

Description

Image

Caption

1. Car rear light casing. © Chris Lefteri 2. PMMA chair. © Chris Lefteri

The material

When you think of PMMA, think transparency. Acrylic, or PMMA, is the thermoplastic that most closely resembles glass in transparency and resistance to weathering. The material has a long history: discovered in 1872, first commercialized in 1933, its first major application was as cockpit canopies for fighter aircraft during the second World War

Composition (summary)

(CH3-CH2-C-CO-OCH3)n

Genera	I properties

Thermal expansion coefficient

Density	72.4	-	76.2	lb/ft^3
Price	* 1.21	-	1.34	USD/lb
Date first used	1933			
Mechanical properties				
Young's modulus	0.325	-	0.551	10^6 psi
Shear modulus	0.116	-	0.198	10^6 psi
Bulk modulus	0.609	-	0.638	10^6 psi
Poisson's ratio	0.384	-	0.403	
Yield strength (elastic limit)	7.8	-	10.5	ksi
Tensile strength	7.01	-	11.5	ksi
Compressive strength	10.5	-	19	ksi
Elongation	2	-	10	% strain
Hardness - Vickers	16.1	-	21.9	HV
Fatigue strength at 10^7 cycles	* 2.2	-	4.74	ksi
Fracture toughness	0.637	-	1.46	ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 0.0105	-	0.0179	
Thermal properties				
Glass temperature	185	-	329	°F
Maximum service temperature	107	-	134	°F
Minimum service temperature	-190	-	-99.7	°F
Thermal conductor or insulator?	Good ins	ulat	or	
Thermal conductivity	0.0484	-	0.145	BTU.ft/h.ft^2.F
Specific heat capacity	0.355	-	0.384	BTU/lb.°F

0.05

5

0.06

40 90 ustrain/°F

Electrical properties

Dissipation factor (dielectric loss tangent)

Electrical conductor or insulator? Good insulator Electrical resistivity 3.3e23 3e24 µohm.cm Dielectric constant (relative permittivity) 3.2 3.4

Dielectric strength (dielectric breakdown) 399 V/mil 551

Optical properties

Transparency Optical Quality Refractive index 1.49 1.56

Processability

Castability 3 5 Moldability 4 5 Machinability 3 4

Weldability

Durability: water and aqueous solutions

Water (fresh) Excellent Water (salt) Excellent Soils, acidic (peat) Excellent Soils, alkaline (clay) Excellent Excellent

Wine

Durability: acids

Acetic acid (10%) Excellent Acetic acid (glacial) Unacceptable Citric acid (10%) Excellent Hydrochloric acid (10%) Excellent Hydrochloric acid (36%) Excellent Hydrofluoric acid (40%) Unacceptable Nitric acid (10%) Excellent Nitric acid (70%) Unacceptable Phosphoric acid (10%) Limited use

Phosphoric acid (85%) Unacceptable Sulfuric acid (10%) Unacceptable Sulfuric acid (70%) Unacceptable

Durability: alkalis

Sodium hydroxide (10%) Excellent Sodium hydroxide (60%) Excellent

Durability: fuels, oils and solvents

Amyl acetate Unacceptable Benzene Unacceptable Carbon tetrachloride Limited use Chloroform Unacceptable Crude oil Acceptable Diesel oil Excellent Excellent Lubricating oil

Paraffin oil (kerosene) Acceptable Petrol (gasoline) Excellent Silicone fluids Limited use

Polymethyl methacrylate (Acrylic, PMMA)

Toluene Unacceptable
Turpentine Unacceptable
Vegetable oils (general) Excellent
White spirit Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde Unacceptable
Acetone Unacceptable
Ethyl alcohol (ethanol) Limited use
Ethylene glycol Limited use
Formaldehyde (40%) Excellent
Glycerol Excellent
Methyl alcohol (methanol) Unacceptable

Durability: halogens and gases

Chlorine gas (dry)

Fluorine (gas)

O2 (oxygen gas)

Sulfur dioxide (gas)

Limited use
Unacceptable
Unacceptable
Excellent

Durability: built environments

Industrial atmosphereAcceptableRural atmosphereExcellentMarine atmosphereExcellentUV radiation (sunlight)Good

Durability: flammability

Flammability Highly flammable

Durability: thermal environments

Tolerance to cryogenic temperatures

Tolerance up to 150 C (302 F)

Tolerance up to 250 C (482 F)

Tolerance up to 450 C (842 F)

Tolerance up to 850 C (1562 F)

Tolerance above 850 C (1562 F)

Unacceptable
Unacceptable
Unacceptable
Unacceptable

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 1.15e4	-	1.28e4	kcal/lb
CO2 footprint, primary production	* 6.46	-	7.14	lb/lb
Water usage	* 8.66	-	9.57	gal(US)/lb
Eco-indicator 99	506			millipoints/kg

Material processing: energy

Polymer extrusion energy	* 626	-	692	kcal/lb
Polymer molding energy	* 1.91e3	-	2.1e3	kcal/lb
Coarse machining energy (per unit wt removed)	* 133	-	147	kcal/lb
Fine machining energy (per unit wt removed)	* 874	-	966	kcal/lb
Grinding energy (per unit wt removed)	* 1.7e3	-	1.87e3	kcal/lb

Material processing: CO2 footprint

Polymer extrusion CO2	* 0.434	-	0.479	lb/lb
Polymer molding CO2	* 1.32	-	1.46	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.0926	-	0.102	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.605	-	0.669	lb/lb

Polymethyl methacrylate (Acrylic, PMMA)

Grinding CO2 (per unit wt removed)

* 1.18 - 1.3

lb/lb

Material recycling: energy, CO2 and recycle fraction

Recycle
Embodied energy, recycling
CO2 footprint, recycling

Recycle fraction in current supply

Downcycle

Combust for energy recovery Heat of combustion (net)

Combustion CO2

Landfill

Biodegrade

Toxicity rating

A renewable resource?

Environmental notes

Acrylics are non-toxic and recyclable.

Recycle mark

* 4.15e3 - 4.58e3 kcal/lb * 3.01 - 3.32 lb/lb * 0.5 - 1 %

1

* 2.8e3 - 2.94e3 kcal/lb * 2.15 - 2.25 lb/lb

×

Non-toxic

×

Supporting information

Design guidelines

Acrylic, PMMA, is hard and stiff as polymers go, easy to polish but sensitive to stress concentrations. It shares with glass a certain fragility, something that can be overcome by blending with acrylic rubber to give a high-impact alloy (HIPMMA). PVC can be blended with PMMA to give tough, durable sheets. Acrylic is available as a sheet, rod or tube and can be shaped by casting or extrusion. Cell casting uses plates of glass and gasketing for a mold; it allows clear and colored panels up to 4 inches thick to be cast. Extrusion pushes melted polymer pellets through a die to give a wide variety of shapes, up to 0.25 inches thick for sheet. Clear and colored PMMA sheet lends itself to thermoforming, allowing inexpensive processing. A hybrid sheet manufacturing process, continuous casting, combines the physical benefits of cell casting and the cost efficiency of extrusion. Extruded and continuous cast sheet have better thickness tolerance than cell-cast sheet. PMMA can be joined with epoxy, alpha-cyanoacrylate, polyester or nitrile-phenolic adhesives. It scratches much more easily than glass, but this can be partially overcome with coatings.

Technical notes

Polymers are truly transparent only if they are completely amorphous - that is, non-crystalline. The lumpy shape of the PMMA molecule ensures an amorphous structure, and its stability gives good weathering resistance. PMMA is attacked by esters, ketones, acids and hydrocarbons, and has poor resistance to strong acids or bases, solvents and acetone.

Typical uses

Lenses of all types; cockpit canopies and aircraft windows; signs; domestic baths; packaging; containers; electrical components; drafting equipment; tool handles; safety spectacles; lighting, automotive tail lights, chairs, contact lenses, windows, advertising signs, static dissipation products; compact disks.

Tradenames

Acrive, Acrylite, Acryrex, Altuglas, Cyrolite, Diakon, Glasflex, Goldrex, Lucite, Lucryl, Optix, Oroglas, Perspex, Plexiglas, Plexit, Sumiplex

Links

Reference

ProcessUniverse

Page 5 of 5

Producers