Exhibit G

Claim Chart - '818 Patent

US Patent 6,744,818 Versus Moto G7 Power Smartphones with H.264/AVC

International Telecommunication Union

ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR H₂₆₄

(11/2007)

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS Infrastructure of audiovisual services – Coding of moving video

Advanced Video Coding

From Wikipedia, the free encyclopedia

"AVC1" redirects here. It is not to be confused with AV1 or VC-1.

Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC), is a video compression standard based on block-oriented, motion-compensated integer-DCT coding.^[1] It is by far the most commonly used format for the recording. compression, and distribution of video content, used by 91% of video industry developers as of September 2019. [2][3][4] It supports resolutions up to and including 8K UHD.[5][6]

Multimedia **Audio Features** Loudspeaker, FM Radio, 3.5mm Port

Audio Formats

Video Formats

Sensors

AAC, 3GA, AMR, RA, FLAC, MID, MIDI, MP3, OGA, OGG, WMA, WAV H.263, H.264, MPEG-4, MP4, XVID

Proximity, Accelerometer, Compass, Gyroscope, Fingerprint, GPS, A GLONASS, BeiDou

1. A video encoding system comprising:
a visual perception estimator adapted to estimate a perception threshold for a pixel of a current frame of a videostream;
an encoder adapted to encode said current frame;
a compression dependent threshold estimator adapted to estimate a compression dependent threshold for said pixel at least from said perception threshold and information from said encoder; and
a filter unit adapted to filter said pixel at least according to said compression dependent threshold.

Claim 1

https://www.gsmarena.com/motorola moto g7 power-review-1889p5.php

A video encoding system comprising:

Videos shot on the Motorola G7 Power in 4K and 1080p resolution at 30 fps get saved in a rather standard configuration of a 17-ish Mbps AVC video feed and a 48kHz stereo AAC audio track, inside an MP4 container. The frame rate remains pretty steady at 30 fps.

Quality is actually quite good with plenty of detail for the class, high contrast, and lively colors. The dynamic range is about average.

Claim 1	
	G7 Power records with H.264/AVC and "High Profile":
A video	https://www.phonearena.com/phones/Motorola-Moto-G-Power_id11349
encoding	CAMERA
system comprising:	Video recording: 3840x2160 (4K UHD) (30 fps), 1920x1080 (Full HD) (60 fps)
	"High Definition" uses the H.264 "High Profile": https://www.rgb.com/h264-profiles
	High Profile H.264 High Profile is the most efficient and powerful profile in the H.264 family, and is the primary profile for broadcast and disc storage, particularly for HDTV and Bluray disc storage formats. It can achieve a compression ratio of about 2000:1. The High Profile also uses an adaptive transform that can select between 4x4 or 8x8-pixel blocks. For example, 4x4 blocks are used for portions of the picture that are dense with detail, while portions that have little detail are compressed using 8x8 blocks. The result is the preservation of video image quality while reducing network bandwidth requirements by up to 50 percent. By applying H.264 High Profile compression, a 1 Gbps stream can be compressed to about 512 Kbps.

Claim 1					
a visual	https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-200711-S!!PDF-E&type=items_pg. 286				
perception	The "High Profile" includes the use of bit_depth_luma and bit_depth_chroma:				
estimator	A.2.4 High profile				
adapted to	Bitstreams conforming to the High profile shall obey the following constraints:				
estimate a	 Only I, P, and B slice types may be present. NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive. 				
perception	 Arbitrary slice order is not allowed. 				
threshold	 Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only. 				
for a pixel of	 Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only. 				
a current	 Sequence parameter sets shall have chroma_format_idc in the range of 0 to 1 inclusive. Sequence parameter sets shall have bit_depth_luma_minus8 equal to 0 only. 				
frame of a	 Sequence parameter sets shall have bit_depth_chroma_minus8 equal to 0 only. 				
videostream					
,					

Claim 1						
a visual	https://www.it	:u.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-200711-S!!PDF-E&type=ite	ems_	og. 40		
perception	The "High Profile" includes the use of bit_depth_luma and bit_depth_chroma, which are used for the visual perception estimator:					
estimator	perception es	amaor.				
adapted to	7.3.2.1.1 Sequence parameter set data syntax					
estimate a		seq_parameter_set_data() {	C	Descriptor		
		profile_idc	0	u(8)		
perception		constraint_set0_flag	0	u(1)		
threshold for		constraint_set1_flag	0	u(1)		
till Colloid for		constraint_set2_flag	0	u(1)		
a pixel of a		constraint_set3_flag	0	u(1)		
		reserved_zero_4bits /* equal to 0 */	0	u(4)		
current		level_idc	0	u(8)		
frame of a	{Note:	seq_parameter_set_id	0	ue(v)		
videostream;	"High Profile",- and others}	if(profile_idc == 100 profile_idc == 110 profile_idc == 122 profile_idc == 244 profile_idc == 44 profile_idc == 83 profile_idc == 86) {				
		chroma_format_idc	0	ue(v)		
		if(chroma_format_idc == 3)				
		separate_colour_plane_flag	0	u(1)		
		bit_depth_luma_minus8	0	ue(v)		
		bit_depth_chroma_minus8	0	ue(v)		

Claim 1								
a visual	https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-200711-S!!PDF-E&type=items_pg. 201 - 202							
perception estimator adapted to estimate a perception threshold for a pixel of a current frame	 8.7.2.2 Derivation process for the thresholds for each block edge Inputs to this process are: the input sample values p₀, q₀, p₁ and q₁ of a single set of samples across an edge that is to be filtered, the variables chromaEdgeFlag and bS, for the set of input samples, as specified in clause 8.7.2, the variables filterOffsetA, filterOffsetB, qP_p, and qP_q. Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the value of indexA, and the values of the threshold variables α and β. The variables α' and β' depending on the values of indexA and indexB are specified in Table 8-16. Depending on chromaEdgeFlag, the corresponding threshold variables α and β are derived as follows: If chromaEdgeFlag is equal to 0, 							
of a videostream;	$\alpha = \alpha' * (1 << BitDepth_Y - 8)) $ $\beta = \beta' * (1 << (BitDepth_Y - 8)) $ $- Otherwise (chromaEdgeFlag is equal to 1), $ $(8-456)$ $\{Note: The threshold values of alpha and beta are based on bit_depth parameters for both alpha p$							
	chromacity (symbolized by c) and luminance (symbolized by y), which is also shown on the next slide. } $\beta = \beta' * (1 << (BitDepth_C - 8))$ $\beta = \beta' * (1 << (BitDepth_C - 8))$ $(8-459)$							

Claim 1		
Ciaiiii i		
a visual	- If chromaEdgeFlag is equal to 0, Pg. 202 https://www.itu.int/rec/dologin_pub.asp?la REC-H.264-200711-S!!PDF-E&type=item	
perception	$\alpha = \alpha' * (1 << (BitDepth_Y - 8))$ $\beta = \beta' * (1 << (BitDepth_Y - 8))$	<u>15</u>
estimator	$\beta \neq \beta' * (1 \ll (BitDepth_Y - 8))$	
adapted to	- Otherwise (chromaEdgeFlag is equal to 1),	
estimate a	$\alpha = \alpha' * (1 << (BitDepth_C - 8))$ $\beta = \beta' * (1 << (BitDepth_C - 8))$	
perception	p + p · (1 << (BitDeptile - 8))	Pg. 67-68
threshold for a	bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array and the value of the luma quant parameter range offset QpBdOffsety, as specified by	tisation
pixel of a	$BitDepth_Y = 8 + bit_depth_luma_minus8$	(7-2)
current frame	QpBdOffset _Y = 6 * bit_depth_luma_minus8	(7-3)
of a	When bit_depth_luma_minus8 is not present, it shall be inferred to be equal to 0. bit_depth_luma_minus8 shall the range of 0 to 6, inclusive.	l be in
videostream;	bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays and the value of the quantisation parameter range offset QpBdOffset _C , as specified by	chroma
	$BitDepth_C = 8 + bit_depth_chroma_minus8$	(7-4)
	QpBdOffset _C = 6 * (bit_depth_chroma_minus8 + residual_colour_transform_flag)	(7-5)
	When bit_depth_chroma_minus8 is not present, it shall be inferred to be equal to 0. bit_depth_chroma_minus8 s in the range of 0 to 6, inclusive.	hall be

Claim 1 https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-200711-S!!PDF-E&type=items_pg. 201 - 202 a compression 8.7.2.2 Derivation process for the thresholds for each block edge dependent Inputs to this process are: threshold the input sample values p₀, q₀, p₁ and q₁ of a single set of samples across an edge that is to be filtered, estimator the variables chromaEdgeFlag and bS, for the set of input samples, as specified in clause 8.7.2, the variables filterOffsetA, filterOffsetB, qP_p, and qP_q. adapted to Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the value estimate a of index A, and the values of the threshold variables α and β . compression The variables α' and β' depending on the values of indexA and indexB are specified in Table 8-16. Depending on dependent chromaEdgeFlag, the corresponding threshold variables α and β are derived as follows: If chromaEdgeFlag is equal to 0, threshold for said **{Note: Compression dependent** $\alpha = \alpha' * (1 << (BitDepth_Y - 8))$ threshold of alpha' and beta' are pixel at least from shown on next slide.} $\beta = \beta' * (1 << (BitDepth_Y - 8))$ said perception Otherwise (chromaEdgeFlag is equal to 1), threshold and $\alpha = \alpha' * (1 << (BitDepth_C - 8))$ information from $\beta = \beta' * (1 << (BitDepth_C - 8))$ said encoder. {Note: alpha and beta in "filterSamplesFlag" are The variable filterSamplesFlag is derived by generated by alpha' and beta', as shown above.} and filterSamplesFlag = $(bS != 0 \&\& Abs(p_0 - q_0) | \alpha \&\& Abs(p_1 - p_0) | \beta \&\& Abs(q_1 - q_0)$

(8-456)(8-457)(8-458)(8-459)(8-470)10

Claim 1 The variables α' and β' depending on the values of indexA and indexB are specified in Table 8-16. Depending on https://www.itu.i a compression chromaEdgeFlag, the corresponding threshold variables α and β are derived as follows. nt/rec/dologin p If chromaEdgeFlag is equal to 0, ub.asp?lang=e& dependent id=T-REC- $\alpha = \alpha' * (1 \le (BitDepth_Y - 8))$ (8-466)H.264-200711threshold S!!PDF- $\beta = \beta' * (1 << (BitDepth_v - 8))$ (8-467)E&type=items estimator Otherwise (chromaEdgeFlag is equal to 1), Pg. 202 adapted to $\alpha = \alpha' * (1 \le (BitDepth_C - 8))$ (8-468)estimate a $\beta = \beta' (1 \le (BitDepth_C - 8))$ (8-469)compression The variable filterSamplesFlag is derived by dependent filterSamplesFlag = bS != 0 && $Abs(p_0 - q_0)$ α && $Abs(p_1 - p_0)$ β && $Abs(q_1 - q_0)$ β (8-470)threshold for said Table 8-16 – Derivation of offset dependent threshold variables α' and β' from indexA and indexB {Note: The values of pixel at least from indexA (for α ') or indexB (for β ') IndexA and IndexB from "0" 10 11 12 13 14 15 16 18 19 20 21 22 23 said perception to "51" are for 0 0 10 the "QP" value threshold and or "quantization parameter", information from which specifies Table 8-16 (concluded) – Derivation of indexA and indexB from offset dependent threshold variables α' and β' the level of indexA (for α ') or indexB (for β ') said encoder; compression. 26 27 28 29 30 31 35 36 37 38 39 See next slide} 34 40 41 and 25 28 22 32 36 40 45 50 56 63 71 | 80 | 90 | 101 | 113 | 127 | 144 | 162 | 182 | 203 | 226 | 255 | 255 15 | 17 20 12 | 13 | 13 10 10 11 11 12 14 14 15 15 16 16 17 17

