Today

- Review Relational Algebra
- Class Participation Exercise (time permitting)

What is an "Algebra"?

- Mathematical system consisting of:
 - *Operators*: symbols denoting procedures that construct new values from given values (eg. +, -, *, /)
 - *Operands*: variables or values from which new values can be constructed. An operand is a value that is acted upon by an operator (eg. 3 + 7, 3 and 7 are operands)

What is Relational Algebra?

- An algebra whose operands are relations or variables that represent relations
- Input: 1 or 2 instances of relation. Output: an instance of output relation.
- Form basis for other query languages (eg. SQL) and implementation

Operators

- Set Operations:
 - Union
 - Intersection
 - Difference
 - Cross Product (Cartesian Product)
- Selection
- Projection
- Renaming
- Joins
- Division

Schema

Sailors(sid: integer, sname: string, rating: integer, age: real)

Boats(bid: integer, bname: string, color: string)

Reserves (sid: integer, bid: integer, day: date)

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.0
58	Rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	Lubber	8	55.0
44	guppy	5	35.0
58	Rusty	10	35.0

sid	bid	day
22	101	10/10/96
58	103	11/12/96

Instance S1 of Sailors

Instance S2 of Sailors

Instance R1 of Reserves

Union

- R U S returns an instance of a relation containing all tuples that occur in either R or S
- R and S must be union-compatible
 - Same number of fields
 - Correponding fields, taken in order, must have the same domains
- By convention, inherits names from R
- No duplicates

Union

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.0
58	Rusty	10	35.0

Instance S1 of Sailors

sid	sname	rating	age
28	yuppy	9	35.0
31	Lubber	8	55.0
44	guppy	5	35.0
58	Rusty	10	35.0

Instance S2 of Sailors

sid	sname	rating	age
22	Dustin	7	45.0
28	yuppy	9	35.0
31	Lubber	8	55.0
44	guppy	5	35.0
58	Rusty	10	35.0

S1 U S2

Intersection

- $R \cap S$ returns an instance of a relation containing all tuples that occur in both R or S
- R and S must be union-compatible
- By convention, inherits names from *R*
- No duplicates

Intersection

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.0
58	Rusty	10	35.0

Instance S1 of Sailors

sid	sname	rating	age
28	yuppy	9	35.0
31	Lubber	8	55.0
44	guppy	5	35.0
58	Rusty	10	35.0

Instance S2 of Sailors

sid	sname	rating	age
31	Lubber	8	55.0
58	Rusty	10	35.0

S1 ∩ *S*2

Set-Difference

- R S returns all tuples that occur in R but not S
- Must be union-compatible
- By convention, inherits names from R

Set-Difference

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.0
58	Rusty	10	35.0

Instance S1 of Sailors

sid	sname	rating	age
28	yuppy	9	35.0
31	Lubber	8	55.0
44	guppy	5	35.0
58	Rusty	10	35.0

Instance S2 of Sailors

sid	sname	rating	age
22	Dustin	7	45.0

S1 - S2

Cross Product

- R3 = R1 X R2
 - Pair each tuple t1 of R1 with each tuple t2 of R2
 - Concatenation t1, t2 is a tuple in R3
 - Schema of R3 is the attributes of R1 followed by the attributes of R2, in order
 - Beware of attributes having the same name in R1 and R2: use R1.A and R2.A
 - Sometimes called "Cartesian Product"
 - Total number of tuples is equal to |R1| x |R2| where |R| is the number of tuples in instance relation R

Cross Product

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.0
58	Rusty	10	35.0

sid	bid	day
22	101	10/10/96
58	103	11/12/96

Instance S1 of Sailors

Instance R1 of Reserves

S1.sid	sname	rating	age	R1.sid	bid	day
22	Dustin	7	45.0	22	101	10/10/ 96
22	Dustin	7	45.0	58	103	11/12/ 96
31	Lubber	8	55.0	22	101	10/10/ 96
31	Lubber	8	55.0	58	103	11/12/ 96
58	Rusty	10	35.0	22	101	10/10/ 96
58	Rusty	10	35.0	58	103	11/12/ 96

Selection σ

- $R1 = \sigma_c(R2)$
 - C is a condition (as in "if" statements) that refers to attributes of R2
 - R1 returns all tuples of R2 that satisfy C
 - Analogous to WHERE clause in SQL

Selection σ

sid	sname	rating	age
28	yuppy	9	35.0
31	Lubber	8	55.0
44	guppy	5	35.0
58	Rusty	10	35.0

Instance S2 of Sailors

sid	sname	rating	age
28	yuppy	9	35.0
58	Rusty	10	35.0

$$\sigma_{rating > 8}(S2)$$

Projection π

- $R1 = \pi_L(R2)$
 - L is a list of attributes from the schema of R2
 - R1 is constructed by looking at each tuple of R2, extracting the attributes on list L, in the order specified, and creating from those components a tuple from R1
 - Eliminate duplicates, if any
 - Analogous to SELECT clause

Projection π

sid	sname	rating	age
28	yuppy	9	35.0
31	Lubber	8	55.0
44	guppy	5	35.0
58	Rusty	10	35.0

age
35.0
55.0
$\pi_{age}(S2)$

sname	rating
yuppy	9
Rusty	10

 $\pi_{sname,rating}(\sigma_{rating > 8}(S2))$

Instance S2 of Sailors

Joins

- Conditional Joins: $R3 = R1 \bowtie_c R2$
 - Take the product of R1 X R2
 - Then apply σ_c to the result
 - ie. $R3 = \sigma_c(R1 \times R2)$
 - Result of cross product is usually much larger than result of join, so most implementations do not materialize the underlying cross product

Joins

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.0
58	Rusty	10	35.0

S	id	bid	day
2	2	101	10/10/96
5	8	103	11/12/96

Instance S1 of Sailors

Instance R1 of Reserves

S1.sid	sname	rating	age	R1.sid	bid	day
22	Dustin	7	45.0	22	101	10/10/ 96
22	Dustin	7	45.0	58	103	11/12/ 96
31	Lubber	8	55.0	22	101	10/10/ 96
31	Lubber	8	55.0	58	103	11/12/ 96
58	Rusty	10	35.0	22	101	10/10/ 96
58	Rusty	10	35.0	58	103	11/12/ 96

Joins

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.0
58	Rusty	10	35.0

sid	bid	day
22	101	10/10/96
58	103	11/12/96

S1.sid	sname	rating	age	R1.sid	bid	day
22	Dustin	7	45.0	58	103	11/12/ 96
31	Lubber	8	55.0	58	103	11/12/ 96

Instance S1 of Sailors

Instance R1 of Reserves

 $S1 \bowtie_{S1.sid < R1.sid} R1$

Equijoin

- For join conditions that contain only equalities between attributes of the two relations, there will be a duplicate column for each equality
- In this case an additional projection is done to drop this extra column
- Resulting schema contains fields of R1 followed by fields of R2 that do not appear in the join conditions

Equijoin

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.0
58	Rusty	10	35.0

sid	bid	day
22	101	10/10/96
58	103	11/12/96

S1.sid	sname	rating	age	bid	day
22	Dustin	7	45.0	101	10/10/ 96
58	Rusty	10	35.0	103	11/12/ 96

Instance S1 of Sailors

Instance R1 of Reserves

 $S1 \bowtie_{S1.sid = R1.sid} R1$

Natural Join

- For a special case of an Equijoin where the join condition contains equalities of all attributes in common between two relations, we can simply remove join condition
- Called a Natural Join
- Denoted R3 = R1 \bowtie R2
- Previous $S1 \bowtie_{S1.sid = R1.sid} R1$ is actually a Natural Join since the only common field is sid
- If two relations have no attributes in common, the natural join is simply the cross product

Renaming p

- ρ operator allows renaming of relation and attributes
- Useful when fields from different tables have the same name or before certain set operations
- $R' = \rho_{R'(A1 \to A1', \dots An \to An')}(R)$
- R' is a relation with attributes A1',...An' and the same tuples as R

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

S3 (Sailors)

R2 (Reserves)

Q1: Find the names of sailors who have reserved boat 103

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

B1 (Boats)

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

S3 (Sailors)

R2 (Reserves)

Q1: Find the names of sailors who have reserved boat 103

A1: $\pi_{sname}(\sigma_{bid=103}(Reserves) \bowtie Sailors)$

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

B1 (Boats)

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

S3 (Sailors) R2 (Reserves)

Q2: Find the names of sailors who have reserved a red boat.

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

B1 (Boats)

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

S3 (Sailors)

R2 (Reserves)

Q2: Find the names of sailors who have reserved a red boat.

A2: $\pi_{sname}(\sigma_{color=red}(Boats) \bowtie Reserves \bowtie Sailors)$

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

B1 (Boats)

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

S3 (Sailors) R2 (Reserves)

Q3: Find the names of sailors who have reserved a red boat.

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

B1 (Boats)

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

B1 (Boats)

S3 (Sailors)

R2 (Reserves)

Q3: Find the names of sailors who have reserved a red or a green boat.

A3:
$$\rho\left(tempboats, (\sigma_{color=red}(Boats)) \cup (\sigma_{color=green}(Boats)\right)$$
 $\pi_{sname}(tempboats) \bowtie Reserves \bowtie Sailors)$

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

B1 (Boats)

S3 (Sailors)

R2 (Reserves)

Q4: Find the colors of boats reserved by Lubber.

Q5: Find the names of sailors who have reserved a red and a green boat.

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

S3 (Sailors)

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

R2 (Reserves)

A4: $\pi_{color}(\sigma_{sname=Lubber}(Sailors) \bowtie Reserves \bowtie Boats)$ A5: $\rho(tempred, \pi_{sid}((\sigma_{color=red}(Boats)) \bowtie Reserves))$ $\rho(tempgreen, \pi_{sid}((\sigma_{color=green}(Boats)) \bowtie Reserves))$ $\pi_{sname}(tempred \cap tempgreen) \bowtie Sailors)$

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

B1 (Boats)