Test 3 1) Give a description of Chomsky hierarchy of grammer in a table.

Турс	Longuage generated	production sutriction	accepter.
0	Phorse - structure =	X= any string, with nonterminals Y= any string.	TM
1	Contest - sonsitive	X= any string with nonterminales. Y= any string as long as ir langu than X	TM's with hamdet Gut instinut) Tape, colled Imar - bounded automata LB+'S #
2	Context - free	X= one nonterminal Y= any strong.	PDt
3	Regular	X= on (nonterminal. Y= tN or Y= t tterminal N nonterminal.	FA

2) a) [(anb an , n //)

S -> aba / atba.

Ab -> bt.

ta -> Bbaa

bB -> Bb

aB - aal aat

showing (n=2 =) 02/2/2

Chansky hierachy type: 0,1
-not 3: We can prove by Pumping Lemma.
-not 2 because it has 3 mintominals = 10

- m (1) because 1x1 < 141, xis any strings with

CS Scanned with Camscanter beause x is any string with montumonals

5 - agsb -> agaasbb -> agaaagsbbb => agaaaabbb

Charmsky heroschy tupe: 0,2

- in 6 heaves X = any string nothing temments

- not in @ because /X/>/Y/when Y = 1

- in (2) because X has only one nonterminal.

- not in (3) because we comprove by Pumping Lomma.

 $L = \int a^n b^m : n \leqslant n \leqslant 2n$

wher each a is read, we push 1 or 2 tokens (a) to be consumed on the stack . when a b'is well, we change state jand each b' is read, consume. one token (a).

4) {a,1} L= [w: 1w0,0 and is multiple of 2]. =) even

a) RE: ((ath)(ath))* => S -> aas 1 ab s1 bb s1 ba s 1 1

Chapter 7:

4) $a_1c_1d_1$. Construct upda's: $\xi = \{a_1b_1c_1\}$ $a > L = \{a^mb^{2m}(n) > 0\}$ $a_1 \neq 0$

0,0000 1,7,7

 $C) = \{ a^{m} b^{m} c^{m+m} : m \neq 0, m \neq m \}.$ 6,1,01 90,2

$$f) L = \left\{ a^n b^m : n \leq m \leq 3n \right\}.$$

$$\begin{array}{c} h) \ L = \left\{ \begin{array}{c} a^{n} h^{2n} , & n > l \right\} \\ b_{1} b_{1} h_{1} \\ \hline TM , & \rightarrow \left(\begin{array}{c} a_{0} + h^{2n} \\ \hline \end{array} \right) & \begin{array}{c} b_{1} b_{1} h_{1} \\ \hline \end{array} \right. \\ B_{1} B_{1} h_{1} \\ \hline \end{array} \\ B_{1} B_{1} h_{1} \\ \hline \end{array} \\ \begin{array}{c} b_{1} b_{1} h_{1} \\ \hline \end{array}$$

9)
$$h = (a(a)b)^{*})$$
 $f \in \{a_{1}b_{1}\}$.

 $a_{1}a_{1}R$
 $a_{1}a_{1}R$
 $a_{1}a_{1}R$
 $a_{1}a_{1}R$
 $a_{1}a_{1}R$
 $a_{1}a_{1}R$
 $a_{1}a_{1}R$
 $a_{1}a_{1}R$
 $a_{1}a_{1}R$

Yes, it is possible. I examining the first symbol and ignore.

Scanned with Gamson oner

Chapter 11:

1) b)
$$L = \{a^{m}b^{m}c^{2n}: n\}/j$$

 $S \rightarrow a + b + c + c \rightarrow b + c$
 $b \rightarrow b \rightarrow c$

Show case?

act hb cccc.

S-> a tbcc. -> a b tcc -> a b B b cccc. $\rightarrow \alpha B b b cccc.$ $\rightarrow a a b b cccc.$

#; 3 mterger adder

* 1 add x Intergers;

