19 June 2019 - ASE - Computer Architectures part

Name, Student ID

Considering the MIPS64 architecture presented in the following:

- Integer ALU: 1 clock cycle

forwarding is enabled

- Integer ALU: 1 clock cycle
 Data memory: 1 clock cycle
- FP arithmetic unit: pipelined 4 stages
 FP divider unit: not pipelined unit that requires 10 clock cycles
- branch delay slot: 1 clock cycle, and the branch delay slot is not enable FP multiplier unit: pipelined 8 stages
- it is possible to complete instruction EXE stage in an out-of-order fashion.
- o and using the following code fragment, show the timing of the presented loop-based program and compute how many cycles does this program take to execute?

V1: .double "100 values"

.data

.double "100 values"

.double "100 V5: zeros"

main: daddui r1,r0,0

daddui r2,r0,100

loop: l.d fl,v1(r1)

1.d f2,v2(r1)

1.d f3,v3(r1)

19 June 2019 – ASE – Computer Architectures part

Name, Student ID

l.d f4,v4(r1)					F	D	E	M	W	7																																1
div.d f3,f4,f3						F	D	S	/	/	/	/	/	/	/	/	/	/	M	W	r																					11
s.d f3,v3(r1)							F	S	D	E	S	S	S	S	S	S	S	S	S	M	W																					1
mul.d f7,f1,f2									F	D	*	*	*	*	*	*	*	*	S	S	M	W	,																			1
mul.d f6,f3,f4										F	D	S	S	S	S	S	S	S	*	*	*	*	*	*	*	*	M	W	7													6
add.d f1,f7,f6											F	S	S	S	S	S	S	S	D	S	S	S	S	S	S	S	+	+	+	+	M	W	7									4
s.d f1,v6(r1)																			F	S	S	S	S	S	S	S	D	Е	S	S	S	M	W	7								1
daddui r1,r1,8																											F	D	S	S	S	Е	M	W	7							1
daddi r2,r2,-1																												F	S	S	S	D	Е	M	W	7						1
bnez r2,loop																																F	S	D	E	M	IW	V				2
halt																																		F	N	N	N	I	1			01
Total	6 + 100 * 33										3306																															

19 June 2019 - ASE - Computer Architectures part

Name, Student ID

Considering the same loop-based program, and assuming the following processor architecture for a superscalar MIPS64 processor implemented with multiple-issue and speculation:

- issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 12 stages
 - v. 1 FP Arithmetic unit, which is pipelined: 6 stages
 - vi. 1 FP divider unit, which is not pipelined: 14 clock cycles
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).
- Complete the table reported below showing the processor behavior for the 2 initial iterations.

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	I.d f1,v1(r1)	1	2	3	4	5
1	I.d f2,v2(r1)	1	3	4	5	6
1	I.d f3,v3(r1)	2	4	5	6	7
1	I.d f4,v4(r1)	2	5	6	7	8
1	div.d f3,f4,f3	3	8	_	22	23
1	s.d f3,v3(r1)	3	6	_	_	23
1	mul.d f7,f1,f2	4	6	_	18	24
1	mul.d f6,f3,f4	4	23	_	35	36
1	add.d f1,f7,f6	5	36	_	42	43
1	s.d f1,v6(r1)	5	7	_	_	43
1	daddui r1,r1,8	6	7	_	8	44
1	daddi r2,r2,-1	6	8	_	9	44

A1

19 June 2019 – ASE – Computer Architectures part

Name, Student ID

1	bnez r2,loop	7	10	_	_	45
2	l.d f1,v1(r1)	8	9	10	11	45
2	l.d f2,v2(r1)	8	10	11	12	46
2	l.d f3,v3(r1)	9	11	12	13	46
2	l.d f4,v4(r1)	9	12	13	14	47
2	div.d f3,f4,f3	10	22	_	36	47
2	s.d f3,v3(r1)	10	13	_	_	48
2	mul.d f7,f1,f2	11	13	_	25	48
2	mul.d f6,f3,f4	11	37		49	50
2	add.d f1,f7,f6	12	50	_	56	57
2	s.d f1,v6(r1)	12	14			57
2	daddui r1,r1,8	13	14		15	58
2	daddi r2,r2,-1	13	15	_	16	58
2	bnez r2,loop	14	17	_	_	59