

Residual analysis

How can one determine if a sequence is "reasonably" white? In this course, we will examine a few different statistical test, namely

- Testing the ACF and the PACF
 - Plot and eyeball!
 - The Box-Pierce test
 - The Ljung-Box-Pierce test
 - The McLeod-Li test
 - The Monti test
- $\bullet\,$ Testing the cumulative periodogram
- Testing sign changes

Important: The first set of tests all assume that the ACF is Gaussian distributed, and may be unreliable if this assumption is violated!

Testing the ACF and the PACF

Remember that it is 95% confidence intervals; 1 in 20 may be slightly outside.

Testing the ACF and the PACF

The Box-Pierce Q-statistic tests the hypothesis that the initial ACF estimates are not significantly different from zero, forming the Q-statistic as

$$Q = N \sum_{\ell=1}^{K} \hat{\rho}_{\hat{e}}^{2}(\ell)$$

where K is the number of considered correlations. Thus, with significance α , one may (asymptotically) reject the hypothesis that the residual is white if

$$Q > \chi^2_{1-\alpha}(K)$$

where $\chi^2_{1-\alpha}(K)$ is the α -quantile of the χ^2 -distribution with K degrees of freedom.

Testing the ACF and the PACF

To better handle the small sample case, the Ljung-Box-Pierce Q-statistic tests introduce a scaling, instead forming

$$Q^* = N(N+2) \sum_{\ell=1}^K \frac{\hat{\rho}_{\hat{\epsilon}}^2(\ell)}{N-\ell}$$

One may also examine the squared residual and form the McLeod-Li test,

$$Q_2^* = N(N+2) \sum_{\ell=1}^K \frac{\hat{\rho}_{\hat{e}^2}^2(\ell)}{N-\ell}$$

One may instead test the PACF, forming the Monti test

$$Q_M = N(N+2) \sum_{\ell=1}^{K} \frac{\hat{\phi}_{\ell,\ell}^2}{N-\ell}$$

The test statistic Q^* , Q_2^* , and Q_M are all $\chi^2(K)$ for a white signal. In general, the McLeod-Li test depends strongly on the Gaussian assumption and is often unreliable.

These tests are available using the functions ${\tt lbpTest}$, ${\tt mlTest}$, and ${\tt montiTest}$.

Testing the cumulative periodogram

As the (theoretical) spectrum of a white noise is flat, one can compare how well the sum of the periodogram, up to a given frequency ω_k , follows a straight line:

$$\phi_c(\omega_k) = \frac{\sum_{\ell=1}^k \hat{\phi}_y(\omega_\ell)}{N\hat{\sigma}^2} = \frac{\frac{1}{N} \sum_{\ell=1}^k \left| \sum_{t=1}^N y_t e^{-i\omega_\ell t} \right|^2}{N\hat{\sigma}_y^2} = \frac{\sum_{\ell=1}^k \hat{\phi}_y(\omega_\ell)}{\sum_{\ell=1}^N \hat{\phi}_y(\omega_\ell)}$$

The corresponding confidence interval is $\pm K_{\alpha}/\sqrt{\lfloor N-1/2\rfloor}$, above and below the theoretical line. The coefficient K_{α} determines the $(1-\alpha)$ probability that y_t is white noise.

This test is available using the function plotCumPer.

α	0.01	0.05	0.10	0.25
K_{α}	1.63	1.36	1.22	1.02

Testing sign changes

One can also examine the number of times the signal change sign, P. For a white signal, this should be about every second sample

$$P \in \mathcal{B}\left(N-1, \frac{1}{2}\right)$$

For large data sets, P may be well approximated as being Normal distributed

$$P \in \mathcal{N}\left(\frac{N-1}{2}, \frac{N-1}{4}\right)$$

The test is available in the provided Matlab function countSignChanges.

The above discussed tests have all been collected in the function whitenessTest.

Is this normal?

One may use the estimated skewness (asymmetry) and kurtosis (peakiness) to determine if an estimated distribution is Gaussian.

 $S = skewness = 3rd moment / std^3$ (This is 0 for a Gaussian). $K = kurtosis = 4th moment / std^4$ (This is 3 for a Gaussian).

The Jarque-Berra test is formed as

$$\gamma_{JB} = \frac{N}{6} \left(\hat{S}^2 + \frac{1}{4} (\hat{K} - 3)^2 \right)$$

which, for a Gaussian, is χ^2 distribution with two degrees of freedom. The test is provided in the function jbtest.

For small samples, the D'Agostino-Pearson's K^2 test is often preferable. It is provided in the function ${\tt dagostinoK2test}$.

To get a visual alternative, one may use the functions normplot or plotNTdist.

