#### Lecture 8

Instructor: Karteek Sreenivasaiah

11th September 2018

## Abstract Data Type

# Graph (directed)

A (directed) graph G is a two tuple (V, E) where:

- ▶ *V* is a set of elements called "vertices".
- ▶  $E \subseteq V \times V$  is a binary relation. Elements in E are called "edges".

Note: There are several definitions and variants of graphs. Graphs are a way to study the relationships among a set of elements.

#### Consider:

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{ (1, 3), (1, 4), (2, 4), (4, 6), (7, 2), (7, 5) \}$$

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{(1, 3), (1, 4), (2, 4), (4, 6), (7, 2), (7, 5)\}$$



$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{(1, 3), (1, 4),$$

$$(2, 4), (4, 6),$$

$$(7, 2), (7, 5)\}$$



The vertices can be drawn anywhere! The edges are what matter.

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{ (1, 3), (1, 4),$$

$$(2, 4), (4, 6),$$

$$(7, 2), (7, 5) \}$$



The vertices can be drawn anywhere! The edges are what matter.

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{ (1, 3), (1, 4), (2, 4), (4, 6), (7, 2), (7, 5) \}$$



The vertices can be drawn anywhere! The edges are what matter.

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{ (1, 2), (1, 5), (2, 3), (3, 3), (4, 1), (4, 5), (5, 4) \}$$



$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{ (1, 2), (1, 5), (2, 3), (3, 3), (4, 1), (4, 5), (5, 4) \}$$



#### Terminology:

- ▶ A vertex v is a neighbour or adjacent to u if  $(u, v) \in E$ .
- ► The neighbourhood  $\mathcal{N}(u)$  of a vertex u is the set of all neighbours of u.

## Graphs

# Graph (undirected)

A (undirected) graph G is a two tuple (V, E) where:

- ▶ *V* is a set of elements called "vertices".
- $\triangleright$  *E* is a set of (unordered) pairs of vertices from *V*.

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{4, 6\}, \{7, 2\}, \{7, 5\}\}$$







(source: wikipedia.org)

Weighted graphs have a weight assigned to each edges using a weight function.

#### Data structure

Two standard data structures to represent graphs:

- Adjacency matrix
- Adjacency list

# Adjacency Matrix

| Γ | A | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 ] |
|---|---|---|---|---|---|---|---|---|-----|
| 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0   |
| ı | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0   |
| İ | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |
| İ | 4 | 0 | 0 | 0 | 0 |   | 1 | 0 | 0   |
| - | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |
|   | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |
|   | 7 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0   |
| L | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |

$$A[u,v] = 1 \iff (u,v) \in E$$



# Adjacency Matrix

| $\int A$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8   |
|----------|---|---|---|---|---|---|---|-----|
| 1        | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0   |
| 2        | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0   |
| 3        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |
| 4        | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0   |
| 5        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |
| 6        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |
| 7        | 0 | 1 |   | 0 | 1 | 0 | 0 | 0   |
| 8        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 _ |

$$A[u,v]=1\iff (u,v)\in E$$



#### For an undirected graph:

- $\mathbf{v}, \mathbf{v} \in E \iff A[\mathbf{u}, \mathbf{v}] = A[\mathbf{v}, \mathbf{u}] = 1$
- ► The adjacency matrix for an undirected graph is a symmetric matrix

# **Adjacency Lists**





## Graph algorithms

Some natural question to ask about an input graph:

- ► Starting from a vertex *s*, what vertices are reachable?
- ▶ What is the shortest path from a vertex *s* to a vertex *v*?

Algorithms that work on an input graph are called graph algorithms. One of the fundamental graph algorithms is the Breadth-first Search.

# Breadth-first Search

The idea is to explore the graph "radially outward" from the source.

In each step, we expand our exploration by visiting the neighborhood of all explored vertices.













#### Important:

- ▶ Do not visit an already explored vertex.
- ► Keep track of distance from source.
- ► Terminate algorithm when no new vertices can be explored.

Queue:  $\emptyset$ 



Dequeued vertex: Queue: s



Dequeued vertex: s Queue: r g



Dequeued vertex: r Queue: g f



Dequeued vertex: g Queue: f a b



Dequeued vertex: f Queue: a b



Dequeued vertex: a Queue: b e d



Dequeued vertex: b Queue: e d c



Dequeued vertex: e Queue: d c j h i



Dequeued vertex:  $\boxed{d}$  Queue:  $\boxed{c}$   $\boxed{j}$   $\boxed{h}$   $\boxed{i}$ 



Dequeued vertex: c Queue: j h i



Dequeued vertex: j Queue: h i



Dequeued vertex: h Queue: i



Dequeued vertex: i Queue:  $\emptyset$ 



#### **Algorithm 1** Breadth-first Search from vertex s 1: Color all vertices WHITE.

2: For all  $u \in V$ ,  $d[u] \leftarrow \infty$ ,  $\pi[u] \leftarrow \text{NIL}$ .

3: 
$$d[s] \leftarrow 0$$
.

4: Initialize queue 
$$Q \leftarrow \emptyset$$
.

5: ENQUEUE(
$$Q, s$$
)

$$Q \neq \emptyset$$
 do

6: while 
$$Q \neq \emptyset$$
 do

$$Q \neq \emptyset$$
 do

$$u \leftarrow \mathsf{DEQUEUE}(Q)$$

for each 
$$v \in \mathcal{N}(u)$$
 do

or each 
$$v \in \mathcal{N}(u)$$
 do
if  $color(v) = WHITE$  then

$$f \operatorname{color}(v) = W$$

if color(
$$v$$
) = color[ $v$ ]  $\leftarrow$ 

$$color(v) = color[v] \leftarrow$$

$$\operatorname{color}[v] \leftarrow \operatorname{GRAY}$$

$$d[v] \leftarrow d[u]$$

$$d[v] \leftarrow d[u]$$

$$d[v] \leftarrow d[u] \cdot \pi[v] \leftarrow u$$

 $color[u] \leftarrow BLACK.$ 

$$\pi[v] \leftarrow u[u] + 1$$
 $\pi[v] \leftarrow u$ 
ENQUEUE( $Q, v$ )

$$d[v] \leftarrow d$$

end if

end for

17: end while

9:

10:

11:

12:

13:

14:

15:

16:

$$d[v] \leftarrow d[u] + 1$$

$$d[v] \leftarrow d[u] +$$

$$\leftarrow$$
 GRAY  $d[u] + 1$ 







#### Correctness of BFS

Notation: Let  $\delta(s, v)$  denote the minimum number of edges on a path from s to v.

#### Theorem

Let G = (V, E) be a graph. When BFS is run on G from vertex  $s \in V$ :

- 1. Every vertex that is reachable from *s* gets discovered.
- 2. On termination,  $d[v] = \delta(s, v)$ .

Show (1) is an exercise.

#### Proof of correctness

#### Proof

Suppose, for the sake of contradiction, (2) does not hold.

Let v be the vertex with smallest  $\delta(s, v)$  such that  $d[v] \neq \delta(s, v)$ .

Claim 1:  $d[v] \ge \delta(s, v)$ 

Let u be the vertex just before v on any path from s to v.

Claim 2:  $\delta(s, v) \leq \delta(s, u) + 1$ .

Choose a *shortest* path from *s* to *v*.

Let the vertex *u* immmediately precede *v* 

Then  $\delta(s, v) = \delta(s, u) + 1 = d[u] + 1$ .

So we have:

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

#### Proof cont...

We have:

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Consider the time step when *u* is dequeued.

- ► Case 1: *v* was white.
  - The algo sets d[v] = d[u] + 1.
  - This contradicts the eq above.
- ► Case 2: *v* is black.
  - Then, *v* was dequeued before *u*.
  - Claim 3: If v was dequeued before u, then  $d[v] \le d[u]$ .

#### Proof cont...

► Case 3: *v* was gray. Vertex *v* was colored gray after dequeuing some vertex

w earlier.

So d[v] = d[w] + 1.

By Claim 3,  $d[w] \le d[u]$  since w was dequeued before u. This gives:  $d[v] = d[w] + 1 \le d[u] + 1$ .