Question	Scheme	Marks
6 (a)	p = 1, q = 8	B1B1
(b)	(12_2)	[2]
	$\left(\text{Gradient of } l = \frac{12 - 2}{32} = \right) 2$	B1
	(Gradient of the perpendicular =) $-\frac{1}{"2"}$	B1ft
	Equation of k	
	$y - "8" = " - \frac{1}{2}"(x - "1")$	M1
	$\Rightarrow 2y + x - 17 = 0 *$	A1 cso [4]
(c)	When $y = 0$, $(2 \times 0 + x - 17 = 0 \Rightarrow) x = 17$	B1
	$(CD =)\sqrt{(0-"8")^2+("17"-"1")^2}=\sqrt{320}=[8\sqrt{5}]$	M1A1
		[3]
(d)	(Length of $CX = $) $\frac{2 \times 80}{8\sqrt{5}} \left(= 4\sqrt{5} \right)$	B1
	$("4\sqrt{5}")^2 = (m-"1")^2 + (n-"8")^2$	M1
	"2" = $\frac{n - "8"}{m - "1"}$ \Rightarrow $[n = 2m + 6]$ oe or $y - 2 = "2"(x + 2) \Rightarrow [y = 2x + 6]$	M1
	or $y-12 = "2"(x-3) \Rightarrow [y=2x+6]$ oe	
	$\Rightarrow "80" = (m - "1")^2 + (2m + 6 - "8")^2 (\Rightarrow 0 = 5m^2 - 10m - 75 \text{ oe eg } 0 = m^2 - 2m - 15)$	ddM1
	$\Rightarrow (5m+15)(m-5) = 0$ oe eg $(m+3)(m-5) = 0$	M1
	$m=5, \left(-3\right)$	A1
		A1
	$n(=2m+6=2\times 5+6)=16$	[7]
ALT1	(Length of $CX = \frac{2 \times 80}{8\sqrt{5}} \left(= 4\sqrt{5} \right)$	B1
	$(m-"17")^2+(n)^2=("4\sqrt{5}")^2+("8\sqrt{5}")^2$	M1
	"2" = $\frac{n - "8"}{m - "1"}$ \Rightarrow $[n = 2m + 6]$ oe or $y - 2 = "2"(x + 2) \Rightarrow [y = 2x + 6]$	M1
	or $y-12 = "2"(x-3) \Rightarrow [y=2x+6]$ oe	
	$\Rightarrow "400" = (m - "17")^2 + (2m + 6)^2 (\Rightarrow 0 = 5m^2 - 10m - 75 \text{ oe eg } 0 = m^2 - 2m - 15)$	ddM1
	$\Rightarrow (5m+15)(m-5) = 0$ oe eg $(m+3)(m-5) = 0$	M1
	$m=5, \left(-3\right)$	A1
	$n(=2m+6=2\times 5+6)=16$	A1 [7]

ALT2	(Length of $CX = \frac{2 \times 80}{8\sqrt{5}} \left(= 4\sqrt{5} \right)$	B1
	Length of $AB = \sqrt{(12-2)^2 + (3-2)^2} (= 5\sqrt{5})$	M1
	Vector $\overrightarrow{AB} = \begin{bmatrix} 3 - 2 \\ 12 - 2 \end{bmatrix} \left(= 5 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right)$	M1
	$\left \left(\left \overrightarrow{CX} \right = 4\sqrt{5} \Rightarrow \right) \overrightarrow{CX} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix} \right $	ddM1
	\Rightarrow Coordinates of X are $(1,8)+(4,8)=(5,16)$	M1A1
	(m=5 n=16)	A1 [7]
ALT3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1
	$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1
	$"2" = \frac{n-8}{m-1} \Rightarrow [n=2m+6] \text{ oe } \mathbf{or} y-2 = "2"(x+2) \Rightarrow [y=2x+6] \text{ oe}$	M1
	or $y-12 = "2"(x-3) \Rightarrow [y=2x+6]$ oe	
	$ \left \frac{1}{2} \right {}^{"17"} \frac{m}{0} {}^{"17"} \frac{"17"}{8"} \text{ or } \frac{1}{2} \left(17 \left("2m + 6" \right) + "8" m - \left("136" + "2m + 6" \right) \right) = 80 $	ddM1
	or $2("2m+6")+m=37 \Rightarrow m=$	M1
	5 16	A1A1
	m = 5, n = 16	[7]
Total 16 mark		

Part	Mark	Notes
(a)	B1	For $p = 1$ OR $q = 8$ Allow anything that clearly implies these values eg $(1, 8)$ or $1, 8$
(")	B1	For $p = 1$ AND $q = 8$ Allow anything that clearly implies these values eg $(1, 8)$ or $1, 8$
(b)	B1	For the gradient of $l=2$
	B1ft	For the gradient of $k = -\frac{1}{"2"}$. Ft their calculation of the gradient of l .
	M1	For the correct unsimplified equation for k , using their p and q and any changed gradient. If
		the candidate uses $y = mx + c$, a fully correct rearrangement to find c must be shown (this
		can be implied by a correct c for their equation) and concluded with the equation of the line written.
	A1	For the equation of k in the required form. Minimum steps shown, no errors or omissions.
	cso	This must from a correct p and q
Watch fo	or methods	using vectors.
		ves at the correct unsimplified equation with no obviously incorrect work, following vector
work, al		ft M1 and the final A1 if the equation is given in the correct form. (See example in Practice)
(c)	B1	For the x coordinate of $D = 17$
	M1	For a correct method to find the length of <i>CD</i> using their <i>p</i> and <i>q</i> and their 17
	A 1	For the correct length of $\sqrt{320}$ oe
(d)	B1	Any correct unsimplified calculation for <i>CX</i>
	M1	For correctly using Pythagoras to form an equation in terms of m and n or x and y. Follow
		through their CX (ie coming from correct calculation with their p , q , their point D).
	M1	For an unsimplified equation in terms of m and n or x and y correctly using the gradient of l .
		Follow through their gradient for l , their p and their q . Allow working in p , q or x , y
		Note this work is sometimes being seen in (b). As long as it is used in part (d), the
		equation found in (b) may be given credit.
	ddM1	For eliminating either m or n from either equation and forming a 3TQ. Allow errors in
		processing if an initial correct method following from 2 correct unsimplified equations to
		eliminate one of the variables is seen. Allow working in p, q or x, y
		Dependent on both previous method marks. Note, the previous M mark is for the
		unsimplified equation, so if simplified incorrectly, this can be used here to gain this mark (general principle of marking).
	M1	For a minimally acceptable attempt to solve (see general guidance) their 3TQ
	1711	This mark can be implied from a correct value of $m = 5$. If the quadratic is not the correct
		quadratic, method must be shown.
	A1	For one of $m = 5$ or $n = 16$
	A1	For both $n = 16$ and $m = 5$
ALT1		nal 2 A marks – as main scheme
	M1	For correctly using Pythagoras to form an equation in terms of m and n or x and y. Follow
		through their CX and CD (ie coming from correct calculation with their p , q , their point D).
	M1	For an unsimplified equation in terms of m and n or x and y correctly using the gradient of l .
		Follow through their gradient for l , their p and their q . Allow working in p , q or x , y
		Note this work is sometimes being seen in (b). As long as it is used in part (d), the
		equation found in (b) may be given credit.
	ddM1	For eliminating either m or n from either equation and forming a 3TQ. Allow errors in
		processing if an initial correct method following from 2 correct unsimplified equations to
		eliminate one of the variables is seen. Allow working in p, q or x, y
		Dependent on both previous method marks. Note, the previous M mark is for the
		unsimplified equation, so if simplified incorrectly, this can be used here to gain this mark
	M1	(general principle of marking). For a minimally acceptable attempt to solve (see general guidance) their 3TQ
	1711	This mark can be implied from a correct value of $m = 5$. If the quadratic is not the correct
		quadratic, method must be shown.
		quantum, memor must be snown.

ALT2	B1	Any correct unsimplified calculation for CX
	M1	Correct method to find the length of AB
	M1	Correct method to find vector AB
	ddM1	Correctly deduces the relationship between their vectors CX and AB
		Dependent on both previous method marks.
	M1	Correct method to find the coordinates of X using their vector work.
	A1	For one of $m = 5$ or $n = 16$
	A1	For both $n = 16$ and $m = 5$
ALT3	B1	For a fully correct array as shown oe
	M1	For placing their array (though ft their p and q and their "17") = 80 and correctly multiplying out
		the discriminant to form an unsimplified equation in <i>m</i> and <i>n</i>
	M1	For an unsimplified equation in terms of m and n or x and y correctly using the gradient of l .
		Follow through their gradient for l , their p and their q . Allow working in p , q or x , y
		Note this work is sometimes being seen in (a). As long as it is used in part (d), the equation
		found in (a) may be given credit.
	ddM1	For eliminating either m or n seen either in the array or in their equation formed. Allow errors in
		processing if an initial correct method following from 2 correct unsimplified equations to eliminate
		one of the variables is seen. Allow working in p , q or x , y
		Dependent on both previous method marks. Note, the previous M mark is for the unsimplified
		equation, so if simplified incorrectly, this can be used here to gain this mark (general principle of
		marking).
	M1	For solving their linear equation, allow one error in processing, leading to a value of m or n
	A1	For one of $m = 5$ or $n = 16$
	A1	For both $n = 16$ and $m = 5$
If a nar	tial math	ad is seen with correct answers not from abvious incorrect working marks may be given (general

If a partial method is seen, with correct answers not from obvious incorrect working, marks may be given (general point of marking unless precluded from the mark scheme for a question). If a partial method is seen and marks cannot be fitted to the main or ALT schemes – send to review.