DSWB workshop on federated analytics

Block 1 - Introduction to DataSHIELD

18th - 30th August, 2025

Nairobi, Douala, Dakar

Juan R Gonzalez

Bionformatics Research Group in Epidemiology e-mail: juanr.gonzalez@isglobal.org

A partnership of:

DSWB

Making African Data Findable, Accessible, Interoperable, & Reusable

What is DataSHIELD

- ☐ A privacy-preserving, non-disclosive, federated analysis software
- What it is
 - way of analyzing sensitive data, at a individual level, without providing direct access
- What it is not
 - data harmonization platform
 - ☐ GUI based analysis tool (yet possible!)

What is DataSHIELD

https://datashield.org/

About - For analysts For data custodians For developers News Suppor

Privacy-preserving

- ☐ Functions are sent to data server
- Server runs function
- Built into function is disclosure check
- ☐ If disclosive, check will discover and only return error message, not results.

Federated analysis

Animation of a DataSHIELD Analysis

What kind of analysis can we do?

- ☐ There are 120 functions within the DataSHIELD clientside package to choose from, in version 6.3 (released November 2024)
- □A full list can be found on this wiki:
- https://data2knowledge.atlassian.net/wiki/spaces/DSDEV/pages/1184825438/List+of+all+DataSHIELD+functions+v6.3
- ☐ There are external developers creating new packages (ggplot, omics, mediation, tydiverse, ...)

Methodological papers

JOURNAL ARTICLE

DataSHIELD: mitigating disclosure risk in a multisite federated analysis platform 8

Demetris Avraam ▼, Rebecca C Wilson, Noemi Aguirre Chan, Soumya Banerjee, Tom R P Bishop, Olly Butters, Tim Cadman, Luise Cederkvist, Liesbeth Duijts, Xavier Escribà Montagut ... Show more

PLOS COMPUTATIONAL BIOLOGY

RESEARCH ARTICLE

Orchestrating privacy-protected big data analyses of data from different resources with R and DataSHIELD

Yannick Marcon 1*, Tom Bishop 2, Demetris Avraam 3, Xavier Escriba-Montagut 4,5, Patricia Ryser-Welch³, Stuart Wheater⁶, Paul Burton³, Juan R. González^{4,5,7}

1 Epigeny, St Ouen, France, 2 MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom, 3 Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom, 4 Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain, 5 Universitat Pompeu Fabra (UPF), Barcelona, Spain, 6 Arjuna Technologies, Newcastle, United Kingdom, 7 Centro de Investigación Biomédica en Red en Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain, 8 Dept. of Mathematics, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spair

* yannick.marcon@obiba.org (YM); juanr.gonzalez@isglobal.org (JRG)

PLOS COMPUTATIONAL BIOLOGY

RESEARCH ARTICLE

Federated privacy-protected meta- and megaomics data analysis in multi-center studies with a fully open-source analytic platform

Xavier Escriba-Montagut^{1,2}, Yannick Marcon³, Augusto Anguita-Ruizo^{1,2}, Demetris Avraam⁴, Jose Urguiza^{1,2,5}, Andrei S. Morgan^{6,7}, Rebecca C. Wilson⁴, Paul Burton⁸, Juan R. Gonzalez₀^{1,2,5}*

BMC Research Notes

dsSurvival 2.0: privacy enhancing survival curves for survival models in the federated DataSHIELD analysis system

Soumya Banerjee [™] & Tom R. P. Bishop

Software Application Profile: ShinyDataSHIELD—an R Shiny application to perform federated nondisclosive data analysis in multicohort studies 3

Xavier Escribà-Montagut, Yannick Marcon, Demetris Avraam, Soumya Banerjee,

Use of DataSHIELD in science

Environment International

Il length article

Green spaces and respiratory, cardiometabolic, and neurodevelopmental outcomes: An individual-participant data meta-analysis of >35.000 European children

Amanda Fernandes $^{\circ}$ b $^{\circ}$ $^{\circ}$ $^{\circ}$ Demetris Avraom $^{\circ}$ $^{\circ}$ Im Cadman $^{\circ}$ b $^{\circ}$ pyayan Dadvand $^{\circ}$ b $^{\circ}$ Monica Guxens $^{\circ}$ b $^{\circ}$ $^{\circ}$ Annel-Cloire Binter $^{\circ}$ b $^{\circ}$ Angelo Pinot de Moiro $^{\circ}$ $^{\circ}$ Moniterial Moniterial Moniterial Distance $^{\circ}$ b $^{\circ}$ Liebeth Duigits $^{\circ}$ 1 b $^{\circ}$ Moniterial De Castro $^{\circ}$ b $^{\circ}$ Serena Fossati $^{\circ}$ b $^{\circ}$ Sandra Márquez $^{\circ}$ b $^{\circ}$ S, Tanja Vrijkotta $^{\circ}$ 1 m, Ahmed Elhakeem $^{\circ}$ o, Rosemary McEochon $^{\circ}$ 7, Iffany Yang $^{\circ}$, Marie Pedersen $^{\circ}$, Johan Vinther $^{\circ}$, Johanna Lepeule $^{\circ}$... Mortine Vrijkotta $^{\circ}$ b $^{\circ}$

PLOS MEDICINE

nature communications

Explore content > About the journal > Publish with us >

nature > nature communications > articles > article

Article | Open access | Published: 03 May 2023

Identification of biomarkers for glycaemic deterioration in type 2 diabetes

Roderick C. Slieker, Louise A. Donnelly, Elina Akalestou, Livia Lopez-Noriega, Rana Melhem, Ayşim Güneş, Frederic Abou Azar, Alexander Efanov, Eleni Georgiadou, Hermine Muniangi-Muhitu, Mahsa Sheikh, Giuseppe N. Giordano, Mikael Akerlund. Emma Ablqvist, Ashfaq Ali, Karina Banasik, Søren Brunak, Marko Barovic, Gerard A. Bouland. Frédéric Burdet, Mickaël Canouil, Julian Dragan, Petra J. M. Elders, Celine Fernandez, ... Guy A. Rutter

RESEARCH ARTICLE

Gestational age at birth and body size from infancy through adolescence: An individual participant data meta-analysis on 253,810 singletons in 16 birth cohort studies

Practice of Epidemiology

Associations of Maternal Educational Level, Proximity to Green Space During Pregnancy, and Gestational Diabetes With Body Mass Index From Infancy to Early Adulthood: A Proof-of-Concept Federated Analysis in 18 Birth Cohorts

Tim Cadman*, Ahmed Elhakeem, Johan Lerbech Vinther, Demetris Avraam, Paula Carrasco, Lucinda Calas, Marloes Cardol, Marie-Aline Charles, Eva Corpeleijn, Sarah Crozier, Montserrat de Castro, Marisa Estarlich, Amanda Fernandes, Serena Fossatti, Dariusz Gruszfeld, Kathrin Guerlich, Veit Grote, Sido Haakma, Jennifer R. Harris, Barbara Heude, Rae-Chi Huang, Jesús Ibarluzea, Hazel Inskip, Vincent Jaddoe, Berthold Koletzko, Sandrine Lioret, Veronica Luque, Yannis Manios, Giovenale Moirano, George Moschonis, Johanna Nader, Mark Nieuwenhuijsen, Anne-Marie Nybo Andersen, Rosie McEachen, Angela Pinot de Moira, Maja Popovic, Theano Roumeliotaki, Theodosia Salika, Loreto Santa Marina, Susana Santos, Sylvain Serbert, Evangelia Tzorovili, Marina Vafeiadi, Elvira Verduci, Martine Vrijheid, T. G. M. Vrijkotte, Marieke Welten, John Wright, Tiffany C. Yang, Daniela Zugna, and Deborah Lawlor

The Lancet Regional Health - Europe

Articles

Early childcare arrangements and children's internalizing and externalizing symptoms: an individual participant data meta-analysis of six prospective birth cohorts in Europe

Katharine M. Barry ^{a b}, Demetris Avraam ^c, Tim Cadman ^c, Ahmed Elhakeem ^d,
Hanan El Marroun ^{e f}, Pauline W. Jansen ^{e f}, Anne-Marie Nybo-Andersen ^c,
Katrine Strandberg-Larsen ^c, Llúcia González Safont ^{g f h}, Raquel Soler-Blasso ^{j j s},
Florencia Barreto-Zarza ^{b k t}, Jordi Julvez ^{[u j}, Martine Vrijheid ^{[u j}, Barbara Heude ^{m n},
Marie-Aline Charles ^{g p}, Alexandre Ramchandar Gomajee ^{a b q}, Maria Melchior ^b \mathcal{R}

DataSHIELD standard platform

Preliminary: data located at Opal server

- Authenticate and authorize user
- ☐ Assign Opal table into the R server (data transfer)
- Execute DataSHIELDverified R commands in R server

DataSHIELD standard platform

Open Opal demo server

The resources: idea

The resources: rational

- use data at their original location (do not move/copy data when possible)
- use data in their original format (no preprocessing, no loss of information)
- use external computation facilities (no R limitations)

=> use DataSHIELD with large/big datasets (omics etc.)

The resources ...

Opal with tables

DataSHIELD client

DataSHIELD server 1..n

Opal with resources

DataSHIELD client

DataSHIELD server 1..n

- Databases
- File repositories
- Big data analytics systems
- etc.

Resources examples

CSV file (compressed or not) ■ SQL database table ☐ R object stored in a R data file ☐ HL7 FHIR dataset ☐ GA4GH server ■ AWS server (OMOP database) ☐ HPC server accessible through SSH Python script ☐ Big data analytics system (Apache Spark, Dremio, ...) Apps in docker images

The resources ...

Property	Description	Examples
url	Location of the resource	https://example.org/some/file.rda file://path/to/file.csv ssh://example.org/work/dir?exec=plink mysql://dbhost:3306/mydb/mytable
format	Data format (optional)	SPSS ExpressionSet
credentials	Data access (optional)	token=Q3sDdsWq2dsx7 username=user1 password=xxxxxx

Not visible by DataSHIELD users

DataSHIELD disclosure controls

- Ensures no individuallevel data leaves the data holder's server.
- ☐ Analyses are performed remotely; only non-disclosive summaries are returned.
- ☐ Protects participant privacy while enabling collaborative research.
- ☐ Balances data utility with confidentiality.

JOURNAL ARTICLE

DataSHIELD: mitigating disclosure risk in a multi-site federated analysis platform 3

Demetris Avraam ★ , Rebecca C Wilson , Noemi Aguirre Chan , Soumya Banerjee , Tom R P Bishop , Olly Butters , Tim Cadman , Luise Cederkvist , Liesbeth Duijts , Xavier Escribà Montagut ... Show more

Bioinformatics Advances, Volume 5, Issue 1, 2025, vbaf046, https://doi.org/10.1093/bioadv/vbaf046

DataSHIELD: mitigation disclosure risks

- System protection elements
- Analysis protection elements
- Governance protection elements
- ☐ Five Safe Framework

DataSHIELD: system protection elements

■ Network security: ☐ Traffic encrypted. Connection requires SSL/TLS certificate. ☐ Firewall protection ☐ User authentication and certification: R server is only callable via middleware hosting DataSHIELD. R parser: Analyses are only able to use R server-side functions not native R Data management: Data comprise a snapshot not a live data (resources)

DataSHIELD: analysis protection elements

Only use assign and aggregate functions: Only create objects in the server-side. Generate summarized data to the client-side. Implementation restriction: □ R functions are not implemented (*print*, *max*, ...) Disclose controls: ☐ Function to provide non-disclosive results (each package can have their own functions) Data level obfuscation: Anonymization, data synthesis techniques, ... ☐ DataSHIELD log files: log files visible for data custodians

DataSHIELD: examples of disclose controls

Name	Description
nfilter.tab	Prevents the return of a contingency table if any of its cells represents less than <i>nfilter.tab</i> observations. The value of <i>nfilter.tab</i> can be set to any non-negative integer. The default value is set to 3.
nfilter.subset	Prevents the creation of a dataset's subset if the subset has less than <i>nfilter.subset</i> rows. The value of <i>nfilter.subset</i> can be set to any positive integer. The default value is set to 3.
nfilter.glm	Prevents the fitting of a regression model that has more than <i>nfilter.glm x N</i> unknown parameters in a dataset with sample size <i>N</i> . The value of <i>nfilter.glm</i> can be set to any numeric value in the interval (0,1). The default value is set to 0.33.
nfilter.string, nfilter.stringShort	Blocks the evaluation of a string argument that passes from the client-side to the server-side, if it has a length greater than nfilter.string or nfilter.stringShort characters. The values of nfilter.string and nfilter.stringShort can be set to any positive integers. The default values are set to 80 and 20, respectively.
nfilter.levels.density	Prevents the return of the unique levels of a categorical variable if their length is more than <i>nfilter.levels.density x N</i> where <i>N</i> is the length of the vector of the categorical variable. The value of <i>nfilter.levels.density</i> can be set to any numeric value in the interval (0,1). The default value is set to 0.33.

DataSHIELD: governance protection elements

■ Formal agreements: Data access, data analysis and approval of research results prior to publication. ☐ User can have access to: ■ Different tables or resources ■ Different variables from a table of resource Different data analysis packages ☐ It is controlled through the 'profiles'

Five Safes	Study mitigation	DataSHIELD mitigation
Safe People	 Formal data access request process Due diligence on prospective users —'are they bona fide researchers? Have they conducted mandatory training/accreditation to work with data safely?' Legal contracts, signed terms and conditions of data access and use Sanctions policy DataSHIELD users are authorized for data access by the study 	The authorization to access DataSHIELD can be delegated, under the principle of subsidiarity to individual studies

Five Study mitigation DataSHIELD mitigation Safes Safe Assess the requirement for access to

- projects
- the data—the context of the research project or the data being used
- Ensuring the data access/use does not contradict any necessary legal requirements, e.g. study consent

Five Safes	Study mitigation	DataSHIELD mitigation
Safe settings	 The operation and maintenance of robust computing infrastructure and hardware Following IT security best practice 	 DataSHIELD is a client-server architecture, the user does not connect directly to the study data
	Log of registered users, maintaining/blocking user access	 Analysis of individual level data occurs server-side (at study)
	Preventative measures for unauthorized access	 Analysis environment server- side can only be called via authenticated users through
	Deploy DataSHIELD to securely	Opal or Armadillo
	transfer information (analysis commands and outputs) via https	The server-side R Parser prevents invalid characters or
	Each study/consortium provides unique authentication credentials for	non-approved functions from being run.
	users to log onto the DataSHIELD client and to connect to each study they are authorized for	Users can not directly view the individual-level data
		 User commands logged server-side, only accessible by the study. Can be manually scrutinized e.g. if data misused

Five Safes	Study mitigation	DataSHIELD mitigation
Safe data	Data Protection Impact Assessment (risk assessment)	
	Assessing the disclosure risk of the data	
	Pseudonymized data used to lower the disclosure risk	

Five Safes	Study mitigation	DataSHIELD mitigation
Safe outputs	 Manual checking of analysis outputs for disclosure Legal contracts or terms and conditions making it mandatory for the user to check their own outputs for disclosure before publishing DataSHIELD disclosure setting thresholds are set and maintained by the study, no one else can alter these 	 DataSHIELD server-side functions prevent directly disclosive outputs being returned to the analyst DataSHIELD server-side functions prevent viewing of individual-level data DataSHIELD has disclosure settings based on established statistical disclosure control methods to conduct automated checks for direct disclosure in outputs