

## planetmath.org

Math for the people, by the people.

## weak-\* topology of the space of Radon measures

 ${\bf Canonical\ name} \quad {\bf Weak Topology Of The Space Of Radon Measures}$ 

Date of creation 2013-03-22 15:22:58 Last modified on 2013-03-22 15:22:58 Owner stevecheng (10074) Last modified by stevecheng (10074)

Numerical id 4

Author stevecheng (10074)

Entry type Example
Classification msc 46A03
Classification msc 28A33

Related topic LocallyCompactHausdorffSpace

Let X be a locally compact Hausdorff space. Let M(X) denote the space of complex Radon measures on X, and  $C_0(X)^*$  denote the dual of the  $C_0(X)$ , the complex-valued continuous functions on X vanishing at infinity, equipped with the uniform norm. By the Riesz Representation Theorem, M(X) is isometric to  $C_0(X)^*$ , The isometry maps a measure  $\mu$  into the linear functional  $I_{\mu}(f) = \int_X f d\mu$ .

The weak-\* topology (also called the vague topology) on  $C_0(X)^*$ , is simply the topology of pointwise convergence of  $I_{\mu}$ :  $I_{\mu\alpha} \to I_{\mu}$  if and only if  $I_{\mu\alpha}(f) \to I_{\mu}(f)$  for each  $f \in C_0(X)$ .

The corresponding topology on M(X) induced by the isometry from  $C_0(X)^*$  is also called the weak-\* or vague topology on M(X). Thus one may talk about "weak convergence" of measures  $\mu_n \to \mu$ . One of the most important applications of this notion is in probability theory: for example, the central limit theorem is essentially the statement that if  $\mu_n$  are the distributions for certain sums of independent random variables, then  $\mu_n$  converge weakly to a normal distribution, i.e. the distribution  $\mu_n$  is "approximately normal" for large n.

## References

[1] G.B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd ed, John Wiley & Sons, Inc., 1999.