

Machine Learning

Lecture 2: k-Nearest Neighbors

Prof. Dr. Stephan Günnemann

Data Analytics and Machine Learning Technical University of Munich

Winter term 2020/2021

fix - 25, VE, v.3

Iris dataset: 2 features

How do we intuitively label new samples by hand? Look at the *surrounding* points. Do as your neighbor does.

1-NN algorithm

Given a training dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ where $x_i \in \mathbb{R}^D$ are features and $y_i \in \{1, \dots, C\}$ are class labels

To classify new observations:

- define a distance measure (e.g. Euclidean distance)
- compute the nearest neighbor for all new data points
- and label them with the label of their nearest neighbor

This works for both classification and regression.

This corresponds to a Voronoi tesselation. And results in poor generalization...

k-Nearest Neighbor classification

More *robust* against errors in the training set:

Look at multiple nearest neighbors and pick the majority label.

k-Nearest Neighbor classification

More robust against errors in the training set:

Look at multiple nearest neighbors and pick the majority label.

Let $\mathcal{N}_k(x)$ be the k nearest neighbors of a vector x, then in classification tasks:

$$p(y = c \mid \boldsymbol{x}, k) = \frac{1}{k} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \mathbb{I}(y_i = c), \qquad \text{a (y.1)}$$

$$\hat{y} = \arg \max p(y = c \mid \boldsymbol{x}, k)$$

with the *indicator variable* $\mathbb{I}(e)$ is defined as:

$$\mathbb{I}(e) = \begin{cases} 1 \text{ if } e \text{ is true} \\ 0 \text{ if } e \text{ is false.} \end{cases}$$

k-Nearest Neighbor classification

More robust against errors in the training set:

Look at multiple nearest neighbors and pick the majority label.

Let $\mathcal{N}_k(\boldsymbol{x})$ be the k nearest neighbors of a vector \boldsymbol{x} , then in classification tasks:

$$p(y = c \mid \boldsymbol{x}, k) = \frac{1}{k} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \mathbb{I}(y_i = c),$$
$$\hat{y} = \arg\max_{c} p(y = c \mid \boldsymbol{x}, k)$$

with the *indicator variable* $\mathbb{I}(e)$ is defined as:

$$\mathbb{I}(e) = \begin{cases} 1 \text{ if } e \text{ is true} \\ 0 \text{ if } e \text{ is false.} \end{cases}$$

i.e., the vector will be labeled by the mode of its neighbors' labels.

$k ext{-Nearest Neighbor classification: weighted}$

Look at multiple nearest neighbors and pick the weighted majority label.

k-Nearest Neighbor classification: weighted

Look at multiple nearest neighbors and pick the weighted majority label. The weight is inversely proportional to the distance.

Let $\mathcal{N}_k(x)$ be the k nearest neighbors of a vector x, then in classification tasks:

$$p(y = c \mid \boldsymbol{x}, k) = \frac{1}{Z} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)} \mathbb{I}(y_i = c),$$
$$\hat{y} = \arg \max p(y = c \mid \boldsymbol{x}, k)$$

with $Z = \sum_{i \in \mathcal{N}_k(x)} \frac{1}{\mathrm{d}(\boldsymbol{x}, x_i)}$ the normalization constant and $\mathrm{d}(\boldsymbol{x}, x_i)$ being a distance measure between \boldsymbol{x} and x_i .

k-Nearest-Neighbor regression

Regression is similar:

Let $\mathcal{N}_k(x)$ be the k nearest neighbors of a vector x, then for regression:

$$\hat{y} = \frac{1}{Z} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)} y_i,$$

with $Z = \sum_{i \in \mathcal{N}_k(x)} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)}$ the normalization constant and $\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)$ being a distance measure between \boldsymbol{x} and \boldsymbol{x}_i ,

k-Nearest-Neighbor regression

Regression is similar:

Let $\mathcal{N}_k(x)$ be the k nearest neighbors of a vector x, then for regression:

$$\hat{y} = \frac{1}{Z} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)} \ y_i,$$

with $Z = \sum_{i \in \mathcal{N}_k(x)} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)}$ the normalization constant and $\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)$ being a distance measure between \boldsymbol{x} and \boldsymbol{x}_i ,

i.e., the vector will be labeled by a weighted mean of its neighbors' values.

Note: y_i is a real number here (rather than categorical label).

So, how many neighbors are best?

Compare the decision boundaries of 1-NN and 3-NN

Choosing k

Goal is generalization: pick k (called a *hyper-parameter*) that performs best¹ on unseen (future) data.

Unfortunately, no access to future data, so split the dataset \mathcal{D} :

8 0%	10%	
Training set \mathcal{D}_T	Validation set \mathcal{D}_V	
		10 y.
Learning set \mathcal{D}_L		Test set \mathcal{D}_t
	$\check{\mathcal{D}}$	

Hyper-parameter tuning procedure

RANDOM

• Learn the model using the training set

STRAT: F.ED

- Evaluate performance with different k on the validation set picking the best k
- Report final performance on the test set.²

¹In terms of some predefined metric, i.e. accuracy

²Good data science practices: See slides on Decision Trees

Using validation set to choose k

We choose k = 7.

Measuring classification performance

How can we assess the performance of a (binary) classification algorithm?

 \Rightarrow Confusion table

	True condition	
Predicted	y=1	y = 0
y = 1	TP	FP
y = 0	FN	TN

$$\begin{array}{ll} TP & = \text{true prositive} \\ TN & = \text{true negative} \end{array} \right\} \text{correct predictions} \\ \hline \textbf{\textit{FP}} & = \text{false prositive} \\ FN & = \text{false negative} \end{array} \right\} \text{wrong predictions}$$

Measuring classification performance

 \Rightarrow Trade-off between precision and recall: increasing one (most often) leads to decreasing the other

General note: Be careful when you have imbalanced classes!

- ullet K-NN can be used with various distance measures o highly flexible
- Euclidean distance (L_2 norm): $\sqrt{\sum_i (u_i v_i)^2}$

- ullet K-NN can be used with various distance measures o highly flexible
- Euclidean distance (L_2 norm): $\sqrt{\sum_i (u_i v_i)^2}$
- L_1 norm: $\sum_i |u_i v_i|$

- K-NN can be used with various distance measures → highly flexible
- Euclidean distance (L_2 norm): $\sqrt{\sum_i (u_i v_i)^2}$
- L_1 norm: $\sum_i |u_i v_i|$
- L_{∞} norm: $\max_i |u_i v_i|$

- ullet K-NN can be used with various distance measures o highly flexible
- Euclidean distance (L_2 norm): $\sqrt{\sum_i (u_i v_i)^2}$
- L_1 norm: $\sum_i |u_i v_i|$
- L_{∞} norm: $\max_i |u_i v_i|$
- Angle:

$$\cos\alpha = \frac{\boldsymbol{u}^T\boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}$$

- K-NN can be used with various distance measures \rightarrow highly flexible
- Euclidean distance (L_2 norm): $\sqrt{\sum_i (u_i v_i)^2}$
- L_1 norm: $\sum_i |u_i v_i|$
- L_{∞} norm: $\max_i |u_i v_i|$
- Angle:

$$\cos \alpha = \frac{\boldsymbol{u}^T \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}$$

• Mahalanobis distance (Σ is positive (semi) definite and symmetric):

$$\sqrt{(\boldsymbol{u}-\boldsymbol{v})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{u}-\boldsymbol{v})}$$

• Hamming distance, Edit distance, . . .

Scaling issues

The same old example but one of our features is in the order of meters, the other in the order of centimeters. (k=1)

Circumventing scaling issues

Data standardization
 Scale each feature to zero mean and unit variance.

$$x_{i,\text{std}} = \frac{x_i - \mu_i}{\sigma_i}$$

(This is a standard procedure in machine learning. Many models are sensitive to differences in scale.)

Data standardization
 Scale each feature to zero mean and unit variance.

$$x_{i,\mathrm{std}} = \frac{x_i - \mu_i}{\sigma_i}$$
 for t

(This is a standard procedure in machine learning. Many models are sensitive to differences in scale.)

Use the Mahalanobis distance.

$$\text{mahalanobis}(\boldsymbol{x}_1, \boldsymbol{x}_2) = \sqrt{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_1 - \boldsymbol{x}_2)}$$

$$oldsymbol{\Sigma} = \left[egin{array}{ccc} \sigma_1^2 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \sigma_n^2 \end{array}
ight]$$
 is equal to Euclidean distance on normalized data

Given a discrete one-dimensional input space $x \in \{1, 2, \dots, 10\}$

For N=20 uniformly distributed samples the data covers 100% of the input space.

Given a discrete one-dimensional input space $x \in \{1, 2, \dots, 10\}$

For N=20 uniformly distributed samples the data covers 100% of the input space.

Add a second dimension (now $x \in \{1, \dots, 10\}^2$) and your data only covers 18% of the input space.

Given a discrete one-dimensional input space $x \in \{1, 2, \dots, 10\}$

For N=20 uniformly distributed samples the data covers 100% of the input space.

Add a second dimension (now $x \in \{1,\dots,10\}^2$) and your data only covers 18% of the input space.

Once you add a third dimension you only cover 2%.

- The nearest neighbor will now be pretty far away..
- N has to grow exponentially with the number of features. Consider this when using k-NN on high-dimensional data.

Practical considerations

Expensive: memory and naive inference are both O(N):

we need to store the entire training data and compare with all training instances to find the nearest neighbor

Solution: use tree-based search structures (e.g. k-d tree) for efficient (approximate) NN $^{\rm 3}$

³At the expense of an additional computation performed only once

What we learned

- k-NN Algorithm
- Train-validation-test split
- Measuring classification performance
- Distance metrics
- Curse of dimensionality

Reading material

Main reading

 "Machine Learning: A Probabilistic Perspective" by Murphy [ch. 1.4.1 - 1.4.3]

Extra reading

 "Bayesian Reasoning and Machine Learning" by Barber [ch. 14]