Dynamic Programming

Hengfeng Wei

hfwei@nju.edu.cn

June 11 - June 19, 2017

1 / 57

Dynamic Programming

- Overview
- 2 1D DP
- 3 2D DP
- 4 3D DP
- 5 DP on Graphs
- The Knapsack Problem

What is DP?

$$\label{eq:defDP} \begin{split} \mathsf{DP} \approx \text{``brute force''} \\ \mathsf{DP} \approx \text{``smart scheduling of subproblems''} \\ \mathsf{DP} \approx \text{``shortest/longest paths in some DAG''} \end{split}$$

What is DP?

$$\label{eq:defDP} \begin{split} \mathsf{DP} \approx \text{``smarter brute force''} \\ \mathsf{DP} \approx \text{``smart scheduling of subproblems''} \\ \mathsf{DP} \approx \text{``shortest/longest paths in some DAG''} \end{split}$$

What is not DP?

 ${\sf Programming} = {\sf Planning}$

What is not DP?

 ${\sf Programming} = {\sf Planning}$

Programming \neq Coding (Richard Bellman, 1940s)

3 / 57

Steps for applying DP

- 1. Define subproblems
 - # of subproblems
- 2. Set the goal
- 3. Define the recurrence
 - ▶ larger subproblem ← # smaller subproblems
 - init. conditions
- 4. Write pseudo-code: fill "table" in topo. order
- 5. Analyze Time/Space complexity
- 6. Extract the optimal sulution

4 / 57

1D subproblems:

```
Input: x_1, x_2, \ldots, x_n (array, sequence, string)
Subproblems: x_1, x_2, \ldots, x_i (prefix/suffix)
#: \Theta(n)
```


1D subproblems:

```
Input: x_1, x_2, \ldots, x_n (array, sequence, string)
```

Subproblems: x_1, x_2, \ldots, x_i (prefix/suffix)

 $\#: \Theta(n)$

Examples: Fib, Maximum-sum subarray, Longest increasing subsequence, Highway restaurants, Text justification

2D subproblems:

```
1. Input: x_1, x_2, ..., x_m; y_1, y_2, ..., y_n
Subproblems: x_1, x_2, ..., x_i; y_1, y_2, ..., y_j
#: \Theta(mn)
```

6 / 57

2D subproblems:

```
1. Input: x_1, x_2, ..., x_m; y_1, y_2, ..., y_n
Subproblems: x_1, x_2, ..., x_i; y_1, y_2, ..., y_j
#: \Theta(mn)
```

Examples: Edit distance, Longest common subsequence

2D subproblems:

```
1. Input: x_1, x_2, ..., x_m; y_1, y_2, ..., y_n
Subproblems: x_1, x_2, ..., x_i; y_1, y_2, ..., y_j
#: \Theta(mn)
```

Examples: Edit distance, Longest common subsequence

```
2. Input: x_1, x_2, \ldots, x_n
Subproblems: x_i, \ldots, x_j
\#: \Theta(n^2)
```

2D subproblems:

```
1. Input: x_1, x_2, \ldots, x_m; y_1, y_2, \ldots, y_n
Subproblems: x_1, x_2, \ldots, x_i; y_1, y_2, \ldots, y_j
#: \Theta(mn)
```

Examples: Edit distance, Longest common subsequence

```
2. Input: x_1, x_2, \ldots, x_n
Subproblems: x_i, \ldots, x_j
\#: \Theta(n^2)
```

Examples: Matrix chain multiplication, Optimal BST

6 / 57

3D subproblems:

► Floyd-Warshall algorithm

$$\mathsf{d}(i,j,k) = \min\{\mathsf{d}(i,j,k-1), \mathsf{d}(i,k,k-1) + \mathsf{d}(k,j,k-1)\}$$

3D subproblems:

► Floyd-Warshall algorithm

$$\mathsf{d}(i,j,k) = \min\{\mathsf{d}(i,j,k-1),\mathsf{d}(i,k,k-1) + \mathsf{d}(k,j,k-1)\}$$

DP on graphs:

1. On rooted tree

Subproblems: rooted subtrees

2. On DAG

Subproblems: nodes after/before in the topo. order

7 / 57

3D subproblems:

► Floyd-Warshall algorithm

$$\mathsf{d}(i,j,k) = \min\{\mathsf{d}(i,j,k-1),\mathsf{d}(i,k,k-1) + \mathsf{d}(k,j,k-1)\}$$

DP on graphs:

1. On rooted tree

Subproblems: rooted subtrees

2. On DAG

Subproblems: nodes after/before in the topo. order

Knapsack problem:

Subset sum problem, change-making problem

And Others . . .

Recurrences in DP

Make choices by asking yourself the right question:

- 1. Binary choice
 - whether . . .
- 2. Multi-way choices
 - ▶ where to ...
 - which one . . .

Dynamic Programming

- Overview
- 2 1D DP
- 3 2D DP
- 4 3D DP
- DP on Graphs
- The Knapsack Problem

$$f^{(S(n))} = 1$$

$$f^{(S(n))} = 1$$
 (Problem 7.2)

$$f(n) = \begin{cases} n-1 & \text{if } n \in \mathbb{Z}^+ \\ n/2 & \text{if } n\%2 = 0 \\ n/3 & \text{if } n\%3 = 0 \end{cases}$$

S(n): minimum number of steps taking n to 1.

$$f^{(S(n))} = 1$$

$$f^{(S(n))} = 1$$
 (Problem 7.2)

$$f(n) = \begin{cases} n-1 & \text{if } n \in \mathbb{Z}^+ \\ n/2 & \text{if } n\%2 = 0 \\ n/3 & \text{if } n\%3 = 0 \end{cases}$$

S(n): minimum number of steps taking n to 1.

S(i): minimum number of steps taking i to 1

$$f^{(S(n))} = 1$$

$$f^{(S(n))} = 1 \text{ (Problem 7.2)}$$

$$f(n) = \begin{cases} n-1 & \text{if } n \in \mathbb{Z}^+ \\ n/2 & \text{if } n\%2 = 0 \\ n/3 & \text{if } n\%3 = 0 \end{cases}$$

S(n): minimum number of steps taking n to 1.

S(i): minimum number of steps taking i to 1

$$S(i) = 1 + \min\{N(i-1), N(i/2) (\text{if } n\%2 = 0), N(i/3) (\text{if } n\%3 = 0)\}$$

$$S(1) = 0$$

$$f^{(S(n))} = 1$$

Collatz (3n+1) conjecture:

$$f(n) = \begin{cases} n/2 & \text{if } n\%2 = 0\\ 3n+1 & \text{if } n\%2 = 1 \end{cases}$$
$$f^*(n) = 1?$$

$$f^{(S(n))} = 1$$

Collatz (3n+1) conjecture:

$$f(n) = \begin{cases} n/2 & \text{if } n\%2 = 0\\ 3n+1 & \text{if } n\%2 = 1 \end{cases}$$
$$f^*(n) = 1?$$

"Mathematics may not be ready for such problems."

— Paul Erdős

Longest increasing subsequence (Problem 7.3)

- Given an integer array $A[1 \dots n]$
- ► To find (the length of) a longest increasing subsequence.

$$5, 2, 8, 6, 3, 6, 9, 7 \implies 2, 3, 6, 9$$

Subproblem: L(i) : the length of the LIS of $A[1 \dots i]$ Goal: L(n)

Subproblem: L(i): the length of the LIS of $A[1 \dots i]$

Goal: L(n)

Make choice: whether $A[i] \in LIS[1 \dots i]$?

Recurrence:

$$L(i) = \max\{L(i-1), 1 + \max_{j < i \land A[j] \le A[i]} L(j)\}$$

Subproblem: L(i): the length of the LIS of A[1...i]

Goal: L(n)

Make choice: whether $A[i] \in LIS[1 ... i]$?

Recurrence:

$$L(i) = \max\{L(i-1), 1 + \max_{j < i \land A[j] \le A[i]} L(j)\}$$

Init:

$$L(0) = 0$$

Time:

$$O(n^2) = \Theta(n) \cdot O(n)$$

Longest path distance in the DAG!

Maximum-sum subarray (Google Interview)

- ightharpoonup Array $A[1\cdots n], a_i>=<0$
- lacktriangle To find (the sum of) a maximum-sum subarray of A
 - ightharpoonup mss = 0 if all negative

$$A[-2, 1, -3, 4, -1, 2, 1, -5, 4] \implies [4, -1, 2, 1]$$

Maximum-sum subarray (Google Interview)

- ightharpoonup Array $A[1\cdots n], a_i>=<0$
- ightharpoonup To find (the sum of) a maximum-sum subarray of A
 - ightharpoonup mss = 0 if all negative

$$A[-2, 1, -3, 4, -1, 2, 1, -5, 4] \implies [4, -1, 2, 1]$$

Subproblem: MSS[i]: the sum of the MS[i] of $A[1 \cdots i]$

Goal: mss = MSS[n]

Maximum-sum subarray (Google Interview)

- ightharpoonup Array $A[1\cdots n], a_i>=<0$
- \blacktriangleright To find (the sum of) a maximum-sum subarray of A
 - ightharpoonup mss = 0 if all negative

$$A[-2, 1, -3, 4, -1, 2, 1, -5, 4] \implies [4, -1, 2, 1]$$

Subproblem: MSS[i]: the sum of the MS[i] of $A[1 \cdots i]$

Goal: mss = MSS[n]

Make choice: Is $a_i \in MS[i]$?

Recurrence:

$$\mathsf{MSS}[i] = \max\{\mathsf{MSS}[i-1], ????\}$$

Subproblem: MSS[i]: the sum of the MS[i] ending with a_i or 0

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Subproblem: MSS[i]: the sum of the MS[i] ending with a_i or 0

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Make choice: where does the MS[i] start?

Recurrence:

$$\mathsf{MSS}[i] = \max\{\mathsf{MSS}[i-1] + a_i, 0\}$$
 (prove it!)

Subproblem: MSS[i]: the sum of the MS[i] ending with a_i or 0

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Make choice: where does the MS[i] start?

Recurrence:

$$MSS[i] = max\{MSS[i-1] + a_i, 0\}$$
 (prove it!)

Init:

$$\mathsf{MSS}[0] = 0$$

Subproblem: MSS[i]: the sum of the MS[i] ending with a_i or 0

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Make choice: where does the MS[i] start?

Recurrence:

$$MSS[i] = max\{MSS[i-1] + a_i, 0\}$$
 (prove it!)

Init:

$$\mathsf{MSS}[0] = 0$$

Time: $\Theta(n)$

Maximum-sum subarray

Maximum-product subarray

Maximum-product subarray (Problem 7.4)

Reconstructing string (Problem 7.9)

- ightharpoonup String $S[1\cdots n]$
- ▶ Dict for *lookup*:

$$dict(w) = \begin{cases} \text{ true } & \text{if } w \text{ is a valid word} \\ \text{false } & \text{o.w.} \end{cases}$$

▶ Is $S[1 \cdots n]$ valid (reconstructed as a sequence of valid words)?

Subproblem: V[i]: is $S[1 \cdots i]$ valid?

Goal: V[n]

Subproblem: V[i]: is $S[1 \cdots i]$ valid?

Goal: V[n]

Make choice: where does the last word start?

Recurrence:

$$V[i] = \bigvee_{j=1...i} (V[j-1] \wedge \operatorname{dict}(S[j\cdots i]))$$

Subproblem: V[i]: is $S[1 \cdots i]$ valid?

Goal: V[n]

Make choice: where does the last word start?

Recurrence:

$$V[i] = \bigvee_{j=1...i} (V[j-1] \wedge \operatorname{dict}(S[j\cdots i]))$$

Init:

$$V[0] = \mathsf{true}$$

Time: $O(n^2)$

Hotel along a trip (Problem 7.15)

- ▶ Hotel sequence (distance): $a_0 = 0, a_1, \dots, a_n$
- $ightharpoonup a_0 \leadsto a_n$
- Stop at only hotels
- ► Cost: $(200 x)^2$
- ► To minimize overall cost

Subproblem: C[i]: minimum cost when the destination is a_i

Goal: C[n]

Subproblem: C[i]: minimum cost when the destination is a_i

Goal: C[n]

Make choice: what is the last but one hotel a_i to stop?

Recurrence:

$$C[i] = \min_{0 \le j < i} \{ C[j] + (200 - (a_i - a_j))^2 \}$$

Subproblem: C[i]: minimum cost when the destination is a_i

Goal: C[n]

Make choice: what is the last but one hotel a_i to stop?

Recurrence:

$$C[i] = \min_{0 \le j < i} \{ C[j] + (200 - (a_i - a_j))^2 \}$$

Init:

$$C[0] = 0$$

Time:

$$O(n^2) = \Theta(n) \cdot O(n)$$

Highway restaurants

Highway restaurants (Problem 7.16)

- ▶ Locations: L[1 ... n]
- ▶ Profits: $P[1 \dots n]$
- ▶ Any two hotels should be $\geq k$ miles apart
- ► To maximize the total profit

Subproblem:

Goal:

Make choice:

Recurrence:

Time:

Weighted interval/class scheduling (Problem 7.14)

- ► Classes: $C = \{c_1, c_2, \cdots, c_n\}$ $c_i \triangleq \langle g_i, s_i, f_i \rangle$
- ► Choosing non-conflicting classes to maximize your grades

sort $\mathcal C$ by finishing time.

Greedy algorithms by finishing time or weights fail.

Subproblem: G[i]: the maximal grades obtained from $\{c_1,c_2,\cdots,c_i\}$ Goal: G[n]

Subproblem: G[i]: the maximal grades obtained from $\{c_1, c_2, \cdots, c_i\}$

Goal: G[n]

Make choice: choose c_i or not in G[i]?

Recurrence:

$$G[i] = \max\{G[i-1], G[p(i)] + g_i\}$$

p(i): the largest index j < i s.t. c_i and c_j are disjoint

Subproblem: G[i]: the maximal grades obtained from $\{c_1, c_2, \cdots, c_i\}$

Goal: G[n]

Make choice: choose c_i or not in G[i]?

Recurrence:

$$G[i] = \max\{G[i-1], G[p(i)] + g_i\}$$

p(i): the largest index j < i s.t. c_i and c_j are disjoint

Init:

$$G[0] = 0$$

Subproblem: G[i]: the maximal grades obtained from $\{c_1, c_2, \cdots, c_i\}$

Goal: G[n]

Make choice: choose c_i or not in G[i]?

Recurrence:

$$G[i] = \max\{G[i-1], G[p(i)] + g_i\}$$

p(i): the largest index j < i s.t. c_i and c_j are disjoint

Init:

$$G[0] = 0$$

Time: $O(n \log n) + T(p(i)) + O(n) \cdot O(1)$

Why is ordering necessary?

$$G[7] = \max\{G[6], G[\{1, 3, 5\}] + g_7\}$$

subproblems changed: all $O(2^n)$ subsets

What about sorting by starting time?

$$G[6] = \max\{G[5], G[\{2,3\}] + g_6\}$$

subproblems changed: all $O(2^n)$ subsets

Dynamic Programming

- Overview
- (2) 1D DP
- 3 2D DP
- 4 3D DP
- DP on Graphs
- The Knapsack Problem

LCS: longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

(1) Find (the length of) an LCS of X and Y

$$X = \langle A, B, C, B, D, A, B \rangle$$
$$Y = \langle B, D, C, A, B, A \rangle$$
$$Z = \langle B, C, B, A \rangle$$

Subproblem: L[i,j]: the length of an LCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Subproblem: L[i,j]: the length of an LCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m,n]

Make choice: Is $X_i = Y_j$?

Recurrence: (Proof!)

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{cases}$$

Subproblem: L[i,j]: the length of an LCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m,n]

Make choice: Is $X_i = Y_i$?

Recurrence: (Proof!)

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{cases}$$

Init:

$$L[0, j] = 0, \ 0 \le j \le n$$

 $L[i, 0] = 0, \ 0 \le i \le m$

Time: $\Theta(mn)$

Longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

- (2) Allowing repetition of X
- (3) Allowing repetition $\leq k$ of X

Longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

- (2) Allowing repetition of X
- (3) Allowing repetition $\leq k$ of X

$$L[i,j] = \begin{cases} L[i,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{cases}$$

Longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

- (2) Allowing repetition of X
- (3) Allowing repetition $\leq k$ of X

$$L[i,j] = \begin{cases} L[i,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{cases}$$
$$X \implies X^{(k)} \triangleq X_1^{(k)} \cdots X_m^{(k)}$$

Longest common substring

What about longest common substring?

Shortest common supersequence (Problem 7.6)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

 \blacktriangleright Find (the length of) a shortest common subsequence of X and Y

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m,n]

Make choice: Is $X_i = Y_j$?

Recurrence:

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j] + 1, L[i,j-1] + 1\} & \text{if } X_i \neq Y_j \end{cases}$$

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m,n]

Make choice: Is $X_i = Y_i$?

Recurrence:

$$L[i,j] = \left\{ \begin{array}{ll} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j] + 1, L[i,j-1] + 1\} & \text{if } X_i \neq Y_j \end{array} \right.$$

Init:

$$L[0, j] = j, \ 0 \le j \le n$$

 $L[i, 0] = i, \ 0 \le i \le m$

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Make choice: Is $X_i = Y_i$?

Recurrence:

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j] + 1, L[i,j-1] + 1\} & \text{if } X_i \neq Y_j \end{cases}$$

Init:

$$L[0, j] = j, \ 0 \le j \le n$$

 $L[i, 0] = i, \ 0 \le i \le m$

Remark

$$\max(m, n) < L(m, n) < m + n$$

Variants of LCS

Variants of LCS (Problem 7.7)

Longest contiguous substring both forward and backward

Longest contiguous substring both forward and backward (Problem 7.8)

- ▶ String $T[1 \cdots n]$
- ► Find a longest contiguous substring (LCS) both forward and backward

dynamicprogrammingmanytimes

- lacktriangledown try subproblem L[i]: the length of an LCS in $T[1\cdots i]$
- lacktriangledown try subproblem L[i,j]: the length of an LCS in $T[i\cdots j]$

Longest contiguous substring both forward and backward

Subproblem: L[i,j]: the length of an LCS starting with T_i and ending

with T_j

Goal: $\max_{1 \leq i \leq j \leq n} L[i, j]$

Longest contiguous substring both forward and backward

Subproblem: L[i,j]: the length of an LCS starting with T_i and ending

with T_i

Goal: $\max_{1 \le i \le j \le n} L[i, j]$

Make choice: Is $T_i = T_j$?

Recurrence:

$$L[i,j] = \begin{cases} 0 & \text{if } T_i \neq T_j \\ L[i+1,j-1] + 1 & \text{if } T_i = T_j \end{cases}$$

Longest contiguous substring both forward and backward

Subproblem: L[i,j]: the length of an LCS starting with T_i and ending

with T_j

Goal: $\max_{1 \leq i \leq j \leq n} L[i, j]$

Make choice: Is $T_i = T_j$?

Recurrence:

$$L[i,j] = \begin{cases} 0 & \text{if } T_i \neq T_j \\ L[i+1,j-1] + 1 & \text{if } T_i = T_j \end{cases}$$

Init:

$$\begin{split} L[i,i] &= 0, \ 0 \leq i \leq n \\ L[i,i+1] &= \left\{ \begin{array}{ll} 1 & \text{if } T_i = T_{i+1} \\ 0 & \text{if } T_i \neq T_{i+1} \end{array} \right. \end{split}$$

Longest contiguous substring both forward and backward

Code: three ways of filling the table


```
for d = 2 to n-1
  for i = 1 to n-d
    j = i + d
    ...
return max {1 <= i <= j <= n} L[i,j]</pre>
```

Longest palindrome subsequence

Longest palindrome subsequence (Problem 7.10)

(1) Find (the length of) a longest palindrome subsequence of $S[1\cdots n]$

Subproblem: L[i,j]: the length of an LSP of $S[i\cdots j]$ Goal: L[1,n]

Longest palindrome subsequence

Longest palindrome subsequence (Problem 7.10)

(1) Find (the length of) a longest palindrome subsequence of $S[1\cdots n]$

Subproblem: L[i,j]: the length of an LSP of $S[i\cdots j]$

Goal: L[1, n]

Make choice: Is S[i] = S[j]?

Recurrence:

$$L[i,j] = \begin{cases} L[i+1,j-1] + 2 & \text{if } S[i] = S[j] \\ \max L[i+1,j], L[i,j-1] & \text{if } S[i] \neq S[j] \end{cases}$$

Longest palindrome subsequence

Longest palindrome subsequence (Problem 7.10)

(1) Find (the length of) a longest palindrome subsequence of $S[1\cdots n]$

Subproblem: L[i,j]: the length of an LSP of $S[i\cdots j]$

Goal: L[1, n]

Make choice: Is S[i] = S[j]?

Recurrence:

$$L[i,j] = \begin{cases} L[i+1,j-1] + 2 & \text{if } S[i] = S[j] \\ \max L[i+1,j], L[i,j-1] & \text{if } S[i] \neq S[j] \end{cases}$$

Init:

$$L[i, i] = 1, \ \forall 1 \le i \le n$$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1\dots n]$ into minimum number of palindromes (# cuts)

Subproblem: C[i,j]: minimum number of cuts for string $S[i\dots j]$ Goal: C[1,n]+1

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1\dots n]$ into minimum number of palindromes (# cuts)

Subproblem: C[i,j]: minimum number of cuts for string $S[i \dots j]$

Goal: C[1, n] + 1

Make choice: Where is the first cut?

Recurrence:

$$C[i,j] = \left\{ \begin{array}{l} 0 \ \ \text{if} \ S[i \dots j] \ \ \text{is a palindrome} \\ \min_{i+1 \leq k \leq j-1} C[i,k] + 1 + C[k+1,j] \quad \ \text{o.w.} \end{array} \right.$$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1\dots n]$ into minimum number of palindromes (# cuts)

Subproblem: C[i,j]: minimum number of cuts for string $S[i \dots j]$

Goal: C[1, n] + 1

Make choice: Where is the first cut?

Recurrence:

$$C[i,j] = \left\{ \begin{array}{l} 0 \ \ \text{if} \ S[i \ldots j] \ \text{is a palindrome} \\ \min_{i+1 \leq k \leq j-1} C[i,k] + 1 + C[k+1,j] \quad \text{ o.w.} \end{array} \right.$$

Init: C[i, i] = 0

Time: $O(n^3)$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1 \dots n]$ into minimum number of palindromes

Subproblem: P[i]: minimum number of palindromes for $S[1\cdots i]$

Goal: P[n]

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1 \dots n]$ into minimum number of palindromes

Subproblem: P[i]: minimum number of palindromes for $S[1 \cdots i]$

Goal: P[n]

Make choice: Where does the last palindrome start from?

Recurrence:

$$P[i] = \min_{\substack{1 \leq k \leq i \\ S[k \dots i] \text{ is a palindrome}}} P[k-1] + 1$$

Palindrome splitting (Problem 7.10)

(2) Split a string S[1...n] into minimum number of palindromes

Subproblem: P[i]: minimum number of palindromes for $S[1 \cdots i]$

Goal: P[n]

Make choice: Where does the last palindrome start from?

Recurrence:

$$P[i] = \min_{\substack{1 \leq k \leq i \\ S[k...i] \text{ is a palindrome}}} P[k-1] + 1$$

Init: P[0] = 1Time: $O(n^2)$

String splitting (Problem 7.11)

- ► Split a string S into many pieces
- $ightharpoonup Cost |S| = n \implies n$
- ▶ Given locations of m cuts: $C_0, C_1, \cdots, C_m, C_{m+1}$
- lacktriangle Find the minimum cost of splitting S into m+1 pieces $S_0\cdots S_m$

Subproblem: C[i,j]: the minimum cost of splitting substring $S_i \cdots S_{j-1}$

using cuts $C_{i+1} \cdots C_{j-1}$

Goal: C[0, m+1]

Subproblem: C[i,j]: the minimum cost of splitting substring $S_i \cdots S_{j-1}$ using cuts $C_{i+1} \cdots C_{i-1}$

Goal: C[0, m+1]

Make choice: What is the first cut in $C_{i+1} \cdots C_{i-1}$?

Recurrence:

$$C[i,j] = \min_{i < k < j} (C[i,k] + C[k,j] + l(S_i \cdots S_{j-1}))$$

Subproblem: C[i,j]: the minimum cost of splitting substring $S_i \cdots S_{j-1}$ using cuts $C_{i+1} \cdots C_{i-1}$

Goal: C[0, m+1]

Make choice: What is the first cut in $C_{i+1} \cdots C_{i-1}$?

Recurrence:

$$C[i,j] = \min_{i < k < j} (C[i,k] + C[k,j] + l(S_i \cdots S_{j-1}))$$

Init:
$$C[i, i+1] = 0$$

Subproblem:

Subproblem:

Goal:

Make choice:

Subproblem:

Goal:

Make choice:

Recurrence:

Init:

Time:

Dynamic Programming

- Overview
- 2 1D DP
- 3 2D DP
- 4 3D DP
- DP on Graphs
- 6 The Knapsack Problem

Floyd-Warshall algorithm

(1) DP for Floyd-Warshall algorithm for APSP on directed graphs

Subproblem: dist[i, j, k]: the length of the shortest path from i to j via only nodes in $v_1 \cdots v_k$

Goal: $dist[i, j, n], \forall i, j$

Floyd-Warshall algorithm

(1) DP for Floyd-Warshall algorithm for APSP on directed graphs

Make choice: Is v_k on the ShortestPath[i, j, k]?

Recurrence:

$$\mathsf{dist}[i,j,k] = \min\{\mathsf{dist}[i,j,k-1],\mathsf{dist}[i,k,k-1] + \mathsf{dist}[k,j,k-1]\}$$

Floyd-Warshall algorithm

(1) DP for Floyd-Warshall algorithm for APSP on directed graphs

Make choice: Is v_k on the ShortestPath[i, j, k]?

Recurrence:

$$\mathsf{dist}[i,j,k] = \min\{\mathsf{dist}[i,j,k-1], \mathsf{dist}[i,k,k-1] + \mathsf{dist}[k,j,k-1]\}$$

Init:

$$\mathsf{dist}[i,j,0] = \left\{ \begin{array}{ll} 0 & i=j \\ w(i,j) & (i,j) \in E \\ & & \mathsf{o.w.} \end{array} \right.$$

Floyd-Warshall algorithm (Problem 6.25)

(2) Routing table for Floyd-Warshall algorithm

```
\begin{array}{l} \text{for all } k \leftarrow 1 \dots n \text{ do} \\ \text{for all } i \leftarrow 1 \dots n \text{ do} \\ \text{for all } j \leftarrow 1 \dots n \text{ do} \\ \text{if } \operatorname{dist}[i,j] > \operatorname{dist}[i,k] + \operatorname{dist}[k,j] \text{ then} \\ \operatorname{dist}[i,j] \leftarrow \operatorname{dist}[i,k] + \operatorname{dist}[k,j] \end{array}
```

Floyd-Warshall algorithm (Problem 6.25)

(2) Routing table for Floyd-Warshall algorithm

```
\begin{split} \text{for all } k \leftarrow 1 \dots n \text{ do} \\ \text{for all } i \leftarrow 1 \dots n \text{ do} \\ \text{for all } j \leftarrow 1 \dots n \text{ do} \\ \text{if } \operatorname{dist}[i,j] > \operatorname{dist}[i,k] + \operatorname{dist}[k,j] \text{ then} \\ \operatorname{dist}[i,j] \leftarrow \operatorname{dist}[i,k] + \operatorname{dist}[k,j] \\ \operatorname{Go}[i,j] \leftarrow \operatorname{Go}[i,k] \end{split}
```

Floyd-Warshall algorithm (Problem 6.25)

(2) Routing table

```
for all i \leftarrow 1 \dots n do
      for all i \leftarrow 1 \dots n do
            \mathsf{dist}[i,j] \leftarrow \infty
            Go[i, j] \leftarrow Nil
for all (i, j) \in E do
     \mathsf{dist}[i,j] \leftarrow w(i,j)
     Go[i,j] \leftarrow j
for all i \leftarrow 1 \dots n do
     \mathsf{dist}[i,i] \leftarrow 0
      Go[i, j] \leftarrow Nil
```


Floyd-Warshall algorithm (Problem 6.25)

(2) Routing table

$$\begin{array}{l} \text{for all } i \leftarrow 1 \dots n \text{ do} \\ \text{ for all } j \leftarrow 1 \dots n \text{ do} \\ \text{ dist}[i,j] \leftarrow \infty \\ \text{ Go}[i,j] \leftarrow \text{Nil} \\ \\ \text{for all } (i,j) \in E \text{ do} \\ \text{ dist}[i,j] \leftarrow w(i,j) \\ \text{ Go}[i,j] \leftarrow j \\ \\ \text{for all } i \leftarrow 1 \dots n \text{ do} \\ \text{ dist}[i,i] \leftarrow 0 \\ \text{ Go}[i,j] \leftarrow \text{Nil} \\ \end{array}$$

```
\begin{array}{c} \textbf{procedure} \ \operatorname{PATH}(i,j) \\ \textbf{if} \ \operatorname{Go}[i,j] = \operatorname{Nil} \ \textbf{then} \\ \operatorname{Output} \ \text{``No Path.''} \end{array}
```

```
Output "i" while i \neq j do i \leftarrow \operatorname{Go}[i,j] Output "i"
```

Floyd-Warshall algorithm (Problem 6.29)

(3) Find minimum-weighted cycle of directed graph (w(e) > 0)

$$\mathsf{dist}[i,i] \leftarrow 0 \implies \mathsf{dist}[i,i] \leftarrow \infty$$

Floyd-Warshall algorithm (Problem 6.29)

(3) Find minimum-weighted cycle of directed graph (w(e) > 0)

$$\mathsf{dist}[i,i] \leftarrow 0 \implies \mathsf{dist}[i,i] \leftarrow \infty$$

$$\exists i : \mathsf{dist}[i,i] < 0$$

$$\forall i: \mathsf{dist}[i,i] \geq 0$$

Shortest paths on undirected graphs

Finding shortest paths in undirected graphs with possibly negative edge weights

The book "Algorithms" by Robert Sedgewick and Kevin Wayne hinted that (see the quote below) there are efficient algorithms for finding shortest paths in undirected graphs with possibly negative edge weights (not by treating an undirected edge as two directed one which means that a single negative edge implies a negative cycle). However, no references are given in the book. Are you aware of any such algorithms?

Q. How can we find shortest paths in undirected (edge-weighted) graphs?

A. For positive edge weights, Dijkstra's algorithm does the Job. We just build an EdgeWeightedDigraph corresponding to the given EdgeWeightedGraph (by adding two directed edges corresponding to each undirected edge, one in each direction) and then run Dijkstra's algorithm. If edge weights can be negative (emphasis added), efficient algorithms are available, but they are more complicated than the Bellman-Ford algorithm.

https://cs.stackexchange.com/q/76578/4911

Dynamic Programming

- Overview
- (2) 1D DP
- 3 2D DP
- 4 3D DP
- **5** DP on Graphs
- The Knapsack Problem

Minimum vertex cover on trees [Problem: 2.2.18]

- ▶ Undirected tree T = (V, E); No designated root!
- ightharpoonup Compute (the size of) a minimum vertex cover of T

Rooted T at any node r.

Rooted T at any node r.

Subproblem: I(u): the size of an MVC of subtree T_u rooted at u

Goal: I(r)

Rooted T at any node r.

Subproblem: I(u): the size of an MVC of subtree T_u rooted at u

Goal: I(r)

Make choice: Is u in MVC[u]?

Recurrence:

$$I(u) = \min\{\# \text{ children of } u + \sum_{v: \text{ grandchildren of } u} I(v)\}$$

$$1 + \sum_{v: \text{ grandchildren of } u} I(v)\}$$

v: children of u

Rooted T at any node r.

Subproblem: I(u): the size of an MVC of subtree T_u rooted at u

Goal: I(r)

Make choice: Is u in MVC[u]?

Recurrence:

$$I(u) = \min\{\# \text{ children of } u + \sum_{v: \text{ grandchildren of } u} I(v)$$

$$1 + \sum_{v: \text{ children of } u} I(v)\}$$

Init: I(u) = 0, if u is a leave

Minimum vertex cover on trees

DFS on T from root r:

when u is "finished": if u is a leave then $I(u) \leftarrow 0$ else $I(u) \leftarrow \dots$

Minimum vertex cover on trees

DFS on T from root r:

when u is "finished": if u is a leave then $I(u) \leftarrow 0$ else

 $I(u) \leftarrow \dots$

Greedy algorithm:

Theorem

There is an MVC which contains no leaves.

Longest path in DAG (Problem 7.17)

▶ Direction: \downarrow OR \rightarrow

► Score: >=< 0

Longest path in DAG (Problem 7.17)

- ▶ Direction: \downarrow OR \rightarrow
- ► Score: >=< 0
- 1. digraph G
- 2. node weight \rightarrow edge weight
- 3. adding an extra sink s
- 4. $G \rightarrow G^T$

Longest path in DAG (Problem 7.17)

- ▶ Direction: \downarrow OR \rightarrow
- ▶ Score: >=<0
- 1. digraph G
- 2. node weight \rightarrow edge weight
- 3. adding an extra sink \boldsymbol{s}
- 4. $G \rightarrow G^T$

Compute a longest path from s in DAG

Subproblem: $\operatorname{dist}[v]$: longest distance from s to v

 $\mathsf{Goal} \colon \operatorname{dist}[v], \forall v \in V$

Subproblem: dist[v]: longest distance from s to v

Goal: $\operatorname{dist}[v], \forall v \in V$

Make choice:

Recurrence:

$$\mathsf{dist}[v] = \max_{u \to v} \left(\mathsf{dist}[u] + w(u \to v) \right)$$

Subproblem: dist[v]: longest distance from s to v

Goal: $\operatorname{dist}[v], \forall v \in V$

Make choice:

Recurrence:

$$\mathsf{dist}[v] = \max_{u \to v} \left(\mathsf{dist}[u] + w(u \to v) \right)$$

Init: $\operatorname{dist}[s] = 0$

Subproblem: $\operatorname{dist}[v]$: longest distance from s to v

Goal: $\operatorname{dist}[v], \forall v \in V$

Make choice:

Recurrence:

$$\mathsf{dist}[v] = \max_{u \to v} \left(\mathsf{dist}[u] + w(u \to v) \right)$$

Init: $\operatorname{dist}[s] = 0$

Compute dist[v] in topo. order

Bitonic tour

Bitonic tour (Problem 7.18)

Bitonic tour

Dynamic Programming

- Overview
- 2 1D DP
- 3 2D DP
- 4 3D DP
- DP on Graphs
- The Knapsack Problem

