Last Module Recap ("Course Overview")

- Applications of Reinforcement Learning
- Overview of Modules and Labs
- Lab Software Installation

Introduction To Reinforcement Learning

ROLAND FERNANDEZ

Researcher, MSR AI Instructor, AI School

How do infants learn?

- Tasks: turn over, sit up, crawl, stand
- Learning:
 - Trial-and-error
 - Practice
 - Goal-oriented
 - Interacting with the environment

https://www.youtube.com/watch?v=6jv_lcfa4g4

- What is Reinforcement Learning?
- Comparisons to other learning types
- Exploration / Exploitation Dilemma
- Elements of the RL problem
- Examples of RL problems
- Approaches to RL
- Fundamental Challenges of RL

- What is Reinforcement Learning?
- Comparisons to other learning types
- Exploration / Exploitation Dilemma
- Elements of the RL problem
- Examples of RL problems
- Approaches to RL
- Fundamental Challenges of RL

What is Reinforcement Learning?

- Computational approach to goal-directed learning from interaction with the environment
- It uses idealized learning situations and explores the effectiveness of various learning algorithms

The General RL Problem

Historical Context

- Psychology of Animal Learning
- Puzzle Box
 - Video:
 https://www.youtube.com/watch?
 v=fanm--WyQJo

Thorndike Puzzle Box

https://terriermandotcom.blogspot.com/2012/05/t horndikes-cat-box.html

Historical Context

- Law Of Effect:
 - Increase behaviors followed by pleasant consequences
 - Decrease behaviors followed by unpleasant consequences
- Trial-and-Error Learning:
 - Selectional
 - Associative

Historical Context

Optimal Control Theory

https://en.wikipedia.org/wiki/Control_theory

- What is Reinforcement Learning?
- Comparisons to other learning types
- Exploration / Exploitation Dilemma
- Elements of the RL problem
- Examples of RL problems
- Approaches to RL
- Fundamental Challenges of RL

Supervised Learning

Supervised Learning Data

Example #	Χ	Υ
0	X1	Y1
1	X2	Y2
2	X3	Y3
3	X4	Y4
4	X5	Y5
5	X6	Y6
6	X7	Y7

Unsupervised Learning

Unsupervised Learning

X1

X2

X3

X4

X5

X6

X7

Clustering

Anomaly Detection

Low Dim Representation

Sparse Representation

Independent Representation

Reinforcement Learning

Reinforcement Learning

Timestep #	State	Action	Reward
0	S1	A1	-1
1	S2	A2	0
2	S3	A3	0
3	S4	A4	0
4	S5	A5	0
5	S6	A6	0
6	S7	A7	1

- What is Reinforcement Learning?
- Comparisons to other learning types
- Exploration / Exploitation Dilemma
- Elements of the RL problem
- Examples of RL problems
- Approaches to RL
- Fundamental Challenges of RL

Exploration / Exploitation Dilemma

- What is Reinforcement Learning?
- Comparisons to other learning types
- Exploration / Exploitation Dilemma
- Elements of the RL problem
- Examples of RL problems
- Approaches to RL
- Fundamental Challenges of RL

Elements of Reinforcement Learning

Time step

- Sets the timing for the basic action selection and state/reward feedback cycle
- Usual notation: t

Environment

- Defines the world that the agent interacts with
- Basic loop:
 - Produces:
 - States, Rewards for the agent to sense and process
 - Accepts:
 - Actions from the agent

Agent

- Learns to achieve goals by interacting with environment
- Basic loop:
 - Senses: State, Reward
 - Effect: selects an Action

State

Reward

- The scalar value (floating point number) returned by the environment when the agent selects an action
- Represents the goal, or goals
- Determined by the RL problem designer
- Usual notation r_t, for reward at time t

Action

- Discrete (1 of N actions)
- Continuous (action as scalar/vector of real values)

Value Function

- Value Function $V^{\pi}(s)$ a mapping from state s to the long-term accumulation of reward starting from s, following policy π
- Value-State Function $Q^{\pi}(s, a)$ a mapping from each state/action pair to the expected long-term accumulation of reward starting from state s and taking action a, and thereafter following policy π

Policy

- A mapping from each state to an action to take when in that state
 - Deterministic
 - Stochastic

Models of the Environment

State	Action	Next State	Reward	Probability
S1	A1	S2	-1	.3
S1	A1	S3	0	.7
S1	A2	S4	0	.1
S1	A2	S5	0	.1
S1	A2	S6	0	.8
S2	A1	S7	0	.5
S2	A1	END	1	.5

- Model-Free Methods
- Model-Based Methods:
 - Given model up-front
 - Learn model while exploring

Episodic and Continuing Tasks

- Episodic Tasks
- Continuing Tasks

- What is Reinforcement Learning?
- Comparisons to other learning types
- Exploration / Exploitation Dilemma
- Elements of the RL problem
- Examples of RL problems
- Approaches to RL
- Fundamental Challenges of RL

Tic-Tac-Toe (Noughts and Crosses)

- Agent: "X" player
- Environment: "O" player, general rules
- State: 9 x Square occupant: X, O, blank
- Actions: 9 x Place "X" in square
- Rewards: At end of game: 1=win, 0=tie, -1=loss
- Task Type: Episodic

Smart Thermostat

• Agent: AC / Heater control

• Environment: House and its occupants

• State: Current Temperature, Day, Time

• Actions: Heat, Cool, Off

• Rewards: Smile: +1, Frown: -1, None: 0

• Task Type: Continuing

Simulated Robot in Obstacle Course

-

• Agent: Robot brain

• Environment: Robot body, Obstacle Course, Physics Simulator

• State: Angle/position robot joints, next obstacle distance/type/dims

Actions: Controls for robot muscles/joints

• Rewards: X-coordinate of robot

• Task Type: Episodic

- What is Reinforcement Learning?
- Comparisons to other learning types
- Exploration / Exploitation Dilemma
- Elements of the RL problem
- Examples of RL problems
- Approaches to RL
- Fundamental Challenges of RL

Approaches to RL

- Value function Methods
- Direct Policy Search
- Evolutionary Methods
- Others...

- What is Reinforcement Learning?
- Comparisons to other learning types
- Exploration / Exploitation Dilemma
- Elements of the RL problem
- Examples of RL problems
- Approaches to RL
- Fundamental Challenges of RL

Fundamental Challenges

- Representation
- Generalization
- Exploration
- Temporal Credit Assignment

Introduction to RL- Summary

- What is Reinforcement Learning?
- Comparisons to other learning types
- Exploration / Exploitation Dilemma
- Elements of the RL problem
- Examples of RL problems
- Approaches to RL
- Fundamental Challenges

Further Reading

- Thorndike's puzzle boxes and the origins of the experimental analysis of behavior (Chance, 1999):
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1284753/pdf/jeabehav 007200300433.pdf
- Animal intelligence : an experimental study of the associative processes in animals (Thorndike, 1898):
 - https://archive.org/details/animalintelligen00thoruoft