SZTUCZNA INTELIGENCJA

RAPORT Z LABORATORIÓW

"Jednokierunkowa wielowarstwowa sieć neuronowa typu MLP"

"Algorytm Support Vector Machines (SVM)"

"Pojedyncze drzewo decyzyjne typu CART"

"Analiza skupień przy użyciu algorytmu k-means"

Piotr Krawiec L1 Semestr: 5 2021/2022 Kierunek: III/FS0-DI Numer indeksu: 164165 Prowadzący: Maciej Kusy

Spis treści

1	Dar	ne	3
2	\mathbf{Jed}	nokierunkowa wielowarstwowa sieć neuronowa typu MLP	3
	2.1	Sieć z jedną warstwą ukrytą	3
		2.1.1 Wykresy precyzji dla każdej z klas	4
		2.1.2 Wykresy czułości dla każdej z klas	5
	2.2	Sieć z dwiema warstwami ukrytymi	7
		2.2.1 Wykresy precyzji dla każdej z klas	8
		2.2.2 Wykresy czułości dla każdej z klas	9
	2.3	Podsumowanie sieci MLP	10
3	Alg	orytm SVM	10
	3.1	Wpływ parametrów na wyniki	11
	3.2	Zmiana parametru Standardize	12
4	Poj	edyncze drzewo decyzyjne typu CART	12
	4.1	Najlepsze drzewo	14
	4.2	Wpływ parametrów na wyniki	14
5	Ana	aliza skupień przy użyciu algorytmu k-means	15
	5.1	Wyniki	15
	5.2	Wpływ parametrów na wyniki	15
6	Pod	lsumowanie	16

1 Dane

Dane wykorzystane podczas pracy pochodzą ze zbioru OptDigits5. Składa się on z 62 cech i jednej listy klas, do których należy dana lista cech. Problem, który prezentują dane, jest problemem wieloklasowym, zatem wymagać on będzie dostosowania kodu prezentowanego na zajęciach.

2 Jednokierunkowa wielowarstwowa sieć neuronowa typu MLP

2.1 Sieć z jedną warstwą ukrytą

Ze względu na ilość danych określiłem przedział neuronów, które będę przeszukiwał na 10 do 190 neuronów. Trenowanie sieci odbyło się z wykorzystaniem GPU, jednak nie wszystkie funkcje trenowania sieci oraz aktywacji neuronów są dostępne. Zatem do trenowania wykorzystałem następujące funkcje: trainscg, trainro i traincgb oraz następujące funkcje aktywacji: tansig i logsig. Wykorzystanie GPU pozwoliło skrócić czas trenowania do około 10 minut.

Poniżej znajduje się tabela, która zestawia informacje o dokładności, czułości sieci i odchyleniach tych wartości dla każdej z sieci. Najlepszy wynik osiągnęła sieć traincgb-logsig-120 z dokładnością 0.971 i czułością 0.969.

Network	acc	std(acc)	recall	std(recall)
traincgb-logsig-120	0.971	0.0488	0.969	0.0551
traincgb-logsig-130	0.967	0.0582	0.963	0.0652
traincgb-logsig-90	0.966	0.0572	0.963	0.0648
trainscg-logsig-110	0.966	0.0656	0.96	0.073
trainscg-tansig-110	0.965	0.0611	0.96	0.0683
traincgb-logsig-70	0.967	0.0679	0.959	0.0754
trainscg-logsig-70	0.962	0.0702	0.956	0.0775
traincgb-logsig-80	0.961	0.0609	0.956	0.0782
traincgb-logsig-100	0.962	0.0608	0.955	0.0817
trainscg-logsig-90	0.962	0.0667	0.955	0.0746
trainscg-logsig-80	0.961	0.0681	0.955	0.0807
traincgb-logsig-140	0.961	0.0687	0.955	0.0781
traincgb-logsig-150	0.96	0.0682	0.955	0.0897
traincgb-logsig-160	0.959	0.0711	0.955	0.0804
traincgb-logsig-60	0.962	0.0613	0.954	0.0654
traincgb-logsig-110	0.959	0.0661	0.954	0.0794
trainscg-logsig-130	0.959	0.0661	0.954	0.0793
trainscg-logsig-40	0.96	0.07	0.953	0.0861
trainscg-logsig-60	0.96	0.0669	0.953	0.0822
trainscg-logsig-150	0.958	0.0722	0.953	0.0822

Tabela 1: Podsumowanie najlepszych sieci z jedną warstwą

Patrząc na wykresy, zauważyć możemy, iż ilość neuronów w warstwie ukrytej nie ma dużego wpływu na wyniki modeli. Dużo większy wpływ ma dobór algorytmu uczącego i funkcji aktywacji. Przykładem jest tu wykres trainrp-tansig, który jako jedyny wraz ze wzrostem liczby neuronów osiągał coraz gorsze średnie wyniki.

2.1.1 Wykresy precyzji dla każdej z klas

W przypadku modelu korzystającego z trainrp-tansig spadek dokładności widoczny jest w każdej z klas wraz ze wzrostem ilości neuronów w warstwie ukrytej.

2.1.2 Wykresy czułości dla każdej z klas

Patrząc na wykresy poniżej widać, że w przypadku modelu korzystającego z trainrptansig spadek czułości widoczny jest w każdej z klas wraz ze wzrostem ilości neuronów w warstwie ukrytej.

2.2 Sieć z dwiema warstwami ukrytymi

Sieci te także były trenowane na GPU, na tych samych funkcjach trenowania i aktywacji co sieć z jedną ukrytą warstwą. Natomiast ilość neuronów:

- 1. W pierwszej warstwie wynosi 20, 40, 60, 120
- 2. A w drugiej 20, 40, 60, 80

Czas trenowania wszystkich sieci wyniósł około 20 minut. Najlepsze wyniki osiągnęła sieć trainscg-tansig-[60 80] z dokładnością 0.967 i czułością 0.962.

Network	acc	std(acc)	recall	std(recall)
trainscg-tansig-[60 80]	0.967	0.0616	0.962	0.0718
trainscg-tansig-[120 40]	0.964	0.0615	0.959	0.0801
traincgb-tansig-[120 60]	0.963	0.064	0.958	0.0749
traincgb-logsig-[60 80]	0.964	0.0686	0.956	0.0735
traincgb-logsig-[120 80]	0.961	0.0671	0.954	0.0742
trainscg-tansig-[60 40]	0.959	0.0683	0.954	0.0762
trainscg-tansig-[60 60]	0.959	0.0733	0.953	0.0793
trainscg-logsig-[60 20]	0.958	0.0716	0.953	0.0792
trainscg-logsig-[60 80]	0.957	0.067	0.953	0.0796
$trainscg-logsig-[120 \ 20]$	0.959	0.0789	0.951	0.084
traincgb-logsig-[60 20]	0.959	0.0737	0.951	0.0808
trainscg-logsig-[60 60]	0.958	0.0774	0.951	0.0879
traincgb-logsig-[60 60]	0.958	0.0705	0.951	0.0839
$trainscg-logsig-[120 \ 40]$	0.957	0.0734	0.95	0.0776
trainscg-logsig-[40 80]	0.956	0.0736	0.95	0.0962
trainscg-logsig-[120 60]	0.956	0.0692	0.95	0.073
trainscg-tansig-[120 60]	0.955	0.0801	0.95	0.0893
trainscg-tansig-[60 20]	0.958	0.0666	0.949	0.0885
trainscg-logsig-[120 80]	0.953	0.0706	0.949	0.0845
trainscg-tansig-[120 20]	0.953	0.0674	0.949	0.0731

Tabela 2: Podsumowanie najlepszych sieci z dwiema warstwami

Wyniki są podobne jak dla sieci z jedną warstwą ukrytą, jednak tutaj nie widać tak dużego spadku dokładności i czułości dla sieci trainrp-tansig. Wykresy wskazują, że sieć ta sprawiła się najgorzej (znajduje się poniżej pozostałych).

2.2.1 Wykresy precyzji dla każdej z klas

Dla większości sieci precyzje poszczególnych klas pozostają na takim samym poziomie wraz ze zmianą ilości neuronów w warstwach ukrytych. Odstępstwo stanowi tutaj sieć trainrp-tansig dla której i tym razem obserwować możemy spadek precyzji wraz ze wzrostem ilości neuronów, jednak spadek tej prezycji nie dotyczy wszystkich klas.

2.2.2 Wykresy czułości dla każdej z klas

2.3 Podsumowanie sieci MLP

Obie sieci osiągnęły wyniki podobnego rzędu. Natomiast zastosowanie dwóch warstw ukrytych poprawiło wynik dla najgorszej kombinacji tj. **trainrp–tansig**. Porównując najlepsze wyniki z obu sieci, **najlepsze wyniki osiągnęła sieć jednowarstwowa**, z algorytmem **traincgb**, funkcją aktywacji **logsig** i **120** neuronami w warstwie ukrytej.

3 Algorytm SVM

Algorytm SVM został przetestowany dla dwóch funkcji jądra: gaussian i polynomial. Obliczeń dokonałem, wybierając kolejno dane z jednej klasy i oznaczając je "1", a pozostałe "0". Dla tak stworzonych modeli (per każda klasa) obliczyłem dokładność, czułość oraz F1. Wyniki te zostały uśrednione dla każdej z grup klasyfikatorów i umieszczone w tabeli poniżej. Zera w Tabeli 3 wynikają ze sposobu obliczania danej metryki, pojawia się tam dzielenie przez 0. Dzieje się tak, ponieważ w macierzy pomyłek w polach TP i FP pojawiają się 0 (wszystkie próbki określane są jako 0). Parametry w Tabeli 3 kodowane są w następujący sposób:

1. Dla jądra gaussian: kernel-sigma-C

2. Dla jadra polynomial: kernel-d-C

Jako najlepszy model wybrałem SVM z parametrami **kernel polynomial**, **d=2 oraz C=0.1**. Nie był on najlepszy w każdej z meryk, ale był najlepszy w największej liczbie metryk, a w pozostałych przegrywał dopiero na 3-4 miejscu po przecinku.

Najgorsze wyniki osiągnęło kilka modeli np. **gaussian-0.5-1000**, **gaussian-0.5-10**, **gaussian-20-0.1**. Wszystkie osiągnęły acc rzędu 0.9, co nie jest złym wynikiem, dopóki nie popatrzymy na pozostałe metryki i na wyniki, które zwraca model. Ze względu na to, iż w zbiorze danych mam 10 klas, z czego każdej z nich jest około 10%, a kolejne modele tworzone są, wybierając daną klasę i oznaczając ją "1", a pozostałe dane "0", gdy model oznaczy wszystkie dane "0", osiągniemy dokładnie takie wyniki. Co potwierdziłem, sprawdzając dane na wyjściu modelu.

SVM	acc	std(acc)	precision	recall	F1 score
polynomial-2-0.1	0.9923	0.0097	0.9823	0.9475	0.9618
polynomial-2-10	0.9925	0.0091	0.9847	0.9454	0.9617
polynomial-2-1000	0.9914	0.0095	0.9776	0.9447	0.9584
polynomial-3-1000	0.9906	0.011	0.9782	0.9342	0.9522
gaussian-20-1000	0.9884	0.0112	0.9667	0.9318	0.9448
gaussian-20-10	0.9891	0.0113	0.9723	0.9298	0.9463
polynomial-3-10	0.9894	0.0131	0.9779	0.921	0.9442
polynomial-3-0.1	0.9895	0.0146	0.9686	0.9193	0.9398
gaussian-5-1000	0.9858	0.0136	0.9961	0.8642	0.9189
gaussian-5-10	0.9861	0.0125	0.9969	0.8626	0.9195
gaussian-5-0.1	0.911	0.0105	0.27	0.1102	0.1456
gaussian-0.5-0.1	0.9001	0.0069	0	0	0
gaussian-20-0.1	0.9001	0.007	0	0	0
gaussian-0.5-10	0.9	0.0071	0	0	0
gaussian-0.5-1000	0.9	0.0071	0	0	0

Tabela 3: Wyniki działania algorytmów SVM z różnymi parametrami

3.1 Wpływ parametrów na wyniki

Aby ocenić, która zmiana parametrów miała największy wpływ na dokładność i precyzję modelu, stworzyłem poniższe wykresy. Przedstawiają one, jak zmieniają się parametry algorytmu, jego dokładność w zależności od funkcji jądra.

Dla funkcji jądra Gaussian największy wpływ ma parametr sigma. Zbyt mała sigma sprawiała, że wszystkie próbki klasyfikowane były jako "0", wprowadzenie małej zmiany poprawiło precyzję algorytmu. Zmiana parametru C natomiast nie poprawia działania, jeżeli wraz z jego zmianą nie zmienimy też sigma. Doskonale widać to na środkowym odcinku wykresu. Tuż po zmianie obu parametrów na większe, algorytm osiągnął bardzo dobrą dokładność.

Dla funkcji jądra Polynomial największy wpływ na wynik miał parametr d. Jego zwiększenie powodowało pogorszenie wyników modelu. Najlepsze wyniki algorytm osiągał dla d=2 oraz C<1000.

Klasa	acc	std(acc)	prec	recall	F1
1	0.9953	0.0075	1	0.9524	0.9741
2	0.989	0.0148	0.9635	0.9417	0.9501
3	0.9938	0.008	0.9875	0.9548	0.9689
4	0.9906	0.011	0.9732	0.9429	0.956
5	0.9938	0.008	0.9764	0.9714	0.9721
6	0.9922	0.0082	0.9764	0.9524	0.9616
7	0.9985	0.0049	0.9889	1	0.9941
8	0.9906	0.0133	0.9818	0.9357	0.9532
9	0.9828	0.0188	0.9625	0.8905	0.9123
10	0.978	0.0199	0.9257	0.9089	0.9118
Średnia	0.9904	0.0115	0.9736	0.9451	0.9554

Tabela 5: Tabela dla polynomial-2-0.1 ze standardize=false

3.2 Zmiana parametru Standardize

Dla najlepszego modelu dokonałem trenowania ponownie zmieniając parametr Standardize. Tabele Tabela 4 oraz Tabela 5 przedstawiają wyniki po jego zmianie. Znajdują się w nich metryki obliczone dla każdej z klas oraz wyniki uśrednione. Lepszy okazał się model z parametrem **standardize=true**. Jednak zmiana tego parametru nie zmieniła tych wyników znacząco, w większości różnią się na 3 miejscu po przecinku, ale znacząco wpłynęła na czas trenowania modelu. Modele z parametrem standardize równym false, trenowały się dużo dłużej.

Klasa	acc	std(acc)	prec	recall	F1
1	0.9953	0.0105	1	0.9524	0.9723
2	0.9921	0.0083	0.9528	0.9833	0.9658
3	0.9968	0.01	1	0.9667	0.98
4	0.9907	0.0108	0.9889	0.9262	0.953
5	0.9953	0.0105	0.9875	0.9714	0.9767
6	0.9921	0.0083	0.9875	0.9357	0.9584
7	1	0	1	1	1
8	0.9891	0.0105	0.9639	0.9429	0.9487
9	0.9843	0.0146	0.9532	0.9107	0.9273
10	0.9859	0.0173	0.9597	0.9113	0.9308
Średnia	0.9922	0.0101	0.9793	0.9501	0.9613

Tabela 4: Tabela dla polynomial-2-0.1 ze standardize=true

4 Pojedyncze drzewo decyzyjne typu CART

W celu wyznaczenia optymalnych parametrów drzewa CART modyfikowałem parametry SplitCriterion, MinLeafSize oraz MaxNumSplits. Aby przetestować zdolność uogólniania algorytmu, dla każdego zestawu danych trenowanie zostało powtórzone

50 razy, a wyniki uśrednione. Na poniższym wykresie przedstawione zostały wyniki dla mojego zbioru danych. W legendzie każde drzewo jest opisane w następujący sposób: SplitCriterion-MinLeafSize.

Wykres pokazuje, że zmiana parametru MinLeafSize nie wpływa znacząco na poprawienie dokładności. Natomiast zmiana SplitCriterion ma znaczenie i lepsze wyniki osiągają drzewa ze SplitCriterion deviance.

MaxNumSplits	Tree	Acuracy
30	deviance-4	0.7836
30	deviance-2	0.7808
30	gdi-2	0.7762
30	gdi-4	0.7752
28	gdi-2	0.775
28	gdi-4	0.7734
28	deviance-4	0.7711
26	gdi-4	0.7685
28	deviance-2	0.7671
26	gdi-2	0.7654
2	deviance-4	0.2869
2	gdi-4	0.2643
2	gdi-2	0.2638

Tabela 6: Tabela dla dokładności dla wybranych drzew

Z powyższej tabeli odczytać możemy, iż najlepsze drzewo otrzymaliśmy dla parametrów MaxNumSplits 30, SplitCriterion deviance, MinLeafSize 4. Zastanawiające może być jednak to, iż najlepsza dokładność została osiągnięta dla drzewa o największym MaxNumSplits. Może to oznaczać, iż jej zwiększenie jest w stanie zwiększyć dokładność.

4.1 Najlepsze drzewo

Najczęstszą liczbą występującą na liściach jest 1. Najrzadziej występują 0,5,6, występują wyłącznie na jednym liściu. Na przykład, aby uzyskać liczbę 1, następujące zmienne muszą mieć wartości: $x_{41} >= 6.5$ i $x_{30} >= 1.5$ i $x_{43} < 9.5$.

4.2 Wpływ parametrów na wyniki

Z wykresów wynika, iż zmiana MinLeafSize nie wpływa znacząco na model. Największe znaczenie ma parametr MaxNumSplits.

5 Analiza skupień przy użyciu algorytmu k-means

Algoryt
m K-means został wykorzystany do sprawdzenia uogólniania innych algorytmów. Dla oryginalnych danych k-means obliczy N środków klastrów. Środki d
te staną się nowymi danymi i na nich sprawdzona zostanie zdolność uogólniania algorytmu SVM. Poniżej znajduje się tabela przedstawiająca wyniki:

5.1 Wyniki

SVM	acc	std(acc)	precision	recall	F1 score
gaussian-20-1000	0.9831	0.02089	0.9554	0.9033	0.91566
polynomial-2-0.1	0.9843	0.02238	0.9766	0.8866	0.91492
gaussian-20-10	0.9835	0.02267	0.9681	0.8858	0.91438
polynomial-2-1000	0.9828	0.02380	0.9739	0.8791	0.90832
polynomial-2-10	0.9835	0.02600	0.9696	0.875	0.902
polynomial-3-10	0.9808	0.0249	0.9566	0.8716	0.89692
polynomial-3-1000	0.9784	0.02871	0.9581	0.8466	0.87804
polynomial-3-0.1	0.9800	0.02275	0.9581	0.8383	0.87923
gaussian-5-10	0.9703	0.02537	0.975	0.7158	0.8017
gaussian-5-1000	0.96955	0.02962	0.9275	0.7033	0.7772
gaussian-20-0.1	0.9003	0.01851	0	0	0
gaussian-0.5-0.1	0.9003	0.01860	0	0	0
gaussian-0.5-10	0.9003	0.01860	0	0	0
gaussian-0.5-1000	0.9003	0.01860	0	0	
gaussian-5-0.1	0.9003	0.01860	0	0	0

Porównując te wyniki z poprzednimi, wypadają one gorzej. Algorytm SVM nie uogólnia się dobrze na tym zbiorze danych.

5.2 Wpływ parametrów na wyniki

Wyniki prezentują się niemal identycznie jak dla SVM na oryginalnych danych. Największa różnica występuje dla funkcji jądra polynomial i parametru d=3, dla oryginalnych danych zwiększenie C poprawiało wyniki. Natomiast tutaj, zwiększenie C nie poprawia już wyników.

6 Podsumowanie

Z prezentowanych algorytmów najlepszymi dla podanego zbioru danych, okazały się sieci z jedną i dwoma warstwami ukrytymi oraz algorytm SVM. Ich wyniki były podobne tj. oba podejścia osiągnęły dokładność >0.95. Najgorzej sprawiło się drzewo decyzyjne typu CART, które osiągnęło dokładność <0.8. Test uogólniania z pomocą k-means został przeprowadzony dla algorytmu SVM. Algorytm ten dla nowych danych osiągnął znacząco gorsze wyniki.

Piotr Krawiec