

IDENTIFICATION BACTERIA

Mukesh Tiwari Astha Pandey

Team ATGC

WHAT IS THE PROBLEM?

Identification of the bacteria which is toxic to human population from the collected drinking water sample by constructing a pipeline

Bacteria causes many diseases.

However, not all the bacterias are harmful to human.

BACKGROUND

Bacteria causes many diseases.

However, not all the bacterias are harmful to human.

So, what makes a bacteria harmful?

VIRULENCE FACTOR

 $\bigcirc \bullet \bigcirc$

The property of bacteria which increases the pathogenecity.

Determined by the portion of the gene that encodes proteins which can cause harm in various ways.

VFDB: http://www.mgc.ac.cn/cgi-bin/VFs/v5/main.cgi

Flowchart of Pipeline

PROJECT DEMONSTRATION

COMPLEXITY

Let N be number of entries in database.

Let E be size of entry.

Let Q be size of query.

Then, Time Complexity = O(N*E*Q)Space Complexity = O(Q + E)

RUN-TIME

About 100 mb

MEMORY

IMPACTS

Offline identification is possible

useful for field sequence analysis in remote locations.

Easy for Layman

FUTURE POTENTIALS

• 0 0

- Expansion to also consider protein sequences.
- Expansion to be more specialized for nepal
- Disease source identification using location data

RESOURCES USED

- https://www.ncbi.nlm.nih.gov/blast+
- http://www.mgc.ac.cn/cgibin/VFs/v5/main.cgi
- Python and tkinter