Assignment Project Pxtam Help

https://prowcoders.com
Australian National University

Add Weschatapowcoder

The Story So Far . . .

Logic.

Serious and the properties and to proofs the Exercise Help

Functional Programs

- estalittpstids/potwcoder.com
- main tool: (structural) induction

• again: focus on properties of program powcoder

- main tool: Hoare Logic
- **Q.** Is there a *general* notion of computation? That encompasses both?

First Shot: Your Laptop

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Abstract Characteristics.

- can do computation
- has memory a finite amount
- has (lots of) internal states

From Laptops to Formal Models

Assignment Project Exam Help realistic (it exists!) exists only as a model

complex

- simple
- hard https://powcoder.evem
- **Q.** What is a "good" simple model of computation?
 - should match what really exists (passibly by a long shot er should be conceptually simple

First Answer: Finite State Automata

Assignment Project Exam Help

- internal states finitely many
- state transitions triggered by reading input
- simplifit psopt/potwcoderrcom

Data.

- basic Aput dring what you type in text will file oder
 characters: drawn from finite set (alphabet)

Example: Java Identifiers

From Oracle's Java Language Specification.

An identifier is a sequence of one or more characters. The first character pust be a valid first character to (letter \$) in In identifier of the lave 1 pogramming language, he easter in the sequence must be a valid nonfirst character (letter, digit, \$, _) in a Java identifier.

Graphical Specification powcoder.com

Identifier S

Add WeChat powcoder

S

Q. Can you "see" a machine that recognises Java identifiers?

Java Identifiers

Example: Main Components

Data.

• drawn ford dfinite appeter Hungade prosen coder

Control.

- "yes" if I can get from the left to the right, "no" otherwise
- have states after taking a transition (implicit in diagram)

Computational Problem with yes/no answer:

• it a given sequence of characters a valid Java identifier?

Preview.

Next two weeks. Finite Automata

start with simplest model: finite automata

SSI Control of the co

The week after. Pushdown automata

- like initetary mata/but sow recorder.com
 useful for e.g. specifying syntax of programming languages
- still "too simple" for general computation

Then. Ty And hin We Chat powcoder

- The most widely accepted model of computation
- infinite memory
- idea: buy another hard disk whenever your computation runs out of memory
- limits of what can be computed

Finite State Automata: First Example

The simplest useful abstraction of a "computing machine" consists of:

ASSIGNMENT tales TOJECT Exam Help

• A transition relation over the states

Fxample attraffic light FSA has 3 states: der.com

G names state in which light is green. names state in which light is yellow. names state in which light is red.

Add WeChat powcoder

System designs are often in terms of state machines.

Second Example: Vending Machine

Operation

accept 10c and 20c coins

Assignmented Project second Help

Add WeChat powcoder

Note.

- transitions are labelled
- new ingredient: final states (doubly circled)

Computation. Sequences of actions (labels) from initial to final state.

Language Examples

Main Idea.

input: a string over a fixed character set

s operation: transitions labeled with characters Help

More Generally.

- Setup: Fix a finite set of characters (an alphabet)
 Problem: Que of string Qcalled and Language The Care Tilld" or "good"
- Task: decide computationally which strings are "good"

Example Languages.

- 1. A fin A edd WeChat powcoder
- 2. Palindromes consisting of bits (0,1):

 $\{0, 1, 00, 11, 010, 101, 000, 111, 0110, ...\}$

Terminology

Alphabet.

A finite set (of symbols). Heyally denoted by Exam Help

finite sequence of characters (elements of Σ), can be the empty sequence. E.g. for $\Sigma = \{a, b, c\}$, ababc is a string over Σ .

Language the phabet powcoder.com are just sets of strings over Σ.

Sentences of the language just another time two element astring of twelling at element as the element as

Notation:

- Σ^* is the set of all strings over Σ .
- Therefore, every language with alphabet Σ is some **subset** of Σ^* .

Automata

First Model of Computation. Deterministic Finite Automata

Assignment Project Examid Help

Basic Ingredients. (see e.g. traffic light and vending machine example)

- The alphabet of a DFA is a finite set of input tokens that an automorphism of DOWCOGET.COM
- a DFA consists of a finite set of states (a primitive notion)
- One of the states is the initial state where the automaton starts
- At less fred the less is 1120 tstato OWCO der
- A transition function (next state function):

 $State \times Token \rightarrow State$

Recurring Theme

Assignment Project Exam Help

• e.g. the transition diagram of the vending machine

• useful for formal manipulation (e.g. proving theorems)

- useful for computer implementation

Glue between darants are Caths at powcoder

- both notions convey precisely the same information
- crucial: being able to switch back and forth!

Formal Definition of DFA

A Deterministic Finite State Automaton (DFA) consists of five parts: Assignment Project, Exam Help

- an ir put tipes of prosect coder.com
 a set of states S
- an "initial" state $s_0 \in S$ (we start here)
- a set Af "Ind" ** The set Af "Ind" **

Aside. Having a transition function is what makes the automaton deterministic.

Finite State Automata as String Acceptors

Idea. A finite state automaton

works on strings over an alphabet Σ

A SoleminsMitchings in LOe Ccct (Ecentra) and while Ip strings are "bad" (rejected)

Acceptance Informally. Let $A = (\Sigma, S, s_0, F, N)$ be a DFA. Then A accepts the trip $S = a_1 \cdot D \cdot O_a$ the Gasaques On the second sequence of the sequen

$$s_0 \xrightarrow{a_1} s_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} s_{n-1} \xrightarrow{a_n} s_n$$

where s_0 and t in t at t if $\delta(s,a)=t$.

Informally. Run the automaton from the starting state, move states according to the individual letters of the word, and accept if you end up in a final state.

Example 1

As a diagram.

Assignment Project Exam Help

In Mathematical Notation.

- · Alphattps://powcoder.com
- States $\{S_0, S_1, S_2\}$
- Initial state of the Final sta
- Transition function (as a table) $S_2 \mid S_1 \mid S_0$
- **Q1.** Which strings are accepted by this automaton?
- **Q2.** What changes if we re-name the states?

Example 1, ctd

Recall. $N: S \times \Sigma \to S$ is the transition function.

Assignment Sproject Exam Help

Single Steps by the state that the automation transitions to from state S_0

- $N(S_0,0)$ is the state that the automation transitions to from state S_0 reading letter 0.
- Here: Add WeChat powcoder

Multiple Steps of the automaton

- $N(N(S_0,0), 1)$ is the state of the automation when starting in S_0 and reading first 0, then 1.
- Here: $N(N(S_0, 0), 1) = S_2$.

Example 2

Assignment Project Exam Help https://powcoder.com

(the table Artisthe Wempring ts power oder

Q. What is the language of this automaton?

Eventual State Function

Assignment Project Exam Help https://powcoder.com

- Input 0101 takes the DFA from S_0 to S_2 , Input 1011 takes the DFA from S_1 to S_0 , etc
- A complete of strice of the confidence of the state and a string to an 'eventual state.'

This is the idea of **Eventual State Function**.

Eventual State Function — Definition

Definition. Let A be a DFA with states S, alphabet Σ , and transition function N.

Assignment Project Exam Help

and is defined inductively by:

https://poweeder.com (N1)
$$N^*(s,x\alpha) = N^*(N(s,x),\alpha)$$
 (N2)

Or in Haskell, where strings are lists of elements of type Sigma

Informally. $N^*(s, w)$ is the state A reached by starting in state s and reading string w.

An Important (but Unsurprising) Theorem about N^*

Assignment Projecting Exam Help $N^*(s,\alpha\beta) = N^*(N^*(s,\alpha),\beta)$

Proof by induction on the length of Coder.com

Add
$$W(s, \epsilon \beta) = N^*(s, \beta)$$

= $N^*(s, \beta) = N^*(s, \beta)$
= $N^*(s, \beta) = N^*(s, \beta)$ (by (N1))

Proof ctd: Step case:

Step Case. Show that $N^*(s,(x\alpha)\beta) = N^*(N^*(s,x\alpha),\beta)$

Assignment Project Exam Help

 $= N^*(N(s,x),\alpha\beta)$

https://powcoder.com

Add $We^{(N^*(s,x\alpha),\beta)}$ Add $We^{(N^*(s,x\alpha),\beta)}$ (N2))

Corollary — when β is a single token

$$N^*(s, \alpha y) = N(N^*(s, \alpha), y)$$

(by (N2))

(by IH)

Example

Assignment Project Exam Help

```
https://spayscoder.org)
= N^*(S_2, 011)
Add WeChats_powcoder
= N^*(S_0, \epsilon)
= S_0
```

Language of an Automaton, Revisited

Assignment Project Exam Help Acceptance, with eventual states. Let $A = (\Sigma, S, s_0, F, N)$ be an DFA

Acceptance, with eventual states. Let $A = (\Sigma, S, s_0, F, N)$ be an DFA and w be a string in Σ^* .

Then w https://powcoder.com $N^*(s_0, w) \in F$

Q1. How does this compare with the earlier notion of acceptance?

Q2. How can we prove that both are equivarent?

Example 1 again

Assignment Project Exam Help

Q. Which the process of the process

- e.g. 0011101 takes the machine from state S_0 through states S_1 , S_1 , S_2 , S_0 , S_0 , S_1 to S_2 (a final state).
- S_2 , S_0 , S_1 to S_2 (a final state). • $N^*(S_0, O(101))$ W Colling = PO1, W610 der ... $N^*(S_1, 1) = S_2$
- others: 01, 001, 101, 0001, 0101, 00101101 . . .

Example 1 (ctd.)

Assignment Project Exam Help

https://powcoder.com

01, 001, 101, 0001, 0101, 00101101 ...

Strings that electron contents that powcoder ϵ , 0, 1, 00, 10, 11, 100 ... that powcoder

Q. What do the accepted strings have in common? How do we justify this?

Proving an Acceptance Predicate — in General

Assignment Project Exam Help elements of the language $L = \{w \in \Sigma^* \mid P(w)\}.$

(P is sometimes and power der.com **Proof Obligations.**

- Show that any string satisfying P is accepted by A.
 Show and tring exerced by A satisfies OWCOCCT

Proving an Acceptance Predicate for A_1

Assignment Project Exam Help If a string ends in 01, then it is accepted by A₁. That is:

https: https://powcoder.com**Proof obligation 2:**

If a string is accepted by A_1 , then it ends in 01. That is:

FAddsWeChat poweoder

Part 1: $\forall \alpha \in \Sigma^*, N^*(S_0, \alpha 01) \in F$

Assignments Project Exam Help Proof by cases:

https://spow Comparison
$$N^*(S_1, 01) = N^*(S_1, 1) = S_2$$

$$N^*(S_2, 01) = N^*(S_1, 1) = S_2$$

So, by the Shat powcoder

$$N^*(S_0, \alpha 01) = N^*(N^*(S_0, \alpha), 01) = S_2 \square$$

Part 2: $N^*(S_0, w) = S_2 \implies \exists \alpha. \ w = \alpha 01$

https://powcoder.com

By the definition of N, y must be 1 and $N^*(S_0, \alpha x)$ must be S_1 .

Similarly, Add We Chat powcoder

and x is 0, again by the definition of N.

4 D > 4 B > 4 E > 4 E > 990

Another Example

Assignment Project Exam Help

What language does this DFA accept?

shttps://powcoder.com

Add WeChat powcoder

Answer for SOB

Assignment Projecting xamultelp Proof obligations:

- Show that if a bitstring contains exactly one 1-bit then it is accepted by **Pttps://powcoder.com**
- Show that if a string is accepted by SOB it contains exactly one 1-bit.

Mapping to Mathematics

Assignment Project Exam Help

 $L(SOB) = \{ w \in \Sigma^* \mid w = 0^n 10^m \}$

The two letters S_{0}^{*} . If $w = 0^{n}10^{m}$ then $N^{*}(S_{0}, w) = S_{1}$

- 2. If $N^*(S_0, w) = S_1$ then $w = 0^n 10^m$.

For this DEAddhrase "Les Chatby PO"W Conderne expression $N^*(S_0, w) = S_1$.

Proving these subgoals

The first subgoal follows immediately from the following two lemmas, which are easily proved by induction:

Therefore

http/so.m/powcoder.com
=
$$N^*(N^*(S_0, 0^n), 10^m)$$
 (by apppend Theorem)
= $N^*(S_0, 10^m)$ (by Lemma 1)
Avid S_0 (by def. N)
= S_1 (by Lemma 2)

The second subgoal, stated more formally as

$$\forall w: N^*(S_0, w) = S_1 \implies \exists n, m \ge 0. \ w = 0^n 10^m$$

can be proved in a similar fashion to Example 1 on earlier slides.

Limitations of FSAs

Q. Is an FSA a "good" model of computation?

\$\$1800 Help

• Is there an FSA that accepts precisely the strings for which P says

"yes"? https://powcoder.com
Technical Analysis. Properties of languages accepted by a DFA.

- - Claim. There is no FSA that recognises this language.

(because an FSA's memory is limited.)

Q. Given the claim above, are FSA's *realistic* models of computation?

Proof of Claim

Areos in contradiction to Project, Exam Help

Then each of the following are states of *A*:

https://pow.coder.com

• that is, the automaton cannot tell a^i and a^j apart.

Proof by contradiction (ctd)

Assignment Project Exam Help

https://powcoder.com

Now, since $N^*(S_0, a^i) = N^*(S_0, a^i)$ $Add_*(N^*S_0, a^i)$ hat N^*P_0 we coder

So a^jb^i is accepted by A but a^jb^i is not in L, contradicting the initial assumption.

Pigeon-Hole Principle

Ahe proposed the piecept-hole principles of Exam Help to-one.

https://powcoder.com

(Finiteness is not really necessary no function from one set to another with smaller cardiality and by the cone national power of the cone national power of

"You cannot fit n + 1 pigeons into n holes"

Equivalence of Automata

Assignmente Projected Extannel Help

Q. Can FSAs be simplified? is there an equivalent FSA with fewer states?

Equivalence of States

Assignment Project Exam Help $N^*(S_j, w) \in F \text{ if and only if } N^*(S_k, w) \in F$

Example In A_4 , S_2 is equivalent to S_0 and S_1 is equivalent to S_3 . https://powcoder.com

Elimination of Equivalent States

Assurignment Project Exam Help

- S_k and S_i be equivalent
- Sk Antep's liphing the with the com

Elimination of S_k from A: new automaton $A' = (\Sigma, S', S_0, F', N')$

- S' is AS without St eChat powcoder
- $N'(s, w) = (\text{if } N(s, w) = S_k \text{ then } S_i \text{ else } N(s, w))$

Example

Airsesignment Prinject Exam Help New Set of states is {S₀, S₁, S₃}

- New set of final states is $\{S_0\}$
- New Itrantitips function powcoder.com

