Math 733 - Fall 2020

Homework 1

Due: 09/13, 10pm

Zijie Zhang

September 11, 2020

1. *Proof.* We noticed that $A \circ B = (A \cup B) \setminus (A \cap B)$. So it gives

$$B \circ C \cup A \circ C = (A \cup B \cup C) \setminus (A \cap B \cap C)$$

this means

$$B \circ C \cup A \circ C \supset A \circ B$$

thus

$$\mathbf{P}(B \circ C \cup A \circ C) \geqslant \mathbf{P}(A \circ B)$$

we know

$$\mathbf{P}(B \circ C) + \mathbf{P}(A \circ C) \geqslant \mathbf{P}(B \circ C \cup A \circ C)$$

so, we proved

$$\mathbf{P}(A \circ B) \leqslant \mathbf{P}(B \circ C) + \mathbf{P}(A \circ C)$$

- 2. Proof. \mathcal{F} is a σ -algebra satisfy
 - (i) if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
 - (ii) if $A_i \in \mathcal{F}$ is countable sequence of sets, then $\bigcup_i A_i \in \mathcal{F}$.

On the other hand, the measure P is a nonnegative countably additive set function.

- (i) $\mathbf{P}(A) = 0$ if A is countable, which means A^c is not countable, $\mathbf{P}(A^c) = 1$. $\mathbf{P}(A) \ge \emptyset = 0$ for all $A \in \mathcal{F}$, \emptyset is countable.
- (ii) if $A_i \in \mathcal{F}$ is countable sequence of disjoint sets, then $\mathbf{P}(A_i) = 0$ and $\cup_i A_i$ is countable. So, $\mathbf{P}(\cup_i A_i) = \sum_i \mathbf{P}(A_i)$

 \emptyset is countable, so $\mathbf{P}(\mathbb{R}) = 1$.

- $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space.
- 3. Proof. Let

$$B_{1} = A_{1} - A_{2} \cup A_{3} \cup \cdots \cup A_{n}$$

$$B_{2} = A_{2} - A_{1} \cup A_{3} \cup \cdots \cup A_{n}$$

$$\cdots$$

$$B_{n} = A_{n} - A_{1} \cup A_{2} \cup \cdots \cup A_{n-1}$$

$$B_{n+1} = A_{1} \cap A_{2} - A_{3} \cup A_{4} \cup \cdots \cup A_{n}$$

$$\cdots$$

$$B_{n+\binom{n}{2}+1} = A_{1} \cap A_{2} \cap A_{3} - A_{4} \cup A_{5} \cup \cdots \cup A_{n}$$

$$\cdots$$

$$B_{2^{n}-1} = A_{1} \cap A_{2} \cap \cdots A_{n}$$

$$B_{2^{n}} = \Omega - A_{1} \cup A_{2} \cup \cdots \cup A_{n}$$

1

So, the σ -field generated by $\{A_1, \dots, A_n\}$ is exactly the set of finite unions of the sets B_i .

- 4. *Proof.* By the definition of σ -field.
 - (i) If $A \in \cap_{j \in J} \mathcal{F}_j$, we know $A \in \mathcal{F}_j$ for all $j \in J$. Thus $A^c \in \mathcal{F}_j$ for all $j \in J$, then we have $A^c \in \cap_{j \in J} \mathcal{F}_j$.
 - (ii) If $A_i \in \cap_{j \in J} \mathcal{F}_j$ is a countable sequence sets, then $A_i \in \mathcal{F}_j$ for all $j \in J$. We have $\cup_i A_i \in \mathcal{F}_j$ for all $j \in J$, thus $\cup_i A_i \in \cap_{j \in J} \mathcal{F}_j$.

So, $\cap_{j\in J}\mathcal{F}_j$ is also a sigma-field.

5. Proof. Let $\Omega = \mathbb{R}[0,1]$, \mathcal{F} is the σ -algebra.

 $\mathbf{P}(A)$ is the measure of the set A.

P is Lebesgue measure.

Let
$$X = (\mathbb{R} - \mathbb{Q}) \cap \Omega$$
.

X = q is null set, so $\mathbf{P}(X = q) = 0$.

Let $A_i \in \mathbb{Q}[0,1]$ is a countable sequence of disjoint sets. By the definition, we know $\mathbf{P}(\mathbb{Q}[0,1]) = \mathbf{P}(\cup_i A_i) = \sum_i \mathbf{P}(A_i) = 0$. So $\mathbf{P}(X \text{is irrational}) = 1 - \mathbf{P}(\mathbb{Q}[0,1]) = 1$.

6. Proof. Set A_k as event "the coin flips $k, k+1, \cdots, 2k$ are all heads.".

$$\mathbf{P}(A_k) = \frac{1}{2^{k+1}}$$

Set M as event "there will be no integer n so that the coin flips $n, n+1, \dots, 2n$ are all heads.".

$$\mathbf{P}(M^c) \leqslant \sum_{k=1}^{\infty} \mathbf{P}(A_k)$$
$$= \frac{1}{2}$$

$$\mathbf{P}(M) = 1 - \mathbf{P}(M^c) \geqslant \frac{1}{2}$$

So we get the positive lower bound.