# ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων

Χειμερινό Εξάμηνο 2020

Λογικές Πύλες, Στοιχεία Μνήμης, Συνδυαστική Λογική και Κυματομορφές

### Τα βασικά της Ψηφιακής Σχεδίασης

- Λογικές Πύλες
  - AND, OR, NOT, NAND, NOR, XOR, XNOR
- Στοιχεία μνήμης
  - Μανταλωτής RS, Μανταλωτής D,
  - Ακμοπυροδότητο D Flip-Flop
- Συνδυαστική Λογική
- Απλή Λογική με Ρολόι
- Κυματομορφές

### Πύλη KAI (AND)

- Πύλη ΚΑΙ (AND)
  -Z = AB ή Z = A· B
- Πίνακας Αληθείας (Truth Table)

| Α | В | Z |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |



Πύλη AND 2 εισόδων



Πύλη AND 3 εισόδων

# Πύλη ή (OR)

- Πύλη 'H (OR) - Z = A+B
- Πίνακας Αληθείας

| Α | В | Z |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | ~ |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



Πύλη OR 2 εισόδων



Πύλη OR 3 εισόδων

### Πύλη ΟΧΙ (ΝΟΤ)

Πύλη ΟΧΙ (NOT) ή
 Αντιστροφέας (Inverter)
 – Z = A'



• Πίνακας Αληθείας

| Α | Z |
|---|---|
| 0 | 1 |
| 1 | 0 |

### Πύλη ΟΧΙ-ΚΑΙ (NAND)

- Πύλη ΟΧΙ-ΚΑΙ (NAND)
   Z = (AB)'
- Πίνακας Αληθείας

| Α | В | Z |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |



Πύλη NAND 2 εισόδων



Πύλη NAND 3 εισόδων

### Πύλη ΟΥΤΕ (NOR)

- Πύλη ΟΥΤΕ (NOR)
   Z = (A+B)'
- Πίνακας Αληθείας

| Α | В | Z |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |



Πύλη NOR 2 εισόδων



Πύλη NOR 3 εισόδων

### Πύλη Αποκλειστικού-Ή (ΧΟΚ)

• Πύλη Αποκλειστικού-'H (XOR – Exclusive OR)

$$-Z = A \oplus B = AB' + A'B$$

• Πίνακας Αληθείας

| Α | В | Z |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |



Πύλη XOR 2 εισόδων



Πύλη XOR 3 εισόδων

#### Πύλη Αποκλειστικού-OYTE (XNOR)

• Πύλη Αποκλειστικού-ΟΥΤΕ (XNOR – Exclusive NOR) ή Πύλη Ισότητας

$$-Z = A \odot B = AB + A'B'$$

• Πίνακας Αληθείας

| Α | В | Z |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |



Πύλη XNOR 2 εισόδων



Πύλη XNOR 3 εισόδων

### Μανταλωτής RS (RS Latch)

- Στοιχείο μνήμης (Flip-Flop) Latch
- Set and Reset inputs
- Πίνακας Αληθείας

| S | R | Q         | Q'                |
|---|---|-----------|-------------------|
| 0 | 1 | 0         | 1                 |
| 1 | 0 | 1         | 0                 |
| 0 | 0 | $Q_{t-1}$ | Q' <sub>t-1</sub> |
| 1 | 1 | ?         | ?                 |



## Μανταλωτής D (D Latch)

- Στοιχείο μνήμης (Flip-Flop) Latch
- Data and Load inputs
- Πίνακας Αληθείας

| D | Ld | Q         | Q'                |
|---|----|-----------|-------------------|
| 0 | 0  | $Q_{t-1}$ | Q' <sub>t-1</sub> |
| 0 | 1  | 0         | 1                 |
| 1 | 0  | $Q_{t-1}$ | Q' <sub>t-1</sub> |
| 1 | 1  | 1         | 0                 |



#### Ακμοπυροδότητο D Flip-Flop

- Στοιχείο μνήμης (Flip Flop) D Flip Flop
  - Master Slave Latches Εσωτερικά
  - Ακμοπυροδότητο (edge-triggered)
  - Το πιο ευρέως χρησιμοποιούμενο
- Data and Clock inputs
- Αποθηκεύει την τιμή του D μόνο κατά την ακμή του ρολογιού (συνήθως τη θετική)
- $Q_{t+1} = D_t$
- Απαιτεί χρόνο αποκατάστασης (Setup) και συγκράτησης (Hold) των δεδομένων εισόδου



Η λέξη Flip-Flop είναι ταυτισμένη με το ακμοπυροδότητο D Flip-Flop

#### Περιορισμοί Setup και Hold



- Η είσοδος D πρέπει να μείνει σταθερή τουλάχιστον για χρόνο T<sub>su</sub> (setup time) πριν την ακμή του ρολογιού και τουλάχιστον T<sub>hd</sub> (hold time) μετά την ακμή.
- Η έξοδος Q αλλάζει λίγο μετά την ακμή του ρολογιού ( $T_{c2q}$ )
- Αναλυτικότερα για το D Flip-Flop σε επόμενες διαλέξεις

#### Συνδυαστική Λογική (Combinational Logic)

- Οι έξοδοι εξαρτώνται μόνο από τις τρέχουσες εισόδους
- Δεν περιέχουν στοιχεία μνήμης (flip-flops)
- Χρησιμοποιούνται κυρίως οι βασικές λογικές πύλες που είδαμε (AND, OR, NOT, NAND, XOR κτλ) και συνδέονται μεταξύ τους με καλώδια.
- Οι πύλες και τα καλώδια έχουν χρονική καθυστέρηση
  - Στην τεχνολογία CMOS τα υλικά και τα καλώδια έχουν αντιστάσεις και χωρητικότητες

## Παράδειγμα Συνδυαστικής Λογικής

- 2 πύλες AND, 1 OR και 1 αντιστροφέας
   Z = AB + B'C
- Σας θυμίζει τίποτα?
- Ένας απλός πολυπλέκτης



#### Οι πύλες έχουν καθυστέρηση!!!





- Έστω καθυστερήσεις:  $T_{and}$  = 2ns και  $T_{or}$  = 1ns
  - έστω ότι τα καλώδια δεν έχουν καθυστέρηση
- 3 μονοπάτια (paths) προς την έξοδο:
  - $-A \rightarrow Z$ , (1 ns)
  - $-B \rightarrow tmp \rightarrow Z (3 ns)$
  - $-C \rightarrow tmp \rightarrow Z (3 ns)$
- Η συμπεριφορά του κυκλώματος φαίνεται στις κυματομορφές (waveforms)

#### Απλή Λογική με ρολόι





- $T_{clk} = 10 \text{ ns}$
- $T_{and} = 2 \text{ ns}, T_{or} = 1 \text{ ns}$
- $T_{c2q} = 2 \text{ ns}$ ,  $T_{su} = 1 \text{ ns}$ ,  $T_{hd} = 0.5 \text{ ns}$
- Ικανοποιούνται οι περιορισμοί Setup και Hold του Flip-Flop?