NPN EPITAXIAL PLANAR TYPE

DISCRIPTION

2SC1946 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 6.7 dB$ $@V_{CC} = 13.5 V$, $P_0 = 28 W$, f = 175 MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 30W, f = 175MHz.

APPLICATION

25 watts output power amplifiers applications in VHF band.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
lc	Collector current		7	А
Pc	Collector dissipation	Ta = 25°C	3	w
		T _C = 25°C	50	w
Tj	Junction temperature		175	•c
Tstg	Storage temperature		-65 to 175	*c
Rth-a	Thermal resistance	Junction to ambient	50	°C/W
Rth-c	Thermal resistance	Junction to case	3	°C/W

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter Test conditions	Limits				
		rest conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	I _E =10mA, I _C =0	4			V
V(BR)CBO	Collector to base breakdown voltage	1 _C =10mA, 1 _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =100mA, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			2	mA
EBO	Emitter cutoff current	V _{EB} = 3V, I _C = 0			1	mΑ
hFE	DC forward current gain *	V _{CE} = 10 V, I _C = 0.2 A	10	50	180	_
Po	Output power	V _{CC} = 13.5 V, P _{In} = 6W, f = 175 MHz	28	32		W
η_{C}	Collector efficiency		60	70		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%.

Above parameters, ratings, fimits and conditions are subject to change

NPN EPITAXIAL PLANAR TYPE

TEST CIRCUIT

- D: Inner diameter of coil
- Turn number of coil
- P: Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE RBE (Q)

DC CURRENT GAIN VS. **COLLECTOR CURRENT**

COLLECTOR CURRENT Ic (A)

NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE $V_{CB}(V)$

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

UTDUT DOWED VO. COLUED

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)