Inhalt Lineare Abbildungen, Kern und Bild einer linearen Abbildung, Dimensionsformel für lineare Abbildungen, Anwendungen der Dimensionsformel

Im Folgenden seien K ein Körper und U, V, W Vektorräume über K.

1 Lineare Abbildungen

Definition Eine Abbildung $f: V \to W$ heißt *linear*, falls für alle $v, v' \in V$ und $a \in K$ gilt: f(v + v') = f(v) + f(v') und f(av) = af(v).

Bemerkungen

- a) $f: V \to W$ linear $\iff f(av + a'v') = af(v) + a'f(v')$ für alle $v, v' \in V$, $a, a' \in K$.
- b) Ist $f: V \to W$ linear, so ist $f(0_V) = 0_W$.

Beweis: a) ",\(\Rightarrow\)": Ist f linear, so gilt f(av + a'v') = f(av) + f(a'v') = af(v) + a'f(v'). "\(\Rightarrow\)": F\(\text{ur}\) a = a' := 1 folgt f(v + v') = f(v) + f(v'), f\(\text{ur}\) a' := 0 folgt f(av) = af(v). b) Aus f(0) = f(0 + 0) = f(0) + f(0) folgt f(0) = 0 durch Subtraktion von f(0).

Definition

 $\operatorname{Hom}_K(V, W) = \operatorname{Hom}(V, W) := \{ f \mid f : V \to W \text{ linear} \}, \operatorname{End}(V) := \operatorname{Hom}(V, V).$

Satz 1 a) Für $f, g \in \text{Hom}(V, W)$, $a \in K$ sind $f + g : V \to W$, $af : V \to W$ wieder linear, wobei

$$(f+g)(v):=f(v)+g(v)$$
 und $(af)(v):=af(v)$ für alle $v\in V$.

- b) $\operatorname{Hom}(V,W)$ ist mit den Verknüpfungen aus a) ein K-Vektorraum mit dem Nullelement $0:V\to W,\ 0(v):=0$ für alle $v\in V$.
- c) $F\ddot{u}r \ f, f_1, f_2 \in \text{Hom}(V, W), \ g, g_1, g_2 \in \text{Hom}(U, V), \ a \in K \ gilt \ f \circ (g_1 + g_2) = f \circ g_1 + f \circ g_2, \ (f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g, \ (af) \circ g = a(f \circ g) = f \circ (ag).$

Definition $f: V \to W$ heißt (Vektorraum-)Isomorphismus, falls f linear und bijektiv ist. V heißt isomorph zu W (in Zeichen: $V \cong W$), falls ein Isomorphismus $V \to W$ existiert.

Bemerkungen $\mathrm{id}_V: V \to V, \ v \mapsto v$ ist ein Isomorphismus. Sind $f: V \to W, \ g: U \to V$ Isomorphismen, so ist $f \circ g: U \to W$ ein Isomorphismus. Ist $f: V \to W$ ein Isomorphismus, so ist $f^{-1}: W \to V$ ein Isomorphismus. Ist V isomorphismus auch W isomorphismus.

2 Kern und Bild einer linearen Abbildung

Definition Für eine lineare Abbildung $f: V \to W$ heißt Kern $f:=\{v \in V \mid f(v)=0\}$ Kern von f, Bild $f:=\{f(v) \mid v \in V\}=\{w \in W \mid \text{ Es gibt ein } v \in V \text{ mit } w=f(v)\}$ Bild von f.

Kern f ist ein Untervektorraum von V, Bild f ist ein Untervektorraum von W.

Satz 2 (Injektivitätskriterium)

Für lineares $f: V \to W$ qilt: f injektiv \iff Kern $f = \{0\}$.

Beweis: " \Rightarrow ": Sei f injektiv. Wegen f(0) = 0 ist $0 \in \text{Kern } f$. Ist $v \in \text{Kern } f$, also f(v) = 0 = f(0), so folgt (da f injektiv ist) v = 0. Also ist $\text{Kern } f = \{0\}$. " \Leftarrow ": Sei $\text{Kern } f = \{0\}$. Sind $v, v' \in V$ mit f(v) = f(v'), so ist f(v - v') = f(v) - f(v') = 0, also $v - v' \in \text{Kern } f = \{0\}$ und damit v = v'. Also ist f injektiv.

3 Die Dimensionsformel für lineare Abbildungen

Satz 3 (Dimensionsformel)

Sei V endlich-dimensional, $f: V \to W$ linear. Dann sind auch Kern f und Bild f endlich-dimensional, und es gilt

$$\dim \operatorname{Bild} f + \dim \operatorname{Kern} f = \dim V.$$

Beweis: Kern f ist als Untervektorraum von V endlich-dimensional. Ist v_1, \ldots, v_n eine Basis von V, so ist $f(v_1), \ldots, f(v_n)$ ein Erzeugendensystem von Bild f (wie man leicht sieht), also ist Bild f endlich erzeugt und damit endlich-dimensional.

Es seien $p := \dim \operatorname{Kern} f$, $q := \dim \operatorname{Bild} f$. Wir wählen Basen $\{u_1, \ldots, u_p\}$ von $\operatorname{Kern} f$ und $\{w_1, \ldots, w_q\}$ von $\operatorname{Bild} f$. Zu jedem w_j gibt es ein $v_j \in V$ mit $w_j = f(v_j)$ für $j = 1, \ldots, q$. Behauptung: $\{u_1, \ldots, u_p, v_1, \ldots, v_q\}$ ist eine Basis von V.

Beweis: a) $u_1, \ldots, u_p, v_1, \ldots, v_q$ sind linear unabhängig: Seien $a_1, \ldots, a_p, b_1, \ldots, b_q \in K$ mit

$$\sum_{i=1}^{p} a_i u_i + \sum_{i=1}^{q} b_j v_j = 0.$$

Anwendung von f ergibt $0 = \sum_{i=1}^{p} a_i f(u_i) + \sum_{j=1}^{q} b_j f(v_j) = 0 + \sum_{j=1}^{q} b_j w_j$ (wegen $u_i \in \text{Kern } f$ und $f(v_j) = w_j$). Da die w_1, \ldots, w_q linear unabhängig sind, folgt $b_1 = \ldots = b_q = 0$ und dann $\sum_{i=1}^{p} a_i u_i = 0$. Da auch die u_1, \ldots, u_p linear unabhängig sind, folgt $a_1 = \ldots = a_p = 0$. Damit ist die lineare Unabhängigkeit der $u_1, \ldots, u_p, v_1, \ldots, v_q$ gezeigt. b) $u_1, \ldots, u_p, v_1, \ldots, v_q$ erzeugen $V : \text{Sei } v \in V$. Es ist $f(v) \in \text{Bild } f = \text{Lin}(w_1, \ldots, w_q)$, also gibt es $b_1, \ldots, b_q \in K$ mit $f(v) = \sum_{j=1}^{q} b_j w_j = \sum_{j=1}^{q} b_j f(v_j) = f(\sum_{j=1}^{q} b_j v_j)$. Also ist

$$f(v - \sum_{j=1}^{q} b_j v_j) = 0$$
, d.h. $v - \sum_{j=1}^{q} b_j v_j \in \text{Kern } f = \text{Lin}(u_1, \dots, u_p)$.

Es gibt also $a_1, \ldots, a_p \in K$ mit $v - \sum_{j=1}^q b_j v_j = \sum_{i=1}^p a_i u_i$, also $v = \sum_{i=1}^p a_i u_i + \sum_{j=1}^q b_j v_j$. Nach a) und b) ist $\{u_1, \ldots, u_p, v_1, \ldots, v_q\}$ eine Basis von V, also gilt

$$\dim V = p + q = \dim \operatorname{Kern} f + \dim \operatorname{Bild} f$$
.

4 Anwendungen der Dimensionsformel

Satz 4

Seien V, W endlich-dimensional mit $\dim V = \dim W$. Für lineares $f: V \to W$ gilt dann: f injektiv $\iff f$ surjektiv $\iff f$ bijektiv.

Beweis: Es genügt zu zeigen: f injektiv $\iff f$ surjektiv. " \Rightarrow ": Sei f injektiv, also Kern $f = \{0\}$. Die Dimensionsformel (Satz 3) liefert

$$\dim W = \dim V = \dim \operatorname{Bild} f + \dim \operatorname{Kern} f = \dim \operatorname{Bild} f;$$

da Bild f ein Untervektorraum von W ist, folgt Bild f=W, also ist f surjektiv. " \Leftarrow ": Sei f surjektiv, also Bild f=W. Dann ist

$$\dim \operatorname{Bild} f = \dim W = \dim V = \dim \operatorname{Bild} f + \dim \operatorname{Kern} f$$

also dim Kern f = 0 und damit Kern $f = \{0\}$, also f injektiv (nach Satz 2).

Satz 5 (Dimensionsformel für homogene lineare Gleichungssysteme)

Seien $m, n \in \mathbb{N}, v_1, \ldots, v_n \in K^m$ und $G \sum_{j=1}^n x_j v_j = 0$ ein **homogenes** lineares Gleichungssystem von m Gleichungen in n Unbekannten x_1, \ldots, x_n . Für den Lösungsraum L(G) von G gilt dann

$$\dim L(G) = n - \dim \operatorname{Lin}(v_1, \dots, v_n).$$

(Man setzt rang $\{v_1, \ldots, v_n\}$:= dim Lin (v_1, \ldots, v_n) .)

Beweis: $f: K^n \to K^m$, $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \sum_{j=1}^n x_j v_j$ ist eine lineare Abbildung. Es gilt

$$\operatorname{Kern} f = L(G)$$
 und $\operatorname{Bild} f = \operatorname{Lin}(v_1, \dots, v_n)$.

Mit der Dimensionsformel (Satz 3) folgt also

$$\dim L(G) = \dim \operatorname{Kern} f = \dim K^n - \dim \operatorname{Bild} f = n - \dim \operatorname{Lin}(v_1, \dots, v_n).$$

Satz 6 (Klassifikation endlich-dimensionaler Vektorräume bis auf Isomorphie)

- a) Sei V endlich-dimensional mit $n := \dim V \ge 1$. Dann gilt $V \cong K^n$.
- b) Sei V endlich-dimensional. Dann gilt: $V \cong W \iff \dim V = \dim W$.

Beweis: a) Sei $\{v_1, \ldots, v_n\}$ eine Basis von V. Wir definieren

$$f: K^n \to V, \ f\left(\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}\right) := \sum_{j=1}^n a_j v_j \text{ für alle } a_1, \dots, a_n \in K.$$

Man zeigt leicht, dass f linear ist. f ist surjektiv, denn jedes $v \in V$ hat eine Darstellung $v = \sum_{j=1}^{n} a_j v_j$ mit $a_1, \ldots, a_n \in K$. Wegen dim $V = n = \dim K^n$ ist f dann auch injektiv. Also ist $f: K^n \to V$ ein Isomorphismus.

b) " \Leftarrow ": Sei $n := \dim V = \dim W$. Für n = 0 ist $V = \{0_V\}$, $W = \{0_W\}$, also gilt $V \cong W$. Für $n \ge 1$ gilt nach a) $V \cong K^n$, $W \cong K^n$, also ist $V \cong W$.

" \Rightarrow ": Gelte $V\cong W$, also existiert ein Isomorphismus $f:V\to W$. Da f injektiv ist, ist Kern $f=\{0\}$; weil f surjektiv ist, ist Bild f=W. Nach der Dimensionsformel (Satz 3) gilt dann

$$\dim V = \dim \operatorname{Bild} f + \dim \operatorname{Kern} f = \dim \operatorname{Bild} f = \dim W.$$