COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

April 9, 2023

Lecture 28: Reductions 3

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Lemma

 $\mathsf{ALL}_{CFG} = \{ \langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \} \text{ is undecidable.}$

Proof Strategy

Lemma

 $\mathsf{ALL}_{CFG} = \{ \langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \} \text{ is undecidable.}$

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*)

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w. Formally,

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

if
$$w \in L(M) \longrightarrow \exists x \in \Sigma^*$$
, s.t. $x \notin L(N_{M,w})$

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

if
$$w \in L(M) \longrightarrow \exists x \in \Sigma^*$$
, s.t. $x \notin L(N_{M,w})$

if
$$w \notin L(M) \longrightarrow L(N_{M,w}) = \Sigma^*$$

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

if
$$w \in L(M) \longrightarrow \exists x \in \Sigma^*$$
, s.t. $x \notin L(N_{M,w})$

if
$$w \notin L(M) \longrightarrow L(N_{M,w}) = \Sigma^*$$

Filling in the details

The following two details need to be addressed.

 Q_1 How should we design $N_{M,w}$?

Filling in the details

The following two details need to be addressed.

 Q_1 How should we design $N_{M,w}$?

Input
$$(M, w) \longrightarrow N_{M,w}$$

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \end{array}$$

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

Assume that ALL_{CFL} is decidable.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

Assume that ALL_{CFL} is decidable.

C be the TM deciding it.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

Assume that ALL_{CFL} is decidable.

 ${\cal C}$ be the TM deciding it.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

For an M, w pair, create $N_{M,w}$.

Feed $\langle N_{M,w} \rangle$ to C.

Assume that ALL_{CFL} is decidable.

C be the TM deciding it.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

For an M, w pair, create $N_{M,w}$.

Assume that ALL_{CFL} is decidable.

Feed $\langle N_{M,w} \rangle$ to C.

 ${\cal C}$ be the TM deciding it.

If ${\cal C}$ accepts then reject;

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

Input
$$(M,w)$$
 \longrightarrow $N_{M,w}$ if $w \in L(M)$ \longrightarrow $\exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w})$ if $w \notin L(M)$ \longrightarrow $L(N_{M,w}) = \Sigma^*$

For an M, w pair, create $N_{M,w}$.

Assume that ALL_{CFL} is decidable.

Feed $\langle N_{M,w} \rangle$ to C.

 ${\cal C}$ be the TM deciding it.

If *C* accepts then reject;

else accept.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

Input
$$(M,w)$$
 \longrightarrow $N_{M,w}$ if $w \in L(M)$ \longrightarrow $\exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w})$ if $w \notin L(M)$ \longrightarrow $L(N_{M,w}) = \Sigma^*$

For an M, w pair, create $N_{M,w}$.

Assume that ALL_{CFL} is decidable.

Feed $\langle N_{M,w} \rangle$ to C.

 ${\cal C}$ be the TM deciding it.

If *C* accepts then reject;

else accept.

 Q_1 How should we design $N_{M,w}$?

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations: C_1, C_2, \ldots, C_ℓ such that

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 C_1, C_2, \dots, C_ℓ such that

 C_1 is a start configuration.

 C_ℓ is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Rejecting computation history is a sequece of configurations: C_1, C_2, \ldots, C_ℓ such that

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_ℓ is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Rejecting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_ℓ is a rejecting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangleright x does not have the pattern of a computational history of x

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangleq x does not have the pattern of a computational history of x OR
 - x is a computational history, but C_1 is not a start configuration

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x OR
 - ightharpoonup x is a computational history, but C_1 is not a start configuration OR
 - x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x OR
 - lacktriangledown is a computational history, but C_1 is not a start configuration OR
 - x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR
 - ** x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell 1$ and C_i does not yield C_{i+1} .

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x OR
 - lacktriangledown x is a computational history, but C_1 is not a start configuration OR
 - x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR
 - ** x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell 1$ and C_i does not yield C_{i+1} .
- If M accepts w, let \tilde{x} be a accepting computation history of M on w.

 $N_{M,w}$ will reject \tilde{x}

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x OR
 - lacktriangledown x is a computational history, but C_1 is not a start configuration OR
 - x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR
 - ** x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell 1$ and C_i does not yield C_{i+1} .
- If M accepts w, let \tilde{x} be a accepting computation history of M on w.

 $N_{M,w}$ will reject \tilde{x} , i.e. $\tilde{x} \notin L(N_{M,w})$.

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x OR
 - lacktriangledown x is a computational history, but C_1 is not a start configuration OR
 - ** x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR
 - ** x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell 1$ and C_i does not yield C_{i+1} .
- ${\blacktriangleright}$ If M accepts w, let \tilde{x} be a accepting computation history of M on w.

 $N_{M,w}$ will reject \tilde{x} , i.e. $\tilde{x} \notin L(N_{M,w})$.

• If M does not accept w, then no matter what x is, $N_{M,w}$ will accept x

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - x does not have the pattern of a computational history of x OR
 - \triangleright x is a computational history, but C_1 is not a start configuration OR
 - x is a computational history, C_1 is a start configuration, but C_{ℓ} is not an accepting configuration OR
 - x is a computational history, C_1 is a start configuration, C_{ℓ} is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell - 1$ and C_i does not yield C_{i+1} .
- If M accepts w, let \tilde{x} be a accepting computation history of M on w.

 $N_{M,w}$ will reject \tilde{x} , i.e. $\tilde{x} \notin L(N_{M,w})$.

▶ If M does not accept w, then no matter what x is, $N_{M,w}$ will accept x, i.e. $L(N_{M,w}) = \sum_{k=0}^{*} .$

String List Matching Problem

Given two lists $A = \langle s_1, s_2, \dots, s_n \rangle$ and $B = \langle t_1, t_2, \dots, t_n \rangle$ of strings of equal length, decide whether there is a sequence of combining elements that produces same string for both lists.

String List Matching Problem

Given two lists $A = \langle s_1, s_2, \dots, s_n \rangle$ and $B = \langle t_1, t_2, \dots, t_n \rangle$ of strings of equal length, decide whether there is a sequence of combining elements that produces same string for both lists. Formally, does there exist a finite sequence $1 \leq i_1, i_2, \dots, i_m \leq n$ (no limit on length) such that

$$s_{i_1}s_{i_2}\ldots s_{i_n}=t_{i_1}t_{i_2}\ldots t_{i_n}$$

Example: Consider the lists $A = \langle 110, 0011, 0110 \rangle$ and $B = \langle 110110, 00, 110 \rangle$.

String List Matching Problem

Given two lists $A = \langle s_1, s_2, \dots, s_n \rangle$ and $B = \langle t_1, t_2, \dots, t_n \rangle$ of strings of equal length, decide whether there is a sequence of combining elements that produces same string for both lists. Formally, does there exist a finite sequence $1 \leq i_1, i_2, \dots, i_m \leq n$ (no limit on length) such that

$$s_{i_1}s_{i_2}\ldots s_{i_n}=t_{i_1}t_{i_2}\ldots t_{i_n}$$

Example: Consider the lists $A = \langle 110,0011,0110 \rangle$ and $B = \langle 110110,00,110 \rangle$. **Solution:** There is a sequence i=2,3,1 such that $s_2s_3s_1=t_2t_3t_1$,

Witness: $s_2s_3s_1 = 00110110110$ and $t_2t_3t_1 = 00110110110$

String List Matching Problem

Given two lists $A=\langle s_1,s_2,\ldots,s_n\rangle$ and $B=\langle t_1,t_2,\ldots,t_n\rangle$ of strings of equal length, decide whether there is a sequence of combining elements that produces same string for both lists. Formally, does there exist a finite sequence $1\leq i_1,i_2,\ldots,i_m\leq n$ (no limit on length) such that

$$s_{i_1}s_{i_2}\ldots s_{i_n}=t_{i_1}t_{i_2}\ldots t_{i_n}$$

Example: Consider the lists $A = \langle 110,0011,0110 \rangle$ and $B = \langle 110110,00,110 \rangle$. **Solution:** There is a sequence i=2,3,1 such that $s_2s_3s_1=t_2t_3t_1$,

Witness: $s_2 s_3 s_1 = 00110110110$ and $t_2 t_3 t_1 = 00110110110$

▶ What about $A = \{0011, 11, 1101\}$ and $B = \{101, 1, 110\}$?

String List Matching Problem

Given two lists $A=\langle s_1,s_2,\ldots,s_n\rangle$ and $B=\langle t_1,t_2,\ldots,t_n\rangle$ of strings of equal length, decide whether there is a sequence of combining elements that produces same string for both lists. Formally, does there exist a finite sequence $1\leq i_1,i_2,\ldots,i_m\leq n$ (no limit on length) such that

$$s_{i_1}s_{i_2}\ldots s_{i_n}=t_{i_1}t_{i_2}\ldots t_{i_n}$$

Example: Consider the lists $A = \langle 110,0011,0110 \rangle$ and $B = \langle 110110,00,110 \rangle$. **Solution:** There is a sequence i=2,3,1 such that $s_2s_3s_1=t_2t_3t_1$,

Witness: $s_2 s_3 s_1 = 00110110110$ and $t_2 t_3 t_1 = 00110110110$

- ▶ What about $A = \{0011, 11, 1101\}$ and $B = \{101, 1, 110\}$?
- What about $A = \{100, 0, 1\}$ and $B = \{1, 100, 0\}$?

String List Matching Problem

Given two lists $A = \langle s_1, s_2, \dots, s_n \rangle$ and $B = \langle t_1, t_2, \dots, t_n \rangle$ of strings of equal length, decide whether there is a sequence of combining elements that produces same string for both lists. Formally, does there exist a finite sequence $1 \leq i_1, i_2, \dots, i_m \leq n$ (no limit on length) such that

$$s_{i_1}s_{i_2}\ldots s_{i_n}=t_{i_1}t_{i_2}\ldots t_{i_n}$$

Example: Consider the lists $A = \langle 110,0011,0110 \rangle$ and $B = \langle 110110,00,110 \rangle$. **Solution:** There is a sequence i=2,3,1 such that $s_2s_3s_1=t_2t_3t_1$,

Witness: $s_2 s_3 s_1 = 00110110110$ and $t_2 t_3 t_1 = 00110110110$

- ▶ What about $A = \{0011, 11, 1101\}$ and $B = \{101, 1, 110\}$?
- ▶ What about $A = \{100, 0, 1\}$ and $B = \{1, 100, 0\}$?(Shortest solution lenth = 75)

String List Matching Problem

Given two lists $A = \langle s_1, s_2, \dots, s_n \rangle$ and $B = \langle t_1, t_2, \dots, t_n \rangle$ of strings of equal length, decide whether there is a sequence of combining elements that produces same string for both lists.

String List Matching Problem

Given two lists $A = \langle s_1, s_2, \dots, s_n \rangle$ and $B = \langle t_1, t_2, \dots, t_n \rangle$ of strings of equal length, decide whether there is a sequence of combining elements that produces same string for both lists. Formally, does there exist a finite sequence $1 \leq i_1, i_2, \dots, i_m \leq n$ (no limit on length) such that

$$s_{i_1}s_{i_2}\ldots s_{i_n}=t_{i_1}t_{i_2}\ldots t_{i_n}$$

Can you design an algorithm to solve this problem? A semi-algorithm?

String List Matching Problem

Given two lists $A = \langle s_1, s_2, \dots, s_n \rangle$ and $B = \langle t_1, t_2, \dots, t_n \rangle$ of strings of equal length, decide whether there is a sequence of combining elements that produces same string for both lists. Formally, does there exist a finite sequence $1 \leq i_1, i_2, \dots, i_m \leq n$ (no limit on length) such that

$$s_{i_1}s_{i_2}\ldots s_{i_n}=t_{i_1}t_{i_2}\ldots t_{i_n}$$

Can you design an algorithm to solve this problem? A semi-algorithm?

Theorem

There is no algorithm for the string-list matching problem. In other words, this problem is undecidable.

A Domino game

Given a collection of dominos $\begin{bmatrix} b \\ ca \end{bmatrix} \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} ca \\ a \end{bmatrix} \begin{bmatrix} abc \\ c \end{bmatrix}$

A match is a list of these dominos (with possible repetitions) such that the string formed in top is same as string formed by bottom row.

A Domino game

Given a collection of dominos $\begin{bmatrix} b \\ ca \end{bmatrix} \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} ca \\ a \end{bmatrix} \begin{bmatrix} abc \\ c \end{bmatrix}$

- A match is a list of these dominos (with possible repetitions) such that the string formed in top is same as string formed by bottom row.
- Does this collection of dominos have a match?

A Domino game

Given a collection of dominos $\begin{bmatrix} b \\ ca \end{bmatrix} \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} ca \\ a \end{bmatrix} \begin{bmatrix} abc \\ c \end{bmatrix}$

- A match is a list of these dominos (with possible repetitions) such that the string formed in top is same as string formed by bottom row.
- Does this collection of dominos have a match?
- Same as the string matching problem

A Domino game

Given a collection of dominos $\begin{bmatrix} b \\ ca \end{bmatrix} \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} ca \\ a \end{bmatrix} \begin{bmatrix} abc \\ c \end{bmatrix}$

- A match is a list of these dominos (with possible repetitions) such that the string formed in top is same as string formed by bottom row.
- Does this collection of dominos have a match?
- Same as the string matching problem
- Called Post's Correspondance Problem or PCP.

Theorem

PCP is undecidable.

- Encode TM computation histories!
- ▶ Each transition as a domino!
- Simulate the run using the dominos.

Simplifying assumptions

Assume that the tape of TM is one-way infinite and never attempts to move left of its left-end.

Simplifying assumptions

- Assume that the tape of TM is one-way infinite and never attempts to move left of its left-end.
- If $w = \varepsilon$, then use \sqcup instead of w.

Simplifying assumptions

- Assume that the tape of TM is one-way infinite and never attempts to move left of its left-end.
- If $w = \varepsilon$, then use \sqcup instead of w.

$$P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$$

Modify PCP so that match must start with a given domino, say the first one.

Simplifying assumptions

- Assume that the tape of TM is one-way infinite and never attempts to move left of its left-end.
- If $w = \varepsilon$, then use \sqcup instead of w.

$$P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$$

Modify PCP so that match must start with a given domino, say the first one.

We define a reduction from A_{TM} to (M)PCP.

Simplifying assumptions

- Assume that the tape of TM is one-way infinite and never attempts to move left of its left-end.
- If $w = \varepsilon$, then use \sqcup instead of w.

$$P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$$

Modify PCP so that match must start with a given domino, say the first one.

We define a reduction from A_{TM} to (M)PCP. Let an instance of A_{TM} be

- $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_r)$
- $w = w_1 \dots w_n$

Simplifying assumptions

- Assume that the tape of TM is one-way infinite and never attempts to move left of its left-end.
- If $w = \varepsilon$, then use \sqcup instead of w.

$$P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$$

Modify PCP so that match must start with a given domino, say the first one.

We define a reduction from A_{TM} to (M)PCP. Let an instance of A_{TM} be

- $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_r)$
- $w = w_1 \dots w_n$

We build instance P' of MPCP in several steps.

$$\begin{bmatrix} t_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} \# \\ \#q_0w_1w_2\dots w_n\# \end{bmatrix}$$

▶ Step 1: fix first domino in *P*′

$$\begin{bmatrix} t_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} \# \\ \#q_0w_1w_2\dots w_n\# \end{bmatrix}$$

Step 2: Encode transitions of TM into dominos.

$$\begin{bmatrix} t_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} \# \\ \#q_0w_1w_2\dots w_n\# \end{bmatrix}$$

- Step 2: Encode transitions of TM into dominos.
- ▶ For every $a, b, c \in \Gamma$ and every $q, q' \in Q$, $q \neq q_r$,
 - If $\delta(q,a) = (q',b,R)$, then add domino to P'

$$\begin{bmatrix} t_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} \# \\ \#q_0w_1w_2\dots w_n\# \end{bmatrix}$$

- Step 2: Encode transitions of TM into dominos.
- ▶ For every $a, b, c \in \Gamma$ and every $q, q' \in Q$, $q \neq q_r$,
 - If $\delta(q,a) = (q',b,R)$, then add domino to P' $\begin{bmatrix} qa\\bq' \end{bmatrix}$

$$\begin{bmatrix} t_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} \# \\ \#q_0w_1w_2\dots w_n\# \end{bmatrix}$$

- Step 2: Encode transitions of TM into dominos.
- ▶ For every $a, b, c \in \Gamma$ and every $q, q' \in Q$, $q \neq q_r$,
 - If $\delta(q,a) = (q',b,R)$, then add domino to P' $\begin{bmatrix} qa\\bq' \end{bmatrix}$
 - If $\delta(q,a) = (q',b,L)$, then add domino to P'

$$\begin{bmatrix} t_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} \# \\ \#q_0w_1w_2\dots w_n\# \end{bmatrix}$$

- Step 2: Encode transitions of TM into dominos.
- ▶ For every $a, b, c \in \Gamma$ and every $q, q' \in Q$, $q \neq q_r$,
 - If $\delta(q,a) = (q',b,R)$, then add domino to P' $\begin{bmatrix} qa\\ba' \end{bmatrix}$
 - If $\delta(q,a) = (q',b,L)$, then add domino to P' $\begin{bmatrix} cqa \\ q'cb \end{bmatrix}$

$$\begin{bmatrix} t_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} \# \\ \#q_0w_1w_2\dots w_n\# \end{bmatrix}$$

- Step 2: Encode transitions of TM into dominos.
- ▶ For every $a, b, c \in \Gamma$ and every $q, q' \in Q$, $q \neq q_r$,
 - If $\delta(q,a) = (q',b,R)$, then add domino to P' $\begin{bmatrix} qa\\bq' \end{bmatrix}$
 - If $\delta(q,a) = (q',b,L)$, then add domino to P' $\begin{bmatrix} cqa \\ q'cb \end{bmatrix}$
 - add all dominos (i.e, for all $a \in \Gamma \cup \{\#\}$ to P'. $\begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} \# \\ \downarrow \downarrow \# \end{bmatrix}$

Step 3: Acceptance in to eating dominos

- Step 3: Acceptance in to eating dominos
 - ▶ For every $a \in \Gamma$, we add all dominos to P'

$$\begin{bmatrix} q_a a \\ q_a \end{bmatrix} \quad \begin{bmatrix} aq_a \\ q_a \end{bmatrix}$$

- Step 3: Acceptance in to eating dominos
 - ▶ For every $a \in \Gamma$, we add all dominos to P'

$$\begin{bmatrix} q_a a \\ q_a \end{bmatrix} \quad \begin{bmatrix} aq_a \\ q_a \end{bmatrix}$$

- Step 3: Acceptance in to eating dominos
 - For every $a \in \Gamma$, we add all dominos to P'

$$\begin{bmatrix} q_a a \\ q_a \end{bmatrix} \quad \begin{bmatrix} aq_a \\ q_a \end{bmatrix}$$

▶ Step 4: Complete the match

$$\begin{bmatrix} q_a \# \# \\ \# \end{bmatrix}$$

- Step 3: Acceptance in to eating dominos
 - For every $a \in \Gamma$, we add all dominos to P'

$$\begin{bmatrix} q_a a \\ q_a \end{bmatrix} \quad \begin{bmatrix} aq_a \\ q_a \end{bmatrix}$$

▶ Step 4: Complete the match

$$\begin{bmatrix} q_a \# \# \\ \# \end{bmatrix}$$

- ▶ This completes the reduction, i.e., map from instance of A_{TM} to PCP.
- M accepts w if and only if P' gives a solution to PCP.

- Step 3: Acceptance in to eating dominos
 - For every $a \in \Gamma$, we add all dominos to P'

$$\begin{bmatrix} q_a a \\ q_a \end{bmatrix} \quad \begin{bmatrix} aq_a \\ q_a \end{bmatrix}$$

▶ Step 4: Complete the match

$$\begin{bmatrix} q_a \# \# \\ \# \end{bmatrix}$$

- ▶ This completes the reduction, i.e., map from instance of A_{TM} to PCP.
- M accepts w if and only if P' gives a solution to PCP.
- ▶ MPCP to PCP?