사용자 맞춤형 자동 조정 모니터 스탠드

발표자: 조승윤, 강동재, 강민석* (1분반)

* 팀장: 010-2274-3820, rkd2274@pusan.ac.kr

부산대학교 기계공학부 PUSAN NATIONAL UNIVERSITY SCHOOL OF MECHANICAL ENGINEERING

지도교수: 민준기

제품 개발의 목표

- 사용자의 자세를 감지하는 스마트 모니터 시스템 개발
- 자동화된 자세 감지 및 실시간 모니터 위치 제어 로직 개발
- 비용 절감을 위한 저사양 환경에서의 딥러닝 모델 최적화

제품 개발의 필요성

- 인체공학적 사무 기기의 필요성 증대
- 수동 조작이 필요한 기존 제품의 단점 개선
- 딥러닝 기반 컴퓨터 비전 기술로 센서 기반 제품의 한계 극복

Product Overview

사용자의 얼굴을 추적하는 모니터 스탠드

- 🔍 오픈소스 딥러닝 모델 기반의 얼굴 위치 추적
- 연산부와 제어부를 분리하여 안정적인 시스템 제어
- 🗱 부분 교체가 용이한 완전 모듈형 구조

Flow Chart

DC 모터 제어

(좌우 회전 구동)

(상하 병진구동)

액추에이터 제어

시스템 작동

1프레임 입력

🗘 조립 순서를 강제하는 설계로 체결 오류 사전 방지

Object Detection

PID 제어기

PID 제어기

(상하, 좌우 위치 계산)

Drive System

Horizontal Linear Drive

- Worm with Rack and Pinion
- Gear Ratio: 23:1
- DC Motor(1) Driven

Horizontal Rotational Drive

- Worm and Worm Wheel
- Gear Ratio: 60:1
- DC Motor(2) Driven

Vertical Linear Actuator

Standalone Linear Actuator

Control System

Object Detection

- **Q** Base Model: YOLOv8
- **Fine-Tuned with Face Dataset**
- Model Inference Accelerated by NPU

Spec Sheet

Drive System							
	Linear Drive	Rotational Drive	Linear Actuator				
Ratio	3.14 mm/rot	6 deg/rot	_				
ROM	+75mm Forward -59mm Backward	36.2~360° CW 120.5~360° CCW	0~150 mm				
Power	12V/2.5A/30W	12V/2.5A/30W	12V/0.25A/3W				
*Weight	715g	685g	150g				

* Total Weight: 2,365g

	,							
Control System								
Processing Module			Control Module					
Obj. Detection	Model	yolov8n-face	PWM	Duty	6~8%			
	Res	640x640 pixels		Fred	30Hz			
	*Acc	79.6~94.6%	PID	Кр	2.0			
	Format	RKNN(INT8)		Ki	0			
Latency	Inference	~50ms		Kd	1.0			
	Post-Proc	~50ms	Communication					
	Total	~100ms	Protocol		USB Serial			
Power		5V/3A/15W	Baud Rate		9600			
1 01101		31,3/1,1311		-				

* Accuracy: IoU Threshold > 0.5

시스템 작동 얼굴 거리 측정 Kalman Filter (노이즈 제거) PID 제어기 면차 변화

결과 및 기대효과

• 사용자의 개입 없이 보기 편한 위치로 모니터 위치 자동 제어

<mark>카메라 모듈</mark> 기반 제어

중앙 X

Kalman Filter

(노이즈 제거)

위치

상하

위치

ToF 센서 기반 제어

중앙 0

중앙 0

< 임계값

- 모니터의 위치와 관계 없이 자유롭게 자세를 바꾸며 사용 가능
- 장시간 불편한 자세 유지로 인한 부작용 최소화

향후 진행 계획

- 구동부 크기를 줄이고, 최대 하중을 늘리기 위해 새로운 Gear Set 연구
- 구조적 안정성을 위해 전반적인 구조 개편 및 부품 정밀도 향상
- 딥러닝 모델 경량화 및 최적화를 통해 반응속도 개선
- 사용자가 설정값을 변경할 수 있는 GUI 설정 프로그램 개발