EXPLORATION OF AN EIGENVALUE PROBLEM DUE: WEDNESDAY, NOVEMBER 15.

Consider the quantum-mechanical, energy-eigenstate problem that we studied in class of a particle of mass m confined to a box of length L:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\varphi(x) = E\varphi(x)$$

where E is the energy eigenvalue. The solutions to this differential equation that satisfy the boundary condition at x = 0, namely that $\varphi(0) = 0$, are

$$\varphi(x) = A\sin(kx)$$
 where $k \equiv \sqrt{\frac{2mE}{\hbar^2}}$

for any value of the constants k and A. In this exercise, we seek to confirm numerically that we can only satisfy the boundary condition at x = L, namely that $\varphi(L) = 0$, if k is an integer times π/L regardless of the value of A.

Consider an electron in a box of length 1.00 Å, and take $A = \sqrt{2/L}$ for consistency with our solution in class.

- Write a Matlab function that makes a plot of $\varphi(x)$ versus x for 0 < x < L for 10 different values of k spanning $0 < k < 2\pi/L$. This should confirm to you that in this range, the only value of k that works is π/L .
- \bullet Repeat the above exercise, using a different range of k, to find the next value of k that works.
- Write a Matlab function that makes a plot of $\varphi(L)$ as a function of k for $0 < k < 10\pi/L$, treating k as a continuous variable.

To submit HW11 to D2L for grading:

- 1. Deposit a copy of your functions and the three plots you generated (in JPEG format, with axes labeled) in your HW11 Assignments Submission Folder.
- 2. Complete the HW11 Survey.

This homework is worth 15 points.