Arbori de decizie și regresie

Ansambluri Random Forests

Date și model

- Principiul este comun
 - Clasificare
 - Regresie
- Formal: avem datele de antrenament sub formă de vectorii X_i cu etichetele Y_i. Etichele sunt:
 - Categoriale (discrete) pentru clasificare
 - Continue pentru regresie

Inducție

• Principiul inducției:

- Extragem reguli din exemple
- Presupunem ca regulile sunt valabile şi când avem date foarte multe

Paradigma inducției și deducției:

- În pasul inductiv formăm regulile
- În pasul deductiv, folosim regulile pentru a prezice etichete pentru datele noi

Arbori de clasificare și regresie

- Un arbore este un model predictiv care:
 - Se construiește pe baza unui set de decizii binare
 - Calculeză o valoare de ieşire

- Diferența între regresie și clasificare (la construcție)
- este dată de funcția obiectiv

Ce este un arbore de decizie?

- Folosește abordare *inductivă*
 - Folosește date particulare pentru a construi reguli mult mai generale
- Un model predictiv bazat pe o serie de teste boolene
 - Succesiunea de teste este mai puternică decât mulți clasificatori complecși
- Cum arată un arbore de decizie

Animalul acesta este ... Pisică sau Câine

Câinii sunt mai masivi, dar

Există pisici obeze și există chihuahua

Câinii f. mari dorm mult

Animal = (greutate, bătăi pe minut, cât doarme, indice de frumusete)

indice de frumusețe - nu e util

Ce animal e cel descris de (45,80, 10 9)

Dar

Învățare Inductivă

- În acest arbore de decizie, am făcut o serie de decizii binare și am construit o ramură
 - Un animal: ce gretate are?
 - Cât doarme?
 - Ce ritm cardiac are?

 Răspunzând la aceste intrebări cu DA sau NU, facem diferența între câini și pisici

Datele într-un tabel

Setul de antrenament

Exemplu	Atributele			Eticheta	
	Greutate	Ritm cardiac	Cât doarme	Frumusete	
Lăbuș	25	100	8	5	Câine - labrador
Puffy	3.5	180	16	9	Pisică - europeana
Max	65	45	13	7	Câine ciobanesc
Rex	6	130	16	8	Câine canis
Dingo	2	200	15	7	Pisică - slabanog
Brutus	1.5	140	7	1	Câine - pechinez
Asci	15	160	19	8	Pisică - maine coon gras
Mutzi	12	130	20	2	Pisică - obez
Caramel	5	120	16	9	Pisică - birmaneza
Blacky	4	220	16	10	Pisică - norvegiana
Neige	20	80	18	10	Câine - Husky
Garfield	8	180	19	4	Pisică - roscata
Toto	30	85	12	6	Câine - corcitura

Alegerea atributelor

- Tabelul anterior arătă 4 atribute: greutate, ritm cardiac, durată somn și frumusețe
- Dar decizia este luată pe baza doar a trei
 - Frumusețea nu e relevantă
- De ce? E bine?

Cum se creează un Arbore de decizie

- Datele sunt descrise de o listă de atribute
 - Atributele pot fi discrete sau continue
- Se consideră pe rând fiecare atribut și pentru momentul curent se alege cel care produce cea mai bună împărțire
- Se fixează un prag și se obțin două subprobleme care se rezolvă recursiv similar

Construcția unui arbore

- Antrenare
- Ce variabile se folosesc în comparația actuală și unde?
- Când ne oprim? Continuăm?
- Nodul terminal primeşte o etichetă.

Algorim pentru arbore de decizie

- Ideea de bază este :
 - Se alege *cel mai bun* atribut pentru comparație și se împart exemplele după decizia luată, pe baza acelui atribut
 - Se repetă procesul, recursiv, pentru fiecare sub-arbore
 - Ne oprim când :
 - Toate instanțele rămase într-o subproblemă au aceeași etichetă
 - Nu mai sunt atribute de încercat
 - Nu mai sunt date

Clasificare

- Măsura de optimizat:
- Index GINI (index de impuritate)

$$GINI(X) = 1 - \sum_{i=1}^{N} (p_i)^2$$

- P_i frecvență relativă a clasei i în X (sub) setul de date din split-ul respectiv
- Valorile GINI mai mici sunt mai bune. Gini == 0 clasă pură
- La origine măsoară dezechilibrul social

Datele de antrenament

Obj	X ₁	X ₂	У
X_1	0.14	1.6	3
X_2	3.7	1.4	1
X ₃	2.4	0.6	2
X_N	0.15	0.87	3

Datele de antrenament

Obj	x ₁	X ₂	У
X_1	0.14	1.3	3
X_2	3.7	1.4	3
X ₃	1.7	0.7	2
X_4	0.5	1.6	3
X ₅	1.5	2.2	2
X ₆	0.27	0.3	1
X ₇	2.4	1.8	1
X ₈	2.7	0.87	1

Datele de antrenament

Obj	$\mathbf{x_1}$	X ₂	у
X_1	0.14	1.3	3
X_2	3.7	1.4	3
X ₃	1.7	0.7	2
X_4	0.5	1.6	3
X ₅	1.5	2.2	2
X ₆	0.27	0.3	1
X ₇	2.4	1.8	1
X ₈	2.7	0.87	1

Split $x_1 < 0.2$

Clasa stânga – roșie =3

Clasa dreapta – verde (pluralitate) = 1

$$GINI_{st\^{a}nga} = 1 - \left(\left(\frac{1}{1} \right)^2 + \left(\frac{0}{1} \right)^2 + \left(\frac{0}{1} \right)^2 \right) = 1 - 1 = 0 \qquad GINI_{dreapta} = 1 - \left(\left(\frac{3}{7} \right)^2 + \left(\frac{2}{7} \right)^2 + \left(\frac{2}{7} \right)^2 \right) = 0.65$$

$$GINI_{total} = \frac{1}{8}GINI_{stanga} + \frac{7}{8}GINI_{dreapta} = 0.57$$

Datele de antrenament

Obj	X ₁	X ₂	у
X_1	0.14	1.3	3
X_2	3.7	1.4	3
X ₃	1.7	0.7	2
X_4	0.5	1.6	3
X ₅	1.5	2.2	2
X ₆	0.27	0.3	1
X ₇	2.4	1.8	1
X ₈	2.7	0.87	1

Split $x_1 < 1.6$

Clasa stânga – roșie =3

Clasa dreapta – verde (pluralitate) = 1

.7 | 0.87 | 1 |
$$GINI_{st\^{a}nga} = 1 - \left(\left(\frac{1}{4} \right)^2 + \left(\frac{1}{4} \right)^2 + \left(\frac{2}{4} \right)^2 \right) = 0.625 \qquad GINI_{dreapta} = 1 - \left(\left(\frac{2}{4} \right)^2 + \left(\frac{1}{4} \right)^2 + \left(\frac{1}{4} \right)^2 \right) = 0.625$$

$$GINI_{total} = \frac{4}{8}GINI_{stanga} + \frac{4}{8}GINI_{dreapta} = 0.625$$

Datele de antrenament

Obj	X ₁	X ₂	у
X_1	0.14	1.3	3
X_2	3.7	1.4	3
X ₃	1.7	0.7	2
X_4	0.5	1.6	3
X ₅	1.5	2.2	2
X ₆	0.27	0.3	1
X ₇	2.4	1.8	1
X ₈	2.7	0.87	1

Split $x_1 < 1.9$

Clasa stånga – abastră =2

Clasa dreapta – verde (pluralitate) = 1

$$GINI_{st\^{a}nga} = 1 - \left(\left(\frac{1}{5} \right)^2 + \left(\frac{2}{5} \right)^2 + \left(\frac{2}{5} \right)^2 \right) = 0.64$$

$$GINI_{st\^{a}nga} = \frac{1}{8} GINI_{stanga} + \frac{3}{8} GINI_{dreapta} = 0.566$$
Cea mai bună

Datele de antrenament

Obj	X ₁	X ₂	У
X_1	0.14	1.3	3
X_2	3.7	1.4	3
X ₃	1.7	0.7	2
X_4	0.5	1.6	3
X ₅	1.5	2.2	2
X ₆	0.27	0.3	1
X ₇	2.4	1.8	1
X ₈	2.7	0.87	1

Pentru subarborele stâng split $x_1 < 0.9$

Pentru subarborele drept split $x_1 < 2.9$

Pentru subarborele stâng split x₁< 0.9

Pentru subarborele drept split $x_1 < 2.9$

S-a întamplat ca toate deciziile să fie bazate pe $x_1!!!$

De obicei aproape toate axele sunt utilizate

Arbore de regresie

• Funcția cost este eroarea pătratică medie:

$$MSE = \sum_{i=1}^{N} (Y_i - [Y_i])^2$$

Y_i eticheta (adnotarea)

 $[Y_i]$ valoarea prezisă de arbore

Training data

Obj	X ₁	X ₂	У
X_1	0.14	1.6	0.23
X_2	3.7	1.4	1.90
X_3	2.4	0.6	3.56
X _N	0.15	0.87	1.5


```
SPLIT (Greedy):

MinMSE = RealMAX

For each dimension d = x_1...x_2

For val = min(d_1 ... d_{N-1}): max(d_1 ... d_{N-1}

Split between val<sub>d_i</sub> and val<sub>d_i+1</sub>

Predicted value = mean of values in split

Compute MSE. If less than MinMSE, store

end
```

Use the dimension and val that lead to MinMSE

End

$$Y_1^e$$
 = media lui Y_1 , Y_2 , Y_3
 Y_2^e = media lui $Y_{4.7}$

$$MSE = \frac{1}{7} \left(\sum_{i=1}^{3} (y_i - y_1^e)^2 + \sum_{i=4}^{7} (y_i - y_2^e)^2 \right)$$

$$MSE = \frac{1}{7} \left(\sum_{i=N_1}^{N_2-1} (y_i - y_3^e)^2 + \sum_{i=N_2}^{N_3-1} (y_i - y_4^e)^2 + \sum_{i=N_3}^{N_4-1} (y_i - y_5^e)^2 + \sum_{i=N_4}^{N} (y_i - y_6^e)^2 \right)$$

- Când ne oprim?
 - Când eroarea e mai mică decât un prag MSE < ?</p>
 - Supraînvățare vs . Generalizare
 - O adâncime maximă a arborelui
 - Supraînvățare vs . Generalizare

Random Forest

Ansamblu de arbori

- Folosim mai mulţi arbori
 - Foarte puternic
- Bootstrapping:
 - Se ia un subset F= ?% din setul de antrenament şi se construieşte un arbore
 - Eşantionare cu înlocuire
 - Repetă pentru N arbori

Random forest

Ansamblu de arbori

```
\begin{split} & \text{SPLIT (Greedy):} \\ & \text{MinGINI = RealMAX} \\ & \text{For } \textbf{each} \text{ dimension } d = x_1...x_N \\ & \text{For val = } \min(d_1 ... d_{N-1})\text{: } \max(d_1 ... d_{N-1}) \\ & \text{Split between val}_{d_{-i}} \text{ and val}_{d_{-i}+1} \\ & \text{Subset value = the majority of values} \\ & \text{Compute GINI.} \\ & \text{If less than MinGINI, store} \\ & \text{end} \\ & \text{End} \\ & \text{Use dimension and val that lead to MinGINI} \end{split}
```

```
SPLIT (Greedy):

MinGINI = RealMAX

For randomly selected N_1 dimensions from x_1...x_N

For val = min(d_1 ... d_{N-1}): max(d_1 ... d_{N-1})

Split between val<sub>d_i</sub> and val<sub>d_i+1</sub>

Subset value = the majority of values

Compute GINI.

If less than MinGINI, store

end

End

Use the dimension and val that lead to MinGINI
```

Rezultate cu Random forest

Decision surfaces of a decision tree, of a random forest, and of an extra-trees classifier

