DS n°4: Fiche de calculs

Durée: 60 minutes, calculatrices et documents interdits

Nom et prénom :		Note:	
-----------------	--	-------	--

Porter directement les réponses sur la feuille, sans justification.

Ensembles et applications

Déterminer l'ensemble de parties suivant.

$$\mathscr{P}(\{42; 1515\}) = \boxed{ } \tag{1}$$

Pour $n \in \mathbb{N}$, on note A_n les entiers dont les diviseurs premiers sont au nombre de n (exactement).

$$\bigcup_{n\in\mathbb{N}} A_n = \boxed{ (2) \qquad \bigcap_{n\in\mathbb{N}} A_n = \boxed{ (3)}}$$

On définit de \mathbb{R}^2 dans lui même la fonction $f:(x,y)\mapsto (2x+y,x-3y)$. Dire si f est injective/-

surjective/bijective.

On définit de \mathbb{R}^2 dans lui même la fonction $\varphi:(x,y)\mapsto (x+y,x-y)$. Déterminer la réciproque $de \varphi$:

$$\varphi^{-1} = \tag{5}$$

On définit de [0,1] dans lui même la fonction ψ par : $\psi(x)=x$ si $x\in\mathbb{Q}$ et $\psi(x)=1-x$ sinon. Déterminer la réciproque de ψ :

$$\psi^{-1} = \tag{6}$$

Relations d'ordre et d'équivalence

On définit sur $[2, +\infty]$ la relation \mathscr{R} par : $a\mathscr{R}b$ si a et b ont au moins un diviseur premier en commun. Indiquer si \mathcal{R} est réflexive/transitive/symétrique/anti-symétrique.

	(7)
--	-----

	$\mathbb{R} \to \mathbb{R}$, on définit la relation d'ordre $f \leqslant g$ par : $\forall x \in \mathbb{R}$, $f(x) \leqslant$ ement ordonné par \leqslant (répondre OUI ou NON)?	g(x).
L'ensemble ix est-il total	ement ordonne par « (repondre OO1 ou 11011):	
		(8)
Dans $\mathbb{R}^{\mathbb{R}}$, déterminer la b	orne supérieure suivante pour cet ordre ≤.	
$\sup \{ x \mapsto \sin $	$\mathbf{n}(x+\varphi) \mid \varphi \in \mathbb{R} \} = $	(9)
Soit $A = \{ \exp[(-1)^n \times n^2] \}$	$[P], n \in \mathbb{N}^*$ et $B = \{x \in \mathbb{R}, 1 < x^2 - 4x + 3 \le 2\}$. Alors, dans $\overline{\mathbb{R}}$,	
$\sup A =$	(10)	(12)
$\inf A =$	$(11) \qquad \inf B =$	(13)
De plus (on répondra aux	réponses suivantes par OUI ou NON) :	
$\sup A = \max A : $	$(14) \sup B = \max B :$	(16)
$\inf A = \min A$:	(15) $\inf B = \min B:$	(17)
Arithmétique		
Décomposer en produits o	le facteurs premiers les nombres suivants.	
693 =	(18) 275 128 = (19)	
Écrire la division euclidien	nne de 354 629 par 496.	
		(20)
Calculer les PGCD et PP	CM suivants.	
612 \(\text{3144} = \)	$(21) 612 \lor 3144 =$	(22
Une relation de Bézout po	our 612 et 3144 est	
	·	(23)
<u> </u>	— FIN —	