ISyE 6739 — Summer 2017

Homework #3 (Covers Modules 2.1–2.5) — Solutions

- 1. A die is rolled 5 times. Let X denote the number of times that you see a 4, 5, or 6.
 - (a) What's the distribution of X? Solution: $X \sim \text{Bin}(5, 1/2)$. \diamondsuit
 - (b) Find Pr(X = 4).

Solution:

$$\Pr(X=4) = {5 \choose 4} \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^{5-4} = 5/32.$$
 \diamondsuit

2. Suppose $X \sim \text{Pois}(2)$. Find Pr(X > 3).

Solution:

$$\Pr(X > 3) = 1 - \Pr(X \le 3) = 1 - \sum_{k=0}^{3} e^{-2} 2^k / k! = 0.1429.$$
 \diamondsuit

3. Suppose X has the following discrete distribution.

$$\begin{array}{c|ccccc} x & -1 & 0 & 2 & 3 \\ \hline \Pr(X=x) & 0.2c & 0.3 & 0.2 & 0.1 \\ \end{array}$$

(a) Find the value of c that will make the p.m.f. sum to 1.

Solution: Note that

$$1 = \sum_{x} \Pr(X = x) = 0.2c + 0.3 + 0.2 + 0.1.$$

This implies that c = 2. \diamondsuit

(b) Find the c.d.f. F(x) for all x.

Solution: We have

$$F(x) = \Pr(X \le x) = \begin{cases} 0 & \text{if } x < -1 \\ 0.4 & \text{if } -1 \le x < 0 \\ 0.7 & \text{if } 0 \le x < 2 \\ 0.9 & \text{if } 2 \le x < 3 \\ 1.0 & \text{if } x \ge 3 \end{cases} \diamondsuit$$

(c) Calculate E[X].

Solution:

$$\mathsf{E}[X] \ = \ \sum_{x} x \mathsf{Pr}(X = x) \ = \ 0.3. \quad \diamondsuit$$

(d) Calculate Var(X).

Solution:

$$E[X^2] = \sum_{x} x^2 Pr(X = x) = 2.1.$$

This implies that $Var(X) = E[X^2] - (E[X])^2 = 2.01$.

(e) Calculate $Pr(1 \le X \le 2)$.

Solution: Since X can only equal -1,0,2,3, we have $\Pr(1 \le X \le 2) = \Pr(X=2) = 0.2$.

4. Suppose that X is the lifetime of a lightbulb and that $X \sim \text{Exp}(2/\text{year})$.

- (a) What's the probability that the bulb will survive at least a year, $\Pr(X > 1)$? **Solution:** If $X \sim \operatorname{Exp}(\lambda)$, we know from class that $\Pr(X > t) = e^{-\lambda t}$. Thus, in this problem, we find that $\Pr(X > 1) = e^{-2}$. \diamondsuit
- (b) Suppose the bulb has already survived a year. What's the probability that it will survive another year, i.e., Pr(X > 2 | X > 1)?

Solution: By conditional probability, we have

$$\Pr(X>2\,|\,X>1) \,=\, \frac{\Pr(X>2\,\cap\,X>1)}{\Pr(X>1)} \,=\, \frac{\Pr(X>2)}{\Pr(X>1)} \,=\, \frac{e^{-4}}{e^{-2}} \,=\, e^{-2}.$$

Note that this is the same answer as in (a), and is an example of what is called the memoryless property (which we will talk about later). \diamondsuit

5. Suppose that X is continuous with p.d.f. $f(x) = cx^2$, $0 \le x \le 1$.

(a) Find the value of c that will make the p.d.f. integrate to 1.

Solution: Note that

$$1 = \int_{\Re} f(x) dx = \int_{0}^{1} cx^{2} dx = c/3.$$

This implies that c = 3.

(b) Find the c.d.f. F(x) for all x.

Solution:

$$F(x) = \Pr(X \le x) = \begin{cases} 0 & \text{if } x < 0 \\ x^3 & \text{if } 0 \le x \le 1 \\ 1 & \text{if } x \ge 1 \end{cases} \diamondsuit$$

(c) Calculate E[X].

Solution:

$$\mathsf{E}[X] = \int_{\Re} x f(x) \, dx = \int_0^1 3x^3 \, dx = 3/4.$$
 \diamondsuit

(d) Calculate Var(X).

Solution: Similarly,

ilarly,
$$\mathsf{E}[X^2] \; = \; \int_{\Re} x^2 f(x) \, dx \; = \; \int_0^1 3x^4 \, dx \; = \; 3/5.$$

This implies that $Var(X) = E[X^2] - (E[X])^2 = 3/80.$ \diamondsuit

(e) Calculate $Pr(0 \le X \le 1/2)$.

Calculate $\Pr(0 \le X \le 1/2)$. Solution: $\Pr(0 \le X \le 1/2) = F(1/2) - F(0) = 1/8$.

6. Let E[X] = -4, Var(X) = 5, and Z = -4X + 7. Find E[-3Z] and Var(-3Z).

Solution: We have

$$\mathsf{E}[-3Z] \ = \ \mathsf{E}[12X - 21] \ = \ 12\mathsf{E}[X] - 21 \ = \ -69.$$
 \diamondsuit

and

$$Var(-3Z) = Var(12X - 21) = 144Var(X) = 720.$$
 \diamondsuit

7. When a machine is adjusted properly, 50% of the items it produces are good and 50% are bad. However, the machine is improperly adjusted 10% of the time; in this case, 25% of the items it makes are good and 75% are bad. Suppose that 5 items produced by the machine are selected at random and inspected. If 4 of these items are good (and 1 is bad), what's the probability that the machine was adjusted properly at the time? Hint: Try Bayes Theorem using Binomial conditional probabilities.

Solution: Let X be the number of good items (out of 5). Further, define the following events.

P = "machine is properly adjusted", which implies $X \sim \text{Bin}(5, 1/2)$

I = "machine is improperly adjusted", which implies $X \sim \text{Bin}(5, 1/4)$

Now Bayes implies that

$$\begin{array}{ll} \Pr(P|X=4) & = & \frac{\Pr(X=4|P)\Pr(P)}{\Pr(X=4|P)\Pr(P) + \Pr(X=4|I)\Pr(I)} \\ & = & \frac{\binom{5}{4}\left(\frac{1}{2}\right)^4\left(\frac{1}{2}\right)^1(0.9)}{\binom{5}{4}\left(\frac{1}{2}\right)^4\left(\frac{1}{2}\right)^1(0.9) + \binom{5}{4}\left(\frac{1}{4}\right)^4\left(\frac{3}{4}\right)^1(0.1)} \\ & = & 0.9897. \quad \diamondsuit \end{array}$$

8. Suppose that $X \sim \text{Unif}(-1,6)$. Compare the upper bound on the probability $\Pr(|X-\mu| \geq 1.5\sigma)$ obtained from Chebychev's inequality with the exact probability. **Solution:** By Chebychev, we get the following bound.

$$\Pr(|X - \mu| \ge 1.5\sigma) \le \frac{1}{(1.5)^2} = 4/9.$$

Now let's get the exact probability. First of all, recall that if $X \sim \mathrm{U}(a,b)$, then $\mathsf{E}[X] = (a+b)/2$ and $\mathsf{Var}(X) = (a-b)^2/12$. Since $X \sim \mathrm{U}(-1,6)$, we have $\mathsf{E}[X] = 5/2$ and $\sigma^2 = \mathsf{Var}(X) = 49/12$. Thus, we can make the following exact calculations.

Pr(
$$|X - \mu| \ge 1.5\sigma$$
) = Pr $\left(\left|X - \frac{5}{2}\right| \ge 1.5 \cdot \sqrt{49/12}\right)$
= $1 - \Pr\left(\left|X - \frac{5}{2}\right| < 3.03\right)$
= $1 - \Pr\left(-3.03 < X - \frac{5}{2} < 3.03\right)$
= $1 - \Pr\left(-0.53 < X < 5.53\right)$
= $1 - \int_{-0.53}^{5.53} f(x) \, dx$
= $1 - \frac{1}{7}(5.53 + 0.53) = 0.1343$. \diamondsuit

9. What Zombies song is the theme song of the S-Town podcast?