Disciplina:

SÉRIES TEMPORAIS

Professora: Patrícia de Sousa Ilambwetsi

Bacharel em Estatística pela UFOP

Mestre em Estatística pela UFV

Doutora em Estatística pela UFV

Especialista em Ciências de Dados e Big Data pela PUC Minas

Roteiro

Unidade 3 – Modelagem de Séries temporais Estacionárias

3.1 Modelo Autoregressivo e de Médias Móveis (ARMA)

- Componente autoregressivo (AR)
- Componente de médias móveis (MA)
- Estrutura do modelo ARMA
- Pressuposições
- Ajuste do modelo
- Refinamento do Modelo
- Previsão
- Vantagem
- Desvantagem

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

A modelagem de séries temporais pelo modelo autoregressivo e de médias móveis (ARMA) é uma técnica estatística amplamente utilizada para analisar e prever valores futuros com base em dados temporais passados.

O modelo ARMA combina dois componentes principais:

- ⇒ AR (Autoregressivo): modela a série temporal como uma combinação linear de seus valores defasados
- ⇒ MA (Média Móvel): modela a série temporal como uma média ponderada dos erros passados (resíduos).

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Componente Autoregressivo (AR)

Modela o valor atual da série como uma combinação linear de valores passados permitindo capturar dependências temporais, padrões de persistência e outras características dinâmicas na série.

Em um modelo AR de ordem p, o valor atual da série Y_t é explicado como uma soma ponderada dos p valores anteriores mais um termo de erro ε_t (ruído branco).

• A equação básica do modelo AR(p) é

$$Y_t = c + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-1} + \varepsilon_t$$

em que: Y_t o valor da série no tempo t; c é uma constante; ϕ_1, \cdots, ϕ_p coeficientes do modelo que medem a influência dos valores passados; ε_t termo de erro sem autocorrelação com média zero e variância constante (ruído branco) .

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Componente Autoregressivo (AR)

Interpretação do coeficiente ϕ : cada coeficiente ϕ_i mede a contribuição do valor defasado Y_{t-i} para o valor atual Y_t com $i=1,\ldots,p$

- Para ϕ_i positivo: altos valores de Y_{t-i} tendem a gerar altos valores para Y_t
- Para ϕ_i negativo: altos valores de Y_{t-1} tendem a gerar baixos valores para Y_t

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Componente Autoregressivo (AR)

Estruturas identificadas

Dependência Temporal: detecta e captura a dependência temporal nos dados, ou seja, a forma como os valores passados influenciam os valores futuros.

Padrões de Persistência: detecta padrões persistentes na série temporal.

Oscilações ou Ciclos: captura autocorrelação sazonal significativa, ou seja, oscilações de valores passados que correlacionam significativamente com os valores atuais

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Componente Autoregressivo (AR)

Exemplo Prático:

Imagine uma série temporal que mede as vendas diárias de um produto.

Suponha que as vendas de um dia estão fortemente correlacionadas com as vendas do dia anterior.

O modelo AR é capaz de capturar essa relação e fazer a previsão das vendas de hoje baseado nas altas vendas do dia anterior.

OBS: Em um modelo ARMA(1,0), se o coeficiente AR é 0,7, isso significa que 70% do valor atual da série é explicado pelo valor imediatamente anterior.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Componente Média Móvel (MA)

Modela a dependência entre o valor atual da série temporal e os erros (resíduos) das observações passadas.

Em um modelo MA ordem q, o valor atual da série Y_t é representado como uma média ponderada dos q erros passados (ou choques) mais um termo de erro ε_t .

• A equação básica do modelo MA(q) é

$$Y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$

em que: Y_t o valor da série no tempo t; c é uma constante; $\theta_1, \cdots, \theta_q$ coeficientes do modelo MA que que medem a influência dos erros passados sobre o valor atual; ε_t termo de erro no tempo t sem autocorrelação com média e variância zero (ruído branco); ε_{t-q} são os erros passados (ruído branco).

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Componente Média Móvel (MA)

Interpretação do coeficiente θ : cada coeficiente θ_i reflete o impacto que o erro ε_{t-i} no tempo t-i tem sobre o valor atual Y_t em que $i=1,\ldots,q$

- Para $heta_i$ positivo: indica que um erro positivo no período anterior tende a aumentar o valor atual de Y_t
- Para $heta_i$ negativo: indica que um erro positivo no período anterior tende a diminuir o valor atual de Y_t

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Componente Média Móvel (MA)

Estruturas identificadas

Efeito dos Choques Passados: captura a influência dos choques ou erros passados na série.

Ruído e Ajustes Futuros: ajusta flutuações permitindo que o modelo suavize o impacto dos erros passados nos valores atuais.

Oscilações de Curto Prazo: é eficaz na modelagem de oscilações de curto prazo e efeitos temporários que não persistem por muitos períodos, mas afetam a série de maneira significativa.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Componente Média Móvel (MA)

Exemplo Prático:

Suponha uma série temporal de preços de um produto.

Se uma notícia ou um evento inesperado fez o preço subir ontem, o modelo MA pode ajustar a influência desse erro na previsão de hoje.

OBS: Para ARMA(0,1), se o coeficiente MA é -0,5, isso significa que o valor atual da série é influenciado pelo erro do período anterior de maneira inversa, com o impacto do erro sendo reduzido em 50%.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Estrutura do Modelo ARMA

O modelo ARMA é a combinação do componente AR(p) e MA (q) denotado por:

$$Y_t = c + \sum_{i=1}^p \phi_i Y_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t$$

em que p é a ordem do componente autoregressivo (AR) e q é a ordem do componente de média móvel (MA).

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- ⇒ Pressuposições do Modelo ARMA
 - Estacionariedade: exige que a média, a variância e a autocorrelação sejam constantes ao longo do tempo.
 - **Implicações:** para série não estacionária, o modelo pode estimar parâmetros inconsistentes e previsões não confiáveis. Neste caso, aplicar a transformação de diferenciação na série.
 - Linearidade: assume uma relação linear entre os valores e erros passados com o valor atual da série
 - **Implicações**: relações não lineares, o modelo pode não capturar corretamente a dinâmica dos dados, resultando em previsões menos precisas.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- ⇒ Pressuposições do Modelo ARMA
 - Dependência Temporal: assume a existência de uma dependência temporal na série em que os valores passados influenciam os valores futuros.

Implicações: a dependência temporal não significativa invalida o modelo ARMA implicando no uso de um modelo mais simples como a média móvel simples

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Ajuste do Modelo ARMA

O ajuste de um modelo ARMA (AutoRegressive Moving Average) é fundamental na análise de séries temporais para capturar o comportamento dos dados e fazer previsões.

Etapas a seguir:

- 1) Verificação da Estacionariedade
- 2) Identificação do modelo
- 3) Estimação dos parâmetros
- 4) Validação do Modelo

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Ajuste do Modelo ARMA

1) Verificação Estacionariedade

Visualização gráfica: a estacionaridade no gráfico da série temporal no domínio do tempo implica que as propriedades estatísticas da série tais como: a média, a variância e a correlação, são constantes ao longo do tempo.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Ajuste do Modelo ARMA

1) Verificação Estacionariedade

Teste de Raiz Unitária: Testes como o Teste de Dickey-Fuller aumentado (ADF) são usados para verificar a presença de raiz unitária, o que indica não estacionariedade Hipóteses:

 H_0 : Presença de raiz unitária na série temporal indicando que a média dos dados não está estacionária.

 H_1 : Não presença de raiz unitária na série temporal indicando que a média dos dados está estacionária.

 $pvalor < \alpha$ (nível de significância de 5%) rejeita-se H_0

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Ajuste do Modelo ARMA

1) Verificação Estacionariedade

Transformações: para série não estacionária aplique transformações como diferenciação ou transformação logarítmica

Diferenciação: usada principalmente para remover tendências ou sazonalidades

Logarítmica: serve para estabilizar a variância e o crescimento exponencial da série ao

longo do tempo

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Ajuste do Modelo ARMA

2) Identificação do modelo

Consiste em identificar a estrutura do modelo, ou seja, conhecer os valores dos parâmetros p e q

Função de Autocorrelação (ACF)

A ACF mede a correlação entre a série temporal e suas defasagens. Picos significativos na ACF determinam a ordem do componente q do modelo MA

Função de Autocorrelação Parcial (PACF)

A PACF mede a correlação pontual entre a série e suas defasagens Picos significativos na PACF identificam a ordem do componente p do modelo AR

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- **⇒** Ajuste do Modelo ARMA
 - 2) Identificação do modelo
 - Definição do termo do Modelo Autoregressivo (AR)

ACF: Mostra um decaimento exponencial ou oscilatório

PACF: Exibe um corte abrupto após a primeira defasagem, indicando a presença de um único termo AR.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- **⇒** Ajuste do Modelo ARMA
 - 2) Identificação do modelo
 - Definição do termo do Modelos de Média Móveis (MA)

ACF: Exibe um corte abrupto após a primeira defasagem

PACF: Mostra um decaimento exponencial ou oscilatório, o que é esperado para modelos MA.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- **⇒** Ajuste do Modelo ARMA
 - 2) Identificação do modelo
 - Definição dos termos do Modelo Autoregressivo (AR) e de Média Móveis (MA)

ACF: Apresenta um padrão mais complexo, com decaimento menos pronunciado, devido à combinação dos termos AR e MA

PACF: exibe um padrão misto, sem corte abrupto, refletindo a interação dos componentes AR e MA

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- ⇒ Ajuste do Modelo ARMA
 - 3) Estimação dos parâmetros

Método de Máxima Verossimilhança

Estima valores para ϕ (parâmetros AR) e θ (parâmetros MA) que maximizam a função de verossimilhança da série temporal observada, ou seja, determinam parâmetros que descrevem as melhores suposições para o verdadeiro comportamento da série.

$$L(\theta|X) = \prod_{i=1}^n f(x_i|\theta)$$

sendo f() a função densidade de probabilidade

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Ajuste do Modelo ARMA

4) Validação do Modelo

Formas de validar a qualidade do modelo ajustado aos dados

- Critérios de Informação
- Análise dos Resíduos

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- ⇒ Ajuste do Modelo ARMA
 - 4) Validação do Modelo
 - Critérios de Informação

AIC (Akaike Information Criterion): é uma medida usada para comparar a qualidade do ajuste (quão bem o modelo se ajusta aos dados) quanto a complexidade de diferentes modelo (número de parâmetros).

$$AIC = 2k - 2\ln(L)$$

sendo k é o número de parâmetros e L a função de verossimilhança

Interpretação: o modelo com o menor valor de AIC é considerado o melhor.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- ⇒ Ajuste do Modelo ARMA
 - 4) Validação do Modelo
 - Critérios de Informação

BIC (Bayesian Information Criterion): considera a qualidade do ajuste e a complexidade do modelo, mas aplica uma penalização mais forte para modelos com mais parâmetros. É utilizado para grandes tamanhos de amostras.

$$BIC = \ln(n)k - 2\ln(L)$$

sendo K é o número de parâmetros, L a função de verossimilhança e n tamanho da amostra.

Interpretação: o modelo com o menor valor de BIC é considerado o melhor.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- **⇒** Ajuste do Modelo ARMA
 - 4) Validação do Modelo
 - Critérios de Informação

	AIC	BIC
Amostra	Pequena	Grande
Complexidade (evitar overfitting)	Penaliza menos	Penaliza mais
Objetivo	Previsão	Estrutura
Seleção	Modelo Complexo	Modelo Simples

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Ajuste do Modelo ARMA

4) Validação do Modelo

Resíduos: Diferença entre os valores observados e os valores ajustados pelo modelo

Análise dos Resíduos

Resíduos: Verificar se os resíduos do modelo ajustado se comportam como <u>ruído branco</u>

- Média zero
- Variância constante (Homoscedasticidade)
- Ausência de autocorrelação
- Normalidade dos resíduos (<u>não obrigatório</u>, mas importante para modelos lineares e muitos testes estatísticos)

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Ajuste do Modelo ARMA

4) Validação do Modelo

Análise dos Resíduos

Testes para verificar resíduos como Ruído Branco

Teste de Ljung-Box e gráfico ACF: verificar ausência autocorrelação nos resíduos

Teste Breusch-Pagan, White, ARCH, Gráfico resíduos vs tempo ou valores ajustados: verificar homoscedasticidade de variância nos resíduos

Teste Shapiro-Wilk, Grafico QQplot, Histograma: verificar normalidade dos resíduos

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- ⇒ Ajuste do Modelo ARMA
 - 4) Validação do Modelo
 - Análise dos Resíduos

Verificação Visual para analisar a autocorrelação

ACF/PACF dos Resíduos: as funções ACF e PACF dos resíduos devem mostrar que todas as autocorrelações estão dentro dos intervalos de confiança indicando que o modelo capturou bem a estrutura da série e efetuou um bom ajuste.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Refinamento do Modelo ARMA

- Considerando-se o Ajuste do modelo: se o modelo ARMA ajustado não mostrou-se adequado ao dados será necessário ajustar os valores de p e q ou verificar se a série precisa de mais diferenciações
- Considerando-se Modelos Alternativos: se o modelo ARMA não é suficiente, considere modelos mais complexos, como ARIMA (que inclui diferenciação) ou SARIMA (que inclui sazonalidade).

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Previsão de um Modelo ARMA

Com o modelo ajustado é possível gerar previsões futuras que devem ser acompanhadas de intervalos de confiança para indicar a incerteza das previsões

Compare as previsões com valores futuros observados para verificar a precisão do modelo.

Formas de fazer previsões

- Interpolação dos dados
- Extrapolação dos dados

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Previsão de um Modelo ARMA

Interpolação

As previsões são feitas para os pontos não observados <u>dentro do intervalo</u> dos dados observados ou a curto prazo

Dentro do intervalo as **previsões tendem a ser mais confiáveis** porque o modelo tem as informações sobre o comportamento dos dados observados

É importante para fornecer insights acurto prazo ou para um intervalo específico de interesse dentro do intervalo estudado

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Previsão de um Modelo ARMA

Razões pelas quais interpolações são valiosas:

1) Planejamento Operacional

Objetivo: envolve ajustar a produção ou otimizar estoques.

2) Controle e Ajustes de Processos

Objetivo: manter a consistência e a qualidade para decisões imediatas.

3) Identificação de Tendências e Padrões

Objetivo: entender comportamentos sazonais ou padrões de curto prazo que informam campanhas de marketing, promoções ou alocação de recursos.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Previsão de um Modelo ARMA

Razões pelas quais interpolações são valiosas:

4) Análise de Risco e Planejamento de Contingência

Objetivo: gerenciar riscos financeiros e aproveitar oportunidades de mercado a curto prazo, onde previsões precisas dentro do intervalo de observação são cruciais.

5) Validar Modelos e Hipóteses

Objetivo: testar a robustez de modelos antes de tentar usá-los para extrapolação.

6) Previsão de Séries com Mudanças Estruturais

Objetivo: tomar decisões antes de uma mudança esperada em que extrapolar seria arriscado devido à potencial quebra da estrutura da série.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Previsão de um Modelo ARMA

Prazos considerados seguros para interpolações:

Previsões de Curtíssimo Prazo

Segurança: Dias ou semanas

Contexto: Gestão de estoque, vendas diárias, demanda de energia

Previsões de Curto Prazo

Segurança: Algumas semanas a alguns meses

Contexto: Planejamento de produção, alocação de recursos sazonais,

previsões econômicas trimestrais

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Previsão de um Modelo ARMA

Prazos considerados seguros para interpolações:

Previsões de Médio Prazo

Segurança: Varia, mas geralmente até 6 meses

Contexto: Planejamento estratégico, orçamentos, campanhas de

marketing baseadas em ciclos sazonais

Previsões de Longo Prazo

Segurança: não consideradas "seguras" sem reavaliação do modelo

Contexto: Projeções de crescimento econômico, planejamento de grandes investimentos, estratégias de longo prazo em negócios

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Previsão de um Modelo ARMA

Extrapolação

As previsões são feitas para pontos além do intervalo dos dados observados, ou seja, para valores de tempo maiores do que aqueles em estudo.

Exemplo: Se você tem dados de vendas mensais de 2010 a 2020 e deseja prever as vendas para 2025, você estaria extrapolando.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Previsão de um Modelo ARMA

Como melhorar a Extrapolação:

- Incluir Variáveis Externas que influenciam a série temporal.
- Utilizar modelos não lineares como redes neurais, mistura de Gaussianas, etc.
- Atualização contínua do modelo a cada novos dados disponíveis.
- Avaliação do cenário pessimistas, otimistas, e neutros para entender a gama de possíveis resultados.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Previsão de um Modelo ARMA

Desafios da Extrapolação:

- 1) Maior incerteza: o modelo pode não capturar adequadamente novos padrões, mudanças de tendência, sazonalidades inesperadas ou eventos externos que influenciam a série após o intervalo observado
- 2) Suposições do Modelo: assumir que os padrões observados nos dados continuarão da mesma forma no futuro pode não ser verdade se houver mudanças estruturais na série (como mudanças no mercado, novas políticas, etc.)
- **3) Limitações dos Modelos:** fora do intervalo observado as suposições de linearidade e estacionariedade exigidos por alguns modelos em séries temporais podem não se manter, levando a previsões menos precisas.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Previsão de um Modelo ARMA

Indicadores de Segurança da Previsão

Erro de Previsão: monitorar o erro de previsão ao longo do tempo pode indicar até onde a previsão permanece precisa e calcular métricas como o RMSE (Root Mean Square Error) ou MAE (Mean Absolute Error) para avaliar essa precisão.

Intervalos de Confiança: previsões com intervalos de confiança muito amplos indicam maior incerteza, o que pode sinalizar que o horizonte de previsão seguro está sendo excedido

Reavaliação e Ajuste: reavaliar o modelo e ajustar as previsões à medida que novos dados se tornam disponíveis pode ajudar a estender o horizonte de previsão de forma mais segura

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Avaliar Erro de Previsão de um Modelo

RMSE (Root Mean Square Error) ou MAE (Mean Absolute Error)

São métricas usadas para avaliar o desempenho do modelo

• Erro quadrático médio (RMSE): avalia a média dos quadrados das diferenças entre os valores previstos e os valores reais.

$$RMSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

em que y_i são os valores observados da série original; \hat{y}_i valores previsto (estimado) pelo modelo; n número de observações

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Avaliar Erro de Previsão de um Modelo

Característica do Erro quadrático médio (RMSE)

- Sensibilidade a grandes erros: o RMSE penaliza mais fortemente grandes erros e, por isso, o torna mais sensível a outliers.
- **Diferenciação de modelos**: o RMSE amplifica os maiores erros apontando os modelos com pequenas e grandes falhas.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- ⇒ Avaliar Erro de Previsão de um Modelo ARMA
 - Erro médio absoluto (MAE): avalia a média das diferenças absolutas entre os valores previstos e os valores reais.

$$RMSE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

em que y_i são os valores observados da série original; \hat{y}_i valores previsto (estimado) pelo modelo; n número de observações

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

⇒ Avaliar Erro de Previsão de um Modelo

Característica do Erro médio absoluto (MAE)

- Interpretação Intuitiva: interpretação direta por medir a média dos erros em termos das unidades originais das observações.
- Robustez a Outliers: é menos sensível a grandes erros ou outliers em comparação com o MSE.

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- ⇒ Vantagem do Modelo ARMA
 - Simplicidade e eficiência: é relativamente simples de implementar e entender, o que o torna uma boa escolha para modelar séries temporais estacionárias de tamanho moderado.
 - Capacidade de capturar dependências temporais: consegue capturar dependências temporais complexas na série de dados permitindo previsões mais precisas
 - Aplicabilidade ampla: pode ser usado em diversas áreas tais como economia, finanças, meteorologia e controle de qualidade desde que os dados sejam estacionários e apresentem dependências temporais.
 - **Diagnóstico e ajuste fáceis**: função de autocorrelação (ACF) e a função de autocorrelação parcial (PACF) facilitam a identificação das ordens p e q do modelo e a verificação dos resíduos permite um diagnóstico relativamente simples

3.1 Modelo Autoregressivo de Média Móvel (ARMA)

- ⇒ Desvantagem do Modelo ARMA
 - Limitação a Séries Estacionárias: é adequado somente para séries temporais estacionárias em que a média e a variância são constantes ao longo do tempo.
 - Sensibilidade a Outliers: por ser sensível a outliers (valores atípicos) a estimação dos parâmetros podem distorcer-se afetando a precisão das previsões.
 - Limitações na Captura de Padrões Não Lineares: é um modelo linear e pode não ser adequado para capturar padrões não lineares presentes na série temporal.

