Writing Portfolio 3

David Jackson

Math 3120

Southern Utah University

Fall 2024

Proof Count: 17

Theorem 19.6. If $n \in N$, then

$$1 \cdot 3 + 2 \cdot 4 + \ldots + n(n+2) = \frac{n(n+1)(2n+7)}{6}$$

Proof. Consider n=1 then for the LHS 1(1+2)=3, for the RHS $\frac{1(1+1)(2(1)+7)}{6}=\frac{18}{6}=3$. So it holds for the base case.

Assume it hold for some n = k, that is $1 \cdot 3 + 2 \cdot 4 + \ldots + k(k+2) = \frac{k(k+1)(2k+7)}{6}$. Then for n = k+1 we have $1 \cdot 3 + 2 \cdot 4 + \ldots + k(k+2) + (k+1)(k+3) = \frac{k(k+1)(2k+7)}{6} + (k+1)(k+3)$ for the LHS. We also have $\frac{(k+)(k+3)(2(k+1)+7)}{6}$, for the RHS. Factor out (k+1) from both terms on the left hand side: left-hand side:

LHS =
$$(k+1) \cdot \frac{k(2k+7) + 6(k+3)}{6}$$

= $(k+1) \cdot \frac{2k^2 + 13k + 18}{6}$
= $\frac{(k+1)(2k^2 + 13k + 18)}{6}$

Now for the RHS:

RHS =
$$\frac{(k+1)(k+2)(2k+9)}{6}$$
$$= \frac{(k+1)(2k^2+13k+18)}{6}$$

Thus, the formula holds for n = k + 1 so By the principle of mathematical induction, the formula is true for all $n \in N$

Theorem 20.4. If $n \in N$ and f_n is the nth of the Fibonacci Sequence, then

$$\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n-k}{k} = f_{n+1}$$

The above formula shows that the indicated diagonals of Pascal's triangle sum to Fibonacci numbers.

Proof. When n is even, then n=2m for $m\in\mathbb{Z}$. For this case: $\lfloor \frac{n}{2}\rfloor = m$ and $\lfloor \frac{n+1}{2}\rfloor = m$ Then the formula becomes

$$\sum_{k=0}^{m} = \binom{2m-k}{k}$$

Then for m = 0 and m = 1

$$\sum_{k=0}^{0} = \binom{2(0) - k}{k} = \binom{0}{0} = 1$$

$$\sum_{k=0}^{1} = \binom{2(1) - k}{k} = \binom{2}{0} + \binom{1}{1} = 1 + 1 = 2$$

The Fibonacci number $f_{2(0)+1} = f_1 = 1$ and $f_{2(1)+1} = f_2 = 2$ so the base case's hold. Assume that it holds for some m = i, That is

$$\sum_{k=0}^{i} = \binom{2(i)-k}{k} = f_{2(i)+1} = f_{2i+1}$$

Then consider m = i + 1

$$\sum_{k=0}^{i+1} = \binom{2(i+1)-k}{k} = f_{2(i+1)+1} = f_{2i+3}$$

Rewriting the sum as

$$\sum_{k=0}^{i+1} = \binom{2(i+1)-k}{k} = \sum_{k=0}^{i} = \binom{2(i+1)-k}{k} + \binom{2(i+1)-i+1}{i+1} = \sum_{k=0}^{i} = \binom{2(i+1)-k}{k} + \binom{i+1}{i+1} = \sum_{k=0}^{i} = \binom{2(i+1)-k}{k} + \binom{2(i+1)-k}{k$$

$$= {2(i+1)-k \choose k} + 1 = f_{2(i)+1} + f_{2(i+1)+1} = f_{2i+1} + f_{2i+3} = f_{2i+4}$$

Thus by the principle of mathematical induction and our assumption, it is shown that the formula holds for all $n \in \mathbb{N}$

Case 2: When n is odd, then n=2m+1 for $m\in\mathbb{Z}$, For this case: $\lfloor\frac{n}{2}\rfloor=m$ and $\lfloor\frac{n+1}{2}\rfloor=m+1$ Then the formula becomes

$$\sum_{k=0}^{m} = \binom{(2m+1)-k}{k} = f_{2m+2}$$

When m=0, we have $n=2\cdot 0+1=1$ $\sum_{k=0}^{0}\binom{(1-k)}{k}=1$. So it holds for the base case.

Assume it hold for some m = j, then consider m = j + 1

$$\sum_{k=0}^{j+1} \binom{(2(j+1)+1)-k}{k} = f_{2(j+1)+2},$$

Rewrite this sum by separating the last term

$$\sum_{k=0}^{j+1} \binom{(2j+3)-k}{k} = \sum_{k=0}^{j} \binom{(2j+3)-k}{k} + \binom{(2j+3)-(j+1)}{j+1} = f_{2j+3} + f_{2j+2} = f_{2j+4}.$$
(From the inductive step)

Thus, the result holds for when n is odd by mathematical induction.

Theorem 21.8. Suppose $a, b \in R$. If a is rational and ab is irrational, then b is irrational.

Proof. Suppose that a is rational, ab is irrational, and b is rational. If a is rational it can be expressed as $\frac{c}{d}$ where $d \neq 0$ and b can also be expressed as $\frac{g}{h}$ where $h \neq 0$. Then $ab = \frac{cg}{dh}$, since c is rational and g then cg is rational. Since d is rational and h is rational then dh is rational. This implies that $\frac{cg}{dh}$ is rational, this is a contradiction from the assumption that ab is irrational. Therefore, our assumption that b is rational must be false. Hence, b must be irrational.

Theorem 20.6. For all integers $m, n \geq 1$, it holds $f_n \mid f_{nm}$.

Proof. Assume there exists a smallest pair of integers n and m which $m, n \ge 1$ for which $f_n \nmid f_{nm}$. Recall that Fibonacci numbers satisfy the recurrence relation: $f_{n+2} = f_{n+1} + f_n$.

Consider the first three Fibonacci numbers $\{1,1,2\}$ then $1 \cdot 1 \mid 1$ and $2 \cdot 1 \mid 1$ so it works for the base case.

Let f_{nm} be a Fibonacci number and assume $f_n \nmid f_{nm}$ but $f_{nm} = gcd(f_n, f_m) = f_{gcd(nm)}$ by the GCD identity for Fibonacci numbers. Then the $gcd(f_n)$ is also the $gcd(f_{nm})$ which implies that $f_n \mid f_{nm}$. Thus there is no counterexample to $f_n \mid f_{nm}$.

Theorem 23.2. Let A be a set and let R be an irreflexive relation on A. Then any subset R is also irreflexive.

Proof. Let $S \subseteq R$ then $\forall a \in A, (a, a) \notin R$. Let $(r, r) \notin S$ then $(r, r) \notin R$ since $\forall x \in S, x$ must also be in R. Therefore, the subset S inherits the irreflexive property from R

Theorem 24.14. Let A be a set and let R be a relation on A. Then R is reflexive if and only if R is irreflexive.

Proof. This is true by the definition of reflexivity, $\forall a \in A, (a, a) \in R$ then for irreflexivity $\forall a \in A, (a, a) \notin R$. This implies that R is irreflexivity because all elements that are in R are reflexive, so elements that are in R must be irreflexive.

Theorem 25.1. Let (X, \leq) be a poset such that for every $x, y \in X$ either $x \leq y$ or $y \leq x$. Then is X said to be a totally ordered set. Likewise, we say \leq is total order (or linear order).

- (a) The poset (N, \leq) is totally ordered.
- (b) The poset (N, |) is not totally ordered.

Proof. (a) For any two natural numbers a and b, either $a \le b$ or $b \le a$. Thus the relation is total order. (b) Consider this counter-example, if you take the numbers 2 and 3 from \mathbb{N} , neither 2 divides 3 nor 3 divides 2. Since there exist elements in which neither holds true, the relation is not a total order. \square

Theorem 26.5. Suppose R is a reflexive and symmetric relation on a finite set A. Define a relation S on A by declaring xSy if and only if for some $n \in N$ there are elements $x_1, x_2, \ldots, x_n \in A$ satisfying $xRx_1, x_1Rx_2, x_2Rx_3, x_3Rx_4, \ldots, x_{n-1}Rx_n$, and x_nRy . Then S is an equivalence relation and $R \subseteq S$. In fact, S is the unique smallest equivalence relation on A containing R.

Proof. Since R is reflexive, $\forall x, (x, x) \in R$ so xRx. Hence, xSx is true, Thus S is reflexive.

Since R is symmetric, if xSy then there exists a list $x = x_1, x_2, \dots, x_n = y$. By symmetry of R, we can reverse the order of this list to obtain ySx, proving that S is symmetric.

If xSy and ySz, there exist list $x=x_1,x_2,\ldots,x_n=y$ and $y=y_1,y_2,\ldots,y_m=z$ Combining these list results in a list that will connect x and z, showing xSz, Thus S is transitivity.

Suppose there is another equivalence relation T containing R. Since S is the set of all pairs related by lists in R, and any equivalence relation containing R must also relate all elements connected by these lists, it follows that $S \subseteq T$.

Thus S is the unique smallest equivalence relation containing R.

Theorem 27.6. The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = 2x + \sin(x)$ has a unique x-intercept.

Proof. For this f to have one unique x-intercept f must be continuous on \mathbb{R} . f must also have a constant derivative where is it positive or negative everywhere, that is the derivative is never zero.

Let $\epsilon > 0$ be given and choose $\delta = \max\{1, \frac{\epsilon - 2}{2}\}$, if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$

$$\begin{split} |2x+\sin(x)-2y-\sin(y)| &= |2(x-y)+(\sin(x)-\sin(y))|\\ |2(x-y)|+|\sin(x)-\sin(y) &\leq |2(x-y)|+|\sin(x)-\sin(y)| \quad \text{(by the triangle inequality)}\\ &= |\sin(x)-\sin(y)|+2|x-y|\\ &\leq |\sin(x)-\sin(y)|+2\delta\\ &\leq 2+2\cdot\frac{\epsilon-2}{2} \quad \text{(Since max of } |\sin(x)-\sin(y)|=2\text{)}\\ &= \epsilon \end{split}$$

Thus f(x) is continuous on \mathbb{R} lemma

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

note that $\sin x \le x \le \tan x$

$$\sin x \le x \le \tan x = \frac{\sin x}{\sin x} \le \frac{x}{\sin x} \le \frac{\sin x}{\cos x} \cdot \frac{1}{\sin x}$$

$$1 \le \frac{x}{\sin x} \le \frac{1}{\cos x}$$

$$1 \le \frac{\sin x}{x} \le \cos x$$

$$\lim_{x \to 0} 1 \le \lim_{x \to 0} \frac{\sin x}{x} \le \lim_{x \to 0} \cos x$$

$$1 \le \lim_{x \to 0} \frac{\sin x}{x} \le 1 \quad \text{(by squeeze theorem)}$$

Thus $\lim_{x\to 0}\frac{\sin x}{x}=1$ Lemma Show that $\lim_{x\to 0}\frac{1-\cos x}{x}=0$ by using trigonometric identities.

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x(1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x(1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)} \quad \text{(by Pythagorean identity)}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{1 + \cos x} = 0.$$
(Since the limit of $\frac{\sin x}{x}$ is equal to 0 from previous Limma so the whole limit is 0)

Let
$$f'(x) = \lim_{h \to 0} \frac{2(x+h) + (\sin(x+h)) - 2(x) - (\sin(x))}{h}$$

$$\lim_{h \to 0} \frac{2(x+h) + (\sin(x+h)) - 2(x) - (\sin(x))}{h}$$

$$= \lim_{h \to 0} \frac{2h + (\sin(x+h) - \sin(x))}{h}$$

$$= \lim_{h \to 0} \frac{2h}{h} + \frac{(\sin(x+h) - \sin(x))}{h}$$

$$= \lim_{h \to 0} 2 + \frac{\sin x \cdot \cos h + \cos x \cdot \sin h - \sin x}{h} \quad \text{(by the sum trig identity)}$$

$$= \lim_{h \to 0} 2 + \frac{\sin x(\cos h - 1)\cos x \cdot \sin h}{h}$$

$$= \lim_{h \to 0} 2 + \lim_{h \to 0} -\sin x \frac{1 - \cos h}{h} + \lim_{h \to 0} \cos x \frac{\sin h}{h}$$

$$= \text{From our previous Lemma we know that } \frac{1 - \cos h}{h} = 0 \text{ so the whole part is } 0.$$
We also now that $\lim_{h \to 0} \frac{\sin h}{h} = 1$ from a previous Lemma so $\lim_{h \to 0} \cos x \cdot 1 = \cos x$

Thus $f'(x) = 2 + \cos x$. Note that $-1 \le \cos x \le 1$, since -1 is the minimum of $\cos x$ then f'(x) = 2 - 1 = 1 > 0. Since f'(x) is also greater then the 0 everywhere. This implies that there is only one real solution by the mean value theorem. Therefore since f(x) is continuous on \mathbb{R} and f'(x) > 0 everywhere. The function f(x) has one unique x-intercept.

Theorem 27.5. Every real solution of $x^3 + x + 3 = 0$ is irrational.

Proof. Suppose that there exists a rational root, $r = \frac{p}{a}$

$$x^{3} + x + 3 = 0$$
$$x^{3} + x = -3$$
$$x(x^{2} + 1) = -3$$

This implies that $\{0, i, -i\}$ are solutions but zero is the only real solution, check for extraneous solutions

$$0^3 + 0 = -3$$
$$0 = -3$$

This is a contradiction zero does not equal negative three. Thus every real solution of $x^3 + x + 3 = 0$ is irrational.

Theorem 21.1. Suppose $n \in Z$. If n is odd, then n^2 is odd.

Proof. Let $n=2k+1, k\in\mathbb{Z}$ then $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$ where $(2k^2+2k)\in\mathbb{Z}$. Thus n^2 is odd.

Suppose that n is odd and n^2 is even, then $n = 2l + 1, l \in \mathbb{Z}$ then $n^2 = (2l + 1)^2 = 4l^2 + 4l + 1 = 2(2l^2 + 2l) + 1$ this implies that n^2 is odd a contradiction of the assumption, thus n^2 is odd.

Theorem 19.4. If $n \in \mathbb{N}$, then $2^0 + 2^1 + 2^2 + ... + 2^n = 2^{n+1} - 1$.

Proof. Proof by Mathematical Induction Base Case: For n = 0,

$$2^0 = 1$$
 and $2^{0+1} - 1 = 2 - 1 = 1$,

so the statement holds for n=0.

Inductive Step: Assume the statement holds for some n = k; that is,

$$2^0 + 2^1 + 2^2 + \dots + 2^k = 2^{k+1} - 1.$$

Then consider n = k + 1, that is

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{k} + 2^{k+1} = 2^{(k+1)+1} - 1 = 2^{k+2} - 1.$$

from the inductive hypothesis,

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{k} = 2^{k+1} - 1.$$

Adding 2^{k+1} to both sides gives:

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{k} + 2^{k+1} = (2^{k+1} - 1) + 2^{k+1} = 2^{k+2} - 1.$$

Thus, the statement holds for n = k + 1.

Combinatorial Proof: Note that the sum $2^0 + 2^1 + 2^2 + \cdots + 2^n$ represents the total number of subsets of a set with n+1 elements. For a set with n+1 elements, there are 2^{n+1} subsets in total, including the empty set. Excluding the empty set leaves $2^{n+1} - 1$, which is all the non-empty subsets, which matches the premise. Thus $2^0 + 2^1 + 2^2 + \ldots + 2^n = 2^{n+1} - 1$.

Theorem 18.4. If p is prime and k is an integer for which 0 < k < p, then p divides $\binom{p}{k}$

Proof. Assume for the sake of contradiction that a counterexample exists where p is prime and k is an integer for which 0 < k < p, and p does not divide $\binom{p}{k}$. Then consider the binomial coefficient.

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$

$$= \frac{p \cdot (p-1)!}{k!(p-k)!}$$
(divide by p) =
$$\frac{p \cdot (p-1)!}{\frac{k!(p-k)!}{p}}$$

$$= \frac{p \cdot (p-1)!}{p \cdot k!(p-k)!}$$

$$= \frac{(p-1)!}{k!(p-k)!}$$

Therefore, $\binom{p}{k}$ contains a factor of p which implies that p divides $\binom{p}{k}$ this is a contradiction of the assume there exists a counterexample. Thus there is no counterexample so we conclude that p divides $\binom{p}{k}$ for all k such that 0 < k < p.

Theorem 3.14159. Consider the function $f(x) = x + \sin(x)$, obtain an approximation of π with high accuracy using the fact that that π is a fixed point of f(x) and that f maps the interval $\left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$ to itself. We have also shown that $f'(x) = 1 + \cos x$ from a previous theorem.

Proof.

$$\begin{split} |x + \cos(x) - y - \cos y| &= L|x - y| \\ |1 + \cos(x) - 1 - \cos y| &\leq 1|x - y| + |\cos x - \cos y| \\ 1|x - y| + |\cos x - \cos y| &\leq 1|x - y| + (1 - \frac{\sqrt{2}}{2}) \quad \text{(since the maximum occurs at } \cos \frac{3\pi}{4} - \cos \pi \text{)} \\ 0 &\leq |\cos x - \cos y| &\leq (1 - \frac{\sqrt{2}}{2}) \leq 1 \end{split}$$

This implies f has a Lipschitz constant less then 1, then by the Banach fixed-point theorem, it is varied that π is a fixed point on the interval so we can use a fixpoint iteration. Choose 3 for the iteration since it is in the interval.

$$\pi = f(f(f(\dots(3)\dots)))$$

$$\pi = \sin 3 + 3 = 3.14112$$

$$\pi = \sin 3.14112 + 3.14112 = 3.14159264$$

$$\pi = \sin 3.14159264 + 3.14159264 = 3.141593654\dots$$

Thus we have an approximation of π with high accuracy (higher then the float points allowed on my calculator).