## TAKE-HOME EXAM FYS4170: QUANTUM FIELD THEORY

CANDIDATE NUMBER: [?????]

## 1. Trace of Dirac Matrix Products

The Dirac gamma matrices are in the chiral representation given in  $2 \times 2$  block form as,

(1) 
$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ \sigma & 0 \end{pmatrix},$$

where  $\sigma^i$  are the Pauli sigma matrices,

(2) 
$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

The gamma matrices satisfy the anti-commutation relations

(3) 
$$\{\gamma^{\mu}, \gamma^{\nu}\} \equiv \gamma^{\mu} \gamma^{\nu} = 2g^{\mu\nu} \times \mathbb{1},$$

The fifth gamma matrix is defined by

(4) 
$$\gamma^5 \equiv i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = -\frac{i}{4!} \epsilon^{\mu\nu\rho\sigma} \gamma_\mu \gamma_\nu \gamma_\rho \gamma_\sigma$$

and has the following properties

$$(5) \qquad (\gamma^5)^{\dagger} = \gamma^5,$$

$$(6) \qquad (\gamma^5)^2 = 1,$$

$$\{\gamma^5, \gamma^\mu\} = 0.$$

**a.** The trace of the product of two gamma matrices can be evaluated using the anti-commutator relation and the cyclic property of the trace of a matrix product,

(8) 
$$\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}] = \operatorname{Tr}[2g^{\mu\nu} \times \mathbb{1} - \gamma^{\nu}\gamma^{\mu}]$$

(9) 
$$= 2g^{\mu\nu} \operatorname{Tr} \mathbb{1} - \operatorname{Tr}[\gamma^{\nu}\gamma^{\mu}]$$

$$(10) = 8g^{\mu\nu} - \text{Tr}[\gamma^{\mu}\gamma^{\nu}].$$

In this particular case  $g^{\mu\nu}$  is a matrix element, not the metric, and can therefore be moved outside the trace operator as in 9. In 10 the cyclic property of the trace is employed. This yields

Date: October 14, 2017.

(11) 
$$\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}] = 4g^{\mu\nu}.$$

**b.** The trace of the product of two gamma matrices with the fifth gamma matrix is,

(12) 
$$\operatorname{Tr}\left[\gamma^{\mu}\gamma^{\nu}\gamma^{5}\right] = \operatorname{Tr}\left[\gamma^{0}\gamma^{0}\gamma^{\mu}\gamma^{\nu}\gamma^{5}\right]$$

$$= -\operatorname{Tr}\left[\gamma^0 \gamma^5 \gamma^0 \gamma^\mu \gamma^\nu\right]$$

$$= -\operatorname{Tr}\left[\gamma^{\mu}\gamma^{\nu}\gamma^{0}\gamma^{5}\gamma^{0}\right]$$

$$= -\operatorname{Tr}\left[\gamma^{\mu}\gamma^{\nu}(\gamma^{5})^{\dagger}\right]$$

$$= -\operatorname{Tr}\left[\gamma^{\mu}\gamma^{\nu}\gamma^{5}\right].$$

Here we have first inserted  $\mathbb{1}=\gamma^0\gamma^0$ , then the anticommutator relation from Equation 7 is employed three times. The cyclic property of the trace is employed and finally  $\gamma^0\gamma^\mu\gamma^0=\gamma^\dagger$  and the fact that  $\gamma^5$  is Hermitian (Equation 5). Adding  $\mathrm{Tr}\left[\gamma^\mu\gamma^\nu\gamma^5\right]$  to both sides gives  $2\,\mathrm{Tr}\left[\gamma^\mu\gamma^\nu\gamma^5\right]=0$  and we have that

(17) 
$$\operatorname{Tr} \left[ \gamma^{\mu} \gamma^{\nu} \gamma^{5} \right] = 0.$$

**c.** The trace of an odd number of gamma matrices is always zeros. Here is a proof for three gamma matrices

(18) 
$$\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}] = \operatorname{Tr}\left[\gamma^{5}\gamma^{5}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\right]$$

$$= -\operatorname{Tr}\left[\gamma^5 \gamma^\mu \gamma^\nu \gamma^\rho \gamma^5\right]$$

$$= -\operatorname{Tr}\left[\gamma^5 \gamma^5 \gamma^\mu \gamma^\nu \gamma^\rho\right]$$

$$= -\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}],$$

where first the property in Equation 6 is employed, then three anticommutations from Equation 7 and the cyclic property of the trace. Adding  $\text{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}]$  similar to before gives  $2 \text{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}] = 0$  and we end up with,

(22) 
$$\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}] = 0.$$

This proof holds for any odd number of gamma matrices because the number of commutation relation "switches" needed will den be odd, yielding the minus sign.