Національний технічний університет України «КПІ» Інститут прикладного системного аналізу Кафедра Системного проектування

Лабораторна робота №11

«Багатокрокові методи Адамса- Мултона рішення задачі Коші для звичайних диференційних рівнянь»

Виконав: студент групи ДА-72 Кондратюк Тарас Варіант № 15 **Мета роботи:** отримання практичних навичок в чисельному інтегруванні звичайних диференційних рівнянь явними і неявними методами Адамса, дослідження впливу значення кроку обчислень на точність і збіжність рішення. Визначення можливості застосування засобів стандартних пакетів для отримання результатів.

15	$y/(1-t^2)$	0	0.5	1

Рішення заданого диференційного рівняння методом прогнозу і корекції.

```
f[t_{-}, y_{-}] := y / (1 - t^2);
m = 10; t0 = 0; tm = 0.5; h = (tm - t0) / m;
U = Array[u, \{m+1\}, \{0\}];
u[0] = 1;
u[1] = 1.05263;
u[2] = 1.05527;
u[3] = 1.11669;
bp = \{8/3, -4/3, 8/3\};
bc = \{1/3, 4/3, 1/3\};
  u[i+1] = u[i-3] + h + Sum[bp[[j+1]] + f[t0+h+(i-j), u[i-j]], {j, 0, 2, 1}];
  u[i+1] = u[i-1] + h * Sum[bc[[j+2]] * f[t0+h(i-j), u[i-j]], {j, -1, 1, 1}],
  {i, 3, m}];
TM = Table[{t0 + (i-1) *h, u[i-1]}, {i, m+1}]
TableForm [TM, TableHeadings \rightarrow {Automatic, {"t", "u"}}]
{{0., 1}, {0.05, 1.05263}, {0.1, 1.05527},
{0.15, 1.11669}, {0.2, 1.16491}, {0.25, 1.22925}, {0.3, 1.27979},
 {0.35, 1.34576}, {0.4, 1.3975}, {0.45, 1.46314}, {0.5, 1.51379}}
```

	t	u
1	0.	1
2	0.05	1.05263
3	0.1	1.05527
4	0.15	1.11669
5	0.2	1.16491
6	0.25	1.22925
7	0.3	1.27979
8	0.35	1.34576
9	0.4	1.3975
10	0.45	1.46314
11	0.5	1.51379

Рішення заданого диференційного рівняння явним методом Адамса-Башфорта четвертого порядку

```
f[t_{, y_{]}} := y/(1-t^2);
m = 10; t0 = 0; tm = 0.5; h = (tm - t0) / m;
b = \{55/24, -59/24, 37/24, -9/24\};
U = Array[u, m + 1, 0];
Do[u[i+1] = u[i] + h * Sum[b[[j]] * f[t0 + h * (i+1-j), u[i+1-j]], {j, 1, 4}],
TA = Table[\{t0 + (i-1) * h, u[i-1]\}, \{i, 10\}]
TableForm[TA, TableHeadings → {Automatic, {"t", "u"}}]
{{0., 1}, {0.05, 1.09487}, {0.1, 1.1792}, {0.15, 1.25307}, {0.2, 1.31536},
 {0.25, 1.379}, {0.3, 1.44446}, {0.35, 1.51053}, {0.4, 1.57682}, {0.45, 1.64275}}
         t
  1
         0.
                 1
  2
         0.05 1.09487
  3
                1.1792
        0.1
  4
        0.15 1.25307
  5
        0.2
               1.31536
  6
        0.25 1.379
  7
        0.3
                1.44446
        0.35
                1.51053
  8
  9
        0.4
               1.57682
        0.45
                1.64275
  10
        0.5
                 1.70758
  11
```

Рішення заданого диференційного рівняння лінійним багатокроковим різницевим методом третього порядку.

```
f[t_{, y_{]}} := y/(1-t^2);
m = 10; t0 = 0; tm = 0.5;
U = Array[u, \{m+1\}, \{0\}];
u[0] = 1;
u[1] = 1.09487;
u[2] = 1.1792;
u[3] = 1.25307;
h = 0.1;
Do [
  u[i+1] = 5u[i-1] - 4u[i] + 2h*(f[t0+h*(i-1), u[i-1]] + 2f[t0+h*i, u[i]]),
  {i, 3, m}];
TA = Table[\{t0 + (i-1) * h, u[i-1]\}, \{i, m\}]
TableForm [TA, TableHeadings → {Automatic, {"t", "u"}}]
       t
  1
       0.
  2
       0.05 1.09487
  3
       0.1
              1.1792
  4
       0.15 1.25307
  5
       0.2
              1.24544
  6
       0.25
               1.64522
  7
             0.0743506
       0.3
  8
       0.35 8.09646
               -30.5864
  9
       0.4
  10
       0.45
               158.4
     0.5
               -763.835
```

Рішення заданої системи диференційних рівнянь методом Адамса-Башфорта четвертого порядку (значення кроку h_max).

```
f[t_{-}, y_{-}] := y / (1 - t^2);
m = 10; t0 = 0; tm = 1; h = 0.3;
b = \{55/24, -59/24, 37/24, -9/24\};
V = Array[v, m+1, 0];
v[0] = 1;
v[1] = 1.25307;
v[2] = 1.41822;
v[3] = 1.51793;
Do[v[i+1] = v[i] + h * Sum[b[[j]] * f[t0 + h * (i+1-j), v[i+1-j]], {j, 1, 4}],
  {i, 3, m}];
TA = Table[{t0 + (i - 1) *h, v[i - 1]}, {i, m}]
TableForm [TA, TableHeadings → {Automatic, {"t", "v"}}]
{{0., 1}, {0.3, 1.25307}, {0.6, 1.41822},
{0.9, 1.51793}, {1.2, 1.4617}, {1.5, 1.09834}, {1.8, 0.660051},
 {2.1, 0.326206}, {2.4, 0.0892348}, {2.7, 0.0882241}}
      t
      0.
1
            1
2
      0.3
          1.25307
3
      0.6 1.41822
           1.51793
4
      0.9
5
           1.4617
      1.2
           1.09834
6
      1.5
7
          0.660051
      1.8
          0.326206
8
      2.1
9
          0.0892348
      2.4
10 | 2.7 0.0882241
```

Рішення заданого диференційного рівняння вкладеним явним методом Адамса за допомогою стандартних операторів.

Висновок

При виконанні лабораторної роботи, був досліджений принцип дії явних та неявних методів Адамса.

Зменшення кроку обчислень збільшує точність розрахунків, проте їх кількість також (що доцільно використовувати на більш потужних EBM, які використовуються для розв'язання задач, що потребують точних результатів).

Багатокрокові методи менш стійкі, ніж однокрокові. Так, наприклад, різницевий метод почав видавати далекі від дійсних корені після п'ятої ітерації

Багатокрокові методи, у порівнянні з однокроковими, менш стійкі і більш обмежені, більш залежні від кроку обчислень.

10	1.64275			+157	-0.18835
9	1.57682			-28.5	-0.18345
8	1.51053			+6.5	-0.17423
7	1.44446			+1.37011	-0.15092
6	1.379			-0,64143	-0.14867
5	1.31536			-0,06992	-0.14322
4	1.25307			0	-0.13638
3	1.1792			0	-0.12393
2	1.09487			0	-0.04224
Кількість ітерацій	Я	Івний		Неявний	Прогнозу і корекції
		10 11	0.45 0.5	158.4 -763.835	
		9	0.4	-30.5864	
		7 8	0.3 0.35	0.0743506 8.09646	
		6	0.25	1.64522	
		5	0.2	1.24544	
		3 4	0.1 0.15	1.1792 1.25307	
		2	0.05	1.09487	
і ізпицевий метод		1	0.	1	
Різницевий метод		- 11	t	u	
		10 11	0.45 0.5	1.64275 1.70758	
		9	0.4	1.57682	
		7 8	0.3 0.35	1.44446 1.51053	
		6	0.25	1.379	
		5	0.13	1.31536	
		3 4	0.1 0.15	1.1792 1.25307	
четвертого порядку		2	0.05	1.09487	
методом Адамса-Бац	і форта	1	0.	<u>u</u>	
		11	0.5	1.51379	
		10	0.45	1.46314	
		9	0.35	1.34576 1.3975	
		7	0.3	1.27979	
		5 6	0.2 0.25	1.16491 1.22925	
		4	0.15	1.11669	
		3	0.1	1.05527	
		1 2	0. 0.05	1.05263	
METOR TIPOTHOSY I KOP	, c.r.q.i.			<u>u</u>	

t

Метод прогнозу і корекції

	11	1.70758	-762	-0.19019
L				