24009

BEST AVAILABLE COPY

26 JAN 2005

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

02023637.8

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH

RULE 17.1(a) OR (b)

CERTIFIED COPY OF PRIORITY DOCUMENT

> Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

BEST AVAILABLE COPY

Europäisches Patentamt

European Pate fice

Office européen des brevets

Anmeldung Nr:

Application no.: 0

02023637.8

Demande no:

Anmeldetag:

Date of filing:

19.10.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Noxxon Pharma AG Max-Dohrn-Strasse 8-10 10589 Berlin ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description.

Si aucun titre n'est indiqué se referer à la description.)

Ghrelin binding nucleic acids

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C12N/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Ghrelin binding nucleic acids

The present invention is generally related to an antagonist to ghrelin, nucleic acids binding to ghrelin, use of such nucleic acids, composition and complex comprising such nucleic acids, a method for the generation and/or identification of a nucleic acid binding to a target molecule, a method for the generation of an L-nucleic acid binding to a target molecule and a method for the screening of a ghrelin antagonist.

Ghrelin was identified as the natural ligand of the growth hormone secretagogue receptor 1a (GHSR1a). The receptor is most abundant in the pituitary gland and in hypothalamic parts of the brain, but can also be detected in other tissues at low concentrations. Since the late 70ies synthetic peptides and other compounds, named secretagogues had been shown to stimulate the release of growth hormone. However, the natural ligand responsible for the release of growth hormone remained unknown until the discovery of ghrelin in 1999. Ghrelin is a highly basic 28 amino acid peptide hormone with an octanoyl acid side chain at the third amino acid of its N-terminus (serine 3). This unusual modification is required for the interaction at the GHS-receptor and its activity. The amino-acid sequence of the purified rat ghrelin was determined by a protein sequencer to be GSSFLSPEHQKAQQRKESKKPPAKLQPR.

Ghrelin has been shown to mediate physiological functions pertinent to an anabolic state. While it directly stimulates the release of growth hormone (GH) from the pituitary gland, experiments in rodents also showed ghrelin to induce feeding in a GH-independent fashion by acting upon hypothalamic neurons. Interestingly, the primary site of ghrelin production is in oxyntic glands in the stomach, suggesting that it serves as a hormonal link between stomach, pituitary gland and hypothalamus. The observation that ghrelin administration in rats resulted in weight gain as a consequence of changes in energy intake and/or fuel utilization is in support of such a role. Moreover, systemic ghrelin administration in humans cause sensations of hunger in the test subjects and induce overeating. Based on these findings ghrelin is thought to have a crucial role in the regulation of appetite and body weight, serving as an acute as well as a chronic signal of an underfed state. Additional support for this hypothesis comes from observations that ghrelin levels as well as appetite are reduced in individuals

following gastric bypass, contributing at least in part to the efficiency of the procedure in effecting weight loss. Clinical data from patients with Prader-Willi syndrome also suggest that the hyperphagia and obesity associated with the disease are a consequence of tremendous hyperghrelinemia. Moreover, ghrelin was found to induce hyperglycemia and inhibition of insulin release, indicating an involvement in glucose metabolism. Beside these functions in energy metabolism, ghrelin has also been implicated in a number of other processes. It was found to be expressed in a number of neuroendocrine tumors and to stimulate, besides GH release from the pituitary, the release of ACTH, PRL, and cortisol. Single injections of ghrelin into healthy individuals were found to increase cardiac output and decrease blood pressure. Thus, ghrelin action appears to to be involved in a variety of different tasks. For background information may be taken from M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsu, K. Kangawa, "Ghrelin is a growth-hormone-releasing acylated peptide from stomach". Nature 402:656-60, 1999; M. Tschöp, D.L. Smiley, M.L. Heiman, "Ghrelin induces adiposity in rodents", Nature 407:908-13, 2000; A.M. Wren et al., "Ghrelin enhances appetite and increases food intake in humans", Journal of Clinical Endocrinology Metabolism 86:5992-6, 2001; M. Nakazato et al., "A role for ghrelin in the central regulation of feeding", Nature 409: 194-8. 2001; N. Nagaya, et al., Am J Physiol Regul Integr Comp Physiol. 2001 May; 280(5):R1483-7; Hemodynamic and hormonal effects of human ghrelin in healthy volunteers; Volante M, et al., J Clin Endocrinol Metab. 2002 Mar; 87(3):1300-8. Expression of ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related endocrine tumors; Jeffery PL, et al., J Endocrinol. 2002 Mar; 172(3):R7-11 Expression and action of the growth hormone releasing peptide ghrelin and its receptor in prostate cancer cell lines; Egido EM, et al., Eur J Endocrinol. 2002 Feb; 146(2):241-4 Inhibitory effect of ghrelin on insulin and pancreatic somatostatin secretion; Broglio F, et al., J Clin Endocrinol Metab. 2001 Oct; 86(10):5083-6, Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans.

The problem underlying the present invention is to provide a specific antagonist to ghrelin. A further aspect of the problem underlying the present invention is to provide a specific antagonist to the growth hormone secretagogue receptor 1 a (GHSR 1a). Another aspect of the problem underlying the present invention is to provide a compound for the treatment of diseases and disorders involving ghrelin and the GHSR 1a receptor, respectively.

The problem underlying the present invention is solved in a first aspect by an antagonist of ghrelin, wherein the antagonist is a nucleic acid. In a preferred embodiment the nucleic acid is binding to ghrelin.

The problem underlying the present invention is solved in a first aspect by an antagonist of the GHSR 1a receptor system, wherein the antagonist is a nucleic acid. In a preferred embodiment the nucleic acid is binding to the ligand of the receptor and whereby the ligand is preferably ghrelin.

In an embodiment of the first and the second aspect of the present invention the nucleic acid comprises at least one L-nucleotide.

In a preferred embodiment of the first and the second aspect of the present invention the antagonist is an L-nucleic acid.

In a more preferred embodiment of the first and the second aspect of the present invention the nucleic acid is a nucleic acid as disclosed herein. Preferably the nucleic acid is a nucleic acid according to the third and fourth aspect of the present invention.

The problem underlying the present invention is solved in a third aspect by a nucleic acid binding to ghrelin. Preferably the nucleic acid is a L-nucleic acid binding to L-ghrelin.

In a preferred embodiment the L-nucleic acid is a nucleic acid as disclosed herein. Preferably, the nucleic acid is a nucleic acid according to the fourth aspect of the present invention.

The problem underlying the present invention is solved in a fourth aspect by a nucleic acid having a sequence which is selected from the group comprising the sequences according to SEQ. ID. No. 7 to SEQ. ID. No. 86.

In an embodiment the nucleic acid comprises at least one L-nucleotide.

In a preferred embodiment the nucleic acid is an L-nucleic acid.

In a further embodiment the nucleic acid is selected from the group comprising DNA, RNA and combinations thereof.

In a preferred embodiment the Kd of the nucleic acid is less than 1 μ M, preferably less than 0.25 μ M, more preferably less than 0.1 μ M and most preferably less than 0.01 μ M.

In a more preferred embodiment the Kd of the nucleic acid is more than 100 nM, preferably more than 10 nM, more preferably more than 1 nM and most preferably more than 0.05 nM.

In a further preferred embodiment the nucleic acid is of a length selected from the group comprising 15 to 150 nucleotides, 20 to 100 nucleotides, 20 to 80 nucleotides, 20 to 60 nucleotides, 20 to 50 nucleotides and 30 to 50 nucleotides.

In a still further embodiment the nucleic acid comprises a minimal binding motif.

In another preferred embodiment of the third to sixth aspect of the present invention the nucleic acid has at least a bipartite structure.

The problem underlying the present invention is solved in a fifth aspect by the use of a nucleic acid according to the present invention, preferably a nucleic acid according to the third and/or fourth aspect of the present invention, as an antagonist of ghrelin and/or the GHSR 1a receptor system.

The problem underlying the present invention is solved in a sixth aspect by a method for the generation and/or identification of a nucleic acid binding to a target molecule, preferably of a nucleic acid according to any of claims 6 to 14, comprising the following steps:

- a) generating a heterogeneous population of nucleic acids;
- b) contacting the population of step a) with the target molecule;
- c) separating the nucleic acid(s) not interacting with the target molecule;
- d) optionally separating the nucleic acid(s) interacting with the target molecule; and
- e) optionally sequencing the nucleic acid(s) interacting with the target molecule,

characterized in that the target molecule is ghrelin.

In an embodiment of the method subsequent to step c) a step ca) is carried out, whereby step ca) consists of amplification of the nucleic acid(s) interacting with the target molecule.

In a preferred embodiment steps b) to d) are repeated.

In a more preferred embodiment the heterogeneous population of nucleic acids comprises at least one nucleic acid according to the present invention. Preferably, the nucleic acid according to the present invention is a nucleic acid according to the third and/or fourth aspect of the present invention.

The problem underlying the present invention is solved according to a seventh aspect by a method for the generation of an L-nucleic acid binding to a target molecule in the natural configuration comprising the following steps:

- a) generating a heterogeneous population of D-nucleic acids;
- b) contacting the population of step a) with an optical antipode of the target molecule;
- c) separating the D-nucleic acid not interacting with the optical antipode of the target molecule;
- d) sequencing the D-nucleic acid interacting with the optical antipode of the target molecule; and
- e) synthesising the L-nucleic acid sequence(s) which is/are identical to the sequence of the D-nucleic acid(s) obtained in step d);

characterised in that the target molecule is L-ghrelin and the optical antipode of the target molecule is the D-ghrelin.

In an embodiment of the method subsequent to step c) the following step is introduced:

ca) amplifying the D-nucleic acid interacting with the optical antipode of the target molecule.

In a preferred embodiment steps b) to e) are repeated.

In a more preferred embodiment the heterogeneous population of nucleic acids comprises a nucleic acid according to the present invention. Preferably, the nucleic acid is a nucleic acid according to the third and/or fourth aspect of the present invention.

The problem underlying the present invention is solved in an eighth aspect by the use of a nucleic acid according to the present invention and/or of an antagonist according to the present invention 5 for the manufacture of a medicament. Alternatively, the aforementioned use is for the manufacture of a cosmetic product. In a preferred embodiment the nucleic acid according to the present invention is a nucleic acid according to the third and/or fourth aspect of the present invention. In a further preferred embodiment the antagonist according to the present invention is an antagonist according to the first and/or second aspect of the present invention.

In a further embodiment the medicament is for the treatment of a disease or disorder selected from the group comprising obesity, the regulation of energy balance, appetite and body weight, eating disorders, diabetes, glucose metabolism, tumour, blood pressure and/or cardiovascular diseases. In a further embodiment the cosmetic product is for appetite and body weight control, and/or for obesity.

In a ninth aspect the problem underlying the present invention is solved by a composition, preferably a pharmaceutical composition, comprising a nucleic acid according to the present invention and/or an antagonist according to the present invention, and a pharmaceutical acceptable carrier. In a preferred embodiment the nucleic acid according to the present invention is a nucleic acid according to the third and/or fourth aspect of the present invention. In a further preferred embodiment the antagonist according to the present invention is the antagonist according to the first and second aspect of the present invention.

In a tenth aspect the problem underlying the present invention is solved by a complex comprising ghrelin and any of the nucleic acids according to the present invention. In a

preferred embodiment the complex is a crystalline complex. In a still further embodiment the nucleic acid according to the present invention is a nucleic acid according to the third and/or fourth aspect of the present invention.

In an eleventh aspect the problem underlying the present invention is solved by the use of any of the nucleic acids according to the present invention and/or of an antagonist according to the present invention for the detection of ghrelin. In a preferred embodiment the nucleic acid according to the present invention is a nucleic acid according to the third and/or fourth aspect of the present invention. In a further preferred embodiment the antagonist according to the present invention is the antagonist according to the first and second aspect of the present invention.

In a twelfth aspect the problem underlying the present invention is solved by a method for the screening of a ghrelin antagonist comprising the following steps:

- providing a candidate ghrelin antagonist,
- providing a nucleic acid according to the present invention and/or an antagonist according to the present invention,
- providing a test system providing a signal in the presence of a ghrelin antagonist, and
- determining whether the candidate ghrelin antagonist is a ghrelin antagonist.

In a preferred embodiment the nucleic acid according to the present invention is a nucleic acid according to the third and/or fourth aspect of the present invention. In a further preferred embodiment the antagonist according to the present invention is the antagonist according to the first and second aspect of the present invention.

In a thirteenth aspect the problem underlying the present invention is solved by a kit for the detection of ghrelin, comprising a nucleic acid according to the present invention and/or an antagonist according to the present invention. Preferably, the the nucleic acid according to the present invention is a nucleic acid according to the third and/or fourth aspect of the present

invention. In a further preferred embodiment the antagonist according to the present invention is the antagonist according to the first and second aspect of the present invention.

Ghrelin is a basic peptide having the amino acid sequence according to SEQ. ID. No .1, and is modified with a fatty acid side chain. The calculated pI of ghrelin is 11.09. As used herein the term ghrelin refers to any ghrelin including, but not limited to, mammalian ghrelin. Preferably, the mammalian ghrelin is selected from the group comprising mice, rat, rabbit, hamster and human ghrelin. Most preferably the ghrelin is human ghrelin.

The present invention is based on the surprising finding that it is possible to generate nucleic acids binding specifically and with a high affinity to ghrelin. This finding is insofar surprising as Eaton et al. (Eaton, B.E.; Gold, L.; Hicke, B.J.; Janjic, N.; Jucker, F.M.; Sebosta, D.P.; Tarasow, T.M.; Willis, M.C.; Zichi, D.A.; Bioorganic & Medicinal Chemistry, Vol 5, No. 6; pp 1087 - 1096, 1997) observed that the generation of aptamers, i.e. nucleic acids binding to a target molecule, directed to a basic protein is in general very difficult because this kind of target produces a high but non-specific signal-to-noise ratio. This high signal-to-noise ratio results from the high non-specific affinity shown by nucleic acids for basic targets.

The features of the nucleic acid according to the present invention as described herein can be realised in any aspect of the present invention where the nucleic acid is used, either alone or in any combination.

The nucleic acids according to the present invention shall also comprise nucleic acids which are essentially homologous to the particular sequences disclosed herein. The term substantially homologous shall be understood such as the homology is at least 75%, preferably 85%, more preferably 90% and most preferably more that 95 %, 96 %, 97 %, 98 % or 99%.

The term inventive nucleic acid or nucleic acid according to the present invention shall also comprise those nucleic acids comprising part of the nucleic acids sequences disclosed herein, preferably to the extent that said parts are involved in the binding to ghrelin. Such a nucleic acid may be derived from the ones disclosed herein, e.g., by truncation. Truncation may be related to either or both of the ends of the nucleic acids as disclosed herein. Also, truncation may be related to the inner sequence of nucleotides, i.e. it may be related to the nucleotide(s)

between the 5' and the 3' terminal nucleotide, respectively. Moreover, truncation shall comprise the deletion of as little as a single nucleotide from the sequence of the nucleic acids disclosed herein. Truncation may also be related to more than one stretch of the inventive nucleic acid(s), whereby the stretch can be as little as one nucleotide long. Examples for the truncation of the inventive nucleic acids are described in the example part of this description.

The nucleic acids according to the present invention may be either D-nucleic acids or L-nucleic acids. Preferably, the inventive nucleic acids are L-nucleic acids. In addition it is possible that one or several parts of the nucleic acid are present as D-nucleic acids or at least one or several parts of the nucleic acids are L-nucleic acids. The term "part" of the nucleic acids shall mean as little as one nucleotide. Such nucleic acids are generally referred to herein as D- and L-nucleic acids, respectively.

It is also within the present invention that the nucleic acids according to the present invention are part of a longer nucleic acid whereby this longer nucleic acid comprises several parts whereby at least one part is a nucleic acid, or a part thereof, according to the present invention. The other part of these longer nucleic acids can be either a D-nucleic acid or L-nucleic acid. Any combination may be used in connection with the present invention. These other part(s) of the longer nucleic acid can exhibit a function which is different from binding. One possible function is to allow interaction with other molecules such as, e.g., for immobilization, cross-linking, detection or amplification.

L-nucleic acids as used herein are nucleic acids consisting of L-nucleotides, preferably consisting completely of L-nucleotides.

D-nucleic acids as used herein are nucleic acids consisting of D-nucleotides, preferably consisting completely of D-nucleotides.

Irrespective of whether the inventive nucleic acid consists of D-nucleotides, L-nucleotides or a combination of both with the combination being e.g. a random combination or a defined sequence of stretches consisting of at least one L-nucleotide and at least one D-nucleic acid, the nucleic acid may consist of desoxyribonucleotide(s), ribonucleotide(s) or combinations thereof.

Designing the inventive nucleic acids as L-nucleic acid is advantageous for several reasons. L-nucleic acids are enantiomers of naturally occurring nucleic acids. D-nucleic acids, however, are not very stable in aqueous solutions and particularly in biological systems or biological samples due to the widespread presence of nucleases. Naturally occurring nucleases, particularly nucleases from animal cells are not capable of degrading L-nucleic acids. Because of this the biological half-life of the L-nucleic acid is significantly increased in such a system, including the animal and human body. Due to the lacking degradability of L-nucleic acid no nuclease degradation products are generated and thus no side effects arising therefrom observed. This aspect delimits the L-nucleic acid of factually all other compound which are used in the therapy of diseases and/or disorders involving the presence of ghrelin.

It is also within the present invention that the inventive nucleic acids, regardless whether they are present as D-nucleic acids, L-nucleic acids or D,L-nucleic acids or whether they are DNA or RNA, may be present single stranded or double stranded nucleic acids. Typically, the inventive nucleic acids are single stranded nucleic acids which exhibit defined secondary structures due to the primary sequence and may thus also form tertiary structures. The inventive nucleic acids, however, may also be double stranded in the meaning that two strands which are complementary to each other are hybridised to each other. This confers stability to the nucleic acid which will be advantageous if the nucleic acid is present in the naturally occurring D-form rather than the L-form.

The inventive nucleic acids may be modified. Such modifications may be related to the single nucleotide of the nucleic acid and are well known in the art. Examples for such modification are described in, among others, Kusser, W.(2000) J Biotechnol, 74: 27-38; Aurup, H. et al. (1994) Nucleic Acids Res, 22, 20-4; Cummins, L.L. et al. (1995) Nucleic Acids Res, 23, 2019-24; Eaton, B.E. et al. (1995) Chem Biol, 2, 633-8; Green, L.S. et al., (1995) Chem Biol, 2, 683-95; Kawasaki, A.M. et al., (1993) J Med Chem, 36, 831-41; Lesnik, E.A. et al., (1993) Biochemistry, 32, 7832-8; Miller, L.E. et al., (1993) J Physiol, 469, 213-43.

The nucleic acids according to the present invention may be a multipartite nucleic acid. A multipartite nucleic acid as used herein, is a nucleic acid which consists of at least two nucleic acid strands. These at least two nucleic acid strands form a functional unit whereby the functional unit is a ligand to a target molecule. The at least two nucleic acid strands may be derived from any of the inventive nucleic acids by either cleaving the nucleic acid to generate

two strands or by synthesising one nucleic acid corresponding to a first part of the inventive, i.e. overall nucleic acid and another nucleic acid corresponding to the second part of the overall nucleic acid. It is to be acknowledged that both the cleavage and the synthesis may be applied to generate a multipartite nucleic acid where there are more than two strands as exemplified above. In other words, the at least two nucleic acid strands are typically different from two strands being complementary and hybridising to each other although a certain extent of complementarity between the various nucleic acid parts may exist.

A possibility to determine the binding constant is the use of the so called biacore device, which is also known to the one skilled in the art. Affinity as used herein was also measured by the use of "bead assays" as described in the examples. An appropriate measure in order to express the intensity of the binding between the nucleic acid according to the target which is in the present case ghrelin, is the so-called Kd value which as such as well the method for its determination are known to the one skilled in the art.

The nucleic acids according to the present invention are characterized by a certain Kd value. Preferably, the Kd value shown by the nucleic acids according to the present invention is below 1 μ M. A Kd value of about 1 μ M is said to be characteristic for a non-specific binding of a nucleic acid to a target. As will be acknowledged by the ones in the art, the Kd value of a group of compounds such as the nucleic acids according to the present invention are within a certain range. The above-mentioned Kd of about 1 μ M is a preferred upper limit for the Kd value. The preferred lower limit for the Kd of target binding nucleic acids can be about 10 picomolar or higher. It is within the present invention that the Kd values of individual nucleic acids binding to ghrelin is preferably within this range. Preferred ranges can be defined by choosing any first number within this range and any second number within this range. Preferred upper values are 0.25 μ M, 0.1 μ M and 0.01 μ M, preferred lower values are 100 nM, 1 nm and 0.05 nM.

The nucleic acid molecules according to the present invention may have any length provided that they are still able to bind to the target molecule. It will be acknowledged in the art that there are preferred lengths of the nucleic acids according to the present inventions. Typically, the length is between 15 and 120 nucleotides. It will be acknowledged by the ones skilled in the art that any integer between 15 and 120 is a possible length for the nucleic acids according to the present invention. More preferred ranges for the length of the nucleic acids according to

the present invention are lengths of about 20 to 100 nucleotides, about 20 to 80 nucleotides, about 20 to 60 nucleotides, about 20 to 50 nucleotides and about 30 to 50 nucleotides.

The inventive method disclosed herein for the generation and/or identification of nucleic acids binding to ghrelin and in particular having the further features and characteristics as closed herein, are based on the so called SELEX process which is subject to US patent 5,475,096. Basically, the SELEX process comprises the following steps:

- f) generating a heterogeneous population of nucleic acids;
- g) contacting the population of step a) with the target molecule;
- h) separating the nucleic acid(s) not interacting with the target molecule;
- i) optionally separating the nucleic acid(s) interacting with the target molecule; and
- j) optionally sequencing the nucleic acid(s) interacting with the target molecule.

The exact operation of the SELEX process is known to the one skilled in the art.

Preferably, the SELEX process comprises an amplification of the individual nucleic acid binding to the target molecule using a polymerase chain reaction. By realizing this amplification a higher rate of unspecific nucleotide incorporation can be realized which results in a change of the primary sequence of the binding nucleic acid. Because of these changes new sequences may be generated which show a binding characteristic different from the one of the starting sequences such as, among others, increased affinity of specificity.

It is within the present invention that the inventive sequences originate either completely or partially from the randomised part of the members of a nucleic acid library serving as starting material for the selection process. However, it is also within the present invention that the inventive sequences either completely or partially originate from the non-randomised part of the members of the nucleic acid library serving as starting material for the selection process. Such non-randomised part is, for example, that part which is used as binding site for the amplification primer.

The inventive method for the generation of L-nucleic acids binding to ghrelin is based on the method of Fürste et al. which is subject to international patent application WO 98/08856. Basically, this method comprises the following steps:

- a) generating a heterogeneous population of D-nucleic acids;
- b) contacting the population of step a) with an optical antipode of the target molecule;
- c) separating the D-nucleic acid not interacting with the optical antipode of the target molecule;
- d) sequencing the D-nucleic acid interacting with the optical antipode of the target molecule; and
- e) synthesising the L-nucleic acid sequence(s) which is/are identical to the sequence of the D-nucleic acid(s) obtained in step d);

According to the present invention the optical antipode is ghrelin. The optical antipode is present as D-pepide which means that all of the amino acids forming the peptide are D-amino acids. The target molecule, i.e. ghrelin is present as the L-enantiomer. The L-enantiomer consists of L-amino acids and is the naturally occurring form.

The protocol on how to realize the process is known to the one skilled in the art.

It is also within the present invention that any of the nucleic acids according to the present invention may be used in the method for the generation and/or identification of nucleic acids binding to ghrelin and/or the method for the generation of L-nucleic acids binding to ghrelin, respectively, according to the present invention.

The inventive nucleic acids, which are also referred to herein as the nucleic acids according to the present invention, and/or the antagonists according to the present invention may be used for the generation or manufacture of a medicament. Such medicament contains at least one of the inventive nucleic acids, optionally together with further pharmaceutically active compounds, whereby the inventive nucleic acid preferably acts as pharmaceutically active compound itself. Such medicaments comprise in preferred embodiments at least a pharmaceutically acceptable carrier. Such carrier may be, e. g., water, buffer, starch, sugar, gelatine or any other acceptable carrier substance. Such carriers are generally known to one

skilled in the art. Disease and/or disorders and/or diseased conditions for the treatment and/or prevention of which such medicament may be used include, but are not limited to obesity, the regulation of energy balance, appetite and body weight, eating disorders, diabetes, glucose metabolism, tumour, blood pressure and cardiovascular diseases. As will be acknowledged by the ones of the art the inventive nucleic acids may factually be used in any disease where an antagonist to ghrelin can be administered to a patient in need of such antagonist and such antagonist is suitable to eliminate the cause of the disease or the disorder or at least to reduce the effects from the disease or the disorder. Such effect includes, but is not limited to obesity, the regulation of energy balance, appetite and body weight, eating disorders, diabetes, glucose metabolism, tumour treatment, blood pressure and cardiovascular diseases. For the purpose of the present invention regulation of energy balance is regarded as a disease. More particularly, the use is for the treatment of any disease where the regulation of the energy balance is influenced by ghrelin, either directly or indirectly, and whereby reduction of the bioavailability of ghrelin is desired. The same applies to sugar metabolism, blood pressure and appetite and body weight. Further disease which may be treated using the nucleic acids according to the present invention, possibly upon systemic or local application are those which can be selected from the group comprising pituitary tumors, acromegaly, central Cushing's syndrome, adrenal Cushing's syndrome, paraneoplastic Cushing's syndrome, ectopic Cushing's syndrome, adrenal tumor, stress, hypercortisolism, cardiac insufficiency, cardiay infarction, stroke, adrenocortical insufficiency, hypotonia, aortic stenosis, pulmonal hypertonia, constrictive pericarditis, infectious diseases, infectious toxic hypotonia, hypovolemia, and hypronatriemia.

It is to be understood that the nucleic acid as well as the antagonists according to the present invention can be used not only as a medicament or for the manufacture of a medicament, but also for cosmetic purposes, particularly with regard to the involvement of ghrelin in obesity. For the same purpose the nucleic acid as well as the antagonists according to the present invention can be used as a food additive, a means for weight control and/or a means for appetite control. A composition comprising the nucleic acid as well as the antagonists according to the present invention can be used for any of the aforementioned purposes.

The inventive nucleic acid may further be used as starting material for drug design. Basically there are two possible approaches. One approach is the screening of compound libraries whereas such compound libraries are preferably low molecular weight compound libraries.

Such libraries are known to the one skilled in the art. Alternatively, the nucleic acid according to the present invention may be used for rational design of drugs.

The rational design of drugs may start from any of the nucleic acid according to the present invention and involves a structure, preferably a three dimensional structure, which is similar to the structure of the inventive nucleic acids or identical to the binding mediating parts of the structure of the inventive nucleic acids. In any case such structure still shows the same or a similar binding characteristic as the inventive nucleic acids. In either a further step or as an alternative step in the rational design of drugs the preferably three dimensional structure of those parts of the nucleic acids binding to the neurotransmitter are mimicked by chemical groups which are different from nucleotides and nucleic acids. By this mimicry a compound different from the nucleic acids can be designed. Such compound is preferably a small molecule or a peptide.

In case of screening of compound libraries, such as by using a competitive assay which are known to the one skilled in the arts, appropriate ghrelin analogues, ghrelin agonists or ghrelin antagonists may be found. Such competitive assays may be set up as follows. The inventive nucleic acid, preferably a spiegelmer which is a target binding L-nucleic acid, is coupled to a solid phase. In order to identify ghrelin analogues labelled ghrelin may be added to the assay. A potential analogue would compete with the ghrelin molecules binding to the spiegelmer which would go along with a decrease in the signal obtained by the respective label. Screening for agonists or antagonists may involve the use of a cell culture assay as known to the ones skilled in the art.

The kit according to the present invention may comprise at least one or several of the inventive nucleic acids. Additionally, the kit may comprise at least one or several positive or negative controls. A positive control may, for example, be ghrelin, particularly the one against which the inventive nucleic acid is selected or to which it binds, preferably, in liquid form. A negative control may, e.g., be a peptide which is defined in terms of biophysical properties similar to ghrelin, but which is not recognized by the inventive nucleic acids. Furthermore, said kit may comprise one or several buffers. The various ingredients may be contained in the kit in dried or lyophilised form or solved in a liquid. The kit may comprise one or several containers which in turn may contain one or several ingredients of the kit.

The present invention is further illustrated by the figures, examples and the sequence listing from which further features, embodiments and advantages may be taken, wherein

Fig. 1	shows table 1A indicating the signal to noise ratio of the RNA selection
	for D-ghrelin binding aptamers;
Fig. 2	shows table 1B indincating the the signal to noise ratio of the 2 F-RNA
	selection for D-ghrelin binding aptamers;
Fig. 3	shows table 2 indicating the amount of RNA/2F- RNA used in the
	selection process;
Fig. 4A	shows the course of the ghrelin peptide concentration used in the RNA
	selection;
Fig. 4B	shows the course of the ghrelin peptide concentration used in the 2'F-
	RNA selection;
Fig. 5	shows the course of eluted RNA in percent of total used RNA over the
	course of peptide concentration;
Fig. 6	shows the course of eluted RNA in percent of total used 2'F-RNA over
	the course of peptide concentration;
Fig. 7A	shows table 3 indicating double rounds and binding assays performed
	from round 12 to 14 for the RNA selection; data in percent binding to
	ghrelin, * marks sequences;
Fig. 7B	shows an improvement if the 2'F-RNA pool binding to D-ghrelin
	monitored over double rounds;
Fig. 8A	shows table 4 indicating double rounds and binding assays performed
	from round 12 to 14 for the 2'F-RNA selection, data in percent binding
	to ghrelin, * marks sequences;
Fig. 8B	shows an improvement of the 2'F-RNA pool binding to D-ghrelin
	monitored over the double rounds;
Fig. 9	shows the course of an automated in vitro selection against rat D-
	ghrelin;
Fig. 10	shows a worksurface of the robot for the automated in vitro selection
	of RNA;
Fig. 11	shows a scheme demonstrating the working procedure executed by the
	robot during the automated RNA selection;

Fig. 12 shows table 5 indicating the occurrence of identical sequences during the selection process; internal reference and SEQ.ID.No. are given; shows an alignment of sequences of RNA ligands, which were isolated Fig. 13 by automated in vitro selection against ghrelin as described in example 2, whereby lines indicate missing nucleotides; shows a binding curve of D-ghrelin binding RNA clone A8, which was Fig. 14 A isolated by automated in vitro selection, binding behaviour was analysed using bead assays; shows a binding curve of D-ghrelin binding RNA clone B11, which was Fig. 14 B isolated by automated in vitro selection, binding behaviour was analysed using bead assays; shows a binding curve of D-ghrelin binding RNA clone C11, which was Fig. 14 C isolated by automated in vitro selection, binding behaviour was analysed using bead assays: shows a binding curve of D-ghrelin binding RNA clone C12, which was Fig. 14 D isolated by automated in vitro selection, binding behaviour was analysed using bead assays: shows a binding curve of D-ghrelin binding RNA clone F12, which was Fig. 14 E isolated by automated in vitro selection, binding behaviour was analysed using bead assays: Fig. 15 shows table 6 indicating the binding behaviour of clones B11, F12 and E3 to D-ghrelin, which were isolated by automated in vitro selection; shows a binding curve, activity and Kd of D-ghrelin binding RNA clone Fig. 16 A B11, which was isolated by automated in vitro selection, corresponding data are shown in Fig. 8; shows a binding curve, activity and Kd of D-ghrelin binding RNA clone Fig. 16.B F12, which was isolated by automated in vitro selection, corresponding data are shown in Fig. 8; Fig. 16 C shows a binding curve, activity and Kd of D-ghrelin binding RNA clone E3, which was isolated by automated in vitro selection, corresponding data are shown in Fig. 8; shows table 7 indicating the Kd values of D-ghrelin binding RNA Fig. 17 clones A3, A8, A12, B7, B11, B12, C11, C12, E3, E12, F5, F12, G2 and G5 as determined using the Biacore 2000 instrument:

shows a competition experiment with clone B11, which was performed Fig. 18 using the Biacore 2000 instrument; Fig. 19 shows calculated secondary structures of D-ghrelin binding RNA spiegelmers clone B11 and of the truncated clone B11trc, the secondary structure was calculated with the program "rnafold" (Hofacker et al., 1994, Monatsh. Chem 125:167-188); shows table 8 indicating the Kd of RNA clones B11 in the L-form and Fig. 20 the truncated clone B11 in D- and L-form, Kd was measured with Biacore 2000 instrument; shows Biacore 2000 assisted binding assays of RNA clones B11 in the Fig. 21 D-form and the truncated clone B11 in D- and L-form; shows an alignment of sequences of RNA ligands, which were isolated Fig. 22 by manual in vitro selection against ghrelin as described in example 1 (round 13), whereby lines indicate missing nucleotides and the primer parts of the sequences are printed in bold and whereby the Ts are to be understood as Us; shows an alignment of sequences of RNA ligands, which were isolated Fig. 23 by manual in vitro selection against ghrelin as described in example 1 (round 14), whereby lines indicate missing nucleotides and the primer parts of the sequences are printed in bold and whereby the Ts are to be understood as Us; shows an alignment of sequences of 2'-F-RNA ligands, which were Fig. 24 isolated by manual in vitro selection against ghrelin as described in example 1 (round 14), whereby lines indicate missing nucleotides and the primer parts of the sequences are printed in bold and whereby the Ts are to be understood as Us; and shows an alignment of sequences of 2'-F-RNA ligands, which were Fig. 25 isolated by manual in vitro selection against ghrelin as described in example 1 (round 15), whereby lines indicate missing nucleotides and the primer parts of the sequences are printed in bold and whereby the Ts

are to be understood as Us.

The following table links the SEQ ID Nos to the various clones and identifiers, respectively, described herein. It is to be understood that the clones B11 to G5 exist in two different forms. The form referred to herein as 'complete' comprises the randomised stretch of the pool used, or part thereof and the DE.40F primer sequence and the DE.40R primer, whereas the form referred to herein as 'core' is the minimum binding motive which was generated from the respective complete form. If not indicated to the contrary the strands represented are the (+) strands and the nucleic acid used 2'OH RNA.

Table:

Clone/Identifier	Seq. ID No
Rat ghrelin	1
RNA-Pool	2
Rev. Compl.	3
DE.40T7	4
DE.40R	5
DNA pool	6
B11 (complete)	7
B11 (core)	8
G2 (complete)	9
G2 (core)	10
E12 (complete)	11
E12 (core)	12
B7 (complete)	13
B7 (core)	14
A8 (complete)	15
A8 (core)	16
Clone/Identifier	Seq. ID No
B12 (complete)	17
B12 (core)	18
E3 (complete)	19
E3 (core)	20
C12 (complete)	21
C12 (core)	22
C11 (complete)	23
C11 (core)	24
A3 (complete)	25
A3 (core)	26
F5 (complete)	27
F5 (core)	28
A12 (complete)	29
A12 (core)	30
F12 (complete)	31

F12 (core)	32
G5 (complete)	33
G5 (core)	34
DE.40F-Primer	35
(consensus	
sequence pf the	
pool)	ſ
DE.40R-Primer	36
(consensus	
sequence of the	
pool)	
B11trc	37
RNA round 13	38
group1	Ì
1.1 main clone	
'SOT-R04-DR13-	ļ
E5	
group2	30
2.1 main clone	
'SOT-R04-DR13-	
A2	
variations of 2.1	40
'SOT-R04-DR13-	
C4	
group3	41
3.1 main clone	
'SOT-R04-DR13-	
C1	
group4	42
4.1 main clone	
'SOT-R04-DR13-	
G2	

RNA round 14	43
group1	
1.1 (main clone)	
'SOT-R04-DR14-	
F7	
variations of	44
	7-7
clone 1.1	
1.2	
'SOT-R04-DR14-	
C11	
1.3	45
'SOT-R04-DR14-	
A8	
1.4	46
'SOT-R04-DR14-	}
C12	
group3	47
3.1 (main clone)	
'SOT-R04-DR14-	
C7	
variations of	48
clone 3.1	"
1.2	
'SOT-R04-DR14-	
E11	
1.3	49
'SOT-R04-DR14-	149
H11	
1.4	50
'SOT-R04-DR14-	
E8	<i>E</i> 1
2'-F-RNA round	51
14	
group1	
1.1 (main clone)	
'SOT-F03-DR14-	
G6	
mutations of	52
clone 1.1	
1.2	
[
'SOT-F03-DR14-	
F2	
1.3	53
'SOT-F03-DR14-	
F4.	
1.4	54
'SOT-F03-DR14-	
D5	ļ
L	

1.6	55
'SOT-F03-DR14-	
G3	
1.7	56
'SOT-F03-DR14-	150
B5	
1.8	57
'SOT-F03-DR14-	
C2	
1.9	58
'SOT-F03-DR14-	
F3	
1.10	59
'SOT-F03-DR14-	
B6	-
1.11	60
'SOT-F03-DR14-	
H1	
1.12	61
'SOT-F03-DR14-	
F6	
1.13	62
'SOT-F03-DR14-	-
B1	
	63
1.14	03
'SOT-F03-DR14-	
C1	
1.15	64
'SOT-F03-DR14-	
H5	
group2	65
2.1 (main clone)	
'SOT-F03-DR14-	
G5	
variations of	66
	100
clone 2.1	
2.2	
'SOT-F03-DR14-	
D3	
2.3	67
'SOT-F03-DR14-	
H2	
2.4	68
'SOT-F03-DR14-	ĺ
D1	
2.5	69
'SOT-F03-DR14-	
A2	70
2.6	70 :
'SOT-F03-DR14-	
G2	

group3	71
3.1 main clone	
'SOT-F03-DR14-	
H6	
2'-F-RNA round	72
15	
group1	
1.1 (main clone)	
'SOT-F03-DR15-	
G10	
1.2	73
'SOT-F03-DR15-	
G7	
1.3	74
'SOT-F03-DR15-	
F10	
1.4	75
'SOT-F03-DR15-	
D9	
1.5	76
'SOT-F03-DR15-	
F12	
'SOT-F03-DR15-	77
G12	
1.6	78
'SOT-F03-DR15-	
H7	
1.7	79

'SOT-F03-DR15-	
A11	
1.8	80
'SOT-F03-DR15-	
A8	İ
1.9	81
'SOT-F03-DR15-	
F8	
1.10	82
'SOT-F03-DR15-	
C9	
1.11	83
'SOT-F03-DR15-	1
C12	
1.12	84
'SOT-F03-DR15-	1
F7	
1.13	85
'SOT-F03-DR15-	
A12	
'SOT-F03-DR15-	86
C7	

Example 1: Manual in vitro selection

Target molecule

Biotinylated rat D-ghrelin (amino acid sequence, H-Gly-Ser-Ser(octanoyl)-Phe-Leu-Ser-Pro-Glu-His-Gln-Lys-Ala-Gln-Gln-Arg-Lys-Glu-Ser-Lys-Lys-Pro-Pro-Ala-Lys-Leu-Gln-Pro-Arg-OH) was custom synthesized by Bachem (Basel, Switzerland). The peptide that was used during the selection contains a biotin moiety at the C terminus to enable partitioning from unbound nucleic acid species employing the biotin-NeutrAvidin interaction.

Selection pool, generation of a start pool

The selection pool DE.40 consists of a random region of 40 nucleotides, flanked by a T7-promoter-caryring 38nt-primer at the 5'-end and a 20nt reverse primer at the 3'-end. The T7

primer carries a transcription-initiating sequence followed by a forward primer sequence. The Forward primer starts with an guanosine-triplett to enhance the transcription efficiency.

DE.40-Pool: (corrected for RNA)

RNA-Pool: 5'-GGA GCT CAG ACT TCA CTC G TG-N40-CA CGT ACC ACT GTC GGT

TCC AC-3'

Rev. Compl.: 5'-GTG GAA CCG ACA GTG GTA CG TG-N40-CA CGA GTG AAG TCT GAG

CTC C-3'

DE.40T7: 5'-TCT AAT ACG ACT CAC TAT AGG AGC TCA GAC TTC ACT CG-3'

DE.40R: 5'-GTG GAA CCG ACA GTG GTA CG-3'

(T7 promoter is underlined)

The annealing temperature was calculated theoretically and optimized afterwards by several experiments varying the temperature and time for annealing of the primer.

	T _m (°C)	T _p (°C)	used (°	C)
Fo r	56.1	68.72	RNA	2'-F- RNA
Re v	56.9	68.72	63	63

 T_m = melting temperature, T_p = 22 + 1.46×[2×(#GC) + (#AT)] (Wu et al.: DNA and Cell Biology 10, 233 (1991)); without T7-promotor-region

The pool was chemically synthesized, the base composition determined and a complexity of 1x10E15 different molecules = 1,78 nmol single-stranded DNA (ssDNA) were amplified by one-step PCR. For the 2-F-RNA start pool 1,78 nmol of the double stranded DNA were transcribed using 2'fluoro-modified pyrimidines (Trilink) using protocol 1; the RNA pool was transcibed using protocol 2 with non-modified nucleotides.

component	stock concentration	100µl reaction
T7 Buf (Epicentre)	fer 5x	20
DTT	100mM	5
Mn2+	25mM	10
2'-F-CTP	100mM	3
2'-F-UTP	100mM	3
rATP	100mM	1
rGTP	100mM	1
PCR-Template	ca.100pmol/µl	0.5

T7-Polymerase	5U/μ1	2
ddH2O	-	54.5

protocol 1. protocol for transciption with 2'-fluoro-modified pyrimidines

component	stock concentration	100µl reaction
80 mM HEPES/KOH (pH 7.5)	10x transcription-buffer	10 μl
22 mM MgCl ₂		· · · · · · · · · · · · · · · · · · ·
1 mM spermidine		
10 mM DTT	100 mM DTT	10 µl
4 mM NTPs (i.e. each)	10 mM NTP-mix	40 μΙ
10 μl/ml Rnase-out (Invitrogen)	Rnase-Out (40 U/µl)	1 μ1
120 μg/ml BSA	2 mg/ml BSA	6 μl
5M Betain	0.75 M Betain	15 μl
2 μl/ml T7 RNA polymerase (=100 U)	T7-RNA polymerase (100U)	2 μ1
α-[32P]-ATP		1μl
α-[32P]-GTP		1 μ1
Template	50-100pmol	7.5 µl
water (add to 100 µl)		6.5 µl

protocol 2. protocol for transcription with non-modified nucleotides

In vitro selection of rat D-ghrelin binding aptamers

Selections buffer

The selection buffer used durig the whole selection was according to physiological conditions in human blood (20mM Hepes, 150mM NaCl, 5mM KCl, 1mM MgCl₂ und 1mM CaCl₂). The pH 7.4 was adjusted at 37°C.

Selection and stringency

Selection of D-ghrelin ('target') binding aptamers was carried out using a 2'-fluoro modified DE.40 pool (2F-RNA) and a non-modified RNA pool (RNA). Binding of the pool to the target took place in solution for 2 hours (10µM-10nM of peptide) and for 12 hours (10nM-500pM). The immobilization of the peptide – RNA complexes was performed using the steptavidin/ neutravidin-biotin system. The biotinylated peptide was incubated with

neutravidin derivated agarose or streptavidin linked polyacrylamid (s.c. ultralink) for 10min at 37°C and separated by short centrifugation. Afterwards the matrix was washed with selection buffer to remove non-bound and weakly binding pool. A matrix switch every two rounds was performed (starting with neutravidin-agarose) to avoid the generation of bivalent aptamers, which require the matrix for binding to the target with high affinity. Elution of the bound RNA and 2′F-RNA was accomplished by denaturing the peptide-RNA complexes with 4M guanidinthiocyanate in two steps (37°C, 65°C) for 10min in a shaker. From round 13 on a third elution step was carried out at 95°C. The eluted RNA or 2′F-RNA was extracted with phenol-chlorform to remove the peptide, precipitated with iso-propanol and amplified by PCR.

Folding of the RNA/ 2'FRNA

To avoid a bivalent independent folding of the aptamer the denaturation and renaturation on ice was performed in the absence of Mg2+ and Ca2+. The pools were denatured for 5min at 95°C in a PCR Cycler and snap cooled on crushed ice for 2 min. Afterwards Tween 20 (final concentation 0,1%) and the bivalent cat ions were added from a 10fold mix and incubated for further 10min at 37°C. The reaction was directly added to the precolumn.

Precolumn

The pool RNA is incubated with the pure matrix before adding the peptide to the solution. This is performed to avoid the enrichment of matrix binding aptamers. The matrix volume of the precolumn was always the same volume of the main column used for separating RNA-peptide complexes from unbound species. The pure matrix was incubated for 10-15min at 37°C in a shaker together with the folded DE.40 pool, non-bound pool was removed and directly added to the ghrelin binding reaction in solution.

Binding in solution and immobilization of the complex ...

Biotinylated D-ghrelin with a certain concentration was directly added to the pool after removing it from the precolumn. The gradient of the peptide concentration used for the selections with RNA and 2'F-RNA are displayed in Fig. 4A and Fig. 4B. The immobilization of the bio-ghrelin bound RNA complex was carried out by direct addition of the matrix to the binding reaction and incubation for 10min at 37°C in a thermoshaker at 800 rpm.

Partitioning

The immobilized complex was washed several times with pre-warmed selection buffer to remove unbound and weakly binding molecules. Washing steps were performed with $5x100\mu$ l and from round 13 on with $5x1000\mu$ l selection buffer.

Elution of bound molecules

The elution of bound RNA and 2F'RNA was accomplished by denaturing the peptide-RNA complex with 4M guanidinthiocyanate in two steps (37°C, 65°C) for 10min in a shaker. From round 13 on, a third elution step at 95°C was carried out. The course of the eluted RNA and 2'-F-RNA in percent to total nucleic acid used in each selection round is shown in Fig. 5 and Fig 6. To distinguish between background signal and a ghrelin mediated signal, a control column (without adding any peptide) was performed every round. The signal on the control column was defined as noise or background signal. The ration of the ghrelin mediated signal to noise signal is displayed in Fig. 1 and Fig. 2. Every time the signal to noise ratio increases the stringency was increased by decreasing target concentration in the following selection round. Afterwards the peptide concentration was kept at a constant level until another increase in the signal-noise ratio at the distinct peptide concentation was achieved. The increase of the ratio is a clue for the enrichment of binding aptamers at a certain peptide concentration. The eluted RNA or 2'-F-RNA was extracted with phenol-chloroform to remove the peptide, precipitated with iso-propanol and amplified by PCR.

Double rounds and binding tests

A double round describes the process of two subsequent selection rounds without amplification. The first selection round s.c. collection round (CR) is used to collect all D-ghrelin binding aptamers at a relatively high concentration of the target to get rid of non binding aptamers. After elution and extraction of bound RNA /2-F-RNA the eluted nucleic acid is used for the next round without amplifying it. This round is called double round (DR) and is normally performed at a very low concentration of the target. This process of selection is used to eliminate the pressure of ampflification and folding/ refolding of the aptamer.

In these selections 3 double rounds were performed (round 12,13, 14 for RNA and round 14, 15, 16 for 2'-F-RNA). Before every collection round (CR) a "test for binding" over a wide range of target concentration was carried out to evaluate the best target concentration to collect the aptamers. This test is also used to monitor the improvement of the pool enrichment

from round to round. The results of these double rounds and test for binding are displayed in Figs. 7A, 7B, 8A and 8B.

Amplification

Exraction and precipitation

The eluted RNA or 2F' RNA was purified by phenol-chloroform extraction and precipitated with $2\mu l$ glycogen as a carrier, 0,3M natriumacetat pH 5,5 and 1volume of ice-cold isopropanol for 20-30min at -20° C.

Reverse transcription (RT)

The precipitated RNA/2'F-RNA was translated into single stranded DNA by using reverse transciptase. Not more than 5pmol template per 30µl reaction were denatured together with the reverse primer for 5min at 95°C in 0,8M betain, the reverse primer was annealed on ice for 5min, reaction buffer and nucleotides were added and the reaction was heated for 2min at 48°C before 5 units of reverse transciptase were added. The reaction took place with a temperature gradient (30min 48°C, 50°C 20min, 55°C 10min, 70°C 15 min) in a thermocycler.

Polymerase chain reaction(PCR)

Three $10\mu l$ aliquots of the RT-reaction was used as a template for the PCR reaction. The components for reaction were added as followed:

Component	Stock concentration	100µl total
PCR-Puffer (Gibco)	10x	10
MgCl2	50mM	5
dNTP-Mix (A, T, G,	10mM je NTP	2.5
(C)		
T7-Primer	100mM	3
reverse-Primer	100mM	3
Template (aus RT)	1-5pmol/100µl	10
Betain	5M	15
Taq-Polymerase		1
(Gibco)		
ddH20	•	adjust to 100µ1

Between 8-12 cycles of the following programm were performed in a PCR cycler denaturation 95°C: 1min

annealing 63°C:

1min

elongation 72°C:

1min

An aliquot of the reaction was analysed on a polyacrylamide gel. The PCR reaction was precipitated afterwards with 1µl glycogen, 0,3M sodium acetate pH 5.5 and 3 volumes of ice-cold 100% ethanol for 20-30min at -80°C. The pellets was resuspended in water and 50-100pmol were used as template for in vitro transcription.

2'-Fluoro transcription

50-100 pmol dsDNA were used as template for in vitro transcription. The conditions were like described above for the generation of the start pool. The generated RNA is used for the next selection round. The amount used each round is mentioned in figure 3.

The results of this selection are depicted in Fig.22 and Fig. 23 for the selection using the RNA pool, and in Figs. 24 and 25 using the F' RNA pool. It is to be understood that any of the sequences shown in said Figs. are nucleic acids according to the present invention, including those truncated forms thereof which, however, are still capable of binding to the target.

Example 2: Automated in vitro Selection

In the following the automated selection of specifically binding rat D-ghrelin binding aptamers will be described.

Materials.

Biotinylated rat D-ghrelin (amino acid sequence, H-Gly-Ser-Ser(octanoyl)-Phe-Leu-Ser-Pro-Glu-His-Gln-Lys-Ala-Gln-Gln-Arg-Lys-Glu-Ser-Lys-Lys-Pro-Pro-Ala-Lys-Leu-Gln-Pro-Arg-OH) was custom synthesized by Bachem (Basel, Switzerland). The peptide that was used during the selection contains a biotin moiety at the C terminus to enable partitioning from unbound nucleic acid species employing the biotin-NeutrAvidin interaction. For this, NeutrAvidin agarose and NeutrAvidin UltraLink Plus (both Perbio Science, Bonn, Germany) were used. The OneStep RT-PCR Kit was purchased from Qiagen (Hilden, Germany). Taq DNA Polymerase, Superscript II Reverse Transcriptase and RNaseOUT RNase inhibitor were from Life Technologies (Karlsruhe, Germany), T7 RNA polymerase from Stratagene

(Amsterdam, The Netherlands), and DNase I from Sigma-Aldrich (Taufkirchen, Germany). PicoGreen double stranded DNA detection dye was purchased from Molecular Probes, NTPs from Larova (Teltow, Germany).

Pools, primers and RNA spiegelmers

The sequence of the DNA pool was 5'-TCT AAT ACG ACT CAC TAT AGG AGC TCA GAC TTC ACT CGT G-N₄₀-CAC GTA CCA CTG TCG GTT CCA C-3' with N symbolizing an equimolar mixture of A, C, G, and T.

Forward (T7)-primer DE.40T7:

5'-TCT AAT ACG ACT CAC TAT AGG AGC TCA GAC TTC ACT CG-3'

Reverse primer DE.40R:

5'-GTG GAA CCG ACA GTG GTA CG-3'

Cloning and sequencing of enriched pools was done by GATC (Konstanz, Germany).

Process of automated in vitro selection

Most liquid handling manipulations during automated *in vitro* selection were done in 96-well plates with removable lids (NCC plates; Bilatec AG, Germany); partitioning of unbound from bound RNA species was done in Mobicol columns (MoBiTec AG, Germany); automated purification of *in vitro* transcripts was done using Microcon YM-30 ultrafiltration units (Millipore, Eschborn, Germany).

Input RNA used for the automated selection

RNA for the first automated selection round (round 3) was the same as used in the third manual selection round (see Example 1). 250 pmoles of this RNA were used as input per binding reaction in round 3 and 4; 100 pmoles in every further round.

Denaturation of RNA

All non-enzymatic selection steps except denaturation of the RNA before contacting with the target molecule rat D-ghrelin were done in selection buffer (20 mM Tris-HCl, pH 7.4; 150

mM NaCl; 5 mM KCl; 1 mM MgCl₂; 1 mM CaCl₂; 0.1 % [wt/vol] Tween-20). For denaturation, 100 - 250 pmol RNA pool were heated to 95°C for 5 min in 57 µl selection buffer without CaCl₂ and MgCl₂. After denaturation, the RNA was quickly cooled to 4°C for 2 minutes and then equilibrated at 37°C. MgCl₂ and CaCl₂ were added to final concentrations of 1 mM each and the mixture was incubated for further 5 min at 37°C (folding of the RNA).

Partitioning of bound from unbound RNA

Following denaturation, the RNA was contacted for 15 minutes at 37°C with 10 µI of the selection matrix (NeutrAvidin agarose or NeutrAvidin UltraLink, respectively) without peptide. This so-called pre-selection was designed to remove potential matrix binding RNA species from the mixture. In order to keep the matrix particles in suspension, the samples were shaken at 1,400 rpm (37°C). The matrix was then separated from the RNA in solution by simple sedimentation, the supernatant was transferred to fresh wells, and rat D-ghrelin was added to concentrations as shown in Fig. 9. After 60 minutes at 37°C, 10 µl of the biotin-binding matrix was added and the binding reaction was incubated for further 10 minutes under shaking (1,400 rpm, 37°C). For washing, the matrix was then transferred to Mobicol columns and washed with up to 135 matrix volumes of pre-warmed selection buffer (37°C) to remove unbound from bound RNA species. Wash volumes varied between 45 (round 3, i.e. first automated round) and 135 matrix volumes in later rounds (see fig.9).

Elution of bound RNA

Elution of bound RNA was done by resuspending the matrix particles with bound RNA in 95 µl of RT-PCR buffer and heating to 95°C for 3 minutes. Enzymes for reverse transcription and following PCR were added after equilibration at 50°C for 2 minutes. Buffer conditions and amount of enzymes were used as suggested by the supplier Oiagen.

Amplification

In vitro transcription - Generation of RNA for use in the selection process

Transcriptions were conducted with 150 U T7 RNA polymerase and 40 U RNaseOut RNase inhibitor in T7 reaction buffer (80 mM HEPES pH 7.5; 22 mM MgCl₂; 1 mM spermidine; 10 mM dithiothreitol; 4 mM [each] GTP, CTP, ATP and UTP; 80 µg/ml BSA) in a volume of 150 µl. In one transcription reaction, 25 µl RT-PCR reaction was used as template for in vitro transcription. The reactions were incubated at 37°C for 3 hours. Finally, DNase I was added

to digest the template DNA and the reactions were incubated at 37°C for 15 minutes. Precipitated inorganic pyrophosphate was then dissolved by adding EDTA to a final concentration of 25 mM on the 50°C workstation. The generated RNA was separated from remaining NTPs and other undesired reaction components either via denaturing gels containing 8 M urea or by using ultrafiltration employing Microcon YM-30 microconcentrators. Ultrafiltration purified RNA was just rinsed from the ultrafiltration membrane, for gel purification the RNA bands were excised under UV light, the RNA eluted from the gel, ethanol precipitated, dried and resuspended in water.

Reverse transcription and PCR of selected RNAs

Reverse transcription of selected RNA molecules was done using the Qiagen OneStep RT-PCR kit under conditions as recommended by the supplier in presence of the NeutrAvidin Agarose or UltraLink Plus matrix in a volume of 120 µl. The samples (RT-PCR reaction buffer together with matrix and adherent RNA) were heated for 3 minutes at 95°C and equilibrated at 50°C for 2 minutes before adding the enzymes. For reverse transcription, the reactions were kept at 50°C for 20 minutes and 10 minutes at 60°C. Inactivation of RT enzymes as well as activation of the thermostable DNA polymerase was accomplished by incubation of the mixture at 95°C for 15 minutes.

Thermocycling parameters were as follows: denaturing, 30 s at 95°C; anealing, 30 s at 63°C; polymerization, 30 s at 72°C.

Control of PCR progress

In order to keep the number of PCR cycles to a minimum, the amount of double stranded DNA generated in the PCR was tracked semiquantitatively. The reaction was cycled only as long as enough template DNA for in vitro transcription had been generated. During the PCR, 3 µl-aliquots were sampled from the reactions after a given number of cycles and mixed with a PicoGreen solution (diluted 1:400 in TE buffer [10 mM Tris-HCl, pH 8; 1 mM EDTA]). PicoGreen is a fluorescent dye which shows almost no fluorescence when free in solution. If the dye, however, has bound to double stranded DNA, it fluorescess strongly (ex: 485 nm; em: 520 nm). Measurement of fluorescence in comparison with a control lacking the thermostable polymerase allows a quite exact estimation of PCR progress. After reaching the set threshold (fluorescence intensity with polymerase / fluorescence intensity without polymerase > 2), an aliquot of the RT-PCR reaction was directly used as template for *in vitro* transcription.

Automated manipulations

From round 3 on all manipulations except six gel purification steps were performed fully automated on a pipetting robot. The configuration of the modules used during the process is depicted in Fig. 10, the order of use of the modules was as shown in Fig. 11. The following modules were used during the selection process:

- fluorescence reader for control of the amplification progress during PCR. Samples that
 had already generated sufficient amounts of dsDNA for in vitro transcription were
 intermediately stored at 4°C and were not subjected to additional thermocycling
- double vacuum manifold with chamber A for partitioning and chamber B for purification of transcription reactions
- racks for disposable, conductive barrier tips
- thermocycler for running PCR programs as well as various incubation steps
- shaker for suspending particulate matrix in binding or reaction buffer
- 50°C workstation for hot starts of enzymatic reactions or for keeping PCR reactions at elevated temperatures for taking samples during fluorescent measurements
- 4°C workstation for intermediate storage of PCR or transcription reactions
- 4°C reagent rack for storage of temperature sensitive reagents
- 37°C reagent rack for storage and pre-warming of wash buffer
- 37°C workstation for performing most pipetting steps
- fluoroplate workstation for preparing fluorescent measurement reactions
- hotel for storage of microtiter plates currently not in use
- waste station for disposal of used pipette tips

The involvement of the modules in the context of this example as well as the order of participance during the process of automated in vitro selection is diagrammed in Fig. 11.

Results of the selection

Course of the selection

The course of the in vitro selection against rat D-ghrelin is depicted in Fig. 9. In every selection round, three binding reactions with different stringency plus one void column

lacking the target molecule were performed. Stringency was adjusted by varying wash volumes as well as lowering the target concentration.

Selection rounds 1 and 2 were done manually, as the large amounts of RNA pool which are necessary to represent the desired pool complexity could not be handled safely by the robot. From round 3 on, the selection was done fully automated. Every two rounds, a decision was made which stringency should be used for the following two rounds.

In Fig. 9, that selection strand is highlighted which produced the sequences given in Fig. 13. Generally, the selected RNA of the most stringent strand (i.e. the one with the lowest target concentration or the greatest wash volume, respectively) which still showed significant signal relative to the background was used as input for the next round. The number of PCR cycles which was necessary to reach the threshold level (see "Control of PCR progress") was used as a measure. In total, 19 selection rounds - 17 thereof automated - were performed.

The population of dsDNA molecules from round 17 and round 19 (each at 6.2 nM D-ghrelin) were cloned and sequenced. In total, 96 clones were sequenced (48 from round 17 and round 19, respectively). Frequencies and occurrence of the 14 different clones was as depicted in Fig. 12 (table 5).

Sequences

The result of the sequence analysis can be seen in Fig. 13. From the total of 96 clones, both primers could be found in 87.

It is to be understood that any of the sequences shown in Fig 13. are nucleic acids according to the present invention, including those truncated forms thereof which, however, are still capable of binding to the target.

Example 3: Characterization of RNA aptamers to D-ghrelin

Ranking of the clones by using the "beadassay" (binding in solution)

All 14 clones which had been obtained from the automated in vitro selection against D-ghrelin were ranked in respect of their binding behaviour by using the beadassay.

For this purpose, 2 pmol (20 nM) RNA were denatured for 5 min at 95°C in 100 µl selection buffer without Ca⁺⁺, Mg⁺⁺ and Tween 20 and subsequently snap cooled by directly putting on ice. Then Ca⁺⁺ and Mg⁺⁺ were added to a final concentration of 1 mM each and Tween 20 to a final concentration of 0,1%. The solution was equilibrated to 37°C.

This RNA was preincubated with different concentrations of biotinylated D-ghrelin for 1 h at 37°C. Then 40 µl of this solution were transferred into a microtiterplate and 30 µl of paramagnetic streptavidin magnetic particles ("beads"; Roche, 10 mg/ml) were added and the mixture incubated for 10 min at 37°C to immobilise all biotinylated D-ghrelin on the beads (free peptide as well as RNA:peptide complexes). In order to monitor the decrease of RNA concentration in the supernatant in dependance of the D-ghrelin concentration, the amount of RNA in the supernatant was quantified using OliGreen fluorescent dye (Molecular Probes).

Fluorescence of OliGreen is strongly dependent on binding of the molecule to oligonucleotides: when unbound in solution, OliGreen only shows weak fluorescence when excited with light of 485 nm. However, when nucleic acids are present, the fluorescent signal at 520 nm rises proportional to the concentration of the nucleic acid.

RNA-target complexes were then disrupted by resuspending the beads in 6 M urea and incubating for 10 min at 37°C. In order to monitor the increase of eluted RNA in dependance of target concentration, the amount of RNA in this eluate was quantified as well. All values were corrected for the background signal in the control without peptide. Representative binding curves for supernatant and eluate are depicted in Fig. 14A to E.

A first ranking using D-ghrelin concentrations of 0, 20, 100 and 500 nM showed that all clones tested bound similarly well with a K_D of the active conformation of less than 100 nM.

As judged from the decrease of the RNA concentration in the supernatant, about 40 to 50% of the RNA seems to be in the active conformation.

A more detailed ranking now deploying D-ghrelin concentrations of 0, 5, 10, 20, 50, 100, 200 and 400nM for the clones B11, C11, C12, A8 and F12 showed that all these clones bind with a K_D of the active conformation of about 10 nM in this assay (Fig. 14A to E).

These figures show the increase of nucleic acid mediated fluorescence in dependance of concentration of biotinylated D-ghrelin. On the y-axis the increase of fluorescent signal [%] in the cluate relative to the background signal in the control without peptide (= 0%) is depicted. The datapoints determined for clone A8 were fitted with a OneSiteBinding model using the

formula
$$y = \frac{B * x}{K + x}$$

 B_{max} is a value for the maximum plateau value for the increase of fluorescence at high peptide concentrations. K_D shows the binding constant K_D in [nM].

As binding constants below 10 nM can not be analysed with this assay, the binding properties of three selected clones were then characterized by a binding assay using radiolabled RNA as well by the use of a Biacore 2000 instrument.

Ranking of selected, radiolabeled clones in respect of their binding behaviour

A ranking of the binding behaviour of 3 selected molecules towards the target molecule rat D-ghrelin was done. For this purpose, the clones B11, E3 and F12 were in vitro transcribed in the presence of α^{32} P-GTP and α^{32} P-ATP. 2 - 5 pmoles of the radiolabeled RNAs were denatured for 3 minutes at 95°C in selection buffer without Ca⁺⁺ and Mg⁺⁺, folded by addition of these ions to a final concentration of 1 mM at 37°C, and incubated for 1 hour at 37°C with biotinylated rat D-ghrelin in concentrations of 0, 3, 10, 30, 100, 300, 1000, and 3000 nM. Subsequently, a constant amount of NeutrAvidin agarose was added as matrix and the RNA:peptide complex was shaken at 37°C for 10 more minutes. The matrix with bound peptide and peptide:RNA complexes was then separated, the supernatant was removed, and the difference between bound and unbound RNA was determined. From the calculated numbers, the control (0 nM D-ghrelin) was subtracted as background (Fig. 15, table 6). Binding curves with appendant numbers are depicted in Fig. 16 A to C.

35

Ranking of clones by using the Biacore 2000 instrument

The biacore measurements of all 14 clones were performed as direct binding assays of RNA solution on a ghrelin-chip. The binding partners are free RNA and pre-immobilized ghrelin.

The ghrelin-chip consisted of a CM5 chip (Biacore) with 4 flowcells whose surface had been coupled with EDC/NHS-aminocoupling as follows:

Flowcell 1: 1265 RU of avidin as reference cell

Flowcell 2: 1270 RU of L-ghrelin (rat)

Flowceil 3: 740 RU of D-ghrelin (rat)

Flowcell 4: 600 RU of D-ghrelin (rat)

The samples to be tested were adjusted to a concentration 500 nM in selection buffer and equilibrated to 37°C. The measurement itself was performed on a Biacore 2000 instrument under the following conditions:

Temperature

37°C

Flow

20 μl/min

Association

5 min

Dissociation

5 min

Regeneration 1 M NaCl + 0.01% Triton X-100

It turned out that 13 out of the 14 tested D-RNAs had a K_D in the range of 100 to 200 nM to amino-coupled D-ghrelin (Fig. 17). The D-RNA concentration of the C12-preparation was much lower than for all others, which results in a much lower maximum signal. This makes interpretation difficult and the apparent low K_D of about 20 nM is questionable.

Competition of clones B11 with free rat D-grelin

To assess the binding properties of clone D-B11 for free rat D-ghrelin, a competition experiment was performed: A constant concentration of D-B11 (100 nM) was preincubated

with different concentrations of free D-ghrelin (0 - 500 nM) at 37°C in selection buffer and then injected into the biacore. Immobilized ghrelin on the biacore chip and free ghrelin compete for the binding of the RNA which leads to a lower apparent concentration of RNA with increasing concentration of free ghrelin and thus to a lower biacore signal.

As shown in Fig. 18, the biacore signal decreases with increasing concentration of D-ghrelin in solution. This means that binding to immobilized D-ghrelin can be competed with free D-ghrelin.

Example 4: Truncation of B11 and characterization of the spiegelmer

The secondary structure of aptamer B11 was calculated by using the program mafold (I.L. Hofacker et al., 1994. Monatsh. Chem 125: 167-188) as displayed in Fig. 19.

For production of RNA spiegelmers, it was necessary to truncate the B11 sequence in such a way that the resulting binding motif would allow chemical synthesis under reasonable efforts and affinity to ghrelin would not be lost.

In order to achieve this, bases 1 to 17 and 65 to 82 were deleted. The respective 47mer B11trc (for the calculated secondary structure by rnafold, see. Fig. 19) was produced as D-RNA enzymatically by synthesizing an ssDNA containing a T7 promoter sequence, filling in the ssDNA to transcribable dsDNA using a primer and Taq polymerase, and setting up a T7 RNA polymerase reaction with this template. The produced RNA was gel purified and dissolved in water. The corresponding spiegelmer was synthesized using standard β-cyanoethyl chemistry.

The truncated B11 version were tested in both, the L- and the D-form as well as the full-length D-RNA on a Biacore 2000 instrument as described above in the same run and gave similar results for the K_D between 100 and 200 nM (Fig. 20). An overlay of the biacore measurements of clone B11 (D-RNA) and truncated B11 (D- and L-RNA, respectively) is shown in Fig. 21.

The features of the present invention disclosed in the specification, the sequence listing, the claims and/or the drawings may both separately and in any combination thereof be material for realizing the invention in various forms thereof.

Ghrelin binding nucleic acids

Claims

- 1. An antagonist of ghrelin, wherein the antagonist is a nucleic acid, and whereby preferably the nucleic acid is binding to ghrelin.
- 2. An antagonist of the GHSR 1a receptor system, wherein the antagonist is a nucleic acid, and whereby preferably the nucleic acid is binding to the ligand of the receptor and whereby preferably the ligand is ghrelin.
- 3. The antagonist according to claim 1 or 2, wherein the nucleic acid comprises at least one L-nucleotide.
- 4. The antagonist according to any of claims 1 to 3, wherein the antagonist is an L-nucleic acid.
- 5. The antagonist according to any of claims 1 to 4, wherein the nucleic acid is a nucleic acid as defined in any of claims 6 to 14
- 6. A nucleic acid binding to ghrelin, preferably a L-nucleic acid binding to L-ghrelin.
- 7. The nucleic acid according to claim 6, wherein the L-nucleic acid is a nucleic acid as defined in any of claims 8 to 14
- 8. A nucleic acid having a sequence which is selected from the group comprising the sequences according to SEQ. ID. No. 7 to SEQ. ID. No. 86.

- 9. The nucleic acid according to claim 8, wherein the nucleic acid comprises at least one L-nucleotide.
- 10. The nucleic acid according to any of claims 8 to 9, wherein the nucleic acid is an L-nucleic acid.
- 11. The nucleic acid according to any of claims 8 to 10, wherein the nucleic acid is selected from the group comprising DNA, RNA and combinations thereof.
- 12. The nucleic acid according to any of claims 8 to 11, wherein the Kd of the nucleic acid is less than 1 μ M, preferably less than 0.25 μ M, more preferably less than 0.1 μ M and most preferably less than 0.01 μ M.
- 13. The nucleic acid according to any of claims 8 to 12, wherein the Kd of the nucleic acid is more than 100 nM, preferably more than 10 nM, more preferably more than 1 nM and most preferably more than 0.05 nM.
- 14. The nucleic acid according to any of claim 8 to 13, wherein the nucleic acid is of a length selected from the group comprising 15 to 150 nucleotides, 20 to 100 nucleotides, 20 to 80 nucleotides, 20 to 60 nucleotides, 20 to 50 nucleotides and 30 to 50 nucleotides.
- 15. Use of a nucleic acid according to any of claims 6 to 14 as an antagonist of ghrelin and/or the GHSR 1a receptor system.
- 16. A method for the generation and/or identification of a nucleic acid binding to a target molecule, preferably of a nucleic acid according to any of claims 6 to 14, comprising the following steps:
 - a) generating a heterogeneous population of nucleic acids;
 - b) contacting the population of step a) with the target molecule;
 - c) separating the nucleic acid(s) not interacting with the target molecule;
 - d) optionally separating the nucleic acid(s) interacting with the target molecule; and

- e) optionally sequencing the nucleic acid(s) interacting with the target molecule,
- 17. The method according to claim 16, wherein subsequent to step c) a step ca) is carried out, whereby step ca) consists of amplification of the nucleic acid(s) interacting with the target molecule.
- 18. The method according to claim 16 or 17, wherein steps b) to d) are repeated.

characterized in that the target molecule is ghrelin.

- 19. The method according to any of claims 16 to 18, wherein the heterogeneous population of nucleic acids comprises at least one nucleic acid according to any of claims 6 to 14.
- 20. Method for the generation of an L-nucleic acid binding to a target molecule in the natural configuration comprising the following steps:
 - a) generating a heterogeneous population of D-nucleic acids;
 - b) contacting the population of step a) with an optical antipode of the target molecule;
 - c) separating the D-nucleic acid not interacting with the optical antipode of the target molecule;
 - d) sequencing the D-nucleic acid interacting with the optical antipode of the target molecule; and
 - e) synthesising the L-nucleic acid sequence(s) which is/are identical to the sequence of the D-nucleic acid(s) obtained in step d);

characterised in that the target molecule is L-ghrelin and the optical antipode of the target molecule is the D-ghrelin.

- 21. Method according to claim 20 characterised in that subsequent to step c) the following step is introduced:
 - ca) amplifying the D-nucleic acid interacting with the optical antipode of the target molecule.
- 22. Method according to any of claims 20 to 21, characterised in that steps b) to e) are repeated.
- 23. Method according to any of claims 20 to 22, characterised in that the heterogeneous population of nucleic acids comprises a nucleic acid according to any claims 6 to 14.
- 24. Use of a nucleic acid according to any claims 6 to 17 and/or of an antagonist according to any of claims 1 to 5 for the manufacture of a medicament.
- 25. Use according to claim 24 characterised in that medicament is for the treatment of a disease or disorder selected from the group comprising obesity, the regulation of energy balance, appetite and body weight, eating disorders, diabetes, glucose metabolism, tumour, blood pressure and cardiovascular diseases.
- 26. Composition comprising a nucleic acid according to any of claims 6 to 14 and/or an antagonist according to any of claims 1 to 5, and a pharmaceutical acceptable carrier.
- 27. Complex comprising ghrelin and any of the nucleic acids according to any of claims 6 to 14, preferably the complex is a crystalline complex.
- 28. Use of any of the nucleic acids according to any of claims 6 to 14 and/or of an antagonist according to any of claims 1 to 5 for the detection of ghrelin.
- 29. Method for the screening of a ghrelin antagonist comprising the following steps:
 - providing a candidate ghrelin antagonist,

- providing a nucleic acid according to any of claims 6 to 14 and/or an antagonist according to any of claims 1 to 5,
- providing a test system providing a signal in the presence of a ghrelin antagonist, and
- determining whether the candidate ghrelin antagonist is a ghrelin antagonist.
- 30. Kit for the detection of ghrelin, comprising a nucleic acid according to any of claims 6 to 14 and/or an antagonist according to any of claims 1 to 5.

NOXXON Pharma AG N 10034 EP

SPO - Munici 36 19, Okt. 2002

Abstract

The present invention is related to an antagonist of ghrelin, wherein the antagonist is a nucleic acid, and whereby preferably the nucleic acid is binding to ghrelin.

	D - MI 36	
.19,	Okt.	2002

	round	round round round round round round	round	round	round	round	Loand	round round	round	round	Puno.	11.		CR (1) 12.round	DR (1)	test for binding	DR (1) test for CR (2) binding 13.round	DR (2)	test for binding	DR (2) test for CR (3) binding 14.round	DR (3)	
matrix	NA	NA	UL.	15	Α̈́	¥	5	E	٤	ş	\siz	٤	Tretonin									
							T	T	Ţ	T	7	3		י אר	IGE	Ę	UL.	UL	II.	15	Ti.	
ပ								1	T	1	1	1										
[ghrelln]										• • •				•••								
																				•		
3µM			-							T	T	1	Ī	- 5000								
1µM	쏬	84						445	T	1	†	1		228								
S00nM				m					T	1	†	1					725					
50nM			3	7	25	23		T	T	1	1	1		-								
100nM						2	95	T	T	1	1	1	۶	+								
SonM.							7	ě	e	T	T	1	ñ	-		362						
25nM							T	1		1												
10nM			T					3	2	4	17											
į	7].]:	brace]	\int		7	1	1		7			2			134	T	1	1	
FIGI 13D IA: Stonal/ noise ratio for the DNIA set	200	A: SIE	/euc	10100	ratio	for 1	ho D	2 2	Stock	2 40	4	Trans.	Solion Car D. Lantin 1 . 1.	-							120	
		•		1			י	į.	ׅׅׅׅ֡֝֞֝֜֝֜֝֝֜֝֜֝֜֜֝֜֜֝֜֜֜֝֡֜֜֜֜֜֜֜֜֜֜֜֜				֓֡֓֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֓֓֓֓֓֡֓֜֓֡֓֓֓֓֡֓֜֓֡֓֡֓֡֓֡֓֜֜֓֡֓֡֓֡֓֡֓֜֡֓֜									

AA Selection for D-ghrelin binding aptamers

abbreviations:

NA UL

neutravidin agaose streptavidin ultralink

8 8

collection round double round (selection round without amplification with RNA from CR)

	1.	2.	3.	4.	5.		7.	oð	9.	10.	11.	12.			DR(I)	test for	CR (2)	DR (2)		CR (3)	DR (3)
	round	round round	round	round	round round round round	nd round round round binding	13.round	,	binding	blading 14.round	;	binding	15.round								
Matrix	NA	NA	CL.	'n	NA	NA	מנ	nr	NA	NA	'n	UL.		nr	U,	J.D.	UL CI	E			
3jıM												Γ		707							
InM								217													
500nM	7.3	475																			
300nM																					
Muoze																	478				
M			8	4	77	134					42		141			483					
Mili						66	61			Γ											
25nM							6	21													
10nM								6	393												
2nM									6	28											
InM										8		9			-			145			115
500pM										3,5	7.1	7			_			2			38.6
	1 - E		11	•	ŀ	٠	***	ļ		-	١.	1									

Fig 2 Tab1B: signal/ noise ratio for the 2'-F-RNA selection for D-ghrelin binding aptamers

abbreviations:

A H

neutravidin agaose streptavidin ultralink

R R

collection round double round (selection round without amplification with RNA from CR)

സ	
•	
jq	
芷	

	1	1		
	round I	round 2-5	round 6-11/12	round 1 round 2-5 round 6-11/12 collection rounds
RNA	6nmol	lnmol	500pmol	1000pmol
2'F-RNA 3nmol 1nmol	3mmol .		500pmol	1000pmol
Rig 3: amount of DNA / 2'E DNA 1:	of DNA / 2'E	DNIA 4		

rig 3: amount of RNA/ 2'F-RNA used in the selection process

Fig.4A: course of the ghrelin peptide concentration for the RNA selection

Course of eluted RNA in percent of total used RNA and peptide concentration

	test for CR DR	CR		test for SCR DR	SCR	DR	test for	S	DR
	binding	Ξ		binding (2) (2)	3	(2)	binding (3) (3)	<u>©</u>	②
round	12	12	12	13	13	13	14	14	14
ပ									
[hrelin]									
3µМ		31,6							
$1 \mu M$	22,6			32,5	14,5		53.8		
300nM	4,98			15,6			35.7	25.3	
100nM	0,78			7,9			28.2		
30nM	0,15			3,1			6.6		
10nM	0,13		1,05	1,55		6,33*	3,5		6.7*

Fig.7A Tab.3: double rounds and binding assays performed from round 12 to 14 for the RNA selection; data in percent binding to D-ghrelin, * sequenced

Fig. 7A

Fig.7B: Improvement of the RNA pool binding to D-ghrelin monitored over the double rounds

									(2) au	
	test for CR binding (1)		E	DR test for (1) binding	CR(2) DK (2)	,	binding	(S)	(c) war	
							15	15	15	
round	13	13	13	14	4	41	CI		3	
ပ										
rhrelin								-		_
3uM	42,4	31,4								
1	288			45	28,7		32,7	19,0		٠,
1 HIVE		-	-	35.2			26,5			
SUUDIM			\downarrow	30		_	18.1			
100nM	8,49			77		1	1			г -
30nM	3,76		_	9,4	_	1	7,1	-		$\overline{}$
10nM	0,72		_	3,9			1,/		27.2	_
lnM			0,95	-		5,82*			1 02*	Т
500pM			0,43	~		0,75			1,73	78
						•	•		-	

Fig.8A Tab4: double rounds and binding assays performed from round 13 to 15 for the 2'F-RNA selection; data in percent binding to D-ghrelin, * sequenced

Fig. 8A

Fig.8B: Improvement of the 2'F-RNA pool binding to D-ghrelin monitored over the double rounds

Automated in vitro-Selection against Rat p-Ghrelin

Fig. 9

Worksurface of the Robot for Automated in vitro-Selection of RNA

Fig. 10

Table 5

Position in Fig. 13	Identifier	Total Occurrence	Identifier Total Occurrence Occurrence Round 17 Occurrence Round 19	Occurrence Round 19
* -	1	30		
•	-	8	32	30
7	E3	2		വ
13	F12		*	
4	B7	Q		8
5	A8	2		8
6	C11	8		2
10	A3	8	2	
15	G 5	·-	-	
#	55	-	-	
2	G2	-	_	
9	B12	-		
12	A12	-		*
ო	E12	-		-
œ	C12	-		-

complete forms:

complete forms: SeagCUCAGACUUCACUCGUGGGAAUAAAACU-UAAGUCGAAGGUAACCAAUCCUAC-ACGUACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCGUGGGAGGCAGUAAAACUUAAGUCCGAAGGUAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCGUGGGAGGCAAUAAAACUUAAGUCCGAAGGUAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCGUGGGAGGCAAUAAAACU-UAAGUCCGAAGGUAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCGUGGGAGGCAAUAAAACUUAAGUCCGAAGGUAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCACUCGUGGGAGGCAAUAAAACGUAAACCGAAGGUAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCACUCACUCACUCACUCACGUAGACACAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCACUCACUCACUCACUCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCACUCACUCACUCACUCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCACUCACUCACUCACUCACACUCUCACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCACUCACUCACUCACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCACUCACUCACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCGUUGAAAGGUAGAAAAAAAAACGUAAAUCCGAAGGUAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCGUUGAAGGUAGUAAAAAAAAAACGUAAAUCCGAAGGUAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUUCACUCGUUGAAGGUAGUAAAAAAAAAACGUAAAUCCGAAGGUAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUCACCUCGUGGAGGUAGUAAAAAAAAAACGUAAAUCCGAAGGUAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUCACCUCGUGGAGGUAGUAAAAAAAAAACGUAAACC-GUAAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUCACCUCGUGGAGGUAGUAAAAAAAAAAACGUAAACC-GUAAACCAAUCCUACACGUACCACUCGUCGGUUCCAC GGAGCUCAGACUCACCUCGUGGAGGUAGUAAAAAAAACGUAAACC-GUAACCAAUCCUACACGUACCACUGUCGGUUCCAC GGAGCUCAGACUCACCUCAC	compl.)
AGGCAAU	
complete forms: GGAGCUCAGACUUCACUCGUGUGAGGCAAU GGAGCUCAGACUUCACUCGUGUGAGGCAAU GGAGCUCAGACUUCACUCGUGUGAGGCAAU GGAGCUCAGACUUCACUCGUGUGAGGCAAU GGAGCUCAGACUUCACUCGUGUGAGGCAAU GGAGCUCAGACUUCACUCGUGUGAGGCAAUA GGAGCUCAGACUUCACUCGUGUGAGGCAAUA	GGAGCUCAGACUUCACUCG

GGAGCUCAGACUUCACUCG DE.40F-Primer

Primer moieties underlined and in bold

Fig. 13-1

core forms:

B11 G2 E12 B7 A8 B12 E3 C12 C11 A3 F5 A12 G5

Table 6

Clone B11

[D-Ghrelin] in nM	% RNA bound
0	0
3	0 2
10	8
30	35
100	62
300	76
1000	75
3000	83

Clone F12

[D-Ghrelin] in nM	% RNA bound
0	•
-	0
3 ·	3
10	10
30	29
100	48
300	64
1000	91
3000	88

Clone E3

[D-Ghrelin] in nM	% RNA bound
0	0
3	0 1
10	5
30	20
100 300	54 65
1000	. 65 89
3000	85

Fig. 15

Clone B11

Clone B11 Activity 83.7 ± 3.4% K_d value 44.4 ± 8.7 nM

[RNA bound in %]

60

80-

40-

20 -

Fig. 16 B

Clone F12 Activity 91.9 ± 4.1% K_d value 87 ± 16.8 nM

Clone E3
Activity
K₄ value

91.0 ± 4.2% 89.9 ± 18.0 nM

Table 7

Clone	K _D [nM]
A3	000
A8	203 98
A12	237
B7	139
B11	205
B12	135
C11	135
C12	17
E3	227
E12	171
F5	142
=12	111
32 35	207
70 	164

Fig. 17

Clone B11

Clone B11trc

Fig. 19

Table 8

Clone	K _D [nM]
D-B11	205
L-B11 trunc.	104
D-B11 trunc.	122

Fig. 20

Response [RU]

Sequences derived from the RNA selection (round 13)

RNA round 13

group1 1.1 main clone 'SOT-R04-DR13-E5

GGAGCICAGACTICACICGIGCGGTGAGGCAGACG-TAAGACCGAAGGTAACCATICCIACCCACGIACCACTGTCGGGIICCAC

group2
2.1 main clone

GGAGCTCAGACTTCACTCGTGCGGTGAGGCTAACG-TAAGACCGAAGGTAACCATTCCTACCCACGTACCACTGTCGGTTCCAC SOT-R04-DR13-A2

variations of 2.1

SOT-R04-DR13-C4

GGAGCTCAGACTTCACTCGTGTGGTGAGGCTAACG-TAAGACCGAAGGTAACCATTCCTACCCACGTACCACTGTCGGTTCCAC

group3

3.1 main clone

GGAGCTCAGACTTCACTCGTGTGAGGTAATAAAAC-TAAATCCGAAGGTAACCAATCCTAC--ACGTACCACTGTCGGTTCCAC SOT-R04-DR13-C1

group4

4.1 main clone SOT-R04-DR13-G2

<u>GGAGCICAGACITCACTCGTGCGTACCGTTATAAAGGGAGTCCTGCAGACTGATGCCAGGCCACGTACCACTGTCGGTTCCAC</u>

Fig. 22

Sequences derived from the RNA selection (round 14)

RNA round 14

group1

1.1 (main clone)

GGAGCTCAGACTTCATGCGGTGAGGCAGA--CGTAAGACCGAAGGTAACCATTCCTACC<u>ACGTACCACTGTCGGTTCCAC</u> SOT-R04-DR14-F7

variations of clone 1.1

GGAGCTCAGACTTCACTCGTGCGGTGAGGCAAA--CGTAAGACCGAAGGTAACCATTCCTACCACGTACCACTGTCGGTTCCAC 'SOT-R04-DR14-C11

SOT-R04-DR14-A8

GGAGCTCAGACTTCACTCGTGCGGTGAGGCTAA--CGTAAGACCGAAGGTAACCATTCCTACCACGTACCACTGTCGGTTCCAC

GGAGCTCAGACTTCACTCGTGCGGTGAGGCAAAACGTAAGACCGAAGGTAACCATTCCTACCAGGTACCACGTTCCAC 'SOT-R04-DR14-C12

group3

3.1 (main clone)
'SOT-R04-DR14-C7

GGAGCTCAGACTTCACTCGTGTGAGGTAATAAAAC---TAAATCCGAAGGTAACCAATCCTAACGTACCACTGTCGGTTCCAC

variations of clone 3.1

SOT-R04-DR14-E11

GGAGCTCAGACTTCACTCGTGTGAGGCAGTAAAACTT--AAGTCCGAAGGTAACCAATCCTAACGTACCACTGTGGGTTCCAC

SOT-RO4-DR14-H11

SOT-R04-DR14-E8

GGAGCTCAGACTTCACTCGTGTGAGGCAATTAAACTTG-AAGTCCGAAGGTAACCAATCCTAACGTACCACTGTCGGGTTCCAC

GGAGCTCAGACTTCACTCGTGTGAGGCGATAAAACTTGTAAGTCCGAAGGTAACCAATCCTAACGTACCACTGTCGGTTCCAC

Fig. 23

2'-F-RNA round 14

group1

1.1 (main clone)

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTTTCT-CATACGTCGCCGCAACGTACCACTGTCGGTTCCAC

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTTTCTC-CATACGTCGCCGCAAGGTACCACTGTCGGTTCCAC

ggagctcagacttcactcgtggaataggaatgactcagacttttt--cataggtcgccgca<u>aggtaccactgtcggttccac</u>

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACCTTTCT---ATAGGTCGCCGCAACGTACCACTGTCGGTTCCAAC

<u> gargctcagacttcactcgtggaataggaatgactcagacgtttctc-caaacgtcgccgcaaggtaccactgtcggttccac</u>

nutations of clone 1.1

1.2
'SOT-F03-DR14-F2
1.3
'SOT-F03-DR14-P4.
1.4
'SOT-F03-DR14-D5
1.6
'SOT-F03-DR14-B5
1.7
'SOT-F03-DR14-B5
1.8
'SOT-F03-DR14-F3
1.10
'SOT-F03-DR14-F3
1.10
'SOT-F03-DR14-F3
1.10
'SOT-F03-DR14-F3
1.11

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTTTTTC-CATACGTCGCCGCAACGTACCACTGTCGGTTCCAC GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGT--C---CATACGTCGCCGCAAGGTACCACTGTCGGTTCCAC GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTTTTCTCCATACGTCGCCGCAACGTACCACTGTCGGTTCCAC GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTT-CTC-CATACGTCGCCGCAACGTACCACTGTCGGTTCCAC GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACCTTTCTC-CATAGGTCGC--CAACGTACCACTGTCGGTTCCAC ggagctcagacttcactcgtggaataggaatgactcagacgtttctt-catacgtcgccgcaacgtaccactgtcggttccac GGAGCTCAGACTTCACTCGTGGAATAGGAATGATTCAGACGTTTC---CATACGTCGCCGCAAGGTACCACTGTCGGTTCCAC GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACCTTTC----ATAGGTCGCCGCAACGTACCACTGTCGGTTCCAC GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTTT----CATACGTCGCCGCAACGTACCACTGTCGGTTCCAC

SOT-F03-DR14-F6

SOT-F03-DR14-B1

SOT-F03-DR14-C1

SOT-F03-DR14-H5

Fig. 24 - 1

group2

2.1 (main clone)

'SOT-F03-DR14-G5

GGAGCTCAGACTTCACTCGTGCCGTTTCTGTTAGCTGCCGACCGTCAGTGCGGCACGAGATACGTACCACTGTCGGTTCCAC

variations of clone 2.1

GGAGCICCAGACTICCACTGGGGCGCTTTCTGTTAGCTGCTGACCGTCAGTGCGGCACGAGATACGTACCACTGTCGGTTCCAC SOT-F03-DR14-D3

'SOT-F03-DR14-H2

GGAGCTCAGACTTCACTCGTGCGCTTTCTGTTAGCT~CCGACCGTCAGTGCGGCACGAGATACGTACCACTGTCGGTTCCAC

GGAGCTCAGACTTCACTCGTGCGCTTTCTGTTAGCT-CAGACCGTCAGTGCGGCACGAGATACGTACCACTGTCGGTTCCAC SOT-F03-DR14-D1

'SOT-F03-DR14-A2

GGAGCTCAGACTTCACTCGTGCGCTTT-TGTTAGCT-CAGACCGTCAGTGCGGCACGAGATACGTACCACTGTCGGTTCCAC

GGAGCTCAGACTTCACTCGTGCGCTTTCT---AGCTCTTAACCGACCGTGCGGCACGAG--ACGTACCACTGTCGGTTCCAC 'SOT-F03-DR14-G2

group3

3.1 main clone 'SOT-F03-DR14-H6

GGAGCTCAGACTTCACTCGTGTGCCGCCCTTATTGTCAGGGAGCTTGAGCCGACACTGCGGACGTACCACTGTCGGTTCCAC

Fig. 24-2:

Sequences derived from the 2'F-RNA selection (round 15)

2'-F-RNA round 15

group1

'SOT-F03-DR15-G10 SOT-F03-DR15-F10 SOT-F03-DR15-G7 1.1 (main clone)

<u> ggagctcagacttcactcgtggaataggaatgactcagacgtttct-caaacgt-cgccgcaacgtaccaatgtcggttccaa</u>

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTTTCT-CATACGT-CGCCGCAACGTACCACTGTCGGTTCCAAC

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTTTC--CATACGT-CGCCGCAACGTACCACTGTCGGTTCCAAC

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTTTC----ATGT-CGCCGCAACGTACCACTGTCGGGTTCCAC

SOT-F03-DR15-D9

SOT-F03-DR15-G12 SOT-F03-DR15-F12

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTTTT----CATACGT-CGCCGCAACGTACCACTGTCGGTTCCAC GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGTTT----CATACGT-CGCCGCAACGTACCACTGTCGGTTCCAC

GGAGCTCAGACTICACTOGIGGAATAGGAATGACTCAGACCTTTC--CATAGGT-CGCCGCAACGIACCACTGTGGGTTCCAC

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACGT--C--CATACGT-CGCCGCAACGTACCACTGTCGGTTCCAA

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACCTTTCT-CATAGGT-CGCCGCAACGTACCACTGTCGGTTCCAAC

<u> ggagctcagacttcactcgtg</u>gaataggaatgactcagacgtttctccatacgt-cgccgca<u>acgtaccactgtcggttccac</u>

<u> ggagctcagacttcactcgtg</u>gaataggaatgactcaggcctttcttcataggt-cgccgca<u>acgtaccactgtcggttccac</u>

GGAGCTCAGACTTCACTCGTGGAATAGGAATGACCCAGACGTTTT--CATACGT-CGCCGCAACGTACCACTGTCGGTTCCCAC

SOT-F03-DR15-H7

'SOT-F03-DR15-A11

SOT-F03-DR15-A8

SOT-F03-DR15-F8

SOT-F03-DR15-C9

SOT-F03-DR15-C12

SOT-F03-DR15-A12 SOT-F03-DR15-F7

ggagctcagacttcactcgtggaataggaatgactcagaccttttt-cataggt-cgccgcaacgtaccactgtcggttccac GGAGCTCAGACTTCACTCGTGGAATAGGAATGACTCAGACCTTTTT-CATAGGT-CGCCGCAACGTACCACTGTCGGTTCCAC

group2

SOT-F03-DR15-C7

GGAGCTCAGACTTCACTCGTGCGCTTTCTGTTAGCTGCCGACCGTCAGTGCGGCACGAGATACGTACCACTGTCGGTTCCAC

SEQUENCE LISTING

```
<110> NOXXON Pharma AG
  <120> Ghrelin binding nucleic acids
  <130> N 10034 EP
  <160> 86
  <170> PatentIn version 3.1
  <210>
       1
 <211> 28
 <212> PRT
 <213> Rattus sp.
 <400> 1
 Gly Ser Ser Phe Leu Ser Pro Glu His Gln Lys Ala Gln Gln Arg Lys
               5
 Glu Ser Lys Lys Pro Pro Ala Lys Leu Gln Pro Arg
            20
 <210> 2
 <211> 83
 <212> RNA
 <213> Artificial Sequence
 <220>
 <223> RNA pool
 <220>
 <221> misc_feature
<222> (22)..(61)
<223> nucleotide = a, g, c or u
<400> 2
60
ncacquacca cugucgguuc cac
                                                                83
<210> 3
<211> 83
<212> RNA
<213> Artificial Sequence
<220>
<223> RNA pool (reverse complementary strand)
<220>
<221> misc_feature
<222> (23)..(62)
<223> nucleotide = a,g,c or u
<400> 3
```

```
83
nncacgagug aagucugagc ucc
<210>
      4
<211>
      38
      DNA
<212>
<213> Artificial Sequence
<220>
<223> primer
<220>
      promoter
<221>
       (1)..(19)
<222>
<223> T7 promoter
<400> 4
                                                                       38
tctaatacga ctcactatag gagctcagac ttcactcg
<210>
      5
<211>
      20
<212> DNA
<213> Artificial Sequence
<220>
<223>
      primer
<400> 5
                                                                       20
gtggaaccga cagtggtacg
<210>
      6
<211>
      102
<212> DNA
<213> Artificial Sequence
<220>
<223>
      DNA pool
<220>
<221> misc_feature
      (41)..(80)
<222>
<223> nucleotide is a, g, c or t
<400>
tctaatacga ctcactatag gagctcagac ttcactcgtg nnnnnnnnn nnnnnnnnn
                                                                       60
                                                                   . 102
nnnnnnnnn nnnnnnnnn cacgtaccac tgtcggttcc ac
<210>
      7
<211>
      82
<212>
      Artificial Sequence
<213>
<220>
      Ghrelin-binding nucleic acid
<223>
<400>
```

ggago	ucaga cuucacucgu gugaggcaau aaaacuuaag uccgaaggua accaauccua	60
cacgu	accac ugucgguucc ac	82
<210>	. я	
<211>		
	RNA	
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<400>	8	
cgugu	gaggc aauaaaacuu aaguccgaag guaaccaauc cuacacg	47
<210>	9	
<211>		
<212>		
	Artificial Sequence	
,		
<220>		
<223>	Ghrelin-binding nucleic acid	
<400>	9	
	rcaga cuucacucgu gugaggcagu aaaacuuaag uccgaaggua accaauccua	60
cacgua	accac ugucgguucc ac	82
<210>	10	
<211>	47	
<212>	RNA	
<213>	Artificial Sequence	•
,		
<220>		
<223>	Ghrelin-binding nucleic acid	
<400>	10	
cgugug	aggc aguaaaacuu aaguccgaag guaaccaauc cuacacg	47
<210>	11	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Ghrelin-binding nucleic acid	
<400>	11	
ggagcu	caga cuucacucgu gugaggcaau aaaacuuaag uccgaaggua accaauccug	60
cacqua	ccac uguegguuce ac	82
		UZ
24.5		
<210>	12	
<211>	47	
	RNA	
<213>	Artificial Sequence	
-220-		

<223>	Ghrelin-binding nucleic acid	
<400> cguguga	12 aggc aauaaaacuu aaguccgaag guaaccaauc cugcacg	47
<210>	13	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<400>	13	60
ggagcu	caga cuucacucgu gugaggcaau aaaacauaag uccgaaggua accaauccua	
cacgua	ccac ugucgguucc ac	82
<210>	14	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<400>	14 aggc aauaaaacau aaguccgaag guaaccaauc cuacacg	47
egugug	agge aduadadan dagacegang gameenane emeneg	
<210>	15	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<400>	15 caga cuucacucgu gugaggcaau aaaacguaag uccgaaggua accaauccua	60
ggagcu	saga cuucacucgu gugaggcaau aaaacgaaag accgaaggaa accaaa	82
cacguad	ccac uguegguuce ac	02
-210 -	16 .	
<210><211>	47	
	RNA	
	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<400>	16	47
cguguga	aggc aauaaaacgu aaguccgaag guaaccaauc cuacacg	
<210>	17	
<211>	84	
<212>	RNA	
<213>	Artificial Sequence	

<220 <223)> > Ghrelin-binding nucleic acid	
	> 17	
9949	cucaga cuucacucgu gugaggcaau aaaacuugua aguccgaagg uaaccaaucc	60
uaca	cguacc acugucgguu ccac	84
<210	> 18	
	> 49	
	> RNA	
<213	> Artificial Sequence	
<220:	>	
<223	> Ghrelin-binding nucleic acid	
<400:	> 18	
	ugaggc aauaaaacuu guaaguccga agguaaccaa uccuacacg	
	-5-55- Hannada gaaagacega aggaaceaa accaacacg	49
<210:	• 19	
<211>	• 83	
	• RNA	
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<400>	19	
ggagc	ucaga cuucacucgu gugaggcaau aaaaacuuaa guccgaaggu aaccaauccu	60
	uacca cugucgguuc cac	83
<210>	20	
<211>	= -	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<400>	20	
	jagge aauaaaaacu uaagueegaa gguaaceaau eeuacaeg	48
		40
<210>	21	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<400>	21	
	caga cuucacucgu gcggugaggc aaaaacguaa gaccgaaggu aaccauuccu	60
		-
accuac	guac cacugucggu uccac	85
<210>	22	
~~×V>	44	

<210> 22 <211> 50

<212> <213>	RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<400> cgugcg	22 guga ggcaaaaacg uaagaccgaa gguaaccauu ccuacccacg	50
<210><211>	23 85	
<212>		
<220> <223>	Ghrelin-binding nucleic acid	
<400> ggagcu	23 caga cuucacucgu gugagguagu aaaaaaacgu aaauccgaag guaaccaauc	60
cuacac	guac cacugucggu uccac	85
<210> <211>	50	
<212> <213>	Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<400> cguguga	24 aggu aguaaaaaaa cguaaauccg aagguaacca auccuacacg	50
<210> <211>		
<212>		
<220> <223>	Ghrelin-binding nucleic acid	
<400> ggagcud	25 caga cuucacucgu gugagguagu aaaaaaaaaa cguaaauccg aagguaacca	60
auccuad	cacg uaccacuguc gguuccac	88
<210>		
<212>	- -	
<220> <223>	Ghrelin-binding nucleic acid	
<400> cguguga	26 aggu aguaaaaaaa aaacguaaau ccgaagguaa ccaauccuac acg	53

<211> 89	
<212> RNA	
<213> Artificial Sequence	
.000	
<220>	
<223> Ghrelin-binding nucleic acid	
<400> 27	
ggagcucaga cuucacucgu gugagguagu aaaaaaaaa acguaaaucc gaagguaacc	60
aguccuacac guaccacugu cgguuccac	
	89
<210> 28	
<211> 54 <212> RNA	
<213> Artificial Sequence	
<220>	
<223> Ghrelin-binding nucleic acid	
and the second s	
<400> 28	
cgugugaggu aguaaaaaa aaaacguaaa uccgaaggua accaguccua cacg	54
	54
-010	
<210> 29 <211> 90	
<211> 90 <212> RNA	
<213> Artificial Sequence	
1213) ALCILICIAL Sequence	
<220>	
<223> Ghrelin-binding nucleic acid	
<400> 29	
ggagcucaga cuucacucgu gugagguagu aaaaaaaaaa	60
	•
caauccuaca cguaccacug ucgguuccac	90
<210> 30	
<211> 55	
<212> RNA	
<213> Artificial Sequence	
<220>	
<223> Ghrelin-binding nucleic acid	
<400> 30	
cgugugaggu aguaaaaaaa aaaaacguaa auccgaaggu aaccaauccu acacg	55
<210> 31	
<211> 91	
<212> RNA	
<213> Artificial Sequence	
.000	
<220>	
<223> Ghrelin-binding nucleic acid	
<400> 31	
ggagcucaga cuucacucgu gugagguagu aaaaaaaaa aaacguaaau ccgaagguaa	60
ccaauccuac acguaccacu guegguucca c	
	91

<210><211><212><213>	32 56 RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<400> cguguga	32 aggu aguaaaaaaa aaaaaacgua aauccgaagg uaaccaaucc uacacg	56
<210><211><211>	94	
	Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<400> ggagcu	33 caga cuucacucgu gugagguagu aaaaaaaaaa aaaaaacaua aauccgaagg	60
uaaccaa	aucc uacacguacc acugucgguu ccac	94
<210><211><211><212><213>	59	
<220>	Ghrelin-binding nucleic acid	
<400> cguguga	34 _. aggu aguaaaaaaa aaaaaaaaac auaaauccga agguaaccaa uccuacacg	59
<210><211><211>	19	
<213>	Artificial Sequence	
<220> <223>	primer binding sequence	
<400> ggagcuo	35 caga cuucacucg	19
<210> <211> <212> <213>	20	
<220> <223>	primer binding sequence	
<400>	36 cug ucgguuccac	20

```
<210> 37
 <211> 47
 <212> RNA
 <213> Artificial Sequence
 <220>
       truncated B11
 <223>
 <400> 37
 cgugugaggc aauaaaacuu aaguccgaag guaaccaauc cuacacg
                                                                        47
 <210> 38
 <211>
       83
 <212> RNA
 <213> Artificial Sequence
 <220>
 <223> Ghrelin-binding nucleic acid
 <400> 38
 ggagcucaga cuucacucgu gcggugaggc agacguaaga ccgaagguaa ccauuccuac
                                                                       60
 ccacguacca cugucgguuc cac
                                                                       83
<210>
       39
 <211>
       83
 <212> RNA
<213> Artificial Sequence
<220>
<223> Ghrelin-binding nucleic acid
<400> 39
ggagcucaga cuucacucgu gcggugaggc uaacguaaga ccgaagguaa ccauuccuac
                                                                       60
ccacquacca cugucgguuc cac
                                                                       83
<210> 40
<211>
       83
<212> RNA
<213> Artificial Sequence
<220>
      Ghrelin-binding nucleic acid
<223>
<400> 40
ggagcucaga cuucacucgu guggugaggc uaacguaaga ccgaagguaa ccauuccuac
                                                                      60
ccacguacca cugucgguuc cac
                                                                      83
<210> 41
<211>
      81
<212> RNA
<213> Artificial Sequence
<220>
<223> Ghrelin-binding nucleic acid
```

<400> ggagcu	41 caga	cuucacucg	u gugagguaau	aaaacuaaau	ccgaagguaa	ccaauccuac	60
acguac	cacu	guegguuee	a c				81
<211>	42 83						
<212> <213>		ficial Se	quence				
<220> <223>	Ghre	elin-bindi	ng nucleic a	cid		¥	
<400> ggagcu	42 caga	cuucacucg	u gcguaccguu	auaaagggag	uccugcagac	ugaugccagg	60
ccacgu	acca	cugucgguu	c cac				83
<210> <211>	43 82						
<212>							
		ficial Se	quence				
<220> <223>	Ghre	lin-bindi	ng nucleic a	cid			
<400> ggagcu	43 caga	cuucacucg	u gcggugaggc	agacguaaga	ccgaagguaa	ccauuccuac	60
cacgua	ccac	ugucgguuc	c ac			·	. 82
	44						
	82					•	
<212>		61-1-1-0-					
<213>	Artı	ficial Se	quence				
<223>	Ghre	lin-bindi	ng nucleic a	cid			
<400> ggagcu	44 caga	cuucacucg	u gcggugaggc	aaacguaaga	ccgaagguaa	ccauuccuac	60
cacgua	ccac	ugucgguuc	c ac				82
<210>	45						
<211>	82						
<212>		#2 #2 #3 O =	en107150				
	Arti	ficial Se	quence				
<220> <223>	Ghre	lin-bindi	ng nucleic a	cid			
<400>	45						
			u gcggugaggc	uaacguaaga	ccgaagguaa	ccauuccuac	60 82
cacgua	ccac	ugucgguuc	C AC			•	02

```
<211>
         84
  <212>
         RNA
  <213> Artificial Sequence
  <220>
  <223>
         Ghrelin-binding nucleic acid
  <400>
  ggagcucaga cuucacucgu gcggugaggc aaaaacguaa gaccgaaggu aaccauuccu
                                                                        60
  accacguacc acugucgguu ccac
                                                                        84
  <210> 47
  <211>
        80
 <212> RNA
 <213> Artificial Sequence
 <220>
 <223>
        Ghrelin-binding nucleic acid
 <400> 47
 ggagcucaga cuucacucgu gugagguaau aaaacuaaau ccgaagguaa ccaauccuaa
                                                                        60
 cguaccacug ucgguuccac
                                                                        80
 <210> 48
 <211>
        81
 <212>
        RNA
 <213> Artificial Sequence
 <220>
 <223> Ghrelin-binding nucleic acid
 <400> 48
ggagcucaga cuucacucgu gugaggcagu aaaacuuaag uccgaaggua accaauccua . . 60
acguaccacu gucgguucca c
                                                                       81
<210> 49
<211>
       82
<212> RNA
<213> Artificial Sequence
<220>
<223>
      Ghrelin-binding nucleic acid
ggagcucaga cuucacucgu gugaggcaau uaaacuugaa guccgaaggu aaccaauccu
                                                                       60
aacguaccac ugucgguucc ac
                                                                       82
<210>
       50
<211>
      83
<212>
      RNA
<213> Artificial Sequence
<220>
<223> Ghrelin-binding nucleic acid
```

<400> ggagcu	50 caga cuucacucgu gugaggcgau aaaacuugua aguccgaagg uaaccaaucc	60
uaacgu	acca cugucgguuc cac	83
<210><211><212><212><213>	51. 81 RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<400> ggagcu	51 caga cuucacucgu ggaauaggaa ugacucagac guuucucaua cgucgccgca	60
acguac	cacu gucgguucca c	81
<210><211><211><212><213>	52 81 RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<220> <221> <223>	misc_feature 2'-Flouro-modified pyrimidines	
	52 caga cuucacucgu ggaauaggaa ugacucagac cuuucucaua ggucgccgca	60 81
acguace	cacu gucgguucca c	. • •
<210><211><212><212><213>	53 80 RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<220> <221> <223>	misc_feature 2'-Flouro-modified pyrimidines	
<400> ggagcud	53 caga cuucacucgu ggaauaggaa ugacucagac cuuucuauag gucgccgcaa	60
cguacca	acug ucgguuccac	80
<211> <212>	54 82 RNA Artificial Sequence	

)>	
<223	> Ghrelin-binding nucleic acid	
	and a substitution of the	
<220	9>	
<221	> misc_feature	
<223	> 2'-Flouro-modified pyrimidines	
<400	> 54	
33~3	cucaga cuucacucgu ggaauaggaa ugacucagac guuucuccau acgucgccgc	60
aaco	uaccac ugucgguucc ac	
uucg	anceae agaeggaage ag	82
<210	> 55	
	> 82	
	> RNA	
	> Artificial Sequence	
1220	Mellicial Sequence	
<220:		
	Ghrelin-binding nucleic acid	
\D D5.	ometim-binding nucleic acid	
<220:		
	misc_feature	
~223×	2'-Flouro-modified pyrimidines	
\2257	2 -Flourd-modified pyrimidines	
<400>	55	
gguge	ucaga cuucacucgu ggaauaggaa ugacucagac guuucuccaa acgucgccgc	60
22001	20020 100000000000000000000000000000000	
uacgu	accac ugucgguucc ac	82
<210>	56	
<210>		
<211>	81	
<211> <212>	81 RNA	
<211> <212>	81	
<211> <212> <213>	81 RNA	
<211> <212> <213>	81 RNA Artificial Sequence	
<211> <212> <213>	81 RNA	
<211><212><213><223>	81 RNA Artificial Sequence	
<211><212><213><220><223><220>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid	
<211> <212> <213> <220> <223> <221>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature	
<211> <212> <213> <220> <223> <221>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid	
<211> <212> <213> <220> <223> <221>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature	
<211> <212> <213> <220> <223> <221> <221> <223>	RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines	
<211> <212> <213> <220> <223> <221> <221> <223>	RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines	
<211> <212> <213> <220> <223> <221> <221> <223>	RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines	60
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 acaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca	60
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu	RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines	60 81
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 acaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca	
<211> <212> <213> <220> <223> <221> <223> <400> ggagcu acguac	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 acaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca acacu gucgguucca c	
<211> <212> <213> <220> <223> <221> <223> <400> ggagcu acguac	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 acaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca acacu gucgguucca c	
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu acguac <210> <211>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 deaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca deacu gucgguucca c	
<211> <212> <213> <220> <223> <221> <223> <400> ggagcu acguac <210> <211> <212>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 deaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca deacu gucgguucca c 57 80 RNA	
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu acguac <210> <211>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 deaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca cacu gucgguucca c 57 80 RNA	
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu acguac <210> <211> <212> <213>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 deaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca deacu gucgguucca c 57 80 RNA	
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu acguac <210> <211> <212> <213> <220>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 Geaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca cacu gucgguucca c 57 80 RNA Artificial Sequence	
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu acguac <210> <211> <212> <213>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 deaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca deacu gucgguucca c 57 80 RNA	
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu acguac <210> <211> <212> <213> <220> <223>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 Geaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca cacu gucgguucca c 57 80 RNA Artificial Sequence	
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu acguac <210> <211> <212> <213> <220> <223>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 deaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca cacu gucgguucca c 57 80 RNA Artificial Sequence Ghrelin-binding nucleic acid	
<211> <212> <213> <220> <223> <220> <221> <223> <400> ggagcu acguac <210> <211> <212> <213> <220> <223>	81 RNA Artificial Sequence Ghrelin-binding nucleic acid misc_feature 2'-Flouro-modified pyrimidines 56 Geaga cuucacucgu ggaauaggaa ugacucagac guucuccaua cgucgccgca cacu gucgguucca c 57 80 RNA Artificial Sequence	

<400> ggagcu	57 caga cuucacucgu ggaauaggaa ugacucagac cuuucuccau aggucgccaa	60
cguacca	acug ucgguuccac	80
<210> <211> <212> <213>	58 82 RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<220> <221> <223>	misc_feature 2'-Flouro-modified pyrimidines	
<400> ggagcud	58 caga cuucacucgu ggaauaggaa ugacucagac guuucuucau acgucgccgc	60
aacguad	ccac ugucgguucc ac	82
<210> <211> <212> <213>	59 80 RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<220> <221> <223>	misc_feature 2'-Flouro-modified pyrimidines	
<400> ggagcuo	59 caga cuucacucgu ggaauaggaa ugauucagac guuuccauac gucgccgcaa	60
cguacca	acug ucgguuccac	80
<212>	60 79 RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<220> <221> <223>	misc_feature 2'-Flouro-modified pyrimidines	
<400> ggagcuc	60 caga cuucacucgu ggaauaggaa ugacucagac cuuucauagg ucgccgcaac	60
guaccac	eugu egguueeae	79

-010	A. 63	
	0> 61	
	.> 79	
	P RNA	
<213	> Artificial Sequence	
	• ****	
<220	>	
	> Ghrelin-binding nucleic acid	
~223	> Gifferin-bridging nucleic acid	
-556		
<220		
<221	> misc_feature	
<223	> 2'-Flouro-modified pyrimidines	
<400	> 61	
ggag	CUCAGA CUUCACUCGU GGAANAGGAA NGAGNGAGA GUUCAGA	
22~5	cucaga cuucacucgu ggaauaggaa ugacucagac guuucauacg ucgccgcaac	60
an a co	73.0000	
guaci	cacugu cgguuccac	79
<210:		
<211:		
	> RNA	
<213>	Artificial Sequence	
	-	
<220>		
<223>	Ghrelin-binding nucleic acid	
	one of the state o	
<220>		
	misc_feature	
12212	nusc_leature	
<223>	2'-Flouro-modified pyrimidines	
<400>		
ggagc	ucaga cuucacucgu ggaauaggaa ugacucagac guccauacgu cgccgcaacg	60
		00
uacca	cuguc gguuccac	78
		78
<210>	63	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<220>		
<221>	misc_feature	
<223>	2'-Flouro-modified pyrimidines	
	mogrator blitimirather	
<400>	63	
agagcu	caga cuucacucgu ggaauaggaa ugacucagac guuuucucca uacgucgccg	60
	- ·	
caacgu	acca cugucgguuc cac	83
<210>		
<211>		
<212>	RNA	
	Publicial 2 Communication	

<220> <223>	Ghrelin-binding nucleic acid	
	misc_feature 2'-Flouro-modified pyrimidines	
<400> ggagcu	64 caga cuucacucgu ggaauaggaa ugacucagac guuuuuccau acgucgccgc	60
aacgua	ccac ugucgguucc ac	82
<210>	65	
<211>	82	
<212>		
<213>	Artificial Sequence	
<220>	Ghrelin-binding nucleic acid	
<223>	Ghrelin-binding nucleic acid	
<220>		
	misc feature	
<223>	2'-Flouro-modified pyrimidines	
<400>	65	
ggagcu	caga cuucacucgu gcgcuuucug uuagcugccg accgucagug cggcacgaga	60
		82
uacgua	ccac ugucgguucc ac	U.
<210>	66	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
.000-		
<220> <221>	misc_feature	
<223>		
4.0.0		
<400>	66 caga cuucacucgu gcgcuuucug uuagcugcug accgucagug cggcacgaga	60
ggagcu	taga cuucacuoga gogouaacug aaageageag mengacugag sogaang s	
uacgua	ccac ugucgguucc ac	82
<210>	67	
<211>	81	
<212>	RNA	
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
	-	
<220>		
<221>	misc_feature ·	

<223> 2'-Flouro-modified pyrimidines

acguaccacu gucgguucca c 81 210		oucaga cuucacucgu gegeuuucug uuageueega eegueaguge ggeaegagau	
<pre> <210> 68 <211> 81 <212> RNA <213> Artificial Sequence <220> <221> misc_feature <221> 2'-Flouro-modified pyrimidines <400> 68 ggagcucaga cuucacucgu gcgcuuucug uuagcucaga ccgucagugc ggcacgagau 60 acguaccacu gucgguucca c 81 <210> 69 <2211> 80 <2212> RNA <2113 Artificial Sequence <220> <221> misc_feature <221> 2'-Flouro-modified pyrimidines <400</pre>			60
<pre><211> 81 <212> RNA</pre>			81
<pre><212> RNA <213> Artificial Sequence <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines </pre> <pre><400 68 ggagcucaga cuucacucgu gcgcuuucug uuagcucaga ccgucagugc ggcacgagau acguaccacu gucgguucca c</pre>		* -	
<pre><213> Artificial Sequence <220> <221></pre>			
<pre><220> <221> misc_feature <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 68 ggagcucaga cuucacucgu gegcuuucug uuagcucaga cegucaguge ggcacgagau 60 acguaccacu gucgguucca c 81 <210> 69 <211> 80 <211> 80 <212> RNA <213> Artificial Sequence <222> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gegcuuuugu uagcucagac cgucagugeg gcacgagaua 60 cguaccacug ucgguuccac 80 cguaccacug ucgguuccac</pre>			
<pre><223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 68 ggagcucaga cuucacucgu gcgcuuucug uuagcucaga ccgucagugc ggcacgagau 60 acguaccacu gucgguucca c 81 <210> 69 <211> 80 <212> RNA <212> RNA <213> Artificial Sequence <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <221> misc_feature Ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 cguaccacug ucguaccac 80 cguaccacug ucgguuccac 80</pre>			
<pre><220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 68 ggagcucaga cuucacucgu gcgcuuucug uuagcucaga ccgucagugc ggcacgagau 60 acguaccacu gucgguucca c 81 <210> 69 <211> 80 <212> RNA <213> Artificial Sequence <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <221> misc_feature <221> gradiucaga cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 cguaccacug ucgguuccac 80 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <221> misc_feature <221> ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines </pre>			
<pre><221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 68 ggagcucaga cuucacucgu gcgcuuucug uuagcucaga ccgucagugc ggcacgagau 60 acguaccacu gucgguucca c 81 <210> 69 <211> 80 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <220> degagcucaga Cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 <210> 70 <211> 70 <221> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <221> misc_feature <222> <221> misc_feature <221> T-Flouro-modified pyrimidines </pre>	<223>	Ghrein-binding nucleic acid	
<pre><223> 2'-Flouro-modified pyrimidines <400> 68 ggagcucaga cuucacucgu gcgcuuucug uuagcucaga ccgucagugc ggcacgagau 60 acguaccacu gucgguucca c 81 <210> 69 <211> 80 <212> RNA <213> Artificial Sequence <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <221> misc_feature 60 <210> 70 <211> 70 <211> 70 <211> 71 <212> RNA <213> Artificial Sequence <220> <221> misc_feature <221> Z'-Flouro-modified pyrimidines</pre>	<220>		
<pre><400> 68 ggagcucaga cuucacucgu gcgcuuucug uuagcucaga ccgucagugc ggcacgagau 60 acguaccacu gucgguucca c 81 <210> 69 <211> 80 <212> RNA <213> Artificial Sequence <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <221> misc_feature <210> 70 <211> 70 <211> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> 2'-Flouro-modified pyrimidines</pre>			
acguaccacu gucgguucca c 81 <pre> 81 </pre> <pre> <210</pre>	<223>	2'-Flouro-modified pyrimidines	
<pre> c210> 69 c211> 80 c212> RNA c212> RNA c220> c220> c221> misc_feature c220> c221> c21-Flouro-modified pyrimidines c320> c321> c323> c400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 ccguaccacug /pre>	<400>	68	
<pre><210> 69 <211> 80 <212> RNA <213> Artificial Sequence </pre> <pre><220> <223> Ghrelin-binding nucleic acid </pre> <pre><221> misc_feature <223> 2'-Flouro-modified pyrimidines </pre> <pre><400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 </pre> <pre><210> 70 <211> 77 <212> RNA <213> Artificial Sequence </pre> <pre><220> <223> Ghrelin-binding nucleic acid </pre> <pre><220> <221> misc_feature <220> <221> misc_feature <221> cy'-Flouro-modified pyrimidines </pre>	ggagc	ucaga cuucacucgu gcgcuuucug uuagcucaga ccgucagugc ggcacgagau	60
<pre><210> 69 <211> 80 <212> RNA <213> Artificial Sequence </pre> <pre><220> <223> Ghrelin-binding nucleic acid </pre> <pre><221> misc_feature </pre> <pre><223> 2'-Flouro-modified pyrimidines </pre> <pre><400> 69 ggagcucaga cuucacucgu gegcuuuugu uagcucagac cgucagugeg geacgagaua 60 cguaccacug uegguuccac 80 </pre> <pre><210> 70 </pre> <pre><211> 77 </pre> <pre><212> RNA </pre> <pre><213> Artificial Sequence</pre> <pre><220> </pre> <pre><223> Ghrelin-binding nucleic acid</pre> <pre><220> </pre> <pre><221> misc_feature</pre> <pre><220> </pre> <pre><221> misc_feature</pre> <pre><223> 2'-Flouro-modified pyrimidines</pre> <400> 70	acgua	ccacu guegguucca e	81
<pre><211> 80 <212> RNA <213> Artificial Sequence </pre> <pre><220> <221> dhrelin-binding nucleic acid </pre> <pre><220> <221> misc_feature </pre> <pre><223> 2'-Flouro-modified pyrimidines </pre> <pre><400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 </pre> <pre><210> 70 <211> 77 <212> RNA <213> Artificial Sequence </pre> <pre><220> </pre> <pre><221> misc_feature </pre> <pre><220> </pre> <pre><221> misc_feature </pre> <pre><220> </pre> <pre><221> misc_feature </pre> <pre><223> 2'-Flouro-modified pyrimidines</pre>			
<pre><212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <211> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <221> misc_feature <221> misc_feature <221> misc_feature <221> Touro-modified pyrimidines</pre>	<210>	69	
<pre><213> Artificial Sequence <220> <221> Ghrelin-binding nucleic acid <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <221> misc_feature <221> misc_feature <221> misc_feature <221> 2'-Flouro-modified pyrimidines</pre>	<211>	80	,
<pre><220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <221> misc_feature <221> misc_feature <223> 2'-Flouro-modified pyrimidines </pre>			
<pre><223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70</pre>	<213>	Artificial Sequence	
<pre><223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70</pre>	<220>		•
<pre><220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70</pre>		Ghrelin-binding nucleic acid	
<pre><221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines </pre>	.000		
<pre><223> 2'-Flouro-modified pyrimidines <400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines</pre> <400> 70		migg fortune	
<pre><400> 69 ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines</pre> <400> 70			
ggagcucaga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua 60 cguaccacug ucgguuccac 80 <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70	12237	2 "Fidulo-modified pylimidines	
<pre>cguaccacug ucgguuccac <210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70</pre>	<400>	69	
<pre><210> 70 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines </pre>	ggagcu	caga cuucacucgu gcgcuuuugu uagcucagac cgucagugcg gcacgagaua	60
<pre><211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70</pre>	cguacc	acug ucgguuccac	80
<pre><211> 77 <212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70</pre>			
<pre><212> RNA <213> Artificial Sequence <220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70</pre>			
<220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70			
<220> <223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70			
<223> Ghrelin-binding nucleic acid <220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70			
<220> <221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70			
<221> misc_feature <223> 2'-Flouro-modified pyrimidines <400> 70	<223>	Ghrelin-binding nucleic acid	
<223> 2'-Flouro-modified pyrimidines <400> 70	<220>		
<400> 70			
	<223>	2'-Flouro-modified pyrimidines	
	<400>	70	
			60

accacu	gucg guuccac	77
<210>	71	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<220>		
	misc_feature	
<223>	2'-Flouro-modified pyrimidines	
<400>	71	
ggagcu	caga cuucacucgu gugccgcccu uauugucagg gagcuugagc cgacacugcg	60
gacgua	ccac ugucgguucc ac	82
<210>	72	
<211>	81	
<212>		
<213>	Artificial Sequence	•
<220>		
<223>	Ghrelin-binding nucleic acid	
<220>		
	misc_feature	
<223>	2'-Flouro-modified pyrimidines	
<400>	72	
ggaggu	caga cuucacucgu ggaauaggaa ugacucagac guuucucaua cgucgccgca	60
		81
acguace	cacu guegguucea e	OT
<210>	73	
<211>	81	
<212>	RNA	
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<220>		
	misc feature	
<223>		
<400>	73	60
ggagcu	caga cuucacucgu ggaauaggaa ugacucagac guuucucaaa cgucgccgca	
acguaco	cacu gucgguucca c	. 81
<210>	74	
<211>	80	
<212>	RNA	

<213	3> Artificial Sequence	
<220		
	S> Ghrelin-binding nucleic acid	
<220)>	
<221	> misc_feature	
<223	> 2'-Flouro-modified pyrimidines	
400		
	> 74 cucaga cuucacucgu ggaauaggaa ugacucagac guuuccauac gucgccgcaa	
	ccacug ucgguuccac	60
		80
<210	> 75	
	> 77	
	> RNA	
<213:	> Artificial Sequence	
<220:		
<223:	Ghrelin-binding nucleic acid	
<220>		
<221>	misc_feature	
<223>	2'-Flouro-modified pyrimidines	
<400>	75	•
	ucaga cuucacucgu ggaauaggaa ugacucagac guuucauguc gccgcaacgu	60
	ndinca, dinicas	
		77
<210>	76	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Ghrelin-binding nucleic acid	
<220>		
	misc_feature	
<223>	2'-Flouro-modified pyrimidines	
<400>	76	
	caga cuucacucgu ggaauaggaa ugacucagac guuucauacg ucgccgcaac	60
	cugu cgguuccac	79
		13
<210>	77	
<211>	79	
<212>		
<213>	Artificial Sequence	
<220>	•	
<223>	Ghrelin-binding nucleic acid	
4330 .		

<221> <223>	misc_feature 2'-Flouro-modified pyrimidines
<400>	77
ggagcu	caga cuucacucgu ggaauaggaa ugacucagac guuucauacg ucgccgcaac 60
guacca	cugu cgguuccac . 79
<210>	78
<211>	78
<212> <213>	
(213)	Ut 01510707 20de
<220> <223>	Ghrelin-binding nucleic acid
<220>	
	misc_feature .
<223>	三
<400>	78
ggagcu	caga cuucacucgu ggaauaggaa ugacucagac guccauacgu cgccgcaacg 60
	20
uaccacı	nguc gguuccac
<210>	79
<211>	80
<212>	RNA
<213>	Artificial Sequence
<220>	
<223>	Ghrelin-binding nucleic acid
.000	
<220> <221>	misc_feature
<223>	
<400>	79 caga cuucacucgu ggaauaggaa ugacucagac cuuuccauag gucgccgcaa 60
ggagea	
cguacca	acug ucgguuccac 80
<210>	80
<211>	81
<212>	
<213>	Artificial Sequence
<220>	
<223>	Ghrelin-binding nucleic acid
<220>	
<221>	misc_feature 2'-Flouro-modified pyrimidines
<423>	SLIONIO-MONITIEM Mi
<400>	80 2302 cuncacucon ggaanaggaa ugacucagac cunucucana gguegeegea 60
~~~~~	raca chiicachcon oogallaudaa uqacucagac cuuucucuuu yymayaayaa v

acgu	accacu gucgguucca c	8:
<210:	> 81	
	> 82	
	> RNA	
	> Artificial Sequence	
1223.	wrettrergr pednemce	
<220:		
<223:	Ghrelin-binding nucleic acid	
<220>		
<221>	misc_feature	
<223>	2'-Flouro-modified pyrimidines	
<400>	. 81	
	ucaga cuucacucgu ggaauaggaa ugacucagac guuucuccau acgucgccgc	
		60
aacgu	accac ugucgguucc ac	82
<210>	82	
<211>		
<212>		
	Artificial Sequence	
•		
<220>		
<223>	Ghrelin-binding nucleic acid	
<220>		
<221>	misc_feature	
<223>		
	F/14Zd2cb	
<400>	82	
ggagcu	caga cuucacucgu ggaauaggaa ugacucaggc cuuucuucau aggucgccgc	60
aacgua	ecac ugucgguucc ac	82
		<b>J</b>
<210>	83	
<211>	80	
<212>	RNA	
<213>	Artificial Sequence	
<220>		
	Ghrelin-binding nucleic acid	
<220>		
	misc_feature	
<223	21.Floure modified manifestation	
74637	2'-Flouro-modified pyrimidines	
<400>	83	
	caga cuucacucgu ggaauaggaa ugacccagac guuuucauac gucgccgcaa	60
cguacca	leug uegguueeae	80
<210>	84	
-011		

<210> <211>

<212> <213>	RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<220> <221> <223>		
<400> ggagcu	84 caga cuucacucgu ggaauaggaa ugacucagac cuuuuucaua ggucgccgca	60
acguac	cacu gucgguucca c	81
<210><211><211><212><213>	85 81 RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
<220> <221> <223>	misc_feature 2'-Flouro-modified pyrimidines	
<400>	85 caga cuucacucgu ggaauaggaa ugacucagac cuuuuucaua ggucgccgca	60
acguaco	cacu gucgguucca c	81
<210><211><211><212><213>	86 82 .RNA Artificial Sequence	
<220> <223>	Ghrelin-binding nucleic acid	
	misc_feature 2'-Flouro-modified pyrimidines	
<400> ggagcud	86 caga cuucacucgu gegeuuucug uuageugeeg aeegueagug eggeaegaga	60
ນລະເພາລເ	reac nancagniice ac	82

### This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

#### IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.