Teoria da Computação

Resumo

Conteúdo

1	Teo	Teoria dos Autómatos 3							
	1.1	Autómatos Finitos Deterministas							
		1.1.1 Computação por um AFD							
	1.2	Operações e Expressões Regulares							
		1.2.1 Operações Regulares							
		1.2.2 Expressões Regulares							
	1.3	Autómatos Finitos Não Deterministas							
		1.3.1 Computação por um AFND							
		1.3.2 Equivalência entre autómatos 6							
		1.3.3 Autómatos Finitos Não Deterministas Generalizados 6							
	1.4	Lema do Bombeamento Para Linguagens Regulares							
		1.4.1 Enunciado							
	1.5	Gramáticas Livres de Contexto							
		1.5.1 Ambiguidade							
		1.5.2 Gramática Reduzida							
		1.5.3 Gramática Livre- ε							
		1.5.4 Produções Singulares							
		1.5.5 Forma Normal de Chomsky							
	1.6	Autómatos de Pilha							
		1.6.1 Função de transição num Autómato de Pilha 11							
		1.6.2 Configuração de um Autómato de Pilha							
		1.6.3 Computação por um Autómato de Pilha							
		1.6.4 Obter AP a Partir de GIC							
	1.7	Máquinas de Turing							
		1.7.1 Computação por uma Máquina de Turing							
		1.7.2 Configuração de uma Máquina de Turing							
		1.7.3 Linguagem de uma Máquina de Turing							
		1.7.4 Variantes da Máquina de Turing							
2	Decidibilidade 17								
	2.1	Correspondência							
		2.1.1 Contabilidade							
	2.2	Redução por Mapeamento							
		2.2.1 Resumo							
	2.3	Máquina de Turing Universal							
		2.3.1 Problemas Decidíveis							
		2.3.2 Problemas Indecidíveis							
	2.4	Teorema de Rice							

3	Con	Complexidade Temporal									
	3.1	Notaç	ão	20							
		3.1.1	O-grande	20							
		3.1.2	o-pequeno	20							
	3.2	Comp	lexidade e Modelo de Computação	20							
		3.2.1	Multi-Fita e Uni-Fita	20							
		3.2.2	Determinística e Não Determinística	21							
	3.3	Classe	s de Complexidade	21							
		3.3.1	Classe TIME	21							
		3.3.2	Classe \mathbb{P}	21							
		3.3.3	Classe NTIME	22							
		3.3.4	Classe NP	22							

Capítulo 1

Teoria dos Autómatos

1.1 Autómatos Finitos Deterministas

Um autómato finito determinista é um 5-tuplo $M=(Q,\Sigma,\delta,q_0,F)$, em que:

- ullet Q é um conjunto finito de estados
- Σ é o alfabeto (conjunto finito de símbolos)
- $\delta: Q \times \Sigma \to Q$ é a função de transição
- $q_0 \in Q$ é o estado inicial
- $F \subseteq Q$ é o conjunto dos estados de aceitação

Chama-se palavra sobre Σ a uma sequência finita de símbolos de Σ e linguagem a um conjunto de palavras formadas com símbolos de um alfabeto Σ . O conjunto de todas as palavras formadas sobre Σ é o fecho do alfabeto, Σ^* .

1.1.1 Computação por um AFD

Seja $M = (Q, \Sigma, \delta, q_0, F)$ um AFD e $w = w_0 w_1 ... w_n$ uma string de Σ^* .

Diz-se que M aceita w se, e somente se, existe uma sequência de estados $r_0,...,r_n,r_{n+1}\in Q$ tal que:

- $r_0 = q_0$ a computação inicia-se no estado inicial
- $\delta(r_i, w_i) = r_{i+1} \forall i \in \{0, ..., n\}$ a computação segue de estado para estado de acordo com a função de transição
- $r_{n+1} \in F$ termina num estado de aceitação

Linguagem Reconhecida por um AFD

A linguagem reconhecida por um AFD M define-se como sendo:

$$L(M) = \{ w \in \Sigma^* : M \text{ aceita } w \}$$

Uma linguagem diz-se regular se existe um AFD que a reconhece.

1.2 Operações e Expressões Regulares

1.2.1 Operações Regulares

Sejam A e B duas linguagens. Definem-se as seguintes operações regulares:

- União: $A \cup B = \{x | x \in A \lor x \in B\}$
- Concatenação: $A.B = \{x.y | x \in A \lor x \ y \in B\}$
- Estrela (Fecho de Kleene): $A^* = \{x_1.x_2...x_k | k \ge 0 \land x_i \in A, 1 \le i \le k\}$

Definição de Fecho

Diz-se que um conjunto é fechado sob uma operação n-ária se ao ser aplicada a qualquer n-uplo de elementos do conjunto se obtém um elemento do conjunto.

As linguagens regulares são fechadas para todas as operações regulares.

Figura 1.1: Fecho da União

Figura 1.2: Fecho da Concatenação

Figura 1.3: Fecho da Estrela

1.2.2 Expressões Regulares

Ré uma expressão regular sobre um alfabeto Σ se é:

- a, para algum $a \in \Sigma$
- ε
- φ
- $(R_1.R_2)$, onde R_1 e R_2 são expressões regulares
- $(R_1.R_2)$, onde R_1 e R_2 são expressões regulares

• $(R_i)^*$, onde R_i é uma expressão regular

Cada expressão regular R denota uma linguagem regular: a linguagem L(R).

As operações nas expressões regulares têm a seguinte ordem de prioridade:

- Estrela
- Concatenação
- União

Uma linguagem é regular se e só se alguma expressão regular a denota.

1.3 Autómatos Finitos Não Deterministas

Um autómato finito não determinista é um 5-tuplo $M=(Q,\Sigma,\delta,q_0,F),$ em que:

- ullet Q é um conjunto finito de estados
- Σ é o alfabeto (conjunto finito de símbolos)
- $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ é a função de transição, em que $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- $q_0 \in Q$ é o estado inicial
- $F\subseteq Q$ é o conjunto dos estados de aceitação

Os AFND diferem dos AFD na função de transição. Nos AFND esta permite ε como input e o resultado da sua aplicação é um conjunto de estados de Q, i.e. o conjunto das partes de Q.

1.3.1 Computação por um AFND

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um AFND e $s'=s'_1...s'_m$ uma string sobre Σ . M aceita s' se existe uma sequência de estados $a_0,a_1,...,a_n$ e s' pode ser escrita como $s=s_1s_2...s_n$ em que $s_i=s'_j$ ou $s_i=\varepsilon$ de tal modo que:

- a_0 é o estado inicial da máquina
- $a_{i+1} \in \delta(a_i, s_{i+1} \forall i \in \{0, ..., n-1\}$
- $a_n \in F$

Fecho- ε

Define-se por fecho épsilon de um estado q o conjunto de todos os estados atingíveis a partir de q por um caminho de zero ou mais transições épsilon. Representa-se por $E_{\varepsilon}(q)$. Se R é um conjunto de estados, define-se:

$$E_{\varepsilon}(R) = \bigcup_{q \in R} E_{\varepsilon}(q)$$

1.3.2 Equivalência entre autómatos

Dois autómatos dizem-se equivalentes se reconhecem a mesma linguagem. Cada AFND tem um AFD equivalente.

Equivalência entre AFND e AFD

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFND. É possível construir um AFD $M=(Q',\Sigma,\delta',q_0',F')$ tal que L(N)=L(M).

- $Q' = \mathcal{P}(Q)$
- $q'_0 = E_{\epsilon}(q_0)$, i.e. o conjunto dos estados atingíveis por caminhos vazios a partir do estado inicial.
- $\forall q' \in Q$ considere-se $R \subset Q : R = q'$. Para cada $a \in \Sigma$ definimos $\delta'(q', a) = \delta'(R, a) = \bigcup_{r \in R} E_{\varepsilon}(\delta(r, a)) = \{q \in Q : \exists r \in R, q \text{ atingível por transição } \varepsilon \text{ de } \delta(r, a)\}$
- $F' = \{R \in Q' : R \text{ contém algum estado de aceitação de } N\}$

1.3.3 Autómatos Finitos Não Deterministas Generalizados

Um autómato finito não determinista generalizado é um 5-tuplo $M=(Q,\Sigma,\delta,q_{start},q_{accept})$ onde:

- Q é um conjunto de estados
- Σ é o alfabeto de entrada
- $\delta: (Q \{q_{accept}\}) \times (Q \{q_{start}\}) \to R$ é a função de transição, em que R é a coleção de todas as expressões regulares definidas sobre Σ
- q_{start} é o estado inicial
- q_{accept} é o estado de aceitação

Um AFNG possui expressões regulares nas etiquetas das transições, por oposição aos símbolos isolados, podendo numa só transição consumir a palavra inteira do input. Num AFNG:

- O estado inicial tem transições para todos os outros estados, mas não recebe nenhuma transição a partir de outro estado, nem de si próprio.
- Só há um estado de aceitação, que recebe transições de todos os outros estados, mas não tem transições a sair.
- Com exceção do estado inicial e do estado de aceitação há uma transição de cada estado para todos os estados, incluindo o próprio.

Computação Por Um AFNG

Se um AFNG aceita uma palavra $w=w_1w_2...w_k$ sobre Σ então existe uma sequência de estados $q_0,q_1...q_k$, tal que:

- $q_0 = q_{start}$ é o estado inicial
- $q_k = q_{accept}$ é o estado de aceitação
- $\forall w_i, w_i \in L(R_i)$ onde $R_i = \delta(q_{i-1}, q_i)$, i.e. R_i é e expressão regular da transição de q_{i-1} para q_i .

Converter AFD/AFND em AFNG

- Adicionar um novo estado inicial q_{start} com uma transição- ε para o estado inicial original.
- Adicionar um único estado de aceitação q_{accept} e transições- ε de todos os estado de aceitação atuais para q_{accept}
- Se existem transições com múltiplas etiquetas ou múltiplas transições entre dois estados, substituir cada uma por uma única transição etiquetada com a união das etiquetas originais.
- Adicionar transições etiquetadas com ϕ entre pares de estados para os quais não havia transições, exceto para q_{start} e q_{accept} .

Converter AFNG em Expressão Regular

Seja G um AFNG e k o seu número de estados. Se k=2 então a ER é a etiqueta de q_{start} para q_{accept} . Caso contrário executa-se o seguinte algoritmo até k=2:

- Seleciona-se um estado q_{rip} , diferente de q_{start} e q_{accept}
- Determina-se todos os pares (q_i,q_j) para os quais há um caminho $q_i \to q_{rip} \to q_j$
- Remove-se q_{rip}
- Adicionam-se as transições $q_i \to q_j$, etiquetadas de acordo com o seguinte esquema:

Figura 1.4: Remoção de estados em AFNG

1.4 Lema do Bombeamento Para Linguagens Regulares

O lema do bombeamento para linguagens regulares é usado para demonstrar que uma linguagem não é regular. Apesar de necessário, não é condição suficiente para mostrar que uma linguagem é regular, i.e. todas as linguagens regulares verificam o lema do bombeamento, mas algumas linguagens não regulares também.

1.4.1 Enunciado

Seja L uma linguagem regular infinita. Existe $p \geq 1$, tal que cada palavra $w \in L, |w| \geq p$ pode ser decomposta em w = xyz tal que:

- $|y| \ge 1$
- $|xy| \le p$
- $\forall i \geq 0, xy^i z \in L$

1.5 Gramáticas Livres de Contexto

Uma gramática é um 4-tuplo $G = (V, \Sigma, R, S)$ onde:

- V é o conjunto de variáveis não terminais
- Σ é o alfabeto de símbolos terminais ($\Sigma \cap V = \emptyset$)
- $R \subseteq (V \times (V \cup \Sigma)^*)$ é o conjunto de regras de produção
- $S \in V$ é o símbolo inicial

Uma gramática diz-se livre (ou independente) do contexto quando todas as suas produções são da forma:

$$A \to \beta$$
 onde $A \in V \land \beta \in (V \cup \Sigma)^*$

Se todas as produções de uma GIC forem da forma:

$$A \to \alpha X$$

$$A \to X\alpha$$

$$A \to \alpha$$
 onde $A, X \in V, \alpha \in \Sigma^*$

Então só tem produções lineares e gera uma linguagem regular.

1.5.1 Ambiguidade

Uma palavra w deriva-se ambiguamente numa GIC G se existirem duas ou mais derivações esquerdas de w em G. Também existem duas árvores de derivações diferentes e duas derivações direitas.

Uma gramática diz-se ambígua se derivar alguma string \boldsymbol{w} ambiguamente.

1.5.2 Gramática Reduzida

Uma GIC diz-se reduzida se não tem símbolos inúteis, isto é, que são improdutivos ou inacessíveis. Para obter a GIC reduzida eliminam-se as variáveis improdutivas e de seguida os símbolos inacessíveis.

Marcar Variáveis Produtivas

Para marcar as variáveis produtivas usa-se o algoritmo PROD:

- Marcar a variável $A \in V$ que tenha alguma produção $A \to x$, com $x \in \Sigma^*$
- Marcar todo o símbolo $A \in V$ que tenha alguma produção $A \to X_1 X_2 ... X_k$ onde X_i são variáveis marcadas até não ser possível marcar mais nenhuma variável.

Marcar Símbolos Acessíveis

Para marcar os símbolos acessíveis usa-se o algoritmo ACESS:

- Marcar o símbolo inicial S
- Marcar todo o símbolo X (terminal ou variável) que ocorra no lado direito de alguma produção onde o membro esquerdo esteja já marcado, até não ser possível marcar mais nenhum símbolo.

1.5.3 Gramática Livre- ε

Uma produção- ε é da forma:

$$A \to \varepsilon, A \in V$$

Um símbolo $A \in V$ diz-se nulável se pode derivar em ε .

Uma GIC G diz-se livre- ε se não tem produções ε com exceção de $S \to \varepsilon$ e S não ocorre no membro direito de outras produções.

Marcar Símbolos Nuláveis

Para marcar os símbolos nuláveis usa-se o algoritmo NUL:

- Marcar todo o símbolo $A \in V$ que tenha alguma produção $A \to \varepsilon$
- Marcar todo o símbolo $A \in V$ que tenha alguma produção $A \to X_1 X_2 ... X_k$ onde X_i são variáveis já marcadas, até não ser possível marcar mais nenhum símbolo.

Converter em Gramática Livre- ε

Dada uma GIC $G = (V, \Sigma, R, S)$ existe uma GIC livre- ε equivalente a G:

- Determinar os símbolos nuláveis de G
- Para cada produção $A \to X_1 X_2 ... X_k$:

- Para cada X_i nulável introduzimos uma produção em que concretizamos X_i em ε
- Para cada combinação de vários X_i nuláveis na mesma produção, introduzimos uma produção em que concretizamos esses X_i em ε .
- Eliminamos todas as produções ε
- Se S é nulável, introduzimos S_0 com as produções $S_0 \to S$ e $S_0 \to \varepsilon$

1.5.4 Produções Singulares

Uma produção diz-se singular se for da forma $A \to B$, com $A, B \in V$. Dada uma gramática livre- ε é possível encontrar e eliminar as produções singulares.

Algoritmo SING-A

O algoritmo SING-A permite marcar todos os símbolos atingíveis por produções singulares a partir de A, numa gramática livre- ε . Executa-se SING-A para cada $A \in V$:

- Marcar o símbolo A
- Marcar cada $X \in V$ que ocorra em alguma produção singular onde o membro esquerdo esteja já marcado, até que não seja possível marcar mais variáveis.

Converter em GIC sem Produções Singulares

Para obter uma GIC livre- ε sem produções singulares:

- $\forall A \in V$ determinar os símbolos deriváveis por produções singulares a partir de A, através de SING-A
- $\forall X \in \text{SING-}A, X \in V$ introduzir produções a partir de A, com os membros direitos não singulares que saiam de X
- Cortar todas as produções singulares

1.5.5 Forma Normal de Chomsky

Uma GIC está na forma normal de Chomsky (FNC) see todas as suas produções estão numa das formas:

- $A \rightarrow BC, A, B, C \in V$
- $A \rightarrow a, A \in V, a \in \Sigma$
- $S \to \varepsilon, S$ é o axioma e S não ocorre no membro direito de outras produções

Conversão para FNC

Dada uma GIC reduzida, livre- ε e sem produções singulares:

• Substituem-se regras onde o membro direito tem mais que 2 símbolos:

$$A \to u_1 u_2 ... u_k, k \ge 3, u_i$$
 é um terminal, substitui-se por:

$$A \to u_1 A_1; ...; A_{k-1} \to u_{k-1} u_k$$
 onde A_i são novas variáveis

- Eliminam-se regras onde o membro direito tem terminais e variáveis. Para cada u_i terminal no membro direito de uma produção com comprimento 2:
 - Juntar uma produção $U_i \rightarrow u_i, U_i$ nova variável
 - Substituir u_i por U_i nos membros direitos de produções que incluam terminais e variáveis

1.6 Autómatos de Pilha

Um autómato de pilha é um 6-tuplo $(Q, \Sigma, \Gamma, \delta, q_0, F)$ onde:

- Q é um conjunto finito de estados
- Σ é o alfabeto de entrada
- Γ é o alfabeto da pilha
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$ é a função de transição
- $q_0 \in Q$ é o estado inicial
- $F \subset Q$ é o conjunto de estados de aceitação

Geralmente, o símbolo \$ é usado para denotar o fundo da pilha.

1.6.1 Função de transição num Autómato de Pilha

 $\delta(q,a,\alpha)=\{(q',u),...\}$ é a função de transição não determinista, interpretada da seguinte forma:

Estando no estado q, por leitura do símbolo $a\in \Sigma_\varepsilon$ e estando a ver $\alpha\in \Gamma_\varepsilon$ no topo da pilha.

O AP transita para uma configuração onde o estado é q^\prime e o topo da pilha foi substituído pela palavra u:

- Se $u = \varepsilon$ fez pop do topo da pilha
- Se $u = \alpha$ a pilha ficou igual
- Se $u = \beta \alpha$ fez push de β
- Caso contrário, α foi substituído por u

Figura 1.5: Exemplo de autómato que aceita a linguagem $\{0^n1^n|n\geq 0\}$. A etiqueta num arco $a,b\to c$ significa ler a na fita, ver b no topo da pilha, substituir b por c

1.6.2 Configuração de um Autómato de Pilha

Um AP está numa configuração (q, w, u) se está no estado q, w é o conteúdo por consumir na fita e u é o conteúdo da pilha.

 $(q, aw, \alpha v) \vdash (q', w, \beta v)$ por leitura de a a partir de q, mudou de configuração para o estado q' e substituiu α por β no topo da pilha.

⊢* significa zero ou mais mudanças de configuração.

1.6.3 Computação por um Autómato de Pilha

Um AP $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ aceita um input w se w pode ser escrito como $w_1w_2...w_m,w_i\in\Sigma_\varepsilon$ e existe uma sequência de estados $r_0,r_1,...,r_m\in Q$ e uma sequência de palavras em Γ^* $s_0,s_1,...,s_m$ de forma a:

- $r_0 = q_0$ e $s_0 =$ ", M inicia no estado q_0 com a pilha vazia
- $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a), i = 0, ..., m-1, s_i = at, s_{i+1} = bt : a, b \in \Gamma_{\varepsilon}$ e $t \in \Gamma^*$, existe uma transição de r_i para r_{i+1} por leitura de w_{i+1} quando a está no topo da pilha, que é substituído por b
- $r_m \in F$, um estado de aceitação é atingido quando o input foi consumido

Isto é, w é aceite se $(q_0, w, \varepsilon) \vdash^* (q_f, \varepsilon, X), q_f \in F$. Diz-se que os autómatos de pilha funcionam pelo critério dos estados de aceitação, o conteúdo da pilha é irrelevante.

Linguagem de um Autómato de Pilha

A linguagem de um AP $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ é:

$$L(M) = \{w \in \Sigma^* : (q_0, w, \varepsilon) \vdash^* (q_f, \varepsilon, X), q_f \in F$$

Uma linguagem é independente do contexto se e só se existe um autómato de pilha que a reconhece:

Figura 1.6: Diagrama de Venn das linguagens regulares e livres de contexto

Se uma linguagem é independente do contexto então existe algum autómato de pilha que a reconhece.

1.6.4 Obter AP a Partir de GIC

- Introduzir estados q_{start} , q_{loop} e q_{accept}
- Introduzir transições:
 - $-\ q_{start}$ para q_{loop} com empilhamento de S\$
 - q_{loop} para q_{accept} que limpa $\$ depois do input estar consumido
 - q_{loop} para q_{loop} :
 - * Por cada terminal a consumir a na fita a fazer $pop\ a$ na pilha
 - $\ast\,$ Por cada variável A empilhar o lado direito das produções de A

Figura 1.7: Grafo de execução do algoritmo

1.7 Máquinas de Turing

Uma máquina de Turing é um 7-tuplo $MT=(Q,\Sigma,\Gamma,\delta,q_0,q_{aceita},q_{rejeita})$ onde:

- Q é um conjunto finito de estados
- Σ é o alfabeto de entrada (não contém o símbolo branco)

- Γ é o alfabeto de fita $\Sigma \subset \Gamma$ (inclui branco)
- $\delta: Q \times \Sigma \to Q \times \Gamma \times \{L,R\}$ é a função de transição
- q_0 é o estado inicial
- q_{aceita} é o estado de aceitação
- $q_{rejeita}$ é o estado de rejeição

1.7.1 Computação por uma Máquina de Turing

A computação inicia com a cabeça o mais à esquerda na fita, posicionada sobre o primeiro símbolo do input. As células da fita à direita do input contêm branco.

Se em algum momento a máquina tenta mover a cabeça para a esquerda do início, a cabeça permanece na mesma posição. A computação termina quando a máquina entra num dos estados de aceitação ou rejeição. Se nenhum desses casos ocorre, a computação continua para sempre.

Por contraste aos autómatos finitos, uma MT tanto pode ler a partir da fita como escrever sobre ela, a cabeça pode mover-se tanto para a esquerda quanto para a direita. A máquina para quando entra num estado de aceitação ou rejeição, independentemente do conteúdo da fita, indeterminadamente.

1.7.2 Configuração de uma Máquina de Turing

Uma configuração de uma MT mostra o conteúdo da fita, o estado em que a máquina está e a posição onde está a cabeça de leitura/escrita.

- A configuração inicial é $q_0 w$
- Uma configuração de aceitação tem o estado q_{accept} e de rejeição tem o estado q_{reject}

1.7.3 Linguagem de uma Máquina de Turing

A linguagem de uma máquina de Turing M, L(M) é o conjunto das palavras para as quais M para numa configuração de aceitação.

Linguagem Turing-Reconhecível

Uma linguagem L é Turing-reconhecível se existe uma máquina de Turing M tal que para toda a palavra x pertence a L, M e aceita x.

Linguagem Turing-Decidível

Máquinas que nunca entram em loop são decisores.

Uma linguagem L é Turing-decidível (ou decidível), se alguma máquina de Turing M a decide: $\forall x \in L, M$ para e aceita $x, \forall x \in \overline{L}, M$ para e rejeita x.

Uma linguagem Turing-decidível é sempre reconhecível, mas o oposto nem sempre se verifica.

Duas máquinas de Turing dizem-se equivalentes se reconhecem a mesma linguagem.

Figura 1.8: Diagrama de Venn das linguagens formais, incluindo as linguagens Turing-reconhecíveis

1.7.4 Variantes da Máquina de Turing

Existem diversas variantes da máquina de Turing, todas com o mesmo poder computacional.

Variante Stay

A função de transição admite "stay".

Variante Multi-fita

A função de transição é do tipo:

$$\delta: Q \times \Gamma^k \to Q \times Q \times \Gamma^k \times \{L, R, S\}^k$$

Onde k é o número de fitas.

Figura 1.9: Ideia da prova de equivalência de MT multi-fita com MT tradicional

Variante Não Determinista

• A função de transição devolve subconjuntos de ternos:

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

- A computação é uma árvore de configurações onde a raiz é a configuração inicial
- $\bullet\,$ Uma palavra é aceite se alguma folha é uma configuração de aceitação

Figura 1.10: Ideia da prova de equivalência de MT não determinista com MT tradicional

Capítulo 2

Decidibilidade

2.1 Correspondência

Considerem-se dois conjuntos A e B e uma função $f:A\to B$:

- f é uma correspondência um-para-um se é injetiva
- $f \in onto$ (sobrejetiva) se $\forall b \in B, \exists a \in A : f(a) = b$
- Ae Bsão do mesmo tamanho se existe $f:A\to B$ (correspondência) que é um-para-um e onto
- Numa correspondência todo o elemento de A mapeia num único elemento de B e cada elemento de B tem um elemento de A que mapeia nele.

2.1.1 Contabilidade

Um conjunto diz-se contável sse é finito ou do tamanho de \mathbb{N} .

Teorema

Algumas linguagens não são Turing-reconhecíveis.

- O conjunto de todas as strings é contável
- É possível mapear o conjunto das máquinas de Turing no conjunto das strings binárias, codificando cada máquina M em < M >.
- O conjunto de todas as strings binárias infinitas não é contável
- É possível mapear o conjunto de todas as linguagens no conjunto de todas as strings binárias infinitas, logo o conjunto de todas as linguagens não é contável.

2.2 Redução por Mapeamento

Uma linguagem A é reduzível por mapeamento a $B, A \leq_m B$ se existe uma função computável $f: \Sigma^* \to \Sigma^*$ tal que $\forall w \in A \Leftrightarrow f(w) \in B$. A f chama-se redução de A para B.

2.2.1 Resumo

Seja $A \leq_m B$ uma redução por mapeamento computável (para as classes de complexidade assume-se ser polinomial):

A	\leq_m	В
Decidível	(Decidível
Indecidível	\Rightarrow	Indecidível
Turing-Reconhecível	(Turing-Reconhecível
Não Turing-Reconhecível	\Rightarrow	Não Turing-Reconhecível
\mathbb{P}	(\mathbb{P}
NP-completo	\Rightarrow	\mathbb{NP} -completo, sse $\in \mathbb{NP}$
NP	(NP

2.3 Máquina de Turing Universal

Existe uma máquina de Turing U que aceita como input uma outra máquina de Turing M codificada como $M \to < M >$ na fita de U. U pode simular o comportamento de qualquer máquina de Turing < M >, pelo que é apelidada de máquina universal.

2.3.1 Problemas Decidíveis

Problemas de aceitação:

- \bullet A_{DFA}
- A_{NFA}
- A_{REX}
- A_{CFG}

Problemas de vacuidade:

- E_{DFA}
- E_{CFG}

Problema de equivalência:

• EQ_{DFA}

2.3.2 Problemas Indecidíveis

Problema de aceitação:

• A_{TM}

Problema de vacuidade:

• E_{TM}

Problemas de equivalência:

- EQ_{CFG}
- EQ_{TM}

Também o problema da paragem é indecidível:

$$HALT_{TM} = \{ \langle M, w \rangle | M$$
é uma MT e M pára sobre o input $w \}$

E o problema da linguagem regular:

$$Regular_{TM} = \{ \langle M \rangle | M$$
é uma MT e $L(M)$ é uma linguagem regular $\}$

Resumo

Problema Decidível		Turing-Reconhecível	Co-Turing-Reconhecível	
A_{TM}	Não	Sim	Não	
EQ_{TM}	Não	Não	Não	
$\overline{A_{TM}}$	Não	Não	Sim	
$\overline{EQ_{TM}}$	Não	Não	Não	

2.4 Teorema de Rice

O problema de determinar se a linguagem de uma dada máquina de Turing tem uma propriedade P, não trivial, é indecidível. Seja P a linguagem de todas as descrições de máquinas de Turing, onde P:

- É não trivial, i.e., contém algumas mas não todas as descrições de MT.
- P representa uma propriedade da linguagem dessas MTs:
 - Sempre que L(M1)=L(M2), tem-se $\langle M1\rangle\in P$ sse $\langle M2\rangle\in P,\ M1$ e M2 quaisquer MTs.
- \bullet P é uma linguagem indecidível

Capítulo 3

Complexidade Temporal

Seja M uma máquina de Turing determinística que pára sobre todos os inputs. A complexidade temporal de M é uma função $f: \mathbb{N} \to \mathbb{N}$, onde f(n) é o número máximo de passos que M usa sobre qualquer input de tamanho n.

3.1 Notação

Sejam $f, g: \mathbb{N} \to \mathbb{R}^+$ duas funções.

3.1.1 O-grande

Diz-se que f(n) = O(g(n)) se $\exists c, n_0 : \forall n \geq n_0, f(n) \leq cg(n)$. g(n) é um limite superior assintótico para f(n).

3.1.2 o-pequeno

Diz-se que f(n) = o(g(n)) se $\exists c, n_0 : \forall n \geq n_0, f(n) < cg(n)$. f(n) é assintoticamente menor que g(n).

3.2 Complexidade e Modelo de Computação

A complexidade temporal de alguns problemas depende do modelo de computação utilizado.

3.2.1 Multi-Fita e Uni-Fita

Seja t(n) uma função, onde $t(n) \ge n$. Toda a MT multi-fita de tempo t(n) tem uma MT uni-fita equivalente que corre em tempo $O(t^2(n))$.

A ideia da prova consiste em simular a MT multi-fita na uni-fita. Como simular cada passo da multi-fita demora, no máximo O(t(n)), o tempo total usado é $O(t^2(n))$.

3.2.2 Determinística e Não Determinística

Seja M um decisor não determinístico. O tempo de execução de M é $f: \mathbb{N} \to \mathbb{N}$, onde f(n) é p número máximo de passos que M usa em qualquer ramo da sua computação.

Seja t(n) uma função, onde $t(n) \geq n$. Toda a MT não determinística unifita de tempo t(n) tem uma MT determinística unifita equivalente de tempo $2^{O(t(n))}$.

A ideia da prova consiste em criar uma MT determinística que simula a árvore de computação da MT não determinística. Num input de tamanho n, cada ramo tem, no máximo, comprimento t(n) e cada nó tem b filhos, onde b é o número máximo de escolhas da função de transição. O número máximo de folhas é $b^{t(n)}$. Como a simulação visita todos os nós de uma dada profundidade antes de partir para a próxima, o tempo para atravessar da raiz até um nó é O(t(n)), pelo que o tempo de execução é $O(t(n)b^{t(n)}) = 2^{O(t(n))}$.

3.3 Classes de Complexidade

3.3.1 Classe TIME

Seja $t: \mathbb{N} \to \mathbb{N}$ uma função. A classe de complexidade temporal TIME é:

 $TIME(t(n)) = \{L | Lé \text{ uma linguagem decidida por uma } MT \text{ de tempo } O(t(n))\}$

3.3.2 Classe \mathbb{P}

 $\mathbb P$ é a classe das linguagens que são decidíveis em tempo polinomial numa MT determinística uni-fita:

$$\mathbb{P} = \bigcup_k TIME(n^k)$$

 $\mathbb P$ corresponde à classe dos problemas que podem ser realisticamente resolúveis num computador.

PATH

O problema PATH define-se da seguinte forma:

 $PATH = \{ \langle G, s, t \rangle \mid G \text{ \'e um grafo direcionado que tem um caminho de } s \text{ para } t \}$

Tem-se que PATH $\in \mathbb{P}$. A seguinte MT é um decisor para PATH que corre em tempo polinomial:

- Marcar nó s
- Repetir até que mais nenhum nó seja marcado:
 - Verificar todos os arcos de G. Se (a, b) é um arco onde a está marcado e b não está marcado, marcar b.
 - Setfoi marcado, aceitar. Senão, rejeitar.

Se G tem n nós existem n^n caminhos possíveis de s para t. No terceiro passo marca-se, no mínimo, um nó a cada iteração e o segundo passo repete-se, no máximo, n-1 vezes. A MT corre em $O(n^2)$.

3.3.3 Classe NTIME

 $\operatorname{NTIME}(\operatorname{t}(\operatorname{n}))$ é a classe de complexidade temporal não determinística:

 $NTIME(t(n)) = \{L | L \text{ \'e uma linguagem decid\'evel por uma } MT \text{ n\~ao determin\'istica de tempo } O(t(n))\}$

3.3.4 Classe \mathbb{NP}

Uma linguagem está em \mathbb{NP} sse é decidível por alguma MT não determinística de tempo polinomial:

$$NP = \bigcup_{k} NTIME(n^k)$$

É fácil verificar que $P \subseteq \mathbb{NP}$. Esta classe pode ainda ser definida como a classe das linguagens que possuem verificadores em tempo polinomial.

Verificador

Um verificador para uma linguagem A é um algoritmo V, onde:

$$A = \{w | V \text{ aceita } < w, c > \text{ para alguma } string c\}$$

O tempo de execução do verificador é medido exclusivamente em termos do comprimento de w. Um verificador usa ainda um certificado, c, para verificar que $w \in A$. Para verificadores polinomiais, c tem comprimento polinomial no comprimento de w.

CLIQUE

O problema CLIQUE define-se da seguinte forma:

$$CLIQUE = \{ \langle G, k \rangle \mid G \text{ \'e um grafo não direcionado com uma } k - clique \}$$

Em que uma k-clique é um sub-grafo onde todos os pares de nós estão ligados por uma aresta (sub-grafo completo). Tem-se que CLIQUE $\in \mathbb{NP}$. O seguinte verificador para CLIQUE corre em tempo polinomial, sobre o input << G, k>, c>:

- Testar se c é um sub-grafo com k nós em G
- Testar se G contém todas as arestas que ligam os nós em c
- Se ambos os testes passam, aceitar. Senão, rejeitar.

$\mathbb{NP}\text{-}\mathbf{completude}$

Uma linguagem B diz-se \mathbb{NP} -completa se:

- $B \in \mathbb{NP}$
- $\, \forall A \in \mathbb{NP}, \, A$ é redutível em tempo polinomial a B

Se $B\in\mathcal{P}$ e Bé N
P-completa, então P=NP.

A linguagem:

 $SAT = \{\varphi|\ \varphi$ é uma expressão booleana satisfazível\}

É $\mathbb{NP}\text{-}\mathrm{completa}.$ Algumas outras linguagens $\mathbb{NP}\text{-}\mathrm{completas}$ são:

- 3*SAT*
- \bullet CLIQUE
- \bullet HAMPATH
- UHAMPATH
- VERTEX COVER