Complex Variables: Homework #1

Based on algebra of complex numbers

Dr. Sachchidanand Prasad

Problem 1

Let $\mathbb C$ denotes the set of all complex numbers. Then show the following.

1. Addition and product operations on $\mathbb C$ are commutative. That is, for any $z_1,z_2\in\mathbb C$, we have

$$z_1 + z_2 = z_2 + z_1$$
 and $z_1 \cdot z_2 = z_2 \cdot z_1$

2. Addition and product operations on $\mathbb C$ are associative. That is, for any $z_1,z_2,z_3\in\mathbb C$, we have

$$(z_1+z_2)+z_3=z_1+(z_2+z_3) \quad \text{and} \quad (z_1\cdot z_2)\cdot z_3=z_1\cdot (z_2\cdot z_3)$$

Problem 2

Represent the following complex numbers in the form of $a + \iota b$, where a and b are real numbers.

- 3. $\frac{1}{\iota}$ 4. $\frac{1}{x+\iota y}$, where $x^2 + y^2 = 7$.
- 5. $(1+\iota)^5$.

Problem 3

Let

$$z_1 = 2 + 3\iota$$
, $z_2 = 3\iota$, $z_3 = 3 - 4\iota$ and $z_4 = 1 - \iota$.

Simplify the following.

Problem 4

Look at the following figure and write the corresponding complex number. Each grid shows one unit. For example, the complex number corresponding to the point (2,2) will be $2+2\iota$.

Problem 5

Geometrically demonstrate the following.

- Sum of two complex numbers.
- Product of complex numbers.

Problem 6

We want to understand the geometric meaning of difference of two complex numbers. Answer the following steps to understand the geometric meaning of difference of two complex numbers, say z_1-z_2 .

- Draw the complex number z_1 and z_2 . It is an arbitrary choice, your drawing maybe different from your friends' drawing.
- Draw the complex number $-z_2$.
- Use the previous problem to draw the complex number $z_1+(-z_2).$