ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7

ΕΝΙΣΧΥΤΕΣ ΙΣΧΥΟΣ ΤΑΞΗΣ Α ΚΑΙ Β

7.1 Εισαγωγή

Ένας ενισχυτής ισχύος τάξης A (Σχ. 7.1) απορροφά την ίδια ισχύ από την πηγή τροφοδοσίας ανεξάρτητα από το πλάτος του σήματος που εφαρμόζεται στην είσοδο του. Η ισχύς αυτή, P_{CC} , είναι:

$$P_{CC} = V_{CC} \cdot I_{dc} \approx V_{CC} \cdot I_{CO} \tag{7.1}$$

όπου V_{CC} είναι η τάση της πηγής τροφοδοσίας, I_{dc} είναι το DC ρεύμα της πηγής τροφοδοσίας και I_{CQ} είναι η DC συνιστώσα του ρεύματος του συλλέκτη.

Η ΑC ισχύς, $P_{L,ac}$, που παρέχει ο ενισχυτής του Σχ. 7.1 στην αντίσταση φορτίου, R_L , (δηλαδή η ισχύς που καταναλώνεται στο φορτίο μόνο λόγω της AC συνιστώσας του ρεύματος του φορτίου) υπολογίζεται από τη σχέση:

$$P_{L,ac} = \frac{V_{o,rms}^2}{R_{I}} = \frac{V_{o,peak}^2}{2 \cdot R_{I}}$$
 (7.2)

όπου $V_{o,rms}$ είναι η rms τιμή της AC συνιστώσας της τάσης εξόδου, V_o , και $V_{o,peak}$ είναι η peak τιμή της AC συνιστώσας της V_o .

Η μέγιστη AC ισχύς καταναλώνεται στο φορτίο όταν $I_{CQ} = \frac{V_{CC}}{2 \cdot R_L + R_E}$ και υπολογίζεται ως εξής:

$$P_{L,ac}(max) = \frac{I_{CQ}^2 \cdot R_L}{2} = \frac{V_{CC}^2 \cdot R_L}{2 \cdot (2 \cdot R_L + R_E)^2}$$
(7.3)

Όταν η χρήσιμη ισχύς που καταναλώνεται στο φορτίο R_L είναι η AC ισχύς, $P_{L,ac}$, (π.χ. όταν το φορτίο ενός ενισχυτή ισχύος είναι ένα μεγάφωνο) ο βαθμός απόδοσης του ενισχυτή ορίζεται ως εξής:

$$\eta(\%) = \frac{P_{L,ac}}{P_{CC}} \cdot 100\%$$
 (7.4)

και η μέγιστη τιμή του για τον ενισχυτή του Σχ. 7.1, είναι:

$$\eta_{\text{max}}(\%) = \frac{P_{\text{L,ac}}(\text{max})}{P_{\text{CC}}} \cdot 100\% = \frac{\frac{V_{\text{CC}}^2 \cdot R_L}{2 \cdot (2 \cdot R_L + R_E)^2}}{V_{\text{CC}} \cdot \frac{V_{\text{CC}}}{(2 \cdot R_L + R_E)}} \cdot 100\% = \frac{R_L}{2 \cdot (2 \cdot R_L + R_E)} \cdot 100\% \approx 23.8\%$$
(7.5)

Ένας ενισχυτής push-pull τάξης B (Σχ. 7.3) δεν απορροφά ισχύ όταν το πλάτος του σήματος εισόδου είναι ίσο με μηδέν. Καθώς, όμως, αυξάνεται το σήμα εισόδου, η ισχύς που απορροφάται από την πηγή τροφοδοσίας, P_{CC} είναι:

$$P_{CC} = V_{CC} \cdot I_{dc} \approx 2 \cdot V_{CC} \cdot \frac{V_{o,peak}}{\pi \cdot R_{I}}$$
(7.6)

όπου $V_{o,peak}$ είναι η peak τιμή της τάσης εξόδου V_o .

Η μέγιστη ισχύς που απορροφάται από την πηγή τροφοδοσίας είναι:

$$P_{CC}(max) = \frac{2 \cdot V_{CC}^2}{\pi \cdot R_I}$$
 (7.7)

Η ισχύς, P_L , που παρέχει ο ενισχυτής στην αντίσταση φορτίου, R_L , υπολογίζεται από τη σχέση:

$$P_{L} = \frac{V_{o,rms}^{2}}{R_{I}} = \frac{V_{o,peak}^{2}}{2 \cdot R_{I}}$$
 (7.8)

Η μέγιστη ισχύς που παρέχεται στο φορτίο είναι:

$$P_{L}(\max) = \frac{V_{CC}^{2}}{2 \cdot R_{I}}$$
 (7.9)

Ο βαθμός απόδοσης του ενισχυτή υπολογίζεται από τη σχέση:

$$\eta = \frac{P_L}{P_{CC}} = \frac{\frac{V_{o,peak}^2}{2 \cdot R_L}}{\frac{2 \cdot V_{CC} \cdot V_{o,peak}}{\pi \cdot R_I}}$$
(7.10)

και η μέγιστη τιμή του είναι:

$$\eta_{\text{max}} = \frac{\frac{V_{\text{CC}}^2}{2 \cdot R_L}}{\frac{2 \cdot V_{\text{CC}}^2}{\pi \cdot R_L}} = \frac{\pi}{4} \cdot 100 \% = 78.5\%$$
(7.11)

7.2 Ενισχυτής ισχύος τάξης Α

7.2.1 Προεργασία

Για το κύκλωμα του Σχ. 7.1, θεωρώντας ότι για το τρανζίστορ BD613 ισχύει ότι β =40, να υπολογιστεί το ρεύμα πόλωσης I_E και οι τάσεις πόλωσης V_E , V_B και V_C .

Σχ. 7.1 Ο ενισχυτής ισχύος τάξης Α.

7.2.2 Πειραματική διαδικασία

(a) Να συνδεθεί το κύκλωμα του Σχ. 7.1 χρησιμοποιώντας το τρανζίστορ BD613 (ή τα BD611/615/617) ή το τρανζίστορ BD243 (Σχ. 4.2).

ΠΡΟΣΟΧΗ: Ένας ηλεκτρολυτικός πυκνωτής πρέπει να συνδέεται πάντα με τον ακροδέκτη + στη θετική τάση και τον ακροδέκτη – στην αρνητική τάση. Αντίστροφη σύνδεση μπορεί να προκαλέσει έκρηξη του πυκνωτή.

1.Base 2.Collector 3.Emitter

Σχ. 7.2 Το τρανζίστορ ΒD243.

Με τάση	εισόδου	$V_i=0$ kai	με το	πολύμετρο	στη	θέση	DC	[Volt]	να	μετρηθούν	οι	τάσεις
πόλωσης:												

$$V_E = \dots$$

$$V_B = \dots$$

$$V_C = \dots$$

και στη συνέχεια να υπολογιστεί το ρεύμα πόλωσης $I_{\rm E} = \frac{V_{\rm E}}{R_{\rm E}} = \dots$

Στην τελική αναφορά:

Να συγκριθούν οι τιμές των μεγεθών που μετρήθηκαν με τις αντίστοιχες θεωρητικές τιμές και να εξηγηθούν τυχόν διαφορές.

- (β) Να εφαρμοστεί στην είσοδο, V_i, του κυκλώματος του Σχ. 7.1 ημιτονοειδές σήμα συχνότητας 5kHz και στη συνέχεια, με το κανάλι του παλμογράφου σε σύζευξη ΑC, να παρατηρηθεί η τάση εξόδου, V_o, και να ρυθμιστεί το πλάτος του σήματος εισόδου μέχρι να προκύψει στην έξοδο το μέγιστο σήμα χωρίς ψαλίδιση ή παραμόρφωση.
- (γ) Με τα κανάλια του παλμογράφου σε σύζευξη ΑC να μετρηθούν οι τάσεις:

$$V_i(peak) = \dots$$

$$V_o(peak) = \dots$$

και να καταγραφούν σε χρονική αντιστοιχία οι αντίστοιχες κυματομορφές.

(δ) Να μειωθεί το σήμα εισόδου στο μισό και να επαναληφθεί το μέρος (γ):

$$V_i(peak) = \dots$$

$$V_o(peak) = \dots$$

7.3 Ενισχυτής ισχύος τάξης Β

(α) Να συνδεθεί το κύκλωμα του Σχ. 7.3, χρησιμοποιώντας το ζευγάρι των τρανζίστορ BD613 (ή τα BD611/615/617) και BD614 (ή τα BD612/616/618) ή το ζευγάρι των τρανζίστορBD243 και BD244 (Σχ. 7.4). Να εφαρμοστεί στην είσοδο του κυκλώματος, V_i , ημιτονοειδές σήμα συχνότητας 5kHz και πλάτους 1V (peak-to-peak).

ΠΡΟΣΟΧΗ: Ένας ηλεκτρολυτικός πυκνωτής πρέπει να συνδέεται πάντα με τον ακροδέκτη + στη θετική τάση και τον ακροδέκτη – στην αρνητική τάση. Αντίστροφη σύνδεση μπορεί να προκαλέσει έκρηζη του πυκνωτή.

(β) Με το κανάλι του παλμογράφου σε σύζευξη ΑC, να παρατηρηθεί η τάση εξόδου, V₀, και να ρυθμιστεί το ποτενσιόμετρο P μέχρις ότου απαλειφθεί από το σήμα εξόδου η παραμόρφωση διασταύρωσης (crossover distortion). Στη συνέχεια, να ρυθμιστεί το πλάτος του σήματος εισόδου μέχρις ότου προκύψει στην έξοδο το μέγιστο σήμα χωρίς ψαλίδιση ή παραμόρφωση.

Σχ. 7.3 Ο ενισχυτής ισχύος τάξης Β.

1.Base 2.Collector 3.Emitter

Σχ. 7.4 Οι ακροδέκτες των τρανζίστορ BD243 και BD244.

(γ) Με τα κανάλια του παλμ	ιογράφου σε σύζευξη ΑC να μετρηθούν οι τάσεις :
	$V_i(peak) = \dots$
	$V_o(peak) = \dots$
και να καταγραφούν σε	χρονική αντιστοιχία οι αντίστοιχες κυματομορφές.
(δ) Να μειωθεί το πλάτος το	ου σήματος εισόδου μέχρι το πλάτος της τάσης εξόδου να γίνει ίσο με
το 0.6 του πλάτους της	τάσης εξόδου που έχει μετρηθεί στο μέρος (γ) και να επαναληφθεί
το μέρος (γ).	
	$V_i(peak) = \dots$
	$V_o(peak) = \dots$
	ου σήματος εισόδου μέχρι το πλάτος της τάσης εξόδου να γίνει ίσο με
το 0.1 του πλάτους της	τάσης εξόδου που έχει μετρηθεί στο μέρος (γ) και να επαναληφθεί
το μέρος (γ).	
	$V_i(peak) = \dots$
	$V_o(peak) = \dots$
(στ) Να αποσυνδεθεί το σή	μα εισόδου και με το πολύμετρο στη θέση DC [Volt] να μετρηθούν
οι τάσεις πόλωσης:	
	$\mathbf{V}_{\mathrm{E}} = \dots$
	$V_{B1} = \dots$
	$V_{B2} = \dots$

7.4 Ερωτήσεις για την τελική αναφορά

- 1. Από τις μετρήσεις του μέρους $7.2.2(\alpha)$, να υπολογιστεί το ρεύμα πόλωσης I_{CO} και το β .
- Από τις μετρήσεις του μέρους 7.2.2(γ), να υπολογιστεί η ισχύς P_{CC}, η ισχύς P_{L,ac} και ο βαθμός απόδοσης η(%).
- 3. Να επαναληφθεί το ερώτημα 2 με τις μετρήσεις του μέρους 7.2.2(δ).
- **4.** Χρησιμοποιώντας τα αποτελέσματα του μέρους 7.2, να συγκριθούν οι πειραματικές τιμές του βαθμού απόδοσης του ενισχυτή ισχύος τάξης Α με την αντίστοιχη θεωρητική μέγιστη τιμή και να σχολιαστούν τυχόν διαφορές.
- **5.** Χρησιμοποιώντας τις μετρήσεις των μερών $7.3(\gamma)$, (δ) και (ε), να υπολογιστούν οι τιμές των P_{CC} , P_{L} και η(%).
- **6.** Χρησιμοποιώντας τα αποτελέσματα του προηγούμενου ερωτήματος, να συγκριθούν οι πειραματικές τιμές του βαθμού απόδοσης του ενισχυτή ισχύος τάξης B με την αντίστοιχη θεωρητική μέγιστη τιμή και να σχολιαστούν τυχόν διαφορές.
- 7. Να συγκριθούν τα πειραματικά αποτελέσματα με τα αποτελέσματα που προκύπτουν από τον προσομοιωτή QUCS.

Απαιτούμενα Υλικά

ΑΝΤΙΣΤΑΣΕΙΣ

 $1 \times 1.2 k\Omega$, $1 \times 120\Omega$, $1 \times 100\Omega$ (0.5W), $2 \times 5.1\Omega$ (9 Watt), $2 \times 10 k\Omega$

ΠΟΤΕΝΣΙΟΜΕΤΡΑ

 $1 \times 1 k\Omega$

ΠΥΚΝΩΤΕΣ

1 x 47μF/63V (ηλεκτρολυτικός), 1 x 220μF/63V (ηλεκτρολυτικός), 1 x 10nF, 2 x 1nF

ΔΙΟΔΟΙ

1 x 1N4148

ΤΡΑΝΖΙΣΤΟΡ

1 xBD613, 1 xBD614