0014	0140 -0500 00 0 0013	0141 0602 60 0 0000	142 0774 00 1 0000	145 0114 00 2 0000	144 07/4 00 4 0000	0000 + 00 0300 0+		0146 -0500 00 0 7774	00147 0361 00 0 00333	0150 0602 00 0 7774	

GE 5	BINPU144	BINPU146	BINPU147	BINPU148	BINPU149	BINPU150	BINPUI51	BINPU152	BINPU153	***BINPU154	81NPU155	BINPU156	BINPU157	BINPU158	BINPU159	BINPU160	BINPU161	BINPU162	BINPU163	BINPU164	BINPU165	BINPU166	***BINPU167		BINPUL99	BINPUITI	BINPU172	BINPU173	BINPU174	BINPU175	BINPU176	2 TOANTO	BINPOI/8	BINPU180	BINPU181
PAGE	* * * *									*													****	,	×										
10/11/62	A NEXT 市本年本市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市		CLEAR REST OF	CARD IMAGE.		STORE ZERO WORD COUNT				***************************		WORD COUNT EXHAUSTED	RETURN IF CARD IS FULL	NO.N	CORRECT WORD COUNT			RETURN CHECKSUM.		CLEAR REST OF CARD.			***********	A BINARY INTEGER TO BCD. (4 DIGITS DECR-MQ)	李龙帝李本女女心看着女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女		TEST IF BLANKS DESIRED.		RIGHT ADJUST BIN INTEGER						
DS ON TAPE. FIBII	NEXT		23,2	CIMAGE+24,2	+-1,2,1	ZWC	CIMAGE	EDIT		*****		END	INIC	COMMON	0,2	CIMAGE	CIMAGE	COMMON	IN,2,0	CIMAGE+24,2	*-2,2,-1		*******	OUTINE CONVERTS A BINAR	***************************************			COSEQX	18	TEN	COMMON	i L	- v	COMMON	
COL BIN CARDS	TRA *******	: *	TRCD AX	-	-	_	STD	α.	*	******	*	OUT STZ	XNT	SLW	PXD	SUB	STD	CAL	TXL	STZ	IXI		*	THIS RO	**	~	2N	\propto	œ	~	- >	Κ.	0 V	ıα	~
BINPU ROUTINE TO WRITE	0151 0020 00 0 00057		152 0774 00 2 0002	153 0600 00 2 7777	154 2 00001 2 0015	155 0500 00 0 0032	0156 0622 00 0 77740	157 0020 00 0 0007				160 0600 00 0	161 -2 00001 2	162 0602 00 0	163 -0754 00 2	164 0402 00 0	165 0622 00 0	77777 0 00 00 00 00 00 00	167 -3 00000 2	170 0600 00 2	171 1 77777 2					172 -0754 00 0 0000	173 -0520 00 0 0030	174 0020 00 0 0021	175 0765 00 0 0002	176 0221 00 0 0033	7777 0 00 1 00 0 7777	200 -0754 00 0 0000	0201 0221 00 0 00332 0202 0767 00 0 00006	203 -0602 00 0 7777	204 -0754 00 0 0000
	ŏ						ŏ											ŏ								č	ō	õ	õ	ŏ	ōò	ό δ	ŏ č	ōŏ	ō

PAGE 6	BINPU182 BINPU183 BINPU184 BINPU185 BINPU186 BINPU187	*****BINPU189 BINPU190 BINPU191 BINPU192 BINPU193 BINPU193	BINPU195 BINPU194 BINPU198 BINPU199 BINPU202 BINPU203 BINPU204 BINPU205 BINPU205 BINPU205 BINPU206 BINPU207 BINPU207 BINPU208 BINPU209	BINPUZIO
10/11/62	•	· · · · · · · · · · · · · ·		
	RIGHT ADJUSTED SEQ NO. BLANK OUT SEQ. NO.	.*************************************	0 2 3 4 5 6 6 7 7 8 9 0 WITH CARRY CONVERSION CONSTANTS ,100,40,20,10,4,2,1	,42
CARDS ON TAPE. FIBII	TEN 12 COMMON 1,4 BLANK 1,4	CIMAGE,0,24 LAST,0,3 CD ADDITION OF 1	TB1 TB1 TB1 TB1 TB1 TB1 TB1,0,4096 TB1 TB1,0,4096 TB1 TB1,0,4096	77777770000,102,42
COL BIN	DV AL OR TR OSEQX CA	PUNCMD 10CP 10CD 10CD 10CD 10CD 10CD 10CD 10CD 10CD	* TB1 HTR TB MPY FAD ADD CLA STZ CPY TXI TXI HTR * TABLES FOR TAB TAB TAB TAB TAB TAB TAB TAB TAB TAB	MSK2CH OCT
OU ROUTINE TO WRITE	0221 00 0 00332 0767 00 0 00014 -0501 00 0 77777 0020 00 4 00001 -0500 00 0 00306 0020 00 4 00001	-0 00030 0 77740 0 00003 0 77730	0000 00 0 00215 0100 00 0 00215 0200 00 0 00215 0300 00 0 00215 0400 00 0 00215 0500 00 0 00215 0500 00 0 00215 1 00000 0 00215 1 10000 0 00215 1 10000 0 00215 1 10000 0 00215 1 00000000000000000000000000000000000	9
BINPU	00205 00206 00207 00210 00211	00213 00214	00215 00216 00217 00220 00221 00223 00224 00224 00225 00226 00231 00233 00233 00233 00233	0242

PAGE 7		BINPU211		BINPU212								P I CHON I S	B INDICATA	170 11170	BINPU215	BINPU216	BINPU217	BINPU218									BINPU219	BINPU220		BINPU221	BINPU222	BINPU223	BINPUZZ4
10/11/62 PA				1,4010,4004,4002,4001														,2010,2004,2002,2001															10,1004,1002,1001
ON TAPE. FIBII		0,0,0		4000,4400,4200,4100,4040,4020,4010,4004,4002,4001								8.1	4102.4042	1	0,7,-1		1,	2000,2400,2200,2100,2040,2020,2010,2004,2002,2001										2102,2042		1,	- (0 1 000 1 300 1 300 1000 1000 100	0,1400,1200,1100,1040,1020,1010,1004,1002,1001
E COL BIN CARDS		ID123 OCT		100									4		-	⋖	SEONO BCI	\Box									BLSEQ	T)()		BCDID BCI	BLANK		ר ז
BINPU ROUTINE TO WRITE	00243 +000000000102 00244 +0000000000042	10 0	~	\sim	00252 +000000004400	1 ~~	.+	ia	∽ ►	_ ~	` -	. ^	1 N	٠.+	5 -3 77777 7 0000	•	~	\sim	_	ΛI	∾ .		.∧	~ ∸	\sim	+000000005001	\sim 1	∾ .	. +	10	5 606060606060	_ ^	$\overline{}$

PAGE 8		BINPU225	8INPU226	BINPU227	BINPU228	BINPU229	BINPU230	BINPU231	BINPU232	BINPU233	BINPU234	BINPU235	BINPU236	BINPU237	BINPU238	BINPU239
10/11/62		ZERO WORDS FOR TCD									CONTROL WORD SKELETON					
CARDS ON TAPE. FIBII		00020000200	1102,1042	0,0,1		1	5	16,,12	10	22	000526000000	-1	-32	-40	COMMON-1	
BIN CA		100	OCT		PZE	PZE	P2E	PZE	DEC	I	OCT	Ш	ш	ш	SYN	END
COL		ZMC		DJ	IDLCD	L(1)	5 A	140	1 EN	A22	IMAGE	COMMON	CIMAGE	LAST	END	
BINPU ROUTINE TO WRITE	00311 +000000001400 00312 +000000001200 00313 +000000001100 00314 +000000001040 00315 +000000001020 00317 +000000001010 00320 +000000001002	00322 +000500000000	00323 +000000001102 00324 +000000001042	00325 0 00001 0 00000	00326 0 00000 0 00000	00327 0 00000 0 00001	0 00000 0 00000		+00000000012	0000 00 0 00026	00334 +000526000000	77777	77740	77730	77776	

BINPU ROUTINE TO WRITE COL BIN CARDS ON TAPE. FIBII POST PROCESSOR ASSEMBLY DATA

335 IS THE FIRST LOCATION NOT USED BY THIS PROGRAM

	225,
	224,
	223,
	222,
	221,
335	220,
160,	217,
136,	216, 205 335
80LS 52 . 167 122 117 55\$	2156 2014 214 ₈ 133 67 76
DEFINED SYMBOLS 5A D1 16 G2 34 G3 37 G4 53 G5 50, 52 IN 161, 167 X2 7 X2 7 X4 54 14D 11, 122 A22 147 A8C 115, 117 END 15, 55	102 107 134, 176, 155 36 157 113, 17, 17, 161, 151, 56, 13,
TO DEFIN 5A 01 62 63 64 65 1N X1 X2 X4 14D A22 ABC END	SV1 TAB TB1 TEN ZWC BCI8 EDIT LAST LOCN L(1) NEXT TRCD ARRAY BCDID BINPU
REFERENCES 330 325 54 51 51 70 216 142 143 144 331 333 160 266	O O O O O O O O O O

226

BINPU ROUTINE TO WRITE COL BIN CARDS ON TAPE. FIBII

																	156,							
																	153,							
! •																	150,							
DATA																	146,	335						
																	72,	7,						
BLY																	7	20						
ASSEMBLY								135									71,	203,						
POST PROCESSOR	173							132,									640	177,						
ST PRO	404			20		116		73,									63.	166,						
P 0	30,	140	4.5	20,		100,	25	41,	137		123	126	141	131	124	130	26,	162,	174		32	33	125	
)))	BLSEQ	BPTES	COSEQ	COUNT	10123	IDLCD	IMAGE	SEQNO	SWTCH	WRITE	(105)	(RCH)	(TES)	(WER)	(WRS)	(MTC)	CIMAGE	COMMON	COSEQX	MSK2CH	MSKPDT	MSKTSX	PUNCMD	WR I TE1
; ; ;	302	131	172	6.1	245	326	334	267	146	121	0	7	ß	4	-	m	140	_					m	

335

213,

146, 150, 153, 156, 164, 165, 170, 335

777740 77777 211 (211 (242 1) (242 1) (307 1) (307 1) (313 1)

NO ERROR IN ABOVE ASSEMBLY.

10/11/62 MPUNCH01 MPUNCH02 MPUNCH03	R D	MPUNCH12 NTAPE)MPUNCH13 MPUNCH14 MPUNCH15	MPUNCH16 MPUNCH17 MPUNCH18 MPUNCH19 MPUNCH20	MPUNCH21 MPUNCH22 MPUNCH23 MPUNCH24	MPUNCH26 MPUNCH27 MPUNCH28 MPUNCH29 MPUNCH29	MPUNCH31 MPUNCH32 MPUNCH33 MPUNCH34 MPUNCH35 MPUNCH35 MPUNCH36 MPUNCH37
MPUN _{CH} C MATRIX COLUMN BINARY PUNCH SUBROUTINE C CALLING SEQUENCE	C A = MATRIX 3O BE PUNCHED IORG = ORIGIN OF FIRST CARD C M = NUMBER OF ROWS BCDZ = BCD IDENTIFICATION W C N = NUMBER OF COLUMNS MAXM = DIMENSIONED NUMBER O C IOUT = 0, PUNCH BY COLUMNS E 1, PUNCH BY ROWS NTAPE= OUTPUT PUNCH TAPE C ITRA = 0, TRA CARD AFTER WHOLE MATRIX C = 1, TRA CARD AFTER EACH ROW OR COLUMN	SUBROUTINE MPUNCH (A, M, N, IOUT, ITRA, IORG, BCDZ, MAXM, NT/ * LIST8 DIMENSION A(1), T(22)	IS = 0 MN = MAXM*N IF (10UT) 8,2 ;8		Ji- IONG DD 5 I=1,N CALL BINPU (A(J), M, Jl, BCDZ, IS, NTAPE) J = J+MAXM IS= IS+1+M/22 IF (ITRA) 3,4,3	C PUNCH TRA CARD AFTER EACH COLUMN 3 CALL BINPU (A, 0, 0, BCDZ, IS, NTAPE) 1S=IS+1 GOTO 5 4 J1=J1+M

```
MPUNCH39
           MPUNCH40
                                                              MPUNCH45
                                                                                                      MPUNCH49
                                                                                                                 MPUNCH50
                                                                                                                                               MP UNCH53
                                                                                                                                                                   MPUNCH55
                                                                                                                                                                             MPUNCH56
                                                                                                                                                                                                  MPUNCH60
                                                                                                                                                                                                                                                     MPUNCH65
                                                                                                                                                                                                                                                                MPUNCHE6
                                                                                                                                                                                                                                                                                              MPUNCH69
                                                                                                                                                                                                                                                                                                                                                                      MPUNCH76
                               MPUNCH42
                                          MPUNCH43
                                                                        MPUNCH$6
                                                                                            MPUNCH48
                                                                                                                                     MPUNCH52
                                                                                                                                                         MPUNCH54
                                                                                                                                                                                        MPUNCH57
                                                                                                                                                                                                                      MPUNCH62
                                                                                                                                                                                                                                 MPUNCH63
                                                                                                                                                                                                                                                                                   MPUNCH68
                                                                                                                                                                                                                                                                                                        MPUNCH70
                                                                                                                                                                                                                                                                                                                                                 MPUNCH74
                                                                                                                                                                                                                                                                                                                                                           4PUNCH75
                     MPUNCH41
                                                   MPUNCH44
                                                                                   MPUNCH47
                                                                                                                                                                                                            MPUNCH61
                                                                                                                                                                                                                                           MPUNCH64
                                                                                                                                                                                                                                                                                                                            MPUNCH72
                                                                                                                                                                                                                                                                                                                                       MPUNCH73
                                                                                                                          MPUNCH51
                                                                                                                                                                                                                                                                         MPUNCH67
                                                                                                                                                                                                                                                                                                                  MPUNCH71
```

(T,22,41,8CDZ,IS,NTAPE) (T,J,J2,BCDZ,IS,NTAPE) 10,8,9 13,14613 K=I,MN,MAXM C PUNCH MATRIX BY ROWS.

14 I=1,M

00 00

J1=10RG

0**=**0 8

IF (J-22)

9 CALL BINPU

J1 = J1 + 22

IS=IS+1

0=0

T(J) = A(K)

1=1+1

10

(A, O, O, BCDZ, IS, NTAPE)

CALL BINPU GOTO 16

C PUNCH TRA GARD AFTER WHOLE MATRIX

(ITRA) 16,6\$16

ΙŁ

5 CONTINUE

MPUNCH

12,12,12 CALL BINPU CONTINUE 11=11+1 ΙŁ 10 71

(T,0,0,06BCDZ, IS,NTAPE) PUNCH TRA CARD AFTER EVERY ROW 13 CALL BINPU IS=IS+1 J1=10RG ں

12 IF (ITRA)

IS=IS+1

0=0

(ITRA) 16,15,16 AFTER ENTIRE MATRIX ٦I S, ں

MPUNCH78

-95-

10/11/62

MPUNCH79 MPUNCH80 MPUNCH81 MPUNCH82

END(1,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0)

15 CALL BINPU (A,0,0,0BCDZ, IS, NTAPE)

16 RETURN

-96-

MPUNCH

762	
10/11/	
MPUNCH	

PAGE

STORAGE NOT USED BY PROGRAM

DEC 0CT 32561 77461

DEC 0CT 279 00427

TIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS	DEC OCT	DIMENSION, OR EQUIVALENCE STATEMENTS	DEC 0CT J 253 00375	I SOURCE PROGRAM	DEC OCT 9) 247 00367 E)H 215 00327	VECTOR	DEC OCT
DIMENSION	OCT		OCT 00376	PEARING IN	DEC 0CT 241 00361 120 00170	RANSFER VE	100
LES APPEARING IN	DEC	ARING IN COMMON.	DEC J1 254 (OCATIONS FOR OTHER SYMBOLS NOT APPEARING IN	DEC 6) 241 E)6 120	LOCATIONS OF NAMES IN TRANSFER	DEC
2 VARIAB	100	NOT APPE	DEC 0CT 255 00377	FOR OTH	DEC 0CT 238 00356 114 00162	LOCATI	1001
STORAGE LOCATIONS FOR	DEC	STORAGE LOCATIONS FOR VARIABLES NOT APPEARING	15	LOCATIONS	DEC 2) 238 E)4 114		DEC
STC	DEC 0CT 278 00426	LOCATIO	DEC OCT 256 00400 252 00374		DEC 0CT 249 00371 251 00373		000000 0
	DEC 278	ORAGE	DEC 256 252				DEC
	-	ST	™ Z E		1) C) 60		BINPU

BINPU

ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS IFN LOC 20 00166 37 00263 48 00330 10 IFN LDC 19 00163 32 00241 44 00312 EFN IFN LOC 15 00147 25 00205 43 00310 52 00352 EFN LOC 00105 00175 00271 00343 1FN 7 22 (39 0 50 00 EFN

-97-

I	
ï	,
=	=
4	_
-	-

MPUNCH		10/11/62	PAGE
00 +223145476460 0	BCD 1BINPU	+062100000347 01	A 1A+17
00 0000000000000 10	PZE	+062100000316 01	A 1A+14
02 +000000000000 0	PZE	+062100000275	STA 1A+132
03 +00000000000000000000000000000000000	PZE	+062100000246 01	A 1A+10
04 -044764452330 0	BCD 1MPUNCH	+062100000201 01	A 14+7
05 ~063400100001 01	SXD \$,1	+062100000153 01	A 14+5
06 -063400200002 0	SXD \$+1,2	+062100000124 01	A 1A+2
07 -063400400003 01	XD \$+2,	+050000000010	A 8
10 +050000400001 00	LA 1,	+062100000223 01	A 1A+
11 +062100000344 01	TA 1,	+062100000130 0	A 1A+3
12 +040000000367 01	90	+062100000075 01	A 1A+
13 +062100000232 01	TA 1	+05000000011 0	A 9,
14 +040000000370 01	ADD 9)+1	+062100000351 01	A 1A+17
15 +062100000176 01	TA 1A+6	+062100000320 01	A 1A+1
16 +062100000150 01	TA 1A+	+062100000277 01	A 1A+13
17 +062100000121 01	TA 1A+2	+062100000250 01	A A
20 +040000000367 01	6 00	+062100000203 0	A 1A+7
21 +062100000115 01	TA 1A	+062100000155 01	A 1A
22 +050000400002 00	LA 2,	+062100000126 01	A 1A+2
23 +062100000214 01	TA 1A+8	+050000000002 0	4
24 +062100000164 0	TA 1A	+060100000366 01	STO 6145
25 +062100000133 01	TA 1A+3	+050000000356 0	⋖
26 +062100000122 01	TA 1A+2	+060100000377 01	<u>~</u> 0
27 +05000400003 00	LA 3,	÷05600000000000000	Σ Ø
30 +062100000113 01	TA 1A+	+02000000000000000	>
31 +062100000076 0	TA 1	+076700000021 0	S 1.
32 +05000400004 00	LA 4,4	+060100000374 0	NW O
33 +062100000101 0	TA 1	+0500000000000000000000000000000	A
34 +05000400005 00	LA 5,	+010000000105 01	F
35 +062100000337 01	TA 1A+1	+012000000205 01	1 2
36 +062100000310 01	TA 1A+14	+002000000205 01	A 2
37 +062100000171 0	TA 1A+	+050000000357 0	A 2
40 +062100000145 01	TA 1A+4	+060100000375 01	STO J
41 +05000400006 0	LA 6	-053400100375 01	
42 +062100000324 01	TA 14+1	+050000000000000	A 10
43 ÷062100000211 0	TA ?	+060100000376 0	0
00044 +062100000110 010	+	053400200357 01	D 2
45 +050000400007 0	_	+0500000000000 +	4

MPUNCH		10/11/62	PAGE 6
0114 +062200000167 01	TD 2	0161 +002000000166 010 18	A 20
0115 +075400100000 0	XA A+1	00162 -063400100373 010 E)4	၁ ၀
0116 +040200000115 010	₩ ¥	0163 +050000000376 010 19	ر م
0117 +062100000121 0	TA 1	0164 +0400000000000	۵
00120 +007400400000 010 11A	S	0165 +060100000376	٥
0121 +007400000000 0	SXA	20A	BSS
0122 +007400000000 00	×	0166 +100001200167 010 20	4 + + I
0123 +007400000376 0	SX	0167 -300000200115 010 20A	L 10A
0124 +007400000000 0	×	0170 -063400100373 010 E)	09() 0
0125 +007400000377 0	×	0171 +050000000000 00 21	A ITR
0126 +007400000000 00	S	0100000000175 010 21	TZE 22A
0127 +050000000375 0	LA	0173 +012000000352 0	L 52
0130 +040000000000 00	0	0174 +002000000352 01	A 52
0131 +060100000375 0	-		BSS
0132 -053400100375 01	QX	0175 +007400400000 010 23	×
0133 +050000000000 00	LA	0176 +007400000000	×
0134 +076500000043 00	α	0177 +007400000356 01	x 2
0135 +022100000360 0	VP 2	0200 +007400000356 0	× 2
0136 +076000000000 00	_	0201 +00740000000 00	X B
0137 +076300000022 00	LS 1	0202 +007400000377 0	н ×
0140 -060000000372 0	₩	0203 +00740000000 00	×
0141 +050000000377 01	LA I	0204 +002000000352 010 2	A 52
0142 +040000000357 01	DD 2)+	0205 +050000000356 010 25	A 2
0143 +040000000372 01	DD 1	0206 +060100000375 01	0
0144 +060100000377 01	10	0207 -053400100375 0	ں تا
0145 +050000000000 00 14	LA I	0210 -063400100373 01	Ω
0146 +010000000162 01	ZE E)	0211 +050000000000 00	A IOR
15	S	0212 +060100000376 010	0
0147 +007400400000 010 16	×S	0213 -053400200357 01	D 2
0150 +007400000000 00	S	0214 +050000000000 00	Σ
0151 +007400000356 0	SX 2	0215 +062200000336 0	☆
0152 +007400000356 01	SX 2	0216 -075400200000 0	0 0
0153 +007400000000 00	SXB	0217 +060100000400 01	О
0154 +007400000377 0	SXI	0220 -053400400400 0	™ O
0155 +00740000000 00	N XS	0221 +050000000374 01	A MN
00156 +050000000377 010 17A	CLA IS	00222 +062200000264 010	STD 37A2
0157 +040000000357 01	DD 2	0223 +050000000000 00	A MAX
0160 +060100000377 01	101	0224 +062200000263 0	D 37A

10/11/62 PAGE 7	26 010 40A TSX B 26 010 10 40A TSX T TSX T TSX T TSX J TSX J TSX J TSX J TSX J TSX B 100 00 00 153 B	77 010	010 42A CLA 010 010 STD 010 43A CLA 010 43A1 TZE 144A BSS	010 TSX T 010 TSX 2) 010 TSX 2) 00 TSX 8CDZ 010 TSX 1S 010 TSX NTAPE 010 46A CLA IS 010 STO IS	000 47A 010 010 010 E)H 010 48A 010 010
	271 272 273 273 274 275	A+1,4 A+1,4 00276 +0074000003 T+1,1 00277 +0074000003 J 2)+2 00300 -0534001003 32A 00302 +0500000003 37A 00304 +0601000003)+4,4 00305 INPU,4 00306)+2 00310 1 00311 CDZ 00312	APE 00313 +007 +4,4 00314 +007 00315 +007 +2 00316 +007 00317 +007 00320 +007 +1 00322 +040 00322 +040	45970-2645
MRUNCH	225 +050000000375 010 2 9A 226 +040000000357 010 227 +060100000375 010 230 -053400100375 010 231 -063400100373 010	232 +05000040000 00 30A CL 233 +060100100427 011 ST 234 +050000000375 010 31A CL 235 +040200000360 010 31A TZ 236 +010000000241 010 31A1 TZ 237 +012000000241 010 31A1 TZ	241 -063400400365 010 92A S 242 +007400400000 010 33A T 243 +007400000426 010 T 244 +007400000360 010 T 245 +007400000376 010 T 246 +007400000000 00 T	34A CL 34A CL 4D 4D 35A CL 35A CL 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D	261 +060100000375 010 ST 262 -053400100375 010 37A BS 263 +100000400264 010 37A1 TX 264 -300000400225 010 37A2 TX 265 +050000000375 010 38A CL 266 +010000000375 010 38A CL 267 +012000000271 010 TP 270 +002000000310 010 TR

TXL 284,2

00336 -300000200220 010 48A2

MPUNCH

033	020000000000		0		-
00340	01000000	010	49A1	TZE	50A
34	200000035			Φ.	2
00342	5			α	2
				S	
00343	0004004000		51A	S	BINPU,4
034	00140000000			S	A
034	00740000035	_		S	2)
34	0074000035			S	
034	00000007400			S	
5	00740000037			S	IS
035	00000004000			S	
035	5340010000	_	52A	×	\$,1
035	05340020000			×	+
035	340040000			×	\$+2,4
00355	00200040001			α	
035	0000000000		2)	S	000000
035	00000100000			Ç	000010000
09800	00260000	00		ပ	000260000
036	3300000000		(9	S	0000000
36	000037777			S	037777
036	00000000000			Ç	000000000
36	000010000			Ç	00100000
9	0000000000			C	0000000
36	0000000000			S	0000000
36	0000000000		(6	ပ	000000
00370	-00000000000001	00		00.1	-000000000001

(WRS)	POSITIONING ERRORS	0	0	0	0	0	0	0
(108)	DANC IES READ ING	0	0	0	0	0	0	0
(EFT)	TOTAL REDUNDANCIES WRITING READING	0	0	0	0	0	0	0
(FIL)	CORDS READING	0	0	0	0	0	0	0
RARY, (STHM)	NOISE RECORDS WRITING READI	0	0	0	0	0	0	0
TED FROM LIB (RWT) (TES)	TOTAL READS	522	554	102	405	635	٣	145
JTINES REQUES (RTN) (RTN)	TOTAL WRITES	0	536	91	372	0	793	141
ENTRY POINTS TO SUBROUTINES REQUESTED FROM LIBRARY, (FPT) (TSHM) (RIN) (RWT) (RCH) (WTC) (WER) (TES)	MACHINE TAPE	. A	8 2	R 80	7 V	A 2	A 3	8 4

EXECUTION 14.527

	UNCLASSIFIED	
Aerospace Corporation, El Segundo, California. AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY: ANALYTICAL DEVELOPMENT AND COMPUTATIONAL PROCEDURE, prepared by W. P. Rodden, E. F. Farkas, and G. Y. Takata. 31 October 1962. [107]P. incl. illus. (Report TDR-1693230-11)TN-6;SSD-TDR-62-149) (Contract AF 04(695)-169)		Aerospace Corporation, El Segundo, California. AERODYNAMICS INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY: ANALYTICAL DEVELOPMENT AND COMPUTATIONAL PROCEDURE, prepared by W. P. Rodden, E. F. Farkas, and G. Y. Takata. 31 October 1962. [107]p. incl. illus. (Report TDR-169(3230-11)TN-6; SSD-TDR-62-149) (Contract AF 04(695)-169)
A method is reviewed for computing the aerodynamic influence coefficients (AICs) for slender bodies. The method is based on the unsteady slender-body theory by Miles and its extension to obtain the AICs by Rodden and Revell. The simplicity of the slender-body theory permits the definition of a number of sets of AICs for use in transient analysis. The influence coefficients relating the transient aerodynamic forces to the body deflections and their first two derivatives are defined by the		A method is reviewed for computing the aerodynamic influence coefficients (AICs) for slender bodies. The method is based on the unsteady slender-body theory by Miles and its extension to obtain the AICs by Rodden and Revell. The simplicity of the slender-body theory permits the definition of a number of sets of AICs for use in transient analysis. The influence coefficients relating the transient aerodynamic forces to the body deflections and their first two derivatives are defined by the
following relation: (over)	UNCLASSIFIED	following relation: (over)
	UNCLASSIFIED	
Aerospace Corporation, El'Segundo, California. AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY: ANALYTICAL DEVELOPMENT AND COMPUTATIONAL PROCEDURE, prepared by W. P. Rodden, E. F. F. F. P. Rodden, F. F. F. F. P. Rodden,		Aerospace Corporation, El Segundo, California. AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY: ANALYTICAL DEVELOPMENT AND COMPUTATIONAL PROCEDURE, Prepared by W. P. Rodden, E. F. Farkas, and G. Y. Takata.
107 p. incl. illus. 107 p. incl. illus. Report TDR-169(3230-11)TN-6; SSD-TDR-62-149) Contract AF 04(695)-169)		[107]p. incl. illus. (Report TDR-169(3230-11)TN-6; SSD-TDR-62-149) (Contract AF 04(695)-169) Unclassified report
A method is reviewed for computing the aerodynamic influence coefficients (AICs) for slender bodies.		A method is reviewed for computing the aerodynamic influence coefficients (AICs) for slender bodies. The method is based on the unsteady slender-body

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED Corporation, El Segundo, California.
CINFLUENCE COEFFICIENTS
ER-BODY THEORY: ANALYTICAL
AND COMPUTATIONAL
prepared by W. P. Rodden,
and G. Y. Takata. 31 October 1962. wed for computing the aerodynamic transient aerodynamic forces to the body deflections and their first two derivatives are defined by the 9(3230-11)TN-6; SSD-TDR-62-149) (695)-169) Unclassified report theory by Miles and its extension to obtain the AIGs by Rodden and Revell. The simplicity of the slender-body theory permits the definition of a number of sets of AIGs for use in transient analysis. The influence coefficients relating the The method is based on the unsteady slender-body influence coefficients (AICs) for slender bodies. (over) following relation:

UNCLASSIFIED

transient aerodynamic forces to the body deflections and their first two derivatives are defined by the

(over)

following relation:

slender-body theory permits the definition of a number of sets of AICs for use in transient analysis. The influence coefficients relating the

The method is based on the unsteady slender-body theory by Miles and its extension to obtain the AICs by Rodden and Revell. The simplicity of the

	$\begin{split} F(t) &= (q S/\overline{c}) \left\{ \left[C_{h_S} \right] h \right\} + \left[C_{h_d} \right] h \overline{c} / V \right\} \\ &+ \left[C_{h_1} \right] \left\{ \overline{h} \overline{c}^2 / V^2 \right\} \right]. \end{split}$ The matrices C_{h_S} , C_{h_d} , and C_{h_1} are seen to be steady, damping, and inertial AICs, respectively. The oscillatory AICs are defined by $\{F\} = \rho \omega^2 \overline{b}_z \{C_h\} \} h \}$ and are related to the above definitions through $2k_z^2 (\overline{c}s/S) \{C_h\} = \{C_{h_S}\} + i k_z (\overline{c}/b_z) \{C_{h_d}\} \\ - k_z^2 (\overline{c}/b_z)^2 \{C_{h_1}\} \\ - k_z^2 (\overline{c}/b_z)^2 \{C_{h_1}\} \end{split}$ The Aerospace IBM 7090 Computer Program No. HMI5 provides the AICs in printed and optional purc.edcard output formats. The program of the above the AICs in printed and optional purc.edcard output formats. The program oscillatory case, 50 values of reduced velocity			$\{F(t)\} = (qS/\overline{c}) \left\{ [C_{hs}] \{h\} + [C_{hd}] \{h\overline{c}/v\} + [C_{hd}] \{h\overline{c}^2/v^2\} \right\}$	The matrices $\{C_{hs}\}$, $\{C_{hd}\}$, and $\{C_{hi}\}$ are seen to be steady, damping, and inertial AICs, respectively. The oscillatory AICs are defined by $\{F\} = \rho \omega^2 b_F^2 \{C_h\} \{h\}$	and are related to the above definitions through $2k_r^2(\sigma_s/S)$ [C_h] = [C_{hs}] + ik _r (σ /b _r) [C_{hd}]	$- \kappa_{\rm r}^2 (\bar{c}/b_{\rm r})^2 [C_{\rm hi}]$.	The Aerospace IBM 7090 Computer Program No. HM15 provides the AICs in printed and optional punched-card output formats. The pro- gram capacity is 50 control points and, in the oscillatory case, 50 values of reduced velocity
UNCLASSIFIED		UNCLASSIFIED	UNCLASSIFIED					UNCLASSIFIED
	$\{F(t)\} = (qS/\sigma) \{ C_{hs} \} \{h\} + \{ C_{hd} \} \{h\tau/v\} \} + \{C_{hi} \} \{h\sigma^2/v\} \}$ The matrices $\{C_{hs}\}$, $\{C_{hd}\}$, and $\{C_{hi}\}$ are seen to be steady, damping, and inertial AIGs, respectively. The oscillatory AIGs are defined by $\{F\} = \rho \omega^2 b_F^2 \{ C_h \} \{h\} \}$ and are related to the above definitions through $\{F\} = \rho \omega^2 b_F^2 \{ C_h \} \{h\} \}$. The Aerospace IBM 7090 Computer Program No. HMI5 provides the AIGs in printed and optional punched-card output formats. The program capacity is 50 control points and. in the oscillatory case, 50 values of reduced velocity.			$\{F(t)\} = (qS/\overline{c}) \left([C_{hs}] \{h\} + [C_{hd}] \} h\overline{c}/v \right\} + [C_{hi}] \{\overline{h}\overline{c}^2/v^2\} \right) .$	The matrices [C_{hs}], [C_{hd}], and [C_{hi}] are seen to be steady, damping, and inertial AICs, respectively. The oscillatory AICs are defined by $\{F\} = \rho \omega^2 b_r^2 \{C_h\}\{h\}$	and are related to the above definitions through $2k_r^2(\overline{c}s/S) \left[C_h\right] = \left[C_{hs}\right] + ik_r(\overline{c}/b_r) \left[C_{hd}\right]$	$- \kappa_{\rm r}^2 ({\it c}/{\it b}_{\rm r})^2 [{\it c}_{ m hi}]$.	The Aerospace IBM 7090 Computer Program No. HM15 provides the AICs in printed and optional punched-card output formats. The pro- gram capacity is 50 control points and, in the oscillatory case, 50 values of reduced velocity.

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED			UNCLASSIFIED
	AETOSPACE COTPORATION, EI Segundo, California. AERODYNAMICS INFLUENCE COEFFICIENTS FROM SLENDER BODY THEORY: ANALYTICAL DEVELOPMENT AND COMPUTATIONAL PROCEDURE, prepared by W. P. Rodden, E. F. Farkas, and G. Y. Takata. 31 October 1962. [107]p. incl. illus. [107]p. incl. illus. (Report TDR-169(3230-11)TN-6; SSD-TDR-62-149) (Contract AF 04(695)-169) Unclassified report A method is reviewed for computing the aerodynamic influence coefficients (AIGs) for slender bodies. The method is based on the unsteady slender-body theory by Miles and its extension to obtain the AIGs by Rodden and Revell. The simplicity of the slender-body theory permits the definition of a number of sets of AIGs for use in transient analysis. The influence coefficients relating the transient aerodynamic forces to the body deflections and their first two derivatives are defined by the following relation: (over)		Aerospace Corporation, El Segundo, California. AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY: ANALYTICAL DEVELOPMENT AND COMPUTATIONAL PROCEDURE, prepared by W. P. Rodden, E. F. Farkas, and G. Y. Takata. 31 October 1962. [107]p. incl. illus. (Report TDR-169(3230-11)TN-6; SSD-TDR-62-149) (Contract AF 04(695)-169) Unclassified report	A method is reviewed for computing the aerodynamic influence coefficients (AICs) for slender bodies. The method is based on the unsteady slender-body theory by Miles and its extension to obtain the AICs by Rodden and Revell. The simplicity of the slander-body theory permits the definition of a number of sets of AICs for use in transient analysis. The influence coefficients relating the	transient aerodynamic forces to the body deflections and their first two derivatives are defined by the following relation: (over)
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED			UNCLASSIFIED
	Aerospace Corporation, El Segundo, California. AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY: ANALYTICAL DEVELOPMENT AND COMPUTATIONAL PROCEDURE, prepared by W. P. Rodden, E. F. Farkas, and G. Y. Takata. 31 October 1962. [107]p. incl. illus. (Report TDR-16/9/2330-11)TN-6;SSD-TDR-62-149) (Contract AF 04(695)-169) Unclassified report A method is reviewed for computing the aerodynamic influence coefficients (AICs) for slender bodies. The method is based on the unstready slender-body theory by Miles and its extension to obtain the AICs by Rodden and Revell. The simplicity of the slender-body theory permits the definition of a number of sets of AICs for use in transient analysis. The influence coefficients relating the transient aerodynamic forces to the body deflections and their first two derivatives are defined by the following relation: (over)		Aerospace Corporation, El Segundo, California. AERODYNAMIC INFLUENCE COEFFICIENTS FROM SLENDER-BODY THEORY: ANALYTICAL DEVELOPMENT AND COMPUTATIONAL FROCEDURE, prepared by W. P. Rodden, E. F. Farkas, and G. Y. Takata. 31 October 1962. [107]p. incl. illus. (Report TDR-169(3230-11)TN-6; SSD-TDR-62-149) (Contract AF 04(695)-169) Unclassified report	A method is reviewed for computing the aerodynamic influence coefficients (AICs) for slender bodies. The method is based on the unsteady slender-body theory by Miles and its extension to obtain the AICs by Rodden and Revell. The simplicity of the slender-body theory permits the definition of a number of sets of AICs for use in transient analysis. The influence coefficients relating the	transient aerodynamic forces to the body deflections and their first two derivatives are defined by the following relation: (over)

	$\{F(t)\} = (qS/\overline{c}) \Big\{ \Big[C_{hS} \Big] \Big\{ h \Big\} + \Big[C_{hd} \Big] \Big\{ \overline{h}\overline{c}/v^2 \Big\} \Big\} \\ + \Big[C_{hi} \Big] \Big\{ \overline{h}\overline{c}/v^2 \Big\} \Big\}.$ The matrices $\Big[C_{hS} \Big]$, $\Big[C_{hd} \Big]$, and $\Big[C_{hi} \Big]$ are seen to be steady, damping, and inertial AICs, respectively. The oscillatory AICs are defined by $ \Big\{ F \Big\} = \rho \omega^2 b_b^2 s \Big[C_h \Big] \Big\{ h \Big\} $ and are related to the above definitions through $ Z_k^2 (\overline{c}s/S) \Big[C_h \Big] = \Big[C_{hS} \Big] + ik_r (\overline{c}/b_r) \Big[C_{hd} \Big] \\ - k_r^2 (\overline{c}/b_r)^2 \Big[C_{hi} \Big] $ The Aerospace IBM 7090 Computer Program No. HMI5 provides the AICs in printed and optional punched: card output formats. The program oscillatory case, 50 values of reduced velocity.	
UNCLASSIFIED		UNCLASSIFIED
	$\label{eq:formula} \begin{split} \big\{F(t)\big\} &= (q_S/\sigma) \Big\{ \big[C_{h_S} \big] \big\{ h\big\} + \big[C_{h_d} \big] \big\{ h\sigma/v^{\big} \big\} \\ &+ \big[C_{h_1} \big] \big\{ h\sigma^2/v^2 \big\} \Big\} \; . \end{split}$ The matrices $[C_{h_S} \big]$, $[C_{h_d} \big]$, and $[C_{h_1} \big]$ are seen to be steady, damping, and inertial AIGs. respectively. The oscillatory AIGs are defined by $ \big\{ F \big\} = \rho \omega^2 b_T^2 g C_{h_1} \big\{ h \big\} \\ \text{and are related to the above definitions through} \\ 2k_T^2 (\overline{c}s/S) \big[C_{h_1} \big] + ik_T (\overline{c}/b_T) \big[C_{h_d} \big] \\ - k_T^2 (\overline{c}/b_T)^2 \big[C_{h_1} \big] \; . \end{split}$ The Aerospace IBM 7090 Computer Program No. HMI5 provides the AIGs in printed and optional punched-card output formats. The program capacity is 50 control points and, in the oscillatory case, 50 values of reduced velocity.	

UNCLASSIFIED

UNCLASSIFIED		UNCLASSIFIED
	$ \{F(t)\} = (9S/\overline{c}) \Big([C_{hs}] \{h\} + [C_{hd}] \{h\overline{c}/v\} \\ + [C_{hi}] \{h\overline{c}^2/v^2\} \Big) \ . $ The matrices $[C_{hs}]$, $[C_{hd}]$, and $[C_{hi}]$ are seen to be steady, damping, and inertial AICs, respectively. The oscillatory AICs are defined by $ \{F\} = \rho \omega^2 b_{rs}^2 [C_h] \{h\} $	and are related to the above definitions through $2k_{\rm r}^2({\tt Ts/S}) \left[C_{\rm h} \right] = \left[C_{\rm hs} \right] + ik_{\rm r} \left({\tt T/b_{\rm r}} \right) \left[C_{\rm hd} \right]$ $- k_{\rm r}^2 \left({\tt T/b_{\rm r}} \right)^2 \left[C_{\rm hi} \right]$ The Aerospace IBM 7090 Computer Program No. HMI5 provides the AIGs in printed and optional punched-card output formats. The program capacity is 50 control points and, in the oscillatory case, 50 values of reduced velocity
UNCLASSIFIED		UNCLASSIFIED
	$\begin{split} \left\{F(t)\right\} &= (qS/\overline{c}) \left\{ \left[C_{hg} \right] \left\{ h \right\} + \left[C_{hd} \right] \left\{ h\overline{c}^2/v^2 \right\} \right. \\ &+ \left[C_{hi} \right] \left\{ \overline{h}\overline{c}^2/v^2 \right\} \right. \end{split}$ The matrices $\left\{ C_{hg} \right\}$, $\left\{ C_{hd} \right\}$, and $\left\{ C_{hi} \right\}$ are seen to be steady, damping, and inertial AIGs, respectively. The oscillatory AIGs are defined by $\left\{ F \right\} = \rho \omega^2 b_{\mu}^2 \left\{ C_{hi} \right\} \left\{ h \right\} \end{split}$	and are related to the above definitions through $2k_{\mathbf{r}}^2(\overline{c}_{\mathbf{s}}/S)\left[C_{\mathbf{h}}\right] = \left[C_{\mathbf{h}_{\mathbf{S}}}\right] + ik_{\mathbf{r}}\left(\overline{c}/b_{\mathbf{r}}\right)\left[C_{\mathbf{h}_{\mathbf{d}}}\right] \\ - k_{\mathbf{r}}^2\left(\overline{c}/b_{\mathbf{r}}\right)^2\left[C_{\mathbf{h}_{\mathbf{l}}}\right] ,$ The Aerospace IBM 7090 Computer Program No. HM15 provides the AICs in printed and optional punched-card output formats. The program appacity is 50 control points and, in the oscillatory case, 50 values of reduced velocity.