Data Augmentation via Dependency Tree Morphing for Low-Resource Languages

Sahin et al (2019)

NLP reading club 2021/07/15

Key Points

- Proposed augmentation method for low resource languages based on dependency trees
- Technique based on meaning preserving 'cropping' and 'rotating' of sentences
- Uses POS tagging as the NLP experiment to demonstrate the effectiveness of the method
- Results vary for different languages but in general shows improvement on the POS task as compared to not using any augmentation

Core idea-- dependency tree

(a) Dependency analysis

- (1) Babası yazdı (Her father he-wrote)
- (2) Ona yazdı (He-wrote to her)
- (3) Bir mektup yazdı (He-wrote a letter)

(b) Sentence Cropping

- Babası yazdı bir mektup ona (SVOIO)
- (2) Yazdı babası ona bir mektup (VSIOO)
- (3) Bir mektup yazdı babası ona (OVSIO)
- (4) Ona bir mektup yazdı babası (IOOVS)

Sentence Cropping

- 1. Find 'root' of sentence (e.g. 'wrote')
- Make smaller sentences using parts that are linked to root (e.g. subject only, object only)

Sentence Rotation

- 1. Find 'root' of sentence (e.g. 'wrote')
- 2. Move sentence fragments around the root

**this method works better for languages where word order matter less

Experiment

- POS tagging task, using a character bidirectional LSTM model
- Decision to use POS tagging to demonstrate the augmentation method as POS tags have many downstream use cases (and also there are less parameters that can affect result as compared to more complex tasks such as classification/sentiment analysis etc)
- Method works better for languages where there are position indicators (ie word ordering less important

Results

#Tokens	Lang	Туре	Org	crop			rotate			
				p = 0.3	p = 0.7	p = 1	p = 0.3	p = 0.7	p = 1	Imp%
< 20K	Lithuanian	IE, Baltic	61.51	62.17	66.28	67.64	65.28	66.56	68.27	10.98
	Belarusian	IE, Slavic	83.58	83.87	85.50	85.39	84.33	85.96	86.11	3.03
	Tamil	Dravidian	81.93	81.35	82.78	84.34	83.74	83.86	83.61	2.94
	Telugu	Dravidian	90.78	90.85	89.88	90.50	90.36	90.29	89.95	0.07
	Coptic	Egyptian	95.17	94.60	94.74	94.12	95.03	94.65	94.60	-0.15
< 80K	Irish	IE, Celtic	62.75	73.72	75.87	75.42	72.51	76.35	76.19	21.68
	North Sami	Uralic, Sami	86.78	86.04	87.17	87.35	87.85	88.04	86.65	1.45
	Hungarian	Uralic, Ugric	85.94	86.24	86.56	86.62	86.49	86.37	86.60	0.80
	Vietnamese	Austro-Asiatic	75.16	75.59	75.32	74.84	75.22	75.15	75.14	0.57
	Turkish	Turkic	93.49	93.53	93.56	93.89	93.60	93.82	93.98	0.52
	Greek	IE, Greek	95.18	95.32	95.46	95.54	95.26	95.22	95.35	0.38
	Gothic	IE, Germanic	94.38	94.42	94.35	94.44	94.62	94.48	94.43	0.25
	Old Slavic	IE, Slavic	95.36	95.34	95.33	95.44	95.17	95.35	94.93	0.08
	Afrikaans	IE, Germanic	94.91	94.52	94.86	94.93	94.73	94.70	94.92	0.0
< 120K	Latvian	IE, Baltic	91.22	91.38	91.77	91.78	91.69	91.62	91.76	0.61
	Danish	IE, Germanic	94.25	94.17	93.96	94.78	94.18	94.10	94.21	0.56
	Slovak	IE, Slavic	91.23	91.17	91.04	91.35	91.53	91.38	91.58	0.38
	Serbian	IE, Slavic	96.14	96.26	96.12	96.17	96.35	96.16	96.07	0.22
	Ukranian	IE, Slavic	94.41	94.33	94.56	94.49	94.57	94.38	94.47	0.17

Table 1: POS tagging accuracies on UDv2.1 test sets. Best scores are shown with **bold**. Org: Original. p: operation probability. Imp%: Improvement over original (Org) by the best model trained with the augmented data.

Resources

- Paper on arxiv: https://arxiv.org/pdf/1903.09460v1.pdf
- Library for experimenting with more NLP augmentation techniques https://github.com/makcedward/nlpaug