Problem: Trigonometry In Triangles Bài Tập: Hệ Thức Lượng Trong Tam Giác

Nguyễn Quản Bá Hồng*

Ngày 21 tháng 8 năm 2023

Tóm tắt nội dung

Last updated version: GitHub/NQBH/elementary STEM & beyond/elementary mathematics/grade 9/trigonometry/problem: set \mathbb{Q} of trigonometrys [pdf]. $[T_FX]^2$.

Mục lục

1	1 Số Hệ Thức Lượng về Cạnh & Đường Cao Trong Tam Giác Vuông	1
2	Tỷ Số Lượng Giác của Góc Nhọn	3
3	Miscellaneous	3
Tà	i liêu	3

1 1 Số Hệ Thức Lượng về Cạnh & Đường Cao Trong Tam Giác Vuông

Ký hiệu. $\triangle ABC$ vuông tại $A: a \coloneqq BC, b \coloneqq CA, c \coloneqq AB, b' \coloneqq CH, c' \coloneqq BH, h \coloneqq AH.$ Tính chất. $\boxed{1}\ b^2 = ab', \ c^2 = ac'. \ \boxed{2}\ Dịnh \ lý\ Pythagore\ thuận\ & đảo: \triangle ABC\ vuông\ tại\ A\Leftrightarrow a^2 = b^2 + c^2. \ \boxed{3}\ h^2 = b'c'. \ \boxed{4}$ $ah = bc = 2S_{ABC}. \ \boxed{5}\ \frac{1}{h^2} = \frac{1}{b^2} + \frac{1}{c^2}.$

Bài toán 1 ([Bìn23], Ví dụ 1, p. 84). Tính diện tích hình thang ABCD có đường cao bằng 12 cm, 2 đường chéo AC, BD vuông góc với nhau, BD = 15 cm.

Bài toán 2 ([Bìn23], Ví dụ 2, p. 85). Hình thang cân ABCD có đáy lớn CD = 10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính đường cao của hình thang.

Bài toán 3 ([Bìn23], Ví dụ 3, p. 85). Tính diện tích 1 tam giác vuông có chu vi 72 cm, hiệu giữa đường trung tuyến & đường cao ứng với cạnh huyền bằng 7 cm.

Bài toán 4 ([Bìn23], 1., p. 86). Chứng minh định lý Pythagore bằng cách đặt 2 tam giác vuông bằng nhau $\triangle ABC = \triangle DCE$:

Bài toán 5 ([Bìn23], 2., p. 86). Cho $\triangle ABC$ cân có AB = AC = 9 cm, BC = 12 cm, đường cao AH, I là hình chiếu của H trên AC. (a) Tính độ dài CI. (b) Kể đường cao BK của $\triangle ABC$. Chứng minh điểm K nằm giữa 2 điểm A, C.

Bài toán 6 ([Bìn23], 3., p. 86). Cho $\triangle ABC$ có $\widehat{A} = 120^{\circ}$, BC = a, AC = b, AB = c. Chứng minh $a^2 = b^2 + c^2 + bc$.

Bài toán 7 ([Bìn23], 4., p. 86). Tính cạnh đáy BC của $\triangle ABC$ cân biết đường cao ứng với cạnh đáy bằng 15.6 cm & đường cao ứng với cạnh bên bằng 12 cm.

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

¹URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/trigonometry/problem/NQBH_
trigonometry_problem.pdf.
2URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/rational/problem/NQBH_trigonometry_

²URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/rational/problem/NQBH_trigonometry_problem.tex.

Bài toán 8 ([Bìn23], 5., p. 86). Cho $\triangle ABC$ vuông tại A, đường phân giác AD, đường cao AH. Biết BD=7.5 cm, CD=10 cm. Tính AH, BH, DH.

Bài toán 9 ([Bin23], 6., p. 86). Cho $\triangle ABC$ vuông tại A, đường cao AH, AB = 20 cm, CH = 9 cm. Tính độ dài AH.

Bài toán 10 ([Bìn23], 7., p. 86). Cho $\triangle ABC$ vuông tại A, đường cao AH. Tia phân giác của \widehat{HAC} cắt HC ở D. Gọi K là hình chiếu của D trên AC. Biết BC=25 cm, DK=6 cm. Tính AB.

Bài toán 11 ([Bìn23], 8., p. 86). Cho $\triangle ABC$ có AB=6 cm, AC=8 cm, 2 đường trung tuyến BD, CE vuông góc với nhau. Tính BC.

Bài toán 12 ([Bìn23], 9., p. 86). Cho $\triangle ABC$ có $\widehat{B} = 60^{\circ}$, BC = 8 cm, AB + AC = 12 cm. Tính AB, AC.

Bài toán 13 ([Bìn23], 10., p. 86). Trong 1 tam giác vuông, đường cao ứng với cạnh huyền chia tam giác thành 2 phần có diện tích bằng 54 cm² & 96 cm². Tính độ dài cạnh huyền.

Bài toán 14 ([Bìn23], 11., p. 86). Cho $\triangle ABC$ vuông cân tại A, đường trung tuyến BM. Gọi D là hình chiếu của C trên BM, H là hình chiếu của D trên AC. Chứng minh AH = 3DH.

Bài toán 15 ([Bìn23], 12., pp. 86–87). (a) 1 tam giác vuông có tỷ số các cạnh góc vuông bằng k. Tính tỷ số các hình chiếu của 2 cạnh góc vuông trên cạnh huyền. (b) Tính độ dài hình chiếu của các cạnh góc vuông trên cạnh huyền của 1 tam giác vuông, biết tỷ số 2 cạnh góc vuông bằng 5:4 & cạnh huyền dài 82 cm.

Bài toán 16 ([Bìn23], 13., p. 87). Trong 1 tam giác vuông, đường phân giác của góc vuông chia cạnh huyền thành 2 đoạn thẳng tỷ lệ với 1:3. Đường cao ứng với cạnh huyền chia cạnh đó theo tỷ số nào?

Bài toán 17 ([Bìn23], 14., p. 87). Cho $\triangle ABC$ có độ dài 3 cạnh AB, BC, CA là 3 số tự nhiên liên tiếp tăng dần. Kể đường cao AH, đường trung tuyến AM. Chứng minh HM=2.

Bài toán 18 ([Bìn23], 15., p. 87). 1 hình thang cân có đường chéo vuông góc với cạnh bên. Tính chu vi & diện tích hình thang biết đáy nhỏ dài 14 cm, đáy lớn dài 50 cm.

Bài toán 19 ([Bìn23], 16., p. 87). 1 hình thoi có diện tích bằng $\frac{1}{2}$ diện tích hình vuông có cạnh bằng cạnh của hình thoi. Tính tỷ số của đường chéo dài & đường chéo ngắn của hình thoi.

Bài toán 20 ([Bìn23], 17., p. 87). Qua đỉnh A của hình vuông ABCD cạnh a, vẽ 1 đường thẳng cắt cạnh BC ở M $\mathscr E$ cắt đường thẳng CD ở I. Chứng minh $\frac{1}{AM^2} + \frac{1}{AI^2} = \frac{1}{a^2}$.

Bài toán 21 ([Bìn23], 18., p. 87). Cho hình vuông ABCD có cạnh 1 dm. Tính cạnh của ΔAEF đều có E thuộc cạnh CD & F thuộc cạnh BC.

Bài toán 22 ([Bìn23], 19., p. 87). Trong 2 tam giác sau, tam giác nào là tam giác vuông, nếu độ dài 3 đường cao bằng: (a) 3,4,5. (b) 12,15,20.

Bài toán 23 (Mở rộng [Bìn23], 19., p. 87). Cho tam giác ABC có 3 đường cao có độ dài lần lượt là h_a, h_b, h_c . Tìm điều kiện cần \mathcal{E} đủ theo h_a, h_b, h_c để ΔABC vuông.

Bài toán 24 ([Bìn23], 20., p. 87). Chứng minh $\triangle ABC$ là tam giác vuông nếu 2 đường phân giác BD, CE cắt nhau tại I thỏa mãn $BD \cdot CE = 2BI \cdot CI$.

Bài toán 25 ([Bìn23], 21., p. 87). Xét các $\triangle ABC$ vuông có cạnh huyền BC = 2a. Gọi AH là đường cao của tam giác, D, E lần lượt là hình chiếu của H trên AC, AB. Tìm GTLN của: (a) DE. (b) Diện tích tứ giác ADHE.

Bài toán 26 ([Bìn23], 22., pp. 87–88). Chứng minh trong 1 tam giác: (a) Bình phương của cạnh đối diện với góc nhọn bằng tổng các bình phương của 2 cạnh kia trừ đi 2 lần tích của 1 trong 2 cạnh ấy với hình chiếu của cạnh kia trên nó.

Bài toán 27 ([Bìn23], 23., p. 88). Cho $\triangle ABC$ có BC = a, CA = b, AB = c. Chứng minh: (a) $b^2 < c^2 + a^2 \Rightarrow \widehat{B} < 90^{\circ}$. (b) $b^2 > c^2 + a^2 \Rightarrow \widehat{B} > 90^{\circ}$. (c) $b^2 = c^2 + a^2 \Rightarrow \widehat{B} = 90^{\circ}$.

Bài toán 28 ([Bìn23], 24., p. 88). $\triangle ABC$ vuông tại A, đường phân giác BD. Tia phân giác của \widehat{A} cắt BD ở I. Biết $BI=10\sqrt{5}$ cm, $DI=5\sqrt{5}$ cm. Tính diện tích $\triangle ABC$.

Bài toán 29 ([Bìn23], 25., p. 88). $\triangle ABC$ vuông tại A, gọi I là giao điểm của 3 đường phân giác. (a) Biết AB = 5 cm, CI = 6 cm. Tính BC. (b) Biết $BI = \sqrt{5}$ cm, $CI = \sqrt{10}$ cm. Tính AB, AC.

Bài toán 30 ([Bìn23], 26., p. 88). Cho $\triangle ABC$ vuông tại A, gọi I là giao điểm của 3 đường phân giác, M là trung điểm của BC. (a) $Bi\acute{e}t$ AB = 6 cm, AC = 8 cm. Tính BIM. (b) $Bi\acute{e}t$ $BIM = 90^{\circ}$. 3 cạnh của $\triangle ABC$ tỷ lệ với 3 số nào?

Bài toán 31 ([Bìn23], 27., p. 88). 1 tam giác vuông có độ dài 1 cạnh bằng trung bình cộng của độ dài 2 cạnh kia. (a) ĐỘ dài 3 cạnh của tam giác vuông đó tỷ lệ với 3 số nào? (b) Nếu độ dài 3 cạnh của tam giác vuông đó là 3 số nguyên dương thì số nào trong 5 số sau có thể là độ dài 1 cạnh của tam giác đó: 17,13,35,41,22?

Bài toán 32 ([Bìn23], 28., p. 88). Cho $\triangle ABC$ vuông tại A, $BC = 3\sqrt{5}$ cm. Hình vuông ADEF cạnh 2 cm có $D \in AB$, $E \in BC$, $F \in CA$. Tính AB, AC.

Bài toán 33 ([Bìn23], 29., p. 88). $\triangle ABC$ cân tại A, gọi I là giao điểm của 3 đường phân giác. Biết $IA=2\sqrt{5}$ cm, IB=3 cm. Tính AB.

Bài toán 34 ([Bìn23], 30., p. 88). $\triangle ABC$ cân tại A, đường cao AD, trực tâm H. Tính độ dài AD, biết AH=14 cm, BH=CH=30 cm.

Bài toán 35 ([Bìn23], 31., p. 88). $\triangle ABC$ có BC=40 cm, đường phân giác AD dài 45 cm, đường cao AH dài 36 cm. Tính BD, CD.

2 Tỷ Số Lượng Giác của Góc Nhọn

3 Miscellaneous

Tài liệu

[Bìn23] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 9 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 275.