Homework 10

Andrew Tindall Algebra II

November 22, 2019

Problem 1. Dummit & Foote 10.4.12: Let V be a vector space over the field F and let v, v' be nonzero elements of V. Prove that $v \otimes v' = v' \otimes v$ in $V \otimes_F V$ if and only if v = av' for some $a \in F$.

Proof. First, assume that v = av' for some $a \in F$. Then by the defining relations of the tensor product, and the fact that the left- and right-module structures for a vector space are identical;

$$v \otimes v' = (av') \otimes v'$$
$$= v' \otimes av'$$
$$= v' \otimes v$$

Now, assume that $v \otimes v' = v' \otimes v$ in $V \otimes_F V$. By the axiom of choice, we may assume that the space V has a basis, say $\{e_i\}_{i \in I}$, and therefore that $V \otimes_F V$ has the basis $\{e_i \otimes e_j\}_{(i,j) \in I \times I}$. We can write our two vectors uniquely in this basis:

$$v = \sum_{i \in I} v_i e_i, \qquad v' = \sum_{j \in I} v'_j e_j$$

As shown in D&F, the set $\{e_i \otimes e_j\}_{(i,j) \in I \times I}$ is a basis for $V \otimes_F V$, and we can easily calculate the value of a simple tensor in this basis in terms of its coefficients in the basis $\{e_i\}$:

$$v \otimes v' = \sum_{(i,j) \in I \times I} (v_i v_j') e_i \otimes e_j, \qquad v' \otimes v = \sum_{(i,j) \in I \times I} v_j v_i' e_i \otimes e_j$$

We have assumed that these two tensors are equal; since equality in a vector space implies that the coefficients at each basis element are equal, this shows that $v_i v'_j = v_j v'_i$ for all $(i,j) \in I \times I$.

Since both v' and v are nonzero, there is some i for which v_i is nonzero, and some j for which v'_j is nonzero. The identity $v_i v'_j = v_j v'_i$ shows that v_j and v'_i must be nonzero as well.

Also, for any k for which v_k is nonzero, the identity $v_k v'_j = v_j v'_k$ shows that v'_k must be nonzero as well; symmetrically, if v'_k is nonzero, so is v_k . Therefore the set of $i \in I$ such that

 v'_i is nonzero is the same as the set of $i \in I$ such that v_i is nonzero. Call this set I'; we can write v and v' in the basis $\{e_i\}_{i \in I'}$ such that neither have any zero coefficients:

$$v \otimes v' = \sum_{(i,j) \in I' \times I'} (v_i v_j') e_i \otimes e_j, \qquad v' \otimes v = \sum_{(i,j) \in I' \times I'} v_j v_i' e_i \otimes e_j$$

Then the relations $v_i v_j' = v_j v_i'$ give $v_i / v_i' = v_j / v_j'$ for all $(i, j) \in I' \times I$. Letting $a = v_i / v_i'$ for some $i \in I$, we see that

$$v = \sum_{i \in I'} v_i e_i$$

$$= \sum_{i \in I'} a v_i' e_i$$

$$= a \sum_{i \in I'} v' e_i$$

$$= a v'$$

So, v = av' for some $a \in F$.

Problem 2. D&F, 10.4.27:

(a) Write down a formula for the multiplication of two elements $a \cdot 1 + b \cdot e_2 + c \cdot e_3 + d \cdot e_4$ and $a' \cdot 1 + b' \cdot e_2 + c' \cdot e_3 + d' \cdot e_4$ in the example $A = \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ following proposition 21.

- (b) Let $\epsilon_1 = \frac{1}{2}(1 \otimes 1 + i \otimes i)$ and $\epsilon_2 = \frac{1}{2}(1 \otimes 1 i \otimes i)$. Show that $\epsilon_e \epsilon_e = 0$, $\epsilon_1 + \epsilon_2 = 1$, and $\epsilon_j^2 = \epsilon_j$ for j = 1, 2. Deduce that A is isomorphic as a ring to the direct product of two principal ideals: $A \cong A\epsilon_1 \times \epsilon_2$.
- (c) Prove that the map $\varphi : \mathbb{C} \times \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ by $\varphi(z_1, z_2) = (z_1 z_2, z_1 \overline{z_2})$, where $\overline{z_2}$ denotes the complex conjugate of z_2 , is an \mathbb{R} -bilinear map.
- (d) Let Φ be the \mathbb{R} -module homomorphism from A to $\mathbb{C} \times \mathbb{C}$ obtained from φ in (c). Show that $\Phi(\epsilon_1) = (0,1)$ and $\Phi(\epsilon_2) = (1,0)$. Show also that Φ is \mathbb{C} -linear, where the action of \mathbb{C} is on the left tensor factor in A and on both factors in $\mathbb{C} \times \mathbb{C}$. Deduce that Φ is surjective. Show that Φ is a \mathbb{C} -algebra isomorphism.
- *Proof.* (a) Our basis elements are $1 = e_1 = 1 \otimes 1$, $e_2 = 1 \otimes i$, $e_3 = i \otimes 1$, and $e_4 = i \otimes i$. Using the multiplication rules defined in proposition 10.4.21, we have

$$e_1^2 = e_1,$$
 $e_1e_2 = e_2,$ $e_1e_3 = e_3,$ $e_1e_4 = e_4$
*, $e_2^2 = -e_1,$ $e_2e_3 = e_4,$ $e_2e_4 = -e_3$
*, $e_3^2 = -e_1,$ $e_3e_4 = -e_2$
*, *, *, $e_4^2 = e_1$

Using these identities, we can write the product of two elements of $\mathbb{C} \otimes \mathbb{C}$ in terms of their coefficients in this basis:

$$(a \cdot e_1 + b \cdot e_2 + c \cdot e_3 + d.e_4) \cdot (a' \cdot e_1 + b' \cdot e_2 + c' \cdot e_3 + d' \cdot e_4) =$$

$$(aa' - bb' - cc' + dd') \cdot e_1 + (ab' + ba' - cd' - dc') \cdot e_2 +$$

$$(ac' - bd' + ca' - db') \cdot e_3 + (ad' + bc' + cb' + da') \cdot e_4$$

(b) Letting $\epsilon_1 = \frac{1}{2}(e_1 + e_4)$ and $\epsilon_2 = \frac{1}{2}(e_1 - e_4)$, we see from the last problem that

$$\epsilon_1 \epsilon_2 = \frac{1}{2} (e_1 + e_4) \cdot \frac{1}{2} (e_1 - e_4)$$

$$= \frac{1}{4} \cdot e_1 + \frac{1}{4} \cdot e_4 - \frac{1}{4} \cdot e_4 - \frac{1}{4} \cdot e_1$$

$$= 0$$

The identity $\epsilon_1 + \epsilon_2 = e_1$ is clear. Finally, we see

$$\epsilon_1^2 = \frac{1}{2}(e_1 + e_4)$$

$$= \frac{1}{4} \cdot e_1 + \frac{1}{4} \cdot e_4 + \frac{1}{4} \cdot e_4 + \frac{1}{4} \cdot e_1$$

$$= \frac{1}{2}(e_1 + e_4)$$

$$= \epsilon_1,$$

and also that

$$\epsilon_2^2 = \frac{1}{2}(e_1 - e_4)$$

$$= \frac{1}{4} \cdot e_1 - \frac{1}{4} \cdot e_4 - \frac{1}{4} \cdot e_4 + \frac{1}{4} \cdot e_4$$

$$= \frac{1}{2}(e_1 - e_4)$$

$$= \epsilon_2$$

Because $\epsilon_1 + \epsilon_2 = 1$, the ideals $A\epsilon_1$ and $A\epsilon_2$ are comaximal, and the intersection of these two ideals is equal to their product. Because $\epsilon_1 \cdot \epsilon_2 = 0$, the product of the ideals $A\epsilon_1 \cdot A\epsilon_2$ is (0). Therefore, the Chinese Remainder Theorem tells us that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong (\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}) \cdot \epsilon_1 \times (\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}) \cdot \epsilon_2$ (where the congruence is as commutative rings).

(c) We show that the map φ is \mathbb{R} -bilinear. There are four axioms to verify:

•
$$\varphi(z_1 + z'_1, z_2) = \varphi(z_1, z_2) + \varphi(z'_1, z_2)$$
:

$$\varphi(z_1 + z'_1, z_2) = ((z_1 + z'_1)z_2, (z_1 + z'_1)\overline{z_2})$$

$$= (z_1z_2 + z'_1z_2, z_1\overline{z_2} + z'_1\overline{z_2})$$

$$= (z_1z_2, z_1\overline{z_2}) + (z'_1, \overline{z_2})$$

$$= \varphi(z_1, z_2) + \varphi(z'_1, z_2)$$

•
$$\varphi(z_1, z_2 + z_2') = \varphi(z_1, z_2) + \varphi(z_1, z_2')$$
:

$$\begin{aligned}
\varphi(z_1, z_2 + z_2') &= (z_1(z_2 + z_2'), z_1\overline{(z_2 + z_2')}) \\
&= (z_1 z_2 + z_1 z_2', z_1 \overline{z_2} + z_1 \overline{z_2'}) \\
&= (z_1 z_2, z_1 \overline{z_2}) + (z_1 z_2', z_1 \overline{z_2'}) \\
&= \varphi(z_1, z_2) + \varphi(z_1, z_2')
\end{aligned}$$

• $\varphi(rz_1, z_2) = r \cdot \varphi(z_1, z_2)$, for any $r \in \mathbb{R}$:

$$\varphi(rz_1, z_2) = ((rz_1)z_2, (rz_1)\overline{z_2})$$

$$= r \cdot (z_1z_2, z_1\overline{z_2})$$

$$= r \cdot \varphi(z_1, z_2)$$

• $\varphi(z_1, rz_2) = r \cdot \varphi(z_1, z_2)$, for any $r \in \mathbb{R}$:

$$\varphi(z_1, rz_2) = (z_1(rz_2), z_1\overline{(rz_2)})$$

$$= (r(z_1z_2), r(z_1\overline{z_2}))$$

$$= r(z_1z_2, z_1\overline{z_2})$$

$$= r\varphi(z_1, z_2)$$

Therefore, the map φ is \mathbb{R} -bilinear.

(d) Because φ is \mathbb{R} -bilinear on $\mathbb{C} \times \mathbb{C}$, the universal property of the tensor product $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ gives us a unique \mathbb{R} -module homomorphism $\Phi : \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}$, such that $\Phi \circ \iota = \varphi$. Since $\epsilon_1 = \frac{1}{2}(\iota(1,1) + \iota(i,i))$ and $\epsilon_2 = \frac{1}{2}(\iota(1,1) - \iota(i,i))$, we can calculate the value of Φ on ϵ_1 and ϵ_2 :

$$\Phi(\epsilon_1) = \Phi\left(\frac{1}{2}(\iota(1,1) + \iota(i,i))\right)
= \frac{1}{2}(\Phi(\iota(1,1)) + \Phi(\iota(i,i)))
= \frac{1}{2}((1,1) + (-1,1))
= (0,1), and
\Phi(\epsilon_2) = \Phi\left(\frac{1}{2}(\iota(1,1) - \iota(i,i))\right)
= \frac{1}{2}(\Phi(\iota(1,1)) - \Phi(\iota(i,i)))
= \frac{1}{2}((1,1) - (-1,1))
= (1,0)$$

We can also show that Φ is \mathbb{C} -linear, i.e. that $\Phi(z \cdot x) = z \cdot \Phi(x)$, and that $\Phi(x + y) = \Phi(x) + \Phi(y)$. In fact, because Φ is an \mathbb{R} -module homomorphism, the second identity must hold, so we need only verify the first.

We first show that this holds for simple tensors: assume $z \in \mathbb{C}$, and $x = x_1 \otimes x_2$, for some $x_1, x_2 \in \mathbb{C}$. Then

$$\Phi(z \cdot x) = \Phi(z \cdot (x_1 \otimes x_2))
= \Phi((z \cdot x_1) \otimes x_2)
= \Phi(\iota(z \cdot x_1, x_2))
= ((z \cdot x_1)x_2, (z \cdot x_1)\overline{x_2})
= z \cdot \Phi(x_1 \otimes x_1)
= z \cdot \Phi(x)$$

$$= z \cdot \Phi(x)$$

We can extend this to every tensor in $\mathbb{C} \otimes \mathbb{C}$ by the additivity of Φ .

So, we see that Φ is a \mathbb{C} -linear homomorphism with the two basis vectors (0,1) and (1,0) in its image; this implies that any arbitrary element $y \in \mathbb{C} \times \mathbb{C}$, say (y_1, y_2) , is in the image of Φ :

$$y = (y_1, y_2)$$

$$= y_1 \cdot (1, 0) + y_2 \cdot (0, 1)$$

$$= y_1 \cdot \Phi(\epsilon_2) + y_2 \cdot \Phi(\epsilon_1)$$

$$= \Phi(y_1 \cdot \epsilon_2 + y_2 \cdot \epsilon_1)$$

So, Φ is surjective. Because $\mathbb{C} \otimes \mathbb{C}$ is a 2-dimensional \mathbb{C} -vector space, with basis ϵ_1 and ϵ_2 , and $\mathbb{C} \times \mathbb{C}$ is also a 2 dimensional vector space over \mathbb{C} , Φ must be an isomorphism of \mathbb{C} -vector spaces.