Quiz - Latches

- 1) (2 pts) Using nor gates, please design a simple latch. Use inputs A, B, and output Q.
- 2) (3 pts) For the latch, indicate what states lead to set (Q=1), reset (Q=0), and store.
- 3) (1 pt) Also identify the state that leads to uncontrolled oscillation.
- 4) (4 pts) Using logic gates, create an "interface" for the raw latch that does the following:
 - a. User inputs J & K, interface outputs to A & B on the raw latch
 - b. When J=1, K=0, the latch is set
 - c. When J=0, K=1, the latch is unset (to zero)
 - d. When J=0, K=0, the latch holds (does not change value)
 - e. When J=1, K=1, the latch toggles (Q becomes not-Q)

e) 11 → 00

A	B	Q Store 3
U	0	oscillates
0	1	1 (sex)
	0	1
1	1	Nope
	•	

forth a lot really fast.

Built assuming the truth table above is true

- \$ b) latch set on 10
 - c) latch reset on 01
 - d) hold on 00
 - e) toggle on 11

I'm not sure how to trough this without avoid a 00.

Quiz - Latches

- 1) (2 pts) Using nor gates, please design a simple latch. Use inputs A, B, and output Q.
- 2) (3 pts) For the latch, indicate what states lead to set (Q=1), reset (Q=0), and store.
- 3) (1 pt) Also identify the state that leads to uncontrolled oscillation.
- 4) (4 pts) Using logic gates, create an "interface" for the raw latch that does the following:
 - a. User inputs J & K, interface outputs to A & B on the raw latch
 - b. When J=1, K=0, the latch is set
 - c. When J=0, K=1, the latch is unset (to zero)
 - d. When J=0, K=0, the latch holds (does not change value)
 - e. When J=1, K=1, the latch toggles (Q becomes not-Q)

Interface:

