

Research Question: What factors will affect an employee's decision to leave the company?

Name: Tan Wei Rong (21224533), Tan Siao Shuen (20229564)

Hypothesis:

H1: Age is a factor in influencing employee's decision to leave the company.

H2: **Department** which employees belong to is a factor in influencing the employee's decision to leave the company.

H3: Gender is a factor in influencing employee's decision to leave the company.

H4: **Monthly Income** of employee's is a factor in influencing employee's decision to leave the company.

Variables:

Dependent variable: Attrition

Independent variables: Age, Department, Gender, Monthly Income

Importing libraries and API

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
%matplotlib inline
import kaggle
from kaggle.api.kaggle_api_extended import KaggleApi
api = KaggleApi()
api.authenticate()
x = api.dataset list(search="attrition rate of company")
print(*x)
anujachintyabiswas/attrition-rate-of-a-company thedevastator/employee-attrition-and-factors iamsouravbanerjee/software-professi
onal-salaries-2022 colearninglounge/employee-attrition muhammadshahidazeem/customer-churn-dataset saadharoon27/hr-analytics-dat
aset sanjanchaudhari/employees-performance-for-hr-analytics dhawan123/attrition-rate-data-set prachi13/employeeattritionrate ri
schan/workshop-shopee-machine-learning-ann-scikitlearn kadirduran/hr-dataset bhavikapuri2811/hr-analytics-dashboard-using-excel
rohan0301/hackerearth-ml-will-your-employees-leave-you adityaghuse/employee-attrition-and-engagement synful/churn-classificatio
n mohammadkaiftahir/hr-analytics danielggak/summit-biotech-attrition-2021 sunilhit120/ibm-hr-analytics-and-visualization chaudh
urimdtausif/company-employee-attrition wrucebaynebot/hr-dataset
api.dataset list files('anujachintyabiswas/attrition-rate-of-a-company').files
[general data.csv]
api.dataset download file('anujachintyabiswas/attrition-rate-of-a-company', 'general data.csv')
True
```


Loading dataset

df=pd.read_csv('general_data.csv')
df

	EmployeeID	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationField	EmployeeCount	Gender		TotalWorkingYears
0	1	51	No	Travel_Rarely	Sales	6	2	Life Sciences	1	Female		1.0
1	2	31	Yes	Travel_Frequently	Research & Development	10	1	Life Sciences	1	Female	•••	6.0
2	3	32	No	Travel_Frequently	Research & Development	17	4	Other	1	Male	***	5.0
3	4	38	No	Non-Travel	Research & Development	2	5	Life Sciences	1	Male	•••	13.0
4	5	32	No	Travel_Rarely	Research & Development	10	1	Medical	1	Male		9.0
	3000		***	(***)	3.00	(***)	949	***	(100)	***		See
4405	4406	42	No	Travel_Rarely	Research & Development	5	4	Medical	1	Female		10.0
4406	4407	29	No	Travel_Rarely	Research & Development	2	4	Medical	1	Male		10.0
4407	4408	25	No	Travel_Rarely	Research & Development	25	2	Life Sciences	1	Male		5.0
4408	4409	42	No	Travel_Rarely	Sales	18	2	Medical	1	Male		10.0
4409	4410	40	No	Travel_Rarely	Research & Development	28	3	Medical	1	Male		NaN

4410 rows x 29 columns

Extracting related columns and building a subdf (df1)

df1=df[['Age','Attrition','Department','Gender','MonthlyIncome']]
df1

	Age	Attrition	Department	Gender	MonthlyIncome
0	51	No	Sales	Female	131160
1	31	Yes	Research & Development	Female	41890
2	32	No	Research & Development	Male	193280
3	38	No	Research & Development	Male	83210
4	32	No	Research & Development	Male	23420
•••		***	(m)		***
4405	42	No	Research & Development	Female	60290
4406	29	No	Research & Development	Male	26790
4407	25	No	Research & Development	Male	37020
4408	42	No	Sales	Male	23980
4409	40	No	Research & Development	Male	54680

4410 rows x 5 columns

Understanding the data

df1.head()

	Age	Attrition	Department	Gender	MonthlyIncome
0	51	No	Sales	Female	131160
1	31	Yes	Research & Development	Female	41890
2	32	No	Research & Development	Male	193280
3	38	No	Research & Development	Male	83210
4	32	No	Research & Development	Male	23420

df1.tail()

(4410, 5)

	Age	Attrition	Department	Gender	MonthlyIncome
4405	42	No	Research & Development	Female	60290
4406	29	No	Research & Development	Male	26790
4407	25	No	Research & Development	Male	37020
4408	42	No	Sales	Male	23980
4409	40	No	Research & Development	Male	54680

```
df1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4410 entries, 0 to 4409
Data columns (total 5 columns):
                  Non-Null Count Dtype
    Column
                  4410 non-null int64
    Attrition 4410 non-null object
                  4410 non-null object
    Department
    Gender
                  4410 non-null
                                 object
    MonthlyIncome 4410 non-null int64
dtypes: int64(2), object(3)
memory usage: 172.4+ KB
```

df1.describe()

	Age	MonthlyIncome
count	4410.000000	4410.000000
mean	36.923810	65029.312925
std	9.133301	47068.888559
min	18.000000	10090.000000
25%	30.000000	29110.000000
50%	36.000000	49190.000000
75%	43.000000	83800.000000
max	60.000000	199990.000000

Cleaning the data (unnecessary in our case)

df1.isnull().any()

```
Age False
Attrition False
Department False
Gender False
MonthlyIncome false
dtype: bool

df1.isnull().sum()

Age 0
Attrition 0
```

Department Gender

MonthlyIncome dtype: int64

Attrition Univariate Analysis - Pie chart

Attrition Ratio

83.88% of employees are still working for the company; while 16.12% of the employees have already resigned from the company.

Attrition by Age Bivariate Analysis - Multi distribution plot *SIGNIFICANT*

We can observed that the distribution of the non-attrition employees follows an approximate normal distribution. The age distribution for attrition is positively skewed to the right. The age of attrited employees mostly fall under the range 29-35 (approx).

The millennial generation (1981 to 1996), in particular, has been stigmatized as job-hoppers. Seventy-five percent of millennials believe job hopping can be good for their careers. (Gregory, 2018)

Attrition by Department Bivariate Analysis - Crosstab *SIGNIFICANT*

R&D department has the highest attrition rate among all departments.

Over the 7-year period after their organizational entry, R&D professionals were more likely to leave the organization.

(Chang et al., 2010)

Attrition by Gender Univariate Analysis - Pie chart *INSIGNIFICANT*

Female

Based on the graphs, we can see that the Gender ratio of the company as well as the Gender ratio for the Attrition are fairly similar suggesting that Gender might not be a significant factor in affecting employee's decision to leave the company.

Gender does not moderate the effect of job satisfaction on employees' intention to quit.

(Emmanuel, N. & Agaha, A.N.L., 2021)

Attrition by Monthly Income Bivariate Analysis - Multi distribution plot *INSIGNIFICANT*

We observe that the distribution of both attrition and non-attrition are similar and skewed to the right. This suggests that Monthly Income might not be a significant impact in affecting employee's decision to leave the company.

Salaries of employees might not be an important factor in employees' attrition compared to other factors such as toxic work culture.

(Rubenstein et al., 2017)

Dealing with Categorical Data

	Age	Attrition	Gender	MonthlyIncome	Research & Development	Sales
0	51	0	0	131160	0.0	0.0
1	31	1	0	41890	0.0	1.0
2	32	0	1	193280	0.0	1.0
3	38	0	1	83210	0.0	1.0
4	32	0	1	23420	0.0	1.0
•••		1000	5770	1855	00000	
4405	42	0	0	60290	0.0	1.0
4406	29	0	1	26790	0.0	1.0
4407	25	0	1	37020	0.0	1.0
4408	42	0	1	23980	0.0	0.0
4409	40	0	1	54680	0.0	1.0

Attrition:

LabelEncoder.fit_transform()
assign '1' to 'Yes';
assign '0' to 'No'

Gender:

LabelEncoder.fit_transform()
assign '1' to 'Male';
assign '0' to 'Female

Department:

pd.getdummies() create dummy variables

4410 rows × 6 columns

Dealing with Numerical Data

	Age	Attrition	Gender	MonthlyIncome	Research & Development	Sales
0	1.541369	0	0	1.405136	0.0	0.0
1	-0.648668	1	0	-0.491661	0.0	1.0
2	-0.539166	0	1	2.725053	0.0	1.0
3	0.117845	0	1	0.386301	0.0	1.0
4	-0.539166	0	1	-0.884109	0.0	1.0
		550	***	1227		1555
4405	0.555852	0	0	-0.100700	0.0	1.0
4406	-0.867672	0	1	-0.812504	0.0	1.0
4407	-1.305679	0	1	-0.595138	0.0	1.0
4408	0.555852	0	1	-0.872210	0.0	0.0
4409	0.336849	0	1	-0.219901	0.0	1.0

Age & Monthly Income:

StandardScaler.fit_transform() to normalize the data

4410 rows × 6 columns

Attrition by Age, Gender, Monthly Income & Department Advanced Visualization - Pairplot

Age, Attrition, Gender, Monthly Income & Department Multivariate Analysis - Heatmap

Logistic Regression Model

```
y=df1['Attrition']
x=df1[['Age','Gender','MonthlyIncome','Research & Development','Sales']]
import statsmodels.api as sm
model=sm.Logit(y,x)
result=model.fit()
print(result.summary())
```

	coef	std err	Z	P> z	[0.025	0.975]
Age	-0.4748	0.046	-10.410	0.000	-0.564	-0.385
Gender	-0.0980	0.080	-1.230	0.219	-0.254	0.058
MonthlyIncome	-0.0940	0.043	-2.179	0.029	-0.178	-0.009
Research & Development	-1.6887	0.071	-23.881	0.000	-1.827	-1.550
Sales	-1.7644	0.092	-19.258	0.000	-1.944	-1.585
				=======		=======

Conclusion

Based on our findings from the logistic regression, we can conclude that our initial analysis from the EDA and the test for significance in the Logistic Regression differs slightly in the table below.

Variables	EDA	Logistic Regression		
Age	Significant	Significant		
Department	Significant	Significant		
Gender	Insignificant	Insignificant		
Monthly Income	Insignificant	Significant		

Thank you Thank

References

- Chang, J. Y., Choi, J. N. & Kim, M. U. (2010). Turnover of highly educated R&D professionals: The role of pre-entry cognitive style, work values and career orientation. *Journal of Occupational & Organizational Psychology*, 81(2), 299-317. https://doi.org/10.1348/096317907X204453
- Gregory, E. (August, 2018). The Age of Employment Turnover. *ADP*. https://www.adp.com/spark/articles/2018/08/the-age-of-employment-turnover-take-two.aspx
- Nwahanye E. & Atabong N.L.A. (2021). Testing the Moderating Effect of Gender on Job Satisfaction and Employees' Behaviours Relationship: Evidence from Mobile Telecommunication Network (MTN) Buea, Cameroon. *European Scientific Journal*, *17*(1), 236. https://doi.org/10.19044/esj.2021.v17n1p236
- Rubenstein, A., Lee, T., Mitchell, T. & Eberly, M. (2017). Surveying the forest: A meta-analysis, moderator investigation, and future-oriented discussion of the antecedents of voluntary employee turnover. *Personnel Psychology*, 71(1), https://doi.org/10.1111/peps.12226