

CURSO:	ENGENHARIAS	PROFESSOR:	Fábio Macêdo Mendes
DISCIPLINA:	Métodos Numéricos p/ Eng.	SEMESTRE/ANO:	02/2017
C HORÁRIA:	60 h	CRÉDITOS:	04

PLANO DE ENSINO

1. OBJETIVOS DA DISCIPLINA

Capacitar os alunos para utilizar e compreender os conceitos básicos de programação científica e familiarizar o aluno com algoritmos para solução numérica de problemas nas áreas de álgebra linear e cálculo.

2. EMENTA DO PROGRAMA

- 1. Zeros reais de funções reais
- 2. Minimização de funções
- 3. Interpolação
- 4. Ajuste de curvas
- 5. Resolução de sistemas lineares
- 6. Integração numérica
- 7. Soluções numéricas de EDO
- 8. Método das diferenças finitas
- 9. Fontes de erros em métodos numéricos

3. HORÁRIO DAS AULAS, AVALIAÇÕES E ATENDIMENTO

Aulas teóricas e de exercícios: quartas e sextas-feiras

Atendimento e monitoria: a definir.

4. METODOLOGIA

O método básico aplicado é o de aulas práticas em laboratório de computação voltadas à implementação de programas. As aulas podem conter partes expositivas orientadas à discussão da teoria. As aulas serão complementadas com atividades de exercícios e demandas extra-classe. Estas atividades serão desenvolvidas com acompanhamento presencial do professor ou através das Plataformas *Moodle* (http://www.aprender.unb.br) e *Codeschool* (http://codeschool.lappis.rocks). O material produzido em sala e outros arquivos auxiliares ficarão disponíveis no Github da turma (https://github.com/fabiommendes/numericos-pub).

5. CRITÉRIOS DE AVALIAÇÃO

Pontos e estrelas

A menção final é calculada a partir dos *pontos* e *estrelas* atribuídos a cada aluno ao longo do curso. O pontos consistem na parte obrigatória da avaliação e são distribuídos em um total de até 100 pontos. O aluno que obter a pontuação completa do curso é aprovado com a menção máxima. A conversão pontuação e menção é feita da forma usual: 90pts+: **SS**, 70pts+: **MS**, 50pts+: **MM**, 30pts+: **MI** e menos que isto **II**.

A distribuição de pontos nas diferentes avaliações é dada pela equação:

$$P_{final} = P_1 + P_2 + MT + MCS$$
,

onde P1 e P2 consistem na nota das provas 1 e 2, valendo 35 pontos cada. MT consiste na média dos testes ministrados em sala de aula. Estes testes não possuem data pré-definida para ocorrer e normalmente consistem em um único exercício aplicado ao fim da aula. MT possui um peso de 20 pontos e consiste na média simples das notas de todos os testes excluindo a menor nota ou uma falta. Finalmente, MCS consiste na média da avaliação dos exercícios extra-classe aplicados na plataforma *Codeschool* e vale 10 pontos no total.

As estrelas são coletadas em atividades optativas e podem ser convertidas em "vantagens especiais" ou em pontos no final do curso. As vantagens conferidas por estrelas podem ajudar o aluno a melhorar sua nota e serão descritos com mais cuidado no Moodle da disciplina (ex: abonar uma falta, direito a fazer a prova substitutiva para melhorar a nota, etc). No final do curso, o aluno pode trocar as estrelas que estão sobrando por pontos adicionais utilizando a seguinte regra:

$$P'_{final} = NE + \frac{100 - NE}{100} P_{final}$$

onde NE consiste no número de estrelas (até um valor máximo de 100) e $P_{\it final}$ consiste na nota calculada sem considerar o uso de estrelas. Estrelas sempre aumentam a nota final e garantem uma pontuação mínima NE independente da nota obtida nas provas e trabalhos.

6. PROVA SUBSTITUTIVA E FALTAS

A prova substitutiva será aplicada apenas em caso de falta justificada no dia da prova. O aluno deve apresentar a justificativa na aula seguinte à prova ou quando terminar a licença médica. Esta justificativa **não** abona falta, mas dá direito ao aluno realizar a prova substitutiva sem nenhuma penalidade.

O aluno pode faltar até 7 vezes em um semestre. É possível abonar utilizando estrelas, onde cada 7 estrelas abona uma falta. Faltas com justificativa médica **não** serão abonadas.

7. CÓDIGO DE ÉTICA E CONDUTA

As avaliações serão realizadas com auxílio do computador no laboratório de informática. Todas as submissões serão processadas por um programa de detecção de plágio. Qualquer atividade onde for detectada a presença de plágio será anulada sem a possibilidade de substituição. Não será feita qualquer distinção entre o aluno que forneceu a resposta para cópia e o aluno que obteve a mesma.

A análise de plágio será feita inicialmente apenas nas provas. O aluno que se envolver em plágio em uma das provas poderá ter todas as outras atividades analisadas.

8. CRONOGRAMA DE ATIVIDADES

Semana	Dia	Aula
1	8/3/2017	Início das aulas – Apresentação do curso
	10/3/2017	Introdução ao Python científico

Semana	Dia	Aula
	15/3/2017	Zero de funções
		O que são zeros de funçõesMétodo da bisseção
		Aplicações
2	17/3/2017	Zeros de funções
		 Método da posição falsa
		Método do ponto fixoMétodo de Newton Raphson
		Método da secante
	22/3/2017	Mínimo de funções
		Método da razão áureaDescida de gradiente
		Método de Newton
3	29/3/2017	Mínimo de funções de várias variáveis (scipy)
		Descrida de gradiente Describillaire describente
		Downhill simplexMonte-Carlo
	5/4/2017	Interpolação
		• Interpolação linear
		Interpolação quadráticaFormas de Lagrange e Newton
4	7/4/2017	Splines
	77 17 20 17	Splines vs. Interpolantes
		Splines polinomiaisSpline cúbica
	12/4/2017	Ajuste de curvas
	12/4/2017	Ajuste de curvas Ajuste por retas
5		Quadrados mínimos
	14/4/2017	Feriado – Paixão de Cristo
6	19/4/2017	Quadrados mínimos em modelos arbitrários
	21/4/2017	Feriado - Tiradentes
7	26/4/2017	Revisão
	28/4/2017	Prova I
	1/5/2017	Feriado – Dia do trabalhador
	3/5/2017	Resolução Prova I
8	5/5/2017	Resolução de sistemas lineares • Regra de Cramer
		 Método da eliminação de Gauss
		Método de Jordan
	10/5/2017	Formas matriciais especiais • Fatoração LU
		Matriz inversa
9	12/5/2017	Métodos iterativos
		Método de Gauss-Jacobi
	15/5/2015	Método de Gauss-Seidel
	17/5/2017	Comparação de performance • Ordem de complexidade
10		Sistemas de alta dimensionalidade
	19/5/2017	Integração numérica

Semana	Dia	Aula
		 Particionamento do intervalo de integração Quadraturas Regra dos trapézios Regra de Simpson
	0.4/5/0.017	
11	24/5/2017	 Regras avançadas de integração numérica Método de Newton Cotes fechado e aberto Quadratura Gaussiana
	26/5/2017	Erro de regras de quadratura • Expansão por série de Taylor • Funções descontínuas e não suaves
	31/5/2017	Soluções numéricas de EDO Método de Euler Método de Heun
12	2/6/2017	Métodos Runge-Kutta
13	7/6/2017	Sistemas de EDO • Sistemas acoplados • Redução de equações de segunda ordem
	9/6/2017	Aplicações a sistemas físicos
14	14/6/2017	 Método das diferenças finitas Operadores de diferenças finitas de 1ª e 2ª ordem Equação de diferenças Grade de solução Resolução por sistema triagonal
	16/6/2017	Ponto facultativo – Semana santa
15	21/6/2017	Fontes de erros
	23/6/2017	Revisão
16	28/6/2017	Prova II
10	30/6/2017	Revisão de prova
17	5/7/2017	Prova substitutiva
	7/7/2017	

Obs.: O cronograma está sujeito a alterações.

9. BIBLIOGRAFIA

BÁSICA:

RUGGIERO, Márcia A. Gomes; **LOPES**, Vera Lúcia Da Rocha. *Cálculo Numérico: Aspectos Teóricos E Computacionais*. 2. Ed. São Paulo: Pearson Education, 2005. 406 P. Isbn 8534602042.

FRANCO, Neide Maria Bertoldi. Cálculo Numérico. Prentice-Hall Isbn 978857605087

COMPLEMENTAR:

MENEZES, Nillo N. C. Introdução à programação com Python, Novatec, 2010

(eBrary) **VINE**, Michael. *C Programming for the Absolute Beginner*, 2. ed, Ed. Boston MA, USA Course Technology, 2007.

(eBrary) **IYENGAR**, S.R.K; Jain, R.K., *Numerical Methods*, New Age International 2009, 326 Pág, Lc Call No.: Qa297 -- .194 2009eb Isbn: 9788122427073