

Kollaboratives Arbeiten in 3D Mixed Realities

Masterprojekt an der HAW Hamburg

Iwer Petersen

Christian Blank

Raimund Wege

Malte Eckhof

Prof. Dr. Birgit Wendholt

Agenda

- Objekt Tracking
- Objekt Rekonstruktion
- Gestenerkennung
 - Tiefenbilder mittels Stereoskopie
 - Handposenerkennung
 - Verfahren

Bachelorarbeit:

Video Projektionsmapping mittels 3D Objekttracking

Ziel

3D Modell passend auf bewegtes Objekt projizieren

Video

- Microsoft XBox Kinect Sensor
 - Tiefenbildkamera, liefert 3D Informationen
- PointCloud Library
 - Ausgegliedert aus ROS (Willow Garage)
 - Verarbeitung und Interpretation von Punktwolken

- Separierung des Objektes aus Kinect Szene
 - → partielles Modell

- Zusammenfügen partieller Scans
 - → Punktwolkenmodell des Objektes

- Partikelfilter Tracking findet Modell in Live-Szene
 - Liefert Translations- und Rotationsparameter
- Projektor projiziert transformiertes 3D Modell
 - Kamera Projektor Kalibrierung

Objektrekonstruktion – Kinect Fusion

- Integriert in Realtime Tiefenbilder in Signed Distance Function
- Komplettiert 3D Szene
- Mittelt Fehler, aber auch Feinheiten aus
- Objektrekonstruktion dann durch Entfernen eines Objekts

[1] Izadi et. al. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera

Objektrekonstruktion – Realtime Structured Light Scan

- Scan Einheiten bestehend aus:
 - Projektor, 500Hz Kamera, 2 Webcam
- Projizieren von Lichtpatterns und Synchronisationsframes
- Rekonstruiert 5.2M Punkte bei 10Hz

[2] Ide und Sikora. Real-time active multiview 3D reconstruction.

Multikinect Bodyscanner

Prinzip

- Mehrere Kinects auf Person auf rotierender Platform gerichtet
- Fusion der Daten
- Bereinigung des 3D Modells

Video

[3] Tong et. al. Scanning 3d full human bodies using kinects.

Gestenerkennung

- **Definition**: "Eine Geste ist die Bewegung des Körpers von einer Person, die einem Beobachter eine Information mitteilen soll." [4]
 - => Bewegungsinformationen die durch Computer aufgezeichnet werden können, müssen verarbeitet werden.
- **Problem**: Unterscheidung zwischen beabsichtigter und willkürlicher Bewegung

[4] Wachsmuth, I. & Fröhlich, M. Gesture and Sign Language in Human-Computer Interaction: International Gesture Workshop.1998

Tiefenbilder mittels Stereoskopie

Epipolar-Geometrie – Quelle: Tetzlaff, Olaf. Tiefenbilder aus Stereo-Bildpaaren mit Hilfe der dynamischen Programmierung. 2005

Korrespondenzsuche – Quelle: Tetzlaff, Olaf. Tiefenbilder aus Stereo-Bildpaaren mit Hilfe der dynamischen Programmierung. 2005

Modellbasierte Handposenerkennung

Bachelorarbeit von Hannes Dieck

- Offline- und Online-Phase
- Berechnung des Hautfarbenmodells und des Handmodells
- Handmodell mit 27 DOFs

Modellbasierte Handposenerkennung

Bachelorarbeit von Hannes Dieck

Verfahren

Heuristik

Maschinelles Lernen (meist überwacht)

Gestenerkennung

- Ziel: Erkennung von Posen und dynamische Gesten im 3D Raum
- Vorgehen:
 - Trame: Abstraktion der Eingabedaten auf Skelett-Modell als Grundlage für Gestenerkennung
 - Analyse des Streams von Skeletten in Echtzeit
 - Matching mit Gestenalphabet
 - DSL für Gestenalphabet

Vielen Dank für Ihre Aufmerksamkeit!