Biostatistics Week XII

Ege Ülgen, M.D.

23 December 2021

Generalized Linear Models

- A generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows for the response variable to have an error distribution other than the normal distribution
- The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function

Logistic Regression

- Logistic regression is a specialized form of regression used when the dependent variable is binary outcome
 - Having a binary outcome (dependent variable) violates the assumption of linearity in linear regression

- The goal of logistic regression is to find the best fitting model to describe the relationship between the binary outcome and a set of independent variables
 - e.g., predicting whether the treatment will be successful or not, the presence/absence of a disease, etc.

Logistic Regression

 Logistic regression generates the coefficients of the following formula to predict a logit transformation of the probability of presence of the outcome:

$$logit(P(Y = 1)) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- The coefficients are estimated via Maximum Likelihood Estimation (MLE)
- logit is in fact the log of odds:

$$logit(p) = ln\left(\frac{p}{1-p}\right)$$

Logistic Regression – Example

- Identification of risk factors for lymph node metastases with prostate cancer
- n = 52 patients
- y = nodal metastases (0 = none, 1 = metastases)
- x = phosphatase, age , X-ray result, tumor size, tumor grade
 - The first two variables are continuous, the rest are binary

Lymph node metastases – Univariate Models

	Estimate	Std. Error	z value	Pr(> z)	OR
$\log_2(phosph)$	2.4198	0.8778	2.76	0.0058	11.2
Age	-0.0448	0.0468	-0.96	0.3379	1.0
X-ray	2.1466	0.6984	3.07	0.0021	8.6
Size	1.6094	0.6325	2.54	0.0109	5.0
Grade	1.1389	0.5972	1.91	0.0565	3.1

Lymph node metastases – Final Model

	Estimate	Std. Error	z value	Pr(> z)	OR
(Intercept)	-0.5418	0.8298	-0.65	0.5138	
$log_2(phosph)$	2.3645	1.0267	2.30	0.0213	10.6
X-ray	1.9704	0.8207	2.40	0.0163	7.2
Size	1.6175	0.7534	2.15	0.0318	5.0

Interpretation

• With 95% confidence, it could be said that a patient with $log_2(phosphatase) = 0$, negative X-ray result, size = 0 was equally-likely in terms of having nodal metastases (p = 0.5138)

- With 95% confidence, it could be said that $log_2(phosphatase)$ and having nodal metastases are associated (p = 0.0213)
 - A one unit increase in log₂(phosphatase) was associated with approximately 963.87% increase in the odds of having nodal metastases
 - $(\exp(2.3645) 1) * 100 = 963.87$

•

Poisson Regression

- Linear regression was for continuous outcome, whereas logistic regression for binary outcome
- For count outcome, Poisson regression can be used

Poisson Regression - Example

- For 59 epilepsy patients the following data were collected:
 - treatment: the treatment group, a factor with levels placebo and Progabide
 - base: the number of seizures collected during 8-week period before the trial started
 - age: the age of the patient
 - seizure rate: the number of seizures occurred during the 2-week period after the trial was started

• First 10 patients:

treatment	base	age	seizure.rate	subject
placebo	11	31	5	1
placebo	11	30	3	2
placebo	6	25	2	3
placebo	8	36	4	4
placebo	66	22	7	5
placebo	27	29	5	6
placebo	12	31	6	7
placebo	52	42	40	8
placebo	23	37	5	9
placebo	10	28	14	10

• A Poisson regression with treatment group, previous seizures and age are related to the mean number of of seizure for patient i, λ_i , is given by:

$$log(\lambda_i) = \beta_0 + \beta_1 * I(treatment = Progabide) + \beta_2 * (base - 6) + \beta_3 (age - 18)$$

$$log(\lambda_i) = \beta_0 + \beta_1 * I(treatment = Progabide) + \beta_2 * (base - 6) + \beta_3 (age - 18)$$

	Estimate	Std. Error	z value	p
(Intercept)	0.75	0.14	5.33	< 0.001
treament = Progabide	-0.12	0.09	-1.28	0.20
base	0.03	0.00	26.37	< 0.001
age	0.05	0.01	5.95	< 0.001

 $log(\lambda_i) = \beta_0 + \beta_1 * I(treatment = Progabide) + \beta_2 * (base - 6) + \beta_3 (age - 18)$

- A patient in placebo group, with 6 previous seizures, and aged 18 had approximately 2 seizures on average in the first two weeks after the trial was started
 - exp(0.75)
- With 95% confidence, it could be said that there was no difference between placebo and progabide (p-value = 0.199)
 - Negative estimate for β_1 indicates lowered mean number of seizures for progabide, but the difference from placebo was not significant

- With 95% confidence, it could be said that previous number of seizures occurred in the 8-week interval prior to the study start and mean seizure rate was significantly associated (p-value < 0.001)
- One unit increase in previous seizure is associated with approximately 2.6% increase in the mean number of seizures in the first two weeks of the trial
 - $(\exp(0.03) 1) * 100$

- With 95% confidence, it could be said that age sand mean seizure rate was significantly associated (p-value < 0.001)
- One unit increase in age is associated with approximately 4.8% increase in the mean number of seizures in the first two weeks of the trial
 - $(\exp(0.05) 1) * 100$

Other Regression Models

- Multinomial Logistic Regression
 - generalizes logistic regression to multiclass problems, i.e., with more than two possible discrete outcomes
- Ordinal Regression
 - used for predicting an ordinal variable
- Polynomial Regression
 - the relationship between the independent variable(s) and the dependent variable y is modelled as an nth degree polynomial

...

Ridge Regularization

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} w_j^2$$

Lasso Regularization

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |w_j|$$

Ridge

Lasso

Stepwise Regression

- When the sample size is not much larger than the number of predictors, the regression model will perform poorly in terms of out-of-sample accuracy
- Reducing the number of predictors in the model by using stepwise regression will improve out-of-sample accuracy
 - Forward stepwise selection
 - Backward stepwise selection

Forward stepwise selection example with 5 variables:

Choueiry G. Understand forward and backward stepwise regression – quantifying health [Internet]. [cited 2021 Nov 2]. Available from: https://quantifyinghealth.com/stepwiseselection/

Backward stepwise selection example with 5 variables:

Start with a model that contains all the

variables
Full Model

X₁ X₂ X₃ X₄ X₅

Remove the least significant variable

Keep removing the least significant variable until reaching the stopping rule or running out of variables

oueiry G. Understand forward and backward stepwise regression – quantifying health Internet]. [cited 2021 Nov 2]. Available from: https://quantifyinghealth.com/stepwiseselection/

Brief Summary

Dependent Variable	Link function	Regression Model
Continuous	Υ	Linear Regression
Binary	logit(Y)	Logistic Regression
Count	log(Y)	Poisson Regression (Log-linear model)