Section 1.2 of Entro - Complex Geometry.

Exercises 2

1.2-1.

Q: Let $(\nabla, \langle ., \rangle)$: euclidian space of din=4. Show: {all compatible almost complex structures of SS two copies of S2 = 2 two balls.

Recap: compatible: $I: I^2 = -1$, $\langle I(v), I(w) \rangle = \langle v, w \rangle$

Choose an orthogonal basis: $e_1 \cdots e_4$

Let
$$I = (a_{ij}^{a_{ij}})$$

$$I^2 = a_{ij}^i a_{k}^j = -\delta_k^i$$

also $\langle , \rangle \approx \delta_j^i$ a

$$\langle 1 c v \rangle, 1 c w \rangle = (a^i_j v^j) \delta^i_k (a^k_i w^l) = v^i \delta^i_k w^k$$

(みかり)

Hence
$$a^{i}_{j} S^{i}_{k} a^{k}_{l} = \delta_{jl}$$
 or $\int a^{i}_{j} a^{i}_{k} = S_{jk}$

For example:

$$\frac{1}{2} a_{j}^{1} a_{2}^{j} = 0 = \frac{1}{2} a_{1}^{j} a_{2}^{j} = \frac{4}{2} a_{1}^{j} a_{2}^{j} = \frac{4}{2} a_{1}^{j} a_{2}^{j}$$

This can be generalized: $\int_{j=1}^{4} \sum_{j=1}^{4} a_{j}^{k} a_{i}^{j} = \sum_{j=1}^{4} a_{k}^{j} a_{i}^{j} = (k \neq l) \text{ (bset } j \neq k) \quad \text{(bset }$

Aleo: $Q_{ij}^{j} = Q_{ij}^{j} = Q_{ij}^{j}$