Reconocimiento de emociones

Arthur Font Maria Román Alicia Carrasco Àngela Serrano

Objetivos

• Las emociones organizan las respuestas de distintos sistemas biológicos:

- Expresiones faciales
- **➤** Los músculos
- ➤ La voz
- ➤ La actividad del SNA
- Sistema endocrino

- > Felicidad
- > Tristeza
- > Sorpresa
- > Miedo
- > Ira
- > Desprecio
- Neutral

Contexto

Facial Action Coding System (FACS)

AU1	AU2	AU4	AU5	AU6
60	88	21 150	00	90
Inner brow miser	Outer brow miser	Brow Lowerer	Upper lid miser	Cheek raiser
AU7	AU9	AU12	AU15	AU17
86	-	3	12/	3/
Lid tighten	Nose wrinkle	Lip corner puller	Lip corner depressor	Chin raiser
AU23	AU24	AU25	AU26	AU27
2	40	E	=	9
Lip tighten	Lip presser	Lips part	Jaw drop	Mouth stretch

Carl-Herman Hjortsjö

Paul Ekman

Wallace V. Friesen

Reconocimiento basado en Haar Features

- Propuesto por Paul Viola and Michael Jones
- Enfoque basado en el aprendizaje automático
- Se entrena una función en cascada a partir de muchas imágenes positivas y negativas

Reconocimiento basado en Fisher, Eigen y LBPH

- Se basan en el reconocimiento facial
- Puede extraer componentes principales de las caras e histogramas locales
- Reutilizarlos para el reconocimiento de emociones

Reconocimiento basado en gradientes orientados a histogramas (HOG)

- Se basan en el reconocimiento facial
- Reutilizar para que nos encuentre los diferentes componentes de un rostro

Muy sensible a la deformación de objetos

Funciones personalizadas con detección de puntos de referencia:

- Forma sencilla (68 puntos de referencia)
- Extraer rasgos faciales como ojos, cejas, boca, etc.
- Clasificador de Machine Learning para predecir emociones en función de los 68 puntos de referencia

Reconocedor basado en CNN y SSD:

- SSD (Single Shot MultiBox Detector) es un método que se utiliza para detectar objetos.
- CNN entrenado utilizando el enfoque de la cross-entropy loss
- La salida del modelo son las probabilidades de las 7 clases de emociones: neutral, happiness, surprise, sadness, anger, disgust y fear

Aplicaciones

Principal:

- Medicina

Otras:

- Docencia
- Marketing y ventas
- Política
- Videojuegos

Relación con el material visto en clase

Detección de objetos y clasificación con CNNs (tema 11) Detección facial con HOG (tema 8)

Conclusiones

- Más eficaz: redes neuronales convolucionales.
- Posibles futuros nuevos algoritmos e implementaciones.
- Futuro incremento de aplicaciones.