(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-97395 (P2002-97395A)

(43)公開日 平成14年4月2日(2002.4.2)

(51) Int.Cl. ⁷		識別記号	FΙ	デ	-73-ド(参考)
C 0 9 D	11/00		C09D 11/	/00	2 C 0 5 6
B 4 1 J	2/01		B41M 5/	E E	2H086
B41M	5/00		C 0 8 J 3/	cex	4F070
C 0 8 J	3/07	CEX	C08K 5/	/16	4 J 0 0 2
C 0 8 K	5/16		C08L 53/	/00	4J039
			審查請求 未請求 請求項の	の数8 OL (全37頁)	最終頁に続く

(21)出願番号 特願2001-176019(P2001-176019)

(22)出願日 平成13年6月11日(2001.6.11)

(31) 優先権主張番号 特願2000-204774 (P2000-204774)

(32) 優先日 平成12年7月6日(2000.7.6)

(33)優先権主張国 日本(JP)

(71)出願人 000005201

富士写真フイルム株式会社 神奈川県南足柄市中沼210番地

(72)発明者 石塚 孝宏

神奈川県南足柄市中沼210番地 富士写真

フイルム株式会社内

(74)代理人 100079049

弁理士 中島 淳 (外3名)

最終頁に続く

(54) 【発明の名称】 着色微粒子分散物、それを用いたインクジェット記録用インクおよびインクジェット記録方法

(57)【要約】 (修正有)

【課題】 着色微粒子の粒径が小さく、分散安定性に優れた着色微粒子分散物、および紙依存性が少なく、任意の紙に印字した際の発色性・色調、耐水性、耐光性に優れたインクジェット記録用インクを提供する。

【解決手段】 疎水性セグメントと親水性セグメントで 構成されるブロック共重合体と油溶性染料が一般式 I の 染料である着色微粒子分散物およびこれを含有してなる インクジェット記録用インク。

(1)

$$Q=N \xrightarrow{B^2 \xrightarrow{R^3}} A$$

(Qは可視域および/または近赤外域に吸収を有するために必要な原子団を、Aは-NR 4 R 5 またはヒドロキシ基を、R 4 とR 5 は独立に水素、アルキル、アリールまたは複素環基を、B 1 は=C(R 6)-または=N-を、B 2 は-C(R 7)=または-N=を、R 2 、R 3 、R 6 およびR 7 は独立に水素または置換基を表わ

し、R 2 とR 3 、R 3 とR 4 、R 4 とR 5 、R 5 とR 6 およびR 6 とR 7 は互いに結合して環を形成してもよい。)

【特許請求の範囲】

【請求項1】 疎水性セグメントおよび親水性セグメントで構成されるずロック共重合体と油溶性染料とを含む 着色微粒子を含有することを特徴とする着色微粒子分散物。

【請求項2】 前記油溶性染料が下記一般式(I)で表される化合物であることを特徴とする請求項1に記載の着色微粒子分散物。

一般式(I)

【化1】

一般式(1)

(式中、Qは一般式(I)で表わされる化合物が可視域および/または近赤外域に吸収を有するために必要な原子団を表わし、Aは $-NR^4R^5$ またはヒドロキシ基を表わし、 R^4 および R^5 はそれぞれ独立に水素原子、アルキル基、アリール基または複素環基を表わし、 B^1 は=C(R^6)ーまたは $=N-\epsilon$ 表わし、 B^2 は-C(R^7)=または $-N=\epsilon$ 表わし、 R^2 、 R^3 、 R^6 および R^7 はそれぞれ独立に水素原子または置換基を表わす。 R^2 と R^3 、 R^3 と R^4 、 R^4 と R^5 、 R^5 と R^6 および R^6 と R^7 は互いに結合して環を形成してもよい。)

【請求項3】 前記ブロック共重合体がビニルポリマーであることを特徴とする請求項1または2に記載の記載の着色微粒子分散物。

【請求項4】 前記ブロック共重合体がイオン性基を有し、該イオン性基の含有量が0.2mmol/g以上5.0mmol/g以下であることを特徴とする請求項1から3までのいずれか1項に記載の着色微粒子分散物

【請求項5】 前記着色微粒子が、ブロック共重合体と油溶性染料とを含有する有機溶媒相に水を投入するか、もしくは水中に前記有機溶媒相を投入することにより乳化させて製造されたことを特徴とする請求項1から4までのいずれか1項に記載の着色微粒子分散物。

【請求項6】 前記着色微粒子が、疎水性高沸点有機溶媒を含有することを特徴とする請求項1から5までのいずれか1項に記載の着色微粒子分散物。

【請求項7】 請求項1から6までのいずれか1項に記載の着色微粒子分散物を含有してなることを特徴とするインクジェット記録用インク。

【請求項8】 請求項7に記載のインクジェット記録用 インクを用いて記録を行うことを特徴とするインクジェット記録方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、油溶性染料を含有

する水系の着色微粒子分散物、前記着色微粒子分散物を 含有してなるインクジェット記録用インク、および前記 インクジェット記録用インクを用いたインクジェット記 録方法に関する。

[0002]

【従来の技術】近年、コンピュータの普及に伴い、インクジェットプリンタがオフィスだけでなく家庭でも、紙、フィルム、布等の印字等に広く利用されている。インクジェット記録用インクとしては、油性インク、水性10 インク、固体状インクが知られているが、これらの中でも、製造容易性、取扱性、臭気性、安全性等の点で水性インクが有利であり、水性インクが主流となっている。【0003】しかし、前記水性インクの多くは、分子状態で溶解する水溶性染料を用いているため、透明性および色濃度が高いという利点があるものの、染料が水溶性であるため耐水性が悪く、いわゆる普通紙に印字すると滲み(ブリード)を生じて著しく印字品質が低下したり、耐光性が悪いという問題がある。

【0004】そこで、前記問題を解決する目的で顔料や 20 分散染料を用いた水性インクが、例えば、特開昭56-157468号、特開平4-18468号、同10-110126号、同10-195355号等の各公報において提案されている。ところが、これらの水性インクの場合、耐水性はある程度向上するものの十分とはいい難く、前記水性インク中の顔料や分散染料の分散物の保存安定性に欠け、インク吐出口での目詰まりを起こし易い等の問題がある。また、これらの水性インクの場合、一般に、色相が十分でなく、色調の不十分さに基づく色再現性に問題がある。

30 【0005】一方、特開昭58-45272号、特開平6-340835号、同7-268254号、同7-268257号、同7-268260号の各公報には、ウレタンやポリエステル分散物粒子に染料を内包させる方法が提案されている。また、特開平11-269418号、米国特許5085698号の各公報には、疎水性セグメントと親水性セグメントで構成されるブロック共重合体を分散剤として使用する方法が提案されている。しかしながら、前記方法により得られたインクジェット用インクの場合、色調が不十分であり、色再現性が十分で40ないという問題がある。

【0006】また、特開平9-59552号、同9-11163号、同9-255887号、同10-36728号、同11-286637号等の各公報には、カラー写真カプラーに芳香族ジアミンをカップリングさせた色素を使用することにより、上記の色調を改良できることが開示されている。しかしながら、これらにおいては、分散物の粒径あるいは粒径分布が大きい傾向があり、分散安定性や印字適性が十分なものではなく、受像紙の種類によって色調が変化するという問題がある。

[0007]

【発明が解決しようとする課題】本発明は、前記従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、着色微粒子の粒径が小さく、かつ、分散安定性に優れ、紙依存性が少なく、任意に選択した紙に印字した際の発色性・色調に優れ、かつ、耐水性、耐光性にも優れ、筆記用水性インク、水性印刷インク、情報記録用インク等に好適な着色微粒子分散物を提供することを目的とする。また、本発明は、サーマル、圧電、電界または音響インクジェット方式に好適であり、ノズル等を用いて印字等を行った際、前記ノズル先端における目詰まりの発生が少なく、任意に選択した紙に印字した際の発色性・色調に優れ、かつ、耐水性、耐光性にも優れるインクジェット記録用インクおよびインクジェット記録方法を提供することを目的とする。

[0008]

【課題を解決するための手段】前記課題を解決するため の手段は、以下の通りである。即ち、

<1> 疎水性セグメントおよび親水性セグメントで構成されるブロック共重合体と油溶性染料とを含む着色微粒子を含有することを特徴とする着色微粒子分散物である。

<2> 前記油溶性染料が下記一般式(I)で表される 化合物であることを特徴とする<1>に記載の着色微粒 子分散物である。

【0009】一般式(Ⅰ)

【化2】

一般式(1)

$$Q=N$$
 R^2
 R^3
 A

【0010】式中、Qは一般式(I)で表わされる化合物が可視域および/または近赤外域に吸収を有するために必要な原子団を表わし、Aは-NR 4 R 5 またはヒドロキシ基を表わし、R 4 およびR 5 はそれぞれ独立に水素原子、アルキル基、アリール基または複素環基を表わし、B 1 は-C(R 7)=または-N=を表わし、R 2 、R 3 、R 6 およびR 7 はそれぞれ独立に水素原子または置換基を表わす。R 2 とR 3 、R 3 とR 4 、R 4 とR 5 、R 5 とR 6 およびR 6 とR 7 は互いに結合して環を形成してもよい。

【0011】<3> 前記ブロック共重合体がビニルポリマーであることを特徴とする<1>または<2>に記載の記載の着色微粒子分散物である。

<4> 前記ブロック共重合体がイオン性基を有し、該イオン性基の含有量が0.2mmol/g以上5.0mmol/g以下であることを特徴とする<1>から<3>までのいずれかに記載の着色微粒子分散物である。

<5> 前記着色微粒子が、ブロック共重合体と油溶性 50 例えばインドアニリン染料、インドフェノール染料ある

染料とを含有する有機溶媒相に水を投入するか、もしく は水中に前記有機溶媒相を投入することにより乳化させ て製造されたことを特徴とする<1>から<4>までの いずれかに記載の着色微粒子分散物である。

<6> 前記着色微粒子が、疎水性高沸点有機溶媒を含有することを特徴とする<1>から<5>までのいずれかに記載の着色微粒子分散物である。

【0012】<7> <1>から<6>までのいずれか に記載の着色微粒子分散物を含有してなることを特徴と 10 するインクジェット記録用インクである。

<8> <7>に記載のインクジェット記録用インクを 用いて記録を行うことを特徴とするインクジェット記録 方法である。

[0013]

【発明の実施の形態】以下、本発明の着色微粒子分散物、インクジェット記録用インクおよびインクジェット記録方法について説明する。

(着色微粒子分散物) 前記本発明の着色微粒子分散物 は、油溶性染料とブロック共重合体とを含む着色微粒子を水系媒体に分散してなる。

【0014】-油溶性染料-

本発明に使用可能な油溶性染料のうち、イエロー染料としては、任意のものを使用することができる。例えばカップリング成分としてフェノール類、ナフトール類、アニリン類、ピラゾロン類、ピリドン類、開鎖型活性メチレン化合物類を有するアリールもしくはヘテリルアゾ染料;例えばカップリング成分として開鎖型活性メチレン化合物類を有するアゾメチン染料;例えばベンジリデン染料やモノメチンオキソノール染料等のようなメチン染料やモノメチンオキソノール染料等のようなメチン染料・アントラキノン染料等のようなキノン系染料;などが使用することができる。これら以外の染料種としてはキノフタロン染料、ニトロ・ニトロソ染料、アクリジン染料、アクリジノン染料等を使用することができる。

【0015】本発明に使用可能な油溶性染料のうちマゼンタ染料としては、任意のものを使用することができる。例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアゾ染料;例えばカップリング成分としてピラゾロン40類、ピラゾロトリアゾール類を有するアゾメチン染料;例えばアリーリデン染料、スチリル染料、メロシアニン染料、オキソノール染料のようなメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料のようなカルボニウム染料;例えばナフトキノン、アントラキノン、アントラピリドンなどのようなキノン系染料;例えばジオキサジン染料等のような縮合多環系染料;等を使用することができる。

【0016】本発明に使用可能な油溶性染料のうちシアン染料としては、任意のものを使用することができる。

10

20

いはカップリング成分としてピロロトリアゾール類を有 するアソメチン染料:シアニン染料、オキソノール染 料、メロシアニン染料のようなポリメチン染料;ジフェ ニルメタン染料、トリフェニルメタン染料、キサンテン 染料のようなカルボニウム染料;フタロシアニン染料; アントラキノン染料;例えばカップリング成分としてフ ェノール類、ナフトール類、アニリン類を有するアリー ルもしくはヘテリルアソ染料;インジゴ・チオインジゴ 染料:等を使用することができる。

【0017】前記の各染料は、クロモフォアの一部が解 離して初めてイエロー、マゼンタ、シアンの各色を呈す るものであってもよく、その場合のカウンターカチオン はアルカリ金属や、アンモニウムのような無機のカチオ ンであってもよいし、ピリジニウム、4級アンモニウム 塩のような有機のカチオンであってもよく、さらにはカ チオンを部分構造に有するポリマーカチオンであっても よい。

【0018】中でも、写真材料におけるカプラーおよび 現像主薬から生成する色素は有効であり、そのような色 素としては、下記一般式(I)で表される色素が好まし V.

【0019】一般式(1) 【化3】

一般式(1)

$$R^2$$
 R^3
 R^3
 R^3
 R^3
 R^3

【0020】前記一般式(I)中、Aは-NR⁴R⁵また はヒドロキシ基を表わし、R 4 およびR 5 はそれぞれ独立 に水素原子、アルキル基、アリール基または複素環基を 表わす。詳しくは、 R^4 および R^5 はそれぞれ独立に、水 素原子、アルキル基「直鎖、分岐、環状の置換もしくは 無置換のアルキル基を表す。アルキル基(好ましくは炭 素数1から30のアルキル基、例えばメチル、エチル、 nープロピル、イソプロピル、tーブチル、nーオクチ ル、エイコシル、2-クロロエチル、2-シアノエチ ル、2-エチルヘキシル)、シクロアルキル基(好まし くは、炭素数3から30の置換または無置換のシクロア ルキル基、例えば、シクロヘキシル、シクロペンチル、 4-n-ドデシルシクロヘキシル)、ビシクロアルキル 基(好ましくは、炭素数5から30の置換もしくは無置 換のビシクロアルキル基、つまり、炭素数5から30の ビシクロアルカンから水素原子を一個取り去った一価の 基である。例えば、ビシクロ[1,2,2] ヘプタンー 2ーイル、ビシクロ[2, 2, 2]オクタン-3ーイ ル)、更に環構造が多いトリシクロ構造なども包含す る。以下に説明する置換基の中のアルキル基(例えばア ルキルチオ基のアルキル基)もこのような概念のアルキ ル基を表す。]、アリール基(好ましくは炭素数6から

30の置換もしくは無置換のアリール基、例えばフェニ ル、pートリル、ナフチル、m-クロロフェニル、o-ヘキサデカノイルアミノフェニル)または複素環基(好 ましくは5または6員の置換もしくは無置換の、芳香族 もしくは非芳香族の複素環化合物から一個の水素原子を 取り除いた一価の基であり、更に好ましくは、炭素数3 から30の5もしくは6員の芳香族の複素環基である。 例えば、2-フリル、2-チエニル、2-ピリミジニ ル、2-ベンゾチアゾリル)を表す。

【0021】R⁴およびR⁵がアルキル基、アリール基ま たは複素環基である場合、 R^4 および R^5 で表される基は さらに置換基を有してもよい。好ましい置換基として は、ハロゲン原子、アルキル基(シクロアルキル基、ビ シクロアルキル基を含む)、アルケニル基(シクロアル ケニル基、ビシクロアルケニル基を含む)、アルキニル 基、アリール基、複素環基、シアノ基、ヒドロキシル 基、ニトロ基、カルボキシル基、アルコキシ基、アリー ルオキシ基、シリルオキシ基、複素環オキシ基、アシル オキシ基、カルバモイルオキシ基、アルコキシカルボニ ルオキシ基、アリールオキシカルボニルオキシ基、アミ ノ基 (アニリノ基を含む)、アシルアミノ基、アミノカ ルボニルアミノ基、アルコキシカルボニルアミノ基、ア リールオキシカルボニルアミノ基、スルファモイルアミ ノ基、アルキルおよびアリールスルホニルアミノ基、メ ルカプト基、アルキルチオ基、アリールチオ基、複素環 チオ基、スルファモイル基、スルホ基、アルキルおよび アリールスルフィニル基、アルキルおよびアリールスル ホニル基、アシル基、アリールオキシカルボニル基、ア ルコキシカルボニル基、カルバモイル基、アリールおよ 30 び複素環アゾ基、イミド基、ホスフィノ基、ホスフィニ ル基、ホスフィニルオキシ基、ホスフィニルアミノ基、 シリル基が例として挙げられる。

【0022】更に詳しくは、ハロゲン原子(例えば、塩 素原子、臭素原子、ヨウ素原子)、アルキル基〔直鎖、 分岐、環状の置換もしくは無置換のアルキル基を表す。 アルキル基 (好ましくは炭素数1から30のアルキル 基、例えばメチル、エチル、n-プロピル、イソプロピ ル、tーブチル、n-オクチル、エイコシル、2-クロ ロエチル、2-シアノエチル、2-エチルヘキシル)、 40 シクロアルキル基(好ましくは、炭素数3から30の置 換または無置換のシクロアルキル基、例えば、シクロへ キシル、シクロペンチル、4-n-ドデシルシクロヘキ シル)、ビシクロアルキル基(好ましくは、炭素数5か ら30の置換もしくは無置換のビシクロアルキル基、つ まり、炭素数5から30のビシクロアルカンから水素原 子を一個取り去った一価の基である。例えば、ビシクロ [1, 2, 2] ヘプタン-2-イル、ビシクロ[2, 2, 2] オクタン-3-イル)、更に環構造が多いトリ シクロ構造なども包含する。以下に説明する置換基の中 50 のアルキル基 (例えばアルキルチオ基のアルキル基) も

このような概念のアルキル基を表す。〕、

【0023】アルケニル基[直鎖、分岐、環状の置換も しくは無置換のアルケニル基を表す。アルケニル基(好 ましくは炭素数2から30の置換または無置換のアルケ ニル基、例えば、ビニル、アリル、プレニル、ゲラニ ル、オレイル)、シクロアルケニル基(好ましくは、炭 素数3から30の置換もしくは無置換のシクロアルケニ ル基、つまり、炭素数3から30のシクロアルケンの水 素原子を一個取り去った一価の基である。例えば、2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル)、ビシクロアルケニル基(置換もしくは無置換の ビシクロアルケニル基、好ましくは、炭素数5から30 の置換もしくは無置換のビシクロアルケニル基、つまり 二重結合を一個持つビシクロアルケンの水素原子を一個 取り去った一価の基である。例えば、ビシクロ[2, 2. 1] ヘプトー2ーエンー1ーイル、ビシクロ[2, 2, 2] オクト-2-エン-4-イル)]、アルキニル 基(好ましくは、炭素数2から30の置換または無置換 のアルキニル基、例えば、エチニル、プロパルギル、ト リメチルシリルエチニル基)、

【0024】アリール基(好ましくは炭素数6から30 の置換もしくは無置換のアリール基、例えばフェニル、 p-トリル、ナフチル、m-クロロフェニル、o-ヘキ サデカノイルアミノフェニル)、複素環基(好ましくは 5または6員の置換もしくは無置換の、芳香族もしくは 非芳香族の複素環化合物から一個の水素原子を取り除い た一価の基であり、更に好ましくは、炭素数3から30 の5もしくは6員の芳香族の複素環基である。例えば、 2-フリル、2-チエニル、2-ピリミジニル、2-ベ ンゾチアゾリル)、シアノ基、ヒドロキシル基、ニトロ 基、カルボキシル基、アルコキシ基(好ましくは、炭素 数1から30の置換もしくは無置換のアルコキシ基、例 えば、メトキシ、エトキシ、イソプロポキシ、tーブト キシ、n-オクチルオキシ、2-メトキシエトキシ)、 アリールオキシ基(好ましくは、炭素数6から30の置 換もしくは無置換のアリールオキシ基、例えば、フェノ キシ、2-メチルフェノキシ、4-t-ブチルフェノキ シ、3-ニトロフェノキシ、2-テトラデカノイルアミ ノフェノキシ)、シリルオキシ基(好ましくは、炭素数 3から20のシリルオキシ基、例えば、トリメチルシリ ルオキシ、tーブチルジメチルシリルオキシ)、複素環 オキシ基(好ましくは、炭素数2から30の置換もしく は無置換の複素環オキシ基、1-フェニルテトラゾール -5-オキシ、2-テトラヒドロピラニルオキシ)、

【0025】アシルオキシ基(好ましくはホルミルオキシ基、炭素数2から30の置換もしくは無置換のアルキルカルボニルオキシ基、炭素数6から30の置換もしくは無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ、アセチルオキシ、ピバロイルオキシ、ステアロイルオキシ、ベンゾイルオキシ、pーメトキシフェ

ニルカルボニルオキシ)、カルバモイルオキシ基(好ま しくは、炭素数1から30の置換もしくは無置換のカル バモイルオキシ基、例えば、N,N-ジメチルカルバモ イルオキシ、N, N-ジエチルカルバモイルオキシ、モ ルホリノカルボニルオキシ、N, N-ジ-n-オクチル アミノカルボニルオキシ、N-n-オクチルカルバモイ ルオキシ)、アルコキシカルボニルオキシ基(好ましく は、炭素数2から30の置換もしくは無置換アルコキシ カルボニルオキシ基、例えばメトキシカルボニルオキ 10 シ、エトキシカルボニルオキシ、t-ブトキシカルボニ ルオキシ、n-オクチルカルボニルオキシ)、アリール オキシカルボニルオキシ基(好ましくは、炭素数7から 30の置換もしくは無置換のアリールオキシカルボニル オキシ基、例えば、フェノキシカルボニルオキシ、p-メトキシフェノキシカルボニルオキシ、p-n-ヘキサ デシルオキシフェノキシカルボニルオキシ)、

【0026】アミノ基(好ましくは、アミノ基、炭素数

1から30の置換もしくは無置換のアルキルアミノ基、 炭素数6から30の置換もしくは無置換のアニリノ基、 20 例えば、アミノ、メチルアミノ、ジメチルアミノ、アニ リノ、N-メチルーアニリノ、ジフェニルアミノ)、ア シルアミノ基(好ましくは、ホルミルアミノ基、炭素数 1から30の置換もしくは無置換のアルキルカルボニル アミノ基、炭素数6から30の置換もしくは無置換のア リールカルボニルアミノ基、例えば、ホルミルアミノ、 アセチルアミノ、ピバロイルアミノ、ラウロイルアミ ノ、ベンゾイルアミノ、3,4,5-トリーnーオクチ ルオキシフェニルカルボニルアミノ)、アミノカルボニ ルアミノ基(好ましくは、炭素数1から30の置換もし くは無置換のアミノカルボニルアミノ、例えば、カルバ モイルアミノ、N、N-ジメチルアミノカルボニルアミ J、N、N-ジエチルアミノカルボニルアミノ、モルホ リノカルボニルアミノ)、アルコキシカルボニルアミノ 基(好ましくは炭素数2から30の置換もしくは無置換 のアルコキシカルボニルアミノ基、例えば、メトキシカ ルボニルアミノ、エトキシカルボニルアミノ、tーブト キシカルボニルアミノ、n-オクタデシルオキシカルボ ニルアミノ、Nーメチルーメトキシカルボニルアミ ノ)、アリールオキシカルボニルアミノ基(好ましく 40 は、炭素数7から30の置換もしくは無置換のアリール

【0027】スルファモイルアミノ基(好ましくは、炭素数0から30の置換もしくは無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ、N, Nージメチルアミノスルホニルアミノ、Nーnーオクチルアミノスルホニルアミノ)、アルキルおよびアリールスルホ50 ニルアミノ基(好ましくは炭素数1から30の置換もし

オキシカルボニルアミノ基、例えば、フェノキシカルボ ニルアミノ、pークロロフェノキシカルボニルアミノ、

m-n-オクチルオキシフェノキシカルボニルアミ

ノ)、

20

40

くは無置換のアルキルスルホニルアミノ、炭素数6から 30の置換もしくは無置換のアリールスルホニルアミ ノ、例えば、メチルスルホニルアミノ、ブチルスルホニ ルアミノ、フェニルスルホニルアミノ、2,3,5-ト リクロロフェニルスルホニルアミノ、pーメチルフェニ ルスルホニルアミノ)、メルカプト基、アルキルチオ基 (好ましくは、炭素数1から30の置換もしくは無置換 のアルキルチオ基、例えばメチルチオ、エチルチオ、n - ヘキサデシルチオ)、アリールチオ基(好ましくは炭 素数6から30の置換もしくは無置換のアリールチオ、 例えば、フェニルチオ、p-クロロフェニルチオ、m-メトキシフェニルチオ)、複素環チオ基(好ましぐは炭 素数2から30の置換または無置換の複素環チオ基、例 えば、2-ベンゾチアゾリルチオ、1-フェニルテトラ ゾールー5ーイルチオ)、スルファモイル基(好ましく は炭素数0から30の置換もしくは無置換のスルファモ イル基、例えば、N-エチルスルファモイル、N-(3 ドデシルオキシプロピル)スルファモイル、N, N-ジメチルスルファモイル、N-アセチルスルファモイ ル、N-ベンゾイルスルファモイル、N-(N'-フェ ニルカルバモイル)スルファモイル)、スルホ基、

【0028】アルキルおよびアリールスルフィニル基 (好ましくは、炭素数1から30の置換または無置換の アルキルスルフィニル基、6から30の置換または無置 換のアリールスルフィニル基、例えば、メチルスルフィ ニル、エチルスルフィニル、フェニルスルフィニル、p ーメチルフェニルスルフィニル)、アルキルおよびアリ ールスルホニル基(好ましくは、炭素数1から30の置 換または無置換のアルキルスルホニル基、6から30の 置換または無置換のアリールスルホニル基、例えば、メ チルスルホニル、エチルスルホニル、フェニルスルホニ ル、p-メチルフェニルスルホニル)、アシル基(好ま しくはホルミル基、炭素数2から30の置換または無置 換のアルキルカルボニル基、炭素数 7 から 3 0 の置換も しくは無置換のアリールカルボニル基、例えば、アセチ ル、ピバロイル、2-クロロアセチル、ステアロイル、 ベンゾイル、p-n-オクチルオキシフェニルカルボニ ル)、アリールオキシカルボニル基(好ましくは、炭素 数7から30の置換もしくは無置換のアリールオキシカ ルボニル基、例えば、フェノキシカルボニル、oークロ ロフェノキシカルボニル、m-ニトロフェノキシカルボ ニル、p-t-ブチルフェノキシカルボニル)、アルコ キシカルボニル基(好ましくは、炭素数2から30の置 換もしくは無置換アルコキシカルボニル基、例えば、メ トキシカルボニル、エトキシカルボニル、tーブトキシ カルボニル、n-オクタデシルオキシカルボニル)、

【0029】カルバモイル基(好ましくは、炭素数1か ら30の置換もしくは無置換のカルバモイル、例えば、 カルバモイル、N-メチルカルバモイル、N, N-ジメ チルカルバモイル、N, Nージーn-オクチルカルバモ 50 最も好ましくは水素原子である。

イル、N- (メチルスルホニル) カルバモイル)、アリ ールおよび複素環アゾ基(好ましくは炭素数6から30 の置換もしくは無置換のアリールアゾ基、炭素数3から 30の置換もしくは無置換の複素環アゾ基、例えば、フ ェニルアソ、p-クロロフェニルアゾ、5-エチルチオ -1, 3, 4-チアジアゾール-2-イルアゾ)、イミ ド基(好ましくは、Nースクシンイミド、Nーフタルイ ミド)、ホスフィノ基(好ましくは、炭素数2から30 の置換もしくは無置換のホスフィノ基、例えば、ジメチ 10 ルホスフィノ、ジフェニルホスフィノ、メチルフェノキ シホスフィノ)、ホスフィニル基(好ましくは、炭素数 2から30の置換もしくは無置換のホスフィニル基、例 えば、ホスフィニル、ジオクチルオキシホスフィニル、 ジエトキシホスフィニル)、ホスフィニルオキシ基(好 ましくは、炭素数2から30の置換もしくは無置換のホ スフィニルオキシ基、例えば、ジフェノキシホスフィニ ルオキシ、ジオクチルオキシホスフィニルオキシ)、ホ スフィニルアミノ基(好ましくは、炭素数2から30の 置換もしくは無置換のホスフィニルアミノ基、例えば、 ジメトキシホスフィニルアミノ、ジメチルアミノホスフ ィニルアミノ)、シリル基(好ましくは、炭素数3から 30の置換もしくは無置換のシリル基、例えば、トリメ チルシリル、t-ブチルジメチルシリル、フェニルジメ チルシリル)が挙げられる。

【0030】Aは $-NR^4R^5$ であることが好ましい。R 4 および R^5 はそれぞれ独立に水素原子、アルキル基、置 換アルキル基、アリール基または置換アリール基である ことが好ましく、水素原子、アルキル基または置換アル キル基であることがさらに好ましく、炭素原子数が1~ 18のアルキル基または炭素原子数が1~18の置換ア ルキル基であることが最も好ましい。

【0031】前記一般式 (I) 中、 B^1 は=C (R^6) -または=N-を表わし、 B^2 は $-C(R^7)=$ または-N=を表わす。 B^1 および B^2 が同時には-N=とならない 場合が好ましく、 B^1 が= $C(R^6)$ -、 B^2 が-C

 (R^7) = となる場合がさらに好ましい。

【0032】前記一般式(I)において、 R^2 、 R^3 、R⁶およびR⁷はそれぞれ独立に水素原子または置換基を表 わす。前記置換基は、炭素数1~30の置換基であるの が好ましく、具体例は R^4 および R^5 で表わされる基の置 換基として挙げたものと同じである。

【0033】R²は水素原子、炭素数1~20のアルキ ル基、アルコキシ基、アシルアミノ基またはウレイド基 であるのが好ましく、さらに好ましくは水素原子および 炭素数1~3のアルキル基である。

【0034】R³、R⁶およびR⁷は水素原子、炭素数1 ~20のアルキル基、アルコキシ基、アシルアミノ基ま たはウレイド基であるのが好ましく、さらに好ましくは 水素原子および炭素数1~3のアルキル基であり、また

【0035】尚、 R^2 と R^3 、 R^3 と R^4 、 R^4 と R^5 、 R^5 と R^6 および R^6 と R^7 は互いに結合して環を形成してもよい。

【0036】前記一般式(I)中、Qは一般式(I)で表される化合物が可視域および/または近赤外域に吸収を有するために必要な原子団を表し、詳しい説明は、特願2000-80259号明細書に記載のとおりであ

$$(Cp-1)$$

$$R_{51}$$
 C
 C
 R_{52}

$$(Cp-3)$$

$$(Cp-5)$$

$$(Cp-7)$$

$$(Cp - 9)$$

る。また、下記(Cp-1) \sim (Cp-28) で表される基が、Qで表される基として好ましい。なお、下記 (Cp-1) \sim (Cp-28) で表される基は、*印の位置で、Qとして結合する。

[0037]

【化4】

$$(Cp-2)$$

$$(Cp-4)$$

$$(Cp - 6)$$

$$(Cp-8)$$

$$(Cp-10)$$

$$(R_{71})$$

NHCOR₇₀

【化5】

[0038]

$$(Cp-11)$$

$$(Cp-13)$$

$$(R_{75})_{d}$$
 R_{74}

$$(Cp-15)$$

$$(R_{75})_{d}$$
 R_{80}
 R_{81}
 R_{90}
 R_{81}

$$(Cp-17)$$

$$(Cp-19)$$

[0039]

$$(Cp-12)$$

$$(Cp-14)$$

$$(Cp-16)$$

$$(Cp-18)$$

$$(Cp-20)$$

【化6】

$$(Cp-21)$$

$$(Cp-23)$$

$$(Cp-25)$$

$$(Cp-27)$$

【0040】以下に (Cp-1) ~ (Cp-28) につ いて詳しく説明する。式 (Cp-1) において、 R_{51} は アルキル基、アリール基、複素環基、またはアルコキシ 基を表し、R₅₂はカルバモイル基またはシアノ基を表 す。好ましくは、R₅₁は t - ブチル基、1 - エチルシク ロプロピル基、1-メチルシクロプロピル基、1-ベン ジルシクロプロピル基、置換もしくは無置換のフェニル 基、置換もしくは無置換のインドリン-1-イル基、お よび置換もしくは無置換のインドールー3ーイル基を表 し、R₅₂はN-アリールカルバモイル基またはシアノ基 を表す。

【0041】式 (Cp-2) において、R₅₃はアリール 基または複素環基を表し、 R_{52} は(Cp-1)における R_{52} と同じ意味の基を表す。好ましくは、 R_{53} は置換も しくは無置換のフェニル基、置換もしくは無置換の複素 環基(特に好ましくは、チアゾールー2ーイル、ベンゾ チアゾールー2-イル、オキサゾールー2-イル、ベン ゾオキサゾールー2ーイル、1,2,4ーオキサジアゾ ールー3(または5)ーイル、1,3,4ーオキサジア ゾールー2 (または5) ーイル、1, 2, 4ーチアジア ゾールー3 (または5) ーイル、1, 3, 4ーチアジア ゾールー2(または5)ーイル、ピラゾールー3ーイ ル、インダゾールー3ーイル、1,2,4ートリアゾー ルー3-イル、2-ピリジル、2-ピリミジニル、2-

$$(Cp - 22)$$

$$(Cp-24)$$

$$(Cp-26)$$

$$(Cp-28)$$

40

ピラジニル、キナゾリン-2-イル、またはキナゾリン -4-イル)を表し、R59はシアノ基を表す。

【0042】式 (Cp-3) において、R₆₁はアルキル 30 基、アリール基、複素環基、アシルアミノ基、アミノ 基、アルコキシ基、アリールオキシ基、アルキルチオ 基、アリールチオ基、アミノカルボニルアミノ基または アルコキシカルボニルアミノ基を表す。Repはアルキル 基、アリール基または複素環基を表す。好ましくは、R 61はアルキル基、アシルアミノ基、アミノ基、アミノカ ルボニルアミノ基、またはアルコキシカルボニルアミノ 基を表し、R₆₂はアリール基または複素環基を表し、さ らに好ましくは、R₆₁はアシルアミノ基またはN-アリ ールアミノ基を表し、R₆₂はアリール基を表す。

【0043】式 (Cp-4) および (Cp-5) におい て、R₆₃およびR₆₄は各々、水素原子、アルキル基、ア リール基、複素環基、アシルアミノ基、アルキルもしく はアリールスルホニルアミノ基、アミノ基、アルキルチ オ基、アリールチオ基、アルコキシ基、アリールオキシ 基、アミノカルボニルアミノ基またはアルコキシカルボ ニルアミノ基を表す。好ましくは、R63はアルキル基、 アリール基、アルコキシ基またはアリールオキシ基を表 し、R₆₄はアルキル基またはアリール基を表し、特に好 ましくは、R₆₃はメチル基、t-ブチル基または置換も 50 しくは無置換のフェニル基を表す。

20

【0044】式(Cp-6)および(Cp-7)において、R₆₃は前記と同じ意味の基を表し、R₆₅、R₆₆およびR₆₇は各々、水素原子・アルキル基、アリール基、複素環基、アシルアミノ基、アルキルもしくはアリールスルホニルアミノ基、アミノ基、アルキルチオ基、アリールオキシ基、アリールオキシ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アシル基、アルコキシカルボニル基またはカルバモイル基を表す。好ましくは、R₆₃はアルキル基、アリール基、アルコキシ基またはアリールオキシ基を表し、R₆₅、R₆₆およびR₆₇は各々、水素原子、アルキル基、アリール基、アシル基、アルコキシカルボニル基またはカルバモイル基を表す。

【0045】式(Cp-8)において、R₆₈およびR₆₉ は各々、水素原子、アルキル基、アリール基、複素環基、アシルアミノ基、アルキルもしくはアリールスルホニルアミノ基、アミノ基、アルキルチオ基、アリールチオ基、アルコキシ基、アリールオキシ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アシル基、アルコキシカルボニル基またはカルバモイル基を表す。好ましくは、R₆₈およびR₆₉は各々、水素原子、アルキル基またはアリール基を表す。

【0046】式 (Cp-9)、 (Cp-10)、 (Cp -11) および (Cp-12) において、R₇₀はアルキ ル基、アリール基または複素環基を表し、R₇₁はハロゲ ン原子、アルキル基、アリール基、複素環基、シリル 基、アシルアミノ基、アルキルもしくはアリールスルホ ニルアミノ基、アミノ基、アミノカルボニルアミノ基、 アルキルチオ基、アリールチオ基、アルコキシ基または アルコキシカルボニルアミノ基を表し、R72およびR73 は各々、水素原子またはアルキル基を表し、aはOない し3のいずれかの整数を表し、bは0ないし2のいずれ かの整数を表し、cは0ないし4のいずれかの整数を表 す。a、b、またはcが複数のとき複数個のR71は同一 であっても、異なっていてもよい。好ましくは、 R_{70} は アルキル基またはアリール基を表し、R₇₁はハロゲン原 子、アルキル基またはアシルアミノ基を表し、R₇₂およ びR73は各々、水素原子、メチル基またはエチル基を表 し、aは1または2を表し、bは1または2を表し、c は0ないし2の整数を表す。

【0047】式(Cp-13)において、R₇₄はカルバモイル基、アルコキシカルボニル基、シアノ基、スルファモイル基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基を表し、R₇₅はハロゲン原子、アルキル基、アリール基、複素環基、アシルアミノ基、アルキルもしくはアリールスルホニルアミノ基、アトルキルもしくはアリールスルホニルアミノ基、アミノ基、アルキルチオ基、アリールチオ基、アルコキシ基、アリールオキシ基、アミノカルボニルアミノ基またはアルコキシカルボニルアミノ基を表し、dは0

ないし4のいずれかの整数を表す。 d が複数のとき、複数個のR₇₅は同一であっても異なっていてもよい。好ましくは、R₇₄はカルバモイル基、スルファモイル基またはアシルアミノ基を表し、R₇₅はアシルアミノ基、アルキルもしくはアリールスルホニルアミノ基、アミノカルボニルアミノ基またはアルコキシカルボニルアミノ基を表し、dは0または1を表す。

【0048】式(Cp-14)において、 R_{75} およびd は前記と同じ意味を表し、 R_{78} および R_{79} は R_{75} と同じ意味の基を表し、 R_{76} および R_{77} はシアノ基、スルファモイル基、アルキルもしくはアリールスルホニル基、アシル基、アルコキシカルボニル基またはカルバモイル基を表す。好ましくは、 R_{75} はハロゲン原子、アルキル基またはアリール基を表し、dは0ないし2のいずれかの整数を表し、 R_{78} および R_{79} はハロゲン原子、アルキル基またはアリール基を表し、 R_{76} および R_{77} はシアノ基を表す。

【0049】式(Cp-15)において、 R_{75} およびd は前記と同じ意味を表し、 R_{80} および R_{81} はシアノ基、スルファモイル基、アルキルもしくはアリールスルホニル基、アシル基、アルコキシカルボニル基またはカルバモイル基を表す。好ましくは、 R_{75} はハロゲン原子、アルキル基またはアリール基を表し、dは0ないし2のいずれかの整数を表し、 R_{80} および R_{81} はシアノ基を表す。

【0050】式(Cp-16)において、R₈₂、R₈₃およびR₈₄は各々、水素原子、アルキル基、アリール基、複素環基、アシルアミノ基、アルキルもしくはアリールスルホニルアミノ基、アミノ基、アルキルチオ基、アリールチオ基、アリールオキシ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アシル基、アルコキシカルボニル基またはカルバモイル基を表す。

【0051】式 (Cp-17) において、R₈₅およびR₈₆は各々、水素原子、アルキル基、アリール基、複素環基、アシルアミノ基、アルキルもしくはアリールスルホニルアミノ基、アミノ基、アルキルチオ基、アリールチオ基、アリールオキシ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アシル40 基、アルコキシカルボニル基またはカルバモイル基を表す。好ましくは、R₈₅およびR₈₆は各々、水素原子、アルキル基、アリール基、複素環基、アシルアミノ基、またはアルキルもしくはアリールスルホニルアミノ基を表す。

【0052】式(Cp-18)~(Cp-20)において、R₈₇およびR₈₈はカルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、シアノ基、スルファモイル基、アルカンスルホニル基、アレーンスルホニル基またはニトロ基を表し、R₈₉およびR₉₀は各々な素原子、アルキル基、アリール基または複素環基を表

す。好ましくは、R₈₇はカルバモイル基、アルコキシカ ルボニル基またはシアノ基を表し、R88はカルバモイル 基、アルコキシカルボニル基、シアノ基またはアルキル およびアリールスルホニル基を表し、RggおよびRgoは 各々、アルキル基またはアリール基を表す。さらに好ま しくは、R₈₇はシアノ基を表し、R₈₈はアルコキシカル ボニル基を表し、R₈₉およびR₉₀はアリール基を表す。 【0053】式 (Cp-21) ~ (Cp-26) におい て、R₉₁およびR₉₂はアルキル基、アリール基、複素環 基、カルバモイル基、アルコキシカルボニル基、アリー ルオキシカルボニル基、シアノ基、スルファモイル基、 アルカンスルホニル基、アレーンスルホニル基またはニ トロ基を表し、Rgg、Rg4およびRg5は水素原子、アル キル基、アリール基、複素環基、アシルアミノ基、アミ ノカルボニルアミノ基、アルコキシカルボニルアミノ 基、アルキルもしくはアリールスルホニルアミノ基、ハ ロゲン原子、アミノ基、アルキルチオ基、アリールチオ 基、アルコキシ基またはアリールオキシ基を表す。好ま しくは、Rg1はアリール基、複素環基、カルバモイル 基、アルコキシカルボニル基またはシアノ基を表し、R goはカルバモイル基、アルコキシカルボニル基、シアノ 基、スルファモイル基またはアルキルもしくはアリール スルホニル基を表し、Rgg、Rg4およびRg5は各々、水 素原子、アルキル基、アシルアミノ基、ハロゲン原子、 アミノ基、アルキルチオ基またはアリールチオ基を表 す。

【0054】式 (Cp-27) において、R₉₇、R₉₈お よびRggは各々、水素原子、シアノ基、スルファモイル 基、アルキルもしくはアリールスルホニル基、アシル 基、アルコキシカルボニル基またはカルバモイル基を表 し、R₉₆はアミノ基、アルキルチオ基、アリールチオ 基、アルコキシ基またはアリールオキシ基を表す。好ま しくは、Rg7、Rg8およびRggは各々、水素原子または シアノ基を表し、R₉₆はN-アリールアミノ基を表す。 【0055】式 (Cp-28) において、R₁₀₀および R101は各々、水素原子、パーフルオロアルキル基、シ アノ基、ニトロ基、スルファモイル基、アルキルもしく はアリールスルホニル基、アシル基、アルコキシカルボ ニル基、カルバモイル基、アルキルチオ基またはアリー ルチオ基を表し、R₁₀₂はアルキル基、アリール基、複 素環基、スルファモイル基、アルキルもしくはアリール スルホニル基、アシル基、アルコキシカルボニル基また はカルバモイル基を表す。好ましくは、R₁₀₀およびR 101は各々、水素原子、パーフルオロアルキル基、シア ノ基、ニトロ基、アルキルおよびアリールスルホニル 基、アルキルチオ基またはアリールチオ基を表し、R

102はアリール基または複素環基を表す。

【0056】 R_{51} ~ R_{53} 、 R_{61} ~ R_{69} 、および R_{70} ~ R_{102} の説明で挙げた基の好ましいものの具体例は R^4 および R^5 で表される基の置換基として挙げたものと同じである。 R_{51} ~ R_{53} 、 R_{61} ~ R_{69} 、および R_{70} ~ R_{102} で表される基はさらに置換基を有していてもよく、好ましい置換基は R^4 および R^5 で表される基の置換基として挙げたものと同じである。

【0057】式 $(Cp-1) \sim (Cp-28)$ で表される基のうち、(Cp-1)、(Cp-2)、(Cp-4)、(Cp-1)、(Cp-12)、(Cp-12)、(Cp-13)、(Cp-12) が好ましく、特にマゼンタ染料としては、前記一般式 (I) と (Cp-4) で表わされるピラゾロトリアゾールアゾメチン化合物、シアン染料としては前記一般式 (I) と (Cp-18) で表わされるピロロトリアゾールアゾメチン化合物が最も好ましい。

【0058】更に、前記一般式(I)と(Cp-18)で表わされるピロロトリアゾールアゾメチン化合物のR 87がハメット置換基定数 σ_p 値0.30以上の電子吸引性基であるものは、吸収がシャープであり、より好ましい。そして、ピロロトリアゾールアゾメチン化合物のR 87および R^{88} のハメット置換基定数 σ_p 値の和が0.7 0以上のものはシアン色として優れた色相を呈し、更に好ましい。

【0059】前記一般式(I)で表される油溶性アゾメチン色素は、その置換基に炭素数の総数が8から40(より好ましくは10から30)の耐拡散基を少なくとも1つ有することが好ましい。前記一般式(I)で表される油溶性アゾメチン色素は、分子内に色素の骨格を2個以上有するビス型、トリス型、テロマー型、またはポリマー型の化合物であってもよい。この場合には炭素数の範囲は規定外であってもよい。

【0060】前記一般式(I)で表される油溶性アゾメチン色素は、分子内に褪色を抑制する効果がある原子団を有していてもよく、好ましい褪色を抑制する効果がある原子団は特開平3-205189号公報に記載されているものである。

【0061】以下に、前記一般式(I)で表される油溶 40 性アゾメチン色素の具体例(例示化合物M-1~16および例示化合物C-1~9)を示すが、本発明に用いられる油溶性染料は以下の具体例に限定されるものではない。

[0062]

【化7】

M-3

[0063]

[0064]

30 【化9】

$$M-7$$

M-9

30

[0065]

[0066]

【化11】

$$\begin{array}{c} \text{N} - 1 \ 3 \\ \text{N} \\ \text$$

M-15

$$\begin{array}{c|c} C_3H_7(I) & \\ C_3H_7(I) & \\ N & \\$$

[0067]

M-16
$$\begin{array}{c}
N - 16 \\
N - 16 \\$$

[0068]

$$C-1$$

$$C_4H_9(t)$$

$$C_2H_5$$

$$CH_2CH_2NHSO_2CH_3$$

$$C-2$$

$$C_4H_9(t)$$

$$CH_3$$

(t)C8H17

【0069】 【化14】

[0070]

【化15】

$$C_4H_9(1)$$

$$C_4H_9(1)$$

$$C_2H_5OCH_2C$$

$$C_1$$

$$C_2H_5OC_2H_5$$

$$C-8$$
 CN
 NC
 NC

【0071】前記一般式(I)で表される色素の具体例 は更に特願2000-78491号明細書および同11 -365188号明細書、特願2000-80259号 明細書(例示化合物D-1~34)に記載されている が、これらに限定されるものではない。

【0072】前記一般式(I)で表される色素は、特開 平4-126772号、同5-177959号、同9-292679号、同10-62926号、同11-15 8047号、特公平7-94180号等の各公報、特願 2000-78491号および同11-365188号 の各明細書に記載された合成法を参考に合成することが できる。

【0073】ーブロック共重合体ー

本発明において、ブロック共重合体とは、疎水性セグメ ントAと親水性セグメントBとから構成されるブロック 共重合体である。前記疎水性セグメントAとは、セグメ ントAのみからなるポリマーが水またはメタノールに溶 解しない特性を有するセグメントをいい、前記親水性セ グメントBとは、セグメントBのみからなるポリマーが 水またはメタノールに溶解する特性を有するセグメント をいう。前記前記ブロック共重合体の型としては、AB 50 メチル基、エチル基、n-プロピル基、イソプロピル

型、 B^1AB^2 型(2つの親水性セグメント B^1 と B^2 とは 同じでも異なっていてもよい) および A^1BA^2 型(2つ の疎水性セグメント A^1 と A^2 とは同じでも異なっていて もよい)が挙げられ、分散特性が良好な点から、AB型 あるいは B^1AB^2 型のブロック共重合体が好ましく、製 造適性の点から、AB型あるいはBAB型 (B¹AB²型 の2つの親水性セグメントが同じ型)がより好ましく、 AB型が特に好ましい。

【0074】前記疎水性セグメントおよび前記親水性セ グメントは、各々、ビニルモノマーの重合によって得ら 40 れるビニルポリマー、ポリエーテルおよび縮合ポリマー など従来公知のポリマーのいずれからでも選択可能であ るが、セグメント間の疎水性および親水性の性能差が大 きくなる点、分散性能が高い点および製造適性の点から ビニルポリマーが好ましい。

【0075】前記疎水性セグメントAを形成するビニル モノマーAとしては、例えば、以下のものが挙げられ る。アクリル酸エステル類やメタクリル酸エステル類 (エステル基は置換または無置換の脂肪族エステル基、 置換または無置換の芳香族エステル基であり、例えば、

基、n-ブチル基、イソブチル基、sec-ブチル基、 tertープチル基、アミル基、ヘキシル基、2-エチ ルヘキシル基、tertーオクチル基、2-クロロエチ ル基、4-ブロモブチル基、シアノエチル基、シクロヘ キシル基、ベンジル基、ブトキシメチル基、3-メトキ シブチル基、2-(2-メトキシエトキシ)エチル基、 2- (2-ブトキシエトキシ) エチル基、2, 2, 2-テトラフルオロエチル基、1H, 1H, 2H, 2Hーパ ーフルオロデシル基、4-ブチルフェニル基、フェニル 基、2,4,5ーテトラメチルフェニル基および4ーク ロロフェニル基などのエステル基が含まれる);

【0076】アクリルアミド類、メタクリルアミド類、 具体的には、N-モノ置換アクリルアミド、N-ジ置換 アクリルアミド、Nーモノ置換メタクリルアミド、Nー ジ置換メタクリルアミド(モノ置換体およびジ置換体の 置換基は、置換または無置換の脂肪族基、置換または無 置換の芳香族基であり、前記置換基としては、例えば、 メチル基、エチル基、n-プロピル基、イソプロピル 基、n-ブチル基、イソブチル基、sec-ブチル基、 tertーブチル基、ペンチル基、ヘキシル基、2-エ 20 モノマーBとしては、例えば、以下のものが挙げられ チルヘキシル基、tert-オクチル基、シクロヘキシ ル基、ベンジル基、アルコキシメチル基、アルコキシエ チル基、4-ブチルフェニル基、フェニル基、2,4, 5-テトラメチルフェニル基、4-クロロフェニル基な どが含まれる):

【0077】オレフィン類、具体的には、ジシクロペン タジエン、エチレン、プロピレン、1-ブテン、1-ペ ンテン、塩化ビニル、塩化ビニリデン、イソプレン、ク ロロプレン、ブタジエン、2,3-ジメチルブタジエン など;スチレン類、具体的には、スチレン、メチルスチ レン、ジメチルスチレン、トリメチルスチレン、エチル スチレン、イソプロピルスチレン、クロルメチルスチレ ン、メトキシスチレン、アセトキシスチレン、クロルス チレン、ジクロルスチレン、ブロムスチレン、ビニル安 息香酸メチルエステルなど;

【0078】ビニルエーテル類、具体的には、メチルビ ニルエーテル、ブチルビニルエーテル、ヘキシルビニル エーテル、メトキシエチルビニルエーテルなど:その他 のモノマーとして、クロトン酸ブチル、クロトン酸ヘキ イン酸ジエチル、マレイン酸ジメチル、マレイン酸ジブ チル、フマル酸ジエチル、フマル酸ジメチル、フマル酸 ジブチル、メチルビニルケトン、フェニルビニルケト ン、メトキシエチルビニルケトン、N-ビニルオキサゾ リドン、Nービニルピロリドン、ビニリデンクロライ ド、メチレンマロンニトリル、ビニリデン、ジフェニル -2-アクリロイルオキシエチルホスフェート、ジフェ ニルー2-メタクリロイルオキシエチルホスフェート、 ジブチルー2-アクリロイルオキシエチルホスフェー ト、ジオクチルー2-メタクリロイルオキシエチルホス 50 ントAに含有される前記ビニルモノマーAと前記ビニル

フェートなどが挙げられる。

【0079】中でも、エステル基が無置換の脂肪族基、 アルキル置換芳香族基または芳香族基であるアクリル酸 エステル類およびメタクリル酸エステル類; 置換基が無 置換の脂肪族基、アルキル置換フェニル基またはフェニ ル基であるNーモノ置換アクリルアミド、Nージ置換ア クリルアミド、Nーモノ置換メタクリルアミドおよびN - ジ置換メタクリルアミド;が好ましく、エステル基が 炭素数1から20の脂肪族基、炭素数7から30のアル 10 キル置換芳香族基または芳香族基であるアクリル酸エス テル類およびメタクリル酸エステル類が更に好ましく、 エステル基が炭素数1から20の脂肪族基、炭素数7か ら30のアルキル置換フェニル基またはフェニル基であ るアクリル酸エステル類およびメタクリル酸エステル類 が更に好ましく、エステル基が炭素数2から20の脂肪 族基または炭素数 7 から 3 0 のアルキル置換フェニル基 であるアクリル酸エステル類およびメタクリル酸エステ ル類が特に好ましい。

【0080】前記親水性セグメントBを形成するビニル る。アクリル酸、メタクリル酸、エステル部位に親水性 の置換基を有するアクリル酸エステル類およびメタクリ ル酸エステル類(親水性の置換基としては、ヒドロキシ 基、カルボキシル基、アミノ基など)、アクリルアミ ド、メタクリルアミド、Nーモノ置換アクリルアミド、 N-ジ置換アクリルアミド、N-モノ置換メタクリルア ミドならびにN-ジ置換メタクリルアミドなどが挙げら

【0081】中でも、アクリル酸、メタクリル酸、ヒド ロキシ基を有するアクリル酸エステル類およびメタクリ ル酸エステル類(ヒドロキシ基を有するエステル基とし ては、例えば、2-ヒドロキシエチル基、2,3-ジヒ ドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基など)、アクリルアミド、メタク リルアミド、窒素上の置換基の炭素数の合計が1から1 0のN-モノ置換アクリルアミド、N-ジ置換アクリル アミド、Nーモノ置換メタクリルアミドならびにNージ. 置換メタクリルアミドが好ましく、アクリル酸、メタク リル酸、2-ヒドロキシエチルアクリレート、2-ヒド シル、イタコン酸ジメチル、イタコン酸ジブチル、マレ 40 ロキシエチルメタクリレート、2, 3ージヒドロキシプ ロピルアクリレートおよび2,3-ジヒドロキシプロピ ルメタクリレートがより好ましく、アクリル酸、メタク リル酸、2-ヒドロキシエチルアクリレート、2,3-ジヒドロキシプロピルアクリレートおよび2,3-ジヒ ドロキシプロピルメタクリレートが更に好ましく、アク リル酸およびメタクリル酸が特に好ましい。

> 【0082】前記疎水性セグメントAを形成するビニル モノマーAは疎水性の特性を妨げない範囲で、前記ビニ ルモノマーBを含有していてもよい。前記疎水性セグメ

モノマーBとのモル比は、100:0~60:40であ るのが好ましい。

【0083】前記親水性セグメントBを形成するビニル モノマーBは親水性の特性を妨げない範囲で、前記ビニ ルモノマーAを含有していてもよい。前記親水性セグメ ントBに含有される前記ビニルモノマーBと前記ビニル モノマーAとのモル比は、100:0~60:40であ るのが好ましい。

【0084】前記ビニルモノマーAおよび前記ビニルモ てもよい。前記ビニルモノマーAおよび前記ビニルモノ マーBは、種々の目的(例えば、酸含量調節やガラス転 移点(Tg)の調節、有機溶剤や水への溶解性調節、分 散物安定性の調節) に応じて選択される。

【0085】前記ブロック共重合体は構造中にイオン性 基を有するのが好ましい。前記イオン性基としては、カ ルボキシル基、スルホ基、スルフィノ基、ホスフィノ基 等が挙げられる。中でも、前記ブロック共重合体は構造 中にカルボキシル基を有するのが好ましい。前記イオン 性基の含有量は0.2~5.0mmol/gであるのが 好ましく、 $0.3 \sim 4.5 mmol/g$ であるのが更に 好ましく、0. 5~3. 5 m m o 1 / g であるのが特に

好ましい。前記イオン性基の含有量が少なすぎると乳化 適性が小さくなり、多すぎると水溶性が高くなり、前記 油溶性染料の分散性が低下する場合がある。尚、前記ブ ロック共重合体において、前記カルボキシル基等のイオ ン性基はアルカリ金属イオン(例えば、Na⁺、K⁺な ど) またはアンモニウムイオンと塩を形成していてもよ ٧١,

【0086】前記ブロック共重合体の分子量(Mn)は1 000から10000であるのが好ましく、2000 ノマーBは各々、1種類であっても、2種類以上を用い 10 から80000であるのがより好ましく、3000から 50000であるのが更に好ましく、3000から20 000であるのが特に好ましい。分子量が1000より 小さい場合、安定な分散物を得るのが難しくなる傾向に あり、100000より大きい場合、有機溶剤への溶解 性が悪くなったり、溶解はしても、該溶液の粘度が増加 して分散し難くなる傾向にあるので好ましくない。

> 【0087】前記ブロック共重合体の具体例 (P-1~ 50、P-101~121) を以下に列挙する。尚、本 発明に用いられるブロック共重合体は、これらの具体例 20 に何ら限定されるものではない。

[0088]

【表1】

No.	疎水性セグメントA	モル数	設水性セグメントB	モル数	分子量	酸含量
P• 1	メテルメタクリレート	30	メタクリル酸	10	4000	2.52
P- 2	メチルメタクリレート	30	アクリル酸	B	3700	2.17
P- 3	メチルメタクリレート	30	メタクリル酸/メテルメタクリレート	10/5	4500	2.24
P- 4	エチルメタクリレート	20	メタクリル酸	10	3200	3.08
P- 5	エチルメタクリレート	40	アクリル政	15	5700	2.61
P- 6	エチルメタクリレート	40	メタクリル酸・	15	6000	2.52
P- 7	エテルメタケリレート	40	メタクリル酸/エチルメタクリレート	20/5	7000	2.87
P- 8	n-プチルメタクリレ ート	20	メタクリル酸	10	3800	2.63
P- 9	n-プチルメタクリレ ート	40	メタクリル酸	4	6100	0.65
P- 10	n-ブテルメタクリレ ート	40	メタクリル酸	40	9200	4.33
P- 11	n-ブチルメタクリレ ート	100	メタクリル酸	45	18200	2.47
P- 12	n-プチルメタクリレ ート	30	メタクリル酸/n-ブチルメタクリレート	10/5	5900	1.68
P- 13	n-プテルメタクリレ ート	20	メタクリル強/n-ブテルメタクリレート	20/10	6100	3.29
P- 14	n-プチルメタクリレ ート	30	メタクリル型/n-プチルメタクリレート	20/10	7500	2.66
P- 15	n・ブチルメタクリレ ート	20	メタクリル酸/n-ブチルメタクリレート	15/10	5700	2.65
P- 16	n・ブチルメタクリレ ート	60	メタケリル酸/n-ブチルメタクリレート	40/20	14900	2.68
P- 17	n-ブチルメタクリレ ート	30	メタクリル他/2-ヒドロキシエチルメタクリレート	15/10	7000	2.16
P- 18	n-プテルメタクリレート	40	メタクリル社/2、3-ジヒドロキシプロビルメタクリレート	30/10	10000	3.01
P- 19	n-プチルメタクリレート/メチルメタクリレート	20/10	メタクリル政	15	5200	2.86
P- 20	n-ブチルメタクリレート/メチルメタクリレート	20/10	メタクリル他/メチルメタクリレート	15/10	6200	2.40
P- 21	イソプチルメタクリレート	30	メタクリル酸	10	5200	1.91
P- 22	イソプテルメタクリレート	30	メタクリル陸/n-ブテルメタクリレート	10/5	5900	1.68
P- 23	イソプテルメタクリレート	30	メタクリル酸/NN-ジメテルアクリルアミド	10/5	5700	1.75
P- 24	インプテルメタクリレート	30	メタクリル酸/2・ジメチルアミノエチルアクリレート	10/8	5700	1.77
P- 25	sec-ブテルメタクリレート	20	メタクリル散	10	3800	2.63

[0089]

【表2】

AB

Na.	疎水性セグメントA	モル数	段水性セグメントB	モル数	分子量	競合景
P- 26	n-ヘキシルメタクリレート	20	メタクリル後	10	4400	2.29
P- 27	n-ヘキシルメタクリレート	30	メタクリル役	25	7400	3.40
P- 28	n-ヘキシルアクリレート	30	アクリル後	25	6500	3.83
P- 29	n-ヘキシルメタクリレート/メチルメタクリレート	20/10	メタクリル酸	20	6200	3.21
P- 30	n-ヘキシルメタクリレート/メテルメタクリレート	10/20	メタクリル登	15	5100	2.94
P- 31	n-ヘキシルメタクリレート/n-ブテルメタクリレート	20/10	メタクリル強ノメチルメタクリレート	15/10	7200	2.08
P- 32	n-ヘキシルメタクリレート	330	メタクリル酸/2・ヒドロキシエテルメタクリレート	20/10	8200	2.43
P- 33	n-ヘキシルメタクリレート	30	メタクリル西/2、3-ジヒドロキシブロビルメタクリレート	20/10	850D	2.34
P- 34	n-ヘキシルメタクリレート/2-クロロエチルメタクリレート	20/10	メタケリル母/2.3-ジヒドロキシブロビルメタクリレート	20/10	8300	2.41
P- 35	2-エチルヘキシルメタクリレート	20	メクケリル種	10	4900	2.03
P- 38	2-エチルヘキシルメタクリレート	30	アケリル産	15	7100	210
P- 37	2・エチルヘキシルメタクリレート	30	メタクリル機	20	7800	2.57
P- 38	2・エテルヘキシルメタクリレート	SO	メタクリル酸/ロ・プテルメタクリレート	15/5	8100	1.86
P- 39	2-エチルヘキシルメタクリレート	30	メタクリル強/メチルメタクリレート	15/10	8300	1.80
P- 40	2・エチルヘキシルメタクリレーナ/a・プチルメタクリレーナ	25/10	メタクリル酸	20	8200	2.44
P- 41	2·エテルヘキシルメタクリレート/n-ブテルメタクリレート	10/30	メタクリル酸	25	8500	2.94
P- 42	2・エチルヘキシルメタクリレート/エチルメタクリレート	10/20	メタクリル機	20	6100	3.29
P- 43	n・オクチルメタグリレート	30	メタクリル強	20	7800	257
P- 44	n-オクチルメタケリレート	30	メタクリル程/n-プテルメタクリレート	15/5	8100	1.86
P- 45	n-デシルメタクリレート	30	メタクリル産	40	10300	3.87
P- 46	n-デシルメタクリレート	30	メタクリル間/メチルメタクリレート	30/10	10500	2.86
P- 47	n-ラウリルメタクリレート	30	メラクリル政	40	11200	3.58
P- 48	n-ラウリルメタクリレート/エテルメタクリレー ト	20/10	メタクリル酸	20	B100	2.48
P- 49	n-ラウリルメタケリレート/n-ブテルメタクリレ ート	20/10	メタクリル酸	20	8300	2.40
P- 50	n-ラウリルメタクリレート/n-プチルメタクリレート	20/10	メタクリル酸/メチルメタクリレート	15/10	8900	1.68
					-	

[0090]

【表3】

BAB

No.	疎水性セグメントA	モル数	親水性セグメントB ^{E)}	モル数 ^{生)}	分子量	酸含量
P- 101	メチルメタクリレート	30	メタクリル強	5	4000	2.52
P- 102	エテルメタクリレート	20	メタクリル酸	10	4100	4.87
P- 103	エチルメタクリレート	40	メタクリル強/エチルメタクリレート	15/5	8400	3.58
P- 104	n-ブチルメタクリレート	20	メタクリル酸	10	4700	4.29
P- 105	n-ブチルメタクリレート	40	メタクリル設	4	6500	1.24
P- 106	n-ブチルメタクリレート	100	メタクリル酸	45	22100	4.08
P- 107	n-プチルメタクリレート	30	メタクリル酸/n-ブチルメタクリレート	10/5	7500	2.66
P- 108	n-プテルメタクリレート	20	メタクリル酸/n-ブチルメタクリレート	15/10	8400	3.58
P- 109	n-プチルメタクリレート	30	メタクリル酸/n-ブチルメタクリレート	20/10	10700	3.75
P- 110	n-プチルメタクリレート	30	メタクリル酸/2-ヒドロキシエチルメタクリレート	15/10	9600	3.14
P- 111	イソプチルメタクリレート	80	メタクリル酸	10	6100	3.29
P- 112	イソブチルメラクリレート	30	メタクリル酸/n-プチルメタクリレート	10/5	7500	2.66
P- 113	sec-プチルメタクリレート	20	メタクリル酸	4	3600	2.20
P- 114	n-ヘキシルメタクリレート	30	メタクリル酸	10	6900	2.89
P- 115	n-ヘキシルメタクリレートノメチルメタクリレート	10/20	メタクリル酸	3	4300	1.39
P- 116	2・エチルヘキシルメタクリレート	30	アクリル弦	10	7500	2.67
P- 117	2・エチルヘキシルメタクリレート	80	メタクリル酸/メチルメタクリレート	15/10	10600	2.82
P- 118	n-デシルメタクリレート	30	メタクリル酸	30	12100	4.98
P- 119	n-デシルメタクリレート	30	メタクリル酸/メチルメタクリレート	25/10	13200	3.79
P- 120	n-ラウリルメタクリレート	30	メタクリル酸	20	11200	3.58
P- 121	n-ラウリルメタクリレート/エチルメタクリレート	20/10	メタクリル酸・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10	8100	2.48

注)BABブロックで両側のBは同じ成分、モル数を示す。

【0091】前記ブロック共重合体は、必要に応じてカルボキシル基などを保護する手法を用いてリビングラジカル重合およびリビングイオン重合を利用して合成することができる。また、末端官能基ポリマーからのラジカル重合および末端官能基ポリマー同士の連結によって合成することができる。中でも、分子量制御やブロック共重合体の収率の点から、リビングラジカル重合およびリビングイオン重合を利用するのが好ましい。前記ブロッ

ク共重合体の製造方法については、例えば、「高分子の合成と反応(1)(高分子学会編、共立出版(株)発行(1992))」、「精密重合(日本化学会編、学会出版センター発行(1993))」、「高分子の合成・反応(1)(高分子学会編、共立出版(株)発行(1995))」、「テレケリックポリマー:合成と性質、応用(R. Jerome他、Prog. Polym. Sci. Vol16. 837-906頁(1991))」、「光によるブロック, グラフト共重合体の合成(Y. Yagch他、Prog. Polym.

Sci. Vol15.551-601頁(1990)) 」、米国特許50856 98号明細書などに記載されている。

【0092】次にブロック共重合体の製造方法の例を示す。但し、本発明に用いられる前記ブロック共重合体は以下の製造例によって製造されたものに限定されるものではない。

<製造例>テトラヒドロフラン(THF) 70m1、テトラブチルアンモニウムフロライド 0.1mo1/1のTHF溶液0.8m1、ジメチルケテンメチルトリメチルシリルアセタール 1.35gからなる混合液を調製した。次に、室温にて、ブチルメタクリレート 1.0g、テトラメチルシリルメタクリレート 24.5gの混合溶液を45分かけて添加し、30分攪拌した。更に、ブチルメタクリレート 22.0gを30分かけて添加し、さらに4時間攪拌した。メタノール 5.7gを加え、1時間攪拌した後、イソプロピルアルコールを110m1加え、80~90℃に加熱し、生じた蒸留分を除き、目的のブロック共重合体P-13の40質量%溶液を193g得た。

【0093】-着色微粒子分散物の製造-

本発明の着色微粒子分散物は、前記油溶性染料と前記ブロック共重合体とを含む着色微粒子を水系媒体(少なくとも水を含有する水性液)に分散することにより製造することができる。具体的には、例えば、予め前記ブロック共重合体の分散物を調製し、これに前記油溶性染料を含浸させる方法、あるいは共乳化分散法などが挙げられる。これらの中でも、前記共乳化分散法が好ましく、該共乳化分散法としては、前記ブロック共重合体と前記油溶性染料とを含有する有機溶媒相に水を添加すること、および水中に該有機溶媒相を添加すること、のいずれかにより、該有機溶媒相を乳化させ微粒子化させる方法が好適に挙げられる。

【0094】ここで、前記ブロック共重合体の分散物を調製し、これに前記油溶性染料を含浸させる方法について説明する。この方法の第一の例は、前記ブロック共重合体分散物を調製する第一の工程と、有機溶剤に前記油溶性染料を溶解した染料溶液を調製する第二の工程とを含む。この方法の第二の例は、前記ブロック共重合体分散物を調製する第一の工程と、有機溶剤に前記油溶性染料を溶解した染料溶液を調製し、この染料溶液と少なくとも水を含む液とを混合して染料微粒子分散液を調製する第二の工程と、前記ブロック共重合体分散物を調製する第二の工程と、前記ブロック共重合体分散物を調製する第二の工程と、前記ブロック共重合体分散物と前記染料微粒子分散液と認合して着色微粒子分散物を調製する第三の工程とを含む。

【0095】次に、前記共乳化分散法について説明す 水系媒体 る。この方法の第一の例は、有機溶剤に前記油溶性染料 %であると、前記ブロック共重合体とを溶解したブロック共重合 酸化リラ体染料溶液を調製する第一の工程と、前記ブロック共重 50 もよい。

合体染料溶液と、少なくとも水を含む液とを混合して着 色微粒子分散物を調製する第二の工程とを含む。この方 法の第二の例は、有機溶剤に前記油溶性染料を溶解した 染料溶液を調製する第一の工程と、前記ブロック共重合 体を溶解したブロック共重合体溶液を調製する第二の工 程と、前記染料溶液と前記ブロック共重合体溶液と少な くとも水を含む液とを混合して着色微粒子分散物を調製 する第三の工程とを含む。この方法の第三の例は、有機 溶剤に前記油溶性染料を溶解した染料溶液を調製し、こ 10 の染料溶液と少なくとも水を含む液とを混合して染料微 粒子分散液を調製する第一の工程と、前記ブロック共重 合体を溶解したブロック共重合体溶液を調製し、このブ ロック共重合体溶液と少なくとも水を含む液とを混合し てブロック共重合体微粒子分散液を作製する第二の工程 と、前記染料微粒子分散液と前記ブロック共重合体微粒 子分散液とを混合して着色微粒子分散物を調製する第三 の工程とを含む。この方法の第四の例は、有機溶剤に前 記ブロック共重合体を溶解したブロック共重合体溶液を 調製する第一の工程と、前記油溶性染料を溶解した染料 溶液を調製し、この染料溶液と少なくとも水を含む液と 20 を混合して染料微粒子分散液を調製する第二の工程と、 前記ブロック共重合体溶液と前記染料微粒子分散液とを 混合し着色微粒子分散物を調製する第三の工程とを含

【0096】前記着色微粒子分散物において、前記ブロック共重合体の使用量としては、前記油溶性染料100質量部に対し、10~1000質量部が好ましく、20~400質量部がより好ましい。前記ブロック共重合体の使用量が、10質量部未満であると、微細で安定な分散がし難くなる傾向があり、1000質量部を超えると、着色微粒子分散物中の前記油溶性染料の割合が少なくなり、前記着色微粒子分散物を水系インクとして使用した場合に配合設計上の余裕がなくなる傾向がある。

【0097】前記着色微粒子においては、前記ブロック 共重合体中に前記油溶性染料が分散されているのが好ま しい。着色微粒子分散物における前記着色微粒子の含有 量としては、1~45質量%が好ましく、2~30質量 %がより好ましい。前記含有量は、希釈、蒸発、限外濾 過等により適宜調整することができる。前記着色微粒子 の平均粒径としては、1~500nmが好ましく、3~ 300nmがより好ましく、更に、5~150nmが好ましく、5~100nmが特に好ましい。前記平均粒径 は、遠心分離、濾過等により調整することができる。

【0098】前記着色微粒子分散物を製造する際に用いる前記水系媒体とは、水、または水溶性有機溶剤、若しくは水混和性液体(硫酸など)と水との混合物である。水系媒体に占める水の好ましい含有率は、50~100%である。また、無機塩(例えば、塩化ナトリウム、水酸化リチウム等)などの水溶性の化合物が溶解していてもよい。

20

【0099】前記水系媒体中に含まれる水以外の成分 は、水不溶性着色剤の分散後、あるいは、水系着色微粒 子分散物の作製後に透析や限外濾過などで除去や減量し てもよい。水系媒体中に含まれる水以外の成分が本発明 のインクジェット記録用インクに必須な水溶性有機溶剤 であれば、除去する必要はない。

【0100】前記水溶性有機溶剤としては、水より蒸気 圧の低い水溶性有機溶剤が好ましい。具体的には、例え ば、エチレングリコール、プロピレングリコール、ジエ チレングリコール、トリエチレングリコール、ポリエチ レングリコール、チオジグリコール、ジチオジグリコー ル、2 -メチル-1, 3 -プロパンジオール、1, 2, 6-ヘキサントリオール、アセチレングリコール誘導 体、グリセリン、トリメチロールプロパン等に代表され る多価アルコール類:エチレングリコールモノメチル (又はエチル) エーテル、ジエチレングリコールモノメ チル (又はエチル) エーテル、トリエチレングリコール モノエチル (又はブチル) エーテル等の多価アルコール の低級アルキルエーテル類:2-ピロリドン、N-メチ ルー2-ピロリドン、1、3-ジメチルー2-イミダゾ リジノン、N-エチルモルホリン等の複素環類:スルホ ラン、ジメチルスルホキシド、3-スルホレン等の含硫 黄化合物:ジアセトンアルコール、ジエタノールアミ ン、トリエタノールアミン等の多官能化合物:などが挙 げられる。これらの中でも、エチレングリコール、ジエ チレングリコール、トリエチレングリコール、プロピレ ングリコール、グリセリン、2-ピロリドン、トリエタ ノールアミンが好適に挙げられる。

【0101】前記水溶性有機溶剤は、単独で用いてもよ いし2種以上併用してもよい。これらの水溶性有機溶剤 は各々インク中に0.1~20質量%含有することが好 ましく、0. 5~15質量%の範囲であることがより好

【0102】前記着色微粒子分散物を製造する際に用い る有機溶剤としては、特に制限はなく、前記油溶性染料 や前記ブロック共重合体の溶解性に基づいて適宜選択す ることができ、例えば、アセトン、メチルエチルケト ン、ジエチルケトン等のケトン系溶剤、メタノール、エ タノール、2-プロパノール、1-プロパノール、1-ブタノール、tert+ブタノール等のアルコール系溶 剤、クロロホルム、塩化メチレン等の塩素系溶剤、ベン ゼン、トルエン等の芳香族系溶剤、酢酸エチル、酢酸ブ チル、酢酸イソプロピルなどのエステル系溶剤、ジエチ ルエーテル、テトラヒドロフラン、ジオキサン等のエー テル系溶剤、エチレングリコールモノメチルエーテル、 エチレングリコールジメチルエーテル等のグリコールエ ーテル系溶剤、などが挙げられる。これらの有機溶剤 は、1種単独で使用してもよいし、2種以上を併用して もよい。

効果を害しない範囲内であれば特に制限はないが、前記 ブロック共重合体100質量部に対し、10~2000 質量部が好ましく、100~1000質量部がより好ま しい。前記有機溶剤の使用量が、10質量部未満である と、着色微粒子の微細で安定な分散がし難くなる傾向が あり、2000質量部を超えると、前記有機溶剤を除去 するための脱溶媒と濃縮の工程が必須になり、かつ配合 設計上の余裕がなくなる傾向がある。

【0104】前記有機溶剤は、前記有機溶剤の水に対す 10 る溶解度が10%以下である場合、あるいは、前記有機 溶剤の蒸気圧が水より大きい場合には、着色微粒子分散 物の安定性の点で除去されるのが好ましい。前記有機溶 剤の除去は、常圧~減圧条件で10℃~100℃で行う ことができ、常圧条件で40~100℃あるいは減圧条 件で10~50℃で行うのが好ましい。

【0105】一添加剤一

本発明の着色微粒子分散物は、本発明の効果を害しない 範囲内において、目的に応じて適宜選択した添加剤を含 んでいてもよい。前記添加剤としては、例えば、中和 剤、疎水性高沸点有機溶媒、分散剤、分散安定剤等が挙 げられる。

【0106】前記中和剤は、前記ブロック共重合体が未 中和のイオン性基を有する場合に、着色微粒子分散物の p H調節、自己乳化性調節、分散安定性付与等の点で好 適に使用することができる。前記中和剤としては、有機 塩基、無機アルカリ等が挙げられる。

【0107】前記有機塩基としては、トリエタノールア ミン、ジエタノールアミン、N-メチルジエタノールア ミン、ジメチルエタノールアミン等が挙げられる。前記 無機アルカリとしては、アルカリ金属の水酸化物(例え ば、水酸化ナトリウム、水酸化リチウム、水酸化カリウ ム等)、炭酸塩(例えば、炭酸ナトリウム、炭酸水素ナ トリウム等)、アンモニア等が挙げられる。前記中和剤 は、着色微粒子分散物における分散安定性を向上させる 観点からは、pH4.5~10.0となるよう添加する のが好ましく、pH6.0~10.0となるよう添加す るのがより好ましい。

【0108】前記疎水性高沸点有機溶媒は、着色微粒子 分散物の粘度、比重、及び印字性能の調整などに用いら 40 れる。前記疎水性高沸点有機溶媒としては、疎水性であ り、沸点が150℃以上のものが好ましく、170℃以 上のものがより好ましい。ここで「疎水性」とは、25 ℃における蒸留水に対する溶解度が3%以下であること をいう。また、前記疎水性高沸点有機溶媒の誘電率は3 ~12であるのが好ましく、4~10であるのがより好 ましい。なお、ここで、誘電率とは25℃における真空 に対する比誘電率をいう。

【0109】前記疎水性高沸点有機溶媒としては、米国 特許第2, 322, 027号明細書、特願2000-2 【0103】前記有機溶剤の使用量としては、本発明の 50 03857号明細書に記載等に記載の化合物を用いるこ

とができる。具体的には、リン酸トリエステル類、フタ ル酸ジエステル類、アルキルナフタレン類、安息香酸エ ステル類等が挙げられる。これらは、目的に応じ、常温 で液体、固体の何れのものも使用できる。前記疎水性高 沸点溶剤の使用量としては、本発明の効果を害しない範 囲内であれば特に制限はないが、前記ブロック共重合体 100質量部に対し、0~1000質量部が好ましく、 0~300質量部がより好ましい。

【0110】前記分散剤及び/又は前記分散安定剤は、 前記ブロック共重合体分散物、前記ブロック共重合体溶 液、染料溶液、少なくとも水を含む溶液等のいずれに添 加してもよいが、前記ブロック共重合体及び/又は染料 微粒子分散液を調製する前工程の、前記ブロック共重合 体、染料溶液、水を含む溶液に添加するのが好ましい。 前記分散剤、分散安定剤としては、カチオン、アニオ ン、ノニオン系の各種界面活性剤、水溶性又は水分散性 の低分子化合物、オリゴマー等、が挙げられる。前記分 散剤、分散安定剤の添加量としては、前記油溶性染料と 前記ブロック共重合体との合計に対し、0~100質量 %が好ましく、0~20質量%がより好ましい。

【0111】本発明の着色微粒子分散物は、各種分野に おいて使用することができるが、筆記用水性インク、水 性印刷インク、情報記録インク等に好適であり、以下の 本発明のインクジェット記録用インクに特に好適に使用 することができる。

【0112】(インクジェット記録用インク)本発明の インクジェット記録用インクは、前記本発明の着色微粒 子分散物を含有してなり、さらに必要に応じて適宜選択 したその他の成分を含有していてもよい。

【0113】 - その他の成分-

前記その他の成分は、本発明の効果を害しない範囲内に おいて含有され、例えば、乾燥防止剤、浸透促進剤、紫 外線吸収剤、酸化防止剤、防黴剤、pH調整剤、表面張 力調整剤、消泡剤、粘度調整剤、分散剤、分散安定剤、 防錆剤、キレート剤、等の公知の添加剤が挙げられる。

【0114】前記乾燥防止剤は、インクジェット記録方 式に用いるノズルのインク噴射口において前記インクジ エット記録用インクが乾操することによる目詰まりを防 止する目的で好適に使用される。

【0115】前記乾燥防止剤としては、水より蒸気圧の 低い水溶性有機溶剤が好ましい。該乾燥防止剤の具体例 としては、エチレングリコール、プロピレングリコー ル、ジエチレングリコール、ポリエチレングリコール、 チオジグリコール、ジチオジグリコール、2-メチルー 1, 3-プロパンジオール、1, 2, 6-ヘキサントリ オール、アセチレングリコール誘導体、グリセリン、ト リメチロールプロパン等に代表される多価アルコール 類、エチレングリコールモノメチル(又はエチル)エー テル、ジエチレングリコールモノメチル(又はエチル) エーテル、トリエチレングリコールモノエチル(又はブ 50 鉛錯体、等が挙げられ、具体的には、リサーチディスク

チル) エーテル等の多価アルコールの低級アルキルエー テル類、2-ピロリドン、N-メチルー2-ピロリド ン、1, 3 ¬ジメチルー2ーイミダゾリジノン、Nーエ チルモルホリン等の複素環類、スルホラン、ジメチルス ルホキシド、3-スルホレン等の含硫黄化合物、ジアセ トンアルコール、ジエタノールアミン等の多官能化合 物、尿素誘導体が挙げられる。これらの中でも、グリセ リン、ジエチレングリコール等の多価アルコールがより 好ましい。これらは、1種単独で使用してもよいし、2 10 種以上を併用してもよい。これらの乾燥防止剤は、前記 インクジェット記録用インク中に10~50質量%含有 することが好ましい。

【0116】前記浸透促進剤は、インクジェット記録用 インクを紙によりよく浸透させる目的で好適に使用され

【0117】前記浸透促進剤としては、例えば、エタノ ール、イソプロパノール、ブタノール、ジ(トリ)エチ レングリコールモノブチルエーテル、1,2-ヘキサン ジオール等のアルコール類やラウリル硫酸ナトリウム、 20 オレイン酸ナトリウムやノニオン性界面活性剤等が挙げ られる。前記浸透促進剤は、印字の滲み、紙抜け(プリ ントスルー) 等を生じない範囲内で含有され、インクジ ェット記録用インク中に5~30質量%程度含有されれ ば通常十分な効果を発揮する。

【0118】前記紫外線吸収剤は、画像の保存性を向上 させる目的で使用され、例えば、特開昭58-1856 77号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34 057号公報等に記載されたベンゾトリアゾール系化合 30 物、特開昭46-2784号公報、特開平5-1944 83号公報、米国特許第3214463号等に記載され たベンゾフェノン系化合物、特公昭48-30492号 公報、同56-21141号公報、特開平10-881 06号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特 表平8-501291号公報等に記載されたトリアジン 系化合物、リサーチディスクロージャーNo. 2423 9号に記載された化合物やスチルベン系、ベンズオキサ 40 ゾール系化合物に代表される紫外線を吸収して蛍光を発 する化合物、いわゆる蛍光増白剤等が挙げられる。

【0119】前記酸化防止剤は、画像の保存性を向上さ せる目的で使用され、例えば、各種の有機系及び金属錯 体系の褪色防止剤を使用することができる。前記有機系 の褪色防止剤としては、ハイドロキノン類、アルコキシ フェノール類、ジアルコキシフェノール類、フェノール 類、アニリン類、アミン類、インダン類、クロマン類、 アルコキシアニリン類、複素環類、等が挙げられる。前 記金属錯体系の褪色防止剤としては、ニッケル錯体、亜 ロージャーNo. 17643の第VIIのI~J項、同No. 15162、同No. 18716の650頁左欄、同No. 3.6544の527頁、同No. 307105の872頁、同No. 15162に引用された特許に記載された化合物や、特開昭62-215272号公報の127頁~137頁に記載された代表的化合物の一般式及び化合物例に含まれる化合物を使用することができる。

【0120】前記防黴剤としては、デヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオン-1-オキシド、p-ヒドロキシ安息香酸エチルエステル、1,2-ベンズイソチアゾリン-3-オン及びその塩等が挙げられる。これらはインク中に0.02~1.00質量%使用するのが好ましい。

【0121】前記p H調整剤としては、前記中和剤(有機塩基、無機アルカリ)を用いることができる。前記p H調整剤は、インクジェット記録用インクの保存安定性を向上させる目的で、前記インクジェット記録用インクがp H $6\sim10$ となるように添加するのがより好ましい。

【0122】前記表面張力調整剤としては、ノニオン、カチオン又はアニオン界面活性剤等が、好適に挙げられる。なお、本発明のインクジェット記録用インクの表面張力としては、25~70mN/mが好ましく、25~60mN/mがより好ましい。また、本発明のインクジェット記録用インクの粘度としては、30mPa・s以下が好ましく、20mPa・s以下がより好ましい。

【0123】前記消泡剤としては、フッ素系、シリコーン系化合物やEDTAに代表されるれるキレート剤等も必要に応じて使用することができる。

【0124】 (インクジェット記録方法) 本発明のインクジェット記録方法においては、前記インクジェット記録用インクを用いて受像材料に記録を行うが、その際に使用するインクノズル等については特に制限はなく、目的に応じて適宜選択することができる。

【0125】-受像材料-

前記受像材料としては、特に制限はなく、公知の被記録材、例えば、普通紙、樹脂コート紙、インクジェット専用紙、フィルム、電子写真共用紙、布帛、ガラス、金属、陶磁器等が挙げられる。前記被記録材の中でも、インクジェット専用紙が好ましく、例えば、特開平8-169172号公報、同8-27693号公報、同2-276670号公報、同7-276789号公報、同9-323475号公報、特開昭62-238783号公報、特開平10-153989号公報、同10-217473号公報、同10-235995号公報、同10-337947号公報、同10-217597号公報、同10-337947号公報、等に記載されているものがより好ましい。

【0126】また、本発明においては、前記受像材料の 50 シリカは、乾式製造法によって得られる無水珪酸、及

中でも、以下の記録紙及び記録フィルムが特に好まし い

【0127】・前記記録紙及び記録フィルムは、支持体と 受像層とを積層してなり、必要に応じて、バックコート 層等のその他の層をも積層して成る。なお、受像層をは じめとする各層は、それぞれ1層であってもよいし、2 層以上であってもよい。

【0128】前記支持体としては、LBKP、NBKP等の化学パルプ、GP、PGW、RMP、TMP、CT MP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等からなり、必要に応じて従来の公知の顔料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等を添加混合し、長網抄紙機、円網抄紙機等の各種装置で製造されたもの等が使用可能であり、また、これらの外、合成紙、プラスチックフィルムシート等であってもよい。

【0129】前記支持体の厚みとしては、 $10\sim250$ μ m程度であり、坪量は $10\sim250$ g / m 2 が望ましい。

20 【0130】前記支持体には、前記受像層を設けてもよいし、前記バックコート層をさらに設けてもよく、また、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後に、前記受像層及び前記バックコート層を設けてもよい。また、前記支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。

【0131】前記支持体の中でも、両面をポリオレフィン(例えば、ポリエチレン、ポリスチレン、ポリエチレ30 ンテレフタレート、ポリブテン及びそれらのコポリマー等)でラミネートした紙、及びプラスチックフイルムが好ましく用いられる。前記ポリオレフィン中に、白色顔料(例えば、酸化チタン、酸化亜鉛等)又は色味付け染料(例えば、コバルトブルー、群青、酸化ネオジウム等)を添加することがより好ましい。

【0132】前記受像層には、顔料、水性バインダー、 媒染剤、耐水化剤、耐光性向上剤、界面活性剤、その他 の添加剤が含有される。

【0133】前記顔料としては、白色顔料が好ましく、 40 該白色顔料としては、例えば、炭酸カルシウム、カオリン、タルク、クレー、珪藻土、合成非晶質シリカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸バリウム、硫酸カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の無機白色顔料、スチレン系ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂、等の有機顔料等が好適に挙げられる。これらの白色顔料の中でも、多孔性無機顔料が好ましく、細孔面積が大きい合成非晶質シリカ等がより好ましい。前記合成非晶質シリカ等がより好ましい。前記合成非晶質シリカは、飲まない。 び、湿式製造法によって得られる含水珪酸のいずれも使用可能であるが、含水珪酸を使用することが特に好ましい。

【0134】前記水性バインダーとしては、例えば、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体、等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。これらの水性バインダーは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ポリビニルアルコール、シラノール変性ポリビニルアルコールが、前記顔料に対する付着性、及び受像層の耐剥離性の点で好ましい。

【0135】前記媒染剤としては、不動化されているこ とが好ましい。そのためには、ポリマー媒染剤が好まし く用いられる。前記ポリマー媒染剤としては、特開昭4 8-28325号、同54-74430号、同54-1 24726号、同55-22766号、同55-142 339号、同60-23850号、同60-23851 号、同60-23852号、同60-23853号、同 60-57836号、同60-60643号、同60-118834号、同60-122940号、同60-1 22941号、同60-122942号、同60-23 5134号、特開平1-161236号の各公報、米国 特許2484430号、同2548564号、同314 8061号、同3309690号、同4115124 号、同4124386号、同4193800号、同42 73853号、同4282305号、同4450224 号の各明細書に記載がある。特開平1-161236号 公報の212~215頁に記載のポリマー媒染剤が特に 好適に挙げられる。同公報記載のポリマー媒染剤を用い ると、優れた画質の画像が得られ、かつ画像の耐光性が 改善される。

【0136】前記耐水化剤は、画像の耐水化に有効であり、カチオン樹脂が好適に挙げられる。前記カチオン樹脂としては、例えば、ポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド、コロイダルシリカ等が挙げられ、これらの中でも、ポリアミドポリアミンエピクロルヒドリンが特に好ましい。前記カチオン樹脂の含有量としては、前記受像層の全固形分に対して1~15質量%が好ましく、3~10質量%がより好ましい。

【0137】前記耐光性向上剤としては、例えば、硫酸 亜鉛、酸化亜鉛、ヒンダーアミン系酸化防止剤、ベンゾ フェノン等のベンゾトリアゾール系の紫外線吸収剤等が 挙げられ、これらの中でも、硫酸亜鉛が特に好ましい。 【0138】前記界面活性剤は、塗布助剤、剥離性改良剤、スベリ性改良剤あるいは帯電防止剤として機能する。前記界面活性剤としては、特開昭62-173463号、同62-183457号の各公報に記載されたものが挙げられる。前記界面活性剤の代わりに有機フルオロ化合物を用いてもよい。前記有機フルオロ化合物は、疎水性であることが好ましい。前記有機フルオロ化合物としては、例えば、フッ素系界面活性剤、オイル状フッ素系化合物(例えば、フッ素油等)及び固体状フッ素化10合物脂(例えば、四フッ化エチレン樹脂等)が含まれる。前記有機フルオロ化合物については、特公昭57-9053号(第8~17欄)、特開昭61-20994号、同62-135826号の各公報に記載がある。

【0139】前記その他の添加剤としては、例えば、顔料分散剤、増粘剤、消泡剤、染料、蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられる。

【0140】前記バックコート層には、白色顔料、水性バインダー、その他の成分が含有される。

【0141】前記白色顔料としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。

【0142】前記水性バインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。

【0143】前記その他の成分としては、消泡剤、抑泡 40 剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙げられ る。

【0144】なお、前記記録紙及び記録フィルムにおける構成層(バックコート層を含む)には、ポリマーラテックスを添加してもよい。前記ポリマーラテックスは、寸度安定化、カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。前記ポリマーラテックスについては、特開昭62-245258号、同62-1316648号、同62-110066号の各公報に記載がある。ガラス転移温度が低い(40℃以50下の)ポリマーラテックスを、前記媒染剤を含む層に添

加すると、層のひび割れやカールを防止することができる。また、ガラス転移温度が高いポリマーラテックスを 前記バックコート層に添加するとカールを防止すること ができる。

【0145】本発明のインクジェット記録方式には、特に制限はなく、公知の方法、例えば、静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、インクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット(登録商標))方式等のいずれであってもよい。なお、前記インクジェット記録方式には、フォトインクと称する濃度の低いインクを小さい体積で多数射出する方式、実質的に同じ色相で濃度の異なる複数のインクを用いて画質を改良する方式や無色透明のインクを用いる方式が含まれる。

[0146]

【実施例】以下、本発明の実施例を説明するが、本発明はこれらの実施例になんら限定されるものではない。 尚、以下において、「部」および「%」は特に断らない 限り、「質量部」および「質量%」を表す。

[実施例1]

<製造例 1 (着色微粒子分散物(B-1)の調製)>イソプロピルアルコール 4部、tert-ブタノール6部、ブロック共重合体(P-13) 1.2部、および油溶性染料(M-1) 0.8部の混合液に、2mo1/Lの水酸化ナトリウムをブロック共重合体の酸の70%が中和される量だけ徐々に加えた後、80 ℃まで昇温させた。その後、攪拌しながら、水30部を添加した。この液を減圧下40 ℃で濃縮し、固形分11.3%の着色微粒子分散物を調製した。着色微粒子分散物中の着色微粒子の粒径は、体積平均径で73nmであった(マイクロトラックUPA150;日機装(株)社製で測定)。以下、これを着色微粒子分散物(B-1)と略記する。

【0147】<製造例2(着色微粒子分散物(B-2)の調製)>酢酸エチル 3部、シクロヘキサノン 0.

5部、ブロック共重合体(P-14) 1.2部、油溶性染料(M-6) 0.8部の混合液を調製した。一方、前記ブロック共重合体の酸の70%が中和される最の2mol/L水酸化ナトリウム、水15部、およびジ(2-エチルヘキシル)スルホコハク酸ナトリウム0.2部の混合液を調製した。前記2種の混合液を合わせ、ホモジナイザーにて混合乳化した後、減圧下40℃で濃縮し、固形分11.3%の着色微粒子分散物を調製した。着色微粒子分散物中の着色微粒子の粒径は、体積平10均径で65nmであった。以下、これを着色微粒子分散物(B-2)と略記する。

【0148】<製造例3(着色微粒子分散物(B-3)の調製)>テトラヒドロフラン 5部、tertーブタノール 5部、ブロック共重合体(P-8) 1.2 部、および油溶性染料(M-11)0.8部の混合液を、80℃まで昇温させた後、攪拌しながら、水30部を添加した。この液を減圧下40℃で濃縮し、固形分11.3%の着色微粒子分散物を調製した。着色微粒子分散物中の着色微粒子の粒径は、体積平均径で52nmで20あった。以下、これを着色微粒子分散物(B-3)と略記する。

【0149】<製造例4~9>製造例1の類似の方法で、B-4からB-7を、製造例2の類似の方法で、B-8を、製造例3の類似の方法で、B-9を製造した。用いたブロック共重合体および油溶性染料を下記表4に示す。

【0150】<比較製造例1~2>製造例1の類似の方法で、PB-1からPB-2を製造した。用いたブロック共重合体および油溶性染料を下記表4に示す。尚、用30 いたポリマーは以下のものであり、親水性モノマーと疎水性モノマーのラジカル共重合体であった。括弧内の値はモル比を表す。

PH-1:n-ブチルメタクリレート/メタクリル酸(2/1) 共重合体

PH-2:n-ヘキシルメタクリレート/アクリル酸(6/5) 共重合体

[0151]

【表4】

製造例	分散物 No.	ブロック共重合体 No.	酸含量 mmol/g	分子量 Mw	油溶性	粒径 nm
1	B-1	P-13	3. 29	6100	M-1	73
2	B-2	P-14	2. 66	7500	M-6	65
3	B-3	P-8	2.63	3800	M-11	52
4	B-4	P-28	3.83	6500	C-1	68
5	B-5	P-22	1.68	5900	C-3	89
6	8-6	P-16	2.68	14900	C-7	74
7	B-7	P-13	3.29	6100	M-4	63
8	B-8	P-13	3.29	6100	M-10	75
9	B-9	P-13	3.29	6100	M-12	76
比較1	PB-1	PH-1	2.70	9300	M-11	分散不良
比較2	PB-2	PH-2	3.89	6700	C-1	120

【0152】表4の結果から明らかなように、本発明の ブロック共重合体を用いた場合、凝集が無く、粒径の小 さな着色微粒子分散物が製造できる。

【0153】 [実施例2]

<インク01の作製>前記実施例1の製造例1で調製した着色微粒子分散物(B-1) 42部に、ジエチレングリコール 10部、グリセリン 5部、硫酸ヘキサエチレングリコールモノドデシルエーテルナトリウム 0.5部、ジ(2-エチルヘキシル)スルホコハク酸ナトリウム 0.5部、およびイオン交換水 36部を混合し、0.45 μ mのフィルターによって濾過し、水性のインクジェット記録用インク01を調製した。

【0154】<インク02~09の作製>前記インク01の作製において、前記着色微粒子分散物(B-1)を、前記実施例1の製造例2~10で調製した着色微粒30子分散物(B-2)~(B-9)に各々代えた以外は、前記インク01の作製と同様にして水性のインクジェット記録用インク02~09を各々調製した。

【0155】<インク10の作製>油溶性染料(D-4) 6. 4部、ジオクチルスルホコハク酸ナトリウム 8. 0部、ブロック共重合体 (P-13) 19. 0部を 疎水性高沸点有機溶媒 (S-1) 7. 7部、及び酢酸エ チル50部中に70℃にて溶解させた。溶解させる途中 でブロック共重合体の酸が70%中和される量の2mo 1/L水酸化ナトリウムを徐々に添加した。この液に5 00部の脱イオン水をマグネチックスターラーで攪拌し ながら添加し、水中油滴型の粗粒子分散物を作製した。 次に、この粗粒子分散物をマイクロフルイダイザー(M ICROFLUIDEX INC) にて600barの 圧力で5回通過させることで微粒子化を行った。更に、 得られた乳化物をロータリーエバポレーターにて酢酸エ チルの臭気がなくなるまで脱溶媒を行った。得られた微 細乳化物に、ジエチレングリコール 140部、グリセ リン50部、SURFYNOL465(AirProd ucts&Chemicals社)7部、脱イオン水

900部を添加してインクジェット記録用インク10を作製した。

【0156】 【化16】

$$S-1$$
 $O=P \left(\bigcirc_{CH_3} \right)_3$

【0157】<インク11の作製>前記インク01作製において、前記着色微粒子分散物(B-1)を前記実施例1の比較製造例2で調製した着色微粒子分散物(PB-2)に各々代えた以外は、前記インク01作製と同様にしてインクジェット記録用インク11を調製した。

【0158】(画像記録および評価)作製したインク01~11を、インクジェットプリンターPM-670C(EPSON(株)製)のカートリッジに充填し、同機を用いて、インクジェットペーパーフォト光沢紙EX(富士写真フイルム(株)製)に画像を記録し、以下の評価を行った。評価結果を下記表5に示した。

【0159】<印刷性能①評価>カートリッジをプリンタにセットし、全ノズルからのインクの吐出を確認した後、A4用紙20枚に画像を出力し、印字の乱れを以下の基準で評価した。

A: 印刷開始から終了まで印字の乱れが無かった。 40 B: 印刷開始から終了までに時々印字の乱れが発生 した。

C: 印刷開始から終了まで印字の乱れがあった。

【0160】<印刷性能②評価>カートリッジを50℃ で3日間放置した後、印字性能①と同様にして、同様の 基準で印字の乱れを評価した。

【0161】<紙依存性評価>前記フォト光沢紙に形成した画像と、別途、PPC用普通紙に形成した画像との色調を比較し、両画像間の差が小さい場合を〇(良好)、両画像間の差が大きい場合を×(不良)として、50 二段階で評価した。

【0162】<耐水性評価>前記画像を形成したフォト 光沢紙を、1時間室温乾燥した後、30秒間水に浸漬 し、室温にて自然乾燥させ、滲みを観察した。滲みがな いものをA、滲みが僅かに生じたものをB、滲みが多い ものをCとして、三段階で評価した。

【0163】<耐光性評価>前記画像を形成したフォト 光沢紙に、ウェザーメーター(アトラスC. I65)を 用いて、キセノン光(850001x)を3日間照射 し、キセノン照射前後の画像濃度を反射濃度計(X-Rit e310TR)を用いて測定し、色素残存率として評価 した。尚、前記反射濃度は、1、1.5および2.0の 3点で測定した。いずれの濃度でも色素残存率が80% 以上の場合をA、1または2点が80%未満をB、全ての濃度で80%未満の場合をCとして、三段階で評価した。

【0164】 <暗熱堅牢性評価>画像印字後、80~70%RHの条件下に7日間保存する前後で、X-Rite310TRを用いて測定し、色素残存率として評価した。尚、前記反射濃度は、1、1.5および2.0の3点で測定した。いずれの濃度でも色素残存率が80%以上の場合をA、1または2点が80%未満をB、全ての濃度で80%未満の場合をCとして、三段階で評価した。

[0165]

【表5】

インク No.	着色微粒子 分散物No.	印刷性能	印刷性能	私依存性	耐水性	耐光性	暗熱 堅牢性	備考
01	B-1	Α	Α	0	Α	Α	Α	(本発明)
02	B-2	, A	A	0	A	Α	A	(本発明)
03	B-3	Α	A	0	A	A	Α	(本発明)
04	B-4	Α	Α	0	Α	A	Α	(本発明)
05	B-5	A	A	0	A	A	A	(本発明)
08	B-6	Α	A	0	A	A	Α .	(本発明)
07	B-7	A	A	0	Α	A	Α	(本発明)
08	B-8	A	A	0	A	A	Α	(本発明)
09	B-9	A	A	0	A	A	Α	(本発明)
10	_	A	A	0	Α	Α	Α	(本発明)
11	PB-2	В	С	0	A	A	A	(比較例)

【0166】表5の結果から明らかなように、実施例の インクジェット記録用インクは、粒径が小さく、印字適 性に優れ、発色性・色調に優れ、紙依存性がなく、耐水 性、耐光性、暗熱堅牢性に優れていた。

【0167】[実施例3]

<インクセット101の作製>マゼンタ染料(M-6) 5部、ブロック共重合体 (P-13) 1. 25部を疎水 性高沸点有機溶媒 (S-1) 3. 63部、疎水性高沸点 有機溶媒 (S-2) 6. 38部、ジオクチルスルホコハ ク酸ナトリウム 3.13部、及び酢酸エチル50ml 中に70℃で溶解させた。この溶液中に500mlの脱 イオン水をマグネチックスターラーで攪拌しながら添加 し、水中油滴型の粗粒子分散物を作製した。この混合溶 液に、2m01/L水酸化ナトリウムを、ブロック共重 合体の酸の70%が中和されるまで加えた。次にこの粗 粒子分散物をマイクロフルイダイザー(MICROFL UIDEXINC)にて600barの圧力で5回通過 させることで微粒子化を行った。更に、得られた乳化物 をロータリーエバポレーターにて酢酸エチルの臭気がな くなるまで脱溶媒を行い、着色微粒子分散物(ライトマ ゼンタインク用)を得た。

$$\begin{array}{c} \text{S-2} \\ \text{O=P} \left(\text{OCH}_2\text{CHCH}_2\text{-C-CH}_3 \\ \text{CH}_3 & \text{CH}_3 \end{array} \right)_{\overline{\textbf{S}}} \\ \end{array}$$

【0169】前記ライトマゼンタインク用の着色微粒子分散物の作製において、油溶性染料、疎水性高沸点有機40 溶媒の量および前記SURFYNOL465の量を下記表6に示す通りに代えて、マゼンタインク、ライトシアンインク、シアンインク、イエローインクおよびブラックインクを各々作製し、6種類のインクからなるインクセット101を作製した。尚、イエローインク及びブラックインクに用いた染料(YY-1)の構造式を以下に示す。

【0 i 7 0】 【表 6】

	ライトマゼンタインク	マゼンタインク	ライト シアンインク	シアンインク	イエローインク	ブラックインク
	V 20 3 10 3					M-6 10.0g
· 染料	M-6 5.00g	M-6 20.0g	C-1 9.3g	C-1 37.2g	YY-1 27.2g	C-1 18.6g
						YY-1 13.6g
	S-1 3.63g	S-1 14.52g	S-1 6.75g	S-1 27.0g	S-1 19.74g	S-1 30.6g
高沸点有機溶媒	S-2 6.38g	S-2 25.52g	S-2 11.9g	S-2 47.6g	S-2 34.7g	S-2 53.8g
プロック共五合体	P-13 1.25g	P-13 5.0g	P-13 2.33g	P-13 9.3g	P-13 6.8g	P-13 10.6g
ジ*オタチルスルホ コハタ酸ナトリウム	3.13g	12.5g	11.6g	46.4g	34.0g	52.7g
シェチレングリコール	110.0g	110.0g	110.0g	110.0g	110.0g	110.0g
尿素	46.0g	46.0g	46.0g	46.0g	46.0g	46.0g
グリセリン	50.0g	50.0g	50.0g	50. Og	50.0g	50.0g
サーフィノール465	5.5g	5.5g	5.5g	5.5g	5.5g	5.5g
トリエタノールアミン	7.5g	7.5g	7.5g	7.5g	7.5g	7.5g
ベングトリアゾール	0.075g	0.075g	0.075g	0.075g	0.075g	0.075g
防腐剤 Proxel_XL2	2.5g	2.5g	2.5g	2.5g	2.5g	2.5g
体積平均粒径	30nm	37nm	42nm	39nm	39nm	46nm

[0171] 【化18】 Y Y - 1

C2H5 N CH2CH2NHSO2CH3

【0172】<インクセット102~107の作製>次 30 【表7】

に、インクセット101の作製において、油溶性染料お よびブロック共重合体を下表7及び下記表8に示す通り に各々代えて、インクセット102~106を作製し た。さらに水溶性染料を用いた比較用のインクセットと して下記表9に従うインクセット107を作製した。 尚、インクセット102~107に用いた染料(YY-2、MM-2~3、CC-2~3、A-1~7) の構造 式を以下に示す。

[0173]

インクセット		かかいかインク	マセンタインク	デイトンイング	シアンインカ	イエローインク	7720677	容均
101							M-6 10.0g	·莱糖例
	京然	M-6 5.00g	M-6 20.0g	C-1 9.3g	C-1 37.2g	YY-1 27.2g	C-1 18.6g	
							YY-1 13.6g	
	南部点有横路模 S-1/S-2	3.63g/6.38g	14.52g/25.52g	6.75g/11.9g	27.08/47.68	19.7g/34.7g	30.6g/53.8g	
	プロック共配合体	P-16 1.25g	P-16 5.0g	P-16 2.33g	P-16 9.3g	P-16 6.8g	P-16 10.6g	
	体積平均粒径	33nm	43nm	32nm	36nm	30mm	42nm	
102							M-6 10.0g	玻瓶囱
	被数	M-6 5.00g	M-6 20.0g	C-1 9.3g	C-1 37.2g	YY-1 27.2g	C-1 18.6g	
							YY-1 13.6g	
40 [高海点有鐵砌鐵 S-1/S-2	3.638/6.388	14.52g/25.52g	6.75g/11.9g	27.0g/47.6g	19.78/34.78	30.6g/53.8g	
表 8	プロック共重合体	P-14 1.25g	P-14 5.0g	P-14 2.23g	P-14 9.3g	P-14 6.8g	P-14 10.6g	
3	体積平均粒径	42pm	51nm	43nm	53nm	60nm	79nm	
103							M-6 10.0g	- 汝居室
	英	M-6 5.00g	M-6 20.0g	C-1 9.3g	C-1 37.2g	YY-1 27.2g	C-1 18.6g	
							YY-1 13.6g	•
·- <u>-</u> -	高沸点有機熔煤 S-1/S-2	0.81g/1.42g	3.26g/5.73g	1.51g/2.66g	6.06g/10.7g	4.42g/7.77g	6.87g/12.1g	
	プロック共組合体	P-8 10.0g	P-8 40.0g	P-8 18.6g	P-8 74.6g	P-8 54.6g	P-8 84.4g	
	体積平均粒径	38nm	39пт	37nm	37nm	36nm	45nm	

[0174]

40 【表8】

インクセット		ライトマセンタインク	マセンタインク	ライト	シナンメンカ	イエローインク	ブラッケインク	包衫
104	Š	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VAV. 7. 14. 42	77 77 77 77 77 77	, 69 64 KM	96 6-AA	MM-2 6.5g	• 実施列
	ž X	20 .C 4 . man	92 - 27 7 1707	,				
	高總点有機溶媒 S-1/S-2	2.6g/4.6g	10.5g/18.5g	12.68/22.18	50.5g/88.7g	19.28/33.78	39.68/69.6g	
	400	P-1 0.72g	P-1 2.88g	P-1 3.48g	P-1 13.9g	P-1 5.3g	P-1 10.9g	
	ノロジン大国口体	P-20 0.72g	P-20 2.88g	P-20 3.48g	P-20 13.9g	P-20 5.3g	P-20 10.9g	
	体積平均粒径	33nm	30nm	31nm	43nm	41nm	52nm	
105							MM-3 6.5g	比較例
	政	MM-3 3.6g	NDA-3 14.4g	CC-3 17.4g	CC-3 69.6g	YY-2 26.5g	CC-3 34.8g	
40							YY-2 13.3g	
¥ /1	高沸点有機溶媒 S-1/S-2	2.68/4.68	10.5g/18.5g	12.6g/22.1g	50.5g/88.7g	19.2g/33.7g	39.6g/69.6g	
:19	プロック共配合体	P-22 0.9g	P-22 3.6g	P-22 4.35g	P-22 17.48	P-22 6.6g	P-22 13.7g	
	体镇平均粒径	40nm	38nm	38nm	49nm	53nm	57nm	
106							M-6 10.0g	比較例
	英兴	M-6 5.00g	M-6 20.0g	C-1 9.3g	C-1 37.2g	YY-1 27.2g	C-1 18.6g	
							YY-1 13.6g	•
	高島点有機溶媒 S-1/S-2	3.63g/6.38g	14.52g/25.52g	6.75g/11.9g	27.0g/47.6g	19.78/34.78	30.6g/53.8g	
	プロング共配合体	PH-2 1.25g	PH-2 5.0g	PH-2 2.33g	РН-2 9.3g	PH-2 6.8g	PH-2 10.6g	
A	体積平均粒径	50nm	52nm	33nm	42nm	45пт	49nm	

[0175]

40 【化19】

CH2CH2NHSO2CH3

$$\begin{array}{c|c} \text{C}_2\text{H}_5 & \text{CI} \\ \hline \\ \text{C}_2\text{H}_5 & \text{COCCONH} \\ \hline \\ \text{C}_{\text{CH}_3} & \text{COOC}_{12}\text{H}_{25} \\ \end{array}$$

MM-2

$$\begin{array}{c|c} CI & H_3C \\ \hline \\ NH & N \\ \hline \\ C_{13}H_{27}OCHN & CH_2CH_2NHSO_2CH_3 \\ \hline \\ CI & CI \\ \hline \end{array}$$

[0176]

【化20】

CC-2

【0177】 【表9】

C C - 3

	ライトマゼンタインク	マセンタインク	ライト シアンインク	シアンインク	イエローインク	ブラックインク
染料	A-1 7.0g	A-1 28.0g	A-2 8.75g	A-2 35.0g	A-3 14.7g A-4 14.0g	A-5 20.0g A-6 20.0g A-7 20.0g A-3 21.0g
ソ・エナレンタ・リコール	150.0g	110.0g	130.0g	200.0g	160.0g ·	20.0g
尿囊	37.0g	46.0g	_	_	_	_
グリセリン	130.0g	130.0g	150.0g	180.0g	150.0g	120.0g
}9エチレンタ"月コール モノフ"ナルユーテル	130.0g	140. Og	130.0g	140.0g	130. Ug	_
シ゚エテレンタ・リコール モノフ・テルエーテル	-	_	-	_	_	230.0g
2ーピロリドン	_	_	_		_	80.0g
サーフィノーか465	10.5g	11.5g	11.1g	9.8g	_	_
ナーフィノータTG	_	_	_	_	9.0g	8.5g
トリエタノールアミン	6.9g	7.4g	6.8g	6.7g	0.8g	17.9g
ヘンソトリアソール	0.08g	0.07g	O. 08g	0.08g	0.06g	0.06g
防腐剤 Proxel XL2	3.5g	2.5g	1.8g	2.0g	2.5g	1.8g

[0178]

A — 2

A - 3

A — 4

[0179]

A - 5

A - 6

20

【0180】(画像記録および評価)作製したインクセット101~107を実施例2と同様にして画像を記録した後、以下の評価を行った。評価結果を下記表10および下記表11に示す。

【0181】<印刷性能①評価>実施例2と同様にして、同様の基準で評価した。

<印刷性能②評価>実施例2と同様にして、同様の基準で評価した。

【0182】 <乾燥性評価>画像を印字した直後に、画像部を指で触れて、生じた汚れを目視にて評価した。

「〇」は汚れが発生しなかったことを示す。

<細線の滲み評価>イエロー、マゼンタ、シアンおよび ブラックの細線パターンを印字し、目視にて評価した。

「○」は滲みが確認されなかったことを示し、「△」は 若干の滲みが確認されたことを示す。 <耐水性評価>実施例2と同様にして、同様の基準で評価した。

【0183】<擦過性評価>画像印字後、30分間経時した画像について、消しゴムで擦って、画像部の濃度変化の有無を目視にて評価した。「A」は濃度変化が殆ど確認されない良好な結果を示し、「B」は濃度変化が確認された不良な結果を示す。

<紙依存性評価>実施例2と同様にして、同様の基準で評価した。

<耐光性評価>実施例2と同様にして、同様の基準で評30 価した。

<暗熱堅牢性評価>実施例2と同様にして、同様の基準で評価した。

[0184]

【表10】

インクセッ FNo.	印刷性能	印刷性能	乾燥性	概線の 滲み	耐水性	擦過性	紙依存性	備考
101	Α	Α	0	0	A	A	0	(本発明)
102	Α	A	0	0	A	A	0	(本発明)
103	A	Α	0	0	A	A	0	(本発明)
104	Α .	Α	0	0	A	A	0	(本発明)
105	Α	Α	0	0	A	A	0	(本発明)
106	Α	C.	0	0	A	A	0	(比较例)
107	Α	Α	0	Δ	C	A	×	(比較例)

[0185]

【表11】

インクセット		耐力	性性			暗魁	全年性		備考
No.	Y	М	ပ	BK	Y	М	C	BK	18142
101	A	Α.	Α	A	Α	A	A,	Α	(本発明)
102	A	Α	Α	A	Α	A	A	Α	(本発明)
103	A	A	А	A	A	A	A	Α	(本免明)
104	A	Α	Α	Α	Α	A	A	Α	(本発明)
105	A	A	Α	Α	A	A	Α	A	(本免明)
106	A	Α	A	Α	A	Α	Α	Α	(比較例)
107	4	С	Α	В	A	В	A	A	(比較例)

【0186】表10及び表11の結果から明らかなよう に、実施例のインクは、粒径が小さく、印字適性に優 れ、滲みが無く、発色性・色調に優れ、紙依存性がな く、耐水性、耐光性を有し、乾燥性、暗熱堅牢性、擦過 性にも優れていた。

[0187]

【発明の効果】本発明によれば、着色微粒子の粒径が小 さく、かつ、分散安定性に優れ、紙依存性が少なく、任 意に選択した紙に印字した際の発色性・色調に優れ、か つ、耐水性、耐光性にも優れ、筆記用水性インク、水性 20 印刷インク、情報記録用インク等に好適な着色微粒子分 散物を提供することができる。また、本発明によれば、 サーマル、圧電、電界または音響インクジェット方式に 好適であり、ノズル等を用いて印字等を行った際、前記 ノズル先端における目詰まりの発生が少なく、紙依存性 が少なく、任意に選択した紙に印字した際の発色性・色 調に優れ、かつ、耐水性、耐光性にも優れるインクジェ ット記録用インクおよびインクジェット記録方法を提供 することができる。

フロントページの続き

(51) Int. Cl. ⁷		識別記号	FΙ		テーマコード(参考)
C 0 8 L	53/00		C 0 9 B	55/00	Α
C 0 9 B	55/00			67/20	L .
	67/20			67/46	Α
	67/46		B 4 1 I	3/04	1 0 1 Y

Fターム(参考) 2C056 EA13 FC01

2H086 BA52 BA53 BA56 BA59 BA60 4F070 AA29 AA32 AB08 AC45 AC50 AC65 AC66 AE04 CB03 CB13

4J002 BP001 BP031 EU166 EV216 EV286 FD096 GH00 HA07

4J039 AD01 AD06 AD10 AD12 AD13 AD14 BC03 BC05 BC07 BC31

BC33 BC50 BC51 BC52 BC54 BC55 BC65 BE07 BE12 CA06

EA21 EA35 EA38 EA41 EA44 GA24 GA26 GA27 GA28

40