

MASTER THESIS IN COMPUTER ENGINEERING

Federated Data Analytics for Genomics Data

Master Candidate

Mirco Cazzaro

Student ID 2076745

Supervisor

Prof. Gianmaria Silvello

University of Padova

Co-supervisor

Dott. Robert Kahn

University of Princeton

To my parents and friends not to alberto

Abstract

Biomedical data management is increasingly complex due to the variety of storage systems and evolving data models. This heterogeneity presents obstacles to data integration and querying, crucial for advancing biomedical research and healthcare. The project will involve designing a system architecture that supports the integration of heterogeneous data stores under a unified federated system. The system will also utilize principles from the Ontology-Based Data Access (OBDA) paradigm to facilitate semantic querying capabilities. By developing a federated data analytics system for genomics data, this thesis will contribute to reducing the complexities involved in biomedical data management. The system will enable more effective data integration and querying processes, thereby supporting faster and more accurate genomics research. The completion of this project will result in a prototype of a federated data analytics system capable of handling the specific needs of genomics data.

Contents

Li	st of	Figures	3	xi
Li	st of	Tables		xiii
Li	st of	Algorit	thms	xvii
Li	st of	Code S	nippets	xvii
Li	st of	Acrony	y ms	xix
1	Intr	oductio	on	1
	1.1	A sect	tion	1
		1.1.1	A subsection	1
2	Bac	kgroun	nd	3
	2.1	Metho	odological Background	3
		2.1.1	Resource Description Framework	3
		2.1.2	Knowledge Graphs	4
		2.1.3	Ontologies	4
		2.1.4	Data Federation	5
		2.1.5	Semantic Data Integration	6
	2.2	Techn	ical Background	7
		2.2.1	Data Federation Systems	7
		2.2.2	OBDA Systems	10
3	Ana	llysis		11
	3.1	A sect	tion	11
4	Con	clusio	ns and Future Works	13

CONTENTS

References	15
Acknowledgments	17

List of Figures

2.1	The OBDA framework	7
3.1	Image created with TikZ	11

List of Tables

2.1	Comparative among Data Federation Systems	•	 •				10
4.1	Table example						13

List of Algorithms

List of Code Snippets

List of Acronyms

RDF Resource Description Framework

URI Uniform Resource Identifier

KG Knowledge Graph

OWL Ontology Web Language

DBMS Database Management System

SQL Structured Query Language

OBDA Ontology-Based Data Access

API Application Program Interface

JDBC Java Database Connectivity

ODBC Open Database Connectivity

FOSS Free and Open Source

ARP Advanced Relational Pushdown

1

Introduction

1.1 A SECTION

Example of list

- Item 1
- Item 2

1.1.1 A SUBSECTION

Example of Acronym

CSV! (CSV!)

Example of enumeration

- 1. Item 1
- 2. Item 2

Example of Quote

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

1.1. A SECTION

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

2

Background

2.1 Methodological Background

2.1.1 Resource Description Framework

The Resource Description Framework (RDF) is a standard¹ by the World Wide Web Consortium (W3C) designed for data interchange on the web. Its definitive syntax was lastly defined on 2003 [1].

RDF is based on the idea of making statements about resources, expressed as triples: for example, a triple might consist of "Gene123" (subject) "hasFunction" (predicate) "DNA Repair" (object). These triples are stored in a graph, making RDF uniquely suited for modern data analytics where relationships and linkages are crucial: this structure is by design flexible, and it is used to represent information in a way that makes it easier to aggregate, integrate, and manage diverse data from various sources.

The standard utilizes Uniform Resource Identifier (URI) to ensure that each element in the triple is uniquely identifiable, allowing to link data across different datasets seamlessly. RDF also supports literal values and datatypes, enabling detailed descriptions of properties and values.

In summary, RDF provides a robust and flexible framework for describing and interlinking data on the web, which is crucial for any federated data system

¹https://www.w3.org/RDF/

2.1. METHODOLOGICAL BACKGROUND

that aims to integrate diverse data sources effectively.

2.1.2 Knowledge Graphs

Knowledge Graphs represent an innovative way of structuring and querying interconnected data. A Knowledge Graph (KG) organizes data in a graph format, where entities (nodes) and their interrelations (edges) are defined according to a schema that encapsulates both the entities and the possible links between them. This structure allows not only to better visualize data, but is also very well suited for data exploration and analysis.

Central to the concept of KG is the idea of enhancing search and data discovery capabilities beyond simple data retrieval. By semantically linking data entities, KG allow for more intuitive and sophisticated queries that are closer to natural language questions. This capability makes them useful in complex domains like biomedical research, where users may need to uncover hidden relationships and patterns among vast datasets.

Furthermore, KG well suits in scenarios requiring data integration from disparate sources. They support the combination of structured and unstructured data and they can scale well as new data need to be integrated. This flexibility is crucial in fields such as genomics, where new data attributes and relationships are continuously being discovered and need to be rapidly integrated into existing datasets.

In practice, KG are usually powered by technologies such as RDF and other standards discussed earlier, leveraging the strengths of these frameworks to ensure robust data handling and scalability.

2.1.3 Ontologies

Ontologies are a shared vocabulary for a particular domain. They serve as a crucial tool in structuring data by defining classes where data entities can be categorized. This classification system not only standardizes data representation but also simplifies the communication between different systems and users by providing a common understanding of the domain.

Ontologies involve the use of first-order logic to define rules about the relationships between different classes. These rules allow for the logical inference of new information from the data that is already known, which can significantly

deepen data analysis and querying capabilities. This set of first-order logic rules used to model ontologies composes the Ontology Web Language (OWL) [6].

With ontologies integrated within a KG, it is possible to employ inferential algorithms either at query time or at preprocessing time. This capability enables the derivation of new knowledge that isn't explicitly stated in the data but can be inferred based on the ontological representations.

The use of ontologies in a KG is crucial in complex domains like genomics. Here, the ability to infer new relationships and properties can lead to understanding intricate biological connections and processes.

In summary, ontologies provide the foundational structure for managing complex information systems. They not only facilitate a standardized approach to data handling and integration but also enhance the capability of systems to derive and utilize new knowledge effectively.

2.1.4 Data Federation

Data Federation is a technology that organizes data from multiple different and autonomous data sources and makes it accessible under a uniform data model, allowing for real-time data retrieval from various sources without requiring data deduplication. This approach creates a unified data access layer that abstracts the underlying technical details of each Database Management System (DBMS). Users can query this virtual layer using standard data querying languages, like Structured Query Language (SQL), without needing to know where the data is physically stored or in what format.

A key strength of Data Federation lies in its capacity to harmonize heterogeneous data sources, ranging from traditional relational databases to modern big data solutions and cloud services. This integration is seamless and dynamic, scaling well as soon as new sources come in, without requiring significant reconfiguration. Such agility is crucial in fields like genomics, where data formats and sources evolve rapidly alongside scientific advancements. Moreover, it minimizes the risks associated with data duplication and movement, such as data loss or corruption. It also ensures that data remains current, reflecting real-time changes without delay. This is particularly valuable for decision-making processes where up-to-date information is critical.

Different existing Data Federation systems may have different characteristics, and the choice of which system suits better certain requirements may depend on

2.1. METHODOLOGICAL BACKGROUND

many different factors. A recent comparative study on Data Virtualization Systems [3] highlights and evaluates diverse features of many systems coming both from the academia as well enterprise solutions, such as supported query languages, supported data sources, data security, exposed interfaces and software support.

2.1.5 Semantic Data Integration

Semantic Data Integration is an approach that aims to integrate data from a single relational source to an ontology that models a specific domain. This integration is achieved by defining mappings that establish semantic relationships among data entities.

The core idea behind semantic data integration involves establishing a global schema, represented by the ontology, which acts as a blueprint for how data from various sources is viewed and accessed. This ontology defines not just the entities and their attributes but also the relationships and constraints between these entities. The mapping between the ontology (global schema) and the relational data source is critical as it dictates how data is interpreted in a meaningful way.

The concept of Data Integration, firstly introduced without a semantic focus [4], has evolved with research advancements in this field. These advancements have led to the development of tools and mapping languages specifically designed for semantic data integration, laying the groundwork for a paradigm known as Ontology-Based Data Access (OBDA) [7].

The OBDA framework [2] is composed of a chain of procedures that can be summarized as follows:

- 1. input query $q(\vec{x})$ is rewritten [5] into q' over the virtual ABox A' (i.e. the first-order logic specification of the ontology);
- 2. the rewritten query q' is unfolded using the *mappings* into an SQL query q^* ;
- 3. the optimised SQL query q^* is evaluated over the data instance D (e.g. a relational DBMS).

Figure 2.1 outlines the aforementioned algorithms within a flowchart.

Figure 2.1: The OBDA framework

2.2 Technical Background

2.2.1 Data Federation Systems

As discussed in section 2.1.4, Data Federation Systems are sophisticated softwares and thus evaluable under many aspects. In this background analysis we will focus on three main aspects, considering their importance as the Data Federation System will be part of a broader framework. In particular, by the aforementioned comparison, we will present three of the most prominent systems considering:

- software support & documentation;
- scalability;

2.2. TECHNICAL BACKGROUND

- logging capabilities;
- performances.

These features are also briefly summarized in Tab. 2.1.

Denodo

Denodo² is an enterprise virtualization platform that serves as a data federation system, integrating data from diverse sources to provide a unified view without requiring physical data deduplication. It allows for real-time access to structured and unstructured data from various sources including relational, column and No-SQL databases, web (! ((!)API), and flat files.

Denodo provides robust security features, including hashing, encrypting functions and user privileges, ensuring that sensitive data is protected according to compliance standards.

Moreover, it utilizes advanced query optimization techniques, such as caching and query rewriting, to enhance performance. These optimizations ensure efficient data retrieval, reducing latency and improving the overall speed of data access across the federated sources.

Although it is highly scalable, capable of accommodating new data sources, and it is provided also with a custom source wrapper template for unsupported data sources, being it an enterprise solution allows for maximum five connections, unless a premium plan is signed.

TEIID

Teiid³ is an open-source Java component developed by Red Hat⁴ that provides integrated access to multiple data sources through a single uniform API. Rather than a DBMS, Teiid is more a query engine for integrating data from multiple sources, accessible both through Application Program Interface (API) and Java Database Connectivity (JDBC)/Open Database Connectivity (ODBC) interfaces.

²https://denodo.com/en

³https://teiid.io/

⁴https://www.redhat.com/

It comes in different shapes: there are Teiid implementations as an Eclipse plugin as well as deployable packages on web containers such as Wildfly and OpenShift.

One of the main issues with Teiid is poor documentation when it is not deployed alongside enterprise solutions (like OpenShift). Moreover, no major releases have been published since four years, and many open issues on the official GitHub repository⁵ are not being addressed.

DREMIO

Similarly to Denodo, Dremio⁶ is a virtualization platform that serves as a data federation system. Although it is developed within an enterprise context, the standard version, comprehensive of most of the Dremio features, it is Free and Open Source (FOSS) under the Apache 2.0 license, combining typical enterprise software robustness with a strong community active on continuous maintenance.

Even if it is possible to use Dremio as a standalone instance (e.g. on a server), it is by design a distributed system and thus it can run on clusters up to more than 1000 nodes. In case of standalone configurations, in linux server environments it is possible to install it using packet managers, but the easiest way is to use the Docker image it comes with.

Dremio makes use of Apache Arrow to enhance processing speeds and reduce latency. Moreover, it optimizes query performance through its advanced query planner and execution engine, which can push down operations to the data source level, minimizing data movement and speeding up response times.

It provides comprehensive security features that include encryption, access controls, and data masking to ensure privacy. It also maintains detailed logs of all queries, which are crucial for compliance purposes in many fields such as the clinical domain, where patient medical data is managed alongside their personal information.

As in Denodo, but under an open-source perspective, it is possible to build custom connectors for unsupported data sources and Dremio. This is realizable through Advanced Relational Pushdown (ARP) connectors: a public repository⁷

⁵https://github.com/teiid/teiid

⁶https://www.dremio.com/

⁷https://github.com/dremio-hub/dremio-sqllite-connector

2.2. TECHNICAL BACKGROUND

provides a Maven template, that is customizable for each data source for which a JDBC driver is available.

In conclusion, Dremio offers an open-source virtualization system with the typical robustness of enterprise softwares; it is highly scalable both in the sense of computation distribution over clusters and in the types of supported sources, and it has a comprehensive logging system that suits well for tracking data flow.

	Support	Free and Open Source	Well Docu- mented	Scalability	Solid Logging Capabil- ities
Denodo	✓		✓	✓	ities 🗸
Teiid Teiid		✓			
Ø Dremio	1	1	1	1	1

Table 2.1: Comparative among Data Federation Systems

2.2.2 OBDA Systems

3 Analysis

3.1 A SECTION

Figure 3.1: Image created with TikZ

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

```
import numpy as np

def incmatrix(genl1,genl2):
    m = len(genl1)
    n = len(genl2)
    M = None #to become the incidence matrix
```

3.1. A SECTION

```
VT = np.zeros((n*m,1), int) #dummy variable
      test = "String"
10
      #compute the bitwise xor matrix
      M1 = bitxormatrix(genl1)
12
      M2 = np.triu(bitxormatrix(genl2),1)
13
      for i in range(m-1):
15
          for j in range(i+1, m):
16
              [r,c] = np.where(M2 == M1[i,j])
              for k in range(len(r)):
                   VT[(i)*n + r[k]] = 1;
19
                  VT[(i)*n + c[k]] = 1;
20
                   VT[(j)*n + r[k]] = 1;
                   VT[(j)*n + c[k]] = 1;
23
                   if M is None:
24
                       M = np.copy(VT)
                   else:
                       M = np.concatenate((M, VT), 1)
27
                   VT = np.zeros((n*m,1), int)
30
     return M
```

Code 3.1: Code snippet example

4

Conclusions and Future Works

A	В
C	D
E	F
G	Н

Table 4.1: Table example

Acknowledgments