Context Logistic Regression > categorical dataset: (X, y) $P(y=1 \mid X) = \frac{1}{1+e^{-XW}} \rightarrow \text{parameters}$ ~ classification ----> assumed to follow probability of X belonging to f = 1 class a functional form (sigmoid function) For a given X: my value of y should be 0 P(Y=1/X) = 0.37 P(y=0|x) = 0.63

Context

In $\log - \text{Reg}$: we constrain P(y=1|X) to follow sigmoid function But what if we calculate P(Y=1|X) by some other way?

posterior prior rusing Bayes, theorem

$$P(y=1|X) = \frac{P(X|Y=1) P(Y=1)}{P(X)} \rightarrow (1)$$

$$X = (0,1,0)$$
 $y = ?$ $\Rightarrow P(y=1|X) & P(y=0|X)$
 $P(y=1) = \frac{2}{12} = \frac{1}{6}$ $D(y=1|X) = 0$

$$P(y=1) = 2/12 = 70$$

$$P(y=1|X) = 0$$

$$P(y=1|X) = 0$$

$$P(y=0|X) = 1$$

		_	•		
$\mathcal{D} \cap \mathcal{C}_{\mathcal{A}}$		У	х3	x2	ndex x1
PLX	0	1	0	0	1
	0	1	0	1	2
$X \equiv (0,1,$	0	0	1	0	3
001.7	0	0	1	0	4
1 and tion	0	0	0	0	5
Agsumption	0	1	0	1	6
1 211	0	0	1	0	7
4 all	1	1	0	0	8
of one	0	0	0	1	9
	1	1	0	0	10
PCX/11-1	0	0	1	0	11
16/19-1	0 _	0	1	0	12
. 1 × 0 ··→ €2	7	rdence;	indepen	ature	Under fe
\times $0 \mapsto \epsilon_2$	=1)	$x_1 = 0 / s$	= P(y = 1)	P(X/
X	~1)	r - 1/1	$\mathcal{V} \cap \mathcal{V}$		
) ~ O F E1	y = 1)	$_3 = 0 /$	$\mathcal{P}(\mathbf{x})$		

$$P(x/y=1) = 0$$

$$(=(0,1,0)$$

features are independent

$$P(x/y=1) = P(x, | y=1) \times P(x_2 | y=1) \times$$

$$P(x_3 | y=1)$$

$$-(x,y) \rightarrow P(y=1/x)$$

- P(y=1|X) is constrained
- parameters estimated from data
- can't be used to generate new data
 - only gives prediction
 - Logistio regression

DISCRIMINATIVE

- assume P(X|Y=1) -> calculate dist. parameters -> calc. P(Y=1|X)
- P(y=1/x) is NOT constrained; but calculated.
- no parameter estimation.
- can be used to generate data
 - predicts as well as generates samples
 - Linear/quadratic disc, analysis
 - naive bayes classifier

GENERATIYE

Sampling $y \rightarrow U(0,1)$ $x = F^{-1}(y)$ Sampling using
Inverse CDF > inverse of CDF - outliers handled (x,y) -> model -> parameters -> prediction : DIS CRIMINATIVE (X,y) -> probability -> prediction: GENERATIVE
dist. parameters