멀티미디어 (Sound)

2024.

무단배포 금지: 저작권: 한빛아카데미(주)

목차

- 1. 사운드의 개요
- 2. 아날로그 사운드
- 3. 디지털 사운드
- 4. 미디 사운드
- 5. 사운드의 품질

■ 사운드의 개념

- 소리 (사운드)
 - 사람의 오감(시각, 청각, 촉각, 미각, 후각) 중 청각을 통해 전달되는 미디어 (자연의 소리, 음악, 소음 등)
 - 일반적으로 정보를 전달하는 중요한 수단으로 시각과 청각이 사용
 - '소리'와 '음'을 구별하기도 하지만 사운드, 소리, 음 등의 용어는 일반적으로 모두 동일한 의미로 사용
 - 소리: 포괄적인 개념으로 사람의 목소리를 비롯하여 귀에 들리는 모든 종류의 음파를 의미
 - 음: 소리의 한 종류로 음악을 구성하기 위해 필요한 요소의 소리만 가리킴 (영어의 톤과 유사)

■ 음파의 개념과 특성

- 공기와 같은 매개체를 통해 물체의 진동이 주기적으로 발생하는 파동을 의미
- 사람이 들을 수 있는 소리의 파동 (20Hz~20KHz의 주파수: 가청음파 또는 가청주파수 대역)
- 정상적인 귀로 들을 수 없는 소리는 초저주 파(20Hz 미만), 초음파(20KHz 이상)로 구분

- 음파의 활용 범위

<u>주파수 청력 테스트</u> https://youtu.be/AM_PUWsknX0?si=-CVyltCdx71bPCUU

- 과거: 지뢰 탐지기· 수중 음파탐지기 등의 군사 장비, 신장의 돌·혈전 분쇄 등의 의료용 초음파 진단 기기에 사용
- 최근: 음파를 활용한 정보통신과 모바일 결제로 발전
- 모자를 쓰면 이어폰, 헤드폰이 없이도 소리를 들을 수 있는 기술이 개발
- 스마트폰, TV에서도 이미 스피커 없이 화면 자체에서 입체적인 소리가 발생

진동 스피커

https://youtu.be/VzqDafP0Vfw?si=ryQq23O5iUzYmHut

■ 사운드의 종류

- 음성
 - 사람의 발음기관에서 나오는 구체적이고 물리적인 소리로 정보 전달의 중요한 수단
 - 텍스트보다 정보를 빠르고 이해하기 쉽고 설득력 있게 전달
 - 디지털 화된 음성 메시지, 음성합성, 음성인식, 문자 음성 변환(TTS) 등에 활용
- 음향효과
 - 배경음으로 주로 사용되며 특정 장면(비오는 소리, 공사 현장 소리)의 상황을 현실감 있게 전달하는 데 사용
 - 정보를 전달할 때에 그 상황을 부각하거나 사실적인 효과를 나타내기 위해 보조적인 수단으로 음향효과를 사용
 - 자연에서 채집한 자연음과 합성으로 생성된 합성음으로 구분

• 음악

- 인간의 사상과 감정을 주로 음으로 표현하는 소리 예술
- 기본 요소는 리듬과 멜로디이며 여기에 하모니를 추가하면 음악의 3대 요소
 - 리듬: 음악의 구조를 만드는 요소로 음의 세기를 나타냄
 - 멜로디: 음의 변화를 움직임으로 인식하여 음이 올라가는 형태 또는 내려가는 형태처럼 음높이의 변화를 의미
 - 하모니: 2개 이상의 음이 동시에 표현되는 화음을 의미, 음악의 절대적인 요소는 아님

■ 사운드의 구성요소

그림 8-4 주파수, 진폭, 사이클의 관계

- 진동수: 주기의 역수로 1초 동안 진동한 횟수
- 음파: 일정한 진동수로 반복하는 파형
- 사이클:파형의 동일한 모양
- 주기: 나타나는 사이클에서 음파의 압력 변화가 완전하게 1회를 반복할 때 소요되는 시간
- 진동의 빠르기에 따라 소리의 높낮이가 구분되고, 진동폭의 크기에 따라 소리의 크기가 구분

■ 사운드의 구성요소

- 소리를 구성하는 3요소
 - 세기: 소리의 크고 작음을 나타내며, 진폭에 의해 결정
 - 진폭: 파형의 기준선에서 최고점까지의 거리를 의미
 - 높낮이: 소리의 높고 낮음을 나타내며, 주파수에 의해 결정
- 진동수와 음색
 - 진동수가 다르면 소리의 높이가 달라짐
 - 음악에서 사용 하는 음계(도레미파솔라시도)는 음의 높이 차이를 나타냄
 - 옥타브: 낮은 도에서 다음 높은 도까지의 음계 (1옥타브에서 높은 도의 주파수는 낮은 도의 2배)
 - 음색은 소리의 맑고 탁함을 나타내며, 소리의 특성을 결정하는 파형에 의존

그림 8-5 음색, 파형, 진동수 차이로 나타나는 음의 독특한 색깔

■ 소리의 세기

- 소리의 세기의 측정 : 장비를 사용하여 측정 (Oscilloscope)
- 사람의 감각 : 사람마다 다르게 받아들여짐 → 객관적 표현 어려움
- 사람이 느끼는 소리의 크기 = 소리 세기의 상용 로그 값에 비례.
- 데시벨: 크기 비교를 위하여 상대적인 비율을 상용 로그 값으로 나타낸 것.
 - dB = 10 log (E1/E0) : E = 세기
 - 소리가 10배 커지면 → 10 log (10) = 10 x 1 = 10dB
 - 소리가 100배 커지면 → 10 log (100) = 10 x 2 = 20dB
 - 0dB : 1배
 - 3dB : 2배
 - 5dB : 4배
 - 9dB : 8배
 - 10dB: 10배
 - 13dB : 20배
 - 16dB : 40배
 - 19dB : 80배
 - 20dB : 100배
 - 30dB: 1,000배
 - 40dB: 10,000배

음압 데시벨

 $L_{
m dB_{SPL}}/{
m dB_{SPL}}=20\log_{10}rac{P}{20\,\mu{
m Pa}}$ dB $_{
m SPL}$ (Sound Pressure Level, SPL) 최소 음압(20 $_{
m \muPa}$) 40 dB $_{
m SPL}$: 최소 음압의 100배

음압 데시벨/dB _{SPL}	예
0	겨우 들을 수 있는 소리
10	일반적인 숨소리
20	속삭이는 소리 나뭇잎이 부딪히는 소리
30	조용한 농촌 심야의 교외 지역의 소음도 벽시계 소리 조용한 도서관에서 나는 소음
30~60	일반적인 컴퓨터 본체 소음 ^[2]
40	조용한 주택의 거실 냉장고 소리
40~60	사람의 일반적인 대화 소리
50	조용한 사무실의 소음 일반적인 빗소리 백화점 내 소음
50~60	세탁기를 돌리는 소리
50~70	에어컨 실외기 소음
60	1 m 거리에서 말하는 소리
60~70	세탁기가 탈수하는 소리 전화벨 소리
73	웰로드 권총의 발사 소음

80 dB 이상 : 소음

■ 소음과 소음 제거 기술

- 백색소음과 ASMR
 - 소음
 - 듣는 사람에게 별로 도움이 되지 않는 소리 (60데시벨(Db) 이상이면 소음)
 - 소음에 장시간 노출되면 청력 손상, 수면 장애 등이 발생할 수 있음
 - 특정한 음높이를 유지하는 컬러 소음과 비교적 넓은 음폭을 나타내는 백색소음으로 나뉨
 - 백색소음

https://youtu.be/IQ0fS2meTYQ?si=G3POGpFgrxakIVEO

- 주파수 범위에서 일정한 스펙트럼을 가지고 전달되는 소음
- 시간이 지나면 익숙해지기 때문에 뇌에서는 인식하지 못함
- 파도소리, 빗소리, 폭포소리, 시냇물 소리, 비행기 기내의 바람소리, 심장 박동소리, 컴퓨터의 팬 소리 등
- 사운드 마스킹(Sound Masking) 기능으로 주변의 소음을 덮어 심리적 안정감을 줌
 - > 소음 파형의 반대 파형을 사용하여 소음을 상쇄시키기 때문

https://youtu.be/S5AvhqzZL9c?si=b80Xr4W4E93n_EqE

• 파형이 불완전한 디지털보다 아날로그 방식으로 만드는 것이 효과적

그림 8-6 백색소음으로 주변의 소음을 덮는 기술, 사운드 마스킹

■ 소음과 소음 제거 기술

- 백색소음과 ASMR
 - ASMR (Autonomous Sensory Meridian Response) 자율 감각 쾌감 반응의 줄임말
 - 정신적인 안정감을 가져다주는 소리'
 - 속삭이는 장면, 화장품 뚜껑 여는 장면, 과자를 먹는 장면에서 들리는 소리처럼 몸과 정신을 이완시키는 소리
 - 시각 포화 상태의 미디어 환경에서 청각 중심의 콘텐츠를 통한 새로운 가능성
 - ASMR의 유행은 초연결 사회에 대한 반작용으로 나타난 현상

https://youtu.be/zRnMEDXppL4?si=Al7qkDiBGhdj8oG4

그림 8-7 ASMR의 예

■ 소음과 소음 제거 기술

- 소음 제거 기술
 - 1950년대에 기내 소음이 심한 항공기와 헬리콥터에서 근무하는 파일럿을 위해 처음 개발
 - 대표적인 형태가 헤드폰, 이어폰에 적용된 소음 제거 기술
 - 최근 주행 중에 발생하는 차량 내부의 소음을 제거하는 데도 사용
 - 소음 제거 기술의 원리
 - 소음과 반대 파형의 음파를 이용하면 소음을 제거

https://youtu.be/yrU9LaV4h8I?si=7Xsqiln6q9XXcsUB

- +3 진폭의 음파에 -3 진폭 의 음파를 대응시키면 두 음파가 합쳐져 진폭이 0인 상태가 이어짐
- 상쇄간섭: 두 음파가 서로를 상쇄하는 과정

■ 아날로그 사운드

- 아날로그 사운드의 특징
 - 아날로그: 소리, 빛, 전류, 전압 등과 같이 선형적인 값을 나타내는 연속된 물리량 형태의 신호
 - 신호의 크기를 미세한 단위로 조정할 수 있고 신호의 처리 속도가 빠름
 - 잡음에 의해 신호가 변화
- 아날로그 사운드의 역사
 - 1877년 에디슨이 발명한 축음기
 - 1948년 LP 레코드가 개발되어 사용, 소리의 연속적인 진동를 그대로 저장

https://youtu.be/5ro_7V_hI60?si=gCxLdC90eaF8sTCj

- LP 원판: 30cm의 플라스틱 판에 머리카락보다 얇은 소리골을 기록하여 녹음한 음반
- 1984년 개발된 CD는 사용성, 편리성, 대용량성, 신뢰성, 이동성, 무한 복제성 등과 같은 장점에 힘입어 LP를 대체
- LP는 미세한 소리 입자까지 재생하여 자연스럽고 편안한 느낌을 주기에 현재까지도 재발매 되고 있음

(a) 카트리지

(b) 레코드판

(c) LP 플레이어(턴테이블)

그림 8-9 아날로그 사운드의 대표적인 매체, LP 레코드

■ 디지털 사운드

- 소리의 디지털화
 - 디지털화: 소리가 원래의 아날로그 형태의 정보에서 디지털 형태의 2진법(0/1) 정보로 변환되어 나타나는 것
 - 소리의 디지털화는 전화 시스템을 향상하기 위한 방법으로 제일 먼저 도입
 - 전화의 경우 비교적 한정된 범위의 사람 목소리만 다루기 때문에 8비트를 이용
- 디지털 사운드의 특징
 - 녹음 과정에서 소리가 2진법 숫자로 바뀌기 때문에 녹음 장비에서 발생되는 소음 등의 기계음은 저장되지 않음
 - 아날로그 사운드에 비해 음질이 매우 좋으며 실제 소리와 거의 동일한 음질을 유지
 - 잡음이나 왜곡에 거의 영향을 받지않아 여러 가지 작업을 반복적으로 수행해도 음질은 원음과 항상 동일

그림 8-10 아날로그 사운드와 디지털 사운드

■ 디지털 사운드

- 사운드 카드
 - 컴퓨터에 탑재된 사운드 카드는 소리를 저장하고 출력하는 기능을 수행
 - 대부분의 사운드 카드들은 아날로그 사운드의 음파를 ADC장치를 사용하여 디지털 데이터로 변환하여 저장·녹음
 - 디지털로 변환된 데이터는 반대로 DAC장치를 통해 아날로그 형식의 사운드로 바뀌어 출력
 - 일반적으로 고성능 카드들은 하나 이상의 사운드 칩을 포함하여 향상된 데이터 속도와 여러 기능 을 동시에 지원
 - DAC 장치가 인식하는 디지털 데이터를 소리로 변환하여 장비 자체에서 발생하는 기계음은 출력 되지 않음
 - 대표적인 디지털 사운드는 음악 CD와 MP3 음원 등이 있음

그림 8-11 D/A 변환 장치를 사용하여 디지털 데이터를 아날로그 사운드로 재생

■ 사운드의 디지털 변환

- 표본화 (Sampling)
 - 원래의 아날로그 형태의 소리 정보를 디지털 형태의 정보로 변환하는 첫 번째 단계
 - 일정한 시간 간격으로 세분화하여 소리의 세기를 측정하는 단계 (샘플링)
 - 표본화 비율: 1초 동안 변환된 샘플의 개수, 표본화 비율이 증가할수록 고음질의 데이터를 얻을 수 있음
 - 일반적으로 표본화 비율은 나이키스트 규정을 따름

아날로그 신호를 최고 주파수의 2배 이상의 속도로 표본화하면 원래의 아날로그 신호로 복원할 수 있다.

- 사람의 가청 주파수는 20Hz~20KHz로 나이키스트 규정을 따라 40KHz로 샘플링
- 10%의 오차 범위를 포함시켜 오디오 CD는 44.1KHz, DVD는 48KHz로 샘플링함

그림 8-12 아날로그 신호의 표본화

그림 8-13 표본화 비율의 차이

■ 사운드의 디지털 변환

- 양자화 (Quantization)
 - 표본화를 통해 검출된 주파수 위치에 이산적인 값을 배정하는 과정
 - 입력된 파형 신호를 유한한 개수의 근사값으로 표현
 - 비트의 개수가 증가하면 단계가 세밀해지므로 입력 신호를 충실하게 디지털로 표현할 수 있음
 - 기억 용량이 증가하게 되고 원음에 잡음까지 포함될 수 있다는 문제가 있음
 - 비트 수는 신호 대 잡음의 비율인 S/N 비와 진폭의 최고점과 최저점 사이의 범위를 고려하여 결정
 - 양자화 오차
 - 단계화를 할 때 어느 정도의 오차가 발생하기 때문에 입력된 신호와 동일한 디지털 표현이 불가능하게 됨
 - 입력된 파형 신호의 왜곡을 줄이려면 신호의 특성과 상태에 따라서 비트수를 조절해야 함

그림 8-14 표본화 신호의 양자화

그림 8-15 양자화 오차

■ 사운드의 디지털 변환

- 부호화
 - 양자화를 통해 생성된 신호들을 디지털 형태의 정보로 내부에 표현하는 과정 (대부분 2진법으로 표현)
 - 음성신호는 보통 8비트를 사용하여 256(2^8)개의 단계로 양자화되기 때문에 각각의 표본은 8비트로 부호화
 - 아날로그 신호를 디지털 신호로 변환하는 최종 단계이며 0과 1이라는 디지털 데이터로 소리를 저장
 - 부호화된 디지털 사운드는 아날로그 미디어와는 다르게 보존 능력이 매우 우수
 - 양자화 과정에서 원본 신호에 대한 근사값으로 표현되었기 때문에 사운드 품질에서는 불리함

그림 8-16 양자화 신호의 부호화

- PCM (Pulse-code modulation) 펄스 부호 변조
 - 입력된 아날로그 신호를 그대로 디지털 신호로 변환하는 대표적인 디지털 사운드 변환 기법
 - 연속적인 아날로그 파형 신호를 표본화, 양자화, 부호화 과정을 거쳐 디지털 신호로 저장하는 기법
 - PCM 방식은 표본화 비율이 증가할수록 음질이 향상되지만 압축 과정을 수행하지 않기 때문에 기억 용량이 증가
 - CD, DAT, 전화국의 교환망 등에서 사용

- DPCM(Differential pulse-code modulation) 차분 펄스 부호 변조
- ADPCM (Adaptive PCM) 적응차등 펄스 코드 변조
- LPC (Linear Predicative Coding) 선형 예측 부호화
 - DPCM 방식
 - 사운드 파형에서 인접한 시간의 표본을 비교하면 파형은 크게 변하지 않는걸 이용하여 만들어진 방식
 - 이전의 인접한 표본값과 현재 표본값의 편찻값만 양자화하여 저장
 - 저장된 보정정보가 인접한 값과 차이가 크면 비효율적인 기울기 과부하 현상이 일어남
 - 기울기 과부하가 오류 보정 정보의 범위를 벗어날 경우 가능한 최대치로 표현하기 때문에 정확한 복원이 불가능

그림 8-18 DPCM 방식에서 인접한 값과의 편차

- DPCM/ADPCM/LPC 방식
 - ADPCM 방식
 - DPCM의 편찻값이 클 경우 효율이 떨어진다는 문제를 해결하기 위해 개발
 - DPCM 방식에서 양자화의 단계 크기를 신호의 진폭에 따라 변경시키는 방식
 - 진폭이 큰 곳에서는 단계 크기를 증가시켜 신호의 변화에 따라 적응하도록해 예측치와 실제치의 편차만 부호화
 - ADPCM 방식은 원본 데이터의 최대 1/4까지 압축이 가능
 - 동일한 성능을 갖게 될 경우, 전송속도를 PCM에 비해 약 1/3 정도로 감소시킬 수 있음

- DPCM/ADPCM/LPC 방식
 - LPC(선형 예측 부호화) 방식
 - 시간축 방향으로 인접한 음성 파형의 연관성 을 이용하는 방식
 - 과거의 데이터에서 미래의 데이터를 예측하기 용이
 - 과거의 표본값에서 현재의 표본값을 추정하여 현재 데이터에서 예측 데이터와의 차이를 부호화하는 압축 기법

■ 오디오 파일의 압축 방식

- 오디오 파일 형식의 개념
 - 디지털 사운드 데이터를 저장하는 방식
 - 대부분의 디지털 사운드 데이터들은 용량이 매우 크기 때문에 압축하여 저장
 - 압축하는 방식에 따라서 손실 압축 포맷과 무손실 압축 포맷으로 분류
- 손실 압축 포맷
 - 가청주파수를 벗어나는 소리를 제거하여 파일용량이 크게 감소 (일반적으로 16비트 레벨의 44KHz 표본화)
 - 사람 귀에 들리지 않는 소리를 제거했지만 CD에 녹음된 사운드보다 음질이 떨어진다는 한계
 - 대표적인 코덱으로 AAC, MP3
- 무손실 압축 포맷
 - 손실 압축 포맷의 한계를 극복하고 MP3처럼 용량은 감소시키면서 음질은 보전하기위해 등장
 - FLAC: 비가청주파수 영역까지 손실 없이 압축하여 음향이 풍부하고 세밀함

■ 오디오 파일의 압축 방식

- Codec (코덱): 신호를 인코딩, 디코딩 을 하는 하드웨어, 소프트웨어, 알고리즘
- AAC (Advanced Audio Coding) 코덱
 - 디지털 오디오에서 쓰이는 표준적인 손실 데이터 압축 방식
 - 이전까지 기술 적인 문제가 있었던 MP3의 샘플 주파수(8KHz~48KHz)의 한계를 확장(8KHz~96KHz)
 - MPEG-4 표준에서 채택한 새로운 오디오 코덱으로 MP3보다 효율적이고 음질은 CD와 비슷
 - 애플의 아이 튠즈에 사용되면서 보편화
 - 유튜브, 애플의 아이폰·아이팟·아이튠즈에 사용되는 기본 오디오 포맷으로 쓰이고있음
- FLAC (Free Lossless Audio Codec), ALAC(Apple lossless) 코덱
 - CD보다 용량은 적으면서 CD의 음원을 고스란히 저장하는 무손실 압축 방식의 코덱
 - 24비트 레벨의 192KHz 표본화 주파수를 사용하여 인코딩
 - 음원시장에서는 LP, CD, MP3 등과 같은 미디어가 아날로그 소리의 특성을 얼마나 정확하게 표현할 수 있는지가

크게 중요해짐

■ 오디오 파일의 압축 방식

표 8-1 오디오 파일 형식과 특징

저장 형식	확장자	특징
비압축 포맷	WAV	• 마이크로소프트와 IBM이 PC의 사운드 표준 형식으로 공동 개발 • 윈도우비스타부터 기본 지원 포맷이 WMA으로 변경
	AIFF	• 개인용 PC와 기타 오디오 장비에서 소리를 저장하는 데 사용 • 주로 애플 매킨토시에서 사용. 확장자는 .aiff, .aif, .aifc
	AU	• 유닉스 환경에서 사용되는 일반적인 포맷 • Sun, NeXT의 오디오 표준
무손실 압축 포맷	FLAC	• 자유 소프트웨어, 오픈소스 소프트웨어 • 로열티 없는 소프트웨어로 많은 응용 S/W가 FLAC 지원
	ALE	• 애플에서 개발한 디지털 음악의 오디오 코덱• ALE · ALAC(Apple Lossless Audio Codec)• 데이터는 MP4의 컨테이너에 저장, .m4a 파일 확장자 사용
손실 압축 포맷	MP3	MPEG-1의 오디오 규격으로 개발된 손실 압축 포맷 MP1, MP2를 개량한 가장 대중적인 음악 파일 포맷 PCM 사운드 수준의 음질로 압축하여 크기를 1/10까지 감소
	AAC	• 유튜브, 애플의 아이폰 · 아이팟 · 아이튠즈의 기본 오디오 포맷 • 기술적인 문제가 있었던 MP3의 한계를 극복
스트리밍 방식	Real Audio	인터넷상에서 실시간으로 방송과 음악 등을 재생 접속 시 대역폭이 동적으로 변함에 따라 음질도 동적으로 변화
	ASF	• 인텔이 만든 차세대 멀티미디어 파일 포맷 • AVI, WAV, MP3 등 다른 형태의 파일 형식을 ASF로 변환
	WMA	• 마이크로소프트가 개발한 오디오 스트리밍 미디어 형식 • 압축 방식의 MP3와 동등한 음질로 용량은 약 1/2 정도

■ 오디오 파일의 압축 방식

- MIDI (미디) 사운드
 - 미디의 개발 배경
 - 사운드 환경이 아날로그에서 디지털로 바뀌면서 음악 시장에도 전자악기가 보급됨
 - 전자 악기는 공통의 표준 없이 독자적으로 만들어졌기 때문에 서로 연결하여 사용할 수 없
 - 이러한 문제를 해결하기 위하여 미디(MIDI)가 개발
 - 미디 = 오디오 (소리를 녹음) 와 달리 연주하기 위한 데이터

• 미디의 개념

- 컴퓨터와 다양한 전자 악기들을 연결하여 디지털 신호를 교환하기 위한 프로토콜 (악기,장비 그 자체는 아님)
- 미디에서 사용하는 정보는 컴퓨터 환경의 데이터와 유사하지만, 주로 음악적인 내용을 가짐
- 미디를 사용하면 전자 악기뿐만 아니라 조명 제어, 무대 회전 등 다른 장비도 제어할 수 있음

• 미디의 특징

- 보통 16채널을 사용하는데 각 채널에 서로 다른 악기를 지정하고 디지털 사운드를 만들어 합성할 수 있음
- 음원 자체가 가진 파형 정보와는 전혀 상관없는 데이터를 저장
- 디지털 사운드처럼 파형 정보를 저장하지 않기 때문에 파일 용량이 작음
- 하드웨어와 소프트웨어를 사용하여 한 사람이 모든 작업을 할 수 있어 저렴하고 쉽게 작곡이 가능

■ 오디오 파일의 압축 방식

- 미디 사운드
 - 미디의 구성
 - 미디 컨트롤러, 출력장치인 사운드 모듈, 미디 인터페이스, 중개장치인 컴퓨터로 구성
 - 각각의 장비에는 인아웃, 스루 등과 같이 3개의 연결 포트가 있으며 연결 포트를 통해서 미디 메시지를 교환

표 8-2 미디 시스템의 하드웨어 구성과 특징

구성	특징		
미디 컨트롤러	연주 정보를 입력하는 장비. 건반 형태가 가장 많이 사용됨		
미디 인터페이스	컴퓨터와 다른 신호체계의 미디 장비들을 연결해주는 장치		
사운드 모듈	신시사이저	전기적인 신호를 합성하여 음을 생성하는 장치	
	샘플러	정교한 음, 음원에 없는 새로운 음을 생성할 때 사용	
	믹서	여러 개의 오디오 출력을 섞어서 하나의 출력으로 생성	
컴퓨터	미디 환경의 필수 장비. 모든 미디 장비들을 중개하는 역할		

• 신시사이저: 여러 소리 파형을 합쳐 새로운 소리를 만드는 장비

<u>미디 컨트롤러 연주 : https://youtu.be/-0v7mTvJ8M4?si=DWADpSMxSZ34uQAB</u>

03. 사운드의 품질

■ 고품질 사운드(Sound Quality)

- 음원의 품질이 얼마나 좋은 것인가를 나타내는 용어
- 고품질 사운드는 표본화 비율, 양자화 비트 수, 사운드 채널의 수에 의해 결정됨
- 일반적인 잡음, 표본화 잡음, 양자화 잡음, 클리핑(Clipping), 지터 에러(Jitter Error) 같은 요소에 영향을 받음

■ 일반적인 잡음

- 디지털 사운드로 변환하는 과정이나 사운드를 가공 · 처리하는 편집 과정에서 잡음이 발생할 수 있음
 - ▶ 녹음 시 마이크의 성능, 바람 소리 등

▶ 윈드 스크린

■표본화 잡음

- 부적절한 표본화에 의해서 발생하는 잡음
- 주파수 대역폭 밖의 아날로그 신호가 변조과정에 주파수 대역폭으로 들어와 잡음 성분으로 작용
- 표본화 잡음은 표본화 주파수에 중첩되어 출력할 때도 잡음으로 나타남
- 저역통과필터(LPF, low Pass Filter)를 사용하여 고주파 성분을 제거하고 저주파 성분만을 통과시켜 해결

■ 양자화 잡음

- 아날로그 파형을 양자화 비트로 표현하는 과정에서 발생하는 수치의 오차를 의미
- 표본화 과정에서 근사치인 정수값으로 표현하면서 발생하는 값의 차이 때문에 잡음이 발생
- 양자화 비트의 크기를 증가시키면 잡음을 최소화할 수 있음
- 신호의 디지털 변형과정에서 미세한 잡음을 인위적으로 첨가해 양자화 잡음과 음의 왜곡을 감소시키는 방법도 있음

그림 8-25 양자화 잡음

■클리핑(Clipping)

- 아날로그 신호 파형의 상부나 하부를 일정 레벨로 잘라내어 파형이 변화되는 현상
- 원음의 진폭이 앰프가 수용할 수 있는 진폭보다 크거나 양자화하여 표현할 수 있는 진폭보다 큰 경우 발생
- 정규화(Normalization) 방법을 사용하여 파형을 변화시키면 해결됨

그림 8-26 클리핑

■ 지터 에러(Jitter Error)

- 디지털 사운드를 전달하는 과정에서 전송된 펄스 신호의 시간적 위치가 변해서 발생하는 클럭 타이밍의 오차
- 기기 간의 저항이 일치되지 않아 발생하는 신호의 왜곡 현상
- 기기 간의 입출력 저항을 정확하게 일치시키고, 케이블의 길이를 짧게 하면 상당 부분 해결

그림 8-27 지터 에러

03. 사운드의 품질

■ 3D 입체음향

- 입체음향의 개요
 - 입체음향의 발전과정
 - 1970년대의 입체음향은 2채널의 스피커로 구현되는 스테레오 방식이 대다수
 - 1975년에 돌비가 중앙과 후방 채널 스피커를 추가한 극장용 돌비 스테레오가 개발
 - 1982년에는 가정용 돌비 서라운드가 개발
 - 1990년대에는 디지털 방식의 음원이 등장하여 입체음향도 디지털화를 수용
 - 1992년에는 5.1채널 코덱인 돌비 AC-3이 개발(돌비 디지털)
 - 돌비 AC-3은 원래 극장용으로 사용되었으나 영화 DVD, 지상파 디지털 방송 등의 기본 코덱이 됨
 - 이후 돌비 디지털 플러스, 무손실 압축 코덱인 돌비 트루, 돌비 프로 로직, 돌비 애트모스로 발전
 - 3D 입체음향의 개요
 - 사람은 소리 전달 체계의 특성에 의해 두 귀에 들리는 신호 간의 차이 때문에 공간적·입체적으로 음원을 지각함
 - 입체음향은 3차원 공간에서 음원의 방향과 거리(음장감)를 스피커를 통해 재현하기 위한 방향으로 발전
 - 3D 입체음향:음원 현장에 직접 가지 않아도 청취자가 재생된 음향으로부터 공간적 느낌을 지각할 수 있는 음향

입체음향

■ 입체음향의 원리

- 양이 효과 (Binaural Effect)
 - 녹음하려는 음원의 마이크 배치에 따라 음의 세기와 도달 시간의 차이가 발생
 - 음원의 방향을 식별
- 녹음된 음원을 전면에 배치한 2개의 스피커로 재생하면 음원의 위치가 식별되면서 입체감을 느낌

■ 입체음향의 방식

- 가장 많이 사용하는 방식은 5.1 채널
- 61. 채널, 7.1 채널, 11.1 채널 등과 같이 다양한 입체음향 기술들이 개발되고 있음

▲ 5.1 채널과 7.1 채널 서라운드 오디오 시스템

입체음향

■ 5.1 채널

- 5개의 방향성 스피커와 1개의 서브우퍼로 구성
- 귀 높이에 맞추어 중앙, 좌, 우에 3개의 전면 스피커를 설치하고 좌, 우 양쪽 벽면에 2개의 서라운드 스피커 설치
- 전면 스피커는 중앙 스피커와 더불어 전체 시스템의 품질을 결정짓는 중요한 역할 담당
- 저음역 음향을 위해 서브우퍼 설치

■ 7.1 채널

- 7개의 방향성 스피커와 1개의 서브우퍼로 구성
- 극장용 시스템은 11 또는 14채널을 사용하여 넓은 영역을 담당하는 전면의 좌우에 2개의 와이드 서브우퍼 배치

그림 8-29 5.1 채널과 7.1 채널의 표준 스피커 배치도 [06]

입체음향

■ 10.2 채널

- 스피커를 인체를 기준으로 입체적으로 배치하여 3단계의 입체 음향을 제공
- 5.1채널의 수평적인 스피커 배치 형태에 추가로 측면 방향에 좌우로 2개, 머리 위 전면 방향에 좌우로 2개 설치
- 머리 위 후면 방향에 1개 배치
- 바닥 좌우 위치에는 2개의 서브 우퍼 사용

그림 8-30 11.1 채널과 14.1 채널의 표준 스피커 배치도 [07]

■ 30.2 채널

• 30개로 세분화한 사운드 신호와 2개의 저음 전용 우퍼를 사용

► 동영상 보기 : <u>30.2 채널 영화 음향기술</u>

03. 사운드의 품질

■ 3D 입체음향

- 모바일 3D 입체음향
 - 모바일 디바이스 음향의 제약
 - 최대 2개의 채널인 모바일 환경에서는 서라운드 사운드 재생이 불가능
 - 제한된 인터넷 대역폭 때문에 대용량 콘텐츠를 전송하려면 코덱을 통한 압축이 필수적
 - 압축으로 파일 용량은 줄어들지만 음질이 떨어져 멀티채널 코덱을 이용한 콘텐츠는 문제가 발생함
 - 다양한 유통 경로와 변환 과정을 거치면서 문제가 발생할 수 있음
 - 돌비의 문제 해결 솔루션
 - 채널 분리 기술과 가상 렌더링 기능을 통해 2채널이지만 360도 전방위에서 소리를 재생
 - 제한된 비트 전송률 내에서 원음의 정보를 최대한 유지하여 재생 단말과 약속된 값을 속성 정보 형태로 저장
 - 기술노하우를 토대로 최대 7.1채널까지 압축하여 방향에 따른 소리를 조금씩 다르게 들려줌
 - 바이노럴 기술
 - 평면 음향의 한계를 극복하고 향상하기 위한 방법으로 바이노럴이 등장
 - 바이노럴 기술은 1994년 MIT 미디어랩이 머리전달함수를 이용해 개발
 - 사람이 여러 곳에서 들리는 소리를 감지하는 과정을 역으로 이용하여 음원 개수가 2개라도 입체적인 소리가 들리는 착각을 주는 기술

03. 사운드의 품질

■ 3D 입체음향

- 모바일 3D 입체음향
 - 그 외 모바일 3D 입체음향을 위한 기술
 - 2채널 스테레오
 - 소프트웨어적으로 가상 음원을 출력하는 방식
 - 음장모의 기술
 - 실내의 벽·천장 등에 의한 반사·회절·산란 등의 현상에 따른 음파의 공간전달함수(RTF)를 적용
 - 인지적 재생 기술
 - 사람의 머리와 귓바퀴에 의한 반사·회절·공진 등의 현상을 머리전달함수(HRTF)를 적용해 360도 전방위에서 가상 음원을 연출
 - 주파수 평탄화
 - 본래 스피커의 여러 특징을 파악하여 모든 주파수 대역의 소리가 그대로 스피커에서 재생되도록 도와주는 작업
 - 음 크기 최대화 기술
 - 스피커가 낼 수 있는 최대 음량으로 재생될 때에도 최대 음량으로 인해 발생하는 왜곡을 방지해주는 기술