Index

A	
	oral 1 . m 94
Abelian groups	vol.1: p.24
Adjoint operators	vol.1: pp.43 - 44, 87, 103
Adjugate matrix	vol.2: pp.120 - 121
Affine spaces	vol.1: p.93
Asymptotically stable	vol.2: p.76
Attracting fixed point	vol.2: p.76
Autonomous systems	vol.1:p.7
B	
Basin boundary	vol.2: p.89
Basin of attraction	vol.2: p.89
Basis	vol.2: pp.125 - 127
Bifurcation	vol.1: pp.11 - 12, 63 - 64
Body velocity	vol.1:p.38
Cayley-hamilton theorem	vol.2: pp.139 - 140
Centroid of area	vol.1: pp.4-6
Characteristic equation	vol.2: pp.77, 138 - 139
Column space	vol.2: pp.133 - 134
Connection vector field	vol.1: pp.118 - 119
Conservative system	vol.2: pp.89 - 91, 103
Conservative vector fields	vol.1: pp.145 - 146
Conserved quantity	vol.2: p.90
Constraint, holonomic	vol.1: pp.76-77
Constraint, nonholonomic	vol.1: pp.110 - 117, 135 - 136
Contour	vol.2: pp.91 - 92
Coordinate transformation matrix	vol.2: pp.128 - 129
Coordinate vector	vol.2: pp.126 - 127
Corange	vol.2: pp.51-54
Corank	vol.2: pp.51 - 54
Cotangent bundle	vol.1:p.126
Cotangent space	vol.1:p.126
Cotangent vector	vol.1: pp.127 - 130
Cramer's rule	vol.2:p.121
Cross product	vol.1: pp.1-2
Curl (vector)	vol.1:p.145
Curvature (constraint)	vol.1: pp.144 - 145
D	
Deficient matrix	vol.2: pp.140 - 141
Degenerate matrix	vol.2:p.139
Degrees of freedom	vol.1:p.17
Determinant	vol.2: pp.78 - 81, 115 - 119
Diagonalization	vol.2: pp.142 - 144
Diffeomorphic	vol.1:p.20
Differential-algebraic equations	vol.2: pp.41 - 44,47 - 48

Differential-algebraic equations, differentiation index	vol.2: pp.47-48
Differential-algebraic equations, model consistency	vol.2:p.44
Differential-algebraic equations, regularity	vol.2:p.45
Differential-algebraic equations, solution	vol.2:p.44
Dimension (of a vector space)	vol.2: pp.125 - 126
Direct product of two sets	vol.1:p.20
Direct sum	vol.1:p.20
Direct sum of two sets	vol.1:p.125
Directional linearity	vol.1: p.106
Distribution (allowable velocities)	vol.1: pp.112, 148 - 150
Dot product	vol.2: pp.134 - 135
E	TP -
Eigenspace	vol.2: p.140
Eigenvalue	vol.2: pp.77, 138 - 145
Eigenvector	vol.2: pp.76 - 77, 138 - 145
Elementary row operators	vol.2: p.107
Embedding	vol.1: p.96
Equivalent vectors w.r.t. functions	vol.1: pp.100 - 101
Euler-lagrange equation	vol.1: pp.100 101 vol.1: p.136
Existence and uniqueness theorem	vol.1: p.130 vol.1: pp.11, 13
Existence and uniqueness theorem	vol.1 : pp.11, 13 vol.2 : p.82
Emonantial man	vol.1: pp.48 - 51, 103 - 104
Exponential map External forces	
External forces F	vol.1:p.1
Force couple	vol.1:p.2
Force couple Force couple system	vol.1: p.2 vol.1: p.3
Forward kinematics	-
	vol.1: pp.78, 83 - 84
Fundamental vector field (infinitesimal generators)	vol.1: pp.99 - 100
G	
Gait generation	vol.1: p.124
Gaussian elimination	vol.2: p.104
Generalized coordinates	vol.1: p.78
Geodesics	vol.1: pp.44 - 46, 51, 96 - 99
Gradient vector field	vol.1: pp.129 - 130
Gram schmidt orthogonality procedure	vol.2: p.137
Group	vol.1: pp.21, 94 - 95
Group invariant vectors	vol.1: p.100
Group, left/right action	vol.1: pp.24 - 29, 33, 80, 96, 137
Group, symmetry	vol.1: pp.108 - 109, 137
H	
Hartman-grobman theorem	vol.2:p.88
Heteroclinic trajectory	vol.2:p.94
Holonomic constraint	vol.1: pp.76-77
Homeomorphic	vol.1:p.19
	vol.2:p.88
Homogeneous equations	vol.2:p.105
Hyperbolic fixed point	vol.2: pp.87 - 88

Hysteresis	vol.1: pp.66, 70-71
	vol.2:p.42
I	
Idempotent	vol.2:p.37
Image (algebra)	vol.1:p.124
Index theory	vol.2: pp.98 - 101
Inner product	vol.2: pp.134 - 135
Internal forces	vol.1:p.1
Intersection (spaces)	vol.2: pp.130 - 131
Invariance	vol.1:p.139
Isocline	vol.2:pp.74,84
Isomorphic	vol.1:p.22
J	
Jacobian	vol.1: pp.84 - 86
	vol.2:p.85
K	
Kernel	vol.1: pp.124 - 125
Kinematic locomotion	vol.1: pp.105 - 107
L	
Lagrangian	vol.2:p.45
Lagrangian multipliers	vol.2:pp.45-46
Liapunov fixed point	vol.2:p.76
Lie algebra	vol.1: pp.41, 98-100, 103, 151-152
Lie bracket	vol.1: pp.148 - 150
	vol.2:p.1
Lie groups	vol.1: pp.21, 96-99
Lifted actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
Linear combination	vol.2:p.124
Linear equations	vol.2:p.104
Linear independence	vol.2: pp.124 - 125
Linear transformation	vol.2: pp.131 - 133
Linearity (mapping)	vol.1: pp.106 - 107
Linearization at a fixed point	vol.1:pp.10-11
	vol.2: pp.84 - 85
Local connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
Locomotion	vol.1:p.104
Lotka-volterra model of competition	vol.2:p.88
M	
Manifolds	vol.1: pp.17 - 19,93
Manifolds, accessible	vol.1:pp.76-78
Manifolds, c^k -differentiable	vol.1:p.20
Manifolds, curvature	vol.1:p.93
Manifolds, stable	vol.2:p.89
Manifolds, topology	vol.1:p.93
Matrix cofactor	vol.2: pp.111, 118-120
Matrix determinant	vol.2: pp.115 - 119

 ${\bf Matrix\ inverse}$

vol.2:pp.110-115

Matrix minor	vol.2:p.111
Matrix operations	vol.2:p.106
Model consistency	vol.2:p.44
Modular addition	vol.1:p.21
Momentum	vol.1: pp.138 - 140
Monotonic function	vol.1:p.13
Multiplicative calculus	vol.1: pp.34 - 38, 46 - 47
N	001.1 . pp.04 00, 40 41
Neutrally stable	vol.2:p.76
Noether's theorem	vol.1: pp.131 - 134
Noncommutativity	vol.1: pp.161 - 164 vol.1: p.147
Nonconservativity	vol.1: p.147 vol.1: pp.145 - 147
·	
Nonholonomic constraint	vol.1: pp.110 - 117, 135 - 136
Nullcline	vol.2: p.84
Nullity	vol.2: p.134
Nullspace	vol.2: pp.132 - 134
O	
One-form	vol.1: pp.125, 127 - 129
Optimal frame	vol.1:p.83
Orthogonal compliment	vol.2: pp.137 - 138
Orthogonal set	vol.2:p.135
Orthonormal	vol.2: pp.135 - 136
Orthonormal basis	vol.2:p.136
Outer product	vol.2:p.136
Overdetermined system	vol.2:pp.19,41
P	
Pfaffian constraint	vol.1: pp.111 - 117
Phase (angle)	vol.2:p.61
Phase drift	vol.2:p.68
Phase lock	vol.2:p.67
Phase portrait	vol.1: pp.7 - 9
Thate portreat	vol.2: pp.74,83
Position trajectory	vol.1: p.105
Potentials	vol.1: p.105 vol.1: p.17
Preimage (algebra)	vol.1: p.124
Principally kinematic system	vol.1: p.139
Principle of least action	vol.1: pp.131 - 133
Projection operator	vol.2:p.37
R	
Range (matrix)	vol.2: pp.132 - 133
Range of entrainment	vol.2: pp.68 - 69
Rank	vol.2: pp.51, 53 - 54, 132 - 134
Reaction force	vol.1:p.4
Reconstruction equation	vol.1: pp.114-123, 138
Regular control problem	vol.2:p.45
Reversible system	vol.2: pp.92 - 95
Rigid body	vol.1:p.23
V	*

Rigid body, left lifted action	vol.1: pp.38 - 41
Rigid body, right lifted action	vol.1:pp.41-43
Row echelon form	vol.2:p.107
Row space	vol.2:p.134
Runge-kutta method	vol.2:p.83
S	
Saddle connection	vol.2:p.94
Semidirect product of two sets	vol.1:p.24
Separatrix	vol.2:p.89
Shape trajectory	vol.1:p.105
Similar matrices	vol.2:p.142
Singular matrix	vol.2: pp.41-42, 51, 110, 122
Solution, differential-algebraic equations	vol.2:p.44
Span	vol.2: pp.124 - 125
Spatial velocity	vol.1:pp.43,85
Special euclidean group	vol.1:p.23
	vol.2:pp.1-2
Special orthogonal group, $so(n)$	vol.1:p.22
	vol.2:pp.1-2
Stable	vol.2:p.76
Strain energy	vol.2:pp.5-7
Structural stability	vol.2:p.88
Subspace	vol.2: pp.129 - 130
Sum (spaces)	vol.2: pp.130 - 131
Symmetric matrix	vol.2:p.144
Symmetry	vol.1: pp.108 - 109, 131
T	
Tangent spaces	vol.1: pp.29 - 30
Tensor product	vol.1:p.20
Time-reversal symmetry	vol.2:pp.92-93
Trace	vol.2: pp.78 - 80
U	
Underactuated system	vol.1:p.104
Underdetermined system	vol.2:pp.19,41
Unstable	vol.2:p.76
V	
Varignon's theorem	vol.1:p.1
Vector field	vol.1: pp.30 - 31
	vol.2:p.74
Vector mapping	vol.2:p.127
Vector space	vol.2: pp.122 - 123
Vertical space	vol.1:p.125
W	
Work (mechanical)	vol.1:p.145
Z	
Zero set	vol.1: pp.76, 110-111