

Biostatistics 666

Last Lecture

- Haplotype Frequencies
- Linkage Equilibrium
- Linkage Disequilibrium
 - Association between neighboring alleles
 - Expected to decrease with distance
- Measures of linkage disequilbrium
 - D, D' and Δ^2

-

Modeling populations

- Important Parameters
 - Mutation rate (μ)
 - Population Size
 - Haploid population (N chromosomes)
 - Diploid population (2N chromosomes)
 - Time (t)
 - Final sample size (n)
 - Also recombination rate, selection, migration

Mutation Model

- The mutation process is complex
 - Rate depends on surrounding sequence
 - Reverse mutations are possible

- Two simple models are popular
 - Infinite alleles
 - Every mutation generates a different allele
 - Infinite sites
 - Every mutation occurs at a different site

4

Simple Approach: Simulation

- N starting sequences
- 2. Sample N offspring sequences
 - Apply mutations according to μ
- 3. Increment time
- 4. If enough time has passed...
 - Generate final sample
 - 2. Stop.
- 5. Return to step 1.

Genealogy

- History of a particular set of sequences
 - Describes their relatedness
 - Specifies divergence times

Includes only a subset of all sequences

Most Recent Common Ancestor (MRCA)

Coalescent approach

- Generate genealogy for a sample of sequences.
 - Introduces computational and analytical convenience.

Instead of proceeding forward through time, go backwards!

Example

- Sample of two sequences
 - 100 bp each...

- How many differences are expected?
 - Population of size, N = 1000
 - Mutation rate
 - $\mu = 10^{-8}$ / bp / generation
 - $\mu \approx 10^{-6}$ / 100 bp / generation

Genealogy of two sequences

Mutations between MRCA and Sequence 1?

Genealogy of two sequences

Total mutations in genealogy?

In general...

- Number of mutations S
 - Distributed as Poisson
 - $E(S) = \mu E(T_{tot})$
 - Var(S) = E[Var(S|T)] + Var(E(S|T))= $\mu E(T_{tot}) + \mu^2 Var(T_{tot})$

T_{tot} is the total length of all branches

Estimating T(2)

 Probability that two sequences have distinct ancestors in previous generation

$$P(2) = \frac{N-1}{N} = 1 - \frac{1}{N}$$

 Probability of distinct ancestors for t generations is P(2)^t

1

Probability of MRCA at time t

$$P(2)^{t}(1-P(2)) = \left(\frac{N-1}{N}\right)^{t} \frac{1}{N}$$
$$= \frac{1}{N}(1-1/N)^{t}$$
$$\approx \frac{1}{N}e^{-(1/N)t}$$

Estimating T(n)

 Probability that n sequences have n distinct ancestors in previous generation

$$P(n) = \prod_{i=1}^{n-1} 1 - \frac{i}{N}$$

$$= \prod_{i=1}^{n-1} \frac{N - i}{N}$$

$$\approx 1 - \frac{\binom{n}{2}}{N}$$

- Assume:
 - N is large
 - n is small
 - Terms of order N⁻²
 can be ignored

Probability of Coalescence at Time t

$$P(n)^{t}(1-P(n)) = \left(1-\frac{\binom{n}{2}}{N}\right)^{t}\frac{\binom{n}{2}}{N}$$

$$\approx \frac{\binom{n}{2}}{N} e^{-\frac{\binom{n}{2}}{N}t}$$

Time to next coalescent event

 Use an exponential distribution to approximate time to next coalescent event...

- Decay rate $\lambda = n(n-1)/2N$
- Mean $1/\lambda = 2N/[n(n-1)]$

•

Rescaled time function T(j)

 For convenience, measure T(j) in units of N generations

$$E(T_{j}) = 1/\binom{j}{2}$$

$$E(T_{tot}) = \sum_{i=2}^{n} iT(i) = \sum_{i=2}^{n} \frac{2i}{i(i-1)}$$

$$=\sum_{i=1}^{n-1}\frac{2}{i}$$

Expected number of mutations

Factor N for diploids, 2N for haploids

$$E(S) = 2N\mu \sum_{i=2}^{n} iE(T(i))$$

$$= 4N\mu \sum_{i=1}^{n-1} 1/i$$

$$= \theta \sum_{i=1}^{n-1} 1/i$$

■ Population geneticists, use θ =4N μ and r for recombination rate

4

More about S...

Very large variance

$$Var(S) = \theta \sum_{i=1}^{n-1} 1/i + \theta^2 \sum_{i=1}^{n-1} 1/i^2$$

- Useful to estimate θ
- Useful to estimate population size N
 - If mutation rate μ is known

Estimating θ ...

 Using average number of differences between pairs of sequences

$$\widetilde{\theta} = \binom{n}{2}^{-1} \sum_{i=1}^{n} \sum_{j=i+1}^{n} S_{ij}$$

Using total number of variants in sample

$$\hat{\theta} = \frac{S}{\sum_{i=1}^{n-1} 1/i}$$