ЗВІТ З ЛАБОРАТОРНОЇ РОБОТИ №1 «КЛАСТЕРИЗАЦІЯ З ВІДОМОЮ КІЛЬКІСТЮ КЛАСТЕРІВ»

частина 2

Ломако О., 2 к. маг, «статистика», варіант 9

В другій частині першої лабораторної роботи необхідно було самому обрати дані для кластеризації. Цікавою, на мою думку, виявилась ідея, спробувати провести кластерний аналіз для деяких соціально-політичних даних країн світу.

Але, це виявилось не так просто: знайти актуальний датасет з поважною кількістю змінних не вдавалося можливим (а якщо і так, це була платна функція). Тому я вирішив зібрати датасет вручну. На жаль, в адекватному обсязі вдалося зібрати дані для 143 країн світу по наступним показникам:

- access to electricity доступність населення до електроенергії (у %);
- birth rate показник народжуваності;
- death rate показник смертності;
- *gdp per capita* ВВП на душу населення;
- urbanization rate рівень урбанізації (тобто % міського населення);
- *unemployment* показник безробіття;
- pop density показник щільності населення;
- *agricultural land* відсоток земель, що використовуються для ведення с/г.

На жаль, лише по цим даним вдалося зібрати якнайповнішу картину по більшій частині країн світу. Метою роботи ϵ задоволення власної цікавості: за якою ознакою будуть класифіковані країни (рівень розвитку, форма правління, тип економіки...?)

Спершу, підключимо всі бібліотеки, зчитаємо дані, і підготуємо їх до аналізу.

```
> library(readxl) # підключимо бібліотеки
> library(factoextra)
> library(cCA)
> library(rgl)
> library(cluster)
> library(fossil)
>
> # зчитаємо і підготуємо дані
> data <- read_excel('data.xlsx')
>
> data <- as.data.frame(data)
>
> countries <- as.vector(t(data[,1]))
> row.names(data) <- countries
> data <- data[,-1]</pre>
```

На жаль, при першій спробі виконання даної роботи була допущена груба помилка: у нас всі одиниці, крім ВВП на душу населення, вимірюються у відсотках (тобто, можуть набувати значення від 1 до 100), або є результатом

якогось відношення (як-от показник щільності населення). В цілому, демографічні показники (за певними винятками, як-от Монако і їхня щільність населення) є достатньо невеликими числами, в той час як ВВП на душу населення в цих даних вимірюється в млрд доларів США, і легко може набувати значень і більше 1 000.

Тому, перед роботою з такими даними, спершу варто їх відцентрувати і пронормувати. Проробимо це наступним чином:

$$y_j = \frac{X_j - \overline{X}}{\sqrt{S}}$$
, де $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

де (X - досліджувана величина, <math>y - відповідна їй нормована)

```
> values <- data.frame(row.names = c('mean','var'))
> data_mod <- matrix(nrow = 143, ncol = 7)
> for(i in 1:7){
+    values[1,i] <- mean(as.numeric(unlist(data[,i])))
+    values[2,i] <- sqrt(var(as.numeric(unlist(data[,i])))*18/17)
+ }
> for(i in 1:7){
+    for(j in 1:143){
+        data_mod[j,i] <- as.numeric((as.numeric(unlist(data[j,i])) - values[1,i]))/(values[2,i]))
+    }
+ }
> row.names(data_mod) <- row.names(data)
> colnames(data_mod) <- colnames(data)
> data_mod <- as.data.frame(data_mod)
> data <- data_mod</pre>
```

Побудуємо діаграму внутрішньогрупової суми квадратів.

```
> # побудуємо діаграму внутрішньогрупової суми квадратів
> fviz_nbclust(data, kmeans, method = "wss",k.max = 20)
```


Здається, злам відбувається при k = 4 або k = 7.

Тепер побудуємо діаграму середніх силуетів.

```
> # діаграма середніх силуетів
> fviz_nbclust(data, kmeans, method = "silhouette",k.max = 20)
```


Тут помітні максимуми при k = 2, 4, 9.

Спершу застосуємо метод центроїдів. Спробуємо k = 2. Одразу від себе скажу, що на мою думку, це не зовсім доцільно ділити 100+ країн світу лише на 2 групи, все набагато складніше.

```
> km.res2 <- kmeans(data, 2, nstart = 25)
> km.res2$betweenss/km.res2$tot.withinss # відношення міжкластерної суми квад ратів до внутрішньокластерної
[1] 0.2947633
```

Тут можемо бачити, що внутрішньокластерна сума квадратів ϵ навіть більшою за міжкластерну, а отже, на мою думку, ця кластеризація ϵ зовсім невдалою.

Спробуємо далі k=4.

```
> km.res4 <- kmeans(data, 4, nstart = 25)
> km.res4$betweenss/km.res4$tot.withinss # відношення міжкластерної суми квад
ратів до внутрішньокластерної
[1] 0.929981
```

I знову у нас внутрішньокластерна сума квадратів більша за міжкластерну, а отже сподіватись на те, що тут виділяється якась структура даних не варто.

Про це і свідчитиме діаграма розсіювання, наприклад, перших двох змінних.

```
> plot(data[,1], data[,2], col = col[km.res3$cluster]) # діаграма розсіювання
1 і 2 змінної з кластеризацією
```


Тепер спробуємо k = 7.

```
> km.res7 <- kmeans(data, 7, nstart = 25)
> km.res7$betweenss/km.res7$tot.withinss # відношення міжкластерної суми квад
paтів до внутрішньокластерної
[1] 1.862899
> plot(data[,1], data[,2], col = col[km.res7$cluster]) # діаграма розсіювання
1 і 2 змінної з кластеризацією
```

Тут вже внутрішньокластерна сума квадратів буде в трохи менше ніж в 2 рази меншою за міжкластерну, тому якась надія на виділення певної структури даних присутня.

Різні розфарбування розташовані не зовсім впорядковано: зелені точки розкидані абсолютно по всій діаграмі. Спробуємо побудувати діаграму розсіювання у просторі перших двох головних компонент.

> # діаграма розсіювання даних у просторі перших двох головних компонент > plot(princomp(data)\$scores[,1:2],col=col[km.res7\$cluster],cex=1)

Тут в певній мірі прослідковується вже певна структура, і дійсно, в певній мірі таке розбиття має місце бути. Але, тут в певній області знизу серед фіолетових розкидані як сині, так і зелені точки.

Тепер побудуємо діаграму розсіювання у просторі перших двох канонічних компонент.

```
> cl7 <- km.res7$cluster
> k <- length(levels(as.factor(cl7)))
> C <- matrix(data = as.numeric(rep(cl7, k) == rep(1:k, each = n)), ncol = k,
nrow = n)
> cc_res7 <- rcc(data,C,0.1,0.1)
> # діаграма розсіювання перших двох канонічних компонент
> plot(cc_res7$scores$xscores[,1:2], col = col[cl7], cex=1)
```


Знову ж таки: серед фіолетових точок присутні як зелені, так і сині, і, здається, навіть червона ϵ . Тому, на мою думку, доцільно розглянути більшу кількість кластерів.

Спробуємо k = 9.

```
> km.res9 <- kmeans(data, 9, nstart = 25)
> km.res9$betweenss/km.res9$tot.withinss # відношення міжкластерної суми квад ратів до внутрішньокластерної
[1] 2.439546
```

Тепер маємо те, що внутрішньокластерна сума квадратів майже в 2.5 рази менша за міжкластерну, тому можемо сподіватись на ще більшу виділеність певної структури даних.

> plot(data[,1], data[,2], col = col[km.res9\$cluster]) # діаграма розсіювання 1 і 2 змінної з кластеризацією

Знову ж таки на перших двох змінних діаграма розсіювання не виглядає дуже гарно. Але, можливо, я забагато вимагаю від перших двох змінних (доступність до електроенергії і показник народжуваності), цілком може бути, що природа цих даних така, що зумовлює таку несприятливу ілюстрацію.

Подивимось на діаграму розсіювання у просторі перших двох головних компонент.

> # діаграма розсіювання даних у просторі перших двох головних компонент > plot(princomp(data)\$scores[,1:2],col=col[km.res9\$cluster],cex=1)

Тут аналогічна ситуація минулій: знову ж таки маємо фіолетові точки серед синіх, причому вони достатньо сильно перемішані. Виділити якусь структуру на тривимірній діаграмі також не вдалось можливим.

Тепер розглянемо метод медоїдів. Тут перебиратимемо серед k=2,4,9.

```
> pam.res2 <- pam(data, 2)
> plot(data[,1], data[,2], col = col[pam.res2$cluster]) # діаграма розсіюванн
я перших двох змінних з кластеризацією
```


Не дуже гарна, на мою думку, картина. Порівняємо з відповідною кластеризацією, отриманою методом центроїдів.

> rand.index(pam.res2\$clustering,km.res2\$cluster)
[1] 0.7476608

Отримали значення індексу Ренда в 74%, що значить, що кластеризації мають певні в собі відмінності.

Побудуємо для даної кластеризації діаграму розсіювання у просторі перших двох головних компонент.

> # діаграма розсіювання даних у просторі перших двох головних компонент > plot(princomp(data)\$scores[,1:2],col=col[pam.res2\$cluster],cex=1)

Точки розташовані щільно одна до одної, в певній мірі, тому, можливо, десь можна було би розбити на ще якусь групку кластерів, але на яку кількість вказати однозначно важко.

Тепер побудуємо діаграму розсіювання у просторі перших двох канонічних компонент.

```
> pcl2 <- pam.res2$cluster
> k <- length(levels(as.factor(pcl2)))
> C <- matrix(data = as.numeric(rep(pcl2, k) == rep(1:k, each = n)), ncol = k
, nrow = n)
> pcc_res2 <- rcc(data,C,0.1,0.1)
> # діаграма розсіювання перших двох канонічних компонент
> plot(cc_res2$scores$xscores[,1:2], col = col[cl2], cex=1)
```


Виглядає цікаво, але, здається, можна було би продовжити розбиття в деяких місцях і далі... Але це не точно.

Розглянемо k=4.

> pam.res4 <- pam(data, 4) > plot(data[,1], data[,2], col = col[pam.res4\$cluster]) # діаграма розсіюванн я перших двох змінних з кластеризацією

Тут можемо бачити що сині і чорні точки дуже сильно перемішані. Порівняємо з аналогічною кластеризацією, отриманою методом центроїдів.

> rand.index(pam.res4\$clustering,km.res4\$cluster)
[1] 0.7729735

Знову ж таки можемо бачити, що кластеризації відрізняються одна від одної, тому далі побудуємо діаграму розсіювання даних у просторі перших двох головних компонент.

> # діаграма розсіювання даних у просторі перших двох головних компонент > plot(princomp(data)\$scores[,1:2],col=col[pam.res4\$cluster],cex=1)

Виглядає, на мою думку, непогано. Має місце бути...

Тепер побудуємо діаграму розсіювання в просторі перших двох канонічних компонент.

```
> pcl4 <- pam.res4$cluster
> k <- length(levels(as.factor(pcl4)))
> C <- matrix(data = as.numeric(rep(pcl4, k) == rep(1:k, each = n)), ncol = k
, nrow = n)
> cc_res4 <- rcc(data,C,0.1,0.1)
> # діаграма розсіювання перших двох канонічних компонент
> plot(cc_res4$scores$xscores[,1:2], col = col[pcl4], cex=1)
```


Здається розбиття адекватним, але все таки чорні і сині точки явно перемішані по центру.

Далі розглянемо k = 9.

```
> pam.res9 <- pam(data, 9)
> plot(data[,1], data[,2], col = col[pam.res9$cluster]) # діаграма розсіюванн я перших двох змінних з кластеризацією
```


Тут можемо спостерігати, що червоні точки розміщені вздовж всієї діаграми, що точно не може свідчити на користь їх належності одному кластеру.

Спробуємо поглянути на діаграму розсіювання у просторі перших двох головних компонент.

> # діаграма розсіювання даних у просторі перших двох головних компонент > plot(princomp(data)\$scores[,1:2],col=col[pam.res9\$cluster],cex=1)

Тут можемо бачити, як серед чорних точок знаходяться коричневі (мабуть), а серед фіолетових — сині. Тому, на мою думку, кластеризація з такою кількістю не буде доцільною в даному випадку.

Отже, в якості фінального варіанту, виходячи з діаграм розсіювання у просторі головних і канонічних компонент, я би зупинився на кластеризації, отриманій методом медоїдів для k=4. Поглянемо на її результати.

> table(pam.res4\$clustering)

1 2 3 4 33 32 35 43

Бачимо, що дана кластеризація більш-менш рівномірно розбила країни на 4 групи. Подивимось уважніше на представників кожної з них.

<pre>> which(pam.res4\$clustering == 1)</pre>								
Afghanis1		Bangladesh	Cote d'Ivoire	Ghana	Gambia, The	India		
•	1 10	11	25	45	46	56		
Kazakhsi	an Kenya	Kyrgyz Republic	Cambodia	Liberia	Sri Lanka	Mali		
	65 66	67	68	72	74	83		
Mongo	ia Mauritania	. Malawi	Namibia	Niger	Nigeria	Nepal		
-	87 88	90	92	93	94	98		
Pakis1	an Rwanda	. Eswatini	Chad	Togo	Tajikistan	Timor-Leste		
	.01 113	122	124	125	127	128		
Tor	nga Uganda	Uzbekistan	zambia	zimbabwe				
1	LŽ9 133	137	142	143				

Отже, до так званої першої групи, згідно з даною кластеризацією, потрапили найменш розвинені країни світу (більшість з яких — представники Африки і Азії). Поки що виглядає адекватно.

Поглянемо на другу групу.

		2)	<pre>\$clustering ==</pre>	<pre>> which(pam.res</pre>
Belarus	nia and Herzegovina	Bulgaria Bos	Armenia	Albania
15	14	12	5	2
Spain	Germany	Czech Republic	Cyprus	Barbados
38	32	31	30	19
Hungary	Croatia	Greece	Georgia	Estonia
54	53	47	44	39
Moldova	Latvia	Lithuania	St. Lucia	Italy
79	77	75	73	61

North Macedonia	Montenegro	Poland	Puerto Rico	Portugal
82	86	105	106	107
Romania	Russian Federation	Serbia	Slovak Republic	Slovenia
111	112	118	119	120
Ukraine	South Africa			
134	141			

В цю групу потрапили країни, як можемо бачити, з перехідною (в більшості випадків) економікою (як-от Молдова, Україна чи Росія). Дивує потрапляння в цей же перелік таких країн, як Італія, Німеччина, Польща та країн Прибалтики. Вони все ж таки за рівнем економічного розвитку значно перевершують інших «сусідів по кластеризації».

> which(pam.re	s4\$clustering ==	: 3)		
United Arab Emirates		Australia 6	Austria 7	Belgium 9
Bahamas, The	Brunei Darussalam	Canada	Switzerland	Chile
13	20	21	22	23
Cuba	Denmark	Finland	France	United Kingdom
29	33	40	42	43
Guam 49	Hong Kong SAR, China	Ireland 57	Iceland	Israel 60
Japan	Korea, Rep.	Kuwait	Luxembourg	Malta
64	69	70	76	84
Netherlands	Norway	New Zealand	Qatar	Saudi Arabia
96	97	99	110	114
Singapore 115	San Marino 117	Sweden 121	Uruguay 135	United States

В третій групі можемо бачити країни ще більшого рівня розвитку, як-от США, Японія і Сінгапур. Але в той же час тут присутні Куба (країна планової економіки, взагалі кажучи), Аргентина (країна з високою інфляцією) чи Уругвай.

Поглянемо на останню групу.

>	which(pam.re	s4\$clustering	== 4)		
	Azerbaijan	Belize	Bolivia	Brazil	China
	8	16	17	18	24
	Colombia	Cabo Verde	Costa Rica	Dominican Republic	Algeria
	26	27	28	34	35
	Ecuador	Egypt, Arab Rep.	Fiji	Guatemala	Guyana
	36	37	41	48	50
	Honduras	Indonesia	Iraq	Jamaica	Jordan
	52	55	58	62	63
	Lao PDR	Morocco	Maldives	Mexico	Myanmar
	71	78	80	81	85
	Mauritius	Malaysia	Nicaragua	Oman	Panama
	89	91	95	100	102
	Peru	Philippines	Paraguay	West Bank and Gaza	El Salvador
	103	104	108	109	116
	Seychelles	Thailand	Trinidad and Tobago	Tunisia	Turkey
	123	126	130	131	132
	Vietnam	World	Samoa		
	138	139	140		

В четвертій групі можемо бачити багато острівних країн, а також країн Південної Америки. Також цікаво відмітити, що усереднені світові дані потрапили саме до цієї групки країн.

Отже, кластеризація для такого набору даних виявилась цілком цікавою, і незважаючи на те, що в даних була присутня значна доля демографічних показників, кластеризація частково, можна сказати, відбулася за географічною ознакою (в першій групі, наприклад, переважно Африка, а в четвертій – острівні країни і країни Латинської Америки). Проте в той же час, географічне розташування і зумовлює, історично, демографічні і соціально-економічні показники...