## Beam in HCANA

September 20, 2018

## 1 Introduction

For most purposes in Hall C data analysis, the beam apparatus that is used is THcRasteredBeam and the beam detector is THcRaster. A sample in the replay script is:

THaApparatus\* beam = new THcRasteredBeam("H.rb", "Rastered Beamline")

This is for when the HallCSpectrometer is defined as "H" ( for SHMS it is custom to be defined as "P") . The beam object is given the name "H.rb" and can be used later in physics modules:

```
THcReactionPoint* hrp = new THcReactionPoint("H.react", "", "H", "H.rb");
THcExtTarCor* hext = new THcExtTarCor("H.extcor", "", "H", "H.react");
THcPrimaryKine* hkin = new THcPrimaryKine("H.kin", "", "H", "H.rb");
```

Methods for getting the information on the beam positions and direction that are calculated in THcRaster.cxx.

## 2 Raster and EPICS BPMs

The Hall C raster consists of two sets of X and Y coils which are labeled in the code as "A" and "B". For each event, the raster voltage for all four coils is sampled in a FADC250. This voltage is proportional to the magnetic field in the raster coils which is directly related to the deflection of the beam at the target. The two X (Y) coils are in sync and give enough deflection so, for 11 GeV beam, the maximum deflection at the maximum voltage in the supplies is about 5x5mm (5mm is the full width, 2.5mm is the half-width). The raster voltage only gives the relative deflection compared to the average beam position. In Hall C, there is presently no measure of the beam position on an event-by-event basis. The EPICS data is used to give the average beam position with the assumption that the average beam position has a small variation over the course of a run. The EPICS data is in units of mm and the coordinate system has +X pointing beam right and +Y pointing up.

The THcRaster.cxx reads in the raster current data. The Init method sets THcTHcRasterRawHit based on the detector map:

```
! HRASTER_ID=18
                     :: ADC
DETECTOR=18
ROC=1
SLOT=18
12,
            1,
                     ! FR-YA
            2,
                     ! FR-XA
13,
            3,
                     ! FR-YB
14,
       1,
            4,
                  0
15,
       1,
                     ! FR-XA
```

with a similar setup for the SHMS detector map.

The *Decode* method reads in the raw ADC values for each event. The internal variable names and the names in the output tree are given in Table 1. If

| Variable Name | Tree name   | Comment |
|---------------|-------------|---------|
| frxaRawAdc    | FRXA_rawadc |         |
| frxbRawAdc    | FRXB_rawadc |         |
| fryaRawAdc    | FRYA_rawadc |         |
| frybRawAdc    | FRYB_rawadc |         |

Table 1: Raster Raw ADC variables

the EPICS handler is initialized in the replay script, then the "RAW" EPICS X-Y position data for the three BPMS along the girder before the target is read to the variables: BPMXA\_raw, BPMXB\_raw, BPMXC\_raw, BPMXA\_raw, BPMXB\_raw and BPMXC\_raw. The raw variables are not available in the output tree. One could get them from the EPICS tree if the definition file is setup properly.

The *Process* method converts the raw raster ADC and EPICS BPM data into calibrated positions. The variable raster ADC (listed in Table 2) is calculated by subtracting an offset from the raw raster ADC. The offsets are parameters: gfrxa\_adc\_zero\_offset, gfrxb\_adc\_zero\_offset, gfrya\_adc\_zero\_offset, gfryb\_adc\_zero\_offset.

| Variable Name | Tree name   | Comment |
|---------------|-------------|---------|
| frxaRawAdc    | FRXA_rawadc |         |
| frxbRawAdc    | FRXB_rawadc |         |
| fryaRawAdc    | FRYA_rawadc |         |
| frybRawAdc    | FRYB_rawadc |         |

Table 2: Raster ADC variables

The relative raster position is calculated as:

$$fXA\_pos = \frac{fXA\_ADC}{fFrXA\_ADCperCM} * \frac{fFrCalMom}{fgpbeam}$$
 (1)

| Variable Name  | Parameter name  | Comment                               |
|----------------|-----------------|---------------------------------------|
| fFrXA_ADCperCM | gfrxa_adcpercm  | Scale factor Counts per cm            |
| fFrXB_ADCperCM | gfrxb_adcpercm  | Scale factor Counts per cm            |
| fFrYA_ADCperCM | gfrya_adcpercm  | Scale factor Counts per cm            |
| fFrYB_ADCperCM | gfryb_adcpercm  | Scale factor Counts per cm            |
| fFrCalMom      | $gfr\_cal\_mom$ | Beam energy that calibration was done |
| fgpbeam        | gpbeam          | Beam energy in kinematics file        |

Table 3: Raster Parameters

The parameters are explained in Table 3. The desire was to have the raster position is the EPICS coordinate system (+X beam right and +Y up). To achieve this the positions for the Y variables had to be multiplied by -1.

Calibration of the raster positions is done by looking at the raster raw ADC histograms. The lower and upper edges of the raster raw ADC can be found for each raster coil. The offset is the average of the edges and the scale factor is the difference of the edges divided by the expected full width of the raster. The size can be checked by comparison to the carbon hole size which has a diameter of 2mm.

The BPMs positions at the target can be set as parameters which are the average over the entire run or determined from the EPICS data throughout the run. The parameters are shown in Table 4. It is optional that the parameters are read in. If the code reads in the any of parameters, then the BPM target positions and angles will be all set to the parameter (if it happens that only some of the parameters are read in then the others are set to zero.). If you are using the parameter option to set the target BPM position, then it is best to do it in the *standard.kinematics* file since it can change run-to-run. A script has to be written to calculate the average target positions from the EPICS data.

| Parameter name | Variable Name | Comment                                                   |  |
|----------------|---------------|-----------------------------------------------------------|--|
| gbeam_x        | fgbeam_x      | Average target X position from EPICS BPMs (+X beam right) |  |
| gbeam_y        | fgbeam_y      | Average target Y position from EPICS BPMs (+Y beam up)    |  |
| gbeam_xp       | fgbeam_xp     | Average target X angle from EPICS BPMs                    |  |
| gbeam_yp       | fgbeam_yp     | Average target Y angle from EPICS BPMs                    |  |

Table 4: BPM Parameters

The BPMs are calibrated relative to the HARPs. A script has been developed to fit a group of HARP scans to determine the calibration constants. The script and instructions are in the CALIBRATION/bpm\_calib subdirectory of hallc\_replay git repository. The HARP coordinate system has +X pointing beam left and +Y up. The BPM position in the HARP coordinate system is

given by

$$BPMXA\_pos = 0.1 * (fgbpmxa\_slope * BPMXA\_raw + fgbpmxa\_off)$$
 (2)

The 0.1 is to convert the calibration to units of cm. One note is that the slopes for all the BPMX should be negative to convert the EPICS raw value to the left-handed coordinate system. The BPM calibration parameters are given in Table 5. The X and Y BPM position and angles at the target (in the

| Parameter name | Variable Name | Comment                             |
|----------------|---------------|-------------------------------------|
| gbpmxa_slope   | fgbpmxa_slope | Slope of HARP fit to BPMXA data     |
| gbpmxb_slope   | fgbpmxb_slope | Slope of HARP fit to BPMXB data     |
| gbpmya_slope   | fgbpmya_slope | Slope of HARP fit to BPMYA data     |
| gbpmyb_slope   | fgbpmyb_slope | Slope of HARP fit to BPMYB data     |
| gbpmxa_off     | fgbpmxa_off   | Intercept of HARP fit to BPMXA data |
| gbpmxb_off     | fgbpmxb_off   | Intercept of HARP fit to BPMXB data |
| gbpmya_off     | fgbpmya_off   | Intercept of HARP fit to BPMYA data |
| gbpmyb_off     | fgbpmyb_off   | Intercept of HARP fit to BPMYB data |

Table 5: BPM Calibration Parameters

HARP coordinate system) are calculated using the BPMA\_pos and BPMC\_pos positions. In the code ,these are called xbeam and ybeam and fXbpm\_tar = -xbeam and fYbpm\_tar=ybeam to put it in the EPICs coordinate system. If the parameters gbeam\_x and gbeam\_y are read-in then fXbpm\_tar = gbeam\_x and fYbpm\_tar = gbeam\_y. The tree names of the BPM positions in the EPICS coordinate system are listed in Table 6.

| Variable name | Tree Name   | Comment |
|---------------|-------------|---------|
| fXbpm_A       | fr_xbpmA    |         |
| fYbpm_A       | fr_ybpmA    |         |
| fXbpm_B       | fr_xbpmB    |         |
| fYbpm_B       | fr_ybpmB    |         |
| fXbpm_C       | fr_xbpmC    |         |
| fYbpm_C       | fr_ybpmC    |         |
| fXbpm_tar     | fr_xbpm_tar |         |
| fYbpm_tar     | fr_ybpm_tar |         |

Table 6: BPM positions variables and tree names