

SX1278/SX1276 Wireless Module E19 Series

This manual may change with the continuous improvement of the product. Please refer to the latest version of the instruction.

Chengdu Ebyte Electronic Technology Co., Ltd. reserves all rights of final interpretation and modification of this manual.

General introduction

E19 series module is a small-sized Sub 1GHz LoRa[™] SMD wireless module designed by Chengdu Ebyte, based on the original imported RF chip SX1278/SX1276 from SEMTECH, supporting LoRa Spread spectrum technology, which brings longer transmission distance and has the advantages of concentrated power density and strong anti-interference.

The 30dBm module with PA(power amplifier) and low-noise amplifier enhanced the communication stability and communication distance; The 20dBm module integrated the industrial crystal oscillator, accuracy is less than 10ppm, with stable batch production, and widely used for utilities, IOT transformation and smart home,

The related RF parameters can get through the domestic and overseas certification, such as FCC, CE, RoHs etc., satisfying export demand.

Model No.	RF IC	Operating Frequency	Transmitting Power	Communication distance	Packaging	Antenna type
		MHz	dBm	km		
E19-433MS100	SX1278	433	20	5.0	SMD	Stamp hole
E19-433MS1W	SX1278	433	30	10.0	SMD	Stamp hole
E19-868MS100	SX1276	868	20	5.0	SMD	Stamp hole
E19-868MS1W	SX1276	868	30	10.0	SMD	Stamp hole
						/IPEX
E19-915MS100	SX1276	915	20	5.0	SMD	Stamp hole
E19-915MS1W	SX1276	915	30	10.0	SMD	Stamp hole
E13 3131VIS1VV	3/12/0	313	30	10.0	31410	/IPEX

E19 series module is a hardware platform. Without any program, users need to conduct the secondary development.

Contents

GENERAL INTRODUCTION	1
1.TECHNICAL PARAMETERS	3
1.1 General parameters	3
1.2 ELECTRICAL PARAMETERS	3
1.2.1 Transmitting current	3
1.2.2 Receiving current	3
1.2.3 Turn-off current	3
1.2.4 Supply voltage	4
1.2.5 Communication level	4
1.3 RF parameters	4
1.3.1 Transmitting Power	4
1.3.2 Receiving sensitivity	4
1.3.3 Recommended Frequency	5
1.4 TESTED DISTANCE	5
2. PIN DEFINITION	5
2.1.1 E19-433MS100/ E19-868MS100/ E19-915MS100	5
2.1.2 E19-433MS1W/ E19-868MS1W/ E19-915MS1W	6
3. USAGE	7
4. REMARK	8
5. PRODUCTION GUIDANCE	8
5.1 Reflow Temperature	8
5.2 Reflow Graph	8
6. FAQ	9
6.1 THE COMMUNICATION DISTANCE IS TOO CLOSE	9
6.2 THE MODULE CAN BE DAMAGED EASILY	
7. IMPORTANT STATEMENT	9
8.ABOUT US	9

1. Technical parameters

1.1 General parameters

Model No.	IC	Size	Net WT	Operating temp.	Operating humidity	Storage temp.
E19-433MS100	SX1278	17.6*25.2 mm	1.6±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E19-433MS1W	SX1278	25.0*37.0 mm	5.2±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E19-868MS100	SX1276	17.6*25.2 mm	1.6±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E19-868MS1W	SX1276	25.0*40.0 mm	5.2±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E19-915MS100	SX1276	17.6*25.2 mm	1.6±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E19-915MS1W	SX1276	25.0*40.0 mm	5.2±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C

1.2 Electrical parameters

1.2.1 Transmitting current

Model No.	Min	Тур	Max	Unit	Remark
E19-433MS100	101.2	110.0	121.0	mA	When designing current supply circuit, 30% margin is
E19-433MS1W	577.8	628.0	690.8	mA	recommended to be remained so as to ensure long-term stable operation of the whole module;
E19-868MS100	101.2	110.0	121.0	mA	The current at the instant of transmitting may be high, but the total energy consumed may be lower due to very
E19-868MS1W	570.4	620.0	682.0	mA	short transmitting time; • When using external antenna, the impedance matching
E19-915MS100	101.2	110.0	121.0	mA	degree at different frequency points between antenna and module may affect the transmitting current value at
E19-915MS1W	588.8	640.0	704.0	mA	different levels.

1.2.2 Receiving current

Model No.	Min	Тур	Max	Unit	Remark
E19-433MS100	12.7	13.8	15.1	mA	• The current consumed when the RF chip is only working
E19-433MS1W	18.4	20.0	22.0	mA	at receiving mode is called as receiving current , the
E19-868MS100	12.7	13.8	15.1	mA	tested receiving current may be higher for some RF chips
E19-868MS1W	21.2	23.0	25.3	mA	with communication protocol or the developers have
E19-915MS100	12.7	13.8	15.1	mA	loaded their own protocol to the whole module.
E13 31310100	12,7	13.0	13.1	15.1 MA	The current at pure receiving mode will be mA level, the
E19-915MS1W	21.2	23.0	25.3	mA	users have to realize µA level receiving current through
LIJ-JIJIVIJIVV	21,2	23.0	25.5	1114	firmware development.

1.2.3 Turn-off current

Model No.	Min	Тур	Max	Unit	Remark
E19-433MS100	0.5	1.0	2.5	μΑ	The turn-off current means the current consumed when
E19-433MS1W	1.5	3.0	4.5	μΑ	CPU, RAM, Clock and some registers remain operating while
E19-868MS100	0.5	1.0	2.5	μΑ	SoC is at very low power consumption status.
E19-868MS1W	1.5	3.0	4.5	μΑ	The turn-off current is always lower than the current
E19-915MS100	0.5	1.0	2.5	μΑ	consumed when the power supply source of the whole
E19-915MS1W	1.5	3.0	4.5	μΑ	module is at no-load status.

1.2.4 Supply voltage

Model No.	Min	Тур	Max	Unit	Remark
E19-433MS100	1.8	3.3	3.6	V DC	If the voltage is at maximum value for long time, the
E19-433MS1W	3.3	5.0	5.5	V DC	module may be damaged;
E19-868MS100	1.8	3.3	3.6	V DC	The power supply pin has certain surge-resistance ability, but the potential pulse higher than the maximum power
E19-868MS1W	3.3	5.3	5.5	V DC	supply voltage;
E19-915MS100	1.8	3.3	3.6	V DC	• The power supply voltage is recommended to be higher than 3.0V, if the voltage is lower than 3.0V, the RF
E19-915MS1W	3.3	5.3	5.5	V DC	parameters will be affected at different degrees.

1.2.5 Communication level

Model No.	Min	Тур	Max	Unit	Remark
E19-433MS100	1.8	3.3	3.6	V DC	
E19-433MS1W	1.8	3.3	3.6	V DC	If the communication level is higher than the allowed
E19-868MS100	1.8	3.3	3.6	V DC	maximum value, the module may be damaged;
E19-868MS1W	1.8	3.3	3.6	V DC	Although the communication level can be switched with various methods, the power consumption of the whole
E19-915MS100	1.8	3.3	3.6	V DC	module will be affected at great degree.
E19-915MS1W	1.8	3.3	3.6	V DC	Thouse will be directed at great degree.

1.3 RF parameters

1.3.1 Transmitting Power

Model No.	Min	Тур	Max	Unit	Remark
E19-433MS100	19.6	20.0	20.5	dBm	Due to the error of the materials, each LRC component
E19-433MS1W	29.6	30.0	30.5	dBm	has ±0.1% error, so error accumulation will occur since multiple LRC components are used in the whole RF circuit,
E19-868MS100	19.6	20.0	20.5	dBm	and the transmitting currents will be different at different modules;
E19-868MS1W	29.6	30.0	30.5	dBm	The power consumption can be lowered by lowering the transmitting power, but the efficiency of the internal PA
E19-915MS100	19.6	20.0	20.5	dBm	will be decreased by lowering transmitting power due to various reasons;
E19-915MS1W	29.6	30.0	30.5	dBm	The transmitting power will be lowered by lowering the power supply voltage.

1.3.2 Receiving sensitivity

Model No.	Min	Тур	Max	Unit	Remark
E19-433MS100	-146.1	-147.0	-148.0	dBm	The current sensitivity is tested under the Coding rate of
					4/5 and spread spectrum factor of 12
E19-433MS1W	-147.2	-148.0	-149.2	dBm	Due to the error of the materials, each LRC component
E19-868MS100	-146.1	-147.0	-148.0	dBm	has ±0.1% error, so error accumulation will occur since
					multiple LRC components are used in the whole RF circuit,
E19-868MS1W	-147.2	-148.0	-149.2	dBm	and the transmitting currents will be different at different
E19-915MS100	-146.1	-147.0	-148.0	dBm	modules;
					The receiving sensitivity will be reduced and range will be
E19-915MS1W	-147.2	-148.0	-149.2	dBm	shortened while increasing the air data rate.

1.3.3 Recommended Frequency

Model No	Min	Тур	Max	Unit	Remark
E19-433MS100	410.0	433.0	441.0	MHz	It ensures that the performance of the module can reach
E19-433MS1W	410.0	433.0	441.0	MHz	the standard if it works in recommended operating
E19-868MS100	862.0	868.0	893.0	MHz	frequency.
E19-868MS1W	862.0	868.0	893.0	MHz	It is recommended to avoid the crowded frequencies, such
E19-915MS100	900.0	915.0	931.0	MHz	as 433.0MHz, 868.0MHz, 915MHz and other integer
E19-915MS1W	900.0	915.0	931.0	MHz	frequencies.

1.4 Tested distance

Model No	Min	Тур	Max	Unit	Remark
E19-433MS100	4500	5000	5500	m	The external antenna used is of 5dBi gain and vertical polarization;
E19-433MS1W	9000	10000	11000	m	The interval between each data packet is 2s, sending 100
E19-868MS100	4500	5000	5500	m	packets with 30 bytes in each packet, the range at data lose
E19-868MS1W	9000	10000	11000	m	rate of lower than 5% is valid range; • In order to obtain meaningful and reproduceable results,
E19-915MS100	4500	5000	5500	m	we conducted the tests under in clear weather with little
E19-915MS1W	9000	10000	11000	m	electromagnetic interference at suburb areas ; • Distance may be shorter with interference or obstacles.

2. Pin definition

2.1.1 E19-433MS100/ E19-868MS100/ E19-915MS100

	25%	1935 S	Units: n
	MIN	NOR	MAX
A	17.4	17.6	17.8
В	25.0	25.2	25.4
C	1.40	1.50	1.60
D	2.00	2.10	2.20
E	1.27	1.27	1.27
F		3.40	3.50
G		1.50	1.60
I	1.27	1.27	1.27
J	0.90	1.00	1.10
Н	3.50	3.70	4.00

Pin No.	Name	Direction	User Manual of E19 Series N Usage
1	GND	Input	Ground electrode, connected to the power reference ground.
2	DIO5	Input /Output	Configurable IO interface(See more details in SX1278 data sheet
3	DIO4	Input /Output	Configurable IO interface(See more details in SX1278 data sheet
4	DIO3	Input /Output	Configurable IO interface(See more details in SX1278 data sheet
5	DIO2	Input /Output	Configurable IO interface(See more details in SX1278 data sheet
6	DIO1	Input /Output	Configurable IO interface(See more details in SX1278 data sheet
7	DIO0	Input /Output	Configurable IO interface(See more details in SX1278 data sheet
8	RST	Input	Reset
9	NC		Not connect
10	GND	Input	Ground electrode, connected to the power reference ground.
11	1/66	Input	Power supply 1.8V-3.6V DC. 3.3V and external ceramic filter
	VCC		capacitor are recommended.)
12	SCK	Input	SPI clock
13	MISO	Output	Master input slave output
14	MOSI	Input	Master output slave input
15	NSS	Input	Chip select
16	TXEN	Input	Radio frequency switch control, make sure the TXEN pin is in
16	16 IXEN		high level, RXEN pin is in low level when transmitting.
17	RXEN	Input	Radio frequency switch control, Make sure the RXEN pin is in
17	RAEIN	Input	high level ,TXEN pin is in low level when receiving.
18	GND		Ground electrode, connected to the power reference ground.
19	GND		Ground electrode, connected to the power reference ground.
20	ANT	Output	Antenna
21	GND		Ground electrode, connected to the power reference ground.
	★ Plea	ase find more on SX	1278&SX1276 datasheet from SEMTECH ★

$2.1.2 \hspace{0.2in} E19\text{-}433MS1W/ E19\text{-}868MS1W/ E19\text{-}915MS1W$

	Units: mm	
	MIN	MAX
A	25.0	25.1
В	37.0	37.1
C	3.50	3.51
D	2.54	2.54
E	3.50	3.51
F	2.54	2.54
G	3.50	3.51
Н	4.85	4.90

Pin No.	Name	Direction	Usage
1	GND		Ground electrode, connected to the power reference ground.
2	DIO5	Input/Output	Configurable IO port (Please find more on SX127X datasheet)
3	DIO4	Input/Output	Configurable IO port (Please find more on SX127X datasheet)
4	DIO3	Input/Output	Configurable IO port (Please find more on SX127X datasheet)
5	DIO2	Input/Output	Configurable IO port (Please find more on SX127X datasheet)
6	DIO1	Input/Output	Configurable IO port (Please find more on SX127X datasheet)
7	DIO0	Input/Output	Configurable IO port (Please find more on SX127X datasheet)
8	RST	Input	Reset
9	NC		Not connect
10	GND		Configurable IO port (Please find more on SX127X datasheet)
11	VCC		Power supply: 4.75~5.5V (Ceramic filter capacitor is advised to ac
12	SCK	Input	SPI clock
13	MISO	Output	Master output slave input
14	MOSI	Input	Master input slave output
15	NSS	Input	Chip select
16 TXEN	TVENI	Input	Radio frequency switch control, make sure the TXEN pin is in
	IXEN		high level, RXEN pin is in low level when transmitting.
17 RXEN	DVEN	Input	Radio frequency switch control, Make sure the RXEN pin is in
	KAEN		high level ,TXEN pin is in low level when receiving.
18	GND		Ground electrode, connected to the power reference ground
19	ANT		Antenna
20	GND		Ground electrode, connected to the power reference ground
21	GND		Ground electrode, connected to the power reference ground
22	GND		Ground electrode, connected to the power reference ground

3.Usage

Brief introduction of connection between module and MCU (STM8L)

4. Remark

• DIO0, DIO1, DIO2, DIO3, DIO4, DIO5 is generally purpose I/O, can be configured into multiple function, please check SX1278/SX1276 manual for more details, floating is allowed.

- RST, TXEN, RXEN pin must be connected, in which RST control the reset of chip, TXEN, RXEN pin control RF switch.
- Make sure the grounding is good, with low power ripple, also should increase filter capacitor and as close as possible to the VCC and GND pins.
- SPI communication rate should not be set too high, usually around 1M
- Make sure TXEN pin is high level, RXEN pin is low level when transmitting; make sure RXEN pin is high level, TXEN pin is low level when receiving; make sure TXEN、RXEN pin is low level before turning off.
- The register configuration can be reinitialized to obtain higher stability when the chip is invalid.

5. Production Guidance

5.1 Reflow Temperature

Preheating zone: Maximum temperature rise is 2.5°C/s;

Insulation zone : temperature: $150\sim190^{\circ}\text{C}$, time: $60\sim90\text{s}$, Maximum temperature rise is 2.5°C/s ; Recirculation zone : Maximum temperature is $235\sim245^{\circ}\text{C}$, Above 217°C , the time will be $40\sim80\text{s}$;

Cooling zone: Maximum cooling is 4°C/s.

5.2 Reflow Graph

6. FAQ

6.1 The communication distance is too close

- When there' s straight Communication barrier, the communication distance will be reduced accordingly.
- Temperature, humidity and same frequency interference will increase the rate of communication packet loss.
- Ground absorption, reflected radio waves, and closing to ground will lead to poor test result.
- Sea water has a strong ability to absorb radio waves, so test near the sea is not recommended.
- If antennas surrounded by metal items or placed in metal shell, the signal will be weakened badly.
- Power register is set wrongly or air data rate too high. (The higher the air data rate, the closer the distance.
- In room temperature, the power voltage will be less than 2.5V. The lower the the power voltage, the smaller the power.
- The antenna is unmatched to the module or the quality of antenna.

6.2 The module can be damaged easily

- Please check the power supply, which should be 1.8v-3.8v. If the value exceeds that, the module will be damaged.
- Please check the stability of power supply. The voltage cannot be in fluctuations frequently.
- Please ensure all the installation operations are anti-static.
- Please ensure the humidity in the procedure of installation and operation should not be too high because some electrical parts are humidity sensitive device.
- Please do not use it in a too high or too low temperature environment if there' s no special requirement.

7. Important statement

- Ebyte reserves the rights of final interpretation and revision for all the involved contents in this manual.
- With the continuous improvement of hardware and software, this manual may subject to change without notice. Please refer to the latest version.
- Users can follow the product news on our official website so as to gain the latest information.

8. About Us

Technical support: support@cdebyte.com

Documents and RF Setting download link: www.cdebyte.com/en/

Tel: +86-28-61399028 Fax: 028-64146160

Web: www.cdebyte.com/en/

Address: Innovation Center D347, 4# XI-XIN Road, Chengdu, Sichuan, China