9 Singulärvärdesuppdelning och pseudoinverser

§7.D i LADR §7.D (4-20)

1 detta kap. antas att dim V < 00. även uten detta antrigude.

15. Visa att en operator L: V — V är en isometri'

(bevarar norm) om och endast om alla dess singulärvärden
är 1.

Lösn: Låt λ vara ett sångulärvärde bill λ . Då hms vehborer $x \neq 0$ och $y \neq 0$ sådama att $\lambda(x) = \lambda y$ och $\lambda(y) = \lambda x$.

D 45

$$= \frac{1}{\sqrt{x \times x}}$$

och eftersom $\lambda \in \mathbb{R}_{\geq 0}$ sû har vi $\lambda = 1$. Vise sjûh det omvända.

4. Visa att om) är ett singulärvärde (ill en operator T så linns veV så att

(|V|| = | och ||Tull =).

Lösn: Med polier uppdelning kan vi skriva

$$T = S\sqrt{T^{\dagger}T^{\dagger}}$$

där S är en sometri. Låb v vara en egenvelator $\forall II \ \sqrt{T^{\dagger}T^{\dagger}}$ av norm 1 med egenvärde λ .

Di han vi $Tv = S(\lambda v)$ och $||Tv|| = \sqrt{\langle S(\lambda v) | S(\lambda v) \rangle} = \sqrt{\lambda^{2}\langle Sv | Sv \rangle} = \lambda ||v|| = \lambda.$

5. Let T van openborn på C^2 som ges av $T(x_{13}) = (-4_{31}, x)$.

Hitta sulyulärvärdene vill T.

<u>Lösni</u> Om Tv= hu och T[†]v= hu v^{*}

TT[†]v= h²v och T[†]Tv= h²v,

dus shquiarvardena ges son rötter an egenvarden bill operatorn $T^{\dagger}T$. Vi' har alt T, T^{\dagger} ges av natorisenna $M = \begin{pmatrix} 0 - 4 \\ 1 & 0 \end{pmatrix}$ respektive $M^{\dagger} = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix}$

och nahrsen bill $T^{\dagger}T$ är $M^{\dagger}M = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \begin{pmatrix} 0 & -4 \\ 1 & 0 \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 \\ 0 & 16 \end{pmatrix}.$

Egenvärdena bill Tt är därför 1 och 16, vilket Junebär att singälärvärdena bill T är 1 och 4.

OBS: Det Homs en operator VTT sinden alto $(\sqrt{TT})^2 = T^TT$. $(T^TT)^2 = T^TT$. $(T^TT)^2 = T^TT$. Hermiteste och positivo)

Singulärvärdena HII T ges av egenvärdena Lill \sqrt{TT} .

11. V/sa att T och T har samma stryvlärvärden.

<u>Lösn</u>: Lös spälv.

13. Visa att T: V -> V är imerterbar om och andust om O inte är ett singulärvärde bill T.

<u>hösn</u>: Om 0 är ett singulärvärde så Imms volburer $0*\times y$ så att $T \times = 0 \cdot y = 0$, dus \times ligger 0 kärnam bill T och T är ej imerberbar.

Å andra siden, on T ej inverberbar sû är
T ej rijehter elberson den V < 00. Des det huns
en vehlor v sû ott Tv=0 des Tv=0.0 VweV
Sû 0 är ett skynlâr värde.

7. List k vara en kropp och debinsera $T: k^3 \longrightarrow k^3$ $(x,y,z) \longmapsto (z,2x,3y).$

Hitta en isomehri S sudan ott $T = S\sqrt{T^{\dagger}T}$.

<u>hösn</u>: Vi har att natrisen till T är $M = \begin{pmatrix} 0 & 0 & 1 \\ 7 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$

oh $M^{\dagger}M = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ oh $\sqrt{M^{\dagger}M} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

 V_i har dirlor att $M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \sqrt{M^T M^T}$.