12)特許協力条約に基づいて公開された国際出

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年12月11日(11.12.2003)

PCT

(10) 国際公開番号 WO 03/102931 A1

(51) 国際特許分類7:

G11B 7/0045, 7/24

(21) 国際出願番号:

PCT/JP03/06922

(22) 国際出願日:

2003 年6 月2 日 (02.06.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-159998 2002年5月31日(31.05.2002) JP

- (71) 出願人 (米国を除く全ての指定国について): ティー ディーケイ株式会社 (TDK CORPORATION) [JP/JP]; 〒103-8272 東京都 中央区 日本橋一丁目13番1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 加藤 達也 (KATO,Tatsuya) [JP/JP]; 〒103-8272 東京都 中央区

日本橋一丁目13番1号 ティーディーケイ株式会 社内 Tokyo (JP). 平田 秀樹 (HIRATA, Hideki) [JP/JP]; 〒103-8272 東京都中央区日本橋一丁目13番1号 ティーディーケイ株式会社内 Tokyo (JP).

- (74) 代理人: 大石 皓一, 外(OISHI, Koichi et al.); 〒101-0063 東京都千代田区 神田淡路町一丁目 4番 1号 友 泉淡路町ビル8階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM,

[続葉有]

(54) Title: METHOD FOR RECORDING DATA TO OPTICAL RECORDING MEDIUM, DEVICE FOR RECORDING DATA TO OPTICAL RECORDING MEDIUM, AND OPTICAL RECORDING MEDIUM

(54)発明の名称:光記録媒体へのデータの記録方法、光記録媒体へのデータの記録装置および光記録媒体

Ε パルス数

		2T	3Т	4T	5T	6T [`]	7T	8T
	低(VL) B		2	3	4	5	6	7
記錄線速度 A		7		2	2-3	2-4	2-5	2-6
	中(VM) c	7			2	2-3	2-4	2-5
		7		1		2	2-3	2-4
			1		1	1	2	2-3
			7	1		1	1	2
L	」。 高(VH)	1			1	1	*	1

- A...RECORDING LINEAR VELOCITY
- B...LOW (VL)
- C...MIDDLE (VM)
- D...HIGH (VH)
- E...NUMBER OF PULSES

(57) Abstract: A method for recording data to an optical recording medium capable of recording data onto a write once optical recording medium with a high recording linear velocity by using a laser beam of a low recording power. As the data recording linear velocity increases, a pulse string pattern having a smaller number of pulses of recording power is used to modulate the laser beam power. Even when the data recording linear speed is high, it is possible to record data by using a laser beam of a low recording power. On the other hand, when the recording linear velocity is low, it is possible to suppress cross talk. Even when the data recording linear velocity is high, it is possible to use a semiconductor laser of comparatively low output.

AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

添付公開書類:

— 国際調査報告書

(57) 要約:

本発明は、低い記録パワーのレーザビームを用いて、高い記録線速度で、追記型の光記録媒体にデータを記録することができる光記録媒体へのデータの記録方法を提供することを目的とするものである。

本発明は、データの記録線速度が高いほど、記録パワーからのなるパルスの数が少ないパルス列パターンを用いて、レーザビームのパワーを変調しており、データの記録線速度が高い場合にも、低い記録パワーのレーザビームを用いて、データを記録することができ、その一方で、記録線速度が低い場合に、クロストークを抑制することができ、データの記録線速度が高い場合にも、出力が比較的低い半導体レーザを用いることが可能になる。

明細書

光記録媒体へのデータの記録方法、光記録媒体へのデータの記録装置 および光記録媒体

5

25

技術分野

本発明は、光記録媒体へのデータの記録方法、光記録媒体へのデータの記録装置および光記録媒体に関するものであり、さらに詳細には、低い記録パワーのレーザビームを用いて、高い記録線速度で、追記型の光記録媒体にデータを記録することができる光記録媒体へのデータの記録方法、追記型の光記録媒体へのデータの記録装置および追記型の光記録媒体に関するものである。

従来の技術

従来より、デジタルデータを記録するための記録媒体として、CDやDVDに代表される光記録媒体が広く利用されている。これらの光記録媒体は、CD-ROMやDVD-ROMのように、データの追記や書き換えができないタイプの光記録媒体(ROM型光記録媒体)と、CD-RやDVD-Rのように、データの追記はできるが、データの書き換えができないタイプの光記録媒体(追記型光記録媒体)と、CD-RWやDVD-RWのように、データの書き換えが可能なタイプの光記録媒体(書き換え型光記録媒体)とに大別することができる。

広く知られているように、ROM型光記録媒体においては、製造段階において基板に形成されるプリピットにより、データが記録されることが一般的であり、書き換え型光記録媒体においては、たとえば、記録層の材料として相変化材料が用いられ、その相状態の変化に起因する光学特性の変化を利用して、データが記録されることが一般的である。

これに対し、追記型光記録媒体においては、記録層の材料として、 30 シアニン系色素、フタロシアニン系色素、アゾ色素などの有機色素が

20

用いられ、その化学的変化あるいは化学的変化および物理的変化に起因する光学特性の変化を利用して、データが記録されることが一般的である。

また、二層の記録層が積層された追記型光記録媒体も知られており (たとえば、特開昭 6 2 - 2 0 4 4 4 2 号公報参照)、この光記録媒体 においては、レーザビームを照射することによって、二層の記録層を 構成する元素を混合させ、周囲の領域とは異なる光学特性を有する領 域を形成して、データが記録される。

本明細書において、光記録媒体が、有機色素を含む記録層を備えている場合には、レーザビームの照射を受けて、有機色素が化学的に、あるいは、化学的にかつ物理的に変化をした領域を、「記録マーク」といい、光記録媒体が、無機元素を主成分として含む二層の記録層を備えている場合には、レーザビームの照射を受けて、二層の記録層を構成する元素が混合した領域を、「記録マーク」という。

15 データを記録するために照射されるレーザビームの最適な強度変調 方法は、一般に、「パルス列パターン」あるいは「記録ストラテジ」と 呼ばれている。

第8図は、有機色素を用いた記録層を有するCD-Rに、データを 記録する場合の代表的なパルス列パターンを示す図であり、EFM変 調方式における3T信号ないし11T信号を記録する場合のパルス列 パターンを示している。

第8図に示されるように、CD-Rにデータを記録する場合には、 一般に、形成すべき記録マークMの長さに相当する幅の記録パルスが 用いられる (たとえば、特開2000-187842号公報参照)。

25 すなわち、レーザビームの強度は、記録マークMを形成しないブランク領域においては、基底パワーPbに固定され、記録マークMを形成すべき領域において記録パワーPwに固定される。その結果、記録マークMを形成すべき領域においては、記録層に含まれる有機色素が分解、変質し、場合によっては、その領域が変形することによって、

30 記録マークMが形成される。本明細書においては、このようなパルス

15

列パターンを「単パルスパターン」という。

第9回は、有機色素を用いた記録層を有するDVD-Rに、データを記録する場合の代表的なパルス列パターンを示す図であり、8/16変調方式における7T信号を記録する場合のパルス列パターンを示している。

DVD-Rに対しては、CD-Rに比して、高い記録線速度で、データの記録が行われるため、CD-Rにデータを記録する場合のように、記録マークMの長さに相当する幅の記録パルスを用いる場合には、良好な形状の記録マークMを形成することが困難である。

10 このため、DVD-Rにデータを記録する場合には、第9図に示されるように、形成すべき一つの記録マークMに対し、その長さに応じた数に分割されたパルス列を用いて、データが記録される。

具体的には、nT信号 (nは、8/16 変調方式においては、3ないし11 および14 の整数である。)を形成するために、(n-2) 個の分割パルスを用い、レーザビームのパワーは、分割パルスのピークにおいては、記録パワーP wに、その他においては、基底パワーP b に設定される。本明細書においては、このようなパルス列パターンを「基本パルス列パターン」という。

第 9 図に示されるように、基本パルス列パターンにおいては、基底 20 パワー P b のレベルは、データ再生に用いられる再生パワー P r と等 しいか、あるいは、これに近いレベルに設定されている。

一方、近年、データの記録密度が高められ、かつ、非常に高いデータ転送レートを実現可能な次世代型の光記録媒体が提案されている。

このような次世代型の光記録媒体においては、高いデータ転送レー 25 トを実現するため、従来の光記録媒体に比べて、高い記録線速度で、 データを記録することが要求されるが、一般に、追記型の光記録媒体 においては、記録マークの形成に必要な記録パワー Pwは、記録線速 度の平方根に略比例するため、次世代型の光記録媒体に、データを記録する場合には、高出力の半導体レーザを用いることが必要とされる。

30 また、次世代型の光記録媒体においては、記録容量を高めるととも

に、非常に高いデータ転送レートを実現するため、必然的に、データ の記録・再生に用いるレーザビームのビームスポット径を非常に小さ く絞ることが要求される。

レーザビームのビームスポット径を小さく絞るためには、レーザビ 5 一ムを集束するための対物レンズの開口数 (NA)を0.7以上、た とえば、0.85程度まで大きくするとともに、レーザビームの波長 入を450nm以下、たとえば、400nm程度まで、短くすること が必要になる。

しかしながら、780nmの波長入を有するレーザビームを発する
10 CD用の半導体レーザや、650nmの波長入を有するレーザビーム
を発するDVD用の半導体レーザに比して、450nm以下の波長入
を有する半導体レーザは出力が小さく、また、出力が高い半導体レー
ザは高価であるという問題がある。

以上のような問題は、レーザビームを照射して、照射されたレーザ 15 ビームによって生じる熱により、複数の記録層を構成する元素を混合 させ、記録マークを形成する追記型光記録媒体において、とくに顕著 であった。

発明の開示

30

20 したがって、本発明は、低い記録パワーのレーザビームを用いて、 高い記録線速度で、追記型の光記録媒体にデータを記録することがで きる光記録媒体へのデータの記録方法を提供することを目的とするも のである。

本発明の別の目的は、出力が低く、安価な半導体レーザを用いて、 25 高い記録線速度で、追記型の光記録媒体にデータを記録することがで きる光記録媒体へのデータの記録方法を提供することにある。

本発明の他の目的は、二層以上の記録層を備えた追記型の光記録媒体に、低い記録パワーのレーザビームを用いて、高い記録線速度で、データを記録することができる光記録媒体へのデータの記録方法を提供することにある。

10

本発明のさらに他の目的は、低い記録パワーのレーザビームを用いて、高い記録線速度で、追記型の光記録媒体にデータを記録することができる光記録媒体へのデータの記録装置を提供することにある。

本発明のさらに他の目的は、出力が低く、安価な半導体レーザを用いて、高い記録線速度で、追記型の光記録媒体にデータを記録することができる光記録媒体へのデータの記録装置を提供することにある。

本発明のさらに他の目的は、二層以上の記録層を備えた追記型の光 記録媒体に、低い記録パワーのレーザビームを用いて、高い記録線速 度で、データを記録することができる光記録媒体へのデータの記録装 置を提供することにある。

本発明のさらに他の目的は、低い記録パワーのレーザビームを用いて、高い記録線速度で、データを記録することができる光記録媒体を 提供することにある。

本発明のさらに他の目的は、出力が低く、安価な半導体レーザを用 15 いて、高い記録線速度で、データを記録することができる追記型の光 記録媒体を提供することにある。

本発明のさらに他の目的は、低い記録パワーのレーザビームを用いて、高い記録線速度で、データを記録することができる二層以上の記録層を備えた追記型の光記録媒体を提供することにある。

本発明者は、本発明の前記目的を達成するため、鋭意研究を重ねた結果、低い記録パワーのレーザビームを用いて、高い記録線速度で、データを記録するためには、単パルスパターンにしたがって、レーザビームのパワーを変調して、記録マークを形成するために供給される総熱量が高くすることが効果的であるが、データの記録線速度が低い
場合には、単パルスパターンにしたがって、レーザビームのパワーを変調して、記録マークを形成するために供給される総熱量が高くすると、記録マークの幅が大きくなって、クロストークが増大することを見出し、データの記録線速度が高いほど、記録パワーからなるパルスの数が少ないパルス列パターンを用いて、レーザビームのパワーを変調して、追記型の光記録媒体に、データを記録することによって、低

15

い記録パワーのレーザビームを用いて、高い記録線速度で、データを 記録し得るとともに、記録線速度が低い場合にも、クロストークの増 大を防止することが可能になることを見出した。

したがって、本発明の前記目的は、基板上に設けられた少なくとも 一層の記録層を有する追記型の光記録媒体に、少なくとも記録パワー および基底パワーを含むパルス列パターンにしたがって変調されたレ ーザビームを照射して、前記記録層の所定の領域に記録マークを形成 し、データを記録する方法であって、データの記録線速度が高いほど、 記録パワーからなるパルスの数が少ないパルス列パターンを用いて、 レーザビームのパワーを変調し、記録マークを形成することを特徴と

10 レーザビームのパワーを変調し、記録マークを形成することを特徴と する光記録媒体へのデータの記録方法によって達成される。

本明細書において、光記録媒体が、有機色素を含む記録層を備えている場合には、レーザビームの照射を受けて、有機色素が化学的に、あるいは、化学的にかつ物理的に変化をした領域を、「記録マーク」といい、光記録媒体が、無機元素を主成分として含む二層の記録層を備えている場合には、レーザビームの照射を受けて、二層の記録層を構成する元素が混合した領域を、「記録マーク」という。

本発明によれば、データの記録線速度が高いほど、記録パワーからなるパルスの数が少ないパルス列パターンを用いて、レーザビームのパワーを変調し、記録マークを形成し、データを記録するように構成されているから、データの記録線速度が高い場合にも、低い記録パワーのレーザビームを用いて、データを記録することが可能になるとともに、記録線速度が低い場合に、クロストークを抑制することが可能になり、したがって、データの記録線速度が高い場合にも、出力が比較的低い半導体レーザを用いることが可能になる。

また、本発明によれば、データの記録線速度が異なる場合でも、ほぼ同じ記録パワーのレーザビームを用いて、データを記録することが可能になる。

本発明の好ましい実施態様においては、第1の線速度VH以上の記 30 録線速度で、データを記録する場合に、前記パルスの数を1に設定す

10

15

るように構成されている。

本発明の好ましい実施態様においては、第1の線速度VH未満で、かつ、第2の線速度VLを越える記録線速度VMで、データを記録する場合、少なくとも最短の記録マークを形成するときは、前記パルスの数を1に設定し、形成すべき記録マークの長さが長いほど、前記パルスの数を大きく、設定するように構成されている。

本発明の好ましい実施態様においては、第1の線速度VH未満で、かつ、第2の線速度VLを越える記録線速度VMで、データを記録する場合、少なくとも最短の記録マークを形成するときは、前記パルスの数を1に設定し、記録線速度VMが低くなるほど、前記パルスの数を大きく、設定するように構成されている。

本発明の好ましい実施態様においては、前記第2の線速度VL以下の記録線速度で、それぞれの長さを有する記録マークを形成し、データを記録する場合に、記録マークの長さを表わす数との差が一定になるように、前記パルスの数を設定するように構成されている。

本発明のさらに好ましい実施態様においては、前記第1の線速度が、 10m/sec以上に設定されている。

本発明のさらに好ましい実施態様においては、記録線速度が高いほど、前記基底パワーが高いレベルに設定されるように構成されている。

20 本発明のさらに好ましい実施態様においては、記録線速度が高いほど、前記基底パワーのレベルと前記記録パワーのレベルの比が高く、 設定されるように構成されている。

本発明のさらに好ましい実施態様においては、前記光記録媒体に、 450nm以下の波長を有するレーザビームを照射して、データを記 25 録するように構成されている。

本発明のさらに好ましい実施態様においては、 λ / N A ≤ 6 4 0 n m を満たす開口数 N A を有する対物レンズおよび波長 入を有するレーザビームを用い、前記対物レンズを介して、前記光記録媒体に、レーザビームを照射して、データを記録するように構成されている。

30 本発明の好ましい実施態様においては、前記光記録媒体が、さらに、

光透過層と、前記基板と前記光透過層の間に形成された第一の記録層と第二の記録層を備え、前記光透過層を介して、レーザビームを照射して、前記第一の記録層に主成分として含まれている元素と、前記第二の記録層に主成分として含まれている元素とを混合させて、記録マークを形成するように構成されている。

本発明のさらに好ましい実施態様においては、前記第二の記録層が、 前記第一の記録層に接するように、形成されている。

本発明の前記目的はまた、基板上に設けられた少なくとも一層の記録層を有する追記型の光記録媒体に、少なくとも記録パワーおよび基10 底パワーを含むパルス列パターンにしたがって変調されたレーザビームを照射して、前記記録層の所定の領域に記録マークを形成し、データを記録する方法であって、前記光記録媒体のトラックピッチTPと前記レーザビームのスポット径Dとの比が小さいほど、記録パワーからなるパルスの数が多いパルス列パターンを用いて、レーザビームのパワーを変調し、記録マークを形成することを特徴とする光記録媒体へのデータの記録方法によって達成される。

本発明の前記目的はまた、基板上に設けられた少なくとも一層の記録層を有する追記型の光記録媒体に、少なくとも記録パワーおよび基底パワーを含むパルス列パターンにしたがって変調されたレーザビー 20 ムを照射して、前記記録層の所定の領域に記録マークを形成し、データを記録するデータ記録装置であって、データの記録線速度が高いほど、記録パワーからなるパルスの数が少ないパルス列パターンを用いて、レーザビームのパワーを変調し、記録マークを形成することを特徴とする光記録媒体へのデータの記録装置によって達成される。

25 本発明によれば、データの記録線速度が高いほど、記録パワーからなるパルスの数が少ないパルス列パターンを用いて、レーザビームのパワーを変調し、記録マークを形成し、データを記録するように構成されているから、データの記録線速度が高い場合にも、低い記録パワーのレーザビームを用いて、データを記録することが可能になるとと30 もに、記録線速度が低い場合に、クロストークを抑制することが可能

10

15

になり、したがって、データの記録線速度が高い場合にも、出力が比較的低い半導体レーザを用いることが可能になる。

本発明の好ましい実施態様においては、第1の線速度VH以上の記録線速度で、データを記録する場合に、前記パルスの数を1に設定するように構成されている。

本発明の好ましい実施態様においては、第1の線速度VH未満で、かつ、第2の線速度VLを越える記録線速度VMで、データを記録する場合、少なくとも最短の記録マークを形成するときは、前記パルスの数を1に設定し、形成すべき記録マークの長さが長いほど、前記パルスの数を大きく、設定するように構成されている。

本発明の好ましい実施態様においては、第1の線速度VH未満で、かつ、第2の線速度VLを越える記録線速度VMで、データを記録する場合、少なくとも最短の記録マークを形成するときは、前記パルスの数を1に設定し、記録線速度VMが低くなるほど、前記パルスの数を大きく、設定するように構成されている。

本発明の好ましい実施態様においては、前記第2の線速度VL以下の記録線速度で、それぞれの長さを有する記録マークを形成し、データを記録する場合に、記録マークの長さを表わす数との差が一定になるように、前記パルスの数を設定するように構成されている。

20 本発明の好ましい実施態様においては、前記第1の線速度が、10 m/sec以上に設定される。

本発明の前記目的はまた、基板と前記基板上に形成された少なくとも一層の記録層を備え、少なくとも記録パワーおよび基底パワーを含むパルス列パターンにしたがって変調されたレーザビームが照射されて、前記記録層に記録マークが形成され、データが記録されるように構成された追記型の光記録媒体であって、データの記録線速度が高いほど、記録パワーからなるパルスの数が少ないパルス列パターンを用いて、レーザビームのパワーを変調するために必要な記録条件設定用データが記録されていることを特徴とする光記録媒体によって達成される。

25

30

6.

本発明によれば、光記録媒体にデータを記録するに際し、光記録媒体に記録されている記録条件設定用データを読み出すことによって、データの記録線速度が高いほど、記録パワーからなるパルスの数が少ないパルス列パターンを用いて、レーザビームのパワーを変調して、データを記録することができ、データの記録線速度が高い場合にも、低い記録パワーのレーザビームを用いて、データを記録することが可能になるとともに、記録線速度が低い場合に、クロストークを抑制することが可能になるから、データの記録線速度が高い場合にも、出力が比較的低い半導体レーザを用いることが可能になる。

10 本発明の好ましい実施態様においては、光記録媒体は、に、光透過層と、前記基板と前記光透過層の間に形成された第一の記録層と第二の記録層を備え、前記光透過層を介して、レーザビームが照射されたときに、前記第一の記録層に主成分として含まれている元素と、前記第二の記録層に主成分として含まれている元素とが混合し、記録マークが形成されるように構成されている。

本発明のさらに好ましい実施態様においては、前記第二の記録層が、前記第一の記録層に接するように、形成されている。

本発明において、好ましくは、第一の記録層と第二の記録層は、互いに異なった元素を主成分として含み、第一の記録層および第二の記録層は、それぞれ、Al、Si、Ge、C、Sn、Au、Zn、Cu、B、Mg、Ti、Mn、Fe、Ga、Zr、AgおよびPtよりなる群から選ばれる元素を主成分として含んでいる。

本発明の好ましい実施態様においては、第一の記録層が、Si、Ge、Sn、Mg、In、Zn、BiおよびAlよりなる群から選ばれる元素を主成分として含み、第二の記録層が、Cuを主成分として含んでいる。

本発明において、第一の記録層が、Si、Ge、Sn、Mg、In、Zn、BiおよびAlよりなる群から選ばれる元素を主成分として含み、第二の記録層が、Cuを主成分として含んでいる場合に、光記録媒体が、第一の記録層および第二の記録層に加えて、一もしくは二以

上のSi、Ge、Sn、Mg、In、Zn、BiおよびA1よりなる群から選ばれる元素を主成分として含む記録層、または、一もしくは二以上のCuを主成分として含む記録層を備えていてもよい。

本発明において、さらに好ましくは、第一の記録層が、Ge、Si、 Mg、AlおよびSnよりなる群から選ばれる元素を主成分として含んでいる。

本発明において、第一の記録層が、Si、Ge、Sn、Mg、In、Zn、BiおよびAlよりなる群から選ばれる元素を主成分として含み、第二の記録層が、Cuを主成分として含んでいる場合には、第二の記録層に、Al、Si、Zn、Mg、Au、Sn、Ge、Ag、P、Cr、FeおよびTiよりなる群から選ばれる少なくとも一種の元素が添加されていることが好ましく、Al、Zn、SnおよびAuよりなる群から選ばれる少なくとも一種の元素が添加されていることがより好ましい。

- 15 本発明の別の好ましい実施態様においては、第一の記録層が、Si、Ge、C、Sn、ZnおよびCuよりなる群から選ばれる元素を主成分として含み、第二の記録層が、Alを主成分として含み、第一の記録層と第二の記録層が、その総厚が40nm以下になるように形成されている。
- 本発明において、第一の記録層が、Si、Ge、C、Sn、ZnおよびCuよりなる群から選ばれる元素を主成分として含み、第二の記録層が、A1を主成分として含んでいる場合には、光記録媒体が、第一の記録層および第二の記録層に加えて、一もしくは二以上のSi、Ge、C、Sn、ZnおよびCuよりなる群から選ばれる元素を主成分として含む記録層、または、一もしくは二以上のA1を主成分として含む記録層を備えていてもよい。

本発明において、第一の記録層が、Si、Ge、C、Sn、ZnおよびCuよりなる群から選ばれる元素を主成分として含み、第二の記録層が、Alを主成分として含んでいる場合には、第二の記録層に、

30 Mg、Au、TiおよびCuよりなる群から選ばれた少なくとも一種

の元素が添加されていることが好ましい。

本発明において、第一の記録層が、Si、Ge、C、Sn、ZnおよびCuよりなる群から選ばれる元素を主成分として含み、第二の記録層が、A1を主成分として含んでいる場合には、第一の記録層と第二の記録層が、好ましくは、その総厚が2nmないし40nmとなるように、より好ましくは、第一の記録層と第二の記録層の総厚が2nmないし30nmになるように、さらに好ましくは、第一の記録層と第二の記録層の総厚が2nmないし20nmになるように形成される。

本発明の他の好ましい実施態様においては、第一の記録層が、Si、 10 Ge、CおよびAlよりなる群から選ばれる元素を主成分として含み、 第二の記録層が、Znを主成分として含み、第一の記録層と第二の記 録層が、その総厚が30nm以下となるように形勢されている。

本発明において、第一の記録層が、Si、Ge、CおよびAlよりなる群から選ばれる元素を主成分として含み、第二の記録層が、Zn を主成分として含んでいる場合には、光記録媒体が、第一の記録層および第二の記録層に加えて、一もしくは二以上のSi、Ge、CおよびAlよりなる群から選ばれる元素を主成分として含む記録層、または、一もしくは二以上のZnを主成分として含む記録層を備えていてもよい。

- 20 本発明において、第一の記録層が、Si、Ge、CおよびAlよりなる群から選ばれる元素を主成分として含み、第二の記録層が、Znを主成分として含んでいる場合には、好ましくは、第一の記録層が、Si、GeおよびCよりなる群から選ばれる元素を主成分として含んでいる。
- 25 本発明において、第一の記録層が、Si、Ge、CおよびAlよりなる群から選ばれる元素を主成分として含み、第二の記録層が、Znを主成分として含んでいる場合には、好ましくは、第一の記録層および第二の記録層は、その総厚が2nmないし30nmとなるように、より好ましくは、その総厚が2nmないし24nmになるように形成30 らに好ましくは、その総厚が2nmないし12nmになるように形成

される。

5

20

30

本発明において、第一の記録層が、Si、Ge、CおよびAlよりなる群から選ばれる元素を主成分として含み、第二の記録層が、Znを主成分として含んでいる場合には、第二の記録層に、Mg、CuおよびAlよりなる群から選ばれた少なくとも一種の元素が添加されていることが好ましい。

本発明の好ましい実施態様においては、前記光透過層が、10ない し300nmの厚さを有するように形成されている。

本発明の上記およびその他の目的や特徴は、以下の記述および対応 10 する図面から明らかになるであろう。

図面の簡単な説明

第1図は、本発明の好ましい実施態様にかかる光記録媒体の構造を 示す略断面図である。

15 第2図(a)は、第1図に示された光記録媒体の一部拡大略断面図であり、第2図(b)は、データが記録された後の光記録媒体の一部拡大略断面図である。

第3図は、1,7RLL変調方式を用いた場合の記録マークの長さに対するレーザビームを変調するパルス列バターンのパルス数および 記録線速度の関係を示すテーブルである。

第4図は、第1の記録線速度VLで、光記録媒体にデータを記録する場合のパルス列パターンを示す図であり、第4図(a)は、2T信号を記録する場合のパルス列パターンを示し、第4図(b)は、3T信号ないし8T信号を形成する場合のパルス列パターンを示している。

25 第5図は、第3の記録線速度VHで、光記録媒体にデータを記録する場合のパルス列パターンを示す図であり、第5図(a)は、2T信号を記録する場合のパルス列パターンを示し、第5図(b)は、3T信号ないし8T信号を形成する場合のパルス列パターンを示している。

第6図は、第1の記録線速度VLよりも高く、第3の記録線速度V Hよりも低い第2の記録線速度VMで、光記録媒体にデータを記録す る場合のパルス列バターンを示す図であり、第6図(a)は2T信号ないし5T信号を形成する場合のパルス列パターンを示し、第6図(b)は6T信号ないし8T信号を形成する場合のパルス列バターンを示している。

5 第7図は、本発明の好ましい実施態様にかかるデータ記録装置のブロックダイアグラムである。

第8図は、有機色素を用いた記録層を有するCD-Rに、データを 記録する場合の代表的なパルス列パターンを示す図であり、EFM変 調方式における3T信号ないし11T信号を記録する場合のパルス列 パターンを示している。

第9回は、有機色素を用いた記録層を有するDVD-Rに、データを記録する場合の代表的なパルス列パターンを示す図であり、8/16変調方式における7T信号を記録する場合のパルス列パターンを示している。

15

10

発明の好ましい実施態様の説明

以下、添付図面に基づき、本発明の好ましい実施態様につき、詳細 に説明を加える。

第1図は、本発明の好ましい実施態様にかかる光記録媒体の構造を 20 示す略断面図である。

第1図に示されるように、本実施態様にかかる光記録媒体10は、 追記型の光記録媒体として構成され、基板11と、基板11の表面上 に形成された反射層12と、反射層12の表面上に形成された第二の 誘電体層13と、第二の誘電体層13の表面上に形成された第二の記 録層32と、第二の記録層32の表面上に形成された第一の記録層3 1と、第一の記録層31の表面上に設けられた第一の誘電体層15と、 第一の誘電体層15の表面上に形成された光透過層16を備えている。 第1図に示されるように、光記録媒体10の中央部分には、センターホール17が形成されている。

30 本実施態様においては、第1図に示されるように、光透過層16の

表面に、レーザビームL10が照射されて、光記録媒体10にデータが記録され、光記録媒体10から、データが再生されるように構成されている。

基板 1 1 は、光記録媒体 1 0 に求められる機械的強度を確保するた めの支持体として、機能する。

基板11を形成するための材料は、光記録媒体10の支持体として機能することができれば、とくに限定されるものではない。基板11 は、たとえば、ガラス、セラミックス、樹脂などによって、形成することができる。これらのうち、成形の容易性の観点から、樹脂が好ましく使用される。このような樹脂としては、ポリカーボネート樹脂、アクリル樹脂、エボキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、フッ素系樹脂、ABS樹脂、ウレタン樹脂などが挙げられる。これらの中でも、加工性、光学特性などの点から、ポリカーボネート樹脂がとくに好ましい。

15 本実施態様においては、基板 1 1 は、約 1 . 1 m m の厚さを有している。

基板 1 1 の形状は、とくに限定されるものではないが、通常は、ディスク状、カード状あるいはシート状である。

図1に示されるように、基板11の表面には、交互に、グループ1 20 1 a およびランド11 b が形成されている。基板11の表面に形成されたグループ11 a および/またはランド11 b は、データを記録する場合およびデータを再生する場合において、レーザビームL10のガイドトラックとして、機能する。

反射層 1 2 は、光透過層 1 6 を介して、入射したレーザビーム L 1 25 0 を反射し、再び、光透過層 1 6 から出射させる機能を有している。

反射層 12 の厚さは、とくに限定されるものではないが、 10 nm ないし 300 nmであることが好ましく、 20 nmないし 200 nm であることが、とくに好ましい。

反射層12を形成するための材料は、レーザビームを反射できれば 30 よく、とくに限定されるものではなく、Mg、A1、Ti、Cr、F

ŷ.

5

30

e、Co、Ni、Cu、Zn、Ge、Ag、Pt、Auなどによって、 反射層 12 を形成することができる。これらのうち、高い反射率を有しているAl、Au、Ag、Cu、または、AgとCuとの合金などのこれらの金属の少なくとも 1 つを含む合金などの金属材料が、反射層 12 を形成するために、好ましく用いられる。

反射層12は、レーザビームL10を用いて、第一の記録層31および第二の記録層32に光記録されたデータを再生するときに、多重干渉効果によって、記録部と未記録部との反射率の差を大きくして、高い再生信号(C/N比)を得るために、設けられている。

 第一の誘電体層15および第二の誘電体層13は、第一の記録層1 1および第二の記録層12を保護する役割を果たす。したがって、第 一の誘電体層15および第二の誘電体層13により、長期間にわたっ て、光記録されたデータの劣化を効果的に防止することができる。ま た、第二の誘電体層13は、基板11などの熱変形を防止する効果が あり、したがって、変形に伴うジッターの悪化を効果的に防止することが可能になる。

第一の誘電体層 1 5 と第二の誘電体層 1 3 は、互いに同じ誘電体材料によって形成されていてもよいが、異なる誘電体材料によって形成されていてもよい。さらに、第一の誘電体層 1 5 および第二の誘電体

層13の少なくとも一方が、複数の誘電体膜からなる多層構造であってもよい。

なお、本明細書において、誘電体層が、誘電体材料を主成分として含むとは、誘電体層に含まれている誘電体材料の中で、その誘電体材料の含有率が最も大きいことをいう。また、 $ZnS \cdot SiO_2$ は、 $ZnS \cdot SiO_2$ との混合物を意味する。

第一の誘電体層15および第二の誘電体層13の層厚は、とくに限定されるものではないが、3ないし200mであることが好ましい。第一の誘電体層15あるいは第二の誘電体層13の層厚が3mm未満であると、上述した効果が得られにくくなる。一方、第一の誘電体層15あるいは第二の誘電体層13の層厚が200mmを越えると、成膜に要する時間が長くなり、光記録媒体10の生産性が低下するおそれがあり、さらに、第一の誘電体層15あるいは第二の誘電体層13のもつ応力によって、光記録媒体10にクラックが発生するおそれがある。

第一の記録層31および第二の記録層32は、データを記録する層である。第1図に示されるように、本実施態様においては、第一の記録層31は、光透過層16側に配置され、第二の記録層32は、基板11側に配置されている。

20 本実施態様においては、第一の記録層31は、Si、Ge、Sn、Mg、In、Zn、BiおよびAlよりなる群から選ばれる元素を主成分として含み、第二の記録層32は、Cuを主成分として含んでいる。

このように、Si、Ge、Sn、Mg、In、Zn、BiおよびA 25 1よりなる群から選ばれる元素を主成分として含む第一の記録層31 およびCuを主成分として含む第二の記録層32を設けることによっ て、光記録媒体10の長期間の保存に対する信頼性を向上させること が可能になる。

また、これらの元素は、環境に関する負荷が小さく、地球環境を害 30 するおそれがない。

20

再生信号のC/N比を十分に向上させためには、第一の記録層31が、Ge、Si、Mg、AlおよびSnよりなる群から選ばれる元素を主成分として含んでいることが好ましく、Siを主成分として含んでいることがとくに好ましい。

5 第二の記録層32に主成分として含まれているCuは、レーザビームL10が照射されたときに、第一の記録層31に主成分として含まれている元素とともに速やかに混合し、その結果、第一の記録層31 および第二の記録層32に、データを速やかに記録することが可能になる。

10 第一の記録層 3 1 の記録感度を向上させるために、第一の記録層 3 1 に、さらに、Mg、Al、Cu、Ag、Auよりなる群から選ばれる少なくとも一種の元素が添加されていることが好ましい。

第二の記録層32の保存信頼性の向上させ、記録感度を向上させる ために、第二の記録層32に、さらに、A1、Si、Zn、Mg、A u、Sn、Ge、Ag、P、Cr、FeおよびTiよりなる群から選 ばれる少なくとも1種の元素が添加されていることが好ましい。

第一の記録層 3 1 および第二の記録層 3 2 の層厚は、とくに限定されるものではないが、第一の記録層 3 1 および第二の記録層 3 2 の総厚が厚くなればなるほど、レーザビーム L 1 0 が照射される第一の記録層 3 1 の表面平滑性が低下し、その結果、再生された信号中のノイズレベルが高くなるとともに、記録感度が低下する。その一方で、第一の記録層 3 1 および第二の記録層 3 2 の総厚が薄すぎると、データを記録する前後の反射率の差が少なくなり、高い再生信号(C/N比)を得ることができなくなり、膜厚制御も困難になる。

25 そこで、本実施態様においては、第一の記録層31と第二の記録層32の総厚が、2nmないし40nmになるように、第一の記録層31および第二の記録層32が形成されている。より高い再生信号(C/N比)を得るとともに、再生信号中のノイズレベルをより一層低下させるためには、第一の記録層31と第二の記録層32の総厚が、2nmないし20nmであることが好ましく、2nmないし10nmで

あることがより好ましい。

第一の記録層 3 1 および第二の記録層 3 2 のそれぞれの層厚は、とくに限定されるものではないが、記録感度を十分に向上させ、データを記録する前後の反射率の変化を十分に大きくするためには、第一の記録層 3 1 の層厚が、1 n m ないし 3 0 n m であり、第二の記録層 3 2 の層厚が、1 n m ないし 3 0 n m であることが好ましい。さらに、レーザビームを照射する前後の反射率の変化を十分に大きくするために、第一の記録層 3 1 の層厚と第二の記録層 3 2 の層厚との比(第一の記録層 3 1 の層厚/第二の記録層 3 2 の層厚)は、0.2 ないし5.0 でたることが好ましい。

10 0であることが好ましい。

光透過層 16 は、レーザビーム L 10 が透過する層であり、 10 μ mないし 300 μ mの厚さを有していることが好ましく、より好ましくは、光透過層 16 は、 50 μ mないし 150 μ mの厚さを有している。

- 15 光透過層 1 6 を形成するための材料は、とくに限定されるものではないが、スピンコーティング法などによって、光透過層 1 6 を形成する場合には、紫外線硬化性樹脂、電子線硬化性樹脂などが好ましく用いられ、より好ましくは、紫外線硬化性樹脂によって、光透過層 1 6 が形成される。
- 20 光透過層 1 6 は、第一の誘電体層 1 5 の表面に、光透過性樹脂によって形成されたシートを、接着剤を用いて、接着することによって、 形成されてもよい。

以上のような構成を有する光記録媒体10は、たとえば、以下のようにして、製造される。

25 まず、グループ 1 1 a およびランド 1 1 b が形成された基板 1 1 の表面上に、反射層 1 2 が形成される。

反射層12は、たとえば、反射層12の構成元素を含む化学種を用いた気相成長法によって、形成することができる。気相成長法としては、真空蒸着法、スパッタリング法などが挙げられる。

30 次いで、反射層12の表面上に、第二の誘電体層13が形成される。

第二の誘電体層13は、たとえば、第二の誘電体層13の構成元素を含む化学種を用いた気相成長法によって、形成することができる。 気相成長法としては、真空蒸着法、スパッタリング法などが挙げられる。

5 さらに、第二の誘電体層 13の表面上に、第二の記録層 32が形成 される。第二の記録層 32も、第二の誘電体層 13と同様にして、第 二の記録層 32の構成元素を含む化学種を用いた気相成長法によって、 形成することができる。

次いで、第二の記録層32の表面上に、第一の記録層31が形成さ 10 れる。第一の記録層31も、第一の記録層31の構成元素を含む化学 種を用いた気相成長法によって形成することができる。

さらに、第一の記録層31の表面上に、第一の誘電体層15が形成される。第一の誘電体層15もまた、第一の誘電体層15の構成元素を含む化学種を用いた気相成長法によって、形成することができる。

15 最後に、第一の誘電体層 1 5 の表面上に、光透過層 1 6 が形成される。光透過層 1 6 は、たとえば、粘度調整されたアクリル系の紫外線硬化性樹脂あるいはエポキシ系の紫外線硬化性樹脂を、スピンコーティング法などによって、第一の誘電体層 1 5 の表面に塗布して、塗膜を形成し、紫外線を照射して、塗膜を硬化させることによって、形成20 することができる。

以上のようにして、光記録媒体10が製造される。

以上のような構成を有する光記録媒体10に、たとえば、以下のようにして、データが記録される。

まず、第1図および第2図(a)に示されるように、所定のパワー 25 を有するレーザビームL10が、光透過層16を介して、第一の記録 層31および第二の記録層32に照射される。

データを高い記録密度で、光記録媒体 10 に記録するためには、 450 n m以下の波長を有するレーザビーム L10 を、開口数 N A が 0 . 7以上の対物レンズ (図示せず)を用いて、光記録媒体 10 上に集束することが好ましく、 λ / N A \leq 640 n m であることがより好まし

15

30

い。この場合には、第一の記録層 31 の表面におけるレーザビーム L 10 のビームスポット径は 0.65 μ m以下になる。

本実施態様においては、405nmの波長を有するレーザビームL10が、開口数が0.85の対物レンズを用いて、第一の記録層31の表面におけるレーザビームL10のビームスポット径が約0.43 μ mとなるように、光記録媒体10上に集束される。

その結果、レーザビームL10が照射された領域において、第一の記録層31に主成分として含まれた元素と、第二の記録層32に主成分として含まれた元素とが混合されて、第2図(b)に示されるように、第一の記録層31に主成分として含まれた元素と、第二の記録層32に主成分として含まれた元素とが混合されて、記録マークMが形成される。

第一の記録層31に主成分として含まれた元素と、第二の記録層3 2に主成分として含まれた元素とが混合されると、その領域の反射率 が大きく変化し、したがって、こうして形成された記録マークMの反 射率は、その周囲の領域の反射率と大きく異なることになるので、光 記録されたデータを再生する際に、高い再生信号(C/N比)が得る ことが可能になる。

レーザビームL10が照射されると、第一の記録層31および第二 20 の記録層32がレーザビームL10によって加熱されるが、本実施態 様においては、第一の記録層31および第二の記録層32の外側に、 第一の誘電体層15および第二の誘電体層13が配置されているので、 基板11および光透過層16の熱変形を効果的に防止することが可能 になる。

25 光記録媒体10に、レーザビームL10を照射して、データを記録する場合には、記録パワーPwと基底パワーPbを含むパルス列パターンにしたがって、レーザビームL10のパワーが変調される。

第1図および第2図に示された次世代型の光記録媒体10においては、高い記録線速度で、データを記録することが要求され、追記型の 光記録媒体においては、記録マークを形成するのに必要な記録パワー

ŷ۴

5

10

30

Pwが、記録線速度の平方根に略比例するため、高い記録線速度で、 光記録媒体 10 にデータを記録するためには、パルス列パターンにお ける記録パワー Pwを高いレベルに設定することが要求される。

しかしながら、次世代型の光記録媒体10にデータを記録する場合に用いられる450nm以下の低波長のレーザビームを発する半導体レーザは出力が低く、また、出力の高い半導体レーザは高価であるため、高い記録線速度で、光記録媒体10にデータを記録する場合にも、記録パワーアwをできるかぎり低いレベルに設定して、データが記録できるように、レーザビームL10のパワーを変調するパルス列パターンを選択することが要求される。

本発明者の研究によれば、低い記録パワーのレーザビームを用いて、高い記録線速度で、光記録媒体10にデータを記録するためには、単パルスパターンにしたがって、レーザビームL10のパワーを変調して、記録マークMを形成するために供給される総熱量が高くすることが効果的であるが、データの記録線速度が低い場合には、単パルスパターンにしたがって、レーザビームのパワーを変調して、記録マークを形成すると、供給される総熱量が過剰になって、記録マークの幅が大きくなり、クロストークが増大し、とくに、記録マークMの長さが長くなるほど、この傾向が顕著になることが見出されている。

20 そこで、本実施態様においては、データの記録線速度が高いほど、 記録パワーPwからなるパルス数が少ないパルス列パターンを用いて、 レーザビームのパワーを変調し、記録マークを形成するように構成さ れている。

具体的には、1,7RLL変調方式を用いた場合には、第3図に示 25 されるように、記録線速度および記録マークMの長さに応じて、パルス列パターンのパルス数が選択される。

すなわち、第3図に示されるように、記録線速度が低い第1の記録線速度 V L で、光記録媒体10にデータを記録する場合には、レーザビーム L 10のパワーを変調するパルス列パターンとして、基本パルス列パターンが選択され、n T 信号 (n は、1,7 R L L 変調方式に

おいては、2ないし8の整数である)を記録するときは、(n-1)個の分割パルスを含む基本パルス列パターンが用いられる。2T信号を記録する場合には、パルス数が1となり、単パルスパターンと同じパターンになる。

一方、第1の記録線速度VLよりも高く、第2の記録線速度VHよりも低い第2の記録線速度VMで、光記録媒体10にデータを記録する場合には、形成されるべき記録マークMの長さが短いときは、レーザビームL10のパワーを変調するパルス列パターンとして、単パルス列パターンが選択され、形成されるべき記録マークMの長さが長いときは、レーザビームL10のパワーを変調するパルス列パターンとして、基本パルス列パターンが選択される。

さらに、第1の記録線速度VLよりも高く、第2の記録線速度VH 20 よりも低い第2の記録線速度VMで、光記録媒体10に、同じ長さの 記録マークMを形成する場合には、記録線速度VMが低くなるほど、 パルス列パターンに含まれる記録パワーPwのパルス数が多くなるように、パルス列パターンが設定され、一方、第1の記録線速度VLよりも高く、第2の記録線速度VHよりも低い第2の記録線速度VMで、 光記録媒体10に記録マークMを形成する場合に、記録線速度VMが 同じときは、形成すべき記録マークMの長さが長いほど、パルス列パターンに含まれる記録パワーPwのパルス数が多くなるように、パルス列パターンが設定される。

本実施態様において、基本パルス列パターンとしては、第9図に示 30 されるように、(n-2)個の分割パルスを含む基本パルス列パターン

10

だけでなく、n個または (n-1) 個の分割パルスを含む基本パルス列パターンも含まれ、8/1 6 変調方式においては、(n-2) 個の分割パルスを含む基本パルス列パターンを用い、1, 7 R L L 変調方式においては、(n-1) 個の分割パルスを含む基本パルス列パターンを用いることが好ましい。

第4図は、第1の記録線速度VLで、光記録媒体10にデータを記録する場合のパルス列パターンを示す図であり、第4図(a)は、2 T信号を記録する場合のパルス列パターンを示し、第4図(b)は、3T信号ないし8T信号を形成する場合のパルス列パターンを示している。

第4図(a) および第4図(b) に示されるように、第1の記録線 速度 V L で、光記録媒体10にデータを記録する場合には、記録マーク M を形成するための記録パルスが、(n-1)個に分割され、レーザビーム L 10のパワーは、各分割パルスのピークにおいて、記録パワー P b L に設定される。このように、記録線速度が低い第1の記録線速度 V L で、光記録媒体10にデータを記録する場合には、記録マーク M を形成するための記録パルスが、(n-1)個に分割され、レーザビーム L 10のパワーは、各分割パルスのピークにおいて、記録パワー P w L に、その他の期間において、基底パワー P b L に設定されているから、記録マーク M を形成するために、供給される総熱量が過大となることが防止されるから、記録マーク M を形成するために、供給される総熱量が過大となることが防止されるから、記録マーク M の幅が広がって、クロストークが増大することを効果的に防止することができる。

記録パワーアwLは、レーザビームL10の照射によって、第一の 25 記録層31に主成分として含まれる元素と、第二の記録層32に主成 分として含まれる元素が加熱されて、混合し、記録マークMが形成されるような高いレベルに設定され、基底パワーアbLは、基底パワーアbLのレーザビームL10が照射されても、第二の記録層31に主成分として含まれる元素と、第二の記録層32に主成分として含まれ 30 る元素が実質的に混合することがないような低いレベルに設定される。

一方、基底パワーPbLのレベルは、第4図(a)および第4図(b)に示されるように、再生パワーPrよりも高いレベルに設定されている。

このように、基底パワーPbLのレベルを、再生パワーPrよりも高いレベルに設定することによって、記録パワーPwLのレーザビームL10による加熱を、基底パワーPbLのレーザビームによって、補助することができ、したがって、記録パワーPwLを低いレベルに設定することが可能になる。

第5図は、第3の記録線速度VHで、光記録媒体10にデータを記 10 録する場合のパルス列パターンを示す図であり、第5図(a)は、2 T信号を記録する場合のパルス列パターンを示し、第5図(b)は、 3T信号ないし8T信号を形成する場合のパルス列パターンを示して いる。

第5図(a) および第5図(b) に示されるように、第3の記録線 速度VHで、光記録媒体10にデータを記録する場合には、レーザビームL10のパワーを変調するためのパルス列パターンとして、単パルスパターンが選択され、レーザビームL10のパワーは、記録マークMを形成すべき領域において、記録パワーPwHに、その他の期間において、基底パワーPbHになるように変調される。

20 したがって、記録マークMを形成するために供給される総熱量を高くすることができ、したがって、記録パワーPwHを低いレベルに設定することが可能になる。

記録パワーPwHは、レーザビームL10の照射によって、第一の記録層31に主成分として含まれる元素と、第二の記録層32に主成分として含まれる元素が加熱されて、混合し、記録マークMが形成されるような高いレベルに設定され、基底パワーPbLは、基底パワーPbLのレーザビームL10が照射されても、第二の記録層31に主成分として含まれる元素と、第二の記録層32に主成分として含まれる元素が実質的に混合することがないような低いレベルに設定される。

30 基底パワーPbHのレベルは、再生パワーPrよりも高いレベルに

10

15

20

25

設定される。基底パワーPbHのレベルを、再生パワーPrよりも高いレベルに設定することによって、記録パワーPwHのレーザビーム L 1 0 による加熱を、基底パワーPbHのレーザビームによって、補助することができ、したがって、記録パワーPwHを低いレベルに設定することが可能になる。

第6図は、第1の記録線速度VLよりも高く、第3の記録線速度VHよりも低い第2の記録線速度VMで、光記録媒体10にデータを記録する場合のパルス列パターンを示す図であり、第6図(a)は2T信号ないし5T信号を形成する場合のパルス列パターンを示し、第6図(b)は6T信号ないし8T信号を形成する場合のパルス列パターンを示している。

このように、レーザビームL10を変調するバルス列パターンを設定することによって、2T信号ないし5T信号を記録する場合には、記録マークMを形成するために、供給される総熱量が大きくなるから、記録パワー P w M のレベルを低いレベルに設定することが可能になるとともに、記録マークMを形成するために、過大な熱量が供給されることがないから、6T信号ないし8T信号を用いて、形成された長い記録マークの幅が広がって、クロストークが増大することを効果的に防止することが可能になる。

記録パワー*PwM*は、レーザビームL10の照射によって、第一の 30 記録層31に主成分として含まれる元素と、第二の記録層32に主成

10

15

分として含まれる元素が加熱されて、混合し、記録マークMが形成されるような高いレベルに設定され、基底パワー*PbM*は、基底パワー*PbM*は、基底パワー*PbM*のレーザビームL10が照射されても、第二の記録層31に主成分として含まれる元素と、第二の記録層32に主成分として含まれる元素が実質的に混合することがないような低いレベルに設定される。

基底パワーPbMのレベルは、再生パワーPrよりも高いレベルに設定される。基底パワーPbMのレベルを、再生パワーPrよりも高いレベルに設定することによって、記録パワーPwMのレーザビーム L 1 O による加熱を、基底パワーPbMのレーザビームによって、補助することができ、したがって、記録パワーPwMを低いレベルに設定することが可能になる。

第1の記録線速度VLで、データを記録する場合に用いられるパルス列パターンの基底パワーPbL、第3の記録線速度VHで、データを記録する場合に用いられるパルス列パターンの基底パワーPbHおよび第2の記録線速度VMで、データを記録する場合に用いられるパルス列パターンの基底パワーPbMは、PbL<PbM \leq PbHであることが好ましく、3PbL \leq PbM \leq PbHであることが最も好ましい。

また、第1の記録線速度VLで、データを記録する場合に用いられるパルス列パターンの基底パワーPbLと記録パワーPwLとの比(PbL/PwL)、第3の記録線速度VHで、データを記録する場合に用いられるパルス列パターンの基底パワーPbHと記録パワーPwHとの比(PbH/PwH) および第2の記録線速度VMで、データを記録する場合に用いられるパルス列パターンの基底パワーPbMと25 記録パワーPwMとの比(PbM/PwM)が、(PbL/PwL) < (PbM/PwM) \leq (PbH/PwH) となるように、それぞれのパルス列パターンが設定されることが好ましく、さらに好ましくは、3(PbL/PwL) \leq (PbM/PwM) \leq (PbH/PwH) であり、最も好ましくは、5 (PbL/PwL) \leq (PbM/PwM)

Ģ.

5

10

15

30

レーザビームのパワーを変調するパルス列パターンの記録パワーおよび基底パワーを、このように設定することによって、複数の記録線速度の中から、所望の記録線速度を選択して、データを記録可能なシステム (マルチスピード記録) において、異なる記録線速度で、データを記録する場合に、記録パワー Pwのレベルをほぼ同じレベルに設定することが可能になる。

したがって、本実施態様においては、記録パワー*PwM*を低いレベルに設定することができ、しかも、異なる記録線速度で、データを記録する場合に、記録パワー*Pwの*レベルをほぼ同じレベルに設定することが可能になるから、比較的安価で、低出力の半導体レーザを使用することが可能となる。

本実施態様によれば、記録線速度が高い第3の記録線速度VHで、 光記録媒体10にデータを記録する場合には、レーザビームL10の パワーを変調するパルス列パターンとして、単パルス列パターンが選 択されるように構成されているから、記録マークMを形成するために 供給される総熱量を高くすることができ、したがって、記録パワーPwHを低いレベルに設定して、光記録媒体10にデータを記録するこ とが可能になる。

また、本実施態様によれば、記録線速度が低い第1の記録線速度 V Lで、光記録媒体10にデータを記録する場合には、レーザビームL 1 0のパワーを変調するパルス列パターンとして、基本パルス列パターンが選択され、n T信号(nは、1,7 R L L 変調方式においては、2 ないし8の整数である)を記録するときは、(n-1)個の分割パルスを含む基本パルス列パターンが用いられるように構成されているから、記録マークMを形成するために、供給される総熱量が過大になって、記録マークMの幅が広がり、クロストークが増大することを効果的に防止することができる。

したがって、本実施態様によれば、高い記録線速度で、光記録媒体 10にデータを記録する場合にも、比較的安価で、低出力の半導体レ ーザを使用することが可能となる。

10

15

第7図は、本発明の好ましい実施態様にかかるデータ記録装置のブロックダイアグラムである。

第7図に示されるように、本実施態様にかかるデータ記録装置50は、光記録媒体10を回転させるためのスピンドルモータ52と、光記録媒体10に、レーザビームを照射するとともに、光記録媒体10によって、反射された光を受光するヘッド53と、スピンドルモータ52およびヘッド53の動作を制御するコントローラ54と、ヘッド53に、レーザ駆動信号を供給するレーザ駆動回路55と、ヘッド53に、レンズ駆動信号を供給するレンズ駆動回路56とを備えている。さらに、第7図に示されるように、コントローラ54は、フォーカスサーボ追従回路57、トラッキングサーボ追従回路58およびレーザコントロール回路59を備えている。

フォーカスサーボ追従回路 5 7 が活性化すると、回転している光記録媒体 1 0 の第一の記録層 3 1 に、レーザビーム L 1 0 がフォーカスされ、トラッキングサーボ追従回路 5 8 が活性化すると、光記録媒体 1 0 のトラックに対して、レーザビームのスポットが自動追従状態となる。

第7図に示されるように、フォーカスサーボ追従回路57およびトラッキングサーボ追従回路58は、それぞれ、フォーカスゲインを自 動調整するためのオートゲインコントロール機能およびトラッキング ゲインを自動調整するためのオートゲインコントロール機能を有している。また、レーザコントロール回路59は、レーザ駆動回路55により供給されるレーザ駆動信号を生成する回路である。

本実施態様においては、上述したパルス列パターンを特定するためのデータが、データを記録する際に必要な記録線速度などの種々の記録条件を特定するためのデータとともに、記録条件設定用データとして、光記録媒体 10に、ウォブルやプレピットとして記録されている。したがって、レーザコントロール回路 59は、データを記録するのに先立って、光記録媒体 10に記録された記録条件設定用データを読み出し、読み出した記録条件設定用データに基づいて、所望のパルス

列パターンを選択し、レーザ駆動信号を生成し、レーザ駆動回路 5 5 からヘッド 5 3 に出力させる。

こうして、所望の記録ストラテジにしたがって、光記録媒体 10 に データが記録される。

5 本実施態様によれば、光記録媒体10には、レーザビームL10のパワーを変調するために用いるパルス列パターンを特定するためのデータが、データを記録する際に必要な記録線速度などの種々の記録条件を特定するためのデータとともに、記録条件設定用データとして、記録されており、光記録媒体10にデータを記録するのに先立って、

10 レーザコントロール回路59により、記録条件設定用データが読み出され、読み出された記録条件設定用データに基づいて、所望のパルス列パターンが選択され、光記録媒体10に、レーザビームを照射するヘッド53が制御されるように構成されているから、所望の記録ストラテジにしたがって、光記録媒体10にデータを記録することが可能になる。

以下、本発明の効果をより明瞭なものとするため、実施例を掲げる。 実施例 1

以下のようにして、図1に示される光記録媒体1と同様の構成を有 する光記録媒体を作製した。

20 すなわち、まず、厚さ1.1mm、直径120mmのポリカーボネート基板をスパッタリング装置にセットし、次いで、ポリカーボネート基板上に、Ag、PdおよびCuの混合物を含み、100nmの層厚を有する反射層、 $ZnSesiO_2$ の混合物を含み、30nmの層厚を有する第二の誘電体層、 $Cuを主成分として含み、5nmの層厚を有する第二の記録層、<math>Siを主成分として含み、5nmの層厚を有する第一の記録層、<math>ZnSesiO_2$ の混合物を含み、25nmの層厚を有する第一の誘電体層を、順次、スパッタリング法によって、形成した。

第一の誘電体層および第二の誘電体層に含まれた $Z n S \ge S i O_2$ 30 の混合物中の $Z n S \ge S i O_2$ のモル比率は、S 0 : 2 0であった。

さらに、第一の誘電体層上に、アクリル系紫外線硬化性樹脂を、スピンコーティング法によって、塗布して、塗布層を形成し、塗布層に紫外線を照射して、アクリル系紫外線硬化性樹脂を硬化させ、100μmの層厚を有する光透過層を形成した。

5 こうして作製した光記録媒体を、パルステック工業株式会社製の光記録媒体評価装置「DDU1000」(商品名)にセットし、波長が405nmの青色レーザ光を、記録用レーザ光として用い、NA(開口数)が0.85の対物レンズを用いて、レーザ光を、光透過層を介して、集光し、データを記録した。

10 記録信号としては、2 Tないし8 Tのランダム信号を用い、記録信号にかかわらず、(n-1個)の分割パルスを含む第1のパルス列パターンを用いて、レーザビームのパワーを変調して、データを記録した。第1のパルス列パターンの基底パワー P b は 0.5 m W に固定し、記録パワー P wを変化させて、第1の記録線速度 V L、第2の記録線速度 V M および第3の記録線速度 V H で、データを記録した。

第1の記録線速度 V L は、5.3 m / sec(チャンネルクロック:66 M H z)に設定し、第2の記録線速度 V M は、10.6 m / sec(チャンネルクロック:132 M H z)に設定し、第3の記録線速度 V H は、21.2 m / sec(チャンネルクロック:263 M H z)に設定した。

第1の記録線速度 V L においては、フォーマット効率を80%とした場合のデータ転送レートは約35 M b p s であり、最短ブランク長と記録線速度との比(最短ブランク長/記録線速度)は、30.4 n s e c であった。また、第2記録線速度 V M においては、フォーマッ25 ト効率を80%とした場合のデータ転送レートは約70 M b p s であり、最短ブランク長と記録線速度との比(最短ブランク長/記録線速度)は、15.2 n s e c であった。さらに、第3記録線速度 V H においては、フォーマット効率を80%とした場合のデータ転送レートは約140 M b p s であり、最短ブランク長と記録線速度との比(最30 短ブランク長/記録線速度)は、7.6 n s e c であった。

次いで、上述の光媒体評価装置を用いて、光記録媒体に記録されたデータを再生して、再生信号のクロックジッターが最小になったときのレーザビームの記録パワーPwを求め、最適な記録パワーとした。データの再生にあたっては、レーザ光の波長を405nm、対物レンズのNA(開口数)を0.85とした。再生信号のクロックジッターは、タイムインターバルアナライザにより、再生信号の「ゆらぎ(σ)」を求め、 σ /Twにより算出した。ここに、Twはクロックの1周期である。

測定結果は、表1に示されている。

10 実施例 2

5

2 T信号ないし5 T信号を記録するときには、単パルスパターンが 選択され、6 T信号ないし8 T信号を記録するときには、2 個ないし 4 個の分割パルスを含む基本パルス列パターンが選択されるように構 成された第2のパルス列パターンを用いて、レーザビームのパワーを 2 変調した以外は、実施例1と同様にして、光記録媒体にデータを記録 し、記録されたデータを再生して、再生信号のクロックジッターが最 小になったときのレーザビームの記録パワー P w を求め、最適な記録 パワーとした。

測定結果は、表1に示されている。

20 実施例3

25

記録信号にかかわらず、単パルスパターンが選択されるように構成された第3のパルス列パターンを用いて、レーザビームのパワーを変調した以外は、実施例1と同様にして、光記録媒体にデータを記録し、記録されたデータを再生して、再生信号のクロックジッターが最小になったときのレーザビームの記録パワー*Pw*を求め、最適な記録パワーとした。

測定結果は、表1に示されている。

	Pb=0.5mW				
	第1の記録線速度 (VL)	第2の記録線速度 (VM)	第3の記録線速度 (VH)		
第1のパルス列パターン	4.5mW	6.3mW	-		
第2のパルス列パターン	3.5mW	4.7mW	6.5mVV		
第3のパルス列パターン	3.1mW	4.1mW	5.3mVV		

表 1 に示されるように、基底パワーPbを0.5mWに固定した場合には、記録線速度が高くなるほど、最適な記録パワーが高くなるこ5 とが認められた。

また、いずれの記録線速度においても、最適な記録パワーは、第1のパルス列パターン、第2のパルス列パターン、第3のパルス列パターンの順に、低くなることがわかった。

ただし、使用した光ディスク評価装置のレーザビームの強度変調速 10 度の限界から、第3の記録線速度VHでは、第1のパルス列パターン にしたがって、レーザビームを変調して、データを記録することがで きなかった。

実施例4

第1の記録線速度VLで、光記録媒体にデータを記録する場合に、 第1のパルス列パターンの基底パワーPbを1.5 mWに設定し、第 2の記録線速度VMで、光記録媒体にデータを記録する場合に、第1 のパルス列パターンの基底パワーPbを2.0 mWに設定し、第3の 記録線速度VHで、光記録媒体にデータを記録する場合に、第1のパ ルス列パターンの基底パワーPbを2.5 mWに設定した以外は、実 20 施例1と同様にして、光記録媒体にデータを記録し、記録されたデー タを再生して、再生信号のクロックジッターが最小になったときのレ ーザビームの記録パワーPwを求め、最適な記録パワーとした。

٩°

測定結果は表2に示されている。

表 2 において、括弧内の数値は、実施例 1 によって、得られた最適 記録パワーとの差である。

実施例5

第1の記録線速度VLで、光記録媒体にデータを記録する場合に、 第2のバルス列パターンの基底パワーPbを1.5mWに設定し、第 2の記録線速度VMで、光記録媒体にデータを記録する場合に、第2 のパルス列パターンの基底パワーPbを2.0mWに設定し、第3の 記録線速度VHで、光記録媒体にデータを記録する場合に、第2のパ ルス列パターンの基底パワーPbを2.5mWに設定した以外は、実 施例1と同様にして、光記録媒体にデータを記録し、記録されたデー タを再生して、再生信号のクロックジッターが最小になったときのレーザビームの記録パワーPwを求め、最適な記録パワーとした。 測定結果は表2に示されている。

15 表 2 において、括弧内の数値は、実施例 2 によって、得られた最適 記録パワーとの差である。

実施例6

第1の記録線速度 V L で、光記録媒体にデータを記録する場合に、第3のパルス列パターンの基底パワー P bを 1.5 m W に設定し、第20 2の記録線速度 V M で、光記録媒体にデータを記録する場合に、第3のパルス列パターンの基底パワー P bを 2.0 m W に設定し、第3の記録線速度 V H で、光記録媒体にデータを記録する場合に、第3のパルス列パターンの基底パワー P bを 2.5 m W に設定した以外は、実施例1と同様にして、光記録媒体にデータを記録し、記録されたデータを再生して、再生信号のクロックジッターが最小になったときのレーザビームの記録パワー P wを求め、最適な記録パワーとした。

測定結果は表2に示されている。

表2において、括弧内の数値は、実施例3によって、得られた最適 記録パワーとの差である。

10

15

	Pb=1.5mW	Pb=2.0mW	Pb=2.5mW	
	第1の記録線速度 (VL)	第2の記録線速度 (VM)	第3の記録線速度 (VH)	
第1のパルス列パターン	4.2mW (-0.3)	4.8mW (-1.5)	-	
第2のパルス列パターン	3.3mW (-0.2)	3.9mW (-0.8)	5.2mW (-1.3)	
第3のパルス列パターン	3.0mW (-0.1)	3.4mW (-0.7)	4.3mW (-1.0)	

また、記録線速度が高いほど、最適な記録パワーPwの低下が大きくなることが認められた。これは、記録線速度が高いほど、隣り合った記録マークから受ける熱の影響が大きく、したがって、パルス列パターンの基底パワーPbのレベルを高いレベルに設定したことによる最適な記録パワーPwの低下も、記録線速度が高いほど、大きくなるためと予測される。

実施例7

記録パワー P wを、実施例 4 によって得られた最適な記録パワーに 20 設定し、実施例 4 と同様にして、1 本のトラックに、2 T ないし8 T のランダム信号を記録し、記録した信号を再生して、再生信号のクロックジッタを測定した。以下、こうして測定されたクロックジッター

を、「シングルジッター」という。

さらに、同じ記録条件で、隣り合った3本のトラックに、2 Tないし8 Tのランダム信号を記録し、中央のトラックに記録した信号を再生して、再生信号のクロックジッタを測定した。以下、こうして測定されたクロックジッターを、「クロスジッター」という。

次いで、記録線速度ごとに、シングルジッタとクロスジッタとの差 を算出した。

算出結果は表3に示されている。

実施例8

10 記録パワー P wを、実施例 5 によって得られた最適な記録パワーに 設定し、実施例 5 と同様にして、1本のトラックに、2 T ないし8 T のランダム信号を記録し、記録した信号を再生して、再生信号のシン グルジッタを測定した。

さらに、同じ記録条件で、隣り合った3本のトラックに、2 T ない 15 し8 T のランダム信号を記録し、中央のトラックに記録した信号を再 生して、再生信号のクロスジッタを測定した。

次いで、記録線速度ごとに、シングルジッタとクロスジッタとの差 を算出した。

算出結果は表3に示されている。

20 実施例 9

記録パワー P wを、実施例 6 によって得られた最適な記録パワーに 設定し、実施例 6 と同様にして、1 本のトラックに、2 T ないし8 T のランダム信号を記録し、記録した信号を再生して、再生信号のシン グルジッタを測定した。

25 さらに、同じ記録条件で、隣り合った3本のトラックに、2 T ない し8 T のランダム信号を記録し、中央のトラックに記録した信号を再 生して、再生信号のクロスジッタを測定した。

次いで、記録線速度ごとに、シングルジッタとクロスジッタとの差 を算出した。

30 算出結果は表3に示されている。

	第1の記録線速度 (VL)	第2の記録線速度 (VM)	第3の記録線速度 (VH)	
第1のパルス列パターン	0.5%	0.4%	-	
第2のパルス列パターン	0.7%	0.5%	0.5%	
第3のパルス列パターン	1.0%	0.8%	0.5%	

表3に示されるように、第1の記録線速度VLおよび第2の記録線 速度VMで、データを記録した場合には、第1のパルス列パターン、第2のパルス列パターン、第3のパルス列パターンの順に、シングルジッタとクロスジッタとの差が大きくなり、クロストークが増大することがわかった。これは、第1のパルス列パターン、第2のパルス列パターン、第3のパルス列パターンの順に、形成された記録マークの幅が広くなったためと考えられる。

また、第2の記録線速度 V M で、データを記録した場合に比し、第1の記録線速度 V L で、データを記録した場合には、第1のパルス列パターン、第2のパルス列パターンの順に、シングルジッタとクロスジッタとの差がより大きくなることが判明し

15 た。

一方、第3の記録線速度VHで、データを記録した場合には、第2のパルス列パターンを用いた場合と第3のパルス列パターンを用いた場合とで、シングルジッタとクロスジッタとの差に変化は認められなかった。

20 実施例1ないし実施例9から、第1の記録線速度VLで、データを 記録する場合に、第2のパルス列パターンあるいは第3のパルス列パ ターンを用いて、レーザビームのパワーを変調するときは、クロスト

25

30

ークが増大するから、第1の記録線速度VLで、データを記録する場合には、第1のパルス列パターンを用いて、レーザビームのパワーを変調することが望ましいことがわかった。これは、第1の記録線速度VLで、データを記録する場合には、記録線速度が低いため、記録パワーPwのレベルを高くすることはもともと要求されてはおらず、記録パワーPwのレベルを高くするとクロストークが増大するからである。

また、実施例1ないし実施例9から、第2の記録線速度VMで、データを記録する場合には、第1のパルス列パターン、第2のパルス列パターン、第2のパルス列パターンの順に、クロストークが増大するが、第2の記録線速度VMで、データを記録する場合には、記録パワーアwのレベルを低下させることがより重要であるため、第2のパルス列パターンを用いて、レーザビームのパワーを変調することが望ましいことがわかった。

15 さらに、実施例1ないし実施例9から、第3の記録線速度VHで、データを記録する場合には、第3のパルス列パターンを用いて、レーザビームのパワーを変調したときに、記録パワーPwのレベルを最も低いレベルに設定することができ、また、第2のパルス列パターンを用いて、レーザビームのパワーを変調したときと、クロストークのレベルにも差が認められないから、第3の記録線速度VHで、データを記録する場合には、第3のパルス列パターンを用いて、レーザビームのパワーを変調することが望ましいことがわかった。

本発明は、以上の実施態様および実施例に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、 それらも本発明の範囲内に包含されるものであることはいうまでもない。

たとえば、前記実施態様および前記実施例においては、第一の記録 層31と第二の記録層32が、互いに接触するように形成されている が、第二の記録層32は、レーザ光の照射を受けたときに、第一の記 録層31に主成分として含まれている元素と、第二の記録層12に主

25

30

成分として含まれている元素とが混合した領域が形成されるように、第一の記録層31の近傍に配置されていればよく、第一の記録層31 と第二の記録層32が、互いに接触するように形成されていることは必ずしも必要でなく、第一の記録層31と第二の記録層32の間に、誘電体層などの一または二以上の他の層が介在していてもよい。

また、前記実施態様においては、第一の記録層31は、Si、Ge、 Sn、Mg、In、Zn、BiおよびAlよりなる群から選ばれる元 素を主成分として含み、第二の記録層32は、Cuを主成分として含 んでいるが、第一の記録層31が、Si、Ge、Sn、Mg、In、 10 Zn、BiおよびAlよりなる群から選ばれる元素を主成分として含 み、第二の記録層 3 2 が、 C u を主成分として含んでいることは必ず しも必要でなく、第一の記録層31が、Si、Ge、C、Sn、Zn およびCuよりなる群から選ばれる元素を主成分として含み、第二の 記録層32が、A1を主成分として含んでいてもよいし、第一の記録 15 層31が、Si、Ge、CおよびA1よりなる群から選ばれる元素を 主成分として含み、第二の記録層32が、Znを主成分として含んで いてもよい。さらには、第一の記録層31と第二の記録層32が、互 いに異なった元素を主成分として含み、それぞれ、A1、Si、Ge、 C, Sn, Au, Zn, Cu, B, Mg, Ti, Mn, Fe, Ga, 20 Zr、AgおよびPtよりなる群から選ばれる元素を主成分として含 んでいればよい。

また、前記実施態様および前記実施例においては、光記録媒体10は、第一の記録層31および第二の記録層32を備えているが、第一の記録層31および第二の記録層32に加えて、一もしくは二以上のSi、Ge、Sn、Mg、In、Zn、BiおよびAlよりなる群から選ばれる元素を主成分として含む記録層または一もしくは二以上のCuを主成分として含む記録層を備えていてもよい。

さらに、前記実施態様および前記実施例においては、第一の記録層 31が光透過層16側に配置され、第二の記録層32が基板11側に 配置されているが、第一の記録層31を基板11側に配置し、第二の

10

15

20

Ĝ٠

記録層32を光透過層16側に配置することもできる。

また、前記実施態様および前記実施例においては、光記録媒体10 は、第一の誘電体層15および第二の誘電体層13を備え、第一の記 録層31および第二の記録層32が、第一の誘電体層15および第二 の誘電体層13の間に配置されているが、光記録媒体10が、第一の 誘電体層15および第二の誘電体層13を備えていることは必ずしも 必要でなく、誘電体層を備えていなくてもよい。また、光記録媒体1 0は、単一の誘電体層を有していてもよく、その場合には、誘電体層 は、第一の記録層31および第二の記録層32に対して、基板11側 に配置されていても、あるいは、光透過層16側に配置されていても よい。

さらに、前記実施例においては、第一の記録層と第二の記録層は、 同じ厚さを有するように形成されているが、第一の記録層と第二の記 録層を、同じ厚さを有するように形成することは必ずしも必要でない。

また、前記実施態様および前記実施例においては、光記録媒体10 は反射層12を備えているが、レーザ光が照射された結果、第一の記録層31に主成分として含まれた元素と、第二の記録層32に主成分として含まれた元素が混合して形成された記録マークMにおける反射光のレベルと、それ以外の領域における反射光のレベルの差が十分に大きい場合には、反射層12を省略することができる。

また、第6図に示された実施態様においては、記録条件設定用データが、ウォブルやプレビットとして、光記録媒体10に記録されているが、第一の記録層31あるいは第二の記録層32に、記録条件設定用データを記録するようにしてもよい。

 25 さらに、第6図に示された実施態様においては、フォーカスサーボ 追従回路57、トラッキングサーボ追従回路58およびレーザコント ロール回路59が、コントローラ54内に組み込まれているが、フォ ーカスサーボ追従回路57、トラッキングサーボ追従回路58および レーザコントロール回路59を、コントローラ54内に組み込むこと
 30 は必ずしも必要でなく、コントローラ54とは別体に、フォーカスサ

10

ーボ追従回路 5 7、トラッキングサーボ追従回路 5 8 およびレーザコントロール回路 5 9 を設けることもできるし、フォーカスサーボ追従回路 5 7、トラッキングサーボ追従回路 5 8 およびレーザコントロール回路 5 9 の機能を果たすソフトウエアを、コントローラ 5 4 内に組み込むようにしてもよい。

また、前記実施態様および前記実施例においては、高出力の半導体 レーザを用いることが要求される次世代型の光記録媒体にデータを記 録する場合につき、説明を加えたが、本発明は、次世代型の光記録媒 体にデータを記録する場合に限らず、次世代型の光記録媒体以外の追 記型光記録媒体に、データを記録する場合に広く適用することができ る。

また、前記実施態様においては、データの記録線速度が低くなるほ ど、記録マークMの幅が広がりやすく、クロストークが増大するため、 データの記録線速度に基づいて、パルス列パターンを選択しているが、 記録マークMの幅が広がることに起因するクロストークは、トラック 15 ビッチが狭く、ビームスポット径が大きいほど、増大するから、記録 線速度に代えて、あるいは、記録線速度とともに、トラックピッチT Pとビームスポット径Dとの比(TP/D)を用いて、パルス列パタ ーンを選択するようにしてもよい。この場合、トラックピッチTPと ビームスポット径Dとの比(TP/D)が相対的に小さい場合には、 20 第4図に示される基本パルス列パターンを選択し、トラックピッチT Pとビームスポット径Dとの比(TP/D)が相対的に大きい場合に は、第5図に示される単パルスパターンを選択し、さらに、トラック ピッチTPとビームスポット径Dとの比(TP/D)が小さくも、大 25 きくもない場合には、基本パルス列パターンと単パルスパターンを併 用すればよい。基本パルス列パターンと単パルスパターンを併用する 場合には、トラックピッチTPとビームスポット径Dとの比(TP/ D) が小さいほど、パルス列パターンに含まれる記録パワー P wのパ ルス数が多くなるように、パルス列パターンを設定し、トラックピッ 30 チTPとビームスポット径Dとの比(TP/D)が大きくなるほど、

15

パルス列パターンに含まれる記録パワー Pwのパルス数が少なくなるように、パルス列パターンを設定すればよい。

本発明によれば、低い記録パワーのレーザビームを用いて、高い記録線速度で、追記型の光記録媒体にデータを記録することができる光記録媒体へのデータの記録方法を提供することが可能になる。

また、本発明によれば、出力が低く、安価な半導体レーザを用いて、 高い記録線速度で、追記型の光記録媒体にデータを記録することがで きる光記録媒体へのデータの記録方法を提供することが可能になる。

さらに、本発明によれば、二層以上の記録層を備えた追記型の光記 10 録媒体に、低い記録パワーのレーザビームを用いて、高い記録線速度 で、データを記録することができる光記録媒体へのデータの記録方法 を提供することが可能になる。

また、本発明によれば、低い記録パワーのレーザビームを用いて、 高い記録線速度で、追記型の光記録媒体にデータを記録することがで きる光記録媒体へのデータの記録装置を提供することが可能になる。

. さらに、本発明によれば、出力が低く、安価な半導体レーザを用いて、高い記録線速度で、追記型の光記録媒体にデータを記録することができる光記録媒体へのデータの記録装置を提供することが可能になる。

20 また、本発明によれば、二層以上の記録層を備えた追記型の光記録 媒体に、低い記録パワーのレーザビームを用いて、高い記録線速度で、 データを記録することができる光記録媒体へのデータの記録装置を提 供することが可能になる。

さらに、本発明によれば、低い記録パワーのレーザビームを用いて、 25 高い記録線速度で、データを記録することができる光記録媒体を提供 することが可能になる。

また、本発明によれば、出力が低く、安価な半導体レーザを用いて、 高い記録線速度で、データを記録することができる追記型の光記録媒 体を提供することが可能になる。

30 さらに、本発明によれば、低い記録パワーのレーザビームを用いて、

高い記録線速度で、データを記録することができる二層以上の記録層を備えた追記型の光記録媒体を提供することが可能になる。

請求の範囲

- 1. 基板上に設けられた少なくとも一層の記録層を有する追記型の光記録媒体に、少なくとも記録パワーおよび基底パワーを含むパルス列パターンにしたがって変調されたレーザビームを照射して、前記記録層の所定の領域に記録マークを形成し、データを記録する方法であって、データの記録線速度が高いほど、記録パワーからなるパルスの数が少ないパルス列パターンを用いて、レーザビームのパワーを変調し、記録マークを形成することを特徴とする光記録媒体へのデータの記録方法。
- 2. 第1の線速度VH以上の記録線速度で、データを記録する場合に、 前記パルスの数を1に設定することを特徴とする請求の請求の範囲 第1項に記載の光記録媒体へのデータの記録方法。

15

20

25

10

5

- 3. 第1の線速度VH未満で、かつ、第2の線速度VLを越える記録線速度VMで、データを記録する場合、少なくとも最短の記録マークを形成するときは、前記パルスの数を1に設定し、形成すべき記録マークの長さが長いほど、前記パルスの数を大きく、設定することを特徴とする請求の請求の範囲第1項または第2項に記載の光記録媒体へのデータの記録方法。
- 4. 第1の線速度VH未満で、かつ、第2の線速度VLを越える記録線速度VMで、データを記録する場合、少なくとも最短の記録マークを形成するときは、前記パルスの数を1に設定し、記録線速度VMが低くなるほど、前記パルスの数を大きく、設定することを特徴とする請求の請求の範囲第1項または第2項に記載の光記録媒体へのデータの記録方法。
- 30 5.前記第2の線速度VL以下の記録線速度で、それぞれの長さを有

する記録マークを形成し、データを記録する場合に、記録マークの 長さを表わす数との差が一定になるように、前記パルスの数を設定 することを特徴とする請求の請求の範囲第1項ないし第4項のいず れか1項に記載の光記録媒体へのデータの記録方法。

5

- 6. 前記第1の線速度が、10m/sec以上に設定されたことを特徴とする請求の範囲第1項ないし第5項のいずれか1項に記載の光記録媒体へのデータの記録方法。
- 10 7. 記録線速度が高いほど、前記基底パワーを高いレベルに設定する ことを特徴とする請求の範囲第1項ないし第6項のいずれか1項に 記載の光記録媒体へのデータの記録方法。
- 8. 記録線速度が高いほど、前記基底パワーのレベルと前記記録パワ 15 ーのレベルの比が高くなるように設定することを特徴とする請求の 範囲第1項ないし第7項のいずれか1項に記載の光記録媒体へのデ ータの記録方法。
- 9.前記光記録媒体に、450nm以下の波長を有するレーザビーム 20 を照射して、データを記録することを特徴とする請求の範囲第1項 ないし第8項のいずれか1項に記載の光記録媒体へのデータの記録 方法。
- 10. 入/NA≤640nmを満たす開口数NAを有する対物レンズおよび波長入を有するレーザビームを用い、前記対物レンズを介して、前記光記録媒体に、レーザビームを照射して、データを記録することを特徴とする請求の範囲第1項ないし第8項のいずれか1項に記載の光記録媒体へのデータの記録方法。
- 30 11. 前記光記録媒体が、さらに、光透過層と、前記基板と前記光透過

ij٠

層の間に形成された第一の記録層と第二の記録層を備え、前記光透 過層を介して、レーザビームを照射して、前記第一の記録層に主成 分として含まれている元素と、前記第二の記録層に主成分として含 まれている元素とを混合させて、記録マークを形成するように構成 されたことを特徴とする請求の範囲第1項ないし第10項のいずれ か1項に記載の光記録媒体へのデータの記録方法。

- 12. 基板上に設けられた少なくとも一層の記録層を有する追記型の光記録媒体に、少なくとも記録パワーおよび基底パワーを含むパルス列パターンにしたがって変調されたレーザビームを照射して、前記記録層の所定の領域に記録マークを形成し、データを記録する方法であって、前記光記録媒体のトラックビッチTPと前記レーザビームのスポット径Dとの比が小さいほど、記録パワーからなるパルスの数が多いパルス列パターンを用いて、レーザビームのパワーを変調し、記録マークを形成することを特徴とする光記録媒体へのデータの記録方法。
- 13. 基板上に設けられた少なくとも一層の記録層を有する追記型の光記録媒体に、少なくとも記録パワーおよび基底パワーを含むパルス列パターンにしたがって変調されたレーザビームを照射して、前記記録層の所定の領域に記録マークを形成し、データを記録するデータ記録装置であって、データの記録線速度が高いほど、記録パワーからなるパルスの数が少ないパルス列パターンを用いて、レーザビームのパワーを変調し、記録マークを形成することを特徴とする光記録媒体へのデータの記録装置。
 - 14. 第1の線速度 V H 以上の記録線速度で、データを記録する場合に、 前記パルスの数を1に設定することを特徴とする請求の請求の範囲 第13項に記載の光記録媒体へのデータの記録装置。

- 15. 第1の線速度VH未満で、かつ、第2の線速度VLを越える記録線速度VMで、データを記録する場合、最短の記録マークを形成するときは、前記パルスの数を1に設定し、形成すべき記録マークの長さが長いほど、前記パルスの数を大きく、設定することを特徴とする請求の請求の範囲第13項または第14項に記載の光記録媒体へのデータの記録装置。
- 16. 第1の線速度VH未満で、かつ、第2の線速度VLを越える記録線速度VMで、データを記録する場合、最短の記録マークを形成するときは、前記パルスの数を1に設定し、記録線速度VMが低くなるほど、前記パルスの数を大きく、設定することを特徴とする請求の請求の範囲第13項または第14項に記載の光記録媒体へのデータの記録装置。
- 15 17. 前記第2の線速度VL以下の記録線速度で、それぞれの長さを有する記録マークを形成し、データを記録する場合に、記録マークの長さを表わす数との差が一定になるように、前記パルスの数を設定することを特徴とする請求の請求の範囲第13項ないし第16項のいずれか1項に記載の光記録媒体へのデータの記録装置。

20

- 18. 前記第1の線速度が、10 m/sec以上に設定されたことを特徴とする請求の範囲第13項ないし第17項のいずれか1項に記載の光記録媒体へのデータの記録装置。
- 25 19. 基板と前記基板上に形成された少なくとも一層の記録層を備え、少なくとも記録パワーおよび基底パワーを含むパルス列パターンにしたがって変調されたレーザビームが照射されて、前記記録層に記録マークが形成され、データが記録されるように構成された追記型の光記録媒体であって、データの記録線速度が高いほど、記録パワーからなるパルスの数が少ないパルス列パターンを用いて、レーザ

ビームのパワーを変調するために必要な記録条件設定用データが記録されていることを特徴とする光記録媒体。

20. さらに、光透過層と、前記基板と前記光透過層の間に形成された 第一の記録層と第二の記録層を備え、前記光透過層を介して、レー ザビームが照射されたときに、前記第一の記録層に主成分として含 まれている元素と、前記第二の記録層に主成分として含まれている 元素とが混合し、記録マークが形成されるように構成されたことを 特徴とする請求の範囲第19項に記載の光記録媒体。

10

- 21. 前記第二の記録層が、前記第一の記録層に接するように、形成されたことを特徴とする請求の範囲第20項に記載の光記録媒体。
- 22. 前記光透過層が、10ないし300nmの厚さを有するように形成されたことを特徴とする請求の範囲第20項または第21項に記載の光記録媒体。

第 2 図

第 3 図

パルス数

		2T	3Т	4T	5T	6T	7T	8T
	低(VL)	\	2	3	4	5	6	7
			(2	2-3	2-4	2-5	2-6
版			,	1	2	2-3	2-4	2-5
記錄線速度	中(VM)			1	1	2	2-3	2-4
記念			4	1	1	4	2	2-3
			-	1	X		7-	2
,	♪ 高(VH)			1	1		1	1

第 4 図

第 5 図

第 6 図

8/9

第 8 図

第 9 図

9/9

- 52……スピンドルモータ
- 53……ヘッド
- 54……コントローラ
- 5 5 …… レーザ駆動回路
- 56……レンズ駆動回路
- 57……フォーカスサーボ追従回路
- 58……トラッキングサーボ追従回路
- 59……レーザコントロール回路

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ G11B7/0045, 7/24				
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed Int.Cl ⁷ G11B7/00-7/013, 7/24, 7/3				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922–1996 Toroku Jitsuyo Shinan Koho 1994–2003 Kokai Jitsuyo Shinan Koho 1971–2003 Jitsuyo Shinan Toroku Koho 1996–2003				
Electronic data base consulted during the international search (nam	ne of data base and, where practicable, search terms used)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where a	propriate, of the relevant passages Relevant to claim No.			
X JP 10-106008 A (Seiko Epson 24 April, 1998 (24.04.98), Par. No. [0042]; Fig. 9 (Family: none)				
Further documents are listed in the continuation of Box C.	See patent family annex.			
 Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 27 August, 2003 (27.08.03) 	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 09 September, 2003 (09.09.03)			
Name and mailing address of the ISA/	Authorized officer			
Japanese Patent Office				
Facsimile No.	Telephone No.			

Internal application No.
PCT/JP03/06922

Box I	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This int	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This Int	ernational Searching Authority found multiple inventions in this international application, as follows:
(See	e extra sheet)
1	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	·
4. ×	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1, 6, 13, 18, and 19
Remark	on Protest

Continuation of Box No.II of continuation of first sheet(1)

Claim 1-11 and 13-22 relate to a method and a device for recording data onto an optical recording medium and an optical recording medium where recording condition setting data is recorded which are characterized in that as the data recording speed increases, a pulse string pattern having a smaller number of pulses of recording power is used to modulate laser beam power and form a recording mark.

Claim 12 relates to a method for recording data onto an optical recording medium characterized in that as the ratio of the track pitch TP of the optical recording medium with respect to the laser beam spot diameter D becomes smaller, a pulse string having a greater number of pulses of recording power is used to modulate the laser beam power and form a recording mark.

Accordingly, claims 1-11, 13-22 and claim 12 do not satisfy the requirement of unity of invention.

The inventions of claims 1, 6, 13, 18, and 19 are known as are disclosed in JP 10-106008 A and claims 1, 6, 13, 18, and 19 cannot have a special technical feature. c intend to achieve another object by adding further technical limitations. Accordingly, claims 1, 6, 13, 18, 19, Claims 2, 14, claims 3 and 15, claims 4 an 16, claims 5 and 17, claim 7, claim 8, claim 9, claim 10, and claims 11, 20-22 do not satisfy the requirement of unity of invention.

Consequently, the present application includes the following 11 inventions:

- claims 1, 6, 13, 18, 19
- claims 2, 14
- claims 3, 15
- claims 4, 16
- claims 5, 17
- claim 7
- claim 8
- claim 9
- claim 10
- -claims 11, 20-22
- -claim 12

and does not stisfy the requirement of unity of invention.

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' G11B7/00-7/013, 7/24, 7/30

最小限資料以外の資料で調査を行った分野に含まれるもの

日本実用新案公報

1922-1996年

日本公開実用新案公報

1971-2003年

日本登録実用新案公報

1994-2003年

日本実用新案登録公報

1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連する	5と認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Х	JP 10-106008 A (セイコーエプソン株式会社) 1998.04.24,段落0042,第9図 (ファミリーなし)	1, 6, 13, 18, 19

│ │ C欄の続きにも文献が列挙されている。

| パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 27.08.03

国際調査報告の発送日

09.09. **03**

5 D

3046

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) **齊藤 健一**

電話番号 03-3581-1101 内線 3550

国際關金	国際出願番号 1/ JP03/06922
第1閥 請求の範囲の一部の調査ができないときの意見(第1~	ページの2の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際成しなかった。	
1. 間 請求の範囲は、この国際調査機 つまり、	関が調査をすることを要しない対象に係るものである。
2. 間	査をすることができる程度まで所定の要件を満たしてい
3. 間求の範囲は、従属請求の範囲 従って記載されていない。	であってPCT規則6. 4(a) の第2文及び第3文の規定に
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの	ひ3の続き)
 次に述べるようにこの国際出願に二以上の発明があるとこの[国際調査機関は認めた。
(特別ページ参照)	
1. 出願人が必要な追加調査手数料をすべて期間内に納付し の範囲について作成した。	したので、この国際調査報告は、すべての調査可能な請求
2. 〕 追加調査手数料を要求するまでもなく、すべての調査で 加調査手数料の納付を求めなかった。	可能な請求の範囲について調査することができたので、追
3.	こ納付しなかったので、この国際調査報告は、手数料の納
4. × 出願人が必要な追加調査手数料を期間内に納付しなかっされている発明に係る次の請求の範囲について作成して 請求の範囲1, 6, 13, 18及び19	ったので、この国際調査報告は、請求の範囲の最初に記載 た。
追加調査手数料の異議の申立てに関する注意	

請求の範囲1-11及び13-22は、データの記録速度が高いほど、記録パワーからなるパルスの数が少ないパルス列パターンを用いて、レーザビームのパワーを変調し、記録マークを形成することを特徴とする光記録媒体へのデータの記録方法、記録装置、記録条件設定用データが記録されている光記録媒体である。

請求の範囲12は、光記録媒体のトラックピッチTPとレーザビームのスポット径Dとの 比が小さいほど、記録パワーからなるパルスの数が多いパルス列を用いて、レーザビームの パワーを変調し、記録マークを形成することを特徴とする光記録媒体へのデータの記録方法 である。

したがって、請求の範囲1-11及び13-22、請求の範囲12には単一性が認められない。

請求の範囲1,6,13,18及び19に記載された発明は、JP 10-106008 Aに示されるように公然知られた発明であるから、請求の範囲1,6,13,18及び1 9は特別な技術的特徴とは認められず、請求の範囲2及び14、請求の範囲3及び15、請求の範囲4及び16、請求の範囲5及び17、請求の範囲7、請求の範囲8、請求の範囲9、請求の範囲10、請求の範囲11及び20-22はさらなる技術的限定を加えることによって別の課題を解決しようとしているから、請求の範囲1,6,13,18及び19、請求の範囲2及び14、請求の範囲3及び15、請求の範囲4及び16、請求の範囲5及び17、請求の範囲7、請求の範囲8、請求の範囲9、請求の範囲10、請求の範囲11及び20-22には単一性が認められない。

したがって、本願発明は

- ・請求の範囲1, 6, 13, 18及び19
- ・請求の範囲2及び14
- ・請求の範囲3及び15
- ・請求の範囲4及び16
- ・請求の範囲5及び17
- ・請求の範囲7
- ・請求の範囲8
- ・請求の範囲 9
- ・請求の範囲10
- ・請求の範囲11及び20-22
- ・請求の範囲12
- の11の発明からなるものであり単一性を満たすものではない。