

Gauß'sche Prozesse

Dozenten:

Prof. Dr.-Ing. J. Marius Zöllner

Dr.-Ing. Stefan Ulbrich

Inhaltsübersicht

- Motivation
 - Regression
 - Probabilistische Regression
- Gauß'sche Prozesse
 - Definition
 - Verwendung zur Regression
 - Lernen
- Anwendungsbeispiele

MOTIVATION

Regression: Problemstellung

- "Hier sind ein paar Datenpunkte. Von welcher Funktion wurden sie erzeugt?"
 - "Keine Ahnung."
- "Oh. Okay. Hm, ob dieser Punkt wohl auch zu der Funktion gehört?"
 - "Keine Ahnung."

Regression: Beispiele

M = 1

M = 9

0

Ziel: Vorhersage einer kontinuierlichen Funktion

[1]

Vergleich Klassifikation / Regression

- Klassifikation sucht i. A. Entscheidungsfunktion y(x), z.B. für 2 Klassen
 - y(x) > 0 für alle Daten in Klasse A
 - y(x) < 0 für alle Daten in Klasse B
- Regression sucht nach Funktion, die Daten möglichst gut beschreibt
 - Geg.: Trainingsdaten $\{(\mathbf{x}_1,y_1),\dots(\mathbf{x}_n,y_n)\}$ mit Funktionswerten y_i
 - Ges.: Funktion $y: \mathbb{R}^d
 ightarrow \mathbb{R}$ $\mathbf{x} \mapsto y(\mathbf{x})$
 - wobei die Hypothese möglichst gut zu Trainingsdaten passt, aber auch generalisiert!

Lineare Regression

- Klassische Fragestellung: Lineare Regression
 - Suchen einer "passenden" Geraden in den Daten

- lacksquare Typische Lösung: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$
 - x: Eingaben
 - w: Gewichtung der einzelnen Eingaben
 - $\qquad \qquad \textbf{Beobachtungen:} \ \ y = f(\mathbf{x}) + \varepsilon \qquad \qquad \textbf{(evtl. mit Gauß'schem Rauschen)}$
- Lösung z.B. mittels kleinste Quadrate-Methode (Matrixnotation)

$$X \cdot w = y \Rightarrow w = (X^T X)^{-1} X^T y, \qquad X = (x_1, ..., x_n), y = (y_1, ..., y_n)$$

■ Wobei $(X^TX)^{-1}X^T$ (Moore-Penrose) Pseudoinverse

Bewertung lineare Regression

- Lineare Regression hat Vor- und Nachteile
 - analytisch lösbar
 - unterschiedlichste Daten können zu gleichem Ergebnis führen

[Anscombe's quartet Abb. aus Wikipedia]

Erweiterung der linearen Regression

- Einfache lineare Regression: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$
- Erweiterung durch Projektion der Daten unter Verwendung von M festen Basisfunktionen $\phi(\mathbf{x})$ sodass gilt:

$$y(\mathbf{x}) = \phi(\mathbf{x})^T \mathbf{w}$$
$$= \sum_{i=0}^{M} \phi_i(\mathbf{x}) w_i$$

lacksquare z.B. für skalare Eingaben: $\phi(x)=(1,x,x^2,x^3,\ldots)^T$

Overfitting bei Regression

Polynom mit Grad 9 für Eingangsbeispiel

N: Anzahl der Trainingsbeispiele

Probleme mit üblicher Regression

- Overfitting
- Numerische Instabilität
 - Tabelle zeigt Gewichtskoeffizienten bei Polynomen unterschiedlichen Grades für das Beispiel

	M=0	M = 1	M = 6	M = 9	
w_0^{\star}	0.19	0.82	0.31	0.35	
w_1^{\star}		-1.27	7.99	232.37	
w_2^{\star}			-25.43	-5321.83	
w_3^{\star}			17.37	48568.31	
w_4^{\star}				-231639.30	
w_5^{\star}				640042.26	
w_6^{\star}				-1061800.52	
w_6^{\star} w_7^{\star}				1042400.18	
w_8^{\star}				-557682.99	- 4 -
w_9^{\star}				125201.43	[1]

Probabilistische Regression (Idee)

- Interpretation der kleinsten Quadrate als Maximum Lieklihood-Schätzung
- Annahmen:
 - Zielwerte y generiert durch zusätzliches Rauschen auf Funkstionsschätzung: $y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$
 - Rauschen ist Normalverteilt: $p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1})$

Erwartungswert

Varianz

- Ansatz: Maximiere bedingte Wahrscheinlichkeit $p(y|X, w, \beta)$ bzgl. w, β
- Lösung: $\mathbf{w}_{ML} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$ mit $\Phi = (\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n))^T$
 - Analog zu kleinste Quadrate bei linearer Regression

Regression – ein anderer Blickwinkel

- zwei unterschiedliche Ansätze für Regression
- Klasse in Betracht gezogener Funktionen einschränken
 - z.B. lineare Funktionen der Eingabewerte
 - Nutzen kleinste Quadrate oder ML-Schätzungen
- Bayes'sche Modellierung
 - lacktriangle Jeder Funktion a priori Wahrscheinlichkeit zuweisen: p(f)
 - Berechne MAP-Schätzung: Wahrscheinlichkeit der Beobachtung

a priori der Funktion

$$p(f|\mathbf{y},X) = \frac{p(\mathbf{y}|X,f)p(f)}{p(\mathbf{y}|X)}$$
 Normalisierung

lacktriangleq f: mögliche Funktionen, X: Eingabedaten, lacktriangle: Ausgaben

GAUSS'SCHE PROZESSE

Vorbemerkungen

bekannt durch C.E. Rasmussen und C.K.I. Williams

http://www.gaussianprocess.org/gpml/

- Buch frei verfügbar (im Folgenden referenziert als [2])
- zentrale GP-Homepage: http://www.gaussianprocess.org/
- Vorlesung angelehnt an [2], Kapitel 1 & 2

Grundlagen: Gauß-Verteilung

- Multivariate Gauß-Verteilung (Normalverteilung) $x \sim \mathcal{N}(\mu, \Sigma)$
 - Mittelwert $\mu = [E[X_1], E[X_2], ..., E[X_k]$
 - Kovarianzmatrix

$$\Sigma = [Cov[X_i, X_j]], \quad i = 1, ..., k \land j = 1, ..., k$$

$$\Sigma_{ij} = cov(X_i, X_j) = E[(X_i - \mu_i)(X_j - \mu_j)]$$

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{bmatrix}, \begin{bmatrix} A & C \\ C^\top & B \end{bmatrix} \right)$$

- Marginal $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_x, A)$
- Bedingte Verteilung

$$\mathbf{x}|\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}_x + CB^{-1}(\mathbf{y} - \boldsymbol{\mu}_y), A - CB^{-1}C^{\top})$$

Grundlagen: Korrelationskoeffizent

■ Maß für linearen Zusammenhang zwischen X und Y [-1,1]

$$Kor(X,Y) = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)} \in [-1,1]$$

Beispiele:

Warum Gauß'sche Prozesse?

- aus ML 1 bekannt: Induktiver Bias (Annahmen über das zu lernende) ist notwendig für Generalisierung
- GPs bieten eine angenehme Art, diese Art von a-priori-Wissen für Funktionen auszudrücken
 - Präferenz-Bias statt Restriktions-Bias
 - Explizite Modellierung des Induktiven Bias
- GPs haben große Bandbreite von Anwendungen
 - Regression
 - Klassifikation
 - Optimierung

GP: Informelle Definition

- Gauß'scher Prozess (Verallg. der Gauß-Verteilung)
 - beschreibt Eigenschaften von Funktionen
 - Vorstellung von Funktionen als (unendlich) lange Vektoren, deren Einträge x_i den Funktionswert f(x_i) enthalten
- GPs werden benutzt um a priori-Wissen über Funktionen auszudrücken
 - GP kann z.B. beschreiben, dass Funktionswert sich nur "sanft" ändert (glatte Funktion)
- Problem mit dieser Vorstellung: Wie geht man mit unendlich vielen Punkten um?
 - nur Eigenschaften an endlicher Menge von Punkten benötigt => Inferenz in GPs liefert gleiche Antwort, auch wenn unendlich viele Punkte ignoriert werden

Beispiel zur Illustration

Eindimensionales Regressionsproblem

- Links: 4 zufällig gewählte mögliche Funktionen aus a-priori-Verteilung eines GP
- Rechts: MAP mit zwei Messpunkten

Beispiele für a priori-Eigenschaften

- Repräsentation von Vorwissen über Funktionen
- Mittelwert einzelner Funktionen ungleich 0, aber Mittelwert von f(x) für festes x ist 0 (im Bsp.)

- Bevorzugung glatter Funktionen, d.h. Funktionen können nicht zu schnell variieren (im Bsp.)
- Glattheit induziert von Kovarianzfunktion des GP
- Lernen in GPs: Hauptaufgabe ist das Finden geeigneter Eigenschaften der Kovarianzfunktionen

Formaler(er) Blick auf GPs

- Zwei Sichtweisen möglich:
- 1. "weight space view"
 - GP definiert Verteilung über den Parametern (Gewichten) der Funktionen
- 2. "function space view"
 - GP definiert Verteilung direkt über den Funktionen
- Äquivalente Ergebnisse mit beiden Sichtweisen

Definition Gauß'scher Prozess I

- Definition Gauß'scher Prozess (GP): Ein GP ist eine Zusammenfassung von Zufallsvariablen, von denen eine beliebige endliche Menge zusammen einer gemeinsamen Gauß-Verteilung genügen
- Andere Formulierung: Wahrscheinlichkeitsverteilung über Funktionen y(x) sodass die Menge der Werte von y(x) ausgewertet an einer beliebigen Menge von Punkten zusammen einer Gauß-Verteilung genügen.

Definition Gaussscher Prozess II

- Gauß-Verteilung für jedes x im Eingaberaum X, GP vollständig definiert durch
 - **Erwartungsfunktion:** $m(x) = \mathbb{E}[f(x)]$
 - Novarianz funktion: $k(x, x') = \mathbb{E}[(f(x) m(x))(f(x') m(x'))]$
 - Beschreibt Kovarianz von f(x) an zwei beliebigen Stellen x, x'
 - Meistens: Erwartungswert wird als 0 angenommen $(m(\mathbf{x}) = 0)$ \Rightarrow Vorwissen (prior, bias) in Kernel (Kovarianzfunktion) repräsentiert
- Notation: $f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{m}(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$

GP - Konsistenz

- GP definiert als Zusammenfassung von Zufallsvariablen
 - → impliziert Konsistenz
- Konsistenz hier:
 - wenn GP $(y_1,y_2)\sim\mathcal{N}(\mu,\Sigma)$ definiert, mit $\Sigma=\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$
 - dann muss auch gelten $y_1 \sim \mathcal{N}(\mu_1, \Sigma_{11})$
- Automatisch erfüllt durch direkte Wertebelegung der Kovarianzmatrix mit der Kovarianzfunktion
- Anders ausgedrückt: Betrachtung einer größeren Variablenmenge ändert nicht die Verteilung der kleineren Menge

Beispiel für GP

- Bayes'sches lineares Regressionsmodell: $f(\mathbf{x}) = \phi(\mathbf{x})^T \mathbf{w}$
- Gauß'sche a priori: $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \Sigma_p)$
 - Mittelwert: $E[f(\mathbf{x})] = \phi(\mathbf{x})^T E[\mathbf{w}] = 0$
 - Novarianz: $\mathrm{E}[f(\mathbf{x})f(\mathbf{x}')] = \phi(\mathbf{x})^T \mathrm{E}[\mathbf{w}\mathbf{w}^T]\phi(\mathbf{x}')$ $= \phi(\mathbf{x})^T \Sigma_p \phi(\mathbf{x}')$

GP - Kovarianzfunktion

- Kovarianzfunktion definiert die Kovarianz zwischen Paaren von Zufallsvariablen
- Typische Kovarianzfunktion: "squared exponential" (SE)

$$cov(f(\mathbf{x}_p), f(\mathbf{x}_q)) = k(\mathbf{x}_p, \mathbf{x}_q) = \exp\left\{-\frac{1}{2}|\mathbf{x}_p - \mathbf{x}_q|^2\right\}$$

Kovarianz zwischen Ausgaben geschrieben als Funktion über Eingaben

 SE-Kovarianzfunktion korrespondiert zu Bayes'schem linearem Regressionsmodell mit unendlich vielen Basisfunktionen

Beispiel: Kovarianzfunktionen

Zwei verschiedene Kovarianzfunktionen

$$k(x, y) = \exp\left(-\frac{(|x| - |y|)^2}{2}\right)$$

$$k(x, y) = \exp\left(-|x| - |y|\right)$$

GP - Kovarianzfunktion

- Nenn die Kovarianz nur von der Differenz von x_p und x_q abhängt, spricht man von einem stationärem Kernel
 - Beispiel SE

$$k(\boldsymbol{x}_p, \boldsymbol{x}_q) =: k(d) = \exp\left(-\frac{d^2}{2}\right), \quad \text{mit } d = \|\boldsymbol{x}_p - \boldsymbol{x}_q\|$$

- Ansonsten von einem nicht stationärem Kernel
 - Beispiel: Linearer Kernel

$$k(\boldsymbol{x}_p, \boldsymbol{x}_q) = \boldsymbol{x}_p^t \cdot \boldsymbol{x}_q$$

GP - Kovarianzfunktion

Weitere Beispiele

Achsensymmetrische Kernel (nicht stationär)

$$k(x,y) = \exp\left(-\frac{(|x|-|y|)^2}{2}\right)$$

$$k(d) = \exp(\cos(d))$$

Polynomielle Kernel (nicht stationär)

$$k(x, y) = \phi(x)^t \cdot \phi(y), \quad \phi(x) = (1, x, x^2, ...)$$

GP - a priori-Verteilung über Funktionen (Sampling)

- Spezifikation/Wahl einer Kovarianzfunktion impliziert eine Verteilung über Funktionen
- => Beispiele aus der Verteilung über den Funktionen können gewählt und an (endlicher) Zahl von Punkten evaluiert werden
- Vorgehen:
 - Endliche Menge Punkte X* wählen
 - Zugehörige Kovarianzmatrix (z.B. SE)
 elementweise aufschreiben: K(X*, X*)
 - Generiere Vektor aus Gauß-Funktion mit dieser Matrix als Kovarianz:

$$f_{\star} \sim \mathcal{N}(\mathbf{0}, K(X_{\star}, X_{\star}))$$

Rauschfreie Prädiktion: Definition

- Annahme: Beobachtungen rauschfrei: $\{(\mathbf{x}_i, f_i)|i=1,\ldots,n\}$
- Multivariate Verteilung von Trainingsausgaben f und Testausgaben f* gemäß a priori-Verteilung:

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_{\star} \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{pmatrix} K(X, X) & K(X, X_{\star}) \\ K(X_{\star}, X) & K(X_{\star}, X_{\star}) \end{pmatrix} \right)$$

- K(X,X*) enthält Kovarianzen für alle Paare von Trainingsund Testpunkten
- Zur Berechnung der a posteriori-Verteilung (nach Beob.)
 - a priori (oben) beschränken auf Funktionen, die mit Beobachtungen konsistent
 - Vorstellung: Funktionen mittels a priori generieren, inkonsistente verwerfen

rauschfreie Prädiktion: Berechnung

- Berechnung der a posteriori-Verteilung
 - entspricht der multivariaten a priori-Gauß-Verteilung bedingt unter den Beobachtungen

$$p(\mathbf{f}_*|X_*,X,\mathbf{f}) \sim \mathcal{N}(\overline{\mathbf{f}}_*,cov(\mathbf{f}_*))$$

Wobei

$$\bar{\mathbf{f}}_{\star} = K(X_{\star}, X) \cdot K(X, X)^{-1} \mathbf{f}$$

$$\operatorname{cov}(\mathbf{f}_{\star}) = K(X_{\star}, X_{\star}) - K(X_{\star}, X) \cdot K(X, X)^{-1} \cdot K(X, X_{\star})$$

Funktionswerte von f_* (für die Testeingaben X_*) können aus der resultierenden Normalverteilung gesampelt werden

rauschfreie Prädiktion: Berechnung

- Anmerkung
 - Für jedes neues Trainingsbeispiel wächst X (und y)!
 - GPR ist instanzbasiertes Lernen
 - $K(X,X)^{-1}$ muss dann neu berechnet werden
 - Matrizen können sehr groß werden und aufwändig zu berechnen
 - Daher nur bedingt geeignet für inkrementelles Lernen
 - Abhilfe
 - Sparsification: Ausdünnen der Matrix ("Vergessen" wenig relevanter Beispiele)

rauschfreie Prädiktion: Beispiel

- links: a priori-Verteilung
- rechts: a posteriori-Verteilung nach 5 rauschfreien Beobachtungen

Prädiktion bei verrauschten Beobachtungen

Übliche Annahme: Rauschen in Beobachtungen

$$y = f(\mathbf{x}) + \epsilon$$
 $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$

- Veränderung der Kovarianz durch das Rauschen
 - ausführlich: $cov(y_p, y_q) = k(\mathbf{x}_p, \mathbf{x}_q) + \sigma_n^2 \delta_{pq}$
 - Nompakte Matrix-Notation: $cov(\mathbf{y}) = K(X, X) + \sigma_n^2 I$
- resultierende Verteilung der Beobachtungen und der Teststellen mit dieser a priori-Verteilung:

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_{\star} \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{array}{cc} K(X, X) + \sigma_n^2 I & K(X, X_{\star}) \\ K(X_{\star}, X) & K(X_{\star}, X_{\star}) \end{array} \right)$$

verrauschte Prädiktion: Berechnung

- Berechnung der a posteriori-Verteilung entspricht im Prinzip dem unverrauschten Fall
 - entspricht der multivariaten a priori-Gauß-Verteilung bedingt unter den Beobachtungen

$$p(\mathbf{f}_*|X_*,X,\mathbf{f}) = \mathcal{N}(\mathbf{\bar{f}}_*,cov(\mathbf{f}_*))$$

wobei

$$\bar{\mathbf{f}}_{\star} = \mathsf{E}[\mathbf{f}_{\star}|X, X_{\star}, \mathbf{y}] = K(X_{\star}, X) \cdot (K(X, X) + \sigma^{2}I)^{-1}\mathbf{f}$$
$$\mathsf{cov}(\mathbf{f}_{\star}) = K(X_{\star}, X_{\star}) - K(X_{\star}, X) \cdot (K(X, X) + \sigma^{2}I)^{-1} \cdot K(X, X_{\star})$$

Funktionswerte von f* (für die Testeingaben X*) können wieder aus der resultierenden Normalverteilung gesampelt werden

Einfluss der Hyperparameter I

- Einige freie Parameter in den meisten Kovarianzfunktionen
 - Beispiel: eindim. SE-Kovarianzftk. für verrauschte Daten

$$k_y(x_p, x_q) = \underline{\sigma_f^2} \exp\left\{\frac{-(x_p - x_q)^2}{2 \cdot l^2}\right\} + \underline{\sigma_n^2} \delta_{pq}$$

- Parameter: (l, σ_f, σ_n)
- Signal-Varianz: σ_f^2
- "length scale": ¿
- lacksquare Rauschen in den Beobachtungen: σ_n^2

Einfluss der Hyperparameter II

- Beispiele für verschiedene Werte der Hyperparameter
 - Length scale I variiert, andere Parameter optimiert

$$(l, \sigma_f, \sigma_n) = \\ = (1, 1, 0.1) = (0.3, 1.08, 0.00005) = (3.0, 1.16, 0.89)$$

$$(l, \sigma_f, \sigma_n) = \\ = (1, 1, 0.1) = (0.3, 1.08, 0.00005) = (3.0, 1.16, 0.89)$$

$$(l, \sigma_f, \sigma_n) = \\ = (1, 1, 0.1) = (0.3, 1.08, 0.00005) = (3.0, 1.16, 0.89)$$

DEMONSTRATION

(Am Ende des PDF)

Ausblick: Lernen von GPs

- Bayes'sche Modell-Auswahl
- Ziel: Verschiedene Parameter von GPs bestimmen/lernen
- Hierarchie von Parametern muss in Betracht gezogen werden
 - untere Ebene: w, z.B. die Parameter eines linearen Modells
 - mittlere Ebene: Hyperparameter θ , z.B. die a priori-Verteilung von **w** kontrollieren
 - obere Ebene: typischerweise eine diskrete Menge von Modellstrukturen \mathcal{H}_i
- Ansatz: Inferenz nacheinander auf den einzelnen Ebenen durchführen

Beispiel: Modellauswahl auf unterer Ebene

a posteriori des Parameters w mittels Bayes-Regel:

$$p(\mathbf{w}|\mathbf{y}, X, \theta, \mathcal{H}_i) = \frac{p(\mathbf{y}|X, \mathbf{w}, \theta, \mathcal{H}_i)p(\mathbf{w}|X, \theta, \mathcal{H}_i)}{p(\mathbf{y}|X, \theta, \mathcal{H}_i)}$$
$$= \frac{p(\mathbf{y}|X, \mathbf{w}, \mathcal{H}_i)p(\mathbf{w}|\theta, \mathcal{H}_i)}{p(\mathbf{y}|X, \theta, \mathcal{H}_i)}$$

- mit
 - Likelihood: $p(\mathbf{y}|X, \mathbf{w}, \mathcal{H}_i)$
 - lacksquare a priori des Parameters $oldsymbol{w}$: $p(oldsymbol{w}| heta,\mathcal{H}_i)$
 - Normalisierende Konstante im Nenner unabhängig von w (marginalisierte Likelihood)

$$p(\mathbf{y}|X, \theta, \mathcal{H}_i) = \int p(\mathbf{y}|X, \mathbf{w}, \mathcal{H}_i) p(\mathbf{w}|\theta, \mathcal{H}_i) d\mathbf{w}$$

Bewertung der Bayesschen Modell-Auswahl

- Hauptunterschied zu nicht-Bayes'schen Verfahren: Marginalisierte Likelihood
- Automatischer Trade-off zwischen passendem Modell und Modellkomplexität
 - einfaches Modell: kann nur für geringe Menge der Zielwerte passen, daher hohe a posteriori, wenn das Modell gut passt
 - komplexes Modell: kann einen großen Bereich von möglichen Mengen von Zielwerten erklären, daher immer eine Beschränkung der a posteriori-Wahrscheinlichkeit

Zusammenfassung

- Gauß'scher Prozess: Wahrscheinlichkeitsverteilung über Funktionen
- An jedem Punkt eine Gauß-Verteilung
- Vorwissen/Induktiver Bias steckt in der Kovarianzfunktion (Kernel)
- Hauptsächliche Verwendung für Regression
 - Klassifikation auch möglich, aber erfordert zusätzlichen Aufwand

ANWENDUNGSBEISPIELE

Probabilistic PCA: Überblick I

- Latentes Variablenmodell
 - Projiziere hochdimensionale Daten (Y, d-dimensional) auf niedrigdimensionalen latenten Raum (X, q-dimensional, q << d)</p>
- Probabilistic PCA
 - Wahrsch. eines Datenpunktes: $p(\mathbf{y}_n|\mathbf{W},\beta) = \int p(\mathbf{y}_n|\mathbf{x}_n,\mathbf{W},\beta)p(\mathbf{x}_n)d\mathbf{x}_n$

$$p(\mathbf{y}_n|\mathbf{x}_n, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{y}_n|\mathbf{W}\mathbf{x}_n, \beta^{-1}\mathbf{I})$$

- Wahrsch. einer Datenmenge: $p(\mathbf{Y}|\mathbf{W}, \beta) = \prod_{n=1}^{\infty} p(\mathbf{y}_n|\mathbf{W}, \beta)$
- Marginalisiere nach W:
 - **a**-priori von **W**: $p(\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{w}_i | 0, \alpha^{-1} \mathbf{I})$
- Marginalisierte Wahrsch. von Y:

$$p(\mathbf{Y}|\mathbf{X},\beta) = \frac{1}{(2\pi)^{\frac{DN}{2}}|\mathbf{K}|^{\frac{D}{2}}} \exp\left(-\frac{1}{2}\operatorname{Sp}(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{T})\right)$$

lacksquare Wobei $\mathbf{K} = lpha \mathbf{X} \mathbf{X}^T + eta^{-1} \mathbf{I}$ und $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_N]^T$

Probabilistic PCA: Überblick II

Optimiere X:

Log-likelihood:
$$L = -\frac{DN}{2}\ln(2\pi) - \frac{D}{2}\ln|\mathbf{K}| - \frac{1}{2}\mathrm{Sp}(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^T)$$

Optimiere X:
$$\frac{\partial L}{\partial \mathbf{X}} = \alpha \mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^T \mathbf{K}^{-1} \mathbf{X} - \alpha D \mathbf{K}^{-1} \mathbf{X}$$

LÖSUNG:
$$\mathbf{X} = \mathbf{U}_q \mathbf{L} \mathbf{V}^T$$
 \mathbf{U}_q : N x q-Matrix mit q Eigenvektoren von $\mathbf{Y} \mathbf{Y}^T$

L: Diagonalmatrix mit Eigenwerten von **YY**^T

V: Orthogonale q x q-Matrix

Diese Lösung äquivalent zu PCA-Lösung

Kernel PCA: Ersetze YY^T mit Kernel

GPLVM (Gaussian Process Latent Variable Model) [3]

- PCA kann als GP interpretiert werden, der von X auf Y abbildet mit einer Kovarianzmatrix, die die Abbildungen auf lineare Abb. beschränkt
- Erweiterung: Nicht-lineare Abbildungen von latentem Raum auf Datenraum betrachten
 - Nicht-lineare Kovarianz-Funktion
 - Verwendung von Standard RBF Kernel statt $K = \alpha XX^T + \beta^{-1}I$
 - Berechne Gradient der Log-Likelihood mittels Kettenregel
 - Initialisiere X mittels PCA
 - Optimiere X und Hyperparameter des Kernels (z.B. mittels Conjugate Gradients)
 - Jede Gradienten-Berechnung benötigt Invertieren der Kernel-Matrix => O(N³)

Style based Inverse Kinematics [5]

- GPLVM genutzt um menschliche Bewegungsdaten zu repräsentieren
 - Pose X: 42D Vector q (Gelenke, Position, Orientierung)
 - Immer ein spezifischer Bewegungsstil (z.B. Gehen)
 - Merkmalsvektor Y:
 - Gelenkwinkel
 - Geschwindigkeit und Beschleunigung für jedes Merkmal
 - > 100 Dimensionen
 - Latent Space X': üblicherweise 2D oder 3D
- Skalierte Version von GPLVM

SBIK: Ergebnisse I

- Unterschiedliche Stile:
 - Base-Ball Pitch

Tiefer Start f. Lauf

SBIK: Ergebnisse II

- Modell aufstellen
 - Position in 2-dim. latentem Raum spezifizieren

Trajektorien festlegen/ ändern

Literatur

- [1] Bernt Schiele / Stefan Roth: Maschinelles Lernen: Statistische Verfahren II. Vorlesungsfolien, Technische Universität Darmstadt, 2009. http://www.gris.tu-darmstadt.de/teaching/courses/ws1213/ml2
- [2] C.E. Rasmussen, C.K.I. William: Gaussian Processes for Machine Learning. The MIT Press, 2006. http://www.gaussianprocess.org/gpml/
- [3] N. Lawrence: Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data. Advances in neural information processing systems 16: Proceedings of the 2003 conference, 2004.
- [4] C.M. Bishop, G.D. James: Analysis of multiphase flows using dual-energy gamma densitometry and neural networks. Nuclear Instruments and Methods in Physics Research, A327:580-593, 1993.
- [5] K. Grochow, S.L. Martin, A. Hertzmann, Z. Popovic: Style-based Inverse Kinematics. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004), 2004.

Ergänzende Referenzen

- zentrale Homepage für Gauß'sche Prozesse http://www.gaussianprocess.org/
- Video-Lecture von Carl E. Rasmussen http://videolectures.net/epsrcws08_rasmussen_lgp/