3.1 We consider three nested regression models for modelling the number of car accidents according to region (region). The variables risk class (risk) has 3 categories and the number of years of driving experience (exp) is broken down into 4 categories.

Model	variables	<i>p</i> + 1	$\ell(\widehat{m{eta}})$	AIC	BIC
M_1	risk	3	-244.566	495.132	510.362
M_2	risk+region	*	-151.620	*	*
M_3	risk + region + exp	10	-139.734	299.468	350.235

Table 1: Goodness-of-fit measures for three nested regression models with the number of parameters in each model (p+1), the value of the log-likelihood function evaluated at the maximum likelihood estimate $(\ell(\hat{\pmb{\beta}}))$ and information criteria.

What is the difference between AIC and BIC of Model M2 (in absolute value)?

Solution

The difference is approximately 35.54. The only information required is the number of parameters of M₂ and the sample size. We can use the first line to compute the latter, since

$$BIC = -2\ell(M_1) + 3\ln(n)$$

and we find upon solving the equation n = 1184. It only remains to compute the number of levels for the region variable. This is $DF(M_3) - DF(M_1) - 3 = 7$; there are K = 4 categories for years of experience, but only three parameters. The difference $BIC - AIC = 7 \cdot \{ln(1184) - 2\}$.

3.2 A random variable X follows a geometric distribution with parameter p if its probability mass function is

$$P(X = x) = (1 - p)^{x-1}p, \qquad x = 1, 2, ...$$

- (a) Write the likelihood and the log-likelihood of the *n* sample.
- (b) Derive the maximum likelihood estimator for the parameter p.
- (c) Compute the observed information matrix.
- (d) Suppose we have a sample of 15 observations, {5, 6, 3, 7, 1, 2, 11, 8, 7, 34, 1, 7, 10, 1, 0}, whose sum is 103. Compute the maximum likelihood estimate and its approximate standard error.
- (e) Compute the likelihood ratio and the Wald test statistics. Perform a test at level 5% for \mathcal{H}_0 : $p_0 = 0.1$ against the two-sided alternative \mathcal{H}_a : $p_0 \neq 0.1$.

Solution

(a)

$$L(p; \mathbf{x}) = \prod_{i=1}^{n} (1-p)^{x_i-1} p = (1-p)^{\sum_{i=1}^{n} (x_i-1)} p^n$$
$$\ell(p; \mathbf{x}) = \ln(1-p) \sum_{i=1}^{n} (x_i-1) + n \ln(p)$$

$$\ell(p; \mathbf{x}) = \ln(1-p) \sum_{i=1}^{n} (x_i - 1) + n \ln(p)$$

(b)

$$\frac{\mathrm{d}}{\mathrm{d}p}\ell(p; \mathbf{x}) = -\frac{1}{(1-p)} \sum_{i=1}^{n} (x_i - 1) + \frac{n}{p}$$

Setting the score to zero and re-arranging the expression, we find

$$\frac{1}{p} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Since the second derivative is negative, the maximum likelihood estimator is the reciprocal mean, $\hat{p} = \overline{X}^{-1}$.

(c) The observed information function is the negative of the hessian matrix. We have

$$\frac{d^2}{dp^2}\ell(p; \mathbf{x}) = -\frac{n(\overline{x} - 1)}{(1 - p)^2} - \frac{n}{p^2}$$

and the observed information evaluated at the maximum likelihood estimate is $j(\hat{p}) = n\bar{x}^3/(\bar{x}-1)$.

- (d) The maximum likelihood estimate is 0.1456 and its standard error is 0.0347.
- (e) The Wald statistic is 1.72 and the likelihood ratio statistic equals 0.558. Both can be compared to χ_1^2 : the respective p-values are 0.19 and 0.45, so we fail to reject the null \mathcal{H}_0 : p = 0.1.
- 3.3 We consider the failure time of an engine based on its level of corrosion w. Failure time T is modelled with an exponential distribution with density $f(t) = \lambda \exp(-\lambda t)$, but whose rate parameter $\lambda = aw^b$; if b = 0, the failure time is a^{-1} . Assume we have an n sample of independent observations with w_i assumed known. [Coles (2001)]
 - (a) Write down the log-likelihood of the model.
 - (b) Derive the observed and the Fisher information matrices.
 - (c) Show that the profile log-likelihood for *b* is

$$\ell_{\mathsf{p}}(b) = n \ln(\widehat{a}_b) + b \sum_{i=1}^{n} \ln(w_i) - \widehat{a}_b \sum_{i=1}^{n} w_i^b t_i,$$

and give an explicit formula for the partial maximum likelihood estimator \hat{a}_b .

Solution

(a) The log-likelihood is

$$\ell(a, b; \mathbf{w}, \mathbf{t}) = n \ln(a) + b \sum_{i=1}^{n} \ln(w_i) - a \sum_{i=1}^{n} w_i^b t_i$$

(b) The Fisher information is the expected value of the negative of the hessian matrix. Setting

$$j(a,b) = -\begin{pmatrix} \partial^2 \ell/\partial a^2 & \partial^2 \ell/\partial a \partial b \\ \partial^2 \ell/\partial b \partial a & \partial^2 \ell/\partial b^2 \end{pmatrix} = \begin{pmatrix} na^{-2} & \sum_{i=1}^n w_i^b t_i \ln(w_i) \\ \sum_{i=1}^n w_i^b t_i \ln(w_i) & a\sum_{i=1}^n w_i^b t_i \ln^2(w_i) \end{pmatrix}.$$

The Fisher information is obtained by computing the expectation of each entry of the matrix. Only the T_i terms are constant, and since the formulae only involve terms that are linear in T_i , the Fisher information is

$$I(a,b) = \begin{pmatrix} na^{-2} & a^{-1}\sum_{i=1}^{n}\ln(w_i) \\ a^{-1}\sum_{i=1}^{n}\ln(w_i) & \sum_{i=1}^{n}\ln^2(w_i) \end{pmatrix}$$

given that $E(T_i) = a^{-1} w_i^{-b}$.

(c) The partial maximum \hat{a}_b is obtained by differentiating the log-likelihood as a function of a while treating b as fixed. We get

$$\frac{\partial \ell}{\partial a} = \frac{n}{a} - \sum_{i=1}^{n} w_i^b t_i = 0$$

page 2 of 3 Compiled 06/10/2020 at 15:30

and isolating a shows that $\hat{a}_b = n/\sum_{i=1}^n w_i^b t_i$ is the maximum, since the second derivative calculated previously is negative.

 $page\ 3\ of\ 3$