Teoria da Informação e Codificação

Jorge Almeida

Gabinete 3.33

jalmeida@fc.up.pt

Apresentação

- Programa preliminar
- Bibliografia
- Avaliação

Programa preliminar

- Informação e entropia
- Canais de informação
- Codificação da fonte
- Compressão de dados
- Codificação do canal
- Códigos corretores de erros

Bibliografia

- [1] Robert B. Ash, Information Theory, Dover, New York, 1990.
- [2] Gareth A. Jones and J. Mary Jones, *Information and Coding Theory*, Springer, London, 2000.
- [3] Steven Roman, *Introduction to coding and information theory*, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997.
- [4] Roberto Togneri and Christopher J. S. deSilva, *Fundamentals of Information Theory and Coding design*, Chapman & Hall/CRC, Boca Raton, 2003.

Avaliação

- Teste e exame, sendo o resultado final a média das duas notas.
- Todos os alunos inscritos têm acesso às provas de avaliação.
- Na época de recurso e nas épocas especiais, a nota é aquela que for obtida no exame.

O que é a teoria da informação?

- A teoria da informação nasceu nos finais da década de 1940 com os trabalhos de Claude E. Shannon, nomeadamente com o artigo *A mathematical theory of communication*, Bell System Technical Journal **27** (1948), 379–423, 623–656.
- Os modelos introduzidos por Shannon visavam a resolução de um problema que na altura parecia intratável: como transmitir informação, eficientemente e de forma correta, através de canais que aleatoriamente a modificam?

Há efetivamente dois problemas na transmissão de informação:

- informação como texto, som, imagem, vídeo, para o seu fácil reconhecimento pelos seres humanos contém em geral grande redundância;
 - por exemplo, em português, com grande probabilidade, a seguir a um ç encontramos um dos ditongos ão ou ões;
 - no vídeo, como sequência de imagens, há em geral uma correlação muito grande entre imagens consecutivas;

- devido a interferências inerentes à natureza dos canais de comunicação, há perda de informação na sua utilização; por exemplo,
 - sinais eléctricos são sujeitos a interferências eletromagnéticas,
 - sinais de rádio via satélite sofrem interferências de radiações cósmicas,
 - e ambos recebem interferências de outros sinais do mesmo tipo.

Ideias óbvias

Há duas ideias óbvias para atacar estes problemas:

- reduzir a redundância na fonte de informação para poupar (em tempo/custos reais) na utilização dos canais de comunicação;
 - → compressão dos dados
- acrescentar criteriosamente redundância na informação efetivamente transmitida de forma a que o recetor possa recuperar a mensagem inicial daquela que lhe chega contendo erros resultantes da passagem pelo canal de comunicação.
 - → expansão da mensagem

Dificuldades

- A grande dificuldade está em saber em que medida estas ideias podem resultar:
 - é de esperar que haja limitações inerentes à própria natureza do canal de comunicação;
 - até onde é que será necessário/possível ir com estas técnicas?

As ideias de Shannon

- As contribuições seminais de Shannon são:
 - quantificação dos parâmetros envolvidos (fonte de informação e perturbações no canal de comunicação) usando métodos probabilísticos;
 - → noção de entropia em informação
 - separação dos dois problemas, nomeadamente a codificação da fonte e a codificação do canal;
 - estabelecimento de limites teóricos para a resolução do problema;
 - prova da existência de aproximações arbitrariamente boas dos limites teóricos.
 - → métodos para a compressão de dados e
 - → códigos corretores de erros

Esquema da comunicação fonte ightarrow recetor

Informação e entropia

1 Informação e entropia

- Distribuição de probabilidade
- Entropia
- Unidades de entropia
- Valores extremos da entropia

Distribuição de probabilidade (discreta)

- Uma distribuição de probabilidade num espaço de amostragem $S = \{s_1, \dots, s_N\}$ é uma função $P: S \to [0,1]$ tal que $\sum_{s \in S} P(s) = 1$.
- Um evento é um subconjunto E do espaço de amostragem S.
- A probabilidade de um evento $E \notin P(E) = \sum_{s \in E} P(s)$.
- Note-se que $P(\emptyset) = 0$ e, para eventos E e F, tem-se

$$P(E \cup F) = P(E) + P(F) - P(E \cap F).$$

Valor esperado e surpresa

■ Dada uma função $f: S \rightarrow V$ com valores num espaço vetorial real V, o valor esperado de f é a média pesada dos valores de f dada por

$$\bar{f} = \sum_{s \in S} P(s)f(s).$$

■ Face a uma certa distribuição da probabilidade, a ocorrência de um certo evento pode ser mais ou menos surpreendente.

Definimos a surpresa do evento E como sendo

$$\operatorname{surp}(E) = -\log(P(E)) = \log(1/P(E)).$$

Entropia

■ A *entropia* da distribuição de probabilidade *P* é o valor esperado da surpresa (restrita a subconjuntos singulares de *S*):

$$H(P) = -\sum_{s \in S} P(s) \log(P(s)).$$

■ Gráfico da função $-p \log(p)$ (para o logaritmo na base 2):

o máximo é atingido para p=1/e, seja qual for a base do logaritmo.

Entropia em termodinâmica

- A noção de entropia já tinha sido introduzida no séc. XIX no âmbito da termodinâmica, onde entropia é uma medida da desordem de um sistema.
- A Segunda Lei da Termodinâmica afirma que um sistema (termodinâmico) não pode, sem intervenção exterior, diminuir a sua entropia. Ou seja, a tendência natural dos sistemas é para aumentar a sua entropia.

Exemplos de cálculo da entropia (1)

■ Seja $S = \{s_1, s_2\}$ com $P(s_1) = P(s_2) = 0.5$. Então $H(P) = -2(1/2)\log(1/2) = \log(2) = 1.$

Aqui há desordem completa, sendo completamente imprevisível o acontecimento a observar.

■ Seja $S = \{s_1, s_2\}$ com $P(s_1) = 0.98$ e $P(s_2) = 0.02$. Então $H(P) \simeq -(0.98)(-0.0291463) - (0.02)(-5.64386) \simeq 0.14.$

Aqui, a surpresa está concentrada na ocorrência de um acontecimento, muito pouco provável, ao que corresponde um valor muito menor da entropia.

Exemplos de cálculo da entropia (2)

■ Seja $S = \{s_1, s_2\}$ com $P(s_1) = 1$ e $P(s_2) = 0$. Então, tomando $0 \log(0) = \lim_{x \to 0^+} x \log(x) = 0$, temos

$$H(P) = -(1)\log(1) - (0)\log(0) = 0.$$

Obtemos entropia nula, não havendo qualquer lugar para surpresa, o acontecimento a observar é garantidamente s_1 .

Exemplos de cálculo da entropia (3)

- Seja $S = \{s_1, \ldots, s_6\}$ com $P(s_i) = 1/6$ $(i = 1, \ldots, 6)$. A entropia é $H(P) = \log(6) \simeq 2.585$, sendo novamente a desordem completa.
- Seja $S = \{s_1, \dots, s_6\}$ com $P(s_i) = 0.498$ (i = 1, 2) e $P(s_j) = 0.001$ $(j = 3, \dots, 6)$. A entropia é

$$H(P) = -2 * 0.498 * \log(0.498) - 4 * 0.001 * \log(0.001)$$

 $\simeq 1.0412$

ou seja um valor próximo do primeiro exemplo, em que havia só dois acontecimentos igualmente prováveis.

Unidade da entropia

- O valor da entropia depende da base do logaritmo considerada.
- Normalmente tomamos logaritmos na base 2 e chamamos *bit* (*b*inary un*it*) à correspondente unidade de entropia. Se a base considerada for a base *e* do logaritmo natural, falamos de *nits* (*n*atural un*it*).
- A mudança de unidade de entropia faz-se de acordo com a fórmula

$$H_r = \frac{H_e}{\ln(r)},$$

onde H_x representa a entropia para logaritmos na base x.

Uma desigualdade útil

Lema 1.1 Sejam p_1, \ldots, p_N e q_1, \ldots, q_N números reais não negativos tais que $\sum_{i=1}^{N} p_i = \sum_{i=1}^{N} q_i = 1$. Então

$$-\sum_{i=1}^{N} p_i \log(p_i) \leqslant -\sum_{i=1}^{N} p_i \log(q_i) \tag{1}$$

e a igualdade verifica-se sse $p_i = q_i$ para todo o i.

Prova. Basta considerar o caso do logaritmo natural pois $\log_r(x) = \ln(x)/\ln(r)$. Note-se que $\ln x \leqslant x - 1$ para todo o x > 0, com igualdade sse x = 1. Podemos ainda ignorar os termos em que $p_i = 0$ ou $q_i = 0$.

Logo tem-se $\ln(q_i/p_i) \leqslant q_i/p_i - 1$ com igualdade sse $p_i = q_i$. Multiplicando por p_i e somando, obtém-se

$$\sum_{i=1}^{N} p_i \ln(q_i/p_i) \leqslant \sum_{i=1}^{N} (q_i - p_i) = 1 - 1 = 0.$$

Se a igualdade entre as somas se verificar, sendo a desigualdade válida termo a termo, então $p_i=q_i$ para todo o i. \square

Valores extremos da entropia

Teorema 1.2 Se o espaço de amostragem tem N elementos, então os valores extremos para a entropia, como função da distribuição de probabilidade $P = (p_1, \ldots, p_N)$ são:

- mínimo: 0, atingido exactamente quando um dos $p_i = 1$;
- máximo: log(N), atingido exactamente quando todos os $p_i = 1/N$.

Prova. Que aqueles valores, 0 e $\log(N)$ correspondem às distribuições de probabilidade indicadas segue por cálculo direto.

Que 0 é o valor mínimo é óbvio pois, por definição, a entropia é ≥ 0 . Também da definição segue que só aquelas distribuições de probabilidade têm entropia 0.

Que $\log(N)$ é o valor máximo segue do Lema 1.1 tomando $q_i = 1/N$. A condição para a igualdade do Lema mostra que o máximo só é atingido para a distribuição uniforme. \square