Capítulo 7- Termodinâmica

I- Termoquímica

Neste capítulo vamos estudar as variações de energia que acompanham as reacções químicas.

Todas as reacções obedecem a 2 leis fundamentais:

- lei da conservação da massa
- lei da conservação da energia

Energia é a capacidade de realizar trabalho

Trabalho = força x distância

- Energia radiante ou energia solar provém do Sol e é a fonte de energia primária da Terra.
- Energia térmica energia associada ao movimento aleatório dos átomos e das moléculas.
- Energia química energia armazenada dentro das unidades estruturais das substâncias químicas.
- Energia nuclear energia armazenada
 no conjunto de neutrões e protões do átomo.
- Energia potential energia disponível como consequência da posição de um objecto. A energia química pode ser considerada como

uma forma de energia potencial porque está associada às posições relativas e aos arranjos dos átomos.

Para os **químicos** <u>trabalho</u> é uma <u>variação de energia</u> resultante de um <u>processo químico</u>.

As várias formas de <u>energia</u> podem ser <u>interconvertíveis</u> mas a energia não pode ser <u>criada</u> ou <u>destruída</u>.

Lei da conservação da energia: a quantidade total de energia no Universo permanece constante.

Variações de Energia em Reacções Químicas

Quase todas as reacções químicas absorvem ou libertam energia, geralmente na forma de calor.

O *calor* é a transferência de energia térmica entre dois corpos que estão a temperaturas diferentes.

Temperatura é a medida da energia térmica

A *termoquímica* estudo do calor posto em jogo nas reacções químicas.

Para analisar as variações de energias asociadas a reacções químicas temos que definir **sistema**.

Para os químicos um **sistema** inclui normalmente substâncias envolvidas em transformações químicas ou físicas.

O resto do universo chama-se **meio exterior**.

O sistema é a parte específica do universo que nos interessa.

Três tipos de sistemas:

- 1- aberto: pode trocar massa e energia com o meio exterior;
- 2- fechado: permite a transferência de energia (calor) mas não de massa;
- 3- isolado: não permite a transferência nem de massa nem de energia.

Transferência:

massa e energia energia nada

Processo exotérmico — qualquer processo que liberte calor (transfere energia térmica do sistema para a vizinhança).

$$2H_2(g) + O_2(g)$$
 \rightarrow $2H_2O(l) + \text{energia}$
 $H_2O(g)$ \rightarrow $H_2O(l) + \text{energia}$

Processo endotérmico — qualquer processo em que se tem de fornecer calor ao sistema a partir da vizinhança.

energia + 2HgO
$$(s)$$
 \Rightarrow 2Hg (l) + O₂ (g)
energia + H₂O (s) \Rightarrow H₂O (l)

Entalpia

A maioria das transformações físicas e químicas ocorre nas condições de pressão constante da nossa atmosfera.

A **entalpia** (H) é utilizada para quantificar o fluxo de <u>calor libertado ou</u> <u>absorvido</u> por um sistema num processo que ocorre a <u>pressão constante</u>.

$$\Delta H = H \text{ (produtos)} - H \text{ (reagentes)}$$

 ΔH = calor libertado ou absorvido durante a reacção a *pressão constante*

Equações Termoquímicas: mostram as relações de massa e entalpia

6,01 kJ são absorvidos por cada mole de gelo que funde a 0°C e 1 atm.

890,4 kJ são libertados por cada mole de metano queimado a 25ºC e 1 atm.

Equações Termoquímicas

• O coeficiente estequiométrico refere-se sempre ao número de moles de uma substância.

$$H_2O(s) \rightarrow H_2O(l) \qquad \Delta H = 6.01 \text{ kJ}$$

• Se inverter uma reacção o sinal de ΔH altera-se.

$$H_2O(l) \rightarrow H_2O(s) \Delta H = -6.01 \text{ kJ}$$

• Se multiplicar ambos os membros da equação por um factor n o ΔH deve alterar-se pelo mesmo factor n.

2 H₂O (s) → 2 H₂O (l)
$$\Delta H = 2 \times 6.01 = 12.0 \text{ kJ}$$

• O estado físico de todos os reagentes e produtos deve ser especificado.

$$H_2O(s) \rightarrow H_2O(l) \Delta H = 6.01 \text{ kJ}$$

$$H_2O(l) \rightarrow H_2O(g) \Delta H = 44.0 \text{ kJ}$$

Calorimetria: É a medição de trocas de calor. No laboratório, o calor posto em jogo em processos físicos e químicos mede-se com um calorímetro.

Calorímetro: é especialmente indicado para medir o conteúdo energético dos alimentos.

O *calor específico (c)* de uma substância é a quantidade de calor necessária para elevar de <u>um grau</u> Celsius a temperatura de <u>um grama</u> da substância. (Unidades- J g ⁻¹ °C⁻¹)

A *capacidade calorífica* (*C*) de uma substância é a quantidade de calor necessária para elevar de um grau Celsius a temperatura de uma dada quantidade da substância. (Unidades- J °C⁻¹)

Calores Específi de Algumas Sub		6.2
Substância	Calor Específico (J/g ·ºC)	Y C = m x c B Calor (q) absorvido ou liber
Al	0,900	Calor (q) absorvido ou liber
Au	0,129	-
C (grafite)	0,720	q = mc x Δt
C (diamante)	0,502	9o x 2t
Cu	0,385	- 011
Fe	0,444	q = C∆t
Hg	0,139	
H ₂ O	4,184	$\Delta t = t_{final} - t_{inicial}$
C ₂ H ₅ OH (etanol)	2,460	- Sililai Sililciai

Sabendo o calor específico e a quantidade de uma substância, então a variação de temperatura de uma amostra (Δt) indica a quantidade de calor absorvido ou libertado num determinado processo:

$$q = mc \times \Delta t$$

m = massa da amostra

Δt = variação da temperatura

$$q = C \times \Delta t$$

q = calor

A convenção de sinais é a mesma que para as variações de entalpia:

q > 0 processo endotérmico

q < 0 processo exotérmico

Exemplo 1

Quanto calor é libertado quando uma barra de ferro com 869 g arrefece de 94 °C para 5 °C?

Exemplo 2

Sabendo que o calor específico da água é 4,184 Jg ⁻¹ °C⁻¹ calcule a capacidade calorífica de 60 g de água.

Exemplo 3

Uma amostra de 466 g de água é aquecida de 8,50 °C a 74,60 °C. Calcule a quantidade de calor absorvida pela água.

Calorimetria a volume constante

Medição de calores de combustão:

- coloca-se a massa conhecida de composto em estudo num reservatório de aço: <u>calorímetro de bomba a volume constante</u>.
- enche-se o calorímetro de O₂ até pressão de 30 atm.

Não há trocas de calor nem de massa com o meio exterior

→ sistema isolado

$$q_{sis} = q_{água} + q_{cal} + q_{reac}$$

$$q_{sis} = 0$$

$$q_{reac} = - (q_{agua} + q_{cal})$$

$$q_{bomb} = C_{cal}\Delta t$$

Reacção a V constante

$$\Delta H \neq q_{reac}$$

 $\Delta H \sim q_{reac}$

Exemplo 4:

Fez-se a combustão de 1,435 g de naftaleno ($C_{10}H_8$) num calorímetro a volume constante. Em consequência, a temperatura da água elevou-se de 20,17 °C até 25,84 °C. Se a quantidade de água que rodeia o calorímetro fosse exactamente 2000 g e a capacidade calorífica do calorímetro de bomba fosse 1,80 KJ °C⁻¹, calcule o calor de combustão molar do naftaleno.

Calores de <u>reacção de combustão</u>: calorímetro a volume constante

Calorimetria a pressão constante

Calores de reacção de outro tipo (ex: <u>reacções de neutralização</u>): calorímetro a pressão constante

$$q_{sis} = q_{água} + q_{cal} + q_{reac}$$

$$q_{sis} = 0$$

$$q_{reac} = - (q_{água} + q_{cal})$$

$$q_{\text{água}} = mc\Delta t$$

$$q_{cal} = C_{cal} \Delta t$$

Reacção a P constante

$$\Delta H = q_{reac}$$

6.3	Calores de Algumas R	eacções Comuns Medidos a Pressão Constante	
ELA	Tipo de Reacção	Exemplo	Δ <i>H</i> (kJ/mol)
TABELA	Calor de neutralização Calor de ionização Calor de fusão Calor de vaporização Calor de reacção	$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$ $H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$ $H_2O(s) \longrightarrow H_2O(l)$ $H_2O(l) \longrightarrow H_2O(g)$ $MgCl_2(s) + 2Na(l) \longrightarrow 2NaCl(s) + Mg(s)$	-56,2 56,2 6,01 44,0* -180,2

^{*} Medido a 25°C. A 100°C, o valor é 40,79 kJ/mol.

Exemplo 5

Misturam-se $1,00x10^2$ ml de HCl 0,500 M com $1,00x10^2$ ml de NaOH 0,500M num calorímetro de pressão constante cuja capacidade calorífica é 335 J $^{\circ}C^{-1}$.

A temperatura inicial das soluções de HCl e NaOH é a mesma, 22,50 °C e a temperatura final da mistura das soluções é 24,90 °C. Calcule o calor da reacção de neutraização:

$$NaOH(aq) + HCI(aq)$$
 \longrightarrow $NaCI(aq) + H2O(I)$

Admita que as massas volúmicas e os calores específicos das soluções são os mesmos da água (1,00 g ml⁻¹ e 4,184 J g⁻¹ °C⁻¹).

Aplicação: Valores Energéticos de Alimentos e de Outras Substâncias

$$C_6H_{12}O_6(s) + 6O_2(g)$$
 \rightarrow $6CO_2(g) + 6H_2O(l)$ $\Delta H = -2801 \text{ kJ/mol}$

1 cal = 4,184 J

1 Kcal = 1000 cal = 4184 J

Informação Nutricional Valores médios por 100g		
Valor energético	377 kcal	
	1593 KJ	
Proteínas	4,9 g	
Glícidos/hidratos		
de carbono	73,6 g	
Lípidos	7,0 g	
Fibras alimentares	4,4 g	
Sódio	0,4 g	

Tabela- Valores calóricos de alimentos e de alguns combustíveis comuns.

Substância	$\Delta H_{combust\~ao}(KJ/g)$
maçã	- 2
carne de vaca	- 8
cerveja	- 1,5
pão	- 11
manteiga	- 34
queijo	- 18
ovos	- 6
leite	- 3
batatas	- 3
carvão de lenha	- 35
carvão de pedra	- 30
gasolina	- 34
querosene	- 37
gás natural	- 50
madeira	- 20

Entalpia padrão de formação e de reacção

Não é possível obter o valor absoluto da entalpia de uma substância. Só se podem dar valores relativamente a uma referência arbitrária:

Entalpia de formação padrão (ΔH_f^0) como ponto de referência para todas as expressões de entalpia.

Entalpia de formação padrão (ΔH_f^0): calor posto em jogo quando se forma uma mole dum composto a partir dos seus elementos: P=1 atm e T= 25 °C.

Entalpia de formação padrão ($\Delta H^o_{reacção}$): entalpia de uma reacção levada a cabo a 1 atm. Pode ser calculado a partir de ΔH^o_f dos compostos.

$$aA + bB \longrightarrow cC + dD$$

$$\Delta H^{o}_{reacção} = \left[c\Delta H^{o}_{f}(C) + d\Delta H^{o}_{f}(D) \right] - \left[a\Delta H^{o}_{f}(A) + b\Delta H^{o}_{f}(B) \right]$$

$$\Delta H_{\text{reac}\tilde{q}ao}^{o} = \Sigma \, n\Delta H_{f}^{o} \, (\text{produtos}) - \Sigma \, m\Delta H_{f}^{o} \, (\text{reagentes})$$

a, b, c, e d : coeficientes estequiométricos dos reagentes e dos produtos

A <u>entalpia de formação padrão</u> de qualquer elemento na sua forma mais estável é **zero**.

$$\Delta H_{f}^{0}(O_{2}) = 0$$

$$\Delta H_{f}^{0}(C, grafite) = 0$$

$$\Delta H_{f}^{0}(O_{3}) = 142 \text{ kJ/mol}$$

$$\Delta H_{f}^{0}(C, diamante) = 1,90 \text{ kJ/mol}$$

•	•		
•		•	
-		4	
ī	ı	Ĺ	
ſ	١	ľ	

Entalpias Padrão de Formação de Algumas Substâncias Inorgânicas a 25ºC			
Substância	ΔH _f °(kJ/mol)	Substância	ΔH _f (kJ/mol)
Ag(s)	0	$H_2O_2(l)$	-187,6
AgCl (s)	-127,0	Hg(l)	0
Al (s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669,8	HI(g)	25,9
$Br_2(l)$	0	Mg(s)	0
HBr(g)	-36,2	MgO(s)	-601,8
C(grafite)	0	$MgCO_3(s)$	-1112,9
C(diamante)	1,90	$N_2(g)$	0
CO (g)	-110,5	$NH_3(g)$	-46,3
$CO_2(g)$	-393,5	NO(g)	90,4
Ca (s)	0	$NO_2(g)$	33,85
CaO(s)	-635,6	$N_2O_4(g)$	9,66
$CaCO_3(s)$	-1206,9	$N_2O(g)$	81,56
$Cl_2(g)$	0	O(g)	249,4
HCl (g)	-92,3	$O_2(g)$	0
Cu (s)	0	$O_3(g)$	142,2
CuO(s)	-155,2	S(ortorrômbico)	0
$F_2(g)$	0	S(monoclínico)	0,30
HF(g)	-271,6	$SO_2(g)$	-296,1
H(g)	218,2	$SO_3(g)$	-395,2
$H_2(g)$	0	$H_2S(g)$	-20,15
$H_2O(g)$	-241,8	ZnO(s)	-348,0
$H_2O(l)$	-285,8		

Método directo: compostos que podem ser facilmente sintetizados a partir dos seus elementos

Método indirecto: compostos que não podem ser sintetizados a partir dos seus elementos: reacções lentas ou laterais.

Lei de Hess: quando os reagentes são convertidos em produtos, a variação de entalpia é a mesma quer a reacção se dê <u>num só passo</u> ou <u>numa série de passos.</u>

Regra Geral para aplicação da lei de Hess

- 1 -É necessário arranjar uma série de equações químicas (correspondendo a uma série de passos) tais que quando somadas, todas as espécies desaparecem com excepção dos reagentes e produtos que figuram na reacção global.
- 2- Por vezes é necessário multiplicar algumas ou todas as reacções (equações) que representam os passos individuais por coeficientes aproprados.

Exemplo método directo: reacção de formação do CO₂

C (grafite) +
$$O_2(g)$$
 \rightarrow $CO_2(g)$ $\Delta H_f^0 = -393,5 \text{ kJ}$ $\Delta H_{\text{reacção}}^0 = (1 \text{ mol}) \times \Delta H_f^0 \text{ (CO}_2, g) - [(1 \text{ mol}) \times \Delta H_f^0 \text{ (C, grafite)} + (1 \text{ mol}) \times \Delta H_f^0 \text{ (O}_2, g)] = -393,5 \text{ KJ}$

Como a grafite e o O_2 são formas alotrópticas estáveis temos que:

$$\Delta H_{f}^{0}$$
 (C, grafite) e ΔH_{f}^{0} (O₂, g) = 0

Exemplo método indirecto: entalpia de formação padrão do metano (CH₄)

C (grafite) + 2
$$H_2(g) \rightarrow CH_4(g)$$

Contudo esta reacção não ocorre tal como está descrita a partir dos seus elementos e por isso não se pode medir variação de entalpia directamente. Usamos a **lei de Hess**.

(a) C (grafite) +
$$O_2(g)$$
 \rightarrow $CO_2(g)$ $\Delta H^0_{reacc.} = -393.5 \text{ kJ}$

(b)
$$2 \text{ H}_2(g) + \text{O}_2(g) \rightarrow 2 \text{ H}_2\text{O} (1)$$
 $\Delta \text{H}^0_{\text{reacc.}} = -571.6 \text{ kJ}$

(c)
$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(1)$$
 $\Delta H_{reacc.}^0 = -890,4 \text{ kJ}$

Uma vez que queremos obter uma equação contendo apenas C e H_2 como reagentes e CH_4 como produto, temos de inverter a equação (\mathbf{c}) de modo a obter:

(d)
$$CO_2(g) + 2 H_2O(1) \rightarrow CH_4(g) + 2 O_2(g)$$
 $\Delta H^0_{reacc.} = 890,4 \text{ kJ}$
O passo seguinte é adicionar as equações (a), (b) e (d):

(a) C (grafite) +
$$O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^0_{reacc.} = -393.5 \text{ kJ}$

(b)
$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(1)$$
 $\Delta H_{reacc.}^0 = -571.6 \text{ kJ}$

(d)
$$CO_2(g) + 2H_2O(1) \rightarrow CH_4(g) + 2O_2(g)$$
 $\Delta H^0_{reacc.} = 890,4 \text{ kJ}$

C (grafite) + 2 H₂(g)
$$\rightarrow$$
 CH₄ (g)) $\Delta H_{\text{reacc.}}^0 = -74.7 \text{ kJ}$

Calores de dissolução e de diluição

A dissolução de um soluto num solvente produz efeitos caloríficos mensuráveis. A pressão constante, a quantidade de calor é igual à variação de entalpia.

Entalpia de solução (ΔH_{dissol}) ou calor de solução: calor libertado ou absorvido quando uma certa quantidade de soluto se dissolve numa certa quantidade de solvente.

Representa a diferença entre a entalpia da solução final e as entalpias dos componentes iniciais (o soluto e o solvente) antes de se misturarem.

$$\Delta H_{\text{dissol.}} \equiv H_{\text{sol.}} - H_{\text{componentes}}$$

O que acontece quando o NaCl sólido se dissolve em água?

NaCl (s): Os iões Na⁺ e Cl⁻ mantêm-se juntos através de forças electrostáticas.

NaCl (dissolvido em água): a rede tridimensional dos iões quebra-se nas suas unidades individuais. Os iões Na⁺ e Cl⁻ estão estabilizados em solução devido à interacção ocom as moléculas da H₂O.

O processo de dissolução ocorre em 2 passos distintos:

1- Energia reticular (U) + NaCl (s)
$$\rightarrow$$
 Na⁺ (g) + Cl⁻ (g)

Energia reticular (U): energia necessária para separar uma mole de composto iónico em iões gasosos.

$$U_{NaCl} = 788 \text{ KJ/mol}$$

$$H_2O$$

2- $Na^+(g) + Cl^-(g) \rightarrow Na^+(aq) + Cl^-(aq) + energia$

Calor de hidratação: variação de entalpia associada ao processo de hidratação.

Aplicando a lei de Hess é possível determinar H_{diss} como a soma das quantidades relativas, a energia de rede (U) e o calor de hidratação ($\Delta H_{hidr.}$):

NaCl (s) → Na⁺(g) + Cl⁻(g) (U) = 788 KJ

$$H_2O$$
 Na^+ (g) + Cl⁻(g) → Na⁺ (aq) + Cl⁻ (aq) $\Delta H_{hidr.}$ = - 784 KJ

 H_2O

NaCl (s) → Na⁺ (aq) + Cl⁻ (aq) $\Delta H_{diss.}$ = 4 KJ

Quando se dissolve uma mole de NaCl em água são absorvidos 4 KJ de calor do meio exterior.

Calor de diluição: é o calor que está associado ao processo de diluição.

A adição de água ao H_2SO_4 (conc.) é um processo <u>exotérmico</u> e pode ser perigosa visto que o calor de diluição é muito elevado.

O processo recomendado é adicionar lentamente o à ${\rm H_2O}$, com agitação constante.