

Introduction to seminar course

The unreasonable effectiveness of overparameterized machine learning models (3 hp)

Dave Zachariah

Machine Learning Arena IT-CIM & Div. Systems and Control

ML journal clubs

- 1. Introduction to Machine Learning (2017)
- 2. Learning Complex Models via Approximate Inference (2018)
- 3. Adversarial Machine Learning (2019)

ML journal clubs

- 1. Introduction to Machine Learning (2017)
- 2. Learning Complex Models via Approximate Inference (2018)
- 3. Adversarial Machine Learning (2019)

New effort: Seminar course!

Background

Textbook example of prediction

Data on outcome y and covariate x

Lindholm, A. et al.: Machine Learning - A First Course for Engineers and Scientists, Cambridge University Press. 2021.

Textbook example of prediction

Example of predictor model parameterized by θ :

$$\widehat{y}_{\theta}(x) = \boldsymbol{\theta}^{\top} \begin{bmatrix} 1 \\ x \end{bmatrix} \qquad \dim(\boldsymbol{\theta}) = 2$$

Increasing 'model complexity'

Example of predictor model parameterized by θ :

$$\widehat{y}_{m{ heta}}(x) = {m{ heta}}^{ op} egin{bmatrix} 1 \\ x \\ \vdots \\ x^{10} \end{bmatrix} \qquad \dim({m{ heta}}) = 11$$

Increasing 'model complexity'

If $\dim(\theta) \le \#$ training samples, then (typically) there exists unique predictor $\widehat{y}_{\theta}(x)$ that minimizes training error, e.g.,

$$E_{\mathsf{train}} = \widehat{\mathbb{E}}[(y - \widehat{y}_{\boldsymbol{\theta}}(x))^2]$$

Increasing 'model complexity'

If $\dim(\theta)$ >#training samples, then many predictors $\widehat{y}_{\theta}(x)$ can reduce the training error to zero, e.g.,

$$E_{\mathsf{train}} = \widehat{\mathbb{E}}[(y - \widehat{y}_{\pmb{\theta}}(x))^2] = 0$$

Overfit and overparameterization

Figure 4.3: Behavior of \hat{E}_{tmin} and \hat{E}_{new} for many supervised machine learning methods, as a function of model complexity. We have not made a formal definition of complexity, but a rough proxy is the number of parameters that are learned from the data. The difference between the two curves is the generalization gap. The training error \hat{E}_{tmin}

Training error vs. test error

Overfit and overparameterization

Figure 4.3: Behavior of \tilde{E}_{train} and \tilde{E}_{rew} for many supervised machine learning methods, as a function of model complexity. We have not made a formal definition of complexity, but a rough proxy is the number of parameters that are learned from the data. The difference between the two curves is the generalization gap. The training error \tilde{E}_{train}

Puzzle: Modern ML methods using

- ▶ models with $dim(\theta)$ >#training samples
- ightharpoonup stochastic gradient search methods achieve state-of-the-art test error E_{test} !