A Mélyhúzás Technológiai Folyamatának Átfogó Elemzése, Különös Tekintettel az Anyaganizotrópia Hatásaira

Kutatási Jelentés

2025. október 6.

Tartalomjegyzék

1.	A Képlékeny Alakítás Elméleti Alapjai	2
	1.1. Az Anyagok Mechanikai Viselkedése: Rugalmas és Képlékeny Alakváltozás	2
	1.2. A Feszültség-Alakváltozás Kapcsolat és a Folyásgörbe	2
	1.3. A Mikroszerkezettől a Gépészeti Tervezésig	3
2.	A Lemezek Képlékeny Anizotrópiája	4
	2.1. Az Anizotrópia Fogalma és Eredete	4
	2.2. Az Anizotrópia Mennyiségi Jellemzése: A Lankford-együttható	4
	2.3. A Csúcsosodás (Earing): A Síkbeli Anizotrópia Látható Következménye .	5
	2.4. Az Ideális Mélyhúzó Lemez Tulajdonságai	5
3.	A Mélyhúzás Technológiája	6
	3.1. Az Eljárás Alapelvei és Fázisai	6
	3.2. Meghatározó Technológiai Paraméterek	7
	3.3. A Mélyhúzás Tipikus Hibái és Okaik	7
	3.4. A Mélyhúzás mint Egyensúlyi Folyamat a Technológiai Ablakban	9
4.	Mélyhúzó Szerszámok Tervezése és Terhelései	9
	4.1. A Mélyhúzó Szerszám Felépítése	9
	4.2. A Szerszámgeometria Szerepe	10
	4.3. A Technológiai Erők Számítása	11
	4.4. A Szerszámtervezés mint Anyagáramlás-menedzsment	11
5 .	A Végeselemes Módszer (VEM) Alkalmazása	12
	5.1. A VEM Alapelvei	12
	5.2. Mélyhúzási Folyamatok Szimulációja VEM-mel	12
	5.3. A Pontos Anyagmodellek Jelentősége	13
	5.4. A VEM mint a Komplexitáskezelés Eszköze	13
6.	Következtetések	14

1. A Képlékeny Alakítás Elméleti Alapjai

A képlékeny alakítás a modern gyártástechnológia egyik legfontosabb és legdinamikusabban fejlődő területe, amely lehetővé teszi fémekből és ötvözeteikből félkész termékek, szerkezeti elemek és készalkatrészek gazdaságos előállítását [10, 14]. Az eljárás alapvető célja, hogy a kiinduló előgyártmány alakját és méreteit külső erők alkalmazásával, maradó alakváltozás révén változtassa meg. A folyamat megértéséhez elengedhetetlen az anyagok mechanikai viselkedésének, a feszültség és alakváltozás közötti kapcsolatnak, valamint az alakítás során végbemenő mikroszerkezeti változásoknak az ismerete.

1.1. Az Anyagok Mechanikai Viselkedése: Rugalmas és Képlékeny Alakváltozás

A képlékeny alakítás definíció szerint olyan gyártási eljárás, amely során egy test alakját és méreteit külső erőrendszer segítségével, maradó alakváltozás létrehozásával változtatják meg, miközben az anyagfolytonosság nem szakad meg – tehát sem törés, sem repedés nem keletkezik –, és a test térfogata, illetve tömege gyakorlatilag változatlan marad [10, 23]. Ezen tulajdonsága miatt az eljárást régebben "forgács nélküli megmunkálásnak" is nevezték, megkülönböztetve a forgácsolási eljárásoktól, ahol anyagleválasztás történik [14].

A fémek terhelés hatására bekövetkező alakváltozása két alapvető tartományra osztható: rugalmas (elasztikus) és képlékeny (plasztikus) alakváltozásra.

- Rugalmas alakváltozás: A terhelés hatására a test megváltoztatja alakját, de a terhelés megszűnése után visszanyeri eredeti geometriáját [5]. Ez a deformáció a kristályrács atomjainak ideiglenes elmozdulásával jár, anélkül, hogy az atomok közötti kötések tartósan megváltoznának. A legtöbb fém kis terhelések esetén rugalmasan viselkedik [5].
- **Képlékeny alakváltozás:** Ha a terhelés egy bizonyos határt, a folyáshatárt meghaladja, az alakváltozás egy része maradóvá válik. A terhelés megszüntetése után a test nem nyeri vissza eredeti alakját; ez a maradó deformáció a képlékeny alakváltozás [14, 6]. A képlékeny alakváltozás a fémek kristályszerkezetében, a csúszási síkok mentén történő atomi elmozdulásokkal, azaz diszlokációk mozgásával valósul meg [13]. Ez a mikroszkopikus mechanizmus teszi lehetővé a fémek képlékeny formálhatóságát.

A képlékeny alakítás technológiája lehet hideg- vagy melegalakítás, attól függően, hogy a folyamat az anyag újrakristályosodási hőmérséklete alatt vagy felett zajlik-e [1, 17]. A hidegalakítás során az anyag tulajdonságai jelentősen megváltoznak, míg a melegalakítás közben az anyagszerkezet folyamatosan regenerálódik [1].

1.2. A Feszültség-Alakváltozás Kapcsolat és a Folyásgörbe

Az anyag képlékeny alakítás közbeni viselkedésének legfontosabb leíró eszköze a feszültségalakváltozás görbe, vagy más néven folyásgörbe. Ez a diagram grafikusan ábrázolja, hogy egy adott alakváltozás létrehozásához mekkora feszültség szükséges [8, 12]. A görbe menete az anyag "ujjlenyomataként" is felfogható, amely alapvetően meghatározza az alakíthatóságát.

A görbe jellegzetes pontjai és szakaszai a következők:

- Folyáshatár $(R_{p0,2})$: Az a feszültségszint, amelynél a képlékeny alakváltozás megindul. A hidegalakítás során az alakítatlan fém kiinduló folyáshatára megegyezik a statikus szakítóvizsgálattal mért folyáshatárral [23].
- Alakítási keményedés (Strain Hardening): A hidegalakítás során, ahogy az anyag képlékenyen deformálódik, egyre nagyobb feszültség szükséges a további alakváltozás fenntartásához. Ezt a jelenséget alakítási keményedésnek nevezzük. Ennek oka a diszlokációk felszaporodása és kölcsönhatása a kristályszerkezetben, amelyek egyre jobban akadályozzák egymás mozgását [13]. A feszültség-alakváltozás görbe ezen szakasza emelkedő tendenciát mutat [12].
- Alakítási szilárdság (k_f) : A hidegalakítás során a felkeményedett fém mindenkori, pillanatnyi folyáshatárát alakítási szilárdságnak nevezzük. Ez tehát nem egy konstans anyagjellemző, hanem az alakváltozás mértékének, az alakváltozási sebességnek és az alakítási hőmérsékletnek a függvénye: $k_f = f(\phi_{eq}, \dot{\phi}_{eq}, T)$ [12, 23]. Hidegalakításnál a hőmérsékletfüggést gyakran elhanyagolják.

Az alakítási szilárdság pontos ismerete kulcsfontosságú a technológiai folyamatok tervezésénél, mivel ez határozza meg a szükséges alakítóerőt és munkát.

1.3. A Mikroszerkezettől a Gépészeti Tervezésig

Az anyagok képlékeny alakíthatósága mögött egy szigorú okozati lánc húzódik, amely a fémek atomi szintű szerkezetétől egészen a gyártáshoz szükséges gépek kiválasztásáig terjed. Ez a kapcsolat rávilágít arra, hogy a fémfizikai alapelvek hogyan válnak a gépészeti tervezés kézzelfogható peremfeltételeivé.

A folyamat a fémek polikristályos szerkezetében kezdődik. A képlékeny alakváltozás alapvető mechanizmusa a kristályrács hibáinak, az úgynevezett diszlokációknak a mozgása a csúszási síkok mentén [13]. Amikor külső erő hat a fémre, ezek a diszlokációk elmozdulnak, ami makroszkopikus szinten alakváltozásként jelenik meg.

Az alakítás előrehaladtával a diszlokációk száma drasztikusan megnő, egymásba gabalyodnak, és akadályozzák egymás további mozgását. Ez a mikroszkopikus jelenség vezet a makroszkopikus szinten megfigyelhető **alakítási keményedéshez**: az anyag egyre jobban ellenáll a további deformációnak [12].

Ez a növekvő ellenállás azt jelenti, hogy a folyamat fenntartásához egyre nagyobb feszültséget kell az anyagra kifejteni. Ezt a pillanatnyi feszültségszintet nevezzük **alakítási szilárdságnak** (k_f) [23]. Az alakítási szilárdság tehát közvetlen következménye a diszlokációk viselkedésének.

Végül, amikor egy mérnök egy mélyhúzó szerszámot és a hozzá tartozó technológiát tervezi, az egyik legfontosabb feladata a maximálisan fellépő **húzóerő** (F_H) meghatározása [20]. Ez az erő szükséges ahhoz, hogy a megfelelő méretű és teljesítményű sajtológépet ki tudja választani. A húzóerő számítására szolgáló képletekben az egyik kulcsparaméter az anyag szakítószilárdsága (R_m) vagy alakítási szilárdsága (k_f) [20].

Így zárul be a kör: a kristályrácsban mozgó diszlokációk viselkedése közvetlenül meghatározza az anyag alakítási szilárdságát, ami pedig megszabja a szükséges alakítóerőt, és ezen keresztül a gyártáshoz szükséges gép méretét és költségét. Ez a láncolat egy direkt és számszerűsíthető kapcsolatot teremt a fémfizika és a gyakorlati gépészeti tervezés között.

2. A Lemezek Képlékeny Anizotrópiája

A lemezalakítási technológiák, különösen a mélyhúzás elemzése során az egyik legfontosabb jelenség az anyagok anizotrópiája. Míg az egyszerűsített, izotróp anyagmodellek az anyag tulajdonságait minden irányban azonosnak tekintik, a valóságban a lemezanyagok túlnyomó többsége anizotróp módon viselkedik, ami alapvetően befolyásolja az alakíthatóságot és a késztermék minőségét [4].

2.1. Az Anizotrópia Fogalma és Eredete

Az anizotrópia az anyag fizikai és mechanikai tulajdonságainak irányfüggőségét jelenti. A lemezalakítás kontextusában ez azt jelenti, hogy a lemez másképp viselkedik a hengerlési irányban, az arra merőleges (kereszt-) irányban, és a vastagsági irányban [9].

Az anizotrópia elsődleges oka a gyártási folyamat, legfőképpen a hengerlés során kialakuló **krisztallográfiai textúra**. A hengerlés során a fém polikristályos szerkezetének egyes szemcséi a deformáció hatására elfordulnak, és egy vagy több preferált kristálytani orientációba rendeződnek. Ez a rendezettség okozza, hogy a lemez mechanikai tulajdonságai, mint például a folyáshatár vagy az alakváltozási képesség, irányfüggővé válnak [9].

A lemezalakítás numerikus szimulációjában (VEM) kulcsfontosságú a megfelelő anyagmodell kiválasztása. Az izotróp folyási feltételek (pl. Tresca-St. Venant, Huber-Mises-Hencky) nem veszik figyelembe az irányfüggőséget. Ezzel szemben az anizotróp folyási feltételek (pl. Hill '48, Hosford, Barlat) beépítik az anizotrópia hatását, így sokkal valósághűbb eredményeket szolgáltatnak a lemezanyagok folyási viselkedésének előrejelzésében [4].

2.2. Az Anizotrópia Mennyiségi Jellemzése: A Lankford-együttható

A képlékeny anizotrópia számszerűsítésére a legelterjedtebben használt paraméter a Lankfordegyüttható, vagy más néven **r-érték** (plasztikus alakváltozási arány) [16, 25]. Az r-érték a lemez elvékonyodással szembeni ellenállásának mértéke. Definíció szerint a szélességi (ε_w) és a vastagsági (ε_t) logaritmikus (valódi) alakváltozások hányadosa egytengelyű húzóvizsgálat során [4, 16]:

$$r = \frac{\varepsilon_w}{\varepsilon_t} = \frac{\ln \frac{w}{w_0}}{\ln \frac{t}{t_0}} \tag{1}$$

Az anizotrópia leírására két fő r-érték alapú mutatót használnak:

• Normál anizotrópia (r_m vagy \bar{r}): Ez a mutató a lemez átlagos ellenállását jellemzi az elvékonyodással szemben. Az r_m értékét a hengerlési irányhoz képest különböző szögekben (tipikusan 0°, 45° és 90°) mért r-értékek súlyozott átlagaként számítják [25, 2]:

$$r_m = \frac{r_0 + 2r_{45} + r_{90}}{4} \tag{2}$$

Az $r_m > 1$ érték azt jelzi, hogy az anyag hajlamosabb a síkban deformálódni, mint elvékonyodni, ami kedvező a mélyhúzhatóság szempontjából, mivel növeli a szakadással szembeni ellenállást [25, 24].

• Síkbeli anizotrópia (Δr): Ez a mutató az r-érték síkbeli változását, azaz az irányfüggőség mértékét jellemzi. Képlete a következő [25, 2]:

$$\Delta r = \frac{r_0 - 2r_{45} + r_{90}}{2} \tag{3}$$

A Δr értéke közvetlenül felelős a mélyhúzás során kialakuló **csúcsosodás (earing)** jelenségéért. A $\Delta r = 0$ érték a teljesen izotróp síkbeli viselkedést jelenti, ami a csúcsosodás elkerülésének feltétele [25, 26].

A mérnöki gyakorlatban az r-értéket gyakran egyetlen konstans számmal jellemzik. Azonban a kutatások rámutattak, hogy az r-érték maga is szignifikánsan változhat a képlékeny alakváltozás előrehaladtával, és ez a változás függ az orientációtól is. Ezt a dinamikus viselkedést akár egy másodfokú polinommal is le lehet írni: $r_{\alpha}(\bar{\varepsilon}) = A_{\alpha}\bar{\varepsilon}^2 + B_{\alpha}\bar{\varepsilon} + C_{\alpha}$ [4]. Ez a felismerés különösen fontos a nagy alakváltozással járó technológiák és a nagy pontosságú numerikus szimulációk szempontjából, mivel az anizotrópia folyamatos változása befolyásolja a feszültségek lokalizációját és a hiba kialakulásának folyamatát.

2.3. A Csúcsosodás (Earing): A Síkbeli Anizotrópia Látható Következménye

A csúcsosodás (vagy fülesedés) a mélyhúzott üreges testek peremén kialakuló, periodikusan ismétlődő hullámosság. A jelenség közvetlen oka a lemez síkbeli anizotrópiája, amely az anyag nem egyenletes beáramlását eredményezi a húzógyűrűbe a különböző irányokból [26]. Mivel az anyag a különböző irányokban eltérő mértékben ellenáll az alakváltozásnak (amit az r-érték irányfüggése jellemez), a perem egyes részei gyorsabban, mások lassabban áramlanak be, ami a jellegzetes hullámos peremprofilt hozza létre.

A síkbeli anizotrópiát jellemző Δr paraméter előjele és nagysága közvetlen kapcsolatban áll a kialakuló csúcsok számával és helyzetével. Ez a kapcsolat a mélyhúzott minta anizotrópiájának vizsgálatakor az egyik legfontosabb diagnosztikai eszköz.

1. táblázat. A síkbeli anizotrópia (Δr) és a csúcsosodási minta kapcsolata [25, 2, 26]

Δr Értéke	Csúcsosodási Minta
$\Delta r > 0$	Két vagy négy csúcs jelenik meg a hengerlési irányban (0°)
	és az arra merőleges irányban (90°).
$\Delta r < 0$	Négy csúcs jelenik meg a hengerlési irányhoz képest 45°-os (átlós) irányokban.
$\Delta r = 0$	Ideális eset, nincs csúcsosodás. A perem egyenletes, kör alakú marad.

A csúcsosodás egy technológiai hiba, amely utólagos megmunkálást (pl. peremlevágást) tesz szükségessé, növelve ezzel a gyártási költségeket és az anyagveszteséget. Ezért a mélyhúzásra szánt lemezanyagok fejlesztésénél az egyik fő cél a Δr értékének minimalizálása, azaz a nullához való közelítése.

2.4. Az Ideális Mélyhúzó Lemez Tulajdonságai

A szakirodalomban látszólagos ellentmondás feszül az ideális mélyhúzó lemez tulajdonságait illetően. Egyes források a magas r-értéket emelik ki mint a jó alakíthatóság kulcsát [25, 2], míg mások az alacsonyabb r-értékű anyagokat javasolják az egyenletes alakváltozás

érdekében, különösen hengeres alkatrészeknél [24]. A feloldás a normál (r_m) és a síkbeli (Δr) anizotrópia hatásának szétválasztásában rejlik.

A sikeres mélyhúzás két, egymástól független kritérium teljesülését igényli:

- 1. A maximális húzási mélység elérése szakadás nélkül. Ezt a tulajdonságot a normál anizotrópia (r_m) határozza meg. A magas r_m érték $(r_m > 1)$ azt jelenti, hogy az anyag erősen ellenáll az elvékonyodásnak, ami a fenékszakadás elsődleges oka. A magas r_m értékű lemezek palástja nagyobb húzóerőt képes elviselni, így mélyebb csészét lehet belőlük húzni.
- 2. A késztermék geometriai minősége, különösen a perem egyenletessége. Ezt a tulajdonságot a síkbeli anizotrópia (Δr) határozza meg. A nullához közeli Δr érték biztosítja az egyenletes anyagbeáramlást minden irányból, ami a csúcsosodásmentes, minőségi termék előállításának feltétele.

Ebből következik, hogy az ideális mélyhúzó lemez nem egyszerűen "magas" vagy "alacsony" r-értékű. Az ideális lemeznek **egyszerre magas a normál anizotrópiája** (r_m) és a nullához közeli a síkbeli anizotrópiája (Δr) . Más szavakkal, a cél egy olyan anyag, amelynek r-értéke minden síkbeli irányban magas és közel azonos. A [24] forrás pontatlanul fogalmaz, amikor "alacsony R-értéket" említ; valójában az r-értékek alacsony szórására, azaz alacsony Δr értékre utal.

3. A Mélyhúzás Technológiája

A mélyhúzás a lemezalakító eljárások egyik legfontosabb és legszélesebb körben alkalmazott technológiája. Lehetővé teszi sík lemezből komplex, üreges testek, például edények, autókarosszéria-elemek vagy csomagolóanyagok tömeges és gazdaságos előállítását [20, 22]. A folyamat sikere számos technológiai paraméter precíz beállításán és a fellépő hibajelenségek ismeretén múlik.

3.1. Az Eljárás Alapelvei és Fázisai

A mélyhúzás olyan képlékeny alakító eljárás, amelynek során egy sík lemeztárcsát (terítéket) egy mechanikus bélyeg segítségével egy formázó szerszámba, a húzógyűrűbe húznak, ezáltal üreges testet hozva létre [20, 7]. Az alakítás elsősorban húzó igénybevétellel történik, de a folyamat során összetett feszültségi állapot alakul ki a munkadarab különböző részein.

A mélyhúzás során a lemez peremrésze, amely a húzógyűrű és a ráncfogó között helyezkedik el, komplex terhelésnek van kitéve:

- Radiális húzófeszültség (σ_r): A bélyeg húzóereje okozza, ez a feszültség "húzza be" az anyagot a szerszámüregbe.
- Tangenciális nyomófeszültség (σ_t): Abból adódik, hogy egy nagyobb átmérőjű körgyűrűnek egy kisebb átmérőjűvé kell alakulnia. Ez a nyomófeszültség felelős a ráncosodási hajlamért [18].

A munkadarab palástjában, a húzógyűrű lekerekítésén áthaladva, az anyagot elsősorban tengelyirányú húzófeszültség terheli. A fenékszakadás akkor következik be, ha ez a feszültség meghaladja az anyag teherbírását [18].

3.2. Meghatározó Technológiai Paraméterek

A mélyhúzási folyamat eredményességét számos, gondosan megválasztandó paraméter befolyásolja.

- Húzási fokozat (m) vagy húzási arány (β): Ez a dimenzió nélküli szám a mélyhúzás mértékét jellemzi. Az első húzásnál a húzási fokozat a húzott csésze belső átmérőjének (d) és a kiinduló teríték átmérőjének (D) aránya: m = d/D. Értéke mindig 1-nél kisebb. A húzási arány ennek reciproka: β = 1/m = D/d [22]. A húzási fokozatnak van egy alsó határértéke (fokozati határtényező), amely alatt a húzás szakadás nélkül nem végezhető el. Ha a kívánt végleges átmérő egy lépésben nem érhető el, többfokozatú (továbbhúzó) műveletekre van szükség [22, 15].
- Ráncfogó erő (Blank Holder Force): A peremben ébredő tangenciális nyomófeszültség (σ_t) a vékony lemezek kihajlását, hullámosodását, azaz ráncosodását okozná. Ennek megakadályozására szolgál a ráncfogó, amely egy meghatározott nyomással (p_N) a lemez peremét a húzógyűrű homlokfelületére szorítja, megakadályozva annak felemelkedését [22, 18]. A ráncfogó alkalmazása akkor szükséges, ha a teríték átmérőjének és a lemezvastagságnak az aránya (D/s) vagy a perem szélességének és a vastagságnak az aránya ((D-d)/s) egy kritikus értéket meghalad [22]. A ráncfogó erő nagysága kritikus: ha túl kicsi, ráncosodás lép fel; ha túl nagy, a megnövekedett súrlódás miatt a húzóerő annyira megnő, hogy fenékszakadást okoz.

3.3. A Mélyhúzás Tipikus Hibái és Okaik

A mélyhúzási folyamat során számos jellegzetes hiba léphet fel, amelyek ismerete elengedhetetlen a sikeres technológiatervezéshez. A hibák a nem megfelelően megválasztott technológiai paraméterek, szerszámgeometria vagy alapanyag következményei lehetnek.

2. táblázat. A mélyhúzás tipikus hibái, azok okai és elhárítás

	Megjelenesi Forma (Leiras)	Elsodleges Mechanikai Ok	\mathbf{Befol}
Elsőrendű Ráncosodás A m Másodrendű Ráncosodás A m	A munkadarab peremén kialakuló hullámosság. A munkadarab palástján jelentkező ráncok.	Túl nagy tangenciális nyomófeszültség (σ_t) a peremen. A palást nem fekszik fel a bélvegre.	Alacs Túl n
Fenékszakadás A m	A munkadarab elszakad a fenék és palást átmeneténél.	A húzófeszültség meghaladja a szakítószilárdságot.	Túl n
Csúcsosodás (Earing) A po	A perem hullámossága, szimmetrikus csúcsok.	A lemez síkbeli anizotrópiája $(\Delta r \neq 0)$.	Anyag
Narancshéjasodás A fe	r felület érdessé, narancshéjhoz hasonlóvá válása.	Durva szemcseszerkezet, éles folyáshatár.	Nem
Visszarugózás A ké	A kész darab méretei eltérnek a szerszámétól.	A rugalmas alakváltozás-visszanyerés.	Nagy

3.4. A Mélyhúzás mint Egyensúlyi Folyamat a Technológiai Ablakban

A mélyhúzási folyamat sikere alapvetően egy kényes egyensúly fenntartásán múlik két, egymással ellentétes hibalehetőség – a ráncosodás és a szakadás – között. Ez a két hiba definiál egy úgynevezett "technológiai ablakot", amelyen belül a gyártás biztonságosan és hibamentesen végezhető.

A folyamat logikája a következő:

- 1. A peremben ébredő tangenciális nyomófeszültségek a lemez ráncosodását idézik elő [18]. Ennek megakadályozására a ráncfogót kell alkalmazni, amely egy bizonyos erővel a lemezt a húzógyűrűre szorítja [18].
- 2. A ráncfogó erő növelésével a ráncosodási hajlam csökken. Azonban a nagyobb leszorítóerő megnöveli a súrlódást a lemez és a szerszám felületei között.
- 3. A megnövekedett súrlódás miatt a húzóbélyegnek nagyobb erőt kell kifejtenie ahhoz, hogy az anyagot a húzógyűrűbe húzza.
- 4. Ez a megnövekedett húzóerő növeli a feszültséget a munkadarab palástjában. Ha ez a feszültség eléri az anyag teherbírásának határát (az "átszármaztatható szakítószilárdságot"), az alkatrész elszakad [18].

Ebből következik, hogy a ráncfogó erőre létezik egy optimális tartomány, egy technológiai ablak. Ha a ráncfogó erő túl alacsony, a folyamatot a ráncosodás korlátozza. Ha túl magas, a szakadás válik a korlátozó tényezővé. A sikeres mélyhúzás kulcsa ennek az ablaknak a megtalálása és a paraméterek beállítása úgy, hogy a folyamat végig ezen a biztonságos tartományon belül maradjon.

Az anyagtulajdonságok, különösen a normál anizotrópia (r_m) , közvetlenül befolyásolják ennek az ablaknak a szélességét. A magasabb r_m értékű anyagok jobban ellenállnak az elvékonyodásnak, így nagyobb húzóerőt képesek elviselni szakadás nélkül. Ezáltal egy magasabb r_m értékű anyag "kitágítja" a biztonságos technológiai ablakot, lehetővé téve nagyobb ráncfogó erő alkalmazását vagy nagyobb húzási fokozat elérését, ami végső soron egy robusztusabb és megbízhatóbb gyártási folyamatot eredményez.

4. Mélyhúzó Szerszámok Tervezése és Terhelései

A mélyhúzó szerszám nem csupán egy passzív formaadó elem, hanem egy precíziós mérnöki szerkezet, amelynek minden komponense és geometriai jellemzője aktívan szabályozza az anyagáramlást a képlékeny alakítás során. A szerszámtervezés célja egy olyan fizikai környezet megteremtése, amely a lemezanyagot a kívánt alakra formálja a technológiai hibák elkerülése mellett.

4.1. A Mélyhúzó Szerszám Felépítése

A mélyhúzó szerszámok több alapvető komponensből állnak, amelyek összehangolt működése biztosítja a folyamat sikerességét [11, 15]. A fő aktív elemek a következők:

• Húzóbélyeg (Punch): A szerszám pozitív, mozgó eleme, amely a munkadarab belső alakját és méreteit határozza meg. A bélyeg fejti ki a húzóerőt, amely a

terítéket a húzógyűrűbe préseli [20, 22]. Alakja pontosan meg kell, hogy feleljen a késztermék belső geometriájának [15].

- **Húzógyűrű (Die / Drawing Ring):** A szerszám negatív, általában álló eleme, amely a munkadarab külső alakját adja. A húzógyűrű belső kontúrja követi a húzóbélyeg alakját, attól a húzórésnyivel nagyobb távolságra [20, 22].
- Ráncgátló (Blank Holder / Pressure Pad): A ráncfogó feladata, hogy a mélyhúzás során a teríték peremét a húzógyűrű homlokfelületére szorítsa, megakadályozva ezzel az elsőrendű ráncosodást [20, 22]. A ráncgátló lehet rugós vagy hidraulikus működtetésű, és nem minden esetben szükséges, különösen vastag lemezek vagy kis húzási fokozatok esetén [22, 15].

Ezen aktív elemeken kívül a szerszám számos további komponenst tartalmaz, mint például:

- **Kidobó (Ejector):** A kész munkadarab eltávolítására szolgál a húzógyűrűből vagy a bélyegről a művelet végén [15].
- Vezetőelemek (Guide Pillars, Bushes): Biztosítják a szerszám felső és alsó felének pontos, kotyogásmentes egymáshoz képesti mozgását.
- Szerszámlapok és szerszámház: A szerkezeti elemek, amelyek az aktív komponenseket rögzítik és egy egységes, merev szerkezetbe foglalják [11].

A szerszámok lehetnek egyfokozatúak (kezdő húzáshoz) vagy többfokozatúak (továbbhúzáshoz), utóbbiaknál a ráncgátló gyakran cső alakú, hogy befogadja az előző műveletben már kialakított csészét [15].

4.2. A Szerszámgeometria Szerepe

A szerszám aktív elemeinek geometriája kritikus fontosságú az anyagáramlás szabályozása és a hibák elkerülése szempontjából.

- Lekerekítési sugarak (Die and Punch Radii): A húzóbélyeg és a húzógyűrű éleinek lekerekítési sugarai alapvetően befolyásolják a húzóerő nagyságát és a feszültségek eloszlását. Túl kicsi lekerekítési sugarak éles élként viselkednek, feszültségkoncentrációt okoznak, ami a lemez elnyíródásához vagy szakadásához vezethet [18]. A sugarak növelése csökkenti a húzóerőt és az anyag igénybevételét, de ha a sugár túl nagy, a lemez pereme túl korán kerül ki a ráncgátló szorításából, ami növelheti a ráncosodás kockázatát [15].
- **Húzórés (Drawing Clearance):** A húzóbélyeg és a húzógyűrű közötti rés, amelyen az anyag áthalad. A húzórés mérete határozza meg a kész darab falvastagságát. Ha a rés nagyobb, mint a lemezvastagság, a falvastagság alig változik, de fennáll a másodrendű ráncosodás veszélye. Ha a rés kisebb a lemezvastagságnál (falvékonyító mélyhúzás), a falvastagság csökken, ami egyben az anyag felkeményedésével is jár [18].
- **Húzó- és fékezőbordák (Drawbeads):** Komplex alakú alkatrészeknél, ahol az anyagáramlás nem egyenletes, a ráncgátló felületébe vagy a húzógyűrűbe mart, speciális profilú bordákat alkalmaznak. Ezek a bordák célzottan fékezik az anyag

áramlását azokon a területeken, ahol az túl gyors lenne, és ráncosodást okozna. A bordákon áthaladó lemez ismételt hajlítása és visszahajlítása növeli az alakítási ellenállást, ezáltal szabályozva az anyagáramlást és elősegítve a lemez nyújtását [18].

4.3. A Technológiai Erők Számítása

A szerszám és a sajtológép méretezéséhez elengedhetetlen a folyamat során fellépő erők ismerete.

- **Húzóerő** (F_H): A maximális erő, amelyet a bélyegnek ki kell fejtenie az alakítás során. A húzóerő a folyamat elején nulláról indul, egy maximumot ér el a löket közepén, majd a végén ismét lecsökken. A számítására a gyakorlatban több tapasztalati képletet használnak. Egy általános megközelítés szerint a húzóerő arányos a húzott palást kerületével, a lemezvastagsággal és az anyag szakítószilárdságával (R_m), de figyelembe veszi a súrlódást és a ráncfogó által okozott erőt is [20]. A maximális húzóerő nem haladhatja meg a húzott palást teherbírását, különben szakadás következik be [20].
- Ráncfogó erő (F_{RF}) : A ráncosodás megakadályozásához szükséges erő. Nagysága függ a lemezanyag szilárdságától, vastagságától és a perem geometriájától. A ráncfogó nyomásának (p_N) számítására Siebel dolgozott ki először összefüggést, de napjainkban a végeselemes szimuláció (VEM) adja a legpontosabb módszert a szükséges erő meghatározására [18].

4.4. A Szerszámtervezés mint Anyagáramlás-menedzsment

A mélyhúzó szerszám tervezése messze túlmutat a kívánt alkatrész negatív formájának egyszerű létrehozásán. A valóságban a szerszámtervezés egy aktív, dinamikus folyamat, amely az **anyagáramlás menedzselésére** irányul. A szerszám minden egyes geometriai eleme egyfajta "szelepként", "fékként" vagy "terelőként" funkcionál, amely az anyag áramlását precízen szabályozza.

A húzógyűrű lekerekítési sugara [18] nem csupán egy egyszerű élletörés, hanem egy gondosan tervezett felület, amelyen az anyagnak meg kell hajolnia, majd vissza kell hajolnia. A sugár mérete és profilja határozza meg, hogy ez a folyamat mekkora belső feszültséggel és súrlódással jár az anyag számára, ezáltal befolyásolva a szükséges húzóerőt.

A húzó- és fékezőbordák [18] még ennél is direktebb beavatkozást jelentenek. Ezek tudatosan beépített akadályok, amelyeket a tervező olyan helyeken alkalmaz, ahol az anyag túl könnyen és gyorsan áramlana be a szerszámüregbe, ami ráncosodást vagy a kívánt nyújtás elmaradását okozná. A bordák arra kényszerítik a lemezt, hogy egy szűk, kanyargós pályán haladjon, ami megnöveli az áramlási ellenállást, és megfeszíti a lemezt, biztosítva a sima, ráncmentes felületet.

Ebből a szempontból a szerszámtervező egy fizikai algoritmust hoz létre a szerszám geometriájával. Ez az algoritmus arra kényszeríti az anyagot, hogy a kívánt módon, a kívánt sebességgel és a megfelelő feszültségi állapotban áramoljon, elkerülve a 3. fejezetben tárgyalt hibajelenségeket. A tervezés tehát nem passzív formakialakítás, hanem a materiatranszport aktív menedzselése, ahol a szerszám geometriája a szabályozó eszköz.

5. A Végeselemes Módszer (VEM) Alkalmazása

A modern gépészeti tervezés, különösen a komplex képlékenyalakítási folyamatok elemzése és optimalizálása ma már elképzelhetetlen a numerikus szimulációs eljárások, ezen belül is a Végeselemes Módszer (VEM, angolul Finite Element Method, FEM) nélkül. A VEM lehetővé teszi a bonyolult fizikai jelenségek virtuális térben történő vizsgálatát, jelentősen csökkentve a drága és időigényes fizikai kísérletek számát.

5.1. A VEM Alapelvei

A Végeselemes Módszer egy numerikus eljárás, amelyet mérnöki és fizikai problémákat leíró parciális differenciálegyenletek közelítő megoldására fejlesztettek ki [27]. A módszer alapvető szerepet játszik a gépészmérnöki tervezői munkában, különösen a szilárdságtani, dinamikai, hővezetési és áramlástani problémák elemzésében [19].

A VEM lényege a **diszkretizáció**: a vizsgált folytonos testet (kontinuumot), például egy mélyhúzandó lemezt, véges számú, egyszerűbb geometriájú elemre (pl. háromszög vagy négyszög alakú héjelemekre) bontják. Ezek a végeselemek a csomópontjaikban kapcsolódnak egymáshoz, létrehozva a végeselemes hálót [27, 19].

A módszer lépései a következők:

- 1. Diszkretizáció: A vizsgált test geometriájának felosztása végeselemekre.
- 2. Elemi egyenletek felállítása: Minden egyes elemre felírják a viselkedését leíró fizikai egyenleteket (pl. egyensúlyi egyenleteket) mátrixos formában. Ez az elemi merevségi mátrix.
- 3. Globális egyenletrendszer összeállítása: Az elemi mátrixokból összeállítják a teljes szerkezetre vonatkozó globális egyenletrendszert, amely a csomópontok ismeretlen elmozdulásait tartalmazza.
- 4. **Peremfeltételek alkalmazása:** Figyelembe veszik a külső erőket (terheléseket) és a kényszereket (megfogásokat).
- 5. **Megoldás:** A nagyméretű lineáris vagy nemlineáris egyenletrendszert numerikus módszerekkel megoldják, meghatározva a csomópontok elmozdulásait.
- Eredmények kiértékelése: A csomóponti elmozdulásokból visszaszámolhatók az egyes elemekben ébredő feszültségek, alakváltozások és egyéb releváns mennyiségek [27, 19].

5.2. Mélyhúzási Folyamatok Szimulációja VEM-mel

A mélyhúzás egy rendkívül komplex folyamat, amelyet a nagymértékű képlékeny alakváltozás, a nemlineáris anyagviselkedés (alakítási keményedés, anizotrópia), valamint a szerszám és a munkadarab közötti változó kontakt- és súrlódási viszonyok jellemeznek. A VEM kiválóan alkalmas ezen jelenségek együttes modellezésére.

Egy mélyhúzási szimuláció segítségével a mérnökök képesek előre jelezni [21, 3]:

- Anyagáramlás: Hogyan mozog és deformálódik a lemez az alakítás során.
- Feszültség- és alakváltozás-eloszlás: A kritikus helyek azonosítása, ahol a feszültségek vagy alakváltozások koncentrálódnak.

- Lemezvékonyodás: A falvastagság változásának nyomon követése, a szakadásveszélyes területek feltárása.
- **Hibajelenségek:** A ráncosodás, szakadás és a visszarugózás mértékének és helyének előrejelzése.
- Szükséges erők: A húzóerő és a ráncfogó erő időbeli lefolyásának meghatározása a gépkiválasztáshoz és a folyamat beállításához.

A szimuláció lehetővé teszi a "mi lenne, ha" típusú elemzéseket: a teríték alakjának, a szerszámgeometriának (pl. lekerekítési sugarak) vagy a technológiai paramétereknek (pl. ráncfogó erő, kenés) a virtuális optimalizálását a drága és időigényes fizikai szerszámpróbák előtt [12].

5.3. A Pontos Anyagmodellek Jelentősége

A VEM szimuláció pontossága alapvetően függ a bemeneti adatok, különösen a felhasznált anyagmodell helyességétől. A "szemét be, szemét ki" (garbage in, garbage out) elve itt hatványozottan érvényesül.

A mélyhúzás valósághű modellezéséhez elengedhetetlen egy olyan anyagmodell, amely képes leírni:

- A folyásgörbét: Az alakítási keményedés pontos leírása kulcsfontosságú a feszültségek és erők helyes meghatározásához.
- A képlékeny anizotrópiát: Az r-értékek (normál és síkbeli anizotrópia) figyelembevétele nélkülözhetetlen a valósághű anyagáramlás, az elvékonyodás és különösen a csúcsosodás jelenségének pontos előrejelzéséhez [4, 26]. A fejlett anizotróp folyási feltételek (pl. Hill '48) beépítése a VEM szoftverekbe alapvető követelmény a megbízható lemezalakítási szimulációkhoz.

5.4. A VEM mint a Komplexitáskezelés Eszköze

A 4. fejezetben bemutatott analitikus képletek, mint például a húzóerő számítására szolgáló összefüggés [20], kiválóan alkalmazhatók egyszerű, forgásszimmetrikus alkatrészek esetében. Azonban a modern ipar, különösen az autóipar, egyre bonyolultabb, aszimmetrikus formákkal dolgozik, mint például egy sárvédő vagy egy ajtópanel.

Ezeknél az alkatrészeknél a geometria komplex, az alakváltozás a felületen pontról pontra változik, a súrlódási viszonyok nem egyenletesek, és az anizotróp anyag minden irányban másképp reagál a terhelésre. Egy ilyen összetett problémára nem létezik zárt, analitikus matematikai megoldás.

A Végeselemes Módszer [27, 19] pontosan ezt a látszólag megoldhatatlan komplexitást kezeli. A módszer a problémát több ezer vagy akár több millió apró, egyszerűen kezelhető "mini-problémára" – a végeselemekre – bontja. A szoftver minden egyes elemre megoldja az alapvető fizikai egyenleteket, figyelembe véve az anyag nemlineáris és anizotróp viselkedését, majd ezeket az eredményeket numerikusan "összeilleszti", hogy a teljes alkatrész komplex viselkedését leírja.

A VEM valódi ereje tehát nem csupán a "virtuális kísérletezésben" rejlik. A módszer képessé teszi a mérnököket arra, hogy egyetlen, prediktív modellben integrálják a bonyolult geometriát, a 2. fejezetben tárgyalt anizotróp anyagviselkedést és a komplex peremfeltételeket (kontakt, súrlódás). Ez teszi lehetővé nemcsak a hibák előrejelzését, hanem

a folyamat aktív optimalizálását is. A szimuláció segítségével választ lehet adni olyan kritikus kérdésekre, mint: "Pontosan hova kell elhelyezni egy fékezőbordát a szakadás elkerülésére?", "Milyen legyen a kiinduló lemez kontúrja, hogy a végtermék a legkevesebb hulladékkal legyen gyártható?", vagy "Hogyan változtassuk a ráncfogó erőt a löket során a visszarugózás minimalizálása érdekében?". A VEM tehát a modern mérnöki tervezés elengedhetetlen eszköze a komplexitás legyőzésére és az innovatív, hatékony gyártási folyamatok fejlesztésére.

6. Következtetések

A mélyhúzási folyamat és a mélyhúzott minták anizotrópiájának vizsgálata egy összetett, több tudományterületet érintő feladat, amely a fémfizikától a gépészeti tervezésen át a numerikus modellezésig terjed. A bemutatott irodalmi áttekintés alapján a következő fő következtetések vonhatók le:

- 1. Az anizotrópia központi szerepe: A lemezanyagok képlékeny anizotrópiája nem egy elhanyagolható másodrendű jelenség, hanem a mélyhúzási folyamat minden aspektusát alapvetően meghatározó tulajdonság. A normál anizotrópia (r_m) szabja meg a maximálisan elérhető húzási mélységet, míg a síkbeli anizotrópia (Δr) a késztermék minőségét, a csúcsosodás mértékét. Az ideális mélyhúzó lemez egyszerre rendelkezik magas normál anizotrópiával és nullához közeli síkbeli anizotrópiával.
- 2. A mélyhúzás mint optimalizálási feladat: A sikeres mélyhúzás a ráncosodás és a szakadás közötti szűk technológiai ablakban való működést jelenti. A folyamat paramétereinek (pl. ráncfogó erő) és a szerszám geometriájának (pl. lekerekítési sugarak, fékezőbordák) precíz beállítása egy komplex optimalizálási feladat, ahol a cél az anyagáramlás szabályozása a hibák elkerülése érdekében.
- 3. A szerszámtervezés mint az anyagáramlás-menedzsment eszköze: A mélyhúzó szerszám nem passzív formaadó elem, hanem egy aktív mérnöki szerkezet, amelynek geometriai jellemzői tudatosan szabályozzák az anyag áramlását. A tervezés során a mérnök egy "fizikai algoritmust" hoz létre, amely a lemezt a kívánt alakváltozási pályára kényszeríti.
- 4. A VEM mint a komplexitáskezelés elengedhetetlen eszköze: A modern, komplex geometriájú alkatrészek mélyhúzásának analitikus leírása lehetetlen. A Végeselemes Módszer az egyetlen olyan eszköz, amely képes egyetlen modellben integrálni a bonyolult geometriát, a nemlineáris, anizotróp anyagviselkedést és a változó peremfeltételeket. A VEM nemcsak a hibák előrejelzését teszi lehetővé, hanem a teljes folyamat optimalizálását is, a terítékformától a szerszámgeometrián át a technológiai paraméterekig.

A diplomamunka, amely egy mélyhúzott minta anizotrópiáját vizsgálja, ezen alapelvekre építve tud értékes eredményeket elérni. A kísérleti vizsgálatok (pl. csúcsosodás mérése) és a numerikus szimulációk (VEM) összevetése lehetőséget teremt a felhasznált anizotróp anyagmodellek validálására és a technológiai folyamat mélyebb megértésére.

Hivatkozások

- [1] Altan, T., Ngaile, G., & Shen, G. (2005). *Cold and Hot Forging: Fundamentals and Applications*. ASM International.
- [2] ASTM E517-19 (2019). *Standard Test Method for Plastic Strain Ratio r for Sheet Metal*. ASTM International.
- [3] Banabic, D. (Ed.). (2010). *Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation*. Springer.
- [4] Barlat, F., et al. (2003). Plane stress yield function for aluminum alloy sheets—part I: theory. *International Journal of Plasticity*, 19(9), 1297-1319.
- [5] Beer, F. P., Johnston, E. R., DeWolf, J. T., & Mazurek, D. F. (2012). *Mechanics of Materials*. McGraw-Hill.
- [6] Dieter, G. E. (1988). *Mechanical Metallurgy*. McGraw-Hill.
- [7] Doege, E., & Behrens, B. A. (2006). *Handbuch der Umformtechnik: Grundlagen, Technologien, Maschinen*. Springer.
- [8] Dowling, N. E. (2013). *Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue*. Pearson.
- [9] Engler, O., & Randle, V. (2005). *Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping*. CRC Press.
- [10] Gróf, Gy. (2005). *A képlékenyalakítás elmélete és gyakorlata*. Műszaki Könyvkiadó, Budapest.
- [11] Hoffmann, H., et al. (2012). *Werkzeugbau für die Blechumformung*. Springer Vieweg.
- [12] Hosford, W. F. (2010). *Metal forming: mechanics and metallurgy*. Cambridge University Press.
- [13] Hull, D., & Bacon, D. J. (2011). *Introduction to Dislocations*. Butterworth-Heinemann.
- [14] Kalpakjian, S., & Schmid, S. R. (2014). *Manufacturing Engineering and Technology*. Pearson.
- [15] Lange, K. (Ed.). (1985). *Handbook of Metal Forming*. McGraw-Hill.
- [16] Lankford, W. T., Snyder, S. C., & Bauscher, J. A. (1950). New criteria for predicting the press performance of deep drawing sheets. *Transactions of the ASM*, 42, 1197-1232.
- [17] Marciniak, Z., Duncan, J. L., & Hu, S. J. (2002). *Mechanics of sheet metal forming*. Butterworth-Heinemann.
- [18] Papeleux, L., & Ponthot, J. P. (2002). Finite element simulation of wrinkling in deep drawing processes. *Journal of Materials Processing Technology*, 125, 755-762.

- [19] Reddy, J. N. (2006). *An Introduction to the Finite Element Method*. McGraw-Hill.
- [20] Schuler GmbH (Ed.). (1998). *Metal Forming Handbook*. Springer.
- [21] Simo, J. C., & Hughes, T. J. R. (1998). *Computational Inelasticity*. Springer.
- [22] Tisza, M. (2010). *A képlékeny kézi- és gépi alakítás technológiája*. Miskolci Egyetemi Kiadó, Miskolc.
- [23] Voith, M. (2011). *Képlékenyalakítás: Előtanulmányok*. Miskolci Egyetem, Gépészmérnöki Kar, Miskolc.
- [24] Wagoner, R. H., & Chenot, J. L. (2006). *Fundamentals of metal forming*. John Wiley & Sons.
- [25] Wilson, D. V., Butler, R. D. (1966). The role of plastic anisotropy in sheet metal forming. *Journal of the Institute of Metals*, 94, 25-33.
- [26] Yoshida, K., et al. (1982). Mechanism of earing in deep drawing of anisotropic sheet metals. *J. Japan Soc. Tech. Plasticity*, 23(262), 921-929.
- [27] Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). *The Finite Element Method: Its Basis and Fundamentals*. Butterworth-Heinemann.