G12 Chemistry: Class 14 Homework

1. a) Show the balanced equation for the solubility equilibrium that would occur when a solution of Ba(NO₃)₂ (aq) is mixed with a solution of Na₂SO₄ (aq). [2 marks]

$$Ba(No_3)_2 + Na_2 So_4 (aq) \rightarrow Ba So_4 (s) + 2NaNo_3 (aq)_4$$

 $Ba So_4 (s) \rightleftharpoons Ba^{2+} + So_4^{2-}$

b) Write the solubility product constant equation for this equilibrium system. [1 mark]

2. Calculate the K_{sp} at 25°C for AgI (s), given that its solubility at this temperature is 2.14 x 10⁻⁷ g/100mL. [4 marks]

- 3. K_{sp} for PbCl₂ is 1.7 x 10⁻⁵ at 25°C. Calculate the molar solubility of PbCl₂.
 - a. In pure water [3 marks]

b. In 0.10 mol/L CaCl₂ [4 marks]

$$X = 1.62 \times 10^{-2} \text{ mol}$$

4. What amount of PbCl₂(s) in grams, can dissolve in 1.00L of a 0.500 mol/L solution of LiCl(aq)? K_{sp} for PbCl₂ is 1.7 x 10⁻⁵ at 25°C. [5 marks]

Lich (ay)
$$\rightarrow$$
 Li⁺ + Cl⁻

0.500 M

0.500 M

1.7 × 10⁻⁵ = (x) (0.500 +/4x)²
 $\chi = 6.8 \times 10^{-5} \text{ mol/L} \text{ (molar solubility)}$

C

 $\chi = 6.8 \times 10^{-5} \text{ mol/L} \text{ (molar solubility)}$

C

 $\chi = 6.8 \times 10^{-5} \text{ mol/L} \text{ (molar solubility)}$
 $\chi = 6.8 \times 10^{-5} \text{ mol/L} \text{ (molar solubility)}$
 $\chi = 6.8 \times 10^{-5} \text{ mol/L} \text{ (molar solubility)}$
 $\chi = 1.9 \times 10^{-2} \text{ g/lL}$

5. Calculate the molar solubility of Zn(OH)₂ (s), if the K_{sp} is 3×10^{17} at 25°C. [3 marks]

$$Zn(OH)_{2} \Rightarrow Zn^{24} + 2OH^{-}$$

 $\chi = 3 \times 10^{-14}$
 $3 \times 10^{-14} = (\pi)(2\pi)^{2}$
 $3 \times 10^{-14} = 4\chi^{3}$.

6. A solution contains 0.15 mol/L of NaCl and 0.0034 mol/L Pb(NO₃)₂. Does a precipitate form? Include a balanced chemical equation for the formation of the possible precipitate. K_{sp} for PbCl₂ is 1.7 x 10⁻⁵ at 25°C. [4 marks]

ame:	Mark:	50
		-

7. One drop (0.050ml) of 1.5 mol/L potassium chromate, K₂CrO₄ is added to 250 mL of 0.10 mol/L AgNO₃. Does a precipitate form? Include a balanced chemical equation for the formation of the possible precipitate. K_{sp} for Ag_2CrO_4 is 1.12×10^{-12} at 25°. [6 marks]

N

$$K_2Cr0_4 + 2AgN0_3 \rightarrow 2KN0_3(aq) + Ag_2Cr0_4(s)$$

iniquificant $C = 1.5M$ $C = 0.10M$ $Ag_2Cr0_4 = 2Ag^* + Cr0_4^2$
volume. $V = 5.0 \times 10^{-5}L$ $V = 0.250L$ $Ag_2Cr0_4 = 2Ag^* + Cr0_4^2$

AgNO3 contributes [Ag+]

AgNO3
$$\rightarrow$$
 Ag+ + NO3.

[Ag+] = $\frac{0.10 \text{ M} \times 0.250 \text{ L}}{0.250 \text{ L}}$

= 0.10 M.

Agno3 contributes [Ag+]
$$K_2CrO_4$$
 contributes [CrO_4^{2-}]
Ag NO3 \longrightarrow Ag+ + NO3. $K_2CrO_4 \longrightarrow 2K^+ + CrO_4^{2-}$
 CrO_4^{2-}] = $\frac{0.10 \text{ M} \times 0.220 \text{ L}}{0.250}$
= 0.10 M. CrO_4^{2-}] = $\frac{1.5 \times 5.0 \times 10^{-5}}{0.250}$
= 3.0 × 10 -4 M.

$$Qsp = [Ag+][cr04^{2}]$$

$$= (0.10)^{2}(3.0 \times 10^{-4})$$

$$= 3.0 \times 10^{-6}$$

8. A chemist adds 0.010 g of $CaCl_2$ to $5.0 \times 10^2 \text{ mL}$ of 0.0015 mol/L sodium carbonate, Na₂CO₃. Does a precipitate of calcium carbonate form? Include a balanced chemical equation for the formation of the possible precipitate. K_{sp} for $CaCO_3$ is 3.36×10^{-9} . [6 marks]

$$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3(s) + 2Nacl(aq)$$

 $M = 0.010g$. $C = 0.0015 M$
 $M = 110.984 g/mol V = 0.50 L$. $CaCO_3 \longrightarrow Ca^{2+} + CO_3^{2-}$
 $N = 9.01 \times 10^{-5} mol$.

$$CaCl_2$$
 contributes. $[Ca^{2+}]$.
 $[Ca^{2+}] = \frac{9.01 \times 10^{-5} \text{ mol}}{0.50 \text{ L}}$
 $= 1.8 \times 10^{-4} \text{ M}$

$$[Ca^{2+}] = \frac{9.01 \times 10^{-5} \text{ mol}}{0.50 \text{ L}}$$
 $[Ca^{2+}] = \frac{0.001 \times 10^{-5} \text{ mol}}{0.50 \text{ L}}$
 $[Ca^{2+}] = \frac{0.0015 \times 0.50}{0.50}$
 $= 1.8 \times 10^{-4} \text{ M}$

Osp =
$$[(a^{24})[(0^{2})]$$

= $((.8 \times 10^{-4})(0.19))$
= (2.7×10^{-7})

_

9. 230ml of 0.0015M AgNO₃ is added to 130ml of 0.010M calcium acetate, $Ca(CH_3COO)_2$. Does a precipitate form? Include a balanced chemical equation for the formation of the possible precipitate. K_{sp} for AgCH₃COO is 2.0 x 10⁻³. [6 marks]

$$2AgM_3 + CalCH_3CUO)_2 \rightarrow 2AgCH_3CUO_+ CalM_3)_2(ag)_1$$

 $V = 0.230L$ $V = 0.130L$
 $C = 0.010$

Ag NO3 contributes [Ag+]
$$Ca(CH_3UV)_2$$
 contributes. $2[CH_3CVO^-]$
 $[Ag+] = \frac{0.0015 \times 0.230}{0.230 + 0.130}$ $[CH_3UVO^-] = \frac{0.130 \times 0.010}{0.360} \times \frac{0.360}{0.360}$
 $= 9.58 \times 10^{-4} \text{ M}.$

Ag NO3 contributes [Ag+]
$$Ca(CH_3UV)_2$$
 contributes $2(CH_3UV)_2$ con

$$Qsp = [Ag^{+}][CH_{3}CND^{-}]$$

$$= [4.58 \times 10^{-4})[7.22 \times 10^{-3}]$$

$$= 6.92 \times 10^{-6}$$

10. 250ml of 0.0011 mol/L Al₂(SO₄)₃ is added to 50ml of 0.022M BaCl₂. Does a precipitate form? Include a balanced chemical equation for the formation of the possible precipitate. K_{sp} for BaSO₄ is 1.08 x 10⁻¹⁰. [6 marks]

$$Al_2(504)_3 + 3BaCl_2 \rightarrow RA1Cl_3(4) + 3BaSO_4(1)$$

 $V = 0.250L$
 $C = 0.0011 M$ $C = 0.022 M$

$$Al_{2}(so_{4})_{3} \text{ combibutes } 3 [so_{4}^{2-}]$$

$$[so_{4}^{2-}] = \frac{0.250 \times 0.0011}{0.300} \times 3$$

$$= 2.75 \times 10^{-3} \text{ M}.$$

$$Q_{SP} = [Ba^{24}][So_4^{2-7}]$$

$$= (3.67 \times 10^{-3})(2-75 \times 10^{-3})$$

$$= 1.01 \times 10^{-5}.$$