LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B1 (FMAA05) 2013-01-07 kl. 14-19

(0.3)

INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar om inte annat anges. Lämna tydliga svar om så är möjligt.

- 1. OBS! På denna uppgift skall endast svar ges. Eventuella motiveringar kommer ej att beaktas vid rättningen. Varje korrekt svar ger +0.2 poäng. Beräkna
 - a) $\lim_{x \to +\infty} \frac{\ln(2x)}{3x},$ b) $\lim_{x \to +\infty} x^{1/\ln(x)},$

 - c) $\lim_{x \to 0} \frac{1 \cos^2(x)}{x}$,
 - $\mathbf{d)} \lim_{n \to +\infty} \sqrt{\left(1 + \frac{2}{n}\right)^n},$
 - e) $\binom{10}{0} \binom{10}{1} + \binom{10}{2} \binom{10}{3} + \binom{10}{4} \binom{10}{5} + \binom{10}{6} \binom{10}{7} + \binom{10}{8} \binom{10}{9} + \binom{10}{10}$
- 2. Lös ekvationen

$$\sum_{k=2}^{+\infty} x^k = \frac{4}{3}.$$

- **3.** Låt $f(x) = \arctan(x) + \arctan(1/x)$ för $x \neq 0$.
 - a) Bestäm f'(x). Förenkla ditt svar så långt du kan. (0.4)
 - **b)** Vad är värdemängden för f? (0.3)
 - c) Kan talet a bestämmas så att funktionen

$$g(x) = \begin{cases} f(x), & x \neq 0, \\ a, & x = 0, \end{cases}$$

blir kontinuerlig på hela \mathbb{R} ? Hur i sådana fall?

- a) Definiera absolutbeloppet av det reella talet x. (0.2)
- **b)** Finn alla reella tal x som uppfyller ekvationen $x + |x| = \ln |x|$. (0.8)
- 5. a) Visa att $\frac{\sin(\varphi)}{1+\cos(\varphi)} = \tan(\frac{\varphi}{2})$ för $\varphi \neq \pi + 2\pi n, n \in \mathbb{Z}$. (0.3)
 - b) Ett tunt ark av tenn med bredd a skall böjas till en öppen cylindrisk kanal (se Figur 1 nedan). Hur skall centrumvinkeln φ väljas så att kanalen får maximal kapacitet (det vill säga så att den skuggade arean i figuren blir maximal)? (0.7)
- **6.** Låt a, b och c beteckna sidlängderna i en triangel, och låt vidare α, β och γ beteckna vinklarna som står mot sidorna med längd a, b respektive c (se Figur 2 nedan).
 - a) Formulera sinussatsen. (0.1)
 - **b)** Visa att om $a \leq \frac{b+c}{2}$ så är $\sin(\alpha) \leq \frac{\sin(\beta) + \sin(\gamma)}{2}$. (0.3)
 - c) Formulera cosinussatsen. (0.2)
 - **d)** Visa att om $a \leq \frac{b+c}{2}$ så är $\alpha \leq \frac{\beta+\gamma}{2}$. (0.4)

Figur 1

Figur 2