

Droplet Pix2Pix Intro

Project Target

- · Our aim is to generate droplet images by Al given specific physical conditions.
- We use an open-source model Pix2Pix (based on GAN), which is originally used in style transformation/prediction from picture to picture.
- In this project, we try to migrate this method: The main idea is to encode various physical conditions into 2d heatmap, and make tuples with image output to build our own dataset. And then re-train the original model.

Steps

Data Preprocessing

Original Experiment Dataset

- 1 single dataset = 1 group of physical conditions + 2000 pictures
- Total we have around 220 datasets

Extract Impacting Frames

- This is done in previous work: https://github.com/openhe-hub/droplet-img-process.git
- For single dataset, 2000 pictures can extract around 40 impacting pictures (2%)

Physical Conditions

- We have 6 physical conditions:
 - i. surface type
 - ii. liquid type
 - iii. diameter
 - iv. height
 - v. fall point type & offset distance
 - vi. time
- For example: S1-W-20G-20cm-C-1_C001H001S0001

Normalization Rule

- 1. Enum type: surface type, liquid type, fall point type
 - We have n enums for each type, given i, we get $\frac{i}{n+1}$
 - For example, we have 6 surface types, given S3, output is 0.429
- 2. Continuous type: diameter, height, time
 - We have [min, max] range, input value, we get $rac{value-min}{max-min}$
 - For example, we accept height among [10cm, 50cm], given h=20cm, output is 0.25

Transform 1d Physical Condition Vector => 2d Heatmap

- 1. Suppose n physical conditions after normalization is $v\in\mathbb{R}^n$, we say $M\in\mathbb{R}^n imes \mathbb{R}^n, s.t.M[i][i]=v[i]$ and $M[i][j]=0, i\neq j$, n=6 here
- 2. We use VIRIDIS color map, transform M into M^\prime
- 3. Suppose size of original picture N is (p, q), re-scale M' into the same shape
- 4. Finally we get image tuple (M, N), and we have around 6000 tuples for our dataset.

Building Own Dataset

- Combine Heatmap (Feature) and Original Image (Label)
 - We concat (M, N) horizontally, so the result size will be (2*p, q)
 - Example:

- Split Train/Valid/Test Set
 - Train = 80%
 - \circ Valid = 10%
 - \circ Test = 10%

Training model

 Network Intro Ref to https://arxiv.org/pdf/1703.10593

- Train Settings
 - i. epoch = 200
 - ii. learing rate: 0-100 epoch, const 0.0002; 100-200 epoch, linearly decay to 0
 - iii. optimizer = Adam
 - iv. checkpoint_freq = 5
 - v. Environment: Pytorch 2.0, CUDA 11.7, Python 3.8 (time cost = 2h with RTX3080)

Prediction Result on Testset

Share content: droplet pix2pix v3mini.zip

Link: https://pan.sjtu.edu.cn/web/share/ee03a6c9ec5d8f2b8554ca9ecbca090a, Extraction code: wa3j

• Open test_latest/index.html on browser to view it

Next To Do

L	Maybe we can modify the network structure to elevate performance
	Maybe we may want to add more experiment data, since 6 physical conditions are not
	enough