

明 細 書

熱硬化性樹脂組成物、基板用材料及び基板用フィルム

技術分野

[0001] 本発明は、硬化前に賦型された形状の硬化後の保持性能に優れた熱硬化性樹脂組成物に関し、より詳細には、熱硬化性樹脂と無機化合物とを含み、硬化後の形状保持性に優れた熱硬化性樹脂組成物、並びに該熱硬化性樹脂組成物を用いて構成されている基板用材料及び基板用フィルムに関する。

背景技術

[0002] 近年、電子機器の高性能化、高機能化、小型化が急速に進んでおり、電子機器に用いられる電子部品においても小型化及び軽量化の要請が高まっている。小型化及び軽量化にともなって、電子部品の素材についても、耐熱性、機械的強度、電気特性等の諸物性の更なる改善が求められている。例えば、半導体素子のパッケージや半導体素子を実装する配線板についても、より高密度、高機能、かつ、高性能なもののが求められている。

[0003] 電子機器に用いられる多層プリント基板は、複数層の絶縁基板により構成されている。従来、この層間絶縁基板としては、例えば、熱硬化性樹脂をガラスクロスに含浸させた熱硬化性樹脂プリプレグや、熱硬化性樹脂または光硬化性樹脂を用いて構成されたフィルムが用いられてきた。上記多層プリント基板においても高密度化、薄型化のために層間を極めて薄くすることが望まれており、薄型のガラスクロスを用いた層間絶縁基板やガラスクロスを用いない層間絶縁基板が必要とされている。そのような層間絶縁基板としては、例えば、(1)ゴム(エラストマー)類、(2)アクリル樹脂等で変性した熱硬化性樹脂材料及び(3)無機充填剤を大量に配合した熱可塑性樹脂材料等を用いて構成されたものが知られている。

[0004] 下記特許文献1には、高分子量エポキシ重合体及び多官能エポキシ樹脂等を主成分とするワニスに、所定の粒子径を有する無機充填剤を配合し、支持体に塗布して絶縁層とする多層絶縁基板の製造方法が開示されている。

[0005] しかしながら、上記製造方法により作製された多層絶縁基板では、無機充填剤と高

分子量エポキシ重合体や多官能エポキシ樹脂との界面面積を確保して機械的強度等の力学的物性を充分に向上させるために、多量の無機充填剤を配合する必要があった。そのため、絶縁層は脆化していたり、支持体に貼合するための絶縁層を軟化が難しいなどの問題があった。

- [0006] また、多層基板を作製する場合には、形成された銅パターンやビアホールなどの凹凸部分に絶縁層を貼り合わせることがある。このような場合、 $3 \mu m$ 以上の平均粒径を有するシリカなどの通常の無機充填剤を樹脂に配合している組成物により絶縁層を構成する場合、硬化時に加熱されると、樹脂粘度が急激に低下する。そのため、自重や表面張力により樹脂流れが発生し、全ての部位において十分な絶縁層が形成されないことがあった。
- [0007] また、近年、電子デバイスや通信デバイスの光化を目指した開発が進んでいる。このような光通信用高分子材料における現状での課題は、低損失であること、耐熱性に優れていること、低熱線膨張係数を有すること、透湿性に優れていること、屈折性能制御を行ない得ることなどである。ここで、光通信用材料において低損失性であるとは、光通信に使用する波長帯に材料自体が光吸収帯を有しないことを意味する。
- [0008] 光通信用材料として、下記の非特許文献1には、複製ポリマー光導波路が開示されている。ここでは、所望のコアパターンを型取った金型(スタンパ)が光硬化性樹脂に押しつけられ、かかる後UV照射によりコアパターンが転写されている。例えば、同様の工法を熱硬化性樹脂に用いた場合、樹脂が軟化している状態で金型(スタンパ)を押しつけた後、熱硬化反応で樹脂を硬化させるまでに、樹脂粘度が大きく低下し、流動する。従って、コアパターンを高精度に転写することはできず、あるいは実用に耐え得る転写精度が得られないという問題があった。
- [0009] 従って、熱硬化性材料において、未硬化時の凹凸追従性などの成形性、及び耐熱性に優れており、かつ低線膨張率、低吸湿性等などの物性に優れているだけでなく、硬化後の形状保持性を有することが強く望まれている。さらに、光通信材料として熱硬化性材料を用いた場合には、これらの特性の他に、透明性も要求されている。

特許文献1:特開2000-183539号公報

非特許文献1:電子材料2002年12月号 第27頁～第30頁「複製ポリマー光導波路

」

発明の開示

- [0010] 本発明は、硬化前に賦型された形状を硬化後も保持することができるという熱成形性に優れており、得られた成形体の力学的物性、寸法安定性及び耐熱性等が優れており、さらに微細成形性及び高温物性に優れた成形品を得ることを可能とする熱硬化性樹脂組成物、並びに該熱硬化性樹脂組成物を用いて構成された基板用材料及び基板用フィルムを提供することを目的とする。
- [0011] 本発明に係る熱硬化性樹脂組成物は、熱硬化性樹脂100重量部と、前記熱硬化性樹脂中に分散された無機化合物0.1—100重量部とを含み、前記無機化合物の分散粒径が $2\text{ }\mu\text{m}$ 以下であり、硬化前に賦型した形状が、硬化後に75%以上保持されていることを特徴とする。
- [0012] また、好ましくは、上記無機化合物が、珪素及び酸素を構成元素として保有しており、より好ましくは、上記無機化合物は層状珪酸塩である。
- [0013] また、本発明では、熱硬化性樹脂として、好ましくはエポキシ樹脂が用いられる。
- [0014] 本発明に係る基板用材料及び基板用フィルムは、本発明の熱硬化性樹脂組成物を用いて構成されていることを特徴とする。
- [0015] 本発明に係る熱硬化性樹脂組成物では、熱硬化性樹脂100重量部に対し、無機化合物が0.1—100重量部の割合で配合されており、無機化合物の分散粒径が $2\text{ }\mu\text{m}$ 以下とされており、さらに硬化前に賦型した形状は硬化後に75%以上保持されているため、成形保持性に優れている。従って、加熱成形に際しての加温速度を高めたり、加圧速度を高めたりすることができる。よって、成形に際しての生産性を効果的に高めることが可能となる。また、上記熱硬化性樹脂に無機化合物が分散されており、かつ熱硬化性樹脂が熱により硬化するため、本発明の熱硬化性樹脂組成物を硬化することにより得られた成形品は力学的物性、寸法安定性及び耐熱性においても優れている。
- [0016] 上記無機化合物として層状珪酸塩を用いた場合には、硬化時の寸法変化抑制や形状保持率が効果的に高められるだけでなく、断熱性及び耐熱性にすぐれた成形品を得ることができる。

[0017] 熱硬化性樹脂として、エポキシ樹脂を用いた場合には、本発明に従って形状保持性が高められるだけでなく、力学的物性、寸法安定性及び耐熱性に優れた成形品を得ることができる。

[0018] 本発明に係る基板用材料及び基板用フィルムは、本発明に係る熱硬化性樹脂組成物を用いて構成されている。従って、基板用材料や基板用フィルムの物性、寸法精度及び耐熱性を高めるだけでなく、様々な形状の基板用材料及び基板用フィルムを高精度に熱成形により得ることができる。

図面の簡単な説明

[0019] [図1]図1は実施例及び比較例で形状保持性評価の1つとして硬化後の自立性を評価した方法を説明するための図である。

発明を実施するための最良の形態

[0020] 以下、本発明を実施するための具体的な形態につき説明し、本発明を明らかにする。

[0021] 本発明の熱硬化性樹脂組成物を用いた場合、一般的な熱硬化性樹脂組成物の熱成形における急激な温度変化や圧力変化にともなう樹脂の絞り出し、浸み出し、及び成形体の割れが生じにくい。なお、一般的な熱成形とは、例えば、圧縮成形法、トランスファー成形法、熱積層成形法、SMC成形法などを広く含むものとする。

[0022] 一般的な熱成形において、エポキシ樹脂のような熱硬化性樹脂では、昇温にともなう流動性の増加と硬化反応による増粘とが同時に起こる。従って、熱成形中の温度及び／または圧力の調整による溶融粘度の制御が重要であり、急速な昇温や加压により生産性を高めることは困難であった。しかしながら、本発明の熱硬化性樹脂組成物を用いることにより加温速度を高めたり、加压速度を高めたりすることができ、それによって熱硬化性樹脂組成物の成形効率を高めることができる。

[0023] 本発明に係る熱硬化性樹脂組成物は、熱硬化性樹脂100重量部と、無機化合物0.1～100重量部とを含み、硬化前に賦型した形状を硬化後に75%以上保持する。上記75%以上で表される形状保持率は、Hを円柱状に賦型された形状の高さ、Dを直径とした場合、硬化前後のH/Dから求めることができる。例えば、硬化前にH/D = 2の形状となるように賦型し、硬化後にH/Dが1.5以上であれば、形状保持率は

75%以上となる。

- [0024] なお、本発明においては、熱硬化性樹脂組成物の賦型方法は特に限定されず、プレスあるいは圧縮等の適宜の方法により行なうことができる。
- [0025] 型に充填されたままで硬化することが可能なことはもちろん、形状保持率が75%以上であれば、型に充填したまま硬化させずに型の形状を熱硬化性樹脂に転写し、型を取り外した後に加熱硬化することができるため、熱硬化性樹脂の異形成形の生産性を容易に高めることができる。なお、上記形状保持率は、より好ましくは80%以上である。
- [0026] 本発明において、上記熱硬化性樹脂組成物に配合される無機化合物は、特に限定されないが、熱硬化性樹脂中における分散粒径が $2\text{ }\mu\text{m}$ 以下であることが好ましい。一般的に熱硬化性樹脂に無機化合物が添加されると、得られる複合材料の弾性率や熱溶融時などの高温時の粘度が高くなる。特に、粒径が小さい無機化合物が添加されると、樹脂と無機化合物との界面積が大きくなり、高温における粘度が上昇する。これにより、金型等からの離型性も高められる。本発明においては、分散粒径が $2\text{ }\mu\text{m}$ 以下である無機化合物を配合することにより、上記熱硬化性樹脂組成物の寸法変化抑制や形状保持率が効果的に高められる。好ましくは、分散粒径が $1\text{ }\mu\text{m}$ 以下の無機化合物が用いられる。
- [0027] 上記無機化合物の例としては、シリカ、タルク、マイカ、金属水酸化物、炭酸カルシウム、珪酸塩などが挙げられる。特に、樹脂中における分散粒径が $2\text{ }\mu\text{m}$ 以下である無機化合物としては、フュームドシリカ、エアロジルなどの珪素及び酸素を含む微粉シリカなどが、比表面積が大きく、樹脂との接触面積が大きくなるので、好適に用いられる。
- [0028] また、本発明に係る樹脂組成物では、より好ましくは、樹脂中において分散粒径が $2\text{ }\mu\text{m}$ 以下である無機化合物は層状珪酸塩である。層状珪酸塩は、板状の無機化合物であり、アスペクト比が大きい。層状珪酸塩を添加すると、得られる複合材料の弾性率や、熱溶融時等などの高温時の粘度が高められる。特に、熱硬化性樹脂中に層状珪酸塩の薄片状結晶が剥離し、高度に分散している場合、熱硬化性樹脂と層状珪酸塩との界面積が非常に大きくなり、層状珪酸塩を少量添加した場合であって

も、高温下における粘度を高めることができる。

- [0029] 上記層状珪酸塩としては、例えば、モンモリナイト、ヘクトライト、サポナイト、バイデライト、スティブンサイト及びノントロナイト等のスマクタイト系粘土鉱物、膨潤性マイカ、バーミキュライト、ハロイサイト等が挙げられる。なかでも、モンモリナイト、ヘクトライト、膨潤性マイカ、及び、バーミキュライトからなる群より選択される少なくとも1種が好適に用いられる。これらの層状珪酸塩は、単独で用いられてもよく、2種以上が併用されてもよい。
- [0030] 層状珪酸塩が、モンモリナイト、ヘクトライト、膨潤性マイカおよびバーミキュライトからなる群より選択される少なくとも1種である場合には、樹脂中の分散性が高まり、樹脂と層状珪酸塩との界面積が大きくなる。よって、樹脂の拘束効果が高まるため、樹脂強度や、高温での寸法安定性を向上させることができる。
- [0031] 上記層状珪酸塩の結晶形状としては特に限定されないが、平均長さの好ましい下限は0.01 μm、上限は3 μm、厚さの好ましい下限は0.001 μm、上限は1 μm、アスペクト比の好ましい下限は20、上限は500であり、平均長さのより好ましい下限は0.05 μm、上限は2 μm、厚さのより好ましい下限は0.01 μm、上限は0.5 μm、アスペクト比のより好ましい下限は50、上限は200である。
- 上記層状珪酸塩は、下記式(1)で定義される形状異方性効果が大きいことが好ましい。形状異方性効果の大きい層状珪酸塩を用いることにより、本発明の樹脂組成物から得られる樹脂は優れた力学的物性を有するものとなる。
- [0032] 形状異方性効果=結晶表面(A)の面積／結晶表面(B)の面積…(1)
- 式(1)中、結晶表面(A)は層表面を意味し、結晶表面(B)は層側面を意味する。
- [0033] 上記層状珪酸塩の層間に存在する交換性金属カチオンとは、層状珪酸塩の薄片状結晶表面に存在するナトリウムやカルシウム等の金属イオンを意味する。これらの金属イオンは、カチオン性物質とのカチオン交換性を有するため、カチオン性を有する種々の物質を上記層状珪酸塩の結晶層間に挿入(インターフレート)することができる。
- [0034] 上記層状珪酸塩のカチオン交換容量としては特に限定されないが、好ましい下限は50ミリ等量／100g、上限は200ミリ等量／100gである。カチオン交換容量が50ミ

リ等量／100g未満であると、カチオン交換により層状珪酸塩の結晶層間にインター
カレートされるカチオン性物質の量が少なくなるために、結晶層間が充分に非極性
化(疎水化)されないことがある。カチオン交換容量が200ミリ等量／100gを超えると
、層状珪酸塩の結晶層間の結合力が強固になりすぎて、結晶薄片が剥離し難くなる
ことがある。

- [0035] 上記層状珪酸塩としては、化学処理されることにより樹脂中への分散性を向上されたものが好ましい。かかる層状珪酸塩を、以下、有機化層状珪酸塩ともいう。上記化学処理としては、例えば、以下に示す化学修飾(1)法～化学修飾(6)法によって実施することができる。これらの化学修飾法は、単独で用いられてもよく、2種以上が併用されてもよい。
- [0036] 上記化学修飾(1)法は、カチオン性界面活性剤によるカチオン交換法ともいい、具体的には、低極性樹脂を用いて本発明の樹脂組成物を得る際に予め層状珪酸塩の層間をカチオン性界面活性剤でカチオン交換し、疎水化しておく方法である。予め層状珪酸塩の層間を疎水化しておくことにより、層状珪酸塩と低極性樹脂との親和性が高まり、層状珪酸塩を低極性樹脂中により均一に微分散させることができる。
- [0037] 上記カチオン性界面活性剤としては特に限定されず、例えば、4級アンモニウム塩、4級ホスホニウム塩等が挙げられる。なかでも、層状珪酸塩の結晶層間を充分に疎水化できることから、炭素数6以上のアルキルアンモニウムイオン、芳香族4級アンモニウムイオンまたは複素環4級アンモニウムイオンが好適に用いられる。
- [0038] 上記4級アンモニウム塩としては特に限定されず、例えば、トリメチルアルキルアンモニウム塩、トリエチルアルキルアンモニウム塩、トリブチルアルキルアンモニウム塩、ジメチルジアルキルアンモニウム塩、ジブチルジアルキルアンモニウム塩、メチルベンジルジアルキルアンモニウム塩、ジベンジルジアルキルアンモニウム塩、トリアルキルメチルアンモニウム塩、トリアルキルエチルアンモニウム塩、トリアルキルブチルアンモニウム塩；ベンジルメチル{2-[2-(p-1, 1, 3, 3-テトラメチルブチルフェノオキシ)エトキシ]エチル}アンモニウムクロライド等の芳香環を有する4級アンモニウム塩；トリメチルフェニルアンモニウム等の芳香族アミン由来の4級アンモニウム塩；アルキルビリジニウム塩、イミダゾリウム塩等の複素環を有する4級アンモニウム塩；ポリエチレン

グリコール鎖を2つ有するジアルキル4級アンモニウム塩、ポリプロピレングリコール鎖を2つ有するジアルキル4級アンモニウム塩、ポリエチレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩、ポリプロピレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩等が挙げられる。なかでも、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、N-ポリオキシエチレン-N-ラウリル-N,N-ジメチルアンモニウム塩等が好適である。これらの4級アンモニウム塩は、単独で用いられてもよく、2種以上が併用されてもよい。

- [0039] 上記4級ホスホニウム塩としては特に限定されず、例えば、ドデシルトリフェニルホスホニウム塩、メチルトリフェニルホスホニウム塩、ラウリルトリメチルホスホニウム塩、ステアリルトリメチルホスホニウム塩、トリオクチルメチルホスホニウム塩、ジステアリルジメチルホスホニウム塩、ジステアリルジベンジルホスホニウム塩等が挙げられる。これらの4級ホスホニウム塩は、単独で用いられてもよく、2種以上が併用されてもよい。
- [0040] 上記化学修飾(2)法は、化学修飾(1)法で化学処理された有機化層状珪酸塩の結晶表面に存在する水酸基を、水酸基と化学結合し得る官能基または水酸基との化学的親和性の大きい官能基を分子末端に1個以上有する化合物で化学処理する方法である。
- [0041] 上記水酸基と化学結合し得る官能基または水酸基との化学的親和性の大きい官能基としては特に限定されず、例えば、アルコキシ基、グリシジル基、カルボキシル基(二塩基性酸無水物も包含する)、水酸基、イソシアネート基、アルデヒド基等が挙げられる。
- [0042] 上記水酸基と化学結合し得る官能基を有する化合物または水酸基との化学的親和性の大きい官能基を有する化合物としては特に限定されず、例えば、上記官能基を有する、シラン化合物、チタネート化合物、グリシジル化合物、カルボン酸類、スルホン酸類、アルコール類等が挙げられる。これらの化合物は、単独で用いられてもよく、2種以上が併用されてもよい。
- [0043] 上記シラン化合物としては特に限定されず、例えば、ビニルトリメトキシシラン、ビニ

ルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-アミノプロピルトリメチキシシラン、γ-アミノプロピルメチルジメチキシシラン、γ-アミノプロピルジメチルメチキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルジメチルエトキシシラン、メチルトリエトキシシラン、ジメチルジメチキシシラン、トリメチルメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、N-β-(アミノエチル) γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル) γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル) γ-アミノプロピルメチルジメチキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメチキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン等が挙げられる。これらのシラン化合物は、単独で用いられてもよく、2種以上が併用されてもよい。

- [0044] 上記化学修飾(3)法は、化学修飾(1)法で化学処理された有機化層状珪酸塩の結晶表面に存在する水酸基を、水酸基と化学結合し得る官能基または水酸基と化学的親和性の大きい官能基と、反応性官能基を分子末端に1個以上有する化合物とで化学処理する方法である。
- [0045] 上記化学修飾(4)法は、化学修飾(1)法で化学処理された有機化層状珪酸塩の結晶表面を、アニオン性界面活性を有する化合物で化学処理する方法である。
- [0046] 上記アニオン性界面活性を有する化合物としては、イオン相互作用により層状珪酸塩を化学処理できるものであれば特に限定されない。上記アニオン性界面活性を有する化合物としては、例えば、ラウリル酸ナトリウム、ステアリン酸ナトリウム、オレイン酸ナトリウム、高級アルコール硫酸エステル塩、第2級高級アルコール硫酸エステル塩、不飽和アルコール硫酸エステル塩等が挙げられる。これらの化合物は、単独で用いられてもよく、2種以上が併用されてもよい。
- [0047] 上記化学修飾(5)法は、上記アニオン性界面活性を有する化合物のうち、分子鎖中のアニオン部位以外に反応性官能基を1個以上有する化合物で化学処理する方法である。
- [0048] 上記化学修飾(6)法は、化学修飾(1)法～化学修飾(5)法のいずれかの方法で化

学処理された有機化層状珪酸塩に、さらに、例えば、無水マレイン酸変性ポリフェニレンエーテル樹脂のような層状珪酸塩と反応可能な官能基を有する樹脂を用いる方法である。

- [0049] 上記層状珪酸塩は、本発明の樹脂組成物中に、広角X線回折測定法により測定した(001)面の平均層間距離が3nm以上であり、かつ、一部または全部の積層体が5層以下であるように分散していることが好ましい。上記平均層間距離が3nm以上であり、かつ、一部または全部の積層体が5層以下であるように層状珪酸塩が分散することにより、樹脂と層状珪酸塩との界面面積は充分に大きくなる。さらに、層状珪酸塩の薄片状結晶間の距離は適度なものとなり、高温物性、力学的物性、耐熱性、寸法安定性等において分散による改善効果を充分に得ることができる。
- [0050] 上記平均層間距離の好ましい上限は5nmである。5nmを超えると、層状珪酸塩の結晶薄片が層毎に分離して相互作用が無視できるほど弱まるので、高温での束縛強度が弱くなり、充分な寸法安定性が得られないことがある。
- [0051] なお、本明細書において、層状珪酸塩の平均層間距離とは、層状珪酸塩の薄片状結晶を層とみなした場合における層間の距離の平均を意味する。平均層間距離は、X線回折ピーク及び透過型電子顕微鏡撮影、すなわち、広角X線回折測定法により算出することができる。
- [0052] 上記一部または全部の積層体が5層以下であるように層状珪酸塩が分散しているとは、具体的には、層状珪酸塩の薄片状結晶間の相互作用が弱められて薄片状結晶の積層体の一部または全部が分散していることを意味する。好ましくは、層状珪酸塩の積層体の10%以上が5層以下の状態で分散されており、層状珪酸塩の積層体の20%以上が5層以下の状態で分散されていることがより好ましい。
- [0053] なお、5層以下の積層体として分散している層状珪酸塩の割合は、樹脂組成物を透過型電子顕微鏡により5万～10万倍に拡大して観察し、一定面積中において観察できる層状珪酸塩の積層体の全層数X及び5層以下の積層体として分散している積層体の層数Yを計測することにより、下記式(2)から算出することができる。
- [0054] 5層以下に分散している層状珪酸塩の割合(%) = (Y/X) × 100…(2)
また、層状珪酸塩の積層体における積層数としては、層状珪酸塩の分散による効

果を得るために5層以下であることが好ましい。

しかしながら、実際には、層状珪酸塩は積層数が3層程度で分散していれば、上述の効果を十分に発揮することができる。

[0055] 積層数を小さくするためには、層状珪酸塩の分散性が向上するように、例えば、カチオン交換させるカチオン性界面活性剤の量などの化学処理量を多くすることが挙げられる。しかしながら、この場合、多量に配合されたカチオン性界面活性剤によって、物性低下が発生するおそれがある。また、分散時の分散条件をより一層過酷にすることが挙げられ、例えば、押出機で分散させる場合には、押出中のせん断力を高めたり、ミキサーで攪拌する場合には、回転羽の回転数を高くしたりするなどの方法が挙げられる。

[0056] 従って、層状珪酸塩の積層体の30%以上が、3層以上の状態で分散していることが好ましい。また、3層以上の割合が過剰になると上述した物性が得られにくくなるために、3層以上の状態で分散している層状珪酸塩の積層体の割合は、70%以下であることが好ましい。

[0057] 本発明の樹脂組成物では、広角X線回折測定法により測定した(001)面の平均層間距離が3nm以上であり、かつ、一部または全部の積層体が5層以下である層状珪酸塩が分散されている場合には、樹脂と層状珪酸塩との界面面積が充分に大きくなつて、樹脂と層状珪酸塩の表面との相互作用が大きくなる。よって、溶融粘度が高まり熱プレスなどの熱成形性が向上することに加え、シボ、エンボスなど賦形した形状も保持しやすく、同時に型からの離型性にも優れる。また、常温から高温までの広い温度領域で弾性率等の力学的物性が向上する。さらに、樹脂のTgまたは融点以上の高温でも力学的物性を保持することができ、高温時の線膨張率も低く抑えることができる。かかる理由は明らかではないが、Tgまたは融点以上の温度領域においても、微分散状態の層状珪酸塩が一種の疑似架橋点として作用しているために、これら物性が発現すると考えられる。また、この疑似架橋点は共有結合を含むものではないので、一定の剪断速度のもとではこの疑似架橋点は維持されず、従って、熱成形においては充分な流動性を保持するものと考えられる。一方、層状珪酸塩の薄片状結晶間の距離も適度なものとなるので、燃焼時に、層状珪酸塩の薄片状結晶が移動して

難燃被膜となる焼結体を形成しやすくなる。この焼結体は、燃焼時の早い段階で形成されるので、外界からの酸素の供給を遮断するのみならず、燃焼により発生する可燃性ガスをも遮断することができ、本発明の樹脂組成物は優れた難燃性を発現する。

[0058] さらに、上記樹脂組成物では、ナノメートルサイズで層状珪酸塩が微分散していることから、透明性に優れる。また、ドリル穿孔やレーザ穿孔による加工については、局所的な大きな無機化合物がないため、容易である。

[0059] 熱硬化性樹脂中に層状珪酸塩を分散させる方法は特に限定されず、例えば、有機化層状珪酸塩を用いる方法、樹脂と層状珪酸塩とを常法により混合する方法、分散剤を用いる方法、層状珪酸塩を溶剤に分散させた状態で樹脂と混合させる方法などが挙げられる。

上記無機化合物の上記熱硬化性樹脂100重量部に対する配合量に関しては、下限は0.1重量部、上限は100重量部である。上記無機化合物の配合量が0.1重量部未満であると、高温物性や吸水性の改善効果が小さくなり、硬化後の形状の保持性が低下する。上記無機化合物の配合量が100重量部を超えると、本発明の樹脂組成物の密度(比重)が高くなり、機械的強度も低下することから実用性に乏しくなる。上記無機化合物の配合量の好ましい下限は1重量部、好ましい上限は80重量部である。上記無機化合物の配合量が1重量部未満であると、本発明の樹脂組成物を薄く成形した際に充分な高温物性の改善効果が得られないことがある。上記無機化合物の配合量が80重量部を超えると、成形性が低下することがある。また、上記無機化合物の配合量のより好ましい範囲は1～70重量部である。無機化合物の配合量が1～70重量部であると、力学的物性、工程適性において問題となる領域はなく、硬化後の形状保持性と充分な高温物性、低吸水性が得られる。

[0060] 無機化合物の配合割合のさらに好ましい範囲は1～60重量部、より好ましい範囲は5～40重量部である。

[0061] また、型に充填されたままで硬化する場合、上記熱可塑性樹脂組成物中に配合される無機化合物は、0.1～40重量部であればよく、0.1重量部未満である場合、形状保持性を得ることが出来ず、40重量部を超えて配合されても硬化時の寸法安定性

の向上の効果が薄れる。無機化合物の配合割合の好ましい範囲は1～20重量部である。

- [0062] 所望の形状に賦形する場合、層状珪酸塩は、上記エポキシ樹脂及び上記エポキシ樹脂硬化剤を含む樹脂分100重量部に対し、0.2～40重量部の範囲で含まれていることが好ましい。層状珪酸塩は、0.5～20重量部の範囲で含まれていることがより好ましく、1.0～10重量部の範囲で含まれていることがさらに好ましい。層状珪酸塩が0.2重量部より少ないと、硬化後の機械的物性が低下することがあり、層状珪酸塩が40重量部より多いと、樹脂の粘度が高くなり所望の形状に賦形し難くなる。
- [0063] また、熱硬化性樹脂組成物が層状珪酸塩以外の無機化合物を含んでいる場合、層状珪酸塩と無機化合物との配合比率は、1:1～1:20の範囲で含まれていることが好ましい。配合比率が1:1～1:20の範囲である場合には、樹脂の粘度が大幅に増加することなく、さらに、機械的物性等を向上することができる。よって、配合比率を1:1～1:20の範囲とすれば、フロー性が良好となるため、ビルトアップ用途等に好適に用いることができ、この場合、追従性及び平坦性に優れ、さらに機械的物性等にも優れる。
- [0064] 本発明において用いられる熱硬化性樹脂とは、常温では液状、半固形状または固形状のいずれであってもよい。また、上記熱硬化性樹脂は、常温かまたは加熱下で流動性を示す比較的低分子量の物質が、温度作用により必要に応じて硬化剤及び触媒と併用することにより、硬化反応や架橋反応等の化学反応を起こして分子量を増大させつつ三次元網目状構造を形成し、不溶不融の樹脂となり得る樹脂をいうものとする。
- [0065] 上記熱硬化性樹脂としては、特に限定されないが、例えば、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化型ポリイミド樹脂、ケイ素樹脂、ベンゾオキサジン樹脂、メラミン樹脂、ユリア樹脂、アリル樹脂、フェノール樹脂、不飽和ポリエスチル樹脂、ビスマレイミドトリアジン樹脂、アルキド樹脂、フラン樹脂、ポリウレタン樹脂、アニリン樹脂等が挙げられる。なかでも、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化型ポリイミド樹脂、ケイ素樹脂、ベンゾオキサジン樹脂、及び、メラミン樹脂等が好適である。これらの熱硬化性樹脂は、単独で用いられてもよく

、2種以上が併用されてもよい。

- [0066] 好ましくは、本発明においては、上記熱硬化性樹脂として、エポキシ樹脂が用いられる。エポキシ樹脂を用いた場合には、本発明に従って、硬化時の寸法変化抑制や形状保持性に優れているだけでなく、力学的物性や寸法精度に優れ、かつ耐熱性に優れた成形品を得ることができる。
- [0067] 上記エポキシ樹脂とは、少なくとも1個のエポキシ基を有する有機化合物をいう。上記エポキシ樹脂中のエポキシ基の数としては、1分子当たり1個以上であることが好ましく、1分子当たり2個以上であることがより好ましい。ここで、1分子当たりのエポキシ基の数は、エポキシ樹脂中のエポキシ基の総数をエポキシ樹脂中の分子の総数で除算することにより求められる。
- [0068] 上記エポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができ、例えば、以下に示すエポキシ樹脂(1)～エポキシ樹脂(11)等が挙げられる。これらのエポキシ樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
- [0069] 上記エポキシ樹脂(1)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂；フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂；トリスフェノールメタントリグリジルエーテル、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂等の芳香族エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂などの脂環式エポキシ樹脂、及び、これらの水添化物や臭素化物等が挙げられる。
- [0070] エポキシ樹脂が、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂およびナフタレン型エポキシ樹脂からなる群から選択される少なくとも1種を含んでいる場合には、分子鎖が剛直であるため、材料の強度や高温での寸法安定性に優れる。さらに、分子のパッキング性も高いために、誘電正接などの電気的特性にも優れている。
- [0071] 上記エポキシ樹脂(2)としては、例えば、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシー-2-メチルシクロヘキシリメチル-3,4-エポキシー-2-メチルシクロヘキサンカルボキシレート、ビス(3,4-

エポキシシクロヘキシル)アジペート、ビス(3, 4-エポキシシクロヘキシルメチル)アジペート、ビス(3, 4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、2-(3, 4-エポキシシクロヘキシル-5, 5-スピロ-3, 4-エポキシ)シクロヘキサン-メタージオキサン、ビス(2, 3-エポキシシクロペンチル)エーテル等の脂環族エポキシ樹脂等が挙げられる。かかるエポキシ樹脂(2)のうち市販されているものとしては、例えば、ダイセル化学工業社製の商品名「EHPE-3150」(軟化温度71°C)等が挙げられる。

- [0072] 上記エポキシ樹脂(3)としては、例えば、1, 4-ブタンジオールのジグリシジルエーテル、1, 6-ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、炭素数が2-9(好ましくは2-4)のアルキレン基を含むポリオキシアルキレングリコールやポリテトラメチレンエーテルグリコール等を含む長鎖ポリオールのポリグリシジルエーテル等の脂肪族エポキシ樹脂等が挙げられる。
- [0073] 上記エポキシ樹脂(4)としては、例えば、フタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、ジグリシジル-p-オキシ安息香酸、サリチル酸のグリシジルエーテルーグリシジルエステル、ダイマー酸グリシジルエステル等のグリシジルエステル型エポキシ樹脂及びこれらの水添化物等が挙げられる。
- [0074] 上記エポキシ樹脂(5)としては、例えば、トリグリシジルイソシアヌレート、環状アルキレン尿素のN, N'-ジグリシジル誘導体、p-アミノフェノールのN, N, O-トリグリシジル誘導体、m-アミノフェノールのN, N, O-トリグリシジル誘導体等のグリシジルアミン型エポキシ樹脂及びこれらの水添化物等が挙げられる。
- [0075] 上記エポキシ樹脂(6)としては、例えば、グリシジル(メタ)アクリレートと、エチレン、酢酸ビニル、(メタ)アクリル酸エステル等のラジカル重合性モノマーとの共重合体等が挙げられる。
- [0076] 上記エポキシ樹脂(7)としては、例えば、エポキシ化ポリブタジエン等の共役ジエン化合物を主体とする重合体またはその部分水添物の重合体における不飽和炭素の二重結合をエポキシ化したもの等が挙げられる。

- [0077] 上記エポキシ樹脂(8)としては、例えば、エポキシ化SBS等のような、ビニル芳香族化合物を主体とする重合体ブロックと、共役ジエン化合物を主体とする重合体ブロックまたはその部分水添物の重合体ブロックとを同一分子内にもつブロック共重合体における、共役ジエン化合物の不飽和炭素の二重結合をエポキシ化したもの等が挙げられる。
- [0078] 上記エポキシ樹脂(9)としては、例えば、1分子当たり1個以上、好ましくは2個以上のエポキシ基を有するポリエステル樹脂等が挙げられる。
- [0079] 上記エポキシ樹脂(10)としては、例えば、上記エポキシ樹脂(1)～(9)の構造中にウレタン結合やポリカプロラクトン結合を導入した、ウレタン変成エポキシ樹脂やポリカプロラクトン変成エポキシ樹脂等が挙げられる。
- [0080] 上記エポキシ樹脂(11)としては、例えば、上記エポキシ樹脂(1)～(10)にNBR、CTBN、ポリブタジエン、アクリルゴム等のゴム成分を含有させたゴム変成エポキシ樹脂等が挙げられる。また、エポキシ樹脂以外に、少なくとも1つのオキシラン環を有する樹脂またはオリゴマーが添加されていてもよい。
- [0081] 上記エポキシ樹脂を熱硬化させる際には、好ましくは硬化剤が用いられる。このような硬化剤としては、従来より公知のエポキシ樹脂用硬化剤を用いることができる。このような硬化剤としては、例えば、アミン化合物、アミン化合物から合成されるポリアミノアミド化合物等の化合物、3級アミン化合物、イミダゾール化合物、ヒドラジド化合物、メラミン化合物、酸無水物、フェノール化合物、熱潜在性カチオン重合触媒、ジシアミンアミド及びその誘導体等が挙げられる。これらの硬化剤は、単独で用いられてもよく、2種以上が併用されてもよい。
- [0082] 上記アミン化合物としては特に限定されず、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペントミン、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン等の鎖状脂肪族アミン及びその誘導体；メンセンジアミン、イソフォロンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、N-アミノエチルピペラジン、3, 9-ビス(3-アミノプロピル)2, 4, 8, 10-テトラオキサスピロ(5, 5)ウンデカン等の環状脂肪族アミン及びその誘導体；m-キシリレンジアミン、 α -(m/pアミノフェ

ニル)エチルアミン、m-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、 α , α -ビス(4-アミノフェニル)-p-ジイソプロピルベンゼン等の芳香族アミン及びその誘導体等が挙げられる。

- [0083] 上記アミン化合物から合成される化合物としては特に限定されず、例えば、上記アミン化合物と、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカ二酸、イソフタル酸、テレフタル酸、ジヒドロイソフタル酸、テトラヒドロイソフタル酸、ヘキサヒドロイソフタル酸等のカルボン酸化合物とから合成されるポリアミノアミド化合物及びその誘導体；上記アミン化合物と、ジアミノジフェニルメタンビスマレイミド等のマレイミド化合物とから合成されるポリアミノイミド化合物及びその誘導体；上記アミン化合物とケトン化合物とから合成されるケチミン化合物及びその誘導体；上記アミン化合物と、エポキシ化合物、尿素、チオ尿素、アルデヒド化合物、フェノール化合物、アクリル化合物等の化合物とから合成されるポリアミノ化合物及びその誘導体等が挙げられる。
- [0084] 上記3級アミン化合物としては特に限定されず、例えば、N, N-ジメチルピペラジン、ピリジン、ピコリン、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2, 4, 6-トリス(ジメチルアミノメチル)フェノール、1, 8-ジアザビスシクロ(5, 4, 0)ウンデセン-1及びその誘導体等が挙げられる。
- [0085] 上記イミダゾール化合物としては特に限定されず、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシリミダゾール、2-ヘプタデシリミダゾール、2-フェニルイミダゾール及びその誘導体等が挙げられる。
- [0086] 上記ヒドラジド化合物としては特に限定されず、例えば、1, 3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン、7, 11-オクタデカジエン-1, 18-ジカルボヒドラジド、エイコサン二酸ジヒドラジド、アジピン酸ジヒドラジド及びその誘導体等が挙げられる。
- [0087] 上記メラミン化合物としては特に限定されず、例えば、2, 4-ジアミノ-6-ビニル-1, 3, 5-トリアジン及びその誘導体等が挙げられる。
- [0088] 上記酸無水物としては特に限定されず、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビスアンヒドロトリメリテート、グリセロールトリスアンヒドロトリメリテート、メチルテトラヒ

ドロ無水フタル酸、テトラヒドロ無水フタル酸、ナジック酸無水物、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、5-(2, 5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1, 2-ジカルボン酸無水物、トリアルキルテトラヒドロ無水フタル酸-無水マレイン酸付加物、ドデセニル無水コハク酸、ポリアゼライン酸無水物、ポリドデカン二酸無水物、クロレンド酸無水物及びその誘導体等が挙げられる。

- [0089] 上記フェノール化合物としては特に限定されず、例えば、フェノールノボラック、o-クレゾールノボラック、p-クレゾールノボラック、t-ブチルフェノールノボラック、ジシクロペニタジエンクレゾール及びその誘導体等が挙げられる。
- [0090] 上記熱潜在性カチオン重合触媒としては特に限定されず、例えば、6フッ化アンチモン、6フッ化リン、4フッ化ホウ素等を対アニオンとした、ベンジルスルホニウム塩、ベンジルアンモニウム塩、ベンジルピリジニウム塩、ベンジルホスホニウム塩等のイオン性熱潜在性カチオン重合触媒;N-ベンジルフタルイミド、芳香族スルホン酸エステル等の非イオン性熱潜在性カチオン重合触媒が挙げられる。
- [0091] 上記熱硬化型変性ポリフェニレンエーテル樹脂としては、例えば、上記ポリフェニレンエーテル樹脂をグリシジル基、イソシアネート基、アミノ基等の熱硬化性を有する官能基で変性した樹脂等が挙げられる。これらの熱硬化型変性ポリフェニレンエーテル樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
- [0092] 上記熱硬化性ポリイミド樹脂としては、分子主鎖中にイミド結合を有する樹脂であり、具体的には、例えば、芳香族ジアミンと芳香族テトラカルボン酸との縮合重合体、芳香族ジアミンとビスマレイミドとの付加重合体であるビスマレイミド樹脂、アミノ安息香酸ヒドラジドとビスマレイミドとの付加重合体であるポリアミノビスマレイミド樹脂、ジシアネート化合物とビスマレイミド樹脂とにより構成されるビスマレイミドトリアジン樹脂等が挙げられる。なかでもビスマレイミドトリアジン樹脂が好適に用いられる。これらの熱硬化性ポリイミド樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
- [0093] 上記ケイ素樹脂としては、分子鎖中にケイ素-ケイ素結合、ケイ素-炭素結合、シロキサン結合またはケイ素-窒素結合を含むものであり、具体的には、例えば、ポリシロキサン、ポリカルボシラン、ポリシラザン等が挙げられる。

- [0094] 上記ベンゾオキサジン樹脂とは、ベンゾオキサジンモノマーのオキサジン環の開環重合が可能なモノマーおよび開環重合によって得られる樹脂を言う。上記ベンゾオキサジンモノマーとしては特に限定されず、例えば、オキサジン環の窒素にフェニル基、メチル基、シクロヘキシル基などの置換基が結合したもの、2つのオキサジン環の窒素間にフェニル基、メチル基、シクロヘキシル基などの置換基が結合したもの等が挙げられる。
- [0095] 上記ユリア樹脂としては、尿素とホルムアルデヒドとの付加縮合反応で得られる熱硬化性樹脂が挙げられる。上記ユリア樹脂の硬化反応に用いられる硬化剤としては特に限定されず、例えば、無機酸、有機酸、酸性硫酸ナトリウムのような酸性塩からなる顕在性硬化剤；カルボン酸エステル、酸無水物、塩化アンモニウム、リン酸アンモニウム等の塩類のような潜在性硬化剤が挙げられる。なかでも、貯蔵寿命等から潜在性硬化剤が好ましい。
- [0096] 上記アリル樹脂としては、ジアリルフタレートモノマーの重合及び硬化反応によって得られるものが挙げられる。上記ジアリルフタレートモノマーとしては、例えば、オルソ体、イソ体、テレ体が挙げられる。硬化反応の触媒としては特に限定されないが、例えば、t-ブチルパーオキシエートとジ-t-ブチルパーオキシドとの併用が好適である。
- [0097] 本発明の樹脂組成物では、本発明の課題達成を阻害しない範囲で、光硬化性樹脂がさらに配合されていてもよい。光硬化性樹脂としては、例えば、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化型ポリイミド樹脂、ケイ素樹脂、ベンゾオキサジン樹脂、メラミン樹脂、ユリア樹脂、アリル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビスマレイミドトリアジン樹脂、アルキド樹脂、フラン樹脂、ポリウレタン樹脂、アニリン樹脂等が挙げられる。上記光硬化性樹脂は、1種のみが添加されてもよく、2種以上が添加されていてもよい。
- [0098] また、光硬化性樹脂が添加される場合、必要に応じて、該光硬化性樹脂の硬化を果たすために、光潜在性カチオン重合開始剤が適宜配合される。上記光潜在カチオン重合開始剤としては特に限定されず、例えば、6フッ化アンチモン、6フッ化リン、4フッ化ホウ素等を対アニオンとした、芳香族ジアゾニウム塩、芳香族ハロニウム塩及

び芳香族スルホニウム塩等のオニウム塩類、並びに、鉄—アレン錯体、チタノセン錯体及びアリールシラノールアルミニウム錯体等の有機金属錯体類等のイオン性光潜在性カチオン重合開始剤;ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N—ヒドロキシイミドスルホナート等の非イオン性光潜在性カチオン重合開始剤が挙げられる。

- [0099] 本発明の樹脂組成物には、本発明の課題達成を阻害しない範囲で、熱可塑性エラストマー類が配合されてもよい。熱可塑性エラストマー類としては特に限定されず、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー等が挙げられる。樹脂との相容性を高めるために、これらの熱可塑性エラストマーを官能基変性したものであってもよい。これらの熱可塑性エラストマー類は、単独で用いられてもよく、2種以上が併用されてもよい。
- [0100] 本発明の樹脂組成物には本発明の課題達成を阻害しない範囲で、架橋ゴム類が配合されてもよい。架橋ゴム類としては特に限定されず、例えば、イソプレンゴム、ブタジエンゴム、1, 2-ポリブタジエン、スチレン-ブタジエンゴム、ニトリルゴム、ブチルゴム、エチレン-プロピレンゴム、シリコーンゴム、ウレタンゴム等が挙げられる。樹脂との相溶性を高めるために、これらの架橋ゴムを官能基変性したものが好ましい。上記官能基変性した架橋ゴムとしては特に限定されず、例えば、エポキシ変性ブタジエンゴムやエポキシ変性ニトリルゴム等が挙げられる。これらの架橋ゴム類は単独で用いられてもよく、2種以上が併用されてもよい。
- [0101] 本発明の樹脂組成物には、本発明の課題達成を阻害しない範囲で、エンジニアリングプラスチックスが配合されてもよい。
- エンジニアリングプラスチックスが含有されている熱硬化性樹脂組成物では、層状珪酸塩が分散されると、脆化し難くなり、優れた電気的特性が発現される。さらに、エンジニアリングプラスチックスが含有されると、熱硬化性樹脂組成物はTgが高くなるため、線膨張率が低減される。さらに、エンジニアリングプラスチックスが含有されると、熱硬化性樹脂組成物の伸びをより一層高めることができ、熱硬化性樹脂組成物の脆化が低減される。
- [0102] 熱硬化性樹脂組成物が成形体とされた時にエンジニアリングプラスチックスは、分

散相として存在していることが好ましい。熱硬化性樹脂組成物が成形体とされた時にエンジニアリングプラスチックスが分散層として存在することにより、熱硬化性樹脂組成物を用いて構成された成形体およびその硬化物は、脆化が低減されるとともに、十分な力学的特性を保持しつつ、優れた電気的特性を発現するものとなる。

[0103] 熱硬化性樹脂組成物が成形体とされた時に、エンジニアリングプラスチックスは微分散していることが好ましい。より好ましくは、エンジニアリングプラスチックスは、 $3\text{ }\mu\text{m}$ 以下に均一に分散していることが好ましい。エンジニアリングプラスチックスが微細に分散している場合には、熱硬化性樹脂組成物を用いて構成された成形体およびその硬化物では、優れた電気的特性が発現されるとともに、樹脂強度や伸びが向上し、破壊靭性が向上する。

上記エンジニアリングプラスチックスとしては、特に限定されるものではないが、例えば、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、芳香族ポリエステル樹脂、変性ポリフェニレンオキサイド樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルケトン樹脂等が挙げられる。なかでも、エポキシ樹脂との相溶性やエンジニアリングプラスチックス自体が有する特性等を考慮すると、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリイミド樹脂およびポリエーテルイミド樹脂からなる群より選択される少なくとも1種類のエンジニアリングプラスチックスが好適に用いられる。これらのエンジニアリングプラスチックスは、単独で用いられても良いし、2種類以上が併用されても良い。

[0104] 本発明に係る基板用材料及び基板用フィルムは、本発明に係る熱硬化性樹脂を用いて構成されていることを特徴とする。この場合、基板用材料及び基板用フィルムの成形後の形状は特に限定されるものではないが、本発明に係る熱硬化性樹脂組成物を用いることにより、熱成形に際しての形状保持率が高められる。従って、様々な形状の基板用材料を本発明に従って形成することができる。また、本発明に係る基板用材料及び基板用フィルムは、無機化合物が熱硬化性樹脂に対して上記特定の割合で配合されているため、力学的物性、寸法安定性及び耐熱性に優れている。

[0105] また、本発明の熱硬化性樹脂組成物では、熱硬化性樹脂中に無機化合物が、微

細に、特に好ましくはナノメートルサイズで微分散していることから低線膨張率、耐熱性、低吸水率であることに加え、高い透明性をも実現できる。従って、本発明の熱硬化性樹脂組成物は、光パッケージの形成材料、光導波路材料、ポリマー光ファイバー用材料、接続材料、封止材料等の光回路形成材料、光信用材料としても好適に使用することができる。

- [0106] 上記光信用材料として使用する場合、光通信などに用いる光源としては、可視光、赤外線および紫外線など任意の波長を生成する任意の光源が使用可能であり、レーザ、発光ダイオード、キセノンランプ、アーク灯、白熱電球、蛍光放電灯等が挙げられる。

本発明の熱硬化性樹脂組成物は、光導波路のコア層および／またはグラッド層として用いることが出来る。

- [0107] 光導波路は、光を通すコア層とコア層に接するグラッド層から構成され、光源に使用する光に対し、減衰率の小さいコア層と、それに接する屈折率の異なるグラッド層とが、コア層の屈折率をN_k、グラッド層の屈折率をN_gとすると、N_k>N_gを満足するように構成される。

コア層またはグラッド層として用いることが出来る本発明の熱硬化性樹脂組成物以外の材料としては、例えば、ガラス、石英、可塑性フッ素樹脂、熱可塑性アクリル系樹脂、フッ素化ポリイミド等が挙げられる。

- [0108] また、本発明の熱硬化性樹脂組成物は、平板状のコア層と薄い平板状のグラッド層とからなる平面型光導波路を形成し、薄いグラッド層に対し、コア層と反対側に媒体を配し、媒体側ににじみ出る光(エバネッセント波)を用いたセンサー用材料などに用いることができる。

- [0109] 上記光回路形成材料として使用する場合、光回路の形成方法としては、例えば、シリコン基板上に、熱硬化性樹脂としてフッ素化ポリイミドを用いた本発明の熱硬化性樹脂組成物を溶剤に溶解し、下部グラッド層としてスピンドルコートで塗布、加熱して形成し、その上に下部グラッド層よりも屈折率の高い熱硬化性樹脂であるフッ素化ポリイミドを用いた本発明の熱硬化性樹脂組成物を硬化させて、コア層を形成する。その後にフォトリソングラフィ、ドライエッチングなどでコア層のパターンニングを行い、更にコ

ア層よりも屈折率の低いフッ素化ポリイミドを熱硬化性樹脂として用いた本発明の熱硬化性樹脂組成物を硬化させて、グラッド層を同様に形成するなどして光回路を形成することが挙げられる。

[0110] 本発明の樹脂組成物の成形方法としては特に限定されず、例えば、押出機にて、溶融混練した後に押出し、Tダイやサーチュラーダイ等を用いてフィルム状に成形する押出成形法；有機溶剤等の溶媒に溶解または分散させた後、キャスティングしてフィルム状に成形するキャスティング成形法；有機溶剤等の溶媒に溶解または分散して得たワニス中に、ガラス等の無機材料や有機ポリマーからなるクロス状または不織布状の基材をディッピングしてフィルム状に成形するディッピング成形法等が挙げられる。なお、上記ディッピング成形法において用いる基材としては特に限定されず、例えば、ガラスクロス、アラミド纖維、ポリパラフェニレンベンゾオキサゾール纖維等が挙げられる。

また、上記の方法で得られた本発明の樹脂組成物は圧縮成形法、トランスファー成形法、熱積層成形法、SMC成形法など一般的な硬化性樹脂の成形に非常に適しており、また金型(スタンパ)を用いて所望のコアパターンを転写させるような成形法にも好適である。

[0111] 上述したように、本発明に係る熱硬化性樹脂組成物、および該熱硬化性樹脂組成物を用いて構成されている樹脂シート等は、透明性に優れている。よって、導波路のコア層にグラッド層材料として、また、デジタル・バーサタイル・ディスク(DVD)、コンパクトディスク(CD)などの用途の基盤として、金型形状を本発明に係る樹脂組成物に転写、成形する場合や、電気電子材料、特に絶縁フィルム、接着フィルムとして基材に積層する場合などにアライメント(位置あわせ)が容易となる。さらに、エアー巻き込みによるボイドの有無の確認も容易となる。

[0112] [実施例]

以下、本発明の具体的な実施例を得ることにより、本発明を詳細に説明する。もっとも、本発明は以下の実施例に限定されるものではない。

[0113] (実施例1)

ビスフェノールA型エポキシ樹脂(東都化成社製、YD-8125)35重量部および固

形エポキシ樹脂(東都化成社製、YP-55)35重量部を含むエポキシ樹脂組成物70重量部と、ジシアソアジド(アデカ社製、アデカハードナーEH-3636)2.7重量部と、変性イミダゾール(アデカ社製、アデカハードナーEH-3366)1.2重量部と、層状珪酸塩としてジメチルジオクタデシルアンモニウム塩で有機化処理が施された合成ヘクトライト(コーポケミカル社製、ルーセンタイトSAN)30重量部と、有機溶媒としてジメチルホルムアミド(和光純薬社製、特級)200重量部と、トルエン(和光純薬社製、特級)200重量部とをビーカーに加えた。しかる後、攪拌機にて1時間攪拌した後、脱泡し、樹脂／層状珪酸塩溶液を得た。次に、得られた樹脂／層状珪酸塩溶液をポリエチレンテレフタレートのシート上に塗布した状態で溶媒を除去した。次に、100°Cで15分間加熱し、樹脂組成物からなる試験用シートとして厚さ100 μmの未硬化体を作成した。10枚の試験用シートを厚さ1mmとなるように積層ラミネートし、未硬化の板状成形体を作成した。別途、上記厚さ1mmの試験用シートを100°Cに加熱した平板プレスにおいて、直径、溝深さがそれぞれ、100 μm／200 μm、200 μm／400 μm及び400 μm／800 μmの円形の凹部を有する金型で5MPaの圧力で1分間プレスし、凸形状を形成した。さらにこの賦型された未硬化の試験シート及び、厚さ100 μmの上記試験用シートを170°Cで1時間加熱して硬化し、賦型硬化体、及び厚さ100 μmの板状成形体を作製した。

[0114] (実施例2)

合成ヘクトライト(コーポケミカル社製、ルーセンタイトSAN)の代わりにフュームドシリカ(トクヤマ社製、レオロシールMT-10)を用いたこと以外は実施例1と同様にして樹脂組成物、及び、各成形体を作製した。

[0115] (比較例1)

合成ヘクトライト(コーポケミカル社製、ルーセンタイトSAN)を配合しなかったこと以外は実施例1と同様にして樹脂組成物、及び、各成形体を作製した。

[0116] (比較例2)

合成ヘクトライト(コーポケミカル社製、ルーセンタイトSAN)の代わりに、球状シリカ(三菱レーヨン社製、シリカエースQS-4; 平均粒径4 μm)20重量部を添加配合したこと以外は実施例1と同様にして樹脂組成物、及び、各成形体を作製した。

[0117] (実施例3)

合成ヘクトライト(copeケミカル社製、ルーセンタイトSAN)の配合量を7重量部とした以外は、実施例1と同様にして樹脂組成物、及び、各成形体を作製した。

(実施例4)

合成ヘクトライト(copeケミカル社製、ルーセンタイトSAN)の配合量を15重量部とした以外は、実施例1と同様にして樹脂組成物、及び、各成形体を作製した。

[0118] <評価>

実施例1～4及び比較例1, 2で作製した板状成形体の性能を以下の項目について評価した。結果は表1に示した。

[0119] (1)熱膨張係数の測定

厚さ $100\text{ }\mu\text{m}$ の各板状成形体を裁断して $3\text{mm} \times 25\text{mm}$ にした試験片を、TMA(thermomechanical Analyssys)装置(セイコー電子社製、TMA/SS120C)を用いて、昇温速度 $5^\circ\text{C}/\text{分}$ で昇温し、平均線膨張率の測定を行い、以下の項目について評価を行った。

[0120] •樹脂組成物のガラス転移温度よりも $50^\circ\text{C} \sim 10^\circ\text{C}$ 低い温度での平均線膨張率(α_1) [$^\circ\text{C}^{-1}$]。

•樹脂組成物のガラス転移温度よりも $10^\circ\text{C} \sim 50^\circ\text{C}$ 高い温度での平均線膨張率(α_2) [$^\circ\text{C}^{-1}$]。

[0121] (2)層状珪酸塩の平均層間距離

X線回折測定装置(リガク社製、RINT1100)を用いて、厚さ $100\text{ }\mu\text{m}$ の板状成形体中の層状珪酸塩の積層面の回折より得られる回折ピークの 2θ を測定した。下記式(3)のブラックの回折式により、層状珪酸塩の(001)面間隔dを算出し、得られたdを平均層間距離(nm)とした。

$$\lambda = 2ds\sin\theta \quad \cdots (3)$$

上記式(3)中、 λ は0.154であり、 θ は回折角を表す。

[0123] (3)5層以下の積層体として分散している層状珪酸塩の割合、および3層以上の積層体として分散している層状珪酸塩の割合

厚さ $100\text{ }\mu\text{m}$ の板状成形体を透過型電子顕微鏡により10万倍で観察し、一定面積

中において観察できる層状珪酸塩の積層体の全層数X及び5層以下の積層体として分散している層状珪酸塩の層数Y、および3層以上の積層体として分散している層状珪酸塩の層数Zを計測した。下記式(4)により5層以下、下記式(5)により3層以上の積層体として分散している層状珪酸塩の割合(%)を算出して、下記判定基準により層状珪酸塩の分散状態を評価した。

(判定基準)

5層以下の積層体として分散している層状珪酸塩の割合(%) = (Y/X) × 100…(4)

[0124] [判定基準]

○…5層以下の積層体として分散している層状珪酸塩の割合が10%以上であった。

×…5層以下の積層体として分散している層状珪酸塩の割合が10%未満であった。

3層以上の積層体として分散している層状珪酸塩の割合(%) = (Z/X) × 100…(5)

[0125] [判定基準]

○…3層以上の積層体として分散している層状珪酸塩の割合が30%以上、70%以下であった。

×…3層以上の積層体として分散している層状珪酸塩の割合が30%未満、または70%より多かった。

(4)樹脂中の無機化合物の分散粒径の測定

厚さ100 μmの板状成形体を透過型電子顕微鏡により1万倍で観察し、一定面積中において観察できる無機化合物の長辺を測定した。

[0126] (5)吸水率の測定

厚さ100 μmの板状成形体を3×5cmの短冊状にした試験片を作製し、150°Cで5時間乾燥させた後の重さ(W1)を測定した。次いで、試験片を水に浸漬し、100°Cの沸騰水中に1時間放置した後取り出し、ウエスで丁寧に拭き取った後の重さ(W2)を測定した。下記式により吸水率を求めた。

$$\text{吸水率(\%)} = (W_2 - W_1) / W_1 \times 100$$

[0127] (6) 賦型性の評価

実施例及び比較例において、成形に際しての賦型性を以下の要領で評価した。結果を下記の表1に示す。なお、表1における賦型性1, 2及び3は、それぞれ、成形体を成形する金型の凹溝の寸法のH/Dが、100 μm/200 μm、200 μm/400 μm及び400 μm/800 μmの場合で、硬化前のH/Dを走査型電子顕微鏡により、斜めから撮影し、写真から寸法比を求めた。それぞれ、賦型前の結果を表1に示す。

[0128] (7) 形状保持性の確認

硬化後の賦型性1, 2及び3の評価の際に成形した試料を、実施例1の硬化条件1 70°C、1時間で加熱した。しかる後、常温で冷却し、H/Dを走査型電子顕微鏡により、斜めから撮影し、写真から寸法比を求め、残存しているH/Dを測定した。硬化前後のH/Dの比より、上記賦型性1, 2及び3の評価の再に成形した試料について、それぞれ形状保持性1, 2及び3を評価した。下記の表1に結果を示す。なお、表1における○印は、硬化前後のH/D比が75%以上である場合を、×は硬化前後のH/D比が75%未満である場合を示す。

また、図1に示すように、硬化前の垂直面P₀が硬化後に傾斜した場合、該傾斜した面の水平面との角度θをSEMにより測定した。θが80°～90°を○、θが80°未満あるいは形状保持できない場合を×とした。結果を、下記の表1に示す。

[0129] (8) 全光線透過率の測定

用途に応じて必要とされる光波長領域において透過率の最小値を全光線透過率とするが、本実施例および比較例では190nm～3200nmまでの範囲で求めた。透過率は紫外可視分光光度計(島津製作所社製、UV-3150)等を用いて求めることができる。

[0130] [表1]

	実施例				比較例	
	1	2	3	4	1	2
CTE ($\alpha 1$) : $\times 10E-6 (1/\text{°C})$	54.0	59.5	69.5	64.3	121.5	109.3
CTE ($\alpha 2$) : $\times 10E-6 (1/\text{°C})$	67.2	190.3	138.5	122.6	957.3	450.7
平均層間距離 (nm)	3.5<	—	3.5<	3.5<	—	—
5 層以下の割合 (%)	○	—	○	○	—	—
3 層以上の割合 (%)	○	○	○	○	—	—
樹脂中の分散粒径 (μm)	<0.5	<0.5	<0.5	<0.5	—	4.1
吸水率 (%)	0.85	0.95	1.1	0.92	3.44	2.85
賦形性 1	87	78	100	100	N. D.	40
賦形性 2	100	100	100	100	N. D.	88
賦形性 3	100	100	100	100	94	100
形状保持性 1 : H/D 比の評価	○	○	○	○	—	—
形状保持性 2 : H/D 比の評価	○	○	○	○	—	×
形状保持性 3 : H/D 比の評価	○	○	○	○	×	○
形状保持性 1A : 角度 θ の評価	○	○	○	○	—	—
形状保持性 2B : 角度 θ の評価	○	○	○	○	—	—
形状保持性 3C : 角度 θ の評価	○	○	○	○	—	○
全光線透過率 (%)	90	82	93	91	94	72

$\times 10E-6$ は、 $\times 10^{-6}$ であることを示す。

N. D. は樹脂が金型から離型せず、材料破壊で測定できず。

形状保持性 1~3 の評価において、-は賦形性が悪いので評価せず。

請求の範囲

- [1] 热硬化性樹脂100重量部と、前記热硬化性樹脂中に分散された無機化合物0.1～100重量部とを含み、前記無機化合物の分散粒径が $2\mu\text{m}$ 以下であり、硬化前に賦型した形状が、硬化後に75%以上保持されていることを特徴とする、热硬化性樹脂組成物。
- [2] 前記無機化合物が、珪素及び酸素を構成元素として含む無機化合物である、請求項1に記載の热硬化性樹脂組成物。
- [3] 前記無機化合物が、層状珪酸塩である、請求項1または2に記載の热硬化性樹脂組成物。
- [4] 前記热硬化性樹脂としてエポキシ樹脂を含む、請求項1～3のいずれか1項に記載の热硬化性樹脂組成物。
- [5] 請求項1～4のいずれか1項に記載の热硬化性樹脂組成物を用いて構成されることを特徴とする、基板用材料。
- [6] 請求項1～4のいずれか1項に記載の热硬化性樹脂組成物を用いて構成されることを特徴とする、基板用フィルム。

[図1]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/018614

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C08L101/00, C08K3/00, C08L63/00, C08K3/34, H05K1/03

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C08L101/00, C08K3/00, C08L63/00, C08K3/34, H05K1/03

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1926-1996	Toroku Jitsuyo Shinan Koho	1994-2004
Kokai Jitsuyo Shinan Koho	1971-2004	Jitsuyo Shinan Toroku Koho	1996-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2003-313435 A (Sekisui Chemical Co., Ltd.), 06 November, 2003 (06.11.03), Claims; Par. Nos. [0017] to [0048], [0064] to [0083], [0097] to [0112], [0127] table 1 (Family: none)	1-6
X	JP 2003-26939 A (Sekisui Chemical Co., Ltd.), 29 January, 2003 (29.01.03), Claims; Par. Nos. [0014] to [0029], [0065] to [0090], [0112] to [0113], [0145] table 1, [0156] & WO 2002/46312 A1 & AU 200221097 A & EP 1350815 A1 & KR 2003064804 A & US 2004/53061 A1 & TW 559835 A & CN 1479768 A	1-6

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
29 March, 2005 (29.03.05)

Date of mailing of the international search report
19 April, 2005 (19.04.05)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Faxsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/018614

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2002-64276 A (Nippon Steel Chemical Co., Ltd.), 28 February, 2002 (28.02.02), Claims; Par. Nos. [0033] to [0046] & US 2002/51942 A1	1-2, 4-6
X	JP 10-4270 A (Sumitomo Bakelite Co., Ltd.), 06 January, 1998 (06.01.98), Claims; Par. Nos. [0023] to [0034] (Family: none)	1-2, 4-6
P,A	JP 2004-244510 A (Sekisui Chemical Co., Ltd.), 02 September, 2004 (02.09.04), Claims (Family: none)	1-6
P,A	JP 2004-59918 A (Sekisui Chemical Co., Ltd.), 26 February, 2004 (26.02.04), Claims (Family: none)	1-6

国際調査報告

国際出願番号 PCT/JP2004/018614

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C1' C08L101/00, C08K3/00, C08L63/00, C08K3/34,
H05K1/03

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C1' C08L101/00, C08K3/00, C08L63/00, C08K3/34,
H05K1/03

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1926-1996年
日本国公開実用新案公報	1971-2004年
日本国登録実用新案公報	1994-2004年
日本国実用新案登録公報	1996-2004年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2003-313435 A (積水化学工業株式会社) 2003.11.06, 特許請求の範囲, 段落【0017】-【0048】, 【0064】-【0083】, 【0097】-【0112】, 【0127】の【表1】 (ファミリーなし)	1-6
X	JP 2003-26939 A (積水化学工業株式会社) 2003.01.29, 特許請求の範囲, 段落【0014】-【0029】, 【0065】-【0090】, 【0112】-【0113】, 【0145】の【表1】, 【0156】 & WO 2002/46312 A1 & AU 200221097 A & EP 1350815 A1	1-6

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日 29.03.2005	国際調査報告の発送日 19.4.2005
国際調査機関の名称及びあて先 日本国特許庁（ISA/JP） 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 佐々木 秀次 電話番号 03-3581-1101 内線 3455 4 J 8930

C (続き) . 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
X	& KR 2003064804 A & US 2004/53061 A1 & TW 559835 A & CN 1479768 A	
X	JP 2002-64276 A (新日鐵化学株式会社) 2002. 02. 28, 特許請求の範囲, 段落【0033】—【0046】 & US 2002/51942 A1	1-2, 4-6
X	JP 10-4270 A (住友ベークライト) 1998. 01. 06, 特許請求の範囲, 段落【0023】—【0034】 (ファミリーなし)	1-2, 4-6
PA	JP 2004-244510 A (積水化学工業株式会社) 2004. 09. 02, 特許請求の範囲. (ファミリーなし)	1 — 6
PA	JP 2004-59918 A (積水化学工業株式会社) 2004. 02. 26, 特許請求の範囲 (ファミリーなし)	1 — 6