Lineare Algebra 2 — Übungsblatt 0

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Keine Abgabe!

1. Aufgabe: (Polynomielle Abbildungen) Es bezeichne Abb (\mathbb{R},\mathbb{C}) den \mathbb{C} -Vektorraum aller Abbildungen von \mathbb{R} nach \mathbb{C} . Für die Definition der Vektorraumstruktur siehe Abschnitt 2.3 im Skript der Linearen Algebra 1. Sei

$$V := \left\{ f \in \mathrm{Abb}(\mathbb{R}, \mathbb{C}) \mid \text{es gibt } a, b, c \in \mathbb{C} \text{ sodass } f(x) = a + bx + cx^2 \text{ für alle } x \in \mathbb{R} \right\}.$$

- (a) Man zeige, dass V ein endlich-dimensionaler Untervektorraum von $Abb(\mathbb{R}, \mathbb{C})$ ist.
- (b) Man zeige, dass $h: V \times V \to \mathbb{C}$ gegeben durch

$$h(f,g) = \int_0^1 f(x)\overline{g(x)} dx := \int_0^1 \text{Re}(f(x)\overline{g(x)}) dx + i \int_0^1 \text{Im}(f(x)\overline{g(x)}) dx \in \mathbb{C}$$

ein Skalarprodukt auf V definiert. (V,h) ist also ein unitärer Raum.

Hinweis: Es darf ohne Beweis verwendet werden, dass Elemente von V stetig sind. Die Formeln

$$Re(zw) = Re(z)Re(w) - Im(z)Im(w)$$
 und $Im(zw) = Re(z)Im(w) + Im(z)Re(w)$

für $z, w \in \mathbb{C}$ könnten ebenfalls hilfreich sein. Man beweise diese gegebenenfalls.

2. Aufgabe: (Spezielle Endomorphismen) Seien $A = \begin{pmatrix} 1 & i & 0 \\ -i & 3 & i \\ 0 & -i & 1 \end{pmatrix} \in M_{3,3}(\mathbb{C})$ und $B = \begin{pmatrix} 2 & -2i & -i \\ 0 & 0 & -1 \\ 0 & 0 & 2i \end{pmatrix} \in M_{3,3}(\mathbb{C})$. Man betrachte die Abbildung

$$h_A: \mathbb{C}^3 \times \mathbb{C}^3 \to \mathbb{C}, \quad (x, y) \mapsto x^t A \overline{y}.$$

- (a) Man zeige, dass h_A ein Skalarprodukt auf \mathbb{C}^3 ist.
- (b) Man bestimme eine Orthonormalbasis von (\mathbb{C}^3 , h_A).
- (c) Man zeige, dass $\mathbb{C}^3 \xrightarrow{B^*} \mathbb{C}^3$ normal für (\mathbb{C}^3, h_A) , aber nicht für \mathbb{C}^3 mit dem Standardskalarprodukt ist.
- (d) Man bestimme die Eigenwerte und Eigenräume von $\mathbb{C}^3 \xrightarrow{B^*} \mathbb{C}^3$ und zeige, dass die Eigenräume paarweise orthogonal sind.
- (e) Ist $\mathbb{C}^3 \xrightarrow{B^*} \mathbb{C}^3$ selbstadjungiert für (\mathbb{C}^3, h_A) ?
- **3. Aufgabe:** (Adjungierte Abbildungen) Sei (V,h) ein unitärer Raum. Für $f \in \text{End}(V)$ bezeichne wie in der Vorlesung $f^* \in \text{End}(V)$ die zu f adjungierte Abbildung. Man zeige:
 - (a) Für alle $f, g \in \text{End}(V)$ gilt: $(f \circ g)^* = g^* \circ f^*$.
 - (b) Für alle $f \in \text{End}(V)$, $\lambda \in \mathbb{C}$ gilt: $(\lambda f)^* = \bar{\lambda} f^*$.
 - (c) Für alle $f \in \text{End}(V)$ gilt: $f \circ f^*$ und $f^* \circ f$ sind selbstadjungiert.

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.