ТЕОРЕТИЧЕСКИЕ ДОМАШНИЕ ЗАДАНИЯ

Математическая логика, ИТМО, М3235-М3239, весна 2022 года

Задание №1. Знакомство с классическим исчислением высказываний.

1. Будем говорить, что высказывание α выводится из гипотез $\gamma_1, \gamma_2, \ldots, \gamma_n$ (и записывать это как $\gamma_1, \gamma_2, \ldots, \gamma_n \vdash \alpha$), если существует такой вывод $\delta_1, \delta_2, \ldots, \delta_n$, что $\alpha \equiv \delta_n$, и каждый из δ_i есть либо гипотеза, либо аксиома, либо получается из каких-то предыдущих высказываний по правилу Modus Ponens. Несколько гипотез мы можем обозначить какой-нибудь большой буквой середины греческого алфавита $(\Gamma, \Delta, \Pi, \Sigma, \Xi)$: например, $\Gamma, \alpha, \beta \vdash \sigma$; здесь Γ обозначает какое-то множество гипотез.

Докажите:

(a) $\vdash (A \rightarrow A \rightarrow B) \rightarrow (A \rightarrow B)$

(b) $\vdash A \& B \rightarrow B \& A$

(c) $\vdash A \& B \rightarrow A \lor B$

(d) $\vdash A \rightarrow \neg \neg A$

(e) $A \& \neg A \vdash B$

(f) $\vdash \neg (A \& \neg A)$

2. Известна теорема о дедукции: $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$. Теорема доказывается конструктивно, то есть один вывод можно перестроить в другой вывод. В рамках данного задания разрешается результат её применения вписать как часть другого вывода как «чёрный ящик» (как макроподстановку). Докажите с её использованием:

(a) $\neg A, B \vdash \neg (A \& B)$

(b) $A, \neg B \vdash \neg (A \& B)$

(c) $\neg A, \neg B \vdash \neg (A \& B)$

(d) $\neg A, \neg B \vdash \neg (A \lor B)$

(e) $A, \neg B \vdash \neg (A \rightarrow B)$

(f) $\neg A, B \vdash A \rightarrow B$

(g) $\neg A, \neg B \vdash A \rightarrow B$

(h) $\vdash A \& (B \& B) \rightarrow A \& B$

(i) $\vdash (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C)$

 $(j) \vdash (A \to B) \to (\neg B \to \neg A)$ (закон контрапозиции)

 $(k) \vdash A \& B \rightarrow \neg (\neg A \lor \neg B)$ (правило де Моргана)

(1) $\vdash \neg(\neg A \& \neg B) \rightarrow A \lor B$ (правило де Моргана)

 $(m) \vdash A \& (B \lor C) \rightarrow (A \& B) \lor (A \& C)$ (дистрибутивность 1)

 $(n) \vdash A \lor (B \& C) \rightarrow (A \lor B) \& (A \lor C)$ (дистрибутивность 2)

3. Существует несколько аналогов схемы аксиом 10 (аксиомы снятия двойного отрицания). Докажите при любых высказываниях α и β :

(a) $\vdash \alpha \lor \neg \alpha$ (правило исключённого третьего)

(b) $\vdash ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha \ (\exists a \kappa o n \ \Pi u p c a)$

(c) без использования 10 схемы аксиом: $((\alpha \to \beta) \to \alpha) \to \alpha \vdash \neg \neg \alpha \to \alpha$ (то есть, схему аксиом 10 можно заменить на закон Пирса);

(d) без использования 10 схемы аксиом: $\alpha \vee \neg \alpha \vdash \neg \neg \alpha \rightarrow \alpha$ (то есть, схему аксиом 10 можно заменить на правило исключённого третьего);

4. Докажите следующие «странные» формулы:

(а) $\vdash (A \to B) \lor (B \to A)$. В самом деле, получается, что из любых двух наугад взятых фактов либо первый следует из второго, либо второй из первого. Например «выполнено как минимум одно из утверждений: (а) если сегодня пасмурно, то курс матлогики все сдадут на A; (б) наоборот, если все сдадут курс матлогики на A, то сегодня пасмурно».

- (b) Обобщение предыдущего пункта: при любом $n\geqslant 1$ и любых α_1,\ldots,α_n выполнено $\vdash (\alpha_1\to\alpha_2)\vee(\alpha_2\to\alpha_3)\vee\cdots\vee(\alpha_{n-1}\to\alpha_n)\vee(\alpha_n\to\alpha_1)$
- (c) Из противоречия следует всё, что угодно: $\alpha \& \neg \alpha \vdash \beta$
- 5. В рамках данного задания неравными высказываниями будем называть высказывания α и β , имеющие разное количество связок.

Даны высказывания α и β , причём $\vdash \alpha \to \beta$ и $\alpha \neq \beta$. Укажите способ построения высказывания γ , такого, что $\vdash \alpha \to \gamma$ и $\vdash \gamma \to \beta$, причём $\alpha \neq \gamma$ и $\beta \neq \gamma$.

6. Покажите, что если $\alpha \vdash \beta$ и $\neg \alpha \vdash \beta$, то $\vdash \beta$.