CS578: Internet of Things

IEEE 802.15.4 Low-Rate Wireless Networks

2011 version: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6012487
2015 version: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7460875
2020 version: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9144691

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

"The highest education makes our life in harmony with all existence." - Rabindranath Tagore

IEEE 802.15.4 LR-WPAN

- A low-rate wireless personal area network (LR-WPAN) is a
 - ✓ simple,
 - ✓ low-cost communication network
 - ✓ that allows wireless connectivity in applications
 - ✓ with limited power and
 - ✓ relaxed throughput requirements.
- The main objectives of an LR-WPAN are
 - ✓ ease of installation,
 - ✓ reliable data transfer,
 - ✓ extremely low cost,
 - ✓ a reasonable battery life,
 - ✓ while maintaining a simple and flexible protocol.

Reference: IEEE Std 802.15.4™-2020, "IEEE Standard for **Low-Rate Wireless Networks**",

Developed by the LAN/MAN Standards Committee of the IEEE Computer Society, Approved on 6 May 2020.

IEEE 802.15.4 Stack – PHY & MAC

The OSI model adapted to the IEEE 802.15.4

LLC: Logical Link Control – provides protocol multiplexing **SSCS**: Service Specific Convergence Sublayer

- IEEE 802.15.4 standard is limited to the **PHY & MAC** Layers
- IEEE 802.15.4 standard PHY provides the PHY data service and PHY management services:
 - The PHY data service enables the transmission and reception of PHY protocol data units (PPDU) across the physical radio channel.
 - The PHY's features include
 - radio transceiver activation/deactivation,
 - radio channel selection,
 - energy level detection (ED),
 - received signal quality (RSI) or link quality indicator (LQI),
 - clear channel assessment (CCA),
 - channel selection
 - transmitting and receiving packets in 2.4-GHz band.
- IEEE 802.15.4 standard MAC provides the MAC data service and MAC management services.
 - The MAC data service enables transmission of MAC protocol data units (MPDU) across the PHY data service.
 - The MAC sublayer features include
 - beacon management,
 - channel access,
 - GTS management,
 - frame validation,
 - ACK frame delivery, and
 - association and disassociation.

Image Source: https://www.embedded.com/ieee-802-15-4-zigbee-hardware-and-software-open-the-applications-window/

IEEE 802.15.4 PHY

IEEE 802.15.4 PHY Layer

PHY functionalities:

- Activation & deactivation of the radio transceiver
- Energy level detection (ED) within the current channel
- Link quality indication (LQI) or received signal quality (RSI) for received packets
- Clear channel assessment (CCA) for CSMA-CA
- Channel frequency selection
- Data packet transmission and reception at given frequency

Spectrum

- Federal Communications of Commissions (FCC) in USA decides frequency bands
- Applications using ISM band do not require a licence for stations emitting less than 1W.

FCC Band	Max. Transmit Power	Frequencies		
Industrial Band	< 1 W	902 MHz – 928 M Hz		
Scientific Band	< 1 W	2.4 GHz – 2.48 GHz		
Medical Band	< 1 W	5.725 GHz – 5.85 GHz		
U-NII (Unlicensed National Information Infrastructure)	< 40 mW	5.15 GHz – 5.25 GHz		
	< 200 mW	5.25 GHz – 5.35 GHz		
	< 800 mW	5.725 GHz – 5.82 GHz		

Physical layer transmission options in IEEE 802.15.4-2015

_	2.4 GHz,	16 channels,	data rate 250 kbps
_	915 MHz,	10 channels,	data rate 250 kbps
_	868 MHz,	3 channel,	data rate 100 kbps

Modulation

Modulation is the process by which some characteristic of a carrier wave is varied in accordance with an information/ modulating signal.

Modulation schemes

OQPSK PHY : DSSS PHY employing Offset Quadrature Phase-Shift Keying (OQPSK)

• BPSK PHY : DSSS PHY employing binary phase-shift keying (BPSK)

• ASK PHY : PSSS PHY employing Amplitude Shift Keying (ASK) and BPSK

Amplitude Shift Keying (ASK)

Binary Phase-Shift Keying (BPSK)

QPSK

Constellation diagram for QPSK

Quadrature Phase-Shift Keying (QPSK)

- More efficient use of bandwidth
 - as each signalling element represents more than one bit.

$$\mathbf{QPSK} \quad s(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11 \\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01 \\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00 \\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

Orthogonal QPSK

Problem in QPSK: large phase shift at high transition rate is difficult to perform.
 Phase shift is 180° in QPSK.

OQPSK

- ✓ a variation of QPSK known as offset QPSK or orthogonal QPSK
- ✓ a delay of one bit time is introduced in the Q stream of QPSK
- ✓ Its spectral characteristics and bit-error performance are the same as that of QPSK
- ✓ at any time the phase change in the combined signal never exceeds 90° (π/2)

Spread Spectrum

Spread Spectrum is a method of <u>spreading a transmitted spectrum over a wide bandwidth</u>, so that the <u>energy at any particular frequency is not detectable</u> without special foreknowledge of the spreading technique.

- Spread-spectrum transmission offers many advantages over a fixed-frequency transmission.
 - Spread-spectrum signals are highly resistant to narrow band interference
 - Signals are difficult to intercept, so immune to jamming
- Types:
 - direct sequence spread spectrum (DSSS)
 - frequency hopping spread spectrum (FHSS)

Cont...

Pseudorandom numbers

- generated by an algorithm using some initial value called the seed
- produce sequences of numbers that are not statistically random, but passes reasonable tests of randomness
- unless you know the algorithm and the seed, it is impractical to predict the sequence

Gain from this apparent waste of spectrum

- The signals gains immunity from various kinds of noise and multipath distortion.
- Immune to jamming attack
- It can also be used for hiding and encrypting signals.
- Several users can independently use the same higher bandwidth with very little interference. (e.g. CDMA)

DSSS

- each bit in the original signal is represented by multiple bits in the transmitted signal, using a spreading code
- spreading code spreads the signal across a wider frequency band in direct proportion to the number of bits used

Figure 9.6 Example of Direct Sequence Spread Spectrum

FHSS

Other PHY Attributes

- IEEE 802.15.4 does not prefer to use frequency hopping to minimize energy consumption.
- To minimize interference in 2.4 GHz band, IEEE 802.15.4 prefer channel no. 15, 20, 25, 26
- Transmission power is adjustable from 0.5 mW (min. in 802.1.5.4) to 1 W (max. in ISM band)
- Transmission power 1 mW provides theoretical distances as:
 - Outdoor range 300 m.
 - Indoor range 100 m.

Cont...

- 802.15.4 PHY provides energy detection (ED) feature
 - Application can request to asses each channel's energy level
 - It is an estimate of the received signal power within the bandwidth of the channel
 - Coordinator can make optimal selection of channel based on channels energy level
- 802.15.4 PHY provides link quality information (LQI) to NET and APP layers
 - The LQI measurement is a characterization of the strength and/or quality of a received packet.
 - The measurement may be <u>implemented using</u>
 - receiver ED
 - signal-to-noise ratio (SNR) estimation, or
 - iii. combination of the above methods.
 - Transmitter may decide to use high transmission power based on LQI
 - Applications may dynamically change 802.15.4 channels based on LQI
- 802.15.4 uses CSMA/CA which ask the PHY layer to do CCA
 - Clear Channel Assessment (CCA) is performed by any one of the below methods:
 - Energy above ED threshold regardless of modulation
 - Carrier sense only (i.e. based on the detection of a signal with modulation and spreading characteristics)
 - · Combination of both the above

IEEE 802.15.4 MAC

IEEE 802.15.4 MAC layer

- MAC layer manages access to the PHY channel
 - defines how devices in the same area will share the frequencies allocated.

Main tasks:

- Network beaconing for devices acting as coordinators
- PAN association and disassociation by a device
- Reliable link communications between two peer MAC entities
- Device security

IEEE 802.15.4 Device Types

- There are two different device types :
 - full function device (FFD)
 - reduced function device (RFD)
- The FFD can operate in three modes by serving as
 - PAN Coordinator
 - scanning the network and selecting optimal RF channel
 - selecting the 16 bit PAN ID for the network
 - Coordinator (aka Parent, Join Proxy)
 - relaying messages to other FFDs including PAN coordinator
 - transmits periodic beacon (under beacon enable access mode)
 - respond to beacon requests
 - Device
 - cannot route messages
 - usually receivers are switched off except during transmission
 - attached to the network only as leaf nodes
- The RFD can only serve as:
 - Device

General MAC Frame Format

MAC frame types:

- Data frame
- ACK frame
- Beacon frame
- Command frame

Cont...

802.15.4 MAC header									
Octets:2] :	1 0/2		0/2/8	0/2	0/2 0/2/8		variable	
Frame Control		ence ber	Destination PAN ID	Destination address	Sourc PAN I		ource dress	Frame payload	
Bits: 3 1 1 1 1 3 2 2 2 2									
Frame Type	Security enabled	Frame pendin		d Pan ID Compress	Reserved	Dest addr mode	Frame Version	Src addr	
-Values o	f the Fran	ne Type s	subfield						

Frame type value b ₂ b ₁ b ₀	Description					
000	Beacon					
001	Data					
010	Acknowledgment					
011	MAC command					
100-111	Reserved					

Addressing mode value $b_1 b_0$	Description
00	PAN identifier and address field are not present.
01	Reserved.
10	Address field contains a 16 bit short address.
11	Address field contains a 64 bit extended address.

Beacon Frame Format

Command Frame Format

Octets:2	1	4 to 20	1	variable	2		
Frame control	Data sequence number	Address information	Command type	Command payload	Frame check sequence		
MAC header			MAC payload MAC footer				

Command Frame Types

- Association request
- Association response
- Disassociation notification
- Data request
- PAN ID conflict notification

- Orphan Notification
- Beacon request
- Coordinator realignment
- GTS request

Data & ACK Frame Format

ACK Frame

Device Addressing

- Two or more devices communicating on the same physical channel constitute a WPAN.
 - A WPAN includes <u>at least one FFD (PAN coordinator)</u>
 - Each independent PAN will select a unique PAN ID
- Each device operating on a network has a unique 64-bit address
 - called extended unique identifier (EUI-64)
 - This address can be used for direct communication in the PAN
- A device also has a 16-bit short address, which is allocated by the PAN coordinator when the device associates with its coordinator.
 - Same short address may be present in to different PAN
- IEEE 802.15.4 devices can be grouped into PAN. These are identified by their 2 Byte PAN identifier

Deriving EUI-64 ID from MAC

Example:

Addressing Modes

- IEEE 802.15.4 frames contain address of both the source & destination.
- Three different addressing modes, which sets the address field (none/short/long, with/without PAN ID)
 - Short addressing mode: The address field includes a <u>short address</u> (2B) & a <u>PAN ID</u> (2B) = (total of 4 bytes).
 - Long addressing mode: The address field includes a <u>long address</u> (8B) and a <u>PAN ID</u> (2B) = (total of 10 bytes).
 - No addressing mode:
 - For ACK frame both addresses are missing.
 - For Data and Command frames only one (either source or destination) field can be omitted
 - if the source address is omitted, it means the PAN coordinator sent the frame;
 - if the destination address is missing, it means it should be received by the PAN coordinator.

Superframe

- A superframe is divided into two parts
 - Inactive: all station sleep.
 - no communication
 - nodes can turn their radios off and go into power saving mode
 - Active:
 - Active period is divided into 16 slots in general
 - 16 slots are further divided into two parts
 - Contention access period (CAP)
 - Contention free period (CFP)
 - Beacon only period (BOP)

- superframe order (SO): decides the length of the active portion in a superframe
- beacon order (BO): decides the length of a superframe or beacon transmission period
- beacon-enabled network should satisfy
 0≤S0≤B0≤14
- PAN coordinator decides SO, BO
 - Default value: SO=3, BO=5
- SD: Superframe Duration
- BI: Beacon Interval

Cont...

- aBaseSlotDuration
 - = The number of symbols forming a superframe slot when the superframe order (SO) is equal to zero
 - = 60 PHY symbols
- aNumSuperframeSlots
 - = The number of slots contained in any superframe
 - = 16
- aBaseSuperframeDuration
 - = The number of symbols forming a superframe when the superframe order (SO) is equal to zero
 - = aBaseSlotDuration × aNumSuperframeSlots

- So, Length of a superframe
 - = can range from 15.36 *msec* to 215.7 *sec* (= 3.5 min).
- Beacons are used for
 - announcing the existence of a PAN
 - synchronizing with other devices
 - informing pending data in coordinators
 - starting superframes

Cont...

- In a "beacon-enabled" network (i.e. uses superframe structure)
 - Devices use the slotted CAMA/CA mechanism to contend for the channels
 - FFDs who require fixed rates of transmissions can ask for GTS from the coordinator
- In a "nonbeacon-enabled" network (i.e. do not use superframe structure)
 - Devices use the unslotted CAMA/CA mechanism for channel access
 - GTS shall not be permitted
- CSMA/CA is not used for Beacon transmission; also not for Data transmission during CFP
- Each device will be
 - active for 2^{-(BO-SO)} portion of the time
 - sleep for 1 2^{-(BO-SO)} portion of the time
- Duty Cycle:

BO-SO	0	1	2	3	4	5	6	7	8	9	≧10
Duty cycle (%)	100	50	25	12	6.25	3.125	1.56	0.78	0.39	0.195	< 0.1

Data Transfer: Device -> Coordinator

In a beacon-enable network

- a device finds the beacon to synchronize to the **superframe** structure.
- Then it uses slotted CSMA/CA to transmit its data.

Coordinator Network Device Beacon Data Acknowledgment (optional)

Communication to a coordinator In a beacon-enabled network

In a non-beacon-enable network

 device simply transmits its data using unslotted CSMA/CA

Communication to a coordinator In a non-beacon-enabled network

Data Transfer: Coordinator -> Device

- Data transferred from coordinator to device
 - in a beacon-enabled network:
 - The coordinator indicates in the beacon that some data is pending.
 - A device periodically listens to the beacon and transmits a Data Request command using slotted CSMA/CA.
 - Then ACK, Data, and ACK

- Data transferred from coordinator to device
 - in a non-beacon-enable network:
 - The device transmits a **Data Request** using unslotted CSMA/CA.
 - If the coordinator has its pending data, an ACK is replied.
 - Then the coordinator transmits Data using unslotted CSMA/CA.
 - If there is no pending data, a data frame with zero length payload is transmitted.
 - ACK is replied

Channel Access Mechanism

a. 1-persistent

b. Nonpersistent

c. p-persistent

- CSMA/CA random channel access method
- This method was developed to decrease the chances of collisions when two or more stations start sending their signals over the datalink layer.
- CSMA requires that each station first check the state of the medium before sending.
- Persistence methods can be applied to take action when the channel is busy/idle.
 - 1-persistent
 - When station found idle channel, it transmits the frame without any delay.
 - Non-persistent
 - when the channel is found busy, it will wait for the random time and again sense for the state of the station whether idle or busy
 - p-persistent
 - If the channel found to be idle, it transmits the frame with probability p

Slotted CSMA/CA

CSMA/CA random channel access

beacon-enabled network uses slotted CSMA/CA

In slotted CSMA/CA:

- The backoff period boundaries of every device in the PAN shall be aligned with the superframe slot boundaries of the PAN coordinator
 - i.e. the start of first backoff period of each device is aligned with the start of the beacon transmission
- The MAC sublayer shall ensure that the PHY layer commences all of its transmissions on the boundary of a backoff period

Backoff:

 is an algorithm that uses feedback to multiplicatively decrease the rate of some process

Binary exponential backoff (BEB)

After c collisions in BEB algo., the delay is randomly chosen from [0, 1, ..., N] slots, where $N = 2^c - 1$, and expected backoff time (in slots) is N/2.

Note:

CW in 802.15.4 is not same with CW in 802.11

Unslotted CSMA/CA

CSMA/CA random channel access

nonbeacon-enabled network > uses unslotted CSMA/CA

In unslotted CSMA/CA:

- The backoff periods of one device are not related in time to the backoff periods of any other device in the PAN.
- One backoff period = aUnitBackoffPeriod.

Slotted CSMA/CA

- Each device maintains 3 variables for each transmission attempt
 - NB (Number of Backoff): number of times that backoff has been taken in this attempt of transmission
 - if exceeding macMaxCSMABackoff, the attempt fails
 - BE (Backoff Exponent): play the role to decide how many backoff periods a device shall wait before attempting to assess a channel.
 - · the number of backoff periods is greater than the remaining number of backoff periods in the CAP
 - Otherwise, MAC sublayer shall pause the backoff countdown at the end of the CAP, and resume it at the start of the CAP in the next superframe
 - CW (Contention Window): the number of clear slots that must be seen after each backoff
 - always set to 2 and count down to 0 if the channel is sensed to be clear
 - The design is for some PHY parameters, which require 2 CCA for efficient channel usage.
 - Note: CW in 802.15.4 is not same with CW in 802.11
 - CW in 802.11 is used to decide the backoff window from which the backoff period is chosen randomly
 - CW in 802.15.4 is used to decide how many rounds of CCA is required before getting the channel access
- Battery Life Extension (BLE):
 - designed for very low-power operation, where a node only contends in the first few slots

Cont...

Contention in 802.11 & 802.15.4

Contention in IEEE 802.11 DCF

Contention in IEEE 802.15.4 (for slotted CSMA/CA)

Why 2 CCAs to Ensure Collision-Free

- Each CCA occurs at the boundary of a backoff slot
- Each Backoff Slot duration = 20 PHY symbols
- Each CCA duration = 8 PHY symbols
- The standard specifies that a transmitter node performs the CCA twice in order to protect acknowledgment (ACK).
 - When an ACK packet is expected, the receiver shall send it after a t_{ACK} time on the backoff boundary
 - t_{ACK} varies from 12 to 31 symbols
 - One-time CCA of a transmitter may potentially cause a collision between a newly-transmitted packet and an ACK packet.
 - (See examples below)

Why 2 CCAs (case 1)

Why 2 CCAs (Case 2)

Why 2 CCAs (Case 3)

Unslotted CSMA/CA

NB (Number of Backoff)
BE (Backoff Exponent)
CW (Contention Window)
CCA (Clear Channel Assessment)

GTS Concepts

- A guaranteed time slot (GTS) allows a device to operate on the channel within a portion of the superframe
- A GTS shall only be allocated by the PAN coordinator
- The PAN coordinator can allocated up to 7 GTSs at the same time
- The PAN coordinator decides whether to allocate GTS based on:
 - Requirements of the GTS request
 - The current available capacity in the superframe

Cont...

- A GTS can be deallocated
 - At any time at the discretion of the PAN coordinator, OR
 - By the device that originally requested the GTS
- A device that has been allocated a GTS may also operate in the CAP
- A data frame transmitted in an allocated GTS shall use only short addressing
- Before GTS starts, the GTS direction shall be specified as either Tx or Rx
 - Each device may request one transmit GTS and/or one receive GTS
- A device shall only attempt to allocate and use a GTS if it is currently tracking the beacon
- If a device loses synchronization with the PAN coordinator, all its GTS allocations shall be lost
- The use of GTSs by an RFD is optional

Security

- Security Enabled bit in Frame Control is set to 1.
 - IEEE 802.15.4 specification uses Advanced Encryption Standard (AES) with a 128-bit key length as the base encryption algorithm
 - Message integrity code (MIC), which is calculated for the entire frame using the same AES key, to validate the data that is sent

Limitations in 802.15.4

- Disadvantages of Initial version of IEEE 802.1.5.4
 - MAC reliability
 - unbounded latency
 - multipath fading

- IEEE 802.15.4e amendment of IEEE 802.15.4-2011 expands the MAC layer feature set
 - to remedy the disadvantages of 802.15.4.
 - to better suitable in factory and process automation, and smart grid
 - Main modifications were:
 - · frame format,
 - · security,
 - determinism mechanism,
 - · frequency hopping

- IEEE 802.15.4g amendment of IEEE 802.15.4-2011 expands the PHY layer feature set
 - to optimize large outdoor wireless mesh networks for field area networks (FANs)
 - to better suitable in smart grid or smart utility network (SUN) communication
 - Main modifications were:
 - New PHY definitions
 - some MAC modifications were needed to support the new PHY

Lessons Learned

- ✓ What is IEEE 802.15.4
- ✓ IEEE 802.15.4. PHY
 - Functionalities
 - Modulation, QPSK, OQPSK
 - Spread Spectrum, DSSS, FHSS
- ✓ IEEE 802.15.4 MAC
 - MAC Frame Formats
 - Timeslot, Superframe
 - Device Addressing
 - Data Transfer Model
 - Channel Access Methods
 - Guaranteed time slot (GTS)
 - Association Procedure
 - Security
- ✓ Limitations of IEEE 802.15.4

Thanks!

Figures and slide materials are taken from the following sources:

- 1. David Hanes *et al.*, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, 2018, Pearson India.
- 2. Oliver Hersent et al., "The Internet of Things: Key Applications and Protocols", 2018, Wiley India Pvt. Ltd.