Practical Optimal Cache Replacement for Graphs

Vignesh Balaji Carnegie Mellon University vigneshb@andrew.cmu.edu Neal Crago Nvidia Research ncrago@nvidia.com Aamer Jaleel Nvidia Research ajaleel@nvidia.com Brandon Lucia Carnegie Mellon Univerity blucia@andrew.cmu.edu

Abstract—Graph analytics is an important workload that achieves suboptimal performance due to poor cache locality. State-of-the-art cache replacement policies fail to capture the highly dynamic and input-specific reuse patterns of graph application data. The main insight of this work is that for graph applications, the transpose of a graph succinctly represents the next references of all vertices in a graph execution; enabling an efficient emulation of Belady's MIN replacement policy. In this work, we propose P-OPT, an architecture solution that uses a specialized compressed representation of a transpose's next reference information to enable a practical implementation of Belady's MIN replacement policy. Our evaluations across multiple applications and inputs, reveal that P-OPT improves cache locality for graph applications providing an average performance improvement of 22% (36% maximum) over the baseline.

I. INTRODUCTION

Graph processing is an important class of computation with valuable applications in network analysis, pandemic prediction, path-planning, and machine learning [1], [9], [15]. In the past, large graphs were processed on large distributed systems [19], [30], [40]. Today, increased main memory capacity and core count allow processing graphs with billions of edges more efficiently using a single machine rather than a distributed system [33].

The large size of input graphs make high performance single-machine graph processing a challenge. Processing a typical input graph leads to a working set size much larger than the available on-chip cache capacity, leading to many DRAM accesses. The latency of these DRAM accesses often dominates execution time because memory accesses in graph processing are irregular and depend on graph structure: prior work estimates that a graph kernel spends up to 80% of time waiting for DRAM [49]. Techniques to improve cache locality and eliminate DRAM accesses are a major opportunity for improving end-to-end graph application performance.

A cache's replacement policy is a key determinant of locality. Decades of work have produced high-performance replacement policies for various workloads. However, we find that state-of-the-art replacement policies are ineffective for graph processing. Graph data reuse is dynamically variable and graph-structure-dependent, two properties not captured well by existing replacement policies. Belady's MIN replacement policy is an ideal policy that perfectly captures dynamic, graph-structure-dependent reuse, but it is impractical because it relies on knowledge of future accesses.

The main insight of our work is that a practical cache replacement policy can approach Belady's MIN replacement policy without oracular future knowledge by *directly referring* to the graph's structure for replacement decisions.

Replacement using the adjacency matrix captures structure-dependent access patterns. A graph kernel traverses a graph's adjacency matrix with an outer loop over vertices in one dimension (e.g., column) and an inner loop over a vertex's neighbors in the other dimension (e.g., rows). Assuming an outer-loop over columns, processing a vertex v scans down v's adjacency matrix column, considering a neighbor, u, in each non-zero row. The adjacency matrix encodes the next use of u. Scanning across u's row, the column of the next non-zero element corresponds to the outer-loop vertex during the traversal of which, execution will next access u as a neighbor. An optimal cache replacement decision is to evict data for the vertex next accessed on the iteration furthest in the future.

This work develops *Transpose-based Cache Replacement* (T-OPT), a high-performance replacement policy for graph data that directly uses a graph's adjacency matrix to make nearoptimal replacement decisions. Graph kernels use a compressed, sparse data structure — Compressed Sparse Row (CSR) or Compressed Sparse Column (CSC) — that allows efficient traversal of one dimension (e.g., columns) but not both. Finding a vertex's next use requires scanning the matrix in the opposite dimension from the traversal. T-OPT leverages the fact that most graph processing frameworks already store a graph and its transpose in a sparse format, allowing traversal in either dimension [5], [43]. T-OPT directly refers to the transpose to replace the line next used furthest in the future. The key challenge is to make transpose accesses for cache replacement efficient enough to improve end-to-end performance.

Our main contribution is P-OPT: an architecture for T-OPT that allows efficient access to a graph's adjacency matrix and its transpose, enabling near-optimal cache replacement for graph data. P-OPT uses *epoch quantization* to compress the next reference information in the graph's transpose. P-OPT uses simple cache partitioning and NUCA bank mapping techniques to efficiently store its specialized Rereference Matrix data structure that contains a summary of graph transpose information. P-OPT's mechanisms allow low-cost access to a vertex's next reference at replacement time.

We evaluate P-OPT and show consistent performance improvement across a range of input graphs and applications. P-OPT reduces Last Level Cache misses by 24% on average (36% maximum) providing an average performance improvement of 22% (36% maximum) compared to DRRIP [24].

In summary, we make the following contributions:

- We show that state-of-the-art cache replacement policies are ineffective for graph processing. (Section II).
- We show that guiding replacement based on graph

structure in T-OPT allows emulating Belady's MIN policy *without* oracular knowledge of all future accesses (Section III).

- We describe P-OPT's quantized Rereference Matrix data structure (Section IV) and architectural mechanisms (Section V) that allow low-cost access to graph structure for optimal replacement.
- We evaluate P-OPT across a range of graphs and applications comparing to many state-of-the-art systems, showing P-OPT's consistent performance benefits (Section VII).

II. BACKGROUND: GRAPH PROCESSING AND CACHE REPLACEMENT

The goal of this work is to develop a practical implementation of Belady's MIN replacement policy for graph processing applications. This section overviews the challenges of single-machine, multi-core graph processing.

Fig. 1: Graph Traversal Patterns and Representations

A. Overview of Graph Processing

Graph processing frameworks ubiquitously use the same data structures and sub-computations [42]. A graph is abstractly represented as an *Adjacency Matrix*, which encodes directional edges between *source* and *destination* vertices as non-zeros. Figure 1 shows an example adjacency matrix.

Data Structures. Analytics frameworks store graphs in compressed sparse formats because real-world graphs are often very sparse (>99% sparse [12]). The Compressed Sparse Row/Column (CSR/CSC) format is storage efficient and can quickly identify a vertex's neighbors [11], [34]. Figure 1 shows the CSR and CSC for the example graph. CSR encodes outgoing destination neighbors for each source vertex. CSC encodes incoming source neighbors for each destination. Both use two arrays to represent the adjacency matrix. The Offsets Array (OA) stores the starting offset of a vertex's neighbors in the Neighbor Array (NA). The NA contiguously stores each vertex's neighbors. To access the neighbor of vertex i in constant time, an application accesses the i^{th} and $(i+1)^{th}$ entries in OA to find the range of indices in NA containing vertex i's neighbors. Most frameworks [6], [41], [43], [44], [50] store CSR and CSC because common algorithms [8] and optimizations [5], [43] require fast access to both outgoing and incoming neighbors.

Graph Traversal Pattern. A common idiom in graph processing is to iteratively visit each edge and update pervertex data corresponding to the edge's source and destination vertices. Figure 1 shows that an application may traverse each

source vertex's *outgoing* neighbors (using CSR) or destination vertex's *incoming* neighbors (using CSC). Traversing outgoing neighbors (scanning adjacency matrix rows) is referred to as a *push* execution. Traversing incoming neighbors (scanning adjacency matrix columns) is a *pull* execution [5].

Algorithm 1 Pull execution of a graph kernel

- 1: **for** dst in *G* **do**
- 2: **for** src in *G.in_neighs*(dst) **do**
- 3: dstData[dst] += srcData[src]

Algorithm 1 shows a pull execution of a graph processing kernel similar to Sparse Matrix Dense Vector product (SpM-DV). This kernel illustrates the key performance challenge of graph processing. Lines 1 and 2 traverse the graph's CSC, first indexing into OA using a destination vertex ID (dst) and then scanning incoming neighbors (source vertices) in the NA. Line 3 is a per-edge computation that indexes into the destination vertex array (dstData) and source vertex array (srcData) using dst and src vertex IDs respectively. The CSC and dstData accesses are streaming. However, the arbitrary order of the CSC's Neighbor Array leads to an irregular, graph-dependent pattern of accesses to srcData. Real-world graphs are very large (GBs - TBs), and irregular accesses to large graphs have poor cache locality. Prior work showed that irregular DRAM access latency makes 60-80% of graph processing time [49]. Therefore, cache locality optimizations for graph processing can provide significant performance gains.

B. Limitations of existing replacement policies

Prior work produced high-performance replacement policies [23], [24], [26], [45] applicable to a range of workloads, but the characteristics of graph processing render state-of-the-art policies ineffective. We implement three state-of-the-art policies, comparing their cache miss rates for graph workloads against a baseline Least Recently Used (LRU) policy. DRRIP [24] offers scan-resistance and thrash-resistance. SHiP [45] uses signatures to predict re-references to application data. We implement two SHiP variants [45] – SHiP-PC and SHiP-Mem – that track replacement by PC and memory address respectively. We compare to Hawkeye [23], the winning policy in the 2019 cache replacement championship [2]. Hawkeye retroactively applies Belady's MIN replacement policy to a history of accesses to predict re-reference based on whether past accesses would have hit.

Fig. 2: LLC Misses-Per-Kilo-Instructions (MPKI) across state-of-the-art policies: Lower is better.

Figure 2 shows Last Level Cache (LLC) miss statistics for different policies for PageRank on a set of large graphs (Section VI details our setup). The data show that state-of-the art policies do not substantially reduce misses compared to

Fig. 3: Using a graph's transpose to emulate OPT: For the sake of simplicity, we assume that only irregular accesses (srcData for a pull execution) enter the 2-way cache. In a pull execution using CSC, fast access to outgoing-neighbors (i.e. rows of adjacency matrix) encoded in the transpose (CSR) enables efficient emulation of OPT.

LRU, and all policies have LLC miss rates in the range of 60% to 70%. The state-of-the-art policies fare poorly because graph processing applications do not meet their assumptions. Simple policies (LRU and DRRIP) do not learn graph-structuredependent irregular access patterns. SHiP-PC and Hawkeye use the PC to predict re-reference, assuming all accesses by an instruction have the same reuse properties. As Algorithm 1 illustrates (line 3), graph applications violate this assumption because the same srcData access will have different locality for high-connectivity versus low-connectivity vertices. SHiP-Mem predicts re-reference using memory addresses, assuming that all accesses to a range of addresses will have the same reuse properties. Even with infinite storage to track individual cache lines, our idealized SHiP-Mem implementation provides little improvement over LRU, highlighting that graph workloads do not have static reuse properties. This data shows the ineffectiveness of DRRIP, SHiP, and Hawkeye for graph processing, corroborating findings from prior work [17]. Therefore, we develop a graph-specific replacement policy to eliminate costly DRAM accesses and improve the performance of graph applications.

III. TRANSPOSE-BASED OPTIMAL CACHE REPLACEMENT

State-of-the-art replacement policies perform poorly for graphs because they do not capture dynamically varied, graph-structure-dependent access patterns. Belady's MIN replacement policy (which we call OPT) evicts the line accessed furthest in future. However, OPT is impractical because it requires oracular knowledge of future memory accesses. Our main insight is that for graph applications, the graph's transpose stores sufficient information to practically emulate OPT behavior.

A. Transpose Encodes Future Reference Information

We first discuss a simple OPT implementation that (impractically) requires future knowledge, applied to the pull-based graph kernel in Algorithm 1. As shown in Figure 3 (left), a pull-based traversal sequentially visits each destination vertex's incoming source neighbors (encoded in the CSC). The pull execution generates streaming accesses to the CSC (OA and NA) and dstData, while memory accesses to srcData depend on the contents of NA (Figure 1). To make replacement decisions, this OPT implementation must scan the contents of NA to find the destination vertex for which the pull execution will next reference a particular source vertex

element in srcData ¹. In the example (Figure 3; left), after the first access to $srcData[S_1]$ while processing the incoming neighbors of vertex D_0 , OPT sequentially scans the NA to find that processing vertex D_4 will re-reference $srcData[S_1]$. In the worst case, the entire NA may be scanned to find the next reference (if any) of a srcData array element, resulting in an extreme computational complexity of O(|Edges|) for each replacement event.

Our main insight is that a graph's transpose encodes the future re-reference information for each vertex allowing replacement to be efficient and approach the performance of OPT. Our insight is based on two observations about pull execution. First, a pull execution sequentially visits each vertex and processes all of its incoming neighbors (i.e., processing incoming neighbors of D_0 before moving on to incoming neighbors of D_1). Second, a pull execution, processes the CSC for fast access to incoming neighbors (adjacency matrix columns), and the transpose of the graph (a CSR) allows quick access to outgoing neighbors (i.e. adjacency matrix rows). A cache can easily determine the next reference to $srcData[S_1]$ when it is first accessed as an incoming neighbor of vertex D_0 . By accessing the CSR, we can quickly learn that vertex S_1 has two outgoing neighbors – vertex D_0 and D_4 – and, hence, srcData[S_1] will be accessed next while processing the incoming neighbors of vertex D_4 . With the help of the transpose in the efficiently traversable CSR format, the complexity of finding the next future reference of a srcData element is reduced to O(|OutDegree|), i.e., scanning the outgoing neighbors of a vertex². While this example uses a pull execution model, a push execution model using a CSR can also use its transpose (CSC) for estimation of next references to irregular dstData accesses.

B. Transpose-based Optimal Replacement Performance

We show how knowledge of next reference information estimated using a graph's transpose is used to emulate OPT. Figure 3 (center panel) shows a 2-way set-associative cache in which each cache way can store only a single element of srcData. In replacement scenario (A), the cache has just incurred cold misses for $srcData[S_1]$ and $srcData[S_2]$ and needs to cache $srcData[S_4]$. The cache must decide:

¹By virtue of visiting each element only once, streaming data (like dstData) have a fixed re-reference distance of infinity.

²Real-world graphs typically have an average degree of 4-32 which is orders of magnitude lower than the graph's edges (order of 100M-1B).

will the execution access $srcData[S_2]$ or $srcData[S_4]$ further in the future? By scanning the outgoing neighbors of vertex S_1 (i.e. S_1 's row in the adjacency matrix), we can determine that S_1 will be accessed next when processing the neighbors of vertex D_4 . Similarly, the transpose informs us that S_2 will be accessed next when processing incoming neighbors of vertex D_1 . Therefore, to emulate OPT we must evict $srcData[S_1]$ because its next reuse is further into the future than $srcData[S_2]$. Replacement scenario B (Figure 3; right panel) considers the execution two accesses later when the pull execution is processing the incoming neighbors of vertex D_1 and needs to cache $srcData[S_3]$. The transpose informs that the next re-reference of vertex S_2 is further into the future and OPT evicts $srcData[S_2]$.

Fig. 4: Transpose-based Optimal replacement policy reduces misses by 1.67x on average compared to LRU.

We studied the effectiveness of the transpose-based OPT (which we refer to as "T-OPT") on graph applications by measuring the reduction LLC misses compared to the replacement policies introduced previously. Figure 4 shows that T-OPT reduces LLC MPKI for the PageRank workload. T-OPT significantly reduces LLC MPKI compared to LRU and other policies, achieving a 41% miss rate for PageRank (compared to a 60-70% miss rate for other policies). The main reason for the improvement is that, unlike other replacement policies, T-OPT does not use a heuristic to guess the re-reference pattern. Instead, T-OPT uses precise information of future reuse encoded in the graph's transpose to make better replacement decisions.

C. Limitations of Transpose-based Optimal Replacement

The benefits of T-OPT shown in Figure 4 are idealized, ignoring the costs of accessing transpose data to make replacement decisions. A key challenge posed by T-OPT is that naively accessing the transpose imposes an untenable run time overhead and cache footprint.

Increased Run Time: Finding the next reference of a vertex incurs a complexity of O(|d|) where |d| is the out-degree of the vertex. The cost of finding the next reference compounds when the granularity of graph data allows multiple vertices to fit in a cache line. Therefore, finding the next reference of a line involves finding the next reference of each vertex in the line (and reporting the minimum of these values).

Increased Memory Accesses: Computing the next reference of each line requires accessing the transpose of cache-resident vertices involved in replacement. Since the vertices resident in cache can be arbitrary, the neighbor lookups to the Offset Array (OA) and Neighbor Array (NA) of the transpose (Figure 1) incur additional irregular memory accesses that increase cache contention with graph application data.

IV. P-OPT: PRACTICAL OPTIMAL REPLACEMENT

A. Reducing the Overheads of T-OPT

We propose P-OPT, a transpose-based cache replacement policy and architectural implementation that uses a specialized data structure called the Rereference Matrix to access rereference information available in a graph's transpose without incurring T-OPT's overheads.

Fig. 5: Reducing T-OPT overheads using the Rereference Matrix: Quantizing next references into cachelines and a small number of epochs reduces the cost of accessing next references.

Quantizing Re-reference Information. P-OPT reduces the cost of making a replacement decision by *quantizing* the graph's transpose. By virtue of using the transpose, the range of *next references* for a vertex in T-OPT spans the entire vertex ID space (typically a 32-bit value). We observe that using only a few (e.g. 8) significant bits of the vertex ID space is sufficient to approximate T-OPT. By quantizing next references into fewer, uniform-sized *epochs*, P-OPT reduces the size of next reference information. Figure 5 (left panel) shows how the next references in our example pull execution have been quantized to three epochs (with each epoch spanning two vertices). Quantization reduces the range of next references for each vertex (spanning Epoch-0 to 2), unlike T-OPT where the next reference spans the entire range of vertices in the graph $(D_0 \text{ to } D_4)$.

Re-Reference Matrix. A Rereference Matrix is a quantized encoding of a graph's transpose with dimensions numCacheLines x numEpochs for a pull execution. numCacheLines is the number of lines spanned by the irregularly accessed graph data (i.e. srcData for the pull execution in Algorithm 1). numEpochs is determined by the number of bits required to store quantized next references. Figure 5 shows the Rereference Matrix for the running example. The number of cache lines in the Rereference Matrix is equal to the number of vertices as a cache line stores a single srcData element (Figure 3). Each Rereference Matrix entry stores the distance to the epoch of a cache line's next reuse, which is the difference between the epoch of its next reuse and the current epoch. For example, at Epoch 0, the $srcData[S_0]$ cache line (C_0) will be accessed in the next epoch; its entry is 1. At epoch 1, $srcData[S_0]$ is accessed so the C_0 entry is 0, indicating an access in the current epoch. At epoch 2, $srcData[S_0]$ has no future re-reference and C_0 's entry is set to a sentinel value (e.g. maximum value indicating next reference at infinity).

Using the Rereference Matrix, P-OPT approximates T-OPT while avoiding most of it's overhead. First, P-OPT stores a next reference per cache line, not per vertex. Instead of traversing

the neighbors of *each* vertex in a cache line (as in T-OPT), P-OPT need only look up a single next reference for the cache line in O(1). Second, P-OPT reduces cache contention because only a single epoch (i.e. column) of the Rereference Matrix needs to be resident in the cache at a time. When the execution transitions to a new epoch, P-OPT caches the next epoch of the Rereference Matrix, which contains updated next references for all lines. For a graph of 32 million vertices, 64B cache lines, and 4B per srcData element, 8-bit quantization yields an Rereference Matrix column size of 2MB (2M lines * 1B), consuming only a small part of a typical server CPU's LLC.

B. Tolerating Quantization Loss

Quantizing next references in the Rereference Matrix is *lossy*. Figure 5 shows that the Rereference Matrix encodes the distance to the epoch of a cache line's next reference. Only inter-epoch reference information is tracked and an execution cannot identify a cache line's final reference within an epoch, which leads to incorrect replacement decisions. After a cache line's final access in an epoch, the zero entry in the Rereference Matrix indicates that the cache line will still be accessed in that epoch, but it will not be. To be more accurate, the next reuse of the cache line should be updated after the final access in an epoch.

MSB	Inter/Intra Epoch Info					
1b	7b					
Rereference Matrix Entry						

MSB == 0	Cacheline Referred in this epoch (7 bits encode last Reference within Epoch)
MSB == 1	No reference this epoch (7 bits encode distance to next Epoch)

Fig. 6: Modified Rereference Matrix design to avoid quantization loss: Tracking intra-epoch information allows P-OPT to better approximate T-OPT.

P-OPT uses a modified Rereference Matrix entry structure that encodes inter-epoch and intra-epoch information. Figure 6 shows a Rereference Matrix entry with 8-bit quantization. Each Rereference Matrix entry's most significant bit records whether the cache line will be accessed in the epoch. If the cache line is not accessed in the epoch, the MSB is set to one and the remaining lower bits encode the distance (in epochs) to the cache line's next reference. If the cache line is accessed within the epoch, the MSB is set to zero and the remaining lower bits encode when the final access to the cache line will happen in the epoch. To encode final access, P-OPT divides the vertices spanned in a epoch into equal-sized partitions called "sub-epochs". The number of sub-epochs in an epoch is equal to the maximum value representable with the remaining lower bits of a Rereference Matrix entry (127 in this example). The Rereference Matrix entry encodes a cache line's final access sub-epoch, referring to the partition of vertices within the epoch during which a cache line's final access occurs.

Pre-computing P-OPT's modified Rereference Matrix is a low-cost preprocessing step that runs before execution (Section VII-D). During an execution, the modified Rereference Matrix requires some additional computation to find a cache line's next reference. Algorithm 2 shows the computation to find next references with 8-bit quantization. To find the next

Algorithm 2 Finding the next reference via Rereference Matrix

```
1: procedure FINDNEXTREF(clineID, currDstID)
        epochID \leftarrow currDstID/epochSize
 3:
        currEntry \leftarrow rerefMatrix[clineID][epochID]
 4:
        nextEntry \leftarrow rerefMatrix[clineID][epochID+1]
        if currEntry[7] == 1 then
 6:
            return currEntry 6:0
 7:
 8:
            lastSubEpoch \leftarrow currEntry[6:0]
 9:
            \texttt{epochStart} \leftarrow \texttt{epochID} * \texttt{epochSize}
            \texttt{epochOffset} \leftarrow \texttt{currDstID} - \texttt{epochStart}
10:
11:
            currSubEpoch \leftarrow epochOffset/subEpochSize
            if currSubEpoch \le lastSubEpoch then
12:
13:
                return 0
            else
14:
15:
                if nextEntry[7] == 1 then
16:
                    return 1 + nextEntry[6:0]
17:
                    return 1
18:
```

reference of cache line (clineID) in Epoch epochID, P-OPT checks the MSB of the cache line's Rereference Matrix entry for the current epoch (currEntry) (Line 5). If the MSB of currEntry is set, then the cache line will not be accessed in the current epoch and the lower 7 bits of currEntry encode the epoch of the cache line's next reference (Line 6). However, if the MSB is unset, then the cache line is accessed in the current epoch. The lower 7-bits of currEntry track the final sub-epoch during which pull execution accesses the cache line. Using the vertex ID currently being processed (dstID in a pull execution), the computation checks if the execution is beyond the final reference to the cache line in the epoch (Lines 8-12). If execution is yet to reach the sub-epoch of the final reference to the cache line, the computation returns with a rereference distance of 0 (i.e., the cache line will be re-used during the current epoch). However, if execution has passed the sub-epoch of the last reference to the cache line, then the Rereference Matrix entry of the cache line for the next epoch (nextEntry) encodes the epoch of the cache line's next reference (Line 4). If the MSB of nextEntry is unset, then the cache line is accessed in the next epoch (Line 18) (i.e., a rereference distance of 1). If the MSB of nextEntry is set, then nextEntry's low order bits encode the distance to the epoch of the cache line's next reference (Line 16).

The new Rereference Matrix has two key distinctions. First, finding a cache line's next reference may require accessing the current *and* next epoch information. This double lookup requires fast access to *two* columns of the Rereference Matrix at each point in time. Second, P-OPT hijacks the MSB of an entry to track intra-epoch information (final access sub-epoch) at the cost of halving the range of next reference epochs.

We implemented two versions of P-OPT using the different Rereference Matrix designs in our cache simulator and compared their effectiveness to DRRIP and T-OPT. The P-OPT version that uses the first Rereference Matrix design is P-OPT-INTER-ONLY. The modified P-OPT design with both intra- and inter-epoch reuse information is P-OPT-INTER+INTRA. Figure 7 shows the reduction in LLC misses on PageRank achieved by the different policies relative to DRRIP. Both the P-

Fig. 7: Tracking intra-epoch information in the Rereference Matrix allows P-OPT to better approximate T-OPT

OPT versions achieve miss reduction over DRRIP highlighting that reserving a small portion of the LLC to drive better replacement is a worthwhile tradeoff. Furthermore, P-OPT-INTER+INTRA is able to achieve LLC miss reduction close to the idealized T-OPT that incurs zero overheads to access the graph transpose. We adopt P-OPT-INTER+INTRA as the default P-OPT design for the rest of the paper, due its effectiveness as a close approximation of T-OPT.

V. P-OPT ARCHITECTURE

P-OPT is an architecture that uses Rereference Matrix data stored within a small portion of the LLC to perform better cache replacement. This section first presents a simplified single-core, Uniform Cache Access (UCA) architecture implementation of P-OPT, supporting a single, irregularly-accessed data structure. Later, we show how P-OPT fits in a multi-core, NUCA architecture and supports multiple irregular access streams.

A. Storing Next References in LLC

P-OPT stores the current and next epoch columns of the Rereference Matrix within the LLC to ensure fast access of next reference information during cache replacement. P-OPT uses way-based cache partitioning [22] to reserve the minimum number of LLC ways that are sufficient to store the current and next epoch columns of the Rereference Matrix. Using the default 8-bit quantization, enough ways need to be reserved as to be able to store 2*numLines*1B where numLines is the number of cache lines spanned by irregularly-access data $(numLines = \frac{numVertices}{elemsPerLine})$. Figure 8 shows some LLC ways reserved for current (orange) and next (blue) epoch columns of the Rereference Matrix. P-OPT organizes the Rereference Matrix columns in LLC for easy access of next reference data. Within a reserved way, consecutive cache-line-sized blocks of a Rereference Matrix column are assigned to consecutive sets. After filling all the sets in one way, P-OPT fills consecutive sets of the next reserved way. P-OPT stores cache lines of the next epoch column of the Rereference Matrix right after the current epoch column (Figure 8). Therefore, P-OPT maintains two hardware registers for each epoch - way-base and set-base - to track the starting positions of the two Rereference Matrix columns within reserved ways of the LLC.

The Rereference Matrix data organization within the LLC allows P-OPT to easily map irregularly accessed data (henceforth referred to as <code>irregData</code>) to their corresponding Rereference Matrix entries. The <code>irregData</code> array spans multiple cache lines consecutively numbered with an ID from 0 to <code>numLines-1</code>. P-OPT uses the <code>irregData</code> cache line ID to find the unique location of the Rereference Matrix entry

Fig. 8: Organization of Rereference Matrix columns in LLC: P-OPT pins Rereference Matrix columns in the LLC

within the LLC. With P-OPT's default 8-bit quantization, a typical cache line of 64B contains 64 entries of a Rereference Matrix column. The low 6 bits $(log_2(64))$ of the cache line ID provides an offset within a cache line of Rereference Matrix data. The next $log_2(numSets)$ bits of the cache line ID provides a set offset and the remaining cache line ID bits provide a way offset. The final set and way location of a Rereference Matrix entry for an irregData cache line is determined by adding the set and way offsets to the set-base and way-base registers of the required epoch 3 .

B. Identifying Irregular Data

P-OPT needs to access the Rereference Matrix data only for irregData lines (since all other accesses are streaming in Algorithm 1). P-OPT maintains two registers - irreg base and irreq_bound- to track the address range of a graph kernel's irregData (Figure 9). During cache replacement, P-OPT compares the address in the tag portion of each way in the eviction set against irreg_base and irreg_bound registers to determine if the way contains an irregData cache line. The irreq_base and irreq_bound registers must track physical addresses as P-OPT reasonably assumes that LLC is a Physically-Indexed Physically-Tagged (PIPT) cache. P-OPT sidesteps the complexity of address translation by requiring that the entire irregData array fits in a single 1GB Huge Page [39]. By ensuring that all irregData elements map to a single (huge) page, P-OPT guarantees that the range of physical addresses associated with irregData array lie strictly within the range of physical addresses represented by irreq_base and irreq_bound. Software configures the two registers once at the start of execution using a memorymapped registers. Allocating irregData using a 1GB Huge Page uses widely-available system support [39] and allows processing sufficiently large graphs with up to 256 million vertices (assuming 4B per irregData element).

C. Finding a Replacement Candidate

P-OPT maintains a small number of buffers (next-ref buffers) at the LLC to keep track of the next references of each way in the eviction set (Figure 9). A next-ref buffer tracks an 8-bit next reference entry for each (non-reserved) way in the LLC. At the start of a cache replacement, P-OPT assigns a free next-ref buffer to the eviction set. To find a replacement candidate, P-OPT uses a Finite State Machine called the next-ref engine to compute the next reference of non-reserved ways in the eviction set

 $^{^3}For$ non power-of-two number of sets: WayOffset = $\frac{(\texttt{cachelineID}>>6)}{\texttt{numSets}}$ and SetOffset = (cachelineID >> 6) % numSets.

Fig. 9: Architecture extensions required for P-OPT: Components added to a baseline architecture are shown in color.

and to store their next references in the corresponding entries of the next-ref buffer. P-OPT never evicts from a way reserved for Rereference Matrix columns. Among non-reserved ways, the next-ref engine uses the irreg base and irreq_bound registers to first search for a way that does not contain irregData (i.e. contains streaming data). The next-ref engine reports the first way in the eviction set containing streaming data as the replacement candidate. If all ways in the eviction set contain irregData, then the next-ref engine runs P-OPT's next reference computation (Algorithm 2) for each way. The next reference computation of an irregData cache line requires the cache line ID of the irregData and the vertex ID currently being processed by the pull execution. The cache line ID of the irregData line is determined by the next-ref engine using simple address arithmetic (cachelineID = (addr-(irreg-base)) The current destination being processed by a pull execution is tracked in a currVertex register located at the LLC (Figure 9). The currVertex register is updated by a new update_index instruction which allows software to pass graph application information (i.e. current vertex) to the LLC. The constants used in finding next reference of a cache line (epoch and sub-epoch size) are stored in special memory mapped registers co-located at the LLC and are configured once before the execution. (For 8-bit quantization, EpochSize = ceil(numVertices/256)and SubEpochSize = ceil(EpochSize/127)). With all the necessary information (cache line ID, currDstID, constants), the next-ref engine computes next references by accessing Rereference Matrix entries for each irregData line in the eviction set; storing the computed next references in the next-ref buffer. The next-ref engine then searches the next-ref buffer to find the way with the largest (i.e., furthest in future) next reference value, settling a tie using a baseline replacement policy (P-OPT uses DRRIP). The next-ref engine starts its computations immediately after an LLC miss, overlapping the replacement candidate search with the fetch from DRAM. A P-OPT implementation could pipeline computing a next reference from a way's Rereference Matrix entry with fetching the Rereference Matrix entry for the next way. DRAM latency hides the latency of sequentially computing next references for each way in the eviction set, based on LLC cycle times from CACTI [37] (listed in Table I).

D. Streaming Rereference Matrix columns into the LLC

P-OPT stores current and next epoch columns of the Rereference Matrix in the LLC. At an epoch boundary, P-OPT streams in a new next epoch column and treats the previous next epoch column as the new current epoch column. To transfer Rereference Matrix entries from memory to LLC, P-OPT uses a dedicated hardware streaming engine similar to existing commodity data streaming hardware (Intel DDIO [13], [28] allows ethernet controllers to directly write data into an LLC partition). The programmer invokes the streaming engine at every epoch boundary using a new stream nextrefs instruction. The instruction swaps pointers to the current and next epoch (Figure 8) and streams in the next epoch column of the Rereference Matrix into the LLC locations pointed by set-base and way-base for the next epoch. Graph applications need to be restructured slightly to ensure that the streaming engine is invoked between two epochs (to ensure that all epochs operate on accurate Rereference Matrix data). Doing so does not impose a performance penalty because the streaming engine is guaranteed peak DRAM bandwidth to transfer Rereference Matrix data between epochs. Moreover, streaming engine latency is not a performance problem because epoch boundaries are infrequent.

E. Supporting NUCA Last Level Caches

While our discussion so far assumed a monolithic, UCA LLC, P-OPT is also efficient for the increasingly common NUCA LLCs [27]. We consider Static NUCA (S-NUCA) [32] with addresses statically partitioned across physically-distributed banks. The key NUCA challenge is to ensure that Rereference Matrix accesses during replacement are always bank-local. A typical S-NUCA system stripes consecutive cache lines across banks (bankID = (addr >> 6)%numBanks). Striping both Rereference Matrix and irregData cache line across banks cannot guarantee bank-local accesses to Rereference Matrix data at replacement time because a single cache line of Rereference Matrix data contains next references for 64 irregData cachelines (Figure 8). Ensuring bank-local Rereference Matrix accesses requires that for every Rereference Matrix cache line mapped to a bank, all 64 of its corresponding irregData cache lines must also map to the same bank.

P-OPT uses a modified mapping to distribute Rereference Matrix entries and irregData across NUCA banks. If P-OPT stripes Rereference Matrix cache lines across banks, the system must interleave irregData in blocks of 64 cache lines across NUCA banks (i.e. bankID = (addr >> (6+6))%numBanks). P-OPT implements this modified mapping policy for irregData using Reactive-NUCA [21] support. Reactive-NUCA allows different address mapping policies for different pages of data through simple hardware and OS mechanisms. P-OPT uses the modified policy above for irregData (which P-OPT assigns to a single 1GB Huge Page) and uses the default, cache line striped S-NUCA policy for all other data (including Rereference Matrix data).

P-OPT needs minor hardware changes for NUCA LLCs. First, P-OPT needs a per-bank copy of the registers used to

track Rereference Matrix columns (set-base, way-base, currPtr, nextPtr in Figure 8). Second, the irreg_base, irreg_bound, and currVertex registers are global values that need to be shared or replicated across NUCA banks. Last, P-OPT needs per-bank next-ref engine and next-ref buffers, because multiple banks may be concurrently evicting cache lines.

F. Generalizing P-OPT

With simple extensions, P-OPT supports multi-threading, multiple irregularly-accessed datastreams, and context switches. **Supporting Parallel Execution:** P-OPT supports parallel multi-threaded execution. In a multi-threaded execution, multiple active vertices are being traversed at a time (i.e., *currDstId*) and P-OPT needs to select one of the active vertices for next reference computation (Algorithm 2; Lines 8-12). Thanks to pervasive, existing load balancing support in graph processing frameworks, the different threads process vertices in a narrow range. We empirically determined that assigning *currDstID* to be the vertex being processed by a software-designated main thread is an effective policy; providing similar LLC miss rates with P-OPT and T-OPT for multi-threaded graph applications as for serial executions.

Handling Multiple Irregular Data Streams: P-OPT can support multiple irregular data structures using three architecture changes. First, P-OPT holds a separate Rereference Matrix for each irregular data structure (only if the irregular data structures span different number of cache lines, otherwise a single Rereference Matrix can be shared). Second, P-OPT reserves the minimum number of ways in the LLC to hold the Rereference Matrix data for different irregular data structures. The system maintains a separate set-base and way-base register for each irregular data structure. Third, P-OPT maintains an irreg base and irreg bound register for each irregular data structure to use the right Rereference Matrix data corresponding to each data structure. We observe that tracking two irregular data structures - frontier and srcData (for pull executions) – covers many important graph applications. If an application has more irregular data streams (which is rare), a programmer could re-structure the code to use an Array-of-Structures (AoS) format, combining all irregular accesses to a single array.

Virtualization: The Rereference Matrix in P-OPT only tracks reuse among graph application data. If applications share LLC, P-OPT may unfairly prefer caching graph data over other data. To remain fair, we assume per-process way-partitioning (i.e., via Intel CAT [22]) and that P-OPT only replaces data in the graph-process-designated LLC ways. P-OPT supports context switches, by saving its registers (set-base, way-base, irreg_base, irreg_bound, currVertex) with the process context. On resumption, P-OPT invokes the streaming engine to refetch Rereference Matrix contents into reserved LLC ways.

G. Implementation Complexity

P-OPT has low architectural complexity. P-OPT stores the replacement metadata (Rereference Matrix columns) within

the LLC and, hence, does not require additional storage for tracking next references. P-OPT adds next-ref buffers to temporarily store next references during replacement. The size of next-ref buffers state is bounded by the maximum cache-level parallelism at the LLC. For example, an 8-core architecture supporting 10 outstanding L1 misses (i.e. 10 L1 MSHRs) allows 80 concurrent LLC accesses. For a 16 way LLC, each next-ref buffer tracks 16B of information. Therefore, a worst case maximum size for next-ref buffers is 1.25KB (80 * 16B). In practise, fewer next-ref buffers would be sufficient because graph applications lack memory-level parallelism [6], [47]. The next-ref engine is a simple FSM requiring simple hardware for integer division and bit manipulation.

VI. EXPERIMENTAL SETUP

Platform details: We use SniperSim [10] to measure performance, using its default Beckton microarchitecture configuration (based on Nehalem). Table I describes our baseline multi-core architecture, with cache timing from CACTI [37]. We made several improvements to sniper to better model P-OPT's performance effects. We ensure that a graph application in P-OPT sees reduced effective Last Level Cache capacity and apply P-OPT's modified S-NUCA policy for irregular data structures. We model contention between demand accesses and Rereference Matrix accesses in NUCA banks. We report P-OPT performance numbers, accounting for latency of the streaming engine to cache Rereference Matrix column every epoch. To faithfully model this stop-the-world event, we slightly modify parallel graph applications to process epochs serially and use parallelism only within epochs.

Cores	8 OoO-cores, 2.266GHz, 4-wide issue, 128-entry ROB, Pentium M BP
L1(D/I)	32KB, 8-way set associative, Bit-PLRU replacement, Load-to-use = 3 cycles
L2	256KB, 8-way set associative, Bit-PLRU replacement, Load-to-use = 8 cycles
LLC	3MB/core, 16-way set associative, DRRIP replacement [24], Load-to-use = 21
	cycles (local NUCA bank), NUCA bank cycle time = 7 cycles
NoC	Ring interconnect, 2 cycles hop-latency, 64 bits/cycle per-direction link B/W,
	MESI coherence
DRAM	173ns base access latency

TABLE I: Simulation parameters

For design space exploration, we used a Pin [31]-based simulator to model the cache hierarchy in Table I and to evaluate various LLC replacement policies. The P-OPT and T-OPT results reported earlier in the paper came from this cache simulator. We validated the cache simulator against Sniper with LLC statistics from the cache simulator within 5% of Sniper's values. Unless specified, the cache-only simulator models serial execution of graph kernels to avoid scheduling noise from Pin. The Sniper simulations evaluate unmodified parallel graph applications.

Workloads: We use five graph applications from GAP [6] and Ligra [43]. To avoid framework overheads, we re-wrote Ligra benchmarks as stand-alone applications (yielding an average speedup of 1.55x over the original implementation).

These applications have a diverse set of graph access patterns and properties (Table II). PageRank (PR) iteratively updates per-vertex ranks until convergence. Connected Components (CC) applies the Shiloach-Vishkin algorithm to

	PR [6]	CC [6]	$PR-\delta$ [43]	Radii [43]	MIS [43]
irregData Elem Size	4B	4B	8B & 1bit	8B & 1bit	4B & 1bit
Execution style	Pull-Only	Push-Only	Pull-Mostly	Pull-Mostly	Pull-Mostly
Transpose	CSR	CSC	CSR	CSR	CSR
Uses frontier	N	N	Y	Y	Y

TABLE II: Applications

compute largest connected comoponents. PageRank-delta $(PR-\delta)$ is a frontier-based version of PageRank that only updates vertices that have not converged. Radii is a frontier-based application using concurrent BFS traversals to approximate a graph's radius. Maximal Independent Set (MIS) iteratively processes vertex subsets to estimate the maximal independent set. PageRank-delta, Radii, and Maximal Independent Set use direction-switching [5] and frontiers encoded as bit-vectors. To reduce simulation time, we simulate one PageRank iteration (it shows no performance variation across iterations). For other applications, we use *iteration sampling* like prior work [35], [36] and simulate a subset of pull iterations in detail.

We evaluate on the graphs listed in Table III. The graphs are diverse in size and degree-distributions (power-law, community, normal, bounded-degree). We do not simulate Radii on HBUBL because its high diameter causes Radii to never switch to a pull iteration.

	DBP	UK-02	KRON	URAND	HBUBL
# Vertices (in M)	18.27	18.52	33.55M	33.55M	21.20
# Edges (in M)	136.53	292.24	133.51	134.22	63.58

TABLE III: **Input Graphs**: All graphs exceed the LLC size

VII. EVALUATION

We evaluate P-OPT, showing significant performance and locality improvements across a range of workloads and compare P-OPT to prior work on efficient caching for graph workloads.

A. P-OPT Improves Performance

Figure 10 shows performance and cache locality improvements achieved by P-OPT and an idealized T-OPT compared to DRRIP. P-OPT outperforms DRRIP across the board, with mean speedup of 22% and LLC miss reduction of 24%, which is within 11% of ideal T-OPT.

Figure 10 shows four key findings. First, P-OPT is effective for applications with dense frontiers (PageRank and Connected Components) and sparse frontiers (Radii, Maximal Independent Set, and PageRank-delta). P-OPT offers higher speedup for PageRank and Connected Components because P-OPT need only store Rereference Matrix data for a single irregular data structure (other applications need Rereference Matrix data for srcData and frontier). Second, P-OPT improves performance and locality for pull and push executions. Third, P-OPT provides benefits for a diverse set of graphs. KRON is one exception with both P-OPT and T-OPT offering slightly smaller improvement over DRRIP. These synthetic KRON graphs have highly skewed degree distributions. A skewed graph has more hub vertices that are likely to hit by chance in cache; DRRIP has miss rate of 40% for KRON compared to a miss rate of 70% for other graphs. Finally, P-OPT's benefit compared to DRRIP is significantly higher

than state-of-the-art policies like Hawkeye and SHiP. Hawkeye and SHiP report average speedups of just 2.54% and 1.78% over DRRIP [23], [45]. While Hawkeye and SHiP provide small benefits, P-OPT leverages graph structure and offers a significant improvement over DRRIP.

B. P-OPT Scales with Graph Size

P-OPT remains performant as graph size increases. P-OPT stores the current and next epoch columns of the Rereference Matrix in LLC (Figure 9). Larger graphs need to reserve more LLC ways to store Rereference Matrix columns because the irregular data spans more cache lines. We evaluate a P-OPT variant, P-OPT-Single-Epoch (P-OPT-SE), that computes next references using only the current epoch column of the Rereference Matrix. P-OPT-SE encodes information about the next epoch within the current epoch column by repurposing the second most significant bit of an entry to track if the cache line is accessed in the next epoch (Figure 6). P-OPT-SE stores only the current epoch column in LLC. However, the reduced cache footprint in P-OPT-SE comes at the expense of reduced next reference quality. Down two bits per entry, the range of next references tracked in P-OPT-SE is halved from 128 to 64 P-OPT-SE is forced to use coarser quantization.

We compare P-OPT-SE (one column, two reserved bits) to P-OPT (two columns, one reserved bit) for PageRank on a set of graphs. With fewer than 32 million vertices, P-OPT has better LLC locality. For these graphs, P-OPT reserves fewer than 3 ways of 16 and the benefit of better replacement information (i.e. current *and* next epoch) overshadows the reduction in effective LLC capacity. However, in larger graphs, P-OPT-SE has better locality because of P-OPT's high reduction in effective LLC capacity. The result highlights the tension between next reference quantization and the effective LLC capacity.

C. P-OPT compared to prior optimizations

We compared P-OPT to prior work for locality optimization in graph applications.

1) Graph-agnostic improvements with P-OPT: Like prior work [17], [35], P-OPT observes that cache locality is key to improving graph processing performance. Unlike prior work, P-OPT is graph-agnostic, not reliant on specific structure or vertex ordering of a graph.

GRASP [17] is a replacement policy for graphs with very skewed degree distributions. GRASP expects a pre-processed input vertex array and GRASP uses Degree-Based Grouping (DBG) [16] to order vertices. We reordered our graphs using the author's DBG implementation and implemented GRASP in our cache simulator, based on code from the authors. Figure 12(a) shows locality improvements from GRASP and P-OPT for PageRank on DBG-ordered graphs. P-OPT outperforms GRASP in three ways. First, GRASP works well for graphs with skewed degree distributions, but is less effective for other inputs; the best result for GRASP is for the highly skewed GPL graph. P-OPT is agnostic to graph structure, offering consistent improvement. Second, even for skewed graphs, P-OPT has higher LLC miss reduction than GRASP because GRASP is

Fig. 10: Speedups and LLC miss reductions with P-OPT and T-OPT

Fig. 11: LLC miss reductions with P-OPT and P-OPT-SE: Boxes indicate the number of LLC ways reserved.

Fig. 12: P-OPT offers graph-agnostic improvements

heuristic-based, assuming vertices with similar degrees have similar reuse. P-OPT, instead, approximates ideal next reference values capturing dynamically varied patterns of reuse. Last, GRASP requires vertex-ordering, P-OPT does not.

HATS-BDFS [35] is a dynamic vertex-scheduling architecture that improves graph cache locality. HATS runs hardware Bounded Depth First Search (BDFS) to schedule vertices, yielding locality improvements in graphs with community structure [29]. We implemented in our cache simulator an aggressive HATS-BDFS that assumes no overhead for BDFS vertex scheduling. Figure 12(b) compares P-OPT on the standard vertex schedule ("Vertex Ordered" per HATS [35]) against HATS-BDFS. The data shows that HATS-BDFS's improvements are sensitive to graph structure. For its target usecases (i.e., community-structured graphs – UK-02 and ARAB), BDFS offers locality improvements, even outpacing T-OPT because BDFS improves locality at all cache levels. However, for graphs without community structure (even power-law graphs such as DBP and KRON), BDFS *increases* LLC misses. In

contrast, P-OPT offers consistent LLC locality improvements, leading to a higher mean LLC miss reduction compared to HATS-BDFS.

2) Optimizations Complementary to P-OPT: P-OPT complements software graph locality optimizations – CSR-Segmenting [48] and Propagation Blocking [7].

Fig. 13: **P-OPT and Tiling are mutually-enabling optimizations:** *Tiling allows P-OPT to reserve fewer LLC ways while P-OPT can reduce preprocessing cost of tiling*

CSR-Segmenting [48] is 1D tiling for graphs. We applied the CSR-segmenting optimization to the PageRank application to study how P-OPT and CSR-segmenting interact. Figure 13 shows relative cache performance of DRRIP and P-OPT for two large graphs as tile count increases, with results normalized to untiled DRRIP execution. Tiling improves P-OPT's miss reduction over DRRIP. P-OPT benefits because tiling reduces the address range of random access allowing P-OPT to store only a tile of a Rereference Matrix column in LLC. Compared to DRRIP, P-OPT provides the same miss reduction with fewer tiles: For URAND64, P-OPT with two tiles has the same LLC miss reduction as DRRIP with 10 tiles. Thus, as tiling improves P-OPT, P-OPT amplifies the efficiency of tiling by reducing required tile count and, hence, the preprocessing costs (Preprocessing cost scales with tile count because each tile requires building a CSR).

Fig. 14: P-OPT is complementary to PHI and PB

Propagation Blocking (PB) [7] is a software graph locality optimization. Recent work [36] showed further improvements at the expense of additional hardware support for PB. PHI [36] improves graph applications with commutative vertex updates by aggregating updates in-cache to reduce DRAM traffic.

PHI is complementary to replacement and provides higher benefits with better replacement policies (e.g., DRRIP over LRU). We studied the PB and PHI interactions with P-OPT by implementing PHI in our cache simulator (targeting a multicore setup). Figure 14 shows results for four setups on PB's dominant execution phase (Binning). The data show that PHI improves locality over software PB (PB+DRRIP) and that PHI's effectiveness improves with better replacement. The original PHI work did not evaluate on non-power-law graphs (e.g., URAND and HBUBL), which have worse private cache locality, impeding PHI's update aggregation, and leading to little benefit. P-OPT, in contrast, is effective for these graphs, even when PHI is not.

D. Sensitivity Studies

Sensitivity to quantization level: We assumed 8-bit next reference entries up to this point. Figure 15 shows P-OPT's performance with 4-bit, 8-bit, and 16-bit quantization in the Rereference Matrix. This dataset omits the costs of storing Rereference Matrix columns in LLC, reporting limit-case locality improvements for a given quantization. P-OPT achieves nearly ideal (T-OPT) cache performance at 8 bits and sees little benefit with higher precision.

Fig. 15: P-OPT at different levels of quantization

Sensitivity to LLC parameters: We measured P-OPT's sensitivity to LLC capacity and associativity. Figure 16 shows data for PageRank on all graphs. The benefit offered by P-OPT over DRRIP increases with LLC capacity because the fraction of LLC consumed for Rereference Matrix columns reduces. P-OPT also offers higher miss reduction with higher LLC associativity. As associativity increases, P-OPT has more options for replacement and makes a better choice by considering next references of all ways in the eviction set.

Fig. 16: Sensitivity to LLC size and associativity

Preprocessing cost of P-OPT: P-OPT uses a Rereference Matrix to guide cache replacement and the Rereference Matrix is built from the transpose. Earlier results omit preprocessing costs (Figure 10) because the Rereference Matrix is algorithm agnostic and need only be built once and stored with a graph. We experimentally determined that building the Rereference Matrix is a low overhead on a real 14-core Intel Xeon with 64GB memory configured to mirror our Sniper simulator

(Table I) with 8 threads and using Intel CAT to shrink LLC to 24.5MB. Table IV shows time spent building the Rereference Matrix compared to PageRank's execution time. Constructing the Rereference Matrix is an overhead of 19.8% on average; HBUBL is an exception, because PageRank converges unusually quickly (3 iterations). Figure 10 shows that without the Rereference Matrix construction cost, P-OPT has a mean performance improvement of 36%. Rereference Matrix construction cost is small relative to P-OPT's speedup for long-running iterative graph applications and P-OPT provides net speedups even after preprocessing.

	DBP	UK-02	KRON	URAND	HBUBL
POPT Preprocessing Time	0.99s	1.25s	1.59s	1.77s	0.92s
PageRank Execution Time	8.83s	24.64s	4.84s	11.06s	0.89s

TABLE IV: Relative preprocessing cost for P-OPT

VIII. RELATED WORK

We compared P-OPT to the most closely related works in Sections II and VII. We include additional comparisons spanning three areas - cache replacement, irregular-data prefetching, and custom architectures for graph processing. Replacement Policies: Hawkeye and SHiP outperform many classes of replacement policies [23], [45]. One such class of policies are policies like SDBP [26] and Leeway [18] that perform Dead-Block Prediction (DBP) (i.e. find cache lines that will receive no further accesses). P-OPT can more accurately identify dead lines because it tracks next references of irregular lines (Indeed, P-OPT outperforms Hawkeye and GRASP which were shown to be better than SDBP and Leeway respectively). By using close approximation of precise next references (Section VII-D), P-OPT is expected to outperform proposal that perform heuristic-based reuse distance prediction [14], [25].

Cache Prefetching: IMP [46], HATS-VO [35], and DROPLET [4] are recent prefetchers that were designed primarily to handle irregular accesses in graph processing and sparse linear algebra applications. All three schemes are effective at reducing latency of irregular accesses but not necessarily memory traffic. P-OPT reduces memory traffic through better LLC locality, making better use of the available DRAM bandwidth. We note that next references in a graph's transpose could also be used for timely prefetching of irregular data. We leave the exploration of transpose-based prefetching and its interplay with replacement for future work.

Custom architectures for graph processing: Minnow [47] is an architecture for efficient worklist management and optimizes worklist-based graph applications [41]. OMEGA [3] is a scratchpad-based architecture for graph processing on power-law input graphs. Custom accelerators [20], [38] have been proposed that optimize graph framework operations to accelerate common sub-computations across all applications using the framework. P-OPT observes the pervasiveness of poor cache locality in graph applications and leverages the readily-available transpose to guide better cache replacement. SpArch [51], an SpGeMM accelerator, proposed dedicated hardware to run ahead (upto a fixed depth) and compute next

references for irregular data. P-OPT also uses next references for better replacement but relies on the transpose to more efficiently access next references.

IX. CONCLUSIONS

We presented P-OPT, a practical implementation of Belady's MIN replacement policy for graph processing applications. P-OPT leveraged an application-specific insight (a graph's transpose encodes next references) to achieve significant cache locality and performance improvements. By being a graph-agnostic optimization, P-OPT provides more consistent improvements compared to prior locality optimizations for graph processing.

REFERENCES

- "Graph-powered Machine Learning at Google," https://ai.googleblog. com/2016/10/graph-powered-machine-learning-at-google.html, accessed: 2019-01-23.
- [2] "Cache Replacement Championship," https://crc2.ece.tamu.edu/, 2020, [Online; accessed 31-July-2020].
- [3] A. Addisie, H. Kassa, O. Matthews, and V. Bertacco, "Heterogeneous memory subsystem for natural graph analytics," in 2018 IEEE International Symposium on Workload Characterization (IISWC). IEEE, 2018, pp. 134–145.
- [4] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and Y. Xie, "Analysis and optimization of the memory hierarchy for graph processing workloads," in 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2019, pp. 373–386.
- [5] S. Beamer, K. Asanović, and D. Patterson, "Direction-optimizing breadth-first search," *Scientific Programming*, vol. 21, no. 3-4, pp. 137–148, 2013.
- [6] S. Beamer, K. Asanovic, and D. Patterson, "Locality exists in graph processing: Workload characterization on an ivy bridge server," in Workload Characterization (IISWC), 2015 IEEE International Symposium on. IEEE, 2015, pp. 56–65.
- [7] S. Beamer, K. Asanović, and D. Patterson, "Reducing pagerank communication via propagation blocking," in *Parallel and Distributed Processing Symposium (IPDPS)*, 2017 IEEE International. IEEE, 2017, pp. 820–831.
- [8] S. Brin and L. Page, "The anatomy of a large-scale hypertextual web search engine," in *Proceedings of the Seventh International Conference* on World Wide Web 7, ser. WWW7. Amsterdam, The Netherlands, The Netherlands: Elsevier Science Publishers B. V., 1998, pp. 107–117. [Online]. Available: http://dl.acm.org/citation.cfm?id=297805.297827
- [9] T. D. Bui, S. Ravi, and V. Ramavajjala, "Neural graph learning: Training neural networks using graphs," in *Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining*, ser. WSDM '18. New York, NY, USA: ACM, 2018, pp. 64–71. [Online]. Available: http://doi.acm.org/10.1145/3159652.3159731
- [10] T. E. Carlson, W. Heirman, and L. Eeckhout, "Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation," in *Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis*, 2011, pp. 1–12.
- [11] M. Daga and J. L. Greathouse, "Structural agnostic spmv: Adapting csr-adaptive for irregular matrices," in 2015 IEEE 22nd International conference on high performance computing (HiPC). IEEE, 2015, pp. 64–74.
- [12] T. A. Davis and Y. Hu, "The university of florida sparse matrix collection," ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, pp. 1–25, 2011.
- [13] I. D. Direct, "I/o technology (intel ddio) a primer," 2012.
- [14] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Veidenbaum, "Improving cache management policies using dynamic reuse distances," in 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 2012, pp. 389–400.
- [15] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010.

- [16] P. Faldu, J. Diamond, and B. Grot, "A closer look at lightweight graph reordering," in 2019 IEEE International Symposium on Workload Characterization (IISWC). IEEE, 2019, pp. 1–13.
- [17] P. Faldu, J. Diamond, and B. Grot, "Domain-specialized cache management for graph analytics," in 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2020, pp. 234–248.
- [18] P. Faldu and B. Grot, "Leeway: Addressing variability in dead-block prediction for last-level caches," in 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE, 2017, pp. 180–193.
- [19] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, "Powergraph: Distributed graph-parallel computation on natural graphs." in *OSDI*, vol. 12, no. 1, 2012, p. 2.
- [20] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, "Graphicionado: A high-performance and energy-efficient accelerator for graph analytics," in *Microarchitecture (MICRO)*, 2016 49th Annual IEEE/ACM International Symposium on. IEEE, 2016, pp. 1–13.
- [21] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, "Reactive nuca: near-optimal block placement and replication in distributed caches," in *Proceedings of the 36th annual international symposium on Computer* architecture, 2009, pp. 184–195.
- [22] C. Intel, "Improving real-time performance by utilizing cache allocation technology," *Intel Corporation*, April, 2015.
- [23] A. Jain and C. Lin, "Back to the future: leveraging belady's algorithm for improved cache replacement," in 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). IEEE, 2016, pp. 78–89.
- [24] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, "High performance cache replacement using re-reference interval prediction (rrip)," ACM SIGARCH Computer Architecture News, vol. 38, no. 3, pp. 60–71, 2010.
- [25] G. Keramidas, P. Petoumenos, and S. Kaxiras, "Cache replacement based on reuse-distance prediction," in 2007 25th International Conference on Computer Design. IEEE, 2007, pp. 245–250.
- [26] S. M. Khan, Y. Tian, and D. A. Jimenez, "Sampling dead block prediction for last-level caches," in 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 2010, pp. 175–186.
- [27] C. Kim, D. Burger, and S. W. Keckler, "Nonuniform cache architectures for wire-delay dominated on-chip caches," *IEEE Micro*, vol. 23, no. 6, pp. 99–107, 2003.
- [28] G. Kurian, S. Devadas, and O. Khan, "Locality-aware data replication in the last-level cache," in 2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2014, pp. 1–12.
- [29] V. Latora and M. Marchiori, "Efficient behavior of small-world networks," Physical review letters, vol. 87, no. 19, p. 198701, 2001.
- [30] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein, "Distributed graphlab: a framework for machine learning and data mining in the cloud," *Proceedings of the VLDB Endowment*, vol. 5, no. 8, pp. 716–727, 2012.
- [31] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, "Pin: Building customized program analysis tools with dynamic instrumentation," in Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation, ser. PLDI '05. New York, NY, USA: ACM, 2005, pp. 190–200. [Online]. Available: http://doi.acm.org/10.1145/1065010.1065034
- [32] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon, "Reverse engineering intel last-level cache complex addressing using performance counters," in *International Symposium on Recent Advances* in *Intrusion Detection*. Springer, 2015, pp. 48–65.
- [33] F. McSherry, M. Isard, and D. G. Murray, "Scalability! but at what cost?" in *HotOS*, 2015.
- [34] D. Merrill and M. Garland, "Merge-based sparse matrix-vector multiplication (spmv) using the csr storage format," ACM SIGPLAN Notices, vol. 51, no. 8, pp. 1–2, 2016.
- [35] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez, "Exploiting Locality in Graph Analytics through Hardware-Accelerated Traversal Scheduling," in *Proceedings of the 51st annual IEEE/ACM international symposium on Microarchitecture (MICRO-51)*, October 2018.

- [36] A. Mukkara, N. Beckmann, and D. Sanchez, "Phi: Architectural support for synchronization-and bandwidth-efficient commutative scatter updates," in *Proceedings of the 52nd Annual IEEE/ACM International Symposium* on Microarchitecture, 2019, pp. 1009–1022.
- [37] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, "Cacti 6.0: A tool to model large caches," *HP Laboratories*, pp. 22–31, 2009.
- [38] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and O. Ozturk, "Energy efficient architecture for graph analytics accelerators," in *Proceedings of the 43rd International Symposium on Computer Architecture*, ser. ISCA '16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 166–177. [Online]. Available: https://doi.org/10.1109/ISCA.2016.24
- [39] A. Panwar, S. Bansal, and K. Gopinath, "Hawkeye: Efficient fine-grained os support for huge pages," in *Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems*, ser. ASPLOS '19. New York, NY, USA: Association for Computing Machinery, 2019, p. 347–360. [Online]. Available: https://doi.org/10.1145/3297858.3304064
- [40] R. Pearce, M. Gokhale, and N. M. Amato, "Faster parallel traversal of scale free graphs at extreme scale with vertex delegates," in *High Performance Computing, Networking, Storage and Analysis, SC14: International Conference for.* IEEE, 2014, pp. 549–559.
- [41] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo et al., "The tao of parallelism in algorithms," in ACM Sigplan Notices, vol. 46, no. 6. ACM, 2011, pp. 12–25.
- [42] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A. Hassaan, S. Sengupta, Z. Yin, and P. Dubey, "Navigating the maze of graph analytics frameworks using massive graph datasets," in *Proceedings of the 2014 ACM SIGMOD international conference on Management of data*. ACM, 2014, pp. 979–990.
- [43] J. Shun and G. E. Blelloch, "Ligra: a lightweight graph processing framework for shared memory," in ACM Sigplan Notices, vol. 48, no. 8. ACM, 2013, pp. 135–146.
- [44] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J. Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, "Graphmat: High performance graph analytics made productive," *Proceedings of the VLDB Endowment*, vol. 8, no. 11, pp. 1214–1225, 2015.
- [45] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr, and J. Emer, "Ship: Signature-based hit predictor for high performance caching," in *Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture*, 2011, pp. 430–441.
- [46] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, "Imp: Indirect memory prefetcher," in *Proceedings of the 48th International Symposium on Microarchitecture*, 2015, pp. 178–190.
- [47] D. Zhang, X. Ma, M. Thomson, and D. Chiou, "Minnow: Lightweight offload engines for worklist management and worklist-directed prefetching," in *Proceedings of the Twenty-Third International Conference* on Architectural Support for Programming Languages and Operating Systems. ACM, 2018, pp. 593–607.
- [48] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia, "Making caches work for graph analytics," in 2017 IEEE International Conference on Big Data (Big Data), Dec 2017, pp. 293–302.
- [49] Y. Zhang, V. Kiriansky, C. Mendis, M. Zaharia, and S. Amarasinghe, "Making caches work for graph analytics," arXiv preprint arXiv:1608.01362, 2016.
- [50] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe, "Graphit: a high-performance graph dsl," *Proceedings of the ACM on Programming Languages*, vol. 2, no. OOPSLA, p. 121, 2018.
- [51] Z. Zhang, H. Wang, S. Han, and W. J. Dally, "Sparch: Efficient architecture for sparse matrix multiplication," in 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2020, pp. 261–274.