

RL-TRAINED TAXI TUTORIAL USING Q-LEARNING

Introducing OpenAl Gym

- OpenAl gym is a standard API for developing and testing learning agents; suited for reinforcement learning use cases
- This python library gives us a huge number of test environments to work on our RL agent's algorithms with shared interfaces for writing general algorithms and testing them

- Taxi is one of many environments available on OpenAl Gym. These environments are used to develop and benchmark reinforcement learning algorithms
- The goal of Taxi is to pick-up passengers and drop them off at the destination in the least amount of moves

- 4 designated locations in the grid world indicated by R(ed), G(reen), Y(ellow), and B(lue)
- When the episode starts, the taxi starts off at a random square and the passenger is at a random location
- The taxi drives to the passenger's location, picks up the passenger, drives to the passenger's destination (another one of the 4 locations), and then drops off the passenger
- Once the passenger is dropped off, the episode ends

Various Possible Actions:

- 0: move south
- 1: move north
- 2: move east
- 3: move west
- 4: pickup passenger
- 5: drop off passenger

Each state space is represented by the tuple: (taxi_row, taxi_col, passenger_location, destination)

Passenger locations:

- 0: R(ed)
- 1: G(reen)
- 2: Y(ellow)
- 3: B(lue)
- 4: in taxi

Destinations:

- 0: R(ed)
- 1: G(reen)
- 2: Y(ellow)
- 3: B(lue)

Taxi Reward System

Action	State	Reward / Penalty	
Any successful movements (south/north/west/east)	N.A.	-1	
Pickup or drop-off passenger wrongly	Wrong pickup/drop-off point (R/G/Y/B)	-10	
Drop off passenger correctly	Correct drop-off point (R/G/Y/B)	+20	

- 'Q' = Quality = how valuable a given action is in gaining future reward
- Q-values = State-Action values
- Q-learning is a model-free reinforcement learning algorithm that seeks to find the best action to take given the current state, i.e. to seek to learn a policy that maximizes the total reward
- Off-policy the Q-learning function learns from actions that are outside the current policy, like taking random actions; a policy isn't needed
- Can handle problems with stochastic transitions and rewards without requiring adaptations

Tic-Tac-Toe Example:

- No. of states = 765 because that is the total number of possible valid board states in Tic-Tac-Toe
- Q-Table is a type of policy that assigns each state-action pair a Q-Value individually using a table of values, rather than using some sort of function that takes the state as input
- When the policy is used to pick an action at a given state, the action with the highest Q-Value in that state is picked

1	2	3	
4	5	6	
7	8	9	

		States					
		1	2	3		765	
Actions	1	Q(1, 1)	Q(2, 1)	Q(3, 1)		Q(765, 1)	
	2	Q(1, 2)	Q(2, 2)	Q(3, 2)		Q(765, 2)	
	3	Q(1, 3)	Q(2, 3)	Q(3, 3)		Q(765, 3)	
	4	Q(1, 4)	Q(2, 4)	Q(3, 4)		Q(765, 4)	
	5	Q(1, 5)	Q(2, 5)	Q(3, 5)		Q(765, 5)	
	6	Q(1, 6)	Q(2, 6)	Q(3, 6)		Q(765, 6)	
	7	Q(1, 7)	Q(2, 7)	Q(3, 7)		Q(765, 7)	
	8	Q(1, 8)	Q(2, 8)	Q(3, 8)		Q(765, 8)	
	9	Q(1, 9)	Q(2, 9)	Q(3, 9)		Q(765, 9)	

Q-Table

Q-learning Algorithm:

Note that $Q^{new}(s_t,a_t)$ is the sum of three factors:

- $(1-\alpha)Q(s_t,a_t)$: the current value weighted by the learning rate. Values of the learning rate near to 1 make the changes in Q more rapid.
- ullet lpha r_t : the reward $r_t=r(s_t,a_t)$ to obtain if action a_t is taken when in state s_t (weighted by learning rate)
- $\alpha\gamma \max_a Q(s_{t+1},a)$: the maximum reward that can be obtained from state s_{t+1} (weighted by learning rate and discount factor)

Q-learning Algorithm:

New value (temporal difference target)
Familiar? Refer to the Bellman Equation

This algorithm will help our agent update the current Q-value (Q(St,At)) with its observations after taking an action, i.e. increase Q if it encountered a positive reward, or decrease Q if it encountered a negative one

Explore-Exploit Strategy

- Exploit The agent selects the action based on the max value of the state-actions in the Q-Table; use the information we have available to us to make a decision
- Explore Act randomly. Instead of selecting
 actions based on the max future reward in the QTable, we select an action at random; allows the
 agent to explore and discover new states

Balance exploration/exploitation by setting epsilon (ϵ) value [from 0 to 1]; higher ϵ -value means more exploration and less exploitation, and vice versa

Codes (Editable Parts)

Training; Section 3

```
# hyperparameters to tune (***Make changes here if you want***)
learning_rate = 0.9
discount_rate = 0.8
epsilon = 1.0
decay_rate= 0.005

# training variables (***Make changes here if you want***)
num_episodes = 2000
max_steps = 99 # per episode
```

Visualization; Section 4

```
# ***Make changes here if you want; you can increase the number of episodes***
episodes_to_preview = 10
```


Mini Task (Do not need to submit)

- Go to Section 3 and try various sets of hyper parameters when training the model; the objective is to maximize the accumulated rewards, denoted by 'Score' when testing in Section 4
- You may try to increase the number of training episodes if you feel that it will help in the model performance
- You may try to test the optimal model with a higher number of testing episodes to check its performance

THANK YOU

Email: nicholas.ho@nus.edu.sg