4.1 Determinants; Cofactor Expansion

Determinant of 2 × 2 matrix

The determinant of
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 is defined by

$$\det(A) = a_{11}a_{22} - a_{12}a_{21}.$$

Example

Find det(A) if
$$A = \begin{bmatrix} 3 & 1 \\ 4 & -2 \end{bmatrix}$$

Determinant

Determinant of
$$3 \times 3$$
 matrix

The determinant of $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ is defined by
$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

Determinant

Example

Find det(A) if
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{bmatrix}$$

Determinant

Determinant of $n \times n$ matrix

The determinant of $A = [a_{ij}]$ is defined by

$$\det(A)=\pm a_{1j_1}a_{2j_2}\cdots a_{nj_n}$$

where the sign is + if the permutation $\{j_1, j_2, \dots, j_n\}$ is even and - if it is odd.

Computation of determinants

Theorem

If A is a square matrix with a row or a column of zeros, then det(A) = 0.

Theorem

If A is a triangular matrix, then det(A) is the product of the entries on the main diagonal.

Minors and cofactors

Definition

If A is a square matrix, then the minor of entry a_{ij} is denoted by M_{ij} and is defined to be the determinant of the submatrix that remains when the ith row and jth column of A are deleted. The number $C_{ij} = (-1)^{i+j} M_{ij}$ is called the cofactor of entry a_{ij} .

Example

Let
$$A = \begin{bmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{bmatrix}$$

- 1. Find the minor of a_{12} .
- 2. Find the cofactor of a_{22} .

Cofactor expansion

Theorem

The determinant of an $n \times n$ matrix A can be computed by multiplying the entries in any row (or column) by their cofactors and adding the resulting products.

Cofactor expansion

Example

Use a cofactor expansion to find the determinant of

$$A = \begin{bmatrix} 2 & 0 & 0 & 5 \\ -1 & 2 & 4 & 1 \\ 3 & 0 & 0 & 3 \\ 8 & 6 & 0 & 0 \end{bmatrix}$$