MA2102: LINEAR ALGEBRA

Lecture 9: Quotient Spaces
4th September 2020

A *relation* on a set X is a subset $R \subset X \times X$. Given $(a,b) \in R$ we say a is related to b (by the relation R) and write $a \sim_R b$. If R is clear in the context, we simply write $a \sim b$.

- ullet Reflextive : $x \sim x$ for all $x \in X$
- Symmetric : If $x \sim y$ then $y \sim x$
- Transitive : If $x \sim y$ and $y \sim z$ then $x \sim z$

Question Does symmetry and transitivity imply reflexivity?

Definition [Equivalence] A relation \sim on a set X is called an equivalence relation if \sim is reflexive, symmetric and transitive.

An equivalence relation \sim divides X into equivalence classes, i.e.,

$$[x] := \{ y \in X \mid y \sim x \}$$

is called the equivalence class of x.

Example 1 Consider the relation \sim defined on \mathbb{R}^2 as follows. We say $(x_1, y_1) \sim (x_2, y_2)$ if and only if

$$(x_1, y_1) - (x_2, y_2) = (\lambda, \lambda)$$

for some $\lambda \in \mathbb{R}$. Show that this is an equivalence relation.

The equivalence classes are lines with slope 1 since

$$[(a,b)] = \{(x,y) \in \mathbb{R}^2 \mid (x-a,y-b) = (\lambda,\lambda) \text{ for some } \lambda \in \mathbb{R}\}$$

is precisely the line y = x + (b - a). These lines are disjoint and cover the plane.

Observation The equivalence classes partition X. (exercise)

The set of equivalence classes will be denoted by X/\sim .

Question Do these lines form a vector space?

Method: We may add $y = x + c_1$ to $y = x + c_2$ to obtain $y = x + (c_1 + c_2)$ while we may scale $y = x + c_1$ by c to obtain $y = x + cc_1$.

Geometric meaning 1: We may choose one representative element (0, c) for each equivalence class y = x + c. These points form the *y*-axis, which is a vector space.

Geometric meaning 2: We are choose one representative element (-c/2, c/2) for each equivalence class y = x + c. These points form the line y = -x, which is a vector space.

Definition Given a vector subspace W of a vector space V (over a field F), consider the equivalence relation defined by \sim_W as follows:

$$v_1 \sim v_2 \iff v_1 - v_2 \in W.$$

- $v \sim_W v$ as $v v = 0 \in W$
- if $v_1 \sim_W v_2$ then $v_1 v_2 \in W$, whence $v_2 v_1 \in W$
- if $v_1 \sim_W v_2$ and $v_2 v_3 \in W$, then

$$v_1 - v_3 = (v_1 - v_2) + (v_2 - v_3) \in W.$$

Thus, \sim_W is an equivalence relation and we denote the set of equivalence classes by V/W.

Show that the relation in example 1 is just \sim_W for $V = \mathbb{R}^2$ and W = span((1,1)).

Theorem The set V/W is a vector space over F with the operations

$$+: V/W \times V/W \rightarrow V/W, [v_1] + [v_2] := [v_1 + v_2]$$

 $\cdot: F \times V/W \rightarrow V/W, \lambda \cdot [v] := [\lambda v]$

Proof.

It suffices to show that the operations are well-defined, i.e., if we choose $[v_1] = [u_1]$ and $[v_2] = [u_2]$, then $v_i - u_i \in W$, whence

$$(v_1 + v_2) - (u_1 + u_2) = v_1 - u_1 + v_2 - u_2 \in W$$

implying that $[v_1] + [v_2] = [u_1] + [u_2]$. Also, if [v] = [u], then $v - u \in W$ and

$$\lambda v - \lambda u = \lambda(v - u) \in W$$

implying that $\lambda \cdot [v] = \lambda \cdot [u]$.