Predicting Crimes in Colorado

•••

January 21, 2021

Overview

Crimes are intricate and interesting, and can be both predictable and unpredictable. Crimes have existed for a long time and will remain parts of society. Therefore, I am interested in predicting when crimes will take place.

I selected Burglary and Robbery as crimes indicators in the state of Colorado to discover data patterns and with the use Machine Learning Models to predict when crimes will take place based on the indicators.

Datasets were sourced from Colorado Crime Data Explorer site. While data for other crimes are available, in this project the scope was narrowed down to Burglary and Robbery crimes.

Understanding the problem

Question 1

Can we predict the when crimes will take place based on key indicators: historical crime data, incident date, type of crimes, location of crimes and number of crimes?

Question 2

Can we predict types of crimes with key indicators: historical crime data, incident date, type of crimes, location of crimes and number of crimes?

Question 3

What crimes are increasing or decreasing, at what rate and over what timeframes with a given regional?

Description of the source of data:

Datasets were available for download in comma separated values format files from the year 2016 to 2019 although the dataset from previous years were available. Datasets were pulled from a portal that collects data from the rest of the states that FBI maintains.

NIBRS:

https://crime-data-explorer.app.cloud.gov/downloads-and-docs

Dataset:

NIBRS_incidents_16_19 NIBRS_Offense_16_19 Features: DATA_YEAR INT, AGENCY_ID INT, INCIDENT_ID INT, NIBRS_MONTH_ID INT, CARGO_THEFT_FLAG VARCHAR, SUBMISSION_DATE DATE, INCIDENT_DATE INT, INCIDENT_Month VARCHAR, INCIDENT_DAY INT, REPORT_DATE_FLAG VARCHAR, INCIDENT_HOUR INT, DATA_HOME VARCHAR, ORIG_FORMAT VARCHAR, DID INT

Features: DATA_YEAR INT, OFFENSE_ID INT, INCIDENT_ID INT, OFFENSE_TYPE_ID VARCHAR, ATTEMPT_COMPLETE_FLAG VARCHAR, LOCATION_ID VARCHAR, METHOD ENTRY CODE VARCHAR

Description of the data exploration phase of the project:

Explored the dataset structure to uncover initial patterns, characteristics, creating a broad picture of important trends and major points to study in greater detail which took place in Tableau.

Data Exploration

Total incluents. 54,950

Offence Breakdown:

Burglary: 53,133

Robbery: 1,797

Offence Location:

Commercial/Office Building: 2,927

Government/Public Building: 384

Residence/Home: 51,619

Dates:

2016 - 2019

Understanding the data breakdown

Understanding the data cont...

Description of the analysis phase of the project:

Analysis phase consist of preprocessing and predicting crimes with SciKitLearn Machine Learning (NL) library using to create a classifiers especifically Logistic Regression and Support Vector Machines (SVM) models.

Preprocessing

```
# Custom Encode the months
   months_num = {
      "January": 1,
    "February": 2,
    "March": 3,
    "April": 4,
    "May": 5,
    "June": 6,
    "July": 7,
    "August": 8,
10
11
    "September": 9,
12
    "October": 10,
13
    "November": 11,
14
    "December": 12,
15 }
```

	<		nse_df_encode					
Out[12]:		DATA_YEAR_x	INCIDENT_DAY	MONTH_NUM	OFFENSE_TYPE_ID_Burglary	OFFENSE_TYPE_ID_Robbery	LOCATION_ID_Commercial	LOCATION_ID_Go
	0	2019	16	10	1	0	0	
	1	2019	18	7	1	0	0	
	2	2019	14	10	1	0	0	
	3	2019	9	8	1	0	0	
	4	2019	7	12	1	0	0	
		100	870	1975	(897)	 (5)1-	10011	
	54925	2016	30	3	1	0	0	
	54926	2016	4	8	1	0	0	
	54927	2016	21	6	1	0	0	
	54928	2016	22	6	-1	0	0	

Predicting Crimes with Logistic Regression

```
Separate the Features (X) from the Target (y)
         1 y = incident offense df encoded["MONTH NUM"]
            X = incident offense df encoded.drop(columns="MONTH NUM")
        Split our data into training and testing
In [15]:
          1 from sklearn.model selection import train test split
            X train, X test, y train, y test = train test split(X,
                                                               random state=1.
                                                               stratify=v)
            X train. shape
Out[15]: (41197, 7)
        Create a Logistic Regression Model
            from sklearn.linear model import LogisticRegression
            classifier = LogisticRegression(solver='lbfgs',
                                           max iter=200,
                                           random state=1)
        Fit (train) or model using the training data
         1 classifier.fit(X train, y train)
Out[17]: LogisticRegression(max iter=200, random state=1)
```

```
y pred = classifier.predict(X test)
             results = pd.DataFrame({"Prediction": y_pred, "Actual": y_test}).reset_index(drop=True)
            results.head(20)
Out[18]:
         Validate the Model
          1 from sklearn.metrics import accuracy score
          2 print(accuracy_score(y_test, y_pred))
         0.09488094371222602
```

Predicting Crimes with SVM

Separate the Features (X) from the Target (y)

```
# Segment the features from the target
y = incident_offense_df_encoded["MONTH_NUM"]
X = incident_offense_df_encoded.drop(columns="MONTH_NUM")
```

Split our data into training and testing

Create a SVM Model

```
1 # Instantiate a linear SVM model
2 from sklearn.svm import SVC
3 model = SVC(kernel='linear')
```

Fit (train) or model using the training data

```
1  # Fit the data
2  model.fit(X_train, y_train)
SVC(kernel='linear')
```

Make predictions

```
# Make predictions using the test data
y_pred = model.predict(X_test)
results = pd.DataFrame({
    "Prediction": y_pred,
    "Actual": y_test
}).reset_index(drop=True)
results.head()
```

Prediction Actual 0 8 11 1 8 8 2 7 10 3 8 2 4 7 9

```
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)
```

0.100269424015146

Predicting Crimes with SVM cont...

Generate Confusion Matrix

Generate Classification Report

- 1 from sklearn.metrics import classification_report
- 2 print(classification report(y test, y pred))

	precision	recall	f1-score	support
1	0.10	0.05	0.06	1163
2	0.00	0.00	0.00	987
3	0.00	0.00	0.00	1100
4	0.00	0.00	0.00	1108
5	0.00	0.00	0.00	1193
6	0.00	0.00	0.00	1215
7	0.11	0.49	0.18	1324
7 8	0.10	0.49	0.16	1281
9	0.07	0.01	0.01	1191
10	0.08	0.02	0.04	1164
11	0.00	0.00	0.00	1024
12	0.00	0.00	0.00	983
accuracy			0.10	13733
macro avg	0.04	0.09	0.04	13733
weighted avg	0.04	0.10	0.04	13733

Outcome

Results

- Both Logistic Regression and SVM accuracy results were close to each other and very low.
- Both models were chosen for the types of data and both were resulted in similar accuracy, the dataset had issues or limited in rows or features.
- They did not predict when the crime will take place.

Recommendation

- Include dataset from other states
- Include more years of dataset
- Include other types of crimes
- Expand the project by adding weather and economic indicators

Anything the team would have done differently:

Longer time exploring the dataset, prototyping machine learning models and working with a team.