Проводится последовательность экспериментов.

В каждом эксперименте получается слово фиксированной длиной 4096 символов.

Каждый символ может принимать одно из 256 значений с заданной вероятностью $P_{x,\,y}$ где:

х — позиция данного символа в слове и принимает значения от 1 до 4096

у — значение данного символа и принимает значение от 1 до 256

Для любого х верно равенство:

$$\sum_{y=1}^{256} P_{x,y} = 1$$

Вероятности $P_{x,y}$ являются заданными табличными значениями и не описаны какими либо стандартными функциями распределения.

Эксперименты повторяются до тех пор, пока не получится заданное количество N **уникальных** слов. Если в результате очередного эксперимента получается неуникальное слово, то полученный результат этого эксперимента отбрасывается, и эксперимент повторяется до получения уникального слова. Итоговое количество уникальных слов N может быть достаточно большим и принимает значения от миллиона и более.

Каждое из получившихся N слов имеют минимальный набор из R_i уникальных **первых** символов, по которым можно однозначно идентифицировать это слово из всего набора слов, полученных в результате экспериментов, где i — номер эксперимента и может принимать значения от 1 до N.

R_і может принимать значения от 1 (слово имеет уникальную среди всех экспериментов **первую** букву) до 4096 (слово отличается от какого либо другого слова только **последней** буквой).

Требуется определить:

- 1. Для каждого x от 1 до 4096 количество Q_x слов, которое можно однозначно идентифицировать по первым x символам, t. e.:
- Q_1 количество слов из всех N экспериментов, которые можно однозначно идентифицировать по первому символу (при обозначенных значениях N ожидаемое значение Q_1 близко к нулю)
- Q_2 количество слов, которые можно однозначно идентифицировать по первым двум символам, и т.д.
- 2. Математическое ожидание (среднее) значение $M[R_i]$ для заданных N и $P_{k,l}$

Упрощённый пример-иллюстрация:

Имеем слова-результаты экспериментов:

Номер эксперимента	Слово										R_{i}
1	M	a	M	a							4
2	M	a	M	0	Н	Т	И	X	a		7
3	M	a	С	K	a						4
4	M	a	Γ	Л							3
5	M	a	M	0	Н	T	ë	Н	0	K	7
6	M	a	M	б	a						4
7	В	0	Д	a							1
8	M	a	С	Я	Н	Я					4

Красным цветом для каждого слова выделены первые $R_{\rm i}$ символов, по которым можно однозначно идентифицировать каждое из этих слов.

Искомые величины:

Количества \mathbf{Q}_x слов, идентифицируемых по первым х буквам:

$$Q_1 = 1$$
, $Q_2 = 0$, $Q_3 = 1$, $Q_4 = 4$, $Q_5 = 0$, $Q_6 = 0$, $Q_7 = 2$

Искомая величина M[R_i] равняется:

$$M[R_i] = \frac{1}{N} \sum_{i=1}^{N} R_i = \frac{4+7+4+3+7+4+1+4}{8} = 4,25$$