METHOD OF MEASURING SPECTRAL DENSITY OF NOISE LEVEL AND NOISE COEFFICIENT OF FOUR-TERMINAL NETWORK

Patent number:

SU1327023

Publication date:

1987-07-30

Inventor:

IVLEV MIKHAIL A (SU); PAVLOVSKIJ OLEG P (SU);

PYATAEV VLADIMIR I (SU)

Applicant:

GO POLT I IM A A ZHDANOVA (SU)

Classification:

- internationai:

G01R29/26; G01R29/00; (IPC1-7): G01R29/26

- european:

Application number: SU19853987294 19851204 Priority number(s): SU19853987294 19851204

Report a data error here

Abstract not available for SU1327023

Data supplied from the esp@cenet database - Worldwide

(51)4 G O1 R 29/26

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3987294/24-21
- (22) 04.12.85
- (46) 30.07.87. Бюл. № 28
- (71) Горьковский политехнический институт им. А.А. Жданова
- (72) М.А.Ивлев, О.П.Павловский
- и В. И. Пятаев
- (53) 621.317.75 (088.8)
- (56) Аронов В.Л. и др. Испытания и исследования полупроводниковых приборов. М.: Высшая школа, 1975, с.228, рис.7.7.

Безруков А.В. Измерение шумов радиоприемных устройств. М.: Связь, 1971, с.20.

- (54) СПОСОБ ИЗМЕРЕНИЯ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ ИНТЕНСИВНОСТИ ШУМА И КОЭФ-ФИЛИЕНТА ПУМА ЧЕТЫРЕХПОЛЮСНИКА
- (57) Изобретение относится к области радиоизмерений. Цель повышение достовериости измерений спектральной плотности интенсивности шума и коэффициента шума четырехполюсников (ЧП), описывающих ЧП в условиях воздействия иа него полигармонического

рабочего сигиала с амплитудой одной из гармоник (Г) за пределами лииейиого участка амплитудной характеристики ЧП. Для ее достижения по способу измерения подают гармонический сигнал с уровнем мощности и частотой, равными заданным для рабочих условий наибольшей Г входного сигнала, выделяют узкополосную огибающую частоты выходного сигнала ЧП в определенном диапазоне и ее постоянную составляющую, измеряют их уровии, подают на ЧП амплитудио-модулированный сигнал с гармонической огибающей частоты и известной глубиной модуляции, измеряют глубину модуляции выходиого сигнала ЧП и определяют расчетно средние величины шумовых параметров, операции повторяют дважды, изменяя частоту, и рассчитывают величины спектральной плотиости интеисивности шума и коэффициента шума ЧП. В описаиии изобретения даны математические выражения для расчета указанных величин. 3 ил.

плотности нитенсивности шума и коэффициента шума полосовых активных четырехполюсников, например антенных усилителей и усилителей высокой частоты радиоприемных устройств, ламп бегущей волны, усилителей промежуточной частоты.

Цель нэобретення - повышение достоверности измерений спектральной плотности интенсивности шума и козфициента шума четырехполюсников, описывающих четырехполюсник в условиях воздействия на него полигармонического рабочего сигнала с амплитудой одной на гармоник за пределами линейного участка амплитудной характернстики четырехполюсника.

На фнг.1 представлена схема устройства для реализации способа измерения; на фиг.2 и 3 - соответственно спектральная характеристика испытательных сигналов и их огибающие в различные моменты времени.

Устройство для реализации способа содержит последовательно соединенные высокочастотный генератор !, амплитудный модулятор 2, исследуемый четырехполюсник 3, амплитудный детектор 4 и вольтметр 5 постоянного иапряжения, к выходу амплитудного детектора 4 подключен также селектняный вольтметр 6. Устройство содержит также ннзкочастотный генератор 7 и источник 8 напряжения постоянного тока, подключенные соответственно к первому и второму входам сумматора 9, выход которого подключен к управляющему входу ампднтудного модулятора 2.

Сущность способа можно пояснить на примере работы устройства для его реализации.

Вначале устанавливают частоту и мощность сигнала генератора 1 равными f_0 и 1,21 P_{8x} , где f_0 и P_{8y} — частота и мощность гармоники наиболь— 50 шего уровня полигармонического рабочего сигнала (фиг. 3). Уровень 1,21 P_{8x} устанавливают для обеспечення в дальнейших операциях формирования АМ-сигнала с гармонической огибающей с глубиной модуляции $m_{8x} = (0,05-0,1)$, а напряжение источника 8 постоянного тока — соответствующим уровню мощности выходного сигнала модулятора 2

Выходной сигнал четырехполюсника 3 детектируют по амплитуде с амплитудного детектора н далее нэмеряют уровень напряжения постоянной составляющей V_a продетектированного сигнала (с помощью вольтметра 5 постоянного напряжения) н уровень напряження V_с узкополосной составляющей ты F - продетектированного сигнала (с помощью селективного вольтметра 6). Вследствие неидельальности селективного вольтметра 6 он будет измерять средний уровень узкополосной составляющей в полосе частот П в окрестностн частоты F, что учитывается при определенин шумовых параметров.

Частота F должна лежать в пределах 4 F_r < F < f_{rp} (где F_r - абсолютная нестабильность частоты генератора 1; f_{гр} - наименьшая из двух вели-25 чин F_{макс} - f_{0 и f₁ - F_{мин}, F_{мин}и} **F**маке минимальная и максимальная частоты полосы пропускания исследуемого четырехполюсника , так как прн нарушенин левой части неравенства показания селективного вольтметра будут нскажаться фликкер-шумами геиератора 1 (фнг.2), а при нарушенин правой части неравенства измереиня будут проводнться за пределами полосы пропускання исследуемого четырехполюсника.

Затем, установив частоту сигнала генератора 7 равной F, устанавливают его уровень соответствующим глубине модуляцин АМ-сигиала на входе четырехполюсника, равной т_{ву}. При этом глубину амплитудной модуляции m _{вх} выбирают такой, чтобы в процессе изменення огнбающей АМ-сигнала четырехполюсник не выходил за пределы выбранного участка амплитудной характеристики. С другой стороны, уровень амплитуды огибающей АМ-сигнала должен существенно превосходить уровень амплитуды паразитной огибающей частоты F, возникающей за счет шумовых свойств четырехполюсника. Эти . требовання выполняются, еслн величина m_{g_X} лежит в пределах 0,05 $\leq m_{g_X} \leq 0$,1. 55 После этого с помощью селективного вольтметра б на частоте F нэмеряют амплитуду огибающей АМ-снгнала V, а с помощью вольтметра 5 постоянного напряжения измеряют постоянную

и_, после чего определяют глуонну амплитудной модуляции м_{вых} АМ-снгна- ля на выходе четырехполюсника, м_{вых} = V_V. Для рассматрнваемого устройства, реализующего предлагае- мый способ, коэффициент d есть ко- эффициент формы детекториой характеристики амплитудного детектора (так, для квадратичного детектора d = 2).

Затем средние на двух частотах $f_0 - F + f_0 + F$ величны указанных шумовых параметров определяют по формулам:

$$S_{K}(f_{0},F) = \frac{S_{K}(f_{0}-F)+S_{K}(f_{0}+F)}{2} =$$

$$= -\frac{V_{s}^{2}-P_{BX}-R}{m_{BX}}; \qquad (1)$$

$$(-\frac{m_{BM}}{m_{BX}})^{2} \prod V_{0}^{2} d^{2}$$

$$N(f_{0},F.) = -\frac{N(f_{0}-F)+N(f_{0}+F)}{2} =$$

$$= \frac{V_{s}^{2}-P_{BX}}{2kT\Pi(\frac{m_{BM}}{m_{AX}})^{2}} V_{0}^{2} d^{2}. \qquad (2)$$

Затем описанные операции повторяют дважды, установив частоту генератора 7 равной $-\frac{F}{2}$, а частоту генератора 1 равной $f_0 = -\frac{F}{2}$ — первый раз и $f_0 + -\frac{F}{2}$ — второй раз, и определяют по формулам (1) и (2) средние зиачения указанных шумовых параметров соответственио на частотах $f_0 = -\frac{F}{2}$ — и f_0 и частотах f_0 и $f_0 + -\frac{F}{2}$ —.

После этого величины спектральной плотиости интеисивности шума и коэффициента шума четырехполюсника, описывающие четырехполюсник на частоте f_0 - F и частоте f_0 + F, определяют по формулам:

$$S_{K}(f_{o}+F) = S_{K}(f_{o},F) + S_{K}(f_{o}+\frac{F}{2}-;\frac{F}{2}-);$$

$$\frac{F}{2}-) - S_{K}(f_{o}-\frac{F}{2}-;-\frac{F}{2}-);$$

$$S_{K}(f_{o}-F) = S_{K}(f_{o},F) - S_{K}(f_{o}+\frac{F}{2}-;\frac{F}{2}-)+\frac{F}{2}-;\frac{F}{2}-)+\frac{F}{2}-;\frac{F}{2}-);$$

$$(3)$$

$$N(f_{o}+F) = N(f_{o},F) + N(f_{o}+\frac{F}{2}-;\frac{F}{2}-)-\frac{F}{2}-;\frac{F}{2}-;\frac{F}{2}-)-\frac{F}{2}-\frac{F}{2}-;$$

+
$$N(f_6 - -\frac{F}{2} -; -\frac{F}{2} -)$$
. (4)

Формула изобретения

Способ нэмерения спектральной плотности интенсивиости шума и коэффициента шума четырехполюсника, в соответствин с которым воздействуют на исследуемый четырехполюсник немодулированным сигналом, выделяют узко полосный сигнал и измеряют его урон вень, отличающийся что, с целью повышения достоверности нэмерений указаниых параметров, описывающих четырехполюсник в условиях возпействия на него полигармонического рабочего сигнала с амплитудой одной из гармоник за пределами линейного участка амплитудной характеристики четырехполюсиика, на него подают гармоиический сигнал с уровнем мощности P_{ax} и частотой f_a , равньми заданным для рабочих условий величинам мощности и частоты нанбольшей гармоники входного сигнала, выделяют узкополосную огибающую частоты F выходного сигнала четырехполюсника в диапазоне 4 F_r < F < f_{rp} (где F_r - абсолютная нестабильность частоты гармонического сигиала; f - иаименьшая из двух величин Раско - fo и fo - F ин ; F ин и F икс- минимальная и максимальная частоты полосы пропускания четырехполюсника и постояиную составляющую огибающей выходиого сигиала четырехполюсиика и измеряют их уровни V_в и V_о, затем подают иа четырехполюсник амплитудно-модулированиый сигнал с гармонической огибающей частоты F и известиой глубиной модуляции тых и измеряют глубину модуляции п выходного сигнала четырехполюсиика, после чего средиие на двух частотах for F и fp+ F величины указаиных шумовых параметров определяются по формулам:

$$S_{K}(f_{o},F) = \underbrace{S_{K}(f_{Q}-F) + S_{K}(f_{Q}+F)}_{2} = \underbrace{V_{F}^{2} - P_{BX} R}_{(m_{\delta biy}/m_{By})^{2} \Pi V_{o}^{2} d^{2}};$$

$$N(f_{o},F) = \underbrace{N(f_{Q}-F) + N(f_{O}+F)}_{2} = \underbrace{V_{F}^{2} - P_{BX}}_{2kT(m_{\delta bix}/m_{Bx})^{2} \Pi V_{o}^{2} d^{2}};$$

рекполюсника;

V_F - уровень уэкополосной огибающей частоты F, измеряемый прибором с полосой пропускания П;

k и Т - постоянная Больцмана и абсолютная температура входного сопротивления четырехполюсника;

 коэффициент, учитывающий амплитудные искажения выделяемой узкополосиой огибающей частоты F.

затем указанные операции повторяют два раза, сменив частоту F на F/2,

а частоту f_{o} на $f_{o} - -\frac{r}{2} - -$ первый раз и на $f_{o} + -\frac{F}{2} - -$ второй раз, определятот по указаиным формулам соответствению величины:

$$S_{K}(f_{0} - \frac{F}{2} -; \frac{F}{2} -), N(f_{0} - \frac{F}{2} -; -\frac{F}{2} -)$$

$$s_{k}(f_{o} + -\frac{F}{2}-; -\frac{F}{2}-), N(f_{o} + -\frac{F}{2}-; -\frac{F}{2}-),$$

после чего величины спектральной плотности интенсивности шума и коэффициента шума четырехполюсника, описывающие четырехполюсник на частоте f₀ - F и частоте f₀ + F, определяются по формулам:

$$S_{k}(f_{0} \pm F) = S_{k}(f_{0}, F) \pm S_{k}(f_{0} + -\frac{F}{2} -; -\frac{F}{2} -) \mp S_{k}(f_{0} - \frac{F}{2} -; -\frac{F}{2} -),$$

$$N(f_{0} \pm F) = N(f_{0}, F) \pm N(f_{0} + -\frac{F}{2} -; -\frac{F}{2} -) \mp S(f_{0} - -\frac{F}{2} -; -\frac{F}{2} -).$$

₽ut.1

Составитель Н.Михалев

Редактор М.Петрова

Техред В. Кадар,

Корректор В.Бутяга

Заказ 3384/41

Тираж 730

Поличенов

ВНИИПИ Государственного комитета СССР

по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д.4/5

Производственно-полиграфическое предприятие, г.Ужгород, ул. Проектная, 4

86-175478/27 ± SU 1195-402-A SHER/ * V04 Coaxial to micro-strip lines adaptor · has coaxial connector central conductor central part made from metal tape

SHERMAREVICH V G 11.06.84-SU-753522

W02 (30.11.85) H01p-05/08

11.06.84 as 753522 (138AK)

The central conductor (5) of the coaxial connector (4) is made from a current conducting spring, and its centre part (9) is a metal tape enclosed by an elastic current conducting cylinder (10), to ensure a continuity of wave impedance of the coaxial connector.

The reliable contact between the dielectric substrate (2) and the connector (4) metal base (1) is achieved by a block (7), which presses the substrate (2) to the base (1) projection (6) by a screw (8) at an acute angle. The screw is hinged on an axle (11) to provide its selfadjusting positioning against the block (7). The micro-strip (3) on the dielectric substrate (2) engages the connector (4) central conductor (5).

USE/ADVANTAGE - In measuring equipment. Reliable contact is

achieved. Bul.44/30.11.85. (3pp Dwg.No.2/2)

V4-A9 V4-M1 N86-131079

© 1986 DERWENT PUBLICATIONS LTD. 128, Theobalds Road, London WC1X 8RP, England US Office: Derwent Inc. Suite 500, 6845 Elm St. McLean, VA 22101 Unauthorised copying of this abstract not permitted.

(19) SU (11) 1195402 A

(51) 4 H O1 P 5/08

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

(21) 3753522/24-09

(22) 11.06.84

(46) 30.11.85.Бюл.№ 44

(72) В.Г.Шермаревич, В.М.Башпаков н В.В.Корзенков

(53) 621.372.833 (088.8)

(56) Справочник по расчету и конструированию СВЧ полосковых устройств. Под ред. В.И.Вольмана. М.; Радио и связь 1982, с.207, рис.4.60.

Патент США № 3662318, кл. 333-21, 1972.

(54)(57) РАЗЪЕМНЫЙ КОАКСИАЛЬНО-МИКРО-ПОЛОСКОВЫЙ ПЕРЕХОД, содержащий металлическое основание, диэлектрическую подложку, на одной стороне которой нанесей токонесущий проводник, и коаксиальный разъем, центральный проводник которого выполнен пружинным и подключен к токонесущему про-

воднику, при этом диэлектрическая подложка прижата к выступам металлического основания, расположенным со стороны токонесущего проводника, металлическим сухарем посредством винта, закрепленного в металлическом основанин, отличающийся тем, что, с целью повышения надежности контактирования, средняя часть центрального проводника выполнена нз металлической ленты, заключениой в цилиндрическую эластичную проводящую оболочку, закрепленную на концевых частях центрального проводника, а винт закреплен шарнирно на оси, расположенной параллельно плоскости диэлектрической подложки и перпендикулярно центральному проводнику, при этом ось виита образует с плоскостью диэлектрической подложки острый угол.

SU ... 1195402

Изобретение относится к технике сверхвысоких частот н может быть нс-пользовано в измернтельной аппаратуре микрополосковых трактов.

Целью изобретения является повышение надежности контактирования.

На фиг.1 показан разъемный коаксиально-микрополосковый переход, аксонометрия; на фиг.2 - то же, разрез вдоль продольной оси.

Разъемный коаксиальио-микрополосковый переход содержит металлическое основание і, дизлектрическую подложку 2, на одной стороне которой нанесен токонесущий проводник 3, 15 и коаксиальный разъем 4, центральный проводник 5 которого выполнен пружинным и подключен к токонесущему проводнику 3, при этом диэлектрическая подложка 2 прижата к выступам 6 металлического основания 1. расположенным со стороны токонесушего проводника 3, металлическим сухарем 7 посредством винта 8, закрепленного в металлическом основании 1. Средняя часть центрального проводника 5 выполнена на металлической ленты 9, заключенной в цилиндрическую эластичную проводящую оболочку 10, закрепленную на концевых частях центрального проводника 5. а винт 8 закреплен шаринрио на оси 11, расположенной параллельно плоскости диэлектрической подложки 2 н перпендикулярно центральному 35 проводнику 5, при этом ось 12 винта 8 образует с плоскостью диэлектрической подложки 2 острый угол d.

Разъемный коаксиально-микрополосковый переход работает следующим образом.

Сверхвысокочастотный сигнал, поступающий, например, на коаксиальный разъем 4, передается на токонесущий проводник 3 при условии 45 обеспечения хороших электрических контактов между токонесущим проводником 3 и центральным проводником 5 и между стороной диэлектрической подложки 2, противоположной токонесущему проводнику 3, и металлическим основанием 1.

Надежный электрический контакт между токонесущим проводником 3 и центральным проводником 5 обеспечивается за счет выполиения средней части центрального проводника 5 из металлической леиты 9, что придает ему хорошие пружинящие свойства. Заключение металлической ленты 9 в цилиндрическую эластичную проводящую оболочку 10, закреплениую на концевых частях центрального проводника 5, обеспечивает постоянство волиового сопротивления в коакснальном разъеме 4 и, следовательно, хорошее согласование.

Надежный электрический контакт между диэлектрической подложкой 2 и металлическим основанием 1 осуществляется через сухарь 7, который прижимается к ним винтом 8. Благодаря тому, что ось 12 винта 8 образует с плоскостью диэлектрической подложки 2 острый угол, усилне прижима передается одиовременно с сухаря 7 на диэлектрическую подложку 2 и на металлическое основание 1. Шаринрное закрепление винта 8 на оси 11 обеспечивает надежность электрического и механического контактов между диэлектрической подложкой 2 и металлическим основаннем 1, при растягивающем усилии.

При растягиванни днэлектрической подложки 2 и металлического осиования 1 происходит заклинивание их, так как ось 12 винта 8 стремится установиться под большим углом к плоскости диэлектрической подложки 2, а расстояние между ней и концом винта 8 — умеиьшиться.

Pue.1

Puz. 2

ВНИИПИ Заказ 7421/56 Тираж 637 Подписное

Филиал ППП "Патент", г.Ужгород, ул.Проектная, 4

METHOD OF MEASURING SPECTRAL DENSITY OF NOISE LEVEL AND NOISE COEFFICIENT OF FOUR-TERMINAL NETWORK

Patent number:

SU1327023

Publication date:

1987-07-30

Inventor:

IVLEV MIKHAIL A (SU); PAVLOVSKIJ OLEG P (SU);

PYATAEV VLADIMIR I (SU)

Applicant:

GO POLT I IM A A ZHDANOVA (SU)

Classification:

- International:

G01R29/26; G01R29/00; (IPC1-7): G01R29/26

- european:

Application number: SU19853987294 19851204 Priority number(s): SU19853987294 19851204

Report a data error here

Abstract not available for SU1327023

Data supplied from the esp@cenet database - Worldwide

(51)4 G OI R 29/26

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

13

SCECOIDS 112

S. J. G. W.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

- (21) 3987294/24-21
- (22) 04.12.85
- (46) 30.07.87. Бюл. № 28
- (71) Горьковский полнтехнический институт им.А.А.Жданова
- (72) М.А.Ивлев, О.П.Павловский
- и В. И. Пятаев
- (53) 621.317.75 (088.8)
- (56) Аронов В.Л. и др. Испытания и исследования полупроводниковых приборов. М.: Высшая школа, 1975, с.228, рис.7.7.

Безруков А.В. Измеренне шумов радиоприемиых устройств. М.: Связь, 1971, с.20.

- (54) СПОСОБ ИЗМЕРЕНИЯ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ ИНТЕНСИВНОСТИ ШУМА И КОЭФ-ФИЛИЕНТА ШУМА ЧЕТЫРЕХПОЛЮСНИКА
- (57) Изобретение относится к области радиоизмерений. Цель повышение достоверности измерений спектральной плотности интенсивности шума и коэффициента шума четырехполюсников (ЧП), описывающих ЧП в условиях воздействия на иего полигармонического

рабочего сигнала с амплитудой одной из гармоник (Г) за пределами линейного участка амплитудной характеристики ЧП. Для ее достижения по способу измерения подают гармонический снгнал с уровнем мощности и частотой, равными заданным для рабочих условий наибольшей Г входиого сигиала, выделяют узкополосную огибающую частоты выходного сигнала ЧП в определениом диапазоне и ее постоянную составляющую, немеряют их уровии, подают иа ЧП амплитудно-модулированный сигнал с гармонической огибающей частоты и нэвестной глубиной модуляции, измеряют глубину модуляции выходиого сигнала ЧП и определяют расчетно средине величны шумовых параметров. операцин повторяют дважды, изменяя частоту, и рассчитывают величины спектральной плотиостн интенсивиостн шума и коэффициента шума ЧП. В описанни изобретения даны математические выражения для расчета указанных величин. З ил.

плотностн интенсивности пума и коэффициента шума полосовых активных четырехполюсников, иапример антенных усилителей и усилителей высокой частоты радиоприемных: устройств, ламп бегущей волны, усилителей промежуточной частоты.

Цель нзобретения - повышение достоверности измерений спектральной плотности интенсивности шума и козфициента шума четырехполюсников, описывающих четырехполюсник в условиях воздействия иа него полигармочического рабочего сигнала с амплитудой одиой из гармоник за пределами линейного участка амплитудной характеристики четырехполюсника.

На фиг.1 представлена схема устройства для реализации способа измерения; на фиг.2 и 3 — соответственно спектральная характеристика испыта— 2 тельных сигналов и их огибающие в различные моменты времени.

Устройство для реализации способа содержит последовательно соединениые высокочастотный генератор!,
амплитудный модулятор 2, исследуемый
четырехполюсник 3, амплитудный детектор 4 и вольтметр 5 постоянного напряжения, к выходу амплитудного детектора 4 подключен также селективный
вольтметр 6. Устройство содержит также инзкочастотный генератор 7 и источник 8 напряжения постоянного тока,
подключенные соответственно к первому и второму входам сумматора 9,
выход которого подключен к управляющему входу ампдитудного модулятора 2.

Сущность способа можио пояснить на примере работы устройства для его реализацин.

Вначале устанавливают частоту и мощность снгиала генератора 1 равными f_0 и 1,21 P_{8x} , где f_0 и P_{8y} — частота и мощность гармоники наиболь— 50 щего уровня полнгармонического рабочего снгнала (фиг. 3). Уровень 1,21 P_{8x} устанавливают для обеспечения в дальнейших операциях формирования AM-сигнала с гармонической огнбающей с глубиной модуляции $m_{8x} = (0,05-0,1)$, а напряжение источника 8 постоянного тока — соответствующим уровню мощности выходного снгнала модулятора 2

. . . mpeallolinghnk. Выходной сигнал четырехполюсника 3 детектируют по амплитуде с помощью амплитудного детектора и далее измеряют уровень напряжеиня постоянной составляющей V продетектнрованного сигнала (с помощью вольтметра 5 постоянного напряжения) н уровень иапряження V_е узкополосиой составляющей ты F - продетектированиого сигнала (с помощью селективного вольтметра 6). Вследствие неидельальности селективного вольтметра 6 он будет измерять средний уровень узкополосной составляющей в полосе частот П в окрестности частоты Е, что учитывается при определении шумовых параметров.

Частота F должна лежать в пределах 4 F_r < F < f_{rp} (где F_r - абсолютная нестабильность частоты генератора I; f_{гр} - наименьшая из двух велнчин F_{макс} - f_{0 и f₁ - F_{мин}, F_{мин н}} F_{мокс} минимальная и максимальная частоты полосы пропускання исследуемого четырехполюсника , так как при нарушении левой части неравенства 30 показания селективного вольтметра будут некажаться фликкер-шумами генератора 1 (фиг.2), а при нарушении правой части неравенства измерения будут проводиться за пределами полосы пропускания исследуемого четырехполюсника.

Затем, установив частоту снгиала генератора 7 равной F, устанавливают его уровень соответствующим глубине модуляции АМ-сигнала на входе четырехполюсника, равной т_{ву}. При этом глубнну амплнтудной модуляцин m як выбирают такой, чтобы в процессе изменения огибающей АМ-сигнала четырехполюсник не выходил за пределы выбраниого участка амплитудной характеристики. С другой стороны, уровень амплитуды огибающей АМ-сигнала должен существенно превосходить уровень амплитуды паразитиой огибающей частоты F, возникающей за счет шумовых свойств четырехполюсника. Эти . требования выполняются, если величи на m_{8x} лежит в пределах 0,05 $\leq m_{6x} \leq 0,1$. 55 После этого с помощью селективиого вольтметра б на частоте F измеряют амплитуду огибающей АМ-сигнала V, а с помощью вольтметра 5 постоянного напряжения измеряют постоянную

м_, после чего определяют глуонку амплитудной модуляции м_{вых} АМ-сигна- па на выходе четырехполюсника, м_{вых} = V_{_}/V_{_}. Для рассматриваемого устройства, реализующего предлагае- мый способ, коэффициент d есть ко- эффициент формы детекториой характеристики амплитудного детектора (так, для квадратичного детектора d = 2).

Затем средние на двух частотах $f_o - F + f_o + F$ величины указанных шумовых параметров определяют по формулам:

$$S_{k}(f_{0},F) = \underbrace{S_{k}(f_{0} - F) + S_{k}(f_{0} + F)}_{2} = \underbrace{V_{E}^{2} P_{Bx} R}_{1}; \qquad (1)$$

$$(-\frac{m_{B^{k}E}}{m_{Bx}})^{2} \Pi V_{0}^{2} d^{2}$$

$$N(f_{0},F.) = -\underbrace{N(f_{0} - F) + N(f_{0} + F)}_{2} = \underbrace{V_{E}^{2} P_{Bx}}_{2kT\Pi(\frac{m_{B^{k}E}}{m_{Ax}})^{2}} V_{0}^{2} d^{2} \qquad (2)$$

Затем описанные операции повторяют дважды, установив частоту генератора 7 равной $-\frac{F}{2}$, а частоту генераратора 1 равной $f_0 - -\frac{F}{2}$ — первый рази $f_0 + -\frac{F}{2}$ — второй раз, и определяют по формулам (1) и (2) средние значения указанных шумовых параметров соответственно на частотах $f_0 - -\frac{F}{2}$ — и f_0 и частотах f_0 и $f_0 + -\frac{F}{2}$ —.

После этого величины спектральной плотности интенсивности шума и коэффициента шума четырехполюсника, описывающие четырехполюсиих на частоте f_0 - F и частоте f_0 + F, определяют по формулам:

$$S_{K}(f_{o}+F) = S_{K}(f_{o},F) + S_{K}(f_{o}+-\frac{F}{2}-;$$

$$\frac{F}{2}-) - S_{K}(f_{o}-\frac{F}{2}-; -\frac{F}{2}-);$$

$$S_{K}(f_{o}-F) = S_{K}(f_{o},F) - S_{K}(f_{o}+\frac{F}{2}-; \frac{F}{2}-)+$$

$$+ S_{K}(f_{o}--\frac{F}{2}-; -\frac{F}{2}-);$$

$$N(f_{o}+F) = N(f_{o},F) + N(f_{o}+\frac{F}{2}-; \frac{F}{2}-) -$$

$$- N(f_{o}--\frac{F}{2}-; -\frac{F}{2});$$

$$50$$

$$S_{K}(f_{o}+F) = S_{K}(f_{o},F) - S_{K}(f_{o}+\frac{F}{2}-; \frac{F}{2}-) -$$

$$- N(f_{o}--\frac{F}{2}-; -\frac{F}{2});$$

+
$$N(f_0 - -\frac{F}{2}-; -\frac{F}{2}-)$$
. (4)

Формула изобретения

Способ измерения спектральной плотности интенсивности шума и коэффициента шума четырехполюсника, в соответствии с которым воздействуют на исследуемый четырехполюсник немодупированным сигналом, выделяют уэко полосный сигнал и измеряют его урон вень, отличающийся что, с целью повышения достоверности измерений указанных параметров, описывающих четырехполюсник в условиях воздействия на него полигармоничес-20 кого рабочего сигнала с амплитудой одной из гармоник за пределами линейного участка амплитудиой характеристики четырехполюсиика, на иего подают гармонический сигнал с уровнем мощиости $P_{\rm sx}$ и частотой $f_{\rm o}$, равиьми заданным для рабочих условий величинам мощиости и частоты наибольшей гармоники входного сигнала, выщеляют узкополосную огибающую частоты F выходного сигнала четырехполюсника в диапазоне 4 F_r < F < f_r, (где F_г - абсолютная нестабильность частоты гармонического сигнала; f - иаименьшая из двух величии Fмакс - fo и fo - F_{мин}; F_{мин} и F_{макс}- минимальная и максимальная частоты полосы пропускания четырехполюсника и постоянную составляющую огибающей выходного сигиала четырехполюсника и измеряют их уровни $V_{\mathfrak{p}}$ и $V_{\mathfrak{q}}$, затем подают на четырехполюсиик амплитудио-модулированный сигнал с гармонической огибающей частоты F и известной глубиной модуляции так и измеряют глубину модуляции п вых выходного сигнала четырехполюсника, после чего средние иа двух частотах f_o - F и f_o + F величины указаниых шумовых параметров определяются по формулам:

$$S_{K}(f_{0},F) = \underbrace{S_{K}(f_{0}-F) + S_{K}(f_{0}+F)}_{2} = \underbrace{V_{F}^{2} P_{BX} R}_{(m_{6xiy}/m_{by})^{2} \Pi V_{0}^{2}d^{2}};$$

$$N(f_{0},F) = \underbrace{N(f_{0}-F) + N(f_{0}+F)}_{2} = \underbrace{V_{F}^{2} P_{BX}}_{2kT(m_{Bkix}/m_{bx})^{2} \Pi V_{0}^{2}d^{2}};$$

рехполюсинка;

V_F - уровень узкополосной огибающей частоты F, измеряемый прибором с полосой пропускания П;

к и Т - постоянивя Больцмана и абсолютивя температура входного сопротивления четырехполюсника;

о - коэффициент, учитывающий амплитудные искажения выделяемой узкополосной огибающей частоты F,

затем указанные операции повторяют два раза, сменив частоту F на F/2,

а частоту f_0 на $f_0 - -\frac{r}{2}$ - первый раз и на $f_0 + -\frac{F}{2}$ - второй раз, определянот по указанным формулам соответственно величины:

$$S_{K}(f_{o} - -\frac{F}{2} -; \frac{F}{2} -), N(f_{o} - \frac{F}{2} -; -\frac{F}{2} -)$$

$$S_{k}(f_{0} + -\frac{F}{2} -; -\frac{F}{2} -), N(f_{0} + -\frac{F}{2} -; -\frac{F}{2} -),$$

после чего величины спектральной плотиости интенсивности шума н коэффициента шума четырехполюсиика, описывающие четырехполюсник на частоте f_0 - F и частоте f_0 + F, определяются по формулам:

$$S_{\kappa}(f_{o} \pm F) = S_{\kappa}(f_{o}, F) \pm S_{\kappa}(f_{o} + -\frac{F}{2} -; -\frac{F}{2} -) \mp S_{\kappa}(f_{o} - \frac{F}{2} -; -\frac{F}{2} -),$$

$$N(f_{o} \pm F) = N(f_{o}, F) \pm N(f_{o} + -\frac{F}{2} -; -\frac{F}{2} -) \mp S(f_{o} - -\frac{F}{2} -; -\frac{F}{2} -).$$

Составитель Н.Михалев

Редактор М.Петрова Те

Техред В. Кадар,

Корректор В.Бутяга

Заказ 3384/41

Тираж 730

Поппиское

ВНИИЛИ Государственного комитета СССР

по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д.4/5

Производственно-полиграфическое предприятие, г.Ужгород, ул. Проектная, 4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.