- Resistor Markings page
- Mil-55342 Markings page

- Resistance Conversions page
- Resistor Vendors page

Standard base resistor values are given in the following tables for the most commonly used tolerances ($\frac{1\%}{5}$, $\frac{5\%}{10\%}$), along with typically available resistance ranges. To determine values other than the base, multiply the base value by 10, 100, 1 000 or 10 000.

Example: Calculations indicate the need for a 355 k Ω resistor and a tolerance of 1% . Look in the 1% table and select the 35.7 value (the nearest available standard value). Multiply by 10 000 to convert to 357 k Ω .

1% Standard Values Decade multiples are available from 10.0 Ω through 1.00 M Ω (also 1.10 M Ω , 1.20 M Ω , 1.30 M Ω , 1.50 M Ω , 1.60 M Ω , 1.80 M Ω , 2.00 M Ω and 2.20 M Ω)											
10.0	10.2	10.5	10.7	11.0	11.3	11.5	11.8	12.1	12.4	12.7	13.0
13.3	13.7	14.0	14.3	14.7	15.0	15.4	15.8	16.2	16.5	16.9	17.4
17.8	18.2	18.7	19.1	19.6	20.0	20.5	21.0	21.5	22.1	22.6	23.2
23.7	24.3	24.9	25.5	26.1	26.7	27.4	28.0	28.7	29.4	30.1	30.9
31.6	32.4	33.2	34.0	34.8	35.7	36.5	37.4	38.3	39.2	40.2	41.2
42.2	43.2	44.2	45.3	46.4	47.5	48.7	49.9	51.1	52.3	53.6	54.9
56.2	57.6	59.0	60.4	61.9	63.4	64.9	66.5	68.1	69.8	71.5	73.2
75.0	76.8	78.7	80.6	82.5	84.5	86.6	88.7	90.9	93.1	95.3	97.6

Standard resistor values are calculated using the simple formula given below. Round the results to the proper number of significant figures (3 for 1% and 2%, 2 for 5% and 10%). As the chart at the right shows (created in Excel), plotting the values on a logarithmic scale results in a straight line.

$$R = d * 10^{\frac{i}{N}},$$

5% Standard Values Decade multiples are available from 10 Ω through 22 M Ω											
10	11	12	13	15	16	18	20	22	24	27	30
33	36	39	43	47	51	56	62	68	75	82	91

10% Standard Values Decade multiples are available from 10 Ω through 1 M Ω													
10 12 15 18 22 27 33 39 47 56 68 82													

3 of 3 11/7/2005 1:57 PM