UERJ – Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística. Departamento de Matemática Aplicada Disciplina: Otimização Combinatória. Professor: Marcos Roboredo

2015 - 2 (P1)

N	\sim	m	e:
I۷	u		С.

Matrícula:

Dentre as questões 3 4, 5 e 6 escolha uma para não ser feita. Caso o aluno faça as quatro, a questão 6 não será corrigida.

Questão escolhida para não ser feita:

1) [2,0] Uma empresa responsável pelo abastecimento semanal de um certo produto ao Rio de Janeiro e a São Paulo, pretende estabelecer um plano de distribuição do produto a partir dos centros produtores situados em Belo Horizonte, Ribeirão Preto e Campos. As quantidades semanalmente disponíveis em B.Horizonte, R.Preto e Campos são 70, 130 e 120 toneladas respectivamente. O consumo semanal previsto deste produto é de 180 toneladas no Rio e 140 toneladas em S.Paulo. Os custos de transporte, em \$/ton, de cada centro produtor para cada centro consumidor está dado abaixo:

	Rio de Janeiro	São Paulo
Belo Horizonte	13	25
R.Preto	25	16
Campos	15	40

Considere que o objetivo da empresa é minimizar seu custo total de transporte, formule um modelo de PL para o problema.

2) [3,5] Considere o seguinte PPL:

$$min z = 2x_1 + 4x_2$$
s. a. $4x_1 + 2x_2 \ge 20$
 $x_1 + 5x_2 \le 80$
 $x_1 + x_2 = 10$
 $x_1, x_2 \ge 0$

- a) [0,5] Faça o gráfico do conjunto de soluções viáveis.
- b) [0,5] Encontre cada uma das soluções básicas do problema e identifique a solução ótima.
- c) [2,0] Encontre a solução ótima do PPL prévio através do método duas fases.
- 3) [1,5] Considere o modelo:

$$max z = 5x_1 + 4x_2$$

 $s. a. 3x_1 + 2x_2 \le 9$
 $x_1 + 2x_2 \le 5$
 $x_1, x_2 \ge 0$

cujo o quadro ótimo é:

Base	x1	x2	s 1	s2	Sol
Z	0	0	1,5	0,5	16
x1	1	0	0,5	-0,5	2
x2	0	1	-0,25	0,8	1,5

- a) [0,5] Qual o preço dual de cada uma das duas restrições?
- b) [0,5] Valeria a pena aumentar o lado direito da segunda restrição a um preço de uma unidade monetária por uma unidade de aumento? Justifique.
- c) [0,5] Se alterarmos o lado direito da primeira restrição para 7 e o da segunda para 6 manteremos a solução atual viável? Justifique.
- 4) [1,5] Considere o modelo:

$$max z = 3x_1 + 2x_2 + 5x_3$$

s. a. $2x_1 + 3x_2 + 4x_3 \le 10$
 $5x_1 + 6x_2 + 2x_3 \le 12$
 $x_1, x_2, x_3 \ge 0$

cujo o quadro ótimo é:

Base	x1	x2	х3	s1	s2	Sol
Z	0	37/16	0	19/16	1/8	137/8
x3	0	3/16	1	5/16	-1/8	13/8
x1	1	9/8	0	-1/8	1/4	7/4

- a) [0,5] Na solução ótima apresentada, quais são as variáveis básicas e não básicas?
- b) [0,5] Suponha que o os coeficientes da f.o. das variáveis x_1, x_2 e x_3 sejam agora 4, 3 e 7. A solução ótima se manterá?
- c) [0,5] Suponha que o os coeficientes da f.o. das variáveis x_1 , e x_3 sejam mantidos originais. Qual deve ser o coeficiente mínimo da variável x_2 para que esta variável entre na base?
- 5) [1,5] Explique como identificar durante a execução o algoritmo simplex cada um dos casos especiais abaixo:
- a) [0,5] Solução degenerada
- b) [0,5] Múltiplas soluções ótimas
- c) [0,5] Solução Ilimitada
- 6) [1,5] Determine o modelo dual do seguinte primal:

$$max z = 3x_1 + 5x_2$$

 $s. a. 5x_1 - 2x_2 \le 3$
 $-3x_1 + 2x_2 \le 4$
 $x_1 \ge 0$
 $x_2 irrestrita$