

York Call

al dio. agel +3NH3=ag(NH3)20 Digitized by the Internet Archive in 2025

SYSTEMATIC QUALITATIVE CHEMICAL ANALYSIS

A Theoretical and Practical Study of Analytical Reactions of the More Common Ions of Inorganic Substances

BY .

GEO. W. SEARS, Ph.D.

PROFESSOR OF CHEMISTRY AND HEAD OF THE DEPARTMENT,

UNIVERSITY OF NEVADA

SECOND EDITION, REVISED

NEW YORK

JOHN WILEY & SONS, INC.

LONDON: CHAPMAN & HALL, LIMITED

1926

Copyright, 1922, 1926 By GEORGE W. SEARS

Printed in U.S.A.

PRESS OF BRAUNWORTH & CO., INC. BOOK MANUFACTURERS BROOKLYN, NEW YORK

PREFACE TO SECOND EDITION

In this edition the subject matter has been brought up to date. Certain rearrangements have been made in Groups II and III of the metals in order to bring the work of these groups closer together and give the student a clearer idea of the relations existing between their divisions or subgroups. A general view of the systematic analysis is given in a set of preliminary experiments showing the relation between the groups in both metal and acid analysis. Preliminary experiments for the study of the acids are also given, thus making possible the study of metal and acid analysis independent of each other. A new section, Part IV, has been added in which the complete systematic analysis of both metal and acid ions is given in outline form. This is intended for the use of those who have completed the detailed study of the systematic analysis but who are not sufficiently familiar with the necessary steps to proceed without some help. It should also prove of value as a reference.

It is hoped that this edition will prove even more useful as a classroom guide and that it will serve as a handy and efficient reference in the field of qualitative analysis.

The author wishes to acknowledge the many helpful suggestions and criticisms received from his associates Dr. W. M. Hoskins and Miss R. A. Billinghurst.

GEO. W. SEARS.

PREFACE TO FIRST EDITION

THE author believes that a course in Qualitative Analysis should not only train the student in accurate and careful manipulation and so prepare him for the more careful work necessary in Quantitative Analysis, but should also serve to extend and supplement his knowledge of General and Theoretical Chemistry. To this end an attempt has been made to present the theoretical and practical parts in such a way that the student will understand the significance and see the practical applications of the theoretical

part.

The book has been divided into four parts, including the Appendix. Part I consists of the Introduction and Laboratory Suggestions. In the Introduction is given a brief discussion of the Ionic Theory and Law of Mass Action, as applied to the principles involved in Qualitative Analysis, and reference to its various sections is made throughout the text. Part II consists of Preliminary Experiments, Method of Analysis, Discussion and Review Questions on the metal ions. In order that the student may get a comparative idea of the actions of the different metal ions in a group toward a given reagent, the Preliminary Experiments are arranged in a manner which differs somewhat from the usual one and in order that he may not be confused by too many reactions, only those reagents used in the Method of Analysis are employed. Preliminary Experiments whose reactions may not be clear are followed by Notes. In the Method of Analysis an attempt has been made to give clear and concise directions for procedure only, all explanations and conditional procedures being placed together under Discussion, following each group or sub-group. It is believed that by frequent reference to this the student's attention will be brought more effectively to the theoretical explanations and to the reasons for careful work. In so far as practicable, only Quantitative reactions have been given and only those methods have been used which have been thoroughly tested. Part III consists of Method of Analysis, Discussion and Review Questions on the acids.

A new method of anion analysis is given which follows in general the method of procedure in metal analysis, in that a single sample is taken for analysis, and largely by means of precipitation methods, the separation and detection of anions are made. Many of the same reactions used in the course of metal analysis are also employed. For these reasons no preliminary experiments are given, the author having found that students are able to understand and follow the directions in the analysis of "unknowns." In the Appendix are given directions for the preparation of reagents and test solutions, also tables of solubilities and atomic weights of the more common elements.

In the preparation of this text the author has made use of information from all convenient sources, including such textbooks on Qualitative Analysis as those of Treadwell-Hall, A. A. Noyes, Julius Stieglitz, and W. A. Noyes, to whom he wishes to acknowledge his indebtedness. Acknowledgment is also due to Dr. J. F. G. Hicks, Stanford University, and to Miss M. Dewar, University of Nevada, for helpful criticism and assistance.

GEO. W. SEARS.

January, 1922.

CONTENTS

PART I

	AGE
Introduction	1 19
PART II. METALS	
General Statement Preparation of Solution. Discussion (1–10) Group Separation, Preliminary Experiments	22 24 28 31
Group I. Preliminary Experiments Suggestive Questions. Analysis. Discussion (11–15).	35 37 37 38
Group II, Copper Division. Preliminary Experiments. Suggestive Questions.	42 45
Tin Division. Preliminary Experiments	47 50
Analysis.	
Separation into Divisions. Discussion (16–20) Copper Division. Discussion (21–27). Tin Division. Discussion (28–31).	51 53 56 58 59 61
Group III, Aluminium Division. Preliminary Experiments. Suggestive Questions.	64 66
Iron Division. Preliminary Experiments. Suggestive Questions.	68 70

CONTENTS

Analysis.	AUL
Analysis. Separation into Divisions. Discussion (32–37). Aluminium Division Discussion (38–41). Iron Division. Discussion (42–48).	71 72 74 76 77 81
Group IV, Preliminary Experiments. Suggestive Questions. Analysis. Discussion (49–53).	84 87 87 89
Group V, Preliminary Experiments. Suggestive Questions Analysis. Discussion (54-58). Questions for Review.	91 92 93 94 96
PART III. ACIDS	
General Statement. Preparation of Solution. Discussion (59–60). Group Separation, Preliminary Experiments. Suggestive Questions.	100 102 103 104 105
Group I, Cyanogen Division. Preliminary Experiments Suggestive Questions. Halogen Division.	107 109
Preliminary Experiments. Suggestive Questions. Analysis.	112
Precipitation. Cyanogen Division Discussion (61–63). Halogen Division. Discussion (64–67).	112113114116
Group II, Preliminary Experiments. Suggestive Questions. Analysis. Discussion (68–70).	118 119 120 121

PA	AGE
Group III, Preliminary Experiments	123
	126
Analysis	126
Discussion (71–76)	128
	131
	132
	133
	135
	137
Questions for Neview	137
PART IV. THE SYSTEMATIC ANALYSIS	
Metal Analysis	139
Acid Analysis	147
APPENDIX	
	4.70
8	152
	156
	158
	161
V. Electromotive or Displacement Series	162
LIST OF TABLES	
Outlines for Study of the Systematic Analysis: Metals.	
I. Group Separation	31
II. Group I	35
III. Group II, Copper Division	41
IV. Group II, Tin Division.	46
V. Group III, Aluminium Division	63
VI. Group III, Iron Division	67
VII. Group IV	84
VIII. Group V	91
Outlines for the Study of the Systematic Analysis, Acids:	
	104
X. Group I, Cyanogen Division	106
	110
	118
A CONTRACTOR OF THE CONTRACTOR	122
	131
Outlines for the Systematic Analysis, Metals:	
XV. Preparation of Solution	139
XVI. Separation and Analysis of Group I.	140
XVII. Precipitation of Group II and Separation into Copper and	
Tin Divisions	140
	141
ZETIZI ZIMA JOZO OL COPPOL ZITIONOMI I I I I I I I I I I I I I I I I I I	

CONTENTS

	1	PAGE
XIX.	Analysis of Tin Division	142
XX.	Precipitation of Group III and Separation into Aluminium	
	and Iron Divisions	143
XXI.	Analysis of Aluminium Division	143
XXII.	Analysis of Iron Division	144
XXIII.	Separation and Detection of Zinc, Cobalt and Nickel	145
XXIV.	Precipitation and Analysis of Group IV	146
XXV.	Analysis of Group V	147
Outlines for	the Systematic Analysis, Acids:	
XXVI.	Preparation of Solution	147
XXVII.	Separation of Group I and Analysis of Cyanogen Division	148
XXVIII.	Analysis of Halogen Division	149
XXIX.	Separation and Analysis of Group II	149
XXX.	Separation and Analysis of Group III	150
XXXI.	Analysis of Group IV	151

A SYSTEMATIC QUALITATIVE CHEMICAL ANALYSIS

PARTI

INTRODUCTION

- to In his study of General Chemistry the student has become somewhat familiar with the more important elements, their preparation, physical properties and some of their principal compounds. In his laboratory work he has become acquainted with the different types of chemical reactions; viz., combination, decomposition, displacement, double decomposition, oxidation-reduction, etc. He has learned that certain reactions are reversible, that others are non-reversible, and that the point of equilibrium in reversible reactions is influenced by the relative amounts of the substances entering into the reaction.
- 2. "Qualitative Analysis treats of the identification of matter," while Quantitative Analysis, as its name implies, deals with its quantitative determination. An efficient system of qualitative analysis should consist not only in finding out what substances are present and what are absent but also in obtaining an estimate of the relative quantity of each constituent present. In order to accomplish this with accuracy and certainty the analyst should know the principle involved in the chemical actions concerned, the reason for each reagent used, the result it produces and how this result is brought about. For the purpose of Qualitative Analysis it is usually desirable

and often necessary to separate the substances from each other and then apply some characteristic chemical reaction which can be easily and accurately recognized.

3. In the course of this outline the following terms will be used frequently, and the student should become familiar with them and their meaning at the outset.

- (a) A Reagent is a substance which produces a known reaction and is used for the purpose of obtaining a desired result.
- (b) A solution is a homogeneous mixture, the properties of which change gradually with change in composition. Aqueous solutions are of most importance and are used almost exclusively in this outline. The student should learn, early in his course, to distinguish between solutions and colloidal suspensions.
- (c) Precipitate is a term usually applied to a solid substance which separates from solution on the addition of a reagent. It may be finely divided so that it settles very slowly and is not held by a filter paper. Such a precipitate is termed "colloidal." Precipitates are distinguished as crystalline, flocculent, curdy, colloidal, etc.
- (d) **Residue** is a term usually applied to that portion of a solid left undissolved by a given reagent or solvent.
- (e) Filtration consists in the mechanical separation of a solid from a liquid, by means of a suitable screen, which allows only the liquid to pass through. The liquid passing through is known as the filtrate, while the solid remaining on the filter is called the precipitate or residue.
- (f) Decantation consists in carefully pouring off the liquid from the solid which has been allowed to settle. This operation is employed with crystalline precipitates where a thorough washing is

essential. The washing liquid, usually pure water in small portions, is thoroughly mixed with the solid and set aside until the undissolved portion has settled. The clear supernatant liquid is then poured off. The operation is repeated until the solid is sufficiently washed. In most of the operations of Qualitative Analysis sufficient washing may be obtained by blowing a fine stream of water from a wash bottle on to the filter containing the precipitate or residue.

- (g) **Digestion** is the term applied to a reaction between two or more substances that are mixed, hot or cold, and allowed to stand for some time with occasional stirring.
- 4. Ionic Theory.—In his study of the effect of the solute on the properties of solutions, Raoult showed that if a non-volatile substance is dissolved in pure water certain properties, viz., boiling-point, freezing-point, osmotic pressure and vapor pressure, vary with the concentration of the solute. Furthermore, he showed that equimolecular proportions of certain substances produce an equal effect on these properties, e.g., one molecular weight of cane sugar $(C_{12}H_{22}O_{11} = 342 \text{ gms.})$ or of glucose $(C_6H_{12}O_6 = 180 \text{ gms.})$ or of glycerine $(C_3H_5(OH)_3 = 92$ gms.), when dissolved in 10 liters of water, lowers the freezing-point 0.186° C. and raises the boiling-point 0.052° C. From Avogadro's Law we learn that equal volumes of gases under the same conditions of temperature and pressure contain an equal number of molecules. A careful study of solutions has shown that a dissolved substance possesses properties similar to those of a gas having the same molecular concentration. A consideration of these and other facts leads to the conclusion that equimolecular proportions of all substances, whether liquid, solid or gas, contain equal numbers of molecules. The change in freezing-point, boiling-point, etc., is therefore

proportional to the number of molecules or particles of solute dissolved in a given amount of the solvent. Examination of a great variety of substances in different solvents has demonstrated the truth of this conclusion.

- 5. When an acid, base or salt is dissolved in pure water, the change in freezing-point, boiling-point, etc., is greater than would be expected from the general rule. In their chemical relations these compounds show a marked difference from those which follow the rule. Their reactions in solution are very rapid. In double decomposition reactions they seem to be composed of two or more radicals which act largely independently of each other. They are the only substances whose solutions conduct electricity. Furthermore, there are certain colored salts, e.g., copper chloride (CuCl₂, greenish-vellow), copper bromide (CuBr₂, reddish-brown), and copper sulphate (CuSO₄, blue), whose solutions on being diluted finally assume the same color (blue). In explanation of these facts Arrhenius, in 1885, proposed what is known as the "Ionic Theory." It assumes that acids, bases and salts, when dissolved in water, dissociate into two or more radicals or particles, that these particles carry an electric charge and that an equilibrium exists between the undissociated particles and their dissociation products.
- 6. When an electric current is passed through a solution of an acid, e.g., HCl, H₂SO₄, etc., the hydrogen collects around the negative electrode and the remaining radical, (Cl), (SO₄), etc., collects around the positive electrode. When the current is made to pass through a solution of a base, e.g., NaOH, KOH, etc., the hydroxide radical (OH) proceeds toward the positive electrode while the metal radical is carried toward the negative electrode. In the case of salt solutions, e.g., NaCl, Na₂SO₄, etc., the metal and acid radicals act in the same manner toward the electric current as if they were present as the base and acid respectively. A radical, therefore, proceeding under the influence of an electric current, always moves toward

the same pole regardless of whether it is present as an acid, base or salt. From this it follows that the hydrogen radical must carry a positive electric charge and the hydroxide radical a negative charge. Similarly the metal radical will be charged positively and the acid radical negatively. A radical bearing an electric charge is called an *ion* and the process by which ions are formed from the undissociated molecules is called *ionization*.

7. Kinetic Theory and Ionic Equilibrium.—When an acid, base or salt goes into solution the influence of the water causes it to dissociate, with the formation of positively and negatively charged ions. On the basis of the kinetic theory we may assume that the continual movement and jostling about of the molecules causes them to split apart or dissociate. At the same time the dissociated particles or ions will collide with each other with the result that some of them will again unite to form undissociated molecules. At first the former reaction, dissociation, is more rapid, but as the number of ions increases their union becomes more frequent until after a time the rate of the two reactions will be equal, i.e., the number of molecules dissociating in a unit of time will be just equal to the number formed by the union of ions. When this condition is established the reaction is said to be in equilibrium. It is expressed by means of an equation as follows:

$$AB \rightleftharpoons A + B$$

8. Degree of Ionization.—Experiment has shown that the proportion of a substance existing in the form of ions depends on its concentration in the solution, the more dilute solution having the higher per cent of ionization. This is explained on the basis of the kinetic theory, as follows: In concentrated solutions the ions are comparatively close together and collisions will be relatively frequent, while in the more dilute solutions the ions are necessarily farther apart and the time between collisions will be greater. The result is that fewer of them will

unite, per unit of time, to form non-ionized molecules. The per cent existing in the form of ions must therefore increase with increased dilution, a condition which agrees with experimental data. While it has been found that the degree of ionization in solutions made from salts is relatively high and approximately the same ¹ for all salts of the same concentration, a wide variation exists in the cases of acids and bases.

9. The degree of ionization in normal and 0.1 normal solutions of the more common acids, bases and salts is given in the following table:

Acids	PER CENT IONIZED		Bases	Per Cent Ionized	
	N soln.	o.1 N soln.		N soln.	o.1 N soln.
H+C1-	78.4	90	K+OH-	77	86
H+NO ₃ -	82	90	Na ⁺ OH ⁻ .	73	86
H ⁺ HSO ₄ ⁻	51	60	$Ba^{++}(OH)_2^{-}$	69	
H ⁺ HC ₂ O ₄ ⁻	* * * *	50(0.2 N) (soln.)	NH ₄ +OH-	0.4	1.31
H+C2H3O2-	0.41	1.3			
H ⁺ HCO ₃ ⁻	0.17				

SALTS

Approximate degree of ionization for salts in o.1 N solution

Type M+A-(e.g., KCl)	86 per cent
Type $M^{++}A_2^{-}$ (e.g., $BaCl_2$)	
Type $M_2^+A^{}$ (e.g., K_2SO_4)	72 per cent
Type $M^{++}A^{}$ (e.g., $BaSO_4$)	45 per cent

ro. Law of Mass Action.—From a careful study of chemical equilibria and rate of chemical action Gulberg and Waage showed that the speed of a reaction is directly proportional to the concentration of the reacting substances. This is known as the Law of Mass Action

¹ Notable exceptions to this rule are HgCl₂ and Pb(C₂H₃O₂)₂, whose percents of ionization are relatively very small.

When sodium chloride (NaCl) is dissolved in water the following equilibrium is established;

$$NaCl \rightleftharpoons Na^+ + Cl^-$$

Since the number of NaCl molecules which dissociate in a unit of time is proportional to the concentration of the undissociated molecules, the speed of dissociation may therefore be stated mathematically as follows:

$$S_1 = f_1 C_{NaCl}$$

where S_1 = speed of dissociation, C_{NaCl} = molar concentration of undissociated NaCl and f_1 = the proportionality constant. In like manner the number of Na⁺ and Cl⁻ which unite to form the undissociated NaCl per unit of time is proportional to the product of their concentrations and may be expressed mathematically as follows:

$$S_2 = f_2 C_{Na}^+ \cdot C_{Cl}^-$$

where S_2 = speed of union, C_{Na}^+ and C_{Cl}^- = the concentrations of the Na⁺ and Cl⁻ respectively and f_2 = the proportionality constant. When equilibrium is established the speeds of the opposing actions must be equal; therefore

$$f_1 C_{\text{NaCl}} = f_2 C_{\text{Na}} + \cdot C_{\text{Cl}}$$

and by transposition

$$\frac{\mathbf{C_{Na}}^+ \cdot \mathbf{C_{Cl}}^-}{\mathbf{C_{NaCl}}} = \frac{f_1}{f_2}$$

Since f_1 and f_2 are constants their ratio must be constant and

$$\frac{C_{\mathrm{Na}}^{+}\cdot C_{\mathrm{Cl}}^{-}}{C_{\mathrm{NaCl}}} = K$$

where K is a constant. This is the mathematical statement of the Law of Mass Action as applied to the ionization of sodium chloride, and shows that the product of the concentrations of the ions in the solution divided by the concentration of the non-ionized molecules is a constant

quantity which is independent of the source of the ions. K is known as the ionization constant. For highly ionized substances that are very soluble K varies considerably with the change in concentration, but for slightly ionized substances and those that are difficultly soluble it remains practically the same. The following examples will serve to illustrate.

Experiment has shown that in a molar solution of acetic acid ($HC_2H_3O_2$), 0.41 per cent of the acid is in the form of ions while 99.59 per cent of it remains in the non-ionized state. The ion concentration, therefore, is $I \times 0.004I = 0.004I$ and that of the non-ionized portion is $I \times 0.9959 = 0.9959$, i.e., the condition of equilibrium in a liter of I molar acetic acid becomes

$$HC_2H_3O_2 \rightleftharpoons H^+ + C_2H_3O_2^-$$

(0.9959 mol) (0.0041 mol) (0.0041 mol)

Substituting these values in the Mass Law equation

$$\frac{C_{\rm H}{}^+ \cdot C_{{\rm C}_2{\rm H}_3{\rm O}_2}{}^-}{C_{{\rm H}{\rm C}_2{\rm H}_3{\rm O}_2}} = K$$

K is found to have the value

$$\frac{0.0041 \times 0.0041}{0.9959} = 0.0000169$$

If the above molar solution is diluted to ten times its original volume the proportion of acid that exists in the form of ions will increase to 1.3 per cent. Using this value we obtain $0.1 \times 0.013 = 0.0013$ for the ion concentration and $0.1 \times 0.987 = 0.0987$ for the concentration of the non-ionized portion. Substituting these values in the Mass Law equation

$$\frac{C_{\text{H}^+} \cdot C_{\text{C}_2 \text{H}_3 \text{O}_2}^-}{C_{\text{HC}_2 \text{H}_3 \text{O}_2}} = \frac{0.0013 \times 0.0013}{0.0987} = 0.0000171$$

a value is obtained which is in very good agreement with that obtained in the molar solution.

In the case of ammonium hydroxide (NH₄OH) experi-

ment shows that a 0.1 molar solution is 1.31 per cent ionized. The ion concentration, therefore, is $0.1 \times 0.0131 = 0.00131$ and the concentration of the non-ionized molecules is $0.1 \times 0.9869 = 0.09869$. Substituting these values in the mass-law equation we obtain for the ionization constant

$$\frac{C_{\text{NH}_4}^+ \cdot C_{\text{OH}}^-}{C_{\text{NH}_4\text{OH}}} = \frac{0.00131 \times 0.00131}{0.09869} = 0.0000173$$

In a 0.01 molar solution the per cent of ionization has been found to be 4.07, from which we obtain the following equation

$$\frac{(0.01 \times 0.0407) \times (0.01 \times 0.0407)}{(0.01 \times 0.9593)} = K = 0.0000172$$

II. Solubility Product.—Since precipitation methods play an important part in Analytical Chemistry, a consideration of the mass law in its relation to saturated solutions is of considerable importance. When a substance, such as sugar or salt, is placed in contact with a liquid, some of the molecules of the solid enter the liquid and in accordance with the kinetic theory move about in all directions within the liquid. After a time some of them will return to the solid, and as more of the solid dissolves the number of molecules returning to the solid will increase, until the number entering the liquid and the number leaving it in a unit of time are equal. When this condition prevails equilibrium is established and the number of dissolved molecules (molar concentration) is a constant. The solution is said to be saturated. It follows, therefore, that in a saturated solution of an acid, base or salt there must be an equilibrium between the undissolved solute, the undissociated molecules in solution and its ions. In the case of the difficultly soluble salt, AgCl, this equilibrium may be expressed as follows:

$$AgCl \xrightarrow{1} AgCl \rightleftharpoons Ag^+ + Cl^-$$

¹A line (_____) drawn beneath a symbol will be used to denote the undissolved solid, precipitate or residue.

and the equation for the Law of Mass Action becomes

$$\frac{C_{\mathrm{Ag}}^{+}\cdot C_{\mathrm{Cl}}^{-}}{C_{\mathrm{AgCl}}}\!=\!K$$

Since the solution is saturated, C_{AgCl} is a constant quantity and

$$C_{\mathrm{Ag}}{}^+\cdot C_{\mathrm{Cl}}{}^- = K\cdot C_{\mathrm{AgCl}} = \! K$$

Therefore, in a saturated solution of a given ionogen the product of the concentration of its ions ¹ is a constant and is called the **Solubility Product**.

In the following table are placed the solubility products at 18° C. of some of the more common substances met with in qualitative analysis.

Substance	K	Substance	K
HgS	4.0.10-53	Ag ₂ CrO ₄	I.O·10 ⁻¹²
CuS	8.5.10-45	Mg(OH) ₂	3.4.10-11
CdS	3.6.10-29	BaCrO ₄	1.6.10-10
PbS	4.2.10-28	BaSO ₄	9.0.10-10
CoS	3.0.10-26	AgCl	I.44.10-10
NiS	1.4.10-24	CaC ₂ O ₄	1.7.10-9
ZnS	1.2.10-23	CaCO ₃	2.8.10-9
FeS	1.5.10-19	BaCO ₃	1.9.10-9
MnS	1.4.10-15	PbSO ₄	1.0.10-8
MgNH ₄ PO ₄	2.5.10-13	SrSO ₄	2.8.10-7

The ion product, and therefore the solubility, of a substance may be altered in the following ways:

- (a) By the addition of a reagent containing a common ion.
- (b) By addition of a reagent which forms with one of the ions a slightly ionized compound.

¹ This is true in the case of ionogens consisting of one cation and one anion. In other cases the solubility product should contain the ion concentration raised to a power equal to the number of ions that are alike in its formula, e.g., the solubility product for PbCl₂ should be written $C_{Pb}^{++} \cdot C_{Cl}^{2} = K$.

- (c) By addition of a reagent which unites with one of the ions to form a complex ion.
- (d) By addition of a reagent which alters the charge on one on the ions. (Oxidation and reduction.)
- (e) By addition of a strong acid or strong base to an amphoteric substance.
- 12. Common Ion.—When a soluble chloride, such as HCl or NH₄Cl, is added to an acid solution of a silver salt, silver chloride (AgCl) is precipitated. The solution will be saturated with respect to silver chloride when the ion product, $C_{Ag}^+ \cdot C_{Cl}^-$, reaches the solubility product value, K_{AgCl} , for silver chloride. Any further addition of chloride tends to increase the ion product above the solubility product value. This in turn disturbs the equilibrium

so as to decrease the concentration of silver ions. Since the concentration of the silver ion can be decreased only by uniting with chloride ions to form non-ionized AgCl the solution tends to become supersaturated with respect to AgCl molecules. Some of the silver chloride will therefore be precipitated and the following equilibrium will result:

$$AgCl \rightleftharpoons AgCl \rightleftharpoons Ag^+ + Cl^-$$

At 25° the ion concentration of a saturated solution of silver chloride has been found to be 1.2·10⁻⁵. From this is obtained for the solubility product,

$$C_{Ag}^{+} \cdot C_{Cl}^{-} = K = 1.44 \cdot 10^{-10}$$

If to I liter of this solution 0.01 mole (0.535 gm.) of ammonium chloride (NH₄Cl) (86 per cent ionized) is added, the concentration of the chloride ions is increased by 0.01 \times 0.86 = 0.0086, and C_{Cl}⁻ will be 0.0086 + 0.000012 = 0.008612 or about 700 times as large as in the original solution. Since $C_{Ag}^+ \cdot C_{Cl}^- = 1.44 \cdot 10^{-10}$ it will be seen

that the concentration of silver ions must decrease to about $_{700}$ of its original value. The student should especially note that the completeness with which a given ion may be removed from solution in this way depends on the concentration of the non-ionized molecules in a saturated solution, since their concentration is not decreased by addition of a common ion. Complete precipitation, from the standpoint of Analytical Chemistry, is obtained only when this value is very small.

13. Slightly Ionized Compounds.—The preceding paragraph has shown how the addition of a common ion may be used to remove a given ion from solution when the compound formed is difficultly soluble. In the same way a given ion may be reduced to almost nothing when the compound formed is soluble but very slightly ionized. If to a 0.1 molar solution of acetic acid ($HC_2H_3O_2$) (1.3 per cent ionized) a 0.1 mole of some soluble acetate, such as sodium acetate ($NaC_2H_3O_2$) (86 per cent ionized), is added, the large excess of acetate ions tends to increase the speed of union of H^+ and $C_2H_3O_2^-$ and so shifts the equilibrium $HC_2H_3O_2 \rightleftharpoons H^+ + C_2H_3O_2^-$ to the left. From the equation

$$\frac{C_{\text{H}^+} \cdot C_{\text{C}_2 \text{H}_3 \text{O}_2}^-}{C_{\text{HC}_2 \text{H}_3 \text{O}_2}} = \frac{\text{0.0013} \times \text{0.0013}}{\text{0.0987}} = \text{I.7} \cdot \text{I0}^{-5}$$

it will be seen that $C_{\text{HC}_2\text{H}_3\text{O}_2}$ cannot be appreciably increased owing to the small concentration of H⁺ available. The product $C_{\text{H}}^+ \cdot C_{\text{C}_2\text{H}_3\text{O}_2}^-$ must therefore recover approximately its original value. Since on the addition of sodium acetate, $C_{\text{C}_2\text{H}_3\text{O}_2}^-$ becomes 0.086 + 0.0013 = 0.0873 or about 60 times its original value, C_{H}^+ must be decreased to about $\frac{1}{60}$ of its former magnitude. While the per cent of ionization of the salt must also decrease because of the presence of the acetate ions from the acid, the amount is negligible in proportion to its original value since the number of acetate ions is relatively so few (0.0013:0.086). Therefore when the compound formed is soluble a given

ion can be reduced to almost nothing only when the compound is very slightly ionized.

14. Hydrolysis.—Pure water ionizes to a slight extent into H+ and OH-. Although the ions of water may be neglected when all the substances concerned in a given reaction are highly ionized, they become quite appreciable and must be taken into consideration when the reaction involves substances that are very slightly ionized or difficultly soluble. Experiment has shown that the concentration of H⁺ and therefore of OH⁺ in pure water at 25° is 10⁻⁷. The concentration of the non-ionized molecules is therefore very large in comparison and may be considered constant. From the Law of Mass Action. then, the product of the concentrations of the ions becomes a constant. Since $C_H^+ = C_{OH}^- = 10^{-7}$ we have for the ion product $C_{\rm H}^+ \cdot C_{\rm OH}^- = 10^{-14}$. In any solution, therefore, the concentration of H+ multiplied by the concentration of OH- must equal the ion product constant, 10⁻¹⁴. An increase of H⁺ must result in a decrease of OH- and vice versa.

When sodium acetate (NaC₂H₃O₂), a highly ionized salt, is dissolved in water the concentration of C₂H₃O₂may become so large that its product with the H⁺ of the water will exceed the ionization value for the slightly ionized acetic acid (HC₂H₃O₂). Some of the C₂H₃O₂and H+ therefore unite to form the non-ionized acid which momentarily reduces the ion product for water below 10⁻¹⁴. The result is that more water ionizes until the product $C_H^+ \cdot C_{OH}^-$ again reaches 10^{-14} . The student should note that C_{H}^{+} is now less than C_{OH}^{-} and therefore the solution becomes basic. On the other hand, if ferric chloride (FeCl₃) is dissolved in water the concentration of Fe+++ from the highly ionized salt, multiplied by the concentration of OH- already present in the water, may exceed the ionization value for the very slightly ionized ferric hydroxide and form non-ionized Fe(OH)3. The ion product for water is thus momentarily reduced below 10^{-14} . More water must therefore ionize until the product $C_{\rm H}^+ \cdot C_{\rm OH}^- = 10^{-14}$ is reached. $C_{\rm H}^+$ is now greater than $C_{\rm OH}^-$ and the solution reacts acid. It will be seen therefore that the ions of water must be taken into consideration when a substance is involved either one of whose ions may unite with one of the ions of water to form a very slightly ionized compound. Should the compound be difficultly soluble the equilibrium may be shifted to completion and a given ion removed from solution.

15. Complex Ion.—When ammonium hydroxide is added to a solution of a copper salt, copper hydroxide (Cu(OH)₂) is at first precipitated, but on the addition of an excess of the reagent the Cu(OH)₂ precipitate is dissolved and a deep blue solution is obtained. It would seem from the foregiong discussion and the principle of the Law of Mass Action that an excess of the reagent should produce a more complete precipitation as was found to be the case with silver chloride (see 12 above). It will be remembered from the study of general Chemistry that when ammonia (NH₃) is dissolved in water only a small portion of it reacts with the water to form ammonium hydroxide (NH₄OH), the greater part of it remaining in the solution as ammonia (NH₃). The following equilibrium must therefore exist in the solution:

$$H_2O + NH_3 \rightleftharpoons NH_4OH \rightleftharpoons NH_4^+ + OH^-$$
.

An examination of the deep-blue copper solution shows the presence of the complex ion Cu(NH₃)₄⁺⁺. From the principle of the solubility product

$$C_{\text{Cu}}^{++} \cdot C_{\text{OH}}^2 = \mathbf{K}$$

it is evident that any increase of OH⁻ above that necessary to reach the solubility product for Cu(OH)₂ must result in a decrease in the Cu⁺⁺ concentration. The concentration of the Cu⁺⁺ may be decreased either by the formation of non-ionized Cu(OH)₂ and consequent precipitation or by its union with free ammonia to form the complex

ion $Cu(NH_3)_4^{++}$. The high proportion of free ammonia and the slight dissociation of the complex ion $Cu(NH_3)_4^{++}$ both influence the equilibrium toward the formation of the complex ion, hence the net result is that the equilibrium

$$\underbrace{Cu(OH)_2}_{=} \rightleftharpoons Cu(OH)_2 \rightleftharpoons Cu^{++} + 2OH^-$$

$$+$$

$$4NH_3$$

$$\uparrow \downarrow$$

$$Cu(NH_3)_4^{++}$$

will shift toward the formation of the complex ion and the ion product will be decreased below that of the solubility product value; more Cu(OH)₂ will dissociate and the precipitate will pass into solution. The use, therefore, of a reagent which will react with a given ion to form a complex ion may be made in order to bring a substance into solution, to prevent precipitation or to remove an ion from the field of action.

16. Amphoteric Substances.—An amphoteric element is one whose hydroxide in solution ionizes both as an acid and as a base, i.e., it produces both hydrogen and hydroxyl ions. When a strong acid, such as HCl, is added to a precipitate of aluminium hydroxide (AlO₃H₃) the precipitate is dissolved and experiment shows that the aluminium is present in the solution as the positive aluminium ion (Al⁺⁺⁺). On the other hand, when a strong base, such as NaOH, is added to the aluminium hydroxide precipitate, the precipitate is dissolved; but experiment shows that the aluminium is present in the solution as negative aluminate ions (AlO₂⁻). The following equilibrium is therefore assumed to exist in a neutral solution of aluminium hydroxide:

$$Al^{+++} + 3OH^- \rightleftharpoons AlO_3H_3 \rightleftharpoons H^+ + H_3AlO_3^- \rightleftharpoons H^+ + AlO_2^- + H_2O$$

When a strong acid, furnishing its high concentration of H+, is added the above equilibrium is disturbed owing

to the union of H+ with the OH- present to form the very slightly ionized water. Non-ionized AlO₃H₃ then dissociates further to produce more OH- with the final result that the aluminium hydroxide is dissolved and the aluminium remains in solution as Al+++; i.e., the equilibrium shifts to the left and AlO₃H₃ acts as a base. When a strong base is added the high concentration of OHtends to use up the H+ present in forming water as above. This causes a further dissociation of AlO₃H₃ to produce more H+, with the final result that the aluminium hydroxide is dissolved and the aluminium remains in the solution as AlO₂-; i.e., the equilibrium shifts to the right and AlO₃H₃ acts as an acid. It should be noted that if a weak base, such as NH₄OH, is substituted for the strong base mentioned above the effect will be very much less noticeable, owing to the much smaller concentration of OH-.

17. Oxidation and Reduction.—When iron is acted upon by hydrochloric acid, hydrogen is displaced and iron passes into solution according to the following equation:

Considered from the ionic standpoint this gives

$$Fe + 2H^{+} + 2Cl^{-} \rightarrow Fe^{++} + 2Cl^{-} + H_{2}$$

Now if a stream of chlorine gas is passed through the solution a further change takes place as follows:

$$Cl_2 + 2Fe^{++} + 4Cl^{-} \rightarrow 2Fe^{+++} + 6Cl^{-}$$
.

In passing into solution the iron has become positively charged, while at the same time charged hydrogen has become neutral and neutral chlorine has become negatively charged.

A free atom may be said to consist of a positively charged nucleus surrounded by a number of negatively charged particles called electrons. These electrons are capable of existing independently of the atom and hence may leave one atom and attach themselves to another. The mechanism, therefore, of the above reactions may be stated briefly as follows: An atom of iron, capable of losing electrons, comes in contact with a hydrogen ion (hydrogen atom—one electron). Two electrons leave the atom of iron and attach themselves to two hydrogen ions, which are in turn neutralized. The loss of these two electrons has, therefore, left the iron positively charged. In the second reaction a chlorine atom, capable of holding an additional electron, comes in contact with an iron ion and receives an electron from it. The chlorine, therefore, becomes negatively charged while the iron remains with a higher positive charge.

The quantity of electricity equivalent to that carried by an electron is called a "unit charge" and may be either positive or negative in character. The number of excess "unit charges" carried by an atom or ion is numerically equal to its valence. Valence, therefore, may be either a positive or a negative number depending on whether the atom or ion holds less or more electrons than is sufficient to neutralize the positive nucleus. It follows, therefore, that the valence of an element in the free state is zero and that the algebraic sum of the positive and negative valences in any compound is zero. Oxidation consists in the loss of one or more electrons by an atom or ion, i.e., an algebraic increase in valence. Reduction consists in the addition of electrons to an atom or ion, i.e., an algebraic decrease in valence. It will be seen, therefore, that oxidation and reduction must accompany each other and be equivalent in amount; i.e., in a given reaction if an element or ion loses one or more electrons those electrons must attach themselves to some other element or ion.

In writing equations of oxidation and reduction the student should first write the skeleton equation; e.g.,

when H₂S is passed into a solution of HNO₃ free sulphur is produced and the HNO₃ is reduced to nitric oxide (NO).

$$H_2S + HNO_3 \rightarrow S + NO + H_2O$$

He should then note any change in valence, i.e., what elements have lost or gained electrons during the reaction, and the number lost or gained by each atom. In the above equation sulphur has changed from a valence of negative 2 in H₂S to zero in free sulphur; i.e., each atom of sulphur has lost 2 electrons. Nitrogen, on the other hand, has changed from a positive valence of 5 in HNO₃ to positive 2 in NO; i.e., 3 electrons have attached themselves to each nitrogen atom. Since the total number of electrons lost by one element must be equal to the total number gained by the other, it is evident that 3 molecules of H₂S will furnish just enough electrons to supply those necessary to change the nitrogen in 2 molecules of HNO₃ to NO. The balanced equation, therefore, becomes

$$3H_2S + 2HNO_3 \rightarrow 3S + 2NO + 4H_2O$$

For purposes of balancing equations of oxidation and reduction the valence of combined hydrogen should always be considered as positive I and that of combined oxygen as negative 2.

A few of the more important oxidizing and reducing agents are given in the following table:

Oxidizing Agents

- 1. Halogens (Cl, Br, I)
- 2. HNO₃
- 3. Aqua regia
- 4. KClO₃
- 5. Na₂O₂
- 6. K₂Cr₂O₇
- 7. KMnO₄
- 8. PbO₂

Reducing Agents

 $I. SnCl_2$

2. H₂S

3. Nascent hydrogen

4. SO₂

5. H₂C₂O₄

6. Alcohol

LABORATORY SUGGESTIONS

Qualitative Analysis has to do with both dry and wet reactions. The dry reactions are those used largely in blow-pipe analysis and will not be considered here. Since wet reactions will be used almost exclusively in this outline a brief consideration of some of the most important processes is given.

Precipitation.—Most of the processes used in the separation and detection of substances involve precipitation. All precipitates may be divided into two general classes. crystalline and amorphous. Either of these types may be obtained in the form of relatively coarse particles that are easily filtered and washed, or they may separate out in very finely divided form. The latter always cause difficulty in filtering because of a tendency to pass through the filter. While many substances are easily obtained in the coarser form others are characterized by their tendency to form very finely divided or colloidal precipitates. In such cases the size of the particles may be increased by precipitating from a hot solution and by adding the reagent gradually while the mixture is being stirred. A colloidal precipitate may be coagulated somewhat by the addition of an electrolyte.

Since analysis depends for its accuracy on complete separations it is essential that precipitation shall be complete and that the precipitates shall be thoroughly washed. It is always advisable after filtration to add a few drops of the reagent to the filtrate to determine whether more precipitate will form. If no further precipitate is obtained precipitation is known to be complete. In accurate analysis it is essential that the precipitate be thoroughly washed in order to remove the solution which is mechanically held by it. With crystalline or flocculent precipitates this may be done on the filter paper with comparative ease by means of a fine stream of water from the wash bottle. Gelatinous precipitates, however, often tend to

occlude other substances which are removed with difficulty. Such precipitates are more effectively washed by digesting them with the wash water and then decanting through a filter.

Filtration.—Since a finely divided precipitate not only tends to pass through the filter and so make its separation

difficult but also tends to clog the filter paper and thus render the process of filtration slow and tedious, it is necessary to have the particles as large as possible. This is accomplished most effectively by adding the precipitating agent slowly to a hot solution. Whenever permissible, time will usually be saved by filtering a solution while hot, since hot water passes through the filter paper more rapidly than cold water.

The rate of filtration is also influenced very largely by the position of the filter paper in the funnel. The paper should fit closely against the funnel so that no air passages exist between. This may be accomplished by folding the circular filter paper in half and then folding again as shown in Fig. 1. The second fold should be pinched together at the point, opened between the longer fold so as to form an inverted cone and pressed gently into the funnel until it fits snugly against the glass all the way around. Without removing it from the funnel the second fold may now be creased and the paper wet with a stream of water blown from the wash bottle to hold it in position (Fig. 2).

Wash Bottle.—After checking in his apparatus each student should make a wash bottle, using a 500 cc. or 750 cc. Florence flask. The wash bottle should be made sufficiently compact so that it can be easily held and the nozzle manipulated with one hand. A convenient form is shown in Fig. 3.

Record of Results.—The student should keep a careful and accurate record of all results obtained in his analysis of "unknowns." The keeping of this record not only enables the student to understand the principles involved and to follow the procedures more easily, but also it often enables the instructor to determine the causes of errors and so help the student to avoid repeating them. The following form for "unknowns" has been found to be very easily kept and quite satisfactory:

No.	Substance	Reagent	Result	Conclusion
I 2	Unknown Ppt. 1	NH ₄ Cl 2N. HCl	White ppt. White res.	Group I present PbCl ₂ , Hg ₂ Cl ₂ , AgCl
3 4	Fil. 2 Res. 2	H ₂ S [†] Hot H ₂ O	Soln. White res.	No Bi or Sb Hg ₂ Cl ₂ , AgCl
5	Fil. 4 Res. 4	H ₂ SO ₄ NH ₄ OH	Soln. Black res.	No Pb Hg present
7	Fil. 6	HNO ₃	White ppt.	Ag present

The student will also find it of considerable benefit to keep a record of his results obtained in preliminary experiments by underlining and noting the color of all precipitates in outline form similar to that of Table I and the following tables:

PART II

METALS

Metals usually exist in solution as simple ions (cations) and hence their detection consists in the addition of some reagent or series of reagents that form known characteristic compounds with these ions. In a systematic analysis the ions are usually separated into groups on the basis of a difference in solubility of certain salts. The ions of each group are then separated from each other on a similar basis and finally detected by means of some characteristic reaction. Solubility, therefore, and the conditions affecting it are of prime importance to the analyst.

The cations for whose separation and detection provision is made in this scheme of analysis are:

Group I.—Cations whose chlorides * are insoluble in dilute acids.

Group II.—Cations whose chlorides are soluble but whose sulphides are insoluble in dilute acids. This group is divided into two divisions by making use of the difference in solubility of their sulphides in ammonium polysulphide reagent.

^{*} While the chlorides of bismuth and antimony are soluble in dilute acids, they are easily hydrolized to the insoluble BiOCl and SbOCl respectively and hence sometimes appear in group I.

Copper Division

Tin Division

Mercury, Hg⁺⁺ Copper, Cu⁺⁺ Arsenic, As⁺⁺, As⁺⁺⁺ Lead, Pb⁺⁺
₊₊
Cadmium, Cd⁺⁺ Antimony, Sb⁺⁺

Tin, Sn⁺⁺, Sn⁺⁺

Group III.—Cations whose chlorides and sulphides are soluble in water and in dilute mineral acids but whose sulphides or hydroxides are insoluble in ammonium hydroxide solutions containing excess ammonium salts. This group is divided into two divisions by taking advantage of the difference in their action toward excess sodium hydroxide and sodium peroxide.

Aluminium Division

Aluminium, Al+ Chromium, Cr⁺⁺

Zinc, Zn

Iron Division

Manganese, Mn++

Iron, Fe⁺⁺ Cobalt, Co++

Nickel. Ni++

Group IV.—Cations whose chlorides, sulphides and hydroxides are soluble but whose carbonates are insoluble in alkaline solutions containing excess ammonium salts.

Barium, Ba⁺⁺ Strontium, Sr⁺⁺ Calcium, Ca⁺⁺

Group V.—Cations whose chlorides, sulphides, hydroxides and carbonates are soluble in solutions containing excess ammonium salts.

> Magnesium, Mg++ Potassium, K⁺

Sodium, Na+ Ammonium, NH₄⁺

PART II

THE SYSTEMATIC ANALYSIS

Cations—(metal ions)

PREPARATION OF SOLUTION

If the unknown substance is a liquid or solution treat by (1); if a solid non-alloy treat by (2) and if an alloy treat by (3).

For the purpose of a complete qualitative analysis the unknown should be divided into four parts as follows:

First part for organic matter and general information.

Second part for analysis of cations (metal ions). Third part for analysis of anions (acid ions).

Fourth part for special tests and in case of accident.

(I) Unknown Liquid.—Test with litmus for acidity. Evaporate a known volume to dryness in a porcelain dish and note the amount of residue. If organic matter may be present test the residue by (4). In case organic matter is known to be absent treat an amount of the solution which contains about I gram of solid by (10).

(2) Unknown Solid (non-alloy).—Treat a small portion (about 0.1 gm.) of the finely powdered substance for organic matter by (4). If organic matter is absent add to another small portion in a test-tube 10–15 cc. of water, and shake the mixture thoroughly. If it fails to dissolve, heat to boiling. In case the substance is insoluble in water try to dissolve another small portion in 5 cc. of 6N. HNO₃. If this fails try 6N. HCl on still another

portion. From the knowledge gained by the above tests treat about I gram of the solid according to (a), (b) or (c).

(a) If the substance is soluble in water or dilute HNO_3 , dissolve about I gram of it using as little of the 6N. acid as possible (see Discussion 3) and treat by (10).

(b) If the substance is soluble in dilute HCl, dissolve about I gram. If more than 5 cc. of the 6N. HCl is used evaporate the solution to 5 cc. (see Discussion 3) dilute with water to a volume

of 100 cc. and treat by (20).

- (c) If the substance is insoluble in dilute acid, add to about I gram of the finely powdered substance in a porcelain dish 6 cc. of 12N. HCl. cover the dish with a watch glass and heat gently. (See Discussion 4.) If a residue remains, cool, add 2 cc. of 16N. HNO3 and heat the mixture. In either case finally evaporate just to dryness, moisten the residue with 12N. HCl and again evaporate to dryness. Heat the residue to 120-130° till it is thoroughly dry, keeping the dish in motion over a small flame. Loosen the residue with the end of a glass rod, add just 5 cc. of 6N. HCl (see Discussion 3) and pulverize with the rod any large particles. Cover the dish and warm the mixture, taking care that none of the acid evaporates. Add 10 cc. of water and heat to boiling. Filter while hot, treat the filtrate by (20) and the residue by (5), (6) or (7). (See Discussion 5.)
- (3) Unknown Solid (Alloy).—To about 0.5 gram of the finely divided material in a porcelain dish add 10 cc. of 6N. HNO₃, cover with a watch glass and warm gently as long as the action continues, adding small portions of

16N. HNO₃ from time to time if the action is renewed thereby. Finally evaporate just to dryness, add just 5 cc. of 6N. HNO₃ and 15 cc. of water. Heat to boiling, and if a residue remains, filter, treat the filtrate by (10) and the residue by (2, c). (See Discussion 6.)

(4) Organic Matter.—To determine whether organic

- matter is present in an unknown a small portion of the solid is placed in a hard glass test-tube or in a glass tube closed at one end and heated to dull redness. If the substance chars (a black color may be due to certain metallic oxides) and emits a burnt odor, organic matter is present and should be removed as follows (see Discussion 7). Place about I gram of the solid substance (more if the amount of organic matter is large) in a porcelain dish and heat gently with 5 cc. of conc. H₂SO₄ until it is well charred. Cool, add slowly and with constant stirring 16N. HNO₃ until violent action ceases. Warm gently for a few minutes and then heat more strongly, keeping the contents well stirred, until the substance is thoroughly charred. Repeat the process until the mixture becomes light straw colored and remains so when strongly heated. Treat by (a) or (b).
 - (a) If the substance has dissolved completely, evaporate under a hood to 1.5 cc., cool and pour the contents into 15 cc. of water. If there is a residue, heat to boiling and boil as long as it seems to be dissolving. Filter off any remaining residue, wash thoroughly and treat by (6). Treat the filtrate by (10).
 - (b) If the substance has not dissolved completely transfer to a platinum crucible and treat by (5), or if the platinum crucible is not available, evaporate to 1.5 cc. as in the preceding paragraph, pour the contents into 15 cc. of water, heat to boiling, filter, wash thoroughly and treat the filtrate by (10). Treat the residue by (7).

(5) Treatment with H_2F_2 .—Transfer the residue from (2, c) or the mixture from (4, b) to a platinum crucible, add enough conc. H_2SO_4 to make a total volume of 3 cc. (see Discussion 3); heat the mixture with a moving flame until the thick white fumes of H_2SO_4 appear.

To test for silicate or silica add carefully from a loop of a platinum wire 5–6 drops of pure conc. H_2F_2 and warm the mixture over a steam bath. The formation of gas bubbles shows the presence of silica or silicate. (See Discussion 5.)

Now add 2–5 cc. more of the pure conc. H_2F_2 , cover the crucible and digest the mixture on the steam bath for about fifteen minutes unless solution takes place more quickly. Remove the cover and evaporate carefully until the white fumes of H_2SO_4 appear. Treat by (a) or (b).

- (a) If there is no residue or precipitate evaporate carefully to dryness. If there is still no residue, or only an insignificant one, the material contained only silica or silicate and may be discarded.
- (b) If there is a residue or precipitate pour the contents of the crucible into 15 cc. of water, rinsing out the crucible with the resulting solution. Boil the mixture gently as long as any of the residue seems to dissolve. Filter and treat the filtrate by (10). Wash the residue with 1N. H₂SO₄, rejecting the washings, and treat by (7).
- (6) Treatment with Na₂CO₃ Solution.—Mix the residue obtained in (2, c) or (4, a) with 10 parts of solid Na₂CO₃ and 20 cc. of water and boil the mixture for about five minutes. Filter and reject the filtrate (see Discussion 8). Wash the residue and dissolve it by adding 6N. HCl until the solution remains acid; then add just 5 cc. more of the acid and 10 cc. of water. Filter if necessary and treat the filtrate by (20). If there is a residue undissolved by this treatment treat it by (7).

(7) Fusion with Na₂CO₃.—Mix the residue from (2, c), (4, b) or (6) with ten times its weight of Na₂CO₃ in a platinum or nickel crucible (see Discussion 9) and heat over a very hot flame until complete fusion takes place. If necessary to secure a clear fusion, add 0.1–0.3 gram of NaNO₃ (see Discussion 10). Cool, place the crucible and contents in a dish and add carefully 6N. HCl until the solution is acid. Evaporate to dryness and heat to 120–130° to render the silica insoluble. Add just 5 cc. of 6N. HCl (see Discussion 3) and 10 cc. of water and heat to boiling. Filter to remove silica and treat the filtrate by (20).

Discussion

- I. Difficultly soluble solids are more easily brought into solution if they have previously been reduced to a fine powder. This is usually done by grinding the solid in a porcelain or agate mortar. In the case of very hard substances, such as certain minerals and rocks, a heavy porcelain or iron mortar should be used to reduce them to small particles.
- 2. The preliminary tests with water and dilute acids should be carried out, since they furnish important indications as to the nature of the constituents present and often enable the analyst, especially the beginner, to obtain a solution more quickly and easily.
- 3. In order that the solution may have the proper acid concentration for the precipitation of Group II metals, just 5 cc. of 6N. acid should be present. If, therefore, the sample can be dissolved by the use of 5 cc. of 6N. acid, a considerable saving of time will be obtained.
- 4. A mixture of HCl and HNO₃ (3:1), known as aqua regia, is a very powerful oxidizing agent and is often used very effectively as a solvent. It should be used, however, only in case dilute acids or conc. HCl prove ineffective, since compounds comparatively soluble in these reagents may be rendered insoluble by its oxidizing

action; e.g., antimony and tin compounds may be oxidized to insoluble antimonic oxide (Sb_2O_5) and metastannic acid $(H_2SnO_3)_n$ respectively. The action of 12N. HCl is noted, therefore, before the HNO₃ is added.

Such substances as MnO₂ and PbO₂ are reduced and dissolved by 12N. HCl. Hot 12N. HCl slowly dissolves such oxides as Sb₂O₅, SnO₂, Fe₂O₃ and Al₂O₃. Upon the addition of conc. HNO₃, gold, platinum and HgS are dissolved. Silver compounds are changed by HCl to AgCl, somewhat soluble in concentrated acid but left almost completely in the residue on the subsequent addition of dilute HCl.

5. A residue undissolved by aqua regia may consist wholly of silica or silicates. The H₂F₂ treatment decomposes most silicates with the formation of SiF₄, a gas insoluble in conc. H₂SO₄, and hence volatilizes. The treatment is, therefore, very effective for decomposing rocks, ores or other substances which might contain silica or silicates.

The residue undissolved by $\rm H_2SO_4$ may contain the sulphates of barium, lead, strontium, calcium and chromium. It may also contain bismuth as basic sulphate and antimony as $\rm Sb_2O_5$ along with undecomposed AgCl.

6. Most alloys are attacked by conc. HNO₃, all of the elements present going into solution except antimony, tin, carbon and silicon. Antimony, tin and silicon are oxidized to Sb₂O₅, (H₂SnO₃)_n and H₂SiO₃ respectively, all of which form white amorphous precipitates.

Certain alloys, especially those containing iron and aluminium, are more readily attacked by HCl. Treatment of the residue with HCl and aqua regia not only brings these alloys into solution but tends to dissolve the oxides of tin and antimony formed by HNO₃. The HNO₃ treatment is made first in order to remove any silver or lead which would be precipitated as chlorides if aqua regia were used.

7. Certain kinds of organic matter, such as sugars,

tartaric acid, etc., prevent the precipitation of aluminium and chromium hydroxides. Large quantities of organic matter of any kind interfere in precipitations, filtrations, etc. Therefore, if organic matter is present it should be removed before beginning the systematic analysis. Organic matter may be removed by the H₂SO₄ and HNO₃ treatment as outlined, or by ignition. The latter, however, is inadvisable in a systematic analysis since such substances as mercury and arsenic are volatilized thereby.

- 8. The sulphates of barium, lead, strontium, calcium and bismuth are converted into carbonates by boiling with Na₂CO₃. A second treatment is sometimes necessary to convert all the barium into the carbonate. The carbonates are readily dissolved in HCl. Anhydrous chromic sulphate is converted into the hydroxide by boiling with Na₂CO₃. The hydroxide is soluble in HCl. AgCl is only slightly attacked by the Na₂CO₃ solution.
- 9. Most substances are decomposed and rendered soluble by fusion with Na₂CO₃, the basic elements forming carbonates and the acidic elements forming sodium salts. In some cases, however, the carbonate is decomposed with the formation of the oxide or even the metal. For this reason care must be exercised in the use of a platinum crucible, since these metals readily alloy with the platinum. Substances which might contain any of the metals in Groups I and II should not be fused with an alkali flux in platinum. Although a nickel crucible may be used, the latter is attacked to such an extent that a subsequent test for this element or for the alkali metals is rendered unreliable.
- 10. The addition of NaNO₃ to the Na₂CO₃ fusion serves to oxidize certain substances not acted upon by the Na₂CO₃ alone. Sulphides are oxidized to sulphates, chromium compounds to chromates and manganese compounds to manganates. If the fusion is to be made in platinum the quantity of NaNO₃ added should be as small as possible.

GROUP SEPARATION

TABLE I

OUTLINE FOR THE STUDY OF THE SYSTEMATIC SEPARATION OF THE MORE COMMON METALS (CATIONS) INTO GROUPS

Ions present in dilute acid solution

Reagent	Ag+	Cu++	Sn++	++ Ai+	Fe++	Ca++	Mg++
NH ₄ Cl	AgC1	CuCl ₂	SnCl ₂	A1Cl ₃	FeCl ₂	CaCl ₂	MgCl ₂
H ₂ S (in 0.3 N acid)		CuS	SnS	A1Cl ₃	FeCl ₂	CaCl ₂	MgCl ₂
$(NH_4)_2S_x$		CuS	(NH ₄) ₂ SnS ₃				
NH ₄ OH H ₂ S				A1(OH) ₃	FeS	CaCl ₂	MgCl ₂
HCl NaOH, Na ₂ O ₂		+	*	A1Cl ₃ NaAlO ₂	FeCl ₂ Fe(OH) ₃		
(NH ₄) ₂ CO ₃				1	1	CaCO3	MgCl ₂
	Gr. I	Gr. II		Gr. III		Gr. IV	Gr. V
	BiOCl(?) SbOCl(?) PbCl ₂ Hg ₂ Cl ₂ AgCl	_	Sn Div. (NH ₄) ₃ AsS ₄ (NH ₄) ₃ SbS ₄ (NH ₄) ₂ SnS ₃	Al Div. NaAlO ₂ Na ₂ CrO ₄ Na ₂ ZnO ₂	Fe Div. MnO(OH) ₂ Fe(OH) ₃ Co(OH) ₃ Ni(OH) ₂	BaCO ₃ SrCO ₃ CaCO ₃	MgCl ₂ KCl NaCl

Preliminary Experiments

Experiment 1.—Introduce into separate test tubes 2 cc. portions of the test solutions containing a representative of each of the above groups, e.g. Ag⁺, Cu⁺⁺, Sn⁺⁺, Al⁺, Fe⁺⁺, Ca⁺⁺, Mg⁺⁺. Test for acidity with litmus paper and if not already acid make distinctly acid with 6N. HNO₃. In each case dilute with water to 10 cc. and add 2–3 cc. of NH₄Cl solution. Note the precipitation of AgCl. (Difference, separation of group I.) Filter off the precipitate and add a few drops of NH₄Cl to the filtrate to determine whether precipitation was complete.

Note.—Of the ions listed in group I, Ag⁺ and Hg⁺ are completely precipitated while Bi +, Sb + and Pb++ are precipitated only

when present in considerable quantity. PbCl₂ is appreciably soluble even in the presence of excess Cl⁻. BiOCl and SbOCl, although quite insoluble, depend on hydrolysis for their formation. Hence if bismuth and antimony are present in small amounts the acid present is usually sufficient to prevent their precipitation. (See general discussion of hydrolysis, Introduction 14.)

Experiment 2.—Neutralize the solutions containing groups II, III, IV and V with NH₄OH, add to each just 2 cc. of 6N. HCl, dilute to 40 cc. with water and saturate with H₂S. Note the precipitation of CuS and SnS. (Difference, separation of group II.) Filter off the precipitates and test the filtrates for complete precipitation by saturating again with H₂S.

Note.—While the sulphides of all the metals of group II are insoluble in dilute acid, examination of the table of solubility products (page 10) shows considerable difference between individual solubilities. Since the necessary S⁻⁻ must come from the H₂S whose ionization is very greatly influenced by the concentration of the acid, it is evident that too large a proportion of acid may prevent the precipitation of the more soluble PbS, CdS and SnS. On the other hand it will be noted that the least soluble of the group III sulphides approach those of group II, hence too small a proportion of acid might permit these, notably ZnS, to precipitate. Experiment has shown that the proper concentration of S⁻⁻ will be obtained in a solution whose acid concentration is just 0.3N. In this concentration of acid it is possible to make a complete separation of group II metals, except in arsenic when present as arsenate. In such cases a special procedure is necessary to remove all the arsenic.

Experiment 2a.—Transfer the precipitates of CuS and SnS (Exp. 2) to separate test tubes by means of a spatula or glass rod flattened at one end, add about 5 cc. of $(NH_4)_2S_x$ reagent and warm the mixtures gently. (Do not boil.) Note the solution of SnS. (Difference, separation of the copper division from the tin division.)

Note.—This separation is made possible because of the acidic character of arsenic, antimony and tin and their tendency to form sulpho-salts. The copper division elements are not affected by the $(NH_4)_2S_x$ except in the cases of copper and mercury both of which have a slight tendency to dissolve during this treatment unless care is exercised to prevent long continued action at a comparatively high temperature.

Experiment 3.—Neutralize the solutions containing groups III, IV and V with NH₄OH and saturate with H₂S. Note the precipitation of Al(OH)₃ and FeS (Difference, separation of group III). Filter and pass H₂S into the filtrate to insure complete precipitation.

Note.—Except for aluminium and chromium, which form insoluble hydroxides, the metals of group III are precipitated as sulphides. This is brought about by the higher concentration of the S^{-} in the alkaline solution. Since H_2S is a weak acid its per cent of ionization is greatly influenced by the presence of an excess of either acid or base. The presence of an acid increases the number of H^+ that can unite with the free S^- to form nonionized H_2S . This must necessarily result in a lower concentration of S^- . On the other hand the presence of a base must decrease the concentration of H^+ , since they will unite with the OH^- of the base to form H_2O . This permits a further ionization of the H_2S with a resulting increase in the concentration of S^- . Since both groups II and III are precipitated as sulphides it is evident that a careful regulation of the concentration of the S^- is of considerable importance. As is seen above this is most easily done by regulating the H^+ concentration.

Experiment 3a.—Dissolve the precipitates of Al(OH)₃ and FeS by pouring 6N. HCl repeatedly through the filter paper. Make the resulting solutions distinctly alkaline with NaOH and add, by means of a spatula or glass rod flattened at one end, a small amount of Na₂O₂. (Caution, do not carry Na₂O₂ on a filter paper. Use a dry watch glass. Why?) Note the precipitation of Fe(OH)₃. (Difference, separation of the iron division from the aluminium division.)

Note.—Although the hydroxides of aluminium, chromium and zinc are quite insoluble they are not precipitated in the presence of an excess of a strong base because of their amphoteric nature, i.e., ability to ionize both as an acid and as a base. (See Introduction 16 for general discussion.)

The Na_2O_2 acts as an oxidizing agent to change the somewhat insoluble chromite to the soluble chromate and the somewhat soluble $Mn(OH)_2$, $Fe(OH)_2$ and $Co(OH)_2$ to the more insoluble $MnO(OH)_2$, $Fe(OH)_3$ and $Co(OH)_3$. The $Ni(OH)_2$ is sometimes partially oxidized to $Ni(OH)_3$ also.

Experiment 4.—Heat the solutions containing groups IV and V nearly to boiling and add about 5 cc. of (NH₄)₂CO₃ solution. If a precipitate does not form at once allow the mixtures to stand 10–15 minutes. Note the precipitation of CaCO₃. (Difference, separation of group IV.)

Note.—Owing to the higher solubility of the carbonates of group IV than that of the compounds used for the separation of groups I, II and III, it is usually necessary to concentrate the filtrate from group III by evaporation before precipitating group IV, especially if small amounts are to be detected.

When precipitated from a cold solution the carbonates of group IV usually precipitate in a very finely divided state which is difficult to filter. If precipitation is from a hot solution the crystals are coarser and settle out better, especially if allowed to stand for some time.

It should be noted that there is no reagent for precipitating group V, hence it is always necessary to test the filtrate from group IV for the metals of group V. Since NH₄OH has been used in the separation of the different groups it is necessary to test a portion of the original unknown for ammonium salts.

Suggestive Questions*

- 1. What is the general method employed in a systematic analysis for metal ions?
- 2. What are the reagents used (group reagents) for the precipitation of the first four groups?
 - 3. How can one be sure of complete precipitation?
- 4. What conditions favor the precipitation of bismuth and antimony in group I?
- 5. Why is it necessary to regulate so carefully the concentration of the acid in the precipitation of group II?
- 6. If the $(NH_4)_2S_x$ were allowed to get too hot during the separation of the Cu and Sn divisions what error might result?
- 7. What is the function of the Na_2O_2 in the separation of the Al and Fe divisions of group III?
 - 8. What is meant by amphoteric property?
 - 9. Why is it advisable to precipitate group IV from a hot solution?
- *Suggestive questions are placed at the end of each set of preliminary experiments. The student should be able to answer these or similar questions before receiving an unknown.

GROUP I

TABLE II

Outline for the Study of the Systematic Separation and Detection of Group I

Ions present in acid solution

Reagent	Bi+++	Sb+++	Pb++	Hg+	Ag+
I NH ₄ Cl 2 HCl(2N) H ₂ S 3 H ₂ O (Hot) (a) K ₂ Cr ₂ O ₇ (b) H ₂ SO ₄ 4 NH ₄ OH 5 HNO ₃	BiOC1 (?) BiCl ₃ Bi ₂ S ₃ *	SbOCI (?) SbCl ₃ Sb ₂ S ₃ *	PbCl ₂ PbCl ₂	$\begin{array}{c} Hg_2Cl_2\\ Hg_2Cl_2\\ \downarrow\\ Hg_2Cl_2\\ \downarrow\\ \\ Hg_2Cl_2\\ \downarrow\\ \end{array}$ $\begin{array}{c} HgNH_2Cl+Hg\\ \downarrow\\ \end{array}$	AgCl AgCl AgCl AgCl AgCl AgCl AgCl AgCl

^{*} May be added to Group II ppt. or tested according to method outlined in Group II.

Preliminary Experiments

Experiment 5.—Introduce into separate test-tubes 2 cc. portions of the test solutions containing the above ions. Test for acidity with litmus paper and if not already acid make distinctly acid with 6N. HNO₃. In each case dilute with water to a volume of 10 cc. and add NH₄Cl as long as a precipitate continues to form. Decant, or filter if necessary, and treat the precipitates as directed in Exp. 6. If HCl were substituted for the HNO₃ and NH₄Cl, would the same result be obtained? Try it. Write equations.

Notes.—Water, though very slightly ionized, reacts with salts of the less basic metals to form oxy-compounds or even acids. This reaction is called hydrolysis. The ionization of water is prevented in large measure by the presence of strong acids or strong bases. Bi and Sb are both weakly basic in character and hence tend to react with the water. This tendency is aided either by a high concentration of their salts or by a low concentration of acid. The addition of NH₄Cl as directed above, therefore, may or may not give a precipitate, since the neutral chlorides are soluble. (See Introduction 14.) If hydrolysis occurs, however, the change may be considered to proceed as follows:

BiCl₃→ Bi(OH)₂Cl→ BiOCl

Experiment 6.—To each of the above precipitates (Exp. 5) add 5–10 cc. of cold 2N. HCl and mix thoroughly. Note the solution of BiOCl and SbOCl. (Difference, separation of Bi and Sb.) Filter off the solution from the PbCl₂ and saturate the filtrate with H₂S. Saturate the solutions containing Bi⁺⁺⁺ and Sb⁺⁺⁺ with H₂S. Write all equations.

Experiment 7.—Add to the precipitates of PbCl₂, Hg₂Cl₂ and AgCl (Exp. 6) 10 cc. of boiling water. Note the solution of PbCl₂. (Difference, separation of Pb.)

Experiment 7a.—Divide the PbCl₂ solution (Exp. 7) into two parts and add K₂Cr₂O₇ to the one and H₂SO₄ to the other. Note the color and nature of the precipitates formed. Write equations. Which of the above reagents should give the more satisfactory test for Pb++?

Experiment 8.—Decant the liquid from the residues of Hg₂Cl₂ and AgCl (Exp. 7) and add NH₄OH as long as the reaction seems to continue. Note the solution of AgCl. (Difference, separation of Hg.)

Notes.—In the presence of NH₄OH, Hg₂Cl₂ is changed by auto-oxidation to white HgNH₂Cl and black, finely divided Hg. A part of the mercury in its reduction to the metallic state oxidizes the remainder to the bivalent condition. The compound HgNH₂Cl may be considered to be formed from HgCl₂ by replacing a chlorine atom by the univalent radical (NH₂). The reaction proceeds as follows:

$Hg_2Cl_2 + 2NH_4OH \rightarrow HgNH_2Cl + Hg + NH_4Cl + 2H_2O.$

A solution of NH₄OH contains a considerable proportion of NH₃ molecules which unite readily with Ag⁺ to form the complex ion Ag(NH₃)₂⁺. Therefore, when AgCl is treated with NH₄OH the Ag⁺ is removed by the formation of the complex Ag(NH₃)₂⁺ which shifts the equilibrium toward the formation of more Ag⁺ (Le Chatelier's Principle) with the result that the AgCl is dissolved. The reaction proceeds as follows:

$AgCl + 2NH_3 \rightleftharpoons Ag(NH_3)_2Cl$

Experiment 9.—Acidify the solution of Ag(NH₃)₂Cl (Exp. 8) with HNO₃. A white precipitate of AgCl is

obtained, owing to the removal of NH₃ in the reversible action above.

SUGGESTIVE QUESTIONS

1. What is meant by hydrolysis?

- 2. What elements are precipitated in group I because of hydrolysis?
- 3. What ion is necessary for the precipitation of group I? Could any compound containing this ion be used as the group reagent? Why?
- 4. What conditions are favorable for the precipitation of lead in group I? What conditions are unfavorable?
- 5. If no precipitate is obtained when NH₄Cl is added to an acid solution of an unknown, what conclusions can be drawn?
 - 6. Why does AgCl dissolve in an excess of NH4OH?
- 7. What is the black substance obtained when NH_4OH is added to Hg_2Cl_2 ?
- 8. Could any acid be used to precipitate AgCl from its solution in NH₄OH? Why?

Analysis

Group I

- (10) Precipitation.—The solution to be analyzed may be a general unknown obtained either as such or by dissolving a solid substance as outlined on pages 24-28, or it may contain elements of this group only. In any case determine whether or not the solution is acid. Test with litmus if necessary. Treat by (a), (b) or (c).
- (a) If the solution is acid with an unknown acid (see Discussion 11) dilute to about 25 cc. and add NH₄Cl solution as long as a precipitate continues to form. Mix thoroughly and allow the mixture to stand 2–3 minutes. Filter and treat the precipitate by (11). Reserve the filtrate for analysis of group II (20).
- (b) If the solution is neutral or alkaline neutralize with 6N. HCl (see Discussion 11), and add just 5 cc. in excess and dilute to about 25 cc. Mix thoroughly and allow the mixture to stand 2-3 minutes. Filter and treat the pre-

cipitate by (11). Reserve the filtrate for analysis of

group II (20).

(c) If the solution is known to contain aqua regia or much HNO₃, evaporate until barely moist (do not ignite), add HCl and evaporate again to remove all HNO₃. Now add just 5 cc. of 6N. HCl and dilute to about 25 cc. If a residue remains, filter, treat the residue by (11) and reserve the filtrate for analysis of group II (20).

- (11) Separation of Bismuth and Antimony.—Pour repeatedly through the filter (10) a cold 10 cc. portion of 2N. HCl. Treat the residue by (12). Dilute the filtrate with an equal volume of water and saturate with H_2S . A brown precipitate indicates the presence of bismuth. An orange-red precipitate indicates the presence of antimony and the absence of bismuth. Confirmatory tests may be made according to the methods outlined in Group II, or the precipitate may be added to that of the Group II sulphide (20) and analyzed according to the general scheme.
- (12) Separation and Detection of Lead.—Pour repeatedly through the filter (11) a 10 cc. portion of boiling water. Cool, acidify with $HC_2H_3O_2$ and add a slight excess of $K_2Cr_2O_7$ solution. The formation of a yellow crystalline precipitate shows the presence of lead. If lead has been found, wash the residue left by the hot water, and treat it by (13). (See Discussion 14.)

(13) Detection of Mercury.—Pour repeatedly through the filter (12) a 5–10 cc. portion of NH₄OH. A black residue left on the filter paper shows the presence of

mercury. Treat the filtrate by (14).

(14) Detection of Silver.—Acidify the filtrate (13) with HNO₃. The formation of a white curdy precipitate undissolved by the HNO₃ shows the presence of Ag. (See Discussion 15.)

DISCUSSION

11. The chlorides of lead, silver and mercury (ous) are insoluble in acid of moderate concentration but tend to

redissolve in strongly acid solutions, owing to the formation of complex ions such as $AgCl_2^-$. If the solution to be tested is strongly acid with an unknown acid it should be nearly neutralized with NH_4OH before the addition of NH_4Cl . Complete neutralization causes the precipitation of metal hydroxides and oxy-compounds which may not readily dissolve on the subsequent addition of acid. It is preferable, therefore, not to completely neutralize at this time.

Group I is precipitated in an acid solution by means of the chloride ion. This condition is brought about either by the addition of NH₄Cl to an acid solution of the unknown or by the addition of HCl. If the unknown is already acid or is a solid soluble in HNO₃ time can usually be saved by the use of NH₄Cl as the precipitating agent. However, if the unknown is in neutral or alkaline solution or is a solid soluble in aqua regia only, it is usually preferable and more convenient to use HCl.

12. Owing to the rather high solubility product of PbCl₂ it is often incompletely precipitated in Group I. Its solubility, however, is considerably lessened by the addition of a large excess of NH₄Cl because of the common ion effect. The mass-law equation representing the solubility product of PbCl₂ is C_{Pb}++·C²_{Cl}-=**K**. Since the product of the concentrations of its ions must under all conditions have a definite value it is readily seen that an increase of Cl- must result in a decrease of Pb++. The Pb++, however, can decrease only by forming nonionized PbCl₂, and if the solution is saturated with respect to PbCl₂ molecules, precipitation must take place. The reaction may be represented by the following equilibrium:

$PbCl_2 \rightleftharpoons PbCl_2 \rightleftharpoons Pb+++2Cl-$

13. As was pointed out in the preliminary experiments, the precipitation of bismuth and antimony in this

group is due to hydrolysis. The reaction for bismuth proceeds as follows:

$BiCl_3 \leftrightarrows Bi(OH)_2Cl \leftrightarrows BiOCl$

The unstable intermediate product Bi(OH)₂Cl decomposes into the insoluble BiOCl. For the solubility product,

therefore, we have the expression C_{Bl}^{++} C_{OH}^{-} C_{Cl}^{-} = K. The excess of H+ from the acid unites with the OH- to form the very slightly ionized H₂O and so reduces the concentration of the OH-. This in turn tends to reduce the ion product and hence causes the bismuth to remain in solution or the BiOCl to dissolve. An excess of Cl-would tend to shift the equilibrium toward the formation of nonionized BiCl₃ and so reduce the concentration of Bi+++. The result again is to reduce the ion product and prevent precipitation. The same reasoning applies to the formation of SbOCl. (The student should make the application.)

- 14. The solvent action of hot water on PbCl₂ is somewhat slow, hence the necessity of pouring the water repeatedly through the filter containing the mixed chlorides. Any undissolved PbCl₂ left on the filter may react with the NH₄OH, subsequently added for the separation of mercury and silver, to form a basic chloride, PbOHCl. This causes a turbidity in the filtrate containing the dissolved silver. The presence of this, however, does not interfere with the test for silver, since it is readily dissolved by the HNO₃.
- 15. The presence of a large quantity of mercury renders the test for silver less delicate, owing to the reducing action of free mercury on the silver salt.

Hg+2AgCl→HgCl₂+2Ag

The silver thus reduced is insoluble in NH₄OH and is, therefore, left in the residue mixed with the HgNH₂Cl and free mercury. In case the quantity of silver is relatively small as compared to the mercury it might be completely

reduced and hence remain in the residue. If a heavy black residue is obtained on the addition of NH₄OH and silver is not found in the filtrate, the residue should be tested for silver as follows: Dissolve the residue in a small quantity of aqua regia, dilute with water and filter off the dissolved mercury. Leach the residue with NH₄OH to dissolve any AgCl, and test the filtrate for silver as outlined in Analysis (14).

GROUP II. COPPER DIVISION TABLE III

OUTLINE FOR THE STUDY OF THE SYSTEMATIC SEPARATION AND DETECTION
OF GROUP II (COPPER DIVISION)
Ions present in 0.3N, acid solution

No.	Reagent	Hg++	Pb++	Bi+++	Cu++	Cd++
I	H ₂ S	HgS	PbS	Bi ₂ S ₃	CuS	CdS
2	$(NH_4)_2S_x$	HgS	PbS	Bi ₂ S ₃	CuS	CdS
3	HNO ₃ (2N.)	HgS	Pb(NO ₈) ₂	Bi(NO ₈) ₃	Cu(NO ₃) ₂	Cd(NO ₃) ₂
	Aqua regia (HNO ₃ ,HCl) SnCl ₂	HgCl HgNH ₂ Cl—Hg		1		ļ ļ
4	H ₂ SO ₄ (conc.)		PbSO ₄	Bi ₂ (SO ₄) ₃	CuSO ₄	CdSO ₄
	NH ₄ C ₂ H ₃ O ₂		$Pb(C_2H_3O_2)_2$			
	HC ₂ H ₃ O ₂	*	PbCrO ₄	1	1	1
5	K ₂ Cr ₂ O ₇ NH ₄ OH			віоон	Cu(NH ₃) ₄ SO ₄	Cd(NH ₃) ₄ SO ₄
	HC1 (6N.)		1	BiCl ₃		
	H ₂ O			BiOC1		
	Na ₂ SnO ₂			Bi	+	1
6	(a) HC ₂ H ₃ O ₂				CuSO ₄	CdSO ₄
	K ₄ Fe(CN) ₆			1	Cu ₂ Fe(CN) ₆	Cd ₂ Fe(CN) ₆
	(b) KCN—H ₂ S				KCu(CN)2	CdS
	(c) HC ₂ H ₃ O ₂				CuSO ₄	CdSO ₄
	Fe				Cu	CdSO ₄
	H ₂ S				1	CdS
			1			

Preliminary Experiments

Experiment 10.—Dilute separate 2 cc. portions of each of the test solutions containing the above ions with ten times their volume of water, test for acidity with litmus paper and if not already acid make slightly acid with 6N. HCl. Saturate the solutions with H₂S. Allow the precipitates to settle; then decant off the supernatant liquid (filter if necessary) and wash each of the precipitates by decantation with about 10 cc. of water in order to remove the remaining acid. Write equations.

Experiment 11.—To each of the above precipitates (Exp. 10) add 10 cc. of 2N. HNO₃ and heat to boiling. Note the insolubility of HgS. (Difference, separation of Hg.) Write equations.

Note.—If too strong HNO₃ is added or if the boiling is long continued the HgS is largely converted into a white difficultly soluble substance of the probable formula $2\text{HgS}\cdot\text{Hg}(\text{NO}_3)_2$ while some may be completely dissolved as $\text{Hg}(\text{NO}_3)_2$.

Experiment 11a.—Pour off the liquid above the residue of HgS (Exp. 11) and add 5 cc. of aqua regia (3 parts of 12N·HCl to 1 part of 16N·HNO₃) and warm gently until solution is complete. Evaporate almost to dryness, add 5–10 cc. of water and then stannous chloride (SnCl₂) drop by drop. Write equations.

Notes.—The failure of the HgS to dissolve in 2N. HNO₃ is due not only to the small number of its ions in a saturated solution but also to the slow removal of the sulphide ion by oxidation with the dilute HNO₃. Aqua regia is a much stronger oxidizing agent. It readily oxidizes the sulphide ion and so brings the mercury into solution.

 $\mathrm{HgCl_2}$ is reduced to white $\mathrm{Hg_2Cl_2}$ by the action of $\mathrm{SnCl_2}$. This is then further reduced to free Hg by an excess of $\mathrm{SnCl_2}$, hence the change in color from white to gray.

Experiment 12.—To each of the solutions containing Pb++, Bi+++, Cu++, and Cd++ (Exp. 11) add 1 cc. conc. H₂SO₄ and evaporate until the white fumes of SO₃ begin to appear. Cool and add 10 cc. of water. Note the fact

that PbSO₄ remains insoluble. (Difference, separation of Pb.) Write equations.

Notes.—PbSO₄ is somewhat soluble in HNO₃. In order to effect a complete precipitation of lead it is necessary to remove the HNO₃. This may be done by evaporation since the boiling-point of HNO₃ (120.5°) is so much lower than that of the $\rm H_2SO_4$ (338°). The appearance of the white fumes of SO₃ is evidence of the complete removal of HNO₃.

Bi₂(SO₄)₃ ordinarily dissolves on the addition of water but if much bismuth is present a coarsely crystalline precipitate of (BiO)₂SO₄ may separate out slowly when cold, and more quickly when heated.

Experiment 12a.—Decant or filter off the clear liquid from the insoluble PbSO₄ and dissolve it by shaking with 10 cc. of ammonium acetate (NH₄C₂H₃O₂). Acidify the solution with HC₂H₃O₂ and add a few drops of K₂Cr₂O₇. The precipitate is PbCrO₄. Write equations.

Note.—PbSO₄ is soluble in NH₄C₂H₃O₂ owing to the formation of the very slightly ionized Pb(C₂H₃O₂)₂. It should be remembered that most salts are highly ionized. (See table, Introduction, 9.)

Experiment 13.—To each of the solutions containing Bi+++, Cu++, and Cd++ (Exp. 12) slowly add NH₄OH to distinctly alkaline reaction. Note the formation of a permanent white precipitate of BiOOH. The precipitates of Cu(OH)₂ and Cd(OH)₂ redissolve on the addition of an excess of the reagent. (Difference, separation of Bi.) Write equations.

Note.—According to the Law of Mass Action the limit of solubility of any acid, base or salt is reached when the product of the concentration of its ions equals a certain maximum, called the solubility product. (Conc. of pos. ions×Cons. of neg. ions=a const., solubility product.) If NH₄OH is added to a bismuth salt, precipitation of BiOOH begins when enough OH⁻ have been added to reach the solubility product for BiOOH. The greater the concentration of OH⁻, i.e., the greater the excess of NH₄OH, the smaller must be the concentration of the Bi⁺⁺⁺ and hence the more complete the precipitation. It will be recalled, however, that an addition of an excess of NH₄OH dissolves both Cu(OH)₂ and Cd(OH)₂. This is explained by the fact that the Cu⁺⁺ and Cd⁺⁺ unite with NH₃ to form the complex ions Cu(NH₃)₄⁺⁺ and Cd(NH₃)₄⁺⁺ (See Introduction 15.) This removes the Cu⁺⁺ and Cd⁺⁺ as such

and prevents their precipitation. The ${\rm Bi}^{+++}$, incapable of forming a complex ion with ${\rm NH_3}$ must be removed by precipitation as indicated above.

Experiment 13a.—Decant or filter off the clear liquid from the precipitate of BiOOH and dissolve it in a few cc. of 6N. HCl. Evaporate to about 1 cc. and pour into a large volume of warm water. Filter off the white milky precipitate of BiOCl and pour over the precipitate on the filter paper a freshly prepared solution of sodium stannite (Na₂SnO₂). (See Appendix 1.) The black residue is finely divided bismuth. Write equations.

Note.—The solution of BiCl₃ is evaporated to remove the excess of HCl in order to promote hydrolysis. (See Preliminary Exp. 5, also Introduction, 14.)

Experiment 14.—Divide each of the solutions containing copper and cadmium (Exp. 13) into three parts. Acidify the first portion of each with HC₂H₃O₂ and add a few drops of K₄Fe(CN)₆. Note the color of the precipitates formed. (Difference, detection of Cu.) Write equations.

To the second portion containing copper add KCN or NaCN (Care, Poison) until the blue color just disappears; then add an equal volume to the second portion containing cadmium. Saturate each with H₂S. Note the formation of insoluble CdS. (Difference, detection of Cd.)

Acidify the third part of each with 6N. H₂SO₄ and add 1-2 cc. in excess. Now add 2-3 grams of iron fillings. Heat the solution containing the copper until the blue color of the Cu entirely disappears. Heat the solution containing the cadmium for about the same length of time. Filter off the residue from each and saturate the filtrates with H₂S. Note the formation of insoluble CdS. (Difference, separation of Cu from Cd.)

Note.—Excess KCN reacts with salts of copper and cadmium to form the complex ions $Cu(CN)_2^{++}$ and $Cd(CN)_4^{++}$. The $Cu(CN)_4^{++}$ first formed immediately decomposes into $Cu(CN)_2^{+}$ and C_2N_2 . The C_2N_2 reacts with NH₄OH to form NH₄CNO and other more or less complex substances. The failure to obtain a precipitate with H₂S is evidence

that not enough Cu^+ or Cu^{++} is present to reach the solubility product for Cu_2S or CuS and shows that the complex ion $Cu(CN)_2^+$ is only very slightly dissociated. On the other hand, the complex ion $Cd(CN)_4^{++}$ must be dissociated to a considerable extent since it produces sufficient Cd^{++} to reach the solubility product for CdS. The reactions proceed as follows:

$$2Cu(NH_3)_4SO_4+_4KCN\rightarrow_2KCu(CN)_2+C_2N_2+_4NH_3+K_2SO_4$$

 $Cd(NH_3)_4SO_4+_4KCN\rightarrow K_2Cd(CN)_4+_4NH_3+K_2SO_4$

Since iron is considerably above copper in the electromotive series (see Appendix V) it easily displaces copper from its solutions. Cadmium, on the other hand, is above iron and therefore is not displaced by it. The electromotive series lists the elements according to their relative solution tensions (tendency to go into solution). Those having the greater tendency to go into solution are placed at the top of the series. Any metal, therefore, will displace from solution any metal below it in the list.

SUGGESTIVE QUESTIONS

- r. What is the effect of prolonged boiling of the sulphides of the copper division metals with 2N. HNO_3 ? Why?
- 2. Why is H₂S not given off when a sulphide is dissolved in 2N. HNO₃? What gas is given off?
- 3. Why is free mercury formed only after considerable $SnCl_2$ has been added to $HgCl_2$ solution?
- 4. Why is it necessary to evaporate to the appearance of white fumes to separate the lead with H_2SO_4 ?
- 5. What other substance may precipitate along with PbSO₄ in the separation of lead by means of H₂SO₄? How may lead be distinguished from it?
 - 6. Why will PbSO₄ dissolve in a solution of NH₄C₂H₃O₂?
 - 7. Why does Cu(OH)2 dissolve in an excess of NH4OH?
 - 8. What is the effect of excess acid on the hydrolysis of BiCl₃?
- 9. What is the black substance formed when Na₂SnO₂ reacts with a bismuth compound?
- 10. What is the purpose of KCN in the separation of copper from cadmium?
 - II. Explain why iron can be used to separate Cu from Cd?
- 12. What would be the effect of a large excess of KCN on the precipitation of CdS with H₂S? Why?

GROUP II, TIN DIVISION

TABLE IV

OUTLINE FOR THE STUDY OF THE SYSTEMATIC SEPARATION AND DETECTION OF GROUP II (TIN DIVISION)

No.	Reagent	As + or +++ As ++	Sb + ·	Sn++ or Sn++
ı	(a) H ₂ S ¹	As ₂ S ₃ or As ₂ S ₅	Sb ₂ S ₃	SnS or SnS ₂
	(b) NH ₄ OH ²	(NH ₄) ₃ AsO ₃₋₄	$Sb(OH)_3$	$Sn(OH)_2$ or $(NH_4)_2SnO_3$
	H ₂ S ²	$(NH_4)_3AsO_{3-4}$	Sb_2S_3	SnS or (NH ₄) ₂ SnO ₃
	HCl ²	As ₂ S ₃ or As ₂ S ₅	Sb_2S_3	SnS or SnS ₂
2	$(NH_4)_2S_x^{-1}$	(NH ₄) ₃ AsS ₄	(NH ₄) ₃ SbS ₄	(NH ₄) ₂ SnS ₃
3	HCl (6N.)	As_2S_5	Sb_2S_5	$\underline{\operatorname{SnS}_2}$
4	HCl (12N.)	As_2S_5	SbCl₃	SnCl ₄
	HCl—KClO ₃	H ₃ AsO ₄		
	NH ₄ OH	MgNH ₄ AsO ₄		
	HCl MgCl ₂	$\mathrm{H_3AsO_4}$		
	H ₂ S	As ₂ S ₃₋₅		1
5	(a) H ₂ S	Ti Loginia	Sb_2S_3	SnCl ₄
	H ₂ O—H ₂ S			SnS ₂
	(b) H ₂ O—H ₂ S	+	Sb_2S_3	SnS ₂
	HCl—Br.		SbCl ₃	SnCl ₄
	H ₂ C ₂ O ₄ H ₂ S	**	Sb_2S_3	SnCl ₄ ³
6	Pb H ₂ S			SnCl ₂
7	HgCl ₂			SnCl ₄ (Hg ₂ Cl ₂)
BC WEST COLOR				

¹ Compare the reactions here with those in the copper division (Table III).

² Not used in the analysis but shows properties essential to the analysis.

³ Does not exist in the solution as the simple salt but as a complex compound the formula of which is unknown.

Preliminary Experiments

Experiment 15.—Dilute separate 2 cc. portions of the test solutions of each of the above ions with water to about 15 cc. and saturate cold with H₂S. If a precipitate does not form heat to boiling and saturate again with H₂S. (Save for Exp. 12.) Note the difference in action between As ⁺⁺ and As ⁺⁺⁺. Write equations.

Obtain a second 2 cc. portion of each of the above test solutions, add NH₄OH until they react alkaline then dilute to about 15 cc. Note result in each case. Saturate each with H₂S and if a precipitate does not form heat to boiling and saturate again with H₂S. Compare with results obtained above. Now add HCl to those solutions in which no precipitate was formed.

Note.—Although the solubility products of As_2S_3 and As_2S_6 are extremely small they are not precipitated in alkaline solution owing to the acid character of arsenic and its tendency to form arsenites and arsenates. In alkaline solution, therefore, the concentrations of As^+ and As^{++} are so small that the solubility products of their sulphides are not reached even with the large excess of S^- made available by the alkali. Even in the presence of acid very little quinquivalent arsenic is found in the positive ion. This is shown by the difficulty of precipitating it with H_2S . The more basic antimony and tin, on the other hand, tend to remain in the positive ion, the quadrivalent tin only being shifted so completely into the negative ion by NH_4OH as to prevent its precipitation by H_2S .

Experiment 16.—Decant or filter the liquid from the precipitates (Exp. 15) and dissolve each, by warming if necessary, with about 5 cc. of $(NH_4)_2S_x$ reagent. Do NOT boil.

Notes.—The solubility of the sulphides of arsenic, antimony and tin is doubtless due to their acidic character and tendency to form sulphosalts. This is in direct contrast to the metals of the copper division of Group II in that the latter are all basic in character and have very little tendency to form sulpho-salts.

The use of $(NH_4)_2S_x$ instead of $(NH_4)_2S$ is made necessary only in the cases of Sb_2S_3 and SnS. Antimony and tin must be oxidized to the higher valence since the sulphosalt of the lower valence is apparently incapable of existence. The following reactions for the solution of As_2S_3 and As_2S_6 are as follows:

$$As_2S_3 + 3(NH_4)_2S_x \rightarrow 2(NH_4)_3AsS_4 + (3x - 5)S$$

 $As_2S_5 + 3(NH_4)_2S_x \rightarrow 2(NH_4)_3AsS_4 + (3x - 3)S$

Write the corresponding equations for the solution of Sb₂S₃, SnS and SnS₂, noting the fact that in the sulpho-salt arsenic and antimony are quinquivalent while tin is quadrivalent.

Experiment 17.—Since the two solutions of arsenic are now identical (NH₄)₃AsS₄, as are also those of tin, (NH₄)₂SnS₃, one of each may be discarded. Dilute the remaining solutions of arsenic, antimony and tin (Exp. 16) with an equal volume of water and acidify with 6N. HCl. Note the precipitate formed in each case. Write equations.

Note.—When $(NH_4)_2S_x$ is treated with an acid, considerable sulphur is apt to be set free. This gives a white, milky appearance to the mixture and may prevent the detection of small amounts of the sulphides. Dilution with water obviates this difficulty to some extent.

Experiment 18.—To each of the precipitates of As_2S_5 Sb_2S_5 and SnS_2 (Exp. 17) dried by suction or by pressing between filter paper, add just 10 cc. of 12N. HCl. Place the test-tubes containing the mixtures in a beaker of water and heat to boiling. Boil gently for ten minutes. Note the solution of Sb_2S_5 and SnS_2 . (Difference, separation of As.) Write equations.

Notes.—If the boiling is carried out so that the bubbles rise but slowly from the solutions, practically no As_2S_5 is dissolved. However, if the boiling is too vigorous some of the arsenic may go into solution. This is due to removal of H_2S and consequent shifting of equilibrium.

 $\mathrm{Sb}_2\mathrm{S}_5$ dissolves in 12N. HCl somewhat slowly, especially when large amounts are present. It dissolves with the formation of SbCl_3 , the antimony being reduced by the $\mathrm{H}_2\mathrm{S}$ to the trivalent condition.

Experiment 18a.—Without filtering, add small particles of KClO₃ or NaClO₃, a few at a time, to the As₂S₅ and

stir till solution is complete. Evaporate to 1–2 cc. Make distinctly alkaline with NH₄OH and add 1–2 cc. of magnesia mixture (MgCl₂–NH₄Cl–NH₄OH). If no precipitate forms add about one-fourth its volume of NH₄OH and rub the inside of the tube with a glass rod to hasten precipitation.

Note.—The action of HCl on KClO $_3$ or NaClO $_3$ is to liberate chlorine and ClO $_2$, which remove the S= by oxidation, causing the arsenic to go into solution. It is dissolved as H_3AsO_4 instead of AsCl $_5$, very little of which remains as such even in very concentrated HCl.

MgNH₄AsO₄ is somewhat soluble even in cold water; therefore it is necessary to have a rather concentrated solution. It also has a tendency to hydrolize into NH₄OH and MgHAsO₄, a soluble salt. This tendency is counteracted by the addition of a large excess of NH₄OH. It has another peculiarity, which is not uncommon, in that it is inclined to supersaturate. This may be overcome and precipitation effected, by vigorous shaking, or by producing a rough surface in contact with the liquid.

Experiment 19.—Dilute the solutions of antimony and tin (Exp. 18) to 50 cc. and transfer one-third of each to a third vessel. Heat the remaining portions to 90° and saturate with H₂S. Note the precipitation of Sb₂S₃. (Difference, separation of Sb.) Write equations.

Experiment 19a.—Dilute the solution in the third vessel (Exp. 19) to 50 cc. and saturate with H₂S. Note the color of the precipitate. Without filtering, boil to expel H₂S. Add bromine water and heat till solution is complete, then add 5 gms. of solid oxalic acid (H₂C₂O₄) and saturate with H₂S. Note the precipitation of Sb₂S₃. (Difference, separation of Sb.) Write equations.

Notes.—There is enough difference in the solubility products of Sb₂S₃ and SnS₂ for the careful worker to make a complete separation of antimony and tin according to Exp. 19. However, if the directions for temperature and acid concentration are not carefully observed, a precipitate containing both antimony and tin may be obtained (Exp. 19a), in which case the separation can be made according to Exp. 19a.

The bromine water is used to oxidize the S⁼ and so hasten the solution. The same results may be obtained more slowly by evaporation to concentrate the acid.

The failure of SnS_2 to precipitate in the presence of a large excess of $H_2C_2O_4$ is doubtless due to the formation of a complex which reduces the concentration of Sn^{++} .

Experiment 20.—Dilute the solution containing tin (Exp. 19) to 50 cc. and saturate cold with H₂S. Note the precipitation of SnS₂. Without filtering, add 1–2 gms. of granulated test lead and boil two to three minutes. Cool and filter, allowing the filtrate to run into a solution of HgCl₂. The precipitate is Hg₂Cl₂+Hg.

Note.—The action of lead is to reduce the Sn^{++} to Sn^{++} , which in turn will reduce $HgCl_2$ to Hg_2Cl_2 or even to free mercury. Stannic tin has no effect on $HgCl_2$; hence the necessity for reduction before the final test.

Suggestive Questions

- 1. Why is arsenic sulphide not precipitated by $\mathrm{H}_2\mathrm{S}$ in an alkaline solution?
- 2. If $(NH_4)_2S$ were substituted for $(NH_4)_2S_x$ as the solvent for the tin division sulphides, what error might result?
- 3. Given a mixture of the sulphides of arsenic and antimony, describe a method of separation.
- 4. Why does oxalic acid prevent tin from precipitating as sulphide with H_2S ?
- 5. What is the basis of the separation of arsenic, antimony and tin from each other by means of H_2S ?
- 6. What is the basis of the separation of the copper and tin divisions from each other?
- 7. What error may be introduced by boiling the sulphides of arsenic, antimony and tin too vigorously with 12N. HCl?
 - 8. What is the purpose of the excess sulphur in (NH₄)₂S_x?
- 9. Refer to the electromotive series (p. 162) and explain why lead does not reduce SnCl₄ to Sn? What change would be necessary in the procedure if zinc were used instead of lead to reduce the SnCl₄? Explain.

Analysis

Group II

(20) Regulation of Acidity.—The solution may be filtrate (10) or an "unknown" in which group I is known to be absent. Before precipitating group II the concentration of the acid should be just 0.3N. This is obtained by having just 5 cc. of 6N. acid in 100 cc. of the solution. (See note, Exp. 2 and Discussion 16 and 17.)

If the quantity of free acid is known to be just 5 cc. treat directly by (21).

If the acid concentration is unknown and the solution does not contain aqua regia or a high concentration of HNO₃, neutralize with NH₄OH, add just 5 cc. of 6N. HCl and treat by (21). (See Discussion 16 and 17.)

If the solution is known to contain aqua regia or much HNO₃, evaporate till barely moist (be careful not to ignite since mercury and arsenic may be lost by volatilization and tin may be converted to an insoluble oxide), add 1–2 cc. of HCl and evaporate again to remove all HNO₃. Take up the residue in just 5 cc. of 6N. HCl and 10–15 cc. of water. Warm gently, if necessary to obtain complete solution, and treat by (21).

(21) Precipitation.—Dilute the solution 1 (20) which is known to contain just 5 cc. of 6N. acid to 100 cc. and saturate with H₂S. This usually requires from five to fifteen

¹ If the solution was obtained from (10,c) or the last paragraph in (20) and may contain quinquivalent arsenic time can usually be saved by diluting the solution containing just 5 cc. of 6N. HCl to 50 cc., heating to boiling and saturating while hot with H₂S. This serves to precipitate the arsenic. When no further precipitate can be obtained in the hot solution it should be cooled, diluted to 100 cc. and again saturated with H₂S. In this way all of group II can be precipitated.

minutes. In order to be sure that the solution is completely saturated, filter a small portion and pass H_2S into the filtrate. The solution is saturated when no further precipitate can be obtained with H_2S . Filter, heat the filtrate to boiling and again saturate with H_2S .

If no further precipitate forms reserve the solution for analysis of group III (50) and treat the precipitate by

(22).

If a further precipitate forms (see Discussion 18) evaporate the mixture to dryness, moisten the residue with conc. HCl and evaporate to dryness again to remove all HNO₃. Add 10–15 cc. of 6N. HCl, heat to boiling and pass H₂S into it for five to ten minutes. Filter, unite the precipitate to that obtained in (23) and treat by (40). Reserve the filtrate for analysis of group III (50).

- (22) Separation of the Copper and Tin Divisions.— Transfer the precipitate (21) to an evaporating dish, add 10-15 cc. of $(NH_4)_2S_x$ reagent, cover the dish with a watch glass and warm the mixture for about five minutes. (Do not boil.) (See Discussion 19.) Dilute with an equal volume of water and filter. A second treatment with $(NH_4)_2S_x$ reagent should be made if the residue is large and much was extracted by the first treatment. Wash the residue with hot water (see Introduction 3, f) and treat it by (30). Treat the filtrates separately by (23).
- (23) Precipitation of the Tin Division.—To the first filtrate obtained on treating the group II sulphides with $(NH_4)_2S_x$ reagent (22) add 6N. HCl with frequent stirring until the solution remains milk-white from the separation of finely divided sulphur. Allow the mixture to stand for one or two minutes to coagulate the precipitate. The presence of the tin division is indicated by a flocculent yellow or orange precipitate. (See Discussion 20.) Treat the second filtrate obtained in (22) in the same way, and if a flocculent precipitate forms, unite it with the one obtained above. Filter and wash the precipitate, using suction to dry it as

thoroughly as possible.¹ Reject the filtrate and treat the precipitate by (40).²

DISCUSSION

16. In regulating the acidity for the precipitation of group II, a precipitate may be formed which remains undissolved when the correct amount of acid is added. This occurs only when much bismuth or antimony is present. Their salts are readily hydrolyzed in weakly acid solution to form insoluble oxy-salts. It may happen, therefore, that an excess of only 5 cc. of 6N. acid will not be sufficient to prevent this. Any precipitate obtained in this way will consist of BiOCl or SbOCl and may be disregarded as these substances are converted into sulphides by H₂S.

17. The precipitation of the sulphides of the metals of both groups II and III is determined very largely by the acid concentration of the solution. From the standpoint of the Law of Mass Action and the Ionic Theory two factors must be taken into consideration in the precipitation of the metal sulphides, viz., the value of the solubility product and the concentration of the sulphide ion. The solubility product varies with the nature of the

¹ If the precipitate obtained is brown (indicating copper), dark gray (indicating mercury), or of unpronounced yellow or orange, so as to make doubtful the presence of the tin division, much time can often be saved by proceeding as directed below. Small amounts of copper which otherwise might be overlooked may also be detected.

Heat the precipitate with 10–20 cc. of NH₄OH almost to boiling for five minutes, and filter. This treatment dissolves all but the copper and free sulphur. The residue, therefore, should be tested for copper according to (30) (34) and (36) unless copper has already been found. Pass H₂S into the filtrate for fifteen to twenty seconds to precipitate any HgS and change the partially sulphurated salts (NH₄)₃AsO₃S, (NH₄)₃AsO₂S₂, etc., into the fully sulphurated form (NH₄)₃AsS₄, etc. Filter if necessary and acidify the filtrate with HCl. Filter off the precipitated sulphides, wash, dry by suction and treat by (40).

² If a suction pump is not available the precipitate may be dried satisfactorily by pressing the filter containing it between several thicknesses of clean filter paper.

sulphide and with the temperature. The order of precipitation with H₂S from cold HCl solution of decreasing acid concentration is about as follows: As ⁺⁺⁺, As ⁺⁺, Hg⁺⁺, Cu⁺⁺, Sb⁺⁺, Bi ⁺⁺ and Sn⁺⁺, Cd⁺⁺, Pb⁺⁺ and Sn⁺⁺, Zn⁺⁺, Fe⁺⁺, Ni⁺⁺, Co⁺⁺, Mn⁺⁺.

According to Henry's Law of the Solubility of Gases, the solubility and therefore the concentration of H₂S will have a constant value at a definite temperature and pressure. H₂S ionizes to a slight extent into H⁺ and HS⁻ and to a much less extent into 2H⁺ and S⁻. Since the S⁻ is the active agent in the precipitation under discussion only the latter ionization need be considered here.

The expression of the Law of Mass Action for H₂S is

$$\frac{C_{^{2}_{\mathrm{H}}}^{+}\cdot C_{^{8}}^{-}}{C_{^{H2S}}}=K$$

In a saturated solution, however, C_{H_2S} is a constant; hence simplifying the above equation gives

$$C_{^{2}_{H}} + \cdot C_{_{S}} = K \cdot C_{_{H_{2}S}} = K$$

From this it is readily seen that any increase in the concentration of H+ must result in a corresponding decrease in S=. But in order that a sulphide, e.g., CdS, may precipitate, its solubility product, $C_{cd}^{++} \cdot C_s^{-} = \mathbf{K}_{cds}$, must be reached. Therefore, if the acid concentration is large the concentration of S= may become so small that its product with C_{cd}^{++} will not equal the solubility product for CdS. On the other hand, if the acid concentration is small the concentration of S= may become so large that its product with C_{zn}^{++} will equal the solubility product for ZnS, in which case ZnS would be precipitated in group II. In order to make a complete separation between groups II and III, the concentration of S= must be so regulated that there will be sufficient to reach the solu-

bility product of the most soluble of the sulphides of group II but not sufficient to reach the solubility product of the least soluble of group III. (See table, Introduction II). The necessity of following the directions very accurately is therefore evident.

18. When H₂S is passed into a cold acid solution containing an arsenate, reaction takes place only very slowly between the two substances. Part of the arsenic is precipitated as As₂S₅ and a part is reduced to the trivalent state and precipitated as As₂S₃. When the solution is heated the reduction takes place somewhat more rapidly. The most favorable conditions for the reduction and precipitation of arsenates with H₂S is from a hot solution having a comparatively high concentration of acid.

19. In the separation of arsenic, antimony and tin from the copper division, advantage is taken of the acid character of the elements of the tin division and their ability to form sulpho-salts with $(NH_4)_2S_x$. This reagent, however, has a slight solvent action on the sulphides of copper and mercury. If $(NH_4)_2S_x$, to which about 5 per cent NaOH has been added, is used, the solvent action on the sulphides of copper and mercury is very much reduced and a more satisfactory separation is obtained. Excessive heat not only increases the solvent action on HgS and CuS but decomposes the reagent with precipitation of free sulphur.

20. If the separation of arsenic, antimony and tin from the copper division has been complete the presence of the tin division is shown by a flocculent yellow or orange precipitate on acidification of the $(NH_4)_2S_x$ solution with HCl. However, if the treatment with $(NH_4)_2S_x$ has been prolonged or the temperature has been raised too high, a brown or dark gray precipitate may be obtained indicating that some copper or mercury has been dissolved by the $(NH_4)_2S_x$ treatment. These should be removed before proceeding further.

The (NH₄)₂S_x treatment dissolves all but the copper

and free sulphur, the tin division elements forming the partially sulphurated salts, e.g. (NH₄)₃AsO₃S, (NH₄)₃AsO₂S₂, etc. The action of H₂S forms insoluble HgS and the fully sulphurated salts of the tin division elements, e.g. (NH₄)₃AsS₄, etc.

ANALYSIS

Group II, Cu Division

- (30) Separation of Mercury.—Transfer the residue (22) to a porcelain dish and add 10–20 cc. of 2N. HNO₃ and heat to boiling. Boil gently for two to three minutes, not longer. (See note, Preliminary Exp. 11). Filter, wash the residue and treat it by (31). Treat the filtrate by (32).
- (31) Confirmatory Test for Mercury.—Transfer the residue (30) undissolved by HNO₃ to a porcelain dish and add 5–10 cc. of aqua regia (see Preliminary Exp. 11a). Warm gently till solution is complete ¹ (see Discussion 21), then evaporate almost to dryness, dilute with 5–10 cc. of water, filter and add to the clear filtrate some SnCl₂ solution, at first 1–2 drops then 2–3 cc. (see Discussion 22). The formation of a white precipitate which turns gray on the addition of excess SnCl₂ shows the presence of mercury. (See Discussion 23.)
- (32) Separation of Lead.—To the filtrate obtained in (30) add 2–3 cc. of conc. H₂SO₄, transfer to a porcelain dish and evaporate until the dense white fumes of SO₃ appear. Cool, pour the mixture into a small beaker containing 10–15 cc. of water and rinse out the vessel with a portion of the solution formed, in order to be sure that

 $^{^{1}}$ A residue undissolved by the aqua regia treatment may contain tin that failed to dissolve during the treatment with $(NH_4)_2S_x$ reagent. To recover this tin, digest the residue with bromine water in order to remove completely the HgS, filter and dissolve the residue in a small quantity of $(NH_4)_2S_x$ reagent. Dilute, filter if necessary, acidify the filtrate with 6N. HCl and if a flocculent precipitate forms add it to the tin division sulphides.

all of the solid is transferred. Allow the mixture to stand four to five minutes. The formation of a fine, white, crystalline precipitate indicates the presence of lead. The precipitate may be more readily distinguished if the liquid is given a slight whirling motion, so that the precipitate will collect on the bottom of the beaker toward the center. Filter, treat the precipitate by (33) and the filtrate by (34).

- (33) Confirmatory Test for Lead.—Dissolve the precipitate of $PbSO_4$ (32) by pouring a 10–20 cc. portion of ammonium acetate ($NH_4C_2H_3O_2$) solution repeatedly through the filter. To the filtrate add a few drops of $K_2Cr_2O_7$ and 3–5 cc. of $HC_2H_3O_2$. A yellow precipitate is $PbCrO_4$ (see Discussion 24).
- (34) Separation of Bismuth.—To the filtrate obtained in (32) add NH₄OH until, after shaking, a distinctly alkaline reaction is obtained. (Test with litmus.) Shake to coagulate the precipitate of BiOOH, and filter. Wash the precipitate and treat it by (35). Treat the filtrate by (36).
- (35) Confirmatory Test for Bismuth.—Pour through the filter containing the precipitate of BiOOH (34) a cold freshly prepared solution of Na₂SnO₂ (see Appendix I for method of preparation). The formation of a black residue shows the presence of bismuth. (See Discussion 25.)
- (36) Detection of Copper.—If the filtrate from the BiOOH (34) is deep blue, copper is shown to be present. If, however, it is colorless or nearly so, about one-fourth of the solution should be acidified with $HC_2H_3O_2$ and a few drops of $K_4Fe(CN)_6$ added. The formation of a red precipitate or red color shows the presence of copper. Treat the remainder of the solution by (37) or (38.)
- (37) Detection of Cadmium.—To the remainder of the NH₄OH solution obtained in (34) add KCN solution (CARE, POISON) until the blue color just disappears; if the solution is colorless add only a few drops. Pass H₂S into the colorless solution for about half a minute. The

formation of an immediate yellow precipitate ¹ (see Discussion 26 and 27) shows the presence of cadmium.

(38) Optional Method for the Detection of Cadmium.—Acidify the remainder of the NH₄OH solution (36) with H₂SO₄, add a few iron nails or some iron filings and boil gently until the blue color of the Cu⁺⁺ has entirely disappeared. Filter, and unless the solution is still acid make it just acid with 6N . H₂SO₄ and pass H₂S into it. The formation of a yellow precipitate shows the presence of cadmium.

DISCUSSION

- 21. If the elements of the copper division are present in a large quantity, small quantities of tin may remain undissolved by the $(NH_4)_2S_x$ treatment. This may also occur when small quantities of cadmium and stannous tin are present together. Any tin sulphide, either SnS or SnS₂, remaining in the copper division, will be converted by the HNO₃ (30) into insoluble metastannic acid, H_2SnO_3 . This is practically unaffected by the aqua regia or bromine water used in (31).
- 22. The addition of SnCl₂ to a solution of HgCl₂ causes an immediate reduction to the white Hg₂Cl₂. Further addition of SnCl₂ carries the reduction to free mercury, which imparts a gray appearance to the precipitate. The latter reduction is hindered very materially and may be almost prevented if excess aqua regia has not been completely removed before making the test. Bromine water may be used in place of the aqua regia.

 $^{^1}$ If, owing to previous errors in analysis, a black precipitate (due to HgS, PbS, etc.) is obtained in the final test for cadmium with $\rm H_2S$, it should be thoroughly washed and the cadmium dissolved out by boiling the precipitate with 15 cc. of 1.2N. $\rm H_2SO_4$ and filtering. After it has been diluted with two to three times its volume of water the CdS if present may be precipitated by saturating with $\rm H_2S$.

Excess bromine, however, must be removed before the addition of SnCl₂.

- 23. If the separation of mercury is incomplete and a large amount of CuS is left undissolved by the HNO₃ treatment (30), a white precipitate of CuCl will separate out on the addition of SnCl₂. This, however, does not turn gray with excess SnCl₂.
- 24. The confirmatory test for lead should always be made, since a precipitate with H_2SO_4 may consist of $(BiO)_2SO_4$ or $BaSO_4$. The $(BiO)_2SO_4$ is coarsely crystalline, dissolves in $NH_4C_2H_3O_2$ and gives a yellow color with $K_2Cr_2O_7$. The precipitate, however, differs from $PbCrO_4$ in that it dissolves readily in $HC_2H_3O_2$. The $BaSO_4$ resembles $PbSO_4$ in appearance but is insoluble in $NH_4C_2H_3O_2$.
- 25. If, owing to occlusion or incomplete washing of the H₂S precipitate, an incomplete separation from group III is obtained, the addition of NH₄OH for the separation of bismuth will cause the precipitation of Fe(OH)₃ or other hydroxides of group III. These differ from BiOOH in that none of them are reduced by Na₂SnO₂ by short contact in the cold.
- 26. An immediate yellow precipitate with H_2S shows the presence of cadmium. When much copper is present and the solution is saturated with H_2S a deep yellow color soon develops and an orange-red precipitate of $(CSNH_2)_2$ may separate out on standing, owing to a reaction between the H_2S and C_2N_2 set free by the reduction of $Cu(CN)_2$.

Analysis

Group II, Tin Division

(40) Separation of Arsenic.—Transfer the precipitated sulphides (23), dried by suction or by pressing between filter paper, to a test-tube, and add just 10 cc. of 12N. HCl. (See Discussion 28.) Place the test-tube in a beaker of

water and heat until the contents of the tube just begin to boil. Keep the water at this temperature for about ten minutes, occasionally stirring the contents of the tube with a glass rod. When the reaction is complete and no further solution takes place, dilute with 5 cc. of water and filter, allowing the filtrate to run into a 50 cc. graduate. Wash the residue with 5–10 cc. of water, catching the wash water in the graduate with the filtrate. Test the residue for arsenic by (41) and treat the filtrate by (43).

- (41) Detection of Arsenic.—Punch a hole through the filter and wash the residue of As₂S₅ (40) into a test-tube with 5–10 cc. of 6N. HCl. Warm the mixture gently, adding solid KClO₃ or NaClO₃, one crystal at a time, until the arsenic is dissolved. Make the solution just alkaline with NH₄OH, then add about one-third its volume of 15N. NH₄OH and about 0.5 cc. of magnesia mixture (MgCl₂–NH₄Cl–NH₄OH). Shake the contents vigorously and if no precipitate forms rub the walls of the tube with a glass rod and allow it to stand for some time. (See note, Preliminary Exp. 18a). The formation of a white crystalline precipitate indicates the presence of arsenic. Filter and confirm the arsenic by (42).
- , (42) Confirmatory Test for Arsenic.—Dissolve the precipitate of MgNH₄AsO₄ (41) by pouring 5–10 cc. of 6N. HCl repeatedly through the filter. Heat the solution to boiling and pass H₂S into it for five to ten minutes. The formation of a white precipitate, changing to yellow, shows the presence of arsenic. (See Discussion 17.)
- (43) Detection of Antimony.—To the filtrate (40) add water just sufficient to make a total volume of 50 cc.; transfer to a small flask and heat to about 90°. Pass H₂S into the hot solution for about five minutes, keeping the temperature at about 90° by placing the flask in a beaker containing boiling water. The formation of an orange-red precipitate shows the presence of antimony. (See Discussion 29.) Filter while hot, add 5 cc. of water, heat to 90° and again saturate with H₂S to remove all

antimony. Filter if a precipitate forms, and treat the filtrate by (45).

- (44) Confirmatory Test for Antimony.—If the precipitate (43) is not orange, and the presence of antimony is doubtful, boil the mixture without filtering until the precipitate has redissolved. Add 5–10 gms. of solid oxalic acid (H₂C₂O₄) and pass H₂S into the hot solution. If antimony is present a bright red precipitate will be formed. Filter and test the filtrate for tin by (46).
- (45) Detection of Tin.—Dilute the filtrate from (43) to 70 cc., cool and pass in H₂S for ten minutes. The formation of a yellow precipitate indicates the presence of tin.
- (46) Confirmatory Test for Tin.—Boil the mixture (45) or the filtrate from (44) with 1–2 gms. of granulated test lead for two to three minutes. Cool the mixture and filter into a solution of mercuric chloride (HgCl₂). The presence of tin is shown by the formation of a white precipitate, which may turn gray if much tin is present. (See Discussion 22.)

Discussion

28. The separation of arsenic, antimony and tin depends on the relative solubility of their sulphides in HCl. It is necessary, therefore, to follow the directions very carefully in order to secure a satisfactory separation. The solubility product of As₂S₅ is considerably smaller than that of Sb₂S₅ or SnS₂; hence it is stable in a much higher concentration of HCl. It is practically insoluble in hot 12N. HCl unless the H₂S formed in the equilibrium

$$As_2S_5 + IoHCl \rightarrow 2(AsCl_5) + 5H_2S$$

is expelled by too vigorous boiling. The hot acid, however, dissolves the tin very readily and the antimony more slowly. In the presence of much antimony some may be left undissolved even in the strong acid, but the amount

extracted will never be so small as to escape detection. Also, if the acid becomes much diluted, considerable $\mathrm{Sb}_2\mathrm{S}_5$ will be left undissolved. The undissolved portion may be sufficient to give the residue an orange color, but it will not interfere with the test for arsenic.

- 29. When both antimony and tin are present and the acid concentration is not sufficiently high or the solution has been allowed to cool, some tin may be precipitated with the antimony, in which case the color of the H₂S precipitate will usually be brown.
- 30. The magnesia mixture used in the detection of arsenic contains a large excess of $\mathrm{NH_4^+}$ for the purpose of reducing the $\mathrm{OH^-}$ concentration. This prevents the precipitation of $\mathrm{Mg}(\mathrm{OH})_2$ by the $\mathrm{NH_4OH}$. See Introduction 13, also Appendix I.)
- 31. Test lead is used for the reduction of tin, rather than zinc or iron, since lead does not reduce tin to the metallic state. If the stronger reducing agent is used the tin will be left in the residue and will have to be dissolved in HCl before being added to the HgCl₂ solution.

GROUP III, ALUMINIUM DIVISION

TABLE V

Outline for the Study of the Systematic Separation and Detection of Group III (Aluminium Division)

No.	Reagent	A1+++	Cr+++	Zn ++
I	NH ₄ OH	Al(OH) ₃	Cr(OH) ₃	Zn(NH ₃) ₄ ++
2	H ₂ S	Al(OH) ₃	Cr(OH) ₃	ZnS
3	HCI	AlCl ₃	CrCl ₃	ZnCl ₂
4	NaOH	NaAlO ₂	NaCrO ₂	Na ₂ ZnO ₂
5	Na ₂ O ₂	$NaAlO_2$	Na ₂ CrO ₄	Na ₂ ZnO ₂
6	HNO ₃	$Al(NO_3)_3$	Na ₂ Cr ₂ O ₇	$Zn(NO_3)_2$
7	NH₄OH	Al(OH) ₃	Na ₂ CrO ₄	$Zn(NH_3)_4(NO_3)_2$
	(a) HNO ₃ — Co(NO ₃) ₂	$Co(AlO_2)_2(?)$		
	(b) HC1— NH ₄ C ₂ H ₃ O ₂ (NH ₄) ₃ C ₂₂ H ₁₃ O ₈	A1C22H13O8		
8	HC ₂ H ₃ O ₂		Na ₂ Cr ₂ O ₇	Zn(NO ₃) ₂
9	BaCl ₂	ļ ļ	BaCrO ₄	ZnCl ₂
	HNO ₃		H ₂ CrO ₄	
	Ether H ₂ O ₂		H ₃ CrO ₇ (?)	ļ
10	H ₂ S			ZnS
	HNO ₃		\	$Zn(NO_3)_2$
	Co(NO ₃) ₂ Na ₂ CO ₃			$CoZnO_2(?)$

Preliminary Experiments

Experiment 21.—Introduce into separate test-tubes 2 cc. portions of the test solutions containing the above ions and dilute to 10 cc. Make each distinctly alkaline with NH₄OH, then saturate with H₂S. Heat nearly to boiling to coagulate the precipitates. Write equations.

Notes.—In the presence of water Al_2S_3 and Cr_2S_3 are completely hydrolized (see Introduction 14); hence the hydroxides formed on the addition of NH_4OH remain unchanged when H_2S is introduced.

 Zn^{++} forms with NH_3 the complex ion $Zn(NH_3)_4^{++}$. (See Introduction 15.) This removes enough Zn^{++} to prevent the precipitation of $Zn(OH)_2$ but not enough to prevent precipitation of ZnS with H_2S .

Experiment 22.—Decant or filter off the clear liquid from the precipitates of Al(OH)₃, Cr(OH)₃ and ZnS (Exp. 21) and dissolve in a slight excess of HCl. Add NaOH slowly to alkaline reaction, and then about I gram of solid Na₂O₂, a little at a time. (Caution: Do not carry the Na₂O₂ on paper. Use a dry watch glass. Why?) Boil to decompose excess Na₂O₂. Write equations.

Note.—It should be recalled (see note, Preliminary Exp. 13, also Introduction 15) that a more complete precipitation does not necessarily follow the addition of a reagent in excess of that necessary to reach the solubility product for the compound concerned. The solution of Al(OH)₃, as well as that of chromium and zinc, in an excess of NaOH presents another example, but of quite a different type. All three belong to the class known as amphoteric compounds (see Introduction 16). In the presence of excess NaOH, therefore, they form the soluble sodium salts NaAlO₂, NaCrO₂ and Na₂ZnO₂. Na₂O₂ oxidizes the NaCrO₂ to the more readily soluble Na₂CrO₄, but is without effect on NaAlO₂ or Na₂ZnO₂. Why?

Experiment 23.—Acidify the solutions of aluminium, chromium and zinc (Exp. 22) with HNO₃ and add NH₄OH to alkaline reaction. Note the precipitation of Al(OH)₃. (Difference, separation of Al.) Write equations.

Note.—The action of Na₂O₂ in Exp. 22 oxidized the chromium to the more soluble chromate, a compound which does not possess amphoteric properties; hence on the addition of HNO₃ it does not react as a

base to form a chromium salt. On the other hand, the aluminium and zinc return to the positive radical as Al⁺ and Zn⁺⁺ which react with the NH₄OH subsequently added, as outlined in Exp. 21.

Unless the Na_2O_2 is completely decomposed before the addition of HNO_3 it forms H_2O_2 by double decomposition with the acid. This in turn reacts with the chromate to form perchromic acid which is very unstable and decomposes leaving the chromium as chromic salt.

Experiment 23a.—Filter off the precipitate of Al(OH)₃ (Exp. 23) and wash with water. Transfer a portion of the precipitate to a test tube and dissolve the remainder by pouring 5 cc. of 6N. HNO₃ through the filter. Add 4–5 drops of 0.01N. Co(NO₃)₂ and evaporate nearly to dryness. Soak up the liquid with a small piece of filter paper. Roll it up, wind a platinum wire around it in the form of a spiral and heat in a flame till all the carbon is burnt off. A blue residue is characteristic of aluminium.

Dissolve the $Al(OH)_3$ which was transferred to the test tube in 5 cc. of 1N. HCl, add 5 cc. of 3N. ammonium acetate (NH₄C₂H₃O₂) and 5 cc. of aluminon solution. Mix thoroughly and make alkaline with NH₄OH containing ammonium carbonate ((NH₄)₂CO₃). A red precipitate is characteristic of aluminium.

Note.—The blue substance formed by the interaction of $Co(NO_3)_2$ and $Al(NO_3)_3$ is a compound of CoO and Al_2O_3 , probably $Co(AlO_2)_2$, though the exact composition has not been determined. In carrying out the reaction care must be exercised in the addition of $Co(NO_3)_2$. The aluminium must be in excess, otherwise the blue color is hidden by the black cobalt oxide. Furthermore, the presence of sodium or potassium salts causes the mass to fuse and thus interferes with the test. They may be removed by washing the NH_4OH precipitate with water.

Experiment 24.—Acidify the solution of chromium and zinc (Exp. 23) with HC₂H₃O₂, and add BaCl₂ solution. Note the precipitation of BaCrO₄. (Difference, separation of Cr.) Write equations.

Experiment 24a.—Filter off the precipitate of BaCrO₄ (Exp. 24) and dissolve it in a very little 6N. HNO₃. Dilute with 9–10 volumes of water and to a portion of it in a

test-tube add about 2 cc. of ether and 1 cc. of H_2O_2 , and shake.

Note.—The blue color in the ether layer is a perchromic acid, probably H_3CrO_7 . It is very unstable, decomposing into oxygen and a chromic salt. Excess H_2O_2 or acid accelerates this decomposition.

Experiment 25.—Saturate the zinc solution (Exp. 24) with H₂S. The white flocculent precipitate is ZnS. Filter off the precipitate and dissolve it by pouring 5 cc. of 6N. HNO₃ repeatedly through the filter. Add 4–5 drops of 0.01N. Co(NO₃)₂ and evaporate in a porcelain dish almost to dryness. Neutralize with Na₂CO₃ solution and add a slight excess. Evaporate to dryness and ignite gently till the purple color of the cobalt disappears. Allow the residue to cool. The green color is due to a compound of the oxides of cobalt and zinc, probably CoZnO₂.

Note.—ZnS is somewhat more flocculent when precipitated from a warm solution. A white, milky-looking precipitate does not show the presence of zinc. Sulphur often separates out as a white, milky precipitate, especially on standing, or if the current of H_2S is long continued. It is often necessary, therefore, to make the confirmatory test. The addition of too much $Co(NO_3)_2$ must be avoided. (See note, Exp. 23a.)

Suggestive Questions

- 1. Why does the precipitate of Zn(OH)₂ dissolve when an excess of NH₄OH is added?
 - 2. What is meant by "amphoteric property"?
 - 3. What must be the relative basicity of amphoteric elements?
 - 4. Why does Na₂O₂ have no effect on NaAlO₂ or Na₂ZnO₂?
- 5. What will be the effect on the Na_2CrO_4 if the Na_2O_2 is not all destroyed before HNO_3 is added? What effect would this have on the separation of aluminium from chromium later?
- 6. What is a complex ion and how does it differ from a compound ion? (See Introduction 15.)
- 7. Since NH₄OH causes the precipitation of chromium in Exp. 21, why doesn't it cause its precipitation in Exp. 23?
 - 8. What is the purpose of HNO₃ in Exp. 23?
- 9. What change takes place when an acid is added to a solution of a chromate? Is it oxidation?
- 10. Since the solubility of $Zn(OH)_2$ is so small why doesn't it precipitate when an excess of NH_4OH or NaOH is added to a solution containing Zn?

GROUP III, IRON DIVISION

TABLE VI

Outline for the Study of the Systematic Separation and Detection of Group III (Iron Division)

-					
No.	Reagent	Mn++	Fe++	Co++	Ni++
I	NH ₄ OH	Mn(OH) ₂	Fe(OH) ₂	Co(NH ₃) ₄ ++	Ni(NH ₃) ₄ ++
2	H ₂ S	MnS	FeS	CoS	NiS
3	HC1	MnCl ₂	FeCl ₂	. <u>CoS</u> *	Nis *
4	HNO ₃	MnCl ₂	FeCl ₃	CoCl ₂	$NiCl_2$
5	NaOH	Mn(OH,2	Fe(OH) ₃	Co(OH) ₂	Ni(OH) ₂
6	Na ₂ O ₂	MnO(OH)2	Fe(OH) ₃	Co(OH)3	Ni(OH)2-3
7	HNO ₃	MnO(OH) ₂	Fe(NO ₃) ₃	$Co(NO_3)_2$	Ni(NO ₃) ₂
8	H ₂ O ₂	Mn(NO ₃) ₂	$Fe(NO_3)_3$	$Co(NO_3)_2$	$Ni(NO_3)_2$
9	KC1O3	MnO ₂	Fe(NO ₃) ₃	Co(NO ₃) ₂	Ni(NO ₃) ₂
	HNO ₃ +PbO ₂	HMnO ₄			
10	NH4OH		Fe(OH)3	$Co(NH_3)_4(NO_3)_2$	Ni(NH ₃) ₄ (NO ₃) ₂
	HC1	-	FeCl ₃		
	(a) K ₄ Fe(CN) ₆	1	Fe ₄ [Fe(CN) ₆] ₃		
	(b) KCNS		Fe(CNS)3	\	+
II	H ₂ S			CoS	Nis
12	HC1+KClO ₃			CoCl ₂	NiCl ₂
13	NaOH		+	Co(OH) ₂	Ni(OH) ₂
14	HC ₂ H ₃ O ₂			CoCl ₂	NiCl ₂
15	KNO ₂			$K_3Co(NO_2)_6$	K ₄ N ₁ (NO ₂) ₆
16	NH ₄ OH+ (CH ₃) ₂ C ₂ (NOH) ₂			<u></u>	Ni[(CH ₃) ₂ C ₂ N ₂ O ₂ H]

^{*} See Note, Exp. 27.

Preliminary Experiments

Experiment 26.—To separate 2 cc. portions of the test solutions containing the above ions, add about 10 cc. of water, then NH₄OH to alkaline reaction and saturate with H₂S. Note the color of the precipitates formed. Write equations.

Note.—If a large excess of H_2S is added some NiS will be dissolved due to the solvent action on it of the $(NH_4)_2S$ formed in the solution. If this has happened a brown filtrate will be obtained. The NiS can be precipitated from this solution by boiling. NH_4OH and H_2S are therefore preferable to $(NH_4)_2S$ for the precipitation of group III. When the vapors, after shaking the mixture, will blacken paper moistened with $Pb(C_2H_3O_2)_2$ solution enough H_2S has been added to completely precipitate the nickel and not enough is present to dissolve it.

Experiment 27.—Decant or filter off the liquid from the precipitates (Exp. 26) and dissolve by the addition of HCl. Add a few drops of HNO₃ if HCl fails to effect a solution. Write equations.

Note.—CoS and NiS are dissolved very slowly by HCl but much more rapidly in aqua regia. The oxidizing action of aqua regia removes the S=, thus shifting the equilibrium and allowing the cobalt and nickel to pass into solution.

Experiment 28.—To the clear solutions (Exp. 27) add NaOH to alkaline reaction and then about I gram of solid Na₂O₂, a little at a time. Note any changes in the precipitates caused by the Na₂O₂. Boil to decompose excess Na₂O₂. Write equations.

Note.—Na₂O₂ oxidizes Mn(OH)₂ to the less soluble MnO(OH)₂, Fe(OH)₂ to Fe(OH)₃ and Co(OH)₂ to Co(OH)₃. Ni(OH)₂ is only partially oxidized to Ni(OH)₃. All these compounds are insoluble in an excess of NaOH, differing in this respect from the hydroxides of the aluminium division.

Experiment 29.—Decant or filter off the liquid from the precipitates (Exp. 28) and add 5–10 cc. of HNO₃. Note the fact that iron, cobalt and nickel hydroxides readily dissolve. Heat the mixture containing the manganese

nearly to boiling and add H_2O_2 , a few drops at a time, until solution is complete. Write equations.

Note.—MnO(OH)₂ is not affected by HNO₃ alone, but if reduced to a lower oxide it is dissolved as Mn(NO₃)₂. The reduction is readily brought about with H_2O_2 , oxygen being evolved.

Experiment 30.—Heat the solutions (Exp. 29) to boiling and add gradually 1–2 grams of solid KClO₃ or NaClO₃. Boil for a minute or two. Note the precipitation of MnO₂. (Difference, separation of Mn.) Write equations.

Experiment 30a.—Filter off the liquid from the MnO₂ (Exp. 30), add 5–10 cc. of 16N. HNO₃ and 1–2 grams of PbO₂. Boil for a minute or two and set aside till the PbO₂ settles. The purple color of the solution is due to HMnO₄. Write equations.

Experiment 31.—To the solutions of iron, cobalt and nickel (Exp. 30) slowly add NH₄OH to distinctly alkaline reaction. Note the precipitation of Fe(OH)₃. (Difference, separation of Fe.)

Note.—The Co(OH)₂ and Ni(OH)₂ at first formed dissolve in an excess of NH₄OH with the formation of the complex ions Co(NH₃)₄⁺⁺ and Ni(NH₃)₄⁺⁺. (See Introduction 15.)

Experiment 31a.—Decant or filter the liquid from the Fe(OH)₃ precipitate (Exp. 31) and dissolve it in a small quantity of 6N. HCl. Divide the solution into two parts and add K₄Fe(CN)₆ to the one and KCNS to the other. Write equations.

Note.—It is important to use HCl as the solvent for Fe(OH)₃. HNO₃ must not be used since the subsequent reaction with KCNS is rendered much less delicate in its presence, NO₂, a common impurity in HNO₃, also giving a red color with KCNS. The test is extremely delicate, and when only a faint red color is produced the acids used should be tested for iron. The red color is due to the formation of non-ionized ferric thiocyanate [Fe(CNS)₃] and the test is therefore rendered more delicate when an excess of the reagent is used. K₄Fe(CN)₆ gives with Fe + a deep-blue precipitate of Fe₄(Fe(CN)₆)₃ (Prussian blue).

Experiment 32.—Saturate the solutions of cobalt and nickel (Exp. 31) with H_2S . Decant or filter the liquid from the precipitates of CoS and NiS and dissolve by the addition of HCl and a little powdered KClO₃. Evaporate to I-2 cc. and just neutralize with NaOH. Add $HC_2H_3O_2$ to very faintly acid reaction, and a considerable excess of potassium nitrite (KNO₂). Note the precipitation of potassium cobaltinitrite (K₃Co(NO₂)₆). (Difference, detection of Co.)

Note.—In very faintly acid reaction, cobalt produces with KNO₂ a yellow crystalline precipitate of $\rm K_3Co(NO_2)_6$; hence the necessity of neutralizing the strong acid with NaOH and subsequently rendering the solution acid with the weak $\rm HC_2H_3O_2$. The precipitate may form rather slowly. The reaction proceeds as follows:

$$Co(NO_3)_2 + 7KNO_2 + 2HC_2H_3O_2 \rightarrow K_3Co(NO_2)_6 + NO + 2KC_2H_3O_2 + 2KNO_3$$

A part of the KNO_2 is used in oxidizing the cobalt to the trivalent condition. This then unites with the excess KNO_2 to form the complex salt $K_3Co(NO_2)_6$. The $K_3Co(NO_2)_6$ is somewhat soluble in water but much less so in KNO_2 solution, owing to the common ion effect of K^+ .

Experiment 33.—To the solution containing nickel (Exp. 32) add NH₄OH to faintly alkaline reaction, heat to boiling to drive off excess NH₃, cool and add a few drops of dimethyl-glyoxime. Note the precipitation of nickel dimethyl-glyoxime [Ni{(CH₃)₂C₂N₂O₂H}₂]. (Difference, detection of Ni.)

Suggestive Questions

- r. If HNO₃ is found necessary to dissolve the sulphide precipitate of group III what conclusion may be drawn?
 - 2. Why doesn't the iron division hydroxides dissolve in excess NaOH?
- 3. What is the principle underlying the separation of the Al and Fe divisions from each other?
- 4. Why is it possible to separate iron from cobalt and nickel by adding excess NH₄OH to a solution of their salts?
- 5. What is the purpose of H_2O_2 when used with HNO_3 to dissolve $MnO(OH)_2$?

- 6. If excess NH₄+ is present why is Mn(OH)₂ not precipitated on the addition of NH₄OH?
- 7. Which is the more powerful oxidizing agent in the presence of acid, KClO₃ or PbO₂? Give proof.
- 8. Why should not (NH₄)₂S be used to precipitate group III instead of NH₄OH and H₂S?

ANALYSIS Group III

Al⁺⁺, Cr⁺⁺, Zn⁺⁺, Mn⁺⁺, Fe⁺⁺, Co⁺⁺, Ni⁺⁺

(50) Precipitation.—The solution may be filtrate (20) or an "unknown" containing neither groups I nor II.

If the solution contains neither Group I nor II, add 10 cc. of NH₄Cl solution, dilute to 25–30 cc. and treat as directed below.

If the solution is filtrate (20) boil to expel H₂S and treat as follows:

Add NH₄OH in slight excess, and after shaking note whether a precipitate is formed. (See discussion 32.) Without filtering add 2–3 cc. more NH₄OH and pass in H₂S until, after shaking, the vapors blacken a piece of filter paper moistened with Pb(C₂H₃O₂)₂ solution. Heat the mixture nearly to boiling to coagulate the precipitate. Filter and wash the precipitate with water containing about I per cent of (NH₄)₂S. If filtration is slow the funnel should be kept covered with a watch glass to prevent oxidation to soluble sulphates. The filtrate should be colorless. (See Discussion 33.) Treat the precipitate by (51) and reserve the filtrate for analysis of group IV (80).

(51) Separation of Aluminium and Iron Divisions.— Transfer the group III precipitate (50) with the filter if necessary, to a porcelain dish, add 5-20 cc. of 6N. HCl and stir for one to two minutes in the cold. Heat the mixture to boiling and if a black residue still remains add a few drops of HNO₃ and boil again. Dilute with 5-10 cc. of water and filter off the residue of sulphur. Evaporate nearly to dryness to remove excess acid, dilute to 10-20 cc.,

and add NaOH to alkaline reaction, avoiding a large excess. If a very large precipitate forms add 10–20 cc. more water. Cool the mixture and add 1–3 grams of solid Na₂O₂, a little at a time and with constant stirring. (See Discussion 35.) Add about 5 cc. of 3N. Na₂CO₃ solution unless phosphate or the alkaline earth metals are known to be absent. (See Discussion 37.) Boil to decompose excess Na₂O₂; cool, dilute with an equal volume of water and filter with the aid of suction if possible. (See Discussion 36.) Treat the filtrate by (60) and the residue by (70).

DISCUSSION

- 32. The H₂S is removed and the effect produced by NH₄OH alone is noted, in order to obtain information regarding the presence of aluminium or other insoluble hydroxides. NaOH and Na₂O₂, used later in the analysis, often contain small quantities of silica and aluminium which tend to make the detection of aluminium more difficult. Any information gained at this point, therefore, may be of considerable importance.
- 33. Ammonium monosulphide ((NH₄)₂S) is sometimes used instead of H₂S in the precipitation of Group III. When this is done some NiS may be dissolved and pass into the filtrate, giving it a brown or nearly black color. The use of H₂S as directed in (50) almost completely prevents this. If, however, (NH₄)₂S is used and the filtrate is brown or nearly black, indicating that some NiS has been dissolved, it may be precipitated by boiling the solution for a few minutes. It should be filtered off and added to the main precipitate.
- 34. The presence of a considerable amount of ammonium salts not only lessens the solubility of Al(OH)₃, but prevents the precipitation of Mg(OH)₂ in this group. A sufficient quantity of ammonium salts is usually formed by the neutralization of the acid already in the solution. The presence of ammonium salts decreases the ionization

of NH₄OH, owing to the common ion effect. (See Introduction 12.) The solubility product for the hydroxides of group III and also for Mg(OH)₂ is so small that even a slight excess of NH₄OH causes precipitation. In the presence of much ammonium salts, however, the concentration of OH⁻ is so reduced that its product with that of certain of the metal ions, e.g., Mn⁺⁺ or Mg⁺⁺, does not reach the solubility product for those compounds. In the cases of ferric, aluminium and chromium ions the solubility product $(C_{\rm M}^{++} \cdot C_{\rm OH}^{-})$ is so small that the presence of large amounts of ammonium salts does not appreciably affect their solubility. On the other hand, zinc, nickel and cobalt ions unite with NH₃ to form complex ions similar to those of silver and copper. (See note, Exp. 9 also Introduction 15.)

- 35. Na₂O₂ is a very unstable substance and decomposes slowly, even in a cold solution, oxygen being given off. In a hot solution the decomposition may become explosive. The peroxide should therefore be added in very small quantities to a cold solution. This may be easily done by transferring a little of it to a dry watch glass and sprinkling it into the solution, stirring constantly. The reaction is known to be complete when a steady stream of gas is evolved after the mixture has been thoroughly stirred. If much chromium is present the Na₂O₂ should be added until the green chromic salt has been entirely changed to the yellow chromate. The solution should be diluted before filtering in order to prevent disintegration of the filter paper by the strong alkali.
- 36. The separation of the aluminium and iron divisions by means of NaOH, Na₂O₂ and Na₂CO₃ is very satisfactory except in the case of zinc. When much of the iron division is present 15–20 mgs. of zinc may be carried down in the precipitate, so that provision must be made in the iron division for its detection.
- 37. It should be remembered that the phosphates of barium, strontium, calcium and magnesium are insoluble

in alkaline solution, and hence may have precipitated along with group III, in case phosphate was present in the original material. Na₂CO₃ is used as a reagent in the separation of the aluminium and iron divisions to insure complete precipitation of these elements since their hydroxides are somewhat soluble even in strong NaOH solution. ZnCO₃, though insoluble in dilute solutions of Na₂CO₃ alone, is soluble in the presence of NaOH, owing to the formation of the zincate ion (ZnO₂⁻). Na₂CO₃ also serves to decompose the chromates of the alkaline earths and so prevent the precipitation of chromium.

ANALYSIS

Group III, Aluminium Division

- (60) Separation of Aluminium.—Acidify the filtrate from (51) with 16N. HNO₃ avoiding a large excess; add NH₄OH just to alkaline reaction and then 2–3 cc. more. (See Discussion 38.) The formation of a white flocculent precipitate shows the presence of aluminium. (See Discussion 39.) Heat the mixture almost to boiling to coagulate the precipitate, filter and wash thoroughly with hot water. Unless the precipitate is white and flocculent the confirmatory test should be made. Treat the filtrate by (62).
- (61) Confirmatory Test for Aluminium.—Dissolve the precipitate (60) in 5 cc. of 6N. HNO₃; add 4–5 drops of 0.01N. Co(NO₃)₂ or less if the precipitate was small, evaporate almost to dryness and add 1–2 cc. of water. Absorb the solution in a small piece of filter paper, wind a platinum wire around it in the form of a spiral and ignite the paper in a flame until the carbon is completely burned. A blue residue shows the presence of aluminium. (See note, Exp. 23a.)
- (61a) Confirmatory Test for Aluminium—OPTIONAL METHOD.—Dissolve the precipitate (60) in 5 cc. of N. HCl,

add 5 cc. of 3N. NH₄C₂H₃O₂ solution and 5 cc. of aluminon (H₃C₂₂H₁₃O₈) solution. Mix thoroughly and make the solution alkaline with NH₄OH, to which (NH₄)₂CO₃ has been added. A bright red precipitate persisting in the alkaline solution shows the presence of aluminium.

- (62) Detection of Chromium.—To the filtrate form (60) add HC₂H₃O₂ slowly until the solution is just acid. (Test with litmus.) If the solution is colorless, chromium is absent and the solution should be tested for zinc according to (64). If the solution is at all yellow, add about 10 cc. of BaCl₂ solution and heat the mixture to boiling. If a yellow precipitate forms, chromium is present. Unless the precipitate is distinctly yellow the confirmatory test should be made. (See Discussion 40.) Treat the filtrate by (64).
- (63) Confirmatory Test for Chromium.—Dissolve the precipitate (62) by pouring repeatedly through the filter a cold 10 cc. portion of 0.6N. HNO₃. To the solution contained in a test-tube add 1–2 cc. of ether and 1 cc. of 3 per cent H₂O₂ solution. Shake the mixture. A blue color appearing in the ether layer shows the presence of chromium. (See note, Exp. 24a.)
- (64) Detection of Zinc.—Warm the $HC_2H_3O_2$ solution (62) or the filtrate from (62) to about 50° and saturate in a small flask with H_2S . If a flocculent precipitate does not form at once, cork the flask and allow it to stand five to ten minutes. The formation of a white flocculent precipitate shows the presence of zinc. Unless the precipitate is white and flocculent the confirmatory test should be made.
- (65) Confirmatory Test for Zinc.—Filter off the precipitate obtained in (64) and dissolve it by pouring repeatedly through the filter a 5 cc. portion of 6N. HNO₃. To the resulting solution add 4–5 drops of 0.01N. Co(NO₃)₂, or less if the precipitate was small. Evaporate the mixture almost to dryness in a porcelain dish, neutralize

with Na₂CO₃ solution and add 0.5 cc. in excess. Evaporate to dryness and ignite gently until the purple color due to the Co(NO₃)₂ disappears. (See Discussion 41.) The appearance of a green color shows the presence of zinc.

DISCUSSION

38. In the separation of aluminium a large excess of NH₄OH must be avoided, since it tends to redissolve the Al(OH)₃ by forming NH₄AlO₂. A moderate excess, however, must be present in order to keep the zinc in solution.

39. Since aluminium and silica are often present in the Na₂O₂ and NaOH used as reagents in the separation of the aluminium and iron divisions, a blank test should be made for these impurities by treating 10–15 cc. of water, to which has been added about the same quantities of these two reagents as was used in the regular analysis, by (60) and comparing the precipitate formed with that obtained in the regular analysis. The confirmatory test should always be made in case the NH₄OH precipitate is small, in order to avoid mistaking silicic acid (H₂SiO₃) for Al(OH)₃.

With aluminon silicic acid gives a white precipitate which may easily be distinguished from the red obtained with aluminium. Large amounts of barium, strontium or calcium give red precipitates but these are decolorized by the carbonate used for neutralization. Ferric iron produces a reddish-brown precipitate and hence care must be taken to insure the absence of iron.

40. If, owing to careless manipulation in filtering and washing the second or third group precipitates, and sulphides have been oxidized to sulphates, the addition of BaCl₂ for the separation of chromium may give a white or pale yellow precipitate composed largely of BaSO₄. This not only makes it necessary to confirm the presence of chromium but renders the confirmatory test less delicate owing to the difficulty of extracting the barium chromate

(BaCrO₄) from the BaSO₄ with acid. The color of the solution after treatment with NaOH and Na₂O₂ for the separation of aluminium and iron divisions should be noted. A yellow color, changing to orange on the addition of acid, indicates chromium.

41. The confirmatory test for zinc is of value only when the H₂S precipitate is small and finely divided or when the presence of foreign materials causes it to be dark-colored. In the hands of the careful worker the test is quite satisfactory and will detect 0.5 mg. of zinc. If, owing to too much heat, the residue becomes black, it should be dissolved in a few drops of HNO₃ and evaporated almost to dryness, and the test should be repeated with the exception that no more Co(NO₃)₂ should be added.

ANALYSIS

Group III, Iron Division

(70) Precipitation of Manganese.—Transfer the precipitate obtained in (51) to a porcelain dish, together with the filter if necessary; add 5-20 cc. of 6N. HNO₃, heat nearly to boiling and, if any of the precipitate remains undissolved, add slowly and with constant stirring 3 per cent H₂O₂ solution until the precipitate has completely dissolved. Filter to remove the paper and evaporate almost to dryness. Add 10-15 cc. of 16N. HNO3, heat to boiling, add 0.5-1 gram of powdered KClO3 and boil If a large precipitate forms add 1-2 grams more KClO₃, a small portion at a time. A dark brown or black precipitate shows the presence of manganese. Filter through an asbestos filter (see Discussion 42). Heat the filtrate to boiling and add 0.5 gram more of powdered KClO₃. Boil gently. If a precipitate forms add 1-2 grams more KClO3, heat to boiling and filter through the same filter. Wash the precipitate with a little 16 N. HNO₃ which has been freed from the oxides of nitrogen by warming with a little KClO₃. Treat the precipitate by (71) and the filtrate by (72).

(71) Confirmatory Test for Manganese.—Transfer the precipitate (70) to an evaporating dish, add 1–2 grams of lead dioxide (PbO₂) and 10–15 cc. of 6N. HNO₃. Heat the mixture to boiling and boil for one to two minutes. Then pour into a test-tube and allow the PbO₂ to settle. A purple solution shows manganese to be present.

(72) Detection of Phosphate. — Heat about onetenth of the filtrate from (70) to boiling and pour it into about three times its volume of ammonium molybdate [(NH₄)₂MoO₄] reagent. (See Discussion 43.) The formation of a fine yellow precipitate shows the presence of phosphate.

If phosphate is shown to be present treat a second one-tenth portion of the filtrate by (75).

If phosphate is absent treat the remaining nine-tenths by (73).

(73) Separation of Iron in the Absence of Phosphate.—If phosphate was shown to be absent add NH₂OH to the remaining nine-tenths of filtrate (70) until it is distinctly alkaline and then 4–5 cc. in excess. The formation of a reddish-brown precipitate shows the presence of iron. Filter and wash the precipitate. Treat the filtrate by (77) and the precipitate by (74).

(74) Confirmatory Test for Iron.—Dissolve the precipitate (73) by pouring a 5–10 cc. portion of 6N. HCl repeatedly through the filter. To the resulting solution add a few drops of potassium ferrocyanide $[K_4Fe(CN)_6]$ solution. A deep-blue precipitate (Prussian blue, $Fe_4(Fe(CN)_6)_3$) shows the presence of iron.

(75) Detection of Iron in the Presence of Phosphate.— If phosphate was shown to be present evaporate about one-tenth of the filtrate (70) to dryness, add I-2 cc. of I2N. HCl and evaporate to dryness again. Dissolve the residue in 5-6 cc. of 6N. HCl and add 5 cc. of potassium

thiocyanate (KCNS) solution. A red coloration shows the presence of iron. Treat the remainder of filtrate (70) by (76).

- (76) Removal of Phosphate.—To the remainder of the filtrate from (70) add NH4OH slowly and with frequent stirring, until the precipitate formed just fails to redissolve. The solution should not be alkaline. If. owing to the addition of too much NH4OH, it has become alkaline or a large precipitate separates, HC₂H₃O₂ should be added to distinct acid reaction. Add 15 cc. of 3N. NH₄C₂H₃O₂ solution and unless the mixture has a brownish-red color add ferric chloride (FeCl₃) solution drop by drop, until a brownish-red color is produced. (See Discussion 44.) Transfer the mixture to a 250 cc. flask, add water to make a total volume of about 100 cc. and boil for five minutes, adding more water if a large precipitate separates. Allow the mixture to stand one to two minutes, filter while still hot and wash with hot water. To the filtrate add 10 cc. of 3N. NH₄C₂H₃O₂ solution and boil. If a precipitate separates filter it off through a separate filter and reject. Make the filtrate alkaline with NH4OH and treat it by (77).
- (77) Separation of Zinc, Cobalt and Nickel.—Pass H_2S into the filtrate (73) or (76) until, after shaking, the vapors blacken filter paper moistened with lead acetate $[Pb(C_2H_3O_2)_2]$ solution. The formation of a black precipitate indicates the presence of nickel or cobalt or both; a white flocculent precipitate indicates zinc. Filter, wash the precipitate with water containing a few drops of $(NH_4)_2S$ and treat it by (77a) unless zinc has already been found; otherwise treat it by (78). Treat the filtrate by (80) if phosphate or much chromium has been found. Otherwise reject it. (See Discussion 45.)
- (77a) Separation of Zinc from Cobalt and Nickel.—If zinc has already been found this procedure may be omitted and the precipitate from (77) treated directly by (78). If zinc has not already been found, transfer the precipitate

(77) with the filter if necessary, to an evaporating dish, add 10-30 cc. of 1N. HCl and stir the cold mixture for about five minutes. Filter, wash the residue and treat it by (78). Boil the filtrate until the H₂S is completely expelled. Make the solution alkaline with NaOH. To the cold solution add, with constant stirring, about I cc. of powdered Na₂O₂, a little at a time. Boil to decompose excess Na₂O₂, cool and filter. Unite the residue with that undissolved by the IN. HCl above and treat by (78). Acidify the filtrate with HC₂H₃O₂ and test it for zinc according to (64). (See Discussion 46.)

(78) Detection of Cobalt.—Transfer the combined residues from (77a) to a porcelain dish and add 5-15 cc. of 6N. HCl. Heat the mixture nearly to boiling, and while hot sprinkle into it a little powdered KClO₃. When the reaction is complete and only a residue of sulphur remains. filter and evaporate the filtrate almost to dryness. Take up the residue with 1-2 cc. of water and make the solution just neutral with NaOH. (Test with litmus.) Add 2-3 cc. of 6N. HC₂H₃O₂ and then 3-5 cc. of potassium nitrite (KNO₂) solution and let the mixture stand, with occasional shaking, for fifteen to twenty minutes. (See Discussion 47.) The formation of a yellow crystalline precipitate shows the presence of cobalt. Filter and treat the filtrate by (79).

(79) Detection of Nickel.—Dilute the filtrate from (78) to about 25 cc., add NH4OH until the solution is just alkaline. Heat to boiling to expel excess NH3, cool, and then add a few drops of dimethyl-glyoxime [(CH₃CNOH)₂] solution, and if a red precipitate or coloration does not form at once allow the mixture to stand five to ten minutes. A red precipitate shows the presence of nickel. (See Discussion 48.)

DISCUSSION

- 42. Owing to the oxidizing action of strong HNO₃, the precipitate of MnO₂ cannot be filtered through an ordinary filter paper. An asbestos filter may be prepared by placing a small pinch of glass wool in the neck of a funnel, tamping it gently with the finger and pouring over it a suspension of fine asbestos fiber in water, enough to make a layer 2–3 mm. thick.
- 43. If the solution containing the ammonium molybdate is heated much above 60° C., white insoluble molybdic acid (MoO₃) may separate out and render the test for phosphate much less delicate. The yellow precipitate is $(NH_4)_3PO_4 \cdot 12MoO_3$ and is most readily formed at about 60° in the presence of a large excess of $(NH_4)_2MoO_4$ and HNO_3 .
- 44. The separation of ferric iron and phosphate from the bivalent elements is based on the following facts: The solubility product for FePO₄ is much smaller than that for the phosphates of the bivalent elements. In a boiling acetic acid solution containing a large excess of the acetate ion, insoluble basic ferric acetate [Fe(OH)₂C₂H₃O₂] is formed. In order to insure complete removal of the phosphate and prevent its interaction with the bivalent elements excess Fe⁺⁺ is necessary. This is shown by the brownish-

excess Fe $^+$ is necessary. This is shown by the brownish-red color of Fe(C₂H₃O₂)₃. The separation is satisfactory and complete if accurately carried out. If the solution is allowed to become alkaline much of the iron will precipitate as Fe(OH)₃ while the bivalent elements may form insoluble phosphates or hydroxides. On the other hand, if the solution is too acid the FePO₄ will not be precipitated owing to the formation of HPO₄ $^-$ and the consequent

reduction of the ion product $C_{Fe}^{++} \cdot C_{PO_4}^{--}$. If there is a tendency toward the formation of colloidal FePO₄ its coagulation may be greatly promoted by boiling.

45. The solution obtained after the removal of zinc,

cobalt and nickel may contain some or even all of the alkaline earth metals. In the presence of phosphate, barium, strontium, calcium and magnesium may be precipitated as phosphates along with the metals of Group III. In the presence of much chromium, magnesium may be precipitated completely as Mg(CrO₂)₂.

46. Although cobalt and nickel sulphides are soluble in HCl the reaction is comparatively slow even in moderately concentrated solutions. Therefore, when a mixture of the sulphides of zinc, cobalt and nickel is treated with a cold IN. solution of HCl the greater portion (80–90 per cent) of the cobalt and nickel remains undissolved, while all of the zinc passes into solution. The subsequent treatment of the solution with NaOH and Na₂O₂ gives a very satisfactory separation since the cobalt and nickel are present in such small quantities that only an insignificant amount of zinc is carried down with them.

47. It has been mentioned (see note, Exp. 32) that when KNO₂ is added to an acid solution containing cobalt and nickel a part of the HNO₂ formed oxidizes the cobalt from the cobaltous (Co⁺⁺) to the cobaltic (Co⁺⁺) state. The cobaltic ion in turn unites with the nitrite ion to form

the complex ion $Co(NO_2)_6$. In the presence of $HC_2H_3O_2$ the solubility product for $K_3Co(NO_2)_6$ is soon reached, resulting in the precipitation of potassium cobaltinitrite $[K_3Co(NO_2)_6]$. Nickel is not readily oxidized by

 $\mathrm{HNO_2}$ to the nickelic (Ni^{++}) state although it does form the complex ion $\mathrm{Ni}(\mathrm{NO_2})_6$ —. The potassium salt $\mathrm{K_4Ni}(\mathrm{NO_2})_6$ is fairly soluble, however, so that little or no nickel is precipitated with the cobalt. Since $\mathrm{K_3Co}(\mathrm{NO_2})_6$ is readily soluble in strong acids the necessity of neutralizing the HCl and subsequently acidifying with the weaker $\mathrm{HC_2H_3O_2}$ is apparent and since both cobalt and nickel form complex ions with $\mathrm{NO_2}$ — a large excess of $\mathrm{KNO_2}$ must be added.

48. Dimethyl-glyoxime is a weak monobasic organic

acid having the formula $(CH_3)_2C_2(NOH)_2$. It reacts with the nickel ion (Ni^{++}) according to the following equation:

Nickel dimethyl-glyoxime is least soluble in a neutral or weakly acid solution, is very voluminous and has an intense red color. It is capable, therefore, of detecting very small quantities (0.1 mg.) of nickel.

In the presence of cobalt, dimethyl-glyoxime produces a brown coloration which deepens as the amount of cobalt is increased. It is advisable, therefore, to remove the cobalt before making the test for nickel.

GROUP IV

TABLE VII

OUTLINE FOR THE STUDY OF THE SYSTEMATIC SEPARATION AND DETECTION OF GROUP IV

No.	Reagent	Ba++ Sr++		Ca++	
I	NH ₄ OH+ (NH ₄) ₂ CO ₃	BaCO ₃	SrCO ₃	CaCO ₃	
2	HC ₂ H ₃ O ₂	$Ba(C_2H_3O_2)_2$	$Sr(C_2H_3O_2)_2$	$Ca(C_2H_3O_2)_2$	
3	NH ₄ C ₂ H ₃ O ₂ + K ₂ Cr ₂ O ₇	BaCrO ₄	SrCrO ₄	CaCrO ₄	
	HCl(12N.)	$BaCl_2(CrCl_3)$			
	NH ₄ OH	$BaCl_2(\underline{Cr(OH)_3}$	↓ ↓	1	
4	NH ₄ OH—(NH ₄) ₂ CO ₃		SrCO ₃	CaCO ₃	
5	HC ₂ H ₃ O ₂		$Sr(C_2H_3O_2)_2$	$Ca(C_2H_3O_2)_2$	
	(a) CaSO ₄		SrSO ₄	CaSO ₄	
	(b) (NH ₄) ₂ SO ₄	•	SrSO ₄	CaSO ₄	
	Na ₂ CO ₃		SrCO ₃		
	HC1		SrCl ₂	1	
6	NH ₄ OH + (NH ₄) ₂ C ₂ O ₄	•		CaC ₂ O ₄	
	HCl			CaCl ₂	

Preliminary Experiments

Experiment 34.—To separate 5 cc. portions of the test solutions containing the above ions add NH₄OH, drop by drop, till its odor persists after shaking. Heat to boiling and then add ammonium carbonate $[(NH_4)_2CO_3]$ in slight excess. Allow the precipitates to settle, decant off the liquid and dissolve the precipitates in $HC_2H_3O_2$. Write equations.

Experiment 35.—To the acetic acid solutions of the above metals diluted to about 20 cc. add 5 cc. of ammonium

acetate $(NH_4C_2H_3O_2)$ and about 2 cc. of potassium dichromate $(K_2Cr_2O_7)$ solution. Note the precipitation of BaCrO₄. (Difference, separation of Ba.) Write equations.

Note.—The solubility of the chromates of barium, strontium and calcium in 100 cc. of water at 10° is 0.38, 120 and 400 mgs. respectively. From this it is evident that in comparatively dilute solutions no strontium or calcium will be precipitated. From very concentrated solutions, however, some strontium may separate out as SrCrO₄.

Experiment 35a.—Filter off the precipitate of BaCrO₄ and dissolve it by pouring 5 cc. of 12N. HCl repeatedly through the filter. Evaporate the solution just to dryness to insure complete reduction of the chromate, take up the residue in a little water, add NH₄OH to precipitate the chromic hydroxide and filter. Introduce a little of the filtrate on a clean platinum wire into the colorless flame of the bunsen burner. (IIold the wire in the lower part of the outer cone.) Note the green color produced.

Note.—Certain metals when volatilized in a flame impart a characteristic color to it. Among those exhibiting this property are the alkali and alkali earth metals. Since chlorides are more easily volatilized than most other salts it is therefore desirable and more satisfactory to obtain this salt before making the flame test. In this case it is most easily obtained by taking advantage of the fact that conc. HCl will reduce chromates to chromic salts in a hot solution. The reaction proceeds as follows:

 $_2$ BaCrO₄+ $_1$ 6HCl \rightarrow $_2$ BaCl₂+ $_2$ CrCl₃+ $_3$ H₂O+ $_3$ Cl₂.

Experiment 36.—To each of the solutions containing strontium and calcium (Exp. 35) add NH₄OH to alkaline reaction, heat to boiling and add (NH₄)₂CO₃ in excess. Note the precipitation of SrCO₃ and CaCO₃. Filter, wash the precipitates and dissolve them by pouring a small quantity of hot HC₂H₃O₂ repeatedly through the filter. Write equations.

Experiment 37.—To about 1 cc. of each of the solutions containing strontium and calcium (Exp. 36) add an equal volume of saturated calcium sulphate (CaSO₄) solution. Note the precipitation of SrSO₄. (Difference, detection of Sr.)

Heat the remainder of the above solutions to boiling and add ammonium sulphate [(NH₄)₂SO₄] solution. Note the precipitation of SrSO₄.

Note.—The solubility of the sulphates of strontium and calcium in 100 cc. of water at 16° is 11 and 200 mgs. respectively. A saturated solution of CaSO₄, therefore, contains a sufficient quantity of SO₄= to reach the solubility product of SrSO₄. The more soluble and more concentrated (NH₄)₂SO₄ solution not only contains sufficient SO₄= for precipitating all the strontium, or very nearly so, but may contain sufficient to precipitate some calcium if its concentration is high. Owing to this fact (NH₄)₂SO₄ cannot be used for the detection of strontium in the presence of calcium. It may be used to remove the strontium before testing for calcium.

Experiment 37a.—Filter off the precipitate of SrSO₄ (last part, Exp. 37). Punch a hole through the filter with a glass rod and wash the precipitate into a test-tube with about 10 cc. of water from the wash bottle. Add about 1 gm. of solid Na₂CO₃ to the mixture and boil for 2–3 minutes. Filter off the residue of SrCO₃, and dissolve it in 2–3 cc. of 6N. HCl by pouring repeatedly through the filter. Introduce a little of the resulting solution on a clean platinum wire into the flame of the bunsen burner. (*Hold the wire in the lower part of the outer cone.*) Note the deep red color produced.

Note.—SrSO₄ is nearly insoluble in HCl. It is changed, however, to the carbonate by boiling with a large excess of Na₂CO₃. The large excess of CO₃ causes the equilibrium to shift toward the formation of SrCO₃ which is insoluble in the alkaline solution. Owing to the slight solubility of the SrSO₄ the reaction is materially hastened by keeping at the boiling temperature. SrCO₃ is readily soluble in HCl owing to the formation of the very slightly ionized and unstable $\rm H_2CO_3$.

Experiment 38.—Neutralize the solution containing calcium (Exp. 37) with NH₄OH and add 2–3 cc. of ammonium oxalate $[(NH_4)_2C_2O_4]$. Note the precipitation of CaC_2O_4 .

Note.—Since the solubility of CaC₂O₄ in 100 cc. of water at 18° is only 0.56 mg. while that of CaSO₄ is 200 mgs. it is evident that enough

Ca will always be left in the solution after removal of strontium with $(NH_4)_2SO_4$ so that it may easily be detected. It should be remembered that the relative proportion of calcium cannot be estimated from the amount of CaC_2O_4 precipitate obtained since this will always be small. Why?

Experiment 38a.—Dissolve the precipitated CaC₂O₄ (Exp. 38) in 2–3 cc. of 6N. HCl and introduce a small portion of the solution on a clean platinum wire into the flame of the bunsen burner. (Hold the wire in the lower part of the outer cone.) Note the yellowish-red color produced. Compare this with that produced by Strontium.

Suggestive Questions

- r. Why are the carbonates of barium, strontium and calcium soluble in acetic acid? Would you expect carbonates of other metals to be soluble in acetic acid also?
- 2. Why will BaCrO₄ precipitate in the presence of acetic acid but not in the presence of a strong mineral acid?
 - 3. What salts are more desirable for flame tests? Why?
 - 4. Why not use (NH₄)₂SO₄ to test for strontium?
- 5. What is the purpose of ammonium acetate in the precipitation of BaCrO₄?
- 6. Why is the CaC₂O₄ precipitate always small after removing strontium with (NH₄)₂SO₄?

Analysis

Group IV

(80) Preparation of Solution.—The solution may be filtrate (50) or an "unknown" in which groups I, II, and III are known to be absent.

If groups I, II and III are known to be absent add about 10 cc. of NH₄Cl solution and treat directly by (81). (See Discussion 49.)

If the solution is filtrate (50), evaporate to 15–20 cc. and filter if necessary. (See Discussion 49.) If the resulting solution is colorless treat by (81), if it is colored acidify

with HCl and boil for a few minutes or until the color disappears. Filter if necessary. Treat the colorless solution by (81).

- (81) Precipitation.—If the solution (80) is acid neutralize with NH₄OH, heat to boiling (see Discussion 50), add (NH₄)₂CO₃ solution as long as a precipitate continues to form and allow the mixture to stand about ten minutes. A white crystalline precipitate ¹ indicates the presence of group IV. Filter, treat the precipitate by (82) and reserve the filtrate for analysis of group V (90). (See Discussion 51.)
- (82) Detection of Barium.—Dissolve the precipitate (81) by pouring a hot 10 cc. portion of 6N. $HC_2H_3O_2$ repeatedly through the filter. Dilute the solution to about 50 cc. and add 5–10 cc. of $NH_4C_2H_3O_2$ solution. Heat to boiling and while hot add gradually and with stirring a solution of $K_2Cr_2O_7$ till the orange-yellow color persists. A large excess should be avoided. (See Note, Exp. 35.) Filter while hot, treat the precipitate by (83) and the filtrate by (84).
- (83) Confirmatory Test for Barium.—Dissolve the precipitate of BaCrO₄ (82) by boiling with 5–10 cc. of 12N. HCl. Add NH₄OH until the solution reacts alkaline, filter off the precipitated Cr(OH)₃ and evaporate the filtrate nearly to dryness. Introduce a little of this solution on a clean platinum wire into the colorless flame of the bunsen burner. A green color shows the presence of barium.
- (84) Detection of Strontium.—To the filtrate (82) add NH₄OH to alkaline reaction, heat to boiling and add (NH₄)₂CO₃ solution in excess. Allow the mixture to stand five to ten minutes and filter. Reject the filtrate. Dissolve the precipitate in a few cc. of 6N. HC₂H₃O₂ and test for strontium as follows: To about 1 cc. of the acetic acid

¹ If no precipitate forms and traces of these elements are to be tested for the solution should be treated directly by (90). (See Discussion 51.)

solution add an equal volume of saturated CaSO₄ solution and heat to boiling. If a precipitate forms strontium is shown to be present. (See Discussion 52.) If strontium is present treat the remainder of the acetic acid solution by (85). If strontium is absent treat by (86).

(85) Separation of Strontium.—Dilute the solution (84) to about 20 cc.; heat to boiling and add (NH₄)₂SO₄ solution, as long as a precipitate continues to form. Filter and treat the filtrate by (86).

A confirmatory test for strontium may be made as follows: Add to the precipitate of SrSO₄ about ten times its volume of solid Na₂CO₃ and 10 cc. of water, and boil three to five minutes. Filter, dissolve the residue in 2–3 cc. of HCl and introduce a small portion of the solution on a clean platinum wire into the colorless flame of the Bunsen burner. A deep red color shows the presence of strontium. (Caution: Do not confuse with calcium, yellowish-red color.)

(86) Detection of Calcium.—To the filtrate (85) add NH₄OH to alkaline reaction, and then (NH₄)₂C₂O₄. A while crystalline precipitate shows the presence of calcium.

A confirmatory test for calcium may be made by moistening the CaC₂O₄ precipitate with a little conc. HCl and introducing a small portion of it on a clean platinum wire into the colorless flame of the Bunsen burner. A yellowish-red color shows the presence of calcium.

DISCUSSION

49. The solution to be tested for group IV should be clear and colorless and should contain only a moderate excess of NH₄Cl. This is necessary to prevent the precipitation of Mg as Mg(OH)₂. Any yellow or brown color due to undecomposed (NH₄)₂S or small quantities of nickel or chromium, not precipitated in group III, will usually be removed by the evaporation as directed in (80). NiS

is slightly soluble in excess (NH₄)₂S, forming a brown solution. A large excess of NH₄Cl will hold chromium in solution as CrCl₃·4NH₃, a red solution.

The filtrate from group III may also contain small quantities of aluminium, owing to its amphoteric (see Introduction 16) nature. Evaporation decomposes (NH₄)₂S and volatilizes excess NH₃ which causes the precipitation of any NiS and Al(OH)₃ that may be present. If the solution is still colored from chromium it should be evaporated to dryness, taken up in 10 cc. of water and filtered to remove excess ammonium salts and Cr(OH)₃.

50. Group IV should be precipitated from a hot solution in order to insure complete separation from magnesium, which forms a double salt, MgCO₃·(NH₄)₂CO₃·₄H₂O, with (NH₄)₂CO₃ only moderately soluble in cold water. It is much more soluble in hot water. The solution should not be boiled after the addition of the precipitating agent (NH₄)₂CO₃, owing to the fact that it decomposes quite readily when heated. From a cold solution the carbonates are precipitated in a fine state of division. Heat favors the formation of larger particles.

51. Owing to the appreciable solubility of the alkali earth carbonates, traces of these metals may remain in the filtrate after precipitation with (NH₄)₂CO₃. The insolubility of their phosphates makes it necessary to remove them before testing for magnesium in Group V.

- 52. The solubility of BaCrO₄ in 100 cc. of water at 18° is 0.38 mg. and therefore barium should have been completely removed by means of K₂Cr₂O₇. The corresponding solubility of the sulphate is 0.23 mg. hence if barium has not been removed it will precipitate along with the strontium when CaSO₄ is added. Therefore, the confirmatory test for strontium should always be made.
- 53. The separation of strontium and calcium with (NH₄)₂SO₄ is not complete. Some of the calcium may be precipitated with the strontium and some of the strontium will remain in the solution, though not enough to

interfere with the test. Enough calcium will always remain in the filtrate, however, to give a precipitate with $(NH_4)_2C_2O_4$, owing to the very slight solubility of CaC_2O_4 .

GROUP V

Outline for the Study of the Systematic Separation and Detection of Group ${\rm V}$

No.	Reagent	Mg++	NH ₄ +	K+	Na+
I	(a) NH ₄ Cl—NH ₄ OH Na ₂ HPO ₄	MgNH ₄ PO ₄	NH ₄ +	K+	Na+
	(b) NH ₄ OH	Mg(OH) ₂	NH₄OH	KOH	NaOH
2	NaOH	1	NH3	KOH	NaOH
3	HClO ₄	Mg(ClO ₄) ₂	NH ₄ ClO ₄	KClO ₄	NaClO ₄
4	C ₂ H ₅ OH—H ₂ SiF ₆	MgSiF ₆	↓	K ₂ SiF ₆	Na ₂ SiF ₆

Preliminary Experiments

Experiment 39.—To 5 cc. of the test solution containing Mg++ add an equal volume of NH₄Cl. Make distinctly alkaline with NH₄OH and add sodium phosphate (Na₂HPO₄) solution. The precipitate is MgNH₄PO₄. To a second 5 cc. portion of the test solution add NH₄OH to alkaline reaction. Note the precipitation of Mg(OH)₂. Now add, without filtering, an excess of NH₄Cl. Why does not Mg(OH)₂ precipitate in the presence of excess NH₄Cl? Explain. Write equations.

Experiment 40.—Evaporate a small quantity of NH₄Cl to dryness in a porcelain dish and heat the residue. To a second portion in a test-tube add NaOH. Note the odor of the gas evolved and its effect upon a piece of moist red litmus paper. What is the gas evolved? Why can this reaction be used as a test for NH₄+?

Experiment 41.—To separate I cc. portions of the test solutions of the above ions add IO-I5 drops of perchloric acid (HClO₄). Allow the mixtures to stand for a short time. Note the precipitation of KClO₄ and NH₄ClO₄. Under what conditions may this be used to detect K+? Write equations. Decant off the liquid from the precipitated KClO₄, dissolve it in I-2 cc. of water and introduce a small portion of the resulting solution on a clean platinum wire into the flame of the bunsen burner. (Hold the wire in the lower part of the outer cone.) Note the violet color produced.

Note.—Although KClO₄ is much less soluble than the perchlorates of either magnesium or sodium it is, nevertheless, quite soluble. 700 mgs. dissolve in 100 cc. of water at o° C. It is much less soluble in alcohol.

Experiment 42.—To each of the solutions containing Mg⁺⁺ and Na⁺ (Exp. 41) add an equal volume of alcohol and then about I cc. of fluosilicic acid (H₂SiF₆). Repeat this experiment using I cc. of the test solution for K⁺. Note the precipitation of both K₂SiF₆ and Na₂SiF₆. (Difference, detection of Na⁺ in the absence of K⁺. How may the K⁺ be removed?) Write equations.

By means of a clean platinum wire, introduce a small portion of the sodium test solution into the colorless flame of the bunsen burner. (Hold the wire in the lower part of the outer cone.) Note the intense yellow color produced.

Suggestive Questions

- 1. Under what conditions will Mg(OH)₂ fail to precipitate on the addition of NH₄OH? Why?
- 2. Why does the addition of NaOH to an ammonium salt give off the odor of NH_3 ?
 - 3. Why is it necessary to have wet litmus paper in the test for NH₄+?
- 4. Why is it necessary to remove ammonium salts before testing for K^+ with $HClO_4$? How may this be done?
 - 5. What is the purpose of the alcohol in the test for Na+?
- 6. Why is it necessary to keep the volumes small when testing for the ions of Group V?

7. Why is it necessary to remove K⁺ before testing for Na⁺ with H₂SiF₆?

ANALYSIS

Group V

Mg++, NH₄+, K+, Na+

(90) Preparation of Solution, Detection and Removal of Traces of Alkali Earths.—The solution may be filtrate (81) or an "unknown" containing group V only.

If the solution is an "unknown" containing group V only, add to about one third of it an equal volume of NH₄Cl solution and test directly for Mg by (91). Reserve the remaining two thirds for K+, Na+ and NH₄+ tests.

If the solution is filtrate (81) evaporate till the ammonium salts begin to crystallize out, cool, filter if necessary and treat as follows for the detection and removal of any traces of Ba or Ca that might be present; to one portion add I-2 cc. of $(NH_4)_2SO_4$ and warm. A white precipitate (turbidity) is $BaSO_4$. To the remainder add I-2 cc. of $(NH_4)_2C_2O_4$. A white precipitate (turbidity) is CaC_2O_4 . Unite the two portions, filter off any precipitate and treat one third of the filtrate for Mg^+ by (91). Reserve the remaining two thirds for detection of K^+ and Na^+ (92 and following).

(91) Detection of Magnesium.—To the one-third portion of filtrate (90) add 1–2 cc. of Na₂HPO₄ and enough 15N. NH₄OH to make one-third the total volume. Shake the mixture vigorously for two to three minutes, and if a precipitate does not form, rub the walls of the vessel with a glass rod (see note, Exp. 18a) and allow it to stand for some time. A white crystalline precipitate is MgNH₄PO₄. (See Discussion 54.)

If the precipitate of MgNH₄PO₄ is of doubtful form it should be filtered, dissolved off the filter with a small quantity of HC₂H₃O₂ and reprecipitated by the addition of NH₄OH and a small quantity of NaHPO₄.

- (92) Detection of Potassium.—Transfer the remaining two thirds of solution (90) to a porcelain dish, acidify with HCl and evaporate to dryness. Place the dish on a clay triangle and ignite till the ammonium salts are completely expelled. (See Discussion 55.) Dissolve the residue in 3-4 cc. of water, transfer the resulting solution to a watch glass and add a few drops of perchloric acid (HClO₄). The formation of a white crystalline precipitate shows the presence of potassium. Filter, confirm the presence of potassium in the precipitate by means of the flame test (see Preliminary Exp. 41) and treat the filtrate for sodium by (93).
- (93) Detection of Sodium.—To the filtrate (92) add an equal volume of alcohol, I-2 cc. of fluosilicic acid (H₂SiF₆) and allow the mixture to stand a few minutes. (See Discussion 58.) A white gelatinous precipitate shows the presence of sodium. Confirm by means of the flame test. (See Preliminary Exp. 42.)
- (94) Detection of Ammonium.—The test for NH₄+ must be made on a small portion of the original substance. Introduce 3–4 cc. of the original substance, if it is a liquid, or about 0.1 gm. if it is a solid, into a small beaker, and add NaOH till the mixture is distinctly alkaline. Test the vapors with a piece of red litmus paper placed on the under side of a watch glass covering the beaker. If no change is observed in the litmus, warm the mixture gently, but do not boil. If the red litmus turns blue ammonium salts are present.

DISCUSSION

54. Since there are no characteristic color reactions that can be used for the detection of magnesium it becomes necessary to use considerable care in manipulation in order to secure a precipitate that can be recognized and depended upon. MgNH₄PO₄ is a white crystalline substance soluble in HC₂H₃O₂, but insoluble in NH₄OH.

Practically all the metals, except alkali metals, form

phosphates insoluble in NH₄OH, hence the necessity of having a clear solution entirely free from metals of the previous groups. The presence of NH₄Cl is necessary to prevent the precipitation of Mg(OH)₂, a white flocculent precipitate. (See Discussion 34.)

55. Since the presence of ammonium salts interferes with the subsequent tests for potassium and sodium, it is necessary that their removal be complete. Ammonium compounds react with both HClO₄ and H₂SiF₆ to form the corresponding ammonium salts, which are only slightly soluble under the conditions of the experiments. In order to insure the complete volatilization of the ammonium salts all parts of the dish should be well heated, though it must not be heated nearly to redness since both KCl and NaCl are somewhat volatile at that temperature.

56. In testing for potassium and sodium by means of the flame, a faint yellow coloration will almost invariably be obtained, owing to the fact that traces of sodium are nearly always present in the reagents previously used. A fleeting yellow tinge should not be taken as evidence of the presence of sodium, but the yellow color should be distinct and persistent.

57. The color of the flame may be used to detect potassium in the presence of considerable amounts of sodium, if a blue glass is used to cut out the yellow sodium rays. With small amounts of potassium, however, this test is not always satisfactory.

58. Fluosilicic acid (H₂SiF₆) reacts slowly with glass, so that on long standing in a glass vessel it will usually produce a precipitate even in the absence of sodium. Since the Na₂SiF₆ precipitate is semitransparent, the reaction should be carried out in a clear test-tube or on a watch glass.

QUESTIONS FOR REVIEW

- 1. Name the group reagents and the compounds precipitated by each.
- 2. Why is a precipitate sometimes obtained on the addition of water before adding the group reagent? Give examples.
- 3. Why do bismuth and antimony sometimes precipitate in Group I?
- 4. What is the effect of adding NH₄OH to AgCl, Hg₂Cl₂? Write equations.
- 5. Can HCl be substituted for NH₄Cl—HNO₃ in the precipitation of Group I? Explain. Could NaCl be used?
- 6. Explain what is meant by the following terms: hydrolysis, reagent, precipitate, residue, filtrate, colloidal solution.
 - 7. Define ion, acid, base, salt, oxidation, reduction.
 - 8. State the law of mass action.
- 9. What is meant by common ion, solubility product, ionization constant, complex ion?
 - 10. How may 2N. HCl be made from 6N. HCl?
- 11. Explain by means of the solubility-product principle why $PbCl_2$ is less soluble in a solution containing NH_4Cl than in pure water.
- 12. Explain by means of the law of mass action why AgCl is soluble in NH₄OH and is reprecipitated on the addition of an acid.
- 13. Why is it necessary to have a definite concentration of acid for the precipitation of Group II? What is the effect if the acid concentration is too great, or if it is too small? Explain by means of the solubility-product principle.
- 14. What precautions must be taken in the treatment of the Group II precipitate with $(NH_4)_2S_x$ reagent? Why?
- 15. Why is it necessary to test for lead and mercury in both Groups I and II?
 - 16. What are the colors of the following compounds,

precipitated in Group II: HgS, PbS, Bi₂S₃, CuS, CdS, As₂S₃, Sb₂S₃, SnS, SnS₂?

- 17. Why is it necessary to evaporate till white fumes appear in the separation of lead in Group II?
- 18. What is the effect of adding NH_4OH to a solution of $CuSO_4$ and $Bi_2(SO_4)_3$? Write equations. Explain.
- 19. What is the purpose of KCN in the detection of cadmium? Write equations involved.
- 20. Explain by means of the solubility-product principle why CuS, which is only slightly soluble in hot 2N. HCl, dissolves readily in hot 2N. HNO₃.
- 21. What effect does temperature have on the completeness with which Group II sulphides may be precipitated? Explain.
- 22. What precautions are necessary to insure complete precipitation of arsenic in Group II? Explain.
- 23. Given a solution which is known to contain no other metals than those given below, outline a method of analysis that will necessitate no unnecessary steps:
 - (a) Lead, mercury, cadmium.
 - (b) Copper, arsenic, cadmium.
 - (c) Bismuth, cadmium, antimony, tin.
- 24. What is the purpose of $H_2C_2O_4$ in the detection of antimony?
- 25. Show by a series of equations the changes through which arsenic goes when H₂S is passed through a dilute HCl solution of H₃AsO₄.
- 26. Explain by means of the solubility-product principle why PbSO₄ may be dissolved in NH₄C₂H₃O₂ solution.
- 27. Should PbCrO₄ dissolve in NH₄C₂H₃O₂ solution? Explain. Why does PbCrO₄ precipitate from the same solution that dissolves PbSO₄?
- 28. How is Na₂SnO₂ prepared? Write equations showing all the changes that take place.
- 29. Explain by means of the law of mass action why the addition of HCl to a solution of $(NH_4)_2SnS_3$ precipitates SnS_{2^*}

- 30. In the separation of As₂S₅ from Sb₂S₅ and SnS₂ with 12N. HCl why does more As₂S₅ dissolve if the solution is allowed to boil?
- 31. Why use just 10 cc. of 12N. HCl in the treatment of the sulphides of the tin division?
- 32. What is the principle on which the separation of antimony and tin, by precipitation with H_2S , is based? Explain by means of the solubility-product principle.

33. What is the confirmatory test for tin? What is the precipitate formed? Write all equations involved.

- 34. If phosphate is present, what elements may be precipitated on the addition of the third group reagent?
- 35. Why is it possible to separate the Al division from the Fe division with NaOH and Na₂O₂?
- 36. What elements are affected by the Na_2O_2 ? Write equations.
- 37. Why is Na₂CO₃ added in the separation of the Al and Fe divisions?
- 38. Why is HNO₃ added before NH₄OH in the separation of aluminium?
- 39. What is the purpose of H_2O_2 in dissolving the Fe division?
- 40. If it is necessary to use HNO₃ to dissolve Group III what conclusion can be drawn?
- 41. Since nickel and cobalt sulphides are not precipitated in acid solution why is it necessary to use aqua regia to dissolve them?
- 42. Given a solution which is known to contain no other metals than those given below, outline a method of anlysis that will necessitate no unnecessary steps;
 - (a) Aluminium, chromium, iron.
 - (b) Chromium, manganese, cobalt, nickel.
 - (c) Zinc, manganese, iron, nickel.
- 43. Why is it necessary to test for zinc in the Fe division?
 - 44. If phosphate is present in an unknown, in what

solutions is it necessary to test for the metals of Group IV? Why?

- 45. What is the purpose of the following reagents in the analysis of Group IV; CaSO₄, K₂Cr₂O₇, (NH₄)₂SO₄, (NH₄)₂C₂O₄?
- 46. Could K₂CrO₄ be used instead of K₂Cr₂O₇ in the precipitation of barium and lead? What is the relation between K₂CrO₄ and K₂Cr₂O₇?
- 47. Why is it necessary to add $(NH_4)_2SO_4$ and $(NH_4)_2C_2O_4$ to the filtrate from Group IV before testing for Group V?
- 48. Why does Mg(OH)₂ not precipitate in Group III or Group IV? Explain by means of the solubility-product principle.
- 49. Why not evaporate to dryness and drive off all ammonium salts before testing for magnesium?
- 50. Why is it necessary to test the original material for NH_4+ ?
- 51. Why remove ammonium salts before testing for potassium and sodium?
- 52. What is the purpose of HBF₄ in the analysis of Group V?
- 53. What salts are most suitable for use in flame tests? Why?
- 54. If an unknown is soluble in water, and phosphate is found, what metals will it be unnecessary to test for?

brK

PART III

ACIDS

In most cases the acid ions (anions) exist in solution as compound radicals composed of two or more elements held together and acting as a single substance. In this respect they differ from the metal ions (cations) which usually exist in solution as simple radicals. The most important anions consisting of a single element are the halides (C1-, Br-, I-, F-) and sulphide (S=).

The method of analysis follows the same general plan as that used for the metal ions. A separation is first made into groups by the use of certain reagents or processes. The anions of each group are then separated from each other and where necessary for identification this is followed by a known characteristic reaction. Since the anions are usually composed of more than one element and in many cases are easily transformed into volatile compounds or decomposed into something entirely different, a knowledge of their relative stability and characteristic reactions is especially helpful in giving the student confidence and in aiding him in the interpretation of his results. The preliminary experiments, therefore, are arranged so as to bring out the general properties of the anions and their action under the conditions imposed by the analysis.

Unlike the metals there are many acids that cannot exist in solution in the presence of each other. A large proportion of the oxidizing and reducing agents in common use depends on the acid radical for their properties. While the weaker oxidizing and reducing agents may be present together in solution it is quite evident that the stronger ones cannot. Furthermore there are certain volatile acids

ANIONS 101

and acids easily decomposed into volatile oxides which can exist only in alkaline, neutral or very slightly acid solutions. In view of this fact and that the average substance contains but few acids, the different procedures have been arranged, as far as possible, so that the separation and detection of the different anions do not, in general, depend on reactions used for separations earlier in the group. If a given anion is known to be absent, therefore, the procedure for its separation may usually be omitted.

The anions for whose separation and detection provision is made in this scheme of analysis are:

Group I.—Anions whose silver salts are insoluble in cold dilute HNO₃.

Ferrocyanide,	$Fe(CN)_6$	Sulphide,	S
Ferricyanide,	$Fe(CN)_6$	Iodide,	I –
Thiocyanate,	CNS-	Bromide,	Br-
Cyanide,	CN-	Chloride,	C1-

Group II.—Anions whose salts decompose on boiling in acid solution and give characteristic volatile oxides.

Carbonate,	CO ₃	Thiosulphate,	S_2O_3
Sulphite,	$SO_3^{}$	Nitrite,	NO_2

Group III.—Anions whose silver salts are soluble in acid but insoluble in warm neutral solution.

Arsenite,	AsO_3	Arsenate,	AsO_4
Oxalate,	$C_2O_4^{}$	Phosphate,	PO ₄
Chromate,	CrO ₄	Tartrate,	$C_4H_4O_6$

Group IV.—Anions whose silver salts are soluble.

Sulphate,	SO_4	Acetate,	$C_2H_3O_2$ -
Borate,	BO_3	Nitrate,	NO_3
		Fluoride,	F-

Provision was made for the detection of silicate (SiO_3^{--}) in the course of the analysis for metal ions. (See (5)).

THE SYSTEMATIC ANALYSIS

Anions

Since any interfering cations will be removed during the course of the analysis, the solution as prepared for the metal analysis may be used for the analysis of anions if the substance has been dissolved in water or cold dilute HNO₃. If the substance is a liquid or solution treat directly by (110); if a solid treat by (100).

PREPARATION OF SOLUTION

- (100) Treatment of a Solid.—To about 0.5 gram of the finely powdered substance add 10 cc. of cold water and mix thoroughly. Filter and wash the residue with 5 cc. of cold water, catching the wash water in the vessel containing the filtrate. Acidify the filtrate with HNO₃, noting if a gas is evolved (see Discussion 60), and treat by (110). Treat the residue by (101).
- (101) Treatment with Dilute HNO₃.—Pour repeatedly through the filter containing the residue undissolved by cold water, a 5-cc. portion of cold 2N. HNO₃, noting if a gas is evolved. (See Discussion 59.) If a residue remains, punch a hole through the filter and wash it into a test-tube with 5 cc. of 6N. HNO₃. Warm the mixture as long as any of the solid seems to dissolve. Dilute with 5 cc. of water, cool and filter. Treat the combined filtrates by (110). Treat the residue by (102).
- (102) Treatment with Na₂CO₃.—If there is a residue undissolved by dilute HNO₃, the anion constituents may be dissolved by treatment with Na₂CO₃ solution, as directed in (6) or by fusion with Na₂CO₃ as directed in (7). In either case, however, 6N. HNO₃ should be substituted for HCl, and the solution boiled to drive off the CO₂ before treatment with AgNO₃ by (110).

Discussion

59. A careful study of the solubility (see table, Appendix, III) and acidity of the material to be analyzed, in connection with the metal ions found, will often permit the omission of certain steps in the system of analysis for anions. Thus, if the substance contains silver and is soluble in water or dilute acid, it is unnecessary to test for Group I. Barium or lead and sulphate cannot exist together in a neutral water-soluble material. Group II anions will not be present in a strongly acid solution.

A study of the nature and color of the group precipitates may also permit the omission of certain steps; e.g., Ag₂S is black; Ag₃Fe(CN)₆, Ag₂CrO₄ and Ag₃AsO₄ are dark red; AgI, Ag₃PO₄ and Ag₃AsO₃ are yellow; AgBr is yellowish-white, while the remaining silver salts of Groups I and III are white.

60. When a strong mineral acid is added to a carbonate, the carbonic acid formed (H_2CO_3) immediately decomposes and, owing to its slight solubility, CO_2 , is evolved. Nitrites, sulphites and thiosulphates also tend to decompose in acid solution with the formation of N_2O_3 , SO_2 , and SO_2+S respectively. The solubility of N_2O_3 and SO_2 is so great, however, that enough will always remain in solution for their detection according to the methods outlined in Group II.

If the evolution of a gas is noted during the treatments as directed in (100) or (101), and carbonate is not found in the solution as prepared, a small portion of the original unknown should be tested for carbonate as directed in (130).

GROUP SEPARATION

TABLE IX

Outline for the Study of the Systematic Separation of the More Common Acids (Anions) into Groups

No.	Reagent	C1 -	NO ₂ -	PO ₄ -	SO ₄ =
I	HNO ₃ —AgNO ₃	NO ₃ —AgNO ₃ AgCl		Ag ₃ PO ₄	Ag ₂ SO ₄
2	HNO ₃ (heat)		(NO-NO ₂)	Ag ₃ PO ₄	Ag ₂ SO ₄
	Ca(OH) ₂		Ca(NO ₂) ₂	↓	↓
3	AgNO ₃ —NaOH	1	↓ ↓	Ag ₃ PO ₄	Ag ₂ SO ₄
	Gr. I		Gr. II	Gr. III	Gr. IV
	Cyanogen Div.	Halogen			
	Ag ₄ Fe(CN) ₆	Div. Ag ₂ S	CaCO ₃	Ag ₃ AsO ₃	Na ₂ SO ₄
	Ag ₃ Fe(CN) ₆	AgI	CaSO ₃	Ag ₂ C ₂ O ₄	NaBO ₂
	AgCNS	AgBr	Ca(NO ₂) ₂	Ag ₃ AsO ₄	NaC ₂ H ₃ O ₂
	AgCN	AgC1		Ag ₃ PO ₄	NaNO ₃
				Ag ₂ CrO ₄	
				Ag ₂ C ₄ H ₄ O ₆	

Preliminary Experiments

Experiment 43.—Introduce into separate test tubes 1 cc. portions of the test solutions containing a representative of each of the above groups, e.g. Cl-, NO₂-, PO₄-, SO₄-. Dilute to 10 cc., acidify with HNO₃ and add 2-3 cc. of silver nitrate (AgNO₃) solution. Note the precipitation of AgCl. (Difference, separation of Gr. I.)

Experiment 44.—Heat the solutions containing the nitrate, phosphate and sulphate (Exp. 43). Note that a gas is evolved in the case of the nitrite only. (Difference, separation of Gr. II.)

Notes.—Group II is composed of acids that decompose on warming to give volatile oxides. For analysis these oxides are caught in lime water (Ca(OH)₂) with which they react to form calcium salts of the acid decomposed except in the case of thiosulphuric acid. This decomposes on heating with the formation of both sulphur and sulphur dioxide. The

latter passes into the lime water and forms CaSO₃ while the sulphur is left behind in the distilling flask.

Experiment 45.—With the aid of a pipette add to the solutions containing the phosphate, and sulphate (Exp. 44) NaOH solution drop by drop, shaking the mixtures after each addition, until the dark precipitate just fails to redissolve. Note that Ag₃PO₄ precipitates before enough NaOH has been added to produce the permanent dark precipitate. (Difference, separation of Gr. III.)

Notes.—The separation of this group depends on the insolubility of the silver salts in neutral or very slightly acid solution. The dark precipitate (Ag₂O) is permanent only when all the anions of Gr. III have been precipitated as silver salts. Since Ag₂O is much darker colored than any of the silver salts of Gr. III, its appearance may be used to determine when precipitation is complete.

The acids of Gr. III are all comparatively weak. The constant removal of H⁺ by its union with OH⁻ introduced as NaOH causes the equilibrium to shift toward the formation of more of the free anion and this results in a complete precipitation of the silver salts of these acids before neutralization is complete and therefore before Ag₂O is formed. If an excess of NaOH is added the ion product is decreased by the formation of Ag₂O and complex ions of the anions with NaOH, and the acids again go into solution.

It should be noted that there is no reagent for precipitating Gr. IV, hence it is always necessary to test the filtrate from Gr. III or the original "unknown" for these acids.

Since most of the heavy metals form insoluble hydroxides they are precipitated along with Gr. III acids.

Suggestive Questions

- r. In what respect do acid ions (anions) differ from metal ions (cations)?
 - 2. Why cannot all anions be present in a solution together?
 - 3. What is Gr. I reagent and what compounds are precipitated by it?
 - 4. How is Gr. II separated from the other groups? Why?
- 5. If NaOH is used to neutralize a solution containing Ag why can it be used as an indicator?
- 6. If any of the heavy metals are present in a solution that is being tested for acids, in what group will they appear? Why?
- 7. What are the conditions necessary for the complete precipitation of Gr. III?
- 8. What is the effect of adding an excess of NaOH in precipitating Gr. III? Why?

GROUP I, CYANOGEN DIVISION

TABLE X

OUTLINE FOR THE STUDY OF THE SYSTEMATIC SEPARATION AND DETECTION OF THE ANIONS OF GROUP I (CYANOGEN DIVISION)

No.	Reagent	Fe(CN) ₆	Fe(CN) ₆ –	-SOO	CN-
I	(a) Conc. H ₂ SO ₄	$Fe_4[Fe(CN)_6]_3$	Fe ₃ [Fe(CN) _{6]2}	COS+HCN	HCN
	(b) Dil. H ₂ SO ₄	Fe4[Fe(CN)6]3	Fe ₃ [Fe(CN) _{6]2}	COS+HCN	HCN
	(c) HNO ₃ —AgNO ₃	Ag4Fe(CN)6	Ag3Fe(CN)6	AgCNS	AgCN
03	NaCl—HCl	Na ₄ Fe(CN) ₆	Na ₃ Fe(CN) ₆	NaCNS	NaCN
60	$(NH_4)_2MoO_4$	Na2(MoO2)3.[Fe(CN)6]3.2MoO3	Na ₃ Fe(CN) ₆	NaCNS	NaCN
4	ZnCl2	_	$Z_{n_3[Fe(CN)_6]_2}$	$\operatorname{Zn}(\operatorname{CNS})_2$	$\operatorname{Zn}(\operatorname{CN})_2$
	HCI		H ₃ Fe(CN) ₆		-
	FeSO4		Fe ₃ [Fe(CN) ₆] ₂	→	→
Ŋ	FeCI	÷		Fe(CNS) ₃	Fe(CN) ₃
9	NaOH—FeSO4				Na4Fe(CN)6
7	HCI		\rightarrow	→	Fe4[Fe(CN)6]3

Preliminary Experiments

Experiment 46.—To separate I cc. portions of the test solutions of the above ions add an equal volume of conc. H_2SO_4 . Note any change that takes place. Heat the solution and note any further changes. Test the vapors with moist blue litmus paper. Repeat this operation on a second I cc. portion of the test solutions using 6N. H_2SO_4 instead of the conc. H_2SO_4 .

Note.—Concentrated $\rm H_2SO_4$ acts not only as a strong acid but also as a mild oxidizing agent whose effectiveness increases with increase in temperature. Its addition, therefore, is a severe test on the stability of anions with which it comes in contact. Its oxidizing action decreases very much with dilution so that if the 6N. acid is used its action is limited almost solely to the liberation of volatile acids and the decomposition of very unstable ones.

Experiment 47.—Introduce into separate test tubes 2 cc. portions of the test solutions, dilute to about 10 cc., acidify with HNO₃ and add AgNO₃ solution as long as a precipitate continues to form. Note the color and texture of the precipitates formed. Write equations.

Experiment 48.—Decant off the liquid from the precipitates of Ag₄Fe(CN)₆, Ag₃Fe(CN)₆, AgCNS and AgCN (Exp. 47), add about 10 cc. of water and 2 cc. of NaCl reagent. Mix thoroughly and note that all the precipitates are changed to white AgCl. Write equations.

Note.—When NaCl which has been made slightly acid with HCl is added to the silver salts of the cyanogen acids insoluble AgCl is formed and the acids pass into solution as sodium salts. This is brought about by the combined influence of the large excess of Cl⁻, the small solubility product of AgCl and the slight ionization of the cyanogen acids. The ion products for the silver salts of the cyanogen acids are therefore reduced below their solubility product values. This causes the equilibrium to shift so as to bring them into solution. Although the solubility of AgCl is somewhat greater than that of AgCN or AgCNS this effect is more than balanced by the large excess of Cl⁻ and H⁺ which react to decrease both the Ag⁺ and the acid ion by the formation of insoluble AgCl and the nonionized acid.

Experiment 49.—Decant or filter the liquids above the precipitates of AgCl (Exp. 48) into separate test tubes and add about I cc. of ammonium molybdate reagent $[(NH_4)_2MoO_4]$ to each of the clear solutions. Note the precipitate obtained with the ferrocyanide. (Difference, separation of Fe(CN)₆==.)

Note.—The precipitate formed by the action of $(NH_4)_2MoO_4$ on ferrocyanides is a complex salt of the probable formula

 $Na_2(MoO_2)_3 \cdot [Fe(CN)_6]_3 \cdot 2MoO_3$

and is somewhat soluble in excess ferrocyanide. This is a very delicate test for $Fe(CN)_6^{==}$ since 1 mg. may easily be detected and as much as 200 mgs. of $Fe(CN)_6^{=-}$ produce no effect. (The student may find that his solution containing $Fe(CN)_6^{=-}$ gives a small precipitate since ferricyanide solutions often contain small quantities of $Fe(CN)_6^{==}$, especially after standing for some time).

Experiment 50.—To the remaining solutions containing $Fe(CN)_6$ —, CNS—, and CN— (Exp. 49), add 1–2 cc. of $ZnCl_2$ solution and if a precipitate does not form at once allow the mixtures to stand for a few minutes. Note the precipitate of $Zn_3[Fe(CN)_6]_2$. (Difference, separation of $Fe(CN)_6$)—.

Dilute 2 cc. of the test solution containing $Fe(CN)_6 = 10$ to 10 cc. add 1–2 drops of 6N. HCl and then 1–2 cc. of $ZnCl_2$ solution. Compare the results with those obtained above. What effect will the failure to remove all $Fe(CN_6) = 10$ have on the test for $Fe(CN)_6 = 10$? Write all equations.

Notes.— $Zn_3[Fe(CN)_6]_2$ formed by precipitation from solution with $ZnCl_2$ tends to separate as a finely divided amorphous precipitate which is difficultly held by the filter, if present in small quantity. It is, however, readily collected if the mixture is shaken with a small pinch of asbestos fiber before filtering.

The student should note that the ferricyanide differs from ferrocyanide in that the former is composed of CN⁻ and ferric iron while the latter has the CN⁻ in combination with ferrous iron. The valence of the ferrocyanide ion, therefore, is four and that of the ferricyanide ion is three.

Experiment 50a.—Filter off the precipitated $Zn_3[Fe(CN)_6]_2$ (Exp. 50). If necessary, shake the mixture

with a pinch of asbestos fiber before filtering. Dissolve the precipitate by pouring 2–3 cc. of 6N. HCl repeatedly through the filter, dilute the solution with an equal volume of water and add I–2 cc. of FeSO₄ solution. Write equations.

Note.—The deep blue precipitate formed in the above reaction is called Turnbull's blue and differs from the more commonly known Prussian blue in that the former is composed of ferric iron in the complex cyanide ion united with Fe⁺⁺ while in the latter the reverse is true.

Experiment 51.—To the remaining solutions containing CNS-and CN-(Exp. 50) add I cc. of FeCl₃ solution. Note the color of Fe(CNS)₃. (Difference, detection of CNS-.) Make each of the solutions alkaline with NaOH, add a few drops of FeSO₄ solution and boil gently for a minute or two. Cool and acidify with HCl. Note the deep blue precipitate formed in the tube that contained CN-. (Difference, detection of CN-.)

Note.—Cyanides when boiled with excess alkali and a ferrous salt react to form the complex ion, $Fe(CN)_6^{==}$, with the ferrous ion. This in turn reacts with Fe^{+++} to form Prussian blue. Thiocyanate is unaffected by this process. Write all equations involved.

SUGGESTIVE QUESTIONS

- r. What is the relative stability of the cyanogen anions in the presence of H₂SO₄?
- 2. Why is it advisable in analysis to precipitate the cyanogen anions from a cold solution?
- 3. When the silver salts of the cyanogen acids are treated with a NaCl—HCl mixture why do the cyanogen ions pass into solution?
- 4. Why is it necessary to remove all ferrocyanide before testing for ferricyanide?
 - 5. What is the difference between ferrocyanide and ferricyanide?
- 6. Distinguish between Turnbull's blue and Prussian blue. Why are they formed when a ferri- and a ferro-cyanide are heated with H₂SO₄?
 - 7. How would you distinguish between thiocyanate and cyanide?
- 8. What is formed when a cyanide is boiled with excess NaOH and FeSO₄?
- 9. An unknown solution known to contain no other acids than the cyanogens gives a white precipitate on the addition of ZnCl₂ solution; what conclusions may be drawn?

GROUP I, HALOGEN DIVISION

TABLE XI

Outline for the Study of the Systematic Separation and Detection of the Acids (Anions) of Group I (Halogen Division)

No.	Reagent	S=	I –	Br-	Cl-
I	(a) Conc. H ₂ SO ₄	S	I ₂	$(Br_2+HBr)\uparrow$	HCl
	(b) Dil. H ₂ SO ₄	H ₂ S	HI	HBr	HC1
	(c) HNO ₃ —AgNO ₃	Ag ₂ S	AgI	AgBr	AgC1
2	HNO ₃	Ag ₂ SO ₄	AgI	AgBr	AgCl
	HC1	H ₂ SO ₄ (<u>AgCl</u>)			
	BaCl ₂	BaSO ₄	1	1	1
3	Zn—H ₂ SO ₄		HI(Ag)	HBr(<u>Ag</u>)	HCl(Ag)
4	H ₂ O ₂		$\underline{\mathbf{I}_2}$	HBr	HCl
5	KMnO ₄			$\underline{\mathrm{Br_2}}$	HCl
6	AgNO ₃		1	1	AgCl

Preliminary Experiments

Experiment 52.—To separate I cc. portions of the test solutions of the above ions add an equal volume of conc. H₂SO₄. Note whether any decomposition takes place. In the cases in which no change is observed heat gently and note the effect. Test the vapors with moist blue litmus paper. Repeat, usng dilute H₂SO₄ with a second I cc. portion of the test solutions. Compare the results obtained with those in Exp. 46.

Experiment 53.—Dilute separate I cc. portions of the test solutions to about 10 cc. add I cc. of 6N. HNO₃ and AgNO₃ solution as long as a precipitate continues to form. Note the color and texture of the precipitates formed. Compare with those obtained in Exp. 47. Write equations.

Experiment 54.—Decant or filter off the clear liquid

from the precipitates (Exp. 53), add 5 cc. of 6N. HNO₃ and heat to boiling. Boil gently for I-2 minutes. Note the solution of the Ag₂S (Difference, separation of S=). Write equation.

Note.—The sulphide ion is a comparatively strong reducing agent, hence when Ag_2S is boiled with 6N. HNO_3 the $S^=$ is oxidized to $SO_4^=$ and therefore taken into solution as Ag_2SO_4 .

Experiment 54a.—Evaporate the solution of Ag₂SO₄ (Exp. 54) nearly to dryness, add 1–2 cc. of 6N. HCl, filter off the AgCl and add BaCl₂ solution to the filtrate. Note the precipitation of BaSO₄. Write equations.

Experiment 55.—Pour off the clear liquid from the silver halides (Exp. 54), and add just 5 cc. of 6N. H₂SO₄ and a granule of zinc to each. When the reaction is complete and only a black spongy residue remains pour off the supernatant liquid into other test tubes, add about 5 cc. of water, I-2 cc. of H₂O₂ (3% solution) and I cc. of CCl₄ to each. Shake the mixtures vigorously. Note the change of color of the CCl₄ in the case of iodide only. (Difference, detection of I-.) Write equations.

Note.—When $\rm H_2O_2$ is added to dilute acid solution of an iodide it reacts as an oxidizing agent to form free iodine. It, however, fails to oxidize the bromide except in a much stronger acid concentration. While the oxidizing power of $\rm H_2O_2$ increases with both the acid concentration and that of Br⁻ as much as 400 mgs. of Br⁻ may be present in 2N. acid solution before oxidation takes place. Chloride is unchanged even in much stronger acid.

Experiment 56.—Neutralize the solutions containing the bromide and chloride (Exp. 55) with NH₄OH and boil to decompose excess H₂O₂. Cool, neutralize with 6N. H₂SO₄ and add I cc. in excess. Add KMnO₄ drop by drop, shaking the mixture after each addition until a permanent pink color remains. Now add about I cc. of CCl₄ and shake the mixtures vigorously. Note the change of color of the CCl₄ in the case of bromide only. (Difference, detection of Br⁻.) Write equations,

Note.—While KMnO₄ will oxidize 1 mg. of Br⁻ to free bromine in a solution that is barely acid it fails to oxidize chloride when as much as 200 mgs. are present in 1.5N. acid solution.

Experiment 57.—To the solution containing chloride (Exp. 56), add a few drops of AgNO₃ solution. Note the color and nature of the AgCl precipitate formed.

Suggestive Questions

- r. What is the relative stability of iodides, bromides and chlorides as shown by their action on concentrated H₂SO₄?
- 2. What acids of group I could be recognized by their action on concentrated $\mathrm{H}_2\mathrm{SO}_4$?
 - 3. Why is it necessary to remove all iodide before testing for bromide?
- 4. What is the necessary procedure for getting the silver halides into solution? Why?
 - 5. What becomes of the sulphide when Ag₂S is boiled with 6N. HNO₃?
 - 6. Under what conditions will H₂O₂ oxidize a bromide to bromine?
- 7. Since chlorine is sometimes obtained by the action of $\rm KMnO_4$ on an acid solution of a chloride why was the chloride not oxidized in Exp. 56?

Analysis

Group I

 $Fe(CN)_6\equiv$, $Fe(CN)_6\equiv$, CNS-, CN-, S=, I-, Br-, C1-

(110) Precipitation.—To about 25 cc. of the cold solution acidified with HNO₃ (see Discussion 60) add, slowly and with constant stirring, AgNO₃ solution in excess. Filter, divide the precipitate into two portions, treat one by (111) and the other by (120). Reserve the filtrate for analysis of group II (130).

Cyanogen Division

(III) Solution of the Cyanogen Compounds.—Suspend one portion of the precipitate (IIO) in 5 cc. of water, add 5 cc. of the NaCl reagent and mix thoroughly. Filter, reject the residue of silver halides (see Discussion 61) and treat the filtrate by (II2). (See Discussion 59.)

(II2) Detection of Ferrocyanide.—To the filtrate (III) add ammonium molybdate ((NH₄)₂MoO₄) reagent in excess. A red flocculent precipitate shows the presence of ferrocyanide. (See Discussion 62.) Filter and treat the filtrate by (II3).

(112) add a slight excess of ZnCl₂ solution. Allow the mixture to stand a few minutes. A white precipitate indicates ferricyanide. If the precipitate is colloidal or finely divided shake the mixture with a pinch of asbestos fiber to coagulate the precipitate and filter. Treat the precipitate by (114) and the filtrate by (115).

(114) Confirmatory Test for Ferricyanide.—Dissolve the precipitate (113) by pouring a 3-5 cc. portion of 6N. HCl repeatedly through the filter. Dilute the solution with an equal volume of water and add about 1 cc. of FeSO₄ solution. A deep blue precipitate shows the presence of ferricyanide.

(115) Detection of Thiocyanate and Cyanide.—To the filtrate (113) add about 1 cc. of FeCl₃ solution. A red coloration shows the presence of thiocyanate.

Make the solution just alkaline with NaOH and add a few drops of FeSO₄ solution. Heat the mixture to boiling and boil gently for one to two minutes. Acidify with HCl to dissolve the hydroxides of iron. A blue residue insoluble in HCl shows the presence of cyanide. (See Discussion 63.)

DISCUSSION

61. The solution of the cyanogen compounds by means of NaCl is based largely on the relative solubility of their silver salts. The low solubility product of AgCl causes a displacement of the equilibrium toward the formation of more AgCl and a consequent decrease of Ag+, with the result that the ion product of the cyanogen compounds of silver is reduced below their solubility-product value

and they pass into solution as sodium salts. In the presence of a small amount of HCl the reaction is rapid and complete. (See note, Exp. 48.) The sulphide and other halides are unaffected, owing to the fact that their solubilities are less than that of AgCl. (See Introduction 12.)

62. The precipitation of ferrocyanide with $(NH_4)_2MoO_4$ reagent is complete only when a considerable excess of $(NH_4)_2MoO_4$ is present. Unless the ferrocyanide is completely removed it will be precipitated with ferricyanide and interfere with the test for that acid. The heavy red precipitate of ferrocyanide is a complex salt of molybdenum with $K_4Fe(CN)_6$, of the probable formula

$K_2(MoO_2 \cdot Fe(CN)_6)_3 \cdot 2MoO_3 \cdot 2oH_2O$,

and is somewhat soluble in excess of K₄Fe(CN)₆. (*Note.*—The student will learn to distinguish between ferrocyanide and ferricyanide by noting that a ferrocyanide contains a complex ion consisting of CN – and ferrous iron while a ferricyanide contains a complex ion consisting of CN – and ferric iron.)

63. When a simple cyanide is boiled with NaOH and FeSO₄, Na₄Fe(CN)₆ is formed. This reacts in acid solution with FeCl₃ to form Fe₄(Fe(CN)₆)₃ (Prussian blue). Very small quantities of this are not readily detected in the presence of much thiocyanate, but if the solution is filtered a blue precipitate may easily be detected on the filter paper.

ANALYSIS

Group I, Halogen Division

(120) Detection of Sulphide.—To the second portion (110) add 5 cc. of 6N. HNO₃ and heat to boiling to oxidize the sulphide to sulphate. Cool and filter. Treat the residue by (121). Evaporate the filtrate until barely moist, take up in 5–10 cc. of water, add 1–2 cc. of 6N. HCl,

filter and add BaCl₂ to the clear filtrate. A white precipitate of BaSO₄ shows the presence of sulphide. (See Discussion 64.)

- (121) Solution of the Halides.—If any of the cyanogen compounds have been found they should be destroyed (see Discussion 65) by placing the residue (120) in a porcelain dish and igniting to dull redness. After the dish and contents have cooled, add a small piece of granulated zinc and 5 cc. of 6N. H₂SO₄. By means of a glass rod loosen any particles adhering to the dish in order to give them free access to the reducing agent. When the reaction is complete and only a black spongy residue remains, filter, reject the residue of metallic silver and treat the filtrate by (122).
- (122) Detection of Iodide.—To the cold filtrate (121) add 5 cc. of water. Transfer the solution to a test-tube and add about I cc. of carbon tetrachloride (CCl₄) and I-2 cc. of H_2O_2 . Shake the mixture thoroughly. The presence of iodide is shown by a violet color in the CCl₄ layer. If iodide is found, filter and repeat the treatment with CCl₄ and H_2O_2 until the CCl₄ layer shows no further coloration. (See Discussion 66.) Treat the filtrate by (123).
- (123) Detection of Bromide.—Neutralize the filtrate (122) with NH₄OH and boil gently for 2-3 minutes to decompose excess peroxide, cool, neutralize with 6N. H₂SO₄ and add just I cc. in excess. Now add KMnO₄ solution drop by drop, shaking the mixture after each addition, until a permanent pink color remains. Add about I cc. of CCl₄ and shake the mixture thoroughly. A yellow or orange color in the CCl₄ layer shows the presence of bromide. (See Discussion 67.) If bromide is found repeat the treatment with CCl₄ until all the bromine is removed as shown by absence of color in the CCl₄.
- (124) Detection of Chloride.—To the filtrate (123) from which all bromide and iodide have been removed, add a

few drops of AgNO₃ solution. The formation of a white precipitate shows the presence of chloride.

DISCUSSION

64. By the action of boiling HNO₃, according to the equation

$$3H_2S + 8HNO_3 \rightarrow 3H_2SO_4 + 8NO + 4H_2O_7$$

sulphides are oxidized to sulphates, which may be detected by the white precipitate of BaSO₄ produced by BaCl₂. Excess HNO₃ should be removed from the solution, however, in order to prevent the possible precipitation of Ba(NO₃)₂, a white crystalline precipitate, on the subsequent addition of BaCl₂. HCl is added to remove any silver ion that may be in the solution.

The presence of sulphide may be due not only to its presence in the original material but also to the decomposition of thiosulphate. When AgNO₃ is added to an acid solution containing a thiosulphate, decomposition of the thiosulphate takes place with the formation of insoluble Ag₂S. When much thiosulphate is present the decomposition is readily detected by more or less rapid change of color in the precipitate from white through varying shades of gray to black.

65. The reduction of the silver halides to metallic silver and the halogen acid by means of zinc and H₂SO₄ is complete only in the absence of the cyanogen compounds. If any of these compounds are found, therefore, they must be removed before the treatment with zinc and H₂SO₄. They are readily destroyed by a dull red heat. A higher temperature might volatilize some silver halide.

66. The separation and detection of the halides is based on the relative stability of their acids in the presence of oxidizing agents. The very easily oxidizable iodide must therefore be completely removed before the stronger oxidizing agent, KMnO₄, is added. While it would not be

mistaken for bromide the purple color which it gives to CCl₄ would completely cover up any yellow color caused by bromide. Care must be exercised to keep the acid concentration within the limits prescribed since the oxidizing power of both H₂O₂ and KMnO₄ increase with increasing acid concentration.

67. Bromide is shown to be present only if the yellow color is obtained in the CCl₄ layer. The fact that some KMnO₄ is decolorized is not necessarily evidence of bromide but may be caused by a small amount of H₂O₂ left undecomposed by boiling. However, when no more permanganate is decomposed, as shown by the permanent pink color, all HBr that may have been present has been oxidized to free bromine. This is readily removed by means of its greater solubility in CCl₄.

GROUP II

TABLE XII

OUTLINE FOR THE STUDY OF THE SYSTEMATIC SEPARATION AND DETECTION OF THE ACIDS (ANIONS) OF GROUP II

No.	Reagent	CO3=	SO ₃ =	S ₂ O ₃ =	NO ₂ -
I	(a) H ₂ SO ₄	CO ₂ ↑	SO ₂ ↑	S+SO ₂ ↑	(NO+NO ₂)↑
	(b) HNO ₃	CO₂↑	SO ₂ ↑	S+SO ₂ ↑	$(NO+NO_2)\uparrow$
2	Ca(OH) ₂	CaCO ₃	CaSO ₃	CaSO ₃	Ca(NO ₂) ₂
3	HNO ₃		H ₂ SO ₃	H ₂ SO ₃	HNO_2
4	HgNO ₃	1	$H_2SO_4(\underline{Hg})$	$H_2SO_4(\underline{Hg})$	HNO_2
5	FeSO ₄		1	1	FeSO ₄ ·NO

Preliminary Experiments

Experiment 58.—To separate I cc. portions of the test solutions containing the above ions add a few drops of conc. H₂SO₄. Note the reactions taking place and the odor and color, if any, of the evolved gases. Repeat, using 6N. H₂SO₄. If no apparent reaction takes place warm gently. Compare the stability of these acids with those in Group I.

Experiment 59.—Fit up an apparatus similar to that in Fig. 4, but use a test-tube instead of the flask. Introduce into the test-tube 5 cc. of the CO_3 = test solution and into the receiving tube 3–5 cc. of clear lime water $[Ca(OH)_2]$. Acidify the test solution with 6N. HNO₃, place it in position and heat gently until it just begins to boil, allowing the vapors to pass over into the lime water. Note the precipitate formed in the receiver. Continue the heating and note whether the precipitate disappears. Repeat the experiment with fresh clear lime water in the receiver using in turn the SO_3 =, S_2O_3 =, and NO_2 - test solutions, but heat only until the solutions begin to boil. Note any

changes in either the reaction or receiving tubes. Reserve the solutions in the receivers for the following experiments. Write all equations concerned.

Note.—The acids of Gr. II all decompose giving volatile oxides which react with the lime water $[Ca(OH)_2]$ to form calcium salts. With the exception of thiosulphate $(S_2O_3^-)$ the anion is unchanged. $H_2S_2O_3$ decomposes according to the equation $H_2S_2O_3 \rightarrow H_2O+\underline{S}+SO_2$. The SO_2 entering the lime water reacts to form $CaSO_3$. The only difference, therefore, between the reactions obtained with H_2SO_3 and $H_2S_2O_3$ is the free sulphur which remains in the reaction tube.

Experiment 60.—Acidify the solutions obtained from the sulphite, thiosulphate and nitrate (Exp. 59) with 6N. HNO₃ and add a few drops of mercurous nitrate (HgNO₃). Note the precipitate in the cases of both sulphite and thiosulphate. (Difference, detection of SO₃=.)

Note.—Mercurous nitrate is readily reduced in the cold by the action of free H₂SO₃. The reaction is as follows:

$$_2$$
HgNO $_3$ +H $_2$ SO $_3$ +H $_2$ O \rightarrow $_2$ Hg+H $_2$ SO $_4$ + $_2$ HNO $_3$.

Experiment 61.—To the solution containing the nitrite (Exp. 60), add 1–2 cc. of FeSO₄ solution. Note the brown color obtained.

Note.—HNO₂ is reduced to nitric oxide (NO) by FeSO₄. The NO formed by this action reacts with more of the FeSO₄ to form the addition product FeSO₄·NO. This compound is unstable and decomposes on standing.

SUGGESTIVE QUESTIONS

- r. What are the characteristic oxides obtained when group II acids are heated?
- 2. What acids in group II could be recognized by the action of a dilute mineral acid if present in an unknown? Why?
- 3. Why does a small amount of CO₂ give a precipitate with lime water but a large amount dissolve the precipitate?
- 4. Distinguish between a sulphite and thiosulphate, a sulphite and nitrite.
- 5. What is the dark gray precipitate obtained when HgNO₃ is added to an acid solution of a sulphite?
- 6. If an unknown containing acids of group II only evolves brown fumes when H₂SO₄ is added, what conclusion may be drawn?

ANALYSIS

Group II

 $CO_3 = SO_3 = S_2O_3 = NO_2 = NO_2$

(130) Separation of Group and Detection of Carbonate.—Transfer the filtrate (110) to a small flask connected with a delivery tube and receiver as shown in Fig. 4.

About 10 cc. of lime-water (Ca(OH)₂) should be placed in the receiver so that the delivery tube reaches below the surface of the liquid. Heat the solution in the flask to boiling and boil for about one minute. If a milky white precipitate forms in the receiver (see Discussion 68) carbonate is shown to be present. Filter and treat the filtrate by (131). Reserve the solution in the flask for analysis of group III (140).

(131) Detection of Sulphite.—Acidify the filtrate (130) with HNO₃ and add a few drops of mercurous nitrate (HgNO₃). A gray precipitate shows the presence

of sulphite.¹ (See Discussion 69.) Filter and treat the filtrate by (132).

 1 If both S= and SO₃= have been found and S₂O₃= was indicated by the formation of a milky precipitate in the reaction flask when Gr. II was distilled off, the following test for sulphide, thiosulphate and sulphites hould be made: To the original solution made slightly acid with acetic acid add zinc sulphate solution. This will precipitate sulphide as white flocculent ZnS. Filter and treat the filtrate with strontium nitrate (Sr(NO₃)₂) solution and allow the mixture to stand for several hours. The formation of a white precipitate (SrSO₃) indicates the presence of sulphite. This may be confirmed by the property of its HCl solution to decolorize iodine solution. The thiosulphate, if present, remains in the filtrate from the SrSO₃. It can be detected by acidifying with HCl and warming when sulphur will be deposited.

(132) Detection of Nitrite.—To the filtrate (131) add about 1 cc. of FeSO₄ solution. The appearance of a brown coloration shows the presence of nitrite. (See Discussion 70.)

DISCUSSION

68. When CO₂ is passed through lime-water, insoluble CaCO₃ is first formed. Excess of CO₂, however, reacts with the normal carbonate to form soluble Ca(HCO₃)₂. In the detection of carbonate the formation of a white precipitate of CaCO₃, which may or may not redissolve, is evidence of the presence of carbonate.

69. It has been mentioned (see Discussion 64) that Ag₂S₂O₃ decomposes even in acid solution with the formation of Ag₂S. The reaction is as follows:

$$Ag_2S_2O_3 + H_2O \rightarrow Ag_2S + H_2SO_4$$

The decomposition, however, is comparatively slow, and some undecomposed H₂S₂O₃ may be left in the filtrate from group I. Boiling the solution to expel group II decomposes this with the formation of SO₂ and free sulphur. The detection of both sulphide and sulphite, therefore, may have been due to the presence of thiosulphate in the original material.

70. The test for nitrite depends on the formation of brown $FeSO_4 \cdot NO$, according to the following equations:

$$3HNO_3 + 3FeSO_4 + 3HNO_2 \rightarrow Fe_2(SO_4)_3 + Fe(NO_3)_3 + 3NO + 3H_2O$$

$$FeSO_4 + NO \rightarrow FeSO_4 \cdot NO$$

If much HgNO₃ was added in testing for sulphite, a white precipitate of Hg₂SO₄ will be formed on the addition of FeSO₄.

GROUP III
TABLE XIII

OUTLINE FOR THE STUDY OF THE SYSTEMATIC SEPARATION AND DETECTION OF GROUP III

Ions present in dil. HNO₃ solution

	C4H406=	$\frac{\mathrm{Ag}_{2}\mathrm{C}_{4}\mathrm{H}_{4}\mathrm{O}_{6}}{\mathrm{Na}_{2}\mathrm{C}_{4}\mathrm{H}_{4}\mathrm{O}_{6}}$	$\bigcup_{Na_2C_4H_4O_6}$	<u>→</u>	Na ₂ C ₄ H ₄ O ₆	Na,C4H4O	CO2
	CrO₄=	Ag2CrO4 Na2CrO4(?)	↓ Na₂CrO₄	→	Na ₂ CrO ₄	BaCrO	
ution	PO4_	Ag ₃ PO ₄ Na ₃ PO ₄ (?)	↓ Na₃PO₄	 →	U0 ₂ NH ₄ PO ₄ H ₃ PO ₄ H ₃ PO ₄	(NH ₄) ₃ PO ₄ . 12MoO ₃	
tons present in an. 11103 solution	AsO ₄ =	Ag_3AsO_4 $Na_3AsO_4(?)$	Va ₃ AsO ₄	→	UO ₂ NH ₄ AsO ₄ H ₃ AsO ₄ As ₂ S ₃₋₅		
none present	C204=	Ag ₂ C ₂ O ₄ Na ₂ C ₂ O ₄	CaC_2O_4	H ₂ C ₂ O ₄ CO ₂			
	AsO₃≡	Ag ₃ AsO ₃ Ag ₂ AsO ₃ AsCl ₃ As ₂ S ₃		→			
	Reagent	AgNO ₃ NaOH *NaOH HCI H.S	HC2H3O2 NH4C2H3O2 CaCl2	H ₂ SO ₄ KMnO ₄	NR4C2H3O2)2 UO2(C2H3O2)2 HCI H2S H2S	(NH4) ₂ MoO ₄ BaCl ₆	H ₂ SO ₄ UO ₂ (C ₂ H ₃ O ₂) ₂ KMnO ₄
	No.	1 2	0		4	1.4	00

* The compounds marked (?) probably do not exist in the solution as the simple salt, but rather as complexes with NaOH.

Preliminary Experiments

Experiment 62.—Dilute I cc. of each of the above ions to about IO cc. and if the solution is not already acid make slightly acid with 6N. HNO₃ and add I-2 cc. of AgNO₃ solution. Now add NaOH drop by drop from a pipette, shaking well after each addition, until the dark precipitate at first formed just fails to redissolve. Note all changes taking place during the addition. Write equations.

Note.—The silver salts of group III acids are insoluble in neutral or very slightly acid solution. When NaOH is added to an acid solution containing an excess of Ag⁺ the unstable AgOH decomposes immediately into Ag₂O. This is insoluble in the presence of excess alkali and hence precipitates when the strong NaOH comes in contact with the solution but is redissolved when this becomes neutralized. Although the order of solubility of Ag₂O is the same as that of the silver salts of group III the very slight ionization of water prevents its formation until the solution becomes neutral or very nearly so. The higher ionization of group III acids, however, permits the solubility products of their silver salts to be reached and if the solution is gradually neutralized their precipitation is complete before the formation of Ag₂O becomes permanent.

Experiment 63.—Decant or filter off the liquid from the precipitates (Exp. 62), add 10 cc. of water, 1 cc. of NaOH solution and mix thoroughly. All of the anions except $AsO_3=-$ are dissolved by this process. (Difference, separation of $AsO_3=-$).

Note.—While the exact nature of this reaction is not clear it is probable that complex ions with NaOH are formed in all cases except arsenite. The ion product is therefore reduced below the solubility product value and they pass into solution. Ag₃AsO₃ remains unchanged in NaOH solutions up to 1.5N. but dissolves somewhat in higher concentrations.

Experiment 63a.—Filter off the precipitate of Ag₃AsO₃ and dissolve it by pouring a few cc. of 6N. HCl repeatedly through the filter. Saturate the clear filtrate with H₂S. Write equations.

Experiment 64.—Decant off the clear solutions containing oxalate, arsenate, phosphate, chromate and tartrate

(Exp. 63) into other test-tubes, make the solutions just acid with $HC_2H_3O_2$ and add a little $NH_4C_2H_3O_2$ and $CaCl_2$ solution. Note the precipitation of CaC_2O_4 . (Difference, separation of oxalate.) Write equations.

Note.—Although the solubility product of CaC_2O_4 is very small it is necessary, for complete precipitation of the $C_2O_4^=$ to keep the H^+ concentration very small in order to prevent the formation of the slightly ionized $H_2C_2O_4$. This is accomplished by the addition of $NH_4C_2H_3O_2$ which reacts to form the more slightly ionized $HC_2H_2O_2$.

Experiment 64a.—Decant or filter off the liquid from the precipitated CaC₂O₄ (Exp. 64) and dissolve it in a little 6N. H₂SO₄. Add to the solution a drop of KMnO₄ solution and warm gently.

Heat a small quantity of solid $(NH_4)_2C_2O_4$ with conc. H_2SO_4 and collect the gas in clear lime water (see Exp. 59).

Note.—When H_2SO_4 is added to an oxalate free $H_2C_2O_4$ is formed which is capable of reducing $KMnO_4$. The reaction is as follows:

$$5CaC_2O_4 + 9H_2SO_4 + 2KMnO_4 \rightarrow 5CaSO_4 + 2MnSO_4 +$$

$$_{2}$$
KHSO $_{4}$ + $_{1}$ oCO $_{2}$ + $_{8}$ H $_{2}$ O

When an oxalate is heated with conc. H₂SO₄ it decomposes with the formation of CO₂ and CO according to the following equation:

$$H_2C_2O_4 \rightarrow H_2O + CO + CO_2$$

Experiment 65.—To the solutions containing arsenate, phosphate, chromate and tartrate (Exp. 64), add $NH_4C_2H_3O_2$ and then 2-3 cc. of uranyl acetate $[UO_2(C_2H_3O_2)_2]$. Note the precipitation of $UO_2NH_4AsO_4$ and $UO_2NH_4PO_4$. (Difference, separation of AsO_4^{-} and PO_4^{-} .) Write equations.

Experiment 66.—Filter off the precipitates of $UO_2NH_4AsO_4$ and $UO_2NH_4PO_4$ and dissolve by pouring 5 cc. of 6N. HCl repeatedly through the filter. Heat the solutions to boiling and pass in H_2S for 5–10 minutes. Note the precipitation of arsenic. (Difference, separation of AsO_4^{\equiv} .)

Experiment 67.—Evaporate the solution containing phosphate (Exp. 66) almost to dryness, add a few cc. of 16N. HNO₃ and heat until the brown fumes disappear. Add the resulting solution to about three times its volume of ammonium molybdate reagent [(NH₄)₂MoO₄].

Note.— H_3PO_4 reacts with $(NH_4)_2MoO_4$ in strong HNO_3 solution to form a complex phospho molybdate of the formula $(NH_4)_3PO_4 \cdot 1_2MoO_3$. The reaction takes place best at a temperature of about 60° C. in the presence of a large excess of $(NH_4)_2MoO_4$.

Experiment 68.—To the solutions containing chromate and tartrate (Exp. 65), add 2-3 cc. of BaCl₂ solution. Note the precipitation of BaCrO₄. (Difference, separation of CrO₄=.) Write equations.

Experiment 69.—Add about 10 cc. of 6N. H₂SO₄ to the solution containing tartrate, filter off the precipitate of BaSO₄ and evaporate the filtrate to about 5–10 cc. To the resulting solution add 1–2 drops of KMnO₄ solution.

Note.—When a tartrate or other organic matter is heated in a strong acid solution containing a uranyl salt the uranium is reduced to the green uranous state. This in turn reduces permanganate solution to the colorless manganous salt. The test is positive for tartrate only when all other organic matter is known to be absent.

Experiment 69a.—Add a few drops of conc. H₂SO₅ to a small quantity of solid tartaric acid (H₂C₄H₄O₆) and warm gently. Note the color of the mixture and odor of the gas evolved. Compare with oxalic acid (Exp. 64a).

To about 5 cc. of the tartrate test solution add an excess of CaCl₂ solution.

Thoroughly clean a test tube by boiling NaOH solution and then strong HNO₃ in it. Rinse it with plenty of water and introduce a few cc. of AgNO₃ solution. Add drop by drop very dilute NH₄OH until the Ag₂O precipitate just forms. Now add a I-2 cc. of NaOH solution and about I cc. of the tartrate test solution. Warm the mixture gently. Note the silver mirror on the walls of the tube.

SUGGESTIVE QUESTIONS

- r. What is the group reagent for group III?
- 2. How is arsenite distinguished from arsenate?
- 3. What is the purpose of NH₄C₂H₃O₂ in the precipitation of CaC₂O₄?
- 4. Why must a large excess of NaOH be avoided in the separation of arsenite from the remaining group III acids?
- 5. Could oxalate be distinguished from carbonate by the addition of conc. H₂SO₄? Why?
- 6. Why is it necessary to have an excess of AgNO₃ in the precipitation of group III acids by the addition of NaOH? Why must an excess of NaOH be avoided?
 - 7. How is arsenate distinguished from phosphate?
- 8. On what does the tartrate test depend? Why would oxalate or even filter paper give the same test?

Analysis

Group III

$$AsO_3\equiv$$
, $C_2O_4=$, $AsO_4\equiv$, $PO_4\equiv$, $CrO_4=$, $C_4H_4O_6=$

- (140) Precipitation.—To the lukewarm solution left in the flask (130) add NaOH drop by drop from a pipette, until, on shaking, the dark Ag₂O precipitate just fails to redissolve. (See Discussion 71.) Filter, treat the precipitate by (141) and reserve the filtrate for analysis of group IV (150).
- (141) Separation of Arsenite.—Punch a hole through the filter (140) with a glass rod and wash the precipitate into a graduate cylinder with a small quantity (15–20 cc.) of water. Add 2–3 cc. of NaOH (approximately 6N.) and fill up to the 25 cc. mark with water. (See Discussion 72.) Transfer the contents of the cylinder to a beaker and mix thoroughly. Filter and test the residue for arsenite (142) and treat the filtrate by (143).
- (142) Detection of Arsenite.—Pour repeatedly through the filter (141) a 5 cc. portion of 6N. HCl to dissolve the arsenite. Saturate the solution with H₂S. A yellow precipitate shows the presence of arsenite. If a dark precipitate is obtained it may be tested for arsenite according

to the method outlined for arsenic. (See (23) and following.)

- (143) Separation of Oxalate.—To the filtrate (141) add a slight excess of HC₂H₃O₂ and then about 5 cc. of NH₄C₂H₃O₂ and heat to boiling. To the hot solution add an excess of CaCl₂ solution. Mix thoroughly and allow the mixture to stand for two to three minutes. (See Discussion 73.) The formation of a white crystalline precipitate indicates the presence of oxalate. Filter and confirm the oxalate by treating the precipitate (CaC₂O₄) by (144). Treat the filtrate by (145).
- (144) Detection of Oxalate.—Dissolve the precipitate (143) by pouring 5–6 cc. of 6N. H₂SO₄ repeatedly through the filter. Warm the filtrate and add a drop of KMnO₄ solution. If oxalate is present the permanganate will be decolorized.

Optional Method.—Instead of adding KMnO₄ transfer the H₂SO₄ solution to a flask (Fig. 4) and boil it, at the same time collecting the evolved gas in lime-water. If oxalate is present it will decompose with the formation of CO₂, which in turn will react with the Ca(OH)₂ to form insoluble CaCO₃. (See (130).)

- (145) Separation of Arsenate and Phosphate.—To the filtrate (143) add 5 cc. of $NH_4C_2H_3O_2$ solution and uranyl acetate $[UO_2(C_2H_3O_2)_2]$ in slight excess. Allow the mixture to stand about five minutes and filter. (See Discussion 74.) Treat the precipitate by (146) and the filtrate by (148).
- (146) Detection of Arsenate.—Dissolve the precipitate (145) by pouring repeatedly through the filter a 10 cc. portion of 6N. HCl; heat to boiling and saturate with H₂S. The appearance of a white, finely divided precipitate, turning yellow, shows the presence of arsenate. (See Discussion 18.) Filter and treat the filtrate by (147).
- (147) Detection of Phosphate.—If the presence of phosphate has not already been determined (72), evaporate to dryness the filtrate (146) from which all arsenic has

128 · ACIDS

been removed, dissolve the residue in 5 cc. of 16N. HNO₃, and heat to drive off the brown fumes. Pour the resulting solution into about three times its volume of (NH₄)₂MoO₄ reagent. The formation of a yellow crystalline precipitate shows the presence of phosphate. (See Discussion 75.)

(148) Detection of Chromate.—Heat the filtrate (145) to boiling, and add to the hot solution an excess of BaCl₂ solution. The formation of a yellow crystalline precipitate shows the presence of chromate. Unless the precipitate is yellow and crystalline the confirmatory test should be made. (See (63).)

(149) Detection of Tartrate.—To the filtrate (148) add about 10 cc. of 6N. H₂SO₄ and filter off the precipitated BaSO₄. Transfer the filtrate to a porcelain dish and evaporate to 5–10 cc. The presence of tartrate is indicated by the ability of the resulting solution to decolorize a drop of KMnO₄ solution.¹ (See Discussion 76.)

Discussion

71. The presence of enough silver ions to precipitate all the acids of group III is shown by the momentary formation of the dark Ag₂O precipitate during the addition of NaOH. The Ag₂O dissolves on shaking, as long as excess acid is present and becomes permanent only when all acid has been neutralized. Its failure to redissolve,

¹ If other organic matter may be present and the uranous salt is obtained in (149), a portion of the original material may be tested for tartrate as follows: To a portion of the original solution of the "unknown" add Na₂CO₃ solution to alkaline reaction. Filter off the precipitate containing heavy metals, acidify the filtrate with HNO₃ and boil to decompose excess carbonate. Make the solution slightly alkaline with NH₄OH, add CaCl₂ in excess and allow the mixture to stand a short time. If a precipitate forms filter and digest the precipitate with cold NaOH solution. Dilute slightly, filter and boil the filtrate. If a precipitate forms, filter while hot, wash the precipitate and transfer it to a test-tube which has been cleaned with hot NaOH and washed with water. Add a drop of NH₄OH and a little AgNO₃ solution, and warm. The presence of a tartrate is shown by the formation of a silver mirror on the walls of the tube.

therefore, indicates that the neutral point has been reached. If, owing to the precipitation of dark-colored compounds of metals other than silver, the end-point is difficult to detect, it may be ascertained by filtering a small portion and adding a drop of phenolphthalein and then a drop of methyl orange. The solution should remain colorless on the addition of phenolphthalein and change to yellow when methyl orange is added. If the solution should change to red on the addition of phenolphthalein too much NaOH has been added. If this has been done the solution should be acidified with HNO₃ and NaOH again added.

The precipitation should be made in lukewarm solution, since AgBO₂ is somewhat insoluble in cold neutral solution.

- 72. Owing to the formation of complex ions with NaOH, and the slightly soluble Ag₂O, all the silver salts except arsenite are dissolved in an excess of NaOH. Ag₃AsO₃ remains undissolved, even in concentrations as high as 1.5N. NaOH solution, while as much as 250 mgs. of the silver salts of the other acids readily dissolve in 0.5N. NaOH solution.
- 73. Complete removal of the oxalate is essential, since its presence would later interfere with the detection of tartrate by its reducing action on uranium. Its complete removal is assured only by precipitation from hot solution and subsequent digestion.
- 74. Arsenate and phosphate form insoluble UO₂HAsO₄ and UO₂HPO₄ respectively, in HC₂H₃O₂ solution. Both compounds when present in small amounts tend to precipitate in colloidal or finely divided form. This is prevented somewhat by precipitation from hot solution or allowing the precipitate to stand. Should the precipitate tend to run through the filter it may be collected and filtered by mixing with a small quantity of asbestos fiber.
- 75. Both phosphate and arsenate react with $(NH_4)_2MoO_4$ reagent to form insoluble compounds which are very similar in character and color. The complete removal of arsenate is therefore necessary before testing

for phosphate. Phosphate is most easily precipitated with $(NH_4)_2MoO_4$ reagent in a strong HNO_3 solution and at a temperature of about 60° C.

76. Uranyl salts are reduced to the green uranous state on boiling a strongly acid solution with tartrate or other reducing agents. On the other hand, in the absence of reducing agents uranyl salts remain unchanged in boiling conc. H₂SO₄. Since oxalate and tartrate are by far the most commonly met of all organic acids capable of reducing the uranyl compounds, the appearance of the green uranous salt on boiling the H₂SO₄ solution indicative of the presence of tartrate, oxalate having been previously removed. The absence of the green uranous salt, as shown by failure to reduce KMnO₄ solution, may be taken as conclusive evidence of the absence of tartrate.

TABLE XIV

Outline for the Study of the Systematic Separation and Detection of Group IV

Ions present in neutral solution

No.	Reagent	SO ₄ =	BO₃≡	C ₂ H ₃ O ₂ -	NO ₃ -
I	HC1	H ₂ SO ₄	H ₃ BO ₃	HC ₂ H ₃ O ₂	HNO ₃
2	BaCl ₂	BaSO ₄	Ba ₃ (BO ₃) ₂	$Ba(C_2H_3O_2)_2$	
3	HCl turmeric		(?)	$Ba(C_2H_3O_2)_2$	
			Brownish- red color		
4	H_2SO_4 C_2H_5OH	*		HC ₂ H ₃ O ₂ C ₂ H ₅ C ₂ H ₃ O ₂	HNO ₃ +NO ₂
5	FeSO ₄ H ₂ SO ₄				FeSO ₄ ·NO

Preliminary Experiments

Experiment 69.—Acidify separate 2 cc. portions of the test solutions of the above ions with 6N. HCl and add a little BaCl₂ solution. Note the precipitation of BaSO₄. (Difference, separation of SO₄.) Write equations.

Note.—Although Ba(NO₃)₂ is difficultly soluble (5.2 gms. dissolve in 100 cc. of water at o° C.) and is sometimes precipitated from moderately concentrated solutions it is readily soluble in hot water or on dilution.

Experiment 70.—Dip a piece of turmeric paper into the solution containing borate (Exp. 69) and lay it aside to dry. When dry note the change in color. Add to a 2 cc. portion of the above solution an equal volume of 12N. HCl. 3 cc. of alcohol and then 2 drops of turmeric solution. Mix thoroughly. Note the change of color produced.

Note.—If the quantity of turmeric solution is kept constant the intensity of color produced is proportional to the amount of borate present. It is possible therefore by means of the turmeric solution to obtain an idea of the quantity of borate present in an unknown. This is not possible with any degree of accuracy with the turmeric paper.

132 ACIDS

Experiment 71.—To a small quantity of solid $NaC_2H_3O_2$ add a little conc. H_2SO_4 and note the odor.

To another very small portion of solid $NaC_2H_3O_2$ add I cc. of alcohol and about 2 cc. of conc. H_2SO_4 . Warm the mixture gently and note the odor.

Note.—Alcohol (C_2H_5OH) reacts with salts of acetic acid in the presence of conc. H_2SO_4 to form ethyl acetate $C_2H_5C_2H_3O_2$, which gives a characteristic pleasant odor. The reaction is as follows:

$C_2H_5OH + HC_2H_3O_2 \Leftrightarrow C_2H_5C_2H_3O_2 + H_2O.$

Owing to the very slight ionization of C_2H_5OH it is necessary to remove the H_2O in order to shift the equilibrium toward the formation of $C_2H_5C_2H_3O_2$. The conc. H_2SO_4 is used for this purpose.

Experiment 72.—To a little solid NaNO₃ add a small quantity of conc. H₂SO₄ and warm the mixture. Compare the results with those obtained with nitrite (Exp. 58).

To 3 cc. of the test solution for nitrate in a test-tube add an equal volume of 6N. H₂SO₄ and 2-3 cc. of FeSO₄ solution. While holding the tube at an angle of about 45° pour 2-3 cc. of conc. H₂SO₄ slowly down the side of the tube so that it does not mix with the solution. Note the brown ring at the juncture of the two liquids.

Experiment 73.—To a small quantity of powdered CaF₂ add 1-2 cc. of conc. H₂SO₄ and warm the mixture gently while a drop of water is held on the end of a glass rod in the vapor. Note the turbidity formed in the water.

Note.—The H_2F_2 formed by the action of H_2SO_4 on the fluoride reacts with the glass to form volatile SiF_4 . This coming in contact with the drop of water forms insoluble silicic acid (H_4SiO_4) as follows:

 $3\mathrm{SiF_4} + 4\mathrm{H}_2\mathrm{O} \rightarrow 2\mathrm{H}_2\mathrm{SiF_6} + \mathrm{H}_4\mathrm{SiO_4}$

Suggestive Questions

- 1. What is the brown ring obtained in the nitric acid test?
- 2. How could one distinguish between a nitrate and a nitrite?
- 3. Why is it necessary to test for fluoride on the original unknown?
- 4. What is the purpose of the H₂SO₄ in the test for acetates with alcohol?

Analysis

Group IV

SO_4 =, BO_3 =, $C_2H_3O_2$ -, NO_3 -, F-

- (150) Detection of Sulphate.—Evaporate the filtrate (140) to 15–20 cc. Add slowly, and with frequent stirring just enough 6N. HCl to precipitate all the silver; filter and reject the precipitate. To the clear filtrate add BaCl₂ solution in excess. The formation of a white crystalline precipitate shows the presence of sulphate. (See Discussion 77.) Treat the filtrate by (151).
- (151) Detection of Borate.—To just 5 cc. of the filtrate (150) add 5 cc. of 12N. HCl, 7–8 cc. of alcohol and 2 drops of turmeric solution. Allow the mixture to stand ten minutes. If borate is present the solution will assume a brownish-red color. (See Discussion 78.)
- (152) Detection of Acetate.—Test a portion of the original substance for acetate as follows: If the substance is a solid add to a small quantity on a watch glass a few drops of conc. H₂SO₄. Mix with a glass rod and note the odor. If acetate is present in considerable quantity the odor of acetic acid will be apparent. If the substance is a liquid a portion of the slightly alkaline solution should be evaporated to dryness and tested with conc. H₂SO₄ as directed above. (See Discussion 79.)

If small quantities are suspected the following test should be made: To a small portion of the solid, obtained by evaporation if necessary, add about 0.5 cc. of alcohol and I cc. of conc. H_2SO_4 . Heat gently and note the odor. The ethylacetate ($C_2H_5C_2H_3O_2$) formed gives a characteristic pleasant odor.

(153) Detection of Nitrate.—Test a portion of the original substance for nitrate as follows: Acidify the solution contained in a test-tube with 6N. H₂SO₄, and add an equal volume of FeSO₄ solution. Pour about 2 cc. of conc. H₂SO₄ slowly down the sides of the tube so that

134 ACIDS

it forms a layer at the bottom of the solution. If nitrate is present a brown ring will form in a short time at the juncture of the two liquids. (See Discussion 80.)

(154) Detection of Fluoride.—In the absence of silica or silicates the etching test may be made as follows: Mix with the aid of a piece of wood, about I gram of the powdered material in a lead dish or platinum crucible with enough conc. H₂SO₄ to form a thick paste. Cover the dish or crucible with a watch glass that has been coated on the convex side with a thin layer of paraffin through which characters have been scratched. Put a little water in the watch glass to prevent melting the paraffin, and warm the dish or crucible gently, preferably over a water bath, for some time. Remove the watch glass, melt off the paraffin and note whether the parts exposed to the action of the fumes have been attacked. If fluoride is present the glass will be dissolved off or etched in the places that were exposed to the fumes. (See Discussion 81.)

In the presence of silica or silicates it is evident that the etching test cannot be used. If the material can be decomposed by conc. H₂SO₄ a portion of the powdered material may be mixed with conc. H₂SO₄ in a test-tube and warmed gently while a drop of water is held on the end of a glass rod in the vapors. If fluoride is present the drop of water will become turbid. (See Discussion 81.)

If the material cannot be decomposed with conc. H₂SO₄ it may be fused with 7–8 times its weight of a mixture of equal parts of sodium and potassium carbonate, the melt extracted with water, filtered, the filtrate acidified with HC₂H₃O₂ and the fluoride precipitated by the addition of CaCl₂ solution. The above test for fluoride may then be made on the dried precipitate.

Discussion

77. It will be recalled (see Discussion 69) that one of the products obtained by the decomposition of Ag₂S₂O₃ is H₂SO₄; hence if thiosulphate has been found, a portion of the original solution made acid with HCl should be used for the sulphate test, instead of solution (150).

78. In order to make sure of the presence of borate when the color is slight, a blank test should be made for comparison. In order to be able to estimate the relative amount present the student should make comparison tests with known amounts of borate. In either case he should take care to make all tests alike, using the same quantities of HCl, alcohol and turmeric, since the shade of color depends to a considerable extent upon the concentrations of these substances.

79. Although acetate, if present in the original solution, would appear in the filtrate from the BaSO₄ (150), its detection in that solution would necessitate considerable evaporation which will ordinarily be avoided if the original substance is taken.

80. The test for nitrate is very delicate and accurate except in the presence of certain substances which cover up the ring or form a somewhat similar one. Chromates are reduced by FeSO₄ in acid solution giving a green color while ferro- and ferricyanides give a blue precipitate which makes the detection of the brown ring more difficult. Iodides and bromides are oxidized by the conc. H₂SO₄ and produce a ring somewhat similar to the brown of the nitrate. Chromates may be removed by reduction to chromic salts with SO₂ and precipitation with NH₄OH; the others may be removed by precipitation from slightly acid solution with Ag₂SO₄ solution.

81. Most fluorides are decomposed by conc. H₂SO₄ according to the following equation:

 $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + H_2F_2$

136 ACIDS

The reaction proceeds more rapidly if the mixture is heated, owing to the more rapid removal of the volatile H_2F_2 . The H_2F_2 may be recognized by its ability to etch glass or dissolve silica or silicates. In either case volatile silicon tetrafluoride (SiF₄) is formed. When this is brought into contact with water the following reaction takes place:

$$SiF_4 + 4H_2O \rightarrow 2H_2SiF_6 + \underline{H_4SiO_4}$$

When silicates undecomposed by conc. H₂SO₄ are fused with a mixture of sodium and potassium carbonates, the silicon reacts to form soluble Na₂SiO₃ and any fluoride present forms soluble Na₂F₂.

QUESTIONS FOR REVIEW

- 1. What ions are precipitated by AgNO₃ in acid solution?
- 2. Why should the solution be kept cold in precipitating Group I?
- 3. If a ferricyanide is present what other acids of Group I are not likely to be present? Why?
- 4. Although it is possible to have all metals in the same solution, this is not possible in the case of acids. Why?
- 5. Why will NaCl solution dissolve all the cyanogen compounds of silver but have no effect of the corresponding halides?
- 6. What is the effect of boiling Ag₂S with HNO₃? Write equation.
- 7. What is the principle on which the detection of chloride, bromide and iodide is based?
- 8. Why is it necessary to remove all iodide before testing for bromide? Why remove all bromide before testing for chloride?
- 9. Given a solution which is known to contain no other anions than those given below, outline a method of analysis that will necessitate no unnecessary steps;
 - (a) Ferrocyanide, thiocyanate, cyanide.
 - (b) Sulphide, iodide, chloride.
 - (c) Iodide, bromide, chloride.
- 10. In driving off the last traces of bromide before testing for chloride, why must the water be replaced as it evaporates?
- II. Why is it unlikely that Group II acids will be found in a strongly acid solution?
- 12. What is the precipitate formed in the test for sulphite? Write equation.
- 13. Write equations showing the action of HNO₂ on FeSO₄.
- 14. If, while the Group II anions are being distilled off a white precipitate should form in the receiver but should redissolve before the distillation is completed what conclu-

sions could be drawn. Write equations showing the changes.

- 15. Why should Group III acids be precipitated from a warm solution?
- 16. What precautions are necessary in the precipitation of Group III?
- 17. What is the effect of adding an excess of NaOH to the silver salts of Group III?
- 18. Why should a large excess of NaOH be avoided in the separation of arsenite from the remaining Group III acids?
- 19. If arsenate is found why must it be completely removed before testing for phosphate?
- 20. What is the confirmatory test for oxalate? Write equations showing all reactions involved.
- 21. What is the black precipitate formed on the addition of NaOH during the precipitation of Group III?
- 22. Why must an excess of AgNO₃ be present before precipitating Group III?
- 23. What method may be used for collecting and filtering a colloidal or finely divided precipitate?
- 24. Given a solution which is known to contain no other anions than those given below outline a method of analysis that will necessitate no unnecessary steps:
 - (a) Nitrite, arsenite, arsenate.
 - (b) Oxalate, chromate, tartrate.
 - (c) Sulphite, oxalate, chromate.
- 25. What effect would the presence of shreds of filter paper in the H₂SO₄ solution have on the test for tartrate?
- 26. Why must all oxalate be removed before testing for tartrate?
- 27. Could Ba(NO₃)₂ be used in the place of HCl and BaCl₂ in the test for sulphate?
- 28. What acids interfere with the test for nitrate? How may they be removed?
 - 29. Describe the test for fluoride.
- 30. If zinc and barium were found in an unknown soluble in dilute HNO₃, what acids would it be unnecessary to test for?

PART IV

THE SYSTEMATIC ANALYSIS

The following brief outline is intended for the use of those who have completed the detailed study of the systematic separation and detection of both metal and acid ions but who are not sufficiently familiar with the necessary steps to proceed without some help. It should be used by the beginner as a means of viewing the process as a whole and as an aid to the memory and not as a complete method of procedure. The figures in parentheses refer to the text, Parts II and III, where a detailed description of the process is given.

METAL ANALYSIS

TABLE XV

PREPARATION OF SOLUTION*

In the case of non alloys free from organic matter.

Test solubility in water, 6N. HNO₃, 6N. HCl. (2)

If soluble in water or			lute acids, add 12N. HCl, heat, add ite, add 6N. HCl. (2,c)
6N. HNO ₃ , dissolve I gm. and treat as in Table XVI. If soluble in 6N. HCl dissolve I gm. and treat as in Table XVII.	Solution.— See Table XVII.	absent boil w B. If silic H ₂ SO ₄ +H ₂ F ₂ If no resic remains add	Residue.—Fuse with Na ₂ CO ₃ ,

^{*} The test for NH₄+ should be made on a portion of the original material.

TABLE XVI

SEPARATION AND ANALYSIS OF GROUP I

Precipitate.— AgCl. Add 2N	Gr. I.—BiOCl (. HCl. (11)	?), SbOCl (?), I	PbCl ₂ , Hg ₂ Cl ₂ ,	Filtrate.— Grs. II, III, IV, V. See
Solution.— BiCl ₃ , SbCl ₃ . Dilute, add	Residue.—Pl	oCl ₂ , Hg ₂ Cl ₂ , Ag	Cl. Add hot	Table XVII.
Precipitate.— Bi ₂ S ₃ , Sb ₂ S ₃ . See Table XVII.	PbCl ₂ . Add	Residue.—H	g ₂ Cl ₂ , AgCl.	Add NH₄OH.
	K ₂ Cr ₂ O ₇ . (12)	Residue.— HgNH ₂ Cl, Hg.	Solution.—Ag(NH ₃) ₂ Cl. Add HNO ₃ . (14)	
	PbCrO ₄ (yellow).	(Diack).	Precipitate	–AgCl.

TABLE XVII

PRECIPITATION OF GROUP II AND SEPARATION INTO COPPER AND TIN DIVISIONS

Adjust the acidity of the solution so that it will contain just 5 cc. of 6N. acid (20). Dilute to 100 cc., saturate with H_2S . (21)

PbS, Bi ₂ S ₃ , CuS, CdS, Filtrate NH ₄) ₂ S _x reagent. (22) IV, V. Se	
Solution.—Tin Division.—(NH ₄) ₃ SbS ₄ , (NH ₄) ₂ SnS ₃ . Add 6	
Precipitate.—As ₂ S ₅ , Sb ₂ S ₅ , SnS ₂ . See Table XIX.	Filtrate.— NH ₄ Cl. Re- ject.

TABLE XVIII

Analysis of the Copper Division

HgS, P	bS, Bi ₂ S ₃ , CuS, C) ₂ , Add
Residue.— HgS. Add aqua	Precipitate.— PbSO ₄ . Add	aporate to	e.—Bi ₂ (SO ₄) ₃ ,	e with wa	ter. (32)	Add
regia. (31)	$NH_4C_2H_3O_x.$ (33)	Preci-	Filtrate.—	Cu(NH ₃)	4SO4, Cd(I	NH ₃) ₄ SO ₄
Solution.— HgCl ₂ . Evaporate, add water and SnCl ₂ . (31) Precipitate.— Hg ₂ Cl ₂ , Hg (gray).	Solution.— Pb(C ₂ H ₃ O ₂) ₂ . Add K ₂ Cr ₂ O ₇ and HC ₂ H ₃ O ₂ . (33). Precipitate.— PbCrO ₄ (yellow).	BiOoth. Add Na ₂ SnO ₂ (35). Residue.— Bi (black)	To about one fourth of the solution a d d HC ₂ H ₃ O ₂ and K ₄ Fe(CN) ₆ (36) Precipitate.— Cu ₂ Fe(CN) ₆ (red).	Method A To the remainder add KCNS and H ₂ S (37) Precipitate. CdS. (yellow)		remain- I ₂ SO ₄ and

TABLE XIX

Analysis of the Tin Division

 $A_{S_2}S_5$, Sb_2S_5 , SnS_2 . Add 10 cc. of 12N. HCl. (40)

Residue.— As ₂ S ₅ , S. Add	Solution.—SbCl ₃ , SnCl ₄ . Add water to make volume 50 c.c.					
6N. HCl and solid KClO ₃ .	M etho (43)	d A.—He	at, add H₂S.	Method B.—Add solid H ₂ C ₂ O ₄ and H ₂ S. (44)		
Solution.— H ₃ AsO ₄ . Add NH ₄ OH, NH ₄ Cl, MgCl ₂ . (41)	Precipitate.—Sb ₂ S ₃ .	Cool, ad	e.—SnCl ₄ . d water to 70 H ₂ S. (45)	Precipitate.— Sb ₂ S ₃ . (orange)	(SnCl ₄ ·H	$({}_{2}C_{2}O_{4})(?)$ boil and
Precipitate.— MgNH ₄ AsO ₄ . Add 6N. HCl. (42)		_	itate.—SnS ₂ . boil and cool. Filtrate.—		Precipitate.— PbCl ₂ .	SnCl ₄ . Add
Solution.— H ₃ AsO ₄ . Heat, add H ₂ S. (42) Precipitate.— As ₂ S ₃ , S (white turning yellow).		pitate.—PbCl ₂ .	1			Precipitate.— Hg, Hg ₂ Cl ₂ (white turning gray).

TABLE XX

Precipitation of Group III and Separation into Aluminium and Iron Divisions

Neutralize the solution with NH₄OH, add H₂S. (50)

Precipitate.—Gr. III.—Al(OH)₈, Cr(OH)₈, ZnS, MnS, FeS, CoS, NiS. Add HCl and HNO₃ if necessary to effect complete solution.

Filtrate.—
Groups IV,
V. See
Table
XXIV.

Solution.—AlCl₃, CrCl₃, ZnCl₂, MnCl₂, FeCl₃, CoCl₂, NiCl₂. Add NaOH, Na₂O₂ and Na₂CO₃ if phosphate is suspected.

Precipitate.—Iron Division.—
MnO(OH)₂, Fe(OH)₃, Co(OH)₃,
Ni(OH)₂₋₃, Zn(OH)₂ (?).
See Table XXII.

Filtrate.—Aluminium Division.—
NaAlO₂, Na₂CrO₄, Na₂ZnO₂.
Boil to decompose excess Na₂O₂,
cool, dilute with water.
See Table XXI.

TABLE XXI

Analysis of the Aluminium Division

Acidify the solution with 16N. HNO₃, add NH₄OH, heat nearly to boiling. (60)

Precipitate.	—A1(OH) ₃ .	Filtrate.—Na ₂ Add HC ₂ H ₃ O ₂ and	CrO_4 , $Zn(NH_3)_4(NO_3)_2$. d BaCl ₂ . (62)
Method A Add 6N. HNO ₃ and 4-5 drops of 0.01N. Co(NO ₃) ₂ , soak up in filter paper and ignite. (61) Residue.— Co(AlO ₂) ₂ (blue).	Method B Add N. HCl, 3N. NH ₄ C ₂ H ₃ O ₂ , Aluminon. Mix thoroughly, make alkaline with NH ₄ OH + (NH ₄) ₂ CO ₃ , (61a) Precipitate.— AlC ₂₂ H ₁₃ O ₈ (red).	BaCrO ₄ . Dissolve in 0.6N. HNO ₃ , add ether and H ₂ O ₂ , mix thoroughly. (63) Ether layer.— H ₃ CrO ₇ . (?)	Filtrate.—Zn(NO ₃) ₂ . Warm to 50° and saturate with H ₂ S. (64) Precipitate.—ZnS, S. Dissolve in 6N. HNO ₃ , add 4–5 drops of 0.01N. Co(NO ₃) ₂ , evaporate nearly to dryness, neutralize with Na ₂ CO ₃ , evaporate and ignite gently. (64) Residue.—CoZnO ₂ . (?) (green).

TABLE XXII

ANALYSIS OF THE IRON DIVISION

- A. If phosphate is absent: $MnO(OH)_2$, $Fe(OH)_3$, $Co(OH)_3$, $Ni(OH)_{2-3}$, $Zn(OH)_2$ (?).
- B. If phosphate is present: Also phosphates and carbonates of Fe, Ba, Sr, Ca and Mg may be present.

Add 6N. HNO₃, also H₂O₂ if necessary to obtain complete solution. (70)

Solution.—A. Mn(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₂, Zn(NO₃)₂ (?).

B. Also H₃PO₄ and nitrates of Ba, Sr, Ca, Mg may be present.

Evaporate, add 16N. HNO₃ and KClO₃, boil gently. (70)

Precipitate.— Filtrate.—A. $Fe(NO_3)_3$, $Co(NO_3)_2$, $Ni(NO_3)_2$, $Zn(NO_3)_2$ (?). Add NH₄OH MnO_2 . Add (73)PbO₂ a n d B. Also H₃PO₄ and nitrates of Ba, Sr, Ca and HNO3, boil. Mg may be present. (1) Heat a small portion and add to (71)(NH₄)₂MoO₄ reagent. (72) A yellow precipitate shows phosphate. Solution.— (2) Evaporate a second small portion to HMnO₄. dryness, add HCl and KCNS. (purple). (75). A red color shows iron. (3) To the remainder add NH4OH till nearly neutral, then NH4C2H3O2 and if the color is not brownish-red add FeCl3, dilute to 100 cc., boil. (76)Precipitate.-Filtrate. A. Fe(OH)₃ A. $Co(NH_3)_4(NO_3)_2$, $Ni(NH_3)_4(NO_3)_2$, B. Also FePO₄. $Zn(NH_3)_4(NO_3)$ (?) B. Also nitrates of Ba, Sr, Ca, and Mg may be present. Add NH₄OH and H₂S. (77) Precipitate.-Filtrate.— CoS, NiS, ZnS. A. NH4 salts. Reject. (?).B. The nitrates of Ba, Table See Sr, Ca and Mg may XXIII. be present.

See Table XXIV.

TABLE XXIII

SEPARATION AND DETECTION OF ZINC, COBALT AND NICKEL

ZnS, CoS,NiS.	Add 1N. HCl.	. (77a)		
Solution.—ZnCi ₂ , CoCl ₂ (?), NiCl ₂ (?). Boil, add NaOH and Na ₂ O ₂ . (77a)		Residue.—Co	oS, NiS. Add HCl and KClO ₈ .	
Solution.— Na ₂ ZnO ₂ . Add	CoS, NiS.	Solution.—CoCl ₂ , NiCl ₂ . Evaporate, neutralize with NaOH. Add HC ₂ H ₃ O ₂ and KNO ₂ . (78)		
HC ₂ H ₃ O ₂ and H ₂ S. (77a) Precipitate.— ZnS,S. (white)	residue of CoS, NiS.	Precipitate.— K ₃ Co(NO ₂) ₆ (yellow).	Filtrate.—K ₂ Ni(NO ₂) ₄ . Add NH ₄ OH, boil to decompose excess NH ₄ OH, cool, add dimethylglyoxime. (79)	
			Precipitate.— Ni(CH ₃ C ₂ N ₂ O ₂ H) ₂ (red).	

METALS

TABLE XXIV

PRECIPITATION AND ANALYSIS OF GROUP IV

Evaporate the solution to 15–20 cc., filter if necessary, add $(\mathrm{NH_4})_2\mathrm{CO_3}$ to hot solution. (80)

Precipitate.—Group IV.—BaCO₃, SrCO₃, CaCO₃.

Add HC₂H₃O₂. (82)

Filtrate.—Group V. See Table XXV.

Solution.—Ba $(C_2H_3O_2)_2$, Sr $(C_2H_3O_2)_2$, Ca $(C_2H_3O_2)_2$. Dilute to 50 cc., add NH₄C₂H₃O₂, heat to boiling, add K₂Cr₂O₇. (82)

BaCrO	^ (e.—SrCrO ₄ , CaCrO (4) ₂ CO ₃ . (84)	Add NH4OH	I, heat to boiling
HCl,	a d d H. (83)	Precipi	itate.—SrCO3, Ca	CO ₃ . Dissolve	in HC ₂ H ₃ O ₂ .
Solu-	Preci-	Solutio	on.— $Sr(C_2H_3O_2)_2$,	$Ca(C_2H_3O_2)_2$.	
tion.— BaCl ₂ .	pitate.—		B. If strontium directly for Precipitate.— SrSO ₄ , CaSO ₄ (?) Boil with excess	is absent treat calcium as direct Filtrate.—Ca	the remainder red below. SO ₄ . nd (NH ₄) ₂ C ₂ O ₄ . Filtrate.—

TABLE XXV

ANALYSIS OF GROUP V

Add (NH₄)₂SO₄ and (NH₄)₂C₂O₄, evaporate till NH₄ salts begin to crystallize, cool, filter. (90)

Filtrate.—Mg	Filtrate.—MgCl ₂ , KCl, NaCl, NH ₄ Cl.				
To one third add Na ₂ HPO ₄ and 15N. NH ₄ OH. (91)	Evaporate the dryness, ignite cc. of water.	NH4 salts. Reject.			
Precipitate.—	Solution.—MgCl ₂ , KCl, NaCl. Add HClO ₄ . (92)				
MgNH ₄ PO ₄ . (white)	Precipitate.— KClO ₄ .	Filtrate.—MgCl ₂ , I H ₂ SiF ₆ . (93)	NaCl. A	Add alcohol and	
	(white)	Precipitate.— Fi Na ₂ SiF ₆ . (white)	ltrate.—	-MgCl ₂ . Reject.	

ACID ANALYSIS

TABLE XXVI

PREPARATION OF SOLUTION

Shake the finely powdered material thoroughly with cold water (100)

Solution.— Dilute to 15-20 cc. and acidify with HNO ₃ (100). See	Residue.—W	ash repeatedly w	rith cold 2N.H	NO ₃ (101).
	See Table	Residue.—Heat with 5 cc. of 6N. HNO ₃ (101)		
Table XXVII.	See XXVII.	Dilute with 5 cc. of water. (101) Solution.— See Table XXVII.	Solution.—	Residue.— Metal car-

ACIDS

TABLE XXVII

SEPARATION OF GROUP I AND ANALYSIS OF THE CYANOGEN DIVISION

To the cold	dilute HNO ₃ solution	add AgNO ₃ sol	ution. (110)			
AgCN, Ag ₂ S, Divide in A. Add	e.—Ag ₄ Fe(CN) ₆ , Ag AgI, AgBr, AgCl. to two parts, A and I l_NaCl reagent (111). Table XXVIII.	3.	CNS, Filtrate. II, III, Table XX			
Residue.— AgCl, Ag ₂ S, AgBr, AgI. Reject.	Solution.—Na ₄ Fe(NH ₄) ₂ MoO ₄ reagen	. , .,	CN) ₆ , NaCNS, NaCN. Add			
	Precipitate.— K ₂ [MoO ₂ Fe(CN) ₆] ₃ 2MoO ₃ ·20H ₂ O (red-brown).	Filtrate.—Na ₃ Add ZnCl ₂ solu	a ₃ Fe(CN) ₆ , NaCNS, NaCN. ution. (113)			
		Precipitate.— Zn₃[Fe(CN)₀]₂. Add HCl. (114)	Filtrate.—Z Zn(CN) ₂ . Ac solution (115). solution shows nate. Make alk	dd FeCl ₃ A red thiocya-		
		Solution.— H ₃ Fe(CN) ₆ . Add FeSO ₄		SO ₄ , boil,		
		Precipitate.— Fe ₃ [Fe(CN) ₆] ₂ , (blue).	Precipitate.— Fe ₄ [Fe(CN) ₆] ₃ , (blue). Shows cyanide.	trate.—		

TABLE XXVIII

Analysis of Halogen Division

Ag₂S, AgI, AgBr, AgCl.

Boil the precipitate containing the above along with any cyanogens present, with 6N. HNO₃. (120)

Ag ₂ SO ₄ . rate, ad		cyanogen If cyar 6N. H ₂ S If cya	acids may be progens have been O_4 (121).	AgCl. Also silver resent. I found, ignite, act	ld Zn and 5 cc.
Precipitate.— AgCl reject.	Fil- trate.— Add BaCl ₂ . (120)	CC1 ₄ layer.—	Water layer.	ICl. and CCl4. (122 —HBr, HCl. I dd 1 cc. 6N. H ₂ SC	Neutralize with
	pitate.— BaSO ₄ (white)	(purple)	CCl ₄ layer.— Br ₂ (yellow).	AgNO ₃ solution Precipitate.—	Filtrate.—NH ₄
				AgCl (white).	and other salts Reject.

TABLE XXIX

SEPARATION AND ANALYSIS OF GROUP II

Boil the acid solution, catching the vapors in Ca(OH)2 solution. (130)

Distillate.—CaCO₃, CaSO₃, Ca(NO₂)₂." If a white precipitate formed when vapors entered Ca(OH)₂, and IV. See Table carbonate is present. Acidify with 6N. HNO₃, add HgNO₃ solution. (131)

Precipitate—Hyp. Filtrate—HNO₂, Add FeSO₄ solution. (132)

Precipitate.—Hg (dark gray). Shows sulphite.

Filtrate.—HNO₂. Add FeSO₄ solution. (132)

Solution.—FeSO₄·NO (brown).

TABLE, XXX

SEPARATION AND ANALYSIS OF GROUP III

Filtrate.—Group IV. See Table XXXI.	12 and CaCl ₂ . (143)	Os. Add NH4C2H3O2 and	² CrO ₄ , Na ₂ C ₄ H ₄ O ₆ , Heat and add BaCl ₂ . (148)	Filtrate.—Na ₂ C ₄ H ₄ O ₆ , UO ₂ (C ₂ H ₃ O ₂) ₂ , Add H ₂ SO ₄ , (149)	Filtrate.— Precipitate.—U(SO ₄) ₂ . BaSO ₄ . Re-Concentrate, ject.	add KMnO ₄ (149). Decolorizing shows tartrate or other organic	
Add 15-20 cc.	Add NH4C2H3C	L2CrO4, Na2C4H	Filtrate.—Na UO ₂ (C ₂ H ₃ O ₂) ₂ .	Precipitate.— BaCrO ₄ (yellow).			
Ng ₂ CrO ₄ , Ag ₂ C ₄ H ₄ O ₆ . ughly. (141)	a ₂ CrO ₄ , Na ₂ C ₄ H ₄ O ₆ .	3ASO4, Na3PO4, Na (145)	-UO ₂ NH ₄ AsO ₄ , Add HCl, heat and I ₂ S. (146)	Filtrate.—H ₃ PO, Evaporate, add 16N. HNO ₃ , heat	and pour into (NH ₄) ₂ MoO ₄ solution. (147)	Precipitate.——(NH ₄) ₃ PO ₄ ·12MoO ₃ (yellow)	
AsO ₄ , Ag ₃ PO ₄ , Ag ₃ cc. Mix thoro	SO4, Na3PO4, N	Filtrate.—Na $UO_2(C_2H_3O_2)_2$.	Precipitate.— UO ₂ NH ₄ PO ₄ . saturate with E	Precipitate.—S, As ₂ S ₃₋₆ (white turning	yellow).		
)3, Ag ₂ C ₂ O ₄ , Ag ₃ d make up to 2g	-Na ₂ C ₂ O ₄ , Na ₃ A	e.—CaC ₂ O ₄ . 5N. H ₂ SO ₄ .	Method B Boil catch-	0 8	O . W . G		
Ag ₂ O, Ag ₃ As(N. NaOH an	Filtrate.			of KMnO ₄ (144). Decolorizing shows	oxalate.		
Precipitate.—water, 2-3 cc. 6	Residue.	Ag ₂ O, Ag ₃ AsO ₃ , also any heavy metal hydrox-	ides that may be present. Add HCl. (142)	Fil-Resi- trate.—due.— H ₃ ASO ₃ , AgCl. also any Reject.	neavy metal chlorides that may be present. Add	H ₂ S. (142) Precipitate.— As ₂ S ₃ (yellow).	If dark colored, also Gr. II metal sulphides. (See Table XVII.)
	Precipitate.—Ag2O, Ag3AsO3, Ag2C2O4, Ag3AsO4, Ag2PO4, Ag2CrO4, Ag2C4H4O6. Add 15-20 cc. Filtrate.—Group IV. See water, 2-3 cc. 6N. NaOH and make up to 25 cc. Mix thoroughly. (141)	4H ₄ O ₆ . Add 15-20 cc. T ₁	4H ₄ O ₆ . Add 15-20 cc. T ₆ 1H ₄ O ₆ . Add NH ₄ C ₅ H ₅ O ₂ i 04, Na ₂ CrO ₄ , Na ₂ C ₄ H ₄ O ₁	4H ₄ O ₆ . Add 15-20 cc. T ₆ 4H ₄ O ₆ . Add NH ₄ C ₂ H ₃ O ₂ is 24, Na ₂ CrO ₄ , Na ₂ C ₄ H ₄ O ₆ 4. Filtrate.—Na ₂ C 4. UO ₂ (C ₂ H ₃ O ₂) ₂ . H	make up to 25 cc. Mix thoroughly. (141) make up to 25 cc. Mix thoroughly. (141) (a ₂ C ₂ O ₄ , Na ₃ AsO ₄ , Na ₃ PO ₄ , Na ₂ CrO ₄ , Na ₂ C ₄ H ₄ O ₆ . Add NH ₄ C ₂ H ₃ O ₂ a —CaC ₂ O ₄ . Biltrate.—Na ₃ AsO ₄ , Na ₃ PO ₄ , Na ₂ CrO ₄ , Na ₂ C ₄ H ₄ O ₆ N. H ₂ SO ₄ . UO ₂ (C ₂ H ₅ O ₂) ₂ . (145) Method B Precipitate.—UO ₂ NH ₄ AsO ₄ , Filtrate.—Na ₂ C Boil catch. UO ₂ NH ₄ PO ₄ . Add HCl, heat and ing vapor in saturate with H ₂ S. (146) Ca(OH) ₂ s o l u t i o n Precipitate.— Filtrate.—H ₃ PO ₄ , BaCrO ₄ (yel- UC) S, As ₂ S ₃₋₆ Evaporate, add low). (144). S, As ₂ S ₃₋₆ White pre- (white turning 16N, HOO ₅ , heat	Ag ₂ O, Ag ₃ ASO ₃ , Ag ₃ C ₂ O ₄ , Ag ₃ PO ₄ , Ag ₂ CrO ₄ , Na ₂ CrO	make up to 25 cc. Mix thoroughly. (141) [Ta2C2O4, Na3ASO4, Ag3PO4, Ag2CTO4, Ag2C4H4O6. Add 15-20 cc. Ada colored by the color

TABLE XXXI

ANALYSIS OF GROUP IV

Evaporate the	solution to 15-2	20 cc., add HCl. (150)
Filtrate.—H ₂ S BaCl ₂ solution.		2H ₃ O ₂ , HNO ₃ .* Add	Precipitate.—AgCl reject.
Precipitate.— BaSO ₄ (white).	To 5 cc. add 5 cc. 12N.	evaporate to dryness Method A.—Add a H ₂ SO (152). odor of Method B.—Add 0.5 conc. (152). charac	nainder with NH ₄ OH,

^{*}Since HNO₃ has been used throughout the course of the analysis, test for it must be made on a portion of the original material. (153)

[†] The test for acetate may be made on the original material if acids emitting a strong odor on the addition of conc. H₂SO₄ have not been found.

APPENDIX

I. Reagents

Solutions: Methods of Preparation

Acids:

Acetic, 6N.; Mix 350 cc. of glacial acid with 650 cc. of water.

Fluosilicic; use the C. P. acid of commerce, or it may be prepared from H_2F_2 and SiO_2 as follows: pour 48 per cent H_2F_2 upon sand in a lead or platinum dish until the sand is barely covered. Allow the mixture to stand for a few hours or until the free H_2F_2 has entirely disappeared. Pour off the liquid and add an equal volume of alcohol.

Hydrochloric, 12N.; use the C.P. acid of commerce (Sp.gr. 1.19),

Hydrochloric, 6N.; mix equal volumes of 12N. HCl and water.

Hydrofluoric, 48 per cent; use the C.P. acid of commerce.

Nitric, 16N.; use the C.P. acid of commerce (Sp.gr. 1.42).

Nitric, 6N.; mix 380 cc. of 16N. HNO₃ with 620 cc. of water.

Perchloric, 6N.; mix 650 cc. of the 60 per cent C.P. acid with 350 cc. of water.

Sulphuric, 96 per cent; use the C.P. acid of commerce (Sp.gr. 1.84).

Sulphuric, 6N.; mix I volume of the 96 per cent H₂SO₄ with 5 volumes of water.

Bases:

- Ammonium hydroxide, 15N.; use the C.P. solution of commerce (Sp.gr. 0.90).
- Ammonium hydroxide, 6N.; mix 400 cc. of the 15N. NH₄OH with 600 cc. of water.
- Calcium hydroxide, saturated solution; shake 5–10 grams of C.P. CaO with 1000 cc. of water until saturated, and filter.
- Sodium hydroxide, 6N.; dissolve 250 grams of pure NaOH in enough water to make a total volume of 1000 cc.

Salts:

- Ammonium acetate, 3N.; mix equal volumes of 6N. HC₂H₃O₂ and 6N.NH₄OH, or dissolve 250 grams of C.P. NH₄C₂H₃O₂ in enough water to make a total volume of 1000 cc.
- Ammonium carbonate, 9N.; dissolve 250 grams of freshly powdered (NH₄)₂CO₃ in enough cold 6N. NH₄OH to make 1000 cc.
- Ammonium chloride, 1N.; dissolve 54 grams of NH₄Cl in enough water to make a total volume of 1000 cc.
- Ammonium molybdate; dissolve 75 grams of C.P. (NH₄)₂MoO₄ in 500 cc. of water and pour the solution slowly into 500 cc. of 6N. HNO₃. If a precipitate should form, shake the mixture occasionally until solution is complete.
- Ammonium oxalate, 0.5N.; dissolve 35 grams of $(NH_4)_2C_2O_4 \cdot H_2O$ in enough water to make a total volume of 1000 cc.
- Ammonium polysulphide; saturate 500 cc. of 6N. NH₄OH with H₂S gas, and add to this solution 500 cc. more 6N. NH₄OH, 50 cc. of 6N. NaOH and 25 grams of flowers of sulphur. Digest for some hours and filter.
- Ammonium sulphate, 1N.; dissolve 66 grams of (NH₄)₂SO₄ in 1000 cc. of water.

Ammonium sulphide; saturate 500 cc. of 6N. NH₄OH with H₂S gas and then add 500 cc. more 6N. NH₄OH.

Barium chloride, 1N.; dissolve 120 grams of BaCl₂·2H₂O in 1000 cc. of water,

Bromine water; use saturated solution.

Calcium chloride, 1N.; dissolve 150 grams of CaCl₂· 6H₂O in 1000 cc. of water.

Calcium sulphate; use saturated solution.

Cobalt nitrate, 0.01 N.; dissolve 1.5 grams of Co(NO₃)₂· 6H₂O in 1000 cc. of water.

Dimethylglyoxime, 0.1N.; dissolve 12 grams of the solid in 1000 cc. of 95 per cent alcohol.

Ferric chloride, 1N.; dissolve 90 grams of FeCl₃· 6H₂O in 1000 cc. of water.

Ferrous sulphate, IN.; dissolve 140 grams of FeSO₄· 7H₂O in 1000 cc. of 0.6N. H₂SO₄ and keep in contact with iron nails.

Hydrogen peroxide; 3 per cent solution.

Lead acetate, 0.2N.; dissolve 38 grams of $Pb(C_2H_3O_2)_2 \cdot 3H_2O$ in 1000 cc. of water.

Mercuric chloride, 0.1N.; dissolve 27 grams of HgCl₂ in 1000 cc. of water.

Mercurous nitrate, 0.1N.; dissolve 29 grams of $HgNO_3 \cdot 2H_2O$ in 1000 cc. of water.

Magnesia mixture, 1N.; dissolve 100 grams of MgCl₂· 6H₂O and 100 grams of NH₄Cl in water, add 50 cc. of 15N. NH₄OH and dilute to 1000 cc.

Potassium cyanide, IN.; dissolve 65 grams of KCN in 1000 cc. of water.

Potassium dichromate, 1N.; dissolve 147 grams of $K_2Cr_2O_7$ in 1000 cc. of water.

Potassium ferrocyanide, IN.; dissolve 105 grams of $K_4Fe(CN)_6 \cdot 3H_2O$ in 1000 cc. of water.

Potassium nitrite, 3N.; dissolve 250 grams of KNO₂ in 1000 cc. of water.

Potassium permanganate, 0.1N.; dissolve 16 grams of KMnO₄ in 1000 cc. of water.

Potassium thiocyanate, 1N.; dissolve 97 grams of KCNS in 1000 cc. of water.

Sodium acetate, 3N.; dissolve 25 grams of $NaC_2H_3O_2$ in 1000 cc. of water.

Silver nitrate, 0.5N.; dissolve 85 grams of AgNO₃ in 1000 cc. of water.

Sodium carbonate, 3N.; dissolve 159 grams of Na₂CO₃ in 1000 cc. of water.

Sodium chloride, 1N.; dissolve 58 grams of NaCl in 1000 cc. of water and add 5 cc. of 12N. HCl.

Sodium phosphate, 1N.; dissolve 120 grams of Na₂HPO₄·12H₂O in 1000 cc. of water.

Sodium stannite; add NaOH, drop by drop, to a solution of SnCl₂ until the precipitate of Sn(OH)₂ is just dissolved. The solution must be kept cold to prevent decomposition and oxidation to Na₂SnO₃. Sodium stannite is unstable and must be prepared as needed.

Stannous chloride, IN.; dissolve II3 grams of SnCl₂. 2H₂O in 170 cc. of 12N. HCl and dilute to 1000 cc. Keep in bottles containing granulated tin.

Turmeric; shake an excess of turmeric powder with 95 per cent alcohol and filter.

Uranium acetate, 0.1N.; dissolve 20 grams of

$UO_2(C_2H_3O_2)_2 \cdot 2H_2O$

in 1000 cc. of water.

Zinc chloride 1N.; dissolve 68 grams of ZnCl₂. 6H₂O in 1000 cc. of water.

Solids

Iron filings, Fe
Lead, test, Pb
Lead dioxide, PbO₂
Oxalic acid, H₂C₂O₄
Paper, litmus (red, blue)

Paper, turmeric Potassium chlorate, KClO₃ Sodium carbonate, Na₂CO₃ Sodium peroxide, Na₂O₂ Zinc, mossy, Zn

II. Test Solutions

Solutions used in the preliminary experiments should contain equal amounts of the given ions per cc., in order that the student may learn to estimate more accurately the relative amounts of the constituents in an unknown. The solutions given below when dissolved in the proportions stated will contain 10 mgs., of the ion per cc. of solution.

FOR METAL ANALYSIS

Ion.	Salt	Salt Grams per liter Ion. Salt		Salt	Grams per liter
Ag Hg Pb Hg Bi Cu Cd As As Sb Sn Sn Al	AgNO ₃ HgNO ₃ ·2H ₂ O Pb(NO ₃) ₂ HgCl ₂ Bi(NO ₃) ₃ ·5H ₂ O CuCl ₂ ·2H ₂ O CdCl ₂ ·2H ₂ O NaAsO ₂ Na ₂ HAsO ₄ ·7H ₂ O SbCl ₃ SnCl ₂ ·2H ₂ O SnCl ₄ ·3H ₂ O AlCl ₃	15.7 15. (*) 16. (†) 13.5 23. (‡) 21 19.5 17.3 41 19. (§) 16. (§) 22. (§) 49.	Cr Zn Mn Fe Co Ni Ba Sr Ca Mg K	CrCl ₃ ZnCl ₂ Mn(NO ₃) ₂ ·6H ₂ O FeSO ₄ ·7H ₂ O - CoCl ₂ ·6H ₂ O NiCl ₂ ·6H ₂ O BaCl ₂ ·2H ₂ O SrCl ₂ ·6H ₂ O CaCl ₂ ·6H ₂ O KCl ₂ ·6H ₂ O MgCl ₂ ·6H ₂ O KCl NaCl	30 21 52 49 () 40 41 18 30 55 84 19 25

^{*} Dissolve in o.6N. HNOs.

[†] Double the amount for Group I experiments.

[‡] Dissolve in 3 N. HNO3.

[§] Dissolve in 350 cc. of 6N. HCl and dilute to I liter.

Il Dissolve in 0.6 N. H2SO4 and keep in contact with iron nails.

FOR ACID ANALYSIS

Ion	Salt	Grams per Liter
Fe(CN)6	$K_4Fe(CN)_6 \cdot 3H_2O$	15.8
Fe(CN) ₆	K ₃ Fe(CN) ₆	15
CNS	KCNS	17
CN	KCN	24
S	Na ₂ S	24
I	NaI	11.7
Br	NaBr	12.8
CI	NaCl	16.5
CO ₃	Na ₂ CO ₃ ·10H ₂ O	47
SO_3	Na ₂ SO ₃	12
S_2O_3	Na ₂ S ₂ O ₃ ·5H ₂ O	22
NO_2	NaNO ₂	15
AsO ₃	Na₂HAsO₃	13.8
C ₂ O ₄	Na ₂ C ₂ O ₄	15
AsO ₄	Na ₃ AsO ₄ ·12H ₂ O	28
PO ₄	Na ₂ HPO ₄ ·12H ₂ O	37
°CrO4	K ₂ CrO ₄	16.8
C ₄ H ₄ O ₆	Na ₂ C ₄ H ₄ O ₆ ·2H ₂ O	15
SO ₄	Na ₂ SO ₄	14.8
BO ₃	Na ₂ B ₄ O ₇ ·10H ₂ O	15.8
$C_2H_3O_2$	NaC ₂ H ₃ O ₂	14
NO ₃	NaNO ₃	13.7

1	Į	١	
ľ	6	Ē	
í			
Ĺ			
1			
þ	-		
1	•	•	
ŧ	١	٠	
١	*		
۲		-	
,	1	-	
į	ī	Ę	
(
į	7	ř	
(
ĺ		c	
Ş	ä		
(
ı	2	9	
ň	Ξ		
ĺ	1		
	i		
4	ς	Į	
1	_		
1			
i	ľ	1	
,	-		

158

																										,	
	Silicate				ಡ			ಡ			٠		ಡ								B	ಡ	q	≱	≱		
	Fluoride	≽	В	ಡ	В		B	wa	×	*	≱.	٦,	aı	wa	wa	wa	В	wa	wa	aı	В.	aı	ai	≱	>	≱	
	Nitrate	×	×	M	×	wa	M	M				M	W	M	M	A	W	M	×	×	×	×	W	W	M	W	
	Acetate	≽	Wa	M	W	W	W	W		W	M	×	×	×	W	×	M	×	W	×	M	W	W	×	W	M	
	Borate	B		ಡ	b	a	а	wa		ದ		ಇ	B	я	B	В	ಡ	ದ	B	ಇ	B	В	ಡ	×	W	W	
	Sulphate	Wâ	wa	wa	ai	wa	×	M	r	M		M	× ×	W	W	W	W	W	W	٠		W	W	W	W	W	
	Tartrate	ಇ	wa	B	B	я	M	wa	wa	ಡ		×	×	В	wa	wa	W	W	В	а	wa	В	wa	W	M	≽	CTA
	Chromate	B	а	Wa	ai.	ಇ	W	B	B	ಡ			B	ಡ	W			ದ	B	ಡ	ಡ	wa	В	W	M	Μ	TT
	Phosphate	ಡ	В	В	В	R	В	я	Wa	R	B	я	d	क	R	В	а	В	В	В	ಡ	В	ಡ	W	W	W	
	Arsenate	ರ	а	ď	ú		ಡ		ಡ	B	я	ಡ	В		ಡ	В	В	я	ಶ	я	æ	ಡ	ø	×	W	W	
	Oxalate	В	B	R	B	я	ರ	ರ	B	В	W	B	wa	ಡ	wa	В	ಇ	В	ಡ	В	ಡ	a	r	W	W	W	,
	Arsenite	ಡ	æ	В	d	В	В	В	В	В					В	В	В	В	В	В	æ	В	В	≱	W	W	
3	Nitrite	W			W														=	:				W	W	W	
117	Sulphite	ಣ			ಡ									ಡ						W				W	W	W	
SOLUBILITES	Carbonate	ਲ	d	В	В	В	В	В						В	ಣ	B	я	В	В	я	а	:d	ಡ	×	×	W	1
	Chloride		В	W	wa	Wa	×	W	wa	W	Ŋ	¥	W	W	×	W	W	W	W	×	W	M	×	W	×	W	
	Bromide	٠	В	M	wa	wa	W	W	wa			W	W	W	W	W	W	W	×	×	W	W	W	W	×	M	
1	əbiboI		В	а	а	а	W	W	wa	W	W	W	×	M	W	W	W	W	W	W	W	W	W	W	W	W	
IABLE	Sulphide	*	<u>+</u>	+	4+	aţ	# #	a‡	В	я	ರ	Ч	모	ಡ	B	а		ъ	ь	×	×	×	×	W	W	×	
Y.	Cyanide				ಡ			ಡ						ರ	ಡ	ai.		ai	ai	wa	W	W	W	W	W	W	
111:	Thiocyanate				ಡ												W			W	W	W	M	W	W	A	
	Ferricyanide				Wa									В	٠	٠	W	٠	٠			M	W	×	W	×	
	Ferrocyanide	٠			G		•	٠,						ai	d		۰,		٠,	wa	×	W	W	×	W	W	}
	Hydroxide				G	ಡ	ರ	ರ	r	В	B	В	8	В	d	ರ	В	B	a	W	W	W	G	W	W	W	
	əbixO	8		R	1 4	ದ	ಡ	g	ಡ	В		B	R	ಧ	4	rg.	В	ø	B	W	W	W	ಡ	M	M	×	
											:						:								:		
											:																
																	•									:	
			rv(ous	rv(ic)		h		nm.	Vnc	s)		ium.	ium.		nese.	ons)	(]	nm.		sium.	nm.	1	nium.	
		Silver	Mercury (ous)	Mercury(ic)	Lead.	Bismuth	Copper	Cadmium	Antimony	Tin(ous)	Tin(ic)	Aluminium	Chromium	Zinc	Manganese	Iron (or	Iron (ic)	Cobalt	Nickel.	Barium	Strontium	Calcium.	Magnesium	Potassium.	Sodium	Ammonium	1

* = oxidized to soluble sulphate by HNO3. †=soluble in aqua regia.

\$\frac{*}{s}\$ = soluble in HNO₃.
\$\frac{*}{s}\$ = soluble in cold water only.

a = soluble in acids.
i = insoluble in water and in acids.
b = hydrolizes completely in presence of water.

w = soluble in water.

Solubilities

The following list of difficultly soluble salts encountered in a systematic analysis are given with their solubilities in water, their action toward acids, alkalis, etc. and their color

		Solubility	
Formula	Water, Parts per 100	Acid, Alkalies, etc.	Form and Color
Ag ₃ AsO ₄	0.00085200	Sol. acids. alk.	Red
Ag ₃ AsO ₃	0.00115200	Sol. acids, dif. sol. alk.	Yellow
Ag ₃ BO ₃	0.905250	Sol. acids	1011011
AgBr	0.000026250	Insoluble	Cream
AgC1	0.000152200	Insoluble	White
Ag ₂ C ₂ O ₄	0.0073200	Sol. acid. alk.	White
Ag ₂ CrO ₄	0.0028180	Sol. min. acids	Dark red crys.
Ag ₂ C ₄ H ₄ O ₆	0.2180	Sol. acid, alk.	White
AgCN	0.000021250	Insol. acid	White
AgCNS	0.000021250	Insol. dil. acid	White
Ag ₄ Fe(CN) ₆	Insoluble	Insoluble	White
Ag ₃ Fe(CN) ₆	0.000066200	Insoluble	Red
AgI	0.000035250	Insoluble	Yellow curdy
Ag ₂ O	0.0043200	Sol. acids	Brownish black
Ag ₃ PO ₄	0.00193200	Sol. acids, alk.	Yellow
Ag ₂ S	0.00002	Sol. HNO ₃	Black
Ag ₂ SO ₄	0.58	Sol. acids, alk.	White, cryst.
Al(OH) ₃	Insoluble	Sol. acids, alk.	White flocculen
As ₂ S ₃	Insoluble	Sol. (NH ₄) ₂ S	Yellow
As ₂ S ₅	Insoluble	Sol. (NH ₄) ₂ S	Yellow
BaCO ₃	0.0022200	Sol. min. acids	White cryst.
BaC ₂ O ₄	0.0093180	Sol. min. acids	White cryst.
BaCrO ₄	0.00038180	Sol. min. acids	Yellow cryst.
Ba(NO ₃) ₂	5.200	Sol. acids, alk.	White cryst.
BaSO ₄	0.00017200	Insoluble	White cryst.
BiCl ₃	Hydrolyzes	Sol. min. acids	White cryst.
BiO(OH) ₂	Insoluble	Sol. min. acids	White amor.
BiOCI	Insoluble	Sol. min. acids	White amor.
Bi ₂ S ₃	0.000018	Sol. min. acids	White amor.
CaCO ₃	0 0012200	Sol. acids, insol. alk.	White cryst.
CaC ₂ O ₄	0.00068250	Sol. min. acids, insol. alk.	White cryst.
$CaC_4H_4O_6\cdot _4H_2O$	0.016150	Sol. min. acids alcohol	White cryst.
CaCrO ₄ ·2H ₂ O	22.200	Sol. acids	Yellow cryst.
$Ca_3(PO_4)_2$	0.003	Sol. min. acids, insol. alk.	White cryst. White cryst.
CaSO ₄	0.17900	Sol. HCl Insol. HC ₂ H ₃ O ₂	White amor.
Cd ₂ Fe(CN) ₆	Insoluble 0.00026 ²⁵ °	Sol. acids, NH ₄ OH	White amor.
Cd(OH) ₂		Sol. HNO ₃	Yellow amor.
CdS	0.00013 Insoluble	Sol. acids NH ₄ OH	Rose
Co(OH) ₂	Insoluble	Sol. acids	Brown
Co(OH) ₃	0.00038	Sol. min. acids	Black
CoS	Insoluble	Sol. acids, NaOH, KOH	Green
Cr(OH)3	Institutie	DOI: 40140) 114014 48014	

APPENDIX

SOLUBILITIES—Continued

77		Solubility	Form and Color		
Formula	Water, Parts per 100	Acid, Alkalies, etc.	Form and Color		
Cu ₂ Fe(CN) ₆ ·7H ₂ O	Insoluble	Insol. HC ₂ H ₃ O ₂	Red		
CuS	0.000033	Sol. HNO ₃	Brownish black		
Cu(OH) ₂	Insoluble	Sol. acids, NH ₄ OH, KCN	Blue		
Fe(OH) ₂	0.00067	Sol. acids	Pale green		
Fe(OH) ₃	Insoluble	Sol. acids	Reddish brown		
FeS	0.00089	Sol. acids	Black		
HgCl ₂	5 · 730°	Sol. acids	White cryst.		
Hg ₂ Cl ₂	0.0003100	Insoluble	White cryst.		
HgS	0.0025	Sol. aqua regia	Black amorph.		
HgSO ₄	Decomposes	Sol. acids	White cryst.		
Hg ₂ SO ₄	0.05516.50	Sol. H ₂ SO ₄ , HNO ₃	White cryst.		
KC104	0.700	Sol. acids, s. sol. alc.	White cryst.		
$K_3Co(NO_2)_6 \cdot 2H_2O$	0.0900	Insol. HC ₂ H ₃ O ₂	Yellow cryst.		
K ₂ SiF ₆	0.12 ^{17.5} °	Insol. alc.	White		
MgCO ₃	0.0106	Sol. acids, hot NH ₄ salts	White cryst.		
$Mg(NH_4)AsO_4 \cdot 6H_2O$	0.038200	Sol. acids, 0.003 Mg. mix. sol.	White cryst.		
$Mg(NH_4)PO_4 \cdot 6H_2O$	0.0132	Sol. acids	White cryst.		
Mn(OH) ₂	Insoluble	Sol. acids, NH ₄ salts	Pink		
MnO(OH) ₂	Insoluble	Sol. HCl	Brownish black		
MnS	0.00047	Sol. acids	Pink		
NH ₄ ClO ₄	Dif. soluble	S. sol. alcohol	White cryst.		
$(NH_4)_3AsO_4 \cdot 12MoO_3$	Dif. sol.	Insol. HNO3, sol. alk.	Yellow cryst.		
$(NH_4)_3PO_4 \cdot 12MoO_3 \cdot 3H_2O$	0.03150	Insol. HNO3, sol. alk.	Yellow cryst.		
(NH ₄) ₂ SiF ₆	18.517.50				
Na ₂ SiF ₆	0.6517.50	Insol. alc.	White gelat.		
Ni(OH) ₂	Insoluble	Sol. acids NH ₄ OH, insol. NaOH, KOH	Green		
Ni(OH) ₃	Insoluble	Sol. acids, NH ₄ OH, insol.,	ni i		
		NaOH, KOH	Black Black		
Nis	0.00036 0.673 ⁰ °	Sol. HNO ₃ S. sol. Hcl	White cryst.		
PbCl ₂	0.00002180	Sol. acids, insol. HC ₂ H ₃ O ₂	Yellow cryst.		
PbCrO ₄	0.0001	Sol. HNO ₃	Black		
PbS	0.0001	Sol. NH ₄ C ₂ H ₃ O ₂ , insol. acids	White cryst.		
PbSO ₄	Hydrolyzes	Sol. min. acids	White cryst.		
SbCl ₃	0.000175	Sol. (NH ₄) ₂ Sx, conc. HCl	Orange		
Sb ₂ S ₃ SnS	0.000173	Sol. (NH ₄) ₂ Sx, conc. HCl	Brown		
SnS ₂	0.00002	Sol. (NH ₄) ₂ S _x , conc. HCl	Yellow		
SrCO ₃	0.00002	Sol. acids	White cryst.		
	0.0051180	Sol. acids	White cryst.		
SrC ₂ O ₄ SrCrO ₄	0.12180	Sol. acids	Yellow cryst.		
SrSO ₄	0.0114180	Insol. dil. H ₂ SO ₄ , alc.	White cryst.		
	Insoluble		Willie Clyst.		
UO ₂ NH ₄ AsO ₄	THEOLUDIC	Sol. min acids, insol. HC ₂ H ₃ O ₂	White		
UO2NH4PO4	Insoluble	Sol. min. acids, insol.	.,		
		HC ₂ H ₃ O ₂	White		
$Zn_2Fe(CN)_6 \cdot 3H_2O$	Insoluble	Sol. HCl	White		
$Zn_3[Fe(CN)_6]_2$	Insoluble	Sol. HCl	Yellowish white		
Zn(OH) ₂	0.00042180	Sol. acid, NH ₄ OH	White		
ZnS	0.00069	Sol. min. acid, insol.			
		HC ₂ H ₃ O ₂	White floc.		

IV. A List of the Elements with Their Atomic Weights

INTERNATIONAL TABLE FOR 1925

Name	Symbol	At. Wt.	Name	Symbol	At. W
Aluminum	Al	26.97	Manganese	Mn	54.93
Antimony	Sb	121.77	Mercury	Hg	200.61
Argon	A	39.91	Molybdenum	Mo	96.0
Arsenic	As	74.96	Neodymium	Nd	144.27
Barium	Ba	137.37	Neon	Ne	20.2
Beryllium		0, 0,	Nickel	Ni	58.69
(Glucinum)	Be	9.02	Niton (Radon)	Rn	222:0
Bismuth	Bi	209.00	Nitrogen	N	14.00
Boron	В	10.82	Osmium	Os	190.8
Bromine ·	Br	79.16	Oxygen	0	16.00
Cadmium	Cd	112.41	Palladium	Pd	106.7
Calcium	Ca	40.07	Phosphorus	P	31.02
Carbon	C	12.000	Platinum	Pt	195.23
Cerium	- Ce	140.25	Potassium	K	39.09
Cesium	Cs	132.81	Praseodymium	Pr	140.92
Chlorine	Cl	35 - 457	Radium	Ra	225.95
Chromium	Cr	52.01	Radon (Niton)	Rn	222.0
Cobalt	Co	58.94	Rhodium	Rh	102.91
Columbium	Cb	93.1	Rubidium	Rb	85.44
Copper	Cu	63.57	Ruthenium	Ru	101.7
Dysprosium	Dy	162.52	Samarium	Sa	150.43
Erbium	Er	167.7	Scandium	Sc	45.10
Europium	Eu	152.0	Selenium	Se	79.2
Fluorine	F	19.00	Silicon	Si	28.06
Gadolinium	Gd	157.26	Silver	Ag	107.88
Gallium	Ga	69.72	Sodium	Na	22.99
Germanium	Ge	72.6	Strontium	Sr	87.63
Glucinum			Sulphur	S	32.06
(Beryllium)	Be	9.02	Tantalum	Ta	181.5
Gold	Au	197.2	Tellurium	Te	127.5
Hafnium	Hf	180.8	Terbium	Tb	159.2
Helium	He	4.00	Thallium	Tl	204.39
Holmium	Но	163.4	Thorium	Th	232.15
Hydrogen	H	1.008	Thulium	Tm	169.4
Indium	In	114.8	Tin	Sn	118.70
lodine	I	126.932	Titanium	Ti	48. I
Iridium	Ir	193.I	Tungsten	W	184.0
Iron	Fe	55.84	Uranium	U	238.17
Krypton	Kr	82.9	Vanadium	V	50.96
Lanthanum	La	138.90	Xenon	Xe	130.2
Lead	Pb	207.20	Ytterbium	Yb	173.6
Lithium	Li	6.940	Yttrium	Yt	88.9
Lutecium	Lu	175.0	Zinc	Zn	65.38
Magnesium	Mg	24.32	Zirconium	Zr	91.0

V. Electromotive or Displacement Series

When placed in contact with water metals show a certain tendency to pass into solution as ions. This tendency differs with the different metals. When a metal is placed in a solution of one of its salts its tendency to go into solution is opposed by an osmotic pressure depending on the concentration of the salt. A potential difference is therefore set up between the metal and its solution and if two such solutions containing different metals are brought into contact with each other a difference of potential will be found between the two metals, the more active representing the negative pole of an electric cell.

The following list gives the metals arranged in the order of activity, most active first. The numbers opposite each metal represents the difference of potential in volts between the metal and hydrogen when immersed in a normal solution.

Metal	Ion	Potential H = 0.00	Metal	Ion	Potential H = 0.00
Potassium	K+	-2.92	Cobalt	Co++	-0.32
Sodium	Na+	-2.71	Nickel	Ni++	-0.30
Barium	Ba++	-2.6	Tin	Sn++	-0.13
Strontium	Sr++	-2.5	Lead	Pb++	-0.12
Calcium	Ca++	-2.2	Hydrogen	H+	-0.00
Magnesium	Mg++	-1.55	Copper	Cu++	+0.34
Aluminium	A1+++	-1.27	Bismuth	Bi+++	+0.4(?)
Manganese	Mn++	-1.07	Antimony	Sb+++	+0.5(?)
Zinc	Zn++	-0.76	Mercury	Hg++	+0.79
Chromium	Cr++	(?)	Silver	Ag+	+0.80
Cadmium	Cd++	-0.42	Platinum	Pt++	+0.90(?)
Iron	Fe++	-0.34	Gold	Au+++	+1.10

INDEX

reactions with reagents, 132 Acids, general characteristics of, 100 preparation of solution for analysis. 102, 147 use as reagents, 152 Alloys, preparation of solution for analysis, 25 Aluminium, amphoteric nature of, 33 reactions with reagents, 64, 65, 76, 90 separation and detection of, 65, 74 Aluminium hydroxide, dissociation of, Aluminon, 65 Ammonium, detection of, 94 Ammonium molybdate, stability of, Amphoterism, general discussion of, Antimony, detection of, 60, 61 hydrolysis of salts of, 32, 35, 53 reactions with reagents, 35, 36, 38, 47, 48, 49 separation of, 38, 49 Aqua regia, preparation of, 28 Arsenate, reactions with reagents, 123, 124 separation and detection of, 127 Arsenic, reactions with reagents, 47, 48 separation and detection of, 48, 49, 59, 60 Arsenic sulphide, conditions for precipitation of, 55 reaction with HCl, 61 Arsenite, reactions with reagents, 123 separation and detection of, 126

Acetate, detection of, 133

Asbestos filter, 81 Atomic weights, table of, 161 Avogadro's law, 3

Barium, detection of, 85, 88
reactions with reagents, 82, 84, 85
Bases used as reagents, 153
Bismuth, hydrolysis of salts of, 32
reactions with reagents, 35, 36, 38, 43, 44
separation and detection of, 38, 43, 57, 59
Bismuth chloride, 35, 40, 44, 53
Borate, detection of, 133
reactions with reagents, 131
Bromide, oxidation of, 111
reactions with reagents, 110
separation and detection of, 115

Cadmium, complex ions of, 43, 44 detection of, 57, 58, 59 reactions with reagents, 44 Calcium, detection of, 87, 89 reactions with reagents, 82, 84, 85 Carbonate, reactions with reagents, separation and detection of, 120 Chemical reaction, types of, I Chloride, detection of, 115 reactions with reagents, 104, 110 Chromate, detection of, 128 reactions with reagents, 123 Chromium, amphoteric nature of, 33 reactions with reagents, 64, 66, 76 separation and detection of, 65, 75 Cobalt, complex ions of, 82 reactions with reagents, 68

164 INDEX

Cobalt, separation and detection of, 70, 79, 80
Common ion, general discussion of, 11
Complex ion, 66, 69, 73
general discussion of, 14
Copper, complex ions of, 43, 44
reactions with reagents, 43, 44
separation and detection of, 44, 57
Copper sulphide, action of (NH₄)₂S₄
on, 55
Cyanide, conversion to ferrocyanide,

Decantation, definition of, 2 Digestion, definition of, 3 Dimethyl-glyoxime, 70, 82

detection of, 109, 113

reactions with reagents, 107

Electromotive series, 162 Electron, 17 Equilibrium, definition of, 9 ionic, 5

Ferricyanide, reactions with reagents,
107, 108
separation and detection of, 108,
113
Ferrocyanide, reactions with reagents,
107, 108
separation and detection of, 108,
113, 114
Filtrate, definition of, 2
Filtration, definition of, 2
general discussion of, 20

Halides, separation and detection of, 116 Hydrofluoric acid, test for silicate, 27

Fluoride, reactions with reagents, 132

use as solvent, 27

Hydrolysis, definition of, 35 general discussion of, 13

Iodide, oxidation of, III
reactions with reagents, IIO
separation and detection of, II5
Ion, definition of 5,

Ionic theory, general discussion of, 3
Ionization, general discussion of, 5
of water, 13
table showing degree of, 6
Iron, reactions with reagents, 68, 79,
81
separation and detection of, 69, 78,
79, 81
Kinetic theory, general discussion of, 5
Laboratory suggestions, 19
Law, Avogadro's, 3

Henry's, 54 mass action, 6, 7, 8, 9, 54 Lead, reactions with reagents, 35, 36,

38, 43 separation and detection of, 39, 56, 57, 59

LeChatelier's principle, 36

Magnesia mixture, preparation of, 62 Magnesium, detection of, 93

reactions with reagents, 82, 90 91
Magnesium hydroxide, effect of ammonium salts on precipitation of, 72

Manganese, reactions with reagents, 68, 78

separation and detection of, 69, 77, 78

Mercuric chloride, reaction with SnCl₂, 58

Mercuric sulphide, solvent action of $(NH_4)_2S_x$ on, 55

Mercury, reactions with reagents, 35, 36, 38, 42

separation and detection of, 38, 42,

Metal sulphides, order of solubility of, 54

Metals, preparation of solution for analysis, 24, 139

Molar concentration, 9

Nickel, complex ions of, 82 reactions with reagents, 68, 72, 90 separation and detection of, 70, 79, 80

INDEX 165

Nitrate, detection of, 133
reactions with reagents, 131, 132
Nitrite, detection of, 121
reactions with reagents, 104, 118,
119

Organic matter, detection of, 26
Oxalate, reactions with reagents, 123,
124
separation and detection of, 127
Oxidation, definition of, 17
general discussion of, 16
balancing equations involving, 17,
18
Oxidizing agents, list of, 18

Phosphate, effect on metal analysis, 74, 78
precipitation of, 79, 81
reactions with reagents, 104, 123, 124, 125
separation and detection of, 127
Potassium, reactions with reagents,

separation and detection of, 94, 95 Precipitate, definition of, 2 Precipitation, general discussion of, 19 test for completeness of, 32, 52

Qualitative analysis, definition of, I Quantitative analysis, definition of, I

Reagent, definition of, 2 preparation of, 152 Reducing agents, list of, 18 Reduction, definition of, 17 general discussion of, 16 Residue, definition of, 2

Salts used as reagents, 153
Saturated solution, definition of, 9
Silver, complex ions of, 39
detection of, 38
reactions with reagents, 35, 36
Slightly ionized compounds, general
discussion of, 12

Sodium, reactions with reagents, 92 separation and detection of, 94, 95

Sodium peroxide, use as oxidizing agent, 33 Solids used as reagents, 155 Solubility, methods of altering, 10, 11 Solubility product, general discussion table of, 10 Solubility table, 158 Solution, definition of, 2 Stannic chloride, reduction of, 62 Stannic sulphide, action with HNO₃, 58 Strontium, reactions with reagents, 82, 84, 85 separation and detection of, 85, 86, 88, 89 Sulphate, detection of, 133 reactions with reagents, 104, 131 Sulphide, detection of, 114 oxidation by HNO₃, 111 reactions with reagents, 110 Sulphite, detection of, 119, 120 reactions with reagents, 118, 119

Tartrate, reactions with reagents,
123, 125
Test solutions, 156, 157
Thiocyanate, detection of, 109, 113
reactions with reagents, 107
Thiosulphate, distinction from sulphite, 119, 120
reactions with reagents, 104, 118,
119, 121
Tin, detection of, 61
reactions with reagents, 47, 48, 49,
50

Valence, definition of, 17

Wash bottle, diagram of, 20 description of, 21 Water, dissociation of, 13

Zinc, amphoteric nature of, 33 complex ions of, 64 reactions with reagents, 64, 66, 75, 77 separation and detection of, 66, 75, 77

Gold - Use stanous chloride - Purple color

