Oscar Petersson, Matteus Laurent oscpe262, matla782

TDDI41 Lab report

Högskoleingenjörsutbildning i datateknik, 180 hp

NTP

Exercise 2: The Network Time Protocol

2-1 Explain the concept of "stratum" in a clock hierarchy (e.g. NTP, but also synchronized networks and other clock hierarchies). Why is it necessary to have a hierarchy of clocks rather than just a bunch of reference clocks.

Stratum 0 are reference clocks, usually atom clocks. An NTP server which gets its time from those are labeled stratum 1, and the servers which sync to stratum 1 are labeled stratum 2, and so on. Stratum 16 is an unsynchronized device. Stratum tiers are necessary for backup and "sanity checks".

2-2 How large a difference between the reference clock and the system clock does NTP accept and attempt to adjust.

Less than 1000 s, but greater than 128 ms.

2-3 NTP usually works by speeding up or slowing down the clock, not setting it outright. Why.

Setting the time is a security risk and a reliability risk with time stamps occurring twice or not at all.

Exercise 3: Install and configure NTP server and clients

3-3 Explain the output of ntpq -p.

<pre># ntpq -p remote</pre>	refid	st t 1	when	poll	reach	delay	offset	jitter
*ida-gw.sysinst.								
130.236.178.159	.BCST.	16 u	_	64	0	0.000	0.000	0.031

* current time source remote target of sync

refid remote source's sync source
st stratum level of source
t types available (u = unicast)
when time since last received packet
poll poll interval (log2 seconds)
reach Octal binary history of packets

delay roundtrip delay

offset | server time difference (ms)

jitter difference in milliseconds between two samples