RICORSIONE LA TORRE DI HANOI

INFORMATICA

RICORSIONE

COSA È LA RICORSIONE?

- Fino ad ora abbiamo visto funzioni che possono chiamare altre funzioni...
- ...ma cosa succede se una funzione si chiama da sola?
- È perfettamente valido ma questo metodo di programmazione prende un nome particolare:
- Ricorsione.

PERCHÉ È UTILE?

- Possiamo definire una cosa in termini di sé stessa
- È molto simile a qualcosa che dovreste avere già visto:
- L'induzione.
- Vediamo un esempio: il fattoriale

$$n! = \begin{cases} n \times (n-1)! & \text{se } n > 1 \\ 1 & \text{se } n = 1 \end{cases}$$

FATTORIALE

```
def fattoriale(n):
    if (n == 1):
        return 1
    else:
        m = fattoriale(n-1)
        return m*n
```

```
# da qualche parte nel codice
x = fattoriale(3)
printf("3! = " + str(x))
```

COSA È SUCCESSO? PERCHÉ FUNZIONA?

- Dgni chiamata genera un nuovo record di attivazione...
- ...con una sua copia delle variabili locali e dei parametri
- Non continuiamo a chiamare funzioni all'infinito:
 - Abbiamo un **passo ricorsivo** in cui chiamiamo di nuovo la funzione
 - Abbiamo un caso base in cui conosciamo il valore della funzione
 - Prima o poi arriviamo al caso base

STRUTTURA BASE DELLA RICORSIONE

```
if caso base:
    return valore_noto
else:
    chiamata ricorsiva
```

Un caso a cui dobbiamo sempre ricondurci dopo un numero finito di chiamate

Quando capitiamo nel caso base assumiamo di conoscere (o saper calcolare direttamente) il valore della funzione

Nella chiamata ricorsiva riconduciamo il problema di trovare il valore della funzione in termini della funzione stessa

E SE NON ARRIVIAMO AL CASO BASE?

fattoriale(-3)

Chiama fattoriale(-4)

Che chiama fattoriale(-5)

Che a sua volta chiama fattoriale(-6)

... molte chiamate dopo...

Stack overflow: abbiamo riempito tutto lo spazio disponibile per lo stack

UN ALTRO ESEMPIO: MASSIMO COMUN DIVISORE

L'algoritmo di Euclide può essere espresso nel seguente modo:

$$mcd(x,y) = \begin{cases} mcd(y,x\%y) & \text{se } y \neq 0 \\ x & \text{se } y = 0 \end{cases}$$

ESEMPI DI DEFINIZIONI RICORSIVE

Numeri di Fibonacci:

$$F(n) = \begin{cases} F(n-1) + F(n-2) & \text{se } n > 2\\ 1 & \text{se } n = 0 \text{ o } n = 1 \end{cases}$$

Lunghezza di una lista/array:

$$lunghezza(lista) = \begin{cases} 0 & \text{se la lista è vuota} \\ 1 + lunghezza(resto della lista) & \text{altrimenti} \end{cases}$$

RICORSIONE E ITERAZIONE

- Ricorsione e iterazione sono "equivalenti":
- Per ogni funzione iterativa possiamo costruire una equivalente funzione ricorsiva.
- Per ogni funzione ricorsiva possiamo costruire una equivalente funzione iterativa...
- ...nel caso peggiore gestendo "imitando" in modo iterativo lo stack di chiamate.

QUIZ SULLA RICORSIONE

```
def f(a, b):
   if b == 0:
     return a
   else:
     return 1 + f(a, b - 1)
```

Che risultato otteniamo chiamando f(5,4)?

1. Stack overflow

2. 5

4. 4

LA TORRE DI HANOI

Spostare tutti i dischi da (1) a (3), eventualmente usando (2) sotto le seguenti condizioni:

- A. Si può spostare un solo disco alla volta
- B. Un disco non può essere appoggiato sopra un disco più piccolo

Come possiamo ricondurre il problema ad un caso più semplice?

Supponiamo di avere una procedura per spostare n-1 dischi

Come possiamo sfruttarla per risolvere il problema?

Spostiamo n-1 dischi in (2)

Spostiamo il disco più grosso nella destinazione (3)

Spostiamo gli n-1 dischi su (3)

LA TORRE DI HANOI

Ma come facciamo a spostare n-1 dischi?

Supponiamo di avere una procedura per spostare n-2 dischi...

... e ci fermiamo quando raggiungiamo 0 dischi: in quel caso non serve fare nulla, dato che non abbiamo dischi da spostare

FIGURE RICORSIVE

Per illustrare la ricorsione proviamo ad usare Python per disegnare figure definite in modo ricorso

Per esempio questo "albero binario" generato in modo ricorsivo

LA "TARTARUGA"

- In Python è possibile utilizzare una "tartaruga" per disegnare
- È uno strumento educativo che è ispirato ad un linguaggio pensato per insegnare la programmazione, LOGO
- È come avere un robot per disegnare al quale è possibile dare i comandi di muoversi avanti o indietro e di ruotare a destra o sinistra. Dove il robot passa traccia una linea

FIGURE RICORSIVE

(1)

Vediamo di individuare delle strutture in questo albero

È lo stesso dell'albero (1) ma ruotato di 45° e dimezzato in lunghezza

(2)

È lo stesso dell'albero (2) ma ruotato di 45° e dimezzato in lunghezza

FIGURE RICORSIVE: DISEGNARE UN ALBERO

- ightharpoonup Muoviti avanti di ℓ
- Ruota di 45° a sinistra
- Disegna un albero di lunghezza $\ell/2$
- Ruota di 90° a destra
- Disegna un albero di lunghezza $\ell/2$
- Ruota di 45° a sinistra (per tornare all'orientamento originale)
- Muoviti indietro di ℓ

QUALCHE ESERCIZIO

- ▶ Definire una funzione (non ricorsiva) che, dati n e ℓ , disegna il poligono regolare di n lati in cui ogni lato è lungo ℓ
- Definire una funzione (non ricorsiva) che, dato un array a e un numero x restituisce True se x è contenuto in a
- Riscrivere la precedente funzione in modo ricorsivo
- "Giocare" a modificare il disegno di alberi, che altri disegni possiamo fare? Provate a generare altre figure!