1. (50 points) Use equation 3.10 of the text to determine the interpolatory polynomial for the data

$$f(1.4) = 2.37$$
 $f(1.8) = 3.351$ $f(1.9) = 0.233$ $f(2.5) = 4.572$.

Determine the value of this polynomial at x = 2. Show all of your steps.

Solution: We started by computing all of the divided differences for our data, starting with the data:

$$f[x_0] = f(x_0), f[x_1] = f(x_1), f[x_2] = f(x_2), f[x_3] = f(x_3)$$

and then using the equations:

$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	-	-
$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	-
$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$

After computing, we got the divided differences to be:

	$f[x_0] = 2.37$		-	-
$x_1 = 1.8$	$f[x_1] = 3.351$	$f[x_0, x_1] = 2.4525$	-	-
$x_2 = 1.9$	$f[x_2] = 0.233$	$f[x_1, x_2] = -31.18$	$f[x_0, x_1, x_2] = -67.265$	-
$x_3 = 2.5$	$f[x_3] = 4.572$	$f[x_2, x_3] = 7.23167$	$f[x_1, x_2, x_3] = 54.8738$	$f[x_0, x_1, x_2, x_3] = 111.035$

Given equation 3.10, our interpolatory polynomial is

$$P_3(x) = 2.37 + 2.4525(x - 1.4) - 67.265(x - 1.4)(x - 1.8) + 111.035(x - 1.4)(x - 1.8)(x - 1.9)$$

Evaluating $P_3(2)$ gives us -2.89788.

2. (50 points) Follow the pseudo-code expressed in Algorithm 3.2 of the text, to write a MATLAB script which will perform Newton's Divided Difference method to determine the interpolatory polynomial for the data in the previous problem. Show that your script verifies the value of P(2).

Solution: This is our MATLAB code:

```
xValues = [1.4 1.8 1.9 2.5];
  yValues = [2.37 \ 3.351 \ 0.233 \ 4.572];
  syms P(x);
  P(x) = NIDD(xValues, yValues);
  double(P(2))
   function P = NIDD(xValues, yValues)
9
       n = length(xValues);
       F = zeros(n,n);
10
       F(1:n,1) = yValues;
11
       for i = 2:n
12
            for j = 2:i
13
14
                F(i,j) = \dots
                    (F(i, j-1)-F(i-1, j-1))/(xValues(i)-xValues((i-j)+1));
15
            end
       end
16
17
       syms P(x);
18
       P = F(1,1);
19
       for i=2:n
20
            T = F(i,i);
21
            for j=1:i-1
22
                T = T * (x - xValues(j));
23
            end
24
            P = P + T;
25
       end
26
27 end
```

We get

$$P(2) = -2.8979,$$

which is the same as our answer from part 1.