

Electromagnetic Induction

AREA VECTOR

AREA

The phenomenon in which changing magnetic flux through a coil, induces an emf in it.

Area and **Area Vector**

Area and Area vector is always mutually perpendicular to each other. So if area rotates then its area vector will also rotate with it.

Magnetic Flux

- · The dot product of magnetic field and area vector of flat surface.
- It also defines as the number of magnetic field lines passing through an area which is held perpendicular to the magnetic field.

Mathematically,

$$\varphi_B = B \cdot A$$
 $\varphi_B = BA\cos\theta$

Unit: Weber = Tesla.m² Quantity: Scalar

Magnetic flux at different orientation

a) Magnetic flux when Area is perpendicular and area vector parallel to Field:

$$\varphi_B = B . A$$

 $= BAcos\theta$

= BAcos0

= BA (Max)b) Magnetic flux when Area is parallel and area vector perpendicular

$$\boldsymbol{\varphi}_{\boldsymbol{B}} = \boldsymbol{B} \cdot \boldsymbol{A}$$

to Field:

 $= BAcos\theta$

= BAcos90

= 0 (Min)

c) Magnetic flux when Area and area vector making angle with Field:

$$\varphi_B = B \cdot A$$

Back to Electromagnetic Induction...

The phenomenon in which changing magnetic flux through a coil, induces an emf in it.

EMF

Work done on a unit positive charge by the battery/cell

Basic Idea

EMF / Current

Dependance of EMF

- Strong B
- High speed
- Greater no. of loops
- Independent of resistance of the conductor

Induced current depends upon resistance.

$$i = \frac{\varepsilon}{R}$$
For a specific v, B & N
$$\varepsilon = i \times R = const$$

$$\varepsilon = i \times R$$

 $\varepsilon = \mathbf{i} \times \mathbf{R}$

Some Examples for understanding Changing in Magnetic flux

Motional EMF

EMF induced in a conductor due to its motion in the magnetic field

$$\varepsilon = -vBLSin\vartheta$$

Just to recall.....

• Electric field as potential gradient

$$E = -\frac{\Delta V}{\Delta r} = -\frac{\Delta V}{L}$$

+ - . + . + .

Diagrams

Derivation

Electric force = magnetic force

$$qE = qvB$$

 $E = vB$ (1)

Because

$$\mathsf{E} = -\frac{\Delta V}{L}$$

Using in eq(1)

$$-\frac{\Delta V}{L} = vB$$

$$\Delta V = -vBL$$

$$\mathcal{E} = -vBL \text{ (max)}$$

$$\mathcal{E} = -vBLSin\theta$$

END OF LECTURE	