ECOLE POLYTECHNIQUE

CONCOURS D'ADMISSION 2023

MARDI 18 AVRIL 2023 08h00 - 12h00 FILIERE MP-MPI - Epreuve n° 3 MATHEMATIQUES B (X)

Durée : 4 heures

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve

COMPOSITION DE MATHÉMATIQUES

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Notations

On note $\mathbb R$ l'ensemble des nombres réels.

On note \mathbb{R}_{+}^{*} l'ensemble des nombres réels strictement positifs.

Étant donné $\rho \in \mathbb{R}_+^*$, on pose $U_{\rho} =]-\rho$, $\rho[$.

On note $\mathscr{D}_{\rho}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions $U_{\rho} \to \mathbb{R}$ qui sont développables en série entière sur l'intervalle U_{ρ} .

Par définition, pour toute fonction $f \in \mathcal{D}_{\rho}(\mathbb{R})$, on a une écriture de la forme $f(t) = \sum_{n=0}^{\infty} a_n t^n$ $(a_n \in \mathbb{R})$ valable pour tout $t \in U_{\rho}$. On rappelle que les a_n sont uniquement déterminés par f. On rappelle également que, pour tout réel $r \in \mathbb{R}_+^*$ tel que $r < \rho$, la série $\sum_n |a_n| r^n$ est convergente et on pose :

$$||f||_r = \sum_{n=0}^{\infty} |a_n| r^n.$$

Matrices

Si n et m sont deux entiers, on note $\mathcal{M}_{n,m}(\mathbb{R})$ l'ensemble des matrices à n lignes et m colonnes à coefficients dans \mathbb{R} .

Lorsque m = n, on note plus simplement $\mathcal{M}_n(\mathbb{R})$ pour $\mathcal{M}_{n,n}(\mathbb{R})$.

On note $I_n \in \mathscr{M}_n(\mathbb{R})$ la matrice identité.

Pour $M \in \mathcal{M}_{n,m}(\mathbb{R})$, on note $M^{\mathrm{T}} \in \mathcal{M}_{m,n}(\mathbb{R})$ la matrice transposée de M.

On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques de taille n à coefficients dans \mathbb{R} , c'est-àdire des matrices $M \in \mathscr{M}_n(\mathbb{R})$ telles que $M^T = M$.

On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est orthogonale si $M^T \cdot M = I_n$.

Une fonction $f:U_{\rho}\to \mathscr{M}_{n,m}(\mathbb{R})$ est dite développable en série entière sur U_{ρ} si toutes ses fonctions coefficients le sont.

On note $\mathscr{D}_{\rho}(\mathscr{M}_{n,m}(\mathbb{R}))$ l'ensemble des fonctions $U_{\rho} \to \mathscr{M}_{n,m}(\mathbb{R})$ qui sont développables en série entière sur U_{ρ} au sens précédent et $\mathscr{D}_{\rho}(S_n(\mathbb{R}))$ les fonctions de $\mathscr{D}_{\rho}(\mathscr{M}_{n,m}(\mathbb{R}))$ qui sont à valeurs dans $S_n(\mathbb{R})$.

Pour $M \in \mathcal{D}_{\rho}(\mathcal{M}_{n,m}(\mathbb{R}))$ et $a \in U_{\rho}$, on note $M_{|t=a}$ la matrice obtenue en évaluant tous les coefficients de M au point a.

On note encore $M^T \in \mathcal{D}_{\rho}(\mathcal{M}_{m,n}(\mathbb{R}))$ l'unique élément tel que $(M^T)_{|t=a} = (M_{|t=a})^T$ pour $a \in U_{\rho}$ et $I_n \in \mathcal{D}_{\rho}(\mathcal{M}_n(\mathbb{R}))$ la fonction constante de valeur I_n .

Soit k un entier. Si $n=n_1+\cdots+n_k$ avec n_1,\ldots,n_k entiers et $M_i\in \mathcal{M}_{n_i}(\mathbb{R})$ pour $i\in\{1,\ldots,n\}$, on note $\mathrm{Diag}(M_1,\ldots,M_k)\in \mathcal{M}_n(\mathbb{R})$ la matrice diagonale par blocs suivante :

$$\begin{pmatrix} M_1 & & 0 \\ & \ddots & \\ 0 & & M_k \end{pmatrix}.$$

Si $M_i \in \mathscr{D}_{\rho}(M_{n_i}(\mathbb{R}))$ pour $i \in \{1, \ldots, n\}$, on note $\operatorname{Diag}(M_1, \ldots, M_k) \in \mathscr{D}_{\rho}(\mathscr{M}_n(\mathbb{R}))$ l'élément défini par $\operatorname{Diag}(M_1, \ldots, M_k)|_{t=a} = \operatorname{Diag}(M_{1|t=a}, \ldots, M_{k|t=a})$ pour $a \in U_{\rho}$.

Pour $M \in \mathcal{M}_{n,m}(\mathbb{R})$, on note :

- $\ker(M)$ le sous-espace vectoriel de \mathbb{R}^m formé des vecteurs v tels que Mv=0,
- im(M) le sous-espace vectoriel de \mathbb{R}^n formé des vecteurs de la forme $Mv, v \in \mathbb{R}^m$.

Polynômes

Soit $n \in \mathbb{N}$ un entier naturel. On note $\mathbb{R}_n[X]$ l'ensemble des polynômes à coefficients réels et de degré inférieur ou égal à n. On note $\mathscr{D}_{\rho}(\mathbb{R}_n[X])$ l'ensemble des fonctions de U_{ρ} vers

 $\mathbb{R}_n[X]$ de la forme $t \mapsto \sum_{i=0}^n f_i(t)X^i$ avec $f_i \in \mathscr{D}_{\rho}(\mathbb{R})$ pour $0 \leqslant i \leqslant n$. On notera dans la suite simplement $f_0 + f_1X + \cdots + f_nX^n$ une telle fonction.

Si $P = f_0 + f_1 X + \dots + f_n X^n \in \mathcal{D}_{\rho}(\mathbb{R}_n[X])$, on note deg P l'entier $\max\{i \mid f_i \neq 0\}$. On dit que P est unitaire de degré d si P est de la forme

$$P = f_0 + f_1 X + \dots + f_{d-1} X^{d-1} + X^d.$$

Pour $P = f_0 + f_1 X + \dots + f_n X^n \in \mathscr{D}_{\rho}(\mathbb{R}_n[X])$ (avec $f_i \in \mathscr{D}_{\rho}(\mathbb{R})$) et $a \in U_{\rho}$, on note $P_{|t=a|}$ le polynôme

$$P_{|t=a} = f_0(a) + f_1(a) X + \dots + f_n(a) X^n \in \mathbb{R}[X].$$

Soit $m \in \mathbb{N}$. Si $P \in \mathcal{D}_{\rho}(\mathbb{R}_n[X])$ et si $M \in \mathcal{D}_{\rho}(\mathcal{M}_m(\mathbb{R}))$, on note P(M) la fonction

$$a \mapsto P_{|t=a}(M_{|t=a}).$$

Dans tout le problème, on fixe un nombre réel ρ strictement positif.

Première partie

- **1.** Montrer que, pour tout $\rho > 0$ et tous $m, n \in \mathbb{N}^*$, les ensembles $\mathscr{D}_{\rho}(\mathbb{R})$, $\mathscr{D}_{\rho}(\mathbb{R}_n[X])$ et $\mathscr{D}_{\rho}(\mathscr{M}_{m,n}(\mathbb{R}))$ sont stables par somme.
- **2.** Montrer que, pour tout $\rho > 0$ et tout $n \in \mathbb{N}^*$, les ensembles $\mathcal{D}_{\rho}(\mathbb{R})$ et $\mathcal{D}_{\rho}(\mathcal{M}_n(\mathbb{R}))$ sont stables par produit.
- **3.** Soit $r \in \mathbb{R}_+^*$ tel que $r \leqslant \rho$. Montrer que l'application $\mathscr{D}_{\rho}(\mathbb{R}) \to \mathscr{D}_{r}(\mathbb{R})$ qui à une fonction f associe sa restriction à U_r est injective.

Dans la suite, on identifiera $\mathcal{D}_{\rho}(\mathbb{R})$ à un sous-anneau de $\mathcal{D}_{r}(\mathbb{R})$.

4. Soit $r \in \mathbb{R}_+^*$ tel que $r < \rho$. Montrer que $\|\cdot\|_r$ est une norme sur $\mathscr{D}_{\rho}(\mathbb{R})$ et que $\|fg\|_r \le \|f\|_r \cdot \|g\|_r$ pour tout $f, g \in \mathscr{D}_{\rho}(\mathbb{R})$.

- 5. Soit $r \in \mathbb{R}_+^*$ tel que $r < \rho$. Soit $(f_n)_{n \geqslant 0}$ une suite d'éléments de $\mathscr{D}_{\rho}(\mathbb{R})$. On suppose que $\sum_{n \geqslant 0} \|f_n\|_r$ converge. Montrer que $\sum_{n \geqslant 0} f_n$ converge normalement sur U_r vers une fonction $f \in \mathscr{D}_r(\mathbb{R})$. Montrer que $\sum_{n \geqslant 0} f_n$ converge également vers f pour la norme $\|\cdot\|_r$.
- **6.** Soit $f \in \mathscr{D}_{\rho}(\mathbb{R})$ tel que $f(0) \neq 0$. Le but de cette question est de montrer qu'il existe $r \in \mathbb{R}_+^*$, $r \leqslant \rho$ tel que $\frac{1}{f} \in \mathscr{D}_r(\mathbb{R})$.
- **6a.** Montrer que l'on peut supposer sans perte de généralité que f(0) = 1.

On écrit à présent $f(t) = \sum_{i=0}^{\infty} a_i t^i$ et on suppose que $a_0 = 1$.

6b. Uniquement dans cette sous-question, on suppose qu'il existe $r \in \mathbb{R}_+^*$ tel que $r \leqslant \rho$ et $g \in \mathcal{D}_r(\mathbb{R})$ tels que f(t) g(t) = 1 pour tout $t \in U_r$.

On écrit $g(t) = \sum_{i=0}^{\infty} b_i t^i$. Montrer que :

$$b_0 = 1$$

pour $n \ge 1$, $b_n = -(b_0 a_n + ... + b_{n-1} a_1)$.

On définit à présent la suite $(b_n)_{n\geqslant 0}$ par la formule de récurrence ci-dessus.

- **6c.** Montrer qu'il existe $c \in \mathbb{R}_+^*$ tel que $|a_n| \leq c^n$ pour tout $n \in \mathbb{N}$.
- **6d.** Montrer que $|b_n| \leq (2c)^n$ pour tout $n \in \mathbb{N}$.
- **6e.** Conclure.
- 7. Montrer que $\mathscr{D}_{\rho}(\mathbb{R})$ est un anneau intègre.

Deuxième partie

Soit $n \in \mathbb{N}$ un entier naturel. Pour $P = f_0 + f_1 X + \cdots + f_n X^n \in \mathcal{D}_{\rho}(\mathbb{R}_n[X])$ et $r, s \in \mathbb{R}_+^*$ avec $r < \rho$, on définit :

$$||P||_{r,s} = \sum_{i=0}^{n} ||f_i||_r \cdot s^i.$$

- **8.** Soient $n, m \in \mathbb{N}$ et soient $r, s \in \mathbb{R}_+^*$, $r < \rho$.
- **8a.** Montrer $\|\cdot\|_{r,s}$ est une norme sur $\mathscr{D}_{\rho}(\mathbb{R}_n[X])$.
- **8b.** Montrer que si $P \in \mathscr{D}_{\rho}(\mathbb{R}_n[X])$ et $Q \in \mathscr{D}_{\rho}(\mathbb{R}_m[X])$, alors $PQ \in \mathscr{D}_{\rho}(\mathbb{R}_{n+m}[X])$ et

$$||PQ||_{r,s} \leq ||P||_{r,s} \cdot ||Q||_{r,s}.$$

9. Soient $A, B \in \mathcal{D}_{\rho}(\mathbb{R}_n[X])$. On suppose que B est unitaire de degré $d \leq n$.

9a. Montrer qu'il existe des éléments $Q \in \mathscr{D}_{\rho}(\mathbb{R}_{n-d}[X])$ et $R \in \mathscr{D}_{\rho}(\mathbb{R}_{d-1}[X])$ uniquement déterminés tels que A = BQ + R.

Les éléments Q et R sont appelés respectivement le quotient et le reste de la division euclidienne de A par B.

9b. Soient de plus $r, s \in \mathbb{R}_+^*$ avec $r < \rho$. Montrer que, si $||B - X^d||_{r,s} < s^d$, alors

$$||Q||_{r,s} \leqslant \frac{||A||_{r,s}}{s^d - ||B - X^d||_{r,s}} \quad \text{et} \quad ||R||_{r,s} \leqslant \frac{s^d \cdot ||A||_{r,s}}{s^d - ||B - X^d||_{r,s}}.$$

(On pourra commencer par traiter le cas où $B = X^d$.)

On se propose à présent de démontrer le théorème suivant.

Théorème 1. Soit $n \in \mathbb{N}$ un entier naturel et soit $P \in \mathcal{D}_{\rho}(\mathbb{R}_n[X])$ unitaire. Soit $\lambda \in \mathbb{R}$ une racine de $P_{|t=0}$ de multiplicité d. Alors il existe $r \in \mathbb{R}_+^*$ tel que $r \leqslant \rho$ et $F \in \mathcal{D}_r(\mathbb{R}_d[X])$ et $G \in \mathcal{D}_r(\mathbb{R}_{n-d}[X])$ unitaires tels que P = FG et $F_{|t=0} = (X - \lambda)^d$.

Pour cela, on se donne $P = f_0 + f_1 X + \cdots + f_n X^n \in \mathcal{D}_{\rho}(\mathbb{R}_n[X])$. On suppose dans un premier temps que $\lambda = 0$, que $f_0(0) = \cdots = f_{d-1}(0) = 0$ et que f_d est la fonction constante égale à 1.

10. Soit $F \in \mathcal{D}_{\rho}(\mathbb{R}_d[X])$ unitaire et tel que $F_{|t=0} = X^d$. Soit R le reste de la division euclidienne de P par F. Montrer que F + R est unitaire de degré d et que $(F + R)_{|t=0} = X^d$.

On définit une suite de polynômes $(F_i)_{i\geq 0}$ par la formule de récurrence suivante :

$$F_0 = f_0 + f_1 X + \dots + f_d X^d$$
pour $i \geqslant 0$,
$$F_{i+1} = F_i + R_i$$

où R_i désigne le reste de la division euclidienne de P par F_i (voir question $\mathbf{9a}$). On note Q_i le quotient de la division euclidienne de P par F_i . On déduit de la question $\mathbf{10}$ que tous les polynômes F_i sont unitaires de degré d.

On se donne de plus $r, s \in \mathbb{R}_+^*$ avec $r < \rho$ et on pose, pour $i \in \mathbb{N}$:

$$\alpha_i = s^{-d} \cdot ||F_i - X^d||_{r,s} \quad ; \quad \beta_i = ||1 - Q_i||_{r,s} \quad ; \quad \varepsilon_i = s^{-d} \cdot ||R_i||_{r,s}.$$

11. Montrer que l'on peut choisir r et s de sorte que $\alpha_0 + 2\varepsilon_0 \leqslant \frac{1}{3}$ et $\beta_0 + \varepsilon_0 \leqslant \frac{1}{3}$.

À partir de maintenant, et jusqu'à la fin de cette partie, nous faisons cette hypothèse sur r et s.

12. Vérifier que, pour tout $i \in \mathbb{N}$, on a la relation :

$$(1 - Q_i) \cdot R_i = (Q_{i+1} - Q_i) \cdot F_{i+1} + R_{i+1}.$$

13. Montrer que, pour tout $i \in \mathbb{N}$, on a $\alpha_{i+1} \leq \alpha_i + \varepsilon_i$ et si $\alpha_{i+1} < 1$ alors :

$$\beta_{i+1} \leqslant \beta_i + \frac{\beta_i \varepsilon_i}{1 - \alpha_{i+1}}$$
 et $\varepsilon_{i+1} \leqslant \frac{\beta_i \varepsilon_i}{1 - \alpha_{i+1}}$.

- **14.** En déduire que, pour tout $i \in \mathbb{N}$, on a :
 - $\alpha_i \leqslant \alpha_0 + 2 \cdot (1 2^{-i}) \cdot \varepsilon_0$,
 - $\beta_i \leqslant \beta_0 + (1 2^{-i}) \cdot \varepsilon_0$,
 - $\varepsilon_i \leqslant 2^{-i} \cdot \varepsilon_0$.

15a. Montrer que la suite $(F_i)_{i\geqslant 0}$ converge pour la norme $\|\cdot\|_{r,s}$ vers un polynôme unitaire $F\in \mathscr{D}_r(\mathbb{R}_n[X])$ de degré d qui vérifie $F_{|t=0}=X^d$.

- **15b.** Montrer qu'il existe $G \in \mathscr{D}_r(\mathbb{R}_n[X])$ tel que P = FG.
- **16.** Démontrer le théorème 1.
- **17.** Soit $f \in \mathscr{D}_{\rho}(\mathbb{R})$ tel que f(0) > 0. Montrer qu'il existe $\rho_f \in \mathbb{R}_+^*$ tel que $\rho_f \leqslant \rho$ et tel que f > 0 sur U_{ρ_f} et $\sqrt{f} \in \mathscr{D}_{\rho_f}(\mathbb{R})$.

Troisième partie

On dit qu'une matrice $M \in \mathcal{D}_{\rho}(\mathcal{M}_n(\mathbb{R}))$ est orthogonale si $M^{\mathrm{T}} \cdot M = I_n$. Le but de cette partie est de démontrer le théorème suivant.

Théorème 2. Soit $M \in \mathcal{D}_{\rho}(S_n(\mathbb{R}))$. Alors il existe $r \in \mathbb{R}_+^*$ tel que $r \leqslant \rho$ et une matrice orthogonale $P \in \mathcal{D}_r(\mathcal{M}_n(\mathbb{R}))$ telle que $P^T \cdot M \cdot P$ est diagonale.

On considère $M \in \mathcal{D}_{\rho}(S_n(\mathbb{R}))$ et on pose $\chi = \det(XI_n - M) \in \mathcal{D}_{\rho}(\mathbb{R}_n[X])$.

18. Montrer que $M_{|t=0}$ admet une valeur propre réelle.

Dans la suite, on fixe une valeur propre réelle λ de $M_{|t=0}$ et on note d sa multiplicité comme racine de $\chi_{|t=0}$. Par le théorème 1, il existe $\rho_1 \in \mathbb{R}_+^*$, $\rho_1 \leqslant \rho$ tel que χ se factorise sous la forme $\chi = FG$ avec $F \in \mathcal{D}_{\rho_1}(\mathbb{R}_d[X])$ et $G \in \mathcal{D}_{\rho_1}(\mathbb{R}_{n-d}[X])$ et $F_{|t=0} = (X - \lambda)^d$.

19. Uniquement dans cette question, on suppose que d=n. Montrer qu'il existe une matrice symétrique $M_0 \in \mathscr{D}_{\rho_1}(S_n(\mathbb{R}))$ telle que $M=\lambda I_n+tM_0$ pour tout $t\in U_{\rho_1}$.

On pose A = F(M) et B = G(M); on a donc $A, B \in \mathcal{D}_{\rho_1}(S_n(\mathbb{R}))$. Pour $a \in U_{\rho_1}$, on pose $A_a = A_{|t=a}$ et $B_a = B_{|t=a}$.

- **20.** Montrer qu'il existe deux matrices $U \in \mathcal{M}_{n,d}(\mathbb{R})$ et $V \in \mathcal{M}_{n,n-d}(\mathbb{R})$ telles que :
 - $im(B_0U) = im(B_0),$
 - $\operatorname{im}(A_0V) = \operatorname{im}(A_0)$ et
 - la matrice par blocs $(B_0U \mid A_0V)$ est inversible.

On pose $Q = (BU \mid AV) \in \mathcal{D}_{\rho_1}(\mathcal{M}_n(\mathbb{R}))$. Pour $\rho \in \mathbb{R}_+^*$, on note $GL_n(\mathcal{D}_{\rho}(\mathbb{R}))$ l'ensemble des éléments $M \in \mathcal{D}_{\rho}(\mathcal{M}_n(\mathbb{R}))$ tels que, pour tout $a \in U_{\rho}$, la matrice $M_{|t=a}$ est inversible et l'application $a \mapsto (M_{|t=a})^{-1}$ de U_{ρ} dans $GL_n(\mathbb{R})$ est un élément, noté M^{-1} , de $\mathcal{D}_{\rho}(\mathcal{M}_n(\mathbb{R}))$.

5

- **21.** Montrer qu'il existe $\rho_2 \in \mathbb{R}_+^*$, $\rho_2 \leqslant \rho_1$ tel que $Q \in GL_n(\mathcal{D}_{\rho_2}(\mathbb{R}))$. (On pourra utiliser le résultat de la question **6**.)
- **22.** On considère un nombre réel $a \in U_{\rho_2}$.
- **22a.** Montrer que $\operatorname{im}(B_a U) \oplus \operatorname{im}(A_a V) = \mathbb{R}^n$.
- 22b. Montrer les égalités :
 - $\operatorname{im}(B_a U) = \operatorname{im}(B_a) = \ker(A_a)$ et
 - $\operatorname{im}(A_a V) = \operatorname{im}(A_a) = \ker(B_a)$.

(On pourra commencer par montrer les inclusions de la gauche vers la droite, puis utiliser un argument de dimensions.)

- **23.** Montrer que $Q^{-1} \cdot M \cdot Q = \text{Diag}(M_1, M_2)$ avec $M_1 \in \mathcal{D}_{\rho_2}(\mathcal{M}_d(\mathbb{R})), M_2 \in \mathcal{D}_{\rho_2}(\mathcal{M}_{n-d}(\mathbb{R})).$
- **24.** Montrer que, pour tout $a \in U_{\rho_2}$, la somme directe de la question **22a** est orthogonale pour le produit scalaire usuel sur \mathbb{R}^n .
- **25.** Montrer qu'il existe $\rho_3 \in \mathbb{R}_+^*$ tel que $\rho_3 \leqslant \rho_2$ et des matrices $R_1 \in GL_d(\mathcal{D}_{\rho_3}(\mathbb{R})), R_2 \in GL_{n-d}(\mathcal{D}_{\rho_3}(\mathbb{R}))$ telles que la matrice $Q \cdot Diag(R_1, R_2)$ soit orthogonale. (On pourra utiliser le résultat de la question **17**.)
- **26.** Démontrer le théorème 2.