

Computer Engineering Dept. Faculty of Engineering Cairo University

Computer Architecture Lab #1

Computer Architecture Lab #1

You will design a part of <u>8-bit</u> ALU that accepts 2 8-bit input values "A" and "B" and provides 8-bit output "F". The ALU has 4-bit selection inputs "S" (S0->3) and "Cin" input. The required part of the ALU provides a total of 12 operations specified in the following table

	S ₃	S ₂	S ₁	So		
Part A	0	0	0	0	Next Time	
	0	0	0	1		
	0	0	1	0		
	0	0	1	1		
Part B	0	1	0	0	F = A and B	
	0	1	0	1	F = A or B	
	0	1	1	0	F = A Nor B	
	0	1	1	1	F = Not A	
Part C	1	0	0	0	F=Logic shift right A	
	1	0	0	1	F=Rotate right A	
	1	0	1	0	F=Rotate right A with Carry	
	1	0	1	1	F=Arithmetic shift right A	
Part D	1	1	0	0	F=Logic shift left A	
	1	1	0	1	F=Rotate left A	
	1	1	1	0	F=Rotate left A with Carry	
	1	1	1	1	F = 0000	

Requirement:

You will design a part of **16-bit** ALU as follows:

Write VHDL code for parts B, C and D in 3 separate VHDL files **Each file is** .1 **named** as "partB", "partC", "partD" respectively.

- a. Part B ports
 - i. Input \Rightarrow A, B, S0, S1
 - ii. Output \Rightarrow F
- b. Part C ports
 - i. Inputs \Rightarrow A, Cin, S0, S1
 - ii. Output => F, Cout (the shifted/rotated bit)
- c. Part D ports
 - i. Inputs \Rightarrow A, Cin, S0, S1
 - ii. Output => F, Cout (the shifted/rotated bit)
- 2. Compile your Code, the code should be free of errors and warnings
- 3. Simulate each file using the inputs stated below.
- 4. **Assignment:** Integrate all 3 files in a bigger file, named "ALU", in structural way and use 4-bit "S" selection input to choose between components.
- 5. Your simulation will be delivered using **DO files** only.

Computer Engineering Dept. Faculty of Engineering Cairo University

Computer Architecture Lab #1

Operation	A	В	Cin	F	Cout
AND	F5	AA		A0	
OR	F5	AA		FF	
NOR	F5	AA		00	L
NOT	F5			0A	
F=Logic shift right A	F5		_	7A	1
F=Rotate right A	F5		_	FA	1
F=Rotate right A with Carry	F5		0	7A	1
F=Rotate right A with Carry	F5		1	FA	1
F=Arithmetic shift right A	F5		-	FA	1
F=Logic shift left A	F5		_	EA	1
F=Rotate left A	F5		_	EB	1
F=Rotate left A with Carry	F5		0	EA	1
F=Rotate left A with Carry	F5		1	EB	1
F=0000	F5		_	0000	0
F=Rotate right A	7A		-	3D	0

N.B. you will be graded for code neatness and understanding, Good luck

Self-assessment

- **1.** How to describe wires in VHDL?
- 2. What hardware does the when else statement maps to?
 - **3.** Is VHDL case sensitive?

Questions for Next Lab:

- 1. If you need to use several sizes of the same component (i.e. 2-bit adder, 4-adder), is there a way to use the same entity definition for all sizes without creating single entity for each size?
- 2. What is a process?
- **3.** Draw a schematic for full adder.