環論 (第3回)

3. 部分環

今回は「部分環」の概念を説明する. また例として、代数体の整環を取り上げる.

定義 3-1.

可換環 A の部分集合 B ($1_A \in B$) が A と同じ演算で環となるとき, B を A **の部分環**と言う.

例えば、 \mathbb{Z} 、 \mathbb{Q} 、 \mathbb{R} は \mathbb{C} と同じ演算で環をなすので \mathbb{C} の部分環である.

定理 3-1 (部分環の判定法)

可換環 A の部分集合 B が次の (i), (ii), (iii) を満たすとき, B は A の部分環となる.

- (i) $x, y \in B \Rightarrow x y \in B$.
- (ii) $x, y \in B \Rightarrow x \cdot y \in B$.
- (iii) $1_A \in B$.

[証明]

 $1_A \in B$ より, 条件 (i) から

$$0_A = 1_A - 1_A \in B.$$

次に B上で + が定義できることを確認する. $x, y \in B$ とする. $0_A, y \in B$ なので

$$-y = 0_A - y \in B.$$

従って

$$x + y = x - (-y) \in B.$$

これで B に A の演算で足し算と掛け算が定義できることが分かった.また $B \subseteq A$ に注意すると,B のこの演算は定義 1-1 の条件を全て満たすことが分かる.よって B は A の部分環になる.

[補足] 可換環 A とその部分環 B を考える.

- (1) $0_B = 0_A$, $1_B = 1_A$ である.
- (2) A が整域ならば, B も整域である.
- (3) A が体でも, B が体とは言えない. 例えば, $\mathbb C$ は体だが, $\mathbb Z$ は体ではない.

例題 3-1

例題 1-1 の可換環 $A = \{(a,b) \mid a,b \in \mathbb{R}\}$ を考える. 演算は

$$(a,b) + (c,d) \stackrel{\text{def}}{=} (a+c,b+d),$$

 $(a,b) \cdot (c,d) \stackrel{\text{def}}{=} (ac,ad+bc).$

で定義され, $0_A=(0,0), \quad 1_A=(1,0).$ また $B=\{(a,0)\mid a\in\mathbb{R}\}$ とする. このとき, B が A の部分環であることを示せ.

[証明]

定理 3-1 の (i)-(iii) の条件をそれぞれ確認すればよい.

(i) $(a,0), (b,0) \in B (a, b \in \mathbb{R})$ とする.

$$(a,0) - (b,0) = (a-b,0) \in B. \ (\because a-b \in \mathbb{R})$$

(ii) $(a,0), (b,0) \in B (a, b \in \mathbb{R})$ とする.

$$(a,0) \cdot (b,0) = (ab, a \times 0 + 0 \times b) = (ab,0) \in B. \quad (\because ab \in \mathbb{R})$$

以上より B は A の部分環である.

問題 3-1 ℃ の部分集合を

$$A = \left\{ \begin{array}{l} \frac{n}{2^k} & \left| \ n, k \in \mathbb{Z}, \ k \ge 0 \right. \right\} \end{array} \right.$$

で定める. 定理 3-1 の (i), (ii), (iii) の条件をチェックし, A が C の部分環であることを示せ.

定理 3-2

 $\sqrt{n} \notin \mathbb{Q}$ を満たす整数 n に対して,

$$A = \{a + b\sqrt{n} \mid a, b \in \mathbb{Z}\}\$$

と置く. また、

$$x = a + b\sqrt{n}, \ y = c + d\sqrt{n} \in A \ (a, b, c, d \in \mathbb{Z})$$

とする. このとき, 次が成り立つ.

- $(1) x = y \Rightarrow (a, b) = (c, d).$
- (2) Aは Cの部分環.
- (3) 写像 $N: A \to \mathbb{Z}$ $(a+b\sqrt{n} \mapsto a^2-nb^2)$ に対し、次が成り立つ.

$$N(xy) = N(x)N(y) \quad (x, y \in A).$$

 $(4) \ x \in A^{\times} \iff N(x) = \pm 1.$

※ 上述の A は代数体の整環の一例であり、整数論の重要な研究対象である. n=-1 の場合を考えると、

$$A = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\}\$$

となる. この環はガウス整数環と呼ばれ、フェルマーの最終定理の n=4 の場合「 $x^4+y^4=z^4$ は自然数解 (x,y,z) を持たない」の証明に応用を持つ. 詳しくは「素数と 2 次数体の整数論 (青木 昇著)」を参照のこと.

[証明]

(1) x = y とする. $b \neq d$ と仮定すると,

$$\sqrt{n} = \frac{a-c}{d-b} \in \mathbb{Q}$$

となり矛盾. 従って b = d であり, (a, b) = (c, d) が言える.

(2) 定理 3-1 の部分環の条件を確認すればよい.

(i)
$$x-y=(a-c)+(b-d)\sqrt{n}$$
 Then \emptyset , $a-c$, $b-d\in\mathbb{Z}$ \mathbb{X} \mathbb{Y} , $x-y\in A$.

- (ii) $xy = ac + bdn + (ad + bc)\sqrt{n}$ \tilde{c} \tilde{b} \tilde{b} , $ac + bdn \in \mathbb{Z}$, $ad + bc \in \mathbb{Z}$ \tilde{b} \tilde{b} , $xy \in A$.
- (iii) $1 = 1 + 0 \cdot \sqrt{n} \in A$.

以上より, A は \mathbb{C} の部分環である.

(3) について.

$$N(xy) = N(ac + bdn + (ad + bc)\sqrt{n})$$

$$= (ac + bdn)^{2} - n(ad + bc)^{2}$$

$$= (a^{2} - nb^{2})(c^{2} - nd^{2})$$

$$= N(x)N(y).$$

(4) $x \in A^{\times}$ のとき, xz = 1 を満たす $z \in A$ がある. よって

$$N(x)N(z) = N(xz) = 1.$$

N(x), N(y) は整数なので, $N(x) = \pm 1$.

逆に $N(x) = \pm 1$ とする. $z = a - b\sqrt{n} \in A$ とおくと,

$$xz = a^2 - nb^2 = N(x) = \pm 1.$$

よって xz = 1 または x(-z) = 1. 従って $x \in A^{\times}$.

例題 3-2.

ℂの部分環

$$A = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\}\$$

を考える. このとき, 次を示せ.

$$A^{\times} = \{\pm 1, \pm \sqrt{-1}\}.$$

[証明]

 $x = a + b\sqrt{-1} \ (a, b \in \mathbb{Z})$ とおく. 定理 3-2 より,

$$x \in A^{\times} \iff N(x) = \pm 1 \iff a^2 + b^2 = \pm 1.$$

$$x \in A^{\times} \iff a^2 + b^2 = 1 \iff (a,b) = (\pm 1,0), \ (0,\pm 1) \iff x = \pm 1, \ \pm \sqrt{-1}.$$

よって結論を得る.

問題 3-2

(1) ℂの部分環

$$A = \{a + b\sqrt{-2} \mid a, b \in \mathbb{Z}\}\$$

を考える. このとき, A× を求めよ.

(2) C の部分環

$$A = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}\$$

を考える. $3+2\sqrt{2}\in A^{\times}$ を示し、さらに $|A^{\times}|=\infty$ を示せ.

例題 3-3.

ℂの任意の部分環は ℤを含むことを示せ.

※ これは、 \mathbb{Z} が \mathbb{C} に含まれる最小の部分環であることを意味する.

[証明]

A を $\mathbb C$ の部分環とする. $1 \in A$ より, 自然数 n に対して,

$$n = \underbrace{1 + 1 + \dots + 1}_{n \text{ 4M}} \in A.$$

よって $\mathbb{N}\subseteq A$. また

$$0=1-1\in A.$$

最後に負の整数 m に対し, 0, $|m| \in A$ より

$$m=0-|m|\in A.$$

よって $\mathbb{Z}\subseteq A$.