Supplementary Material To: Eliminating Quantization Errors in Classification-Based Sound Source Localization

Linfeng Feng^{a,b}, Xiao-Lei Zhang^{a,b,*}, Xuelong Li^c

^aSchool of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China ^bResearch & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, Guangdong, China ^cInstitute of Artificial Intelligence (TeleAI), China Telecom Corp Ltd, 31 Jinrong Street, Beijing 100033, P. R. China

Table 1: Architecture of the PNN. The batch normalization and ReLU activations are not shown in the table.

Layer name	Structure	Output size
Input		$1 \times 4 \times 256$
Conv2D-1	2×1 , Stride= $(1, 1)$	$64 \times 3 \times 256$
Conv2D-2	2×1 , Stride= $(1, 1)$	$64 \times 2 \times 256$
Conv2D-3	2×1 , Stride= $(1, 1)$	$64 \times 1 \times 256$
Flatten	_	16384
Dense-1	_	512
Dense-2	_	512
Dense-3	_	I+1

Table 2: Architecture of the PNN-Split. The batch normalization and ReLU activations are not shown in the table.

Layer name	Structure	Output size
Input	_	$1 \times 4 \times 256$
Conv2D-1	2×1 , Stride= $(1, 1)$	$4 \times 3 \times 256$
Conv2D-2	2×3 , Stride= $(1, 1)$	$16 \times 2 \times 256$
Conv2D-3	2×3 , Stride= $(1, 1)$	$32 \times 1 \times 256$
Flatten	_	8192
Dense-1	_	2I + 2
BiLSTM	_	2I + 2
Dense-2	_	I+1

Table 3: Architecture of the SNet. The batch normalization and ReLU activations are not shown in the table.

Layer name	Structure	Output size
Input	<u> </u>	$8 \times 7 \times 256$
Conv2D-1	1×7 , Stride= $(1, 3)$	$32 \times 7 \times 84$
Conv2D-2	1×5 , Stride= $(1, 2)$	$128 \times 7 \times 40$
Residual Block	$\begin{bmatrix} 1 \times 1 & 128 \\ 3 \times 3 & 128 \\ 1 \times 1 & 128 \end{bmatrix} \times 5, \text{Stride} = (1,1)$	$128 \times 7 \times 40$
Conv2D-3	1 × 1, Stride=(1, 1)	$(I+1) \times 7 \times 40$
Swap axes	_	$40\times 7\times (I+1)$
Conv2D-4	1×1 , Stride= $(1, 1)$	$500 \times 7 \times (I+1)$
Conv2D-5	7×5 , Stride= $(1, 1)$	$1\times 1\times (I+1)$
Flatten	_	I+1

Table 4: Architecture of the SNet-Split. The batch normalization and ReLU activations are not shown in the table.

Layer name	Structure	Output size
Input	_	8 × 7 × 256
Conv2D-1	1×7 , Stride= $(1, 3)$	$32 \times 7 \times 84$
Conv2D-2	1×5 , Stride= $(1, 2)$	$128 \times 7 \times 40$
Residual Block	$\begin{bmatrix} 1 \times 1 & 128 \\ 3 \times 3 & 128 \\ 1 \times 1 & 128 \end{bmatrix} \times 5, \text{Stride} = (1,1)$	$128 \times 7 \times 40$
Flatten	_	35840
Dense-1	_	2I + 2
BiLSTM	_	2I + 2
Dense-2	_	I+1

Email addresses: fenglinfeng@mail.nwpu.edu.cn (Linfeng Feng), xiaolei.zhang@nwpu.edu.cn (Xiao-Lei Zhang), li@nwpu.edu.cn (Xuelong Li)

Preprint submitted to Elsevier January 28, 2024

^{*}Corresponding author.

Table 5: Experimental results on office data, where the backbone network is PNN.

Table 6: Experimental results on conference room data, where the backbone network is PNN.

	CE	62.60	3.168	3.181	3.077
	MSE	64.07	3.197	3.242	3.123
One-hot	WD	58.36	4.040	4.063	3.963
	NLAE	63.17	3.071	3.087	2.978
	MSE (wo)	60.92	3.695	3.753	3.621
	BCE	56.06	4.877	5.282	4.860
	MSE	57.52	3.495	3.795	3.465
GLC	NLAE	58.80	3.675	4.036	3.640
	MSE (wo)	57.93	3.518	3.926	3.500
	CE	54.18	7.282	7.797	7.282
	BCE	54.82	6.511	7.029	6.504
	MSE	58.65	4.229	4.631	4.204
SLD	WD	55.02	4.813	5.276	4.802
	NLAE	59.27	4.700	5.026	4.659
	MSE (wo)	60.43	3.184	3.582	3.163
	CE	63.26	3.791	3.910	3.752
	BCE	60.12	3.384	3.413	3.290
	MSE	64.25	3.589	3.624	3.501
ULD	WD	62.39	3.521	3.733	3.530
-	NLAE	64.09	3.985	4.153	3.964
	MSE (wo)	64.12	3.008	3.116	2.925

	CE	54.32	6.888	6.905	6.805
One-hot	MSE	54.60	5.748	5.762	5.670
	WD	49.63	7.022	7.055	6.983
	NLAE	53.84	5.192	5.268	5.138
	MSE (wo)	51.89	6.322	6.668	6.318
	BCE	44.65	11.409	11.673	11.397
	MSE	47.48	9.306	9.516	9.270
GLC	NLAE	50.16	9.719	10.046	9.703
	MSE (wo)	49.90	5.816	6.078	5.814
	CE	43.86	14.482	14.835	14.486
	BCE	44.18	14.759	15.084	14.760
	MSE	48.04	11.559	11.816	11.536
SLD	WD	45.08	13.211	13.539	13.237
	NLAE	48.90	9.987	10.253	9.967
	MSE (wo)	53.71	6.052	6.498	6.052
	CE	52.97	10.561	10.657	10.503
	BCE	50.87	6.545	6.600	6.457
	MSE	55.90	5.483	5.527	5.394
ULD	WD	54.02	6.704	6.849	6.705
	NLAE	54.33	6.654	6.729	6.601
	MSE (wo)	54.18	5.431	5.635	5.420

Table 7: Experimental results on simulated data L1, where the backbone network is SNet.

Table 8: Experimental results on office data, where the backbone network is SNet.

WAD-3

2.349

2.305

2.708

2.193

2.169

2.751

2.531

2.636

2.413

2.768

2.627

2.708

2.944

3.036

2.521

2.326

2.285

2.191

2.645

2.428

2.145

				MAE							MAE
Encoding	Loss	ACC	Top-1	WAD-2	WAD-3		Encoding	Loss	ACC	Top-1	WAD-2
	CE	74.22	2.305	1.998	1.970			CE	66.72	2.406	2.349
	MSE	75.39	2.459	2.114	2.092			MSE	68.24	2.398	2.335
One-hot	WD	68.54	3.184	2.958	2.936		One-hot	WD	64.61	2.798	2.776
	NLAE	74.68	2.694	2.353	2.327			NLAE	67.59	2.269	2.221
	MSE (wo)	75.79	2.612	2.265	2.236			MSE (wo)	67.48	2.285	2.197
	ВСЕ	66.50	2.458	2.390	2.257			ВСЕ	57.30	2.806	3.100
	MSE	68.19	2.779	2.685	2.551			MSE	58.47	2.596	2.881
GLC	NLAE	69.38	2.290	2.225	2.044		GLC	NLAE	57.99	2.737	2.946
	MSE (wo)	71.44	2.292	2.214	2.055			MSE (wo)	61.11	2.474	2.766
	CE	63.59	2.911	2.904	2.743			CE	58.88	2.778	3.199
	BCE	66.53	2.794	2.746	2.602			BCE	61.93	2.612	3.029
	MSE	67.67	2.641	2.606	2.450			MSE	61.70	2.753	3.068
SLD	WD	63.84	3.497	3.399	3.275		SLD	WD	62.94	2.933	3.280
	NLAE	68.91	3.262	3.198	3.084			NLAE	63.26	3.091	3.397
	MSE (wo)	69.93	2.543	2.544	2.360			MSE (wo)	59.88	2.555	2.894
	CE	71.46	2.654	2.285	2.245			CE	66.68	2.375	2.366
	BCE	74.05	2.473	2.116	2.044			BCE	66.58	2.352	2.351
	MSE 76.20 2.301 1.912 1.8	1.845			MSE	66.23	2.290	2.252			
ULD	WD	70.90	2.929	2.658	2.583		ULD	WD	63.91	2.712	2.753
	NLAE	72.81	2.803	2.454	2.384			NLAE	68.05	2.417	2.487
MSE (wo) 76.88 2.176 1.782 1.696			MSE (wo)	68.96	2.177	2.208					
		_	_	_	_						_

Table 9: Experimental results on conference room data, where the backbone network is SNet.

Table 10: Experimental results on simulated data C2, where the backbone network is PNN-Split.

			MAE			
Encoding	Loss	ACC	Top-1	WAD-2	WAD-3	
	CE	55.79	4.765	4.634	4.629	
	MSE	57.53	4.744	4.627	4.599	
One-hot	WD	52.71	5.310	5.270	5.241	
	NLAE	56.67	4.912	4.805	4.791	
	MSE (wo)	56.57	4.616	4.488	4.483	
	BCE	48.85	4.954	5.046	4.866	
	MSE	50.38	4.775	4.886	4.687	
GLC	NLAE	49.91	4.987	5.034	4.866	
	MSE (wo)	53.70	4.337	4.462	4.257	
	CE	49.45	4.993	5.164	4.934	
	BCE	51.28	4.945	5.107	4.914	
	MSE	52.56	5.022	5.176	4.948	
SLD	WD	53.94	5.434	5.661	5.414	
	NLAE	52.34	5.392	5.554	5.323	
	MSE (wo)	52.97	4.519	4.696	4.465	
	CE	56.86	4.749	4.668	4.616	
	BCE	54.92	5.380	5.267	5.236	
	MSE	56.27	4.657	4.510	4.482	
ULD	WD	53.82	4.937	4.836	4.786	
	NLAE	58.07	4.820	4.729	4.703	
	MSE (wo)	57.18	4.583	4.476	4.456	

			MAE			
Encoding	Loss	ACC	Top-1	WAD-2	WAD-3	
	CE	69.55	7.981	7.366	7.370	
	MSE	69.86	8.169	7.481	7.491	
One-hot	WD	68.22	7.189	6.573	6.576	
	NLAE	70.06	7.912	7.296	7.292	
	MSE (wo)	75.30	8.105	7.327	7.250	
	BCE	73.77	6.012	5.630	5.250	
	MSE	75.64	5.999	5.526	5.152	
GLC	NLAE	74.13	5.950	5.504	5.143	
	MSE (wo)	77.09	5.855	5.391	5.043	
	CE	47.86	8.725	8.208	8.220	
	BCE	57.94	6.934	6.711	6.570	
	MSE	64.31	6.466	6.156	6.001	
SLD	WD	59.47	6.707	6.410	6.246	
	NLAE	59.59	6.787	6.536	6.457	
	MSE (wo)	71.88	5.588	5.386	5.203	
	CE	66.90	7.490	6.799	6.784	
	BCE	71.37	6.741	5.991	5.964	
	MSE	70.66	7.120	6.369	6.367	
ULD	WD	70.61	6.403	5.683	5.666	
	NLAE	71.24	6.837	6.048	6.050	
	MSE (wo)	79.33	6.089	5.291	5.114	

Table 11: Experimental results on simulated data L2, where the backbone network is SNet-Split.

Table 12: Experimental results on office data, where the backbone network is SNet-Split.

	MAE						MAE				
Encoding	Loss	ACC	Top-1	WAD-2	WAD-3	Encoding	Loss	ACC	Top-1	WAD-2	WAD-3
	CE	65.58	6.439	6.022	6.027		CE	60.68	7.357	7.299	7.269
	MSE	66.38	6.772	6.324	6.336		MSE	62.78	6.677	6.941	6.704
One-hot	WD	62.56	6.145	5.892	5.896	One Hot	WD	60.47	6.422	6.309	6.291
	NLAE	67.23	5.971	5.515	5.520		NLAE	65.44	7.084	7.276	7.131
	MSE (wo)	72.78	6.124	5.687	5.681		MSE (wo)	58.40	11.682	11.819	11.750
	BCE	68.30	4.880	4.577	4.247		BCE	62.84	6.419	7.021	6.502
	MSE	69.49	5.273	4.915	4.588		MSE	62.17	7.052	7.595	7.106
GLC	NLAE	67.65	5.101	4.728	4.419	GLC	NLAE	59.74	6.653	7.071	6.634
	MSE (wo)	70.74	4.760	4.386	4.093		MSE (wo)	64.23	6.130	6.756	6.180
	CE	53.52	6.101	5.967	5.804		CE	48.07	7.382	7.820	7.420
	BCE	55.71	5.741	5.651	5.461		BCE	50.91	7.152	7.822	7.221
	MSE	60.77	5.573	5.435	5.247		MSE	59.00	5.764	6.560	5.832
SLD	WD	55.37	5.862	5.701	5.538	SLD	WD	46.98	7.792	8.258	7.781
	NLAE	58.65	5.802	5.810	5.628		NLAE	52.57	7.128	7.868	7.284
	MSE (wo)	70.64	4.798	4.765	4.495		MSE (wo)	63.62	6.204	7.005	6.244
	CE	64.39	5.536	4.890	4.873		CE	60.65	6.246	6.371	6.219
	BCE	63.49	5.774	5.146	5.139		BCE	60.56	6.382	6.536	6.403
	MSE	66.60	5.647	4.987	4.997		MSE	62.78	5.908	6.017	5.860
ULD	WD	63.58	5.456	4.860	4.858	ULD	WD	58.81	6.649	6.739	6.622
	NLAE	67.31	5.327	4.650	4.651		NLAE	63.34	5.639	5.751	5.618
	MSE (wo)	73.53	5.296	4.554	4.524		MSE (wo)	62.79	6.505	6.500	6.434
α ULD+ $(1-\alpha)$ GLC	MSE (wo)	73.01	4.446	4.008	3.739	α ULD+ $(1-\alpha)$ GLC	MSE (wo)	65.22	6.107	6.620	6.081

Table 13: Experimental results on conference room data, where the backbone network is SNet-Split.

			MAE			
Encoding	Loss	ACC	Top-1	WAD-2	WAD-3	
	CE	46.98	15.048	14.895	14.880	
	MSE	48.32	14.003	13.867	13.837	
One Hot	WD	44.96	12.723	12.552	12.543	
	NLAE	48.58	13.995	13.845	13.814	
	MSE (wo)	49.78	18.446	18.429	18.399	
	BCE	52.05	11.680	11.815	11.585	
	MSE	51.52	12.005	12.050	11.866	
GLC	NLAE	48.69	12.639	12.605	12.424	
	MSE (wo)	53.86	11.349	11.442	11.211	
	CE	37.36	13.191	13.378	13.175	
	BCE	38.70	13.209	13.409	13.199	
	MSE	46.51	12.050	12.231	12.020	
SLD	WD	36.32	13.297	13.481	13.220	
	NLAE	39.12	12.847	13.158	12.906	
	MSE (wo)	53.63	11.714	11.941	11.640	
	CE	47.16	13.172	13.007	12.945	
	BCE	45.70	14.158	13.985	13.948	
	MSE	49.90	12.232	12.086	12.025	
ULD	WD	42.41	14.342	14.191	14.135	
	NLAE	50.28	12.559	12.396	12.342	
	MSE (wo)	54.58	12.776	12.655	12.591	
α ULD+ $(1-\alpha)$ GLC	MSE (wo)	53.68	10.519	10.459	10.229	