CONTENT

Problem 1	
Hash table	
Problem 2	
e	
Sample run.	
Problem 3	
proof.	

Problem 1

Hash table

Key Value	Probe Sequence
43	0
23	б
1	3
0	(
15	7
31	2
4	9
7	5
11	5.6.7.8
3	7,8,9,10
5	0.1,2,3,4
9	10,0,1.2.3,4.5.6.7.8.9

	Final Hash Table Contents
0	43
1	Ø
2	31
3	1
4	S
5	7
6	23
7	15
8	()
9	4
10	3

Problem 2

е

A collision occurs when two keys go through the hash function and arrive at the same slot. The hash function if $h(k) = k \mod m$. If the table is not chosen well enough such

like m is 2 or exact power of 2, a collision can easily occur. The hash table should have as many hash values as possible, so a prime number should be chosen for the table as size

Sample run.

```
For hash table with size m1:
min: 0
max: 23
average: 9.07216
variance: 34.9928
For hash table with size m2:
min: 0
max: 417
average: 9.22449
variance: 56.3122
For hash table with size m3:
min: 0
max: 209
average: 7.86
variance: 385.196
For hash table with size m4:
min: 0
max: 55
average: 8.9703
variance: 135.893
```

Problem 3

proof.

Consider a complete tree is a full tree except the most deep layer(last layer), and if the last layer is not full, the nodes is filled from left to right, i is the global index of a node and i start from 1.

Assume a node i in layer N with index i, and there are x nodes before this node in this layer.

We have the total number of nodes in layers N is 2^{n} -1, total number of nodes in layers N-1 is 2^{n-1} -1, and then $i=2^{n-1}$ -1+x

The child nodes of node i are in layer N+1.

For left child node j, because every node before node x in layer N will have two child nodes which also before node j, we have $j=(2^n-1)-1+2x=2(2^{n-1}+x-1)=2i$

So the right child node j+1=2i+1.

Similarly, the parent node k of node i is in the layer N-1. Assume node i is the left child of node k, the parent node is (x+1)/2th in this layer. The total number of nodes in layer N-2 is $2^{n-2}-1$

So the parent node $k=(2^{n-2}-1)+(x+1/2)=((2^{n-1}+x-1)/2)=i/2$

If node i is the right child of node k, the parent node k is the m/2th node.

 $k=(2^{n-2}-1)+(x)/2=((2^{n-1}+x-2)/2)=(i-1)/2$

Therefore, the parent node of node i is $\lfloor i/2 \rfloor$