

### Computação Gráfica

Projeções em Perspectiva

Professor: Luciano Ferreira Silva, Dr.



### **Projeções**

- Visão humana: enxerga em 2D, a sensação de profundidade vem da diferença entre as vistas esquerda e direita do mesmo objeto;
- Projeção: conversão genérica de entidades de uma dada dimensão para outra de menor ordem;
- CG:

✓ Conversão 3D para 2D;



### Tipos de projeção

## Determinam a projeção:

- ✓ Plano de projeção: quadro;
- ✓ Centro de projeção: ponto de vista;

# Técnicas de projeção 3D/2D:

- ✓ Projeção paralela
- ✓ Projeção perspectiva (de grande interesse na CG)



### Tipos de Projeções





### Projeções Paralela

Proj. Paralelas (cilíndricas): tem um ponto

impróprio como centro de projeção - isto é; as

linhas visuais encontram-se no infinito. Mantém a

proporcionalidade da figura.



# Projeções Paralela





Proj. Perspectiva (cônica): o centro de projeção é um ponto próprio, em coordenadas finitas no sistema tridimensional. Esta projeção deforma a figura, diminuindo os objetos mais distantes e distorcendo os ângulos.



- Fortemente determinada pelo centro de projeção
- Similar à câmaras de vídeo e ao olho humano;
- Imagem parece mais realista;
- Não preserva ângulos;
- Não preserva escalas;



# Projeção Perspectiva









## 1. Do ponto:





 2. Da reta: idem ao caso anterior, considerando dois pontos:





 Transformam retas em retas mas não preservam as suas proporções;





- Projeções: forma específica de transformação geométrica;
- Existe a necessidade de identificar matrizes 4x4 que, aplicadas a um dado ponto do espaço obtenham o ponto no plano equivalente;
- Na prática:
  - ✓ O plano de projeção é um plano vertical, colocado perpendicularmente ao eixo z do sistema de coordenadas do objeto.















Matriz de projeção:

$$P' = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ \frac{d}{d} \\ 1 \end{bmatrix}$$



 Dado o objeto definido pelas tabelas abaixo e o plano de projeção dado por Z = 20, obtenha os pontos projetados:

| PONTO | X  | Y  | Z  |
|-------|----|----|----|
| 1     | 40 | 60 | 40 |
| 2     | 20 | 20 | 10 |
| 3     | 60 | 30 | 15 |
| 4     | 20 | 40 | 60 |
| 5     | 70 | 40 | 70 |



P<sub>5</sub>`(20,11.4)

**Pontos resultantes:** 



- Pontos de fuga são uma ilusão de que conjuntos de linhas paralelas (não-paralelas ao plano de projeção) convergem para um ponto, denominado de fuga;
- O número de pontos de fuga principais é determinado pelo número de eixos principais interceptados pelo plano de projeção;
- Pode haver: 1, 2, 3 pontos de fuga;



## Projeção Perspectiva



Figura: pontos de fuga possíveis



Figura: Trinity with the Virgin, St. John and Donors) feita em perspectiva por Masaccio, em 1427. Traçado com um ponto de fuga.







Figura: The Piazza of St. Mark, Venice) feita por Canaletto em 1735-45 - perspectiva com um ponto de fuga.





Figura: The Mansard Roof - 1923 por Edward Hopper com dois pontos de fuga.



**Figura**: (*City Night*, 1926) por Georgia O'Keefe, com, aproximadamente, três pontos de fuga.





### Anomalias da Perspectiva

- Podem ocorrer algumas distorções durante a perspectiva, por exemplo:
  - ✓ Encurtamento perspectivo: aumentando a distância do objeto ao centro de projeção: objeto parece ser menor;
  - Confusão visual: objetos situados atrás do centro de projeção são projetados no plano de projeção de cima para baixo e de trás para frente;





### Anomalias da Perspectiva

 Segmentos de reta que passam pela centro de projeção são projetados como um ponto.





## Arte com Anomalias da Perspectiva

**Figura**: (*Belvedere*, 1958) por Maurits Cornelis Escher.





# Arte com Anomalias da Perspectiva

**Figura**: (*Relativity*, 1958) por Maurits Cornelis Escher.

