

UD1. Introducció a les comunicacions

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Telemàtica

→ TELEMÀTICA = TELEcomunicacions + inforMÀTICA

- La telemàtica és la tècnica que tracta la comunicació remota entre processos.
- La Telemàtica és una disciplina científica i tecnològica que sorgeix de l'evolució de la telecomunicació i de la informàtica:
 - · Informàtica: Processament de la informació.
 - · Telecomunicacions: Transmissió de la informació.
- També anomenada teleinformàtica.
 - · Els avenços tecnològics en la informàtica han derivat en què ja no sigui només necessari processar la informació sinó que també s'ha creat la necessitat de comunicar, compartir i difondre aquesta informació.

© Some rights reserved

Telemàtica

Objectius/avantatges

- Compartir recursos sense importància de la seva localització física. Ex. Pàgina d'Internet, impressores...
- Compartir la càrrega de treball. Diferents màquines poden treballar en paral·lel per resoldre una mateixa tasca.
- Compartir informació de forma instantània. Les comunicacions elèctriques tenen lloc a velocitats properes a la de la llum.
- Estalvi econòmic. És més rendible la interconnexió de màquines que no pas tenir màquines molt grans.
- Medi de comunicació entre persones (videoconferència, veu IP, etc.)
- Arquitectura client-servidor. Poder aprofitar la potència d'equips remots al nostre.

La informació

Concepte d'informació

- Informació és sinònim de notícia, de coneixement, de dades...
- "La Informació és poder"

Societat de la informació

La nostra societat ha experimentat un canvi per la incorporació dels ordinadors i l'expansió de les xarxes de comunicacions a tots els àmbits de la vida. Les TIC (Tecnologies de la Informació i de les Comunicacions) constitueixen avui el mateix factor de transformació que en el seu moment van tenir la impremta o la màquina de vapor durant la Revolució Industrial.

Indústria de la comunicació de dades

Les TIC són un sector econòmic molt important en l'actualitat.

La informació i els senyals

- Transmissió: Procés pel qual es transporten senyals d'un lloc a un altre.
 - Senyal: És la variació d'un corrent elèctric o una altra magnitud física que s'utilitza per transmetre informació.
 - · **Línia de transmissió**: Són aquells medis físics (canals) que transporten les senyals.
- Comunicació: Procés pel qual es transporta informació.
 - · **Informació**: La informació només apareix quan es produeix una comunicació.
 - · **Circuit de dades**: És aquell conjunt d'elements de comunicació encarregat de transportar informació.

La comunicació implica transmissió de senyals, però la transmissió de senyals no implica necessàriament comunicació.

El senyal és a la transmissió el que la informació és a la comunicació

La informació i els senyals

Què és informació i què no ho és?

 El concepte d'informació és subjectiu i relatiu als coneixements del receptor:

- · El soroll dels radiotelescopis no era cap informació fins a meitat del s.XX.
- Ara sabem que són les restes del BIG BANG!
 És una informació molt important per als astrofísics.

- Però, creieu que algun cop aquest soroll serà informació per a un mico?

- I les notícies en Xinès ens aporten informa<mark>ció als qui no coneixem</mark> l'idioma?
- http://www.youtube.com/watch?v=jWSnZYVzlOY

SOME RIGHTS RESERVED

Senyals

Tipus de senyals

- Moviment
- So
- Imatges o vídeos
- Símbols

Senyals de trànsit

Ball de l'abella

Mesurades per magnituds físiques

- tensió, intensitat de corrent
- Freqüència, amplitud

Senyals:

- electromagnètiques
- mecàniques
- Iluminoses
- acústiques

Senyals (Freqüència i amplitud)

Senyal sinusoïdal

- Amplitud (volum)
 - · Valor màxim que adquireix l'ona
- Freqüència (to, agut/greu)
 - Indica el nombre de repeticions o cicles de l'ona per unitat de temps (Hz=1/s)
- Fase (desfase)
 - · Indica la situació instantània en el cicle
- Longitud d'ona
 - · Distància entre dos punts iguals del cicle

Distancia

Freqüència

- Propietats de les senyals relacionades amb la frequència
 - L'oïda humana només percep frequències entre 20Hz i 20Khz. Molts animals i la gent jove poden percebre encara més tons.
 - L'electricitat és una ona a 50Hz a Europa però de 60Hz a Amèrica.
 - Totes les senyals tenen freqüència, no només el so --> Espectre Electromagnètic.

FREQÜÈNCIES BAIXES	FREQÜÈNCIES ALTES
Menys atenuació (pèrdua de senyal) amb la distància	S'atenua (es perd) la senyal més fàcilment amb la distància
Són més sensibles als obstacles	Les altes frequències tenen millor capacitat per propagar-se a través de materials sòlids

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Freqüència

Qüestions relaciones amb la frequència

- De quins tipus hi ha més antenes: ràdio/TV o antenes de mòbils? Per què?
- Per què les antenes de TV estan fora dels edificis i les de mòbils no?
- Quines ones són més grans (longitud d'ona), les d'alta freqüència o les de baixa freqüència?
- Tots tenim la mateixa capacitat per escoltar tons?
 - Tono agut 1
 - To agut2

Espectre electromagnètic

- És el conjunt de possibles radiacions electromagnètiques
- Ordenat de menor longitud d'ona (més freqüència) a major longitud d'ona (menys freqüència)
- Només podem visualitzar un rang molt petit!
- Diferents colors --> Diferents freqüències (l'arc de Sant Martí)

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Espectre electromagnètic

	Longitud de onda (m)	Frecuencia (Hz)	Energía (J)
Rayos gamma	< 10 pm	>30.0 EHz	>19.9E-15 J
Rayos X	< 10 nm	>30.0 PHz	>19.9E-18 J
Ultravioleta Extremo	< 200 nm	>1.5 PHz	>993E-21 J
Ultravioleta Cercano	< 380 nm	>789 THz	>523E-21 J
Luz Visible	< 780 nm	>384 THz	>255E-21 J
Infrarrojo Cercano	< 2.5 μm	>120 THz	>79.5E-21 J
Infrarrojo Medio	< 50 μm	>6.00 THz	>3.98E-21 J
Infrarrojo Lejano/submilimétrico	< 1 mm	>300 GHz	>199E-24 J
Microondas	< 30 cm	>1.0 GHz	>1.99e-24 J
Ultra Alta Frecuencia Radio	<1 m	>300 MHz	>1.99e-25 J
Muy Alta Frecuencia Radio	<10 m	>30 MHz	>2.05e-26 J
Onda Corta Radio	<180 m	>1.7 MHz	>1.13e-27 J
Onda Media (AM) Radio	<650 m	>650 kHz	>4.31e-28 J
Onda Larga Radio	<10 km	>30 kHz	>1.98e-29 J
Muy Baja Frecuencia Radio	>10 km	<30 kHz	<1.99e-29 J

- Algunes ones tenen la capacitat per traspassar medis sòlids
- Espectre electromagnètic

Ample de banda

Ample de banda

- És el conjunt de freqüències que ocupa un senyal.
- Sovint quan més ampla de banda tenim més capacitat de transmissió (més senyals caben).
- És com una "canonada".

Domini Públic Radioelèctric

L'aire és un bé públic

 Hi ha una regulació per a l'ús de l'aire com a canal de transmissió. L'ens regulador és la CNMT (Comisión Nacional del Mercado de las Telecomunicaciones).

Domini Públic Radioelèctric

 És el conjunt de radiacions electromagnètiques fixades entre els 9KHz i els 3000GHz, destinats a un ús públic (TV i ràdio digital i analògica).

CNAF (Cuadro nacional de asignación de frecuencias)

 Reserva diferents freqüències per a diferents sistemes de comunicacions (navegació marítima, emergències, radioaficionats, ràdio, televisió, mòbils, aeromodelisme...)

Sistemes de comunicacions

- Emissor: dispositiu que genera el missatge; També anomenat Transmissor o Font.
- Receptor: és el destinatari del missatge.
- Canal: és la via de transmissió del missatge.
 - Exemples de canals: aire, cables de coure, fibra òptica, canal IDE, canal SATA, buffer de memòria, canal de radiofreqüència, etc...

Canal

Adequació del canal al senyal

- No tots els canals són igual d'adequats per a tots els senyals.
- Quins canals són adequats per:

Ones electromagnètiques

Exemples

Brainstorming

- · Senyals de fum
- · Tambors

Missatgeria per coloms

- Codi Morse. Telègraf
- · Comunicació amb gots i fils
- · Teleimpressores 1869
- · Línies telefòniques: 1877

•

Soroll i interferències

Soroll

- Soroll intrínsec: El seu origen està en el propi sistema de comunicació (introduït pel canal)
- Soroll extrínsec: El seu origen està de fora del sistema de comunicació

Exemple

- Notícies Catalunya Ràdio
- Fitxers d'àudio de soroll
- Interferència del mòbil amb els altaveus
- Interferències: Soroll extrínsec

Circuits de dades

- ◆ ETD (Equip Terminal de Dades): És el component del circuit de dades que fa de font o de destinació de la informació. Terminal.
- ◆ ECD (Equip de Comunicació de Dades): És el component d'un circuit de dades que adequa els senyals que viatgen pel canal de comunicacions convertint-les a un format assequible per a l'ETD.
- Circuit de dades: És el conjunt d'ECDs i línies de transmissió encarregat de la comunicació entre l'ETD transmissor i l'ETD receptor, de manera que tant els senyals com les informacions que viatgen en ells siguin entregats amb seguretat.

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Circuit de dades

Exemples ETDS

- Persona parlant
- Ordinador enviant dades
- CD, DVD, radiocasset
- Llanterna
- Moviment

Pot ser un terminal, un ordinador potent o una impressora de moderada intel·ligència. El que distingeix a un ETD no és la intel·ligència ni la potència de càlcul, sinó la funció que realitza: ser origen o destinació en una comunicació.

Exemples ECDs

- Micròfon, altaveus
- Dispositius de comunicacions: commutadors, routers, mòdems, etc.
- Antena
- Sensor de moviment

Línies de comunicacions

- Són les vies a través de les quals els circuits de dades poden intercanviar informació.
- Les línies de comunicació es poden classificar de diferents maneres:
 - Segons la topologia de la connexió (punt/multipunt)
 - Segons el seu propietari (públiques, privades i dedicades)

Línies de comunicacions

Punt a Punt

 2 equips connectats mitjançant una línia física que no comparteixen amb cap altre equip. Exemple:

· ADSL-Central Telefònica

Multipunt

Topologia en forma de xarxa troncal constituïda per un bus de comunicacions comú a tots els equips que es connecten a la xarxa. Exemple:

· Xarxa LAN

Línies de comunicacions

Línies privades

- Són les línies que tenen un propietari definit.
- Exemple: línies utilitzades en les xarxes d'àrea local.

Línies públiques

- Línies de titularitat pública. Propietat de les companyies telefòniques i, per tant, tenen un àmbit nacional.
- L'usuari contracta la línia en règim de lloguer.
- Exemple: xarxes WAN. Lloguer ADSL.

Línies dedicades

 Línia pública o privada reservada de forma exclusiva per a qui la lloga.

Tipus de comunicacions

Símplex:

- Una comunicació és símplex si estan perfectament definides les funcions de l'emissor i del receptor, i la transmissió de dades sempre s'efectua en una direcció.
 - · **Exemple:** el senyal de televi<mark>sió</mark>.
 - · Hi ha un únic canal físic i un <mark>ún</mark>ic c<mark>ana</mark>l lògic unidireccional.

Semi-dúplex:

- La comunicació pot ser bidireccional, però aquesta bidireccionalitat no pot ser simultània. Quan l'emissor transmet, el receptor ha de rebre. Posteriorment, el receptor pot exercir d'emissor sempre i quan l'emissor es converteixi en receptor.
 - **Exemple:** ràdio-aficionat . S'utilitza paraula especial ("canvi"), per canviar entre emissor i receptor.
 - · Hi ha un sol canal físic i un canal lògic bidireccional.

Tipus de comunicacions

Dúplex:

- La comunicació és bidireccional i a més a més simultània.
 L'emissor i el receptor no estan perfectament definits.
 - Exemple: una comunicació telefònica, on ambdós interlocutors poden parlar alhora.
 - · Hi ha un canal físic i dos canals lògics.

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

ALFABET i CODI

- Terminologia dels codis
 - Alfabet origen: conjunt de símbols de la font d'informació que s'ha de codificar.
 - Alfabet imatge (paraules codi): conjunt de símbols utilitzats per representar l'alfabet origen.
 - Codi: relació normalitzada entre l'alfabet origen i l'alfabet imatge

Codi ASCII

- ASCII (American Standard Code for Information Interchange)
 - Transforma
 caràcters anglesos
 a codi binari.
- 8 bits: 256 caracters

Eina: Comanda ascii

	Byte	Cod.		Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char
ſ	00000000	0	Null	00100000	32	Spc	01000000	64	@	01100000	96	` `
	00000001	1	Start of heading	00100001	33	!	01000001	65	Ă	01100001	97	a
	00000010	2	Start of text	00100010	34	"	01000010	66	В	01100010	98	ь
	00000011	3	End of text	00100011	35	#	01000011	67	C	01100011	99	С
	00000100	4	End of transmit	00100100	36	\$	01000100	68	D	01100100	100	d
	00000101	5	Enquiry	00100101	37	%	01000101	69	E	01100101	101	е
	00000110	6	Acknowledge	00100110	38	&	01000110	70	F	01100110	102	f
	00000111	7	Audible bell	00100111	39	,	01000111	71	G	01100111	103	g
	00001000	8	Backspace	00101000	40	(01001000	72	Н	01101000	104	h
	00001001	9	Horizontal tab	00101001	41)	01001001	73	Ι	01101001	105	i
	00001010	10	Line feed	00101010	42	*	01001010	74	J	01101010	106	i
	00001011	11	Vertical tab	00101011	43	+	01001011	75	K	01101011	107	k
	00001100	12	Form Feed	00101100	44	,	01001100	76	L	01101100	108	l
	00001101	13	Carriage return	00101101	45	-	01001101	77	\mathbf{M}	01101101	109	m
	00001110	14	Shift out	00101110	46		01001110	78	N	01101110	110	n
	00001111	15	Shift in	00101111	47	1	01001111	79	0	01101111	111	0
	00010000	16	Data link escape	00110000	48	0	01010000	80	P	01110000	112	р
	00010001	17	Device control 1	00110001	49	1	01010001	81	Q	01110001	113	q
	00010010	18	Device control 2	00110010	50	2	01010010	82	Ř	01110010	114	r
	00010011	19	Device control 3	00110011	51	3	01010011	83	S	01110011	115	s
	00010100	20	Device control 4	00110100	52	4	01010100	84	T	01110100	116	t
	00010101	21	Neg. acknowledge	00110101	53	5	01010101	85	U	01110101	117	u
	00010110	22	Synchronous idle	00110110	54	6	01010110	86	V	01110110	118	v
	00010111	23	End trans, block	00110111	55	7	01010111	87	W	01110111	119	w
	00011000	24	Cancel	00111000	56	8	01011000	88	X	01111000	120	x
	00011001	25	End of medium	00111001	57	9	01011001	89	Y	01111001	121	y
	00011010	26	Substitution	00111010	58	:	01011010	90	Z	01111010	122	Z
	00011011	27	Escape	00111011	59	;	01011011	91	ı	01111011	123	{
	00011100	28	File separator	00111100	60	Ŕ	01011100	92	Ň	01111100	124	Ì
	00011101	29	Group separator	00111101	61	=	01011101	93	1	01111101	125	j
	00011110	30	Record Separator	00111110	62	>	01011110	94	Ā	01111110	126	2
1	00011111	31	Unit separator	00111111	63	?	01011111	95		01111111	127	Del

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

ASCII art ;-)

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

UNICODE

Al món hi ha més gent a part dels anglesos

- UNICODE és un codi per representar (gairebé) tots els caràcters possibles en els diferents alfabets del món
- UNICODE és un estàndard industrial
- Més de 90.000 caràcters codificats
- Alfabet ciríl·lic (rus)

Codi del Cèsar

- És un codi per desplaçament
 - Exemple: Desplaçament de 3 lletres
 - · "Estan bojos estos romans"
 - "Hvwcq drmrv hvwrv urpeqv"
- Descodificació
 - Probabilística: En totes les llengües hi ha caràcters que tenen més probabilitats que altres. Els plurals acaben en S. Hi ha parelles i paraules curtes més habituals...
 - Codi del Cèsar

Codis

- Atac de força bruta
 - Quants codis possibles hi ha en un codi del Cèsar?
 - · Tantes com lletres té l'abecedari
- Al procés de "trencar" codis se l'anomena Criptoanàlisi
 - Teniu com a exercici a
 Moodle descodificar alguns
 missatges "secrets".

Desplazamiento	Posible mensaje original
0	Ep exeuyi
1	Do dwdtxh
2	Cn cvcswg
3	Bm bubrvf
4	Al ataque
5	Zk zszptd
6	Yj yryosc
	TO P
23	Hs hahxbl
24	Gr gzgwak
25	Fq fyfvzj

Tipus de transmissions

Analògiques

- Si el senyal és analògic, és capaç de prendre tots els valors possibles en un rang (línia continua).
 - Exemple: ràdio, rellotge analògic

Digitals

- El senyal tan sols és capaç de prendre un conjunt finit de valors.
 - Exemple: Codi Morse, Rellotge digital
- Les telecomunicacions originalment eren digitals, després analògiques i ara tornen a ser essencialment digitals.

SOME RIGHTS

Tipus de transmissions

Síncrones

El sincronisme és un procediment mitjançant el qual un emissor i un receptor es posen d'acord sobre l'instant precís en què comença o acaba una informació que s'ha posat en el mitjà de transmissió emprat.

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Tipus de transmissions

Asíncrones

La transmissió se'n diu asíncrona quan el procés de sincronització entre emissor i receptor es realitza en cada paraula de codi transmesa. Això es fa mitjançant uns bits especials que ajuden a definir l'entorn de cada codi.

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Tipus de transmissions

Sèrie i paral·lel

- Sèrie: És quan tots els senyals es transmeten per una sola línia de dades seqüencialment. Els bits es transmeten en cadena per la línia de dades a una velocitat constant negociada pel transmissor i pel receptor.
 - · Exemple: Port sèrie (ratolí, mòdems), USB, SATA
- Paral·lel: És quan es transmeten simultàniament un grup de bits, un per cada línia del mateix canal. Els agrupaments de bits poden ser caràcters o altres associacions, en funció del tipus de canal.
 - Exemple: connexió Paral·lel impressora, PATA (IDE)

Tipus de transmissions

SERIE	PARAL·LEL
Distàncies llargues	Distàncies curtes
Més lent	N vegades més ràpid (on n és el número de línies paral·leles)
Més senzill d'implementar	Major complexitat

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Tipus de transmissions

- Unicast: Enviament d'informació des d'un únic emissor fins a un únic receptor.
 - · **Exemple**: Telefonia, visitar una pàgina web.
- Broadcast: Un node emissor envia informació a una multitud de nodes receptors de forma indiscriminada.
 - · **Exemple**: La TV, la ràdio.
- Multicast: Un node emissor envia informació a una multitud de nodes receptors escollit prèviament i que formen un grup.
- Anycast: Similar a l'anterior però no es requereix que la informació arribi a tots els nodes del grup sinó que se selecciona un en concret que rebrà la informació.

broadcast

multicast

unicast

Modulació de senyals

Modulació

- És una tècnica per transportar informació a través d'una ona (típicament una ona sinusoïdal).
- Com en el cas de la codificació, és una tècnica per acomodar el senyal al canal, poder transmetre més informació de forma simultània i protegir el senyal d'interferències i sorolls.

Transmissió en Banda Base

 Quan una transmissió s'efectua sense passar per un procés de modulació.

Transmissió en Banda Ampla

Quan s'utilitza modulació en una transmissió.

Modulació de senyals

Objectius de la modulació

- Facilitar la radiació de les antenes
 - · Cada antena té unes característiques pròpies que la fan més adequada a certes senyals (p. ex. diferents freqüències).
- Reducció del soroll i de les interferències
 - Determinats marges/bandes de frequència tenen més soroll i/o més interferències que altres. Els podem evitar modulant.
- Assignació de frequències
 - La frequència de les transmissions està regulada per lleis i per entitats (CNMT). Legalment no podem enviar un senyal per qualsevol frequència. Això és fa per evitar interferències.
- Permet multiplexar en freqüència (més endavant)

Tècniques de modulació. AM i FM

Informació = variació

 Al modular el que fem és variar alguns dels paràmetres de l'ona sinusoïdal (amplitud, freqüència o fase).

Senyals portadora

El senyal sinusoïdal no ens interessa (és el

Senyal modulada

 El receptor es fixarà en les variacions per determinar el missatge que porta el senyal sinusoïdal.

Amplitud Modulada (AM)

- Es modifica l'amplitud de la portadora segons la informació que es vol transmetre.
- La portadora té sempre la mateixa freqüència.
 - · Fàcil d'implementar (receptors senzills i barats). Ràdio de Galena
 - · No és tan eficient en ample de banda com altres tècniques.
 - · Utilitzada per la ràdio, antiga TV VHF, comunicacions entre avions i torres de control, etc.

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Freqüència Modulada (FM)

- Es modifica la freqüència de la portadora.
 - · La portadora té sempre la mateixa amplitud
 - Més difícil d'implementar (receptors senzills i barats)
 - · S'utilitza més ampla de banda (majors variacions de freqüència)
 - · Més eficient contra el soroll i les interferències. Millor qualitat
 - Utilitzada per la ràdio, Televisió, micròfons sense fils, etc.

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Fase (Phase) Modulada (PM)

- Es modifica la fase de la portadora
 - · La portadora té sempre la mateixa amplitud i frequència.

Vídeo explicatiu sobre la ràdio

Mòdem

Mòdem (MODulador-DEModulador)

 És el dispositiu que s'encarrega de convertir les senyals elèctriques digitals en senyals elèctriques analògiques i viceversa.

Xarxa de casa LAN

Central Telefònica

INTERNET

- Els cables de coure estan pensats per a enviar sons (telèfon) però els ordinadors envien bits. Els mòdems el que fan és convertir els bits en tons.
- Cada to és una freqüència diferent i per tant convertim bits (banda base) en altes freqüències adequades al canal (banda ampla).
- Recordeu els sorolls que feien els antics mòdems!

© Some rights reserved

Multiplexació de senyals

La multiplexació és la tècnica que permet compartir en un mateix canal senyals provinents de diferents emissors que tenen com a destinació diferents receptors.

Canal físic

 Medi físic (cable, fibra òptica, aire, etc.) pel qual es transmet una o més senyals.

Canal lògic

 És el concepte utilitzat per parlar d'un canal que no existeix físicament.

S'utilitzen dos mètodes

- Multiplexació en freqüència
- Multiplexació en temps

La multiplexació és compartir un mateix canal físic entre diferents senyals lògics.

Multiplexació en temps (TDM)

- Els canals lògics s'assignen repartint el temps d'ús del canal físic entre els diferents emissors.
- El temps en que pot transmetre un emissor concret s'anomena slot o ranura temporal.
- La velocitat de transmissió es reparteix però cada emissor utilitza en el seu temps tot l'ample de banda disponible.
- Exemples: Bus de comunicacions, temps de CPU.

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Multiplexació en freqüència (FDM)

- A cada canal lògic se li assigna una banda de freqüència centrada en un senyal portador sobre el qual es modula el missatge de cada canal lògic.
- Entre dos bandes consecutives s'estableix un marge de seguretat per evitar interferències.
- Totes les senyals s'emeten al mateix temps però l'ample de banda es comparteix.
- Exemples: Emissores de ràdio.

La Micolau Co

Transductors

 Són dispositius encarregats de transformar la naturalesa de les senyals

- Sistema de membranes que vibren segons el senyal elèctric que reben emetent sons.
- Video explicatiu sobre el so

Antenes

Són uns transductors específics

 Transformen senyals elèctriques en ones electromagnètiques.

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

Altres elements dels Sistemes de Comunicació

Amplificadors:

 S'encarreguen de restaurar un senyal analògic retornant-la a la seva amplitud original o amplificant-la.

Repetidors:

S'encarreguen de reconstruir senyals digitals atenuades.

Distribuïdors i concentradors:

 S'encarreguen d'agrupar o repartir diferents senyals entre diversos emissors i receptors.

Commutadors:

 S'encarreguen d'establir un canal de comunicacions entre dos dispositius.

Tipus de xarxes

Segons la seva mida

- LAN. Local Area Network
 - · Les estudiarem en detall a la següent unitat didàctica
 - **Exemple:** Un aula, una oficina, un edifici, etc...
- WAN. Wide area network
 - · Xarxa que comunica equips en un àrea geogràfica molt àmplia
 - **Exemple:** Internet
- MAN. Metropolitan Area Network
 - · Xarxa de distribució delimitada per una ciutat
- PAN. Personal Area Network
 - · Xarxes entorn a una persona. Bluetooth, WI-FI
 - · Exemple: Cotxe

Estàndards i associacions

Estàndard

 És un tipus, model i/o norma determinat que concreta el funcionament i les característiques d'alguna cosa.

Dos tipus:

- de facto (de fet): acceptat en el mercat per la seva utilització generalitzada.
- de iure (de dret): estàndard proposat per una associació d'estàndards o entitat legal similar.

Els estàndards són tant importants com les llengües. Sense una sèrie de normes comunes no hi ha comunicació ni compatibilitats.

Estàndards i associacions

Estàndard obert

- Són aquelles especificacions disponibles públicament que permeten assolir una tasca específica. En permetre's a qualsevol obtenir i implementar l'estàndard, es pot augmentar la compatibilitat entre diferents components de maquinari i programari.
 - · **GSM** Sistema Global per a Comunicacions Mòbils
 - Maquinari: ISA o PCI o AGP
 - Programari: HTML/XHTML, SQL, TCP/IP, PDF/X,
 OpenDocument

Estàndard tancat

 Aquells estàndards que són propietat d'alguna companyia i les seves especificacions no són lliures.

Estàndards i associacions

Associacions d'estàndards:

- CCITT. Comitè Consultiu Internacional Telegràfic
- ITU. Unió Internacional de Telecomunicacions
- ISO. Organització Internacional de Normalització
- ANSI. Institut Nacional Americà de Normalització
- IEEE. Institut d'Enginyers Elèctrics i Electrònics
- W3C. World Wide Web Consortium

© Some rights reserved

Història de la telemàtica

- És la convergència de dues històries
 - Història de la informàtica
 - +
 - Història de la telemàtica
- Museus virtuals
 - Museu de la història de la informàtica. Universitat de Manresa
 - Museu de les telecomunicacions. Fundació Telefònica
- Deures
 - Confeccioneu amb la eina Drawing una línia de temps amb les dates més importants de la història de la telemàtica.

SOME RIGHTS RESERVED

Reconeixement 3.0 Unported

Sou lliure de:

copiar, distribuir i comunicar públicament l'obra

fer-ne obres derivades

Amb les condicions següents:

Reconeixement. Heu de reconèixer els crèdits de l'obra de la manera especificada per l'autor o el llicenciador (però no d'una manera que suggereixi que us donen suport o rebeu suport per l'ús que feu l'obra).

- Quan reutilitzeu o distribuïu l'obra, heu de deixar ben clar els termes de la llicència de l'obra.
- Alguna d'aquestes condicions pot no aplicar-se si obteniu el permís del titular dels drets d'autor.
- No hi ha res en aquesta llicència que menyscabi o restringeixi els drets morals de l'autor.

Advertiment 🗖

Els drets derivats d'usos legítims o altres limitacions reconegudes per llei no queden afectats per l'anterior Això és un resum fàcilment llegible del text legal (la llicència completa).

http://creativecommons.org/licenses/by/3.0/deed.ca

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

IES Nicolau Copèrnic

