Linkedin Job Application Rates

By: Laura Cai, Jessie Ringness, Karen Dong, Rebekah Kim

Why Linkedin Job Listings?

- LinkedIn connects companies and potential employees with thousands of active job listings
- What variables contribute to people applying to an online job posting after viewing it?
 - Hourly salary
 - Company follower count
 - Remote work
 - Job experience level
 - Time posted
 - Benefits

Engineer in New York, 39,386 results

Data Introduction

Created by Arsh Koneru-Ansari in July 2023, who used Python to scrape data directly from **linkedin.com**

Scraper code is published in their <u>GitHub</u>

Variables we are observing:

- o applies: # of applications
- views: # of views
- max_salary: max salary offered
- o remote_allowed: (1 = yes)
- follower_count: # of company followers on LinkedIn
- formatted_experience_level: job experience level (entry level, associate, mid-senior level, etc.)
- original_listed_time: time and date when a listing was posted
- type: type of benefit provided (Medical insurance, 401(k), etc.)

- per_applies: % of viewers who apply
 - applies divided by views

- hourly_max_salary: maximum salary in hourly rate
 - Standardized max_salary

- listed_time: categorical variable with 4 levels about the time of day posted
 - night (0 am 5 am), morning (6 am 11 am),
 afternoon (12 pm 5 pm), evening (6 pm 11 pm)

if_benefit: are benefits listed? (1 = yes)

EDA

- no apparent direction or shape between the hourly maximum salary and applications per view for each of the experience levels
 - Correlation: -0.033 (moderately weak relationship)
 - concentrated to have less than \$200k for adjusted hourly max salary

- slight linear correlation between follower count of a company and percentage of viewers who apply to the job
- concentrated to have less than 1M followers slight positive linear correlation between a job's adjusted hourly maximum salary and percentage of viewers who apply to the job
 - concentrated to have less than \$200k for adjusted hourly max salary

Methodology

A <u>multiple linear regression model</u> is most appropriate, given that our response is numerical and we have more than one potential predictor variable

1) Manipulate data

2) Split data

• 75% of data in training, 25% in testing sets

3) Create recipes and workflows for models

<u>Model 1:</u> hourly max salary, follower count, remote allowed, formatted experience level, if benefits, time posted

- Full model containing all proposed variables **Model 2:** remote allowed, formatted experience level, follower count
 - Contains only statistically significant variables from the full mode, using a significance level of alpha = 0.05

Model 3: formatted experience level, follower count, remote allowed, hourly max salary

 Includes interaction effect between forformatted experience level and hourly max salary

4) Compare model fit stats using cross validation

Model 1:	mean_adj_rsq	$mean_aic$	mean_bio
	0.023	-2095.867	-2021.562
Model 2:	mean_adj_rsq	mean_aic	mean_bio
	0.024	-2101.431	-2053.664
Model 3:	mean_adj_rsq	$mean_aic$	mean_bio
	0.022	-2092.22	-2012.607

5) Select model

We selected <u>model 2</u> as out final model as it is more parsimonious, has a higher adjusted R squared, and lower AIC and BIC

6) Evaluate model

- Tests for multicollinearity and overfit
- Tested conditions for inference

Final Model + Interesting Findings

```
\begin{array}{lll} per\_applies &=& 0.209 \ + \ 0.010 (follower\_count(millions)) \ + \ 0.033 (remote\_allowed) \\ -0.054 (Director) -0.016 (Entry\_level) -0.068 (Executive) -0.003 (Internship) -0.009 (Mid\_Senior\_level) \end{array}
```

Variables

Predictors:

- Follower count (millions)
- Remote allowed
- Formatted experience level

Response:

 Percent of viewers who applied

Results

No overfit:

- RMSE: **0.1189** (training) vs 0.1193 (testing)

No multicollinearity:

- VIF < 10

The **R-squared** value of **0.0280** suggests there is no significant relationship between our response variable and predictor variables.

Context

Our model suggests that the predictors we analyzed don't provide much insight into what makes a LinkedIn post have significant popularity, which means that job listing popularity is difficult to quantify.

R Squared	Adj. R Squared	AIC	BIC
0.028	0.024	-2293.407	-2244.857

Conclusions + Future Work

No Significant Statistical Relationship

between % of viewers who applied and whether it's remote, its experience level, its hour posted, if benefits were listed

Limitations

- Assumption errors
 about annual max salary
- Filtering and threshold for outliers
- Lack of data about how long jobs were listed

Future Work

- Improve methods for filtering outliers and deciding thresholds for views, follower count, salaries, etc.
- Improve data scraping consistency and discern original listed time from scraped time