Esercitazione di Fisica - 4

Riccardo Nicolaidis

10/04/2025

1 Problema 1

Figure 1: Problema 1

Un'automobile sta imboccando una curva de- scritta da un quarto di circonferenza di raggio R(m) e il cui profilo (della curva) forma un angolo di θ (rad) con l'orizzontale. Sapendo che il coefficiente d'attrito statico fra le ruote e la strada è μ_s , la velocità massima a cui l'auto può viaggiare senza slittare è v_M (km/h). Trovare il coefficiente di attrito minimo affinchè la macchina non slitti sulla curva.

2 Problema 2

Figure 2: Problema 2

Due corpi sono collegati da una fune inestensibile passante per una carrucola fissa come in figura. Il corpo di massa $M_1=3$ kg si muove su una superficie non liscia orizzontale ed è collegato ad una molla di costante elastica k = 10 N/m. Il sistema è lasciato libero da fermo quando la molla non è deformata. Se il corpo di massa $M_2=4$ kg cade di un tratto H = 3 m prima di essere di nuovo fermo calcolare il coefficiente di attrito dinamico esercitato dalla superficie orizzontale sul corpo M_1 in movimento.

3 Problema 3

Figure 3: Problema 3

Siano M_1 =7 kg e M_2 =4 kg le masse di due corpi inizialmente in quiete ed uniti da una fune inestensibile di massa trascurabile come riportato in figura. Il piano orizzontale è scabro con coefficiente di attrito dinamico μ =0.3 e il sistema è lasciato libero di muoversi. Sapendo che il corpo M_1 si trova ad una altezza h=5 m dal suolo, calcolare la velocità con cui M_1 arriva al suolo.