	· ·			Relative std.			
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$			
	1	IINIIVED CAI					
and of light in vaccour		UNIVERSAL 299 792 458	${\rm m}~{\rm s}^{-1}$	(avaat)			
speed of light in vacuum	c, c_0	$4\pi \times 10^{-7}$	$\stackrel{ ext{III S}}{ ext{N A}^{-2}}$	(exact)			
magnetic constant	μ_0	$= 12.566370614 \times 10^{-7}$	$\stackrel{ ext{N A}}{ ext{N A}^{-2}}$	(avaat)			
-1		$= 12.506370014 \times 10$ $8.854187817 \times 10^{-12}$	$F m^{-1}$	(exact)			
electric constant $1/\mu_0 c^2$	ϵ_0	8.834 187 817 × 10	L III	(exact)			
characteristic impedance	7	076 700 010 461	0	()			
of vacuum $\sqrt{\mu_0/\epsilon_0} = \mu_0 c$	Z_0	376.730 313 461	Ω	(exact)			
N							
Newtonian constant	0	0.07420(07) 10-11	3 1 -1 -2	1.0 10-4			
of gravitation	G	$6.67428(67) \times 10^{-11}$	$m^3 kg^{-1} s^{-2}$	1.0×10^{-4}			
DI I	$G/\hbar c$	$6.70881(67) \times 10^{-39}$	$({\rm GeV}/c^2)^{-2}$	1.0×10^{-4}			
Planck constant	h	$6.62606896(33) \times 10^{-34}$	J s	5.0×10^{-8}			
in eV s	4	$4.13566733(10) \times 10^{-15}$	eV s	2.5×10^{-8}			
$h/2\pi$	\hbar	$1.054571628(53) \times 10^{-34}$	J s	5.0×10^{-8}			
in eV s		$6.58211899(16) \times 10^{-16}$	eV s	2.5×10^{-8}			
$\hbar c$ in MeV fm		197.3269631(49)	MeV fm	2.5×10^{-8}			
DI (+ /0)1/2		0.450.44(44) 40.8		F0 40 5			
Planck mass $(\hbar c/G)^{1/2}$	$m_{\rm P}$	$2.17644(11) \times 10^{-8}$	kg	5.0×10^{-5}			
energy equivalent in GeV	$m_{\rm P}c^2$	$1.220892(61)\times10^{19}$	GeV	5.0×10^{-5}			
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{ m P}$	$1.416785(71) \times 10^{32}$	K	5.0×10^{-5}			
Planck length $\hbar/m_{\rm P}c = (\hbar G/c^3)^{1/2}$	$l_{ m P}$	$1.616252(81) \times 10^{-35}$	m	5.0×10^{-5}			
Planck time $l_{ m P}/c=(\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.39124(27)\times10^{-44}$	S	5.0×10^{-5}			
	ELEC	CTROMAGNETIC					
elementary charge	e	$1.602176487(40) \times 10^{-19}$	C	2.5×10^{-8}			
, ,	e/h	$2.417989454(60) \times 10^{14}$	${ m A~J^{-1}}$	2.5×10^{-8}			
	,	,					
magnetic flux quantum $h/2e$	Φ_0	$2.067833667(52)\times10^{-15}$	Wb	2.5×10^{-8}			
conductance quantum $2e^2/h$	$\overset{\circ}{G_0}$	$7.7480917004(53) \times 10^{-5}$	S	6.8×10^{-10}			
inverse of conductance quantum	G_0^{-1}	12 906.403 7787(88)	Ω	6.8×10^{-10}			
Josephson constant $2e/h$	$K_{ m J}^{^0}$	$483597.891(12) \times 10^9$	$\mathrm{Hz}\mathrm{V}^{-1}$	2.5×10^{-8}			
von Klitzing constant ²	Ü	()					
$h/e^2 = \mu_0 c/2\alpha$	$R_{ m K}$	25812.807557(18)	Ω	6.8×10^{-10}			
F-0-7	-11						
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$927.400915(23)\times 10^{-26}$	$ m J~T^{-1}$	2.5×10^{-8}			
in eV T^{-1}	, D	$5.7883817555(79) \times 10^{-5}$	${ m eV}~{ m T}^{-1}$	1.4×10^{-9}			
	$\mu_{ m B}/h$	$13.99624604(35) \times 10^9$	$\mathrm{Hz}\mathrm{T}^{-1}$	2.5×10^{-8}			
	$\mu_{ m B}/hc$	46.686 4515(12)	${ m m}^{-1} \ { m T}^{-1}$	2.5×10^{-8}			
	$\mu_{ m B}/k$	0.671 7131(12)	$K T^{-1}$	1.7×10^{-6}			
	P-D/ ·	, ,					
nuclear magneton $e\hbar/2m_{ m p}$	$\mu_{ m N}$	$5.05078324(13) \times 10^{-27}$	$ m J~T^{-1}$	2.5×10^{-8}			
in eV T^{-1}	L. IV	$3.1524512326(45) \times 10^{-8}$	${ m eV}~{ m T}^{-1}$	1.4×10^{-9}			
	$\mu_{ m N}/h$	7.62259384(19)	$ m MHz~T^{-1}$	2.5×10^{-8}			
	$\mu_{ m N}/hc$	$2.542623616(64) \times 10^{-2}$	$m^{-1} T^{-1}$	2.5×10^{-8}			
	$\mu_{ m N}/k$	$3.6582637(64) \times 10^{-4}$	$\mathrm{K}\mathrm{T}^{-1}$	1.7×10^{-6}			
		,					
ATOMIC AND NUCLEAR							
fine structure constant $s^2/4\pi s^{-\frac{1}{2}}$	01	General $7.207.352.5376(50) \times 10^{-3}$		6.8×10^{-10}			
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	$\frac{\alpha}{\alpha^{-1}}$	$7.2973525376(50) \times 10^{-3}$		6.8×10^{-10}			
inverse fine-structure constant	α	137.035999679(94)		0.8×10^{-20}			

_	, 51001 0 0			Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
				10
Rydberg constant $\alpha^2 m_{\rm e} c/2h$	R_{∞}	10973731.568527(73)	m^{-1}	6.6×10^{-12}
	$R_{\infty}c$	$3.289841960361(22) \times 10^{15}$	Hz	6.6×10^{-12}
	$R_{\infty}hc$	$2.17987197(11) \times 10^{-18}$	J	5.0×10^{-8}
$R_{\infty}hc$ in eV		13.60569193(34)	eV	2.5×10^{-8}
Bohr radius $\alpha/4\pi R_{\infty}=4\pi\epsilon_0\hbar^2/m_{\rm e}e^2$	a_0	$0.52917720859(36)\times10^{-10}$	m	6.8×10^{-10}
Hartree energy $e^2/4\pi\epsilon_0 a_0 = 2R_{\infty}hc$	0	0.020 200 200 00 (00) 11 20		
$= \alpha^2 m_{\rm e} c^2$	$E_{ m h}$	$4.35974394(22) \times 10^{-18}$	J	5.0×10^{-8}
in eV	—11	27.211 383 86(68)	eV	2.5×10^{-8}
quantum of circulation	$h/2m_{ m e}$	$3.6369475199(50) \times 10^{-4}$	${ m m}^2~{ m s}^{-1}$	1.4×10^{-9}
quantum of enculation	$h/m_{ m e}$	$7.273895040(10)\times10^{-4}$	$m^2 s^{-1}$	1.4×10^{-9}
	,	, ,	III 5	1.1 / 10
F : 1:		ctroweak	a_{N-2}	0.6 10-6
Fermi coupling constant ³	$G_{\mathrm{F}}/(\hbar c)^3$	$1.16637(1) \times 10^{-5}$	${ m GeV^{-2}}$	8.6×10^{-6}
weak mixing angle ⁴ $\theta_{\rm W}$ (on-shell scheme)	. 2 .	0.000 44 (4.0)		
$\sin^2 \theta_{\rm W} = s_{\rm W}^2 \equiv 1 - (m_{\rm W}/m_{\rm Z})^2$	$\sin^2 \theta_{ m W}$	0.22255(56)		2.5×10^{-3}
	Elec	etron, e		
electron mass	$m_{ m e}$	$9.10938215(45) \times 10^{-31}$	kg	5.0×10^{-8}
in u, $m_{\rm e}=A_{\rm r}({\rm e})$ u (electron				
relative atomic mass times u)		$5.4857990943(23) \times 10^{-4}$	u	4.2×10^{-10}
energy equivalent	$m_{ m e}c^2$	$8.18710438(41)\times10^{-14}$	J	5.0×10^{-8}
in MeV		0.510998910(13)	MeV	2.5×10^{-8}
alaatman muuan maas matia	200 /200	$4.83633171(12)\times10^{-3}$		2.5×10^{-8}
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$			2.3×10^{-4} 1.6×10^{-4}
electron-tau mass ratio	$m_{ m e}/m_{ m au}$	$2.87564(47) \times 10^{-4}$		4.3×10^{-10}
electron-proton mass ratio	$m_{ m e}/m_{ m p}$	$5.4461702177(24) \times 10^{-4}$		4.3×10^{-10} 6.0×10^{-10}
electron-neutron mass ratio	$m_{ m e}/m_{ m n}$	$5.4386734459(33) \times 10^{-4}$		
electron-deuteron mass ratio	$m_{ m e}/m_{ m d}$	$2.7244371093(12) \times 10^{-4}$		4.3×10^{-10}
electron to alpha particle mass ratio	$m_{ m e}/m_{ m lpha}$	$1.37093355570(58)\times10^{-4}$		4.2×10^{-10}
electron charge to mass quotient	$-e/m_{ m e}$	$-1.758820150(44)\times10^{11}$	${ m Ckg^{-1}}$	2.5×10^{-8}
electron molar mass $N_{ m A} m_{ m e}$	$M(e), M_e$	$5.4857990943(23) \times 10^{-7}$	kg mol ^{−1}	4.2×10^{-10}
Compton wavelength $h/m_{ m e}c$	$\lambda_{ m C}$	$2.4263102175(33) \times 10^{-12}$	m	1.4×10^{-9}
$\lambda_{\rm C}/2\pi = \alpha a_0 = \alpha^2/4\pi R_{\infty}$	$\lambda_{ m C}$	$386.15926459(53) \times 10^{-15}$	m	1.4×10^{-9}
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.8179402894(58) \times 10^{-15}$	m	2.1×10^{-9}
Thomson cross section $(8\pi/3)r_{\rm e}^2$	$\sigma_{ m e}$	$0.6652458558(27)\times10^{-28}$	m^2	4.1×10^{-9}
(•••/ •)· e	- e	0.000 = 10 0000 (= 1) 11 = 0		
electron magnetic moment	$\mu_{ m e}$	$-928.476377(23) \times 10^{-26}$	$ m J~T^{-1}$	2.5×10^{-8}
to Bohr magneton ratio	$\mu_{ m e}/\mu_{ m B}$	-1.00115965218111(74)		7.4×10^{-13}
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m N}$	-1838.28197092(80)		4.3×10^{-10}
electron magnetic moment	re/ri	1000.2010.002(00)		1.0 / 10
anomaly $ \mu_{\rm e} /\mu_{\rm B}-1$	$a_{ m e}$	$1.15965218111(74) \times 10^{-3}$		6.4×10^{-10}
electron g-factor $-2(1+a_{\rm e})$		-2.0023193043622(15)		7.4×10^{-13}
2(1 4e)	$g_{ m e}$	2.0020100010022(10)		// 10
electron-muon				
magnetic moment ratio	$\mu_{ m e}/\mu_{ m \mu}$	206.7669877(52)		2.5×10^{-8}
electron-proton				
magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.2106848(54)		8.1×10^{-9}

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
electron to shielded proton magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}'$	-658.2275971(72)		1.1×10^{-8}
(H ₂ O, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m p}$	-050.221 5511(12)		1.1 \ 10
electron-neutron	,	000 000 50(00)		0.4.10-7
magnetic moment ratio electron-deuteron	$\mu_{ m e}/\mu_{ m n}$	960.92050(23)		2.4×10^{-7}
magnetic moment ratio	$\mu_{ m e}/\mu_{ m d}$	-2143.923498(18)		8.4×10^{-9}
electron to shielded helion		` '		
magnetic moment ratio	$\mu_{ m e}/\mu_{ m h}'$	864.058257(10)		1.2×10^{-8}
(gas, sphere, 25 °C) electron gyromagnetic ratio $2 \mu_e /\hbar$	~/	$1.760859770(44) \times 10^{11}$	$s^{-1} T^{-1}$	2.5×10^{-8}
election gyromagnetic ratio $2 \mu_{ m e} /h$	$rac{\gamma_{ m e}}{\gamma_{ m e}/2\pi}$	28024.95364(70)	$^{\rm S}$ $^{\rm I}$ $^{\rm MHz}$ $^{\rm T}$	2.5×10^{-8} 2.5×10^{-8}
		Muon, μ^-		
muon mass	$m_{ m \mu}$	$1.88353130(11)\times 10^{-28}$	kg	5.6×10^{-8}
in ${ m u},m_{ m \mu}=A_{ m r}({ m \mu}){ m u}$ (muon		0.440.400.007.0(00)		
relative atomic mass times u) energy equivalent	m e ²	$0.1134289256(29) 1.692833510(95) \times 10^{-11}$	u J	2.5×10^{-8} 5.6×10^{-8}
in MeV	$m_{\mu}c^2$	$1.092833310(93) \times 10$ 105.6583668(38)	J MeV	3.6×10^{-8}
III IVIC V		100.000 0000(00)	1/10 /	0.0 / 10
muon-electron mass ratio	$m_{ m \mu}/m_{ m e}$	206.768 2823(52)		2.5×10^{-8}
muon-tau mass ratio	$m_{ m \mu}/m_{ m au}$	$5.94592(97) \times 10^{-2}$		1.6×10^{-4}
muon-proton mass ratio muon-neutron mass ratio	$m_{ m \mu}/m_{ m p} \ m_{ m \mu}/m_{ m n}$	0.1126095261(29) 0.1124545167(29)		2.5×10^{-8} 2.5×10^{-8}
muon molar mass $N_{\rm A} m_{\rm \mu}$	$M(\mu), M_{\mu}$	0.1124945107(29) $0.1134289256(29) \times 10^{-3}$	$kg mol^{-1}$	2.5×10^{-8} 2.5×10^{-8}
11.0 μ	(Γ')) μ		8	
muon Compton wavelength $h/m_{\mu}c$	$\lambda_{\mathrm{C},\mu}$	$11.73444104(30) \times 10^{-15}$	m	2.5×10^{-8}
$\lambda_{\mathrm{C},\mu}/2\pi$	$\lambda_{\mathrm{C},\mu}$	$1.867594295(47) \times 10^{-15}$	m	2.5×10^{-8}
muon magnetic moment	μ_{μ}	$-4.49044786(16) \times 10^{-26}$ $-4.84197049(12) \times 10^{-3}$	$ m J~T^{-1}$	3.6×10^{-8} 2.5×10^{-8}
to Bohr magneton ratio to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m B} \ \mu_{ m \mu}/\mu_{ m N}$	$-4.84197049(12) \times 10^{-4}$ -8.89059705(23)		2.5×10^{-8} 2.5×10^{-8}
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m N}$	-0.090 091 00(20)		2.0 \ 10
muon magnetic moment anomaly				-
$ \mu_{\mu} /(e\hbar/2m_{\mu})-1$	a_{μ}	$1.16592069(60) \times 10^{-3}$		5.2×10^{-7}
muon g -factor $-2(1+a_{\mu})$ muon-proton	g_{μ}	-2.0023318414(12)		6.0×10^{-10}
magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.183345137(85)		2.7×10^{-8}
		Tau, τ ⁻		
tau mass ⁵	$m_{ au}$	$3.16777(52) \times 10^{-27}$	kg	1.6×10^{-4}
in u, $m_{ au} = A_{ m r}(au)$ u (tau		1.00=.00(01)		1.0 10-1
relative atomic mass times u)	2	1.90768(31)	u	1.6×10^{-4}
energy equivalent in MeV	$m_{ au}c^2$	$2.84705(46) \times 10^{-10}$ 1776.99(29)	J MeV	1.6×10^{-4} 1.6×10^{-4}
III IVIC V		1110.33(23)	IVIC V	1.0 × 10
tau-electron mass ratio	$m_{ m au}/m_{ m e}$	3477.48(57)		1.6×10^{-4}
tau-muon mass ratio	$m_{ au}/m_{\mu}$	16.8183(27)		1.6×10^{-4}
tau-proton mass ratio	$m_{ au}/m_{ m p}$	1.893 90(31)		1.6×10^{-4}
tau-neutron mass ratio	$m_{ m au}/m_{ m n}$	1.89129(31)		1.6×10^{-4}

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
tau molar mass $N_{ m A} m_{ au}$	$M(au), M_{ au}$	$1.90768(31) \times 10^{-3}$	$kg \text{ mol}^{-1}$	1.6×10^{-4}
taa motat mass Iv _A m _t	νι (υ), νιτ	1.507 00(01) × 10	kg mor	1.0 × 10
tau Compton wavelength $h/m_{ au}c$	$\lambda_{\mathrm{C}, au}$	$0.69772(11) \times 10^{-15}$	m	1.6×10^{-4}
$\lambda_{\mathrm{C}, au}/2\pi$	$\lambda_{\mathrm{C}, au}$	$0.111046(18) \times 10^{-15}$	m	1.6×10^{-4}
		Proton, p		
proton mass	$m_{ m p}$	$1.672621637(83) \times 10^{-27}$	kg	5.0×10^{-8}
in u, $m_{\rm p}=A_{\rm r}({\rm p})$ u (proton		1 005 056 466 55(10)		10 10-10
relative atomic mass times u)	2	$1.007 276 466 77(10) 1.503 277 359(75) \times 10^{-10}$	u J	1.0×10^{-10} 5.0×10^{-8}
energy equivalent in MeV	$m_{\rm p}c^2$	938.272013(23)	MeV	2.5×10^{-8}
III IVIC V		330.272 013(23)	IVIC V	2.5 × 10
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.15267247(80)		4.3×10^{-10}
proton-muon mass ratio	$m_{ m p}/m_{ m \mu}$	8.880 243 39(23)		2.5×10^{-8}
proton-tau mass ratio	$m_{ m p}/m_{ m au}$	0.528012(86)		1.6×10^{-4}
proton-neutron mass ratio	$m_{ m p}/m_{ m n}$	0.99862347824(46)		4.6×10^{-10}
proton charge to mass quotient	$e/m_{\rm p}$	$9.57883392(24)\times10^7$	$C kg^{-1}$	2.5×10^{-8}
proton molar mass $N_{ m A} m_{ m p}$	$M(p), M_p$	$1.00727646677(10) \times 10^{-3}$	kg mol ^{−1}	1.0×10^{-10}
proton Compton wavelength $h/m_{ m p}c$	$\lambda_{ m C,p}$	$1.3214098446(19) \times 10^{-15}$	m	1.4×10^{-9}
$\lambda_{ m C,p}/2\pi$	$\lambda_{ m C,p}$	$0.21030890861(30) \times 10^{-15}$	m	1.4×10^{-9}
proton rms charge radius	$R_{ m p}$	$0.8768(69) \times 10^{-15}$	m	7.8×10^{-3}
proton magnetic moment	$\mu_{ m p}$	$1.410606662(37)\times10^{-26}$	$ m J~T^{-1}$	2.6×10^{-8}
to Bohr magneton ratio	$\mu_{ m p}/\mu_{ m B}$	$1.521032209(12)\times 10^{-3}$		8.1×10^{-9}
to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m N}$	2.792847356(23)		8.2×10^{-9}
proton g -factor $2\mu_{ m p}/\mu_{ m N}$	$g_{ m p}$	5.585694713(46)		8.2×10^{-9}
proton-neutron	,			
magnetic moment ratio	$\mu_{ m p}/\mu_{ m n}$	-1.45989806(34)	r.m-1	2.4×10^{-7}
shielded proton magnetic moment $(H_2O, \text{ sphere}, 25 ^{\circ}\text{C})$	$\mu_{ m p}'$	$1.410570419(38)\times10^{-26}$	$ m JT^{-1}$	2.7×10^{-8}
to Bohr magneton ratio	$\mu_{ m p}'/\mu_{ m B}$	$1.520993128(17)\times 10^{-3}$		1.1×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}^{\prime}/\mu_{ m N}$	2.792775598(30)		1.1×10^{-8}
proton magnetic shielding				4
correction $1 - \mu'_{\rm p}/\mu_{\rm p}$	$\sigma_{ m p}'$	$25.694(14) \times 10^{-6}$		5.3×10^{-4}
$(H_2O, sphere, 25 ^{\circ}C)$				
proton gyromagnetic ratio $2\mu_{ exttt{p}}/\hbar$	$\gamma_{ m p}$	$2.675222099(70) \times 10^8$	$s^{-1} T^{-1}$	2.6×10^{-8}
proton gyromagnetic ratio 2µp/ n	$\gamma_{ m p}^{ m p}/2\pi$	42.577 4821(11)	$ m MHz~T^{-1}$	2.6×10^{-8}
shielded proton gyromagnetic	/P/ ··			
ratio $2\mu_{\rm p}'/\hbar$	$\gamma_{ m p}'$	$2.675153362(73) \times 10^8$	${ m s}^{-1} { m T}^{-1}$	2.7×10^{-8}
$(H_2O, sphere, 25 °C)$				
	$\gamma_{ m p}'/2\pi$	42.5763881(12)	$ m MHz~T^{-1}$	2.7×10^{-8}
		Neutron, n		
neutron mass in u, $m_{ m n}=A_{ m r}({ m n})$ u (neutron	$m_{ m n}$	$1.674927211(84)\times10^{-27}$	kg	5.0×10^{-8}
relative atomic mass times u)		1.00866491597(43)	u	4.3×10^{-10}
energy equivalent	$m_{\rm n}c^2$	$1.505349505(75)\times 10^{-10}$	J	5.0×10^{-8}
in MeV		939.565346(23)	MeV	2.5×10^{-8}

	J		8	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{ m r}$
	/	1090 609 6605/11\		6.0×10^{-10}
neutron-electron mass ratio	$m_{\rm n}/m_{\rm e}$	1838.683 6605(11)		0.0×10^{-8} 2.5×10^{-8}
neutron-muon mass ratio	$m_{\rm n}/m_{\rm \mu}$	8.89248409(23)		
neutron-tau mass ratio	$m_{\rm n}/m_{\rm \tau}$	0.528 740(86)		1.6×10^{-4}
neutron-proton mass ratio	$m_{\rm n}/m_{\rm p}$	1.00137841918(46)	1 1-1	4.6×10^{-10}
neutron molar mass $N_{ m A} m_{ m n}$	$M(n), M_n$	$1.00866491597(43)\times10^{-3}$	kg mol ^{−1}	4.3×10^{-10}
neutron Compton wavelength $h/m_{ m n}c$	$\lambda_{ m C,n}$	$1.3195908951(20) \times 10^{-15}$	m	1.5×10^{-9}
$\lambda_{ m C,n}/2\pi$	$\lambda_{ m C,n}$	$0.21001941382(31)\times10^{-15}$	m	1.5×10^{-9}
neutron magnetic moment	$\mu_{ m n}$	$-0.96623641(23)\times10^{-26}$	$ m J~T^{-1}$	2.4×10^{-7}
to Bohr magneton ratio	$\mu_{ m n}/\mu_{ m B}$	$-1.04187563(25)\times10^{-3}$		2.4×10^{-7}
to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.91304273(45)		2.4×10^{-7}
noutron a factor $2u / u$		-3.82608545(90)		2.4×10^{-7}
neutron g -factor $2\mu_{\rm n}/\mu_{\rm N}$ neutron-electron	$g_{ m n}$	-3.820 083 43(90)		2.4 × 10
magnetic moment ratio	$\mu_{ m n}/\mu_{ m e}$	$1.04066882(25)\times10^{-3}$		2.4×10^{-7}
neutron-proton	Pall/Pae			
magnetic moment ratio	$\mu_{ m n}/\mu_{ m p}$	-0.68497934(16)		2.4×10^{-7}
neutron to shielded proton				
magnetic moment ratio	$\mu_{ m n}/\mu_{ m p}'$	-0.68499694(16)		2.4×10^{-7}
$(H_2O, sphere, 25 ^{\circ}C)$			1 1	77
neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar$	$\gamma_{ m n}$	$1.83247185(43) \times 10^8$	$s^{-1} T^{-1}$	2.4×10^{-7}
	$\gamma_{ m n}/2\pi$	29.1646954(69)	$ m MHz~T^{-1}$	2.4×10^{-7}
	D	Deuteron, d		
deuteron mass	$m_{ m d}$	$3.34358320(17) \times 10^{-27}$	kg	5.0×10^{-8}
in u, $m_{\rm d}=A_{\rm r}({ m d})$ u (deuteron				
relative atomic mass times u)	2	2.013553212724(78)	u	3.9×10^{-11}
energy equivalent	$m_{\rm d}c^2$	$3.00506272(15) \times 10^{-10}$	J	5.0×10^{-8}
in MeV		1875.612793(47)	MeV	2.5×10^{-8}
deuteron-electron mass ratio	$m_{ m d}/m_{ m e}$	3670.482 9654(16)		4.3×10^{-10}
deuteron-proton mass ratio	$m_{ m d}/m_{ m p}$	1.999 007 501 08(22)		1.1×10^{-10}
deuteron molar mass $N_{\rm A} m_{\rm d}$	$M(\mathrm{d}), M_{\mathrm{d}}$	$2.013553212724(78) \times 10^{-3}$	$kg mol^{-1}$	3.9×10^{-11}
dediction motal mass 1. Amid	111 (4), 1114	2.010 000 212 (21(10) // 10	ng mor	0.0 × 10
deuteron rms charge radius	$R_{ m d}$	$2.1402(28) \times 10^{-15}$	m	1.3×10^{-3}
deuteron magnetic moment	$\mu_{ m d}$	$0.433073465(11)\times10^{-26}$	$ m J~T^{-1}$	2.6×10^{-8}
to Bohr magneton ratio	$\mu_{ m d}/\mu_{ m B}$	$0.4669754556(39)\times10^{-3}$		8.4×10^{-9}
to nuclear magneton ratio	$\mu_{ m d}/\mu_{ m N}$	0.8574382308(72)		8.4×10^{-9}
deuteron g -factor $\mu_{ m d}/\mu_{ m N}$	$g_{ m d}$	0.8574382308(72)		8.4×10^{-9}
deuteron-electron	,	1 001015505(00) 10 1		0.4.40.0
magnetic moment ratio	$\mu_{ m d}/\mu_{ m e}$	$-4.664345537(39) \times 10^{-4}$		8.4×10^{-9}
deuteron-proton	/	0.207.012.2070/24)		77 × 10-9
magnetic moment ratio deuteron-neutron	$\mu_{ m d}/\mu_{ m p}$	0.3070122070(24)		7.7×10^{-9}
magnetic moment ratio	$\mu_{ m d}/\mu_{ m n}$	-0.44820652(11)		2.4×10^{-7}
magnetic moment ratio	μα/μn	` ′		2.4 A 10
triton mass	m	Triton, t $5.00735588(25) \times 10^{-27}$	kα	5.0×10^{-8}
triton mass	$m_{ m t}$	9.001 999 00(29) X 10 =-	kg	0.0 × 10 °

Fundamental Physical Constants — Extensive Listing				
Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
in u, $m_{ m t}=A_{ m r}({ m t})$ u (triton				
relative atomic mass times u)		3.0155007134(25)	u	8.3×10^{-10}
energy equivalent	$m_{ m t}c^2$	$4.50038703(22) \times 10^{-10}$	u J	5.0×10^{-8}
in MeV	$m_{ m t}c$	2808.920906(70)	MeV	2.5×10^{-8}
III IVIE V		2000.920 900(70)	IVIE V	2.5 × 10
triton-electron mass ratio	$m_{ m t}/m_{ m e}$	5496.9215269(51)		9.3×10^{-10}
triton-proton mass ratio	$m_{ m t}/m_{ m p}$	2.9937170309(25)		8.4×10^{-10}
triton molar mass $N_{ m A} m_{ m t}$	$M(\mathrm{t}), M_{\mathrm{t}}$	$3.0155007134(25)\times10^{-3}$	kg mol ^{−1}	8.3×10^{-10}
triton magnetic moment	$\mu_{ m t}$	$1.504609361(42)\times10^{-26}$	$ m JT^{-1}$	2.8×10^{-8}
to Bohr magneton ratio	$\mu_{ m t}/\mu_{ m B}$	$1.622393657(21) \times 10^{-3}$		1.3×10^{-8}
to nuclear magneton ratio	$\mu_{ m t}/\mu_{ m N}$	2.978 962 448(38)		1.3×10^{-8}
to nation magneton ratio	$\mu_{\rm U}/\mu_{\rm IN}$	2.010 002 110(00)		1.0 / 10
triton g -factor $2\mu_{\rm t}/\mu_{ m N}$	$g_{ m t}$	5.957924896(76)		1.3×10^{-8}
triton-electron	,	1 000 71 1 100 (01) 10-3		10 10-8
magnetic moment ratio	$\mu_{ m t}/\mu_{ m e}$	$-1.620514423(21)\times10^{-3}$		1.3×10^{-8}
triton-proton	,	1 000 000 000 (10)		0.0 10-9
magnetic moment ratio	$\mu_{ m t}/\mu_{ m p}$	1.066639908(10)		9.8×10^{-9}
triton-neutron	,	1 FFF 10F F9/95)		2.4. 10-7
magnetic moment ratio	$\mu_{ m t}/\mu_{ m n}$	-1.55718553(37)		2.4×10^{-7}
	Н	elion, h		
helion mass ⁶	$m_{ m h}$	$5.00641192(25) \times 10^{-27}$	kg	5.0×10^{-8}
in $u, m_{ m h} = A_{ m r}({ m h}) u$ (helion				
relative atomic mass times u)		3.0149322473(26)	u	8.6×10^{-10}
energy equivalent	$m_{ m h}c^2$	$4.49953864(22) \times 10^{-10}$	J	5.0×10^{-8}
in MeV		2808.391383(70)	MeV	2.5×10^{-8}
helion-electron mass ratio	$m_{ m h}/m_{ m e}$	5495.885 2765(52)		9.5×10^{-10}
helion-proton mass ratio	$m_{ m h}/m_{ m p}$	2.9931526713(26)		8.7×10^{-10}
helion molar mass $N_{\rm A} m_{ m h}$	$M(\mathrm{h}), M_{\mathrm{h}}$	$3.0149322473(26)\times10^{-3}$	$kg mol^{-1}$	8.6×10^{-10}
shielded helion magnetic moment	$\mu_{ m h}'$	$-1.074552982(30)\times10^{-26}$	$ m JT^{-1}$	2.8×10^{-8}
(gas, sphere, 25 °C)		1 170 071 171(11)		
to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.158671471(14) \times 10^{-3}$		1.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m h}'/\mu_{ m N}$	-2.127497718(25)		1.2×10^{-8}
shielded helion to proton		0 -04 -00 -50 (44)		4 40 9
magnetic moment ratio	$\mu_{ m h}'/\mu_{ m p}$	-0.761766558(11)		1.4×10^{-8}
(gas, sphere, 25 °C)				
shielded helion to shielded proton				
magnetic moment ratio	$\mu_{ m h}'/\mu_{ m p}'$	-0.7617861313(33)		4.3×10^{-9}
(gas/H ₂ O, spheres, 25 °C)	, п, , р	,		
shielded helion gyromagnetic				
ratio $2 \mu_{\rm h}' /\hbar$	$\gamma_{ m h}'$	$2.037894730(56) \times 10^8$	$s^{-1} T^{-1}$	2.8×10^{-8}
(gas, sphere, 25 °C)	' II			
	$\gamma_{ m h}'/2\pi$	32.43410198(90)	$ m MHz~T^{-1}$	2.8×10^{-8}
	Alpha	particle, α		
alpha particle mass	m_{α}	$6.64465620(33) \times 10^{-27}$	kg	5.0×10^{-8}
in u, $m_{\alpha}=A_{\rm r}(\alpha)$ u (alpha particle		` '	-	
, , , , , , , , , , , , , , , , , , , ,				

<i>,</i>			8	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
				11
relative atomic mass times u)	9	4.001506179127(62)	u	1.5×10^{-11}
energy equivalent	$m_{oldsymbol{lpha}}c^2$	$5.97191917(30) \times 10^{-10}$	J	5.0×10^{-8}
in MeV		3727.379109(93)	MeV	2.5×10^{-8}
alpha particle to electron mass ratio	$m_{f lpha}/m_{ m e}$	7294.299 5365(31)		4.2×10^{-10}
alpha particle to proton mass ratio	$m_{f lpha}/m_{f p}$	3.97259968951(41)		1.0×10^{-10}
alpha particle molar mass $N_{ m A} m_{ m lpha}$	$M(\alpha), M_{\alpha}$	$4.001506179127(62)\times 10^{-3}$	${\rm kg\ mol^{-1}}$	1.5×10^{-11}
		CHEMICAL		
Avogadro constant	$N_{ m A}, L$	$6.02214179(30)\times10^{23}$	mol^{-1}	5.0×10^{-8}
atomic mass constant				
$m_{\rm u} = \frac{1}{12} m(^{12}{ m C}) = 1~{ m u}$	$m_{ m u}$	$1.660538782(83) \times 10^{-27}$	kg	5.0×10^{-8}
$= 10^{-3} \ { m kg \ mol^{-1}}/N_{ m A}$				
energy equivalent	$m_{ m u}c^2$	$1.492417830(74) \times 10^{-10}$	J	5.0×10^{-8}
in MeV		931.494 028(23)	MeV	2.5×10^{-8}
Faraday constant $^7N_{ m A}e$	F	96 485.3399(24)	$C \text{ mol}^{-1}$	2.5×10^{-8}
molar Planck constant	$N_{ m A}h$	$3.9903126821(57)\times10^{-10}$	$\rm J~s~mol^{-1}$	1.4×10^{-9}
morar Francis Constant	$N_{ m A}hc$	0.11962656472(17)	$J \text{ m mol}^{-1}$	1.4×10^{-9} 1.4×10^{-9}
molar gas constant	R	8.314 472(15)	$J \text{ mol}^{-1} \text{ K}^{-1}$	1.7×10^{-6}
Boltzmann constant $R/N_{\rm A}$	k	$1.3806504(24) \times 10^{-23}$	$J K^{-1}$	1.7×10^{-6}
in eV K ⁻¹	70	$8.617343(15) \times 10^{-5}$	${ m eV~K^{-1}}$	1.7×10^{-6}
111 0 1 11	k/h	$2.0836644(36) \times 10^{10}$	$Hz K^{-1}$	1.7×10^{-6}
	k/hc	69.503 56(12)	$m^{-1} K^{-1}$	1.7×10^{-6}
malar values of ideal and DT/				
molar volume of ideal gas RT/p	17	$99.412.006(20) \times 10^{-3}$	$\mathrm{m}^3 \ \mathrm{mol}^{-1}$	1.7×10^{-6}
T = 273.15 K, p = 101.325 kPa	$V_{ m m}$	$22.413996(39) \times 10^{-3}$	m^{-3}	1.7×10^{-6} 1.7×10^{-6}
Loschmidt constant $N_{\rm A}/V_{\rm m}$	n_0	$2.6867774(47) \times 10^{25}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	
$T = 273.15 \; \text{K}, \; p = 100 \; \text{kPa}$	$V_{ m m}$	$22.710981(40)\times10^{-3}$	m° moi	1.7×10^{-6}
Sackur-Tetrode constant				
(absolute entropy constant) 8				
$\frac{5}{2} + \ln[(2\pi m_{\rm u}kT_1/h^2)^{3/2}kT_1/p_0]$				
$T_1 = 1 \text{ K}, p_0 = 100 \text{ kPa}$	S_0/R	-1.1517047(44)		3.8×10^{-6}
$T_1 = 1 \text{ K}, p_0 = 101.325 \text{ kPa}$		-1.1648677(44)		3.8×10^{-6}
Stefan-Boltzmann constant				
$(\pi^2/60)k^4/\hbar^3c^2$	σ	$5.670400(40) \times 10^{-8}$	$\mathrm{W}~\mathrm{m}^{-2}~\mathrm{K}^{-4}$	7.0×10^{-6}
first radiation constant $2\pi hc^2$	c_1	$3.74177118(19) \times 10^{-16}$	$W m^2$	5.0×10^{-8}
first radiation constant for spectral radiance $2hc^2$	c_{1L}	$1.191042759(59) \times 10^{-16}$	$ m W~m^2~sr^{-1}$	5.0×10^{-8}
second radiation constant hc/k	$c_{1\mathrm{L}}$	$1.4387752(25) \times 10^{-2}$	m K	1.7×10^{-6}
Wien displacement law constants	<i>5</i> 2	1.130 (1.02(20) // 10		1.1 // 10
$b = \lambda_{\text{max}} T = c_2/4.965 114 231$	b	$2.8977685(51) \times 10^{-3}$	m K	1.7×10^{-6}
$b' = \nu_{\text{max}} T = 2.821439372c/c_2$	b'	$5.878933(10) \times 10^{10}$	$Hz K^{-1}$	1.7×10^{-6}
1 a 1 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3.0.0000(10) // 10		

¹ See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.

² See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

³ Value recommended by the Particle Data Group (Yao, et al., 2006).

⁴ Based on the ratio of the masses of the W and Z bosons $m_{\rm W}/m_{\rm Z}$ recommended by the Particle Data Group (Yao, *et al.*, 2006). The value for $\sin^2\theta_{\rm W}$ they recommend, which is based on a particular variant of the modified minimal subtraction ($\overline{\rm MS}$) scheme, is $\sin^2\hat{\theta}_{\rm W}(M_{\rm Z}) = 0.231\,22(15)$.

⁵ This and all other values involving m_{τ} are based on the value of $m_{\tau}c^2$ in MeV recommended by the Particle Data Group (Yao, *et al.*, 2006), but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of -0.26 MeV, +0.29 MeV.

⁶ The helion, symbol h, is the nucleus of the ³He atom.

⁷ The numerical value of F to be used in coulometric chemical measurements is 96485.3401(48) [5.0×10^{-8}] when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants $K_{\rm J-90}$ and $R_{\rm K-90}$ given in the "Adopted values" table.

⁸ The entropy of an ideal monoatomic gas of relative atomic mass A_r is given by $S = S_0 + \frac{3}{2}R \ln A_r - R \ln(p/p_0) + \frac{5}{2}R \ln(T/K)$.