Dipartimento di **INFORMATICA**

Homework 3

Docente:

Domenico Daniele

Bloisi

Maggio 2018

Regole

- 1. Lo studente deve svolgere individualmente le attività previste nel testo dell'homework
- 2. Il codice dell'homework deve essere clonabile dal docente tramite un server Git.
- 3. Il codice deve essere accompagnato da un file README.md contenente una descrizione della soluzione adottata per risolvere l'homework
- 4. Il file README.md deve contenere le istruzioni per la compilazione e l'esecuzione del codice

Homework 3

Homework 3 è composto da 4 parti

Parte 1: installazione di ORB_SLAM2

Parte 2: esecuzione di ORB_SLAM2 su una rosbag registrata con un drone volante

Parte 3: creazione di una point cloud

Parte 4: clustering dei punti contenuti nella point cloud generata al punto 3

Parte 1

Si installi il software ORB_SLAM2 contenuto nel repository

https://github.com/raulmur/ORB_SLAM2

con compilazione ROS

Parte 2

Dopo aver istallato la libreria ORB_SLAM2, procedere al processamento della rosbag V1_01_easy.bag contenuta nell'EuRoC MAV Dataset scaricabile da

http://robotics.ethz.ch/~asl-datasets/ijrr_euroc_mav_dataset/vicon_room1/V1_01_easy/V1_01_easy.bag

Esempio di esecuzione – Homework 3

Esempio Parte 2

Parte 3

Modificare opportunamente il codice di ORB SLAM2 in modo che venga salvata in un file .pcd la point cloud corrispondente alla ricostruzione dei punti 3D generata dall'algoritmo di SLAM. Assicurarsi che il file .pcd creato abbia un formato compatibile con la libreria PCL

Parte 3

2. Eseguire ORB_SLAM2 modificato sulla rosbag V1_01_easy.bag generando così un file .pcd

Parte 4

- 1. Utilizzare la libreria PCL per visualizzare in 3D la point cloud generata al punto 3
- 2. Clusterizzare i punti della point cloud in base alla distanza Euclidea utilizzando opportuni valori di soglia

Esempio di esecuzione – Homework 3

Esempio Parte 4

Documentazione – Homework 3

Fornire una opportuna documentazione (con testo e immagini) nel file README.md dei risultati ottenuti per le parti 2, 3 e 4.

■ ■ 3D Viewer

Bonus – Homework 3

Un bonus per il voto finale dell'esame è previsto per la realizzazione (al punto 3) di una point cloud avente informazioni anche sul colore di ogni elemento della cloud

Materiale – Homework 3

http://wiki.ros.org/pcl_ros

http://wiki.ros.org/pcl/Tutorials

http://webdiis.unizar.es/~raulmur/orbslam/

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php

Dipartimento di **INFORMATICA**

Homework 3

Docente:

Domenico Daniele

Bloisi

