Matrix Analysis: Main ideas

Peter Kagey

February 5, 2020

1 Definitions

1.1 M^{λ}

Define M^{λ} to be the complex vector space with basis the tabloids $\{T\}$ of shape λ .

Example. When $\lambda = (3, 2)$, the basis of M^{λ} is

$$\left\{ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 \end{bmatrix}, \dots, \begin{bmatrix} 3 & 4 & 5 \\ 1 & 2 \end{bmatrix} \right\}$$

1.2 v_T

For each numbering T of shape λ , there is an element $v_T \in M^{\lambda}$ given by

$$v_T = \sum_{q \in C(T)} \operatorname{sgn}(q) \{ q \cdot T \}$$

where C(T) is the column group of T: the set of permutations which preserve the columns of T.

1.3 Specht module

The Specht modules, denoted S^{λ} is the subspace of M^{λ} given by span $\{v_T : T \text{ is shape } \lambda\}$.