Thm Chain Rule (One Independent Variable)

Let Z be a differentiable function of x and y on its domain, where x and y are differentiable functions of t on an interval I. Then

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

Thm Chain Rule (Two Independent Variables)

Let 2 be a differentiable function of
x and y, where x and y are differentiable
functions of 5 and t. Then

and
$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Ex Let
$$\omega = \sqrt{\chi^2 + y^2 + z^2}$$
, $\chi = st$, $y = rs$, $z = rt$
Find $\frac{\partial \omega}{\partial r}$

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

$$= \left[\frac{1}{2} \left(x^2 + y^2 + z^2\right)^2 \left(2y\right)\right] (5) + \left(\frac{1}{2} \left(x^2 + y^2 + z^2\right)^{-1/2} \left(2z\right)\right] (t)$$

$$\Rightarrow \frac{\partial w}{\partial r} = \frac{ys}{\sqrt{x^2 + y^2 + z^2}} + \frac{zt}{\sqrt{x^2 + y^2 + z^2}}$$

$$= \frac{(rs) s}{\sqrt{(st)^2 + (rs)^2 + (rt)^2}} + \frac{(rt) t}{\sqrt{(st)^2 + (rs)^2 + (rt)^2}}$$

$$\therefore \frac{\partial w}{\partial r} = \frac{rs^2 + rt^2}{\sqrt{(st)^2 + (rs)^2 + (rt)^2}}$$

Implicit Differentiation.

Thm Let F be differentiable on its domain and suppose that F(x,y) =0 defines y as a differentiable function of x, then

$$\frac{dy}{dx} = -\frac{Fx}{Fy} \qquad Fy \neq 0$$

 $\pm (x,y)=0$, lets compute $\frac{dF}{dx}$ (we are assuming that

y depends on x).

x y depends on ~..

X y My MM Lets differentiate the equation F(xiy) = 0 with respect to x:

$$F(x_1y) = 0 \quad \text{with respect to } x.$$

$$\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{\partial F}{\partial y}$$

$$\Rightarrow \frac{\partial F}{\partial y} \neq 0$$

Ex Find
$$\frac{dy}{dx}$$
 if $x^3 + 5x^2y^3 + y^4 = 5$

Let
$$F(x,y) = x^3 + 5x^2y^3 + y^4 - 5$$

Let
$$F(x,y) = x + 5x + 9 + 3$$

 $f(x,y) = 0$, by theorem $\frac{dy}{dx} = -\frac{3x^2 + 10xy^3}{15x^2y^2 + 4y^3}$

Second order partial derivatives and chain rule. Z = f(x,y), where x = g(s,t), y = h(s,t)Assume Find $\frac{\partial^2 z}{\partial c^2}$. $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$ $\frac{\partial^2 z}{\partial s^2} = \frac{\partial}{\partial s} \left(\frac{\partial z}{\partial s} \right) = \frac{\partial}{\partial s} \left[\frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \right] = 0$ $\frac{\partial z}{\partial x} \cdot \frac{\partial^2 x}{\partial s^2} + \frac{\partial x}{\partial s} \cdot \frac{\partial}{\partial s} \left(\frac{\partial z}{\partial x} \right) + \frac{\partial z}{\partial y} \cdot \frac{\partial^2 y}{\partial s^2} + \frac{\partial y}{\partial s} \cdot \frac{\partial}{\partial s} \left(\frac{\partial z}{\partial y} \right)$ using product rule $= \frac{\partial z}{\partial x} \frac{\partial^2 x}{\partial s^2} + \frac{\partial x}{\partial s} \left[\frac{\partial^2 z}{\partial x^2} \frac{\partial x}{\partial s} + \frac{\partial^2 z}{\partial y \partial x} \frac{\partial y}{\partial s} \right] +$ MO MENT each term $+ \frac{\partial z}{\partial y} \cdot \frac{\partial^2 y}{\partial s^2} + \frac{\partial y}{\partial s} \left[\frac{\partial^2 z}{\partial x \partial y} \frac{\partial x}{\partial s} + \frac{\partial^2 z}{\partial y^2} \frac{\partial y}{\partial s} \right]$ $= \frac{\partial^2}{\partial x} \frac{\partial^2 x}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} \cdot \left(\frac{\partial x}{\partial 5}\right)^2 + \frac{\partial^2 z}{\partial y \partial x} \cdot \frac{\partial y}{\partial 5} \cdot \frac{\partial x}{\partial 5} +$ $+ \frac{\partial z}{\partial y} \frac{\partial^2 y}{\partial s^2} + \frac{\partial^2 z}{\partial x \partial y} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s} + \frac{\partial^2 z}{\partial y^2} \cdot \left(\frac{\partial y}{\partial s}\right)^2$

$$\therefore \frac{\partial^2 z}{\partial s^2} = \frac{\partial z}{\partial x} \frac{\partial^2 x}{\partial s^2} + \frac{\partial^2 z}{\partial x^2} \left(\frac{\partial x}{\partial s} \right)^2 + 2 \frac{\partial^2 z}{\partial y \partial x} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s} + \frac{\partial^2 z}{\partial y} \frac{\partial^2 y}{\partial s^2} + \frac{\partial^2 z}{\partial y^2} \cdot \frac{\partial^2 z}{\partial s} \cdot \frac{\partial y}{\partial s} \frac{\partial x}{\partial s} + \frac{\partial^2 z}{\partial y^2} \cdot \frac{\partial^2 z}{\partial s} \cdot \frac{\partial y}{\partial s} \frac{\partial x}{\partial s} + \frac{\partial^2 z}{\partial y^2} \cdot \frac{\partial^2 z}{\partial s} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s} + \frac{\partial^2 z}{\partial y^2} \cdot \frac{\partial y}{\partial s} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s} + \frac{\partial^2 z}{\partial y} \cdot \frac{\partial y}{\partial s} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s} + \frac{\partial^2 z}{\partial y} \cdot \frac{\partial y}{\partial s} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s} + \frac{\partial^2 z}{\partial y} \cdot \frac{\partial y}{\partial s} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s} + \frac{\partial^2 z}{\partial y} \cdot \frac{\partial y}{\partial s} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s} + \frac{\partial^2 z}{\partial y} \cdot \frac{\partial y}{\partial s} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s} + \frac{\partial^2 z}{\partial y} \cdot \frac{\partial y}{\partial s} \cdot \frac{\partial x}{\partial s} \cdot \frac{\partial y}{\partial s$$