9. Teorija	VÎEROJATNOSTÎ
motivacija: indikatorska varija	bla k → je li se nesto dogodilo ili vije
1 ~ (0 1 1 ~ (1-10 10	
> n puta ponavljama Xn ? p	polous $X_n = I_1 + I_2 + \cdots + I_n = \sum_k$ > holito puta se ologodio događaj e n bacanja $(X_n \to n \cdot p)$
9.1. NEJEDNAKOSTI I	ZAKONI VELIKIH BROJEVA
def. Nie Xn Konvergirt Po also HE>0 vrijedi	9 9
Pisemo: Xn +> X ZNALO JE DOCI NA	ISPITU

DOVOYNI UNETI ZA SLABI ZAKON VELIKIH BROJEVA Alo varijable (Xn) nen zadovojavaju uvjet lim 1/2 "D (EX XE) = 0 tada (Xn) nen zadovoljava slabi zakon velikih brojeva. n tražimo da D(Xn) postoji ~> Celoisevijeva nejednalost za dokaz trazimo da P(E(x-E(x)))>E) -> 0 - specijalni stucajevi roda szvB vrijedi: (Xn) netoreliranih s ogranicenom varjancom 2) (Xn) nezavisnih s istom varjancom D(xn) = 32 3) (Xn) nezavisnih i jednako distribuiranih s konachom vernjancom DORAZ: alo su nezavisne (Xn) tada je disperzija sume jednaka sumi disperzija - buduci da su jednako distribuirane sve imaju jednala D(Xn)=32 W-dispersija lim 1/2 D(\(\frac{x}{\times x}\)) = \(\lim \frac{1}{N^2} \cdot \frac{\times D(\times n)}{N^2} = \(\lim \frac{1}{N^2} \cdot \frac{\times D(\times n)}{N^2} = \(\lim \frac{1}{N^2} \cdot \frac{\times D(\times n)}{N^2} = \(\lim \frac{1}{N^2} \cdot \frac{1}{N^2} \cdot \frac{1}{N^2} = \(\lim \frac{1}{N^2} \cdot \frac{1}{N^2} \cdot \frac{1}{N^2} = \(\lim \frac{1}{N^2} \cdot \frac{1}{N^2} \cdot \frac{1}{N^2} \cdot \frac{1}{N^2} \cdot \frac{1}{N^2} \cdot \frac^ Primjer: Promotrimo jednosavan slucaj: Xn = In ~ (0 1) - p niz nezavisnih indikatorskih sluc. varijabli Sn= Z / = broj uspjeha u n pokusa n. Sn = n = h = prosje com broj uspjeha

... KONVERGENCHA PO DISTRIBUCIII I KARAKTERISTICHE FUNKCHE ... def. Razemo da viz (Xn)nen slucajnih varjabli KonVERGIRA PO DISTRIBUCII brema slucajnoj varijabli I ako za pripadni niz funkcija distribucije vrijedi lim Fx (x) = Fy (x) za svaki x u kojem je Fy neprekimta. m> 0 znacavamo: "ODNOS KONVER. PO DISTRIBUCIJI S OSTALIM KONVERGENCIJAMA. $X_n \xrightarrow{P} Y \Longrightarrow X_n \xrightarrow{D} Y$ DEJA: Povezati konverg, po distribuciji s karakterističnim funkcijama

CENTRALMI GRANIENI TEOREM (CGT) TM (Xn) new niz nezavisnih jednako distribuiranih sluc. varjabli s oce bivanjem m i disperzijom 32. Tada za normiranji Zbroj vrijedi Exi-n·m D N (0,1) SPECYALNI SLUCA : MOIVRE LAPLACEOV TEOREM B(n,p)-n.p D N(0,1) DOKAZ: m> nemeno X;= 1; indibatorsbe van. s parametrom > i nezavisure $\sum_{i=1}^{n} l_i \sim B(m, p)$ $|El_i - p = m$ $D(l_i) = bq = 3^2$ 2 Xi - MM B(np)- Mp N(0,1) N(0,1)

21-11-1) b)
$$y_1, \dots, y_{me}$$
 | $[y_1] = y_1 \sim W(-0.5, 0.5)$
 $[y_1], \dots, [y_{me}]$ | $[y_1] = y_1 \sim W(-0.5, 0.5)$
 $[y_1] = y_1 \sim y_1 \sim y_1 \sim y_1 \sim y_2 \sim y_1 \sim y_2 \sim y_2 \sim y_1 \sim y_2 \sim y_2 \sim y_2 \sim y_1 \sim y_2 \sim y_$