Lecture 3

- How do we evaluate a network?
- How is communication organized?

Circuits vs Packets

Circuits	Packets
predictable performance	unpredictable performance
inefficient use of network resources	efficient use of network resources
complex (state int he network)	simple (no state in the network)

How do we evaluate a network?

- Delay
- Loss
- Throughput

Delay

- How long does it take tos end a packet from its source to destination?
- Consists of four components
 - Transmission delay
 - Due to link properties
 - Propagation delay

- Due to link properties
- Queuing delay
 - Due to traffic mix and switch internals
- Processing delay
 - Due to traffic mix and switch internals

A network link

- Link bandwidth
 - Number of bits sent / received per unit time (bits / sec or bps)
- Propagation delay
 - Time for one bit to move through the link (seconds)
- Bandwidth-Delay Product (BDP)
 - Number of bits "in flight" at any time
 - BDP = bandwidth x propagation delay

Example

- Same city over a slow link
 - bandwidth: ~100 Mbps
 - o propagation delay: ~0.1 msec
 - BDP: 10,000 bits (1.25KBytes)
- Corss-country over fast link
 - \circ bandwidth: ~10Gbps
 - o propagation delay: ~10 msec

• BDP: 10⁸ bits (12.5 MBytes)

Transmission delay

- Time taken to push all the bits of a packet into the link
- Packet size / link bandwidth

Propagation delay

- Time taken to move one bit from one end of a link to the other
- Link length / link propagation delay

Queuing delay

- Time a packet sits in a buffer before it is processed
- If arrival rate > departure rate (persistent overload)
 - approaches infinity (assuming an infinite buffer)
 - in practice, finite buffer -> loss
- If arrival rate < departure rate
 - o depends on burst size

Basic Queuing Theory Terminology

- Arrival process: how packets arrive
 - Average rate A
- W: average time packets wait in the queue
 - W for "waiting time"
- L: average number of packets waiting int he queue

• L for "length of queue"

Little's Law 1961

 $L = A \times W$

- Compute L: count packets in queue every second
 - How often does a single packet gets counted? W times
- Why do you care?
 - Easy to compute L, harder to compute W

Processing Delay

- Time taken for the switch to process a packet
 - Typically assume this is negligible

Loss

• What fraction of the packets sent to a destination are dropped?

Throughput

- At what rate is the destination receiving data from the source?
 - Data size / transfer time
- Transfer time = F / R + propagation delay
 - F = file of size (bits)
 - R = average throughput

Where's my delay coming from?

How is communication organized?

- **Decompose** the problem into tasks
- Organize these tasks
- Assign tasks to entities (who does that)

The path of the letter

Semantic content -> Identity -> Location

In the Internet: decomposition

- 1. Applications [L7]
- 2. **Transport**: Reliable (or unreliable) transport) [L4]
- 3. **Network**: Best-effort global packet delivery [L3]
- 4. **Data link**: Best-effort local packet delivery [L2]
- 5. **Physical**: Physical transfer of bits [L1]

Layers

A part of a system with well-defined interfaces to other parts

- One layer interacts only with layer above and layer below
- Two layers interact only through the interface between them

Protocols and Layers

 Communication between peer layers on different systems is defined by protocols

Protocols

An agreement between parties on how to communicate

 Header: instructions for how to process the payload Each protocol defined the format of its packet headers e.g. the first 32 bits carry the destination address 				
e.g. the first 32 bits carry the destination address				
 And semantics 				
■ First a hello, then a request				
 Protocols exits at many levels, hardware and software 				
 Defined by variety of standard bodies (IETF, IEEE, ITU) 				
Protocols at different layers				
?				