I.	Régulation de température simple boucle (10 pts)					
	Donner le schéma électrique correspondant au cahier des charges.	1	Α		1	
	Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	Α		1	
	Régler le système pour avoir un niveau de 50% pour une commande de la vanne FV1 de 50%.	1	Α		1	
	Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).	1	Α		1	
	5 Régler la boucle de régulation, en utilisant une méthode par approches successives, en mode de régulation PI.	4	D		0,2	Vous êtes en fonctionnement manuel
	6 Enregistrer l'influence d'une variation du débit de sortie sur le niveau.	2	D		0,1	
II.	Régulation parallèle (10 pts)					
	Rappeler le fonctionnement d'une boucle de régulation parallèle.	1	В		0,75	
	Programmer le regulateur pour obtenir le fonctionnement en regulation parrailele conformement au schema 11 ci-	3	Α		3	
	Régler la boucle de niveau en utilisant la méthode de Ziegler & Nichols. On choisira un correcteur Pl.	2	D		0,1	
	4 Enregistrer l'influence d'une variation du débit de sortie sur le niveau.	2	D		0,1	
	Expliquez l'intérêt d'une régulation parallèle en vous aidant de vos enregistrements. Citez un autre exemple pratique.	2	D		0,1	

Note: 8,35/20

TP2 DEBIT

I. Régulation de débit simple boucle

1) + Alimentation + Transmetteur de débit X + Régulateur + + Convertisseur I/P Vanne

2)Entrée

Block: 01MI	01_0C Cor	mment Connections				
TagN	ame	01M01_0C		LIN Name	01M01_0C	
Туре		AI_UIO		DBase	<local></local>	
Task		3 (110ms)		Rate	0	
MODI		AUTO		Alarms		
Fallba	nck	AUTO		Node	>00	
				SiteNo	1	
PV		0.0	%	Channel	1	
HR		100.0	%	InType	mΑ	
LR		0.0	%	HR_in	20.00	mA
				LR_in	4.00	mA
HiHi		100.0	%	AI	0.00	mΑ
Hi		100.0	%	Res	0.000	Ohms
Lo		0.0	%			
LoLo		0.0	%	CJ_type	Auto	
Hyst		0.5000	%	CJ_temp	0.000	
				LeadRes	0.000	Ohms
Filter		0.000	Secs	Emissiv	1.000	
Char		Linear		Delay	0.000	Secs
User	Char					
				SBreak	Up	
PVof	fset	0.000	%	PVErrAct	Up	
Almo	nTim	0.000	Secs	Options	>0000	
AlmC	fTim	0.000	Secs	Status	>0000	

PID

3lo	ck: PID Comment	Connections				
	TagName	PID		LIN Name	PID	
	Туре	PID		DBase	<local></local>	
	Task	3 (110ms)		Rate	0	
	Mode	AUTO		Alarms		
	FallBack	AUTO				
				HAA	100.0	%
-	→PV	0.0	%	LAA	0.0	%
	SP	50.0	%	HDA	100.0	%
	OP	0.0	%	LDA	100.0	%
	SL	50.0	%			
	TrimSP	0.0	%	TimeBase	Secs	
	RemoteSP	0.0	%	XP	100.0	%
	Track	0.0	%	TI	0.00	
				TD	0.00	
	HR_SP	100.0	%			
	LR_SP	0.0	%	Options	00101100	
	HL_SP	100.0	%	SelMode	00000000	
	LL_SP	0.0	%			
				ModeSel	00000000	
	HR_OP	100.0	%	ModeAct	00000000	
	LR_OP	0.0	%			
	HL_OP	100.0	%	FF_PID	50.0	%
	LL_OP	0.0	%	FB_OP	0.0	%

Sortie

TagName 02P01_0C			LIN Name	02P01_0C	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
→ OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	mΑ
			LR_out	4.00	mΑ
Out	0.0	%	AO	0.00	mΑ
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

Boucle de régulation

Quand Y monte, X monte, donc le procédé est direct donc régulateur inverse.

5)

EDIT.	100.0	~
TimeBase	Secs	
XP	1.0	%
TI	2.00	
TD	20.00	

II. Régulation parallèle

1)Une boucle de régulation parallèle fonctionne avec deux grandeur réglées, deux correcteurs différents et un seul organe de réglage. Le sélecteur choisi la commande la plus adaptée.

Block: PID2 | Comment | Connections PID2 TagName PID2 LIN Name PID DBase <local> Туре Task 3 (110ms) Rate AUTO Mode Alarms FallBack AUTO 100.0 HAA % → PV 0.0 LAA 0.0 % % 50.0 HDA 100.0 % % OР 0.0 LDA 100.0 % 50.0 % TrimSP 0.0 % TimeBase Secs RemoteSP 0.0 % ΧP 100.0 % Track 0.0 % TI 0.00 TD 0.00 HR_SP 100.0 % LR_SP % 00101100 0.0 Options HL SP 100.0 % SelMode 00000000 LL_SP 0.0 % 00000000 ModeSel 100.0 % ModeAct 00000000 HR OP LR_OP 0.0 % HL_OP 100.0 % FF_PID 0.0 % LL_OP 0.0 % → FB_OP 0.0 %

SELECT

Block: select Comment Connections									
TagName	select		LIN Name	select					
Туре	SELECT		DBase	<local></local>					
Task	3 (110ms)		Rate	0					
Туре	HIGHEST		Alarms						
NoOfIPs	2		OP	0.0	%				
→ PV_1	0.0	%	PV_1_sel	TRUE					
→ PV_2	0.0	%	PV_2_sel	FALSE					
PV_3	0.0	%	PV_3_sel	FALSE					
PV_4	0.0	%	PV_4_sel	FALSE					

- 3)Je sais pas.4)Je sais pas.5)Je sais pas.