TRIGONOMETRY TOMO VI

1rd SECONDARY

FEEDBACK

MOTIVATING STRATEGY

"Enseñar no es transferir conocimiento, es crear la posibilidad de producirlo."

Paulo Freire

En el siguiente plano cartesiano, calcule el valor del radio vector:

Resolución:

Recordar

$$r = \sqrt{(-9)^2 + (-12)^2}$$

$$r = \sqrt{81 + 144}$$

¡Qué bien!

$$r = \sqrt{225} \qquad \qquad \therefore r = 15$$

$$\therefore r = 15$$

En el siguiente plano cartesiano, calcule el valor del radio vector (r).

Resolución:

 Calculamos las coordenadas del punto medio M.

$$M\begin{cases} x = \frac{18 + 0}{2} & \longrightarrow x = 9 \\ y = \frac{-9 + (-9)}{2} & \longrightarrow y = -9 \end{cases} \Rightarrow M(9; -9)$$

Calculamos el radio vector

$$r = \sqrt{x^2 + y^2}$$
 $r = \sqrt{(9)^2 + (-9)^2}$
 $r = \sqrt{81 + 81}$
 $r = \sqrt{2(81)}$
 $\therefore r = 9\sqrt{2}$

Del gráfico, calcule M = 3(x + y)

Resolución:

$$9 = \sqrt{(\mathbf{x})^2 + (\sqrt{17})^2}$$

$$9=\sqrt{x^2+17}$$

$$81 = x^2 + 17$$

$$64 = x^2$$

$$x = 8$$

$$x = -8$$

$$6 = \sqrt{(-\sqrt{32})^2 + (\mathbf{y})^2}$$

$$6=\sqrt{32+y^2}$$

$$36 = 32 + y^2$$

$$4 = y^2$$

$$y = 2$$

$$y = -2$$

$$M = 3(8 + (-2))$$

$$\therefore M = 18$$

Determine las coordenadas del punto Q en el gráfico mostrado.

Recuerda

$$x=\frac{x_1+x_2}{2}$$

(-3;4)

$$y = \frac{y_1 + y_2}{2}$$

Resolución:

$$Q \begin{cases} x = \frac{(-9) + (-3)}{2} = \frac{-12}{2} = -6 \\ y = \frac{(6) + (4)}{2} = \frac{10}{2} = 5 \end{cases}$$

Coordenadas del punto medio

¡Muy bien!

Determine las coordenadas del punto M a partir del gráfico mostrado.

$$x=\frac{x_1+x_2}{2}$$

$$y=\frac{y_1+y_2}{2}$$

Resolución:

Calculamos las coordenadas del punto D

$$D \begin{cases} x = \frac{-7 + 13}{2} = \frac{6}{2} = 3 \\ y = \frac{-10 + 14}{2} = \frac{4}{2} = 2 \end{cases}$$

$$D(3; 2)$$

Calculamos las coordenadas del punto M

$$M\begin{cases} x = \frac{3+15}{2} = \frac{18}{2} = 9\\ y = \frac{2+0}{2} = \frac{2}{2} = 1\\ \therefore M(9; 1) \end{cases}$$

6

En la figura, calcule 2m+n.

<u>Resolucion.</u>

Calculamos las coordenadas del punto D

$$D\begin{cases} x = \frac{-7 + (-5)}{2} = \frac{-12}{2} = -6 \\ 0 \begin{cases} y = \frac{-5 + 11}{2} = \frac{6}{2} = 3 \end{cases} \longrightarrow D(-6; 3)$$

Calculamos las coordenadas del punto M

$$M\begin{cases} x = \frac{4+2}{2} = \frac{6}{2} = 3\\ y = \frac{-5+11}{2} = \frac{6}{2} = 3 \end{cases} \longrightarrow M(3;3)$$

Calculamos las coordenadas del punto E

$$E \begin{cases} m = \frac{-6+3}{2} = \frac{-3}{2} \\ n = \frac{3+3}{2} = \frac{6}{2} = 3 \end{cases}$$
 iMuy bien!

7

Calcule M = DH - DV en la figura.

RESOLUCIÓN:

• Calculando distancia vertical (DV):

$$DV = (7) - (-4)$$

• Calculando distancia horizontal (DH):

$$DH = (4) - (-3)$$

Calculamos:

$$M = DH - DV$$

$$\rightarrow$$
 M = 7 – 11

P(-2; 2)

Calcule la longitud del segmento PQ en el gráfico mostrado.

RESOLUCIÓN:

Calculando distancia entre los puntos P y Q:

d
$$(\overline{PQ}) = \sqrt{[(-2)-10)]^2 + [(2)-(-3)]^2}$$

d
$$(\overline{PQ}) = \sqrt{[(-12)]^2 + [(5)]^2}$$

$$d(\overline{PQ}) = \sqrt{144 + 25}$$

$$d(\overline{PQ}) = \sqrt{169}$$

$$d(\overline{PQ}) = 13$$

$$\therefore$$
 d (\overline{PQ}) = 13 u

Calcule la longitud de MP en el gráfico mostrado:

$$x = \frac{x_1 + x_2}{2}$$
 $y = \frac{y_1 + y_2}{2}$

Resolución:

Calculamos las coordenadas del punto M

$$M\begin{cases} x = \frac{-3+9}{2} = \frac{6}{2} = 3\\ y = \frac{3+11}{2} = \frac{14}{2} = 7 \end{cases}$$
 M(3; 7)

Calculando distancia entre los puntos M y P:

$$d(\overline{MP}) = \sqrt{[(3) - 18)]^2 + [(7) - (-1)]^2}$$

$$d(\overline{MP}) = \sqrt{[(-15)]^2 + [(8)]^2}$$

$$d(\overline{MP}) = \sqrt{225 + 64} = \sqrt{289} = 17$$

 $\therefore d(\overline{MP}) = 17u$

10 Observe el siguiente gráfico y determine cuál de los dos amigos llegará primero al colegio si ambos caminan a la misma velocidad.

Resolución:

$$r_1 = \sqrt{(-\sqrt{12})^2 + 2^2}$$

$$r_1 = \sqrt{12 + 4}$$

$$r_1 = \sqrt{16}$$

$$r_1 = 4$$

$$r_2 = \sqrt{(\sqrt{20})^2 + (-4)^2}$$

$$r_2 = \sqrt{20 + 16}$$

$$r_2 = \sqrt{36}$$

$$r_2 = 6$$

∴ Kiko llegará primero

