

Brain imaging, machine learning and imaging biomarkers

www.jussitohka.net

17th August 2017

Iussi Tohka

UEF // University of Eastern Finland

About me

Currently, Associate professor at AI Virtanen Institute, University of Eastern Finland 2015 – 2016, CONEX professor at Universidad Carlos III de Madrid, Spain 2009 – 2014, Academy research fellow, team leader, Tampere University of Technology

2005 – 2009, Senior researcher (Academy post-doc, Scientific coordinator of STATCORE research cluster of excellence) Tampere University of Technology 2004 – 2005, Post-doc, Laboratory of Neuro Imaging, UCLA, USA

1999 – 2003, PhD in signal processing, Tampere, including the first of several visits to Montreal Neurological Institute

Lecture plan

Session 1a brain imaging basics

Session 1b: Brain image analysis, or features from brain imaging

Session 2 a: Machine learning for brain imaging biomarkers (diagnosis, prognosis)

Session 2b: Small-sample considerations

Session 2c: Machine learning for image segmentation

UEF // University of Eastern Finland

Brain imaging basics

Prevalence and cost of brain disorders in Europe

DiLuca, Olesen 2014

The brain

- The human brain is enormously complex in its spatial organization with thousands of anatomically distinct subdivisions and in terms of complex connections between subdivisions
- Brain structure and function are characterized by individual variation from one subject to another and variation in a single individual over time.
- 3-D imaging is the only technique to directly study the brain structure and function in living humans

Brain research then and now

How self-rated humourness relates to brain activity? Jääskeläinen et al, Sci Rep 2016.

Brain imaging provides information about the structure and function of living brain

Most brain images are 3-dimensional

Magnetic resonance imaging

• The magnetic resonance image is a display of radio frequency signal intensities that are emitted by magnetized tissue during the imaging process.

http://www.sprawls.org/mripmt/ MRI01/index.html

Types of MR images

- Structural MRI measures different properties of brain tissue – typically not quantitative, good for differentiation of different tissue types
- Diffusion MRI measures how water molecules diffuse through body tissues – can be used to map connectivity
- Functional MRI (BOLD) measures changes in blood oxygeneation in different parts of the brain proxy for brain activity as neurons use more oxygen when they are active

Functional MRI

Positron emission tomography

PET can be used image various brain properties depending on the radiopharmaceutical (glucose consumption, dopamine receptor availability, Tau proteins, etc...)

Example: PET in very early Alzheimer's

PET measures of amyloid, of glucose metabolism, but also of astrocytosis change over time in very early Alzheimer's disease

Rodriguez-Vieitez et al *Brain* (2016)

Features from brain imaging – image analysis

ROI based analysis

- Brain can be divided into a number of specific brain regions
- Possible to study properties of these brain regions (volume, glucose consumption, etc..) and their relations to e.g. disease

http://www.thomaskoenig.ch/Lester/Files/Axial_Slice.jpg

Example: Hippocampal volume loss in Alzheimer's

Figure 6 The shrinking hippocampus

A curved structure nestled deep within the brain, the hippocampus (from the Greek word for seahorse) plays a major role in forming, storing, and processing memories. The hippocampus becomes somewhat smaller as a part of normal aging, as shown by the comparison between the hippocampus in a healthy 25-year-old and a healthy 75-year-old. But the structure diminishes in size even more in a person with Mild cognitive impairment and is markedly smaller than normal in a person with Alzheimer's disease.

However, hippocampal atrophy not specific to Alzheimer's

Criticism towards the ROI based analysis

- Specific to fixed ROIs
- ROIs are usually large
- Not well adapted to cortical structures
- Manual segmentation burdensome and prone to intra and inter rater variability
- However, a lot of progress has recently been made towards automatic segmentation (multiatlas strategies, patch based data processing, deep learning)

Stereotactic registration

• How to match the images of different subjects to each other?

Stereotactic registration/normalization

- Construct a template
- Find the spatial transformation that maximizes the similarity between template and the subject image
- Apply the transformation to the subject image

Stereotactic registration/normalization

Original

After stereotactic registration

UEF // University of Eastern Finland

Intermodality registration

Tohka, Brain imaging Encyclopedia, 2015

Voxel based analysis

UEF // University of Eastern Finland

Figure by Suz Prejawa

 Jugglers vs. non-jugglers – brain structure changes due to training (Draginsky et al Nature 2004)

Voxel based fMRI analysis

• http://fsl.fmrib.ox.ac.uk/fslcourse/lectures/feat2_part2.pdf

FMRI Group Analysis

Surface based analysis

Cortical thickness

UEF // University of Eastern Finland

WM/GM contrast ratio

• Lewis, Evans, Tohka, biorxiv 2017

Networks

Machine learning in brain imaging

Variable selection, variable importance, error estimation

Machine learning in brain imaging

- Many uses in brain imaging
 - Diagnosis/prognosis/biomarkers (I will concentrate on this)
 - Segmentation
 - Brain computer interfaces
 - Functional imaging data analysis (multivoxel pattern analysis, searchlights)

Changes in the brain precede visible symptoms of diseases

Early diagnosis possible using brain imaging

Example: Early diagnosis of Alzheimer's Disease

Moradi, Pepe, Gaser, Huttunen, Tohka, Neuroimage, 2015

Traditional data analysis in brain imaging do not support making predictions about indivuals

Normal controls

AD patients

Traditional data analysis - voxel based morphometry

Normal controls

Differences between two groups

Voxel-wise maps of statististical differences of the brain structure between the two groups

AD patients

UEF // University of Eastern Finland

Preprocessing in traditional data analysis is useful for predictions

Machine learning is used to make predictions at the individual level

 Finding the decision boundary is in most cases formulated as a cost function optimization

g(subject) = b₁*Feature1(subject) + b₂*Feature2(subject) + constant

If g(subject) > 0 then subject = patient If g(subject) < 0 then subject = control

Classifier training: find b1, b2, constant

Problem: Many more variables than subjects

MCI to AD conversion prediction algorithm: useful to combine imaging with other info

MRI-based, achieves cross-validated AUC of 0.76

- 1. Image preprocessing. Produces ~30K features representing voxel level gray matter density.
- 2. Age Confound Removal. Linear regression using **normal** subjects.
- 3. Feature selection using **normal** and **AD** subjects. Elastic-net (Zou, Hastie JRSS 2005) with re-iterated CV.
- 4. Classifier training. Low density separation (Chapelle AISTATS 2005)
- 5. Combining MRI with additional data via random forest (Breiman 2001)
- LDS-MRI feature, age, cognitive test results (RAVLT, FAQ, MMSE, ADAS)

Aggregate biomarker, achieves cross-validated AUC of 0.90

Machine learning is not limited to classification

Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease

Elaheh Moradi^{1a,h}, Ilona Hallikainen^b, Tuomo Hänninen^c, Jussi Tohka^{d,e,f}, Alzheimer's Disease Neuroimaging Initiative^g

Figure 2: The selection probability of voxels in the estimation RAVLT Immediate (A) and RAVLT Percent Forgetting (B) across 100 different 10-fold CV iterations. The images are displayed according to the neurological convention.

Small sample considerations: variable/feature selection

What to do ifP >> N?

Even linear classifiers not stable

Variable/feature selection: filters and wrappers

Kohavi and John Artif Intell 97

L

Regularization

- Many machine learning algorithms formulated as optimization problems
- These can be regularized

$\lambda = 0.001$ $\lambda = 0.01$ $\lambda = 0.1$

Regularization

The minimization

$$\min_{f} |Y_i - f(X_i)|^2$$

may be attained with zero errors. But the function may not be unique.

- Regularization

$$\min_{f \in H} \sum_{i=1}^{n} |Y_i - f(X_i)|^2 + \lambda ||f||_H^2$$

- Regularization with smoothness penalty is preferred for uniqueness and smoothness.
- Link with some RKHS norm and smoothness is discussed in Sec. IV.

II-26

Silde by Prof. Kenji Fukumizu

LASSO/elastic net for variable selection and classification

• Embedded variable selection: Minimize for joint classification/regression and feature selection:

 $D(\mathbf{b} | \mathbf{X}, \mathbf{y}) + \lambda(1-\alpha) \|\mathbf{b}\|_{1} + \lambda\alpha \|\mathbf{b}\|^{2}$

Data term that relates independent (predictor) variables **X** to dependent variables **y** via unknown parameters **b**.

Here: **X** is imaging data, **y** is whatever we wish to predict, and **b** is what we want to estimate.

An example: least squares regression

Penalties for unknown parameters: the first one favors sparse solutions and the second one shrinks the solutions

Friedmann et al JSS 2010, Zou and Hastie JRSS-B 2005 In brain imaging: Huttunen et al, MVAA 2013

Graphnet for variable selection and classification

• Embedded variable selection: Minimize for joint classification/regression and feature selection:

$$D(\mathbf{b}|\mathbf{X},\mathbf{y}) + \lambda(\alpha_1|\mathbf{b}|\mathbf{b}|\mathbf{a}_1 + \alpha_2|\mathbf{b}|\mathbf{b}|\mathbf{a}_2 + \alpha_3|\mathbf{b}|\mathbf{a}_2)$$

Data term that relates independent (predictor) variables **X** to dependent variables **y** via unknown parameters **b**.

Here: **X** is imaging data, **y** is whatever we wish to predict, and **b** is what we want to estimate.

An example: least squares regression

Penalties for unknown parameters: the first one favors sparse solutions and the second one shrinks the solutions and third one says that b-map should be smooth

Component analyses for feature extraction

- Principal component analysis (PCA): For this, a data projection technique that helps to get rid of unnecessary dimensions
- Also, independent component analysis (ICA), etc...

UEF // University of Eastern Finland

https://www.analyticsvidhya.com/blog/2016/03/practical-guide-principal-component-analysis-python/

Evaluation of machine learning algorithms is important: cross-validation

http://blog.goldenhelix.com/bchristensen/cross-validation-for-genomic-prediction-in-svs/

Cross validation and variable selection

• The test data should be kept in vault before the final evaluation

Cross-validation is easy to misuse

- Evaluation data has to be kept in the vault while selecting variables or other algorithm parameters
- Nested cross-validation
- Multiple cross-validation runs recommended

CV-based error estimates have large variance

Pattern Recognition Vol. 10, pp. 211-222.
Pergamon Press Ltd. 1978. Printed in Great Britain.
© Pattern Recognition Society.

0031-3203/78/0601-0211 \$02.00/0

ADDITIVE ESTIMATORS FOR PROBABILITIES OF CORRECT CLASSIFICATION*†

NED GLICK

Department of Mathematics and Department of Health Care and Epidemiology, University of British Columbia, Vancouver, B.C., Canada

(Received 6 July 1977; in revised form 17 November 1977; received for publication 3 January 1978)

What's wrong with CV when used correctly?

- Nothing if you have loads of subjects and unlimited computational facilities
- Otherwise: CV based error estimates tend to have (too) high variance and nested CV takes ages to compute
- **Take home message**: Don't trust machine learning results if N < 50
- Parametric error estimates can improve/speed up the model selection

Huttunen and Tohka, Pattern recognition, 2015 Huttunen, Manninen, Tohka, IEEE-MLSP-2013

Bayesian Error Estimate for Linear Classifiers

Assume that

- 1) The data is multivariate Gaussian
- 2) Model the prior of Gaussian parameters by inverse-Wishart distribution

Closed form expression for the MMS-estimate of the classification error:

These hyperparameters lead to a closed form solution [19]:

$$E[\varepsilon_c \mid \mathbf{X}, \mathbf{y}] = \frac{1}{2} + \frac{\operatorname{sign}(A_c(\lambda))}{2} I\left(\frac{A_c(\lambda)^2}{A_c(\lambda)^2 + \beta(\lambda)^T \mathbf{S}_c \beta(\lambda)}; \frac{1}{2}, \frac{N_c + 3}{2}\right),$$

where

$$A_c(\lambda) = -yg_{\lambda}(\mathbf{m}_c(\lambda))\sqrt{(0.5 + N_c)/(1.5 + N_c)}$$

and

$$\mathbf{m}_c(\lambda) = \frac{\hat{\boldsymbol{\mu}}_c(\lambda) N_c}{N_c + 0.5} \quad \text{and} \quad \mathbf{S}_c(\lambda) = (N_c - 1) \hat{\boldsymbol{\Sigma}}_c(\lambda) + \mathbf{I}_{N_c} + \frac{0.5 N_c}{N_c + 0.5} \hat{\boldsymbol{\mu}}_c \hat{\boldsymbol{\mu}}_c^T.$$

Code available (Matlab, Python): https://sites.google.com/site/bayesianerrorestimate/

Dalton and Dougherty IEEE-TSP 2011 Huttunen and Tohka, PR 2015

Is machine learning stable?

- What happens if we change the training subjects?
 - –Do we get the same accuracy?
 - -Do we get similar models?

Is machine learning stable?

- What happens if we change the training subjects?
 - Do we get the same accuracy?Approximately
 - Do we get similar models? No, but BEE helps

Feature selection instability: sign consistency bagging could be the answer

Verdejo-Gomez, Parrado, Tohka, 2016, 2017

Conclusions: Why machine learning?

- Close to actual applications (learn from group, apply to individual)
- Non-trivially integrate other kinds of data to neuroimaging data
- Data-driven, no alpha thresholds
- Multivariate

Conclusions: Take home messages

- Advanced machine learning methods adapted to imaging data exist, but little validation has been done
- Combining imaging data to behavioural data likely to be necessary for translational potential

Patch-based segmentation

• Salman Al-Shaikhli, et al *Biomedical Engineering / Biomedizinische Technik*, 61(4), pp. 413-429, 2015.

Patch-based segmentation

- Main interest: the segmentation of anatomical MRI
- Patch based segmentation not very popular until recently because
 - Typical MRI not quantitative, exact tissue intensities vary between subjects and (especially) between machines
 - In MRI high level spatial context important
- Label probagation and multi atlas label probagation widely used
- Good results from patch-based segmentation with expert priors (Coupe et al 2011, Rousset et al 2011); Mix of patch based segmentation and multiatlas label probagation; Preprocessing with clustering based segmentation
 - Not very robust to gross pathologies

Patch-based deep learning with spatial context

- DeepNAT: Wachinger et al 2016
- 23 x 23 x 23 patches + spatial coordinates + conditional random field based pruning
- Very good results
- Not clear whether mainly due to DNN or clever spatial coordinate coding scheme or both

Machine learning for segmentation vs. imaging biomarkers

- Very different problems in terms of machine learning
- Biomarkers: Small number of samples and small to large dimensionality
- Segmentation: large number of samples (due to patch based processing) and large dimensionality