Exercice 1

Déterminer dans chaque cas une primitive F de la fonction f puis calculer l'intégrale donnée.

1)
$$f(x) = 2x$$
 définie sur \mathbb{R} et $\int_{-1}^{2} f(x)dx$

2)
$$f(x) = -x + 7$$
 définie sur \mathbb{R} et $\int_{1}^{5} f(x)dx$

3)
$$f(x) = -x^2 + 2x + 4$$
 définie sur \mathbb{R} et $\int_0^2 f(x) dx$

4)
$$f(x) = x^3 - x + 2$$
 définie sur \mathbb{R} et $\int_{-1}^{1} f(x)dx$ 8) $f(x) = x - e^{0.5x-1}$ définie sur \mathbb{R} et $\int_{2}^{4} f(x)dx$

5)
$$f(x) = e^x$$
 définie sur \mathbb{R} et $\int_{-1}^{1} f(x)dx$

1)
$$f(x) = 2x$$
 définie sur \mathbb{R} et $\int_{-1}^{2} f(x)dx$

5) $f(x) = e^{x}$ définie sur \mathbb{R} et $\int_{-1}^{1} f(x)dx$

2) $f(x) = -x + 7$ définie sur \mathbb{R} et $\int_{1}^{5} f(x)dx$

6) $f(x) = \frac{x^{2} - 1}{x^{2}}$ définie sur \mathbb{R} et $\int_{1}^{10} f(x)dx$

7) $f(x) = 1 - e^{-x}$ définie sur \mathbb{R} et $\int_{0}^{\ln 2} f(x)dx$

7)
$$f(x) = 1 - e^{-x}$$
 définie sur \mathbb{R} et $\int_0^{\ln 2} f(x) dx$

8)
$$f(x) = x - e^{0.5x-1}$$
 définie sur \mathbb{R} et $\int_2^4 f(x)dx$

Exercice 2

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = 2x - x \ln(x)$.

- 1) a) Calculer la valeur exacte de f(3e). En donner une valeur approchée au millième.
 - b) Résoudre sur]0; $+\infty[$ l'équation f(x)=0.
 - c) Calculer la fonction dérivée f'.
- 2) Montrer que la fonction F définie sur]0; $+\infty[$ par $F(x) = \frac{5}{4}x^2 \frac{1}{2}x^2\ln(x)$ est une primitive de f.
- 3) Calculer la valeur exacte, puis approchée au centième, de $\int_{-\infty}^{\infty} f(x)dx$

Exercice 3

Soit f et F les fonctions définies sur]0; $+\infty[$ par $f(x) = \ln(x)$ et $F(x) = x \ln(x) - x$.

- 1) Montrer que F est une primitive de la fonction f.
- 2) En déduire la primitive de f telle que F(1) = 0.
- 3) Calculer $\int_{-\infty}^{2e} \ln(x) dx$.
- 4) Calculer la valeur moyenne de la fonction f sur l'intervalle [1; 7].

Exercice 4

On considère la fonction f définie sur [0,5;10] par $f(x)=-x^2-4x+15+6\ln(x)$. On note f' la fonction dérivée de la fonction f.

- 1) Vérifier que $f'(x) = \frac{-2x^2 4x + 6}{x}$.
- 2) Étudier le signe de la fonction f' sur [0,5; 10], en déduire le tableau de variations de f sur [0,5; 10].
- 3) On considère la fonction F définie et dérivable sur [0,5;10] telle que $F(x)=-\frac{1}{3}x^3-2x^2+9x+6x\ln(x)$. Montrer que F est une primitive de f sur [0, 5; 10].
- 4) Calculer $I = \int_{1}^{3} f(x) dx$. En donner la valeur exacte, puis une valeur approchée au millième.
- 5) En déduire la valeur moyenne de la fonction f sur l'intervalle [1;3]: en donner une valeur approchée au millième.