Bi variate Analysis

```
In [1]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as pt
          import seaborn as sns
          visadf=pd.read_csv('C:/Users/Anuja_PC/OneDrive/Documents/dataFiles/Visadataset.c
In [13]:
Out[13]:
                     case_id continent education_of_employee has_job_experience requires_job_1
                     EZYV01
               0
                                   Asia
                                                    High School
                                                                                 Ν
                     EZYV02
                                   Asia
                                                       Master's
               2
                     EZYV03
                                   Asia
                                                      Bachelor's
                                                                                 Ν
               3
                     EZYV04
                                                      Bachelor's
                                   Asia
                                                                                 Ν
               4
                     EZYV05
                                  Africa
                                                                                 Υ
                                                       Master's
          25475 EZYV25476
                                                      Bachelor's
                                                                                 Υ
                                   Asia
          25476 EZYV25477
                                   Asia
                                                    High School
                                                                                 Υ
          25477 EZYV25478
                                   Asia
                                                       Master's
          25478 EZYV25479
                                   Asia
                                                       Master's
          25479 EZYV25480
                                                      Bachelor's
                                                                                 Υ
                                   Asia
         25480 rows × 12 columns

    Analyse the two variables,

            • that may be 2 categorical columns,
            • may be 2 numerical columns or
            • 1 categorical and 1 numerical
          Categorical v/s Categorical
          visadf.select dtypes(include='object').columns
```

Continent and case status

```
In [ ]: visadf['case_status'].value_counts()
```

visadf.select_dtypes(exclude='object').columns #numerical columns

• How many asia ppl got the visa certified?

In []:

• How many asia ppl got the visa denied?

```
In [ ]: cond1=visadf['continent']== 'Asia'
        cond2=visadf['case_status']== 'Certified'
        con = cond1 & cond2
        visadf[con]
In [ ]: len(visadf[con])
        print(f"Number of employee visa certified are: {len(visadf[con])}")
In [ ]: cond1=visadf['continent']== 'Asia'
        cond2=visadf['case_status']== 'Denied'
        con=cond1 & cond2
        visadf[con]
        print(f"Number of employee visa denied are: {len(visadf[con])}")
In [ ]: visadf['continent'].unique()
In [ ]: visadf['case_status'].unique()
In [ ]: contkey = visadf['continent'].keys
        contkey
In [ ]: contkey = visadf['continent'].unique()
        certList,deniedlist=[],[]
        for i in contkey:
            cond1=(visadf['continent']== i)
            cond2=visadf['case_status']== 'Certified'
            cond3=visadf['case_status']== 'Denied'
            cert_cond = cond1&cond2
            den_cond = cond1&cond3
            certList.append(len(visadf[cert_cond]))
            deniedlist.append(len(visadf[den cond]))
        certList, deniedlist
In [ ]: pd.DataFrame(zip(certList,deniedlist),columns=['Certified','Denied'],index=contk
In [ ]: visadf['continent'].unique()
In [ ]: visadf['continent'].value_counts()
In [ ]: col1=visadf['continent']
        col2=visadf['case status']
        result1=pd.crosstab(col1,col2) # 1st argument is index, second is column
        result1
In [ ]: result1.plot(kind='bar')
In [ ]: col1=visadf['continent']
        col2=visadf['case_status']
```

```
result= pd.crosstab(col2,col1)
In [ ]: result
In [ ]: result.plot(kind='bar')
In [ ]: col1=visadf['continent']
        col2=visadf['education_of_employee']
        col3=visadf['case_status']
        col=[col1,col2]
        result2= pd.crosstab(col,col3)
        result2
In [ ]: result2.plot(kind='bar')
In [ ]:
In [ ]: col1=visadf['continent']
        col2=visadf['education_of_employee']
        col3=visadf['case_status']
        col=[col3,col2]
        result3= pd.crosstab(col,col1)
        result3
In [ ]: result3.plot(kind='bar')
In [ ]:
        Numerical-Numerical
In [ ]: - In order to plot numerical v/s numerical we need to use scatter plots
        - Scatter plots give the relation between 2 columns
        - it is undet matplotlib
        y=[1,2,3,4,5]
```

```
In [21]: x=[1,2,3,4,5]
         # y=x plot
         pt.scatter(x,y)
```

Out[21]: <matplotlib.collections.PathCollection at 0x214ff2d2190>


```
In [ ]: pt.plot(x,y)
In [22]: x=[i for i in range(-4,5)]
y=[i*i for i in x]
pt.scatter(x,y)
pt.plot(x,y)
pt.show()
16 -
14 -
12 -
10 -
8 -
6 -
4 -
4 -
```

0

i

2

3

4

2

0

-4

-3

<u>-</u>2

-1

Scatterplot 1

```
In [24]: col1=visadf['no_of_employees']
    col2=visadf['yr_of_estab']
    pt.scatter(col1,col2)
#pt.plot(col1,col2)
```

Out[24]: <matplotlib.collections.PathCollection at 0x214ffa85ad0>

• Observation - no relation

Scatterplot 2

```
In [ ]: visadf.select_dtypes(exclude='object').columns #numerical columns
In [25]: col1=visadf['no_of_employees']
    col2=visadf['prevailing_wage']
    pt.scatter(col1,col2)
```

Out[25]: <matplotlib.collections.PathCollection at 0x214ffa85e50>


```
In [ ]: col1=visadf['yr_of_estab']
    col2=visadf['prevailing_wage']
    pt.scatter(col1,col2)
```

• all 3 no relation

```
In [ ]: pt.figure(figsize=(14,3))
    col1=visadf['no_of_employees']
    col2=visadf['yr_of_estab']
    pt.subplot(1,3,1).scatter(col1,col2)

col1=visadf['no_of_employees']
    col2=visadf['yr_of_estab']
    pt.subplot(1,3,2).scatter(col1,col2)

col1=visadf['no_of_employees']
    col2=visadf['yr_of_estab']
    pt.subplot(1,3,3).scatter(col1,col2)
```

Pearsons correlation coefficient

-- inspect image - edit as html - copy - paste in jupitor - esc M - shift enter

- It give the amount of relation between variables
- It is denoted with r
- r varies from -1 to 1
- r value for positive relation from 0 to 1
- for negative relation r varies from -1 to 0
- for no relation r approx. equals to 0

• in pythn code we have corr function under pandas

- this gives covariance matrix
- in this data we have 3 num calumns, so will get 9
- all upper and lower triangles represents co-variance
- all trace matrix are variance

In []:

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

In []: visadf.corr(numeric_only=True)

• Observations - the correlationvalue between no_of_employees,yr_of_estab,prevailing_wage is 0, which indicates no relation

In [39]: wineQualityDf=pd.read_excel(r"C:\Users\Anuja_PC\OneDrive\Documents\DataScience_N
wineQualityDf

U	u	τ	L	3	9	J	:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	sulfur dioxide	sulfur dioxide	density	рН	sulpl
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
3	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
•••	•••	•••		•••				•••		
3193	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	
3194	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
3195	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	
3196	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
3197	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	

3198 rows × 12 columns

In [42]: wineDataDf=wineQualityDf.drop_duplicates()

In [45]: wineDataDf.iloc[1:,:]

Out[45]:

		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulph
	1	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	
	3	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	
	5	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	
	7	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	
	11	7.4	0.660	0.00	1.8	0.075	13.0	40.0	0.99780	3.51	
	•••										
	3187	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42	
	3189	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	
	3191	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	
	3195	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	
	3197	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	

1359 rows × 12 columns

In []: # if corellation on 12 columns
12 * 12

In [47]: len(wineDataDf.columns)

Out[47]: **12**

In [48]: winecorr=wineDataDf.corr()
winecorr

Out[48]:

		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	
	fixed acidity	1.000000	-0.255124	0.667437	0.111025	0.085886	-0.140580	-0.103777	(
	volatile acidity	-0.255124	1.000000	-0.551248	-0.002449	0.055154	-0.020945	0.071701	(
	citric acid	0.667437	-0.551248	1.000000	0.143892	0.210195	-0.048004	0.047358	(
	residual sugar	0.111025	-0.002449	0.143892	1.000000	0.026656	0.160527	0.201038	(
c	hlorides	0.085886	0.055154	0.210195	0.026656	1.000000	0.000749	0.045773	(
	free sulfur dioxide	-0.140580	-0.020945	-0.048004	0.160527	0.000749	1.000000	0.667246	-(
	total sulfur dioxide	-0.103777	0.071701	0.047358	0.201038	0.045773	0.667246	1.000000	(
	density	0.670195	0.023943	0.357962	0.324522	0.193592	-0.018071	0.078141	-
	рН	-0.686685	0.247111	-0.550310	-0.083143	-0.270893	0.056631	-0.079257	-(
sı	ulphates	0.190269	-0.256948	0.326062	-0.011837	0.394557	0.054126	0.035291	(
	alcohol	-0.061596	-0.197812	0.105108	0.063281	-0.223824	-0.080125	-0.217829	-(
	quality	0.119024	-0.395214	0.228057	0.013640	-0.130988	-0.050463	-0.177855	-(
4									•

Heat-Map

- Heat map will provide the matrix representation of correlation value
- it represents values in colour format
- beside matrix it will display color bar
- color bar means like a scae of values with colour
- It is under seaborn package

```
In [49]: pt.figure(figsize=(12,6))
    sns.heatmap(winecorr,annot=True)
    pt.show()
```


In [51]: import seaborn as sns
sns.__version__

Out[51]: '0.13.2'

In [50]: numVisaDf=visadf.select_dtypes(exclude=object)
numVisaDf

Out[50]:		no_of_employees	yr_of_estab	prevailing_wage
	0	14513	2007	592.2029
	1	2412	2002	83425.6500
	2	44444	2008	122996.8600
	3	98	1897	83434.0300
	4	1082	2005	149907.3900
	•••			
	25475	2601	2008	77092.5700
	25476	3274	2006	279174.7900
	25477	1121	1910	146298.8500
	25478	1918	1887	86154.7700
	25479	3195	1960	70876.9100

25480 rows × 3 columns

In [52]: visaCorr= numVisaDf.corr()
visaCorr

Out[52]:

	no_of_employees	yr_of_estab	prevailing_wage
no_of_employees	1.000000	-0.017770	-0.009523
yr_of_estab	-0.017770	1.000000	0.012342
prevailing_wage	-0.009523	0.012342	1.000000

In [53]: sns.heatmap(visaCorr,annot=True)

Out[53]: <Axes: >

In []: # draw the scatter plots for wine data columns , which is having highest positiv
and which is having highest negative correlation

In [26]: wineQualityDf.columns

```
In [54]: pt.figure(figsize=(12,6))
    col1=wineDataDf['fixed acidity']
    col2=wineDataDf['citric acid']
    pt.subplot(1,2,1).scatter(col1,col2)
    col3=wineDataDf['pH']
    pt.subplot(1,2,2).scatter(col1,col3)
    pt.show()
```

