STATISTIK INTERISIAL

SEBELUM MASUK KE MATERI STATISTIC INFERENSIAL, PAHAMI KEMBALI BAGAN STATISTIK BERIKUT

Dilihat dari aktivitas yang dilakukannya, statistik diklasifikasikan menjadi dua yakni:

1. Statistik deskriptif

Statistika yang hanya **menggambarkan dan menganalisis** kelompok data yang diberikan **TANPA MENARIK KESIMPULAN** mengenai populasi

2. Statistik inferensial

Statistika yang bertujuan untuk melakukan **PENARIKAN KESIMPULAN.** Sebelum menarik kesimpulan, dilakukan suatu dugaan yang diperoleh dari statistika deskriptif.

digunakan untuk menggeneralisasikan data sampel terhadap populasi. Oleh karena itu terdapat nilai signifikansi (a).

Perbedaan statistik inferensial dan statistik deskriptif

Statistik deskriptif

- Hanya mampu menggambarkan karakteristik
- 2. Tidak bisa digunakan untuk mengambil kesimpulan pada tingkat populasi

Statistik inferensia

- Memberikan
 analisis yang lebih
 mendalam
- Bisa digunakan untuk menarik kesimpulan pada tingkat populasi

PENGGUNAAN STATISTIK PARAMETRIS DAN NON-PARAMETRIS:

STATISTIK PARAMETRIS

- 1. Statistik parametris digunakan untuk menganalisis data interval dan rasio
- 2. Statistika parametrik adalah prosedur yang pengujian yang dilakukan berlandaskan distribusi.
- 3. Salah satu karakteristiknya penggunaan prosedur ini melibatkan asumsi-asumsi tertentu.
- 4. Contoh dari statistik parametrik adalah analisis regresi, analisis korelasi, analisis varians

STATISTIK NON- PARAMETRIS

- 1. Statistik non parametris digunakan untuk menganalisis data nominal dan ordinal.
- 2. Statistika non parametrik adalah prosedur dimana kita tidak melibatkan parameter serta tidak terlibatnya distribusi data.
- 3. Contoh: uji keacakan, uji kecocokan (goodness of fit),dll.

NON-PARAMETRIK

Kelebihan statistika non parametrik :

- 1. Asumsi yang digunakan dalam jumlah yang minimum maka kemungkina penggunaan secara salah juga kecil.
- 2. Untuk beberapa prosedur perhitungan dapat dilakukan dengan mudah secara manual.
- 3. Konsep-konsep dari prosedur ini menggunakan dasar matematika dan statistika yang mudah dipahami.
- 4. Prosedur ini dapat digunakan pada skala ordinal maupun nominal.

Kelemahan Statistika non-parametrik:

- 1. Jika suatu kasus yang dapat dianalisis dengan statistika parametrik, kemudian digunakan analisis statistika non parametrik akan menyebabkan pemborosan informasi.
- 2. Meskipun prosedur penghitungannya sederhana, perhitungannya kadang-kadang membutuhkan banyak tenaga dan menjemukan.

Kapan non-parametrik digunakan:

- 1. Bila hipotesis yang harus diuji tidak melibatkan suatu parameter populasi.
- 2. Bila skala pengukuran yang disyaratkan dalam statistika parametrik tidak terpenuhi misalnya skala ordinal dan nominal (Skala terendah).

STATISTIK PARAMETRIS

- Ukuran uji dalam Statistik parametris antara lain:
 - T-test
 - Anova
 - Korelasi.
- Uji statistik yang digunakan dalam statistik non parametris antara lain :
 - Binomial
 - Sign test
 - X² (chi kuadrat) dll.

CONTOH MENGUKUR UKURAN UJI STATISTIK PARAMETRIS

Uji T-Test

- Rumusan masalah : berapa rata-rata penayangan iklan di TV ?
- Hipotesis: rata-rata penayangan iklan di TV paling lama 120 menit.
- Uji hipotesis : t-test

Uji Korelasi Product Moment

- Rumusan masalah : Apakah ada pengaruh yang signifikan antara lamanya penayangan iklan di TV terhadap omset penjualan ?
- Hipotesis : lamanya penayangan iklan di TV sangat berpengaruh terhadap omset penjualan.
- Uji hipotesis : korelasi product moment

Uji Anova

- Rumusan masalah : apakah ada perbedan jumlah pembeli yang signifikan antara toko A, B dan C?
- Hipotesis: terdapat perbedaan jumlah pembeli yang signifikan antara toko A, B dan C.
- Uji hipotesis : Anova

CONTOH MENGUKUR UKURAN UJI STATISTIK NON-PARAMETRIS

UJI TEST BINOMIAL

- Test binomial: untuk sampel < 25 dan terdapat 2 kelompok (kaya-miskin, tua-muda, sarjana-non sarjana dll)
- Rumuşan masalah : apakah mahasiswa senang memilih kendaraan bensin atau solar ?
- Hypotesis : mahasiswa lebih memilih kendaraan solar.

UJI CHI KUADRAT

- Chi kuadrat : untuk sampel besar dan ada 2 atau lebih kelompok.
- Rumusan masalah : Warna cat mobil apa yang lebih diminati masyarakat jabotabek ?
- Hypotesis : masyarakat jabotabek lebih memilih warna cat mobil merah dibanding biru, metalik dan putih.

UJI SIGN TEST

- Sign test: digunakan untuk uji komparatif, datanya ordinal dan sampel berpasangan.
- Rumusan masalah : apakah ada pengaruh bonus terhadap kesejahtraan keluarga karyawan PT X ?
- Hypotesis : ada pengaruh yang positif antara bonus dengan kesejahtraan karyawan PT X.

