Theorem (Bayes' rule P(AIB) = P(BIA)P(A) P(B) Proof  $\frac{P(B|A)P(A)}{P(B)} = \frac{P(A,B)}{P(A)} \frac{P(A)}{P(B)}$ P(B) P(A,B) P(B) P(AIB) Eg Hanmogram The mammagram is a test for breast cancer It has now known prosson false positive and negative rates question: given a test that comes back positive, what is the probability of having breast cancer?

Let A ={ the patient has cancer? and B ={ the fest is positive?

and A, B their respective complements.

We know

False neg.: P(B|A) = 0.2

False pos.: P(BIA) = 0.1

From Bayes' rule

P(A|B) = P(B|A)P(A) P(B)

 $P(B|A) = 1 - P(\bar{B}|A) = 0.8$ 

For P(A), we know the percentage of people with breast cancer, namely

P(A) = 0.0004

Next P(B) = P(B|A)P(A) + P(B|A)P(A)

= (1 - P(BIA))P(A) + P(BIA)(1-P(A))

= 0.8 × 0.0004 + 0.1 × 0.9996

.

| Perffing this all together:                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P(A B) 2 0.3 %                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Context matters, one can't simply consider the false positive and negative rates.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Independence: two events are independent  if  P(A,B) = P(A)P(B)  - Denote independence with "IL". | magnetic production of the contract of the con |
| Lemma  Lemma  If AUB, then P(AIB) = P(A)                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If I flip a coin two times, white are the two flips independent?                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Are A and B independent?                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Charles MARGOSSIAN

March 12 19 2019 PHC 506 Biometry

## Probability and Bayes 11

## 1/ Probabilistic models

What is a model? There are several perspectives we can adopt:

- approximation of reality - predictive mode?

All these are data generating processes,

In theory, they can be deterministic, but when analy zing data, it is useful to make their output random.

The randomness acounts for:

- noise in our measurements
- variations due to unknown factors

- 111

Often times, the model anaparan has parameters and allows inputs.

Formally, the model Mis a map:

M: (0, x) --- y

Since Y is random, M is characterized by a distribution

Y~ Po(./x)

Egt Ball in free fall

Suppose our clata is the velocity of the ball at different time points. Physics tells us its acceleration is constant.

Thus v(t)= at

But because of measurement errors and unacounted air resistance we pick up an error term, E.

E is random. We propose ENN(0, T2) Then  $v_i \sim \mathcal{N}(at_i, \tau^2)$ Here, the parameters are a and T. The input (or covariate) is  $\overline{E} = (t_1, t_2, ..., t_n)$ Simulated data may look as above. E.g.2 PK model Our data is the plasma drug concentration. We have a complicated functional relationship (say a pharmacokinetic model) C(+)= f(t, 0) We can then add an error term.

Ci N N (f(ti, 0), T2)

Note that this reasoning applies to linear regression, logistic regression, etc.

<u>Memark: in both examples, my noise was</u> normally distributed.

normally distributed.'
The normal is mathematically convenient, and sometimes arises due to the

Central Limit Theorem. (CLT).

Recall: asymptotically, an average follows

a normal,

However, the normal may not always be appropriate.

E.g.3 Revisit examples 1 and 2

What is the range of the normal?



But velocity and drug concentration. Cannot be negative!

Indeed C & Loj+00)

Other limitation: what if I have more variance when I measure high values?

Again this is not captured by our previous models.

The lognormal distribution

Often, it is convenient to work on an unconstrained scale, ie. Po or (-w; + w).

This can be achieved with the log function, since

log: R+ --→ R



Indeed, while CEIRT, log(c) & IR.

694

Take our drug concentration model.

$$c(t) = f(t, o)$$

$$(=) (og c(t) = (og f(t, 0))$$

Add an error term here,

This motivates the log normal distribution:

$$C(t) \sim \log N \left(\log f(t,0), T^2\right)$$



As required, c(t) now has to be positive.

In addition

$$Var\left(c(t)\right) = \left(e^{\frac{\tau^2}{2}}-1\right)e^{2\log\left(f(t,0)\right)+\tau^2}$$

which increases as f(+,0) increases !

when constructing a model, we usent to make sure it generates the data we measure (and captures the phonomenon of interest).

## 2/ Inference

Usually, we have data, Z:= (X, Y),

The goal of inference is to reverse-engineer the data generating process.

That is what are values of o that are consistent with (x, y) and M.

2.4/ Maximum Rikelihood Estimator

The MLE is & := argmax p(y/x)

Suppose X1, 111, Xn & Bernowilli (p)
That is

 $X = \begin{cases} 1, & \text{with prob. } P \\ 0, & \text{with prob } 1 - P \end{cases}$ 

The probability mass function is

 $p(Xa) = p^{2}(1-p)^{1-2}$ 

Does this distribution make sense? Well

p(X=0) = 1 - p

P(X=1) = P

The X's are independent.

Thus

p(x)=p(xx, 111, xn)=p(xx)p(x2) 111p(xn)

 $= p^{2L} (1-p)^{L-2L} p^{2n} (1-p)^{T-2n}$   $= p^{2L} (1-p)^{L-2L} p^{2n} (1-p)^{T-2n}$   $= p^{2L} (1-p)^{L-2L} p^{2n} (1-p)^{T-2n}$ 

How do we find the value of p which maximizes p(x)?

The logarithm is monotone. Thus maximizing  $p(x_n)$  is the same as maximizing  $(og p(x_n))$ . And  $\log p(x_n) = \sum_{i=1}^{n} x_i \log (p)$ + Zi(1-xi) log(1-p) Then  $\frac{\partial}{\partial p} \log p(Xu) = \frac{1}{p} \sum_{i=1}^{n} \chi_i$ - Z((1-Ni) 1-1-P  $=\frac{1}{p(1-p)}\left(\left(\frac{5}{5},\pi_i\right)(1-p)+pn+p\left(\frac{5}{5},\pi_i\right)\right)$ - HANDENTYPHY  $=\frac{1}{p(1-p)}\left(\frac{2}{2},ni-pn\right)$ At an optimum point, & logp(xn) = 0.  $\sum_{i=1}^{n} \chi_{i} - \beta_{n} = 0$  $\hat{p} = \frac{1}{2} \sum_{i=1}^{N} \gamma t_i$ 

| z.a =                                                                                                                          | Same of the Same o |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Suppose X1, 111, Xn vid N(O, 1)                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                | Store of the store |
| A similar derivation shows                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\widehat{\mathcal{O}}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} X_i^2 \qquad \qquad   $                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 68 Suppose MARRINGTHAND SPATATON                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| fa i=1,, n, Yin N (Bo+BXi, T2)                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| This is the setting of the linear regression.                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| This is the setting of the linear regression.  Then, the MLE for Bo and B is the coefficient of the ordenacy least square fit. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| of the Ordenaey least squae fit.                                                                                               | And the state of t |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The MLE enjoys many nice mathematical                                                                                          | Marter es períodos de la compansión de l |
| Best it is a point estimate; can build confidence intervals.                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\mathcal{L}(0,x)$                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>Ome</u>                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In the above example, can a point estimate                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

accurately describe the set of o consistent with I and M?

2.2/ Bayesian Inference

Proposition: treat the parameter as a random variable and estimate its distribution, given some data.

Wanf

p(017).

From Bayes' rule,

 $p(0|x) = \frac{p(z|0)p(0)}{p(z)}$ 

p(\$10): the well known likelihood function.

p(0): the prior distribution.

It encodes information about the parameter known before observing the data, based on:
- theoretical constraints

- Results from previous data analysis mathematical convenience

| p(X): the     | eviclence.                 |
|---------------|----------------------------|
| 1             | as a normalizing constant. |
|               |                            |
| E. G. Suppose | X2, X2,111, Xn 2 N (0, 02) |
| 24 d          | A 11 1 ( ) = 2 )           |

These define ou likelihood and our prior.

Lemma:
Given the above, the posterior distribution
of 0 is

$$P(O|X) = N \left( \frac{M/\tau^2 + XN}{\sqrt{\tau^2}}, \frac{1}{\sqrt{\tau^2 + n/\tau^2}} \right)$$

Let's look at the mean

$$\overline{E}(0|X) = \frac{M/C^2 + \frac{\overline{X}N}{\overline{F^2}}}{1/\overline{C^2} + N/\overline{C^2}}$$

It is the weighted average between the prior mean, u, and the sample mean X.

Pecall Val(Xn) = V2/n.

The weights are the inverse variance.

What happens to E(OIX) as n - p + 00?

This impromotion and in the data-

E.g Bayes lau learning

Suppose we observe a first set of data  $\mathcal{I}_1 = (X_1, Y_1)$ , and compute  $p(O|\mathcal{I}_1)$  given some initial prior p(O).

Our new prior is then  $\hat{p}(O) = p(O|\mathcal{I}_2)$ 

MUNITATION

Suppose we observe a second set of data Zz=(X2, Y2).

We can then update the posterior.

But what if we had updated our initial prior, p(0), simultaneously using Is and Ite?

First procedure:

$$\frac{\partial}{\partial (\partial / Z_2)} = p(Z_2 | \Theta) p(O | Z_1)$$

P(Z2)

$$= p(\mathbb{Z}_2(0)) p(\mathbb{Z}_1(0)) p(0)$$

$$p(\mathbb{Z}_2) p(\mathbb{Z}_1)$$

Now we assume Iz and It are independent, conditional on v. Hence

$$p(Z_1, Z_2|O) = p(Z_1|O)p(Z_2|O)$$

Additionally, assume 7, and 7, are

independent '

Remark: Condétional independence and independence are not equivalent.

From the above assumption, Is I Fz,

Thus  $\tilde{p}(\theta/\mathcal{I}_2) = P(\mathcal{I}_1, \mathcal{I}_2|\theta)p(\theta)$   $P(\mathcal{I}_1, \mathcal{I}_2)$ 

$$= P(O|Z_1, Z_2)$$

Thus, the two procedure yield the same result.

Euppose XNN(0, 152) ONN(pc, 52)

 $\mu = 3.0$ ,  $\nabla^2 = 5$   $z^2 = 2$ , and we observe  $X = \{-1, 4, 3, 2\}$ 

Calculate p(0|X).

First n=4 and X=-1+4+3+2=2From conjugacy,

$$p(0|X) = N\left(\frac{3.0/2 + 4.2/5}{1/2 + 4/5}, \frac{1}{1/2 + 4/5}\right)$$

$$=$$
  $\left(2.385, 0.769\right)$ 





What if we observe a new data point \ = \ 3.53? Need to update the prior:

$$\overline{E}(0|X,Y) = \frac{2.388}{0.769 + 3.5/5}$$

$$\frac{1}{0.769 + 1/5}$$