

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.01 Информатика и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА 09.04.01/07 Интеллектуальные системы анализа, обработки и интерпретации больших данных

ОТЧЕТ

по лабораторной работе № 4

Название: Реконструкция модели цифрового двойника человека-оператора в киберфизической системе

Дисциплина: Дистанционный мониторинг сложных систем и процессов

Студент	ИУ6-12М		Д.С. Каткова
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		(Подпись, дата)	Ю.А. Вишневская (И.О. Фамилия)

Введение

Цель работы — изучение особенностей построения алгоритма реконструкции математической модели человека-оператора по временному ряду.

Задание: Разработать цифровую модель эксперта, решающего задачу прогнозирования процесса (ситуации) по временному ряду. В этом случае вместо временного ряда биосигнала необходимо взять любой реальный временной ряд и создать систему прогнозирования исходного временного ряда на будущий период времени.

Ход выполнения

В качестве рассматриваемого временного ряда было взято производство конфет по месяцам. Фрагмент датасета представлен на рисунке 1.

	observation_date	IPG3113N
1	1972-01-01	85.6945
2	1972-02-01	71.8200
3	1972-03-01	66.0229
4	1972-04-01	64.5645
5	1972-05-01	65.0100
6	1972-06-01	67.6467
7	1972-07-01	69.0429
8	1972-08-01	70.8370
9	1972-09-01	75.0462
10	1972-10-01	106.9289
11	1972-11-01	105.5962
12	1972-12-01	105.9673
13	1973-01-01	91.2997
14	1973-02-01	77.2700
15	1973-03-01	69.6110
16	1973-04-01	70.2986

Рисунок 1 – Фрагмент датасета

Рассчитаем скользящее среднее и среднеквадратическое отклонение и визуализируем этот датасет. Фрагмент кода представлен на рисунке 2. Результаты визуализации показаны на рисунке 3.

```
# Чтение данных из файла

df = pd.read_csv('candy_production.csv', index_col = 'observation_date', parse_dates=True)

# Вычисление скользящего среднего и отклонения

mean = df['IPG3113N'].rolling(window=globalValueSetting).mean().fillna(0)

std = df['IPG3113N'].rolling(window=globalValueSetting).std().fillna(0)

# Построение графиков

plt.plot(df.index, df['IPG3113N'], label='Production')

plt.plot(df.index, mean, label= 'MEAN')

plt.plot(df.index, std, label= 'STD')

plt.legend()

plt.show()
```

Рисунок 2 — Фрагмент кода расчета и визуализации производства продукции, скользящего среднего и среднеквадратического отклонения

Рисунок 3 — График производства, скользящего среднего и среднеквадратичного отклонения

Чтобы спрогнозировать значения будущих временных шагов последовательности, была обучена сеть LSTM. Количество итераций было взято равным 100. Фрагмент кода обучения нейросети представлен на рисунке 4.

```
# обучение 1000 итераций

for epoch in range(num_epochs):
   outputs = lstm_impl.forward(X_train_tensors_final)
   optimizer.zero_grad()
   # функция ошибки
   loss = criterion(outputs, y_train_tensors)
   loss.backward()
   # обучение
   optimizer.step()
```

Рисунок 4 – Фрагмент кода обучения нейросети

Фрагмент кода программы для прогнозирования представлен на рисунке 5.

```
# предстказание
train_predict = lstm_impl(df_X_ss)
data_predict = train_predict.data.numpy()
dataY_plot = df_y_mm.data.numpy()
```

Рисунок 5 — Фрагмент кода прогнозирования количества произведенной продукции

Фрагмент кода расчета и визуализации прогнозирования представлен на рисунке 6.

```
# визуализация данных
plt.plot(df.iloc[:400, 1], label='Actuall Data')
plt.plot(df.iloc[400:, 2], label='Predicted Data')
plt.legend()
plt.show()
```

Рисунок 6 — Фрагмент кода прогнозирования количества произведенной продукции

График результата прогнозирования представлен на рисунке 7.

Рисунок 7 – Результат прогнозирования

Графики, определяющие качество модели представлены на рисунках 8-10.

Рисунок 8 – Распределение значений

Как видно из графиков, KDE линия близка к линии нормального распределения, набор данных близок к нормальному распределению — точки на графике квантиль-квантиль лежат близко к диагонали. Большинство точек на коррелограмме попадают в 90% доверительный интервал.

Выводы: в результате выполнения лабораторной работы были изучены особенности построения алгоритма реконструкции математической модели человека-оператора по временному ряду.

Контрольные вопросы

1. Приведите примеры временных рядов при создании цифровых двойников.

- биосигналы: частота пульса и дыхания, концентрация различных гормонов и веществ;
- социально-экономические процессы: изменения объемов ВВП,
 котировок валют и ценных бумаг, изменения рождаемости и смертности,
 безработицы, изменение потока клиентов;
- природные: изменение атмосферного давления, проход потоков метеоров, изменения температуры;

2. Что понимают под цифровым двойником эксперта?

Цифровой двойник — это цифровая (виртуальная) модель эксперта, принимающая такие же решения, как эксперт в заданной области.

3. В чем состоит задача прогнозирования временных рядов?

Задача прогнозирования временных рядов сводится к выведению зависимости будущих состояний системы/процесса/сигнала от прошлых.

4. Что понимается под реконструкцией математической модели системы? Какова цель реконструкции ММС?

Процесс реконструкции — это получение математической модели системы (ММС) по экспериментальному временному ряду (ВР) $a_i(i\Delta t)=a_i$, i=1,..., N. Ее целью является получение ММС в виде уравнений, решение которых с заданной степенью точности воспроизводит исходный ВР a(t).

5. Что такое «переменная состояния» системы? Приведите примеры.

Одна из множества переменных, которые используются для описания математического "состояния" динамической системы. Интуитивно состояние

системы описывает достаточно о системе, чтобы определить ее будущее поведение в отсутствие каких-либо внешних сил, воздействующих на систему.

6. Перечислите основные этапы реконструкции математической модели системы.

- постановка задачи;
- определение задачи;
- составление математической модели задачи;
- оценка математической модели / эксперимент;
- выдача результатов.

7. Как оценить адекватность разработанной модели?

- сравнить результаты расчетов по модели с реальным поведением системы в различных ситуациях;
- использовать графики ядерной оценки плотности, график квантиль-квантиль и коррелограмму.