Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 11: Criteri di stabilità per sistemi lineari e non lineari

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

Nella scorsa lezione

- ▶ Analisi modale ed evoluzione libera di un sistema lineare a t.d.
- ▶ Evoluzione complessiva di un sistema lineare a t.d.

$$x(t) = f \times (0)$$
modi elementari
$$t^{K} \lambda_{i}^{t}$$

$$\delta(t - K)$$

In questa lezione

▶ Stabilità di sistemi lineari

▶ Teorema di linearizzazione per la stabilità di sistemi non lineari

$$\dot{x}(t) = Fx(t), \quad F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$\dot{x}(t) = Fx(t), \quad F \in \mathbb{R}^{n \times n} \text{ con autovalori } \{\lambda_i\}_{i=1}^k$$
 modi elementori convergenti $\Re[\lambda_i] < 0, \forall i \implies \text{sistema as intoticamente stabile}$

$$\dot{x}(t) = Fx(t), \quad F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$\Re[\lambda_i] < 0, orall i$$
 \Longrightarrow sistema as intoticamente stabile $\Re[\lambda_i] \le 0, \ orall i \ e$ \inf $\ker[\lambda_i] \le 0, \ \forall i \ e$ f \Longrightarrow sistema as intoticamente stabile $\nu_i = g_i \ \text{se} \ \Re[\lambda_i] = 0$

$$\dot{x}(t) = Fx(t), \quad F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$\Re[\lambda_i] < 0, \forall i \implies$$
 sistema asintoticamente stabile

$$\Re[\lambda_i] \leq 0, \ \forall i \ \mathrm{e}$$
 $\nu_i = g_i \ \mathrm{se} \ \Re[\lambda_i] = 0$ \Longrightarrow sistema semplicemente stabile

$$\exists \, \lambda_i \, ext{tale che } \Re[\lambda_i] > 0$$
 o $\Re[\lambda_i] = 0 \, \mathrm{e} \, \nu_i > g_i$ \Longrightarrow sistema instabile (= non \(\text{e} \) repl. shift)

$$x(t+1) = Fx(t), \quad F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$x(t+1) = Fx(t), \quad F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$|\lambda_i| < 1, \forall i$$
 \Longrightarrow sistema asintoticamente stabile

$$x(t+1) = Fx(t)$$
, $F \in \mathbb{R}^{n \times n}$ con autovalori $\{\lambda_i\}_{i=1}^k$

$$|\lambda_i| < 1, \forall i$$
 \Longrightarrow sistema asintoticamente stabile

$$|\lambda_i| \leq 1, \ orall i$$
 e $u_i = g_i \ {
m se} \ |\lambda_i| = 1 \implies {
m sistema semplicemente stabile}$

$$x(t+1) = Fx(t), \quad F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$|\lambda_i| < 1, \forall i$$
 \Longrightarrow

sistema asintoticamente stabile

$$|\lambda_i| \leq 1, \; orall i \; \mathrm{e}$$
 $u_i = g_i \; \mathrm{se} \; |\lambda_i| = 1$

⇒ sistema semplicemente stabile

$$\exists \lambda_i \text{ tale che } |\lambda_i| > 1$$

o $|\lambda_i| = 1$ e $\nu_i > g_i$

 \Rightarrow sistema instabile

Stabilità vs. BIBO stabilità

$$\dot{x}(t) = Fx(t) + Gu(t)$$
 $\qquad \qquad x(t+1) = Fx(t) + Gu(t)$ $y(t) = Hx(t) + Ju(t)$ $\qquad \qquad y(t) = Hx(t) + Ju(t)$

Definizione: Un sistema lineare si dice BIBO stabile se per ogni vettore d'ingresso con componenti limitate in t la corrispondente uscita forzata ha componenti limitate in t.

Stabilità vs. BIBO stabilità

$$\dot{x}(t) = Fx(t) + Gu(t)$$
 $x(t+1) = Fx(t) + Gu(t)$
 $y(t) = Hx(t) + Ju(t)$ $y(t) = Hx(t) + Ju(t)$
 $W(s) = H(s T-F)^{-1} + J$

Definizione: Un sistema lineare si dice BIBO stabile se per ogni vettore d'ingresso con componenti limitate in t la corrispondente uscita forzata ha componenti limitate in t. (t.c.)

Teorema: Siano $\{p_i\}_{i=1}^r$ i poli della matrice di trasferimento del sistema ridotta ai minimi termini, cioè dopo tutte le possibili cancellazioni zero-polo dei suoi elementi. Il sistema è BIBO stabile se e solo se $\Re[p_i] < 0$ per ogni i = 1, 2, ..., r.

Stabilità asintotica \implies BIBO stabilità

G. Baggio Lez. 11: Stabilità di sistemi lineari e non lineari

In questa lezione

▶ Stabilità di sistemi lineari

▶ Teorema di linearizzazione per la stabilità di sistemi non lineari

Teorema di linearizzazione a t.c.

 $\dot{x}(t)=f(x(t))$: sistema non lineare con punto di equilibrio $\bar{x}\in\mathbb{R}^n$

Teorema di linearizzazione a t.c.

$$\dot{x}(t)=f(x(t))$$
: sistema non lineare con punto di equilibrio \bar{x} matrice Jacobiona di f valutata in \bar{x}

Teorema: Sia $\dot{\delta}_x(t) = \dot{F}\delta_x(t)$ il sistema linearizzato di $\dot{x}(t) = f(x(t))$ attorno a \bar{x} e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di F. Allora:

- **1** Se il sistema linearizzato è asintoticamente stabile $(\Re[\lambda_i] < 0, \forall i)$, allora \bar{x} è un punto di equilibrio asintoticamente stabile per il sistema non lineare.
- Se il sistema linearizzato ha un autovalore con parte reale positiva ($\exists i$ tale che $\Re[\lambda_i] > 0$), allora \bar{x} è un punto di equilibrio instabile per il sistema non lineare.

non semplicemente stabile

Teorema di linearizzazione a t.c.

$$\dot{x}(t) = f(x(t))$$
: sistema non lineare con punto di equilibrio \bar{x}

Teorema: Sia $\dot{\delta}_x(t) = F \delta_x(t)$ il sistema linearizzato di $\dot{x}(t) = f(x(t))$ attorno a \bar{x} e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di F. Allora:

- **1** Se il sistema linearizzato è asintoticamente stabile $(\Re[\lambda_i] < 0, \forall i)$, allora \bar{x} è un punto di equilibrio asintoticamente stabile per il sistema non lineare.
- ② Se il sistema linearizzato ha un autovalore con parte reale positiva ($\exists i$ tale che $\Re[\lambda_i] > 0$), allora \bar{x} è un punto di equilibrio instabile per il sistema non lineare.

Caso critico: $\Re[\lambda_i] \leq 0$, $\forall i$, e $\exists i$: $\Re[\lambda_i] = 0$

Teorema di linearizzazione a t.c.: esempi

1.
$$\dot{x} = \sin x$$
 $\bar{x} = 0$ $\bar{x} = \pi$

2.
$$\begin{cases} \dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2) \end{cases} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

3.
$$\dot{x} = \alpha x^3$$
, $\alpha \in \mathbb{R}$, $\bar{x} = 0$

Teorema di linearizzazione a t.c.: esempi

1.
$$\dot{x} = \sin x$$
 $\ddot{\bar{x}} = 0$ \Rightarrow $\ddot{\bar{x}} = 0$ instabile $\ddot{\bar{x}} = \pi$ stabile

2.
$$\begin{cases} \dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2) \end{cases} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \bar{x} \text{ instabile}$$

3.
$$\dot{x} = \alpha x^3$$
, $\alpha \in \mathbb{R}$, $\bar{x} = 0$ \Longrightarrow caso critico!

Teorema di linearizzazione a t.d.

$$x(t+1) = f(x(t))$$
: sistema non lineare con punto di equilibrio \bar{x}

Teorema: Sia $\delta_x(t+1) = F\delta_x(t)$ il sistema linearizzato di x(t+1) = f(x(t)) attorno a \bar{x} e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di F. Allora:

- **1** Se il sistema linearizzato è asintoticamente stabile $(|\lambda_i| < 1, \forall i)$, allora \bar{x} è un punto di equilibrio asintoticamente stabile per il sistema non lineare.
- 2 Se il sistema linearizzato ha un autovalore con modulo maggiore di uno $(\exists i \text{ tale } che |\lambda_i| > 1)$, allora \bar{x} è un punto di equilibrio instabile per il sistema non lineare.

Caso critico: $|\lambda_i| \leq 1$, $\forall i$, e $\exists i$: $|\lambda_i| = 1$

Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 11: Criteri di stabilità per sistemi lineari e non lineari

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

⊠ baggio@dei.unipd.it

3) x = 2x3,	LER,	x = 0		
 δ _* = 3 λ ×	$\tilde{\chi}^2 \delta_{X} = 0$	→ F=0	$\rightarrow \lambda_1 = 0 \rightarrow$	caso vitico del teorema di linearizzazione