Комбинаторные алгоритмы Поиск в графе

Гальперин Александр Леонидович

2018 г.

Поиск в графе

Разделы

- Поиск в глубину
- Поиск в ширину

Поиск в графе

• Рассматриваем два стандартных метода систематического обхода графа: поиск в глубину (Depth First Search) и поиск в ширину (Breadth First Search).

Поиск в графе

- Рассматриваем два стандартных метода систематического обхода графа: поиск в глубину (Depth First Search) и поиск в ширину (Breadth First Search).
- Рассматриваем обыкновенные графы. На произвольные графы методы распространяются очевидным образом.

Идея метода: поиск в обыкновенном графе G из некоторой начальной вершины v (с этого момента v — просмотрена). Пусть u — последняя просмотренная вершина (возможно, u = v).

Возможны два случая:

Возможны два случая:

• Среди вершин, смежных с u, существует еще непросмотренная вершина w.

Возможны два случая:

• Среди вершин, смежных с u, существует еще непросмотренная вершина w.

Тогда w объявляется просмотренной, и поиск продолжается из вершины w. При этом назовем вершину u — oт дом вершины w (u = father[w]).

Возможны два случая:

 Среди вершин, смежных с и, существует еще непросмотренная вершина w.

Тогда w объявляется просмотренной, и поиск продолжается из вершины w. При этом назовем вершину u — oт u0 вершины w (u = father[w]).

Ребро *иw* назовем *древесным*.

• Все вершины, смежные с и, просмотрены.

Возможны два случая:

 Среди вершин, смежных с и, существует еще непросмотренная вершина w.

Тогда w объявляется просмотренной, и поиск продолжается из вершины w. При этом назовем вершину u — oт u0 вершины w1 (u1 = u2 u3).

Ребро *иw* назовем *древесным*.

• Все вершины, смежные с u, просмотрены. Тогда u — uспользованная вершина. Поиск продолжается из вершины x = father[u], т.е. из той вершины, из которой мы попали в вершину u.

Что произойдет, когда все просмотренные вершины будут использованы?

Что произойдет, когда все просмотренные вершины будут использованы?

• Если в графе G не осталось непросмотренных вершин, то поиск заканчивается.

Что произойдет, когда все просмотренные вершины будут использованы?

- Если в графе G не осталось непросмотренных вершин, то поиск заканчивается.
- Если осталась непросмотренная вершина y, то поиск продолжается из этой вершины.

Поиск в глубину просматривает вершины в определенном порядке. Для того, чтобы зафиксировать этот порядок, используем массив num[v].

Поиск в глубину просматривает вершины в определенном порядке. Для того, чтобы зафиксировать этот порядок, используем массив num[v].

ullet При этом естественно считать, что для начальной вершины num[v]=1.

Поиск в глубину просматривает вершины в определенном порядке. Для того, чтобы зафиксировать этот порядок, используем массив num[v].

- ullet При этом естественно считать, что для начальной вершины num[v]=1.
- Если вершина w просматривается сразу после вершины u, то num[w] = num[u] + 1.

Пусть в обыкновенном графе G произведен поиск в глубину. Обозначим через \mathcal{T} множество всех древесных ребер.

Пусть в обыкновенном графе G произведен поиск в глубину. Обозначим через $\mathcal T$ множество всех древесных ребер.

Все оставшиеся ребра будем называть *обратными*. Множество всех обратных ребер будем обозначать через B.

Результат применения поиска в глубину к связному графу G показан на рисунке. Здесь сплошные линии изображают древесные ребра, а пунктирные - обратные ребра.

Рис.: Результат применения поиска в глубину

Заметим, что

- нумерация вершин соответствует порядку обхода поиском в глубину;
- множество всех древесных ребер с выделенной начальной вершиной v_1 образует корневое дерево с вершиной в v_1 . Это дерево называют *глубинным* деревом или d—деревом;
- каждое обратное ребро соединяет в d-дереве предка и потомка.

Пусть G — несвязный граф, $G_1, \ldots G_k$ — множество всех его компонент связности.

Пусть G — несвязный граф, $G_1, \ldots G_k$ — множество всех его компонент связности. Обозначим через T_i множество древесных ребер, выделенных поиском в глубину в компоненте G_i , а через v_i — корневую вершину из G_i .

Таким образом, множество всех древесных ребер несвязного графа образует остовный лес. Фиксируя в каждом поддеревеэтого леса корневую вершину, мы получаем rлубинный лес или d-лес.

Формальное описание алгоритма

Формальное описание алгоритма

• В алгоритме используются ранее описанные массивы *father* и *num*;

Формальное описание алгоритма

- В алгоритме используются ранее описанные массивы *father* и *num*;
- num используется для распознавания непросмотренных вершин: равенство num[v]=0 означает, что вершина v еще не просмотрена.

Версия алгоритма поиска в глубину, основанная на рекурсивной процедуре DFS(v), осуществляющей поиск в глуюину из вершины v

Рекурсивный алгоритм

```
1. procedure DFS(v);
2. begin
3.
      num[v] := 1; i := i + 1;
4.
      for u \in list[v] do
         if num[u] = 0 then
5.
6.
            begin
              T := T \cup \{uv\}; father[u] := v; DFS(u);
7.
8.
            end
9.
         else if num[u] < num[v] and u \neq father[v] then
              B := B \cup \{uv\};
10.
11. end:
```

Версия алгоритма поиска в глубину, основанная на рекурсивной процедуре DFS(v), осуществляющей поиск в глуюину из вершины v

Рекурсивный алгоритм: продолжение

```
12. begin
13. i := 1; T := \emptyset; B := \emptyset;
14. for v \in V do num[v] := 0;
15. for v \in V do
16. if num[v] = 0 then
17. begin
18. father[v] := \emptyset; DFS(v)
19. end
20. end.
```

Этот алгоритм применим к произвольному графу G.

Этот алгоритм применим к произвольному графу G.

• Если граф G — связный, то цикл в строках 15–19 достаточно заменить вызовом процедуры $DFS(v_0)$ применительно к начальной вершине v_0 .

Этот алгоритм применим к произвольному графу G.

- Если граф G связный, то цикл в строках 15-19 достаточно заменить вызовом процедуры $DFS(v_0)$ применительно к начальной вершине v_0 .
- В терминах алгоритма вершина v просмотрена с началом просмотра процедуры DFS(v).

 \exists тот алгоритм применим к произвольному графу G.

- Если граф G связный, то цикл в строках 15-19 достаточно заменить вызовом процедуры $DFS(v_0)$ применительно к начальной вершине v_0 .
- В терминах алгоритма вершина v просмотрена с началом просмотра процедуры DFS(v).
- В тот момент, когда процедура DFS(v) закончила работу, вершина v становится использованной.

Теорема 1

Пусть G — связный (n, m)-граф. Тогда

- 1) поиск в глубину просматривает каждую вершину в точности один раз;
- 2) поиск в глубину требует O(n+m) операций;
- 3) подграф (V, T) графа G является деревом.

Доказательство теоремы 1

Доказательство.

1) Проверка в строке 5 гарантирует, что каждая вершина просматривается не более одного раза.

Доказательство теоремы 1

Доказательство.

1) Проверка в строке 5 гарантирует, что каждая вершина просматривается не более одного раза.

Убедимся, что поиск просматривает каждую вершину.

Доказательство теоремы 1

Доказательство.

1) Проверка в строке 5 гарантирует, что каждая вершина просматривается не более одного раза.

Убедимся, что поиск просматривает каждую вершину.

 $\boxed{\mathbf{o}/\mathbf{n}}$ Пусть X — множество просмотренных вершин в тот момент, когда алгоритм закончил работу, $Y = V \backslash X$.

Доказательство теоремы 1

Доказательство.

1) Проверка в строке 5 гарантирует, что каждая вершина просматривается не более одного раза.

Убедимся, что поиск просматривает каждую вершину.

 $\boxed{\mathbf{o}/\mathbf{n}}$ Пусть X — множество просмотренных вершин в тот момент, когда алгоритм закончил работу, $Y = V \backslash X$.

Если $Y \neq \varnothing$, то в силу связности графа G существует ребро xy : $x \in X, y \in Y$.

Доказательство теоремы 1

Доказательство.

1) Проверка в строке 5 гарантирует, что каждая вершина просматривается не более одного раза.

Убедимся, что поиск просматривает каждую вершину.

 $\boxed{\mathbf{o}/\mathbf{n}}$ Пусть X — множество просмотренных вершин в тот момент, когда алгоритм закончил работу, $Y = V \backslash X$.

Если $Y \neq \varnothing$, то в силу связности графа G существует ребро xy : $x \in X, y \in Y$.

Но процедура DFS(v) полностью отработала, поэтому смежная с x вершина y должна быть просмотрена. Противоречие

1014814714717

Доказательство теоремы 1

2) Число повторений цикла в процедуре

начало в строке 4: for $u \in \mathit{list}[v]$ do

с учетом рекурсивных вызовов равно сумме степеней всех вершин графа, т.е. 2m. Следовательно, число операций пропорционально m.

Доказательство теоремы 1

2) Число повторений цикла в процедуре

начало в строке 4: for $u \in \mathit{list}[v]$ do

с учетом рекурсивных вызовов равно сумме степеней всех вершин графа, т.е. 2m. Следовательно, число операций пропорционально m.

Число повторений в цикле в строке 14

for
$$v \in V$$
 do $num[v] := 0$

пропорционально п.

Доказательство теоремы 1

2) Число повторений цикла в процедуре

начало в строке 4: for
$$u \in \mathit{list}[v]$$
 do

с учетом рекурсивных вызовов равно сумме степеней всех вершин графа, т.е. 2m. Следовательно, число операций пропорционально m.

Число повторений в цикле в строке 14

for
$$v \in V$$
 do $num[v] := 0$

пропорционально п.

Следовательно, поиск в глубину требует O(n+m) операций.

Доказательство теоремы 1

3) Ясно, что условие num[v]=0 (строка 5) выполняется n-1 раз. Следовательно, |T|=n-1.

Доказательство теоремы 1

3)Ясно, что условие num[v]=0 (строка 5) выполняется n-1 раз. Следовательно, |T|=n-1.

Кроме того, из 1) вытекает, что множество ребер T не содержит циклов.

Доказательство теоремы 1

3) Ясно, что условие num[v]=0 (строка 5) выполняется n-1 раз. Следовательно, |T|=n-1.

Кроме того, из 1) вытекает, что множество ребер T не содержит циклов.

Таким образом, граф (V, T) ацикличен и содержит ребер на единицу меньше, чем вершин. Значит, (V, T) — дерево.

Пусть G — связный граф, и из его вершины v_0 произведен поиск в глубину. Дерево (V,T) с выделенной вершиной v_0 — корневое (это и есть d— дерево).

Пусть G — связный граф, и из его вершины v_0 произведен поиск в глубину. Дерево (V,T) с выделенной вершиной v_0 — корневое (это и есть d— дерево).

NB

Заметим, что $\forall u \neq v_0$ вершина father[u] является отцом и в d- дереве.

Нерекурсивная версия алгоритма поиска в глубину

Рассмотрим нерекурсивную версию процедуры DFS(v)Рекурсия устраняется при помощи **стека** S, элементами которого являются вершины графа.

Нерекурсивная версия алгоритма поиска в глубину

Рассмотрим нерекурсивную версию процедуры DFS(v)Рекурсия устраняется при помощи **стека** S, элементами которого являются вершины графа.

ullet Вершина v является просмотренной, если num[v]
eq 0.

Нерекурсивная версия алгоритма поиска в глубину

Рассмотрим нерекурсивную версию процедуры DFS(v)Рекурсия устраняется при помощи **стека** S, элементами которого являются вершины графа.

- Вершина v является просмотренной, если $num[v] \neq 0$.
- Вершина v становится использованной с того момента, когда v = top[S] (v находится в вершине стека) и все вершины, смежные с v, уже просмотрены (в этом случае вершина v удаляется из стека).

Нерекурсивная версия алгоритма поиска в глубину

Рассмотрим нерекурсивную версию процедуры DFS(v)Рекурсия устраняется при помощи **стека** S, элементами которого являются вершины графа.

- Вершина v является просмотренной, если $num[v] \neq 0$.
- Вершина v становится использованной с того момента, когда v = top[S] (v находится в вершине стека) и все вершины, смежные с v, уже просмотрены (в этом случае вершина v удаляется из стека).

NB

Вычисления, связанные с множеством обратных ребер B, здесь опущены. В качестве упражнения их можно восстановить.

Нерекурсивная версия алгоритма поиска в глубину

Нерекурсивный алгоритм

```
1, procedure DFS(v)
```

2. begin

```
3. num[v] := i; i := i + 1;
4. S := nil; S \Leftarrow v;
```

5. while
$$S \neq nil$$
 do

6. **begin**

7.
$$v := top(S);$$

Нерекурсивная версия алгоритма поиска в глубину

```
Нерекурсивный алгоритм: продолжение
            if \exists u \in list[v] and num[u] = 0
8.
9
             then
10.
                 begin
11.
                  num[u] := i; \quad i := i + 1; \quad T := T \cup \{uv\};
12.
                  father[u] := v; S \Leftarrow u;
13.
                 end
             else v \Leftarrow S
14.
             end
15.
16. end:
```

NB

Если xy — обратное ребро, то вершины x и y сравнимы в d—дереве, т.е. одна из них является предком другой.

NB

Если xy — обратное ребро, то вершины x и y сравнимы в d—дереве, т.е. одна из них является предком другой.

Действительно, пусть xy — обратное ребро графа G, причем

o/n Предположим, что вершины x и y несравнимы в d-дереве. Из описания алгоритма следует, что в процессе работы процедуры DFS(x) будут просмотрены только потомки вершины x. Поскольку $y \in list[x]$ и в момент завершения процедуры DFS(x) вершина y еще не просмотрена, получаем Противоречие

• В этом случае вместо стека будем использовать очередь Q, элементами которой будут являться вершины графа G.

- В этом случае вместо стека будем использовать очередь Q, элементами которой будут являться вершины графа G.
- Поиск начинается с некоторой вершины v.

- В этом случае вместо стека будем использовать очередь Q, элементами которой будут являться вершины графа G.
- Поиск начинается с некоторой вершины v.
- Эта вершина помещается в очередь Q и с этого момента считается *просмотренной*.

- В этом случае вместо стека будем использовать очередь Q, элементами которой будут являться вершины графа G.
- Поиск начинается с некоторой вершины v.
- Эта вершина помещается в очередь Q и с этого момента считается *просмотренной*.
- Затем все вершины смежные с v включаются в очередь и получают статус *просмотренных*, а вершина v из очереди удаляется.

ullet Более общо, пусть в начале очереди находится вершина u.

- ullet Более общо, пусть в начале очереди находится вершина u.
- Обозначим через u_1, \ldots, u_p еще непросмотренные вершины, смежные с u.

- Более общо, пусть в начале очереди находится вершина u.
- Обозначим через u_1, \ldots, u_p еще непросмотренные вершины, смежные с u.
- Помещаем вершины u_1, \dots, u_p в очередь Q и с этого момента считаем их *просмотренными*. Удаляем вершину u из очереди.
- Присваем вершине и статус использованной.

- Более общо, пусть в начале очереди находится вершина u.
- Обозначим через u_1, \ldots, u_p еще непросмотренные вершины, смежные с u.
- Помещаем вершины u_1, \dots, u_p в очередь Q и с этого момента считаем их *просмотренными*. Удаляем вершину u из очереди.
- Присваем вершине и статус использованной.
- В этой ситуации вершина u называется *отцом* для каждой из вершин u_1, \ldots, u_p : $u = father[u_i], (1 \leqslant i \leqslant p)$.

- Более общо, пусть в начале очереди находится вершина u.
- Обозначим через u_1, \ldots, u_p еще непросмотренные вершины, смежные с u.
- Помещаем вершины u_1, \dots, u_p в очередь Q и с этого момента считаем их *просмотренными*. Удаляем вершину u из очереди.
- Присваем вершине и статус использованной.
- В этой ситуации вершина u называется *отцом* для каждой из вершин u_1, \ldots, u_p : $u = father[u_i], (1 \leqslant i \leqslant p)$.
- Каждое из ребер $uu_i(1 \leqslant i \leqslant p)$ назовем древесным.

- Более общо, пусть в начале очереди находится вершина u.
- Обозначим через u_1, \dots, u_p еще непросмотренные вершины, смежные с u.
- Помещаем вершины u_1, \dots, u_p в очередь Q и с этого момента считаем их *просмотренными*. Удаляем вершину u из очереди.
- Присваем вершине и статус использованной.
- В этой ситуации вершина u называется *отцом* для каждой из вершин u_1, \ldots, u_p : $u = father[u_i], (1 \leqslant i \leqslant p)$.
- ullet Каждое из ребер $uu_i(1\leqslant i\leqslant p)$ назовем древесным.
- ullet В тот момент, когда очередь Q окажется пустой, поиск в ширину обойдет компоненту связности графа G.

- Более общо, пусть в начале очереди находится вершина и.
- Обозначим через u_1, \dots, u_p еще непросмотренные вершины, смежные с u.
- Помещаем вершины u_1, \dots, u_p в очередь Q и с этого момента считаем их *просмотренными*. Удаляем вершину u из очереди.
- Присваем вершине и статус использованной.
- В этой ситуации вершина u называется *отцом* для каждой из вершин u_1, \ldots, u_p : $u = father[u_i], (1 \leqslant i \leqslant p)$.
- ullet Каждое из ребер $uu_i(1\leqslant i\leqslant p)$ назовем древесным.
- В тот момент, когда очередь Q окажется пустой, поиск в ширину обойдет компоненту связности графа G.
- Если остались непросмотренные вершины (граф G несвязен), поиск в ширину продолжается из некоторой непросмотренной вершины.

• Поиск в ширину просматривает вершины в определенном порядке. Как и раньше, фиксируем его в массиве *num*.

- Поиск в ширину просматривает вершины в определенном порядке. Как и раньше, фиксируем его в массиве *num*.
- ullet Если $u=\mathit{father}[u_i](1\leqslant i\leqslant p)$, то

$$num[u_i] = num[u] + i \quad (1 \leqslant i \leqslant p)$$

(для определенности полагаем, что сначала просматривается вершина u_1 , затем u_2 и т.д.).

- Поиск в ширину просматривает вершины в определенном порядке. Как и раньше, фиксируем его в массиве *num*.
- ullet Если $u=\mathit{father}[u_i](1\leqslant i\leqslant p)$, то

$$num[u_i] = num[u] + i \quad (1 \leqslant i \leqslant p)$$

(для определенности полагаем, что сначала просматривается вершина u_1 , затем u_2 и т.д.).

ullet Для начальной вершины v естественно положить num[v]=1.

• Поиск в ширину реализует процедура BFS(v) (Breadth First Search).

- Поиск в ширину реализует процедура BFS(v) (Breadth First Search).
- Использует описанные раньше массивы father и num.

- Поиск в ширину реализует процедура BFS(v) (Breadth First Search).
- Использует описанные раньше массивы father и num.
- Вычисляет множество всех древесных ребер T.

- Поиск в ширину реализует процедура BFS(v) (Breadth First Search).
- Использует описанные раньше массивы father и num.
- Вычисляет множество всех древесных ребер T.
- Массив num удобно использовать для распознавания всех непросмотренных вершин. Равенство num[v]=0 обозначает, что вершина v не просмотрена.

Алгоритм поиска в ширину

```
1. procedure BFS(v)
2. begin
3.
     Q := nil; Q \Leftarrow v; num[v] := i; i := i + 1
4. while Q \neq nil do
5.
          begin
6.
             u \Leftarrow Q:
7.
             for w \in list[u] do
8.
                 if num[w] = 0 then
9.
                     begin
10.
                          Q \Leftarrow w; father[w] := u;
                          num[w] := i; \quad i := i+1; \quad T := T \cup \{uw\};
11.
12
                      end
```

Алгоритм поиска в ширину: продолжение

```
13. end
14. end
15. begin
16. i := 1; \quad T := \varnothing;
17. for v \in V do num[v] := 0;
18. for v \in V do
19. if num[v] = 0 then
20. begin father[v] := 0; \quad BFS(v) end
21. end.
```

NB1

Полезно убедиться, что нерекурсивная процедура DFS(v) отличается от BFS(v) заменой стека на очередь.

NB1

Полезно убедиться, что нерекурсивная процедура DFS(v) отличается от BFS(v) заменой стека на очередь.

NB2

Заметим также, что если применить этот алгоритм к связному графу G, то можно цикл в строках 18-20 заменить однократным вызовом процедуры BFS.

Теорема 2

Пусть G — связный (n, m)-граф. Тогда:

- поиск в ширину просматривает каждую вершину в точности один раз;
- **2** поиск в ширину потребует O(n+m) операций;
- 3 подграф (V, T) графа G является деревом.

Теорема 2

Пусть G — связный (n, m)-граф. Тогда:

- поиск в ширину просматривает каждую вершину в точности один раз;
- **2** поиск в ширину потребует O(n+m) операций;
- \odot подграф (V,T) графа G является деревом.

Эта теорема доказывает аналогично теореме 1.

• В связном графе G поиск в ширину из вершины v строит корневое дерево с множеством ребер T и корнем v.

- В связном графе G поиск в ширину из вершины v строит корневое дерево с множеством ребер T и корнем v.
- Это дерево называется деревом поиска в ширину или b-деревом

- В связном графе G поиск в ширину из вершины v строит корневое дерево с множеством ребер T и корнем v.
- Это дерево называется деревом поиска в ширину или b-деревом.
- Аналогично, если G произвольный обыкновенный граф, то поиск в ширину строитb—дерево в каждой компоненте связности графа G.

- В связном графе G поиск в ширину из вершины v строит корневое дерево с множеством ребер T и корнем v.
- Это дерево называется деревом поиска в ширину или b-деревом
- Аналогично, если G произвольный обыкновенный граф, то поиск в ширину строитb—дерево в каждой компоненте связности графа G.
- Объединяя эти деревья, мы получим остовный лес графа G, называемый b—лесом этого графа.

На рисунке показаны граф G и его b-дерево.

• Пусть в графе G произвели поиск в ширину. Занумеруем вершины графа в соответствии с порядком, в котором поиск в ширину обходит вершины.

- Пусть в графе G произвели поиск в ширину. Занумеруем вершины графа в соответствии с порядком, в котором поиск в ширину обходит вершины.
- ullet Обозначим вершины графа $w_i, \quad 1 \leqslant i \leqslant n$, считая, что $num[w_i] = i$.

- Пусть в графе G произвели поиск в ширину. Занумеруем вершины графа в соответствии с порядком, в котором поиск в ширину обходит вершины.
- ullet Обозначим вершины графа $w_i, \quad 1\leqslant i\leqslant n$, считая, что $num[w_i]=i$.

В леммах 1—5 изучаются свойства поиска в ширину, отличающих его от поиска в глубину.

Лемма 1

Вершина w_k является отцом вершины w_l тогда и только тогда, когда $k = \min\{i|w_i \in list[w_l]\}.$

36 / 61

Доказательство.

 \implies Пусть w_k — отец вершины w_l . Это значит, что непосредственно перед удалением w_k из очереди Q, вершина w_l не была просмотрена.

Доказательство.

 \Longrightarrow Пусть w_k — отец вершины w_l . Это значит, что непосредственно перед удалением w_k из очереди Q, вершина w_l не была просмотрена.

 $\boxed{ \mathbf{o}/\mathbf{n} }$ Если вершина w_p смежна с w_l в графе G и p < k, то w_p была удалена из очереди раньше, чем w_k . Поэтому отцом w_l оказалась бы вершина w_p . Противоречие \bigcirc

 \Leftarrow Пусть k — наименьший из номеров вершин w_i , смежных с w_i в графе G. Ясно, что при p < k вершина w_p не смежна с вершиной w_i и поэтому не может быть ее отцом. Отсюда следует, что w_k — отец w_i .

NB

Из леммы 1 следует, что ребро, не являющееся древесным, никогда не соединяет предка с потомком в b-дереве. Поэтому такие ребра графа G будем называть поперечными.

Лемма 2

Пусть вершины w_k и w_l являются отцами вершин w_p и w_q соответственно. Если $p \leqslant q$, то $k \leqslant l$.

Доказательство.

o/n Предположим, что l < k. Из этого неравенства следует, что вершина w_l будет использована раньше, чем w_k . Поэтому вершина w_q , являющаяся сыном w_l , попадет в очередь раньше, чем w_p — сын вершины w_k . Отсюда q < p. Противоречие

Обозначим через h(u) уровень вершины u в дереве, равный расстоянию этой вершины от корня дерева.

Лемма 3

Если $1 \leqslant p \leqslant q \leqslant n$, то $h(w_p) \leqslant h(w_q)$.

Доказательство. Требуемое неравенство очевидно, если w_p — корень b—дерева.

Доказательство. Требуемое неравенство очевидно, если w_p — корень b—дерева.

Пусть w_p не является корнем. Обозначим через s наибольший из номеров p и q и применим индукцию по s.

Доказательство. Требуемое неравенство очевидно, если w_p — корень b—дерева.

Пусть w_p не является корнем. Обозначим через s наибольший из номеров p и q и применим индукцию по s.

База индукции при s=2, очевидно, выполняется.

Доказательство. Требуемое неравенство очевидно, если w_p — корень b—дерева.

Пусть w_p не является корнем. Обозначим через s наибольший из номеров p и q и применим индукцию по s.

База индукции при s=2, очевидно, выполняется.

Рассмотрим вершины w_k и w_l , являющиеся отцами вершин w_p и w_q соответственно.

Доказательство. Требуемое неравенство очевидно, если w_p — корень b—дерева.

Пусть w_p не является корнем. Обозначим через s наибольший из номеров p и q и применим индукцию по s.

База индукции при s=2, очевидно, выполняется.

Рассмотрим вершины w_k и w_l , являющиеся отцами вершин w_p и w_q соответственно. В силу леммы 2: $k\leqslant l$.

Доказательство. Требуемое неравенство очевидно, если w_p — корень b—дерева.

Пусть w_p не является корнем. Обозначим через s наибольший из номеров p и q и применим индукцию по s.

База индукции при s=2, очевидно, выполняется.

Рассмотрим вершины w_k и w_l , являющиеся отцами вершин w_p и w_q соответственно. В силу леммы 2: $k \leqslant l$. Ясно, что к вершинам w_k и w_l применимо предположение индукции. Следовательно, $h(w_k) \leqslant h(w_l)$.

Доказательство. Требуемое неравенство очевидно, если w_p — корень b—дерева.

Пусть w_p не является корнем. Обозначим через s наибольший из номеров p и q и применим индукцию по s.

База индукции при s=2, очевидно, выполняется.

Рассмотрим вершины w_k и w_l , являющиеся отцами вершин w_p и w_q соответственно. В силу леммы 2: $k\leqslant l$. Ясно, что к вершинам w_k и w_l применимо предположение индукции. Следовательно, $h(w_k)\leqslant h(w_l)$.Отсюда

$$h(w_p) = h(w_k) + 1 \leq h(w_l) + 1 = h(w_q).$$

Лемма доказана.

Лемма 4

Если вершины w_p и w_q смежны в графе G и p < q, то

$$h(w_q) - h(w_p) \leqslant 1.$$

45 / 61

Доказательство. Пусть w_l — отец вершины w_q . Тогда из леммы 1 следует, что $l \leqslant p$.

Доказательство. Пусть w_l — отец вершины w_q . Тогда из леммы 1 следует, что $l\leqslant p$.

В силу леммы 3

$$h(w_l) \leqslant h(w_p) \leqslant h(w_q).$$

Доказательство. Пусть w_l — отец вершины w_q . Тогда из леммы 1 следует, что $l\leqslant p$.

В силу леммы 3

$$h(w_l) \leqslant h(w_p) \leqslant h(w_q).$$

Поскольку $h(w_q) - h(w_l) = 1$, получаем, что

$$h(w_q) - h(w_p) \leqslant h(w_q) - h(w_l) = 1,$$

что и требовалось доказать.

Лемма 5

Расстояние в графе G от вершины w_1 (т.е. от корня b-дерева) до произвольной вершины u равняется h(u).

Доказательство. Достаточно проверить, что для произвольной (w_1, u) -цепи

$$w_1 = v_0, v_1, \dots, v_{s-1}, v_s = u$$

выполнено неравенство $s \geqslant h(u)$.

48 / 61

Доказательство. Достаточно проверить, что для произвольной (w_1, u) -цепи

$$w_1 = v_0, v_1, \dots, v_{s-1}, v_s = u$$

выполнено неравенство $s \geqslant h(u)$.

Рассмотрим последовательность

$$0 = h(v_0), h(v_1), \ldots, h(v_{s-1}), h(v_s) = h(u), \tag{1}$$

составленную из уровней вершин данной цепи. В силу леммы 4 соседние элементы этой последовательности различаются не больше, чем на единицу.

Рассмотрим последовательность

$$0 = h(v_0), h(v_1), \ldots, h(v_{s-1}), h(v_s) = h(u), \tag{1}$$

составленную из уровней вершин данной цепи. В силу леммы 4 соседние элементы этой последовательности различаются не больше, чем на единицу.

Отсюда вытекает, что последовательность (1) имеет наименьшую длину, если она является возрастающей. В этом случае последовательность должна иметь вид $0,1,\ldots,h(u)$.

Рассмотрим последовательность

$$0 = h(v_0), h(v_1), \ldots, h(v_{s-1}), h(v_s) = h(u), \tag{1}$$

составленную из уровней вершин данной цепи. В силу леммы 4 соседние элементы этой последовательности различаются не больше, чем на единицу.

Отсюда вытекает, что последовательность (1) имеет наименьшую длину, если она является возрастающей. В этом случае последовательность должна иметь вид $0,1,\ldots,h(u)$.

Значит, для произвольной последовательности (1) выполнено неравенство $s \geqslant h(u)$.

Пусть v_0 — корень b—дерева. Лемма 5 показывает, что простая (v_0,u) —цепь в b—дереве является кратчайшей v_0,u —цепью в графе G.

Пусть v_0 — корень b—дерева. Лемма 5 показывает, что простая (v_0,u) —цепь в b—дереве является кратчайшей v_0,u —цепью в графе G.Отсюда следует

NB

Поиск в ширину может быть применен для решения следующей задачи: В связном графе G найти кратчайшую цепь, соединяющую данную вершину v_0 с произвольной вершиной u.

Пусть v_0 — корень b—дерева. Лемма 5 показывает, что простая (v_0,u) —цепь в b—дереве является кратчайшей v_0,u —цепью в графе G.Отсюда следует

NB

Поиск в ширину может быть применен для решения следующей задачи: В связном графе G найти кратчайшую цепь, соединяющую данную вершину v_0 с произвольной вершиной u.

Для решения этой задачи необходимо в графе G из вершины v_0 произвести поиск в ширину, а затем, используя массив father, построить требуемую кратчайшую цепь.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Замкнутая цепь в графе G называется *эйлеровой*, если она содержит все ребра и все вершины графа.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Замкнутая цепь в графе G называется *эйлеровой*, если она содержит все ребра и все вершины графа.

Связный неодноэлементный граф *эйлеров* тогда и только тогда, когда каждая его вершина имеет четную степень.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Этот раздел посвящен построению и анализу алгоритма, позволяющего в обыкновенном связном графе G с четными степенями вершин построить эйлерову цепь.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Этот раздел посвящен построению и анализу алгоритма, позволяющего в обыкновенном связном графе G с четными степенями вершин построить эйлерову цепь.

В алгоритме используются два стека: SWork и SRes. Элементы обоих стеков — вершины графа G. Также вводится массив listW, элементы которого — списки вершин.

Мы считаем, что $\forall v \in V$ начальное значение $\mathit{listW}[v]$ совпадает со списком смежных с v вершин, т.е. с $\mathit{list}[v]$.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Алгоритм построения эйлеровой цепи

Вход: связный граф G = (V, E) без вершин нечетной степени, начальная вершина v_0 .

Выход: эйлерова цепь, представленная последовательностью вершин в стеке SRes.

- 1. begin
- 2. SWork := nil; SRes := nil;
- 3. $SWork \leftarrow v_0$;
- 4. **for** $v \in V$ **do** listW[v] := list[v];

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Алгоритм построения эйлеровой цепи: продолжение

```
5.
       while SWork \neq nil do
6.
         begin
7.
             v := top(SWork);
             if listW[v] \neq \emptyset then
8.
9.
                  begin
10.
                       u := первая вершина listW[v];
                       SWork \Leftarrow u;
11.
                       listW[v] := listW[v] \setminus \{u\};
12.
                       listW[u] := listW[u] \setminus \{v\};
13.
14
                   end
15.
               else
16.
                   begin v \leftarrow SWork; SRes \leftarrow v; end end end.
```

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Принцип работы алгоритма состоит в следующем.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Принцип работы алгоритма состоит в следующем.

• Алгоритм начинает работу с некоторой вершины v_0 , продвигается по ребрам графа, причем каждое ребро графа удаляется (строки 10-13).

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Принцип работы алгоритма состоит в следующем.

• Алгоритм начинает работу с некоторой вершины v_0 , продвигается по ребрам графа, причем каждое ребро графа удаляется (строки 10-13). Понятно, что последовательное выполнение этой группы операторов позволяет выделить в графе некоторую замкнутую цепь.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Принцип работы алгоритма состоит в следующем.

- Алгоритм начинает работу с некоторой вершины v_0 , продвигается по ребрам графа, причем каждое ребро графа удаляется (строки 10–13). Понятно, что последовательное выполнение этой группы операторов позволяет выделить в графе некоторую замкнутую цепь.
- Затем начинается выполнение группы операторов в строке 16. Эти операторы выталкивают очередную вершину из стека SWork в стек SRes, пока не выполнится одно из условий:
 - стек SWork пуст (конец работы алгоритма)
 - для вершины v = top(SWork) существует непройденное ребро vu. В это случае алгоритм продолжает работу из вершины u.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

На рисунке изображен эйлеров граф и эйлерова цепь, построенная нашим алгоритмом (предполагается, что все вершины упорядочены по возрастанию номеров).

 $v_1, v_2, v_3, v_5, v_2, v_4, v_6, v_5, v_8, v_6, v_7, v_8, v_9, v_7, v_4, v_1$

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Теорема

Алгоритм правильно строит эйлерову цепь в эйлеровом графе G.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Доказательство.

• Заметим сначала, что из стека *SRes* вершины никогда не выталкиваются. Отсюда следует, что начиная с некоторого момента работы алгоритма стек *SRes* перестает изменяться. Это произойдет после выполнения операторов в строке 16.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

Доказательство.

- Заметим сначала, что из стека *SRes* вершины никогда не выталкиваются. Отсюда следует, что начиная с некоторого момента работы алгоритма стек *SRes* перестает изменяться. Это произойдет после выполнения операторов в строке 16.
- o/n Предположим, что стек SWork в этот момент не пуст. Если v = top(SWork), операторы в строках 10–13 начнут добавлять вершины к стеку SWork (т.е. в графе G можно из вершины v построить цепь, состоящую из еще непройденных ребер).

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

• Ясно, что построение такой цепи должно прекратиться. Это означает, что мы придем в вершину u, для которой все инцидентные ей ребра уже пройдены ($listW[u]=\varnothing$). После этого начнут выполняться операторы строки 16, и, следовательно, к стеку SRes добавиться хотя бы одна вершина. Противоречие

- Ясно, что построение такой цепи должно прекратиться. Это означает, что мы придем в вершину u, для которой все инцидентные ей ребра уже пройдены ($listW[u]=\varnothing$). После этого начнут выполняться операторы строки 16, и, следовательно, к стеку SRes добавиться хотя бы одна вершина. Противоречие
- Таким образом, рано или поздно стек *SWork* станет пустым, что приведет к завершению работы алгоритма.

Алгоритм отыскания эйлеровой цепи в эйлеровом графе

• Пусть P — цепь, содержащаяся в стеке SRes после окончания работы алгоритма. Легко понять, что вершина w помещается в стек SRes, если все ребра, инцидентные w, уже пройдены.

- Пусть P цепь, содержащаяся в стеке SRes после окончания работы алгоритма. Легко понять, что вершина w помещается в стек SRes, если все ребра, инцидентные w, уже пройдены.
- Отсюда следует, что для любой вершины цепи P все ребра, инцидентные этой вершине, содержатся в цепи P.

- Пусть P цепь, содержащаяся в стеке SRes после окончания работы алгоритма. Легко понять, что вершина w помещается в стек SRes, если все ребра, инцидентные w, уже пройдены.
- Отсюда следует, что для любой вершины цепи P все ребра, инцидентные этой вершине, содержатся в цепи P.
- Поскольку G связный граф, цепь P содержит все ребра графа G. Значит, P эйлерова цепь.

- В заключение оценим сложность алгоритма.
- Для этого заметим, что при каждой итерации цикла либо к стеку SWork добавляется вершина (это означает прохождение очередного ребра), либо вершина переносится из стека SWork в SRes (другими словами к строящейся эйлеровой цепи добавляется ребро).
- ullet Отсюда следует, что число повторений цикла равно O(m).
- Если позаботиться о том, чтобы время, необходимое для удаления вершины из списка listW[v], было ограничено константой, то сложность алгоритма будет равняться O(m).