TCS Quantum Challenge

Mock Presentation

Challenge #2 Power Grid Optimization using Quantum Algorithms

Team Lead Name: Vaidehi Gawande

Team Entry Number: # 02429141

Challenge

- Distribution grid inefficient with significant energy loss
- By optimising the routing, it is possible to minimise energy loss
- This can lead to cost savings and also ensure a reliable supply of energy
- This is a complex problem that requires the consideration of many factors
- Quantum computing suited for solving combinatorial optimisation problems
- It has the potential to significantly outperform

Approach

Reduction of generation cost and Improvisation

 The objective function typically aims to minimize the total operating cost of the power system

Constraints:

- 1) Total Demand
- 2) Individual Generator Limit

Total Demand =

Σ Cost Coefficients x Optimal generator output

- The objective function is quadratic hence linearization is done for conversion into MILP
- Using Convex Relaxation :
 This created a linear equation with additional 3 auxiliary constraints.

Corrective topology

= Σ Switching line cost x Decision variable

Σ Redispatch cost x Redispatch variable

Minimizing the cost of corrective actions, including line switching, and generation redispatching.

Parameter:

- L is the set of transmission lines.
- S is the binary decision variable.
- C is the cost associated with switching line
- R is representing whether generator i is redispatched (1 if redispatched, 0 otherwise).
- C_r redispatch, is the cost associated with redispatching generator

Objective function conversion

MILP

- linearizing the quadratic cost function
- Auxiliary variable z representing quadratic coefficient
- Adding additional constraints subject to new variable

- utilizing convex relaxation technique
- Adding auxiliary variable
- The new constraint is bound to the product of the minimum and maximum power output

Dantzig Wolfe and ADMM Decomposition

QUBO conversion and solution using VQE

Business Impact from Quantum

Future Development

Thank You

References

- 1) A SIMPLIFIED MODEL OF QUADRATIC COST FUNCTION FOR THERMAL GENERATORS ZIVIC DJUROVIC, M[arijana]; MILACIC, A[leksandar] & KRSULJA, M[arko]
- 2) Evaluate Quantum Combinatorial Optimization for Distribution Network Reconfiguration Phuong Ngo, Christan Thomas, Hieu Nguyen, and Abdullah Eroglu Dept. of Electrical & Computer Eng., North Carolina A&T State University fango1, cqthomasg@aggies.ncat.edu, fhtnguyen1, aeroglug@ncat.edu
- 3) Linear Programming Based Optimal Power Flow Optimization of DCOPF for an IEEE 5 and IEEE 14 Bus System M. Kamalakkannun, N. D. Sridhar
- 4) Quantum computing for smart grid applications Md Habib Ullah Rozhin Eskandarpour Honghao Zheng Amin Khodaei
- 5) https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/quantum-computing-use-cases-are-getting-real-what-you-need-to-know