UMAP, clustering, and annotation

```
library(Seurat)
library(ggplot2)
library(dplyr)
library(patchwork)
library(ggplot2)
setwd("~/dev/CCRItask")
Loading required package: SeuratObject
Loading required package: sp
Attaching package: 'SeuratObject'
The following objects are masked from 'package:base':
    intersect, t
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
```

Load the integrated data

```
integrated <- readRDS("data/processed/integrated.rds")</pre>
```

_

Perfrom Clustering

```
integrated <- FindNeighbors(integrated, dims = 1:30)
integrated <- FindClusters(integrated, resolution = 0.1)</pre>
```

Computing nearest neighbor graph

Computing SNN

Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19803 Number of edges: 805203

Running Louvain algorithm...

Maximum modularity in 10 random starts: 0.9772

Number of communities: 12 Elapsed time: 2 seconds

head(integrated[[]])

A data.frame: 6 x 15

orig.idemCountn <u>FRANAse.m</u> RNAeek	sample	egsinh_idconditionmercentSnStco	oreG2M.	SParase	CC.Differtege	esediratnnclures
$\begin{array}{c} <\!\!\operatorname{chr}\!\!>\!<\!\!\operatorname{dbl}\!\!>\!<\!\!\operatorname{int}\!\!>\!<\!\!\operatorname{chr}\!\!>\!<\!\!\operatorname{dbl}\!\!> \end{array}$	<chr></chr>	\cdot < chr > < dbl > < dbl	> <dbl></dbl>	> <chr></chr>	<dbl><fct></fct></dbl>	<fct></fct>
AAAC &&&_T008B&AA07 C-week8_8001	001	GSM44 465i35 r9.716130	-	G1	$0.14416\overline{17}32$	1
1_1		0.010	0133864	3011		
AAAC@@ TAM 9TC 22 66A- week8_8001	001	GSM4 4465i35 r3.954196	-	G1	0.09915505	8
1_1	0.08416 \$4 \$33235					
AAAG AAGA_GOON GG 668 T-week8_8001	001	GSM4 4465i35 r1.818182	-	G1	0.08046040	0
1_1		0.09^{2}	471 207 5	1724		
AAAG GARA GAMO T Z271 G- week8 <u>8</u> 001	001	GSM4 4465i35 r4.649305	-	G1	0.22243079	0
1_1		0.046	643 226 8	8638		
AAAG GÆRS<u>(</u>11332 GC 2200 G- week8 <u>8</u> 001	001	GSM4 4465i35 r4.886914	-	G1	0.12607253	8
1_1		0.131	1263657	3361		
AAAG GGGSA CXONA AT ZAON C- week8 <u>8</u> 001	001	GSM4 4465i35 r3.49211-7	-	G1	0.127250061	10
1_1		0.041	14 27.66 8	6783		

DimPlot(integrated,reduction = "umap", group.by = "seurat_clusters", label = TRUE)

Cluster annotation

From the https://www.nature.com/articles/s41588-021-00818-x

```
cell_type_markers <- list(
    "SCPs" = c("SOX10", "PLP1", "FOXD3"),
    "Chromaffin cells" = c("ELAVL3", "ELAVL4", "PHOX2B", "TH"),
    "Sympathoblasts" = c("STMN2"),
    "Adrenal gland cortex" = c("NR5A1"),
    "Melanocytes" = c("MITF"),
    "Kidney" = c("PAX2"),
    "Subepicardial and abdominal mesenchyme" = c("PRRX1"),
    "Endothelium" = c("PECAM1", "KDR"),
    "Intermediate mesoderm" = c("GATA4", "HAND2"),
    #"Liver" = c("HNF4A", "AHSG"),
    "HSCs" = c("SPINK2"), # AZU1
    "Immune cells" = c("FCGR1A", "CD163"),
    "Erythroid cells" = c("HBA2", "HBB")
)
markers_unique = unique(unlist(cell_type_markers))</pre>
```

```
length(unique(unlist(cell_type_markers)))
```

Dotplot to map clusters to cell types

DotPlot(integrated, features = unique(unlist(cell_type_markers))) + RotatedAxis()

in depth analysis for manual annotation

SCPs

FeaturePlot(integrated, c("SOX10", "PLP1", "FOXD3"), ncol=2, raster.dpi = c(800,100))

.

chromaffin cells

FeaturePlot(integrated, c("ELAVL3", "ELAVL4", "PHOX2B", "TH"), ncol=2, raster.dpi = c(800,100))

_

FeaturePlot(integrated, c("MITF"), ncol=1, raster.dpi = c(800,100))

c

FeaturePlot(integrated, c("FCGR1A", "CD163"), ncol=1, raster.dpi = c(800,100))

-

```
cluster <- list(
   "11" = "SCPs", #= c("SOX10", "PLP1", "FOXD3"),
   "8" = "Chromaffin cells", #= c("ELAVL3", "ELAVL4", "PHOX2B", "TH"),
   "5"= "Sympathoblasts", #= c("STMN2"),
   "1" = "Adrenal gland cortex", #= c("NR5A1"),
   # "6" = "Melanocytes", #= c("MITF"),
   #"Kidney" = c("PAX2"),
   "2" = "Subepicardial and abdominal mesenchyme",# = c("PRRX1"),
   "0" = "Endothelium", #= c("PECAM1", "KDR"),
   "3" = "Intermediate mesoderm", #c("GATA4", "HAND2"),
   #"Liver" = c("HNF4A", "AHSG"),
   "7"= "HSCs", #c("SPINK2"), # AZU1
   "6" = "Immune cells", #= #c("FCGR1A", "CD163"),
   "4" = "Erythroid cells" #= #c("HBA2", "HBB")
)</pre>
```

Mapping clusters to cell types

```
# Convert list to a character vector for easier handling
cluster <- unlist(cluster)
# Rename the identities
integrated <- RenameIdents(integrated, cluster)
# Save the renamed cluster identities
integrated$celltype <- Idents(integrated)</pre>
```

```
umap_ann <- DimPlot(integrated, group.by = "celltype", label = TRUE) + NoLegend()
umap_ann</pre>
```

0


```
ggsave("plots/umap_annotated.pdf", umap_ann, width = 10, height = 10)
```

Automatic cluster annotation

did not work properly

```
# Score each cell for each cell type based on marker genes
integrated <- AddModuleScore(
   integrated,
   features = cell_type_markers,
   name = names(cell_type_markers),
   ctrl = 20,
   replace = TRUE
)</pre>
```

```
install.packages('devtools')
devtools::install_github('immunogenomics/presto')
```

The downloaded binary packages are in /var/folders/wl/jrkngsm57b944tj7rtjg12000000gn/T//Rtmp3lmekZ/downloaded_packages

Using GitHub PAT from the git credential store.

Skipping install of 'presto' from a github remote, the SHA1 (7636b3d0) has not changed since last in Use `force = TRUE` to force installation

Dot Plot for top5 markers for each cluster

```
# Find all markers for each cluster
markers <- FindAllMarkers(object = integrated,</pre>
                          only.pos = TRUE,  # Only consider positive markers
                          min.pct = 0.25,  # Minimum detection fraction
                          logfc.threshold = 0.25) # Minimum log fold change
Calculating cluster SCPs
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster Chromaffin cells
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster Sympathoblasts
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster Adrenal gland cortex
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster Subepicardial and abdominal mesenchyme
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster Endothelium
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster Intermediate mesoderm
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster HSCs
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster Immune cells
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster Erythroid cells
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster 9
```

```
Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Calculating cluster 10

Warning message in mean.fxn(object[features, cells.1, drop = FALSE]):
"NaNs produced"
Warning message in mean.fxn(object[features, cells.2, drop = FALSE]):
"NaNs produced"
```

head(markers)

A data.frame: 6 x 7

	p_val <dbl></dbl>	avg_log2FC <dbl></dbl>	pct.1 <dbl></dbl>	pct.2 $$	p_val_adj <dbl></dbl>	$\begin{array}{c} {\rm cluster} \\ {<} {\rm fct} {>} \end{array}$	gene <chr></chr>
PTPRZ1	1.063855e- 243	6.412992	0.990	0.783	2.127709e- 240	SCPs	PTPRZ1
ERBB3	1.696545e- 233	8.156112	0.972	0.566	3.393090e- 230	SCPs	ERBB3
DST	5.987636e- 231	3.781085	1.000	0.891	1.197527e- 227	SCPs	DST
PLP1	7.904205e- 229	7.297576	0.970	0.727	1.580841e- 225	SCPs	PLP1
TRPM3	3.513331e- 227	7.403232	0.970	0.622	7.026663e- 224	SCPs	TRPM3
MPZ	1.720136e- 225	8.064614	0.965	0.670	3.440272e- 222	SCPs	MPZ

```
# Get top 5 markers per cluster
top5 <- markers %>%
  group_by(cluster) %>%
  top_n(n = 5, wt = avg_log2FC)%>%
  arrange(cluster, desc(avg_log2FC))
```

head(top5)

A grouped_df: 6 x 7

	avg_log2FC			p_val_adj		
$p_val < dbl >$	<dbl></dbl>	pct.1 < dbl >	pct.2 < dbl >	<dbl></dbl>	cluster <fct></fct>	gene <chr></chr>
1.150230e- 221	8.924888	0.952	0.516	2.300459e- 218	SCPs	CDH19
5.514697e-88	8.242869	0.656	0.437	1.102939e-84	SCPs	INSC
1.696545e- 233	8.156112	0.972	0.566	3.393090e- 230	SCPs	ERBB3
6.326074e- 136	8.108642	0.824	0.519	1.265215e- 132	SCPs	FOXD3
1.720136e- 225	8.064614	0.965	0.670	3.440272e- 222	SCPs	MPZ

p_val <dbl></dbl>	avg_log2FC <dbl></dbl>	pct.1 <dbl></dbl>	pct.2 <dbl></dbl>	p_val_adj <dbl></dbl>	cluster <fct></fct>	gene <chr></chr>
1.815618e- 113	8.241624	0.735	0.382	3.631235e- 110	Chromaffin cells	GIP


```
ggsave("plots/dotplot_top5_perCluster.pdf", dp, width = 8, height = 16)
```

```
umap_ann_week <- DimPlot(integrated, group.by = "celltype", label = TRUE, split.by = "week", ncol=3
ggsave("plots/umap_ann_week.png", width = 10, height = 10)
umap_ann_week</pre>
```


saveRDS(integrated, "data/processed/integrated_annotated.rds")