dag o somo අවටම් (முழுப் பதிப்புரிமையுடையது/All Rights Reserved]
இ 6-வை சிலால் දෙපාර්තමේන්තුව இ 6-வை சிலால் දෙපාර්ප ිද්යා වේ. අන්තාන්ත අත්වාහන දෙපාර්තමේන්තුව නමා දෙපාර්තමේන්තුව இ 6-வை சிலால දෙපාර්තමේන්තුව இ 6-வை சிலால දෙපාර්තමේන්තුව නමා අත්වාහන දෙපාර්තමේන්තුව නම් අත්වාහන දෙපාර්තමේන්තුව නමා අත්වාහන දෙපාර්තමේන්තුව නම් අත්වාහන් අත්වාහන දෙපාර්තමේන්තුව නම් අත්වාහන් යාත් අත්වාහන් අත්ව

අධානයන පොදු සහනික පසු (උසස් පෙළ) විභාගය, 2016 අගෝස්සු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரிட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

පැය තුනයි **மூன்று மணித்தியாலம்** Three hours

சுட்டெண்

அறிவுறுத்தல்கள்:

- * இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1 10), **பகுதி B** (வினாக்கள் 11 17) என்னும் இரு பகுதிகளைக் கொண்டது.
- * பகுதி A:

எல்லா வினாக்களுக்கும் விடை எழுதுக, ஒவ்வொரு வினாவுக்குமுரிய உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.

- **₩ பகுதி В:**
 - **ஐந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக. உமது விடைகளைத் தரப்பட்டுள்ள தாள்களில் எழுதுக.
- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- * வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

பரீட்சகர்களின் உபயோகத்திற்கு மட்டும்

(10) இணைந்த கவ	னிதம் I
பகுதி	बीब्गा बब्बं	புள்ளிகள்
	1	·
	2	
	3	
	4	
À	5	
	6	a a i
	7	
	8	
	9	
**************************************	10	
	11	
	12	
	13	
В	14	
	15	
**	16	
NATURA DO N	17	
	மொத்தம்	
	சதவீதம்	

AI	L/2016/10/T-I - 2 -
	பகுதி А
1.	கணிதத் தொகுத்தநிவுக் கோட்பாட்டைப் பயன்படுத்தி, எல்லா $n\in\mathbb{Z}^+$ இற்கும் $\sum_{r=1}^n r(r+1)=rac{n}{3}(n+1)(n+2)$ என நிறுவுக.
2.	ஒரே வரிப்படத்தில் $y=\left x\right +1$, $y=2\left x-1\right $ ஆகியவந்நின் வரைபுகளைப் பரும்படியாக வரைக இ திலிருந்து அல்லது வேறு விதமாக, சமனிலி $\left x\right +1>2\left x-1\right $ ஐத் திருப்தியாக்கும் x இன் எல்ல மெய்ப் பெறுமானங்களையும் காண்க.
	,
	· ·

3	. ஒரே ஆகண் வரிப்படத்தில்
	(i) $ z - i = 1$, (ii) Arg $(z - i) = \frac{\pi}{6}$
	ஆகியவற்றைத் திருப்தியாக்கும் சிக்கலெண்கள் z ஐ வகைகுறிக்கும் பள்ளிகளின் குழுக்கு கண
	களும்படியாக வரைந்து, ஐவ்வொழுக்குகளின் வெட்டுப் புள்ளியினால் வகைகுறிக்கப்படும் சிக்கவெண்ண
	வடிவம் $r(\cos\theta+i\sin\theta)$ இந் காண்க; இங்கு $r>0$ உம் $0<\theta<\frac{\pi}{2}$ உம் ஆகும்.
	ஒவ்வோர் இலக்கமும் ஒரு தடவை மாத்திரம் பயன்படுத்தப்பட்டால், 1,2,3,4,5 என்னும் இலக்கங்களிலிருந்து ஐந்து இலக்கங்களைக் கொண்ட எத்தனை வெவ்வேறு எண்களை ஆக்கலாம் ? இவ்வெண்களில் (i) எத்தனை இரட்டை எண்கள் உள்ளன ?
	(ii) எத்தனையில் 3, 4 ஆகிய இலக்கங்கள் அடுத்தடுத்து உள்ளன ?
	More Dest Denom et
	More Past Papers at
	tamilguru.lk

5.	$\alpha > 0$ எனக் கொள்வோம். $\lim_{x \to 0} \frac{1 - \cos(\alpha x)}{\sqrt{4 + x^2} - \sqrt{4 - x^2}} = 16$ ஆக இருக்கத்தக்கதாக α இன் பெறுமானத்தைக்	
	காண்க.	
٠		
	······································	
6.	$y=x^2, y=2x-x^2$ என்னும் வளையிகளினால் உள்ளடைக்கப்படும் பிரதேசத்தின் பரப்பளவு $\frac{1}{3}$ சதுர அலகுகள்	
٠.	y - x , y - 2x - x என்னும் வண்ணம் உள்ளடைமைப்பும் பர்க்கள் பர்ப்பள்ள 3	
υ.	எனக் காட்டுக.	
υ.	· ·	
.	· ·	
.	· ·	
.	· ·	
	· ·	
	· ·	
	· ·	
	· ·	
	· ·	
	· ·	
	· ·	
	· ·	
	· ·	
	· ·	
	· ·	
	· ·	

	$0 < heta < rac{\pi}{4}$ இற்கு $x = 3\sin^2rac{ heta}{2}, \ y = \sin^3 heta$ என்னும் பரமானச் சமன்பாடுகளினால் ஒரு வளையி C
	தரப்பட்டுள்ளது. $\frac{\mathrm{d}y}{\mathrm{d}x}=\sin2 heta$ எனக் காட்டுக.
	C மீது உள்ள ஒரு புள்ளி P இல் இருக்கும் தொடலியின் படித்திறன் $\dfrac{\sqrt{3}}{2}$ எனின், P ஐ ஒத்த பரமானம்
	heta இன் பெறுமானத்தைக் காண்க.
	•••••••••••••••••••••••••••••••••••••••
_	
8.	
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k~(eq 0)$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன்
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k~(eq 0)$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k~(eq 0)$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன்
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.
8.	செல்லும் நேர்கோடு l எனக் கொள்வோம்; இங்கு $k \neq 0$ ஒரு மாறிலி. l இன் சமன்பாட்டை k இன் சார்பிற் காண்க. $(1, 1), (3, 4)$ ஆகிய இரு புள்ளிகளும் l இன் ஒரே பக்கத்தில் உள்ளனவெனத் தரப்பட்டுள்ளது.

9.	$A\equiv (1,2),\ B\equiv (-5,4)$ எனவும் S என்பது AB ஐ ஒரு விட்டமாகக் கொண்ட வட்டம் எனவும் கொள்வோம். (i) வட்டம் S இனதும்
	(ii) வட்டம் S ஐ நிமிர்கோணமுறையாக இடைவெட்டுகின்ற, மையம் (1,1)ஐ உடைய வட்டத்தினதும்
	சமன்பாடுகளைக் காண்க.
	······································
10.	$0 \le x \le \frac{\pi}{2}$ இற்குச் சமன்பாடு $\cos x + \cos 2x + \cos 3x = \sin x + \sin 2x + \sin 3x$ ஐத் தீர்க்க.
	······································
	**

සියලු ම හිමිකම් ඇවිරිණි / முழுப் பதிப்புநிமையுடையது / All Rights Reserved

இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் படுக்கு இணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் படுக்கு திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of Examinatio

අධායන පොදු සහනික පසු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

பகுதி B

* **ஐந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

11. (a) $a \neq 0$ ஆகவும் $a + b + c \neq 0$ ஆகவும் இருக்கத்தக்கதாக $a, b, c \in \mathbb{R}$ எனவும் $f(x) = ax^2 + bx + c$ எனவும் கொள்வோம்.

சமன்பாடு f(x)=0 இல் 1 ஒரு மூலமன்று எனக் காட்டுக.

f(x)=0 இன் மூலங்கள் α,β எனக் கொள்வோம்.

 $(\alpha-1)\,(eta-1)=rac{1}{a}\,(a+b+c)$ எனவும் $rac{1}{lpha-1}\,,\,rac{1}{eta-1}$ ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச்

சமன்பாடு g(x)=0 இனால் தரப்படுகின்றது எனவும் காட்டுக; இங்கு $g(x)=(a+b+c)\,x^2+(2a+b)\,x+a$.

இப்போது a>0 எனவும் a+b+c>0 எனவும் கொள்வோம்.

- f(x) இன் இழிவுப் பெறுமானம் m_1 ஆனது $m_1=-rac{\Delta}{4a}$ இனால் தரப்படுகின்றதெனக் காட்டுக; இங்கு $\Delta=b^2-4ac$ ஆகும்.
- g(x) இன் இழிவுப் பெறுமானம் m_2 எனக் கொள்வோம். $(a+b+c)\ m_2=a\ m_1$ என உய்த்தறிக.

இதிலிருந்து, எல்லா $x\in\mathbb{R}$ இற்கும் $g(x)\geq 0$ ஆக இருந்தால்-இருந்தால் மாத்திரம் எல்லா $x\in\mathbb{R}$ இற்கும் $f(x)\geq 0$ எனக் காட்டுக.

(b) $p(x) = x^3 + 2x^2 + 3x - 1$ எனவும் $q(x) = x^2 + 3x + 6$ எனவும் கொள்வோம். மீதித் தேற்றத்தைப் பயன்படுத்தி, p(x) ஆனது (x-1) இனால் வகுக்கப்படும்போது உள்ள மீதியையும் q(x) ஆனது (x-2) இனால் வகுக்கப்படும்போது உள்ள மீதியையும் காண்க.

 $p(x) = (x-1) \ q(x) + 5$ என வாய்ப்புப் பார்த்து, p(x) ஆனது $(x-1) \ (x-2)$ இனால் வகுக்கப்படும்போது உள்ள மீதியைக் காண்க.

12.(a) $n\in \mathbb{Z}^+$ எனக் கொள்வோம். வழக்கமான குறிப்பீட்டில், $(1+x)^n$ இற்கு ஈருறுப்பு விரியைக் கூறுக. வழக்கமான குறிப்பீட்டில், $r=0,\,1,\,2,\,\ldots,\,n-1$ இற்கு $\frac{{}^nC_{r+1}}{{}^nC}=\frac{n-r}{r+1}$ எனக் காட்டுக.

 $(1+x)^n$ இன் ஈருறுப்பு விரியில் x^r, x^{r+1}, x^{r+2} ஆகியவற்றின் குணகங்கள் அதே வரிசையில்

எடுக்கப்படும்போது 1:2:3 விகிதங்களில் உள்ளனவாகும். இச்சந்தர்ப்பத்தில் n=14 எனவும் r=4 எனவும் காட்டுக.

 $(b) \ r \in \mathbb{Z}^+$ இற்கு $U_r = \frac{10r+9}{(2r-3)(2r-1)(2r+1)}$ எனவும் f(r) = r(Ar+B) எனவும் கொள்வோம்; இங்கு

A, B ஆகியன மெய்ம் மாறிலிகள்.

 $r \in \mathbb{Z}^+$ இற்கு $U_r = \frac{f(r)}{(2r-3)(2r-1)} - \frac{f(r+1)}{(2r-1)(2r+1)}$ ஆக இருக்கத்தக்கதாக A,B ஆகிய மாநிலிகளின் பெறுமானங்களைக் காண்க.

 $n \in \mathbb{Z}^+$ இற்கு $\sum_{r=1}^n U_r = -3 - \frac{(n+1)(2n+3)}{(4n^2-1)}$ எனக் காட்டுக.

முடிவில் தொடர் $\sum_{r=1}^{r} U_r$ ஒருங்குகின்றதென மேலும் காட்டி, அதன் கூட்டுத்தொகையைக் காண்க.

 $\mathbf{A} = \begin{pmatrix} -4 & -6 \\ 3 & 5 \end{pmatrix}, \mathbf{X} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \mathbf{Y} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ எனக் கொள்வோம்.

 ${f AX}=\lambda {f X}$ ஆகவும் ${f AY}=\mu {f Y}$ ஆகவும் இருக்கத்தக்கதாக $\lambda,\,\mu$ ஆகிய மெய்ம் மாநிலிகளைக் காண்க. ${f P}=\begin{pmatrix} -1 & -2 \ 1 & 1 \end{pmatrix}$ எனக் கொள்வோம். ${f P}^{-1},\,{f AP}$ ஆகியவற்றைக் கண்டு, ${f P}^{-1}{f AP}={f D}$ எனக் காட்டுக;

இங்கு $\mathbf{D} = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$.

(b) ஓர் ஆகண் வரிப்படத்தில் புள்ளி A ஆனது சிக்கலெண் 2+i ஐ வகைகுறிக்கின்றது. புள்ளி B ஆனது OB=2 (OA) ஆகவும் $A\hat{O}B=\frac{\pi}{4}$ ஆகவும் இருக்கத்தக்கதாக உள்ளது; இங்கு O ஆனது உற்பத்தி ஆகும். $A\hat{O}B$ ஆனது OA இலிருந்து இடஞ்சுழியாக அளக்கப்படுகின்றது. புள்ளி B இனால் வகைகுறிக்கப்படும் சிக்கலெண்ணைக் காண்க.

மேலும் OACB ஓர் இணைகரமாக இருக்கத்தக்கதாகப் புள்ளி C இனால் வகைகுறிக்கப்படும் சிக்கலெண்ணையும் காண்க.

(c) $z\in\mathbb{C}$ எனவும் $w=\frac{2}{1+i}+\frac{5z}{2+i}$ எனவும் கொள்வோம். Im w=-1 எனவும் $\left|w-1+i\right|=5$ எனவும் தரப்பட்டுள்ளது. $z=\pm (2+i)$ எனக் காட்டுக. More Past Papers at

14.(a) $x \neq \pm 1$ இற்கு $f(x) = \frac{(x-3)^2}{x^2-1}$ எனக் கொள்வோம்.

tamilguru.lk

f(x) இன் பெறுதி f'(x) ஆனது $f'(x) = \frac{2(x-3)(3x-1)}{(x^2-1)^2}$ இனால் தரப்படுகின்றதெனக் காட்டுக.

y=f(x) இன் அணுகுகோடுகளின் சமன்பாடுகளை எழுதுக. கிடை அணுகுகோடானது வளையி y=f(x) ஐ இடைவெட்டும் புள்ளியின் ஆள்கூறுகளைக் காண்க. அணுகுகோடுகளையும் திரும்பற் புள்ளிகளையும் காட்டி y=f(x) இன் வரைபைப் பரும்படியாக வரைக.

(b) ஆரை 5r cm ஐயும் உயரம் h cm ஐயும் உடைய ஒரு செவ்வட்ட உருளை வடிவத்தில் உள்ள ஒரு மெல்லிய உலோகக் கொள்கலத்திற்கு, ஆரை r cm ஐ உடைய ஒரு வட்டத் துளை உள்ள ஆரை 5r cm ஐ உடைய ஒரு வட்ட மூடி உள்ளது (உருவைப் பார்க்க). கொள்கலத்தின் கனவளவு $245~\pi$ cm 3 எனத் தரப்பட்டுள்ளது. துளை உள்ள மூடியைக் கொண்ட கொள்கலத்தின் மேற்பரப்பின் பரப்பளவு S cm 2 ஆனது r>0 இற்கு $S=49\pi\left(r^2+\frac{2}{r}\right)$ இனால் தரப்படுகின்றதெனக் காட்டுக.

15.(a) (i) $\int \frac{\mathrm{d}x}{\sqrt{3+2x-x^2}}$ ஐக் காண்க.

(ii)
$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{3+2x-x^2}\right)$$
 ஐக் கண்டு, **இதிலிருந்து,** $\int \frac{x-1}{\sqrt{3+2x-x^2}}\,\mathrm{d}x$ ஐக் காண்க.

மேற்குறித்த தொகையீடுகளைப் பயன்படுத்தி, $\int \frac{x+1}{\sqrt{3+2x-x^2}} \, \mathrm{d}x$ ஐக் காண்க.

(b) $\frac{2x-1}{(x+1)(x^2+1)}$ ஐப் பகுதிப் பின்னங்களாக எடுத்துரைத்து, **இதிலிருந்து,** $\int \frac{(2x-1)}{(x+1)(x^2+1)} \, \mathrm{d}x$ ஐக் காண்க.

(c) (i) n
eq -1 எனக் கொள்வோம். பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int x^n (\ln x) \, \mathrm{d}x$ ஐக் காண்க.

(ii) $\int_{1}^{3} \frac{\ln x}{x} \, \mathrm{d}x$ ஐப் பெறுமானங் கணிக்க.

- **16**.(a) ஒரு சாய்சதுரம் ABCD இன் மூலைவிட்டம் AC இன் சமன்பாடு 3x-y=3 உம் $B\equiv (3,1)$ உம் ஆகும். அத்துடன் CD இன் சமன்பாடு x+ky=4 ஆகும்; இங்கு k ஒரு மெய்ம் மாறிலி. k இன் பெறுமானத்தையும் BC இன் சமன்பாட்டையும் காண்க.
 - (b) முறையே $x^2+y^2=4$, $(x-1)^2+y^2=1$ என்னும் சமன்பாடுகளினால் தரப்படும் C_1 , C_2 என்னும் வட்டங்களை அவற்றின் தொடுகைப் புள்ளியைத் தெளிவாகக் காட்டிப் பரும்படியாக வரைக. ஒரு வட்டம் C_3 ஆனது C_1 ஐ உள்ளேயும் C_2 ஐ வெளியேயும் தொடுகின்றது. C_3 இன் மையம் வளையி $8x^2+9y^2-8x-16=0$ மீது கிடக்கின்றதெனக் காட்டுக.
- 17. (a) $an(\alpha+\beta)$ இற்கான திரிகோணகணிதச் சர்வசமன்பாட்டை $an\alpha$, $an\beta$ ஆகியவற்றின் சார்பில் எழுதுக. இதிலிருந்து, $an2\theta$ ஐ $an\theta$ இன் சார்பிற் பெற்று, $an3\theta=\frac{3 an\theta- an^3\theta}{1-3 an^2\theta}$ எனக் காட்டுக. இறுதிச் சமன்பாட்டில் $heta=\frac{5\pi}{12}$ எனப் பிரதியிட்டு, $an\frac{5\pi}{12}$ ஆனது $an3x^2-3x+1=0$ இன் ஒரு தீர்வு என்பதை வாய்ப்புப் பார்க்க. $an3-3x^2-3x+1=(x+1)(x^2-4x+1)$ என மேலும் தரப்படும்போது $an\frac{5\pi}{12}=2+\sqrt{3}$ என உய்த்தறிக.
 - $(b) \ 0 < A < \pi$ இற்கு $\tan^2 \frac{A}{2} = \frac{1 \cos A}{1 + \cos A}$ எனக் காட்டுக.

வழக்கமான குறிப்பீட்டில், ஒரு முக்கோணி ABC இற்குக் கோசைன் நெறியைப் பயன்படுத்தி $(a+b+c)(b+c-a) an^2 rac{A}{2} = (a+b-c)(a+c-b)$ எனக் காட்டுக.

(c) $\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \sin^{-1}\left(\frac{56}{65}\right)$ எனக் காட்டுக.

* * *

More Past Papers at tamilguru.lk

සියලු ම හිමිකම් ඇවිටින් / (முழுப் பதிப்புரிமையுடையது /All Rights Reserved)

II

ලි ලංකා විතාග දෙපාර්තමේන්තුව ලී ලංකා විතාග දෙපාර්ත**ි අවුදුරු කියාන දෙපාර්තමේන්තුව** ලී ලංකා විතාග දෙපාර්තමේන්තුව මුහෝකෙසට ප්රීඩාකයේ සහ මුහෝකයේ ප්රීඩාකයේ ප්රීඩාකයේ මුහෝකයට ප්රීඩාකයේ ප්රීඩාකයේ ප්රීඩාකයේ සහ මුහෝකයට ප්රීඩාකයේ සහ විතාග දෙපාර්තමේන්තුව Department of Examinations, Sri Lanka Department of **Examinations**, Sri Lanka Department of Examinations, Sri Lanka G ලංකා විතාග දෙපාර්තමේන්තුව ලී ලංකා විතාග දෙපාර්තමේන්තුව ලී ලංකා විතාග දෙපාර්තමේන්තුව ලී ලංකා විතාග දෙපාර්තමේන්තුව ලී ලංකා විතාග දෙපාර්තමේන්තුව මුහෝකයට ප්රීඩාකයේ සහ මුහෝකයේ සහ මුහෝකයේ සහ මුහෝකයේ ප්රීඩාකයේ සහ මුහෝකයේ සහ සහ ප්රීඩාකයේ සහ මුහෝකයේ සහ ප්රීඩාකයේ සහ ප්රීඩාකයේ සහ සහ ප්රීඩාකයේ සහ ප්ර

අබනයන පොදු සහතික පසු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

සංයුක්ත ගණිතය **இணைந்த கணிதம்**

Combined Mathematics

10(T)II

பும் තුනයි **மூன்று மணித்தியாலம்** Three hours

Eni... QL 600ti

அறிவுறுத்தல்கள் :

- * இவ்வினாத்தாள் **பகுதி** A (வினாக்கள் 1 10), **பகுதி** B (வினாக்கள் 11 17) என்னும் இரு பகுதிகளைக் கொண்டுள்ளது.
- * பகுதி A:

எல்லா வினாக்களுக்கும் விடை எழுதுக. தரப்பட்டுள்ள இடத்தில் ஒவ்வொரு வினாவுக்கும் உமது விடைகளை எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.

- **∦ பகுதி B:**
 - **ஐந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக. தரப்பட்டுள்ள தாள்களில் உமது விடைகளை எழுதுக.
- * ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A யின் விடைத்தாளானது பகுதி B யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் **பகுதி f B** யை **மாத்திரம்** பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.
- 🛠 இவ்வினாத்தாளில் g ஆனது ஈர்ப்பினாலான ஆர்முடுகலைக் குறிக்கின்றது.

பரீட்சகரின் உபயோகத்திற்கு மட்டும்

(1	0) இணைந்த கன	விதம் II
uആളി	வினா இல.	புள்ளிகள்
	1	
	2	
	3	
	4	
A	5	
	6	
	7	
	8	
	9	.,,, , , , , , , , , ,
**************************************	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
	சதவீதம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப் புள்ளிகள்	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்		
பரிசீலித்தவர்:	1 2	
மேற்பார்வை செய்தவர்:		

ஒரு நுனி ஒரு நிலைத்த நீட்டமுடியாத இழையில் நாப்பத்தில் தொங்குகில் துணிக்கையுடன் வேகம் இயங்கத் தொடங்கும் $u = \sqrt{gl}$ எனின், சேர்த	ன் மற்றைய நுனி ன்றது. திணிவு 2			
இயங்கத் தொடங்கும் (<i>m</i> ஐ உடைய சே	3 உடைய ஒரு துணி வநொரு துணிக்கை (க்கை <i>O</i> ழதல்
			lன்றது. சேர்த்தித் துணி	க்கை ₁
$u = \sqrt{gl}$ similar, Gent				
· - /	த்தித் துணிக்கை உ	அதன் தொடக்க	ை மட்டத்திற்கு மேலே	- gf 2 m m m
உயர்ந்தபட்ச உயரம்	$\frac{2l}{9}$ ஐ அடைகின்ற	தெனக் காட்டுக.		$\frac{1}{u}$
***************************************	• • • • • • • • • • • • • • • • • • • •	**********	***********	
***************************************	• • • • • • • • • • • • • • • • • • • •	*****************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	***********	**************	***************************************	************
·····		***************************************		
***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****************		
• • • • • • • • • • • • • • • • • • • •		*******************		••••••••
	*******************		*****************	1
••••			*******************	•••••
	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
		******	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •	
உருவிற் காணப்படுகின் _! ஒரு துணிக்கை <i>O</i> உம்				ത്തിലെ 3 മാണം ചെ
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>1</i>	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே 5 <i>u</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப்
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>1</i>	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே 5 <i>u</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப்
என்னும் கதிகளுடன் ஒ	ன்றையொன்று நே ப் பால் முறையே <i>1</i>	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே 5 <i>u</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே <i>5ய</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே <i>5ய</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே <i>5ய</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே 5 <i>u</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே <i>5ய</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே <i>5ய</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே 5 <i>u</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே 5 <i>u</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே 5 <i>u</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே 5 <i>u</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப
ான்னும் கதிகளுடன் ஒ ஒ <mark>ன்றிலிருந்தொன்று அட்</mark>	ன்றையொன்று நே ப் பால் முறையே <i>ப</i> ந்குமிடையே உள்ள ம	u, v ஆகிய கதிகஞ	தன. மொத்தலிற்குப் பி நடன் இயங்குகின்றன.	ியே முறையே 5 <i>u</i> ன்னர் <i>P</i> உம் <i>Q</i> உ v ஐ u இன் சார்ப்

3.	ஒரு துணிக்கை P ஆனது ஒரு நிலைத்த படிக்கட்டின் ஒரு படியின் ஓரத்தில் உள்ள ஒரு புள்ளி A இலிருந்து அவ்வோரத்திற்குச் செங்குத்தாக
	$u=rac{3}{2}\sqrt{ga}$ இனால் தரப்படும் ஒரு வேகம் u உடன் கிடையாக எறியப்பட்டு,
	புவியீர்ப்பின் கீழ் இயங்குகின்றது. ஒவ்வொரு படியினதும் உயரம் $2a$
	a உம் நீளம் $2a$ உம் ஆகும் (உருவைப் பார்க்க). துணிக்கை P
	ஆனது A இற்குக் கீழே முதற் படியிற் படுவதில்லை எனவும் A இற்குக் கீழே இரண்டாம் படியில் A இலிருந்து ஒரு கிடைத் தூரம் $3a$ இற் படும் எனவும் காட்டுக.
	77 இல்கிறது ஆரு விடைத் தூரம் 54 இத் 2002 கொடிம் காட்டும்.
	· · · · · · · · · · · · · · · · · · ·
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு $M \lg \mathfrak{R}$ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி $v \mathrel{\mathbf{m}} \mathrel{\mathbf{s}}^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல்
4.	மாறாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக.
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாறாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக்
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$
4.	மாநாப் பருமன் R N உள்ள ஒரு தடைக்கு எதிரே ஒரு நேர்ச் சமதள வீதி வழியே திணிவு M kg ஐ உடைய ஒரு கார் இயங்குகின்றது. கார் கதி v m s $^{-1}$ உடன் செல்லும் ஒரு கணத்தில் அதன் ஆர்முடுகல் a m s $^{-2}$ ஆகும். இக்கணத்தில் அதன் எஞ்சினின் வலு $(R+Ma)v$ W எனக் காட்டுக. பின்னர் கார் அதே மாறாப் பருமன் R N ஐக் கொண்ட ஒரு தடைக்கு எதிரே அதே வலுவில் தொழிற்பட்டுக் கிடையுடன் ஒரு கோணம் α இற் சாய்ந்த ஒரு நேர் வீதியில் மேல்நோக்கி ஒரு மாறாக் கதி v_1 m s $^{-1}$

	வழக்கமான குறிப்பீட்டுட $lpha \in \mathbf{R}$.	ன் $a = 3i + 4j$, $b = 4i + 3j$, $c = \alpha i + (1 - \alpha) j$ எனக் கொள்வோம்; இ	ப்படு
	(i) a , b &	ஆகியவற்றையும்	
	(ii) α இன் சார் காண்க.	ர்பில் a·c , b ·c ஆகியவற்றையும்	
		உள்ள கோணம் b இற்கும் c இற்குமிடையே உள்ள கோணத்திற்குச் சமமெ	मीलं,
	$\alpha = \frac{1}{2}$ எனக் காட்டுக.		
	2		
	,,		

	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

	*********************		•••

	***************************************	***************************************	
	*************************************		, . ,
	***************************************	***************************************	••

	***************************************		• •
6.	நிலைப்படுத்தப்பட்டுள்ள ஆ மிகவும் உயர்ந்த புள்ளியும ஐ உடைய ஒரு சிறிய ஒட் காட்டப்பட்டுள்ளவாறு, இல	இலேசான நீட்டமுடியாத இழையின் ஒரு நுனி ஒரு நிலைக்குத்துத் தளத் ஆரை $a\left(>\sqrt{2}l\right)$ ஐ உடைய ஒரு மெல்லிய ஒப்பமான விறைத்த வட்டக் கம்பிட டன் இணைக்கப்பட்டுள்ளது. கம்பி வழியே சுயாதீனமாக இயங்கத்தக்க நிறை ப்பமான பவளம் இழையின் மற்றைய நுனியுடன் இணைக்கப்பட்டுள்ளது. உரு ழை இறுக்கமாக இருக்க, பவளம் நாப்பத்தில் இருக்கின்றது. பவளத்தின்	யின் ந <i>w</i> விற்
	தாக்கும் விசைகளைக் கு	நித்து, இழையின் இழுவை $rac{2wl}{a}$ எனக் காட்டுக.	மீது
,		a	மீது
		a	மீது
	27	a	மீது
	a 2)	a	மீது
	a 27	a	மீது
	a 21	a	மீது
	a Zi		மீது
	a 27		மீது
	a 2)		மீது
	a 27		மீது
	a 2 a		மீது
			மீது
			மீது

7.	A,B என்பன ஒரு மாதிரி வெளி Ω இன் இரு நிகழ்ச்சிகளெனக் கொள்வோம். வழக்கமான குறிப்பீட்டில்
	$P(A)=p,\ P(B)=rac{p}{2},\ P(A\cup B)-P(A\cap B)=rac{2p}{3}$; இங்கு $p>0$ ஆகும். $P(A\cap B)$ ஐ p இன் சார்பிற் காண்க.
	A,B ஆகியன சாரா நிகழ்ச்சிகள் எனின், $p=rac{5}{6}$ என உய்த்தறிக.
8.	ஒரு பையில் நிறம் தவிரச் சர்வசமனான 6 வெள்ளைப் பந்துகளும் n கறுப்புப் பந்துகளும் உள்ளன. ஒன்றுக்குப் பின்னர் மற்றையது என்றவாறு, பிரதிவைப்பு இல்லாமல், இரு பந்துகள் எழுமாற்றாகப் பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. முதற் பந்து வெள்ளையாகவும் இரண்டாம் பந்து கறுப்பாகவும் இருப்பதற்கான நிகழ்தகவு $\frac{4}{15}$ ஆகும். n இன் பெறுமானத்தைக் காண்க.
	1.5
	,
	,

11 இலு நிறைபெ இவ்வை	பண்கள் எடு பந்து நிறைபெ	க்கப்படும்	போது	எல்லா	සුල්සු ල්	றையெ	ண்களினத <u>ு</u>	ம் இன	Цю	5 ஆகு	ம். அத்
					*			********		*******	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									******	
								******	. ,	******	
					•••••					******	
	, ,				*****						
					**********	,,,,,,,,,,					
					******			,,,,,,,,,			
		,,,,,,,,,,,			********			*******			
	,				*********						
	,				*****			.,,			
		• •									
ധതെക	4,5 என இல யில் ஓர் அ க்கை பின்வரு	ம்பு எய்	யப்படுக	கின்றது.	ஒவ்வோர்	ஆரை	ச்சிறையில	அம் அடி	ĎЦ	படும்	தடவை
பலகை	யில் ஓர் அ க்கை பின்வர	ம்பு எய்	யப்படுக ன் அட்	கின்றது. .டவணைப	ஒவ்வோர் பில் தரப்ப	ஆரை பட்டுள்ள	ச்சிறையி <u>ஓ</u> து; இங்கு	அம் அடி	ĎЦ	படும்	தடவை
பலகை எண்ணி மேற்குற	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குற	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.
பலகை எண்ணி மேற்குந	யில் ஓர் அ க்கை பின்வர எண் மீடிறன்	ழம்பு எய் நம் மீடிற ரின் இமை	யப்படுக ன் அட் 1	கின்றது. .டவணைய 2 	ஒவ்வோர் பில் தரப்ப 3	ஆரை பட்டுள்ள 4 5	ச்சிறையிலு து; இங்கு 5	அம் அ p,qஆ	Б	வடும் வ மாழ	தடவை நிலிகள்.

සියලු ම හිමිකම් ඇවිරිණි / (முழுப் பதிப்புரிமையுடையது / All Rights Reserved)

இ ලංකා විභාග දෙපාර්තමේන්තුව ලූ ලංකා විභාග දෙපාර්තමේන්තුව ලූ ලේකා විභාග දෙපාර්තමේන්තුව ලූ ලේකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் தினைக்களம் இலங்கைப் பது கூறி தினைக்களும் இலங்கைப் பரீட்சைத் தினைக்களும் இலங்கைப் பரீட்சைத் தினைக்களும் Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka O ලංකා විභාග දෙපාර්තමේන්තුව ලූ ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලූ ලේකා විභාග විභා

අබනයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2016

සංයුක්ත ගණිතය II **இணைந்த கணிதம் II** Combined Mathematics II

பகுதி B

* ஜந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

(இவ்வினாத்தாளில் g ஆனது புவியீரப்பினாலான ஆர்முடுகலைக் குறிக்கின்றது.)

11.(a) ஒரு மீள்தன்மையில்லாக் கிடை நிலத்திற்கு மேலே ஓர் உயரம் 3h இல் நிலைப்படுத்தப்பட்டுள்ள ஒரு சிறிய ஒப்பமான கப்பிக்கு மேலாகச் செல்கின்ற ஓர் இலேசான நீட்டமுடியாத இழையினால் திணிவு m ஐ உடைய ஒரு துணிக்கை P ஆனது திணிவு 3m ஐ உடைய ஒரு துணிக்கை Q உடன் தொடுக்கப்பட்டுள்ளது. தொடக்கத்தில் இரு துணிக்கைகளும் நிலத்திற்கு மேலே ஓர் உயரம் h இல் இழை இறுக்கமாக இருக்கத் தாங்கப்பட்டு ஓய்விலிருந்து விடுவிக்கப்படுகின்றன (அருகே 3h உள்ள உருவைப் பார்க்க). P, Q ஆகியவற்றின் இயக்கங்களுக்கு நியூற்றனின் இரண்டாம் விதியைத் தனித்தனியாகப் பிரயோகித்து, ஒவ்வொரு துணிக்கையினதும் ஆர்முடுகலின் பருமன் $\frac{\delta}{2}$ எனக் காட்டுக.

நேரம் t_0 இற்குப் பின்னர் துணிக்கை Q ஆனது நிலத்துடன் மோதி, கணநிலை ஓய்வுக்கு வந்து, மேலும் நேரம் t_1 இற்கு ஓய்வில் இருந்து, மேல்நோக்கி இயங்கத் தொடங்குகின்றது. துணிக்கை Q மேல்நோக்கி இயங்கத் தொடங்கும் வரைக்கும் P,Q ஆகிய இரு துணிக்கைகளினதும் இயக்கங்களுக்குரிய வேக-நேர வரைபுகளைப் பரும்படியாகத் தனித்தனியாக வரைக.

இவ்வரைபுகளைப் பயன்படுத்தி $t_0=2\sqrt{\frac{h}{g}}$ எனக் காட்டி, t_1 ஐ g,h ஆகியவற்றின் சார்பிற் காண்க. துணிக்கை P ஆனது நிலத்திற்கு மேலே ஓர் உயர்ந்தபட்ச உயரம் $\frac{5h}{2}$ ஐ அடையுமென மேலும் காட்டுக.

(b) அகலம் a ஐ உடைய ஒரு நேர் ஆறு சீரான கதி u உடன் பாய்கின்றது. ஆறு பாயும் திசைக்குக் கோடு AC செங்குத்தாக இருக்கத்தக்கதாக A, C ஆகிய புள்ளிகள் ஆற்றின் எதிர்க் கரைகளில் உள்ளன. மேலும், ABC ஒரு சமபக்க முக்கோணியாக இருக்குமாறு ஒரு நிலையான மிதவை B ஆனது AC இன் ஆற்றோட்டத்தின் எதிர்த் திசைப் பக்கத்தில் ஆற்றின் நடுவில் நிலைப்படுத்தப்பட்டுள்ளது (அருகே உள்ள உருவைப் பார்க்க). நீர் தொடர்பாகக் கதி v (> u) உடன் இயங்கும்

படகு ஒன்று A இலிருந்து புறப்பட்டு B ஐ அடையும் வரைக்கும் இயங்குகின்றது. பின்னர் அது B இலிருந்து C வரைக்கும் இயங்குகின்றது. A இலிருந்து B வரைக்கும் B இலிருந்து C வரைக்கும் படகின் இயக்கங்களுக்கான வேக முக்கோணிகளைப் பரும்படியாக வரைக.

A இலிருந்து B வரைக்குமான இயக்கத்தில் படகின் கதி $\frac{1}{2} \left(\sqrt{4v^2 - u^2} - \sqrt{3}u \right)$ எனக் காட்டி, B இலிருந்து C வரைக்குமான இயக்கத்தில் அதன் கதியைக் காண்க.

இதிலிருந்து, AB,BC ஆகிய பாதைகளுக்குப் படகு எடுக்கும் மொத்த நேரம் $\frac{a\sqrt{4v^2-u^2}}{v^2-u^2}$ எனக் காட்டுக.

12. (a) உருவில் உள்ள முக்கோணி ABC ஆனது திணிவு 2m ஐ உடைய ஒரு சீரான ஆப்பின் புவியீர்ப்பு மையத்தினூடாக உள்ள ஒரு நிலைக்குத்தான குறுக்குவெட்டாகும். கோடு AB ஆனது அதனைக் கொண்டுள்ள முகத்தின் அதியுயர் சரிவுக் கோடும் $A\hat{B}C = \frac{\pi}{4}$ உம் ஆகும். BC ஐக் கொண்டுள்ள முகம் ஒரு கரடான கிடை நிலத்தின் மீது இருக்குமாறு ஆப்பு வைக்கப்பட்டுள்ளது. AB ஐக் கொண்டுள்ள முகம் ஒப்பமானது. திணிவு m ஐ உடைய ஒரு துணிக்கை உருவிற் காணப்படுகின்றவாறு AB மீது தாங்கப்பட்டு, தொகுதி ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. ஆப்பு BC இன் திசையில் இயங்குகின்றது

விடுவிக்கப்படுகின்றது. ஆப்பு BC இன் திசையில் இயங்குகின்றது எனவும் நிலத்தினால் ஆப்பு மீது உஞ்ந்றப்படும் உராய்வு விசையின் பருமன் $\frac{R}{6}$ எனவும் தரப்பட்டுள்ளது; இங்கு R ஆனது நிலத்தினால் ஆப்பு மீது உஞந்றப்படும் செவ்வன் மறுதாக்கத்தின் பருமனாகும். R ஐ m,g ஆகியவற்றின் சார்பில் துணிவதற்குப் போதுமான சமன்பாடுகளைப் பெறுக.

(b) உருவில் OAB ஆனது OA நிலைக்குத்தாக இருக்கும் மையம் O இல் ஒரு கோணம் $\frac{\pi}{6}$ ஐ எதிரமைக்கும் ஆரை a ஐ உடைய ஒரு வட்ட ஆரைச்சிறையாகும். அது அதன் அச்சு கிடையாக இருக்குமாறு நிலைப்படுத்தப்பட்டுள்ள ஓர் ஒப்பமான உருளை ஆரைச்சிறையின் அச்சுக்குச் செங்குத்தான குறுக்குவெட்டாகும். B இல் நிலைப்படுத்தப்பட்டுள்ள ஒரு சிறிய ஒப்பமான கப்பிக்கு மேலாகச் செல்கின்ற ஓர் இலேசான நீட்டமுடியாத இழையின் ஒரு நுனி திணிவு 3m ஐ உடைய ஒரு துணிக்கை P உடன் இணைக்கப்பட்டிருக்கும் அதே வேளை அதன் மற்றைய நுனி திணிவு m ஐ உடைய ஒரு துணிக்கை Q உடன் இணைக்கப்பட்டுள்ளது. உருவிற் காணப்படுகின்றவாறு தொடக்கத்தில் துணிக்கை P ஆனது A இல் தாங்கப்படும்

அதே வேளை துணிக்கை Qஆனது O இன் கிடை மட்டத்தில் சுயாதீனமாகத் தொங்குகின்றது. இழை இறுக்கமாக இருக்க, இத்தானத்திலிருந்து தொகுதி ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. OP ஆனது மேன்முக நிலைக்குத்துடன் கோணம் $\theta\left(0<\theta<\frac{\pi}{6}\right)$ ஐ ஆக்கும்போது $2a\dot{\theta}^2=3g\left(1-\cos\theta\right)+g\theta$

எனவும் இழையில் உள்ள இழுவை $\frac{3}{4} mg (1-\sin\theta)$ எனவும் காட்டி, துணிக்கை P மீதுள்ள செவ்வன் மறுதாக்கத்தைக் காண்க.

13. இயற்கை நீளம் a ஐயும் மீள்தன்மை மட்டு 4mg ஐயும் உடைய ஓர் இலேசான மீள்தன்மை இழையின் ஒரு நுனி ஒரு நிலைத்த புள்ளி O உடனும் மற்றைய நுனி திணிவு m ஐ உடைய ஒரு துணிக்கை P உடனும் இணைக்கப்பட்டுள்ளன. துணிக்கை P ஆனது O இல் ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. துணிக்கை P புள்ளி A இனூடாகச் செல்லும்போது அதன் வேகத்தைக் காண்க; இங்கு OA = a.

இழையின் நீளம் $x \geq a$ ஆனது சமன்பாடு $\ddot{x} + \frac{4g}{a}\left(x - \frac{5a}{4}\right) = 0$ ஐத் திருப்தியாக்குகின்றதெனக் காட்டுக. $X = x - \frac{5a}{4}$ எனக் கொண்டு மேற்குறித்த சமன்பாட்டை வடிவம் $\ddot{X} + \omega^2 X = 0$ இல் எடுத்துரைக்க; இங்கு $\omega > 0$ 0 ஆனது துணியப்பட வேண்டிய ஒரு மாறிலியாகும்.

இச்சமன்பாடு $\dot{X}^2 = \omega^2 \left(c^2 - X^2\right)$ ஐத் தருகின்றதெனக் கொண்டு, இவ்வெளிய இசை இயக்கத்தின் வீச்சம் c ஐக் காண்க.

துணிக்கை P அடையும் மிகத் தாழ்ந்த புள்ளி L எனக் கொள்வோம். A இலிருந்து L இற்கு இயங்குவதற்கு P எடுக்கும் நேரம் $\frac{1}{2}\sqrt{\frac{a}{g}}\left[\pi-\cos^{-1}\left(\frac{1}{3}\right)\right]$ எனக் காட்டுக.

துணிக்கை P ஆனது L இல் இருக்கும் கணத்தில் திணிவு $\lambda m \, (1 \le \lambda < 3)$ ஐ உடைய வேறொரு துணிக்கை மெதுவாக P உடன் இணைக்கப்படுகின்றது. திணிவு $(1 + \lambda) \, m$ ஐ உடைய சேர்த்தித் துணிக்கையின் இயக்கச் சமன்பாடு $\ddot{x} + \frac{4g}{(1 + \lambda)a} \left\{ x - (5 + \lambda) \, \frac{a}{4} \right\} = 0$ எனக் காட்டுக.

சேர்த்தித் துணிக்கை வீச்சம் $(3-\lambda)\frac{a}{4}$ உடன் முழு எளிய இசை இயக்கத்தை ஆற்றுகின்றதென மேலும் காட்டுக.

- 14. (a) உற்பத்தி O ஐக் குறித்து A, B என்னும் இரு புள்ளிகளின் தானக் காவிகள் முறையே \mathbf{a} , \mathbf{b} ஆகும்; இங்கு O, A, B ஆகியன **ஒரேகோட்டில் இருப்பதில்லை**. C என்பது $\overrightarrow{OC} = \frac{1}{3} \overrightarrow{OB}$ ஆக இருக்கத்தக்கதாக உள்ள புள்ளி எனவும் D என்பது $\overrightarrow{OD} = \frac{1}{2} \overrightarrow{AB}$ ஆக இருக்கத்தக்கதாக உள்ள புள்ளி எனவும் கொள்வோம். \overrightarrow{AC} , \overrightarrow{AD} ஆகியவற்றை \mathbf{a} , \mathbf{b} ஆகியவற்றின் சார்பில் எடுத்துரைப்பதன் மூலம் $\overrightarrow{AD} = \frac{3}{2} \overrightarrow{AC}$ எனக் காட்டுக. P, Q என்பன முறையே AB, OD ஆகியவற்றின் மீது $\overrightarrow{AP} = \lambda \overrightarrow{AB}$ ஆகவும் $\overrightarrow{OQ} = (1 \lambda) \overrightarrow{OD}$ ஆகவும் இருக்கத்தக்கதாக உள்ள புள்ளிகளெனக் கொள்வோம்; இங்கு $0 < \lambda < 1$ ஆகும். $\overrightarrow{PC} = 2 \overrightarrow{CQ}$ எனக் காட்டுக.
 - (b) ஒர் இணைகரம் ABCD இல் AB=2 m, AD=1 m எனவும் $B\hat{A}D=\frac{\pi}{3}$ எனவும் கொள்வோம். மேலும் CD இன் நடுப் புள்ளி E எனவும் கொள்வோம். AB,BC,DC,DA,BE ஆகியவந்றின் வழியே எழுத்துகளின் ஒழுங்குமுறையினாற் காட்டப்படும் திசைகளில் முறையே 5,5,2,4,3 நியூந்நன் பருமன்களை உடைய விசைகள் தாக்குகின்றன. அவற்றின் விளையுள் விசை \overrightarrow{AE} இற்குச் சமாந்தரமானதெனக் காட்டி, அதன் பருமனைக் காண்க.

விளையுள் விசையின் தாக்கக் கோடு நீட்டப்பட்ட AB ஐ B இலிருந்து தூரம் $\frac{3}{2}$ m இல் சந்திக்கின்றது எனவும் காட்டுக.

C இனூடாகத் தாக்கும் ஒரு மேலதிக விசை இப்போது மேற்குறித்த விசைத் தொகுதியுடன், புதிய தொகுதியின் விளையுள் விசை \overrightarrow{AE} வழியே இருக்கத்தக்கதாக, சேர்க்கப்படுகின்றது. மேலதிக விசையின் பருமனையும் திசையையும் காண்க.

- 15.(a) ஒவ்வொன்றும் நிறை $w_{_{
 m I}}$ ஐ உடைய நான்கு சீரான சம கோல்கள் ஒரு சாய்சதுரம் ABCDஐ ஆக்குமாறு அவற்றின் முனைகளில் ஒப்பமாக மூட்டப்பட்டுள்ளன. BC , CD ஆகியவற்றின் நடுப் புள்ளிகள், $B\hat{A}D=2 heta$ ஆக இருக்கத்தக்கதாக, ஓர் இலேசான கோலினால் இணைக்கப்பட்டுள்ளன. B, D ஆகிய மூட்டுகள் ஒவ்வொன்றும் w_{γ} என்னும் சம சுமைகளைக் காவுகின்றன. இத்தொகுதி மூட்டு A இலிருந்து $\,$ சமச்சீராகத் தொங்கிக்கொண்டு, இலேசான கோல் கிடையாக இருக்க ஒரு நிலைக்குத்துத் தளத்திலே நாப்பத்தில் உள்ளது. இலேசான கோலில் உள்ள உதைப்பு $2(2w_1+w_2)$ $\tan\theta$ எனக் காட்டுக.
 - (b) AB, BC, CD, AC, AD என்னும் ஐந்து இலேசான கோல்களை அவற்றின் முனைகளில் ஒப்பமாக மூட்டி உருவிற் காணப்படும் சட்டப்படல் ஆக்கப்பட்டுள்ளது. AC=CB, $B\hat{A}C=30^{\circ}=A\hat{D}C$ எனத் தரப்பட்டுள்ளது. சட்டப்படல் D இல் ஒப்பமாகப் பிணைக்கப்பட்டுள்ளது. மூட்டு B இல் ஒரு நிறை Wதொங்கவிடப்பட்டு, A இல் தாக்கும் பருமன் X ஐ உடைய ஒரு கிடை விசையினால் AB கிடையாகவும் AD நிலைக்குத்தாகவும் இருக்கச் சட்டப்படல் ஒரு நிலைக்குத்துத் தளத்திலே நாப்பத்தில் பேணப்படுகிறது. போவின் குறிப்பீட்டைப் பயன்படுத்துவதன் மூலம் B,C,A ஆகிய மூட்டுகளுக்குத் தகைப்பு வரிப்படங்களை ஒரே உருவில் வரைக.

இதிலிருந்து, X இன் பெறுமானத்தையும் எல்லாக் கோல்களிலும் உள்ள தகைப்புகளையும், இழுவைகளையும் உதைப்புகளையும் வேறுபடுத்திக் காட்டி, காண்க.

 $oldsymbol{16}$. ஆரை r ஐயும் மையம் O ஐயும் உடைய ஒரு சீரான அரைவட்ட அடரின் திணிவு மையம் O இலிருந்து தூரம் $\frac{4r}{3\pi}$ இல் இருக்கின்றதெனக் காட்டுக.

அருகே உள்ள உருவிற் காணப்படுகின்றவாறு ஒரு சீரான தள அடர் L ஆனது ஒரு செவ்வகம் ABCD ஐ ஒரு சதுரம் PQRS உடன், DC உம் PQஉம் அவற்றின் நடுப் புள்ளிகள் பொருந்தி ஒரே கோட்டில் இருக்குமாறு, விறைப்பாக இணைத்து RS இன் நடுப் புள்ளி T இல் மையம் இருக்கும் ஆரை ஐ உடைய ஓர் அரைவட்டப் பிரதேசம் XYZ ஐ அகற்றுவதன் மூலம் ஆக்கப்பட்டுள்ளது. AB=a எனவும் AD=PQ=2a எனவும் தரப்பட்டுள்ளது. அடர் L இன் திணிவு மையம் சமச்சீரச்சின் மீது RS இலிருந்து தூரம் ka இல் இருக்கின்றதெனக் காட்டுக; இங்கு k=

அருகே உள்ள உருவில் காணப்படுகின்றவாறு அடர் L ஆனது கிடையுடன் கோணம் lpha இற் சாய்ந்த ஒரு கரடான தளத்தின் மீது, அதன் தளம் நிலைக்குத்தாகவும் *S* இற்குக் கீழே புள்ளி P இருக்குமாறு ஓரம் PS ஓர் அதியுயர் சரிவுக் கோட்டின் மீதும் இருக்குமாறு, நாப்பத்தில் உள்ளது. $\tan \alpha < (2-k)$ எனவும் $\mu \ge \tan \alpha$ எனவும் காட்டுக; இங்கு μ ஆனது அடருக்கும் சாய்தளத்திற்குமிடையே உள்ள உராய்வுக் குணகமாகும்.

More Past Papers at tamilguru.lk 17.(a) ஒரு கோடாத சதுரமுகித் தாயக் கட்டை A அதன் ஆறு தனித்தவி முகங்களின் மீது 1,2,3,3,4,5 ஆகியவற்றைக் காட்டுகின்றது. தாயக் கட்டை A இரு தடவை மேலே எறியப்படுகின்றது. பெறப்படும் இரு எண்களினதும் கூட்டுத்தொகை 6 ஆக இருப்பதற்கான நிகழ்தகவைக் காண்க.

முகங்களின் மீது உள்ள எண்கள் தவிர எல்லா அம்சங்களிலும் A இற்குச் சர்வசமனான வேரொரு தாயக் கட்டை B அதன் ஆறு தனித்தனி முகங்களின் மீது 2,2,3,4,4,5 ஆகியவற்றைக் காட்டுகின்றது. தாயக் கட்டை B இரு தடவை மேலே எறியப்படுகின்றது. பெறப்படும் இரு எண்களினதும் கூட்டுத்தொகை 6 ஆக இருப்பதற்கான நிகழ்தகவைக் காண்க.

இப்போது A, B ஆகிய இரு தாயக் கட்டைகளும் ஒரு பெட்டியில் இடப்படுகின்றன. பெட்டியிலிருந்து எழுமாற்றாக ஒரு தாயக் கட்டை வெளியே எடுக்கப்பட்டு இரு தடவை மேலே எறியப்படுகின்றது. பெறப்படும் இரு எண்களினதும் கூட்டுத்தொகை 6 எனத் தரப்பட்டிருக்கும்போது, பெட்டியிலிருந்து வெளியே எடுக்கப்பட்ட தாயக் கட்டை A ஆக இருப்பதற்கான நிகழ்தகவைக் காண்க.

(b) x_1, x_2, \ldots, x_n என்னும் n எண்களின் இடையும் நியம விலகலும் முறையே μ_1 உம் σ_1 உம் y_1, y_2, \ldots, y_m என்னும் m எண்களின் இடையும் நியம விலகலும் முறையே μ_2 உம் σ_2 உம் ஆகும். இவ்வெல்லா n+m எண்களினதும் இடையும் நியம விலகலும் முறையே μ_3 உம் σ_3 உம் ஆகுமெனக் கொள்வோம். $\mu_3 = \frac{n\mu_1 + m\mu_2}{n+m}$ எனக் காட்டுக.

$$d_1 = \mu_3 - \mu_1$$
 எனக் கொள்வோம். $\sum_{i=1}^n \left(x_i - \mu_3\right)^2 = n\left(\sigma_1^2 + d_1^2\right)$ எனக் காட்டுக.

 $d_2 = \mu_3 - \mu_2$ என எடுப்பதன் மூலம் $\sum_{j=1}^m \left(y_j - \mu_3\right)^2$ இந்கு ஓர் இயல்பொத்த கோவையை எழுதுக.

$$\sigma_3^2 = \frac{\left(n\sigma_1^2 + m\sigma_2^2\right) + \left(nd_1^2 + md_2^2\right)}{n+m}$$
 என உயத்தறிக.

ஒரு புதிய புத்தகத்தை வெளியிட்ட பின்னர் முதல் 100 நாட்களின்போது ஒரு நாளிற்கு விற்கப்படும் பிரதிகளின் எண்ணிக்கையின் இடை 2.3 உம் மாறற்றிறன் 0.8 உம் ஆகும். அடுத்த 100 நாட்களின்போது ஒரு நாளிற்கு விற்கப்படும் பிரதிகளின் எண்ணிக்கையின் இடை 1.7 உம் மாறற்றிறன் 0.5 உம் ஆகும். முதல் 200 நாட்களின்போது ஒரு நாளிற்கு விற்கப்படும் பிரதிகளின் எண்ணிக்கையின் இடையையும் மாறற்றிறனையும் காண்க.