- 放大电路特点: (1) 交直流量共存,交流驼载在直流上
 - (2) 晶体管具有非线性特性

一、基本共射放大电路分析 ① 求Q点: $I_{BO} = \frac{V_{BB} - U_{BEQ}}{r}$

1. 基本共射放大电路

• 画交流等效电路 (AC Equivalent Circuit)

h参数等效模型

- →交流通路中的晶体管
- →交流等效电路

直流通路 $I_{CQ} \approx \beta I_{BQ} \approx I_{EO}$ $U_{\text{CEO}} = V_{\text{CC}} - I_{\text{CO}} R_{\text{c}}$

- ② 动态: $\bar{\chi}A_{\mu}$ 、 R_{i} 、 R_{i}
 - 画交流通路

· 求动态参数 先求rbe

$$\dot{A}_{u} = \frac{U_{o}}{U_{i}} = \frac{-I_{c} R_{c}}{I_{b}(R_{b} + r_{be})}$$

正弦向量,也 可用有效值

$$\dot{A}_{u} = \frac{-\beta R_{c}}{R_{b} + r_{be}}$$

负号表示 U_{a} 与U_i反相

$$R_{\rm i} = \dot{U}_{\rm i}/\dot{I}_{\rm b} = R_{\rm b} + r_{\rm be}$$
 $R_{\rm o} = R_{\rm c}$

$$R_{\rm o} = R_{\rm c}$$

特点: • 既能放大电压,又能放大电流;

- • U_{o} 与 U_{i} 反相;
- ・电压放大倍数 $|A_{\mu}|$ 大,且与静态Q点有关。

二、共集放大电路(Common-Collector Circuit)

又称射极输出器、射极跟随器

- 1. 求 Q点:直流通路
 - 输入回路

$$I_{BQ} = I_{BQ} R_b + U_{BEQ} + I_{EQ} R_e$$

$$I_{BQ} = \frac{V_{BB} - U_{BEQ}}{R_b + (1 + \beta) R_e}$$

• 输出回路

$$I_{\text{CQ}} = \beta I_{\text{BQ}} \approx I_{\text{EQ}}$$
 $U_{\text{CEO}} = V_{\text{CC}} - I_{\text{EO}} R_{\text{e}}$

$2. 求 A_{\mu} \setminus R_{i} \setminus R_{o}$: 交流等效电路

称为射极跟随器(emitter follower)

路乘以(1+β)

业 加压求流法:

$$R_{\rm o} = \frac{\dot{U}_{\rm o}}{\dot{I}_{\rm o}} \Big|_{(U_{\rm i}=0,R_{\rm L}=\infty)}$$

基极电阻等效到射 $R_{\rm o} = R_{\rm e} // R_{\rm o}'$ 极回路除以 $(1+\beta)$

$$R_{o}' = \frac{\dot{U}_{o}}{\dot{I}_{e}} = \frac{\dot{I}_{b}(R_{b} + r_{be})}{(1+\beta)\dot{I}_{b}} = \frac{R_{b} + r_{be}}{(1+\beta)} \qquad R_{o} = R_{e} //\frac{R_{b} + r_{be}}{(1+\beta)} \qquad R_{o} //\sqrt{1+\beta}$$

共集放大电路特点:

- 具有电压跟随作用 $(A_{\mu}\approx 1)$, U_{o} 、 U_{i} 同相;
- R_i 大(几十到几百k Ω),对电压信号源影响小;
- R_0 小(几十到几百 Ω),带(电压)负载能力强。
- 一般作为输入级、输出级或者中间缓冲电路。

二、共基放大电路(Common-Base Circuit)

1. 求 Q点: 直流通路

$$I_{\text{EQ}} = \frac{V_{\text{BB}} - U_{\text{BEQ}}}{R_{\text{e}}} \approx I_{\text{CQ}}$$

$$U_{\text{CEQ}} = U_{\text{C}} - U_{\text{E}}$$

$$= V_{\text{CC}} - I_{\text{CQ}} R_{\text{c}} + U_{\text{BEQ}}$$

2. 求 A_u 、 R_i 、 R_o : 交流等效电路

$$\dot{A}_{\rm u} = \frac{\dot{U}_{\rm o}}{\cdot} = \frac{\dot{I}_{\rm c} R_{\rm c}}{\cdot}$$

$$= \frac{\beta R_{\rm c}}{r_{\rm be} + (1+\beta)R_{\rm e}}$$

$$\dot{I}_{\mathrm{e}} = \dot{I}_{\mathrm{b}} = \dot{I}_{\mathrm{c}} = 0$$

$$R_{\rm o} = R_{\rm c}$$

$$R_{\rm i} = \frac{\dot{U}_{\rm i}}{\dot{I}_{\rm e}} = \frac{\dot{I}_{\rm e} R_{\rm e} + \dot{I}_{\rm b} r_{\rm be}}{\dot{I}_{\rm e}}$$

$$= \frac{\beta R_{c}}{r_{be} + (1+\beta)R_{e}} \quad U_{o} = U_{i} = R_{e} + \frac{r_{be}}{1+\beta} \quad R_{i}$$

共基放大电路主要特点

- *U*₀与*U*_i同相;
- R_i 较小, $|A_{\mu}|$ 、 R_o 与共射放大电路相当;
- 频带较宽, 主要用于宽频带放大电路。

三种接法电路的比较

基本接法	CE	CC	CB
$ A_{u} $	大 $(U_o$ 与 U_i 反相)	$< 1(U_o$ 与 $U_{ m i}$ 同相)	中($U_{\rm o}$ 与 $U_{\rm i}$ 同相)
A_{i}	$oldsymbol{eta}$	$1+\beta$	$\alpha = \beta / (1 + \beta) < 1$
$R_{\rm i}$	中	大	小
$R_{\rm o}$	$R_{\rm c}$	小	$R_{\rm c}$
$f_{ m w}$	窄	中	宽
主要用途	用于低频电压放力	大 输入级和输出级	宽频带放大电路

讨论1:

- 放大幅值为2mV的缓慢变化的温度信号,应选什么放大电路?直接耦合还是阻容耦合?
- 放大幅值为10mV、频率为20~20kHz的语音信号,应选什么放大电路? 直接耦合还是阻容耦合?
- 将内阻为10kΩ的电压信号源转换成内阻小于200Ω的电压信号源,应选什么放大电路?
- 将4~10mA的温度信号转换成电压信号,应选什么放大电路?
- •设计宽频带放大器,应选什么放大电路?

讨论2: 阻容耦合共射放大电路动态分析

 $ext{P}^{+12V}$ 已知eta=100, $r_{ ext{bb}}$ = 100Ω 求 A_u 、 $R_{ ext{i}}$ 、 $R_{ ext{o}}$ 、源电压放大倍数 $A_{u ext{s}}$

+ (1) 画直流通路,估算静态工作点

$$I_{\text{BQ}} \approx \frac{12 - 0.7}{R_{\text{b}}} \approx 20 \mu \text{A}$$

$$I_{\text{BQ}} \approx \frac{RI}{R_{\text{b}}} \approx 2m \text{A}$$

$$I_{\rm CQ} \approx \beta I_{\rm BQ} \approx 2 {\rm mA}$$

$$U_{\text{CEO}} = 12 - I_{\text{CO}} \cdot R_{\text{c}} \approx 6\text{V}$$

(2) 由 $r_{\rm bb}$ 、 $I_{\rm CO}$ 估算 $r_{\rm be}$

$$r_{\text{be}} = r_{\text{bb'}} + (1 + \beta) \frac{U_{\text{T}}}{I_{\text{EO}}} = 1.4 \text{k}\Omega$$

(3) 画交流等效电路,估算 $A_u \setminus R_i \setminus R_o$

$$\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{-\dot{I}_{c}(R_{c} /\!/ R_{L})}{\dot{I}_{b} r_{be}}$$

$$\overset{\bullet}{A}_{u} = \frac{-\beta (R_{c} // R_{L})}{r_{be}} \approx -107$$

问题: 1) $R_c \uparrow$, $|A_u|$ 如何变化?

2) $R_{\rm L}\uparrow$, $|A_{u}|$ 如何变化?

3) *R*_b↑, |*A*_u|如何变化?

4) β 增大能使|A_u|增大吗?

$$r_{be} = r_{bb'} + (1 + \beta) \frac{U_{T}}{I_{EQ}}$$

静态影响动态!

源电压放大倍数
$$\overset{\bullet}{A}_{us} = \frac{\overset{\bullet}{U}_{o}}{\overset{\bullet}{U}_{i}} = \frac{\overset{\bullet}{U}_{o}}{\overset{\bullet}{U}_{i}} \times \frac{\overset{\bullet}{U}_{i}}{\overset{\bullet}{U}_{s}} = \overset{\bullet}{A}_{u} \times \frac{R_{i}}{R_{i} + R_{s}} \approx -62.4$$

Ri影响放大电路对信号源电压的放大能力

讨论3: 单电源三种接法电路分析

• 三个电路分别为何种接法,总结判断方法。

讨论4:

- CC、CB电路的Q点、 A_u 、 R_i 、 R_o 、 U_{om} 应如何求?
- · CC、CB电路如何根据波形判断截止失真和饱和失真?

2.5 放大电路静态工作点的稳定

一、静态工作点的稳定

·温度对Q点的影响:

$$T(^{\circ}C)\uparrow \rightarrow I_{BQ}\uparrow, \quad I_{CQ}\uparrow$$

 $\rightarrow \beta\uparrow$
 $\rightarrow I_{CBO}\uparrow \rightarrow I_{CQ}\uparrow$

• 稳定Q点: 使 $I_{\rm CO}$ 、 $U_{\rm CEQ}$ 基本不变

• 稳定Q点思路:

 $T(^{\circ}C)$ 个时若使 I_{BO} ↓,则 I_{CO} 、 U_{CEO} 在输出特性上就基本不变

二、典型的稳Q电路

三、稳Q原理

有差调节!