publicação do departamento de matemática da universidade do Minho

publicado pelo departamento de matemática da universidade do Minho Campus de Gualtar, 4710-054 Braga, Portugal

primeira edição Outubro de 2003, revista em Março de 2016 ISBN 972 - 8810 - 06 - 7

número seis

funções de várias variáveis assis azevedo

Conteúdo

Αļ	resei	птаção	1
1	Тор	ologia usual em \mathbb{R}^n	3
	1.1	Conceitos de produto interno, norma e métrica.	4
	1.2	Bolas, abertos, fechados, etc	9
	1.3	Sucessões em \mathbb{R}^n	13
	1.4	Continuidade	16
	1.5	Um pouco mais de topologia	22
	1.6	Exercícios	26
2	Der	erivabilidade	
	2.1	Derivabilidade direccional	
	2.2	Derivabilidade global	38
		2.2.1 Derivabilidade global <i>versus</i> derivabilidade direccional	43
		2.2.2 Teorema da Derivação Função Composta	48
		2.2.3 Regra de Leibniz	51
	2.3	Interpretação geométrica do vector gradiente	57
	2.4	Derivadas de ordem superior	59
2.5 Polinómio de Taylor		Polinómio de Taylor	63
	2.6	Exercícios	66
3	Teo	remas da função inversa e da função implícita	75
	3.1	Teorema da Função Inversa	76

conteúdo

	3.2	Teorema da Função Implícita	79
	3.3	Exercícios	86
4	Extr	remos	91
	4.1	Um pouco de Álgebra Linear	92
		4.1.1 Formas quadráticas	94
	4.2	Extremos locais	97
	4.3	Máximos e mínimos condicionados. Multiplicadores de Lagrange	103
	4.4	Exercícios	112
5	Inte	grais de linha	117
	5.1	Curvas e caminhos	117
	5.2	Integrais de linha	122
	5.3	Campos conservativos <i>versus</i> campos de gradientes	126
	5.4	Exercícios	131
Bi	bliog	rafia	133
ĺno	dice a	alfabético	135

Apresentação

... ter um filho, escrever um livro, plantar uma árvore e correr uma maratona.

Esta sebenta contém a matéria leccionada na disciplina de Análise I da Licenciatura Matemática da Universidade do Minho.

É o resultado de vários anos de ensino da disciplina, ao longo dos quais fui entregando apontamentos aos alunos, que foram sendo corrigidos e aumentados, porque leccionar uma disciplina vários anos nos permite, iterativamente, melhorar a abordagem adoptada.

O Fernando Miranda leccionou esta disciplina no ano lectivo 2001/2002 e, ao utilizar os meus apontamentos, foi de grande auxílio na correcção de imprecisões e na inclusão de exercícios adicionais.

Agradeço também à Lisa porque, como de costume, deu muitas sugestões sobre o conteúdo e fez a revisão de todo o texto.

Quero aproveitar para agradecer que me enviem comentários, bem como e erros e gralhas que detectem, para assis@math.uminho.pt.

1. Topologia usual em \mathbb{R}^n

Não há teoremas profundos, apenas teoremas que nós não percebemos muito bem. Nicholas Goodman.

Neste capítulo, começamos por introduzir as noções de produto interno, norma e distância num espaço (vectorial, nos dois primeiros casos) abstracto X e veremos as ligações entre estas três noções.

De facto vamos apenas estudar espaços métricos (par formado por um conjunto e uma distância nele definida) concentrando-nos quase exclusivamente no caso em que esse espaço métrico é formado por um subconjunto de \mathbb{R}^n e a métrica é a chamada métrica usual ou uma sua equivalente (num sentido a definir).

Sempre que possível, os resultados serão apresentados realçando as semelhanças com resultados que os alunos já conhecem da análise real numa variável real. Neste sentido as noções de continuidade e de sucessão convergente aparecerão naturalmente e as noções de conexo e de compacto surgirão como generalizações de intervalo e de intervalo (ou subconjunto de \mathbb{R}) fechado e limitado.

Usaremos a seguinte notação quando estivermos a trabalhar em \mathbb{R}^n , sendo n genérico:

- as letras maiúsculas (U, K, V, etc.) representarão subconjuntos de \mathbb{R}^n ;
- os elementos de \mathbb{R}^n serão representados por letras maiúsculas pequenas (A, X, Y, etc.,);
- os elementos de \mathbb{R} serão representados por letras minúsculas (a, x, x_1 , etc.);
- se X, A e $X_1 \in \mathbb{R}^n$ estaremos a subentender que $X = (x_1, \dots, x_n)$, $A = (a_1, \dots, a_n)$ e $X_1 = (x_{1,1}, \dots, x_{1,n})$ em que x_1, \dots, x_n , a_1, \dots, a_n , $x_{1,1}, \dots, x_{1,n} \in \mathbb{R}$.

Se estivermos a trabalhar em \mathbb{R}^2 (respectivamente \mathbb{R}^3) usaremos a notação (x,y) (respectivamente (x,y,z)) para representar um ponto genérico de \mathbb{R}^2 (respectivamente \mathbb{R}^3).

Sempre que, daí não advenham confusões, denotaremos o vector nulo de \mathbb{R}^n por 0.

1.1 Conceitos de produto interno, norma e métrica.

Pretendemos nesta secção recordar definições e fixar notações.

Definição 1.1. Se X é um espaço vectorial sobre \mathbb{R} , uma função $X \times X \longrightarrow X$ $(x,y) \mapsto x \cdot y$ diz-se um produto interno se para todo $x,y,z \in X$ e para todo $a \in \mathbb{R}$:

- a) $x \cdot x \ge 0$;
- b) $x \cdot x = 0 \Leftrightarrow x = 0$;
- c) $x \cdot y = y \cdot x$;
- d) $(ax) \cdot y = a(x \cdot y);$
- e) $(x+y) \cdot z = (x \cdot z) + (x \cdot z)$.

Muitos autores preferem usar a notação x|y ou < x,y> em vez de $x\cdot y$, para designar o "produto interno entre x e y".

Definição 1.2. Se X é um espaço vectorial sobre \mathbb{R} , uma função $\|\cdot\|: X \longrightarrow \mathbb{R}$ diz-se uma norma se para todo $x,y \in X$ e para todo $a \in \mathbb{R}$:

- a) $||x|| \ge 0$;
- b) $||x|| = 0 \Leftrightarrow x = 0$;
- c) ||ax|| = |a| ||x||;
- d) $||x + y|| \le ||x|| + ||y||$.

Definição 1.3. Se X é um conjunto não vazio, uma função $d: X \times X \longrightarrow \mathbb{R}$ diz-se uma distância ou métrica sobre X se para todo $x,y,z \in X$:

- a) $d(x,y) \geq 0$;
- b) $d(x,y) = 0 \Leftrightarrow x = y;$
- c) d(x, y) = d(y, x);
- d) $d(x,y) \le d(x,z) + d(z,y)$.

Definição 1.4. Chamamos espaço métrico a um par (X,d) em que X é um conjunto não vazio e d é uma métrica sobre X.

Proposição 1.5 (Desigualdade de Cauchy-Schwartz). *Se X é um espaço vectorial real e* $\cdot: X \times X \longrightarrow \mathbb{R}$ *é um produto interno então:*

$$\forall x, y \in X \quad |x \cdot y| \le \sqrt{(x \cdot x)(y \cdot y)}.$$

Além disso, se $x, y \in X \setminus \{0\}$,

$$\begin{cases} x \cdot y = \sqrt{(x \cdot x)(y \cdot y)} \iff \exists a > 0 : x = ay \\ x \cdot y = -\sqrt{(x \cdot x)(y \cdot y)} \iff \exists a < 0 : x = ay. \end{cases}$$

Demonstração. Se y=0 o resultado é trivial pois $x\cdot 0=x\cdot (x-x)=x\cdot x-x\cdot x=0$. Se $y\neq 0$ então,

$$0 \le \left(x - \frac{x \cdot y}{y \cdot y}y\right) \cdot \left(x - \frac{x \cdot y}{y \cdot y}y\right) = x \cdot x - \frac{(x \cdot y)^2}{y \cdot y}.$$

Em particular:

- $x \cdot x \ge \frac{(x \cdot y)^2}{y \cdot y}$ ou seja, $(x \cdot y)^2 \le (x \cdot x)(y \cdot y)$;
- $(x \cdot y)^2 = (x \cdot x)(y \cdot y)$ se e só se $\left(x \frac{x \cdot y}{y \cdot y}y\right) \cdot \left(x \frac{x \cdot y}{y \cdot y}y\right) = 0$, ou seja, usando a alínea b) da definição de produto interno, se e só se $x \frac{x \cdot y}{y \cdot y}y = 0$. Mostramos assim que,

$$(x \cdot y)^2 = (x \cdot x)(y \cdot y) \iff x = \frac{x \cdot y}{y \cdot y}y$$

ou equivalentemente, que

$$|x \cdot y| = \sqrt{(x \cdot x)(y \cdot y)} \iff x = \frac{x \cdot y}{y \cdot y} y$$

Daqui se conclui o resultado pretendido, em que $a = \frac{x \cdot y}{y \cdot y}$.

Teorema 1.6. Seja X é um espaço vectorial real.

a) Se $\cdot : X \times X \longrightarrow \mathbb{R}$ é um produto interno então a função

$$\begin{array}{ccc} X & \longrightarrow & \mathbb{R} \\ x & \mapsto & \sqrt{x \cdot x} \end{array}$$

é uma norma, que se diz "associada ao produto interno".

 $\mathrm{b}) \quad \textit{Se} \parallel \cdot \parallel : X \longrightarrow \mathbb{R} \,\, \textit{\'e uma norma então a função}$

$$\begin{array}{ccc} X \times X & \longrightarrow & \mathbb{R} \\ (x,y) & \mapsto & \|x-y\| \end{array}$$

é uma distância, que se diz "associada à norma".

Demonstração. A "única dificuldade" é a demonstração de que, se · é um produto interno então a função

$$\begin{array}{ccc} X & \longrightarrow & \mathbb{R} \\ x & \mapsto & \sqrt{x \cdot x} \end{array}$$

satisfaz a condição d) da definição de norma.

Sejam $x, y \in X$. Então,

$$||x + y|| \le ||x|| + ||y|| \iff (||x + y||)^2 \le (||x|| + ||y||)^2$$

$$\Leftrightarrow (x + y) \cdot (x + y) \le ||x||^2 + 2||x|| ||y|| + ||y||^2$$

$$\Leftrightarrow x \cdot x + 2x \cdot y + y \cdot y \le x \cdot x + 2||x|| ||y|| + y \cdot y$$

$$\Leftrightarrow x \cdot y \le ||x|| ||y||.$$

Para concluir basta notar que esta última desigualdade é válida pois é uma consequência da Desigualdade de Cauchy-Schwartz.

Nota 1.7. Se $\cdot : X \times X \longrightarrow \mathbb{R}$ é um produto interno e $\|\cdot\| : X \longrightarrow \mathbb{R}$ é a norma associada a esse produto interno, então a Desigualdade de Cauchy-Schwartz pode ser reescrita na forma,

$$\forall x, y \in X \quad |x \cdot y| < ||x|| ||y||.$$

A Desigualdade de Cauchy-Schwartz dá origem à noção de ângulo entre dois elementos (vectores) de $X\setminus\{0\}$. Note-se que, se $x,y\in X\setminus\{0\}$ então $-1\leq \frac{x\cdot y}{\|x\|\cdot\|y\|}\leq 1$.

Definição 1.8. Se X é um espaço vectorial real $e \cdot : X \times X \longrightarrow \mathbb{R}$ é um produto interno $e \ x, y \in X \setminus \{0\}$ define-se **ângulo** entre $x \ e \ y$, que denotaremos por $\measuredangle(x,y)$, como sendo o ângulo pertencente a $[0,\pi]$ cujo co-seno é igual a $\frac{x \cdot y}{\|x\| \|y\|}$.

Obtemos assim que, se $x, y \in X \setminus \{0\}$

- $x, y \in X \setminus \{0\}$ $x \cdot y = ||x|| ||y|| \cos(\angle(x, y));$
- $\cos(\measuredangle(x,y)) = 1$ (respectivamente $\cos(\measuredangle(x,y)) = -1$) se e só se existe $\lambda > 0$ (respectivamente $\lambda < 0$) tal que $x = \lambda y$ (ver Proposição 1.5).

Exemplos 1.9. Vejamos alguns exemplos.

a) "Produto interno usual em \mathbb{R}^n "

$$\begin{array}{ccc} \cdot & : \mathbb{R}^n \times \mathbb{R}^n & \longrightarrow & \mathbb{R} \\ & (\mathbf{X}, \mathbf{Y}) & \mapsto & \sum_{i=1}^n x_i y_i \end{array}$$

ao qual está associada a norma

Note-se que, atendendo ao Teorema 1.6 basta mostrar que a primeira função é um produto interno (o que de facto não tem dificuldade!).

b) "Norma do máximo" (verifique que se trata de facto de uma norma!)

$$\|\cdot\|_{\infty}$$
 : \mathbb{R}^n \longrightarrow \mathbb{R} \times \times \longrightarrow $\max\{|x_1|,\ldots,|x_n|\}$

à qual está associada a distância
$$\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$
 $(X,Y) \mapsto \max \left\{ |x_1 - y_1|, \dots, |x_n - y_n| \right\}$

Nota 1.10. Vejamos algumas observações e notações.

- a) Se n=1 então a norma usual e norma do máximo são iguais.
- b) Daqui em diante, sempre que falarmos em norma em \mathbb{R}^n , estaremos a pensar numa das duas normas referidas acima e usaremos a notação $\|\cdot\|$. Se quisermos explicitar qual a norma que estamos a usar, escreveremos $\|\cdot\|_2$ ou $\|\cdot\|_{\infty}$.
- c) Mais tarde, quando falarmos de convergência e de continuidade, veremos que se pode usar, conforme for conveniente, as normas $\|\cdot\|_2$ ou $\|\cdot\|_\infty$. Nesse sentido, diremos que as normas são equivalentes. Essa equivalência será uma consequência do seguinte resultado:

Proposição 1.11. Se $\mathbf{x} \in \mathbb{R}^n$ então

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_{2} \le \sqrt{n} \|\mathbf{x}\|_{\infty}$$

Demonstração. A primeira desigualdade é trivial.

Em relação à segunda, comecemos por notar que, se $i=1,\ldots,n$ e $\mathbf{x}=(x_1,\ldots,x_n)$ então $x_i^2 \leq \|\mathbf{x}\|_\infty^2$. Deste modo,

$$\|\mathbf{x}\|_{2} = \sqrt{x_{1}^{2} + \dots + x_{n}^{2}} \le \sqrt{\|\mathbf{x}\|_{\infty}^{2} + \dots + \|\mathbf{x}\|_{\infty}^{2}} = \sqrt{n} \|\mathbf{x}\|_{\infty}^{2} = \sqrt{n} \|\mathbf{x}\|_{\infty}.$$

1.2 Bolas, abertos, fechados, etc..

Fixemos uma norma $\|\cdot\|:\mathbb{R}^n\longrightarrow\mathbb{R}$. De facto, estaremos sempre a pensar na norma do máximo ou na norma usual.

Definição 1.12. Sejam $A \in \mathbb{R}^n$ e $r \in \mathbb{R}^+$. Chama-se bola centrada em a e de raio r ao conjunto

$$B_{\|\cdot\|}(A,r) = \{ X \in \mathbb{R}^n : \|X - A\| < r \}.$$

Se não houver dúvidas quanto à norma que estamos a usar, escreveremos simplesmente B(A,r).

Exemplos 1.13.

- a) Se n=1, $a\in\mathbb{R}$ e r>0 então $B(a,r)=\left]a-r,a+r\right[.$
- b) Se n=2, $(a,b)\in\mathbb{R}^2$ e r>0 então, para a norma usual, a bola centrada em (a,b) e de raio r é o "interior do círculo" centrado em (a,b) e de raio r, enquanto que, para a norma do máximo, a bola centrada em (a,b) e de raio r é o "quadrado aberto" a-r, a+r b-r.

O seguinte resultado é essencialmente uma reescrita da Proposição 1.11.

Proposição 1.14. Se $A \in \mathbb{R}^n$ e r > 0 então

$$B_{\|\cdot\|_2}(A,r) \subseteq B_{\|\cdot\|_{\infty}}(A,r) \subseteq B_{\|\cdot\|_2}(A,\sqrt{n} r).$$

Desta proposição resulta que, se existe $\varepsilon>0$ tal que $B_{\|\cdot\|_2}(\mathbf{A},\varepsilon)\subseteq U$ então também existe $\delta>0$ tal que $B_{\|\cdot\|_\infty}(\mathbf{A},\delta)\subseteq U$ (basta considerar $\delta=\frac{\varepsilon}{\sqrt{n}}$) e reciprocamente. Isto é suficiente para garantir que as seguintes definições não dependem da norma escolhida (a norma usual ou a do máximo).

Definição 1.15. Seja U um subconjunto de \mathbb{R}^n . Um ponto A de \mathbb{R}^n diz-se:

ullet ponto interior $de\ U$ se

$$\exists \ \varepsilon > 0 \quad B_{\parallel \cdot \parallel}(A, \varepsilon) \subseteq U;$$

• ponto aderente a U se

$$\forall \varepsilon > 0 \quad B_{\|\cdot\|}(\mathbf{A}, \varepsilon) \cap U \neq \emptyset;$$

• ponto de fronteira de U se for ponto aderente a U e a $\mathbb{R}^n \setminus U$, isto é, se

$$\forall \varepsilon > 0 \quad B_{\|\cdot\|}(\mathbf{A}, \varepsilon) \cap U \neq \emptyset, \quad B_{\|\cdot\|}(\mathbf{A}, \varepsilon) \cap \left(\mathbb{R}^n \setminus U\right) \neq \emptyset;$$

• ponto de acumulação de U se

$$\forall \varepsilon > 0 \quad (B_{\|\cdot\|}(A, \varepsilon) \setminus \{A\}) \cap U \neq \emptyset;$$

ullet ponto isolado de U se pertencer a U e não for ponto de acumulação de U, isto é, se

$$\exists \ \varepsilon > 0 \quad B_{\|.\|}(A, \varepsilon) \cap U = \{A\}.$$

Ao conjunto formado pelos pontos interiores de U (respectivamente, aderentes, de fronteira e de acumulação) chamaremos interior de U (respectivamente aderência, fronteira e derivado de U).

Se U é um subconjunto de \mathbb{R}^n usaremos \mathring{U} , \overline{U} , fr(U), U' para designar respectivamente o interior, a aderência, a fronteira e o derivado de U.

A seguinte proposição é uma consequência directa das definições.

Proposição 1.16. Se $U \subseteq \mathbb{R}^n$ então:

a)
$$\overset{\circ}{U} \subseteq U \subseteq \overline{U}$$
;

b)
$$fr(U) = fr(\mathbb{R}^n \setminus U);$$

c)
$$\overline{U} = U \cup fr(U) = \mathring{U} \cup fr(U) = U' \cup fr(U) = U' \cup \{\text{pontos isolados de } U\};$$

d)
$$\mathbb{R}^n = \overset{\circ}{U} \cup \widehat{\mathbb{R}^n \setminus U} \cup fr(U);$$

e)
$$\widehat{\mathbb{R}^n \setminus U} = \mathbb{R}^n \setminus \overline{U};$$

f)
$$\overline{\mathbb{R}^n \setminus U} = \mathbb{R}^n \setminus \mathring{U}$$
;

Demonstração. A título de exemplo vamos demonstrar as alínea d) e e).

- d) Se $A \in \mathbb{R}^n$ então:
- ou existe $\varepsilon > 0$ tal que $B(A, \varepsilon) \subseteq U$ e, portanto, $A \in \overset{\circ}{U}$;
- ou existe $\varepsilon>0$ tal que $B(\mathtt{A},\varepsilon)\subseteq\mathbb{R}^n\setminus U$ e, portanto, $\mathtt{A}\in\overset{\circ}{\widehat{\mathbb{R}^n\setminus U}}$;
- ou, para todo $\varepsilon > 0$, $B(A, \varepsilon) \not\subseteq U$ e $B(A, \varepsilon) \not\subseteq \mathbb{R}^n \setminus U$. Neste caso, para todo $\varepsilon > 0$, $B(A, \varepsilon)$ intersecta $\mathbb{R}^n \setminus U$ e intersecta U, ou seja $A \in fr(U)$.

Decorre da demonstração que \mathbb{R}^n é a união disjunta dos conjuntos $\overset{\circ}{U}$, $\widehat{\mathbb{R}^n\setminus U}$ e fr(U).

e) Basta notar que, se $\mathbf{X} \in \mathbb{R}^n$ então

$$\mathbf{X} \in \mathbb{R}^{n} \setminus U \iff \exists \varepsilon > 0 : B(\mathbf{X}, \varepsilon) \subseteq \mathbb{R}^{n} \setminus U$$

$$\Leftrightarrow \exists \varepsilon > 0 : B(\mathbf{X}, \varepsilon) \cap U = \emptyset$$

$$\Leftrightarrow \mathbf{X} \notin \overline{U}$$

$$\Leftrightarrow \mathbf{X} \in \mathbb{R}^{n} \setminus \overline{U}$$

É claro que esta alínea é uma consequência imediata das duas alíneas anteriores.

Definição 1.17. Um subconjunto U de \mathbb{R}^n diz-se: aberto se $U=\overset{\circ}{U}$; fechado se $U=\overline{U}$; limitado se estiver contido em alguma bola.

Do mesmo modo que nas definições anteriores, as noções de conjunto aberto, fechado e limitado não dependem da norma escolhida.

Por outro lado, e como consequência das definições, facilmente se mostra que:

- um conjunto é aberto se e só se o seu complementar for fechado;
- a união de conjuntos abertos é um conjunto aberto;
- a intersecção finita de conjuntos abertos é um conjunto aberto;
- a intersecção de conjuntos fechados é um conjunto fechado;
- a união finita de conjunto abertos é um conjunto aberto.

Se $\mathbf{X} \in \mathbb{R}^n$ e, para cada $n \in \mathbb{N}$, considerarmos $A_n = B(\mathbf{X}, \frac{1}{n})$ e $B_n = \mathbb{R}^n \setminus A_n$ então facilmente se vê que $\bigcap_{n \in \mathbb{N}} A_n = \{\mathbf{X}\}$ (que não é um aberto) e $\bigcup_{n \in \mathbb{N}} B_n = \mathbb{R}^n \setminus \{\mathbf{X}\}$ (que não é um fechado.

Nota 1.18. Usando a norma do máximo em \mathbb{R}^n podemos concluir que, se A pertence a um aberto U de \mathbb{R}^n então existe um aberto contendo A que é um produto cartesiano de intervalos e que está contido em U.

Como consequência, se V é um aberto de \mathbb{R}^{n+m} então V contem um aberto que é um produto de um aberto de \mathbb{R}^n por um aberto de \mathbb{R}^m .

1.3 Sucessões em \mathbb{R}^n

Se U é um subconjunto de \mathbb{R}^n , uma sucessão num conjunto U é uma função de \mathbb{N} em U. Como é usual uma sucessão será denotada por $(A_k)_{k\in\mathbb{N}}$ em que, se $k\in\mathbb{N}$, A_k é a imagem de k pela função que define a sucessão.

Escreveremos $a_{k,i}$ para denotar a coordenada i de A_k . Deste modo, se $k \in \mathbb{N}$, então $A_k = (a_{k,1}, \ldots, a_{k,n})$.

Define-se sucessão de Cauchy e sucessão convergente de modo análogo ao que foi feito em \mathbb{R} .

Definição 1.19. Uma sucessão $(A_k)_{k\in\mathbb{N}}$ em \mathbb{R}^n diz-se:

• de Cauchy se

$$\forall \varepsilon > 0 \; \exists \; p \in \mathbb{N} \; \forall r, s \geq p \quad \|A_r - A_s\| \leq \varepsilon.$$

• convergente para um elemento A de \mathbb{R}^n se

$$\forall \varepsilon > 0 \; \exists \; p \in \mathbb{N} \; \forall r \geq p \quad ||\mathbf{A}_r - \mathbf{A}|| \leq \varepsilon.$$

Nota 1.20. Uma sucessão $(A_k)_{k\in\mathbb{N}}$ em \mathbb{R}^n converge para um elementos A de \mathbb{R}^n se e só se a sucessão real $(\|A_k - A\|)_{k\in\mathbb{N}}$ convergir para 0.

Analogamente ao que acontece em \mathbb{R} :

- podemos substituir nas definições acima as desigualdades por desigualdades estritas;
- toda a sucessão convergente é uma sucessão de Cauchy.

Por outro lado e como é de esperar, as noções de sucessão de Cauchy e de sucessão convergente não dependem da norma escolhida (de facto esta observação é válida para quaisquer normas em \mathbb{R}^n mas, aqui, estamos apenas a pensar nas normas $\|\cdot\|_2$ e $\|\cdot\|_{\infty}$).

Escreveremos $\lim_{k\in\mathbb{N}}\mathrm{A}_k=\mathrm{A}$, $\lim_k\mathrm{A}_k=\mathrm{A}$ ou $\mathrm{A}_k\xrightarrow{k}\mathrm{A}$ para dizer que a sucessão $(\mathrm{A}_k)_{k\in\mathbb{N}}$ converge para A .

A seguinte proposição diz-nos que o estudo de sucessões em \mathbb{R}^n se reduz ao estudo de n sucessões em \mathbb{R} (as definidas pelas componentes dos termos da sucessão em \mathbb{R}^n).

Proposição 1.21. Sejam $(A_k)_{k\in\mathbb{N}}$ uma sucessão em \mathbb{R}^n e $A=(a_1,\ldots,a_n)\in\mathbb{R}^n$. Suponhamos que, se $k\in\mathbb{N}$, $A_k=(a_{k,1},\ldots,a_{k,n})$. Então:

- a) $(A_k)_{k\in\mathbb{N}}$ é uma sucessão de Cauchy se e só se para todo $i=1,\ldots,n$ a sucessão real $(a_{k,i})_{k\in\mathbb{N}}$ é uma sucessão de Cauchy.
- b) $(A_k)_{k\in\mathbb{N}}$ converge para A se e só se para todo $i=1,\ldots,n$ a sucessão real $(a_{k,i})_{k\in\mathbb{N}}$ converge para a_i .

Demonstração. Vamos fazer a demonstração da alínea b) (a alínea a) tem demonstração análoga). Consideremos em \mathbb{R}^n a norma do máximo.

Suponhamos que $(A_k)_{k\in\mathbb{N}}$ converge para A ou seja que,

$$\forall \varepsilon > 0 \,\, \exists \,\, p \in \mathbb{N} \,\, \forall r \geq p \quad \, \max \Big\{ |a_{r,1} - a_1|, \ldots, |a_{r,n} - a_n| \Big\} \leq \varepsilon.$$

Em particular, se $i \in \{1, \dots, n\}$, então

$$\forall \varepsilon > 0 \; \exists \; p \in \mathbb{N} \; \forall r \geq p \quad |a_{r,i} - a_i| \leq \varepsilon$$

ou seja $(a_{k,i})_{k\in\mathbb{N}}$ converge para a_i .

Inversamente, suponhamos que para todo $i=1,\ldots,n$, $\lim_{k\in\mathbb{N}}a_{k,i}=a_i.$

Para mostrar que $(A_k)_{k\in\mathbb{N}}$ converge para A precisamos de mostrar que

$$\forall \varepsilon > 0 \,\,\exists\,\, p \in \mathbb{N} \,\, \forall r \geq p \quad \, \max \Big\{ |a_{r,1} - a_1|, \ldots, |a_{r,n} - a_n| \Big\} \leq \varepsilon.$$

Fixemos então $\varepsilon>0$. Por hipótese, para cada $i=1,\dots,n$, existe $p_i\in\mathbb{N}$ tal que, se $r\geq p_i$ então $|a_{r,i}-a_i|\leq \varepsilon$. Deste modo, se $p=\max\{p_1,\dots,p_n\}$ então

$$\forall i = 1, \dots, n \ \forall r \ge p \quad |a_{r,i} - a_i| \le \varepsilon$$

ou seja

$$\forall r \ge p \quad \max\left\{|a_{r,1} - a_1|, \dots, |a_{r,n} - a_n|\right\} \le \varepsilon.$$

Atendendo às definições e a esta proposição muitos resultados sobre sucessões e séries (que, de facto são sucessões) em $\mathbb R$ podem ser transcritos (com as devidas alterações) para sucessões e séries em $\mathbb R^n$. Por exemplo: a soma de sucessões convergentes é ainda uma sucessão convergente; as sucessões convergentes são sucessões de Cauchy.

De facto, analogamente ao que acontece em \mathbb{R} , o recíproco desta última propriedade também é válida, isto é, \mathbb{R}^n é completo.

Corolário 1.22. Em \mathbb{R}^n toda a sucessão de Cauchy é convergente.

Demonstração. Seja $(A_k)_{k\in\mathbb{N}}$ uma sucessão de Cauchy em \mathbb{R}^n . Suponhamos que, se $k\in\mathbb{N}$, $A_k=(a_{k,1},\ldots,a_{k,n})$.

Pela alínea a) da Proposição 1.21, para todo $i=1,\ldots,n$, a sucessão real $(a_{k,i})_{k\in\mathbb{N}}$ é uma sucessão de Cauchy. Como \mathbb{R} é completo, podemos concluir que, para todo $i=1,\ldots,n$, existe a_i tal que a sucessão $(a_{k,i})_{k\in\mathbb{N}}$ converge para a_i .

Pela Proposição 1.21, alínea b), a sucessão $(A_k)_{k\in\mathbb{N}}$ converge para $A=(a_1,\ldots,a_n)$. \square

Para terminar esta secção vamos mostrar que a aderência, o derivado e o interior de um conjunto podem ser definidos à custa de sucessões.

Proposição 1.23. Se $U \subseteq \mathbb{R}^n$ e $A \in \mathbb{R}^n$ então:

- a) $A \in \overline{U}$ se e só se existe uma sucessão de elementos de U convergente para A;
- b) $A \in U'$ se e só se existe uma sucessão injectiva de elementos de U convergente para A;
- c) $A \in \overset{\circ}{U}$ se e só se para todo a sucessão em \mathbb{R}^n convergente para a existir uma ordem a partir da qual todos os termos da sucessão pertencem a U.

Demonstração. Vamos apenas ver duas implicações (deixamos as outras como exercício).

Suponhamos que $A \in \overline{U}$ e vamos mostrar que existe uma sucessão de elementos de U convergente para A.

Para isso basta definir $(A_k)_{k\in\mathbb{N}}$ uma sucessão tal que, se $k\in\mathbb{N}$, A_k é um qualquer elemento do conjunto $B(A, \frac{1}{k})\cap U$ (ver definição de ponto aderente).

Deste modo, se $k \in \mathbb{N}$, $\|A_k - A\| \le \frac{1}{k}$. Usando a Nota 1.20 concluímos que a sucessão $(A_k)_{k \in \mathbb{N}}$ converge para A.

Suponhamos agora que $A \in U'$ e definamos uma sucessão $(A_k)_{k \in \mathbb{N}}$ do seguinte modo:

- A_1 é um qualquer elemento de $(B(A,1) \setminus \{A\}) \cap U$;
- A_2 é um qualquer elemento de $(B(A, \delta_2) \setminus \{A\}) \cap U$, em que δ_2 é um número positivo menor que $\frac{1}{2}$ e que $||A_1 A||$ (esta última condição garante que $A_1 \neq A_2$).
- · · · ;
- (supondo definido A_{k-1}) A_k é um qualquer elemento de $(B(A, \delta_k) \setminus \{A\}) \cap U$, em que δ_k é um número positivo menor que $\frac{1}{k}$ e que $\|A_{k-1} A\|$.

Uma vez que, se j>i, $\|\mathbf{A}_j-\mathbf{A}\|<\|\mathbf{A}_i-\mathbf{A}\|$, a sucessão $(\mathbf{A}_k)_{k\in\mathbb{N}}$ é injectiva. Por outro lado, a sucessão converge para A porque, se $k\in\mathbb{N}$, $\|\mathbf{A}_k-\mathbf{A}\|<\delta_k<\frac{1}{k}$.

1.4 Continuidade

A continuidade de funções de subconjuntos de \mathbb{R}^n em \mathbb{R}^m é definida exactamente do modo que seria de esperar, atendendo ao que é feito para funções reais de variáveis reais.

Definição 1.24. Sejam $U\subseteq\mathbb{R}^n$, $f:U\longrightarrow\mathbb{R}^m$, $A\in\mathbb{R}^n$ e $B\in\mathbb{R}^m$. Diz-se que:

$$\forall \varepsilon > 0 \; \exists \; \delta > 0 \; \forall \mathbf{x} \in U \; \left[\; 0 < \|\mathbf{x} - \mathbf{A}\| \le \delta \; \Rightarrow \; \|f(\mathbf{x}) - \mathbf{B}\| \le \varepsilon \; \right];$$

ullet f \in continua em \mathbf{A} se $\mathbf{A} \in U$ e

$$\forall \varepsilon > 0 \; \exists \; \delta > 0 \; \forall \mathbf{x} \in U \; \left[\; \|\mathbf{x} - \mathbf{A}\| \leq \delta \; \Rightarrow \; \|f(\mathbf{x}) - f(\mathbf{A})\| \leq \varepsilon \; \right];$$

ullet f é contínua se for contínua em todos os pontos de U.

Vejamos algumas observações simples:

- se A é um ponto isolado de U então f é contínua em A;
- ullet se $\mathbf{A} \in U \cap U'$ então f é contínua em \mathbf{A} se e só se $\lim_{\mathbf{X} o \mathbf{A}} f(\mathbf{X}) = f(\mathbf{A})$;

- nas duas primeiras definições acima podemos substituir, sem alterar o significado, " $\leq \delta$ " por " $< \delta$ " e/ou " $\leq \varepsilon$ " por " $< \varepsilon$ ";
- analogamente ao que acontece no estudo da convergência de sucessões também na continuidade é indiferente qual das normas que consideramos, a usual ou a do máximo, em Rⁿ e em R^m. Este observação é uma consequência imediata do Critério de Heine referido de seguida.

Teorema 1.25 (Critério de Heine). Sejam $U \subseteq \mathbb{R}^n$, $f: U \longrightarrow \mathbb{R}^m$ e $A \in U$. Então f é contínua em A se e só se f transforma sucessões convergentes para A em sucessões convergentes para f(A).

Demonstração. Segue exactamente os mesmos passos da demonstração já conhecida para n=m=1.

O resultado que segue permite-nos reduzir o estudo da continuidade de uma função de um subconjunto de \mathbb{R}^n em \mathbb{R}^m ao estudo da continuidade de m funções reais.

Proposição 1.26. Seja $U \subseteq \mathbb{R}^n$, $f = (f_1, \ldots, f_m) : U \longrightarrow \mathbb{R}^m$, $A \in U$ e $B = (b_1, \ldots, b_m) \in \mathbb{R}^m$. Então:

- a) $\lim_{X\to A} f(X) = B$ se e só se para todo $i=1,\ldots,m$, $\lim_{X\to A} f_i(X) = b_i$;
- b) f é contínua em A se e só se f_1, \ldots, f_m forem contínuas em A.

Demonstração. Podemos usar o Critério de Heine e a Proposição 1.21 ou simplesmente usar a norma do máximo em \mathbb{R}^m .

Com o Critério de Heine é muito simples demonstrar o teorema da função composta.

Teorema 1.27 (Teorema da Função Composta). Sejam $U \subseteq \mathbb{R}^n$, $A \in U$, $V \subseteq \mathbb{R}^m$, $f: U \longrightarrow \mathbb{R}^m$ e $g: V \longrightarrow \mathbb{R}^l$ tais que $f(U) \subseteq V$.

Se f é contínua em A e g é contínua em f(A) então $g \circ f$ é contínua em A.

Demonstração. Aplicando o Critério de Heine, vamos mostrar que $g \circ f$ transforma sucessões (em U) convergentes para A em sucessões convergentes para g(f(A)).

Seja então $(A_k)_{k\in\mathbb{N}}$ uma sucessão em U que converge para A. Como f é contínua em A então, usando o Critério de Heine, a sucessão $(f(A_k))_{k\in\mathbb{N}}$ converge para f(A).

Usando novamente o Critério de Heine aplicado agora à função g, concluímos que a sucessão $(g(f(A_k)))_{k\in\mathbb{N}}$ converge para g(f(A)), ou seja, a sucessão $((g\circ f)(A_k))_{k\in\mathbb{N}}$ converge para $(g\circ f)(A)$.

Nota 1.28. O Teorema da Função Composta é usado muitas vezes para concluir que uma dada função f não é contínua num ponto. Para facilitar as notações vamos supor que f tem domínio \mathbb{R}^n . Suponhamos por exemplo que existem funções reais de variável real contínuas h_1, \ldots, h_n tais que a função $\mathbb{R} \longrightarrow \mathbb{R}^m$ é uma função descontínua $x \mapsto (f(h_1(x), \ldots, h_n(x))$

num ponto A. Então, utilizando o Teorema da Função Composta podemos concluir que f é necessariamente descontínua no ponto $(h_1(A), \ldots, h_n(A))$.

Mais à frente veremos exemplos concretos de aplicação deste raciocínio.

Vejamos dois resultados que, conjuntamente com o Teorema da Função Composta nos permitirão encontrar uma classe "grande" de funções contínuas.

Proposição 1.29. Se $L: \mathbb{R}^n \to \mathbb{R}^m$ é uma aplicação linear então existe N > 0 tal que $||L(\mathbf{x})|| \le N ||\mathbf{x}||$, para todo $\mathbf{x} \in \mathbb{R}^n$. Em particular L é contínua.

Demonstração. Sejam $a_{ij} \in \mathbb{R}$, com $i = 1, \ldots, n$ e $j = 1, \ldots, m$ tais que,

$$\forall \mathbf{X} \in \mathbb{R}^n \quad L(\mathbf{X}) = (a_{11}x_1 + \dots + a_{n1}x_n, \dots, a_{1m}x_1 + \dots + a_{nm}x_n).$$

Deste modo, se $X \in \mathbb{R}^n$, e recordando que $|x_i| \leq ||X||$, se $i = 1, \ldots, n$,

$$||L(\mathbf{x})|| = \sqrt{(a_{11}x_1 + \dots + a_{n1}x_n)^2 + \dots + (a_{1m}x_1 + \dots + a_{nm}x_n)^2}$$

$$\leq \sqrt{(|a_{11}||x_1| + \dots + |a_{n1}||x_n|)^2 + \dots + (|a_{1m}||x_1| + \dots + |a_{nm}||x_n|)^2}$$

$$\leq \sqrt{(|a_{11}| + \dots + |a_{n1}|)^2 ||\mathbf{x}||^2 + \dots + (|a_{1m}| + \dots + |a_{nm}|)^2 ||\mathbf{x}||^2}$$

$$\leq \sqrt{(|a_{11}| + \dots + |a_{n1}|)^2 + \dots + (|a_{1m}| + \dots + |a_{nm}|)^2 ||\mathbf{x}||^2}$$

Se N=0 então é claro que L é contínua. Se N>0 então, dado $\mathbf{A}\in\mathbb{R}^n$, L é contínua em \mathbf{A} porque, se $\varepsilon>0$, $\|L(\mathbf{X})-L(\mathbf{A})\|=\|L(\mathbf{X}-\mathbf{A})\|\leq N\|\mathbf{X}-\mathbf{A}\|\leq \varepsilon$ se $\|\mathbf{X}-\mathbf{A}\|\leq \frac{\varepsilon}{N}$.

Proposição 1.30. A função $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$ é contínua. $(x,y) \mapsto xy$

Demonstração. Seja $(a,b) \in \mathbb{R}^2$ e vejamos que h é contínua em (a,b) Se $\delta > 0$ e $(x,y) \in \mathbb{R}^2$ é tal que $\|(x,y) - (a,b)\| \le \delta$ então

$$|h(x,y) - h(a,b)| = |xy - ab| = |x(y - b) + b(x - a)|$$

$$\leq |x| |y - b| + |b| |x - a|$$

$$= |x - a + a| |y - b| + |b| |x - a|$$

$$\leq (|x - a| + |a|) |y - b| + |b| |x - a|$$

$$\leq (\delta + |a|) \delta + |b| \delta$$

$$= \delta^2 + (|a| + |b|) \delta.$$

Deste modo, se $\varepsilon>0$, basta considerar $\delta>0$ tal que $\delta^2+(|a|+|b|)\delta<\varepsilon$ (note-se que tal δ existe porque $\lim_{\delta\to 0}\left[\delta^2+(|a|+|b|)\delta\right]=0$), para concluirmos que

$$\forall \varepsilon > 0 \ \exists \ \delta > 0 \quad [\|(x,y) - (a,b)\| \le \delta \ \Rightarrow \ |h(x,y) - h(a,b)| \le \varepsilon],$$

mostrando assim que h é contínua em (a, b).

Exemplos 1.31.

a) A função $h: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}$ é contínua uma vez que pode $(x,y) \mapsto \frac{\cos{(xe^y) + \log{(x^2 + y^4)}}}{x^2 + y^2}$ ser escrita como uma composta de funções contínuas (envolvendo funções dos exemplos anteriores e funções reais de variável real que sabemos serem contínuas).

b) A função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 \notin contínua em todos os
$$(x,y) \mapsto \begin{cases} \frac{xy}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$
 pontos excepto no ponto $(0,0)$.

Usando argumentos análogos aos usados no exemplo anterior, basta analisar o que se passa no ponto (0,0). Para mostrar a descontinuidade de f no ponto (0,0) vamos utilizar a Nota 1.28.

Se fizermos y = x, ou seja, se considerarmos a função $\mathbb{R} \longrightarrow$ obtemos uma função que é descontínua em 0 uma vez que $\lim_{x\to 0} f(x,x) = \frac{1}{2} \neq f(0,0)$.

c) Para
$$n>1$$
, consideremos $f: \mathbb{R}^2 \longrightarrow \begin{cases} \mathbb{R}^2 & \longrightarrow \\ \frac{x^n y}{x^{2n}+y^2} & \text{se } (x,y) \neq (0,0) \end{cases}$
$$(x,y) \mapsto \begin{cases} \frac{x^n y}{x^{2n}+y^2} & \text{se } (x,y) \neq (0,0) \end{cases}$$

f é obviamente contínua em $\mathbb{R}^2 \setminus \{(0,0)\}$. Para analisarmos o que se passa no ponto (0,0) somos tentados a estudar a restrição de f às rectas que passam na origem.

Assim, se $a \in \mathbb{R}$, $\lim_{x \to 0} f(x, ax) = 0 = f(0, 0)$ (o que nada mostra quanto à continuidade de f em (0,0)).

Vamos agora estudar a função restrita à curva de equação $y = x^k$ (com $k \in \mathbb{N}$).

Se $k \neq n$, $\lim_{x \to 0} f(x, x^k) = 0 = f(0, 0)$ (o que nada mostra quanto à continuidade de f em (0, 0)).

Se $k=n\lim_{x\to 0}f(x,x^n)=\frac{1}{2}\neq f(0,0)$, o que mostra que f é descontínua em (0,0).

Se restringirmos f à curva de equação $y=e^{-1/x^2}$ obtemos $\lim_{x\to 0}(x,e^{-1/x^2})=(0,0)$ e $\lim_{x \to 0} f(x, e^{-1/x^2}) = \frac{1}{2} \neq f(0, 0).$

Daqui se conclui que f é descontínua em (0,0).

O seguinte resultado caracteriza as funções contínuas de um modo global em termos de abertos.

Proposição 1.32. Se $f: \mathbb{R}^n \to \mathbb{R}^m$, então f é contínua se e so se

$$\forall \ V \subseteq \mathbb{R}^m \ [\ V \ aberto \ \Rightarrow \ f^{-1}(V) \ aberto.]$$

Demonstração. Suponhamos que f é contínua e seja V um aberto de \mathbb{R}^m . Se $\mathbf{x} \in f^{-1}(V)$ seja, $\varepsilon > 0$ tal que $B(f(\mathbf{x}), \varepsilon) \subseteq V$. Como f é contínua em \mathbf{x} , existe $\delta > 0$ tal que $f(B(\mathbf{x}, \delta)) \subseteq B(f(\mathbf{x}), \varepsilon) \subseteq V$. Deste modo

$$B(\mathbf{x}, \delta) \subseteq f^{-1}(f(B(\mathbf{x}, \delta))) \subseteq f^{-1}(V),$$

e, portanto X pertence ao interior de $f^{-1}(V)$, mostrando assim que $f^{-1}(V)$ é um aberto.

Suponhamos agora que f satisfaz a condição do enunciado e seja $\mathbf{x} \in \mathbb{R}^n$. Vejamos que f é contínua em \mathbf{x} . Seja $\varepsilon > 0$. Por hipótese $f^{-1}(B(f(\mathbf{x}),\varepsilon))$ é um aberto que contem \mathbf{x} e, portanto, existe $\delta > 0$ tal que $B(\mathbf{x},\delta) \subseteq f^{-1}(B(f(\mathbf{x}),\varepsilon))$ ou seja, $f(B(\mathbf{x},\delta)) \subseteq B(f(\mathbf{x}),\varepsilon)$. Fica assim mostrado que f é contínua em \mathbf{x} .

Corolário 1.33. Se $f:\mathbb{R}^n \to \mathbb{R}^m$, então f é contínua se e so se

$$\forall K \subseteq \mathbb{R}^m \ [K \text{ fechado} \Rightarrow f^{-1}(K) \text{ fechado.}]$$

Demonstração. Basta usar a proposição anterior e recordar que o complementar de um aberto é um fechado e que, se $A \subseteq \mathbb{R}^m$ então $f^{-1}(\mathbb{R}^m \setminus A) = \mathbb{R}^n \setminus f^{-1}(A)$.

Nota 1.34. O resultado da proposição (respectivamente, corolário) anterior mantém-se válida se substituirmos \mathbb{R}^n por um seu subconjunto aberto (respectivamente, fechado).

O conceito de continuidade uniforme para funções de um subconjunto de \mathbb{R}^n em \mathbb{R}^m é análoga à definição que já é conhecida para funções reais de variável real.

Definição 1.35. Sejam $U\subseteq \mathbb{R}^n$ e $f:U\to \mathbb{R}^m$. A função f diz-se uniformemente contínua se

$$\forall \varepsilon > 0 \; \exists \; \delta > 0 \; \forall \mathbf{x}, \mathbf{y} \in U \; \left[\; \|\mathbf{x} - \mathbf{y}\| \leq \delta \; \Rightarrow \; \|f(\mathbf{x}) - f(\mathbf{y})\| \leq \varepsilon \; \right];$$

É claro, a partir da definição, que toda a função uniformemente contínua é contínua.

Do mesmo modo que na Definição 1.24, podemos na definição acima substituir, sem alterar o significado, " $\leq \delta$ " por " $< \delta$ " e/ou " $\leq \varepsilon$ " por " $< \varepsilon$ ".

1.5 Um pouco mais de topologia

Nesta secção vamos enunciar (e demonstrar) resultados que nos permitem identificar alguns conjuntos abertos ou fechados.

De seguida vamos introduzir dois conceitos topológicos: conexidade por arcos (que generaliza a noção de intervalo em \mathbb{R}) e compacidade (que generaliza a noção de intervalo fechado limitado em \mathbb{R}).

Proposição 1.36. *Se* $f, g : \mathbb{R}^n \longrightarrow \mathbb{R}$ *são funções contínuas então:*

$$\{X \in \mathbb{R}^n : f(X) \le g(X)\}$$
 é um fechado e $\{X \in \mathbb{R}^n : f(X) > g(X)\}$ é um aberto.

Além disso e sem alteração das conclusões: o símbolo \leq pode ser substituído por \geq ou =; o símbolo > pode ser substituído por < ou \neq .

Demonstração. Basta usar a Proposição 1.32 e o Corolário 1.33, notando que

$$\{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) < g(\mathbf{x}) \} = (f - g)^{-1} (] - \infty, 0[)$$

$$\{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \le g(\mathbf{x}) \} = (f - g)^{-1} (] - \infty, 0])$$

$$\{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = g(\mathbf{x}) \} = (f - g)^{-1} (\{0\})$$

$$\{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \ne g(\mathbf{x}) \} = (f - g)^{-1} (\mathbb{R} \setminus \{0\})$$

e que] $-\infty$, 0[e $\mathbb{R}\setminus\{0\}$ são abertos de \mathbb{R} e] $-\infty$, 0] e $\{0\}$ são fechados de \mathbb{R} .

Os outros casos tratam-se de maneira análoga.

Nota 1.37. Para demonstrar a proposição anterior poderíamos ter utilizado a noção de ponto aderente e de ponto interior dada por meio de sucessões (ver Proposição 1.23) e usar o Critério de Heine. Se o domínio das funções f e g, na proposição anterior, for um subconjunto U de \mathbb{R}^n então: o conjunto $\{x \in U : f(x) \leq g(x)\}$ é um fechado de \mathbb{R}^n , se U for um fechado; o conjunto $\{x \in \mathbb{R}^n : f(x) > g(x)\}$ é um aberto de \mathbb{R}^n , se U for um aberto.

Corolário 1.38. Se $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ é uma função contínua então o seu gráfico é um fechado de \mathbb{R}^{n+1} .

Demonstração. Basta usar a proposição anterior notando que o gráfico de f é igual a $\{(x_1,\ldots,x_n,y)\in\mathbb{R}^{n+1}:f(x_1,\ldots,x_n)-y=0\}.$

Exemplos 1.39. Vejamos alguns exemplos:

- $\{(x,y) \in \mathbb{R}^2 : \max\{|x|,|y|\} < 5\}$ e $\{(x,y) \in \mathbb{R}^2 : \sqrt{(x-1)^2 + (y+2)^2} \neq 3\}$ são conjuntos abertos;
- $\{(x,y) \in \mathbb{R}^2 : \max\{|x|,|y|\} \ge 5\}$ e $\{(x,y) \in \mathbb{R}^2 : \sqrt{(x-1)^2 + (y+2)^2} = 3\}$ são conjuntos fechados.

Definição 1.40. Um subconjunto U de \mathbb{R}^n diz-se conexo por arcos se dois quaisquer dos seus pontos puderem ser unidos por uma curva contínua isto é, se dados dois pontos $A, B \in U$ existirem $a, b \in \mathbb{R}$ com a < b e uma função contínua $\gamma : [a, b] \longrightarrow \mathbb{R}^n$ tal que $\gamma([a, b]) \subseteq U$, $\gamma(a) = A$ e $\gamma(b) = B$.

Nota 1.41. Se existe uma função contínua $\gamma:[a,b]\longrightarrow \mathbb{R}^n$ tal que $\gamma([a,b])\subseteq U$, $\gamma(a)=$ A e $\gamma(b)=$ B então, dados $c,d\in \mathbb{R}$ com c< d também existe uma função contínua $\delta:[c,d]\longrightarrow \mathbb{R}^n$ tal que $\delta([c,d])\subseteq U$, $\delta(c)=$ A e $\delta(c)=$ B. Basta considerar $\delta=\gamma\circ\mu$ em que

$$\mu: [c,d] \longrightarrow [a,b].$$

$$t \mapsto a + \frac{b-a}{d-c} (t-c)$$

Em geral iremos considerar o domínio das curvas igual a [0,1]

Facilmente se vê que, em \mathbb{R} , os subconjuntos conexos por arcos são os intervalos.

O seguinte resultado generaliza um resultado já conhecido da análise em \mathbb{R} .

Teorema 1.42. Toda a função contínua transforma conexos por arcos em conexos por arcos.

Demonstração. Sejam $U\subseteq\mathbb{R}^n$, $f:U\longrightarrow\mathbb{R}^m$ uma função contínua e V um subconjunto de U conexo por arcos. Mostremos que f(V) também é conexo por arcos.

Sejam $C,D \in f(V)$ e consideremos $A,B \in V$ tais que f(A) = C e f(B) = D. Como V é conexo por arcos, existe uma função contínua $\gamma:[0,1] \longrightarrow \mathbb{R}^n$ tal que $\gamma([0,1]) \subseteq U$, $\gamma(0) = A$ e $\gamma(1) = B$. Então $f \circ \gamma$ é contínua, $(f \circ \gamma)([0,1]) \subseteq f(V)$, $(f \circ \gamma)(0) = C$ e $(f \circ \gamma)(1) = D$. Concluímos assim que f(V) é conexo por arcos.

O conceito de compacidade é um pouco mais complicado e, analogamente ao que acontece com a noção de conexidade por arcos, pode ser definido para qualquer espaço topológico. Essa noção pode ser simplificada se estivermos a trabalhar com espaços métricos. Daí a opção pela definição que segue.

Definição 1.43. Um subconjunto K de \mathbb{R}^n diz-se compacto se toda a sucessão em K tiver uma subsucessão convergente em K.

Seja K um subconjunto de \mathbb{R}^n .

- Se K é ilimitado é fácil ver que existe em K uma sucessão sem subsucessão convergente: basta considerar $(A_k)_{k\in\mathbb{N}}$ em que, se $k\in\mathbb{N}$, A_k é um qualquer elemento de K que não pertence a B(0,k);
- Se K não é fechado consideremos $A \in \overline{K} \setminus K$ e uma sucessão $(A_k)_{k \in \mathbb{N}}$ tal que, se $k \in \mathbb{N}$, A_k é um elemento de $B(A, \frac{1}{k}) \cap K$ (ver Proposição 1.23). Deste modo, a sucessão $(A_k)_{k \in \mathbb{N}}$ e qualquer sua subsucessão converge para A, que não pertence a K.

Fica assim demonstrado que todo o compacto é fechado e limitado. Recorde-se que, em \mathbb{R} , toda a sucessão limitada admite uma subsucessão convergente. Isto significa que todo o fechado limitado em \mathbb{R} é compacto.

De facto é verdade que em \mathbb{R}^n (com as normas consideradas) todo o fechado limitado é compacto. A demonstração deste facto pode ser obtida usando convenientemente este mesmo resultado para n=1.

Teorema 1.44. Um subconjunto de \mathbb{R}^n é compacto se e só se for fechado e limitado.

Demonstração. Resta-nos mostrar que, se K é subconjunto de \mathbb{R}^n , fechado e limitado então é compacto. Para simplificar as notações vamos considerar n=2.

Seja então $(\mathbf{x}_k)_{k\in\mathbb{N}}=(x_k,y_k)_{k\in\mathbb{N}}$ uma sucessão de elementos de K. Como K é limitado, existem intervalos de \mathbb{R} , I e J tais que $K\subseteq I\times J$.

Como I é compacto, a sucessão $(x_k)_{k\in\mathbb{N}}$ admite uma subsucessão $(x_{\varphi(k)})_{k\in\mathbb{N}}$ convergente para um elemento x de I.

Consideremos agora a sucessão $\left(y_{\varphi(k)}\right)_{k\in\mathbb{N}}$. Como J é compacto, esta sucessão admite uma subsucessão $\left(y_{\psi(\varphi(k))}\right)_{k\in\mathbb{N}}$ convergente para um elemento y.

Daqui resulta que a sucessão $(x_{\psi(\varphi(k))}, y_{\psi(\varphi(k))})_{k \in \mathbb{N}}$ converge para (x, y) que pertence a K pois K é fechado. Mostramos assim que a sucessão $(\mathbf{x}_k)_{k \in \mathbb{N}}$ admite uma subsucessão convergente, a saber, a subsucessão $(\mathbf{x}_{\psi(\varphi(k))})_{k \in \mathbb{N}}$.

Chama-se a atenção para o facto de este resultado não ser válido em espaços métricos mais gerais! Por exemplo, se $\|\cdot\|$ é uma norma sobre um espaço vectorial X de dimensão infinita então $\{(x,y)\in X:\|(x,y)\|\leq 1\}$ é um fechado limitado de X que não é compacto (este não é um resultado elementar).

Recorda-se que, se f é uma função real de variável real, então a imagem por f de um intervalo limitado e fechado é um intervalo limitado e fechado. Tal resultado pode ser obtido como uma combinação do Teorema 1.42, do Teorema 1.44 e do teorema que se segue.

Teorema 1.45. A imagem por uma função contínua de um compacto é um compacto.

Demonstração. Sejam U um subconjunto de \mathbb{R}^n , $f:U\longrightarrow\mathbb{R}^m$ uma função contínua e K um compacto de \mathbb{R}^n contido em U.

Consideremos uma sucessão (B_k) $_{k\in\mathbb{N}}$ em f(K) e mostremos que esta sucessão admite uma subsucessão convergente.

Para cada $k \in \mathbb{N}$, seja $A_k \in K$ tal que $f(A_k) = B_k$. Consideremos a sucessão $(A_k)_{k \in \mathbb{N}}$. Como K é compacto, esta sucessão admite uma subsucessão $(A_{\varphi(k)})_{k \in \mathbb{N}}$, que é convergente para um ponto A de K.

Como f é contínua então $(f(A_{\varphi(k)}))_{k\in\mathbb{N}}=(B_{\varphi(k)})_{k\in\mathbb{N}}$ é convergente para f(A), o que mostra que a sucessão $(B_k)_{k\in\mathbb{N}}$ admite uma subsucessão que converge para um elemento de f(K).

Como consequência temos o seguinte resultado, que será usado no Capítulo 4. Começamos por introduzir alguma notação: dada uma função $f:U\to\mathbb{R}$ e $K\subseteq U$, denotaremos por $f_{|K}$ a restrição de f a K; escreveremos max f e min f para denotar o máximo e o mínimo (se existirem) de f.

Corolário 1.46. Se U é um subconjunto de \mathbb{R}^n , $f:U\longrightarrow\mathbb{R}$ é uma função contínua e K é um compacto de \mathbb{R}^n contido em U então existe máximo e mínimo de f restrita a K, isto é,

$$\exists a, b \in K \ \forall x \in K \ f(a) \leq f(x) \leq f(b).$$

Demonstração. Pelo teorema anterior f(K) é um compacto de \mathbb{R} . Sejam α o ínfimo e β o supremo de f(K) (recorde-se que f(K) é limitado). Como f(K) é fechado concluímos que $\alpha, \beta \in f(K)$. Deste modo, $\alpha = \min f_{|K}$ e $\beta = \max f_{|K}$.

O seguinte resultado, é uma generalização de um resultado já conhecido sobre funções reais de variável real.

Teorema 1.47. Toda a função contínua definida num compacto é uniformemente contínua.

Demonstração. Ver Exercício 1.39.

1.6 Exercícios

Exercício 1.1. Mostre que, se $(x_1,\ldots,x_n),(y_1,\ldots,y_n)\in\mathbb{R}^n$ então

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 = \sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 - \sum_{1 \le i \le j \le n} (x_i y_j - x_j y_i)^2.$$

Exercício 1.2. Use a identidade do exercício anterior para provar a Desigualdade de Cauchy-Schwartz, relativamente à norma euclidiana.

Exercício 1.3. Mostre que, se $\|\cdot\|$ é uma norma, então $\|\mathbf{x}\| - \|\mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Exercício 1.4. Diz-se que $\|\cdot\|$ verifica a regra do paralelogramo se

$$\forall \ \mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n} \|\mathbf{X} + \mathbf{Y}\|^{2} + \|\mathbf{X} - \mathbf{Y}\|^{2} = 2 \|\mathbf{X}\|^{2} + 2 \|\mathbf{Y}\|^{2}.$$

- a) Mostre que uma norma associada a um produto interno verifica a regra do paralelogramo.
- b) Mostre que $\|\cdot\|_{\infty}$ em \mathbb{R}^n , com n>1 não verifica a regra do paralelogramo. Conclua que a norma do máximo não é norma associada a nenhum produto interno definido em \mathbb{R}^n , com n>1.

Exercício 1.5. Represente no plano as bolas seguintes:

- a) $B_{\|\cdot\|_2}((0,0),r)$, $B_{\|\cdot\|_{\infty}}((0,0),r)$, para $r \in \{1, 2, \sqrt{2}, \frac{\sqrt{2}}{2}\}$.
- b) $B_{\|\cdot\|_2}((1,1),2)$, $B_{\|\cdot\|_{\infty}}((1,1),2)$, $B_{\|\cdot\|_2}((-1,1),\sqrt{2})$, $B_{\|\cdot\|_{\infty}}((-1,1),\sqrt{2})$

Exercício 1.6. Verifique que a função
$$\|\cdot\|_+:$$
 $\mathbb{R}^n\longrightarrow\sum_{i=1}^n|x_i|$

define uma norma em \mathbb{R}^n (designada como *norma da soma*).

Mostre ainda que $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \|\mathbf{x}\|_{+} \leq n \|\mathbf{x}\|_{\infty}$, se $\mathbf{x} \in \mathbb{R}^{n}$.

Exercício 1.7. Represente em \mathbb{R}^2 as bolas $B_{\|\cdot\|_+}((0,0),r)$, para $r \in \{1, 2, \sqrt{2}, 2\sqrt{2}, \frac{\sqrt{2}}{2}\}$.

Exercício 1.8. Identifique as bolas representadas na figura.

Exercício 1.9. Para cada um dos conjuntos, identifique o interior, a aderência, o derivado e a fronteira; diga se se trata de um conjunto aberto, fechado, limitado, compacto ou conexo por arcos:

- a) $\mathbb{R}^2 \setminus \{(0,0)\};$
- b) $\{(x,y) \in \mathbb{R}^2 : x \le 2\};$
- c) $\{(x,y) \in \mathbb{R}^2 : x < 2\};$
- d) $\{(x,y) \in \mathbb{R}^2 : x+y < 4\};$
- e) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 9\};$
- f) $\{(x,y) \in \mathbb{R}^2 : \max\{|x|,|y|\} \le 1\};$
- g) $\{(x,y) \in \mathbb{R}^2 : |x| + |y| < 2\};$
- h) $\{(x,y) \in \mathbb{R}^2 : x+y=2\};$
- i) $\{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 < 9\};$
- j) $\{(x,y) \in \mathbb{R}^2 : xy > 1\};$
- k) $\{(x,y) \in \mathbb{R}^2 : 0 < x < 1, y = 0\};$

- 1) \mathbb{N}^2 ;
- m) $\left\{ \left(\frac{m}{n}, \frac{1}{n} \right) \in \mathbb{R}^2 : m, n \in \mathbb{N} \right\};$
- n) $\{(x,y) \in \mathbb{R}^2 : x > y^2\};$
- o) $\{(x,y) \in \mathbb{R}^2 : xy > 1\} \cap \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 5\};$
- p) $\{(x,y) \in \mathbb{R}^2 : |x| \le 1\};$
- q) $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4\};$
- r) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 4\};$
- s) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 4, |z| < 1\};$
- t) $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\};$
- u) $\{(x, y, z) \in \mathbb{R}^3 : 0 < z < 4, x^2 + y^2 = z\}.$

Exercício 1.10. Considere os seguintes subconjuntos de \mathbb{R}^2 : $A_n = \left\{\frac{1}{n}\right\} \times [1, n], n \in \mathbb{N}$; $A = \bigcup_{n \in \mathbb{N}} A_n$ e $X = A \cup B_{\|\cdot\|_{\infty}}\left(\left(\frac{1}{2}, \frac{1}{2}\right), \frac{1}{2}\right)$.

- a) Dê exemplo de uma sucessão de elementos de A convergente para um elemento de $\overline{A}\setminus A.$
- b) Determine A'.
- c) Mostre que A não é limitado.
- d) Escolha um elemento $\alpha \in A_2$ e um elemento $\beta \in A_{10}$. Defina uma curva contínua $\gamma : [0,1] \longrightarrow \mathbb{R}^2$ tal que $\gamma(0) = \beta$, $\gamma(1) = \alpha$ e $\gamma([0,1]) \subseteq X$.

Exercício 1.11. Mostre que, independentemente da norma considerada, qualquer bola em \mathbb{R}^n é convexa, ou seja,

$$\forall A \in \mathbb{R}^n \ \forall \varepsilon > 0 \ \forall X, Y \in B(A, \varepsilon) \ \forall t \in [0, 1] \ (1 - t)X + tY \in B(A, \varepsilon).$$

Exercício 1.12. Considere \mathbb{R}^n munido de um produto interno e seja $\|\cdot\|$ a norma associada.

Sejam K um subconjunto convexo de \mathbb{R}^n , P um elemento de \mathbb{R}^n e $\varphi: X \longrightarrow \mathbb{R}$ tal que $\varphi(X) = \|X - P\|$, $\forall X \in K$.

Verifique que existe no máximo um ponto $A \in K$ tal que $\varphi(A) = \inf \{ \varphi(X), X \in K \}.$

Sug.: Recorde a identidade do paralelogramo.

Exercício 1.13. Sejam $(X_k)_k$ e $(Y_k)_k$ sucessões em \mathbb{R}^n , convergentes respectivamente para X e Y, e $(\alpha_k)_k$ sucessão em $\mathbb R$ convergente para α .

Mostre que:

a) $\lim_{k} (\mathbf{x}_k + \mathbf{y}_k) = \mathbf{x} + \mathbf{y};$ c) $\lim_{k} \|\mathbf{x}_k\| = \|\mathbf{x}\|;$ b) $\lim_{k} (\alpha_k \mathbf{x}_k) = \alpha \mathbf{x};$ d) $\lim_{k} (\mathbf{x}_k \cdot \mathbf{y}_k) = \mathbf{x} \cdot \mathbf{y}.$

Exercício 1.14. Considere \mathbb{R}^n munido de um produto interno \cdot . Seja $(\mathrm{X}_k)_k$ uma sucessão em \mathbb{R}^n , $\mathbf{X} \in \mathbb{R}^n$. Mostre que $\lim_k \mathbf{X}_k = \mathbf{X}$ se e só se $\lim_k (\mathbf{X}_k \cdot \mathbf{Y}) = \mathbf{X} \cdot \mathbf{Y}$, $\forall \mathbf{Y} \in \mathbb{R}^n$.

Exercício 1.15. Dê um exemplo de uma sucessão $(x_k)_k$ em \mathbb{R}^n divergente tal que a sucessão $(\|\mathbf{x}_k\|)_k$ seja convergente.

Exercício 1.16. Seja $(x_k)_k$ uma sucessão em \mathbb{R}^n tal que $||x_k - x_l|| \leq \frac{1}{k} + \frac{1}{l}$, se $k, l \in \mathbb{N}$. Mostre que $(x_k)_k$ é convergente.

Exercício 1.17. Dê um exemplo de uma sucessão $(\mathbf{x}_k)_k$ em \mathbb{R}^2 que não seja convergente e tal que, $\|\mathbf{x}_{k+1} - \mathbf{x}_k\| \leq \frac{1}{k}$ se $k \in \mathbb{N}$.

Exercício 1.18. Sejam $(X_k)_k$ e $(Y_k)_k$ sucessões em \mathbb{R}^n convergentes, respectivamente para x e y e r > 0 tais que

$$\|\mathbf{X}_k - \mathbf{Y}\| < r < \|\mathbf{Y}_k - \mathbf{X}\|, \ \forall k \in \mathbb{N}.$$

Mostre que $\|\mathbf{X} - \mathbf{Y}\| = r$.

Exercício 1.19. Determine $\lim_n \left(\frac{\sin^n n}{n}, \frac{1}{n}\right)$, em \mathbb{R}^2 .

Exercício 1.20. Estude a convergência da série $\sum_{n=1}^{\infty} \left(\frac{1}{n}, \frac{1}{n^2}\right)$.

Exercício 1.21. Seja $(x_k)_k$ uma sucessão em \mathbb{R}^n convergente para $x \in \mathbb{R}^n$. Mostre que $K=\{\mathbf{X}_k\in\mathbb{R}^n:k\in\mathbb{N}\}\cup\{\mathbf{X}\}$ é fechado e limitado.

Exercício 1.22. Seja $(x_k)_k$ uma sucessão em \mathbb{R}^n . Mostre que são equivalentes as seguintes afirmações:

a)
$$\lim_{k} \|\mathbf{x}_k\| = +\infty;$$

- b) $(X_k)_k$ não possui qualquer subsucessão convergente;
- c) qualquer que seja o conjunto limitado $L\subseteq\mathbb{R}^n$, $\{k\in\mathbb{N}: \mathbf{X}_k\in L\}$ é finito.

Exercício 1.23. Sejam $(\mathbf{x}_k)_k$ uma sucessão em \mathbb{R}^n , $\mathbf{A},\mathbf{B}\in\mathbb{R}^n$, $r>\|\mathbf{A}-\mathbf{B}\|$

Mostre que se $\lim \mathbf{x}_k = \mathbf{B}$ então $\exists \ p \in \mathbb{N} : [k > p \Rightarrow \mathbf{x}_k \in B(\mathbf{A},r)]$

Exercício 1.24. Mostre, usando a definição de limite, que:

a)
$$\lim_{(x,y)\to(1,1)} 3x - 2y = 1;$$

b)
$$\lim_{(x,y)\to(1,2)} 3x^2 - y = 1.$$

Exercício 1.25. Determine, caso existam, os seguintes limites:

a)
$$\lim_{(x,y)\to(0,0)} (x^2+y^2) \operatorname{sen} \frac{1}{\sqrt{x^2+y^2}};$$
 f) $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2};$

f)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
;

g)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2+y^2+z^2}$$
;

c)
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{x^2+y^2}$$
;

h)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^3+yz^2}{x^4+y^2+z^4}$$
;

d)
$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^6}$$
;

i)
$$\lim_{(x,y)\to(0,0)} \left(\frac{x+y}{\sqrt{x^2+y^2}}, \frac{xy}{\sin(x^2+y^2)} \right);$$

e)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}};$$

$$\mathrm{j)} \quad \lim_{(x,y) \to (0,0)} \left(\frac{x^3}{x^2 + y^2} \,,\, y \, \, \mathrm{sen} \big(\log |x| \big) \right).$$

Exercício 1.26. Mostre que são contínuas as seguintes funções:

a)
$$\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$
 , onde \cdot é um produto interno em \mathbb{R}^n ; $(x,y) \mapsto x \cdot y$

b)
$$\mathbb{R}^n \longrightarrow \mathbb{R}$$
 , onde $\|\cdot\|$ é uma norma em \mathbb{R}^n . $X \mapsto \|X\|$

Exercício 1.27. Sejam $U\subseteq\mathbb{R}^n$, $f,g:U\longrightarrow\mathbb{R}^m$ e $\alpha:U\longrightarrow\mathbb{R}$ funções contínuas. Mostre que são também contínuas as funções f+g, αf e $f\cdot g$ (onde $f\cdot g$)(X) = $f(X)\cdot g(X)$ se $x \in U$).

- Exercício 1.28. Existem funções $f,g:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ descontínuas tais que f+g é contínua? E $f\circ g$ contínua?
- Exercício 1.29. Sejam K um subconjunto de \mathbb{R}^n , $f:K\longrightarrow \mathbb{R}^m$ uma função contínua e $(\mathbf{x}_k)_k$ uma sucessão em K tal que $\lim_k \mathbf{x}_k = \mathbf{A} \in K$.

Mostre que se $||f(\mathbf{x}_k)|| \leq M, \forall k \in \mathbb{N}$, então $||f(\mathbf{A})|| \leq M$.

Exercício 1.30. Sejam U um aberto de \mathbb{R}^n , $A \in U$ e $f,g:U \longrightarrow \mathbb{R}^m$ funções contínuas. Suponha que $f(A) \neq g(A)$. Mostre que existe $\varepsilon > 0$ tal que $B(A,\varepsilon) \subseteq U$ e $f(X) \neq g(X)$ para todo $X \in B(A,\varepsilon)$.

Exercício 1.31. Estude a continuidade das funções $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definidas por:

a)
$$f(x,y) = \begin{cases} \frac{2x^3y^3}{(x^2+y^2)^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

b)
$$f(x,y) = \begin{cases} \frac{x^3y}{x^4 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

c)
$$f(x,y) = \begin{cases} \frac{y(x^2 - y^2)}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

d)
$$f(x,y) = \begin{cases} x & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \notin \mathbb{Q} \end{cases}$$

e)
$$f(x,y) = \begin{cases} 0 & \text{se } 0 < y < x^2 \\ 1 & \text{se } y \le 0 \land x^2 \le y \end{cases}$$

f)
$$f(x,y) = \begin{cases} \frac{x+y}{x-y} & \text{se } x \neq y \\ 2 & \text{se } x = y \end{cases}$$

g)
$$f(x,y) = \begin{cases} \frac{x^2(y+1)+y^2}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$$

h)
$$f(x,y) = \begin{cases} \frac{3(xy)^{\frac{4}{3}}}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$$

topologia em \mathbb{R}^n

- Exercício 1.32. Verifique se as seguintes funções, definidas no maior subconjunto de \mathbb{R}^2 onde a "expressão analítica" referida tem sentido, admitem prolongamento contínuo a \mathbb{R}^2 .
 - a) $f(x,y) = \frac{\sin(x+y)}{x+y}$; c) $f(x,y) = \frac{xy}{|x|+|y|}$.
 - a) $f(x,y) = \frac{\sin(x+y)}{x+y}$; b) $f(x,y) = \frac{1-\cos(x^2+y^2)}{x^2+y^2}$;
- Exercício 1.33. Sejam K um subconjunto compacto de \mathbb{R}^n e $f:K\longrightarrow \mathbb{R}$ uma função contínua estritamente positiva. Mostre que

$$\exists m > 0 \ \forall x \in K \ f(x) \ge m.$$

- Exercício 1.34. Sejam U um aberto de \mathbb{R}^n conexo por arcos e V um aberto contido em U. Mostre que, se $V \neq U$ então, $(U \cap \overline{V}) \setminus V \neq \emptyset$.
- Exercício 1.35. Mostre que toda a aplicação linear $T:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ é uniformemente contínua.
- Exercício 1.36. Sejam $U\subseteq\mathbb{R}^n$, $V\subseteq\mathbb{R}^m$, $f:U\longrightarrow\mathbb{R}^m$ e $g:V\longrightarrow\mathbb{R}^l$ funções uniformemente contínuas tais que $f(U)\subseteq V$. Mostre que $g\circ f$ é uniformemente contínua.
- Exercício 1.37. Seja $f = (f_1, \dots, f_n) : U \longrightarrow \mathbb{R}^m$, com $U \subseteq \mathbb{R}^n$. Mostre f é uniformemente contínua se e só se para todo $i = 1, \dots, n$, f_i é uniformemente contínua.
- Exercício 1.38. Sejam $U \subseteq \mathbb{R}^n$ e $f: U \longrightarrow \mathbb{R}^m$.
 - a) Mostre que f é uniformemente contínua se e só se, dadas duas sucessões $(\mathbf{X}_k)_k$, $(\mathbf{Y}_k)_k$ em U, $\left[\lim_k (\mathbf{X}_k \mathbf{Y}_k) = 0\right] \Rightarrow \left[\lim_k \left[f(\mathbf{X}_k) f(\mathbf{Y}_k)\right] = 0\right]$.
 - b) Faça n=2, m=1, $U=\mathbb{R}^2$ e suponha que f(x,y)=xy, para todo $(x,y)\in\mathbb{R}^2$. Prove que f não é uniformemente contínua.

Sugestão: Considere em \mathbb{R}^2 as sucessões $\left((k,\frac{1}{k})\right)_{k\in\mathbb{N}}$ e $\left((k,0)\right)_{k\in\mathbb{N}}$.

- Exercício 1.39. Usando, eventualmente, o exercício anterior demonstre o Teorema 1.47.
- Exercício 1.40. Mostre que $f: \{\mathbf{x} \in \mathbb{R}^n: \|\mathbf{x}\| < 1\} \longrightarrow \mathbb{R}$ é contínua mas não $\mathbf{x} \longmapsto \frac{\mathbf{x}}{1-\|\mathbf{x}\|}$ é uniformemente contínua.

2. Derivabilidade

A contradição não é um sinal de falsidade nem a falta de contradição é um sinal de veracidade. Blaise Pascal.

Este capítulo é dedicado ao estudo do conceito de derivabilidade de funções. Primeiramente, introduz-se a noção de derivada direccional, que nos parece mais simples e mais naturalmente entendida pelos alunos e, de seguida, a noção de derivada global. Será feito um estudo da relação entre estes dois conceitos.

Os passos seguintes seguem os do estudo da derivabilidade de funções reais de variável real: Teorema da Derivação da Função Composta; derivadas de ordem superior; polinómio de Taylor.

Como consequência do Teorema da Derivação da Função Composta surgirá a regra de Leibniz (derivação debaixo do sinal de integração).

Será também dada uma interpretação geométrica do vector gradiente, que nos permitirá mais tarde (Capítulo 4) estudar os chamados máximos e mínimos condicionados.

2.1 Derivabilidade direccional

Para o cálculo da derivada direccional de uma função num ponto, segundo um dado vector, precisamos apenas de conhecer o valor da função na recta (se o vector for não nulo) definida pelo ponto e pelo vector. Por esse motivo não será de estranhar que a existência de derivadas direccionais não implique a continuidade.

Definição 2.1. Sejam $U \subseteq \mathbb{R}^n$, $f: U \longrightarrow \mathbb{R}^m$, $A \in U$ e $Y \in \mathbb{R}^n$ tais que existe $\varepsilon > 0$ tal que $A + hY \in U$ se $|h| < \varepsilon$.

Se existir,

$$\lim_{h\to 0} \frac{f(A+hY)-f(A)}{h}$$

diz-se que f é derivável em A segundo (o vector) Y.

Se o limite existir será denotado por f'(A; Y) (derivada de f em A segundo Y).

Em geral U será um aberto e por isso a existência de ε nas condições referidas estará sempre garantida.

Nota 2.2. Com as notações acima:

a) se
$$f = (f_1, \ldots, f_m)$$
 então

$$\lim_{h\to 0}\frac{f(\mathbf{A}+h\mathbf{Y})-f(\mathbf{A})}{h} = \lim_{h\to 0}\left(\frac{f_1(\mathbf{A}+h\mathbf{Y})-f_1(\mathbf{A})}{h},\ldots,\frac{f_m(\mathbf{A}+h\mathbf{Y})-f_m(\mathbf{A})}{h}\right).$$

Deste modo, utilizando a alínea b) da Proposição 1.21, f é derivável em A segundo Y se e só se f_i é derivável em A segundo Y para todo $i=1,\ldots,m$. Para além disso, se f é derivável em A segundo Y então

$$f'(A; Y) = (f'_1(A; Y), \dots, f'_m(A; Y));$$

b) se $\varphi:]-\varepsilon, \varepsilon[\longrightarrow \mathbb{R}^m$ é definida por $\varphi(t)=f(A+tY)$ então f é derivável em A segundo Y se e só se as funções componentes de φ , φ_i , $i=1,\ldots,m$, forem deriváveis em A0. Nesse caso $f'(A;Y)=\varphi'(A)$ 0.

Note-se que, se $f:U\longrightarrow \mathbb{R}$, $A=(a_1,\ldots,a_n)$ e $Y=E_i$, em que E_i é o i-ésimo vector da base canónica de \mathbb{R}^n então a derivada de f em A segundo E_i , se existir, é igual a,

$$\lim_{h\to 0} \frac{f(a_1,\ldots,a_{i-1},a_i+h,a_{i+1},\ldots,a_n)-f(a_1,\ldots,a_{i-1},a_i,a_{i+1},\ldots,a_n)}{h}.$$

Na prática estamos a considerar a função real de variável real definida numa vizinhança de a_i por $x \mapsto f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n)$ e a calcular a sua derivada no ponto a_i .

Definição 2.3. Sejam $U\subseteq \mathbb{R}^n$, $f:U\longrightarrow \mathbb{R}^m$, $A\in U$. Se $i\in\{1,\ldots,n\}$, chama-se derivada parcial de f em ordem a x_i no ponto A à derivada em A segundo E_i .

Nota 2.4. Nas condições da definição anterior:

- a) usaremos a notação $\frac{\partial f}{\partial x_i}(A)$ para significar $f'(A; E_i)$;
- b) escreveremos $\frac{\partial f}{\partial x_i}$ para significar a derivada parcial num ponto genérico, isto é, escreveremos $\frac{\partial f}{\partial x_i}$ em vez de $\frac{\partial f}{\partial x_i}(x_1,\ldots,x_n)$;
- c) o cálculo de $\frac{\partial f}{\partial x_i}(A)$ resume-se ao cálculo de m derivadas de funções reais de variável real

Vejamos alguns exemplos:

Exemplos 2.5.

a) Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$. Fixada a variável x (por exemplo) a função $(x,y) \mapsto x^2 + x \operatorname{sen} y$ real de variável real definida por $y \mapsto f(x,y)$ é derivável em todos os pontos. A derivada desta função é, por definição, a derivada parcial de f em ordem a g. Usando as regras de derivação que já conhecemos, obtemos $\frac{\partial f}{\partial y} = x \operatorname{cos} y$. De modo análogo, $\frac{\partial f}{\partial x} = 2x + \operatorname{sen} y$.

b) Seja
$$f: \mathbb{R}^2 \longrightarrow \begin{cases} xy & \mathbb{R}. \\ (x,y) & \mapsto \end{cases} \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

Usando os mesmos argumentos que no exemplo anterior podemos concluir que,

$$ullet$$
 $\frac{\partial f}{\partial x}(x,y)=rac{y(x-y)^2}{(x^2+y^2)^2}$ se $(x,y)
eq (0,0)$;

•
$$\frac{\partial f}{\partial y}(x,y) = \frac{x(x-y)^2}{(x^2+y^2)^2}$$
 se $(x,y) \neq (0,0)$.

Para o cálculo das derivadas parciais de f no ponto (0,0) "necessitamos" de utilizar a definição.

Facilmente se conclui que

$$\lim_{h\to 0} \frac{f((0,0)+h(1,0))}{h} = \lim_{h\to 0} \frac{f((0,0)+h(0,1))}{h} = 0.$$

Deste modo, apesar de não ser contínua em (0,0) (ver alínea d) do Exemplo 1.31), f admite derivadas parciais em todos os pontos de \mathbb{R}^2 .

Vamos agora ver para que vectores $y = (y_1, y_2) \in \mathbb{R}^2$ existe f'((0,0); y). Uma vez que, se $h \in \mathbb{R} \setminus \{0\}$

$$\frac{f((0,0)+h(y_1,y_2))}{h} = \frac{y_1y_2}{h(y_1^2+y_2^2)},$$

concluímos que só existe f'((0,0); Y) se $y_1 = 0$ ou $y_2 = 0$ e, nesse caso, f'((0,0); Y) é igual a zero.

c) se
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 \mathbb{R} $e\left(a,b\right) \in \mathbb{R}^2$ então
$$(x,y) \mapsto \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

$$\lim_{h \to 0} \frac{f((0,0) + h(a,b)) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{(ha)^3}{(ha)^2 + (hb)^2}}{h} = \frac{a^3}{a^2 + b^2}.$$

Deste modo, f'((0,0);(a,b)) = f(a,b).

Veremos mais tarde que, em certas condições a aplicação $Y \to f'(A;Y)$ (com $Y \in \mathbb{R}^n$) é uma aplicação linear. É claro que a função do último exemplo não satisfaz estas condições, relativamente ao ponto (0,0).

Neste momento estamos já em condições de mostrar uma parte desse resultado.

Proposição 2.6. Se $U \subseteq \mathbb{R}^n$, $A \in U$, $Y \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$ e $f : U \longrightarrow \mathbb{R}^m$ admite f'(A; Y) então existe $f'(A; \lambda Y)$ e

$$f'(A; \lambda Y) = \lambda f'(A; Y).$$

Demonstração. Se $\lambda = 0$ o resultado é trivial. Suponhamos agora que $\lambda \neq 0$.

Usando a Nota 2.2, alínea a), podemos supor que m=1.

Seja $\varepsilon > 0$ tal que $A + hY \in U$ se $|h| < \varepsilon$. Consideremos as funções,

$$\varphi:]-\varepsilon, \varepsilon[\longrightarrow \mathbb{R}$$

$$t \mapsto f(\mathbf{A} + t\mathbf{Y})$$

$$\mu:]-\frac{\varepsilon}{\lambda}, \frac{\varepsilon}{\lambda}[\longrightarrow]-\varepsilon, \varepsilon[$$

$$t \mapsto \lambda t$$

$$\psi:]-\frac{\varepsilon}{\lambda}, \frac{\varepsilon}{\lambda}[\longrightarrow \mathbb{R}$$

$$t \mapsto f(\mathbf{A} + t\lambda\mathbf{Y})$$

Deste modo, $\psi = \varphi \circ \mu$, o que mostra que $\psi'(0)$ existe e que,

$$f'(A; \lambda Y) = \psi'(0)$$
 pela Nota 2.2, alínea b)
= $(\varphi \circ \mu)'(0) = \varphi'(\mu(0)) \mu'(0) = \varphi'(0) \lambda$
= $\lambda f'(A; Y)$ pela Nota 2.2, alínea b).

Proposição 2.7. Sejam $U \subseteq \mathbb{R}^n$, $A \in U$, $Y \in \mathbb{R}^n$ $f,g:U \longrightarrow \mathbb{R}^m$ e $h:U \longrightarrow \mathbb{R}$. Se f,g,h admitem derivada em A segundo Y então f+g, hf e $f\cdot g$ admitem derivada em A segundo Y e,

a)
$$(f+g)'(A;Y) = f'(A;Y) + g'(A;Y);$$

b)
$$(hf)'(A; Y) = h'(A; Y) f(A) + h(A) f'(A; Y);$$

c)
$$(f \cdot g)'(A; Y) = f'(A; Y) \cdot g(A) + f(A) \cdot g'(A; Y)$$
.

Demonstração. Para a demonstração da alínea c), se $f=(f_1,\ldots,f_m)$ e $g=(g_1,\ldots,g_m)$ então $f\cdot g=f_1g_1+\cdots+f_mg_m$. Deste modo, utilizando as alíneas a) e b), $f\cdot g$ admite derivada em A segundo Y e,

$$\begin{split} (f \cdot g)'(\mathbf{A}; \mathbf{Y}) &= (f_1 g_1 + \dots + f_m g_m)'(\mathbf{A}; \mathbf{Y}) \\ &= (f_1 g_1)'(\mathbf{A}; \mathbf{Y}) + \dots + (f_m g_m)'(\mathbf{A}; \mathbf{Y}) \text{ pela alínea a}) \\ &= f_1'(\mathbf{A}; \mathbf{Y}) \ g_1(\mathbf{A}) + f_1(\mathbf{A}) \ g_1'(\mathbf{A}; \mathbf{Y}) + \dots + f_n'(\mathbf{A}; \mathbf{Y}) \ g_n(\mathbf{A}) + f_n(\mathbf{A}) \ g_n'(\mathbf{A}; \mathbf{Y}) \\ &= f'(\mathbf{A}; \mathbf{Y}) \cdot g(\mathbf{A}) + f(\mathbf{A}) \cdot g'(\mathbf{A}; \mathbf{Y}). \end{split}$$

A alínea a) é uma consequência imediata das definições.

Em relação à alínea b) basta considerar, atendendo à Nota 2.2, o caso em que m=1. Sejam então

$$\varphi:]-\varepsilon, \varepsilon[\longrightarrow \mathbb{R} \qquad \psi:]-\varepsilon, \varepsilon[\longrightarrow \mathbb{R}.$$

$$t \mapsto f(A+tY) \qquad t \mapsto h(A+tY)$$

Usando a Nota 2.2, alínea b), (hf)'(A; Y) existe, pois $\varphi \psi$ é derivável em 0. Deste modo,

$$(hf)'(A;Y) = (\varphi \psi)'(0)$$

$$= \varphi'(0) \psi(0) + \varphi(0) \psi'(0)$$

$$= h'(A;Y) f(A) + h(A) f'(A;Y).$$

Estamos agora em condições de enunciar a versão o Teorema de Lagrange para funções de várias variáveis.

Teorema 2.8 (Teorema de Lagrange). Sejam $U \subseteq \mathbb{R}^n$, $A \in U$, $Y \in \mathbb{R}^n$ e $f: U \longrightarrow \mathbb{R}$. Se $A + tY \in U$ para todo $t \in [0,1]$, $f_{\mid_{\{A+tY:,\ t \in [0,1]\}}}$ é contínua e existe f'(A+tY;Y) para todo $t \in]0,1[$ então

$$\exists \ \theta \in]0,1[: f(A+Y)-f(A)=f'(A+\theta Y;Y).$$

Demonstração. Basta aplicar o Teorema de Lagrange para funções reais de variável real à função,

$$\varphi: [0,1] \longrightarrow \mathbb{R}$$

$$t \mapsto f(A+tY)$$

notando que $\varphi'(t) = f'(A + tY; Y)$ para todo $t \in]0,1[$.

2.2 Derivabilidade global

Contrariamente à derivabilidade de uma função segundo um vector, o cálculo da derivada (global) de uma função num ponto "exige" o conhecimento da função numa vizinhança desse ponto.

Para tentarmos chegar á definição comecemos por analisar o que se passa para funções reais de variável real.

Seja $f: I \longrightarrow \mathbb{R}$ uma função derivável num ponto a e seja c = f'(a). Significa isto que,

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = c.$$

É claro que esta expressão pode ser generalizada para funções cujo conjunto de chegada é \mathbb{R}^m mas não para funções cujo domínio está contido em \mathbb{R}^n , com n>1, devido ao quociente.

De qualquer modo a expressão acima pode ser transformada (de modo equivalente) em

$$\lim_{x \to a} \frac{f(x) - f(a) - c(x - a)}{x - a} = 0$$

ou ainda,

$$\lim_{x \to a} \frac{f(x) - f(a) - L(x - a)}{|x - a|} = 0 \quad \text{ou} \quad \lim_{x \to a} \frac{|f(x) - f(a) - L(x - a)|}{|x - a|} = 0$$

em que $L: \mathbb{R} \longrightarrow \mathbb{R}$ é definida por L(y) = cy. Esta expressão já pode ser generalizada para funções cujo domínio está contido em \mathbb{R}^n .

Definição 2.9. Sejam $U\subseteq \mathbb{R}^n$, $A\in \overset{\circ}{U}$ e $f:U\longrightarrow \mathbb{R}^m$. Diz-se que f é derivável em A se existir uma aplicação linear $L:\mathbb{R}^n\longrightarrow \mathbb{R}^m$ tal que,

$$\lim_{X \to A} \frac{\|f(X) - f(A) - L(X-A)\|}{\|X-A\|} = 0$$

ou, equivalentemente,

$$\lim_{\mathbf{Y}\to\mathbf{0}}\frac{\|f(\mathbf{A}+\mathbf{Y})-f(\mathbf{A})-L(\mathbf{Y})\|}{\|\mathbf{Y}\|}=\mathbf{0}.$$

Note-se que, nas condições acima, f é derivável em A se e só se existir uma aplicação linear $L:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ tal que,

$$\lim_{\mathbf{X} \to \mathbf{A}} \frac{f(\mathbf{X}) - f(\mathbf{A}) - L(\mathbf{X} - \mathbf{A})}{\|\mathbf{X} - \mathbf{A}\|} = \mathbf{0}.$$

De seguida veremos que só pode existir uma aplicação linear que satisfaça a condição da definição. Deste modo, se f é derivável em A, definimos **derivada** de f no ponto A como sendo a aplicação linear que satisfaz a referida condição.

Para demonstrar a unicidade referida começamos com um lema.

Lema 2.10. Se $H:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ é uma aplicação linear tal que

$$\lim_{\mathbf{Y}\to\mathbf{0}}\frac{\|H(\mathbf{Y})\|}{\|\mathbf{Y}\|}=\mathbf{0}$$

então H é a aplicação nula.

Demonstração. Vejamos que H(x) = 0 para todo $x \in \mathbb{R}^n$.

Se x=0 então H(x)=0, porque H é linear. Se $x\neq 0$ então, fazendo y=hx e usando a hipótese,

$$0 = \lim_{h \to 0} \frac{\|H(h\mathbf{x})\|}{\|h\mathbf{x}\|} = \lim_{h \to 0} \frac{|h| \, \|H(\mathbf{x})\|}{|h| \, \|\mathbf{x}\|} = \lim_{h \to 0} \frac{\|H(\mathbf{x})\|}{\|\mathbf{x}\|} = \frac{\|H(\mathbf{x})\|}{\|\mathbf{x}\|}.$$

Deste modo H(x) = 0.

Proposição 2.11. Sejam $U \subseteq \mathbb{R}^n$, $A \in \overset{\circ}{U}$ e $f: U \longrightarrow \mathbb{R}^m$

Se f é derivável em A então existe uma e uma só aplicação linear $L:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ tal que,

$$\lim_{Y\to 0} \frac{\|f(A+Y) - f(A) - L(Y)\|}{\|Y\|} = 0.$$

Demonstração. Suponhamos que existem $L, M : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ satisfazendo,

$$\lim_{{\rm Y}\to 0} \frac{\|f({\rm A}+{\rm Y})-f({\rm A})-L({\rm Y})\|}{\|{\rm Y}\|} = \lim_{{\rm Y}\to 0} \frac{\|f({\rm A}+{\rm Y})-f({\rm A})-M({\rm Y})\|}{\|{\rm Y}\|} = 0$$

e seja H = L - M.

Deste modo, se $Y \in \mathbb{R}^n$,

$$\frac{\|H(Y)\|}{\|Y\|} = \frac{\|[f(A+Y)-f(A)-M(Y)]-[f(A+Y)-f(A)-L(Y)]\|}{\|Y\|}$$

$$\leq \frac{\|f(A+Y)-f(A)-M(Y)\|+\|f(A+Y)-f(A)-L(Y)\|}{\|Y\|}$$

$$= \frac{\|f(A+Y)-f(A)-M(Y)\|}{\|Y\|} + \frac{\|f(A+Y)-f(A)-L(Y)\|}{\|Y\|}.$$

Daqui concluímos que $\lim_{Y\to 0} \frac{\|H(Y)\|}{\|Y\|} = 0$ o que implica, usando o lema anterior, que H é a aplicação nula, ou seja que L = M.

Definição 2.12. Se $U \subseteq \mathbb{R}^n$, $A \in U$ e $f : U \longrightarrow \mathbb{R}^m$ é derivável em A denotaremos por $\mathcal{J}f(A)$ a matriz relativamente às bases canónicas de \mathbb{R}^n e \mathbb{R}^m da derivada de f em A. Esta matriz é designada por matriz jacobiana de f no ponto A.

Nota 2.13. Nas condições acima, se $f = (f_1, \ldots, f_m)$:

- a) usaremos a notação f'(A) para designar a derivada de f no ponto A (por vezes, na literatura, é usada a notação Df(A));
- b) f é derivável em A se e só se f_1, \ldots, f_m são deriváveis em A. Além disso,

$$f'(A) = (f'_1(A), \dots, f'_m(A));$$

- c) a matriz jacobiana de f em A é uma matriz cuja linha i é constituída pelos elementos da matriz jacobiana de f_i em A;
- d) se n=1, isto é, se f é uma função de variável real (usualmente referida por t) então f é derivável num ponto se e só se cada uma das componentes de f (que são funções reais de variável real) forem deriváveis nesse ponto. Tem então sentido definir a derivada de f num ponto t_0 como sendo o elemento $(f_1'(t_0), \ldots, f_m'(t_0))$.

No fundo estamos a identificar $\mathcal{L}(\mathbb{R}, \mathbb{R}^m)$, o conjunto das aplicações lineares de \mathbb{R} em \mathbb{R}^m , com \mathbb{R}^m ;

e) ainda no caso em que n=1 e olhando para $f'(t_0)$ como sendo o

$$\lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0}$$

vemos que, para cada t o quociente $\frac{f(t)-f(t_0)}{t-t_0}$ é um vector de \mathbb{R}^m que é secante ao gráfico de f no ponto $(t_0,f(t_0))$. Quando fazemos $t\to t_0$ essa secante vai tender para um vector tangente ao gráfico de f nesse ponto. Em particular, se $f'(t_0)\neq 0$ então o ponto $f(t_0)$ e o vector $f'(t_0)$ definem a recta tangente ao gráfico de f no ponto $(t_0,f(t_0))$.

Contrariamente ao que acontece com a derivabilidade direccional, a derivabilidade global implica a continuidade.

Teorema 2.14. Se $U \subseteq \mathbb{R}^n$, $f: U \longrightarrow \mathbb{R}^m$, $A \in U$ e f é derivável em A então

$$\exists \ M > 0 \ \exists \ \delta > 0 \quad \Big[\|\mathbf{X} - \mathbf{A}\| \le \delta \implies \|f(\mathbf{X}) - f(\mathbf{A})\| \le M \|\mathbf{X} - \mathbf{A}\| \Big].$$

Em particular f é contínua em A.

Demonstração. Por hipótese existe uma aplicação linear $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ tal que,

$$\lim_{X \to A} \frac{\|f(X) - f(A) - L(X-A)\|}{\|X-A\|} = 0.$$

Em particular, existe $\delta > 0$ tal que

$$\|X-A\| \le \delta \Rightarrow \frac{\|f(X) - f(A) - L(X-A)\|}{\|X-A\|} \le 1$$

ou equivalentemente

$$\|X-A\| \le \delta \implies \|f(X) - f(A) - L(X-A)\| \le \|X-A\|$$

Seja N>0, dado pela Proposição 1.29, tal que $\|L(\mathbf{X}-\mathbf{A})\|\leq N\|\mathbf{X}-\mathbf{A}\|$ para todo $\mathbf{X}\in\mathbb{R}^n$.

Deste modo, se $\|\mathbf{X} - \mathbf{A}\| \le \delta$ e M = N + 1

$$||f(X) - f(A)|| = ||f(X) - f(A) - L(X-A) + L(X-A)||$$

$$\leq ||f(X) - f(A) - L(X-A)|| + ||L(X-A)||$$

$$< M ||X-A||.$$

Vejamos agora que (analogamente ao que acontece para aplicações de $\mathbb R$ em $\mathbb R$) as aplicações afins têm derivada constante. Mais concretamente.

Proposição 2.15. Sejam $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ uma aplicação linear, $C \in \mathbb{R}^m$ e $H: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ a aplicação afim definida por H(X) = L(X) + C, se $X \in \mathbb{R}^n$.

Nestas condições H é derivável em todos os pontos e

$$\forall A \in \mathbb{R}^n \quad H'(A) = L.$$

Demonstração. Seja $A \in \mathbb{R}^n$. Então, como L é linear,

$$\frac{\|H(\mathbf{x}) - H(\mathbf{A}) - L(\mathbf{x} - \mathbf{A})\|}{\|\mathbf{x} - \mathbf{A}\|} = \frac{\|L(x) + \mathbf{c} - L(\mathbf{A}) - \mathbf{c} - L(\mathbf{x} - \mathbf{A})\|}{\|\mathbf{x} - \mathbf{A}\|} = \frac{\|L(x) - L(\mathbf{A}) - L(\mathbf{x}) + L(\mathbf{A})\|}{\|\mathbf{x} - \mathbf{A}\|} = \mathbf{0},$$

de onde se conclui o pretendido.

2.2.1 Derivabilidade global versus derivabilidade direccional

De seguida vamos encontrar uma relação entre a derivabilidade global e a direccional. Veremos que o primeiro conceito é mais forte que o segundo e que a existência de derivadas parciais contínuas numa vizinhança de um ponto implica a derivabilidade global nesse ponto.

Teorema 2.16. Sejam $U\subseteq\mathbb{R}^n$, $\mathbf{A}\in \overset{\circ}{U}$ e $f:U\longrightarrow\mathbb{R}^m$.

Se f é derivável em A então f é derivável em A segundo todas as direcções e,

$$\forall \mathbf{Y} \in \mathbb{R}^n \quad f'(\mathbf{A}; \mathbf{Y}) = f'(\mathbf{A})(\mathbf{Y}).$$

Demonstração. Se Y = 0 o resultado é trivial. Se $Y \neq 0$ então, por hipótese,

$$\lim_{x \to a} \tfrac{\|f(x) - f(a) - f'(a)(x-a)\|}{\|x-a\|} = 0.$$

Em particular, fazendo X = A + hY, obtemos

$$\lim_{h \to 0} \tfrac{\|f(\mathbf{A} + h\mathbf{Y}) - f(\mathbf{A}) - f'(\mathbf{A})(h\mathbf{Y})\|}{|h| \, \|\mathbf{Y}\|} = 0.$$

Temos assim sucessivamente,

•
$$\lim_{h\to 0} \frac{\|f(A+hY)-f(A)-f'(A)(hY)\|}{|h|} = 0$$
,

•
$$\lim_{h\to 0} \left\| \frac{f(A+hY)-f(A)-hf'(A)(Y)}{h} \right\| = 0$$
,

•
$$\lim_{h\to 0}\left\|\frac{f(\mathbf{A}+h\mathbf{Y})-f(\mathbf{A})}{h}-f'(\mathbf{A})(\mathbf{Y})\right\|=0$$
,

•
$$\lim_{h\to 0} \frac{f(A+hY)-f(A)}{h} - f'(A)(Y) = 0.$$

e, finalmente,
$$\lim_{h\to 0} \frac{f(\mathbf{A}+h\mathbf{Y})-f(\mathbf{A})}{h} = f'(\mathbf{A})(\mathbf{Y}).$$

Nota 2.17. Sejam $U \subseteq \mathbb{R}^n$, $f: U \longrightarrow \mathbb{R}^m$ e $A \in U$.

• Se existir f'(A) então existem as derivadas parciais de f em A e

$$\forall \mathbf{Y} = (y_1, \dots, y_n) \in \mathbb{R}^n \quad f'(\mathbf{A})(\mathbf{Y}) = \sum_{i=1}^n y_i \frac{\partial f}{\partial x_i}(\mathbf{A}).$$

ullet Se existirem derivadas parciais de f em A então f é derivável em A se e só se

$$\lim_{X \to A} \frac{\|f(x) - f(A) - L(X - A)\|}{\|X - A\|} = 0$$

em que L é a aplicação linear,

$$\mathbb{R}^n \longrightarrow \mathbb{R}^m$$

$$(y_1, \dots, y_n) \mapsto \sum_{i=1}^n y_i \frac{\partial f}{\partial x_i}(A).$$

Definição 2.18. Se $U \subseteq \mathbb{R}^n$, $A \in U$ e $f : U \longrightarrow \mathbb{R}$, define-se gradiente de f em A e denota-se por $\nabla f(A)$ como sendo o vector

$$\left(\frac{\partial f}{\partial x_1}(A), \ldots, \frac{\partial f}{\partial x_n}(A)\right).$$

O seguinte resultado é uma consequência imediata das definições e das observações acima.

Proposição 2.19. Se $U \subseteq \mathbb{R}^n$, $A \in U$ e $f = (f_1, \dots, f_m) : U \longrightarrow \mathbb{R}^m$ é derivável em A então

$$\mathcal{J}f(A) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(A) & \cdots & \frac{\partial f_1}{\partial x_n}(A) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(A) & \cdots & \frac{\partial f_m}{\partial x_n}(A) \end{pmatrix}$$

ou seja

$$f'(A): \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

$$(y_1, \dots, y_n) \mapsto \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(A) & \cdots & \frac{\partial f_1}{\partial x_n}(A) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(A) & \cdots & \frac{\partial f_m}{\partial x_n}(A) \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

Se
$$m=1$$
 podemos escrever $f'(\mathbf{A}): \mathbb{R}^n \longrightarrow \mathbb{R}.$ $\mathbf{Y} \mapsto \nabla f(\mathbf{A}) \cdot \mathbf{Y}$

Note-se que na linha i da matriz $\mathcal{J}f(A)$ está $\mathcal{J}f_i(A)$ que é "essencialmente" o gradiente de f_i em A.

Exemplos 2.20. Vejamos alguns exemplos.

a) Consideremos a função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

Fazendo os cálculos concluímos que $\frac{\partial f}{\partial x}(0,0) = 0$ e $\frac{\partial f}{\partial y}(0,0) = 0$.

Vamos agora mostrar que f é derivável em (0,0) ou seja que

$$\lim_{(x,y)\to(0,0)}\frac{|f(x,y)-f(0,0)-\nabla f(0,0)\cdot((x,y)-(0,0))|}{\|(x,y)-(0,0)\|}=0.$$

Para isso basta notar que

$$\frac{|f(x,y)-f(0,0)-\nabla f(0,0)\cdot((x,y)-(0,0))|}{\|(x,y)-(0,0)\|} = \frac{x^2y^2}{\sqrt{x^2+y^2}} \le \frac{x^2}{\sqrt{x^2+y^2}} \le |x|.$$

As designaldades referidas acima são consequência do facto de $|x|, |y| \leq \sqrt{x^2 + y^2}$, quaisquer que sejam $x, y \in \mathbb{R}$.

b) Consideremos a função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

Note-se que $\frac{\partial f}{\partial x}(0,0)=1$ e $\frac{\partial f}{\partial y}(0,0)=0$. Por outro lado a função

$$\frac{\left|\frac{x^3}{x^2+y^2} - \left[x\frac{\partial f}{\partial x}(0,0) + y\frac{\partial f}{\partial y}(0,0)\right]\right|}{\sqrt{x^2+y^2}} \quad \left(=\frac{|xy^2|}{\left(\sqrt{x^2+y^2}\right)^3}\right)$$

não tem limite quando $(x,y) \to (0,0)$ (basta considerar as restrições à recta y=x e à recta y=0). Concluímos assim que f não é derivável em (0,0).

Note-se que os cálculos que fizemos na página 36 sobre esta mesma função e o Teorema 2.16 são suficientes para mostrar que f não é derivável em (0,0).

O seguinte teorema mostra-nos como, "na maior" parte dos casos, se pode concluir que uma função é derivável num ponto sem usar a definição.

Começamos com uma definição.

Definição 2.21. Uma função $f: U \longrightarrow \mathbb{R}^m$, em que U é um aberto, diz-se de classe C^1 se admitir derivadas parciais contínuas.

Vejamos que toda a função de classe C^1 é derivável (e, portanto, contínua) em todos os pontos do domínio. Esta condição não é necessária (ver Exercício 2.9).

Teorema 2.22. Se U é um aberto de \mathbb{R}^n e $f:U\longrightarrow\mathbb{R}^m$ é uma função de classe C^1 então f é derivável em todos os pontos.

Demonstração. Como f é diferenciável num ponto se e só se cada uma das suas (m) componentes o for, basta-nos considerar o caso em que m=1.

Seja então $A \in U$. Atendendo ao Teorema 2.16, se f for diferenciável em A então, para todo $Y \in \mathbb{R}^n$, $f'(A)(Y) = \nabla f(A) \cdot Y$. Mostremos que de facto assim é, ou seja, que

$$\lim_{\mathbf{X} \to \mathbf{A}} \frac{|f(x) - f(\mathbf{A}) - \nabla f(\mathbf{A}) \cdot (\mathbf{X} - \mathbf{A})|}{\|\mathbf{X} - \mathbf{A}\|} = 0.$$

Seja $\delta > 0$ tal que $B(A, \delta) \subseteq U$. Para simplificar a escrita consideremos $A = (a_1, \dots, a_n)$, $X = (x_1, \dots, x_n)$ em que X é um ponto genérico de $B(A, \delta)$.

Para $X \in B(A, \delta)$ e $i \in \{0, ..., n\}$, seja Y_i o elemento de \mathbb{R}^n tendo na coordenada j o valor a_j , se $j \leq i$ e x_j , caso contrário (por exemplo, se n = 4, $Y_0 = (x_1, x_2, x_3, x_4)$ e $Y_2 = (a_1, a_2, x_3, x_4)$). Note-se que: $Y_0 = X$; $Y_n = A$; $Y_1, ..., Y_n \in B(A, \delta)$; qualquer ponto que esteja no segmento de recta que une dois destes pontos ainda pertence a $B(A, \delta)$; $Y_{i-1} - Y_i = (x_i - a_i)$ E_i (em que E_i é o i-ésimo vector da base canónica de \mathbb{R}^n).

Notando que

$$f(\mathbf{X}) - f(\mathbf{A}) - \nabla f(\mathbf{A}) \cdot (\mathbf{X} - \mathbf{A}) = \sum_{i=1}^{n} \left[f(\mathbf{Y}_{i-1}) - f(\mathbf{Y}_i) \right] - \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\mathbf{A}) (x_i - a_i)$$

e que, usando o Teorema 2.8, se $i=1,\ldots,n$ existe $\theta_i\in]0,1[$ tal que

$$f(Y_{i-1}) - f(Y_i) = f'(Y_{i-1} + \theta_i(Y_{i-1} - Y_i); Y_{i-1} - Y_i)$$

obtemos

$$f(\mathbf{X}) - f(\mathbf{A}) - \nabla f(\mathbf{A}) \cdot (\mathbf{X} - \mathbf{A}) = \sum_{i=1}^{n} \left\{ f'(\mathbf{Y}_{i-1} + \theta_i(\mathbf{Y}_{i-1} - \mathbf{Y}_i); (x_i - a_i) \ \mathbf{E}_i) - \frac{\partial f}{\partial x_i}(\mathbf{A})(x_i - a_i) \right\}$$

$$= \sum_{i=1}^{n} \left\{ f'(\mathbf{Y}_{i-1} + \theta_i(\mathbf{Y}_{i-1} - \mathbf{Y}_i); \mathbf{E}_i)(x_i - a_i) - \frac{\partial f}{\partial x_i}(\mathbf{A})(x_i - a_i) \right\}$$

$$= \mathbf{E}_i \left[\frac{\partial f}{\partial x_i}(\mathbf{Y}_{i-1} + \theta_i(\mathbf{Y}_{i-1} - \mathbf{Y}_i)) - \frac{\partial f}{\partial x_i}(\mathbf{A}) \right] (x_i - a_i).$$

Deste modo,

$$\frac{|f(x) - f(A) - \nabla f(A) \cdot (X-A)|}{\|X-A\|} = \frac{\left| \sum_{i=1}^{n} \left[\frac{\partial f}{\partial x_i} (Y_{i-1} + \theta_i (Y_{i-1} - Y_i)) - \frac{\partial f}{\partial x_i} (A) \right] (x_i - a_i) \right|}{\|X-A\|} \\
\leq \frac{\sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} (Y_{i-1} + \theta_i (Y_{i-1} - Y_i)) - \frac{\partial f}{\partial x_i} (A) \right| |x_i - a_i|}{\|X-A\|} \\
\leq \frac{\sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} (Y_{i-1} + \theta_i (Y_{i-1} - Y_i)) - \frac{\partial f}{\partial x_i} (A) \right| \|X-A\|} \\
\leq \frac{\sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} (Y_{i-1} + \theta_i (Y_{i-1} - Y_i)) - \frac{\partial f}{\partial x_i} (A) \right| \|X-A\|} \\
= \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} (Y_{i-1} + \theta_i (Y_{i-1} - Y_i)) - \frac{\partial f}{\partial x_i} (A) \right|.$$

Para concluir basta usar o facto de as derivadas parciais de f serem contínuas e notar que, se $i=1,\ldots,n$ e X tende para A, então $Y_{i-1}+\theta_i(Y_{i-1}-Y_i)$ tende para A.

No Exercício 4 a função considerada admite derivadas contínuas em $\mathbb{R}^2 \setminus \{(0,0)\}$, admite derivadas direccionais em (0,0) segundo qualquer vector (de um modo linear) mas não é derivável em (0,0).

Exemplos 2.23. Usando o último teorema podemos concluir imediatamente que a função do Exemplo 2.5 a) é derivável em \mathbb{R}^2 e que as restantes funções referidas nos Exemplos 2.5 e 2.20 são deriváveis (pelo menos) em $\mathbb{R}^2 \setminus \{(0,0)\}$.

2.2.2 Teorema da Derivação Função Composta

Vimos no primeiro capítulo que a composta de funções contínuas é ainda uma função contínua. O Teorema da Derivação da Função Composta (também conhecido por Regra da Cadeia) diz-nos que a composta de funções deriváveis é ainda derivável.

Teorema 2.24 (Teorema da Derivação da Função Composta). Sejam $U \subseteq \mathbb{R}^n$, $V \subseteq \mathbb{R}^m$, $A \in U$, $f : U \longrightarrow \mathbb{R}^m$ e $g : V \longrightarrow \mathbb{R}^k$. Se $f(U) \subseteq V$, f é derivável em A e g é derivável em f(A) então $g \circ f$ é derivável em A e,

$$(g \circ f)'(A) = g'(f(A)) \circ f'(A)$$

ou, equivalentemente,

$$\mathcal{J}(g \circ f)(A) = \mathcal{J}g(f(A)) \cdot \mathcal{J}f(A)$$

(onde · representa o produto de matrizes).

Demonstração. Sejam L = f'(A) e T = g'(f(A)). Pretende-se mostrar que

$$\lim_{\mathbf{X} \to \mathbf{A}} \frac{(g \circ f)(\mathbf{X}) - (g \circ f)(\mathbf{A}) - (T \circ L)(\mathbf{X} - \mathbf{A})}{\|\mathbf{X} - \mathbf{A}\|} = \mathbf{0}.$$

Comecemos por notar que $\frac{(g\circ f)(\mathbf{x})-(g\circ f)(\mathbf{A})-(T\circ L)(\mathbf{x}-\mathbf{A})}{\|\mathbf{x}-\mathbf{A}\|}$ é igual a

$$\frac{g(f(\mathbf{x})) - g(f(\mathbf{A})) - T(f(\mathbf{x}) - f(\mathbf{A}))}{\|\mathbf{x} - \mathbf{A}\|} + \frac{T(f(\mathbf{x}) - f(\mathbf{A})) - (T \circ L)(\mathbf{x} - \mathbf{A})}{\|\mathbf{x} - \mathbf{A}\|}.$$

Vamos agora mostrar que cada uma destas duas parcelas tende para $\bf 0$ quando $\bf X$ tende para $\bf A$.

Para a segunda parcela obtemos, usando o facto de T ser linear,

$$\frac{T(f(\mathbf{x}) - f(\mathbf{A})) - (T \circ L)(\mathbf{x} - \mathbf{A})}{\|\mathbf{x} - \mathbf{A}\|} = \frac{T\left(f(\mathbf{x}) - f(\mathbf{A}) - L(\mathbf{x} - \mathbf{A})\right)}{\|\mathbf{x} - \mathbf{A}\|} = T\left(\frac{f(\mathbf{x}) - f(\mathbf{A}) - L(\mathbf{x} - \mathbf{A})}{\|\mathbf{x} - \mathbf{A}\|}\right).$$

Deste modo,

$$\lim_{\mathbf{X} \to \mathbf{A}} \frac{T(f(\mathbf{X}) - f(\mathbf{A})) - (T \circ L)(\mathbf{X} - \mathbf{A})}{\|\mathbf{X} - \mathbf{A}\|} = \lim_{\mathbf{X} \to \mathbf{A}} T\left(\frac{f(\mathbf{X}) - f(\mathbf{A}) - L(\mathbf{X} - \mathbf{A})}{\|\mathbf{X} - \mathbf{A}\|}\right)$$

$$= T\left(\lim_{\mathbf{X} \to \mathbf{A}} \frac{f(\mathbf{X}) - f(\mathbf{A}) - L(\mathbf{X} - \mathbf{A})}{\|\mathbf{X} - \mathbf{A}\|}\right)$$

$$= T(\mathbf{0}) \quad \text{porque } T \text{ \'e contínua}$$

$$= T(\mathbf{0}) \quad \text{porque } T \text{ \'e linear.}$$

Note-se agora que a primeira parcela é igual a

$$\begin{cases} \frac{g(f(\mathbf{x})) - g(f(\mathbf{A})) - T(f(\mathbf{x}) - f(\mathbf{A}))}{\|f(\mathbf{x}) - f(\mathbf{A})\|} & \text{se } f(\mathbf{x}) \neq f(\mathbf{A}) \\ 0 & \text{se } f(\mathbf{x}) = f(\mathbf{A}). \end{cases}$$

Usando a continuidade de f, a derivabilidade de g em f(A) e o facto de o quociente $\frac{\|f(x)-f(A)\|}{\|x-A\|}$ ser limitado numa vizinhança de A (ver Teorema 2.14) concluímos que

$$\lim_{\mathbf{X} \to \mathbf{A}} \frac{g(f(\mathbf{X})) - g(f(\mathbf{A})) - T(f(\mathbf{X}) - f(\mathbf{A}))}{\|\mathbf{X} - \mathbf{A}\|} = \mathbf{0}$$

o que conclui a demonstração do teorema.

Se f é uma função de variável real e g é uma função real, o Teorema da Função Composta pode ser escrito na seguinte forma.

Corolário 2.25. Sejam $I\subseteq\mathbb{R},\ V\subseteq\mathbb{R}^m,\ t_0\in I,\ f:I\longrightarrow\mathbb{R}^m$ e $g:V\longrightarrow\mathbb{R}.$ Se $f(I) \subseteq V$, f é derivável em t_0 e g é derivável em $f(t_0)$ então $g \circ f$ é derivável em t_0 e,

$$(g \circ f)'(t_0) = \nabla g(f(t_0)) \cdot f'(t_0). \qquad \Box$$

Com as notações do Teorema da Derivação da Função Composta e usando a regra da multiplicação de matrizes, concluímos que, se $f=(f_1,\ldots,f_m)$, $g=(g_1,\ldots,g_k)$ e $g\circ f=$ (h_1,\ldots,h_k) então para todo $i\in\{1,\ldots,k\}$, $j\in\{1,\ldots,n\}$ e $\mathrm{X}\in U$,

$$\frac{\partial h_i}{\partial x_j}(X) = \frac{\partial g_i}{\partial x_1}(f(X))\frac{\partial f_1}{\partial x_j}(X) + \frac{\partial g_i}{\partial x_2}(f(X))\frac{\partial f_2}{\partial x_j}(X) + \dots + \frac{\partial g_i}{\partial x_m}(f(X))\frac{\partial f_m}{\partial x_j}(X)$$

$$= \sum_{s=1}^{m} \frac{\partial g_i}{\partial x_s}(f(X))\frac{\partial f_s}{\partial x_j}(X).$$

Exemplo 2.26. Consideremos as funções

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2 \quad g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y,z) \mapsto (xz \cos y, x y^2 z) \quad (x,y) \mapsto x^3 y$

(o facto de usarmos letras iguais para algumas das variáveis de f e de g não deve constituir problema).

Deste modo a função $h=g\circ f$ é definida por

$$h(x, y, z) = g(xz \cos y, x y^2 z)$$

e. portanto.

e, portanto,
$$\begin{cases} \frac{\partial h}{\partial x}(x,y,z) &= \frac{\partial g}{\partial x}(xz\cos y,x\,y^2z)\frac{\partial(xz\cos y)}{\partial x}(x,y,z) + \frac{\partial g}{\partial y}(xz\cos y,x\,y^2z)\frac{\partial(xy^2z)}{\partial x}(x,y,z) \\ \frac{\partial h}{\partial y}(x,y,z) &= \frac{\partial g}{\partial x}(xz\cos y,x\,y^2z)\frac{\partial(xz\cos y)}{\partial y}(x,y,z) + \frac{\partial g}{\partial y}(xz\cos y,x\,y^2z)\frac{\partial(xy^2z)}{\partial y}(x,y,z) \\ \frac{\partial h}{\partial z}(x,y,z) &= \frac{\partial g}{\partial x}(xz\cos y,x\,y^2z)\frac{\partial(xz\cos y)}{\partial z}(x,y,z) + \frac{\partial g}{\partial y}(xz\cos y,x\,y^2z)\frac{\partial(xy^2z)}{\partial z}(x,y,z) \\ ou seja \end{cases}$$

$$\begin{cases} \frac{\partial h}{\partial x}(x,y,z) &= 3(xz\cos y)^2 (xy^2z) (z\cos y) + (xz\cos y)^3 (y^2z) \\ \frac{\partial h}{\partial y}(x,y,z) &= 3(xz\cos y)^2 (xy^2z) (-xz\sin y) + (xz\cos y)^3 (2xyz) \\ \frac{\partial h}{\partial z}(x,y,z) &= 3(xz\cos y)^2 (xy^2z) (x\cos y) + (xz\cos y)^3 (xy^2). \end{cases}$$

Recorde-se que, se I é um intervalo de \mathbb{R} e $f:I\longrightarrow\mathbb{R}$ é uma função com derivada nula, então f é constante. Este resultado pode ser generalizado para funções de várias variáveis do seguinte modo.

Teorema 2.27. Sejam U um aberto conexo por arcos de \mathbb{R}^n e $f:U\longrightarrow\mathbb{R}^m$ uma função derivável em todos os pontos. Se f'(x) é a aplicação nula para todo $x\in U$ então f é constante.

Demonstração. Suponhamos que $f=(f_1,\ldots,f_m)$ e seja $A\in U$. Consideremos

$$V = \{ x \in U : f(x) = f(A) \}.$$

Vejamos que V é um aberto. Se $\mathbf{B} \in V$ consideremos $\delta > 0$ tal que $B(\mathbf{B}, \delta) \subseteq U$. Vejamos que $B(\mathbf{B}, \delta) \subseteq V$. Se $\mathbf{X} \in B(\mathbf{B}, \delta)$ seja $\gamma: [0,1] \to U$ definida por $\gamma(t) = \mathbf{B} + t(\mathbf{X} - \mathbf{B})$. Note-se que $f_i \circ \gamma: [0,1] \to \mathbb{R}$ é derivável e, se $t \in [0,1]$,

$$(f_i \circ \gamma)'(t) = f_i'(\gamma(t))(\gamma'(t)) = 0$$
 por hipótese sobre f_i .

Deste modo $f_i \circ \gamma$ é uma função constante. Em particular, $(f_i \circ \gamma)(1) = (f_i \circ \gamma)(0)$, ou seja, $f_i(X) = f_i(A) = f_i(A)$ e, portanto $X \in V$.

Se $U \neq V$ então, pelo Exercício 1.34, existe $X \in (U \cap \overline{V}) \setminus V$. Em particular existe uma sucessão $(X_n)_{n \in \mathbb{N}}$ em V convergindo para X. Por continuidade e pela definição de V, $f(X) = \lim_n f(X_n) = \lim_n f(A) = f(A)$, contrariando a hipótese, uma vez que $X \notin V$. \square

2.2.3 Regra de Leibniz

Nesta secção vamos enunciar e demonstrar a chamada regra de derivação de Leibniz (ou regra da derivação "debaixo" do sinal de integração).

Consideremos, por exemplo, a função
$$g: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
.
$$x \mapsto \int_{\frac{1}{x}}^{\frac{2}{x}} \frac{e^{-xy}}{y} \ dy.$$

Note-se que a variável "aparece" em ambos os limites de integração (o que não deve constituir novidade) e na função a integrar.

Pretende-se mostrar que g é uma função derivável e dar uma regra para o cálculo da sua derivada.

Comecemos com o caso em que a variável aparece apenas na função a integrar.

Teorema 2.28. Sejam $n \geq 2$, U um aberto de \mathbb{R}^n , $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$ tal que $R \subseteq U$ e $f: U \to \mathbb{R}$ uma função contínua. Considere-se a função,

$$g: [a_1,b_1] \times \cdots \times [a_{n-1},b_{n-1}] \longrightarrow \mathbb{R}$$

$$(x_1,\ldots,x_{n-1}) \mapsto \int_{a_n}^{b_n} f(x_1,\ldots,x_{n-1},y) dy.$$

Então:

- a) g é uma função contínua;
- b) se, para algum $i \in \{1, \dots, n-1\}$, existe $\frac{\partial f}{\partial x_i}$ e $\frac{\partial f}{\partial x_i}$ é uma função contínua então existe $\frac{\partial g}{\partial x_i}$ e,

$$\frac{\partial g}{\partial x_i}: [a_1, b_1] \times \dots \times [a_{n-1}, b_{n-1}] \longrightarrow \mathbb{R}.$$

$$(x_1, \dots, x_{n-1}) \mapsto \int_{a_n}^{b_n} \frac{\partial f}{\partial x_i}(x_1, \dots, x_{n-1}, y) dy$$

Demonstração. Apenas para simplificar a notação, vamos considerar o caso em que n=2.

a) Seja $c \in [a_1, b_1]$. Pretende-se mostrar que,

$$\forall \varepsilon > 0 \; \exists \; \delta > 0 : \quad [|x_1 - c| < \delta \Rightarrow |g(x_1) - g(c)| < \varepsilon].$$

Fixemos $\varepsilon > 0$. Como $f_{|R}$ é uniformemente contínua (pois f é contínua e R é um conjunto compacto),

$$\exists \ \delta > 0: \quad \left[\ \|(x_1,y_1) - (x_2,y_2)\| < \delta \ \Rightarrow \ |f(x_1,y_1) - f(x_2,y_2)| < \frac{\varepsilon}{b_2 - a_2} \right].$$

Vejamos que, para este δ , é válida a implicação

$$|x_1-c|<\delta \Rightarrow |g(x_1)-g(c)|<\varepsilon.$$

Seja x_1 tal que $|x_1 - c| < \delta$. Então,

$$|g(x_1) - g(c)| = \left| \int_{a_2}^{b_2} f(x_1, y) - f(c, y) \, dy \right| \le \int_{a_2}^{b_2} \left| f(x_1, y) - f(c, y) \right| \, dy$$

Note-se que, se $y \in [a_2,b_2]$ então $\|(x_1,y)-(c,y)\| = |x_1-c| < \delta$ e, portanto, $|f(x_1,y)-f(c,y)|<rac{arepsilon}{b_2-a_2}.$ Deste modo

$$|g(x_1) - g(c)| < \int_{a_2}^{b_2} \frac{\varepsilon}{b_2 - a_2} dy = \varepsilon.$$

b) Seja $c \in [a_1, a_2]$. Vejamos que

$$\lim_{h\to 0} \frac{g(c+h)-g(c)}{h} = \int_{a_2}^{b_2} \frac{\partial f}{\partial x_1}(c,y) \ dy$$

ou equivalentemente, que

$$\lim_{h\to 0} \left[\frac{g(c+h)-g(c)}{h} - \int_{a_2}^{b_2} \frac{\partial f}{\partial x_1}(c,y) \ dy \right] = 0.$$

Seja $\varepsilon>0$. Como $\left.\frac{\partial f}{\partial x_1}\right|_{R}$ é uniformemente contínua (porque é contínua e definida num compacto)

$$\exists \ \delta > 0: \quad \left[\ \|(x_1,y_1) - (x_2,y_2)\| < \delta \ \Rightarrow \ \left| \frac{\partial f}{\partial x_1}(x_1,y_1) - \frac{\partial f}{\partial x_1}(x_2,y_2) \right| < \frac{\varepsilon}{b_2 - a_2} \right].$$

Então,

$$\left| \frac{g(c+h) - g(c)}{h} - \int_{a_2}^{b_2} \frac{\partial f}{\partial x_1}(c, y) \ dy \right| = \left| \int_{a_2}^{b_2} \left[\frac{f(c+h, y) - f(c, y)}{h} - \frac{\partial f}{\partial x_1}(c, y) \right] \ dy \right|.$$

Para cada $y \in [a_2, b_2]$ seja α (que depende de c, h e y) pertencente ao intervalo definido por c e c+h tal que $f(c+h,y)-f(c,y)=\frac{\partial f}{\partial x_1}(\alpha,y)\,h$. Deste modo

$$\left| \frac{g(c+h) - g(c)}{h} - \int_{a_2}^{b_2} \frac{\partial f}{\partial x_1}(c, y) \, dy \right| = \left| \int_{a_2}^{b_2} \left[\frac{\partial f}{\partial x_1}(\alpha, y) - \frac{\partial f}{\partial x_1}(c, y) \right] \, dy \right|$$

$$\leq \int_{a_2}^{b_2} \left| \frac{\partial f}{\partial x_1}(\alpha, y) - \frac{\partial f}{\partial x_1}(c, y) \right| \, dy.$$

Notando que $|f(\alpha,y)-f(c,y)|<rac{arepsilon}{b_2-a_2}$, pois $\|(\alpha,y)-(c,y)\|=|\alpha-c|<\delta$, concluímos que

$$\left| \frac{g(c+h) - g(c)}{h} - \int_{a_2}^{b_2} \frac{\partial f}{\partial x_1}(c, y) \, dy \right| < \frac{\varepsilon}{b_2 - a_2} = \varepsilon.$$

Vejamos uma consequência e generalização deste teorema.

Corolário 2.29. Sejam $n \in \mathbb{N}$, V um aberto de \mathbb{R}^{n+1} e $f: V \to \mathbb{R}$. Se U é um aberto de \mathbb{R}^n e $g, h: U \to \mathbb{R}$ são tais que tem sentido falar na função

$$F: U \longrightarrow \mathbb{R}$$

$$X \mapsto \int_{g(x)}^{h(x)} f(x, y) dy,$$

então:

- a) se f, g e h são funções contínuas, F também é contínua;
- b) se f, g e h são funções de classe C^1 , F é de classe C^1 e, para $i \in \{1,\dots,n\}$ e $\mathbf{x} \in U$,

$$\frac{\partial F}{\partial x_i}(\mathbf{x}) = \int_{g(\mathbf{x})}^{h(\mathbf{x})} \frac{\partial f}{\partial x_i}(\mathbf{x}, y) \ dy + f(\mathbf{x}, h(\mathbf{x})) \frac{\partial h}{\partial x_i}(\mathbf{x}) - f(\mathbf{x}, g(\mathbf{x})) \frac{\partial g}{\partial x_i}(\mathbf{x}). \quad \text{[Regra de Leibniz]}$$

Demonstração. Para simplificar as notações vamos considerar $U=\mathbb{R}^n$ e $V=\mathbb{R}^{n+1}$. Consideremos as funções,

$$\Phi: \mathbb{R}^n \longrightarrow \mathbb{R}^{n+2} \qquad \Psi: \mathbb{R}^{n+2} \longrightarrow \mathbb{R}$$

$$X \mapsto (X, g(X), h(X)) \qquad (X, z, t) \mapsto \int_z^t f(X, y) \, dy$$

Note-se que $F=\Psi\circ\Phi$. Como Φ e Ψ são funções contínuas então F também é contínua. Por outro lado, nas condições da alínea b), Φ e Ψ são deriváveis e portanto, usando o Teorema da Derivação da Função Composta, F também o é e $\mathcal{J}F(x) = \mathcal{J}\Psi(\Phi(x))\cdot\mathcal{J}\Phi(x)$.

Para concluir a igualdade pretendida basta multiplicar as matrizes referidas, notando que,

Para concluir a igualdade pretendida basta multiplicar as matrizes referidas, notando que,
$$\begin{cases} \mathcal{J}F(\mathbf{x}) &= \left(\frac{\partial F}{\partial x_1}(\mathbf{x}) \ \cdots \ \frac{\partial F}{\partial x_n}(\mathbf{x})\right) \\ \mathcal{J}\Psi(\Phi(\mathbf{x}) &= \left(\int_{g(\mathbf{x})}^{h(\mathbf{x})} \frac{\partial f}{\partial x_1}(\mathbf{x},y) \ dy \ \cdots \ \int_{g(\mathbf{x})}^{h(\mathbf{x})} \frac{\partial f}{\partial x_n}(\mathbf{x},y) \ dy \ - f(\mathbf{x},g(\mathbf{x})) \ f(\mathbf{x},h(\mathbf{x})) \right) \\ & \text{usando o Teorema 2.28} \\ \\ \mathcal{J}\Phi(\mathbf{x}) &= \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \frac{\partial g}{\partial x_1}(\mathbf{x}) & \frac{\partial g}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial g}{\partial x_n}(\mathbf{x}) \\ \frac{\partial h}{\partial x_1}(\mathbf{x}) & \frac{\partial h}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial h}{\partial x_n}(\mathbf{x}) \end{pmatrix}.$$

Aplicando a regra que acabamos de demonstrar ao exemplo referido no início da secção obtemos,

$$g'(x) = \int_{\frac{1}{x}}^{\frac{2}{x}} -e^{-xy} dy - \frac{e^{-2}}{x} + \frac{e^{-1}}{x} = \left[\frac{e^{-xy}}{x}\right]_{\frac{1}{x}}^{\frac{2}{x}} - \frac{e^{-2}}{x} + \frac{e^{-1}}{x} = 0,$$

o que mostra que a função g é constante. Como exercício pode tentar demonstrar directamente que a função g é constante!

Como aplicação da regra de Leibniz, vamos demonstrar um resultado que será melhorado mais tarde (ver Teorema 5.18 alíneas c) e d)).

A uma função H de um aberto U de \mathbb{R}^n em \mathbb{R}^n chamamos campo de vectores , uma vez que, se $x \in U$, H(x) pode ser interpretado como um vector aplicado em x. Se existir

uma função $f:U\longrightarrow \mathbb{R}$ de classe C^1 tal que $H=\nabla f$, dizemos que H é um campo de gradientes .

Teorema 2.30. Sejam U um aberto de \mathbb{R}^n e $H=(H_1,\ldots,H_n):U\to\mathbb{R}^n$ uma função de classe C^1 tal que

$$\forall i, j \leq n \quad \forall (x_1, \dots, x_n) \in U \quad \frac{\partial H_j}{\partial x_i}(x_1, \dots, x_n) = \frac{\partial H_i}{\partial x_j}(x_1, \dots, x_n).$$

Então, para todo $A \in U$ existe uma vizinhança V de A contida em U, existe $f: V \to \mathbb{R}$ tal que $H = \nabla f$ (isto é, H é localmente um campo de gradientes).

Demonstração. Sejam $x_0 \in U$ e $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$, com $a_i < b_i$ para todo $i \leq n$, tais que

$$\mathbf{x_0} \in V =]a_1, b_1[\times \cdots \times]a_n, b_n[\subseteq U.$$

Consideremos a função,

$$f: V \longrightarrow \mathbb{R}$$

$$(x_1, \dots, x_n) \mapsto \sum_{i=1}^n \int_{a_i}^{x_i} H_i(a_1, \dots, a_{i-1}, x_i, \dots, x_n) dx_i$$

Note-se que f é uma soma de n parcelas e que apenas as primeiras i dependem da variável x_i .

Para mostrar que $\nabla f = H_{|V|}$ basta aplicar a regra de Leibniz e usar a hipótese sobre H. Por exemplo, se $n \geq 3$, e $\mathbf{x} = (x_1, \dots, x_n)$

$$\frac{\partial f}{\partial x_{3}}(\mathbf{X}) = \int_{a_{1}}^{x_{1}} \frac{\partial H_{1}}{\partial x_{3}}(\mathbf{X}) dx_{1} + \int_{a_{2}}^{x_{2}} \frac{\partial H_{2}}{\partial x_{3}}(a_{1}, x_{2}, x_{3}, \dots, x_{n}) dx_{2} + H_{3}(a_{1}, a_{2}, x_{3}, \dots, x_{n})$$

$$= \int_{a_{1}}^{x_{1}} \frac{\partial H_{3}}{\partial x_{1}}(\mathbf{X}) dx_{1} + \int_{a_{2}}^{x_{2}} \frac{\partial H_{3}}{\partial x_{2}}(a_{1}, x_{2}, x_{3}, \dots, x_{n}) dx_{2} + H_{3}(a_{1}, a_{2}, x_{3}, \dots, x_{n})$$

$$= H_{3}(\mathbf{X}) - H_{3}(a_{1}, x_{2}, x_{3}, \dots, x_{n}) + H_{3}(a_{1}, x_{2}, x_{3}, \dots, x_{n}) - H_{3}(a_{1}, a_{2}, x_{3}, \dots, x_{n}) + H_{3}(a_{1}, a_{2}, x_{3}, \dots, x_{n})$$

$$= H_{3}(\mathbf{X}).$$

2.3 Interpretação geométrica do vector gradiente

Nesta secção vamos enunciar e demonstrar duas propriedades do vector gradiente de uma função num ponto.

Recorde-se que a derivada direccional de uma função f num ponto A segundo um dado vector Y estuda a variação de f restrita à recta definida pelo ponto A e pelo vector Y. De qualquer modo esse estudo depende não apenas do valor da função nessa recta mas também da norma e do sentido de Y (recorde-se que se $Y \in \mathbb{R}^n$ e $\lambda \in \mathbb{R}$, $f'(A; \lambda Y) = \lambda f'(A; Y)$).

Por essa razão vamos fixar, no que segue, a norma de Y, por exemplo, igual a 1. No que segue estaremos a considerar a norma usual em \mathbb{R}^n .

Pretende-se agora estudar em que direcção e sentido a variação de f é maior.

Teorema 2.31. Sejam U um aberto de \mathbb{R}^n , $A \in U$ e $f: U \longrightarrow \mathbb{R}$ uma função derivável em A tal que $\nabla f(A) \neq 0$. Consideremos em \mathbb{R}^n a norma usual.

Nestas condições, o máximo de f'(A; Y), com ||Y|| = 1, é atingido quando $Y = \frac{\nabla f(A)}{\|\nabla f(A)\|}$ e toma o valor $\|\nabla f(A)\|$ ou seja

$$\max_{\|\mathbf{Y}\|=1} f'(\mathbf{A}; \mathbf{Y}) = f'\left(\mathbf{A}; \frac{\nabla f(\mathbf{A})}{\|\nabla f(\mathbf{A})\|}\right) = \|\nabla f(\mathbf{A})\|.$$

Demonstração. Basta notar que, como f é derivável em A então, se $\|Y\| = 1$,

$$f'(A; Y) = \nabla f(A) \cdot Y = ||\nabla f(A)|| \cos(\angle(\nabla f(A), Y)).$$

Daqui se conclui que f'(A; Y) é máximo quando $cos(\measuredangle(\nabla f(A), Y) = 1$, ou seja, quando $Y = \frac{\nabla f(A)}{\|\nabla f(A)\|}$ (recorde-se que estamos a supor que $\|Y\| = 1$).

Nas condições do teorema anterior e usando a igualdade

$$f'(A; Y) = \nabla f(A) \cdot Y = ||\nabla f(A)|| \cos(\angle(\nabla f(A), Y))$$

"se deslocarmos o ponto A" a função f terá crescimento (respectivamente, decrescimento) máximo se estivermos a seguir sempre na direcção e sentido (respectivamente, sentido contrário) do gradiente de f em cada ponto. "Se deslocarmos o ponto" numa direcção perpendicular ao gradiente então a função não sofrerá qualquer variação.

Esta última observação pode ser correctamente formalizada. Comecemos com algumas definições.

Definição 2.32. Sejam $U\subseteq \mathbb{R}^n$, $f:U\longrightarrow \mathbb{R}$ uma função e $c\in \mathbb{R}$. Chama-se hipersuperfície de nível c da função f ao conjunto,

$$N_c = \{ x \in U : f(x) = c \}.$$

No caso em que n=2 chamaremos curva de nível e se n=3 diremos superfície de nível.

Note-se que o gráfico de uma função $g:U\longrightarrow\mathbb{R}$ é uma hipersuperfície de nível em \mathbb{R}^{n+1} , uma vez que $\operatorname{Gr} g=\{(\mathbf{x},y)\in U\times\mathbb{R}:g(\mathbf{x})-y=0\}.$

Questão: Como encontrar a recta tangente (ou a normal) a uma circunferência num dado ponto? Como encontrar o plano tangente (ou a recta normal) a uma superfície esférica num dado ponto? Primeiro precisamos definir o que se entende por hiperplano (recta ou plano, se n=1 ou n=2) tangente a uma hipersuperfície de nível de uma dada função.

Definição 2.33. Sejam U um aberto de \mathbb{R}^n , $A \in U$, $c \in \mathbb{R}$ e $f : U \longrightarrow \mathbb{R}$ uma função derivável em A tal que $\nabla f(A) \neq 0$. Suponhamos que f(A) = c. Define-se:

• recta normal a N_c no ponto A como sendo a recta definida pelo ponto A e pelo vector $\nabla f(A)$, ou seja, a recta de equação vectorial,

$$X = A + \lambda \nabla f(A) \quad \lambda \in \mathbb{R};$$

• recta tangente a N_c no ponto A como sendo qualquer recta que passe em A e que tenha a direcção do vector derivada num ponto t_0 de uma qualquer curva derivável γ que esteja contida em N_c e tal que $\gamma(t_0) = A$ e $\gamma'(t_0) \neq 0$.

Vejamos que as definições acima têm sentido, isto é, que as rectas tangentes são de facto perpendiculares à recta normal.

Teorema 2.34. Sejam U um aberto de \mathbb{R}^n , $A \in U$ e $f: U \to \mathbb{R}$ uma função derivável em A tal que $\nabla f(A) \neq 0$. Nestas condições, se f(A) = c, a recta normal a N_c no ponto A é perpendicular a qualquer recta tangente a N_c em A.

Demonstração. Sejam I um intervalo, $\gamma:I\longrightarrow U$ uma curva derivável e $t_0\in I$ tais que $\gamma(I)\subseteq N_c$ e $\gamma(t_0)=A$.

Nestas condições a função $f \circ \gamma$ é constante. Derivando obtemos $f'(\gamma(t_0))(\gamma'(t_0)) = 0$ ou, equivalentemente, $\nabla f(A) \cdot \gamma'(t_0) = 0$.

Tem assim sentido a seguinte definição.

Definição 2.35. Nas condições do teorema anterior define-se hiperplano tangente a N_c no ponto A como o conjunto dos vectores tangentes a N_c no ponto A.

Como consequência, o hiperplano tangente a f num ponto A é definido por A e pelo vector $\nabla f(A)$ ou seja, tem por equação cartesiana,

$$(X-A) \cdot \nabla f(A) = 0, \quad X \in \mathbb{R}^n.$$

2.4 Derivadas de ordem superior

Sejam U um aberto de \mathbb{R}^n e $f:U\longrightarrow\mathbb{R}^m$ uma função contínua. Suponhamos que f admite alguma derivada parcial num subconjunto aberto V de U. Essa derivada parcial é então uma função de V em \mathbb{R}^m que pode admitir algumas derivadas parciais em alguns subdomínios de V. Estas últimas derivadas chamam-se derivadas parciais de f de ordem 2.

Indutivamente definimos derivada parcial de f de ordem k como sendo uma derivada parcial de uma derivada parcial de f de ordem k-1.

Note-se que podem existir n^k derivadas parciais de ordem k.

Definição 2.36. Uma função $f: U \longrightarrow \mathbb{R}^m$ (em que U é um aberto de \mathbb{R}^n) diz-se uma função de classe C^k se existirem, tiverem domínio U e forem contínuas todas as derivadas parciais de f de ordem menor ou igual a k.

Nesta secção, de agora em diante consideraremos apenas funções cujo conjunto de chegada é $\mathbb{R}.$

Usaremos a notação seguinte: $\frac{\partial^2 f}{\partial x_i \partial x_j}$ para representar $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right)$ ou seja a derivada parcial em ordem a x_i da derivada parcial em ordem a x_j da função f. Indutivamente $\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_k}}$ representa a derivada em ordem a x_{i_1} da função $\frac{\partial^{k-1} f}{\partial x_{i_2} \cdots \partial x_{i_k}}$.

Definição 2.37. Sejam $k \in \mathbb{N}$, U um aberto de \mathbb{R}^n , $A \in U$ e $f: U \longrightarrow \mathbb{R}$ uma função de classe C^k .

Define-se k-ésima derivada de f no ponto A como sendo a aplicação

$$f^{(k)}(A): \overbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}^{k \text{ factores}} \longrightarrow \mathbb{R}$$

$$(Y_1, \dots, Y_k) \mapsto \sum_{i_1, \dots, i_k = 1}^n y_{1, i_1} \cdots y_{k, i_k} \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}} (A)$$

em que $Y_m = (y_{m,1}, \dots, y_{m,n})$ se $m = 1, \dots, k$.

Definição 2.38. Nas condições da definição anterior e se k=2, chama-se matriz hessiana de f no ponto A à matriz das segundas derivadas (parciais) de f ou seja à matriz $n\times n$ cujo elemento da linha i e coluna j (com $i,j=1,\ldots,n$) é $\frac{\partial^2 f}{\partial x_i \partial x_j}(A)$. A matriz hessiana de f em A costuma-se denotar por Hess f(A)

Note-se que nas condições acima, se $Y=(y_1,\ldots,y_n)$ e $Z=(z_1,\ldots,z_n)$,

$$f''(A)(Z,Y) = \sum_{i,j=1}^{n} y_i z_j \frac{\partial^2 f}{\partial x_i \partial x_j}(A) = (z_1 \cdots z_n) \operatorname{Hess} f(A) (y_1 \cdots y_n)^T$$

De seguida vamos mostrar que, com certas condições de regularidade sobre f, se pretendermos calcular uma derivada parcial de ordem k a ordem pela qual vamos derivando a função não é relevante.

Teorema 2.39. Se U é um aberto de \mathbb{R}^n , $A \in U$ e $f : U \longrightarrow \mathbb{R}$ é uma função de classe C^k com $k \geq 2$, então

$$\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_k}} (A) = \frac{\partial^k f}{\partial x_{j_1} \partial x_{j_2} \cdots \partial x_{j_k}} (A)$$

se para todo $s \in \{1, \ldots, n\}$ o número de ocorrências de s em $< i_1, \ldots, i_k >$ e em $< j_1, \ldots, j_k >$ for igual.

 $\it Demonstração.$ Vamos começar por mostrar que, se $g:U\longrightarrow \mathbb{R}$ é uma função de classe C^2 e $A\in U$ então

$$\forall i, j = 1, \dots, n \quad \frac{\partial^2 g}{\partial x_i \partial x_j}(A) = \frac{\partial^2 g}{\partial x_j \partial x_i}(A)$$

Consideremos então $i,j\in\{1,\ldots,n\}$ e seja $\varepsilon>0$ tal que a bola, para a métrica do máximo, centrada em A e de raio ε está contida em U. Consideremos $\delta=\frac{\varepsilon}{2}$. Deste modo o quadrado cujos vértices são os pontos A, $A+\delta E_i$, $A+\delta E_j$ e $A+\delta E_i+\delta E_j$ está contido em U. Consideremos as funções,

$$\varphi: [0, \delta] \longrightarrow \mathbb{R}$$

$$t \mapsto g(A + \delta E_i + t E_j) - g(A + t E_j)$$

$$\psi: [0, \delta] \longrightarrow \mathbb{R}$$

$$t \mapsto g(A + \delta E_j + t E_i) - g(A + t E_i)$$

Então:

- $\varphi(\delta) \varphi(0) = \psi(\delta) \psi(0)$;
- $\varphi'(t) = \frac{\partial g}{\partial x_i} (A + \delta E_i + t E_j) \frac{\partial g}{\partial x_i} (A + t E_j);$
- deste modo, se $h = \frac{\partial g}{\partial x_i}$,

$$\begin{split} \varphi(\delta) - \varphi(\mathbf{0}) &= \varphi'(\theta) \; \delta \; \; \mathsf{para \; algum} \; \theta \in]0, \delta[\; \; (\mathsf{utilizando \; o \; Teorema \; de \; Lagrange}) \\ &= \; \left[\frac{\partial g}{\partial x_j} (\mathsf{A} + \delta \mathsf{E}_i + \theta \mathsf{E}_j) - \frac{\partial g}{\partial x_j} (\mathsf{A} + \theta \mathsf{E}_j) \right] \delta \\ &= \; \delta \; h'(\mathsf{A} + \theta \mathsf{E}_j + \mu \, \delta \mathsf{E}_i; \; \delta \mathsf{E}_i) \quad \mathsf{para \; algum} \; \mu \in]0,1[\\ & \; \; (\mathsf{utilizando \; o \; Teorema \; 2.8}) \\ &= \; \delta^2 \; h'(\mathsf{A} + \theta \mathsf{E}_j + \mu \, \delta \mathsf{E}_i; \mathsf{E}_i) \\ &= \; \delta^2 \; \frac{\partial h}{\partial x_i} (\mathsf{A} + \theta \mathsf{E}_j + \mu \, \delta \mathsf{E}_i) = \delta^2 \; \frac{\partial^2 g}{\partial x_i \partial x_i} (\mathsf{A} + \theta \mathsf{E}_j + \mu \, \delta \mathsf{E}_i); \end{split}$$

• de modo análogo, existem $\zeta \in]0, \delta[$ e $\eta \in]0, 1[$ tais que

$$\psi(\delta) - \psi(0) = \delta^2 \frac{\partial^2 g}{\partial x_i \partial x_i} (A + \zeta E_i + \eta \delta E_j).$$

Assim,

$$\frac{\partial^2 g}{\partial x_i \partial x_j} (\mathbf{A} + \theta \mathbf{E}_j + \mu \, \delta \mathbf{E}_i) = \frac{\partial^2 g}{\partial x_i \partial x_i} (\mathbf{A} + \zeta \mathbf{E}_i + \eta \, \delta \mathbf{E}_j),$$

uma vez que $\varphi(\delta)-\varphi(0)=\psi(\delta)-\psi(0)$.

Para concluir basta notar que

$$\begin{split} \lim_{\delta \to 0} \frac{\partial^2 g}{\partial x_i \partial x_j} (\mathbf{A} + \theta \mathbf{E}_j + \mu \, \delta \mathbf{E}_i) &= \frac{\partial^2 g}{\partial x_i \partial x_j} (\lim_{\delta \to 0} [\mathbf{A} + \theta \mathbf{E}_j + \mu \, \delta \mathbf{E}_i]) \\ & \text{porque } g \text{ \'e de classe } C^2 \\ &= \frac{\partial^2 g}{\partial x_i \partial x_j} (\mathbf{A}) \quad \text{porque } \theta < \delta \text{ e } \mu \in]0,1[\end{split}$$

е

$$\begin{split} \lim_{\delta \to 0} \frac{\partial^2 g}{\partial x_j \partial x_i} \big(\mathbf{A} + \zeta \mathbf{E}_i + \eta \, \delta \mathbf{E}_j \big) &= \frac{\partial^2 g}{\partial x_j \partial x_i} \big(\lim_{\delta \to 0} [\mathbf{A} + \zeta \mathbf{E}_i + \eta \, \delta \mathbf{E}_j] \big) \\ &\quad \text{porque } g \in \text{de classe } C^2 \\ &= \frac{\partial^2 g}{\partial x_j \partial x_i} \big(\mathbf{A} \big) \quad \text{porque } \zeta < \delta \in \eta \in]0,1[\ . \end{split}$$

Para demonstrar o caso geral basta observar que, se $i_s > i_{s+1}$ então

$$\begin{array}{lcl} \frac{\partial^k f}{\partial x_{i_1}\partial x_{i_2}\cdots\partial x_{i_k}}(\mathbf{A}) & = & \frac{\partial^{s-1}}{\partial x_{i_1}\cdots\partial x_{i_{s-1}}} \left[\frac{\partial^2}{\partial x_{i_s}\partial x_{i_{s+1}}} \left(\frac{\partial^{k-s-1} f}{\partial x_{i_{s+2}}\cdots\partial x_{i_k}}(\mathbf{A}) \right) \right] \\ & = & \frac{\partial^{s-1}}{\partial x_{i_1}\cdots\partial x_{i_{s-1}}} \left[\frac{\partial^2}{\partial x_{i_{s+1}}\partial x_{i_s}} \left(\frac{\partial^{k-s-1} f}{\partial x_{i_{s+2}}\cdots\partial x_{i_k}}(\mathbf{A}) \right) \right] \\ & \text{fazendo na igualdade demonstrada atrás} \\ & g = & \frac{\partial^{k-s-1} f}{\partial x_{i_{s+2}}\cdots\partial x_{i_k}}. \end{array}$$

Por aplicação sucessiva deste resultado, podemos concluir que

$$\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_k}} (\mathbf{A}) = \frac{\partial^k f}{\partial x_1^{m_1} \partial x_2^{m_2} \cdots \partial x_n^{m_n}}$$

em que m_t é o número de ocorrências de t em $< i_1, \ldots, i_k >$, denotando $\frac{\partial f}{\partial x_i^0} = f$. Analogamente

$$\frac{\partial^k f}{\partial x_{j_1} \partial x_{j_2} \cdots \partial x_{i_k}} (\mathbf{A}) = \frac{\partial^k f}{\partial x_1^{n_1} \partial x_2^{n_2} \cdots \partial x_n^{n_n}}$$

em que n_t é o número de ocorrências de t em $< j_1, \ldots, j_k >$.

Como $m_t = n_t$ para todo $t = 1, \dots, n$ concluímos a igualdade pretendida.

Como consequência temos.

Corolário 2.40. Se U é um aberto de \mathbb{R}^n , $A \in U$ e $f : U \longrightarrow \mathbb{R}$ é uma função de classe C^2 então a segunda derivada de f em A é uma aplicação bilinear simétrica.

2.5 Polinómio de Taylor

Vamos agora enunciar e demonstrar o chamado Teorema de Taylor que diz que toda a função de classe C^{k+1} pode ser aproximada (numa vizinhança de um ponto A) por um polinómio de ordem k de tal modo que o erro, quando nos aproximamos de A, tende para zero mais depressa do que $\|X-A\|^k$.

Notação: Se U é um aberto, $A \in U$, $H \in \mathbb{R}^n$, $f : U \longrightarrow \mathbb{R}$ é uma função de classe C^k e $m \leq k$ escreveremos $D^m_H f(A)$ em vez de $f^{(m)}(A)(H, \ldots, H)$. Se m = 1 escreveremos simplesmente $D_H f(A)$.

Deste modo se, por exemplo, n = 2, k = 3 e H = (h_1, h_2) :

$$\begin{split} D_{\mathrm{H}}^{3}f(\mathbf{A}) &= h_{1}^{3}\frac{\partial^{3}f}{\partial x^{3}}(\mathbf{A}) + h_{1}^{2}h_{2}\frac{\partial^{3}f}{\partial x^{2}\partial y}(\mathbf{A}) + h_{1}h_{2}h_{1}\frac{\partial^{3}f}{\partial x\partial y\partial x}(\mathbf{A}) + h_{2}h_{1}^{2}\frac{\partial^{3}f}{\partial y\partial x^{2}}(\mathbf{A}) + h_{2}h_{1}^{2}\frac{\partial^{3}f}{\partial y\partial x\partial y}(\mathbf{A}) + h_{2}h_{1}h_{2}\frac{\partial^{3}f}{\partial y\partial x\partial y}(\mathbf{A}) + h_{2}^{2}h_{1}\frac{\partial^{3}f}{\partial y^{2}\partial x}(\mathbf{A}) + h_{2}^{3}\frac{\partial^{3}f}{\partial y^{3}}(\mathbf{A}) \\ &= h_{1}^{3}\frac{\partial^{3}f}{\partial x^{3}}(\mathbf{A}) + 3h_{1}^{2}h_{2}\frac{\partial^{3}f}{\partial x^{2}\partial y}(\mathbf{A}) + 3h_{1}h_{2}^{2}\frac{\partial^{3}f}{\partial x\partial y^{2}}(\mathbf{A}) + h_{2}^{3}\frac{\partial^{3}f}{\partial y^{3}}(\mathbf{A}) \\ &= \text{usando o Teorema 2.39}. \end{split}$$

Mais geralmente, se fixarmos s_1,\ldots,s_n inteiros não negativos cuja soma é igual a m com $m \leq k$, podemos mostrar, usando um raciocínio de combinatória, que na expressão de $D^m_{\mathrm{H}}f(\mathbf{A})$ existem $\frac{m!}{s_1!\cdots s_m!}$ parcelas iguais a

$$h_1^{s_1} \cdots h_n^{s_n} \frac{\partial^m f}{\partial x_1^{s_1} \partial x_2^{s_2} \cdots \partial x_n^{s_n}} (A).$$

Corolário 2.41. Sejam U um aberto de \mathbb{R}^n , $A \in U$ e $f: U \longrightarrow \mathbb{R}$ uma função de classe C^k , com $k \geq 2$. Se $m \leq k$ e $H = (h_1, \ldots, h_n) \in \mathbb{R}^n$ então

$$D_{\mathrm{H}}^{m}f(\mathbf{A}) = \sum_{s_{1}+\dots+s_{n}=m} \frac{m!}{s_{1}!\dots s_{n}!} h_{1}^{s_{1}} \dots h_{n}^{s_{n}} \frac{\partial^{m}f}{\partial x_{1}^{s_{1}}\partial x_{2}^{s_{2}} \dots \partial x_{n}^{s_{n}}} (\mathbf{A}). \qquad \Box$$

Vamos agora usar a versão do Teorema de Taylor para funções de variável real para demonstrar a versão desse mesmo teorema para funções de várias variáveis.

Definição 2.42. Se U é um aberto de \mathbb{R}^n , $A \in U$ e $f : U \longrightarrow \mathbb{R}$ é uma função de classe C^k $(k \in \mathbb{N})$ define-se polinómio de Taylor de f de ordem k no ponto A como sendo o polinómio em n variáveis,

$$P_{k,A}^f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$X \mapsto f(A) + \sum_{i=1}^k \frac{1}{i!} D_{X-A}^i f(A)$$

Se não houver dúvidas sobre qual a função que estamos a tratar, escreveremos $P_{k,A}(x)$ em vez de $P_{k,A}^f(x)$.

Teorema 2.43 (Teorema de Taylor). Sejam U um aberto de \mathbb{R}^n , $A \in U$, $f : U \longrightarrow \mathbb{R}$ uma função de classe C^{k+1} $(k \in \mathbb{N})$ e $\delta > 0$ tal que $B(A, \delta) \subseteq U$. Então

$$\forall \mathbf{x} \in B(\mathbf{A}, \delta) \ \exists \theta \in]0,1[\ f(\mathbf{x}) = P_{k,\mathbf{A}}^f(\mathbf{x}) + \frac{1}{(k+1)!} D_{\mathbf{X}-\mathbf{A}}^{k+1} f(\mathbf{A} + \theta(\mathbf{X}-\mathbf{A})).$$

Demonstração. Dado x nas condições referidas considere-se a função $g=f\circ F$ em que $F: \ [0,1] \longrightarrow U.$ Então, se $t\in [0,1]$, $t \mapsto A+t \, (X-A)$

$$g'(t) = f'(F(t)) \cdot F'(t) = f'(F(t)) \cdot (X-A) = D_{X-A}f(F(t)) = (D_{X-A}f \circ F)(t).$$

Assim $g'=D_{{\scriptscriptstyle {\rm X-A}}}f\circ F.$ Continuando a derivar e usando o mesmo tipo de raciocínio concluímos que

$$\forall i \leq k+1 \quad g^{(i)} = D^i_{X-A} f \circ F.$$

Aplicando o Teorema de Taylor para funções reais de uma variável real obtemos

$$g(1) = g(0) + \sum_{i=1}^{k} \frac{1}{i!} g^{(i)}(0) + \frac{1}{(k+1)!} g^{k+1}(\theta)$$
 para algum $\theta \in]0,1[$

que é equivalente à igualdade pretendida.

Com as hipóteses do teorema anterior, chamamos resto de Taylor de f no ponto \mathbf{A} de ordem k, e denotá-lo-emos por $R_{k,\mathbf{A}}^f$, à diferença $f-P_{k,\mathbf{A}}^f$. Se não houver dúvidas sobre qual a função que estamos a tratar, escreveremos $R_{k,\mathbf{A}}$ em vez de $R_{k,\mathbf{A}}^f$.

Pelo teorema anterior, se B(A), $\delta \subseteq U$ e $X \in B(A, \delta)$ então existe $\theta \in]0,1[$ tal que $R_{k,A}^f(X) = \frac{1}{(k+1)!} D_{X-A}^{k+1} f(A + \theta(X-A)).$

Vamos agora estudar o erro que se obtém se substituirmos a função f pelo seu polinómio de Taylor de ordem k numa vizinhança de um ponto A pertencente ao domínio de f.

Teorema 2.44. Nas condições do teorema anterior, se $\mu < \delta$ então,

$$\exists \ M>0 \ \forall \mathbf{x} \in \mathbb{R}^n \quad \left[\|\mathbf{x} - \mathbf{A}\| \leq \mu \ \Rightarrow \ |R_{k,\mathbf{A}}(\mathbf{x})| \leq M \ \|\mathbf{x} - \mathbf{A}\|^{k+1} \right].$$

Em particular $\lim_{\mathbf{x} \to \mathbf{A}} \frac{|R_{k,\mathbf{A}}(\mathbf{x})|}{\|\mathbf{x} - \mathbf{A}\|^k} = \mathbf{0}$

Demonstração. Consideremos o conjunto $K=\{\mathbf{x}\in\mathbb{R}^n: \|\mathbf{x}-\mathbf{A}\|\leq \mu\}$. Note-se que, como K é compacto e as derivadas parciais de f de ordem k+1 são contínuas, existe N>0 tal que, quaisquer que sejam s_1,\ldots,s_n com $s_1+\cdots+s_n=k+1$ e $\mathbf{x}\in K$,

$$\left| \frac{\partial^{k+1} f}{\partial x_1^{s_1} \partial x_2^{s_2} \cdots \partial x_n^{s_n}} (\mathbf{X}) \right| \le N$$

Dado $X \in K$ seja H = X-A e suponhamos que $H = (h_1, \dots, h_n)$. Nestas condições

$$|R_{k,A}(\mathbf{X})| = \left| \frac{1}{(k+1)!} D_{\mathbf{H}}^{k+1} f(\mathbf{A} + \theta \mathbf{H}) \right|$$

$$= \left| \frac{1}{(k+1)!} \sum_{s_1 + \dots + s_n = k+1} \frac{(k+1)!}{s_1! \dots s_n!} h_1^{s_1} \dots h_n^{s_n} \frac{\partial^{k+1} f}{\partial x_1^{s_1} \partial x_2^{s_2} \dots \partial x_n^{s_n}} (\mathbf{A} + \theta \mathbf{H}) \right|$$

$$= \left| \sum_{s_1 + \dots + s_n = k+1} \frac{h_1^{s_1} \dots h_n^{s_n}}{\partial x_1^{s_1} \partial x_2^{s_2} \dots \partial x_n^{s_n}} (\mathbf{A} + \theta \mathbf{H}) \right|.$$

usando a desigualdade triangular obtemos

$$\begin{split} |R_{k,\mathbf{A}}(\mathbf{X})| & \leq \sum_{s_1+\dots+s_n=k+1} \left| \frac{h_1^{s_1} \dots h_n^{s_n}}{s_1! \dots s_n!} \frac{\partial^{k+1} f}{\partial x_1^{s_1} \partial x_2^{s_2} \dots \partial x_n^{s_n}} (\mathbf{A} + \theta \, \mathbf{H}) \right| \\ & \leq \sum_{s_1+\dots+s_n=k+1} \left| \frac{h_1^{s_1} \dots h_n^{s_n}}{s_1! \dots s_n!} \, N \right| \\ & \leq \sum_{s_1+\dots+s_n=k+1} \frac{\|\mathbf{H}\|^{k+1}}{s_1! \dots s_n!} \, N \quad \text{porque } |h_i| \leq \|\mathbf{H}\| \text{ para todo } i \\ & = \left(\sum_{s_1+\dots+s_n=k+1} \frac{N}{s_1! \dots s_n!} \right) \|\mathbf{X} - \mathbf{A}\|^{k+1}, \end{split}$$

2.6 Exercícios

Se nada for dito em contrário, subentende-se que o domínio das funções cuja "expressão analítica" é dada é o maior possível, de modo a que a expressão "tenha sentido".

Exercício 2.1. Seja
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}$$
. Calcule $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ e $\frac{\partial f}{\partial z}$. $(x,y,z) \mapsto e^{x+y+z}$

Exercício 2.2. Calcule $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ em que f é dado por:

a)
$$f(x,y) = e^{\operatorname{sen}(x\sqrt{y})};$$

c)
$$f(x,y) = y^2x + \log(\sin(x^2 + y));$$

b)
$$f(x,y) = \arctan(x^2y^3);$$

d)
$$f(x,y) = e^x \log(xy)$$
.

Exercício 2.3. Seja $f:\mathbb{R}^n\longrightarrow\mathbb{R}$ tal que f(0)=0. Mostre que:

a) se
$$\lim_{x\to 0} \frac{f(x)}{\|x\|} = 0$$
, então f é diferenciável em 0;

- b) se existe $M \geq 0$ tal que, para todo $\mathbf{x} \in \mathbb{R}^n$, $|f(\mathbf{x})| \leq M \|\mathbf{x}\|^2$ então f é diferenciável em 0;
- c) se $\frac{f(\mathbf{x})}{\|\mathbf{x}\|}$ não é limitada em nenhuma bola centrada em (0,0) então f não é diferenciável em 0.

Exercício 2.4. Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto \begin{cases} \frac{x^3y}{x^6+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- a) Mostre que existe derivada direccional de f em (0,0) segundo qualquer vector.
- b) Mostre que a aplicação $f'((0,0);\cdot):\mathbb{R}^2\longrightarrow\mathbb{R}$ é linear.
- c) Verifique que f não é diferenciável.

Exercício 2.5. Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto \begin{cases} \frac{x^2(y+1)+y^2}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$$

a) Calcule $\frac{\partial f}{\partial x}(0,0)$, $\frac{\partial f}{\partial y}(0,0)$ e f'((0,0);(1,1)).

b) Verifique se f é derivável em (0,0).

Exercício 2.6. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida no Exercício 1.8, alínea h).

- a) Para que valores de $(a,b) \in \mathbb{R}^2$ existe f'((0,0);(a,b))? Justifique.
- b) A função f é derivável em (0,0)? Justifique.
- c) Calcule, caso exista, $\frac{\partial^2 f}{\partial x \partial y}(0,0)$.

Exercício 2.7. Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto \begin{cases} \frac{x^2y}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- a) Mostre que existe derivada direccional f em qualquer ponto e segundo qualquer vector de \mathbb{R}^2 .
- b) Mostre que a aplicação $f'((0,0);\cdot):\mathbb{R}^2\longrightarrow\mathbb{R}$ não é linear.
- c) Conclua que f não é diferenciável em (0,0).

Exercício 2.8. Considere a função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto \begin{cases} \frac{y(x^2-y^2)}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- a) Calcule f'((0,0);(a,b)), para $(a,b) \in \mathbb{R}^2$.
- b) Determine a função $\frac{\partial f}{\partial x}$, indicando o seu domínio.
- c) Verifique se a função $\frac{\partial f}{\partial x}$, encontrada na alínea anterior, é contínua.
- d) Calcule a recta normal, no ponto (1,-1), à curva de equação f(x,y)=x+y.

Exercício 2.9. Seja
$$f: \mathbb{R}^2 \longrightarrow \left\{ \begin{array}{ccc} \mathbb{R}. & \mathbb{R} & \mathbb{R}. \\ (x,y) & \mapsto & \left\{ \begin{array}{ccc} (x^2+y^2) \sin \frac{1}{\sqrt{x^2+y^2}} & \sec (x,y) \neq (0,0) \\ 0 & \sec (x,y) = (0,0) \end{array} \right. \end{array} \right.$$

- a) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- b) Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ e verifique que não são contínuas em (0,0).
- c) Verifique que f é diferenciável em (0,0) (ver Teorema 2.22).

derivabilidade

Exercício 2.10. Considere
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto \begin{cases} \frac{x^2y}{3x^2+2y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- a) Mostre que f é contínua em (0,0).
- b) Calcule $\frac{\partial f}{\partial x}(0,0)$, $\frac{\partial f}{\partial y}(0,0)$ e f'((0,0);(1,1)).
- c) Verifique se f é derivável em (0,0).

Exercício 2.11. Para
$$r,s\in\mathbb{N}_0$$
, seja $f:\mathbb{R}^2\longrightarrow\mathbb{R}$.
$$(x,y)\mapsto\begin{cases} \frac{x^ry^s}{(x^2+y^2)^2} & \text{se }(x,y)\neq(0,0)\\ 0 & \text{se }(x,y)=(0,0) \end{cases}$$

- a) Mostre que, se $r+s \ge 5$, a função é contínua em (0,0) e, se $r+s \le 4$ a função é descontínua em (0,0).
- b) Mostre que, se $r+s\geq 5$, e $(a,b)\in\mathbb{R}^2$ então existe $f'\big((0,0);(a,b)\big)$ e, se $r+s\leq 4$, não existe $f'\big((0,0);(a,b)\big)$ para $(a,b)\neq (0,0)$.
- c) Verifique se f é derivável em (0,0) se r=0 e s=5.

Exercício 2.12. Considere a função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto \begin{cases} \frac{xy^5}{x^2+y^4} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- a) Mostre que f é contínua em (0,0).
- b) Verifique se f é diferenciável em (0,0).
- c) Calcule, caso existam, $\frac{\partial^2 f}{\partial x \, \partial y}(0,0)$ e $\frac{\partial^2 f}{\partial y \, \partial x}(0,0)$.
- d) Calcule a recta normal à curva de equação $f(x,y) = \frac{1}{2}$ no ponto (1,1).

Exercício 2.13. Determine, para $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, onde existir, $\nabla f(x,y)$:

a)
$$f(x,y) = \begin{cases} x^2y^2\log(x^2+y^2) & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$
;

b)
$$f(x,y) = \begin{cases} xy \sin \frac{1}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$
;

c)
$$f(x,y) = \begin{cases} 0 & \text{se } xy \neq 0 \\ 1 & \text{se } xy = 0 \end{cases}$$
;

$$\mathrm{d}) \quad f(x,y) = \left\{ \begin{array}{cc} x^2 & \text{se } xy = 0 \\ g(x,y) & \text{se } xy \neq 0 \end{array} \right. \text{, onde } g: \mathbb{R}^2 \longrightarrow \mathbb{R} \text{ \'e bilinear.}$$

Exercício 2.14. Calcule f'(x;y), com $x,y \in \mathbb{R}^n$ em que:

- a) $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ linear;
- b) $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, com $f(x) = x \cdot x$;
- c) $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, com $f(x) = x \cdot g(x)$, onde $g: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é linear.

Exercício 2.15. Sejam U um aberto conexo de \mathbb{R}^n e $f:U\longrightarrow\mathbb{R}$ uma função. Mostre que se $\{\mathbf{Y}_1,\ldots,\mathbf{Y}_n\}\subseteq\mathbb{R}^n$ é um conjunto de vectores linearmente independentes tais que

$$\forall \mathbf{x} \in U \ \forall j \in \{1, \dots, n\} \quad f'(\mathbf{x}; \mathbf{y}_i) = \mathbf{0},$$

então f é constante (comparar com o Teorema 2.27).

Exercício 2.16. Sejam I um intervalo de \mathbb{R} , $H=\{(x,y)\in\mathbb{R}^2:xy=1\}$, $F:I\longrightarrow\mathbb{R}^2$ derivavel tal que $F(I)\subseteq H$, $g:\mathbb{R}^2\longrightarrow\mathbb{R}$ e $h:\mathbb{R}^2\longrightarrow\mathbb{R}$. $(x,y)\mapsto x^2+y^2 \qquad (x,y)\mapsto (x+y)^2$

Mostre que $g \circ F$ e $h \circ F$ têm a mesma derivada.

Exercício 2.17. Considere a função $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ e $a \in \mathbb{R}$. $(x,y,z) \mapsto x^2y - xz$

- a) Calcule f'(1,0,0)(1,2,2).
- b) Calcule $a \in \mathbb{R}$ tal que a função $g: \mathbb{R} \longrightarrow \mathbb{R}$ tenha derivada nula. $t \mapsto f(at^2, at, t^3)$

Exercício 2.18. Considere as funções:

$$u: \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \qquad f: \mathbb{R}^3 \longrightarrow \mathbb{R}.$$
 $(x,y) \mapsto (xy, \operatorname{sen}(xy), e^x) \qquad (x,y,z) \mapsto x^2y + y^2z$

Determine a derivada de $f \circ u$.

derivabilidade

Exercício 2.19. Sejam $h:\mathbb{R}^2 \to \mathbb{R}$ e $g:\mathbb{R} \to \mathbb{R}$ funções de classe C^1 tais que $\frac{\partial h}{\partial x} + \frac{\partial h}{\partial y} = 0$.

Considere
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
. Mostre que $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = 0$. $(x,y) \mapsto h(x+g(x-y),x)$

- Exercício 2.20. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável. Considere $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$. $(x,y) \mapsto f(xy)$ Mostre que $x\frac{\partial F}{\partial x} = y\frac{\partial F}{\partial y}$.
- Exercício 2.21. Sejam $\varphi:\mathbb{R}\longrightarrow\mathbb{R}$ e $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ funções diferenciáveis tais, se $x,y\in\mathbb{R}$, $f(x,\varphi(x))=0$ e $\frac{\partial f}{\partial y}(x,y)\neq 0$. Mostre que $\varphi'(x)=-\frac{\frac{\partial f}{\partial x}(x,\varphi(x))}{\frac{\partial f}{\partial y}(x,\varphi(x))}$.
- Exercício 2.22. Sejam $\psi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ e $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ diferenciáveis e $g = f \circ \psi$. Dados $X,Y \in \mathbb{R}^n$, mostre que são equivalentes:

a)
$$\mathbf{Y} \cdot \nabla g(\mathbf{X}) = \mathbf{0}$$
; b) $\psi'(\mathbf{X})(\mathbf{Y}) \cdot \nabla f(\psi(\mathbf{X})) = \mathbf{0}$.

Exercício 2.23. Seja $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ uma função diferenciável, homogénea de grau 1, i.e., tal que f(tx) = tf(x), se $x \in \mathbb{R}^n$ e $t \in \mathbb{R}$. Mostre que f é linear.

Exercício 2.24. Seja
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2.$$

$$(x,y,z) \mapsto (x^2y-xz,xyz)$$

- a) Calcule f'((3,1,1);(1,0,0)).
- b) Determine os pontos $(x,y,z) \in \mathbb{R}^3$ tais que f'(x,y,z) não é sobrejectiva.

Exercício 2.25. Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
. $(x,y) \mapsto (xy,x^2+y^2)$

Determine $(x,y) \in \mathbb{R}^2$ tal que $\varphi'(x,y)$ é um isomorfismo.

Exercício 2.26. Seja $f=(f_1,f_2):\mathbb{R}^2\longrightarrow\mathbb{R}^2$ de classe C^1 , tal que

$$\begin{cases} \frac{\partial f_1}{\partial x} &= & \frac{\partial f_2}{\partial y} \\ \frac{\partial f_1}{\partial y} &= & -\frac{\partial f_2}{\partial x} \end{cases}$$

Mostre que, se $(a,b) \in \mathbb{R}^n$, então f'(a,b) é a aplicação nula ou é um isomorfismo.

Exercício 2.27. Calcule
$$\frac{\partial f}{\partial x}(\frac{\pi}{2},1)$$
 em que $f:]0,\pi[\times\mathbb{R}^+ \longrightarrow \mathbb{R}.$
$$(x,y) \mapsto \int_{\text{sen}x}^{y^3} \frac{e^{xt}}{t} \, dt$$

Exercício 2.28. Mostre que a função
$$f: \mathbb{R}^+ \times \mathbb{R}^+ \longrightarrow \mathbb{R}$$

$$(x,y) \mapsto \int_2^{xy^2} \frac{1}{t} \, e^{-t^2 xy} \, dt$$

satisfaz a igualdade $y \frac{\partial f}{\partial y} - x \frac{\partial f}{\partial x} = e^{-x^3 y^5}.$

Exercício 2.29. Considere a função
$$f: [-1,1] \longrightarrow \mathbb{R}$$
 .
$$x \mapsto \int_{\sin x}^{1+x^2} \frac{e^{t^2}}{1+xt} \, dt$$

Mostre que $f'(0) = -\frac{1}{2}(e+1)$.

Exercício 2.30. Considere a função
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 .
$$x \mapsto \int_1^2 \frac{\sin xy}{y} \, dy$$

Encontre uma fórmula de recorrência para a derivada de ordem n de f.

Exercício 2.31. Para
$$n \in \mathbb{N}$$
, seja $f: \mathbb{R} \longrightarrow \int_{x^2}^{\operatorname{sen} x} \mathbb{R}$. Determine $f'(0)$.

Exercício 2.32. Considere a função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 .
$$x \mapsto \int_{\sin x}^{z^3} \frac{e^{xt}}{t^2} \, dt + z \cos x$$

Obtenha expressões para $\frac{\partial f}{\partial x}$ e $\frac{\partial^2 f}{\partial x \partial z}$.

Exercício 2.33. Para
$$n,m\in\mathbb{N}$$
, seja $g:\mathbb{R}\longrightarrow\mathbb{R}$.
$$y\mapsto\int_0^y x^n(y-x)^m\,dx$$

- a) Determine $g' \in g''$.
- b) Deduza uma expressão para $g^{(m)}$.
- c) Mostre que $g(y) = \frac{m! \, n!}{(m+n+1)!} \, y^{m+n+1}$.

Exercício 2.34. Sejam
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 e $g: \mathbb{R} \longrightarrow \mathbb{R}$. $x \mapsto \int_0^x \left(e^{t-x} - e^{2(t-x)}\right) f(t) dt$

Sabendo que f é de classe C^1 determine g^\prime e $g^{\prime\prime}$.

derivabilidade

- Exercício 2.35. Considere as funções $f,g:\mathbb{R}^2\longrightarrow\mathbb{R}$ tais que $f(x,y)=2(x^2+y^2)-3(x^2-y^2)$ e $g(x,y)=x(x^2+y^2)-(x^2-y^2)$, se $(x,y)\in\mathbb{R}^2$. Faça um esboço das curvas de nível de f e de g.
- Exercício 2.36. Determine os pontos da curva de equação $x(x^2 + y^2) + 9x^2 + y^2 = 0$ cuja tangente é horizontal ou vertical.
- Exercício 2.37. Determine os pontos da elipse $2x^2 + y^2 = 1$ cuja tangente passa pelo ponto (1,1).
- Exercício 2.38. Determine os pontos da curva $x^2 + y^2 2x + xy = 0$ cuja normal é paralela à recta y = x.
- Exercício 2.39. Determine a equação da recta normal e do plano tangente à superfície $x^3 + xyz = 12$ no ponto (2, 2, 1).
- Exercício 2.40. Determine os planos tangentes à esfera de equação $x^2+y^2+z^2=5$ que contêm a recta de equação

$$\begin{cases} x = 5 - z \\ y = -5 + 2z. \end{cases}$$

- Exercício 2.41. Verifique se a tangente à circunferência de equação $x^2 + y^2 = 5$ no ponto (1,2) intersecta ortogonalmente um dos arcos da hipérbole de equação $2x^2 3y^2 = 15$.
- Exercício 2.42. Sejam $\alpha, \beta \in \mathbb{R}$, com $|\beta| > 1$. Verifique se, as circunferências de equação

$$x^{2} + (y - \alpha)^{2} = 1 + \alpha^{2}$$
 e $(x - \beta)^{2} + y^{2} = \beta^{2} - 1$

se intersectam ortogonalmente.

- Exercício 2.43. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ tal que $f(x,y) = e^{xy} + x^3y^3 + y^2$, se $(x,y) \in \mathbb{R}^2$ e a curva de nível $N_2 = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 2\}$.
 - a) Determine a equação da recta t, tangente a N_2 no ponto (0,1).
 - b) Determine os pontos da elipse $x^2 + 2y^2 = 18$ cuja recta tangente é ortogonal à recta t.

Exercício 2.44. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe C^1 . Verifique se os planos tangentes à superfície de nível de \mathbb{R}^3 definida por $z = y f\left(\frac{y}{x}\right), x \neq 0$, se intersectam no ponto (0,0,0).

Exercício 2.45. Calcule as derivadas parciais de segunda ordem das funções definidas por:

a)
$$f(x,y) = \log(e^x + e^y);$$
 c) $f(x,y,z) = xy \log(x+z).$

b)
$$f(x,y) = \log(x + \sqrt{x^2 + y^2});$$

Exercício 2.46. Seja
$$f: \mathbb{R}^2 \longrightarrow \begin{cases} \mathbb{R}. \\ (x,y) \mapsto \end{cases} \begin{cases} \frac{xy(x^2-y^2)}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- a) Calcule $\frac{\partial^2 f}{\partial x^2}(0,0)$.
- b) Mostre que existem $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ e $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.
- c) Mostre que $\frac{\partial^2 f}{\partial x \partial y}$ não é contínua em (0,0).

Exercício 2.47. Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto \left\{ \begin{array}{ccc} xy^2 \sin \frac{1}{y} & \text{se } y \neq 0 \\ 0 & \text{se } y = 0 \end{array} \right.$$

Mostre que $\frac{\partial^2 f}{\partial x \partial y}(0,0) = \frac{\partial^2 f}{\partial y \partial x}(0,0)$, mas $\frac{\partial^2 f}{\partial x \partial y}$ não é contínua em (0,0).

Exercício 2.48. Sejam
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 de classe C^2 e $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$. $(x,y) \mapsto (x+y)f(x+y)$

Mostre que $\frac{\partial^2 g}{\partial x^2} - 2\frac{\partial^2 g}{\partial x \partial y} + \frac{\partial^2 g}{\partial y^2}$ é a função nula.

Exercício 2.49. Sejam $f:\mathbb{R}^3\longrightarrow\mathbb{R}$, $g,h:\mathbb{R}\longrightarrow\mathbb{R}$ funções de classe C^2 .

Se
$$\varphi: \mathbb{R} \longrightarrow \mathbb{R},$$
 calcule $\varphi' \in \varphi''.$ $x \mapsto f(x, g(h(x)), h(x))$

Exercício 2.50. Seja k > 0. Considere as funções

derivabilidade

a) Calcule
$$\frac{\partial f}{\partial x}$$
 e $\frac{\partial f}{\partial t}$.

b) Verifique que
$$k \frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t}$$
.

Exercício 2.51. Sejam $\varphi \in C^1(\mathbb{R};\mathbb{R})$ e $f \in C^2(\mathbb{R}^2;\mathbb{R})$ homogénea de grau 1. Suponha que $\varphi(0)=0$

- a) Determine $\lim_{x\to 0} \frac{f(x,\varphi(x))}{x}$.
- b) Mostre que, se $x \in \mathbb{R}$,

$$x\frac{\partial^2 f}{\partial x^2}(x,\varphi(x)) + (\varphi(x) + x\varphi'(x))\frac{\partial^2 f}{\partial x \partial y}(x,\varphi(x)) = -\varphi(x)\varphi'(x)\frac{\partial^2 f}{\partial y^2}(x,\varphi(x)).$$

Exercício 2.52. Determine a fórmula de Taylor de segunda ordem para as seguintes funções definidas em \mathbb{R}^2 , no ponto (0,0):

a)
$$f(x,y) = (x+y)^2$$
;

c)
$$f(x,y) = sen(xy) + cos(xy)$$
;

b)
$$f(x,y) = e^{x+y}$$
;

d)
$$f(x,y) = e^{(x-1)^2} \cos y$$
.

Exercício 2.53. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ tal que $f(x,y) = \operatorname{sen}(xy) + \cos(xy)$ se $(x,y) \in \mathbb{R}^2$.

- a) Determine o polinómio e o resto de Taylor de segunda ordem de f em (0,0).
- b) Verifique se existe e é finito $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-1}{x^2+y^2}$.

Exercício 2.54. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe C^2 tal que $f(tx,ty) = t^2 f(x,y)$ para todo $t,x,y \in \mathbb{R}$. Pretende-se mostrar que, f é um polinómio homogéneo do segundo grau.

Fixemos $(x,y) \in \mathbb{R}^2$ e consideremos $g: \mathbb{R} \longrightarrow \mathbb{R}$. $t \mapsto f(tx,ty)$

- a) Mostre que, se $t \in \mathbb{R}$, então g''(t) = 2 f(x, y) = g''(0).
- b) Mostre, utilizando a regra da derivação da função composta, que

$$\forall t \in \mathbb{R} \quad g''(t) = x^2 \frac{\partial^2 f}{\partial x^2}(tx, ty) + 2xy \frac{\partial^2 f}{\partial x \partial y}(tx, ty) + y^2 \frac{\partial^2 f}{\partial y^2}(tx, ty).$$

c) Conclua que, se
$$a=\frac{\partial^2 f}{\partial x^2}(0,0)$$
, $b=\frac{\partial^2 f}{\partial x\partial y}(0,0)$ e $c=\frac{\partial^2 f}{\partial y^2}(0,0)$, então
$$\forall (x,y)\in\mathbb{R}^2 \quad f(x,y)=a\,x^2+b\,xy+cy^2.$$

A Matemática é a porta e a chave para todos as ciências. Roger Bacon.

Neste capítulo vamos considerar funções definidas num aberto de \mathbb{R}^k , $f=(f_1,\ldots,f_m):U\longrightarrow\mathbb{R}^m$ de classe C^1 e tentar encontrar condições que nos levem a compreender, de alguma forma, o conjunto das soluções do sistema

$$\begin{cases} f_1(x_1, \dots, x_k) &= c_1 \\ \vdots &\vdots &\vdots \\ f_m(x_1, \dots, x_k) &= c_m, \end{cases}$$

em que $(c_1,\ldots,c_m)\in\mathbb{R}^m$.

Este tipo de sistemas não se comporta tão bem como os sistemas lineares, para os quais conseguimos sempre encontrar o conjunto das soluções.

Vamos estudar o único caso que tem interesse, o caso em que $k \geq m$ (ver a Nota 3.1). Seja então $n \in \mathbb{N}_0$ tal que k = n + m. Obtemos assim um sistema do tipo

$$\begin{cases}
f_1(x_1, \dots, x_n, y_1, \dots, y_m) &= c_1 \\
\vdots &\vdots &\vdots \\
f_m(x_1, \dots, x_n, y_1, \dots, y_m) &= c_m
\end{cases}$$
(3.1)

em que $(c_1,\ldots,c_m)\in\mathbb{R}^m$.

Nota 3.1. Se k < m, existem funções contínuas (que não são de classe C^1) $f: U \to \mathbb{R}^m$ cuja imagem tem interior não vazio.

No caso em que k=1 e m=2, existem funções $f:[0,1] \longrightarrow [0,1] \times [0,1]$ contínuas e sobrejectivas. São as chamadas "curvas que enchem o quadrado".

3.1 Teorema da Função Inversa

Suponhamos que, no sistema (3.1), consideramos n=0. Obtemos um sistema do tipo

$$\begin{cases} f_1(y_1, \dots, y_m) &= c_1 \\ \vdots &\vdots &\vdots \\ f_m(y_1, \dots, y_m) &= c_m \end{cases}$$

Se este sistema for linear então ele admite uma e uma só solução se e só se o determinante da matriz dos coeficientes for diferente de zero.

Não podemos pretender que no caso geral o sistema:

- ullet admita sempre solução, pois a função f pode não ser sobrejectiva;
- admita no máximo uma solução, pois a função f pode não ser injectiva.

Nesta secção vamos estudar o comportamento local das soluções do sistema. Mais concretamente vamos encontrar condições que nos garantam a unicidade local das soluções.

Veremos que a condição de o determinante do jacobiano de f não se anular (em algum ponto) vai ser fundamental no caso geral.

Comecemos com alguns exemplos.

Exemplos 3.2.

a) Consideremos
$$f=(f_1,f_2): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $e \ C=(c_1,c_2) \in \mathbb{R}^2.$ $(x,y) \mapsto (x^2+y^2,x-y)$

A função f não é bijectiva, uma vez que

o sistema
$$\begin{cases} f_1(x,y) = c_1 \\ f_2(x,y) = c_2 \end{cases}$$
 admite:

- duas soluções se $2c_1 > c_2^2$;
- uma solução se $2c_1 = c_2^2$;
- nenhuma solução se $2c_1 < c_2^2$.
- b) Consideremos a função, $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \mapsto (e^x \cos y, e^x \sin y)$

Esta função não é injectiva uma vez que, se $(x,y) \in \mathbb{R}^2$ e $k \in \mathbb{Z}$, então $f(x,y) = f(x,y+2k\pi)$.

Consideremos agora a restrição de f a um conjunto da forma $\mathbb{R} \times I$ em que $I =]a, a + 2\pi [$ (com $a \in \mathbb{R}$).

Esta restrição é agora bijectiva sobre o conjunto aberto formado pelos pontos de \mathbb{R}^2 com excepção de uma semi-recta com origem em (0,0).

Concluímos assim que para qualquer ponto de \mathbb{R}^2 existe um aberto de \mathbb{R}^2 que contem o ponto e tal que a restrição de f a esse aberto é uma bijecção sobre a imagem.

Note-se que o determinante da matriz jacobiana de f nunca se anula.

Observação: Se fixarmos x, o conjunto $\{e^x \cos y, e^x \sin y : y \in]a, a+e\pi[\}$ é uma circunferência centrada em (0,0) e de raio e^x com excepção do ponto $(e^x \cos a, e^x \sin a)$.

c) Consideremos o sistema
$$\begin{cases} f_1(x,y) = 0 \\ f_2(x,y) = 0 \end{cases}$$
 em que $f_1(x,y) = x^3 + yx - x$ e $f_2(x,y) = xy$.

O conjunto de soluções do sistema é $\{(0,y): y \in \mathbb{R}\} \cup \{(1,0),(-1,0)\}$.

Apesar do sistema não ter solução única, ele admite duas soluções que são isoladas. Mais concretamente, se nos restringirmos a B((1,0),1) ou a B((-1,0),1) o sistema admite solução única. O mesmo não acontece em qualquer bola centrada noutras soluções do sistemas.

Se calcularmos o determinante da matriz jacobiana da função $f = (f_1, f_2)$ em pontos que sejam solução do sistema, veremos que ele só se anula nos pontos da forma (0, y).

Estamos agora em condições de enunciar o Teorema da Função Inversa. A demonstração deste teorema (bastante trabalhosa) pode ser consultado no livro [4].

Recorde-se que uma aplicação linear de \mathbb{R}^n em \mathbb{R}^n é um isomorfismo se e só se a sua matriz relativamente a uma qualquer base de \mathbb{R}^n for invertível, isto é se o seu determinante for não nulo.

Teorema 3.3 (Teorema da Função Inversa). Sejam U um aberto de \mathbb{R}^n , $A \in U$ e $f: U \longrightarrow \mathbb{R}^n$ uma função de classe C^k (com $k \in \mathbb{N} \cup \{\infty\}$).

Se $\det \mathcal{J}f(A) \neq 0$ então existem abertos V e W de \mathbb{R}^n tais que $A \in V \subseteq U$, f(V) = W e a função

$$f_{|V}: V \longrightarrow W$$

é uma função bijectiva com inversa de classe C^k .

Com as notações do teorema, para facilitar a notação e sempre que daí não advier qualquer confusão escreveremos f em vez de $f_{\mid V}$.

Corolário 3.4. Com as notações do Teorema da Função Inversa,

$$\mathcal{J}f^{-1}(f(A)) = (\mathcal{J}f(A))^{-1}$$
 e, consequentemente $\det \mathcal{J}f^{-1}(f(A)) = \frac{1}{\det \mathcal{J}f(A)}$.

Demonstração. Seja I a função identidade em U e I_n a matriz identidade em \mathbb{R}^n . Note-se que I_n é matriz jacobiana de I em qualquer ponto.

Como $I=f^{-1}\circ f$ concluímos, usando o Teorema da Derivação da Função Composta, que

$$I_n = \mathcal{J}I(A) = \mathcal{J}(f^{-1} \circ f)(A) = \mathcal{J}f^{-1}(f(A)) \cdot \mathcal{J}f(A).$$
 Deste modo $\mathcal{J}f^{-1}(f(A)) = (\mathcal{J}f(A))^{-1}.$

Nota 3.5. O Teorema da Função Inversa nada nos diz sobre a existência de solução dos sistemas. Apenas nos dá uma condição suficiente para nos garantir a unicidade local de soluções. O Exemplo 3.2 alínea a) garante-nos que a hipótese do Teorema da Função Inversa não é necessária (basta pensar no ponto (0,0), fazendo $c_1=c_2=0$).

Por outro lado, a condição referida quando aplicada a sistemas lineares diz-nos que, se o determinante da matriz dos coeficientes do sistema for diferente de 0 e existir uma solução, então existe um aberto contendo essa solução de tal modo nesse aberto o sistema só admite uma solução (isto é bastante menos do que o que já sabíamos).

O Exemplo 3.2 alínea b) é um exemplo típico em que o determinante da matriz jacobiana de f nunca se anula (o que garante a bijectividade local de f) mas não a bijectividade global. Note-se que para funções reais definidas em intervalos, tal exemplo não pode existir.

3.2 Teorema da Função Implícita

Voltemos ao sistema (3.1) e consideremos que n > 0.

Temos assim $n \in \mathbb{N}$, $m \in \mathbb{N}$, $C = (c_1, \ldots, c_m) \in \mathbb{R}^m$, $f = (f_1, \ldots, f_m) : \mathbb{R}^{n+m} \longrightarrow \mathbb{R}^m$ uma função de classe C^k (com $k \ge 1$) e o sistema

$$\begin{cases}
f_1(x_1, \dots, x_n, y_1, \dots, y_m) &= c_1 \\
\vdots & \vdots & \vdots \\
f_m(x_1, \dots, x_n, y_1, \dots, y_m) &= c_m
\end{cases}$$

Pretende-se encontrar condições suficientes para que o sistema seja solúvel em ordem a $Y = (y_1, \dots, y_m)$.

Se f é uma aplicação linear, conhecemos uma resposta (possível) a esta questão. Neste caso o sistema é do tipo,

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n + b_{11}y_1 + \dots + b_{1m}y_m &= c_1 \\ \vdots & & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n + b_{m1}y_1 + \dots + b_{mm}y_m &= c_m. \end{cases}$$

Sabemos que, se

$$\begin{vmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mm} \end{vmatrix} \neq 0,$$

então o sistema é resolúvel em ordem a $Y = (y_1, \dots, y_m)$, ou seja, existem funções

$$g_1,\ldots,g_m:\mathbb{R}^n\to\mathbb{R}$$

tais que

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n + b_{11}y_1 + \dots + b_{1m}y_m & = c_1 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n + b_{m1}y_1 + \dots + b_{mm}y_m & = c_m \end{cases} \iff \begin{cases} y_1 = g_1(x_1, \dots, x_n) \\ \vdots \vdots \vdots \\ y_m = g_m(x_1, \dots, x_n) \end{cases}$$

Note-se que, se $\mathbf{z}_0 \in \mathbb{R}^{n+m}$,

$$\begin{pmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mm} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial y_1}(z_0) & \cdots & \frac{\partial f_1}{\partial y_m}(z_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial y_1}(z_0) & \cdots & \frac{\partial f_m}{\partial y_m}(z_0) \end{pmatrix}$$

Pretende-se agora considerar sistemas mais gerais. Vejamos alguns exemplos.

a) Consideremos uma equação do tipo f(x,y)=a, com $a\in\mathbb{R}$ e f de classe C^{∞} nas incógnitas reais x,y. Dizer que podemos resolver a equação em ordem a y (respectivamente x) equivale a dizer que o conjunto dos pontos que satisfaz a condição f(x,y)=a é o gráfico de uma função na variável x (respectivamente y).

Mas isto acontece. Por exemplo, se $f(x,y)=x^2+y^2$, o conjunto $\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ não é o gráfico de uma função na variável x nem na variável y.

De qualquer modo,

$$\left\{ \begin{array}{ll} x^2+y^2=1 \\ y>0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} y=\sqrt{1-x^2} \\ x\in]-1,1[\end{array} \right.$$

$$\begin{cases} x^2 + y^2 = 1 \\ y < 0 \end{cases} \Leftrightarrow \begin{cases} y = -\sqrt{1 - x^2} \\ x \in] - 1, 1[\end{cases}$$

$$\begin{cases} x^2 + y^2 = 1 \\ x > 0 \end{cases} \Leftrightarrow \begin{cases} x = \sqrt{1 - y^2} \\ y \in] - 1, 1[\end{cases}$$

$$\begin{cases} x^2 + y^2 = 1 \\ x < 0 \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt{1 - y^2} \\ y \in] - 1, 1[\end{cases}$$

Daqui se conclui que, se (x_0, y_0) é solução do sistema, então:

- se $y_0 \neq 0$, o sistema é resolúvel em ordem a y numa vizinhança de (x_0, y_0) ;
- se $x_0 \neq 0$, o sistema é resolúvel em ordem a x numa vizinhança de (x_0, y_0) ;
- o sistema é resolúvel em ordem a x ou a y, numa vizinhança de (x_0, y_0) .

Vamos considerar o ponto $(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$. Sabemos que podemos resolver localmente a equação f(x,y)=1 em ordem a y, isto é, escrever y=y(x) numa vizinhança do ponto. Sem calcular explicitamente a função y(x) vamos calcular $y'(\frac{\sqrt{2}}{2})$, supondo que tal derivada existe.

Uma vez que a função satisfaz a igualdade $x^2 + y^2(x) = 1$ então (derivando em ordem a x) obtemos 2x + 2y(x)y'(x) = 0.

Substituindo no ponto referido temos $2\frac{\sqrt{2}}{2} - 2\frac{\sqrt{2}}{2}y'(\frac{\sqrt{2}}{2}) = 0$ ou seja $y'(\frac{\sqrt{2}}{2}) = 1$.

b) Consideremos o sistema,

Suponhamos que este sistema poder ser resolvido, de modo C^1 , em ordem a x e y numa vizinhança de algum ponto $A = (x_0, y_0, u_0, v_0)$ que seja solução. Então, derivando por exemplo em ordem a u, obtemos sucessivamente

$$\left\{ \begin{array}{lll} 3x^2 \; \frac{\partial x}{\partial u} + \frac{4y^3x \; \frac{\partial y}{\partial u} - \frac{\partial x}{\partial u} \; y^4}{x^2} - 1 & = & 0 \\ \cos x \; \frac{\partial x}{\partial u} - \sin y \frac{\partial y}{\partial u} & = & 0 \end{array} \right. \quad \left\{ \begin{array}{ll} \left(3x^2 - \frac{y^4}{x^2} \right) \frac{\partial x}{\partial u} + \frac{4y^3}{x} \frac{\partial y}{\partial u} \; = & 1 \\ \cos x \; \frac{\partial x}{\partial u} - \sin y \; \frac{\partial y}{\partial u} & = & 0. \end{array} \right.$$

Substituindo no ponto A obtemos um sistema linear nas incógnitas $\frac{\partial x}{\partial u}(u_0, v_0)$ e $\frac{\partial y}{\partial u}(u_0, v_0)$. Este sistema pode ser resolvido (univocamente) se e só se

$$\begin{vmatrix} 3x_0^2 - \frac{y_0^4}{x_0^2} & \frac{4y_0^3}{x_0} \\ \cos x_0 & -\sin y_0 \end{vmatrix} \neq 0.$$

Observe-se que esta condição significa que

$$\begin{vmatrix} \frac{\partial f_1}{\partial x}(A) & \frac{\partial f_1}{\partial y}(A) \\ \frac{\partial f_2}{\partial x}(A) & \frac{\partial f_2}{\partial y}(A) \end{vmatrix} \neq 0$$

em que $f_1(x, y, u, v) = x^3 + \frac{y^4}{x} - u$ e $f_2(x, y, u, v) = \sin x + \cos y - v$.

Note-se que o sistema é sempre (localmente) resolúvel em ordem a x e y se e só se a função

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \mapsto (x^3 + \frac{y^4}{x}, \operatorname{sen} x + \cos y)$

for (localmente) invertível.

Teorema 3.6 (Teorema da Função Implícita).

Sejam U um aberto de \mathbb{R}^{n+m} , $C = (c_1, \ldots, c_m) \in \mathbb{R}^m$ e $f = (f_1, \ldots, f_m) : U \longrightarrow \mathbb{R}^m$ uma função de classe C^k (com $k \in \mathbb{N} \cup \{\infty\}$).

Se $z_0 \in U$ é tal que $f(z_0) = C$ e

$$\det \left(\begin{array}{ccc} \frac{\partial f_1}{\partial y_1}(\mathbf{Z}_0) & \cdots & \frac{\partial f_1}{\partial y_m}(\mathbf{Z}_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial y_1}(\mathbf{Z}_0) & \cdots & \frac{\partial f_m}{\partial y_m}(\mathbf{Z}_0) \end{array} \right) \neq 0$$

então existem V aberto de \mathbb{R}^{n+m} , W aberto de \mathbb{R}^n e $g:W\to\mathbb{R}^m$ de classe C^k tais que $\mathbf{Z}_0\in V\subseteq U$ e

$$\begin{cases} (\mathbf{x}, \mathbf{y}) \in V \\ f(\mathbf{x}, \mathbf{y}) = \mathbf{c} \end{cases} \Leftrightarrow \begin{cases} \mathbf{x} \in W \\ \mathbf{y} = g(\mathbf{x}) \end{cases}$$

em que $X = (x_1, ..., x_n)$ e $Y = (y_1, ..., y_m)$.

Demonstração. Consideremos a função,

$$G: \quad U \longrightarrow \mathbb{R}^{n+m}$$

$$(X,Y) \mapsto (X,f(X,Y))$$

A matriz jacobiana de G no ponto z_0 é a matriz por blocos

$$\begin{pmatrix} I_n & 0 \\ \hline A & B \end{pmatrix}$$

em que I_n é a matriz identidade de dimensão $n \times n$,

$$A = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathsf{z}_0) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathsf{z}_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathsf{z}_0) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathsf{z}_0) \end{pmatrix} \quad \mathsf{e} \quad B = \begin{pmatrix} \frac{\partial f_1}{\partial y_1}(\mathsf{z}_0) & \cdots & \frac{\partial f_1}{\partial y_m}(\mathsf{z}_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial y_1}(\mathsf{z}_0) & \cdots & \frac{\partial f_m}{\partial y_m}(\mathsf{z}_0) \end{pmatrix}$$

Daqui concluímos que o determinante da matriz jacobiana de G é igual ao determinante de B que é diferente de 0 por hipótese.

Aplicando o Teorema da Função Inversa à função G sabemos que existem abertos S e T de \mathbb{R}^{n+m} tais que $\mathsf{z_0} \in S \subseteq U$ e $G_{|S}: S \longrightarrow T$ é uma bijecção com inversa C^k .

Sejam $h,g:T\longrightarrow S$ tais que

$$(G_{|S})^{-1}: T \longrightarrow S$$

 $(X,Y) \mapsto (h(X,Y), g(X,Y))$

Deste modo, se $(X, Y) \in T$,

$$(X,Y) = (G \circ (G_{|S})^{-1})(X,Y) = G(h(X,Y),g(X,Y)) = (h(X,Y),f(h(X,Y),g(X,Y)))$$

e, portanto h(X, Y) = X.

Utilizando a Nota 1.18 seja $W \times Z$ um aberto de \mathbb{R}^{n+m} contido em S e contendo $G(\mathsf{z}_0)$. Consideremos $V = \left(G_{|S|}\right)^{-1}(W \times Z)$. Pela Proposição 1.32, V é um aberto ao qual, obviamente, o ponto A pertence.

Deste modo, $G_{|V}:V\longrightarrow W\times Z$ é uma bijecção com inversa C^k . Em particular,

$$\begin{cases} (\mathbf{x}, \mathbf{y}) \in V \\ G(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{c}) \end{cases} \Leftrightarrow \begin{cases} (\mathbf{x}, \mathbf{c}) \in W \times Z \\ (\mathbf{x}, \mathbf{y}) = (G_{|V})^{-1} (\mathbf{x}, \mathbf{c}) \end{cases}$$

ou seja, porque $G(X,Y) = (X, f(X,Y)) e (G_{|V})^{-1} (X,C) = (X,g(X,C))$

$$\begin{cases} (\mathbf{x}, \mathbf{y}) \in V \\ f(\mathbf{x}, \mathbf{y}) = \mathbf{c} \end{cases} \Leftrightarrow \begin{cases} \mathbf{x} \in W \\ \mathbf{y} = g(\mathbf{x}, \mathbf{c}). \end{cases} \square$$

Nas condições do Teorema da Função Implícita, em vez de Y = g(X), escreveremos $Y = Y(X) = (y_1(x_1, \dots, x_n), \dots, y_m(x_1, \dots, x_n))$, realçando o facto de o sistema (de m equações a n+m incógnitas) poder ser resolvido em ordem a Y.

O cálculo da matriz jacobiana de Y (num ponto genérico de W)) ou seja da matriz $\left(\frac{\partial y_i}{\partial x_j}(\mathbf{X})\right)_{i,j=1,\dots,m}$ se $\mathbf{X} \in W$ pode ser feito usando o seguinte resultado.

Corolário 3.7. Nas condições do Teorema da Função Implícita, se $z_0 = (x_0, y_0)$, com $x_0 \in \mathbb{R}^n$ e $y_0 \in \mathbb{R}^m$, então

$$\mathcal{J}_{Y}(X_{0}) = - \begin{pmatrix} \frac{\partial f_{1}}{\partial y_{1}}(z_{0}) & \cdots & \frac{\partial f_{1}}{\partial y_{m}}(z_{0}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial y_{1}}(z_{0}) & \cdots & \frac{\partial f_{m}}{\partial y_{m}}(z_{0}) \end{pmatrix}^{-1} \cdot \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(z_{0}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(z_{0}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(z_{0}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(z_{0}) \end{pmatrix}$$

ou, equivalentemente,

$$\forall i = 1, \dots, m \ \forall j = 1, \dots, n$$
 $\frac{\partial f_i}{\partial x_j}(z_0) + \sum_{k=1}^m \frac{\partial f_i}{\partial y_k}(z_0) \frac{\partial y_k}{\partial x_j}(x_0) = 0$

Demonstração. Com as notações usadas na demonstração do Teorema da Função Implícita pretendemos mostrar que $\mathcal{J}_{Y}(x_0)=-B^{-1}A$, ou seja, que $A+B\cdot\mathcal{J}_{Y}(x_0)$ é a matriz nula.

Para mostrar esta última igualdade vamos considerar a função,

$$\Psi: W \longrightarrow \mathbb{R}^{n+m}.$$
 $X \mapsto (X, Y(X))$

Como $f \circ \psi$ é a função constante e igual a C, o seu jacobiano é (em todos os pontos) a matriz nula. Utilizando o Teorema da Derivação da Função Composta, $\mathcal{J}(f \circ \psi)(x_0) = \mathcal{J}f(z_0) \cdot \mathcal{J}\psi(x_0)$.

Deste modo, se O for a matriz nula $n \times n$ então

$$O = \mathcal{J}f(\mathsf{z}_0) \cdot \mathcal{J}\psi(\mathsf{x}_0) = \left(\begin{array}{c} A \mid B \end{array}\right) \left(\begin{array}{c} I_n \\ \\ \mathcal{J}\mathsf{Y}(\mathsf{x}_0) \end{array}\right) = A + B \cdot \mathcal{J}\mathsf{Y}(\mathsf{x}_0)$$

Para mostrar a segunda parte basta notar que o elemento da matriz $A+B\cdot \mathcal{J}_{Y}(x_{0})$ que está na linha i e coluna j é exactamente $\frac{\partial f_{i}}{\partial x_{j}}(z_{0})+\sum_{k=1}^{m}\frac{\partial f_{i}}{\partial y_{k}}(z_{0})\frac{\partial y_{k}}{\partial x_{j}}(x_{0}).$

Para o cálculo das derivadas parciais de ordem superior (se k>1) a regra mantém-se. Por exemplo, se pretendermos calcular $\frac{\partial^2 y_1}{\partial x_1 \partial x_2}(X_0)$:

- "derivamos em ordem a x_1 " as m igualdades $\frac{\partial f_i}{\partial x_2}(\mathbf{X},\mathbf{Y}) + \sum_{k=1}^m \frac{\partial f_i}{\partial y_k}(\mathbf{X},\mathbf{Y}) \frac{\partial y_k}{\partial x_2}(x) = 0$ com $i = 1, \ldots, m$;
- substituímos as igualdades obtidas no ponto Z_0 e obtemos um sistema nas incógnitas $\frac{\partial^2 y_1}{\partial x_1 \partial x_2}(X_0), \ldots, \frac{\partial^2 y_m}{\partial x_1 \partial x_2}(X_0);$
- resolvemos esse sistema (linear) notando que ele é de Cramer pois a matriz dos coeficientes é a matriz B, que é invertível.

Nota 3.8. Seja $a \in \mathbb{R}$ e $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ uma função de classe C^1 . O Teorema da Função Implícita diz-nos que, se $f(x_0, y_0) = a$ e $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$ então a equação f(x, y) = a, nas incógnitas reais x, y, é localmente resolúvel em ordem a y numa vizinhança de (x_0, y_0) .

O seguinte exemplo mostra que a condição, $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$, não é necessária para que a equação seja resolúvel em ordem a y.

Consideremos a=0 e $f(x,y)=x^3-y^3$. Neste caso (0,0) é uma solução do sistema e, apesar de $\frac{\partial f}{\partial y}(x_0,y_0)=0$, o sistema é resolúvel em ordem a y de um modo global (não apenas numa vizinhança de (0,0)), uma vez que

$$x^3 - y^3 = 0 \iff y = x.$$

3.3 Exercícios

Exercício 3.1. Sejam U e V abertos de \mathbb{R}^n e $f:U\to V$ um difeomorfismo de classe C^1 , isto é, uma aplicação bijectiva, de classe C^1 , tal que f^{-1} é de classe C^1 . Mostre que, para cada $A \in U$, $f'(A): \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é um isomorfismo e que $(f^{-1})'(f(A)) = (f'(A))^{-1}$.

Exercício 3.2. Seja
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
. $(x,y,z) \mapsto (x+xyz,y+xy,z+2x+3z^2)$

Verifique se existe uma vizinhança de (0,0,0) tal que f restrita a essas vizinhança é injectiva.

Exercício 3.3. Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
. $(x,y) \mapsto (x^2-y^2,2xy)$

- a) Mostre que f é localmente invertível em todos os pontos $(x, y) \neq (0, 0)$.
- b) Para cada $(x,y) \neq (0,0)$, considere abertos U e V de \mathbb{R}^2 , com $(x,y) \in U$, tais que $f|_U: U \longrightarrow V$ seja um difeomorfismo. Determine $\left((f|_U)^{-1}\right)'(f(x,y))$.

Exercício 3.4. Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
. $(x,y) \mapsto (x^3,y)$

- a) Mostre que f é invertível, embora se tenha $\det \mathcal{J}f(0,0)=0$.
- b) Mostre que f^{-1} não é diferenciável em (0,0).

Exercício 3.5. Seja
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 $(x,y,z) \mapsto (x^2+y^2-z,xy^2z,xy+x^2z)$

- a) Determine o conjunto $K = \{(x, y, z) \in \mathbb{R}^3 : f'(x, y, z) \text{ \'e um isomorfismo}\}.$
- b) Para cada $(x,y,z) \in K$, considere abertos U e V de \mathbb{R}^3 , com $(x,y,z) \in U$, tais que $f|_U: U \longrightarrow V$ é um difeomorfismo. Determine $\left((f|_U)^{-1} \right)' (f(x,y))$.

Exercício 3.6. Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2.$$

$$(x,y) \mapsto (e^{xy} + x^3y^3 + y^2, y^2)$$

- a) Mostre que, se Ψ é localmente invertível em (x, y), se $y \neq 0$.
- b) Verifique se Ψ é localmente invertível em algum ponto da forma (x,0).

- Exercício 3.7. Seja $\varphi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ uma função de classe C^1 tal que, para cada $\mathbf{x} \in \mathbb{R}^n$, $\varphi'(\mathbf{x})$ é um isomorfismo. Mostre que φ transforma abertos em abertos.
- Exercício 3.8. Considere o sistema $\begin{cases} & sen(x+y+z) + tz^4 = 0 \\ & sen(x^4 + y^4 + z^4) + 2t + x y + zt^2 = 0 \end{cases}$
 - a) Mostre que o sistema é resolúvel em ordem a x e y numa vizinhança do ponto (0,0,0,0).
 - b) Escrevendo localmente (usando a alínea anterior) x = x(z,t) e y = y(z,t), verifique se a função (definida numa vizinhança de (0,0)) $(z,t) \mapsto (x(z,t),y(z,t))$ é invertível numa vizinhança de (0,0).
- Exercício 3.9. Seja $z=\varphi(x,y)$ uma função definida implicitamente, numa vizinhança de $(x_0,y_0,z_0)=(1,1,0)$, pela equação $xe^{yz}+z\log y=1$. Determine $\frac{\partial \varphi}{\partial x}(1,1)$ e $\frac{\partial \varphi}{\partial y}(1,1)$.
- Exercício 3.10. Seja $z=\varphi\left(x,y\right)$ uma função definida implicitamente, numa vizinhança de $(x_0,y_0,z_0)=(1,1,0)$, pela equação $zx+2ye^z=3^x-1$. Determine $\frac{\partial^2\varphi}{\partial x\partial y}(1,1)$.
- Exercício 3.11. Sejam $u=f\left(x,y\right)$ e $v=g\left(x,y\right)$ funções definidas implicitamente pelo sistema de equações

$$\begin{cases} yv^2 - u^2 + x^3 = 1 \\ 4xv - yu^3 + \log y = 0 \end{cases}$$

numa vizinhança do ponto $(x_0, y_0, u_0, v_0) = (1, 1, 2, 2)$

Seja $\psi(x,y)=\varphi(f(x,y),g(x,y))$, onde $\varphi(u,v)=e^{\frac{u^2}{v}}$. Determine $\psi'(1,1)(-3,5)$.

- Exercício 3.12. Considere o sistema $\begin{cases} 2x^2-zy+1&=&0\\ 3x^2+y^2-z^2&=&0 \end{cases}$ e $\mathbf{x_0}=(x_0,y_0,z_0)$ uma solução.
 - a) Mostre que o sistema é resolúvel em ordem a y e z numa vizinhança de x_0 .
 - b) Escrevendo, numa vizinhança de (0,1,1), y=y(x) e z=z(x) calcule y''(0).
- Exercício 3.13. Considere o sistema $\left\{ \begin{array}{lll} x-z^3-3zy^2-3z&=&0\\ w-y^3-3yz^2-3y&=&0 \end{array} \right..$

a) Mostre que o sistema é localmente resolúvel em ordem a z e a w.

b) Verifique se existe alguma solução (x_0, y_0, z_0, w_0) do sistema tal que (x_0, y_0) seja ponto crítico da função w(x, y), definida implicitamente pelo sistema numa vizinhança dessa solução.

Exercício 3.14. Considere o sistema

$$\begin{cases} x^y - uv = 0 \\ v^2 - \log(xu) = 0 \end{cases} (x, y, u, v) \in \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R}^+ \times \mathbb{R}.$$

- a) Verifique que numa vizinhança de (x_0, y_0, u_0, v_0) que seja solução do sistema, este define implicitamente u e v como funções de x e y.
- b) Mostre que $\varphi(x,y) = (u(x,y),v(x,y))$ é localmente invertível numa vizinhança do ponto (e,0).
- c) Calcule $\frac{\partial^2 u}{\partial y^2}(e,0)$ e $\frac{\partial^2 v}{\partial y^2}(e,0)$.

Exercício 3.15. Sejam U um aberto de \mathbb{R}^2 e $f:U\longrightarrow \mathbb{R}$ uma função de classe C^1 tal que

$$(x^2 + y^4)f(x,y) + (f(x,y))^3 = 1, \forall (x,y) \in U.$$

Mostre que f é de classe C^{∞} .

Exercício 3.16. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ uma função de classe C^1 tal que f(0,0,0) = 0.

Diga se as seguintes afirmações são verdadeiras.

- a) Se a equação f(x,y,z)=0 se resolve numa vizinhança de (0,0,0) em ordem a z então $\frac{\partial f}{\partial z}(0,0,0)\neq 0$.
- b) Se $\frac{\partial f}{\partial z}(0,0,0) \neq 0$ e $\frac{\partial f}{\partial y}(0,0,0) \neq 0$ então existe U, um aberto de \mathbb{R}^3 contendo (0,0,0), existe um intervalo I contendo 0, existem $g,h:I\to\mathbb{R}$ tais que

$$\begin{cases} f(x,y,z) = 0 \\ (x,y,z) \in U \end{cases} \iff \begin{cases} z = g(x) \\ y = h(x) \\ x \in I \end{cases}$$

Exercício 3.17. Seja $f:\mathbb{R}^2\to\mathbb{R}$ uma função de classe C^2 tal que $\frac{\partial^2 f}{\partial x \partial y}$ nunca se anula. Mostre que o sistema, nas variáveis x,y,z,w,

$$\begin{cases} z - \frac{\partial f}{\partial y} = 0\\ w - \frac{\partial f}{\partial x} = 0 \end{cases}$$

é localmente resolúvel em ordem a x e w.

Exercício 3.18. Sejam $f, g : \mathbb{R}^n \longrightarrow \mathbb{R}$ duas funções tais que $g(x) = f(x) + (f(x))^5$. Mostre que se g é de classe C^k então f é de classe C^k .

Exercício 3.19. Considere o sistema

$$\begin{cases} x^2v + u\log x = ue^y \\ u^2 + x\log v = 1, \end{cases} (x, y, u, v) \in \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+.$$

- a) Verifique que o sistema define implicitamente u e v como funções de x e y numa vizinhança do ponto $(x_0, y_0, u_0, v_0) = (1, 0, 1, 1)$.
- b) Determine u'(1,0)(3,-1).
- c) Determine $\frac{\partial^2 u}{\partial x \partial y}(1,0)$.

Exercício 3.20. Sejam $n \in \mathbb{N} \setminus \{1\}$ e $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ uma função de classe C^1 . Mostre que, f não é injectiva.

Exercício 3.21. Sejam $n\in\mathbb{N}\setminus\{1,2\}$ $f:\mathbb{R}^n\longrightarrow\mathbb{R}^2$ uma função de classe C^1 . Mostre que, f não é injectiva.

4. Extremos

A procura da verdade é mais preciosa que a sua posse. Albert Einstein.

Pretende-se neste capítulo estudar o comportamento de funções definidas em abertos de \mathbb{R}^n e com valores em \mathbb{R} . Mais propriamente pretende-se, dada uma tal função, encontrar os pontos de máximo e/ou de mínimo da função, restrita a um dado subconjunto do seu domínio.

Comecemos com algumas definições.

Definição 4.1. Sejam U um aberto de \mathbb{R}^n , $f:U\longrightarrow\mathbb{R}$ uma função e $A\in U$. Diz-se que:

- A é um ponto de máximo (respectivamente, mínimo) de f se para todo $x \in U$, $f(x) \le f(A)$ (respectivamente, $f(x) \ge f(A)$);
- A é um ponto de máximo local (respectivamente, mínimo local) de f se existe uma vizinhança V de A tal que A é um ponto de máximo (respectivamente, mínimo) da restrição de f a V;
- A é um ponto de máximo estrito (respectivamente, mínimo estrito) de f se para todo $X \in U \setminus \{A\}$, f(X) < f(A) (respectivamente, f(X) > f(A));
- A é um ponto de máximo local estrito (respectivamente, mínimo local estrito) de f se existe uma vizinhança V de A tal que A é um ponto de máximo estrito (respectivamente, mínimo estrito) da restrição de f a V;

extremos

• A diz-se um extremo (local ou global, estrito ou não) se for um ponto de mínimo ou de máximo (local ou global, estrito ou não).

Exemplos 4.2. Vejamos alguns exemplos.

- a) Suponhamos que queremos construir um cilindro com um certo volume V_0 . Quais as medidas que devemos escolher para o raio e a altura do cilindro de modo a que a superfície do cilindro (e por conseguinte, o custo de material) seja o menor possível? É obvio que o que se pretende é encontrar o mínimo da função $\mathbb{R}^+ \times \mathbb{R}^+ \longrightarrow \mathbb{R}$ (r,h) $\mapsto 2\pi rh + 2\pi r^2$ restrita a $\{(r,h) \in \mathbb{R}^+ \times \mathbb{R}^+ : \pi r^2h = V_0\}$.
- b) Se A é um vector próprio de uma aplicação linear injectiva $h:\mathbb{R}^n\to\mathbb{R}^n$ então A é um ponto de máximo ou de mínimo da função $f:\mathbb{R}^n\setminus\{0\}\longrightarrow\mathbb{R}$ Para $x\mapsto\frac{x\cdot h(x)}{\|x\|\|h(x)\|}.$ verificar esta afirmação basta notar que, se $x\in\mathbb{R}^n\setminus\{0\}$ e α é o ângulo entre $x\in h(x)$ então,

$$f(\mathbf{x}) = \cos \alpha$$
.

Deste modo x é um ponto de máximo (respectivamente, de mínimo) de f se e só se $\cos \alpha = 1$ (respectivamente, $\cos \alpha = -1$), ou seja, se e só se existe $\lambda > 0$ (respectivamente, $\lambda < 0$) tal que $h(x) = \lambda x$.

c) É bem conhecido que a média aritmética de n números inteiros é menor ou igual à sua média geométrica. No Exemplo 4.21 c), vemos que este resultado pode ser visto como um problema de máximos e mínimos.

Antes de iniciarmos o estudo dos máximos e mínimos vamos fazer uma pequena incursão pela Álgebra Linear.

4.1 Um pouco de Álgebra Linear

Sejam $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ uma aplicação linear e A e B duas matrizes de T em relação a bases diferentes de \mathbb{R}^n . Sabemos que existe uma matriz invertível C tal que $A = CBC^{-1}$.

Deste modo.

$$\det(A) = \det(C) \det(B) \det(C^{-1}) = \det(C) \det(C)^{-1} \det(B) = \det(B).$$

Concluímos assim que o determinante não depende da base escolhida. Escreveremos então $\det(T)$ para significar o determinante da aplicação linear T relativamente a uma qualquer base de \mathbb{R}^n .

Recorda-se agora que, se $H: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é uma aplicação linear então os **vectores próprios** de H são os vectores $\mathbf{X} \in \mathbb{R}^n \setminus \{0\}$ tais que existe um número real λ tal que $H(\mathbf{X}) = \lambda \mathbf{X}$. O número λ diz-se o **valor próprio** de H associado a \mathbf{X} .

Dito de outro modo, os valores próprios são os números reais λ para os quais a aplicação $H - \lambda I$ (em que I é a função identidade) é não injectiva. Os vectores não nulos X tais que $(H - \lambda I)(X) = 0$ dizem-se vectores próprios de H associados a λ .

Atendendo a que uma aplicação de \mathbb{R}^n em \mathbb{R}^n é injectiva se e só se o determinante da sua matriz (numa base qualquer de \mathbb{R}^n) é diferente de 0, podemos dizer que os valores próprios de H são as soluções da equação

$$\det\left(H-\lambda I\right)=0.$$

Em particular, 0 é valor próprio de H se e só se H é não injectiva.

Chama-se polinómio característico de H ao polinómio de grau n (na variável λ) $p(\lambda) = \det(H - \lambda I)$.

Proposição 4.3. Se $H: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é uma aplicação linear e A e B são matrizes de H em relação a duas bases de \mathbb{R}^n , então o traço de A (soma dos valores da diagonal de A) é igual ao traço de B.

Demonstração. Note-se que $p(0) = \det H$ e, se $\operatorname{tr}(A)$ (respectivamente, $\operatorname{tr}(B)$) representa o traço de A (respectivamente, de B), então

$$p(\lambda) = \det(A - \lambda I) = (-1)^n \lambda^n + (-1)^{n-1} tr(A) \lambda^{n-1} + \dots + \det H$$

$$p(\lambda) = \det(B - \lambda I) = (-1)^n \lambda^n + (-1)^{n-1} tr(B) \lambda^{n-1} + \dots + \det H.$$

Daqui se conclui que tr(A) = tr(B).

extremos

Nota 4.4. Atendendo à proposição anterior, tem sentido definir o traço de uma aplicação linear $H: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ e denotá-lo por tr(H) como sendo o traço da matriz de H relativamente a uma base qualquer de \mathbb{R}^n .

O próximo teorema (que se supõe conhecido) vai ser repetidamente usado no que segue. De qualquer modo será feita no final da Secção 4.3 a sua demonstração como exemplo de aplicação dos métodos enunciados nessa secção.

Começamos com uma definição.

Definição 4.5. Uma aplicação linear $H: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ diz-se simétrica se

$$\forall X, Y \in \mathbb{R}^n \quad H(X) \cdot Y = X \cdot H(Y).$$

Facilmente se mostra que uma aplicação linear $H:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ é simétrica se e só se a sua matriz em relação a uma base ortonormal de \mathbb{R}^n é uma matriz simétrica.

O seguinte resultado de Álgebra Linear pode ser demonstrado usando o método dos multiplicadores de Lagrange a definir na Secção 4.3

Teorema 4.6. Uma aplicação linear $H: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é uma aplicação simétrica se e só se \mathbb{R}^n admitir uma base ortonormal de vectores próprios de H.

Demonstração. Ver alínea d) do Exemplo 4.21.

Corolário 4.7. Se $H: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é uma aplicação linear simétrica então $\det(H)$ (respectivamente, $\operatorname{tr}(H)$) é igual ao produto (respectivamente, à soma) dos valores próprios de H contando com as multiplicidades.

4.1.1 Formas quadráticas

Começamos por recordar a definição de forma quadrática.

Definição 4.8. Uma função $Q:\mathbb{R}^n\longrightarrow\mathbb{R}$ diz-se uma forma quadrática se

$$\forall \mathbf{x} \in \mathbb{R}^n \ \forall \lambda \in \mathbb{R} \quad Q(\lambda \mathbf{x}) = \lambda^2 Q(\mathbf{x}).$$

Como exemplos de formas quadráticas temos as funções polinomiais homogéneas de grau 2 em n variáveis, isto é, funções do tipo

$$P: \quad \mathbb{R}^n \longrightarrow \quad \mathbb{R}$$
$$(x_1, \dots, x_n) \mapsto \quad \sum_{i,j=1}^n a_{ij} x_i x_j$$

Note-se que, se $T:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ é uma aplicação linear, então $\mathbb{R}^n\times\mathbb{R}^n\longrightarrow\mathbb{R}$ (x, y) \mapsto x \cdot T(y) é bilinear e simétrica se T o for. Além disso a aplicação $\mathbb{R}^n\longrightarrow\mathbb{R}$ é uma forma x \mapsto x \cdot T(x) quadrática.

Repare-se que as funções polinomiais homogéneas de grau 2 definidas acima podem ser sempre obtidas à custa de uma aplicação linear simétrica: basta considerar a aplicação linear $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ cuja matriz na base canónica tem na linha i, coluna j o elemento $\frac{a_{ij}+a_{ji}}{2}$.

Um exemplo de uma aplicação bilinear simétrica é dado pela segunda derivada num ponto de uma função de classe \mathbb{C}^2 . Em particular a função

$$\mathbb{R}^n \longrightarrow \mathbb{R}$$

$$(h_1, \dots, h_n) \mapsto D_h^2 f(A) = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(A) h_i h_j$$

é uma forma quadrática.

Vejamos agora que, essencialmente, todas as formas quadráticas de classe ${\cal C}^2$ são definidas desta forma.

Proposição 4.9. Se $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ é uma forma quadrática de classe C^2 então existe uma e uma só aplicação linear simétrica $H: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ tal que

$$\forall \mathbf{Y} \in \mathbb{R}^n \quad Q(\mathbf{Y}) = \mathbf{Y} \cdot H(\mathbf{Y}).$$

Demonstração. Fixado $\mathbf{Y} \in \mathbb{R}^n$, seja $g: \mathbb{R}^n \longrightarrow \mathbb{R}$. $\mathbf{X} \mapsto Q'(\mathbf{X}; \mathbf{Y})$

Deste modo,

$$D_{\mathbf{Y}}^{2}Q(0) = D_{\mathbf{Y}}g(0) = g'(0;\mathbf{Y}) = \lim_{h \to 0} \frac{g(h\mathbf{Y}) - g(0)}{h}.$$

Por outro lado,

$$\begin{cases} g(0) &= Q'(0; Y) = \lim_{t \to 0} \frac{Q(tY) - Q(0)}{h} = \lim_{t \to 0} \frac{Q(tY)}{t} = \lim_{t \to 0} \frac{t^2 Q(Y)}{t} = 0 \\ g(hY) &= Q'(hY; Y) = \lim_{t \to 0} \frac{Q(hY + tY) - Q(hY)}{t} = \lim_{t \to 0} \frac{Q((h + t)Y) - Q(hY)}{t} \\ &= \lim_{t \to 0} \frac{(h + t)^2 Q(Y) - h^2 Q(Y)}{t} = \lim_{t \to 0} \frac{(2ht + t^2) Q(Y)}{t} = 2h Q(Y) \end{cases}$$

e, portanto

$$D_{Y}^{2}Q(0) = \lim_{h\to 0} \frac{g(hY)-g(0)}{h} = 2Q(Y).$$

Assim, se $Y = (Y_1, \dots, Y_n)$,

$$Q(Y) = \frac{1}{2}D_Y^2 Q(0) = \frac{1}{2}\sum_{i,j=1}^n Y_i Y_j \frac{\partial^2 Q}{\partial x_i \partial x_j}(0) = Y \cdot H(Y)$$

em que H é a aplicação linear cuja matriz (em relação à base canónica de \mathbb{R}^n) é igual a $\frac{1}{2}$ Hess Q(0).

Vamos de seguida classificar as formas quadráticas.

Definição 4.10. Uma forma quadrática $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ diz-se:

- positiva, se para todo $x \in \mathbb{R}^n$, $Q(x) \ge 0$;
- definida positiva, se para todo $x \neq 0$, Q(x) > 0;
- negativa, se para todo $x \in \mathbb{R}^n$, $Q(x) \leq 0$;
- definida negativa, se para todo $x \neq 0$, Q(x) < 0;
- que muda de sinal, se existem $X, Y \in \mathbb{R}^n$ tais que Q(X) > 0 e Q(Y) < 0.

Esta classificação pode ser feita em termos dos valores próprios da matriz associada à forma quadrática.

Teorema 4.11. Sejam $H: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ uma aplicação linear simétrica e $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ a forma quadrática associada a H. Então Q é:

- positiva se e só se todos os valores próprios de H são maiores ou iguais a zero;
- definida positiva se e só se todos os valores próprios de H são maiores que zero;
- negativa se e só se todos os valores próprios de H são menores ou iguais a zero;
- definida negativa se e só se todos os valores próprios de H são menores que zero;
- que muda de sinal se H tiver valores próprios maiores que 0 e valores próprios menores que 0.

Demonstração. Sejam $\lambda_1, \ldots, \lambda_n$ os valores próprios de H e $< E_1, \ldots, E_n >$ uma base ortonormal de vectores próprios de H de tal forma que $H(E_i) = \lambda_i E_i$, para $i = 1, \ldots, n$.

Os resultados acima são uma consequência imediata das seguintes observações:

- se $i=1,\ldots,n$, então $Q(\mathbf{E}_i)=H(\mathbf{E}_i)\cdot\mathbf{E}_i=\lambda_i\mathbf{E}_i\cdot\mathbf{E}_i=\lambda_i$;
- se X é um vector não nulo e $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$ são tais que $X=\alpha_1\mathrm{E}_1+\cdots+\alpha_n\mathrm{E}_n$ então

$$Q(\mathbf{X}) = H(\alpha_1 \mathbf{E}_1 + \dots + \alpha_n \mathbf{E}_n) \cdot [\alpha_1 \mathbf{E}_1 + \dots + \alpha_n \mathbf{E}_n]$$

$$= [\alpha_1 H(\mathbf{E}_1) + \dots + \alpha_n H(\mathbf{E}_n)] \cdot [\alpha_1 \mathbf{E}_1 + \dots + \alpha_n \mathbf{E}_n]$$

$$= [\alpha_1 \lambda_1 \mathbf{E}_1 + \dots + \alpha_n \lambda_n \mathbf{E}_n] \cdot [\alpha_1 \mathbf{E}_1 + \dots + \alpha_n \mathbf{E}_n]$$

$$= \alpha_1^2 \lambda_1 + \dots + \alpha_n^2 \lambda_n.$$

Os detalhes ficam ao cuidado do leitor.

4.2 Extremos locais

Recorda-se que, se $f:I\longrightarrow\mathbb{R}$ (em que I é um intervalo aberto de \mathbb{R}) é uma função suficientemente derivável e admite um extremo local num ponto A então f'(A)=0. Além disso, se f''(A)>0 (respectivamente, f''(A)<0) então A é um ponto de mínimo (respectivamente, de máximo) local de f. No caso em que f''(A)=0 então a situação complica-se um pouco sendo por vezes necessário estudar derivadas de ordem superior a 2 para tentar

extremos

tirar alguma conclusão. Este processo é sempre conclusivo se existir alguma derivada não nula no ponto em questão.

Note-se que existem funções que admitem derivada nula de todas as ordens num dado ponto A, podendo esse ponto ser: um ponto de mínimo (estrito ou não); um ponto de máximo (estrito ou não); não ser extremo.

Exemplos de tais funções podem ser (com A = 0):

$$f_{1}: \mathbb{R} \longrightarrow \mathbb{R} \qquad f_{2}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} e^{-\frac{1}{x^{2}}} & \operatorname{se} x \neq 0 \\ 0 & \operatorname{se} x = 0 \end{cases} \qquad x \mapsto \begin{cases} e^{-\frac{1}{x^{2}}} & \operatorname{se} x > 0 \\ 0 & \operatorname{se} x \leq 0 \end{cases}$$

$$f_{3}: \mathbb{R} \longrightarrow \mathbb{R} \qquad f_{4}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} -e^{-\frac{1}{x^{2}}} & \operatorname{se} x \neq 0 \\ 0 & \operatorname{se} x = 0 \end{cases} \qquad x \mapsto \begin{cases} -e^{-\frac{1}{x^{2}}} & \operatorname{se} x > 0 \\ 0 & \operatorname{se} x \leq 0 \end{cases}$$

$$f_{5}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} e^{-\frac{1}{x^{2}}} & \operatorname{se} x > 0 \\ 0 & \operatorname{se} x \leq 0 \end{cases}$$

$$x \mapsto \begin{cases} -e^{-\frac{1}{x^{2}}} & \operatorname{se} x > 0 \\ 0 & \operatorname{se} x \leq 0 \end{cases}$$

$$x \mapsto \begin{cases} -e^{-\frac{1}{x^{2}}} & \operatorname{se} x > 0 \\ 0 & \operatorname{se} x \leq 0 \end{cases}$$

Analogamente ao que acontece para funções reais de variável real o estudo dos extremos locais de funções de várias variáveis passa pelo estudo do comportamento das derivadas.

Definição 4.12. Se U é um aberto de \mathbb{R}^n , $f:U\longrightarrow\mathbb{R}$ e $A\in U$, diz-se que A é um ponto crítico de f se $\nabla f(A)=0$.

Proposição 4.13. Sejam U um aberto de \mathbb{R}^n , $f:U\longrightarrow \mathbb{R}$ uma função de classe C^1 e $a\in U$. Se A é um extremo de f então A é um ponto crítico de f.

Demonstração. Seja $\mathbf{Y} \in \mathbb{R}^n$. Vejamos que $f'(\mathbf{A};\mathbf{Y}) = \mathbf{0}$. Seja $\varepsilon > \mathbf{0}$ tal que $\mathbf{A} + t\mathbf{Y} \in U$ para todo $t \in]-\varepsilon, \varepsilon[$. Consideremos a função $\varphi:]-\varepsilon, \varepsilon[\longrightarrow \mathbb{R}$. Por hipótese $t \mapsto f(\mathbf{A} + t\mathbf{Y})$ o ponto $t = \mathbf{0}$ é um extremo de φ e, portanto $\varphi'(\mathbf{0}) = \mathbf{0}$. Para concluir basta recordar que

 $f'(A;Y) = \varphi'(0)$.

Utilizando os Teoremas 4.11, 2.43 e 2.44, estamos aptos a encontrar condições suficientes para que um ponto crítico seja ou não um extremo local de uma função.

Teorema 4.14. Sejam U um aberto de \mathbb{R}^n , $f:U\longrightarrow\mathbb{R}$ uma função de classe C^2 , A um ponto crítico de f e $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ os valores próprios da matriz hessiana de f em A. Se

- a) $\lambda_1, \ldots, \lambda_n > 0$, então A é ponto de mínimo local estrito de f;
- b) $\lambda_1, \ldots, \lambda_n < 0$, então A é ponto de máximo local estrito de f;
- c) existe $i \in \{1, ..., n\}$ tal que $\lambda_i > 0$, então A não é ponto de máximo local de f;
- d) existe $i \in \{1, ..., n\}$ tal que $\lambda_i < 0$ então A não é ponto de mínimo local de f;
- e) existem $i, j \in \{1, ..., n\}$ tal que $\lambda_i > 0$ e $\lambda_j < 0$, então A não é ponto de máximo nem de mínimo local de f.

Demonstração. Apenas por uma questão de simplicidade vamos fazer a demonstração apenas no caso em que f é de classe C^3 .

Note-se que a alínea e) é uma consequência das duas alíneas anteriores.

Utilizando os Teoremas 4.11, 2.43 e 2.44 e o facto de A ser um ponto crítico seja $\delta>0$ tal que, se $0<\|\mathbf{H}\|<\delta$,

$$f(A+H) = f(A) + \frac{1}{2} D_H^2 f(A) + \frac{R_2(H)}{\|A\|^2}$$

$$= f(A) + \|H\|^2 \left(\frac{1}{2\|H\|^2} D_H^2 f(A) + \frac{R_2(H)}{\|H\|^2}\right)$$

$$= f(A) + \|H\|^2 \left(\frac{1}{2} D_{\frac{H}{\|H\|^2}}^2 f(A) + \frac{R_2(H)}{\|H\|^2}\right)$$

Passando f(A) para o membro da esquerda, dividindo por $\|H\|^2$ e aplicando limite quando $H \to 0$ obtemos,

$$\lim_{\mathbf{H}\to\mathbf{0}}\left(\tfrac{f(\mathbf{A}+\mathbf{H})-f(\mathbf{A})}{\|\mathbf{H}\|^2}-\tfrac{1}{2}\,D_{\frac{\|\mathbf{H}\|}}^2f(\mathbf{A})\right)=\mathbf{0}\quad\text{usando o Teorema 2.44}.$$

Vejamos agora a demonstração das alíneas a) e c) (as alíneas b) e d) têm demonstração similar).

extremos

a) Neste caso a forma quadrática $\mathbb{R}^n \longrightarrow \mathbb{R}$ é definida positiva.

$$Y \mapsto \frac{1}{2}D_Y^2 f(A)$$

 $\mathbf{Y} \quad \mapsto \quad \tfrac{1}{2} \, D_{\mathbf{Y}}^2 f(\mathbf{A})$ Deste modo, como $S = \{\mathbf{X} \in \mathbb{R}^n : \|\mathbf{X}\| = 1\}$ é um compacto,

$$\exists M > 0 \ \forall \mathbf{Y} \in S \quad \frac{1}{2} D_{\mathbf{Y}}^2 f(\mathbf{A}) \geq M.$$

Atendendo a que $\lim_{H\to 0}\left(\frac{f(\mathbf{A}+\mathbf{H})-f(\mathbf{A})}{\|\mathbf{H}\|^2}-\frac{1}{2}\,D_{\frac{\mathbf{H}}{\|\mathbf{H}\|}}^2f(\mathbf{A})\right)=0$ existe $\mu>0$ tal que

$$\|\mathbf{H}\| < \mu \implies -\frac{M}{2} < \left(\frac{f(\mathbf{A} + \mathbf{H}) - f(\mathbf{A})}{\|\mathbf{H}\|^2} - \frac{1}{2} D_{\frac{\mathbf{H}}{\|\mathbf{H}\|}}^{\mathbf{H}} f(\mathbf{A})\right) < \frac{M}{2}.$$

Uma vez que $\frac{\mathbf{H}}{\|\mathbf{H}\|} \in S$ podemos concluir que, se 0 < $\|\mathbf{H}\| < \min\{\mu, \delta\}$,

$$\frac{f(A+H)-f(A)}{\|H\|^2} > -\frac{M}{2} + \frac{1}{2} D_{\frac{\|H\|}{\|H\|}}^2 f(A) \ge \frac{M}{2}.$$

Em particular, $f({ ext{A}}+{ ext{H}})-f({ ext{A}})>$ 0, o que mostra que ${ ext{A}}$ é um ponto de mínimo local estrito de f.

c) Seja y um vector próprio associado a λ_i . Então, $D_{\rm Y}^2 f({\rm A}) > 0$.

Utilizando novamente a igualdade $\lim_{H \to 0} \left(\frac{f(\mathbf{A} + \mathbf{H}) - f(\mathbf{A})}{\|\mathbf{H}\|^2} - \frac{1}{2} D_{\frac{\mathbf{H}}{\|\mathbf{H}\|}}^2 f(\mathbf{A}) \right) = 0$ obtemos, fazendo $h=t_{\rm Y}$,

$$\lim_{t\to 0} \left(\frac{f(\mathbf{A}+t\mathbf{Y})-f(\mathbf{A})}{t^2\|\mathbf{Y}\|^2} - \frac{1}{2} D^2_{\frac{\mathbf{Y}}{\|\mathbf{Y}\|}} f(\mathbf{A}) \right) = 0$$

ou seja,

$$\lim_{t\to 0} \frac{f({\bf A}+t{\bf Y})-f({\bf A})}{t^2\|{\bf Y}\|^2} = \tfrac{1}{2}\,D_{\frac{{\bf Y}}{\|{\bf Y}\|}}^2 f({\bf A}) = \tfrac{1}{2\,\|{\bf Y}\|^2}\,D_{\bf Y}^2 f({\bf A}) \quad (>0).$$

Em particular, para t suficientemente pequeno, $f(\mathbf{A}+t\mathbf{Y})>f(\mathbf{A})$ e portanto \mathbf{A} não é ponto de máximo. Como aplicação, vamos calcular os máximos e mínimos locais da função

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}.$$

$$(x, y, z) \mapsto \frac{1}{3}(x^3 + y^3 + z^3 + 3xy + 3xz + 3yz)$$

Começamos por encontrar os pontos críticos de f ou seja, os zeros do gradiente de f. Chegamos ao sistema,

$$\begin{cases} x^2 + y + z = 0 \\ x + y^2 + z = 0 \\ x + y + z^2 = 0 \end{cases}$$

cujas soluções são os pontos (0,0,0) e (-2,-2,-2)

Vamos agora estudar a matriz hessiana de f em cada um destes pontos. Note-se que não precisamos de saber os valores próprios da matriz mas apenas de saber se são positivos, negativos ou nulos.

Note-se que,

$$\mathsf{Hess}\, f(0,0,0) = \left(egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight) \qquad \mathsf{Hess}\, f(-2,-2,-2) = \left(egin{array}{ccc} -4 & 1 & 1 \ 1 & -4 & 1 \ 1 & 1 & -4 \end{array}
ight)$$

Daqui concluímos que:

• se $\lambda_1, \lambda_2, \lambda_3$ são os valores próprios de Hess f(0,0,0) então

$$\left\{ \begin{array}{lcl} \lambda_1\lambda_2\lambda_3 & = & \det\left(\operatorname{Hess} f(0,0,0)\right) = 2 > 0 \\[1mm] \lambda_1 + \lambda_2 + \lambda_3 & = & \operatorname{tr}\left(\operatorname{Hess} f(0,0,0)\right) = 0. \end{array} \right.$$

Podemos assim concluir daqui que dois dos valores próprios são negativos e o outro é positivo e, portanto, o ponto (0,0,0) não é ponto de máximo nem de mínimo local.

• se $\lambda_1, \lambda_2, \lambda_3$ são os valores próprios de Hess f(-2, -2, -2) então

$$\left\{ \begin{array}{lcl} \lambda_1 \lambda_2 \lambda_3 & = & \det \left(\mathsf{Hess} \, f(-2,-2,-2) \right) = -50 < 0 \\[1mm] \lambda_1 + \lambda_2 + \lambda_3 & = & \operatorname{tr} \left(\mathsf{Hess} \, f(-2,-2,-2) \right) = -12 < 0. \end{array} \right.$$

Podemos assim concluir que todos os valores próprios são negativos ou que um dos valores próprios é negativo e os outros são positivos. Com alguns cálculos podemos concluir que esta segunda hipótese é impossível e, portanto, o ponto (-2, -2, -2) é um ponto de máximo local de f.

Observação: Os valores próprios da matriz hessiana nos dois pontos são fáceis de calcular. No segundo caso, o polinómio característico da matriz é $p(t)=-(t^3+12t^2+45t+50)$, que não se anula para t>0. Em particular, os valores próprios são todos negativos.

Pode acontecer que todas as segundas derivadas parciais da função a estudar se anulem no ponto. Neste caso temos de estudar as derivadas de ordem superior.

Temos assim o seguinte teorema (cuja demonstração segue os passos da demonstração do teorema anterior).

Teorema 4.15. Sejam U um aberto de \mathbb{R}^n , $k \in \mathbb{N}$ e $f: U \longrightarrow \mathbb{R}$ uma função de classe C^{k+1} . Se todas as derivadas parciais de ordem menor ou igual a k de f no ponto A são nulas então:

- a) se k é par e existe uma derivada parcial de ordem k+1 que não se anula em A então A não é ponto de máximo nem de mínimo de f;
- b) se k é ímpar e,
- (i) para todo $Y \neq 0$, $D_Y^{k+1} f(A) > 0$, o ponto A é ponto de mínimo local estrito de f;
- (ii) para todo $Y \neq 0$, $D_Y^{k+1}f(A) < 0$, o ponto A é ponto de máximo local estrito de f:
- (iii) existe $y \neq 0$ tal que $D_y^{k+1}f(A) > 0$, então o ponto A não é ponto de máximo local de f;
- (iii) existe $y \neq 0$ tal que $D_y^{k+1}f(A) < 0$, então o ponto A não é ponto de mínimo local de f;
- (v) existem Y, Z \neq 0 tais que $D_{\rm Y}^{k+1}f({\rm A})>0$ e $D_{\rm Z}^{k+1}f({\rm A})<0$, o ponto A não é ponto de máximo nem de mínimo local de f.

4.3 Máximos e mínimos condicionados. Multiplicadores de Lagrange

Vamos de seguida enunciar um método que nos permite encontrar possíveis pontos de máximo ou de mínimo globais de restrições de funções de abertos de \mathbb{R}^n em \mathbb{R} a superfícies de nível.

Recorda-se que toda a superfície de nível definida por uma função contínua é um subconjunto fechado (ver Definição 2.32 e Proposição 1.36). Como consequência imediata do Teorema 1.45 e do Teorema 1.44 se $f:U\longrightarrow \mathbb{R}$ é uma função contínua e N_c é uma superfície de nível limitada e definida por uma função contínua então, f restrita a N_c tem máximo e mínimo global.

Vamos agora estender a noção de hipersuperfície de nível dada na Secção 2.3. Vamos também estender os resultados aí enunciados.

Definição 4.16. Sejam $U \subseteq \mathbb{R}^n$, $f \models (f_1, \dots, f_m) : U \longrightarrow \mathbb{R}^m$ uma função e $C = (c_1, \dots, c_m) \in \mathbb{R}^m$. Chama-se hipersuperfície de nível C da função f ao conjunto,

$$N_{c} = \{ \mathbf{x} \in U : f(\mathbf{x}) = c \}.$$

Analogamente ao que acontece no caso em que m=1 (ver Secção 2.3), apenas definiremos hiperplano tangente e hiperplano normal nos pontos a que chamaremos regulares.

Definição 4.17. Nas condições da definição anterior, um ponto A pertencente a N_C diz-se regular se f'(A) for sobrejectiva. Caso contrário o ponto diz-se singular.

Note-se que, na definição anterior:

- A é um ponto regular se e só se o conjunto $\{\nabla f_1(A), \dots, \nabla f_m(A)\}$ é linearmente independente. Em particular, só podem existir pontos regulares se $n \geq m$;
- se m=1, então a condição exigida diz apenas que $\nabla f(\mathbf{A}) \neq \mathbf{0}$;
- se n=3 e m=2, então A é regular se e só se $\nabla f_1(A) \times \nabla f_2(A) \neq 0$ (em que \times denota o produto externo).

extremos

Com as notações acima, é natural definir vector tangente a $\{A \in U : f(X) = C\}$ num ponto A como um vector que é tangente a $\{A \in U : f_i(X) = c_i\}$ no ponto A, para todo $i = 1, \ldots, m$.

Tem então sentido a seguinte definição.

Definição 4.18. Sejam U um aberto de \mathbb{R}^n , $f:U\longrightarrow\mathbb{R}^m$ uma função derivável, $C\in\mathbb{R}^m$ e $N_C=\{X\in U:f(X)=C\}$. Se A é um ponto regular de N_C , define-se:

• hiperplano normal a $N_{\rm C}$ no ponto A como sendo o hiperplano definido pelo ponto A e pelos vectores $\nabla f_1(A), \dots, \nabla f_m(A)$, ou seja, o hiperplano de equação vectorial,

$$X = A + \lambda_1 \nabla f_1(A) + \cdots + \lambda_m \nabla f_m(A) \quad \lambda_1, \dots, \lambda_m \in \mathbb{R};$$

- vector tangente a N_c no ponto A como sendo qualquer vector que é perpendicular aos vectores $\nabla f_1(A), \ldots, \nabla f_m(A)$;
- hiperplano tangente a $N_{\rm C}$ no ponto A como sendo o hiperplano que passa em A e cujos vectores direcção são os vectores tangentes a $N_{\rm C}$ em A, ou seja, o hiperplano de equações cartesianas

$$\begin{cases} (X-A) \cdot \nabla f_1(A) = 0 \\ \vdots \\ (X-A) \cdot \nabla f_m(A) = 0. \end{cases}$$

Analogamente ao que acontece no caso em que m=1, temos o seguinte resultado de interpretação óbvia. A demonstração da primeira parte é simples (essencialmente análoga à do Teorema 2.34) e a demonstração da segunda (não tão simples) será omitida.

Teorema 4.19. Nas condições da definição anterior, se $\gamma:I\longrightarrow \mathbb{R}^n$ é uma curva C^1 cujo traço (ou imagem) está contido em $N_{\scriptscriptstyle \mathrm{C}}$ e $t_0\in \overset{\circ}{I}$ tal que $\gamma(t_0)=A$ então $\gamma'(t_0)$ é um vector tangente a $N_{\scriptscriptstyle \mathrm{C}}$. Além disso, todos os vectores tangentes a $N_{\scriptscriptstyle \mathrm{C}}$ são obtidos desta forma. \square

Estamos agora em condições de enunciar e demonstrar o teorema fundamental desta secção.

Teorema 4.20. Sejam U um aberto de \mathbb{R}^n , $f:U\longrightarrow\mathbb{R}$ e $g=(g_1,\ldots,g_m):U\longrightarrow\mathbb{R}^m$ funções de classe C^1 , $C=(c_1,\ldots,c_m)\in\mathbb{R}^m$, $N_C=\{X\in U:g(X)=C\}$ e A um ponto regular de N_C .

Nestas condições, se A é um ponto de máximo ou de mínimo local de f restrito a $N_{\rm C}$ então $\nabla f(A)$ é um vector do hiperplano normal a $N_{\rm C}$ em A, ou seja,

$$\exists \lambda_1, \dots, \lambda_m \in \mathbb{R} : \nabla f(A) = \lambda_1 \nabla g_1(A) + \dots + \lambda_m \nabla g_m(A).$$

Demonstração. Mostrar que $\nabla f(A)$ pertence ao hiperplano normal a N_C em A equivale a mostrar que $\nabla f(A)$ é perpendicular a todo o vector tangente a N_C em A.

Atendendo ao Teorema 4.19, basta mostrar que, se $\gamma:I\longrightarrow U$ é uma curva C^1 cujo traço está contido em $N_{\rm C}$, $t_0\in \overset{\circ}{I}$ e $\gamma(t_0)=A$, então $\nabla\,f({\rm A})\cdot\gamma'(t_0)=0$.

Como $\gamma(t) \in N_{\rm C}$ e $A = \gamma(t_0)$ é ponto de máximo ou de mínimo local de f restrito a $N_{\rm C}$ então t_0 é um ponto de máximo ou de mínimo local de $f \circ \gamma$. Em particular $(f \circ \gamma)'(t_0) = 0$ ou equivalentemente $\nabla f(\mathbf{A}) \cdot \gamma'(t_0) = 0$.

O resultado demonstrado neste teorema dá-nos um método de calcular os possíveis pontos de máximo ou de mínimo de uma função restrita a uma dada hipersuperfície de nível. Este método (conhecido pelo método dos multiplicadores de Lagrange) não nos garante que o tal máximo ou mínimo existam.

Exemplos 4.21. Vejamos alguns exemplos de aplicação do método dos multiplicadores de Lagrange, o último dos quais é a demonstração do Teorema 4.6.

a) Consideremos

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R} \ e \ K = \{(x,y) \in \mathbb{R}^2 : x+y=1\}.$$
 $(x,y) \mapsto xy$

 $\textit{Pretendemos encontrar o} \; \max f_{|_K} \; e \; o \; \min f_{|_K}.$

Aplicando o método dos multiplicadores de Lagrange somos levados a resolver o sistema

$$\begin{cases} (x,y) & \in \mathbb{R}^2 \\ \lambda & \in \mathbb{R} \\ (y,x) & = \lambda(1,1) \\ x+y & = 1, \end{cases}$$
 cuja única solução é $x=y=\frac{1}{2}, \lambda=\frac{1}{2}.$

Uma vez que K não tem pontos singulares, o ponto $(x,y)=(\frac{1}{2},\frac{1}{2})$ é o único candidato a máximo ou a mínimo de f restrita a K. A partir daqui o método não nos diz mais nada e teremos de continuar usando outro tipo de argumentos. Por exemplo: é evidente que ponto $(\frac{1}{2},\frac{1}{2})$ não é ponto de mínimo pois, por exemplo, $(1,-1)\in K$ e $f(1,-1)< f(\frac{1}{2},\frac{1}{2})$.

Olhando para o exemplo de outro modo, podemos ver que ele pode ser transformado num problema de máximos e mínimos de uma função real de variável real. Mais concretamente, estudar a função f restrita a K equivale a estudar a função

$$g: \mathbb{R} \longrightarrow \mathbb{R}.$$
 $x \mapsto x(1-x)$

Deste modo

$$\left\{ \begin{array}{lcl} \max f_{|_K} & = & \max g \\ \min f_{|_K} & = & \min g \end{array} \right.$$

Fazendo algumas contas, concluímos que o ponto $(\frac{1}{2},\frac{1}{2})$ é de facto o ponto de máximo de f restrita a K, max $f_{|_K}=\frac{1}{4}$ e não existe mínimo de f restrita a K.

b) Vamos calcular o máximo e o mínimo da função $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ $(x,y,z) \mapsto xz + xy + yz$ restrita ao conjunto $K = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \leq 1, z \in [-1,1]\}.$

Resolução: Pela Proposição 1.36, o conjunto K é um fechado de \mathbb{R}^n . Por outro lado, se $(x,y,z) \in K$ então $x^2,y^2 \leq 1$ e $-1 \leq z \leq 1$, ou seja, $|x|,|y|,|z| \leq 1$, o que mostra que K é um conjunto limitado.

Como f é uma função contínua e K é um conjunto compacto, pois é fechado e limitado, podemos concluir que existe $\max f_{|_K}$ e $\min f_{|_K}$.

Vamos então procurar os "candidatos" a pontos de máximo e de mínimo global de $f_{|_K}$:

• no interior de K, que é igual a $\{(x,y,z) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, z \in]-1,1[\}$. Nesse caso esses pontos são necessariamente pontos críticos de f (ver Proposição 4.13).

Chegamos assim ao sistema,

$$\begin{cases} z+y=0\\ x+z=0\\ x+y=0\\ x^2+y^2<1\\ z\in]-1,1[\end{cases}$$
 cuja única solução é o ponto $(0,0,0);$

• na superfície de nível $K_l = \{(x,y,z) \in \mathbb{R}^2 : x^2 + y^2 = 1, z \in]-1,1[\}$. Se (x,y,z) é um dos candidatos a ponto de máximo ou de mínimo então, atendendo ao Teorema 4.20 os pontos são pontos singulares de K_l ou existe $\lambda \in \mathbb{R}$ tal que $\nabla f(x,y,z) = \lambda (2x,2y,0)$.

Temos assim de resolver os sistemas

$$\begin{cases} 2x = 0 \\ 2y = 0 \\ x^2 + y^2 = 1 \\ z \in]-1, 1[\end{cases} \begin{cases} z + y = 2\lambda x \\ x + z = 2\lambda y \\ x + y = 0 \\ x^2 + y^2 = 1 \\ z \in]-1, 1[\end{cases}$$

O primeiro sistema não tem solução e as soluções do segundo são $(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0)$ e $(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0)$.

• na superfície de nível $K_b = \{(x, y, z) \in \mathbb{R}^2 : x^2 + y^2 < 1, z = -1\}$. Analogamente ao que foi feito acima, consideramos os sistemas

$$\left\{ \begin{array}{l} 1=0\\ x^2+y^2<1\\ z=-1 \end{array} \right. \left\{ \begin{array}{l} z+y=0\\ x+z=0\\ x+y=\lambda\\ x^2+y^2<1\\ z=-1 \end{array} \right. \quad \textit{que são ambos impossíveis;}$$

extremos

- na superfície de nível $K_c = \{(x, y, z) \in \mathbb{R}^2 : x^2 + y^2 < 1, z = 1\}$. Como no caso anterior, nesta superfície não existem "candidatos";
- na superfície de nível $K_t = \{(x, y, z) \in \mathbb{R}^2 : x^2 + y^2 = 1, z = 1\}$. Neste caso temos de resolver os sistemas,

$$\begin{cases} (2x, 2y, 0) \times (0, 0, 1) = (0, 0, 0) \\ x^{2} + y^{2} = 1 \\ z = 1 \end{cases} \begin{cases} z + y = 2\lambda_{1}x \\ x + z = 2\lambda_{1}y \\ x + y = \lambda_{2} \\ x^{2} + y^{2} = 1 \\ z = 1 \end{cases}$$

O primeiro sistema é impossível e as soluções do segundo são os pontos (0,-1,1), (-1,0,1), $(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},1)$ e $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},1)$;

• na superfície de nível $K_l = \{(x,y,z) \in \mathbb{R}^2 : x^2 + y^2 = 1, z = -1\}$. Neste caso obtemos os pontos (0,1,-1), (1,0,-1), $(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},-1)$ e $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},-1)$.

Resta agora calcular a imagem por f de cada um destes pontos. Os que tiverem maior (respectivamente, menor) imagem são pontos de máximo (respectivamente, mínimo) global de f. Fazendo as contas concluímos que $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1)$ e $(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, -1)$ são os pontos de máximo, (0, -1, 1) e (-1, 0, 1) são os pontos de mínimo, $\max f_{|_K} = \frac{1}{2} + \sqrt{2}$ e $\min f_{|_K} = -1$.

c) Vamos mostrar que, a média geométrica de n números maiores ou iguais a zero é menor ou igual à média aritmética (pesada) desses números, ou seja,

$$\forall n \in \mathbb{N} \ \forall \alpha \in \mathbb{R}^+ \ \forall a_1, \dots, a_n \in \mathbb{R}_0^+ \ (a_1 \cdots a_n)^{\frac{1}{n}} \leq \left[\frac{1}{n} \left(a_1^{\alpha} + \dots + a_n^{\alpha}\right)\right]^{\frac{1}{\alpha}}$$

(se $\alpha=1$, o termo da direita é a média aritmética usual) ou, equivalentemente,

$$\forall n \in \mathbb{N} \ \forall \alpha \in \mathbb{R}^+ \ \forall a_1, \dots, a_n \in \mathbb{R}_0^+ \quad a_1 \cdots a_n \le \left[\frac{1}{n} \left(a_1^{\alpha} + \dots + a_n^{\alpha}\right)\right]^{\frac{n}{\alpha}}.$$

Se algum dos números a_1, \ldots, a_n é igual a 0 o resultado é óbvio.

Fixemos então
$$a_1,\ldots,a_n\in\mathbb{R}^+$$
 e consideremos $f:\mathbb{R}^n\longrightarrow\mathbb{R},$
$$(x_1,\ldots,x_n)\mapsto x_1\cdots x_n$$

$$a=a_1^\alpha+\cdots+a_n^\alpha \ \ \text{e} \ \ K=\{(x_1,\ldots,x_n)\in(\mathbb{R}_0^+)^n:x_1^\alpha+\cdots+x_n^\alpha=a\}.$$

Note-se que K é um subconjunto compacto de \mathbb{R}^n . Em particular existe $\max f_{|_K}$. É obvio que esse máximo é atingido num ponto de coordenadas positivas (pois os outros pontos têm imagem, por f, igual a zero).

Usando o Teorema 4.20 e uma vez que K não tem pontos singulares (verifique, não esquecendo que $a \neq 0$), "temos" de resolver o sistema,

$$\begin{cases} \frac{\partial f}{\partial x_1} & = & \lambda \alpha x_1^{\alpha-1} \\ & \vdots & \text{ou seja,} \\ \frac{\partial f}{\partial x_n} & = & \lambda \alpha x_n^{\alpha-1} \\ x_1^{\alpha} + \cdots x_n^{\alpha} & = & a \\ x_1, \dots, x_n & > & 0. \end{cases} \quad \text{ou seja,} \quad \begin{cases} x_1 \cdots x_n & = & \lambda \alpha x_1^{\alpha} \\ \vdots & \vdots \\ x_1 \cdots x_n & = & \lambda \alpha x_n^{\alpha} \\ x_1 \cdots x_n & = & \lambda \alpha x_n^{\alpha} \\ x_1^{\alpha} + \cdots x_n^{\alpha} & = & a \\ x_1, \dots, x_n & > & 0. \end{cases}$$

Daqui resulta $x_1 = \cdots = x_n = \left(\frac{a}{n}\right)^{\frac{1}{\alpha}}$, sendo $\left(\left(\frac{a}{n}\right)^{\frac{1}{\alpha}}, \ldots, \left(\frac{a}{n}\right)^{\frac{1}{\alpha}}\right)$ necessariamente o ponto de máximo de f restrito a K.

Concluímos assim que,

$$a_1\cdots a_n=f(a_1,\ldots,a_n)\leq \max f_{|_K}=\left(rac{a}{n}
ight)^{rac{n}{lpha}}=\left[rac{1}{n}(a_1^lpha+\cdots+a_n^lpha)
ight]^{rac{n}{lpha}}.$$

d) Vamos demonstrar a implicação não trivial do Teorema 4.6.

Suponhamos então que H é um operador simétrico. Vamos começar por demonstrar que H admite um vector próprio de norma 1. Para isso, consideremos a função

extremos

$$K = \{ \mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) = 1 \}.$$

Note-se que K é compacto e não tem pontos singulares pois $\nabla g(\mathbf{x}) = 2\mathbf{x}$ que só se anula no ponto 0, que não pertence a K.

Consideremos a função $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ e calculemos o máximo global de $\mathbf{X} \mapsto \mathbf{X} \cdot H(\mathbf{X})$

 $Q_{|_K}$.

Atendendo ao Teorema 4.20 esse máximo é atingido num ponto x que satisfaz o sistema

$$\begin{cases} \nabla Q(\mathbf{x}) = \lambda \nabla g(\mathbf{x}) = 2\lambda \mathbf{x} \\ \mathbf{x} \cdot \mathbf{x} = 1. \end{cases}$$

Precisamos agora de calcular $\nabla Q(\mathbf{x})$. Usando a regra da derivação do produto interno de duas funções obtemos, se $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$Q'(\mathbf{X})(\mathbf{Y}) = \mathbf{Y} \cdot H(\mathbf{X}) + \mathbf{X} \cdot H(\mathbf{Y})$$
 porque as funções identidade e H são lineares
$$= \mathbf{Y} \cdot H(\mathbf{X}) + H(\mathbf{X}) \cdot \mathbf{Y}$$
 porque H é simétrica
$$= 2H(\mathbf{X}) \cdot \mathbf{Y}.$$

Daqui se conclui que $\nabla Q(\mathbf{x}) = 2H(\mathbf{x})$. Substituindo no sistema anterior obtemos

$$\begin{cases} H(\mathbf{x}) = \lambda \mathbf{x} \\ \mathbf{x} \cdot \mathbf{x} = 1 \end{cases}$$

Em particular toda a solução do sistema é um vector próprio de norma 1.

Suponhamos agora que já encontrámos p vectores próprios, x_1, \ldots, x_p (com $p \le n-1$) unitários e ortogonais dois a dois e, para cada $i \le p$ seja $\mu_i \in \mathbb{R}$ tal que $H(x_i) = \mu_i x_i$.

Consideremos, $M = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \cdot \mathbf{x}_1 = \dots = \mathbf{x} \cdot \mathbf{x}_p = 0, \ \mathbf{x} \cdot \mathbf{x} = 1 \}$, que é uma hipersuperfície de nível da função $h : \mathbb{R}^n \longrightarrow \mathbb{R}^{p+1}$ $\mathbf{x} \mapsto (\mathbf{x} \cdot \mathbf{x}_1, \dots, \mathbf{x} \cdot \mathbf{x}_p, \mathbf{x} \cdot \mathbf{x})$

Seguindo o mesmo tipo de raciocínio que atrás, somos levados a concluir que o máximo de Q restrito a M satisfaz o sistema,

$$\begin{cases}
2H(\mathbf{x}) &= \lambda_1 \mathbf{x}_1 + \dots + \lambda_p \mathbf{x}_p + 2\lambda \mathbf{x} \\
\mathbf{x} \cdot \mathbf{x}_1 &= 0 \\
&\vdots \\
\mathbf{x} \cdot \mathbf{x}_p &= 0 \\
\mathbf{x} \cdot \mathbf{x} &= 1.
\end{cases}$$

Se $i \leq p$ então,

$$\begin{aligned} 2H(\mathbf{x}) &= \lambda_1 \mathbf{x}_1 + \dots + \lambda_p \mathbf{x}_p + 2\lambda \mathbf{x} & \Rightarrow & 2H(\mathbf{x}) \cdot \mathbf{x}_i = \left(\lambda_1 \mathbf{x}_1 + \dots + \lambda_p \mathbf{x}_p + 2\lambda \mathbf{x}\right) \cdot \mathbf{x}_i \\ & \Leftrightarrow & 2H(\mathbf{x}) \cdot \mathbf{x}_i = \lambda_i \\ & pois \ \mathbf{x}_i \cdot \mathbf{x}_i = 1 \ \mathbf{e} \ \mathbf{x} \cdot \mathbf{x}_i = \mathbf{x}_i \cdot \mathbf{x}_j = 0 \ \mathbf{se} \ i \neq j \\ & \Leftrightarrow & 2\mathbf{x} \cdot H(\mathbf{x}_i) = \lambda_i \quad porque \ H \ \acute{\mathbf{e}} \ sim\acute{\mathbf{e}} trica \\ & \Leftrightarrow & 2\mu_i \ \mathbf{x} \cdot \mathbf{x}_i = \lambda_i \quad porque \ H(\mathbf{x}_i) = \mu_i \ \mathbf{x}_i \\ & \Rightarrow & \lambda_i = 0 \quad porque \ \mathbf{x} \cdot \mathbf{x}_i = 0. \end{aligned}$$

Deste modo, se X_{p+1} é uma solução do sistema, então

$$\begin{cases} H(\mathbf{x}_{p+1}) &= \lambda \mathbf{x}_{p+1} \\ \mathbf{x}_{p+1} \cdot \mathbf{x}_{1} &= 0 \\ & \vdots \\ \mathbf{x}_{p+1} \cdot \mathbf{x}_{p} &= 0 \\ \mathbf{x}_{p+1} \cdot \mathbf{x}_{p+1} &= 1. \end{cases}$$

Em particular $\{X_1, \dots, X_p, X_{p+1}\}$ é um conjunto de vectores próprios de H constituído por vectores unitários ortogonais dois a dois.

Este processo só pára quando tivermos n vectores próprios unitários e ortogonais dois a dois, isto é, uma base ortonormal de vectores próprios de H.

extremos

4.4 Exercícios

Exercício 4.1. Considere a função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto x^2 + 6xy + y^2 - 8x - 8y$$

- a) Determine os pontos críticos de f.
- b) Verifique se a função apresenta máximos e mínimos locais.

Exercício 4.2. Considere a função
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}$$
.
$$(x,y,z) \mapsto x^2 + y^2 + 3z^2 + yz + 2xz - xy$$

Estude a existência de extremos locais.

Exercício 4.3. Quais os extremos locais das funções?

a)
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R};$$

 $(x,y) \mapsto x^2y + y^3 - y$

b)
$$g: \mathbb{R}^2 \longrightarrow \mathbb{R};$$

 $(x,y) \mapsto (x-y)^2 - x^4 - y^4$

c)
$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto x^2(1+\cos y) + \sin y$$

Exercício 4.4. Seja
$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto \int_0^1 \left(\frac{1}{t^2+1} - xt - y\right)^2 \, dt$$

Determine os pontos críticos de h. Procure os máximos e mínimos locais de h.

Exercício 4.5. Considere a função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto y^2 - 4x^2y + 3x^4$$

- a) Mostre que o único ponto crítico de f é a origem.
- b) Mostre que a forma quadrática $D_{\scriptscriptstyle \rm H}^2 f(0,0)$ é positiva.
- c) Comente: se f possuir um extremo na origem, é um máximo.
- d) Mostre que $f(x,y) = (y x^2)(y 3x^2)$.
- e) Verifique que

$$\left[x^2 < y < 3x^2 \Rightarrow f(x,y) < 0\right] \quad \text{e} \quad \left[\left(y < x^2 \text{ ou } y > 3x^2\right) \Rightarrow f(x,y) > 0\right].$$

- f) Conclua que a origem não é um extremo de f.
- Exercício 4.6. Sejam $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ uma função de classe C^1 e K um subconjunto compacto de \mathbb{R}^2 com interior não vazio.

Mostre que, se $f_{|_{fr(K)}}$ é constante, então f admite pelo menos um ponto crítico no interior de K.

- Exercício 4.7. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida no Exercício 2.8. Calcule o máximo, se existir, de f restrita a $K = \{(x,y) \in \mathbb{R}^2 : -y \leq x \leq y, \ x \leq 1\}$.
- Exercício 4.8. Considere a função $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ definida no Exercício 2.12. Calcule o máximo, se existir, de f restrita a $K=\{(x,y)\in\mathbb{R}^2:x\geq y^2,\ y\leq -x^2\}.$

Exercício 4.9. Considere a função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
. $(x,y) \mapsto xye^{xy}$

- a) Mostre que f tem uma infinidade de pontos críticos.
- b) Mostre que (0,0) não é ponto de mínimo nem máximo de f.
- c) Seja (x_0, y_0) um ponto crítico não nulo de f. Classifique a forma quadrática associada à aplicação linear cuja matriz nas bases canónicas é Hess $f(x_0, y_0)$.
- d) Verifique que -1 é um ponto de mínimo absoluto da função $g:\mathbb{R}\longrightarrow\mathbb{R}$ definida por $g(z)=ze^z$. Use este facto para concluir que, se (x_0,y_0) é um ponto crítico não nulo de f, então (x_0,y_0) é um ponto de mínimo de f.
- e) Seja $K=\{(x,y)\in\mathbb{R}^2:\,x^2+y^2\leq 2\}.$ Calcule, justificando, $\max f_{|_K}$ e $\max f_{|_K}$.

Exercício 4.10. Considere
$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto 2y^3 - 2x^3 - 3y^2$$

Calcule, caso existam, o máximo e o mínimo da função \boldsymbol{g} restrita ao conjunto

$$K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 6, x \le 0\}.$$

Exercício 4.11. Seja
$$f: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}.$$
 $(x,y) \mapsto \frac{xy}{x^2+y^2}$

Determine, caso existam, o máximo e o mínimo de f restrita ao conjunto

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, y \ge 1\}.$$

extremos

Exercício 4.12. Considere a função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
$$(x,y) \mapsto x^3 + 3xy^2 - x^2 - x$$

- a) Mostre que os pontos críticos de f são $\left(0, \frac{\sqrt{3}}{3}\right), \left(0, -\frac{\sqrt{3}}{3}\right)(1, 0), \left(-\frac{1}{3}, 0\right)$.
- b) Determine os máximos e os mínimos locais de f.
- c) Determine o máximo e o mínimo da restrição de f a $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 3\}$.

Exercício 4.13. Considere o conjunto $K=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=1 \text{ e } y^2+z^2=1\}$ e a função $f:\mathbb{R}^3\longrightarrow\mathbb{R}.$ $(x,y,z)\mapsto x+y+z$

- a) Mostre que K é compacto.
- b) Calcule $\min f_{|_K}$ e $\max f_{|_K}$.

Exercício 4.14. Considere o conjunto $K=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=1 \text{ e } xy+z^2=2\}$ e a função $f:\mathbb{R}^3\longrightarrow\mathbb{R}.$ $(x,y,z)\mapsto x^2+y$

- a) Mostre que K é compacto.
- b) Calcule $\max f_{|_K}$ e $\min f_{|_K}$.

Exercício 4.15. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$. $(x,y) \mapsto x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$

- a) Calcule os pontos críticos de f.
- b) Dos pontos encontrados na alínea anterior, quais são extremos locais de f?
- c) Seja $K=\{(x,y)\in\mathbb{R}^2:\,x^2+y^2\leq 16\}.$ Mostre que existe $\max f|_K$ e calcule-o.
- d) Seja $\Phi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por $\Phi(x,y) = (f(2,y-x),x^2+y^2)$. Calcule os pontos singulares de $\Phi^{-1}((3,1/2))$.

Exercício 4.16. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}.$ $(x,y,z) \mapsto x-y+z$

Se $K=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=2\}$, determine, caso existam $\max f|_K$ e $\min f|_K$.

- Exercício 4.17. Sejam $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $K = \{(x,y) \in \mathbb{R}^2: x^2 y^2 = 1\}$ e $(x,y) \mapsto x^2 + y^2$ $S = \{(x,2): x \in \mathbb{R}\}$. Determine, caso existam, $\min f|_K$ e $\min f|_S$.
- Exercício 4.18. Determine os três números reais positivos cujo produto é 8 e cuja soma é mínima.
- Exercício 4.19. Considere a elipse de equação $5x^2 + 5y^2 + 6xy 4x + 4y = 0$. Determine os pontos da elipse de ordenada mínima e ordenada máxima.
- Exercício 4.20. Determine os pontos da superfície de nível de \mathbb{R}^3 de equação $z^2 xy = 1$ que estão à distância mínima da origem.
- Exercício 4.21. Qual o volume máximo de um prisma rectangular sabendo que a área da sua superfície (total) é de 28 metros quadrados?
- Exercício 4.22. Mostre que, entre os triângulos inscritos numa circunferência, os equiláteros são os que têm área máxima.
- Exercício 4.23. Considere em \mathbb{R}^2 o disco $D=\left\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\right\}$. Suponha que a temperatura, entre os instantes t=0 e t=1, de cada ponto (x,y) do disco, é dada por (x+y)t+xy. Determine os valores máximos e mínimos da temperatura atingidos em D no intervalo de tempo [0,1].
- Exercício 4.24. Considere a família de paralelipípedos em \mathbb{R}^3 , situados no primeiro octante, com um vértice na origem e o vértice oposto a esse no plano de equação 2x+y+3z=12. Determine o paralelipípedo dessa família que tem volume máximo.
- Exercício 4.25. Considere pentágonos, como o indicado na figura, com $\overline{\rm AB}=\overline{\rm AE}, \ \overline{\rm BC}=\overline{\rm ED}$ e apresentando ângulos rectos nos vértices C e D. Dado $k\in\mathbb{R}^+$, determine o perímetro mínimo destes pentágonos para que a área seja k.
- Exercício 4.26. Dado $p \in \mathbb{R}^+$, considere triângulos de perímetro 2p, com $\overline{\mathrm{AC}} = \overline{\mathrm{BC}}$ (ver figura). Determine o triângulo tal que, o sólido de revolução que se obtém rodando o triângulo em torno do eixo que contém o segmento AB, tem volume máximo.

extremos

Exercício 4.27. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$. $(x,y) \mapsto y-xy^2$

- a) Seja K o paralelogramo fechado de vértices (0,0),(2,0),(3,1),(1,1). Determine $\max f|_K$ e $\min f|_K$.
- b) Seja $V=\left\{(x,y)\in\mathbb{R}^+\times\mathbb{R}^+_0:\frac{1}{x}-\frac{x}{2}\leq y\leq\frac{1}{x}\right\}$. Mostre que existem $\max f|_V$, $\min f|_V$ e determine-os.

Exercício 4.28. Calcule o máximo e o mínimo da função $f: \mathbb{R}^4 \longrightarrow \mathbb{R}$ $(x,y,z,w) \mapsto xw-yz$ restrita a $K=\{(x,y,z,w)\in\mathbb{R}^4: x^2+2y^2\leq 4 \text{ e } 2z^2+w^2\leq 9\}.$

Exercício 4.29. Determine a distância do ponto (1,2,0) ao cone de equação $z^2=x^2+y^2.$

Exercício 4.30. Seja
$$f: \mathbb{R}^4 \longrightarrow \mathbb{R}$$
. $(x,y,z,w) \mapsto xy-xw$

- a) Determine $f'(0,1,0,-1): \mathbb{R}^4 \longrightarrow \mathbb{R}$.
- b) Estude os extremos locais de f.
- Exercício 4.31. Considere os reservatórios, abertos na parte superior, com a forma de prismas triangulares rectângulos, como é ilustrado na figura anexa.

Sabendo que $\overline{\rm AB}=\overline{\rm AC}=\overline{\rm DE}=\overline{\rm DF}$ e que a área das paredes é 2a, com $a\in\mathbb{R}^+$, determine as dimensões do reservatório por forma a ter volume máximo.

5. Integrais de linha

A matemática é o alfabeto com que Deus escreveu o mundo. Galileu Galilei.

Neste capítulo introduz-se a noção, e dá-se uma interpretação geométrica, de integral de um campo vectorial ao longo de um caminho. Apresentam-se os conceitos de campo de vectores conservativo e de campo de gradientes, estudando-se a relação entre ambos os conceitos.

5.1 Curvas e caminhos

Começamos por recordar que uma curva em \mathbb{R}^n pode ser definida como uma função contínua de um intervalo em \mathbb{R}^n . Uma curva $\gamma:I\to\mathbb{R}^n$ diz-se seccionalmente de classe C^k (com $k\in\mathbb{N}\cup\{\infty\}$) se for contínua e existir um número finito de pontos $a_1,\ldots,a_s\in I$ tal que γ restrita a $I\setminus\{a_1,\ldots,a_s\}$ é de classe C^k .

Neste capítulo todas as curvas serão seccionalmente de classe ${\cal C}^1$ e definidas num intervalo fechado não degenerado I.

Estas curvas podem ser usadas para caracterizar os conjunto conexos por arcos, no caso desses conjuntos serem abertos (ver Corolário 5.10).

Uma curva $\gamma:[a,b]\to\mathbb{R}^n$ diz-se **simples** se,

$$\forall s, t \in [a, b] \quad [\gamma(s) = \gamma(t) \ \Rightarrow \ \{s, t\} = \{a, b\}].$$

Duas curvas $\gamma_0: [a,b] \to \mathbb{R}^n$ e $\gamma_1: [c,d] \to \mathbb{R}^n$ dizem-se co-iniciais (respectivamente co-terminais) se $\gamma_0(a) = \gamma_1(c)$ (respectivamente $\gamma_0(b) = \gamma_1(d)$).

Vamos agora dar uma definição de outro tipo de conexidade para subconjuntos abertos \mathbb{R}^n . O facto de estarmos a trabalhar apenas com conjuntos abertos simplifica algumas coisas.

Definição 5.1. Um aberto U de \mathbb{R}^n diz-se simplesmente conexo, se dadas duas curvas $\gamma_0, \gamma_1: [a,b] \to U$ co-iniciais e co-terminais, existir uma função $\Phi: [0,1] \times [a,b] \to U$, de classe C^2 em $]0,1[\times[a,b]$ tal que:

a)
$$\forall t \in [a, b], \begin{cases} \Phi(0, t) = \gamma_0(t) \\ \Phi(1, t) = \gamma_1(t); \end{cases}$$

b)
$$\forall s \in [a, b], \begin{cases} \Phi(s, a) = \gamma_0(a) \ (= \gamma_1(a)) \\ \Phi(s, b) = \gamma_0(a) \ (= \gamma_1(b)). \end{cases}$$

Vejamos algumas observações (sem demonstração):

• intuitivamente, um aberto U é simplesmente conexo se, dadas duas curvas co-iniciais e co-terminais γ_0, γ_1 , a primeira pode ir sendo transformada de maneira "suficientemente derivável" na segunda, fixando os pontos inicial e terminal;

 na definição usual de simplesmente conexo apenas se exige que a função Φ seja contínua e que satisfaça as condições a) e b). De qualquer modo, como estamos a trabalhar com abertos de \mathbb{R}^n , as duas definições são equivalentes. Poder-se-ia até supor que as curvas γ_0 e γ_1 e a função Φ eram de classe C^k , com $k \geq 2$;

• pode-se mostrar que a exigência de a função Φ ser de classe C^2 em $]0,1[\times[a,b]$ não é necessária. Esta condição sobre Φ será usada na demonstração do Teorema 5.18.

Exemplos 5.2. Vejamos alguns exemplos de curvas:

a) As seguintes 4 curvas "percorrem" a circunferência, em \mathbb{R}^2 , de centro em (0,0) e de raio 1; as duas primeiras no sentido directo e as outras no sentido dos ponteiros do relógio:

Note-se ainda que, se ε : $[0,1] \to [0,2\pi]$ é definida por $\varepsilon(t)=2\pi t$ então ε é uma bijecção crescente de classe C^{∞} tal que $\gamma_2=\gamma_1\circ\varepsilon$ e $\gamma_4=\gamma_3\circ\varepsilon$.

b) As seguintes curvas "percorrem" o segmento que une dois pontos $A \in B \in \mathbb{R}^n$; as três primeiras no sentido de A para B e a última no sentido inverso:

Note-se ainda que, para todo $i,j \leq 4$, existe uma bijecção $\varepsilon_{i,j}$ (nem todas crescentes), de classe C^{∞} , tal que $\gamma_i = \gamma_j \circ \varepsilon_{i,j}$.

Vamos em seguida definir uma relação de equivalência sobre o conjunto das curvas em \mathbb{R}^n . Aos elementos do conjunto quociente chamaremos caminhos.

Definição 5.3. Dadas duas curvas $\gamma:[a,b]\to\mathbb{R}^n$ e $\delta:[c,d]\to\mathbb{R}^n$ dizemos que $\gamma\sim\delta$ se existir uma bijecção $\varepsilon:[a,b]\to[c,d]$ tal que:

- a) ε e ε^{-1} são seccionalmente de classe C^1 ;
- b) $\gamma = \delta \circ \varepsilon$;
- c) $\varepsilon(a) = c$, $\varepsilon(b) = d$.

Nas condições desta definição é simples verificar que: ε é estritamente crescente; as imagens de γ e de δ são iguais; se $\gamma \sim \delta$ os pontos inicial e final de γ e de δ coincidem.

Deixamos como exercício a demonstração da seguinte proposição.

Proposição 5.4. ∼ é uma relação de equivalência.

Definição 5.5. Um caminho em \mathbb{R}^n é uma classe de equivalência módulo \sim , ou seja, um elemento de {curvas em \mathbb{R}^n }/ \sim .

Usaremos as letras maiúsculas (indexadas ou não) para identificar caminhos: C, D, C_1 , C_2 , etc.. Tem sentido falar no ponto inicial e no ponto final de um caminho.

Dado um caminho C, podemos sempre escolher uma curva que o represente e que tenha por domínio o intervalo fechado limitado que quisermos.

Proposição 5.6. Se $\gamma:[a,b]\to\mathbb{R}^n$ é uma curva e [c,d] é um intervalo não degenerado então γ é equivalente a uma curva de domínio [c,d].

Demonstração. Ver Nota 1.41.

Exemplos 5.7. No Exemplo 5.2:

- $\gamma_1 \sim \gamma_2$, $\gamma_3 \sim \gamma_4$ e $\gamma_1 \not\sim \gamma_3$;
- $\delta_1 \sim \delta_2$, $\delta_2 \sim \delta_3$ e $\delta_1 \nsim \delta_4$.

Vamos de seguida introduzir algumas operações sobre o conjunto dos caminhos em \mathbb{R}^n .

Definição 5.8. Sejam C e D dois caminhos em \mathbb{R}^n tais que o ponto final de C coincide com o ponto inicial de D. Define-se:

- ullet -C ou C^- , como o caminho representado pela curva, $\gamma_{C^-}: [0,1] \longrightarrow \mathbb{R}^n$, $t \mapsto \gamma_C(1-t)$ em que $\gamma_C: [0,1] \to \mathbb{R}^n$ representa C.

Nota 5.9. Vejamos algumas observações sobre as definições dadas, cujas demonstrações são deixadas como exercício:

- a) γ_{C+D} "faz o percurso de γ_C seguido do percurso de γ_D ";
- b) γ_{C^-} "faz o mesmo percurso de γ_C , mas em sentido contrário";
- c) γ_{C+D} e γ_{C^-} são de facto seccionalmente de classe C^1 ;
- d) podemos substituir γ_C e γ_D por quaisquer duas curvas $\delta_C: [a,b] \to \mathbb{R}^n$ e $\delta_D: [b,c] \to \mathbb{R}^n$ que representem C e D respectivamente. Neste caso as curvas

são tais que $\gamma_{C+D} \sim \delta_{C+D}$ e $\gamma_{C^-} \sim \delta_{C^-}$;

e) poderíamos, na definição de C+D, ter considerado caminhos γ_C e γ_D com o mesmo domínio ([0,1] por exemplo) e considerar

que obteríamos o mesmo resultado.

- f) se $(C_1 + C_2) + C_3$ tiver sentido então $(C_1 + C_2) + C_3 = C_1 + (C_2 + C_3)$;
- g) $(C^{-})^{-} = C$.

Corolário 5.10. Se U é um subconjunto aberto de \mathbb{R}^n então U é conexo por arcos se e só se dois quaisquer dos seus pontos puderem ser unidos por uma curva seccionalmente de classe C^1 .

Demonstração. Basta-nos mostrar que, se U é um aberto conexo por arcos e $\mathbf{A} \in U$ então o conjunto

 $V = \{\mathbf{X} \in U: \text{ A pode ser unido a } \mathbf{X} \text{ por uma curva seccionalmente de classe } C^1\}$ é igual a U.

Vejamos que V é um subconjunto aberto. Se $x \in V$ e $\gamma : [0,1] \longrightarrow U$ é uma curva seccionalmente de classe C^1 tal que $\gamma(0) = A$ e $\gamma(1) = X$, seja $\delta > 0$ tal que $B(X, \delta) \subseteq U$.

Deste modo, se $\mathbf{Y} \in B(\mathbf{X}, \delta)$ a curva $\mu: [0,1] \longrightarrow \mathbb{R}^n$ é uma curva de $t \mapsto \mathbf{X} + t(\mathbf{Y} - \mathbf{X})$

classe C^1 cujo traço está contido em U e que une $\mathbf X$ a $\mathbf Y$. Podemos assim concluir que a curva $\zeta: [0,2] \longrightarrow \mathbb{R}^n$ é seccionalmente de classe C^1 , tem o traço $t \mapsto \begin{cases} \gamma(t) & \text{se } t \leq 1 \\ \mu(t) & \text{se } t \geq 1 \end{cases}$

contido em U e une o ponto A ao ponto Y. Concluímos assim que V é um conjunto aberto.

Suponhamos que $V \neq U$. Neste caso existe $z \in (U \cap \overline{V}) \setminus V$ (ver Exercício 1.34).

Consideramos então $\delta>0$ tal que $B(\mathbf{Z},\delta)\subseteq U$ e $\mathbf{W}\in B(z,\delta)\cap V$ (recorde-se que $\mathbf{Z}\in\overline{V}$). Por hipótese, o ponto A pode ser unido a \mathbf{W} por uma curva seccionalmente de classe C^1 e \mathbf{W} pode ser unido a \mathbf{Z} por um segmento de recta. Obtemos assim uma curva seccionalmente de classe C^k , cujo traço está contido em U e que une A a \mathbf{Z} , o que é absurdo porque $\mathbf{Z}\not\in V$.

O absurdo resultou de termos suposto que $V \neq U$.

Com um pouco mais de trabalho poderíamos mostrar que num aberto (de \mathbb{R}^n) conexo por arcos dois qualquer dos seus pontos podem ser unidos por uma curva de classe C^{∞} .

5.2 Integrais de linha

Recorda-se que um campo de vectores em \mathbb{R}^n é uma função $H:U\to\mathbb{R}^n$ em que U é um aberto de \mathbb{R}^n .

Todos os campos de vectores referidos nesta secção serão contínuos.

Exemplo 5.11. O campo gravitacional.

Chamemos H a este campo. Então H(x,y,z) tem a direcção de (x,y,z) e sentido contrário. Por outro lado, a norma euclidiana de H(x,y,z) é inversamente proporcional ao quadrado da norma euclidiana de (x,y,z). Daqui podemos concluir que, existe $a \in \mathbb{R}^+$ tal que,

$$H: \mathbb{R}^3 \setminus \{(0,0,0)\} \longrightarrow \mathbb{R}^3$$

$$(x,y,z) \mapsto \frac{-a}{\|(x,y,z)\|^3} (x,y,z)$$

Note-se que $H = \nabla f$ em que,

$$f: \mathbb{R}^3 \setminus \{(0,0,0)\} \longrightarrow \mathbb{R}$$

$$(x,y,z) \mapsto \frac{a}{\|(x,y,z)\|}$$

O seguinte resultado sustentará a definição de integral de linha de um campo de vectores ao longo de um caminho.

Proposição 5.12. Seja U um aberto de \mathbb{R}^n e $H:U\to\mathbb{R}^n$ um campo de vectores. Se $\gamma:[a,b]\to U$ e $\delta:[c,d]\to U$ são duas curvas que representam o mesmo caminho então

$$\sum_{i=0}^{k} \int_{a_i}^{a_{i+1}} H(\gamma(t)) \cdot \gamma'(t) dt = \sum_{i=0}^{m} \int_{c_i}^{c_{i+1}} H(\delta(s)) \cdot \delta'(s) ds$$

em que $a = a_0 < \cdots < a_{k+1} = b$, $c = c_0 < \cdots < c_{m+1} = d$ e a restrição de γ e δ a $[a,b] \setminus \{a_0,\ldots,a_{k+1}\}$ e a $[c,d] \setminus \{c_0,\ldots,c_{m+1}\}$, respectivamente, são de classe C^1 .

Demonstração. Seja $\varepsilon:[a,b]\to [c,d]$ uma bijecção seccionalmente de classe C^1 com inversa seccionalmente de classe C^1 , tal que $\gamma=\delta\circ\varepsilon$, $\varepsilon(a)=c$ e $\varepsilon(b)=d$.

Apenas para simplificar a notação, vamos supor que γ, δ e ε são de classe C^1 . Como exercício fica a demonstração no caso geral.

Façamos a mudança de variável arepsilon(t)=s no integral da direita. Assim,

$$\int_{c}^{d} H(\delta(s)) \cdot \delta'(s) ds = \int_{a}^{b} H(\delta(\varepsilon(t))) \cdot \delta'(\varepsilon(t)) \varepsilon'(t) dt$$
$$= \int_{a}^{b} H((\delta \circ \varepsilon)(t)) \cdot (\delta \circ \varepsilon)'(t) dt$$
$$= \int_{a}^{b} H(\gamma(t)) \cdot \gamma'(t) dt,$$

o que completa a demonstração.

Utilizando esta proposição tem sentido a definição seguinte.

Definição 5.13. Sejam $H:U\to\mathbb{R}^n$ um campo de vectores e C uma curva em U. Define-se o integral de linha de H ao longo de C e denota-se por $\int_C H(\mathbf{x})\,d\mathbf{x}$, como sendo

$$\sum_{i=0}^{k} \int_{a_i}^{a_{i+1}} H(\gamma(t)) \cdot \gamma'(t) dt,$$

em que $\gamma:[a,b] \to U$ é um representante de C, $a=a_0 < \cdots < a_{k+1}=b$ e γ restrito a $[a,b] \setminus \{a_1,\ldots,a_{k+1}\}$ é de classe C^1 .

Para facilitar a escrita escreveremos, por abuso de notação, $\int_a^b H(\gamma(t)) \cdot \gamma'(t) \, dt$ em vez de $\sum_{i=0}^k \int_{a_i}^{a_{i+1}} H(\gamma(t)) \cdot \gamma'(t) \, dt$.

Vejamos de seguida uma ideia intuitiva do significado de $\int_C H(\mathbf{x}) \, d\mathbf{x}$:

- $\|\gamma'(t)\| dt$ ("velocidade×tempo") representa o deslocamento (na curva) durante o intervalo de tempo dt;
- a projecção de (a força) $H(\gamma(t))$ segundo a direcção de $\gamma'(t)$ é igual a $\|H(\gamma(t))\| \cos \alpha(t)$ em que $\alpha(t)$ é o ângulo entre os vectores $H(\gamma(t))$ e $\gamma'(t)$;

- o trabalho realizado pela força durante o espaço de tempo dt ("força×deslocamento"), é igual a $\|H(\gamma(t))\| \cos \alpha(t) \|\gamma'(t)\| dt$ que por sua vez é igual a $H(\gamma(t)) \cdot \gamma'(t) dt$;
- integrando em ordem a t (o que equivale a "somar" estas parcelas infinitesimais) obtemos $\int_a^b H(\gamma(t)) \cdot \gamma'(t) \, dt$, concluindo assim, informalmente, que $\int_C H(\mathbf{x}) \, d\mathbf{x}$ representa o trabalho realizado por uma força aplicada numa partícula que percorre a curva C sob a acção dessa força.

Exemplos 5.14. Vejamos dois exemplos:

Utilizando as notações do Exemplo 5.2, sejam C_1 e C_3 os caminhos representados respectivamente por γ_1 , γ_3 .

Consideremos os campos de vectores

$$G: \mathbb{R}^2 \setminus \{(0,0\} \longrightarrow \mathbb{R}^2, \qquad H: \mathbb{R}^2 \setminus \{(0,0\} \longrightarrow \mathbb{R}^2.$$

$$(x,y) \mapsto \frac{1}{\|(x,y)\|^2} (-y,x) \qquad (x,y) \mapsto \frac{-1}{\|(x,y)\|^3} (x,y)$$

Então,

$$\int_{C_1} G(\mathbf{x}) \, d\mathbf{x} = \int_0^{2\pi} (-\sin t, \cos t) \cdot (-\sin t, \cos t) \, dt = \int_0^{2\pi} \, dt = 2\pi$$

$$\int_{C_3} G(\mathbf{x}) \, d\mathbf{x} = \int_0^{2\pi} (\sin t, \cos t) \cdot (-\sin t, -\cos t) \, dt = \int_0^{2\pi} -1 \, dt = -2\pi$$

$$\int_{C_1} H(\mathbf{x}) \, d\mathbf{x} = \int_0^{2\pi} (-\cos t, -\sin t) \cdot (-\sin t, \cos t) \, dt = \int_0^{2\pi} 0 \, dt = 0$$

$$\int_{C_3} H(\mathbf{x}) \, d\mathbf{x} = \int_0^{2\pi} (-\cos t, -\sin t) \cdot (\sin t, \cos t) \, dt = \int_0^{2\pi} 0 \, dt = 0.$$

Em particular, usando a Proposição 5.12, os caminhos C_1 e C_3 são diferentes.

A demonstração da seguinte proposição é deixada como exercício.

Proposição 5.15. Se $H: U \to \mathbb{R}^n$ é um campo de vectores e C e D são caminhos, então:

a) se
$$C+D$$
 tem sentido, $\int_{C+D} H(x) dx = \int_{C} H(x) dx + \int_{D} H(x) dx$;

b)
$$\int_{C^{-}} H(x) dx = -\int_{C} H(x) dx.$$

5.3 Campos conservativos versus campos de gradientes

Vamos introduzir duas noções sobre campos de vectores e analisar em que condições elas são equivalentes.

Definição 5.16. Um campo contínuo de vectores $H: U \to \mathbb{R}^n$ diz-se:

- a) conservativo se $\int_C H(x) dx = 0$ para todo C, caminho fechado em U;
- b) campo de gradientes se existe $f: U \to \mathbb{R}$ de classe C^1 tal que $H = \nabla f$.

Proposição 5.17. Se $H:U\to\mathbb{R}^n$ é um campo de gradientes e C é um caminho cujos pontos inicial e final são respectivamente A e B então,

$$\int_C H(X) dX = f(B) - f(A)$$

em que $f: U \to \mathbb{R}$ é tal que $\nabla f = H$.

Em particular, H é um campo conservativo.

Demonstração. Seja $\gamma:[a,b] \to U$ uma curva que representa C. Seja $\{a_0,\ldots,a_{k+1}\}\subseteq [a,b]$, com $a=a_0<\cdots< a_{k+1}=b$ tal que γ restrita a $[a,b]\setminus \{a_0,\ldots,a_{k+1}\}$ é de classe C^1 . Nestas condições,

$$\int_C H(\mathbf{x}) d\mathbf{x} = \sum_{i=0}^k \int_{a_i}^{a_{i+1}} H(\gamma(t)) \cdot \gamma'(t) dt = \sum_{i=0}^k \int_{a_i}^{a_{i+1}} \nabla f(\gamma(t)) \cdot \gamma'(t) dt$$

$$= \sum_{i=0}^k \int_{a_i}^{a_{i+1}} (f \circ \gamma)'(t) dt = \sum_{i=0}^k [f(\gamma(a_{i+1})) - f(\gamma(a_i))]$$

$$= f(\gamma(a_{k+1}) - f(\gamma(a_0)) = f(\gamma(b)) - f(\gamma(a)) = f(\mathbf{B}) - f(\mathbf{A}).$$

Para a segunda parte do teorema basta notar que, se C é um caminho fechado e A é o ponto inicial e final de C então, $\int_C H(\mathbf{x}) \, d\mathbf{x} = f(\mathbf{A}) - f(\mathbf{A}) = 0$.

Com as notações do Exemplo 5.14:

- o campo G não é conservativo pois C_1 é um caminho fechado e $\int_{C_1} G(\mathbf{x}) \, d\mathbf{x} \neq 0$. Deste modo G também não é campo de gradientes. Por outro lado, G restrito a $\{(x,y) \in \mathbb{R}^2 : x \neq 0\}$ é um campo de gradientes (e, portanto, conservativo) uma vez que é igual a ∇f , em que $f(x,y) = \operatorname{arctg}\left(\frac{y}{x}\right)$.
- H é um campo de gradientes pois é igual a ∇g em que $g(x,y) = \frac{1}{\|(x,y)\|}$

Teorema 5.18. Sejam U um aberto de \mathbb{R}^n e $H:U\to\mathbb{R}^n$ um campo contínuo. Consideremos as seguintes condições sobre H:

- a) para todo o caminho fechado C em U, $\int_C H(\mathbf{x}) d\mathbf{x} = \mathbf{0}$;
- b) se C e D são caminhos em U co-iniciais e co-terminais então $\int_C H(\mathbf{x}) \, d\mathbf{x}$ é igual a $\int_D H(\mathbf{x}) \, d\mathbf{x}$;
- c) existe $f: U \to \mathbb{R}$ tal que $\nabla f = H$;
- d) H é de classe C^1 e a matriz jacobiana de H é simétrica em todos os pontos.

Então as três primeiras condições são equivalentes e, se H é de classe C^1 , elas implicam a quarta condição.

Além disso, se H for de classe C^1 e U simplesmente conexo, estas quatro condições são equivalentes.

Demonstração.

$$a) \Rightarrow b$$

Se C e D estão nas condições referidas então $C+D^-$ é um caminho fechado em U. Assim,

$$\begin{array}{lll} 0 & = & \int_{C+D^-} H(\mathbf{x}) \, d\mathbf{x} & \text{por hipótese} \\ \\ & = & \int_{C} H(\mathbf{x}) \, d\mathbf{x} + \int_{D^-} H(\mathbf{x}) \, d\mathbf{x} & \text{pela Proposição 5.15} \\ \\ & = & \int_{C} H(\mathbf{x}) \, d\mathbf{x} - \int_{D} H(\mathbf{x}) \, d\mathbf{x} & \text{pela Proposição 5.15}. \end{array}$$

Daqui concluímos que $\int_C H(\mathbf{x}) d\mathbf{x} = \int_D H(\mathbf{x}) d\mathbf{x}$.

b) \Rightarrow c) Podemos supor que U é conexo por arcos. Se U não fosse conexo por arcos, definiríamos a função f em cada uma das componentes conexas por arcos de U.

Fixemos um ponto P em U. Para cada $X \in U$, seja C_X um caminho qualquer que une P a X. Consideremos a função

$$f: \quad U \quad \longrightarrow \quad \mathbb{R}$$

$$X \quad \mapsto \quad \int_{C_{\mathbf{X}}} H(\mathbf{Y}) \, d\mathbf{Y}$$

Note-se que a condição b) garante que f está, de facto, bem definida.

Vejamos que, se $A \in U$, f é derivável em A e $\nabla f(A) = H(A)$, ou equivalentemente,

$$\lim_{\mathbf{X} \to \mathbf{A}} \frac{|f(\mathbf{X}) - f(\mathbf{A}) - H(\mathbf{A}) \cdot (\mathbf{X} - \mathbf{A})|}{\|\mathbf{X} - \mathbf{A}\|} = \mathbf{0}.$$

Fixemos $\varepsilon > 0$.

Precisamos de mostrar que existe $\delta > 0$ tal que,

$$\|\mathbf{X}-\mathbf{A}\| < \delta \implies \frac{|f(\mathbf{X}) - f(\mathbf{A}) - H(\mathbf{A}) \cdot (\mathbf{X}-\mathbf{A})|}{\|\mathbf{X}-\mathbf{A}\|} < \varepsilon.$$

Como U é aberto e H é contínuo existe $\delta>0$ tal que $\mathrm{B}(\mathrm{A},\delta)\subseteq U$ e

$$\|\mathbf{X} - \mathbf{A}\| < \delta \implies \|H(\mathbf{X}) - H(\mathbf{A})\| < \varepsilon.$$

Para esse δ e para cada x tal que $\|x-A\|<\delta$, consideremos D_x o caminho representado pela curva,

$$\begin{array}{ccc}
[0,1] & \longrightarrow & U \\
t & \mapsto & A + t(X-A).
\end{array}$$

Deste modo, se $\|\mathbf{X}-\mathbf{A}\|<\delta$, $C_{\mathbf{A}}+D_{\mathbf{X}}$ é um caminho em U que une P a \mathbf{X} . Assim,

$$|f(\mathbf{x}) - f(\mathbf{A}) - H(\mathbf{A}) \cdot (\mathbf{x} - \mathbf{A})| = \left| \int_{C_{\mathbf{A}} + D_{\mathbf{x}}} H(\mathbf{x}) d\mathbf{x} - \int_{C_{\mathbf{A}}} H(\mathbf{x}) d\mathbf{x} - H(\mathbf{A}) \cdot (\mathbf{x} - \mathbf{A}) \right|$$

$$= \left| \int_{D_{\mathbf{x}}} H(\mathbf{x}) d\mathbf{x} - H(\mathbf{A}) \cdot (\mathbf{x} - \mathbf{A}) \right|$$

$$= \left| \int_{0}^{1} H(\mathbf{A} + t(\mathbf{x} - \mathbf{A})) \cdot (\mathbf{x} - \mathbf{A}) dt - H(\mathbf{A}) \cdot (\mathbf{x} - \mathbf{A}) dt \right|$$

$$= \left| \int_{0}^{1} [H(\mathbf{A} + t(\mathbf{x} - \mathbf{A})) - H(\mathbf{A})] \cdot (\mathbf{x} - \mathbf{A}) dt \right|$$

$$= \text{porque } H(\mathbf{A}) \cdot (\mathbf{x} - \mathbf{A}) = \int_{0}^{1} H(\mathbf{A} \cdot (\mathbf{x} - \mathbf{A})) dt$$

e, portanto,

$$\frac{|f(\mathbf{x}) - f(\mathbf{A}) - H(\mathbf{A}) \cdot (\mathbf{x} - \mathbf{A})|}{\|\mathbf{x} - \mathbf{A}\|} \leq \frac{\int_{0}^{1} |[H(\mathbf{A} + t(\mathbf{x} - \mathbf{A})) - H(\mathbf{A})] \cdot (\mathbf{x} - \mathbf{A})| dt}{\|\mathbf{x} - \mathbf{A}\|} \\
\leq \frac{\int_{0}^{1} \|H(\mathbf{A} + t(\mathbf{x} - \mathbf{A})) - H(\mathbf{A})\| \|\mathbf{x} - \mathbf{A}\| dt}{\|\mathbf{x} - \mathbf{A}\|} \\
= \int_{0}^{1} \|H(\mathbf{A} + t(\mathbf{x} - \mathbf{A})) - H(\mathbf{A})\| dt \\
< \int_{0}^{1} \varepsilon dt \\
\text{porque } \|(\mathbf{A} + t(\mathbf{x} - \mathbf{A})) - \mathbf{A}\| = \|t(\mathbf{x} - \mathbf{A})\| < \delta \\
= \varepsilon.$$

- c) \Rightarrow a) Ver Proposição 5.17.
- c) \Rightarrow d) Se H é de classe C^1 e $f:U\to\mathbb{R}$ é tal que $\nabla f=H$ então f é de classe C^2 . Deste modo, se $\mathbf{x}\in U$, a matriz jacobiana de H em \mathbf{x} é igual à matriz hessiana de f em \mathbf{x} e portanto é simétrica.
- d) \Rightarrow b) Suponhamos que U é simplesmente conexo e a matriz jacobiana de H é simétrica.

Sejam C_0 e C_1 dois caminhos em U co-iniciais e co-terminais e $\gamma_0, \gamma_1 : [0,1] \to U$ representantes de C_0 e C_1 e $\Phi: [0,1] \times [0,1] \to U$ nas condições da Definição 5.1 (relativas a U).

Consideremos a função,
$$g: [0,1] \longrightarrow \mathbb{R}$$

$$s \mapsto \int_0^1 H(\Phi(s,t)) \cdot \frac{\partial \Phi}{\partial t}(s,t) \, dt.$$
 Note-se que $g(0) = \int_{C_0} H(\mathbf{x}) \, d\mathbf{x}$ e $g(1) = \int_{C_1} H(\mathbf{x}) \, d\mathbf{x}$. Para mostrar que $g(0) = g(1)$ vamos mostrar que a derivada de g é constante e igual a 0 . De facto, se $s \in [0,1]$,

$$\begin{split} g'(s) &= \int_0^1 \frac{\partial}{\partial s} \left[H(\Phi(s,t)) \cdot \frac{\partial \Phi}{\partial t}(s,t) \right] \, dt \quad \text{pela regra de Leibniz} \\ &= \int_0^1 \left\{ \frac{\partial}{\partial s} \left[H(\Phi(s,t)) \right] \cdot \frac{\partial \Phi}{\partial t}(s,t) + H(\Phi(s,t)) \cdot \frac{\partial}{\partial s} \left[\frac{\partial \Phi}{\partial t}(s,t) \right] \right\} \, dt \\ &= \int_0^1 \left\{ H'(\Phi(s,t)) \left(\frac{\partial \Phi}{\partial s}(s,t) \right) \cdot \frac{\partial \Phi}{\partial t}(s,t) + H(\Phi(s,t)) \cdot \frac{\partial^2 \Phi}{\partial s \, \partial t}(s,t) \right\} \, dt \\ &= \int_0^1 \left\{ H'(\Phi(s,t)) \left(\frac{\partial \Phi}{\partial t}(s,t) \right) \cdot \frac{\partial \Phi}{\partial s}(s,t) + H(\Phi(s,t)) \cdot \frac{\partial^2 \Phi}{\partial s \, \partial t}(s,t) \right\} \, dt \\ &= \int_0^1 \left\{ H'(\Phi(s,t)) \left(\frac{\partial \Phi}{\partial t}(s,t) \right) \cdot \frac{\partial \Phi}{\partial s}(s,t) + H(\Phi(s,t)) \cdot \frac{\partial^2 \Phi}{\partial s \, \partial t}(s,t) \right\} \, dt \\ &= \text{porque } H'(\Phi(s,t)) \text{ \'e uma aplicação linear simétrica (ver definição 4.5 e observação que se lhe segue)} \end{split}$$

Usando agora a igualdade $\frac{\partial^2 \Phi}{\partial t \partial s} = \frac{\partial^2 \Phi}{\partial s \partial t}$ obtemos

$$g'(s) = \int_{0}^{1} \left\{ H'(\Phi(s,t)) \left(\frac{\partial \Phi}{\partial t}(s,t) \right) \cdot \frac{\partial \Phi}{\partial s}(s,t) + H(\Phi(s,t)) \cdot \frac{\partial^{2} \Phi}{\partial t \partial s}(s,t) \right\} dt$$

$$= \int_{0}^{1} \frac{\partial}{\partial t} \left[H(\Phi(s,t)) \cdot \frac{\partial \Phi}{\partial s}(s,t) \right] dt$$

$$= \left[H(\Phi(s,t)) \cdot \frac{\partial \Phi}{\partial s}(s,t) \right]_{t=0}^{t=1}$$

$$= H(\Phi(s,1)) \cdot \frac{\partial \Phi}{\partial s}(s,1) - H(\Phi(s,0)) \cdot \frac{\partial \Phi}{\partial s}(s,0).$$

Da condição b) da Definição 5.1, podemos deduzir que $\frac{\partial \Phi}{\partial s}(s,1) = \frac{\partial \Phi}{\partial s}(s,0) = 0$. Concluímos assim que, se $s \in [0,1]$, g'(s) = 0

Nota 5.19.

- Se U não for simplesmente conexo, a condição d) não implica necessariamente as outras condições. Um contra-exemplo é o campo G referido no Exemplo 5.14. De qualquer modo, G restrito a qualquer aberto simplesmente conexo é um campo de gradientes. Em particular, se C é uma curva que não "contém (0,0) no seu interior", então $\int_C H(\mathbf{x}) \, d\mathbf{x} = 0$;
- Note-se que já tínhamos visto (Teorema 2.30) que a condição d) implicava localmente a condição c).

5.4 Exercícios

Exercício 5.1. Nas alíneas seguintes, o domínio dos campos de vectores é "o maior possível" e, sempre que se falar no caminho que une um ponto A a um ponto B, estamos a supor que a orientação é no sentido "de A para B".

Calcule $\int_C H(\mathbf{x}) d\mathbf{x}$ em que:

- a) $H(x,y)=(x^2y,y^3)$ e C é o segmento de recta que une (0,0) a (1,1);
- b) $H(x,y)=(x^2,2xy)$ e C é o caminho, na parábola $y=x^2$ que une (-1,1) a (1,1);
- c) $H(x,y) = (y^2, -x)$ e C é o caminho, na parábola $y^2 = 4x$ desde (0,0) a (1,2);
- d) $H(x,y)=\left(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$ e C é o caminho que une, no sentido directo, (3,0) a $(\frac{3\sqrt{3}}{2},\frac{3}{2})$ na circunferência centrada em (0,0) e de raio 3;
- e) $H(x,y)=\left(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$ e C é o caminho que une, no sentido directo, (1,1) a $(-\sqrt{2},0)$ na circunferência centrada em (0,0) e de raio 2;
- f) $H(x,y) = (x^2, xy)$ e C é o caminho que percorre a parábola $y = x^2$ desde o ponto (0,0) até o ponto (1,1) e, depois, percorre o segmento de recta que une (1,1) a (0,0);
- g) $H(x,y) = (x^2 2xy, y^2 2xy)$ e C é o caminho, na parábola $y = x^2$ que une (-2,4) a (1,1);

- h) $H(x,y)=\left(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2}\right)$ e C é o caminho que percorre, no sentido directo, a circunferência centrada em (0,0) e de raio 2;
- i) H(x,y) = (2xy, -3xy) e C "percorre" no sentido directo o quadrado definido pelas curvas x = 3, x = 5, y = 1 e y = 3;
- j) H(x, y, z) = (2x, 3y, 4z) e C é o segmento de recta que une (0, 0, 0) a (1, 1, 1);
- k) H(x,y,z)=(x,y,xz-y) e C é o segmento de recta que une (0,0,0) a (1,2,4).

Exercício 5.2. Considere o campo de vectores $H: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ e o conjunto $(x,y) \mapsto (xy,x)$

$$K = \{(x, y) \in \mathbb{R}^2 : x \ge y^2, y \le -x^2\}.$$

Calcule o integral de linha do campo H ao longo do caminho simples fechado que parametriza a fronteira de K no sentido directo.

Exercício 5.3. Considere
$$c\in\mathbb{R}$$
, $a,b\in\mathbb{R}^+$ e $H:$ \mathbb{R}^2 \longrightarrow \mathbb{R}^2 . (x,y) \mapsto (cxy,x^6y^6)

Calcule a, em função de c, tal que o integral de linha de H ao longo da curva $y=ax^b$, desde (0,0) a (1,a), seja independente de b.

Exercício 5.4. Seja $\varphi:\mathbb{R}\longrightarrow\mathbb{R}$ uma função de classe C^1 e considere o campo de vectores $H: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2.$ $(x,y) \quad \mapsto \quad \left(e^x\varphi(y), 3\,e^xy^2\right)$

- a) Calcule $\int_C H(x) dx$, onde C é o segmento de recta que une (0,0) a (1,0).
- b) Determine as funções φ para as quais H é conservativo.
- c) Suponha que, se $y \in \mathbb{R}$, $\varphi(y) = y^3$ e verifique se H é localmente invertível na vizinhança do ponto (0,1).

Bibliografia

- [1] Lang, S., Calculus of Several Variables, 3^a edição, Springer-Verlag, 1995.
- [2] Lima, E. L., Curso de Análise, vol. 2, 4ª edição , Projecto Euclides, 1995.
- [3] Falcão Moreira, M. R., *Apontamentos da disciplina de Análise Infinitesimal I*, Departamento de Matemática Pura, Universidade do Porto, 1978-79.
- [4] Marsden, Jerrold E., *Elementary Classical Analysis, Second Edition (com Hoffman, M.)*, W. H. Freeman, 1993.

Índice alfabético

Ângulo, 7	Curvas co-terminais, 118		
Aderência, 11 Aplicação linear simétrica, 94	Derivada de ordem superior, 59 direccional, 33 global, 38 parcial, 35 Desigualdade de Cauchy-Schwartz, 5 Distância, 5 do máximo, 8		
Bola, 9			
Caminho, 120 Campo, 55 conservativo, 126 de gradientes, 56, 126			
Conjunto	usual, 8		
aberto, 12 compacto, 24 conexo por arcos, 23	Espaço métrico, 5 Extremo, 92		
derivado, 11 fechado, 12 limitado, 12 simplesmente conexo, 118	Forma quadrática, 94 definida negativa, 96 definida positiva, 96 negativa, 96		
Curva, 23 de nível, 58 seccionalmente de classe C^k , 117 simples, 117	positiva, 96 que muda de sinal, 96 Fronteira, 11 Função		
Curvas co-iniciais, 118	contínua, 16		

índice alfabético

de classe C^1 , 46	de mínimo local estrito, 91		
de classe C^k , 59	de máximo, 91		
uniformemente contínua, 21	de máximo estrito, 91		
Gradiente, 44	de máximo local, 91 de máximo local estrito, 91		
Hiperplano tangente, 59	interior, 10		
Hipersuperfície de nível, 58	isolado, 10		
Integral de linha, 124 Interior, 11	regular, 103 singular, 103 Produto interno, 4		
Métrica, 5	usual, 8		
Matriz	_		
hessiana, 60 jacobiana, 41	Recta normal, 58 tangente, 58		
Norma, 5	Regra de Leibniz, 54		
da soma, 27	Resto de Taylor, 64		
associada ao produto interno, 6			
do máximo, 8	Sucessão		
usual, 8	convergente, 13		
	de Cauchy, 13		
Polinómio de Taylor, 64	Superfície de nível, 58		
Ponto	Teorema		
aderente, 10 crítico, 98	da derivação da função composta, 48		
	da função composta, 17		
de acumulação, 10 de fronteira, 10	·		
de mínimo, 91	da função implícita, 82 da função inversa, 78		
de mínimo, 91 de mínimo estrito, 91	de Lagrange, 38		
de mínimo estrito, 91 de mínimo local, 91	de Taylor, 64		
de minimo local, 91	ue rayior, 04		