Entrega 5

Daniel Brito

Por definição, um matróide é um par $M = (S, \mathcal{I})$, que satisfaz as seguintes condições:

- 1. S é um conjunto finito.
- 2. \mathcal{I} é uma família não-vazia de subconjuntos de S, chamada de subconjuntos **independentes** de S, tal que, se $B \in \mathcal{I}$ e $A \subseteq B$, então, $A \in \mathcal{I}$. Dizemos que \mathcal{I} é **hereditária** se satisfaz tal propriedade. O conjunto vazio \emptyset é necessariamente um membro de \mathcal{I} .
- 3. Se $A \in \mathcal{I}$, $B \in \mathcal{I}$, e |A| < |B|, então, existe algum elemento $x \in B A$, tal que $A \cup \{x\} \in \mathcal{I}$. Dizemos que M satisfaz a **propriedade da troca**.

* * *

21)

Temos que a condição (1) já é satisfeita, uma vez que S é um conjunto finito.

Para provar a segunda condição, assumimos que $k \geq 0$, fazendo com que \mathcal{I}_k seja um conjunto não-vazio. Além disso, para provar a hereditariedade (2), assumimos que $A \in \mathcal{I}_k$, ou seja, $|A| \leq k$. Então, se $B \subseteq A$, temos que $|B| \leq |A| \leq k$, logo, $B \in \mathcal{I}_k$.

Por fim, temos que provar a propriedade de troca (3). Assim, podemos assumir $A, B \in \mathcal{I}_k$, tal que |A| < |B|. Então, podemos tomar um elemento $x \in B$

A, logo, $|A \cup \{x\}| = |A| + 1 \le |B| \le k$. Portanto, podemos estender A de maneira que $A \cup \{x\} \in \mathcal{I}_k$.

No que se refere à pergunta, penso que podemos citar o problema da Árvore Geradora Mínima.

23)

Novamente, temos que a condição (1) já é satisfeita, uma vez que ainda estamos trabalhando com o conjunto da questão anterior (penso eu).

Assim, a próxima etapa é mostrarmos que \mathcal{I}' é não-vazio. Seja A qualquer elemento maximal de \mathcal{I} , então, temos que $S-A \in \mathcal{I}'$, uma vez que $S-(S-A)=A \subseteq A$ é maximal em \mathcal{I} .

Em seguida, precisamos mostrar a propriedade da hereditariedade (2). Suponha que $B \subseteq A \in \mathcal{I}'$, então, existe algum $A' \in \mathcal{I}$, tal que $S - A \subseteq A'$. Como $S - B \supseteq S - A \subseteq A'$, temos que $B \in \mathcal{I}'$.

Por fim, temos que provar a propriedade da troca (3). Assim, se temos que $B, A \in \mathcal{I}'$ e |B| < |A|, podemos encontrar um elemento x em A-B para adicionar a B, de tal maneira que permaneça independente.

No primeiro caso, temos que |A| = |B| + 1. Assim, temos que escolher um elemento x único para compor A - B, uma vez que S - B contém o conjunto independente maximal.

Se o primeiro caso não for válido, podemos assumir C como um conjunto independente maximal de $\mathcal{I} \subseteq S-A$. Assim, podemos tomar um conjunto arbitrário de tamanho |C|-1 de algum conjunto independente maximal $D \subseteq S-B$. Como D é um conjunto independente maximal, também é independente, logo, pela propriedade da troca, existe algum $y \in C-D$, tal que $D \cup \{y\}$ é um conjunto independente maximal em \mathcal{I} . Desta maneira, podemos tomar um x, tal que $x \neq y \in A-B$. Uma vez que $S-(B \cup \{x\})$ ainda contém $D \cup \{y\}$, temos que $B \cup \{x\}$ é um conjunto independente em $(\mathcal{I})'$.