CONCEPTION DU SYSTÈME D'INFORMATION

UNIVERSITÉ Grenoble Alpes Cycle de développement, étapes de construction, processus, performance

Luc Laurens
Pr Christine Verdier

Méthode

- ✓ Pour concevoir un SI, on s'appuie sur trois grands concepts :

 - Une méthode de conception : ensemble coordonné de règles opératoires qui permet de résoudre un problème en accord avec les concepts des modèles
 - Des outils logiciels : bibliothèques de composantes, frameworks de développement, outils d'intégration continue, etc.

Méthode

- ✓ Concevoir un SI:
 - c'est utiliser une démarche bien gérée. Ce n'est pas un travail empirique, c'est un projet à construire et à piloter → cf. cycle de vie.
 - C'est mettre en œuvre les ressources matérielles, logicielles et humaines selon une organisation bien définie
- ✓ La méthode répond aux questions : Que faire ? Quand ? Où ? Avec qui ? Comment ?

LES CYCLES DE VIE DU SI

Les grandes phases

Ces grandes phases sont organisées différemment selon le cycle de développement choisi :

- cycle en V
- -cycle en spirale
- -cycle agile
- autres....

Cycle en cascade

Cycle en V

Des tests définis à l'issue de chaque phase

Cycle en V et en cascade : avantages vs inconvénients

Avantages

- Simple et facile à comprendre
- Force la documentation : une phase ne peut se terminer avant qu'un document soit validé
- Le test est inhérent à chaque phase
- Les progrès sont tangibles (pour l'équipe de développement)

Cycle en V et en cascade : avantages vs inconvénients

✓ Inconvénients

- Modèle dirigé par les documents.
 - Non compréhensibles par les clients
 - La première chose que voit le client est le produit final. Estce vraiment un problème ?
- Fait l'hypothèse de la faisabilité
 - Ne marche que si les exigences sont stables et le problème connu
 - Manque de flexibilité (ne traite pas les évolutions, notamment des exigences)
 - Problèmes peuvent être découverts en phase de validation
 - Irréaliste dans de nombreux cas

Cycle en spirale

analyse de risque ++

Cycle en spirale

- Le cycle de vie est représenté à l'aide d'une spirale
 - Chaque boucle représente une phase du développement
 - La boucle la plus interne traite des premières phases (faisabilité).
 - La plus externe traite de la livraison
 - Chaque boucle traverse quatre sections :
 - Définition des objectifs de la phase
 - Evaluation des risques et plan de gestion
 - Développement et validation
 - Planification de la phase suivante
 - Nombre de cycles variable

Cycle en spirale

- Le modèle en spirale est en fait un méta-modèle
- ✓ Il offre un cadre où chaque boucle doit être instanciée
- ✓ On peut par exemple créer :
 - Une boucle de faisabilité
 - Une boucle de prototypage
 - O Des boucles de développement itératif, etc.
- ☑ Il faut alors trouver le bon modèle de processus pour chaque boucle!

Problèmes soulevés par ces cycles de dév

Cycle agile

Problème soulevé

- o Recueil des besoins : tâche la plus compliquée
- Constat :
 - La plupart des défauts d'une application est due à une mauvaise définition du besoin
 - 50% des fonctionnalités sont peu ou pas utilisées

o Pourquoi ?

- Difficulté à exprimer le besoin clairement et de manière exhaustive
- Dans une démarche classique :
 - Membres de l'équipe n'interviennent que dans les étapes les concernant
 - Transmission d'informations par documentation : mauvaise interprétation ? Incompréhension ?
 - Levée tardive des facteurs de risque.

Cycle agile

- ☑ En 2001, aux EU, 17 experts des méthodes Agile ont créé le Manifeste Agile.
- ✓ Quatre valeurs :
 - Interactions avec les personnes plutôt que les processus et les outils
 - Produit opérationnel plutôt qu'une documentation pléthorique
 - Collaboration avec le client plutôt que négociation par contrat
 - Réactivité face au changement plutôt que suivi d'un plan.

Quelques méthodes agiles

- ✓ L'eXtrême Programming (XP)
 - Accélération des dév, travail en binôme, cycle de dév très courts
- ✓ Scrum (= mélée)
 - Adapté à la gestion de projets informatiques
 - Modifier la direction prise par le projet au fur et à mesure de son avancement
- ✓ Feature Driven Development (FDD)
 - méthode de gestion de projet basée sur la gestion des risques, tests utilisateurs sur chaque fonctionnalité
- Lean Software Development
 - Qualité au cœur de la gestion du projet, en optimisant notamment l'ensemble des processus d'apprentissage, de décision, de livraison et de mesure de performances
- Agile Unified Process (Agile UP ou AUP)
 - Version simplifiée du RUP (Rational UP) : dév piloté par les tests et par les modèles

Cycle agile

Cycle agile

- ☑ Chaque itération est un mini-projet qui produit une version intermédiaire utilisable du produit final
- ✓ Les itérations se succèdent, pas de parallélisation possible
- Chaque itération a une durée fixe (mécanisme de timeboxing) : mobilisation des efforts sur des objectifs courts et clairs.
- ☑ On supprime le cahier des charges pour le prototypage : attention à ne pas simplement changer de support !!

LES ÉTAPES DE CONSTRUCTION

Conception du SI

Proposition initiale

Etude de faisabilité

Analyse des besoins

Description fonctionnelle

Phase d'analyse

Spécifications fonctionnelles

Description organique

Description de la BD

Programmes

Préparation des procédures organisationnelles

Basculement vers le nouveau système

Maintenance

Audit a posteriori

Phase de conception

Nouveau système

Phase de mise en place et d'exploitation

Chapitre 1 - SI 20

Phase d'analyse

- Analyse du problème que l'entreprise veut résoudre à l'aide d'un SI. Est réalisée par un analyste.
- ☑ Comprend : la définition du problème, de ses causes, de la solution à mettre en place et des besoins en information.
- ☑ Difficulté : définir les besoins en informations → besoins collectifs vs besoins individuels
- ✓ Informations : structuration, traitements, modalités saisie, etc.
- Produit une <u>étude de faisabilité</u> (solution réalisable ? Bon investissement ? Avantages *vs* inconvénients)

Décision sur le développement

- ✓ Plusieurs choix : solution entièrement développée en interne, entièrement confiée à une ESN, solutions mixtes, pas de développement interne mais intégration de solutions.
- ☑ Questions : environnement de développement, outils utilisés, cohérence globale de ces outils (éditeurs différents), paramétrage ?

Conception et réalisation

- ☑ Base de conception = Spécifications fonctionnelles et techniques
 - Entrées et sorties des composants
 - Interface utilisateur
 - Conception des modèles : organisationnels, statiques et dynamiques + modalités de traitement de l'information
 - Procédures : activités, ressources humaines, méthodes
 - Processus métiers
 - Modalités de contrôle : E/S, traitements, procédures
 - Sécurité
 - Documentation ? (selon cycle adopté)

Mise en œuvre

- ✓ Plusieurs choix : solution entièrement développée en interne, entièrement confiée à une ESN, solutions mixtes, pas de développement interne mais intégration de solutions.
- ☑ Questions : environnement de développement, outils utilisés, cohérence globale de ces outils (éditeurs différents), paramétrage ?

Mise en place et exploitation

- **✓** Tests
- **☑** Maintenance
- ✓ Formation des collaborateurs, accompagnement au changement : à ne pas négliger.

Tests

- Un test est un ensemble de cas à tester (état de l'objet à tester avant exécution du test, actions ou données en entrée, valeurs ou observations attendues, et état de l'objet après exécution), éventuellement accompagné d'une procédure d'exécution (séquence d'actions à exécuter). Il est lié à un objectif / Wikipédia/
- ☑ Organisation tests : planification, conception, exécution, clôture, suivi.
- Classification: tests unitaires (des composants), tests d'intégration technique, tests système (d'intégration fonctionnelle), tests d'acception (recette). Complété par des tests de non-régression.

Migration-bascule

- ✓ Processus de passage de l'ancien système au nouveau.
 - Stratégie en doublon : exécution des 2 systèmes en parallèle
 - Stratégie du basculement direct : suppose de conserver un « back-up » de l'ancien SI
 - Stratégie de projet pilote : nouveau SI dans un secteur limité → test et si fonctionne → déploiement dans le reste de l'entreprise
 - Stratégie de migration-bascule par étape : introduction du nouveau système graduellement (fonction par fonction par exemple).

Exploitation et maintenance

- ✓ La mise en exploitation correspond à la fin de la migration.
- ✓ Une évaluation régulière sera nécessaire.
- Maintenance: correspond dans 60% des cas à apporter des améliorations du point de vue des utilisateurs.
- ✓ Pour éviter une maintenance trop coûteuse, il faut soigner l'analyse préalable et la conception.

Attention, créer un SI ne crée pas les usages qui vont avec !!!

Synthèse

✓ Le SI doit :

- s'adapter aux utilisateurs (et non l'inverse)
 - Attention ! Plusieurs utilisateurs ayant des vues différentes sur le SI
- o Être modulable et évolutif rapidement
- Etre adapté aux nouvelles technologies
- Répondre le plus possible aux besoins

✓ Pour cela, il doit :

- Être co-construit avec les utilisateurs
- Voire... leur donner les outils permettant de concevoir la partie les concernant