Name: 洪程川 ID: B113040056

5.7~5.8

Virtual Memory

Definition: A Memory Management technique that makes main memory (RAM) to have larger memory by using secondary memory.

How does Address Mapping Works ?

Key desicions in Designing Virtual Memory systems

Background: Page foult -) takes million of clock exclus to process

- Page : need to be large
- Pages tank can be handle by software

- Virtual Mamory chooses write back instead of write-through

Since disk transfer time is small compared to 1ts access time

Placing a Page and Finding it Again

Page falk,

5 techniques for reducing the amount of storage in page table

- A. Keep limit of the register Address space need in just 1 direction
- B. Create 2 separate page tables & 2 separate birit can grow from 2 direction
- C. Hashing the virtual address , making (page table 22 physical page) sized)
- D. Page tables to paged page tables placed in virtual address space.
- E. Multiple level of page tobles

TLO: Translation - lookeile buffer

How to handle TLD Misses & Page faults

· How can TLD Misses: no entry in the TLD Matches a virtual address

Transfering exception mechanism Resurving execution To the Operating System to interrupt the scive provey Need to be declared if the TUD miss/ Page tour

If it's the Virtual Address caused page fack.

3 steps will be taken:

- 1. Look up page table -> find location of references page.
- 2. Choose a physical page to replace
- 3. Road referenced page to the physical page

Common Framework for Memory Hierarchy

Block placement scheme we learn until now

Scheme name	Number of sets	Blocks per set
Direct mapped	Number of blocks in cache	1
Set associative	Number of blocks in the cache Associativity	Associativity (typically 2–16)
Fully associative	1	Number of blocks in the cache
~		

chose depend on the MISS VS COST at implementing

Ex: 12 cache -> higher associativity (but times x critical)

Virtual Memory -> Full Associativy

- Misses are very expensive
- Can easily index, no extra harduare
- Allow software to use sophisticated schemos

2 Replacement Blocks Techniques

- Randon: Randonly chose, use some handware

- Least Recently Used (LAU) = replace block that ham's Ly used in larger as sociativity been used for the larger

2 techniques on Write Write - through used in cache etinition: Information written to cach

Advantages: - Exier to implement

Write - back

Definition: Information written to cache & lower level
remory hierarchy (ROM for a cache)

Definition: The information is written to cashed only.

The information untition to lover level memory hierarch

only when it's replaced

Advantages : - Effective use of high-banduilth transfer

- Multiple writes -> 1 unter

- Individual words can be unition by the processor

Miss Rate Sources

- Miss are cheaper

3 Sources of Miss Rate

1. Compulsory misses (cold-start misses).

cause: first access to a block that Isn't in the cache

2. Capacity Misses

cause: cache can't contain all the blocks

3. Conflict misses

cause i multiple blocks compete for the same set

Design Consideration

Design change	Effect on miss rate	Possible negative performance effect
Increases cache size	Decreases capacity misses	May increase access time
Increases associativity	Decreases miss rate due to conflict misses	May increase access time
Increases block size	Decreases miss rate for a wide range of block sizes due to spatial locality	Increases miss penalty. Very large block could increase miss rate

Block placement