ALY-6050 MOD 5 - Lab I

- (i) Linear Algebraic Modeling of LP Problems
 - (ii) R & Excel Solutions of LP Formulations

In this lab, we will first formulate a given linear programming problem using linear algebra. Furthermore, we will obtain solutions by using both Excel and R.

Matrix Forms:

- **Maximization Problems:** (i) Maximize $\mathbf{Z} = \mathbf{c}^{\mathsf{T}} \mathbf{x}$
 - Subject to: $Ax \leq b$

(ii) **Minimization Problems:**

> Minimize $\mathbf{Z} = \mathbf{c}^{\mathrm{T}}\mathbf{x}$ Subject to: $Ax \ge b$

Problem:

Suppose that a manufacturer makes 3 products. Let x_1, x_2 , and x_3 denote the number of units of each type respectiveely. The model is described by the following formulation:

Maximize $Z = 20x_1 + 30x_2 + 40x_3$

Subject to:

Constraint I: $x_1 + x_2 + x_3 \le 1000$

Constraint 2: $3x_1 + 5x_2 + 8x_3 \le 5000$

Constraint 2: $3x_1 + 3x_2 + 6x_3 \le 3000$ Constraint 3: $x_1 \le 0.4(x_1 + x_2 + x_3) \rightarrow 0.6x_1 - 0.4x_2 - 0.4x_3 \le 0$ Constraint 4: $x_3 \ge 250 \rightarrow -x_3 \le -250 \rightarrow 0x_1 + 0x_2 - x_3 \le -250$ Constraint 5: $x_1 \ge 0 \rightarrow -x_1 \le 0 \rightarrow -x_1 + 0x_2 + 0x_3 \le 0$ Constraint 6: $x_2 \ge 0 \rightarrow -x_2 \le 0 \rightarrow 0x_1 - x_2 + 0x_3 \le 0$

Therefore, the decision variables vector \mathbf{x} , the objective vector \mathbf{c} , the constraints' matrix \mathbf{A} , and the vector \mathbf{b} of the constraints' right-hand sides are given by:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 20 \\ 30 \\ 40 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 8 \\ 0.6 & -0.4 & -0.4 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1000 \\ 5000 \\ 0 \\ -250 \\ 0 \\ 0 \end{bmatrix}$$

Task:

- 1. Formulate the above LP problem in Excel by using linear algebra and solve it by using the Solver.
- 2. Formulate and solve the above problem in R.