

KIIT Deemed to be University Online End Semester Examination(Autumn Semester-2021)

Subject Name & Code: Database Management Systems (CS 2004)

Applicable to Courses: B.Tech (CSCE)

Full Marks=50 Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks)

Time:30 Minutes

(7×2=14 Marks)

Question	Questio	Question	СО	Answer Key
No	n Type	Question	<u>Mapping</u>	(For MCQ
	(MCQ/S			Questions
	AT)			only)
Q.No:1		Which one correct?		
		a) Primary Key ⊂ Super Key ⊂ Candida	te	
	MCQ	Key		
		b) Primary Key ⊂ Candidate Key ⊂ Supe	r	
		Key		
		c) Candidate Key ⊂ Primary Key ⊂ Supe	CO4	В
		Key		
		d) Super Key ⊂ Candidate Key ⊂ Primary		
		Key		
		The following table has two attributes A a		
		C where A is the primary key and C is t		
		foreign key referencing A with C	N	
	MCQ	DELETE CASCADE.		
		A C	CO ₃	A
		2 4		
		3 4		
		4 3		
		5 2		
		7 2	_	
		9 5	_	
		6 4		
		What is the set of all tuples that must		
		additionally deleted to preserve referent	al	
		integrity when the tuple (2,4) is deleted?		
		a) (5,2) (7,2)		
		b) (4,3)		

		c) (3,4) (6,4)		1
		d) None of these is correct		
		d) Trone of these is correct		
	MCQ	Let R (A, B, C) be a relation as follows: A B C 10 20 30 70 20 30 10 20 50 What is the correct output of the following SQL query? SELECT COUNT(*) FROM (SELECT r1.A, r1.B, r1.C FROM R r1, R r2 WHERE r1.B = r2.B AND r1.C = r2.C); (a) 8	CO3	D
		(b) 7		
		(c) 6 (d) 5		
		'%' matched any string of		
		a) At least three characters	CO3	A
		b) At most three characters		
		c) Exactly three characters		
	MCQ	d) Exactly three characters ending with %		
Q.No:2		Consider the ER diagram as follows:		
	MCQ	How many foreign keys can be created while mapping to tables from the given ER Model? (a) 3 (b) 4 (c) 5 (d) 6	CO2	В
		Consider the ER diagram as follows:		
	MCQ	Employee N		
		now tables can be created in this example:	CO2	C
		(a) 2		
		(b) 3		
1		(c) 4		
		(d) 5		

	MCQ	Let E1 and E2 be two entities in an ER diagram with simple single valued attributes (with one of the attribute serve as a primary key). R1 and R2 are two relationships between E1 and E2, where R1 is one-to-many and R2 is many-to-many. R1 and R2 do not have any attributes of their own. What is the minimum number of tables and foreign keys are required to represent this situation in relational model? a) (2, 2) b) (2, 3) c) (3, 2) d) (3, 3)	CO2	D
	MCQ	Which of the following is a correct attribute set of one of the tables for the correct answer to the above question? [Here, N is a weak entity set]. a) {E1, E2,E3} b) {E1, E2,M1} c) {M1, M2, E1} d) {N1,N2, M1, M2}	C02	В
Q.No:3	MCQ	Consider the above precedence graph of concurrent execution of four transactions, which is conflict serializable. Which of the following is the correct corresponding serial schedule of the above graph? a) {T1 \rightarrow T4 \rightarrow T2 \rightarrow T3} b) {T3 \rightarrow T2 \rightarrow T1 \rightarrow T4} c) {T3 \rightarrow T1 \rightarrow T4 \rightarrow T2} d) {T2 \rightarrow T1 \rightarrow T3 \rightarrow T4}	CO ₅	C
		Consider the following concurrent schedule: S:R1(A),R2(A),R2(B),R3(B),W1(A), W2(B). The above schedule is I. Conflict serializable schedule. II. Not conflict serializable schedule. III. Conflict equivalent to {T1→T2→T3} IV. Conflict equivalent to		

		{T3→T2→T1}		
	MCQ	Which of the following is true? a) Only I b) Only II c) I and III d) I and IV	CO ₅	D
	MCQ	The Timestamp Ordering Protocol is used to order the transactions based on their Timestamps. Let the TS(T1) = 3 and TS(T2) = 4. Then, which among the following is incorrect about Timestamp Ordering Protocol. I. The transaction T1 issuing a Read (X) operation will be rejected if TS(T1) < W_TS(X). II. This protocol is free from deadlock thus no transaction ever waits. III. The transaction T1 issuing Write(X) operation will be executed if TS(T1) < R_TS(X). a) Only I b Only II c) Only II d) Both I and III	CO ₅	C
	MCQ	Consider the following schedule with locking: T1 T2 Lock-X(A) R(A) W(A) Lock-X(B) R(B) W(B) Lock-X(A) Lock-X(B) Which of the following is true? a) Schedule is in dead-lock state. b) Schedule is conflict serializable c) Schedule is not conflict serializable d) Both a & b	CO ₅	D
Q.No:4	MCQ	Let R = (A, B, C, D) be a relations schema with A, B, C, D are the candidate keys. The number of super keys formed are: a) 4 b) 7 c) 15 d) 16	CO ₅	С

	MCQ	Let R = (A, B, C, D, E) be a relation schema with {AB} is the only candidate keys . The maximum number of super keys formed are: (a) 3 (b) 4 (c) 5 (d) 8	CO4	D
	MCQ	Consider the following set of functional dependencies, F = {A→B, A→C, A→D, B→C, B→E, C→E} defined on a relation schema R (A, B, C, D, E). Which of the following is the set of redundant functional dependencies? (a) A→B & A→C (b) A→C & B→E (c) A→B & B→C (d) B→C & C→E	CO4	В
	MCQ	Let R(A,B,C,D,E) be a relation schema with set of functional dependencies, F = {AB→CDE, B→D, C→E}. The relation R is decomposed into R1(B,D), R2(C,E) and R3(ABC). Which of the following is true for the above problem description? I. R is in 1NF. II. The decomposition is lossless join and dependency preserving decomposition. III. The decomposition is lossless join and but not a dependency preserving decomposition. IV. R1, R2, R3 are in BCNF (a) Only I is true (b) Both I & II are true (c) Both I & III are true (d) Only IV is true	CO ₄	В
Q.No:5		Consider the following two tables: LOAN LoanNo BranchName Amount L1001 KIIT 35000 L1002 IIT 42000 BORROWER	COs	С
	MCQ	BORROWER 42000	CO ₃	С

	Τ		T	7			
		CustmerNo	LoanNo				
		C1001	L1001				
		C1002	L1002				
		C1003	L1002	1			
			1	_			
		SELECT * FR	OM LOA	N, BORRO	WER;		
		How many tu	nles will	he resulted	1 by the		
		above query?	pies wiii	oc resurted	i by the		
		1 7					
		(a) 4					
		(b) 5					
		(c) 6					
		(d) 7					
		Consider the fo					
		<u> </u>	anchName	BranchCity	Salary		
		A DUB DU		DELHI DELHI	50000 55000		
	MCQ	C JN		DELHI	60000	COs	В
	MCQ	D JU		KOLKOTA	65000	CO ₃	D
		E CU	l	KOLKOTA	70000		
		F UL	J	BBSR	75000		
		Find the distinct	number o	f branches a	ppearing		
		in the Employee					
		(a) select co	unt (Br	anchName) from		
		Employee;	`	,			
		(b) select cou	nt (distii	nct (Branc	hName)		
		from Emplo		`	,		
		(c) select distin	-	BranchNar	ne) from		
		Employee;	`		,		
		(d) select coun	t (*) from	Employee	•		
		Consider the fo					
			anchName	BranchCity	Salary		
		A DU		DELHI	50000		
		B DU	J	DELHI	55000		
		C JN	U	DELHI	60000		
		D JU		KOLKOTA	65000		
		E CU		KOLKOTA	70000		В
		F UL		BBSR	75000	CO3	
	MCQ	Find the total s	•	I employee	s at each		
		branch of the b		a	(0.1.)		
		a) select B			-		
			Employee	e GROU	P BY		
		BranchC	• .				
		b) select B	ranchNar	me, SUM	(Salary)		
		from I	Employee	e GROU	P BY		
		BranchN					
		c) select		(Salary)	from		
		Employe		GROUP	BY		
		BranchN					
		d) select Bra		e SUM(Se	alary)		
•	Ì	u select bra	mumaill	c, DUMI(Si	uaryj		

		from E	mployee;				
		Consider the	following I				
		A I	BranchName DU DU INU	BranchCity DELHI DELHI DELHI	Salary 50000 55000 60000	COo	٨
	MCQ	D J E (F)	DU DU	KOLKOTA KOLKOTA BBSR	65000 70000 75000	CO ₃	A
		Which of the display all t salary is eq average salar	he employ ual to the	ee records	, whose		
		group by b) select * to (select	ct avg (Sala y Branchcit from Emplo	ary) from Eary); byee where by) from Eary)	mployee Salary =		
		Employ d) select av group b	(select avg	g (Salary) fr y Branchcit from Emplo	rom y);		
Q.No:6	MCQ	field has a or a II. The base cand III. A s seco for	which is a a unique va non-key wi secondary d on a lidate key o secondary ndary mean	index may candidate lue in every th duplicate index is field which nly. index properties of accessing primary	key and y record, e values. always the is a vides a ing a file	CO6	C
		b) Stater c) Stater d) All st	ment I and II ment II and I ments I and I atements are	II are true. III are true.			
	MCQ	Suppose we 45,000 record size 2048 byt with record le What is the ba 17 b) 18 c) 21 d) 22	ds stored on te. File reco ength 120 b	n a disk wi rds are of fi oytes.	th block	CO6	A
		In case of Lo	og-Based R nodification	-			

		action(s) to be toler after a first		
		action(s) to be taken after recovery of the		
		system of the following schedule consist of two transactions T_0 and T_1 ?	CO6	A
			COO	71
		<to, start=""></to,>		
		<to, 1000,="" 900="" a,=""></to,>		
		<to, 2000,="" 2100="" b,=""></to,>		
		<to, commit=""></to,>		
		<t1, start=""></t1,>		
		<t<sub>1, C, 750, 700></t<sub>		
		FAILURE		
		a) Redo-T ₀ and No action for T ₁		
		b) Redo-T ₀ and Redo-T ₁		
		c) Redo-T ₀ and Undo T ₁		
		d) No action for T ₀ and T ₁		
		d) No action for r_0 and r_1		
		Which statement(s) is/are true with respect to		
		two-phase locking protocol?		
		I. Two transactions cannot have		
		conflicting locks.	~~	_
		II. No unlock operation can precede a lock	CO ₅	D
	MCO	operation in the same transaction.		
	MCQ	III. No data is/are affected until all locks are		
		obtained and until the transaction is		
		in its locked point.		
		a) Only I		
		b) Only II		
		c) Both I & II		
		d) All I, II, III		
Q.No:7		'Failures may leave database in an inconsistent		
<u>Q.No.7</u>		state with partial updates carried out' is the case		
		of		
		a) Integrity problem		В
	MCQ	b) Atomicity problem	CO1	
		c) Security problem		
		a) Data Redundancy & Inconsistency		
		Which statement(s) is/are not correct with		
		respect to a database system requirement?		
	3.500	I. High availability	60	~
	MCQ	II. High response time	CO ₅	В
		III. High throughput		
		a) Only I		
		b) Only II		
		c) Only III		
		d) All are correct		
		Which of the following is used to provide		
		faster access to data items stored in physical		
		storage?		
		a) Date files		
	MCQ	b) Indices		
	,	-/		

	c) Data dictionaryd) Buffer manager	CO2	В
MCQ	Consider a schema R(A, B, C, D) with set of functional dependencies, F={A→B, C→D}. Then the decomposition of R into R1 (A, B) and R2(C, D) is: a) dependency preserving and lossless join b) lossless join but not dependency preserving c) dependency preserving but not lossless join d) not dependency preserving and not lossless join	CO6	C

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

<u>Time: 1 Hour and 30 Minutes</u> (3×12=36 Marks)

Questio n No	Question	CO Mappi ng (Each questi on should be from the same CO(s))
Q.No:8	Consider the following problem description of a University: A University has a number of Departments (identified by DeptID with other attributes as DeptName and Location). Each department offers a number of courses (identified by CourseID with other attributes as CourseName, Credit, CourseType) and a course cannot be offered by more than one department. Each department has a number of faculty members (identified by facultyID, with other attributes as FacultyName and Specialization) who works for that department but a faculty cannot work in more than one department. Students (identified by RollNo with other attributes as StudName, Address) register for courses and a course can also be registered by more than one student. Each course is either a Core Course or a	
	Department Elective or an Open Elective course and this can be defined by an attribute called CourseType. A faculty can teach one or more than one course and a course can be taught by more than one	

	faculty. Every course must have a course coordinator, who is in fact a faculty and a faculty can be the course coordinator of at most one course. a) Draw the ER/ Extended ER diagram of the above problem	CO2
	description. The given name of entities and attributes should be the same in the ER diagram. (Mention clearly all assumptions made by you in imposing constraints. (8 marks)	CO2
	b) Map the ER diagram into relations and specify the Primary keys and Foreign keys of each relation. The foreign keys must refer to the primary key using an arrow. (4 marks)	
Q. No. 8	Consider the following problem description: The publishing company (identified by PublisherName with other attributes as Location) produces books on various subjects (identified	
	by subjectID with SubjectName as another attribute). Each publishing company is located in various locations. The books (identified by BookId) are written by authors (identified by AuthorID with AuthorName as another attribute) who specialize in one	
	particular subject. The company employs editors (identified by EditorID with EditorName as another attribute) who, not necessarily being specialists in a particular area, each take sole responsibility for editing one or more book publications.	CO2
	Shop owners (identified by ShopID, with ShopName as another attribute) buy books from the publisher. Shop owners can buy many books but one book can be brought by one shop owner only. a) Draw the ER diagram of the above problem description. The	
	given name of entities and attributes should be same in the ER diagram. (Mention clearly all assumptions made by you in imposing constraints. (8 marks)	
	b) Map the ER diagram into relations and specify the Primary keys and Foreign keys of each relation. The foreign keys must refer to the primary key using an arrow. (4 marks)	
Q. No. 8	Consider the following problem description: An educational institute database needs to store information about	
	employees (identified by empId, with empName, and address as attributes); departments (identified by deptId, with deptName and location as attributes); projects (identified by projId, with projName, budget as attributes) and children of employees (with name and age as attributes). A department can have many employees and an employee can work in only one department. Employees can works on different projects. A department can have many projects and a project can	CO2
	belongs to only one department. Each project is sponsored by one sponsoring agency (identified by agencyID with agencyName and type as attributes). The sponsoring agency can be either a Government Agency or a Company agency, whose information the Institute is interested to keep. The sponsoring agencies are	
L		

	classified by the attribute 'Type'. Each department is managed by an employee. A department can be located in many places. A child must be identified uniquely by name when the parent (who is an employee; assume that only one parent works for the institute) is known. We are not interested in information about a child one the parent leaves the institute. a) Draw the ER diagram of the above problem description. The given name of entities and attributes should be same in the ER diagram. (Mention clearly all assumptions made by you in imposing constraints. (8 marks) b) Map the ER diagram into relations and specify the Primary keys and Foreign keys of each relation. The foreign keys must refer to the primary key using an arrow. (4 marks)	
Q.No:9	 i) Given relation schema, R (A, B, C, D) and set of functional dependencies, F = {B→A, AD→BC, C→ABD}. [3+1+2+2=8 marks] a) Compute the minimal cover for F. b) Find all candidate keys. c) Is the R in BCNF? If not, can we do BCNF decomposition? Justify. d) Is the R in 3NF? ii) State and prove Armstrong's Union and Decomposition rules using Armstrong's 3 axioms. [4marks] 	CO4
Q.No:9	 i) Let R (A,B,C,D,E,F) be relation schema with a set of functional dependencies, G = {A→B, C→DF, AC→E}. [2+2+4=8 marks] a) Find the candidate key(s) b) Do the BCNF decomposition. c) Check whether the decomposition is lossless join and dependency preserving decomposition or not? ii) Let R (A, B, C, D, E, G, H be a relation schema with set of functional dependencies, F = {A→B, B→A, C→D, E→GD, C→A, H→ CAB, EG→ CA}. Using all the required steps, find the canonical cover of F. [4 marks] 	CO4
Q.No:9	 i) Find the minimal cover of the given set of functional dependencies, F = {AB→E, C→D, F→GH, FG→GH, B→FG} using step by step process. [4 marks] ii) State and prove the pseudo transitivity rule using Armstrong's axioms. [2 marks] iii) Given a relation R (A, B, C, D, E) and set of functional dependencies, F = { A→B, B→E, C→D} [1+5=6 Marks] a) Find the candidate key. b) Is R in 3NF? If not, then convert it into 3NF and check for the lossless join property of the decomposition. 	CO4

O Novio	Canaidan tha fallani	a consument calculate anniets of the provider	
Q.No:10	T1 and T2:	ng concurrent schedule consists of transactions	
	T1	T2	
	Read(X)		
	X=X-100	1/37)	
		$\frac{ad(X)}{(X)}$	CO ₅
		X+150	0
	Write (X)		
	Read(Y)	ite(X)	
	<i>Y=Y+100</i>	ne(A)	
	Write(Y)		
	Wille(1)		
	The initial values of X and Y are 1000 and 2000 respectively.		
	[2+2+4+4=12 marks]		
	a) Find the final values of X and Y. (mention outputs in a step		
		by step manner, using above diagram)	
	b) If the transac	b) If the transactions are executed in serial manner <t1,t2>,</t1,t2>	
	then what we	then what would be the values of X and Y at the end of the	
	given serial execution? (mention the outputs in a step by step		
	manner, by drawing the serial schedule <t1,t2> diagram) [2]</t1,t2>		
	marks]		
	c) Is the given concurrent schedule is conflict serializable? Test		
	using precedence graph.		
	<i>U</i> 1		
	d) What would be the scenario, if data-locks (shared and		
	exclusive) are given to data items in the given concurrent		
		nswer by drawing the updated schedule with all	
	locks.	inswer by drawing the apatical senedate with an	
	TOCKS.		
Q.No:10	i) Consider the	two transactions (T1 & T2) on a bank account,	CO ₅
	'B', with init	ial balance Rs. 15000/-, that transfer Rs. 3000/-	
	to a mortgage, 'M', payment (by T1) and then apply 5%		
	interest to	account 'B' (by T2). Initially M is empty.	
	[4+2=6 marks]		
	a)Create the log sequence of the serial schedule <t1,< th=""><th></th></t1,<>		
	T2>		
	b) Find	the actions to be taken when the database	
	syste	em crashes just before the COMMIT operation	
	·	after the last statement) of T2 with the Deferred	
	Upd	· · · · · · · · · · · · · · · · · · ·	
	•	ree transactions T1, T2, T3 and schedule S1as	
	given below.	· · · · · · · · · · · · · · · · · · ·	
	T1: r1(x), r1		
		(y), $w2(y)$	
	T3: $r3(x)$, $r3$	· · · · · · · · · · · · · · · · · · ·	
		2(z), $r1(z)$, $r3(x)$, $r3(y)$, $w1(x)$, $w3(y)$, $r2(y)$,	
	w2(z), w2(y)		
	a\Cl1-	[4+2=6 marks]	
	a)Check the conflict serializability of S1 by drawing the		
	_	edence graph.	
	b) If th	e schedule is conflict serializable, then find the	

	equivalent serial schedule.	
Q.No:10	i) Is every view serializable schedule is conflict serializable?	CO ₅
	Explain with a suitable example. [4 marks] ii) Check the view serilaizability of the given schedule {R1(X); W1(X): P2(X): W2(X)) using lebel precedence graph	
	W1(X); R3(X); R2(X); W3(X)} using label precedence graph. [4 marks] iii) Can you apply two phase locking protocol on the given	
	schedule {R1(X); W1(X); R3(X); R2(X); W3(X)}? Justify your answer with depicting locks in the diagram of given concurrent	
	schedule. [4 marks]	GO 0
Q.No:11	 i. Consider the following tables of a relational database system HOTEL (<u>hotelNo</u>, hotelName, city) ROOM (<u>roomNo</u>, hotelNo, type, price) 	CO4 & CO6
	BOOKING (hotelNo, guestNo, dateFrom, dateTo, roomNo) GUEST (guestNo, guestName, guestAddress)	
	Answer the following queries using SQL: $[4 \times 2 = 8 \text{ marks}]$ a) Create HOTEL and ROOM tables with primary key and	
	foreign key constraints.	
	b) List name of all hotels whose room price is below Rs. 1000/- per night.	
	c) Display the hotel name, guest name and guest address of all	
	guests who have booked rooms from 6-12-2021 to 10-12-2021.	
	d) Display the highest room price of the hotel named as 'Grand Hotel'.	
	ii. Supported with suitable example (of your own) and schematic diagram, explain the primary index and secondary index.(4 marks)	

Q.No:11	 i. Consider the following tables of a relational database system HOTEL (hotelNo, hotelName, city) ROOM (roomNo, hotelNo, type, price) BOOKING (hotelNo, guestNo, dateFrom, dateTo, roomNo) GUEST (guestNo, guestName, guestAddress) 	CO4 & CO6
	 Answer the following queries using Relational Algebra: [4 x 2 = 8 marks] a) List name of all hotels whose room price is below Rs. 1000/per night. b) Display the hotel name, guest name and guest address of all guests who have booked rooms from 6-12-2021 to 	
	10-12-2021.c) Display the highest room price of the hotel named as 'Grand Hotel'.d) Display the highest room price of all hotels without using	
	max() function. iii. Construct a B+ tree of order 3, for (2, 14, 8, 32, 20, 40, 64, 82, 101, 121). Mention all steps for every insertion during the creation of the tree. (4 marks)	
Q.No:11	 i. Consider the following tables of a relational database system HOTEL (hotelNo, hotelName, city) ROOM (roomNo, hotelNo, type, price) BOOKING (hotelNo, guestNo, dateFrom, dateTo, roomNo) GUEST (guestNo, guestName, guestAddress) Answer the following queries using tuple relational calculus: [4 x 2 = 8 marks] a) Display all hotels which are located in 'Delhi'. b) List name of all hotels whose room price is below Rs. 1000/- per night. c) Display the hotel name, guest name and guest address of all guests who have booked rooms from 6-12-2021 to 10-12-2021. d) Display the room price of the hotel named as 'Grand Hotel'. ii) Construct a B+ tree of order 5, for letters (U, N, C, O, P, Y, R, I, G, H, T, A, B, L, E) Mention all steps for every insertion during the creation of the tree. (4 marks) 	CO4 & CO6

CO#	Detail
CO1	Describe the fundamental elements of relational database management systems and understand the database systems and its applications.
CO2	Conceptualize and depict a database system using ER diagram.
CO3	Construct queries using relational algebra, relational calculus and SQL.
CO4	Understand the functional dependencies and design the database using normalization.
CO5	Understand the needs of Transaction processing and learn techniques for controlling the

	consequences of concurrent data access.
CO6	Understand basic database storage structures and access techniques: file organizations,
	indexing methods including B-tree, and hashing.