Backtracking

Vekov Géza

Permutáció

Kombináció

паннах-рагиск

Backtracking Visszalépéses keresés

Babeș-Bolyai Tudományegyetem

Halmaz-partíciók

Adott egy n elemű halmaz, melynek elemei: 1, 2, ..., n. Határozzuk meg a halmaz összes permutációját.

1. Permutáció értelmezése.

Adott egy n elemű halmaz, melynek elemei: 1, 2, ..., n. Határozzuk meg a halmaz összes permutációját.

- 1. Permutáció értelmezése.
- 2. Hány permutációja van egy adott halmaznak?

Adott egy n elemű halmaz, melynek elemei: 1, 2, ..., n. Határozzuk meg a halmaz összes permutációját.

- 1. Permutáció értelmezése.
- 2. Hány permutációja van egy adott halmaznak?

$$P(n) = n!$$

3. Hogyan generáljuk ki az összes permutációt?

- ▶ 1. helyre kiválaszthatunk bármely számot (1, ..., n)
- 2. helyre kiválaszthatunk bármely számot (1, ..., n)...
- ▶ i. helyre kiválaszthatunk bármely számot (1, ..., n) ...
- ▶ n. helyre kiválaszthatunk bármely számot (1, ..., n)

Belső feltétel: minden szám csak egyszer fordulhat elő. Optimalizálási lehetőség.

Észrevétel: ugyanaz a feladat minden szinten.

Megoldási módszerek:

1. Minden i. elem kiválasztásakor ellenőrizzük, hogy az előtte levő választásokban nem szerepel-e az aktuálisan kiválasztott szám. $(x_k \neq x_i, \forall i = \overline{1,n})$

Megoldási módszerek:

1. Minden i. elem kiválasztásakor ellenőrizzük, hogy az előtte levő választásokban nem szerepel-e az aktuálisan kiválasztott szám. $(x_k \neq x_i, \forall i = \overline{1, n})$

Az ellenőrzés átlagos bonyolultsága: ...?

2. Nyilvántartjuk egy logikai tömbben, hogy egy számot használtunk-e vagy sem.

Határozzuk meg a halmaz összes k-ad rendű variációját.

1. Variáció értelmezése.

Határozzuk meg a halmaz összes k-ad rendű variációját.

- 1. Variáció értelmezése.
- 2. Hány k-ad rendű variációja van egy adott halmaznak?

Határozzuk meg a halmaz összes k-ad rendű variációját.

- 1. Variáció értelmezése.
- 2. Hány k-ad rendű variációja van egy adott halmaznak?

$$V_n^k = n \cdot (n-1) \cdot \dots \cdot (n-k+1)$$

Határozzuk meg a halmaz összes k-ad rendű variációját.

- 1. Variáció értelmezése.
- 2. Hány k-ad rendű variációja van egy adott halmaznak?

$$V_n^k = n \cdot (n-1) \cdot ... \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

3. Hogyan generáljuk ki az összes variációt?

- ▶ 1. helyre kiválaszthatunk bármely számot (1, ..., n)
- 2. helyre kiválaszthatunk bármely számot (1, ..., n)...
- ▶ i. helyre kiválaszthatunk bármely számot (1, ..., n) ...
- ▶ **k**. helyre kiválaszthatunk bármely számot (1, ..., n)

Belső feltétel: minden szám csak egyszer fordulhat elő. Optimalizálási lehetőség.

Észrevétel: ugyanaz a feladat minden szinten.

Megoldási módszerek:

1. Minden i. elem kiválasztásakor ellenőrizzük, hogy az előtte levő választásokban nem szerepel-e az aktuálisan kiválasztott szám. $(x_k \neq x_i, \forall i = \overline{1,n})$

Variáció

Megoldási módszerek:

1. Minden i. elem kiválasztásakor ellenőrizzük, hogy az előtte levő választásokban nem szerepel-e az aktuálisan kiválasztott szám. $(x_k \neq x_i, \forall i = \overline{1,n})$

Az ellenőrzés átlagos bonyolultsága: ...?

2. Nyilvántartjuk egy logikai tömbben, hogy egy számot használtunk-e vagy sem.

Határozzuk meg a halmaz összes k-ad rendű kombinációját, azaz

Határozzuk meg a halmaz összes k-ad rendű kombinációját, azaz a halmaz összes k-ad rendű részhalmazát.

1. Kombináció értelmezése.

Határozzuk meg a halmaz összes k-ad rendű kombinációját, azaz a halmaz összes k-ad rendű részhalmazát.

- 1. Kombináció értelmezése.
- Hány k-ad rendű kombinációja van egy adott halmaznak?

Határozzuk meg a halmaz összes k-ad rendű kombinációját, azaz a halmaz összes k-ad rendű részhalmazát.

- 1. Kombináció értelmezése.
- Hány k-ad rendű kombinációja van egy adott halmaznak?

$$C_n^k = \frac{n!}{(n-k)! \cdot k!}$$

3. Hogyan generáljuk ki az összes kombinációt?

...

▶ 1. helyre kiválaszthatunk bármely számot (1, ..., n)

- i. helyre kiválaszthatunk bármely számot (1, ..., n)...
- k. helyre kiválaszthatunk bármely számot (1, ..., n)

Belső feltétel: minden szám csak egyszer fordulhat elő. Ugyanaz a *részhalmaz* csak egyszer fordulhat elő.

Észrevétel: ugyanaz a feladat minden szinten.

Kombinációk 3

Backtracking Vekov Géza

Alapfeladatok

Kombináció

Haimaz-particiok

A megoldás elfogadásához az adott részhalmaz egyedi kell hogy legyen.

Hogyan **garantáljuk** ezt?

A megoldás elfogadásához az adott részhalmaz egyedi kell hogy legyen.

Hogyan garantáljuk ezt?

Értelmezünk egy rendezési relációt a számok között, és kikötjük, hogy csak *növekvő* sorokat szabad építsünk.

⇒ minden részhalmaz építéséből kifolyólag egyedi lesz.

A megoldás elfogadásához az adott részhalmaz egyedi kell hogy legyen.

Hogyan garantáljuk ezt?

Értelmezünk egy rendezési relációt a számok között, és kikötjük, hogy csak *növekvő* sorokat szabad építsünk.

⇒ minden részhalmaz építéséből kifolyólag egyedi lesz.

Generáljuk az $\{1,2,...,n\}$, $n\in\mathbb{N}^*$ halmaz partícióit! Egy $M=\{1,2,...,n\}$ halmaz partíciói alatt a halmaz diszjunkt részhalmazokra való felbontását értjük. Ezek egyesítése az M halmazt eredményezi.

$$M = M_1 \cup M_2 \cup ... \cup M_k, M_i \subseteq M, i = \overline{1, k},$$

$$M_i \cap M_j = \emptyset, \forall i, j = \overline{1, k}, i \neq j, k = \overline{1, n}$$

Példa:	legyen	M =	$\{1,$	2,	3}
--------	--------	-----	--------	----	----

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	
{1,2,3}	1	1	1	$(1,2,3 \in M_1)$
$M=M_1$				
$\overline{\{1,2\} \cup \{3\}}$	1	1	2	$1,2\in M_1$
$M = M_1 \cup M_2$				$3 \in M_2$
$\{1,3\} \cup \{2\}$	1	2	1	$1,3 \in M_1$
$M=M_1\cup M_2$				$2 \in M_2$
$-$ {1} \cup {2, 3}	1	2	2	$1 \in M_1$
$M = M_1 \cup M_2$				$2, 3 \in M_2$
$1 \cup \{2\} \cup \{3\}$	1	2	3	$1 \in M_1$
$M=M_1\cup M_2\cup M_3$				$2 \in M_2$
				3 ∈ <i>M</i> ₃

Halmaz-partíciók 3

Megjegyzések

- 1. A halmazpartíciók esetében a sorrend nem számít, csak a részhalmazok
- Egyediség: rendezési reláció.
- 3. Minden i elem, amely hozzátartozik az M halmazhoz, csak egyetlen M_i részhalmazhoz tartozhat.
- 4. A partíciót egy olyan $x_1, x_2, ..., x_n$ sorozatt alkotoljuk, amelynek x_i elemei azoknak az M_i részhalmazoknak a iindexei, amelyhez az i elem tartozik.
- 5. Az 1 mindig eleme M_1 nek
- 6. A 2 eleme M_1 -nek, vagy M_2 -nek $\Rightarrow i$ nem tartozhat csak az $M_1, M_2, ..., M_i$ halmazok egyikéhez.

Vekov Géza

Halmaz-partíciók

Halmaz-partíciók

- ▶ Ha eljutottunk az *i*-hez \Rightarrow az előző elemeket már elhelyeztük.
 - A partícióban már megvannak az $M_1, M_2, ..., M_k, k < i$) részhalmazok.
- Az i elemet vagy hozzáadjuk valamely már létező részhalmazhoz, vagy új M_{k+1} részhalmazt alakítunk belőle
- A továbbiakban, azt a feladatot, amit megoldottunk *i*-re, megoldjuk i+1 re.

Megállási feltétel: az *M* halmaz valamennyi eleme be van osztva részhamazokba.