Montage de base à AOP - comparaison étude temporelle ou sinusoïdale

Montage _____

On étudiera le montage présenté ci dessus de deux manière, afin de trouver le lien entre la sortie et l'entrée en régime temporel puis en régime sinusoïdal.

Étude en régime temporel

- 1. Quelle relation lie $v_+(t)$ et $v_-(t)$ en entrée de l'AOP? **Justifiez votre réponse**.
- 2. Que vaut $i_{-}\left(t\right)$? En déduire le lien entre $i_{R}\left(t\right)$ et $i_{C}\left(t\right)$.
- 3. En déduire $v_{out}(t)$ en fonction de $v_{in}(t)$.
- 4. À partir du résultat précédent, retrouver le titre de l'exercice.
- 5. Quelle est la constante de temps du montage?

On donne pour valeurs numériques : C = 100 nF, R = 12 k Ω .

- 6. On met en entrée du système une tension définie par $v_{in}(t) = A\sin(\omega t)$ avec A = 0.7 V et $\omega = 6000\pi$ rad.s⁻¹. Donner l'expression de $v_{out}(t)$.
- 7. On met en entrée un signal de même amplitude mais à une fréquence 10 fois inférieure.
 - (a) Donner l'expression de $v_{out}(t)$.
 - (b) Calculer le rapport entre l'amplitude trouvée à la question précédente et celle trouvée à cette question.

Étude en régime sinusoïdal

- 8. Quelle relation lie $V_{+}(\jmath\omega)$ et $V_{-}(\jmath\omega)$ en entrée de l'AOP? **Justifiez votre réponse**.
- 9. Que vaut $\underline{I_{-}}\left(\jmath\omega\right)$? En déduire le lien entre $\underline{I_{R}}\left(\jmath\omega\right)$ et $\underline{I_{C}}\left(\jmath\omega\right)$.
- 10. En déduire le rapport $\frac{V_{out}(\jmath\omega)}{V_{in}(\jmath\omega)}$.

Le schéma n'ayant pas changé (les questions non plus d'ailleurs...), ce résultat correspond donc à l'expression mathématique trouvée à la question 4, mais dans l'espace des fréquences (ou des pulsations). Il s'agit d'une grandeur complexe, sans unité. Cette grandeur a donc une partie réelle et une partie imaginaire, ou également un module et une phase.

- 11. On s'intéresse au module :
 - (a) Calculer $\left| \frac{V_{out}(\jmath\omega)}{\underline{V_{in}}(\jmath\omega)} \right|$
 - (b) Trouver la pulsation pour laquelle on a la même amplitude en entrée et en sortie.
 - (c) Trouver la pulsation pour laquelle le signal de sortie a une amplitude 10 fois plus petite qu'en entrée.
- 12. On s'intéresse maintenant à la phase :
 - (a) Calculer $arg\left(\frac{V_{out}\left(\jmath\omega\right)}{V_{in}\left(\jmath\omega\right)}\right)$.
 - (b) Ce résultat dépend-il de la pulsation?