Machine Learning Workshop

Nicolas Känzig

Email: nkaenzig@gmail.com

Workshop Repository: https://github.com/nkaenzig/ml-workshop

Contenido

Modulo 1

Introducción MLPython

Modulo 2

- Análisis de datos
- Preprocesamiento de datos

Modulo 3

- Modelos de ML
- Técnicas de evaluación

Análisis & Preprocesamiento de datos

Análisis exploratorio de datos

Crear visualizaciones y calcular medidas estadísticas para mejor entender los datos

Diferentes opiniones

A. "El análisis exploratorio de datos en profundidad es primordial antes de entrenar un modelo"

B. "Hacer de antemano un amplio análisis de datos conduce a opiniones prejuiciadas sobre los datos y no es necesario para Machine Learning"

Quien tiene razón?

Proceso

- 1. Limpieza de datos
 - Identificar valores faltantes
 - Filtrar datos que no son relevantes para la tarea / Filtrar errores
- 2. Análisis
 - Distribuciones & correlaciones
- 3. Preprocesamiento
 - Valores categóricos → numericos
 - Transformaciones (e.g. Standarización)

Proceso

- 4. Modelling
 - Empezar con un modelo sencillo, fácil para configurar & entrenar → Baseline
- 5. Machine Learning-Driven Data Analysis
 - Cuales son los features mas imporantes?
 - Analisar los errores que el modelo esta haciendo?
 - → Usar estos insights para mejor entender los datos & mejorar el Dataset

Instrumentos

Programación

Liberarías

IDEs

- Liberaría para computación científica
- Algebra Lineal:
 - Objetos para vectores/matrices (i.e. arrays)
- Estadistica:
 - Operaciones básicas: e.g. mean, median, std, percentiles, ...
- Muchas de las operaciones son implementados en C
 - → Mucho mas rápido que Python sin Numpy

DataFrame class

- "Una Tabula con Index y Columnas"
- Valores son un numpy.array

	Α	В	С	D
0	1.283449	0.405647	0.633235	-0.633953
1	-0.137045	-0.498740	-0.966406	-0.720781
2	-1.066049	0.458651	-1.384483	-0.174038
3	-0.823852	0.250134	0.973628	-0.174436
4	0.762657	-0.056813	1.097659	-0.449781
5	0.755400	-1.310918	0.146741	-0.315770
6	-0.523010	-0.438491	-1.010650	0.097777

- Viene con muchas funciones útiles para análisis y preprocesamiento de datos
 - read_csv(), read_excel(), ...
 - Valores faltantes: isna(), dropna(), fillna()
 - slicing, reshaping, sampling, shuffling, concatenating, ...
 - Funciones de matplotlib para visualizaciones rapidas

Pandas.DataFrame()

|--|

	А	В	С	D
0	1.283449	0.405647	0.633235	-0.633953
1	-0.137045	-0.498740	-0.966406	-0.720781
2	-1.066049	0.458651	-1.384483	-0.174038
3	-0.823852	0.250134	0.973628	-0.174436
4	0.762657	-0.056813	1.097659	-0.449781
5	0.755400	-1.310918	0.146741	-0.315770
6	-0.523010	-0.438491	-1.010650	0.097777

df.columns

df.index

matpletlib

Numerical vs. Categorical Features

- Features (variables) numéricas requieren otra análisis que Features categóricas
 - E.g. calcular Pearson correlación entre 2 variables categóricas no es posible

	age	education
0	42	HS-grad
1	33	HS-grad
2	32	Bachelors
3	31	Bachelors
4	30	Some-college
5	31	Preschool
6	18	11th

Correlación entre 2 variables numéricas

- Medidas estadísticas:
 - Pearson, Spearman, Mutual Information, ...

Visualizaciones

Scatter-plots (plt.scatter())

Correlación entre variables numéricas

- Heatmap
 - sns.heatmap(df.corr().abs())

Correlación entre variables numéricas y categóricas

Visualizaciones

Box-plots (plt.boxplot())

Correlación entre 2 variables categóricas

- Métodos estadísticos
 - Chi-Squared Test, Cramer's V
 - One-Hot-Encoding

 Binary Correlation (Phi coefficient, Jaccard, Dice)
- Visualizaciones

Visualizar distribuciones de variables numéricas

Visualizaciones

Histogramas

Visualizar distribuciones de variables categóricas

■ Contados → Bar-plot

Seaborn

sns.pairplot(df)

Medidas estadísticas

- Moda
 - Valor con mayor frecuencia en los datos
- Mediana

Media

$$\mu=rac{1}{n}\left(\sum_{i=1}^n x_i
ight)=rac{x_1+x_2+\cdots+x_n}{n}$$

Varianza

$$ext{Var}(X) = rac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 \qquad \qquad \sigma = \sqrt{rac{1}{N} \sum_{i=1}^N (x_i - \mu)^2},$$

Desviación estándar

$$\sigma = \sqrt{rac{1}{N}\sum_{i=1}^N (x_i - \mu)^2}$$

Estadística

Distribución normal

$$f(x \mid \mu, \sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\!\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$

- μ : La media (valor promedio)
- σ : Desviación estándar

Estadística v.s. Data Science

- Estadística
 - Pocos datos
 - Difícil tomar conclusiones sobre la distribución original
 - → Pruebas de hipótesis, Intervalos de confianza, resultados significantes, ...
- Data Science / Machine Learing
 - Muchos datos
 - Mucho mas fácil tener confianza que los resultados obtenidos son validos para la distribución original

Workshop Repository:

https://github.com/nkaenzig/ml-workshop