Justin Espiritu Assignment 5

1.

Given the public key (7, 143) N = 143, e = 7

First found 2 prime numbers multiplied that equal, 143. In this case 11 and 13.

Then had to find ϕ , which is $(11-1)(13-1)=120, \phi=120$

Given that the inverse is between 100 and 105, I narrowed it down to 101 and 103 as they are the only prime numbers out of those.

 $101 * e = 707 \Rightarrow 707 \mod 120 = 107$, 101 is not an inverse.

 $103 * e = 712 \Rightarrow 712 \mod 120 = 1$, 103 is an inverse.

So now we have N = 143, e = 7, phi = 120, d = 103 Cipher or C = 106

decryption = $C^d \mod 143 = 106^103 \mod 143 = 24$

Therefore the decrypted message is 24.

2.

a)

yes, the function performs at O(nlog(n)) or $O(n^3)$ which O(nlog(n)) still fits into the ceiling of O(nlog(n))

b)

no, the function performs at $\Omega(nlog(n))$ or $\Omega(n^3)$ which both do not satisfy $\Omega(nlog(n))$ therefore it is no

\mathbf{c})

no, because the function performs at O(nlog(n)) or $O(n^3)$ which O(nlog(n)) does is not $O(n^3)$ as it's below that ceiling

d)

yes, the function performs $\Omega(nlog(n))$ or $\Omega(n^3)$ which both fit into the floor of $\Omega(n^3)$, which satisfies both

Justin Espiritu Assignment 5

3.

a)

arithmetic	S	m
m = a[0]	undefined	6
s = 0	0	6
s = s + a[j]	6	6
s = s + a[j]	-1	6
s = s + a[j]	7	6
m = s	7	7
s = s + a[j]	10	7
m = s	10	10
s = s + a[j]	19	10
m = s	19	19
s = s + a[j]	7	19
s = 0	0	19
s = s + a[j]	-7	19
s = s + a[j]	1	19
s = s + a[j]	4	19
s = s + a[j]	13	19
s = s + a[j]	1	19
s = 0	0	19
s = s + a[j]	8	19
s = s + a[j]	11	19
s = s + a[j]	20	19
m = s	20	20
s = s + a[j]	8	20
s = 0	0	20
s = s + a[j]	3	20
s = s + a[j]	11	20
s = s + a[j]	-1	20
s = 0	0	20
s = s + a[j]	9	20
s = s + a[j]	-3	20
s = 0	0	20
s = s + a[j]	-12	20
final value of r	n = 20	

b)

21 times

c)

$$\begin{array}{lll} \text{algorithm} & \Theta \\ \text{m} = \mathbf{a}[0] & 1 \\ \text{i loop} & n \\ \text{s} = 0 & n*1 \\ \text{j loop} & n*(n-i) \\ \text{s} = \mathbf{s} + \mathbf{a}[\mathbf{j}] & n*(n-i)*1 \\ \text{s} \ \vdots \ \text{m} & n*(n-i)*1 \\ \text{m} = \mathbf{s} & n*(n-i)*1 \end{array}$$

 $\Theta(n^2)$, shown by the table above. J loop will happen n-i times which also includes everything, inside of it will also happen n-i times. We then multiply the individual Θ times with the times it happens according to the loop they are in. We will then add all the Θ times together. From there we can simplify to the highest Θ , which in this case is n*(n-i)*1 which then can be simplified to just $\Theta(n^2)$.

Justin Espiritu Assignment 5

4.

a)

algorithm	\mathbf{S}	\mathbf{m}	
m = a[0]	undefined	6	
s = 0	0	6	
s = s + a[i]	6	6	
s = s + a[i]	-7	6	
s = 0	0	6	
s = s + a[i]	8	6	
m = s	8	8	
s = s + a[i]	11	8	
m = s	11	11	
s = s + a[i]	20	8	
m = s	20	20	
s = s + a[i]	8	20	
final value of $m = 20$			

b)

$$\begin{array}{lll} {\rm algorithm} & \Theta \\ {\rm m} = {\rm a}[0] & 1 \\ {\rm i} \ {\rm loop} & n \\ {\rm s} = 0 & n*1 \\ {\rm s} = {\rm s} + {\rm a}[{\rm j}] & n*1 \\ {\rm s} > {\rm m} & n*1 \\ {\rm m} = {\rm s} & n*1 \\ {\rm s} < 0 & n*1 \\ {\rm s} = 0 & n*1 \end{array}$$

 $\Theta(n)$, shown by the table above. Similar to problem 3, m=a[0] will happen at $\Theta(1)$, everything inside the loop will happen n times their theta, which in this case everything inside performs at $\Theta(1)$. This results in the highest Θ to be n*1 which can be simplified to $\Theta(n)$