CHUYÊN ĐỀ BỔI DƯỚNG OLYMPIC: DÃY SỐ, GIỚI HẠN, ỨNG DỤNG TÍNH LIÊN TỤC TÌM NGHIỆM CỦA PHƯƠNG TRÌNH. DÃY SỐ

1. Dãy số là tập hợp các giá trị của hàm số $u: \mathbb{N}^* \to \mathbb{R}$, $n \to u(n)$

Được sắp xếp theo thứ tự tăng dần liên tiếp theo đối số tự nhiên n:

- Ta kí hiệu u(n) bởi u_n và gọi là số hạng thứ n hay số hạng tổng quát của dãy số, u_1 được gọi là số hạng đầu của dãy số.
- Ta có thể viết dãy số dưới dạng khai triển $u_1, u_2, ..., u_n, ...$ hoặc dạng rút gọn (u_n) .
- 2. Người ta thường cho dãy số theo các cách:
- Cho số hạng tổng quát, tức là: cho hàm số u xác định dãy số đó
- Cho bằng công thức truy hồi, tức là:
 - * Cho một vài số hạng đầu của dãy
 - * Cho hệ thức biểu thị số hạng tổng quát qua số hạng (hoặc một vài số hạng) đứng trước nó.
- 3. Dãy số tăng, dãy số giảm
- Dãy số (u_n) gọi là dãy tăng nếu $u_n < u_{n+1} \quad \forall n \in \mathbb{N}^*$
- Dãy số (u_n) gọi là dãy giảm nếu $u_n > u_{n+1} \quad \forall n \in \mathbb{N}^*$
- 4. Dãy số bị chặn
- Dãy số (u_n) gọi là dãy bị chặn trên nếu có một số thực M sao cho $u_n < M \ \forall n \in \mathbb{N}^*$.
- Dãy số (u_n) gọi là dãy bị chặn dưới nếu có một số thực m sao cho $u_n > m \ \forall n \in \mathbb{N}^*$.
- Dãy số vừa bị chặn trên vừa bị chặn dưới gọi là dãy bị chặn, tức là tồn tại số thực dương M sao cho $|u_n| < M \ \forall n \in \mathbb{N}^*$.

DÃY SỐ ĐƠN ĐIỆU – DÃY SỐ BỊ CHẶN

Phương pháp:

- Để xét tính đơn điệu của dãy số (u_n) ta xét: $k_n = u_{n+1} u_n$
 - * Nếu $k_n > 0 \ \forall n \in \mathbb{N}^* \Rightarrow \text{dãy } (u_n) \text{ tăng}$
 - * Nếu $k_n < 0 \ \forall n \in \mathbb{N}^* \Rightarrow \text{dãy } (u_n)$ giảm.

Khi $u_n > 0 \ \forall n \in \mathbb{N}^*$ ta có thể xét $t_n = \frac{u_{n+1}}{u_n}$

- * Nếu $t_n > 1 \Rightarrow d\tilde{a}y (u_n)$ tăng
- * Nếu $t_n < 1 \Rightarrow$ dãy (u_n) giảm.

CÁP SÓ CỘNG - CÁP SỐ NHÂN

1. Cấp số cộng

1.1. Định nghĩa: Dãy số (u_n) được xác định bởi $\begin{cases} u_1 = a \\ u_{n+1} = u_n + d \end{cases}, n \in N^* \text{ gọi là cấp số cộng; } d \text{ gọi là}$

công sai.

1.2. Các tính chất:

- Số hạng thứ n được cho bởi công thức: $u_n = u_1 + (n-1)d$.
- Ba số hạng u_k, u_{k+1}, u_{k+2} là ba số hạng liên tiếp của cấp số cộng khi và chỉ khi $u_{k+1} = \frac{1}{2} (u_k + u_{k+2})$.
- Tổng n số hạng đầu tiên S_n được xác định bởi công thức:

$$S_n = u_1 + u_2 + ... + u_n = \frac{n}{2} (u_1 + u_n) = \frac{n}{2} [2u_1 + (n-1)d].$$

2. Cấp số nhân

2.1. Định nghĩa: Dãy số (u_n) được xác định bởi $\begin{cases} u_1 = a \\ u_{n+1} = u_n.q \end{cases}, n \in N^* \text{ gọi là cấp số cộng; } q \text{ gọi là công bôi.}$

2.2. Các tính chất:

- Số hạng thứ n được cho bởi công thức: $u_n = u_1 q^{n-1}$.
- Ba số hạng u_k, u_{k+1}, u_{k+2} là ba số hạng liên tiếp của cấp số cộng khi và chỉ khi $u_{k+1}^2 = u_k.u_{k+2}$.
- Tổng n số hạng đầu tiên S_n được xác định bởi công thức:

$$S_n = u_1 + u_2 + ... + u_n = u_1 \frac{q^n - 1}{q - 1}.$$

CÁC BÀI TOÁN LUYỆN TẬP

Bài 1. Cho cấp số cộng (u_n) thỏa mãn $\begin{cases} u_7 - u_3 = 8 \\ u_2 u_7 = 75 \end{cases}$. Tìm u_1, d ?

Bài 2. Cho cấp số cộng (u_n) có công sai d > 0; $\begin{cases} u_{31} + u_{34} = 11 \\ u_{31}^2 + u_{34}^2 = 101 \end{cases}$. Hãy tìm số hạng tổng quát của cấp số cộng đó.

Bài 3. Cho dãy số (u_n) với $u_n = 3^{\frac{n}{2}+1}$

- a) Chứng minh dãy số (un) là cấp số nhân
- b) Tính tổng $S = u_2 + u_4 + u_6 + ... + u_{20}$
- c) Số 19683 là số hạng thứ mấy của dãy số.

Bài 4. Tam giác ABC có ba góc A, B, C theo thứ tự đó lập thành cấp số cộng và C = 5A. Xác định số đo các góc A, B, C.

Bài 5. Cho tam giác ABC biết ba góc tam giác lập thành cấp số cộng và $\sin A + \sin B + \sin C = \frac{3 + \sqrt{3}}{2}$ tính các góc của tam giác

Bài 6. Gọi $S_1; S_2; S_3$ là tổng $n_1; n_2; n_3$ số hạng đầu của một cấp số cộng. Chứng minh rằng:

$$\frac{S_1}{n_1}(n_2 - n_3) + \frac{S_2}{n_2}(n_3 - n_1) + \frac{S_3}{n_3}(n_1 - n_2) = 0$$

Bài 7. Chứng minh rằng:

- a) Nếu phương trình $x^3 ax^2 + bx c = 0$ có ba nghiệm lập thành CSC thì $9ab = 2a^3 + 27c$
- b) Nếu phương trình $x^3 ax^2 + bx c = 0$ có ba nghiệm lập thành CSN thì $c(ca^3 b^3) = 0$

Bài 8. Cho a,b,c lập thành cấp số nhân .Chứng minh rằng:

a)
$$(a+b+c)(a-b+c) = a^2+b^2+c^2$$

b)
$$(a^2+b^2)(b^2+c^2)=(ab+bc)^2$$

c)
$$(ab+bc+ca)^3 = abc(a+b+c)^3$$

d)
$$(a^n + b^n + c^n)(a^n - b^n + c^n) = a^{2n} + b^{2n} + c^{2n}$$
; $n \in \mathbb{N}^*$

- Bài 9. Cho cấp số cộng (a_n) với các số hạng khác không và công sai khác không. Chứng minh rằng:
- $\frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \frac{1}{a_{n-1} a_n} = \frac{n-1}{a_1 a_n} \, .$
- Bài 10. Chứng minh rằng nếu ba cạnh của tam giác lập thành CSN thì công bội của CSN đó nằm trong
- khoảng $\left(\frac{\sqrt{5}-1}{2}; \frac{1+\sqrt{5}}{2}\right)$.
- **Bài 11.** Chứng minh ba số a,b,c>0 là 3 số hạng liên tiếp của cấp số cộng khi và chỉ khi 3 số $a^2 + ab + b^2$; $c^2 + ca + a^2$; $b^2 + bc + c^2$ cũng là ba số hạng liên tiếp của một cấp số cộng.
- **Bài 12.** Xác định a,b để phương trình $x^3 + ax + b = 0$ có ba nghiệm phân biệt lập thành cấp số cộng.
- **Bài 13.** Tìm m để phương trình: $mx^4 2(m-1)x^2 + m 1 = 0$ có bốn nghiệm phân biệt lập thành cấp số công.
- **Bài 14.** Tìm m để phương trình: $x^3 3mx^2 + 4mx + m 2 = 0$ có ba nghiệm lập thành cấp số nhân.
- **Bài 15.** Cho x_1, x_2 là nghiệm của phương trình $x^2 + 4x + a = 0, x_3, x_4$ là nghiệm của phương trình $x^2 + 16x + b = 0$. Biết rằng x_1, x_2, x_3, x_4 theo thứ tự lập thành cấp số nhân. Tìm a, b.
- **Bài 16.** Cho các số thực dương a_1, a_2, a_3, a_4, a_5 lập thành cấp số cộng và các số b_1, b_2, b_3, b_4, b_5 lập thành cấp số nhân. Biết rằng $a_1 = b_1$ và $a_5 = b_5$. Chứng minh rằng $a_2 + a_3 + a_4 \ge b_2 + b_3 + b_4$
- **Bài 17.** Cho dãy số (u_n) được xác định bởi: $u_1 = 2$; $u_n = 2u_{n-1} + 3n 1$. Công thức số hạng tổng quát của dãy số đã cho là biểu thức có dạng $a.2^n + bn + c$, với a,b,c là các số nguyên, $n \ge 2$; $n \in N$. Khi đó tổng a+b+c có giá tri bằng?
- **Bài 18.** Cho các số x+5y; 5x+2y; 8x+y theo thứ tự đó lập thành một cấp số cộng; đồng thời các số $(y-1)^2$; xy-1; $(x+2)^2$ theo thứ tự lập thành một cấp số nhân. Hãy tìm x, y.
- **Bài 19.** Tìm số hạng tổng quát của dãy số (u_n) biết $u_1 = 2$ và $u_{n+1} = 2u_n + 5$, $\forall n \in \mathbb{N}^*$.
- **Bài 20.** Cho dãy số (u_n) thỏa mãn $\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{2u_n}{u_n + 4}, n \ge 1 \end{cases}$

Tìm công thức số hạng tổng quát u_n của dãy số đã cho.

- **Bài 21.** Cho dãy số (u_n) xác định bởi: $u_1 = 1; u_{n+1} = 2u_n + 3^n, \forall n \in \mathbb{N}^*$. Tìm công thức số hạng tổng quát u_n theo n.
- **Bài 22.** Cho dãy số (u_n) xác định bởi: $\begin{cases} u_1 = 11 \\ u_{n+1} = 10u_n + 1 9n, \forall n \in \mathbb{N}. \end{cases}$. Tìm công thức tính u_n theo n. **Bài 23.** Tìm công thức tổng quát của dãy số thỏa mãn: $\begin{cases} u_1 = 1 \\ u_{n+1} = 3u_n 6n + 1 \end{cases}$
- **Bài 24.** Cho hai cấp số cộng (a_n) : $a_1 = 4$; $a_2 = 7$;...; a_{100} và (b_n) : $b_1 = 1$; $b_2 = 6$;...; b_{100} . Hỏi có bao nhiều số có mặt đồng thời trong cả hai dãy số trên?

GIỚI HẠN DÃY SỐ

1. Định nghĩa:

Ta nói rằng dãy số (u_n) **có giới hạn là 0** khi n dần tới dương vô cực, nếu $|u_n|$ có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.

Kí hiệu: $\lim u_n = 0$ hay $\lim u_n = 0$ hay $u_n \to 0$ khi $n \to +\infty$.

Ta nói rằng dãy số (u_n) **có giới hạn là a** khi n dần tới dương vô cực, nếu $\lim_{n\to\infty}(u_n-a)=0$.

Kí hiệu: $\lim_{n\to\infty} u_n = a$ hay $\lim_n u_n = a$ hay $u_n \to a$ khi $n \to +\infty$.

2. Một vài giới hạn đặc biệt

a)
$$\lim \frac{1}{n} = 0$$
; $\lim \frac{1}{n^k} = 0, (k > 0, k \in \mathbb{N}^*)$; $\lim \frac{1}{\sqrt{n}} = 0$; $\lim \frac{1}{\sqrt[3]{n}} = 0$;

- **b**) $\lim q^n = 0$ nếu |q| < 1;
- c) Nếu $u_n = c$ (c hằng số) thì $\lim u_n = \lim c = c$
- **d**) Cho hai dãy số (u_n) và (v_n) . Nếu $|u_n| \le v_n$ với mọi n và $\lim v_n = 0$ thì $\lim u_n = 0$.

3. Định lí về giới hạn hữu hạn

- a) Nếu $\lim u_n = a$ và $\lim v_n = b$ và c là hằng số. Khi đó ta có:
 - $\lim (u_n + v_n) = a + b$ $\lim (u_n v_n) = a b$

 - $\lim (u_n \cdot v_n) = a.b$ $\lim \frac{u_n}{v_n} = \frac{a}{b}, (b \neq 0)$
 - $\lim (c.u_n) = c.a$.
- $\lim |u_n| = |a|$ và $\lim \sqrt[3]{u_n} = \sqrt[3]{a}$
- Nếu $u_n \ge 0$ với mọi n thì $a \ge 0$ và $\lim \sqrt{u_n} = \sqrt{a}$.
- **b**) Cho ba dãy số $(u_n),(v_n)$ và (w_n) . Nếu $u_n \le v_n \le w_n, (\forall n)$ và $\lim u_n = \lim w_n = a, (a \in \mathbb{R})$ thì $\lim v_n = a$ (gọi định lí kẹp).
- c) Điều kiện để một dãy số tăng hoặc dãy số giảm có giới hạn hữu hạn:
 - Một dãy số tăng và bị chặn trên thì có giới hạn hữu hạn.

4. Giới hạn vô cực:

1. Dãy số (u_n) có giới hạn là $+\infty$ khi $n \to +\infty$, nếu u_n có thể lớn hơn một số dương bất kì kể từ một số hạng nào đó trở đi.

Ký hiệu: $\lim u_n = +\infty$ hoặc $u_n \to +\infty$ khi $n \to +\infty$

2. Dãy số (u_n) có giới hạn là $-\infty$ khi $n \to +\infty$, nếu $\lim_{n \to +\infty} (-u_n) = +\infty$

Ký hiệu: $\overline{\lim u_n = -\infty}$ hoặc $u_n \to -\infty$ khi $n \to +\infty$

Một vài giới han đặc biệt

$$\boxed{\lim n^k = +\infty} \text{ hay } \left[\lim q^n = +\infty \left(q > 1\right)\right]$$

Một vài quy tắc về giới hạn vô cực.

Quy tắc 1: Nếu $\lim u_n = \pm \infty$, $\lim v_n = \pm \infty$ thì $\lim (u_n, v_n)$ được cho như sau;

n n	n n	•
$\lim u_n$	$\lim v_n$	$\lim(u_n v_n)$
+∞	+∞	**
+∞	$-\infty$	-∞

 +∞	-∞
 $-\infty$	+∞

Quy tắc 2: Nếu $\lim u_n = \pm \infty$, $\lim v_n = l$ thì $\lim (u_n, v_n)$ được cho như sau;

$\lim u_n$	Dấu của <i>l</i>	$\lim(u_n v_n)$
+∞	+	+8
+∞	_	$-\infty$
-∞	+	$-\infty$
∞	_	48

Quy tắc 3: Nếu $\lim u_n = l$, $\lim v_n = 0$ và $v_n > 0$ hoặc $v_n < 0$ kể từ một số hạng nào dó trở đi thì $\lim \frac{u_n}{l}$

được coi như sau;

٠,	,					
	Dấu của <i>l</i>	Dấu của $v_{_n}$	$\lim \frac{u_n}{v_n}$			
	+∞	+	+∞			
	−∞ +∞ +∞	_	$-\infty$ $+\infty$			
	$-\infty$	+	$-\infty$			
	$-\infty$	_	$+\infty$			

Nhận xét: Ta thường dùng quy tắc giới hạn tích trong bài toán giới hạn vô cực của dãy số.

Bài 1. Tìm các giới hạn sau:

a.
$$\lim \frac{-3n^2 + 4n + 1}{2n^2 - 3n + 7}$$

b.
$$\lim \frac{n^3 + 4}{(n+2)(3n-1)(2n+5)}$$
 c. $\lim \frac{\sqrt[3]{n^3 + n} + 2}{n+2}$
e. $\lim \frac{2^{n+1} - 3^n + 11}{3^{n+2} + 2^{n+3} - 4}$ f. $\lim \frac{\sqrt[3]{n^3 + 3n^2 + 2}}{\sqrt{n^2 - 4n + 5}}$

c.
$$\lim \frac{\sqrt[3]{n^3 + n} + 2}{n + 2}$$

d.
$$\lim_{n \to \infty} \frac{1 - 4^n}{1 + 4^n}$$

e.
$$\lim \frac{2^{n+1}-3^n+11}{3^{n+2}+2^{n+3}-4}$$

f.
$$\lim \frac{\sqrt[3]{n^3 + 3n^2 + 2}}{\sqrt{n^2 - 4n + 5}}$$

Bài 2. Tìm các giới hạn sau:

a.
$$\lim(\sqrt{n^2 + 5n + 1} - \sqrt{n^2 - n})$$

c.
$$\lim(\sqrt[3]{n^3+2n+1}-n+1)$$

Bài 3. Tìm các giới hạn sau:

a.
$$\lim \frac{\sin n\pi}{n+1}$$

Bài 4. Tìm các giới hạn sau:

a.
$$\lim \frac{1+3+5+...+(2n+1)}{3n^2+4}$$

c.
$$\lim \frac{1+2+2^2+...+2^n}{1+3+3^2+...+3^n}$$

e.
$$\lim \left[1 - \frac{1}{3} + \frac{1}{9} - \dots + (-1)^n \frac{1}{3^n}\right]$$

b.
$$\lim \left(\sqrt{9n^2 - 3n + 4} - 3n + 1 \right)$$

d.
$$\lim(\sqrt[3]{n^3-3n^2+1}-\sqrt{n^2+4n})$$

b.
$$\lim \frac{\sin 10n + \cos 10n}{n^2 + 2n}$$

b.
$$\lim \frac{1+2+3+...+n}{n^2-3}$$

d.
$$\lim \frac{1+2^2+2^3+...+2^n}{2^{n+1}}$$

f.
$$\lim (2 + 0.3 + 0.3^2 + 0.3^3 + ... + 0.3^n)$$

Bài 5. Bài 6. Tính các giới hạn sau:

a)
$$\lim \frac{2\cos n^2}{n^2 + 1}$$

b)
$$\lim \frac{(-1)^n \sin(3n+n^2)}{3n-1}$$

b)
$$\lim \frac{(-1)^n \sin(3n+n^2)}{3n-1}$$
 c) $\lim \frac{3\sin^2(n^3+2)+n^2}{2-3n^2}$

Bài 6. Bài 9. Cho dãy số xác định bởi: $\begin{cases} u_1 = 2 \\ u_{n+1} = 4u_n + 3.4^n, n \in \mathbb{N}^* \end{cases}$. Tìm số hạng tổng quát u_n và tính giới hạn $\lim \frac{2n^2 + 3n + 1}{u}$

Bài 7. Bài 10. Cho dãy số (u_n) được xác định như sau $\begin{cases} u_1 = 2019 \\ u_{n+1} = 2u_n - n + 1 \end{cases}$. Tìm số hạng tổng quát của dãy số (u_n) . Tính $\lim_{n \to +\infty} \frac{u_n}{3^n}$.

Bài 8. Cho dãy số
$$(u_n)$$
 được xác định bởi
$$\begin{cases} u_1 = 1, \ u_2 = 3 \\ u_{n+2} + u_n = 2 \big(u_{n+1} + 1 \big), n \in \mathbb{N}^* \end{cases}$$
. Tính $\lim_{n \to +\infty} \frac{u_n}{n^2}$.

DANG. Bài toán giới hạn dãy số theo quy luật

Phương pháp giải.

Thu gọn u_n, dựa vào đó tìm limu_n.

Sử dụng định lý kẹp: "Xét 3 dãy số (u_n) , (v_n) , (w_n) . Giả sử với mọi n ta có $v_n \le u_n \le w_n$. Khi đó nếu $limv_n = limw_n = L$ ($L \in R$) thì $limu_n = L$."

Bài 1. Tính
$$\lim \left(\frac{1}{1.3} + \frac{1}{2.4} + \dots + \frac{1}{n(n+2)} \right)$$

Bài 2. Tìm
$$\lim_{n \to +\infty} \left[\frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + \dots + + \frac{n}{(n-2)!+(n-1)!+n!} \right]$$

Bài 3. Tính giới hạn
$$\lim \left[\frac{1}{1.2.3} + \frac{1}{2.3.4} + ... + \frac{1}{n(n+1)(n+2)} \right]$$

Bài 4. Tính giới hạn
$$\lim \frac{2021}{1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots + n}}$$

Bài 5. Tính giới hạn
$$\lim_{k=1}^{n} a_k voia_n = \frac{3n^2 + 3n + 1}{(n^2 + n)^3}$$

Bài 6. a) Chứng minh:
$$\frac{1}{n\sqrt{n+1} + (n+1)\sqrt{n}} = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \quad (\forall n \in N^*).$$

b) Rút gọn:
$$u_n = \frac{1}{1\sqrt{2} + 2\sqrt{1}} + \frac{1}{2\sqrt{3} + 3\sqrt{2}} + \dots + \frac{1}{n\sqrt{n+1} + (n+1)\sqrt{n}}$$
.

c) Tìm lim u_n .

Bài 7. Cho dãy số
$$(u_n)$$
 với $u_n = \left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right)...\left(1 - \frac{1}{n^2}\right)$, với \forall $n \ge 2$. Rút gọn u_n và tìm lim u_n .

Bài 8. Tính giới hạn
$$\lim \frac{\sqrt{3.4 + \frac{1}{5}} + \sqrt{4.5 + \frac{1}{6}} + \sqrt{5.6 + \frac{1}{7}} + ...\sqrt{n(n+1) + \frac{1}{n+2}}}{n^3 + 2021}, n \in \mathbb{N}, n \ge 3$$

Bài 9. Cho $f(n) = (n^2 + n + 1)^2 + 1$. Xét dãy số (u_n) : $u_n = \frac{f(1).f(3).f(5).....f(2n-1)}{f(2).f(4).f(6).....f(2n)}, \forall n = 1,2,3,...$ Tính $\lim_{x \to +\infty} n \sqrt{u_n}$.

GIỚI HẠN HÀM SỐ

A. Lý thuyết:

1. Định nghĩa:

1.1. Giới hạn hàm số: Cho khoảng K chứa điểm x_0 . Ta nói rằng hàm số f(x) xác định trên K (có thể trừ điểm x_0) có giới hạn là L khi x dần tới x_0 nếu với dãy số (x_n) bất kì, $x_n \in K \setminus \{x_0\}$ và $x_n \to x_0$, ta có: $f(x_n) \to L$. Ta kí hiệu:

$$\lim_{x \to x_0} f(x) = L \text{ hay } f(x) \to L \text{ khi } x \to x_0.$$

1.2. Giới han một bên:

* Cho hàm số y=f(x) xác định trên $(x_0;b)$. Số L gọi là giới hạn bên phải của hàm số y=f(x) khi x dần tới x_0 nếu với mọi dãy $(x_n):x_0< x_n< b$ mà $x_n\to x_0$ thì ta có: $f(x_n)\to L$. Kí hiệu: $\lim_{x\to x_0^+}f(x)=L$.

* Cho hàm số y=f(x) xác định trên $(a;x_0)$. Số L gọi là giới hạn bên trái của hàm số y=f(x) khi x dần tới x_0 nếu với mọi dãy (x_n) : $a < x_n < x_0$ mà $x_n \to x_0$ thì ta có: $f(x_n) \to L$. Kí hiệu: $\lim_{x \to x_0} f(x) = L$.

Chú ý:
$$\lim_{x \to x_0} f(x) = L \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = L$$
.

1.3. Giới hạn tại vô cực

* Ta nói hàm số y=f(x) xác định trên $(a;+\infty)$ có giới hạn là L khi $x\to +\infty$ nếu với mọi dãy số $(x_n):x_n>a$ và $x_n\to +\infty$ thì $f(x_n)\to L$. Kí hiệu: $\lim_n f(x)=L$.

* Ta nói hàm số y=f(x) xác định trên $(-\infty;b)$ có giới hạn là L khi $x\to -\infty$ nếu với mọi dãy số $(x_n):x_n< b$ và $x_n\to -\infty$ thì $f(x_n)\to L$. Kí hiệu: $\lim_{x\to -\infty} f(x)=L$.

1.4.Giới han vô cưc

- * Ta nói hàm số y=f(x) có giới hạn dần tới dương vô cực khi x dần tới x_0 nếu với mọi dãy số $(x_n):x_n\to x_0$ thì $f(x_n)\to +\infty$. Kí hiệu: $\lim_{x\to x} f(x)=+\infty$.
 - * Tương tự ta cũng có định nghĩa giới hạn dần về âm vô cực
 - * Ta cũng có định nghĩa như trên khi ta thay x_0 bởi $-\infty$ hoặc $+\infty$.

2. Các định lí về giới hạn

Định lí 1: Gới hạn của tổng, hiệu, tích, thương (mẫu số dẫn về $L \neq 0$) khi $x \to x_0$ (hay $x \to +\infty$; $x \to -\infty$) bằng tổng, hiệu, tích, thương của các giới hạn đó khi $x \to x_0$ (hay $x \to +\infty$; $x \to -\infty$).

 ${\it Chú}$ ý: Định lí trên ta chỉ áp dụng cho những hàm số có giới hạn là hữu hạn. Ta không áp dụng cho các giới hạn dần về vô cực

Định lí 2: (Nguyên lí kẹp)

Cho ba hàm số f(x), g(x), h(x) xác định trên K chứa điểm x_0 (có thể các hàm đó không xác định tại x_0). Nếu $g(x) \le f(x) \le h(x) \ \forall x \in K$ và $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = L$ thì $\lim_{x \to x_0} f(x) = L$.

3. Một số gới hạn đặc biệt

*
$$\lim_{\substack{x \to +\infty \\ (x \to -\infty)}} x^{2k} = +\infty$$
 ; $\lim_{\substack{x \to +\infty \\ (x \to -\infty)}} x^{2k+1} = +\infty$ $(-\infty)$

$$\lim_{x \to x_0} f(x) = +\infty \ (-\infty) \Leftrightarrow \lim_{x \to x_0} \frac{k}{f(x)} = 0 \ (k \neq 0).$$

A. Bài tập

Bài 1. Tìm các giới hạn sau:

a)
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + x} - x \right)$$

c)
$$\lim_{x \to +\infty} (\sqrt[3]{2x-1} - \sqrt[3]{2x+1})$$

e)
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 1} - \sqrt[3]{x^3 - 1} \right)$$

g)
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$$

i)
$$\lim_{x \to +\infty} \left(\sqrt{49x^2 + x} - \sqrt{16x^2 + x} - \sqrt{9x^2 + x} \right)$$

Bài 2. Tìm các giới hạn sau:

a)
$$\lim_{x \to 1} \frac{\sqrt{5+4x} + \sqrt{5-x} - 2x - 3}{x - 1}$$

c)
$$\lim_{x\to 0} \frac{2\sqrt{1+x} - \sqrt[3]{8-x}}{\sqrt{4+x} - \sqrt[3]{2x+8}}$$

e)
$$\lim_{x\to 0} \frac{\sqrt[3]{x^2+1} - \sqrt{1-x}}{x}$$

g)
$$\lim_{x\to 0} \frac{\sqrt{1+2x}.\sqrt[3]{1+4x}-1}{x}$$

i)
$$\lim_{x \to 2} \frac{\sqrt{5-2x} - 2\sqrt{x-1} + 2x - 3}{\sqrt{2x-3} + \sqrt{6x-3} - 2x}$$

k) $\lim_{x \to 1} \frac{x^2 + 3x + 2 - 2\sqrt{6x^2 + 3x}}{x^2 - 2x + 2 - \cos(x-1)}$

Bài 3. Tìm giới hạn sau:

a)
$$\lim_{x \to 0} \frac{2\sqrt{x+1} - \sqrt[3]{8-x}}{x}$$

c)
$$\lim_{x \to 1} \frac{\sqrt{3x+1}.\sqrt[3]{2-x}-2}{x-1}$$

Bài 4. Tính các giới hạn:

a)
$$\lim_{x \to 0} \frac{\sqrt{2x+1} - \sqrt[3]{3x+1}}{x^2}$$

c)
$$\lim_{x \to 1} \frac{\sqrt{3-2x} + x - 2}{2\sqrt{x} - 1 - x}$$

b)
$$\lim_{x \to +\infty} \left(2x - 1 - \sqrt{4x^2 - 4x - 3} \right)$$

d)
$$\lim_{x \to +\infty} \left(\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right)$$

f)
$$\lim_{x \to -\infty} (\sqrt[3]{3x^3 - 1} + \sqrt{x^2 + 2})$$

h)
$$\lim_{x \to 2} \left(\frac{1}{x^2 - 3x + 2} + \frac{1}{x^2 - 5x + 6} \right)$$

b)
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{\sqrt[3]{8x + 11} - \sqrt{x + 7}}$$

d)
$$\lim_{x \to 1} \frac{\sqrt{5 - x^3} - \sqrt[3]{x^2 + 7}}{x^2 - 1}$$

f)
$$\lim_{x\to 0} \frac{\sqrt{1+4x}.\sqrt{1+6x}-1}{x}$$

h)
$$\lim_{x\to 0} \frac{\sqrt{1+2x}\sqrt[3]{1+3x} - \sqrt{1+4x}}{1+x-\sqrt{1+2x}}$$

j)
$$\lim_{x \to 3} \frac{2 - \sqrt{x+1} \cdot \sqrt[3]{x-2}}{2 - \sqrt{x-2} \cdot \sqrt[3]{x+5}}$$

l)Cho
$$\lim_{x \to -\infty} \left(\sqrt{x^2 + ax + 5} + x \right) = 5$$
. Khi đó giá trị a

b)
$$\lim_{x\to 0} \frac{\sqrt{1+2014x}.\sqrt[3]{1+2015x}-1}{x}$$

d)
$$\lim_{x\to 0} \frac{x+3-\sqrt{8x+8}}{x^3-x^2-x+1}$$

b)
$$\lim_{x \to -1} \frac{\sqrt[3]{3x+4} - \sqrt{2x+3}}{x^3 + 2x^2 + x}$$

d)
$$\lim_{x\to 2} \frac{\sqrt{5-2x}-2\sqrt{x-1}+2x-3}{\sqrt{2x-3}+\sqrt{6x-3}-2x}$$

e)
$$\frac{\sqrt{3-2x}+x-2}{2\sqrt{x}-1-x}$$

e)
$$\lim_{x \to 2} \frac{(2x+1)\sqrt{5+2x} - \sqrt[3]{x-1} - 5x - 4}{(1-3x)\sqrt{x+2} + x\sqrt{2x-3} + x^3}$$

g)
$$\lim_{x \to 3} \frac{2 - \sqrt{x+1}.\sqrt[3]{x-2}}{2 - \sqrt{x-2}.\sqrt[3]{x+5}}$$

h)
$$\lim_{x\to 0} \frac{\sqrt[n]{(2x+1)(3x+1)(4x+1)}-1}{x}$$

i)
$$\frac{\sqrt{3-2x}+x-2}{2\sqrt{x}-1-x}$$

j)
$$\lim_{x\to 2} \frac{(2x+1)\sqrt{5+2x}-\sqrt[3]{x-1}-5x-4}{(1-3x)\sqrt{x+2}+x\sqrt{2x-3}+x^3}$$

k)
$$\lim_{x\to 3} \frac{2-\sqrt{x+1}.\sqrt[3]{x-2}}{2-\sqrt{x-2}\sqrt[3]{x+5}}$$

1)
$$\lim_{x\to 0} \frac{\sqrt[n]{(2x+1)(3x+1)(4x+1)}-1}{x}$$

m)
$$H = \lim_{x\to 0} \frac{\sqrt{2x+1}.\sqrt[3]{2.3x+1}\sqrt[4]{3.4x+1}....^{2021}\sqrt{2020.2021x+1}-1}{x}$$
GIỚI HẠN HÀM SỐ LƯỢNG GIÁC

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\sin u(x)}{u(x)} = 1 \qquad \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\tan u(x)}{u(x)} = 1$$

$$\lim_{x\to 0}\frac{\tan x}{x}=1$$

$$\lim_{x \to 0} \frac{\tan u(x)}{u(x)} = 1$$

Bài 1. Tìm các giới han sau:

$$a)\lim_{x\to 0} \left(x^2 \sin^2 \frac{1}{x}\right) \qquad b)\lim_{x\to 0} \left(x \sin \frac{1}{x}\right) \qquad c)\lim_{x\to 0} \frac{1-\cos x}{x^2} \qquad d\lim_{x\to 0} \frac{\sin 3x}{x} \qquad e\lim_{x\to 0} \frac{\tan x^2}{\sin 2x}$$

$$b)\lim_{x\to 0} \left(x \sin \frac{1}{x}\right)$$

$$c)\lim_{x\to 0}\frac{1-\cos x}{x^2}$$

$$d$$
 $\lim_{x\to 0} \frac{\sin 3x}{x}$

$$e$$
 $\lim_{x\to 0} \frac{\tan x^2}{\sin 2x}$

$$f)\lim_{x\to 0}\frac{x^2}{\sin 2x}$$

$$f)\lim_{x\to 0} \frac{x^2}{\sin 2x} \qquad g)\lim_{x\to 0} \frac{\cos x - \cos 3x}{\sin^2 x} \qquad h)\lim_{x\to 0} \frac{1 - \cos^3 x}{x \cdot \sin 2x} \qquad i)\lim_{x\to \frac{\pi}{2}} \frac{\sin 3x}{1 - 2\cos x} \qquad j)\lim_{x\to 0} \frac{\sin 5x}{2x}$$

$$h)\lim_{x\to 0}\frac{1-\cos^3 x}{x.\sin 2x}$$

$$i) \lim_{x \to \frac{\pi}{2}} \frac{\sin 3x}{1 - 2\cos x}$$

$$j)\lim_{x\to 0}\frac{\sin 5x}{2x}$$

$$k)\lim_{x\to 0}\frac{\sin^2\frac{x}{3}}{x^2}$$

$$l)\lim_{x\to 0}\frac{1-\cos 2x}{x\sin x}$$

$$m)\lim_{x\to 0}\frac{\tan 2x}{x}$$

$$n)\lim_{x\to\infty}\frac{x.\sin x}{2x^2+1}$$

$$k)\lim_{x\to 0} \frac{\sin^2 \frac{x}{3}}{x^2} \qquad l)\lim_{x\to 0} \frac{1-\cos 2x}{x.\sin x} \qquad m)\lim_{x\to 0} \frac{\tan 2x}{x} \qquad n)\lim_{x\to \infty} \frac{x.\sin x}{2x^2+1} \qquad o)\lim_{x\to 0} \left(\frac{1}{\tan x} - \frac{1}{\sin^2 \frac{x}{2}}\right)$$

Bài 2. Tính giới hạn:
$$\lim_{x\to 0} \frac{\sqrt{x^2 + 4} + \cos x - 3}{x^2}$$

Bài 3. Tính giới hạn:
$$\lim_{x \to 1} \frac{x^2 + 3x + 2 - 2\sqrt{6x^2 + 3x}}{x^2 - 2x + 2 - \cos(x - 1)}$$

Bài 4. Tính giới hạn:
$$B = \lim_{x \to +\infty} \frac{3x - 5\sin 2x + \cos^2 x}{x^2 + 2}$$

Bài 5. Tính giới hạn:
$$G = \lim_{x\to 0} \frac{\sin(a+2x)-2\sin(a+x)+\sin a}{x^2}, a\in \mathbb{R}$$

Bài 6. Cho a, b là các số thực thỏa mãn
$$\lim_{x\to 2} \frac{x^2 - ax + b}{x-2} = 5$$
. Tìm a, b.

Bài 7. Cho a, b là các số thực thỏa mãn
$$\lim_{x\to 1} \frac{2x^3 + ax^2 - 4x + b}{(x-1)} = 5$$
. Tính $a+b$

Bài 8. Cho
$$\lim_{x \to 1} \frac{f(x) - 10}{x - 1} = 5$$
. Tính giới hạn $\lim_{x \to 1} \frac{f(x) - 10}{\left(\sqrt{x} - 1\right)\left(\sqrt{4f(x) + 9} + 3\right)}$

Bài 9. Tính
$$\lim_{x\to 1} \frac{C_{2018}^0 + C_{2018}^2 x^2 + C_{2018}^4 x^4 + ... + C_{2018}^{2018} x^{2018} - 2^{2017}}{x-1}$$
.

Bài 10. Cho hàm số f(x) liên tục và không âm trên \mathbb{R} thỏa mãn $\lim_{x\to 1} \frac{\sqrt{f(x)}-2}{x-1} = 3$. Tính giới hạn

$$\lim_{x \to 1} \frac{\left[\sqrt{f(x)} - 2\right]^2}{\left(\sqrt{x} - 1\right)\left[\sqrt{f(x) + 5} - 3\right]}$$

Bài 11. Cho f(x) là hàm đa thức thỏa mãn $\lim_{x\to 3} \frac{f(x)-27}{x-3} = 9$. Tính giới hạn

$$\lim_{x \to 3} \left[2f(x) - 19x + 3 \right] \left(\frac{1}{x - 3} - \frac{1}{x^2 - 3x} \right).$$

Bài 12. Cho f(x) là hàm đa thức thỏa mãn $\lim_{x\to 2} \frac{f(x)-1}{x-2} = 2$. Tính giới hạn

$$\lim_{x \to 2} \frac{\sqrt{f(x)} + 2\sqrt[3]{3f(x) - 2} - 3}{x^3 - 3x - 2}.$$

SỬ DỤNG TÍNH CHẤT HÀM SỐ LIÊN TỤC ĐỂ KHẢO SÁT NGHIỆM CỦA PHƯƠNG TRÌNH

PHẦN I: Lý thuyết cơ bản:

1) Định nghĩa:

Cho hàm số f(x) xác định trên khoảng (a;b).

- * Hàm số f(x) liên tục tại x_0 thuộc (a;b) nếu $\lim_{x \to x_0} f(x) = f(x_0)$.
- * Hàm số f(x) liên tục trên khoảng (a;b) nếu f(x) liên tục tại mọi điểm thuộc (a;b).
- * Hàm số f(x) liên tục trên đoạn [a;b] nếu f(x) liên tục trên khoảng (a;b); và $\lim_{x\to a^+} f(x) = f(a)$,

$$\lim_{x \to b^{-}} f(x) = f(b)$$

2) Các phép toán:

- * Nếu f và g là 2 hàm số liên tục tại x thì các hàm số f+g, f-g, f.g cũng liên tục tại x, và nếu $g(x) \neq 0$ thì f/g liên tục tại x.
- * Nếu hàm số f liên tục tại x và hàm g liên tục tại y=f(x) thì hàm hợp g.f liên tục tại x.

3) Tính chất:

Định lý 1: Nếu hàm f liên tục tại a và $f(a) \neq 0$ thì có một lân cận U(a) của a sao cho mỗi x thuộc về lân cận đó thì f(x) cùng dấu với f(a).

Định lý 2: Nếu hàm số f liên tục trên [a;b] th f bị chặn trên đoạn [a;b]

Định lý 3: Nếu hàm số f liên tục trên [a;b]thì f đạt được giá trị lớn nhất nhỏ nhất trên đoạn đó.

Định lý 4: Nếu hàm số f liên tục trên [a;b] và f(a).f(b) < 0 thì có ít nhất một giá trị c thuộc khoảng (a;b) sao cho f(c) = 0

Định lý 5: Nếu hàm số f liên tục trên [a;b] và f(a) = A, f(b) = B. Lúc đó nếu C là số nằm giữa A và B thì có ít nhất một giá trị c thuộc khoảng (a;b) sao cho f(c) = C.

Định lý 6: Nếu hàm số f liên tục trên [a;b]thì f nhận mọi giá trị trung gian giữa giá trị nhỏ nhất m và gía trị lớn nhất M của nó trên đoạn đó.

PHÂN II: Các vấn đề giải toán:

Vấn đề 1: Bài toán chứng minh phương trình có nghiệm:

Định hướng 1: Bài toán chứng minh phương trình f(x)=0 có nghiệm

Ta xét hàm số f(x), kiểm tra tính chất liên tục. Trên miền liên tục đó, tìm chọn 2 giá trị a,b phân biệt mà $f(a)f(b) \le 0$, từ đó lý luận đến điều phải chứng minh. Lưu ý:

- $N\acute{e}u\ c\acute{o}\ \lim_{x\to -\infty} f(x) = -\infty$ thì tồn tại a<0, sao cho |a| đủ lớn và f(a)<0
- $N\acute{e}u$ có $\lim_{x\to -\infty} f(x) = +\infty$ thì tồn tại a<0, sao cho |a| đủ lớn và f(a)>0
- $N\acute{e}u\ c\acute{o}\ \lim_{x\to +\infty} f(x) = +\infty$ thì tồn tại a>0 đủ lớn sao cho f(a)>0
- $N\acute{e}u\ c\acute{o}\ \lim_{x\to +\infty} f(x) = -\infty$ thì tồn tại a>0 đủ lớn sao cho f(a)<0

Định hướng 2: Bài toán chứng minh phương trình f(x)=g(x) có nghiệm

Cách 1: Xét hàm số h(x) = f(x) - g(x) như định hướng 1

Cách 2: Nếu phương trình dạng A(x)/B(x) = C(x), ta biến đổi về dạng

A(x)/B(x) - C(x) = 0 hoặc A(x) - B(x)C(x) = 0 với điều kiện $B(x) \neq 0$. Đôi khi ta còn biến đổi tương đương theo nhiều cách khác, chẳng hạn nâng lũy thừa, lấy căn thức của 2 vế phương trình..(chú ý điều kiện xác định và điều kiện có nghiệm)

Định hướng 3: Bài toán chứng minh tồn tại số c thỏa mãn một đẳng thức

Ta có thể thay thế c bởi biến x và đưa đẳng thức về dạng phương trình có ẩn số x. Bài toán trở về bài toán theo định hướng 1 hoặc 2.

Bài tập

Bài 1 Chứng minh phương trình $m(x-3)(x-5)+x^4$ -105=0 luôn có nghiệm với mọi m.

Bài 2 Cho 3 số a,b,c thỏa 12a+15b+20c=0. Chứng minh phương trình $ax^2+bx+c=0$ luôn có nghiệm thuộc đọan $\left[0;\frac{4}{5}\right]$.

Bài 3 Cho 3 số a,b,c thỏa 5a+4b+6c=0 . Chứng minh phương trình $ax^2+bx+c=0$ luôn có nghiệm.

Bài 4 : Chứng minh rằng các phương trình sau luôn có nghiệm:

a)
$$ax^2 + bx + c = 0$$
 với $2a + 3b + 6c = 0$ b) $ax^2 + bx + c = 0$ với $a + 2b + 5c = 0$

Bài 5 Chứng minh các phương trình sau có nghiệm:

a)
$$3^x + 4^x = 8^x$$
 b) $sinx + 1 = x$

Bài 6 Chứng minh phương trình ab(x-a)(x-b)+bc(x-b)(x-c)+ca(x-c)(x-a)=0 luôn có nghiệm với moi a,b,c.

Bài 7 Chứng minh các phương trình sau luôn có nghiệm với mọi tham số m.

1)
$$\frac{1}{\sin x} + \frac{3}{\cos x} = m$$
, m là tham số.

2) $a\sin 3x + b\cos 2x + c\cos x + \sin x = 0$ với a,b,c là tham số

Bài 8 Cho f là hàm số xác định và liên tục trên [a;b] mà $f(a) \neq f(b)$, hai số c,d bất kỳ thoả cd > 0. Chứng minh tồn tại số r thoả cf(a) + df(b) - (c+d)f(r) = 0

Bài 9 Cho a,b,c,d là các số thực . Chứng minh rằng nếu phương trình $ax^2 + (b+c)x + d + e = 0$ có 1 nghiệm thuộc $[1;+\infty)$ thì phương trình $ax^4 + bx^3 + cx^2 + dx + e = 0$ cũng có nghiệm thực.

Bài 10 Chứng minh các phương trình sau luôn có hai nghiệm

1.
$$x^{2012} + ax^3 + bx^2 + cx - 2 = 0$$

2.
$$mx^4 + 2x^2 - x - m = 0$$

Bài 11 Cho a > 0, b > 0. Chứng minh rằng phương trình $\frac{1}{x} + \frac{1}{x-a} + \frac{1}{x+b} = 0$ có 2 nghiệm phân biệt thuộc (-b;a)

Bài 12 Cho a, b, c là các số thực thỏa điều kiện 7a+4b+3c=0. Chứng minh rằng phương trình $ax^2+bx+c=2018\sin(\pi x)$ có ít nhất một nghiệm thuộc đoạn [0;2]

Bài 13 Với số thực $a \in (0;1)$ xét phương trình $a\cos((x^2 - x + 1)\pi) = (x + \frac{1}{2})^2$ Chứng minh rằng phương trình có ít nhất 2 nghiệm âm nhưng không có nghiệm dương nào.