The Computational Linguistics Summarization Task @ TAC 2014, BIRNDL 2016, SIGIR 2017

- Summarization Challenge
- 3 years, 7 countries, 17 participating teams

Kokil Jaidka¹, Muthu Kumar Chandrasekaran², Min-Yen Kan²,

¹University of Pennsylvania ²National University of Singapore

Corpus Highlights

- Continuing effort to advance scientific document summarization by encouraging the incorporation of semantic and citation information.
- Corpus of 30 articles; 500 citing papers
- Annotation by 6 paid and trained annotators (Master in Linguistics students) from U-Hyderabad
- Sponsorship from Microsoft Research Asia
- https://github.com/WING-NUS/scisumm-corpus/

The CL-SciSumm Shared Task

Task 1A: Identify the text span in the RP which corresponds to the *citances* from the CP.

The CL-SciSumm Shared Task

Task 1B: Identify the discourse facet for every cited text span from a predefined set of facets.

Annotating the SciSumm corpus

- 6 annotators selected from a pool of 25
- 6 hours of training
- Gold standard annotations for Task 1A and 1B, per topic or reference paper
- Community and hand-written summaries for Task 2, per topic

Annotation Pipeline

The CL-SciSumm Shared Task

- Task 2: Generate a structured summary of the RP from the cited text spans of the RP. The length of the summary should not exceed 250 words.
 - Compare with abstractive summary, human summary and community summary

Evaluation

- Task 1A Exact sentence id match
- Task 1B
 - conditional on Task 1A
 - BoW overlap between discourse facets
- Task 2 ROUGE-SU2 and ROUGE-SU4

Table 3 System ids mapped to system descriptions

System id	Reference Paper	System Description
[4]	sys3	Vector space model, with non- negative matrix factorization (NNMF)
[14]	sys5	Transdisciplinary Scientific Lexicon (TSL) and Maximal Marginal Relevance
[19]	sys6	TF-IDF and a tripartite neural network
[11]	sys8	SVM classifiers, voting methods
[10]	sys9	TextSentenceRank with similarity functions
[23]	sys10	Linear regression
[13]	sys12	Learning to Rank approach
[1]	sys13	Heuristic approach
[17]	sys15	SVM with convolution kernel
[2]	sys16	SVMRank, decision tree classifier, Manifold Ranking method
L 3		

- 1. Aggarwal, P., Sharma, R.: Lexical and Syntactic cues to identify Reference Scope of Citance. In: Proc. of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL2016), pp. 103{112. Newark, NJ, USA (2016)
- 2. Cao, Z., Li, W., Wu, D.: PolyU at CL-SciSumm 2016. In: Proc. of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL2016), pp. 132{138. Newark, NJ, USA (2016)
- 4. Conroy, J., Davis, S.: Vector space and language models for scientic document summarization. In: NAACL-HLT, pp. 186{191. Association of Computational Linguistics, Newark, NJ, USA (2015)
- 10. Klamp, S., Rexha, A., Kern, R.: Identifying Referenced Text in Scientic Publications by Summarisation and Classication Techniques. In: Proc. of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL2016), pp. 122{131. Newark, NJ, USA (2016)
- 11. Li, L., Mao, L., Zhang, Y., Chi, J., Huang, T., Cong, X., Peng, H.: CIST System for CL-SciSumm 2016 Shared Task. In: Proc. of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL2016), pp. 156{167. Newark, NJ, USA (2016)

- 11. Lu, K., Mao, J., Li, G., Xu, J.: Recognizing reference spans and classifying their discourse facets. In: Proc. of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL2016), pp. 139{145. Newark, NJ, USA (2016)
- 14. Malenfant, B., Lapalme, G.: RALI System Description for CL-SciSumm 2016 Shared Task. In: Proc. of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL2016), pp. 146{155. Newark, NJ, USA (2016)
- 17. Moraes, L., Baki, S., Verma, R., Lee, D.: University of Houston at CL-SciSumm 2016: SVMs with tree kernels and Sentence Similarity. In: Proc. of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL2016), pp. 113{121. Newark, NJ, USA (2016)
- 19. Nomoto, T.: NEAL: A neurally enhanced approach to linking citation and reference. In: Proc. of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL2016), pp. 168(174. Newark, NJ, USA (2016)
- 23. Saggion, H., AbuRa'Ed, A., Ronzano, F.: Trainable Citation-enhanced Summarization of Scientic Articles. In: Proc. of the JointWorkshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL2016), pp. 175{186. Newark, NJ, USA (2016)

Best Performing Approaches: Task 1

- System 15 Tfidf
- System 8 Combinations of SVM Classifier + term frequencies + surface features
- System 6 Tfidf + embeddings-based neural network
- System 16 SVMRank, decision tree classifier

Best Performing Approaches (Task 2)

System summaries vs Paper Abstracts

- System 8 SVM classifiers, voting methods
- System 3 Term frequency + NNMF
- System 10 WEKA + feature relevance scores

Best Performing Approaches (Task 2)

System summaries vs. Human summaries

- System 8 SVM classifiers, voting methods
- System 3 Term frequency + NNMF
- System 10 WEKA + feature relevance scores

Best Performing Approaches (Task 2)

- System 15 SVM with convolution kernel
- System 8 SVM classifiers, voting methods
- System 10 WEKA + feature relevance scores

Dataset Limitations

- Task 1B: limited number of samples for most (e.g., hypothesis) discourse facets, inconsistent labeling
- Preprocessing: OCR + Parsing Rolf Kümmerli, 1,2 Andy
 Rolf K"ummerli, 1,2
- Software: Protégé w/ manual alignment and post-processing
- Scaling the corpus was difficult: key bottleneck in the corpus development

Acknowledgements

- Chin-Yew Lin (MSRA)
- NIST and Hoa Dang
- Lucy Vanderwende, MSR
- Anita de Ward, Elsevier Data Services
- Kevin B. Cohen, Prabha Yadav (U. Colorado, Boulder)
- Rahul Jha (Google)

- U-Hyderabad Annotators:
 - Aakansha Gehlot, Ankita Patel,
 Fathima Vardha, Swastika
 Bhattacharya and Sweta Kumari
- System Paper Reviewers:
 - Akiko Aizawa, Dain Kaplan, John Lawrence, Lucy Vanderwende, Philipp Mayr, Vasudeva Verma and John Conroy

Research

This task was possible through the generous support of

Supplemental Analysis

- We investigated whether high deviations could be because of the topic sets themselves
- Topics with both high and low number of citances have mixed results
- No significant patterns of performance against:
 - Number of citances of the topic set
 - Age of the paper

Thank you jaidka@sas.upenn.edu