Lista de ejercicios: convexidad y optimización

(IOP224)

Marcelo Gallardo

2024 - 1

Pontificia Universidad Católica del Perú

marcelo.gallardo@pucp.edu.pe

1 Convexidad

- 1. Proponga condiciones bajo las cuales el producto de funciones $f,g:\mathbb{R}\to\mathbb{R}$ convexas y de clase C^2 es una función convexa.
- **2.** Sea $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$, donde $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$, $c \in \mathbb{R}^n$ y $A \in \mathcal{M}_{n \times n}$. ¿Bajo qué condiciones sobre A, \mathbf{b} y c la función f es convexa?
- **3.** Pruebe que si f es convexa sobre [a, b], entonces se cumple la siguiente desigualdad:

$$\frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a) + f(b)}{2}.$$

- 4. Sea $u(x_1,x_2):\mathbb{R}^2\to\mathbb{R}$ una función de utilidad cuasi cóncava y de clase C^2 , con utilidades marginales estrictamente positivas. Demuestre que su tasa marginal de sustitución $(TMS)\;u_{x_1}/u_{x_2}$ es decreciente en x_1 . Para esto, suponga que x_2 es función diferenciable de $x_1,\,x_2=x_2(x_1)$.
- 5. Sean $f:D_1\subset\mathbb{R}^n\to\mathbb{R}$ y $g:D_2\subset\mathbb{R}^n\to\mathbb{R}$ funciones convexas. Pruebe que

$$h(x) = \max\{f(x), g(x)\}, h: D_1 \cap D_2 \to \mathbb{R}$$

es convexa.

2 Optimización

2.1 Introducción a la optimización

1. Considere el problema de minimización del gasto:

$$\min_{\mathbf{x}} \mathbf{p} \cdot \mathbf{x}$$
s. a. : $u(\mathbf{x}) \ge \overline{u}$

$$\mathbf{x} \ge \mathbf{0},$$

donde u es una función de utilidad continua tal que $\mathbf{x}_2 \geq \mathbf{x}_1$, $\mathbf{x}_2 \neq \mathbf{x}_1 \Rightarrow u(\mathbf{x}_2) > u(\mathbf{x}_1)$ y $u(\mathbf{0}) = 0$. Por otro lado, \overline{u} es un parámetro positivo, $\mathbf{p} \in \mathbb{R}^n_{++}$ y $\mathbf{x} \in \mathbb{R}^n_+$ representa una canasta de consumo.

 Explique con detalle la formulación del problema. Definimos la función «valor óptimo» por

$$e(\mathbf{p}, \overline{u}) = \min_{\mathbf{x} \ge \mathbf{0}, \ u(\mathbf{x}) \ge \overline{u}} \mathbf{p} \cdot \mathbf{x}.$$

 \dot{z} Qué espera que suceda con la función valor óptimo si \bar{u} aumenta?

- 2. Demuestre que la función valor óptimo es cóncava con respecto al vector de precios **p**. ¿A qué se debe esto (analice)?
- 3. Resuelva el problema gráficamente si n=2, $u(x_1,x_2)=2x_1+3x_2,$ $\overline{u}=5$ y $p_1=p_2=1.$ Interprete la solución.
- 4. Resuelva el problema cuando $u(x_1, ..., x_n) = \sum_{i=1}^n x_i \ y \ p_1 > p_2 > \cdots > p_n$. Interprete su solución (explique lo obtenido en sus propias palabras).
- **2 [Levin, Stanford y Paul Milgrom 2004].** Dada una tecnología $Y \subset \mathbb{R}^n$ y dado un vector de precios \mathbf{p} (tanto de inputs como de outputs) definimos la función de beneficios $\pi(\mathbf{p}) = \max_{\mathbf{y} \in Y} \mathbf{p} \cdot \mathbf{y}$.
 - 1. Explique la formulación del problema de optimización y demuestre que $\pi(\cdot)$ es homogénea de grado 1 ($\lambda>0$). Interprete esto último.
 - 2. Demuestre que la función $\pi(\cdot)$ es convexa.

3. Demuestre que si Y es cerrada (es decir Y es un conjunto cerrado) y convexa (es decir Y es un conjunto convexo), entonces

$$Y = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{p} \cdot \mathbf{y} \le \pi(\mathbf{p}), \ \forall \ \mathbf{p} \in \mathbb{R}^n \}.$$

3. Considere el problema de maximización de la utilidad

$$\mathcal{P}_u : egin{cases} \max & u(\mathbf{x}) \\ \mathrm{s. \ a:} & \mathbf{p} \cdot \mathbf{x} \leq I \\ & \mathbf{x} \geq \mathbf{0}. \end{cases}$$

Asuma que $\mathbf{p} \in \mathbb{R}^n_{++}$, I > 0 y que $u(\cdot)$ es continua y tal que $\mathbf{x}_2 \geq \mathbf{x}_1, \mathbf{x}_2 \neq \mathbf{x}_1 \implies u(\mathbf{x}_2) > u(\mathbf{x}_1)$. Sea $\mathbf{x}^*(\mathbf{p}, I)$ una solución al problema.

- 1. Demuestre que $\mathbf{x}^*(\mathbf{p}, I)$ es homogénea de grado cero (es decir, $\mathbf{x}^*(\alpha \mathbf{p}, \alpha I) = \mathbf{x}^*(\mathbf{p}, I)$ para todo $\alpha > 0$) y que $\mathbf{p} \cdot \mathbf{x}^*(\mathbf{p}, I) = I$.
- 2. Si u es cuasi cóncava, demuestre que el conjunto de soluciones al problema \mathcal{P}_u es convexo. Si u es estrictamente cuasi cóncava, demuestre que el conjunto de soluciones al problema \mathcal{P}_u es unitario (la solución es única).
- 3. Considere $u: \mathbb{R}^n_+ \to \mathbb{R}$, $u(\mathbf{x}) = \prod_{i=1}^n x_i$, $p_i = 1, \ \forall i$, e I = 20. Resuelva \mathcal{P}_u analíticamente. Justifique su respuesta. Nota: puede usar cualquier método o argumento que encuentre factible.
- 4. Considere $u: \mathbb{R}^n_+ \to \mathbb{R}$, $u(\mathbf{x}) = \min\{x_1, ..., x_n\}$, $p_i = 1, \ \forall i$, e I = 100. Resuelva \mathcal{P}_u analíticamente. Justifique su respuesta. Nota: puede usar cualquier método o argumento que encuentre factible.
- 4. Considere el problema de minimización del costo

$$\min \mathbf{w} \cdot \mathbf{z}$$
s. a. $f(\mathbf{z}) \ge q$

$$\mathbf{z} \ge \mathbf{0}.$$

En este problema, \mathbf{w} es el vector de precio de los insumos de producción \mathbf{z} , $f(\cdot)$ la función de producción de la firma y q un parámetro que denota un nivel

de producción del bien que produce la firma. Demuestre que la función valor óptimo, conocida como función de costos,

$$c(\mathbf{w}, q) = \min_{f(\mathbf{z}) \ge q, \mathbf{z} \ge \mathbf{0}} \mathbf{w} \cdot \mathbf{z}$$

- 1. Es creciente en \mathbf{w} (esto es, $\mathbf{w}_1 \leq \mathbf{w}_2 \implies c(\mathbf{w}_1, q) \leq c(\mathbf{w}_2, q)$) y que es homogénea de grado 1 en \mathbf{w} (esto es, $c(\lambda \mathbf{w}, q) = \lambda c(\mathbf{w}, q)$ para todo $\lambda > 0$).
- 2. Es cóncava con respecto al vector de insumos w.
- 3. Pruebe que si $f(\cdot)$ es cóncava, entonces $c(\cdot)$ es una función convexa con respecto a q.
- 4. Determine f si $c(\mathbf{w}, q) = \min \left\{ \frac{w_1}{b_1}, \dots, \frac{w_n}{b_n} \right\} q$.

3 Optimización: condiciones de 1er y 2do orden

- 1 [Chávez y Gallardo 2024]. Plantee el problema de MCO cuando hay una muestra de N observaciones, una variable dependientes y una variable independiente. Resuelva el problema.
- 2 [Gallardo 2018]. Investigue acerca de la paradoja de San Petersburgo y su relación con la concavidad de las funciones de utilidad tipo Bernouilli.
- 3 [Varian 1982]. Supongamos que un consumidor tiene inicialmente la riqueza monetaria W. Existe la probabilidad p de que pierda la cantidad L; por ejemplo, existe la probabilidad p sw que se queme su casa. Puede suscribir un seguro por el que percibirá q soles si experimenta esta pérdida. La cantidad de dinero que ha de pagar a cambio de q soles de cobertura del seguro es πq , donde π es la prima por sol de cobertura. ¿Cuántas cobertura suscribirá el consumidor?
- **4 [Chávez y Gallardo 2024].** La función $f: \mathbb{R}^2 \to \mathbb{R}$ puede escribirse de la siguiente forma:

$$f(x_1, x_2) = (x_1 - a)^{2m} + (x_2 - b)^{2n} + c,$$

donde $a, b \ y \ c$ son constantes $y \ m, n \in \mathbb{N}$.

- a) ¿Cuál es el punto mínimo de la función f?
- b) ¿Cuál es valor mínimo de la función f?
- c) ¿Tiene puntos máximos la función f?

4 Definiciones importantes

- 1. Productividad media.
- 2. Elasticidad insumo-producto.
- 3. Rendimientos a escala.
- 4. Tasa marginal de sustitución técnica.
- 5. Elasticidad de sustitución.
- 6. Aversión al riesgo.

5 Referencias

- 1. Microeconomía Intermedia, Bernardita Vial y Felipe Zurita.
- 2. Análisis Microeconómico de Hal Varian.
- 3. Notas en Teoría de Incertidumbre de José Gallardo.
- 4. Álgebra Lineal y Optimización para el Análisis Económico de Jorge Chávez y Marcelo Gallardo.
- 5. Producer Theory de Jonathan Levin y Paul Milgrom.