

Question
Would structured or unstructured data have features such as pixel values or individual words? Structured data: Unstructured data
✓ Correct

Question

What will the variable m denote in this course?	
Number of hidden layers	
Number of training examples	
The expected output	
○ Slope	
✓ Correct	

Introduction to Deep Learning

Latest Submission Grade 100%

1.	What does the analogy "AI is the new electricity" refer to?	1/1 point
	Through the "smart grid", AI is delivering a new wave of electricity.	
	Similar to electricity starting about 100 years ago, Al is transforming multiple industries.	
	Al runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.	
	Al is powering personal devices in our homes and offices, similar to electricity.	
	Correct Yes. Al is transforming many fields from the car industry to agriculture to supply-chain	

Which of these are reasons for Deep Learning recently taking off? (Check the three options that apply.)
We have access to a lot more data.
Correct Yes! The digitalization of our society has played a huge role in this.
We have access to a lot more computational power.
Correct Yes! The development of hardware, perhaps especially GPU computing, has significantly improved deep learning algorithms' performance.
Neural Networks are a brand new field.
Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.
Correct These were all examples discussed in lecture 3.

1/1 point

2.

Recall this diagram of iterating over different ML ideas. Which of the statements below are true? (Check all that apply.)

- Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPLIGERU hardware).
 - (V) Correct

Yes, For example, we discussed how switching from sigmoid to ReLU-activation functions allows faster training,

Being able to try out ideas quickly allows deep learning engineers to iterate more quickly.

(Correct

Yes, as discussed in Lecture 4.

- It is faster to train on a big dataset than a small dataset.
- Foster computation can help speed up how long a team takes to literate to a good idea.

Correct

Yes, as discussed in Lecture 4.

4.	When an experienced deep learning engineer works on a new problem, they can usually use insight from previous problems to train a good model on the first try, without needing to iterate multiple times through different models. True/False?
	False
	○ True
	Correct Yes. Finding the characteristics of a model is key to have good performance. Although experience can help, it requires multiple iterations to build a good model.

1/1 point

○ Correct

Correct! This is the ReLU activation function, the most used in neural networks.

	iges for cat recognition is an example of "structured" data, because it is represented as a structured array in a nputer. True/False?	1/1 point
	True False	
Q	Correct Yes. Images for cat recognition is an example of "unstructured" data.	
exa	emographic dataset with statistics on different cities' population, GDP per capita, economic growth is an mple of "unstructured" data because it contains data coming from different sources. True/False? False	1/1 point
0	True Correct	
	A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "structured" data by opposition to image, audio or text datasets.	

Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French? (Check all that apply.) ✓ It can be trained as a supervised learning problem. ✓ Correct Yes. We can train it on many pairs of sentences x (English) and y (French). ☐ It is strictly more powerful than a Convolutional Neural Network (CNN). ☐ RNNs represent the recurrent process of Idea->Code->Experiment->Idea-> ✓ It is applicable when the input/output is a sequence (e.g., a sequence of words). ✓ Correct Yes. An RNN can map from a sequence of english words to a sequence of french words.	 ✓ Correct Yes. We can train it on many pairs of sentences x (English) and y (French). It is strictly more powerful than a Convolutional Neural Network (CNN). RNNs represent the recurrent process of Idea->Code->Experiment->Idea-> ✓ It is applicable when the input/output is a sequence (e.g., a sequence of words). ✓ Correct
 ✓ Correct Yes. We can train it on many pairs of sentences x (English) and y (French). ☐ It is strictly more powerful than a Convolutional Neural Network (CNN). ☐ RNNs represent the recurrent process of Idea->Code->Experiment->Idea-> ✓ It is applicable when the input/output is a sequence (e.g., a sequence of words). ✓ Correct 	 ✓ Correct Yes. We can train it on many pairs of sentences x (English) and y (French). ☐ It is strictly more powerful than a Convolutional Neural Network (CNN). ☐ RNNs represent the recurrent process of Idea->Code->Experiment->Idea-> ✓ It is applicable when the input/output is a sequence (e.g., a sequence of words). ✓ Correct
Yes. We can train it on many pairs of sentences x (English) and y (French). It is strictly more powerful than a Convolutional Neural Network (CNN). RNNs represent the recurrent process of Idea->Code->Experiment->Idea-> It is applicable when the input/output is a sequence (e.g., a sequence of words).	Yes. We can train it on many pairs of sentences x (English) and y (French). It is strictly more powerful than a Convolutional Neural Network (CNN). RNNs represent the recurrent process of Idea->Code->Experiment->Idea-> It is applicable when the input/output is a sequence (e.g., a sequence of words).
RNNs represent the recurrent process of Idea->Code->Experiment->Idea-> It is applicable when the input/output is a sequence (e.g., a sequence of words).	RNNs represent the recurrent process of Idea->Code->Experiment->Idea-> It is applicable when the input/output is a sequence (e.g., a sequence of words).
It is applicable when the input/output is a sequence (e.g., a sequence of words). Orrect	It is applicable when the input/output is a sequence (e.g., a sequence of words). Correct
✓ Correct	✓ Correct

1/1 point

9. In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis) represent?

- x-axis is the amount of data
 - . y-axis (vertical axis) is the performance of the algorithm.

	suming the trends described in the previous question's figure are accurate (and hoping you got the axis labels this, which of the following are true? (Check all that apply.)	1
	Decreasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.	
~	Increasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.	
(Correct Yes. Bringing more data to a model is almost always beneficial.	
~	Increasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.	
(Correct Yes. According to the trends in the figure above, big networks usually perform better than small networks.	
	Decreasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.	