

Cahier-réponses Contrôle périodique 1

PHS1101

Sigle du cours

Sigle et titre du cours PHS1101 Mécanique pour ingénieurs		Groupe	Trimestre Automne 2021			
		Tous				
Coordo	onnateur	Courriel				
Jérémie Villeneuve		Jeremie.villeneuve@polymtl.ca				
Jour	Date	Durée	Heures			
Mardi	5 octobre 2021	1 heure 50 minutes	18h30 à 20h20			

Directives particulières

- Vous vous engagez à faire cet examen individuellement.
- Détaillez les étapes de vos solutions. Une réponse sans justification ne vaut aucun point.
- Toute réponse finale doit être accompagnée des unités appropriées.
- Si vous pensez qu'il y a une erreur dans le questionnaire, répondez du mieux que vous pouvez.

Important

Cet examen contient x4 questions sur un total de 18 pages (Excluant cette page).

La pondération de cet examen est de 25 %

Aucune documentation n'est permise.

Inscrire votre matricule sur toutes les pages numérotées.

Un aide-mémoire pour les formules vues en cours se trouve à la fin de ce cahier.

Les calculatrices non programmables sont permises.

L'étudiant doit honorer l'engagement pris lors de la signature du code de conduite.

Question 1 (50 points) - Questions conceptuelles et à réponses courtes

Répondez aux sous-questions suivantes en expliquant votre raisonnement. Les sousquestions A à D sont indépendantes les unes des autres.

- (A) [10 pts] Vrai ou faux. Dans un fluide statique qui est soumis à la gravité, la pression augmente avec la profondeur : par conséquent, on ne peut pas affirmer que la pression dans ce fluide est isotrope. <u>Justifiez</u>.
- B. [10 pts] Un bloc glisse sur une surface rugueuse horizontale. Pour chacune des forces ci-dessous, nommez la force qui complète la paire action-réaction :
 - . Le poids du bloc ;
 - ii. La force de frottement qui agit sur le bloc.
- C. 10 pts] Considérez les deux situations ci-dessous, où un même couple *M* de module 20 N·m est appliqué à la pièce OAB que l'on suppose parfaitement rigide.

Vrai ou faux. Le couple produit les mêmes effets externes de translation et de rotation sur la pièce dans les deux situations. <u>Justifiez</u>.

D. [20 pts] Un billot de bois (masse volumique ρ_b) de forme cylindrique (rayon R et longueur L) flotte à la surface de l'eau (masse volumique ρ_e), tel qu'illustré sur la figure ci-contre. À partir de principes de la mécanique, obtenez l'équation qui permet de calculer l'angle θ . Présentez l'équation sous une forme simplifiée, mais ne tentez pas de la résoudre.

Question 2 (50 points)

On applique une force F = 200 N sur l'extrémité du manche d'une valve afin de la fermer.

La forme et les dimensions de la valve sont indiquées sur la figure ci-dessous. L'orientation de la force F est donnée par $\theta=30^\circ$ et $\phi=20^\circ$. On donne $d=0.8\,\mathrm{m}$.

Déterminer, en utilisant le système d'axes de la figure :

- A. [15 pts] L'expression de la force \vec{F} .
- B. [20 pts] Le système force-couple équivalent de \vec{F} au point B.
- C. [15 pts] Le moment de \vec{F} par rapport à l'axe z.

Question 3 (50 points)

Un cylindre de masse $m=30~{\rm kg}$ repose sur une structure composée de deux membrures accrochées au plafond tel que représenté sur la figure ci-dessous. Les dimensions des membrures et du disque sont représentées sur la figure.

- A. [20 pts] Faire le DCL:
 - i. Des deux membrures avec le disque ;
 - ii. Du disque ;
 - iii. De la membrure AC;
 - iv. De la membrure BC.
- B. [15 pts] Déterminer les modules des réactions de la structure sur le disque en D et en E.
- C. [15 pts] Déterminer le module de la réaction du pivot C.

No matricule:

Question 4 (50 points)

Un bloc homogène en béton (ρ_b = 1,44 g/cm³) ayant la forme d'un prisme triangulaire, tel qu'illustré dans le schéma ci-dessous, permet de retenir un certain volume d'eau (ρ_e = 1 g/cm³) le long de sa profondeur.

Le bloc a une hauteur de 9 m, une base de 3 m et une profondeur de 15 m. La distance entre le centre de masse G du bloc et chacun de ses côtés horizontal et vertical est égale au tiers de la longueur de ces mêmes côtés. Le bloc repose sur le sol horizontal sans y être fixé. Les coefficients de frottement entre le sol et le bloc sont $\mu_s = 0.9$ et $\mu_k = 0.5$.

On s'intéresse ici au mouvement du bloc lorsqu'on augmente progressivement le niveau d'eau. On souhaite déterminer ce qui survient en premier :

Le bloc bascule autour du point A;

OU

- Le bloc se met à glisser sur le sol.
- A. [10 pts] Faites le DCL du bloc de béton en supposant qu'il est sur le point de basculer autour de A.
- B. [20 pts] Quelle est la hauteur maximale d'eau que le bloc peut supporter sans basculer autour de A ?
- C. [15 pts] Quelle est la hauteur maximale d'eau que le bloc peut supporter sans glisser sur le sol ?
- D. [5 pts] Est-ce que le bloc bascule ou glisse en premier ?

PHS1101 – Mécanique pour ingénieurs Aide-mémoire

Moment d'une force :	$\vec{M}_O = \vec{r} \times \vec{F}$		$\vec{v} = \vec{v}_0 + \vec{a}t$	
Moment d'une force par rapport à un axe:	$\vec{M}_{OO'} = (\vec{M}_O \cdot \hat{u}_{OO'}) \hat{u}_{OO'}$	Mouvement uniformément accéléré:	$\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$	
Moment d'un couple :	M = Fd	decelere.	$v^2 = v_0^2 + 2\vec{a} \cdot (\vec{r} - \vec{r}_0)$	
Système force-couple équivalent :	$\vec{R} = \sum \vec{F}_i$	Accélération non	$\int_0^t dt = \int_{v_0}^v \frac{dv}{a(v)}$	
	$\vec{M}_O^R = \sum \vec{M}_i + \sum \vec{r}_{Oi} \times \vec{F}_i$	uniforme :	$\int_{v_0}^{v} v dv = \int_{x_0}^{x} a(x) dx$	
Équilibre statique :	$\sum \vec{F} = \vec{0}, \qquad \sum \vec{M}_O = \vec{0}$		$ec{r}=r\hat{u}_r$	
Loi de Hooke :	$ec{F} = -k(ec{L} - ec{L}_0)$	Coordonnées polaires :	$\vec{v} = \dot{r}\hat{u}_r + r\dot{\theta}\hat{u}_t$	
Frottement sec :	$f_{s,\max} = \mu_s N,$ $f_k = \mu_k N$		$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{u}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{u}_t$	
Pression :	$p = F_n/A$, $\tilde{p} = p - p_0$		$\vec{v} = v\hat{u}_t$	
Principe de Pascal:	$p_2 = p_1 + \rho g h$	Coordonnées normale et	$\vec{a} = (v^2/\rho)\hat{u}_n + (dv/dt)\hat{u}_t$	
Poussée d'Archimède :	$P_{A} = \rho g V$	tangentielle:	$\rho(x) = \frac{[1 + (dy/dx)^2]^{3/2}}{ d^2y/dx^2 }$	
Force hydrostatique sur une paroi :	$F_{H} = \frac{\rho g h A}{2}$	Deuxième loi de Newton :	$\sum ec{F} = m ec{a}_{\scriptscriptstyle CM}$	
Variables du mouvement :	$\vec{v} = \frac{d\vec{r}}{dt}, \qquad \vec{a} = \frac{d\vec{v}}{dt}$	Mouvement contraint:	$\sum \Delta \ell_i = 0$	
	$\vec{r} = \vec{r}_0 + \int_0^t \vec{v} dt$	Travail d'une force :	$U = \int \vec{F} \cdot d\vec{r}$	
	$\vec{v} = \vec{v}_0 + \int_0^t \vec{a} dt$	Énergie cinétique (particule) :	$T = \frac{1}{2}mv^2$	
	$\omega = \frac{d\theta}{dt}, \qquad \alpha = \frac{d\omega}{dt}$	Énergie	$V_g = mgh$	
Variables du mouvement (angulaires) :	$\theta = \theta_0 + \int_0^t \omega dt$	potentielle :	$V_{res} = \frac{1}{2}k(L - L_0)^2$	
	$\omega = \omega_0 + \int_0^t \alpha dt$	Énergie mécanique :	E = T + V	
Mouvement relatif:	$ec{r}_{B/A} = ec{r}_B - ec{r}_A$	Principe travail- énergie :	$\sum U = \Delta T, \qquad \sum U_{nc} = \Delta E$	
	$\vec{v}_{B/A} = \vec{v}_B - \vec{v}_A$	Puissance :	$\bar{P} = U/\Delta t$, $P = dU/dt = \vec{F} \cdot \vec{v}$	
	$\vec{a}_{B/A} = \vec{a}_B - \vec{a}_A$	Rendement	$\eta = P_{\text{sortie}}/P_{\text{entrée}}$	

PHS1101 – Mécanique pour ingénieurs Aide-mémoire

Quantité de mouvement (QM) :	$ec{L}=mec{v} \ ec{L}=Mec{v}_{ extit{CM}}$	Vitesse de rotation :	$ec{v}=$	$\vec{\omega} \times \vec{r}$
Principe impulsion- QM :	$\sum \vec{F} = \frac{d\vec{L}}{dt}$	Décomposition translation-rotation:	$\vec{v}_B = \vec{v}_A + \vec{\omega} \times \vec{r}_{B/A}$	
	$\Delta \vec{L} = \int \sum \vec{F} dt$	Centre instantané de rotation :	$\omega = \frac{v_A}{r_{A/CIR}} = \frac{v_B}{r_{B/CIR}}$	
Force moyenne :	$\vec{F}_{ m moy} \Delta t = \int \vec{F} dt$		$\Delta r = R\Delta heta$	
Centre de masse :	$ec{r}_{\mathit{CM}} = rac{\sum m_i ec{r}_i}{\sum m_i}$	Roulement sans glissement :	$v = \omega R$	
	$\vec{v}_{CM} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$		$a = \alpha R$	
	$ec{a}_{\mathit{CM}} = rac{\sum m_i ec{a}_i}{\sum m_i}$	Deuxième loi de	$\sum \vec{M}_O = \vec{r}_{CM/O} \times M \vec{a}_{CM} + \mathbf{I}_{CM} \vec{\alpha}$	
Moment d'inertie d'une particule :	$I_O = mR^2$	Newton en rotation :	$\sum \vec{M}_O = \mathbf{I}_O \vec{\alpha}$	
Rayon de giration :	$\kappa_O = \sqrt{I_O/m}$	Énergie cinétique	$T = \frac{1}{2}Mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2$	
Théorème des axes parallèles :	$I_{O'} = I_{O,CM} + md_{OO'}^2$	d'un corps rigide : $T = \frac{1}{2}I_{O}\omega^{2}$		$\frac{1}{2}I_{o}\omega^{2}$
Moment cinétique :	$\vec{H}_O = \vec{r} \times m\vec{v}$	Travail d'un couple :	$U = \int \vec{M} \cdot d\vec{ heta}$	
	$\vec{H}_o = I_o \vec{\omega}$	_	$ec{M}_{res} = -\kappa \Delta ec{ heta}$	
	$\vec{H}_O = \vec{r}_{CM} \times M\vec{v}_{CM} + \mathbf{I}_{CM}\vec{\omega}$	Ressort de torsion :	$V_{res} = \frac{1}{2}\kappa(\Delta\theta)^2$	
Principe impulsion- MC :	$\sum \vec{M}_O = \frac{d\vec{H}_O}{dt}$	Puissance d'un couple :	$P = \vec{M} \cdot \vec{\omega}$	
	$\Delta \vec{H}_O = \int \sum \vec{M}_O dt$	Géométrie $\sin \alpha - \sin \beta - \sin \gamma$		
Système à masse variable :	$\sum \vec{F} + \frac{dm}{dt} (\vec{v}_p - \vec{v}) = m\vec{a}$	$\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}$ $c^2 = a^2 + b^2 - 2ab\cos\gamma$		
Débit dans une	dV/dt = Sv,		Aire	Volume
conduite : Masse en fonction	$ dm/dt = \rho Sv$ $\int_{-\infty}^{t} dm$	Cylindre (rayon r, longueur L)	$2\pi r L$ (sans la base)	$\pi r^2 L$
du temps :	$m = m_0 + \int_0^t \frac{dm}{dt} dt$	Sphère	$4\pi r^2$	$4\pi r^3$
Force exercée par un courant de particules :	$\vec{F}_e = dm/dt \vec{v}_e$	(rayon r) Cône circulaire	$\pi r \sqrt{r^2 + h^2}$	$\frac{3}{\pi r^2 h}$
	$ec{F}_{s}=- dm/dt ec{v}_{s}$	(rayon r, hauteur h)	$\pi r \sqrt{r^2 + n^2}$ (sans la base)	$\frac{\pi r^{-}n}{3}$