Lecture 03 Derivatives

Ryan McWay †

 $^{\dagger}Applied\ Economics,$ University of Minnesota

Mathematics Review Course, Summer 2023 University of Minnesota August 9th, 2023

LAST LECTURE REVIEW

- ► Set Theory:
 - ► Set Operators
 - ▶ De Morgan's Law
 - ► Cartesian Product
 - ► Convex Sets
 - ▶ Bounded & Compact Sets
- ► Topology:
 - ► Supremum and Infimum and Limits
 - ► Separating Hyperplane Theorem

2/50

REVIEW ASSIGNMENT

- 1. Problem Set 02 solutions are available on Github.
- 2. Any issues or problems **You** would like to discuss?

DAILY ICEBREAKER

- ► Attendance via prompt:
 - ► Name
 - ▶ Daily Icebreaker: You are a late night show host. Who is the first celebrity you would invite to interview?

Topic: Derivatives

5/50

MOTIVATION

- ► General background
 - ▶ Understanding a rate of change.
 - ▶ A core component of calculus alongside integration.
- ▶ Why do economists' care?
 - ▶ How we determine a marginal effect (e.g., coefficient of interest).
 - ► Heavily used throughout theory
- ► Application in this career
 - ► The main math tool you will use throughout the microeconomic theory (alongside optimization).

MOTIVATION

- General background
 - ▶ Understanding a rate of change.

Derimatimes

- ▶ A core component of calculus alongside integration.
- ▶ Why do economists' care?
 - ▶ How we determine a marginal effect (e.g., coefficient of interest).
 - ► Heavily used throughout theory.
- ► Application in this career
 - The main math tool you will use throughout the

MOTIVATION

- ► General background
 - ▶ Understanding a rate of change.
 - ► A core component of calculus alongside integration.
- ▶ Why do economists' care?
 - ▶ How we determine a marginal effect (e.g., coefficient of interest).
 - ► Heavily used throughout theory.
- ► Application in this career
 - ► The main math tool you will use throughout the microeconomic theory (alongside optimization).

OVERVIEW

- 1. Continutity & Differentiability
- 2. First Derivative
- 3. Second Derivative
- 4. Derivative Rules
- 5. Implicit Function
- 6. l'Hopital's Rule
- 7. Taylor Series Approximation
- 8. Mean Value Theorem
- 9. Critical Points

1. CONTINUITY AND DIFFERENTIABILITY

- ► Continuous: A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at point $p \in \mathbb{R} \iff \forall \varepsilon > 0 \exists \delta > 0: |x-p| < \delta \implies |f(x)-f(p)| < \varepsilon$.
 - ightharpoonup E.g., All x uniquely maps to f(x) at all x.
- ▶ Differentiable: A function f is differentiable at x if and only if (iff) a limit exists. The entire function is differentiable if it is differentiable for all points of $x \in \mathbb{R}$.
- ightharpoonup Differentiable \implies continuous.
- ightharpoonup Continuous \implies differentiable.
- $ightharpoonup C^1 = f'$ is continuously differentiable.
- $ightharpoonup C^2 = f''$ is twice continuously differentiable.

CONTINUITY

9/50

SLOPE CHANGE

- ▶ Increasing: $f'(x) > 0 \forall x \in [a, b]$.
- ▶ Decreasing: $f'(x) < 0 \forall x \in [a, b]$.
- ▶ Monotonically Increasing: $f'(x) \ge 0 \forall x \in \mathbb{R}$.
- ▶ Strictly Increasing: $f'(x) > 0 \forall x \in \mathbb{R}$.

CONTINUOUS BUT NOT DIFFERENTIABLE

- ► Sharp points.
- ► Edges.
- ▶ Jumps/holes.

2. Newton or Leibniz

2. FIRST DERIVATIVE

$$f'(x_0) \equiv \frac{df}{dx}(x_0) \equiv \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Relative Maximum

COMMON FIRST DERIVATIVES

- ightharpoonup Constant: a'=0
- ▶ Base Variable: $(x^a)' = ax^{a-1}$
- ▶ Base Constant: $(a^x)' = a^x ln(a)$
- ightharpoonup Exponent Variable: $(e^x)' = e^x$
- ► Logarithmic: $ln(x)' = \frac{1}{x}$

3. SECOND DERIVATIVE

$$f''(x_0) \equiv \frac{d}{dx} \left(\frac{df}{dx} \right) (x_0) \equiv \frac{d^2f}{dx^2} (x_0)$$

► Can be taken at higher orders, but rarely applied within first year coursework.

4. DERIVATIVE RULES

► Sum Rule

$$[f(x) \pm g(x)]' \equiv f'(x) \pm g'(x)$$

▶ Power Rule

$$[\alpha x^n]' \equiv n\alpha x^{n-1}$$

▶ Product Rule

$$[f(x)g(x)]' \equiv f'(x)g(x) + f(x)g'(x)$$

► Quotient Rule

$$\left[\frac{f(x)}{g(x)}\right]' \equiv \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

McWay

DEMONSTRATION: PRODUCT RULE

Question:

Find
$$\frac{df(x)}{dx}$$
 for $f(x) = (3x - 2x^2)(5 + 4x)$.

Answer:

Note the two functions. $f(x) = (3x - 2x^2)$ and g(x) = (5 + 4x)By the product rule:

$$f'(x) = (3x - 2x^2)(4) + (3 - 4x)(5 + 4x)$$
$$= -24x^2 + 4x + 15$$

DEMONSTRATION: PRODUCT RULE

Question:

Find
$$\frac{df(x)}{dx}$$
 for $f(x) = (3x - 2x^2)(5 + 4x)$.

Answer:

Note the two functions. $f(x) = (3x - 2x^2)$ and g(x) = (5 + 4x). By the product rule:

$$f'(x) = (3x - 2x^2)(4) + (3 - 4x)(5 + 4x)$$
$$= -24x^2 + 4x + 15$$

DEMONSTRATION: QUOTIENT RULE

Question:

Find
$$\frac{dh(z)}{dz}$$
 for $h(z) = \frac{4\sqrt{z}}{z^2 - 2}$.

Answer

Again, identify the two functions $f(z) = (4\sqrt{z})$ and $g(z) = (z^2 - 2)$. Then by the rule we have:

$$h'(z) = \frac{4(1/2)x^{\frac{-1}{2}}(x^2 - 2) - 4x^{\frac{1}{2}}(2x)}{(x^2 - 2)^2}$$
$$= \frac{-6x^{\frac{3}{2}} - 4x^{\frac{-1}{2}}}{(x^2 - 2)^2}$$

Note: Quotients can be done as products.

DEMONSTRATION: QUOTIENT RULE

Question:

Find
$$\frac{dh(z)}{dz}$$
 for $h(z) = \frac{4\sqrt{z}}{z^2-2}$.

Answer:

Again, identify the two functions $f(z) = (4\sqrt{z})$ and $g(z) = (z^2 - 2)$. Then by the rule we have:

$$h'(z) = \frac{4(1/2)x^{\frac{-1}{2}}(x^2 - 2) - 4x^{\frac{1}{2}}(2x)}{(x^2 - 2)^2}$$
$$= \frac{-6x^{\frac{3}{2}} - 4x^{\frac{-1}{2}}}{(x^2 - 2)^2}$$

Note: Quotients can be done as products.

4. Derivative Rules

- ► Inverse Rule
 - ▶ When f(x) is monotone, differentiable, $f'(x) \neq 0$, and $f^{-1}(x)$ is differentiable.

$$[f^{-1}(x)]' \equiv \frac{1}{f'(x)}$$

► Chain Rule

$$\frac{d}{dx}h(g(x)) \equiv h'(g(x))g'(x)$$

DEMONSTRATION: CHAIN RULE

Question:

Find
$$\frac{df(x)}{dx}$$
 for $g(x) = ln(x^{-4} + x^4)$.

Answer:

$$g'(x) = \frac{1}{x^{-4} + x^4} (-4x^{-5} + 4x^3) = \frac{-4x^{-5} + 4x^3}{x^{-4} + x^4}$$

DEMONSTRATION: CHAIN RULE

Question:

Find
$$\frac{df(x)}{dx}$$
 for $g(x) = ln(x^{-4} + x^4)$.

Answer:

$$g'(x) = \frac{1}{x^{-4} + x^4} (-4x^{-5} + 4x^3) = \frac{-4x^{-5} + 4x^3}{x^{-4} + x^4}$$

1.
$$f(x) = xe^{3x}$$

1.
$$f(x) = xe^{3x}$$

Answer: Show Work

$$f'(x) = (1+3x)x^{3x}$$

$$1. f(x) = xe^{3x}$$

2.
$$f(x) = ln(x^4 + 2)^2$$

1.
$$f(x) = xe^{3x}$$

2.
$$f(x) = ln(x^4 + 2)^2$$

Answer: \ Show Work

$$f'(x) = \frac{8x^3ln(x^4+2)}{x^4+2}$$

1.
$$f(x) = xe^{3x}$$

2.
$$f(x) = ln(x^4 + 2)^2$$

3.
$$f(x) = \left(\frac{x+4}{x-3}\right)^{2/3}$$

1.
$$f(x) = xe^{3x}$$

2.
$$f(x) = ln(x^4 + 2)^2$$

3.
$$f(x) = \left(\frac{x+4}{x-3}\right)^{2/3}$$

Answer: Show Work

$$f'(x) = \frac{-14}{3(x+4)^{1/3}(x-3)^{5/3}}$$

5. IMPLICIT FUNCTION

- ▶ Implicit Function Theorem requires invoking the Jacobian matrix for partial derivatives. This involves knowledge of matrices and multivariate calculus covered later in the course.
- ightharpoonup Sometimes y cannot be expressed as an explicit function of x.
- ▶ But we still can calculate $\frac{dy}{dx}$... implicitly.

Lecture Review

Review 200

DEMONSTRATION: IMPLICIT FUNCTIONS

Question:

Find
$$\frac{dy}{dx}$$
 for $y = 5x^2 - 9e^y$.

Ansther

$$\frac{dy}{dx}(y) = \frac{dy}{dx}5x^2 - \frac{dy}{dx}(9e^y)$$
$$\frac{dy}{dx} = 10x - (9e^y)\frac{dy}{dx}$$
$$\frac{dy}{dx}(1 + 9e^y) = 10x$$
$$\frac{dy}{dx} = \frac{10x}{1 + 9e^y}$$

DEMONSTRATION: IMPLICIT FUNCTIONS

Question:

Find
$$\frac{dy}{dx}$$
 for $y = 5x^2 - 9e^y$.

Answer:

$$\frac{dy}{dx}(y) = \frac{dy}{dx}5x^2 - \frac{dy}{dx}(9e^y)$$
$$\frac{dy}{dx} = 10x - (9e^y)\frac{dy}{dx}$$
$$\frac{dy}{dx}(1 + 9e^y) = 10x$$
$$\frac{dy}{dx} = \frac{10x}{1 + 9e^y}$$

PRACTICE: IMPLICIT FUNCTIONS

1. Find $\frac{dy}{dx}$ for $x^2y^3 - xy = 10$.

PRACTICE: IMPLICIT FUNCTIONS

1. Find
$$\frac{dy}{dx}$$
 for $x^2y^3 - xy = 10$.

Answer: Show Work

$$\frac{dy}{dx} = \frac{-2xy^3 + y}{3x^2y^2 - x}$$

- 1. Find $\frac{dy}{dx}$ for $x^2y^3 xy = 10$.
- 2. Find $\frac{dy}{dx}$ for $e^y + xy e = 0$.

- 1. Find $\frac{dy}{dx}$ for $x^2y^3 xy = 10$.
- 2. Find $\frac{dy}{dx}$ for $e^y + xy e = 0$.

Answer: Show Work

$$\frac{dy}{dx} = \frac{-y}{e^y + x}$$

- 1. Find $\frac{dy}{dx}$ for $x^2y^3 xy = 10$.
- 2. Find $\frac{dy}{dx}$ for $e^y + xy e = 0$.
- 3. Find $\frac{dy}{dx}$ for $\frac{xy+y^2}{x^2-xy} = 4y$

- 1. Find $\frac{dy}{dx}$ for $x^2y^3 xy = 10$.
- 2. Find $\frac{dy}{dx}$ for $e^y + xy e = 0$.
- 3. Find $\frac{dy}{dx}$ for $\frac{xy+y^2}{x^2-xy} = 4y$

Answer: Show Work

$$\frac{dy}{dx} = \frac{y(8x - 4y - 1)}{x + 2y - 4x^2 + 8xy}$$

6. L'HOPITAL'S RULE

- ► Consider you are taking a limit (derivative) with two functions in the numerator and denominator of a fraction, respectively.
- ► Applies when:

- ▶ Both f(x) and g(x) need to be differentiable over the interval $I: a \in I$.
- ▶ In both scenarios, we assume that the denominator does not equal 0 or ∞ .

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$$

APPLICATION: CONSTANT ELASTICITY OF SUBSTITUTION (CES)

To show that the CES $Y = A(\alpha K^{\gamma} + (1 - \alpha)L^{\gamma})^{\frac{1}{\gamma}}$ is a Cobb-Douglas function $Y = AK^{\alpha}L^{1-\alpha}$ when $\gamma \to 0$.

Proof.

First take the log of both sides.

$$ln(Y) = ln(A) + \frac{1}{\gamma}ln(\alpha K^{\gamma} + (1 - \alpha)L^{\gamma})$$

Then by l'Hopital's Rule,

APPLICATION: CONSTANT ELASTICITY OF SUBSTITUTION (CES)

Proof.

$$\lim_{\gamma \to 0} \frac{\ln(\alpha K^{\gamma} + (1 - \alpha)L^{\gamma})}{\gamma} = \lim_{\gamma \to 0} \frac{\frac{\dim(\alpha K^{\gamma} + (1 - \alpha)L^{\gamma})}{d\gamma}}{\frac{d\gamma}{d\gamma}}$$

$$= \frac{\alpha K^{\gamma} \ln(K) + (1 - \alpha)L^{\gamma} \ln(L)}{\alpha K^{\gamma} + (1 - \alpha)L^{\gamma}}$$

$$= \alpha \ln(K) + (1 - \alpha)\ln(L)$$

$$\therefore \lim_{\gamma \to 0} \ln(Y) = \ln(A) + \alpha \ln(K) + (1 - \alpha)\ln(L)$$

This is the Cobb-Douglas function.

► Taylor Series:

$$f(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^{2} + \cdots$$
$$= \sum_{k=0}^{n} \frac{f^{k}(a)}{k!} (x - a)^{k}$$

▶ Use Taylor Series to approximate with a remainder $R(\Delta x, x_0)$:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x + R(\Delta x, x_0)$$

$$R(\Delta x, x_0) = f(x_0 + \Delta x) - f(x_0) - f'(x_0) \Delta x$$

• We can approximate to the (k+1) order of derivatives.

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0) \Delta x + \frac{1}{2!} f''(x_0) (\Delta x)^2 + \dots$$

$$+ \frac{1}{k!} f^k(x_0) (\Delta x)^k + R_k(\Delta x, x_0)$$

$$R_k(\Delta x, x_0) = \frac{f^{(k+1)}(c^*)}{(k+1)!} (\Delta x)^{k+1} , c^* \in (x_0, x_0 + \Delta x)$$

$$\lim_{\Delta x \to 0} \frac{R_k(\Delta x, x_0)}{(\Delta x)^k} \to 0$$

$$\Delta y \approx dy = f'(x_0) \Delta x$$

TAYLOR SERIES EXPANSION IS THE WORST.

8. MEAN VALUE THEOREM

▶ Let $f: U \to \mathbb{R}$ be a C^1 function over the interval $U \subset \mathbb{R}$.

$$\forall a, b \in U \exists c : a \le c \le b : f'(c) = \frac{f(b) - f(a)}{b - a}$$

ROLLE'S THEOREM

- ► A special case of the mean value theorem.
- ▶ E.g., If a continuous curve passes through the same y-value twice, and has a unique tangent line (i.e., a derivative) for all points in the interval, **then** a tangent parallel to the x-axis (i.e., critical value) exists in the interval.

Rolles Theorem:

If a function f is continuous on the the interval [a,b] and differentiable on the interval (a,b) such that f(a)=f(b), then f'(x)=0 for some $x|a\leq x\leq b$.

ROLLE'S THEOREM

9. Critical Points

Weierstrass Theorem:

A continuous function $f(\cdot)$ over a closed and bounded interval [a,b] attains both a local maximum and minimum.

► Concave function:

$$\forall x, y \in I : f(y) - f(x) \le f'(x)(y-1) \lor f''(x) \le 0$$

► Convex function:

$$\forall x, y \in I : f(y) - f(x) \ge f'(x)(y-1) \lor f''(x) \ge 0$$

9. Convexity & Critical Points

- ightharpoonup Critical Points: Values of x where f'(x) = 0 or is undefined.
- ► Local Max/Min (over interval I): $x_0, x \in I : f(x_0) \ge (\le) f(x) \forall x$.
- ► Global Max/Min (over domain f): $x_0, x \in f : f(x_0) \ge (\le) f(x) \forall x$.

MAXIMUMS AND MINIMUMS

Question:

What are the critical values for $f(x) = x^4 + 3x^2 + 10$

Answer:

$$f'(x) = 4x^{3} + (3)(2)x$$
$$= 4x^{3} + 6x = 0$$
$$x^{*} = \{0\}$$

DEMONSTRATION: CRITICAL POINTS

Ouestion:

What are the critical values for $f(x) = x^4 + 3x^2 + 10$

Answer:

$$f'(x) = 4x^{3} + (3)(2)x$$
$$= 4x^{3} + 6x = 0$$
$$x^{*} = \{0\}$$

PRACTICE: CRITICAL POINTS

1. Critical points for $f(x) = 8x^3 + 81x^2 - 42x - 8$

1. Critical points for $f(x) = 8x^3 + 81x^2 - 42x - 8$

Answer: Show Work

$$x^* = \{-7, \frac{1}{4}\}$$

PRACTICE: CRITICAL POINTS

- 1. Critical points for $f(x) = 8x^3 + 81x^2 42x 8$
- 2. Critical points for $g(w) = 2w^3 7w^2 3w 2$

- 1. Critical points for $f(x) = 8x^3 + 81x^2 42x 8$
- 2. Critical points for $g(w) = 2w^3 7w^2 3w 2$

Answer: Show Work

$$w^* = \{\frac{7 \pm \sqrt{67}}{6}\}$$

PRACTICE: CRITICAL POINTS

- 1. Critical points for $f(x) = 8x^3 + 81x^2 42x 8$
- 2. Critical points for $g(w) = 2w^3 7w^2 3w 2$
- 3. Critical points for $r(y) = (y^2 6y)^{1/5}$

PRACTICE: CRITICAL POINTS

- 1. Critical points for $f(x) = 8x^3 + 81x^2 42x 8$
- 2. Critical points for $g(w) = 2w^3 7w^2 3w 2$
- 3. Critical points for $r(y) = (y^2 6y)^{1/5}$

Answer: \ Show Work

$$y^* = \{0, 3, 6\}$$

Review

48/50

REVIEW OF DERIVATIVES

- 1. Continutity & Differentiability
- 2. First Derivative
- 3. Second Derivative
- 4. Derivative Rules
- 5. Implicit Function
- 6. l'Hopital's Rule
- 7. Taylor Series Approximation
- 8. Mean Value Theorem
- 9. Critical Points

ASSIGNMENT

- ▶ Readings on Integration before Lecture 04:
 - ► S&B Ch. 2, 3, & 4
- ► Assignment:
 - ► Problem Set 03 (PS03)
 - ► Solution set will be available following end of Lecture 04
- ► Struggling?
 - 1. Read the 'Encouraged Reading'
 - 2. Review 'Supplementary material'
 - 3. Reach out directly

DERIVATIVE QUESTION 1 ANSWER:

$$f'(x) = (1)x^{3x} + x(3e^{3x}) = (1+3x)x^{3x}$$

DERIVATIVE QUESTION 2 ANSWER:

$$f'(x) = 2ln(x^4 + 2)\frac{1}{x^4 + 2}4x^3$$
$$= \frac{8x^3ln(x^4 + 2)}{x^4 + 2}$$

DERIVATIVE QUESTION 3 ANSWER:

◆ OUESTION

Two Notes: I treat the quotient using the product rule: $(x+4)(x-3)^{-1}$. And I am able to flip fractions to force exponents to be positive.

$$f'(x) = \frac{2}{3} \left(\frac{x+4}{x-3}\right)^{-1/3} ((1)(x-3)^{-1} + (x+4)(-1)(x-3)^{-2}(1)$$

$$= \frac{2}{3} \left(\frac{x+4}{x-3}\right)^{-1/3} \left(\frac{x-3-x-4}{(x-3)^2}\right)$$

$$= \frac{2}{3} \left(\frac{x-3}{x+4}\right)^{1/3} \left(\frac{-7}{(x-3)^2}\right)$$

$$= \frac{2}{3} \frac{1}{(x+4)^{1/3}} \frac{-7}{(x-3)^{5/3}}$$

$$= \frac{-14}{3(x+4)^{1/3}(x-3)^{5/3}}$$
Math Review 2023: Derivatives

Aug. 9th, 202

IMPLICIT FUNCTIONS QUESTION 1 ANSWER:

$$2xy^{3} + 3x^{2}y^{2}\frac{dy}{dx} - y - x\frac{dy}{dx} = 0$$

$$(2xy^{3} - y) + (3x^{2}y^{2} - x)\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-2xy^{3} + y}{3x^{2}y^{2} - x}$$

IMPLICIT FUNCTIONS QUESTION 2 ANSWER:

$$e^{y}\frac{dy}{dx} + y + x\frac{dy}{dx} - 0 = 0$$
$$y + (e^{y} + x)\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = \frac{-y}{e^{y} + x}$$

IMPLICIT FUNCTIONS QUESTION 3 ANSWER:

◆ QUESTION

$$\frac{dy}{dx}(xy + y^2 = 4x^2y - 4xy^2)$$

$$\frac{dy}{dx}(x + 2y - 4x^2 + 8xy) = 8xy - 4y^2 - y\frac{dy}{dx} = \frac{y(8x - 4y - 1)}{x + 2y - 4x^2 + 8xy}$$

Re-write $xy + y^2 = 4y(x^2 - xy)$

CRITICAL POINTS QUESTION 1 ANSWER:

$$f'(x) = 8(3)x + 81(2)x - 42$$
$$= 24x^{2} + 162x - 42 = 0$$
$$= 6(x+7)(4x-1) = 0$$
$$x^{*} = \{-7, \frac{1}{4}\}$$

CRITICAL POINTS QUESTION 2 ANSWER:

$$g'(w) = 2(3)w^{2} - 7(2)w - 3$$

$$= 6w^{2} - 14w - 3 = 0$$

$$\therefore \text{ Quad. Formula: } \frac{b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$w^{*} = \frac{14 \pm \sqrt{268}}{12}$$

$$w^{*} = \{\frac{7 \pm \sqrt{67}}{6}\}$$

CRITICAL POINTS QUESTION 3 ANSWER:

$$r'(y) = \frac{1}{5}(y^2 - 6y)^{-4/5}(2y - 6)$$

$$= \frac{2y - 6}{5(y^2 - 6y)^{\frac{4}{5}}}$$

$$\therefore \text{CV when } y = 0$$

$$\implies 2y - 6 = 0 \to y = 3$$

$$\implies y^2 - 6y = 0 \to y = \{0, 6\}$$

$$y^* = \{0, 3, 6\}$$