

EECS 373 Introduction to Embedded System Design

The Palm Pointer

Gabriel Couy, William Hallas, Liam Sweetman gcouy@umich.edu, whallas@umich.edu, lfsweet@umich.edu

Introduction: Palm Pointer - The Idea and Implementation

IDEA

- Allow users to interact with their computer away from a traditional desk, wirelessly
- Explore hand gestures effectiveness in acting as a cursor **IMPLEMENTATION**
- Develop a glove-based system that acts as a fully functional mouse which can connect to a computer
- Use IMU to track movement and FSRs to register clicks, dragging, and scrolling

Problem Description: Giving Freedom to The Computer Mouse

OUR APPROACH

- We wanted to give users the ability to use their computer away from their desk
- Use a glove based structure to emulate using your hand as a computer mouse

Our Solution: Taking Advantage of HID, FSRs, and IMUs

Human Interface

Cursor Movement

Serial Bluetooth Communication

- UART communication between two bluetooth modules
- Receiving module sends mouse commands to computer

Human Interface Device (HID)

- Microcontroller connected to a computer is recognized as a mouse using HID
- Sends USB packages with clicks, X- and Y-movements as well as scroll-wheel movements

Inertial Measurement Unit

- Using 6-DOF IMU (gyroscope and accelerometer) to track user hand movements
- Gyroscope helps calibrate stable position and base coordinate system
- Accelerometer X- and Y-coordinates are used to translate hand tilts into cursor movements

Click Registering

Force Sensitive Resistors

- FSRs combined with resistors create a voltage divider
- Values are read through **ADC** and thresholds are established through moving averages to detect clicks

Additional Functions

- Double Tap sleep mode
- Pinch scroll mode