Challenging Medical Dogmas with Data: Diabetes, Lipids, Blood pressure and Cardiovascular Risk

Rod Hayward, MD

Director, National Clinicians Scholars

Senior Investigator, VA Center for Clinical Mgt Research VA Ann Arbor Healthcare System

Professor of Internal Medicine & Health Mgt and Policy University of Michigan Schools of Medicine & Public Health

Methods for Informing & Improving Individualized Estimates for Net Treatment Benefit

Rod Hayward, MD

Director, National Clinicians Scholars

Senior Investigator, VA Center for Clinical Mgt Research VA Ann Arbor Healthcare System

Professor of Internal Medicine & Health Mgt and Policy University of Michigan Schools of Medicine & Public Health

Disclosures

- No financial conflicts, but
- I'm in a bit of a snit abt the recent European Lipid Guidelines
- Frank, there will be NNTs presented

Research Directed at Improving Health Care

Steps to More Personalized Patient Decision-making

- 1. Judicious assessment of heterogeneity in the relative treatment effect (rHTE)
- 2. Assess heterogeneity in individualized absolute risk reduction (iARR) for target conditions
- 3. Assess population continuum of net benefit, with emphasis on those in a highly preference-sensitive zone

Traditional Treat-to-Target Recommendations

- LDL < 70mg/dl
- CRP < 2
- A1c < 7%
- BP < 130/80
- Exercise 90min/day
- BMI < 22

Benefit-based Tailored Treatment

```
    LDL < 70mg/dl</li>
    CRP < 2</li>
    A1c < 7%</li>
    BP < 130/80</li>
    Exercise 90min/day
    BMI < 22</li>
```

Factors that determine net treatment benefit:

- $Risk_{NoRx} \rightarrow Absolute Risk of bad outcome in absence of treatment (Obs Studies)$
- RRR_{Rx} \rightarrow Relative risk reduction in the bad outcome from treatment (RCTs) (HET in RRR should be examined better, especially by RRR_{Rx})
- ARI_{Rx} \rightarrow Absolite Risk of adverse effects of treatment (RCTs)

Net Benefit from $Rx = (Risk_{NoRx} * RRR_{Rx}) - ARI_{Rx}$

Steps to More Personalized Patient Decision-making

1. Judicious assessment of heterogeneity in the relative treatment effect (rHTE)

Unexpected rHTE for target outcomes is <u>extremely</u> rare

- 1. Review of ~1200 rHTE examinations, 7% positive rate! (Sun X et al BMJ 2012)
- 2. Given usual stat power in RCTs, rHTE for categorical variables should usually only be done if prior >25%-50%. (Burke J, et al BMJ 2018)
- 3. Power for rHTE for continuous variables can have excellent power (Hayward et al BMC Res Methods)

Positive Predictive Values for Subgroup Analyses (Burke BMJ 2017)

Prior	20%	20% power			50% power		
probability (%)	1	5	10	1	5	10	
5	17	14	11	35	18	12	
10	31	25	20	53	32	22	
20	50	43	36	71	52	38	
30	63	56	49	81	65	52	
40	73	67	60	87	74	62	
50	80	75	69	91	81	71	

What Do We Get From Traditional Subgroup Analyses?

- Multiple Comparisons = False positives
- Mistaking lack of statistical power for a consistent treatment effect
- Tragic confounding (e.g., "Older pts didn't appear to benefit, therefore, results only apply to middle-aged.")
- Almost no consideration of heterogeneity of ARR at the individual level

rHTE

- 1. Real rHTE does exist (Time to TT/PCI, high competing risk)
- 2. *Unexpected* rHTE = very very rare or a framing issue

Net Benefit from $Rx = (Risk_{NoRx} * RRR_{Rx}) - ARI_{Rx}$

3. Heterogeneity in net benefit = universal!

Steps to More Personalized Patient Decision-making

- 1. Judicious assessment of heterogeneity in the relative treatment effect (rHTE)
- 2. Assess heterogeneity in individualized absolute risk reduction (iARR) for target conditions

ARR In Post-ERCP Pancreatitis: Rx = Indomethacin (Elmunzer NEJM 2012)

Variation In ARR (Kent & Hayward JAMA)

Steps to More Personalized Patient Decision-making

- 1. Judicious assessment of heterogeneity in the relative treatment effect (rHTE)
- 2. Assess heterogeneity in individualized absolute risk reduction (iARR) for target conditions
- 3. Assess population continuum of net benefit, with emphasis on those in a highly preference-sensitive zone

Benefit of CEA in Symptomatic Patients with 70% to 99% Corotid Stenosis (Rothwell et al. Lancet 1999)*

Risk Score (% of Patients)	5-year CER	Crude Odds Ratio (95% CI)	Estimated 5-year NNT
Total (100%)	17%	0.64 (0.44-0.93)	~14

^{*} European Carotid Surgery Trial

Benefit of CEA in Symptomatic Patients with 70% to 99% Corotid Stenosis (Rothwell et al. Lancet 1999)*

Risk Score	5-year CER	Crude Odds	Estimated
(% of Patients)		Ratio	5-year NNT
		(95% CI)	
Total (100%)	17%	0.64	~14
		(0.44-0.93)	
0 – 3.5 (84%)	12%	1.00	~ ∞
		(.65-1.54)	
≥ 4.0 (16%)	40%	0.12	~3
		(0.44 - 0.93)	

^{*} European Carotid Surgery Trial

tPA vs Streptokinose for AMI

(Kent et al AJM 2002)

Predicted Benefit (% of Subjects)	CER	RRR	NNT
All Subjects (100%)	6.7%	14%	100 to 111
Highest Predicted Benefit (25%)	14.2%	16%	~45
Lowest Predicted Benefit (25%)	1.9%	0.3% to (0.4%)	~16,600 to (12,500)

Bad Dogma: Three Case Studies

1. Lipids

2. BP treatment

3. Glycemic Control

Bad Dogma: Three Case Studies

1. Lipids

2. BP treatment

3. Glycemic Control

LDL & Statin Benefit

Net Rx Benefit = $(Risk_{NoRx} * RRR_{Rx}) - (Harm_{Rx})$

- 1. Risk_{NoRx} (small impact)
- 2. RRR_{Rx} (Maybe small impact)
- 3. Harm_{Rx} (No known impact)

Why not consider LDL level for early LDL treatment

	40 yrs	50 yrs	60 yrs	70 yrs
Patient A: LDL = 170, Female, HDL= 60, SBP=120, non-smoker, no family history	< 1%	1%	2%	5%
Patient B: LDL = 100, Male, HDL= 30, SBP=135, smoker, + family history	7%	11%	22%	39%

Why not consider LDL level for early LDL treatment

	40 yrs	50 yrs	60 yrs	70 yrs
Patient A: LDL = 170, Female, HDL= 60, SBP=120, non-smoker, no family history	< 1%	1%	2%	5%
Patient B: LDL = 100, Male, HDL= 30, SBP=135, smoker, + family history	7%	11%	22%	39%

Benefit-based Tailored Therapy (BTT) vs. Treat-to-Target (TTT) Statin Strategy

(Hayward et al Annals of IM 2010)*

	Total QALYs Gained in U.S. population in 5yrs	QALYs Gained per 1,000 persons treated
BTT (Compared to TTT)	+520,000	+10

^{*} While treating slightly fewer people

Bad Dogma: Three Case Studies

1. Lipids

2. BP treatment

3. Glycemic Control

SBP & Statin Benefit

Net Rx Benefit = $(Risk_{NoRx} * RRR_{Rx}) - (Harm_{Rx})$

- 1. Risk_{NoRx} (small impact)
- 2. RRR_{Rx} (No impact!)
- 3. Harm_{Rx} (Unclear)

Why not consider SBP level for early BP treatment

	40 yrs	50 yrs	60 yrs	70 yrs
Patient A: LDL = 120, Female, HDL= 60, SBP=145, non-smoker, no family history	< 1%	1%	2%	5%
Patient B: LDL = 160, Male, HDL= 30, SBP=130, smoker, + family history	7%	11%	22%	39%

Benefit-based Tailored Therapy (BTT) vs. Treat-to-Target (TTT) BP Rx Strategy

(Sussman Circulation 2016)*

Total QALYs Gained in U.S. population	QALYs Gained per 1,000 persons treated
in 5yrs	persons treated
+1.4M	+159
	Gained in U.S. population in 5yrs

^{*} While using 6% less BP meds

Basu S, Yudkin J, Sussman J, Millett C, Hayward RA. Circulation 2016

"Smarter' BP & Statin guidelines could prevent up to 500,000 more QALYs each year in India & China compared to current WHO guidelines."

4 Common Phenomenon that make TTT strategies terrible

1. Risk reduction is log linear

2.
$$RRR_{Rx} \rightarrow 1st Rx > 2^{nd} >> 3^{rd} >>> 4^{th}$$

3. Harm_{Rx} \rightarrow 1st Rx < 2nd < 3rd < 4th

4. RFs often unreliable

No More Dumb Treat to Target RCTs: Get "SMART"

- N = 100,000
- Randomize 800,000 to 1 BP med (200,000 no BP med), and measure BP response
- Of the 800,000 on 1 BP med, 1 month later randomize 600,000 to a 2nd BP med, and measure BP response
- Repeat until you have 200,000 subjects randomized to 1,
 2, 3 or 4 BP meds

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

Detecting Heterogeneous Treatment Effects to Guide Personalized Blood Pressure Treatment

A Modeling Study of Randomized Clinical Trials

Sanjay Basu, MD, PhD; Jeremy B. Sussman, MD, MS; and Rod A. Hayward, MD

- Two similar studies: ACCORD & SPRINT w/SBP Rx goal of 120 mmHg
- SPRINT clear benefit
- ACCORD no clear benefit
- SPRINT = fewer total meds & pts w/ higher DBPs

But Could Pushing DBP Too Low Hurt People?

(Ann Intern Med 2006)

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

Detecting Heterogeneous Treatment Effects to Guide Personalized Blood Pressure Treatment

A Modeling Study of Randomized Clinical Trials

Sanjay Basu, MD, PhD; Jeremy B. Sussman, MD, MS; and Rod A. Hayward, MD

- 1. Generated simulated population that matched baseline and follow-up RCT attributed
- 2. Assumed 3rd & 4th BP meds lower RRR than 1st two BP meds
- 3. Assumed J-curve finding correct (harm if DBP < 70mmHg)

Research Q1: Could HTEs related to J curve and/or # BP meds used explain difference in SPRINT & ACCORD results?

Answer = Yes!

- 3rd BP med ~ half as effective
- 4^{th} BP med = no benefit
- RRI by decreasing DBP < 70

Sequential, multiple assignment, randomized trial (SMART)

Figure 2. HTEs of BP therapy intensification on CVD events potentially hidden from detection in subgroup analy ACCORD and SPRINT.

Research Q2: Could HTEs related to J curve and/or # BP meds be detected given TTT designs used in SPRINT & ACCORD results?

Answer = No!

Too much post randomization heterogeniety

Bad Dogma: Three Case Studies

1. Lipids

2. BP treatment

3. Glycemic Control

Relationship Between A1c & Microvascular Complications (Vijan Ann Intern Med 1997)

Lifetime Risk of Blindness, with respect to A1c and DM2 age-of-onset

HET in benefit from Glucose Treatment

(Vijan et al. JAMA-IntMed 2014)

Net gains in QALYs,

assuming a 15% reduction in CHD events per 1 point A1c reduction

	Disutility				
	0.001	0.01	0.025	0.05	
Age	A1c 8.5 to 7.5%				
45	0.91	0.62	0.14	-0.65	
65	0.27	0.11	-0.16	-0.60	

HET in benefit from Glucose Treatment

(Vijan et al. JAMA-IntMed 2014)

Net gains in QALYs,

assuming a 15% reduction in CHD events per 1 point A1c reduction

	Disutility				
	0.001	0.01	0.025	0.05	
Age	A1c 8.5 to 7.5%				
45	0.91	0.62	0.14	-0.65	
65	0.27	0.11	-0.16	-0.60	

Steps to More Personalized Patient Decision-making

- 1. Judicious assessment of heterogeneity in the relative treatment effect (rHTE)
- 2. Assess heterogeneity in individualized absolute risk reduction (iARR) for target conditions
- 3. Assess population continuum of net benefit, with emphasis on those in a highly preference-sensitive zone

Individualized Therapeutic Reasoning

Remember the 3 elements that form net treatment benefit

Factors that determine net treatment benefit:

- $Risk_{NoRx} \rightarrow Absolute Risk of bad outcome in absence of treatment (Obs Studies)$
- RRR_{Rx} \rightarrow Relative risk reduction in the bad outcome from treatment (RCTs) (HET in RRR should be examined better, especially by RRR_{Rx})
- $Risk_{Rx} \rightarrow Risk$ of adverse effects of treatment (RCTs)

Net Benefit from $Rx = (Risk_{NoRx} * RRR_{Rx}) - Risk_{Rx}$

"Everything should be made as simple as possible – but not one bit simpler"

Albert Einstein