

OUTLINE

- 1. Review: Hypothesis Testing
 - 1. Formulation
 - 2. Optimal Test
 - 3. Likelihood Ratio Test
 - 4. UMP test Under mlr
 - 5. Two-sided UMPU test under exponential Family
 - 6. Conditional test under exponential family
- 2. Three Exercises

Hypothesis Testing Definitions

- Test function;
- Critical region; critical value
- Power function of the test
- The size of a test
- The power of a test

Hypothesis Testing Optimal Test

• The test ψ is unbiased of size α if

$$\sup_{\theta \in \Theta_0} \mathbb{E}_{\theta} \big[\varphi(\boldsymbol{X}) \big] = \alpha \quad \text{and} \quad \mathbb{E}_{\theta} \big[\varphi(\boldsymbol{X}) \big] \ge \alpha \quad \forall \, \theta \in \Theta_1 \setminus \Theta_0.$$

• A test ψ_0 is uniformly most powerful [UMP] among all tests ψ of $size \leq \alpha$ if

$$\begin{cases} \mathbb{E}_{\theta} [\varphi_0(\boldsymbol{X})] \leq \alpha \ \forall \theta \in \Theta_0, \text{ and} \\ \\ \mathbb{E}_{\theta} [\varphi_0(\boldsymbol{X})] \geq \mathbb{E}_{\theta} [\varphi(\boldsymbol{X})] \ \forall \theta \in \Theta_1 \setminus \Theta_0 \text{ and } \forall \text{ tests } \varphi \text{ of size } \leq \alpha. \end{cases}$$

• A test ψ_0 is uniformly most powerful unbiased [UMPU] among all unbiased tests ψ of $size \leq \alpha$ if

$$\begin{cases} \mathbb{E}_{\theta} [\varphi_0(\boldsymbol{X})] \leq \alpha \ \forall \theta \in \Theta_0, \text{ and} \\ \mathbb{E}_{\theta} [\varphi_0(\boldsymbol{X})] \geq \mathbb{E}_{\theta} [\varphi(\boldsymbol{X})] \ \forall \theta \in \Theta_1 \setminus \Theta_0 \text{ and } \forall \text{unbiased tests } \varphi \text{ of size } \leq \alpha. \end{cases}$$

Likelihood Ratio Test

• Definition. The likelihood ratio for the test of $H_0:\theta\in\Theta_0$ vs $H_1:\theta\in\Theta_1$, given data X, is defined to be

$$\Lambda_X (H_0, H_1) = \frac{\sup_{\theta \in \Theta_1} \ell_X(\theta)}{\sup_{\theta \in \Theta_0} \ell_X(\theta)}$$

- where $\ell_X(\theta)$ is the likelihood function.
- The likelihood ratio may be viewed as the odds of H_1 against H_0 .

Likelihood Ratio Test

Neyman-Pearson

Problem: Test $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ simple hypothesis

LR test
$$\varphi_0(X) = \mathbf{1}\{\Lambda_X(H_0, H_1) > c\}$$
 is most powerful among all tests of size $\leq \mathbb{E}_{\theta_0}[\varphi_0(X)]$ $= \text{size of } \varphi_0$

i.e.
$$\forall \varphi$$
 with $\mathbb{E}_{\theta_0} [\varphi(X)] \leq \mathbb{E}_{\theta_0} [\varphi_0(X)]$ (= size of φ_0) we have $\mathbb{E}_{\theta_1} [\varphi(X)] \leq \mathbb{E}_{\theta_1} [\varphi_0(X)]$ power at $H_1 : \theta = \theta_1$ power at $H_1 : \theta = \theta_1$

UMP test under monotone likelihood ratio (mlr)

Definition

```
Consider H_0: \theta \in \Theta_0 vs H_1: \theta \in \Theta_1

Definition. Take any \theta_0 \in \Theta_0, \theta_1 \in \Theta_1:

If \frac{f(\boldsymbol{X}|\theta_1)}{f(\boldsymbol{X}|\theta_0)} \uparrow as T(\boldsymbol{X}) \uparrow, then the model has \underline{\mathbf{mlr}} in T(\boldsymbol{X}) not depending on \theta_0, \theta_1 (w.r.t. test of H_0 vs H_1)
```

UMP test under monotone likelihood ratio (mlr)

How can we use mlr property to find UMP test?

Theorem. Suppose model mlr in T(X) w.r.t.

test of
$$H_0: \theta \in \Theta_0$$
 vs $H_1: \theta \in \Theta_1$

Define test function $\varphi_0(\mathbf{X}) = \mathbf{1}\{T(\mathbf{X}) > t_0\}$

- Then: (i) φ_0 is a LR test
 - (ii) $\sup_{\theta \in \Theta_0} \mathbb{E}_{\theta} \left[\varphi_0(\boldsymbol{X}) \right] \leq \inf_{\theta \in \Theta_1} \mathbb{E}_{\theta} \left[\varphi_0(\boldsymbol{X}) \right]$
 - (iii) φ_0 is UMP among tests of size $\leq \sup \mathbb{E}_{\theta} [\varphi_0(\boldsymbol{X})]$ $\theta \in \Theta_0$

Two-sided UMPU test under exponential family

```
Data \boldsymbol{X} \sim f(\boldsymbol{x}|\theta) = c(\theta)h(\boldsymbol{x})e^{\theta t(\boldsymbol{x})} \quad (\theta \in \Pi, \text{ natural parameter space})
 Test \to H_0: \theta \in [\theta_1, \theta_2] vs H_1: \theta \notin [\theta_1, \theta_2]
                                                                                                         2 equations to solve for t_1, t_2
Define test: \varphi(\mathbf{X}) = \mathbf{1}\{t(\mathbf{X}) \notin [t_1, t_2]\} with \mathbb{E}_{\theta_1}[\varphi(\mathbf{X})] = \mathbb{E}_{\theta_2}[\varphi(\mathbf{X})] = \alpha
Theorem. \varphi is UMPU size \alpha test of H_0 vs H_1
                      \rightarrow i.e. can achieve optimality (in UMPU sense) by:
                                                           "reject H_0 if natural statistic t(X) \notin [t_1, t_2]"
  Lemma. For any test \tilde{\varphi} with \mathbb{E}_{\theta_1}[\tilde{\varphi}(X)] = \mathbb{E}_{\theta_2}[\tilde{\varphi}(X)] = \alpha,
                                                  \begin{cases} \mathbb{E}_{\boldsymbol{\theta}} \big[ \boldsymbol{\varphi}(\boldsymbol{X}) \big] \geq \mathbb{E}_{\boldsymbol{\theta}} \big[ \tilde{\boldsymbol{\varphi}}(\boldsymbol{X}) \big] & \forall \, \boldsymbol{\theta} \not\in [\theta_1, \theta_2] \\ \mathbb{E}_{\boldsymbol{\theta}} \big[ \boldsymbol{\varphi}(\boldsymbol{X}) \big] \leq \mathbb{E}_{\boldsymbol{\theta}} \big[ \tilde{\boldsymbol{\varphi}}(\boldsymbol{X}) \big] & \forall \, \boldsymbol{\theta} \in [\theta_1, \theta_2] \end{cases}
```


Conditional test under exponential family

Definition

Data
$$\boldsymbol{X} \sim f(\boldsymbol{x}|\boldsymbol{\pi}) = C(\boldsymbol{\pi})h(\boldsymbol{x})e^{\sum_{j=1}^{k} \pi_{j}t_{j}(\boldsymbol{x})}$$

$$\left[\boldsymbol{\pi} = (\boldsymbol{\pi}_{1}, \dots, \pi_{k}) \in \Pi, \text{ natural parameter space}\right]$$

- (I) One-sided test $\rightarrow H_0: \pi_1 \leq \pi_1^* \text{ vs } H_1: \pi_1 > \pi_1^*$ (II) Two-sided test $\rightarrow H_0: \pi_1 \in [\pi_1^*, \pi_1^{**}] \text{ vs } H_1: \pi_1 \notin [\pi_1^*, \pi_1^{**}]$

Conditional test under exponential family

(I) One-sided test $\rightarrow |H_0: \pi_1 \leq \pi_1^* \text{ vs } H_1: \pi_1 > \pi_1^*$ UMPU size α test: reject H_0 if $t_1(X) > c$ where \boldsymbol{c} satisfies $\mathbb{P}\left(\boldsymbol{t_1}(\boldsymbol{X}) > \boldsymbol{c} \,\middle|\, \boldsymbol{\pi_1} = \pi_1^*, \ t_2(\boldsymbol{X}), \dots, t_k(\boldsymbol{X})\right) = \alpha$ Note: $c = c(\alpha, \pi_1^*, t_2(X), \dots, t_k(X))$ depends on $t_2(X), \dots, t_k(X) \rightarrow \therefore c$ is random (II) <u>Two-sided test</u> $\to H_0 : \pi_1 \in [\pi_1^*, \pi_1^{**}] \text{ vs } H_1 : \pi_1 \notin [\pi_1^*, \pi_1^{**}]$ $\underline{or} \ H_0: \pi_1 = \pi_1^* \ \text{vs} \ H_1: \pi_1 \neq \pi_1^*$ <u>UMPU size α test</u>: reject H_0 if $t_1(X) \notin [c^*, c^{**}]$

where
$$\boldsymbol{c^*}, \boldsymbol{c^{**}}$$
 satisfy
$$\begin{cases} \mathbb{P}_{\pi_1^{**}} \left(\boldsymbol{t_1(X)} \not\in [\boldsymbol{c^*}, \boldsymbol{c^{**}}] \middle| t_2(\boldsymbol{X}), \dots, t_k(\boldsymbol{X}) \right) = \alpha \\ \mathbb{P}_{\pi_1^{*}} \left(\boldsymbol{t_1(X)} \not\in [\boldsymbol{c^*}, \boldsymbol{c^{**}}] \middle| t_2(\boldsymbol{X}), \dots, t_k(\boldsymbol{X}) \right) = \alpha \end{cases} \\ \underline{\boldsymbol{or}} \ \frac{\partial}{\partial \pi_1} \mathbb{P}_{\pi_1} \left(\boldsymbol{t_1(X)} \not\in [\boldsymbol{c^*}, \boldsymbol{c^{**}}] \middle| t_2(\boldsymbol{X}), \dots, t_k(\boldsymbol{X}) \right) \Big|_{\pi_1 = \pi_1^{*}} = 0 \end{cases}$$

Note: c^*, c^{**} depend on $\pi_1^*, \pi_1^{**}, \alpha, t_2(\boldsymbol{X}), \ldots, t_k(\boldsymbol{X})$

Problems

Exercise 1

Given a random sample X_1, \ldots, X_n from the density function

$$f(x \mid \lambda) = \lambda^{-1} e^{-x/\lambda}, x > 0$$

- (a) Find the **UMP** size α test of $H_0: \lambda \leq 1$ against $H_1: \lambda > 1$.
- (b) Find the equation for the **sample size** n required for this test to have power 95% when $\lambda = 2$.

Please illustrating your answer with a sketched graph.

Exercise 1: Solution (a) $f(x \mid \lambda) = \lambda^{-1} e^{-x/\lambda}, x > 0$

For any $0 < \lambda_1 < \lambda_2$, we note that the likelihood ratio

$$\frac{l\left(\lambda_{2}\right)}{l\left(\lambda_{1}\right)} = \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{-n} e^{-\sum_{i=1}^{n} X_{i}\left(\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}}\right)}, \text{ which is increasing in } \sum_{i=1}^{n} X_{i}.$$

This monotone likelihood ratio property of the model guarantees the size α UMP test for the one-sided hypotheses is of the form

$$\varphi(X) = 1 \left\{ \sum_{i=1}^{n} X_i > c_{\alpha} \right\}$$

Exercise 1: Solution (a)

$$f(x \mid \lambda) = \lambda^{-1} e^{-x/\lambda}, x > 0$$

For any $0 < \lambda_1 < \lambda_2$, we note that the likelihood ratio

$$\frac{l\left(\lambda_{2}\right)}{l\left(\lambda_{1}\right)} = \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{-n} e^{-\sum_{i=1}^{n} X_{i}\left(\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}}\right)}, \text{ which is increasing in } \sum_{i=1}^{n} X_{i}.$$

This monotone likelihood ratio property of the model guarantees the size lpha UMP test for the one-

sided hypotheses is of the form $\varphi(X)=1$ $\left\{\sum_{i=1}^n X_i>c_\alpha\right\}$, where critical value c_α satisfies

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i > c_\alpha \mid \lambda = 1\right) = \alpha.$$

Since under H_0 , the distribution of $\sum_{i=1}^n X_i$ is Gamma with parameters n and 1 (both mean and variance equal n), the critical value is

$$c_{\alpha} = G_n^{-1}(1 - \alpha)$$

Here and hereafter we use G_n to denote the distribution function of a $\Gamma(n,1)$ distribution and G_n^{-1} denotes its inverse (the lower quantile function).

Exercise 1: Solution (b)

The power of the test when $\lambda = 2$ is given by

$$\mathbb{P}\left(\sum_{i=1}^{n} X_{i} > c_{\alpha} \mid \lambda = 2\right) = \mathbb{P}\left(\sum_{i=1}^{n} \frac{X_{i}}{2} > \frac{c_{\alpha}}{2} \mid \lambda = 2\right) = 1 - G_{n}\left(\frac{1}{2}G_{n}^{-1}(1 - \alpha)\right)$$

For the power to be at least 95%, we need an n such that

$$1 - G_n \left(\frac{1}{2} G_n^{-1} (1 - \alpha) \right) \equiv f(n) \ge 0.95$$

To get n satisfying this requirement, for fixed α we may plot the left hand side as a function of n and locate an n as desired.

Exercise 1: Solution (b)

For example, when $\alpha = 0.05$, from the following sketch, we see a sample size n = 23 will suffice.

In fact, when
$$n = 23.1 - G_n \left(\frac{1}{2} G_n^{-1} (1 - 0.05) \right) = 0.9503$$

Exercise 2

Let X_1, \ldots, X_n be an independent sample from a normal distribution with mean 0 and variance σ^2

- (a) Find the UMP test of size α to test H_0 : $\sigma^2=\sigma_0^2$ against H_1 : $\sigma^2=\sigma_1^2>\sigma_0^2$
- (b) Find the UMP test of size α to test $H_0:\sigma^2\leq\sigma_0^2$ against $H_1:\sigma^2>\sigma_0^2$
- (c) Show that the UMPU test of size α to test H_0 : $\sigma^2 = \sigma_0^2$ against H_1 : $\sigma^2 \neq \sigma_0^2$ is in the form $\varphi(\mathbf{X}) = 1$ $\left\{\sum_{i=1}^n X_i^2 \notin \left[t_1, t_2\right]\right\}$ with t_1, t_2 satisfying

$$egin{cases} 1+\mathbb{P}\Big(Y<rac{t_1}{\sigma_0^2}\Big)-\mathbb{P}\Big(Y<rac{t_2}{\sigma_0^2}\Big)=lpha, ext{ where }Y\sim\chi_n^2 \ rac{t_1-t_2}{n(\ln t_1-\ln t_2)}=\sigma_0^2 \end{cases}$$

Exercise 2: Solution (a)

(a) Find the UMP test of size α to test H_0 : $\sigma^2=\sigma_0^2$ against H_1 : $\sigma^2=\sigma_1^2>\sigma_0^2$

By the **Neyman-Pearson Lemma**, the likelihood ratio test of size lpha is UMP among all tests of size $\leq \alpha$. The likelihood ratio is

$$\Lambda_{\mathbf{X}}\left(\sigma_0^2, \sigma_1^2\right) = \left(\frac{\sigma_0}{\sigma_1}\right)^n \exp\left\{-\frac{1}{2}\left(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_0^2}\right)\sum X_i^2\right\}$$

which is an increasing function in $\sum X_i^2$. The size α is a likelihood ratio test has critical region equivalent to $\{\mathbf{X}: \sum X_i^2 > c_\alpha\}$, where c_α satisfies $\alpha = P_{\sigma_0^2}\left(\sum X_i^2 > c_\alpha\right) = P\left(Y > c_\alpha/\sigma_0^2\right)$ where $Y \sim \chi_n^2$.

$$lpha=P_{\sigma_0^2}\left(\sum X_i^2>c_lpha
ight)=P\left(Y>c_lpha/\sigma_0^2
ight)$$
 where $Y\sim\chi_n^2$.

Thus, $c_{\alpha} = \sigma_0^2 \chi_n^2 (1 - \alpha)$, where $\chi_n^2 (1 - \alpha)$ is the $(1 - \alpha)$ th quantile of a chi-square distribution with degree of freedom n, and the UMP size α test is

$$\varphi(\mathbf{X}) = \mathbf{1} \left\{ \sum X_i^2 > \sigma_0^2 \chi_n^2 (1 - \alpha) \right\}$$

Exercise 2: Solution (b)

(b) Find the UMP test of size α to test $H_0: \sigma^2 \leq \sigma_0^2$ against $H_1: \sigma^2 > \sigma_0^2$

The likelihood ratio is

$$\Lambda_{\mathbf{X}}\left(\sigma_0^2, \sigma_1^2\right) = \left(\frac{\sigma_0}{\sigma_1}\right)^n \exp\left\{-\frac{1}{2}\left(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_0^2}\right)\sum X_i^2\right\}$$

which is an increasing function in $\sum X_i^2$.

Thus, the model has mlr in $\sum X_i^2$.

The UMP test of size α is exactly the same as (a)

(c) Show that the UMPU test of size α to test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$ is in the form $\varphi(\mathbf{X}) = 1 \left\{ \sum_{i=1}^n X_i^2 \notin \left[t_1, t_2\right] \right\}$ with t_1, t_2 satisfying $\left\{ 1 + \mathbb{P}\left(Y < \frac{t_1}{\sigma_0^2}\right) - \mathbb{P}\left(Y < \frac{t_2}{\sigma_0^2}\right) = \alpha, \frac{t_1 - t_2}{n(\ln t_1 - \ln t_2)} = \sigma_0^2$

According to the test statistics, t_1 , t_2 satisfy

$$\mathbb{E}_{\sigma_0^2}[\varphi(\mathbf{X})] = \alpha$$
 , and $\frac{\mathrm{d}}{\mathrm{d}\sigma^2}\mathbb{E}_{\sigma^2}[\varphi(\mathbf{X})]\bigg|_{\sigma_0^2} = 0$

With $Y \sim \chi_n^2$, we have

$$\mathbb{E}_{\sigma_0^2}[\varphi(\mathbf{X})] = P\left(Y < \frac{t_1}{\sigma_0^2}\right) + 1 - P\left(Y < \frac{t_2}{\sigma_0^2}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}\sigma^2} \mathbb{E}_{\sigma^2}[\varphi(\mathbf{X})] \bigg|_{\sigma_0^2} = \frac{\left(t_1/\sigma_0^2\right)^{\frac{n}{2}-1} e^{-t_1/2\sigma_0^2}}{\Gamma(n/2)2^{n/2}} \left(-\frac{t_1}{\sigma_0^4}\right) - \frac{\left(t_2/\sigma_0^2\right)^{\frac{n}{2}-1} e^{-t_2/2\sigma_0^2}}{\Gamma(n/2)2^{n/2}} \left(-\frac{t_2}{\sigma_0^4}\right)$$

Set them equal to α and 0 respectively, we obtain what as required.

Exercise 3

A local councillor suspects that traffic conditions in his village A have become more hazardous than those of a neighbouring village B. He therefore records the **numbers of traffic accidents** N_A , N_B which occur in A and B over a fixed period of time respectively.

Assuming N_A, N_B are **independent Poisson** random variables with parameters $\lambda, \beta\lambda$ respectively, the councillor wishes to test

$$H_0: \beta \geq 1 \operatorname{against} H_1: \beta < 1$$

- (a) Derive a form of a UMPU test, of size α , for testing the above hypotheses.
- (b) What is the outcome of the test when $\alpha = 0.1, N_A = 7, N_B = 2$?

Exercise 3: Solution

Assuming N_A, N_B are independent Poisson random variables with parameters $\lambda, \beta\lambda$ respectively, the councillor wishes to test

$$H_0: \beta \geq 1$$
 against $H_1: \beta < 1$

(a) Derive a form of a UMPU test, of size α , for testing the above hypotheses.

The pdf of the independent Poisson random variables can be written as

$$f(N_A, N_B) = c(\lambda, \beta)h(N_A, N_B) \exp\{(N_A + N_B) \ln \lambda + N_B \ln \beta\}$$

By Theorem, the UMPU test is of the form 1 $\{N_B < c\}$, where c satisfy

$$\mathbb{P}\left(N_B < c \mid N_A + N_B = n, \beta = 1\right) = \alpha$$
, which is equivalent to

$$\mathbb{P}(\text{Binomial }(n,1/2) < c) = \alpha.$$

Exercise 3: Solution

 $H_0: \beta \geq 1$ against $H_1: \beta < 1$

(b) What is the outcome of the test when $\alpha=0.1,N_A=7,N_B=2$? The pdf of the independent Poisson random variables can be written as

Consider

$$\mathbb{P}(\text{Binomial}(9,1/2) < 3) = \frac{46}{2^9} < 0.1$$

Since $N_B = 2 < c = 3$, reject H_0 at 0.1 significance level.

"When I hear you give your reasons, "I remarked, "The thing always appears to me to be so ridiculously simple that I could easily do it myself, though at each successive instance of your reasoning I am baffled until you explain your process."

Dr. Watson to Sherlock Holmes

A Scandal in Bohemia