Problem solving seminar Homework II

Instructions

- 1. Work independently.
- 2. There is no time limit, so do not rush.
- 3. Do not use any books, notes, nor calculators.
- 4. Bring your solutions to the class on 29th January [sign with name (or nickname/code known only to you if you do not want your name to be put on the score sheet) + email using CAPITAL letters, preferably each question on an individual sheet].

Good luck!

Tomasz Tkocz

Problems

- **1.** Given $\alpha > 0$ find inf and sup of $\int_0^1 x f(x) dx$ subject to integrable functions $f: [0,1] \longrightarrow [0,\infty)$ with $\int_0^1 f(x) dx = \alpha$.
- **2.** Let $\phi: [0, \infty) \longrightarrow \mathbb{R}$ be a convex function and $\phi(0) = 0$, $\phi(x) \xrightarrow[x \to +\infty]{} +\infty$. Prove that for every integer $n \ge 0$,

$$\int_0^\infty t^n e^{-\phi(t)} dt \le n! \left(\int_0^\infty e^{-\phi(t)} dt \right)^{n+1}.$$

3. Let $f: [0,1] \longrightarrow [0,\infty)$ be a nonincreasing concave function such that f(0) = 1. Prove that for every integer $n \geq 3$,

$$\frac{n-1}{n} \left(\int_0^1 f(x)^{n-2} dx \right)^2 \ge \int_0^1 x f(x)^{n-2} dx.$$