

Data Structures and Algorithms

Minimum Spanning Trees

Minimum Spanning Trees

Prim's algorithm
Kruskal's algorithm

Greedy Algorithms

Example: Communication Network

 Removal of an edge that is on a cycle does not affect connectedness.

 Connected subgraph with all vertices and minimum number of edges has no cycles.

Example: Communication Network

□ Tree

- -> Connected graph that has no cycles.
- → n vertex connected graph with n-1 edges.

Spanning Tree

- → Subgraph that includes all vertices of the original graph.
- → Subgraph is a tree.
 - If original graph has n vertices, the spanning tree has n vertices and n-1 edges.

Weight of a Spanning Tree

□ Tree cost is sum of edge weights.

Weight of a Spanning Tree

□ Spanning tree weight = 48

Minimum Spanning Tree

□ Spanning tree weight = 41 ... minimum weight for given graph

Another Minimum Spanning Tree

□ Spanning tree weight = 41 ... minimum weight for given graph

Minimum Spanning Tree

 MST: Given connected graph G with positive edge weights, find a min weight set of edges that connects all of the vertices.

- □ Cayley's Theorem (1889): There are V^{V-2} spanning trees on the complete graph on V vertices.
 - \Rightarrow Can't solve MST by brute force.

MST Origin

- Otakar Boruvka (1926).
 - → Electrical Power Company of Western Moravia in Brno (Czech).
 - → Most economical construction of electrical power network.
 - → Concrete engineering problem is now a cornerstone problem in combinatorial optimization.

Applications

- MST is fundamental problem with diverse applications.
 - → Network design
 - telephone, electrical, hydraulic, TV cable, computer, road
 - -> Cluster analysis
 - analyzing fungal spore spatial patterns
 - microarray gene expression data clustering
 - finding clusters of quasars and Seyfert galaxies
 - Approximation algorithms for NP-hard problems
 - traveling salesperson problem, Steiner tree
 - → Indirect applications
 - max bottleneck paths
 - image registration with Renyi entropy
 - learning salient features for real-time face verification
 - reducing data storage in sequencing amino acids in a protein
 - model locality of particle interactions in turbulent fluid flows
 - autoconfig protocol for Ethernet bridging to avoid cycles in a network

Medical Image Processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

Genetic Research

MST of tissue relationships measured by gene expression correlation coefficient

- Prim's algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)
 - → Initialize $T = \phi$, $S = \{s\}$ for some arbitrary vertex s.

Algorithms

Minimum Spanning Trees

- Prim's algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)
 - → Initialize $T = \phi$, $S = \{s\}$ for some arbitrary vertex s.
 - -> Grow 5 until it contains all of the vertices:
 - let f be smallest edge with exactly one endpoint in S

Algorithms

Minimum Spanning Trees

- Prim's algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)
 - → Initialize $T = \phi$, $S = \{s\}$ for some arbitrary vertex s.
 - Grow 5 until it contains all of the vertices:
 - let f be smallest edge with exactly one endpoint in S
 - add edge f to T

add other endpoint to S

5	Т
0	-
1	0-1
5	0-5

- Prim's algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)
 - → Initialize $T = \phi$, $S = \{s\}$ for some arbitrary vertex s.
 - → Grow S until it contains all of the vertices:
 - let f be smallest edge with exactly one endpoint in S
 - add edge f to T
 - add other endpoint to S

5	Т	1
0	-	0
1	0-1	
5	0-5	(5)
4	5-4	3
		(4)
		6

- Prim's algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)
 - → Initialize $T = \phi$, $S = \{s\}$ for some arbitrary vertex s.
 - Grow 5 until it contains all of the vertices:
 - let f be smallest edge with exactly one endpoint in S
 - add edge f to T
 - add other endpoint to S

S	Т	
0	1	
1	0-1	
5	0-5	
4	5-4	
3	4-3	

- Prim's algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)
 - → Initialize $T = \phi$, $S = \{s\}$ for some arbitrary vertex s.
 - Grow 5 until it contains all of the vertices:
 - let f be smallest edge with exactly one endpoint in S

add edge f to T

add other endpoint to S

5	Т
0	-
1	0-1
5	0-5
4	5-4
3	4-3
2	3-2

An Optimization Problem

- A problem in which some function is to be optimized (usually minimized or maximized) subject to some constraints.
- An example of an optimization problem: Machine Scheduling
 - Find a schedule that minimizes the finish time
 - optimization function ...
 - finish time
 - constraints
 - each job is scheduled continuously on a single machine for an amount of time equal to its processing requirement
 - no machine processes more than one job at a time

Another Optimization Problem

- A problem in which some function is to be optimized (usually minimized or maximized) subject to some constraints.
- An example of an optimization problem: MST
 - Find a spanning tree that has minimum cost.
 - optimization function ...
 - sum of edge costs
 - constraints
 - must select n-1 edges of the given n vertex graph
 - the selected edges must form a tree

Greedy Method

- Solve (optimization) problem by making a sequence of decisions.
- Decisions are made one by one in some order.
- Each decision is made using a greedy criterion.
- A decision, once made, is (usually) not changed later.
- Example: LPT Scheduling
 - Schedule jobs one by one and in decreasing order of processing time.
 - Each job is scheduled on the machine on which it finishes earliest.
 - → Scheduling decisions are made serially using a greedy criterion (minimize finish time of this job).
 - LPT scheduling is an application of the greedy method.
- However, recall that LPT does not guarantee an optimal solution!
 Although, it does offer a heuristic approximate solution.

Greedy Method

- Solve problem by making a sequence of decisions.
- Decisions are made one by one in some order.
- Each decision is made using a greedy criterion.
- □ A decision, once made, is (usually) not changed later.
- Example: LPT Scheduling

So what is going on here?

Prim's Algorithm: Example

- Start with any single vertex tree.
- Get a 2 vertex tree by adding a cheapest edge.
- Get a 3 vertex tree by adding a cheapest edge.
- \Box Grow the tree one edge at a time until the tree has n-1 edges (and hence has all n vertices).

Prim's Algorithm: Intuition of Proof of Correctness

□ Observation: Given a spanning tree T. Let f be an edge not in T. Adding f to T creates a unique cycle. If $c_f < c_e$ for some edge e of cycle, then $T \cup \{f\} - \{e\}$ is a tree of lower cost.

w(T) = 62

Prim's Algorithm: Intuition of Proof of Correctness

□ Observation: Given a spanning tree T. Let f be an edge not in T. Adding f to T creates a unique cycle. If $c_f < c_e$ for some edge e of cycle, then $T \cup \{f\} - \{e\}$ is a tree of lower cost.

$$T \cup \{f\} - \{e\}$$

$$w(T) = 50$$

Prim's Algorithm: Proof of Correctness

- Theorem: Upon termination of Prim's algorithm, T is a MST.
- Proof: By induction on number of iterations

Invariant: There exists a MST T* containing all of the edges in T.

- □ Base case: $T = \phi$ every MST satisfies invariant.
- Induction step: assume invariant true at beginning of iteration i.
 - → Let f be the edge that Prim's algorithm chooses.
 - \rightarrow If $f \in T^*$, T^* still satisfies invariant.
 - → Otherwise, consider cycle C formed by adding f to T*
 - let $e \in C$ be another arc with exactly one endpoint in S
 - $c_f \le c_e$ since algorithm chooses f instead of e

T* ∪ { f } - { e } satisfies invariant

Spanning Tree Representation

- How to represent a spanning tree?
 - → List of edges: 0-1 0-5 2-3 3-4 3-7 4-5 5-6 7-8
 - → Parent-link representation: vertex indexed array pred[v].

V	pred[v]
0	1
1	0
2	3
3	4
4	5
5	0
6	5
7	3
8	8

- Maintain S = set of vertices in current tree.
 - → For each vertex not in S, maintain vertex in S to which it is closest.

٧	pred	dist
Α	Α	-
В	Е	15
С	Α	-
D	Е	9
Е	F	-
F	G	-
G	Α	-
Н	С	23
I	Е	11

- Maintain S = set of vertices in current tree.
 - → For each vertex not in S, maintain vertex in S to which it is closest.
 - -> Choose next vertex v to add to S with min dist[v].

٧	pred	dist
Α	Α	1
В	Е	15
С	Α	-
D	E	9
E	F	ı
F	G	1
G	Α	1
Н	С	23
I	Е	11

- Maintain S = set of vertices in current tree.
 - → For each vertex not in S, maintain vertex in S to which it is closest.
 - -> Choose next vertex v to add to S with min dist[v].

→ For each neighbor w of v, if w is closer to v than current neighbor in S, update dist[w].

٧	pred	dist
Α	Α	-
В	Е	15
С	Α	-
D	Е	-
Е	F	-
F	G	1
G	Α	1
Н	D	4
I	D	6

Weighted Graphs

Weights:

- → Method 1: graph access function G.cost(v, w).
- → Method 2: modify adjacency list iterator to return Edge.

Tradeoffs:

- Method 1 is easier with adjacency matrix or Euclidean weights.

Method 2 is more general.

adjacency list of Edge objects

- Adjacency list implementation.
 - \rightarrow Initialize, dist[v] = and dist[s] = 0.
 - → Insert all vertices onto PQ.
 - → Repeatedly delete vertex v from PQ with min dist[v].
 - for each v-w, if (dist[w] > G.cost(v, w)), update dist[w]

```
// main loop
while (!pq.isEmpty()) {
   int v = pq.delMin();
   IntIterator i = G.neighbors(v);
   while (i.hasNext()) {
      int w = i.next();
      if (dist[w] > G.cost(v, w)) {
         dist[w] = G.cost(v, w);
         pq.decrease(w, dist[w]);
         pred[w] = v;
      }
   }
}
```

Priority Queues for Index Items

Index heap-based priority queue:

- → Insert, delete min, test if empty
- → Decrease key

Brute force array implementation:

- → Maintain vertex indexed array dist[w].
- → Decrease key: change dist[w].
- → Delete min: scan through dist[w] for each vertex w.

Operation	Prim	Array
insert	V	V
delete-min	V	V
decrease-key	Е	1
is-empty	V	1
total		V ²

Priority Queues for Index Items

- Index heap-based priority queue:
 - → Assumes elements are named 0 to N-1
 - Assumes priorities are of type double
 - → Client: pq.decrease(i, value)

- How to decrease key of vertex i? Bubble it up.
- How to know which heap node to bubble up? Maintains an extra array qp[i] that stores the heap index of vertex i

Priority Queues for Index Items

Design issues:

- → PQ maintains priorities; client accesses through PQ interface
- Client maintains priorities; PQ accesses through client
- → Both maintain their own copy

```
public void insert(int k, double value) {
   N++;
  pq[N] = k;
   qp[k] = N;
   priority[k] = value;
   fixUp(pq, N);
public void decrease(int k, double value) {
   priority[k] = value;
   fixUp(pq, qp[k]);
private void exch(int i, int j) {
   int swap = qp[i]; qp[i] = qp[j]; qp[j] = swap;
   pq[qp[i]] = i; pq[qp[j]] = j;
```

Prim's Algorithm: Priority Queue Choice

- The choice of priority queue matters in Prim implementation
 - \rightarrow Array: $\Theta(V^2)$
 - → Binary heap: O(E log V)
 - → Fibonacci heap: O(E + V log V)
- Best choice depends on whether graph is SPARSE or DENSE
 - → 2,000 vertices, 1 million edges. Heap: 2-3x slower
 - → 100,000 vertices, 1 million edges. Heap: 500x faster
 - → 1 million vertices, 2 million edges. Heap: 10,000x faster

Bottom line

- Array implementation optimal for dense graphs.
- Binary heap far better for sparse graphs.
- → Fibonacci heap best in theory, but not in practice.

Kruskal's Algorithm

- Kruskal's algorithm (1956).
 - \rightarrow Initialize forest F = ϕ .
 - Consider edges in ascending order of weight.
 - → If adding edge e to forest F does not create a cycle, then add it.
 Otherwise, discard e.

Case 1: adding 5-8 creates a cycle

Case 2: adding 5-6 connects 2 components

Kruskal's Algorithm: Example

- Start with a forest that has no edges.
- Consider edges in ascending order of cost.
 - → Edge (1,2) is considered first and added to the forest.
 - \rightarrow Edge (7,8) is considered next and added.
 - → Edge (3,4) is considered next and added.
 - \rightarrow Edge (5,6) is considered next and added.
 - → Edge (2,3) is considered next and added.
 - Edge (1,3) is considered next but rejected because it creates a cycle

Kruskal's Algorithm: Example

- Start with a forest that has no edges.
- Consider edges in ascending order of cost.
 - → Edge (2,4) is considered next but rejected because it creates a cycle.
 - → Edge (3,5) is considered next and added to the forest.
 - → Edge (3,6) is considered next but rejected.
 - → Edge (5,7) is considered next and added to the forest.

Kruskal's Algorithm: Example

- n 1 edges have been selected and no cycle formed.
- So we must have a spanning tree.
- ☐ Cost is 46.
- Min-cost spanning tree is unique when all edge costs are different.

Kruskal's & Prim's Algorithms

"Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit."

- Gordon Gecko

Unlike with LPT - the Greedy approach yields an optimal solution for MST problem

Kruskal's Algorithm: Implementation

- How to check if adding an edge to F would create a cycle?
 - \rightarrow Naïve solution: DFS in O(V) time.
 - → Clever solution: union-find in O(log* V) amortized time.
 - each tree in forest F corresponds to a set
 - adding v-w creates a cycle if v and w are in same component
 - when adding v-w to forest F, merge sets containing v and w

Kruskal's Algorithm: Implementation

```
public class MST {
  public MST(Graph G) {
    mst = new Edge[G.V()];
    Edge[] edges = G.edges(); // list of all edges in G
    Arrays.sort(edges); // sort them by weight
    UnionFind uf = new UnionFind(G.V());
    for (int i = 0, k = 1; i < G.E(); i++) {
       int v = edges[i].v();
       int w = edges[i].w();
       if (!uf.find(v, w)) { // v-w does not create a cycle
         mst[k++] = edges[i]; // add edge to mst
```

Kruskal's Algorithm: Running Time

Operation	Frequency	Cost
sort	1	E log E
union	V - 1	log* V
find	E	log* V

Amortized bound using weighted quick union with path compression

- Kruskal running time: O(E log V).
- □ If edges already sorted. O(E log* V) time.
 - \rightarrow recall: $log^* V \le 5$ in this universe!

