Chapter 1 homework

Theoretical questions

1.1 I

The width of the interval at the nth step is 2^{-n+1} , the max possible distance between r midpoint is 1. and midpoint is 1.

1.2 II

At the nth step, the width of interval is $\frac{b_0-a_0}{2^n}$, the max absolute error is $\frac{b_0-a_0}{2^{n+1}}$, so the max relative error is $\frac{\frac{b_0-a_0}{2n+1}}{\frac{a_0}{n}}$

As the relative error is no greater than ϵ , so $\frac{\frac{b_0-a_0}{2^{n+1}}}{\frac{a_0}{2^n}} \leq \epsilon$. Then we have $\log_2(b_0-a_0)-n-1-\log(a_0) \geq \log(\epsilon)$. So if $n \geq \frac{\log(b_0-a_0)-\log(\epsilon)-\log(a_0)}{\log(2)}-1$, the relative error is no greater than ϵ .

1.3 III

$$p'(x) = 12x^2 - 4x$$

 $p^{'}(x) = 12x^2 - 4x$ The result is in the following table.

n	x_n	$p(x_n)$	$p'(x_n)$	$x_n - \frac{p(x_n)}{p'(x_n)}$
0	-1.0000	-3.0000	16.0000	-0.8125
1	-0.8125	-0.4658	11.1719	-0.7708
2	-0.7708	-0.0201	10.2129	-0.7688
3	-0.7688	-3.9801	10.1686	-0.7688
4	-0.7688	/		

Assume α is the true root, then from Taylor's expansion we have

$$f(x_n) = f(\alpha) + f'(\xi)(x_n - \alpha) = f'(\xi)(x_n - \alpha), \xi \in [\alpha, x_n]$$

And combine with $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$, there is

$$x_{n+1} = x_n - \frac{f'(\xi)(x_n - \alpha)}{f'(x_0)}$$

Subtract α on both side, we get

$$|x_{n+1} - \alpha| = |x_n - \alpha - \frac{f'(\xi)(x_n - \alpha)}{f'(x_0)}|$$

$$|x_{n+1} = |1 - \frac{f'(\xi)}{f'(x_0)}|e_n.$$

This is equivalent to $e_{n+1} = |1 - \frac{f'(\xi)}{f'(x_0)}|e_n$.

As

$$\lim_{n \to \infty} |1 - \frac{f'(\xi)}{f'(x_0)}| = |1 - \frac{f'(\alpha)}{f'(x_0)}|$$

then we have $C = |1 - \frac{f^{'}(\alpha)}{f^{'}(x_0)}|$ and s = 1 meet the question's requirement.

(1.5 V

Because $0 \le tan^{-1}(x) \le x(x > 0)$, so $0 \le x_{n+1} = tan^{-1}(x_n) \le x_n(x_n > 0)$. So if $x_0 \ge 0$, the interval is converge. If $x_0 < 0$, then $\{-x_n\}$ is converge, so $\{x_n\}$ is converge too.

5 1.6 VI

Let $f(x) = \frac{1}{x+p}$, then $x_0 = 1, x_1 = f(x_0), x_2 = f(x_1) \dots$ As p > 1, then f(x) is a continuous contraction on [0,1], and it has a fixed point $\alpha = \frac{\sqrt[2]{p^2+4}-p}{2}$. $\lambda = \max|f'(x)| = -\frac{1}{(x+p)^2}| < 1$, from **Theorem 1.38**, we know $|x_n - \alpha| \le \frac{\lambda^n}{1-\lambda}|x_1 - x_0|$. So $x = \alpha = \frac{\sqrt[2]{p^2+4}-p}{2}$

/ J_{1.7} VII

If we need absolute error no larger than δ , then we have $\frac{b_0-a_0}{2^{n+1}} \leq \delta$, which means $n \geq \frac{\log(b_0-a_0)-\log n}{\log 2} - 1$.

As the true root might be 0, the relative error isn't an appropriate measure.