A Demo of HINTS

Dinghang Tan

2025-03-03

Outline

1.	Basic Principles	2
	1.1 Smoothing Principles	3

1. Basic Principles

- 1. A basic residual-correction method to solve Au=f for a given initial guess u_0 .
 - 1. residual $r = f Au_k$.
 - 2. correction e = Br with $B \approx A^{-1}$.
 - 3. $u_{k+1} = u_k + e$.
- 2. Amplification matrix.

$$e_{k+1}\coloneqq u-u_{k+1}=(I-BA)(u-u_k)=(I-BA)e_k$$

$$E\coloneqq I-BA$$

Theorem 1.1.1 The residual-correction sheeme converges iff

$$\rho(I - BA) < 1.$$

- 3. Jacobi iteration $B = diag(A)^{-1}$.
- 4. 1D Poisson equation $-u'' = 0, x \in (0, 1)$ with u(0) = u(1) = 0.

$$\int_{0}^{1} \varphi_{i}'(x)\varphi_{j}'(x) dx = \frac{1}{h} \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix} =: \frac{1}{h}A$$

1.1 Smoothing Principles

1. Basic Principles

where $\varphi_i(x)(i=1,2,...,n)$ are hat functions and $h=\frac{1}{n+1}$. The eigenpairs (λ_k,v_k) of A are

$$\lambda_k(A) = 2(1-\cos(hk\pi)), v_{k,j}(A) = \sqrt{2h}\sin(jkh\pi).$$

Note that $B = \frac{1}{2}I$,

$$\lambda_k(E) = \lambda_k(I - BA) = \cos(hk\pi) = \cos\left(\frac{k\pi}{n+1}\right).$$

5. Numerical experiments.

1 function f()

Julia

1. Basic Principles

2 end