TOTAL OFFICE STATE

B.M.S COLLEGE OF ENGINEERING, BANGALORE-19

Computer Science & Engineering

INTERNALS-2						
Course Code: 19CS4PCADA	Course Title : Analysis and Design of Algorithms					
Semester: 4	Maximum Marks: 40	Date: 31-05-2020				
Faculty Handling the Course:	Namratha M, Saritha A N, Anthara Roy Choudhury					

Instructions: Internal choice provided in Part C.

PART-A

Total 5 Marks (No Choice)

No.	Question							
1	Apply Master's theorem to solve the following recurrence relations:							
	(i) $T(n) = 4T(n/2) + n^2$ (ii) $T(n) = 9T(n/3) + n$ (iii) $T(n) = 2T(n/2) + n^2$							

PART-B

Total 15 Marks (No Choice)

No.	Question						Marks		
2 a)	Solve Knapsack Problem using Bottom-up Dynamic Programming (compute memoization table) for the following instance. Assume knapsack capacity as 10.						5		
		item	1	2	3	4	5		
		profit	30	20	40	70	60		
		weight	4	1	2	5	3		
2 b)		e following			_			olve the topological sorting problem for liate steps.	5

PART- C

Total 20 Marks

No.	Question	Marks					
3 a)	Given a fence with n posts and k colors, find out the number of ways of	10					
	painting the fence such that at most 2 adjacent posts have the same color.						
	Design an algorithm for the above scenario. Examples:						
	Input: $n = 2 k = 4$						
	Output: 16						
	We have 4 colors and 2 posts. Ways when both posts have same color: 4						
	Ways when both posts have diff color:						
	4*(choices for 1st post) * 3(choices for 2nd post) = 12						
	Input: $n = 3 k = 2$						
	Output: 6						
	OR						

Output: 2

Explanation: We can increase 4 by 1 so that it becomes 5 and decrease 6 by 1 so that it becomes 5. Hence minimum operation will be 2.