समाकलन Integrals

❖ Just as a mountaineer climbs a mountain – because it is there, so a good mathematics student studies new material because it is there. – JAMES B. BRISTOL ❖

7.1 भूमिका (Introduction)

अवकल गणित अवकलज की संकल्पना पर केंद्रित है। फलनों के आलेखों के लिए स्पर्श रेखाएँ परिभाषित करने की समस्या एवं इस प्रकार की रेखाओं की प्रवणता का परिकलन करना अवकलज के लिए मूल अभिप्रेरण था। समाकलन गणित, फलनों के आलेख से घिरे क्षेत्र के क्षेत्रफल को परिभाषित करने एवं इसके क्षेत्रफल का परिकलन करने की समस्या से प्रेरित है।

यदि एक फलन f किसी अंतराल I में अवकलनीय है अर्थात् I के प्रत्येक बिंदु पर फलन के अवकलज f' का अस्तित्व है, तब एक स्वाभाविक प्रश्न उठता है कि यदि I के प्रत्येक बिंदु पर f' दिया हुआ है तो क्या हम फलन f ज्ञात कर सकते हैं? वे सभी फलन जिनसे हमें एक फलन उनके अवकलज के रूप में प्राप्त हुआ है, इस फलन के प्रतिअवकलज (पूर्वग) कहलाते हैं। अग्रत: वह सूत्र जिससे

G .W. Leibnitz (1646–1716)

ये सभी प्रतिअवकलज प्राप्त होते हैं, फलन का अनिश्चित समाकलन कहलाता है और प्रतिअवकलज ज्ञात करने का यह प्रक्रम समाकलन करना कहलाता है। इस प्रकार की समस्याएँ अनेक व्यावहारिक परिस्थितियों में आती हैं। उदाहरणत: यदि हमें किसी क्षण पर किसी वस्तु का तात्क्षणिक वेग ज्ञात है, तो स्वाभाविक प्रश्न यह उठता है कि क्या हम किसी क्षण पर उस वस्तु की स्थिति ज्ञात कर सकते हैं? इस प्रकार की अनेक व्यावहारिक एवं सैद्धांतिक परिस्थितियाँ आती हैं, जहाँ समाकलन की संक्रिया निहित होती है। समाकलन गणित का विकास निम्नलिखित प्रकार की समस्याओं के हल करने के प्रयासों का प्रतिफल है।

- (a) यदि एक फलन का अवकलज ज्ञात हो, तो उस फलन को ज्ञात करने की समस्या,
- (b) निश्चित प्रतिबंधों के अंतर्गत फलन के आलेख से घिरे क्षेत्र का क्षेत्रफल ज्ञात करने की समस्या।

उपर्युक्त दोनो समस्याएँ समाकलनों के दो रूपों की ओर प्रेरित करती हैं, अनिश्चित समाकलन एवं निश्चित समाकलन। इन दोनों का सम्मिलित रूप समाकलन गणित कहलाता है।

अनिश्चित समाकलन एवं निश्चित समाकलन के मध्य एक संबंध है जिसे कलन की आधारभूत प्रमेय के रूप में जाना जाता है। यह प्रमेय निश्चित समाकलन को विज्ञान एवं अभियांत्रिकी के लिए एक व्यावहारिक औज़ार के रूप में तैयार करती है। अर्थशास्त्र, वित्त एवं प्रायिकता जैसे विभिन्न क्षेत्रों से अनेक प्रकार की रुचिकर समस्याओं को हल करने के लिए भी निश्चित समाकलन का उपयोग किया जाता है।

इस अध्याय में, हम अपने आपको अनिश्चित एवं निश्चित समाकलनों एवं समाकलन की कुछ विधियों सिहत उनके प्रारंभिक गुणधर्मों के अध्ययन तक सीमित रखेंगे।

7.2 समाकलन को अवकलन के व्युत्क्रम प्रक्रम के रूप में (Integration as the Inverse Process of Differentiation)

अवकलन के व्युत्क्रम प्रक्रम को समाकलन कहते हैं। किसी फलन का अवकलन ज्ञात करने के स्थान पर हमें फलन का अवकलज दिया हुआ है और इसका पूर्वग अर्थात् वास्तविक फलन ज्ञात करने के लिए कहा गया है। यह प्रक्रम समाकलन अथवा प्रति–अवकलन कहलाता है।

आइए निम्नलिखित उदाहरणों पर विचार करें.

हम जानते हैं कि
$$\frac{d}{dx}(\sin x) = \cos x \qquad ... (1)$$

$$\frac{d}{dx}\left(\frac{x^3}{3}\right) = x^2 \qquad \dots (2)$$

$$\frac{d}{dx}(e^x) = e^x \qquad \dots (3)$$

हम प्रेक्षित करते हैं कि समीकरण (1) में फलन $\cos x$ फलन $\sin x$ का अवकलज है। इसे हम इस प्रकार भी कहते हैं कि $\cos x$ का प्रतिअवकलज (अथवा समाकलन) $\sin x$ है। इसी प्रकार (2)

एवं (3) से x^2 और e^x के प्रतिअवकलज (अथवा समाकलन) क्रमश: $\frac{x^3}{3}$ और e^x है। पुन: हम नोट करते हैं कि किसी भी वास्तविक संख्या C, जिसे अचर फलन माना जाता है, का अवकलज शून्य है, और इसलिए हम (1), (2) और (3) को निम्नलिखित रूप में लिख सकते हैं:

$$\frac{d}{dx}(\sin x + C) = \cos x, \quad \frac{d}{dx}(\frac{x^3}{3} + C) = x^2 \text{ sith } \frac{d}{dx}(e^x + C) = e^x$$

इस प्रकार हम देखते हैं कि उपर्युक्त फलनों के प्रतिअवकलज अथवा समाकलन अद्धितीय नहीं हैं। वस्तुत: इन फलनों में से प्रत्येक फलन के अपरिमित प्रतिअवकलज हैं, जिन्हें हम वास्तविक संख्याओं के समुच्चय से स्वेच्छ अचर C को कोई मान प्रदान करके प्राप्त कर सकते हैं। यही कारण है कि C को प्रथानुसार स्वेच्छ अचर कहते हैं। वस्तुत: C एक प्राचल है, जिसके मान को परिवर्तित करके हम दिए हुए फलन के विभिन्न प्रतिअवकलजों या समाकलनों को प्राप्त करते हैं। व्यापकत: यदि

एक फलन F ऐसा है कि $\frac{d}{dx}$ F(x) = f(x), $\forall x \in I$ (वास्तविक संख्याओं का अंतराल) तो प्रत्येक

स्वेच्छ अचर C, के लिए
$$\frac{d}{dx}[F(x)+C]=f(x), x \in I$$

इस प्रकार $\{F+C,C\in R\},f$ के प्रतिअवकलजों के परिवार को व्यक्त करता है, जहाँ C समाकलन का अचर कहलाता है।

टिप्पणी समान अवकलज वाले फलनों में एक अचर का अंतर होता है। इसको दर्शाने के लिए, मान लीजिए g और h ऐसे दो फलन हैं जिनके अवकलज अंतराल I में समान हैं

$$f(x) = g(x) - h(x)$$
, $\forall x \in I$ द्वारा परिभाषित फलन $f = g - h$ पर विचार कीजिए

तो
$$\frac{df}{dx} = f' = g' - h' \quad \dot{\forall} \quad f'(x) = g'(x) - h'(x) \quad \forall x \in I \text{ प्राप्त } \ \dot{\xi}$$
।

अथवा $f'(x) = 0, \ \forall x \in I$ (परिकल्पना से)

अर्थात् I में x के सापेक्ष f के परिवर्तन की दर शून्य है और इसलिए f एक अचर है।

उपर्युक्त टिप्पणी के अनुसार यह निष्कर्ष निकालना न्यायसंगत है कि परिवार $\{F+C,C\in R\}$, f के सभी प्रतिअवकलजों को प्रदान करता है।

अब हम एक नए प्रतीक से परिचित होते हैं जो कि प्रतिअवकलजों के पूरे परिवार को निरूपित करेगा। यह प्रतीक $\int f(x) \, dx$ है, इसे x के सापेक्ष f का अनिश्चित समाकलन के रूप में पढ़ा जाता है। प्रतीकत: हम $\int f(x) \, dx = F(x) + C$ लिखते हैं।

संकेतन दिया हुआ है कि
$$\frac{dy}{dx} = f(x)$$
, तो हम $y = \int f(x) dx$ लिखते हैं।

सुविधा के लिए हम निम्नलिखित प्रतीकों/पदों/वाक्यांशों को उनके अर्थों सहित सारणी 7.1 में उल्लेखित करते हैं:

सारणी 7.1

प्रतीक /पद /वाक्यांश अर्थ	
$\int f(x) dx$	f का x के सापेक्ष समाकलन
$\int f(x) dx + f(x)$	समाकल्य

$\int f(x) dx \ \dot{\exists} \ x$	समाकलन का चर
समाकलन करना	समाकलन ज्ञात करना
<i>f</i> का समाकलन	एक फलन F जिसके लिए
	F'(x) = f(x)
समाकलन संक्रिया	समाकलन ज्ञात करने का प्रक्रम
समाकलन का अचर	कोई भी वास्तविक संख्या जिसे अचर
	फलन कहते हैं।

हम पहले से ही बहुत से प्रमुख फलनों के अवकलजों के सूत्र जानते हैं। इन सूत्रों के संगत हम समाकलन के प्रामाणिक सूत्रों को तुरंत लिख सकते हैं। इन प्रामाणिक सूत्रों की सूची निम्नलिखित हैं जिसका उपयोग हम दूसरे फलनों के समाकलनों को ज्ञात करने में करेंगे।

अवकलज Derivatives

समाकलन (प्रतिअवकलज)

Integrals (Antiderivatives)

(i)
$$\frac{d}{dx} \left(\frac{x^{n+1}}{n+1} \right) = x^n$$

विशिष्ट रूप में हम देखते हैं

$$\frac{d}{dx}(x)=1$$

(ii)
$$\frac{d}{dx}(\sin x) = \cos x$$

(iii)
$$\frac{d}{dx}(-\cos x) = \sin x$$

(iv)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

(v)
$$\frac{d}{dx}(-\cot x) = \csc^2 x$$

(vi)
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

(vii)
$$\frac{d}{dx}(-\csc x) = \csc x \cot x$$

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

$$\int dx = x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int \csc^2 x \, dx = -\cot x + C$$

$$\int \sec x \tan x \, dx = \sec x + C$$

$$\int \csc x \cot x \, dx = -\csc x + C$$

$$(viii) \frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}}$$

$$\int \frac{dx}{\sqrt{1 - x^2}} = \sin^{-1} x + C$$

$$(ix) \frac{d}{dx} \left(-\cos^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}}$$

$$\int \frac{dx}{\sqrt{1 - x^2}} = -\cos^{-1} x + C$$

$$(x) \frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$$

$$\int \frac{dx}{1 + x^2} = \tan^{-1} x + C$$

$$(xii) \frac{d}{dx} \left(-\cot^{-1} x \right) = \frac{1}{1 + x^2}$$

$$\int \frac{dx}{1 + x^2} = -\cot^{-1} x + C$$

$$(xiii) \frac{d}{dx} \left(-\csc^{-1} x \right) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\int \frac{dx}{x\sqrt{x^2 - 1}} = -\cot^{-1} x + C$$

$$(xiii) \frac{d}{dx} \left(-\csc^{-1} x \right) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\int \frac{dx}{x\sqrt{x^2 - 1}} = -\csc^{-1} x + C$$

$$(xiv) \frac{d}{dx} \left(e^x \right) = e^x$$

$$\int e^x dx = e^x + C$$

$$(xv) \frac{d}{dx} \left(\log|x| \right) = \frac{1}{x}$$

$$\int \frac{1}{x} dx = \log|x| + C$$

$$(xvi) \frac{d}{dx} \left(\frac{a^x}{\log a} \right) = a^x$$

$$\int a^x dx = \frac{a^x}{\log a} + C$$

टिप्पणी प्रयोग में हम प्राय: उस अंतराल का जिक्र नहीं करते जिसमें विभिन्न फलन परिभाषित हैं तथापि किसी भी विशिष्ट प्रश्न के संदर्भ में इसको भी ध्यान में रखना चाहिए।

7.2.1 अनिश्चित समाकलन का ज्यामितीय निरूपण (Geometrical interpretation of indefinite integral)

मान लीजिए कि f(x) = 2x तो $\int f(x) dx = x^2 + C$ तथा C के विभिन्न मानों के लिए हम विभिन्न समाकलन पाते हैं। परंतु ज्यामितीय दृष्टि से ये सभी समाकलन समान हैं। इस प्रकार $y = x^2 + C$, जहाँ C एक स्वेच्छ अचर है, समाकलनों के एक परिवार को निरूपित करता है। C, को विभिन्न मान प्रदान करके हम परिवार के विभिन्न सदस्य प्राप्त करते हैं। इन सबका सम्मिलित रूप

अनिश्चित समाकलन है। स्पष्टतया प्रत्येक समाकलन एक परवलय को निरूपित करता है जिसका अक्ष y-अक्ष के अनुदिश है।

स्पष्टतया C=0 के लिए हम $y=x^2$ पाते हैं जो एक ऐसा परवलय है जिसका शीर्ष मूल बिंदु पर है। C=1 के लिए वक्र $y=x^2+1$ परवलय $y=x^2$ को एक इकाई y-अक्ष के अनु धनात्मक दिशा में स्थानांतिरत करने पर प्राप्त होता है। C=-1, के लिए, वक्र $y=x^2-1$ परवलय $y=x^2$ को एक इकाई y-अक्ष के अनुदिश ऋणात्मक दिशा में स्थानांतिरत करने पर प्राप्त होता है। इस प्रकार C, के

प्रत्येक धनात्मक मान के लिए, परिवार के प्रत्येक परवलय का शीर्ष y-अक्ष की धनात्मक दिशा में है और C के ऋणात्मक मानों के लिए प्रत्येक परवलय का शीर्ष y-अक्ष की ऋणात्मक दिशा में है। इन परवलयों में से कुछ को आकृति 7.1 में दर्शाया गया है।

अब हम इन परवलयों के रेखा x=a द्वारा प्रतिच्छेदन पर विचार करते हैं। आकृति 7.1 में हमने a>0 लिया है। यह निष्कर्ष a<0 के लिए भी सत्य है। यदि रेखा x=a परवलयों $y=x^2, y=x^2+1, y=x^2+2, y=x^2-1, y=x^2-2$ को क्रमशः बिंदुओं $P_0, P_1, P_2, P_{-1}, P_{-2}$ इत्यादि पर काटती है तो इन सभी बिंदुओं पर $\frac{dy}{dx}$ का मान 2a है। यह निर्दिष्ट करता है कि इन सभी बिंदुओं पर वक्रों को स्पर्श रेखाएँ समांतर हैं। इस प्रकार $\int 2x\ dx=x^2+C=F_C\left(x\right)$ (मान लीजिए) से प्राप्त होता है कि वक्रों $y=F_C\left(x\right), C\in \mathbf{R}$, के रेखा x=a, द्वारा

आकृति 7.1

प्रतिच्छेदन बिंदुओं पर वक्रों की स्पर्श रेखाएँ समांतर हैं जहाँ $a \in \mathbf{R}$ अग्रत: निम्नलिखित कथन $\int f(x) \, dx = F(x) + C = y \, (\text{मान लीजिए}) \, \text{वक्रों के परिवार को निरूपित करता है। } C \, \text{के विभिन्न मानों के संगत हमें इस परिवार के विभिन्न सदस्य प्राप्त होते हैं और इन सदस्यों में से हम किसी एक सदस्य को स्वयं के समान्तर स्थानांतरित करके प्राप्त कर सकते हैं। अनिश्चित समाकलन का ज्यामितीय निरूपण यही है।$

7.2.2 अनिश्चित समाकलनों के कुछ गुणधर्म (Some properties of indefinite integrals) इस उप परिच्छेद में हम अनिश्चित समाकलन के कुछ गुणधर्मों को व्युत्पन्न करेंगे।

(i) निम्नलिखित परिणामों के संदर्भ में अवकलन एवं समाकलन के प्रक्रम एक दूसरे के व्युत्क्रम हैं:

$$\frac{d}{dx}\int f(x) dx = f(x)$$

$$\int f'(x) dx = f(x) + C, \text{ जहाँ } C \text{ एक स्वेच्छ अचर है}$$

और

उपपत्ति मान लीजिए कि F , f का एक प्रतिअवकलज हैं अर्थात्

$$\frac{d}{dx} F(x) = f(x)$$
तो
$$\int f(x) dx = F(x) + C$$
इसलिए
$$\frac{d}{dx} \int f(x) dx = \frac{d}{dx} (F(x) + C)$$

 $\frac{1}{dx} \int f(x) \, dx = -\frac{1}{a}$

 $= \frac{d}{dx} F(x) = f(x)$

इसी प्रकार हम देखते हैं कि

$$f'(x) = \frac{d}{dx} f(x)$$

और इसलिए

$$\int f'(x) \, dx = f(x) + C$$

जहाँ C एक स्वेच्छ अचर है जिसे समाकलन अचर कहते हैं।

(ii) ऐसे दो अनिश्चित समाकलन जिनके अवकलज समान हैं वक्रों के एक ही परिवार को प्रेरित करते हैं और इस प्रकार समतुल्य हैं।

उपपत्ति मान लीजिए f एवं g ऐसे दो फलन हैं जिनमें

$$\frac{d}{dx}\int f(x) dx = \frac{d}{dx}\int g(x) dx$$
अथवा
$$\frac{d}{dx}\Big[\int f(x) dx - \int g(x) dx\Big] = 0$$
अत:
$$\int f(x) dx - \int g(x) dx = C, \text{ जहाँ } C \text{ एक } \text{ वास्तविक } \text{ संख्या } \text{ है। } \text{ (क्यों?)}$$
अथवा
$$\int f(x) dx = \int g(x) dx + C$$

इसलिए वक्रों के परिवार
$$\left\{\int f(x)\,dx + C_1, C_1\in \mathbf{R}\right\}$$
 एवं
$$\left\{\int g(x)\,dx + C_2, C_2\in \mathbf{R}\right\}$$
 समतुल्य हैं। इस प्रकार
$$\int f(x)\,dx$$
 और $\int g(x)\,dx$ समतुल्य हैं।

टिप्पणी दो परिवारों $\left\{\int f(x)\ dx + C_1, C_1 \in \mathbf{R}\right\}$ एवं $\left\{\int g(x)\ dx + C_2, C_2 \in \mathbf{R}\right\}$ की समतुल्यता को प्रथानुसार $\int f(x)\ dx = \int g(x)\ dx$, लिखकर व्यक्त करते हैं जिसमें प्राचल का वर्णन नहीं है।

(iii)
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$
 उपपत्ति गुणधर्म (i) से

$$\frac{d}{dx} \left[\int [f(x) + g(x)] dx \right] = f(x) + g(x) \qquad \dots (1)$$

अन्यथा हमें जात है कि

$$\frac{d}{dx} \left[\int f(x) \, dx + \int g(x) \, dx \right] = \frac{d}{dx} \int f(x) \, dx + \frac{d}{dx} \int g(x) \, dx = f(x) + g(x) \quad \dots (2)$$
 इस प्रकार गुणधर्म (ii) के संदर्भ में (1) और (2) से प्राप्त होता है कि
$$\int \left(f(x) + g(x) \right) dx = \int f(x) \, dx + \int g(x) \, dx$$

(iv) किसी वास्तविक संख्या k, के लिए $\int k f(x) dx = k \int f(x) dx$

उपपत्ति गुणधर्म (i) द्वारा
$$\frac{d}{dx}\int k f(x) dx = k f(x)$$

इसलिए गुणधर्म (ii) का उपयोग करते हुए हम पाते हैं कि $\int k f(x) dx = k \int f(x) dx$

(v) प्रगुणों (iii) और (iv) का $f_1, f_2, ..., f_n$ फलनों की निश्चित संख्या और वास्तविक संख्याओं $k_1, k_2, ..., k_n$ के लिए भी व्यापकीकरण किया जा सकता है जैसा कि नीचे दिया गया है $\int \left[k_1 f_1(x) + k_2 f_2(x) + ... + k_n f_n(x) \right] dx$ $= k_1 \int f_1(x) \, dx + k_2 \int f_2(x) \, dx + ... + k_n \int f_n(x) \, dx$

दिए हुए फलन का प्रतिअवकलज ज्ञात करने के लिए हम अंतर्ज्ञान से ऐसे फलन की खोज करते हैं जिसका अवकलज दिया हुआ फलन है। अभीष्ट फलन की इस प्रकार की खोज, जो दिए हुए फलन के प्रति अवकलज ज्ञात करने के लिए की जाती है, को निरीक्षण द्वारा समाकलन कहते हैं। इसे हम कुछ उदाहरणों से समझते हैं।

उदाहारण 1 निरीक्षण विधि का उपयोग करते हुए निम्नलिखित फलनों का प्रतिअवकलज ज्ञात कीजिए।

(i)
$$\cos 2x$$
 (ii) $3x^2 + 4x^3$ (iii) $\frac{1}{x}, x \neq 0$

हल

(i) हम एक ऐसे फलन की खोज करना चाहते हैं जिसका अवकलज $\cos 2x$ है हम जानते हैं कि $\frac{d}{dx} (\sin 2x) = 2 \cos 2x$ अथवा $\cos 2x = \frac{1}{2} \frac{d}{dx} (\sin 2x) = \frac{d}{dx} \left(\frac{1}{2} \sin 2x \right)$

इसलिए $\cos 2x$ का एक प्रतिअवकलज $\frac{1}{2}\sin 2x$ है। (ii) हम एक ऐसे फलन की खोज करना चाहते हैं जिसका अवकलज $3x^2+4x^3$ है।

अब
$$\frac{d}{dx}(x^3 + x^4) = 3x^2 + 4x^3$$
 इसलिए $3x^2 + 4x^3$ का प्रतिअवकलज $x^3 + x^4$ है।

(iii) हम जानते हैं

$$\frac{d}{dx}(\log x) = \frac{1}{x}, x > 0 \text{ sit } \frac{d}{dx}[\log(-x)] = \frac{1}{-x}(-1) = \frac{1}{x}, x < 0$$

इन दोनों को संघटित करने पर हम पाते हैं $\frac{d}{dx}(\log|x|) = \frac{1}{x}, x \neq 0$

इसलिए $\int \frac{1}{x} dx = \log |x|$, जो कि $\frac{1}{x}$ के प्रतिअवकलजों में से एक है।

उदाहरण 2 निम्नलिखित समाकलनों को ज्ञात कीजिए

(i)
$$\int \frac{x^3 - 1}{x^2} dx$$
 (ii) $\int (x^{\frac{2}{3}} + 1) dx$ (iii) $\int (x^{\frac{2}{3}} + 2e^x - \frac{1}{x}) dx$

हल हम प्राप्त करते हैं:

$$\int \frac{x^3 - 1}{x^2} \, dx = \int x \, dx - \int x^{-2} \, dx \qquad (गुणधर्म v से)$$

$$\begin{split} &=\left(\frac{x^{1+1}}{1+1}+C_1\right)-\left(\frac{x^{-2+1}}{-2+1}+C_2\right);\ C_1,C_2\ \text{समाकलन अचर हैं।}\\ &=\frac{x^2}{2}+C_1-\frac{x^{-1}}{-1}-C_2\\ &=\frac{x^2}{2}+\frac{1}{x}+C_1-C_2\\ &=\frac{x^2}{2}+\frac{1}{x}+C,\ \text{जहाँ }C=C_1-C_2\ \text{एक अन्य समाकलन अचर है।} \end{split}$$

🖝 टिप्पणी इससे आगे हम केवल अंतिम उत्तर में ही, एक समाकलन अचर लिखेंगे।

(ii) यहाँ

$$\int (x^{\frac{2}{3}} + 1) dx = \int x^{\frac{2}{3}} dx + \int dx$$
$$= \frac{x^{\frac{2}{3} + 1}}{\frac{2}{3} + 1} + x + C = \frac{3}{5} x^{\frac{5}{3}} + x + C$$

(iii)
$$\frac{3}{48} \int (x^{\frac{3}{2}} + 2e^x - \frac{1}{x}) dx = \int x^{\frac{3}{2}} dx + \int 2e^x dx - \int \frac{1}{x} dx$$

$$= \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + 2e^x - \log|x| + C$$

$$= \frac{2}{5}x^{\frac{5}{2}} + 2e^x - \log|x| + C$$

उदाहरण 3 निम्नलिखित समाकलनों को ज्ञात कीजिए

(i)
$$\int (\sin x + \cos x) dx$$
 (ii) $\int \csc x (\csc x + \cot x) dx$

(iii)
$$\int \frac{1-\sin x}{\cos^2 x} \, dx$$

हल

(i) यहाँ
$$\int (\sin x + \cos x) dx = \int \sin x dx + \int \cos x dx$$

$$= -\cos x + \sin x + C$$

(ii) यहाँ
$$\int (\csc x (\csc x + \cot x) dx = \int \csc^2 x dx + \int \csc x \cot x dx$$

$$= -\cot x - \csc x + C$$

(iii) यहाँ
$$\int \frac{1-\sin x}{\cos^2 x} dx = \int \frac{1}{\cos^2 x} dx - \int \frac{\sin x}{\cos^2 x} dx$$

$$= \int \sec^2 x dx - \int \tan x \sec x dx$$

$$= \tan x - \sec x + C$$

उदाहरण 4 $f(x) = 4x^3 - 6$ द्वारा परिभाषित फलन f का प्रतिअवकलज F ज्ञात कीजिए जहाँ F(0) = 3 है।

हल f(x) का एक प्रति अवकलज $x^4 - 6x$ है

चूँकि
$$\frac{d}{dx}(x^4-6x)=4x^3-6, \;\; \mbox{इसिलए प्रतिअवकलज } F,$$

$$F(x)=x^4-6x+C, \;\; \mbox{gitt देय है जहाँ } C \;\; \mbox{अचर है } I$$
 दिया हुआ है कि
$$F(0)=3$$
 इससे प्राप्त होता है
$$3=0-6\times 0+C$$
 अथवा
$$C=3$$

अत: अभीष्ट प्रतिअवकलज, $F(x) = x^4 - 6x + 3$ द्वारा परिभाषित एक अद्वितीय फलन है।

टिप्पणी

(i) हम देखते हैं कि यदि f का प्रतिअवकलज F है तो F+C, जहाँ C एक अचर है, भी f का एक प्रतिअवकलज है। इस प्रकार यदि हमें फलन f का एक प्रतिअवकलज F ज्ञात है तो हम F में कोई भी अचर जोड़कर f के अनंत प्रतिअवकलज लिख सकते हैं जिन्हें F(x)+C, $C\in \mathbf{R}$ के रूप में अभिव्यक्त किया जा सकता है। अनुप्रयोगों में सामान्यत: एक अतिरिक्त प्रतिबंध को संतुष्ट करना आवश्यक होता है जिससे C का एक विशिष्ट मान प्राप्त होता है और जिसके परिणामस्वरूप दिए हुए फलन का एक अद्वितीय प्रतिअवकलज प्राप्त होता है।

- (ii) कभी-कभी F को प्रारंभिक फलनों जैसे कि बहुपद, लघुगणकीय, चर घातांकी, त्रिकोणिमतीय, और प्रतिलोम त्रिकोणिमतीय, इत्यादि के रूप में अभिव्यक्त करना असंभव होता है। इसिलए $\int f(x)\,dx \, \text{ ज्ञात करना अवरुद्ध हो जाता है। उदाहरणत: निरीक्षण विधि से } \int e^{-x^2}\,dx \, \text{ को ज्ञात करना असंभव है क्योंकि निरीक्षण से हम ऐसा फलन ज्ञात नहीं कर सकते जिसका अवकलज <math>e^{-x^2}$ है।
- (iii) यदि समाकल का चर x, के अतिरिक्त अन्य कोई है तो समाकलन के सूत्र तदनुसार रूपांतरित कर लिए जाते हैं। उदाहरणत:

$$\int y^4 dy = \frac{y^{4+1}}{4+1} + C = \frac{1}{5} y^5 + C$$

7.2.3 अवकलन एवं समाकलन की तुलना (Comparision between differentiation and integration)

- 1. दोनों फलनों पर संक्रियाएँ हैं।
- 2. दोनों रैखिकता के गुणधर्म को संतुष्ट करते हैं अर्थात्

(i)
$$\frac{d}{dx} [k_1 f_1(x) + k_2 f_2(x)] = k_1 \frac{d}{dx} f_1(x) + k_2 \frac{d}{dx} f_2(x)$$

(ii)
$$\int [k_1 f_1(x) + k_2 f_2(x)] dx = k_1 \int f_1(x) dx + k_2 \int f_2(x) dx$$

यहाँ k_1, k_2 अचर है।

- 3. हम पहले से ही जानते हैं कि सभी फलन अवकलनीय नहीं होते हैं। ठीक इसी प्रकार सभी फलन समाकलनीय भी नहीं होते हैं। हम अनवकलनीय और असमाकलनीय फलनों के विषय में उच्च कक्षाओं में अध्ययन करेंगे।
- 4. यदि किसी फलन के अवकलज का अस्तित्व है तो वह अद्वितीय होता है परंतु किसी फलन के समाकलन के साथ ऐसा नहीं है तथापि वे किसी योज्य अचर तक सीमित अद्वितीय होते हैं अर्थात किसी फलन के दो समाकलनों में हमेशा एक अचर का अंतर होता है।
- 5. यदि किसी बहुपद फलन Pका अवकलन किया जाता है तो परिणामस्वरूप एक ऐसा बहुपद मिलता है जिसकी घात बहुपद Pकी घात से एक कम होती है। जब किसी बहुपद फलन P का समाकलन किया जाता है तो परिणामस्वरूप एक ऐसा बहुपद प्राप्त होता है जिसकी घात बहुपद Pकी घात से एक अधिक होती है।
- 6. हम अवकलज की चर्चा एक बिंदु पर करते हैं परंतु समाकलन की चर्चा एक बिंदु पर कभी नहीं होती। हम दिए हुए फलन के समाकलन की चर्चा उस अंतराल पर करते हैं जिस पर समाकलन परिभाषित होता है जैसाकि हम परिच्छेद 7.7 में चर्चा करेंगे।

- 7. एक फलन के अवकलज का ज्यामितीय अर्थ भी होता है जैसे कि दिए हए वक्र के दिए हए बिंदु पर स्पर्श रेखा की प्रवणता, उस बिंदु पर फलन के अवकलज के मान के बराबर होती है। इसी प्रकार दिए हुए फलन का अनिश्चित समाकलन एक दूसरे के समांतर स्थित वक्रों के परिवार को निरूपित करता है, जिसमें समाकलन के चर को निरूपित करने वाले अक्ष के अनुलंब रेखा के सभी वक्रों के प्रतिच्छेदन बिंदुओं पर स्पर्श रेखाएँ समांतर होती है।
- 8. कुछ भौतिक मात्राएँ ज्ञात करने में अवकलज का उपयोग होता है उदाहरणत: किसी कण द्वारा किसी समय t में तय की गई दूरी यदि ज्ञात है तो दिए गए समय बाद वेग ज्ञात करने में अवकलज सहायक होता है। उसी प्रकार किसी समयt पर यदि वेग ज्ञात है तो दिए गए समय में तय दूरी ज्ञात करने के लिए समाकलन का उपयोग होता है।
- 9. अवकलज एक ऐसा प्रक्रम है जिसमें सीमा का भाव समाहित है ठीक उसी प्रकार का भाव समाकलन में भी समाहित है जिसके बारे में हम परिच्छेद 7.7 में अध्ययन करेंगे।
- 10. अवकलन एवं समाकलन के प्रक्रम एक दूसरे के व्युत्क्रम है जैसा कि परिच्छेद 7.2.2 (i) में चर्चा की जा चकी है।

प्रश्नावली 7.1

निम्नलिखित फलनों के प्रतिअवकलज (समाकलन) निरीक्षण विधि द्वारा ज्ञात कीजिए।

1. $\sin 2x$

 $2. \cos 3x$

3. e^{2x}

4. $(ax + b)^2$

5. $\sin 2x - 4 e^{3x}$

निम्नलिखित समाकलनों को ज्ञात कीजिए:

6.
$$\int (4e^{3x}+1) dx$$

6.
$$\int (4e^{3x}+1) dx$$
 7. $\int x^2 (1-\frac{1}{x^2}) dx$ 8. $\int (ax^2+bx+c) dx$

$$8. \int (ax^2 + bx + c) dx$$

$$9. \quad \int (2x^2 + e^x) \ dx$$

9.
$$\int (2x^2 + e^x) dx$$
 10. $\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx$ 11. $\int \frac{x^3 + 5x^2 - 4}{x^2} dx$

11.
$$\int \frac{x^3 + 5x^2 - 4}{x^2} \, dx$$

12.
$$\int \frac{x^3 + 3x + 4}{\sqrt{x}} dx$$

12.
$$\int \frac{x^3 + 3x + 4}{\sqrt{x}} dx$$
 13. $\int \frac{x^3 - x^2 + x - 1}{x - 1} dx$ 14. $\int (1 - x) \sqrt{x} dx$

$$14. \int (1-x) \sqrt{x} \ dx$$

15.
$$\int \sqrt{x} (3x^2 + 2x + 3) dx$$

16.
$$\int (2x - 3\cos x + e^x) dx$$

17.
$$\int (2x^2 - 3\sin x + 5\sqrt{x}) dx$$

18.
$$\int \sec x (\sec x + \tan x) dx$$

19.
$$\int \frac{\sec^2 x}{\csc^2 x} dx$$
 20. $\int \frac{2 - 3\sin x}{\cos^2 x} dx$

प्रश्न 21 एवं 22 में सही उत्तर का चयन कीजिए:

21. $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$ का प्रतिअवकलज है:

(A)
$$\frac{1}{3}x^{\frac{1}{3}} + 2x^{\frac{1}{2}} + C$$
 (B) $\frac{2}{3}x^{\frac{2}{3}} + \frac{1}{2}x^2 + C$

(C)
$$\frac{2}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C$$
 (D) $\frac{3}{2}x^{\frac{3}{2}} + \frac{1}{2}x^{\frac{1}{2}} + C$

22. यदि $\frac{d}{dx} f(x) = 4x^3 - \frac{3}{x^4}$ जिसमें f(2) = 0 तो f(x) है:

(A)
$$x^4 + \frac{1}{x^3} - \frac{129}{8}$$
 (B) $x^3 + \frac{1}{x^4} + \frac{129}{8}$

(C)
$$x^4 + \frac{1}{x^3} + \frac{129}{8}$$
 (D) $x^3 + \frac{1}{x^4} - \frac{129}{8}$

7.3 समाकलन की विधियाँ (Methods of Integration)

पिछले परिच्छेद में हमने ऐसे समाकलनों की चर्चा की थी, जो कुछ फलनों के अवकलजों से सरलतापूर्वक प्राप्त किए जा सकते हैं। यह निरीक्षण पर आधारित विधि थी, इसमें ऐसे फलन F की खोज की जाती है जिसका अवकलज f है इससे f के समाकलन की प्राप्त होती है। तथापि निरीक्षण पर आधारित यह विधि अनेक फलनों की स्थिति में बहुत उचित नहीं है। अतः समाकलनों को प्रामाणिक रूप में परिवर्तित करते हुए उन्हें ज्ञात करने के लिए हमें अतिरिक्त विधियाँ विकसित करने की आवश्यकता है। इनमें मुख्य विधियाँ निम्नलिखित पर आधारित हैं:

- 1. प्रतिस्थापन द्वारा समाकलन
- 2. आंशिक भिन्नों में वियोजन द्वारा समाकलन
- 3. खंडश: समाकलन

7.3.1 प्रतिस्थापन द्वारा समाकलन (Integration by substitution)

इस उप परिच्छेद में हम प्रतिस्थापन विधि द्वारा समाकलन पर विचार करेंगे। स्वतंत्र चर x को t में परिवर्तित करने के लिए x=g(t) प्रतिस्थापित करते हुए दिए गए समाकलन $\int f(x) dx$ को अन्य रूप में परिवर्तित किया जा सकता है।

$$I = \int f(x) dx$$
 पर विचार कीजिए

अब
$$x=g(t)$$
 प्रतिस्थापित कीजिए ताकि $\dfrac{dx}{dt}=g'(t)$ हम
$$dx=g'(t)\ dt\ \text{लिखते}\ \ \ddot{\xi}$$
 इस प्रकार
$$I=\int f(x)\ dx=\int f\{g(t)\}\ g'(t)\ dt$$

प्रतिस्थापन द्वारा समाकलन के लिए यह चर परिवर्तन का सूत्र हमारे पास उपलब्ध एक महत्वपूर्ण साधन है। उपयोगी प्रतिस्थापन क्या होगा इसका अनुमान लगाना हमेशा महत्वपूर्ण है। सामान्यत: हम एक ऐसे फलन के लिए प्रतिस्थापन करते हैं जिसका अवकलज भी समाकल्य में सिम्मिलित हों, जैसा कि निम्निलिखित उदाहरणों द्वारा स्पष्ट किया गया है।

उदाहरण 5 निम्नलिखित फलनों का x के सापेक्ष समाकलन कीजिए

(i)
$$\sin mx$$
 (ii) $2x \sin (x^2 + 1)$ (iii) $\frac{\tan^4 \sqrt{x} \sec^2 \sqrt{x}}{\sqrt{x}}$

(iv)
$$\frac{\sin(\tan^{-1} x)}{1+x^2}$$

हल

(i) हम जानते हैं कि mx का अवकलज m है। अतः हम mx = t प्रतिस्थापन करते हैं, ताकि mdx = dt

इसलिए
$$\int \sin mx \, dx = \frac{1}{m} \int \sin t \, dt = -\frac{1}{m} \cos t + C = -\frac{1}{m} \cos mx + C$$

(ii) x^2+1 का अवकलज 2x है। अतः हम $x^2+1=t$ के प्रतिस्थापन का उपयोग करते हैं ताकि $2x\ dx=dt$ इसलिए $\int 2x\sin{(x^2+1)}\ dx = \int \sin{t}\ dt = -\cos{t} + C = -\cos{(x^2+1)} + C$

(iii)
$$\sqrt{x}$$
 का अवकलज $\frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$ है। अतः हम

 $\sqrt{x}=t$ के प्रतिस्थापन का उपयोग करते हैं ताकि $\frac{1}{2\sqrt{x}}\,dx=dt$ जिससे $dx=2\,t\,dt$ प्राप्त होता है।

अत:
$$\int \frac{\tan^4 \sqrt{x} \sec^2 \sqrt{x}}{\sqrt{x}} dx = \int \frac{\tan^4 t \sec^2 t \, 2t \, dt}{t} = 2 \int \tan^4 t \, \sec^2 t \, dt$$

318

फिर से हम दूसरा प्रतिस्थापन $\tan t = u$ करते हैं ताकि $\sec^2 t \, dt = du$

इसलिए
$$2\int \tan^4 t \sec^2 t \, dt = 2\int u^4 \, du = 2\frac{u^5}{5} + C$$
$$= \frac{2}{5} \tan^5 t + C \quad (क्योंकि u = \tan t)$$
$$= \frac{2}{5} \tan^5 \sqrt{x} + C \quad (क्योंकि t = \sqrt{x})$$

अत:
$$\int \frac{\tan^4 \sqrt{x} \sec^2 \sqrt{x}}{\sqrt{x}} dx = \frac{2}{5} \tan^5 \sqrt{x} + C$$

विकल्पतः $\tan \sqrt{x} = t$ प्रतिस्थापन कीजिए

(iv) $\tan^{-1}x$ का अवकलज $\frac{1}{1+x^2}$ है। अतः हम $\tan^{-1}x = t$ प्रतिस्थापन का उपयोग करते हैं ताकि

$$\frac{dx}{1+x^2} = dt$$

इसलिए
$$\int \frac{\sin(\tan^{-1}x)}{1+x^2} dx = \int \sin t \, dt = -\cos t + C = -\cos(\tan^{-1}x) + C$$

अब हम कुछ महत्वपूर्ण समाकलनों जिनमें त्रिकोणमितीय फलनों और उनके प्रामाणिक समाकलनों का उपयोग प्रतिस्थापन विधि में किया गया है, पर चर्चा करते हैं।

(i) $\int \tan x \, dx = \log |\sec x| + C$

हम पाते हैं कि
$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$

 $\cos x = t$, प्रतिस्थापित कीजिए ताकि $\sin x \, dx = -dt$

নম্ব
$$\int \tan x \, dx = -\int \frac{dt}{t} = -\log|t| + C = -\log|\cos x| + C$$

 $\int \tan x \, dx = \log |\sec x| + C$

(ii) $\int \cot x \, dx = \log|\sin x| + C$

हम पाते हैं कि
$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx$$

 $\sin x = t$ प्रतिस्थापित कीजिए ताकि $\cos x \, dx = dt$

বিজ্ঞ
$$\int \cot x \, dx = \int \frac{dt}{t}$$
$$= \log |t| + C$$
$$= \log |\sin x| + C$$

(iii)
$$\int \sec x \, dx = \log \left| \sec x + \tan x \right| + C$$

हमें ज्ञात है कि,
$$\int \sec x \, dx = \int \frac{\sec x \, (\sec x + \tan x)}{\sec x + \tan x} \, dx$$
 $\sec x + \tan x = t$ प्रतिस्थापित करने पर $\sec x \, (\tan x + \sec x) \, dx = dt$ इसलिए $\int \sec x \, dx = \int \frac{dt}{t} = \log |t| + C = \log |\sec x + \tan x| + C$

(iv)
$$\int \csc x \, dx = \log \left| \csc x - \cot x \right| + C$$

हम पाते हैं कि,
$$\int \csc x \ dx = \int \frac{\csc x (\csc x + \cot x)}{(\csc x + \cot x)} \ dx$$

 $\csc x + \cot x = t$ प्रतिस्थापित कीजिए
ताकि $-\csc x (\cot x + \csc x) \ dx = dt$

इसलिए
$$\int \csc x \, dx = -\int \frac{dt}{t} = -\log|t| = -\log|\csc x + \cot x| + C$$
$$= -\log\left|\frac{\csc^2 x - \cot^2 x}{\csc x - \cot x}\right| + C$$
$$= \log|\csc x - \cot x| + C$$

उदाहरण 6 निम्नलिखित समाकलनों को ज्ञात कीजिए:

(i)
$$\int \sin^3 x \cos^2 x \, dx$$
 (ii) $\int \frac{\sin x}{\sin (x+a)} \, dx$ (iii) $\int \frac{1}{1+\tan x} \, dx$

हल

(i) यहाँ
$$\int \sin^3 x \cos^2 x \, dx = \int \sin^2 x \cos^2 x \, (\sin x) \, dx$$
$$= \int (1 - \cos^2 x) \cos^2 x \, (\sin x) \, dx$$

 $t=\cos x$ प्रतिस्थापित कीजिए ताकि $dt=-\sin x\ dx$ इसलिए $\int \sin^2 x \cos^2 x (\sin x)\ dx = -\int (1-t^2)\ t^2\ dt$

$$= -\int (t^2 - t^4) dt = -\left(\frac{t^3}{3} - \frac{t^5}{5}\right) + C$$
$$= -\frac{1}{3}\cos^3 x + \frac{1}{5}\cos^5 x + C$$

(ii) x + a = t प्रतिस्थापित करने पर dx = dt

इसलिए
$$\int \frac{\sin x}{\sin (x+a)} dx = \int \frac{\sin (t-a)}{\sin t} dt$$

$$= \int \frac{\sin t \cos a - \cos t \sin a}{\sin t} dt$$

$$= \cos a \int dt - \sin a \int \cot t dt$$

$$= (\cos a) t - (\sin a) \Big[\log |\sin t| + C_1 \Big]$$

$$= (\cos a) (x+a) - (\sin a) \Big[\log |\sin (x+a)| + C_1 \Big]$$

$$= x \cos a + a \cos a - (\sin a) \log |\sin (x+a)| - C_1 \sin a$$

अतः $\int \frac{\sin x}{\sin (x+a)} dx = x \cos a - \sin a \log |\sin (x+a)| + C$ जहाँ $C = -C_1 \sin a + a \cos a, \text{ एक अन्य स्वेच्छ अचर है।}$

(iii)
$$\int \frac{dx}{1+\tan x} = \int \frac{\cos x \, dx}{\cos x + \sin x}$$
$$= \frac{1}{2} \int \frac{(\cos x + \sin x + \cos x - \sin x) \, dx}{\cos x + \sin x}$$
$$= \frac{1}{2} \int dx + \frac{1}{2} \int \frac{\cos x - \sin x}{\cos x + \sin x} \, dx$$
$$= \frac{x}{2} + \frac{C_1}{2} + \frac{1}{2} \int \frac{\cos x - \sin x}{\cos x + \sin x} \, dx \qquad \dots (1)$$

अब
$$I = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx \, \text{पर विचार कोजिए }$$

 $\cos x + \sin x = t$ प्रतिस्थापित कीजिए ताकि ($-\sin x + \cos x$) dx = dtअब

इसलिए
$$I = \int \frac{dt}{t} = \log|t| + C_2 = \log|\cos x + \sin x| + C_2$$

I को (1) में रखने पर हम पाते हैं

$$\int \frac{dx}{1+\tan x} = \frac{x}{2} + \frac{C_1}{2} + \frac{1}{2} \log|\cos x + \sin x| + \frac{C_2}{2}$$

$$= \frac{x}{2} + \frac{1}{2} \log|\cos x + \sin x| + \frac{C_1}{2} + \frac{C_2}{2}$$

$$= \frac{x}{2} + \frac{1}{2} \log|\cos x + \sin x| + C_1 \left(C = \frac{C_1}{2} + \frac{C_2}{2}\right)$$

प्रश्नावली 7.2

1 से 37 तक के प्रश्नों में प्रत्येक फलन का समाकलन ज्ञात कीजिए।

1.
$$\frac{2x}{1+x^2}$$

$$2. \frac{(\log x)^2}{x}$$

$$3. \ \frac{1}{x + x \log x}$$

4.
$$\sin x \sin (\cos x)$$

5.
$$\sin(ax+b)\cos(ax+b)$$

6.
$$\sqrt{ax+b}$$

7.
$$x\sqrt{x+2}$$

8.
$$x\sqrt{1+2x^2}$$

9.
$$(4x+2)\sqrt{x^2+x+1}$$
 10. $\frac{1}{x-\sqrt{x}}$

11.
$$\frac{x}{\sqrt{x+4}}, x > 0$$

12.
$$(x^3-1)^{\frac{1}{3}}x^5$$
 13. $\frac{x^2}{(2+3x^3)^3}$

13.
$$\frac{x^2}{(2+3x^3)^3}$$

14.
$$\frac{1}{x (\log x)^m}, x > 0, m \neq 1$$

15.
$$\frac{x}{9-4x^2}$$

16.
$$e^{2x+3}$$

17.
$$\frac{x}{e^{x^2}}$$

18.
$$\frac{e^{tan^{-1}x}}{1+x^2}$$

19.
$$\frac{e^{2x}-1}{e^{2x}+1}$$

20.
$$\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$$

21.
$$tan^2 (2x - 3)$$

21.
$$tan^2 (2x - 3)$$
 22. $sec^2 (7 - 4x)$

23.
$$\frac{\sin^{-1}x}{\sqrt{1-x^2}}$$

गणित 322

24.
$$\frac{2\cos x - 3\sin x}{6\cos x + 4\sin x}$$
 25. $\frac{1}{\cos^2 x (1 - \tan x)^2}$ 26. $\frac{\cos \sqrt{x}}{\sqrt{x}}$

27.
$$\sqrt{\sin 2x} \cos 2x$$
 28. $\frac{\cos x}{\sqrt{1 + \sin x}}$ 29. $\cot x \log \sin x$

30.
$$\frac{\sin x}{1 + \cos x}$$
 31. $\frac{\sin x}{(1 + \cos x)^2}$ 32. $\frac{1}{1 + \cot x}$

33.
$$\frac{1}{1-\tan x}$$
 34. $\frac{\sqrt{\tan x}}{\sin x \cos x}$ 35. $\frac{(1+\log x)^2}{x}$

36.
$$\frac{(x+1)(x+\log x)^2}{x}$$
 37. $\frac{x^3\sin(\tan^{-1}x^4)}{1+x^8}$

प्रश्न 38 एवं 39 में सही उत्तर का चयन कीजिए:

38.
$$\int \frac{10x^9 + 10^x \log_e^{10} dx}{x^{10} + 10^x}$$
 बराबर है:

(A)
$$10^x - x^{10} + C$$

(C) $(10^x - x^{10})^{-1} + C$

(B)
$$10^x + x^{10} + 0$$

(C)
$$(10^x - x^{10})^{-1} + C$$

(B)
$$10^x + x^{10} + C$$

(D) $\log (10^x + x^{10}) + C$

39.
$$\int \frac{dx}{\sin^2 x \cos^2 x}$$
 बराबर है:

(A)
$$\tan x + \cot x + C$$

(B)
$$\tan x - \cot x + C$$

(C)
$$\tan x \cot x + C$$

(D)
$$\tan x - \cot 2x + C$$

7.3.2 त्रिकोणमितीय सर्व-सिमकाओं के उपयोग द्वारा समाकलन (Integration using trigonometric identities)

जब समाकल्य में कुछ त्रिकोणमितीय फलन निहित होते हैं, तो हम समाकलन ज्ञात करने के लिए कुछ ज्ञात सर्वसिमकाओं का उपयोग करते हैं जैसा कि निम्नलिखित उदाहरणों के द्वारा समझाया गया है।

उदाहरण 7 निम्नलिखित को ज्ञात कीजिए

(i)
$$\int \cos^2 x \, dx$$
 (ii) $\int \sin 2x \cos 3x \, dx$ (iii) $\int \sin^3 x \, dx$

हल

सर्वसमिका $\cos 2x = 2 \cos^2 x - 1$ को स्मरण कीजिए जिससे (i)

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
 प्राप्त होता है।

इसलिए
$$\int \cos^2 x \, dx = \frac{1}{2} \int (1 + \cos 2x) \, dx = \frac{1}{2} \int dx + \frac{1}{2} \int \cos 2x \, dx$$
$$= \frac{x}{2} + \frac{1}{4} \sin 2x + C$$

(ii) सर्वसमिका $\sin x \cos y = \frac{1}{2} \left[\sin (x+y) + \sin (x-y) \right]$, को स्मरण कीजिए

$$\int \sin 2x \cos 3x dx = \frac{1}{2} \left[\int \sin 5x \, dx - \int \sin x \, dx \right]$$
$$= \frac{1}{2} \left[-\frac{1}{5} \cos 5x + \cos x \right] + C$$
$$= -\frac{1}{10} \cos 5x + \frac{1}{2} \cos x + C$$

सर्वसमिका $\sin 3x = 3 \sin x - 4 \sin^3 x$ से हम पाते हैं कि

$$\sin^3 x = \frac{3\sin x - \sin 3x}{4}$$

इसलिए
$$\int \sin^3 x \, dx = \frac{3}{4} \int \sin x \, dx - \frac{1}{4} \int \sin 3x \, dx$$
$$= -\frac{3}{4} \cos x + \frac{1}{12} \cos 3x + C$$

विकल्पत: $\int \sin^3 x \, dx = \int \sin^2 x \sin x \, dx = \int (1 - \cos^2 x) \sin x \, dx$ $\cos x = t$ रखने पर $-\sin x \, dx = dt$

इसलिए
$$\int \sin^3 x \, dx = -\int (1 - t^2) \, dt = -\int dt + \int t^2 \, dt = -t + \frac{t^3}{3} + C$$
$$= -\cos x + \frac{1}{3}\cos^3 x + C$$

टिप्पणी त्रिकोणमितीय सर्व-समिकाओं का उपयोग करते हुए यह दर्शाया जा सकता है कि दोनों उत्तर समतुल्य हैं।

प्रश्नावली 7.3

- 1 से 22 तक के प्रश्नों में प्रत्येक फलन का समाकलन ज्ञात कीजिए।
 - 1. $\sin^2(2x+5)$
- $2. \sin 3x \cos 4x$
- 3. $\cos 2x \cos 4x \cos 6x$

- 4. $\sin^3(2x+1)$
- 5. $\sin^3 x \cos^3 x$
- 6. $\sin x \sin 2x \sin 3x$

7. $\sin 4x \sin 8x$

8. $\frac{1-\cos x}{1+\cos x}$ 9. $\frac{\cos x}{1+\cos x}$

10. $\sin^4 x$

11. $\cos^4 2x$

12. $\frac{\sin^2 x}{1 + \cos x}$

13. $\frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha}$ 14. $\frac{\cos x - \sin x}{1 + \sin 2x}$ 15. $\tan^3 2x \sec 2x$

16. tan^4x

17. $\frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x}$ 18. $\frac{\cos 2x + 2\sin^2 x}{\cos^2 x}$

19. $\frac{1}{\sin x \cos^3 x}$ 20. $\frac{\cos 2x}{(\cos x + \sin x)^2}$ 21. $\sin^{-1}(\cos x)$

 $22. \quad \frac{1}{\cos(x-a)\cos(x-b)}$

प्रश्न 23 एवं 24 में सही उत्तर का चयन कीजिए।

23. $\int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} dx$ बराबर है:

(A) $\tan x + \cot x + C$

(B) $\tan x + \csc x + C$

(C) $-\tan x + \cot x + C$

(D) $\tan x + \sec x + C$

24. $\int \frac{e^x(1+x)}{\cos^2(e^x x)} dx$ बराबर है:

(A) $-\cot(ex^x) + C$

(B) $\tan (xe^x) + C$

(C) $\tan(e^x) + C$

(D) $\cot(e^x) + C$

7.4 कुछ विशिष्ट फलनों के समाकलन (Integrals of Some Particular Functions)

इस परिच्छेद में हम निम्नलिखित महत्वपूर्ण समाकलन सूत्रों की व्याख्या करेंगे और बहुत से दूसरे संबंधित प्रामाणिक समाकलनों को ज्ञात करने में उनका प्रयोग करेंगे।

(1)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$

(1) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$ (2) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C$

(3) $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$ (4) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left| x + \sqrt{x^2 - a^2} \right| + C$

(5)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C$$
 (6) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left| x + \sqrt{x^2 + a^2} \right| + C$

अब हम उपर्युक्त परिणामों को सिद्ध करते हैं।

(1) हम जानते हैं कि
$$\frac{1}{x^2 - a^2} = \frac{1}{(x - a)(x + a)}$$

$$= \frac{1}{2a} \left[\frac{(x + a) - (x - a)}{(x - a)(x + a)} \right] = \frac{1}{2a} \left[\frac{1}{x - a} - \frac{1}{x + a} \right]$$
इसलिए $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \left[\int \frac{dx}{x - a} - \int \frac{dx}{x + a} \right]$

$$= \frac{1}{2a} \left[\log|(x - a)| - \log|(x + a)| \right] + C$$

$$= \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$

(2) उपर्युक्त (1) के अनुसार हम पाते हैं कि

$$\frac{1}{a^2 - x^2} = \frac{1}{2a} \left[\frac{(a+x) + (a-x)}{(a+x)(a-x)} \right] = \frac{1}{2a} \left[\frac{1}{a-x} + \frac{1}{a+x} \right]$$
इसलिए
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \left[\int \frac{dx}{a-x} + \int \frac{dx}{a+x} \right]$$

$$= \frac{1}{2a} \left[-\log|a-x| + \log|a+x| \right] + C$$

$$= \frac{1}{2a} \log \left| \frac{a+x}{a-x} \right| + C$$

टिप्पणी (1) में उपयोग की गई विधि की व्याख्या परिच्छेद 7.5 में की जाएगी।

(3) $x = a \tan \theta$ रखने पर $dx = a \sec^2 \theta d\theta$

इसलिए
$$\int \frac{dx}{x^2 + a^2} = \int \frac{a \sec^2 \theta \, d\theta}{a^2 \tan^2 \theta + a^2}$$
$$= \frac{1}{a} \int d\theta = \frac{1}{a} \theta + C = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

(4) मान लीजिए $x = a \sec \theta$ तब $dx = a \sec \theta \tan \theta d\theta$

इसलिए
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \int \frac{a \sec \theta \tan \theta \, d\theta}{\sqrt{a^2 \sec^2 \theta - a^2}}$$

$$= \int \sec \theta \, d\theta = \log \left| \sec \theta + \tan \theta \right| + C_1$$

$$= \log \left| \frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1} \right| + C_1$$

$$= \log \left| x + \sqrt{x^2 - a^2} \right| - \log |a| + C_1$$

$$= \log \left| x + \sqrt{x^2 - a^2} \right| + C, \text{ जहाँ } C = C_1 - \log |a|$$

(5) मान लीजिए कि $x = a \sin \theta$ तब $dx = a \cos \theta d\theta$

इसलिए
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a\cos\theta \, d\theta}{\sqrt{a^2 - a^2\sin^2\theta}} = \int d\theta = \theta + C = \sin^{-1}\frac{x}{a} + C$$

(6) मान लीजिए कि $x = a \tan \theta$ तब $dx = a \sec^2 \theta d\theta$

इसलिए
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \int \frac{a \sec^2\theta \, d\theta}{\sqrt{a^2 \tan^2\theta + a^2}}$$
$$= \int \sec\theta \, d\theta = \log\left|(\sec\theta + \tan\theta)\right| + C_1$$
$$= \log\left|\frac{x}{a} + \sqrt{\frac{x^2}{a^2} + 1}\right| + C_1$$
$$= \log\left|x + \sqrt{x^2 + a^2}\right| - \log|a| + C_1$$
$$= \log\left|x + \sqrt{x^2 + a^2}\right| + C, \text{ जहाँ } C = C_1 - \log|a|$$

इन प्रामाणिक सूत्रों के प्रयोग से अब हम कुछ और सूत्र प्राप्त करते हैं जो अनुप्रयोग की दृष्टि से उपयोगी हैं और दूसरे समाकलनों का मान ज्ञात करने के लिए इनका सीधा प्रयोग किया जा सकता है।

(7) समाकलन
$$\int \frac{dx}{ax^2 + bx + c}$$
, ज्ञात करने के लिए हम

$$ax^2 + bx + c = a\left[x^2 + \frac{b}{a}x + \frac{c}{a}\right] = a\left[\left(x + \frac{b}{2a}\right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2}\right)\right]$$
 लिखते हैं।

अब $x + \frac{b}{2a} = t$ रखने पर dx = dt एवं $\frac{c}{a} - \frac{b^2}{4a^2} = \pm k^2$ लिखते हुए हम पाते हैं कि

 $\left(\frac{c}{a} - \frac{b^2}{4a^2}\right)$ के चिह्न पर निर्भर करते हुए यह समाकलन $\frac{1}{a} \int \frac{dt}{t^2 \pm k^2}$ के रूप में परिवर्तित हो जाता है और इस प्रकार इसका मान ज्ञात किया जा सकता है।

- (8) $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$, के प्रकार के समाकलन को ज्ञात करने के लिए (7) की भाँति आगे बढ़ते हुए प्रामाणिक सूत्रों का उपयोग करके समाकलन ज्ञात किया जा सकता है।
- (9) $\int \frac{px+q}{ax^2+bx+c} dx$, जहाँ p,q,a,b,c अचर हैं, के प्रकार के समाकलन ज्ञात करने के लिए हम ऐसी दो वास्तविक संख्याएँ A तथा B ज्ञात करते हैं ताकि

$$px + q = A \frac{d}{dx} (ax^2 + bx + c) + B = A (2ax + b) + B$$

A तथा B, ज्ञात करने के लिए हम दोनों पक्षों से x के गुणांकों एवं अचरों को समान करते हैं। A तथा B के ज्ञात हो जाने पर समाकलन ज्ञात प्रामाणिक रूप में परिवर्तित हो जाता है।

(10) $\int \frac{(px+q) dx}{\sqrt{ax^2+bx+c}}$, के प्रकार के समाकलन का मान ज्ञात करने के लिए हम (9) की भाँति आगे बढ़ते हैं और समाकलन को ज्ञात प्रामाणिक रूपों में परिवर्तित करते हैं। आइए उपर्युक्त विधियों को कुछ उदाहरणों की सहायता से समझते हैं।

उदाहरण 8 निम्नलिखित समाकलनों को ज्ञात कीजिए

(i)
$$\int \frac{dx}{x^2 - 16}$$
 (ii)
$$\int \frac{dx}{\sqrt{2x - x^2}}$$

हल

(i)
$$\frac{dx}{dx} = \int \frac{dx}{x^2 - 16} = \int \frac{dx}{x^2 - 4^2} = \frac{1}{8} \log \left| \frac{x - 4}{x + 4} \right| + C$$
 [7.4 (1) $\frac{1}{2}$

(ii)
$$\int \frac{dx}{2x - x^2} = \int \frac{dx}{\sqrt{1 - (x - 1)^2}}$$
$$x - 1 = t \ \text{रखने} \ \ \forall t \ dx = dt$$
$$\text{इसलिए} \qquad \int \frac{dx}{\sqrt{2x - x^2}} = \int \frac{dt}{\sqrt{1 - t^2}} = \sin^{-1}(t) + C$$
$$= \sin^{-1}(x - 1) + C$$
 [7.4 (5) से]

उदाहरण 9 निम्नलिखित समाकलनों को ज्ञात कीजिए।

(i)
$$\int \frac{dx}{x^2 - 6x + 13}$$
 (ii) $\int \frac{dx}{3x^2 + 13x - 10}$ (iii) $\int \frac{dx}{\sqrt{5x^2 - 2x}}$

हल

(i) यहाँ
$$x^2 - 6x + 13 = x^2 - 6x + 3^2 - 3^2 + 13 = (x - 3)^2 + 4$$

इसिलिए $\int \frac{dx}{x^2 - 6x + 13} = \int \frac{1}{(x - 3)^2 + 2^2} dx$

मान लीजिए $x - 3 = t$ तब $dx = dt$

इसिलिए $\int \frac{dx}{x^2 - 6x + 13} = \int \frac{dt}{t^2 + 2^2} = \frac{1}{2} \tan^{-1} \frac{t}{2} + C$
 $= \frac{1}{2} \tan^{-1} \frac{x - 3}{2} + C$
[7.4 (3) से]

(ii) दिया हुआ समाकलन 7.4(7) के रूप का है। हम समाकल्य के हर को निम्नलिखित प्रकार से लिखते हैं

$$3x^{2} + 13x - 10 = 3\left(x^{2} + \frac{13x}{3} - \frac{10}{3}\right)$$

$$= 3\left[\left(x + \frac{13}{6}\right)^{2} - \left(\frac{17}{6}\right)^{2}\right] \quad (पूर्ण बर्ग बनाने पर)$$
इसलिए
$$\int \frac{dx}{3x^{2} + 13x - 10} = \frac{1}{3} \int \frac{dx}{\left(x + \frac{13}{6}\right)^{2} - \left(\frac{17}{6}\right)^{2}}$$

अब
$$x + \frac{13}{6} = t$$
 रखने पर $dx = dt$

इसलिए $\int \frac{dx}{3x^2 + 13x - 10} = \frac{1}{3} \int \frac{dt}{t^2 - \left(\frac{17}{6}\right)^2}$

$$= \frac{1}{3 \times 2 \times \frac{17}{6}} \log \left| \frac{t - \frac{17}{6}}{t + \frac{1}{6}} \right| + C_1 \qquad [7.4 \text{ (i)} \text{ स}]$$

$$= \frac{1}{17} \log \left| \frac{x + \frac{13}{6} - \frac{17}{6}}{x + \frac{13}{6} + \frac{17}{6}} \right| + C_1 = \frac{1}{17} \log \left| \frac{6x - 4}{6x + 30} \right| + C_1$$

$$= \frac{1}{17} \log \left| \frac{3x - 2}{x + 5} \right| + C_1 + \frac{1}{17} \log \frac{1}{3}$$

$$= \frac{1}{17} \log \left| \frac{3x - 2}{x + 5} \right| + C, \text{ where } C = C_1 + \frac{1}{17} \log \frac{1}{3}$$
(iii) $\frac{dx}{d\tilde{x}} = \int \frac{dx}{\sqrt{5x^2 - 2x}} = \int \frac{dx}{\sqrt{5\left(x^2 - \frac{2x}{5}\right)}}$

$$= \frac{1}{\sqrt{5}} \int \frac{dx}{\sqrt{\left(x - \frac{1}{5}\right)^2}} \left(\frac{1}{5}\right)^2} \left(\frac{dx}{5}\right)^2 \left(\frac{dx}{5}\right)^2$$
अब $x - \frac{1}{5} = t$ रखने पर $dx = dt$

इसलिए $\int \frac{dx}{\sqrt{5x^2 - 2x}} = \frac{1}{\sqrt{5}} \int \frac{dt}{\sqrt{t^2 - \left(\frac{1}{5}\right)^2}}$

$$= \frac{1}{\sqrt{5}} \log \left| t + \sqrt{t^2 - \left(\frac{1}{5}\right)^2} \right| + C$$
 [7.4 (4) \(\dd{t})\)
$$= \frac{1}{\sqrt{5}} \log \left| x - \frac{1}{5} + \sqrt{x^2 - \frac{2x}{5}} \right| + C$$

उदाहरण 10 निम्नलिखित समाकलनों को ज्ञात कीजिए

(i)
$$\int \frac{x+2}{2x^2+6x+5} dx$$
 (ii) $\int \frac{x+3}{\sqrt{5-4x-x^2}} dx$

हल

(i) सूत्र 7.4(9) का उपयोग करते हुए हम अभिव्यक्त करते हैं

$$x + 2 = A \frac{d}{dx} (2x^2 + 6x + 5) + B = A (4x + 6) + B$$

दोनों पक्षों से x के गुणांकों एवं अचरों को समान करने पर हम पाते हैं:

$$4A = 1$$
 तथा $6A + B = 2$ अथवा $A = \frac{1}{4}$ और $B = \frac{1}{2}$

इसलिए
$$\int \frac{x+2}{2x^2+6x+5} = \frac{1}{4} \int \frac{4x+6}{2x^2+6x+5} dx + \frac{1}{2} \int \frac{dx}{2x^2+6x+5}$$

$$= \frac{1}{4} I_1 + \frac{1}{2} I_2 \quad (मान लीजिए) \qquad \dots (1)$$

 I_1 में, $2x^2 + 6x + 5 = t$, रखने पर (4x + 6) dx = dt

इसलिए
$$I_1 = \int \frac{dt}{t} = \log|t| + C_1 = \log|2x^2 + 6x + 5| + C_1$$
 ... (2)

$$I_2 = \int \frac{dx}{2x^2 + 6x + 5} = \frac{1}{2} \int \frac{dx}{x^2 + 3x + \frac{5}{2}} = \frac{1}{2} \int \frac{dx}{\left(-\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2}$$

अब
$$x + \frac{3}{2} = t$$
, रखने पर $dx = dt$, हम पाते हैं

$$I_2 = \frac{1}{2} \int \frac{dt}{t^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{2 \times \frac{1}{2}} \tan^{-1} 2t + C_2$$
 [7.4 (3) \(\frac{1}{4}\)]

$$= \tan^{-1} 2\left(x + \frac{3}{2}\right) + C_2 = \tan^{-1} \left(2x + 3\right) + C_2 \qquad \dots (3)$$

(2) और (3) का उपयोग (1) में करने पर हम पाते हैं

$$\int \frac{x+2}{2x^2+6x+5} dx = \frac{1}{4} \log \left| 2x^2+6x+5 \right| + \frac{1}{2} \tan^{-1} (2x+3) + C,$$

অন্ত্ৰাঁ
$$C = \frac{C_1}{4} + \frac{C_2}{2}$$

(ii) यह समाकलन 7.4 (10) के रूप में है। आइए x+3 को निम्नलिखित रूप में अभिव्यक्त करते हैं

$$x+3 = A \frac{d}{dx} (5-4x-x^2) + B = A (-4-2x) + B$$

दोनों पक्षों से x के गुणांकों एवं अचरों को समान करने पर हम पाते हैं -2A=1 और -4A+B=3.

अर्थात्
$$A = -\frac{1}{2}$$
 और $B = 1$

इसलिए
$$\int \frac{x+3}{\sqrt{5-4x-x^2}} dx = -\frac{1}{2} \int \frac{(-4-2x) dx}{\sqrt{5-4x-x^2}} + \int \frac{dx}{\sqrt{5-4x-x^2}}$$
$$= -\frac{1}{2} I_1 + I_2 \qquad \dots (1)$$

 I_1 , में $5 - 4x - x^2 = t$, रखने पर (-4 - 2x) dx = dt

इसलिए
$$I_1 = \int \frac{(-4-2x)dx}{\sqrt{5-4x-x^2}} = \int \frac{dt}{\sqrt{t}} = 2\sqrt{t} + C_1$$
$$= 2\sqrt{5-4x-x^2} + C_1 \qquad \dots (2)$$

अब
$$I_2 = \int \frac{dx}{\sqrt{5 - 4x - x^2}} = \int \frac{dx}{\sqrt{9 - (x + 2)^2}}$$
 पर विचार कीजिए

$$x + 2 = t$$
 रखने पर $dx = dt$

इसलिए
$$I_2 = \int \frac{dt}{\sqrt{3^2 - t^2}} = \sin^{-1} \frac{t}{3} + C_2$$
 [7.4 (5) से]
= $\sin^{-1} \frac{x+2}{3} + C_2$... (3)

समीकरणों (2) एवं (3) को (1) में प्रतिस्थापित करने पर हम

$$\int \frac{x+3}{\sqrt{5-4x-x^2}} = -\sqrt{5-4x-x^2} + \sin^{-1}\frac{x+2}{3} + C \text{ प्राप्त करते हैं, जहाँ } C = C_2 - \frac{C_1}{2}$$

प्रश्नावली 7.4

प्रश्न 1 से 23 तक के फलनों का समाकलन कीजिए।

1.
$$\frac{3x^2}{x^6+1}$$
2. $\frac{1}{\sqrt{1+4x^2}}$
3. $\frac{1}{\sqrt{(2-x)^2+1}}$
4. $\frac{1}{\sqrt{9-25x^2}}$
5. $\frac{3x}{1+2x^4}$
6. $\frac{x^2}{1-x^6}$
7. $\frac{x-1}{\sqrt{x^2-1}}$
8. $\frac{x^2}{\sqrt{x^6+a^6}}$
9. $\frac{\sec^2x}{\sqrt{\tan^2x+4}}$
10. $\frac{1}{\sqrt{x^2+2x+2}}$
11. $\frac{1}{9x^2+6x+5}$
12. $\frac{1}{\sqrt{7-6x-x^2}}$
13. $\frac{1}{\sqrt{(x-1)(x-2)}}$
14. $\frac{1}{\sqrt{8+3x-x^2}}$
15. $\frac{1}{\sqrt{(x-a)(x-b)}}$
16. $\frac{4x+1}{\sqrt{2x^2+x-3}}$
17. $\frac{x+2}{\sqrt{x^2-1}}$
18. $\frac{5x-2}{1+2x+3x^2}$
19. $\frac{6x+7}{\sqrt{(x-5)(x-4)}}$
20. $\frac{x+2}{\sqrt{4x-x^2}}$
21. $\frac{x+2}{\sqrt{x^2+2x+3}}$
22. $\frac{x+3}{x^2-2x-5}$
23. $\frac{5x+3}{\sqrt{x^2+4x+10}}$

333

24.
$$\int \frac{dx}{x^2 + 2x + 2}$$
 बराबर है:

- (A) $x \tan^{-1}(x+1) + C$
- (B) $tan^{-1}(x+1) + C$
- (C) $(x + 1) \tan^{-1} x + C$
- (D) $tan^{-1}x + C$

25. $\int \frac{dx}{\sqrt{9x-4x^2}} \text{ at at } \hat{\epsilon}:$

(A)
$$\frac{1}{9}\sin^{-1}\left(\frac{9x-8}{8}\right) + C$$

(A)
$$\frac{1}{9}\sin^{-1}\left(\frac{9x-8}{8}\right) + C$$
 (B) $\frac{1}{2}\sin^{-1}\left(\frac{8x-9}{9}\right) + C$

(C)
$$\frac{1}{3}\sin^{-1}\left(\frac{9x-8}{8}\right) + C$$
 (D) $\frac{1}{2}\sin^{-1}\left(\frac{9x-8}{9}\right) + C$

(D)
$$\frac{1}{2}\sin^{-1}\left(\frac{9x-8}{9}\right) + C$$

7.5 आंशिक भिन्नों द्वारा समाकलन (Integration by Partial Fractions)

स्मरण कीजिए कि एक परिमेय फलन $\frac{\mathrm{P}(x)}{\mathrm{O}(x)}$, दो बहुपदों के अनुपात के रूप में परिभाषित किया जाता है जहाँ P(x) एवं Q(x), x में बहुपद हैं तथा $Q(x) \neq 0$. यदि P(x) की घात Q(x) की घात से कम है, तो परिमेय फलन उचित परिमेय फलन कहलाता है अन्यथा विषम परिमेय फलन कहलाता है। विषम परिमेय फलनों को लम्बी भाग विधि द्वारा उचित परिमेय फलन के रूप में परिवर्तित किया जा सकता

है। इस प्रकार यदि
$$\frac{P(x)}{Q(x)}$$
 विषम परिमेय फलन है, तो $\frac{P(x)}{Q(x)} = T(x) + \frac{P_1(x)}{Q(x)}$, जहाँ $T(x)$ x में

एक बहुपद है और $\frac{P_1(x)}{O(x)}$ एक उचित परिमेय फलन है। हम जानते हैं कि एक बहुपद का समाकलन

कैसे किया जाता है. अत: किसी भी परिमेय फलन का समाकलन किसी उचित परिमेय फलन के समाकलन की समस्या के रूप में परिवर्तित हो जाता है। यहाँ पर हम जिन परिमेय फलनों के समाकलन पर विचार करेंगे, उनके हर रैखिक और द्विघात गुणनखंडों में विघटित होने वाले होंगे।

मान लीजिए कि हम $\int \frac{P(x)}{O(x)} dx$ का मान ज्ञात करना चाहते हैं जहाँ $\frac{P(x)}{O(x)}$ एक उचित परिमेय फलन है। एक विधि, जिसे आंशिक भिन्नों में वियोजन के नाम से जाना जाता है, की सहायता से दिए हुए समाकल्य को साधारण परिमेय फलनों के योग के रूप में लिखा जाना संभव है। इसके पश्चात् पूर्व ज्ञात विधियों की सहायता से समाकलन सरलतापूर्वक किया जा सकता है। निम्नलिखित सारणी 7.2 निर्दिष्ट करती है. कि विभिन्न प्रकार के परिमेय फलनों के साथ किस प्रकार के सरल आंशिक भिन्नों को संबद्ध किया जा सकता है।

सारणी 7.2

क्रमांक	परिमेय फलन का रूप	आंशिक भिन्नों का रूप
1.	$\frac{px+q}{(x-a)(x-b)}, a \neq b$	$\frac{A}{x-a} + \frac{B}{x-b}$
2.	$\frac{px+q}{(x-a)^2}$	$\frac{A}{x-a} + \frac{B}{\left(x-a\right)^2}$
3.	$\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)}$	$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$
4.	$\frac{px^2 + qx + r}{(x-a)^2 (x-b)}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$
5.	$\frac{px^2 + qx + r}{(x - a)(x^2 + bx + c)}$	$\frac{A}{x-a} + \frac{Bx+C}{x^2+bx+c},$
	जहाँ x^2+bx+c का और आगे गुणनखंड नहीं किया जा सकता।	

उपर्युक्त सारणी में A, B एवं C वास्तविक संख्याएँ हैं जिनको उचित विधि से ज्ञात करते हैं।

उदाहरण 11
$$\int \frac{dx}{(x+1)(x+2)}$$
 का मान ज्ञात कीजिए।

हल दिया हुआ समाकल्य एक उचित परिमेय फलन है इसलिए आंशिक भिन्नों के रूप [सारणी 7.2 (i)], का उपयोग करते हुए, हम

$$\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$$
, लिखते हैं ... (1)

जहाँ A और B वास्तविक संख्याएँ हैं जिनको हमें उचित विधि से ज्ञात करना है। हम पाते हैं 1 = A (x+2) + B (x+1)

x के गुणांकों एवं अचर पदों को समान करने पर हम पाते हैं

$$A + B = 0$$

एव

$$2A + B = 1$$

इन समीकरणों को हल करने पर हमें A=1 और B=-1 प्राप्त होता है।

इस प्रकार समाकल्य निम्नलिखित रूप में प्राप्त होता है
$$\frac{1}{(x+1)(x+2)} = \frac{1}{x+1} + \frac{-1}{x+2}$$

इसलिए
$$\int \frac{dx}{(x+1)(x+2)} = \int \frac{dx}{x+1} - \int \frac{dx}{x+2}$$
$$= \log|x+1| - \log|x+2| + C = \log\left|\frac{x+1}{x+2}\right| + C$$

टिप्पणी उपर्युक्त समीकरण (1) एक सर्वसिमका है अर्थात् एक ऐसा कथन जो x के सभी स्वीकार्य सभी मानों के लिए सत्य है। कुछ लेखक संकेत ≡ का उपयोग यह दर्शाने के लिए करते हैं कि दिया हुआ कथन एक सर्वसिमका है और संकेत = का उपयोग यह दर्शाने के लिए करते हैं कि दिया हुआ कथन एक समीकरण है अर्थात् यह दर्शाने के लिए कि दिया हुआ कथन x के निश्चित मानों के लिए सत्य है।

उदाहरण 12
$$\int \frac{x^2+1}{x^2-5x+6} dx$$
 का मान ज्ञात कीजिए।

हल यहाँ समाकल्य $\frac{x^2+1}{r^2-5r+6}$ एक उचित परिमेय फलन नहीं है इसलिए हम x^2+1 को $x^2 - 5x + 6$ से भाग करते हैं और हम पाते हैं कि

$$\frac{x^2+1}{x^2-5x+6} = 1 + \frac{5x-5}{x^2-5x+6} = 1 + \frac{5x-5}{(x-2)(x-3)}$$

मान लोजिए कि $\frac{5x-5}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3}$

5x - 5 = A(x - 3) + B(x - 2)

दोनों पक्षों से x के गणांकों एवं अचर पदों को समान करने पर हम पाते हैं A + B = 5 और 3A + 2B = 5.

इन समीकरणों को हल करने पर हम

A = -5 और B = 10 प्राप्त करते हैं।

 $\frac{x^2+1}{x^2-5x+6}=1-\frac{5}{x-2}+\frac{10}{x-3}$ अत:

 $\int \frac{x^2 + 1}{x^2 - 5x + 6} dx = \int dx - 5 \int \frac{1}{x - 2} dx + 10 \int \frac{dx}{x - 3}$ इसलिए $= x - 5 \log |x - 2| + 10 \log |x - 3| + C$ उदाहरण 13 $\int \frac{3x-2}{(x+1)^2(x+3)} dx$ का मान ज्ञात कीजिए।

हल दिया हुआ समाकल्य सारणी 7.2(4) में दिए हुए समाकल्य के रूप का है। अत: हम

$$\frac{3x-2}{(x+1)^2(x+3)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x+3}$$
 लिखते हैं

 $3x - 2 = A(x + 1)(x + 3) + B(x + 3) + C(x + 1)^{2}$ ताकि

$$= A (x^2 + 4x + 3) + B (x + 3) + C (x^2 + 2x + 1)$$

 $= A (x^2 + 4x + 3) + B (x + 3) + C (x^2 + 2x + 1)$ दोनों पक्षों से x^2 के गुणांकों, x के गुणांकों एव अचर पदों की तुलना करने पर पाते हैं कि A + C = 0, 4A + B + 2C = 3 और 3A + 3B + C = -2 इन समीकरणों को हल करने पर हम

 $A = \frac{11}{4}$, $B = \frac{-5}{2}$ और $C = \frac{-11}{4}$ पाते हैं। इस प्रकार समाकल्य निम्नलिखित रूप में प्राप्त होता है।

$$\frac{3x-2}{(x+1)^2(x+3)} = \frac{11}{4(x+1)} - \frac{5}{2(x+1)^2} - \frac{11}{4(x+3)}$$

इसलिए

$$\int \frac{3x-2}{(x+1)^2(x+3)} = \frac{11}{4} \int \frac{dx}{x+1} - \frac{5}{2} \int \frac{dx}{(x+1)^2} - \frac{11}{4} \int \frac{dx}{x+3}$$

$$= \frac{11}{4} \log|x+1| + \frac{5}{2(x+1)} - \frac{11}{4} \log|x+3| + C$$

$$= \frac{11}{4} \log\left|\frac{x+1}{x+3}\right| + \frac{5}{2(x+1)} + C$$

उदाहरण 14 $\int \frac{x^2}{(x^2+1)(x^2+4)} dx$ का मान ज्ञात कीजिए।

हल $\frac{x^2}{(x^2+1)(x^2+4)}$ को लीजिए और $x^2 = y$ रखिए

तब

$$\frac{x^2}{(x^2+1)(x^2+4)} = \frac{y}{(y+1)(y+4)}$$

$$\frac{y}{(y+1)(y+4)} = \frac{A}{y+1} + \frac{B}{y+4} \text{ के रूप में लिखिए}$$

$$y = A(y+4) + B(y+1)$$

ताकि

दोनों पक्षों से y के गुणांकों एवं अचर पदों की तुलना करने पर हम पाते हैं A+B=1 और 4A+B=0, जिससे प्राप्त होता है

$$A = -\frac{1}{3} \quad \text{और} \quad B = \frac{4}{3}$$
अत:
$$\frac{x^2}{(x^2+1)(x^2+4)} = -\frac{1}{3(x^2+1)} + \frac{4}{3(x^2+4)}$$
इसलिए
$$\int \frac{x^2 dx}{(x^2+1)(x^2+4)} = -\frac{1}{3} \int \frac{dx}{x^2+1} + \frac{4}{3} \int \frac{dx}{x^2+4}$$

$$= -\frac{1}{3} \tan^{-1}x + \frac{4}{3} \cdot \frac{1}{2} \tan^{-1}\frac{x}{2} + C$$

$$= -\frac{1}{3} \tan^{-1}x + \frac{2}{3} \tan^{-1}\frac{x}{2} + C$$

उपर्युक्त उदाहरण में केवल आंशिक भिन्न वाले भाग के लिए प्रतिस्थापन किया गया था न कि समाकलन वाले भाग के लिए। अब हम एक ऐसे उदाहरण की चर्चा करते हैं जिसमें समाकलन के लिए प्रतिस्थापन विधि एवं आंशिक भिन्न विधि दोनों को संयुक्त रूप से प्रयुक्त किया गया है।

उदाहरण 15
$$\int \frac{(3\sin\phi - 2)\cos\phi}{5 - \cos^2\phi - 4\sin\phi} d\phi$$
 का मान ज्ञात कीजिए।

हल मान लीजिए $y = \sin \phi$

तब
$$dy = \cos\phi \ d\phi$$

अब हम
$$\frac{3y-2}{\left(y-2\right)^2} = \frac{A}{y-2} + \frac{B}{\left(y-2\right)^2}$$
 लिखते हैं [सारणी 7.2 (2) से] इसलिए
$$3y-2 = A \left(y-2\right) + B$$

दोनों पक्षों से y के गुणांक एवं अचर पदों की तुलना करने पर हम पाते हैं, A=3 एवं B-2A=-2, जिससे हमें A=3 एवं B=4 प्राप्त होता है।

इसलिए अभीष्ट समाकलन निम्नलिखित रूप में प्राप्त होता है।

$$I = \int \left[\frac{3}{y-2} + \frac{4}{(y-2)^2} \right] dy = 3 \int \frac{dy}{y-2} + 4 \int \frac{dy}{(y-2)^2}$$

$$= 3 \log \left| y - 2 \right| + 4 \left(-\frac{1}{y-2} \right) + C = 3 \log \left| \sin \phi - 2 \right| + \frac{4}{2 - \sin \phi} + C$$

$$= 3 \log (2 - \sin \phi) + \frac{4}{2 - \sin \phi} + C \text{ (क्योंकि } 2 - \sin \phi \text{ हमेशा } धनात्मक \text{ है)}$$

उदाहरण 16 $\int \frac{x^2 + x + 1 dx}{(x+2)(x^2+1)}$ का मान ज्ञात कीजिए।

हल दिया हुआ समाकल्य एक उचित परिमेय फलन है। परिमेय फलन को आंशिक भिन्नों में विघटित करते हैं [सारणी 2.2(5)]।

$$\frac{x^2 + x + 1}{(x^2 + 1)(x + 2)} = \frac{A}{x + 2} + \frac{Bx + C}{(x^2 + 1)}$$

इसलिए

$$x^2 + x + 1 = A(x^2 + 1) + (Bx + C)(x + 2)$$

दोनों पक्षों से x^2 के गुणांकों, x के गुणांकों एवं अचर पदों की तुलना करने पर हम A+B=1, 2B+C=1 और A+2C=1 प्राप्त करते हैं।

इन समीकरणों को हल करने पर हम $A = \frac{3}{5}, B = \frac{2}{5}, C = \frac{1}{5}$ पाते हैं।

इस प्रकार समाकल्य निम्नलिखित रूप में प्राप्त होता है

$$\frac{x^2 + x + 1}{(x^2 + 1)(x + 2)} = \frac{3}{5(x + 2)} + \frac{5 \frac{x + 5}{5}}{x^2 + 1} = \frac{3}{5(x + 2)} + \frac{1}{5} \left(\frac{2x + 1}{x^2 + 1}\right)$$

$$\frac{x^2 + x + 1}{(x^2 + 1)(x + 2)} dx = \frac{3}{5} \int \frac{dx}{x + 2} + \frac{1}{5} \int \frac{2x}{x^2 + 1} dx + \frac{1}{5} \int \frac{1}{x^2 + 1} dx$$

$$= \frac{3}{5} \log|x + 2| + \frac{1}{5} \log|x^2 + 1| + \frac{1}{5} \tan^{-1}x + C$$

प्रश्नावली 7.5

1 से 21 तक के प्रश्नों में परिमेय फलनों का समाकलन कीजिए।

1.
$$\frac{x}{(x+1)(x+2)}$$
 2. $\frac{1}{x^2-9}$

2.
$$\frac{1}{x^2-9}$$

3.
$$\frac{3x-1}{(x-1)(x-2)(x-3)}$$

4.
$$\frac{x}{(x-1)(x-2)(x-3)}$$

5.
$$\frac{2x}{x^2 + 3x + 2}$$

6.
$$\frac{1-x^2}{x(1-2x)}$$

7.
$$\frac{x}{(x^2+1)(x-1)}$$

6.
$$\frac{1-x^2}{x(1-2x)}$$
 7. $\frac{x}{(x^2+1)(x-1)}$ 8. $\frac{x}{(x-1)^2(x+2)}$

9.
$$\frac{3x+5}{x^3-x^2-x+1}$$
 10. $\frac{2x-3}{(x^2-1)(2x+3)}$ 11. $\frac{5x}{(x+1)(x^2-4)}$

10.
$$\frac{2x-3}{(x^2-1)(2x+3)}$$

11.
$$\frac{5x}{(x+1)(x^2-4)}$$

12.
$$\frac{x^3+x+1}{x^2-1}$$

12.
$$\frac{x^3 + x + 1}{x^2 - 1}$$
 13. $\frac{2}{(1 - x)(1 + x^2)}$ 14. $\frac{3x - 1}{(x + 2)^2}$

14.
$$\frac{3x-1}{(x+2)^2}$$

15.
$$\frac{1}{x^4-1}$$

15.
$$\frac{1}{x^4-1}$$
 16. $\frac{1}{x(x^n+1)}$ [संकेत: अंश एवं हर को x^{n-1} से गुणा कीजिए और $x^n=t$ रखिए]

17.
$$\frac{\cos x}{(1-\sin x)(2-\sin x)}$$
 [संकेत: $\sin x = t$ रखिए]

18.
$$\frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}$$
 19. $\frac{2x}{(x^2+1)(x^2+3)}$ **20.** $\frac{1}{x(x^4-1)}$

19.
$$\frac{2x}{(x^2+1)(x^2+3)}$$

20.
$$\frac{1}{x(x^4-1)}$$

21.
$$\frac{1}{(e^x - 1)}$$
 [संकेत: $e^x = t$ रखिए]

प्रश्न 22 एवं 23 में सही उत्तर का चयन कीजिए।

22.
$$\int \frac{x \, dx}{(x-1)(x-2)}$$
 बराबर है:

(A)
$$\log \left| \frac{(x-1)^2}{x-2} \right| + C$$
 (B) $\log \left| \frac{(x-2)^2}{x-1} \right| + C$

(B)
$$\log \left| \frac{(x-2)^2}{x-1} \right| + C$$

(C)
$$\log \left| \left(\frac{x-1}{x-2} \right)^2 \right| + C$$

(D)
$$\log |(x-1)(x-2)| + C$$

23.
$$\int \frac{dx}{x(x^2+1)}$$
 बराबर है:

(A)
$$\log |x| - \frac{1}{2} \log (x^2 + 1) + C$$
 (B) $\log |x| + \frac{1}{2} \log (x^2 + 1) + C$

(C)
$$-\log |x| + \frac{1}{2}\log (x^2+1) + C$$
 (D) $\frac{1}{2}\log |x| + \log (x^2+1) + C$

7.6 खंडशः समाकलन (Integration by Parts)

इस परिच्छेद में हम समाकलन की एक और विधि की चर्चा करेंगे जो कि दो फलनों के गुणनफल का समाकलन करने में बहुत उपयोगी है।

यदि एकल चर x (मान लीजिए) में u और v दो अवकलनीय फलन है तो अवकलन के गुणनफल नियम के अनुसार हम पाते हैं कि

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

दोनों पक्षों का समाकलन करने पर हम पाते हैं कि

$$uv = \int u \frac{dv}{dx} dx + \int v \frac{du}{dx} dx$$

अथवा

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx \qquad \dots (1)$$

मान लीजिए कि u = f(x) और $\frac{dv}{dx} = g(x)$ तब

$$\frac{du}{dx} = f'(x) \text{ और } v = \int g(x) dx$$

इसलिए समीकरण (1) को निम्नलिखित रूप में लिखा जा सकता है

$$\int f(x) g(x) dx = f(x) \int g(x) dx - \int [\int g(x) dx f'(x)] dx$$

अर्थात्

$$\int f(x) g(x) dx = f(x) \int g(x) dx - \int [f'(x) \int g(x) dx] dx$$

यदि हम f को प्रथम फलन और g को दूसरा फलन मान लें तो इस सूत्र को निम्नलिखित रूप में व्यक्त किया जा सकता है।

"दो फलनों के गुणनफल का समाकलन = (प्रथम फलन) × (द्वितीय फलन का समाकलन) — [(प्रथम फलन का अवकलन गुणांक) × (द्वितीय फलन का समाकलन)] का समाकलन"

उदाहरण 17 $\int x \cos x \, dx$ का मान ज्ञात कीजिए।

हल f(x) = x (प्रथम फलन) और $g(x) = \cos x$ (द्वितीय फलन) रखिए। तब खंडश: समाकलन से प्राप्त होता है कि

$$\int x \cos x \, dx = x \int \cos x \, dx - \int \left[\frac{d}{dx}(x) \int \cos x \, dx \right] dx$$

$$= x \sin x - \int \sin x \, dx = x \sin x + \cos x + C$$
मान लीजिए कि हम $f(x) = \cos x$ एवं $g(x) = x$ लेते हैं तब
$$\int x \cos x \, dx = \cos x \int x \, dx - \int \left[\frac{d}{dx}(\cos x) \int x \, dx \right] dx$$

$$= (\cos x) \frac{x^2}{2} + \int \sin x \, \frac{x^2}{2} \, dx$$

इस प्रकार हम देखते हैं कि समाकलन $\int x \cos x \, dx$, तुलनात्मक दृष्टि से x की अधिक घात वाले अधिक कठिन समाकलन में परिवर्तित हो जाता है। इसिलए प्रथम फलन एवं द्वितीय फलन का उचित चयन महत्वपूर्ण है।

टिप्पणी

- 1. यह वर्णनीय हैं, कि खंडश: समाकलन दो फलनों के गुणनफल की सभी स्थितियों में प्रयुक्त नहीं है, उदाहरणतया $\int \sqrt{x} \sin x \, dx$ की स्थिति में यह विधि काम नहीं करती है। इसका कारण यह है कि ऐसा कोई फलन अस्तित्व मे ही नहीं है जिसका अवकलज $\sqrt{x} \sin x$ है।
- 2. ध्यान दीजिए कि द्वितीय फलन का समाकलन ज्ञात करते समय हमने कोई समाकलन अचर नहीं जोड़ा था। यदि हम द्वितीय फलन $\cos x$ के समाकलन को $\sin x + k$, के रूप में लिखते हैं, जहाँ k कोई अचर है, तब

$$\int x \cos x \, dx = x \left(\sin x + k \right) - \int (\sin x + k) \, dx$$

$$= x \left(\sin x + k \right) - \int \sin x \, dx - \int k \, dx$$

$$= x \left(\sin x + k \right) + \cos x - kx + C = x \sin x + \cos x + C$$

यह दर्शाता है कि खंडश: समाकलन विधि के प्रयोग से अंतिम परिणाम ज्ञात करने के लिए द्वितीय फलन के समाकलन में अचर का जोड़ना व्यर्थ है।

3. सामान्यत: यदि कोई फलन x की घात के रूप में है अथवा x का बहुपद है तो हम इसे प्रथम फलन के रूप में लेते हैं। तथापि ऐसी स्थिति में जहाँ दूसरा फलन प्रतिलोम त्रिकोणिमतीय फलन अथवा लघुगणकीय फलन है, तो हम उनको प्रथम फलन के रूप में लेते हैं।

उदाहरण 18 $\int \log x \, dx$ ज्ञात कीजिए।

हल प्रारम्भ करने के लिए हम ऐसे फलन का अनुमान लगाने में असमर्थ हैं जिसका अवकलज $\log x$ है। हम $\log x$ को प्रथम फलन एवं अचर फलन 1 को द्वितीय फलन लेते हैं। दूसरे फलन का समाकलन x है।

अत:
$$\int (\log x \cdot 1) dx = \log x \int 1 dx - \int \left[\frac{d}{dx} (\log x) \int 1 dx \right] dx$$
$$= \log x \cdot x - \int \frac{1}{x} x dx = x \log x - x + C$$

उदाहरण 19 $\int x e^x dx$ ज्ञात कीजिए।

हल x प्रथम फलन एवं e^x को द्वितीय फलन के रूप में लीजिए दूसरे फलन का समाकलन $= e^x$ इसलिए $\int x \, e^x \, dx = x \, e^x - \int 1 \, e^x \, dx = x e^x - e^x + C$

उदाहरण 20
$$\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$$
 ज्ञात कीजिए।

हल मान लीजिए प्रथम फलन =
$$\sin^{-1}x$$
, और द्वितीय फलन = $\frac{x}{\sqrt{1-x^2}}$

अब हम द्वितीय फलन का समाकलन ज्ञात करते हैं अर्थात् $\int \frac{x\,dx}{\sqrt{1-x^2}}$ ज्ञात करते हैं।

तब
$$t = 1 - x^2 \ \text{रखिए}$$

$$dt = -2x \ dx$$
 इसलिए
$$\int \frac{x \ dx}{\sqrt{1 - x^2}} = -\frac{1}{2} \int \frac{dt}{\sqrt{t}} = -\sqrt{t} = -\sqrt{1 - x^2}$$
 अत:
$$\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx = \sin^{-1} x \left(-\sqrt{1 - x^2} \right) - \int \frac{1}{\sqrt{1 - x^2}} \left(-\sqrt{1 - x^2} \right) dx$$
$$= -\sqrt{1 - x^2} \sin^{-1} x + x + C = x - \sqrt{1 - x^2} \sin^{-1} x + C$$

विकल्पतः $\sin^{-1}x = \theta$ प्रतिस्थापित करने पर और तब खंडशः समाकलन का उपयोग करते हुए भी इस समाकलन को हल किया जा सकता है।

उदाहरण 21 $\int e^x \sin x \, dx$ ज्ञात कीजिए।

हल e^x को प्रथम फलन एवं $\sin x$ को द्वितीय फलन के रूप में लीजिए। तब खंडशः समाकलन से हम पाते हैं कि

$$I = \int e^x \sin x \, dx = e^x (-\cos x) + \int e^x \cos x \, dx$$
$$= -e^x \cos x + I_1 \text{ (मान लीजिए)} \qquad \dots (1)$$

 $I_{_1}$ में e^x एवं $\cos x$ को क्रमश: प्रथम एवं द्वितीय फलन मानते हुए हम पाते हैं कि

$$I_1 = e^x \sin x - \int e^x \sin x \, dx$$

 I_1 का मान (1) में रखने पर हम पाते हैं कि

$$I = -e^x \cos x + e^x \sin x - I$$
 अथवा $2I = e^x (\sin x - \cos x)$

अत:

$$I = \int e^x \sin x \, dx = \frac{e^x}{2} (\sin x - \cos x) + C$$

विकल्पत: $\sin x$ को प्रथम फलन एवं e^x को द्वितीय फलन लेने पर भी उपर्युक्त समाकलन को ज्ञात किया जा सकता है।

7.6.1 $\int e^{x} [f(x) + f'(x)] dx$ के प्रकार का समाकलन

हमें ज्ञात है कि
$$I = \int e^x \left[f(x) + f'(x) \right] dx = \int e^x f(x) \, dx + \int e^x f'(x) \, dx$$
$$= I_1 + \int e^x f'(x) \, dx, \text{ जहाँ } I_1 = \int e^x f(x) \, dx \qquad \dots (1)$$

 I_1 में f(x) एवं e^x को क्रमश: प्रथम एवं द्वितीय फलन लेते हुए एवं खंडश: समाकलन द्वारा हम पाते हैं $I_1 = f(x) e^x - \int f'(x) e^x dx + C$ I_1 को (1) में प्रतिस्थापित करने पर हम पाते हैं

$$I = e^{x} f(x) - \int f'(x) e^{x} dx + \int e^{x} f'(x) dx + C = e^{x} f(x) + C$$
$$\int e^{x} (f(x) + f'(x)) dx = e^{x} f(x) + C$$

अत:

उदाहरण 22 ज्ञात कीजिए

(i)
$$\int e^x (\tan^{-1}x + \frac{1}{1+x^2}) dx$$
 (ii) $\int \frac{(x^2+1)e^x}{(x+1)^2} dx$

हल

(i) यहाँ
$$I = \int e^x (\tan^{-1}x + \frac{1}{1+x^2}) dx$$

अब $f(x) = \tan^{-1}x$, লীজিए, तब $f'(x) = \frac{1}{1+x^2}$

अत: दिया हुआ समाकल्य $e^x [f(x) + f'(x)]$ के रूप में है।

इसलिए
$$I = \int e^x (\tan^{-1}x + \frac{1}{1+x^2}) dx = e^x \tan^{-1}x + C$$

(ii) मान लोजिए कि
$$I = \int \frac{(x^2 + 1)e^x}{(x+1)^2} dx = \int e^x \left[\frac{x^2 - 1 + 1 + 1}{(x+1)^2} \right] dx$$
$$= \int e^x \left[\frac{x^2 - 1}{(x+1)^2} + \frac{2}{(x+1)^2} \right] dx = \int e^x \left[\frac{x - 1}{x+1} + \frac{2}{(x+1)^2} \right] dx$$

मान लीजिए कि
$$f(x) = \frac{x-1}{x+1}$$
 तब $f'(x) = \frac{2}{(x+1)^2}$

अतः दिया हुआ समाकल्य $e^x [f(x) + f'(x)]$ के रूप में है।

इसलिए
$$\int \frac{x^2 + 1}{(x+1)^2} e^x dx = \frac{x-1}{x+1} e^x + C$$

प्रश्नावली 7.6

1 से 22 तक के प्रश्नों के फलनों का समाकलन कीजिए।

- 1. $x \sin x$
- $2. x \sin 3x$
- 3. $x^2 e^x$
- 4. $x \log x$

- 5. $x \log 2x$
- 6. $x^2 \log x$
- 7. $x \sin^{-1} x$
- 8. $x \tan^{-1} x$

- 9. $x \cos^{-1} x$
- 10. $(\sin^{-1}x)^2$ 11. $\frac{x \cos^{-1}x}{\sqrt{1-x^2}}$ 12. $x \sec^2 x$ 14. $x (\log x)^2$ 15. $(x^2+1) \log x$

- 13. $tan^{-1}x$

- 16. $e^x (\sin x + \cos x)$ 17. $\frac{x e^x}{(1+x)^2}$ 18. $e^x \left(\frac{1+\sin x}{1+\cos x}\right)$
- 19. $e^{x} \left(\frac{1}{x} \frac{1}{x^{2}} \right)$ 20. $\frac{(x-3)e^{x}}{(x-1)^{3}}$
- **21.** $e^{2x} \sin x$

22.
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

प्रश्न 23 एवं 24 में सही उत्तर का चयन कीजिए।

23. $\int x^2 e^{x^3} dx$ बराबर है:

(A)
$$\frac{1}{3}e^{x^3} + C$$

(B)
$$\frac{1}{3}e^{x^2} + C$$

(C)
$$\frac{1}{2}e^{x^3} + C$$

(D)
$$\frac{1}{2}e^{x^2} + C$$

(A)
$$e^x \cos x + C$$

(B)
$$e^x \sec x + C$$

(C)
$$e^x \sin x + C$$

(D)
$$e^x \tan x + C$$

7.6.2 कुछ अन्य प्रकार के समाकलन (Integrals of some more types)

यहाँ हम खंडश: समाकलन विधि पर आधारित कुछ विशिष्ट प्रकार के प्रामाणिक समाकलनों की चर्चा करेंगे। जैसे कि

(i)
$$\int \sqrt{x^2 - a^2} \ dx$$

(ii)
$$\int \sqrt{x^2 + a^2} \ dx$$

(i)
$$\int \sqrt{x^2 - a^2} \, dx$$
 (ii) $\int \sqrt{x^2 + a^2} \, dx$ (iii) $\int \sqrt{a^2 - x^2} \, dx$

(i) मान लीजिए कि $I = \int \sqrt{x^2 - a^2} dx$

अचर फलन 1 को द्वितीय फलन मानते हुए और खंडश: समाकलन द्वारा हम पाते हैं

$$I = x\sqrt{x^2 - a^2} - \int \frac{1}{2} \frac{2x}{\sqrt{x^2 - a^2}} x \, dx$$

$$= x\sqrt{x^2 - a^2} - \int \frac{x^2}{\sqrt{x^2 - a^2}} \, dx = x\sqrt{x^2 - a^2} - \int \frac{x^2 - a^2 + a^2}{\sqrt{x^2 - a^2}} \, dx$$

$$= x\sqrt{x^2 - a^2} - \int \sqrt{x^2 - a^2} \, dx - a^2 \int \frac{dx}{\sqrt{x^2 - a^2}}$$

$$= x \sqrt{x^2 - a^2} - I - a^2 \int \frac{dx}{\sqrt{x^2 - a^2}}$$

 $2I = x \sqrt{x^2 - a^2} - a^2 \int \frac{dx}{\sqrt{x^2 - a^2}}$

अथवा
$$I = \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$

इसी प्रकार दूसरे दो समाकलनों में अचर फलन 1 को द्वितीय फलन लेकर एवं खंडश: समाकलन विधि द्वारा हम पाते हैं

(ii)
$$\int \sqrt{x^2 + a^2} \, dx = \frac{1}{2} x \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$

(iii)
$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

विकल्पत: समाकलनों (i), (ii) एवं (iii) में क्रमश: $x = a \sec\theta$, $x = a \tan\theta$ और $x = a \sin \theta$, प्रतिस्थापन करने पर भी इन समाकलनों को ज्ञात किया जा सकता है।

उदाहरण 23
$$\int \sqrt{x^2 + 2x + 5} dx$$
 ज्ञात कीजिए।

हल ध्यान दीजिए कि
$$\int \sqrt{x^2 + 2x + 5} \, dx = \int \sqrt{(x+1)^2 + 4} \, dx$$

अब $x+1=y$ रखने पर $dx=dy$, तब

$$\int \sqrt{x^2 + 2x + 5} \, dx = \int \sqrt{y^2 + 2^2} \, dy$$

$$= \frac{1}{2} y \sqrt{y^2 + 4} + \frac{4}{2} \log \left| y + \sqrt{y^2 + 4} \right| + C \quad [7.6.2 \text{ (ii)})$$

$$= \frac{1}{2} (x + 1) \sqrt{x^2 + 2x + 5} + 2 \log \left| x + 1 + \sqrt{x^2 + 2x + 5} \right| + C$$

उदाहरण 24 $\int \sqrt{3-2x-x^2} \ dx$ ज्ञात कीजिए।

हल ध्यान दीजिए कि
$$\int \sqrt{3-2x-x^2} \ dx = \int \sqrt{4-(x+1)^2} \ dx$$
 अब $x+1=y$ रखने पर $dx=dy$ इस प्रकार $\int \sqrt{3-2x-x^2} \ dx = \int \sqrt{4-y^2} \ dy$
$$= \frac{1}{2}y\sqrt{4-y^2} + \frac{4}{2}\sin^{-1}\frac{y}{2} + C \ [7.6.2\ (iii)$$
के उपयोग से]
$$= \frac{1}{2}(x+1)\sqrt{3-2x-x^2} + 2\sin^{-1}\left(\frac{x+1}{2}\right) + C$$

प्रश्नावली 7.7

1 से 9 तक के प्रश्नों के फलनों का समाकलन कीजिए।

1.
$$\sqrt{4-x^2}$$
 2. $\sqrt{1-4x^2}$

2.
$$\sqrt{1-4x^2}$$

3.
$$\sqrt{x^2+4x+6}$$

4.
$$\sqrt{x^2+4x+1}$$
 5. $\sqrt{1-4x-x^2}$ 6. $\sqrt{x^2+4x-5}$

5.
$$\sqrt{1-4x-x^2}$$

6.
$$\sqrt{x^2 + 4x - 5}$$

7.
$$\sqrt{1+3x-x^2}$$

8.
$$\sqrt{x^2 + 3x}$$

7.
$$\sqrt{1+3x-x^2}$$
 8. $\sqrt{x^2+3x}$ 9. $\sqrt{1+\frac{x^2}{9}}$

प्रश्न 10 एवं 11 में सही उत्तर का चयन कीजिए।

10. $\int \sqrt{1+x^2} \ dx \text{ array } \hat{\mathbf{g}}:$

(A)
$$\frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log\left|\left(x+\sqrt{1+x^2}\right)\right| + C$$
 (B) $\frac{2}{3}(1+x^2)^{\frac{3}{2}} + C$

(C)
$$\frac{2}{3}x(1+x^2)^{\frac{3}{2}} + C$$
 (D) $\frac{x^2}{2}\sqrt{1+x^2} + \frac{1}{2}x^2\log\left|x + \sqrt{1+x^2}\right| + C$

11. $\int \sqrt{x^2 - 8x + 7} \ dx$ बराबर है

(A)
$$\frac{1}{2}(x-4)\sqrt{x^2-8x+7} + 9\log\left|x-4+\sqrt{x^2-8x+7}\right| + C$$

(B)
$$\frac{1}{2}(x+4)\sqrt{x^2-8x+7}+9\log\left|x+4+\sqrt{x^2-8x+7}\right|+C$$

(C)
$$\frac{1}{2}(x-4)\sqrt{x^2-8x+7}-3\sqrt{2}\log\left|x-4+\sqrt{x^2-8x+7}\right|+C$$

(D)
$$\frac{1}{2}(x-4)\sqrt{x^2-8x+7} - \frac{9}{2}\log\left|x-4+\sqrt{x^2-8x+7}\right| + C$$

7.7 निश्चित समाकलन (Definite Integral)

पिछले परिच्छेदों में हमने अनिश्चित समाकलनों के बारे में अध्ययन किया है और कुछ विशिष्ट फलनों के समाकलनों सिंहत अनिश्चित समाकलनों को ज्ञात करने की कुछ विधियों पर चर्चा की है। इस परिच्छेद में हम किसी फलन के निश्चित समाकलन का अध्ययन करेंगे। निश्चित समाकलन का एक अद्वितीय मान होता है। एक निश्चित समाकलन को $\int_a^b f(x) \, dx$, से निर्दिष्ट किया जाता है जहाँ b, समाकलन की उच्च सीमा तथा a, समाकलन की निम्न सीमा कहलाती हैं। निश्चित समाकलन का परिचय, या तो योगों की सीमा के रूप में कराया जाता है अथवा यदि अंतराल [a,b] में इसका कोई प्रतिअवकलज F है तो निश्चित समाकलन का मान अंतिम बिंदुओं पर F के मानों के अंतर अर्थात् F(b) - F(a) के बराबर होता है, के रूप में कराया जाता है। निश्चित समाकलन के इन दोनों रूपों की हम अलग-अलग चर्चा करेंगे।

7.7.1 योगफल की सीमा के रूप में निश्चित समाकलन (Definite integral as the limit of a sum)

मान लीजिए कि एक बंद अंतराल [a,b] पर एक संतत फलन f परिभाषित है। मान लीजिए कि फलन के सभी मान ऋणेत्तर हैं इसलिए फलन का आलेख x-अक्ष से ऊपर एक वक्र है।

वक्र y = f(x), x = a, x = b एवं x-अक्ष से घिरे क्षेत्र का क्षेत्रफल ही निश्चित समाकलन $\int_a^b f(x) \, dx$ है। इस क्षेत्रफल को ज्ञात करने के लिए, इस वक्र, x-अक्ष एवं कोटियों x = a एवं x = b के बीच घिरे क्षेत्र PRSQP को लीजिए (आकृति 7.2 देखिए)।

अंतराल $[a,\ b]$ को $[x_0,x_1],[x_1,x_2],...,[x_{r-1},x_r],...,[x_{n-1},x_n]$, से निर्दिष्ट n समान उपअंतरालों में विभाजित कीजिए जहाँ $x_0=a,x_1=a+h,x_2=a+2h,...,x_r=a+rh$ तथा

$$x_n = b = a + nh$$
 अथवा $n = \frac{b-a}{h}$ ध्यान दीजिए यदि $n \to \infty$ तो $h \to 0$

चर्चित क्षेत्र PRSQP, n उपक्षेत्रों का योग है जहाँ प्रत्येक उपक्षेत्र उपअंतरालों $[x_{r-1},x_r],r=1,2,3,\ldots,n$ पर परिभाषित है।

आकृति 7.2 से हम पाते हैं कि आयत (ABLC) का क्षेत्रफल < क्षेत्र (ABDCA) का क्षेत्रफल < आयत (ABDM) का क्षेत्रफल ... (1)

स्पष्टतः यदि $x_r - x_{_{p-1}} \to 0$ अर्थात् $h \to 0$, तो समीकरण (1) मे दर्शाए गए तीनों क्षेत्रफल एक दूसरे के लगभग समान हो जाते हैं। अब हम निम्नलिखित योगफलों का निर्माण करते हैं

$$s_n = h \left[f(x_0) + \dots + f(x_{n-1}) \right] = h \sum_{r=0}^{n-1} f(x_r)$$
 ... (2)

और
$$S_n = h[f(x_1) + f(x_2) + ... + f(x_n)] = h \sum_{r=1}^n f(x_r)$$
 ... (3)

यहाँ s_n एवं \mathbf{S}_n उपअंतरालों $[x_{r-1},x_r]$ $\mathbf{r}=1,2,3,...,n$, पर बने क्रमश: निम्न आयतों एवं उच्च आयतों के क्षेत्रफलों के योग को निर्दिष्ट करता है। असिमका (1) के संदर्भ में किसी स्वेच्छ उप अंतराल $[x_{r-1},x_r]$ के लिए हम पाते हैं कि

$$s_n <$$
क्षेत्र PRSQP का क्षेत्रफल $< S_n$... (4)

यदि $n \to \infty$, तो पर्टियाँ संकीर्ण से संकीर्ण होती चली जाती हैं और यह मान लिया जाता हैं कि (2) और (3) के सीमित मान एक समान हैं तथा उभयनिष्ठ सीमित मान ही वक्र के अर्न्तगत अभीष्ट क्षेत्रफल है।

सांकेतिक भाषा में हम इसे निम्नलिखित प्रकार लिखते हैं

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} s_n =$$
 क्षेत्र PRSQP का क्षेत्रफल =
$$\int_a^b f(x) \, dx \qquad \dots (5)$$

इससे यह पता चलता है कि अभीष्ट क्षेत्रफल वक्र के नीचे के आयतों एवं वक्र के ऊपर के आयतों के बीच के किसी क्षेत्रफल का सीमित मान भी है। सुविधा के लिए हम प्रत्येक उपअंतराल के बायें किनारे पर वक्र की उँचाई के बराबर उँचाई वाले आयतों को लेंगे। अत: हम (5) को दुबारा निम्नलिखित रूप में लिखते हैं।

$$\int_{a}^{b} f(x)dx = \lim_{h \to 0} h[f(a) + f(a+h) + \dots + f(a+(n-1)h]$$

अथवा $\int_{a}^{b} f(x)dx = (b-a) \lim_{n \to \infty} \frac{1}{n} [f(a) + f(a+h) + ... + f(a+(n-1)h)] \dots (6)$

जहाँ
$$h = \frac{b-a}{n} \to 0 \ \text{यद} \quad n \to \infty$$

उपर्युक्त व्यंजक (6) योगफल की सीमा के रूप में निश्चित समाकलन की परिभाषा कहलाता है। िट्याणी किसी विशिष्ट अंतराल पर एक फलन के निश्चित समाकलन का मान फलन एवं अंतराल पर निर्भर करता है परंतु समाकलन के उस चर पर नहीं जिसका चयन हम स्वतंत्र चर को निरूपित करने के लिए करते हैं। यदि x के स्थान पर स्वतंत्र चर को t अथवा u से निर्दिष्ट किया जाता है तो हम समाकलन $\int_a^b f(x) \, dx$ के स्थान पर केवल समाकलन $\int_a^b f(t) \, dt$ अथवा $\int_a^b f(u) \, du$

उदाहरण 25 योगफल की सीमा के रूप में $\int_0^2 (x^2 + 1) dx$ का मान ज्ञात कीजिए।

लिखते हैं। अत: निश्चित समाकलन के लिए समाकलन चर एक मूक चर कहलाता है।

हल परिभाषा के अनुसार

$$\int_{a}^{b} f(x) dx = (b-a) \lim_{n \to \infty} \frac{1}{n} [f(a) + f(a+h) + ... + f(a+(n-1)h)]$$
जहाँ
$$h = \frac{b-a}{n}$$

इस उदाहरण में
$$a=0, b=2, f(x)=x^2+1, h=\frac{2-0}{n}=\frac{2}{n}$$

इसलिए
$$\int_{0}^{2} (x^{2} + 1) dx = 2 \lim_{n \to \infty} \frac{1}{n} [f(0) + f(\frac{2}{n}) + f(\frac{4}{n}) + \dots + f(\frac{2(n-1)}{n})]$$

$$= 2 \lim_{n \to \infty} \frac{1}{n} [1 + (\frac{2^{2}}{n^{2}} + 1) + (\frac{4^{2}}{n^{2}} + 1) + \dots + \left(\frac{(2n-2)^{2}}{n^{2}} + 1\right)]$$

$$= 2 \lim_{n \to \infty} \frac{1}{n} [(\underbrace{1 + 1 + \dots + 1}_{n \text{ upq}}) + \underbrace{\frac{1}{n^{2}} (2^{2} + 4^{2} + \dots + (2n-2)^{2})}]$$

$$= 2 \lim_{n \to \infty} \frac{1}{n} [n + \frac{2^{2}}{n^{2}} (1^{2} + 2^{2} + \dots + (n-1)^{2})]$$

$$= 2 \lim_{n \to \infty} \frac{1}{n} [n + \frac{4}{n^{2}} \frac{(n-1) n (2n-1)}{6}]$$

$$= 2 \lim_{n \to \infty} \frac{1}{n} [n + \frac{2}{3} \frac{(n-1) (2n-1)}{n}]$$

$$= 2 \lim_{n \to \infty} \frac{1}{n} [1 + \frac{2}{3} (1 - \frac{1}{n}) (2 - \frac{1}{n})] = 2 [1 + \frac{4}{3}] = \frac{14}{3}$$

उदाहरण 26 योगफल की सीमा के रूप में $\int_0^2 e^x dx$ का मान ज्ञात कीजिए। हल परिभाषा के अनुसार

$$\int_{0}^{2} e^{x} dx = (2-0) \lim_{n \to \infty} \frac{1}{n} \left[e^{0} + e^{\frac{2}{n}} + e^{\frac{4}{n}} + \dots + e^{\frac{2n-2}{n}} \right]$$

गुणोत्तर श्रेणी के n पदों के योगफल के सूत्र का उपयोग करते हुए जहाँ $a=1,\ r=e^n$, हम पाते हैं कि

$$\int_{0}^{2} e^{x} dx = 2 \lim_{n \to \infty} \frac{1}{n} \left[\frac{e^{\frac{2n}{n}} - 1}{e^{n} - 1} \right] = 2 \lim_{n \to \infty} \frac{1}{n} \left[\frac{e^{2} - 1}{\frac{2}{e^{n}} - 1} \right]$$

$$= \frac{2 (e^{2} - 1)}{\lim_{n \to \infty} \left[\frac{e^{2} - 1}{\frac{2}{n}} \right] \cdot 2} = e^{2} - 1 \qquad \left[\lim_{n \to \infty} \frac{(e^{h} - 1)}{h} = 1 \text{ के उपयोग स} \right]$$

प्रश्नावली 7.8

योगों की सीमा के रूप में निम्नलिखित निश्चित समाकलनों का मान ज्ञात कीजिए।

1.
$$\int_a^b x \, dx$$

1.
$$\int_a^b x \, dx$$
 2. $\int_0^5 (x+1) \, dx$ 3. $\int_2^3 x^2 \, dx$

$$3. \quad \int_2^3 x^2 \ dx$$

4.
$$\int_{1}^{4} (x^2 - x) dx$$

5.
$$\int_{-1}^{1} e^{x} dx$$

4.
$$\int_{1}^{4} (x^2 - x) dx$$
 5. $\int_{-1}^{1} e^x dx$ **6.** $\int_{0}^{4} (x + e^{2x}) dx$

7.8 कलन की आधारभूत प्रमेय (Fundamental Theorem of Calculus)

7.8.1 क्षेत्रफल फलन (Area function)

हमने $\int_a^b f(x) dx$ को वक्र y = f(x), x-अक्ष, एवं कोटियों x = a तथा x = b से घिरे क्षेत्र के क्षेत्रफल के रूप में परिभाषित किया है। मान लीजिए [a, b] में x कोई

बिंदु है तब $\int_{a}^{x} f(x) dx$ आकृति 7.3 में हल्का छायांकित क्षेत्र के क्षेत्रफल को निरूपित करता है [यहाँ यह मान लिया गया है कि $x \in [a, b]$ के लिए f(x) > 0 है। निम्नलिखित कथन सामान्यत: अन्य फलनों के लिए भी सत्य है। इस छायांकित क्षेत्र का क्षेत्रफल x के मान पर निर्भर है।

दूसरे शब्दों में इस छायांकित क्षेत्र का क्षेत्रफलx का एक फलन है। हम x के इस फलन को A(x)से निर्दिष्ट करते हैं। इस फलन A(x) को हम क्षेत्रफल फलन कहते हैं और यह हमें निम्नलिखित सूत्र से प्राप्त होता है।

$$A(x) = \int_{a}^{x} f(x) dx \qquad ... (1)$$

इस परिभाषा पर आधारित दो आधारभृत प्रमेय हैं। तथापि हम यहाँ पर केवल इनकी व्याख्या करेंगे क्योंकि इनकी उपपत्ति इस पाठ्यपुस्तक की सीमा के बाहर है।

7.8.2 प्रमेय 1 समाकलन गणित की प्रथम आधारभूत प्रमेय (First fundamental theorem of integral calculus)

मान लीजिए कि बंद अंतराल [a, b] पर f एक संतत फलन है और A(x) क्षेत्रफल फलन है। तब सभी $x \in [a, b]$ के लिए A'(x) = f(x)

7.8.3 समाकलन गणित की द्वितीय आधारभूत प्रमेय (Second fundamental theorem of integral calculus)

हम नीचे एक ऐसे महत्वपूर्ण प्रमेय की व्याख्या करते हैं जिसकी सहायता से हम प्रतिअवकलज का उपयोग करते हुए निश्चित समाकलनों का मान ज्ञात करते हैं।

प्रमेय 2 मान लीजिए कि बंद अंतराल [a,b] पर f एक संतत फलन है और f का प्रतिअवकलज \mathbf{F} है। तब $\int_a^b f(x) \, dx = [\mathbf{F}(x)]_a^b = \mathbf{F}(b) - \mathbf{F}(a)$

टिप्पणी

- 1. शब्दों में हम प्रमेय 2 को इस प्रकार व्यक्त करते हैं कि $\int_a^b f(x) \, dx = (f$ के प्रति अवकलज F का उच्च सीमा b पर मान) (उसी प्रति अवकलज का निम्न सीमा a पर मान)।
- 2. यह प्रमेय अत्यंत उपयोगी है क्योंकि यह हमें योगफल की सीमा ज्ञात किए बिना निश्चित समाकलन को ज्ञात करने की आसान विधि प्रदान करती है।
- एक निश्चित समाकलन ज्ञात करने में जिटल संक्रिया एक ऐसे फलन का प्राप्त करना है जिसका अवकलज दिया गया समाकल्य है। यह अवकलन और समाकलन के बीच संबंध को और मजबूत करता है।
- 4. $\int_{a}^{b} f(x) \, dx$ में, [a, b] पर फलन f का सुपरिभाषित एवं संतत होना आवश्यक है। उदाहरणतः निश्चित समाकलन $\int_{-2}^{3} x(x^2-1)^{\frac{1}{2}} \, dx$ की चर्चा करना भ्रांतिमूलक हैं क्योंकि बंद अंतराल [-2,3] के भाग -1 < x < 1 के लिए $f(x) = x(x^2-1)^2$ द्वारा अभिव्यक्त फलन f परिभाषित नहीं है। $\int_{a}^{b} f(x) \, dx$ ज्ञात करने के चरण (Steps for calculating $\int_{a}^{b} f(x) \, dx$)
- (i) अनिश्चित समाकलन $\int f(x) dx$ ज्ञात कीजिए। मान लीजिए यह F(x) है। समाकलन अचर C को लेने की आवश्यकता नहीं है क्योंकि यदि हम F(x) के स्थान पर F(x) + C पर विचार करें तो पाते हैं कि

$$\int_{a}^{b} f(x) \, dx = [F(x) + C]_{a}^{b} = [F(b) + C] - [F(a) + C] = F(b) - F(a)$$
 इस प्रकार निश्चित समाकलन का मान ज्ञात करने में स्वेच्छ अचर विलुप्त हो जाता है।

(ii) $[F(x)]_a^b = F(b) - F(a)$ ज्ञात कीजिए, जो कि $\int_a^b f(x) \, dx$ का मान है। अब हम कुछ उदाहरणों पर विचार करते हैं।

उदाहरण 28 निम्नलिखित समाकलनों का मान ज्ञात कीजिए।

(i)
$$\int_{2}^{3} x^{2} dx$$
 (ii) $\int_{4}^{9} \frac{\sqrt{x}}{(30 - x^{2})^{2}} dx$ (iii) $\int_{1}^{2} \frac{x dx}{(x+1)(x+2)}$

(iv)
$$\int_0^{\frac{\pi}{4}} \sin^3 2t \cos 2t \, dt$$

(i) मान लीजिए $I = \int_{2}^{3} x^{2} dx$ है। क्योंकि $\int x^{2} dx = \frac{x^{3}}{3} = F(x)$ इसलिए द्वितीय आधारभूत प्रमेय से हम पाते हैं कि

$$I = F(3) - F(2) = \frac{27}{3} - \frac{8}{3} = \frac{19}{3}$$

(ii) मान लीजिए कि $I = \int_4^9 \frac{\sqrt{x}}{(30-x^{\frac{3}{2}})^2} dx$ सर्वप्रथम हम समाकल्य का प्रतिअवकलज ज्ञात करते हैं।

$$30 - x^{\frac{3}{2}} = t$$
 रखने पर $-\frac{3}{2}\sqrt{x} \ dx = dt$ अथवा $\sqrt{x} \ dx = -\frac{2}{3} dt$

इस प्रकार
$$\int \frac{\sqrt{x}}{(30-x^2)^2} dx = -\frac{2}{3} \int \frac{dt}{t^2} = \frac{2}{3} \left[\frac{1}{t} \right] = \frac{2}{3} \left[\frac{1}{(30-x^2)^2} \right] = F(x)$$

इसलिए कलन की द्वितीय आधारभूत प्रमेय से हम पाते हैं:

$$I = F(9) - F(4) = \frac{2}{3} \left[\frac{1}{(30 - x^{\frac{3}{2}})} \right]_{4}^{9} = \frac{2}{3} \left[\frac{1}{(30 - 27)} - \frac{1}{30 - 8} \right] = \frac{2}{3} \left[\frac{1}{3} - \frac{1}{22} \right] = \frac{19}{99}$$

(iii) मान लीजिए
$$I = \int_{1}^{2} \frac{x \, dx}{(x+1)(x+2)}$$

आंशिक भिन्न का उपयोग करते हुए हम पाते हैं कि

$$\frac{x}{(x+1)(x+2)} = \frac{-1}{x+1} + \frac{2}{x+2}$$

इसलिए
$$\int \frac{x \, dx}{(x+1)(x+2)} = -\log|x+1| + 2\log|x+2| = F(x)$$

अतः कलन की द्वितीय आधारभूत प्रमेय से हम पाते हैं कि

$$I = F(2) - F(1) = [-\log 3 + 2\log 4] - [-\log 2 + 2\log 3]$$

$$= -3 \log 3 + \log 2 + 2 \log 4 = \log \left(\frac{32}{27}\right)$$

(iv) मान लीजिए,
$$I = \int_0^{\frac{\pi}{4}} \sin^3 2t \cos 2t \ dt$$
 . अब $\int \sin^3 2t \cos 2t \ dt$ पर विचार कीजिए $\sin 2t = u$ रखने पर $2 \cos 2t \ dt = du$ अथवा $\cos 2t \ dt = \frac{1}{2} \ du$

अत:
$$\int \sin^3 2t \cos 2t \ dt = \frac{1}{2} \int u^3 du$$

$$=\frac{1}{8}[u^4] = \frac{1}{8}\sin^4 2t = F(t)$$
 मान लीजिए

इसलिए कलन की द्वितीय आधारभूत प्रमेय से

$$I = F(\frac{\pi}{4}) - F(0) = \frac{1}{8} [\sin^4 \frac{\pi}{2} - \sin^4 0] = \frac{1}{8}$$

प्रश्नावली 7.9

1 से 20 तक के प्रश्नों में निश्चित समाकलनों का मान ज्ञात कीजिए।

1.
$$\int_{-1}^{1} (x+1) dx$$

2.
$$\int_{2}^{3} \frac{1}{x} dx$$

1.
$$\int_{-1}^{1} (x+1) dx$$
 2. $\int_{2}^{3} \frac{1}{x} dx$ 3. $\int_{1}^{2} (4x^3 - 5x^2 + 6x + 9) dx$

4.
$$\int_{0}^{\frac{\pi}{4}} \sin 2x \, dx$$
 5. $\int_{0}^{\frac{\pi}{2}} \cos 2x \, dx$ 6. $\int_{4}^{5} e^{x} dx$ 7. $\int_{0}^{\frac{\pi}{4}} \tan x \, dx$

5.
$$\int_{0}^{\frac{\pi}{2}} \cos 2x \, dx$$

$$6. \quad \int_{4}^{5} e^{x} dx$$

7.
$$\int_{0}^{\frac{\pi}{4}} \tan x \ dx$$

8.
$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \csc x \, dx$$
 9. $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$ 10. $\int_{0}^{1} \frac{dx}{1+x^2}$ 11. $\int_{2}^{3} \frac{dx}{x^2-1}$

9.
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$$

10.
$$\int_{0}^{1} \frac{dx}{1+x^2}$$

11.
$$\int_{2}^{3} \frac{dx}{x^2 - 1}$$

12.
$$\int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx$$

13.
$$\int_{2}^{3} \frac{x \, dx}{x^2 + 1}$$

12.
$$\int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx$$
 13. $\int_{2}^{3} \frac{x \, dx}{x^2 + 1}$ 14. $\int_{0}^{1} \frac{2x + 3}{5x^2 + 1} \, dx$ 15. $\int_{0}^{1} x \, e^{x^2} \, dx$

15.
$$\int_0^1 x e^{x^2} dx$$

16.
$$\int_{1}^{2} \frac{5x^{2}}{x^{2} + 4x + 3}$$
 17.
$$\int_{0}^{\frac{\pi}{4}} (2 \sec^{2} x + x^{3} + 2) dx$$

18.
$$\int_0^{\pi} (\sin^2 \frac{x}{2} - \cos^2 \frac{x}{2}) \, dx$$

19.
$$\int_0^2 \frac{6x+3}{x^2+4} \, dx$$

$$20. \int_0^1 (x e^x + \sin \frac{\pi x}{4}) \, dx$$

355

प्रश्न 21 एवं 22 में सही उत्तर का चयन कीजिए।

21.
$$\int_{1}^{\sqrt{3}} \frac{dx}{1+x^2}$$
 बराबर है:

- (A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$
- (D) $\frac{\pi}{12}$

22.
$$\int_0^{\frac{2}{3}} \frac{dx}{4+9x^2}$$
 बराबर है:

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{12}$ (C) $\frac{\pi}{24}$

7.9 प्रतिस्थापन द्वारा निश्चित समाकलनों का मान ज्ञात करना (Evaluation of Definite **Integrals by Substitution**)

पिछले परिच्छेदों में हमने अनिश्चित समाकलन ज्ञात करने की अनेक विधियों की चर्चा की है। अनिश्चित समाकलन ज्ञात करने की महत्वपूर्ण विधियों में एक विधि प्रतिस्थापन विधि है।

प्रतिस्थापन विधि से $\int_a^b f(x) \, dx$, का मान ज्ञात करने के लिए आवश्यक चरण निम्नलिखित है:

- 1. समाकलन के बारे में सीमाओं के बिना विचार कीजिए और y = f(x) अथवा x = g(y)प्रतिस्थापित कीजिए ताकि दिया हुआ समाकलन एक ज्ञात रूप में परिवर्तित हो जाए।
- 2. समाकलन अचर की व्याख्या किए बिना नए समाकल्य का नए चर के सापेक्ष समाकलन कीजिए।
- 3. नए चर के स्थान पर पुन: प्रतिस्थापन कीजिए और उत्तर को मूल चर के रूप में लिखिए।
- 4. चरण (3) से प्राप्त उत्तर का समाकलन की दी हुई सीमाओं पर मान ज्ञात कीजिए और उच्च सीमा वाले मान से निम्न सीमा वाले मान का अंतर ज्ञात कीजिए।

👉 टिप्पणी इस विधि को तीव्रतर बनाने के लिए हम निम्नलिखित प्रकार आगे बढ़ सकते हैं। चरण (1) एवं (2) को करने के बाद चरण (3) को करने की आवश्यकता नहीं है। यहाँ समाकलन को नए चर के रूप में रखा जाता है और समाकलन की सीमाओं को नए चर के अनुसार परिवर्तित कर लेते हैं ताकि हम सीधे अंतिम चरण की क्रिया कर सकें।

आइए इसे हम उदाहरणों से समझते हैं।

उदाहरण 29 $\int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} \ dx$ का मान ज्ञात कीजिए।

हल $t = x^5 + 1$, रखने पर $dt = 5x^4 dx$

इसलिए
$$\int 5x^4 \sqrt{x^5 + 1} \, dx = \int \sqrt{t} \, dt = \frac{2}{3} t^{\frac{3}{2}} = \frac{2}{3} (x^5 + 1)^{\frac{3}{2}}$$
अत:
$$\int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} \, dx = \frac{2}{3} \left[(x^5 + 1)^{\frac{3}{2}} \right]_{-1}^{1}$$

$$= \frac{2}{3} \left[(1^5 + 1)^{\frac{3}{2}} - \left((-1)^5 + 1 \right)^{\frac{3}{2}} \right]$$

$$= \frac{2}{3} \left[2^{\frac{3}{2}} - 0^{\frac{3}{2}} \right] = \frac{2}{3} (2\sqrt{2}) = \frac{4\sqrt{2}}{3}$$

विकल्पतः सर्वप्रथम हम समाकलन का रूपांतरण करते हैं और तब रूपांतरित समाकलन का नयी सीमाओं के अनुसार मान ज्ञात करते हैं।

मान लीजिए $t = x^5 + 1$. तब $dt = 5 x^4 dx$ नोट कीजिए कि जब x = -1 तो t = 0 और जब x = 1 तो t = 2

अत: जैसे-जैसे x,-1 से 1 तक परिवर्तित होता है वैसे-वैसे t, 0 से 2 तक परिवर्तित होता है।

इसलिए
$$\int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} \ dx = \int_{0}^{2} \sqrt{t} \ dt$$
 $2 \left[\frac{3}{2} \right]^2 + 2 \left[\frac{3}{2} \right] = 2$

$$= \frac{2}{3} \left[t^{\frac{3}{2}} \right]_0^2 = \frac{2}{3} \left[2^{\frac{3}{2}} - 0^{\frac{3}{2}} \right] = \frac{2}{3} (2\sqrt{2}) = \frac{4\sqrt{2}}{3}$$

उदाहरण 30 $\int_0^1 \frac{\tan^{-1} x}{1+x^2} dx$ का मान ज्ञात कीजिए।

हल मान लीजिए $t = \tan^{-1}x$, तब $dt = \frac{1}{1+x^2} dx$. जब x = 0 तो t = 0 और जब x = 1 तो $t = \frac{\pi}{4}$

अतः जैसे-जैसे x, 0 से 1 तक परिवर्तित होता है वैसे-वैसे t, 0 से $\frac{\pi}{4}$ तक परिवर्तित होता है।

इसलिए
$$\int_0^1 \frac{\tan^{-1} x}{1+x^2} dx = \int_0^{\frac{\pi}{4}} t dt \left[\frac{t^2}{2} \right]_0^4 = \frac{1}{2} \left[\frac{\pi^2}{16} - 0 \right] = \frac{\pi^2}{32}$$

प्रश्नावली 7.10

1 से 8 तक के प्रश्नों समाकलनों का मान प्रतिस्थापन का उपयोग करते हुए ज्ञात कीजिए।

1.
$$\int_0^1 \frac{x}{x^2 + 1} dx$$

1.
$$\int_0^1 \frac{x}{x^2 + 1} dx$$
 2. $\int_0^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos^5 \phi d\phi$ 3. $\int_0^1 \sin^{-1} \left(\frac{2x}{1 + x^2}\right) dx$

4.
$$\int_0^2 x \sqrt{x+2} \ dx \ (x+2=t^2 रखिए)$$

5.
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} dx$$

6.
$$\int_0^2 \frac{dx}{x + 4 - x^2}$$

7.
$$\int_{-1}^{1} \frac{dx}{x^2 + 2x + 5}$$

6.
$$\int_0^2 \frac{dx}{x+4-x^2}$$
 7. $\int_{-1}^1 \frac{dx}{x^2+2x+5}$ 8. $\int_1^2 \left(\frac{1}{x}-\frac{1}{2x^2}\right)e^{2x}dx$

प्रश्न 9 एवं 10 में सही उत्तर का चयन कीजिए।

9. समाकलन
$$\int_{\frac{1}{3}}^{1} \frac{(x-x^3)^{\frac{1}{3}}}{x^4} dx$$
 का मान है:

$$(C)$$
 3

10.
$$\forall t \in f(x) = \int_0^x t \sin t \, dt$$
, $\forall t \in f'(x)$

(A)
$$\cos x + x \sin x$$
 (B) $x \sin x$

(C)
$$x \cos x$$

(D)
$$\sin x + x \cos x$$

7.10 निश्चित समाकलनों के कुछ गुणधर्म (Some Properties of Definite Integrals)

निश्चित समाकलनों के कुछ महत्वपूर्ण गुणधर्मों को हम नीचे सूचीबद्ध करते हैं। ये गुण धर्म निश्चित समाकलनों का मान आसानी से ज्ञात करने में उपयोगी होंगे।

$$\mathbf{P_0}: \quad \int_a^b f(x) \, dx = \int_a^b f(t) \, dt$$

$$\mathbf{P}_1$$
: $\int_a^b f(x) dx = -\int_b^a f(x) dx$, विशिष्टतया $\int_a^a f(x) dx = 0$

$$\mathbf{P}_2$$
: $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$, a,b,c वास्तविक संख्याएँ हैं।

$$\mathbf{P}_3: \int_a^b f(x) dx = \int_a^b f(a+b-x) dx$$

$$\mathbf{P}_{4}: \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
 (ध्यान दीजिए कि P_{4}, P_{3} की एक विशिष्ट स्थिति है)

$$P_5: \int_0^{2a} f(x) dx = \int_0^a f(x) dx + \int_0^a f(2a - x) dx$$

 P_7 : (i) $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$, यदि f एक सम फलन है अर्थात् यदि f(-x) = f(x)

(ii)
$$\int_{-a}^{a} f(x) dx = 0$$
, यदि f एक विषम फलन है अर्थात् यदि $f(-x) = -f(x)$

एक-एक करके हम इन गुणधर्मों की उपपत्ति करते हैं।

P₀ की उपपत्ति x = t प्रतिस्थापन करने पर सीधे प्राप्त होती है।

 ${f P_1}$ **को उपपत्ति** मान लीजिए कि f का प्रतिअवकलज ${f F}$ है। तब कलन की द्वितीय आधारभूत प्रमेय से हम पाते हैं कि $\int_a^b f(x) dx = {f F}(b) - {f F}(a) = -[{f F}(a) - {f F}(b)] = -\int_a^a f(x) dx$,

यहाँ हम प्रेक्षित करते हैं कि यदि a=b, तब $\int_a^a f(x) dx = 0$

 \mathbf{P} , की उपपत्ति मान लीजिए कि f का प्रतिअवकलज \mathbf{F} है, तब

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \qquad \dots (1)$$

$$\int_{a}^{c} f(x) dx = F(c) - F(a) \qquad \dots (2)$$

और

$$\int_{c}^{b} f(x) dx = F(b) - F(c)$$
 ... (3)

(2) और (3) को जोड़ने पर हम पाते हैं कि

$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = F(b) - F(a) = \int_{a}^{b} f(x) dx$$

इससे गुणधर्म P, सिद्ध होता है।

 $\mathbf{P_3}$ की उपपत्ति मान लीजिए कि t=a+b-x. तब dt=-dx. जब x=a तब, t=b और जब x=b तब t=a. इसलिए

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(a+b-t) dt$$
$$= \int_{a}^{b} f(a+b-t) dt \quad (P_1 + \vec{H})$$
$$= \int_{a}^{b} f(a+b-x) dx \quad (P_0 + \vec{H})$$

 ${\bf P_4}$ की उपपत्ति t=a-x रखिए और ${\bf P_3}$ की तरह आगे बढ़िए। अब dt=-dx, जब $x=a,\,t=0$

359

$$\int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_a^{2a} f(x) \, dx$$

दाएँ पक्ष के दूसरे समाकलन में t=2a-x प्रतिस्थापित कीजिए, तब dt=-dx और जब x=a, तब t=a और जब x=2a, तब t=0 और x=2a-t भी प्राप्त होता है। इसलिए दूसरा समाकलन

$$\int_{a}^{2a} f(x) \, dx = -\int_{a}^{0} f(2a - t) \, dt$$
$$= \int_{0}^{a} f(2a - t) \, dt = \int_{0}^{a} f(2a - x) \, dx \text{ प्राप्त होता है}$$

अत:

$$\int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a - x) \, dx$$

P की उपपत्ति P , का उपयोग करते हुए हम पाते हैं कि

$$\int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a - x) \, dx \qquad \dots (1)$$

अब यदि

f(2a-x) = f(x), तो (1) निम्नलिखित रूप में परिवर्तित हो जाता है

$$\int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(x) \, dx = 2 \int_0^a f(x) \, dx$$

और यदि

f(2a-x)=-f(x), तब (1) निम्नलिखित रूप में परिवर्तित हो जाता हैं

$$\int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx - \int_0^a f(x) \, dx = 0$$

P, की उपपत्ति

 P_2 का उपयोग करते हुए हम पाते हैं कि $\int_{-a}^a f(x) \, dx = \int_{-a}^0 f(x) \, dx + \int_0^a f(x) \, dx$ दायें पक्ष के प्रथम समाकलन में t = -x रखने पर

dt=-dx जब x=-a तब t=a और जब x=0, तब t=0 और x=-t भी प्राप्त होता है।

इसलिए

$$\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx$$

$$= \int_{0}^{a} f(-x) dx + \int_{0}^{a} f(x) dx \qquad (P_{0} \vec{\forall}) \qquad ... (1)$$

(i) अब यदि f एक सम फलन है तब f(-x) = f(x) तो (1) से प्राप्त होता है कि

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

360 गणित

(ii) यदि f विषम फलन है तब f(-x) = -f(x) तो (1) से प्राप्त होता है कि

$$\int_{-a}^{a} f(x) dx = -\int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx = 0$$

उदाहरण 31 $\int_{-1}^{2} \left| x^3 - x \right| dx$ का मान ज्ञात कीजिए।

हल हम देखते हैं कि [-1,0] पर $x^3-x\geq 0$ और [0,1] पर $x^3-x\leq 0$ और [1,2] पर $x^3-x\geq 0$ तब हम लिख सकते हैं कि

$$\int_{-1}^{2} \left| x^{3} - x \right| dx = \int_{-1}^{0} (x^{3} - x) dx + \int_{0}^{1} - (x^{3} - x) dx + \int_{1}^{2} (x^{3} - x) dx$$

$$= \int_{-1}^{0} (x^{3} - x) dx + \int_{0}^{1} (x - x^{3}) dx + \int_{1}^{2} (x^{3} - x) dx$$

$$= \left[\frac{x^{4}}{4} - \frac{x^{2}}{2} \right]_{-1}^{0} + \left[\frac{x^{2}}{2} - \frac{x^{4}}{4} \right]_{0}^{1} + \left[\frac{x^{4}}{4} - \frac{x^{2}}{2} \right]_{1}^{2}$$

$$= -\left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{4} \right) + \left(4 - 2 \right) - \left(\frac{1}{4} - \frac{1}{2} \right)$$

$$= -\frac{1}{4} + \frac{1}{2} + \frac{1}{2} - \frac{1}{4} + 2 - \frac{1}{4} + \frac{1}{2} = \frac{3}{2} - \frac{3}{4} + 2 = \frac{11}{4}$$

उदाहरण 32 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \, dx$ का मान ज्ञात कीजिए।

हल हम प्रेक्षित करते हैं कि $\sin^2 x$ एक सम फलन है।

इसलिए
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \, dx = 2 \int_0^{\frac{\pi}{4}} \sin^2 x \, dx \qquad [P_7(1) \vec{\aleph}]$$
$$= 2 \int_0^{\frac{\pi}{4}} \frac{(1 - \cos 2x)}{2} \, dx = \int_0^{\frac{\pi}{4}} (1 - \cos 2x) \, dx$$
$$= \left[x - \frac{1}{2} \sin 2x \right]_0^{\frac{\pi}{4}} = \left(\frac{\pi}{4} - \frac{1}{2} \sin \frac{\pi}{2} \right) - 0 = \frac{\pi}{4} - \frac{1}{2}$$

हल मान लीजिए कि
$$I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} \, dx = \int_0^\pi \frac{(\pi - x) \sin (\pi - x) \, dx}{1 + \cos^2 (\pi - x)} \tag{P_4 से)}$$

$$= \int_0^{\pi} \frac{(\pi - x)\sin x \, dx}{1 + \cos^2 x} = \pi \int_0^{\pi} \frac{\sin x \, dx}{1 + \cos^2 x} - I$$

अथवा

$$2I = \pi \int_0^{\pi} \frac{\sin x \, dx}{1 + \cos^2 x}$$

अथवा

$$I = \frac{\pi}{2} \int_0^{\pi} \frac{\sin x \, dx}{1 + \cos^2 x}$$

 $\cos x = t$ रखने पर $-\sin x \, dx = dt$

जब x=0 तब t=1 और जब $x=\pi$ तब t=-1 है। इसलिए हम पाते हैं कि

$$I = \frac{-\pi}{2} \int_{1}^{-1} \frac{dt}{1+t^{2}} = \frac{\pi}{2} \int_{-1}^{1} \frac{dt}{1+t^{2}}$$
 (P₁ \vec{\vec{4}})

$$=\pi\int_{0}^{1}\frac{dt}{1+t^{2}} \text{ क्योंकि } \frac{1}{1+t^{2}} \text{ एक समफलन है} \qquad \qquad (P_{7}\text{ स})$$

$$= \pi \left[\tan^{-1} t \right]_0^1 = \pi \left[\tan^{-1} 1 - \tan^{-1} 0 \right] = \pi \left[\frac{\pi}{4} - 0 \right] = \frac{\pi^2}{4}$$

उदाहरण 34 $\int_{-1}^{1} \sin^5 x \cos^4 x \, dx$ का मान ज्ञात कीजिए।

हल मान लीजिए कि $I = \int_{-1}^{1} \sin^5 x \cos^4 x \, dx$ और $f(x) = \sin^5 x \cos^4 x$

तब $f(-x)=\sin^5(-x)\cos^4(-x)=-\sin^5x\cos^4x=-f(x)$, अर्थात् f एक विषम फलन है इसिलए I=0 $[P_7(ii)]$ से]

उदाहरण 35 $\int_0^{\frac{\pi}{2}} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx$ का मान ज्ञात कीजिए।

हल मान लीजिए कि
$$I = \int_0^{\frac{\pi}{2}} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx$$
 ... (1)

$$I = \int_0^{\frac{\pi}{2}} \frac{\sin^4(\frac{\pi}{2} - x)}{\sin^4(\frac{\pi}{2} - x) + \cos^4(\frac{\pi}{2} - x)} dx$$
 (P₄ \vec{\vec{4}})

$$= \int_0^{\frac{\pi}{2}} \frac{\cos^4 x}{\cos^4 x + \sin^4 x} dx \qquad \dots (2)$$

(1) और (2) को जोड़ने पर हम पाते हैं कि

$$2I = \int_0^{\frac{\pi}{2}} \frac{\sin^4 x + \cos^4 x}{\sin^4 x + \cos^4 x} dx = \int_0^{\frac{\pi}{2}} dx = [x]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$$

अत:

$$I = \frac{\pi}{\Delta}$$

उदाहरण 36 $\int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}}$ का मान ज्ञात कीजिए।

हल मान लीजिए कि
$$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}} = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x} \, dx}{\sqrt{\cos x} + \sqrt{\sin x}}$$
 ... (1)

तब

$$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos\left(\frac{\pi}{3} + \frac{\pi}{6} - x\right) dx}}{\sqrt{\cos\left(\frac{\pi}{3} + \frac{\pi}{6} - x\right)} + \sqrt{\sin\left(\frac{\pi}{3} + \frac{\pi}{6} - x\right)}}$$
 (P₃ स̄)

$$= \int_{\frac{\pi}{c}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx \qquad \dots (2)$$

(1) और (2) को जोड़ने पर हम पाते हैं कि
$$2I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} dx = \left[x\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}$$

अत:

$$I = \frac{\pi}{12}$$

उदाहरण 37 $\int_0^{\frac{\pi}{2}} \log \sin x \, dx$ का मान ज्ञात कीजिए।

हल मान लीजिए कि $I = \int_0^{\frac{\pi}{2}} \log \sin x \ dx$

বৰ $I = \int_0^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2} - x \right) dx = \int_0^{\frac{\pi}{2}} \log \cos x \, dx \tag{P_4 स}$

I, के दोनों मानों को जोड़ने पर हम पाते हैं

$$2I = \int_0^{\frac{\pi}{2}} (\log \sin x + \log \cos x) dx$$

$$= \int_0^{\frac{\pi}{2}} (\log \sin x \cos x + \log 2 - \log 2) dx (\log 2 \text{ जोड़ने एवं घटाने पर})$$

$$= \int_0^{\frac{\pi}{2}} \log \sin 2x dx - \int_0^{\frac{\pi}{2}} \log 2 dx \qquad (क्यों?)$$

प्रथम समाकलन में 2x=t रखने पर $2\ dx=dt$ जब x=0 तो t=0 और जब $x=\frac{\pi}{2}$ तो $t=\pi$

इसलिए
$$2I = \frac{1}{2} \int_0^{\pi} \log \sin t \ dt - \frac{\pi}{2} \log 2$$

$$= \frac{2}{2} \int_0^{\frac{\pi}{2}} \log \sin t \ dt - \frac{\pi}{2} \log 2 \ [P_6 \ \text{सं} \ \text{क्योंकि} \ \sin (\pi - t) = \sin t)$$

$$= \int_0^{\frac{\pi}{2}} \log \sin x \ dx - \frac{\pi}{2} \log 2 \ (\ \text{चर} \ t \ \text{को} \ x \ \text{में} \ \text{परिवर्तित करने} \ \text{पर})$$

$$= I - \frac{\pi}{2} \log 2$$

अत: $\int_0^{\frac{\pi}{2}} \log \sin x \, dx = \frac{-\pi}{2} \log 2$

प्रश्नावली 7.11

निश्चित समाकलनों के गुणधर्मों का उपयोग करते हुए 1 से 19 तक के प्रश्नों में समाकलनों का मान ज्ञात कीजिए।

1.
$$\int_0^{\frac{\pi}{2}} \cos^2 x \, dx$$
 2.
$$\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx$$
 3.
$$\int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{3}{2}} x \, dx}{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x}$$

4.
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos^{5} x \, dx}{\sin^{5} x + \cos^{5} x}$$
 5.
$$\int_{-5}^{5} |x + 2| \, dx$$
 6.
$$\int_{2}^{8} |x - 5| \, dx$$

7.
$$\int_0^1 x (1-x)^n dx$$

7.
$$\int_0^1 x (1-x)^n dx$$
 8. $\int_0^{\frac{\pi}{4}} \log(1+\tan x) dx$ 9. $\int_0^2 x \sqrt{2-x} dx$

9.
$$\int_0^2 x \sqrt{2-x} \, dx$$

10.
$$\int_0^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) dx$$

11.
$$\int_{-\pi}^{\frac{\pi}{2}} \sin^2 x \, dx$$

$$12. \quad \int_0^\pi \frac{x \ dx}{1 + \sin x}$$

12.
$$\int_0^{\pi} \frac{x \, dx}{1 + \sin x}$$
 13.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^7 x \, dx$$
 14.
$$\int_0^{2\pi} \cos^5 x \, dx$$

14.
$$\int_0^{2\pi} \cos^5 x \, dx$$

15.
$$\int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx$$
 16.
$$\int_0^{\pi} \log (1 + \cos x) dx$$
 17.
$$\int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx$$

18.
$$\int_0^4 |x-1| dx$$

19. दर्शाइए कि
$$\int_0^a f(x)g(x) \, dx = 2 \int_0^a f(x) \, dx$$
, यदि f और g को $f(x) = f(a-x)$ एवं $g(x) + g(a-x) = 4$ के रूप में परिभाषित किया गया है।

प्रश्न 20 एवं 21 में सही उत्तर का चयन कीजिए।

20.
$$\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} (x^3 + x \cos x + \tan^5 x + 1) dx$$
 का मान है:
(A) 0 (B) 2 (C) π (D) 1

21.
$$\int_0^{\frac{\pi}{2}} \log \left(\frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx$$
 का मान है:

(A) 2 (B)
$$\frac{3}{4}$$

विविध उदाहरण

उदाहरण 38 $\int \cos 6x \sqrt{1+\sin 6x} dx$ ज्ञात कीजिए।

हल $t = 1 + \sin 6x$, रखने पर $dt = 6 \cos 6x dx$

इसलिए
$$\int \cos 6x \sqrt{1 + \sin 6x} \, dx = \frac{1}{6} \int t^{\frac{1}{2}} dt$$
$$= \frac{1}{6} \times \frac{2}{3} (t)^{\frac{3}{2}} + C = \frac{1}{9} (1 + \sin 6x)^{\frac{3}{2}} + C$$

उदाहरण 39
$$\int \frac{(x^4-x)^{\frac{1}{4}}}{x^5} dx$$
 ज्ञात कीजिए।

हल हम प्राप्त करते हैं कि
$$\int \frac{(x^4 - x)^{\frac{1}{4}}}{x^5} dx = \int \frac{(1 - \frac{1}{x^3})^{\frac{1}{4}}}{x^4} dx$$

अब
$$1 - \frac{1}{x^3} = 1 - x^{-3} = t$$
, रखने पर $\frac{3}{x^4} dx = dt$

इसलिए
$$\int \frac{(x^4 - x)^{\frac{1}{4}}}{x^5} \, dx = \frac{1}{3} \int t^{\frac{1}{4}} \, dt$$

$$= \frac{1}{3} \times \frac{4}{5} t^{\frac{5}{4}} + C = \frac{4}{15} \left(1 - \frac{1}{x^3} \right)^{\frac{5}{4}} + C$$

उदाहरण 40
$$\int \frac{x^4 dx}{(x-1)(x^2+1)}$$
 ज्ञात कीजिए।

हल हम प्राप्त करते हैं कि
$$\frac{x^4}{(x-1)(x^2+1)} = (x+1) + \frac{1}{x^3 - x^2 + x - 1}$$

$$= (x+1) + \frac{1}{(x-1)(x^2+1)} \qquad \dots (1)$$

अब
$$\frac{1}{(x-1)(x^2+1)} = \frac{A}{(x-1)} + \frac{Bx+C}{(x^2+1)} \text{ के रूप में अभिव्यक्त करते हैं ... (2)}$$

इसलिए
$$1 = A (x^2 + 1) + (Bx + C) (x - 1)$$
$$= (A + B) x^2 + (C - B) x + A - C$$

दोनों पक्षों के गुणांकों की तुलना करने पर हम पाते हैं कि A + B = 0, C - B = 0 और

$$A-C=1$$
, जिससे प्राप्त होता है कि $A=\frac{1}{2}, B=C=-\frac{1}{2}$

A, B एवं C का मान (2) में प्रतिस्थापित करने पर हम पाते हैं कि

$$\frac{1}{(x-1)(x^2+1)} = \frac{1}{2(x-1)} - \frac{1}{2} \frac{x}{(x^2+1)} - \frac{1}{2(x^2+1)} \dots (3)$$

(3) को (1) में प्रतिस्थापित करने पर हम पाते हैं कि

$$\frac{x^4}{(x-1)(x^2+x+1)} = (x+1) + \frac{1}{2(x-1)} - \frac{1}{2(x^2+1)} - \frac{1}{2(x^2+1)}$$

इसलिए

$$\int \frac{x^4}{(x-1)(x^2+x+1)} dx = \frac{x^2}{2} + x + \frac{1}{2} \log|x-1| - \frac{1}{4} \log(x^2+1) - \frac{1}{2} \tan^{-1} x + C$$

उदाहरण 41
$$\int \left[\log (\log x) + \frac{1}{(\log x)^2} \right] dx$$
 ज्ञात कीजिए

हल मान लीजिए
$$I = \int \left[\log (\log x) + \frac{1}{(\log x)^2} \right] dx$$

$$= \int \log(\log x) \, dx + \int \frac{1}{(\log x)^2} \, dx$$

आइए, प्रथम समाकलन में 1 को द्वितीय फलन के रूप में लेते हैं। तब खंडश: समाकलन से हम पाते हैं कि

$$I = x \log(\log x) - \int \frac{1}{x \log x} x \, dx + \int \frac{dx}{(\log x)^2}$$
$$= x \log(\log x) - \int \frac{dx}{\log x} + \int \frac{dx}{(\log x)^2} \qquad \dots (1)$$

पुन: $\int \frac{dx}{\log x}$, पर विचार कीजिए, 1 को द्वितीय फलन के रूप में लीजिए और खंडश: विधि द्वारा समाकलन कीजिए, इस प्रकार हम पाते हैं कि

$$\int \frac{dx}{\log x} = \left[\frac{x}{\log x} - \int x \left\{ -\frac{1}{(\log x)^2} \left(\frac{1}{x} \right) \right\} dx \right] \qquad \dots (2)$$

(2) को (1), में रखने पर हम पाते हैं

$$I = x \log(\log x) - \frac{x}{\log x} - \int \frac{dx}{(\log x)^2} + \int \frac{dx}{(\log x)^2}$$
$$= x \log(\log x) - \frac{x}{\log x} + C$$

उदाहरण 42
$$\int \left[\sqrt{\cot x} + \sqrt{\tan x}\right] dx$$
 ज्ञात कीजिए।

हल हम पाते हैं कि
$$I = \int \left[\sqrt{\cot x} + \sqrt{\tan x} \right] dx = \int \sqrt{\tan x} (1 + \cot x) dx$$

अब

$$\tan x = t^2$$
, रखने पर $\sec^2 x \, dx = 2t \, dt$

अथवा

$$dx = \frac{2t \ dt}{1+t^4}$$

तब

$$I = \int t \left(1 + \frac{1}{t^2} \right) \frac{2t}{\left(1 + t^4 \right)} dt$$

$$=2\int \frac{(t^2+1)}{t^4+1} dt = 2\int \frac{\left(1+\frac{1}{t^2}\right) dt}{\left(t^2+\frac{1}{t^2}\right)} = 2\int \frac{\left(1+\frac{1}{t^2}\right) dt}{\left(t-\frac{1}{t}\right)^2+2}$$

पुन:

$$t-\frac{1}{t}=y$$
, रखने पर $\left(1+\frac{1}{t^2}\right)dt=dy$

तब
$$I = 2\int \frac{dy}{y^2 + (\sqrt{2})^2} = \sqrt{2} \tan^{-1} \frac{y}{\sqrt{2}} + C = \sqrt{2} \tan^{-1} \frac{\left(t - \frac{1}{t}\right)}{\sqrt{2}} + C$$
$$= \sqrt{2} \tan^{-1} \left(\frac{t^2 - 1}{\sqrt{2}t}\right) + C = \sqrt{2} \tan^{-1} \left(\frac{\tan x - 1}{\sqrt{2\tan x}}\right) + C$$

उदाहरण 43 $\int \frac{\sin 2x \cos 2x \, dx}{\sqrt{9 - \cos^4(2x)}}$ ज्ञात कीजिए।

हल मान लीजिए कि
$$I = \int \frac{\sin 2x \cos 2x}{\sqrt{9 - \cos^4 2x}} dx$$

अब

$$\cos^2(2x) = t$$
 रखने पर $4 \sin 2x \cos 2x dx = -dt$

इसलिए
$$\mathrm{I} = -\frac{1}{4} \int \frac{dt}{\sqrt{9-t^2}} = -\frac{1}{4} \sin^{-1} \left(\frac{t}{3} \right) + \mathrm{C} = -\frac{1}{4} \sin^{-1} \left[\frac{1}{3} \cos^2 2x \right] + \mathrm{C}$$

उदाहरण 44 $\int_{-1}^{\frac{3}{2}} |x \sin(\pi x)| dx$ का मान ज्ञात कीजिए।

हल यहाँ
$$f(x) = |x \sin \pi x| = \begin{cases} x \sin \pi x, -1 \le x \le 1$$
 के लिए
$$-x \sin \pi x, 1 \le x \le \frac{3}{2}$$
 के लिए

इसलिए

$$\int_{-1}^{\frac{3}{2}} |x \sin \pi x| dx = \int_{-1}^{1} x \sin \pi x dx + \int_{1}^{\frac{3}{2}} -x \sin \pi x dx$$

 $= \int_{-1}^{1} x \sin \pi x \, dx - \int_{1}^{\frac{3}{2}} x \sin \pi x \, dx$

दायें पक्ष के दोनों समाकलनों का समाकलन करने पर हम पाते हैं कि

$$\int_{-1}^{\frac{3}{2}} |x \sin \pi x| dx = \left[\frac{-x \cos \pi x}{\pi} + \frac{\sin \pi x}{\pi^2} \right]_{-1}^{1} - \left[\frac{-x \cos \pi x}{\pi} + \frac{\sin \pi x}{\pi^2} \right]_{1}^{3}$$
$$= \frac{2}{\pi} - \left[-\frac{1}{\pi^2} - \frac{1}{\pi} \right] = \frac{3}{\pi} + \frac{1}{\pi^2}$$

उदाहरण 45 $\int_0^{\pi} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x}$ का मान ज्ञात कीजिए।

हल मान लोजिए कि
$$I = \int_0^\pi \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \int_0^\pi \frac{(\pi - x) \, dx}{a^2 \cos^2 (\pi - x) + b^2 \sin^2 (\pi - x)}$$

(P,के उपयोग से)

$$= \pi \int_0^{\pi} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} - \int_0^{\pi} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x}$$
$$= \pi \int_0^{\pi} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} - I$$

अत:

$$2I = \pi \int_0^{\pi} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$$

$$I = \frac{\pi}{2} \int_0^{\pi} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{\pi}{2} \cdot 2 \int_0^{\frac{\pi}{2}} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$$
(P₄ के उपयोग से)

$$= \pi \left[\int_{0}^{\frac{\pi}{4}} \frac{dx}{a^{2} + \cos^{2}x + b^{2} \sin^{2}x} + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{a^{2} + \cos^{2}x + b^{2} \sin^{2}x} \right]$$

$$= \pi \left[\int_{0}^{\frac{\pi}{4}} \frac{\sec^{2}x \, dx}{a^{2} + b^{2} \tan^{2}x} + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\csc^{2}x \, dx}{a^{2} \cot^{2}x + b^{2}} \right]$$

$$= \pi \left[\int_{0}^{1} \frac{dt}{a^{2} + b^{2} + t^{2}} - \int_{1}^{0} \frac{dt}{a^{2}u^{2} + b^{2}} \right] (\text{Then } \tan x = t \text{ show } \cot x = u)$$

$$= \frac{\pi}{ab} \left[\tan^{-1} \frac{bt}{a} \right]_{0}^{1} - \frac{\pi}{ab} \left[\tan^{-1} \frac{au}{b} \right]_{1}^{0}$$

$$= \frac{\pi}{ab} \left[\tan^{-1} \frac{b}{a} + \tan^{-1} \frac{a}{b} \right]$$

$$= \frac{\pi^{2}}{2ab}$$

अध्याय ७ पर विविध प्रश्नावली

1 से 24 तक के प्रश्नों के फलनों का समाकलन कीजिए।

$$1. \quad \frac{1}{x-x^3}$$

1.
$$\frac{1}{x-x^3}$$
 2. $\frac{1}{\sqrt{x+a}+\sqrt{x+b}}$

3.
$$\frac{1}{x\sqrt{ax-x^2}}$$
 [संकेत : $x=\frac{a}{t}$ रखिए]

4.
$$\frac{1}{x^2(x^4+1)^{\frac{3}{4}}}$$

5.
$$\frac{1}{x^{\frac{1}{2}} + x^3}$$
 [संकेत: $\frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{3}}} = \frac{1}{x^3 \left(1 + x^6\right)}$, $x = t^6$ रखिए]

6.
$$\frac{5x}{(x+1)(x^2+9)}$$

7.
$$\frac{\sin x}{\sin (x-a)}$$

6.
$$\frac{5x}{(x+1)(x^2+9)}$$
 7. $\frac{\sin x}{\sin (x-a)}$ 8. $\frac{e^{5\log x} - e^{4\log x}}{e^{3\log x} - e^{2\log x}}$

9.
$$\frac{\cos x}{\sqrt{4-\sin^2 x}}$$
 10. $\frac{\sin^8 x - \cos^8 x}{1-2\sin^2 x \cos^2 x}$ 11. $\frac{1}{\cos(x+a)\cos(x+b)}$

12.
$$\frac{x^3}{\sqrt{1-x^8}}$$
 13. $\frac{e^x}{(1+e^x)(2+e^x)}$ 14. $\frac{1}{(x^2+1)(x^2+4)}$

15.
$$\cos^3 x \ e^{\log \sin x}$$
 16. $e^{3 \log x} (x^4 + 1)^{-1}$ **17.** $f'(ax + b) [f(ax + b)]^n$

18.
$$\frac{1}{\sqrt{\sin^3 x \sin(x+\alpha)}}$$
 19. $\frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}}$, $(x \in [0, 1])$

20.
$$\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$$
 21. $\frac{2+\sin 2x}{1+\cos 2x}e^x$ 22. $\frac{x^2+x+1}{(x+1)^2(x+2)}$

23.
$$\tan^{-1} \sqrt{\frac{1-x}{1+x}}$$
 24. $\frac{\sqrt{x^2+1} \left[\log (x^2+1) - 2 \log x \right]}{x^4}$

25 से 33 तक के प्रश्नों में निश्चित समाकलनों का मान ज्ञात कीजिए।

25.
$$\int_{\frac{\pi}{2}}^{\pi} e^{x} \left(\frac{1 - \sin x}{1 - \cos x} \right) dx$$
 26.
$$\int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos^{4} x + \sin^{4} x} dx$$
 27.
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos^{2} x dx}{\cos^{2} x + 4 \sin^{2} x}$$

28.
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx$$
 29.
$$\int_{0}^{1} \frac{dx}{\sqrt{1 + x} - \sqrt{x}}$$
 30.
$$\int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16\sin 2x} dx$$

31.
$$\int_0^{\frac{\pi}{2}} \sin 2x \tan^{-1}(\sin x) dx$$
 32. $\int_0^{\frac{\pi}{2}} \frac{x \tan x}{\sec x + \tan x} dx$

33.
$$\int_{1}^{4} (|x-1|+|x-2|+|x-3|) dx$$

निम्नलिखित को सिद्ध कीजिए (प्रश्न 34 से 39 तक)।

34.
$$\int_{1}^{3} \frac{dx}{x^{2}(x+1)} = \frac{2}{3} + \log \frac{2}{3}$$
 35.
$$\int_{0}^{1} x e^{x} dx = 1$$

36.
$$\int_{-1}^{1} x^{17} \cos^4 x \, dx = 0$$
 37.
$$\int_{0}^{\frac{\pi}{2}} \sin^3 x \, dx = \frac{2}{3}$$

38.
$$\int_0^{\frac{\pi}{4}} 2 \tan^3 x \, dx = 1 - \log 2$$
 39.
$$\int_0^1 \sin^{-1} x \, dx = \frac{\pi}{2} - 1$$

40. योगफल की सीमा के रूप में $\int_0^1 e^{2-3x} dx$ का मान ज्ञात कीजिए। 41 से 44 तक के प्रश्नों में सही उत्तर का चयन कीजिए।

41.
$$\int \frac{dx}{e^x + e^{-x}}$$
 बराबर है:

(A) $tan^{-1}(e^x) + C$

- (B) $tan^{-1} (e^{-x}) + C$
- (C) $\log (e^x e^{-x}) + C$
- (D) $\log (e^x + e^{-x}) + C$

42. $\int \frac{\cos 2x}{(\sin x + \cos x)^2} dx$ बराबर है:

(A)
$$\frac{-1}{\sin x + \cos x} + C$$

- (B) $\log |\sin x + \cos x| + C$
- (C) $\log |\sin x \cos x| + C$
- (D) $\frac{1}{(\sin x + \cos x)^2}$

- (A) $\frac{a+b}{2} \int_a^b f(b-x) \, dx$
- (B) $\frac{a+b}{2} \int_a^b f(b+x) dx$
- (C) $\frac{b-a}{2} \int_a^b f(x) dx$
- (D) $\frac{a+b}{2} \int_a^b f(x) dx$

44. $\int_0^1 \tan^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$ का मान है:

- (A) 1
- (B) 0
- (C) -1
- (D) $\frac{\pi}{4}$

सारांश

समाकलन, अवकलन का व्युत्क्रम प्रक्रम है। अवकलन गणित में हमें एक फलन दिया हुआ होता है और हमें इस फलन का अवकलज अथवा अवकल ज्ञात करना होता है परंतु समाकलन गणित में हमें एक ऐसा फलन ज्ञात करना होता है जिसका अवकल दिया हुआ होता है। अत: समाकलन एक ऐसा प्रक्रम है जो कि अवकलन का व्युत्क्रम है।

मान लीजिए कि $\frac{d}{dx}F(x) = f(x)$ तब हम $\int f(x) dx = F(x) + C$ लिखते हैं। ये

समाकलन अनिश्चित समाकलन अथवा व्यापक समाकलन कहलाते हैं। C समाकलन अचर कहलाता है। इन सभी समाकलनों में एक अचर का अंतर होता है।

- ज्यामिति दृष्टि से अनिश्चित समाकलन वक्रों के परिवार का समूह है जिसमें प्रत्येक सदस्य
 y-अक्ष के अनुदिश ऊपर की तरफ़ अथवा नीचे की तरफ़ स्वयं के समांतर स्थानांतरित
 करके प्राप्त किया जा सकता है।
- 🔷 अनिश्चित समाकलन के कुछ गुणधर्म निम्नलिखित है।

1.
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

2. किसी भी वास्तविक संख्या k, के लिए $\int k \ f(x) \ dx = k \int f(x) \ dx$ अधिक व्यापकतः, यदि $f_1, f_2, f_3, ..., f_n$, फलन हैं तथा $k_1, k_2, ..., k_n$, वास्तविक संख्याएँ हैं तो

$$\int [k_1 f_1(x) + k_2 f_2(x) + \dots + k_n f_n(x)] dx$$

$$= k_1 \int f_1(x) dx + k_2 \int f_2(x) dx + \dots + k_n \int f_n(x) dx$$

कुछ प्रामाणिक समाकलन

(i)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
, $n \neq -1$. विशिष्टत: $\int dx = x + C$

(ii)
$$\int \cos x \, dx = \sin x + C$$

(iii)
$$\int \sin x \, dx = -\cos x + C$$

(iv)
$$\int \sec^2 x \, dx = \tan x + C$$

(v)
$$\int \csc^2 x \, dx = -\cot x + C$$

(vi)
$$\int \sec x \tan x \, dx = \sec x + C$$

(vii)
$$\int \csc x \cot x \, dx = -\csc x + C$$
 (viii) $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x + C$

(ix)
$$\int \frac{dx}{\sqrt{1-x^2}} = -\cos^{-1}x + C$$

(x)
$$\int \frac{dx}{1+x^2} = \tan^{-1} x + C$$

(xi)
$$\int \frac{dx}{1+x^2} = -\cot^{-1}x + C$$

(xii)
$$\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1} x + C$$

(xiii)
$$\int \frac{dx}{x\sqrt{x^2-1}} = -\csc^{-1}x + C$$

$$(xiv) \int e^x dx = e^x + C$$

(xv)
$$\int a^x dx = \frac{a^x}{\log a} + C$$

(xvi)
$$\int \frac{1}{x} dx = \log|x| + C$$

आंशिक भिन्नों द्वारा समाकलन

स्मरण कीजिए कि एक परिमेय फलन $\frac{P(x)}{O(x)}$, दो बहुपदों का अनुपात है जिसमें P(x)और Q(x), x के बहुपद हैं और $Q(x) \neq 0$. यदि बहुपद P(x) की घात बहुपद Q(x), की घात से अधिक है तो हम P(x) को Q(x) से विभाजित करते हैं तािक $\frac{P(x)}{O(x)} = T(x) + \frac{P_1(x)}{O(x)}$ के रूप में लिखा जा सके जहाँ T(x), एक बहुपद है और $\mathrm{P}_{_{1}}(x)$ की घात $\mathrm{Q}(x)$ की घात से कम है। बहुपद होने के कारण $\mathrm{T}(x)$ का समाकलन आसानी से ज्ञात किया जा सकता है। $\frac{P_1(x)}{O(x)}$ को निम्नलिखित प्रकार की आंशिक भिन्नों के योगफल के रूप में व्यक्त करते हुए इसका समाकलन ज्ञात किया जा सकता है।

1.
$$\frac{px+q}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}, a \neq b$$

2.
$$\frac{px+q}{(x-a)^2} = \frac{A}{x-a} + \frac{B}{(x-a)^2}$$

3.
$$\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$$

4.
$$\frac{px^2 + qx + r}{(x-a)^2 (x-b)} = \frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$$

5.
$$\frac{px^2 + qx + r}{(x-a)(x^2 + bx + c)} = \frac{A}{x-a} + \frac{Bx + C}{x^2 + bx + c},$$

जहाँ $x^2 + bx + c$ के आगे और गणनखंड नहीं किए जा सकते।

प्रतिस्थापन द्वारा समाकलन

समाकलन के चर में परिवर्तन दिए हुए समाकलन को किसी एक आधारभूत समाकलन में परिवर्तित कर देता है। यह विधि जिसमें हम एक चर को किसी दूसरे चर में परिवर्तित करते हैं प्रतिस्थापन विधि कहलाती है। जब समाकल्य में कुछ त्रिकोणमितीय फलन सम्मिलित हों तो हम समाकलन ज्ञात करने के लिए कुछ सुपरिचित सर्व समिकाओं का उपयोग करते हैं। प्रतिस्थापन विधि का उपयोग करते हुए हम निम्नलिखित प्रामाणिक समाकलनों को प्राप्त करते हैं:

(i) $\int \tan x \, dx = \log |\sec x| + C$

(ii) $\int \cot x \, dx = \log |\sin x| + C$

(iii) $\int \sec x \, dx = \log |\sec x + \tan x| + C$

(iv) $\int \csc x \, dx = \log |\csc x - \cot x| + C$

🔸 कुछ विशिष्ट फलनों के समाकलन

(i)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$

(ii)
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C$$
 (iii) $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$

(iv)
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left| x + \sqrt{x^2 - a^2} \right| + C(v) \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C$$

(vi)
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log|x + \sqrt{x^2 + a^2}| + C$$

खंडशः समाकलन

दिए हुए फलनों f_1 तथा f_2 , के लिए हम प्राप्त करते हैं कि

$$\int f_1(x) \cdot f_2(x) dx = f_1(x) \int f_2(x) dx - \int \left[\frac{d}{dx} f_1(x) \cdot \int f_2(x) dx \right] dx$$
, अर्थात् दो

फलनों के गुणनफल का समाकलन = प्रथम फलन × द्वितीय फलन का समाकलन – {प्रथम फलन का अवकल गुणांक × द्वितीय फलन का समाकलन} का समाकलन . प्रथम फलन एवं द्वितीय फलन के चयन में सावधानी रखनी चाहिए। स्पष्टतया हमें ऐसे फलन को द्वितीय फलन के रूप में लेना चाहिए जिसका समाकलन हमें भिल-भाँति ज्ञात है।

 $\int e^x [f(x) + f'(x)] dx = \int e^x f(x) dx + C$

कुछ विशिष्ट प्रकार के समाकलन

(i)
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$

(ii)
$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$

(iii)
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

(iv) $\int \frac{dx}{ax^2 + bx + c}$ अथवा $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$ के प्रकार के समाकलनों को प्रामाणिक रूप में निम्नलिखित विधि द्वारा परिवर्तित किया जा सकता है:

$$ax^{2} + bx + c = a\left[x^{2} + \frac{b}{a}x + \frac{c}{a}\right] = a\left[\left(x + \frac{b}{2a}\right)^{2} + \left(\frac{c}{a} - \frac{b^{2}}{4a^{2}}\right)\right]$$

(v) $\int \frac{px+q\ dx}{ax^2+bx+c}$ अथवा $\int \frac{px+q\ dx}{\sqrt{ax^2+bx+c}}$ के प्रकार के समाकलनों को प्रामाणिक रूप में परिवर्तित किया जा सकता हैं:

 $px+q=A\frac{d}{dx}(ax^2+bx+c)+B=A(2ax+b)+B$, A तथा B का मान ज्ञात करने के लिए दोनों पक्षों से गुणांकों की तुलना की जाती है।

- हमने $\int_a^b f(x) \, dx$ को, वक्र $y = f(x), a \le x \le b, x$ -अक्ष एवं कोटियों x = a और x = b से घिरे क्षेत्र के क्षेत्रफल के रूप में परिभाषित किया है। मान लीजिए [a,b] में x एक बिंदु है तब $\int_a^x f(x) \, dx$ क्षेत्रफल फलन A(x) को निरूपित करता है। क्षेत्रफल फलन की संकल्पना हमें कलन की आधारभूत प्रमेय की ओर निम्नलिखित रूप में प्रेरित करती है।
- समाकलन गणित की प्रथम आधारभूत प्रमेय मान लीजिए कि क्षेत्रफल फलन $A(x) = \int_a^x f(x) \ dx$, $\forall x \ge a$, द्वारा परिभाषित है जहाँ फलन f अंतराल [a,b] पर संतत फलन माना गया है। तब $A'(x) = f(x) \ \forall \ x \in [a,b]$
- समाकलन गणित की द्वितीय आधारभूत प्रमेय मान लीजिए किसी बंद अंतराल [a,b] पर f,x का संतत फलन है और F एक दूसरा फलन है जहाँ $\frac{d}{dx}F(x)=f(x),f$ के प्रान्त के सभी x के लिए है, तब

 $\int_{a}^{b} f(x) dx = [F(x) + C]_{a}^{b} = F(b) - F(a)$

यह परिसर [a, b] पर f का निश्चित समाकलन कहलाता है जहाँ a तथा b समाकलन की सीमाएँ कहलाती हैं a निम्न सीमा कहलाती है और b को उच्च सीमा कहते हैं।