Instituto Tecnológico de Buenos Aires

22.01 Teoría de circuitos

Trabajo práctico 3 - anexo

Grupo 4

GONZÁLEZ ORLANDO, Tomás Agustín	57090
Parra, Rocío	57669
Pierdominici, Matías Nicolás	57498
Stewart Harris, María Luz	57676

Profesores

JACOBY, Daniel Andrés IRIBARREN, Rodrigo Iñaki BELAUSTEGUI GOITIA, Carlos

Presentado: 27/09/2018

Índice

Ejercicio 1

Filtro con GIC: respuesta al escalón

Se realizó una nueva medición de respuesta al escalón, con el fin de observar el transitorio con más detalle y contrastar los parámetros ω_d y α empíricos con los teóricos.

La medición efectuada fue sobre la salida correspondiente a una entrada cuadrada de 100Hz y $9.91V_{pp}$, y se puede observar a continuación:

Figura 1.1: Respuesta al escalón medida

Como se puede observar, el pseudoperíodo medido es de $514\mu s$. Analíticamente se había determinado que el mismo debería ser de $486\mu s$, con lo cual el error del cálculo es de un 5.45%.

Para obtener el factor de amortiguamiento se midió también la amplitud del segundo pico (A_2) , de forma tal de poder determinar α a partir de su relación con A_1 . Partimos de la expresión analítica de la respuesta en frecuencia:

$$y(t) = u(t) \cdot \left(1 + \frac{R_4}{R_8}\right) \cdot \frac{2\alpha}{\omega_d} \cdot e^{-\alpha t} \cdot \sin \omega_d t \tag{1.1}$$

Sabiendo que el primer máximo corresponde a $t_1 = T'/4$ y el segundo en $t_2 = 5 \cdot T'/4$ (donde $T' = 2\pi/\omega_d$ es el pseudoperíodo), evaluando en estos tiempos se obtienen las amplitudes:

$$A_{1} = \left(1 + \frac{R_{4}}{R_{8}}\right) \cdot \frac{2\alpha}{\omega_{d}} \cdot e^{-\alpha \cdot T'/4}$$

$$A_{2} = \left(1 + \frac{R_{4}}{R_{8}}\right) \cdot \frac{2\alpha}{\omega_{d}} \cdot e^{-\alpha \cdot 5 \cdot T'/4}$$
(1.2)

Por lo tanto, realizando el cociente entre ambas expresiones obtenemos que:

$$\frac{A_1}{A_2} = e^{-\alpha \cdot T'/4 + \alpha \cdot 5 \cdot T'/4} = e^{\alpha \cdot T'}$$

Finalmente, el valor de α puede obtenerse a partir de las mediciones realizadas como:

$$\alpha = \frac{1}{T'} \cdot \ln\left(\frac{A_1}{A_2}\right) \tag{1.3}$$

Dado que los valores medidos fueron $A_1 = 4.0375V$ y $A_2 = 1.8125V$ y utilizando el T' medido, se obtiene $\alpha = 1558^{rad}/s$. Por lo tanto, el error del valor calculado $(1629^{rad}/s)$ es del 4.55%.

Estos valores de error son consistentes con el 6% de error entre la frecuencia de resonancia medida y la calculada.