

Coding and Analysis for Sparse Communication

Student: Da Wang Advisor: Gregory Wornell

Motivation

Stages in Communication

- **①Synchronization**: detect the presence of a message and locate it.
- **Coding**: encode messages to transmit reliably over noisy channels.

Traditional Communication

• **Training**: separate synchronization and coding.

χ_{c}	x_c	• • •	x_c	capacity achieving code	
$(1 - \frac{R}{C})n$ symbols				$\frac{R}{C}n$ symbols	

The cost of synchronization is relatively low.

sycn	cw 1	cw 2	cw 3	• • •	cw k
J - J					

Sparse Communication

A type of communication that most transmissions have few messages.

The cost of synchronization is no longer negligible!

How to communicate efficiently?

Design codes for both synchronization and information transmission.

Problem Formulation

Asynchronous channel model

- ★: input symbol to model that nothing is sent.
- Tx sends codewords at time t_1+1, t_2+1, \ldots codeword 1 codeword 2 $\star \cdots \star \overset{c_1}{\leftarrow} \overset{c_1}{\cdots} \overset{c_n}{\leftarrow} \star \overset{c_1}{\leftarrow} \overset{c_1}{\cdots} \overset{c_n}{\leftarrow} \star \overset{c_1}{\leftarrow} \overset{c_n}{\leftarrow} \overset{c_n}{$
- Rx observes a sequence of channel output $\{Y_i\}$ $Y_1 \dots Y_{t1} \dots Y_{t2} \dots t$

Slotted simplification

Communicate in pre-defined timeslots:

Mathematical Setup

For a channel code $C = \{X^n(k)\}$ with rate R, we have the following hypothesis testing problem:

$$\begin{cases} H_0: & Y_i \stackrel{i.i.d}{\sim} W(\cdot | \star) \quad i = 1, 2, \dots n \\ H_1: & Y^n \sim W(\cdot | X^n(k)) \quad k \in \{1, 2, \dots, M\} \end{cases}$$

Define error events

$$\mathcal{E}_{\mathsf{Miss}} = \{H_1 \to H_0\}$$
 $\mathcal{E}_{\mathsf{False alarm}} = \{H_0 \to H_1\}$

and

$$P_m \triangleq \mathbb{P}\left[\mathcal{E}_{\mathsf{Miss}}\right] \doteq \exp\left(-nE_m\right)$$

$$P_f \triangleq \mathbb{P}\left[\mathcal{E}_{\mathsf{False alarm}}\right] \doteq \exp\left(-nE_f\right)$$

Intuition

- We want the channel outputs corresponding to codewords be "different" from noise.
- $E_m(R)$ and $E_f(R)$ indicate how different they can be.

Analysis objectives

Characterize the $E_m - E_f$ trade-off at rate R.

Special case: $E_m = 0$

Optimal $E_f(R)$ when $E_m=0$

Given $E_m=0$ and hence $P_m\to 0$,

$$E_f(R) = \max_{P_X: I(P_X, W) = R} D(P_Y || Q_*)$$

- ullet i.i.d codebook with distribution P_X
- codeword output distribution P_Y
- noise output distribution $Q_{\star} = W(\cdot | \star)$.
- ✓ use rate-achieving i.i.d codebook rather than capacity-achiving codebook.

BSC Example

For a binary symmetric channel (BSC) with crossover probability ε and $W(\cdot|\star) = \text{Bernoulli}(u)$ $(u \le 0.5)$, we can achieve

 $E_f(R) = D(\underbrace{\mathsf{Bernoulli}\,(s^*)}_{\mathsf{c.w. output \ dist.}} \| \underbrace{\mathsf{Bernoulli}\,(u)}_{\mathsf{noise \ output \ dist.}})$ where $s^* \geq 0.5$ satisfies $H_b\left(s^*\right) - H_b\left(\varepsilon\right) = R$.

Figure: $E_f(R)$ for BSC with $\varepsilon = 0.01$

Comparison with training

Figure: Comparison with training for BSC with $\varepsilon=0.01$.

✓ Large gain over training at high rate.

General case: $E_m \ge 0$

Achievable $E_f(R)$ when $E_m \ge 0$

Given
$$P_m \leq \exp(-nE_m)$$
,
 $E_c(R, E_m) = \max$

$$E_{f}(R, E_{m}) = \max_{P_{X}: I(P_{X}, W) \ge R} \min_{V: D(V || W | P_{X}) \le E_{m}} \left[D(Q_{V} || Q_{\star}) + \{I(P_{X}, V) - R\}^{+} \right]$$

- achieved by constant composition codebook with maximizing distribution P_X^{\ast} .
- i.i.d codebook is suboptimal in general.
- non-trivial converse for DMC is difficult.

Comparison with i.i.d codebook and training for BSC channel

Figure: Performance comparison between constant composition codebook, i.i.d codebook, and training for BSC with $\varepsilon=0.05$ and u=0.5.

(b) R = 0.708

✓ Again, large gain over training at high rate.

Conclusion

For sparse communication, designing codes for both **detection** and **information transmission** jointly achieves significantly larger detection error exponents than the traditional separate synccoding approach.