Module X: fastlink

Rebecca C. Steorts

Reading

- ▶ Binette and Steorts (2020)
- ▶ Others ??

Probabilistic Entity Resolution

While Fellegi and Sunter (1969) have provided a framework for probabilistic entity resolution, there are few implementations that scale to large size data sets.

fastlink

- ► Edmorando et al. (2020) developed fastlink a scalable implementation of the FS method.
- In addition, the authors incorporated auxiliary information such as population name frequency and migration rates.
- The authors used parallelization and hashing to merge millions of records in a near real-time on a laptop computer, and provided open-source software of their proposed methodology.

- ► Two data sets (A and B) with variables in common
- Agreement value in field a for record pair (i, j)

$$ho_{\mathsf{a}}(i,j) \ = \ \left\{ egin{array}{l} \mathsf{agree} \ \\ \mathsf{disagree} \end{array}
ight.$$

	First	Last	Age	Street		
Data set ${\cal A}$						
1	James	Smith	35	Devereux St.		
Data set ${\cal B}$						
7	James	Smit	43	Dvereux St.		
	agree	agree	disagree	agree		

	First	Last	Age	Street			
Da	Data set ${\cal A}$						
1	James	Smith	35	Devereux St.			
Da	Data set ${\cal B}$						
7	James	Smit	43	Dvereux St.			
	agree	agree	disagree	agree			

Agreement pattern $\gamma(i,j) = \{\gamma_1(i,j), \gamma_2(i,j), \dots, \gamma_K(i,j)\}$

- We observe agreement patterns $\gamma(i,j)$
- ▶ We do not observe the matching status

$$C_{i,j} = \begin{cases} \text{non-match} \\ \text{match} \end{cases}$$

fastlink Model

$$C(i,j) \stackrel{ ext{iid}}{\sim} \mathsf{Bernoulli}(\mu)$$
 $ho(i,j) \mid C(i,j) = \mathsf{non\text{-}match} \stackrel{ ext{iid}}{\sim} \mathcal{F}(\pi_{\mathsf{NM}})$
 $ho(i,j) \mid C(i,j) = \mathsf{match} \stackrel{ ext{iid}}{\sim} \mathcal{F}(\pi_{\mathsf{M}})$

Where λ , π_{M} , π_{NM} are estimated via the EM algorithm