

Solution

$$y' = y^2 \cdot e^x - 2 \cdot y$$
: $y = \frac{1}{e^x (1 + c_1 e^x)}$

Steps

$$y' = y^2 \cdot e^X - 2 \cdot y$$

First order Bernoulli Ordinary Differential Equation

A first order Bernoulli ODE has the form of $y' + p(x)y = q(x)y^n$

Rewrite in the form of a first order Bernoulli ODE

Show Steps

$$y' + 2y = e^X y^2$$

$$y' + p(x)y = q(x)y^n$$

$$p(x) = 2$$
, $q(x) = e^{x}$, $n = 2$

The general solution is obtained by substituting $v = y^{1-n}$ and solving $\frac{1}{1-n}v' + p(x)v = q(x)$

Transform to $\frac{1}{1-n}v'+p(x)v=q(x)$: $-v'+2v=e^{x}$

Show Steps

Solve
$$-v' + 2v = e^{x}$$
: $v = e^{2x} (e^{-x} + c_1)$

Show Steps

Substitute back
$$v = y^{-1}$$
: $y^{-1} = e^{2x} \left(e^{-x} + c_1 \right)$

Show Steps

Isolate
$$y$$
: $y = \frac{1}{e^{x}(1 + c_1 e^{x})}$

Show Steps

$$y = \frac{1}{e^x \left(1 + c_1 e^x\right)}$$