# Semilinear elliptic equations with a critical Sobolev exponent and a non-homogeneous term

Kazune Takahashi

24 January 2015

## 1 概要

N を 3 以上の自然数とする。 $\Omega \subset \mathbb{R}^N$  を有界領域とする。p = (N+2)/(N-2) とする。 $f \in H^{-1}(\Omega)$  は、 $f \geq 0$ 、 $f \not\equiv 0$  をみたすとする。 $a,b \in L^\infty(\Omega)$  とする。 $\kappa_1$  を  $-\Delta$  の  $\Omega$  におけるディリクレ条件下での第 1 固有値とする。 $\kappa > -\kappa_1$  があって、 $a \geq \kappa$  となると仮定する。また、 $b \geq 0$ 、 $b \not\equiv 0$  と仮定する。 $\lambda \geq 0$  をパラメータとする。以下の方程式を考察する。

$$\begin{cases}
-\Delta u + au = bu^p + \lambda f & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(\*)<sub>\lambda</sub>

**定理 1.1.**  $(\star)_{\lambda}$  には minimal solution が存在する。

定理 1.2.  $(\star)_{\lambda}$  には extremal solution が存在する。また、 $(\star)_{\lambda}$  の extremal solution は、 $\lambda = \overline{\lambda}$  における  $(\star)_{\lambda}$  の minimal solution に限る。

### 1.1 記号

ルベーグ空間を  $L^q(\Omega)$   $(1 \leq q \leq \infty)$  と表記する。ソボレフ空間  $W^{1,2}(\Omega)$  を  $H^1(\Omega)$  と表記する。トレースの意味で  $u|_{\partial\Omega}=0$  が成立する  $u\in H^1(\Omega)$  全体を  $H^1_0(\Omega)$  と表記する。ヘルダー空間を  $C^{k+\alpha}(\Omega)$   $(k\in\mathbb{N},\ 0<\alpha<1)$  と表記する。 ノルム空間 X のノルムを  $\|\cdot\|_X$  と表記する。ノルム空間 X の双対空間を  $X^*$  と表記する。 $H^1_0(\Omega)$  を  $H^{-1}(\Omega)$  と表記する。  $w\in H^1_0(\Omega)$  に対し、

$$||w||_{\kappa} = \left(\int_{\Omega} (|Dw|^2 + \kappa |w|^2) dx\right)^{1/2}$$

と定める。 $\kappa > -\kappa_1$ 、 $\Omega$  が有界領域であることにより、ポアンカレの不等式から  $\|\cdot\|_{\kappa}$  は  $\|\cdot\|_{H^1_0(\Omega)}$  と同値なノルムであることが従う。また、 $w\in H^1_0(\Omega)$  に対し、

$$||w|| = \left(\int_{\Omega} |Dw|^2 dx\right)^{1/2}$$

と定める。やはりポアンカレの不等式から  $\|\cdot\|$  は  $\|\cdot\|_{H^1_0(\Omega)}$  と同値なノルムであることが従う。

## 2 minimal solution の存在と性質

本節では、 $(\star)_{\lambda}$ の解のうち、minimal solution について取り扱う。まずは minimal solution を定義する。

記号 2.1.  $\lambda > 0$  に対し、

$$S_{\lambda} = \{ u \in H_0^1(\Omega) \mid u \text{ it } (\star)_{\lambda} \text{ の弱解である } \}$$

と定める。

定義 2.2.  $\underline{u}_{\lambda} \in S_{\lambda}$  が minimal solution であるとは、任意の  $u \in S_{\lambda}$  に対し、

$$\underline{u}_{\lambda} \leq u \text{ in } \Omega$$

が成立することをいう。

記号 2.3.  $(\star)_{\lambda}$  の minimal solution を  $\underline{u}_{\lambda}$  と表記する。

## 2.1 $H_0^1(\Omega)$ の原点付近における様子

minimal solution を調べる第一歩として、 $\lambda>0$  が十分小さいときに、 $(\star)_{\lambda}$  が弱解を持つことを、陰関数定理を用いて示す。

**補題 2.4.** 1.  $\lambda_0 > 0$  と  $H_0^1(\Omega)$  の原点の近傍 U が存在して、 $0 < \lambda \le \lambda_0$  に対し、 $(\star)_{\lambda}$  は U 内の唯一の弱解  $u_{\lambda}$  をもつ。また、次が成立する。

$$||u_{\lambda}||_{H_0^1(\Omega)} \to 0 \ (\lambda \searrow 0).$$

2. さらに、 $f \in C^{\alpha}(\overline{\Omega})$  を仮定する。このとき、1. の弱解  $u_{\lambda}$  は、 $u_{\lambda} \in C^{2+\alpha}(\Omega)$  をみたし、次が成立する。

$$||u_{\lambda}||_{C^{2+\alpha}(\Omega)} \to 0 \ (\lambda \searrow 0).$$

**証明.** 1.  $\Phi: [0,\infty) \times H_0^1(\Omega) \to H^{-1}(\Omega)$  を

$$\Phi(\lambda, u) = -\Delta u + au - b(u_+)^p - \lambda f \tag{1}$$

とする。 $\Phi$  の u についてのフレッシェ微分は、 $w \in H_0^1(\Omega)$  とすると、次が成立する。

$$\Phi_u(\lambda, u) \colon w \mapsto -\Delta w + aw - bp(u_+)^{p-1}w.$$

特に、次が成立する。

$$\Phi_u(0,0)w = -\Delta w + aw.$$

 $a>-\kappa_1$  により、 $\Phi_u(0,0)\colon H^1_0(\Omega)\to H^{-1}(\Omega)$  は可逆である。ゆえに、陰関数定理より、 $\lambda_0>0$  と  $H^1_0(\Omega)$  の原点の近傍 U が存在して、 $0<\lambda\leq\lambda_0$  に対し、 $\Phi(\lambda,u_\lambda)=0$  をみたす  $u_\lambda\in U$  が唯一つ存在し、次をみたす。

$$\lim_{\lambda \searrow 0} \|u_{\lambda}\|_{H_0^1(\Omega)} = 0.$$

つまり、 $u_{\lambda}$  は、以下の方程式の弱解である。

$$\begin{cases}
-\Delta u + au = b(u_+)^p + \lambda f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$
(2)

ここで  $b(u_+)^p + \lambda f \ge 0$  であり、 $a > -\kappa_1$  であるから、強最大値原理により、 $u_{\lambda} > 0$  in  $\Omega$  が成立する。よって、 $u_{\lambda}$  は  $(\star)_{\lambda}$  の U における唯一の弱解である。

2.  $f \in C^{\alpha}(\overline{\Omega})$  のとき、 $\Phi \colon [0,\infty) \times C^{2+\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega})$  を、(1) で定義する。以下、1. の証明と同様にすると、 $u_{\lambda} \in C^{2+\alpha}(\Omega)$  と  $\|u_{\lambda}\|_{C^{2+\alpha}(\Omega)} \to 0$  ( $\lambda \searrow 0$ ) が示される。

以下では基本的に、1. の結果を使用し、弱解の枠組みで議論する。2. の結果は、§ 3 で使用する。

#### 2.2 優解との関係

続いて、ある  $\lambda = \hat{\lambda}$  で  $(\star)_{\lambda}$  が優解をもつときに、 $0 < \lambda \leq \hat{\lambda}$  で minimal solution が存在することを示す。

補題 2.5.  $\hat{\lambda} > 0$  とする。以下をみたす  $\hat{u} \in H_0^1(\Omega)$  が存在すると仮定する。

$$\begin{cases} \Delta \widehat{u} + a\widehat{u} \ge b\widehat{u}^p + \widehat{\lambda}f & \text{in } \Omega, \\ \widehat{u} > 0 & \text{in } \Omega \end{cases}$$
 (3)

このとき、 $\lambda \in (0, \widehat{\lambda}]$  に対し、 $(\star)_{\lambda}$  の minimal solution  $\underline{u}_{\lambda}$  が存在する。また、 $\underline{u}_{\lambda} < \widehat{u}$  in  $\Omega$  が成立する。

**証明.**  $H^1_0(\Omega)$  の点列  $\{u_n\}_{n=0}^\infty$  を、次の通りに帰納的に定める。 $u_0\equiv 0$  とする。 $u_n$  が定まっているときに、線形方程式

$$\begin{cases}
-\Delta u_{n+1} + au_{n+1} = bu_n^p + \lambda f & \text{in } \Omega, \\
u_{n+1} = 0 & \text{on } \partial\Omega
\end{cases}$$
(4)

の唯一の弱解を  $u_{n+1} \in H_0^1(\Omega)$  と定める。

ここで、次の事実を、n についての数学的帰納法を用いて証明する。

$$0 = u_0 < u_1 < \dots < u_n < \hat{u} \text{ in } \Omega. \tag{5}$$

n=0 のときは、 $\widehat{u}>0$  in  $\Omega$  であることから、(5) が成立する。 $n\in\mathbb{N}$  とする。n における (5) の成立を仮定し、n+1 における (5) の成立を示す。

$$-\Delta u_{n+1} + au_{n+1} = bu_n^p + \lambda f,$$
  
$$-\Delta u_n + au_n = bu_{n-1}^p + \lambda f$$

の両辺を引くと、次が成立する。

$$-\Delta(u_{n+1} - u_n) + a(u_{n+1} - u_n) = b(u_n^p - u_{n-1}^p).$$

右辺は仮定により 0 以上である。ゆえに強最大値原理より、 $u_{n+1}>u_n$  in  $\Omega$  である。また、

$$-\Delta \widehat{u} + a\widehat{u} > b\widehat{u}^p + \lambda f,$$
  
$$-\Delta u_{n+1} + au_{n+1} = bu_n^p + \lambda f$$

の両辺を引いて同様にすると、 $\widehat{u}>u_{n+1}$  in  $\Omega$  もしたがう。以上により、(5) は n+1 でも正しい。数学的帰納法により、任意の  $n\in\mathbb{N}$  について (5) の成立が示された。

続いて、 $\{u_n\}$  が  $H^1_0(\Omega)$  における有界列であることを示す。 $u_{n+1}$  は (4) の弱解であるから、任意の  $\psi \in H^1_0(\Omega)$  に対し、次が成立する。

$$\int_{\Omega} (Du_{n+1} \cdot D\psi + au_{n+1}\psi)dx = \int_{\Omega} bu_n^p \psi dx + \lambda \int_{\Omega} f\psi dx \tag{6}$$

 $\psi = u_{n+1}$  とすると、次が成立する。

$$\int_{\Omega} (|Du_{n+1}|^2 + a|u_{n+1}|^2) dx = \int_{\Omega} bu_n^p u_{n+1} dx + \lambda \int_{\Omega} f u_{n+1} dx.$$

ここで、右辺は、次の通りに評価される。

(右辺) 
$$\leq \int_{\Omega} b\widehat{u}^{p+1} dx + \lambda \int_{\Omega} f\widehat{u} dx < \infty.$$
 (7)

ここで  $\hat{u} \in H_0^1(\Omega) \subset L^{p+1}(\Omega)$  に注意した。また左辺について、

(左辺) 
$$\geq \int_{\Omega} (|Du_{n+1}|^2 + \kappa |u_{n+1}|^2) dx = ||u_{n+1}||_{H_0^1(\Omega)}$$
 (8)

もわかる。 $\|\cdot\|_{\kappa}$  は  $\|\cdot\|_{H^1_0(\Omega)}$  と同値なノルムである。したがって、(7) および (8) より、 $\{u_n\}$  は  $H^1_0(\Omega)$  の有界列である。 ゆえに、必要ならば部分列をとることにより、 $u\in H^1_0(\Omega)$  が存在して、 $n\to\infty$  とすると、以下が成立する。

$$u_n \longrightarrow u$$
 weakly in  $H_0^1(\Omega)$ , (9)

$$u_n \longrightarrow u$$
 in  $L^q(\Omega)$   $(q < p+1)$ ,

$$u_n \longrightarrow u$$
 a. e. in  $\Omega$ . (10)

ここでuが $(\star)_{\lambda}$ の弱解であることを示す。(9)により、次が成立する。

$$\int_{\Omega} (Du_{n+1} \cdot D\psi + au_{n+1}\psi) dx \xrightarrow{n \to \infty} \int_{\Omega} (Du \cdot D\psi + au\psi) dx.$$

また、 $b \in L^{\infty}(\Omega)$   $\widehat{u}, \psi \in H_0^1(\Omega) \subset L^{p+1}(\Omega)$  より、

$$|bu_n\psi| \leq b\widehat{u}^p|\psi|$$
 a. e. in  $\Omega$ 

の右辺は可積分である。(10)より、優収東定理から、次を得る。

$$\int_{\Omega} bu_n^p \psi dx \xrightarrow{n \to \infty} \int_{\Omega} bu^p \psi dx.$$

したがって、(6) で  $n \to \infty$  とすると次を得る。

$$\int_{\Omega} (Du \cdot D\psi + au\psi) dx = \int_{\Omega} bu^p \psi dx + \lambda \int_{\Omega} f\psi dx. \tag{11}$$

 $\psi \in H_0^1(\Omega)$  は任意であるから、 $u \in H_0^1(\Omega)$  は  $(\star)_{\lambda}$  の弱解である。

最後に、u は  $(\star)_{\lambda}$  の minimal solution であることを示す。 $\widetilde{u} \in H^1_0(\Omega)$  を  $(\star)_{\lambda}$  の弱解とする。このとき、(5) と同様の議論により、 $\widetilde{u} > u_n$  in  $\Omega$  が数学的帰納法で示される。 $n \to \infty$  として、 $\widetilde{u} \ge u$  in  $\Omega$  となる。よって u は  $(\star)_{\lambda}$  の minimal solution である。

補題 2.5 から、次の事実がしたがう。

補題 2.6. 1.  $\lambda_0 > 0$  が存在して、 $S_{\lambda_0} \neq \emptyset$  とする。このとき、 $0 < \lambda < \lambda_0$  に対し、 $S_{\lambda} \neq \emptyset$  となる。

- 2.  $\lambda>0$  とする。 $S_{\lambda}\neq\emptyset$  ならば、 $(\star)_{\lambda}$  には minimal solution  $\underline{u}_{\lambda}\in S_{\lambda}$  が存在する。
- $3. \ 0 < \lambda_1 < \lambda_2$  とする。 $S_{\lambda_1} 
  eq \emptyset$ 、 $S_{\lambda_2} 
  eq \emptyset$  ならば、 $\underline{u}_{\lambda_1} \in S_{\lambda_1} \ \underline{u}_{\lambda_2} \in S_{\lambda_2}$  について、 $\underline{u}_{\lambda_1} < \underline{u}_{\lambda_2}$  in  $\Omega$  が成立する。
- 4. 補題 2.4 における  $(\star)_{\lambda}$  の弱解を  $u_{\lambda}$  とする。このとき、 $u_{\lambda} = \underline{u}_{\lambda}$  である。

**証明.** 1.  $u_{\lambda_0} \in S_{\lambda_0}$  とする。 $\widehat{u} = u_{\lambda_0}$  とし補題 2.5 を適用すると結論が得られる。

- 2.  $u_{\lambda} \in S_{\lambda}$  とする。  $\hat{u} = u_{\lambda}$  として補題 2.5 を適用すると、 $(\star)_{\lambda}$  の minimal solution  $\underline{u}_{\lambda}$  が得られる。
- 3.  $\widehat{u}=\underline{u}_{\lambda_2}$  として、補題 2.5 (5) を適用すると、 $\underline{u}_{\lambda_1}\leq \underline{u}_{\lambda_2}$  in  $\Omega$  が得られる。

$$-\Delta \underline{u}_{\lambda_1} + a\underline{u}_{\lambda_1} = b\underline{u}_{\lambda_1}^p + \lambda_1 f,$$
  
$$-\Delta \underline{u}_{\lambda_2} + a\underline{u}_{\lambda_2} = b\underline{u}_{\lambda_2}^p + \lambda_2 f$$

の両辺を引くと、次が成立する。

$$-\Delta(\underline{u}_{\lambda_2} - \underline{u}_{\lambda_1}) + a(\underline{u}_{\lambda_2} - \underline{u}_{\lambda_1}) = b(\underline{u}_{\lambda_2}^p - \underline{u}_{\lambda_2}) + (\lambda_2 - \lambda_1)f.$$

右辺が 0 以上であること、および、 $a>-\kappa_1$  により、強最大値原理を用いると、 $\underline{u}_{\lambda_1}<\underline{u}_{\lambda_2}$  in  $\Omega$  がしたがう。

 $4. \ u_{\lambda} \in S_{\lambda}$  より、 $S_{\lambda} \neq \emptyset$  である。したがって、 $2. \$ より、 $(\star)_{\lambda}$  は minimal solution  $\underline{u}_{\lambda}$  をもつ。よって、(38) で  $u = \psi = \underline{u}_{\lambda}$  とおくと、以下が得られる。

$$\int_{\Omega} \left( |D\underline{u}_{\lambda}|^2 + a|\underline{u}_{\lambda}|^2 \right) dx = \int_{\Omega} b\underline{u}_{\lambda}^p dx + \lambda \int_{\Omega} f\underline{u}_{\lambda} dx. \tag{12}$$

ここで、minimal solution の  $H_0^1(\Omega)$  ノルムが、 $\lambda \setminus 0$  のとき、0 に収束することを示す。

$$((12)$$
 の左辺)  $\geq \int_{\Omega} (|D\underline{u}_{\lambda}|^2 + \kappa |\underline{u}_{\lambda}|^2) dx \geq C \|\underline{u}_{\lambda}\|_{H_0^1(\Omega)}^2.$ 

中辺は  $\|\underline{u}_{\lambda}\|_{\kappa}^{2}$  であり、 $\|\cdot\|_{\kappa}$  は  $\|\cdot\|_{H_{0}^{1}(\Omega)}$  と同値であるから、C>0 は  $\|\cdot\|_{H_{0}^{1}(\Omega)}$  の中身によらない定数であることに注意されたい。また、 $\underline{u}_{\lambda}\leq u_{\lambda}$  in  $\Omega$  より、次がしたがう。

ここで、C',C''>0 は、 $\|\cdot\|_{H^1_0(\Omega)}$  の中身によらない定数である。以上より、以下が成立する。

$$C \|u\|_{H_0^1(\Omega)} \le C' \|u_\lambda\|_{H_0^1(\Omega)}^{p+1} + C'' \|u_\lambda\|_{H_0^1(\Omega)}.$$

補題 2.4 より、 $\lambda \searrow 0$  のとき、 $\|u_{\lambda}\|_{H^1_0(\Omega)} \searrow 0$  が成立する。ゆえに、 $\|\underline{u}_{\lambda}\|_{H^1_0(\Omega)} \searrow 0$  となる。再び補題 2.4 によると、 $\lambda > 0$  が十分小さいとき、 $u_{\lambda}$  は  $(\star)_{\lambda}$  の唯一の弱解であった。したがってこのことは  $u_{\lambda} = \underline{u}_{\lambda}$  を示している。

#### 2.3 **解が存在する** λ **の有界性**

補題 2.4 により、 $\lambda > 0$  が存在して、 $(\star)_{\lambda}$  の解が存在する。補題 2.6 により、 $(\star)_{\lambda}$  の解が存在する  $\lambda$  が見つかれば、それより小さい  $\lambda$  については、 $(\star)_{\lambda}$  の解が存在する。そこで、 $(\star)_{\lambda}$  の解が存在する  $\lambda$  がどこまで大きくなるのかを調べる。そのために次の記号を置く。

記号 2.7.  $\overline{\lambda} = \sup\{\lambda \geq 0 \mid S_{\lambda} \neq \emptyset\}$  と定める。

ここから先は、 $\overline{\lambda}<\infty$  を示すことを目標に議論を進める。その準備として、 $\lambda>0$  によらない  $H^1_0(\Omega)$  の元  $g_0$  を用意する。

記号 2.8.  $g_0 \in H_0^1(\Omega)$  を

$$\begin{cases}
-\Delta g_0 + ag_0 = f & \text{in } \Omega, \\
g_0 = 0 & \text{on } \partial\Omega
\end{cases}$$
(13)

の唯一の弱解と定める。

 $g_0$  について、次の補題を示す。

#### 補題 2.9. 固有值問題

$$-\Delta \phi + a\phi = \mu b(g_0)^{p-1}\phi \text{ in } \Omega, \quad \phi \in H_0^1(\Omega)$$

の第 1 固有値を  $\mu_1$  とする。このとき、 $\mu_1>0$  である。また、 $\mu_1$  に付随する固有関数  $\phi_1$  のうち、 $\phi_1>0$  in  $\Omega$  をみたすものがある。

**証明.**  $\mu_1$  はレーリッヒ商により、

$$\mu_1 = \inf_{\psi \in H_0^1(\Omega), \psi \not\equiv 0} \frac{\int_{\Omega} (|D\psi|^2 + a|\psi|^2) dx}{\int_{\Omega} b(g_0)^{p-1} \psi^2 dx}$$
(14)

と特徴付けられる。また、(14) の右辺の下限を達成する関数  $\phi\in H^1_0(\Omega)$  があるとすれば、 $\phi$  が  $\mu_1$  に付随する固有関数である。

(14) より、以下が成立する  $H_0^1(\Omega)$  の点列  $\{\psi_n\}$  が存在する。

$$\int_{\Omega} b(g_0)^{p-1} \psi_n^2 dx = 1, \tag{15}$$

$$\int_{\Omega} \left( |D\psi_n|^2 + a|\psi_n|^2 \right) dx \searrow \mu_1. \tag{16}$$

 $a>\kappa$  であるから、(16) の左辺は  $\|\psi_n\|_\kappa^2$  以下である。 $\|\cdot\|_\kappa$  は  $\|\cdot\|_{H_0^1(\Omega)}$  と同値なノルムであるから、 $\{\psi_n\}$  は  $H_0^1(\Omega)$  の有界列である。

ゆえに、必要ならば部分列をとることにより、 $\phi_1 \in H^1_0(\Omega)$  が存在して、 $n \to \infty$  とすると、以下が成立する。

$$\psi_n \longrightarrow \phi_1$$
 weakly in  $H_0^1(\Omega)$ , (17)

$$\psi_n \longrightarrow \phi_1 \text{ in } L^q(\Omega) \quad (q < p+1),$$
 (18)

$$\psi_n \longrightarrow \phi_1 \quad \text{a. e. in } \Omega.$$
 (19)

(17) より、 $H_0^1(\Omega)$  ノルムの弱下半連続性から、次が成立する。

$$\liminf_{n \to \infty} \|\psi_n\|_{H_0^1(\Omega)} \ge \|\phi_1\|_{H_0^1(\Omega)}.$$

ゆえに、(18) と合わせて、以下が成立する。

$$\mu_1 \ge \int_{\Omega} \left( |D\phi_1|^2 + a|\phi_1|^2 \right) dx.$$
 (20)

また、ソボレフ埋め込み  $H^1_0(\Omega)\subset L^{p+1}(\Omega)$  より、 $H^1_0(\Omega)$  の有界列  $\{\psi_n\}$  は  $L^{p+1}(\Omega)$  の有界列である。したがって、 $\{\psi_n^2\}$  は  $L^{N/(N-2)}(\Omega)$  の有界列である。よって、必要なら部分列をとると、 $\{\psi_n^2\}$  は  $L^{N/(N-2)}(\Omega)$  の弱収束列となる。一方 (19) から、 $\{\psi_n^2\}$  は  $\phi_1^2$  に  $\Omega$  上ほとんどいたるところ収束する。したがって、次が成立する。

$$\psi_n^2 \longrightarrow \phi_1^2$$
 weakly in  $L^{N/(N-2)}(\Omega)$ .

 $g_0\in L^{p+1}(\Omega)$  より、 $b(g_0)^{p-1}\in L^{N/2}(\Omega)$  である。 $\left(L^{N/(N-2)}(\Omega)\right)^*\cong L^{N/2}(\Omega)$  より、次が成立する。

$$\int_{\Omega} b(g_0)^{p-1} \psi_n^2 dx \xrightarrow{n \to \infty} \int_{\Omega} b(g_0)^{p-1} \phi_1^2 dx. \tag{21}$$

(21) の証明は、[Wil96] の Lemma 2.13 によった。(20) と (21) により、次がしたがう。

$$\mu_1 \ge \frac{\int_{\Omega} \left( |D\phi_1|^2 + a|\phi_1|^2 \right) dx}{\int_{\Omega} b(g_0)^{p-1} \phi_1^2 dx}.$$
 (22)

(14) により、(22) の不等号は実際には等号が成立する。すなわち、(14) の右辺の下限は  $\phi_1 \in H^1_0(\Omega)$  により達成される。よって  $\mu_1>0$  である。

(14) の右辺の形から、 $\phi_1$  が (14) の右辺の下限を達成するならば、 $|\phi_1|$  も下限を達成する。すなわち、 $\phi_1 \geq 0$  in  $\Omega$  となる第 1 固有関数がある。この  $\phi_1$  について、次が成立する。

$$-\Delta\phi_1 + a\phi_1 = \mu_1 b(q_0)^{p-1}\phi_1 > 0 \text{ in } \Omega.$$

ゆえに、強最大値原理により、 $\phi_1 > 0$  in  $\Omega$  となる。

 $g_0$  を用いて、次の命題を証明する。

**命題 2.10.**  $\overline{\lambda}$  を記号 2.7 のものとする。 $0 < \overline{\lambda} < \infty$  である。

**証明.** 補題 2.4 により、 $\lambda_0>0$  が存在し、 $0<\lambda<\lambda_0$  に対して、 $(\star)_\lambda$  の解が存在する。ゆえに  $\overline{\lambda}>0$  である。そこで、 $\overline{\lambda}<\infty$  を示せば証明が完了する。

 $\lambda > 0$  は、 $S_{\lambda} \neq \emptyset$  をみたすものとする。 $u \in S_{\lambda}$  とし、 $v = u - \lambda g_0$  とする。このとき、次が成立する。

$$-\Delta v + av = bu^p \ge 0$$

したがって、強最大値原理より、v > 0 in  $\Omega$  である。つまり、 $u > \lambda q_0$  in  $\Omega$  がしたがう。よって、以下が成立する。

$$-\Delta u + au \ge bu^p \ge b\lambda^{p-1}(g_0)^{p-1}u \text{ in } \Omega.$$
(23)

一方、補題 2.9 により、以下が成立する  $\mu_1 > 0$ 、 $\phi_1 \in H_0^1(\Omega)$ 、 $\phi_1 > 0$  in  $\Omega$  が存在する。

$$-\Delta \phi_1 + a\phi_1 = \mu_1 b(g_0)^{p-1} \phi_1 \text{ in } \Omega.$$
 (24)

そこで、 $(23) imes \phi_1 - (24) imes u$  を  $\Omega$  上積分すると、次を得る。

$$0 \ge (\lambda^{p-1} - \mu_1) \int_{\Omega} b(g_0)^{p-1} u \phi_1 dx.$$

ここで、 $b \geq 0$  in  $\Omega$ 、 $b \not\equiv 0$ 、 $g_0, u, \phi_1 > 0$  in  $\Omega$  であるから、右辺の積分は正である。ゆえに、 $\lambda^{p-1} - \mu_1 \leq 0$  である。つまり、 $\lambda \leq \mu_1^{1/(p-1)}$  となる。 $\lambda > 0$  は  $S_\lambda \neq \emptyset$  をみたす任意の正の数であるから、 $\overline{\lambda} \leq \mu_1^{1/(p-1)} < \infty$  がしたがう。

証明 (定理 1.1). 命題 2.10 により、

## 2.4 minimal solution に関する線形化固有値問題

(\*)<sub>λ</sub>の minimal solution についての線形化固有値問題

$$-\Delta \phi + a\phi = \mu p b(\underline{u}_{\lambda})^{p-1} \phi \text{ in } \Omega, \quad \phi \in H_0^1(\Omega)$$
(25)

を考察する。特に第1固有値、第1固有関数について論ずる。

補題 2.11.  $0 < \lambda < \overline{\lambda}$  とする。 $(\star)_{\lambda}$  の minimal solution  $\underline{u}_{\lambda} \in S_{\lambda}$  に関する線形化固有値問題 (25) の第 1 固有値を  $\mu_1$  とする。このとき、以下が成立する。

- 1.  $\mu_1 > 0$  である。また、 $\mu_1$  に付随する固有関数  $\phi_1$  のうち、 $\phi_1 > 0$  in  $\Omega$  をみたすものがある。
- 2. 任意の  $\psi \in H_0^1(\Omega)$  に対し、次が成立する。

$$\int_{\Omega} \left( |D\psi|^2 + a|\psi|^2 \right) dx \ge \mu_1 \int_{\Omega} pb(\underline{u}_{\lambda})^{p-1} \psi^2 dx. \tag{26}$$

証明. 1. 補題 2.9 と同様である。

2.  $\mu_1$  のレーリッヒ商による特徴付け

$$\mu_1 = \inf_{\psi \in H_0^1(\Omega), \psi \not\equiv 0} \frac{\int_{\Omega} \left( |D\psi|^2 + a|\psi|^2 \right) dx}{\int_{\Omega} pb(\underline{u}_{\lambda})^{p-1} \psi^2 dx}$$

から (26) が成立する。

記号 2.12.  $(\star)_{\lambda}$  の minimal solution に関する線形化固有値問題 (25) の第 1 固有値を  $\mu_1(\lambda)$  とかく。

補題 2.13.  $0 < \lambda < \overline{\lambda}$  とする。このとき、 $\mu_1(\lambda) > 1$  である。

**証明.**  $\widehat{\lambda}$  を  $0<\lambda<\widehat{\lambda}<\overline{\lambda}$  をみたすものとする。 $z=\underline{u}_{\widehat{\lambda}}-\underline{u}_{\lambda}$  とおく。補題 2.6.3 より、z>0 in  $\Omega$  である。

$$-\Delta \underline{u}_{\widehat{\lambda}} + a\underline{u}_{\widehat{\lambda}} = b\underline{u}_{\widehat{\lambda}}^p + \widehat{\lambda}f,$$
  
$$-\Delta \underline{u}_{\lambda} + a\underline{u}_{\lambda} = b\underline{u}_{\lambda}^p + \lambda f$$

の両辺を引いて、次を得る。

$$-\Delta z + az = b(\underline{u}_{\widehat{\lambda}}^p - \underline{u}_{\lambda}^p) + (\widehat{\lambda} - \lambda)f.$$

 $x \ge 0$  に対し、 $x \mapsto x^p$  は下に凸であるから、次がしたがう。

$$\underline{u}_{\widehat{\lambda}}^p - \underline{u}_{\lambda}^p > p\underline{u}_{\lambda}^{p-1}(\underline{u}_{\widehat{\lambda}} - \underline{u}_{\lambda}) = p\underline{u}_{\lambda}^{p-1}z.$$

 $(\hat{\lambda} - \lambda)f \ge 0$  と合わせて、次を得る。

$$-\Delta z + az > bp\underline{u}_{\lambda}^{p-1}z \text{ in } \Omega. \tag{27}$$

 $\mu_1 = \mu_1(\lambda)$ とする。補題 2.11 より、 $\phi_1 > 0$  in  $\Omega$  があって、

$$-\Delta\phi_1 + a\phi_1 = \mu p b \underline{u}_{\lambda}^{p-1} \phi_1 \text{ in } \Omega$$
 (28)

 $(27) \times \phi_1 - (28) \times z$  を  $\Omega$  上積分すると、

$$0 > (1 - \mu_1) p \int_{\Omega} b \underline{u}_{\lambda}^{p-1} \phi_1 z dx$$

となる。ここで、 $b\geq 0$  in  $\Omega$ 、 $b\not\equiv 0$ 、 $\underline{u}_{\lambda},z,\phi_1>0$  in  $\Omega$  であるから、右辺の積分は正である。ゆえに、 $1-\mu_1<0$  である。つまり  $\mu_1>1$  である。

#### 2.5 extremal solution の存在

以下では、 $\lambda = \overline{\lambda}$  における  $(\star)_{\lambda}$  を考察する。

定義 2.14.  $\overline{\lambda}$  を記号 2.7 のものとする。  $\lambda = \overline{\lambda}$  における  $(\star)_{\lambda}$  の弱解を  $(\star)_{\lambda}$  の extremal solution という。

本小節では、 $(\star)_{\lambda}$  の extremal solution が存在することを示す。このために、まず以下の集合を考察する。

$$K = \{ \underline{u}_{\lambda} \in H_0^1(\Omega) \mid 0 < \lambda < \overline{\lambda} \}. \tag{29}$$

補題 2.15. (29) の K は  $H_0^1(\Omega)$  の有界集合である。

**証明.**  $g_0 \in H_0^1(\Omega)$  を記号 2.8 のものとする。 $v_\lambda = \underline{u}_\lambda - \lambda g_0$  と定める。すると、次が成立する。

$$-\Delta v_{\lambda} = \underline{u}_{\lambda} - \lambda g_0 \quad \text{in } \Omega.$$

ゆえに、 $\psi \in H_0^1(\Omega)$  とすると、次が成立する。

$$\int_{\Omega} (Dv_{\lambda} \cdot D\psi + av_{\lambda}\psi) dx = \int_{\Omega} b(v_{\lambda} + \lambda g_0)^p \psi dx.$$

 $\psi = v_{\lambda}$ とおくと、次を得る。

$$\int_{\Omega} \left( |Dv_{\lambda}|^2 + a|v_{\lambda}|^2 \right) dx = \int_{\Omega} b(v_{\lambda} + \lambda g_0)^p v_{\lambda} dx. \tag{30}$$

ここで、次の事実を示す。任意の  $\epsilon > 0$  に対し、C > 0 が存在し、任意の  $s,t \geq 0$  に対し、次式が成立する。

$$(t+s)^{p} \le (1+\epsilon)(t+s)^{p-1}t + Cs^{p}. \tag{31}$$

まず、 $(t+s)^{p-1}s$  にヤングの不等式を用いる。q,r>1 は、 $q^{-1}+r^{-1}=1$  をみたすものとする。任意の  $0<\tilde{\epsilon}<1$  に対し、 $\tilde{C}>0$  が存在し、次が成立する。

$$(t+s)^{p-1}s \le \widetilde{\epsilon} \left( (t+s)^{p-1} \right)^q + \widetilde{C}s^r.$$

ここで q = p/(p-1) とおくと、r = p である。ゆえに、以下が成立する。

$$(t+s)^{p-1}s \le \widetilde{\epsilon}(t+s)^p + \widetilde{C}s^p$$

$$= \widetilde{\epsilon}(t+s)^{p-1}t + \widetilde{\epsilon}(t+s)^{p-1}s + \widetilde{C}s^p,$$

$$(t+s)^{p-1}s \le \frac{\widetilde{\epsilon}}{1-\widetilde{\epsilon}}(t+s)^{p-1}t + \frac{\widetilde{C}}{1-\widetilde{\epsilon}}s^p.$$

任意の  $\epsilon>0$  に対し、 $\epsilon=\widetilde{\epsilon}/(1-\widetilde{\epsilon})$  となる  $0<\widetilde{\epsilon}<1$  は存在する。この  $\widetilde{\epsilon}$  に対し、 $C=\widetilde{C}/(1-\widetilde{\epsilon})$  とすると、次が成立する。

$$(t+s)^{p-1}s \le \epsilon(t+s)^{p-1}t + Cs^p.$$

 $(t+s)^p=(t+s)^{p-1}s+(t+s)^{p-1}t$  より、(31) が得られる。以上の (31) の証明は [NS07] の Lemma 4.1 によった。 (30) の左辺を I とおく。(31) より、次式が成立する。

$$\int_{\Omega} b(v_{\lambda} + \lambda g_0)^p v_{\lambda} dx \le (1 + \epsilon) \int_{\Omega} b\underline{u}_{\lambda}^{p-1} v_{\lambda}^2 dx + C\lambda^p \int_{\Omega} bg_0^p v_{\lambda} dx. \tag{32}$$

ここで、補題 2.11.2、補題 2.13 から、次式を得る。

$$I \le \mu_1 p \int_{\Omega} b(\underline{u}_{\lambda})^{p-1} \underline{v}_{\lambda}^2 dx > p \int_{\Omega} b(\underline{u}_{\lambda})^{p-1} \underline{v}_{\lambda}^2 dx.$$

すなわち、次を得る。

$$\int_{\Omega} b(\underline{u}_{\lambda})^{p-1} v_{\lambda}^2 dx < \frac{I}{p} \tag{33}$$

また、 $g_0, v_\lambda \in H_0^1(\Omega) \subset L^{p+1}(\Omega)$ 、及び、ヘルダーの不等式、ソボレフの不等式から、次式を得る。

$$\int_{\Omega} b g_0^p v_{\lambda} dx \le \|b\|_{L^{\infty}(\Omega)} \|g_0\|_{L^{p+1}(\Omega)}^p \|v_{\lambda}\|_{L^{p+1}(\Omega)} \le C \|v_{\lambda}\|_{H_0^1(\Omega)} \le C' \|v_{\lambda}\|_{\kappa}. \tag{34}$$

ここでC, C' > 0 は $\lambda$  によらない。

(30)、(33)、(34) から、次式がしたがう。

$$I \leq \frac{1+\epsilon}{p}I + \overline{\lambda}^p C \|v_\lambda\|_{\kappa}.$$

 $\epsilon>0$  を  $(1+\epsilon)/p<1$  となるよう小さくとれば、 $I\leq C \|v_\lambda\|_\kappa$  となる。ここで  $I\geq \|v_\lambda\|_\kappa^2$ 、 $v_\lambda\not\equiv 0$  であるから、 $\|v_\lambda\|_\kappa\leq C$  である。 $\|\cdot\|_\kappa$  と  $\|\cdot\|_{H^1_0(\Omega)}$  は同値であるから、 $\{v_\lambda\in H^1_0(\Omega)\mid 0<\lambda<\overline\lambda\}$  は  $H^1_0(\Omega)$  の有界集合である。 $v_\lambda$  の定め方から  $\underline u_\lambda=v_\lambda+\lambda g_0$  であるため、次の式が成立する。

$$\|\underline{u}_{\lambda}\|_{H_{\sigma}^{1}(\Omega)} \leq \|v_{\lambda}\|_{H_{\sigma}^{1}(\Omega)} + \overline{\lambda} \|g_{0}\|_{H_{\sigma}^{1}(\Omega)}.$$

右辺は $\lambda$ によらない定数で抑えられる。従って、(29)のKは、 $H^1_0(\Omega)$ の有界集合である。

 $\lambda$   $\nearrow \overline{\lambda}$  のときの  $\underline{u}_{\lambda}$  の極限をとることで、 $(\star)_{\lambda}$  の extremal solution を構成する。

命題 2.16. 1.  $(\star)_{\lambda}$  の extremal solution が存在する。とくに、 $\lambda = \overline{\lambda}$  における  $(\star)_{\lambda}$  の minimal solution  $\underline{u}_{\overline{\lambda}}$  が存在する。2.  $\lambda > 0$  とする。 $\lambda \nearrow \overline{\lambda}$  のとき、 $\underline{u}_{\lambda} \nearrow \underline{u}_{\underline{l}}[\overline{\lambda}$  a. e. in  $\Omega$  となる。

**証明.** 1. 正の数の列  $\{\lambda_n\}_{n=0}^\infty$  は、 $\lambda_n \nearrow \overline{\lambda}$  をみたすものとする。 $u_n = \underline{u}_{\lambda_n}$  とかく。 $u_n$  は  $\lambda = \lambda_n$  における  $(\star)_\lambda$  の弱解であるから、任意の  $\psi \in H^1_0(\Omega)$  に対し、次が成立する。

$$\int_{\Omega} (Du_n \cdot D\psi + au_n\psi) dx = \int_{\Omega} bu_n^p \psi dx + \lambda \int_{\Omega} f\psi dx.$$
 (35)

補題 2.15 より、 $\{u_n\}$  は  $H^1_0(\Omega)$  の有界列である。ゆえに、必要ならば部分列をとることにより、 $u\in H^1_0(\Omega)$  が存在して、 $n\to\infty$  とすると、以下が成立する。

$$u_n \longrightarrow u \text{ weakly in } H_0^1(\Omega),$$
 (36)

$$u_n \longrightarrow u$$
 in  $L^q(\Omega)$   $(q < p+1)$ ,

$$u_n \longrightarrow u$$
 a. e. in  $\Omega$ . (37)

u が  $(\star)_{\lambda}$  の extremal solution であることを示す。(36) により、次が成立する。

$$\int_{\Omega} (Du_n \cdot D\psi + au_n \psi) dx \xrightarrow{n \to \infty} \int_{\Omega} (Du \cdot D\psi + au\psi) dx.$$

補題 2.6.3 と (37) により、 $u_n \leq u$  in  $\Omega$  となる。 とくに、u>0 in  $\Omega$  である。 また、 $b\in L^\infty(\Omega)$   $u,\psi\in H^1_0(\Omega)\subset L^{p+1}(\Omega)$  より、

$$|bu_n^p\psi| < b\widehat{u}^p|\psi|$$
 a. e. in  $\Omega$ 

の右辺は可積分である。(37)より、優収東定理から、次を得る。

$$\int_{\Omega} bu_n^p \psi dx \xrightarrow{n \to \infty} \int_{\Omega} bu^p \psi dx.$$

したがって、(6) で  $n \to \infty$  とすると次を得る。

$$\int_{\Omega} (Du \cdot D\psi + au\psi) dx = \int_{\Omega} bu^p \psi dx + \overline{\lambda} \int_{\Omega} f\psi dx. \tag{38}$$

 $\psi \in H^1_0(\Omega)$  は任意であるから、 $u \in H^1_0(\Omega)$  は  $(\star)_{\lambda}$  の extremal solution である。すなわち、 $(\star)_{\lambda}$  の extremal solution が存在する。補題 2.5.2 より、特に  $\lambda = \overline{\lambda}$  における  $(\star)_{\lambda}$  の minimal solution  $\underline{u}_{\overline{\lambda}}$  が存在する。

2. 補題 2.5.3 より、 $u_n = \underline{u}_{\lambda_n} < \underline{u}_{\overline{\lambda}}$  in  $\Omega$  である。 $n \to \infty$  とすると、 $u \le \underline{u}_{\overline{\lambda}}$  in  $\Omega$  を得る。 $u \in S_{\overline{\lambda}}$  であり、 $\underline{u}_{\overline{\lambda}}$  は  $\lambda = \overline{\lambda}$  における  $(\star)_{\lambda}$  の minimal solution であるから、 $u = \underline{u}_{\overline{\lambda}}$  である。したがって、 $n \to \infty$  のとき、 $\underline{u}_{\lambda_n} \nearrow \underline{u}_{\overline{\lambda}}$  a. e. in  $\Omega$  となる。  $\{\lambda_n\}$  の任意性により、 $\lambda \nearrow \overline{\lambda}$  のとき、 $\underline{u}_{\lambda} \nearrow \underline{u}_{\overline{\lambda}}$  a. e. in  $\Omega$  となる。

## 2.6 extremal solution の一意性

前小節では、 $(\star)_{\lambda}$  の extremal solution の存在を示した。本小節では、 $(\star)_{\lambda}$  の extremal solution が唯一つに限ることを示す。鍵となるのは、(25) の第 1 固有値  $\mu_1(\lambda)$  である。補題 2.13 では、 $0<\lambda<\overline{\lambda}$  において  $\mu_1(\lambda)>1$  となることを示した。 $\lambda=\overline{\lambda}$  において、この不等式が成立しなくなることを示す。

命題 2.17.  $(\star)_{\lambda}$  の extremal solution は、 $\lambda = \overline{\lambda}$  における  $(\star)_{\lambda}$  の minimal solution  $\underline{u}_{\overline{\lambda}}$  に限る。

証明 (定理 1.2). 命題 2.16.1 と命題 2.17 からしたがう。

# 3 N>6 かつ $\lambda>0$ が小さい場合

## 参考文献

- [NS07] Yūki Naito and Tokushi Sato. Positive solutions for semilinear elliptic equations with singular forcing terms. J. Differential Equations, Vol. 235, No. 2, pp. 439–483, 2007.
- [Wil96] Michel Willem. *Minimax theorems*. Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.