Richard Correro

Email | Website | GitHub | LinkedIn

EDUCATION

Stanford University

MS in Statistics

Stanford University

BS in Mathematical and Computational Science

Stanford, CA

June 2022

Stanford, CA

June 2021

EXPERIENCE

Technical Program Manager, Data Engineering

July 2022 - Present

Stanford, CA

Stanford University School of Medicine

- Developed a containerized, distributed, cloud-native data pipeline to process hundreds of millions of hectares of satellite imagery daily (Docker, Kubernetes, Redis, RabbitMQ, Google Cloud Platform).
- System is being used by the Brazilian Federal Labor Prosecution Office to target inspections to identify and prevent modern slavery and illegal deforestation in the Amazon rainforest.

Graduate Research Assistant

June 2021 – June 2022

Stanford Human Trafficking Data Lab

Stanford, CA

- Designed, trained, and deployed computer vision algorithms to identify remote commodity production sites using satellite imagery (PyTorch, GDAL).
- Article about my work here.
- Papers forthcoming.

Research Assistant

June 2020 - June 2021

Stanford Center for Ocean Solutions

Stanford, CA

- Created a deep-learning-based computer vision algorithm to identify small fishing vessels in satellite imagery (PyTorch, GDAL, OpenCV).
- Analyzed entire near-shore region of the Peruvian EEZ and identified previously unknown locations where **illegal**, **unreported**, **or unregulated fishing** was occurring (Google Cloud Platform, Statsmodels, R).
- Code available here.
- Article about my work here.
- · Paper forthcoming.

Projects

Light-Pipe | Python, GDAL

- Open-source Python package designed to efficiently create analysis-ready samples from georeferenced data for use with computer vision models and to facilitate the deployment of computer vision models at scale.
- Super fast and efficient, performing critical geospatial data processing tasks at least an order of magnitude faster than
 existing systems.
- Scales effortlessly, being built from the ground-up to support concurrency in all its forms.
- Light-weight, with only one dependency, designed to do its job and get out of the way.
- Code available here.

"Weak Supervision with Incremental Source Accuracy Estimation"

- Developed a method to estimate the dependency structure and accuracy of weak supervision sources incrementally using precision matrices and robust principal components analysis.
- Allows for model training with weakly-supervised training data in on-line settings.
- Preprint available here.
- Code available here.

SKILLS

Languages: Python, C++, SQL, R, BASH

Tools: Git, Docker, Kubernetes, Apache Beam, Apache Spark, PostgreSQL, PostGIS, Rabbit MQ, Redis, Google Cloud Platform, RESTful APIs

Libraries: GDAL, Rasterio, Pytorch, Tensorflow, Scikit-Learn, OpenCV, Statsmodels, NumPy, Pandas, Flask, Celery

AWARDS

National Merit Scholar April 2017