Universität Salzburg Florian Graf

Machine Learning

Übungsblatt 7 24 Punkte

Aufgabe 1. Gradienten

Berechnen Sie den Gradienten und die Hessematrix der folgenden Funktionen $\mathbb{R}^d \to \mathbb{R}$. Berechnen Sie zunächst die partiellen Ableitungen und schreiben Sie anschließend den Gradienten (bzw. die Hessematrix) als Matrix-Vektor-Produkt.

4 P.

10 P.

10 P.

- (a) $f_1(x) = \mathbf{w}^{\top} \mathbf{x} \text{ mit } \mathbf{w}, \mathbf{x} \in \mathbb{R}^d$.
- (b) $f_2(x) = \frac{1}{2} ||\mathbf{x}||^2 \text{ mit } \mathbf{x} \in \mathbb{R}^d$.
- (c) $f_3(x) = \frac{1}{2} \mathbf{x}^T \mathbf{A} \mathbf{x}$ mit $\mathbf{x} \in \mathbb{R}^d$ und $A \in \mathbb{R}^{d \times d}$.
- (d) $f_4(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2 \text{ mit } \mathbf{x}, \mathbf{b} \in \mathbb{R}^d \text{ und } A \in \mathbb{R}^{d \times d}$.

Aufgabe 2. Lineare Regression - MLE

Es seien Daten $(\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^d$ und $(y_1, \dots, y_n) \in \mathbb{R}$ gegeben. Wir modellieren die Zielvariable y durch ein lineares Regressionsmodell der Form $p(y_i|\mathbf{x}_i, \mathbf{w}, \sigma^2) = \mathcal{N}(y_i|\mathbf{w}^{\top}\mathbf{x}_i, \sigma^2)$ mit $\mathbf{w} \in \mathbb{R}^d$ und $\sigma^2 > 0$. Bestimmen Sie den gemeinsamen Maximum-Likelihood Schätzer $(\hat{\mathbf{w}}, \hat{\sigma}^2)$ der Parameter (\mathbf{w}, σ^2) .

Aufgabe 3. Gewichtete lineare Regression

Es seien Daten $(\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^d$ und $(y_1, \dots, y_n) \in \mathbb{R}$ gegeben. Wir betrachten ein gewichtetes lineares Regressionsmodell der Form $p(y_i|\mathbf{x}_i, \mathbf{w}) = \mathcal{N}(y_i|\mathbf{w}^{\top}\mathbf{x}_i, \sigma^2(\mathbf{x}_i))$ mit $\mathbf{w} \in \mathbb{R}^d$ und $\sigma^2(\mathbf{x}_i) > 0$, d.h. die Varianz der Zielgröße y hängt von der Einflussgröße \mathbf{x} ab.

- (a) Beschreiben Sie ein Experiment bei dem es sinnvoll ist die Beobachtungen durch ein solches gewichtetes Regressionsmodell (anstatt eines klassischen linearen Regressionsmodells) zu modellieren.
- (b) Schreiben Sie die NLL des Modells mithilfe des Vektors \mathbf{w} , sowie den Matrizen \mathbf{X} und $\mathbf{\Sigma}$, die die Einflussgrößen \mathbf{x}_i bzw. die Varianzen $\sigma^2(\mathbf{x}_i)$ enthalten.
- (c) Bestimmen Sie den Maximum-Likelihood Schätzer $\hat{\mathbf{w}}$ für \mathbf{w} .
- (d) Die nachfolgende Tabelle enthält die empirischen Mittelwerte und Varianzen der Zielgröße $y \in \mathbb{R}$ für verschiedene Werte der Einflussgröße $x \in \mathbb{R}$.

$$\begin{array}{c|cccc}
x_i & y_i & \sigma^2(x_i) \\
\hline
0 & 0 & 1 \\
1 & 2 & 1 \\
2 & 2 & 3 \\
4 & 0 & 3
\end{array}$$

Fitten Sie ein gewichtetes und eine ungewichtetes lineares Regressionsmodell an die Daten mittels der Maximum-Likelihood Methode. Zeichnen Sie die Datenpunkte und die resultierenden Regressionsgeraden handschriftlich in ein Diagramm ein. Vergleichen Sie die beiden Modelle.