GEOGRAFÍA POSTGIS

COORDENADAS

CARTESIANAS

ESFERICAS

¿Qué son las coordenadas geográficas?

Las coordenadas geográficas (latitud y longitud) no son cartesianas, sino angulares. Es decir:

- Latitud: ángulo desde el ecuador (horizontal).
- Longitud: ángulo desde el meridiano de Greenwich (vertical).

¿Por qué no usar coordenadas geográficas directamente como cartesianas?

Si tratas latitud/longitud como si fueran coordenadas planas:

- Las distancias serán erróneas (los grados no son unidades constantes).
- Las áreas, intersecciones o inclusiones serán imprecisas.
- O3 ST_Distance(geometry) devuelve distancia en grados, no metros.

```
1 v SELECT ST_Distance(
2    ST_SetSRID(ST_PointFromText(ST_AsText(a.geom)), 4326),
3    ST_SetSRID(ST_PointFromText(ST_AsText(b.geom)), 4326)
4    ) AS distancia_grados
5    FROM
6    "Incidentes_2024_Tunjuelito_4686_2" a,
7    "Incidentes_2024_Tunjuelito_4686_2" b

WHERE
9    a.id = 1 AND
10    b.id = 2;
```

```
distancia_grados
double precision

0.041285608902426246
```


¿Qué hace diferente al tipo geograph? PostGIS ofrece dos tipos espaciales:

- geometry: plano cartesiano (proyección).
- geography: esférico (globo terrestre).

Con geography, los cálculos:

- Usan una esfera o esferoide real.
- Devuelven resultados en metros.
- Son útiles para datos que abarcan grandes distancias.

```
SELECT ST_SRID(geom)
FROM "Incidentes_2024_Tunjuelito_4686_2"
LIMIT 1:
```


¿Y si quiero medir cercanía a una ruta o punto?

Rutas ortodrómicas (en una esfera) son más precisas:

```
SELECT ST_Distance(
   a.geom::geography,
   b.geom::geography
) AS distancia_metros
FROM
   "Incidentes_2024_Tunjuelito_4686_2" a,
   "Incidentes_2024_Tunjuelito_4686_2" b
WHERE
   a.id = 1 AND
   b.id = 2;
```


Uso práctico de geography

Crear una tabla:

```
CREATE TABLE incidentes_geog AS

SELECT
geom::geography AS geog,
fecha,
estacion

FROM "Incidentes_2024_Tunjuelito_4686_2";
```

Construir un índice espacial en una tabla de geografía es exactamente lo mismo que para la geometría:

```
CREATE INDEX incidentes_geog_gix
ON incidentes_geog
USING GIST (geog);
```


Uso práctico de geography

Aquí tienes una consulta para encontrar todas las estaciones de metro a 500 y su dirección en azimut

```
WITH punto_referencia AS (
  SELECT 'SRID=4326; POINT(-74.123 4.567)'::geography AS geog
SELECT
  i.estacion,
  i.fecha,
  ST_Distance(
    pr.geog,
    ST_Transform(i.geog::geometry, 4326)::geography
  ) AS distancia_metros,
  degrees(
    ST_Azimuth(
      pr.geog,
      ST_Transform(i.geog::geometry, 4326)::geography
 ) AS direction_grados
FROM incidentes_geog i,
     punto_referencia pr
WHERE ST_DWithin(
        ST_Transform(i.geog::geometry, 4326)::geography,
        500
```

	estacion character varying (254)	fecha date	distancia_metros double precision	direccion_grados double precision
1	B-11 CANDELARIA	2024-02-06	497.78603702	215.19208319515712
2	B-11 CANDELARIA	2024-03-28	398.54968181	233.76275921634286
3	B-11 CANDELARIA	2024-04-13	409.05075259	240.13525391839158
4	B-11 CANDELARIA	2024-05-25	494.89835637	223.391426829041
5	B-10 MARICHUELA	2024-10-30	398.54871889	233.76219451358506
6	B-11 CANDELARIA	2024-11-05	418.96864549	218.4547186393802

geography y geometry

Cuando necesitas funciones que solo existen para geometry:

	geometry_distance double precision	geography_distance double precision
1	0.041285608902427086	4567.14820934

ST

Cuando necesitas funciones que solo existen para geometry:

```
CREATE TABLE incidentes_tunjuelito_geog AS
SELECT
   ST_Transform(geom, 4326)::geography AS geog,
   id,
   -- agrega aquí otras columnas que quieras conservar
   servicio,
   fecha
FROM "Incidentes_2024_Tunjuelito_4686_2";
```

SELECT * FROM incidentes_tunjuelito_geog LIMIT 5;

	geog geography &	ld integer 🔓	servicio character varying (254)	fecha date
1	01010000A0E610000065339EB3A48852C0BB583E86656012400000000000000000	1	11. ATENCIÓN PREH OSPITALARIA - APH	2024-08-09
2	01010000A0E61000003D6306F4C58752C0215FFB657A3812400000000000000000	2	22. EMERGENCIA SIN INTERVENCION	2024-08-31
3	01010000A0E6100000B1E77F24C98752C09DF92A4CF731124000000000000000000	3	7. INCIDENTES CON ÁRBOLES	2024-08-26
4	01010000A0E610000098856535998852C0D0D4A8DB625412400000000000000000	4	2. MATPEL	2024-08-24
5	01010000A0E61000007BA7FB80218952C08F9AFA8CD75112400000000000000000	5	20. FALSA ALARMA	2024-08-07

¿Cuándo usar geography vs geometry?

		-
EQ(:enc	Yrio
L 3(

Datos globales

Datos locales

Funciones espaciales amplias

Medición precisa

geometry

/

X

X

geography

X

/

X

1. Conversión entre formatos

- ST_AsText(geography) → text: Convierte un valor geography a texto en formato WKT (Well-Known Text).
- ST_GeographyFromText(text) → geography: Convierte un texto WKT a un tipo geography.
- ST_AsBinary(geography) → bytea: Devuelve la representación binaria
 WKB (Well-Known Binary) de una geography.
- ST_GeogFromWKB(bytea) → geography: Convierte WKB (bytea) a un tipo geography.
- ST_AsSVG(geography) → text : Representa la geography como un string en formato SVG. Útil para visualización web
- ST_AsGML(geography) → text: Convierte la geography a GML (Geography Markup Language).

1. Conversión entre formatos

- ST_AsKML(geography) → text: Convierte la geography a KML (Keyhole Markup Language), usado en Google Earth.
- ST_AsGeoJson(geography) → text: Convierte una geography a GeoJSON (muy usado en web y APIs).

2. Medición y análisis espacial

- ST_Distance(geography, geography) → double: Calcula la distancia (en metros) entre dos puntos geography
- ST_AsGeoJson(geography) → text: Convierte una geography a GeoJSON (muy usado en web y APIs).

2. Medición y análisis espacial

- ST_DWithin(geography, geography, float8) → boolean: Devuelve true si las dos geometrías están dentro de la distancia dada (en metros).
- ST_Area(geography) → double: Devuelve el área en metros cuadrados de una superficie.
- ST_Length(geography) → double: Devuelve la longitud de una línea en metros

3. Relaciones espaciales

- ST_Covers(geography, geography) → boolean: Devuelve true si la primera geography cubre completamente a la segunda.
- ST_CoveredBy(geography, geography) → boolean: Devuelve true si la primera geography está completamente contenida dentro de la segunda
- ST_Intersects(geography, geography) → boolean: Devuelve true si las dos geography se cruzan o tocan.

4. Geometrías derivadas

- ST_Buffer(geography, float8) → geography: Crea un área circular (buffer) en metros alrededor de una geography.
- ST_Intersection(geography, geography) → geography: Devuelve la geometría común (intersección) entre dos geography.

GRACIAS

Cristian Delgado