Górka Bartosz 127228 Zimniak Kajetan 127229

Algorytmy ewolucyjne i metaheurystyki

Sprawozdanie 1

1. Opis problemu

Celem projektu było przygotowanie dwóch wersji algorytmów rozwiązujących problem grupowania. Liczba grup została ustalona na 10. Funkcja celu została zdefiniowana jako minimalizacja średniej odległości wszystkich par obiektów umieszczonych w ramach tej samej grupy.

Jako kluczowe było wykorzystanie macierzy odległości (dystansu pomiędzy punktami) zamiast użycia przestrzeni kartezjańskiej jako punktu wyjścia. Takie założenie pozwala wykorzystać algorytmy również w przypadku zmiany funkcji odległości (macierz odległości jest wystarczająca do dokonania przydziału).

W rozdziałe 2 zaprezentowano pseudokody przygotowanych algorytmów, natomiast w rozdziałe 3 wyniki działania algorytmów dla 100 iteracji. Ostatni rozdział dotyczy wizualizacji najlepszych uzyskanych rozwiązań.

2. Pseudokody przygotowanych algorytmów

2.1. Algorytm zachłanny

2.2. Algorytm z wykorzystaniem żalu

Algorytm z wykorzystaniem żalu dokonuje przydziału obiektu zgodnie z pseudokodem zaprezentowanym poniżej. W każdej iteracji przydziela jeden punkt do jednej grupy. Dla każdego punktu

sprawdza jak bardzo jego dołożenie do danej grupy pogorszy wartość funkcji celu. Następnie wybiera punkt, którego dołożenie do którejś z grup będzie najmniej korzystne i dołącza go do grupy, która znajduje się najbliżej niego (najkorzystniejszy wybór wśród wszystkich grup). Inicjalizacja punktów startowych odbywa się poprzez losowy wybór elementu startowego w każdej z grup.

3. Wyniki eksperymentów obliczeniowych

W tabeli 1 zaprezentowano wyniki eksperymentów obliczeniowych. Dokonano 100 powtórzeń obliczeń, za każdym razem z losowym wyborem elementu startowego w każdej z 10 grup. Za losowy element startowy uznaje się przydział 10 różnych punktów do 10 różnych grup (każda z powstałych grup miała jeden punkt). Przydzielony punkt określany jest punktem startowym grupy.

Obydwa algorytmy wykorzystywały ten sam przydział początkowy grup w ramach pojedynczej iteracji, aby możliwe było ich porównanie.

Cecha	Algorytm zachłanny	Algorytm oparty o żal
Wartość minimalna	33.92	37.62
funkcji celu		
Wartość maksymalna	44.44	73.82
funkcji celu		
Wartość średnia	38.47	48.36
funkcji celu		
Wartość minimalna	0,000804	0,18
czasu obliczeń [sec]		
Wartość maksymalna	0,029	1,52
czasu obliczeń [sec]		
Wartość średnia	0,0017	0,258
czasu obliczeń [sec]		

Tabela 1. Wyniki eksperymentów obliczeniowych dla 100 iteracji

4. Wizualizacja najlepszych rozwiązań $\,$

4.1. Algorytm zachłanny

Rysunek 1. Algorytm zachłanny - wizualizacja najlepszego przydziału

4.2. Algorytm oparty o $\dot{\mathbf{z}}$ al

Rysunek 2. Algorytm oparty o żal - wizualizacja najlepszego przydziału