

# SAS Data Science Competition

Memprediksi Keputusan Pengambilan Cashback Menggunakan Decision Tree



Nama : Ravelto Wangistu

Usia : 22 tahun

Pekerjaan : Mahasiswa

Institusi : Universitas Indonesia

Domisili : Tangerang

Ketertarikan:

Text mining

Customer Analytics

Machine Learning

#### Riwayat projek:

Predictive modelling data Titanic Kaggle (<u>link</u>)

Understanding Movie Datasets by SQL and Python (<u>LINK</u>)

 Exploratory Data Analysis in Hotel Business Datasets (<u>LINK</u>)



### **Daftar Isi**

| Content                | Page      |
|------------------------|-----------|
| Introduction           | 4         |
| Business Understanding | <u>5</u>  |
| Data Understanding     | 8         |
| Data Preparation       | <u>13</u> |
| Modelling              | <u>21</u> |
| Evaluation             | <u>27</u> |
| Conclusion             | <u>32</u> |
| Appendix               | <u>36</u> |





Presentasi ini akan menggunakan alur **CRISP-DM.** 

CRISP-DM merupakan metode standarisasi yang dikeluarkan EU untuk data mining. Terdiri dari Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation, dan Deployment.







## BUSINESS UNDERSTANDING





#### **Supermarket SAS-MART:**

- 1. Promo cashback Rp 50K, setiap melakukan pembayaran sebesar Rp 800 K.
- 1. Promo dikirim ke 5000 customer.



#### Hasil:

Akan digunakan sebagai **penentuan member** mana yang akan diberikan promo.



| Tujuan                                                                                                               | Output                                                        |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Menentukan <i>faktor-faktor apa yang mempengaruhi</i> individu untuk menggunakan kupon tersebut (response).          | Model Machine Learning berbentuk Decision Tree.               |  |
| Melakukan <i>evaluasi terhadap program promo cashback</i> , sekaligus mengembangkan promo supaya menjadi lebih baik. | Mencari Insight untuk mengevaluasi program cashback tersebut. |  |





### DATA UNDERSTANDING

#### Data Understanding

#### Dari data yang didapat <a href="response\_retail\_v2.xlsx">response\_retail\_v2.xlsx</a>, beberapa fakta yang kita temukan adalah:



#### Data Shape

5000 baris & 20 kolumn



#### Data Null

Tidak ada data null dalam dataset ini.



#### Data Info

3 kolom (object) & 17 kolom (int)

df.shape

(5000, 20)

```
df.isnull().sum().max()
0
```

| #  | Column              | Non-Null Count | Dtype  |
|----|---------------------|----------------|--------|
|    |                     |                |        |
| 0  | member_id           | 5000 non-null  | int64  |
| 1  | gender              | 5000 non-null  | object |
| 2  | visit_last_1mo      | 5000 non-null  | int64  |
| 3  | visit_last_2mo      | 5000 non-null  | int64  |
| 4  | visit_last_3mo      | 5000 non-null  | int64  |
| 5  | spending_last_1mo   | 5000 non-null  | int64  |
| 6  | spending_last_2mo   | 5000 non-null  | int64  |
| 7  | spending_last_3mo   | 5000 non-null  | int64  |
| 8  | age                 | 5000 non-null  | int64  |
| 9  | monthly_income      | 5000 non-null  | int64  |
| 10 | marital_status      | 5000 non-null  | object |
| 11 | payment_channel     | 5000 non-null  | object |
| 12 | buy_groceries       | 5000 non-null  | int64  |
| 13 | buy_toiletries      | 5000 non-null  | int64  |
| 14 | buy_food            | 5000 non-null  | int64  |
| 15 | buy_electronic      | 5000 non-null  | int64  |
| 16 | buy_clothes         | 5000 non-null  | int64  |
| 17 | buy_home_appliances | 5000 non-null  | int64  |
| 18 | recency_last_visit  | 5000 non-null  | int64  |
| 19 | response            | 5000 non-null  | int64  |



#### Keterangan dari setiap kolom yang ada dalam datasets ini :

| Variable          | Description                     |
|-------------------|---------------------------------|
| member_id         | member's ID                     |
| gender            | gender of member                |
| visit_last_1mo    | number of visits within month 1 |
| visit_last_2mo    | number of visits within month 2 |
| visit_last_3mo    | number of visits within month 3 |
| spending_last_1mo | spending amount within month 1  |
| spending_last_2mo | spending amount within month 2  |
| spending_last_3mo | spending amount within month 3  |
| age               | age of members                  |
| monthly_income    | member's monthly income         |

| Variable           | Description                                                              |
|--------------------|--------------------------------------------------------------------------|
| marital_status     | marital status of members                                                |
| payment_channel    | most frequent channel used                                               |
| groceries          | member buy groceries product in last 3 months (1: buy; 0: not buy)       |
| toiletries         | member buy toiletries product in last 3 months (1: buy; 0: not buy)      |
| food               | member buy food product in last 3 months (1: buy; 0: not buy)            |
| electronic         | member buy electronic product in last 3 months (1: buy; 0: not buy)      |
| clothes            | member buy clothes product in last 3 months (1: buy; 0: not buy)         |
| home_appliances    | member buy home appliances product in last 3 months (1: buy; 0: not buy) |
| recency_last_visit | number of days member last visit (recency)                               |
| response           | dummy variable whether member taken the promo (1: yes; 0: no)            |



#### Categorizing Columns

#### Kolom tersebut dapat dibagi kedalam beberapa kategori yaitu:



#### Identifying Data

Member ID



#### **Product Data**

groceries, toiletries, food, electronic, clothes, and home\_appliances



#### Demographic Data

Gender, Age, Monthly\_income, payment\_channel, and Marital\_Status



#### RFM\* Data

visit\_last\_1\_mo, visit\_last\_2\_mo, visit\_last\_3\_mo, spending\_last\_1\_mo, spending\_last\_2\_mo, spending\_last\_3\_mo, & recency\_last\_visit

\*RFM stands for Recency, Frequency, Monetary

Variables that we try to predict: Response (0 = No, 1 = Yes)













### DATA PREPARATION

#### Data Preparation : Changes

#### Untuk membantu menggali insight, penulis melakukan sedikit perubahan yaitu:

Membuat Kolom Kumulatif Dari Total Visit dan Total Spend yang dilakukan per bulan.

Dengan menggabungkan kolom kumulatif per bulan, maka kita bisa mengetahui total keseluruhannya, seperti:

Total Spending = total\_last\_1mo + total\_last\_2mo + total\_last\_3mo

### Melakukan Pembagian Kategori Terhadap Variable Income dan Total Spend

Untuk mendapatkan insight yang lebih mendalam, penulis melakukan pembagian kategori, seperti :

#### Monthly Income dibagi menjadi 3 kategori :

- Low Income (< Percentile 33.3)</li>
- Medium Income (33.3% 66.6%)
- High Income.

#### Total Spending dibagi menjadi 2 kategori :

- Low Spending (< nilai mean total spending)</li>
- High Spending



#### Demographic



(40.04%)



Age (Average)

29.58

**Total Response** 

**2159** (43.18%)

Total Spend (Average)

1,351,763







1649 (32.98%)





#### Demographic (2)

| gender 🔺 | buy_clothes | buy_electronic | buy_food | buy_groceries | buy_home_appliances | buy_toiletries |
|----------|-------------|----------------|----------|---------------|---------------------|----------------|
| Total    | 480         | 397            | 4467     | 948           | 1215                | 3706           |
| Female   | 294         | 231            | 2669     | 565           | 709                 | 2249           |
| Male     | 186         | 166            | 1798     | 383           | 506                 | 1457           |

#### Distribusi Monthly Income Berbentuk Positive Skew



### Departemen Statistika StarCore analytics

#### Insight yang didapatkan:

- a. Secara garis besar, individu yang datang ke SAS Mart adalah perempuan, sudah menikah dan memiliki umur rata-rata 29.58 tahun.
- b. Kebanyakan individu melakukan pembayaran dengan **metode cash (42.4%).**
- Lebih 50% individu yang berbelanja ke Sas Mart membeli makanan (food) dan toiletries.
- d. Total individu yang menggunakan **promo** (response) sebesar 43.8%

#### Insights Yang Didapatkan

Terjadi peningkatan rata-rata spending setiap customer di setiap bulannya. Namun terdapat penurunan total visit yang signifikan pada satu bulan terakhir.

#### Average Total Spending Per Past Month



#### **Months Ago**

#### Average Total Visit Per Past Month



**Months Ago** 



#### Insights Yang Didapatkan (2)

Pembelian *Home Appliances* dan *Groceries* didominasi oleh **High Income**, sedangkan Pembelian *Clothes* dan *Electronic* didominasi oleh **Low Income**. Pembelian *Toiletries* dan *Food* Hampir Merata.

#### Home Appliances (High Income)



**Income Level** 

#### Clothes (Low Income)



#### Toiletries (Same)



Income Level



\*) Low = Low Income, Med = Medium Income, & High = High Income

#### Insights Yang Didapatkan (3)

Total Spending Above Median memiliki *average visit* lebih banyak, *recency rate* lebih rendah, dan *total response* yang jauh lebih tinggi dari Spending Below Median.





#### Insight Yang Didapatkan (4)

Response Rate sangat dipengaruhi oleh **Nilai Recency, Frequency, & Monetary Customers.** Semakin tinggi nilai RFM, semakin tinggi response ratenya.



Response Rate: (Yes / No)





## MODELLING

#### Persiapan Modelling : Feature Importance

Sebelum melakukan predictive analysis, *feature importance* dilakukan untuk mengurangi kompleksitas dan mencari *10\* feature* yang paling berpengaruh berdasarkan *nilai effect size* (*r*<sup>2</sup>).

**Top 10 Feature Importance** 

|    | index               | response        |
|----|---------------------|-----------------|
| 1  | visit_last_2mo      | 0.02755094628   |
| 2  | visit_last_3mo      | 0.02288436638   |
| 3  | visit_last_1mo      | 0.02239169673   |
| 4  | recency_last_visit  | 0.007696276876  |
| 5  | spending_last_3mo   | 0.001694871532  |
| 6  | spending_last_1mo   | 0.00150710662   |
| 7  | spending_last_2mo   | 0.0014332801    |
| 8  | buy_home_appliances | 0.001237249966  |
| 9  | monthly_income      | 0.0004480499849 |
| 10 | member_id           | 0.0002770409238 |

\*Feature peringkat 10 (member\_id) tidak diambil karena member\_id merupakan data identifying atau primary key.



#### Modelling : Find the best model

Berdasarkan fitur tersebut, penulis melakukan analisis dengan menggunakan 3 bentuk modelling yaitu, Logistic Regression, **Decision Tree**, dan Random Forest.

| Tipe Modelling      | Alasan Digunakan / Tidak Digunakan                                                                                                           | Link Appendix |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Decision Tree       | Memiliki accuracy tinggi dan process model mudah dapat dimengerti.                                                                           | LINK          |
| Logistic Regression | Logistic Regression hanya cocok digunakan pada hubungan linear. Disisi lain, nilai false negative dari logistic regression sangatlah tinggi. | LINK          |
| Random Forest       | F1 Score dan misclassification rate random forest lebih tinggi daripada Decision Tree.                                                       | LINK          |

Penulis memutuskan untuk **memilih decision tree**, hal ini berdasarkan analisa model comparison yang dilakukan pada slide selanjutnya.



#### **Model Comparison: Misclassification Rate**

Decision tree memiliki
nilai misclassification
rate yang paling
rendah. Sedangkan,
logistic regression
memiliki nilai tertinggi.





#### **Model Comparison : F1 And Confusion Matrix**

Berdasarkan nilai F1,

Decision Tree (0.8283)

memiliki nilai yang cukup

tinggi. Selain itu, secara

confusion matrix, nilai

decision tree dan random

forest memiliki true positive

dan true negatif cukup baik.





#### **Model: Decision Tree (2)**

Tree



#### **Result Model:**

"Decision Tree yang terdiri dari 6 levels dan 3 branches."

Di dalam setiap nodes, terdapat nilai probabilitas berapa kemungkinan respon yang dihasilkan adalah "Yes" (mengambil cashback) atau "No" (tidak mengambil cashback).





### EVALUATION

#### **Evaluate : Variable Importance**

#### Variable Importance



#### **Table for 5<sup>th</sup> most feature importance:**

| Variable          | Importance | Standard Deviation |
|-------------------|------------|--------------------|
| spending_last_2mo | 936.2311   | 312.119            |
| spending_last_3mo | 166.9813   | 78.7625            |
| spending_last_1mo | 96.1302    | 20.9085            |
| visit_last_3mo    | 52.2731    | 12.9749            |
| monthly_income    | 23.1381    | 1.2987             |

5 variabel yang memiliki pengaruh kuat terhadap decision tree yaitu:

- spending\_last\_2mo
- spending\_last\_3mo
- spending\_last\_1mo
- visit\_last\_3mo
- monthly\_income.



#### **Evaluate: Confusion Matrix**

#### Confusion Matrix

#### Observed



#### **Table Confusion Matrix:**

| Status         | Frequency | Percentage |
|----------------|-----------|------------|
| True Negative  | 2550      | 89.76%     |
| True Positive  | 1732      | 80.22%     |
| False Negative | 427       | 19.78%     |
| False Positive | 291       | 10.24%     |

Nilai true negative dan true positive dari model yang telah dibuat berada pada level 80-90%. Hal ini menunjukan bahwa model memiliki nilai keakuratan yang cukup baik.



#### **Evaluate : Factor Leads To Response**



Tiga faktor yang paling dalam menentukan penggunaan cashback:

- Melakukan spending pada 2 bulan lalu, sebesar
   Rp 314.733 hingga Rp 691.928. (spend\_last\_2mo)
- Melakukan spending pada 3 bulan lalu, sebesar
   Rp 356.391 hingga Rp 694.955. (spend\_last\_3mo)
- Melakukan spending pada 1 bulan lalu, sebesar
   Rp 320.770 hingga Rp 657.167. (spend\_last\_1mo)

Individu yang memanfaatkan promo cashback, cenderung memiliki pengeluaran sebesar Rp. 300k-700k setiap bulannya





### CONCLUSION

#### **Conclusion: Goal 1**

**Goal 1:** Menentukan **faktor-faktor apa yang mempengaruhi** individu untuk menggunakan kupon tersebut (response).



Berdasarkan *feature importance*, faktor yang memiliki pengaruh kuat dalam model adalah *data RFM*, *monthly income*, *dan buy home appliances*.



Model Decision Tree digunakan karena nilai misclassification rate and f1 score yang lebih rendah daripada model lain.



Individu yang memanfaatkan promo *cashback* cenderung memiliki pengeluaran sebesar **Rp 300.000,00 - Rp 700.000,00** setiap bulannya



#### **Conclusion : Goal 2**

**Goal 2:** Melakukan *evaluasi terhadap program promo cashback*, sekaligus mengembangkan promo supaya menjadi lebih baik.

| No. | Problem                                                                 | Solutions                                                                                                                                      | Alasan                                                                                                                                                                                                      |
|-----|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Untuk mendapatkan<br>cashback, minimum<br>pembelian sangatlah<br>besar. | Membuat <b>promo cashback lebih rendah</b> (contoh: Cashback 20 K untuk 200 K)                                                                 | Rata-rata individu yang tertarik dengan promo response adalah kelompok individu yang berbelanja di antara Rp 300.000 sampai Rp 700.000                                                                      |
| 2.  | Produk yang <b>penjualan tinggi</b> hanya <b>food dan toiletries</b>    | Melakukan <b>Market Basket Analysis</b> untuk<br>menentukan promosi yang spesifik kepada<br>produk-produk yang kurang diminati.                | Dengan membuat <b>promosi yang spesifik pada produk yang kurang diminati</b> , dapat <b>meningkatkan pembelian</b> produk tersebut.                                                                         |
| 3.  | Pembayaran masih<br>didominasi dengan<br><b>menggunakan cash.</b>       | Memberikan <b>promo bagi individu yang melakukan pembayaran non-tunai</b> (seperti menggunakan kartu debit/kredit atau dompet-dompet digital). | Dengan memberikan promo, individu akan lebih tertarik untuk menggunakan pembayaran non-tunai, sekaligus meningkatkan kemungkinan jumlah transaksi melewati pembelanjaan minimum untuk mendapatkan cashback. |





# Terimakasih!



### APPENDIX

#### Appendix : **Decision Tree**

Decision Tree Retail

Decision Tree response\_kat

(event=Yes)

F1 Score

0.828 Observations Used 5,000

Create Pipeline

Tree





#### Variable Importance



#### Confusion Matrix

#### Observed





#### Appendix : Logistic Regression





#### Appendix : Random Forest



