2025079_dharma_plots

2025-07-09

Using DHARMa package to evaluate the fit of our negative binomial model

- Model format for all data from all journals (N = 47353)
 - MASS::glm.nb(is.referenced.by.count~ da_factor + log(age.in.months) + container.title + container.title*da_factor + log(age.in.months)*da_factor + container.title*log(age.in.months) + log(age.in.months)*da_factor*container.title, data = nsd_yes_metadata, link = log)
 - Data nsd_yes_metadata was filtered to remove all NAs from variables da_factor, age.in.months, and container.title to allow for some of the below visualizations.
 - See below for number of papers from each journal.

n
8613
6578
5691
4656
4577
4369
3223
2900
2438
1854
1406
1041
7

Plot Residuals

- Graph is very busy with all 47K observations
- see 2nd plot for 5K observations for a smaller group to examine (index 25000-30000)
- Residuals look like an amorphous blob as suggested by Abner@CSCAR

```
simulationOutput <- simulateResiduals(fittedModel = total_model, plot = F)
residuals(simulationOutput) %>%
  plot(main = "Residuals plotted by numerical index")
```

Residuals plotted by numerical index


```
residuals(simulationOutput)[25000:30000] %>%
plot(main = "Residuals for observation indices 25000 - 3000")
```

Residuals for observation indices 25000 - 3000

Plots for Residuals - QQ and DHARMa

QQ Plot

- KS Test = Two sample Kolmogorov-Smirnov (KS) Test
 - This function tests the overall uniformity of the simulated residuals in a DHARMa object Deviation is significant between the expected residuals and the actual observed residuals.
 - "If the P value is small, conclude that the two groups were sampled from populations with different distributions." -Prism help page
- Dispersion Test
 - This function performs simulation-based tests for over/underdispersion
 - Over / underdispersion means that the observed data is more / less dispersed than expected under the fitted model.
 - Deviation is significant between the observed data and fitted model.
- Outlier Test
 - This function tests if the number of observations outside the simulation envelope are larger or smaller than expected
 - Methods generate a null expectation, and then test for an excess or lack of outliers. Per default, testOutliers() looks for both, so if you get a significant p-value, you have to check if you have to many or too few outliers.

- See Outlier test for distribution of outliers. - Many at 1.0 residual.

plotQQunif(simulationOutput)

DHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued dis

QQ plot residuals

plotResiduals(simulationOutput)

DHARMa residual vs. predicted

testOutliers(simulationOutput, type = "bootstrap")

Outlier test significant

Residuals (outliers are marked red)

```
##
## DHARMa bootstrapped outlier test
##
## data: simulationOutput
## outliers at both margin(s) = 538, observations = 47353, p-value <
## 2.2e-16
## alternative hypothesis: two.sided
## percent confidence interval:
## 0.006957848 0.008756045
## sample estimates:
## outlier frequency (expected: 0.00784047473232953 )
## 0.01136148</pre>
```