Permutations and Groups

Training problems for M2 2018 term 2

Ted Szylowiec tedszy@gmail.com

1. Write down all the differe	nt permutatior	ns of uv.	
2. Write down all the differen	nt permutatior	ns of <i>abc</i> .	
3. Write down all the differen	nt permutatior	ns of wxyz.	
4. I have five boxes colored colored red, green, blue, yell the balls into the boxes, with	ow and orange	e. How many diffe	_
5. I want to arrange 10 differ	ent people in a	a row. How many	ways can I do this?
6. Prove that the number per	rmutations of <i>1</i>	<i>n</i> objects is <i>m</i> !.	
7. Prove that the number of	permutation m	nachines having m	boxes per row is <i>m</i> !.
8. How many elements are i	n		
(a) S_2 ? (b) S_3 ?	(c) S_4 ?	(d) S_5 ?	(e) S_7 ?
9. What is the difference betw	ween a permuta	ation symbol and	a permutation machine?
10. Write the permutation sy	mbol that does	s the given permu	taion.
(a) $abc \rightarrow bac$. (b) bac	$\rightarrow abc$.	(c) $abcd \rightarrow badc$.	(d) $badc \rightarrow abcd$.
11. Draw the permutation m	achine that do	es the given perm	utaion.
(a) $abc \rightarrow cab$. (b) cab	$\rightarrow abc$.	(c) $abcd \rightarrow dcba$.	(d) $dcba \rightarrow abcd$.
12. Change from permutatio	n symbol to pe	ermutation machi	ne.
(a) $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}$	(c) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$	(d) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix}$
13. Change from permutation	n machine to p	permutation symb	ol.
(a) (b)		(c)	(d) .

14. Apply the permutation symbol to the objects. What is the result?

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} abc.$$

15. Put the objects into the permutation machine. What is the result?

16. Apply the permutations to the objects. What happens?

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} abc.$$

17. Put the objects into the permutation machines. What happens?

18. Apply the permutation symbols to the objects.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} abcd.$$

19. Put the objects into the permutation machines. What do you get?

20. Fill in this table for the elements of S_3 .

symbol	machine	 symbol	machine
		$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$	
$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$			
		$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$	

21. Use these standard definitions for S_3 permutation symbols...

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad t_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad t_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
$$t_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad s_1 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad s_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

...to fill in this mini S_3 multiplication table:

	e	s_1	s_2
e			
s_1			s_1s_2
s_2			

The entry s_1s_2 tells you how to combine the symbols. Take s_1 from the leftmost column, and then put s_2 from the top row.

22. Use the standard S_3 definitions from problem **21** to construct the full S_3 multiplication table:

	e	t_1	t_2	t_3	s_1	s_2
е						
t_1						t_1s_2
t_2						
t_3						
$\overline{s_1}$						
s_2						

The entry t_1s_2 tells you how to combine the symbol from the leftmost column (t_1) , with the symbol from the top row (s_2) .

- **23.** Define the symbols e and t and use them to construct multiplication tables for S_2 and S_1 . How many elements do S_2 and S_3 have?
- **24.** Here are standard definitions for S_4 permutation symbols:

$$e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \qquad t_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} \qquad t_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} \qquad t_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

$$t_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix} \qquad t_5 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \qquad t_6 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} \qquad s_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$$

$$s_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \qquad s_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \qquad s_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \qquad s_5 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$

$$s_6 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} \qquad s_7 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix} \qquad s_8 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} \qquad r_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

$$r_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \qquad r_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \qquad r_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \qquad r_5 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

$$r_6 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix} \qquad r_7 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix} \qquad r_8 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} \qquad r_9 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$$