作业

Homework3

庄镇华 502022370071

A Game Theory Homework Assignment

2023年4月16日

❷ 题目一 第一价格拍卖的贝叶斯纳什均衡(n 参与人)

证明: 对于投标人 i, 期望收益函数为

$$U_i\left(b_i, b_j(v_j), v_i\right) = \left(v_i - b_i\right) Pr\left[b_i > \max_{j \neq i} b_j(v_j)\right]$$

$$U_i(b_i,b_j,v_i) = \left(v_i - b_i\right) \left(\frac{b_i}{a}\right)^{N-1}$$

最大化 $U_i(b_i, b_i, v_i)$ 可得

$$b_i(v_i) = \frac{N-1}{N}v_i$$

解答: 共有 N 个投标人, v_i 代表投标人 i 认为商品的价值, v_i 服从区间 [0,1] 上的均匀分布,且投标人 i 的出价为 $b_i = b_i(v_i) = av_i$, a > 0。

那么投标人 i 的收益可以分为三种情况,第一种情况,当投标人 i 的出价高于其他所有人时,其收益为 v_i – b_i ; 第二种情况,当投标人 i 出价高于等于其他人,并且还有另外 k 人和投标人 i 出价相同时,其收益为 $(v_i$ – $b_i)/(k+1)$; 第三种情况,当投标人 i 出价不是最高时,其收益为 0。

因而对于投标人 i,期望收益函数为 $U_i\left(b_i,b_j(v_j),v_i\right)=\left(v_i-b_i\right)Pr\left[b_i>\max_{j\neq i}b_j(v_j)\right]+0+0$,又因为 $Pr\left[b_i>\max_{j\neq i}b_j(v_j)\right]=Pr\left[b_i>\max_{j\neq i}av_j\right]=Pr\left[b_i/a>\max_{j\neq i}v_j\right]$,而 v_j 服从区间 [0,1] 上的均匀分布,因此 $Pr\left[b_i>\max_{j\neq i}b_j(v_j)\right]=\left(\frac{b_i}{a}\right)^{N-1}$,因此 $U_i(b_i,b_j,v_i)=\left(v_i-b_i\right)\left(\frac{b_i}{a}\right)^{N-1}$ 。

最大化 $U_i(b_i,b_j,v_i)=\left(v_i-b_i\right)\left(\frac{b_i}{a}\right)^{N-1}$,即 $\frac{\partial U_i}{\partial b_i}=0$,一 $\left(\frac{b_i}{a}\right)^{N-1}+\frac{v_i-b_i}{a}(N-1)(\frac{b_i}{a})^{N-2}=0$,即 $\left(\frac{b_i}{a}\right)^{N-2}\frac{1}{a}\left[(N-1)(v_i-b_i)-b_i\right]=0$,可得 $b_i(v_i)=\frac{N-1}{N}v_i$ 。

可以发现,当投标人越多,卖者所得到的价格越高;当投标人趋于无穷时,卖者几乎得 到买者价值的全部。因此让更多的人加入竞标是卖者的利益所在。

❷ 题目二

请将博弈树形式化为扩展式博弈 $G = \{N, H, P, \{u_i\}\}$ 。

图 1: 博弈树

解答: $G = \{N, H, P, \{u_i\}\}$

 $N = \{1, 2\}$

 $H = {\emptyset, A, B, AC, AD, BE, BF, BFG, BFH}$

 $P:\,P(\emptyset)=1, P(A)=2, P(B)=2, P(BF)=1$

 $u_1(AC) = 3, u_1(AD) = 8, u_1(BE) = 5, u_1(BFG) = 2, u_1(BFH) = 1$

 $u_2(AC) = 8, u_2(AD) = 3, u_2(BE) = 5, u_2(BFG) = 10, u_2(BFH) = 0$

❷ 题目三

请求解最后通牒博弈的所有纳什均衡。

图 2: 最后通牒博弈

解答:每个玩家的纯策略为: A 玩家 $\{(2,0),(1,1),(0,2)\}$, B 玩家 $\{yyy,yyn,yny,ynn,nyy,nyn,nny,nnn\}$ 。 将扩展式博弈转化为策略式博弈,诱导收益矩阵如下:

	ууу	yyn	yny	ynn	nyy	nyn	nny	nnn
(2,0)	2,0	2,0	2,0	2,0	0,0	0,0	0,0	0,0
(1,1)	1,1	1,1	0,0	0,0	1,1	1,1	0,0	0,0
(0,2)	0,2	0,0	0,2	0,0	0,2	0,0	0,2	0,0

根据诱导收益矩阵,就可以找到纳什均衡: $((2,0), yyy),((2,0), yyn),((2,0), yny),((2,0), ynn),((2,0), nny),((2,0), nnn),((1,1), nyy),((1,1), nyn),((0,2), nny), 其中子博弈完美要求玩家 B 在 <math>B_2$ 、 B_3 处选择 y,因此仅有 ((2,0), yyy),((1,1), nyy) 是可信的纳什均衡。

❷ 题目四

请求解纳什均衡和子博弈完美。

图 3: 博弈树

解答: 每个玩家的纯策略为: 1 玩家 $\{AG,AH,BG,BH\}$, 2 玩家 $\{CE,CF,DE,DF\}$ 。将扩展式博弈转化为策略式博弈,诱导收益矩阵如下:

	CE	CE	DE	DE
	$^{\mathrm{CE}}$	CF	DE	$_{ m DF}$
AG	3,8*	3*,8*	8*,3	8*,3
AH	3,8*	3*,8*	8*,3	8*,3
BG	5*,5	2,10*	5,5	2,10*
BH	5*,5*	1,0	5,5*	1,0

根据诱导收益矩阵,就可以找到纳什均衡:(AG, CF),(AH, CF),(BH, CE),其中子博弈完美要求玩家 1 在 1_2 处选择 G,因此仅有(AG, CF) 是子博弈完美。

子博弈完美要求玩家 1 在 1_2 处选择 G, 玩家 1 选择 G 的时候, 玩家 2 在两个分支上的收益分别是: 5, 10, 因此, 玩家 2 会选择 F, 同时子博弈完美要求玩家 2 在 2_1 处选择 G; 玩家 2 选择 G 的时候, 玩家 1 在两个分支上的收益分别是: 1_1 3, 1_2 0, 因此, 玩家 1 会选择 1_3 0, 因而得到唯一的 1_4 0, 1_4 0, 1_4 0, 1_5 0,

❷ 题目五

请求解子博弈完美。

图 4: 博弈树

解答: 使用后向归纳法求解子博弈完美,其步骤为 1. 从最末端的非叶子结点开始 (从最后的子博弈开始),计算纳什均衡 (此时对于这个非叶子结点的玩家,相当于寻找他的最优收益),用这个收益,替代这个子博弈根结点。2. 重复第 1 步,直到根节点。

子博弈完美要求玩家 B 在 B_2 、 B_3 处选择 y,玩家 B 会选择的纯策略可能有 2 种: yyy,nyy。当玩家 B 选择 yyy 的时候,玩家 A 在三个分支上的收益分别是: 2, 1, 0。因此,玩家 A 会选择 (2,0),因而得到一个 SPE: ((2,0), yyy),同理得到所有的 SPE: ((2,0), yyy),((1,1), nyy)。

❷ 题目六

请求解子博弈完美。

图 5: 博弈树

解答:使用后向归纳法求解子博弈完美,其步骤为 1. 从最末端的非叶子结点开始 (从最后的子博弈开始),计算纳什均衡 (此时对于这个非叶子结点的玩家,相当于寻找他的最优收益),用这个收益,替代这个子博弈根结点。2. 重复第 1 步,直到根节点。

子博弈完美要求玩家 K 在 K_2 处选择 A, 在 K_3 处选择 F, 玩家 K 选择 AF 的时候, 玩家 P 在两个分支上的收益分别是: 15, 5, 因此, 玩家 P 会选择 F; 玩家 P 选择 F 的时候, 玩家 K 在两个分支上的收益分别是: 0, 5, 因此, 玩家 K 会选择 In。因而得到唯一的 SPE: (InAF, F)。