We claim:

- 1. A method of modulating insulin activity in mammalian cells, said method comprising administering to said cells an amino acid sequence which binds IR and comprises the amino acid sequence X₁X₂X₃X₄X₅, wherein X₁, X₂, X₄, and X₅ are aromatic amino acids, and X₃ is any polar amino acid.
- 2. The method according to claim 1 wherein X_1 , X_2 , and X_5 are selected from the group consisting of phenylalanine and tyrosine, X_3 is selected from the group consisting of aspartic acid, glutamic acid, glycine and serine, and X_4 is selected from group consisting of tryptophan, tyrosine and phenylalanine.
- The method according to claim 2 wherein said amino acid sequence is an insulin agonist.
 - 4. The method according to claim 2 wherein said amino acid sequence is an insulin antagonist.
- The method according to claim either one of claims 3 or 4 wherein X₁ and
 X₅ are phenylalanine and X₂ is tyrosine.
 - 6. The method according to claim 5 wherein X_4 is tryptophan.
 - 7. The method according to claim 6 wherein the amino acid sequence is an insulin agonist and X₃ is selected from the group consisting of aspartic acid and glutamic acid.
- 20 8. The method according to claim 7 wherein X₃ is aspartic acid to result in an amino acid sequence comprising FYDWF.

- 9. The method according to claim 7 wherein X₃ is glutamic acid to result in an amino acid sequence comprising FYEWF.
- 10. The method according to claim 1 wherein the amino acid sequence FHEN is bound to the amino terminal of X₁X₂X₃X₄X₅ to produce an amino acid sequence comprising FHENX₁X₂X₃X₄X₅ and possessing insulin agonist activity.
- 11. The method according to claim 10 wherein the amino acid sequence is FHENFYDWF.
- The method according to claim 1 wherein the amino acid sequence

 X₁X₂X₃X₄X₅ further comprises the amino acid sequence X₉₃ X₉₄ X₉₅ X₉₆ X₉₇

 located at the carboxy terminal end adjacent to X₅, wherein X₉₃, X₉₄ and X₉₇

 may be any amino acid, X₉₅ is selected from the group consisting of glutamine, glutamic acid, alanine and lysine, and X₉₆ is a hydrophobic or aliphatic amino acid.
- The method according to claim 12 wherein X₉₃ is selected from the group consisting of alanine, aspartic acid, glutamic acid, arginine, and valine, X₉₅ is glutamine or glutamic acid, and X₉₆ is selected from the group consisting of leucine, isoleucine, valine and tryptophan.
 - 14. The method according to claim 13 wherein X_{96} is leucine or tryptophan.
- 20 15. The method according to claim 14 wherein X_{96} is leucine.
 - 16. The method according to claim 13 wherein X₉₅ is glutamine or glutamic acid, and X₉₆ is tryptophan.

- 17. The method according to claim 13 wherein X₉₅ is glutamic acid and the amino acid sequence is an insulin agonist.
- 18. The method according to claim 13 wherein asparagine is present as the amino acid bound to the amino terminal of X_1 and wherein $X_1X_2X_3X_4X_5X_{93}$ is FYDWFV
- 19. The method according to claim 1 wherein the amino acid sequence is selected from the group of amino acid sequences listed in Figures 1, 2, and 9.
- The method according to claim 1 wherein the sequence is selected from the group consisting of FHENFYDWFVRQVSK,

 DYKDVTFTSAVFHENFYDWFVRQVSKK,

 GRVDWLQRNANFYDWFVAELG and APTFYAWFNOOT.
 - 21. The method according to claim 1 wherein the sequence is selected from the group consisting of
- 15 FHENFYDWFVRQVAKK-NH₂
 FHENFYDWFVRQASKK-NH₂
 FHENFYDWFVRAVSKK-NH₂
 FHENFYDWFVAQVSKK-NH₂
 FHENFYDWFARQVSKK-NH₂
 20 FHEAFYDWFVRQVSKK-NH₂
 FHANFYDWFVRQVSKK-NH₂
 FAENFYDWFVRQVSKK-NH₂

fhenfydwfvrqvskk

AHENFYDWFVRQVSKK-NH2

25 EFHENFYDWFVRQVSEE FHENFYGWFVRQVSKK HETFYSMIRSLAK SDGFYNAIELLS SLNFYDALQLLAKK

30 HDPFYSMMKSLLK

NSFYEALRMLSSK HPTSKEIYAKLLK **HPSTNQMLMKLFK HPPLSELKLFLIKK** 5 HAPLSVLVQALLKK **HPSLSDMRWILLK** WSDFYSYFQGLD D117-Dap(D117) **SSNFYQALMLLS** 10 D117-Dap(CO- CH_2 -O- $NH_2)$ HENFYGWFVRQVSKK D117-Lys(D117) D117-b-Ala-Lys(D117) D117-b-Ala-Dap(b-Ala-D117) 15 D117-Gly-Lys(Gly-D117) D117-b-Ala-Lys(b-Ala-D117) D117-Dab(D117) D117-Om(D117) D117-Dap(b-Ala-D117) 20 D117-b-Ala-Orn(b-Ala-D117) 1-(Thia-b-Ala-D117)₂ **FHENFYDWFVRQVS FHENFYDWFVRQVSK FHENFYDWFVOVSK** 25 **FHENFYDWFVVSK FHENFYDWFVSK FHENFYDWFVK** FYDWF-NH₂ FYDWFKK-NH₂ 30 AFYDWFAKK-NH₂ AAAAFYDWFAAAAAKK-NH2 $(D117)_2-12$ (Cys-Gly-D117)₂ Cys-Gly-D117 35 $(D117)_2-14$ LDALDRLMRYFEERPSL-NH₂ PLAELWAYFEHSEQGRSSAH-NH₂ GRVDWLQRNANFYDWFVAELG-NH₂ NGVERAGTGDNFYDWFVAQLH-NH₂ 40 EHWNTVDPFYFTLFEWLRESG-NH₂ EHWNTVDPFYQYFSELLRESG-NH₂ QSDSGTVHDRFYGWFRDTWAS-NH2 AFYDWFAK-NH₂

	AFYDWFA-NH ₂
	AFYDWF-NH ₂
	FYDWDA-NH ₂
	Ac-FYDWF-NH ₂
5	Lig-FHENFYDWFVRQVSKK
	Lig-GGGFHENFYDWFVRQVSKK
	FHENFYDWFVRQVSKKGGG-Lig
	Lig-CAWPTYWNCG
	ACAWPTYWNCG-Lig
10	ACAWPTYWNCGGGG-Lig
	Lig-SDGFYNAIELLS
	SDGFYNAIELLS-Lig
	SDGFYNAIELLSGGG-Lig
	KHLCVLEELFWGASLFGYCSGKK-Lig
15	AFYDWFAKK-Lig
	AFYEWFAKK-NH ₂
	AFYGWFAKK-NH2
	AFYKWFAKK-NH2
	(SDGFYNAIELLS-Lig) ₂ -14
20	(AFYDWFAKK-Lig) ₂ - <u>14</u>
	FHENAYDWFVRQVSKK
	FHENFADWFVRQVSKK
	FHENFYAWFVRQVSKK
	FHENFYDAFVRQVSKK
25	FHENFTDWAVRQVSKK
	FQSLLEELVWGAPLFRYGTG
	PLCVLEELFWGASLFGQCSG
	QLEEEWAGVQCEVYGRECPS
	Cys-(Gly) ₂ -D117
30	$(Cys-(Gly)_2-Dl17)_2$
	(S210)- <u>14</u> -(S212)
	(S131)- <u>14</u> -(S212)
	(\$205) ₂ - <u>14</u>
	(S204) ₂ - <u>14</u>
35	(\$131)- <u>14</u> -(\$210)
	RVDWLQRNANFYDWFVAELG
	VDWLQRNANFYDWFVAELG
	DWLQRNANFYDWFVAELG
	WLQRNANFYDWFVAELG
40	LQRNANFYDWFVAELG
	QRNANFYDWFVAELG
	RNANFYDWFVAELG
	NANFYDWFVAELG

ANFYDWFVAELG **NFYDWFVAELG GRVDWLQRNANFYDWFVAELG-Lig** Lig-GRVDWLQRNANFYDWFVAELG 5 (S208)-<u>14</u>-(S131) (S208)-<u>14</u>-(S209) GRVDWLQRNANFYDWFVAEL **GRVDWLQRNANFYDWFVAE GRVDWLQRNANFYDWFVA** 10 GRVDWLQRNANFYDWFV 14-(SDGFYNAIELLS-Lig)₂ (GRVDWLQRNANFYDWFVAELG)-14 14-(GRVDWLQRNANFYDWFVAE LG) (SDGFYNAIELLSGGG)₂-14 15 H-Acy-CLEE-w-GASL-Tic-QCSG-NH₂ RWPNFYGYFESLLTHFS-NH₂ HYNAFYEYFQVLLAETW-NH2 EGWDFYSYFSGLLASVT-NH₂ LDRQFYRYFQDLLVGFM-NH₂ 20 WGRSFYRYFETLLAQGI-NH2 PLCFLQELFGGASLGGYCSG-NH₂ WLEQERAWIWCEIQGSGCRA-NH₂ IQGWEPFYGWFDDVVAQMFEE-NH₂ TGHRLGLDEQFYWWFRDALSG-NH₂ 25 H-Abu-CLEE-w-GASL-Tic-QCSG-NH₂ 14-(Dap-CAWPTYWNCG)₂ RDHypFYDWFDDi-NH2 S131-14-S209 S294-<u>14</u>-S210 30 S295-14-S210 S294-<u>14</u>-204 S295-<u>14</u>-S204 GFREGQRWYWFVAQVT-NH2 VASGHVLHGQFYRWFVDQFALEE-NH2 35 VGDFCVSHDCFYGWFLRESMQ-NH2 DLRVLCELFGGAYVLGYCSE-NH2 HLSVGEELSWWVALLGQWAR-NH₂ APVSTEELRWGALLFGQWAG-NH₂ ALEEWAWVQVRSIRSGLPL-NH2 40 WLEHEWAQIQCELYGRGCTY-NH₂

AAVHEQFYDWFADQYEE-NH₂ QAPSNFYDWFVREWDEE-NH₂ QSFYDYIEELLGGEWKK-NH₂ DPFYQGLWEWLRESGEE-NH₂

 $(S204)_2-7$

 $(S204)_2-9$

 $(S204)_2-12$

5 (\$204)₂-<u>13</u>

DWLQRNANFYDWFVAEL-Lig Lig-DWLQRNANFYDWFVAEL

(S209)₂-<u>9</u>

 $(S210)_2-9$

10 LigKHLCVLEELFWGASLFGYCSGKKKK KHLCVLEELFWGASLFGYCSGKKKK-Lig

(S294)₂-<u>14</u>

 $(S295)_2-14$

S-D-G-F-Y-N-A-Acy-E-L-L-S

15 S-G-P-F-Y-E-E-Acy-E-L-L-W-Aib G-G-S-F-Y-D-D-Acy-E-Aib-L-W-Aib N-Aib-P-F-Y-D-E-Acy-D-E-Cha-W-Aib GRVDWLQRNANFYDWFVAEAcyG-NH₂

and wherein underlined numbers represent a linker as defined in Table 18.

- 20 22. The method according to claim 2 wherein the amino acid sequence binds to the insulin receptor with an affinity of at least about 10⁻⁵ M.
 - The method according to claim 22 wherein the affinity is at least about 10⁻⁷
 M.
- The method according to claim 23 wherein the affinity is at least about 10⁻⁹

 M.
 - 25. An amino acid sequence comprising X₁X₂X₃X₄X₅ wherein X₁, X₂, X₄, and X₅ are aromatic amino acids, X₃ is any polar amino acid, and wherein said amino acid sequence binds to IGF-1R.
- The amino acid sequence according to claim 25 wherein the IGF-1R binding occurs with an affinity (K_d) of at least about 10⁻⁵ M.

- 27. The amino acid sequence according to claim 25 wherein the binding occurs at an affinity (K_d) of at least about 10⁻⁷ M.
- The amino acid sequence according to claim 25 wherein X₁, X₂, and X₅ are selected from the group consisting of phenylalanine and tyrosine, X₃ is
 selected from the group consisting of aspartic acid, glutamic acid, glycine and serine, and X₄ is selected from group consisting of tryptohpan, tyrosine and phyenylalanine.
 - 29. The amino acid sequence according to claim 28 wherein X₃ is selected from the group consisting of aspartic acid and glutamic acid.
- 10 30. The amino acid sequence according to claim 29 wherein X₁ and X₅ are phyenylalanine and X₂ is tyrosine.
 - 31. The amino acid sequence according to claim 29 wherein X₄ is tryptophan.
 - 32. The amino acid sequence according to claim 31 wherein X₃ is aspartic acid to result in an amino acid sequence comprising FYDWF.
- 15 33. The amino acid sequence according to claim 31 wherein X₃ is glutamic acid to result in an amino acid sequence comprising FYEWF.
 - 34. The amino acid sequence according to claim 28 wherein the amino acid sequence FHEN is bound to the amino terminal of X₁X₂X₃X₄X₅ to produce an amino acid sequence comprising FHENX₁X₂X₃X₄X₅.
- The amino acid sequence according to claim 34 wherein the amino acid sequence comprises FHENFYDWF.

- 36. The amino acid sequence according to claim 25 wherein the amino acid sequence $X_1X_2X_3X_4X_5$ further comprises the amino acid sequence X_{93} X_{94} X_{95} X_{96} X_{97} located at the carboxy terminal end adjacent to X_5 to form $X_1X_2X_3X_4X_5X_{93}X_{94}X_{95}X_{96}X_{97}$, wherein X_{93} , X_{94} and X_{97} may be any amino acid, X_{95} is selected from the group consisting of glutamine, glutamic acid, alanine and lysine, and X_{96} is a hydrophobic or aliphatic amino acid.
- The amino acid sequence according to claim 36 wherein X₉₃ is selected from the group consisting of alanine, aspartic acid, glutamic acid, arginine, and valine, X₉₅ is glutamine or glutamic acid, and X₉₆ is selected from the group consisting of leucine, isoleucine, valine and tryptophan.
 - 38. The amino acid sequence according to claim 37 wherein X₉₆ is leucine or tryptophan.
- 39. The amino acid sequence according to claim 38 wherein X_{96} is leucine.
- The amino acid sequence according to claim 39 wherein X₉₅ is glutarnine, and X₉₆ is tryptophan.
 - The amino acid sequence according to claim 40 wherein X_{93} is valine.
 - 42. The amino acid sequence according to claim 41 wherein asparagine is bound to the amino terminal of X_1 .
- 43. An amino acid sequence selected from the amino acid sequences listed in Figures 1-A through 1-O.

- The amino acid sequence according to claim 25 wherein the sequence is selected from the group consisting of FHENFYDWFVRQVS,

 DYKDVTFTSAVFHENFYDWFVRQVSKK,

 GRVDWLQRNANFYDWFVAELG and APTFYAWFNQQT.
- 5 45. The amino acid sequence according to claim 25 wherein the sequence comprises FHENFYDWFVRQVS.
 - 46. The amino acid sequence according to claim 25 wherein the sequence is selected from the group consisting of

FHENFYDWFVRQVAKK-NH₂ 10 FHENFYDWFVRQASKK-NH₂ FHENFYDWFVRAVSKK-NH2 FHENFYDWFVAQVSKK-NH2 FHENFYDWFARQVSKK-NH₂ FHEAFYDWFVRQVSKK-NH₂ 15 FHANFYDWFVRQVSKK-NH₂ FAENFYDWFVRQVSKK-NH₂ AHENFYDWFVRQVSKK-NH2 fhenfydwfvrqvskk **EFHENFYDWFVRQVSEE** 20 **FHENFYGWFVRQVSKK HETFYSMIRSLAK SDGFYNAIELLS** SLNFYDALQLLAKK **HDPFYSMMKSLLK** 25 **NSFYEALRMLSSK** HPTSKEIYAKLLK **HPSTNQMLMKLFK HPPLSELKLFLIKK** HAPLSVLVQALLKK 30 **HPSLSDMRWILLK** WSDFYSYFQGLD D117-Dap(D117) SSNFYQALMLLS D117-Dap(CO-CH₂-O-NH₂) 35 HENFYGWFVRQVSKK D117-Lys(D117)

D117-b-Ala-Lys(D117) D117-b-Ala-Dap(b-Ala-D117) D117-Gly-Lys(Gly-D117) D117-b-Ala-Lys(b-Ala-D117) 5 D117-Dab(D117) D117-Om(D117) D117-Dap(b-Ala-D117) D117-b-Ala-Orn(b-Ala-D117) 1-(Thia-b-Ala-D117)₂ 10 **FHENFYDWFVRQVS FHENFYDWFVRQVSK FHENFYDWFVQVSK FHENFYDWFVVSK FHENFYDWFVSK** 15 **FHENFYDWFVK** FYDWF-NH₂ FYDWFKK-NH₂ AFYDWFAKK-NH₂ AAAAFYDWFAAAAAKK-NH2 20 $(D117)_2-12$ (Cys-Gly-D117)₂ Cys-Gly-D117 $(D117)_2-14$ LDALDRLMRYFEERPSL-NH₂ 25 PLAELWAYFEHSEQGRSSAH-NH2 GRVDWLQRNANFYDWFVAELG-NH2 NGVERAGTGDNFYDWFVAQLH-NH₂ EHWNTVDPFYFTLFEWLRESG-NH₂ EHWNTVDPFYQYFSELLRESG-NH₂ 30 QSDSGTVHDRFYGWFRDTWAS-NH₂ AFYDWFAK-NH₂ AFYDWFA-NH₂ AFYDWF-NH₂ FYDWDA-NH₂ Ac-FYDWF-NH₂ 35 Lig-FHENFYDWFVRQVSKK Lig-GGGFHENFYDWFVRQVSKK FHENFYDWFVRQVSKKGGG-Lig Lig-CAWPTYWNCG 40 ACAWPTYWNCG-Lig **ACAWPTYWNCGGGG-Lig** Lig-SDGFYNAIELLS SDGFYNAIELLS-Lig

	SDGFYNAIELLSGGG-Lig
	KHLCVLEELFWGASLFGYCSGKK-Lig
	AFYDWFAKK-Lig
	AFYEWFAKK-NH ₂
5	AFYGWFAKK-NH ₂
	AFYKWFAKK-NH2
	(SDGFYNAIELLS-Lig) ₂ -14
	(AFYDWFAKK-Lig) ₂ -14
	FHENAYDWFVRQVSKK
10	FHENFADWFVRQVSKK
	FHENFYAWFVRQVSKK
	FHENFYDAFVRQVSKK
	FHENFTDWAVRQVSKK
	FQSLLEELVWGAPLFRYGTG
15	PLCVLEELFWGASLFGQCSG
	QLEEEWAGVQCEVYGRECPS
	Cys-(Gly) ₂ -D117
	$(Cys-(Gly)_2-Dl17)_2$
	(S210)- <u>14</u> -(S212)
20	(\$131)- <u>14</u> -(\$212)
	(\$205) ₂ - <u>14</u>
	(S204) ₂ - <u>14</u>
	(S131)- <u>14</u> -(S210)
	RVDWLQRNANFYDWFVAELG
25	VDWLQRNANFYDWFVAELG
	DWLQRNANFYDWFVAELG
	WLQRNANFYDWFVAELG
	LQRNANFYDWFVAELG
	QRNANFYDWFVAELG
30	RNANFYDWFVAELG
,	NANFYDWFVAELG
	ANFYDWFVAELG
	NFYDWFVAELG
	GRVDWLQRNANFYDWFVAELG-Lig
35	Lig-GRVDWLQRNANFYDWFVAELG
	(\$208)- <u>14</u> -(\$131)
	(\$208)- <u>14</u> -(\$209)
	GRVDWLQRNANFYDWFVAEL
	GRVDWLQRNANFYDWFVAE
40	GRVDWLQRNANFYDWFVA
	GRVDWLQRNANFYDWFV
	14-(SDGFYNAIELLS-Lig) ₂
	(CDVDWI ODNIANEVDWEVAEI C) 14

	<u>14</u> -(GRVDWLQRNANFYDWFVAE LG)
	(SDGFYNAIELLSGGG) ₂ - <u>14</u>
	H-Acy-CLEE-w-GASL-Tic-QCSG-NH ₂
	RWPNFYGYFESLLTHFS-NH ₂
5	HYNAFYEYFQVLLAETW-NH₂
	EGWDFYSYFSGLLASVT-NH₂
	LDRQFYRYFQDLLVGFM-NH2
	WGRSFYRYFETLLAQGI-NH₂
	PLCFLQELFGGASLGGYCSG-NH₂
10	WLEQERAWIWCEIQGSGCRA-NH₂
	IQGWEPFYGWFDDVVAQMFEE-NH₂
	TGHRLGLDEQFYWWFRDALSG-NH₂
	H-Abu-CLEE-w-GASL-Tic-QCSG-NH2
	14-(Dap-CAWPTYWNCG)2
15	RDHypFYDWFDDi-NH2
	S131- <u>14</u> -S209
	S294- <u>14</u> -S210
	S295- <u>14</u> -S210
	S294- <u>14</u> -204
20	S295- <u>14</u> -S204
	GFREGQRWYWFVAQVT-NH₂
	VASGHVLHGQFYRWFVDQFALEE-NH2
	VGDFCVSHDCFYGWFLRESMQ-NH₂
	DLRVLCELFGGAYVLGYCSE-NH2
25	HLSVGEELSWWVALLGQWAR-NH₂
	APVSTEELRWGALLFGQWAG-NH2
	ALEEEWAWVQVRSIRSGLPL-NH2
	WLEHEWAQIQCELYGRGCTY-NH₂
	AAVHEQFYDWFADQYEE-NH₂
30	QAPSNFYDWFVREWDEE-NH ₂
	QSFYDYIEELLGGEWKK-NH2
	DPFYQGLWEWLRESGEE-NH2
	$(S204)_2-7$
	(S204) ₂ - <u>9</u>
35	(S204) ₂ - <u>12</u>
	$(S204)_2$ -13
	DWLQRNANFYDWFVAEL-Lig
	Lig-DWLQRNANFYDWFVAEL
	(S209) ₂ -9
40	$(S210)_{2}$ -9
	LigKHLCVLEELFWGASLFGYCSGKKKK
	KHLCVLEELFWGASLFGYCSGKKKK-Lig
	(S294) ₂ - <u>14</u>
	· · · · · · · · · · · · · · · · · · ·

(S295)₂-14
S-D-G-F-Y-N-A-Acy-E-L-L-S
S-G-P-F-Y-E-E-Acy-E-L-L-W-Aib
G-G-S-F-Y-D-D-Acy-E-Aib-L-W-Aib
5
N-Aib-P-F-Y-D-E-Acy-D-E-Cha-W-Aib
GRVDWLQRNANFYDWFVAEAcyG-NH₂
and wherein underlined numbers represent a linker as defined in Table 18.

- 47. An amino acid sequence which specifically binds IR such that binding to IGF-1R is at or below background and wherein said amino acid sequence comprises X₁X₂X₃X₄X₅ wherein X₁, X₂, and X₅ are selected from the group consisting of phenylalanine and tyrosine, X₃ is selected from the group consisting of aspartic acid, glutamic acid, glycine and serine, and X₄ is selected from group consisting of tryptohpan, tyrosine and phyenylalanine.
- A method of modulating insulin activity in mammalian cells, said method comprising administering to said cells an amino acid sequence which binds IR and comprises the sequence of amino acids $X_6X_7X_8X_9X_{10}X_{11}X_{12}X_{13}$ wherein X_6 and X_7 are aromatic amino acids or glutamine, X_8 , X_9 , X_{11} and X_{12} may be any amino acid, X_{10} and X_{13} are hydrophobic amino acids.
- 49. The method according to claim 48 wherein X₆ and X₇ are selected from group consisting of phenylalanine and tyrosine, and X₁₀ and X₁₃ are selected from group consisting of leucine, isoleucine, tryptophan, phenylalanine methionine and valine.
 - The method according to claim 48 wherein X_6 is phenylalanine and X_7 is tyrosine.
- 25 51. The method according to claim 50 wherein X_{10} is isoleucine.
 - 52. The method according to claim 50 wherein X_{10} is leucine.

- 53. The method according to claim 50 wherein X_{13} is leucine.
- 54. The method according to claim 50 wherein X_9 is tyrosine and X_{10} is phenylalanine.
- 55. The method according to claim 50 wherein the amino acid sequence is selected from FYX₈X₉LX₁₁X₁₂L, FYX₈X₉IX₁₁X₁₂L and FYX₈YFX₁₁X₁₂L.
 - 56. The method according to claim 55 wherein the amino acid sequence comprises FYX₈X₉LX₁₁X₁₂L.
 - 57. The method according to claim 55 wherein the amino acid sequence comprises FYX₈ YFX₁₁X₁₂L.
- The method according to claim 48 wherein the amino acid sequence

 X₆X₇X₈X₉X₁₀X₁₁X₁₂X₁₃ further comprises amino acids X₉₈ and X₉₉ at the

 amino terminal end and X₁₀₀ at the carboxy terminal end to form

 X₉₈X₉₉X₆X₇X₈X₉X₁₀X₁₁X₁₂X₁₃X₁₀₀ and wherein X₉₈ is optionally aspartic

 acid and X₉₉ is independently an amino acid selected from the group

 consisting of glycine, glutamine and proline, and X₁₀₀ is a hydrophobic

 amino acid.
 - 59. The method according to claim 58 wherein X_{100} is an aliphatic amino acid.
 - 60. The method according to claim 59 wherein X_{100} is leucine.
- The method according to claim 48 wherein the amino acid sequence binds to the insulin receptor with an affinity of at least about 10⁻⁵ M.

- 62. The method according to claim 61 wherein the affinity is between about 10⁻⁷ M.
- 63. The method according to claim 48 wherein the amino acid sequence comprises DYKDFYDAIDQLVRGSARAGGTRD or KDRAFYNGLRDLVGAVYGAWD.
 - 64. The method according to claim 48 wherein the amino acid sequence is selected from the group of amino acid sequences listed in Figures 2A through 2P.
- An amino acid sequence comprising X₆X₇X₈X₉X₁₀X₁₁X₁₂X₁₃ wherein X₆
 and X₇ are aromatic amino acids or glutamine, X₈, X₉, X₁₁ and X₁₂ may be any amino acid, X₁₀ and X₁₃ are hydrophobic amino acids and wherein said amino acid sequence binds to IGF-1R.
 - 66. The amino acid sequence according to claim 65 wherein the binding occurs at an affinity (K_d) of at least about 10⁻⁵ M.
- 15 67. The amino acid sequence according to claim 66 wherein the binding occurs at an affinity (K_d) of at least about 10^{-7} M.
 - 68. The amino acid sequence according to claim 65 wherein X_6 and X_7 are phenylalanine or tyrosine, and X_{10} and X_{13} are leucine, isoleucine, tryptophan, phenylalanine or methionine.
- 20 69. The amino acid sequence according to claim 68 wherein X_6 is phenylalanine and X_7 is tyrosine.

- 70. The amino acid sequence according to claim 68 wherein X_{10} is isoleucine.
- 71. The amino acid sequence according to claim 68 wherein X_{10} is leucine.
- 72. The amino acid sequence according to claim 69 wherein X_{13} is leucine.
- 73. The amino acid sequence according to claim 69 wherein X₉ is tyrosine and X₁₀ is phenylalanine.
 - 74. The amino acid sequence according to claim 68 wherein the amino acid sequence comprises an amino acid sequence selected from FYX₈X₉LX₁₁X₁₂L, FYX₈X₉IX₁₁X₁₂L and FYX₈YFX₁₁X₁₂L.
- 75. The amino acid sequence according to claim 74 wherein the amino acid sequence comprises FYX₈X₉IX₁₁X₁₂L.
 - 76. The amino acid sequence according to claim 74 wherein the amino acid sequence comprises FYX₈X₉LX₁₁X₁₂L.
 - 77. The amino acid sequence according to claim 74 wherein the amino acid sequence is FYX₈YFX₁₁X₁₂L.
- The amino acid sequence according to claim 65 wherein the amino acid sequence $X_6X_7X_8X_9X_{10}X_{11}X_{12}X_{13}$ further comprises amino acids X_{98} and X_{99} at the amino terminal end and X_{100} at the carboxy terminal end to form $X_{98}X_{99}X_6X_7X_8X_9X_{10}X_{11}X_{12}X_{13}X_{100}$ and wherein X_{98} is optionally aspartic acid and X_{99} is independently an amino acid selected from the group consisting of glycine, glutamine and proline, and X_{100} is a hydrophobic amino acid.

- 79. The amino acid sequence according to claim 78 wherein X_{100} is an aliphatic amino acid.
- 80. The amino acid sequence according to claim 79 wherein X_{100} is leucine.
- 81. The amino acid sequence according to claim 68 wherein the amino acid sequence comprises DYKDFYDAIDQLVRGSARAGGTRD or KDRAFYNGLRDLVGAVYGAWDKK.
 - 82. The sequence according to claim 81 wherein the amino acid sequence comprises DYKDFYDAIDQLVRGSARAGGTRD.
- An amino acid sequence comprising an amino acid sequence selected from the group consisting of amino sequences listed in Figures 2A through 2P.
 - 84. An amino acid sequence comprising a sequence selected from the group consisting of

SFYEAIHQLLGV,

15 NSFYEALRMLSS,
SLNFYDALQLLA,
SSNFYQALMLLS,
SDGFYNAIELLS,
HETFYSMIRSLA,
HDPFYSMMKSLL and
WSDFYSYFQGLD.

The amino acid sequence according to claim 65 wherein the sequence comprises the amino acid sequence

X₁₁₅X₁₁₆X₁₁₇X₁₁₈FYX₈YFX₁₁X₁₂LX₁₁₉X₁₂₀X₁₂₁X₁₂₂ wherein X₁₁₅ is selected from the group consisting of trytophan, glycine, aspartic acid, glutamic acid and arginine, X₁₁₆ is selected from the group consisting of aspartic acid, histidine, glycine and asparagine, X₁₁₇ and X₁₁₈ are selected from the group consisting of glycine, aspartic acid, glutamic acid, asparagine, and alanine, X₈ is selected from the group consisting of arginine, glycine, glutamic acid and serine, X₁₁ is selected from the group consisting of glutamic acid, asparagine, glutamine and tryptophan, X₁₂ is selected from the group consisting of aspartic acid, glutamic acid, glycine, lysine, and glutamine, X₁₁₉ is selected from the group consisting of glutamic acid, glycine, glutamine, aspartic acid and alanine, X₁₂₀ is selected from the group consisting of glutamic acid, glycine and glutamine, X₁₂₁ is selected from the group consisting of tryptophan, tyrosine, glutamic acid, phenylalanine, histidine and aspartic acid, and X₁₂₂ is selected from the group consisting of glutamic acid, and glycine.

- 86. The amino acid sequence according to claim 85 wherein X₁₁₅ is tryptophan, X₁₁₇ is selected from glycine, aspartic acid, glutamic acid and asparagine, X₁₁₈ is selected from glycine, aspartic acid, glutamic acid and alanine, X₁₁, X₁₁₉, X₁₂₀, and X₁₂₂ are glutamic acid, X₁₂ is aspartic acid, and X₁₂₁ is tryptophan or tyrosine.
- An amino acid sequence comprising X₆X₇X₈X₉X₁₀X₁₁X₁₂X₁₃ wherein X₆ and X₇ are aromatic amino acids or glutamine, X₈, X₉, X₁₁ and X₁₂ may be any amino acid, X₁₀ and X₁₃ are hydrophobic amino acids and wherein said amino acid sequence binds to IR such that binding to IGF-1R is at or below background.

5

10

15

20

- A method of binding to Site 1 of IR from mammalian cells, said method comprising contacting IR with an amino acid sequence which binds IR and comprises the sequence of $X_{14}X_{15}X_{16}X_{17}X_{18}X_{19}X_{20}X_{21}$ wherein X_{14} , X_{17} , and X_{18} are hydrophobic amino acids, X_{15} , X_{16} , and X_{19} are any amino acid, and X_{20} and X_{21} are aromatic amino acids.
- 89. The method according to claim 88 wherein X_{14} and X_{17} are selected from the group consisting of leucine, isoleucine and valine; X_{20} is selected from group consisting of tyrosine and histidine; and X_{21} is selected from group consisting of phenylalanine and tyrosine.
- 10 90. The method according to claim 89 wherein X_{14} and X_{17} are leucine.
 - 91. The method according to claim 89 wherein X_{14} is leucine.
 - 92. The method according to claim 89 wherein X_{17} is leucine.
 - 93. The method according to claim 89 wherein X_{20} is tyrosine.
 - 94. The method according to claim 89 wherein X_{21} is phenylalanine.
- 15 95. The method according to claim 90 wherein X_{15} is a large amino acid.
 - 96. The method according to claim 89 wherein said amino acid sequence further comprises an amino acid extension comprising $X_{101}X_{102}X_{103}$ wherein X_{103} is bound to X_{14} at the amino terminus and X_{101} and X_{102} are polar amino acids and X_{103} is a hydrophobic amino acid.
- 20 97. The method according to claim 96 wherein X_{101} and X_{102} are independently aspartic acid or glutamic acid and X_{103} is leucine, isoleucine or valine.

- 98. A method of binding to Site 1 of IGF-1R from mammalian cells, said method comprising contacting IGF-1R with an amino acid sequence which binds IR and comprises the sequence of $X_{14}X_{15}X_{16}X_{17}X_{18}X_{19}X_{20}X_{21}$ wherein X_{14} , X_{17} , and X_{18} are hydrophobic amino acids, X_{15} , X_{16} , and X_{19} are any amino acid, and X_{20} and X_{21} are aromatic amino acids.
- 99. The method according to claim 98 wherein X₁₄ and X₁₇ are selected from the group consisting of leucine, isoleucine and valine; X₁₈ is an aromatic amino acid; X₂₀ is selected from group consisting of tyrosine and histidine; and X₂₁ is selected from group consisting of phenylalanine and tyrosine.
- 10 100. The method according to claim 98 wherein the amino acid sequence comprises a sequence selected from the sequences in Figures 3A through 3D.
- 101. An amino acid sequence which binds Site 1 of IR from mammalian cells, said sequence comprising X₁₄X₁₅X₁₆X₁₇X₁₈X₁₉X₂₀X₂₁ wherein X₁₄, X₁₇, and X₁₈ are hydrophobic amino acids, X₁₅, X₁₆, and X₁₉ are any amino acid, and X₂₀ and X₂₁ are aromatic amino acids.
 - 102. The amino acid sequence according to claim 101 wherein X_{14} and X_{17} are selected from the group consisting of leucine, isoleucine and valine; X_{20} is selected from group consisting of phenylalanine and tyrosine.
- 20 103. The amino acid sequence according to claim 102 wherein X₁₄ and X₁₇ are leucine.
 - 104. The amino acid sequence according to claim 102 wherein X_{14} is leucine.
 - 105. The amino acid sequence according to claim 102 wherein X_{17} is leucine.

- 106. The amino acid sequence according to claim 102 wherein amino acid X₁₈ is tryptophan.
- 107. The amino acid sequence according to claim 103 wherein X_{20} is tyrosine.
- 108. The amino acid sequence according to claim 107 wherein X_{21} is phenylalanine.
- 109. The amino acid sequence according to claim 103 wherein X₁₅ is a large amino acid.
- The amino acid sequence according to claim 101 wherein at least one amino acid is a D-amino acid.
- 10 111. The amino acid sequence according to claim 65 wherein at least one amino acid is a D-amino acid.
- The amino acid sequence according to claim 102 wherein said amino acid sequence further comprises an amino acid extension comprising $X_{101}X_{102}X_{103}$ wherein X_{103} is bound to X_{14} at the amino terminus and X_{101} and X_{102} are polar amino acids and X_{103} is a hydrophobic amino acid.
 - 113. The amino acid sequence according to claim 112 wherein X_{101} and X_{102} are independently aspartic acid or glutamic acid and X_{103} is leucine, isoleucine or valine.

- 114. An amino acid sequence which binds Site 1 of IGF-1R from mammalian cells such that binding to IR is at or below background, said sequence comprising X₁₄X₁₅X₁₆X₁₇X₁₈X₁₉X₂₀X₂₁ wherein X₁₄, X₁₇, and X₁₈ are hydrophobic amino acids, X₁₅, X₁₆, and X₁₉ are any amino acid, and X₂₀ and X₂₁ are aromatic amino acids.
- 115. The amino acid sequence according to claim 114 wherein X₁₄ and X₁₇ are selected from the group consisting of leucine, isoleucine and valine, X₁₈ is an aromatic amino acid, X₂₀ is selected from group consisting of tyrosine and histidine; and X₂₁ is selected from group consisting of phenylalanine and tyrosine.
- 116. A method of binding to Site 2 of IR from mammalian cells, said method comprising contacting said cells with an amino acid sequence comprising $X_{22}X_{23}X_{24}X_{25}X_{26}X_{27}X_{28}X_{29}X_{30}X_{31}X_{32}X_{33}X_{34}X_{35}X_{36}X_{37}X_{38}X_{39}X_{40}X_{41}$ wherein X_{22} , X_{25} , X_{26} , X_{28} , X_{29} , X_{30} , X_{33} , X_{34} , X_{35} , X_{37} , X_{38} , X_{40} and X_{41} are any amino acid; X_{23} is any hydrophobic amino acid; X_{27} is a polar amino acid; X_{31} is an aromatic amino acid; X_{32} is a small amino acid; and wherein at least one cysteine is located at positions X_{24} through X_{27} and one at X_{39} or X_{40} .
 - 117. The method according to claim 116 wherein X_{24} and X_{39} are cysteines.
- 20 118. The method according to claim 117 wherein X₂₃ is selected from leucine, isoleucine, methionine and valine; X₂₇ is selected from glutamic acid, aspartic acid, asparagine, and glutamine; X₃₁ is tryptophan, X₃₂ is glycine; and X₃₆ is any aromatic amino acid.
- The method according to claim 118 wherein the binding to IR occurs at an affinity (K_d) of at least about 10⁻⁵ M.

- The method according to claim 116 wherein X_{23} is leucine, X_{27} is glutamic acid, X_{31} is tryptophan, and X_{32} is glycine.
- 121. The method according to claim 116 wherein the amino acid sequence is HLCVLEELFWGASLFGYCSG.
- An amino acid sequence which binds IR, said amino acid sequence comprising

 X₂₂X₂₃X₂₄X₂₅X₂₆X₂₇X₂₈X₂₉X₃₀X₃₁X₃₂X₃₃X₃₄X₃₅X₃₆X₃₇X₃₈X₃₉X₄₀X₄₁

 wherein X₂₂, X₂₅, X₂₆, X₂₈, X₂₉, X₃₀, X₃₃, X₃₄, X₃₅, X₃₇, X₃₈, X₄₀ and X₄₁ are any amino acid, X₂₃ is any hydrophobic amino acid, X₂₇ is a polar amino acid; X₃₁ is an aromatic amino acid; X₃₂ is a small amino acid, and wherein at least one cysteine is located at positions X₂₄ through X₂₇ and one at X₃₉ or X₄₀.
 - 123. The amino acid sequence according to claim 122 wherein X₂₄ and X₃₉ are cysteines.
- 15 124. The amino acid sequence according to claim 123 wherein X₂₃ is selected from methionine, valine, and leucine; X₂₇ is selected from glutamic acid, alanine, glycine, glutamine, aspartic acid and valine; X₃₁ and X₃₂ are small amino acids; and X₃₆ is an aromatic amino acid.
- The amino acid sequence according to claim 122 wherein the binding to IR occurs at an affinity (K_d) of at least about 10⁻⁵ M.
 - 126. The amino acid sequence according to claim 124 wherein X_{23} is leucine, X_{27} is glutamic acid, X_{31} is tryptophan, and X_{32} is glycine.

- 127. The amino acid sequence according to claim 122 wherein the amino acid sequence is HLCVLEELFWGASLFGYCSG.
- 128. A method of modulating insulin activity in mammalian cells, said method comprising administering to said cells an amino acid sequence which binds

 IR and comprises the sequence X₄₂ X₄₃ X₄₄ X₄₅ X₄₆ X₄₇ X₄₈ X₄₉ X₅₀ X₅₁ X₅₂ X₅₃ X₅₄ X₅₅ X₅₆X₅₇X₅₈X₅₉ X₆₀ X₆₁ wherein X₄₂, X₄₃, X₄₄, X₄₅, X₅₃, X₅₅, X₅₆, X₅₈, X₆₀ and X₆₁ are any amino acid; X₄₃, X₄₆, X₄₉, X₅₀ and X₅₄ are hydrophobic amino acids, X₄₇ and X₅₉ are cysteines; X₄₈ is a polar amino acid; X₅₁, X₅₂ and X₅₇ are small amino acids.
- 10 129. The method according to claim 128 wherein X₄₃ and X₄₆ are leucine, X₄₈ is selected from the group consisting of aspartic acid and glutamic acid; X₅₀ is phenylalanine or tyrosine; and X₅₁, X₅₂ and X₅₇ are glycine.
 - 130. The method according to claim 129 wherein X₄₈ is glutamic acid and X₅₀ is a phenylalanine.
- 15 131. The method according to claim 130 wherein the amino acid sequence is X₄₂ X₄₃ X₄₄ X₄₅LCE X₄₉ FGG X₅₃ X₅₄ X₅₅ X₅₆GX₅₈C X₆₀ X₆₁.
 - 132. The method according the claim 131 wherein the amino acid sequence comprises DLRVLCELFGGAYVLGYCSE or DLRVLCELFGGAYVRGYCSE.
- 20 133. The method according to claim 128 wherein the binding to IR occurs at an affinity (K_d) of at least about 10⁻⁵ M.

- An amino acid sequence which binds IR, said amino acid sequence comprising X₄₂ X₄₃ X₄₄ X₄₅ X₄₆ X₄₇ X₄₈ X₄₉ X₅₀ X₅₁ X₅₂ X₅₃ X₅₄ X₅₅ X₅₆X₅₇X₅₈X₅₉ X₆₀ X₆₁ wherein X₄₂, X₄₃, X₄₄, X₄₅, X₅₃, X₅₅, X₆₀ and X₆₁ are any amino acid; X₄₃, X₄₆, X₄₉, X₅₀ and X₅₄ are hydrophobic amino acids; X₄₇ and X₅₉ are cysteines; X₄₈ is a polar amino acid; and X₅₁, X₅₂ and X₅₇ are small amino acids.
- 135. The amino acid sequence according to claim 134 wherein X₄₃ and X₄₆ are leucine; X₄₈ is selected from the group consisting of aspartic acid and glutamic acid; X₅₀ is phenylalanine or tyrosine; and X₅₁,X₅₂ and X₅₇ are glycine.
 - 136. The amino acid sequence according to claim 135 wherein X₄₈ is glutamic acid and X₅₀ is phenylalanine.
- The amino acid sequence according to claim 136 wherein the amino acid sequence comprises X₄₃ X₄₄ X₄₅ LCE X₄₉ FGG X₅₃ X₅₄ X₅₅ X₅₆ G X₅₈ C X₆₀
 X₆₁.
 - 138. The amino acid sequence according to claim 137 wherein an amino acid sequence comprises DLRVLCELFGGAYVLGYCSE or DLRVLCELFGGAYVRGYCSE
- 20 A method of modulating insulin activity in mammalian cells, said method comprising administering to said cells an amino acid sequence comprising $X_{62} X_{63} X_{64} X_{65} X_{66} X_{67} X_{68} X_{69} X_{70} X_{71} X_{72} X_{73} X_{74} X_{75} X_{76} X_{77} X_{78} X_{79} X_{80} X_{81}$ wherein X_{62} , X_{65} , $X_{66} X_{68}$, X_{69} , X_{71} , X_{73} , X_{76} , X_{77} , X_{78} , X_{80} and X_{81} are any amino acid; X_{63} , X_{70} , and X_{74} are hydrophobic amino acids; X_{64} is a polar amino acid; X_{67} and X_{75} are aromatic amino acids; and X_{72} and X_{79} are cysteines.

- A method of modulating insulin activity in mammalian cells, said method comprising administering to said cells an amino acid sequence which binds IR and comprises HX₈₂X₈₃X₈₄X₈₅X₈₆X₈₇X₈₈X₈₉X₉₀X₉₁X₉₂ herein X₈₂ is proline or alanine; X₈₃ is a small amino acid; X₈₄ is selected from the group consisting of leucine, serine and threonine; X₈₅ is a polar amino acid; X₈₆ is any amino acid; X₈₇ is an aliphatic amino acid; X₈₈, X₈₉, X₉₀ is any amino acid; and X₉₁ and X₉₂ are aliphatic amino acids.
- 158. The method according to claim 157 wherein X₈₂ is proline; X₈₃ is selected from the group consisting of proline, serine and threonine; X₈₄ is leucine;

 X₈₅ is selected from the group consisting of glutamic acid, serine, lysine and asparagine; X₈₆ is a polar amino acid; X₈₇ is selected from the group consisting of leucine, methionine and isoleucine; and X₉₁ and X₉₂ are leucines.
 - 159. The method according to claim 158 wherein X₈₃ is proline.
- 15 160. The method according to claim 158 wherein X_{85} is serine.
 - The method according to claim 158 wherein X₈₆ is selected from the group consisting of histidine, glutamic acid, aspartic acid and glutamine.
 - 162. The method according to claim 158 wherein X_{87} is leucine.
 - 163. The method according to claim 158 wherein X_{92} is phenylalanine.
- 20 164. The method according to claim 160 wherein the amino acid sequence is HPPLSX₈₆ LX₈₈ X₈₉ X₉₀ LL.

- The method according to claim 158 wherein the amino acid sequence is selected from the group consisting of HPPLEHLKAFLL, HPPLSELKLFLI, HPSLSDMRWILL, HPTSKEIYAKLL, HPTSKEIYAKLL, HPSTNQMLMKLF and HAPLSVLQALL.
- 5 166. An amino acid sequence which binds IR, said amino acid sequence comprising HX₈₂X₈₃X₈₄X₈₅X₈₆X₈₇X₈₈X₈₉X₉₀X₉₁X₉₂ herein X₈₂ is proline or alanine; X₈₃ is a small amino acid; X₈₄ is selected from the group consisting of leucine, serine and threonine; X₈₅ is a polar amino acid; X₈₆ is any amino acid; X₈₇ is an aliphatic amino acid; X₈₈, X₈₉, X₉₀ is any amino acid; and X₉₁ and X₉₂ are aliphatic amino acids.
- 167. The amino acid sequence according to claim 166 wherein X₈₂ is proline; X₈₃ is selected from the group consisting of proline, serine and threonine; X₈₄ is leucine; X₈₅ is selected from the group consisting of glutamic acid, serine, lysine and asparagine; X₈₆ is a polar amino acid; X₈₇ is selected from the group consisting of leucine, methionine and isoleucine; and X₉₁ and X₉₂ are leucines.
 - 168. The amino acid sequence according to claim 167 wherein X_{83} is proline.
 - 169. The amino acid sequence according to claim 167 wherein X_{85} is serine.
- 170. The amino acid sequence according to claim 167 wherein X₈₆ is selected from the group consisting of histidine, glutamic acid, aspartic acid and glutamine.
 - 171. The amino acid sequence according to claim 167 wherein X_{87} is leucine.

- 172. The amino acid sequence according to claim 167 wherein X_{92} is phenylalanine.
- 173. The amino acid sequence according to claim 169 wherein the amino acid sequence is HPPLSX₈₆ LX₈₈ X₈₉ X₉₀ LL.
- The amino acid sequence according to claim 167 wherein the amino acid sequence is selected from the group consisting of HPPLEHLKAFLL, HPPLSELKLFLI, HPSLSDMRWILL, HPTSKEIYAKLL, HPTSKEIYAKLL, HPSTNQMLMKLF and HAPLSVLQALL.
- 175. A method modulating insulin activity in mammalian cells, said method

 10 comprising administering to said cells an amino acid sequence comprising
 an amino acid sequence of $X_{104}X_{105}X_{106}X_{107}X_{108}X_{109}X_{110}X_{111}X_{112}X_{113}X_{114}$ wherein at least one of the amino acids of X_{106} through X_{111} are tryptophan;
 wherein X_{104} and X_{114} are both small amino acids; wherein X_{105} is any
 amino acid; and wherein at least one of X_{104} , X_{105} , X_{106} and one of X_{112} X_{113} 15 X_{114} are cysteine residues.
 - 176. The method according to claim 175 wherein at least two of the amino acids of X₁₀₆ through X₁₁₁ are tryptophan which are separated from each other by at least two amino acids.
- The method according to claim 176 wherein the separating amino acids are selected from the group consisting of proline, threonine and tyrosine.
 - 178. The method according to claim 177 wherein the amino acid sequence comprises WPTYW.

- 179. The method according to claim 178 wherein X_{105} and X_{113} are cysteine residues.
- 180. The method according to claim 178 wherein X_{104} and X_{114} are selected from the group consisting of alanine and glycine.
- The method according to claim 180 wherein X_{104} is alanine and X_{114} is glycine.
 - 182. The method according to claim 181 wherein X_{105} is valine.
 - 183. The method according to claim 182 wherein X_{112} is asparagine.
- 184. The method according to claim 198 wherein the affinity (K_d) of binding to

 10 IR is at least about 10⁻⁵ M.
 - 185. A method of modulating insulin activity in mammalian cells, said method comprising administering to said cells an amino acid sequence comprising an amino acid sequence selected from the group listed in Figure 8.
- 186. The method according to claim 185 wherein the sequence comprises

 ACVWPTYWNCG.
 - 187. An amino acid sequence which binds and IR and comprising an amino acid sequence of X₁₀₄X₁₀₅X₁₀₆X₁₀₇X₁₀₈X₁₀₉X₁₁₀X₁₁₁X₁₁₂X₁₁₃X₁₁₄ wherein at least one of the amino acids of X₁₀₆ through X₁₁₁ are tryptophan; wherein X₁₀₄ and X₁₁₄ are both small amino acids; wherein X₁₀₅ is any amino acid; and wherein at least one of X₁₀₄, X₁₀₅, X₁₀₆ and one of X₁₁₂ X₁₁₃ X₁₁₄ are cysteine residues.

- 188. The amino acid sequence according to claim 187 wherein at least two of the amino acids of X₁₀₆ through X₁₁₁ are tryptophan which are separated from each other by at least two amino acids.
- 189. The amino acid sequence according to claim 188 wherein the separating amino acids are selected from the group consisting of proline, threonine and tyrosine.
 - 190. The amino acid sequence according to claim 189 wherein the amino acid sequence comprises WPTYW.
- The amino acid sequence according to claim 190 wherein X₁₀₅ and X₁₁₃ are cysteine residues.
 - 192. The amino acid sequence according to claim 190 wherein X_{104} and X_{114} are selected from the group consisting of alanine and glycine.
 - 193. The amino acid sequence according to claim 190 wherein X_{104} is alanine and X_{114} is glycine.
- 15 194. The amino acid sequence according to claim 193 wherein X_{105} is valine.
 - 195. The amino acid sequence according to claim 194 wherein X_{112} is asparagine.
 - 196. The amino acid sequence according to claim 202 wherein the affinity (K_d) of binding to IR is at least about 10⁻⁵ M.
- An amino acid sequence which binds IR from mammalian cells comprising an amino acid sequence selected from the group listed in Figure 8.

- 198. The amino acid sequence according to claim 197 comprising ACVWPTYWNCG.
- 199. A method of providing insulin agonist activity to mammalian cells, said method comprising administering to said cells an amino acid sequence comprising DYKDLCQSWGVRIGWLAGLCPKK.
- 200. A method of modulating insulin activity in mammalian cells, said method comprising administering to said cells an amino acid sequence comprising an amino acid sequence selected from the group listed in Figures 9 through 11.
- 10 201. An amino acid sequence comprising DYKDLCQSWGVRIGWLAGLCPKK.
 - 202. An amino acid sequence comprising an amino acid sequence selected from the group listed in Figures 9 through 11.
- An amino acid sequence comprising at least two amino acid sequences which independently bind IR, with the proviso that at least one of the sequences is not insulin or a fragment thereof.
 - 204. The amino acid sequence according to claim 203 wherein the two amino acid sequences bind to Site 1 of IR.
 - 205. The amino acid sequence according to claim 203 wherein one amino acid sequence binds to Site 1, and the other binds to Site 2 of IR.

- The amino acid sequence according to claim 203, wherein at least one of the sequences is selected from the group consisting of $X_1X_2X_3X_4X_5$ wherein X_1 , X_2 , X_4 , and X_5 are aromatic amino acids, and X_3 may be any polar amino acid; $X_6X_7X_8X_9X_{10}X_{11}X_{12}X_{13}$ wherein X_6 and X_7 are aromatic amino acids or glutamine, X_8 , X_9 , X_{11} and X_{12} may be any amino acid, X_{10} and X_{13} are hydrophobic amino acids; and $X_{14}X_{15}X_{16}X_{17}X_{18}X_{19}X_{20}X_{21}$ wherein X_{14} , X_{17} , and X_{18} are hydrophobic amino acids, X_{15} , X_{16} , and X_{19} are any amino acid, and X_{20} and X_{21} are aromatic amino acids.
- The amino acid sequence according to claim 206, wherein at least one of the sequences is X₁X₂X₃X₄X₅ wherein X₁, X₂, X₄, and X₅ are aromatic amino acids, and X₃ may be any polar amino acid.
 - 208. The amino acid sequence according to claim 206 wherein at least one of the sequences comprises FYX₃WF.
- The amino acid sequence according to claim 206, wherein at least one of the sequences comprises $X_6X_7X_8X_9X_{10}X_{11}X_{12}X_{13}$ wherein X_6 and X_7 are aromatic amino acids or glutamine, X_8 , X_9 , X_{11} and X_{12} may be any amino acid, X_{10} and X_{13} are hydrophobic amino acids.
 - 210. The amino acid sequence according to claim 209, wherein at least one of the sequences comprises FYX₈X₉LX₁₁X₁₂L.
- 20 211. The amino acid sequence according to claim 206, wherein at least one of the sequences comprises X₁₄X₁₅X₁₆X₁₇X₁₈X₁₉X₂₀X₂₁ wherein X₁₄, X₁₇, and X₁₈ are hydrophobic amino acids, X₁₅, X₁₆, and X₁₉ are any amino acid, and X₂₀ and X₂₁ are aromatic amino acids.

- 212. The amino acid sequence according to claim 211 wherein at least one of the sequences comprises LX₁₅, X₁₆, LLX₁₉YF.
- 213. The amino acid sequence according to claim 203 wherein at least one of the sequences comprises
- 5 $X_{22}X_{23}X_{24}X_{25}X_{26}X_{27}X_{28}X_{29}X_{30}X_{31}X_{32}X_{33}X_{34}X_{35}X_{36}X_{37}X_{38}X_{39}X_{40}X_{41}$ wherein X_{22} , X_{25} , X_{26} , X_{28} , X_{29} , X_{30} , X_{33} , X_{34} , X_{35} , X_{36} , X_{37} , X_{38} , X_{40} , and X_{41} are any amino acid, X_{23} is any hydrophobic amino acid; X_{27} is a polar amino acid; X₃₁ is an aromatic amino acid; X₃₂ is a small amino acid, and wherein at least one cysteine is located at positions X_{24} through X_{27} and one 10 at X_{39} or X_{40} , X_{42} X_{43} X_{44} X_{45} X_{46} X_{47} X_{48} X_{49} X_{50} X_{51} X_{52} X_{53} X_{54} X_{55} $X_{56}X_{57}X_{58}X_{59}$ X_{60} X_{61} wherein X_{42} , X_{43} , X_{44} , X_{45} , X_{53} , X_{55} , X_{56} , X_{58} , X_{60} and X₆₁ are any amino acid, X₄₃, X₄₆, X₄₉, X₅₀ and X₅₄ are hydrophobic amino acids; X_{47} and X_{59} are cysteine; X_{48} is a polar amino acid; and X_{51} , X_{52} and X_{57} are small amino acids; or X_{62} X_{63} X_{64} X_{65} X_{66} X_{67} X_{68} X_{69} X_{70} X_{71} X_{72} 15 $X_{73} X_{74} X_{75} X_{76} X_{77} X_{78} X_{79} X_{80} X_{81}$ wherein X_{62} , X_{65} , $X_{66} X_{68}$, X_{69} , X_{71} , X_{73} , X_{76} , X_{77} , X_{78} , X_{80} and X_{81} are any amino acid; X_{63} , X_{70} , and X_{74} are hydrophobic amino acids; X_{64} is a polar amino acid; X_{67} and X_{75} are aromatic amino acids; and X_{72} and X_{79} are cysteines.
- The amino acid sequence according to claim 203 wherein at least one of the sequences comprises HX₈₂X₈₃X₈₄X₈₅X₈₆X₈₇X₈₈X₈₉X₉₀X₉₁X₉₂ herein X₈₂ is proline or alanine; X₈₃ is a small amino acid; X₈₄ is selected from the group consisting of leucine, serine and threonine; X₈₅ is a polar amino acid; X₈₆ is any amino acid; X₈₇ is an aliphatic amino acid; X₈₈, X₈₉, X₉₀ is any amino acid; and X₉₁ and X₉₂ are aliphatic amino acids or
- 25 X₁₀₄X₁₀₅X₁₀₆X₁₀₇X₁₀₈X₁₀₉X₁₁₀X₁₁₁X₁₁₂X₁₁₃X₁₁₄ wherein at least one of the amino acids of X₁₀₆ through X₁₁₁ are tryptophan; wherein X₁₀₄ and X₁₁₄ are both small amino acids; wherein X₁₀₅ is any amino acid; and wherein at least one of X₁₀₄, X₁₀₅, X₁₀₆ and one of X₁₁₂ X₁₁₃ X₁₁₄ are cysteine residues.

- 215. The amino acid sequence according to claim 203 wherein the two amino acid sequences are connected by a peptide or non-peptide linker.
- 216. The amino acid sequence according to claim 215 wherein the linker is a peptide consisting of about 2 to about 16 amino acids.
- 5 217. The amino acid sequence according to claim 215 wherein the linker is a non-peptide.
 - The amino acid sequence according to claim 217 wherein the linker is dialdehyde.
- The amino acid sequence according to claim 203 wherein the amino acid sequence is selected from the group consisting of

DYKDDDDKFHENFYDWFVRQVSGSGSGLDALDRLMRYGEERPSLA AAGAP,

DYKDDDDKFHENFYDWFVRQVSGGSHLCVLEELFWGASLFGYCSG AAAGAPVPYPDPLEPRAA

DYKDDDDKFHENFYDWFVRQVSGGSGGSGHLCVLEELFWGASL FGYCSGAAAGAPVPYPDPLEPRAA,

DYKDDDDKFHENFYDWFVRQVSGGSGGSGGSGGSHLCVLEELFWG ASLFGYCSGAAAGAPVPYPDPLEPRAA,

AQPAMAFHENFYDWFVRQVSGGSFHENFYDWFVRQVSAAAGAPVP YPDPLEPRAA,

AQPAMAFHENFYDWFVRQVSGGSFHENFYDWFVRQVSGGSFHENF YDWFVRQVSAAAGAPVPYPDPLEPRAA,

AQPAMAFHENFYDWFVRQVSGGSGGSFHENFYDWFVRQVSAAAG APVPYPDPLEPRAA,

5 AQPAMAFHENFYDWFVRQVSGGSGGSGFHENFYDWFVRQVSAA AGAPVPYPDPLEPRAA and

> AQPAMAFHENFYDWFVRQVSGGSGGSGGSGGSFHENFYDWFVRQV SAAAGAPVPYPDPLEPRAA.

- A nucleic acid sequence encoding amino acid sequence which binds to IR at

 Site 1 and/or Site 2, with the proviso that the sequence is not insulin, IGF, or
 fragments thereof.
 - 221. The nucleic acid sequence according to claim 220 wherein the nucleic acid sequence encodes for an amino acid sequence selected from the group consisting of FYDWF, FYEWF, FHENFYDWF, FHENFYDWFVRQVSK, DYKDVTFTSAVFHENFYDWFVRQVSKK, GRVDWLQRNANFYDWFV AELG and APTFYAWFNQQT.
 - 222. The nucleic acid sequence according to claim 220 wherein the nucleic acid sequence encodes for an amino acid sequence selected from the group consisting of DYKDFYDAIDQLVRGSARAGGTRDKK and KDRAFYNGLRDLVGAVYGAWDKK.
 - 223. The nucleic acid sequence according to claim 220 wherein the nucleic acid sequence encodes for an amino acid sequence selected from the group consisting of SFYEAIHQLLGV,

15

NSFYEALRMLSS, SLNFYDALQLLA, SSNFYQALMLLS, SDGFYNAIELLS, HETFYSMIRSLA, HDPFYSMMKSLL and WSDFYSYFQGL.

5

10

- 224. A kit for identifying a compound which binds IGF-1 receptor, comprising a IGF-1 receptor and an amino acid sequence selected from Formulas 1-10, or the amino acid sequences of Figures 9-11, which bind to the receptor at Site 1 or Site 2.
- The kit according to claim 224, wherein the amino acid sequence comprises the amino acid sequence FYDWF.
- The kit according to claim 225, wherein the amino acid sequence comprises the amino acid sequence SAKNFYDWFVKK.
 - 227. The kit according to claim 226 wherein the amino acid sequence comprises the amino acid sequence FYSLLASL.
 - 228. The kit according to claim 227 wherein the amino acid sequence comprises the amino acid sequence QMKDIFYSLLASLAAKK.
- 20 229. A kit for identifying a compound which binds IR comprising IR and an amino acid sequence selected from Formulas 1-10 or the amino acid sequences of Figures 9 and 11 which bind IR at Site 1 or Site 2.
 - 230. A pharmaceutical composition comprising a amino acid sequence which binds specifically to IGF-1 receptor at Site 1 and is an IGF agonist, with the proviso that the amino acid sequence is not IGF-1, insulin, or fragments thereof, and a pharmaceutically acceptable carrier.

- 231. The composition according to claim 230, wherein the peptide comprises the amino acid sequence NFYDWFV.
- 232. The pharmaceutical composition according to claim 230, wherein the peptide comprises the amino acid sequence QMKDIFYSLLASLAA.
- A pharmaceutical composition comprising a amino acid sequence which binds specifically to IR receptor at Site land is an insulin agonist, with the proviso that the amino acid sequence is not insulin, IGF, or fragments thereof, and a pharmaceutically acceptable carrier.
- The pharmaceutical composition according to claim 233, wherein the peptide comprises the amino acid sequence FYDWF.
 - 235. The pharmaceutical composition according to claim 233, wherein the peptide comprises the amino acid sequence FYSLLASL.
- A method of treating diabetes comprising administering to an individual in need of treatment a therapeutically effective amount of an amino acid
 sequence which binds IR at Site 1 and is an insulin agonist, with the proviso that the amino acid sequence is not insulin, IGF, or fragments thereof.
 - 237. The method according to claim 236 wherein the amino acid sequence is expressed by a recombinant vector administered to the individual.
- The method according to claim 236 wherein the amino acid sequence is administered to the individual as a polypeptide.

- 239. A method of treating a patient with an IGF sensitive tumor comprising administering to an individual in need of treatment a therapeutically effective amount of an amino acid sequence which is an IGF-1R antagonis, with the proviso that the amino acid sequence is not insulin, IGF, or fragments thereof.
- 240. The method according to claim 239 wherein the amino acid sequence is expressed by a recombinant vector administered to the individual.
- 241. The method according to claim 239 wherein the amino acid sequence is administered to the individual as a polypeptide.
- 10 242. A method of screening for a compound which binds to IR comprising:
 - i) immobilizing IR, or a fragment thereof, on a surface;
 - ii) incubating the IR, or fragment thereof, with a known amount of labeled amino acid sequence of Formulas 1-10, or an amino acid sequence selected from Figures 10-11, which binds IR and a compound to be screened under conditions which provide for binding of the labeled amino acid sequence to bind IR;
 - iii) measuring the amount of labeled amino acid sequence bound to IR;
 - iv) determining from the amount of bound labeled peptide whether the compound has competitively bound to IR.
- 20 243. An amino acid sequence capable of binding to Site 1 or Site 2 of IR identified by the method according to claim 242, with the proviso that the amino acid sequence is not insulin, IGF, or fragments thereof.
 - 244. The amino acid sequence according to claim 243 wherein the amino acid sequence is an IR agonist.

- 245. The amino acid sequence according to claim 243 wherein the amino sequence binds to Site 1 of IR.
- 246. The amino acid sequence according to claim 243 wherein the amino sequence binds to Site 2 of IR.
- 5 247. A method of screening for a compound which binds to IGF-1R comprising:
 - i) immobilizing IGF-1R, or a fragment thereof, on a surface;
- ii) incubating the IGF-1R, or fragment thereof, with a known amount of labeled amino acid sequence of Formulas 1-9, or an amino acid sequence selected from Figure 10, which binds IGF-1R and a compound to be screened under conditions which provide for binding of the labeled amino acid sequence to bind to IGF-1R;
 - iii) measuring the amount of labeled amino acid sequence bound to IGF-1R;
- iv) determining from the amount of bound labeled peptide
 whether the compound has competitively bound to IGF-1R.
 - 248. An amino acid sequence capable of bind to Site 1 or Site 2 of IGF-1R identified by the method according to claim 247, with the proviso that the amino acid sequence is not insulin, IGF, or fragments thereof.
- The amino acid sequence according to claim 248 wherein the amino acid
 sequence is an IGF agonist.
 - 250. The amino acid sequence according to claim 248 wherein the amino sequence binds to Site 1 of IGF-1R.

- 251. The amino acid sequence according to claim 248 wherein the amino sequence binds to Site 2 of IGF-1R.
- 252. An amino acid sequence comprising the sequence $WX_{123}GYX_{124}WX_{125}X_{126}$ wherein X_{123} is proline, glycine, serine, arginine, alanine or leucine, X_{124} is any amino acid, X_{125} is a hydrophobic amino acid; and X_{126} is any amino acid.
- 253. The amino acid sequence according to claim 252 wherein X₁₂₃ is proline and X₁₂₅ is leucine or phenylalanine.
- A recombinant peptide library comprising members wherein the majority of the members comprise an amino acid sequence of Formula 1.
 - 255. A recombinant peptide library comprising members wherein the majority of the members comprise an amino acid sequence of Formula 2.
 - 256. A recombinant peptide library comprising members wherein the majority of the members comprise an amino acid sequence of Formula 3.
- 15 257. A recombinant peptide library comprising members wherein the majority of the members comprise an amino acid sequence of Formula 4.
 - A recombinant peptide library comprising members wherein the majority of the members comprise an amino acid sequence of Formula 5.
- 259. A recombinant peptide library comprising members wherein the majority of the members comprise an amino acid sequence of Formula 6.

- 260. A recombinant peptide library comprising members wherein the majority of the members comprise an amino acid sequence of Formula 7.
- A recombinant peptide library comprising members wherein the majority of the members comprise an amino acid sequence of Formula 8.
- 5 262. A recombinant peptide library comprising members wherein the majority of the members comprise an amino acid sequence of Formula 9.
 - 263. A recombinant peptide library comprising members wherein the majority of the members comprise an amino acid sequence of Formula 10.