Lógica y Computabilidad

Práctica 3: Funciones no-computables y conjuntos C.E.

2do cuatrimestre 2022

Ejercicio 1

a)

$$f_1(x,y) = \begin{cases} 1 & \text{si } \Phi_x^{(1)}(y) \downarrow \\ 0 & \text{si no} \end{cases}$$

Suponemos que f_1 es computable, y por lo tanto existe un programa P_1 que la computa.

Definimos
$$g(x) = f_1(x, x) = \begin{cases} 1 & \text{si } \Phi_x^{(1)}(x) \downarrow \\ 0 & \text{si no} \end{cases}$$

Sea Q un programa que computa g:

$$X_2 \leftarrow X_1$$
 (macro computable) P_1

Como asumimos que f_1 es computable, g también lo es pues f_1 computable $\Rightarrow g$ computable.

Definimos ahora un programa Q' tal que $\Psi_{Q'}(x) = \begin{cases} 0 & \text{si } \Phi_x^{(1)}(x) \uparrow \\ \uparrow & \text{si no} \end{cases}$

$$Q \\ [\mathtt{R}] \ \mathtt{IF} \ Y \ \neq \ \mathtt{O} \ \mathtt{GOTO} \ \mathtt{R}$$

Veamos que
$$\forall x: \Phi_{\#(Q')}^{(1)}(x) \downarrow \iff \Psi_{Q'}(x) \downarrow \iff \Psi_{Q}(x) = 0 \iff g(x) = 0 \iff \Phi_{x}^{(1)}(x) \uparrow$$

Se
a
$$e=\#(Q')$$
y tomando $x=e$ vemos que
: $\Phi_e^{(1)}(e)\downarrow \iff \Phi_e^{(1)}(e)\uparrow$ Absurdo

Llegamos al absurdo por suponer que f_1 era computable. Por lo tanto, f_1 no es computable.

b)

$$f_2(x,y) = \begin{cases} 1 & \text{si } \Phi_x^{(1)}(y) = 0 \\ 0 & \text{si no} \end{cases}$$

Suponemos que f_2 es computable, y por lo tanto existe un programa P_2 que la computa.

Definimos
$$g(x) = f_2(x, x) = \begin{cases} 1 & \text{si } \Phi_x^{(1)}(x) = 0 \\ 0 & \text{si no} \end{cases}$$

Sea Q un programa que computa g:

$$X_2 \leftarrow X_1$$
 (macro computable) P_2

Como asumimos que f_2 es computable, g también lo es pues f_2 computable $\Rightarrow g$ computable.

Definimos ahora un programa Q' tal que $\Psi_{Q'}(x) = \begin{cases} 0 & \text{si } \Phi_x^{(1)}(x) > 0 \lor \Phi_x^{(1)}(x) \uparrow \\ \uparrow & \text{si no} \end{cases}$

Veamos que $\forall x: \Phi_{\#(Q')}^{(1)}(x) \downarrow \iff \Psi_{Q'}(x) \downarrow \iff \Psi_{Q}(x) = 0 \iff g(x) = 0 \iff \Phi_x^{(1)}(x) > 0 \lor \Phi_x^{(1)}(x) \uparrow$

Sea e=#(Q') y tomando x=e vemos que: $\Phi_e^{(1)}(e)\downarrow\iff\Phi_e^{(1)}(e)>0\lor\Phi_e^{(1)}(e)\uparrow$

Analizamos cada caso:

- $\bullet \Phi_e^{(1)}(e) \downarrow \iff \Phi_e^{(1)}(e) > 0 \text{ Absurdo pues } \Phi_e^{(1)}(e) \downarrow \iff \Phi_e^{(1)}(e) = 0 \text{ (por definición)}$
- $\Phi_e^{(1)}(e) \downarrow \iff \Phi_e^{(1)}(e) \uparrow \text{Absurdo}$

Llegamos al absurdo por suponer que f_2 era computable. Por lo tanto, f_2 no es computable.

c)

$$f_3(x, y, z) = \begin{cases} 1 & \text{si } \Phi_x^{(1)}(y) \downarrow \land \Phi_x^{(1)}(y) > z \\ 0 & \text{si no} \end{cases}$$

Suponemos que f_3 es computable, y por lo tanto existe un programa P_3 que la computa.

Definimos
$$g(x) = f_3(x, x, 0) = \begin{cases} 1 & \text{si } \Phi_x^{(1)}(x) \downarrow \land \Phi_x^{(1)}(x) > 0 \\ 0 & \text{si no} \end{cases}$$

Sea Q un programa que computa g:

$$X_2 \leftarrow X_1$$
 (macro computable)
 $X_3 \leftarrow 0$ (macro computable)
 P_3

Como asumimos que f_3 es computable, g también lo es pues f_3 computable $\Rightarrow g$ computable.

Definimos ahora un programa Q' tal que $\Psi_{Q'}(x) = \begin{cases} 1 & \text{si } \Phi_x^{(1)}(x) \uparrow \lor \Phi_x^{(1)}(x) = 0 \\ \uparrow & \text{si no} \end{cases}$

$$\begin{array}{c} Q \\ [{\tt R}] \ \ {\tt IF} \ \ Y \ \neq \ {\tt O} \ \ {\tt GOTO} \ \ {\tt R} \\ Y \leftarrow 1 \ \ ({\tt macro \ computable}) \end{array}$$

$$\text{Veamos que } \forall x: \Phi_{\#(Q')}^{(1)}(x) \downarrow \iff \Psi_{Q'}(x) \downarrow \iff \Psi_{Q}(x) = 0 \iff g(x) = 0 \iff \Phi_{x}^{(1)}(x) \uparrow \vee \Phi_{x}^{(1)}(x) = 0$$

Sea
$$e=\#(Q')$$
 y tomando $x=e$ vemos que: $\Phi_e^{(1)}(e)\downarrow\iff\Phi_e^{(1)}(e)\uparrow\vee\Phi_e^{(1)}(e)=0$

Analizamos cada caso:

- $\bullet \ \Phi_e^{(1)}(e) \downarrow \iff \Phi_e^{(1)}(e) = 0 \text{ Absurdo pues } \Phi_e^{(1)}(e) \downarrow \iff \Phi_e^{(1)}(e) = 1 \text{ (por definición)}$
- $\Phi_e^{(1)}(e) \downarrow \iff \Phi_e^{(1)}(e) \uparrow \text{Absurdo}$

Llegamos al absurdo por suponer que f_3 era computable. Por lo tanto, f_3 no es computable.

d)

$$f_4(x) = \begin{cases} 1 & \text{si } \Phi_x^{(1)}(x) \downarrow \land \Phi_x^{(1)}(x) \neq x \\ 0 & \text{si no} \end{cases}$$

Suponemos que f_4 es computable, y por lo tanto existe un programa P_4 que la computa.

Definimos ahora un programa
$$Q$$
 tal que $\Psi_Q(x) = \begin{cases} 0 & \text{si } \Phi_x^{(1)}(x) \uparrow \lor \Phi_x^{(1)}(x) = x \\ \uparrow & \text{si no} \end{cases}$

Veamos que
$$\forall x: \Phi_{\#(Q)}^{(1)}(x) \downarrow \iff \Psi_{P_4}(x) = 0 \iff f_4(x) = 0 \iff \Phi_x^{(1)}(x) \uparrow \vee \Phi_x^{(1)}(x) = x$$

Sea
$$e=\#(Q)$$
 y tomando $x=e$ vemos que: $\Phi_e^{(1)}(e)\downarrow\iff\Phi_e^{(1)}(e)\uparrow\lor\Phi_e^{(1)}(e)=e$

Analizamos cada caso:

- $\bullet \ \Phi_e^{(1)}(e) \downarrow \iff \Phi_e^{(1)}(e) = e \text{ Absurdo pues } \Phi_e^{(1)}(e) \downarrow \iff \Phi_e^{(1)}(e) = 0 \neq e \text{ pues } Q \text{ no es el programa vacío}$
- $\Phi_e^{(1)}(e) \downarrow \iff \Phi_e^{(1)}(e) \uparrow \text{Absurdo}$

Llegamos al absurdo por suponer que f_4 era computable. Por lo tanto, f_4 no es computable.