

1

Aula de hoje

2

- O que são números-índices
- □ Conceitos de números-índices
- □ Fórmulas para cálculo e suas convenções
- Índices ponderados simples e compostos
- Mudanças de base e cálculos
- Alguns indices
- □ Comparação de dados monetários: correção pela inflação
- □ Como deflacionar?
- O deflator implícito do PIB
- □ Poder aquisitivo

Conceito

3

Os números índices são medidas estatísticas frequentemente usadas pelos pesquisadores, para comparar grupos de variáveis relacionadas entre si e obter um quadro simples e resumido das mudanças significativas em áreas relacionadas como preços de matérias-primas, preços de produtos, volume de produção, etc.

3

Conceito, em outras palavras...

4

- □ É uma metodologia estatística idealizada para comparar, quantitativamente, as variações de um fenômeno complexo no tempo ou em outras situações diversas
- Os números índices não se constituem em medida alguma, mas são indicadores de comportamento ou de tendência de uma ou mais variáveis componentes de um fenômeno

Números Índices

5

- □ Números índices são usados para indicar variações relativas em quantidades, preços ou valores de um objeto durante um período de tempo.
- Exemplos
 - O preço da maçã hoje em relação ao preço pago um ano atrás.
 - O consumo de energia per capita na Áustria desde 1960
 - □ Índices de crescimento de setores da economia
 - □ Fluxos migratórios entre países

5

Números Índices

6

- □ Vamos exemplificar com índices econômicos simples, mas esse instrumento pode servir para construir qualquer tipo de índices
 - □ Demográficos (natalidade, fecundidade, etc.)
 - □ Meteorológicos (pluviométrico, temperaturas, etc.)
 - □ Políticos (satisfação de eleitores, etc.)

Números Índices

7

- □ Número índice simples
 - Só um objeto é averiguado, por exemplo, numa análise de inflação de um produto em um determinado período de tempo
- □ Número índice composto
 - Quando um grupo de artigos é avaliado num determinado espaço de tempo
 - Exemplo: Variação de preços da cesta básica em um ano.

7

Números Índices

- O montante gasto na compra de produtos ou serviços em um período comparado a outro pode variar em função do número de unidades compradas e em função das mudanças nos preços unitários dos mesmos
- Nos números-índices compostos, obtemos a variação global de um grupo de artigos em função das alterações de preços e quantidades
 - São três tipos
 - Índice de preços
 - Índice de quantidade
 - Índice de valor

Tipos de índices muito usados pelos economistas

- □ Índice de preços: indicador que reflete uma variação de preços de um ou conjunto de bens e/ou serviços da economia.
- □ Índice de quantidade: representa as variações das quantidades de um ou conjunto de bens e/ou serviços da economia
- □ Índice de valor: é um indicador que representa a variações dos preços em relação às quantidades em momentos diferentes de tempo

9

Índice de valor

10

- □ É um conceito relativo
 - O montante de unidades monetárias (=dinheiro) gasto na compra de bens e/ou serviços em um período comparado a outro, pode variar dependendo das unidades compradas e em função das mudanças de preços unitários dos mesmos

Calculando números-índices

11

- □ Para começar, pensemos nestas variáveis mais simples como preço e quantidade
- Variáveis
 - □ P ou p = preço
 - □ Q ou q = quantidade
 - \square V ou v = (p x q) = valor

11

Convencionalmente, usamos a notação

12

- □ 0: época básica, base ou época de referência
- 🗆 t: época atual, época dada ou época a ser comparada
- □ P_o: preço do produto ou serviço no tempo 0
- □ P_t: preço do produto ou serviço no tempo t
- □ Q₀: quantidade do produto ou serviço no tempo 0
- □ Q_t: quantidade do produto ou serviço no tempo t
- □ V₀: (P₀ x Q₀) valor do produto ou serviço no tempo 0
- □ V_t: (P_t x Q_t) valor do produto ou serviço no tempo t

Fórmulas básicas

🛘 Índices relativos de preço

$$P_{o,t} = \frac{P_t}{P_o}$$

□ Exemplo: um produto custava R\$120 em 1999 e passou a R\$ 138 em 2000

$$P_{o,t} = \frac{P_{00}}{P_{99}} = \frac{138}{120} = 1,15$$

□ Temos que o preço em 2000 é 1,15 vez maior que em 1999, ou seja, 15% mais alto

□ O número-índice é: 1,15 x 100 = 115

13

Fórmulas básicas

14

□ Índices relativos de quantidade

$$Q_{0,t} = \frac{Q_t}{Q_0}$$

□ Exemplo: as exportações de automóveis em 2005 foram de 3000 unidades e em 2006 caíram para 2400

$$Q_{0,t} = \frac{Q_t}{Q_0} = \frac{Q_{06}}{Q_{05}} = \frac{2400}{3000} = 0.8$$

□ Ou, ainda,

$$(0.8-1)*100 = 20\%$$

Fórmulas básicas

15

□ Índices relativos de valor

$$V_{o,t} = \frac{P_t V Q_t}{P_o Q_0}$$

□ Ex: Um país importou 5 mil barris de petróleo em 2007 e 6 mil em 2008; o preço médio do barril era US\$/ barril 71,13 em 2007 e US\$/barril 93,04 em 2008

$$V_{o,t} = \frac{6000*97,04}{5000*71.13} = 1,63709$$

□ O país elevou suas importações de petróleo, em termos de valor, em 63,71%

15

Relativos encadeados

16

Considerando uma sequência de preços ou outra variável qualquer, para a qual comparamos um período com o imediatamente anterior, temos o que se chama elos de relativos

$$P_{0,n} = P_{0,1}, P_{1,2}, P_{2,3}, P_{3,4}, \dots, P_{t-1,t}$$

 Obtidos os elos de relativos, pode-se considerar seu de encadeamento, ou seja

$$P_{0,n} = P_{0,1} \times P_{1,2} \times P_{2,3} \times P_{3,4} \times ... \times P_{t-1,t}$$

Exemplo: considerando um produto qualquer e seus preços

ı		1	7
1	Г		

Ano	Valor R\$
1994	80,00
1995	120,00
1996	150,00
1997	180,00
1998	200,00

$$P_{94,95} = \frac{120}{80} = 1,50$$

$$P_{95,96} = \frac{150}{120} = 1,25$$

$$P_{96,97} = \frac{180}{150} = 1,20$$

$$P_{97,98} = \frac{200}{180} = 1,11$$

1,50 x 1,25 x 1,20 x 1,11 = 2,5 ou 150%

Calculamos a variação dos preços com base móvel

17

Exemplo: considerando um produto qualquer e seus preços

18

Calculando com base fixa (1994 é o ponto de partida e a base de nossa análise), chegamos ao mesmo valor, evidentemente

$$\frac{1998}{1994} = \frac{200}{80} = 2,50 \quad ou \quad 150\%$$

Em síntese,

19

- Um número índice nos permite criar uma série encadeada de valores para representar qualquer variável que queiramos estudar
- □ Basta escolher a variável, levantar uma série e criar o índice com a base que preferirmos

19

Argélia, PIB, taxas de crescimento anual

2.15

2.70

4.70

6.90

5.20

5.10

2.00

4.60

	Argélia
2000	2
2001	2
2002	4
2003	6
2004	5

Vamos criar um número índice com esses valores.

Fazendo a base como 1999=100, teríamos

2007 Fonte: FMI

2005

2006

 $2000 \Rightarrow 100 \times 1,0215 = 102, 15$ $2001 \Rightarrow 102,15 \times 1,027 = 104, 91$ $2002 \Rightarrow 104,91 \times 1,047 = 109,84$

E assim por diante....

Argélia: Índice de PIB anual

21

Base:

	1999=100
2000	102.15
2001	104.91
2002	109.84
2003	117.42
2004	123.52
2005	129.82
2006	132.42
2007	138.51

Esse é nosso índice. Os valores não estão medidos em unidade nenhuma

Com eles, podemos fazer vários cálculos e comparar sua evolução à de outros indicadores

Fonte: Dados originais FMI. Elaboração própria.

21

Áustria:

Uso de energia por habitante

	Kg óleo equivalente per capita	Índice 1960=100
1960	1549.091721	100.00
1970	2443.711285	157.75
1975	2673.76919	172.60
1980	3082.748577	199.00
1985	3084.447386	199.11
1990	3249.174349	209.75
1995	3410.885385	220.19
2000	3624.761988	233.99
2005	4134.551152	266.90
2006	4132.485852	266.77

Esse tipo de indicador é difícil de visualizar em sua unidade de medida habitual.

O número índice nos ajuda a perceber melhor a evolução no tempo.

Sem fazer nenhum cálculo adicional, podemos afirmar que o gasto de energia per capita na Áustria cresceu cerca de 167% em 46 anos

Fonte: Banco Mundial - World Development Indicators

Mudanças de base

23

Dadas duas séries de números índices relativos à mesma variável, com base em anos diferentes, devemos construir a série completa a partir de um ano comum

	Α		В		С
	1970=100	var%	1984=100	var%	1984=100
1980	475,0				66,1
1981	520,0	9,5	72,4		72,4
1982	580,0	11,5	80,8		80,8
1983	635,0	9,5	88,4		88,4
1984	718,0	13,1	100,0	13,1	100,0
1985			123,0	23,0	123,0
1986			147,0	19,5	147,0
1987			185,0	25,9	185,0

23

Mudanças de base

24

Queremos, agora, alterar a base de um índice de um ano para outro mais recente, que atenda a condição de se calcular uma variável a preços do novo ano escolhido: 1994

ANO	1990=100	VAR%	1994=100	VAR%
1993	2,8		0,10	
1994	2.862,6	102.136,07	100,00	102.136,07
1995	58.291,8	1.936,32	2.036,32	1.936,32
1996	1.289.192,22	2.111,62	45.035,55	2.111,62
1997	2.139.543,41	65,96	74.741,00	65,96
1998	2.471.600,55	15,52	86.340,81	15,52

Mudanças de base

25

- □ Para realizar a mudança de base, é preciso, apenas, que cada número de série seja dividido pelo número-índice do novo período-base
- Se não tivermos a série toda na mesma base,
 podemos aplicar a variação percentual aos índices
 em cuja base queremos trabalhar

25

Pensando...

26

- A utilização e a interpretação de números índices exige que se tenha em mente alguns problemas
 - Os dados submetidos à comparação não são comparáveis sempre
 - 2. Os itens incluídos nos índices não são representativos para o problema em estudo
 - As cifras do período-base podem ser atípicas, distorcendo, assim, a comparação
 - 4. Diferentes esquemas de ponderação resultam em diferentes números-índices.

Comparação de dados monetários: correção pela inflação

27

- Quando trabalhamos com dados de unidades diferentes, sabemos que a primeira coisa a fazer é trazer todas as variáveis para uma mesma unidade
- Assim, quando trabalhamos com dados monetários, especialmente relativos a países com inflação alta, precisamos fazer com que estes dados sejam comparáveis
- Mesmo se a moeda for a mesma, ela não "compra" sempre as mesmas coisas ao longo do tempo

27

Conceito de deflator

- □ É qualquer índice de preços a ser usado como medida de inflação ou de desvalorização da moeda
- Deflacionamento é o processo de uniformização do valor da moeda ou eliminação dos efeitos da inflação sobre uma série temporal de dados
- Existe um grande número de índices de preços. Portanto, a escolha de um deflator envolve vários aspectos
 - Não faz sentido calcular o poder de compra de salários usando um índice de preços por atacado, por exemplo

Estabelecendo um vocabulário comum

29

- Valor nominal ou valor em moeda corrente é o valor da variável estudada na data em que ocorreu (em moeda daquela data)
- Valor real ou valor em moeda constante ou valor deflacionado é o valor da variável após a uniformização da unidade monetária. Os valores da série temporal são todos expressos em moeda do mesmo período de tempo.
- Por exemplo: em nossos dados compilados pelo FMI temos uma série de PIB a preços constantes na moeda nacional

29

Como deflacionar?

30

- Usando uma regra de três simples, dividimos o valor da época (valor corrente) pelo índice de preços correspondente, tendo como referência um determinado período de tempo
- Exemplo:

Preços internacionais do petróleo a deflacionar pelo IPA dos EUA

	IPA - EUA	Petróleo
1998	65.59	13.0742
1999	66.14	17.9808
2000	69.96	28.2342
2001	70.74	24.3308
2002	69.12	24.9500
2003	72.81	28.8917
2004	77.31	37.7600
2005	82.97	53.3542
2006	86.84	64.2725
2007	91.01	71.1275
2008	100.00	97.0350

Queremos expressar os preços do barril do petróleo em dólares de 2008

Fonte: FMI

Como deflacionar?

31

- \square O valor constante em dólares de 2008 é $X = \frac{Valorcorrente_t}{Indicereferente_t}*100$
- □ Valor real em 1998: $\frac{13,0742}{65,59}*100=19,9326$
- □ Valor real em 2004: $\frac{37,76}{77,31}*100 = 48,844$

31

Barril de petróleo, preços constantes

32

	Barril em US\$ de 2008
1998	19.9326
1999	27.1855
2000	40.3560
2001	34.3967
2002	36.0992
2003	39.6811
2004	48.8439
2005	64.3057
2006	74.0090
2007	78.1513
2008	97.0350

Conceito de deflator implícito

33

- Como sabemos, o Produto Interno Bruto (PIB) é um dos principais indicadores econômicos de responsabilidade dos governos nacionais
- Para deflacionar o PIB corrente, é utilizado um deflator específico, calculado pelos instituições nacionais de estatística
- □ Esse índice é conhecido como o deflator implícito do PIB ou do produto

33

Conceito de deflator implícito

- □ Seguindo definição apresentada pelo IPEA:
 - Deflator implícito do Produto Interno Bruto (PIB) é o indicador que mede a variação média dos preços de um período em relação aos preços do ano anterior
 - Menos citado em relação aos outros índices de preços disponíveis na economia (é divulgado apenas nas bases trimestral e anual), é provavelmente o mais abrangente, pois considera informações indisponíveis nos outros índices como, por exemplo, os preços implícitos da administração pública.
 - Especificamente, o deflator implícito do PIB é a razão entre o PIB Nominal e o PIB Real. Daí vem seu nome, porque não é um índice pesquisado diretamente

Conceito de deflator implícito

- □ Por que implícito?
- □ Porque, ao compararmos valores ao longo do tempo, sabemos que estamos comparando ao mesmo tempo preços e quantidades
- □ Seria possível sair daí dois índices: um de preço e outro de quantidade
- □ Para separar os dois componentes, seria preciso estimar um deles, deduzir o outro e dividir pelo índice de valor
- □ O deflator implícito de preços é:

$$I_{0,t}^P * I_{0,t}^Q = I_{0,t}^V$$

$$I_{0,t}^{P} * I_{0,t}^{Q} = I_{0,t}^{V}$$

$$J_{0,t}^{P} = \frac{I_{0,t}^{V}}{I_{0,t}^{Q}}$$

35

Mais concretamente,

- □ Decompõe-se o PIB nominal em seus componentes de despesa
- □ Cada componente é deflacionado com o índice de preços mais apropriado
- □ O PIB real é o resultado da soma dos componentes deflacionados
- □ O deflator implícito é a razão entre o PIB nominal e o PIB real

Poder aquisitivo

37

- □ É o valor real que uma certa quantidade de unidades monetárias tem em um período determinado
- O salário mínimo no Brasil em dezembro de 1995 era de R\$ 100
- Naquela época pós super inflação, a idéia era a de manter o SM em torno de US\$ 100
- □ Em março de 2009, o salário mínimo era de R\$ 465
- Será que estes valores compram a mesma quantidade de bens e serviços, após mais de treze anos?

37

Poder aquisitivo

38

- □ Para fazer as contas precisamos das seguintes séries: valor corrente do SM, um índice de preços ao consumidor de abrangência nacional
- Devemos construir um índice na base que pretendemos que sirva para a comparação
- Queremos saber, por exemplo, quanto o salário de 1999 representa, com a referência de preços de 2009

Poder aquisitivo

39

Levantando os valores correntes do SM e construindo um índice na base desejada, podemos observar a evolução do poder de compra do SM ao longo do tempo

	Salário mínimo - R\$ nominais	IPCA (Base Fev.2014=100)	SM em R\$ de Fev de 2014
1995.12	100,00	53,51	186,88
1996.12	112,00	57,26	195,59
1997.12	120,00	59,35	202,19
1998.12	130,00	60,02	216,58
1999.12	136,00	63,54	214,04
2000.12	151,00	65,92	229,06
2001.12	180,00	68,95	261,04
2002.12	200,00	73,82	270,94
2003.12	240,00	77,47	309,78
2004.12	260,00	80,48	323,0
2005.12	300,00	82,75	362,5
2006.12	350,00	84,01	416,60
2007.12	380,00	85,80	442,90
2008.12	415,00	88,15	470,80
2009.12	465,00	89,88	517,3
2010.12	510,00	92,23	552,9
2011.12	545,00	94,81	574,83
2012.12	622,00	97,14	640,32
2013.12	678,00	99,49	681,45
2014.02	724,00	100,00	724,00

Fonte: IBGE e IPEADATA

39

Já sabemos fazer vários cálculos com os números índices...

40

- □ Construção de índices
- □ Encadeamento e mudança de base
- □ Taxas de variação com distintas periodicidades
- Médias móveis
- □ Deflação e cálculos de poder de compra

Agora é usar!!!

Exemplo: Importações dos países industrializados

O valor acumulado em 12 meses mostra a mesma tendência, obviamente

Observações

43

- □ Números-índices podem ser negativos, sim...
- □ Eles expressam relações, não têm unidade de medida
- Trabalhar com valores negativos pode trazer confusões, é verdade
- Quando o valor base for negativo e o valor posterior for positivo, o número-índice será matematicamente negativo e vice-versa
- □ Assim, quando o valor-base for negativo, deve-se adotar um número índice igual a −100

43

Devemos ter em mente que...

45

- A utilização e a interpretação de números índices exige que se tenha em mente alguns problemas
 - Os dados submetidos à comparação não são comparáveis sempre
 - 2. Os itens incluídos nos índices não são representativos para o problema em estudo
 - As cifras do período-base podem ser atípicas, distorcendo, assim, a comparação
 - 4. Diferentes esquemas de ponderação resultam em diferentes números-índices.