ภาคผนวก D

การทดลองที่ 4 การใช้งานระบบปฏิบัติการยูนิกซ์ เบื้องต้น

ยูนิกซ์ (Unix) เป็นระบบปฏิบัติลำดับแรกๆ ของโลกที่เป็นต้นแบบการสร้างระบบปฏิบัติการต่างๆ รวมทั้ง ระบบปฏิบัติการลินุกซ์ และ Raspberry Pi OS ผู้อ่านสามารถเรียนรู้การใช้งานคำสั่งพื้นฐานด้วยการพิมพ์คำสั่ง ทางคีย์บอร์ด และกราฟิกไปพร้อมกัน โดยมีวัตถุประสงค์ดังต่อไปนี้

- เพื่อเปรียบเทียบการทำงานแบบกราฟิกส์และแบบคำสั่งทางคีย์บอร์ด
- เพื่อให้ผู้อ่านใช้คำสั่งเพื่อบริหารจัดการไฟล์ในไดเรกทอรีหรือโฟลเดอร์เบื้องต้น
- เพื่อวางพื้นฐานการใช้งานระบบปฏิบัติการยูนิกซ์เบื้องต้นสำหรับพัฒนาโปรแกรมภาษาต่างๆ
- เพื่อค้นคว้าข้อมูลขั้นสูงของบอร์ด Pi

ผู้อ่านที่คุ้นเคยกับระบบปฏิบัติการวินโดวส์ และการพิมพ์คำสั่งทางคีย์บอร์ด (Command Line) ของระบบ ปฏิบัติการดอส (DOS: Disk Operating System) ในอดีต จะค้นพบว่า คำสั่งเหล่านี้มีความใกล้เคียงกัน แต่ ยูนิกซ์จะเข้มงวดกว่า DOS ขอให้ผู้อ่านปฏิบัติตามคำสั่งอย่างระมัดระวัง และสังเกตตัวพิมพ์อย่างละเอียดว่าเป็น ตัวพิมพ์ใหญ่หรือเล็ก เพื่อสร้างความคุ้นเคยกับการพัฒนาโปรแกรมด้วยภาษาอื่นๆ ต่อไป

D.1 การใช้งานระบบผ่านทาง GUI

D.1.1 หน้าจอหลัก (Desktop)

หน้าจอหลักของระบบในรูปที่ D.3 มีลักษณะคล้ายกับหน้าจอหลักของระบบปฏิบัติการอื่นๆ เช่น ปุ่มเมนู หลัก แถบแสดงรายชื่อโปรแกรมที่กำลังทำงานอยู่ ปุ่มไอคอนของโปรแกรมที่นิยมใช้บ่อย (Favorites) ไอคอน แสดงการเชื่อมต่อสัญญาณ WiFi คล็อก เป็นต้น สิ่งที่แตกต่าง คือ ตำแหน่งที่จัดวางของปุ่มหรือไอคอนเหล่านี้อาจ แตกต่างกันได้ตามการปรับแต่งโดยผู้ใช้งาน ตารางต่อไปนี้เป็นการเปรียบเทียบระหว่างไอคอนและปุ่มต่างๆ ของ Raspberry Pi OS และ Windows ซึ่งผู้อ่านจะต้องวาดเติมลงไปด้วยตนเอง ตามรายชื่อปุ่มด้านซ้าย

ปุ่ม	Raspberry Pi OS	Windows
เมนูหลัก(Main Menu)		
ปิด (Close)		
ย่อ (Minimize)		
ขยาย (Maxmimize)		

D.1.2 ไฟล์เมเนเจอร์ (File Manager)

ไฟล์เมเนเจอร์ คือ โปรแกรมสำหรับเบราส์ (Browse) โครงสร้าง รายชื่อไดเรกทอรี รายชื่อไฟล์ต่างๆ ภายใน อุปกรณ์เก็บรักษาข้อมูล เช่น การ์ดหน่วยความจำไมโคร SD เป็นต้น รูปที่ D.1 แสดงหน้าต่างของไฟล์เมเนเจอร์ (File Manager) ขณะที่เปิดไดเรกทอรีชื่อ /usr ทางด้านขวา และโครงสร้างของอุปกรณ์เก็บรักษาข้อมูลทางด้าน ช้าย

ร**ูปที่** D.1: หน้าต่างของไฟล์เมเนเจอร์ (File Manager) ขณะที่เปิดไดเรกทอรีชื่อ /usr

D.2 การใช้งานระบบผ่านทางโปรแกรม Terminal

รูปที่ D.2: รูปไอคอนของโปรแกรม Terminal

ในอดีตผู้ใช้งานระบบยูนิกซ์จะต้องคีย์คำสั่งต่างๆ ผ่านทางโปรแกรม Terminal เท่านั้น เรียกว่า การใช้ แบบคอมมานด์ไลน์ (Command Line) ซึ่งผู้ใช้จะต้องฝึกฝนและจดจำคำสั่งต่างๆ ทำให้การใช้งานแบบคอม มานด์ไลน์ยุ่งยากและไม่น่าสนใจเหมือนการใช้งานแบบ GUI เหมือนในปัจจุบัน แต่ผู้ใช้งานที่เชี่ยวชาญสามารถ เข้าใจการทำงานได้ลึกซึ้งกว่า คำสั่งพื้นฐานและคำสั่งชัตดาวน์ในการทดลองนี้จะช่วยเสริมความเข้าใจของผู้อ่าน ได้เป็นอย่างดี โดยผู้ใช้สามารถเปิดโปรแกรม Terminal ด้วยการคลิกบนปุ่มที่มีรูปเหมือนไอคอนในรูปที่ D.2 บน แถบแสดงรายชื่อโปรแกรม (Taskbar) รูปที่ D.3 แสดงหน้าต่างของโปรแกรม Terminal ซึ่งผู้เขียนได้ปรับแต่งสี พื้นและสีของตัวอักษรให้เหมาะสม

ร**ูปที่** D.3: หน้าต่างของโปรแกรม Terminal ซึ่งสามารถปรับแต่งสีพื้นและสีของตัวอักษรได้

- 1. เปิดโปรแกรม Terminal บนเมนูหลัก
- 2. คลิกเมนู Edit -> Preferences
- 3. คลิกที่แถบสีของ Background จากให้เลือกสีขาว ดังรูป คลิกปุ่ม Select

รูปที่ D.4: หน้าต่างปรับแต่งสีพื้น (Background)

4. คลิกที่แถบสีของ Foreground จากให้เลือกสีดำ ดังรูป คลิกปุ่ม Select แล้วจึงคลิกปุ่ม OK ดังรูป

รูปที่ D.5: หน้าต่างปรับแต่งสีตัวอักษร (Foreground)

5. ทดสอบด้วยการปิดโปรแกรมแล้วเปิดอีกรอบว่าสีที่เลือกยังคงอยู่

D.2.1 คำสั่งพื้นฐานของระบบยูนิกซ์

ผู้ อ่านสามารถฝึกใช้ คำ สั่ง เหล่า นี้ บนโปรแกรม เท อร์ มิ นัล (Terminal) ตาม ตาราง ต่อไป นี้ โปรด สังเกต สัญลักษณ์ \$ หมายถึง คำสั่งชนิดคอมมานด์ไลน์ในโปรแกรม Terminal

ลำดับที่	รายละเอียด	คำสั่ง					
1	แสดงรายชื่อไฟล์และไดเรกทอรี	ls <parameter></parameter>					
	Ex.: \$ ls แสดงรายชื่อไฟล์และได						
	Ex.: \$ ls -l แสดงรายละเอียดต่างๆ ของไฟล์และไดเรกทอรี่ในไดเรกทอรี่ปัจจุบัน						
	Ex.: \$ ls -la แสดงรายละเอียดต่างๆ ่ของไฟล์และไดเรกทอรีทั้งหมดในไดเรกทอรีปัจจุบัน						
	โปรดสังเกตสัญลักษณ์ต่อไปนี้บริเวณสองแถวบนสุดของผลลัพธ์						
	"." หมายถึง ไดเรกทอรีปัจจุบัน (current directory)						
	่ "" หมายถึง ไดเรกทอรีที่อยู่เหา	าอรีที่อยู่เหนือขึ้นไป (parent directory)					
2	สร้างไฟล์เปล่า touch <file_name></file_name>						
	Ex.: \$ touch test.txt สร้างไพ	ไล์เปล่าชื่อ "text.txt"					
3	ทำไฟล์สำเนา	cp <source_file_name> <destination_file_name></destination_file_name></source_file_name>					
	Ex.: \$ cp test.txt test2.txt						
4	เปลี่ยนชื่อไฟล์	mv <source_file_name> <destination_file_name></destination_file_name></source_file_name>					
	Ex.: \$ mv test.txt test3.txt						
5	แสดงชื่อไดเรกทอรีปัจจุบัน pwd						
	Ex.: \$ pwd						
6	6 สร้างไดเรกทอรีใหม่ mkdir <directory_name></directory_name>						
	Ex.: \$ mkdir /home/pi/asm						
	สร้างไดเรกทอรีใหม่ ชื่อ "asm" ภายใต้ไดเรกทอรี "/home/pi/" เพื่อใช้จัดเก็บไฟล์สำหรับการทดลองต่อไป						
7	Change directory	cd <destination></destination>					
	Ex.: \$ cd /home/pi/asm						
	โปรดสังเกตสัญลักษณ์ต่อไปนี้ในประโยค /home/pi/asm						
	"/" ตำแหน่งซ้ายสุด หมายถึง ได						
	"/" ตำแหน่งถัดมา หมายถึง สัญลักษณ์คั่นระหว่างชื่อไดเรกทอรี						

D.2.2 การชัตดาวน์ (Shutdown)

การรีบูต หรือ รีสตาร์ตเครื่อง มักใช้เรียกเมื่อระบบต้องการหลังการอัปเดทซอฟต์แวร์ต่างๆ ที่จำเป็น หรือ ผู้ ใช้ต้องการแก้อาการต่างๆ โดย

• พิมพ์คำสั่ง sudo reboot ในหน้าต่าง Terminal เพื่อรีบูตบอร์ด Pi และระบบปฏิบัติการในกรณีที่ผู้ใช้ ต้องการเริ่มต้นระบบใหม่

\$ sudo reboot

ผู้อ่านสามารถรีบูตหรือรีสตาร์ตบอร์ดใหม่ด้วยคำสั่ง

\$ shutdown -r now

โดย -r หมายถึง restart และ now หมายถึง ณ บัดนี้

• พิมพ์คำสั่ง sudo shutdown -h now ในหน้าต่าง Terminal เพื่อเตรียมพร้อมก่อนปิดเครื่อง ตามที่ กล่าวในหัวข้อที่ 3.3.7

```
$ shutdown -h now
```

โดย -h หมายถึง halt แปลว่า หยุด ซึ่งนักคอมพิวเตอร์ส่วนใหญ่นิยมใช้ศัพท์คำนี้ในสั่งให้เครื่อง คอมพิวเตอร์สิ้นสุดการทำงาน

โปรดรอไฟ LED สีเขียวที่ติดกับไฟ LED สีแดง กระพริบจนดับเสียก่อนจึงค่อยถอดอแดปเตอร์ออกจาก เต้าเสียบไฟ 220 โวลต์

D.3 ข้อมูลพื้นฐานของบอร์ด Pi

การใช้งานทางคอมมานด์ไลน์มีประโยชน์หลายด้าน เนื่องจากผู้ใช้สามารถเรียกใช้คำสั่งเกือบทั้งหมดในระบบ รวมถึงการเขียนโปรแกรมเชลล์สคริปต์ (Shell Script) เพื่อสั่งงานคอมมานด์ไลน์ได้อัตโนมัติ ผู้อ่านควรจะฝึกใช้ ให้คล่องเพื่อเตรียมความพร้อมไปเป็นนักพัฒนาโปรแกรม และพัฒนาระบบต่อไป โดยการทดลองนี้จะใช้คำสั่ง พิเศศอ่านค่าข้อมูลของชีพียูและข้อมูลขั้นสูงอื่นๆ

D.3.1 ข้อมูลพื้นฐานของซีพียู

้ ผู้อ่านสามารถศึกษารายละเอียดเกี่ยวกับซีพียูที่ใช้งานอยู่บนบอร์ด โดยใช้คำสั่ง

\$ cat /proc/cpuinfo

จดผลลัพธ์ที่ได้จากบอร์ด Pi ลงในช่องที่กำหนดให้ ซึ่งอาจแตกต่างกันสำหรับผู้ใช้ Raspberr Pi OS เวอร์ชัน 32 และ 64 บิต

• processor :	
• model name : ARMv rev ()	
• BogoMIPS :	
• Features :	
• CPU implementer :	
• CPU architecture :	
• CPU variant : 0x	
• CPU part : 0x	

• CPU revision :	
Hardware : BCM	
• Revision :	
• Serial :	
• Model :	

D.3.2 ข้อมูลขั้นสูงของซีพียูและบอร์ด

นอกเหนือจากข้อมูลพื้นฐานของซีพียูแล้ว ผู้อ่านสามารถสอบถามข้อมูลด้านฮาร์ดแวร์ขั้นสูงจากคำสั่งต่อไปนี้

ลำดับที่	คำสั่ง	รายละเอียด
1	\$ cat /proc/cpuinfo	รายละเอียดของซีพียูในการทดลองก่อนหน้า
2	\$ cat /proc/meminfo	รายละเอียดของหน่วยความจำกายภาพ
3	\$ cat /proc/partitions	รายละเอียดของการ์ดหน่วยความจำไมโคร SD
4	\$ cat /proc/version	รายละเอียดของระบบปฏิบัติการ
5	\$ vcgencmd measure_temp	อ่านค่าอุณหภูมิ ณ จุดต่างๆ
6	\$ vcgencmd measure_volts core	อ่านค่าโวลเตจของแกนประมวลผล
7	\$ vcgencmd measure_volts sdram_c	อ่านค่าโวลเตจของ SD-RAM
8	\$ vcgencmd measure_volts sdram_i	อ่านค่าโวลเตจของ SD-RAM I/O

ยกตัวอย่างเช่น ข้อมูลด้านหน่วยความจำกายภาพ ที่เราเรียกว่า RAM หรือ SDRAM จะถูกบันทึกในไฟล์ / proc/meminfo ผู้อ่านสามารถแสดงข้อมูลในไฟล์โดย

\$ cat /proc/meminfo

จดผลลัพธ์ที่สำคัญของบอร์ด Pi ที่ใช้

MemTotal:	_	_	_	_	_	_	_	kΒ	(KiB)
MemFree:	_	_	_	_	_	_	_	kВ	(KiB)
MemAvail:	_	_	_	_	_	_	_	kВ	(KiB)
Buffers:	_	_	_	_	_	_	_	kВ	(KiB)
Cached:	_	_	_	_	_	_	_	kВ	(KiB)
SwapCached	:_	_	_	_	_	_	_	kВ	(KiB)
SwapTotal:	_	_	_	_	_	_	_	kВ	(KiB)
SwapFree:	_	_	_	_	_	_	_	kВ	(KiB)
PageTables	:_	_	_	_	_	_	_	kВ	(KiB)

D.4 กิจกรรมท้ายการทดลอง

- 1. จงใช้โปรแกรมไฟล์เมเนเจอร์เพื่อทำการสำรวจโครงสร้างของไดเรกทอรีต่างๆ ของบอร์ด Pi
- 2. จงเปรียบเทียบโครงสร้างของไดเรกทอรีต่างๆ กับรูปที่ 3.13 ว่าแตกต่างกันอย่างไร
- 3. จงใช้โปรแกรม Terminal และคำสั่งที่จำเป็น เพื่อทำการสำรวจโครงสร้างของไดเรกทอรีต่างๆ ในเครื่อง และเปรียบเทียบกับข้อที่แล้ว
- 4. จงใช้โปรแกรมไฟล์เมเนเจอร์เพื่อทำการสำเนาหรือก็อปปี้ไฟล์ ลบไฟล์ สร้างไดเรกทอรีใหม่
- 5. จงใช้โปรแกรมไฟล์เมเนเจอร์แสดงแบบ List พร้อมรายละเอียดของไฟล์ หรือไดเรกทอรี เช่น ขนาด (Size) ของไฟล์ ชนิด (Type) วันเวลาที่แก้ไข
- 6. จงใช้โปรแกรม Terminal และคำสั่ง ls -la เพื่อเปรียบเทียบกับผลที่ได้จากข้อที่แล้ว
- 7. จงบอกความแตกต่างระหว่างคำสั่ง cat และคำสั่ง ls
- 8. จงบอกความแตกต่างระหว่างคำสั่ง cp และคำสั่ง mv
- 9. คำสั่ง vcgencmd ย่อมาจากคำว่าอะไร
- 10. ชิป BCM2___ บนบอร์ดมีจำนวนซีพียูกี่แกนประมวลผล
- 11. ชิป BCM2835 เกี่ยวข้องกับ ชิป BCM2___ ในข้อก่อนหน้าอย่างไร
- 12. จงบอกหมายเลขรุ่น (CPU Revision) ของซีพียู ARM Cortex A__ ที่ได้จากคำสั่ง cpuinfo
- 13. ในหัวข้อที่ D.3.2 จงบวกขนาดของหน่วยความจำ MemAvail, Buffers, Cached เพื่อเปรียบเทียบกับ MemTotal ว่าแตกต่างกันหรือไม่ อย่างไร
- 14. ผู้อ่านสามารถตรวจสอบขนาดของ SDRAM ที่มีบนบอร์ดกับข้อมูลที่ได้จาก meminfo ในหัวข้อใด และ แปลงหน่วยคิบิไบต์ (KiB) เป็นกิบิไบต์ (GiB) ได้อย่างไร (โปรดศึกษาบทอภิธานศัพท์ M.5)
- 15. จงบอกเวอร์ชัน (Version) และรายละเอียดอื่นๆ ของระบบปฏิบัติการ Raspberry Pi OS ที่ติดตั้ง
- 16. จงบอกความต่างศักย์ของแกนประมวลผล หน่วยความจำกายภาพ และอินพุต/เอาต์พุตและเปรียบเทียบ กันว่าแตกต่างกันหรือไม่ อย่างไร
- 17. จงบอกอุณหภูมิของซีพียูและตำแหน่งอื่นๆ บนบอร์ดว่าทำงานที่กี่องศาเซลเซียส และเปรียบเทียบกันว่า แตกต่างกันหรือไม่ อย่างไร
- 8.) คำลั่ง ep ใช้ copy file ของ directory ช่วงนำ ฟร้างนมัง mv ปารที่อยู่ไฟล์ และ เปลี่ยนช่อไฟล์ ได้
- 9) Video Core General Command