Лабораторная работа №8.

Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом

Силкина Мария Александровна

Содержание

1	Цель работы	5
2	Задачи	6
3	Выполнение лабораторной работы 3.1 Выполнение задач	7 7
4	Выводы	11
5	Библиография	12

List of Figures

3.1	Функция, шифрующая данные и ее выполнение	8
	Функция, дешифрующая данные и ее выполнение	

List of Tables

1 Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования нескольких различных текстов одним ключом.

2 Задачи

- 1. Написать программу, которая должна определять вид шифротекстов при известных открытых текстах и при известном ключе. Также эта программа должна определить вид одного из текстов, зная вид другого открытого текста и зашифрованный вид обоих текстов без использования ключа.
- 2. Ответить на контрольные вопросы

3 Выполнение лабораторной работы

##Теоретическая справка

Гаммирование представляет собой наложение (снятие) на открытые (зашифрованные) данные последовательности элементов других данных, полученной с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных. Иными словами, наложение гаммы — это сложение её элементов с элементами открытого (закрытого) текста по некоторому фиксированному модулю, значение которого представляет собой известную часть алгоритма шифрования

3.1 Выполнение задач

Первым шагом написала функцию шифрования, которая определяет вид шифротекстов при известном ключе и известном открытом тексте. В выводе я получила наши изначальные тексты, их представление в шестнадцатеричной системе, рандомный ключ и зашифрованные тексты. (рис - @fig:001)

```
def shifr(p1, p2):
    print ('Cooбщение P1 - ', p1)
    text_arrayp1 = []
    for in p1:
        text_arrayp1.append(i.encode('cp1251').hex())
    print('\thaume cooбщение P1 в 16ричной системе - ', *text_arrayp1)
    print ('Cooбщение P2 - ', p2)
    text_arrayp2 = []
    for i in p2:
         for i in p2:
text_arrayp2.append(i.encode('cp1251').hex())
print('\nнawe cooбщение P2 в 16ричной системе - ', *text_arrayp2)
        key_int = np.random.randint(0, 255, len(p1))
key_hex = [hex(i)[2:] for i in key_int]
print('\nшмфр - ', *key_hex)
        text_cryptp1 = []
for i in range(len(text_arrayp1)):
    text_cryptp1.append('{:02X}'.format(int(text_arrayp1[i], 16)^ int(key_hex[i], 16)))
    print('\nHawe завифорванное сообщение СI в 16ричной системе- ', "text_cryptp1)
    text_cryptp2 = []
    for i in range(len(text_arrayp2)):
        text_cryptp2.append('{:02X}'.format(int(text_arrayp2[i], 16)^ int(key_hex[i], 16)))
    print('\nHawe завифрованное сообщение C2 в 16ричной системе- ', "text_cryptp2)
        finalp1 = bytearray.fromhex(''.join(text_cryptp1)).decode('cp1251')
print ('\n3aum4posa+nec coofweenec C1 - ', finalp1)
finalp2 = bytearray.fromhex(''.join(text_cryptp2)).decode('cp1251')
print ('\n3aum4posa+nec coofweenec C2 - ', finalp2)
     return key_hex, finalp1, finalp2
 p1 = "НаВашисходящийот1204"
p2 = "ВСеверныйфилиалБанка"
 key, c1, c2 = shifr(p1, p2)
 Сообщение Р1 - НаВашисходящийот1204
 Наше сообщение P1 в 16ричной системе - cd e0 c2 e0 f8 e8 f1 f5 ee e4 ff f9 e8 e9 ee f2 31 32 30 34
Сообщение P2 - ВСеверныйфилиалБанка
 Наше сообщение P2 в 16ричной системе - c2 d1 e5 e2 e5 f0 ed fb e9 f4 e8 eb e8 e0 eb c1 e0 ed ea e0
 Шифр - 2a 68 c8 b2 a8 35 ca 4c a8 e 37 d2 8a 2f 2f 94 5b 6c c0 a6
 Наше зашифрованное сообщение C1 в 16ричной системе- e7 88 0a 52 50 dd 3b b9 46 ea c8 2b 62 c6 c1 66 6a 5e f0 92
 наше зашифрованное сообщение C2 в 16ричной системе- e8 b9 2d 50 4d c5 27 b7 41 fa df 39 62 cf c4 55 bb 81 2a 46
 Зашифрованное сообщение C1 - 3€
RPЭ;№FкИ+bЖБfj^p'
 Зашифрованное сообщение С2 - и№-РМЕ' • АъЯ9bПДU» Ѓ*F
```

Figure 3.1: Функция, шифрующая данные и ее выполнение

Далее я создала функцию для дешифрования, которая при знании зашифрованных текстов и иодного изначального, может найти второй (неизвестный) текст. (рис - @fig:002)

```
def deshifr(c1, c2, p1):
    print("NaBumeposahewi 1ый текст: ", c1)
    print("NaBumeposahewi 20й текст: ", c2)
    print("Открытый 1ый текст: ", p1)

c1_hex = []
    for i in c1:
        c1_hex.append(i.encode("cp1251").hex())
    print("NaBumeposahewi 1ый текст в 160м представлении: ", "c1_hex)

c2_hex = []
    for i in c2:
        c2_hex.append(i.encode("cp1251").hex())
    print("NaBumeposahewi 20й текст в 160м представлении: ", "c2_hex)

p_hex1 = []
    for i in p1:
        p_hex1.append(i.encode("cp1251").hex())
    print("Nortputsi 1ый текст в 160м представлении: ", "p_hex1)

cc1_cc2 = []
    p_hex2 = []
    for i in range(len(p1)):
        cc1_cc2.append("iex2y",format(int(c1_hex[i],16) ^ int(c2_hex[i],16)))
        p_hex2.append("iex2y",format(int(cr1_cc2[i],16) ^ int(p_hex1[i],16)))
    print("Oткрытый 20й текст в 160м представлении: ", "p_hex2)
    p2 = bytearray,fromhex("",join(p_hex2)).decode("cp1251")
    print("Oткрытый 20й текст: M8-PME'.AsaBongunf#F

Oткрытый 1ый текст: HaBabuucxongunukor11204

Зашифрованный 1ый текст: HaBabuucxongunukor11204

Зашифрованный 1ый текст в 160м представлении: e7 88 0a 52 50 dd 3b b9 46 ea c8 2b 62 c6 c1 66 6a 5e f0 92

Зашифрованный 1ый текст в 160м представлении: e8 b9 2d 50 4d c5 27 b7 41 fa df 39 62 cf c4 55 bb 81 2a 46

Открытый 1ый текст в 160м представлении: cd e0 c2 e0 f6 e8 f1 f5 ee e4 ff f9 e8 e9 ee f2 31 32 30 34

Открытый 20й текст в 160м представлении: cd e0 c2 e0 f6 e8 f1 f5 ee e4 ff f9 e8 e9 ee f2 31 32 30 34

Открытый 20й текст в 160м представлении: cd e0 c2 e0 f6 e8 f1 f5 ee e4 ff e8 e9 e6 e0 c1 e0 ed ea e0

Открытый 20й текст в 160м представлении: cd e0 c2 e0 f6 e8 f1 f5 ee e4 ff e8 e9 e6 e0 c1 e0 ed ea e0

Открытый 20й текст в 160м представлении: cd e0 c2 e0 f6 e8 f1 f5 e0 e4 ff e8 e9 e6 e0 c1 e0 ed ea e0

Открытый 20й текст в 160м представлении: cd e0 c2 e0 f6 e8 f1 f5 e0 e4 ff e8 e9 e6 e0 c1 e0 ed ea e0
```

Figure 3.2: Функция, дешифрующая данные и ее выполнение

##Контрольные вопросы

- 1. Зная один из текстов, мы можем определить другой, вопспользовавшись следующей формулой: $C_1\oplus C_2\oplus +P_1=P_1\oplus P_2\oplus +P_1=P_2$, где C_1 и C_2 шифротексты. Т.е. ключ в данной формуле не используется.
- 2. При повторном использовании ключа при шифровании текста получим исходное сообщение.
- 3. Режим шифрования однократного гаммирования одним ключом двух открытых текстов реализуется по следующей формуле:

$$C_1 = P_1 \oplus +K$$

$$C_2 = P_2 \oplus +K$$

где C_i - шифротексты, P_i - открытые тексты, K - единый ключ шифровки

- 4. Недостатки шифрования одним ключом двух открытых текстов:
 - Имея на руках одно из сообщений в открытом виде и оба шифротекста, злоумышленник способен расшифровать каждое сообщение, не зная ключа.
 - Зная шаблон сообщений, злоумышленник получает возможность определить те символы сообщения P_2 , которые находятся на позициях известного шаблона сообщения P_1 .
- 5. Преимущество шифрования одним ключом двух текстов заключается в том, что такой подход помогает упростить процесс шифрования и дешифровки. Также, при отправке сообщений между двумя компьютерами, удобнее пользоваться одним общим ключом для передаваемых данных

4 Выводы

Освоила использования однократного гаммирования для шифрования и дешифрования данных.

5 Библиография

1. Кулябов Д. С., Королькова А. В., Геворкян М. Н. Информационная безопасность компьютерных сетей. Лабораторная работа № 8. Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом.