

WHAT IS CLAIMED IS:

1. A method of measuring the displacement of
the optical axis of an optical microscope having an
illumination optical system and a projection optical
5 system, the method comprising:

a step of irradiating the evaluation mark having
diffraction grating patterns formed on a substrate with
illumination light by way of the illumination optical
system and observing the evaluation mark by way of the
10 projection optical system to obtain the brightness of
the evaluation mark; and

15 a step of measuring the displacement of the
optical axis on the basis of the relationship between
the brightness of the image of the evaluation mark and
the direction of the diffraction grating patterns of
the evaluation mark.

2. The method of measuring the displacement of
the optical axis according to claim 1, wherein

20 the evaluation mark is composed of at least two
gratings connected together and arranged in a series,
each having parallel bars that extend in a direction
different from those of any other grating.

25 3. The method of measuring the displacement of
the optical axis according to claim 1, wherein

normal light of the illumination light is blocked
at the position of the pupil of the projection optical
system.

4. The method of measuring the displacement of
the optical axis according to claim 2, wherein
dиффрагированное света от освещения света
заблокировано в положении зрачка проекционной
системы.

5. The method of measuring the displacement of
the optical axis according to claim 1, wherein
a plurality of beams of diffracted light produced
by the diffraction grating patterns are blocked
10 asymmetrically at the position of the pupil of the
projection optical system relative to normal light of
the illumination light by the substrate.

6. The method of measuring the displacement of
the optical axis according to claim 2, wherein
15 a plurality of beams of diffracted light produced
by the diffraction grating patterns are blocked
asymmetrically at the position of the pupil of the
projection optical system relative to normal light of
the illumination light from the substrate.

20 7. The method of measuring the displacement of
the optical axis according to claim 1, wherein
dиффрагированное света генерируется дифракционными
решетками с асимметрично различающейся интенсивностью
25 относительно нормального света.

8. The method of measuring the displacement of
the optical axis according to claim 2, wherein
dиффрагированное света генерируется дифракционными

grating patterns with asymmetrically differentiated intensity relative to normal light.

9. An optical microscope comprising:
 - an illumination optical system through which illumination light to be applied to an evaluation mark passes;
 - a projecting optical system through which the illumination light reflected from the evaluation passes; and
 - 10 a removable and rotatable shield means provided at a pupil of the projection optical system and having a shield area, the shield area is arranged asymmetrically relative to normal light of the illumination light from the substrate.
- 15 10. The optical microscope according to claim 9, wherein
the evaluation mark is formed on the substrate.
11. The optical microscope according to claim 9,
wherein
20 the evaluation mark is formed on the stage for carrying the substrate.
12. An evaluation mark comprising:
 - a substrate; and
 - 25 diffraction gratings formed on the substrate and adapted to asymmetrically generate diffracted light when irradiated with light.
13. The evaluation mark according to claim 12,

wherein

the diffraction gratings show a saw-blade like cross section.

14. The evaluation mark according to claim 12,

5 wherein

the diffraction gratings show a stepped cross section of a plurality of steps.