Retículos y álgebras de Boole

Manuel Ojeda Aciego

Universidad de Málaga Dpto. de Matemática Aplicada

Curso 2015-2016

Definición

Un conjunto parcialmente ordenado (\mathcal{L}, \preceq) es un **retículo** si cada par de elementos $a,b \in \mathcal{L}$ tiene supremo e ínfimo, esto es, existen $\sup\{a,b\}$ e ínf $\{a,b\}$. El retículo se dice **completo** si todo subconjunto X tiene supremo e ínfimo.

- Ciertos retículos son importantes en teorías abstractas de computación, desarrolladas a partir de la noción de aproximación; también pueden usarse para representar el comportamiento de programas.
- Los retículos son especialmente útiles en áreas como optimización combinatoria y criptografía (tanto para romper sistemas existentes como para desarrollar nuevos cifrados).
- Cierto tipo de retículos se usa como generalización de las álgebras de Boole en lógicas no clásicas.

Algunos ejemplos de retículos ordenados I

Algunos ejemplos de retículos ordenados II

• $(D_n, |)$, en particular para n = 20 y n = 30:

Algunos ejemplos de retículos ordenados III

• $(\mathcal{P}(S), \subseteq)$, en particular para $S = \{a, b, c\}$

Supremo e ínfimo como operaciones algebraicas

Usando la definición de retículo ordenado, en todo retículo (\mathcal{L}, \preceq) se pueden definir dos operaciones binarias \sqcup y \sqcap de la siguiente manera:

$$\begin{array}{ccc} \sqcap \colon & \mathcal{L} \times \mathcal{L} & \longrightarrow & \mathcal{L} \\ & (a,b) & \longmapsto & \inf\{a,b\} = a \sqcap b \end{array}$$

Supremo e ínfimo como operaciones algebraicas

Ejemplos

1 En el retículo ordenado $(\mathcal{P}(S), \subseteq)$ se definen las operaciones:

$$\forall A, B \in \mathcal{P}(S), A \sqcup B = \sup\{A, B\} = A \cup B \in \mathcal{P}(S),$$

$$A \sqcap B = \inf\{A, B\} = A \cap B \in \mathcal{P}(S)$$

2 En el retículo ordenado (\mathbb{Z}^+ , |) se definen las operaciones:

$$\forall a, b \in \mathbb{Z}^+, \ a \sqcup b = \sup\{a, b\} = m.c.m.(a, b) \in \mathbb{Z}^+,$$

$$a \sqcap b = \inf\{a, b\} = m.c.d.(a, b) \in \mathbb{Z}^+$$

Supremo e ínfimo como operaciones algebraicas

Teorema

Sea el retículo (\mathcal{L}, \preceq) y sea $(\mathcal{L}, \sqcup, \sqcap)$ el sistema algebraico que determina. En $(\mathcal{L}, \sqcup, \sqcap)$ se verifican las siguientes propiedades:

- 1. Conmutativa: $a \sqcup b = b \sqcup a$ $a \sqcap b = b \sqcap a$
- **2. Asociativa**: $a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c$ $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$
- 3. Absorción : $a \sqcup (a \sqcap b) = a$ $a \sqcap (a \sqcup b) = a$

Estas propiedades se usan para dar una definición axiomática de **retículo** algebraico.

Retículos algebraicos $(\mathcal{L}, \sqcup, \sqcap)$

Definición

Sean $\sqcup y \sqcap$ dos operaciones binarias definidas en un conjunto \mathcal{L} . Se dice que $(\mathcal{L}, \sqcup, \sqcap)$ es un **retículo algebraico** si para todo a, b, c $\in \mathcal{L}$ se verifican:

- 1. Conmutativa: $a \sqcup b = b \sqcup a$ $a \sqcap b = b \sqcap a$
- **2. Asociativa:** $a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c$ $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$
- **3. Absorción:** $a \sqcup (a \sqcap b) = a$ $a \sqcap (a \sqcup b) = a$

Ejemplo

 $(\mathcal{P}(S), \cup, \cap)$ es un retículo algebraico, pues verifica:

$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$
 $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
 $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$

Principio de Dualidad

Teorema

Dado un conjunto parcialmente ordenado (A, \preceq) , para cada a, $b \in A$ se define la relación a \succ b si y solo si b \prec a. Obviamente, se verifica:

- **1** (A, \succeq) también es un conjunto parcialmente ordenado.
- ② Si (A, \leq) es un retículo, entonces (A, \succeq) también lo es.

Los conjuntos (A, \preceq) y (A, \succeq) están muy relacionados, concretamente:

- la operación \sqcup de (A, \preceq) coincide con la operación \sqcap de (A, \succeq) y
- la operación \sqcap de (A, \preceq) coincide con la operación \sqcup de (A, \succeq) .

Principio de Dualidad

Si un enunciado se verifica para un retículo, entonces también se verifica el que resulta al reemplazar la relación \leq por la relación \geq , la operación \sqcup por la operación \sqcap y la operación \sqcap por la operación \sqcup .

Retículos algebraicos $(\mathcal{L}, \sqcup, \sqcap)$

Teorema

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo algebraico. Se verifican las propiedades:

- **4.** Idempotencia: $a \sqcup a = a$, $a \sqcap a = a$, para todo $a \in \mathcal{L}$
- **5.** $a \sqcup b = b \iff a \sqcap b = a$, para todo $a, b \in \mathcal{L}$
- Según hemos visto, a partir de un retículo ordenado se puede llegar a un retículo algebraico.
- A continuación, se establece que a partir de un retículo algebraico podemos obtener un retículo ordenado.

Retículo algebraico \Longrightarrow Retículo ordenado

Teorema

Dado el retículo algebraico $(\mathcal{L}, \sqcup, \sqcap)$, se define una relación \ll en \mathcal{L} de la siguiente manera:

$$a \ll b \iff a \sqcup b = b$$

Entonces (\mathcal{L}, \ll) es un retículo ordenado en el que para todo a, $b \in \mathcal{L}$, se verifica que $\sup\{a,b\} = a \sqcup b$ e $\inf\{a,b\} = a \sqcap b$.

Definición

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo y sea \mathcal{M} un subconjunto no vacío de \mathcal{L} . Se dice que \mathcal{M} es un **subretículo** de \mathcal{L} si para todo $x, y \in \mathcal{M}$,

$$x \sqcup y \in \mathcal{M}, \quad x \sqcap y \in \mathcal{M}$$

Es decir, \mathcal{M} es **subretículo** de \mathcal{L} si tiene estructura de retículo con respecto a la restricción de las operaciones \sqcup y \sqcap de \mathcal{L} sobre \mathcal{M} .

Ejemplos de subretículos

Ejemplos

Los subconjuntos parcialmente ordenados \mathcal{M}_1 y \mathcal{M}_2 son subretículos de \mathcal{D}_{36} .

Contraejemplos de subretículos

Ejemplo

 El subconjunto de la derecha no tiene estructura de retículo, puesto que no existe sup{2,3}. Por lo tanto, no es un subretículo de D₃₆.

Contraejemplos de subretículo

Ejemplo

- Aunque \mathcal{M}_4 **no** es subretículo de D_{36} , se pueden definir operaciones \sqcup' y \sqcap' que le dan estructura de retículo.
- Un subconjunto parcialmente ordenado que sea retículo, puede no ser subretículo.

Retículo producto

Teorema

Sean $(\mathcal{L}_1, \preceq_1)$ y $(\mathcal{L}_2, \preceq_2)$ retículos. Entonces $\mathcal{L}_1 \times \mathcal{L}_2$ es un retículo con la relación de orden producto \preceq y las operaciones \sqcup y \sqcap definidas mediante

$$(x_1,x_2) \preceq (y_1,y_2) \iff x_1 \preceq_1 y_1 \land x_2 \preceq_2 y_2$$

$$(x_1, x_2) \sqcup (y_1, y_2) = (x_1 \sqcup_1 y_1, x_2 \sqcup_2 y_2)$$

$$(x_1, x_2) \sqcap (y_1, y_2) = (x_1 \sqcap_1 y_1, x_2 \sqcap_2 y_2)$$

Al retículo $\mathcal{L}_1 \times \mathcal{L}_2$ se le llama **retículo producto**.

Retículo producto

Ejemplos

$$\mathcal{L}_1 = \mathbb{B}, \, \mathcal{L}_2 = \mathbb{B}^2$$

$$\mathcal{L}_1 imes \mathcal{L}_2$$

Homomorfismos e isomorfismos de retículos

Definición

 $\textit{Sean los retículos}\left(\mathcal{L}_1, \sqcup_1, \sqcap_1\right) \textit{y}\left(\mathcal{L}_2, \sqcup_2, \sqcap_2\right) \textit{y sea } \textit{f}: \mathcal{L}_1 \rightarrow \mathcal{L}_2.$

Se dice que f es un

- **1** \sqcup -homomorfismo, si $x \sqcup_1 y = z$ implica que $f(x) \sqcup_2 f(y) = f(z)$
- **2** \sqcap -homomorfismo, si $x \sqcap_1 y = z$ implica que $f(x) \sqcap_2 f(y) = f(z)$
- **1** homomorfismo de orden, si $x \le_1 y$ implica que $f(x) \le_2 f(y)$

Se dice que f es un **homomorfismo** de retículos si f es \sqcup -homomorfismo y \sqcap -homomorfismo.

Los homomorfismos de retículos si son inyectivos, sobreyectivos o biyectivos se llaman **monomorfismos**, **epimorfismos** o **isomorfismos** respectivamente.

Homomorfismos e isomorfismos de retículos

Teorema

Si $f: \mathcal{L}_1 \to \mathcal{L}_2$ es un \sqcup -homomorfismo o bien un \sqcap -homomorfismo, entonces es un homomorfismo de orden.

El recíproco no es cierto. No toda función entre retículos que conserva el orden, conserva también las operaciones \sqcup y \sqcap .

Teorema

Sean (\mathcal{L}_1, \leq_1) y (\mathcal{L}_2, \leq_2) retículos. La función $f \colon \mathcal{L}_1 \to \mathcal{L}_2$ es un isomorfismo de retículos si y sólo si es biyectiva y a \leq_1 b \iff $f(a) \leq_2 f(b)$ para todo a, $b \in \mathcal{L}_1$.

 Dos retículos isomorfos son idénticos tanto algebraicamente como en sus diagramas de Hasse, que sólo se diferenciarán en las etiquetas de los vértices.

Isomorfismos de retículos

Ejemplo

Ejemplo

 $(D_{36}, |)$ y $(D_{100}, |)$ son retículos isomorfos:

Isomorfismos de retículos

Ejemplo

Ejemplo

 $(D_{30}, |)$ y $(\mathcal{P}(\{a, b, c\}), \subseteq)$ son retículos isomorfos:

$$\left(\mathcal{D}_{30},|\right)$$

$$(\mathcal{P}(\{a,b,c\}),\subseteq)$$

Retículos distributivos

Definición

Se dice que el retículo $(\mathcal{L}, \sqcup, \sqcap)$ es **distributivo** si para cada $a, b, c \in \mathcal{L}$ se verifica:

$$a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$$

 $a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$

Ejemplos

- $(\mathcal{P}(\{a,b,c\}),\cup,\cap)$ es distributivo. En general, $(\mathcal{P}(S),\cup,\cap)$ es un retículo distributivo.
- D₆, D₁₂, D₃₆, ... son retículos distributivos.
 En general, D_n es un retículo distributivo.

Retículos distributivos

Teorema

Si \mathcal{L}' es un subretículo de un retículo distributivo $(\mathcal{L}, \sqcup, \sqcap)$, entonces \mathcal{L}' también es distributivo.

Ejemplo

Los dos casos de retículos no distributivos más representativos son:

Diamante

$$a \sqcap (b \sqcup c) = a \sqcap 1 = a$$

 $(a \sqcap b) \sqcup (a \sqcap c) = 0 \sqcup 0 = 0$

Pentágono

Caracterización de retículos no distributivos

Teorema

Un retículo es no distributivo si y sólo si contiene un subretículo isomorfo a la diamante o al pentágono del ejemplo anterior.

Ejemplo

El siguiente retículo no es distributivo, pues contiene el subretículo $\{b, c, d, e, f\}$ que es isomorfo al diamante.

Retículos distributivos

Teorema

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo distributivo y sean $a, b, c \in \mathcal{L}$ tales que

$$a \sqcup b = a \sqcup c$$
 y $a \sqcap b = a \sqcap c$

Entonces b = c.

Demostración:

$$b \stackrel{(Abs.)}{=} b \sqcup (b \sqcap a) \stackrel{(Conm.)}{=} b \sqcup (a \sqcap b) \stackrel{(Hip.)}{=} b \sqcup (a \sqcap c)$$

$$\stackrel{(Dist.)}{=} (b \sqcup a) \sqcap (b \sqcup c) \stackrel{(Conm.)}{=} (a \sqcup b) \sqcap (b \sqcup c)$$

$$\stackrel{(Hip.)}{=} (a \sqcup c) \sqcap (b \sqcup c) \stackrel{(Dist.)}{=} (a \sqcap b) \sqcup c \stackrel{(Hip.)}{=} (a \sqcap c) \sqcup c \stackrel{(Abs.)}{=} c$$

Definición

Sea (\mathcal{L}, \preceq) un retículo. Se llama **mínimo** de \mathcal{L} al elemento que es anterior a todo elemento del retículo, se denota por 0 y se le llama también **primer elemento**. Se llama **máximo** de \mathcal{L} al elemento que es posterior a todo elemento del retículo. Se denota 1 y se le llama también **último elemento** .

Definición

Un retículo \mathcal{L} se dice **acotado** si tiene primer y último elemento.

Ejemplos

- $(\mathcal{P}(S),\subseteq)$ es retículo acotado, con mínimo \varnothing y máximo S.
- Dado un entero positivo n, en el retículo $(D_n, |)$ el primer elemento es 1 y el último elemento es n.
- En $\left(\mathcal{F}(\mathbb{B}^2,\mathbb{B}),\preceq\right)$ el primer elemento es la función cero y el último elemento es la función uno.

Teorema

Sea (\mathcal{L}, \preceq) un retículo acotado. Para todo elemento $a \in \mathcal{L}$ se verifica:

- **2** $a \sqcap 1 = a$ $a \sqcup 1 = 1$

Teorema

Todo retículo finito es acotado.

En general, no todos los retículos infinitos serán acotados:

- Si S es un conjunto infinito, entonces $\mathcal{P}(S)$ también es infinito. Por lo tanto, tenemos que $\left(\mathcal{P}(S),\subseteq\right)$ es un **retículo infinito acotado**
- \bullet Por ejemplo, (\mathbb{Z},\leq) no es acotado, ya que no tiene primer ni último elemento.

Átomos y superátomos

Definición

Sea (\mathcal{L}, \preceq) un retículo acotado. Se llama **átomo** a cada elemento que es sucesor inmediato del primer elemento. Se llama **superátomo** a cada elemento cuyo sucesor inmediato es el último elemento.del retículo.

Ejemplos

• Los átomos del retículo D_{20} son 2 y 5; sus superátomos son 4 y 10.

Átomos y superátomos

Ejemplos

 En P(S) los átomos son los subconjuntos unitarios; los superátomos los que subconjuntos con dos elementos.

• Los átomos de $F(S,\mathbb{B})$ son las funciones que toman el valor 1 exactamente en **un** elemento del dominio; los superátomos son las que toman el valor 0 exactamente en **un** elemento.

Elementos U-irreducibles

Definición

Se dice que $x \in \mathcal{L}$ es un elemento \sqcup -irreducible si no se puede expresar como el supremo de otros elementos, es decir:

Si
$$x = y \sqcup z$$
 entonces o bien $x = y$ o bien $x = z$

Ejemplos Los elementos \sqcup -irreducibles de D_{20} son 2, 4 y 5.

Elementos ⊔-irreducibles

Teorema

Sea $x \neq 0 \in \mathcal{L}$, se tiene que x es un elemento \sqcup -irreducible si y solo si es sucesor inmediato de exactamente un elemento .

Corolario

Los átomos son elementos ⊔-irreducibles.

El recíproco no es cierto.

Contraejemplo

En el retículo $(D_{36}, |)$, el elemento 4 es \sqcup -irreducible, pero **no** es un átomo ya que no es sucesor inmediato del primer elemento.

Descomposición en unión de elementos \(\perp \)-irreducibles no redundantes

Teorema

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo finito. Entonces cada $a \in \mathcal{L}$ se puede expresar

$$a = d_1 \sqcup d_2 \sqcup \cdots \sqcup d_t$$

donde los d_i son elementos \sqcup -irreducibles no redundantes.

¿Qué quiere decir que los elementos d_i son **no redundantes**?

- ✓ Si $d_j \leq d_k$, es decir, $d_j \sqcup d_k = d_k$, entonces se puede suprimir d_j de la descomposición de a.
- ✓ Así, la expresión es **no redundante** si todos los d_j son incomparables en \leq .

Descomposición como suma de elementos \(\substaction \)-irreducibles no redundantes

Ejemplo

En D_{36} el elemento 18 se expresa de la forma:

$$18 = \sup(6,9) = \sup(\sup(2,3),9) = \sup(2,\sup(3,9))$$

$$18 = 6 \sqcup 9 = (2 \sqcup 3) \sqcup 9 = 2 \sqcup (3 \sqcup 9) = 2 \sqcup 9$$

Elementos Complementarios

Definición

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo acotado, y sean a, b $\in \mathcal{L}$. Se dice que a y b son complementarios (uno es el complemento del otro) si:

$$a \sqcup b = 1$$
 y $a \sqcap b = 0$

También se dice que b es complemento de a y que a es complemento de b.

En todo retículo acotado se verifica que 0 e 1 son complementarios.

Observación

En un retículo acotado un elemento $x \in \mathcal{L}$ puede no tener complemento, tener un único complemento o puede tener más de un complemento.

Elementos Complementarios

Ejemplos

- En el diamante
 - ▶ a y b son complementarios, ya que $a \sqcup b = 1$ y $a \sqcap b = 0$
 - ightharpoonup a y c son complementarios, ya que $a \sqcup c = 1$ y $a \sqcap c = 0$
 - Delta b y c son complementarios, ya que $b \sqcup c = 1$ y $b \sqcap c = 0$

diamante

pentágono

- En el pentágono:
 - ▶ a y c son complementarios, ya que $a \sqcup c = 1$ y $a \sqcap c = 0$
 - ▶ b y c son complementarios, ya que $b \sqcup c = 1$ y $b \sqcap c = 0$

Elementos Complementarios

Ejemplo

• En el retículo

- 0 y 1 son complementarios.
- ▶ a y c son complementarios, ya que a \sqcup c = 1 y a \sqcap c = 0.
- ▶ a y e son complementarios, ya que $a \sqcup e = 1$ y $a \sqcap e = 0$.
- ▶ d y c son complementarios, ya que $d \sqcup c = 1$ y $d \sqcap c = 0$.
- b no tiene complemento.

Retículos complementados

Definición

Un retículo $(\mathcal{L}, \sqcup, \sqcap)$ se llama **complementado** si cada elemento tiene al menos un complemento.

Ejemplo

• $(D_n, m.c.m., m.c.d.)$ es complementado para n = 6. Sin embargo no lo es para n = 12, ya que 2 no tiene complemento en D_{12} .

Teorema

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo distributivo y acotado con 0 y 1. Entonces cada elemento $a \in \mathcal{L}$ tiene a lo sumo un complemento.

Complemento de un elemento

Ejemplo

 $\left(\mathcal{F}(\mathbb{B}^2,\mathbb{B}),\leq
ight)$ es un retículo complementado.

En el retículo $\Big(\mathcal{F}(\mathbb{B}^2,\mathbb{B}),\leq\Big)$ cada elemento tiene un único complemento.

El complemento de la función $f: \mathbb{B}^2 \to \mathbb{B}$ es la función

$$\overline{f}: \mathbb{B}^2 \to \mathbb{B}$$

definida como

$$\overline{f}(x) = \begin{cases} 0, & \text{si} \quad f(x) = 1\\ 1, & \text{si} \quad f(x) = 0 \end{cases}$$

Operación complemento

Definición

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo complementado y distributivo y sea $x \in \mathcal{L}$.

El **complemento** del elemento $a \in \mathcal{L}$ es el único elemento $\overline{a} \in \mathcal{L}$ tal que

$$a \sqcup \overline{a} = 1$$
 y $a \sqcap \overline{a} = 0$

En todo retículo distributivo y complementado podemos definir una función de \mathcal{L} en sí mismo que asigna a cada elemento $a \in \mathcal{L}$ su complemento \overline{a} .

$$-$$
 : \mathcal{L} \rightarrow \mathcal{L} a \mapsto \overline{a}

Ejemplo

En $(\mathcal{P}(S), \cup, \cap)$ el complemento de cada $X \subseteq S$ es el conjunto $\overline{X} = S \setminus X$.

$$\begin{array}{cccc}
- & : & \mathcal{P}(S) & \to & \mathcal{P}(S) \\
X & \mapsto & \overline{X} = S \setminus X
\end{array}$$

Retículos de Boole

Definición

Se llama **retículo de Boole** a un retículo distributivo y complementado.

Ejemplo

• $\mathbb{B} = \{0,1\}$ con su orden habitual \leq es un retículo ordenado. Las operaciones \sqcup y \sqcap asociadas son las siguientes:

Se puede demostrar fácilmente que $(\mathbb{B},\sqcup,\sqcap)$ es un retículo distributivo y complementado.

Retículos de Boole

Propiedades

Un retículo de Boole es un conjunto con dos operaciones binarias \sqcup y \sqcap y una operación unaria — que verifica las propiedades que hemos visto. Además, se tiene:

Teorema

Sea $(\mathcal{L}, \sqcup, \sqcap, -)$ un retículo de Boole. Para todo a, $b \in \mathcal{L}$ se verifican las propiedades:

- De Morgan $(\overline{a \sqcup b}) = \overline{a} \sqcap \overline{b}$ $\overline{a \sqcap b} = \overline{a} \sqcup \overline{b}$

• Involución $\overline{a} = a$

A los retículos de Boole se les llama también álgebras de Boole.

Se usa el término retículo de Boole para hacer hincapié en el orden parcial subyacente, mientras que se usa álgebra de Boole cuando se quiere resaltar las operaciones algebraicas \sqcup , \sqcap y -.

Algebras de Boole

Definición algebraica

Definición

Sea A un conjunto no vacío con dos elementos distintos especiales, $0 \neq 1$, junto con dos operaciones binarias $+ y \cdot y$ una operación unaria -.

Se dice que $(A, +, \cdot, -, 0, 1)$ es un **álgebra de Boole** si para todo a, b, $c \in A$ se cumple:

Identidad:
$$a + 0 = a$$

$$a \cdot 1 = a$$

Conmutativa:
$$a+b = b+a$$

$$a \cdot b = b \cdot a$$

Distributiva:
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$
 $a \cdot (b + c) = a \cdot b + a \cdot c$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Complemento:
$$a + \overline{a} = 1$$

$$a + \overline{a} = 3$$

$$a \cdot \overline{a} = 0$$

Teorema

Todo retículo de Boole es un álgebra de Boole y viceversa.

Retículo/Álgebra de Boole

Listado de propiedades

1. Conmutativa :
$$a+b=b+a$$
 $a \cdot b=b \cdot a$
2. Asociativa : $a+(b+c)=(a+b)+c$ $(a \cdot b) \cdot c=a \cdot (b \cdot c)$
3. Absorción: $a+(a \cdot b)=a$ $a \cdot (a+b)=a$
4. Idempotencia : $a+a=a$ $a \cdot a=a$
5. Cotas : $a \leq b \iff a+b=b \iff a \cdot b=a$
6. Extremos $0, 1 \in \mathcal{A}$ $0 \leq a \leq 1$
7 Identidad: $0+a=a$ $a \cdot 1=a$
8 Dominancia $a+1=1$ $0 \cdot a=0$
9. Distributiva $a+(b \cdot c)=(a+b) \cdot (a+c)$ $a \cdot (b+c)=(a \cdot b) + (a \cdot c)$
10. Complemento : $a+\overline{a}=1$ $a \cdot \overline{a}=0$
11. DeMorgan $(\overline{a+b})=\overline{a} \cdot \overline{b}$ $\overline{a} \cdot b=\overline{a}+\overline{b}$

Isomorfismos de Álgebras de Boole

Definición

Un **isomorfismo** entre dos álgebras de Boole $(A, +, \cdot, -, 0_A, 1_A)$ y $(B, \lor, \land, -, 0_B, 1_B)$ es una función biyectiva $\phi \colon A \to B$ y tal que, para todo $a, b \in A$, verifica:

Teorema de representación

Lema

Sea $(A, +, \cdot, -, 0_A, 1_A)$ un álgebra de Boole finita. Si b es cualquier elemento distinto de cero en A, y a_1, a_2, \ldots, a_k son todos los átomos de A tales que $a_i \leq b$, entonces $b = a_1 + a_2 + \cdots + a_k$ de forma única.

• Del lema se deduce que hay una biyección, de hecho un isomorfismo, de (A, \preceq) en $(\mathcal{P}(S), \subseteq)$, donde S es el conjunto de átomos de A.

Teorema

Toda álgebra de Boole finita $(A,+,\cdot,-,0_A,1_A)$ es isomorfa al álgebra de Boole $(\mathcal{P}(S),\cup,\cap,-,\varnothing,S)$, donde S es el conjunto de átomos de A.

Corolario

Si $(A, +, \cdot, -, 0_A, 1_A)$ es un álgebra de Boole finita con n átomos, entonces A tiene 2^n elementos.

El álgebra de Boole \mathcal{F}_n

Definición

Se llama función booleana de n variables a una función $f: \mathbb{B}^n \to \mathbb{B}$. El conjunto de todas las funciones booleanas de n variables se denota \mathcal{F}_n , y tiene estructura de álgebra de Boole con las operaciones naturales.

Ejemplo

- Una función booleana de 3 variables es una función f(x, y, z) tal que vale 0 ó 1 para cada una de las 2^3 elecciones de x, y, z.
- Podemos pensar las variables como interruptores en una de las dos posiciones posibles. Como hay 8 formas de poner los interruptores y cada posición lleva a alguna de las dos salidas, dependiendo de la función, hay $2^{2^3} = 256$ funciones booleanas de 3 variables.
- En general, $|\mathcal{F}_n| = 2^{2^n}$.

El álgebra de Boole \mathcal{F}_2

$$\mathcal{F}_2 = \{f_j \colon \mathbb{B}^2 \to \mathbb{B}, \ j : 0, ..., 15\}$$

X	у	f_0	f_1	f_2	f ₃	f_4	f_5	f ₆	<i>f</i> ₇	f ₈	f ₉	f ₁₀	f_{11}	f_{12}	f ₁₃	f ₁₄	f ₁₅
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	0 1 0 1	1	1	1	1	1

Expresiones booleanas

Definición

Una expresión booleana sobre un álgebra de Boole $(A, +, \cdot, -, 0_A, 1_A)$ se define inductivamente de la siguiente manera:

- **[B]** Cualquier elemento de A y cualquier símbolo de variable x_1, x_2, \ldots, x_n son expresiones booleanas.
- [R] Si E_1 y E_2 son expresiones booleanas, entonces $E_1 + E_2$, $(E_1 \cdot E_2)$ y $\overline{E_1}$ son también expresiones booleanas.
 - \checkmark Las expresiones booleanas representan cálculos con elementos no específicos de una cierta álgebra de Boole \mathcal{A} .
 - ✓ Se pueden manipular usando las propiedades de las operaciones definidas en el álgebra de Boole correspondiente.

Expresiones booleanas

Definición

Se dice que dos expresiones booleanas son **equivalentes** si toman los mismos valores para las mismas asignaciones a las variables.

Ejemplo

Las expresiones booleanas $E_1(x) = \overline{x} \lor 5$ y $E_2(x) = (\overline{5 \lor x}) \lor \overline{6}$ definidas en $(D_{30}, \lor, \land, -)$ son equivalentes, ya que

	1	2	3	5	6	10	15	30
$E_1(x)$	30	15	10	30	5	15	10	5
$E_2(x)$	30	15	10	30	5	15	10	5

Expresiones booleanas / Funciones booleanas

 \triangleright En general, dada un álgebra de Boole $(\mathcal{A}, +, \cdot, -, 0_{\mathcal{A}}, 1_{\mathcal{A}})$, **no toda función** de \mathcal{A}^n en \mathcal{A} equivale a una expresión booleana sobre \mathcal{A} , aunque . . .

Teorema

Toda función $f: \mathbb{B}^n \to \mathbb{B}$ se puede especificar mediante una expresión booleana.

Ejemplo

La función $f: \mathbb{B}^3 \to \mathbb{B}$ dada en la tabla se corresponde con las expresiones lógicas que la siguen:

$$egin{array}{c|cccc} f(0,0,0) = 1 & f(1,0,0) = 0 \\ f(0,0,1) = 0 & f(1,0,1) = 0 \\ f(0,1,0) = 1 & f(1,1,0) = 0 \\ f(0,1,1) = 0 & f(1,1,1) = 1 \\ \hline \end{array}$$

$$(x_1 + x_2 + \overline{x}_3) \cdot (x_1 + \overline{x}_2 + \overline{x}_3) \cdot (\overline{x}_1 + x_2 + x_3) \cdot (\overline{x}_1 + x_2 + \overline{x}_3) \cdot (\overline{x}_1 + \overline{x}_2 + x_3)$$
$$(\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3) + (\overline{x}_1 \cdot x_2 \cdot \overline{x}_3) + (x_1 \cdot x_2 \cdot x_3)$$

Expresiones booleanas / Funciones booleanas

Definiciones

- Las expresiones booleanas que constan de una única variable o su complemento se llaman literales.
- Un **minitérmino** es de la forma $y_1 \cdot y_2 \cdot \ldots \cdot y_n$, donde usamos y_j para denotar x_j o bien \overline{x}_j .
- Un **maxitérmino** es de la forma $y_1 + y_2 + \cdots + y_n$, donde usamos y_j para denotar x_j o bien \overline{x}_j .
- Una expresión booleana está en:
 - forma normal disyuntiva si es una suma de minitérminos.
 - forma normal conjuntiva si es un producto de maxitérminos.