# SoC Design Lab3

# Brief introduction about the overall system:

這一次要設計的主要是 lab2 中的 FIR Module



設計的部分包含 lab2 中有使用到的 apctrl signal,兩顆用來存儲 data 和 tap 的 sram(Bram11.v),系統中由 AXI\_LITE 來進行 configuration 的 transmit,透過 AXIStream 作為 data transfer 的 protocal,整體是一次相當能夠令學生熟悉 Verilog coding 的 lab.

# Recap for I/O protocal:

# AXI

Advanced eXtensible Interface,是由 ARM 所定義的接口協議基本上 AXI4 分為三種:

AXI4-FULL : 用於滿足高性能存儲 interface 需求

AXI4-Lite : 用於簡單的低吞吐量通信

AXI4-Stream : 用於高速傳輸,一般會和 DMA 一併使用

# AXI Master Transaction Waveform:



Example of multiple transactions: T1 (arlen=1), T2 (arlen=3) read transactions and T3 (awlen=1), T4 (awlen=3) write transactions.

ACLK:時鐘訊號,posedge trigger

Reset: asynchronize reset

在 reset 訊號期間要滿足以下 requirement

1.A master interface must drive ARVALID, AWVALID, and WVALID LOW.

- 2.A slave interface must drive RVALID and BVALID LOW.
- 3.All other signals can be driven to any value.

AR : address read channelAW : address write channelR : data read channelW : data write channel

B : write response channel (在寫完數據後,Master 需要確認 Slave 有没有收完數據,Slave 收到完整數據後,会通过 Write Response Channel 给 Master 一個 completion signal,表示完成 )

#### Stream



TVALID : master 表示目前訊號有效 TREADY : slave 表示準備好接收訊號

TDATA : master 數據傳輸

TLAST : master 表示當前數據是最後一筆

#### Flow chart:



整體流程大致如上圖,基本上我會在一開始對兩邊 input 先進行處理,從 axilite 那邊與 tb 去進行 tap 的傳輸與驗證值(存入 bram),另一方面先取第一筆 的 data 並將其存入 bram 中,在寫 data 的同時,我會先將 data\_ram 進行 reset,意思就是我會先將 data\*1 + 0\*(tap\_length-1),共 tap\_length 筆數據先對 bram 進行第一次的寫值,待兩邊都準備好後就會進入 FIR\_out computation,在一次只能使用一組乘加器的規範下,我們在每一個 cycle 都會將對應的值取出進行運算,直到計算完所有的部分,並拉起 sm 進行 output,至此就是完成一筆 data 的計算,整體的 flow 基本上就是對上述的計算流程執行 data\_length 次。

值得注意的是,在處理完一筆 data output 後,必須要對於 data\_ram 做 shift,對此我的設計方式其實有一點蠢,我將 data 反覆的取出寫入取出寫入, 重複數次後變完成了資料的搬運,就可以準備寫入下一筆資料,不過更好的做 法應該是使用 pointer 去指向實際上該處理的位置,只是我當初覺得這樣想起來 不太像 shift 就沒有處理了,之後如果有機會的話再對此修正。

除了上面的問題,我記得老師上課有說過使用 FSM 設計相對來說是在執行上比較沒有效率的方法,但我對於此還不太熟悉,因此我還是使用了兩個部份的 fsm,去分別對於 AXILite 和 AXIStream 做處理,這部分我想我還有很大的進步空間。

### AP signal

# **Host Software / Testbench**



可以看到上圖為 host 和 engine 之間的關係,ap\_idle 會在我接收到 ap\_start 後去 pull high,至於後面對於 ap\_done 的處理方式我想有兩個,一是在 FIR engine 內去使用 cnt 來數總共的輸出個數,因為在一開始 write config 時 tb 會將總共的 data length 送進 engine,不過使用這樣的設計方式會有一個問題,那便是我必須開一個 10bit 的 cnt 來專門對其處理,在資源的共用上我想不太理想,而另一種方法是,因為我對於 Xn Yn 的處理是一進一出,換言之我只要確保我在處理的 Xn 是最後一筆,就可以判斷 Yn 最後一筆輸出,ap\_done 也會在最後一筆 trasmit 出去後拉高,其他組 pattern 就是周而復始。

# Some screendump

#### UTIL

| 1. Slice Logic        |      |       |              |             |       |
|-----------------------|------|-------|--------------|-------------|-------|
| +                     | +    | +     | <b> </b>     | <del></del> | ++    |
| Site Type             | Used | Fixed | Prohibited   | Available   | Util% |
| +                     | +    | +     | <del>-</del> | +           | ++    |
| Slice LUTs*           | 343  | 0     | 0            | 53200       | 0.64  |
| LUT as Logic          | 343  | 0     | 0            | 53200       | 0.64  |
| LUT as Memory         | 0    | 0     | 0            | 17400       | 0.00  |
| Slice Registers       | 163  | 0     | 0            | 106400      | 0.15  |
| Register as Flip Flop | 163  | 0     | 0            | 106400      | 0.15  |
| Register as Latch     | 0    | 0     | 0            | 106400      | 0.00  |
| F7 Muxes              | 0    | 0     | 0            | 26600       | 0.00  |
| F8 Muxes              | 0    | 0     | 0            | 13300       | 0.00  |
| +                     | +    | +     | ·            | +           | ++    |

| 1.1 Summa | 1.1 Summary of Registers by Type |       |                      |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------|----------------------------------|-------|----------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| +         | +<br>  Clock Enable              |       | tt<br>  Asynchronous |  |  |  |  |  |  |  |  |  |  |  |  |
| +         |                                  |       |                      |  |  |  |  |  |  |  |  |  |  |  |  |
| 0         |                                  | -     | i - i                |  |  |  |  |  |  |  |  |  |  |  |  |
| j ø       | _ i                              | -     | Set                  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0         | _                                | -     | Reset                |  |  |  |  |  |  |  |  |  |  |  |  |
| 0         | _                                | Set   | -                    |  |  |  |  |  |  |  |  |  |  |  |  |
| 0         | _                                | Reset | -                    |  |  |  |  |  |  |  |  |  |  |  |  |
| 0         | Yes                              | -     | -                    |  |  |  |  |  |  |  |  |  |  |  |  |
| 0         | Yes                              | -     | Set                  |  |  |  |  |  |  |  |  |  |  |  |  |
| 57        | Yes                              | -     | Reset                |  |  |  |  |  |  |  |  |  |  |  |  |
| 2         | Yes                              | Set   | -                    |  |  |  |  |  |  |  |  |  |  |  |  |
| 104       | Yes                              | Reset | -                    |  |  |  |  |  |  |  |  |  |  |  |  |
| +         | +                                | ·     | <del></del>          |  |  |  |  |  |  |  |  |  |  |  |  |

| Z. Melliot y   |              |         |             |              |               |
|----------------|--------------|---------|-------------|--------------|---------------|
|                |              |         |             |              |               |
|                |              |         |             |              |               |
|                |              |         |             |              |               |
| +              | +            |         |             | <del> </del> | ++            |
| l Sita Typa    | ا الحمط ا    | Eivad l | Prohibited  | Available    | u+i1% l       |
| 1 Site Type    | l oseu l     | I I VEU | FIGUIDATE   | WASTIGNIE    | 0011/0        |
| +              | +            |         |             | <del> </del> | <del>+</del>  |
| Block RAM Tile | 0            | 0       | 0           | 140          | 0.00          |
|                |              |         |             |              | :             |
| RAMB36/FIFO*   | 0            | 0       | 0           | 140          | 0.00          |
| l RAMB18       | 0 1          | 0       | 0           | 280          | 0.00          |
| 1041010        | · · · ·      | ١٠      | •           | 200          | 0.00          |
| +              | <del> </del> |         | <del></del> | <del> </del> | <del> +</del> |

| 3. DSP                 |            |       |            |           |            |
|------------------------|------------|-------|------------|-----------|------------|
|                        |            |       |            |           |            |
| +                      | ++         |       | +          | ·         | ++         |
| Site Type              | Used       | Fixed | Prohibited | Available | Util%      |
| +                      |            |       |            |           |            |
| DSPs<br>  DSP48E1 only | 3  <br>  3 |       | 0  <br>    | 220<br>   | 1.36  <br> |
| +                      |            |       |            | ·<br>}    | ·          |
|                        |            |       |            |           |            |

| 4. IO and GT Specific       |             |       |                  |                  |               |  |  |  |  |  |  |  |  |  |  |
|-----------------------------|-------------|-------|------------------|------------------|---------------|--|--|--|--|--|--|--|--|--|--|
|                             | ·           |       |                  |                  |               |  |  |  |  |  |  |  |  |  |  |
| Site Type                   | +<br>  Used | Fixed | <br>  Prohibited | +<br>  Available | ++<br>  Util% |  |  |  |  |  |  |  |  |  |  |
| Bonded IOB                  | 329         | 0     | 0                | 125              | 263.20        |  |  |  |  |  |  |  |  |  |  |
| Bonded IPADs                | 0           | 0     |                  | 2                | 0.00          |  |  |  |  |  |  |  |  |  |  |
| Bonded IOPADs               | . 0         | 0     | 0                | 130              | 0.00          |  |  |  |  |  |  |  |  |  |  |
| PHY_CONTROL                 | 0           | 0     | 0                | 4                | 0.00          |  |  |  |  |  |  |  |  |  |  |
| PHASER_REF                  | 0           | 0     | 0                | 4                | 0.00          |  |  |  |  |  |  |  |  |  |  |
| OUT_FIFO                    | 0           | 0     | 0                | 16               | 0.00          |  |  |  |  |  |  |  |  |  |  |
| IN_FIFO                     | 0           | 0     | 0                | 16               | 0.00          |  |  |  |  |  |  |  |  |  |  |
| IDELAYCTRL                  | 0           | 0     | 0                | 4                | 0.00          |  |  |  |  |  |  |  |  |  |  |
| IBUFDS                      | 0           | 0     | 0                | 121              | 0.00          |  |  |  |  |  |  |  |  |  |  |
| PHASER_OUT/PHASER_OUT_PHY   | 0           | 0     | 0                | 16               | 0.00          |  |  |  |  |  |  |  |  |  |  |
| PHASER_IN/PHASER_IN_PHY     | 0           | 0     | 0                | 16               | 0.00          |  |  |  |  |  |  |  |  |  |  |
| IDELAYE2/IDELAYE2_FINEDELAY | 0           | 0     | 0                | 200              | 0.00          |  |  |  |  |  |  |  |  |  |  |
| ILOGIC                      | 0           | 0     | 0                | 125              | 0.00          |  |  |  |  |  |  |  |  |  |  |
| OLOGIC                      | 0           | 0     | 0                | 125              | 0.00          |  |  |  |  |  |  |  |  |  |  |
| +                           | +           | +     | +                | +                | ++            |  |  |  |  |  |  |  |  |  |  |

基本上可以看到 I/O 大炸裂,不過並不要緊,這主要是因為在本次設計中有許多的 I/O pin 其實都只是要與其他 block 溝通用途,之後將整個 system 弄好時就不會需要使用到這麼多 I/O,也因此這次實驗也只進行到 Syn,而沒有往下繼續做。

# **Timing report**

Design Timing Summary

| Setup                                         |              | Hold                                     |             | Pulse Width                              |          |
|-----------------------------------------------|--------------|------------------------------------------|-------------|------------------------------------------|----------|
| Worst Negative Slack (WNS)                    | 0.150 ns     | Worst Hold Slack (WHS):                  | 0.140 ns    | Worst Pulse Width Slack (WPWS):          | 1.700 ns |
| Total Negative Slack (TNS):                   | 0.000 ns     | Total Hold Slack (THS):                  | 0.000 ns    | Total Pulse Width Negative Slack (TPWS): | 0.000 n  |
| Number of Failing Endpoints                   | : 0          | Number of Failing Endpoints:             | 0           | Number of Failing Endpoints:             | 0        |
| Total Number of Endpoints:                    | 242          | Total Number of Endpoints:               | 242         | Total Number of Endpoints:               | 165      |
| All user specified timing con                 | straints are | met.                                     |             |                                          |          |
| Max Delay Paths                               |              |                                          |             |                                          |          |
| Slack (MET) : 0                               | .150ns (re   | quired time - arrival time)              |             |                                          |          |
|                                               | raddr_buf_r  |                                          |             |                                          |          |
|                                               | (rising ed   | ge-triggered cell FDCE clocke            | d by axis_c | lk {rise@0.000ns fall@2.200ns period=4   | 1.400ns} |
| Destination: t                                | ap_cnt_reg[  |                                          |             |                                          |          |
|                                               |              | ge-triggered cell FDRE clocke            | d by axis_c | lk {rise@0.000ns fall@2.200ns period=4   | 1.400ns} |
|                                               | xis_clk      |                                          |             |                                          |          |
|                                               |              | t Slow Process Corner)                   |             |                                          |          |
|                                               |              | is_clk rise@4.400ns - axis_cl            |             |                                          |          |
|                                               |              | gic 1.021ns (29.063%) route              | 2.492ns (70 | .937%))                                  |          |
| 0                                             | (LUT4=2 L    | ,                                        |             |                                          |          |
|                                               |              | D - SCD + CPR)                           |             |                                          |          |
|                                               |              | 2.128ns = ( 6.528 - 4.400 )              |             |                                          |          |
| Source Clock Delay<br>Clock Pessimism Removal | (SCD):       |                                          |             |                                          |          |
|                                               |              | 0.184ns<br>SJ^2 + TIJ^2)^1/2 + DJ) / 2 + | DE          |                                          |          |
| Total System Jitter                           |              | 0.071ns                                  | PE          |                                          |          |
| Total Input Jitter                            |              | 0.000ns                                  |             |                                          |          |
| Discrete Jitter                               |              | 0.000ns                                  |             |                                          |          |
|                                               |              |                                          |             |                                          |          |

| Location    | Delay type                                                                                                                                                      | Incr(ns)                                                                                 | Path(ns)                                            | Netlist Resource(s)                                                                                         |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|             | (clock axis_clk rise edge                                                                                                                                       | e)                                                                                       |                                                     |                                                                                                             |
|             |                                                                                                                                                                 | 0.000                                                                                    | 0.000 r                                             |                                                                                                             |
|             |                                                                                                                                                                 | 0.000                                                                                    |                                                     | axis_clk (IN)                                                                                               |
|             | net (fo=0)                                                                                                                                                      | 0.000                                                                                    | 0.000                                               |                                                                                                             |
|             |                                                                                                                                                                 |                                                                                          |                                                     | axis_clk_IBUF_inst/I                                                                                        |
|             | IBUF (Prop_ibuf_I_O)                                                                                                                                            | 0.972                                                                                    |                                                     | axis_clk_IBUF_inst/O                                                                                        |
|             | net (fo=1, unplaced)                                                                                                                                            | 0.800                                                                                    |                                                     |                                                                                                             |
|             | DUEC (Dana bufa I o)                                                                                                                                            | 0.404                                                                                    |                                                     | axis_clk_IBUF_BUFG_inst/I                                                                                   |
|             | BUFG (Prop_bufg_I_0)                                                                                                                                            | 0.101                                                                                    |                                                     | axis_clk_IBUF_BUFG_inst/O                                                                                   |
|             | net (fo=164, unplaced)<br>FDCE                                                                                                                                  | 0.584                                                                                    |                                                     | araddr_buf_reg[10]/C                                                                                        |
|             | FDCE (Prop_fdce_C_Q)                                                                                                                                            | 0.478                                                                                    | 2.934 f                                             | araddr_buf_reg[10]/Q                                                                                        |
|             | net (fo=3, unplaced)                                                                                                                                            | 0.759                                                                                    | 3.693                                               | araddr_buf[10]                                                                                              |
|             |                                                                                                                                                                 |                                                                                          | f                                                   | tap_A_OBUF[11]_inst_i_15/I1                                                                                 |
|             | LUT4 (Prop_lut4_I1_0)                                                                                                                                           | 0.295                                                                                    |                                                     | tap_A_OBUF[11]_inst_i_15/0                                                                                  |
|             | net (fo=2, unplaced)                                                                                                                                            | 0.460                                                                                    |                                                     | tap_A_OBUF[11]_inst_i_15_n_0                                                                                |
|             |                                                                                                                                                                 |                                                                                          |                                                     | tap_A_OBUF[6]_inst_i_2/I0                                                                                   |
|             | LUT4 (Prop_lut4_I0_0)                                                                                                                                           | 0.124                                                                                    |                                                     | tap_A_OBUF[6]_inst_i_2/0                                                                                    |
|             | net (fo=4, unplaced)                                                                                                                                            | 0.473                                                                                    |                                                     | tap_A_OBUF[6]_inst_i_2_n_0                                                                                  |
|             | LUTE (Doop lute TE O)                                                                                                                                           | 0.124                                                                                    |                                                     | tap_cnt[3]_i_1/I5                                                                                           |
|             | LUT6 (Prop_lut6_I5_0)<br>net (fo=4, unplaced)                                                                                                                   | 0.124<br>0.800                                                                           |                                                     | tap_cnt[3]_i_1/0                                                                                            |
|             | FDRE                                                                                                                                                            | 0.800                                                                                    |                                                     | tap_cnt[3]_i_1_n_0<br>tap_cnt_reg[0]/R                                                                      |
|             | net (fo=0)  IBUF (Prop_ibuf_I_0) net (fo=1, unplaced)  BUFG (Prop_bufg_I_0) net (fo=164, unplaced) FDRE clock pessimism clock uncertainty FDRE (Setup fdre C R) | 4.400<br>0.000<br>0.000<br>0.838<br>0.760<br>0.091<br>0.439<br>0.184<br>-0.035<br>-0.557 | 4.400 r<br>5.238 r<br>5.998 r<br>6.089 r<br>6.528 r | axis_clk_IBUF_inst/I axis_clk_IBUF_inst/O axis_clk_IBUF axis_clk_IBUF_BUFG_inst/I axis_clk_IBUF_BUFG_inst/O |
|             | required time<br>arrival time                                                                                                                                   |                                                                                          | 6.119<br>-5.969                                     |                                                                                                             |
|             | slack                                                                                                                                                           |                                                                                          | 0.150                                               |                                                                                                             |
| ck (MET) :  | 0.150ns (required time                                                                                                                                          | - arrival                                                                                | time)                                               |                                                                                                             |
| ource:      | araddr_buf_reg[10]/C<br>(rising edge-triggered                                                                                                                  | d cell FDCE                                                                              | clocked by                                          | axis_clk {rise@0.000ns fall@2.200ns period=4.400                                                            |
| estination: | tap_cnt_reg[1]/R                                                                                                                                                |                                                                                          |                                                     |                                                                                                             |
|             | (rising edge-triggered                                                                                                                                          | d cell FDRE                                                                              | clocked by                                          | axis_clk {rise@0.000ns fall@2.200ns period=4.400                                                            |

本次 lab 我將 clock period 設為 4.4,可以看到 report 中有列出我們的 critical path,並且有 meet timing constraint。

# Ap done



# Ap start

配合上面 ap done 的時間可以計算出我總共花了多少 cycle 在 computing,需要注意的是這筆 pattern 並不是 600 筆 data length,所以計算出來的數字也許會比想像中小,但因為 shiftram 花費大量 cycle 所以整體下來應該還是十分巨大。



# ss & sm transmit

基本上就是一筆進一筆出



# **RAM control**

# Tap ram:

|          | 100 n        | ıs    | 2            | 200     | ns  |        | 3      | 300               | ns             |         | -       | 100 | ns |            | 50          | 99 | ns   | 60   | 0 n   | ıs    | 700  | ns  |     | 800  | ns  | 9    | 90  | ns   |     | 1 u  | S    | 1100 | ns     |
|----------|--------------|-------|--------------|---------|-----|--------|--------|-------------------|----------------|---------|---------|-----|----|------------|-------------|----|------|------|-------|-------|------|-----|-----|------|-----|------|-----|------|-----|------|------|------|--------|
| 040      |              | U±X   | $) \equiv ($ | $(\Xi)$ | Œ   | )()(O+ | ·)()(g | ) <del>-</del> () | $\mathbf{\Xi}$ | $\odot$ | Œ       | XX( | Ξ0 | Œ.         | 040         | 20 | 040  | 040  | )()(0 | 940   | 040  | 040 |     | 040  | 040 | 040  | 20  | 040  | 04  | 0    |      |      | 00     |
| 00000000 | LOŁ          | الطال | )±(          | Œ       | ±   | 0-     |        |                   | ±.(            | )±      | 0±      | Ω   |    |            | 0000        |    |      |      |       |       |      |     |     |      |     |      |     |      |     |      |      |      |        |
| XXXXXXX  |              | X-    | . X+         | k       | Ш   |        | Ð      | lacksquare        | Œ              | ı       |         | Ð   | χ+ | <b>x</b> + | XX          | х+ | XXX+ | XXX  | 3)    | ххх+  | xxx+ | X   | кх+ | XXX+ | XXX | + xx | x+) | XXX- |     | xxx  | XXX  |      | 00     |
| 0        | o_           | ()e   | Θ (          | Θ       | Θ   | _<br>O | Ωe     | <b>3</b> ()       | 0 (            | Θ       | _<br>[0 | Ωe  |    | 0          |             |    |      |      | ł     |       |      |     |     |      |     |      | +   |      |     |      |      |      |        |
|          |              |       |              |         |     |        |        |                   |                |         |         |     |    |            |             |    |      |      |       |       |      |     |     |      |     |      |     |      |     |      |      |      |        |
|          |              |       |              |         |     |        |        |                   |                |         |         |     |    |            |             |    |      |      |       |       |      |     |     |      |     |      |     |      |     |      |      |      |        |
|          |              |       |              |         |     |        |        |                   |                |         |         |     |    |            |             |    |      |      |       |       |      |     |     |      |     |      |     |      |     |      |      |      |        |
| 1100 ns  |              | 1200  | ns           |         | 11  | 300    | ns     |                   |                | 140     | 0 n     | S   |    | 15         | 00 r        | ns |      | 1600 | ns    |       | 1700 | ns  |     | 1800 | ns  | 19   | 900 | ns   |     | 2    | us   | 2    | 100 ns |
|          | ιχχ          | χχχ   | XXX          | χχ      | 046 |        |        |                   |                |         | Н       |     |    |            | ). (X       | χχ | 0000 | 0000 | 040   | )     |      |     |     |      | -   | 000  | χx  | 0000 | 000 | 040  |      |      |        |
|          |              |       |              |         |     |        |        |                   |                |         |         |     |    |            |             |    |      |      |       |       |      |     |     |      |     |      |     |      |     |      |      |      |        |
|          | <b>_</b> 000 | 0000  | 000          | 000     | XXX | СХХХ   | ХX     |                   |                |         |         |     |    |            | <b>-</b> 00 | XX | 0000 | 0000 | ххх   | (XXXX | (    |     |     |      |     | 2000 | XX  | 0000 | 00  | XXXX | xxxx |      |        |
|          |              |       |              |         |     |        |        |                   |                |         |         |     |    |            |             |    |      |      |       |       |      |     |     |      |     |      |     |      |     |      |      |      |        |
|          |              |       |              |         |     |        |        |                   |                |         |         |     |    |            |             |    |      |      |       |       |      |     |     |      |     |      |     |      |     |      |      |      |        |
|          |              |       |              |         |     |        |        |                   |                |         |         |     |    |            |             |    |      |      |       |       |      |     |     |      |     |      |     |      |     |      |      |      |        |
|          |              |       |              |         |     |        |        |                   |                |         |         |     |    |            |             |    |      |      |       |       |      |     |     |      |     |      |     |      |     |      |      |      |        |

上圖是與 tb 拿 tap 寫入 ram 以及與 tb 對答案的波型,下面則是每一次 compute fir 時取出值的過程,tap 這邊相對來說比較方便因為並不需要做 shift。

# Data ram:



一開始存取時先進行歸零並讀入第一筆 data



可以看到對於每一筆 fir 處理完我都會對整個 ram 進行重新讀寫的 shift

#### **FSM**

#### LITE:

```
always@(posedge axis_clk) begin
localparam LITE idle
                       = 3'd0;
localparam LITE_arready = 3'd2;
localparam LITE_rreq
                        = 3'd4;
                        = 3'd5;
always@(*) begin
       LITE_idle: begin
           if(tap_cnt >= Tape_Num)
                                           ns_lite = LITE_done;
           else if(arvalid)
                                               ns lite = LITE arready;
           else if(wready_reg && awready_reg) ns_lite = LITE_wfinish;
       LITE_wfinish:// by the time, axilite has already received awaddr and wdata
           ns_lite = LITE_idle;
           if(arready && arvalid) ns_lite = LITE_rreq;
       LITE_rreq: begin
           if(rready) ns_lite = LITE_read;
       LITE read:
       LITE done: if(cs str == STR OUT && finish flag) ns lite = LITE idle;
                   else ns_lite = LITE_done;
```

STREAM: 這邊我就定義了比較多 state 去處理

```
localparam STR IDLE = 1;
localparam STR FIRST = 9;
localparam STR RESET DATARAM = 2;
localparam STR WAIT LITE = 3;
localparam STR CAL = 4;
localparam STR OUT = 5;
localparam STR SHIFT READ = 6;
localparam STR SHIFT WRITE = 7;
localparam STR NEWIN = 8;
localparam STR_STORE = 10;
always@(posedge axis clk) begin
    if(!axis_rst_n) cs_str <= STR_IDLE;</pre>
                       cs str <= ns str;
always@(*) begin
    case(cs_str)
        STR IDLE: ns str = STR FIRST;
        STR_FIRST:
            if(ss tvalid) ns str = STR RESET_DATARAM;
            else ns_str = cs_str;
        STR RESET DATARAM: begin
            if(cnt >= 10) ns str = STR WAIT LITE;
            else ns_str = cs_str;
        end
        STR WAIT LITE: begin
            if(cs lite == LITE done) ns str = STR CAL;
            else ns_str = cs_str;
        STR CAL:
            if(cnt > 10) ns_str = STR_OUT;
            else ns_str = cs_str;
        STR OUT:
                   if(finish_flag) ns_str = STR_IDLE;
                    else ns str = STR SHIFT READ;
        STR SHIFT READ: ns str = STR SHIFT WRITE;
        STR SHIFT WRITE:
            if(cnt == 10) ns str = STR NEWIN;
            else ns str = STR SHIFT READ;
            if(ss tvalid) ns str = STR STORE;
            else ns_str = cs_str;
        STR_STORE: ns_str = STR_CAL;
        default : ns str = STR IDLE;
    endcase
```