Dr. Francesco Gallinaro Übungen: Max Herwig

Modelltheorie

Blatt 6

Abgabe: 05.12.2023, 12 Uhr

Aufgabe 1 (4 Punkte).

In der Sprache \mathcal{L} , sei $p(\bar{x})$ ein n-Typ in der \mathcal{L} -Theorie T derart, dass in jedem Modell \mathcal{M} von T der Typ $p(\bar{x})$ nur endlich viele Realisierungen in \mathcal{M} besitzt.

- a) Zeige, dass es eine Formel $\varphi[\bar{x}]$ in $p(\bar{x})$ so gibt, dass $T \models \exists^{\leq N} \bar{x} \varphi[\bar{x}]$ für eine natürliche Zahl N.
- b) Zeige mit Hilfe einer geeigneten Formel, dass $p(\bar{x})$ isoliert in $S_n(T)$ ist, falls T vollständig ist.

Aufgabe 2 (16 Punkte).

In der Sprache $\mathcal{L} = \{R\}$ mit einem zweistelligen Relationszeichen R betrachten wir (ungerichtete) *Graphen*: Indem wir R als die Kantenrelation zwischen zwei verschiedenen Knoten interpretieren, sind Graphen genau die \mathcal{L} -Strukturen, in denen R irreflexiv und symmetrisch ist.

Ein Zufallsgraph ist ein Graph mit folgender Eigenschaft (\star):

Für je zwei endliche disjunkte Teilmengen A und B der Grundmenge (möglicherweise ist A oder B leer) gibt es einen Punkt c derart, dass c zu allen a aus A durch eine Kante verbunden ist und mit keinem b aus B.

(a) Zeige, dass es in einem Zufallsgraph unendlich viele solche Elemente c geben muss.

HINWEIS: Wieso gibt es ein c wie oben, das nicht in B liegt?

(b) Schließe daraus, dass der Graph, der aus einem Zufallsgraph entsteht, wenn ein einzelner Punkt (mit den entsprechenden Kanten) entfernt wird, wiederum ein Zufallsgraph ist.

Sei $n = \sum_{i=0}^{k} [n]_i \cdot 2^i$ die binäre Darstellung der natürlichen Zahl n, wobei $[n]_i = 0, 1$ für $0 \le i \le k$. Wir definieren nun die \mathcal{L} -Struktur \mathcal{M} mit Universum \mathbb{N} und folgender Intepretation:

$$R^{\mathcal{M}}(n,m) \Leftrightarrow [m]_n = 1 \text{ oder } [n]_m = 1$$

- c) Zeige, dass \mathcal{M} ein Zufallsgraph ist.
- d) Gib mit Hilfe von (\star) eine Axiomatisierung T der Klasse von Zufallsgraphen an und zeige, dass T vollständig mit Quantorenelimination ist.
- e) Zeige, dass jeder 1-Typ über einer endlichen Teilmenge eines Zufallsgraphs isoliert ist. Folgere, dass der obige Zufallsgraph \mathcal{M} ein Primmodell von T ist, durch Konstruktion einer elementaren Einbettung von \mathcal{M} in ein beliebiges Modell $\mathcal{N} \models T$.

Wie viele abzählbare Zufallsgraphen gibt es (bis auf Isomorphie)?

- f) Ist T total transzendent?
- g) Bestimme die Mächtigkeit des 1-Typenraumes $S_1^{\mathcal{M}}(M)$.
- h) Zeige, dass es für jede \mathcal{L} -Formel $\varphi[x,\bar{y}]$ eine Schranke $N=N_{\varphi[x,\bar{y}]}$ aus \mathbb{N} so gibt, dass für jedes Tupel \bar{b} aus M mit $X=\varphi[M,\bar{b}]=\{a\in M\mid \mathcal{M}\models \varphi[a,\bar{b}]\}$ endlich schon $|X|\leq N$ gilt.

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.33 IM KELLER DES MATHEMATISCHEN INSTITUTS.