行列式の性質(その3) 6

演習 6.1 次の行列式の値を基本変形や余因子展開によって求めよ.

$$\begin{array}{c|cccc}
 & 0 & 3 & 0 \\
 & 1 & 2 & 2 \\
 & 8 & 6 & 8
\end{array}$$

(i)
$$\begin{vmatrix} 0 & 3 & 0 \\ 1 & 2 & 2 \\ 8 & 6 & 8 \end{vmatrix}$$
 (ii) $\begin{vmatrix} 1 & 1 & 1 \\ 5 & 5 & 0 \\ 3 & -1 & 6 \end{vmatrix}$

$$(iii) \begin{array}{|c|c|c|c|c|c|} \hline 0 & 5 & 3 & 1 \\ 2 & 3 & -2 & 2 \\ 0 & 4 & 0 & 0 \\ 4 & -1 & 2 & 3 \\ \hline \end{array}$$

(iii)
$$\begin{vmatrix} 0 & 5 & 3 & 1 \\ 2 & 3 & -2 & 2 \\ 0 & 4 & 0 & 0 \\ 4 & -1 & 2 & 3 \end{vmatrix}$$
 (iv)
$$\begin{vmatrix} 2 & 2 & -1 & 0 \\ -3 & 2 & -1 & 0 \\ 2 & 1 & -1 & 0 \\ 4 & -5 & 3 & 2 \end{vmatrix}$$

演習 6.2 次の行列 A の余因子行列 \tilde{A} と逆行列 A^{-1} を求めよ.

$$A = \left(\begin{array}{ccc} 2 & 2 & -1\\ 2 & 1 & 2\\ 4 & 4 & -3 \end{array}\right)$$

※ 時間が余った人は、次も考えてみてください.

演習 6.3 (i) 行列式
$$\begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix}$$
 を計算せよ.

(ii) 座標平面上の 3 点 $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ が与えられたとき, x_1, x_2, x_3 が互い に異なれば,

$$y = a_0 + a_1 x + a_2 x^2$$

の形の曲線で、その3点を通るものがちょうど一本存在することを示せ.

[ヒント] (i) これは教科書の定理 3.21 に書いてあるファンデルモンドの行列式.

(ii) a_0, a_1, a_2 の満たすべき条件を連立方程式で表せ.