Math 2000-B Handout 8: Examples of Linear Transformations and Isomorphism

Subhadip Chowdhury

§1. Orthogonal Projections and Reflections

Let $\vec{\mathbf{u}}$ be a unit vector and let L be a line parallel to $\vec{\mathbf{u}}$ passing through the origin. Recall that the formula for projection of a vector $\vec{\mathbf{x}}$ onto L is given by

$$\operatorname{proj}_{L} \vec{x} = (\vec{x} \cdot \vec{u}) \vec{u}$$

Is the transformation $T(\vec{x}) = \text{proj}_L \vec{x}$ a linear transformation? If so, what is its matrix? Let's first assume both \vec{x} and \vec{u} are vectors in \mathbb{R}^2 . Let

$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $\vec{\mathbf{u}} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$

Exercise 1. Show that $\operatorname{proj}_{L} \vec{\mathbf{x}} = \begin{bmatrix} u_{1}^{2} & u_{1}u_{2} \\ u_{1}u_{2} & u_{2}^{2} \end{bmatrix} \vec{\mathbf{x}}$.

Exercise 2. Find the matrix **P** of the orthogonal projection onto the line **L** spanned by $\vec{\mathbf{w}} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

Now define $\operatorname{Ref}_L \vec{x}$ to be the reflection of \vec{x} about L.

Exercise 3. Show that $\operatorname{Ref}_L \vec{x} = 2 \operatorname{proj}_{\vec{u}} \vec{x} - \vec{x}$.

Exercise 4. Show that $\vec{x} \mapsto \text{Ref}_L \vec{x}$ is a linear transformation and find its matrix.

§2. Rotations Combined with a Scaling

Recall that the matrix $A = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix}$ represents a scaling by r and a matrix $B = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$ represents a counterclockwise rotation by φ .

Exercise 5. Let **a** and **b** be any two real numbers. Show that

$$T(\vec{x}) = \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right] \vec{x}$$

represents a rotation combined with a scaling.

Hint: Multiply A and B above and think polar coordinates.

§3. The Coordinate Mapping

Theorem 6. Let $\mathscr{B} = \{\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \dots, \vec{\mathbf{b}}_n\}$ be a basis for a vector space V. Then the map $T: V \to \mathbb{R}^n$ defined as

$$T(\vec{\mathbf{x}}) = [\vec{\mathbf{x}}]_{\mathscr{B}}$$

is a one-to-one and onto linear transformation.

Sketch of proof. Show that the associated matrix is invertible.

Definition 1. A *o*ne-to-one linear transformation from a vector space V *o*nto a vector space W is called an isomorphism from V onto W. In that case, V and W are called isomorphic vector spaces.

Exercise 7. Show that if V and W are isomorphic, then $\dim V = \dim W$.

Exercise 8. Let $T: V \to W$ be an isomorphism. Then $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_n\} \subset V$ is a linearly independent set of vectors if and only if $\{T(\vec{\mathbf{v}}_1), T(\vec{\mathbf{v}}_2), \dots, T(\vec{\mathbf{v}}_n)\} \subset W$ is a linearly independent set of vectors. [Hint: Show that T is an isomorphism iff T is invertible. Let L be the inverse of T. Then $L(T(\vec{\mathbf{v}}_i)) = \vec{\mathbf{v}}_i$.]

Example 2. Let $\mathcal{B} = \{1, x, x^2, x^3\}$ be a basis of \mathbb{P}_3 = the set of polynomial of degree ≤ 3 . Then the coordinate mapping gives an isomorphism from \mathbb{P}_3 to \mathbb{R}^4 .

Exercise 9. Use coordinate mapping to test the linear independence of the following set of polynomials:

$$1-2x^2-x^3$$
, $x+2x^3$, $1+x-2x^2$

Exercise 10. Let $p_1(t) = 1 + t^2$, $p_2(t) = t - 3t^2$, $p_3(t) = 1 + t - 3t^2$.

- (a) Use coordinate vectors to show that these polynomials form a basis for \mathbb{P}_2 .
- (b) Consider the basis $\mathcal{B} = \{p_1, p_2, p_3\}$ for \mathbb{P}_2 . Find \mathbf{q} in \mathbb{P}_2 given that

$$[q]_{\mathscr{B}} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}.$$