PREREQUISITES

This course assumes that you have in-depth knowledge of the following:

functions and function arguments	<pre>def my_func(p1, p2, *args, k1=None, **kwargs)</pre>
lambdas	lambda x, y: x+y
packing and unpacking iterables	my_func(*my_list)
	f, *_, 1 = (1, 2, 3, 4, 5)
closures	nested scopes free variables
decorators	@my_decorator @my_decorator(p1, p2)
Boolean truth values	bool(obj)
named tuples	<pre>namedtuple('Data', 'field_1 field_2')</pre>
== vs is	id(obj)

This course assumes that you have in-depth knowledge of the following:

```
zip
             zip(list1, list2, list3)
             map(lambda x: x**2, my_list)
map
             reduce(lambda x, y: x * y, my_list, 10)
reduce
filter
             filter(lambda p: p. age > 18, persons)
             sorted(persons, lambda p: p.name.lower())
sorted
             import math
imports
             from math import sqrt, sin
             from math import sqrt as sq
             from math import *
```

You should have a basic understanding of creating and using classes in Python

```
class Person:
   def __init__(self, name, age):
      self.name = name
      self.age = age
   @property
   def age(self):
      return self._age
   @age.setter
   def age(self, age):
      if value <= 0:
          raise ValueError('Age must be greater than 0')
      else:
          self._age = age
```

You should understand how special functionality is implemented in Python using special methods

```
class Point:
   def __init__(self, x, y):
       self.x = x
       self.y = y
   def repr (self):
       return f'Point(x={self.x}, y={self.y})'
   def eq (self, other):
       if not isinstance(other, Point):
           return False
       else:
           return self.x == other.x and self.y == other.y
   def __gt__(self, other):
       if not isinstance(other, Point):
           return NotImplemented
       else:
           return self.x ** 2 + self.y ** 2 > other.x**2 + other.y**2
   def __add__(self, other):
```

You should also have a basic understanding of:

for loops, while loops	break continue else
branching	if … elif… else…
exception handling	<pre>try: my_func() except ValueError as ex: handle_value_error() finally: cleanup()</pre>