Logaritmická funkcia

Mocninová vs. odmocninová funkcia

Navzájom inverzné:

$$f\colon y=x^2; x\in(0;\infty)$$

$$f^{-1}: y = \sqrt{x}; x \in (0; \infty)$$

Logaritmická funkcia

* Logaritmická funkcia so základom a, pričom $a \in \mathbb{R}^+ - \{1\}$, je funkcia inverzná k exponenciálnej funkcii s rovnakým základom a má predpis

$$f: y = \log_a x$$

pričom
$$y = \log_a x \Leftrightarrow a^y = x$$

* Funkcie $f: y = \log_a x$ a $g: y = a^x$ sú navzájom inverzné, čiže grafy týchto funkcií sú súmerné podľa priamky y = x.

Platí:

* f:
$$y = \log_2 x <=> f^{-1}$$
: $y = 2^x$

* f:
$$y = \log_{\frac{1}{2}} x \iff f^{-1}$$
: $y = \left(\frac{1}{2}\right)^x$

1.typ: f: $y = \log_a x$; $a \in (1, \infty)$

$$* D(f) = (0, \infty)$$

$$*H(f) = R$$

- * fcia je rastúca
- $y = \log_2 x$ * fcia nie je párna ani nepárna
 - * fcia nie je ohraničená

2.typ: $f: y = \log_a x; a \in (0,1)$

$$* D(f) = (0, \infty)$$

$$*H(f) = R$$

- * fcia je klesajúca
- fcia nie je párna ani nepárna
- * fcia nie je ohraničená

Špeciálne logaritmické funkcie

- * Logaritmy so základom 10 sa nazývajú DEKADICKÉ LOGARITMY $f: y = \log_{10} x$
- * Logaritmy so základom e sa nazývajú PRIRODZENÉ LOGAROTMY $f: y = \ln x$ (píšeme $\log_e x = \ln x$)
 - * e = 2,718... (Eulerova konštanta)

Posunutie grafu funkcie

$$f: y = \log_a(x+p) + m$$

parameter p – posúva graf funkcie po osi x (opačne) parameter m – posúva graf funkcie po osi y (správne)

Úlohy

$$1. \quad f: y = \log_2 x$$

$$2. \quad g: y = -\log_2 x$$

$$3. \quad z: y = \log_5 x$$

4.
$$t: y = \log_2(-x)$$

5.
$$p: y = \log(-x)$$

6.
$$f: y = \log_{\frac{1}{2}} x$$

7.
$$g: y = \log_{0.2} x$$

8.
$$z: y = \log_{0.8}(-x)$$

9.
$$t: y = \log_{0.2} 10x$$

$$10. p: y = \log 2x$$