HW05

2. $S \to RS|R$

 $R \to aSb|cRd|ab|cd|\epsilon$

Добавим стартовый нетерминал:

 $S_{start} \to S$

 $S \to RS|R$

 $R \rightarrow aSb|cRd|ab|cd|\epsilon$

Избавимся от неодиночных терминалов:

 $S_{start} \to S$

 $S \to RS|R$

 $R \to ASB|CRD|AB|CD|\epsilon$

 $A \rightarrow a$

 $B \to b$

 $C \to c$

 $D \to d$

Устраним длинные правила:

 $S_{start} \to S$

 $S \to RS|R$

 $R \to AQ|CP|AB|CD|\epsilon$

 $A \rightarrow a$

 $B \rightarrow b$

 $C \to c$

 $D \to d$

 $Q \to SB$

 $P \to RD$

Устраним ϵ -правила:

 $S_{start} \to S | \epsilon$

 $S \to RS|R|S$

 $R \to AQ|CP|AB|CD$

 $A \rightarrow a$

 $B \rightarrow b$

 $C \to c$

 $D \to d$

 $Q \to SB|B$

 $P \to RD|D$

Устраним цепные правила:

 $S_{start} \to RS|AQ|CP|AB|CD|\epsilon$

 $S \to RS|AQ|CP|AB|CD$

 $R \to AQ|CP|AB|CD$

$$\begin{array}{c} A \rightarrow a \\ B \rightarrow b \end{array}$$

$$C \to c$$

$$D \to d$$

$$Q \to SB|b$$

$$P \to RD|d$$

Done.

3. КС грамматика для языка:

$$S \rightarrow aaS|aSb|Sbb|ab|aa|bb$$

Поймем, что у нас получаются все слова вида a^nb^m , n+m>0, (n+m) \vdots 2 и только они. Сначала то, что все. Рассмотрим случаи:

1)
$$m=0 \Rightarrow n>0$$
 - чётное.

Применим $\frac{n}{2}-1$ раз $S\to Sbb$ и один раз $S\to bb$. Получим $S\to Sbb\to\cdots\to Sbb\dots bb\to b^n$ (если n=0, то то же самое)

(2) m, n > 0, чётные.

Применим $\frac{n}{2}$ раз $S \to Sbb, \frac{m}{2} - 1$ раз $S \to aaS,$ и один раз $S \to aa$

3) m, n > 0, нечётные.

Применим $\frac{n-1}{2}$ раз $S \to Sbb, \, \frac{m-1}{2}$ раз $S \to aaS,$ и один раз $S \to ab$

Теперь докажем, что никакие другие не получатся. Понятно, что нет пустого слова. Понятно (например по индукции), что все буквы а левее букв b. А так как в каждом правиле четность суммы сохраняется, то и в конце она тоже четная.