```
popquizbox[1] colback=nipun-lightblue!10, colframe=nipun-blue,
boxrule=2pt, arc=3pt, left=8pt, right=8pt, top=8pt,
bottom=8pt, title= Quick Quiz 1, fonttitle=,
coltitle=nipun-white, colbacktitle=nipun-blue,
enhanced, attach boxed title to top left=xshift=0pt,
yshift=-2pt, boxed title style=arc=3pt, boxrule=0pt
definitionbox[1] colback=nipun-green!8, colframe=nipun-green,
```

[BoldFont=Fira Sans SemiBold]Fira Sans Book Fira Mono

boxrule=1.5pt, arc=2pt, left=6pt, right=6pt, top=6pt, bottom=6pt, title= **Definition:** 1, fonttitle=, coltitle=nipun-white, colbacktitle=nipun-green

examplebox[1] colback=nipun-orange!8, colframe=nipun-orange,

boxrule=1.5pt, arc=2pt, left=6pt, right=6pt, top=6pt, bottom=6pt, title= **Example:** 1, fonttitle=,

coltitle=nipun-white, colbacktitle=nipun-orange

keypointsbox colback=nipun-blue!8, colframe=nipun-blue,

boxrule=1.5pt, arc=2pt, left=6pt, right=6pt, top=6pt,

bottom=6pt, title= **Key Points**, fonttitle=,

Here, the true function $f_{\theta_{\text{true}}}$ is used to model the relation $y_t = f_{\theta_{\text{true}}}(x_t)$

Modeling the relation

This behavior varies due to training set randomness.

This behavior varies due to training set randomness.

Therefore, it is important to measure performance averaged over all possible training sets (of size N).

This behavior varies due to training set randomness.

Therefore, it is important to measure performance **averaged over all possible training sets** (of size N).

$$E_{\text{training set}}[\text{error of } \hat{\theta}(\text{training set})]$$

gives a measure of the average error by doing an expectation of the errors of all possible training sets of size N.

Therefore, $E_{train}[at a point x_t] = f(noise, bias, variance)$

Formally defining the 3 sources of error: Noise

Noise is an **irreducible error** captured by the error term ϵ .

The equation of the relation becomes $y_t = f_{\theta(true)}(x_t) + \epsilon_t$

Formally defining the 3 sources of error: Noise

Noise is an **irreducible error** captured by the error term ϵ .

The equation of the relation becomes $y_t = f_{\theta(true)}(x_t) + \epsilon_t$

The noise is mean-centered around 0 with spread called the variance of the noise, denoted by σ^2 .

Variance in the noise

Formally defining the 3 sources of error: Noise

Noise is an **irreducible error** captured by the error term ϵ .

The equation of the relation becomes $y_t = f_{\theta(true)}(x_t) + \epsilon_t$

The noise is mean-centered around 0 with spread called the variance of the noise, denoted by σ^2 .

That is, it can be denoted by $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$

Formally defining the 3 sources of error: Bias

Bias is a measure of how flexible the fit is in capturing the true function $f_{\theta_{\text{true}}}(x)$

$$\mathsf{Bias}(x_t) = f_{ heta_{\mathsf{true}}}(x_t) - f_{ar{ heta}}(x_t)$$

where $f_{ar{ heta}}$ denotes the average fit over all datasets.

Formally defining the 3 sources of error: Bias

Bias is a measure of how flexible the fit is in capturing the true function $f_{\theta_{\text{true}}}(x)$

$$\mathsf{Bias}(x_t) = f_{\theta_{\mathsf{true}}}(x_t) - f_{\bar{\theta}}(x_t)$$

where $f_{ar{ heta}}$ denotes the average fit over all datasets.

As $f_{\bar{\theta}}$ denotes the average fit over all datasets, it can be expressed by $f_{\bar{\theta}}(x_t) = E_{\text{train}}[f_{\hat{\theta}}(x_t)]$

Formally defining the 3 sources of error: Variance

Variance of the fit is a measure of the variation in the fits when trained across different training sets.

Formally defining the 3 sources of error: Variance

Variance of the fit is a measure of the variation in the fits when trained across different training sets.

Variance of the fit can be defined by

$$\operatorname{var}(f_{\hat{\theta}}(x_t)) = E_{\mathsf{train}}[(f_{\hat{\theta}}(x) - f_{\bar{\theta}}(x_t))^2]$$

where $f_{\hat{\theta}}(x) - f_{\bar{\theta}}(x_t)$ denotes the deviation that a specific fit has from the average.

Now we will see how, $E_{train}[\text{at a point } x_t] = \sigma^2 + [\text{bias}(f_{\hat{\theta}}(x_t))]^2 + \text{var}(f_{\hat{\theta}}(x_t))$ where, given a training set, the parameters $\hat{\theta}$ of the fit are learned as $f_{\hat{\theta}}$ and, the prediction at a point x_t for the model trained on that training set is $f_{\hat{\theta}}(x_t)$

Prediction Error at a point x_t can be calculated using the squared loss function.

Prediction error at
$$x_t = (y_t - f_{\hat{\theta}(train)}(x_t))^2$$

To find the "Expected Prediction Error" at a point x_t we average out the prediction error at that point over all possible learned models. This can be done by finding the expectation of prediction error for that point over all possible training datasets (train) and labels for that point (y_t).

Expected prediction error at
$$x_t = E_{train,y_t}[(y_t - f_{\hat{\theta}(train})(x_t))^2]$$

Expected prediction error at
$$x_t = E_{train,y_t}[(y_t - f_{\hat{\theta}(train)}(x_t))^2]$$

Expected prediction error at
$$x_t = E_{train,y_t}[(y_t - f_{\hat{\theta}(train)}(x_t))^2]$$

= $E_{train,y_t}[((y_t - f_{\theta(true)}(x_t)) + (f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2]$

Expected prediction error at
$$x_t = E_{train,y_t}[(y_t - f_{\hat{\theta}(train)}(x_t))^2]$$

$$= E_{train,y_t}[(\underbrace{(y_t - f_{\theta(true)}(x_t))}_{\text{a}} + \underbrace{(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))}_{\text{b}})^2]$$

Expected prediction error at
$$x_t = E_{train,y_t}[(y_t - f_{\hat{\theta}(train)}(x_t))^2]$$

$$= E_{train,y_t}[(\underbrace{(y_t - f_{\theta(true)}(x_t))}_{a} + \underbrace{(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))}_{b})^2]$$

$$= E_{train,y_t}[(a+b)^2]$$

Expected prediction error at
$$x_t = E_{train,y_t}[(y_t - f_{\hat{\theta}(train)}(x_t))^2]$$

$$= E_{train,y_t}[(\underbrace{(y_t - f_{\theta(true)}(x_t))}_{a} + \underbrace{(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))}_{b})^2]$$

$$= E_{train,y_t}[(a+b)^2]$$

$$= E_{train,y_t}[a^2 + 2ab + b^2]$$

$$E_{train,y_t}[a^2] = E_{train,y_t}[(y_t - f_{\theta(true)}(x_t))^2]$$

$$\begin{split} E_{train,y_t}[a^2] &= E_{train,y_t}[(y_t - f_{\theta(true)}(x_t))^2] \\ &\qquad \qquad \text{(Since there is no dependence on training set)} \\ &= E_{y_t}[(y_t - f_{\theta(true)}(x_t))^2] \end{split}$$

$$\begin{split} E_{train,y_t}[a^2] &= E_{train,y_t}[(y_t - f_{\theta(true)}(x_t))^2] \\ &\quad (\because \text{there is no dependence on training set}) \\ &= E_{y_t}[\underbrace{(y_t - f_{\theta(true)}(x_t))^2]}_{\epsilon_t^2} \\ &= E_{y_t}[\epsilon_t^2] \end{split}$$

$$E_{train,y_t}[a^2] = E_{train,y_t}[(y_t - f_{\theta(true)}(x_t))^2]$$

$$(\because \text{ there is no dependence on training set})$$

$$= E_{y_t}[\underbrace{(y_t - f_{\theta(true)}(x_t))^2}]$$

$$= E_{y_t}[\epsilon_t^2]$$

$$= \sigma^2(\text{By definition})$$

$$E_{train,y_t}[a^2] = E_{train,y_t}[(y_t - f_{\theta(true)}(x_t))^2]$$

$$(\because \text{ there is no dependence on training set})$$

$$= E_{y_t}[\underbrace{(y_t - f_{\theta(true)}(x_t))^2}]$$

$$= E_{y_t}[\epsilon_t^2]$$

$$= \sigma^2(\text{By definition})$$

$$E_{train,y_t}[a^2] = \sigma^2.....(\text{Eqn. 2})$$

$$E_{train,y_t}[ab] = E_{train,y_t}[(y_t - f_{\theta(true)}(x_t))(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))]$$

$$E_{train,y_t}[ab] = E_{train,y_t}[\underbrace{(y_t - f_{\theta(true)}(x_t))}_{\epsilon_t}(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))]$$

$$\begin{split} E_{train,y_t}[ab] &= E_{train,y_t}[\underbrace{(y_t - f_{\theta(true)}(x_t))}_{\epsilon_t}(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= E_{train,y_t}[\epsilon_t(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))] \end{split}$$

$$\begin{split} E_{train,y_t}[ab] &= E_{train,y_t}[\underbrace{(y_t - f_{\theta(true)}(x_t))}_{\epsilon_t}(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= E_{train,y_t}[\epsilon_t(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &(\because \epsilon_t \text{ and } (f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t)) \text{ are independent)} \\ &= E_{train,y_t}[\epsilon_t] \times E_{train,y_t}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))] \end{split}$$

$$\begin{split} E_{train,y_t}[ab] &= E_{train,y_t}[\underbrace{(y_t - f_{\theta(true)}(x_t))}_{\epsilon_t}(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= E_{train,y_t}[\epsilon_t(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &(\because \epsilon_t \text{ and } (f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t)) \text{ are independent}) \\ &= \underbrace{E_{train,y_t}[\epsilon_t]}_{=0} \times E_{train,y_t}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= 0 \end{split}$$
(By definition ϵ_t has mean 0)

 $E_{train, v_t}[ab] = 0.....$ (Eqn. 3)

$$E_{train,y_t}[ab] = E_{train,y_t}[\underbrace{(y_t - f_{\theta(true)}(x_t))}_{\epsilon_t}(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))]$$

$$= E_{train,y_t}[\epsilon_t(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))]$$

$$(\because \epsilon_t \text{ and } (f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t)) \text{ are independent})$$

$$= \underbrace{E_{train,y_t}[\epsilon_t]}_{=0} \times E_{train,y_t}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))]$$
(By definition ϵ_t has mean 0)

$$E_{train,y_t}[b^2] = E_{train,y_t}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2]$$

$$E_{train,y_t}[b^2] = E_{train,y_t}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2]$$

$$(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t) \text{ is independent of } y_t)$$

$$= E_{train}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2]$$

$$\begin{split} E_{train,y_t}[b^2] &= E_{train,y_t}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2] \\ (f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t) \text{ is independent of } y_t) \\ &= E_{train}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2] \\ &= MSE(f_{\hat{\theta}(train)}(x_t)) \end{split}$$

$$\begin{split} E_{train,y_t}[b^2] &= E_{train,y_t}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2] \\ (f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t) \text{ is independent of } y_t) \\ &= E_{train}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2] \\ &= MSE(f_{\hat{\theta}(train)}(x_t)) \\ E_{train,y_t}[b^2] &= MSE(f_{\hat{\theta}(train)}(x_t)) \dots (Eqn. 4) \end{split}$$

From Eqn. 1, 2, 3 and 4, we get,

Expected prediction error at $x_t = \sigma^2 + MSE(f_{\hat{\theta}(train)}(x_t))$

Now, we will further simplify the MSE term into bias and variance.

$$\mathit{MSE}(f_{\hat{\theta}(\mathit{train})}(x_t)) = E_{\mathit{train}}[(f_{\theta(\mathit{true})}(x_t) - f_{\hat{\theta}(\mathit{train})}(x_t))^2]$$

$$MSE(f_{\hat{\theta}(train)}(x_t)) = E_{train}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2]$$
$$= E_{train}[((f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t)) + (f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t)))^2]$$

$$MSE(f_{\hat{\theta}(train)}(x_t)) = E_{train}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2]$$

$$= E_{train}[(\underbrace{(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))}_{\alpha} + \underbrace{(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))}_{\beta})^2]$$

$$MSE(f_{\hat{\theta}(train)}(x_t)) = E_{train}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2]$$

$$= E_{train}[(\underbrace{(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))}_{\alpha} + \underbrace{(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))}_{\beta})^2]$$

$$= E_{train}[(\alpha + \beta)^2]$$

$$MSE(f_{\hat{\theta}(train)}(x_t)) = E_{train}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2]$$

$$= E_{train}[(\underbrace{(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))}_{\alpha} + \underbrace{(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))}_{\beta})^2]$$

$$= E_{train}[(\alpha + \beta)^2]$$

$$= E_{train}[\alpha^2 + 2\alpha\beta + \beta^2]$$

$$\begin{split} \mathit{MSE}(f_{\hat{\theta}(train)}(x_t)) &= E_{train}[(f_{\theta(true)}(x_t) - f_{\hat{\theta}(train)}(x_t))^2] \\ &= E_{train}[(\underbrace{(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))}_{\alpha} + \underbrace{(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))}_{\beta})^2] \\ &= E_{train}[(\alpha + \beta)^2] \\ &= E_{train}[\alpha^2 + 2\alpha\beta + \beta^2] \\ &\text{(Using Linearity of Expectation)} \\ &= E_{train}[\alpha^2] + 2E_{train}[\alpha\beta] + E_{train}[\beta^2] \dots (Eqn. 5) \end{split}$$

$$E_{train}[\alpha^2] = E_{train}[(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))^2]$$

$$\begin{aligned} E_{train}[\alpha^2] &= E_{train}[(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))^2] \\ &= E_{train}[(f_{\theta(true)}(x_t) - E_{train}[f_{\hat{\theta}(train)}(x_t)]^2] \end{aligned}$$

$$\begin{split} E_{train}[\alpha^2] &= E_{train}[(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))^2] \\ &= E_{train}[(f_{\theta(true)}(x_t) - E_{train}[f_{\hat{\theta}(train)}(x_t)]^2] \\ &= E_{train}[bias(f_{\hat{\theta}}(x_t))^2] \end{split} \tag{By definition of bias}$$

$$\begin{split} E_{train}[\alpha^2] &= E_{train}[(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))^2] \\ &= E_{train}[(f_{\theta(true)}(x_t) - E_{train}[f_{\hat{\theta}(train)}(x_t)]^2] \\ &= E_{train}[bias(f_{\hat{\theta}}(x_t))^2] \qquad \qquad \text{(By definition of bias)} \\ &= bias(f_{\hat{\theta}}(x_t))^2 \\ &\quad \text{($:$`$ bias is not a function of training data)} \end{split}$$

$$\begin{split} E_{train}[\alpha^2] &= E_{train}[(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))^2] \\ &= E_{train}[(f_{\theta(true)}(x_t) - E_{train}[f_{\hat{\theta}(train)}(x_t)]^2] \\ &= E_{train}[bias(f_{\hat{\theta}}(x_t))^2] \qquad \text{(By definition of bias)} \\ &= bias(f_{\hat{\theta}}(x_t))^2 \\ &\text{($:$ bias is not a function of training data)} \\ E_{train}[\alpha^2] &= bias(f_{\hat{\theta}}(x_t))^2 \dots (Eqn. 6) \end{split}$$

$$\begin{aligned} &E_{train}[\alpha\beta] \\ &= E_{train}[(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))] \end{aligned}$$

$$\begin{split} &E_{train}[\alpha\beta] \\ &= E_{train}[(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= E_{train}[bias_t \times (f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))] \end{split}$$

$$\begin{split} &E_{train}[\alpha\beta] \\ &= E_{train}[(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= E_{train}[bias_t \times (f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= bias_t \times E_{train}[f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t)] \\ &(\because bias_t \text{ is not a function of training data}) \end{split}$$

$$\begin{split} &E_{train}[\alpha\beta] \\ &= E_{train}[(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= E_{train}[bias_t \times (f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= bias_t \times E_{train}[f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t)] \\ &(\because bias_t \text{ is not a function of training data}) \\ &= bias \times \left(E_{train}[f_{\bar{\theta}}(x_t)] - E_{train}[f_{\hat{\theta}(train)}(x_t)] \right) \end{split}$$

$$\begin{split} &E_{train}[\alpha\beta] \\ &= E_{train}[(f_{\theta(true)}(x_t) - f_{\bar{\theta}}(x_t))(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= E_{train}[bias_t \times (f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))] \\ &= bias_t \times E_{train}[f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t)] \\ &(\because bias_t \text{ is not a function of training data}) \\ &= bias \times \left(E_{train}[f_{\bar{\theta}}(x_t)] - E_{train}[f_{\hat{\theta}(train)}(x_t)] \right) \\ &= bias \times (f_{\bar{\theta}}(x_t) - f_{\bar{\theta}}(x_t)) \\ &(\because f_{\bar{\theta}}(x_t) = E_{train}[f_{\hat{\theta}(train)}(x_t)) \end{split}$$

$$E_{train}[\beta^2] = E_{train}[(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))^2]$$

$$\begin{split} E_{train}[\beta^2] &= E_{train}[(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))^2] \\ &= E_{train}[(f_{\hat{\theta}(train)}(x_t) - f_{\bar{\theta}}(x_t))^2] \end{split}$$

$$\begin{aligned} E_{train}[\beta^2] &= E_{train}[(f_{\widehat{\theta}}(x_t) - f_{\widehat{\theta}(train)}(x_t))^2] \\ &= E_{train}[(f_{\widehat{\theta}(train)}(x_t) - f_{\widehat{\theta}}(x_t))^2] \\ &= E_{train}[(f_{\widehat{\theta}(train)}(x_t) - E_{train}[(f_{\widehat{\theta}(train)}(x_t)])^2] \\ &(\because f_{\widehat{\theta}}(x_t) = E_{train}[(f_{\widehat{\theta}(train)}(x_t)]) \end{aligned}$$

$$\begin{split} E_{train}[\beta^2] &= E_{train}[(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))^2] \\ &= E_{train}[(f_{\hat{\theta}(train)}(x_t) - f_{\bar{\theta}}(x_t))^2] \\ &= E_{train}[(f_{\hat{\theta}(train)}(x_t) - E_{train}[(f_{\hat{\theta}(train)}(x_t)])^2] \\ &(\because f_{\bar{\theta}}(x_t) = E_{train}[(f_{\hat{\theta}(train)}(x_t)]) \\ &= variance(f_{\hat{\theta}}(x_t)) \end{split}$$

$$\begin{split} E_{train}[\beta^2] &= E_{train}[(f_{\bar{\theta}}(x_t) - f_{\hat{\theta}(train)}(x_t))^2] \\ &= E_{train}[(f_{\hat{\theta}(train)}(x_t) - f_{\bar{\theta}}(x_t))^2] \\ &= E_{train}[(f_{\hat{\theta}(train)}(x_t) - E_{train}[(f_{\hat{\theta}(train)}(x_t)])^2] \\ & (\because f_{\bar{\theta}}(x_t) = E_{train}[(f_{\hat{\theta}(train)}(x_t)]) \\ &= variance(f_{\hat{\theta}}(x_t)) \\ E_{train}[\beta^2] &= variance(f_{\hat{\theta}}(x_t)).......(Eqn. 8) \end{split}$$

From Eqn. 1 - 8, we get,

Expected prediction error at x_t

$$= \sigma^2 + MSE(f_{\hat{\theta}(train)}(x_t))$$

$$=\sigma^2 + bias(f_{\hat{\theta}}(x_t))^2 + variance(f_{\hat{\theta}}(x_t))$$