高等影像處理 作業六書面報告

學號: m10902121 姓名: 李育誠

一、本作業所用之程式語言及編譯器

程式語言: Python3.9 直譯器: Python 直譯器

套件: PyQt5、OpenCV 4.5.3、Pyinstaller(將.py 轉換為.exe)

二、程式功能

1. 讀寫影像檔案。

2. 輸入的影像為灰階影像,輸出則為影像平滑化與邊緣偵測之後的影像。影像平滑化與邊緣偵測需由使用者輸入不同的 convolution masks,大小為 3X3 pixels

三、 程式流程或演算法

- 1. 程式介面介紹
- (1) 載入圖片,按下 load,並轉換成灰階圖。
- (2) 輸入 3x3 的 kernel 後按下 Set 再按下 Conv 即可顯示 convolution 後的圖片。
- (3) 按下 save 可以儲存即可儲存經過 convolution 後的影像。
- (4) 按下 exit 可以離開程式。

程式流程如下 圖所示:

四、 測試結果(請附至少三組畫面截圖,並附相關說明)

(註: 程式第一次執行須花較長時間)

1. 輸入影像,顯示經測邊 kernel convolution 過後的影像,並且反白。

1	0	-1
1	0	-1
1	0	-1

2. 輸入影像,顯示經測邊 kernel convolution 過後的影像,並且反白。

0	1	1
-1	0	1
-1	-1	0

3. 輸入影像,顯示經影像平滑 kernel convolution 過後的影像,並且反白。

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

4. 輸入影像,顯示經影像平滑 kernel convolution 過後的影像,並且反白。

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

五、 程式撰寫心得

這次實驗是比較簡單的一次作業,我學到影像如何做 convolution 以及如何使用反白顯示所需要的影像結果,上完本學期的課程真的讓我對於影像處理有更多的認識,希望自己在研究上面也可以應用所學,而不是單純使用類神經網路在訓練電腦判定的機制。