1 Úvod

1.1 Úkol měření

- Pro dvě šířky štěrbiny a dvě vlnové délky ověřte platnost vzorce pro Fraunhoferův ohyb na štěrbině.
- Určete mřížkovou konstantu ohybové optické mřížky, měření proveďte pro dvě vlnové délky.
- S využitím optické mřížky, zjistěte vlnovou délku světla laserového ukazovátka.

1.2 Popis měření

Na štěrbině probíhalo měření s červeným a zeleným laserem. U červeného laseru jsme provedli měření ohybového obrazce pro dvě šířky štěrbiny $200~\mu m$ a $40~\mu m$. U první šířky jsme odečítali vzdálenosti okrajů vzniklých čar tak, jak je znázorněno na obrázku 1.8 v zadání (viz použitá literatura). V dalších měřeních se však zdálo přesnější odečítat přímo polohy minim. Na štěrbině byl změřen obrazec také pro zelený laser pro šířku štěrbiny $40~\mu m$. Při všech měřeních byla nastavena vzdálenost štěrbiny a stínítka na optické lavici l=68~cm.

Při měření s mřížkou byly také zaznamenávány přímo polohy maxim obrazce. Nejprve jsme provedli měření se zeleným a červeným laserem za účelem zjištění mřížkové konstanty. Dále pak bylo provedeno měření s modrým laserem, jehož vlnová délka je třeba určit.

1.3 Použité přístroje

Název přistroje	Parametry	Přesnost
Optická lavice s měřítkem		Nejmenší dílek: 1 mm
Stínítko s pravítkem	-	Nejmenší dílek: 1 mm
Stavitelná štěrbina	-	Nejmenší dílek: 1 μm
Mřížka	-	-
Modrý laser	-	-
Zelený laser	Vlnová délka λ = 532 nm	-
Červený laser	Vlnová délka λ = 650 nm	-

2 Naměřené hodnoty

2.1 Měření se štěrbinou

Všechna měření na štěrbině proběhla se vzdáleností mezi přípravkem a stínítkem l = 68 cm.

Při měření s červeným laserem byly pro šířku štěrbiny $b = 200\mu m$ naměřeny hodnoty v následující tabulce. Odečítány byly vzdálenosti mezi okraji čar obrazce (dle zadání – obr. 1.8), hodnoty minim jsou vypočteny v pravém sloupci. Vzorec pro výpočet je uveden v následující části.

Index n	Vzdálenost okraje a _n [cm]	Vypočtená poloha minima $y_{(n+1)/2}$ [cm]
0	0.4	
1	0.45	0.625
2	0.7	
3	0.9	1
4	1	
5	1.2	1.3
6	1.25	
7	1.4	1.525

Pro šířku štěrbiny $40\mu m$ byly pro červený a zelený laser naměřeny následující hodnoty. Odečítány byly přímo polohy minim.

Index n	Červený laser - poloha minima y_n [cm]	Zelený laser - poloha minima y_n [cm]
1	2.4	1.9
2	4.8	3.8
3	7.2	5.7

2.2 Měření s mřížkou

Všechna měření na mřížce proběhla se vzdáleností mezi přípravkem a stínítkem l = 60.7 cm. Následující tabulka uvádí naměřené hodnoty pro všechny tři lasery.

Index maxima <i>m</i>	Zelený laser - poloha maxima y _m [cm]	Červený laser - poloha maxima y _m [cm]	Modrý laser - poloha maxima y _m [cm]
0	0	0	0
1	1.55	1.9	1.15
2	3.1	3.8	2.35
3	4.65	5.7	3.55
4	6.2	7.6	4.75
5	7.75	-	5.95
6	-	-	7.15

3 Zpracování hodnot

3.1 Ověření vzorce pro ohyb na štěrbině

U prvního měření je pro výpočet polohy minima použit vztah:

$$y_n = \frac{a_{2n-1} - a_{2n-2}}{2} - \frac{a_0}{2}$$

kde a_n je naměřená pozice a y_n je poloha minima. Je nutné poznamenat, že nejistotu měření polohy minima pro hodnoty z prvního měření určíme pomocí parciálních derivací tohoto vzorce.

Vzorec, který bychom měli ověřit je:

$$b\sin(\varphi_m)=m\lambda$$

kde b je šířka štěrbiny, m je index minima ($m = \pm 1, \pm 2, ...$), λ je vlnová délka daného laseru a φ_m je úhel mezi kolmicí na stínítko a spojnicí středu štěrbiny se středem daného minima. Sinus tohoto úhlu je dán vztahem:

$$\sin(\varphi_m) = \frac{y_i}{\sqrt{y_i^2 + l^2}}$$

kde y_i je poloha daného minima s indexem i a l je vzdálenost přípravku od stínítka.

Vzorec ověříme tak, že z naměřených hodnot vypočteme šířku štěrbiny a tu porovnáme s nastavenou hodnotou. Po dosazení sinu úhlu do vzorce vyjádříme šířku štěrbiny jako:

$$b = \frac{m \lambda \sqrt{y_i^2 + l^2}}{v_i}$$

Pro výpočet celkové nejistoty měření použijeme vzorec:

$$u_c = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial b}{\partial x_i}\right)^2 u_b^2(x_i)}$$

kde x_i značí jednotlivé veličiny, na kterých je šířka štěrbiny b závislá a u_b značí kombinovanou nejistotu typu B příslušné veličiny.

Pro výpočet nejistoty typu B použijeme vzorec:

$$u_b = \frac{\Delta}{\sqrt{3}}$$

kde Δ značí nejmenší dílek měřícího přístroje použitého pro změření dané veličiny.

Jednotlivé parciální derivace vycházejí následovně:

$$\frac{\partial b}{\partial y_i} = \frac{\lambda l^2 m}{y_i^2 \sqrt{(y_i^2 + l^2)}}$$

$$\frac{\partial b}{\partial l} = \frac{\lambda l m}{y_i \sqrt{(y_i^2 + l^2)}}$$

Po dosazení do předchozích vzorců vypočítáme pro jednotlivé vlnové délky a jednotlivé nastavené šířky štěrbiny *b* tyto teoretické hodnoty šířky štěrbiny.

Index minima n	Šířka štěrbiny [μm] červený laser b = 200μm	Šířka štěrbiny [μm] červený laser b = 40μm	Šířka štěrbiny [μm] zelený laser b = 40μm
1	70±23	18.42±0.44	19.04±0.57
2	88±18	18.46±0.22	19.06±0.28
3	102±16	18.51±0.14	19.10±0.19
4	115±15	-	-

3.2 Určení mřížkové konstanty

Mřížkovou konstantu pro jednu polohu maxima určíme pomocí vztahu

$$d_{m} = \frac{m \lambda \sqrt{y_{m}^{2} + l^{2}}}{y_{m}}$$

kde d_m je mřížková konstanta pro danou polohu maxima, m je index maxima ($m = \pm 1, \pm 2, ...$), λ je vlnová délka laseru, y_m je poloha daného maxima a l je vzdálenost přípravku od stínítka.

Pro výpočet celkové nejistoty měření použijeme vzorec z předchozího kroku. Jednotlivé parciální derivace vycházejí následovně:

$$\frac{\partial d_m}{\partial y_m} = \frac{\lambda l^2 m}{y_m^2 \sqrt{(y_m^2 + l^2)}}$$

$$\frac{\partial d_m}{\partial l} = \frac{\lambda l m}{y_m \sqrt{(y_m^2 + l^2)}}$$

Po dosazení vycházejí hodnoty v následující tabulce.

Index maxima <i>m</i>	Výsledná mřížková konstanta d_m [μ m] zelený laser	Výsledná mřížková konstanta d_m [μ m] červený laser
1	20.84±0.77	20.77±0.63
2	20.86±0.38	20.80±0.31
3	20.89±0.25	20.85±0.21
4	20.94±0.19	20.92±0.15
5	21.00±0.15	-

Mřížkovou konstantu nakonec určíme jako aritmetický průměr ze všech vypočtených mřížkových konstant pro jednotlivá měření.

3.3 Určení vlnové délky ukazovátka

S využitím mřižkové konstanty z předchozího kroku vypočteme vlnovou délku modrého ukazovátka. Pro výpočet použijeme vzorec:

$$\lambda_m = \frac{d y_m}{m \sqrt{y_m^2 + l^2}}$$

kde λ je vlnová délka daného laseru, d je mřížková konstanta, m je index maxima ($m = \pm 1, \pm 2, ...$), y_m je poloha daného maxima a l je vzdálenost přípravku od stínítka.

Pro výpočet celkové nejistoty zopakujeme minulý postup. Jednotlivé parciální derivace vycházejí následovně:

$$\frac{\partial \lambda_m}{\partial d} = \frac{y_m}{m\sqrt{y_m^2 + l^2}} \qquad \qquad \frac{\partial \lambda_m}{\partial y} = \frac{dl^2 \sqrt{y_m^2 + l^2}}{l^4 m + 2 l^2 m y_m^2 + m y_m^4} \qquad \frac{\partial \lambda_m}{\partial l} = -\frac{dl y_m}{(m y_m^2 + l^2 m)\sqrt{y_m^2 + l^2}}$$

Po dosazení vycházejí pro jednotlivá maxima hodnoty v následující tabulce.

Index maxima m	Výsledná vlnová délka λ _m [nm]
1	395±20
2	403±10
3	406.3±7.0
4	407.2±5.5
5	407.3±4.6
6	407.0±4.1

Z naměřených hodnot vybereme tu s nejmenší nejistotou.

4 Závěr

V měření jsme ověřovali platnost Fraunhoferových vzorců. Bohužel se vypočtená šířka štěrbiny u všech měření razantně liší od nastavené hodnoty. Ze vzorce ve všech případech vychází přibližně poloviční hodnota. Takovouto odchylku způsobuje nejspíše celá řada vlivů, osobně bych z největší nepřesnosti podezříval ale nastavení šířky štěrbiny.

Při měření s mřížkou jsme učili mřížkovou konstantu jako:

$$b = 20,87 \pm 0,34 \mu m$$

Je dobré poznamenat, že pro obě vlnové délky vycházely velmi blízké hodnoty, z čehož může vyplývat poměrná důvěra v měření.

Při měření s modrým laserem jsme určili jeho vlnovou délku jako

$$\lambda = 407.0 \pm 4.1$$
nm

což odpovídá spíše fialové než modré barvě.

5 Použitá literatura

- http://herodes.feld.cvut.cz/mereni/downloads/navody/ohsvetla.pdf
- http://herodes.feld.cvut.cz/mereni/downloads/navody/zpracdat.pdf