

Compton Principles and Multiple Compton Scatter Technique

J. D. Kurfess Naval Research Laboratory

OUTLINE

Conventional Compton Telescopes

- Efficiency
- Energy resolution
- Angular resolution

Multiple Compton Telescope

- Concept
- Energy resolution
- Angular resolution
- Doppler Broadening
- Background reduction
- Polarization

Compton Scattering

Comptel efficiency ~ 1%

$$\cos \phi = 1 - m_e c^2 \left[\frac{1}{E_2} - \frac{1}{E_1} \right]$$

$$\delta\phi = \frac{m_{e}c^{2}}{\sin\phi} \begin{bmatrix} \delta E_{u}^{2} + \delta E_{l}^{2} \end{bmatrix} \frac{1}{E_{2}^{2}} - \frac{1}{E_{1}^{2}} \begin{bmatrix} \frac{1}{2} - \frac{1}{2} \end{bmatrix}^{2}$$

Compton Scattering at 1 MeV

Directions for Improvement

Increase Efficiency

- More Compact Design
- Monolithic, Position-sensitive detectors

Energy Resolution

- Solid State Detectors
- Gas Detectors

Angular Resolution

- Position-sensitive detectors
- Electron tracking

Background Reduction

- Electron tracking
- Event reconstruction
- Choice of orbit
- Polarization

Three Gamma Interaction Technique

$$\cos\phi_1 = 1 - m_e c^2 \left[\frac{1}{E_2} - \frac{1}{E_1} \right]; \quad L_1 = E_1 - E_2$$

$$\cos\phi_2 = 1 - m_0 c^2 \left\| \frac{1}{E_3} - \frac{1}{E_2} \right\|; \quad L_2 = E_2 - E_3$$

$$\cos\phi_3 = 1 - m_e c^2 \left\| \frac{1}{E_4} - \frac{1}{E_3} \right\|; \quad L_3 = E_3 - E_4$$

$$E_{1} = L_{1} + \frac{L_{2} + \frac{1}{1}L_{2}^{2} + \frac{4m_{c}c^{2}L_{2}}{1 - \cos\varphi_{2}} \frac{1}{1}}{2}$$

Incident gamma ray energy determined with partial energy loss

- Only three interactions required
- Dramatic improvement in efficiency
- •New alternative: Silicon only Compton telescope

Kurfess et al., Proc. 5th Compton Symp. AIP <u>510</u> 789 (2000)

Three Gamma Interaction Technique

Differential cross section for double scattering at angles ϕ_1 and ϕ_2

Three Gamma Interaction Technique

Errors in E_1 and φ_1 :

$$d\phi_{1} = \frac{mc^{2}}{\sin\phi_{1}} \frac{1}{\left[\frac{1}{2}\right]} \frac{1}{(E_{1} - L_{1})^{2}} - \frac{1}{E_{1}^{2}} \frac{1}{\left[\frac{1}{2}\right]^{2}} dE_{1}^{2} + \frac{dL_{1}^{2}}{(E_{1} - L_{1})^{4}} \frac{1}{\left[\frac{1}{2}\right]^{2}}$$

Typical energy and angular response for 3-gamma instrument with detector energy resolution of 2 keV, position resolution of 1 m/m.

Silicon ACT

1 m² frontal area

Multiple layers of thick double-sided silicon strip detectors

 $\sim 40 \text{ g/cm}^2 \text{ thick}$

430 kg silicon

Broad FoV (± 75-90 degrees)

Charged particle anticoincidence

Detection Efficiency vs. active material fraction

1 keV

10 keV

dx

1mm

10m m

Assumes typical gamma ray pathlength of 15-20 cm (20% fill factor)

Dependence of 3- γ energy response on detector energy and position resolution

dL=0.1 keV

1 keV

10 keV

10m m

Assumes typical gamma ray pathlength of 15-20 cm (20% fill factor)

3-scatter energy and angular response vs. energy and position resolution

recoil

electron

Energy uncertainty due to Doppler broadening

Standard Compton formulae assume initial electron is at rest.

Shown below is the effect on energy resolution and angular resolution when electron velocity is taken into consideration.

This 'Doppler' effect at the first Compton scatter site produces an uncertainty in the angle of the incident gamma ray.

Figure 5. Energy uncertainty due to Doppler broadening effect for (a) 511 keV, (b) 1MeV.

Du et al. SPIE **3768** p. 228 (1999)

Geometric, Doppler, and energy response uncertainty contributions to the angular uncertainty for the incident gamma ray

11 May 20

Compton Worksho

15

Figure 4. Angular uncertainty estimation. (a) for 511 keV, (b) for 1 MeV.

Du et al. SPIE **3768** p. 228 (1999)

Polarization

Figure 4.3. (a) The Compton scattering of a polarized gamma ray and (b) enlarged view of polarization vectors in the scattering plane.

Thesis: Multiple Compton Camera for Gamma Ray Imaging

Nesrin Dogan

Univ. Michigan (1993)

Compton scattering cross section is polarization dependent. Comptonscattered gamma rays are polarized (dependent on scattering angle) for an unpolarized incident beam.

Figure 4.1. Polarization of an initially unpolarized gamma ray beam by Compton scattering process.

recoil

Background reduction using Polarization

Polarization dependence of the scattering cross section can be used to give higher probability to arcs separated by 180°.

The interaction mean free path through the instrument can be used to give higher weight to one of these arc segments.

Technology Issues

Position-sensitive detectors with excellent energy resolution

•e.g. thick double-sided Silicon strip detectors

Low-power spectroscopy ASICs

Minimize passive mass in detector volume

Simulations

- Performance vs. ΔE and ΔX
- Attenuation in detector materials (Si, Ge, Xe, Ar)
- •Electron tracking modes
- Performance/sensitivity vs. orbit selection
- •Impact of electron velocity on ΔE and $\Delta \theta$
- Performance vs. fraction of passive material in detector

SUMMARY

- •Very significant improvements in performance/sensitivity are possible
- •3-Compton scatter concept is very attractive for a high efficiency, high sensitivity instrument
- •Potential for dramatic background reduction (see Boggs and Jean; A&A preprint)
- •3-Compton approach appears applicable to all instruments under consideration
- •Performance improves dramatically with position and energy resolution