

Deep learning takes-on the heart: classification of echocardiogram images

Maya Remington October 1st, 2021

The status quo

- Echocardiogram (aka "echo") = ultrasound of the heart
 - Widely used to assess heart function and structure
- Certain steps still require significant input by the human operator → errors
- Replacing these steps with machine learning has the potential to improve reliability and accuracy

Human selects frames:

Goals:

My project:

- Use deep learning to take a small step towards automating one part of the echocardiogram
- In particular I'm going to classify phases of the cardiac cycle

Ultimate goal:

Machine
Human
selects
frames:

Machine
Human
traces
features:

The cardiac cycle = Series of events occurring within a single heartbeat

2 phases:

Diastole (relaxation phase)

End-diastole: ventricles at max relaxation → max size

Systole (contraction phase)

End-systole: ventricles at max contraction → min size

Time →

Time End-diastole: End-systole: ventricles

ventricles at max relaxation → max size

End-systole: ventricles at max contraction→ min size

Data & Methods

EchoNet-Dynamic*

- 10,036 echo video clips
- All the same view: 4-chamber
- Grayscale
- Labeled

4 chamber view:

*Ouyang, David et al. "EchoNet-Dynamic: a Large New Cardiac Motion Video Data Resource for Medical Machine Learning." (2019)

Time →

Time End-diastole: End-systole: ventricles

ventricles at max relaxation → max size

End-systole: ventricles
at max contraction→
min size

Simple CNN (5 layers)

Accuracy = 0.743

- Model excels at distinguishing end-systole from end-diastole
- But struggles to classify the "Other" class
 - Likely due to greater heterogeneity

Poor image quality

Likely contributing to incorrect classification!

Conclusion

- A relatively simple CNN (plus a large data set!) classifies echocardiogram images fairly well
- This is one step towards replacing human input - and human error with machine learning
- In order to improve reliability and accuracy

Future Directions

- Generate more "Other" images representing the entire cardiac cycle
- Build a more advanced model:
 - Segmentation
 - CNN-RNN

Thank you!