TD 3.1. Thermodynamique des systèmes ouverts

Turbo-réacteur

On observe la machine thermique exposée dans la photo de gauche ci-dessous

Voici le schéma de principe du fonctionnement du turbo-réacteur

- 1. Faire un schéma de toutes les machines élémentaires qui composent le turbo-réacteur.
- 2. Tracer un diagramme $(\ln(p), h)$ (ou diagramme des frigoristes) sur lequel on repèrera à l'aide des questions suivantes les états de l'air qui s'écoule à travers le turbo-réacteur par les numéros 1, 2, 3, 4 et 5.
 - Placer par ordre croissant ces numéros avant, entre, et après les machines élémentaires dessinées à la question précédente.
- 3. A l'entrée du turbo-réacteur (état 1) :
 - Donner la pression p_1 et la température T_1 de l'air en unité S.I.
- 4. De l'état 1 à l'état 2 : l'air subit une compression adiabatique réversible jusqu'à une pression $p_2=10$ atm.
 - Calculer la variation d'entropie de la transformation.

- En faisant l'hypothèse que l'air est un gaz parfait diatomique, utilisez les lois de Laplace pour calculer sa température T_2 à l'état 2
- A l'aide du premier principe industriel relier la variation d'enthalpie au travail utile.
- En utilisant la définition de la capacité thermique massique à pression constante $\delta q = c_p dT$ avec pour l'air $c_p = 1$ kJ.K⁻¹.kg⁻¹, et que h ne dépend que de T pour un gaz parfait, calculer le travail utile de cette transformation.

5. A l'état 2 :

- Donner la pression p_2 et la température T_2 de l'air en unité S.I.
- Tracer la transformation de 1 vers 2 et le point 2 sur le diagramme $(\ln(p), h)$
- 6. De l'état 2 à l'état 3 : l'air subit une combustion isobare jusqu'à une température $T_3=1200\,$ K.
 - A l'aide du premier principe industriel relier la variation d'enthalpie au transfert thermique.
 - Calculer le transfert thermique de cette transformation.

7. A l'état 3 :

- Donner la pression p_3 et la température T_3 de l'air en unité S.I.
- Tracer la transformation de 2 vers 3 et le point 3 sur le diagramme $(\ln(p), h)$
- 8. De l'état 3 à l'état 4 : l'air subit une détente adiabatique réversible de manière à récupérer le travail utile pour effectuer la compression.
 - A l'aide du premier principe industriel relier la variation d'enthalpie au travail utile.
 - A l'aide de la capacité thermique massique à pression constante, calculer la température de l'air T_4 dans l'état 4.
 - Calculer la pression de l'air p_4 dans l'état 4.

9. A l'état 4 :

- Donner la pression p_4 et la température T_4 de l'air en unité S.I.
- Tracer la transformation de 3 vers 4 et le point 4 sur le diagramme $(\ln(p), h)$
- 10. De l'état 4 à l'état 5 : l'air subit une détente adiabatique réversible sans travail utile jusqu'à qu'il soit à l'extérieur.
 - Calculer la variation d'entropie de la transformation
 - Trouver la pression p_5 de l'air dans l'état 5.
 - Calculer la température T_5 de l'air dans l'état 5.
 - Calculer la variation d'enthalpie de la transformation.
 - A l'aide du premier principe industriel dire à quoi sert cette transformation.

11. A l'état 5 :

- Donner la pression p_5 et la température T_5 de l'air en unité S.I.
- Tracer la transformation de 4 vers 5 et le point 5 sur le diagramme $(\ln(p), h)$
- 12. Calculer numériquement le rendement r d'un tel réacteur.
- 13. Sachant que sa puissance est de 15 MW, calculer le débit massique d'air qui traverse le réacteur.
- 14. Sachant que l'enthalpie massique de combustion du kérosène est d'environ $\Delta h_{\rm comb.} = 40$ MJ.kg⁻¹, calculer le débit massique de kérosène consommé. Justifier pourquoi les vols commerciaux les plus longs ne dépassent pas les 20 h.

- 15. Démontrer la relation reliant le rendement r d'un tel réacteur uniquement au taux de compression de l'air par le compresseur. Justifier de l'intérêt d'avoir un taux de compression élevé.
- 16. Montrer que la puissance est proportionnelle à (ηr) avec η le rendement de Carnot, expliquer pourquoi il faut trouver un compromis rendement/puissance lors du dimensionnement d'une machine thermique.

Cycle de réfrigération

Le condenseur et l'évaporateur sont des échangeur sont des échangeurs permettant respectivement la condensation et l'évaporation totale du fluide qui les traverse; dans les états 1 et 7, le fluide est respectivement à l'état liquide saturant et de vapeur saturante sèche. Les évolutions du fluide dans les échangeurs sont supposées isobares. R_{HP} et R_{BP} sont des robinets de laminage, respectivement haute et basse pression, qui assurent, sans partie mobile, des détentes supposées adiabatiques :

- Le fluide pénètre dans R_{HP} sous une haute pression égale à p_1 (état 1) et en ressort sous une pression intermédiaire p_2 (état 2)
- Le fluide pénètre dans R_{BP} sous la pression intermédiaire égale à p_5 (état 5) et en ressort sous une basse pression p_6 s (état 6). CPHP et CPBP sont des compresseurs, respectivement haute et basse pression, qui assurent des compressions également supposées adiabatiques et réversibles du fluide à l'état gazeux.
- Le fluide pénètre dans CPHP sous une pression intermédiaire p_3 (état 3) et en ressort sous la haute basse pression p_4 (état 4).
- Le fluide pénètre dans CPBP sous basse pression p_7 (état 7) et en ressort sous la pression intermédiaire p_8 (état 8)

A la sortie de R_{HP} (état 2), et à la sortie de CPBP (état 8), le fluide pénètre dans le mélangeur-séparateur (MS) et ressort à l'état de vapeur sèche saturante (état 3) vers CPHP et à l'état de liquide saturant (état 5) vers R_{BP} . L'échangeur MS est parfaitement calorifugé, dépourvu de partie mobile, et les évolutions du fluide y sont supposées réversibles.

Données : $p_1 = 15$ bar ; $p_2 = p_3 = p_5 = p_8 = 4,0$ bar ; $p_6 = 1,5$ bar. Débit du cycle basse pression $D_{BP} = 1,50$ kg.s⁻¹. Débit du cycle haute pression $D_{HP} = 2,34$ kg.s⁻¹.

Etude du diagramme des frigoristes

L'abscisse est l'enthalpie massique h du fluide étudié, exprimé en kJ.kg⁻¹, avec une échelle linéaire. L'ordonnée est la pression p, exprimée en bar (1 bar = 10^5 Pa), avec une échelle logarithmique. On note x le titre massique en vapeur dans un état donné.

- 1. Quelle est la forme des isothermes à l'intérieur de la courbe de saturation?
- 2. Trouver l'équation d'une isotherme d'un gaz parfait dans le diagramme étudié, y-a-t-il accord avec les isothermes du diagramme réel du fluide Forane 502, représenté en annexe?

Étude du cycle haute pression 1 o 2 o 3 o 4

Le fluide firgorigène étudié ici est le Forane 502.

- 1. Tracer le cycle $1 \to 2 \to 3 \to 4$ sur le diagramme fourni en annexe.
- 2. Présenter sous forme de tableau, les caractéristiques (h, p, T, x) de chacun des états 1, 2, 3, et 4 par lecture directe sur ce diagramme ainsi complété.
- 3. Retrouver le titre massique en vapeur x du fluide dans l'état 2 avec le théorème des moments.

Étude du cycle haute pression $5 \rightarrow 6 \rightarrow 7 \rightarrow 8$

- 1. Tracer le cycle 5-6-7-8 sur le diagramme fourni en annexe.
- 2. Déterminer les valeurs de p, T, x, et h pour les états 5, 6, 7, et 8 du fluide.

Bilan énergétique

- 1. Calculer la puissance mécanique échangée dans CPHP et CPBP.
- 2. Calculer la puissance thermique échangée dans l'évaporateur et dans le condenseur.
- 3. Calculer le COP (coefficient de performance) de l'installation frigorifique étudié : COP = $\frac{\text{utile}}{\text{coût}} = \frac{\Phi_{evap}}{P_{CPHP} + P_{CPBP}}$
- 4. Calculer le COP du cycle réfrigérant idéal de Carnot avec une température de la source fro $T_f = T_7$ et une température de la source chaude $T_c = T_1$. En déduire le rendement du cycle étudié par rapport au cycle de Carnot $\eta = \frac{COP}{COP_{\text{Carnot}}}$. Commenter.

