

Diseño de Albañilería Estructural <u>Entrega Nº2</u>

Código del curso: CI5223-1

Integrantes: Maitane Balsebre

Felipe González

Alonso Carpio

Alejandro Celis

Profesor: Thomas Sturm

Auxiliar: Francisco Cabezas

Fecha de entrega: Jueves 19 de octubre, 2017

${\rm \acute{I}ndice}$

1.	Introducción	1
2.	Metodología	1
	2.1. Construcción de grilla	2
	2.2. Definición de materiales y elementos	
	2.3. Dibujado de elementos	6
	2.4. Mallado de muros y losas	6
	2.5. Solicitaciones y análisis modal	8
	· ·	9
	2.7. Combinaciones de carga según NCh3171	
3.	Resultados	11
	3.1. Peso y masa sísmica de la Estructura	11
		12
		12
	3.4. Verificaciones de Compresión y Corte	15
	3.5. Cortes Basales Máximos y Mínimos	
		21

1. Introducción

En el presente informe tiene por objeto mostrar el desarrollo del análisis de un edificio de uso habilitación, de 5 pisos, con un sistema estructural de muros de albañilería armada ubicada en Melipilla sobre un tipo de suelo C.

El análisis se desarrollará de acuerdo a la norma NCh433 utilizando los métodos modal espectral para cada dirección. Como resultados esperados que se entregarán en este informe, se encuentran:

- Peso sísmico.
- Cortes Basales máximos y mínimos.
- Factores de reducción.
- Análisis de desplazamientos entre piso.
- Espectro de diseño.
- Periodos naturales.
- Verificación de compresión y corte de los muros.
- Torsión accidental.

2. Metodología

En esta sección se presenta toda la metodología utiliZada para la modelación y diseño de la estructura. A continuación se presentan los parámetros utilizados:

Tabla 1: Parámetros establecidos por NCh433.

Valor	
0.4 [S]	
0.4 [g]	
3	
3	
1.2	
0.45 [S]	
1.4	
1.6	
1.2	

Tabla 2: Alturas entre piso.

Pisos	Altura [cm]
Base - Piso 1	263
Piso 1 - Piso 2	233
Piso 2 - Piso 3	233

Tabla 3: Espesores de elementos.

Elemento	Espesor [cm]
Muro	14
Losa	12
Viga	14/20

Tabla 4: Cargas por piso.

Cargas por piso	Valor $[kgf/m^2]$
Sobre Carga	200
Carga Muerta	150

2.1. Construcción de grilla

Se elaboró la grilla en función de los ejes y espaciamiento mostrados en las ilustraciones 1 y 2 que se muestra a continuación. Además, se escogen las unidades de toneladas, metros, segundos y celsius para la fuerza, distancia, tiempo y temperatura respectivamente.

Ilustración 1: Formato Grilla.

Ilustración 2: Definición de Story.

2.2. Definición de materiales y elementos

Los materiales definidos en el modelo son los que se mencionaron en la entrega 1, con un hormigón de calidad H25 con un 90 %. La albañileria esta compuesta de unidades de cerámicas de 29x14x7.1 con una resitencias prismática de 3.75 Mpa. Posteriormente se definieron los elementos que componen el edificio, estos son: Muros de albañileria de 14 cm, losa de 12 cm, viga de hormigon armado 14/20, las propiedades de los materiales y los elementos se presentan a continuación en las ilustraciones 3, 4, 5 y 6:

Ilustración 3: Definición material, albañilería.

Ilustración 4: Definición material, hormigón.

Ilustración 5: Configuración de las propiedades del elemento muro.

Ilustración 6: Configuración de las propiedades del elemento losa.

2.3. Dibujado de elementos

Despues de la definición de elementos y materiales, se procede a dibujar las plantas de los pisos según la Ilustración 7. Además, se cabió la configuración de las losas para que estas se comporten como diafragma semi-rígido. Se seleccionó la opción .^Assign-Shell Area-Diaphragms", y se asignó a cada piso dicho comportamiento.

Ilustración 7: Asignación diafragma semi - rígido.

Ilustración 8: Configuración de planta para piso.

2.4. Mallado de muros y losas

Al seguir con el procedimiento, los muros del modelos fueron divididos con el objetivo de tener una mejor discretización de elementos finitos en nuestro modelo y de esta manera tener un comportamiento más aproximado a la realidad de los elementos.

Ilustración 9: Mallado de losas y muros.

Además con la opción "Joint Assignment - Restraints" se asigna que el edificio se encuentra empotrado a la base. Como se ve en la ilustración 10.

Ilustración 10: Empotramiento base.

Finalmente se obtiene el modelo final del edificio como se observa en la ilustración 11 en tercera dimensión.

Ilustración 11: Modelo final.

2.5. Solicitaciones y análisis modal

Las solicitaciones se ingresan a partir del menú "Define-Static Load Cases", donde se configuró el tipo de carga, viva o muerta, como se ve en la ilustración 12. Cabe destacar que el peso de la estructura, al ser una carga muerta, se agrega el PP con el multiplicador 1 y utilizando un multiplicador 0 en las cargas de tipo SC.

Ilustración 12: Load cases.

Luego, se debe aplicar las cargas definidas en todas las losas del edificio, se utiliza el menú .^assign-Shell Area Load-Uniformz se le indica al programa la magnitud y dirección de las solicitaciones (ver ilustración 13 y 14). Posteriormente, se define el peso sísmico del edificio según el menú "Define-Mass Source" (ver ilustración 15)

Ilustración 13: Aplicación de carga muerta.

Ilustración 14: Aplicación de carga viva.

Ilustración 15: Definición del peso sísmico.

2.6. Obtención del factor de reducción para espectro inelástico

Para calcular el espectro de diseño se deben calcular el factor de reducción y el factor de amplificación. El factor de reducción, se asocia al modo que tiene la mayor masa, es decir que tiene el periodo fundamental de la estructura y está dado por la siguiente expresión.

$$R = 1 + \frac{Tn}{0, 1 * T_0 + Tn/R_0}$$

Luego el factor de amplificación es el que le da la forma al espectro de diseño y se utiliza la siguiente expresión para calcularlo:

$$\alpha = \frac{1 + 4,5 * (T/T_0)^p}{1 + (T/T_0)^3}$$

Finalmente el espectro de diseño queda dado por:

$$S_a = \frac{S * A_0 * \alpha}{R/I}$$

El espectro de respuesta se definió a partir de lo expuesto en la Nch433, utilizando los parámetros entregados en la tabla 1 se obtiene el espectro elástico que se puede observar en la ilustración 16. Los periodos y los factores de participación modal efectiva de cada modo obtenidos en el modelo de ETABS, para el espectro inelástico se muestran a continuación.

Ilustración 16: Espectro de diseño.

Tabla 5: Periodos y factores de participación modal espectro elástico

Modo	T [s]	UX	UY	SumUX	SumUY	RZ	SumRZ
1	0.113	0.8506	0.0067	0.8506	0.0067	0.02	0.9758
2	0.107	0.0062	0.8282	0.8568	0.8349	0.0015	0.9837
3	0.074	0.022	0.0005	0.8787	0.8354	0.8713	0.9881
4	0.054	0	0.0229	0.8787	0.8583	4.89E-05	0.9881
5	0.041	0.1024	1.79E-05	0.9812	0.8583	0.0031	0.9881
6	0.039	2.70E-05	0.118	0.9812	0.9763	0	0.9965
7	0.029	0.0019	1.24E-05	0.9831	0.9763	0.0795	0.9965
8	0.027	0.0131	0.001	0.9962	0.9773	0.0004	0.9983
9	0.027	0.0019	0.0081	0.9981	0.9854	3.93E-05	0.9983
10	0.025	2.88E-06	0.0102	0.9981	0.9956	0	0.9983

En la cual se observa que para el modo 6, ya se mueve más de el 90 % de la masa para cada dirección de análisis. Dado lo anterior y según lo establecido en la NCh433 se calcula un factor de reducción para los tres modos de vibrar principales, lo cual se presenta en la tabla que se muestra a continuación.

Tabla 6: Factores de reducción a partir del espectro elástico

Modo	Tn	diercción	%masa	R*
1	0.113	UX	0.8506	2.454936
2	0.107	UY	0.8282	2.414097
3	0.074	RZ	0.8713	2.14433

A partir de los factores de reducción calculados se pueden reducir los cortes obtenidos del modelo. A continuación se muestran los cortes obtenidos en el modelo reducidos por el factor R*.

Tabla 7: Cortes reducidos espectro elástico

QX [tonf]	36.05
QY[tonf]	5.61

Obtenidos estos cortes se comparan con el corte máximo y mínimo establecido por la norma, los cuales se muestran en la siguiente tabla.

Tabla 8: Corte mínimo y máximo

Qmin [tonf]	23.72
Qmax [tonf]	85.41

Dado el corte máximo y mínimo se observa que el corte en x se encuentra dentro del rango permitido, mientras que el corte en Y es menor por lo cual se reemplaza por el corte mínimo. Lo anterior permite calcular el factor de reducción real para el espectro el cual se muestra a continuación para ambas direcciones de análisis.

Tabla 9: Factores de escala.

Dirección	Qe/R*	1/R*	R**
X	36.05	0.41	2.45
Y	23.72	1.75	0.57

A partir de lo anterior se reducen los espectros y se corre el modelo con el espectro reducido.

2.7. Combinaciones de carga según NCh3171

Se muestran las combinaciones de carga utilizada en el análisis, para el diseño de albañilería se utiliza el análisis ASD y para el diseño de los elementos de hormigón se realiza un análisis LRFD

Combinaciones diseño de elementos de Albañilería

- PP
- \blacksquare PP + SC
- $PP + SC \pm SX$
- $PP + SC \pm SY$
- \blacksquare PP \pm SX
- PP ± SY

Combinaciones diseño de elementos de Hormigón

- 1.4PP
- 1.2PP + 1.6SC
- $1.2PP + SC \pm 1.4SX$
- $1.2PP + SC \pm 1.4SY$
- \bullet 0.9PP \pm 1.45SX
- $-0.9PP \pm 1.45SY$

3. Resultados

3.1. Peso y masa sísmica de la Estructura

Tabla 10: Peso cargas piso 1

Carga	Peso [tonf]
D	203.9091
L	172.854
LR	0

Tabla 11: Peso y masa sísmica del edificio

Peso Sísmico [tonf]	247.12
Masa sísmica [tonf s2/m]	25.22

3.2. Análisis por torsión accidental

Dado que el edificio no es completamente simétrico se, realiza un análisis por torsión accidental, en la cual se presentan excentricidades dadas por:

$$e_{x,y} = 0.1b_k \frac{Z_k}{H}$$

En donde:

 b_k : es la mayor dimensión de la planta.

 Z_k : la altura de base a la losa. H: la altura total del edificio.

Tabla 12: Excentricidades de cada piso

Piso	Zk	ekx	eky
1	2.48	0.21	0.53
2	4.81	0.40	1.04
3	7.14	0.60	1.54

3.3. Análisis de Desplazamientos

La relación entre el desplazamiento del centro de masa entre cada piso queda dada por la siguiente expresión:

$$\Delta \text{CM} = \frac{1000}{h} \le 2$$

En donde:

 Δ CM: es el desplazamiento relativo del centro de masa.

h: la altura entre piso.

La relación entre el desplazamiento máximo entre cada piso está dado por la siguiente expresión:

$$\Delta Piso\frac{1000}{h} \leq 1 + \Delta \text{CM} {=} \frac{1000}{h}$$

En donde:

 Δ Piso: es el desplazamiento máximo entre pisos.

A continuación se observan los desplazamientos del centro de masa de los pisos del edificio y los desplazamientos máximos entre piso con respecto al sismo en x.

Tabla 13: Desplazamiento centro de masa para el sismo en la dirección x

Piso	Carga	UX [m]	UY[m]	Zk[m]	dCMx[m]	dCMy[m]
1	SX Max	0.0004	2.5E-05	2.48	0	0
2	SX Max	0.0008	5.1E-05	4.81	0.17167	-0.01116
3	SX Max	0.0011	7.1E-05	7.14	0.12961	-0.00858

Gráfico Desplazamiento del Centro de Masa por Piso Sx

Ilustración 17: Desplazamiento centro de masa sismo en x.

Tabla 14: Desplazamiento máximo entre pisos para el sismo en la dirección x

Piso	Carga	Zk[m]	DriftX [m]	Dpx[m]	Dpxlim[m]	DriftY[m]	Dpy	Dpylim
1	SX Max	2.48	0.00017	0.08169	1.00000	0.00004	-0.01803	-1.00000
2	SX Max	4.81	0.00018	0.07597	1.17167	0.00004	-0.01888	-1.01116
3	SX Max	7.14	0.00004	0.01502	1.12961	0.00013	-0.05451	-1.00858

Ilustración 18: Desplazamiento máximo entre pisos sismo en x.

Luego se observan los desplazamientos del centro de masa y máximos entre piso para el sismo en y.

Tabla 15: Desplazamiento centro de masa para el sismo en la dirección y

Piso	Carga	UX [m]	UY[m]	Zk[m]	dCMx[m]	dCMy[m]
1	SY	0.000014	0.000258	2.48	0.00	0.00
2	SY	0.000029	0.000536	4.81	0.006	-0.12
3	SY	0.000040	0.000759	7.14	0.005	-0.10

Gráfico Desplazamiento del Centro de Masa por Piso Sy

Ilustración 19: Desplazamiento centro de masa sismo en y.

Tabla 16: Desplazamiento máximo entre pisos para el sismo en la dirección y

Piso	Carga	Zk[m]	DriftX [m]	Dpx[m]	Dpxlim[m]	DriftY[m]	Dpy	Dpylim
1	SY	2.48	0.00002	0.00858	1.00000	0.00010	-0.04120	-1.00000
2	SY	4.81	0.00003	0.01245	1.00644	0.00012	-0.05021	-1.11931
3	SY	7.14	0.00003	0.01073	1.00472	0.00010	-0.04163	-1.09571

Gráfico Desplazamiento por Piso Sy Altura acumulada 8.00 Zk [m] **─** dplímx 7.00 --- dplímy 6.00 5.00 4.00 2.00 1.00 0.00 1.00E+00 -1.50E+00 -1.00E+00 -5.00E-01 0.00E+00 5.00E-01 1.50E+00 Desplazamiento [m]

Ilustración 20: Desplazamiento máximo entre pisos sismo en y.

Se destaca que tanto los desplazamientos del centro de masa como los desplazamientos máximos entre piso cumplen con lo especificado por la norma siendo menores a 2/1000 y 1/1000 respectivamente.

3.4. Verificaciones de Compresión y Corte

Tabla 17: Verificación de Compresión en los muros del piso 1

Story	Pier	P [tonf]	V2 [tonf]	M3[tonf m]	Fa [ton/m2]	Largo [m]	Cumple compre- sión
1	P10	-5.1552	-2.498	-1.2504	67.23	0.93	cumple
1	P11	-5.5619	-1.7118	1.3821	67.23	0.792	cumple
1	P112	-22.1285	-6.1946	5.1734	67.23	6.2	cumple
1	P113	-26.1354	6.8826	10.1215	67.23	6.2	cumple
1	P12	-9.7632	2.7098	2.1546	67.23	1.19	cumple
1	P13	-3.2971	0.4592	0.1893	74.08	0.32	cumple
1	P14	-2.8837	0.4417	0.1931	74.08	0.32	cumple
1	P15	-9.755	2.8135	2.1836	74.08	1.19	cumple
1	P16	-5.9995	1.6869	1.3411	74.08	0.792	cumple
1	P17	-5.2849	1.7705	1.059	74.08	0.93	cumple
1	P3	-17.366	4.2731	11.1917	74.08	2.76	cumple
1	P41	-9.6088	2.765	2.7426	74.08	1.73	cumple
1	P42	-6.7078	2.5575	1.3779	74.08	0.99	cumple
1	P43	-11.7221	4.0191	3.4022	74.37	1.62	cumple
1	P44	-11.697	4.153	3.303	74.37	1.62	cumple
1	P45	-6.7253	2.4657	1.4096	67.23	0.99	cumple
1	P46	-9.7319	2.8225	2.6688	74.08	1.73	cumple
1	P49	-65.3247	18.1799	36.7533	74.08	15.73	cumple
1	PA	-32.8121	6.7783	19.7894	74.08	6.226	cumple
1	PB	-17.9781	3.92	10.2274	74.08	3.016	cumple
1	PC	-12.2295	3.0447	3.202	74.08	2.081	cumple
1	PD	-17.8899	3.903	10.0744	74.08	3.016	cumple
1	PE	-36.8957	7.1192	19.6377	74.37	6.226	cumple

Tabla 18: Verificación de Compresión en los muros del piso $2\,$

Story	Pier	P [tonf]	V2 [tonf]	M3[tonf m]	Fa [ton/m2]	Largo [m]	Cumple compresión
2	P10	3.9069	2.4423	1.4134	69.60	0.93	cumple
2	P11	4.5134	2.3968	1.8629	69.60	0.792	cumple
2	P110	18.8152	8.6705	13.444	69.60	6.2	cumple
2	P111	18.9125	8.3675	11.3219	69.60	6.2	cumple
2	P12	7.4091	3.1983	2.5462	69.60	1.19	cumple
2	P13	3.0962	0.7661	0.3415	74.08	0.32	cumple
2	P14	2.8685	0.843	0.3449	74.08	0.32	cumple
2	P15	7.53	3.2504	2.5878	74.08	1.19	cumple
2	P16	4.6005	2.2575	1.7693	74.08	0.792	cumple
2	P17	3.6719	2.3612	1.3532	74.08	0.93	cumple
2	P3	13.6461	3.4782	4.2577	74.08	2.76	cumple
2	P41	6.9926	3.6698	2.7779	74.08	1.73	cumple
2	P42	5.8611	2.927	1.675	74.08	0.99	cumple
2	P43	9.3482	4.283	2.7189	74.75	1.62	cumple
2	P44	9.3361	4.2824	2.6437	74.75	1.62	cumple
2	P45	5.8275	2.9197	1.7017	69.60	0.99	cumple
2	P46	7.0646	3.7993	2.8345	74.08	1.73	cumple
2	P48	49.4827	20.1446	29.3125	74.08	15.73	cumple
2	PA	27.4781	7.9516	13.4383	74.08	6.226	cumple
2	PB	16.2329	4.4799	5.7225	74.08	3.016	cumple
2	PC	10.9549	3.1947	2.1406	74.08	2.081	cumple
2	PD	16.0318	4.3242	5.4571	74.08	3.016	cumple
2	PE	27.9528	8.3727	13.9135	74.75	6.226	cumple

Tabla 19: Verificación de Compresión en los muros del piso $3\,$

Story	Pier	P [tonf]	V2 [tonf]	M3[tonf m]	Fa [ton/m2]	Largo [m]	Cumple compre- sión
3	P10	-1.3176	1.6214	0.8073	69.60	0.93	cumple
3	P11	-2.4891	1.3471	1.0881	69.60	0.792	cumple
3	P12	-3.9376	1.7241	1.6434	69.60	1.19	cumple
3	P13	-1.5203	0.5931	0.2978	69.60	0.32	cumple
3	P14	-1.3197	0.7608	0.2956	69.60	0.32	cumple
3	P15	-3.965	1.762	1.6835	74.08	1.19	cumple
3	P16	-2.4891	1.2959	1.0404	74.08	0.792	cumple
3	P17	-1.2871	1.5733	0.7871	74.08	0.93	cumple
3	P18	-8.6191	4.5644	7.065	74.08	6.2	cumple
3	P19	-8.6568	4.4643	6.2795	74.08	6.2	cumple
3	P3	-7.3153	1.3788	3.0059	74.08	2.76	cumple
3	P41	-2.5263	2.582	1.8057	74.08	1.73	cumple
3	P42	-3.4407	1.4993	0.7222	74.08	0.99	cumple
3	P43	-3.9449	2.1286	1.0591	74.75	1.62	cumple
3	P44	-3.8991	2.053	1.0355	74.75	1.62	cumple
3	P45	-3.4531	1.528	0.7422	69.60	0.99	cumple
3	P46	-2.5368	2.6609	1.8198	74.08	1.73	cumple
3	P47	-23.1557	9.8489	11.4851	74.08	15.73	cumple
3	PA PA	-12.2783	4.3938	5.1616	74.08	6.226	cumple
3	PB	-8.2651	2.5645	5.9941	74.08	3.016	cumple
3	PC	-5.2978	2.0694	1.0328	74.08	2.081	cumple
3	PD	-8.1124	2.4746	5.4709	74.08	3.016	cumple
3	PE	-12.4048	4.5665	5.3109	74.75	6.226	cumple

Tabla 20: Verificación de Corte en los muros del piso $1\,$

Story	Pier	V2 [tonf]	M3[tonf m]	M/Vd	tau [ton/m2]	cumple corte
1	P10	-2.498	-1.2504	0.58069658	17.6253363	Cumple
1	P11	-1.7118	1.3821	1.01943905	11.61895	Cumple
1	P112	-6.1946	5.1734	0.13160207	23.4635648	Cumple
1	P113	6.8826	10.1215	0.23173535	22.1618322	Cumple
1	P12	2.7098	2.1546	0.66592465	16.5173713	Cumple
1	P13	0.4592	0.1893	1.59782433	11.61895	Cumple
1	P14	0.4417	0.1931	1.69447501	11.61895	Cumple
1	P15	2.8135	2.1836	0.6500127	16.7242267	Cumple
1	P16	1.6869	1.3411	1.00379873	11.61895	Cumple
1	P17	1.7705	1.059	0.69389341	16.1537774	Cumple
1	P3	4.2731	11.1917	0.90313985	13.4335737	Cumple
1	P41	2.765	2.7426	0.59537739	17.4344857	Cumple
1	P42	2.5575	1.3779	0.54256629	18.1210299	Cumple
1	P43	4.0191	3.4022	0.52092795	18.4023284	Cumple
1	P44	4.153	3.303	0.48943303	18.8117623	Cumple
1	P45	2.4657	1.4096	0.57571349	17.6901164	Cumple
1	P46	2.8225	2.6688	0.56755386	17.7961916	Cumple
1	P49	18.1799	36.7533	0.12965911	23.4888234	Cumple
1	PA	6.7783	19.7894	0.47971124	18.9381457	Cumple
1	PB	3.92	10.2274	0.84489333	14.1907784	Cumple
1	PC	3.0447	3.202	0.49189128	18.7798052	Cumple
1	PD	3.903	10.0744	0.83587887	14.3079664	Cumple
1	PE	7.1192	19.6377	0.45323922	19.2822819	Cumple

Tabla 21: Verificación de Corte en los muros del piso 2

Story	Pier	V2 [tonf]	M3[tonf m]	M/Vd	tau [ton/m2]	cumple corte
2	P10	2.4423	1.4134	0.67	16.45	Cumple
2	P11	2.3968	1.8629	0.98	12.42	Cumple
2	P110	8.6705	13.444	0.24	22.00	Cumple
2	P111	8.3675	11.3219	0.21	22.40	Cumple
2	P12	3.1983	2.5462	0.67	16.51	Cumple
2	P13	0.7661	0.3415	1.73	11.62	Cumple
2	P14	0.843	0.3449	1.59	11.62	Cumple
2	P15	3.2504	2.5878	0.67	16.51	Cumple
2	P16	2.2575	1.7693	0.99	12.31	Cumple
2	P17	2.3612	1.3532	0.66	16.53	Cumple
2	P3	3.4782	4.2577	0.42	19.69	Cumple
2	P41	3.6698	2.7779	0.45	19.27	Cumple
2	P42	2.927	1.675	0.58	17.68	Cumple
2	P43	4.283	2.7189	0.39	20.10	Cumple
2	P44	4.2824	2.6437	0.38	20.24	Cumple
2	P45	2.9197	1.7017	0.59	17.54	Cumple
2	P46	3.7993	2.8345	0.45	19.35	Cumple
2	P48	20.1446	29.3125	0.09	23.96	Cumple
2	PA	7.9516	13.4383	0.28	21.56	Cumple
2	PB	4.4799	5.7225	0.41	19.80	Cumple
2	PC	3.1947	2.1406	0.31	21.10	Cumple
2	PD	4.3242	5.4571	0.41	19.86	Cumple
2	PE	8.3727	13.9135	0.27	21.62	Cumple

Tabla 22: Verificación de Corte en los muros del piso 3

Story	Pier	V2 [tonf]	M3[tonf m]	M/Vd	tau [ton/m2]	cumple corte
3	P10	1.6214	0.8073	0.58	17.67	Cumple
3	P11	1.3471	1.0881	1.02	11.62	Cumple
3	P12	1.7241	1.6434	0.80	14.80	Cumple
3	P13	0.5931	0.2978	1.95	11.62	Cumple
3	P14	0.7608	0.2956	1.51	11.62	Cumple
3	P15	1.762	1.6835	0.80	14.77	Cumple
3	P16	1.2959	1.0404	1.01	11.62	Cumple
3	P17	1.5733	0.7871	0.58	17.63	Cumple
3	P18	4.5644	7.065	0.24	22.00	Cumple
3	P19	4.4643	6.2795	0.22	22.29	Cumple
3	P3	1.3788	3.0059	0.75	15.40	Cumple
3	P41	2.582	1.8057	0.42	19.72	Cumple
3	P42	1.4993	0.7222	0.49	18.87	Cumple
3	P43	2.1286	1.0591	0.31	21.19	Cumple
3	P44	2.053	1.0355	0.31	21.14	Cumple
3	P45	1.528	0.7422	0.49	18.82	Cumple
3	P46	2.6609	1.8198	0.41	19.84	Cumple
3	P47	9.8489	11.4851	0.07	24.20	Cumple
3	Pa	4.3938	5.1616	0.19	22.67	Cumple
3	Pb	2.5645	5.9941	0.76	15.33	Cumple
3	Pc	2.0694	1.0328	0.23	22.14	Cumple
3	Pd	2.4746	5.4709	0.72	15.87	Cumple
3	Pe	4.5665	5.3109	0.19	22.69	Cumple

3.5. Cortes Basales Máximos y Mínimos

Los cortes máximos y mínimos según la norma Nch 433, mod. 2009

Tabla 23: Cortes basales mínimos y máximo según norma

Qmin [tonf]	23.72
Qmax [tonf]	85.41

Con los espectros calculados se calcula los cortes basales para el espectro reducido

Tabla 24: Cortes basales espectro reducido

QX [tonf]	36.05
QY[tonf]	5.61

se modifica el espectro, al no cumplir con el corte mínimo en la dirección Y, obteniendo los siguientes cortes basales.

Tabla 25: Cortes basales espectro reducido

QX [tonf]	36.28
QY[tonf]	23.7

3.6. Conclusiones

De los resultados obtenidos se observa en primer lugar que las consideraciones hechas en el modelo permiten representar el comportamiento del edificio.

Se ocupó un análisis modal en el cual se construyó un espectro a partir de los valores de la tabla 1. A partir de esto se obtuvieron los periodos fundamentales de la estructura, los cuales son de aproximadamente 0.1 segundos, que cumple con lo esperado teóricamente para un edificio de tres pisos.

Con respecto a los cortes reducidos se destaca que el corte en x cumple con el rango de corte mínimo y máximo, mientras que el corte en y se encuentra por debajo de este límite por lo cual debe ser amplificado.

En relación al peso sísmico del edificio, se destaca que se obtuvo a partir de las cargas totales en la base del edificio, considerando de esta manera el peso del edificio completo mas un 25 % de la carga viva.

Dado que el edicio no es completamente simétrico se, realiza un análisis por torsión accidental, en la cual se presentan excentricidades, las cuales dan valores relativamente bajos.

En relación a los desplazamientos se destaca tanto los desplazamientos del centro de masa como los desplazamientos relativos entre piso cumplen ocn lo establecido por la norma y se encuentran lejos del límite establecido.

En relación a la fuerza de compresión y corte de cada muro, se destaca que para todas las combinaciones de carga se cumple lo establecido con la norma para las fuerzas admisibles.