Computational Discourse

Automated Essay Scoring with Discourse-Aware Neural Models

Farah Nadeem Huy Nguyen Yang Liu Mari Ostendorf

Karan Praharaj

MS student, CLASIC
University of Colorado Boulder

"Automated essay scoring can be *helpful*, but it is not without *flaws*... some very significant ones."

— Chee Wee Leong (Principal Research Engineer, ETS)

An overview of our discussion today:

- 1. background, intro lay of the land
- 2. methods what was done
- 3. data what was used
- 4. results how well it fares
- 5. conclusion what it shows

- 1. background, intro lay of the land
- 2. methods what was done
- 3. data what was used
- 4. results how well it fares
- 5. conclusion what it shows

where we are, where we are headed

AES systems typically relied on hand-crafted features to predict essay quality.

But...high variability in essay types : not scalable!

Key: adapt to new types, automatic feature generation.

Enter: neural methods.

where we are, where we are headed

AES systems typically relied on hand-crafted features to predict essay quality.

But...high variability in essay types : not scalable!

Key: adapt to new types, automatic feature generation.

Enter: neural methods.

ENGINEERING TIP: WHEN YOU DO A TASK BY HAND, YOU CAN TECHNICALLY SAY YOU TRAINED A NEURAL NET TO DO IT.

where we are, where we are headed

AES systems typically relied on hand-crafted features to predict essay quality.

But...high variability in essay types : not scalable!

Key: adapt to new types, automatic feature generation.

Enter: neural methods.

ENGINEERING TIP:
WHEN YOU DO A TASK BY HAND,
YOU CAN TECHNICALLY SAY YOU
TRAINED A NEURAL NET TO DO IT.

not true in our case.

where we are, where we are headed

This paper makes two contributions:

- 1. Discourse-aware structures and discourse-related pre-training boost performance.
- 2. Contextualized embeddings are not useful for tasks with small annotated training sets.

Moral of the story etc. ...

Use a combination of neural models and hand-crafted features.

- 1. background, intro lay of the land
- 2. methods what was done
- 3. data what was used
- 4. results how well it fares
- 5. conclusion what it shows

- 1. background, intro lay of the land
- 2. methods what was done
- 3. data what was used
- 4. results how well it fares
- 5. conclusion what it shows

Method

Overall system: Map an essay to a vector. Pass it through for ordinal regression.

Main focus is on two LSTM-based neural models:

- 1. Hierarchical recurrent network with attention (HAN)
- 2. Bidirectional context with attention (BCA)

Hierarchical RNN (HAN)

captures the hierarchical structure within a document using two LSTMs.

```
First layer — input: word embeddings output: contextualized word representations
```

Second layer — input: sentence vectors output: document vector

All of these elements are woven together by self-attention.

Hierarchical Attention Network

Bidirectional context with attention (BCA)

Extends HAN to account for cross sentence dependencies.

Incorporates a look-back and look-ahead context vector using output from first LSTM.

Final word representation = LSTM output ⊕ look-back ⊕ look-ahead

This is used to create sentence vector using attention weights.

Auxiliary Training Tasks

Neural networks can make use of related tasks to improve performance.

This can be done via pre-training.

Pre-training tasks used:

- 1. Natural language inference (NLI)
- 2. Discourse marker prediction (DM)

Auxiliary Training Tasks

Neural networks can make use of related tasks to improve performance.

This can be done via pre-training.

Pre-training tasks used:

- 1. Natural language inference (NLI)
- 2. Discourse marker prediction (DM)
- 3. Contextualized embeddings (MLM, NSP)

Auxiliary Training Tasks

Network structure for BCA with pretraining tasks

- 1. background, intro lay of the land
- 2. methods what was done
- 3. data what was used
- 4. results how well it fares
- 5. conclusion what it shows

- 1. background, intro lay of the land
- 2. methods what was done
- 3. data what was used
- 4. results how well it fares
- 5. conclusion what it shows

ETS Corpus of Non-Native Written English (Source: LDC)

- 12,100 TOEFL essays
- Essay scores classified as high, medium, low.
- 2 splits used:
 - Split 1 from LDC (11,000 train, 1100 test)
 - Split 2 by Klebanov et al. (6074 train, 2023 test)

ETS Corpus of Non-Native Written English (Source : LDC)

- 12,100 TOEFL essays
- Essay scores classified as high, medium, low.
- 2 splits used:
 - Split 1 from LDC (11,000 train, 1100 test)
 Split 2 by Klebanov et al. (6074 train, 2023 test)

Data set	Essays	High	Medium	Low
Train/dev	11,000	3,835	5,964	1,202
Test	1,100	367	604	129
Train/dev	6,074	2,102	3,318	655
Test	2,023	700	1,101	222

ETS Corpus of Non-Native Written English (Source : LDC)

- 12,100 TOEFL essays
- Essay scores classified as high, medium, low.
- 2 splits used:
 - Split 1 from LDC (11,000 train, 1100 test)
 Split 2 by Klebanov et al. (6074 train, 2023 test)

Data set	Essays	High	Medium	Low
Train/dev	11,000	3,835	5,964	1,202
Test	1,100	367	604	129
Train/dev	6,074	2,102	3,318	655
Test	2,023	700	1,101	222

Automated Student Assessment Prize (ASAP) Competition:

- To assess performance on smaller datasets
- First two sets chosen persuasive essays
- No test sets provided. Results reported for 5-fold cross-validation.

Data set	Essays	Avg. len	Score range
1	1783	350	2-12
2	1800	350	1-6

The Data — Pre-training

NLI task: Stanford natural language inference (SNLI)

DM task: 13k free books from smashwords.com

Category	Number of samples	
Idea justification	144022	
Time relation	24600	
Idea support	67223	
Idea opposition	181949	
Idea expansion	67800	
Alternative	7203	
Conclusion	88853	
Negative samples	95450	

Categories and data distribution for the discourse marker prediction task.

- 1. background, intro lay of the land
- 2. methods what was done
- 3. data what was used
- 4. results how well it fares
- 5. conclusion what it shows

AES with Discourse-Aware Neural Models

- 1. background, intro lay of the land
- 2. methods what was done
- 3. data what was used
- 4. results how well it fares
- 5. conclusion what it shows

Results

Training configurations:

- 1. Training using only LDC essay data;
- 2. Pretraining with one task (NLI/DM) \rightarrow training with essay data;
- 3. Pretraining the two aux. tasks (NLI-DM), followed by training with the essay data;
- 4. Training the BCA model with only the essay data, using static BERT token embeddings.

Results

Baselines:

- 1. Feature-based model: Gradient boosting 33 argumentative features.
- 2. Neural baseline:
 - BERT sentence encoder
 - Universal sentence encoder (USE) (Not discourse aware)
 - These baselines are also hierarchical models: BERT-HAN and USE-HAN.

Model	Split 1	Split 2
Arg (Klebanov16)	-	0.344
Length (Klebanov16)	_	0.518
Arg + Len (Klebanov16)	_	0.540
Nguyen18	_	0.622
Feature baseline	0.659	0.642
USE-HAN	0.626	0.618
BERT-HAN	0.688	0.680
HAN	0.635	0.623
NLI-HAN	0.643	0.630
DM-HAN	0.651	0.654
NLI-DM-HAN	0.655	0.644
BCA	0.637	0.636
NLI-BCA	0.652	0.647
DM-BCA	0.661	0.661
NLI-DM-BCA	0.659	0.663
BERT-BCA	0.729	0.715

Model	Split 1	Split 2
Arg (Klebanov16)	_	0.344
Length (Klebanov16)	_	0.518
Arg + Len (Klebanov16)	_	0.540
Nguyen18	L	0.622
Feature baseline	0.659	0.642
USE-HAN	0.626	0.618
BERT-HAN	0.688	0.680
HAN	0.635	0.623
NLI-HAN	0.643	0.630
DM-HAN	0.651	0.654
NLI-DM-HAN	0.655	0.644
BCA	0.637	0.636
NLI-BCA	0.652	0.647
DM-BCA	0.661	0.661
NLI-DM-BCA	0.659	0.663
BERT-BCA	0.729	0.715

All neural models beat previously reported results

only two models that do not explicitly use discourse cues. -

Model	Split 1	Split 2
Arg (Klebanov16)	-	0.344
Length (Klebanov16)	_	0.518
Arg + Len (Klebanov16)	_	0.540
Nguyen18	_	0.622
Feature baseline	0.659_	0.642
USE-HAN	0.626	0.618
BERT-HAN	0.688	0.680
HAN	0.635	0.623
NLI-HAN	0.643	0.630
DM-HAN	0.651	0.654
NLI-DM-HAN	0.655	0.644
BCA	0.637	0.636
NLI-BCA	0.652	0.647
DM-BCA	0.661	0.661
NLI-DM-BCA	0.659	0.663
BERT-BCA	0.729	0.715

Model	Split 1	Split 2
Arg (Klebanov16)	_	0.344
Length (Klebanov16)	_	0.518
Arg + Len (Klebanov16)	_	0.540
Nguyen18	_	0.622
Feature baseline	0.659	0.642
USE-HAN	0.626	0.618
BERT-HAN	0.688	0.680
HAN	0.635	0.623
NLI-HAN	0.643	0.630
DM-HAN	0.651	0.654
NLI-DM-HAN	0.655	0.644
BCA	0.637	0.636
NLI-BCA	0.652	0.647
DM-BCA	0.661	0.661
NLI-DM-BCA	0.659	0.663
BERT-BCA	0.729	0.715

Combining contextualized word embeddings with cross-sentence attention gives best results.

Confusion Matrices for the USE-HAN baseline vs. the best neural models on LDC TOEFL split 1

Confusion Matrices for the USE-HAN baseline vs. the best neural models on LDC TOEFL split 1

Confusion Matrices for the USE-HAN baseline vs. the best neural models on LDC TOEFL split 1

Results — ASAP Essays

Feature-based models outperform neural models.

Model	ASAP 1	ASAP 2
TSLF (Liu 2019)	0.852	0.736
Feature baseline	0.833	0.692
BERT-HAN	0.748	0.627
NLI-DM-BCA	0.800	0.671
NLI-DM-BCA+features	0.840	0.711

Results for the essay scoring task for ASAP sets 1 and 2 reported in QWK.

Results — ASAP Essays

Model	ASAP 1	ASAP 2
TSLF (Liu 2019)	0.852	0.736
Feature baseline	0.833	0.692
BERT-HAN	0.748	0.627
NLI-DM-BCA	0.800	0.671
NLI-DM-BCA+features	0.840	0.711

Small gains for combination model

Results for the essay scoring task for ASAP sets 1 and 2 reported in QWK.

Try a more sophisticated combination?

AES with Discourse-Aware Neural Models

An overview of our discussion today:

- 1. background, intro lay of the land
- 2. methods what was done
- 3. data what was used
- 4. results how well it fares
- 5. conclusion what it shows

AES with Discourse-Aware Neural Models

An overview of our discussion today:

- 1. background, intro lay of the land
- 2. methods what was done
- 3. data what was used
- 4. results how well it fares
- 5. conclusion what it shows

A neural model with cross-sentence dependencies + discourse-based training task = performance boost on feature-based SOTA.

The NLI task does not contribute much.

Using pre-trained BERT tokens can boost performance (even more!) on TOEFL data. NSP a silent contributor presumably.

For ASAP, neural models underperform feature-based systems.

A neural model with cross-sentence dependencies + discourse-based training task = performance boost on feature-based SOTA.

The NLI task does not contribute much.

Using pre-trained BERT tokens can boost performance (even more!) on TOEFL data. NSP a silent contributor presumably.

For ASAP, neural models underperform feature-based systems.

A neural model with cross-sentence dependencies + discourse-based training task = performance boost on feature-based SOTA.

The NLI task does not contribute much.

Using pre-trained BERT tokens can boost performance (even more!) on TOEFL data. NSP a silent contributor presumably.

For ASAP, neural models underperform feature-based systems.

A neural model with cross-sentence dependencies + discourse-based training task = performance boost on feature-based SOTA.

The NLI task does not contribute much.

Using pre-trained BERT tokens can boost performance (even more!) on TOEFL data. NSP a silent contributor presumably.

For ASAP, neural models underperform feature-based systems.

A neural model with cross-sentence dependencies + discourse-based training task = performance boost on feature-based SOTA.

The NLI task does not contribute much.

Using pre-trained BERT tokens can boost performance (even more!) on TOEFL data. NSP a silent contributor presumably.

For ASAP, neural models underperform feature-based systems.

A neural model with cross-sentence dependencies + discourse-based training task = performance boost on feature-based SOTA.

The NLI task does not contribute much.

Using pre-trained BERT tokens can boost performance (even more!) on TOEFL data. NSP a silent contributor presumably.

For ASAP, neural models underperform feature-based systems.

General Resources

visualisingdata.com/resources/

D3 (js), matplotlib (python), seaborn (python), ggplot (R, python)

Storytelling with data:

https://www.amazon.com/Storytelling-Data-Visualization-Business-Professionals/dp/1119002257/ref=nodl_

Caveats to data visualization:

https://www.data-to-viz.com/caveats.html

Randal Olson's matplotlib tips:

http://www.randalolson.com/2014/06/28/how-to-make-beautiful-data-visualizations-in-python-with-matplotlib/

Colors

coolors.co, palettable.io (custom color palettes) jiffyclub.github.io/palettable (colors in Python) colororacle.org (color blind test app) ianstormtaylor.com/design-tip-never-use-black

Science as Art

http://worrydream.com/ScientificCommunicationAsSequentialArt/r2d3.us/visual-intro-to-machine-learning-part-1r-graph-gallery.com/portfolio/data-art/

Thank you.

Slides inspired by:

Sam Way (Spotify)
Prof. Dan Larremore (CU Boulder)
Prof. Aaron Clauset (CU Boulder)