Link Analysis Homework 2

Student ID: P76034711

Name: 呂鴻

Environments: Ubuntu 14.04

Language: Java

Execute: Command Line

◆ Implementation detail for each algorithm :

首先,我會先列出全部的 graph 檔給使用者作選擇,選擇完要處理的 graph 之後在選擇 algorithm,然後就會列出該演算法會算出的值,以下會針對不同演算法做細部的解說.

```
neal@neal-K42Jv:~/workspace/LinkAnalysis/bin$ java LinkAnalysis
Please choose File :
1. graph_1.txt
2. graph_2.txt
3. graph_3.txt
4. graph_4.txt
5. graph_5.txt
6. graph_6.txt
7. graph_7.txt
8. graph_8.txt
9. graph_9.txt
10. graph_10.txt
```

1. HITS:

Hyperlink Induced Topic Search(HITS) 最基本的兩個定義 Authority and Hubs,使用者會給定一個 query point,根據 query 我們可以透過搜尋系統找到 root set. 這裡我是藉由 query 點向外擴展一層當作 root set,再來是根據 root set 來擴充成 base set. 這裡我實作方法是將 root set 有相關的 node 也都加進來,所以簡單來說就是在向外況展一層. 有個特例: 如果整個 data set 小於十個 node,因為資料太少了所以我將整個 data set 當作是 base set.

然後就去計算 base set 内中所有 node 的 authority value and hubs value. 算出來後根據這兩個定義分別去作排名的動作, 取前五個.

```
Please choose root :
               2. node 2
                                3. node 3
                                                4. node 4
                                                                 5. node 5
                                                                                 6. node 6
Root :
        Authority
                         Hubs
Node 1 :
                         0.71178522
Node 2:
        0.31268159
                         0.57442658
Node 3:
        0.56502274
                         0.00000004
Node 4:
        0.00000010
                         0.40422260
Node 5:
        0.74259515
                         0.00000004
Node 6:
                         0.00000000
        0.00000010
Authority Ranking for Top 5:
       Node 5: 0.74259515
       Node 3: 0.56502274
       Node 1: 0.17757241
Hubs Ranking for Top 5:
       Node 1: 0.71178522
       Node 4: 0.40422260
       Node 3: 0.00000004
```

2. PageRank:

舉個簡單的例子來說,PageRank 就是手上握有的投票數,他們的對外連結就是把手上得票平均分出去,也就是說,別人連到你的網站,表示他把票投給你.結論大致上可以說是連結到你的網頁愈多,你的 PageRank 值就愈高,但細節來看,如果連到你的都是弱連結,那麼你的pageRank 值也比較難累積.

實作方面就是透過演算法算出每個 node 的 PageRank value, 然後取前 10 名列出來. PageRank 有點像是 HITS 的 authority 值.

```
The PageRank ranking is:

Node 1:

0.28028763

Node 5:

0.18419804

Node 2:

0.15876440

Node 3:

0.13888175

Node 4:

0.10821955

Node 7:

0.06907747

Node 6:

0.06057065
```

3. SimRank:

SimRank 是一種基於圖的拓撲結構信息來衡量任意兩個對象間相似程度的模型,SimRank 相似度的核心思想為:如果兩個對象和被其相似的對象所引用(即它們有相似的入鄰邊結構),那麼這兩個對象也相似。近年來已在信息檢索領域引起廣泛關注,成功應用於網頁排名、協同過濾、孤立點檢測、網路圖聚類、近似查詢處理等。

實作方面就是讓使用者給定兩個 nodes, 然後去計算其結構相似度.

◆ Characteristics/observation for 2 LP model graphs and 2 graphs you find/generate from IMDB and other sources :

1. LP model graphs:

I random two graphs. For graph 7, I give 50 nodes and random the connections between random nodes. For graph 8, I give 100 nodes and do it as the same way. So everytime I run the program, these two graphs will be different.

2. IMDB graph:

I choose the top 250 movies on IMDB website as the dataset. (<u>link</u>) Each movie contains many informations. I choose the Director and the Actors for each movie. The director connects to each actor. So the node means people who is director or actor. It means famous director will have higher Hubs in HITS algorithm because the director directs lots of movies. And famous actor will have higher Authority value because the actor acts lots of movies. The node will present the people's name.

Authority Ranking for Top 5:

Morgan Freeman : 0.58102816

Ben Affleck : 0.35834393

Rosamund Pike : 0.35834393

Brad Pitt : 0.35834393

Hubs Ranking for Top 5:

David Fincher : 0.84987426

Frank Darabont : 0.52698552

Tim Robbins : 0.00000000

3. Generate by my own:

I use graph from lecture 3 p.52 for my temporary dataset.

Result analysis and discussion :

1. Limitations about link analysis algorithm:

HITS 算是個不錯的演算法, 不僅用在 search engine, 還被用在 natural language and social network analysis 上, 但我們還是可以歸納 HITS 的一些缺點:

(1) lower computation effects:

因為 HITS 是與查詢相關的演算法, 在使用者下 query 後才可以作計算, 然而他的演算是用迭代的計算才能得到最後的結果, 導致計算效率較低.

(2) 主題漂移的問題:

如果在擴展 root set 中包含部份與查詢無關的主題頁面,而且這些頁面有較多的相互連結方向,那麼使用 HITS 可能會給予這些頁面很高的排名,導致搜尋結果主題漂移,這種現象稱為"緊密連接社區現象"

(3) 易被操縱:

例如説作弊者可以建立一個網頁,頁面内容增加很多指向高質量的或者著名網站的網址,他就會變成一個很好的 Hub 頁面,之後作弊者在將這個網頁連到作弊的網頁,於是可以提昇作弊網頁的 Authority.

PageRank 演算法是基於"從許多優質的網頁連結過來的網頁,必定還是優質的網頁"的回歸關係來判定重要性與否. 也可以用上述的投票例子來闡述 PageRank 的演算流程.

PageRank 的優點在於它對網頁有全局的重要性排序,並且計算流程可以在 off-line 完成, 這樣有利於迅速回應使用者的請求.

但其缺點在於主題無關性,沒有區分頁面內的導航連結 廣告連結和功能連結等,容易對廣告 頁面有過高的評價.另一個弊端是舊的頁面等級會比新的頁面高,因為新頁面不會有太多連結,這 就是為什麼 PageRank 需要多項算法結合的原因.

Search Engine 藉由 PageRank 值的分數來判斷此網站的重要程度,進而做為<mark>關鍵字搜尋</mark>的排名依據參考, PageRank 值越高代表 search engine 對此站的重要度高,相對的信賴及內容準確度也越高. 但也有人用灌水的方式來灌 PageRank 的值, Google 用了一個方法來辨識虛偽的連結, google 推出了新的屬性 nofollow, 使得網站管理員和網誌作者可以做出一些 Google 不計票的連結,也就是說這些連結不算作"投票", nofollow 的設置可以抵制評論垃圾.

SimRank 模型定義兩個頁面的相似度是基於如下遞歸的思想:如果指向結點 a 和指向結點 b 的結點相似,那麼 a 和 b 也認為是相似的。這個遞歸定義的初始條件是:每個結點與它自身最相似。 這個方法主要是基於不動點迭代來解 SimRank 值,其優點是計算精度較高,但時間複雜度較大.

◆ Find a way (e.g., add/delete some links) to increase hub, authority, and pagerank of Node 1 in first 4 graphs respectively :

If page wants to increase hub, just connect the higher authority's node.

If page wants to increase authority, just connect the higher hub's node.

If page wants to increase PageRank, just let higher PageRank's node connect to Node1.

```
Increase hub:
```

graph $1:1 \rightarrow 5$

```
graph 2:1 \rightarrow \text{anynode}
    graph 3:1 \rightarrow 2
    graph 4:1 \rightarrow 5
    graph 5:1 \rightarrow 433
    graph 6:1 \rightarrow 410
    graph 7:1 \to  不定(graph random created)
    graph 8:1 \to  不定(graph random created)
    graph 9:1 \rightarrow \text{Tom Hanks}
    graph 10:1 \rightarrow 3 or 1 \rightarrow 5
Increase authority:
    graph 1:1 \rightarrow 4
    graph 2:1 \rightarrow \text{anynode}
    graph 3:1 \rightarrow 2 or 1 \rightarrow 3
    graph 4:1 \rightarrow 4
    graph 5:1 \rightarrow 396
    graph 6:1 \rightarrow 410
    graph 7:1 \to  不定(graph random created)
    graph 8:1 \to 不定(graph random created)
    graph 9 : 1 → Frank Darabont
    graph 10:1 \rightarrow 2
```

Increase PageRank:

為了增加 PageRank, 只要把 PageRank 高的頁面指向 PageRank 低的頁面這樣就可以提昇. Pagerank 愈高越好, 然後連出來的連結愈少愈好. 詳細的內容在 Result analysis and discussion 的章節有詳細討論.

What I learned and Comments:

1. Can link analysis algorithms really find the "important" pages from Web?

我覺得這兩種演算法 HITS and PageRank 都是找重要的 page 一個很重要的參考依據, 但不能完全依據. 所以 Google 提出了很多改善方法, 且不會只單獨運用一個演算法, 會綜合每一種演算法得出最佳的結果.

2. What do the result say for your actor/movie graph?

I craw IMDB website of top 250 movies web page and get the directors and the actors for each movie. Each node presents director or actor. The director connect to actors for each movie. The result says that the higher hubs means he is a popular director and he direct lots of movie. The higher authority means he is a popular actor and lots of movie he acts. So the higher authority people may be a superstar.

3. What is the effect of "C" parameter in SimRank?

C 稱為阻尼係數. SimRank 就是計算兩節點的相似程度, 其意義是兩個體 a b 的相似度取決於 a, b 相連節點的相似程度, s(a,b) 介於[0,1], 當 a=b 時, s(a,b)=1, 現在如果 a!=b, 且只有一個入節點 d, 我們不希望從 d 計算到的 s(a,b)也是 1, 因此 C 也可以作為衰減因子, 介於[0,1], s(a,b)=C. C 值愈小, 表示衰退的速度愈快, 反之則愈慢.

◆ Execution Process :

Ex: choose graph 5 to calculate Node 70's HITS

```
neal@neal-K42Jv:~/workspace/LinkAnalysis/bin$ java LinkAnalysis
Please choose File :

    graph 1.txt

graph_2.txt
graph 3.txt
4. graph 4.txt
5. graph 5.txt
6. graph 6.txt
graph_7.txt
8. graph 8.txt
9. graph_9.txt
10. graph 10.txt
Please choose methods for link analysis:
. HITS
PageRank
SimRank
```

Please choose root :												
1. node 1	2. node 2	3. node 3	4. node 4	5. node 5	6. node 6	7. node 7	8. node 8	9. node 9	10. node 10	11. node 11	12. node 12	13. node 13 1
4. node 14	15. node 15	16. node 16	17. node 17	18. node 18	19. node 19	20. node 20	21. node 21	22. node 22	23. node 23	24. node 24	25. node 25	26. node 26 2
7. node 27	28. node 28	29. node 29	30. node 30	31. node 31	32. node 32	33. node 33	34. node 34	35. node 35	36. node 36	37. node 37	38. node 38	39. node 39 4
0. node 40	41. node 41	42. node 42	43. node 43	44. node 44	45. node 45	46. node 46	47. node 47	48. node 48	49. node 49	50. node 50	51. node 51	52. node 52 5
3. node 53	54. node 54	55. node 55	56. node 56	57. node 57	58. node 58	59. node 59	60. node 60	61. node 61	62. node 62	63. node 63	64. node 64	65. node 65 6
6. node 66	67. node 67	68. node 68	69. node 69	70. node 70	71. node 71	72. node 72	73. node 73	74. node 74	75. node 75	76. node 76	77. node 77	78. node 78 7
9. node 79	80. node 80	81. node 81	82. node 82	83. node 83	84. node 84	85. node 85	86. node 86	87. node 87	88. node 88	89. node 89	90. node 90	91. node 91 9
2. node 92	93. node 93	94. node 94	95. node 95	96. node 96	97. node 97	98. node 98	99. node 99	100. node 100	101. node 101	102. node 102	103. node 103	104. node 104
105. node 105	106. node 106	107. node 107	108. node 108	109. node 109	110. node 110	111. node 111	112. node 112	113. node 113	114. node 114	115. node 115	116. node 116	117. node 117
118. node 118	119. node 119	120. node 120	121. node 121	122. node 122	123. node 123	124. node 124	125. node 125	126. node 126	127. node 127	128. node 128	129. node 129	130. node 130
131. node 131	132. node 132	133. node 133	134. node 134	135. node 135	136. node 136	137. node 137	138. node 138	139. node 139	140. node 140	141. node 141	142. node 142	143. node 143
144. node 144	145. node 145	146. node 146	147. node 147	148. node 148	149. node 149	150. node 150	151. node 151	152. node 152	153. node 153	154. node 154	155. node 155	156. node 156
157. node 157	158. node 158	159. node 159	160. node 160	161. node 161	162. node 162	163. node 163	164. node 164	165. node 165	166. node 166	167. node 167	168. node 168	169. node 169
170. node 170	171. node 171	172. node 172	173. node 173	174. node 174	175. node 175	176. node 176	177. node 177	178. node 178	179. node 179	180. node 180	181. node 181	182. node 182
183. node 183	184. node 184	185. node 185	186. node 186	187. node 187	188. node 188	189. node 189	190. node 190	191. node 191	192. node 192	193. node 193	194. node 194	195. node 195
196. node 196	197. node 197	198. node 198	199. node 199	200. node 200	201. node 201	202. node 202	203. node 203	204. node 204	205. node 205	206. node 206	207. node 207	208. node 208
209. node 209	210. node 210	211. node 211	212. node 212	213. node 213	214. node 214	215. node 215	216. node 216	217. node 217	218. node 218	219. node 219	220. node 220	221. node 221
222. node 222	223. node 223	224. node 224	225. node 225	226. node 226	227. node 227	228. node 228	229. node 229	230. node 230	231. node 231	232. node 232	233. node 233	234. node 234
235. node 235	236. node 236	237. node 237	238. node 238	239. node 239	240. node 240	241. node 241	242. node 242	243. node 243	244. node 244	245. node 245	246. node 246	247. node 247
248. node 248	249. node 249	250. node 250	251. node 251	252. node 252	253. node 253	254. node 254	255. node 255	256. node 256	257. node 257	258. node 258	259. node 259	260. node 260
261. node 261	262. node 262	263. node 263	264. node 264	265. node 265	266. node 266	267. node 267	268. node 268	269. node 269	270. node 270	271. node 271	272. node 272	273. node 273
274. node 274	275. node 275	276. node 276	277. node 277	278. node 278	279. node 279	280. node 280	281. node 281	282. node 282	283. node 283	284. node 284	285. node 285	286. node 286
287. node 287	288. node 288	289. node 289	290. node 290	291. node 291	292. node 292	293. node 293	294. node 294	295. node 295	296. node 296	297. node 297	298. node 298	299. node 299
300. node 300	301. node 301	302. node 302	303. node 303	304. node 304	305. node 305	306. node 306	307. node 307	308. node 308	309. node 309	310. node 310	311. node 311	312. node 312
313. node 313	314. node 314	315. node 315	316. node 316	317. node 317	318. node 318	319. node 319	320. node 320	321. node 321	322. node 322	323. node 323	324. node 324	325. node 325
326. node 326	327. node 327	328. node 328	329. node 329	330. node 330	331. node 331	332. node 332	333. node 333	334. node 334	335. node 335	336. node 336	337. node 337	338. node 338
339. node 339	340. node 340	341. node 341	342. node 342	343. node 343	344. node 344	345. node 345	346. node 346	347. node 347	348. node 348	349. node 349	350. node 350	351. node 351
352. node 352	353. node 353	354. node 354	355. node 355	356. node 356	357. node 357	358. node 358	359. node 359	360. node 360	361. node 361	362. node 362	363. node 363	364. node 364
365. node 365	366. node 366	367. node 367	368. node 368	369. node 369	370. node 370	371. node 371	372. node 372	373. node 373	374. node 374	375. node 375	376. node 376	377. node 377
378. node 378	379. node 379	380. node 380	381. node 381	382. node 382	383. node 383	384. node 384	385. node 385	386. node 386	387. node 387	388. node 388	389. node 389	390. node 390
391. node 391	392. node 392	393. node 393	394. node 394	395. node 395	396. node 396	397. node 397	398. node 398	399. node 399	400. node 400	401. node 401	402. node 402	403. node 403
404. node 404	405. node 405	406. node 406	407. node 407	408. node 408	409. node 409	410. node 410	411. node 411	412. node 412	413. node 413	414. node 414	415. node 415	416. node 416
417. node 417	418. node 418	419. node 419	420. node 420	421. node 421	422. node 422	423. node 423	424. node 424	425. node 425	426. node 426	427. node 427	428. node 428	429. node 429
430. node 430	431. node 431	432. node 432	433. node 433	434. node 434	435. node 435	436. node 436	437. node 437	438. node 438	439. node 439	440. node 440	441. node 441	442. node 442
443. node 443	444. node 444	445. node 445	446. node 446	447. node 447	448. node 448	449. node 449	450. node 450	451. node 451	452. node 452	453. node 453	454. node 454	455. node 455
456. node 456	457. node 457	458. node 458	459. node 459	460. node 460	461. node 461	462. node 462	463. node 463	464. node 464	465. node 465	466. node 466	467. node 467	468. node 468
469. node 469												
Root :												

Authority Ranking for Top 5:

Node 96 : 0.60381532 Node 43 : 0.36415201 Node 92 : 0.32874312

Node 24: 0.26473884

Hubs Ranking for Top 5:

Node 369 : 0.46960050 Node 70 : 0.45809438 Node 43 : 0.42851864 Node 109 : 0.35680787

If I choose graph 9(IMDB), the Node will replace to Name:

Authority Ranking for Top 5:

Kevin Spacey: 0.73032067 Gabriel Byrne: 0.36512444 Patrick Stewart: 0.36512444

Ian McKellen : 0.36512444

Hubs Ranking for Top 5:

Bryan Singer: 0.81647518 Sam Mendes: 0.40826970 Curtis Hanson: 0.40826970 Annette Bening: 0.00000000