```
<110>
                Heston, Warren D.W.
                O'Keefe, Denise S.
      <120>
                DNA Encoding the Prostate-Specific Membrane
                Antigen-Like Gene and Uses Thereof
      <130>
                D6230
      <141>
                2001-10-09
      <150>
                PCT/US00/09417
     <151>
                2000-04-09
     <160>
                38
     <210>
     <211>
                1992
     <212>
                DNA
     <213>
                Homo sapiens
     <223>
                cDNA sequence of PSMA-like gene
     <400>
agcaaatact cactaccaca aataagaaca tttccaaatc tgatgttctg
                                                          50
aggattttta gagcttatag tagcaaaaag aaaagggaaa ttctctctga
                                                         100
gatgtccttt tttgtaggcc taatgacaaa aggttgaaga taaagttcta
                                                         150
gtactcattt aagtgtaata ttgaaaattg atattaccaa atctggaaca
                                                         200
accaatttaa aataaggaaa gaaagacact gtgttttcta ggttaaaaat
                                                         250
gcccagctgg caggggccaa aggagtcatt ctctactcag accctgctga
                                                         300
ctactttgct cctggggtga agtcctatcc agacggttgg aatcttcctg
                                                         350
gaggtggtgt ccagcgtgga aatatcctaa atctgaatgg tgcaggagac
                                                         400
cctctcacac caggttaccc agcaaatgaa tacgcttata ggcatggaat
                                                         450
tgcagaggct gttggtcttc caagtattcc tgttcatcca gttggatact
                                                         500
atgatgcaca gaagctccta gaaaaaatgg gtggctcagc accaccagat
                                                         550
agcagctgga gaggaagtct caaagtgtcc tacaatgttg gacctggctt
                                                         600
tactggaaac ttttctacac aaaaagtcaa gatgcacatc cactctacca
                                                         650
atgaagtgac gagaatttac aatgtgatag gtactctcag aggagcagtg
                                                         700
gaaccagaca gatatgtcat tctgggaggt caccgggact catgggtgtt
                                                         750
tggtggtatt gaccctcaga gtggagcagc tgttgttcat gaaactgtga
                                                         800
ggagctttgg aacactgaaa aaggaagggt ggagacctag aagaacaatt
                                                         850
ttgtttgcaa gctgggatgc agaagaattt ggtcttcttg gttctactga
                                                         900
gtgggcagag gataattcaa gactccttca agagcgtggc gtggcttata
                                                         950
ttaatgctga ctcatctata gaaggaaact acactctgag agttgattgt 1000
acaccactga tgtacagctt ggtatacaac ctaacaaaag agctgaaaag 1050
ccctgatgaa ggctttgaag gcaaatctct ttatgaaagt tggactaaaa 1100
aaagtccttc cccagagttc agtggcatgc ccaggataag caaattggga 1150
tctggaaatg attttgaggt gttcttccaa cgacttggaa ttgcttcagg 1200
cagagcacgg tatactaaaa attgggaaac aaacaaattc agcggctatc 1250
cactgtatca cagtgtctat gaaacatatg agttggtgga aaagttttat 1300
gatccaatgt ttaaatatca cctcactgtg gcccaggttc gaggagggat 1350
ggtgtttgag ctagccaatt ccatagtgct cccttttgat tgtcgagatt 1400
atgctgtagt tttaagaaag tatgctgaca aaatctacaa tatttctatg 1450
```

```
aaacatccac aggaaatgaa gacatacagt ttatcatttg attcactttt 1500
ttctgcagta aaaaatttta cagaaattgc ttccaagttc agcgagagac 1550
tccaggactt tgacaaaagc aacccaatat tgttaagaat gatgaatgat 1600
caactcatgt ttctggaaag agcatttatt gatccattag ggttaccaga 1650
cagacetttt tataggeatg teatetatge tecaageage caeaacaagt 1700
atgcagggga gtcattccca ggaatttatg atgctctgtt tgatattgaa 1750
agcaaagtgg accettecaa ggeetgggga gatgtgaaga gacagattte 1800
tgttgcagcc ttcacagtgc aggcagctgc agagactttg agtgaagtag 1850
cctaagagga ttctttagag actctgtatt gaatttgtgt ggtatgtcac 1900
tcaaagaata ataatgggta tattgataaa ttttaaaaatt ggtatatttg 1950
<210>
               2
     <211>
               442
     <212>
               PRT
     <213>
               Homo sapiens
     <220>
               deduced amino acid sequence of PSMA-like
     <223>
               protein
     <400>
Met Gly Gly Ser Ala Pro Pro Asp Ser Ser Trp Arg Gly Ser Leu
                5
                                                        15
                                    10
Lys Val Ser Tyr Asn Val Gly Pro Gly Phe Thr Gly Asn Phe Ser
                20
                                    25
                                                        30
Thr Gln Lys Val Lys Met His Ile His Ser Thr Asn Glu Val Thr
                35
                                    40
                                                        45
Arg Ile Tyr Asn Val Ile Gly Thr Leu Arg Gly Ala Val Glu Pro
                                    55
                50
                                                        60
Asp Arg Tyr Val Ile Leu Gly Gly His Arg Asp Ser Trp Val Phe
                                    70
                65
                                                        75
Gly Gly Ile Asp Pro Gln Ser Gly Ala Ala Val Val His Glu Thr
                80
                                    85
                                                        90
Val Arg Ser Phe Gly Thr Leu Lys Lys Glu Gly Trp Arg Pro Arg
                95
                                    100
                                                        105
Arg Thr Ile Leu Phe Ala Ser Trp Asp Ala Glu Glu Phe Gly Leu
                110
                                    115
                                                        120
Leu Gly Ser Thr Glu Trp Ala Glu Asp Asn Ser Arg Leu Leu Gln
                125
                                    130
                                                        135
Glu Arg Gly Val Ala Tyr Ile Asn Ala Asp Ser Ser Ile Glu Gly
                140
                                    145
                                                        150
```

Asn	Tyr	Thr	Leu	Arg	Val	Asp	Cys	Thr	Pro 160	Leu	Met	Tyr	Ser	Leu 165
Val	Tyr	Asn	Leu		Lys	Glu	Leu	Lys		Pro	Asp	Glu	Gly	
	_			170	-			-	175		_			180
Glu	Gly	Lys	Ser	Leu	Tyr	Glu	Ser	Trp	Thr	Lys	Lys	Ser	Pro	Ser
				185					190					195
Pro	Glu	Phe	Ser	Gly	Met	Pro	Arg	Ile	Ser	Lys	Leu	Gly	Ser	Gly
				200					205					210
Asn	Asp	Phe	Glu	Va1	Phe	Phe	Gln	Arg	Leu	Gly	Ile	Ala	Ser	Gly
				215					220					225
Arg	Ala	Arg	Tyr	Thr	Lys	Asn	Trp	Glu	Thr	Asn	Lys	Phe	Ser	Gly
				230					235					240
Tyr	Pro	Leu	Tyr	His	Ser	Val	Tyr	Glu	Thr	Tyr	Glu	Leu	Val	Glu
				245					250					255
Lys	Phe	Tyr	Asp		Met	Phe	Lys	Tyr		Leu	Thr	Val	Ala	
				260					265					270
Val	Arg	Gly	Gly		Val	Phe	Glu	Leu		Asn	Ser	Ile	Val	
				275				_	280					285
Pro	Phe	Asp	Cys		Asp	Tyr	Ala	Val		Leu	Arg	Lys	Tyr	
_		7	_	290		~	35 1	_	295	_	~1	~ 1	3.5 1	300
Asp	Lys	TTE	туr		TTE	Ser	Met	Lys		Pro	GIn	GIU	Met	_
mb~	Пъ **	Cor	T 011	305	Dho	7 an	Cor	T 011	310	Cor	777~	τ <i>τ</i> ~ 7	Tara	315
TIII	тАт	ser	ьеи	320	PHE	ASP	ser	Leu	325	ser	Ala	vaı	гуз	330
Pha	Thr	Glu	Tle		Sar	Taze	Phe	Ser		Δτα	T.011	Gln	Δen	
THE	1111	014	110	335	DCI	цур	1110	DCI	340	лгу	пси	OIII	App	345
asp	Lvs	Ser	Asn		Ile	Leu	Leu	Arg		Met	Asn	Asp	Gln	
				350				~	355			_		360
Met	Phe	Leu	Glu	Arg	Ala	Phe	Ile	Asp	Pro	Leu	Gly	Leu	Pro	Asp
				365				_	370		_			375
Arg	Pro	Phe	Tyr	Arg	His	Val	Ile	Tyr	Ala	Pro	Ser	Ser	His	Asn
				380					385					390
Lys	Tyr	Ala	Gly	Glu	Ser	Phe	Pro	Gly	Ile	Tyr	Asp	Ala	Leu	Phe
				395					400					405

```
Asp Ile Glu Ser Lys Val Asp Pro Ser Lys Ala Trp Gly Asp Val
                410
                                     415
                                                         420
Lys Arg Gln Ile Ser Val Ala Ala Phe Thr Val Gln Ala Ala Ala
                425
                                     430
                                                         435
Glu Thr Leu Ser Glu Val Ala
                440
     <210>
                3
     <211>
                2653
     <212>
                DNA
     <213>
                Homo sapiens
     <220>
     <223>
                nucleotide sequence of human PSMA gene
     <300>
     <308>
                GenBank Accession No. M99487
     <400>
                3
ctcaaaaggg gccggatttc cttctcctgg aggcagatgt tgcctctctc
                                                          50
tctcgctcgg attggttcag tgcactctag aaacactgct gtggtggaga
                                                         100
aactggaccc caggtctgga gcgaattcca gcctgcaggg ctgataagcg
                                                         150
aggcattagt gagattgaga gagactttac cccgccgtgg tggttggagg
                                                         200
gcgcgcagta gagcagcagc acaggcgcgg gtcccgggag gccggctctq
                                                         250
ctcgcgccga gatgtggaat ctccttcacg aaaccgactc ggctgtggcc
                                                         300
accgcgcgcc gcccgcgctg gctgtgcgct ggggcgctgg tgctggcggg
                                                         350
tggcttcttt ctcctcggct tcctcttcgg gtggtttata aaatcctcca
                                                         400
atgaagctac taacattact ccaaagcata atatgaaagc atttttggat
                                                         450
gaattgaaag ctgagaacat caagaagttc ttatataatt ttacacagat
                                                         500
accacattta gcaggaacag aacaaaactt tcagcttgca aagcaaattc
                                                         550
aatcccagtg gaaagaattt ggcctggatt ctgttgagct agcacattat
                                                         600
gatgtcctgt tgtcctaccc aaataagact catcccaact acatctcaat
                                                         650
aattaatgaa gatggaaatg agattttcaa cacatcatta tttgaaccac
                                                         700
ctcctccagg atatgaaaat gtttcggata ttgtaccacc tttcagtgct
                                                         750
ttctctcctc aaggaatgcc agagggcgat ctagtgtatg ttaactatgc
                                                         800
acgaactgaa gacttcttta aattggaacg ggacatgaaa atcaattgct
                                                         850
ctgggaaaat tgtaattgcc agatatggga aagttttcag aggaaataag
                                                         900
gttaaaaatg cccagctggc aggggccaaa ggagtcattc tctactccga
                                                         950
ccctgctgac tactttgctc ctggggtgaa gtcctatcca gatggttgga 1000
atcttcctgg aggtggtgtc cagcgtggaa atatcctaaa tctgaatggt 1050
gcaggagacc ctctcacacc aggttaccca gcaaatgaat atgcttatag 1100
gcgtggaatt gcagaggctg ttggtcttcc aagtattcct gttcatccaa 1150
ttggatacta tgatgcacag aagctcctag aaaaaatggg tggctcagca 1200
ccaccagata gcagctggag aggaagtctc aaagtgccct acaatgttgg 1250
acctggcttt actggaaact tttctacaca aaaagtcaag atgcacatcc 1300
actetaceaa tgaagtgaca agaatttaca atgtgatagg tacteteaga 1350
ggagcagtgg aaccagacag atatgtcatt ctgggaggtc accgggactc 1400
```

atgggtgttt ggtggtattg acceteagag tggageaget gttgtteatg 1450

```
agaacaattt tgtttgcaag ctgggatgca gaagaatttg gtcttcttgg 1550
ttctactgag tgggcagagg agaattcaag actccttcaa qagcgtggcg 1600
tggcttatat taatgctgac tcatctatag aaggaaacta cactctgaga 1650
gttgattgta caccgctgat gtacagcttg gtacacaacc taacaaaaga 1700
gctgaaaagc cctgatgaag gctttgaagg caaatctctt tatgaaagtt 1750
ggactaaaaa aagtccttcc ccagagttca gtggcatgcc caggataaqc 1800
aaattgggat ctggaaatga ttttgaggtg ttcttccaac gacttggaat 1850
tgcttcaggc agagcacggt atactaaaaa ttgggaaaca aacaaattca 1900
gcggctatcc actgtatcac agtgtctatg aaacatatga gttggtggaa 1950
aagttttatg atccaatgtt taaatatcac ctcactgtgg cccaggttcg 2000
aggagggatg gtgtttgagc tagccaattc catagtgctc ccttttgatt 2050
gtcgagatta tgctgtagtt ttaagaaagt atgctgacaa aatctacagt 2100
atttctatga aacatccaca ggaaatgaag acatacagtg tatcatttqa 2150
ttcacttttt tctgcagtaa agaattttac agaaattgct tccaagttca 2200
gtgagagact ccaggacttt gacaaaagca acccaatagt attaagaatg 2250
atgaatgatc aactcatgtt tctggaaaga gcatttattg atccattagg 2300
gttaccagac aggccttttt ataggcatgt catctatgct ccaagcagcc 2350
acaacaagta tgcaggggag tcattcccag gaatttatga tgctctgttt 2400
gatattgaaa gcaaagtgga cccttccaag gcctggggag aagtgaagag 2450
acagatttat gttgcagcct tcacagtgca ggcagctgca gagactttga 2500
gtgaagtagc ctaagaggat tctttagaga atccgtattg aatttgtgtg 2550
gtatgtcact cagaaagaat cgtaatgggt atattgataa attttaaaat 2600
aaa
                                                      2653
     <210>
     <211>
               750
               PRT
     <212>
     <213>
               Homo sapiens
     <220>
     <223>
               deduced amino acid sequence of PSMA protein
     <400>
Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala
                5
                                   10
                                                       15
Arg Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly
                20
Gly Phe Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser
                35
                                   40
                                                       45
Ser Asn Glu Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala
                50
                                   55
                                                       60
Phe Leu Asp Glu Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu Tyr
                65
                                   70
                                                       75
```

aaattgtgag gagctttgga acactgaaaa aggaagggtg qagacctaga 1500

Asn	Phe	Thr	Gln	Ile 80	Pro	His	Leu	Ala	Gly 85	Thr	Glu	Gln	Asn	Phe 90
Gln	Leu	Ala	Lys	Gln 95	Ile	Gln	Ser	Gln	Trp	Lys	Glu	Phe	Gly	Leu 105
Asp	Ser	Val	Glu	Leu 110	Ala	His	Tyr	Asp	Val 115	Leu	Leu	Ser	Tyr	Pro 120
Asn	Lys	Thr	His	Pro 125	Asn	Tyr	Ile	Ser	Ile 130	Ile	Asn	Glu	Asp	Gly 135
Asn	Glu	Ile	Phe	Asn 140	Thr	Ser	Leu	Phe	Glu 145	Pro	Pro	Pro	Pro	Gly 150
Tyr	Glu	Asn	Val	Ser 155	Asp	Ile	Val	Pro	Pro 160	Phe	Ser	Ala	Phe	Ser 165
Pro	Gln	Gly	Met	Pro 170	Glu	Gly	Asp	Leu	Val 175	Tyr	Val	Asn	Tyr	Ala 180
Arg	Thr	Glu	Asp	Phe 185	Phe	Lys	Leu	Glu	Arg 190	Asp	Met	Lys	Ile	Asn 195
Cys	Ser	Gly	Lys	Ile 200	Val	Ile	Ala	Arg	Tyr 205	Gly	Lys	Val	Phe	Arg 210
Gly	Asn	Lys	Val	Lys 215	Asn	Ala	Gln	Leu	Ala 220	Gly	Ala	Lys	Gly	Val 225
Ile	Leu	Tyr	Ser	Asp 230	Pro	Ala	Asp	Tyr	Phe 235	Ala	Pro	Gly	Val	Lys 240
Ser	Tyr	Pro	Asp	Gly 245	Trp	Asn	Leu	Pro	Gly 250	Gly	Gly	Val	Gln	Arg 255
Gly	Asn	Ile	Leu	Asn 260	Leu	Asn	Gly	Ala	Gly 265	Asp	Pro	Leu	Thr	Pro 270
Gly	Tyr	Pro	Ala	Asn 275	Glu	Tyr	Ala	Tyr	Arg 280	Arg	Gly	Ile	Ala	Glu 285
Ala	Val	Gly	Leu	Pro 290	Ser	Ile	Pro	Val	His 295	Pro	Ile	Gly	Tyr	Tyr 300
Asp	Ala	Gln	Lys	Leu 305	Leu	Glu	Lys	Met	Gly 310	Gly	Ser	Ala	Pro	Pro 315
Asp	Ser	Ser	Trp	Arg 320	Gly	Ser	Leu	Lys	Val 325	Pro	Tyr	Asn	Val	Gly 330

Pro	Gly	Phe	Thr	Gly 335	Asn	Phe	Ser	Thr	Gln 340	Lys	Val	Lys	Met	His 345
Ile	His	Ser	Thr	Asn 350	Glu	Val	Thr	Arg	Ile 355	Tyr	Asn	Val	Ile	Gly 360
Thr	Leu	Arg	Gly	Ala 365	Val	Glu	Pro	Asp	Arg 370	Tyr	Val	Ile	Leu	Gly 375
Gly	His	Arg	Asp	Ser 380	Trp	Val	Phe	Gly	Gly 385	Ile	Asp	Pro	Gln	Ser 390
Gly	Ala	Ala	Val	Val 395	His	Glu	Ile	Val	Arg 400	Ser	Phe	Gly	Thr	Leu 405
Lys	Lys	Glu	Gly	Trp 410	Arg	Pro	Arg	Arg	Thr 415	Ile	Leu	Phe	Ala	Ser 420
Trp	Asp	Ala	Glu	Glu 425	Phe	Gly	Leu	Leu	Gly 430	Ser	Thr	Glu	Trp	Ala 435
Glu	Glu	Asn	Ser	Arg 440	Leu	Leu	Gln	Glu	Arg 445	Gly	Val	Ala	Tyr	Ile 450
Asn	Ala	Asp	Ser	Ser 455	Ile	Glu	Gly	Asn	Tyr 460	Thr	Leu	Arg	Val	Asp 465
Cys	Thr	Pro	Leu	Met 470	Tyr	Ser	Leu	Va1	His 475	Asn	Leu	Thr	Lys	Glu 480
Leu	Lys	Ser	Pro	Asp 485	Glu	Gly	Phe	Glu	Gly 490	Lys	Ser	Leu	Tyr	Glu 495
Ser	Trp	Thr	Lys	Lys 500	Ser	Pro	Ser	Pro	Glu 505	Phe	Ser	Gly	Met	Pro 510
Arg	Ile	Ser	Lys	Leu 515	Gly	Ser	Gly	Asn	Asp 520	Phe	Glu	Val	Phe	Phe 525
Gln	Arg	Leu	Gly	Ile 530	Ala	Ser	Gly	Arg	Ala 535	Arg	Tyr	Thr	Lys	Asn 540
Trp	Glu	Thr	Asn	Lys 545	Phe	Ser	Gly	Tyr	Pro 550	Leu	Tyr	His	Ser	Val 555
Tyr	Glu	Thr	Tyr	Glu 560	Leu	Val	Glu	Lys	Phe 565	Tyr	Asp	Pro	Met	Phe 570
Lys	Tyr	His	Leu	Thr 575	Val	Ala	Gln	Val	Arg 580	Gly	Gly	Met	Val	Phe 585

```
Glu Leu Ala Asn Ser Ile Val Leu Pro Phe Asp Cys Arg Asp Tyr
                 590
                                      595
                                                           600
Ala Val Val Leu Arg Lys Tyr Ala Asp Lys Ile Tyr Ser Ile Ser
                 605
                                      610
                                                           615
Met Lys His Pro Gln Glu Met Lys Thr Tyr Ser Val Ser Phe Asp
                 620
                                      625
                                                           630
Ser Leu Phe Ser Ala Val Lys Asn Phe Thr Glu Ile Ala Ser Lys
                 635
                                      640
Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser Asn Pro Ile Val
                 650
                                      655
                                                           660
Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu Arg Ala Phe
                 665
                                      670
                                                           675
Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg His Val
                 680
                                      685
                                                           690
Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser Phe
                 695
                                      700
                                                           705
Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
                 710
                                      715
                                                           720
Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala
                 725
                                      730
                                                          735
Ala Phe Thr Val Gln Ala Ala Glu Thr Leu Ser Glu Val Ala
                 740
                                      745
                                                          750
     <210>
                5
     <211>
                28
     <212>
                DNA
     <213>
                Artificial sequence
     <220>
     <221>
                primer_bind
     <223>
                sense primer designed for only amplifying
                the first intron of the PSMA-like gene on
                chromosome 11q
     <400>
gccttcattt tcagaacatc tcatgcat
                                                   28
     <210>
                6
     <211>
```

25

<212> <213>		
<220> <221> <223>	primer_bind	
<400>	6	
gtccatataa	actttcaaga atgtg 25	
<210>	7	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<221>		
<223>		
<400>	7	
ctcacctaat	gtcagaggta 20	
<210>	8	
<211>	20	
<211> <212>	20 DNA	
<211>	20 DNA	
<211> <212>	20 DNA Artificial sequence	
<211> <212> <213>	20 DNA Artificial sequence	
<211> <212> <213>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upo	'n
<211> <212> <213> <220> <221>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upontronic sequences of the PSMA genomic	'n
<211> <212> <213> <220> <221>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upontronic sequences of the PSMA genomic clone used to amplify the corresponding	n
<211> <212> <213> <220> <221>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upontronic sequences of the PSMA genomic	n
<211> <212> <213> <220> <221> <223>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upon intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 2)	n
<211> <212> <213> <220> <221> <223>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upon intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 2)	n
<211> <212> <213> <220> <221> <223>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upon intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 2)	n
<211> <212> <213> <220> <221> <223>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upon intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 2)	n
<211> <212> <213> <220> <221> <221> <223> <400> agtatagtcc	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upo intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 2) 8 tcctcagatg 20	n
<211> <212> <213> <220> <221> <221> <223> <400> agtatagtcc <210> <211> <212>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upor intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 2) 8 tcctcagatg 20 9 24 DNA	n
<211> <212> <213> <220> <221> <221> <223> <400> agtatagtcc <210> <211>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upor intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 2) 8 tcctcagatg 20 9 24 DNA	n
<211> <212> <213> <220> <221> <221> <223> <400> agtatagtcc <210> <211> <212>	DNA Artificial sequence primer_bind antisense oligonucleotide primer based upor intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 2) 8 tcctcagatg 20 9 24 DNA Artificial sequence	n

```
sense oligonucleotide primer based upon
      <223>
                 intronic sequences of the PSMA genomic
                 clone used to amplify the corresponding
                 regions of the PSMA-like gene (exon 3)
      <400>
                9
caaagtactt ttgtgtaact ctgc
                                                   24
      <210>
                10
      <211>
                22
      <212>
                DNA
      <213>
                Artificial sequence
     <220>
     <221>
                primer_bind
     <223>
                antisense oligonucleotide primer based upon
                intronic sequences of the PSMA genomic
                clone used to amplify the corresponding
                regions of the PSMA-like gene (exon 3)
     <400>
                10
cataggaaag tagttgacac gg
                                                   22
     <210>
                11
     <211>
                22
     <212>
                DNA
     <213>
                Artificial sequence
     <220>
     <221>
                primer_bind
                sense oligonucleotide primer based upon
     <223>
                intronic sequences of the PSMA genomic
                clone used to amplify the corresponding
                regions of the PSMA-like gene (exon 4)
     <400>
                11
cctgaaggat tcattcaccc tc
                                                  22
     <210>
               12
     <211>
               24
     <212>
               DNA
     <213>
               Artificial sequence
     <220>
     <221>
               primer_bind
               antisense oligonucleotide primer based upon
     <223>
               intronic sequences of the PSMA genomic
               clone used to amplify the corresponding
               regions of the PSMA-like gene (exon 4)
```

<400> gaccctttaa	12 ttatcggctg aaca	24
<210> <211> <212> <213>		
<220> <221> <223>	primer_bind sense oligonucleotide p intronic sequences of t clone used to amplify t regions of the PSMA-lik	he PSMA genomic he corresponding
<400> atgtccaaca	13 gtccccatgc ag	22
<210> <211> <212> <213>	DNA	
<220> <221> <223>	primer_bind antisense oligonucleoti intronic sequences of t clone used to amplify t regions of the PSMA-lik	he PSMA genomic he corresponding
<400> gacatgctta	14 gtccattgta cc	22
<210> <211> <212> <213>	DNA	
<220> <221> <223>	primer_bind sense oligonucleotide p intronic sequences of t clone used to amplify t regions of the PSMA-lik	he PSMA genomic he corresponding
<400> gaaccgtttg	15 aatgaaactg ag	22

<210> <211> <212> <213>	DNA
<220> <221> <223>	4 · · · · · · · · · · · · · · · · · ·
<400>	16
	agccatccat gg 22
ccacccaaac	agecaceae gg
<210><211><211><212><213>	DNA
<220>	
<221> <223>	primer_bind sense oligonucleotide primer based upon intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exons 8-9)
<400>	17
gcagatgctc	aataagtgaa tcc 23
<210> <211> <212> <213>	
000	
<220> <221> <223>	primer_bind antisense oligonucleotide primer based upon intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exons 8-9)
<400>	18
	acagttactt gatc 24
<210> <211> <212> <213>	
	——————————————————————————————————————

-0.00	
<220> <221> <223>	primer_bind sense oligonucleotide primer based upon intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 10)
<400>	19
tagatgctat	tgagtcgttt gc 22
<210>	20
<211>	22
<212>	DNA
<213>	Artificial sequence
<220>	
<221>	primer_bind
<223>	antisense oligonucleotide primer based upon
	intronic sequences of the PSMA genomic
	clone used to amplify the corresponding
	regions of the PSMA-like gene (exon 10)
<400>	20
	tcagataggc tg 22
<210>	21
<211>	22
<212>	DNA
<213>	Artificial sequence
-220	
<220> <221>	primer_bind
<223>	sense oligonucleotide primer based upon
	intronic sequences of the PSMA genomic
	clone used to amplify the corresponding
	regions of the PSMA-like gene (exon 11)
<400>	21
	tagtgtcctg gg 22
-010-	20
<210> <211>	22 24
<212>	DNA
<213>	Artificial sequence
	-
<220>	primar bind
<221> <223>	<pre>primer_bind antisense oligonucleotide primer based upon</pre>
\4\23 <i>></i>	ancipense origonacieocide bilinei pased abou

intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 11)

	<400> gcttggcaaa	22 caagtcctgg ctac	24
	<210> <211> <212> <213>		sequence
	<220> <221> <223>	sense oligo intronic se clone used	nucleotide primer based upon equences of the PSMA genomic to amplify the corresponding the PSMA-like gene (exon 12)
	<400>	23	
	tgtcgttaat	atgggtcagc tc	22
	<210> <211> <212> <213>	24 22 DNA Artificial	sequence
	<220> <221> <223>	intronic se clone used	d oligonucleotide primer based upon equences of the PSMA genomic to amplify the corresponding the PSMA-like gene (exon 12)
	<400>	24	
	ttaactagac	tgctgctcct ag	22
	<210> <211> <212> <213>	25 22 DNA Artificial	sequence
	<220> <221> <223>	intronic se clone used	n nucleotide primer based upon equences of the PSMA genomic to amplify the corresponding the PSMA-like gene (exon 13)

<400> tggtaggaat	25 ttagcagtgg tc	22
<210> <211> <212> <213>	22 DNA	sequence
<220> <221> <223>	antisense of intronic sections used	d oligonucleotide primer based upon equences of the PSMA genomic to amplify the corresponding the PSMA-like gene (exon 13)
<400> gatgctacta	26 atgggctacc tc	22
<210> <211> <212> <213>	DNA	sequence
<220> <221> <223>	sense oligo intronic se clone used	d onucleotide primer based upon equences of the PSMA genomic to amplify the corresponding the PSMA-like gene (exon 14)
<400> cttctggtta	27 atggacatet ag	22
<210> <211> <212> <213>	28 22 DNA Artificial	sequence
<220> <221> <223>	intronic se clone used	d oligonucleotide primer based upon equences of the PSMA genomic to amplify the corresponding the PSMA-like gene (exon 14)
<400> caatcccaca	28 ctgaattcag tg	22

<210> <211> <212> <213>	DNA
<220> <221> <223>	primer_bind sense oligonucleotide primer based upon intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 15)
<400> agaatggggt	29 ttagtttaat gg 22
<210> <211> <212> <213>	21 DNA
<220> <221> <223>	primer_bind antisense oligonucleotide primer based upon intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 15)
<400> tgagtcactt	30 tttggagtca g 21
<210> <211> <212> <213>	31 22 DNA Artificial sequence
<221> <221> <223>	primer_bind sense oligonucleotide primer based upon intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exons 16-17)
<400> ttgtaagcta	31 tccctataag ag 22
<210> <211> <212> <213>	32 22 DNA Artificial sequence

```
<220>
     <221>
                primer bind
     <223>
                antisense oligonucleotide primer based upon
                intronic sequences of the PSMA genomic
                clone used to amplify the corresponding
                regions of the PSMA-like gene (exons 16-17)
     <400>
                32
agttcagcaa cagtcatgtt ag
                                                22
     <210>
                33
     <211>
                22
     <212>
               DNA
     <213>
               Artificial sequence
     <220>
     <221>
               primer_bind
     <223>
                sense oligonucleotide primer based upon
                intronic sequences of the PSMA genomic
                clone used to amplify the corresponding
                regions of the PSMA-like gene (exon 18)
     <400>
                33
gggtggtcct gaaaccaatc cc
                                                22
     <210>
                34
     <211>
                22
     <212>
               DNA
     <213>
               Artificial sequence
     <220>
     <221>
               primer_bind
     <223>
                antisense oligonucleotide primer based upon
                intronic sequences of the PSMA genomic
                clone used to amplify the corresponding
                regions of the PSMA-like gene (exon 18)
     <400>
                34
gtgatattac agaaaggagt c
                                                21
     <210>
                35
     <211>
                22
     <212>
               DNA
     <213>
               Artificial sequence
     <220>
     <221>
               primer_bind
     <223>
                sense oligonucleotide primer based upon
```

intronic sequences of the PSMA genomic clone used to amplify the corresponding regions of the PSMA-like gene (exon 19)

	<400> atccaggaat	35 tgcagagtgc	tc		22	
	<210> <211>	36 22				
	<212> <213>		cial se	equence		
	<220>					
	<221> <223>	intron clone	nse ol: ic sequused to	uences of the amplify the	primer based upor PSMA genomic corresponding gene (exon 19)	ב
	<400>	36				
14-15-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	ttcagtttta	atccataggg	ag		22	
	<210>	37				
190	<211>	24				
	<212>	DNA				
M M	<213>	Artifi	cial se	equence		
24 6	<220>	•				
The state of the s	<221> <223>		primer	(exon 10) use from various	ed for performing tissues	
	<400>	37				
	acagatatgt	cattctggga	ggtc		24	
	<210>	38				
	<211>	24				
	<212>	DNA				
	<213>	Artifi	cial se	equence		
	<220>					
	<221> <223>		nse pri ming PO	imer (exon 16) CR on cDNAs fi		
	<400>	38				
		agtggatagc	cgct		24	