TRANSFORMACIONES VECTORIALES DE LORENTZ

A. Blato

Licencia Creative Commons Atribución 3.0 (2016) Buenos Aires

Argentina

Este artículo presenta las transformaciones vectoriales de Lorentz de tiempo, espacio, velocidad y aceleración.

Introducción

Sean dos sistemas de referencia inerciales S y S' cuyos orígenes coinciden en el tiempo cero (para ambos sistemas) entonces el tiempo (t'), la posición (\mathbf{r}') la velocidad (\mathbf{v}') y la aceleración (\mathbf{a}') de una partícula (masiva o no masiva) respecto al sistema de referencia inercial S' están dados por:

$$\begin{split} &t' \ = \ \gamma \left(t - \frac{\mathbf{r} \cdot \mathbf{V}}{c^2} \right) \\ &\mathbf{r}' \ = \ \left[\ \mathbf{r} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{r} \cdot \mathbf{V}) \, \mathbf{V}}{c^2} - \gamma \, \mathbf{V} \, t \, \right] \\ &\mathbf{v}' \ = \ \left[\ \mathbf{v} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{v} \cdot \mathbf{V}) \, \mathbf{V}}{c^2} - \gamma \, \mathbf{V} \, \right] \frac{1}{\gamma \left(1 - \frac{\mathbf{v} \cdot \mathbf{V}}{c^2} \right)} \\ &\mathbf{a}' \ = \ \left[\ \mathbf{a} - \frac{\gamma}{\gamma + 1} \frac{(\mathbf{a} \cdot \mathbf{V}) \, \mathbf{V}}{c^2} + \frac{(\mathbf{a} \times \mathbf{v}) \times \mathbf{V}}{c^2} \, \right] \frac{1}{\gamma^2 \left(1 - \frac{\mathbf{v} \cdot \mathbf{V}}{c^2} \right)^3} \end{split}$$

donde $(t, \mathbf{r}, \mathbf{v}, \mathbf{a})$ son el tiempo, la posición, la velocidad y la aceleración de la partícula respecto al sistema de referencia inercial \mathbf{S} , (\mathbf{V}) es la velocidad del sistema de referencia inercial \mathbf{S} ' respecto al sistema de referencia inercial \mathbf{S} y (c) es la velocidad de la luz en el vacío. (\mathbf{V}) es una constante. $\gamma = (1 - \mathbf{V} \cdot \mathbf{V}/c^2)^{-1/2}$

•
$$\mathbf{v}' = \frac{d\mathbf{r}'}{dt'} = \frac{d\mathbf{r}'}{dt'} \frac{dt}{dt} = \frac{d\mathbf{r}'}{dt} \frac{dt}{dt'} = \left(\frac{d\mathbf{r}'}{dt}\right) \frac{1}{\left(\frac{dt'}{dt}\right)}$$

•
$$\mathbf{a}' = \frac{d\mathbf{v}'}{dt'} = \frac{d\mathbf{v}'}{dt'} \frac{dt}{dt} = \frac{d\mathbf{v}'}{dt} \frac{dt}{dt'} = \left(\frac{d\mathbf{v}'}{dt}\right) \frac{1}{\left(\frac{dt'}{dt}\right)}$$

•
$$dt' = \gamma \left(dt - \frac{d\mathbf{r} \cdot \mathbf{V}}{c^2} \right)$$

$$\bullet \quad \left(\frac{dt'}{dt}\right) = \gamma \left(1 - \frac{\mathbf{v} \cdot \mathbf{V}}{c^2}\right)$$

•
$$d\mathbf{r}' = \left[d\mathbf{r} + \frac{\gamma^2}{\gamma + 1} \frac{(d\mathbf{r} \cdot \mathbf{V}) \mathbf{V}}{c^2} - \gamma \mathbf{V} dt \right]$$

•
$$\left(\frac{d\mathbf{r}'}{dt}\right) = \left[\mathbf{v} + \frac{\gamma^2}{\gamma+1} \frac{(\mathbf{v} \cdot \mathbf{V}) \mathbf{V}}{c^2} - \gamma \mathbf{V}\right]$$

•
$$d\mathbf{v}' = \left[d\mathbf{m} \cdot n - \mathbf{m} \cdot dn \right] \frac{1}{n^2}$$

$$\bullet \quad \mathbf{m} \ = \ \left[\ \mathbf{v} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{v} \cdot \mathbf{V}) \, \mathbf{V}}{c^2} - \gamma \, \mathbf{V} \ \right]$$

•
$$d\mathbf{m} = \left[d\mathbf{v} + \frac{\gamma^2}{\gamma + 1} \frac{(d\mathbf{v} \cdot \mathbf{V}) \mathbf{V}}{c^2} \right]$$

$$\bullet \quad n \, = \, \left[\, \gamma \, (1 - \frac{\mathbf{v} \cdot \mathbf{V}}{c^2}) \, \right]$$

$$\bullet \quad dn = \left[-\gamma \, \frac{d\mathbf{v} \cdot \mathbf{V}}{c^2} \, \right]$$

•
$$\left(\frac{d\mathbf{v}'}{dt}\right) = \left[\mathbf{a} - \frac{\gamma}{\gamma+1} \frac{(\mathbf{a} \cdot \mathbf{V}) \mathbf{V}}{c^2} + \frac{(\mathbf{a} \times \mathbf{v}) \times \mathbf{V}}{c^2}\right] \frac{1}{\gamma (1 - \frac{\mathbf{v} \cdot \mathbf{V}}{c^2})^2}$$

Bibliografía

https://it.wikipedia.org/wiki/Trasformazione_di_Lorentz

https://en.wikipedia.org/wiki/Lorentz_transformation

https://arxiv.org/abs/physics/0507099

https://arxiv.org/abs/physics/0702191

https://archive.org/details/blato_links

https://archive.org/details/@a_blato

Apéndice I

En la bibliografía anterior, si la velocidad del sistema de referencia inercial S' respecto al sistema de referencia inercial S no es igual a cero ($\mathbf{V} \neq 0$) entonces:

$$\frac{\gamma - 1}{\mathbf{V}^2} = \frac{\gamma^2}{\gamma + 1} \frac{1}{c^2} \qquad (\mathbf{V}^2 = \mathbf{V} \cdot \mathbf{V})$$

donde (c) es la velocidad de la luz en el vacío. $\gamma = (1 - \mathbf{V} \cdot \mathbf{V}/c^2)^{-1/2}$

Apéndice II

Derivada del cociente:
$$\mathbf{a} = \frac{\mathbf{m}}{n} \rightarrow d\mathbf{a} = \left[d\mathbf{m} \cdot n - \mathbf{m} \cdot dn \right] \frac{1}{n^2}$$

Regla de la expulsión:
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b} (\mathbf{a} \cdot \mathbf{c}) - \mathbf{c} (\mathbf{a} \cdot \mathbf{b})$$

Anticonmutatividad:
$$(\mathbf{a} \times \mathbf{b}) = -(\mathbf{b} \times \mathbf{a})$$