ファイル変換(TXTtoRTS)

CSV形式やテキスト形式のファイルからRTSファイルを作成するプログラムです。TXTtoRTSでは以下の形式のファイルをRTSファイルに変換できます。No1~No3までのデータタイプは簡易なデータ構造からRTSファイルを作成します。No4はRTSファイルの内容と同等でRTSファイルのテキスト版です。テキスト形式のファイルで作成したい場合にご使用下さい。

No	データタイプ	説明	
1	離散型	X座標、Y座標、値のデータ	
2	<u>矩形</u>	矩形を定義する2点のX・Y座標と値のデータ	
3	<u>グリッド</u>	基準点、X・Y方向の長さと分割数のデータ	
4	FEM詳細形式	節点、要素、計算結果などから構成されるデータ	

<操作手順>

以下に操作手順の概要を示します。

- 変換元ファイルのファイル参照ボタンをクリックし、変換元となるファイルを指 定します。
- 変換先ファイルは変換元ファイルを指定した時点で、自動的に設定されますが、 ファイル名を変更したい場合、変換先のファイルを指定して下さい。
- ◆ <変換>ボタンをクリックするとRTSファイルが作成されます。

<離散型データの形式と説明>

離散型データはX座標、Y座標、値で構成されたデータです。X・Y座標が節点に相当し、この節点に基いて要素を自動的に生成します。1ステップ、複数アイテムのRTSフ

ァイルを作成します。要素を生成するために、データは3つ以上必要です。また、平面要素が構成できないデータは扱えません。(座標の並びが直線にしかならないデータ)

以下に離散型データの形式を示します。データの区切りはカンマもしくはスペースで表現します。

行数	説明
1行目	固定文字列「#TPPOINT10」を記述
2行目	データラベル「値1のラベル〜値Nのラベル」
3行目以降	複数のデータ「X座標、Y座標、値1〜値N」

<データ例>

#TPP0INT10		
沈下		
0.0	0.0	1.0
0.0	-1.0	1.1
0.0	-2.0	1.2
1. 0	-1.0	1.5

<表示例>

<矩形データの形式と説明>

矩形型データは矩形を構成する2点のX・Y座標と値で構成されたデータです。矩形情報から擬似メッシュを生成します。1ステップ、複数アイテムのRTSファイルを作成します。擬似メッシュは通常のFEMメッシュとは異なります。

以下に矩形データの形式を示します。データの区切りはカンマもしくはスペースで表現します。

行数	説明	
1行目	固定文字列「#TPRECT10」を記述	
2行目	データラベル「値1のラベル〜値Nのラベル」	
II .	複数のデータ「X1座標、X2座標、Y1座標、Y2座標、値1〜値N」 X1・Y1座標は矩形の左下の座標、X2・Y2は矩形の右上の座標で す。	

<データ例>

<表示例>

<グリッドデータの形式と説明>

矩形型データはX・Y座標の基準点、X・Y方向の長さと分割数のデータで構成されたデータです。グリッド情報からメッシュを生成します。1ステップ、複数アイテムのRTSファイルを作成します。

以下にグリッドデータの形式を示します。データの区切りはカンマもしくはスペースで表現します。

行数	説明
1行目	固定文字列「#TPGRID10」を記述
2行目	グリッド「X座標、Y座標、X方向長さ、Y方向長さ、X方向分割 数、Y方向分割数」
3行目	データラベル「値1のラベル〜値Nのラベル」
4行目以降	複数のデータ「値1〜値N」 Y方向昇順後、X方向昇順にデータを並べます。以下のメッシュイ メージ参照

<データ例>

#TPGRID10	П	
0.0 0.0 3.0 2.0 3	2	
│ 沈下量		メッシュイメージ
0.1		3 6 9 12
0. 3		++
0. 4 0. 5		
0.5		2++11
0.7		5 8
0.8		ļļ
1.0		1 4 7 10
1.1		
1. 2	\perp	

<表示例>

<FEMデータの形式と説明>

FEM形式で構成されたデータです。複数ステップ、複数アイテムのRTSファイルを作成します。

形式

"#"以降はコメント行です。

6つのセクションからなり、各セクションでは他のセクションに依存する値を持ちます。

各セクションの出力順番は以下の通りです。

セクションは文字列が[]で囲まれています。

1行目には固定文字列 **#TPTMS10** を記述します。 以下の説明ではラベルは<mark>赤色</mark> で表示しています。

■ 初期条件

[ATTRIBUTE]ラベルで始まるセクション description=title

ll	11 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
title	解析タイトル
Hade	

■ アイテム

[TIME]ラベルで始まるセクション name={target, attribute}

name	アイテム名称
target	出力対称
attribute	属性

■ 節点

[NODE]ラベルで始まるセクション number={x-coord, y-coord}

number	節点番号 要素セクションで要素を構成する節点番号と対応
x-coord	X座標
y-coord	Y座標

■ 要素

[ELEMENT]ラベルで始まるセクション number={number-of-coords, coord-1, coord-2, coord-3...}

number	他の要素番号と重複しない一意の値
number-of- coords	要素を構成する節点総数
coord-*	要素を構成する節点番号 節点セクションのnumberに対応 number-of-coordsがnの場合は、coord-1~coord- nまで定義

■ 計算結果

[STEP]ラベルで始まるセクション このセクションは必要ステップ分記述します。

time=time-of-total

procname=time-of-name

elemattrib = { element-1 ~ element-n }

itemname={result-1~result-n}

time-of- total	経過時間
time-of- name	工程名称
itemname	アイテム名称
element-*	要素属性(全要素数出力) element-1~element-n個数出力
result-*	計算値 注 1) result-1~result-n個数出力

- 注1) 節点対応の場合には節点総数の計算結果を出力、要素対応の場合にはそのステージに存在する要素の計算結果のみ出力します。
- 注2)全ステップを通して共通のメッシュを使用する場合、elemattrib ラベルは記述する必要がありません。
- 注3) 単一の値の場合には以下のように{}は出力しません。

ITEM-1=1.0

注4)計算値は以下の例のように複数行に分けて記述可能です。行を分ける場合にはデータの行末に¥を記述して下さい。

<データ例>

```
#TPFEM10
[ATTRIBUTE]
   description="サンプルファイル"
   X方向変位={-1, 1}
Y方向変位={-1, 2}
応力={ 0, 0}
[NODE]
          0. 0, 0. 0}

0. 0, -1. 0}

0. 0, -2. 0}

1. 0, 0. 0}

1. 0, -1. 0}

1. 0, -2. 0}
   1= {
2= {
   3={
   4= [
   5= {
   6= {
[STEP]
   time=0.0
   procname="初期"
       X方向変位={-0.10, -0.07, -0.02, 0.15, 0.10, 0.05}
Y方向変位={-0.10, -0.05, 0.00, -0.12, -0.08, 0.00}
応力={1.5, 1.0}
[STEP]
   time=1000.0

procname="最終"

X方向変位={-0.17, -0.10, -0.03, 0.28, 0.20, 0.11}

Y方向変位={-0.15, -0.09, 0.00, -0.22, -0.13, 0.00}

応力={2.1, 1.2}
```

<表示例>

前章[関連プログラム]へ