实验十六 霍尔效应测量磁场 实验报告

1400012141 邵智轩 周二下午3组11号 2016年11月29日

1 实验数据处理

1.1 测量霍尔电压 U_H 和霍尔电流 I_H 的关系

为了消除副效应的影响,在操作时我们要分别改变 I_H 的方向和B的方向(即 I_M 的方向),记下4组电势差数据:

当 I_H 正向, B正向时: $U_1 = U_H + U_0 + U_E + U_N + U_R$

当 I_H 负向, B正向时: $U_2 = -U_H - U_0 - U_E + U_N + U_R$

当 I_H 负向, B负向时: $U_3 = U_H - U_0 + U_E - U_N - U_R$

当 I_H 正向, B负向时: $U_4 = -U_H + U_0 - U_E - U_N - U_R$

考虑到 $U_E \ll U_H$, 可忽略, 于是

$$U_H = \frac{1}{4}(U_1 - U_2 + U_3 - U_4)$$

固定励磁电流 $I_M=0.600$ A,输入霍尔电流 I_H 接入1、2端,测量3、4端电压 $U_1,\ U_2,\ U_3,\ U_4$ 。

Table 1: I_H 接1、2端时 U_H - I_H 数据

I_H/mA	U_1/mV	U_2/mV	U_3/mV	U_4/mV	U_H/mV
2.00	5.66	-5.66	5.79	-5.79	5.73
4.00	11.34	-11.32	11.59	-11.57	11.46
6.00	17.04	-16.99	17.41	-17.36	17.20
8.00	22.72	-22.63	23.22	-23.13	22.93
10.00	28.44	-28.31	29.06	-28.90	28.68

计算得

$$r = 0.9999997$$

$$k = 2.8685 \text{ mV/mA}$$

$$b = -0.01\text{mV}$$

作图见 Figure 1:

Figure 1: I_H 接1、2端时 U_H - I_H 变化曲线

可以看出 U_H 与 I_H 满足严格的线性性。

固定励磁电流 $I_M=0.600$ A,输入霍尔电流 I_H 接入3、4端,测量1、2端电压 $U_1,\ U_2,\ U_3,\ U_4$ 。

Table 2: I_H 接3、4端时 $U_H - I_H$ 数据

I_H/mA	U_1/mV	U_2/mV	U_3/mV	U_4/mV	U_H/mV
2.00	5.80	-5.81	5.67	-5.69	5.74
4.00	11.59	-11.62	11.35	-11.36	11.48
6.00	17.38	-17.43	17.02	-17.07	17.23
8.00	23.16	-23.25	22.68	-22.75	22.96
10.00	28.97	-29.10	28.36	-28.47	28.73

计算得

$$r = 0.9999997$$

$$k = 2.8685 \text{ mV/mA}$$

$$b = -0.01\text{mV}$$

作图见 Figure 1:

Figure 2: I_H 接1、2端时 U_H - I_H 变化曲线

可见 U_H 与 I_H 满足严格的线性性。

2 实验数据的分析、处理与结论

2.1 直线拟合法

复摆的周期公式可改写为:

$$T^2 h = \frac{4\pi^2}{g} h^2 + \frac{4\pi^2}{mg} I_G$$

看出 T^2h 与 h^2 呈线性关系。做 T^2h-h^2 直线,则斜率 $k=\frac{4\pi^2}{g}$,截距 $b=\frac{4\pi^2}{mg}$ 。

$$g = \frac{4\pi^2}{k}$$

$$I_G = \frac{bm}{k}$$

$$R_G = \sqrt{\frac{I_G}{m}} = \sqrt{\frac{b}{k}}$$

下表记录了实验数据计算得到的 T^2h 和 h^2 的数据(h > 0的部分):

Table 3: 复摆周期T与悬点位置h的关系

h^2/cm^2	$T^2h/(s^2 \cdot cm)$	h^2/cm^2	$T^2h/(\mathrm{s}^2\cdot\mathrm{c}m)$		
1.44	11.2	262	22.8		
17.6	12.7	296	24.1		
27.0	13.1	331	25.6		
38.4	13.6	369	27.1		
51.8	14.2	408	28.7		
67.2	14.8	449	30.3		
84.6	15.5	493	32.1		
104	16.3	538	33.9		
125	17.2	586	35.8		
149	18.2	635	37.8		
174	19.2	686	39.9		
202	20.3	740	42.1		
231	21.5				

由散点图可知,h最小的3个点偏离直线较大,故舍去。 拟合出的直线见 Figure 1:

Figure 3: T^2h-h^2 变化曲线

计算得到:

$$r = 0.999988$$

$$k = 0.0405 \text{ s}^2/\text{cm} = 4.05 \text{ s}^2/\text{m}$$

 $b = 12.1 \text{ s}^2 \cdot \text{cm}$

代入得到:

$$g = \frac{4\pi^2}{k} = 9.75 \text{ m/s}^2$$

$$I_G = \frac{bm}{k} = 1.22 \times 10^5 \text{ g} \cdot \text{cm}^2$$

$$R_G = \sqrt{\frac{b}{k}} = 17.3 \text{ cm}$$

2.2 近似共轭点法

由公式:

$$T_1 = 2\pi \sqrt{\frac{I_G + mh_1^2}{mgh_1}}, \quad T_2 = 2\pi \sqrt{\frac{I_G + mh_2^2}{mgh_2}}$$

将两式中 I_G 消去,则有

$$\frac{4\pi^2}{g} = \frac{h_1 T_1^2 - h_2 T_2^2}{h_1^2 - h_2^2}$$

分项得

$$\frac{4\pi^2}{g} = \frac{T_1^2 + T_2^2}{2(h_1 + h_2)} + \frac{T_1^2 - T_2^2}{2(h_1 - h_2)} = A + B$$

其中前一项A是能被精确测定的,后一项B不能被精确测定,因为其中包含了对重心位置的测定。不过,当 $T_1 \approx T_2$ 时,后一项B的分子很小,同时又可使分母 $|h_1-h_2|$ 比较大,这一不能被精确测定的项B的数值很小, $|\frac{B}{A}| \approx 10^{-2}-10^{-4}$,从而对g的影响不大。只保留前一项A,由此可得

$$g = \frac{8\pi^2(h_1 + h_2)}{T_1^2 + T_2^2}$$

此方法称为"近似共轭点法",因为我们选取的两点并非周期完全相等,而是近似相等。

代入实验数据,第一组:

$$h_1=27.2$$
 cm, $T_1=1.24414$ s, $h_2=11.3$ cm, $T_2=1.24054$ s
$$A=\frac{{T_1}^2+{T_2}^2}{2(h_1+h_2)}=4.01~{\rm s}^2/{\rm m}$$

$$B=\frac{{T_1}^2-{T_2}^2}{2(h_1-h_2)}=0.0281~{\rm s}^2/{\rm m}$$

 $|\frac{B}{A}| = 7 \times 10^{-3}$,满足近似条件。

$$g_1 = \frac{8\pi^2(h_1 + h_2)}{T_1^2 + T_2^2} = 9.84 \text{ m/s}^2$$

第二组:

$$h_1 = 24.2 \text{ cm}, \quad T_1 = 1.21687 \text{ s}, \quad h_2 = 12.3 \text{ cm}, \quad T_2 = 1.22057 \text{ s}$$

$$A = \frac{T_1^2 + T_2^2}{2(h_1 + h_2)} = 4.07 \text{ s}^2/\text{m}$$

$$B = \frac{T_1^2 - T_2^2}{2(h_1 - h_2)} = 0.0379 \text{ s}^2/\text{m}$$

 $|\frac{B}{A}| = 9 \times 10^{-3}$,满足近似条件。

$$g_2 = \frac{8\pi^2(h_1 + h_2)}{T_1^2 + T_2^2} = 9.70 \text{ m/s}^2$$

第三组:

$$h_1 = 21.2 \text{ cm}, \quad T_1 = 1.19630 \text{ s}, \quad h_2 = 14.3 \text{ cm}, \quad T_2 = 1.19603 \text{ s}$$

$$A = \frac{{T_1}^2 + {T_2}^2}{2(h_1 + h_2)} = 4.03 \text{ s}^2/\text{m}$$

$$B = \frac{{T_1}^2 - {T_2}^2}{2(h_1 - h_2)} = 0.0468 \text{ s}^2/\text{m}$$

 $|\frac{B}{A}| = 1 \times 10^{-2}$,满足近似条件。

$$g_3 = \frac{8\pi^2(h_1 + h_2)}{T_1^2 + T_2^2} = 9.80 \text{ m/s}^2$$

平均值:

$$g = \frac{g_1 + g_2 + g_3}{3} = 9.78 \text{ m/s}^2$$

2.3 共轭点法

利用Table 1 中数据,制成T-h图Figure 2:

Figure 4: T-h变化曲线

从图中读出周期T相等的两个共轭点(分别在曲线的两支上,且 $h_1 \neq h_2$),等效摆长 $L=h_1+h_2$,代入周期公式,可得:

$$g = \frac{4\pi^2 L}{T^2} = \frac{4\pi^2 (h_1 + h_2)}{T^2}$$

Figure 5: 共轭点法求g

从图中读出三组数据,分别计算:

第一组:
$$T = 1.210 \text{ s}$$
, $h_1 = 12.9 \text{ cm}$, $h_2 = 23.4 \text{ cm}$

$$g_1 = \frac{4\pi^2(h_1 + h_2)}{T^2} = 9.79 \text{ m/s}^2$$

第二组: T = 1.200 s, $h_1 = 13.7 \text{ cm}$, $h_2 = 22.0 \text{ cm}$

$$g_2 = \frac{4\pi^2(h_1 + h_2)}{T^2} = 9.79 \text{ m/s}^2$$

第三组: T = 1.190 s, $h_1 = 15.0 \text{ cm}$, $h_2 = 20.2 \text{ cm}$

$$g_3 = \frac{4\pi^2(h_1 + h_2)}{T^2} = 9.81 \text{ m/s}^2$$

得平均值:

$$g = \frac{g_1 + g_2 + g_3}{3} = 9.80 \text{ m/s}^2$$

3 分析与讨论

3.1 三种处理方法的比较

查阅资料可知北京地区的重力加速度约为 $g = 9.8015 \text{ m/s}^2$ 。从计算结果来看,共轭点法和近似共轭点法比较准确,而直线拟合法结果偏差较大。

直线拟合法的优点在于能用到所有数据,而且不仅能计算出重力加速度g,还能求得 I_G 和 R_G 。缺点在于计算数据比较麻烦;要考虑重心不在0处带来的影响;而且h较小的点偏离线性的程度较大。我试着计算了一下排除掉h<10的点后再进行拟合,则相关系数r增大(线性性更好),且求得的g增大,更接近实际值。

近似共轭点法的优点:被保留的一项可以被精确测定,与重心位置无关。且计算公式比较方便。麻烦之处在于数据的选取,要使忽略的那一项尽可能小,对近似共轭点的选取有较高的要求。如果B项达到A项的1%,那么g也会有1%的偏差,这偏差是相当大的。

共轭点法的优点在于十分准确(理论上没有忽略、近似的步骤),且计算公式 很简洁。缺点在于需要作图,且作图和读图的过程中也会产生误差。

4 收获与感想

本实验操作上不是很难,重点在于调铅直(否则测得的为g的一个分量)。主要的收获在于数据处理与分析的过程,用了三种不同的方法,各有优劣。练习了直线拟合、小项忽略、作图反推等数据处理方法。