Classification: Linear Discriminant Analysis, ROC Curve, and Quadratic Discriminant Analysis (ISLR 4.4 - 4.5)

Yingbo Li

Southern Methodist University

STAT 4399

Outline

- 1 Linear Discriminant Analysis (continued)
- 2 ROC curve
- Quadratic Discriminant Analysis

LDA with p > 1

Suppose we have p (continuous) parameters $X=(X_1,X_2,\ldots,X_p)^T$, then under LDA, they are assumed to have multivariate normal distribution:

$$X \sim \mathsf{N}_p(\mu, \Sigma) \iff f(X) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \ e^{-\frac{1}{2}(X-\mu)^T \Sigma^{-1}(X-\mu)}$$

- Each class has its own μ_k .
- ullet The covariance Σ is the same across classes.

Correlation between X_1, X_2 : 0 (left) vs. 0.7 (right)

Linear discriminants

• The discriminant function is a linear combination of X_1, \ldots, X_p :

$$\delta_k(X) = \log \pi_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \mu_k^T \Sigma^{-1} X.$$

• When K=2, R reports the coefficients of one linear discriminants.

$$\beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$

If this value is large, classify to one class; if small, the other class.

Observation X will be classified to class 1 if

$$0 < \delta_1(X) - \delta_2(X) = C + \underbrace{(\mu_1 - \mu_2)^T \Sigma^{-1}}_{\text{proportional to } \beta_1, \dots, \beta_p} X$$

An example: p = 2, K = 3

In the training data, $n_1 = n_2 = n_3 = 20$.

- Solid lines: LDA decision boundaries (error rate: 0.0770).
- Dashed lines: Bayes decision boundaries (error rate: 0.0746).

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९○

Yingbo Li (SMU) LDA, ROC curve, QDA STAT 4399 5 / 18

Fisher's iris data

K=3: Setosa, Versicolor, Virginica, p=4, $n_1=n_2=n_3=50$

Fisher's discriminant plot

LDA classifies all but 3 of the 150 training samples correctly.

When there are K classes, LDA can be viewed exactly in a K-1 dimensional plot.

Posterior probabilities

• Once we have estimates $\hat{\delta}_k(X)$, we can turn these into estimates for class probabilities:

$$\hat{P}(Y = k \mid X) = \frac{e^{\hat{\delta}_k(X)}}{\sum_{j=1}^K e^{\hat{\delta}_j(X)}}$$

- In classification, the class with the largest $\hat{\delta}_k(X)$ also has the largest posterior probability.
- When K=2, we classify to class k if

$$\hat{P}(Y = k \mid X) \ge 0.5$$

LDA on Credit data

 $lda(default \sim balance + student, data = Default);$ We classify someone to Y=1 if the predicted probability of default >0.5.

The confusion matrix

		True Default		Tatal	
		No	Yes	Total	
Predicted Default	No	9644	252	9896	
	Yes	23	81	104	
Total		9667	333	10000	

- Overall error rate $\frac{23+252}{10000} = 2.75\%$ (training error rate).
- True proportion of default $\frac{333}{10000} = 3.33\%$. This is the error rate of a useless classifier that always predicts no default.
- Misclassification rate among who actually default $\frac{252}{333} = 75.68\%!$

9 / 18

Choosing a threshold

- Previously, we use the default threshold $\hat{P}(Y=1\mid X)\geq 0.5$, which misclassifies many Yes's.
- Now we lower the threshold $\hat{P}(Y=1\mid X)\geq 0.2.$

		True Default		Total	
		No	Yes	Total	
Predicted Default	No	9432	138	9570	
	Yes	235	195	430	
Total		9667	333	10000	

- Overall error rate increases to $\frac{235+138}{10000} = 3.73\%$.
- Misclassification rate among who actually default $\frac{138}{333} = 41.4\%$.
- The trade-off in modifying the threshold: to credit card companies, false negatives may be more dangerous than false positives.

Types of errors

		True class		Total	
		_	+	Total	
Predicted	_	TN	FN (Type II error)	N^*	
class	+	FP (Type I error)	TP	P^*	
Total		N	P		

- False positive rate: FP/N.
 - Type I error rate
 - ▶ 1 specificity
- True positive rate: TP/P
 - ▶ Power, i.e., 1— type II error rate
 - Sensitivity
- Depending on the specific problem, controlling type I errors (or type II errors) may be more important.

Visualization: choosing a threshold

In order to reduce the false negative rate FN/P, we may want to reduce the threshold to 0.1 or less.

Receiver operating characteristics (ROC) curve

ROC curve

- Y-axis: true positive rate, sensistivity
- X-axis: false positive rate, 1— specificity

Area under the curve (AUC)

- The closer to 1 the better.
- Flipping a fair coin (dotted line): AUC = 0.5
- Let Z_k be a random variable from the distribution $f_k(X)$ for k = 0, 1, then

$$AUC = P(Z_0 < Z_1)$$

Quadratic discriminant analysis (QDA)

• In class k, X is assumed to have multivariate normal distribution:

$$X \sim \mathsf{N}_p(\mu_k, \Sigma_k)$$

- Each class has its own mean μ_k .
- Unlike LDA, QDA assumes that each class has its own covariance matrix Σ_k.
- The induced discriminant function is quadratic in X_1, \ldots, X_p .

$$\delta_k(X) = \underbrace{\log \pi_k - \frac{1}{2} \mu_k^T \Sigma_k^{-1} \mu_k - \frac{1}{2} \log |\Sigma_k|}_{\text{constant}} + \underbrace{\mu_k^T \Sigma_k^{-1} X}_{\text{linear}} - \underbrace{\frac{1}{2} X^T \Sigma_k^{-1} X}_{\text{quadratic}}$$

• More parameters to estimate.

An example: K = 2, p = 2

Decision boundaries: QDA, LDA, Bayes

Left: $\Sigma_1 = \Sigma_2$

Right: $\Sigma_1 \neq \Sigma_2$

QDA vs. LDA

- QDA is more flexible
- QDA will work better when
 - the variances are very different between classes, and
 - we have enough observations to accurately estimate the variances
- LDA will work better when
 - the variances are similar among classes, or
 - we don't have enough data to accurately estimate the variances

LDA vs. the logistic regression

• Similarity: both have linear decision boundaries. In logistic regression, when K=2,

$$\log \left[\frac{P(Y=1)}{P(Y=0)} \right] = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- LDA will work better when its assumptions is satisfied
 - Observations X have normal distributions
 - ► There is a common variance (or covariance) across classes
- Logistic regression doesn't have the normality assumption. It outperforms LDA when normality doesn't hold.

KNN vs. the parametric methods

- KNN is a non-parametric method: No assumptions are made about the shape of the decision boundary!
- Advantage of KNN
 - It dominates both LDA and logistic regression when the decision boundary is highly non-linear
 - ▶ It also dominates QDA when the decision boundary is non-quadratic
- Disadvantage of KNN
 - It does not tell us which predictors are important (no table of coefficients)
 - ▶ Its performance varies with the choice of *K* (number of neighbors)