Tipo de Lagrosor	Hodelo Natemático	Foncion de Costo	Estratagia de Ophimización
Linous Pogrossor		The wadished modio: MSE J(w)=1 & (tn-wixn)2 2N n=1	Solvion Analikia Conada: Tw J(w) = -1 xT(t-xw)=0 Solvion: w = (xTx) tTX fosueluo ei sistema: XTXw = XT t
Lasso (b)	Introduce one regularización Li, reclucionable magnitud do los posos: y(x) = wT x + b.	Minimiza el MSE y manhione los coolicionles w paqueños: J(w) = 1 & (+i - w x x - b) ² 2N + X & w j con X > 0	Solución nomérica Herativa: Descenso por coordenadas: On paso a la vez. Dosperadiente Dosondonte: Least Anglo Ragression: Construye la solución paso a para a modida que w entra o sale.
ElasticNet	T modolo sigue gondo elmismo y = wTx + b) poro agroga agroga regularización Li (Lusso) y Lz(Ridgo).	$J(w) = \frac{1}{2} \mathbb{E}(4i - wT x_1 - b) 2$ $+ \lambda \left[\alpha \ w\ _{11} + \frac{(1-a)}{2} \ w\ _{2}^{2}\right]$ $d = 1 (lasso), d = 0 (lidge)$ $0 < \alpha < 1 (classo).$	Ophinipacion iteration concexa \rightarrow Descense por coordenadas; farametro Wy a la vet $\text{Wy} \leftarrow \frac{\text{SC2J}(\lambda\alpha)}{1+\lambda(1-\alpha)}$
Koinel Ridge	Extiendo la regressión lineal al especio de características de un kornel, so proyectan por una función no lineal: $y(x) = wT \phi(x)$. $y(x)^2 = \phi(x)^2 \phi(x)$	choi roadiático con La: 2 $f(\omega) = \frac{1}{2} \mathcal{E}(f_1 - \omega \tau \phi(x_1)) + \frac{1}{2} \mathcal{E}(f_1 - \omega \tau \phi(x_1))$	El problemo es conoexo y diferenciable, se poede relativa: de forma analitica: $x = (x + \lambda I)^{-1}t$ So usa SuD para inventi \$+XI establamente.
860 Rogiossor = Stochashe Giadiont Doscont	Hismo modado de: J(X) = wTX + b.	Prodo inclose Torciones de socialda soguir la regressión; mas comain: squared lost = 1 (thi - (wit xitb))? Prodo inclose Light y Elasho Not	No calcola el giadiente usando todos los datos, sino una sola muestra por iteración. La solución os Heiahva.

Tipo de logrosor	Modelo Mulamatico	Forción do costo	Estratagio de Optimización.
Baywian Ridge	paito dal mismo! y(x) = wTx + b. paio no assima un valor paia wy b, sino distribua ones para	log p(wH) = -B t - xw 2 - a w 2 a y B no son hyon, son variables aleatonas.	La inforcia so haco de forma o acultica porque las distribuciones san garasticanas
Topological Color	Es un extensión no	So ajustan los	2 Ftapos: a) Informia:
Gaussian	paramotrica do la	hiposparamotios del konel	Outribusion posterios:
Process	regresión bayescene	u del joido!	pcfalx,t,x)= NCf, vaich).
Pogrossor	lineal.	log p(+1x) = -1/2 t (x+0 nI)-it = 1/2 kg Ex + 0 nI -N/2 log (21)].	fix = UTx (K+02nI j-1 t. b) Ophimización de hipoipaià- metios modiante graciente doscendonte.
Dankard Aspile 15h	Bosea and Auncion	El problemo de opti-	So wan multiplicadores
Support Vector	plana f(x) goose	m130400 05;	do lagrange.
Machine	alojo do los datos	t silwii t asm	max - 1/2. (ce - cc*)T.
209105101	en menos de un	3 3 (1)	K(a-a')- 6 & (a) +
100-10	margen, ponalitando	C & CE, + E*).	ai*)+ 2 to (ai - aci)
	01 05 ant colours	E -> onois que	Se obtione la solocion
1 Personal	alogon: fcx) =	exceden el margen.	osando métodos de
13// -/ 5//	WT Ø(X) + b.		optimización coadicatica.
	Fo on modelo de	Cada anda so ontiona	Tieno 2 nioclos de
	ensamble formade	Minimitando O MSE	a louton edad controlada:
0 6 0 1	bor & erporor as	= 1 & (+1-91)2.	1. Bootstrap Sompling.
Pandom Yorest	do decisión		2. Foodore Bagging.
togrossor	independionte:	So eligo la coractoristica	3. Crocimiento de 9
As soloti do	$f(x) = \frac{1}{2} \mathcal{Z} fb(x)$	y el ponto do coste:	
	Conta Dial andice	split (j,s) = aigmin.	4. Agroguach Cmodia
	cada albot predice in valor y so toma la modia	CHSE 179 + ME GOI).	Therein.

Tipo do Rogiosor	Modolo Natomático	- Fundon do Posto	Estratogia do Optimización
Gradiente Boosting Legressor	El modolo final os una soma pondorada de arbolos debilos: FCX) = El U. hCX). M = Númoro de Iteraumos. hCX): Arbor do docisión ontronodo. VE EO 1]: learning rate. FCX): Producción final	Trabaja con coalquier función de pordida diferenciable L(y, f(x)). En regressión clásica: L(y, f(x)) = 1 (y - f(x)) &. 2 Hinimiza la pérdida dotal sobre todos los datos.	Aplica el doscenso del gradiente, pero en el espacio de las funciones, no en el de los parámetros. 1. Fonción que minimice. 2. Gradientes negativos. 3. Ajusto del arbol al residoo. 4. Jeso optimo del arbol. 5. Actualizar modero. 6. Pepetir M iteraciones.
x6 Boost	Es on modolo adition como el EBR, polo añade regularitación explícita y una aploximación de 2 do ciden al gradiente. F(X) = Is fm(X), fm EF. Fronjunto do albolos. H > Número de Iteraciones.	En cada Horacion, minimiza 2 = I ((yi, ŷi) + [=1 I. 4 (fm). ((yi, ŷi) as la foncion de pordida. 2 - as la penalización sobre la complojidad der arbol.	Utilità on dosariollo de sagondo adon do la perdida: L(y), y: + fm (xi) & " L(y), y: + fm (xi) & " L(y), y: + g:fm (xi) + L h:fm(xi)2, 2 g = 6radionte. h = hossiano.

Tipo de	Hinimos Coudiados	Naximu ociosimithod		Bayasano	Lagrasión frigida	Procesos Gaessianos	Escalabilidad
Lagreson Linau Rogrosson	onto produciona y wildres (eales: Formulación: min J(w) = 1 ½ (fn - wTXn -b) 2N n=1 Solución: w= (XTX) / XTt Lesuclos a través de:	Eshmodor byo rado gaossiano: tn= wTxn + En formolación: P(t1x, w, 02) = TTN(tn 1 wTxn, 02). Lolución: arg max P(t1xw) = arg min 11 t - xw112.	Posteriori Introduce creenda provia. Se conviorite on Indge regiossor agregos regiolariza- ción. Solouon: WHAP = (XTX+XI) XTt.	Considera toda la distribución sobre los pesos Salución: p(w t) = N(w)MN,3N).		distribución gaussiana: f(x)~ gr(o, k(xx))	S. hay mucha 5 culuctolisticas el costo oloce y se dobor usar metodos apoximados.
a greet thought at a capability of the capabilit	1 (050 (W) = 1 E(t-wt x-b) ² 2N + XZ Wj11		log P(wit) =	Pilos Laplaciano: de la forma: P(W) = N(D, LT) P(W) = N. e->lwl York & ona gassiana cossada.	xerral losso: min, 1 11 t- øwll² + x 11 wll1	A Phot you no as governand Si so dofine on which con roldo loploaumo, so pude definir romo lasso	El modalo debe resolveiso con metado iterativos, lo que afacto el hampo de procavamiento y mano Lonto con Pgiande.
FloslicNet	El modelo mutemà. tico parte de minimos coadrados añodiando L1 + L2	P(w) loplaciono El sagondo támino actica como ora ponalización bayaciona tibrida (laplaciona + 6 aussiana).	-log p(110) = provione del vido gaussiano. logp(w)=prior mixto (11+12).	b(m) 6-y/x/1/m/	Koinal Elastic Not: JKOO (W) = 1 1 - \$WII 2 + 2 (1-a) X (all WII + 2	na mescla de gaussiano na mescla de gaussiano	Tione major establico y convergencia por La Paro so puedo afacto por ol, X y los datos doban estar normalizado
Koinal Ridge	Coision no linouly inquision no linouly inquision from consideration of the constant of the coision of the cois	Espond de ravideristias \$(X) \\ ti = w^T \$(Xi) + E \\ Agraga ragularitación L2.	p(flw) = $N(\beta w)$, $\beta^{-1}J) \Rightarrow p(w) = N(0, \alpha^{-1}I)$. El log podenol as: $J(w) = \beta/2 f-\beta w ^2$. $\lambda = \alpha/\beta \rightarrow$ Formañ do casto	P(WI+)=D(WIMA SN) SNT= dI+ BXTX, HN = BSNXTI. X SO ICCOMPLOTE POILU MUTHER DE CUID CLOTER DE		Tione to mome formolocke pctix) = NO, x ++ GI)	: The mayor potent en modeles no linear poresu complejidad cubica limita el uso en giando volumen do clatos:

Tipo do Porcaine	Minimos (vadiados	Max Voiasimilitud	Max a posteriori	Baya Imoal	logionión ligida K.	Procesos Gaussianos	Excelabilidad
Tipo de logresor	Minimita la mismo funcion de costo, pero iterativamente usando gradientos por muestra: 20-10-10 Ju	Implemento apiox estocastica actualitando paia motios de forma programora.	Incluye: Prior Garastano 11 laplaciano 11 mixto Adapla sagún al regiosor	Obhone solo al valor món probuble modiante actualisaciones socionciales.	Trabaja on el espacio original de los cara deristicos y no usa Kornels.	So puede considerar como una versien lineal de 6p	Tiono chaonaa madica. Poimite ontionai modolao ontionai obsee millonos do mastiao y vanablas.
Bagosian Pidge	Incluye regulatización e inferencia probalistica: j(w) = Bilt-Xmll2+ 2 d llw112	La informació sobre p(w) os almburo- nal. p(wit, x, B) d p(+1x, w, B). p(w/d).	Adapta ona distribución	Voison paiametiitada del modelo donde ol y B so estima o do los datos directamente.	J(w) = B/2 11t - Xw112t a/2 11 w112. Fo on idge probabilistic que obtione distribuciones de irrottidombre sobre los pesos.	So consider on 68 con esquero de caracteristico finito	Combad piccisión probabilistica con costo respondible. No astern ascertable como 360 fagration.
Gaossian Rocoss Lagiossor	sobre fonucios. Entraga uno familia Infinito de curcos con modio y vananta. FCX)~ gp(0, x(xx))		So integrasobre of especia de forciones complete.	Do fine and mathire to covarianga * = xxT. Covartifi - a la incertidom. - bie,	Es al bayosan lage con infinital bases implicators.	da modia es igual al resoltado des Kernel Adge; pero siñ invertidombre.	es et mércompleto de la familia bayesiana, poio es solo bueno pala conjuntes medianas. Tiopo incolhidombie veal.
Support Veder Machine Regressor	sa pior ni incapa ombe idinimiza la norma de les peses + penativa sole les emerci mayores a E Ignora enores pequeño	Tione max Voicementated con ruido laplaciano troncado . Tiene	usa ona forción de póidida lineal portiamos	Bosca modelar el reido con ena toleranda Fya	Busca minimizar la percida &. f(x) = & (ai - aix) k(xxxx) + b.	Es de natoraleta Determinista y no se considera gaussiara solo trabaja con la modia	datosots modianos
Pandom Forest Pegresion	Ajoria mulhelas forcionas locales, cada una valida en una región del espacio, foede aproximas regiones no limates:	Ab reduce al epor Max Verosi- militad, reduce la variant apoi ensamble. Se asome modiu to rado gerossiane iid.	MAP Clasico. Es un ensamble No paramético de NSE por	la incorholombre que se reporta suelo ser ampinica no una vunanza bayesiana bion calibrada.	So poodo ver como una regional provides pondos pondos puden tonos similitud si caen en la misma hoja y tenes un mismo núcloo.	Compate la idea de promedias portes pero no hay prior ni posterios probabilista	Poblo con No- Es escabble, Paralelizable y resistente al rucido, Poodo admar incortidombre por varianta entre arbolos.

tipo do Poguesor	Hin Ovadiados	Max Venoumilitud	Max o postaroni	Bayes lineal	Pidgo Komol	Porosos bassianos	Escalabilidad
		Minimita la perdiación coeciatica, que os oquivalente a maximital la verosimilitad. Laurita descensodel	No asome ningon prior ni probabi- lidad, pero si regolariza Impli- citamente El loorning rote	Ambos son	Tiene linealidad a travér do los inboles y soma los ciboles que conigen pricies, como los Hemols.	Ambos constrayen medalos de forciones no lineales, pero el 68 D lo hace detaministramente. Si el pamel tione regiones locales, su medio se	robusto ytione mejo sersibilidad.
X6 8008	Si se usa $((y,y)) = \frac{1}{2}(y-y)^2 + \frac$	lod - like lipood podoinal outos a Himmian bolding	Es una implomentación des MAP, donde el prior esta codificado en los	ha cleering for valores	6) ora veisión disciolizada,	No oxy veinels explicitos, por ada albertiene regionos locales donde se agropan pontos	es oficiente y robusto, logia soavidad loral y escalabilidad masica.