Logik

Äquival	Äquivalente Formeln ⇔		
$A \wedge B$	$B \wedge A$	Kommutativ	
$A \vee B$	$B \vee A$		
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ	
$A \lor (B \lor C)$	$(A \lor B) \lor C$		
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv	
$A \lor (B \land C)$	$(A \lor B) \land (A \lor C)$	Distributiv	
$A \wedge A$	A	Idempotenz	
$A \lor A$	A		
$\neg \neg A$	A	Involution	
$\neg (A \land B)$	$\neg A \vee \neg B$	DE-MORGAN	
$\neg(A \lor B)$	$\neg A \wedge \neg B$		
$A \wedge (\mathbf{A} \vee B)$	A	Absorption	
$A \vee (\mathbf{A} \wedge B)$	A		
$A \Rightarrow B$	$\neg \mathbf{A} \vee B$		
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination	
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$		

Aussagenlogik

Aussage Satz/Formel entweder wahr oder falsch; "-form" bei zu wenig Infos.

Theoreme sind wahre Aussagen.

Junktoren

Negation $\neg A$ "Nicht" (!, ~, ->>)

Konjunkt. $A \wedge V$ "und" (&&, \Box)

Disjunkt. $A \vee B$ "oder" (\square , \Longrightarrow)

Implikat. $A \Rightarrow B$ "Wenn, dann" , "zwingt" $(\rightarrow, \mathbf{if})$

Äquiv. $A \Leftrightarrow B$ "Genau dann, wenn" $(\leftrightarrow, \equiv, ==, \implies)$

Wahrheitswertetabelle mit 2^n Zeilen für n Atome. Konstruktionssystematik: Frequenz pro Atom verdoppeln.

A	B	$\neg A$	$A \wedge B$	$A\vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Axiomatik

Axiome als wahr angenommene Aussagen; an Nützlichkeit gemessen. Anspruch, aber nach GÖDELS Unvollständigkeitssatz nicht möglich:

- Unabhängig
- Vollständig
- Widerspruchsfrei

Prädikatenlogik

Quantoren Innerhalb eines Universums:

Existenzq. ∃ "Mind. eines"

Individuum ∃! "Genau eines"

Allq. ∀ "Für alle"

Quantitative Aussagen

Erfüllbar $\exists x F(x)$

Widerlegbar $\exists x \neg F(x)$

Tautologie $\top = \forall x F(x)$ (alle Schlussregeln)

Kontradiktion $\perp = \forall x \neg F(x)$

Klassische Tautologien	Bezeichnung	
$A \vee \neg A$	Ausgeschlossenes Drittes	
$A \land (A \Rightarrow B) \Rightarrow B$	Modus ponens	
$(A \land B) \Rightarrow A$	Abschwächung	
$A \Rightarrow (A \lor B)$		

Negation (DE-MORGAN)

$$\neg \exists x F(x) \Leftrightarrow \forall x \neg F(x)$$

 $\neg \forall x F(x) \Leftrightarrow \exists x \neg F(x)$

Häufige Fehler

- $U = \emptyset^{\complement}$ nicht notwendig
- $\exists x (P(x) \Rightarrow Q(x)) \not\Rightarrow \exists x P(x)$
- $\neg \exists x \exists y P(x,y) \Leftrightarrow \forall x \neg \exists y P(x,y)$

Beweistechniken

Achtung: Aus falschen Aussagen können wahre *und* falsche Aussagen folgen.

Direkt $A \Rightarrow B$ Angenommen A, zeige B. Oder: Angenommen $\neg B$, zeige $\neg A$ (*Kontraposition*).

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Fallunters. Aufteilen, lösen, zusammenführen. O.B.d.A = "Ohne Beschränkung der Allgemeinheit"

Widerspruch $(\neg A \Rightarrow \bot) \Rightarrow A$ Angenommen $A \land \neg B$, zeige Kontradiktion. (Reductio ad absurdum)

Ring (Transitivität der Implikation)

$$A \Leftrightarrow B \Leftrightarrow C \Leftrightarrow \cdots$$

$$\equiv A \Rightarrow B \Rightarrow C \Rightarrow \cdots \Rightarrow \mathbf{A}$$

Induktion $F(n) \quad \forall n \geq n_0 \in \mathbb{N}$

1. **Anfang:** Zeige $F(n_0)$.

2. Schritt: Angenommen F(n) (Hypothese), zeige F(n+1) (Behauptung).

Starke Induktion:

Angenommen $F(k) \ \forall n_0 \leq k \leq n \in \mathbb{N}.$

Häufige Fehler

- Nicht voraussetzen, was zu beweisen ist
- Äquival. von Implikat. unterscheiden (Zweifelsfall immer Implikat.)

Naive Mengenlehre

Mengen Zusammenfassung versch. Objekte "Elemente".

Element $x \in M$ "enthält"

Leere M. $\emptyset = \{\}$

Universum ${\cal U}$

Einschränkung $\{x \mid F(x)\}$

Relationen

Gleichheit M = N $\Leftrightarrow M \subseteq N \land N \subseteq M$

Mächtigkeit

$$|M| egin{cases} = n & ext{endlich} \ \geq \infty & ext{unendlich} \ = |N| \Leftrightarrow \exists f_{ ext{bijekt.}} : M
ightarrow N \end{cases}$$

Abzählbar $\exists f_{\text{surj.}} : \mathbb{N} \to M$

- Endliche Mengen, \emptyset , \mathbb{N} , \mathbb{Z} , \mathbb{Q}
- $M_{\text{abz.}} \wedge N_{\text{abz.}} \Rightarrow (M \cup N)_{\text{abz.}}$ (= $\{m_1, n_1, m_2, n_2, \dots\}$)
- $M_{\text{abz.}} \wedge N \subseteq M \Rightarrow N_{\text{abz.}}$

- $f(1) = 0, \mathbf{r}_{11}r_{12}r_{13}r_{14} \dots$ $f(2) = 0, r_{21} \mathbf{r}_{22} r_{23}r_{24} \dots$
- $f(3) = 0, r_{21}r_{22}r_{23}r_{24}...$ $f(3) = 0, r_{31}r_{32} \mathbf{r_{33}} r_{34}...$
- $f(4) = 0, r_{41}r_{42}r_{43} \mathbf{r}_{44} \dots$

•

(CANTORS Diagonalargumente)

Operationen

Vereinig. $M \cup N$ $\Leftrightarrow \{x \mid x \in M \lor x \in N\}$

Schnitt $M \cap N \Leftrightarrow \{x \mid x \in M \land x \in N\} (= \emptyset \text{ "disjunkt"})$

 $\mathbf{Diff.}\ M \setminus N \ \Leftrightarrow \{x \mid x \in M \land x \notin N\}$

Komplement M^{\complement} $\{x \mid x \notin M\}$ \bigcirc

Alle logischen Äquivalenzen gelten auch für die Mengenoperationen.

Häufige Fehler

• $\forall M:\emptyset\subseteq M$, nicht $\forall M:\emptyset\in M$

Ouantitative Relationen

Sei Indexmenge I und Mengen $M_i \quad \forall i \in I.$

$$\bigcup_{i \in I} M_i := \{ x \mid \exists i \in I : x \in M_i \}$$
$$\bigcap_{i \in I} M_i := \{ x \mid \forall i \in I : x \in M_i \}$$

Neutrale Elemente

- $\bigcup_{i \in \emptyset} M_i = \emptyset$ ("hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Potenzmenge

$$\begin{split} \mathcal{P}(M) := & \{ N \mid N \subseteq M \} \\ |\mathcal{P}(M)| = & 2^{|M|} \quad (\in / \notin \text{bin\"ar}) \end{split}$$

Abbildungen

Abbildung f von X (Definitionsb.) nach Y (Werteb.) ordnet jedem $x \in X$ eindeutig ein $y \in Y$ zu.

$$\mathbf{f}:X\to Y$$

Graph $gr(f) := \{(x, f(x)) | x \in X\}$

Identität

$$id_A : A \to A$$

 $id_A(a) := a \quad \forall a \in A$

Umkehrfunktion $f^{-1}: Y \to X$ wenn f bijektiv und $(f \circ f^{-1})(y) = y$

Eigenschaften

Injektiv
$$\forall x_1, x_2 \in X :$$

 $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

Surjektiv $\forall y \in Y \exists x \in X : \mathbf{y} = \mathbf{f}(\mathbf{x})$

Bijektiv wenn injektiv und surjektiv

Verkettung $f \circ g : A \to C$

$$(f\circ g)(a)=f(g(a))$$

(der Reihenfolge nach)

$$A \xrightarrow{f \land g} C$$

Relationen

Kartesisches Produkt

$$X_1 \times \cdots \times X_n := \{(x_1, \cdots, x_n) \mid x_1 \in X_1, \cdots, x_n \in X_n\}$$

Relation \sim von/auf M nach N ist Teilmenge $R \subseteq M \times N$. $(R' \subseteq N \times P)$

$$m \sim n \Leftrightarrow (m, n) \in R$$

$$\equiv$$
 Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$ $\Leftrightarrow \mathrm{id}_M \subseteq R$

Irreflexiv $\forall x \in M : (x, x) \notin R$ $\Leftrightarrow \mathrm{id}_M \cap R = \emptyset$

$$\equiv$$
 Sym. $\forall (x, y) \in R : (y, x) \in R$
 $\Leftrightarrow R \subseteq R^{-1}$

Antis. $\forall x, y : ((x,y) \in R \land (y,x) \in$ $R) \Rightarrow \mathbf{x} = \mathbf{v}$ $\Leftrightarrow R \cap R' \subseteq \mathrm{id}_M$

Vollst. $\forall \mathbf{x}, \mathbf{y} \in M : (x, y) \in R \vee \mathbf{Reelle Zahlen} \mathbb{R}$ $(y,x) \in R$ $\Leftrightarrow R \cup R^{-1} = M \times M$

Spezielle Relationen

$$\begin{array}{c} \textbf{Inverse Relation} \ R^{-1} \ \ \text{mit} \ R \in M \times \\ N := \\ \{(n,m) \in N \times M \mid (m,n) \in R \} \end{array}$$

Komposition R; R mit $R' \in N \times P :=$ $\{(m,p)\in M\times P\mid \exists n\in N:$ $(m,n) \in R \land (n,p) \in R'$

Leere Relation ∅

Identität $id_M := \{(m, m) \mid m \in M\}$

Allrelation $M \times M$

 $\ddot{\mathbf{A}}$ quivalenzrelation \equiv reflexiv, sym- Multiplikation $(\mathbb{R},*)$ metrisch und transitiv. (Gleichheit***)

Äquivalenzklasse $[m]_{=}$ auf M, Vertreter $m \in M$.

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$\Leftrightarrow [m]_{\equiv} = [x]_{\equiv}$$

Zerlegung $\mathcal{N} \subset \mathcal{P}(M)$ von M.

- ∅ ∉ N
- *M* = ∪*N*
- $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
- (Korrespondiert zur ÄR.)

Quotient (\mathbf{M}/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv):=\{[m]_\equiv\mid m\in M\}$$

Analysis

Angeordnete Körper

(Gilt auch für \mathbb{Z} und \mathbb{Q} .)

Körperaxiome $(\mathbb{R},+,*)$ $a,b,c\in\mathbb{R}$

Addition $(\mathbb{R}, +)$

Assoziativität a + (b + c) = (a + b) + c

Kommutativität a+b=b+a **Neutrales Element Null** $a+0=a \quad 0 \in \mathbb{R}$

Inverses "Negativ" $a + (-a) = 0 \quad (-a) \in \mathbb{R}$

Assoziativität a * (b * c) = (a *b) * c

Kommutativität a * b = b * a

Neutrales Element Eins $a * 1 = a \quad 1 \in \mathbb{R} \setminus \{0\}$

Inverses "Kehrwert" $a*(a^{-1})=1$ $a \neq \mathbf{0}, (a^{-1}) \in \mathbb{R}$

Distributivität

$$\mathbf{a} * (b+c) = \mathbf{a} * b + \mathbf{a} * c$$

Totale Ordnung

Transitivität

$$a < b \land b < c \Rightarrow a < c$$

Trichotomie Entweder

a < b oder a = b oder b < a \Rightarrow Irreflexivität ($a < b \Rightarrow a \neq b$)

Addition

$$a < b \Rightarrow a + c < b + c$$

Multiplikation

$$a < b \Rightarrow a * c < b * c \quad 0 < c$$

Bei Additiven oder Multiplikativen Inversion dreht sich die Ungleichung.

ARCHIMEDES Axiom

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$$
$$n > \frac{1}{x}$$

Teilbarkeit

 $a|b \Leftrightarrow \exists n \in \mathbb{Z} : b = a * n$ $(\Rightarrow \sqrt{2} \notin \mathbb{Q}$, da mit $\frac{a}{\lambda} = \sqrt{2}$ nicht teilerfremd)

Häufige Fehler

- Nicht durch Null teilen/kürzen
- Nicht -x < 0 annehmen
- Multiplikation mit negativen Zahlen kehrt Ungleichungen

Operationen

Brüche

- \bullet $\frac{a}{b} * \frac{c}{d} = \frac{a*c}{b*d}$
- $\frac{a}{b} \stackrel{*d}{=} \frac{a*d}{b*d}$
- \bullet $\frac{a}{a} + \frac{b}{a} = \frac{a+b}{a}$
- $\frac{a}{b} + \frac{c}{d} = \frac{a*d+c*b}{b*d}$

Wurzeln $b^n = a \Leftrightarrow b = \sqrt[n]{a}$

- $\sqrt[n]{\mathbf{a} * \mathbf{b}} = \sqrt[n]{\mathbf{a}} * \sqrt[n]{\mathbf{b}}$
- $\sqrt[n]{\sqrt[m]{a}} = \sqrt[n*m]{a}$
- $\sqrt[n]{a} < \sqrt[n]{b}$ 0 < a < b
- $\sqrt[n+1]{a} < \sqrt[n]{a}$ 1 < a
- $\sqrt[n]{a} < \sqrt[n+1]{b}$ 0 < a < 1

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

Potenzen $a^{\frac{x}{y}} = \sqrt[y]{a^x}$

- $a^{\mathbf{x}} * b^{\mathbf{x}} = (a * b)^{\mathbf{x}}$
- $\bullet \ a^x * a^y = a^{x+y}$
- \bullet $(a^x)^y = a^{x*y}$

Intervalle

Sei $A \subseteq \mathbb{R}, A \neq \emptyset, a_0 \in A$.

("Ecken sind mit enthalten")

Offen $(a; b) := \{x \in \mathbb{R} \mid a < x < b\}$ (Bei ∞ immer offen, da $\infty \notin \mathbb{R}$)

Kleinstes/Größtes Element

Minimum $min(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a_0} \le a$

Maximum $max(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a} \leq a_0$ $(\nexists^{\min}/_{\max}(a;b))$

Beschränktheit A heißt

Oben beschränkt $\exists s \in \mathbb{R} \forall a \in A : \mathbf{a} \leq s$

Unten beschränkt $\exists s \in \mathbb{R} \forall a \in A : s \leq a$

Vollständigkeit

Infimum (klein) $\inf(A)$:= $\max\{s \in \mathbb{R} \mid \forall a \in A : s \le a\}$

Supremum (groß) $\sup(A)$:= $\min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \leq s\}$

Vollständigkeitsaxiom $\exists \sup(A)$.

$$\begin{array}{c|c} \text{Untere} & \min & \max & \text{Obere} \\ \text{Schranken} & & A & \text{Schranken} \\ \hline & \inf & & \sup & \\ \end{array}$$

Folgen

Folge $(\mathbf{a_n})_{\mathbf{n} \in \mathbb{N}}$ in A ist eine Abb. $f: \mathbb{N} \to A$ mit $a_n = f(n)$.

Arithmetische Folge $a_{n+1} = a_n + d$ $a_n = a + (n-1) * d \quad d, a \in \mathbb{R}$

Geometrische Folge $a_{n+1} = a_n * q$ $a_n = q^n \quad q \in \mathbb{R}$

Rekursion a_n ist auf a_{n-1} definiert.

$$a_{n+1} = F(n, a_n) \quad \forall n \in \mathbb{N}$$

 $F: A \times \mathbb{N} \to A$

Primfaktorzerlegung $n \in \mathbb{N}, n \geq 2$

$$\exists p_1,\ldots,p_n\in\mathbb{P}:n=\mathbf{p_1}*\cdots*\mathbf{p_n}$$

Summen und Produkte

Summe $\sum_{i=1}^{n} i = 1 + 2 + \cdots + n$ Produkt $\prod_{i=1}^{n} i = 1 * 2 * 3 * \cdots * n$

Fakultät $n! = \prod^n i \ (0! = 1)$ GAUSSCHE Summe $n \in \mathbb{N}$

 $\sum_{i=1}^{n} i = \frac{n * (n+1)}{2}$

Geom. Summe $q \in \mathbb{R} \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

Bernoulli Unglei. $n \in \mathbb{N}_0, x \geq -1$

$$(1+x)^n \ge 1 + n * x$$

Binom. Koeff. $\binom{n}{k} = \frac{n!}{k!*(n-k)!}$

- Rechnen: $\frac{n>k}{0<(n-k)}$
- $\binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

Binomischer Satz $n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k} * b^k$$

Grenzwerte

$$\textbf{Betrag} \quad |x| := \left\{ \begin{array}{ccc} & x & 0 \leq x \\ - & x & x < 0 \end{array} \right.$$

Lemma |x * y| = |x| * |y|

Dreiecksungleichung $|x+y| \le |x| + |y|$

Umgekehrte Dreiecksungleichung $||x|-|y|| \leq |x-y|$

Konvergenz

Sei $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}, a\in\mathbb{R}$.

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow$$

$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \ge n_0 :$$

$$|\mathbf{a_n} - \mathbf{a}| \le \varepsilon$$

$$(a - \varepsilon \le a_n \le a + \varepsilon)$$

 $\begin{array}{c|c} \text{Epsilonumgebung} \\ \hline a-\varepsilon & a & a+\varepsilon \end{array}$

• $a_n \xrightarrow{n \to \infty} a \Leftrightarrow \lim_{n \to \infty} a_n = 0$

Beschränkt + monoton \Rightarrow konvergent:

$$\lim_{n \to \infty} a_n = \begin{cases} \inf\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\text{fall.}} \\ \sup\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\text{steig.}} \end{cases}$$

Nullfolgen $\lim_{n\to\infty} a_n = \mathbf{0}$

- $\lim_{n\to\infty} \frac{1}{n^k} = \mathbf{0}$ $k \in \mathbb{N}$
- $\lim_{n\to\infty} n * q^n = \mathbf{0}$

Folgen gegen 1

- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ a>0
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Bestimmt Divergent

$$a_n \xrightarrow{n \to \infty} \infty \Leftrightarrow$$

$$\forall R > 0 \exists n \ge n_0 \in \mathbb{N} : a_n \ge R$$

$$a_n \xrightarrow{n \to \infty} -\infty \Leftrightarrow$$

$$\forall R < 0 \exists n \ge n_0 \in \mathbb{N} : a_n \le R$$

$$\lim_{n\to\infty}q^n\begin{cases}=0&(-1;1)\\=1&=1\\\geq\infty&>1\\\mathrm{div.}&\leq-1\end{cases}$$

Monotonie

Monoton fallend

$$a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$$

Monoton steigend

$$a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$$

Beschränktheit

 $\exists k > 0 \forall n \in \mathbb{N} : |\mathbf{a_n}| \le \mathbf{k}$

- Konvergent ⇒ beschränkt
- Unbeschränkt ⇒ divergent

Grenzwertsätze

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

• $a_n \xrightarrow{n \to \infty} a \land a_n \xrightarrow{n \to \infty} b$ $\Rightarrow a = b$ (Max. einen Grenzw.) • $a = \mathbf{0} \wedge (b_n)_{\text{beschr.}}$ $\Leftrightarrow \lim_{n \to \infty} a_n * b_n = \mathbf{0}$

• $a_n \le b_n \Leftrightarrow a \le b$ (nicht <)

$$\bullet \lim_{n \to \infty} \begin{cases} a_n \pm b_n = a \pm b \\ a_n * b_n = a * b \\ a_n * c = a * c \\ \sqrt[k]{a_n} = \sqrt[k]{a} \\ |a_n| = |a| \end{cases}$$

Einschachtelungssatz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

Spezielle Folgen

Teilfolge streng mnt. Folge $(b_k)_{n \in \mathbb{N}}$ mit $(n_k)_{k \in \mathbb{N}}$, sodass $b_k = \mathbf{a_{nk}} \quad \forall k \in \mathbb{N}$.

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n \in \mathbb{N}} \exists (a_{nk})_{k \in \mathbb{N}_{\text{mnt.}}}$$
 (nicht streng!)

 ${f H\ddot{a}ufungspunkt}$ h mit einer Teilfolge

$$\lim_{n\to\infty} a_{n\,k} = h$$

• $\lim_{n\to\infty} a_n = a \Leftrightarrow \exists ! : h = a$

BOLZANO-WEIERSTRASS

$$(a_n)_{n\in\mathbb{N}_{\text{beschr.}}}\Rightarrow \exists h_{\text{H\"{a}uf.}}$$

(Teilfolge + (beschr.) $\Rightarrow \exists$ Häuf.)

Cauchy-Folge

$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 :$$
 $|a_n - a_m| \le \varepsilon$

(Konv. ohne bekannten Grenzwert)

Vollständigkeit von $\mathbb R$

$$(a_n)_{n\in\mathbb{N}_{\text{Cauchy}}} \Leftrightarrow \exists \lim_{n\to\infty} a_n$$

$$(\exists \lim_{n \to \infty} a_n \Rightarrow (a_n)_{n \in \mathbb{N}_{\mathsf{Cauchy}}}$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_{\mathsf{beschr.}}}$$

$$\Rightarrow \exists h \quad \text{(bw)}$$

$$\Rightarrow \lim_{n \to \infty} a_n = h)$$