CSCl 112 Introduction to computer Science - I

Instructor: Santanu Banerjee

Unsigned and Signed Integers

Standard Number Lengths

Storage Type	#bits	Capacity
Byte	8	256
Word	16	65536
Doubleword	32	4294967296
Quadword	64	18446744073709551616

Negative numbers

How to represent negative numbers?

- Signed magnitude
- One's complement
- Two's complement
- Excess (biased)

Signed magnitude

- +ve
 - All positions can be used with respective place values
 - 00110110 = ?
- Signed Representation
 - Most significant bit is reserved, 1 for –ve and (o for +ve)
 - All other bit positions can be used with respective place values
 - **1**0110110 = ?

One's complement form

- Negate by flipping each bit
- Example (8-bits):

Two's complement form

- Negate by flipping each bit and adding 1
- Example (8-bits):

Excess(biased) form

- Add bias to two's complement
- Example (8-bit excess 128):

Convert and Compare format

Signed Magnitude

$$123_{10} = 64 + 32 + 16 + 8 + 2 + 1 = 0111 \ 1011_2$$

- $123_{10} => 1111 \ 1011_2$

- One's Complement (flip the bits)
 - $-123_{10} = > 1000 \ 0100_2$
- Two's Complement (add 1 to one's complement)
 - -123₁₀ => 1000 0101₂
- Excess 128 (add 128 to two's complement)
 - $-123_{10} = > 0000 \ 0101_2$

Picking a format

Points for considerations

- Check for negative numbers?
- Test if a number is zero?
- Add & subtract positive & negative numbers?
- Determine if an overflow has occurred?
- Check if one number is larger than another?

Implemented in hardware: simpler => better

Representing 3 bit signed integer

Decimal	Umsigned	Signed Mag	1's Comp	2's Comp	Excess 4
7	111				
6	110				
5	101				
4	100				
3	011	011	011	011	111
2	010	010	010	010	110
1	001	001	001	001	101
0	000	000/100	000/111	000	100
-1		101	110	111	011
-2		110	101	110	010
-3		111	100	101	001
-4				100	000

Binary addition

- Simple, just a few rules
 - \bullet 0 + 0 = 0
 - O + 1 = 1
 - •1+0=1
 - 1 + 1 = 10

Add two positives: 75, 46

Add two positives: 107, 46

No room for carry => overflow

Add two negatives :-46, -25

Signs are same, just add the numbers

Add mixed numbers: 46, -25

```
\begin{array}{cccc}
02 & 02 \\
0 & 0 \pm 011 \pm 0 \\
+1 & 0011001 \\
\hline
0 & 0010101
\end{array}
```

 Sign of the larger number becomes the sign of the result. Subtraction.

- Observations
- Signed magnitude representation is easy for people to understand, but it requires complicated computer hardware.
- Another disadvantage of signed magnitude is that it allows two different representations for zero: positive zero and negative zero.
- For these reasons (among others) computers systems employ complement systems for numeric value representation.

X86 - Unsigned Representation

- Just binary in one of the standard lengths
- E47A is the word-length unsigned representation for the decimal number 58490.

X86-Signed Representation

- 2's complement representation used in 80x86
- One of the standard lengths
- High-order (leading) bit gives sign
 - o for positive
 - 1 for negative
- For a negative number, you must perform the 2's complement operation to find the corresponding positive number.

2's Complement Operation

- +/- button on many calculators
- Manually by subtracting from 100...o
- E47A represents a negative word-length signed number since E = 1110

minus

• $10000 - E47A = 1B86 = 7046_{10}$ so E47A is the 2's complement signed representation for -7046

Multiple Interpretations

- One pattern of bits can have many different interpretations.
- The word FE89 can be interpreted as
 - An unsigned number whose decimal value is 65161
 - A signed number whose decimal value is -375