Conversion Table for natural and MKSA Units

Natural units defined by: $\hbar=c=1$ (and $4\pi\varepsilon_0=1$). Remaining unit is choosen to be Energy (eV).

Quantity	Symbol	natural units	MKSA
Length	ℓ	(1/eV)	$1.9732705 \cdot 10^{-7} \mathrm{m} \approx 0.2 \mu\mathrm{m}$
Mass	m	1 eV	$1.7826627 \cdot 10^{-36} \text{ kg}$
Time	\overline{t}	(1/eV)	$6.5821220 \cdot 10^{-16} \text{ s} \approx .66 \text{ fs}$
Frequency	ν	1 eV	$1.5192669 \cdot 10^{15} \text{ Hz}$
Speed	v	1	$2.99792458 \cdot 10^8 \text{ m/s}$
Momentum	p	1 eV	$5.3442883 \cdot 10^{-28} \text{ kg·m/s}$
Force	F	$1 \mathrm{~eV^2}$	$8.1194003 \cdot 10^{-13} \text{ N}$
Power	P	1 eV^2	$0.24341350 \ \mathrm{mW}$
Energy	E	1 eV	$1.6021773 \cdot 10^{-19} \text{ J}$
Charge	q	1	$1.8755468 \cdot 10^{-18} \text{ C}$
Charge density	ρ	$1~{ m eV^3}$	244.10013 C/m^3
Current	I	1 eV	2.8494561 mA
Current density	J	$1~{ m eV^3}$	$7.3179379 \cdot 10^{10} \text{ A/m}^2$
Electric field	\overline{E}	$1 \mathrm{eV^2}$	432.90844 V/mm
Potential	Φ	1 eV	85.424546 mV
Polarization	P	1 eV^2	$4.8167560 \cdot 10^{-5} \text{ C/m}^2$
Conductivity	σ	1 eV	$(1.6904124 \cdot 10^5)$ S/m
Resistance	\overline{R}	1	$\overline{29.979246}$ $\overline{\Omega}$
Capacitance	C	$1/\mathrm{eV}$	$2.1955596 \cdot 10^{-17} \text{ F}$
Magnetic flux	ϕ	1	$5.6227478 \cdot 10^{-17} \text{ Wb}$
Magnetic induction	B	$1 \mathrm{eV^2}$	1.4440271 mT
Magnetization	M	$1 \mathrm{eV}^2$	$(1.4440271 \cdot 10^4)$ A/m
Inductance	L	1/eV	$1.9732705 \cdot 10^{-14} \text{ H}$
some constants:			
Planck's quantum	\hbar	1	$1.05457266 \cdot 10^{-34} \text{ J} \cdot \text{s}$
$h = 2\pi\hbar$	h	2π	$6.6260755 \cdot 10^{-34} \text{ J} \cdot \text{s}$
Charge of electron	e	$8.5424546 \cdot 10^{-2}$	$1.60217733 \cdot 10^{-19} \text{ C}$
Bohr radius, \hbar^2/me^2	a_0	$2.6817268 \cdot 10^{-4} / eV$	$5.29177249 \cdot 10^{-11} \text{ m}$
Energy 1 electron Volt	eV	1 eV	$1.60217733 \cdot 10^{-19} \text{ J}$
Rydberg energy, $e^2/2a_0$	E_{Ryd}	13.605698 eV	$2.1798741 \cdot 10^{-18} \text{ J}$
Hartree energy, e^2/a_0	$E_{ m h}$	27.211396 eV	$4.3597482 \cdot 10^{-18} \text{ J}$
Speed of light	\overline{c}	1	$(2.99792458) \cdot 10^8 \text{ m/s}$
Permeability of vacuum	$\overline{\mu_0}$	4π	$4\pi \cdot 10^{-7} (H/m)$
Permittivity of vacuum	$\overline{arepsilon_0}$	$1/4\pi$	$(8.854187817 \cdot 10^{-12})$ (F/m)
Bohr magneton	μ_B	$8.3585815 \cdot 10^{-8} / eV$	$9.2740154 \cdot 10^{-24} \text{ J/T}$
Mass of electron	m_e	$510.99906~\mathrm{keV}$	$9.1093897 \cdot 10^{-31} \text{ kg}$
Mass of proton	m_p	$938.27234~\mathrm{MeV}$	$1.6726231 \cdot 10^{-27} \text{ kg}$
Mass of neutron	m_n	$939.56563~\mathrm{MeV}$	$1.6749286 \cdot 10^{-27} \text{ kg}$
Gravitation constant	G	$6.70711 \cdot 10^{-57} / eV^2$	$6.67259 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$