ฉบับแปลไทย (Thai Translation)

An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426537/

ภาพรวมของประสิทธิภาพการแทรกซึมผ่านหน้ากาก: กลไกการแทรกซึมทะลุผ่านของละอองลอย (An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration)

<u>A. Tcharkhtchi,</u>^a <u>N. Abbasnezhad</u>,^{a,b} <u>M. Zarbini Seydani</u>,^b <u>N. Zirak</u>,^b <u>S. Farzaneh</u>,^c and <u>M. Shirinbayan</u>^{a,b,*}

1. บทนำ (Introduction)

ในขณะนี้เรากำลังใช้ชีวิตอยู่ในช่วงเวลาที่โควิด 19 ได้ก่อให้เกิดการติดเชื้อในผู้คนมากกว่า 2.5 ล้านคนและมีผู้ที่เสียชีวิตจากโรคนี้มากกว่า 300,000 รายแล้วทั่วโลก เพื่อที่จะปกป้องประชากร ในสถานการณ์เช่นนี้ทางออกที่มีประสิทธิภาพอย่างหนึ่งในการป้องกันแต่ละบคคลก็คือการใช้ หน้ากากที่มีประสิทธิภาพสูง จริง ๆ แล้ววัตถุประสงค์หลักของการใช้หน้ากากก็คือเพื่อที่จะป้องกัน การหายใจเข้าและดักจับอนุภาคที่ลอยอยู่ในอากาศ (ทั้งที่เกิดเองโดยธรรมชาติหรือที่เกิดขึ้นโดย ้น้ำมือมนุษย์) รวมทั้งจุลินทรีย์สิ่งมีชีวิตขนาดเล็กต่าง ๆ (เช่น แบคทีเรีย ไวรัส พรีออน เชื้อรา) อนุภาค ้ที่ลอยอยู่ในอากาศที่เกิดในธรรมชาติ (เช่น การระเบิดของภเขาไฟ พายฝุ่น ไฟป่าที่เกิดเองโดย ธรรมชาติ) และที่เกิดขึ้นโดยน้ำมือมนุษย์ (เช่น มลพิษจากอุตสาหกรรม) มีขนาดที่เล็กมาก ๆ ผลการ ์ศึกษาวิจัยหลายชิ้นได้แสดงให้เห็นถึงผลกระทบที่รนแรงของการหายใจรับเอาอนภาคขนาด เล็กมาก ๆ ต่อการเกิดโรคทางเดินหายใจตลอดจนโรคหัวใจและหลอดเลือด การหายใจรับเอา อนุภาคขนาดเล็กมาก ๆ เหล่านี้ (อนุภาคขนาดเล็กกว่า 2.5 ไมครอน) ยังเป็นสาเหตุของการเสียชีวิต ้จำนวนประมาณ 8.9 ล้านคนในปี พ.ศ. 2558 นอกเหนือจากอนภาคขนาดเล็กมาก ๆ ที่ลอยอย่ใน อากาศเหล่านี้แล้วก็ยังมีละอองลอยชีวภาพที่เป็นภัยคุกคามต่อสุขภาพซึ่งการศึกษาวิจัยจำนวนมาก ให้ความสนใจ สิ่งมีชีวิตขนาดเล็กเหล่านี้อาจจะเป็นสาเหตุของความเสี่ยงต่อสุขภาพ การปกป้อง จากจุลินทรีย์ที่ทำให้ติดเชื้อจึงมีความสำคัญมาก ด้วยเหตุนี้จึงมีการศึกษาวิจัยในความพยายามที่จะ ปรับปรงประสิทธิภาพของการปกป้องจากเชื้อจลินทรีย์เหล่านี้

การมีหน้ากากที่มีขีดความสามารถสูงขึ้น สวมใส่ได้สะดวกสบายรวมทั้งมีประสิทธิภาพสูงในการ กำจัดละอองลอยชีวภาพและป้องกันการแทรกซึมผ่านของของอนุภาคที่ลอยในอากาศ นับเป็น เป้าหมายอย่างหนึ่งของการศึกษาวิจัยในแขนงนี้อยู่เสมอมา ด้วยวัตถุประสงศ์นี้จึงมีการมุ่งเน้นไปที่ ปัจจัยองค์ประกอบต่าง ๆ ที่มีผลต่อการกำหนดคณภาพของหน้ากากให้มีการปรับปรงเพิ่ม ประสิทธิภาพของหน้ากาก โดยทั่วไปแล้วความสามารถในการกรองของหน้ากากเป็นผลมาจาก สเปคของตัวกรองและจากปัจจัยภายนอก

สเปคของตัวกรองในหน้ากากรวมถึงคุณสมบัติประจำตัวของวัสดุที่ใช้ทำหน้ากาก เช่น องค์ประกอบ ทางเคมีของตัวกรองและลักษณะเฉพาะตัว เช่น ความหนาและความหนาแน่นของการบรรจุเส้นใย ในตัวกรอง เป็นตัน นอกจากนี้การศึกษาวิจัยยังได้แสดงให้เห็นถึงความสำคัญของปัจจัยภายนอก ต่าง ๆ เช่น ความเร็วลมหน้าหน้ากาก (face velocity) หรือการไหลของอากาศ รูปแบบของการไหล ของอากาศที่สม่ำเสมอหรือไม่สม่ำเสมอ สถานะการประจุของอนุภาค ความถี่ในการหายใจ ความชื้นสัมพัทธ์ อุณหภูมิ ตลอดจนช่วงระยะเวลารับภาระในการกรอง (loading time) ของหน้ากาก นั้น

เนื่องจากปัจจัยภายนอกมีผลที่สำคัญมากต่อประสิทธิภาพการกรองและกำหนดกลไกของการกรอง ดังนั้นความเป็นไปได้ในการที่จะเพิ่มหรือปรับปรุงการออกแบบและประสิทธิภาพการกรองของ หน้ากากจึงจำเป็นต้องมีความเข้าใจในกลไกเหล่านี้เสียก่อน การตรวจสอบกลไกและความเข้าใจที่ กระจ่างแจ้งในการที่อนุภาคต่าง ๆ เข้าสู่ร่างกายผ่านทางหน้ากากจึงเป็นหัวข้อหนึ่งที่น่าสนใจใน เงื่อนไขนี้ การแทรกซึมผ่านหน้ากากตั้งอยู่บนรากฐานของกลไกต่าง ๆ ซึ่งประกอบด้วยการ ตกตะกอนจากแรงโน้มถ่วงของโลก การชนหรือตกกระทบด้วยแรงเฉื่อย การสกัดกั้น การแพร่ กระจาย ตลอดจนแรงดึงดูดจากไฟฟ้าสถิต และการสะท้อนความร้อน ประสิทธิภาพโดยรวมของตัว กรองถูกกำหนดโดยการเพิ่มประสิทธิภาพต่ออิทธิพลของกลไกการแทรกซึมผ่าน ดังนั้นบทบาทของ กลไกการแทรกซึมผ่านของอนุภาคแต่ละอย่างจึงจะต้องได้รับการพูดถึงเป็นอันดับแรก

ในทางตรงกันข้ามการจำลองและความเข้าใจในกลไกการทะลุผ่านของละอองชีวภาพเข้าไปใน หน้ากากมีความสำคัญอย่างมาก สิ่งนี้มีความสำคัญขึ้นมาเมื่ออนุภาคที่ปนเปื้อนและจุลินทรีย์มาถึง พื้นผิวด้านนอกของหน้ากาก ถ้าหากว่าพื้นผิวของหน้ากากไม่สามารถทำลายเชื้อไวรัสหรือจุลินทรีย์ ที่ตกลงบนพื้นผิวของหน้ากากนั้นได้ อนุภาคที่ปนเปื้อนเหล่านั้นก็จะสามารถทะลุผ่านหน้ากากโดย ผ่านทางกลไกหลายอย่าง เช่น การแทรกซึมผ่านแบบรากฝอยของต้นไม้ เป็นต้น

ยิ่งไปกว่านั้นหน้ากากจะกลายเป็นตัวเก็บสะสมเชื้อไวรัสในระหว่างที่ทำกิจกรรมที่มีการหายใจซ้ำ ๆ โดยเฉพาะอย่างยิ่งเมื่อพื้นผิวด้านนอกของหน้ากากมีการสัมผัสติดต่อกับละอองฝอยที่ปนเปื้อน เชื้อโรค โดยที่เชื้อไวรัสและแบคทีเรียจะตกค้างอยู่ที่พื้นผิวของหน้ากากและในตัวหน้ากากใน ระหว่างที่สวมใส่หน้ากากนั้นเป็นเวลานาน จึงเป็นสิ่งที่อันตรายอย่างขัดเจนและไม่พึงประสงค์ ถ้าหากว่าเชื้อเหล่านั้นสามารถมีชีวิตอย่างปลอดภัยและยังคงตื่นตัวในสภาวะแวดล้อมน้อย ๆ ที่ อบอุ่นและชื้นภายในหน้ากาก เนื่องจากสภาพเงื่อนไขของหน้ากากรวมทั้งความชื้นและอุณหภูมิที่ สูงซึ่งเกิดขึ้นระหว่างวงจรการหายใจ มันก็จะนำไปสู่การเกิดไอน้ำภายในหน้ากาก และกระบวนการนี้ ก็จะเป็นตัวเร่งกลไกของการทะลุผ่านและการแพร่กระจายของจุลินทรีย์อย่างรวดเร็วไปยังส่วนใน ของหน้ากาก มีการจำลองและการศึกษาวิจัยมากมายที่พิจารณาปรากฏการณ์นี้ว่าเป็นกระบวนการ ทางฟิสิกส์ในการถ่ายเทความร้อนและมวลในวัสดุที่มีรูพรุน

เพื่อเป็นการหลีกเลี่ยงสิ่งที่ไม่คาดคิดเช่นนี้ จึงมีความสำคัญในการวิเคราะห์กลไกการแพร่กระจาย ของอนุภาคชีวภาพและอนุภาคประเภทอื่น ๆ ในหน้ากาก และในการติดตามตรวจสอบการออกแบบ และการใช้ประโยชน์จากหน้ากากที่สอดคล้องกับกลไกเหล่านั้น การศึกษาวิจัยนี้ดำเนินการโดยมี จุดมุ่งหมายเพื่อที่จะตรวจสอบกลไกของการกรองอนุภาคของหน้ากากและตรวจสอบพารามิเตอร์ ต่าง ๆ ที่มีผล เช่น ความเร็วลมหน้าหน้ากากหรือการไหลของอากาศ รูปแบบของการไหลของ อากาศที่สม่ำเสมอหรือไม่สม่ำเสมอ สถานะการประจุของอนุภาค ความถี่ในการหายใจ ความชื้นสัมพัทธ์ อุณหภูมิ ตลอดจนช่วงระยะเวลารับภาระในการกรองของหน้ากากนั้น

2. หน้ากากประเภทต่าง ๆ (Different types of masks)

ต่อไปนี้เราจะพูดถึงประเภทต่าง ๆ ของหน้ากากรวมทั้งข้อดีและข้อด้อยของหน้ากากเหล่านั้นด้วย

2.1.หน้ากากชนิดสวมปิดปากและจมูก (Face masks)

หน้ากากประเภทนี้ซึ่งสวมปิดจมูกและปากของผู้สวมใส่ใช้เป็นตัวกั้นทางกายภาพสำหรับกัน ของเหลวและอนุภาคฝุ่นละอองที่มีประสิทธิภาพระดับหนึ่ง หน้ากากประเภทนี้สามารถจำแนกได้เป็น 3 ประเภทได้แก่:

2.1.1. หน้ากากผ้าธรรมดา (Basic cloth face mask)

หน้ากากประเภทนี้เป็นหน้ากากชนิดที่เรียบง่ายที่สุดซึ่งสามารถใช้ได้ในช่วงเวลาที่มีการระบาด อย่างรุนแรงของโรคระบบทางเดินหายใจ เนื่องจากขาดแคลนหรือไม่สามารถจัดหาหน้ากากชนิดที่ มีตัวกรองได้ บางคนก็อาจจะชอบใช้ผลิตภัณฑ์จากผ้ามากกว่าในการป้องกันโรคระบบทางเดิน หายใจ ภาพที่ 1 แสดงถึงหน้ากากผ้าธรรมดา

<u>ภาพที่ 1</u> หน้ากากผ้าธรรมดา

ในการศึกษาโดยเรงกาสมีและคณะ [17] คณะผู้วิจัยได้ศึกษาความสามารถในการแทรกซึมทะลุผ่าน ของละอองลอยในวัสดุที่ทำจากผ้าประเภทต่าง ๆ 5 ประเภทด้วยกันได้แก่ เสื้อยืดแขนยาวชนิดคลุม ศีรษะ เสื้อยืดธรรมดา ผ้าขนหนู ผ้าพันคอ และหน้ากากผ้า เปรียบเทียบกับความสามารถในการกรอง ของตัวกรองในหน้ากากชนิด N95 การทดสอบทำกับละอองลอยชนิด polydisperse และชนิด monodisperse ขนาดต่าง ๆ กันระหว่างประมาณ 20 – 1000 นาโนเมตร ของอนุภาคเกลือแกงที่มีค

วามเร็วหน้าหน้ากาก 2 ระดับ คือ 5.5 เซนติเมตรต่อวินาที และ 16.5 เซนติเมตรต่อวินาที นอกจากนี้คณะ ผู้วิจัยยังได้สรุปว่าความสามารถในการทะลุผ่านของอนุภาคในวัสดุเหล่านี้สูงกว่าในหน้ากากชนิด N 95 (ภาพที่ 2) [17] อย่างมาก เราสามารถสังเกตได้ว่าเปอร์เซนต์การทะลุผ่านของละอองลอย (P) คือสัดส่วนของความ เข้มข้นของละอองลอย downstream (C_{Down}) ต่อความเข้มข้นของละอองลอย challenge (C_{chal}):

P(%)=CDownCChal×100 สมการที่ 1

<u>ภาพที่ 2</u> ความสามารถในการทะลุผ่านของละอองลอยเกลือแกงชนิด polydisperse ในวัสดุ (a) หน้ากากผ้าธรรมดา (b) ผ้าขนหนู (c) เสื้อยืดแขนยาวชนิดคลุมศีรษะ (d) เสื้อยืดธรรมดา และ (e) ผ้าพันคอ ที่ความเร็วหน้าหน้ากาก 2 ระดับ

เปรียบเทียบกับหน้ากากชนิด N 95 ความคลาดเคลื่อนของแท่งกราฟ (Error bars) มีระดับความน่าเชื่อถือ (trust level) อยู่ ที่ 95% [17]

2.1.2.หน้ากากอนามัย (Surgical face mask)

เริ่มแรกหน้ากากอนามัย (ภาพที่ 3) ได้รับการออกแบบขึ้นมาเพื่อปกป้องผู้สวมใส่จากละอองฝ่อยที่ติด เชื้อในสภาวะแวดล้อมทางคลินิก แต่ก็ไม่ได้ช่วยมากนักในการป้องกันการแพร่กระจายของโรคติด เชื้อระบบทางเดินหายใจ [4,18,21] ในขณะที่หน้ากากชนิดนี้ไม่ใช่เครื่องมือที่ปกป้องได้อย่างสมบูรณ์ แต่ก็สามารถป้องกันผู้สวมใส่จากการกระจายของของเหลว เช่น จากการไอจามและสามารถดักจับ แบคทีเรียในละอองฝ่อยและละอองลอยของของเหลวมิให้เข้าสู่ปากและจมูกได้ [22] หน้ากาก อนามัยที่ชื้อขายกันโดยทั่วไปมีโครงสร้าง 3 ชั้นโดยที่ชั้นกลางจะเป็นตัวกรองในขณะที่ชั้นในทำ หน้าที่ดูดซับความชื้นและชั้นนอกมีคุณสมบัติกันน้ำ [23] อย่างไรก็ตามหน้ากากแบบ planar นี้มีการ ปกป้องในระดับต่ำและจำเป็นจะต้องพิจารณาอย่างรอบคอบระหว่างความรู้สึกสวมใส่สบายกับระดับของการปกป้องเมื่อต้องเลือกใช้หน้ากากชนิด planar นี้ในสภาพอากาศที่ปนเปื้อนมลพิษ [23]

ภาพที่ 3

หน้ากากอนามัย [20]

ในการศึกษาวิจัยโดยมิลตันและคณะ [24] คณะผู้ศึกษาวิจัยได้ตรวจสอบผลของการใช้หน้ากาก อนามัยในการป้องกันการแพร่กระจายของละอองลอยไข้หวัดใหญ่ ผลที่ได้บ่งชี้ว่าหน้ากากอนามัย ป้องกันการแพร่กระจายของละอองลอยชนิดหยาบได้ 25 เท่าและละอองลอยชนิดละเอียดได้ 2.5 เท่า เพราะฉะนั้นโดยทั่ว ๆ ไปจึงสามารถลดปริมาณละอองลอยที่หายใจออกมาได้ 3.4 เท่า ผลที่ ตามมาก็คือหน้ากากอนามัยสามารถจำกัดการปล่อยละอองฝอยที่มีขนาดใหญ่กว่า 5 ไมครอน ด้วย เหตุนี้จึงไม่เพียงพอในการที่จะจำกัดการปล่อยละอองฝอยที่มีขนาดเล็ก [24] อย่างไรก็ตามการศึกษาวิจัย ชิ้นอื่น ๆ ในเรื่องประสิทธิภาพของหน้ากากอนามัยและหน้ากากชนิด N95 (ข้อที่ 2.2.1) ได้เปิดเผยว่าไม่มีความ

แตกต่างที่มีนัยสำคัญระหว่าง**หน้ากากอนามัยและหน้ากากชนิด** N95 ถึงแม้ว่าวิธีการทางสถิติมีความครอบคลุมเพียงพอในการให้ ขนาดของอิทธิพลปานกลาง (moderate influence sizes) **แล้วก็ตาม** [25,26] โดยทั่วไปอ้างกันว่าไม่มีการศึกษาวิจัยที่เพียงพอใน การสนับสนุนเรื่องประสิทธิภาพของหน้ากากอนามัยในการลดความเสี่ยงของการติดเชื้อ [25,27]

2.1.3. กระจังป้องกันใบหน้าแบบเต็มหน้า (Full-length face shield)

เป็นอุปกรณ์ที่มีน้ำหนักเบาและราคาถูก ซึ่งประกอบด้วยที่คาดศีรษะแบบมียางยืดและกระจัง พลาสติกโพลิเมอร์แข็งใสชนิดเต็มใบหน้า โดยส่วนใหญ่กระจังใสจะทำมาจากพลาสติกชนิดโพลี คาร์บอเนต (หรือพีซี) ทำหน้าที่เสมือนเป็นโล่ห์ปกป้องส่วนใบหน้าจากการสัมผัสโดยตรงกับ ของเหลวระหว่างการพูดคุย การไอจาม [28,29] กระจังป้องกันใบหน้าแบบเต็มหน้าแสดงไว้ใน ภาพที่ 4

<u>ภาพที่ 4</u> กระจังป้องกันใบหน้าแบบเต็มหน้า

2.2. หน้ากากกรองอากาศ (Filtering facepiece respirator)

หน้ากากกรองอากาศเป็นอุปกรณ์ป้องกันส่วนบุคคลที่สวมใส่ปิดจมูกและปากเพื่อป้องกันอนุภาคในอากาศ เช่น ฝุ่น เชื้อโรค แก๊ส ไอ [<u>18,30</u>] หน้ากากกรองอากาศช่วยในการฟอกอากาศและดังนั้นจึงสามารถลดความเสี่ยงการปนเปื้อนกับอากาศที่มีมลพิษได้

ที่ทำงานส่วนใหญ่เลือกใช้หน้ากากกรองอากาศ (FFRs) โดยอ้างถึงการที่สามารถเข้าถึงได้ มีราคาไม่แพงและใช้แล้วทิ้งได้ มีงานศึกษาวิจัยหลายชิ้น ที่อนุมัติขอมรับในระดับการกรองของหน้ากากกรองอากาศสำหรับละอองลอยชนิด monodisperse และชนิด polydisperse ซึ่งมีขนาด ใหญ่กว่า

20 นาโนเมตร [$\underline{10}$,[$\underline{31}$], [$\underline{32}$], [$\underline{33}$] หน้ากากประเภทนี้มีหลายชนิคต่าง $\underline{\gamma}$ กัน เช่น ชนิค N95 ชนิค P100 ชนิค FFP2 ชนิค FFP3 และชนิค KN95 เป็นต้น ในที่นี้เราจะพูคถึง 2 ชนิคที่เป็นที่รู้จักกันมากที่สุด คือ ชนิค N95 และชนิค P100

2.2.1. หน้ากากกรองอากาศชนิด N95 (N95 respirator)

หน้ากากกรองอากาศชนิดนี้ไม่กันน้ำมัน บางทีก็รู้จักกันว่าเป็นตัวกรองอีเลคเตรท คำว่า N95 มีที่มาจาก ความจริงที่ว่าหน้ากากชนิดนี้สามารถกรองละอองลอยที่มีขนาดประมาณ 0.3 ไมครอนได้อย่างน้อย 95% [<u>34</u>]

ในการศึกษาวิจัยโดยเบลาซีและคณะ [27] คณะผู้วิจัยได้แถลงว่าหน้ากากกรองอากาศชนิด N95 อาจจะไม่ได้ให้ความ ปลอดภัยอย่างเพียงพอเสมอไปในการกรองอนุภาคละอองลอยที่มีขนาดเล็กกว่า 300 นาโนเมตร ดังนั้นประสิทธิภาพในการปกป้องของหน้ากากกรองอากาศชนิด N95 บางชิ้นอาจจะต่ำกว่า 95% ได้โดยเฉพาะ อย่างยิ่งในขณะที่มีอัตราการหายใจเข้าสูง ๆ [27] ควรจะกล่าวว่าหน้ากากกรองอากาศชนิด N95 ที่ผลิตโดยบริษัทผู้ผลิต ต่างกันก็มีประสิทธิภาพต่างกันขึ้นอยู่กับขนาดของอนุภาคที่ทะลุผ่าน [31] ภาพที่ 5 แสดงลักษณะ ของหน้ากากกรองอากาศชนิด N95 และชั้นต่าง ๆ ของหน้ากากชนิดนี้

ภาพที่ 5

_____ ลักษณะของหน้ากากกรองอากาศชนิด N95 และชั้นต่าง ๆ ของหน้ากากชนิดนี้ [35].

หน้ากากกรองอากาศชนิด N95 ก็มีหลายแบบต่าง ๆ กัน เช่น หน้ากากกรองอากาศชนิด N95 ที่ใช้ใน ทางการแพทย์ซึ่งมีประสิทธิภาพสูงกว่าหน้ากากกรองอากาศชนิด N95 แบบมาตรฐานทั่วไป จาก <u>ภาพที่ 5</u> จะเห็นได้ว่าหน้ากากกรองอากาศชนิด N95 ประกอบด้วย 4 ชั้นหลัก ได้แก่ ชั้นใน ชั้นรองรับ ชั้นตัวกรอง และชั้นนอกสุด นอกจากนี้ก็ยังมีพัดลมระบายอากาศฝังติดอยู่กับชั้นนอกของตัว หน้ากากเพื่อช่วยให้สามารถหายใจได้สะดวกขึ้น

2.2.2.หน้ากากกรองอากาศชนิด P100/หน้ากากป้องกันแก๊สพิษ (P100 respirator/gas mask)

หน้ากากกรองอากาศชนิดนี้สามารถกันน้ำมันได้ดี สามารถกรองอนุภาคละอองลอยได้ประมาณ 99.97% มีงานศึกษาวิจัยหลายชิ้นที่ศึกษาประสิทธิภาพเปรียบเทียบกันระหว่างหน้ากากกรองอากาศ ชนิด N95 และหน้ากากกรองอากาศชนิด P100 ซึ่งผลการศึกษาวิจัยระบุว่าไม่มีความแตกต่างกัน มากนักในด้านการแทรกซึมผ่านก่อนหน้าการออกกำลังกาย ในขณะที่ผลที่ได้หลังจากการออกกำลังกายพบว่าการหายใจเมื่อใช้ หน้ากากกรองอากาศชนิด P100 ทำใต้สะควกกว่า แต่ถึงอย่างไรหน้ากากกรองอากาศชนิด N95 ก็ไม่ผ่าน เกณฑ์หลังการออกกำลังกาย นอกจากนี้ยังพบว่าเนื่องจากการที่หน้ากากอาจจะมีการผนึกอากาศแนบ ชิดใบหน้า การหายใจทำได้ลำบาก และการเก็บความชื้นในระหว่างการออกกำลังกายหรือทำงาน หนักทำให้มีความเสี่ยงในการที่หน้ากากมีการเปลี่ยนแปลงรูปได้ ในแง่นี้หน้ากากกรองอากาศชนิด P100 ซึ่งมีความแข็งคงรูปมากกว่าสามารถคงรูปได้ในสภาวะที่มีความชื้นและอุณหภูมิสูงได้ดีกว่า เมื่อเปรียบเทียบกับหน้ากากกรองอากาศชนิด N95 [36] ประสิทธิภาพในด้านนี้ได้รับการพิสูจน์ยืนยัน จากงานศึกษาวิจัยหลายชิ้น ซึ่งผลจากการทดลองในสภาวะการไหลของอากาศที่มีปริมาตรสูง แสดงให้เห็นว่าค่าเฉลี่ยในการแทรกซึมทะลุผ่านสำหรับหน้ากากกรองอากาศชนิด N95 และชนิด P100 อยู่ที่ 2 และ 0.03% ตามลำดับ [37]

2.2.3. เครื่องช่วยหายใจหรือ SCBA (elf-contained breathing apparatus)

เครื่องช่วยหายใจ (SCBA) โดยปรกติจะประกอบไปด้วยหน้ากาก (facepiece) ซึ่งติดอยู่กับถังจ่าย อากาศ (เช่น อากาศเหลว ออกซิเจนเหลว หรือสารเคมีที่ผลิตออกซิเจน) ซึ่งผู้ใช้นำติดตัวไปโดย ผ่านท่ออ่อนและเรกกูเลเตอร์ เฉพาะเครื่องช่วยหายใจชนิดแรงดันบวกเท่านั้นที่ได้รับการแนะนำให้ ใช้ในสถานการณ์ที่เสี่ยงต่อความปลอดภัยในชีวิต โดยทั่ว ๆ ไปเครื่องช่วยหายใจเป็นอุปกรณ์ ป้องกันส่วนบุคคลอย่างหนึ่งสำหรับพนักงานดับเพลิง ดังนั้นหน้ากากประเภทนี้จึงควรใช้ในสภาพ อากาศที่มีฝุ่นควัน เครื่องช่วยหายใจสามารถช่วยปกป้องจากสารมลพิษในอากาศบางอย่างได้ อย่างไรก็ตามปริมาณอากาศที่มีอยู่จำกัดและอัตราการใช้งานเป็นเรื่องสำคัญที่จะต้องพิจารณาใน การตระเตรียม [38]

เครื่องช่วยหายใจชนิดเข้าไปแล้วหลีกหนี (entry-and-escape SCBA respirators) ทำให้ลูกจ้าง สามารถเคลื่อนที่ไปได้ทั่วในที่ทำงานแต่ก็เป็นอุปสรรคขัดขวางความคล่องตัวของพนักงาน โดย เฉพาะอย่างยิ่งในบริเวณที่แคบ ๆ หรือพื้นที่จำกัด เนื่องมาจากความเทอะทะและน้ำหนักของตัว อุปกรณ์ จึงแนะนำให้ใช้ในกรณีที่ทำงานกับสารมลพิษในอากาศที่ไม่มีการระบุชนิดและจำนวน หน้ากากประเภทนี้สามารถป้องกันอนุภาคของสารพิษและอนุภาคที่มีอันตรายใด ๆ จากอากาศ ภายนอกได้อย่างมีประสิทธิภาพ [39,40]

2.2.4. เครื่องช่วยหายใจแบบเด็มหน้า (Full face respirator)

เครื่องช่วยหายใจแบบเต็มหน้าประกอบไปด้วยแผ่นพลาสติกแข็งซึ่งมีส่วนที่โปร่งใสสำหรับการมอง เห็นและส่วนตรงกลาง (central port part) ซึ่งอยู่ใต้ส่วนช่องมองเห็น (view part) หน้ากากประเภทนี้ กำหนดให้ใช้สำหรับการบำบัดรักษาปัญหาเกี่ยวกับการหายใจและการหลับยาก (เช่น ภาวะหยุด หายใจขณะหลับ) โดยการให้อากาศที่เหมาะแก่การหายใจแก่ผู้ป่วย ส่วนที่สัมผัสติดกับใบหน้าจะ เป็นวัสดุที่อ่อนนุ่ม ยืดหยุ่นได้ซึ่งสามารถปิดเข้ากันได้ดีกับโครงหน้าต่าง ๆ กันได้ทุกแบบ และมีสาย รัดคาดศีรษะผู้สวมใส่หน้ากาก สายรัดคาดศีรษะนี้ได้รับการออกแบบให้มีแรงมากพอในการยึดตัว หน้ากากเข้ากับใบหน้าเพื่อให้เกิดการผนึกอากาศระหว่างหน้ากากกับใบหน้า

อย่างไรก็ตามการกำหนดรูปร่างลักษณะของหน้ากากชนิดนี้อาจจะเกิดปัญหาในกรณีที่ผู้สวม หน้ากากเข้าสู่โหมดนอนหลับ (sleeping mood) ซึ่งหน้ากากจะถูกคลายให้หลวมและจะมีผลกระทบ ต่อการผนึกอากาศระหว่างหน้ากากกับใบหน้า ในกรณีของปัญหาระบบการหายใจ เช่น ภาวะหยุด หายใจขณะหลับ การรั่วไหล (leakage) เช่นนี้จะทำให้สูญเสียแรงดันอากาศซึ่งเป็นสิ่งจำเป็นในการ รักษา ทำให้การบำบัดรักษามีประสิทธิภาพลดลง [41]

2.3. การเปรียบเทียบหน้ากากชนิดต่าง ๆ กัน (Comparison of different masks)

ตามที่ได้กล่าวมาแล้วในบทที่ว่าด้วยหน้ากากผ้า เรงกาสมีและคณะ [17] ได้ระบุว่าการแทรกซึ้มทะลุ ผ่านสำหรับหน้ากากผ้ามีมากกว่าในหน้ากากกรองอากาศชนิด N95 หมายถึงว่าการสวมหน้ากากผ้า ไม่ค่อยมีผลสักเท่าใดนัก เควียนและคณะ [31] ได้กล่าวถึงหน้ากากกรองอากาศชนิด N95 ว่ามี ประสิทธิภาพดีกว่าเมื่อเปรียบเทียบกับหน้ากากกรองอากาศชนิดที่กรองฝุ่น/หมอกและชนิดที่กรองฝุ่น/ควัน/หมอกและดีกว่าหน้ากากอนามัยที่ไม่ได้รับการรับรอง ผลจากการเปรียบเทียบหน้ากาก กรองอากาศชนิด N95 และชนิด P100 ก่อนการออกกำลังกายพบว่ามีผลไม่ต่างกัน

ในทางกลับกันผลที่ได้หลังการออกกำลังกายพบว่าหน้ากากกรองอากาศชนิด P100 เป็นที่ยอมรับ ได้มากกว่าหน้ากากกรองอากาศชนิด N95 [35] เบลาซีและคณะ [27] ได้กล่าวถึงหน้ากากกรอง อากาศชนิด N95 ว่าอาจจะไม่สามารถให้ความปลอดภัยอย่างเพียงพอเสมอไปต่อการแทรกซึมทะล ผ่านของอนภาคละอองลอยที่มีขนาดเล็กกว่า 300 นาโนเมตร สรปได้ว่าหน้ากากกรองอากาศชนิด N95 และหน้ากากอนามัยสามารถป้องกันอนุภาคในอากาศได้เทียบเท่ากันตามที่ได้รับการรายงาน ้ในบางกรณี [20,42] ลีและคณะ [43] แสดงให้เห็นว่าการแทรกซึมผ่านของอากาศและไอน้ำสำหรับใน หน้ากากกรองอากาศชนิด N95 มีต่ำกว่าในหน้ากากอนามัยแต่ก็สวมใส่ไม่สบายเท่าหน้ากากอนามัย ลองและคณะ <u>[44]</u> รายงานว่าการใช้หน้ากากกรองอากาศชนิด N95 ก็ไม่ได้มีความปลอดภัยมากกว่า การใช้หน้ากากอนามัยในการป้องกันความเสี่ยงจากเชื้อไวรัสไข้หวัดใหญ่ที่ได้รับการยืนยันจากห้อง ปฏิบัติการ นอกจากนี้ยังไม่แนะนำให้ใช้หน้ากากกรองอากาศชนิด N95 ส้ำหรับผู้คนทั่วไปรวมทั้ง บุคลากรทางการแพทย์ที่ไม่มีความเสี่ยงสูงไม่ได้มีการสัมผัสติดต่อใกล้ชิดกับผู้ป่วยไข้หวัดใหญ่ หรือผู้ที่สงสัยว่าเป็นไข้หวัดใหญ่ เคยมีการระบุบ่งชี้ว่าหน้ากากอนามัยที่มีชั้นของหน้ากากเป็นชนิด electrothermal layers อาจจะมีประสิทธิภาพสูงกว่าหน้ากากกรองอากาศชนิด N95 หรือหน้ากาก อนามัยทั่ว ๆ ไปสำหรับในกรณีเด็ก เ42 คั้งและคณะ เ45 ได้รายงานว่าหน้ากากที่ผลิตจากโพลีโพรพี ลีนที่ได้รับการออกแบบเป็นพิเศษมีกาวสังเคราะห์บริเวณขอบหน้ากากมีประสิทธิภาพสงกว่า หน้ากากอนามัยแบบมาตรฐาน และหน้ากากกรองอากาศชนิด N95 โดยสรุป เราได้แสดงการ เปรียบเทียบพารามิเตอร์ที่สำคัญ ๆ และประสิทธิภาพของหน้ากากชนิดต่าง ๆ ไว้ในตารางที่ 1

ตารางที่ 1 การเปรียบเทียบหน้ากากชนิดต่าง ๆ

Mask type	Affordable	Efficiency	Sealing and fitting	Light weight	Comfortable	Respiratory filter	Reusable	Mobility	Durability	Difficult to breath	Eye protection
Basic cloth face mask	High	Low	Low	High	High	No	Yes	High	Moderate	Moderate	No
Surgical face mask	High	Moderate	Low	High	High	No	No	high	Low	Moderate	No
Full-length face shield	High	Moderate, low for indirect aerosols	Low	high	Moderate	No	Yes	High	Moderate	Low	Yes
N95	High-Moder ate	High	Moderate	High	High	Yes	No (not suitable for washing)	High	Low	High	No
P100 respirator	Low	High	High	Moderate	Moderate	Yes	Yes	Low	High	Low	Yes/No
Self-contained breathing apparatus	Low	Excellent	Excellent	Low	Moderate	Yes	Yes	Low	High	Low	Yes
Full face respirator	Low	Excellent	Excellent	Low	Low	Yes	Yes	Low	High	Low	Yes

3. โพลิเมอร์ที่ใช้ในหน้ากาก (Polymers used in masks)

โพลิเมอร์ที่ปรกติใช้เป็นส่วนประกอบของเส้นใยในหน้ากากได้แก่ โพลีโพรพีลีน โพลีเอทิลีน โพลีเอสเตอร์ โพลีเอไมด์ โพลีคาร์บอเนต โพลีฟีลีนออกไซด์ นอกจากนี้ก็ยังมีการใช้โพลิเมอร์บาง ชนิดที่มีส่วนผสมของฟลูออรีนด้วย เช่น ไตรฟลูออโรคลอโรเอทิลีน เป็นตัน

สังเกตได้ว่าโพลิเมอร์ชนิดเทอร์โมพลาสติกที่ไม่ดูดซับน้ำซึ่งผิวสัมผัสมีความลื่นดูจะสวมใส่สบาย กว่า [46] เนื่องมาจากคุณสมบัติที่ไม่ดูดซับน้ำไม่ดูดซับความชื้นนี้เองเส้นใยโพลีโพรพีลีนจึงถูกใช้ ในการทำหน้ากากทางการแพทย์ทั่วไป [47] ฮวงและคณะ [48] กล่าวว่าโพลิเมอร์ชนิดหนึ่งที่ใช้ใน การปรับปรุงเพิ่มประสิทธิภาพของหน้ากากก็คือเส้นใยโพลีโพรพีลีน (พีพี) ที่ได้รับการปรับปรุง เพิ่มเติมโดยสารไดเมทิลไดออคทาเดชิลแอมโมเนียมโบรไมด์เพื่อทำให้มีประจุไฟฟ้าบวกซึ่ง สามารถดึงดูดแบคทีเรีย <u>[45] ภาพที่ 6</u> แสดงภาพของหน้ากากอนามัยสองชนิดที่ใช้เส้นใยโพลีโพ รพีลีนและฉนวนโพลีโพรพีลีน

ภาพที่ 6

แสดงภาพของหน้ากากอนามัยที่ใช้เส้นใยโพลีโพรพีลีน (A) และหน้ากากอนามัยที่ใช้ฉนวนโพลีโพรพีลีน (b) [<u>45</u>]

ควรกล่าวว่าปุยของโพลีโพรพีลีนที่อ่อนนุ่มและเบาถูกใช้ในการผลิตหน้ากากโพลีโพรพีลีนและใช้ ทำส่วนขอบของหน้ากากอนามัยมาตรฐานและหน้ากากกรองอากาศชนิด N95 เพื่อป้องกันการรั่วขึ้ม ดังนั้นการใช้โพลีโพรพีลีนปิดผนึกบริเวณขอบของหน้ากากจึงช่วยลดการรั่วขึ้มเล็ดรอดของ แบคทีเรียในหน้ากากมาตรฐานได้อย่างเพียงพอและดีกว่าการใช้เทปกาวกระดาษปิดที่ขอบ หน้ากากในการลดแรงต้านระหว่างการหายใจ มีการอ้างว่าหน้ากากโพลีโพรพีลีนที่ได้รับการออก แบบเป็นพิเศษที่มีกาวสังเคราะห์บริเวณขอบหน้ากากอาจจะน่าประทับใจกว่าหน้ากากอนามัย มาตรฐานและหน้ากากกรองอากาศชนิด N95

แมดเซ็นและคณะ [49] ได้ใช้วีธีการทดสอบหน้ากากอนามัยชนิดที่ใช้แล้วทิ้ง เพื่อจำลองสภาพ จริง ๆ ของศัลยแพทย์ในห้องผ่าตัดเพื่อประเมินประสิทธิภาพของหน้ากากทั่ว ๆ ไป 4 ชนิดได้แก่ หน้ากากเส้นใยโพลีโพรพีลีน หน้ากากเส้นใยโพลีเอสเตอร์ผสมเรยอง หน้ากากเส้นใยแก้ว และ หน้ากากเส้นใยเซลลูโลส

ผลจากการทดสอบพบว่าไม่มีความแตกต่างที่สำคัญระหว่างประสิทธิภาพของหน้ากากเส้นใยโพลี โพรพีลีนกับหน้ากากเส้นใยโพลีเอสเตอร์ผสมเรยอง ถึงแม้ว่าหน้ากากทั้งสองชนิดนี้มีประสิทธิภาพ ดีกว่าหน้ากากเส้นใยแก้วอย่างเห็นได้ชัด มีการรายงานว่าประสิทธิภาพของหน้ากากทั้ง 4 ชนิดนี้ได้รับการ จัดเรียงลำดับจากมากไปน้อย คือ หน้ากากเส้นใยโพลีโพรพีลีน หน้ากากเส้นใย โพลีเอสเตอร์ผสมเรยอง หน้ากากเส้นใยแก้ว และกระดาษ

คอนดาและคณะ [42] ได้ทำการประเมินประสิทธิภาพในการกรองของวัสดุต่างชนิดกัน ซึ่งบางชนิดมี ส่วนประกอบของโพลีเอสเตอร์ เช่น ผ้าชีฟอง (90% โพลีเอสเตอร์ และ 10% สแปนเด็กซ์) ผ้า สักหลาด (65% ฝ้าย และ 35% โพลีเอสเตอร์) ผ้าไหมสังเคราะห์ (100% โพลีเอสเตอร์) ผ้าซาติน (97% โพลีเอสเตอร์ และ 3% สแปนเด็กซ์) ผลที่ได้แสดงให้เห็นว่าผ้าชีฟองมีประสิทธิภาพในการ ป้องกันสูงกว่า 50% สำหรับอนุภาคทั้งหมดที่มีขนาดอยู่ในช่วง 10 นาโนเมตร ถึง 6.0 ไมครอน และ โดยทั่วไปผ้าชีฟองและผ้าสักหลาดมีประสิทธิภาพการกรองที่เหมาะสมสำหรับอนุภาคที่มีขนาดทั้ง ในระดับนาโนเมตร (<300 นาโนเมตร) และระดับไมครอน (300 นาโนเมตร – 6 ไมครอน) ควรสังเกต ว่าผ้าชาตินและไหมสังเคราะห์ได้รับการพิจารณาว่าไม่มีประสิทธิภาพในการกรอง (<30%)

3.1.บทบาทของเส้นใยนาโนในหน้ากาก (Role of nanofibers in mask)

สกาเรียและคณะ [50] ได้อธิบายว่าการรวมเส้นใยนาโนเข้าด้วยกันในหน้ากากทำให้แรงต้านอากาศ ลดลง ด้วยเหตุนี้ปริมาตรของอากาศที่มากขึ้นในการหายใจออกจะถูกส่งผ่านใบหน้าจากหน้ากาก แทนที่จะเลี่ยงไม่ผ่านตัวกรองและกระจายไปรอบ ๆ การสร้างภาพแบบชเลียรีน (Schlieren optical imaging) แสดงให้เห็นถึงการเพิ่มขึ้นของการไหลของอากาศผ่านหน้ากากเส้นใยนาโนโดยการ เปรียบเทียบการหักเหภายในและรอบ ๆ หน้ากากมาตรฐานทั่วไป

หยางและคณะ [51] หยิบยกการใช้เส้นใยนาโนกับเส้นใยโพลีเอทิลีนชนิดที่มีรูพรุนขนาดเล็กมาก (nanoporous polyethylene fiber) หรือนาโนพีอี ซึ่งเส้นใยนาโนที่มีการยึดเกาะที่แข็งแรง กับฝุ่นพี เอ็มจะทำให้มีประสิทธิภาพสูงในการดักจับฝุ่นพีเอ็ม (99.6% สำหรับฝุ่นพีเอ็ม 2.5) ควรตั้งข้อสังเกต ว่าแรงดันอากาศที่ลดลงและชั้นผิว (substrate) ของนาโนพีอีที่มีค่าความโปร่งใสแสงอินฟราเรดสูง (92.1% จากการวัดโดยอิงการแผ่รังสีความร้อนจากร่างกายมนุษย์) ทำให้เกิดการกระจายความร้อน โดยการแผ่รังสีความร้อน (active radiative cooling)

มีการระบุบ่งชี้ว่าโดยการเคลือบชั้นสารของอนุภาคนาโนเงินลงบนผ้านาโนพีอีของหน้ากากจะทำให้ สามารถสะท้อนรังสีอินฟราเรดได้สูง (87.0%) และสามารถใช้เพื่อรักษาความอบอุ่นของร่างกาย

คารากานีและคณะ [52] ได้ออกแบบและรวมเส้นใยนาโนของโพลีอะคริโลไนไตรล์และอนภาคนาโน เงินเข้าด้วยกัน (polyacrylonitrile/silver - PAN/AgNPs nanofibers) โดยการใช้วิธีนี้ในสถานการณ์ ็จริง (in-situ method) จุดมุ่งหมายคือต้องการให้ได้เมมเบรนที่มีอนุภาคนาโนของอนุภาคนาโนเงินที่ กระจายตัวสูงที่สามารถซักล้างทำความสะอาดได้ สำหรับผลิตหน้ากากต้านแบคทีเรียที่มีการจัด ลำดับชั้น (hierarchically organized antibacterial mask) เพื่อป้องกันแบคทีเรียทั้งจากบุคคลไปสู่ ้สิ่งแวดล้อมและจากสิ่งแวดล้อมไปส่คน เพื่อเป้าหมายนี้ เส้นใยนาโนที่ได้รับการใช้สนามไฟฟ้าดึง หรือยืดสารละลายที่มีส่วนผสมของโพลิเมอร์ถกทำให้เสถียรโดยวิธีการให้ความร้อน มีการรายงาน ว่าเส้นใยนาโนของโพลีอะคริโลไนไตรล์ที่ผสมอนุภาคนาโนเงินรอบเดียว (2247 พีพีเอ็ม/กรัมของ ้เส้นใยนาโน) ทำให้ได้เมมเบรนที่มีคุณภาพดีเยี่ยมมีคุณสมบัติในการต้านแบคทีเรียเมื่อเปรียบเทียบ กับที่ผสม 2 หรือ 3 รอบ มีการระบุว่าการผสมอนุภาคนาโนเงินเพียงรอบเดียวก็เพียงพอในการ ได้หน้ากากต้านแบคทีเรียที่สามารถซักล้างได้ หวางและคณะ <u>เ53</u>าได้พัฒนาตัวกรองที่ระบายอากาศ ได้ดีและสวมใส่สบาย ซึ่งประกอบด้วยเมมเบรนที่มีรพรนขนาดเล็กมากซึ่งทำมาจากอีเลคเตรทโพลี อีเทอร์ซัลโฟน/แบเรียมไททาเนต (electret polyethersulfone/barium titanate nanofibrous membrane - PES/BaTiO3 NFM) บนชั้นผิวของโพลีโพรพีลีนที่ยังไม่ได้ผ่านการทอ ควรมีการกล่าวว่าเม **มเบรน**ที่ได้มีความพรุนสูงและพลังงานไฟฟ้าที่ประจุมีความเหมาะสม นอกจากนี้เมมเบรนชนิดนี้ยังมีการระบายอากาศที่ดีและให้การแทรกซึม ผ่านของไอน้ำได้พอประมาณ ทั้งยังมีประสิทธิภาพในการกรองสูง (99.99%) และมีแรงดันลดลงหลังจากผ่าน การให้ความร้อนที่ 200 °C เป็นเวลา 45 นาที

การนำตัวกรองที่ทำจากผ้าเมลต์โบลน (melt-blown (MB) filter) ของหน้ากากกรองอากาศชนิด N95 และใส่กรองเส้นใยนาโนกลับมาใช้ซ้ำ โดยการพิจารณาถึงประสิทธิภาพในการกรอง อัตราการใหล ของอากาศ พื้นผิว และคุณสมบัติในการรักษารูปทรงได้รับการประเมินหลังจากการทำความสะอาด สองวิธี [54] มีการรายงานว่าประสิทธิภาพของตัวกรองที่ทำจากผ้าเมลต์โบลนลดลงอย่างมาก หลังจากผ่านการทำความสะอาดด้วยเอทธานอล ในขณะที่ใส้กรองเส้นใยนาโนยังคงมีประสิทธิภาพ ในการกรองที่สูงเสมอตันเสมอปลาย ดังนั้นจึงสรุปได้ว่าการนำไส้กรองเส้นใยนาโนของหน้ากาก กลับมาใช้ข้ำหลังผ่านการซักทำความสะอาดน่าจะเพียงพอในการแก้ปัญหาการขาดแคลนหน้ากาก ในขณะนี้ และยังเป็นการปรับปรุงให้เกิดความปลอดภัยแก่เจ้าหน้าที่ด่านหน้าในการต่อสู้กับโคโรนา ไวรัส

3.2. นวัตกรรมในการผลิตหน้ากาก (Innovative technology for fabrication of mask: Additive manufacturing)

มีการใช้ประโยชน์ทางอุตสาหกรรมจากโพลีโพรพีลีนโดยทั่ว ๆ ไป หลายอย่างเนื่องมาจากราคา ต้นทุนที่ต่ำ สามารถขึ้นรูปเป็นผลิตภัณฑ์ต่าง ๆ ได้ตามที่ต้องการ สามารถพิมพ์ได้ สามารถนำกลับ มาใช้ซ้ำได้ รวมทั้งความเที่ยงตรงของกลไกการทำงาน [55] ในทางกลับกันสไตรีน-(เอทิลีน-บิว ทิลีน)-สไตรีน (styrene-(ethylene-butylene)-styrene (หรือ SEBS) ก็เป็นอีลาสโตเมอร์ที่สามารถขึ้น รูปได้ที่อุณหภูมิต่ำและมีการผิดรูปต่ำในระหว่างการอัดรีด ดังนั้นการผสมผสานระหว่างโพลีโพรพีลีน และ SEBS จึงสามารถทำให้เกิดความก้าวหน้าในการขึ้นรูป 3 มิติของหน้ากากกรองอากาศชนิด N95 นอกจากนี้ยังสามารถควบคุมสัดส่วนของอีลาสโตเมอร์ชนิดที่เป็นเทอร์โมพลาสติก ทำให้เกิดความ ยืดหยุ่นของวัสดุตามแบบ 3 มิติที่เข้ากันได้แนบสนิทในการผลิตหน้ากาก ด้วยเหตุนี้ขั้นตอนการ พิมพ์แบบ 3 มิติจึงสามารถสร้างสรรค์หน้ากากกรองอากาศชนิด N95 ที่มีความเสถียรและเข้ากันได้ ทางชีวภาพ (biocompatible) ซึ่งสามารถเทียบกันได้กับหน้ากากที่ผลิตในเชิงอุตสาหกรรมยี่ห้อดัง ๆ [56] ภาพที่ 7 แสดงตันแบบของหน้ากากกรองอากาศชนิด N95 ที่พิมพ์ 3 มิติ [56] ตามภาพนี้ หน้ากากกรองอากาศชนิด N95 ประกอบไปด้วยขึ้นส่วนต่าง ๆ เช่น ส่วนจมูก (nose foam) คลิปยึดส่วน จมูก (nose clip) ส่วนที่ติดกับใบหน้า (face seal) สายรัด (straps) และวาล์วช่วยในการหายใจ (exhalation valve)

<u>ภาพที่ 7</u>

ต้นแบบของหน้ากากกรองอากาศชนิด N95 ที่พิมพ์ 3 มิติ [56].

สเว็นเน็นและคณะ [57] ได้แสดงให้เห็นถึงการประดิษฐ์หน้ากากชนิดที่สามารถนำกลับมาใช้ซ้ำได้ โดยใช้การพิมพ์ 3 มิติ ที่อิงตามวัสดุและวิธีการ (การสร้างภาพ 3 มิติ และการพิมพ์ 3 มิติ) หน้ากาก 3 มิตินี้ประกอบไปด้วยส่วนประกอบที่ทำมาจากคอมโพสิตชนิดโพลีเอไมด์ที่สามารถนำกลับมาใช้ซ้ำ ได้ที่พิมพ์ 3 มิติจำนวน 2 ชิ้นส่วน (ตัวหน้ากากและตัวรองรับเมมเบรนตัวกรองอากาศ) และ 2 ชิ้นส่วน ที่ใช้แล้วทิ้ง (สายรัดศีรษะและเมมเบรนตัวกรองอากาศ) การสร้างแบบจำลอง 3 มิติ ของหน้ากาก เหล่านี้สามารถทำได้อย่างรวดเร็วโดยใช้โปรแกรมคอมพิวเตอร์ช่วยในการออกแบบ (CAD) ควร สังเกตว่าการทดสอบการรั่วซึมและการทดสอบประสิทธิภาพในการป้องกันเชื้อไวรัสยังไม่ได้มีการ ทดสอบ ซึ่งเป็นสิ่งสำคัญมากก่อนการนำไปใช้งานในสถานการณ์จริง

ไคและคณะ [58] ได้เสนอเทคโนโลยีใหม่ในการปรับปรุงให้มีความรู้สึกสบายมากขึ้นในการสวม หน้ากากกรองอากาศและผู้สวมสวมได้พอดีโดยการสแกนใบหน้าของอาสาสมัคร 3 คน โดยใช้วิธีส แกนเลเซอร์ 3 มิติ มีการใช้พลาสติกอะคริโลไนไตรล์บิวทาไดอีนสไตรีน (Acrylonitrile Butadiene Styrene (ABS) plastic) โดยอาศัยวิธีการพิมพ์ 3 มิติ ในการประดิษฐ์หน้ากากตันแบบ สมควรกล่าวใน ที่นี้ด้วยว่าระบบตรวจจับแรง (force sensing system) ซึ่งอิงตาม Arduino Uno R3 มีความก้าวหน้า และเซ็นเซอร์ตรวจจับแรงสามารถวัดแรงดันของการกระทบสัมผัสระหว่างหน้ากากกรองอากาศและ

โครงร่างศีรษะได้ ผลจากการทดลองระบุว่าหน้ากากกรองอากาศที่ได้รับการออกแบบใหม่นี้มีแรงดัน ที่ได้รับการปรับปรงให้เหมาะสม

โพรเว็นซาโนและคณะ [59] ได้เสนอรูปแบบใหม่โดยอิงหน้ากากกรองอากาศที่ได้รับการพัฒนาให้มี เส้นพลาสติกที่ใช้กับเครื่องพิมพ์ 3 มิติหรือ PLA (printer filament) หมวกที่สามารถถอดออกได้ ชุด ตัวกรองที่สามารถถอดออกได้ ซึ่งประกอบไปด้วย MERV 16 สองชั้นประกบ MERV 13 ซึ่งอยู่ตรง กลาง และสายรัดที่สามารถถอดออกได้ หน้ากากตามที่ต้องการชนิดนี้ได้ผ่านขั้นตอนการทดสอบ เพื่อตรวจสอบการรั่วซึมและสามารถผ่านการทดสอบความพอดี (Bitrix N95 fit test) ที่โรงพยาบาล แห่งมหาวิทยาลัยจอร์จวอชิงตัน (GWUH) มีการกล่าวว่าควรพิจารณาใช้ความระมัดระวังเป็นพิเศษ ในการสวมหน้ากากให้พอดีไม่ให้มีการรั่วซึมของอากาศ

หลิวและคณะ [60] แสดงให้เห็นว่าการเชื่อมต่อประสานกับตัวกรองในเครื่องดมยาสลบโดยใช้ หน้ากากกรองอากาศที่มีคุณสมบัติยึดหยุ่นและสามารถนำกลับมาใช้ช้ำได้นี้สามารถเป็นทางเลือกที่ มีความเป็นไปได้สำหรับหน้ากากกรองอากาศชนิด N95 ที่ใช้แล้วทิ้ง นอกจากนี้คณะผู้วิจัยยังได้ ศึกษาประเมินประสิทธิภาพของหน้ากากกรองอากาศที่มีคุณสมบัติยึดหยุ่นโดยการจดบันทึกการ ทดสอบความพอดี (fit test) เชิงปริมาณ อัตราการหายใจ และค่าความเข้มข้นของ คาร์บอนไดออกไซด์ในลมหายใจขณะที่หายใจออกจนสุดในอาสาสมัคร 8 คน ผลจากการทดลอง พบว่าอาสาสมัคร 4 คนจากทั้งหมด 8 คนมีอาการรู้สึกไม่สบาย อาสาสมัคร 2 คนรายงานว่ามีแรง กดดันบริเวณใบหน้า อาสาสมัคร 1 คนรายงานว่ามีแรงต้านขณะที่หายใจออก และมี 1 คนที่รายงานอาการมึนวิงเวียนศีรษะชั่วขณะระหว่างที่ออกแรง

4. กลไกการกรอง (Mechanisms of filtration)

การแทรกซึมทะลุผ่านขึ้นอยู่กับขนาดของอนุภาค สำหรับอนุภาคที่มีขนาดในระดับที่เล็กมาก ๆ เช่น นี้ การดักจับละอองลอยจะเกิดขึ้นโดยกลไกต่าง ๆ เช่น การตกตะกอนจากแรงโน้มถ่วงของโลก การ ชนหรือตกกระทบด้วยแรง การสกัดกั้น การแพร่กระจาย และการดึงดูดจากไฟฟ้าสถิต [42,61] ความ เป็นไปได้ในการกระตันกลไกเหล่านี้ได้รับการตรวจสอบโดยพิจารณาถึงขนาดของอนภาค

<u>ภาพที่ 8</u> แสดงรูปแบบของกลไกต่าง ๆ ที่อนุภาคในอากาศอาจจะแทรกขึมทะลุผ่านหน้ากาก

<u>ภาพที่ 8</u> แสดงรูปแบบของกลไกต่าง ๆ ของละอองลอยในการแทรกซึมทะลุผ่านหน้ากาก

จลนศาสตร์และกลไกที่เกี่ยวข้องขึ้นอยู่กับประเภทของสสารซึ่งประกอบด้วยคุณสมบัติทางกายภาพ และคุณสมบัติทางเคมี เช่น น้ำหนักโมเลกุล ขนาดของอนุภาค เป็นต้น

4.1.การตกตะกอนจากแรงโน้มถ่วงของโลก (Gravity sedimentation)

มีการชี้ให้เห็นว่าสำหรับละอองลอยที่มีขนาดระหว่าง 1 -10 ไมครอน การตกตะกอนจากแรงโน้มถ่วงของโลกจะมีบทบาทสำคัญ เพราะว่าพลังงานที่เกิดจากการทิ้งตัวลงหรือจากแรงโน้มถ่วงของโลกจะมีผลต่อละอองฝอยขนาดใหญ่จากการหายใจออก [42] แม็คคัลลัฟและคณะ [11] ได้กล่าวว่า สำหรับอนุภาคที่มีขนาดโตกว่า 0.5 ไมครอน แรงเฉื่อยและแรงโน้มถ่วงของโลกเป็นกลไกที่มีความโดดเด่นมากที่สุด มีการคาดการณ์ว่าละอองลอยที่มีขนาดเล็กที่สุด ซึ่งได้แก่ อนุภาคน้ำยางกลม ๆของโพลีสไตรีน (0.5 ไมครอน) มีความสามารถในการแทรกซึมทะลุผ่านมากที่สุด

4.2.การชนหรือตกกระทบด้วยแรงเฉื่อย (Inertial impaction)

การชนหรือตกกระทบด้วยแรงเฉื่อยเกิดขึ้นเมื่อแรงเฉื่อยของอนุภาคมีมากจนกระทั่งทำให้เกิดการ เปลี่ยนทิศทางการเคลื่อนที่ของอนุภาคนั้นในระหว่างการใหลของอากาศ [62] อนุภาคที่มีขนาดใหญ่ มีความเร็วมากกว่า และความหนาแน่นมากกว่าจะทำให้เกิดแรงเฉื่อยที่มากกว่า และกระบวนการนี้ ทำให้อนุภาคเหล่านี้ถูกดักจับได้ง่าย แรงเฉื่อยของอนุภาคเหล่านี้ทำให้มันไม่สามารถใหลไปรอบ ๆ เส้นใยของหน้ากากกรองอากาศ นอกจากนี้แล้ว แทนที่จะใหลทะลุผ่านตัวกรองอนุภาคที่มีขนาด ใหญ่เหล่านี้จะกระจัดระจายตามกระแสลม หรือชนเข้ากับเส้นใยตัวกรองและติดอยู่กับเส้นใยตัว กรอง [30] โดยรวมแล้วอนุภาคที่มีขนาดประมาณ 1 ไมครอนหรือโตกว่านี้อาจจะถูกหยุดยั้งได้อย่างมี ประสิทธิภาพด้วยกลไกนี้ [63] อย่างไรก็ตามกลไกนี้ไม่สามารถใช้ในการดักจับอนุภาคที่มีขนาดเล็ก มากอย่างอนุภาคนาโนได้ [62,64,65] ประสิทธิภาพของกลไกนี้ในการดักจับอนุภาคที่มีขนาดเล็ก มาก ๆ (ultrafine particles and Nanoparticles) สามารถถูกมองข้ามไปได้เลย [6]

ควรสังเกตว่าผลกระทบของการเคลื่อนที่แบบบราวน์ (Brownian motion) ต่ออนุภาคที่มีขนาดเล็กมีค วามสำคัญ การแพร่กระจาย (diffusion) เป็นกลไกที่ใช้กันทั่วไปให้เกิดการรวมตัวกันก่อนสำหรับ อนุภาคที่มีขนาดเล็กกว่า 0.2 ไมครอน ส่วนกลไกการชนหรือตกกระทบด้วยแรงเฉื่อยจะใช้กับ อนุภาคที่มีขนาดโตกว่า 0.2 ไมครอน [62,64,65]

4.3. การสกัดกั้น (Interception)

การสกัดกั้นเกิดขึ้นเมื่ออนุภาคเคลื่อนที่ตามกระแสอากาศเพื่อให้เกิดปฏิสัมพันธ์ระหว่างตัวอนุภาค กับตัวกรองที่รูพรุนของในตัวกรองมีขนาดความกว้างมากกว่าหรือใกล้เคียงกับขนาดของอนุภาค [62] วิธีการนี้ ประสบความสำเร็จในการสกัดกั้นอนุภาคที่มีขนาดโตถึง 0.6 ไมครอน [63] การสกัดกั้นไม่ได้ ถูกกำหนดโดยความเร็วของอนุภาคแต่จะเห็นได้ชัดมากขึ้นกับอนุภาคมีขนาดเล็ก มีความแตกต่างที่ สำคัญระหว่างการสกัดกั้นและการขนหรือตกกระทบด้วยแรงเฉื่อยคือในการสกัดกั้นตัวอนุภาคจะไม่ มีการแผ่บานออกไปจากตรงกลางซึ่งเป็นจุดที่วัสดุในตัวกรองสกัดกั้นอนุภาค [6] มีการรายงานว่าใน กรณีที่ขนาดของละอองลอยอยู่ระหว่าง 100 นาโนเมตร ถึง 1 ไมครอน การแพร่กระจายโดยการ เคลื่อนที่แบบบราวน์ (Brownian motion) และกลไกการสกัดกั้นอนุภาคโดยเส้นใยในตัวกรองเป็น กลไกที่มีประสิทธิภาพสูงกว่า [42]

4.4. การแพร่กระจาย (Diffusion)

เมื่ออิงตามหลักการเคลื่อนที่แบบบราวน์ (Brownian motion) ของอนุภาคที่กระเด้งกระดอนเข้าตัว กรอง การแพร่กระจายจะเป็นกลไกที่มีประสิทธิภาพมากที่สุดในการดักจับอนุภาคที่มีขนาดเล็กกว่า 0.2 ไมครอน [63] จริง ๆ แล้วการเคลื่อนที่ของอนุภาคที่ผิดไปจากปรกติเป็นการเพิ่มความเป็นไปได้ ในการเกิดการชนปะทะกันระหว่างอนุภาคด้วยกันและชนกับเส้นใยในตัวกรอง [62] จึงเกิดการแพร่ กระจายของอนุภาคขนาดเล็กอย่างมาก (ultrafine particles and nanoparticles) ซึ่งสำคัญมากกว่า การสกัดกั้น และในขณะที่อนุภาคมีขนาดเล็กลงหรือมีความเร็วลดลงอัตราการแพร่กระจายก็จะยิ่งมี มากขึ้น เมื่อความเร็วลดลงช่วงระยะเวลาพักตัว (residence period) ของอนุภาคก็จะยิ่งมากขึ้นเพราะมี ตัวกรอง ด้วยเหตุนี้ความเป็นไปได้ในการชนปะทะกันระหว่างอนุภาคและตัวกรองก็จะยิ่งเพิ่มขึ้น อย่างมากมายมหาศาล [31] มีการศึกษาวิจัยหลายขึ้นแสดงให้เห็นว่าเมื่อมีการไหลจำนวนมากเคลื่อนที่เข้าสู่ช่องว่างขนาดเล็กมาก ๆ ใน หน้ากากจะมีการลดความเร็วลงอย่างกะทันหันเนื่องมาจากเกิดการแพร่กระจายภายในหน้ากาก [66]

สำหรับกลไกของการขนส่งมวลมีรูปแบบจำลองทั่ว ๆ ไปของกฎข้อที่ 1 ของฟิกค์ (the Fick's first law) ซึ่งสอดคลัองกับการแพร่กระจายมวลในบริเวณพื้นที่หนึ่งในหัวงเวลาหนึ่งและกฎข้อที่ 2 ของ ฟิกค์ (the Fick's second law) ซึ่งระบุการเปลี่ยนแปลงของความหนาแน่น (concentration) ตามเวลา ภายในบริเวณนั้น [62,63]

J=-Ddcdx

สมการที่ 2

dCdt=Dd2cdx2

สมการที่ 3

โดยที่ "J" เป็นการใหลของการแพร่กระจาย (diffusion flux) "D" เป็นค่าสัมประสิทธิ์การแพร่ในมิติ (diffusion coefficient in dimensions) "C" เป็นความหนาแน่นในมิติ (concentration in dimensions) "x" เป็นจุดตำแหน่ง (position) และ "t" เป็นเวลา (time)

4.5. แรงดึงดูดจากไฟฟ้าสถิตและการสะท้อนความร้อน (Electrostatic attraction and thermal rebound)

การใช้แรงดึงดูดจากไฟฟ้าสถิตเป็นวิธีการที่สามารถดักจับได้ทั้งอนุภาคขนาดใหญ่และอนุภาคขนาดเล็กจากกระแสอากาศ ในวิธีการนี้จะใช้เส้นใยหรือเม็ดเล็ก ๆ ในตัวกรองที่มีประจุไฟฟ้าในการ ดูดซับอนุภาคที่มีประจุไฟฟ้าตรงกันข้ามจากกระแสอากาศ [30] ในกรณีของอนุภาคขนาดเล็กมาก ระดับนาโน (nanometer scale) อนุภาคขนาดเล็กมาก ๆ เหล่านี้จะสามารถหลุดเล็ดรอดระหว่างรูพรุน ของเส้นใยตัวกรอง การใช้แรงดึงดูดจากไฟฟ้าสถิตเหมาะกับการดักจับอนุภาคที่มีมวลน้อย ๆ และ ตัวกรองที่มีประจุไฟฟ้าสถิตมีประโยชน์ที่ความเร็วต่ำ ๆ อย่างเช่นความเร็วในการหายใจผ่าน หน้ากาก [42]

กลไกการใช้แรงดึงดูดจากไฟฟ้าสถิตจะมีประสิทธิภาพลดน้อยลงเมื่อความเร็วมากขึ้น นอกเหนือ จากกลไกต่าง ๆ ที่ได้กล่าวมาแล้ว [66] (การแพร่กระจาย การสกัดกั้น และการการชนหรือตกกระทบด้วยแรง เฉื่อย) ก็มีตัวกรองที่มีประจุไฟฟ้าซึ่งเรียกกันว่าตัวกรองอีเลคเตรท (electrets filters) [63,64,67] ส่วน

ใหญ่ของตัวกรองที่ใค้รับอนุญาตจากสถาบันอาชีวอนามัยและความปลอดภัยแห่งประเทศสหรัฐอเมริกา (NIOSH) **เช่น หน้ากากกรอง** อากาศชนิด N95 และชนิด P100 ใค้รับการระบุว่าเป็น**ตัวกรองอีเลคเตรท** [6]

มีการศึกษาวิจัยหลายชิ้นที่รายงานว่าประสิทธิภาพของตัวกรองชนิดกลไก (mechanical) และตัว กรองอีเลคเตรท (electrets filters) มีความแตกต่างกันในการดักจับละอองลอยที่มีขนาดเล็กระดับนา โนเมตร อนุภาคที่มีขนาด 300 นาโนเมตรได้รับการอธิบายว่ามีความสามารถในการแทรกซึมทะลุ ผ่านมากที่สุดสำหรับตัวกรองชนิดกลไก (mechanical) ซึ่งไม่มีประจุไฟฟ้า แต่อย่างไรก็ตามอนุภาคที่ มีขนาดเล็กกว่านี้ก็ทำให้ประสิทธิภาพของตัวกรองอีเลคเตรท (electrets filters) ซึ่งมีประจุไฟฟ้าลด ลงได้เช่นกัน [10,68] นอกจากนี้การศึกษาวิจัยเหล่านั้นยังเปรียบเทียบให้เห็นถึงความสามารถในการ แทรกซึมทะลุผ่านของอนุภาคที่มีประจุไฟฟ้าและที่ไม่มีประจุไฟฟ้า ความสามารถในการแทรกซึม ทะลุผ่านสูงสุดเกิดขึ้นกับอนุภาคที่ไม่มีประจุไฟฟ้าที่มีขนาด 30 – 40 นาโนเมตร ซึ่งสูงกว่าในกรณี ของอนุภาคที่มีประจุไฟฟ้ามาก [17], [18], [19], [20], [21], [22]] ถึงแม้ควรกล่าวว่าประสิทธิภาพมีความ แตกต่างกันตามขนาดและชนิดของอนุภาคและตามอัตราการไหลที่แตกต่างกัน [7] อัตราการไหลที่ ลดลงจะเพิ่มขนาดของอนุภาคใหญ่สุดที่แทรกซึมทะลุผ่านได้ (most penetrating particle size - MPPS) [22], [23], [24]]

5. อิทธิพลของพารามิเตอร์ต่าง ๆ ที่มีผลต่อการแทรกชื่มทะลุผ่าน (Influence of different parameters on the penetration)

ประสิทธิภาพในการกรองของหน้ากากถูกกำหนดโดยขีดความสามารถในการหยุดยั้งอนุภาคและไว รัสในอากาศซึ่งระบุเป็นอัตราส่วนประสิทธิภาพ (efficiency ratio) ขนาดของอนุภาคที่หยุดยั้งได้ ปริมาณอากาศที่ผ่านการกรอง ตลอดจนระยะเวลาในการใช้งาน <u>47</u> จากมุมมองด้านกลศาสตร์ ของไหลมีปัจจัยหลายประการที่มีบทบาทสำคัญในเรื่องนี้ได้แก่ อัตราการไหลของอากาศ ขนาด ของละอองลอย ช่องว่างระหว่างโครงใบหน้ากับหน้ากากกรองอากาศชนิด N95 หรือหน้ากาก อนามัย แรงต้านของการไหลของอากาศผ่านช่องว่างที่กระทำต่อการไหลของอากาศที่มีต่อเนื่อง ผ่านหน้ากากกรองอากาศชนิด N95 หรือหน้ากากอนามัย [61] ต่อไปนี้เราจะพูดถึงผลของพารา มิเตอร์หรือปัจจัยจากภายนอกที่มีผลต่อกลไกการกรอง ซึ่งคุณสมบัติตามที่ต้องการของตัวกรองและ ประสิทธิภาพได้รับการตรวจสอบ

5.1. พารามิเตอร์หรือปัจจัยจากภายนอก (External condition parameters)

5.1.1.ขนาดและรูปทรงของอนุภาค (Particle size and shape)

คำว่าอนุภาคนาโน (nanoparticle) ใช้กับสเปกตรัมของอนุภาคที่มีขนาดเล็กกว่า 100 นาโนเมตร (อย่างน้อยใน 1 มิติ) มีการศึกษาวิจัยทางด้านพิษวิทยาที่ระบุว่าปรกติสารพิษจะมีความเป็นพิษมาก ขึ้นเมื่อมีขนาดในระดับนาโนเมตรมากกว่าสารที่มีมวลเดียวกันที่มีขนาดในระดับไมโครเมตร (ไมครอน) [11,69,70] เนื่องจากมีพื้นที่ผิวหน้าของอนุภาค มีปฏิกิริยาของผิวหน้า รวมทั้งความ หนาแน่นหรือความเข้มข้นมากกว่า [31]

มีการศึกษาวิจัยบางชิ้นบอกเป็นนัยว่าเนื่องจากผลกระทบของการสะท้อนความร้อนอาจทำให้ ประสิทธิภาพการกรองอนุภาคนาโนลดลงอย่างมีนัยสำคัญ มีคำศัพท์อยู่ 2 คำที่อธิบายปรากฏการณ์ ของการสะท้อนความร้อน ได้แก่คำว่า ความเร็ววิกฤต (critical velocity) และคำว่าพลังงานจลน์ (kinetic energy) [71]

มีการรายงานว่าความเร็วความร้อนเฉลี่ย (mean thermal velocity) ที่มีสาเหตุมาจากการเคลื่อนที่แบบ บราวน์ (Brownian motion) ทำให้อัตราการดักจับเพิ่มมากขึ้นโดยที่ขนาดของอนุภาคลดลงภายใต้ค่า สมบูรณ์ และดังนั้นจึงเป็นการเพิ่มความเป็นไปได้ของการแยกจากกันของอนุภาคจากผิวหน้าของตัว กรอง [62] มีความเป็นไปได้ว่าอนุภาคที่มีขนาดเล็กมาก ๆ จะไม่รวมตัวกันเมื่อได้รับการกระทบเนื่อง มาจากความเร็วความร้อนเฉลี่ย (mean thermal velocity) ของอนุภาคเหล่านั้นซึ่งสูงเกินความเร็วใน การดักจับ (velocity of capture) [72] ในขณะที่ขนาดของอนุภาคลดลงเนื่องมาจากลักษณะของมัน การยึดเกาะของมันก็ลดลงด้วย

ในทางกลับกันอนุภาคที่มีขนาดเล็กลงก็จะมีการยึดเกาะกับผิวหน้าของตัวกรองได้น้อยลง ซึ่งจาก การสังเกตของบราวน์พบว่าอนุภาคเหล่านี้มีพฤติกรรมเหมือนโมเลกุล เนื่องมาจากมิติขนาดที่เล็ก มาก ๆ ระดับนาโนเมตรซึ่งใกล้เคียงกับกลุ่มก้อนโมเลกุล ดังนั้นเมื่ออนุภาคเหล่านี้กระทบกับผิวหน้า ของตัวกรองอนุภาคเหล่านี้จึงไม่ยึดเกาะกับผิวหน้าของตัวกรอง [62]

มีการรายงานว่าประสิทธิภาพของหน้ากากกรองอากาศชนิด N95 ในการกรองอนุภาคเกลือแกงที่มีขนาดระหว่าง 0.1 – 0.3 ไมครอนและที่มีขนาดโตกว่า 0.74 ไมครอนอยู่ที่ประมาณ 95% และ 99.5% ตามลำดับ [31] ตามที่ได้กล่าวมาแล้วว่าประสิทธิภาพของตัวกรองขึ้นอยู่กับขนาดของอนุภาค ตัวอย่างเช่น สำหรับอนุภาคที่มีขนาดอยู่ในช่วงของแสงอินฟราเรดและมากกว่า 300 นาโนเมตร ค่า ประสิทธิภาพจะอยู่ในช่วง 5–80% และ 5–95% ตามลำดับสำหรับชั้นกรองชั้นเดียว

โดยการพิจารณาให้มีชั้นกรองหลายชั้นและผสมเส้นใยจากฝ่ายด้วย ประสิทธิภาพของตัวกรอง ลูกผสม (hybrids) (เช่น ฝ่ายกับไหม ฝ่ายกับชีฟอง ฝ่ายกับสักหลาด) สุงกว่า 80% (สำหรับอนุภาค ขนาดเล็กกว่า 300 นาโนเมตร) และมากกว่า 90% (สำหรับอนุภาคขนาดใหญ่กว่า 300 นาโนเมตร) [42] มีการรายงานว่าขนาดของอนุภาคใหญ่สุดที่แทรกซึมทะลุผ่านได้ (MPPS) สำหรับหน้ากากกรองอากาศชนิด P100 และชนิด N95 อยู่ในช่วงระหว่าง 0.05 – 0.2 ไมครอน และ 0.05 ไมครอนตามลำดับ [73]

มีนักวิจัยหลายคนที่ตรวจหาผลกระทบของการสะท้อนความร้อนที่มีผลต่อการแทรกซึมทะลุผ่านตัว กรองของอนุภาค หวางและแคสเปอร์ [74,75] ได้แสดงให้เห็นว่าความเร็วจากการกระทบความร้อน (thermal impact velocity) ของอนุภาค (ที่มีขนาดระหว่าง 1-10 นาโนเมตร) ซึ่งขึ้นยู่กับพารามิเตอร์ หลายอย่าง เช่น การยึดเกาะกับผิวหน้าและความยึดหยุ่นจะสูงเกินความเร็ววิกฤตในการยึดเกาะ (critical sticking velocity) แต่อย่างไรก็ตามในการศึกษาวิจัยอีกชิ้นหนึ่ง [76] คณะผู้วิจัยไม่สังเกต พบการสะท้อนความร้อนในกรณีอนุภาคเกลือแกงที่มีขนาดระหว่าง 4-30 นาโนเมตร ดังนั้นจึง ดูเหมือนว่าผลที่ได้น่าจะขึ้นอยู่กับประเภทของอนุภาคที่ใช้ในการทดลองด้วย $\underline{6}$

มีการแสดงให้เห็นว่าพารามิเตอร์ทางเคมีฟิสิกส์บางอย่าง เช่น โครงสร้างของอนุภาค ศักยภาพใน การรวมตัวกันของอนุภาค ตลอดจนการเคลือบผิวหน้าของอนุภาคล้วนมีผลต่อพฤติกรรมของอนุภาค ขนาดเล็กมากระดับนาโนเมตร [77] สำหรับอนุภาคขนาดเล็กระดับไมครอนที่ถูกกรองโดยตัวกรอง ชนิดกลไก (mechanical filters) พบว่ากลไกที่โดดเด่นชัดที่สุดคือการสกัดกั้นและการแพร่กระจาย ใน ขณะเดียวกันการชนหรือตกกระทบด้วยแรงเฉื่อยแทบไม่มีความสำคัญอะไรเลย เปอร์เซ็นต์ของ

กลไกต่าง ๆ ที่มีผลต่อการแทรกซึมทะลุผ่านซึ่งสัมพันธ์กับขนาดของอนุภาคที่แทรกซึมทะลุผ่านได้ แสดงไว้ใน ภาพที่ 9 [31]

ภาพที่ 9

กลไกการสกัดกั้นและการแพร่กระจายที่มีผลต่อการแทรกซึมทะลุผ่านตามขนาดของอนุภาค 👩

บ่อยครั้งที่รูปร่างของอนุภาคก็มีผลต่อการเข้าสู่หน้ากาก ตัวอย่างเช่น อนุภาครูปแท่งจะมีศักยภาพ ในการแทรกซึมทะลุผ่านได้น้อยกว่าประมาณครึ่งหนึ่งของอนุภาคทรงกลม โดยทั่วไปจะขึ้นอยู่กับ อัตราส่วนลักษณะหรืออัตราส่วนภาพ (aspect ratio) ซึ่งมีการรายงานว่าอัตราส่วนลักษณะของรูปแท่ง ต่อทรงกลมอย่ที่ 4 เ78

5.1.2.ความเร็วหน้าหรือการใหลของอากาศ (Face velocity or airflow)

การใหลของอากาศมีความสำคัญอย่างมากในหลาย ๆ ด้าน เพราะว่าอัตราการหายใจของคนเราจะ ต่างกันไปตามสถานการณ์ ควรกล่าวว่าการแทรกซึมทะลุผ่านจะมีมากขึ้นตามอัตราการใหลของ อากาศที่เพิ่มมากขึ้น และความแตกต่างของอัตราการใหลของอากาศไม่ได้เป็นการเพิ่มความเสี่ยง ต่อการติดเชื้อ เพราะว่าปริมาณที่แท้จริงที่ทำให้เกิดการติดเชื้อหรือเสียชีวิต (actual infectious or lethal dose) ที่เรารับเข้าไปจะเปรียบเทียบได้ว่าเท่ากับอัตราการไหลของลมหายใจทั้งหมด (total breathing flow rate) [61] ปัจจัยอย่างหนึ่งที่มีผลอย่างมากต่อประสิทธิภาพของตัวกรองที่เป็นเส้นใย ก็คืออัตราการไหลของอากาศ และปัจจัยนี้ก็มีผลต่อกลไกทั้งหลายที่ได้กล่าวมาแล้วข้างต้น ใน ขณะที่อัตราการไหลของอากาศมีน้อยการแพร่กระจายและแรงดึงดูดจากไฟฟ้าสถิตจะเป็นกลไกที่มี บทบาทมีความสำคัญมากกว่า เนื่องจากช่วงระยะพักตัว (residence time) ของอนุภาคมีมากกว่า แต่ เมื่ออัตราการไหลของอากาศเพิ่มสูงขึ้นกลไกการสกัดกั้นจะกลับมีความโดดเด่นขึ้นมา [6]

คุนดาและคณะ [42] ได้แสดงให้เห็นว่าการเพิ่มอัตราการใหลของอากาศ (3.2 ลูกบาศก์ฟุตต่อนาที) ทำให้ประสิทธิภาพในการกรองลดลง มีการกล่าวกันว่าในระหว่างที่ทำงานหนักอัตราการหายใจเข้า ของคนเราสามารถสูงเกิน 350 ลิตร/นาที นอกจากนี้ยังมีการแสดงให้เห็นว่าการแทรกซึมทะลุผ่าน ของอนุภาคมีมากขึ้นเนื่องจากช่วงระยะพักตัว (residence time) ที่สั้นลงในตัวกรอง [12]

เควียนและคณะ [31] ได้ตรวจหาประสิทธิภาพในการกรองของหน้ากากกรองอากาศชนิด N95 และ หน้ากากชนิดกันฝุ่น/ควัน/หมอก (dust/fume/mist (DFM)) ตลอดจนหน้ากากชนิดฝุ่น/หมอก (dust/mist (DM)) ที่อัตราการไหลของอากาศต่างกันคือ 32 ลิตร/นาที และ 85 ลิตร/นาที โดยทำการ ทดสอบกับเกลือแกง ผลที่ได้พบว่าที่อัตราการไหลของอากาศต่ำประสิทธิภาพในการกรองมีมากขึ้น ประการ แรกเป็นเพราะว่ามีระยะเวลาที่ยาวนานกว่าในการคักจับอนุภาคที่มีขนาดเล็กกว่าระดับไมครอนโดยเส้นใยในตัวกรองที่มีประจุไฟฟ้า ประการที่ สองมีการดักจับอนุภาคมากขึ้นเนื่องจากระยะเวลาในการแพร่กระจายของอนุภาคยาวนานขึ้น [31]

ในการศึกษาวิจัยที่ทำโดยริชาร์ดสันและคณะ [12] คณะผู้วิจัยได้วิเคราะห์ผลกระทบของอัตราการ ไหลของอากาศที่ไหลไปในทิศทางเดียวต่อเปอร์เซ็นต์การแทรกซึมทะลุผ่านของอนุภาคขนาดต่าง ๆ กัน โดยทดลองกับหน้ากากกรองอากาศชนิด N95 ที่มีตลับกรองสารเคมี (Cartridge type) <u>ภาพที่</u> 10 แสดงผลที่ได้จากการทดลองซึ่งพบว่าเมื่ออัตราการไหลของอากาศเพิ่มสูงขึ้นการแทรกซึมทะลุ ผ่านก็สูงขึ้นตามไปด้วย

ภาพที่ 10

ผลกระทบของขนาดอนุภาคและอัตราการใหลของอากาศที่ใหลไปในทิศทางเดียวต่อประสิทธิภาพการกรอง ผ่านหน้ากากกรองอากาศชนิด N95 ที่มีตลับกรองสารเคมี (Cartridge type) เ<u>12</u>เ

ผลที่ได้แสดงให้เห็นว่าอัตราการไหลของอากาศมีผลอย่างมากต่อการแทรกซึมทะลุผ่านของ อนุภาคผ่านตัวกรองของหน้ากากกรองอากาศ

5.1.3.รูปแบบของการไหลของอากาศที่สม่ำเสมอหรือไม่สม่ำเสมอ (Steady or unsteady pattern of flow)

มีการศึกษาวิจัยหลายชิ้นที่ศึกษาเกี่ยวกับรูปแบบของการใหลของอากาศที่สม่ำเสมอหรือไม่ สม่ำเสมอในฐานะที่ตัวแปรอย่างหนึ่ง แต่อย่างไรก็ตามพบว่ารูปแบบของการใหลของอากาศมีความ สำคัญน้อยกว่าอัตราการใหลของอากาศอยู่มาก อย่างเช่นที่สตาฟฟอร์ดและคณะ [12] ได้ทำการ ทดสอบการแทรกซึมทะลุผ่านของอนุภาคน้ำยางของโพลีสไตรีนชนิด mono-disperse (PSL) และ อนุภาคไดโอทิลพาทาเลท (DOP) ที่มีการใหลวนเป็นวงกลม 3 อัตรา คือที่ 30 ลิตรต่อนาที ที่ 35 ลิตรต่อนาที และ 53 ลิตรต่อนาที และการใหลไปในทิศทางเดียวที่อัตรา 32 ลิตรต่อนาที แม็คคัลลัฟและคณะ [11] ก็ได้ทำการตรวจหาความจริงในเรื่องนี้โดยใช้การใหลวนเป็นวงกลมที่อัตรา

85.1 ลิตรต่อนาที และการใหลไปในทิศทางเดียวที่อัตรา 32 ลิตรต่อนาที อนุภาคที่เลือกใช้ในการ ศึกษาวิจัยมีขนาดเล็กกว่า 0.47 ไมครอน คณะผู้วิจัยแถลงว่าการใหลวนเป็นวงกลมมีการแทรกซึม ทะลุผ่านของอนุภาคมากกว่าเมื่อเปรียบเทียบกับการใหลไปในทิศทางเดียว [31] นอกจากนี้ในงานศึกษาวิจัย อีกชิ้นหนึ่งคณะผู้วิจัยใค้รายงานว่านอกจากการใหลวนเป็นวงกลมจะมีการแทรกซึมทะลุผ่านของอนุภาคมากกว่า แล้วก็ยังสามารถใช้ทำนายการแทรกซึมทะลุผ่านของอนุภาคในการหายใจของมนุษย์ได้เพราะสภาพ การณ์จริง ๆ เป็นอย่างเดียวกัน [6,31]

เอชบาฟและคณะ [73] ได้เลือกใช้เงื่อนไขการใหลไปในทิศทางเดียว 3 อัตรา (85 ถิตรต่อนาที 270 ลิตร ต่อนาที และ 360 ลิตรต่อนาที) ในการทคสอบระยะเวลา (เป็นนาที) ค่าเฉลี่ยการหายใจเข้า และอัตราการใหล ของลมสูงสุดในการหายใจเข้าในเงื่อนไขการไหลแบบวนเป็นวงกลม 4 อัตรา (40 ถิตรต่อนาที 85 ถิตรต่อนาที 115 ถิตรต่อนาทีและ 135 ถิตรต่อนาที) ผลที่ได้เป็นไปตามที่กาดหมายคือเมื่ออัตราการไหลสูงขึ้นทั้งการไหลไปใน ทิศทางเดียวและการใหลแบบวนเป็นวงกลมการแทรกซึมทะลุผ่านของอนุภาคก็เพิ่มมากขึ้นตามไป ด้วย [73]

5.1.4. สถานะการประจุของอนุภาค (Charge state of particle)

อนุภาคที่มีประจุและอนุภาคที่ไม่มีประจุมีพฤติกรรมไม่เหมือนกันในการแทรกซึมทะลุผ่าน มีการ ศึกษาวิจัยหลายชิ้นที่พิสูจน์ว่าอนุภาคที่ไม่มีประจุมีประสิทธิภาพในการแทรกซึมทะลุผ่านต่ำกว่า อนุภาคที่มีประจุอย่างมาก ควรกล่าวว่าขนาดของอนุภาคที่เล็กลงจะลดความแตกต่างในเรื่องนี้โดย การพิจารณาถึงการมีอยู่ของตัวแปรอื่น ๆ ที่มีผลกระทบ ตัวอย่างเช่นสำหรับในกรณีที่มีความเร็วหน้า (face velocity) สูง ๆ ขนาดของอนุภาคจะมีผลน้อยลงเนื่องจากมีช่วงระยะเวลาพักตัว (residence time) สั้นลง [79] ดังที่ได้กล่าวมาแล้วก่อนหน้านี้ว่ากลไกที่มีความโดดเด่นชัดเจนมากที่สุดสำหรับ อนุภาคนาโนคือการแพร่กระจาย ดังนั้นการประจุไฟฟ้าให้กับอนุภาคจึงมีประสิทธิภาพต่อการแพร่ กระจายมากกว่า

นอกจากนี้แล้วปรากฏการณ์ก็ยังมีความแตกต่างกันระหว่างตัวกรองที่มีประจุและตัวกรองที่ไม่มีประจุ พบว่าตัวกรองอีเลคเตรทมีประสิทธิภาพการกรองสูงกว่าสำหรับอนุภาคที่เป็นกลาง อย่างไรก็ตามพบว่าไม่ มีความแตกต่างที่ชัดเจนในเรื่องการแทรกซึมทะลุผ่านระหว่างอนุภาคที่มีประจุและอนุภาคที่ไม่มีประจุสำหรับ**ตัวกรองแบบกลไก** (mechanical filters)

5.1.5.ความถี่ในการหายใจ (Frequency of respiration)

ความถี่ (frequency) และอัตราการใหลของลมสูงสุดในการหายใจเข้า (peak inhalation flows (PIF)) เป็นตัวแปรสำคัญสำหรับประสิทธิภาพการแทรกซึมทะลุผ่าน ถึงแม้ว่ามีการรายงานว่าอัตราการใหล ของลมสูงสุดในการหายใจเข้ามีความสำคัญมากกว่าความถี่ในการหายใจมากมายนักก็ตาม มีการใช้ คลื่นรูปไซน์ (sinusoidal waveform) ในการจำลองอัตราการใหลของลมหายใจและความถี่ในการ หายใจ [80]

เป็นที่น่าสังเกตว่าเมื่ออัตราการใหลของลมสูงสุดในการหายใจเข้า (PIF) เปลี่ยนไป ความถี่ในการ หายใจก็มีการเปลี่ยนแปลงไปด้วย ความอ่อนไหว (sensitivity) นี้มีมากขึ้นเมื่ออัตราการไหลของลม สูงสุดในการหายใจเข้า (PIF) มีค่าสูง ๆ มากกว่าเมื่ออัตราการไหลของลมสูงสุดในการหายใจเข้า (PIF) มีค่าต่ำ ๆ (31)

เรื่องนี้มีเหตุผลสนับสนุนจากการศึกษาวิจัยโดยมาห์ดาวีและคณะ [6] ตามที่ได้แสดงไว้ใน<u>ภาพที่ 11</u> การแทรกซึมทะลุผ่านที่อัตราการไหลของอากาศเท่ากันคือ 135 ลิตรต่อนาทีสำหรับความถี่ในการ หายใจที่ต่างกันจะต่ำกว่า 5% อยู่เสมอ นอกจากนี้สามารถสรุปได้ว่าในกรณีที่มีการเปลี่ยนแปลง ความถี่ในการหายใจแต่กลไกการกรองก็แทบจะไม่แตกต่างกัน อย่างไรก็ตามสำหรับความแตกต่าง กันของอัตราการไหลของลมสูงสุดในการหายใจเข้า ผลที่ได้กลับไม่เป็นเช่นนั้น ตัวอย่างเช่น เมื่อ อัตราการไหลของลมสูงสุดในการหายใจเข้า (PIF) เปลี่ยนจาก 135 ลิตรต่อนาที เป็น 360 ลิตรต่อ นาที ที่ความถี่ 42 min การแทรกซึมทะลุผ่านจะเพิ่มสูงขึ้น 145% [31]

<u>ภาพที่ 11</u>

การแทรกซึมทะลุผ่านของอนุภาคขนาดใหญ่สุดที่แทรกซึมทะลุผ่าน (MPPS) ที่มีขนาดระหว่าง 29.4 -39.3 นาโนเมตร สำหรับอัตราการไหลวนเป็นวงกลม (เวร สิตรต่อนาที) ซึ่งเป็นอัตราการไหลของลมสูงสุดในการหายใจเข้าเปรียบเทียบกับ ความถี่ (อัตราการเต้นของหัวใจที่ 24 ครั้งต่อนาที ที่ 42 ครั้งต่อนาที และ 85 ครั้งต่อนาที) โดยทดลองกับหน้ากากกรอง อากาศชนิด N95 [6]

5.1.6. ความชื้นสัมพัทธ์และอุณหภูมิ (Relative humidity and temperature)

ปัจจัยอย่างหนึ่งที่มีผลต่อประสิทธิภาพการกรองคือความขึ้น แต่เพราะการที่การศึกษาวิจัยในเรื่องนี้ ยังมีอยู่น้อยมาก จึงไม่สามารถให้ความเห็นอย่างแน่นอนชัดเจนลงไปได้ มีการศึกษาวิจัยขึ้นหนึ่ง ระบุว่าความชื้นไม่มีผลแต่ก็มีการศึกษาวิจัยต่อมาที่แถลงว่าประสิทธิภาพที่น้อยลงของหน้ากากใน สภาพที่ชื้นมาจากแรงดึงตามช่องเล็ก ๆ (capillary force) ระหว่างอนุภาคกับตัวกรอง [81]

นอกจากนี้แล้วสำหรับตัวกรองชนิดกลไก (mechanical filter) ผลการศึกษากับตัวกรองอีเลคเตรท (electrets filters) ซึ่งเป็นตัวกรองที่มีประจุ (charged filters) แสดงให้เห็นว่าประสิทธิภาพในการกรอง ลดลงขณะที่มีความชื้นมากขึ้น เหตุผลก็คือว่าความชื้นที่สูงขึ้นจะนำไปสู่การลดลงของประจุใน เส้นใยตัวกรองและในอนุภาคด้วย [82]

ในการศึกษาวิจัยโดยหลี่และคณะ [43] คณะผู้วิจัยอ้างว่าความชื้นและอุณหภูมิสูง ๆ ในลมหายใจออก สามารถทำให้เกิดการควบแน่นของไอน้ำภายในหน้ากาก เนื่องมาจากความแตกต่างของอุณหภูมิ อากาศกับอุณหภูมิของหน้ากาก นอกจากนี้ละอองฝอยที่ออกมาระหว่างการพูดคุยก็ยังเพิ่มความเป็น ไปได้ในการเกิดความเปียกชื้น [43] ภาพที่ 12 มาจากการศึกษาวิจัยโดยริชาร์ดสันและคณะ [12]

ภาพที่ 12

เปรียบเทียบปริมาณ MS2 ที่วัดได้จากการแทรกซึมทะลุผ่าน (a) "ขณะที่แห้ง" และ (b) "ขณะที่เปียก" โดยใช้หน้ากากกรองอากาศชนิด N95 กับ การไหลแบบที่ไหลไปในทิศทางเดียวและแบบที่ไหลวนเป็นวงกลมในอัตราต่าง ๆ กัน [6]

ภาพนี้แสดงให้เห็นถึงการแทรกซึมทะลุผ่านตัวกรองของหน้ากากกรองอากาศชนิด N95 ที่อัตราการ ใหลของอากาศต่าง ๆ กัน (ไหลไปในทิศทางเดียวที่อัตรา 85 ลิตรต่อนาที และ 270 ลิตรต่อนาที และ ใหลวนเป็นวงกลมที่อัตรา 85 ลิตรต่อนาที และ 135 ลิตรต่อนาที) ทั้งในสภาพที่แห้งและเป็ยก เป็นที่ น่าสังเกตว่าค่าเฉลี่ยของการแทรกซึมทะลุผ่านมีการเพิ่มขึ้นเมื่ออัตราการใหลของอากาศเพิ่มสูงขึ้น ข้อสรุปสำคัญคือในสภาพที่เปียกขึ้นมีการแทรกซึมทะลุผ่านเพิ่มสูงขึ้นมากเมื่อเปรียบเทียบกับใน สภาพที่แห้ง

โรเบิร์จและคณะ [83] ได้ให้ข้อสังเกตว่าการสวมใส่หน้ากากกรองอากาศชนิด N95 เป็นเวลา 2 ชั่วโมงที่<mark>อัตราการทำงานค่ำ ๆ ถึงปานกลาง (low-moderate work rate) ไม่ได้เป็นการเพิ่มความร้อนในปริมาณ มากมายต่ออุณหภูมิร่างกายและอุณหภูมิบริเวณผิวหน้าที่เปิดโล่ง แต่ในทางกลับกันจะทำให้อุณหภูมิบริเวณ ผิวหน้าที่มีหน้ากากกรองอากาศปิดอย่สงขึ้นอย่างมาก</mark>

5.1.7. ช่วงระยะเวลารับภาระในการกรองของหน้ากาก (Loading time)

ความสามารถในการแทรกซึมทะลุผ่านมีการผันแปรตามระยะเวลารับภาระในการกรองของหน้ากาก อีกด้วย ซึ่งในการศึกษาวิจัยของมาห์ดาวีและคณะ [6] คณะผู้วิจัยได้แสดงให้เห็นว่าการแทรกซึมทะลุ ผ่านของอนุภาคนาโนซึ่งส่วนใหญ่มีขนาดเล็กกว่า 100 นาโนเมตรมีการลดลงเมื่อระยะเวลารับภาระ ในการกรองของหน้ากากมากขึ้นทั้งในสภาพการใหลไปในทิศทางเดียวและการใหลวนเป็นวงกลม ตัวแปรนี้มีผลกระทบมากในกลไกการแพร่กระจายด้วยความที่เป็นกลไกที่อาศัยเวลา เมื่อถึงเวลา หนึ่งตัวกรองก็จะมีอนุภาคที่แบกภาระมาในปริมาณมาก ดังนั้นจึงไม่เหลือที่ว่างเพียงพอสำหรับให้ อนุภาคใหม่ ๆ ได้จับกับผิวหน้าตัวกรองอีกต่อไป อย่างไรก็ตามการชนปะทะกันระหว่างอนุภาคด้วย กันและชนกับเส้นใยของตัวกรองจะเพิ่มมากขึ้นเนื่องมาจากการเคลื่อนที่แบบบราวน์ (Brownian motion) [6]

ในกรณีนี้การที่มีระยะเวลารับภาระในการกรองของหน้ากากยาวนานจะทำให้การดึงดูดจาก ไฟฟ้าสถิตลดลง สำหรับกลไกอื่น ๆ เช่นการสกัดกั้นจะได้รับผลกระทบน้อยกว่าเมื่อเปรียบเทียบกับ การแพร่กระจาย [82] ช่วงระยะเวลารับภาระในการกรองของหน้ากากยังได้รับผลกระทบจากขนาด ของอนุภาคอีกด้วย เพราะว่าสำหรับอนุภาคขนาดใหญ่ ๆ (มากกว่า 100 นาโนเมตร) การแทรกซึม ทะลุผ่านจะมีมากในชั่วโมงที่ 2 และชั่วโมงที่ 4 เมื่อเปรียบเทียบกับช่วงเวลาก่อนหน้านี้ ถึงแม้ว่าจะ ลดลงเล็กน้อยใน 2 ชั่วโมงต่อมา ซึ่งอาจจะเนื่องมาจากการสะสมของอนุภาคในรูปแบบเดนไดรต์ (dendrite form) ซึ่งป้องกันมิให้มีการแทรกซึมทะลุผ่าน [6]

<u>ตารางที่ 2</u> เป็นการสรุปและเปรียบเทียบปัจจัยภายนอกต่าง ๆ

ตารางที่ 2

อิทธิพลของปัจจัยภายนอกต่อประสิทธิภาพการกรอง

ปัจจัยภายนอก	ประสิทธิภาพการกรองของ หน้ากาก	อ้างอิง
ขนาดของอนุภาค	ขนาดของอนุภาคที่ลดลงทำให้ ประสิทธิภาพการกรองลดลง	[11,31,45,61,68,69,[73], [74], [75], [76]]
รูปร่างของอนุภาค	อัตราส่วนลักษณะที่มีค่าต่ำ ๆ ทำให้ประสิทธิภาพการกรองลด ลง (อนุภาครูปแท่งแพร่กระจาย ได้น้อยกว่าอนุภาครูปทรงกลม)	(<u>78</u>)
ความเร็วหน้าหรือ อัตราการไหลของ อากาศ	อัตราการไหลของอากาศที่เพิ่ม ขึ้นทำให้ประสิทธิภาพการกรอง ลดลง	[12,17,31,42]
รูปแบบการไหลของ อากาศ (ไหลไปในทิศทาง เดียวหรือไหลวนเป็นวงกลม)	การใหลของอากาศที่ใหลวนเป็น วงกลมทำให้ประสิทธิภาพการก รองลดลงเมื่อเปรียบเทียบกับการ ใหลไปในทิศทางเดียว	[<u>6,11,12,31</u>]
สถานะการประจุของ อนุภาค	ประสิทธิภาพการกรองลดลง สำหรับอนุภาคที่ไม่มีประจุ	[<u>79</u>]
ความถี่ของการ หายใจ	ความถี่ของการหายใจที่เพิ่มขึ้น ทำให้ประสิทธิภาพการกรองลด ลง	[<u>6,31</u>]

ความชื้นและ ความชื้นและอุณหภูมิที่สูงขึ้น <u>[12,43,81,82]</u>

อณหภมิ ทำให้ประสิทธิภาพการกรองลด

ลง

ช่วงระยะเวลารับ ช่วงระยะเวลารับภ_าระในการก [<u>6,82</u>]

ภาระในการกรอง รองของหน้ากากที่ยาวนาน ของหน้ากาก ทำให้ประสิทธิภาพการกรอง เพิ่มขึ้น (อย่างไรก็ตามก็มีความ

เสี่ยงจากการสะสมไวรัส)

5.2. ลักษณะเฉพาะตัวของตัวกรอง (Filter characteristic)

ตัวกรองที่ใช้ในหน้ากากกรองอากาศและหน้ากากอนามัยควรยอมให้ผู้สวมใส่หน้ากากสามารถ หายใจได้ และควรสามารถป้องกันการอุดตันในรูพรุนและยังคงยอมให้อากาศไหลผ่านเข้าไปในตัว กรองได้ การยึดเกาะของอนุภาคกับเส้นใยของตัวกรองที่เพิ่มมากขึ้นอาจจะเป็นปัญหาได้ เพราะว่า เมื่ออนุภาคที่ถูกดักจับที่ตัวกรองมีปริมาณมากพอแล้วก็จะเริ่มมีการอุดตันที่รูพรุนของเครือข่าย เส้นใยของตัวกรอง แรงดึงดูดแบบแวนเดอร์วาลส์ (van der Waals bonding) และแรงอื่น ๆ จะยึดเกาะ กับอนุภาคที่ถูกเส้นใยตัวกรองดูดซับ ทำให้เป็นการยากสำหรับอนุภาคที่ถูกจับจะเล็ดรอดไปได้ [30]

5.2.1. องค์ประกอบทางเคมีของตัวกรอง (Filter chemical composition)

โดยปรกติทั่วไปตัวกรองในหน้ากากกรองอากาศและหน้ากากอนามัยทำมาจากวัสดุที่เป็นเส้นใย มี สัมผัสอ่อนนุ่มคล้ายผ้าขนสัตว์ หรือกระดาษที่ทำจากเส้นใยไฟเบอร์กลาส หรือโพลีโพรพีลีน [30] มี การเติมเรซินลงไปในเส้นใยขนสัตว์ธรรมชาติเพื่อให้เก็บประจุไฟฟ้าสถิตในตัวกรองที่มีประจุไฟฟ้า สถิตยุคแรก ๆ [30] ควรกล่าวว่าเส้นใยโพลีเอสเตอร์สามารถเก็บประจุไฟฟ้าได้มากกว่าเมื่อ เปรียบเทียบกับเส้นใยจากธรรมชาติหรือฝ้าย เนื่องจากมีคุณสมบัติในการดูดซับน้ำน้อยกว่า [42]

5.2.2.ความหนาของตัวกรองและความหนาแน่นของการบรรจุเส้นใยในตัวกรอง (Filter thickness and packing density)

คุนดาและคณะ [42] ได้กล่าวว่าการเพิ่มจำนวนชั้นกรองในหน้ากากจะช่วยปรับปรุงประสิทธิภาพของ หน้ากากให้ดีขึ้น แต่ก็ขึ้นอยู่กับโครงสร้างของวัสดุด้วย [42] โชกรีและคณะ [84] ได้ทำการวัดขนาด ความหนาของหน้ากากที่ผลิตภายในประเทศ และพบว่าความหนาของหน้ากากที่ผลิตภายใน ประเทศอยู่ที่ระหว่าง 0.41 – 0.04 นาโนเมตร) ซึ่งหนากว่าหน้ากากที่นำเข้าจากต่างประเทศ (ความ หนาระหว่าง 0.38 – 0.01 นาโนเมตร) เพราะว่ามีตัวกรองหลายชนิด ควรกล่าวว่าการลดลงของแรง ดันอากาศในหน้ากากอนามัยที่ผลิตภายในประเทศมีสูงกว่าในหน้ากากที่นำเข้าจากต่างประเทศ เพราะว่ามีความหนาแน่นของเส้นใยมากกว่า ขนาดเส้นผ่าศูนย์กลางของรูพรุนน้อยกว่า และมีขนาด ความหนามากกว่า

ี่ฮวงและคณะ [85] ได้เสนอแบบจำลองเชิงทฤษฎีเพื่อตรวจหาพารามิเตอร์ต่าง ๆ เช่น ความเร็วหน้า ขนาดเส้นผ่าศูนย์กลางของเส้นใย ความหนาแน่นของการบรรจุเส้นใยในตัวกรอง ความหนาของตัว กรอง และความหนาแน่นของประจุในเส้นใยซึ่งมีผลต่อลักษณะเฉพาะตัวของตัวกรองที่ใช้ในการ ปกป้องระบบทางเดินหายใจ สำหรับตัวกรองอีเลคเตรท (electrets filters) แล้วสรุปได้ว่าขนาดของ อนุภาคใหญ่สุดที่แทรกซึมทะลุผ่านได้ (most penetrating particle size) มีการเพิ่มขึ้นเมื่อขนาด เส้นผ่าศูนย์กลางของเส้นใยและความเร็วหน้าเพิ่มขึ้นและความหนาของตัวกรองลดลง นอกจากนี้ ขนาดของอนุภาคใหญ่สุดที่แทรกซึมทะลุผ่านได้ (most penetrating particle size) จะลดลงโดยการ เพิ่มความหนาแน่นของการบรรจุเส้นใยในตัวกรอง ความหนาของตัวกรอง หรือความหนาแน่นของ ประจุในเส้นใย อย่างไรก็ตามสำหรับตัวกรองที่ไม่ใช่ตัวกรองอีเลคเตรทพบว่าขนาดของอนุภาคใหญ่ สุดที่แทรกซึมทะลุผ่านได้ (most penetrating particle size) มีการเพิ่มขึ้นเมื่อความเร็วหน้าลดลง และ ปัจจัยเรื่องคุณภาพของตัวกรองไม่ได้รับผลกระทบจากความหนาของตัวกรอง นี่จึงแสดงให้เห็นว่า ตัวกรองมีประสิทธิภาพในการกรองที่แตกต่างกันตามอัตราความเร็วที่ต่างกัน กล่าวโดยสรุปก็คือว่า เมื่ออิงตามผลที่ได้จากผลลัพท์ของขนาดเส้นผ่าศูนย์กลางของเส้นใยและความหนาแน่นของการ บรรจุเส้นใยในตัวกรองที่มีผลต่อปัจจัยคุณภาพ สรุปได้ว่าไม่มีไส้กรองชนิดครอบจักรวาลหรือ อเนกประสงค์ที่ "ดีที่สด"

5.3. ประสิทธิภาพในการกรอง (Filtration efficiency)

หลี่และคณะ [43] ได้กล่าวว่าจากการทดสอบคุณสมบัติทางกายภาพสามารถกล่าวได้ว่าหน้ากาก กรองอากาศชนิด N95 ยอมให้อากาศและไอน้ำแทรกซึ้มผ่านได้น้อยกว่าหน้ากากอนามัยอย่างไม่ ต้องสงสัย และสามารถป้องกันไวรัสได้ดีกว่าเพียงแต่สวมใส่ไม่สบายเหมือนหน้ากากอนามัย จาก การทดสอบการกรองพบว่าหน้ากากกรองอากาศชนิด N95 สามารถกรองสารละลายโพแทสเซ็ยม คลอไรด์ได้ถึง 97% ในขณะที่หน้ากากอนามัยสามารถกรองได้ 95% และในกรณีของหน้ากากนาโน (nano-mask) ก็ไม่พบความแตกต่างในการใช้งานเมื่อเปรียบเทียบกับหน้ากากกรองอากาศชนิด N95 ธรรมดาและหน้ากากอนามัยเพียงแต่สามารถระบุได้ว่าหน้ากากนาโนมีความสามารถในการกันน้ำ และป้องกันเชื้อไวรัสได้ดีกว่า [43]

ดังนั้นหน้ากากอนามัยสำหรับเด็กที่มีขั้นกรองชนิด electrothermal อาจจะมีความเหมาะสมกว่า หน้ากากกรองอากาศชนิด N95 ที่ยังไม่มีการทดสอบหรือหน้ากากอนามัยปรกติ [61]

มีการกล่าวว่าหน้ากากกรองอากาศชนิด N95 มีประสิทธิภาพในการกรองสูงที่สุด ผลก็คือการ แทรกซึมทะลุผ่านต่ำที่สุด นอกจากนี้หน้ากากกรองอากาศชนิด N95 ยังมีขนาดของอนุภาคใหญ่สุดที่ แทรกซึมทะลุผ่านได้ (most penetrating particle size) เล็กที่สุด และมีการรายงานว่ามีการลดลงของแรงดันอากาศมากกว่า สองถึงสามเท่าเมื่อเปรียบเทียบกับหน้ากากอนามัยสำหรับเด็ก จากการพิจารณาผลการศึกษาวิจัยทั้งหมดพบว่าหน้ากากแทบจะทุกยี่ห้อระบุว่า สเปลของการกรอง (filtration specification) ขึ้นอยู่กับขนาด (ของอนุภาค) [61] สรุปได้ว่าหน้ากากกรองอากาศ ชนิด N95 และหน้ากากอนามัยมีประสิทธิภาพเท่ากันในการป้องกัน (อนุภาค) ในอากาศดังเช่นที่เคยมีการรายงานมาแล้วในบางกรณี [22,61]

เราสามารถสังเกตได้ว่าประสิทธิภาพในการกรอง (filtration efficiency (กุ)) สามารถแสดงในสมการ ต่อไปนี้

6. การรั่วขึม (Leakage)

เป็นสิ่งสำคัญที่จะต้องรับรู้ว่าการรั่วขึ้มสามารถทำให้ประสิทธิภาพของหน้ากากลดลงได้ 50% หรือ มากกว่านั้น ซึ่งชี้ให้เห็นถึงความสำคัญของการสวมใส่ที่ "พอดี" [42] กุหาและคณะ [61] ได้รายงานว่าไม่มีความ สัมพันธ์กันมากนักระหว่างการรั่วขึ้มกับขนาดของละอองลอยที่มีขนาดเล็กกว่าระดับไมครอน (sub-micron aerosol size) นอกจากนี้ จากการพิจารณาขนาดของช่องว่างที่เท่ากันหรือใหญ่กว่าพบว่าการรั่วขึ้มของละอองลอยผ่าน หน้ากากกรองอากาศบางที่อาจจะมีมากกว่าในหน้ากากอนามัยและหน้ากากสำหรับเด็ก

ผลกระทบของขนาดละอองลอยต่อการรั่วซึมแสดงให้เห็นว่าไม่มีความสัมพันธ์ที่สำคัญสำหรับใน กรณีละอองลอยที่มีขนาดใหญ่กว่า 100 นาโนเมตร แต่สำหรับละอองลอยที่มีขนาดเล็กกว่า 100 นาโนเมตรพบว่ามีความสัมพันธ์กันเมื่อมีอัตราการไหลของอากาศมีค่าต่ำ ๆ [61]

มีการรายงานว่าที่อัตราการใหลของอากาศมีค่าสูง ๆ (3.2 ลูกบาศก์ฟุตต่อนาที) และที่อัตราการใหล ของอากาศมีค่าต่ำ ๆ (1.2 ลูกบาศก์ฟุตต่อนาที) ประสิทธิภาพของหน้ากากมีการลดลงอย่างมากเมื่อ เกิดรูรั่ว <u>[43]</u>

เควียนและคณะ [31] ได้ทำการทดสอบในห้องปฏิบัติการโดยใช้ละอองลอยของเกลือแกง ผลการวัด ขนาดของอนุภาคโดยใช้สเปกโทรมิเตอร์แสดงว่าหน้ากากกรองอากาศชนิด N95 มีประสิทธิภาพดี กว่าเมื่อเปรียบเทียบกับหน้ากากชนิดกันฝุ่น/หมอก (dust/mist) และหน้ากากชนิดกันฝุ่น /ควัน/หมอก (dust/fume/mist) และหน้ากากอนามัยที่ไม่ได้รับการรับรอง

ดูเหมือนว่าหน้ากากเกือบทุกขึ้นมีความเป็นไปได้ที่จะเกิดการรั่วซึม ในการศึกษาวิจัยโดยโซและคณะ [52] คณะผู้ วิจัยได้ทำการทดลองกับการใหลของอากาศที่ใหลวนเป็นวงกลมในอัตราต่าง ๆ กันโดยใช้หน้ากาก กรองอากาศชนิด N95 และพบว่าแม้แต่กับหน้ากากที่สวมพอดี (well-fitted) ก็ยังพบการแทรกซึม ทะลุผ่านของอนุภาคมากที่สุดโดยผ่านการรั่วซึม ในการศึกษาวิจัยโดยยวงและคณะ [48] คณะผู้วิจัยได้วิเคราะห์ การแทรกซึมทะลุผ่านของแบคทีเรียในกรณีที่ไม่ได้สวมหน้ากากเปรียบเทียบกับสวมหน้ากากชนิด ต่าง ๆ กัน ได้แก่ หน้ากากอนามัยแบบมาตรฐาน หน้ากากอนามัยชนิดที่มีฉนวนโพลีโพรพีลีน (polypropylene-insulated (PP-I) surgical mask) หน้ากากกรองอากาศชนิด N95 และหน้ากากกรองอากาศชนิด N95 ที่มีฉนวนโพลีโพรพีลีน (polypropylene-insulated N-95 respirator) เพื่อแสดงให้ เห็นถึงประสิทธิภาพของหน้ากากชนิดต่าง ๆ กัน ตารางที่ 3 แสดงให้เห็นค่าที่ได้จากการทดลองซึ่ง ทำในอาสาสมัครที่ทดลองถึง 50 ครั้งสำหรับหน้ากากแต่ละชนิด

ตารางที่ 3

เปรียบเทียบค่าที่ได้จากการรั่วซึมของแบคทีเรียในกรณีไม่สวมหน้ากากและสวมหน้ากากชนิด ต่าง ๆ กัน [48]

	ตัวคอนโทรล (ไม่สวม หน้ากาก)	หน้ากาก อนามัยแบบ มาตรฐาน	หน้ากากอนามัย ชนิดที่มีฉนวนโพ ลีโพรพีลีน	หน้ากาก กรองอากาศ ชนิด №5	หน้ากากกรอง อากาศชนิด _{N95} ที่ มีฉนวนโพลีโพรพี ลีน
จำนวนโคโลนีของ แบคทีเรียเฉลี่ยต่อ การทดลองหนึ่งครั้ง	209.6	33.18	9.36	8.54	3.66
จำนวนโคโลนีของ แบคทีเรียทั้งหมด	10480	1659	468	427	183
เปอร์เซ็นต์ของตัว คอนโทรล	100.00	15.83	4.47	4.07	1.75

ค่าการแทรกซึมทะลุผ่าน : หน้ากากอนามัยแบบมาตรฐานเปรียบเทียบกับหน้ากากอนามัยชนิดที่มี ฉนวนโพลีโพรพีลีนน้อยกว่า 0.01; หน้ากากกรองอากาศชนิด N95 เปรียบเทียบกับ หน้ากากกรอง อากาศชนิด N95 ที่มีฉนวนโพลีโพรพีลีนน้อยกว่า 0.01

นอกจากนี้ในการศึกษาวิจัยอีกชิ้นหนึ่งโดยซานเชซและคณะ <u>[86]</u> คณะผู้วิจัยได้เปรียบเทียบ เปอร์เซ็นต์ของประสิทธิภาพของหน้ากากอนามัยชนิดต่าง ๆ กันจำนวน 6 ชนิดที่สวมใส่ในลักษณะที่ ต่างกัน 2 รูปแบบคือแบบ unsealed และแบบ sealed (แสดงใน <u>ภาพที่ 13) ภาพที่ 14</u> แสดงให้เห็นถึงผล จากการทดลองสำหรับอนภาคที่มีขนาด 0.5 ไมครอนในการทดลอง 5 ครั้ง

<u>ภาพที่ 13</u>

(a) แสดงการสวมหน้ากากอนามัยในลักษณะ Unsealed ซึ่งเป็นการใช้งานตามปรกติ (b) แสดงการสวมหน้ากาก อนามัยในลักษณะ sealed โดยไขวัสายรัดหน้ากาก [<u>86</u>]

<u>ภาพที่ 14</u>

ประสิทธิภาพของการสวมหน้ากากอนามัยในลักษณะ Unsealed และลักษณะ sealed กับอนุภาคที่มีขนาด0.5 ไมครอน <u>[86]</u>

7. การจำลองด้วยสมการทางคณิตศาสตร์ (Numerical models)

การศึกษาวิจัยนี้ใช้แบบจำลองทางคณิตศาสตร์ของวิธีการทางพลศาสตร์ของไหลเชิงคำนวณ (Computational Fluid Dynamics (CFD)) หรือระเบียบวิธีไฟในต์เอลิเมนต์ (Finite Element Method (FEM)) ในการตรวจหาพารามิเตอร์ต่าง ๆ ที่มีผลต่อกลไกของการแทรกซึมทะลุผ่านและในการ ปรับปรุงประสิทธิภาพในการกรอง

ใลและคณะ [87] ใค้ใช้พลศาสตร์ของใหลเชิงคำนวณ (Computational Fluid Dynamics (CFD)) ในการ จำลองการใหลของอากาศและการถ่ายเทความร้อนผ่านใบหน้ามนุษย์และคาดล่วงหน้าว่าจะมีการ รั่วซึมในบริเวณระหว่างหน้ากากกรองอากาศชนิด N95 กับโครงสร้างใบหน้าแบบต่าง ๆ กันจำนวน 10 แบบและหน้ากาก กรองอากาศจำนวน 6 ชนิด โดยใช้กล้องวงจรปิดอินฟราเรคในการตรวจสอบความถูกต้องของค่าตัวเลขที่ได้ ผลที่ได้ แสดงให้เห็นว่าจากการสวมหน้ากากกรองอากาศชนิด N95 อุณหภูมิของผิวหนังในบริเวณใกล้กับ ริมฝีปากมีค่าสูงขึ้น นอกจากนี้อัตราส่วนการรั่วซึม (the ratio of 'filter-to-face seal leakage' หรือ FTFL) ก็ได้รับ ผลกระทบจากความเร็วในการหายใจ (breathing velocity) และจากค่าสัมประสิทธิ์แรงต้านความหนืด (viscous resistance coefficient) ของตัวกรอง ถึงแม้ว่ากระแสการใหลของอากาศอย่างอิสระ (freestream flow) จะไม่มีอิทธิพลต่ออัตราส่วนการรั่วซึม (FTFL ratio) ก็ตาม

สมการที่ใช้คือสมการเกี่ยวกับกฎทรงมวล (mass conservation equation) สมการ Reynolds-averaged Navier-Stokes equations ที่เป็น 3 มิติ และสมการพลังงาน (energy equation) (สำหรับรายละเอียดดู ในข้ออ้างอิง [88]) นอกจากนี้การนำความร้อนของหน้ากากแสดงโดยสมการข้างล่างนี้ [87]:

$$\rho \mathsf{fCf} \partial T \mathsf{f} \partial t = \mathsf{kf} \nabla_2 T \mathsf{f} + \rho \mathsf{bWbCb}(T \mathsf{b} - T \mathsf{f})$$

สมการที่ 5

โดยที่ ρ , T, t, และ k คือ ความหนาแน่น อุณหภูมิ ระยะเวลา และค่าสัมประสิทธิ์การนำความร้อนตาม ลำดับ วัสดุตัวกรองหมายถึงวัสดุเส้นใยที่มีรูพรุนในการจำลองการต้านทานการไหล การลดลงของ แรงดันเป็นสัดส่วนกับความเร็วในการไหลแบบราบเรียบ (laminar flow) ผ่านวัสดุเส้นใยที่มีรูพรุน และกฎของดาร์ซี (Darcy's law) สามารถอธิบายได้โดยสมการโมเมนตัมข้างล่างนี้ [87]:

นอกจากนี้ในส่วนของวัสดุตัวกรอง มีการใช้ค่าการนำที่มีประสิทธิภาพ (effective conductivity) ใน สมการการนำความร้อนข้างล่างนี้ [87]:

$$\partial \partial t[(1-\epsilon)\rho f C f T_a + \epsilon \rho_a C_a T_a] + \rho_a \nabla . (V_a T_a) = \nabla . \{[(1-\epsilon)k f + \epsilon k_a] \nabla T_a\}$$
 สมการที่ 7

ลีโอนาร์ดและคณะ [66] ได้ใช้แบบจำลองพลศาสตร์ของไหลเชิงคำนวณในการประเมินผลของการ สวมหน้ากากในห้องที่มีการไหลของอากาศเข้าสู่ห้องที่ความเร็วต่างกัน 2 ค่าความเร็ว นอกจากนี้มีการ อภิปรายเกี่ยวกับผลที่ตามมาภายหลังของการรั่วซึม (aftereffect of leakage) รอบ ๆ หน้ากาก และ ผลกระทบของการสวมหน้ากากต่อความสามารถในการเกิดการหายใจไม่ออกเนื่องจากความเร็ว ของการไหลของอากาศที่สูง ๆ และทำให้เกิดการไหลทะลักของอากาศ ผลที่ได้แสดงให้เห็น ว่าความเร็วของลมหายใจออกของผู้ป่วยที่อยู่ในระหว่างการบำบัดรักษาโดยให้ออกซิเจนที่มีอัตรา การไหลต่ำ ๆ หรือการบำบัดรักษาอาการหายใจไม่ออกเนื่องจากความเร็วของการไหลของอากาศที่ สูง ๆ สามารถลดลงได้โดยการสวมหน้ากากอนามัย ผลที่ตามมาก็คือการสวมหน้ากากอนามัยเป็นวิธีการที่มี ประโยชน์ในการลดการสะสมของละอองฝอยเนื่องจากการไหลของลมหายใจออก ยกเว้นในการณีที่เกิดการรั่วซึมของหน้ากาก [66]

ไลและคณะ [89] ได้จำลองศึกษาแรงดันสัมผัส (contact pressure) ของหน้ากากกรองอากาศชนิด N95 โดยใช้ระเบียบวิธีไฟในต์เอลิเมนต์ที่สร้างแบบจำลองคิจิตัล 3 มิติของหน้ากากชนิดกรองอากาศและโครงสร้าง ใบหน้าแบบต่าง ๆ กัน <u>ภาพที่ 15</u> แสดงค่าแรงดันสัมผัสสำหรับโครงสร้างใบหน้าแบบต่าง ๆ จำนวน 5 แบบ กับหน้ากากกรองอากาศขนาดเดียวกันในบริเวณจุดสำคัญ ๆ บนใบหน้าจำนวนทั้งสิ้น 6 จุดด้วยกัน

ภาพที่ 15

ค่าแรงดันสัมผัสสำหรับโครงสร้างใบหน้าแบบต่าง ๆ จำนวน 5 แบบกับหน้ากากกรองอากาศขนาดเดียวกันใน บริเวณจุดสำคัญ ๆ บนใบหน้าจำนวนทั้งสิ้น 6 จุดดัวยกัน ได้แก่ a) ผลที่ได้จากการคำนวณ (b ผลที่ได้จากการ ทดลอง (1) ตั้งจมูก (2) เหนือแก้มขวา (3) เหนือแก้มช้าย (4) ใต้แก้มขวา (5) ใต้แก้มช้าย และ (6) กาง [89]

หน้ากากกรองอากาศชนิด N95 จำนวน 2 แบบได้รับการพิจารณาให้ใช้ในการจำลองปฏิสัมพัน ธระหว่างตัวหน้ากากกับโครงสร้างใบหน้าแบบต่าง ๆ กัน แบบแรกเป็นหน้ากากชนิดขนาดเดียวใช้ได้ กับโครงสร้างใบหน้าทุกแบบทุกขนาด แบบที่สองมีสองขนาดย่อย (คือขนาดเล็กและขนาดกลาง/ใหญ่) ผลที่ได้แสดงให้เห็นว่าหน้ากากแบบที่สองซึ่งมีสองขนาดย่อยมีการกระจายแรงดันสัมผัส (contact pressure distribution) ที่เหมาะสมมากกว่าแบบแรกซึ่งเป็นหน้ากากชนิดขนาดเดียวใช้ได้กับโครงสร้างใบหน้าทุกแบบทุกขนาด (one-size-fits-all masks) มีการรายงานว่าหน้ากากชนิดขนาด เดียวใช้ได้กับโครงสร้างใบหน้าทุกแบบทุกขนาดนี้มีประสิทธิภาพเพียงพอสำหรับโครงสร้างใบหน้าขนาดใหญ่ ขนาดปานกลาง และโครงสร้างใบหน้าสั้นแต่กว้างแต่มีความเป็นไปได้ที่จะเกิดการรั่วซึม ในกรณีที่ใช้กับโครงสร้างใบหน้าขนาดเล็กและโครงสร้างใบหน้ายาวแต่แคบ ในทางกลับกันผลของ การใช้หน้ากากกรองอากาศชนิด N95 แบบที่สองซึ่งมีสองขนาดย่อยพบว่าถึงแม้ว่าหน้ากากขนาด กลาง/ใหญ่จะมีความเหมาะสมสำหรับโครงสร้างใบหน้าขนาดใหญ่และโครงสร้างใบหน้าขนาดกลาง นอกจากนี้ หน้ากากขนาดเล็กก็สามารถสวมใส่ได้พอดีกับโครงสร้างใบหน้าขนาดกลาง ขนาดเล็กและ โครงสร้างใบหน้าขนาดกลาง ขนาดเล็กและ โครงสร้างใบหน้าสั้นแต่กว้าง

เสี่ยวไต้และคณะ [90] ได้เสนอแบบจำลองทางคณิตศาสตร์ชั่วคราว (transient numerical simulation) ในการจำลองลักษณะเฉพาะของการไหลของอากาศ ความเร็ว ปริมาตรของคาร์บอนไดออกไซด์ และการกระจายความร้อนในการสวมใส่หน้ากากกรองอากาศชนิด N95 ควรกล่าวว่ามีการตรวจหาค่า แรงดันและความเค้นเฉือนที่ผนัง (wall shear stress) ภายในทางเดินหายใจตอนบนด้วย ซึ่งผลที่ได้ บ่งชี้ว่ามีการสะสมคาร์บอนไดออกไซด์ภายในหน้ากากเพิ่มขึ้น นอกจากนี้อุณหภูมิ static temperature ในหน้ากากก็เพิ่มสูงขึ้นเนื่องจากอุณหภูมิของลมหายใจออกที่สูงขึ้น และผลที่ได้เหล่า นี้สอดคล้องกันกับการทดลอง

มีการใช้พลศาสตร์ของไหลเชิงคำนวณ (Computational Fluid Dynamics (CFD)) ในการจำลอง อย่างง่าย ๆ 2 มิติ เพื่อจำลองกระบวนการสะสม (loading process) อนุภาคละอองลอยบนเส้นใยตัว กรองเพื่อแสดงผลค่าของการไหลของอากาศรอบ ๆ เส้นใยตัวกรองที่ได้จากการคำนวณจนจบสิ้น กระบวนการจนกระทั่งตัวกรองเกิดการอุดตัน [91] ในแต่ละระดับของการสะสมอนุภาคก็มีการแสดง รูปร่างของตัวกรองที่เปลี่ยนไปต่าง ๆ กัน และข้อมูลเกี่ยวกับการไหลของอากาศรอบ ๆ เส้นใยตัว กรองรวมทั้งประสิทธิภาพของตัวกรองก็ได้รับการคำนวณด้วย ประสิทธิภาพของเส้นใยแต่ละเส้น ในการดักจับอนุภาคได้รับการยืนยันว่าเป็นการประมาณสูงกว่าความเป็นจริงเมื่อไม่ต้องใส่ใจผลกระ ทบของการสะสมต่อไป ข้อมูลที่ได้จากการทดลองแสดงให้เห็นว่าเมื่อการสะสมอนุภาคเพิ่มสูงขึ้น ประสิทธิภาพก็สูงขึ้นด้วย ในการศึกษาวิจัยครั้งนี้มีการพิจารณาการเคลื่อนที่ทางฟิสิกส์ (physical motion) ขององค์ประกอบต่าง ๆ ของระบบ (system components) และแบบจำลองทางคณิตศาสตร์ ของ Navier–Stokes (numerical simulation of Navier–Stokes) รวมทั้งแบบจำลองของ Eulerian (Eulerian simulation) เกี่ยวกับสมการการเคลื่อนที่ของอนุภาคเพื่อแสดงให้เห็นถึงผลกระทบของ ปฏิสัมพันธ์ระหว่างอนุภาคและการไหลของอากาศ (particle–flow interaction) ขนาดของอนุภาคที่

เลือกมีขนาดเส้นผ่าศูนย์กลาง 1 ไมครอนในการยึดเกาะที่แรงเฉื่อยน้อย ๆ สำหรับอนุภาคขนาดเล็ก และกำจัดการเคลื่อนที่แบบบราวน์ (Brownian motion) ตลอดจนการตกค้างสะสมของอนุภาคจาก การแพร่กระจาย (diffusional deposition) [92,93] ขนาดของเส้นใชตัวกรองกำหนดไว้ที่ 5 ไมครอนโดยการ พิจารณาถึงขนาดของอนุภาคและการลดจำนวนของอนุภาคโดยรวมที่ปล่อยเข้าสู่ระบบ

ยีและคณะ [13] ได้เสนอแบบจำลองทางคณิตศาสตร์โดยพิจารณาถึงแบบจำลองการถ่ายเทพลังงาน ความร้อนและมวลควบคู่กันไปเพื่ออธิบายกลไกการแพร่กระจายของโมเลกุลไอน้ำ การระเหยกับ การควบแน่น การดูดซึมความขึ้นกับการคายความขึ้นของเส้นใยตัวกรอง การแพร่กระจายแบบ บราวน์ (Brownian diffusion) ของเชื้อไวรัส การแทรกซึมทะลุผ่านของไวรัส การแทรกซึมทะลุผ่าน ตามช่องขนาดเล็ก ๆ (capillary penetration) ของไวรัสพร้อมกับน้ำหรือของเหลว ตลอดจนการเกิด ความร้อนแฝง (latent heat) ที่เนื่องมาจากการเปลี่ยนสถานะภายในหน้ากากในระหว่างวงจรการ หายใจเข้าออก ในส่วนของการทดลองอาสาสมัครได้สวมใส่หน้ากากกรองอากาศชนิด N95 และเริ่ม ออกกำลังกายโดยการเดิน กลไกการแพร่กระจายของไวรัสโรคซาร์ ไอน้ำ และน้ำในเส้นใยของตัว กรองแสดงไว้ใน ภาพที่ 16

<u>ภาพที่ 16</u>

แสดงการถ่ายเทไวรัสซาร์ในหน้ากาก <u>[13]</u>

มีการพ่นสารละลายจำลองเชื้อไวรัสทุก ๆ 10 นาทีที่ระยะห่างจากหน้ากาก 1 เมตรเพื่อตรวจหาความ คืบหน้าในการถ่ายเทความหนาแน่น (K+ concentration) น้ำ ความหนาแน่นของไอน้ำ แรงดัน และ อุณหภูมิในระหว่างวงจรการหายใจ ผลที่ได้ก็คือ ความหนาแน่นของไอน้ำ แรงดันของอากาศภายใน หน้ากาก และอุณหภูมิของหน้ากากมีการเปลี่ยนแปลงตามวงจรการหายใจเข้าออก นอกจากนี้แล้วการ ถ่ายเทไวรัสจากผิวด้านนอกไปสู่ผิวด้านในของหน้ากากสามารถจำกัดได้โดยการลดรัสมีการแทรกซึมผ่านช่องเล็ก ๆ ที่มีประสิทธิภาพ และโดย การเพิ่มความหนาและมุมสัมผัสของตัวกรอง

การควบแน่นของไอน้ำทำให้มีอุณหภูมิและความชื้นที่เอื้อต่อการเจริญเติบโตและการแพร่ขยาย พันธุ์ของเชื้อแบคทีเรียซึ่งเป็นอันตรายต่อสุขภาพอนามัย เราและคณะ [94] ได้ใช้วิธิการ พลศาสตร์ ของไหลเชิงคำนวณ (Computational Fluid Dynamics) ในการจำลองการไหลของอากาศใน หน้ากากกรองอากาศชนิด N95 ในการวิเคราะห์การกระจายของอุณหภูมิไอน้ำและปริมาณน้ำที่มี เล็กน้อยบริเวณพื้นผิวด้านในของหน้ากากโดยพิจารณาอุณหภูมิของสภาพแวดล้อมภายนอก ประกอบด้วย มีการสังเกตพบว่ามีการลดอุณหภูมิของสภาพแวดล้อมภายนอกลงอย่างฮวบฮาบและ ความเร็วการหายใจในอัตราต่าง ๆ กัน ผลที่ได้แสดงให้เห็นว่าอุณหภูมิของสภาพแวดล้อมภายนอกมี ผลต่ออุณหภูมิภายในหน้ากากเป็นอย่างมากเมื่อการกระจายความร้อนออกไปภายนอกโดยผ่านทาง รูพรุนเล็ก ๆ ของตัวกรองหน้ากากมีความสำคัญมาก ๆ ควรกล่าวว่าปริมาตรเพียงเล็กน้อยของน้ำที่ พื้นผิวด้านในของหน้ากากมีการลดลงจากอุณหภูมิของสภาพแวดล้อมภายนอกที่สูงขึ้น เพราะว่ามี การกระจายความร้อนเพิ่มขึ้นระหว่างอุณหภูมิของสภาพแวดล้อมภายนอกกับอุณหภูมิของลมหายใจ ออก นอกจากนี้การกระจายความร้อนที่เพิ่มขึ้นยังทำให้มีการควบแน่นของไอน้ำเพิ่มมากขึ้นด้วย และปริมาตรเพียงเล็กน้อยของน้ำ (ที่พื้นผิวด้านในของหน้ากาก) จะเพิ่มสูงขึ้นโดยการเพิ่มความถี่ ของการหายใจและความเร็วที่ลดลงเนื่องมาจากการไหลของอากาศที่เพิ่มขึ้นและการควบแน่นที่มา กขึ้นที่อุณหภูมิของสภาพแวดล้อมภายนอกนั้น ๆ (ภาพที่ 17)

ภาพที่ 17

ความผันแปรของปริมาตรเพียงเล็กน้อยของน้ำในของหน้ากาก (a) ช่วงเวลาการหายใจเต็มที่ (full breathing time) 0-96.0 s, (b) ช่วงเวลาการหายใจ (the breathing time) 86.4-96.0 s [94]

ชางและคณะ [95] ได้พัฒนาปรับปรุงการออกแบบหน้ากากกรองอากาศเพื่อให้ผู้สวมใส่รู้สึกสบายขึ้น และลดอุณหภูมิของปริมาตรอากาศ dead space และระดับคาร์บอนไดออกไซด์ในระหว่างการหายใจ ในอัตราต่ำ ๆ โดยการใช้พัดลมระบายอากาศ การสร้างแบบจำลองทางเรขาคณิตที่เป็น 3 มิติของ หน้ากากกรองอากาศทำโดยใช้การจำลองย้อนกลับ (reversing modeling) และใช้พลศาสตร์ ของไหลเชิงคำนวณ (Computational Fluid Dynamics (CFD)) ในการจำลองการไหลของอากาศ มี การใช้แบตเตอรีเป็นแหล่งพลังงาน ดังนั้นผู้ที่สวมหน้ากากจึงสามารถเปิดสวิตช์ได้เมื่อใดก็ตามที่ ต้องการ ผลที่ได้แสดงให้เห็นว่าพัดลมระบายอากาศสามารถเข้ากันได้กับการใหลของอากาศเมื่อ ติดตั้งให้มีการเป่าลมได้อย่างเหมาะสม ปริมาตรเพียงเล็กน้อยของคาร์บอนไดออกไซด์ถูกควบคุม โดยการปรับให้ปริมาตรอากาศ dead space มีการแหมาะสมมากที่สุด ต้นแบบของการทดลองถูกใช้ในการ ตรวจสอบความถูกต้องของผลที่ได้จากการจำลอง มีการกล่าวว่าอุณหภูมิของปริมาตรอากาศ dead space ของหน้ากากกรองอากาศที่ได้รับการติดตั้งพัดลมลดลง 2 °C เมื่อเปรียบเทียบกับหน้ากาก กรองอากาศที่ไม่ได้รับการติดตั้งพัดลมแต่อย่างไรก็ตามไม่มีการประเมินเกี่ยวกับอัตราการแพร่ กระจายของเชื้อไวรัสจากภายนอกที่เข้าสู่หน้ากากหรือเกี่ยวกับประสิทธิภาพของหน้ากาก ภาพที่ 18 แสดงให้เห็นถึงความเร็วของอากาศจากพัดลม (เป่าเข้าและเป่าออก)

<u>ภาพที่ 18</u>

เส้นแสดงรูปร่าง (contour) ของความเร็วลมจากพัดลม (a) ด้านออก (b) ด้านรับเข้า [95]

8. สรุปผลการศึกษาวิจัย (Conclusions)

ในงานศึกษาวิจัยนี้มีการศึกษาเกี่ยวกับข้อด้อยและข้อดีของหน้ากากชนิดต่าง ๆ และมีการสำรวจเก็บ ข้อมูลอย่างรอบคอบเกี่ยวกับประสิทธิภาพในการกรอง กลไกการแทรกซึมทะลุผ่าน ตลอดจนปัจจัย หรือตัวแปรต่าง ๆ ที่มีผลกระทบ

ในเรื่องนี้ มีการแสดงให้เห็นว่าหน้ากากผ้าและหน้ากากอนามัยไม่มีประสิทธิภาพในการป้องกันการ แทรกซึมทะลุผ่านของอนุภาคขนาดเล็กมาก ๆ (nanoparticles) ได้มากนักแต่ก็มีประสิทธิภาพใน ระดับต่าง ๆ กันในการป้องกันการแทรกซึมทะลุผ่านของอนุภาคที่มีขนาดระดับไมครอน อย่างไรก็ตามประสิทธิภาพของหน้ากากกรองอากาศสามารถกรองอนุภาคที่มีขนาดระดับนาโนเมตร ได้ ซึ่งประสิทธิภาพในการกรองก็แตกต่างกันไปตามชนิดต่าง ๆ ของหน้ากากกรองอากาศ หน้ากาก กรองอากาศมีประสิทธิภาพในการป้องกันการเข้าแทรกซึมทะลุผ่านของสารพิษและอนุภาคที่ปน เปื้อนใด ๆ ได้มากกว่า ในทางกลับกันความสามารถในการเข้าถึงและความรู้สึกสวมใส่ไม่สบายใน การใช้หน้ากากประเภทนี้ในการใช้งานทั่ว ๆ ไป ทำให้ไม่ได้รับความนิยมสักเท่าใดนัก

กลไกต่าง ๆ มีอิทธิพลต่อการแทรกซึมทะลุผ่านหน้ากากของอนุภาคต่าง ๆ ปัจจัยต่าง ๆ หรือตัวแปร สภาพแวดล้อมภายนอกมีบทบาทสำคัญมากต่อกลไกการแทรกซึมทะลุผ่านและประสิทธิภาพใน การกรอง ด้วยเหตุนี้ชนิดของหน้ากากที่เลือกใช้จึงขึ้นอยู่กับสภาพแวดล้อมด้วย ในบรรดาปัจจัยหรือ ตัวแปรที่มีผลเหล่านี้ขนาดของอนุภาคและอัตราการไหลของอากาศนับว่าเป็นปัจจัยที่มีความสำคัญ มากที่สุด

การศึกษาวิจัยนี้แสดงให้เห็นว่าสำหรับอนุภาคที่มีขนาดใหญ่กว่า 0.5 ไมครอนแล้ว แรงโน้มถ่วงของ โลก แรงเฉื่อย และการสกัดกั้นเป็นกลไกที่มีความโดดเด่นมากที่สุด แต่สำหรับอนุภาคที่มีขนาดเล็ก กว่า 0.2 ไมครอนแล้วกลไกการแพร่กระจายมีความโดดเด่นมากกว่า นอกจากนี้กลไกแรงดึงดูดจาก ไฟฟ้าสถิตได้รับผลกระทบน้อยจากขนาดของอนุภาค ซึ่งแสดงให้เห็นว่ามีประสิทธิภาพเมื่ออนุภาค มีขนาดใหญ่ถึงประมาณ 300 นาโนเมตร แต่จะได้รับผลกระทบมากกว่าจากอัตราการไหลของ อากาศ ในกรณีที่อัตราการไหลของอากาศมีค่าต่ำ ๆ กลไกแรงดึงดูดจากไฟฟ้าสถิตและกลไกการ แพร่กระจายจะมีความโดดเด่นมากกว่า แต่เมื่อมีการเพิ่มอัตราการไหลของอากาศให้สูงขึ้นกลไก การสกัดกั้นก็จะมีประสิทธิภาพมากกว่า อย่างไรก็ตามปัจจัยอื่น ๆ มีผลกระทบน้อย แต่เมื่อมีการเพิ่ม ความขึ้น อุณหภูมิ ความถี่ (ของการหายใจ) สูงขึ้น หรือการเปลี่ยนการไหลของอากาศให้เป็นการ ไหลวนเป็นวงกลมประสิทธิภาพในการกรองก็จะลดลง ในขณะที่การเพิ่มช่วงระยะเวลารับภาระใน การกรองของหน้ากากทำให้ประสิทธิภาพในการกรองเพิ่มขึ้น

นอกจากนี้คุณสมบัติของเส้นใยตัวกรองในหน้ากากก็เป็นสิ่งสำคัญ ในขณะที่การเพิ่มความหนาและ จำนวนชั้นกรอง ความหนาแน่นของการบรรจุเส้นใยในตัวกรอง ความหนาแน่นของประจุไฟฟ้าใน เส้นใยตัวกรอง รวมทั้งการลดขนาดเส้นผ่าศูนย์กลางของเส้นใยตัวกรองทำให้ประสิทธิภาพในการกรองเพิ่มขึ้น

นอกเหนือจากกลไกต่าง ๆ ตลอดจนปัจจัยภายนอกและลักษณะเฉพาะตัวของเส้นใยตัวกรองจะมีผล ต่อประสิทธิภาพของการกรองแล้วยังมีอีกเรื่องหนึ่งที่เกี่ยวข้อง นั่นก็คือการปิดแน่นชิดกับใบหน้า ของหน้ากากเนื่องมาจากลักษณะสูงต่ำของโครงสร้างใบหน้าที่แตกต่างกันของแต่ละคนหรือปลด หน้ากากออก โดยเฉพาะอย่างยิ่งในกรณีของเครื่องช่วยหายใจในระหว่างที่ผู้สวมใส่นอนหลับ นำไปสู่ การรั่วซึมซึ่งทำให้ประสิทธิภาพของหน้ากากลดลงอย่างมาก เมื่อพิจารณาถึงข้อดีข้อด้อยและศักยภาพของหน้ากาก ชนิดต่าง ๆ แล้ว ดูเหมือนว่ามีสิ่งที่จะต้องทำอีกมากในเรื่องนี้เพื่อที่จะประดิษฐ์คิดค้นหน้ากากชนิด

พิเศษที่ตอบสนองความต้องการทั้งในด้านประสิทธิภาพการกรองที่เพิ่มขึ้น สวมใส่ได้สบายมากขึ้น ตลอดจนสามารถเข้าถึงได้ง่ายขึ้น อย่างไรก็ตามเป็นเรื่องที่สามารถเข้าใจได้ว่าเนื่องจากสภาพภูมิ อากาศที่แตกต่างกัน ตลอดจนปัจจัยด้านสรีระวิทยาของมนุษย์ที่หลากหลายรวมทั้งปัจจัยอื่น ๆ คง จะไม่มีหน้ากากชนิดใดที่อเนกประสงค์ครอบจักรวาลสามารถตอบโจทก์ทุกอย่างได้ครบถ้วน

สำหรับการศึกษาวิจัยในอนาคต สามารถใช้เทคโนโลยีสมัยใหม่ด้านการพิมพ์ 3 มิติในการจัดเตรียม หน้ากากในสถานการณ์การแยกกักตัวและการขาดแคลนหน้ากาก นอกจากนี้การใช้เส้นใยนาโน (nanofibers) ให้มากขึ้นจะสามารถช่วยพัฒนาปรับปรุงประสิทธิภาพของหน้ากากในสภาพการณ์ต่าง ๆ ยิ่งไปกว่า นั้นการใช้ประโยชน์จากการจำลองทางคณิตศาสตร์ให้มากขึ้นในการตรวจวัดประสิทธิภาพของ หน้ากากจะสามารถช่วยลดค่าใช้จ่ายที่เกี่ยวข้องลงได้

คำประกาศเกี่ยวกับผลประโยชน์เชิงแข่งขัน (Declaration of competing interest)

ผู้เขียนแถลงว่าไม่มีผลประโยชน์ทับซ้อนใด ๆ

เชิงอรรถ (Footnotes)

การสอบทวน (peer review) เป็นความรับผิดชอบของบริษัท KeAi Communications Co., Ltd.

เอกสารอ้างอิง (References)

- 1. McDonald F. Facemask use for community protection from air pollution disasters: an ethical overview and framework to guide agency decision making. *Int. J. Disaster Risk Reduct.* 2020;43:101376. [Google Scholar]
- 2. Bunyan D., Ritchie L., Jenkins D., Coia J. Respiratory and facial protection: a critical review of recent literature. *J. Hosp. Infect.* 2013;85(3):165–169. [PMC free article] [PubMed] [Google Scholar]
- 3. Cheng V.C. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. *J. Infect.* 2020 [PMC free article] [PubMed] [Google Scholar]
- 4. Burnett R. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. *Proc. Natl. Acad. Sci. Unit. States Am.* 2018;115(38):9592–9597. [PMC free article] [PubMed] [Google Scholar]
- 5. Subbarao K., Mahanty S. Respiratory virus infections: Understanding COVID-19. *Immunity*. 2020 [PMC free article] [PubMed] [Google Scholar]
- 6. Mahdavi A. Concordia University; 2013. Efficiency Measurement of N95 Filtering Facepiece Respirators against Ultrafine Particles under Cyclic and Constant Flows. [Google Scholar]
- 7. Bayersdorfer J., Giboney S., Martin R., Moore A., Bartles R. Novel manufacturing of simple masks in response to international shortages: bacterial and particulate filtration efficiency testing. *Am. J. Infect. Contr.* 2020 [PMC free article] [PubMed] [Google Scholar]

- 8. Li Y., Leung P., Yao L., Song Q., Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. *J. Hosp. Infect.* 2006;62(1):58–63. [PubMed] [Google Scholar]
- 9. Ogunsona E.O., Muthuraj R., Ojogbo E., Valerio O., Mekonnen T.H. Engineered nanomaterials for antimicrobial applications: a review. *Appl. Mater. Today.* 2020;18:100473. [Google Scholar]
- 10. Martin S.B., Jr., Moyer E.S. Electrostatic respirator filter media: filter efficiency and most penetrating particle size effects. *Appl. Occup. Environ*. *Hyg.* 2000;15(8):609–617. [PubMed] [Google Scholar]
- 11. McCullough N., Brosseau L., Vesley D. Collection of three bacterial aerosols by respirator and surgical mask filters under varying conditions of flow and relative humidity. *Ann. Occup. Hyg.* 1997;41(6):677–690. [PubMed] [Google Scholar]
- 12. Richardson A.W., Eshbaugh J.P., Hofacre K.C., Gardner P.D. BATTELLE MEMORIAL INST COLUMBUS OH; 2006. Respirator Filter Efficiency Testing against Particulate and Biological Aerosols under Moderate to High Flow Rates. [Google Scholar]
- 13. Yi L., Fengzhi L., Qingyong Z. Numerical simulation of virus diffusion in facemask during breathing cycles. *Int. J. Heat Mass Tran.* 2005;48(19–20):4229–4242. [PMC free article] [PubMed] [Google Scholar]
- 14. Kähler C.J., Hain R. Fundamental protective mechanisms of face masks against droplet infections. *J. Aerosol Sci.* 2020:105617. [Google Scholar]
- 15. Hiragond C.B., Kshirsagar A.S., Dhapte V.V., Khanna T., Joshi P., More P.V. Enhanced anti-microbial response of commercial face mask using colloidal silver nanoparticles. *Vacuum*. 2018;156:475–482. [Google Scholar]
- 16. Hashmi M., Ullah S., Kim I.S. Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications. *Curr. Res. Biotechnol.* 2019;1:1–10. [Google Scholar]
- 17. Rengasamy S., Eimer B., Shaffer R.E. Simple respiratory protection—evaluation of the filtration performance of cloth masks and common fabric materials against 20–1000 nm size particles. *Ann. Occup. Hyg.* 2010;54(7):789–798. [PMC free article] [PubMed] [Google Scholar]
- 18. Leung N.H. Respiratory virus shedding in exhaled breath and efficacy of face masks. *Nat. Med.* 2020;26(5):676–680. [PMC free article] [PubMed] [Google Scholar]
- 19. Konda A., Prakash A., Moss G.A., Schmoldt M., Grant G.D., Guha S. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. *ACS Nano*. 2020;14(5):6339–6347. [PMC free article] [PubMed] [Google Scholar]
- 20. Rubio-Romero J.C., del Carmen Pardo-Ferreira M., García J.A.T., Calero-Castro S. Safety Science; 2020. Disposable Masks: Disinfection and Sterilization for Reuse, and Non-certified

- Manufacturing, in the Face of Shortages during the COVID-19 Pandemic. 104830. [PMC free article] [PubMed] [Google Scholar]
- 21. Aragaw T.A. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. *Mar. Pollut. Bull.* 2020:111517. [PMC free article] [PubMed] [Google Scholar]
- 22. Luan P.T., Ching C.T.-S. Archives of Medical Research; 2020. A Reusable Mask for Coronavirus Disease 2019 (COVID-19) [PMC free article] [PubMed] [Google Scholar]
- 23. Yao B.-g., Wang Y.-x., Ye X.-y., Zhang F., Peng Y.-l. Impact of structural features on dynamic breathing resistance of healthcare face mask. *Sci. Total Environ.* 2019;689:743–753. [PubMed] [Google Scholar]
- 24. Milton D.K., Fabian M.P., Cowling B.J., Grantham M.L., McDevitt J.J. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. *PLoS Pathog.* 2013;9(3) [PMC free article] [PubMed] [Google Scholar]
- 25. Cowling B., Zhou Y., Ip D., Leung G., Aiello A. Face masks to prevent transmission of influenza virus: a systematic review. *Epidemiol. Infect.* 2010;138(4):449-456. [PubMed] [Google Scholar]
- 26. Johnson D., Druce J.D., Birch C., Grayson M.L. A quantitative assessment of the efficacy of surgical and N95 masks to filter influenza virus in patients with acute influenza infection. *Clin. Infect. Dis.* 2009;49(2):275–277. [PubMed] [Google Scholar]
- 27. Bałazy A., Toivola M., Adhikari A., Sivasubramani S.K., Reponen T., Grinshpun S.A. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? *Am. J. Infect. Contr.* 2006;34(2):51–57. [PubMed] [Google Scholar]
- 28. Batty J.A. Google Patents; 1997. Face Mask Safety Shield. [Google Scholar]
- 29. Mostaghimi A. Regulatory and safety considerations in deploying a locally fabricated, reusable, face shield in a hospital responding to the COVID-19 pandemic. *Med.* 2020 [Google Scholar]
- 30. Bailar J., Burke D.S., Brosseau L., Cohen H., Gallagher E., Gensheimber K. Institute of Medicine, National Academies Press; Washington [DC]: 2006. Reusability of Facemasks during an Influenza Pandemic. [Google Scholar]
- 31. Qian Y., Willeke K., Grinshpun S.A., Donnelly J., Coffey C.C. Performance of N95 respirators: filtration efficiency for airborne microbial and inert particles. *Am. Ind. Hyg. Assoc. J.* 1998;59(2):128–132. [PubMed] [Google Scholar]
- 32. Willeke K., Qian Y. Tuberculosis control through respirator wear: perforance of national Institute for occupational safety and health-regulated respirators. *Am. J. Infect. Contr.* 1998;26(2):139–142. [PubMed] [Google Scholar]

- 33. Rengasamy S., Zhuang Z., Roberge R. Particulate respiratory protection—Overview, emerging issues and research needs. *Protect. Dev.: Types, Uses Saf.* 2010:131–160. [Google Scholar]
- 34. Rodriguez-Martinez C.E., Sossa-Briceño M.P., Cortés-Luna J.A. Decontamination and reuse of N95 filtering facemask respirators: a systematic review of the literature. *Am.J. Infect. Contr.* 2020 [PMC free article] [PubMed] [Google Scholar]
- 35. Zhou S.S., Lukula S., Chiossone C., Nims R.W., Suchmann D.B., Ijaz M.K. Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses. *J. Thorac. Dis.* 2018;10(3):2059. [PMC free article] [PubMed] [Google Scholar]
- 36. Kim J.-H., Wu T., Powell J.B., Roberge R.J. Physiologic and fit factor profiles of N95 and P100 filtering facepiece respirators for use in hot, humid environments. *Am. J. Infect. Contr.* 2016;44(2):194–198. [PMC free article] [PubMed] [Google Scholar]
- 37. Gardner P.D., Eshbaugh J.P., Harpest S.D., Richardson A.W., Hofacre K.C. Viable viral efficiency of N95 and P100 respirator filters at constant and cyclic flow. *J. Occup. Environ. Hyg.* 2013;10(10):564–572. [PMC free article] [PubMed] [Google Scholar]
- 38. Pearce B.R.H.J.M. 2020. Conversion of self-contained breathing apparatus mask to open source powered air-purifying particulate respirator for fire fighter COVID-19 response. Preprints. [Google Scholar]
- 39. Meyer S.D., Raven P.B. Google Patents; 1987. Self-contained Breathing Apparatus. [Google Scholar]
- 40. Dreger R.W., Jones R.L., Petersen S.R. Effects of the self-contained breathing apparatus and fire protective clothing on maximal oxygen uptake. *Ergonomics*. 2006;49(10):911–920. [PubMed] [Google Scholar]
- 41. Ungar W.D., Grimsley T.L., Mishkin B. Google Patents; 2010. Full Face Respirator Mask. [Google Scholar]
- 42. Konda A., Prakash A., Moss G.A., Schmoldt M., Grant G.D., Guha S. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. *ACS Nano*. 2020 [PMC free article] [PubMed] [Google Scholar]
- 43. Li Y. In vivo protective performance of N95 respirator and surgical facemask. *Am. J. Ind. Med.* 2006;49(12):1056–1065. [PubMed] [Google Scholar]
- 44. Long Y. Effectiveness of N95 respirators versus surgical masks against influenza: a systematic review and meta-analysis. *J. Evid. Base Med.* 2020;13(2):93–101. [PMC free article] [PubMed] [Google Scholar]

- 45. Kang P.K., Shah D.O. Filtration of nanoparticles with dimethyldioctadecylammonium bromide treated microporous polypropylene filters. *Langmuir*. 1997;13(6):1820–1826. [Google Scholar]
- 46. Mayhew D.J. Google Patents; 1971. Filtration Mask. [Google Scholar]
- 47. Akalin M., Usta I., Kocak D., Ozen M. *Medical and Healthcare Textiles*. Elsevier; 2010. Investigation of the filtration properties of medical masks; pp. 93–97. [Google Scholar]
- 48. Huang J., Huang V. Evaluation of the efficiency of medical masks and the creation of new medical masks. *J. Int. Med. Res.* 2007;35(2):213–223. [PubMed] [Google Scholar]
- 49. Madsen P.O., Madsen R.E. A study of disposable surgical masks. *Am. J. Surg.* 1967;114(3):431–435. [PubMed] [Google Scholar]
- 50. Skaria S.D., Smaldone G.C. Respiratory source control using surgical masks with nanofiber media. *Ann. Occup. Hyg.* 2014;58(6):771–781. [PMC free article] [PubMed] [Google Scholar]
- 51. Yang A. Thermal management in nanofiber-based face mask. *Nano Lett.* 2017;17(6):3506–3510. [PubMed] [Google Scholar]
- 52. Kharaghani D. Preparation and in-vitro assessment of hierarchal organized antibacterial breath mask based on polyacrylonitrile/silver (PAN/AgNPs) nanofiber. *Nanomaterials*. 2018;8(7):461. [PMC free article] [PubMed] [Google Scholar]
- 53. Wang N., Cai M., Yang X., Yang Y. Electret nanofibrous membrane with enhanced filtration performance and wearing comfortability for face mask. *J. Colloid Interface Sci.* 2018;530:695–703. [PubMed] [Google Scholar]
- 54. Ullah S. Reusability comparison of melt-blown vs. Nanofiber face mask filters for use in the coronavirus pandemic. *ACS Appl. Nano Mater.* 2020 [Google Scholar]
- 55. Banerjee S.S., Burbine S., Kodihalli Shivaprakash N., Mead J. 3D-printable PP/SEBS thermoplastic elastomeric blends: preparation and properties. *Polymers*. 2019;11(2):347. [PMC free article] [PubMed] [Google Scholar]
- 56. Ishack S., Lipner S.R. Applications of 3D printing technology to address COVID-19 related supply shortages. *Am. J. Med.* 2020 [PMC free article] [PubMed] [Google Scholar]
- 57. Swennen G.R., Pottel L., Haers P.E. Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. *Int. J. Oral Maxillofac*. *Surg.* 2020 [PMC free article] [PubMed] [Google Scholar]
- 58. Cai M., Li H., Shen S., Wang Y., Yang Q. Customized design and 3D printing of face seal for an N95 filtering facepiece respirator. *J. Occup. Environ.*Hyg. 2018;15(3):226–234. [PubMed] [Google Scholar]

- 59. Provenzano D. George Washington University; 2020. Rapid Prototyping of Reusable 3D-Printed N95 Equivalent Respirators at the. [Google Scholar]
- 60. Liu D. 2020. Adapting Re-useable Elastomeric Respirators to Utilise Anaesthesia Circuit Filters Using a 3D-printed Adaptor -a Potential Alternative to Address N95 Shortages during the COVID-19 Pandemic. Anaesthesia. [PMC free article] [PubMed] [Google Scholar]
- 61. Guha S., McCaffrey B., Hariharan P., Myers M.R. Quantification of leakage of sub-micron aerosols through surgical masks and facemasks for pediatric use. *J. Occup. Environ. Hyg.* 2017;14(3):214–223. [PubMed] [Google Scholar]
- 62. Hinds W.C. John Wiley & Sons; 1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. [Google Scholar]
- 63. Janssen L. Principles of physiology and respirator performance. *Occup. Health Saf.* 2003;72(6):73–81. [PubMed] [Google Scholar]
- 64. Brown R.C. Pergamon; 1993. Air Filtration: an Integrated Approach to the Theory and Applications of Fibrous Filters. [Google Scholar]
- 65. Lee K., Liu B. On the minimum efficiency and the most penetrating particle size for fibrous filters. *J. Air Pollut. Contr. Assoc.* 1980;30(4):377–381. [Google Scholar]
- 66. Leonard S. Preliminary findings of control of dispersion of aerosols and droplets during high velocity nasal insufflation therapy using a simple surgical mask: Implications for high flow nasal cannula. *Chest.* 2020 [PMC free article] [PubMed] [Google Scholar]
- 67. Fjeld R.A., Owens T.M. The effect of particle charge on penetration in an electret filter. *IEEE Trans. Ind. Appl.* 1988;24(4):725–731. [Google Scholar]
- 68. Moradmand P.A., Khaloozadeh H. 2017 5th International Conference on Control. Instrumentation, and Automation (ICCIA); 2017. An experimental study of modeling and self-tuning regulator design for an electro-hydro servo-system; pp. 126–131. IEEE. [Google Scholar]
- 69. Donaldson K., Stone V., Clouter A., Renwick L., MacNee W. vol. 58. 2001. Ultrafine Particles Occup Environ Med; pp. 211–216. Find this article online. [PMC free article] [PubMed] [Google Scholar]
- 70. Warheit D.B., Webb T.R., Reed K.L., Frerichs S., Sayes C.M. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. *Toxicology*. 2007;230(1):90–104. [PubMed] [Google Scholar]
- 71. Boskovic L., Agranovski I.E., Braddock R.D. Filtration of nanosized particles with different shape on oil coated fibres. *J. Aerosol Sci.* 2007;38(12):1220–1229. [Google Scholar]

- 72. Dahneke B. The capture of aerosol particles by surfaces. *J. Colloid Interface Sci.* 1971;37(2):342–353. [Google Scholar]
- 73. Eshbaugh J.P., Gardner P.D., Richardson A.W., Hofacre K.C. N95 and P100 respirator filter efficiency under high constant and cyclic flow. *J. Occup. Environ*. *Hyg.* 2008;6(1):52–61. [PubMed] [Google Scholar]
- 74. Wang H.-C., Kasper G. Filtration efficiency of nanometer-size aerosol particles. *J. Aerosol Sci.* 1991;22(1):31–41. [Google Scholar]
- 75. Kim C.S., Bao L., Okuyama K., Shimada M., Niinuma H. Filtration efficiency of a fibrous filter for nanoparticles. *J. Nanoparticle Res.* 2006;8(2):215–221. [Google Scholar]
- 76. Heim M., Mullins B., Kasper G. Comment on: penetration of ultrafine particles and ion clusters through wire screens by Ichitsubo et al. *Aerosol. Sci. Technol.* 2006;40(2):144–145. [Google Scholar]
- 77. Warheit D.B., Sayes C.M., Reed K.L., Swain K.A. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. *Pharmacol. Ther.* 2008;120(1):35–42. [PubMed] [Google Scholar]
- 78. Willeke K., Qian Y., Donnelly J., Grinshpun S., Ulevicius V. Penetration of airborne microorganisms through a surgical mask and a dust/mist respirator. *Am. Ind. Hyg. Assoc. J.* 1996;57(4):348–355. [PubMed] [Google Scholar]
- 79. Kousaka Y., Okuyama K., Shimada M., Takii Y. Development of a method for testing very high-efficiency membrane filters for ultrafine aerosol particles. *J. Chem. Eng. Jpn.* 1990;23(5):568–574. [Google Scholar]
- 80. Yuasa H. Industrial health; 2014. Breathing Simulator of Workers for Respirator Performance Test. [PMC free article] [PubMed] [Google Scholar]
- 81. Xiao X., Qian L. Investigation of humidity-dependent capillary force. *Langmuir*. 2000;16(21):8153–8158. [Google Scholar]
- 82. Givehchi R., Tan Z. The effect of capillary force on airborne nanoparticle filtration. *J. Aerosol Sci.* 2015;83:12–24. [Google Scholar]
- 83. Roberge R., Benson S., Kim J.-H. Thermal burden of N95 filtering facepiece respirators. *Ann. Occup. Hyg.* 2012;56(7):808–814. [PubMed] [Google Scholar]
- 84. Shokri A., Golbabaei F., Seddigh-Zadeh A., Baneshi M.-R., Asgarkashani N., Faghihi-Zarandi A. Evaluation of physical characteristics and particulate filtration efficiency of surgical masks used in Iran's hospitals. *Int. J. Occup. Hyg.* 2015;7(1):10–16. [Google Scholar]

- 85. Huang S.-H., Chen C.-W., Kuo Y.-M., Lai C.-Y., McKay R., Chen C.-C. Factors affecting filter penetration and quality factor of particulate respirators. *Aerosol Air Qual*. *Res.* 2013;13(1):162–171. [Google Scholar]
- 86. Sanchez E. 2010. Filtration Efficiency of Surgical Masks. [Google Scholar]
- 87. Lei Z., Yang J., Zhuang Z., Roberge R. Simulation and evaluation of respirator faceseal leaks using computational fluid dynamics and infrared imaging. *Ann. Occup. Hyg.* 2013;57(4):493–506. [PubMed] [Google Scholar]
- 88. Pope S.B. IOP Publishing; 2001. Turbulent Flows. [Google Scholar]
- 89. Lei Z., Yang J., Zhuang Z. Contact pressure study of N95 filtering face-piece respirators using finite element method. *Computer-Aided Des. Appl.* 2010;7(6):847–861. [Google Scholar]
- 90. Zhang X., Li H., Shen S., Cai M. Investigation of the flow-field in the upper respiratory system when wearing N95 filtering facepiece respirator. *J. Occup. Environ. Hyg.* 2016;13(5):372–382. [PubMed] [Google Scholar]
- 91. Karadimos A., Ocone R. The effect of the flow field recalculation on fibrous filter loading: a numerical simulation. *Powder Technol.* 2003;137(3):109–119. [Google Scholar]
- 92. Davies C.N. 1973. Air Filtration. [Google Scholar]
- 93. Walsh D.C. Loughborough University; 1995. The Behaviour of Electrically Active and Prefilter Fibrous Filters under Solid Aerosol Load. [Google Scholar]
- 94. Y. Rao et al., "Investigation of water vapor condensation on the inner surface of N95 filtering facepiece".
- 95. Zhang X., Li H., Shen S., Rao Y., Chen F. An improved FFR design with a ventilation fan: CFD simulation and validation. *PloS One.* 2016;11(7) [PMC free article] [PubMed] [Google Scholar]