CS3243 Tutorial 2

Eric Han

Aug 30, 2022

Annoucements

Important admin

- 1. Attendance Marking on telegram; Honor system, check-in if you are here else select that you are not in / ignore the check-in. Sum check will be performed.
- 2. Assignment 1 scores and comments will be out soon
 - 2.1 "Your submission must contain 20 words ot more." This is a limitation on turnitin; fill in with some placeholder text to get around this.
- 3. Show me your bonus to collect your snacks; Note early goal test for BFS only.
 - 3.1 Note: Early goal test for BFS only; AIMA Python.

Tidbits from tutorials

- 1. What is the type of proof for Q4? See Wiki Math proof.
- 2. Different formulations for a particular environment is possible; Some are better!

Welcome Survey - Why are you taking CS3243?

Figure 1: Why are you taking CS3243?

I love AI - simply amazing that we can create intelligence with high degree of autonomy; I believe in automation and it is the future of automation. General machine intelligence is still an open question.

Welcome Survey - How much do you know about AI/ML?

Figure 2: How much do you know about AI/ML?

Wherever you are, you will some takeaways; ask for help whenever you need - your peers and I are here to help!

Welcome Survey

What do you want to achieve in tutorials?

- 1. Get to know like-minded individuals and learn more about Al through class & peers.
- 2. I want to learn and be able to keep up with the class instead of blindly copying the slides and not understanding anything.
 - 2.1 Learn more in depth than lecture
 - 2.2 Improving understanding
 - 2.3 How to better understand AI and the algorithms that they utilise
- 3. Reinforce concepts taught in lecture
 - 3.1 Iron out misconceptions
 - 3.2 Fill in any gaps in my knowledge

Any suggestions to make our classes effective?

- 1. Make students answer question! [Yes you will; feel free to volunteer!]
- 2. Would be better if the slide is uploaded ASAP, ... [Wed Bonus]
- 3. using something like classkick allows for ... [will explore, might be too late]

Previously from T01, Q5

Recap

Question 2b.

Question

Determine the **final path** found from the start (S) to the goal (G)?

Answer

$$S-B-F-H-D-G$$

Recap

- What is Greedy-Best-First Search (GBFS) algorithm?
 - f(n) = h(n)
- What is incomplete?
 - Incomplete describes the algorithm being stuck in a loop where h(.) are lowest.
- What is the difference between tree / graph based algorithm?

Question 1a

Provide a counter-example to show that the **tree-based** implementation for the **Greedy Best-First Search** algorithm is **incomplete**.

Question 1a

Provide a counter-example to show that the **tree-based** implementation for the **Greedy Best-First Search** algorithm is **incomplete**.

Answer

Intuition: Create a situation where the path to *G* never gets explored.

S	<i>S</i> 0	<i>S</i> 1	<i>S</i> 2	G
h(s)	3	4	5	0

Figure 3: GBFS Infinite Loop Example

- 1. S0 is explored, S1 is added to front of frontier.
- 2. S1 is explored, S0 is added to the front of frontier. etc...

Question 1b

Briefly explain why the **graph search** implementation of the **Greedy Best-First Search** algorithm is **complete**.

Question 1b

Briefly explain why the **graph search** implementation of the **Greedy Best-First Search** algorithm is **complete**.

Answer

- Graph-based implementation of GBFS will not explore redundant paths.
- Assuming a finite search space, there are finite paths.
- Hence, graph-based implementation of GBFS will eventually visit all states within the search space and find a goal state or not (all states visited).

Question 1c

Provide a counter-example to show that neither the **tree-based** nor the **graph search** implementations of the **Greedy Best-First Search** algorithm are **optimal**.

Question 1c

Provide a counter-example to show that neither the **tree-based** nor the **graph search** implementations of the **Greedy Best-First Search** algorithm are **optimal**.

S	<i>S</i> 0	<i>S</i> 1	<i>G</i> 1	<i>G</i> 2
h(s)	9	1	0	0

Figure 4: Non-Optimal Example

- 1. So is explored, G1 is added to front of frontier f(.) = h(.)
- 2. Non-optimal path $S0 \rightarrow G1$ returned.

Recap

- What is the intuition behind A* Search?
- What is an admissible heuristic?
- What is a consistent heuristic?

Recap

- What is the intuition behind A* Search?
- What is an admissible heuristic?
- What is a consistent heuristic?

Summary

- A* Search: f(N) = g(N) + h(N)
- Admissible heuristic: $h(N) \leq h^*(N)$
- Consistent heuristic: $h(N) \le c(N, N') + h(N')$

Where,

- f(.) Evaluation Function.
- g(.) Cost Function from start to current node.
- h(.) Estimated cost from current node to goal.
- c(N, N') Action cost from N to N'.

Question 2a

Prove that the $tree\ \text{impl.}$ of $A^*\ Search\ \text{is optimal}\ (admissible\ heuristic\ \text{is used}).$

Question 2a

Prove that the **tree** impl. of **A* Search** is optimal (admissible heuristic is used).

Figure 5: Illustration

- S Inital State
- N Intermediate State along optimal Path0, Path1
- T Sub Optimal Goal state along sub-optimal Path2
- T* Goal state along optimal Path0, Path1

Proof by Contradiction:

- 1. Assume sub-optimal T is found instead of the T^*
- 2. \implies T is found before $N \rightarrow f(T) < f(N)$
- 3. Since T^* is optimal, $f(T) > f(T^*)$
 - 3.1 $f(T) > f(T^*)$
 - 3.2 $f(T) > g(T^*) + h(T^*) \implies f(T) > g(T^*)$
 - 3.3 $f(T) > g(N) + h^*(N) \implies f(T) > g(N) + h(N)$
 - $3.4 \implies f(T) > f(N)$
- 4. Tree-Search would have explored $T^*, \Rightarrow f(T) < f(N)$

Question 2b

Prove that **graph** impl. of **A* Search** is optimal when a **consistent heuristic** is used.

Question 2b

Prove that **graph** impl. of **A* Search** is optimal when a **consistent heuristic** is used.

Intuition: Show that when a node is popped from frontier, optimal path to it is found.

Let the optimal path to any node s_g be $P_{0\to g}=s_0,s_1,\cdots,s_g$. We show that when s_g is popped, $f(s_g)=g(s_g)+h(s_g)=g^*(s_g)+h(s_g)$, where $g^*(s_g)$ is the optimal path cost.

- Base: $f(s_0) = g(s_0) + h(s_0) = h(s_0)$.
 - **Inductive**: Assume for $P_{0 \to k}$, $\Longrightarrow g(s_k) = g^*(s_k)$ (optimal path to it is found)
 - $g^*(s_{k+1})$ is the minimum path cost, $\implies g(s_{k+1}) \geq g^*(s_{k+1})$
 - Since consistent, $h(s_k) \le c(s_k, s_{k+1}) + h(s_{k+1})$; s_k is popped.
 - $f(s_{k+1}) \leq g(s_k) + c(s_k, s_{k+1}) + h(s_{k+1})$
 - $\implies g(s_{k+1}) + h(s_{k+1}) \leq g(s_k) + c(s_k, s_{k+1}) + h(s_{k+1})$
 - $\implies g(s_{k+1}) \leq g(s_k) + c(s_k, s_{k+1}) = g^*(s_k) + c(s_k, s_{k+1}) = g^*(s_{k+1})$
 - $\quad \Longrightarrow \ g(s_{k+1}) \leq g^*(s_{k+1})$
 - $g(s_{k+1}) \leq g^*(s_{k+1}) \wedge g(s_{k+1}) \geq g^*(s_{k+1}) \implies g(s_{k+1}) = g^*(s_{k+1})$

Recap

- Admissible heuristic: $h(N) \leq h^*(N)$
- Consistent heuristic: $h(N) \le c(N, N') + h(N')$

Question 3a

Given that a **heuristic** h is such that h(t) = 0, where t is any goal state, prove that if h is **consistent**, then it must be **admissible**.

Question 3a

Given that a **heuristic** h is such that h(t) = 0, where t is any goal state, prove that if h is **consistent**, then it must be **admissible**.

Answer

Intuition: Show on the number of action required to reach the goal from n to goal t.

Let the no. of actions k to be required to reach from n_k to t on optimal path $P_{n_k \to t}$. Node n_k is k steps away from t, ie. $k = 3 \implies P_{n_3 \to t} : n_3 \to n_2 \to n_1 \to t$.

- **Base**: 1 action; i.e. node n_1 is one step away from t.
 - Since consistent, $h(n_1) \le c(n_1, t) + h(t)$ and h(t) = 0
 - $\implies h(n_1) \le c(n_1, t) = h^*(n_1) \implies \text{admissible}.$
- Inductive: Assume for k-1 actions, path $P_{n_{k-1}\to t}$, $h(n_{k-1}) \le h^*(n_{k-1})$.
 - Since consistent, $h(n_k) \leq c(n_k, n_{k-1}) + h(n_{k-1})$
 - $\implies h(n_k) \le c(n_k, n_{k-1}) + h^*(n_{k-1}) = h^*(n_k) \implies \text{admissible}.$

Question 3b

Give an example of an admissible heuristic that is not consistent.

Question 3b

Give an example of an admissible heuristic that is not consistent.

Answer

Figure 6: Example

S	<i>S</i> 0	<i>S</i> 1	G
h(s)	3	1	0
$h^*(s)$	3	2	0
$h(s) \leq h^*(s)$	Т	Т	Т

Heuristic *h* is

- Admissible $\forall s : h(s) \leq h^*(s)$
- Not consistent $3 = h(s_0) > c(s_0, s_1) + h(s_1) = 2$

We have seen various search strategies in class, and analyzed their worst-case running time. Prove that *any deterministic search algorithm* will, in the worst case, **search the entire state space**. More formally, prove the following theorem

Theorem 1. Let \mathcal{A} be some complete, deterministic search algorithm. Then for any search problem defined by a finite connected graph $G = \langle V, E \rangle$ (where V is the set of possible states and E are the transition edges between them), there exists a choice of start node s_0 and goal node g so that \mathcal{A} searches through the entire graph G.

Answer

Intuition: Fixing s_0 , we try to find a goal node g such that A searches all of G.

In the t-th iteration (Count only iterations where A explores a new node),

- Let g_t to be the goal node chosen only in t, to be $U_{t-1} \setminus U_t$
- Let U_t be the set of unsearched nodes, $V = U_0$.

Since there is finite |V| and $\mathcal A$ is complete, then $U_0\subset U_1\subset U_2\subset \cdots \subset U_{|V|}=\emptyset$,

- 1. Pick a random node in U_0 to be goal node and run A.
- 2. A terminates on the k-th iteration with search sequence S_k , finding goal node g_k .
- 3. Since A is deterministic, when we reset the goal node to be any in U_k :
 - 3.1 Worse case to be g_{k+1} one step away from g_k .
 - 3.2 It will take the same search route $S_k + [g_{k+1}]$ to reach the new goal g_{k+1} .

Hence, we can always choose $g_{|V|}$ to be the goal node, such that A searches all of G.

 $\label{eq:assignment} Assignment \ Question, \ due \ on \ Sunday.$

Bonus Question - Work for Snack

To help you further your understanding, not compulsory.

Tasks

- 1. Fork the repository https://github.com/eric-vader/CS3243-2223s1-bonus
- 2. Look for tutorial2.py, we will be solving Q5a,b,d using code.
- 3. Some boilerplate code is given that has the 5 heuristics (also 5d), with the graph.
- 4. Compute whether each heuristic is admissible and/or consistent in the table per Q5.
- 5. Implement the A^* Search algorithm; Assume a graph implementation that utilises heuristic h_4 . Further, assume graph search Version 3.

To claim your snack, show me your forked repository and your code's output.