# Fuel fisheries subsidies in Mexico Gaines Lab

# Back in the day, during fieldwork



# Back in the day, during fieldwork



#### Some stats

#### In the world

- ~ US\$35 billion per year to the fishing industry
- ► Fuel subsidies account for ~22% of total

#### In Mexico

- US\$200 million per year subsidies
- ► US\$30 million per year on fuel

#### Subsidy reforms

- WTO has debated subsidy reforms for almost 20 years now
- SDG 14.6 Seeks to reduce "harmful subsidies"
- Large uncertainty on how big the upsides would be
- ► High political cost on backtracking them

#### Fuel subsidies in fisheries

Demand curve for the average boat



#### Fuel subsidies in fisheries



#### Fuel subsidies in fisheries



Figure 1: A fuel subsidy induces overfishing

#### Fuel subsidies in Mexico

$$I_i = (MDL_i \times DPC_i) \times AF$$

#### Where:

- ▶  $l_i$  is the "Incentive for the acquisition of fuel" for fisher i: The amount of fuel (L) that will be subsidized at p-2
- ► MDL; is the "Maximum daily liters"
- ► DPC<sub>i</sub> is the "Days per cycle"
- AF is the "Adjustment factor"

With 
$$AF = 1$$
,  $I_i = E[L]$ 

## An example



Figure 2: Azteca 1 is a tuna purse seiner with a 3,600 HP Diesel engine

$$I_i = (15455 \ [I/day] \times 220 \ [days]) \times 0.4$$
  
 $I_i = (3.4 \times 10^6 \ [liters]) \times 0.4$   
 $I_i = 1.36 \times 10^6$ 

- On any given year, Azteca I is expected tro consume 3.4 M liters
- The subsidy makes it such that 1.36 M of that come at a price p-2

## Updating the set up



## Updating the setup



How do fisher's fuel consumption respond to block pricing caused by fuel subsidies?

#### Exciting because we can estimate something useful:

▶ Do fishers respond to marginal or average prices? - Interesting insight with implications for micro and fisheries mngmt

How do fisher's fuel consumption respond to block pricing caused by fuel subsidies?

- ▶ Do fishers respond to marginal or average prices? Interesting insight with implications for micro and fisheries mngmt
  - ► If fishers respond to marginal prices, then a subsidy that results in block pricing does not drive overfishing

How do fisher's fuel consumption respond to block pricing caused by fuel subsidies?

- ▶ Do fishers respond to marginal or average prices? Interesting insight with implications for micro and fisheries mngmt
  - ► If fishers respond to marginal prices, then a subsidy that results in block pricing does not drive overfishing
  - ▶ If fishers respond to average prices, then:

How do fisher's fuel consumption respond to block pricing caused by fuel subsidies?

- ▶ Do fishers respond to marginal or average prices? Interesting insight with implications for micro and fisheries mngmt
  - ► If fishers respond to marginal prices, then a subsidy that results in block pricing does not drive overfishing
  - ▶ If fishers respond to average prices, then:
    - Even a subsidy that results in block pricing drives overfishing

How do fisher's fuel consumption respond to block pricing caused by fuel subsidies?

- ▶ Do fishers respond to marginal or average prices? Interesting insight with implications for micro and fisheries mngmt
  - ► If fishers respond to marginal prices, then a subsidy that results in block pricing does not drive overfishing
  - ▶ If fishers respond to average prices, then:
    - Even a subsidy that results in block pricing drives overfishing
    - We would have an estimate the effect of fuel subsidies on fishing effort

There is room for both

# Two types of vessels



#### **Empirics**

#### Focus only on "bad" fishers

- Consider a dummy variable  $D_i = \{0, 1\}$  denoting treatment status of vessel i, with 0 indicating no subsidy received and 1 receiving subsidy.
  - ▶ So  $Y_i(0)$ : fuel consumption if the vessel is unsubsidized
  - $\triangleright$   $Y_i(1)$  if subsidized
  - ightharpoonup and we expect  $Y_i(1) Y_i(0) > 0$
- ▶ "Bad" fishers are defined based on  $Y_i(0)|D_i = 0$  relative to  $I_i$

$$Y_i = D_i Y_i(I) + (1 - D_i) Y_i(0)$$
  

$$Y_i = \alpha + \beta_1 D_i + \epsilon_i$$

## **Empirics**

Now consider the "good" fishers

Under the same specification:

$$Y_i = \alpha + \beta_1 D_i + \epsilon_i$$

- $ightharpoonup eta_1 > 0$  would indicate that fishers respond to average prices
- $ightharpoonup eta_1 = 0$  would indicate that fishers respond to marginal prices

## Emprics: All together

Consider another dummy,  $R_i = \{0, 1\}$ , that denotes if a vessel is to the left or right of the kink

 $Y_i(0,0)$ : Unsubsidized vessels to the left

 $Y_i(1,0)$ : Subsidized vessels to the left

 $Y_i(0,1)$ : Unsubsidized vessels to the right

 $Y_i(1,1)$ : Subsidized vessels to the right

$$Y_i = \alpha + \beta_1 R_i + \beta_2 D_i + \beta_3 R_i \times D_i + \epsilon_i$$

- $\blacktriangleright$   $\beta_1$  is the causal effect of subsidies on fuel consumption
- $\triangleright$   $\beta_3$  is the causal effect of a "block pricing" fuel subsidy on consumption

## Figures: Subsidized economic units



## **Effort**



## **Effort**



## Calculating fuel consumption

$$C_i = P_i imes SFC_i imes \left(L_{max} imes rac{rac{v_i}{d_i} + rac{L_{min}}{L_{max} - L_{min}}}{1 + rac{L_{min}}{L_{max} - L_{min}}}
ight)$$

#### Where:

- $\triangleright$   $P_i$ : Engine power
- ► *SFC<sub>i</sub>*: Specific Fuel Consumption
- v<sub>i</sub>: Observed speed
- ▶ v<sub>i</sub>: Design speed
- ► L Loading factor

## Jackpot?



## Jackpot?



#### Not so fast



## Looking closer



#### Still, some discontinuities

