goal: characterze stability of LTI systems using Lyapunov functions ref: Hespanha Ch 8.5

properties of positive-definite matrices

def: $Q = Q^T$ is positive-definite if $\forall x \neq 0$: $x^T Q \times > 0$ " negative-definite" " < 0

" - semidefinite" " > 0

eguvalently (i.e. \iff), $Q = Q^T$ is positive-definite \iff all eigenvalues are positive (and real)

fact: if $Q = Q^T > 0$ then

(ii) $\forall x : 0 < \lambda_{min}(Q) ||x||^2 \leq x^T Q \times \leq \lambda_{max}(Q) ||x||^2$

-> derive (i) & (ii) -> derive analogous facts for negative-(semi) definite

Lyapunov test for stability

o consider LTI DE &/xt = AX

facts: the following are equivalent:

definition

eigenvalue 1°: (LTI DE) exponenti

eigenvalue 1°. (LTI DE) exponentially stable

Lyapunov test

2°. $\forall A \in SPCA$: \iff 3°. $\forall Q = QT > 0$: $\exists ! P : P = PT > 0$ and

(CT) PEXCO (CT) $A^TP + PA = -Q$) Lyapunov

(DT) |X| < 1 (DT) $A^+PA - P = -Q$) equations

why? let's consider (CT) case

(1° => 3°) assume (LTIDE) exp. stable, $Q = Q^T > 0$ given, and define $P = \int_{0}^{\infty} e^{At} dt$

 \rightarrow verify that ATP+PA=-Q (use integration-by-ports)

-> verify that P=PT>0 (use def. of pos-def.)

(comose unt, denne contradiction)

- unako that Puniour

-> verify that P unique (suppose not, denue (antradiction)

 $(3^{\circ} \Rightarrow 1^{\circ})$ suppose Q=QT70, P=PT>0 are s.t. ATP+PA=-Q consides $v(t) = x(t)^T Px(t) > 0$ where $\dot{x} = Ax$

 $v: [0,\infty) \rightarrow [0,\infty)$ called a Lyapunov function $: t \mapsto v(t)$

and complete $\frac{d}{dt}v(t) = \dot{v} = \dot{x}^T P x + x^T P \dot{x}$ $= x^T A^T P x + x^T P A x$ $= x^T (A^T P + P A) x = -x^T Q x \leq 0$

>>can show ~> 0 at an exponential rate

 $\Rightarrow ||x(t)||^2 \rightarrow 0$ at exp. rate \Rightarrow (LTI-DE) exp. stable