Machine Learning and Computer Vision Assignment 1

Huihuang Zheng, huihuang@utexas.edu

hz4674 Fall 2015

1 Short Answer Problems

1. Suppose we have filter $f_1 \in \mathbb{R}^{1 \times n}$, $f_2 \in \mathbb{R}^{n \times 1}$. We have convolution $f_1 * f_2 \in \mathbb{R}^{n \times n}$. Suppose we have a picture g of $k \times m$ pixels. Time complexity of performing $(f_1 * f_2) * g$ is $O(kmn^2)$. That's because $f_1 * f_2 \in \mathbb{R}^{n \times n}$. But the time complexity of performing $f_1 * (f_2 * g)$ is O(kmn). That's because size of $(f_2 * g)$ is still $O(k \times m)$ and performing the $(f_2 * g)$ needs O(kmn). Time complexity of perform $f_1 * (f_2 * g)$ is O(kmn).

the
$$(f_2 * g)$$
 needs $O(kmn)$. Time complexity of perform $f_1 * (f_2 * g)$ is $O(kmn)$.

A simple example: $f_1 = [1, 2, 1], f_2 = [1, 2, 1]^T, g = \begin{pmatrix} 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 & 5 \\ 6 & 6 & 6 & 6 & 6 \end{pmatrix}$.

 $\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}.$$
 And we let output size equals g 's size. Performing $(f_1 * f_2) * g$ needs

9*25 multiplications. Performing $h = f_2*g$ needs 3*25 multiplications and f_1*h needs 3*25 multiplication. $f_1*(f_2*g)$ needs total 6*25 multiplications.

- 2. [0, 1, 1, 1, 1, 1, 1, 1]
- 3. From filter f', $[x_1, x_2, x_3, x_4, x_5]$'s first derivative is $(x_4 x_2)/2$. So second derivative is $(\frac{x_5 x_3}{2} \frac{x_3 x_1}{2})/2$. So $f'' = [\frac{1}{4}, 0, -\frac{1}{2}, 0, \frac{1}{4}]$.
- 4. 1. Using higher threshold. 2. When smoothing with Gaussian. Using larger σ value.
- 5. TODO
- 6. TODO