Lezione 13 Geometria 2

Federico De Sisti 2025-04-28

0.1 Successioni di Cauchy

Definizione 1 (Successione di Cauchy)

Sia X spazio metrico, a successione in X. a è di Cauchy se

$$\forall \varepsilon > 0 \ \exists \ N \mid d(a_m, a_n) < \varepsilon \ \forall n, m \ge N.$$

Osservzioni:

- 1. Se una successione è convergente allora è di Cauchy.
- 2. Se una successione di Cauchy a ha una sottosuccessione di Cauchy, allora a è convergente. (verifica per esercizio)

Definizione 2 (Spazio metrico completo)

Uno spazio metrico è completo se ogni successione di Cauchy è convergente.

Teorema 1

 \mathbb{R}^n è completo

Dimostrazione

Sia a successione di Cauchy in \mathbb{R}^n , scegliamo $N \in \mathbb{Z}$

tale che $d(a_n, a_m) < 1 \quad \forall n, m \ge N$

Sia $\{||a(1)||, ||a(2)||, \dots, ||a(N)||\}$ e sia R il massimo di quest'insieme.

Allora $D = \overline{B_{R+1}(0)} = \{ p \in \mathbb{R}^n \mid ||p|| \le R+1 \}$

contiene $a(n) \ \forall n \in \mathbb{Z}_{\geq 1}$

Sappiamo che D è compatto, è anche spazio metrico \Rightarrow è 1^o è primo numerabile, quindi D è compatto per successioni.

Segue: a ha una sottosuccessione convergente per l'osservazione 2), la successione converge. \Box

0.2 Compattezza in spazi metrici

Definizione 3

Uno spazio metrico X si dice totalmente limitato se $\forall r \in \mathbb{R}_{>0} \; \exists \; x_1, \ldots, x_n \in$

X tale che $X = \bigcup_{i=1}^{n} B_r(x_i)$ (n e i punti x_1, \ldots, x_n possono dipendere da r)

Lemma 1

Ogni spazio metrico totalmente limitato è separabile. (quindi è anche 2°-numerabile)

Dimostrazione

Dato $m \in \mathbb{Z}_{\geq 1}$ considero $E_m \subseteq X$ sottoinsieme finito tale che X è ricoperto da palle aperte di centro i punti di E_n e raggio $\frac{1}{m}$.

Considero $E = \bigcup_{n=1}^{+\infty} E_n$

E è numerabile ed è denso perchè ogni $x \in X$ è a distanza $< \frac{1}{m}$ da qualceh punto doi E e questo vale $\forall m \in \mathbb{Z}_{\geq 1}$

Teorema 2

Sia X spazio metrico. Sono equivalenti:

- 1. X compatto
- 2. X compatto per successioni
- 3. X completo e totalmente limitato

Dimostrazione

Dimostriamo ogni impliazione

- $1) \Rightarrow 2)$ X è 1°-numerabile, quindi se è compatto allora è compatto per successioni
- $(2) \Rightarrow (3)$ Supponiumo X compatto per successioni, ogni successione di Cauchy am $mette\ sottosuccessione\ convergente,\ quindi\ X\ \ \dot{e}\ completo.\ Dimostriamo$ che X è totalmente limitato per assurdo, cioè $\exists r > 0$ tale che X non è unione di un numero finito di palle aperte di raggio r.

Costruiamo una successione a in X:

- $a(1) \in X$ a piacere
- $a(2) \in X \setminus B_r(a(1)) \neq \emptyset$
- $a(3) \in X \setminus (B_r(a(1)) \cup B_r(a(2)))$

 $a(n) \in X \setminus \bigcup_{k=1}^{n-1} B_r(a(k)) \neq \emptyset$ per ipotesi Abbiamo $d(a(n), a(m)) \geq r \quad \forall n, m \text{ quindi a non è di Cauchy e non lo}$ \grave{e} nessuna sottosuccessione \Rightarrow Allora nessuna sottosuccessione \grave{e} convergente: assurdo.

 $3) \Rightarrow 1$) X completo e totalmente limitato. Per il lemma X è separabile e 2° numerabile

Dimostriamo 2) e seguirà anche 1).

Sia a successione in X, consideriamo per ogni $m \in \mathbb{Z}_{>1}$ un insieme finito $E_m \subseteq X \ tale \ che$

$$X = \bigcup_{e \in E_m} B_{2^{-m}}(e).$$

Per m = 1 scelgo una $e_1 \in E_1$ tale che $B_{2^{-1}}(e)$ contiene a(n) per infiniti

Scelgo anche $k_1 \in \mathbb{Z}_{>1}$ tale che $a(k_1) \in B_{2^{-1}}(e_1)$

Per m=2 scelgo $e_2 \in E_2$ tale che $B_{2^{-1}}(e) \cap B_{2^{-2}}(e_2)$ contiene a(n) per

infiniti valori di n e scelgo $k_2 > k_1$ tale che $a(k_2) \in B_{2^{-1}}(e_1) \cap B^{2^{-2}}(e_2)$ Iterando ottengo una sottosuccessione $a(k_l)$ che è di Cauchy (esercizio con la disuguaglianza triangolare) quindi la sottosuccessione converge. Segue 2) e anche 1).

1 Topologia Algebrica

Obiettivo

associarea ogni spazio topologico oggetti algebrici (gruppi, spazi vettoriali, moduli, anelli, ecc..) in modo che prorietà topologiche corrispondano a proprietà algebriche.

Esempi di applicazioni:

- 1. \mathbb{R}^2 e $\mathbb{R}^2 \setminus \{0\}$ non sono omeomorfi: dimostrazione?
- 2. $\mathbb{P}^2_{\mathbb{R}}$ e $S^1 \times S^1$ non sono omeomorfi, dimostrazione?

(f esiste localmente ma non globalmente)

3. Sia $U\subseteq\mathbb{R}^2$ aperto, $A,B:U\to\mathbb{R}$ di classe C^∞ . Supponiamo, $\frac{\partial A}{\partial y}=\frac{\partial B}{\partial x}$ Domanda: esiste f di classe C^∞ tale che $A=\frac{\partial f}{\partial x},\ B=\frac{\partial f}{\partial y}$? Risposta: dipende da U (e anche da A,B). Ad esempio se $U=\mathbb{R}^2$ f esiste $\forall A, \forall B$ se $U=\mathbb{R}^2\setminus\{0\}$ allora no ad esempio $A=\frac{y}{x^2+y^2}, B=\frac{-x}{x^2+y^2}$ non sono derivate parziali di alcuna $f:\mathbb{R}^2\setminus\{0\}\to\mathbb{R}$

1.1 Gruppo fondamentale

Definizione 4

- 1. Sia X spazio topologico, siano $a,b \in X$. Denotiamo con $\Omega(X,a,b) = \{\alpha: [0,1] \to X \mid \alpha \text{ continua, } \alpha(0) = a, \alpha(1) = b\}$ l'insieme dei cammini in X da a b
- 2. Dati $a,b,c \in X$ e cammini $\alpha \in (X,a,b)$ e $\beta \in \Omega(X,b,c)$ è definita la giunzione $\alpha \star \beta \in \Omega(X,a,c)$ con la formula

$$(a \star b)(t) = \begin{cases} \alpha(2t) & \text{se } t \in [0, \frac{1}{2}] \\ \beta(2t - 1) & \text{se } t \in [\frac{1}{2}, 1] \end{cases}.$$

Inoltre si definisce l'inversione $i(\alpha \in \Omega(X, b, a) \text{ ponendo } i(\alpha)(t) = \alpha(1 - t)$

Definizione 5

Siano X spazio topologico, $a,b \in X$ Due cammini $\alpha,\beta \in \Omega(X,a,b)$ sono equivalenti se esiste $F:[0,1]\times [0,1] \to X$ continua tale che

1.
$$F(t,0) = \alpha(t) \ \forall t$$

2.
$$F(t,1) = \beta(t) \ \forall t$$

3.
$$F(0,s) = a$$
, $F(1,s) = b \ \forall s \in [0,1]$

In tal caso si scrive $\alpha \sim \beta$ e una tale F si dice omotopia di cammini da α a β .

Osservazione:

L'equivalenza di cammini è una relazione di equivalenza. Verifica:

- 1. $\alpha \sim \alpha$ basta prendere $F(t,s) = \alpha(t)$
- 2. se $\alpha \sim \beta$ con omotopia di cammini F da α a β allora $\tilde{F}(t,s) = F(t,1-s)$ è un'omotopia di cammini da β a α , quindi $\beta \sim \alpha$.
- 3. Se $\alpha \sim \beta$ tramite F, e $\beta \sim \gamma$ tramite G allora

$$H(t,s) = \begin{cases} F(t,2s) & s \in [0,\frac{1}{2}] \\ G(t,2s-1) & s \in [\frac{1}{2},1] \end{cases}.$$

è un'omotopia di cammini da α a γ

Esempio:

Sia $X \subseteq \mathbb{R}^n$ sottoinsieme convesso non vuoto AGGIUNGI IMMAGINE 4:54

Siano $a, b \in X$ qualsiasi e $\alpha, \beta \in \Omega(X, \alpha, \beta)$ qualsiasi.

Allora $\alpha \sim \beta$, $F(t,s) = (1-s)\alpha(t) + s\beta(t)$

(è ben definita e ha valori in X perché X è convesso)

Osservazione

L'equivalenza di cammini è compatibile con la giunzione:

se $\alpha \sim \alpha', \beta \sim \beta' \alpha \star \beta$ è definita,

Allora $(\alpha \star \beta) \sim (\alpha' \star \beta')$

Siano F omotopia di cammini da α a α' e G da β a β' , allora:

$$H(t,s) = \begin{cases} F(2t,s) & t \in [0,\frac{1}{2}] \\ G(2t-1,s) & t \in [\frac{1}{2},1] \end{cases}.$$

è omotopia di cammini da $\alpha \star \beta$ a $\alpha' \star \beta'$ Analogamente $i(\alpha) \sim i(\alpha')$

Lemma 2

Siano X spazio topologico $a,b \in X$ $\alpha \in \Omega(X,a,b)$, sia $\Phi : [0,1] \to [0,1]$ continua tale che $\Phi(0) = 0$, $\Phi(1) = 1$. Allora $\beta = \alpha \circ \Phi$ è equivalente ad α

Dimostrazione

$$\alpha(\Phi(t))=\beta(t)$$
 Un'omotopia di cammini da α a β è $F(t,s)=\alpha((1-s)t+s\Phi(t))$

In generale la giunzione di cammini non è associativa

$$(\alpha \star (\beta \star \gamma))(t) = \begin{cases} \alpha(2t) & t \in [0, \frac{1}{2}] \\ \beta(4t - 2) & t \in [\frac{1}{2}, \frac{3}{4}] \\ \gamma(4t - 3) & t \in [\frac{3}{4}, 1] \end{cases}$$
$$((\alpha \star \beta) \star \gamma)(t) = \begin{cases} \alpha(4t) & t \in [0, \frac{1}{4}] \\ \beta(4t - 1) & t \in [\frac{1}{4}, \frac{1}{2}] \\ \gamma(2t - 1) & t \in [\frac{1}{2}, 1] \end{cases}$$

Lemma 3

Sia X spazio topologico, siano a, b, c, d \in X , $\alpha \in \Omega(X,a,b), \beta \in \Omega(X,b,c), \gamma \in \Omega(X,c,d)$ allora

$$(\alpha \star \beta) \star \gamma \sim \alpha \star (\beta \star \gamma).$$

Dimostrazione

Basta usare il lemma, con

$$\Phi(t) = \begin{cases} 2t & t \in [0, \frac{1}{4}] \\ t + \frac{1}{4} & t \in [\frac{1}{4}, \frac{1}{2}] \\ \frac{t+1}{2} & t \in [\frac{1}{2}, 1] \end{cases}.$$

è continua e soddisfa:

$$((\alpha \star \beta) \star \gamma)(t) = (\alpha \star (\beta \star \gamma))(\phi(t)).$$

Definizione 6 (Cammino costante)

Siano X spazio topologico e $a \in X$, definiamo il cammino costante

$$1_a:[0,1]\to Xt\to a.$$

$$1_a \in \Omega(X, a, a)$$

Lemma 4

Siano X spazio topologico, $a,b \in X$, $a \in \Omega(X,a,b)$. Allora sono definite le giunzioni $1_a \star \alpha$ e $\alpha \star 1_b$ e valgono

$$1_a \star \alpha \sim \alpha \sim \alpha \star 1_b$$
.

$$\alpha \star i(\alpha) \sim 1_a$$

 $i(\alpha) \star \alpha \sim 1_a$

Dimostrazione

Le prime due equivalenze si ottengono con riparametrizzazioni

$$(1_a * \alpha)(t) = \alpha(\Phi(t)) \ con \ \Phi(t) = \begin{cases} 0 & t \in [0, \frac{1}{2}] \\ 2t - 1 & t \in [\frac{1}{2}, 1] \end{cases}$$
$$(\alpha \star 1_b)(t) = \alpha(\psi(t)) \ con \ \psi(t) = \begin{cases} 2t & t \in [0, \frac{1}{2}] \\ 1 & t \in [\frac{1}{2}, 1] \end{cases}$$

Dimostriamo la terza equivalenza

Scelgo $s \in [0,1]$ percorro α fino ad un certo punto (che dipende da s) poi sto fermo per un po', poi torno indietro lungo $i(\alpha)$

AGGIUNGI IMMAGINE 5 42

Con quest'idea la formula è

$$F(t,s) = \begin{cases} \alpha(2t) & t \in [0, \frac{1}{2}s] \\ \alpha(s) & t \in [\frac{1}{2}s, 1 - \frac{1}{2}s] \\ \alpha(2 - 2t) & t \in [1 - \frac{1}{2}s, 1] \end{cases}.$$

Questa è omotopia di cammini da 1_a a $\alpha \star i(\alpha)$.

L'ultima equivalenza segue dalla terza, scambiando α con $i(\alpha)$ a con b e usando $i(i(\alpha)) = \alpha$

Definizione 7 (Gruppo fondamentale)

Sia X spazio topologico e $a \in X$. Il quoziente $\Omega(X, a, a)/\sim = \pi_1(X, a)$ è detto gruppo fondamentale di X con punto base a.

Dato $\alpha \in \Omega(X, a, a)$ useremo la solita notazione $[\alpha] \in \pi_1(X, a)$

Teorema 3

Nella definizione precedente $\pi_1(X,a)$ è un gruppo con operazione

$$[\alpha] \cdot [\beta] = [\alpha \star \beta].$$

elemento neutro $[1_a]$ e inverso $[\alpha]^{-1} = [i(\alpha)]$

Dimostrazione

Già fatta.

Notazione 1

Scriveremo semplicemente $[\alpha \star \beta \star \gamma]$ invece di $[(\alpha \star \beta) \star \gamma]$ (l'ordine è importante per i cammini ma non per le classi)

Esempi:

- 1. $X=\{a\}$, c'è un solo cammino ed è $1_a\in\Omega(X,a,a)$ quindi $\pi_1(X,a)=\{[1_a]\}$ è il gruppo banale.
- 2. $X = \mathbb{R}^n, a =$ qualsiasi $\in \mathbb{R}^n$ Ci sono tanti cammini chiusi con punto base a, ma sono tutti equivalenti dato che \mathbb{R}^n è convesso, quindi

$$\pi_1(\mathbb{R}^n, a) = \{[1_a]\}.$$

- è banale.
- 3. Analogamente, se $X \in \mathbb{R}^n$ è convesso, allora $\pi_1(X, a)$ è banale