This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- ŠKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

別紙派性の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年12月27日

出願番号

Application Number:

特願2000-399229

出 願 Applicant(s):

株式会社東芝

東芝電子エンジニアリング株式会社

2001年11月26日

特許庁長官 Commissioner, Japan Patent Office

特2000-399229

【書類名】

特許願

【整理番号】

9FB00X0041

【提出日】

平成12年12月27日

【あて先】

特許庁長官殿

【国際特許分類】

H01M 4/48

H01M 10/40

【発明の名称】

正極活物質およびそれを用いた非水電解液二次電池

【請求項の数】

7

【発明者】

【住所又は居所】

神奈川県横浜市磯子区新杉田町8番地 東芝電子エンジ

ニアリング株式会社内

【氏名】 ·

大屋 恭正

【発明者】

【住所又は居所】

神奈川県横浜市磯子区新杉田町8番地 株式会社東芝

横浜事業所内

【氏名】

酒井 亮

【発明者】

【住所又は居所】

神奈川県横浜市磯子区新杉田町8番地 株式会社東芝

横浜事業所内

【氏名】

田中 弘真

【発明者】

【住所又は居所】

神奈川県横浜市磯子区新杉田町8番地 株式会社東芝

横浜事業所内

【氏名】

雨宮 一樹

【発明者】

【住所又は居所】

神奈川県横浜市磯子区新杉田町8番地 株式会社東芝

横浜事業所内

【氏名】

竹内 肇

特2000-399229

【発明者】

神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 【住所又は居所】

横浜事業所内

【氏名】

白川 康博

【特許出願人】

【識別番号】 000003078

【氏名又は名称】 株式会社 東芝

【特許出願人】

【識別番号】

000221339

【氏名又は名称】

東芝電子エンジニアリング株式会社

【代理人】

【識別番号】 100078765

【弁理士】

【氏名又は名称】

波多野 久

【選任した代理人】

【識別番号】 100078802

【弁理士】

【氏名又は名称】 関口 俊三

【手数料の表示】

【予納台帳番号】 011899

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

【書類名】 明細書

【発明の名称】 正極活物質およびそれを用いた非水電解液二次電池 【特許請求の範囲】

【請求項1】 母体活物質表面に平均粒径が1 μ m以下の酸化物粒子が付着 していることを特徴とする正極活物質。

【請求項2】 前記母体活物質表面に付着している酸化物粒子の質量が前記 母体活物質の質量の0.001~2%であることを特徴とする請求項1記載の正 極活物質。

【請求項3】 前記母体活物質表面に付着している酸化物粒子が、 SiO_2 , SnO_2 , Al_2O_3 , TiO_2 , MgO, Fe_2O_3 および ZrO_2 から選択される少なくとも1種の酸化物粒子であることを特徴とする請求項1記載の正極活物質。

【請求項4】 前記母体活物質が一般式:Li_xM_yO_z

(式中、Mは遷移金属から選ばれる少なくとも1種の元素を示し、x, yおよび zはそれぞれ 0. $8 \le x \le 1$. 15、0. $8 \le y \le 2$. 2、1. $5 \le z \le 5$ を満足する)で表わされる L i 含有遷移金属複合酸化物であることを特徴とする請求項 1 記載の正極活物質。

【請求項5】 前記母体活物質が一般式: $\text{Li}_{x}\text{M}_{y}\text{O}_{2}$ (式中、Mは遷移金属から選ばれる少なくとも1種の元素を示し、xおよびyは それぞれ0. $8 \le x \le 1$. 15、0. $8 \le y \le 1$. 1 を満足する)で表わされる L_{1} 含有遷移金属複合酸化物であることを特徴とする請求項1記載の正極活物質

【請求項6】 前記母体活物質が一般式: Li_xM_yO₄

(式中、Mは遷移金属から選ばれる少なくとも1種の元素を示し、xおよびyはそれぞれ0. $8 \le x \le 1$. 1. 1. $8 \le y \le 2$. 2 を満足する)で表わされるLi 含有遷移金属複合酸化物であることを特徴とする請求項1記載の正極活物質。

【請求項7】 母体活物質表面に、 SiO_2 , SnO_2 , Al_2O_3 , TiO_2 , MgO, Fe_2O_3 および ZrO_2 から選択される少なくとも1種の酸化物粒子が付着している正極活物質を含有する正極と、前記正極とセパレータを介

して配置された負極と、前記正極、前記セパレータおよび前記負極を収納する電 池容器と、前記電池容器内に充填された非水電解液とを具備することを特徴とす る非水電解液二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は正極活物質およびそれを用いた非水電解液二次電池に係り、特に正極への充填密度を高めることが可能であり、電極のインピーダンスを低下させて電池の放電レート特性を向上させることが可能な正極活物質および非水電解液二次電池に関する。

[0002]

【従来の技術】

近年、比較的に安全な負極材料が開発され、さらに分解電圧を高めた非水電解液の開発が進み、高電圧の非水電解液二次電池が実用化されている。特に、リチウムイオンを用いた二次電池は、放電電位が高く、かつ軽量でエネルギー密度が高いという優れた特長から、携帯電話、ノート型パーソナルコンピュータ、カメラー体型ビデオなどの機器電源としてその需要が急速に拡大している。

[0003]

このリチウムイオン二次電池は、リチウムイオンを可逆的に吸蔵・放出可能な活物質を含む正極および炭素負極と、リチウム塩を非水溶媒に溶解した非水電解液とから構成されている。

[0004]

上記リチウムイオン二次電池の正極活物質としては、例えば $LiCoO_2$ などのリチウムコバルト複合酸化物, $LiNiO_2$ などのリチウムニッケル複合酸化物, $LiMn_2O_4$ などのリチウムマンガン複合酸化物などの金属酸化物が一般に用いられる。

[0005]

上記二次電池用の正極としては、一般的にLi含有遷移金属複合酸化物から成る正極活物質と導電材と結着材(バインダー)との混合体を、集電体としてのA

[0006]

そして、上記二次電池の単位体積あたりの充放電容量を高めるためには、上記活物質、フィラー、結着材等を含む正極活物質層の仕上り密度を増大させる必要がある。そこで、従来から活物質層の密度を高めるために、正極活物質層(正極膜)を形成した後に、プレス圧延操作を実施して正極膜を圧密し、その密度を高める方法が採用されている。

[0007]

【発明が解決しようとする課題】

しかしながら、従来の正極活物質をプレス圧延操作によって圧密化しても、ある程度の密度には到達できるが、未だに不十分な状態であった。すなわち正極活物質層を高密度化すべくプレス圧力を増加させても、ある一定圧力を超えると、それ以上の高密度は得られなくなるため、二次電池として十分な充放電容量が得られないという問題点があった。

[0008]

また、高プレス圧力による圧延操作によって、活物質層の表面のみは高密度化 されるが、表面から離れた集電体の近傍では十分な密度が得られず、いずれにし ても電池の充放電容量および放電レート特性が不十分となる問題点があった。

[0009]

一方、近年になって、ノート型パーソナルコンピュータ、携帯型情報端末(PDA)、携帯電話などが急速に普及し、モバイルコンピューティング化が進行している。それに伴って、多機能化する携帯用電子機器などの長時間稼動を可能にすることが望まれており、上記携帯用電子機器をはじめとする各種電子機器の電源として用いられる二次電池に対しては、より小型で高容量化を実現することが技術課題となっている。

[0010]

本発明は上記課題を解決するためになされたものであり、特に正極への充填密度を高めることが可能であり、電極のインピーダンスを低下させて電池の放電レート特性を向上させることが可能な正極活物質および非水電解液二次電池を提供

することを目的とする。

[0011]

【課題を解決するための手段】

上記目的を達成するため、本発明者らは種々の組成の活物質に各種付着物としての粒子を付着させて正極活物質を調製して、その粒子の種類、付着量、粒径が圧密性に及ぼす影響を比較検討した。その結果、母体活物質表面に微細な酸化物粒子を付着させて正極活物質としたときに活物質の充填特性を大幅に改善できるという知見を得た。具体的には、母体活物質表面にSiO2、Al2O3、SnO2などの特定の酸化物粒子を付着させて正極活物質としたとき、活物質相互間の摩擦力が大幅に減少して流動性が高まり、高圧力での圧延操作により、従来より高密度な正極膜が得られ、結果的に充放電特性および容量に優れた二次電池が得られるという知見を得た。

[0012]

また上記のように酸化物粒子を付着させた正極活物質をプレス圧延することにより、正極膜の深さ方向について活物質密度が一定である正極膜が得られ、正電極のインピーダンスが低下することにより、二次電池の低温特性および放電レート特性が向上するという知見を得た。本発明は、これらの知見に基づいて完成されたものである。

[0013]

すなわち本発明に係る正極活物質は、母体活物質表面に、平均粒径が 1 μ m以 下の微細な酸化物粒子が付着していることを特徴とする。

[0014]

また母体活物質表面に付着している酸化物粒子が、 SiO_2 , SnO_2 , Al_2O_3 , TiO_2 , MgO, Fe_2O_3 および ZrO_2 から選択される少なくとも1種の酸化物粒子であることが好ましい。

[0015]

さらに、前記母体活物質表面に付着している酸化物粒子の質量が前記母体活物質の質量の0.001~2%であることが好ましい。

[0016]

本発明に係る正極活物質の母体となる活物質の組成は特に限定されるものではないが、一般式: ${f L}$ i ${}_{{f x}}{}^{{f M}}$ ${}_{{f y}}{}^{{f O}}$ ${}_{{f z}}$ $\cdots \cdots$ (1)

(式中、Mは遷移金属から選ばれる少なくとも1種の元素を示し、x, yおよびzはそれぞれ0. $8 \le x \le 1$. 15、0. $8 \le y \le 2$. 2、1. $5 \le z \le 5$ を満足する)で表わされるLi含有遷移金属複合酸化物であることが望ましい。

[0017]

特に一般式: Li_xM_yO₂ (2)

(式中、Mは遷移金属から選ばれる少なくとも1種の元素を示し、xおよびyはそれぞれ0. $8 \le x \le 1$. 15、0. $8 \le y \le 1$. 1 を満足する)で表わされる L i 含有遷移金属複合酸化物も好適に使用できる。

[0018]

また、一般式: Li_xM_vO₄ …… (3)

(式中、Mは遷移金属から選ばれる少なくとも1種の元素を示し、xおよびyはそれぞれ0. $8 \le x \le 1$. 1、1. $8 \le y \le 2$. 2 を満足する)で表わされるLi 含有遷移金属複合酸化物も好適に使用できる。

[0019]

上記(1)~(3)式で表されるLi含有遷移金属複合酸化物において、M元素としてはCo, Ni, Mn, Fe, Vなどの各種の遷移金属を用いることができる。特にM元素の少なくとも一部として<math>Coを用いることが効果的である。

[0020]

また、M元素としてCoおよびNiから選ばれる少なくとも1種の元素を用いることも有効である。このようなLi含有Co複合酸化物は、電池容量などの点からも好ましい正極活物質であるということができる。

[0021]

またM成分の一部を遷移金属以外の他の金属成分で置換することも有効である

[0022]

上記 (1), (2)式において、xの値は 0.8 \sim 1.15の範囲、yの値は 0.85 \sim 1.1の範囲、zの値は 1.5 \sim 5とする。一方、上記 (3)式にお

[0023]

また、上記母体活物質表面に付着される SiO_2 , SnO_2 , Al_2O_3 , TiO_2 , Fe_2O_3 , MgOおよび ZrO_2 から選択される酸化物粒子は、正極活物質粒子同士の摩擦力を低減する作用を有し、正極活物質を集電体にプレス圧着する際の流動性を高めて、高密度の正極活物質層を形成するために用いられる

[0024]

特に上記母体活物質表面に付着させる酸化物粒子の平均粒径を1 μ m以下とすることにより、前記摩擦力の低減効果および高密度化の効果をより高めることが可能になる。上記付着させる酸化物粒子の平均粒径は0.1 μ m以下とすることがより好ましい。

[0025]

なお、平均粒径が1μmを超えるような粗大な酸化物粒子を使用すると、上記効果を得るためには大量の酸化物粒子を付着させる必要があり、相対的に電池反応の主体となるLi含有遷移金属複合酸化物の充填密度が低下して高い電池特性を発揮する正極が得られない。

[0026]

また、母体活物質表面に付着させている酸化物粒子の質量は母体活物質の質量の0.001~2%であることが好ましい。この付着量が0.001%未満の場合は、前記摩擦低減効果および圧密効果が得られない。一方、付着量が2%を超えるように過剰になると相対的に活物質量が低下して電池特性が低下してしまう。そのため、付着量は上記範囲に規定されるが、0.005~1%の範囲が好ましく、さらには0.006~0.5%の範囲がより好ましい。

[0027]

また、本発明に係る非水電解液二次電池用の正極活物質の製造方法としては、

特に限定されるものではないが、例えば、コバルト化合物およびリチウム化合物、もしくはコバルト化合物、マンガン化合物、鉄化合物、およびアルミニウム化合物から選ばれる1種以上の化合物とコバルト化合物とリチウム化合物からなる混合物を、コバルトと前記置換元素Mとの合量に対するリチウムの原子比Li/(Ni+M)が仕込み時のモル比で1.0~1.2の範囲になるように配合し、この混合物を空気気流中において680℃~1100℃の温度範囲に保持する熱処理を施すことにより、上記特性を有する正極活物質を収率よく製造することが可能になる。

[0028]

上記仕込み時のモル比としては、好ましくは $1.02\sim1.15$ である。また、より好ましい熱処理温度は、 $800\sim1000$ の範囲である。なお、熱処理工程においては、 $400\sim950$ の範囲内で段階的に昇温する 2 段階以上の熱処理操作を実施してもよい。

[0029]

なお上記コバルト化合物としては、例えば酸化コバルト、炭酸コバルト、硝酸 コバルト、水酸化コバルト、硫酸コバルト、塩化コバルト等が好適に使用できる

[0030]

また上記リチウム化合物としては、例えば、水酸化リチウム、酸化リチウム、 炭酸リチウム、硝酸リチウム、ハロゲン化リチウム等を用いることができる。

[0031]

また、上記ニッケル化合物としては、例えば水酸化ニッケル、炭酸ニッケル、 硝酸ニッケル等を用いることができる。

[0032]

さらに上記マンガン化合物としては、例えば電解マンガン(EMD)または化 学調製マンガン(CMD)などの二酸化マンガン、オキシ水酸化マンガン、炭酸 マンガン、硝酸マンガン等を用いることができる。

[0033]

また上記鉄化合物としては、酸化鉄、水酸化鉄、炭酸鉄、硝酸鉄等が使用でき

[0034]

また、上記アルミニウム化合物としては、例えば、酸化アルミニウム、水和アルミナ、水酸化アルミニウム、硝酸アルミニウム等を用いることができる。

[0035]

さらに、前記熱処理工程は、外気導入機構を備えた電気炉、あるいは開放型の プッシャー炉などの連続炉を使用して実施することができる。また、前記熱処理 は、1時間~20時間実施するとよい。なお、前記熱処理中に焼成炉に導入する 気体としては、空気に限らず、必要に応じて酸素気流を導入して複合酸化物活物 質の生成効率を高めることもできる。

[0036]

また、上記のように合成した正極活物質を母体とし、その表面に酸化物粒子を付着する操作は以下のような手順で行うことができる。すなわち、上記のように調製した母体活物質を水中に分散させて分散液を調製する一方、所定の微細な平均粒径を有する酸化物粒子の分散液を調製する。そして母体活物質分散液に対して所定量の酸化物粒子分散液を投入して均一に撹拌し、この撹拌した分散液を濃縮乾燥することにより、母体活物質表面に酸化物粒子が一体に付着した正極活物質が得られる。なお、上記のように母体活物質粒子および酸化物粒子の分散液をそれぞれ調製し、その分散液同士を混合することが均一な分散性を実現する上で好ましいが、母体活物質粒子および酸化物粒子のいずれか一方または両方を分散液状にせずに、乾式で混合することも可能である。

[0037]

本発明に係る非水電解液二次電池は、上記のように調製した正極活物質および 導電助剤をバインダー等とともに混合・加圧成形して保持した正極と、負極活物 質を有する負極とを、セパレータおよび非水電解液を介して電池缶内に対向する ように配置して構成される。

[0038]

ここで上記導電助剤としては、例えばアセチレンブラック,カーボンブラック ,黒鉛等が使用される。また、バインダーとしては、例えばポリテロラフルオロ

[0039]

また、上記正極は、例えば前記正極活物質およびバインダーを適当な溶媒中に 懸濁せしめ、この懸濁物を集電体に塗布・乾燥した後にプレス圧着することによ り製作される。ここで上記集電体としては、例えば、アルミニウム箔、ステンレ ス鋼箔、ニッケル箔等を用いることが好ましい。

[0040]

一方、負極の活物質としては、例えばリチウムイオンを吸蔵・放出する炭素物質やカルコゲン化合物を含む物質や軽金属から成る活物質を使用することができる。特にリチウムイオンを吸蔵・放出する炭素物質またはカルコゲン化合物を含む負極を使用することにより、二次電池のサイクル寿命などの電池特性が向上するため、特に好ましい。

[0041]

ここで上記リチウムイオンを吸蔵・放出する炭素物質としては、例えばコークス、炭酸繊維、熱分解気相炭素物質、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維(MCF)またはメソフェーズ球状カーボンの焼成体等が使用される。特に、重質油を温度2500℃以上で黒鉛化した液晶状のメソフェーズピッチ系炭素繊維、メソフェーズ球状カーボンを用いることにより、電池の電極容量を高めることができる。

[0042]

また前記炭素物質は、特に示差熱分析で700 C以上に、より好ましくは80 0 C以上に発熱ピークを有し、X線回折(XRD)による黒鉛構造の(101) 回折ピーク(P_{101})と(100)回折ピーク(P_{100})との強度比 P_{10} 0 $1/P_{100}$ が0. 7~2. 2の範囲内にあることが望ましい。このような回折ピークの強度比を有する炭素物質を含む負極は、リチウムイオンの急速な吸蔵・放出が可能であるため、特に急速充放電を指向する前記正極活物質を含む正極との組合せが有効である。

[0043]

さらに前記リチウムイオンを吸蔵・放出するカルコゲン化合物としては、二硫化チタン(TiS_2)、二硫化モリブデン(MoS_2)、セレン化ニオブ($NbSe_2$)等を使用することができる。このようなカルコゲン化合物を負極に用いると、二次電池の電圧は低下するものの負極の容量が増加するため、二次電池の容量が向上する。さらに負極内でのリチウムイオンの拡散速度が大きくなるため、特に本発明で使用する正極活物質との組合せが有効である。

[0044]

また、負極に用いる軽金属としては、アルミニウム, アルミニウム合金, マグネシウム合金, リチウム金属, リチウム合金などが例示できる。

[0045]

さらに、リチウムイオンを吸蔵・放出する活物質を含む負極は、例えば前記負極活物質および結着剤を適当な溶媒に懸濁し、この懸濁物を集電体に塗布し、乾燥した後にプレス圧着することにより製作される。上記集電体としては、例えば銅箔、ステンレス箔、ニッケル箔などから形成したものを用いる。またバインダーとしては例えばポリテトラフルオロエチレン(PTFE)、ポリふっ化ビニリデン(PVDF)、エチレンープロピレンージエン共重合体(EPDM)、スチレンーブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を使用することができる。

[0046]

また上記セパレータは、例えば合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等から形成される。

[0047]

非水電解液としては、非水溶媒に電解質(リチウム塩)を溶解させた溶液が使用される。

[0048]

非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネートやジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)等の鎖状カ

ーボネートやジメトキシエタン(DME)、ジエトキシエタン(DEE)、エトキシメトキシエタン等の鎖状エーテルやテトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-Me THF)等の環状エーテルやクラウンエーテル、 $\gamma-$ ブチロラクトン($\gamma-$ BL)等の脂肪酸エステルやアセトニトリル(AN)等の窒素化合物やスルホラン(SL)やジメチルスルホキシド(DMSO)等の硫化物を例示できる。

[0049]

上記非水溶媒は単独で使用しても、2種以上混合した混合溶媒として使用してもよい。特に、EC、PC、 $\gamma-BL$ から選ばれる少なくとも1種からなる物や、EC、PC、 $\gamma-BL$ から選ばれる少なくとも1種とDMC、MEC、DEC、DME、DEE、THF, 2-MeTHF、ANから選ばれる少なくとも1種とからなる混合溶媒を用いることが望ましい。

[0050]

また、負極に前記リチウムイオンを吸蔵・放出する炭素物質を含む負極活物質を用いる場合に、負極を備える二次電池のサイクル寿命を向上させる観点から、 ECとPCとγ-BL、ECとPCとMEC、ECとPCとDEC、ECとPC とDEE、ECとAN、ECとMEC、PCとDMC、PCとDEC、またはE CとDECとからなる混合溶媒を用いることが特に好ましい。

[0051]

電解液としては、例えば過塩素酸リチウム(LiClO $_4$)、六ふっ化リン酸リチウム(LiPF $_6$)、ほうふっ化リチウム(LiBF $_4$)、六ふっ化砒素リチウム(LiAsF $_6$)、トリフルオロメタスルフォン酸リチウム(LiCF $_3$ SO $_3$)、ビストリフルオロメチルスルフォニルイミドリチウム [LiN (CF $_3$ SO $_2$) $_2$] 等のリチウム塩が例示できる。特に、LiPF $_6$ 、LiBF $_4$ 、LiN (CF $_3$ SO $_2$) $_2$ を用いると導電性や安全性が向上するため望ましい。さらにLiBF $_4$ を含有する系は正極活物質の表面を保護する機能を有するため、特に好ましい。

[0052]

これらの電解液の非水溶媒に対する溶解量は0.1~3.0モル/1の範囲に

[0053]

上記構成に係る正極活物質およびそれを用いた非水電解液二次電池によれば、 母体活物質表面にSiO₂, Al₂O₃, SnO₂などの特定の酸化物粒子を付 着させて正極活物質としているため、活物質相互間の摩擦力が大幅に減少して流 動性が高まり、高圧力での圧延操作により、従来より高密度な正極膜が得られ、 結果的に充放電特性および容量に優れた二次電池を実現することが可能になる。

[0054]

【発明の実施の形態】

次に本発明の実施形態について以下に示す実施例を参照して、より具体的に説明する。なお、本発明は下記の実施例に限定されるものではなく、本発明の要旨および請求の範囲に記載された要素によって規定される範囲を逸脱しない範囲において適宜変更して実施することができる。

[0055]

実施例1~13および比較例1~4

下記に示すような手順に従って、図1に示すような各実施例および比較例に係る非水電解液二次電池(リチウムイオン二次電池)を作製し、その特性を比較評価した。

[0056]

[正極活物質の調製]

実施例 $1\sim9$ として表1左欄に示す組成となるように酸化コバルト粉末,炭酸リチウム粉末等を配合して原料混合体を調製し、この原料混合体を空気雰囲気中で温度900℃で5時間焼成することにより母体活物質となる複合酸化物を合成した。得られた複合酸化物を $CuK\alpha$ 線による粉末X線回折法により測定したところ、 $LiCoO_2$ の回折パターンとほぼ一致した。

[0057]

一方、実施例10~11として表1左欄に示す組成となるように水酸化ニッケ

[0058]

一方、実施例12として表1左欄に示す組成となるように水酸化ニッケル,酸化コバルト粉末,炭酸リチウム粉末等を配合して原料混合体を調製し、この原料混合体を酸素雰囲気中で温度700℃で10時間焼成することにより母体活物質となる複合酸化物を合成した。得られた複合酸化物を $CuK\alpha$ 線による粉末X線回折法により測定したところ、 $LiNi_{0.8Co0.2}^{O}$ 00回折パターンとほぼ一致した。

[0059]

一方、実施例13として表1左欄に示す組成となるように酸化マンガン粉末,水酸化リチウム粉末等を配合して原料混合体を調製し、この原料混合体を空気雰囲気中で温度800℃で10時間焼成することにより母体活物質となる複合酸化物を合成した。得られた複合酸化物を $CuK\alpha$ 線による粉末X線回折法により測定したところ、 $LiMn_2O_A$ の回折パターンとほぼ一致した。

[0060]

この複合酸化物を純水中に分散せしめて活物質分散液を調製する一方、表1に示す平均粒径を有する各酸化物粒子を分散させて各種酸化物分散液を調製した。次に、活物質分散液に対して表1に示す付着量となるように酸化物分散液を投入し、均一に混合した各分散液を調製した後に、各分散液を濃縮乾燥させることにより、母体活物質粒子表面に酸化物粒子が付着した各実施例に係る正極活物質を製造した。

[0061]

一方、平均粒径が50μmと粗大な酸化物粒子(SiO₂)を2.5質量%付着させた点以外は実施例1と同様に処理して比較例1に係る正極活物質を調製した。

[0062]

[0063]

また、前記実施例12において調製した母体活物質に酸化物粒子を付着させないままの正極活物質を比較例3に係る正極活物質として用意した。

[0064]

一方、平均粒径が2μmと粗大な酸化物粒子(SiO₂)を付着させた点以外は実施例1と同様に処理して比較例4に係る正極活物質を調製した。

[0065]

得られた各正極物質を走査型電子顕微鏡(SEM)を用いて観察した結果を図2および図3に示す。図2は酸化物粒子を付着させていない比較例2に係る正極活物質の粒子構造を示しており、母体活物質表面に活物質自身の2~3の破片が付着している状態が示されている。

[0066]

一方、図3は実施例1に係る正極活物質の粒子構造を示すものであり、平均粒径が0.08 μ mの微細な SiO_2 酸化物粒子が $LiCoO_2$ 活物質粒子表面に均一に付着している状態が確認できる。

[0067]

[正極電極の作製]

次に、得られた各複合酸化物を正極活物質として用い、この正極活物質90質量%と導電剤としてグラファイト6質量%と結着剤としてポリフッ化ビニリデン4質量%とを混合して正極合剤を調製した。この正極合剤をNーメチルー2ーピロリドンに分散させてスラリー状とし、これをアルミニウム箔に塗布し、乾燥させた。これをローラープレス機で圧縮成形した。得られた圧縮成形体を所定のサイズに裁断することによって、シート状の正極12を得た。

[0068]

[負極の作製]

次に、炭素材料93質量%と結着剤としてポリフッ化ビニリデン7質量%とを 混合して負極合剤を調製した。この負極合剤を用いる以外は、正極と同様にして

シート状の負極11を作製した。

[0069]

[正電極膜密度の測定]

上記のように調製した各実施例および比較例用の正極12において、電極膜の密度および活物質の密度を測定した。上記電極膜密度は、電極膜の体積に対する電極膜の重量の比として測定した。また、活物質密度は電極膜の体積に対する電極膜内に含有されるLiCoO₂, LiNiO₂などのLi含有遷移金属複合酸化物(母体活物質)の重量の比として測定した。測定結果を表1に示す。

[0070]

「電池の組立]

上記のように調製した負極11と各正極12とを使用して図1に示す構造を有する各実施例および比較例に係る非水電解液二次電池としてのリチウムイオン二次電池10をそれぞれ作製した。

[0071]

すなわち、各リチウムイオン二次電池10において、ステンレスからなる有底 円筒状の電池容器14は底部に絶縁体18が配置されている。電極群15は、前 記電池容器14に収納されている。前記電極群15は、正極12、セパレータ1 3および負極11をこの順序で積層した帯状物を前記負極11が外側に位置する ように渦巻き状に巻回した構造に形成されている。上記電極群15を構成する正 極12および負極11の長さは、電池容器14に収納可能な最大の長さとする。 すなわち、使用する電池容器で得られる最大の容量が得られるように電極の長さ を設定する。これにより、活物質密度が高い電極膜を正極に用いた電池において 、大きな放電容量が得られる。

[0072]

前記セパレータ13は例えば不織布、ポリプロピレン多孔質フィルムから形成される。前記電池容器14内には、電解液が収容されている。中央部が開口された絶縁封口板19は、前記電池容器14の上部開口部に配置され、かつ上部開口部付近を内部にかしめ加工することにより前記絶縁封口板19は電池容器14に液密に固定されている。正極端子20は、前記絶縁封口板19の中央に嵌め合さ

れている。正極リード17の一端は、前記正極12に、他端は前記正極端子20 にそれぞれ接続されている。前記負極11は、図示しない負極リードを介して負 極端子である電池容器14に接続されている。

[0073]

[電池の評価]

上記のように調製した各実施例および比較例に係るリチウムイオン二次電池について、下記に示すような手順で放電レート特性を測定した。すなわち、放電電流値は、1 Cと4 Cの二通りとし、1 Cでの放電容量Cap(1C)と4 Cでの放電容量Cap(4C)の比を測定した。なお、Cは放電率で、時間率(h)の逆数、つまりC=1/hで表される。なお基準放電電流は、公称容量を定めた時間率(h)で除したものであり、例えば、1 Cは、公称容量を1 時間で放電させるための放電率である。ここでは、便宜的に、1 時間で放電を終了する放電電流を1 Cとした。よって、4 Cは1 Cの放電電流の4 倍の電流値である。各電池の放電レート特性の測定結果を下記表1 に示す。

[0074]

		ħ	着酸化物	粒子	· · · · · · · · · · · · · · · · · · ·	# 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 5 5	放電レート特性
試料Na	母体活物質組成	在新	平均粒径	付着量	画家教的政	后刻其的及 /-/-3/	电记分图/12/12/12/13/13/13/13/13/13/13/13/13/13/13/13/13/	Cap(4C)/Cap(1C)
	1	恒 規	(µm)	(質量%)	(R / C III)	(g/ cm)	(mAm)	(%)
実施例 1	LiCoO ₂	SiO_2	80.0	0.01	3.6	3.2	1820	8.5
実施例 2	LiCoO ₂	A1203	90.0	0.01	3.4	3. 1	1740	8 0
実施例 3	LiCoO ₂	SnO_2	0.08	9.0.0	3. 4	3. 2	1810	8 2
実施例 4	LiCoO ₂	TiO_2	0.04	800.0	3.5	3.3	1830	8 0
実施例 5	LiCoO ₂	MgO	90.0	0.01	3.3	3. 1	1750	8 1
実施例 6.	LiCoO ₂	ZrO_2	0.005	0.02	3.5	3.3	1860	83
実施例 7	LiCoO ₂	Fe ₂ O ₃	0.05	0.03	3.5	3.3	1850	8 4
実施例 8	LiCoO ₂	SiO_2	1.0	0.01	3.3	2.9	1630	8 0
実施例 9	LiCoO ₂	SiO_2	0.05	2.1	3.4	က	1690	65
実施例10	LiNiO ₂	SiO_2	90.0	0.01	3.3	3. 1	2050	8 5
実施例11	$LiNiO_2$	A1203	0.05	0.01	3.3	3. 1	2040	8 4
実施例12	LiNi _{0.8} Co _{0.2} O ₂	SiO_2	0.04	0.008	3.6	3.2	2080	8 4
実施例13	LiMn204	SiO_2	0.02	0.05	3.5	3. 1	1420	8 0
比較例 1	LiCoO ₂ .	SiO_2	0 9	2.5	3.4	2.8	1575	4 0
比較例 2	LiCoO ₂	なし	1		3.2	2.9	1630	7.5
比較例 3	LiNi _{0, 8} Co _{0, 2} O ₂	なし	1		3	2.8	1600	7.4
比較例 4	LiCoO ₂	SiO_2		0.01	3.4	2.8	1610	7.0

[0075]

上記表1に示す結果から明らかなように、正極活物質母体表面に、所定量の酸

[0076]

また、酸化物粒子は絶縁体であるが、その付着量が適正な範囲であれば、電極中の導電パスが十分に確保されるため、酸化物粒子の添加によるインピーダンスの増加を招くことは少ない。さらに酸化物粒子の付着によって正極活物質の流動性が高まり、圧延操作によって均一な膜組織が得られ、電極膜密度が均一化し、電極膜全体のインピーダンスが低下するため、酸化物粒子を付着しないものと比較して、電池の放電レート特性が改善されることが判明した。

[0077]

一方、実施例9および比較例1に示すように酸化物粒子の付着量が2質量%を越えるように過大になると、絶縁体としての酸化物粒子がLiイオンの移動の際の障壁となり、導電パスが十分に確保されないため、インピーダンスの上昇を招き、放電レート特性が悪化することが判明した。

[0078]

【発明の効果】

以上説明の通り、本発明に係る正極活物質および非水電解液二次電池によれば、母体活物質表面にSiO₂, Al₂O₃, SnO₂などの酸化物粒子を付着させて正極活物質としているため、活物質相互間の摩擦力が大幅に減少して流動性が高まり、高圧力での圧延操作により、従来より高密度な正極膜が得られ、結果的に充放電特性および容量に優れた二次電池を実現することが可能になる。

【図面の簡単な説明】

【図1】

本発明に係る非水電解液二次電池としてのリチウムイオン二次電池の構造を示す断面図。

【図2】

特2000-399229

酸化物粒子を付着させる前の母体活物質の微細構造を示す、走査型電子顕微鏡(SEM)による説明図。

【図3】

母体活物質表面に酸化物粒子を付着させた本発明に係る正極活物質の一実施例 を示す、走査型電子顕微鏡(SEM)による説明図。

【符号の説明】

- 10 非水電解液二次電池(リチウムイオン二次電池)
- 11 負極
- 12 正極
- 13 セパレータ
- 14 電池容器
- 15 電極群
- 16 絶縁紙
- 17 正極リード
- 18 絶縁体
- 19 絶縁封口板
- 20 正極端子

【図1】

【図2】

酸化物粒子 付着前

【図3】

酸化物粒子(SiO2, 平均粒径80nm) 付着後

【要約】

【課題】正極への充填密度を高めることが可能であり、電極のインピーダンスを 低下させて電池の放電レート特性を向上させることが可能な正極活物質および非 水電解液二次電池を提供する。

【解決手段】母体活物質表面に、平均粒径が1μm以下の酸化物粒子が付着していることを特徴とする正極活物質である。また、前記母体活物質表面に付着している酸化物粒子の質量が前記母体活物質の質量の0.001~2%であることが好ましい。

【選択図】 図1

出願人履歴情報

識別番号

[000003078]

1. 変更年月日 1990年 8月22日

[変更理由] 新規登録

住 所 神奈川県川崎市幸区堀川町72番地

氏 名 株式会社東芝

2. 変更年月日 2001年 7月 2日

[変更理由] 住所変更

住 所 東京都港区芝浦一丁目1番1号

氏 名 株式会社東芝

出願人履歴情報

識別番号

[000221339]

1. 変更年月日

2000年12月 4日

[変更理由]

住所変更

住 所

神奈川県横浜市磯子区新杉田町8番地

氏 名

東芝電子エンジニアリング株式会社