Intrusion Detection

Overview

- Principles and basics
- Denning's Model
- Models of Intrusion Detection
- Architecture of an IDS

Principles of Intrusion Detection

Principles of Intrusion Detection

- Characteristics of systems not under attack
 - User, process actions conform to statistically predictable pattern
 - User, process actions do not include sequences of actions that subvert the security policy
 - Process actions correspond to a set of specifications describing what the processes are allowed to do
- Systems under attack do not meet at least one of these

Example

- Goal: insert a back door into a system
 - Intruder will modify system configuration file or program
 - Requires privilege; attacker enters system as an unprivileged user and must acquire privilege
 - Nonprivileged user may not normally acquire privilege (violates #1)
 - Attacker may break in using sequence of commands that violate security policy (violates #2)
 - Attacker may cause program to act in ways that violate program's specification

Basic Intrusion Detection

- Attack tool is automated script designed to violate a security policy
- Example: rootkit
 - Includes password sniffer
 - Designed to hide itself using Trojaned versions of various programs (ps, ls, find, netstat, etc.)
 - Adds back doors (login, telnetd, etc.)
 - Has tools to clean up log entries (zapper, etc.)

Detection

- Rootkit configuration files cause Is, du, etc. to hide information
 - ► Is lists all files in a directory
 - Except those hidden by configuration file
 - A locally written program to list directory entries
 - Run both and compare counts
 - If they differ, Is is doctored
- Other approaches possible

Denning's Model

Denning's Model

- Hypothesis: exploiting vulnerabilities requires abnormal use of normal commands or instructions
 - Includes deviation from usual actions
 - Includes execution of actions leading to break-ins
 - Includes actions inconsistent with specifications of privileged programs

Goals of Intrusion Detection Systems

- Detect wide variety of intrusions
 - Previously known and unknown attacks
 - Suggests need to learn/adapt to new attacks or changes in behavior
- Detect intrusions in timely fashion
 - May need to be be real-time, especially when system responds to intrusion
 - Problem: analyzing commands may impact response time of system
 - May suffice to report intrusion occurred a few minutes or hours ago

Goals of Intrusion Detection Systems

- Present analysis in simple, easy-to-understand format
 - Ideally a binary indicator
 - Usually more complex, allowing analyst to examine suspected attack
 - User interface critical, especially when monitoring many systems
- Be accurate
 - Minimize false positives, false negatives
 - Minimize time spent verifying attacks, looking for them

Models of Intrusion Detection

Models of Intrusion Detection

- Anomaly detection
 - What is usual, is known
 - What is unusual, is bad
- Misuse detection
 - What is bad, is known
 - What is not bad, is good
- Specification-based detection
 - What is good, is known
 - What is not good, is bad

Anomaly Detection

Anomaly Detection

- Analyzes a set of characteristics of system, and compares their values with expected values; report when computed statistics do not match expected statistics
 - Threshold metrics
 - Statistical moments
 - Markov model

Threshold Metrics

- Counts number of events that occur
 - Between m and n events (inclusive) expected to occur
 - If number falls outside this range, anomalous
- Example
 - Windows: lock user out after k sequential failed login attempts
 - ightharpoonup Range is (0, k-1).
 - k or more failed logins deemed anomalous

Difficulties

- Appropriate threshold may depend on non-obvious factors
 - Typing skill of users
 - If keyboards are US keyboards, and most users are French, typing errors very common

Statistical Moments

- Analyzer computes standard deviation (first two moments), other measures of correlation (higher moments)
 - If measured values fall outside expected interval for particular moments, anomalous
- Potential problem
 - Profile may evolve over time; solution is to weigh data appropriately or alter rules to take changes into account

Potential Problems

- Assumes behavior of processes and users can be modeled statistically
 - Ideal: matches a known distribution such as Gaussian or normal
 - Otherwise, must use techniques like clustering to determine moments, characteristics that show anomalies, etc.
- Real-time computation a problem too

Markov Model

- Past state affects current transition
- Anomalies based upon sequences of events, and not on occurrence of single event
- Problem: need to train system to establish valid sequences
 - Use known, training data that is not anomalous
 - The more training data, the better the model
 - Training data should cover all possible normal uses of system

Example: TIM

- Time-based Inductive Learning
- Sequence of events is abcdedeabcabc
- TIM derives following rules:

$$R_1$$
: $ab \rightarrow c$ (1.0) R_2 : $c \rightarrow d$ (0.5) R_3 : $c \rightarrow e$ (0.5)

$$R_2$$
: $c \rightarrow d (0.5)$

$$R_3: c \rightarrow e (0.5)$$

$$R_4: d \rightarrow e (1.0)$$
 $R_5: e \rightarrow a (0.5)$ $R_6: e \rightarrow d (0.5)$

$$R_5$$
: $e \rightarrow a (0.5)$

$$R_6: e \rightarrow d (0.5)$$

- Seen: abd; triggers alert
 - c always follows ab in rule set
- Seen: acf; no alert as multiple events can follow c
 - May add rule R_7 : $c \rightarrow f$ (0.33); adjust R_2 , R_3

Using Machine Learning

Machine Learning

- These anomaly detection methods all assume some statistical distribution of underlying data
 - IDES assumes Gaussian distribution of events, but experience indicates not right distribution
- Use machine learning techniques to classify data as anomalous
 - Does not assume a priori distribution of data

Types of Learning

- Supervised learning methods: begin with data that has already been classified, split it into "training data", "test data"; use first to train classifier, second to see how good the classifier is
- Unsupervised learning methods: no pre-classified data, so learn by working on real data; implicit assumption that anomalous data is small part of data
- Measures used to evaluate methods based on:
 - TP: true positives (correctly identify anomalous data)
 - TN: true negatives (correctly identify non-anomalous data)
 - FP: false positives (identify non-anomalous data as anomalous)
 - ► FN: false negatives (identify anomalous data as non-anomalous)

Measuring Effectiveness

- Accuracy: percentage (or fraction) of events classified correctly
 - \blacksquare ((TP + TN) / (TP + TN + FP + FN)) * 100%
- Detection rate: percentage (or fraction) of reported attack events that are real attack events
 - ► (TP / (TP + FN)) * 100%
 - Also called the true positive rate
- False alarm rate: percentage (or fraction) of non-attack events reported as attack events
 - ► (FP / (FP + TN)) * 100%
 - Also called the false positive rate

Clustering

- Clustering
 - Does not assume a priori distribution of data
 - Obtain data, group into subsets (clusters) based on some property (feature)
 - Analyze the clusters, not individual data points

Example: Clustering

proc	user	value	percent	clus#1	clus#2
p_1	matt	359	100%	4	2
p_2	holly	10	3%	1	1
p_3	heidi	263	73%	3	2
p_4	steven	68	19%	1	1
p_5	david	133	37%	2	1
p_6	mike	195	54%	3	2

- Cluster 1: break into 4 groups (25% each); 2, 4 may be anomalous (1 entry each)
- Cluster 2: break into 2 groups (50% each)

Finding Features

- Which features best show anomalies?
 - CPU use may not, but I/O use may
- Use training data
 - Anomalous data marked
 - Feature selection program picks features, clusters that best reflects anomalous data

Example

- Analysis of network traffic for features enabling classification as anomalous
- 7 features
 - Index number
 - Length of time of connection
 - Packet count from source to destination
 - Packet count from destination to source
 - Number of data bytes from source to destination
 - Number of data bytes from destination to source
 - Expert system warning of how likely an attack

Feature Selection

- 3 types of algorithms used to select best feature set
 - Backwards sequential search: assume full set, delete features until error rate minimized
 - Best: all features except index (error rate 0.011%)
 - Beam search: order possible clusters from best to worst, then search from best
 - Random sequential search: begin with random feature set, add and delete features
 - Slowest
 - Produced same results as other two

Results

- If following features used:
 - Length of time of connection
 - Number of packets from destination
 - Number of data bytes from source

Classification error less than 0.02%

Misuse Modeling

Misuse Modeling

- Determines whether a sequence of instructions being executed is known to violate the site security policy
 - Descriptions of known or potential exploits grouped into rule sets
 - IDS matches data against rule sets; on success, potential attack found
- Cannot detect attacks unknown to developers of rule sets
 - No rules to cover them

Example: IDIOT

- Event is a single action, or a series of actions resulting in a single record
- Five features of attacks:
 - Existence: attack creates file or other entity
 - Sequence: attack causes several events sequentially
 - Partial order: attack causes 2 or more sequences of events, and events form partial order under temporal relation
 - Duration: something exists for interval of time
 - Interval: events occur exactly n units of time apart

IDIOT Representation

- Sequences of events may be interlaced
- Use colored Petri automata to capture this
- Example: mkdir attack

Specification Modeling

Specification Modeling

- Determines whether execution of sequence of instructions violates specification
- Only need to check programs that alter protection state of system
- System traces, or sequences of events $t_1, \ldots, t_i, t_{i+1}, \ldots$, are basis of this
- Still in its infancy
- Appealing part is the formalization

Comparison

Comparison and Contrast

- Anomaly detection
 - Detects unusual events, but these are not necessarily security problems
- Misuse detection
 - If all policy rules known, easy to construct rulesets to detect violations
 - Usual case is that much of policy is unspecified, so rulesets describe attacks, and are not complete
- Specification-based
 - Spec assumes if specifications followed, policy not violated

Intrusion Detection System Architecture

IDS Architecture

- Basically, a sophisticated audit system
 - Agent like logger; it gathers data for analysis
 - Director like analyzer; it analyzes data obtained from the agents according to its internal rules
 - Notifier obtains results from director, and takes some action
 - May simply notify security officer
 - May reconfigure agents, director to alter collection, analysis methods
 - May activate response mechanism

Organization of an IDS

- Monitoring network traffic for intrusions
- Combining host and network monitoring
- Making the agents autonomous

Agents

Agents

- Obtains information and sends to director
- May put information into another form
 - Preprocessing of records to extract relevant parts
- May delete unneeded information
- Director may request agent send other information

Example

- IDS uses failed login attempts in its analysis
- Agent scans login log every 5 minutes, sends director for each new login attempt:
 - Time of failed login
 - Account name and entered password
- Director requests all records of login (failed or not) for particular user
 - Suspecting a brute-force cracking attempt

Host-Based Agent

- Obtain information from logs
 - May use many logs as sources
 - May be security-related or not
- Agent generates its information
 - Scans information needed by IDS, turns it into equivalent of log record
 - Typically, check policy
 - May be very complex

Network-Based Agents

- Detects network-oriented attacks
 - Denial of service attack introduced by flooding a network
- Monitor traffic for a large number of hosts
- Examine the contents of the traffic itself
- Agent must have same view of traffic as destination
- End-to-end encryption defeats content monitoring

Network Issues

- Network architecture dictates agent placement
 - Ethernet or broadcast medium: one agent per subnet
 - Point-to-point medium: one agent per connection, or agent at distribution/routing point
- Focus is usually on intruders entering network
 - If few entry points, place network agents behind them
 - Does not help if inside attacks to be monitored

Aggregation of Information

- Agents produce information at multiple layers of abstraction
 - Application-monitoring agents provide one view (usually one line) of an event
 - System-monitoring agents provide a different view (usually many lines) of an event
 - Network-monitoring agents provide yet another view (involving many network packets) of an event

Director

Director

- Reduces information from agents
 - Eliminates unnecessary, redundant records
- Analyzes remaining information to determine if attack under way
 - Analysis engine can use a number of techniques, discussed before, to do this
- Usually run on separate system
 - Does not impact performance of monitored systems

Example

- Jane logs in to perform system maintenance during the day
- She logs in at night to write reports
- One night she begins recompiling the kernel
- Agent #1 reports logins and logouts
- Agent #2 reports commands executed
 - Neither agent spots discrepancy
 - Director correlates log, spots it at once

Adaptive Directors

- Modify profiles, rule sets to adapt their analysis to changes in system
 - Usually use machine learning or planning to determine how to do this
- Example: use neural nets to analyze logs
 - Network adapted to users' behavior over time
 - Used learning techniques to improve classification of events as anomalous
 - Reduced number of false alarms

Notifier

Notifier

- Accepts information from director
- Takes appropriate action
 - Notify system security officer
 - Respond to attack
- Often GUIs
 - Well-designed ones use visualization to convey information

Examples

- Credit card companies alert customers when fraud is believed to have occurred
 - Configured to send email or SMS message to consumer

Key Points

Key Points

- Intrusion detection is a form of auditing
- Anomaly detection
- Misuse detection
- Specification-based detection
- Intrusion detection is used for host-based monitoring, network monitoring, or combination of these
- Agent, director, and notifier