Age Detection with Facial Images

Prerak Agarwal
GA DSI-14 Capstone Presentation
29th June 2020

Problem Statement

- → Can a computer guess a person's age just by looking at an image of their face?
- → If yes, how accurately?

Potential use-cases - To study age-profile of guests at stores / venues with high volumes of guests

Agenda

- → Traditional ML vs. Deep Learning
- → EDA
- → Traditional ML
- → Deep Learning
- → Conclusion
- → Demo

Approaches

- → Traditional Machine Learning
 - Image feature extraction
 - Classification modelling with optimization

VS.

- → Deep Learning
 - Building initial CNN model
 - Improving the model
 - Optimizing the model
 - Building final CNN model

EDA & Model Prep

Training data (70%): 23,440 images
Total data: 33,486 images
Testing data (30%): 10,046 image

EDA & Model Prep

Class label	Age-ranges (classes)
0	1-2
1	3 - 9
2	10 - 20
3	21 - 25
4	26 - 27
5	28 - 31
6	32 - 36
7	37 - 45
8	46 - 54
9	55 - 65
10	66 - 116

Traditional ML - Feature Extraction

Traditional ML - Feature Extraction

Traditional ML - Classification Modelling

- → RandomForestClassifier & SVC with GridSearchCV
- → Severely over-fitting
- → Long training time for SVC (>10 hours)

	GridSearchCV best score (cv=5)	Train Accuracy	Test Accuracy
${\bf Random Forest Classifier}$	39.3%	66.8%	39.8%
SVC	49.0%	92.9%	53.4%

Deep Learning - Initial CNN Model

Model Description	Epochs	Train Loss	Validation Loss	Train Accuracy	Validation Accuracy
CNN with grayscale images	Early stop at 28 of 30 epochs	1.5355	1.6252	41.40%	38.34%

Deep Learning - Initial CNN Model

- 0.7

- 0.6

- 0.5

- 0.4

0.3

0.2

- 0.1

Deep Learning - Improving the Model

Original Training Data **Original Image** 23,440 images **Augmented Images** Augmented Training Data 234,400 images (10x)Rotated +40deg Rotated +20deg Rotated Odeg Rotated -20deg Rotated -40deg

Deep Learning - Improving the Model

Model Description	Epochs	Train Loss	Validation Loss	Train Accuracy	Validation Accuracy
CNN with grayscale images	Early stop at 28 of 30 epochs	1.5355	1.6252	41.40%	38.34%
CNN with RGB coloured images	30 epochs	1.4672	1.5971	43.56%	39.46%
CNN with grayscale images & augmented training dataset	30 epochs	1.4710	1.4727	42.51%	42.52%
CNN with grayscale images & augmented training dataset	60 epochs	1.3793	1.4028	45.45%	44.85%

Deep Learning - Re-thinking the Problem

Class label	Age-ranges (classes)
0	1 - 2
1	3 - 9
2	10 - 20
3	21 - 25
4	26 - 27
5	28 - 31
6	32 - 36
7	37 - 45
8	46 - 54
9	55 - 65
10	66 - 116

Class label	Age-ranges (classes)
0	1-2
1	3 - 9
2	10 - 20
3	21 - 27
4	28 - 45
5	46 - 65
6	66 - 116

Deep Learning - Re-thinking the Problem

Model Description	Epochs	Train Loss	Validation Loss	Train Accuracy	Validation Accuracy
CNN with grayscale images	Early stop at 28 of 30 epochs	1.5355	1.6252	41.40%	38.34%
CNN with RGB coloured images	30 epochs	1.4672	1.5971	43.56%	39.46%
CNN with grayscale images & augmented training dataset	30 epochs	1.4710	1.4727	42.51%	42.52%
CNN with grayscale images & augmented training dataset	60 epochs	1.3793	1.4028	45.45%	44.85%
CNN with grayscale images & re-distributed age-ranges	30 epochs	1.0265	1.1075	57.58%	54.17%

Deep Learning - Re-thinking the Problem

Deep Learning - Final CNN Model

Deep Learning - Final CNN Model

Model Description	Epochs	Train Loss	Validation Loss	Train Accuracy	Validation Accuracy
CNN with grayscale images	Early stop at 28 of 30 epochs	1.5355	1.6252	41.40%	38.34%
CNN with RGB coloured images	30 epochs	1.4672	1.5971	43.56%	39.46%
CNN with grayscale images & augmented training dataset	30 epochs	1.4710	1.4727	42.51%	42.52%
CNN with grayscale images & augmented training dataset	60 epochs	1.3793	1.4028	45.45%	44.85%
CNN with grayscale images & re-distributed age-ranges	30 epochs	1.0265	1.1075	57.58%	54.17%
CNN with grayscale images, augmented training dataset, re-distributed age-ranges & optimized architecture	Peak at 54 of 60 epochs	0.2430	0.6052	90.44%	82.97%

Deep Learning - Final CNN Model

Conclusion & Limitations

- → Traditional Machine Learning
 - Low accuracy
 - Requires expertise for feature extraction
 - Time intensive

VS.

- → Deep Learning
 - High accuracy
 - No need for feature extraction

Some testing...

Try it yourself!

→ Google Colab notebook

[https://colab.research.google.com/drive/IrAQ_n-7--AlOafVTB8Sq6RkYTfe-qkJB?usp=sharing]

- Sign in to your Google account.
- Click on "Copy to Drive" button at the top.
- Run cells one-by-one.
- Grant permission to access webcam.
- Take a picture and detect your age.

→ Jupyter notebook

[https://drive.google.com/file/d/18eG9nXqmlCHLp_DkFg-d0IReh34Kr3AG/view?usp=sharing]

- Download the ZIP file.
- Unzip.
- Run the Jupyter notebook.
- ◆ Try age detection on LIVE webcam video!
- → Share your results with me!:)

Still curious?

→ Read about my project on *Towards Data Science*

[https://towardsdatascience.com/age-detection-using-facial-images-traditional-machine-learning-vs-deep-learning-2437 b2feeab2]

Thank you!

Prerak Agarwal
GA DSI-14 Capstone Presentation
29th June 2020

