Optique ondulatoire

Semestre 4

Ondes Lumineuses

Équation d'onde

$$\Delta E(\vec{r}, t) - \frac{1}{v^2} \frac{\partial^2 E(r, t)}{\partial t^2} = 0$$

Théorème de malus : Les rayons sont orthogonaux aux surface d'ondes

Chemin optique:

$$\delta_{AB} = \int_{A}^{B} n(M)dM$$

Déphasage:

$$\phi_{AB} = \frac{2\pi}{\lambda_0} \delta_{AB}$$

Intensité:

$$I(\vec{r}) = \langle S(\vec{r}, t) \rangle = \frac{1}{\tau} \int_{T}^{T+\tau} S(\vec{r}, t) dt = \frac{1}{2} n \epsilon_0 c E_0^2$$

Interférence monochromatiques

Intensité lumineuse

$$I(M) = \frac{1}{\tau} \int_{0}^{\tau} I(M, t) dt$$

$$I(M) = I_1(M) + I_2(M) + 2\sqrt{I_1(M)I_2(M)}\cos(\phi(M))\vec{e_1}\vec{e_2}$$

Déphasage

$$\phi_2(M) = \frac{2\pi}{\lambda_0} \delta_{S_2M} - \phi_2$$

Ordre d'interférence

$$p(M) = \frac{\phi(M)}{2\pi}$$

Contraste

$$V = \frac{I_{Max} - I_{Min}}{I_{Max} + I_{Min}}$$

où
$$I_{Max}=I_1+I_2+2\sqrt{I_1I_2}$$
 et $I_{Min}=I_1+I_2-2\sqrt{I_1I_2}$

Dispositifs de Young

$$I(M) = 2I_0(1 + \cos(\phi(M)))$$
$$\phi(M) = \frac{2\pi}{\lambda_0} n \frac{ay}{d}$$

Franges d'interférences : lieu des points M d'égal déphasage.

Ordre d'intéférence

$$I(M) = 2I_0[1 + cos(2\pi p(M))]$$

Interfrange

$$i = y_{p+1} - y_p = \frac{\lambda_0 d}{na}$$

Ajout d'une lame

$$\delta(M) = \delta^{\text{sans lame}} + n'e - ne$$

(interfrange inchangé et déplacement global du système)

DISPOSITIFS DE MICHELSON

$$I(D) = \frac{I_0}{2} [1 + \cos(\phi(D))]$$
$$\phi(D) = \frac{2\pi}{\lambda_0} 2nx$$

$$I(t) = \frac{I_0}{2} \left[1 + \cos\left(\frac{2\pi}{\lambda_0} 2nvt\right) \right]$$

Si on enlève la première lentille :

- Ordre d'interférence $p(\theta) = p(y) = \frac{2nx\cos(\theta)}{\lambda_0}$
- Différence de chemin d'optique $\delta(x) = 2nx\cos(\theta)$
- Intensité

$$I(\theta) = \frac{I_0}{2} [1 + \cos(\frac{2\pi}{\lambda_0} 2nx\cos(\theta))]$$

Sources Polychromatiques

- Young $I(y) = I^{\lambda_1}(y) + I^{\lambda_2} = (y)$ et $i_1 = \frac{\lambda_1 f_1'}{na}$, $i_2 = \frac{\lambda_2 f_2'}{na}$
- Michelson soit λ_1 et $\lambda_2 = \lambda_1 + \Delta \lambda$

$$I(M) = I_0 + \frac{I_0}{2} [\cos(2\pi p_1) + \cos(2\pi p_2)]$$