

Explore Quantum Computing

Quantum computing uses the properties of quantum (subatomic) particles such as superposition and entanglement to perform computation.

How does a digital computer work?

	Classical computers	
Data format	Either o 1 or 0	
Sample representation	8 bits - 01100001 Letter "A"	
Time to hack the internet	300 trillion years	

Basic classical sum

2 transistors can add up to 2 bits

How do classical computers work?

Where are we?

iPhone 12

- 11.8 B transistors
- 32 B bits (memory)
- Plays Among Us

How do quantum computers work?

	Classical computers	Quantum computers	
Data format	Either 1 or 0	1 or 0 at the same time	
Sample representation	8 bits - 01100001 Letter "A"	3 qubits- $\frac{ 000\rangle+ 111\rangle}{\sqrt{2}}$ 7 qubits Beryllium hydride	
Time to hack the internet	300 trillion years	8 hours	

How do quantum computers work?

Quantum properties

Where are we?

Google Sycamore

- 72 qubits
- Operates at -460F

Simulations of '40s computer

Where does qBraid come in?

Develop for top quantum computing hardware and platforms

Why is this relevant?

Applications of quantum computing

TransportationOptimization of
Traffic routes

Drug discoverySimulation of new drugs

Cryptography
Breaking RSA encryption
and post-quantum
cryptography

Financial modeling
Optimal pricing of derivates

Material research
Predicting properties of complex
material

Quantum Al Improving Al beyond classical computing limits

What some of the companies are involved?

JPMORGAN CHASE & CO.

And many more are getting involved every year

Sign up for qBraid

Go to: https://account.qbraid.com/join

Aloha, Quantum World!

Hello, World!

- Developed by Brian Kernighan, in 1974.
- the simplest possible program for the language
- a demonstration of the syntax for a particular language
- and to check everything is working correctly.

Quantum version

- Similar to 'Hello, World!' we would want it to be the simplest quantum program.
- 'Aloha, World!' should ensure the faithfulness of the quantum stack (hardware and software).
- Then, we want to go one step further. If you look into the details of 'Aloha, World!', it should present to you the details for how quantum computing is fundamentally different than classical computing.

