Projekt Metoda CreditMetrics

Jakub Augustynek 29 04 2019

Ratingi kredytowe

Rating kredytowy jest to kredytowa ocena klasyfikacyjna oceniająca i kategoryzująca poziom zdolności kredytowej danego podmiotu, długu lub zobowiązania finansowego lub emitenta takich długów lub zobowiązań finansowych.

Agencje ratingowe w celu oceny wiarygodności kredytowej używają kilku standardowych systemów. Na podstawie różnych czynników oceniają jakość obligacji używając do tego ratingów.

Początki ratingów sięgają XIX wieku, związane są z kryzysem finansowym w Stanach Zjednoczonych. Niektóre agencje handlowe zaczęły wydawać świadectwa oceniające zdolność kupców i hurtowników to regulowania zobowiązań finansowych.

Agencje ratingowe

Agencje ratingowe oceniają nie tylko przedsiębiorstwa i fundusze inwestycyjne, ale także państwa i samorządy lokalne.

Jednymi z najważniejszych agencji ratingowych sa:

- Standard & Poor's (S&P)
- Fitch
- Moody's

Ratingi

W agencjach S&P i Fitch możliwe ratingi od najwyższego do najniższego to:

- AAA
- AA
- A
- BBB Obligacje od BBB wzwyż mają standard inwestycyjny
- BB
- B
- CCC
- D Bankructwo

Kraje

W projekcie tym portfel będzie się składał z obligacji 3 letnich następujących krajów:

- Kanada rating AAA
- Wielka Brytania rating AA
- Filipiny rating BBB

• Turcja - rating B

Kraje te są dość zróżnicowane pod względem ratingu, Kanada ma najwyższy z możliwych, a Turcja jest poniżej standardu inwestycyjnego.

Są dużymi krajami, Kanada jest drugim największym krajem, Turcja ma ponad dwa razy większą powierzchnię od Polski, a Filipiny i Wielka Brytania są podobnej wielkości.

Kanada

Kanada ma **wysoką wiarygodność kredytową**, po prześledzeniu danych historycznych zauważyłem, że rating waha się między AAA, a AA.

PKB per capita wynosi ponad 51 315 USD. Jest to najwyższa wartość z wybranych przeze mnie do portfela państw. Roczne tempo wzrostu PKB to około 1,6 %.

Wielka Brytania

Wielka Brytania przez wiele lat miała rating AAA, od 2016 roku jej wiarygodność kredytowa spadła do AA. Właśnie w 2016 roku było głosowanie w sprawie BREXITU, czyli wyjścia Wielkiej Brytanii z Unii Europejskiej, wydaje mi się, że mogło to mieć wpływ na zmniejszenie ratingu. Według portalu tradingeconomics.com perspektywa zmian ratingu jest negatywna. PKB per capita wynosi 42 519 USD, jest wysokie, w rankingu największego PKB per capita znajduje się kilka miejsc za Kanadą. Roczne tempo wzrostu PKB to 1,4 %. Ma tendecję wzrostową.

Filipiny

Filipiny mają rating BBB, czyli są na granicy standardu inwestycyjnego. W ciągu ostatnich lat kraj ten sukcesywnie zwiększał swoją wiarygodność kredytową. Od roku 2013 ma rating BBB, wcześniej rating miał wartość BB, lub B. Według portalu *tradingeconomics.com* perspektywa zmian ratingu jest pozytywna. PKB per capita wynosi 2891 USD, nie jest to wartość duża w porównaniu do poprzednio wymienionych państw, ale tempo wztostu PKB to ponad 6,3%. Kraj ten bardzo szybko się rozwija, razem z Tajlandią, Indonezją, Malezją i Wietnamem nazywane są nowymi azjatyckimi tygrysami, porównywane są do Korei Południowej, Tajwanu, Singapuru, czy Hongkongu, które w latach 1960-1995 rosły w tempie nawet kilkunastu procent rocznie, a dziś są w gronie najzamożniejszych azjatyckich państw. PKB ma na najbliższe lata tendencję wzrostową.

Turcja

Turcja ma rating B. Jest on **poniżej granicy standardu inwestycyjnego**. Na przestrzeni lat jej wiarygodnośc kredytowa zmieniała się, w latach 2005-2018 była na poziomie BB lub nawet BBB. Obniżenie ratingu jest prawdopodobnie spowodowane spadkiem ceny tureckiej liry i bezradności tureckiego rządu w tej kwestii. PKB per capita wynosi 14 933 USD. W ostatnich latach PKB rosło bardzo szybko, nawet 11%, lecz teraz na skutek recesji wzrost będzie dużo mniejszy.

Metoda CreditMetrics

W projekcie tym wykorzystując metodę CreditMetrics obliczę VaR kredytowy dla obligacji powyżej

przytoczonych krajów. Metoda ta została opublikowana w roku 1997 w postaci dokumentacji technicznej przez **J.P. Morgan** (przy współpracy z m. in. Bank of Montreal, Bank of America, BZW, Deutsche Morgan Grenfell). Była ona przeznaczona do wyznaczania wartości zagrożonej aktywów niepodlegających obrotowi publicznemu, na przykład:

- pożyczek
- obligacji prywatnie emitowanych
- wierzytelności leasingowych lub z tytułu factoringu

Model ten bierzę pod uwagę straty nie tylko wynikające z niewypłacalności, ale także wynikające ze zmiany ratingów.

Wczytuję biblioteki

```
library(readr)
library(readxl)
library(BDgraph)
library(ggplot2)
library(ggcorrplot)
library(knitr)
library(zoo)
```

Wczytuję dane

Dane historyczne dotyczące notowań obligacji 3-letnich dla czterech krajów: Kanady, Wielkiej Brytanii, Filipin i Turcji pobieram ze strony https://pl.investing.com (https://pl.investing.com). To dane miesięczne od czerwca 2012 roku do kwietnia 2019 roku. Dane zawierają informacje o ostatniej wartości obligacji, wartości otwarcia, wartości maksymalnej i minimalnej oraz procentowej zmianie wartości obligacji z danego miesiąca.

Było 83 obserwacji. Nie było brakujących danych. Żeby nie wydłużać pracy tylko dla Kanady pokażę wszystkie obserwacje, a dla innych krajów tylko pierwsze 6 obserwacji.

Dane dla Kanady

Data

Otwarcie

Max.

Min.

Ostatnio

Zmiana%

Kwi. '19	15.23	15.37	16.95	14.95	-1.23
Mar. '19	15.42	17.97	18.11	14.21	-14.09
Luty '19	17.95	17.82	18.63	17.56	0.73
Sty. '19	17.82	18.32	19.70	17.44	-4.76
Gru. '18	18.71	22.08	22.40	18.50	-14.41
Lis. '18	21.86	23.73	24.00	21.76	-7.72
Paź. '18	23.69	22.73	24.05	22.73	4.87
Wrz. '18	22.59	20.97	22.69	20.61	7.88
Sie. '18	20.94	21.22	22.56	20.89	-1.37
Lip. '18	21.23	19.95	21.36	19.61	6.74
Cze. '18	19.89	20.23	20.71	18.38	-1.92
Maj '18	20.28	19.89	22.12	19.54	1.76
Kwi. '18	19.93	18.95	20.60	18.81	5.34
Mar. '18	18.92	18.99	20.26	18.26	-0.11
Luty '18	18.94	19.09	19.80	18.41	-0.26
Sty. '18	18.99	17.35	19.12	17.26	9.90
Gru. '17	17.28	14.57	17.51	14.52	16.91
Lis. '17	14.78	14.53	15.39	14.49	1.51
Paź. '17	14.56	15.84	16.36	14.35	-8.02
Wrz. '17	15.83	13.48	17.13	13.48	17.26
Sie. '17	13.50	14.38	14.45	13.13	-6.05
Lip. '17	14.37	12.55	14.81	12.55	16.36
Cze. '17	12.35	7.62	12.36	7.29	64.23
Maj '17	7.52	7.95	8.05	7.13	-5.41
Kwi. '17	7.95	8.67	8.77	7.83	-8.41
Mar. '17	8.68	8.93	10.31	8.33	0.23
Luty '17	8.66	9.35	9.84	8.44	-6.78
Sty. '17	9.29	9.43	10.16	8.82	-0.21
Gru. '16	9.31	8.48	10.35	8.41	9.79
Lis. '16	8.48	5.72	8.56	5.38	48.25
Paź. '16	5.72	5.30	6.39	5.16	9.79

Wrz. '16	5.21	5.92	6.40	4.57	-11.54
Sie. '16	5.89	5.58	6.22	5.03	7.68
Lip. '16	5.47	5.43	6.40	4.44	0.74
Cze. '16	5.43	6.42	6.72	4.72	-16.20
Maj '16	6.48	7.41	7.54	5.51	-11.84
Kwi. '16	7.35	5.85	7.68	5.54	26.72
Mar. '16	5.80	5.37	6.35	4.98	10.69
Luty '16	5.24	4.51	5.45	2.97	20.46
Sty. '16	4.35	5.01	5.24	2.98	-13.35
Gru. '15	5.02	6.91	7.10	4.84	-26.39
Lis. '15	6.82	6.15	7.38	6.15	10.89
Paź. '15	6.15	5.51	6.26	4.68	15.60
Wrz. '15	5.32	4.65	6.07	4.40	10.14
Sie. '15	4.83	3.86	4.83	3.10	24.48
Lip. '15	3.88	5.25	5.35	3.58	-16.20
Cze. '15	4.63	5.81	7.17	4.63	-20.17
Maj '15	5.80	6.94	7.78	5.67	-15.82
Kwi. '15	6.89	4.95	7.30	4.49	39.19
Mar. '15	4.95	4.46	6.65	4.40	10.49
Luty '15	4.48	3.89	5.01	3.50	14.58
Sty. '15	3.91	10.68	11.02	3.87	-63.39
Gru. '14	10.68	10.49	11.32	9.94	1.81
Lis. '14	10.49	11.51	11.95	10.49	-8.86
Paź. '14	11.51	12.88	12.89	9.62	-10.50
Wrz. '14	12.86	12.38	13.51	12.26	5.15
Sie. '14	12.23	11.27	12.27	10.66	8.33
Lip. '14	11.29	11.75	12.22	10.93	-2.84
Cze. '14	11.62	11.36	12.17	11.25	2.38
Maj '14	11.35	11.88	12.04	11.16	-4.54
Kwi. '14	11.89	12.52	13.01	11.80	-4.42

Mar. '14	12.44	11.81	12.81	11.58	5.33
Luty '14	11.81	11.44	13.48	11.19	3.14
Sty. '14	11.45	12.09	14.00	11.41	-5.14
Gru. '13	12.07	11.99	12.33	11.56	1.17
Lis. '13	11.93	12.21	12.84	11.76	-1.81
Paź. '13	12.15	14.14	14.43	11.96	-13.52
Wrz. '13	14.05	14.58	15.82	13.88	-2.29
Sie. '13	14.38	12.74	15.15	12.56	13.05
Lip. '13	12.72	13.26	13.74	11.72	-5.71
Cze. '13	13.49	11.99	13.94	11.32	12.89
Maj '13	11.95	10.27	12.10	10.08	17.27
Kwi. '13	10.19	11.00	11.09	10.07	-7.36
Mar. '13	11.00	11.11	11.88	10.79	-0.63
Luty '13	11.07	12.64	13.29	11.02	-11.65
Sty. '13	12.53	12.20	13.21	11.83	3.13
Gru. '12	12.15	11.40	12.45	10.96	6.86
Lis. '12	11.37	11.80	12.11	11.24	-2.90
Paź. '12	11.71	11.45	12.65	11.24	2.54
Wrz. '12	11.42	12.22	13.17	11.30	-6.55
Sie. '12	12.22	11.33	13.97	11.02	8.62
Lip. '12	11.25	10.53	11.78	9.66	3.97
Cze. '12	10.82	11.06	11.62	9.04	-2.70

Wykres wartości obligacji dla Kanady

Dane dla Wielkiej Brytanii

Data	Ostatnio	Otwarcie	Max.	Min.	Zmiana%
Kwi. '19	7.50	6.45	8.49	6.28	17.37
Mar. '19	6.39	8.79	8.87	6.27	-26.97
Luty '19	8.75	7.66	8.96	6.91	14.98
Sty. '19	7.61	7.24	8.55	6.75	2.70
Gru. '18	7.41	7.84	7.92	6.54	-4.02
Lis. '18	7.72	7.76	8.73	6.69	1.58

Wykres wartości obligacji dla Wielkiej Brytanii

Dane dla Filipin

Data	Ostatnio	Otwarcie	Max.	Min.	Zmiana%
Kwi. '19	58.92	56.58	60.17	56.58	4.14
Mar. '19	56.58	61.26	61.31	56.58	-7.64
Luty '19	61.26	61.06	61.75	58.81	0.33
Sty. '19	61.06	69.72	69.72	61.06	-12.42
Gru. '18	69.72	67.68	69.72	67.23	3.01
Lis. '18	67.68	67.69	69.40	65.50	-0.01

Wykres wartości obligacji dla Filipin

Dane dla Turcji

Data	Ostatnio	Otwarcie	Max.	Min.	Zmiana%
Kwi. '19	21.51	22.29	22.29	20.06	-1.33
Mar. '19	21.80	16.75	22.89	16.75	31.17
Luty '19	16.62	16.44	16.84	16.25	1.40
Sty. '19	16.39	17.89	18.67	16.18	-8.38
Gru. '18	17.89	17.35	18.98	17.17	1.88
Lis. '18	17.56	20.77	20.86	17.04	-15.45

Wykres wartości obligacji dla Turcji

Korelacje między zmianami miesięcznymi obligacji różnych krajów

Po utworzeniu data frame zawierającego zmiany miesięczne wartości obligacji dla 4 krajów, obliczam ich korelację.

```
zmiany<-data.frame("Kanada"=kanada$`Zmiana%`, "UK"=UK$`Zmiana%`, "Turcja"=turcja$`
Zmiana%`, "Filipiny"=filipiny$`Zmiana%`)
#macierz korelacji
korelacje<-cor(zmiany)
ggcorrplot(korelacje, lab = T, type = "lower")</pre>
```


Zmiany wartości obligacji nie są ze sobą silnie skorelowane. Największa zależność jest dla Wielkiej Brytanii i Kanady 0.33, Filipin i Kanady 0.27 oraz Turcji i Kanady 0.23.

Generowanie scenariuszy

W celu zastosowania metody Monte Carlo z wielowymiarowego rozkładu normalnego wylosowano 50 000 scenariuszy o parametrze sigma równym obliczonej macierzy korelacji.

```
set.seed(100)
mc<-rmvnorm(50000, sigma=korelacje)
mc<-as.data.frame(mc)
kable(head(mc))</pre>
```

Kanada	UK	Turcja	Filipiny
-0.5021924	-0.0419106	-0.1889033	0.7053816
0.1169713	0.3393847	-0.5366127	0.6561885
-0.8252594	-0.6124851	-0.1031207	-0.1507874
-0.2016340	0.6315621	0.0830252	-0.0020982
-0.3888542	0.3535542	-0.9721821	2.0032723
-0.4380900	0.5762385	0.1648287	0.7165609

Przypisanie ratingów

Kolejnym krokiem było przyporządkowanie ratingów do wygenerowanych wartości w scenariuszach. W tym celu dla każdego z państw, korzystając z macierzy przejścia utworzono przedziały pozwalające przyporządkować ratingi do wartości w scenariuszu.

Przedziały dla Kanady

```
macierzKanada<-matrix(data=0, nrow = 4, ncol=6)
macierzKanada[1,]<-c(0.085,0.0106, 0.0028, 0.0022, 0.001, 0)
macierzKanada[2,]<-c(1, 0.085, 0.0106, 0.0028, 0.0022, 0.001)

for (i in 1:6){
   macierzKanada[3,i]=quantile(mc$Kanada,macierzKanada[1,i])
   macierzKanada[4,i]=quantile(mc$Kanada, macierzKanada[2,i])
  }
colnames(macierzKanada)<-(c("AAA", "AA", "A", "BBB", "BB", "B"))
row.names(macierzKanada)<-c("Kwantyl od", "Kwantyl do", "Wartosc od", "Wartosc do")
kable(macierzKanada)</pre>
```

	AAA	AA	A	BBB	ВВ	В
Kwantyl od	0.085000	0.010600	0.002800	0.002200	0.001000	0.000000
Kwantyl do	1.000000	0.085000	0.010600	0.002800	0.002200	0.001000
Wartosc od	-1.352714	-2.294359	-2.756386	-2.814796	-3.026683	-4.012439
Wartosc do	4.007258	-1.352714	-2.294359	-2.756386	-2.814796	-3.026683

Przedziały dla Wielkiej Brytanii

	AAA	AA	Α	BBB	ВВ	В	ccc	D
Kwantyl od	0.993000	0.091500	0.023600	0.015300	0.004700	0.000300	0.000100	0.000000
Kwantyl do	1.000000	0.993000	0.091500	0.023600	0.015300	0.004700	0.000300	0.000100
Wartosc od	2.421189	-1.317558	-1.975183	-2.151387	-2.615892	-3.389500	-3.680474	-4.328088
Wartosc do	4.246541	2.421189	-1.317558	-1.975183	-2.151387	-2.615892	-3.389500	-3.680474

Przedziały dla Turcji

	AA	Α	BBB	ВВ	В	CCC	D
Kwantyl od	0.999100	0.997000	0.992100	0.924000	0.088300	0.000300	0.000000
Kwantyl do	1.000000	0.999100	0.997000	0.992100	0.924000	0.088300	0.000300
Wartosc od	3.144473	2.721377	2.404841	1.446706	-1.349508	-3.461741	-4.260687
Wartosc do	4.102648	3.144473	2.721377	2.404841	1.446706	-1.349508	-3.461741

Przedziały dla Filipin

	AAA	AA	Α	BBB	ВВ	В	CCC	D
Kwantyl od	0.99950	0.99520	0.933800	0.064500	0.014900	0.003000	0.001800	0.000000
Kwantyl do	1.00000	0.99950	0.995200	0.933800	0.064500	0.014900	0.003000	0.001800
Wartosc od	3.20704	2.57412	1.501052	-1.511801	-2.153723	-2.746707	-2.907919	-4.346755
Wartosc do	3.99432	3.20704	2.574120	1.501052	-1.511801	-2.153723	-2.746707	-2.907919

Funkcja przyporzadkujaca wartość ratingu wartościom scenariusza

W celu przyporządkowania ratingów dla wartości scenariusza utworzona została funkcja porządkująca, która jako orgumenty pobiera macierz z przedziałami dla danego kraju i wartości wylosowanych scenariuszy dla danego państwa.

```
porzadkuj<-function(macierzKraju, mcarl)</pre>
  if(colnames(macierzKraju)[1]=="AAA")
    aaa<-which((mcarl>(macierzKraju[3,1])))
    aa<-which((mcarl<(macierzKraju[4,2]))&mcarl>(macierzKraju[3,2]))
    a<-which((mcarl<(macierzKraju[4,3]))&mcarl>(macierzKraju[3,3]))
    bbb<-which((mcarl<(macierzKraju[4,4]))&mcarl>(macierzKraju[3,4]))
    bb<-which((mcarl<(macierzKraju[4,5]))&mcarl>(macierzKraju[3,5]))
    b<-which((mcarl<(macierzKraju[4,6]))&mcarl>=(macierzKraju[3,6]))
    if(ncol(macierzKraju)>6)
        ccc<-which((mcarl<(macierzKraju[4,7]))&mcarl>=(macierzKraju[3,7]))
        d<-which((mcarl<(macierzKraju[4,8]))&mcarl>=(macierzKraju[3,8]))
        mcarl[ccc]="CCC"
        mcarl[d]="D"
      }
    mcarl[aaa]="AAA"
   mcarl[aa]="AA"
    mcarl[a]="A"
   mcarl[bbb]="BBB"
   mcarl[bb]="BB"
   mcarl[b]="B"
  }
 else
  {
    aaa=0
    aa<-which((mcarl>(macierzKraju[3,1])))
    a<-which((mcarl<(macierzKraju[4,2]))&mcarl>(macierzKraju[3,2]))
    bbb<-which((mcarl<(macierzKraju[4,3]))&mcarl>(macierzKraju[3,3]))
    bb<-which((mcarl<(macierzKraju[4,4]))&mcarl>(macierzKraju[3,4]))
    b<-which((mcarl<(macierzKraju[4,5]))&mcarl>(macierzKraju[3,5]))
    ccc<-which((mcarl<(macierzKraju[4,6]))&mcarl>(macierzKraju[3,6]))
    d<-which((mcarl<(macierzKraju[4,7]))&mcarl>=(macierzKraju[3,7]))
   mcarl[aaa]="AAA"
   mcarl[aa]="AA"
   mcarl[a]="A"
   mcarl[bbb]="BBB"
   mcarl[bb]="BB"
   mcarl[b]="B"
   mcarl[ccc]="CCC"
   mcarl[d]="D"
  }
  return(mcarl)
}
```

Przypisane ratingi do scenariuszy

W wyniku zastosowania funkcji przyporządkującej utowrzony został data frame z przypisanymi wartościami ratingu dla wszystkich 50 000 scenariuszy. Poniżej wyświetlone zostało kilka początkowych scenariuszy.

Kanada	UK	Turcja	Filipiny
AAA	AA	В	BBB
AAA	AA	В	BBB
AAA	AA	В	BBB
AAA	AA	В	BBB
AAA	AA	В	Α
AAA	AA	В	BBB
AAA	AA	В	BBB
AAA	AA	В	BBB
AAA	AA	В	BBB
AAA	AA	В	BBB

Wyniki symulacji

Poniższa tabela przedstawia podsumowanie wyników zsumowania wszystkich wartości ratingów ze scenariusza dla różnych krajów.

Jak widać w prawie dzięwięćdziesięciu procentach przypadków rating danego kraju był taki sam jak najczęstszy wynik w scenariuszu.

W przypadku Kanady najniższy osiągnięty rating to B, nie osiągnęła więc ratingu bankructwa - D.

W przypadku wielkiej Brytanii, Turcji i Filipin wystąpił scenariusz, w którym nastąpiło bankructwo.

Co ciekawe **częściej rating D wystąpił dla Filipin** - ponad 90 razy, które miały wejściowy rating BBB, **niż w przypadku Turcji** - 15 razy, a jej rating wejściowy to B.

	Kanada	UK	Filipiny	Turcja
AAA	45750	350	25	0
AA	3720	45075	215	45
A	390	3395	3070	105
BBB	30	415	43465	245
BB	60	530	2480	3405
В	50	220	595	41785
CCC	0	10	60	4400
D	0	5	90	15

Obliczanie wartości portfela

W obligacje 3-letnie z każdego z tych państw zainwestowano po 1 000 000 USD.

Do obliczenia wartości portfela dla każdego z wygenerowanych scenariuszy używam napisanej funkcji, która oblicza wartość obligacji po pierwszym roku na podstawie przeciętnych stóp zwrotu z obligacji o podanym ratingu.

W przypadku wystąpienia ratingu D - bankructwa wartość obligacji dla danego państwa obliczamy przy pomocy ustalonej wcześniej stopy zwrotu równej 51,89%.

```
#przecietne stopy zwrotu z obligacji
aaa<-0.0427
aa < -0.0432
a < -0.0442
bbb<-0.0457
bb < -0.0612
b < -0.0711
ccc<-0.1452
d < -0.5189
stopy<-function(mcPanstwo, kwota){</pre>
  for (i in 1:length(mcPanstwo)){
    if(mcPanstwo[i]=="AAA"){
      mcPanstwo[i]=kwota/(1+aaa)^2
    }
    if(mcPanstwo[i]=="AA"){
      mcPanstwo[i]=kwota/(1+aa)^2
    if(mcPanstwo[i]=="A"){
      mcPanstwo[i]=kwota/(1+a)^2
    if(mcPanstwo[i]=="BBB"){
      mcPanstwo[i]=kwota/(1+bbb)^2
    }
    if(mcPanstwo[i]=="BB"){
      mcPanstwo[i]=kwota/(1+bb)^2
    if(mcPanstwo[i]=="B"){
      mcPanstwo[i]=kwota/(1+b)^2
    }
    if(mcPanstwo[i]=="CCC"){
      mcPanstwo[i]=kwota/(1+ccc)^2
    }
    if(mcPanstwo[i]=="D"){
      mcPanstwo[i]=kwota*d
    }
  return(mcPanstwo)
}
mc2 < -mc
mc2$Kanada<-as.double(stopy(mc2$Kanada, 1000000))</pre>
mc2$UK<-as.double(stopy(mc2$UK, 1000000))</pre>
mc2$Turcja<-as.double(stopy(mc2$Turcja, 1000000))</pre>
mc2$Filipiny<-as.double(stopy(mc2$Filipiny, 1000000))</pre>
kable(head(mc2,10))
```

Filipiny	Turcja	UK	Kanada
914504.4	871645.6	918892.8	919774.3
914504.4	871645.6	918892.8	919774.3

919774.3	918892.8	871645.6	914504.4
919774.3	918892.8	871645.6	914504.4
919774.3	918892.8	871645.6	917133.6
919774.3	918892.8	871645.6	914504.4
919774.3	918892.8	871645.6	914504.4
919774.3	918892.8	871645.6	914504.4
919774.3	918892.8	871645.6	914504.4
919774.3	918892.8	871645.6	914504.4

Obliczanie sumy portfela i strat

Następnie obliczam **wartość portfela**, czyli sumę wartości obligacji dla każdego ze scenariuszy oraz **straty**, czyli różnicę między wartością portfela, gdyby ratingi obligacji po roku nie uległy zmianie, a wartościami uzyskanymi w każdym ze scenariuszy.

Kanada	UK	Turcja	Filipiny	wartosc	strata
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	871645.6	917133.6	3627446	NA
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	762495.6	914504.4	3515667	109150.0173
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	917133.6	871645.6	887984.8	3596538	28278.6909
919774.3	918892.8	762495.6	914504.4	3515667	109150.0173
918892.8	918892.8	871645.6	914504.4	3623936	881.4168
919774.3	918892.8	871645.6	917133.6	3627446	NA

919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	871645.6	914504.4	3624817	NA
919774.3	918892.8	762495.6	914504.4	3515667	109150.0173
919774.3	918892.8	871645.6	887984.8	3598297	26519.5398

Obliczanie VaR

Wyznaczone wartości strat zebrano do wektora, posortowano i obliczono **99.9% VaR**. Obliczony przez nas VaR wynosi **504 754.4 USD**.

```
VaR<-NULL
VaR<-na.omit(mc2$strata)</pre>
VaR<-as.vector(VaR)</pre>
VaR<-sort(VaR)</pre>
# Kilka pierwszych wartości strat
head(VaR, 14)
    [1] 11.29798 11.29798 11.29798 11.29798 11.29798 11.29798
##
##
    [8]
         11.29798 881.41678 881.41678 881.41678 881.41678 881.41678 881.41678
# Wartość VaR
quantile(VaR, 0.999)
##
      99.9%
## 504754.4
```

Podsumowanie

W wygenerowanych scenariuszach w przeważającej większości scenariuszy dla każdego z państw pojawiły się ratingi identyczne z wejściowymi. W przypadku tylko jednego państwa - Kanady nie wystąpił scenariusz, w którym występowało bankructwo.

W innych państwach taki rating wystąpił, co ciekawe częściej wystąpił dla Filipin - rating wejściowy BBB niż dla Turcji - rating wejściowy B.

Obliczona dla naszego portfela obligacji wartość VaR wynosiła 504 754.4 USD.

Należy pamiętać o przyjętych w tym projekcie przybliżeniach między innymi korzystaliśmy z macierzy przejścia dla obligacji korporacyjnych, a nie rządowych, stopy procentowe również nie były aktualne. Przybliżenia te mogły mieć wpływ na otrzymane wyniki, więc nie należy wyciągać wniosków znajdujących realne odniesienie w rzeczywistości.

Bibliografia

Wykłady Ilościowe aspekty ryzyka dr Jacka Wolaka

https://pl.investing.com (https://pl.investing.com)

https://tradingeconomics.com (https://tradingeconomics.com)

http://www.kzm.pwsztar.edu.pl/~kzm_matematyka/szkola/referaty/Szwedo.pdf

(http://www.kzm.pwsztar.edu.pl/~kzm_matematyka/szkola/referaty/Szwedo.pdf)

https://biznes.interia.pl/makroekonomia/news/nowe-tygrysy-rosna-w-sile,2604551

(https://biznes.interia.pl/makroekonomia/news/nowe-tygrysy-rosna-w-sile,2604551)

https://pl.wikipedia.org/wiki/Wikipedia:Strona_główna

(https://pl.wikipedia.org/wiki/Wikipedia:Strona_główna)