IT-314 Software Engineering

Lab 9: <u>Equivalence Class Testing and</u> <u>Boundary Value Analysis</u>

Vraj Gandhi (202201425)

Question 1

Equivalence Class Test Cases:

Test Case		Mon		Expected	
No	Day	th	Year	Output	Equivalence Classes
1	15	5	2000	14-05-2000	Valid date
2	1	1	2000	31-12-1999	Boundary test, new year
3	29	2	2004	28-02-2004	Leap year February
4	1	3	2004	29-02-2004	Leap year, prev date is 29-02
5	31	12	2015	30-12-2015	End of year
6	31	4	2000	Invalid Date	Invalid day for April (only 30 days)
7	31	2	2000	Invalid Date	February cannot have 31 days
8	29	2	2001	Invalid Date	Non-leap year February
9	0	5	2000	Invalid Date	Invalid day, less than 1
10	15	13	2000	Invalid Date	Invalid month, greater than 12
11	15	5	1899	Invalid Date	Invalid year, less than 1900
12	15	5	2016	Invalid Date	Invalid year, greater than 2015

Question 2:

Program-1: Linear Search

Test Case No	Input value	Array	Expected Output
1	5	{}	-1
2	3	{3}	О
3	7	{1,2,3,4,5,6}	-1
4	4	{1,2,3,4,5,6}	3
5	2	{2,2,2,2}	О
6	9	{5,7,9,12,9,15}	2
7	4	{10,11,12}	-1
8	12	{12}	О

Program-2: Counting

Test Case No	Input value	Array	Expected Output
1	5	{}	О
2	3	{3}	1
3	7	{1,2,3,4,5,6}	О
4	4	{1,2,3,4,4,4,6}	3
5	2	{2,2,2,2}	4
6	9	{5,7,9,12,9,15}	2
7	4	{10,11,12}	0
8	12	{12}	1

Program-3: Binary Search

• Equivalence Classes:

- **A1**: The array is empty.
- \circ **A2**: The array has one element, and \vee is present.
- **A3**: The array has one element, and v is not present.
- **A4**: The array has multiple elements, and v is present in the middle.
- **A5**: The array has multiple elements, and v is present at the beginning.
- **A6**: The array has multiple elements, and v is present at the end.
- A7: The array has multiple elements, and v is not present.
- **A8**: The array has duplicate elements, and v is present.
- **A9**: The array has duplicate elements, and v is not present.

Test Case No	Array (a[])	v (Search Value)	Expected Output	Covered Classes
1	[]	5	-1	A1
2	[7]	7	0	A2
3	[7]	5	-1	А3
4	[1, 3, 5, 7, 9]	5	2	A4
5	[1, 3, 5, 7, 9]	1	0	A5
6	[1, 3, 5, 7, 9]	9	4	A6
7	[1, 3, 5, 7, 9]	8	-1	A7
8	[1, 3, 3, 3, 9]	3	2	A8
9	[1, 3, 3, 3, 9]	4	-1	A9

Program-4: Triangle Classification

• Input: Triangle validity

- **Class T1**: Invalid triangle (any side is greater than or equal to the sum of the other two sides).
- **Class T2**: Valid triangle.

• Input: Triangle type

- **Class E1**: Equilateral triangle (all sides are equal).
- **Class E2**: Isosceles triangle (exactly two sides are equal).
- **Class E3**: Scalene triangle (all three sides are different).

• Input: Side lengths

• **Class S1**: Positive integers for all sides.

Program-5: Substring prefix

• Input: Length of s1 and s2

• Class L1: s1 is longer than s2 (impossible to be a prefix).

• Class L2: s1 is equal in length to s2 (potentially a prefix).

• **Class L3**: s1 is shorter than s2 (can be a prefix).

• Input: String contents

• Class C1: s1 is empty (prefix of any string).

• **Class C2**: s2 is empty (only true if s1 is also empty).

• **Class C3**: Both strings are non-empty.

• **Class C4**: s1 is completely equal to s2 (valid prefix).

Test Case No	s1 (Value)	s1 Length	s2 (Value)	s2 Length	Expected Output	Covered Classes
1	""	0	"hello"	5	True (Empty s1 is a prefix of any s2)	L3, C1
2	"abc"	3	"abc"	3	True (s1 is exactly equal to s2)	L2, C4
3	"abc"	3	"abcdef"	6	True (s1 is a prefix of s2)	L3, C3
4	"abc"	3	"abxdef"	6	False (s1 is not a prefix of s2)	L3, C3
5	"abcdef"	6	"abc"	3	False (s1 cannot be a prefix of s2)	L1, C3
6	1111	0	1111	0	True (Both s1 and s2 are empty)	L2, C2
7	"abc"	3	"abcd"	4	False (s1 is not equal to s2)	L3, C3
8	"abc"	3	"abcde"	5	True (s1 is a valid prefix of s2)	L3, C3
9	1111	0	"a"	1	False (Non-empty s2, empty s1)	L3, C1
10	"abcdef"	6	"abc"	3	False (s1 is longer, impossible to be a prefix)	L1, C3

Program-6: Triangle Classification

a) Identify the Equivalence Classes for the System:

1. Valid Triangle Types:

○ **E1**: Equilateral triangle (A = B = C)

 \circ **E2**: Isosceles triangle (A = B or A = C or B = C)

 \circ E3: Scalene triangle (A \neq B \neq C)

• E4: Right-angled triangle $(A^2 + B^2 = C^2)$ or any permutation

2. Invalid Cases:

○ **I1:** Non-triangle $(A + B \le C \text{ or } A + C \le B \text{ or } B + C \le A)$

• **I2**: Non-positive lengths $(A \le 0, B \le 0, \text{ or } C \le 0)$

b) Identify Test Cases to Cover the Identified Equivalence Classes:

Test Case No	Side A	Side B	Side C	Expected Output	Notes
1	3	3	3	Equilateral	E1
2	5	5	3	Isosceles	E2
3	4	5	6	Scalene	E3
4	5	12	13	Right-angled	E4
5	2	2	5	Non-triangle	I1
6	1	1	3	Non-triangle	I1
7	0	5	5	Non-positive	I2
8	-1	2	2	Non-positive	I2
9	4	4	4	Equilateral	E1
10	0	0	0	Non-positive	I2

c) Boundary Condition for A + B > C (Scalene Triangle):

Test Case No	Side A	Side B	Side C	Expected Output	Notes
11	2	3	4	Scalene	A + B > C
12	3	4	5	Scalene	A + B > C
13	1	2	2	Isosceles	A + B = C
14	3	5	7	Scalene	A + B > C

d) Boundary Condition for A = C (Isosceles Triangle):

Test Case No	Side A	Side B	Side C	Expected Output	Notes
15	5	3	5	Isosceles	A = C
16	1	1	2	Non-triangle	A + B = C
17	4	4	2	Isosceles	A = B

e) Boundary Condition for A = B = C (Equilateral Triangle):

Test Case No	Side A	Side B	Side C	Expected Output	Notes
18	2	2	2	Equilateral	A = B = C
19	0	0	0	Non-positive	All sides zero

f) Boundary Condition for $A^2 + B^2 = C^2$ (Right-angled Triangle):

Test Case No	Side A	Side B	Side C	Expected Output	Notes
20	3	4	5	Right-angled	$A^2 + B^2 = C^2$
21	6	8	10	Right-angled	$A^2 + B^2 = C^2$
22	5	12	13	Right-angled	$A^2 + B^2 = C^2$

g) Test Cases for Non-triangle Case:

Test Case No	Side A	Side B	Side C	Expected Output	Notes
23	1	1	3	Non-triangle	A + B = C
24	5	10	20	Non-triangle	A + B < C

h) Test Cases for Non-positive Input:

Test Case No	Side A	Side B	Side C	Expected Output	Notes
25	-1	5	5	Non-positive	Negative length
26	2	-3	2	Non-positive	Negative length
27	0	4	4	Non-positive	Zero length