Cheatsheet

1

1.

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \times \mathbf{E} = -\dot{\mathbf{B}}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \dot{\mathbf{D}}$$

2.
$$\mathbf{F} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B}$$

3. •
$$\mathbf{p} = q\mathbf{a}$$

•
$$\mathbf{m} = I \int_{S} d\mathbf{S}$$

•
$$G = p \times E, G = m \times B$$

•
$$U = -\mathbf{p} \cdot \mathbf{E}, U = -\mathbf{m} \cdot \mathbf{B}$$

•
$$\mathbf{F} = -\nabla U(\mathbf{r}), \, \mathbf{F} = (\mathbf{p} \cdot \nabla)\mathbf{E}, \, \mathbf{F} = (\mathbf{m} \cdot \nabla)\mathbf{B}$$

4.
$$U_E = \frac{1}{2}\epsilon\epsilon_0 |\mathbf{E}(\mathbf{r})|^2 = \frac{1}{2}\mathbf{D}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r})$$

 $U_B = \frac{1}{2}\mathbf{B}(\mathbf{r}) \cdot \mathbf{H}(\mathbf{r})$

5.
$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} = \epsilon_0 (1 + \chi) \mathbf{E}, \ \mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M}) = \mu_0 (1 + \chi_m) \mathbf{H}$$

6.
$$\nabla \times (\nabla \times \mathbf{F}) = \nabla (\nabla \cdot \mathbf{F}) - \nabla^2 \mathbf{F}$$

•
$$d\mathbf{B} = \frac{\mu_0 I}{4\pi R^2} d\mathbf{l} \times \hat{\mathbf{R}}$$

•
$$\nabla^2 \mathbf{E} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

 $\nabla^2 \mathbf{H} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{H}}{\partial t^2}$ (No charge, no current)
 $\frac{E_x}{B_y} = \frac{\omega}{k} = v = \frac{1}{\sqrt{\epsilon \epsilon_0 \mu \mu_0}}$
 $\frac{E_x}{H_y} = Z = \sqrt{\frac{\mu \mu_0}{\epsilon \epsilon_0}}$
 $\mathbf{N} = \mathbf{E} \times \mathbf{H}$
 $\mathbf{R} = \frac{\mathbf{N}}{c}$

$$\mathbf{R} = \frac{\mathbf{N}}{\mathbf{N}}$$

7.
$$\mathbf{m} = V\mathbf{M} = I \int \mathrm{d}S$$

8. Scalar potential
$$\mathbf{B} = \mu_0 \mathbf{H} = -\mu_0 \nabla \phi_m$$
, vector potential $\mathbf{B} = \nabla \times \mathbf{A}, \nabla \cdot \mathbf{A} = 0, -\nabla^2 \mathbf{A} = \mu_0 \mathbf{J}$

9.
$$Z = \frac{V}{I} = \sqrt{\frac{L}{C}}$$

10.
$$r = \frac{V_r}{V_i} = \frac{Z_t - Z}{Z_t + Z}, t = \frac{V_t}{V_i} = \frac{2Z_t}{Z_t + Z}$$

1.
$$\mathbf{J} = \sum_{\mathbf{r}} \mathbf{r} \times \mathbf{p} = \sum_{\mathbf{r}} \mathbf{r} \times m(\boldsymbol{\omega} \times \mathbf{r}) = \sum_{\mathbf{m}} m(\mathbf{r}^2 \boldsymbol{\omega} - \mathbf{r}(\mathbf{r} \cdot \boldsymbol{\omega})) = \sum_{\mathbf{m}} m(\mathbf{r}^T \mathbf{r} \mathbf{1} - \mathbf{r} \mathbf{r}^T) \boldsymbol{\omega} = \mathbf{I} \boldsymbol{\omega} = \begin{pmatrix} \sum_{\mathbf{m}} m(y^2 + z^2) & -\sum_{\mathbf{m}} mxy & -\sum_{\mathbf{m}} mxz \\ -\sum_{\mathbf{m}} mxy & \sum_{\mathbf{m}} (x^2 + z^2) & -\sum_{\mathbf{m}} myz \\ -\sum_{\mathbf{m}} mxz & -\sum_{\mathbf{m}} myz & \sum_{\mathbf{m}} m(x^2 + y^2) \end{pmatrix} \boldsymbol{\omega}$$

2. For body frame
$$S$$
, $G = \left\lceil \frac{\mathrm{d} \boldsymbol{J}}{\mathrm{d} t} \right\rceil_S + \boldsymbol{\omega} \times \boldsymbol{J}$, Euler's equations are

$$G_1 = I_1 \dot{\omega}_1 + (I_3 - I_2) \omega_2 \omega_3$$

$$G_2 = I_2 \dot{\omega}_2 + (I_1 - I_3) \omega_3 \omega_1$$

$$G_3 = I_3 \dot{\omega}_3 + (I_2 - I_1) \omega_1 \omega_2$$

(Because
$$\mathbf{J} = I\boldsymbol{\omega} = \sum_{i=1}^{3} I_i \omega_i \hat{e}_i$$
, $\mathbf{G} = \sum_{i=1}^{3} I_i \dot{\omega}_i \hat{e}_i + I_i \omega_i \frac{\mathrm{d}\hat{e}_i}{\mathrm{d}t}$ and $\left[\frac{\mathrm{d}\hat{e}_i}{\mathrm{d}t} = \boldsymbol{\omega} \times \hat{e}_i\right]$

3.
$$T = \frac{1}{2} \sum m(\boldsymbol{\omega} \times \boldsymbol{r}) \cdot (\boldsymbol{\omega} \times \boldsymbol{r}) = \frac{1}{2} \sum m\boldsymbol{\omega} \cdot (\boldsymbol{r} \times (\boldsymbol{\omega} \times \boldsymbol{r})) = \frac{1}{2} \boldsymbol{\omega} \cdot \boldsymbol{J} = \frac{1}{2} \boldsymbol{\omega}^T I \boldsymbol{\omega}$$

4.
$$\Omega_b \equiv \frac{I_1 - I_3}{I_1} \omega_3$$

5.
$$\Omega_s = \frac{\dot{\omega}_1}{|\boldsymbol{\omega}|\sin\theta_s} = \frac{J}{I_1}$$

6.
$$\Omega_b \sin \theta_b = \Omega_s \sin \theta_s$$
 (Poinsot)

7. Symmetric top with Euler angles (θ, ϕ, χ)

•
$$\omega = \dot{\phi}\hat{e}_z + \dot{\theta}\hat{e}_1 + \dot{\chi}\hat{e}_3$$

• In body frame
$$S$$
, $\boldsymbol{\omega} = (\dot{\theta}, \dot{\phi}\sin\theta, \dot{\chi} + \dot{\phi}\cos\theta)$
 $\boldsymbol{J} = (I_1\dot{\theta}, I_1\dot{\phi}\sin\theta, I_3(\dot{\chi} + \dot{\phi}\cos\theta))$

• Keep
$$\omega_3 = \dot{\chi} + \dot{\phi}\cos\theta$$
, $J_z = J_3\cos\theta + J_2\sin\theta$ constant

• We get
$$\dot{\phi} = \Omega_s$$
, $\dot{\chi} = \Omega_b$

8. For simplicity, only consider principal axis to express
$$e$$
 and τ as vectors

9. Strain is $e = \delta l/l$, stress is $\tau = -P = -F/A$, for isotropic material, $E\mathbf{e} = \begin{pmatrix} 1 & -\sigma & -\sigma \\ -\sigma & 1 & -\sigma \\ -\sigma & -\sigma & 1 \end{pmatrix} \boldsymbol{\tau}$,
$$\sigma \text{ is Poisson ratio, } e_1 = e_2 = e_3 = \frac{\tau(1-2\sigma)}{E}, \frac{\delta V}{V} \approx e_1 + e_2 + e_3 = \frac{3\tau(1-2\sigma)}{E}, \boxed{B = \frac{E}{3(1-2\sigma)}}$$

10.
$$\tau = \begin{pmatrix} 1 & -\sigma & -\sigma \\ -\sigma & 1 & -\sigma \\ -\sigma & -\sigma & 1 \end{pmatrix}^{-1} E \mathbf{e} = \frac{E}{(\sigma+1)(1-2\sigma)} \begin{pmatrix} 1-\sigma & \sigma & \sigma \\ \sigma & 1-\sigma & \sigma \\ \sigma & \sigma & 1-\sigma \end{pmatrix} \mathbf{e} = \lambda(e_1+e_2+e_3) + 2G\mathbf{e} = \lambda \operatorname{Tr}(\mathbf{e})\mathbf{I} + 2G\mathbf{e}, \operatorname{Lam\'e's constant} \boxed{\lambda \equiv \frac{E\sigma}{(1+\sigma)(1-2\sigma)}, G = \frac{E}{2(1+\sigma)}}, \lambda = B - \frac{2}{3}G$$

11.
$$W = -\frac{\mathrm{d}F}{\mathrm{d}x}, F = -\frac{\mathrm{d}B}{\mathrm{d}x}, B = \frac{EI}{R} = EIy'' = \int y \cdot \tau \,\mathrm{d}A, \ \tau = Ee = E\frac{y}{R}, \ I = \int y^2 \,\mathrm{d}A$$

12.
$$\frac{D\mathbf{v}}{Dt} = \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}$$

13.
$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla P + \rho \mathbf{g} + \eta \nabla^2 \mathbf{v} \ (\eta = 0, \text{ Euler's equation})$$

14.
$$P + \frac{1}{2}\rho v^2 + \rho \phi = C$$

15.
$$\Phi = v_0 \cos \theta \left(r + \frac{a^3}{2r^2} \right)$$

16. Magnus effect $\mathbf{F} = \rho \mathbf{v} \times \kappa$, $\kappa = 2\pi r v_{\theta}$ is circulation around cylinder

17. Coriolis force $2m\omega v \sin \theta$

Examples to memorize

1. Plasma

• Electron
$$m_e \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}t^2} = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

•
$$B_y = E_x/c, c \ll |\mathbf{v}|, \mathbf{B} \text{ ignored}$$

•
$$\mathbf{r} = \frac{e}{m_c \omega^2} \mathbf{E_0} e^{i(kz - \omega t)}$$

• Electron and lattice - dipole
$${\bf p}=-e{\bf r}=-{e^2\over m_e\omega^2}{\bf E_0}e^{i(kz-\omega t)}$$

• Dipole moment per unit volume
$${\bf P}=-\frac{Ne^2}{m_e\omega^2}{\bf E}=\epsilon_0\chi{\bf E}$$

•
$$\epsilon = 1 + \chi = 1 - \frac{Ne^2}{m_e \epsilon_0 \omega^2} = 1 - \frac{\omega_p^2}{\omega^2}, \ \omega_p = \sqrt{\frac{N}{m_e \epsilon_0}}e$$

• Below ω_p , $\epsilon < 0$, n is imaginary, reflect

2. Conductor

• Currents form
$$\mathbf{J} = \sigma \mathbf{E}, \, \sigma \sim 10^7 \gg 1$$

•
$$\nabla \times \mathbf{H} = \mathbf{J} + \dot{\mathbf{D}} = \sigma \mathbf{E} + \epsilon \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} = (\sigma - i\omega \epsilon \epsilon_0) \mathbf{E} = -i\omega \epsilon' \epsilon_0 \mathbf{E}$$

• Effective dielectric constant
$$\epsilon' = \epsilon - \frac{\sigma}{i\omega\epsilon_0} \approx \boxed{i\frac{\sigma}{\omega\epsilon_0}}$$

•
$$n = \sqrt{\epsilon' \mu} = \pm \frac{1+i}{\sqrt{2}} \sqrt{\frac{\sigma \mu}{\omega \epsilon_0}}$$

•
$$E = E_0 e^{i(\omega t - kz)}, c/n = \frac{\omega}{k}$$

•
$$k = \frac{n\omega}{c} = \frac{1+i}{\sqrt{2}}\sqrt{\sigma\mu_0\mu\omega} = \frac{1+i}{\delta}$$
, skin depth $\delta = \sqrt{\frac{2}{\sigma\omega\mu_0\mu}}$

- $E=E_0e^{-z/\delta+i(z/\delta-\omega t)}$, exponential decay wrt. skin depth δ

3. The skin effect

• **E** along wire (x direction),
$$\mathbf{J} = \sigma \mathbf{E}$$
. z is radial direction

•
$$J_x(z) = J_0 e^{-z/\delta + i(z/\delta - \omega t)}$$

• Approximate I at small
$$\delta$$
, $I = \int_0^\infty J_x(z)(2\pi a) dz = \pi a J_0 \delta(1+i) e^{-i\omega t}$

•
$$\langle I^2 \rangle = (\pi a J_0 \delta)^2$$

•
$$dP = \frac{J^2 dA}{\sigma}, P = \frac{J_0^2 \pi a \delta}{2\sigma}$$

•
$$R = \frac{P}{\langle I^2 \rangle} = \frac{P}{\langle I^2 \rangle} = \frac{1}{2\pi a \delta \sigma} = \frac{1}{\sigma A'}$$

• Skin effect: at high ω , small δ , effective area= $2\pi a\delta$ (annulus of thickness of skin depth)

4. Input impedance is impedance measured at the input (position matters)

$$\bullet \ \ V_i = V_1 e^{-i(kz - \omega t)}, \, V_r = r V_1 e^{-i(-kz - \omega t)}, \, \frac{V_i}{I_i} = Z, \, \frac{V_r}{I_r} = -Z$$

•
$$Z_{\text{in}} = \frac{V_i + V_r}{I_i + I_r}\Big|_{r=a} = \frac{e^{ika} + re^{-ika}}{e^{ika} - re^{-ika}} Z, \frac{Z_{\text{in}}}{Z} = \frac{Z_t \cos(ka) + iZ \sin(ka)}{Z \cos(ka) + iZ_t \sin(ka)}$$

• Short-circuit,
$$Z_t = 0$$
, $\frac{Z_{\text{in}}}{Z} = i \tan(ka)$

• Open-circuit,
$$Z_t \to \infty$$
, $\frac{Z_{\text{in}}}{Z} = -i \cot(ka)$

• Quater-wavelength,
$$a=\lambda/4, ka=\pi/2, \, \frac{Z_{\rm in}}{Z}=\frac{Z}{Z_t}$$

5. (Non-TEM) Parallel plate waveguide

•
$$k^2 = k_x^2 + k_z^2$$
, $k_z = k_g$, $k_x = \frac{m\pi}{a}$ (standing wave)

6. Rectangular waveguide

• General TE_{mn} , transverse electric, n and m in x,y direction

•
$$(k_x, k_y, k_z) = \left(\frac{m\pi}{a}, \frac{n\pi}{b}, k_g\right)$$

$$E_x = A_0 k_y \cos(k_x x) \sin(k_y y) \cos(k_z z - \omega t)$$

$$E_x = -A_0 k_y \sin(k_x x) \cos(k_y y) \cos(k_z z - \omega t)$$

$$E_z = 0$$

•
$$\frac{\omega^2}{c^2} = k_x^2 + k_y^2 + k_z^2$$

• $k_z = k_g$, if imaginary, evanescent

Figure 8.17: The $\rm TE_{10}$ mode in a rectangular waveguide: \pmb{E} (dotted line) and \pmb{H} (solid line) fields.

Figure 8.18: The currents associated with the TE_{10} mode of a rectangular waveguide.