# ANALOG ELECTRONIC CIRCUITS (SEMESTER - 4)

### CS/B.Tech(ECE-N)/SEM-4/EC-401/09

|   |  |  | ch | 7    |      |  |
|---|--|--|----|------|------|--|
|   |  |  |    |      |      |  |
| _ |  |  |    | <br> | <br> |  |

| 2. | Signature of the Officer-in-Charge | . No | , |  |  |  |  |  |  |  |
|----|------------------------------------|------|---|--|--|--|--|--|--|--|
|    | Roll No. of the<br>Candidate       |      |   |  |  |  |  |  |  |  |

CS/B.Tech(ECE-N)/SEM-4/EC-401/09

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009
ANALOG ELECTRONIC CIRCUITS (SEMESTER - 4)

Time: 3 Hours [Full Marks: 70

#### **INSTRUCTIONS TO THE CANDIDATES:**

- 1. This Booklet is a Question-cum-Answer Booklet. The Booklet consists of **32 pages**. The questions of this concerned subject commence from Page No. 3.
- 2. a) In **Group A**, Questions are of Multiple Choice type. You have to write the correct choice in the box provided **against each question**.
  - b) For **Groups B** & **C** you have to answer the questions in the space provided marked 'Answer Sheet'. Questions of **Group B** are Short answer type. Questions of **Group C** are Long answer type. Write on both sides of the paper.
- 3. **Fill in your Roll No. in the box** provided as in your Admit Card before answering the questions.
- 4. Read the instructions given inside carefully before answering.
- 5. You should not forget to write the corresponding question numbers while answering.
- 6. Do not write your name or put any special mark in the booklet that may disclose your identity, which will render you liable to disqualification. Any candidate found copying will be subject to Disciplinary Action under the relevant rules.
- 7. Use of Mobile Phone and Programmable Calculator is totally prohibited in the examination hall.
- 8. You should return the booklet to the invigilator at the end of the examination and should not take any page of this booklet with you outside the examination hall, **which will lead to disqualification**.
- 9. Rough work, if necessary is to be done in this booklet only and cross it through.

No additional sheets are to be used and no loose paper will be provided

#### 

Head-Examiner/Co-Ordinator/Scrutineer

4403 (04/06)







# **ENGINEERING & MANAGEMENT EXAMINATIONS. JUNE 2009**

# ANALOG ELECTRONIC CIRCU

**SEMESTER - 4** 

Time: 3 Hours] [Full Marks: 70

#### **GROUP - A**

|    |      |                                                                                                       | ( Multiple Choice '                                                            | Гуре ( | uestions ) |                       |  |  |  |  |  |
|----|------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------|------------|-----------------------|--|--|--|--|--|
| 1. | Cho  | Choose the correct alternatives for any <i>ten</i> of the following:                                  |                                                                                |        |            |                       |  |  |  |  |  |
|    | i)   | The ${\cal G}$ point in a transistor amplifier is selected in the middle of the active region because |                                                                                |        |            |                       |  |  |  |  |  |
|    |      | a) it gives better stability                                                                          |                                                                                |        |            |                       |  |  |  |  |  |
|    |      | b) the circuit needs a small $d.c.$ voltage                                                           |                                                                                |        |            |                       |  |  |  |  |  |
|    |      | c) the circuit needs less number of resistors                                                         |                                                                                |        |            |                       |  |  |  |  |  |
|    |      | d)                                                                                                    | it gives a distortion less o/p.                                                |        |            |                       |  |  |  |  |  |
|    | ii)  |                                                                                                       | ass <i>B</i> push-pull power amplifies wn from the power supply under 10 watts |        | _          | The <i>d.c.</i> power |  |  |  |  |  |
|    | iii) | The                                                                                                   | value of $\boldsymbol{V}_0$ is                                                 |        |            |                       |  |  |  |  |  |

dia.

a) 
$$-3V_1 + 0.5V_2$$

c) 
$$1.5 V_2 - 2.25 V_1$$

d) 
$$2V_2 - 3V_1$$
.



| iv)   | The   | current $I_{CEO}$ is              |         | WEST SERVED                     |         |
|-------|-------|-----------------------------------|---------|---------------------------------|---------|
|       | a)    | the emitter current in the CC     | connec  | ted transistor with zero base c | urrent  |
|       | b)    | the collector current in the      | CE co   | onnected transistor with zero   | emitter |
|       |       | current                           |         |                                 |         |
|       | c)    | the collector current in the CE   | conne   | cted transistor with zero base  | current |
|       | d)    | none of these.                    |         |                                 |         |
| v)    | Emit  | tter follower circuit is an examp | le of   |                                 |         |
|       | a)    | positive feedback                 | b)      | negative feedback               |         |
|       | c)    | without any feedback              | d)      | none of these.                  |         |
| vi)   | A tw  | o stage amplifier with negative   | feedba  | ck has an overshoot when the    | damping |
|       | facto | or K is                           |         |                                 |         |
|       | a)    | less than unity                   | b)      | greater then unity              |         |
|       | c)    | zero                              | d)      | negative.                       |         |
| vii)  | Diffe | erential amplifier can be used to | amplif  | y                               |         |
|       | a)    | only A.C. signal ( input )        | b)      | only D.C. signal ( input )      |         |
|       | c)    | both A.C. and D.C. signals        | d)      | none of these.                  |         |
| viii) | A Sc  | chottky diode has                 |         |                                 |         |
|       | a)    | a large voltage drop than that    | of an c | ordinary diode                  |         |
|       | b)    | good ohmic resistance             |         |                                 |         |
|       | c)    | a negligible storage time         |         |                                 |         |
|       | d)    | mainly minority carrier curren    | ıt.     |                                 |         |



| ix)   | In a  | clamping circuit, the capacitane                                   | ce C a   | nd the resistance $R$ are such t        | hat the |
|-------|-------|--------------------------------------------------------------------|----------|-----------------------------------------|---------|
|       | time  | constant RCcomp                                                    | oared t  | o the time period of the input si       | gnal.   |
|       | a)    | is very large                                                      |          |                                         |         |
|       | b)    | is equal to                                                        |          | " Almos 14' il ampoder that I reflected |         |
|       | c)    | is less than.                                                      |          |                                         |         |
| x)    | The   | maximum efficiency of a push-p                                     | ull clas | ss B power amplifier is                 |         |
|       | a)    | 50%                                                                |          |                                         |         |
|       | b)    | 78.5%                                                              |          |                                         |         |
|       | c)    | 25%.                                                               |          |                                         |         |
| xi)   | А На  | artley Oscillator is used in the                                   |          |                                         |         |
|       | a)    | RF range                                                           |          |                                         |         |
|       | b)    | microwave range                                                    |          |                                         |         |
|       | c)    | AF range.                                                          |          |                                         |         |
| xii)  | If th | e input of a Schmitt trigger is a s                                | sawtoo   | th wave, the output is                  |         |
|       | a)    | sine wave                                                          |          |                                         |         |
|       | b)    | triangular wave                                                    |          |                                         |         |
|       | c)    | pulse waveform                                                     |          |                                         |         |
|       | d)    | without any change but amplifi                                     | ied.     |                                         |         |
| xiii) |       | o/p pulse width for a monostab<br>stance and capacitance are 20 ks |          | _                                       | xternal |
|       | a)    | 2·1 s                                                              | b)       | 2·5 ms                                  |         |
|       | c)    | $2 \cdot 2 \mu s$                                                  | d)       | 2 ms.                                   |         |
|       |       |                                                                    |          |                                         |         |



| xiv) | If the i/p t   | o the circuit | of the fi  | igure is a | sine wave. | the | o/p will be                    |
|------|----------------|---------------|------------|------------|------------|-----|--------------------------------|
|      | 11 tile 1, p t | o the chit    | 01 1110 11 | Sarona     | onic marc, | CII | INDERSORY OF TRANSPARED PARTY. |

dia.

|     | a)                                                                  | a half-wave rectifier sine wave | b) | a full-wave rectifier sine wave |  |  |  |
|-----|---------------------------------------------------------------------|---------------------------------|----|---------------------------------|--|--|--|
|     | c)                                                                  | a triangular wave               | d) | a square wave.                  |  |  |  |
| xv) | v) The net phase shift of Wien-bridge oscillator around the loop is |                                 |    |                                 |  |  |  |
|     | a)                                                                  | 90°                             | b) | 180°                            |  |  |  |
|     | c)                                                                  | zero                            | d) | 360°.                           |  |  |  |

# GROUP - B ( Short Answer Type Questions )

Answer any three of the following.

 $3 \propto 5 = 15$ 

- 2. Draw and explain the circuit using 555 timer IC chip to generate pulses with 50% duty cycle. Derive the expression for the frequency in terms of the external capacitor and resistors.
- 3. Design a wide band reject filter using first order high-pass and low-pass filters having f (low) = 2 kHz and f (high) = 400 Hz respectively.
- 4. With a neat diagram, explain the principle of operation of an anti-log amplifier.
- 5. Explain the operation of transformer coupled class A power amplifier.
- 6. Explain the thermal run-away and the condition of thermal stability of a BJT.



# GROUP – C

#### (Long Answer Type Questions)

Answer any three of the following.



- 7. a) Sketch the circuit of Wien-bridge oscillator. Explain the principle of operation and find an expression for the frequency of oscillation.
  - b) Prove that the amplifier gain in a phase shift oscillator is at least 29 for sustained oscillation.
  - c) A phase shift oscillator using a transistor has the following parameter values :  $R_T = 3.3 \text{ k}\Omega$ ,  $R = 5.6 \text{ k}\Omega$  and  $C = 0.01 \mu\text{F}$ .

Calculate frequency of oscillations and the  $h_{fe}$  required for sustaining the oscillations. 5+5+5

- 8. a) Explain the operation of IC 555 timer when used as a monostable multivibrator.
  - b) Mention the advantages of active filters over passive filters.
  - Design a second order Butter worth low-pass filter having cut-off frequency of
     kHz.
  - d) The following specifications are given for a certain wide band-pass filter:  $F_L = 400 \text{ Hz}, F_H = 1 \text{ kHz} \text{ and passband gain} = 1.$

Calculate the value of figure of merit for the filter.

3 + 2 + 5 + 5

- 9. a) Define a voltage, a current and a power amplifier. What are the different classes of operation of an amplifier?
  - b) Draw the circuit of a push-pull class B transistor amplifier and explain its operation. Find an expression for the maximum efficiency of this amplifier.
  - The mid-frequency gain of an RC coupled amplifier is 100. It is reduced to 80 at 50 Hz in the lower frequency side and 100 kHz in the higher frequency side. Find the lower and upper half-power frequencies. 4 + 6 + 5



- 10. a) Explain the need for biasing of a transistor. Mention different schemes for biasing a transistor. Compare merits and demerits.
  - b) Define the stability factors.
  - c) Explain the self biasing arrangement of the transistor.

(3+2+2)+3+5

11. Write short notes on any three of the following:

3 ∞ 5

- a) Wilson current source
- b) Pulse width modulation using IC 555
- c) Precision rectifier
- d) Zero crossing detector and window detector
- e) Frequency to voltage and voltage to frequency converter.

**END**