3F Negative Binomial

Contents

3F Negative Binomial Distributions	
F.1	Negative Binomial (Flips ver. as in Wackerly)
F.2	Negative Binomial (Tails ver. as in Devore)
F.3	NB on R
F.4	Pmf and CDF
F.5	Ex: Shoot free throw until you make 10 shots
F.6	Ex: Win before You Lose

3F Negative Binomial Distributions

[ToC]

F.1 Negative Binomial (Flips ver. as in Wackerly)

$$X \sim NegBin(r,p)$$
 Analogy: Number of flips until you get r heads.

$$pmf: \quad p(x) = \binom{x-1}{r-1} p^r (1-p)^{x-r} \quad \text{for } x = r, r+1, r+2, \dots$$

$$CDF: \quad F(x) = P(X \le x) = \sum_{k=0}^{x} p(x)$$

$$mean: \quad E(X) = \frac{r}{p}$$

$$var: \quad V(X) = \frac{r(1-p)}{p^2}$$

$$MGF: \quad M(t) = \left[\frac{pe^t}{1-(1-p)e^t}\right]^r$$

Called Geometric Distribution if r = 1.

```
dnbinom( 10, r, p)  # pmf at x=10 flips (In R, X=# of flips)
pnbinom( 10, r, p)  # CDF at x=10 flips
pnbinom(.5, r, p)  # Inv CDF at q=.5
rnbinom(1000, r, p)  # random sample of size 1000
```

F.2 Negative Binomial (Tails ver. as in Devore)

$$X \sim NegBin(r,p)$$
 Analogy: Number of TAILS until you get r heads.

pmf: $p(x) = \binom{x+r-1}{r-1} p^r (1-p)^x$ for $x = r, r+1, r+2, \ldots$

CDF: $F(x) = P(X \le x) = \sum_{k=0}^{x} p(x)$

mean: $E(X) = \frac{r(1-p)}{p}$

var: $V(X) = \frac{r(1-p)}{p^2}$

MGF: $M(t) = [\frac{pe^t}{1-(1-p)e^t}]^r$

Called Geometric Distribution if r=1.

```
dnbinom( 10-r, r, p)  # pmf at x=10 tails (In R, X=# of flips)
pnbinom( 10-r, r, p)  # CDF at x=10 tails
pnbinom(.5, r, p)  # Inv CDF at q=.5
rnbinom(1000, r, p)  # random sample of size 1000
```

F.3 NB on R

```
X \sim NB(r = 5, p = .4) [X=num of Failures]

X = rnbinom(1000, 5, .4)
plot(X)
hist(X)

dnbinom(x=2, 5, .4)
pnbinom(x=2, 5, .4)

t = seq(0,10)
plot( t, dnbinom(t,5,.4) )
plot( t, pnbinom(t,5,.4),type='s' )
```

F.4 Pmf and CDF

Figure 1: r=5, p=.3

F.5 Ex: Shoot free throw until you make 10 shots

Suppose your free-throw percentage is 90%. Assume independence between each shots. You can't go home until you make 10 baskets, how many shots do you need to take before you go home?

F.6 Ex: Win before You Lose

- One concern of a gambler is that she will go broke before achieving her first win.
- Suppose that she plays a game in which the probability of winning is .1 (and is unknown to her).
- It costs her \$10 to play and she receives \$80 for a win.
- If she commences with \$30, what is the probability that she wins exactly once before she loses her initial capital?