

Fig.

```
(SEQ ID NO: 54)
Human Antibody sequence (TT sequence)
Heavy Chain: cloning sites Xho I and Spe I are underlined
gag gtg cag ctg CTC GAG CAG TCT GGG GCT GAG GTG AAG AAG CCT GGG TCC TCG GTG AAG
glu val gln leu leu glu gln ser gly ala glu val lys lys pro gly ser ser val lys
21
                                        31
GTC TCC TGC AGG GCT TCT GGA GGC ACC TTC AAC AAT TAT GCC ATC AGC TGG GTG CGA CAG
val ser cys arg ala ser gly gly thr phe asn asn tyr ala ile ser trp val arg gln
GCC CCT GGA CAA GGG CTT GAG TGG ATG GGA GGG ATC TTC CCT TTC CGT AAT ACA GCA AAG
ala pro gly gln gly leu glu trp met gly gly ile phe pro phe arg asn thr ala lys
TAC GCA CAA CAC TTC CAG GGC AGA GTC ACC ATT ACC GCG GAC GAA TCC ACG GGC ACA GCC
tyr ala gln his phe gln gly arg val thr ile thr ala asp glu ser thr gly thr ala
81
                                        91
TAC ATG GAG CTG AGC CTG AGA TCT GAG GAC ACG GCC ATA TAT TAT TGT GCG AGA GGG
tyr met glu leu ser ser leu arg ser glu asp thr ala ile tyr tyr cys ala arg gly
                                        111
GAT ACG ATT TTT GGA GTG ACC ATG GGA TAC TAC GCT ATG GAC GTC TGG GGC CAA GGG ACC
asp thr ile phe gly val thr met gly tyr tyr ala met asp val trp gly gln gly thr
121
                                        131
ACG GTC ACC GTC TCC GCA GCC TCC ACC AAG GGC CCA TCG GTC TTC CCC CTG GCA CCC TCC
thr val thr val ser ala ala ser thr lys gly pro ser val phe pro leu ala pro ser
                                        151
TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG GGC TGC CTG GTC AAG GAC TAC TTC CCC
ser lys ser thr ser gly gly thr ala ala leu gly cys leu val lys asp tyr phe pro
161
                                        171
GAA CCG GTG ACG GTG TCG TGG AAC TCA GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG
glu pro val thr val ser trp asn ser gly ala leu thr ser gly val his thr phe pro
181
                                        191
GCT GTC CTA CAG TCC TCA GGA CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC
ala val leu gln ser ser gly leu tyr ser leu ser ser val val thr val pro ser ser
201
                                        211
AGC TTG GGC ACC CAG ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG
ser leu gly thr gln thr tyr ile cys asn val asn his lys pro ser asn thr lys val
GAC AAG AAA GTT GAG CCC AAA TCT TGT GAC AAA act agt
asp lys lys val glu pro lys ser cys asp lys thr ser
```

Fig. 2A

Human Antibody Sequence (TT sequence) (SEO ID NO: 55)

```
Light Chain: cloning sites Sac I and Xba I are underlined
   gag etc acg cag tot cca ggc acc etg tot ttg tot ccA ggg gaa aga gcc acc etc tec
   glu leu thr gln ser pro gly thr leu ser leu ser pro gly glu arg ala thr leu ser
   tgc agg gcc agt cac agt gtt agc agg gcc tac tta gcc tgg tac cag cag aaa cct ggc
   cys arg ala ser his ser val ser arg ala tyr leu ala trp tyr gln gln lys pro gly
                                          51
   cag get eee agg ete ete ate tat ggt aca tee age agg gee aet gge ate eea gae agg
  gln ala pro arg leu leu ile tyr gly thr ser ser arg ala thr gly ile pro asp arg
                                          71
   61
   ttc aqt qqc aqt qqq tct qqq aca qac ttc act ctc acc atc aqc aqa ctq qaq cct qaa
  phe ser gly ser gly ser gly thr asp phe thr leu thr ile ser arg leu glu pro glu
  81
  gat ttt gca gtg tac tac tgt cag cag tat ggt ggc tca ccg tgg ttc ggc caa ggg acC
asp phe ala val tyr tyr cys gln gln tyr gly gly ser pro trp phe gly gln gly thr
                                         111
101
AAG GTG GAA CTC AAA CGA ACT GTG GCT GCA CCA TCT GTC TTC ATC TTC CCG CCA TCT GAT
lys val glu leu lys arg thr val ala ala pro ser val phe ile phe pro pro ser asp
                                         131
GAG CAG TTG AAA TCT GGA ACT GCC TCT GTT GTG TGC CTG CTG AAT AAC TTC TAT CCC AGA
glu gln leu lys ser gly thr ala ser val val cys leu leu asn asn phe tyr pro arg
                                         151
141
GAG GCC AAA GTA CAG TGG AAG GTG GAT AAC GCC CTC CAA TCG GGT AAC TCC CAG GAG AGT
glu ala lys val gln trp lys val asp asn ala leu gln ser gly asn ser gln glu ser
                                         171
161
GTC ACA GAG CAG GAC AGC AAG GAC AGC ACC TAC AGC CTC AGC AGC ACC CTG ACG CTG AGC
val thr glu gln asp ser lys asp ser thr tyr ser leu ser ser thr leu thr leu ser
                                         191
AAA GCA GAC TAC GAG AAA CAC AAA GTC TAC GCC TGC GAA GTC ACC CAT CAG GGC CTG AGC
lys ala asp tyr glu lys his lys val tyr ala cys glu val thr his gln gly leu ser
201
                                         211
TTG CCC GTC ACA AAG AGC TTC AAC AGG GGA GAG TGT TAG Ttc tag a
leu pro val thr lys ser phe asn arg gly glu cys AMB
```

(SEQ ID NO: 56) 7 Y C A R X X I E G P T L R Q Method of grafting peptide into antibody with random sequences surrounding peptide TPO Mimetic Peptide W L A A R A X X W G Q G T TGG-CTG-GCG-CGC-GCG-NNY-NNY-TGG-GGC-CAA-GGG-ACCsedneuce (SEQ ID NO: ディ)~

The TPO mimetic peptide was grafted into the heavy chain CDR3 region of the tetanus toxoid antibody. The peptide was flanked on either side by two random amino acids, shown as "X"s in the figure.

Fig.

Fig. 4

SNO IO	AMINO ACID SEQUENCE	SEC ID NO
X1a	Pro-Pro-11e-G1u-G1y-Pro-Thr-Leu-Arg-G1n-Trp-Leu-A1a-A1a-Arg-A1a-G1y-G1y	25 26
X1a-11	G1y-G1y-11e-G1u-G1y-Pro-Thr-Leu-Arg-G1n-Trp-Leu-Ala-Ala-Ala-Ala-G1y-G1y-G1y-G1y-G-G6-G6-G6-G6-G6-G6-G6-G6-G6-G6-G6-G6-G	27 28
X1a-13	G1y-G1y-11e-G1u-G1y-Pro-Thr-Leu-Arg-G1n-Trp-Leu-Ala-Ala-Arg-Ala-G1y-G1y-G1y-G1y-11e-G1u-G1y-G0-GG-GG-GG-GG-GG-GG-GG-GG-GG-GG-GG-GG-	30
X1c	Trp-Leu-lle-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Pro-Val Trg-Crg-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTC	31
X2°	Met-11e-11e-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Arg-Ala-GG-GG-GG-GG-GTT-GGCATG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-GCG-GTT-GGC	33 34
X3a	Val-Val-IIe-GIu-GIy-Pro-Thr-Leu-Arg-GIn-Trp-Leu-AIa-AIa-Arg-AIa-Pro-Val	35 36
X3b	GIY-Pro-Ile-GIU-GIY-Pro-Thr-Leu-Arg-GIN-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Asp GIY-Pro-Ile-GIU-GIY-Pro-Thr-Leu-Arg-GIN-Trp-Leu-Ala-Arg-AcG-GCG-CCG-GCG-CCG-GAT GGG-CCG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCG-GAT	37 38
X4b	Leu-Pro-11e-G1u-G1y-Pro-Thr-Leu-Arg-G1n-Trp-Leu-A1a-A1a-Arg-A1a-Pro-Val TTG-CCA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTT	39 40
X4c	Ser-Leu-11e-G1u-G1y-Pro-Thr-Leu-Arg-G1n-Trp-Leu-A1a-A1a-Arg-Ala-Pro-11e	41
X5a	Th r-M e t-11 e-G1 u-G1 y-Pro-Thr-Leu-Arg-G1 n-Trp-Leu-A1 a-A1 a-A1a-A1a-A1a-A1a-A1a-A1a-A1a-A1a-A1a-A1	43 44
X5c	Thr-Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Ala-Ala-Pro-Val ACG-ACA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTC	45 46
Х7а	Thr-Arg-11e-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Cys-Ser ACA-CGG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-TGC-AGC	47 48
X7b	no peptide deletion mutant	,
X7c	GIn-Thr-Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Asp CAG-ACA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-CAC	94 to

pRL8

(SEQ ID NO: **60**)

GGGAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAA ATCAGCTCATTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATC AAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGT CCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATC AGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTC GAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGA GAAAGGAGCGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGT AACCACCACACCGCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGC ACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTCTAAATACA TTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAAT ATTGAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCC TTTTTGCGGCATTTTGCCTTCTGTTTTTGCTCACCCAGAAACGCTGGTGAAA GTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGG ATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCA ATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGA CGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTG GTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAA GAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTT ACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAAC CCATACCAAACGACGAGCTGTACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAAT TAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGC CCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGT CTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGT AGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACA GATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAA GTTTACTCATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGG ATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTT CTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAA GGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAG CCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGC TCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTA CCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTG AACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA

Fig. 6A

ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGG AGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGC ACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGT TTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGG AGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTG CTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAA CCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACC GAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAA CCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTT TCCCGACTGGAAAGCGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTC ACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTG TGGAATTGTGAGCGGATAACAATTGAATTCAGGAGGAATTTAAAATGAAAAA GACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTGGCCCAG GCGGCCGAGCTCGGCCATGGCTGGTTGGGCAGCGAGTAATAACAATCCAGCG GCTGCCGTAGGCAATAGGTATTTCATTATGACTGTCTCCTTGGCGACTAGCTA GTTTAGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCC GCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGG GGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGC TTTCCAGTCGGGAAACCTGTCGTGTTACTAATGATGGTGATGGTGATGGCTAG TTTTGTCACAAGATTTGGGCTCAACTT1CTTGTCCACCTTGGTGTTGCTGGGCT TGTGATTCACGTTGCAGATGTAGGTCTGGGTGCCCAAGCTGCTGGAGGGCAC GGTCACCACGCTGCTGAgGGAGTAGAGTCCTGAGGACTGTAGGACAGCCGGG TTCgGGGAAGTAGTCCTTGACCAGGCAGCCCAGGGCCGCTGTGCCCCCAGAG GTGCTCTTGGAGGAGGGTGCCAGGGGGAAGACCGATGGGCCCTTGGTGGAG GCTGCGGAGACGGTGACCGTGGTACCAGCAGAAACCTGGCCAGGCTCCCAG GCTCCTCATCTATGGTACATCCAGCAGGGCCACTGGCATCCCAGACAGGTTC AGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC CTGAAGATTTTGCAGTGTACTACTGTCAGCAGTATGGTGGCTCACCGTGGTTC GGCCAAGGGACCAAGGTGGAACTCAAACGAACTGTGGCTGCACCATCTGTCT TCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTG TGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGA CTACGAGAAACACAAAGTCTACGCCTGCGAAGTCacccatcagggcctgagttcgcccgtcac a a a gag ctt caa cgg ag gag ag tg tta at TCTAGATAATTAATTAGGAGGAATTTAAAATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATTACTCGCTGCCCAACCAG CCATGGCCGAGGTGCAGCTGCTCGAGATGAGCGATAAAATTATTCACCTGAC TGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGGCGATCCTCGTC GATTTCTGGGCAGAGTGGTGCGGTCCGTGCAAAATGATCGCCCCGATTCTGG ATGAAATCGCTGACGAATATCAGGGCAAACTGACCGTTGCAAAACTGAACAT CGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACT CTGCTGCTGTTCAAAAACGGTGAAGTGGCGCAACCAAAGTGGGTGCACTTG TCTAAAGGTCAGTTGAAAGAGTTCCTCGACGCTAACCTGGCGTACCCGTACG ACGTTCCGGACTACGGTTCTACTAGTccgaaaccgtctaccccaccgggctcttcctgcggtggccgc ategecegtetggaggaaaaagtgaaaaccetgaaageteagaacteegagetggegteeactgeeaacatgetgegegaac

Fig. 6C

Fig. 7

(SEQ ID NO: \$2) Spel

ACTAGTCCGAAACCGTCTACCCCACCGGGCTCTTCCTGCGGTGGCCGCTCTGGAGGAAAAGTGAAAACCTGAAAGCTCAGAACTCCGAGCTGGCGTCACTGCCA N M L R E O V A O L K O K V M N H G G C A S G O A G O H H H H H H G A Y P Y D (SEQ ID NO: 53) - PKPSTPPGSSCGGRIARLEEKVKTLKAON
jun dimerization domain _____ CGTTCCGGACTACGCTTCTTAGGAGSGTGGTGGCTCTGAG 270 V P D Y A S .——HA tag and Amber stop.——

Fig. 8

	Sample	nnk	nnk	nnk	nnk	Amin	o Acids	Amino	Acids
	Jumpao	1	2	3	4	1	2	3	4
HC CDR3	X1c	tgg	ctg	cct	gtc	Trp	Leu	Pro	Val
no obno	X3a	gtg	gta	cct	gtt	Val	Val	Pro	Val
	X3b	dad	ccq	ccc	gat	Gly	Pro	 	Asp
	X4b	ttq	cca	cct	gtt	Leu	Pro	Pro	Val
	X4c	tca	ctg	ccc	atc	Ser	Leu	Pro	Ile
	X5a	aca	atg	ccc	gtt	Thr	Met	Pro	Val
	X5c	acg	aca	cct	gtc	Trp	Leu		Val
	X7c	cag	aca	cct	cac	Gln	Thr	Pro	Asp
HC CDR2	24	ctt	tat	tct	aat	Leu	Tyr	Ser	Asn
TIC CDIVE	39	act	tac	ttg	cat	Thr	Tyr	Leu	His
	3	agg	atg	ctc	gag	Arg	Met	Leu	Glu
	7	aag	gaa	tct	aaq	Lys	Glu	Ser	Lys
	8	gcg	cat	gtg	cag	Ala	His	Val	Gln
	10			att	agt	Gln	Glu	Ile	Ser
	11	cag	gag aat	aat	ccg	Arg	Asn	Asn	Pro
	19	cgg				Gln	Leu		Ser
	25	cag	cta ott	aat	tct		Ile	Asn Phe	Val
	28	agt	att	ttt	gtc	Ser	Pro	Thr	Ser
T 0 0 0 0 1		agg	ccc	act	agt	Gly			
LC CDR1	10	aag	ggt	gtt	agt	Lys	Gly	Val	Ser
	11	cat	ggg	gtg	gct	His	Gly	Val	Ala
	12a	cgt	acg	atg	gct	Arg	Thr	Met	Ala
	12b	cgt	ggt	gtt	aat	Arg	Gly	Val	Asn
	14	cgt	tcg	ctt	gcg	Arg	Ser	Leu	Ala
	16	cgg	ggt	gtt	gcg	Arg	Gly	Val	Ala
	18	agg	acg	gtg	tct	Arg	Thr	Val	Ser
	47	aag	ggg	gtg	gcg	Lys	Gly	Val	Ala
LC CDR2	1	aat	ccg	agg	ggt	Asn	Pro	Arg	Gly
	2	tcg	cct	cgg	agt	Ser	Pro	Arg	Ser
	3	tcg	cct	cgt	acg	Ser	Pro	Arg	Thr
L	4	tcg	cct	tgg	cgt	Ser	Pro	Trp	Arg
	5	act	ccg	aat	tgg	Thr	Pro	Asn	Trp
	6	aat	cct	gcg	agg	Asn	Pro	Ala	Arg
	7	aat	ccg	tcg	ggg	Asn	Pro	Ser	Gly
	9	aat	cct	tat	tag	Asn	Pro	Tyr	Stop
	10	aat	ccg	cgg	tct	Asn	Pro	Arg	Ser
	11	aat	ccg	gat	gtg	Asn	Pro	Asp	Val
	12	tcg	ccg	tcg	cgg	Ser	Pro	Ser	Arg
	13	aat	cct	ctg	ttt	Asn	Pro	Leu	Phe
ļ	14	aat	ctt	ggg	tat	Asn	Pro	Gly	Tyr
	15	aat	cct	att	agt	Asn	Pro	Ile	Ser
	16	aat	cct	cag	cgg	Asn	Pro	Gln	Arg
ļ	18	aat	ccg	cgg	acg	Asn	Pro	Arg	Thr
	19	aat	ccg	cgt	ggg	Asn	Pro	Arg	Gly
ļ	20	cat	ttg	aga	ctg	His	Leu	Arg	Leu
	21	aag	tag	att	tat	Lys	Stop	Ile	Tyr
	23	aat	cct	ggt	aag	Asn	Pro	Gly	Lys
	24	aat	cct	cgt	ggg	Asn	Pro	Arg	Gly
	26	aat	cct	aat	gtg	Asn	Pro	Asn	Val
	27	tct	ccg	cgg	gtt	Ser	Pro	Arg	Val
	29	acg	cct	cgg	ggt	Thr	Pro	Arg	Gly
	30	cct	tag	tgg	tgg	Pro	Stop	Trp	Trp

FIG. 9

FIGURE 10

Activity of Fab clones containing 2 TPO mimetic peptides

Activity of Fab clones containing 2 or 3 TPO mimetic peptides

FIGURE 11

Fig. 12

-(SEQ ID NO: 67)

<u>SG1.1 - TPO Heavy Chain (Bold denotes TPO mimetic) Amino acid sequence:</u>

<u>MKWSWVILFLLSVTAGVHSQVQLVQSGAEVKKPGASVKVSCKASGYIFSNYWIQW</u>

VRQAPGQGLEWMGEILPGSGSTEYTENFKDRVTMTRDTSTSTVYMELSSLRSED

TAVYYCARLPIEGPTLRQWLAARAPVWGQGTLVTVSSASTKGPSVFPLAPCSR

STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV

PSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKP

KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTY

RVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQ

EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRL

TVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK.

(SEQ ID NO: **&%**)

5G1.1 - TPO Heavy Chain (Bold denotes TPO mimetic) Nucleic acid sequence: ▶ ATGAAGTGGAGCTGGGTTATTCTCTTCCTCCTGTCAGTAACTGCCGGCGTCCA CTCCCAAGTCCAACTGGTGCAATCCGGCGCCGAGGTCAAGAAGCCAGGGGCC TCAGTCAAAGTGTCCTGTAAAGCTAGCGGCTATATTTTTCTAATTATTGGAT TTACCGGGCTCTGGTAGCACCGAATATACCGAAAATTTTAAAGACCGTGTTA CTATGACGCGTGACACTTCGACTAGTACAGTATACATGGAGCTCTCCAGCCTG CGATCGGAGGACACGGCCGTCTATTATTGCGCGCGTTTGCCAATTGAAGGG CCGACGCTGCGGCAATGGCTGGCGGCGCGCGCCCTGTTTGGGGTCAAG GAACCCTGGTCACTGTCTCGAGCGCCTCCACCAAGGGCCCATCCGTCTTCCCC CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCC TGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC CCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCT ACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAACTTCGGCACCCAGAC CTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAC AGTTGAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGCACCACCTGTG GCAGGACCGTCAGTCTTCCTCTTCCCCCAAAACCCAAGGACACCCTCATGAT CTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGAC CCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCA AGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCG TCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCC AAAGGGCAGCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAG GAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACC CCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT ACAAGACCACGCCTCCCGTGCTGGACTCCGACGCTCCTTCTTCCTCTACAGC AGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCT CCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCT **GTCTCTGGGTAAATGA**

(SEQ ID NO: **69**)

<u>5G1.1 Light Chain Amino Acid Sequence</u>

<u>→ MDMRVPAQLLGLLLWLRGARC</u>DIQMTQSPSSLSASVGDRVTITCGASENIYGALN
WYQQKPGKAPKLLIYGATNLADGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQ
NVLNTPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK
VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTH
QGLSSPVTKSFNRGEC.

(SEQ ID NO: 70)

Note: Italics denotes leader sequence

FACS staining on transfected 293 cells

FIGURE 14

FIGURE 15

VARIABLE REGION OF 4-29 LIGHT CHAIN

(SEQ ID NO: 116)

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 TAT TAC TGC CAA CAG TAT AAT AGT TAC CCT CCC ACT TTC GGC CCT GGG ACC AAA GTG GAT ATC AAA

Fig. 18

Fig. 19

Fig. 20

				A12.	giŦ			
Psil	00	C		300	400	200		009 .
	BSeRI SSPI SSPI SCGCGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAATCCCTTA	(SEQ ID NO: 111) BSaXI TAAATCAAAAGAATAGACGTGGATTGAGTGTTGTTCCAGTTTGGAACAAGAAGAACGTGGACTCCAACGTCCAAAGGGCGAAAA	f1 ori	ACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGIGCCGIAAAGLALIAAAILGGAACLCIAAAGGAAA	NgoMIV Nael GCCCCCGATTTAGAGGGGGGGAAAGCGAAAGGAAAGGAA	f1 ori GGTCACGCTGCGCGTAACCACCACCGCCGCGCGCGTTAATGCGCCGCTACAGGGGGCGCGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATT	f1 ori	BSpHI BciVI TGTTTATTTTCTAAATACATTCAAATATGCTTCCAATAAATGCTTCAATAATGCAAAAAGGAAGAGTATGAGTATTC

		Fig. 21B		
700	Draf	006	1000	1100
AACATITCCGIGICGCCCTTATTCCCGTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCAGGAACGCTGGTGAAGGATGCTGAAGATCA - beta-lactamase	Acil Xmnl AGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGACCACTTTT	AAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGCAAGAGCAACTCGGTCGCCGCATACACTTTCTCAGAATGACTTGAGTACT beta-lactamase ————————————————————————————————————	Btsl CACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTT	Pvul GACAACGATCGGAGGACCGAAGCAGCTATTTTGCACAACATGGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAA

				DIZ.	giA						
3400			3500	3600	BgIII	3700		- 3800		3900	
BsrBI DrallI SmBI CGTGGGGCGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	HC stuffer	Fagl Bpml Bpml Bpml BspMl NgoMIV		BsaXI Bpml BsaXI	HC stuffer BssSI	GTCATCCTGGTGCTGCTGGTGCTCGCGCTGCTCCCCACCGCCGGGCTCTGAAGCAGAA	HC stuffer	Eco57I Stul Earl PSCXI BACT CCGAGCCGAGAGCGAGTTTGAAGGCCTCTTCACCACCCAC	HC stuffer	Afel Btsl	HC stuffer

		Fig. 21D			
1200	1300	1400	1500	1600	
BsrGI ATACCAAACGACGACGACGATGCCTGTAGCAATGGCAACAACGTTGCGCAACTTAACTGGCGAACTACTTACT	Asel AATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCTTCCGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGA AATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCGGTTCGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGA AATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCCCCTTCCGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGA	Bpml Ahdl BsrDl Bmrl GCGTGGGGCCAACTGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAA GCGTGGGTCTCGCGGGGGGGGGG	Dral CGAAATAGACAGATCGCTGAGTGGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATT	ATTITIAATTTAAAAGGATCTAGGGAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGT AGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTTTT	COIE I OTIGIN

Hig. 21E									
1800	1900	2000	2100	2200	2300				
Eco57 GATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACT cole I origin	AIWNI TCAAGAACTCTGTAGCACCGCCTACATACCTCGCTAATCCTGTTACCAGTGCCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTC cole I origin	ApaLI AAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTTCGTGCACACACCCACC	Ecil BciVI CTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGGGCACGAGGG cole I origin	Drdl AGCTICCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGGG	Ecil CCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTG cole I origin				

BsrBl BsaXI	ATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCGAACGACCGAGLGAGLGAGLGAGLGAGLGAG	Bsaxi' Asel Pvull Asel TGCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAA 2500	lac promoter	BSrBI Mfel EcoRI CCCAGGCTTTACACTTTATGCTTCCGGCTCGTATTGTGTGAGCGGATAACAATTGAATTCAAGG	lac repressor	Bgll Bsgl Sfil Xbal Bbsl	AGTTAATTATGAAAAAACCGCGATTGCGATTGCGGTGGCGCTTGGCGGCTTTGCGACCGTGGCCCCAGGCGGCCCTCTAGATAACTGTGGCTGCACCATCT	———optimized OmpA leader ————————————————————————————————————	IumX	GTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGT	Kappa constant	Librar
BsrBl	ATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCA	BsaXI' Asel AcGCAAACCGCCTCTCCCCGCGCTTGGCAG	3	FGTGAGTTAGCTCATTAGGCACCCCAGGCTTTACACTTTATG			AGTTAATTATGAAAAAACCGCGATTGCGATTGCGGTGGCGCTGGC			GTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTC		

		Fig. 21G		
BbvCI Bpu101 Bpu101 Bpu101 AlwNI Bpu101 Bpu101	CACCAAACCACACACAAACACAAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGACCTCACAAAAGAGCTTCAACAGGGGAGAGTGT 3000 Kappa constant	Sacil Nael Nael Nael Nael Nael Nael Nael Nae	Xhol Bsgl EcoNI BssSl CGCTCGAGCTGATGGAAGCTGTGCGCTGCTGCTGCTCCTGGTGCTGCTGCTGCTGCT	Bogl' EcoRV CGAGCTTCGTGCCTCCTAGAGCTAGCCTCCTAGAGCTAGTGCTCCTAGACGCCC 3300 HC stuffer

		Π	Lig. 2		
4400	4500	4600	Ndel	4800	
CGGTGGTGGCTCTGGTTCCGGTGATTTTGATTATGAAAAGATGGCA	AACGCTAATAAGGGGGCCTATGACCGAAAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACGGTGCTG	CIATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGA	Xmnl BsaXI Sspl BsaXI' Afel Ndel CGGTGATAATTCACCTTCCCTCCTCCTCCTCCTCAATGGTTGAATGTCGCCTTTTGTCTTTAGCGCTGGTAAACCA 4700	TAÍGAATTTICTATIGACAAAATAAACTTATTCCGTGGTGTTTTGCGTTTCTTTTATGTTGCCACCTTTATGTATG	Eagl Ragi Nael Regi Feel Bgill Feel Asel CTAACATACTGCGTAATAAGGCGCCGGCCGCCGCCGCCGCTCTCTGAGGAGGATCT CTAACATACTGCGTAATAAGGCGCCGCCGCCGCCGCCGCCGCTCTCTGAGGAGGATCT

- gene III -