

N-Channel Enhancement Mode Power MOSFET

Description

The GT045N10D5 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS}

100V

• I_D (at $V_{GS} = 10V$)

120A

• $R_{DS(ON)}$ (at $V_{GS} = 10V$)

< 5mΩ

• 100% Avalanche Tested

• RoHS Compliant

Application

- Power switch
- DC/DC converters

Ordering Information

Device		Package	Marking	Packaging	
	GT045N10D5	DFN5X6-8L	GT045N10	5000pcs/Reel	

Absolute Maximum Ratings $T_C = 25^{\circ}C$, unless otherwise noted							
Parameter	Symbol	Value	Unit				
Drain-Source Voltage	V _{DS}	100	V				
Continuous Drain Current	I _D	120	Α				
Pulsed Drain Current (note1)	I _{DM}	480	А				
Gate-Source Voltage	V_{GS}	±20	V				
Power Dissipation	P _D	180	W				
Single pulse avalanche energy (note2)	E _{AS}	240	mJ				
Operating Junction and Storage Temperature Range	T_J,T_stg	-55 To 150	°C				

Thermal Resistance					
Parameter	Symbol	Value	Unit		
Thermal Resistance, Junction-to-Ambient	R _{thJA}	60	°C/W		
Maximum Junction-to-Case	R _{thJC}	0.69	°C/W		

Specifications $T_J = 25^{\circ}$ C, unless otherwise noted							
Downwater	O. walast	T - 1 0 - 1111	Value			11.24	
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static Parameters	Static Parameters						
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250\mu A$	100			V	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 100V, V_{GS} = 0V$			1	μΑ	
Gate-Source Leakage	I _{GSS}	V_{GS} = $\pm 20 V$			±100	nA	
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	3.0	4.0	٧	
Drain-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10V, I_{D} = 30A$		4.0	5.0	mΩ	
Forward Transconductance	9 _{FS}	$V_{GS} = 5V, I_{D} = 30A$		42		S	
Dynamic Parameters				1			
Input Capacitance	C _{iss}			4217		pF	
Output Capacitance	C _{oss}	$V_{GS} = 0V,$ $V_{DS} = 50V,$		1336			
Reverse Transfer Capacitance	C _{rss}	f = 1.0MHz		15			
Total Gate Charge	Q_g	V - F0V		60		nC	
Gate-Source Charge	Q_{gs}	$V_{DD} = 50V,$ $I_{D} = 30A,$		21			
Gate-Drain Charge	Q_{gd}	V _{GS} = 10V		11			
Turn-on Delay Time	t _{d(on)}			58			
Turn-on Rise Time	t _r	$V_{DD} = 50V$		13		ns	
Turn-off Delay Time	$t_{d(off)}$	$I_D = 30A,$ $R_G = 4.7\Omega$		39			
Turn-off Fall Time	t _f			8			
Drain-Source Body Diode Characteristics							
Continuous Body Diode Current	Is	T _C = 25°C			120	Α	
Body Diode Voltage	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 30A$, $V_{GS} = 0V$			1.2	V	
Reverse Recovery Charge	Qrr	I _F = 30A, V _{GS} = 0V		140		nC	
Reverse Recovery Time	Trr	di/dt=100A/us		60		ns	

Notes

1. Repetitive Rating: Pulse width limited by maximum junction temperature

- 2. EAS condition : Tj=25°C ,VDD=50V,VGS=10V,L=0.5mH,Rg=25Ω
- 3. Identical low side and high side switch with identical $R_{\mbox{\scriptsize G}}$

Gate Charge Test Circuit

Switch Time Test Circuit

EAS Test Circuit

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

120 V_{DS} = 5V 100 80 80 40 20 0 2 4 6 V_{GS}, Gate-to-Source Voltage (V)

Figure 2. Transfer Characteristics

Figure 3. Drain Source On Resistance 7 R_{DS(on)}, On-Resistance (mΩ) 6 5 V_Gs = 10V 3 2 1 0 10 0 30 50 60 I_D-Drain Current (A)

R_{DS(on)}, (Normalized)

Typical Characteristics $T_J = 25$ °C, unless otherwise noted

Figure 7. Drain-Source On-Resistance

Figure 8. Safe Operation Area

V_{DS}, Drain-Source Voltage(V)

Figure 9. Normalized Maximum Transient Thermal Impedance

l_D, Drain Current(A)

DFN5X6-8L Package Information

	S	COMMON					
	M B O	MM		INCH			
	O.	MIN.	MAX.	MIN.	MAX.		
	Α	1.03	1.17	0.0406	0.0461		
	b	0.34	0.48	0.0134	0.0189		
	С	0.824	0.970	0.0324	0.0382		
3	D	4.80	5.40	0.1890	0.2126		
	D1	4.11	4.31	0.1618	0.1697		
B	D2	4.80	5.00	0.1890	0.1969		
	Ε	5.95	6.15	0.2343	0.2421		
	E1	5.65	5.85	0.2224	0.2303		
A	E2	1.40	-	0.0551			
	е	1.27 BSC		0.05 BSC			
B	L	0.05	0.25	0.0020	0.0098		
	L1	0.38	0.50	0.0150	0.0197		
£	L2	0.38	0.71	0.0150	0.0280		
4	Н	3.30	3.50	0.1299	0.1378		
	1	- 0.18		_	0.0070		