

Костромская область, г. Судиславль, база отдыха «Берендеевы Поляны», 10 августа 2011 года (день 07)

Nice, Nice2. Симпатичные узоры -1, 2

Имя входного файла: nice.in, nice2.in Имя выходного файла: nice.out, nice2.out

Компания «BrokenTiles» планирует заняться выкладыванием во дворах у состоятельных клиентов узоров из черных и белых плиток, каждая из которых имеет размер 1×1 метр. Известно, что дворы всех состоятельных людей имеют наиболее модную на сегодняшний день форму прямоугольника $n \times m$ метров.

Однако при составлении финансового плана у директора этой организации появилось целых две серьезных проблемы: во-первых, каждый новый клиент, конечно же, захочет, чтобы узор, выложенный у него во дворе, отличался от узоров всех остальных клиентов этой фирмы, а во-вторых, этот узор должен быть симпатичным.

Как показало исследование, узор является симпатичным, если в нем нигде не встречается квадрата 2×2 метра, полностью покрытого плитками одного цвета.

Для составления финансового плана директору необходимо узнать, сколько клиентов он сможет обслужить, прежде чем симпатичные узоры данного размера закончатся. Помогите ему!

Формат входного файла

На первой строке входного файла находятся два натуральных числа n и m.

Варианты

Nice: $1 \leqslant n \cdot m \leqslant 30$.

Nice2: $1 \le n \cdot m \le 250$, ответ выводить по модулю 10^9 .

Формат выходного файла

Выведите в выходной файл единственное число — количество различных симпатичных узоров, которые можно выложить во дворе размера $n \times m$. Узоры, получающиеся друг из друга сдвигом, поворотом или отражением, считаются различными.

Пример

nice.in, nice2.in	nice.out, nice2.out
2 2	14
3 3	322

Numbers, Числа

Имя входного файла: numbers.in Имя выходного файла: numbers.out

Дана последовательность чисел a_1, a_2, \ldots, a_N . За одну операцию разрешается удалить любое (кроме крайних) число, заплатив за это штраф, равный произведению этого числа и суммы соседних. Требуется удалить все числа, кроме крайних, с минимальным суммарным штрафом.

Например:

Начальная последовательность:

1 50 51 50 1

удаляем четвертое число, штраф — $50 \cdot (1+51) = 2600$, получаем

1 50 51 1

удаляем третье число, штра $\phi - 51 \cdot (50 + 1) = 2601$, получаем

1.50

удаляем второе число, штра $\phi - 50 \cdot (1+1) = 100$.

Итого штраф — 5301.

Формат входного файла

В первой строке входного файла расположено одно число N ($1 \le N \le 100$) — количество чисел в последовательности.

Во второй строке находятся N целых чисел $a_1, a_2, \dots a_N$; никакое из чисел не превосходит по модулю 100.

Формат выходного файла

Выведите в выходной файл одно число — минимальный суммарный штраф.

Пример

numbers.in	numbers.out
5	5301
1 50 51 50 1	

Летняя компьютерная школа 2011.Август. Параллель А

Buratino. Буратино

Имя входного файла: buratino.in Имя выходного файла: buratino.out

«Эх, дубинушка, ухнем!»

Папа Карло сменил работу: теперь он работает в мастерской, и целый рабочий день занимается тем, что забивает гвоздики. Чтобы ему было не скучно, у него в мастерской стоит постоянно работающий телевизор. К сожалению, производительность папы Карло напрямую зависит от его настроения, а оно, в свою очередь, — от того, что в данный момент показывают по телевизору. Правда, пока папа Карло забивает гвоздик, он не обращает ни малейшего внимания на телевизор, и поэтому скорость его работы зависит только от того, что показывали по телевизору в тот момент, когда он только начал забивать этот гвоздик. Забив очередной гвоздик, он обязательно мельком смотрит в телевизор (его настроение, естественно, меняется), и после этого он может либо сразу начать забивать следующий гвоздик, либо отдохнуть несколько секунд или даже минут, смотря телевизор.

Папа Карло начинает работу ровно в 9 часов. С 13 часов у него начинается обеденный перерыв. При этом если он незадолго до обеда хочет начать вбивать гвоздик, но понимает, что до перерыва он не закончит эту работу, то он и не начинает ее. Аналогично в 14 часов он вновь приступает к работе, а в 18 уходит домой. Это значит, что в 9:00:00 (аналогично, как и в 14:00:00) он уже может начать забивать гвоздик. Если, например, в 12:59:59 (аналогично, в 17:59:59) он хочет начать вбивать гвоздик, и на это у него уйдет 1 секунда, то он успевает вбить гвоздик до обеда (до окончания работы соответственно), а если 2— то уже нет.

Известна программа телевизионных передач и то, как они влияют на папу Карло. Требуется составить график работы и маленьких перерывчиков папы Карло так, чтобы за рабочий день он вбил максимально возможное количество гвоздей.

Формат входного файла

Во входном файле записано расписание телевизионных передач с 9:00:00 до 18:00:00 в следующем формате. В первой строке число N — количество телевизионных передач в этот период ($1 \le N \le 32400$). В каждой из последующих N строк записано описание одной передачи: сначала время ее начала в формате ЧЧ:ММ:СС (ЧЧ — две цифры, задающие часы, ММ — две цифры, задающие минуты начала, СС — две цифры, задающие секунды начала). А затем через один или несколько пробелов число T_i — время в секундах, которое папа Карло будет тратить на забивание одного гвоздика, если он перед этим увидит по телевизору эту передачу ($1 \le T_i \le 32400$).

Передачи записаны в хронологическом порядке. Первая передача всегда начинается в 09:00:00. Можно считать, что последняя передача заканчивается в 18:00:00.

Формат выходного файла

В первую строку выходного файла требуется вывести максимальное количество гвоздиков, которое папа Карло успест вбить за рабочий день.

Пример

buratino.in	buratino.out
2	8
09:00:00 3600	
14:00:00 3600	
4	14
09:00:00 1800	
12:59:31 10	
13:45:23 1800	
15:00:00 3600	

Замечание

В первом примере Папа Карло вбивает по одному гвоздику каждый час.

Во втором примере в первую половину дня он вбивает по гвоздику за полчаса, но в 12:30:00 он не начинает вбивать гвоздики, а ждет 12:59:31, и успевает до обеда вбить 2 гвоздика. С 14 до 15 часов вбиваются 2 гвоздя, а затем по одному гвоздю в час.

Network. Сеть

Имя входного файла: network.in Имя выходного файла: network.out

В компьютерной сети вашей фирмы n компьютеров. В последнее время свитч, к которому они подключены, сильно барахлит, и потому не любые два компьютера могут связаться друг с другом. Кроме того, если компьютер a обменивается информацией с компьютером b, то никакие другие компьютеры не могут в это время обмениваться информацией ни с a, ни с b. Вам необходимо вычислить максимальное количество компьютеров, которые могут одновременно участвовать в процессе обмена информацией.

Формат входного файла

В первой строке файла задано целое число n ($1 \le n \le 18$). Далее идут n строк по n символов, причем j символ i-й строки равен 'Y', если i-й и j-й компьютеры могут обмениваться информацией, иначе он равен 'N'. i-й символ i-й строки всегда равен 'N', кроме того, матрица символов симметрична.

Формат выходного файла

Выведите максимальное количество компьютеров, которые могут одновременно участвовать в процессе обмена информацией.

Пример

network.in	network.out
5	4
NYYYY	
YNNNN	
YNNNY	
YNNNY	
YNYYN	

Seq. Последовательность

Имя входного файла: seq.in Имя выходного файла: seq.out

Последовательность называется хорошей, если в ней нет трёх идущих подряд нулей.

Формат входного файла

В первой строке входного файла дано число тестов $t~(1\leqslant t\leqslant 10\,000)$. В следующих t строках записаны сами тесты. Каждый тест состоит из двух целых чисел — $n~(1\leqslant n\leqslant 50)$ и k.

Формат выходного файла

Для каждого теста вывести k-ю в лексикографическом порядке хорошую последовательность длины n. Гарантируется, что количество хороших последовательностей не меньше k.

Пример

seq.in	seq.out
8	001
3 1	010
3 2	011
3 3	100
3 4	101
3 5	110
3 6	111
3 7	0010
4 1	