

Experimento 1. Simulação de circuitos digitais

OBJETIVOS:

- Familiarização com as operações lógicas elementares
- · Simular circuitos digitais

PRÉ-RELATÓRIO:

- Desenhe à mão os esquemáticos dos circuitos do item 1. Utilizando o teorema de De Morgan, justifique sua resposta.
- Desenhe à mão os esquemáticos dos circuitos do item 2. Analisando as equações lógicas, preencha a tabela verdade abaixo. Explique seu raciocínio
- Desenhe à mão os esquemáticos dos circuitos do item 3. Explique sua abordagem.
- Desenhe à mão o esquemático do circuito do item 4.

Tabela verdade do item 2

entradas			saídas	
Α	В	С	Т	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

VISTOS:

- 1. Implementar e simular no Logisim:
 - a. Uma porta E usando somente portas OU e INVERSORAS;
 - b. Uma porta OU usando somente portas E e INVERSORAS.
- 2. Implementar e simular no Logisim as seguintes funções lógicas de três variáveis:
 - a. T = AB + AC + BC, utilizando somente portas E e OU;
 - b. $S = \bar{A}\bar{B}C + \bar{A}B\bar{C} + A\bar{B}\bar{C} + ABC$, utilizando portas E, OU e INVERSORA.
- Implementar e simular no Logisim as funções lógicas do item 2, desta vez utilizando somente portas NÃO-E (NAND).
- 4. Implementar e simular no Logisim a função lógica
 - $Y = D_0 \overline{S_1} \overline{S_0} + D_1 \overline{S_1} S_0 + D_2 S_1 \overline{S_0} + D_3 S_1 S_0$, utilizando somente portas NÃO-E (NAND).

Obs.: As funções lógicas do item 2 implementam um circuito muito comum, chamado "somador completo". A saída S é o resultado da soma binária dos bits de entrada A, B e C, enquanto que a saída T representa o chamado "vai-um". Já a função lógica do item 4 implementa um circuito chamado "multiplexador", com 4 entradas de dados (D_0 , D_1 , D_2 e D_3). As entradas de seleção (S_0 e S_1) determinam qual dessas entradas de dados será observada na saída Y. Você irá estudar o funcionamento dos circuitos somador e multiplexador em detalhe mais adiante no curso de Sistemas Digitais.