

MetaHDR: Model-Agnostic Meta-Learning for HDR Image Reconstruction

Edwin Pan*, Anthony Vento* {edwinpan, avento} @stanford.edu

— meta-learning

learning/adaptation

Stanford Electrical Engineering

Motivation

In Low Dynamic Range (LDR) to High Dynamic Range (HDR) conversion, there exists a nonlinear mapping between the scene radiance and the pixel values.

Existing deep learning models learn a single nonlinear mapping across all scenes, cameras, etc.

We propose the use of a meta-learning framework that learns an infinite set of nonlinear mappings by producing a set of meta-parameters which capture the common structure of LDR-to-HDR non-linear mapping.

At test time, given specific examples of LDR images in a scene, our model can quickly adapt to the optimal task-specific nonlinear mapping.

Background & Related Work

Problem: Given n LDR images (n > 0), produce 1 HDR image. Example input below^[1]. Image borders added for visual clarity.

With an input image spanning many exposures, we can perform HDR image fusion based on a set of computed exposure weights. [2]

Nonlinear mappings can be learned by assuming consistency across multiple images. Historically, this has been done through deep-CNN architectures. [3]

Approach & Model Architecture

A set of scene-exposures is interpreted as a task. For i tasks in a batch, pass through the MAML^[4] model. The loss function^[5] incorporates similarity and L1 distance. One pass involves 3 steps:

- 1. Compute task-specific ϕ_i for the UNet by optimizing meta-params θ (i.e., weights).
- 2. Use ϕ_i to compute HDR for test LDR image.
- 3. Accumulate loss and adjust meta-params θ .

Qualitative Results

Quantitative Results

	SSIM [†] (↑)		PSNR [†] (dB) (↑)	
	Label ^[2]	Label ^[3]	Label ^[2]	Label ^[3]
LDR No Recon.	0.489		12.200	
Single Shot	0.666	0.687	19.577	19.713
Adaptation with True HDR ^[2]	0.683	0.701	19.967	20.125
Adaptation with Simulated HDR ^[3]	0.687	0.698	19.753	19.790

^T Averaged over all meta-test set images. Note: Labels refer to labels used for taskspecific adaptation in meta-training.

Discussion

Conclusion: Our novel approach for HDR image reconstruction generates comparable results to state-of-the-art. Model performs well in the singleshot setting. Few-shot setting improves results.

Challenges: Color saturation was hard to maintain between input and output.

Limitations: While single-shot reconstruction works, the model performs better when given more LDR exposures per scene. Labels need to simulated at meta-test time for model adaptation.[3]

Future Work: Incorporate loss functions that prioritize saturated pixels during reconstruction. Train with more exposures per scene, and a wider variety of scenes.

References

- [1] Jang, et. Al. IEEE Access, 8:38554-38567, 2020.
- [2] Debevec et.Al. SIGGRAPH 1997 classes, pages 1–10. 1997.
- [3] Eilertsen et. Al. ACM TOG 36(6), 2017.
- [4] Finn et. Al. ICML, pages 1126–1135. PMLR, 2017.
- [5] Marnnerides et. Al. Eurographics, Vol:37, 2018

* Equal contribution

Note: All predicted HDR and true HDR images have been gamma corrected for visualization.