ImageQC 软件使用 Manual v1.0.7

华大生命科学研究院 2022.02.15

版本历史

//人十///	•					
参考手册版本	软件版本	修订日期	修订内容摘要			
Α0	V1.0	2021年8月	◆ 首次发布			
A1	V1.0.6	2021年11月	修改 ImageQC 未响应说明修改芯片号和实验人员填写说明增加 QC 时间过长的异常处理说明增加安装目录建议			
A2	V1.0.7	2021年12月	 修改软件卸载说明 更新图片为 V1.0.7 软件截图 增加安装模式选择说明 修改显微镜型号和芯片类型填写说明 增加上传参数说明 增加时空芯片号规则说明 删除 QC 时间过长说明 增加支持的显微镜型号说明 增加结果界面 QC 出错提示说明 详细大图 QC 参数说明 新增芯片划痕和 track 线倾斜角过大图片示例 			

目录

1.软件示例	2
1.1 启动文件	
1.2 软件界面	
1.3 软件输出	
2.操作说明	
2.1 安装说明	
2.2QC 操作说明	
2.3 异常情况说明	
3 .时空组学图像要求示例	

1.软件示例

1.1 启动文件

1.2 软件界面

芯片号 操作人员 图像路径 备注信息 注意事项: 请输入仅包含字母、数字、下划线的内容
备注信息 注意事项: 请输入仅包含字母、数字、下划线的内容
注意事项: 请输入仅包含字母、数字、下划线的内容
(4曲)
50未

1.3 软件输出

2.操作说明

2.1 安装说明

2.1.1 现有程序和进程清理

如之前安装过 v1.0.6 或更早的版本,请先将现有版本从控制面板或者程序所在文件夹的 unis000.exe 卸载 (可保留最近的一个版本的安装包做备份),如提示程序被占用,请关闭打开的 QC 程序窗口。

上图中 qclmgUpload 文件夹在首次安装 QC 软件时不存在,为 QC 程序自动创建,用于存放 QC 结果文件和记录日志等,更新软件时请勿删除。

2.1.2 运行 ImageQC-Setup v1.0.7.exe

2.1.3 选择安装模式,建议选择第一个

Select install mode

ImageQC can be installed for all users (requires administrative privileges), or for you only.

 \rightarrow Install for me only

2.1.4 选择安装目录, 建议安装在 D 盘里, 在 C 盘可能会因为 权限不足而报错。

如之前已在该目录安装过 QC 程序,将提示是否安装,点击"是"即可

2.1.5 选择是否创建桌面快捷方式后点击"Install"进行安装

2.1.6 安装完成,可勾选 Launch ImgaeQC 一栏直接启动 QC 程序。

2.1.7 初次安装时或从 v1.0.3 及更早版本更新至 v1.0.4 或之后版本时,请检查 ImageQC 文件夹内是否存在 settings.json 文件,如不存在请先打开一次 QC 程序,将自动生成该文件:

该文件为控制是否自动上传的配置文件, 共四个条目, 内容如下:

```
"qc_flag": true,
   "upload_flag": true,
   "language": "chn",
   "cut_czi": false
}
```

qc_flag:控制QC操作的条目,一般无需改动

upload_flag: 控制自动上传的条目,默认为 true,即会自动上传;如不需要自动上传,请用记事本打开该文件,将该条目的 true 改为 false 即可。

language: 程序界面语言,默认为 chn,即中文;需要英文界面可修改为 eng

cut_czi: 控制 czi 文件处理方式的条目,一般无需改动。

2.1.8 安装完毕后请打开 ImageQC 文件夹内的 uploadConfig.ini 文件,检查上传方式。

```
# [RAYSYNC_VALIDATE, RAYSYNC, HPC, AWS]
[default]
filePermission=640
removeFiles=True
uploadType=RAYSYNC
```

filePermission: 文件上传到目标地点后的访问权限

removeFiles: 是否删除中间文件

uploadType:目前支持四种上传方式。HPC 为直接上传到华大深圳集群,需要交付的同事提前做好网络配置,适合华大内网使用;RAYSYNC 和 RAYSYNC_VALIDATE 均为镭速上传,连接互联网即可通过镭速上传到深圳集群而无需做其他配置,RAYSYNC_VALIDATE 为外部客户使用显微镜评估,当参数为

RAYSYNC_VALIDATE 并 QC 通过且上传成功时程序会将该参数改为 RAYSYNC; AWS 为亚马逊云上传方式,需要配置账户密码,目前还未打通上传至深圳集群通道。

2.2QC 操作说明

2.2.1 拍照完成后, 打开 QC app (可建立桌面快捷方式, 打开后可保持运行, 无需关闭)

2.2.2 从外部拖入拍照图像文件至程序窗口(拖入窗口范围即可,无需精准拖入文本框)

1) Motic 显微镜:拖入 mdsx 文件所在的文件夹

芯片号:输入拍摄图像的芯片号,目前支持时空芯片号格式,时空芯片号规则如下:

A	В	С	D	E	F	G	Н	1	J	K	L	M	N
1 Product	版本或类型			#命名规则			元例 (久和)	芯片ID		时空芯片		
2 Product	版本以关至	起始符	特殊符 (Version相关)	8位流水号	尾号	SN#位数	示例 (条码)		שותט		时至心力		
3 V1	V3.1(1x1)	CL	1	XXXXXXXX		11	CL100117265	CL100103624	CL1				
V T	V3.1(0.8x0.8)	CL	2	XXXXXXXX		11			CL2				
V2	V2.2(800nm pitch)	V	1	XXXXXXXX		10	V100000599		V1				
VZ	V2.3(715nm pitch)	V	3	xxxxxxx		10	V300010004	V300001673	V3				
V0.1	V3.0	N	1	XXXXXXXX		10	N100001211		N1				
	V3.0(900nm pitch)	S	1	xxxxxxx		10	S1000XXX		S1				
V0.2	715 FCL	S	2				S200000001		S2				
0	715 FCS	N	2				K200000001		K2			/	
1 T7	V40.1(700nm pitch)	G	1	XXXXXXXX		10		G1000537	G1				
2 T7 RFID	V40.1(700nm pitch)	Е	1	XXXXXXXX		10			E1				
3													
5 DipT1	V8.1 (850nm pitch)	DP8		XXXXXXXX	TL/TR/BL/BR	13	DP800003862BL	DP800003791BL	DP8				
6 Dipi1	V8.4(715nm pitch)	DP8	4	XXXXXXXX	TL/TR/BL/BR	14	DP8400003767TL		DP84		SS84	21.06.09	
./ Dip15	FP1(600nm pitch)	FP	1	XXXXXXXX	TL/TR/BL/BR	13	FP100000284BR		FP1				<u> </u>
8 DipT10-V8		FP	2	XXXXXXXX	TL/TR/BL/BR	13	FP20000001TL		FP2		SS2		
9 DipT10	FP2(500nm pitch)	FP	2	XXXXXXX		11	FP200000001				332		
DipT7	V40.1(700nm pitch)	DP	40	XXXXXXXX	TL/TR/BL/BR	13	DP400000001TL		DP40	0000 01 0			
1 DipT20	FP21(500nm pitch)	FP	21	XXXXXXXX		12	FP2100000001		FP21	2020.01.2	L		

s6(6cm*6cm)DipT10-V8 芯片: 起始符 (SS/FP) + 版本相关(2) + 流水号(8 位数字) + 尾号 (TL/TR/BL/BR)

+ 区域号(A1-F6, 两位或四位)

s6(6cm*6cm)DipT1 芯片: 起始符 (DP8) + 版本相关(4 或空) + 流水号(8 位数字) + 尾号 (TL/TR/BL/BR)

+ 区域号(A1-F6, 两位或四位)

\$13(13cm*13cm) DipT10 芯片: 起始符 (FP) + 版本相关(2) + 流水号(8 位数字) + 区域号 (A1-ND, 两位或四位)

操作人员:输入拍图人员的邮箱前缀

注意:若拍照时已经输入芯片号和拍图人员邮箱,这两栏自动读取芯片号和拍图人员并显示;如果在这两栏中输入内容,将覆盖拍照时输入的内容,用于修改拍照时可能出现的输入错误。

备注信息: 输入图像的额外描述信息, 用于记录各类不同情况

2) Zeiss 显微镜拖入 czi 文件(其他显微镜拖入导出的 tif 或 png 大图)后,将自动弹出额外信息窗口:

请自行查找所使用的显微镜的相应拍照参数后,输入下列所需信息。

显微镜:输入显微镜品牌英文名称(目前支持 Zeiss、Motic 和 Leica),首次打开程序默认为 Zeiss;

芯片类型:输入芯片型号(DP84, FP2, SS2),首次打开程序默认为 DP84;

拍摄倍数: 输入拍摄时显微镜的放大倍数, 首次打开程序默认为 10;

图像比例:输入拍摄图像的比例,单位为 μ m/pixel(微米每像素),请至少输入至三位小数,首次打开程序 默认为 0.438276;

FOV 宽度、FOV 高度: 输入拍摄时一个 FOV 的尺寸,单位为像素,首次打开程序默认为 3064 和 2041; **Overlap**: 输入相邻两个 FOV 拍照时的重叠比例,首次打开程序默认为 0.1。

上述参数为大图 QC 时必须的参数,如存在缺失或错误,则程序无法保证输出正确的 QC 结果。 输入完成后,点击确认即可。程序会记忆上一次输入的内容,若拖入新的图像但上述参数无改动,则直接 点击确认即可,不必每张图都重复填写。

若点击确认后发现输入错误,可点击右下角"额外信息"按钮,将重新弹出额外信息窗口以供修改。

完成输入后,与上述 Motic 操作相同,输入芯片号等信息即可。

2.2.3 点击"开始"按钮开始 QC,程序将显示"数据分析中"。

结果	开始 清除	额外信息
数据分析中,,,		

2.2.4 QC 完成后,程序将显示 QC 结果,第二行显示 PASS 表示 QC 通过,FAILED 表示未通过(如果未通过请检查图片、芯片号或重新扫描拍照,重新拍照仍然不过请联系 FAS);最后一行显示"QC 完成"表示 QC 流程正常结束。

2.2.5 QC 结束后,程序将把需要的文件打包成压缩文件,此时程序将显示"正在打包压缩所需文件",结束后将显示"压缩完成"。

如不需要上传,则图像 QC 至此完成,点击"清除"按钮清空程序窗口中内容后即可拖入下一张图像进行 QC。

2.2.6 如需自动上传,则压缩完毕后程序将继续进行上传操作,此时程序将显示"正在上传",结束后将显示"上传完成"。

图像 QC 至此完成,点击"清除"按钮清空程序窗口中内容后即可拖入下一张图像进行 QC。

2.3 异常情况说明

2.3.1 如输入芯片号等信息时输入了中文,程序将弹出如下提示窗口:

请确认输入的内容和图像路径不包含中文后重新开始 QC。

2.3.2 Motic 错误:如显微镜输出的 info.ini 文件中存在中文,程序将弹出如下窗口:

请检查并修改该文件中的内容后重新开始 QC。

2.3.3 如 QC 结果输出目录已经存在同一芯片号 QC 通过的结果文件,程序将显示如下内容:

此时程序将自动跳过 QC 步骤至第5步结束。

如需自动上传,程序将尝试上传;如之前因为网络问题上传失败,此时将直接读取之前的结果文件上传, 节省重新 QC 的时间。

如之前已有相同芯片号的图片通过 QC 没有上传,但又希望重新 QC 时,需到与 ImageQC 同级的 qcImgUpload 文件夹下,将需要重新 QC 的图像对应芯片号的结果文件移动至其他地方或删除。

同一芯片号对应的结果文件为一个 json 文件和一个 tar.文件,如下图:

FP200000430BL_C2_20210601.json

FP200000430BL_C2_20210601.tar.gz

将这两个文件移动至其他地方或删除即可。

2.3.4 若拍照时忘记填入芯片号、操作人员信息或填入不支持的芯片类型的芯片号,则 info 文件中相应信息将为空或错误;

此时若 QC 中也没有输入芯片号,将弹出如下提示窗口:

D:/Downloads/QC_Test 未找到芯片号,请输入芯片号。

确定

如输入了另一个错误的芯片号,将弹出如下提示窗口:

最后一行为支持的芯片类型。

2.3.5 若拍照时没有输入邮箱, QC 中也没有输入邮箱前缀, 将弹出如下提示窗口:

2.3.6Motic 错误:

如 Motic 图像文件夹内缺少必须文件或文件中内容不完整,将弹出如下提示窗口并中止 QC,此时请根据提示检查文件。如下图提示原因为 1.ini,info.ini 和 3.jpg 至少缺少一个,应为显微镜正常生成,如缺失需重新拍照,重新拍照依然存在此问题请联系 FAS。

如下图提示原因为读取 1.ini 或 info.ini 出错,主要可能性为 info.ini 中缺少 QC 程序读取的信息条目,如拍照时正常输入所有所需信息,则可能为显微镜输出错误或文件损坏,需重新拍照,重新拍照依然存在此问题请联系 FAS。

2.3.7 若 QC 结果显示图像尺寸为[0 0],原因为程序内部存在问题,此时结果显示窗口将显示:

此时请记录对应图像并联系FAS。

2.3.8 上传失败时,将将弹出如下提示窗口:

请根据提示检查网络配置和网络连接后重新上传,此时拖入同样的图像文件,输入同样的芯片号和操作人员后点击"开始"按钮,将进入上述 1) 中的情形,跳过 QC 检查步骤。

2.3.9 发生预料之外的错误时,界面如下显示:

请检查参数输入,若未能解决请将数据样本以及所填参数信息反馈给开发人员。

3.时空组学图像要求示例

图像 QC 一个以上 FOV 区域检测到 track 线,非组织区域面积占比(建议大于 20%),示例图如下:

