The Hybrid- π Model

E,B,C: Extrinsic Terminals

E',B',C': Intrinsic Terminals

• Simplifications:

- r_e, r_b, r_c can be *safely neglected* under *low to moderate frequencies* of operation
- $ightharpoonup r_{\mu}$ can be *neglected*, since it's *extremely large*
- At low to moderate frequencies, the capacitive reactances of C_{π} and C_{μ} will be extremely large \Rightarrow can be neglected
- \triangleright Leads to the *Low-Frequency T-Model*, having only *three components*: r_{π} , $g_{m}v_{1}$, and r_{0}
- > Simplest possible equivalent results if r_0 is also neglected!

Low-Frequency T-Model

• Note: The *output circuit* resembles a *non-ideal current source* of *magnitude* $g_m v_1$ (or equivalently, βi_b) with *output resistance* r_0

- This model is appropriate when the ac input is applied to base
- When the ac input is applied to the emitter, then need to draw this circuit in a slightly different way

