UNIVASF Eletrônica Digital II

Controlador Simples

Prof. Rodrigo Ramos godoga@gmail.com

- Podem ser projetados para diferentes tarefas
 - Operações lógicas (complemento), transferência entre registradores, etc.
- Registradores complexos versus registradores simples
 - Muitos registradores de simples (armazenamentos) → ULA complexa
 - ULA simples → registradores complexos (várias operações)
- A definição faz parte da arquitetura do sistema
 - Diferentes arquiteturas podem produzir o mesmo resultado: não existe a melhor.

- Exemplo de arquitetura
 - Realização das operações $\alpha+\beta$, $\alpha-\beta$, $-\alpha+\beta$ e $-\alpha-\beta$
 - Assumir que os registradores têm entrada set e reset assíncronas.

 Na operação de soma abaixo, podemos escolher em que registrador salvar o resultado.

Sequência de comandos para calcular α + β

Ciclo	Terminal de controle ativado	Comentário				
1	Z, Z_A	Limpa acumulador				
2	$R_{\alpha'}W$	Ler de α e escrever em CI				
3	R, W _A	CI para Acc passando pelo somador				
4	R_{β} , W	Ler de β e escrever em CI				
5	R, W_{A}	β somado ao Acc				
6	R_{A} , W_{α}	Acc para α				

• Projeto do controlador para a soma

X = 0

0

 Deve-se ter um botão para sair do modo espera (X)

• Decodificador para as saídas

Estado presente	Estado presente	Est segu	ado inte					Saío	ias				Decodificador
	$Q_2Q_1Q_0$	X = 0	X = 1	\boldsymbol{z}	Z_A	R_{α}	W	R	W_A	R_{β}	W_{α}	R_A	(1) z, z_A
0	000	000	001	0	0	0	0	0	0	0	0	0	
1	001	010	001	1	1	0	0	0	0	0	0	0	
2	010	011	011	0	0	1	1	0	0	0	0	0	2
3	011	100	100	0	0	0	0	1	1	0	0	0	R_{α}
4	100	101	101	0	0	0	1	0	0	1	0	0	
5	101	110	110	0	0	0	0	1	1	0	0	0	3
6	110	000	000	0	0	0	0	0	0	0	1	1	
													→ R, W _A
lógio 🔲	7 [П	П	Γ						4
1		_ [_ `	_						R_{β}
X 0		-					-						
, Q ₀ 1	7	-				Γ							(5)
1													
Z _A 0		L											
R _α 1													
W 1			_							(have		(6)
0				1							Ĭ		W_{∞} R_{A}
, W _A 1									V(1) o-		٠,	X	
1					Ī				(1)0		·	Į	Parte de Q2
R _β 0												5	geração de seqüência do \overline{Q}_1
R _A 0											V(0))	controlador Q_1
										Reld	igio 🗢		$ar{Q}_0$

- Controlador por registrador de deslocamentos
 - Dispositivo de partida

Controlador por registrador de deslocamentos

• Seletor de registro final (SFR)

- Entradas de realimentação
- Podem ser usadas para controlar microoperações

- Entradas de realimentação
- Para mais de dois caminhos, usa-se

- Entradas de realimentação (outros exemplos)
- Saltar microoperações

- Entradas de realimentação (outros exemplos)
- Tornar ineficientes microoperações

- Entradas de realimentação (outros exemplos)
- Repetir microoperações

