Wissenschaftliches Rechnen - Übung 3.1

Eigenzerlegung

27.11.2023 bis 01.12.2023

Aufgabe 1: Eigenwerte und Eigenvektoren

Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$ eine quadratische Matrix. Wir sagen $\lambda \in \mathbb{C}$ ist ein Eigenwert von \mathbf{A} mit zugehörigem Eigenvektor $\mathbf{v} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$, falls $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$. Der Eigenvektor \mathbf{v} wird durch die von \mathbf{A} beschriebene Abbildung lediglich um den Faktor λ skaliert.

- 1. Was ist das charakteristische Polynom $\chi_{\mathbf{A}}(\lambda)$? Wie lassen sich die Eigenwerte mithilfe dessen analytisch berechnen? Wie berechnet man die zugehörigen Eigenräume?
- 2. Was ist die algebraische und geometrische Vielfachheit eines Eigenwertes? Wie hängen diese zusammen?
- 3. Berechnen Sie die Eigenwerte und die zugehörigen Eigenräume folgender Matrizen:

a)
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$
, b) $\mathbf{B} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, c) $\mathbf{C} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

- 4. Was bedeutet es, dass eine Matrix diagonalisierbar ist? Welche der Matrizen aus der vorherigen Aufgabe sind diagonalisierbar?
- 5. Wie hängt die Determinante der Matrix mit ihren Eigenwerten zusammen?
- 6. Wie hängt der Rang einer quadratischen Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ mit ihren Eigenwerten und -vektoren zusammen?
- 7. Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$ eine reguläre Matrix. Wie verhalten sich die Eigenwerte und Eigenvektoren der Matrizen $2\mathbf{A}$, \mathbf{A}^2 und \mathbf{A}^{-1} zu denen von \mathbf{A} ?

Aufgabe 2: Eigenzerlegung symmetrischer Matrizen

1. Welche Eigenschaften im Bezug auf Eigenwerte und -vektoren besitzen symmetrische Matrizen, die quadratische Matrizen im Allgemeinen nicht besitzen?

Jede symmetrische Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ lässt sich in ein Produkt dreier Matrizen zerlegen:

$$\mathbf{A} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\mathsf{T}} = \begin{bmatrix} | & & | \\ \mathbf{u}_1 & \dots & \mathbf{u}_n \\ | & & | \end{bmatrix} \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^{\mathsf{T}} & \mathbf{-} \\ \vdots \\ \mathbf{-} & \mathbf{u}_n^{\mathsf{T}} & \mathbf{-} \end{bmatrix}.$$

Dabei ist $\Lambda \in \mathbb{R}^{n \times n}$ eine Diagonalmatrix und $\mathbf{U} \in \mathbb{R}^{n \times n}$ orthogonal, d.h. $\mathbf{U}^\mathsf{T}\mathbf{U} = \mathbf{I}$. Diese Zerelgung wird (reelle) Eigenzerlegung genannt.

- 2. Was steht in den Spalten von U und in der Diagonalen von Λ ?
- 3. Was für eine Art von Transformation beschreiben die Matrizen? Welche geomtrische Interpretation ergibt sich daraus für symmetrische Matrizen?
- 4. Zeigen Sie, dass eine Matrix A symmetrisch sein muss, um eine reelle Eigenzerlegung zu besitzen.
- 5. Wie kann man mithilfe der Eigenzerlegung Matrixpotenzen $\mathbf{A}^n = \underbrace{\mathbf{A} \cdot \ldots \cdot \mathbf{A}}_{n \text{ mal}}$ effizient berechnen?
- * Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix. Zeigen Sie folgende Aussage: Die Matrix \mathbf{A} ist genau dann positiv semidefinit, wenn alle ihre Eigenwerte größer oder gleich null sind.

Aufgabe 3: Potenzmethode

Die Potenzmethode ist ein numerisches Verfahren zur Bestimmung des Eigenvektors zum betragsmäßig größten Eigenwertes einer (diagonalisierbaren) Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. Dabei wird ein (zufälliger) Startvektor $\mathbf{v}_0 \in \mathbb{R}^n$ bestimmt und in jedem Schritt folgende Iterationsvorschrift iteriert:

$$\mathbf{v}_{t+1} \leftarrow \frac{\mathbf{A}\mathbf{v}_t}{\|\mathbf{A}\mathbf{v}_t\|}.$$

Dabei nehmen wir stets an, dass $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_n| \ge 0$.

- 1. Warum wird der Vektor in jedem Schritt normiert?
- 2. Für welche Startvektoren \mathbf{v}_0 sollte das Verfahren in der Theorie nicht gegen den Eigenvektor zum betragsmäßig größten Eigenwert konvergieren? Warum passiert dies häufig trotzdem?
- 3. Wie kann man, unter der Annahme, dass A symmetrisch ist, das Verfahren modifizieren, um weitere Eigenvektoren zu erhalten?
- 4. Wie kann man mithilfe der Potenzmethode den Eigenvektor zum betragsmäßig kleinsten Eigenwert direkt bestimmen? Welche Eigenschaft muss die Matrix dafür haben?
- * Zeigen Sie, dass das Verfahren exponentiell mit dem Faktor $\left| \frac{\lambda_1}{\lambda_2} \right|$ konvergiert.