Určenie elektrickej kapacity kondenzátora pomocou obvodu so striedavým elektrickým prúdom

Ciele práce:

- 1. Zhodnotiť význam korekcie pri meraní s korekciou na vnútorný odpor ampérmetra.
- 2. Odmerať elektrickú kapacitu kondenzátora pomocou obvodu so striedavým elektrickým prúdom.

Teoretický úvod:

Elektrický kondenzátor je sústava dvoch navzájom izolovaných vodičov. Elektrická kapacita kondenzátora (C) sa vypočíta:

$$C = \frac{Q}{U}$$

Ak zapojíme kondenzátory paralelne, napätie (U) bude a celkový náboj (Q) bude sumou všetkých nábojov, výsledná kapacita je:

$$C = \sum C_i$$

Ak ich zapojíme sériovo, náboj bude rovnaký a napätie bude sumou všetkých napätí, výslednú kapacitu vypočítame:

$$\frac{1}{C} = \sum \frac{1}{C_i}$$

Pri meraní striedavých elektrických veličín sa zaviedli pojmy efektívne elektrické napätie U_{ef} a efektívny elektrický prúd I_{ef} , tieto veličiny vypočítame:

$$I_{ef} = \frac{I_0}{\sqrt{2}} U_{ef} = \frac{U_0}{\sqrt{2}}$$

Nekorigované hodnoty elektrickej kapacity meraných kondenzátorov vypočítame:

$$C = \frac{I_{ef}}{2 * \pi * f * U_{ef}}$$

V prípade uváženia korekcie na vnútorný odpor ampérmetra, korigovanú hodnotu vypočítame:

$$C = \frac{I_{ef}}{2 * \pi * f * \sqrt{U_{ef}^2 - I_{ef}^2 * R_A^2}}$$

Kde $\{f\}$ je frekvencia a $\{R_A\}$ je vnútorný odpor ampérmetra pri danom rozsahu.

Prístroje a pomôcky:

Sada meraných kondenzátorov, analógový multimeter, digitálny multimeter, reostat, zdroj striedavého elektrického napätia, spojovacie vodiče, tabuľka odporov

Schéma zapojenia elektrického obvodu:

Schéma č. 1: Zapojenie pre určenie elektrickej kapacity kondenzátora pomocou obvodu so striedavým elektrickým prúdom

Pracovný postup:

- 1. Zapojíme elektrický obvod podľa Schémy 1, kde použijeme analógový ampérmeter, digitálny voltmeter a kondenzátor s elektrickou kapacitou C1.
- 2. Pomocou reostatu sa snažíme vždy nastaviť takú hodnotu elektrického prúdu tečúceho obvodom, aby ručička analógového ampérmetra sa pre nastavený rozsah nachádzala na pravej strane jeho stupnice.
- 3. Výsledné hodnoty odmeraných elektrických napätí na voltmetri a elektrických prúdov na ampérmetri zapíšeme do tabuľky.
- 4. Určíme si maximálne absolútne chyby pre merania prúdu a napätia.
- 5. Zaznačíme si hodnotu vnútorného elektrického odporu ampérmetra pre dané nastavenie rozsahu z tabuľky ktorá je pri úlohe.
- 6. Meranie opakujeme pre kondenzátor s elektrickou kapacitou C2, sériové zapojenie C1 C2 a paralelné zapojenie C1 C2.

Tabuľky nameraných a vypočítaných hodnôt:

Tabuľka 1:Tabuľka nameraných hodnôt lef,Uef ,vypočítaných chýb daných prístrojov Δlef,ΔUef a tabuľkových hodnôt Ctab,Ra.

Zapojenia	Ctab/µF	Ief/mA	ΔIef/mA	Uef/V	ΔUef/V	Ra/Ω
Kondenzátor 1	0,93	2,6	0,075	9	0,102	290
Kondenzátor 2	3,89	2,7	0,075	2,3	0,0484	290
Sériovo	0,7506	2,6	0,075	11,14	0,11912	290
Paralelne	4,82	2,9	0,075	2,06	0,04648	290

Tabuľka 2:Tabuľka vypočítaných hodnôt kapacít kondenzátorov, korigovaných hodnôt a údajov potrebných na výpočet maximálnej absolútnej chyby merania.

Zapojenie	C/µF	Ckor/µF	δrdg / %	Ndig	Nmax	Cmr/µF	ΔC/μF	ΔCkor/μF
Kondenzátor 1	0,920	0,923	0,8	3	2000	20	0,0369	0,0373
Kondenzátor 2	3,737	3,974	0,8	3	2000	20	0,1824	0,2194
Sériovo	0,743	0,745	0,8	3	2000	20	0,0293	0,0295
Paralelne	4,481	4,909	0,8	3	2000	20	0,2169	0,2852

Vyhodnotenie nameraných údajov a vzorové výpočty:

$$C = \frac{I_{ef}}{2*\pi*f*U_{ef}} = \frac{2.6*10^{-3}A}{2*\pi*50Hz*9V} = 0.920*10^{-6} F$$

$$C_{kor} = \frac{I_{ef}}{2*\pi*f*} = \frac{2.6*10^{-3}A}{2*\pi*f*} = \frac{2.6*10^{-3}A}{2*\pi*50Hz*} = 0.923*10^{-6} F$$

Rozbor presnosti merania:

$$\Delta U_{ef,max} = \frac{\delta r dg[\%]}{100\%} * hodnota + \frac{Ndig}{Nmax} * rozsah = \frac{0.8}{100} * 9V + \frac{3}{2000} * 20V = 0.102 V$$

$$\Delta I_{ef,max} = \frac{\delta TP[\%]}{100\%} * rozsah = \frac{2.5}{100} * 3 * 10^{-3}A = 0.075 * 10^{-3} A$$

$$\Delta C_{max} = |-\frac{I_{ef}}{2 * \pi * f * U_{ef}^2}| * \Delta U_{ef,max} + |\frac{1}{2 * \pi * f * U_{ef}}| * \Delta I_{ef,max} =$$

$$= |-\frac{0.0026 A}{2 * \pi * 50 Hz * 9^2 V}| * 0.102 V + |\frac{1}{2 * \pi * 50 Hz * 9V}| * 0.075 * 10^{-3} A = 0.0369 * 10^{-6} F$$

$$\Delta C_{kor,max} = |-\frac{I_{ef} * U_{ef}}{2 * \pi * f * (U_{ef}^2 - I_{ef}^2 * U_{ef}^2 * R_A^2)^{\frac{3}{2}}}| * \Delta U_{ef,max} + |\frac{U_{ef}^2}{2 * \pi * f * (U_{ef}^2 - I_{ef}^2 * U_{ef}^2 * R_A^2)^{\frac{3}{2}}}| * \Delta I_{ef,max} =$$

$$|-\frac{0.0026 A * 9V}{2 * \pi * 50 Hz * (9^2 V - 0.0026^2 A * 9^2 V * 290^2 \Omega)^{\frac{3}{2}}}| * 0.102 V + |\frac{9^2 V}{2 * \pi * 50 Hz * (9^2 V - 0.0026^2 A * 9^2 V * 290^2 \Omega)^{\frac{3}{2}}}| * 0.075 * 10^{-3} A = 0,0373 * 10^{-6} F$$

Zápis konečnej hodnoty nameranej veličiny:

$$C_1 = (0.92 \pm 0.04) \,\mu\text{F}; \,\delta C_1 = 4.3\%$$
 $C_{1kor} = (0.92 \pm 0.04) \,\mu\text{F}; \,\delta C_{1kor} = 4.3\%$ $C_1 = 0.92 \,\mu\text{F}; \,\Delta C_{tab} = -0.03 \,\mu\text{F}; \,\delta C_{1tab} = 3.3\%$

Diskusia a Záver:

Na tomto laboratórnom cvičení sme určovali elektrické kapacity kondenzátorov pomocou obvodu so striedavým elektrickým prúdom. Z teórie vyplývalo že jednotlivé zapojenia budú mať vplyv na výslednú kapacitu.

Našou úlohou bolo zhodnotiť význam korekcie, keďže výpočet pre korigovanú hodnotu je náročnejší na výpočet. Z mojich meraní vyplynulo, že korekcia mala najväčší význam pri meraní kapacity druhého kondenzátora a paralelne zapojených kondenzátorov, no pri meraní kapacity prvého kondenzátora a sériového zapojenia nemala moc veľký význam.

Pri meraní kapacity prvého kondenzátora nám vyšla chyba merania 4.3%, čo je stále presné meranie a taktiež správne, pretože odchylka od tabuľovanej hodnoty vyšla 3.3%.

K najväčším chybám došlo pri meraní prúdu, kde chyba predstavovala 71% z celkovej chyby a zvyšok tvorila chyba z merania odporu 28%.

Použitá literatúra:

https://ebooks.fchpt.stuba.sk/zoom/32/view?page=1&p=separate