Project

Summary

A & D, a streaming services that's been loosing more customers than usual the past few months and would like to use data science to figue out how to reduce customer churn

- I have access to data on A & D Music's customer;s including subscription details and music listenning history.
- Tasks to gather, clean, and explore the data to provide insights about the recent customer churn issues, the prepare it for modelling in the future \P
 - 1. Scope the data science project
 - 2. Gather the data in python
 - 3. Clean the data in pythonthe data
 - 4. Explore & Visualize the data
 - 5. Preparethe data for modelling

1. Scope the Project

My plan is to use a supervised learning technique to predict which customers are most likely to cancel their subscription using the past three months of customer data which includes subscription and listening history.

2. Gather Data

Read the following files into Python:

- Customer data: A & D music customers.csv
- Listing history: A & D_music_listening_history.xlsx

```
In [115]: # Read in the customer data
    import pandas as pd
    customers = pd.read_csv('A&D_music_customers.csv')
    customers.head()
```

Out[115]:

	Customer_ID	Customer_Name	Email	Member_Since	Subscription_Plan
0	5001	Harmony Greene	Email: harmonious.vibes@email.com	3/13/2023	Basic (Ads)
1	5002	Aria Keys	Email: melodious.aria@email.edu	3/13/2023	NaN
2	5004	Lyric Bell	Email: rhythmical.lyric@email.com	3/13/2023	NaN
3	5267	Rock Bassett	Email: groovy.rock@email.com	3/20/2023	Basic (Ads)
4	5338	Rhythm Dixon	Email: beats.by.rhythm@email.edu	3/20/2023	NaN
4					•

Out[116]:

	Customer_ID	Session _ID	Audio_Order	Audio_ID	Audio_Type
0	5001	100520	1	101	Song
1	5001	100520	2	102	Song
2	5001	100520	3	103	Song
3	5001	100520	4	104	Song
4	5001	100520	5	105	Song

In [117]: # Where might I find listening history data beyond the ID's?
I'm checking the other tabs
Read in the audio data
audio = pd.read_excel('A&D_music_listening_history.xlsx', sheet_name=1)
audio.head()

Out[117]:

	ID	Name	Genre	Popularity
0	Song-101	Dance All Night	Pop	1
1	Song-102	Unbreakable Beat	Рор	2
2	Song-103	Sunset Boulevard	Pop Music	5
3	Song-104	Glowing Hearts	Pop Music	10
4	Song-105	Pop Rocks	Pop Music	52

```
In [118]: # Read in the session data
    sessions = pd.read_excel('A&D_music_listening_history.xlsx', sheet_name=2)
    sessions.head()
```

Out[118]:

	Session_ID	Session_Log _In_Time
0	100520	2023-03-13 18:29:00
1	100522	2023-03-13 22:15:00
2	100525	2023-03-14 10:01:00
3	100527	2023-03-13 14:14:00
4	100538	2023-03-21 12:23:00

3. Clean Data

a. Convert Data Types

Check the data types of the data in the tables and convert to numeric and datetime values as necessary.

In [5]: customers.head() Out[5]: Customer_ID Customer_Name Email Member_Since Subscription_Plan Email: 0 5001 Harmony Greene 3/13/2023 Basic (Ads) harmonious.vibes@email.com Email: 5002 Aria Keys 3/13/2023 NaN melodious.aria@email.edu 2 5004 Lyric Bell 3/13/2023 NaN rhythmical.lyric@email.com Email: 3 5267 Rock Bassett 3/20/2023 Basic (Ads) groovy.rock@email.com Email: 5338 Rhythm Dixon 3/20/2023 NaN beats.by.rhythm@email.edu

```
In [6]: # Check the data types
  customers.dtypes
```

Out[6]: Customer_ID int64 Customer_Name object Email object Member_Since object Subscription_Plan object Subscription_Rate object Discount? object Cancellation_Date object

dtype: object

In [7]: listenning_history.head()

Out[7]:

	Customer_ID	Session _ID	Audio_Order	Audio_ID	Audio_Type
0	5001	100520	1	101	Song
1	5001	100520	2	102	Song
2	5001	100520	3	103	Song
3	5001	100520	4	104	Song
4	5001	100520	5	105	Song

In [8]: listenning_history.dtypes

Out[8]: Customer_ID int64
Session _ID int64
Audio_Order int64
Audio_ID int64
Audio_Type object
dtype: object

In [9]: | audio.head()

Out[9]:

	ID	Name	Genre	Popularity
0	Song-101	Dance All Night	Pop	1
1	Song-102	Unbreakable Beat	Pop	2
2	Song-103	Sunset Boulevard	Pop Music	5
3	Song-104	Glowing Hearts	Pop Music	10
4	Song-105	Pop Rocks	Pop Music	52

In [10]: audio.dtypes

Out[10]: ID

ID object
Name object
Genre object
Popularity int64
dtype: object

```
In [11]:
          sessions.head()
Out[11]:
              Session_ID Session_Log_In_Time
           0
                  100520
                            2023-03-13 18:29:00
           1
                  100522
                            2023-03-13 22:15:00
           2
                  100525
                            2023-03-14 10:01:00
           3
                  100527
                            2023-03-13 14:14:00
                  100538
                            2023-03-21 12:23:00
In [12]:
          sessions.dtypes
Out[12]: Session ID
                                                int64
          Session_Log _In_Time
                                     datetime64[ns]
          dtype: object
          customers.head()
In [13]:
Out[13]:
              Customer_ID Customer_Name
                                                                    Member_Since Subscription_Plan
                                                              Email
                                                              Email:
           0
                     5001
                                                                         3/13/2023
                                                                                         Basic (Ads)
                           Harmony Greene
                                           harmonious.vibes@email.com
                                                              Email:
                     5002
           1
                                 Aria Keys
                                                                         3/13/2023
                                                                                               NaN
                                              melodious.aria@email.edu
                                                              Email:
           2
                     5004
                                  Lyric Bell
                                                                         3/13/2023
                                                                                               NaN
                                             rhythmical.lyric@email.com
                                                              Email:
                               Rock Bassett
                                                                                         Basic (Ads)
           3
                     5267
                                                                         3/20/2023
                                                groovy.rock@email.com
                                                              Email:
                     5338
                              Rhythm Dixon
                                                                         3/20/2023
                                                                                               NaN
                                            beats.by.rhythm@email.edu
In [14]:
          customers.dtypes
Out[14]: Customer_ID
                                   int64
          Customer Name
                                  object
                                  object
          Email
          Member_Since
                                  object
          Subscription Plan
                                  object
          Subscription_Rate
                                  object
          Discount?
                                  object
          Cancellation_Date
                                  object
          dtype: object
In [15]:
          customers.Member Since = pd.to datetime(customers.Member Since)
          customers.Subscription_Rate = customers.Subscription_Rate.astype(str)
          customers.Subscription_Rate = pd.to_numeric(customers.Subscription_Rate.str.re
          place('$', '', regex=True))
          customers.Cancellation_Date = pd.to_datetime(customers.Cancellation_Date)
```

```
In [16]: | customers.dtypes
Out[16]: Customer ID
                                         int64
         Customer_Name
                                       object
         Email
                                       object
         Member_Since
                               datetime64[ns]
         Subscription_Plan
                                       object
         Subscription_Rate
                                       float64
         Discount?
                                        object
         Cancellation_Date
                               datetime64[ns]
         dtype: object
```

b. Resolve Data Issues

Check for missing data, inconsistent text and typos, duplicate data and outliers.

i. Missing Data

```
# Look for NaN values in the data
In [17]:
         customers.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 30 entries, 0 to 29
         Data columns (total 8 columns):
                                 Non-Null Count Dtype
          #
              Column
                                                 ----
          0
              Customer_ID
                                 30 non-null
                                                 int64
              Customer_Name
                                                 object
          1
                                 30 non-null
          2
              Email
                                 30 non-null
                                                 object
          3
              Member Since
                                30 non-null
                                                 datetime64[ns]
          4
              Subscription_Plan 25 non-null
                                                 object
          5
              Subscription_Rate 30 non-null
                                                 float64
          6
              Discount?
                                 7 non-null
                                                 object
          7
              Cancellation Date 13 non-null
                                                 datetime64[ns]
         dtypes: datetime64[ns](2), float64(1), int64(1), object(4)
         memory usage: 2.0+ KB
```

Subscription Plan, Discount?, Cancellation Date those values has 'NaN values

```
In [18]: # Look for NaN values in the data
         listenning history.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 505 entries, 0 to 504
         Data columns (total 5 columns):
                          Non-Null Count Dtype
              Column
             -----
                          -----
         ---
                                          ----
             Customer_ID 505 non-null
          0
                                          int64
          1
             Session _ID 505 non-null
                                          int64
          2
             Audio_Order 505 non-null
                                          int64
          3
             Audio ID
                          505 non-null
                                          int64
          4
              Audio Type
                          505 non-null
                                          object
         dtypes: int64(4), object(1)
         memory usage: 19.9+ KB
```

No NaN values in listenning history data

```
In [19]: # Look for NaN values in the data
         audio.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 17 entries, 0 to 16
         Data columns (total 4 columns):
              Column
                          Non-Null Count Dtype
              -----
          0
              ID
                          17 non-null
                                          object
          1
                          17 non-null
                                          object
              Name
                          17 non-null
          2
              Genre
                                          object
          3
              Popularity 17 non-null
                                          int64
         dtypes: int64(1), object(3)
         memory usage: 672.0+ bytes
```

No NaN Vslues

```
In [20]: # Look for NaN values in the data
         sessions.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 90 entries, 0 to 89
         Data columns (total 2 columns):
                                    Non-Null Count Dtype
          #
              Column
              ----
                                                     ____
              Session ID
                                    90 non-null
                                                    int64
              Session_Log _In_Time 90 non-null
          1
                                                    datetime64[ns]
         dtypes: datetime64[ns](1), int64(1)
         memory usage: 1.5 KB
```

No Nan values

In [21]: # the customers dataframe has null values in the field Subscription_Plan, Disc
ount?, Cancellation_Date
customers.head()

Out[21]:

	Customer_ID	Customer_Name	Email	Member_Since	Subscription_Plan
0	5001	Harmony Greene	Email: harmonious.vibes@email.com	2023-03-13	Basic (Ads)
1	5002	Aria Keys	Email: melodious.aria@email.edu	2023-03-13	NaN
2	5004	Lyric Bell	Email: rhythmical.lyric@email.com	2023-03-13	NaN
3	5267	Rock Bassett	Email: groovy.rock@email.com	2023-03-20	Basic (Ads)
4	5338	Rhythm Dixon	Email: beats.by.rhythm@email.edu	2023-03-20	NaN
4					•

Out[22]:

	Customer_ID	Customer_Name	Email	Member_Since	Subscription_Plan
1	5002	Aria Keys	Email: melodious.aria@email.edu	2023-03-13	NaN
2	5004	Lyric Bell	Email: rhythmical.lyric@email.com	2023-03-13	NaN
4	5338	Rhythm Dixon	Email: beats.by.rhythm@email.edu	2023-03-20	NaN
5	5404	Jazz Saxton	Email: jazzy.sax@email.com	2023-03-20	NaN
11	5827	Rhythm Franklin	Email: rhythmic.franklin@email.edu	2023-03-28	NaN
4 (•

• The above cases are the NaN for Subscription_Plan and it seems like all these situations have a rate of 2.99

Out[23]:

	Subscription_Rate	Subscription_Plan
0	2.99	Basic (Ads)
1	2.99	NaN
6	9.99	Premium (No Ads)
15	99.99	Premium (No Ads)
21	7.99	Premium (No Ads)

· This NaN should actually be basic ads

Out[24]:

	Customer_ID	Customer_Name	Email	Member_Since	Subscription_Plan
0	5001	Harmony Greene	Email: harmonious.vibes@email.com	2023-03-13	Basic (Ads)
1	5002	Aria Keys	Email: melodious.aria@email.edu	2023-03-13	Basic (Ads)
2	5004	Lyric Bell	Email: rhythmical.lyric@email.com	2023-03-13	Basic (Ads)
3	5267	Rock Bassett	Email: groovy.rock@email.com	2023-03-20	Basic (Ads)
4	5338	Rhythm Dixon	Email: beats.by.rhythm@email.edu	2023-03-20	Basic (Ads)

```
In [25]: # Look into Discount?
    customers[['Customer_ID', 'Discount?']].tail()
```

Out[25]:

	Customer_ID	Discount?
25	7224	Yes
26	7401	Yes
27	7579	NaN
28	7581	Yes
29	7583	Yes

· NaN seeems to mean No

```
customers['Discount?'].value counts()
In [26]:
Out[26]: Yes
                 7
          Name: Discount?, dtype: int64
In [27]: # I'm changing data to numeric
          import numpy as np
          customers['Discount?'] = np.where(customers['Discount?']=='Yes', 1, 0)
          customers.head()
Out[27]:
             Customer_ID Customer_Name
                                                           Email
                                                                 Member_Since Subscription_Plan
                                                           Email:
           0
                    5001
                                                                    2023-03-13
                                                                                     Basic (Ads)
                          Harmony Greene
                                         harmonious.vibes@email.com
                                                           Email:
```

Email: 2 Basic (Ads) 5004 Lyric Bell 2023-03-13 rhythmical.lyric@email.com Email: 3 5267 Rock Bassett 2023-03-20 Basic (Ads) groovy.rock@email.com Email: 5338 Rhythm Dixon 2023-03-20 Basic (Ads) beats.by.rhythm@email.edu

melodious.aria@email.edu

2023-03-13

Basic (Ads)

In [28]: # looking into cancellation NaN seems to mean not cancelled yet I'll leave it as is

ii. Inconsistent Text & Typos

1

5002

Aria Keys

In [29]: # Look for inconsistent text & typos
 customers.describe()

Out[29]:

	Customer_ID	Subscription_Rate	Discount?
count	30.000000	30.000000	30.000000
mean	6276.333333	8.556667	0.233333
std	814.255587	17.517840	0.430183
min	5001.000000	2.990000	0.000000
25%	5759.500000	2.990000	0.000000
50%	6196.000000	2.990000	0.000000
75%	6823.500000	7.990000	0.000000
max	7583.000000	99.990000	1.000000

* customer ID min max that seems fine

* subscription rate 2.99 - 99 that seems really high

In [30]: # I'm going to look at it further more, I'm going to choose who pays more than
7.99 a month and the reson I choose 7.99 is because that was my 75% range
customers[customers['Subscription_Rate'] > 7.99]

Out[30]:

	Customer_ID	Customer_Name	Email	Member_Since	Subscription_Plan
6	5581	Reed Sharp	Email: sharp.tunes@email.com	2023-03-21	Premium (No Ads)
7	5759	Carol Kingbird	Email: songbird.carol@email.com	2023-03-22	Premium (No Ads)
8	5761	Sonata Nash	Email: musical.sonata@email.com	2023-03-28	Premium (No Ads)
12	6029	Chord Campbell	Email: campbell.chordify@email.com	2023-03-29	Premium (No Ads)
14	6163	Melody Parks	Email: park.of.melodies@email.com	2023-04-05	Premium (No Ads)
15	6229	Symphony Rhodes	Email: rhodes.symphony@email.com	2023-04-06	Premium (No Ads)
4 ()	•

• I can see here these customers all pay 9.99 and this customer_ID 6229 is paying 99.99 which i belive is a typo because they all have the same plan somebody just added extra nine on accident

```
In [31]: # To fix the above error (99.99 typo) Row 15 column 5
    customers.iloc[15, 5] = 9.99
```

In [32]: customers.describe()

Out[32]:

	Customer_ID	Subscription_Rate	Discount?
count	30.000000	30.000000	30.000000
mean	6276.333333	5.556667	0.233333
std	814.255587	3.058998	0.430183
min	5001.000000	2.990000	0.000000
25%	5759.500000	2.990000	0.000000
50%	6196.000000	2.990000	0.000000
75%	6823.500000	7.990000	0.000000
max	7583.000000	9.990000	1.000000

· Now I can see the typo has been fixed

```
In [33]: # check the date range of the customers
    customers['Member_Since'].max()
Out[33]: Timestamp('2023-05-16 00:00:00')
```

• I have march through may data here

```
In [34]: # Look at listenning history
listenning_history.describe()
```

Out[34]:

	Customer_ID	Session _ID	Audio_Order	Audio_ID
count	505.000000	505.000000	505.000000	505.000000
mean	6112.247525	105225.554455	4.138614	112.063366
std	832.861221	3625.879577	2.669008	24.670285
min	5001.000000	100520.000000	1.000000	101.000000
25%	5267.000000	101925.000000	2.000000	103.000000
50%	6029.000000	105116.000000	4.000000	105.000000
75%	6822.000000	109654.000000	6.000000	109.000000
max	7583.000000	111333.000000	15.000000	205.000000

Everything looks pretty normal

```
In [35]: listenning_history.head()
```

Out[35]:

	Customer_ID	Session _ID	Audio_Order	Audio_ID	Audio_Type
0	5001	100520	1	101	Song
1	5001	100520	2	102	Song
2	5001	100520	3	103	Song
3	5001	100520	4	104	Song
4	5001	100520	5	105	Song

```
In [36]: # we have categorical field caled audio type
listenning_history['Audio_Type'].value_counts()
```

Out[36]: Song 463 Podcast 42

Name: Audio_Type, dtype: int64

· there are songs and podcast

```
In [37]:
          audio.head()
Out[37]:
                   ID
                                Name
                                          Genre Popularity
           0 Song-101
                         Dance All Night
                                            Pop
                                                        1
           1 Song-102 Unbreakable Beat
                                                        2
                                            Pop
           2 Song-103 Sunset Boulevard Pop Music
                                                        5
           3 Song-104
                         Glowing Hearts Pop Music
                                                       10
           4 Song-105
                             Pop Rocks Pop Music
                                                       52
In [38]: # Look into genre
          audio['Genre'].value_counts()
Out[38]: Pop Music
                          3
          Hip Hop
                          3
          Comedy
                          3
                          2
          Pop
                          2
          Country
          Jazz
                          2
          True Crime
                          2
          Name: Genre, dtype: int64
```

• I have Pop Music Genre and Pop genre that seems to be a duplicate

```
In [39]: # pop and pop music should be mapped to the same value
         audio.Genre = np.where(audio.Genre == 'Pop Music', 'Pop', audio.Genre)
In [40]: | audio['Genre'].value_counts()
Out[40]: Pop
                        5
         Hip Hop
                        3
         Comedy
                        3
         Country
                        2
         Jazz
                        2
                       2
         True Crime
         Name: Genre, dtype: int64
```

```
In [41]:
          sessions.head()
Out[41]:
              Session_ID Session_Log _In_Time
           0
                  100520
                            2023-03-13 18:29:00
           1
                  100522
                            2023-03-13 22:15:00
           2
                  100525
                            2023-03-14 10:01:00
           3
                  100527
                            2023-03-13 14:14:00
                  100538
                            2023-03-21 12:23:00
In [42]:
          # Look at loging time range
           sessions['Session_Log _In_Time'].max()
Out[42]: Timestamp('2023-05-31 06:03:00')
```

· It seems to be good

iii. Duplicate Rows

· I do not have duplicated rows in all the data

iv. Outliers

In [46]: # Look for outliers - I'm checking min max values
 customers.describe()

Out[46]:

	Customer_ID	Subscription_Rate	Discount?
count	30.000000	30.000000	30.000000
mean	6276.333333	5.556667	0.233333
std	814.255587	3.058998	0.430183
min	5001.000000	2.990000	0.000000
25%	5759.500000	2.990000	0.000000
50%	6196.000000	2.990000	0.000000
75%	6823.500000	7.990000	0.000000
max	7583.000000	9.990000	1.000000

In [47]: | sessions.describe()

Out[47]:

	Session_ID
count	90.000000
mean	105619.788889
std	3616.208569
min	100520.000000
25%	102149.000000
50%	105390.500000
75%	109658.250000
max	111333.000000

In [48]: listenning_history.describe()

Out[48]:

	Customer_ID	Session _ID	Audio_Order	Audio_ID
count	505.000000	505.000000	505.000000	505.000000
mean	6112.247525	105225.554455	4.138614	112.063366
std	832.861221	3625.879577	2.669008	24.670285
min	5001.000000	100520.000000	1.000000	101.000000
25%	5267.000000	101925.000000	2.000000	103.000000
50%	6029.000000	105116.000000	4.000000	105.000000
75%	6822.000000	109654.000000	6.000000	109.000000
max	7583.000000	111333.000000	15.000000	205.000000

```
In [49]:
          audio.describe()
Out[49]:
                  Popularity
           count 17.000000
           mean
                  21.058824
             std 23.381271
                   1.000000
             min
             25%
                   4.000000
             50%
                  10.000000
             75%
                  28.000000
             max 80.000000
```

· Everthing is pretty good here

c. Create New Columns

Create two new columns that will be useful for EDA and modeling:

- · Cancelled: whether a customer cancelled or not
- Email: Remove the "Email:" from the email addresses

In [50]:	In [50]: customers.head()						
Out[50]:		···otomor ID	Customer Name	Email	Mambar Since	Subscription Blow	
	Customer_ID		Customer_Name	Email	Member_Since	Subscription_Plan	
	0	5001	Harmony Greene	Email: harmonious.vibes@email.com	2023-03-13	Basic (Ads)	
	1	5002	Aria Keys	Email: melodious.aria@email.edu	2023-03-13	Basic (Ads)	
	2	5004	Lyric Bell	Email: rhythmical.lyric@email.com	2023-03-13	Basic (Ads)	
	3	5267	Rock Bassett	Email: groovy.rock@email.com	2023-03-20	Basic (Ads)	
	4	5338	Rhythm Dixon	Email: beats.by.rhythm@email.edu	2023-03-20	Basic (Ads)	
	4					•	

• I have cancellation date but I don't have a column for whther a customer cancelled or not

```
In [51]: # Create a 'Cancelled' column
  customers['Cancelled'] = np.where(customers['Cancellation_Date'].notna(), 1,
  0)
  customers.head()
```

Out[51]:

	Customer_ID	Customer_Name	Email	Member_Since	Subscription_Plan
0	5001	Harmony Greene	Email: harmonious.vibes@email.com	2023-03-13	Basic (Ads)
1	5002	Aria Keys	Email: melodious.aria@email.edu	2023-03-13	Basic (Ads)
2	5004	Lyric Bell	Email: rhythmical.lyric@email.com	2023-03-13	Basic (Ads)
3	5267	Rock Bassett	Email: groovy.rock@email.com	2023-03-20	Basic (Ads)
4	5338	Rhythm Dixon	Email: beats.by.rhythm@email.edu	2023-03-20	Basic (Ads)

In [52]: # Create an updated 'Email' column without the Email: portion
 customers['Email'] = customers.Email.str[6:] # only read characters starting f
 rom position 6 and onward
 customers.head()

Out[52]:

	Customer_ID	Customer_Name	Email	Member_Since	Subscription_Plan
0	5001	Harmony Greene	harmonious.vibes@email.com	2023-03-13	Basic (Ads)
1	5002	Aria Keys	melodious.aria@email.edu	2023-03-13	Basic (Ads)
2	5004	Lyric Bell	rhythmical.lyric@email.com	2023-03-13	Basic (Ads)
3	5267	Rock Bassett	groovy.rock@email.com	2023-03-20	Basic (Ads)
4	5338	Rhythm Dixon	beats.by.rhythm@email.edu	2023-03-20	Basic (Ads)
4					•

4. EDA

Try to better understand the customers who cancelled:

- How long were they members before they cancelled?
- What percentage of customers who cancelled had a discount vs customers who didn't cancel?

```
In [53]:
           customers.head()
Out[53]:
               Customer_ID
                             Customer_Name
                                                                  Email
                                                                         Member_Since
                                                                                       Subscription_Plan
            0
                                             harmonious.vibes@email.com
                       5001
                             Harmony Greene
                                                                             2023-03-13
                                                                                               Basic (Ads)
            1
                       5002
                                    Aria Keys
                                                melodious.aria@email.edu
                                                                             2023-03-13
                                                                                               Basic (Ads)
            2
                       5004
                                    Lyric Bell
                                                rhythmical.lyric@email.com
                                                                             2023-03-13
                                                                                               Basic (Ads)
                                                                             2023-03-20
            3
                       5267
                                 Rock Bassett
                                                   groovy.rock@email.com
                                                                                               Basic (Ads)
                                Rhythm Dixon
                                                beats.by.rhythm@email.edu
                       5338
                                                                             2023-03-20
                                                                                               Basic (Ads)
           #view the customers who cancelled
In [54]:
           customers[customers['Cancellation Date'].notna()].head()
Out[54]:
                                                                                        Subscription_Plan
                Customer_ID
                              Customer_Name
                                                                   Email
                                                                          Member_Since
             2
                        5004
                                                 rhythmical.lyric@email.com
                                     Lyric Bell
                                                                              2023-03-13
                                                                                                Basic (Ads)
             5
                        5404
                                   Jazz Saxton
                                                      jazzy.sax@email.com
                                                                              2023-03-20
                                                                                                Basic (Ads)
             7
                        5759
                                 Carol Kingbird
                                                 songbird.carol@email.com
                                                                              2023-03-22
                                                                                          Premium (No Ads)
            12
                        6029
                               Chord Campbell
                                               campbell.chordify@email.com
                                                                              2023-03-29
                                                                                          Premium (No Ads)
            13
                        6092
                                   Benny Beat
                                                 rhythmic.benny@email.com
                                                                              2023-04-01
                                                                                                Basic (Ads)
In [55]:
           # How long were customers members before they cancelled?
            (customers['Cancellation Date'] - customers['Member Since']).mean()
Out[55]: Timedelta('46 days 07:23:04.615384615')
```

· about 1.5 months but that might just because we have 3 months of data

```
In [56]:
           # Cancellation rate for those who had a discount
           discount yes = customers[customers['Discount?'] ==1]
           discount_yes
Out[56]:
                Customer_ID
                             Customer_Name
                                                                   Email Member_Since Subscription_Plar
            21
                       6822
                                    Kiki Keys
                                                  kiki.keys.piano@email.com
                                                                              2023-05-01
                                                                                          Premium (No Ads)
            22
                       6824
                                 Greta Groove
                                                    groovy.greta@email.com
                                                                              2023-05-01
                                                                                          Premium (No Ads)
                       7087
                               Harmony Heart
                                               heartfelt.harmony@email.com
                                                                                          Premium (No Ads)
            23
                                                                              2023-05-01
            25
                             Melody Fitzgerald
                                                fitzgerald.melody@email.com
                                                                                          Premium (No Ads)
                       7224
                                                                              2023-05-08
            26
                       7401
                                 Reed Murphy
                                              murphy.reed.music@email.com
                                                                              2023-05-08
                                                                                          Premium (No Ads)
                                                     keysoflyric@email.com
            28
                       7581
                                   Lyric Keys
                                                                              2023-05-16
                                                                                          Premium (No Ads)
            29
                       7583
                                Melody Singer
                                                  melodic.singer@email.com
                                                                              2023-05-16
                                                                                          Premium (No Ads)
           # Cancellation rate for those who had a discount
In [57]:
           discount_yes.Cancelled.sum() / discount_yes.Cancelled.count()
Out[57]: 0.8571428571428571
In [58]:
           # Cancellation rate for those who did not have a discount
           discount no = customers[customers['Discount?'] == 0]
           discount_no.head()
Out[58]:
               Customer_ID Customer_Name
                                                                 Email
                                                                        Member_Since
                                                                                      Subscription_Plan
            0
                      5001
                             Harmony Greene
                                             harmonious.vibes@email.com
                                                                                              Basic (Ads)
                                                                            2023-03-13
            1
                      5002
                                                melodious.aria@email.edu
                                   Aria Keys
                                                                            2023-03-13
                                                                                              Basic (Ads)
                      5004
            2
                                   Lyric Bell
                                               rhythmical.lyric@email.com
                                                                            2023-03-13
                                                                                              Basic (Ads)
            3
                      5267
                                Rock Bassett
                                                  groovy.rock@email.com
                                                                            2023-03-20
                                                                                              Basic (Ads)
                      5338
                               Rhythm Dixon
                                               beats.by.rhythm@email.edu
                                                                            2023-03-20
                                                                                              Basic (Ads)
           discount no.Cancelled.sum() / discount no.Cancelled.count()
```

What those results ar telling me about - people who got a discount are much more likely to cancele than
people who didn't get the discount

Out[59]: 0.30434782608695654

```
In [60]:
         # Visualize the cancellation rate for those with a discount vs those without a
         pd.DataFrame([['Had Discount', 0.8571428571428571],
                         ['Did Not Have Discount', 0.30434782608695654]],
                         columns = ['Customer Type', 'Cancellation Rate']).plot.barh(x
         ='Customer Type', y='Cancellation Rate' ,);
```


🙃 The people who have a discount have a much higher cancellation rate more than two times as much

Better understand the customers' listening histories:

- · Join together the listening history and audio tables
- · How many listening sessions did each customer have in the past 3 months?
- What were the most popular genres that customers listened to?

```
In [61]:
         listenning_history.head()
C
```

٠,	11	н	- 1	_	-11			•
J	u	Ц	- 1	U	ч	L	н	

	Customer_ID	Session _ID	Audio_Order	Audio_ID	Audio_Type
0	5001	100520	1	101	Song
1	5001	100520	2	102	Song
2	5001	100520	3	103	Song
3	5001	100520	4	104	Song
4	5001	100520	5	105	Song

```
In [62]:
           audio.head()
Out[62]:
                     ID
                                   Name Genre Popularity
            0 Song-101
                            Dance All Night
                                                          1
                                             Pop
               Song-102 Unbreakable Beat
                                             Pop
                                                          2
              Song-103 Sunset Boulevard
                                             Pop
                                                          5
               Song-104
                            Glowing Hearts
                                             Pop
                                                         10
               Song-105
                               Pop Rocks
                                                         52
                                             Pop
In [63]:
           sessions.head()
Out[63]:
               Session_ID Session_Log_In_Time
            0
                   100520
                              2023-03-13 18:29:00
            1
                   100522
                              2023-03-13 22:15:00
            2
                   100525
                              2023-03-14 10:01:00
                   100527
            3
                              2023-03-13 14:14:00
                   100538
                              2023-03-21 12:23:00
```

In [64]: # Split the ID in the audio data so the column can be joined with other tables
audio_clean = pd.DataFrame(audio.ID.str.split('-').to_list()).rename(columns=
{0:'Type', 1:'Audio_ID'})
audio_clean.head()

Out[64]:

	Type	Audio_ID
0	Song	101
1	Song	102
2	Song	103
3	Song	104
4	Song	105

In [65]: audio.dtypes

Out[65]: ID object
Name object
Genre object
Popularity int64
dtype: object

In [66]: audio_clean.dtypes

Out[66]: Type object
Audio_ID object
dtype: object

```
In [67]: listenning_history.dtypes
Out[67]: Customer ID
                           int64
          Session _ID
                           int64
          Audio_Order
                           int64
          Audio ID
                           int64
          Audio_Type
                          object
          dtype: object
In [68]:
         # Adding new field to the original aaudio table
          audio_all = pd.concat([audio_clean, audio], axis=1)
          audio_all.head()
Out[68]:
             Type Audio_ID
                                 ID
                                              Name Genre Popularity
           0 Song
                       101 Song-101
                                       Dance All Night
                                                                  1
                                                      Pop
           1 Song
                       102 Song-102 Unbreakable Beat
                                                      Pop
                                                                  2
           2 Song
                       103 Song-103
                                     Sunset Boulevard
                                                                  5
                                                      Pop
                       104 Song-104
           3 Song
                                       Glowing Hearts
                                                      Pop
                                                                 10
            Song
                       105 Song-105
                                          Pop Rocks
                                                      Pop
                                                                 52
In [74]:
          audio_all.dtypes
Out[74]: Type
                         object
                          int32
          Audio_ID
          ID
                         object
                         object
          Name
          Genre
                         object
          Popularity
                          int64
          dtype: object
         audio_all['Audio_ID'] = audio_all['Audio_ID'].astype('int')
In [73]:
```

```
In [75]: # merging Audio_all and and listenning history
    df = listenning_history.merge(audio_all, how = 'left', on = 'Audio_ID')
    df
```

Out[75]:

	Customer_ID	Session _ID	Audio_Order	Audio_ID	Audio_Type	Туре	ID	Name
0	5001	100520	1	101	Song	Song	Song- 101	Dance All Night
1	5001	100520	2	102	Song	Song	Song- 102	Unbreakable Beat
2	5001	100520	3	103	Song	Song	Song- 103	Sunset Boulevard
3	5001	100520	4	104	Song	Song	Song- 104	Glowing Hearts
4	5001	100520	5	105	Song	Song	Song- 105	Pop Rocks
500	7579	111282	4	111	Song	Song	Song- 111	Moonlit Serenade
501	6588	111286	1	201	Podcast	Podcast	Podcast- 201	Jokes on Jokes
502	5763	111333	1	110	Song	Song	Song- 110	Boss Moves
503	5763	111333	2	108	Song	Song	Song- 108	Chase the Dream
504	5763	111333	3	110	Song	Song	Song- 110	Boss Moves

505 rows × 10 columns

```
In [78]: df.groupby('Customer_ID')['Session _ID'].nunique()
Out[78]: Customer_ID
          5001
                  8
          5002
                  4
                  1
          5004
                  7
          5267
          5338
                  4
                  1
          5404
          5581
                  3
                  2
          5759
                  3
          5761
          5763
                  6
                  3
          5826
          5827
                  1
          6029
                  2
                  3
          6092
                  3
          6163
                  2
          6229
                  3
          6406
                  2
          6584
                  2
          6586
          6588
                  3
                  2
          6821
                  3
          6822
          6824
                  4
          7087
                  3
                  3
          7158
          7224
                  4
                  3
          7401
                  2
          7579
          7581
                  2
          7583
                  1
```

Name: Session _ID, dtype: int64

```
In [81]: # The number of Listening sessions that each customer had in the past 3 months
# to find the unique session ids I use nunique
df.groupby('Customer_ID')['Session _ID'].nunique().plot.hist();
```


Most customers have about 2 or 3 listening sessions a.nd also we have a few exreme listeners out there
who likes to listen to alot of songs

```
#The most popular genres that customers listened to
In [82]:
         df.Genre.value_counts()
Out[82]: Pop
                        267
         Hip Hop
                         88
                         68
         Country
         Jazz
                         48
         Comedy
                         19
         True Crime
                         15
         Name: Genre, dtype: int64
```

• For all my customers, they listen to a lot of Pop songs and not so many true crime podcasts

5. Prep for Modeling

Create a DataFrame that is ready for modeling with each row representing a customer and the following numeric, non-null columns:

- Customer ID
- Whether a customer cancelled or not
- · Whether a customer received a discount or not
- The number of listening sessions
- · Percent of listening history consisting of Pop
- · Percent of listening history consisting of Podcasts

```
In [84]: # Create a dataframe ready for modeling
model_df = customers[['Customer_ID', 'Cancelled', 'Discount?']]
model_df.head()
```

Out[84]:

	Customer_ID	Cancelled	Discount?
0	5001	0	0
1	5002	0	0
2	5004	1	0
3	5267	0	0
4	5338	0	0

```
In [85]: df.head()
```

Out[85]:

	Customer_ID	Session _ID	Audio_Order	Audio_ID	Audio_Type	Туре	ID	Name	Genre
0	5001	100520	1	101	Song	Song	Song- 101	Dance All Night	Pop
1	5001	100520	2	102	Song	Song	Song- 102	Unbreakable Beat	Рор
2	5001	100520	3	103	Song	Song	Song- 103	Sunset Boulevard	Pop
3	5001	100520	4	104	Song	Song	Song- 104	Glowing Hearts	Pop
4	5001	100520	5	105	Song	Song	Song- 105	Pop Rocks	Рор
4									

```
In [87]: df.groupby('Customer_ID')['Session _ID'].nunique()
Out[87]: Customer_ID
          5001
                  8
          5002
                  4
                  1
          5004
                  7
          5267
          5338
                  4
                  1
          5404
          5581
                  3
                  2
          5759
                  3
          5761
          5763
                  6
                  3
          5826
          5827
                  1
          6029
                  2
                  3
          6092
                  3
          6163
                  2
          6229
                  3
          6406
                  2
          6584
                  2
          6586
          6588
                  3
                  2
          6821
                  3
          6822
          6824
                  4
          7087
                  3
                  3
          7158
          7224
                  4
                  3
          7401
                  2
          7579
          7581
                  2
          7583
                  1
          Name: Session _ID, dtype: int64
```

```
df.groupby('Customer_ID')['Session _ID'].nunique().rename('Number_of_Session
In [89]:
          s')
Out[89]: Customer_ID
          5001
                  8
          5002
                  4
          5004
                  1
          5267
                  7
          5338
                  4
          5404
                  1
          5581
                  3
                  2
          5759
          5761
                  3
                  6
          5763
          5826
                  3
                  1
          5827
          6029
                  2
          6092
                  3
                  3
          6163
          6229
                  2
          6406
                  3
                  2
          6584
          6586
                  2
          6588
                  3
                  2
          6821
                  3
          6822
          6824
                  4
          7087
                  3
                  3
          7158
                  4
          7224
                  3
          7401
          7579
                  2
          7581
                  2
          7583
          Name: Number_of_Sessions, dtype: int64
In [91]:
         # Calculate the number of listening sessions for each customer
          number_of_listening_sessions = df.groupby('Customer_ID')['Session _ID'].nuniqu
          e().rename('Number_of_Sessions').to_frame().reset_index()
          number_of_listening_sessions.head()
Out[91]:
             Customer_ID Number_of_Sessions
           0
                                         8
                    5001
           1
                    5002
                                         4
           2
                    5004
                                         1
                                         7
           3
                    5267
```

```
In [92]: # Add the above frame to the model dataframe
    model_df = model_df.merge(number_of_listening_sessions, how='left', on='Custom
    er_ID')
    model_df.head()
```

Out[92]:

	Customer_ID	Cancelled	Discount?	Number_of_Sessions
0	5001	0	0	8
1	5002	0	0	4
2	5004	1	0	1
3	5267	0	0	7
4	5338	0	0	4

```
In [95]: df.Genre
```

Out[95]: 0 Pop 1 Pop 2 Pop 3 Pop 4 Pop 500 Jazz 501 Comedy 502 Hip Hop 503 Hip Hop 504 Hip Hop

Name: Genre, Length: 505, dtype: object

In [94]: # Calculate dummy variables for each genre
pd.get_dummies(df.Genre)

Out[94]:

	Comedy	Country	Hip Hop	Jazz	Pop	True Crime
0	0	0	0	0	1	0
1	0	0	0	0	1	0
2	0	0	0	0	1	0
3	0	0	0	0	1	0
4	0	0	0	0	1	0
500	0	0	0	1	0	0
501	1	0	0	0	0	0
502	0	0	1	0	0	0
503	0	0	1	0	0	0
504	0	0	1	0	0	0

505 rows × 6 columns

In [96]: #combine it with the customer_ID
pd.concat([df['Customer_ID'], pd.get_dummies(df.Genre)], axis=1)

Out[96]:

	Customer_ID	Comedy	Country	Hip Hop	Jazz	Pop	True Crime
0	5001	0	0	0	0	1	0
1	5001	0	0	0	0	1	0
2	5001	0	0	0	0	1	0
3	5001	0	0	0	0	1	0
4	5001	0	0	0	0	1	0
500	7579	0	0	0	1	0	0
501	6588	1	0	0	0	0	0
502	5763	0	0	1	0	0	0
503	5763	0	0	1	0	0	0
504	5763	0	0	1	0	0	0

505 rows × 7 columns

In [98]: # Group it by customer
genres = pd.concat([df['Customer_ID'], pd.get_dummies(df.Genre)], axis=1).grou
pby('Customer_ID').sum().reset_index()
genres.head()

Out[98]:

	Customer_ID	Comedy	Country	Hip Hop	Jazz	Pop	True Crime
0	5001	0	0	26	0	34	0
1	5002	0	22	0	0	0	0
2	5004	0	0	0	0	9	0
3	5267	0	0	22	0	23	0
4	5338	0	18	0	0	0	0

In [99]: listenning_history.head()

Out[99]:

	Customer_ID	Session _ID	Audio_Order	Audio_ID	Audio_Type
0	5001	100520	1	101	Song
1	5001	100520	2	102	Song
2	5001	100520	3	103	Song
3	5001	100520	4	104	Song
4	5001	100520	5	105	Song

```
In [102]: # Add a column for total songs/ podcast listened to
    total_audio = listenning_history.groupby('Customer_ID')['Audio_ID'].count().re
    name('Total_Audio').to_frame().reset_index()
    total_audio.head()
```

Out[102]:

	Customer_ID	Total_Audio
0	5001	60
1	5002	22
2	5004	9
3	5267	45
4	5338	18

Out[105]:

	Customer_ID	Comedy	Country	Hip Hop	Jazz	Pop	True Crime	Total_Audio
0	5001	0	0	26	0	34	0	60
1	5002	0	22	0	0	0	0	22
2	5004	0	0	0	0	9	0	9
3	5267	0	0	22	0	23	0	45
4	5338	0	18	0	0	0	0	18

```
In [106]: # Percent pop
    model_df['Percent_Pop'] =df_audio.Pop / df_audio['Total_Audio']*100
    model_df.head()
```

Out[106]:

	Customer_ID	Cancelled	Discount?	Number_of_Sessions	Percent_Pop
0	5001	0	0	8	56.666667
1	5002	0	0	4	0.000000
2	5004	1	0	1	100.000000
3	5267	0	0	7	51.111111
4	5338	0	0	4	0.000000

```
In [110]: # Percent podcasts
    model_df['Percet_Podcast'] = ((df_audio['Comedy'] + df_audio['True Crime'])
    / df_audio['Total_Audio'])*100
    model_df.tail()
```

Out[110]:

	Customer_ID	Cancelled	Discount?	Number_of_Sessions	Percent_Pop	Percet_Podcast
25	7224	1	1	4	100.000000	0.000000
26	7401	1	1	3	45.454545	27.272727
27	7579	0	0	2	0.000000	0.000000
28	7581	1	1	2	92.857143	7.142857
29	7583	1	1	1	0.000000	100.000000

In [111]: model_df

[111]:							
		Customer_ID	Cancelled	Discount?	Number_of_Sessions	Percent_Pop	Percet_Podcast
	0	5001	0	0	8	56.666667	0.000000
	1	5002	0	0	4	0.000000	0.000000
	2	5004	1	0	1	100.000000	0.000000
	3	5267	0	0	7	51.111111	0.000000
	4	5338	0	0	4	0.000000	0.000000
	5	5404	1	0	1	100.000000	0.000000
	6	5581	0	0	3	0.000000	100.000000
	7	5759	1	0	2	100.000000	0.000000
	8	5761	0	0	3	0.000000	100.000000
	9	5763	0	0	6	64.516129	0.000000
1	0	5826	0	0	3	0.000000	0.000000
1	1	5827	0	0	1	100.000000	0.000000
1	2	6029	1	0	2	100.000000	0.000000
1	3	6092	1	0	3	30.000000	40.000000
1	4	6163	0	0	3	0.000000	100.000000
1	5	6229	1	0	2	100.000000	0.000000
1	6	6406	0	0	3	33.333333	44.44444
1	7	6584	0	0	2	48.148148	0.000000
1	8	6586	0	0	2	45.454545	0.000000
1	9	6588	1	0	3	40.000000	30.000000
2	20	6821	0	0	2	47.619048	0.000000
2	21	6822	0	1	3	0.000000	0.000000
2	22	6824	1	1	4	100.000000	0.000000
2	23	7087	1	1	3	45.454545	27.272727
2	24	7158	0	0	3	0.000000	0.000000
2	25	7224	1	1	4	100.000000	0.000000
2	26	7401	1	1	3	45.454545	27.272727
2	27	7579	0	0	2	0.000000	0.000000
2	8	7581	1	1	2	92.857143	7.142857
2	9	7583	1	1	1	0.000000	100.000000

Visualize the relationships in the modeling DataFrame using a pair plot:

- What are some of your observations?
- What variables might do a good job predicting customer cancellation?

· I do not have much that much data it's kind of hard to see any relationship

In [114]: # I'm going to look at the correlations
model_df.corr()

Out[114]:

	Customer_ID	Cancelled	Discount?	Number_of_Sessions	Percent_Pop	Per
Customer_ID	1.000000	0.269942	0.648514	-0.337083	-0.076129	
Cancelled	0.269942	1.000000	0.471825	-0.333739	0.585630	
Discount?	0.648514	0.471825	1.000000	-0.048877	0.112675	
Number_of_Sessions	-0.337083	-0.333739	-0.048877	1.000000	-0.131156	
Percent_Pop	-0.076129	0.585630	0.112675	-0.131156	1.000000	
Percet_Podcast	0.083083	-0.035414	0.062938	-0.125459	-0.487193	
1						

Observations

- A Discount is correlated with a cancellation
- The more listening sessions, the fewr cancellations
- the more pop music, the more cancellations
- Podcast listening history seems unrelated to cancellations