Particle spectrograph

Wave operator and propagator

Source constraints	-	:
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0}^{\#1} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$\tau_0^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_0^{\#_1} - 2\bar{i}k\sigma_0^{\#_1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2\alpha} + 2ik \ \sigma_{1}^{\#2\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}\alpha\beta - 2ik \ \sigma_{1+}^{\#1}\alpha\beta == 0$	$t_{1}^{\#1}\alpha\beta - 2ik \sigma_{1}^{\#1}\alpha\beta == 0 \left \partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} + \right $	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} = =$	
	$\partial_{\chi}\partial^{\alpha} t^{\chi\beta} + \partial_{\chi}\partial^{\beta} t^{\alpha\chi} + \partial_{\chi}\partial^{\chi} t^{\beta\alpha} +$	
	$2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha}$	
$2 \sigma_{1+}^{\#1} \alpha \beta + \sigma_{1+}^{\#2} \alpha \beta == 0$	$\partial_{\chi} \sigma^{\alpha\beta\chi} + \partial_{\chi} \sigma^{\beta\chi\alpha} == \partial_{\chi} \sigma^{\alpha\chi\beta}$	3
$\tau_{2}^{\#1}\alpha\beta - 2ik \ \sigma_{2}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 -i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}t^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}t^{\chi})$	5
	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/dalige generators:	de denerators:	2.0

Ouadratic (free) action $S == \iiint_{\beta} \frac{1}{3} (3t_1 \mathcal{A}^{\alpha_l} \mathcal{A}_{\beta} + 3f^{\alpha\beta} t_{\alpha\beta} + 3\mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{-}$ $ 6t_1 \mathcal{A}^{\theta}_{\alpha} \partial_{\beta} f^{\alpha l} + 6t_1 \mathcal{A}^{\theta}_{\beta} \partial^{l} f^{\alpha}_{\alpha} - 3t_1 \partial_{l} f^{\theta}_{\beta} \partial^{l} f^{\alpha}_{\alpha} - 6t_1 \partial_{\beta} g^{\theta}_{\beta} \partial^{l} f^{\alpha}_{\alpha} - 3t_1 \partial_{l} f^{\theta}_{\beta} \partial^{l} f^{\alpha}_{\alpha} - 6t_1 \partial_{\beta} g^{\theta}_{\beta} \partial^{l} f^{\alpha}_{\alpha} - 6t_1 \partial_{\beta} g^{\theta}_{\beta} \partial^{l} f^{\alpha}_{\alpha} - 6t_1 \partial_{\beta} g^{\theta}_{\beta} \partial^{l} f^{\alpha}_{\beta} - 6t_1 \partial_{\beta} g^{\theta}_{\beta} \partial^{l} f^{\alpha}_{\beta} - 6t_1 \partial_{\beta} g^{\theta}_{\beta} \partial^{l} f^{\alpha}_{\beta} + 6t_1 \partial_{\beta} g^{\theta}_{\beta} \partial^{l} f^{\alpha}_{\beta} + 6t_1 \partial_{\beta} g^{\alpha}_{\beta} \partial^{l}_{\beta} \partial^{l}_{\beta} \partial^{l}_{\beta} \partial^{l}_{\beta} \partial^{l}_{\beta} + 6t_1 \partial_{\beta} g^{\alpha}_{\beta} \partial^{l}_{\beta} \partial^{l}_{\beta$
--

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 $\sigma_{1}^{\#_{1}} \dagger^{\alpha}$

 $\tau_1^{\#1} + ^{lphaeta}$

0

0

0

 $\sigma_{1}^{\#2} +^{lpha}$

0

0

0

0

0

0

0

 $\tau_{1}^{\#1} +^{\alpha}$

0

0

0

0

 $au_2^{\#1}{}_{lphaeta}$

2 i √2 k

 $\frac{1}{(1+2k^2)^2t}$

 $\mathcal{A}_{2^{+}\alpha\beta}^{\#1} \, f_{2^{+}\alpha\beta}^{\#1} \, \, \mathcal{A}_{2^{-}\alpha\beta\chi}^{\#1}$

 $-\frac{i k t_1}{\sqrt{2}}$

0

 $\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1} \frac{4 k^2}{(1+2 k^2)^2 t_1}$

0

 $\frac{2}{(1+2k^2)^2t_1}$

 $\mathcal{A}_{2}^{\sharp 1} \dagger^{lphaeta}$

 $f_{2+}^{\#1} \dagger^{\alpha\beta}$

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

 $\frac{2k^2}{(1+2k^2)^2t_1}$

 $i k t_1$

0

 $k^2 r_1 - \frac{t_1}{2}$

0

0

0

0

0

 $\frac{t_1}{\sqrt{2}}$

0 0

0

0

0 0

0 0

 $\mathcal{A}_{1}^{#1} + \alpha$ $\mathcal{A}_{1}^{#2} + \alpha$ $f_{1}^{#2} + \alpha$ $f_{1}^{#2} + \alpha$

0

0

0

0

 $f_1^{\#1} \dagger^{\alpha \beta}$

0 0

0

 $\frac{1}{(1+2k^2)^2t^2}$

 $-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

0

0

0

0

0

0

0

 $\tau_{0}^{\#1}$

 $\mathcal{A}_{1}^{\#1}$

 $\mathcal{A}_{1}^{\#1}$

 $\sigma_{2}^{\#1}{}_{lphaeta\chi}$

 $\frac{2}{2 k^2 r_1 + t_1}$

 $k^2 r_1 + \frac{t_1}{2}$

0 0

0

0

0

 $\sqrt{2}$

 $\mathcal{A}_{0}^{\#1}+f_{0}^{\#1}+f_{0}^{\#1}+f_{0}^{\#2}+g_{0}^{\#1}+g_{0}^$

0

	SOUICE COI SO(3) irrep	$\sigma_{0}^{\#1} == 0$	$\tau_0^{#2} == 0$	$\tau_{0}^{\#1} - 2 i k \sigma_{0}^{\#}$	$\tau_{1}^{\#2\alpha} + 2ik$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta}$ - 2 i k	
Mas	siv	e a	nd	mas	ssle	ess	spec	tr

ra

Unitarity conditions