Homework 2 (draft)

Problem 1

(a)

\$\because A,B \in S^n_+ \$

$$\therefore \exists U \in R^{k \times n}, k = rank(B), B = U^T U$$

$$\therefore tr(AB) = tr(AU^TU) = tr(UAU^T) \geq 0$$
 with assumption $tr(AB) = tr(BA)$

(b)

First we proof $\mathcal{S}^n_+ \subseteq \bigcap_{A \in \mathcal{S}^n_+} \{X \in \mathcal{S}^n : A \bullet X \ge 0\}$

$$\therefore$$
 the result in (a), we have $\mathcal{S}^n_+\subseteq \{X\in\mathcal{S}^n: Aullet X\geq 0\}$

$$A : \bigcap_{A \in \mathcal{S}^n_+} \{X \in \mathcal{S}^n : A \bullet X \ge 0\} \supseteq \bigcap_{A \in \mathcal{S}^n_+} S^n_+ = S^n_+$$

then we proof $\mathcal{S}^n_+\supseteq\bigcap_{A\in\mathcal{S}^n}\left\{X\in\mathcal{S}^n:A\bullet X\geq 0\right\}$

we only have to proof : $\forall X \not \in S^n_+, \exists A \in S^n_+, s.\, t.\, A \bullet X < 0$

$$\therefore X \notin S^n_{\perp}$$

$$\therefore \exists \mu \in R^n, s.t. \mu^T X \mu < 0$$

let
$$A = \mu \mu^T$$
 , we can get $tr(AX) = tr(\mu \mu^T X) = tr(\mu^T X \mu) < 0$

note that $A=\mu\mu^T$ because $orall z\in R^n, z^TAz=z^T\mu\mu^Tz=(\sum z_iu_i)^2>=0$

$$\therefore orall X
otin S_+^n, X
otin \bigcap_{A \in \mathcal{S}_+^n} \{X \in \mathcal{S}^n : A ullet X \geq 0\}$$

$$\therefore \mathcal{S}^n_+\supseteqigcap_{A\in\mathcal{S}^n_+}\{X\in\mathcal{S}^n:Aullet X\geq 0\}$$

In summary, $\mathcal{S}^n_+ = igcap_{A \in \mathcal{S}^n_+} \{X \in \mathcal{S}^n : A ullet X \geq 0\}$