Theory of Elasticity

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering October 21, 2021

1

upcoming schedule

- Oct 21 Airy Stress Functions
- Oct 22 Homework 5 Self-Grade Due
- Oct 26 SPTE, Airy Stress
- Oct 28 Airy Stress
- Oct 29 Homework 6 Due
- Nov 2 Airy Stress

outline

- two-dimensional problems
- plane strain
- plane stress
- generalized plane stress

two-dimensional problems

2d problems

- As we learned in Chapter 5, it is often very difficult to solve full problems in 3D
- Some problems contain symmetry, or particular geometries which allow certain simplifications to be made
- In this chapter we will consider the following 2D formulations
 - Plane strain
 - Plane stress
 - Generalized plane stress
 - Antiplane strain

4

2d problems

- Airy stress functions provide a systematic method for solving 2D problems
- We will also develop Airy stress function solution methods in polar (cylindrical or spherical) coordinates

plane strain

- Plane strain is a state we consider for very long bodies
- If the body is sufficiently long, then the deformation field can be considered to be a function of x and y only

$$u = u(x, y)$$
$$v = v(x, y)$$
$$w = 0$$

 We can use the strain-displacement relations to find the corresponding strains from our assumptions on the displacement

$$\begin{split} \epsilon_{xx} &= \frac{\partial u}{\partial x} \\ \epsilon_{yy} &= \frac{\partial v}{\partial y} \\ \epsilon_{xy} &= \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\ \epsilon_{zz} &= \epsilon_{xz} = \epsilon_{yz} = 0 \end{split}$$

plane strain

We can use Hooke's law to find the stresses

$$\begin{split} &\sigma_{xx} = \lambda (\epsilon_{xx} + \epsilon_{yy}) + 2\mu \epsilon_{xx} \\ &\sigma_{yy} = \lambda (\epsilon_{xx} + \epsilon_{yy}) + 2\mu \epsilon_{yy} \\ &\sigma_{zz} = \lambda (\epsilon_{xx} + \epsilon_{yy}) \\ &\tau_{xy} = 2\mu \epsilon_{xy} \\ &\tau_{xz} = \tau_{yz} = 0 \end{split}$$

7

- We can use these relationships to reduce the equilibrium equations.
- · Recall that for equilibrium we have

$$\sigma_{ii,i} + F_i = 0$$

$$\tau_{xz} = \tau_{yz} = 0$$

, so those terms will vanish

9

plane strain

• Although $\sigma_{zz} \neq 0$, it only appears with a derivative of z, and it is a function of x and y only, so σ_{zz} will not appear in any non-trivial equilibrium equation

$$\begin{split} \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + F_x &= 0\\ \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + F_y &= 0 \end{split}$$

 We can use the strain-displacement equations and Hooke's Law to write Navier's equations for plane strain

$$\mu \nabla^2 u + (\lambda + \mu) \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + F_x = 0$$
$$\mu \nabla^2 v + (\lambda + \mu) \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + F_x = 0$$

11

compatibility

$$\begin{split} \frac{\partial^2 \epsilon_{\mathbf{x}}}{\partial \mathbf{y}^2} &+ \frac{\partial^2 \epsilon_{\mathbf{y}}}{\partial \mathbf{x}^2} = 2 \frac{\partial^2 \epsilon_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{x} \partial \mathbf{y}} \\ \frac{\partial^2 \epsilon_{\mathbf{y}}}{\partial \mathbf{z}^2} &+ \frac{\partial^2 \epsilon_{\mathbf{z}}}{\partial \mathbf{y}^2} = 2 \frac{\partial^2 \epsilon_{\mathbf{y}\mathbf{z}}}{\partial \mathbf{y} \partial \mathbf{z}} \\ \frac{\partial^2 \epsilon_{\mathbf{z}}}{\partial \mathbf{x}^2} &+ \frac{\partial^2 \epsilon_{\mathbf{x}}}{\partial \mathbf{z}^2} = 2 \frac{\partial^2 \epsilon_{\mathbf{z}\mathbf{x}}}{\partial \mathbf{z} \partial \mathbf{x}} \\ \frac{\partial^2 \epsilon_{\mathbf{x}}}{\partial \mathbf{y} \partial \mathbf{z}} &= \frac{\partial}{\partial \mathbf{x}} \left(-\frac{\partial \epsilon_{\mathbf{y}\mathbf{z}}}{\partial \mathbf{x}} + \frac{\partial \epsilon_{\mathbf{z}\mathbf{x}}}{\partial \mathbf{y}} + \frac{\partial \epsilon_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{z}} \right) \\ \frac{\partial^2 \epsilon_{\mathbf{y}}}{\partial \mathbf{z} \partial \mathbf{x}} &= \frac{\partial}{\partial \mathbf{y}} \left(-\frac{\partial \epsilon_{\mathbf{z}\mathbf{x}}}{\partial \mathbf{y}} + \frac{\partial \epsilon_{\mathbf{y}\mathbf{z}}}{\partial \mathbf{z}} + \frac{\partial \epsilon_{\mathbf{y}\mathbf{z}}}{\partial \mathbf{x}} \right) \\ \frac{\partial^2 \epsilon_{\mathbf{z}}}{\partial \mathbf{x} \partial \mathbf{y}} &= \frac{\partial}{\partial \mathbf{z}} \left(-\frac{\partial \epsilon_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{z}} + \frac{\partial \epsilon_{\mathbf{y}\mathbf{z}}}{\partial \mathbf{x}} + \frac{\partial \epsilon_{\mathbf{z}\mathbf{x}}}{\partial \mathbf{y}} \right) \end{split}$$

The only non-trivial term from the compatibility equations is

$$\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = 2 \frac{\partial^2 \epsilon_{xy}}{\partial x \partial y}$$

 This can also be written in terms of stress (Beltrami-Mitchell)

$$\nabla^2(\sigma_x + \sigma_y) = -\frac{1}{1 - \nu} \left(\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} \right)$$

plane strain

- Plane strain is exact for a body of infinite length, but can also be useful for real shapes of finite length
- Consider a long body with fixed and frictionless ends.
- The boundary conditions for this case are

$$w(x, y, \pm L) = 0$$

$$\tau_{xz}(x, y, \pm L) = 0$$

$$\tau_{yz}(x, y, \pm L) = 0$$

14

13

plane stress

plane stress

- If the thickness of a body is small compared to the other dimensions, we assume that there can not be much variation in any of the stress components in that direction
- The assumptions for plane stress can be summarized as

$$\sigma_{x} = \sigma_{x}(x, y)$$

$$\sigma_{y} = \sigma_{y}(x, y)$$

$$\tau_{xy} = \tau_{xy}(x, y)$$

$$\sigma_{z} = \tau_{xz} = \tau_{yz} = 0$$

plane stress

- To maintain these assumptions, there can be no body forces in the z-direction and no applied tractions in the z-direction
- Other body forces must be independent of z, or distributed symmetrically such that the average may be used.

16

plane stress

 We can use Hooke's law to find the corresponding values of strain

$$\epsilon_{x} = \frac{1}{E}(\sigma_{x} - \nu \sigma_{y})$$

$$\epsilon_{y} = \frac{1}{E}(\sigma_{y} - \nu \sigma_{x})$$

$$\epsilon_{z} = -\frac{\nu}{E}(\sigma_{x} + \sigma_{y})$$

$$\epsilon_{xy} = \frac{1 + \nu}{E} \tau_{xy}$$

$$\epsilon_{xz} = \epsilon_{yz} = 0$$

strain-displacement

$$\epsilon_{x} = \frac{\partial u}{\partial x}$$

$$\epsilon_{y} = \frac{\partial v}{\partial y}$$

$$\epsilon_{z} = \frac{\partial w}{\partial z}$$

$$\epsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$

$$\epsilon_{yz} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) = 0$$

$$\epsilon_{xz} = \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) = 0$$

18

plane stress

- Since strain in the z-direction is not zero, w becomes a linear function of z
- We also find that u and v will also be functions of z
- These effects are normally neglected, leading to an approximation in the formulation
- This is why we cannot use the full 3D compatibility equations to assess compatibility of a body with an assumed state of plane stress

plane stress

 The equilibrium equations reduce the same form in plane stress as they did for plane strain

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + F_x = 0$$
$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + F_y = 0$$

 But the Navier equations in terms of displacement do not reduce to exactly the same form

$$\mu \nabla^{2} u + \frac{E}{2(1-\nu)} \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + F_{x} = 0$$

$$\mu \nabla^{2} v + \frac{E}{2(1-\nu)} \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + F_{y} = 0$$
²⁰

navier equations

• The factor in the plane strain Navier equations is

$$(\lambda + \mu)$$

 We can convert this to E, ν to better compare with the plane stress equation

$$\lambda + \mu = \frac{\nu E}{(1+\nu)(1-2\nu)} + \frac{E}{2(1+\nu)}$$

$$= \frac{2\nu E}{2(1+\nu)(1-2\nu)} + \frac{E(1-2\nu)}{2(1+\nu)(1-2\nu)}$$

$$= \frac{2\nu E + E - 2\nu E}{2(1+\nu)(1-2\nu)}$$

$$= \frac{E}{2(1+\nu)(1-2\nu)}$$

22

compatibility

 Due to the approximations we made earlier, we neglect all compatibility equations with ε_z, even though these may not be zero

$$\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = 2 \frac{\partial^2 \epsilon_{xy}}{\partial x \partial y}$$

or in terms of stress

$$\nabla^2(\sigma_{xx} + \sigma_{yy}) = -(1+\nu)\left(\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y}\right)$$

conversion

- While plane strain and plane stress give similar results, they are not identical
- We can convert between plane strain and plane stress by replacing ${\it E}$ and ν

	Ε	ν
Plane stress to plane strain Plane strain to plane stress	$\frac{\frac{E}{1-\nu^2}}{\frac{E(1+2\nu)}{1+\nu^2}}$	$\frac{\frac{v}{1-\nu}}{\frac{v}{1+\nu}}$

• When $\nu=$ 0, plane strain and plane stress give identical results

24

generalized plane stress

generalized plane stress

- Some approximations introduced inconsistencies in the plane stress formulation
- Generalized plane stress is based on averaging the field quantities through the thickness

$$\bar{\psi} = \frac{1}{2h} \int_{-h}^{h} \psi(x, y, z) dz$$

25

generalized

- We again assume that the thickness, 2h, is much smaller than the other dimensions
- We also assume that tractions on the surfaces $z=\pm h$ are zero
- Edge loadings must have no z component and are independent of z
- Body forces also cannot have a z component and must be independent of z or symmetrically distributed through the thickness
- This gives w as a linear function of z which means

$$w(x, y, z) = -w(x, y, -z)$$

average field variables

$$\bar{u} = \bar{u}(x, y)$$

$$\bar{v} = \bar{v}(x, y)$$

$$\bar{w} = \bar{w}(x, y)$$

$$\bar{\sigma}_z = \bar{\tau}_{xz} = \bar{\tau}_{yz} = 0$$

$$\bar{\sigma}_x = \lambda^*(\bar{\epsilon_x} + \bar{\epsilon_y}) + 2\mu\bar{\epsilon_x}$$

$$\bar{\sigma_y} = \lambda^*(\bar{\epsilon_x} + \bar{\epsilon_y}) + 2\mu\bar{\epsilon_y}$$

$$\bar{\tau}_{xy} = 2\mu\bar{\epsilon_{xy}}$$

$$\bar{\epsilon_z} = -\frac{\lambda}{\lambda + 2u}(\bar{\epsilon_x} + \bar{\epsilon_y})$$

• Where $\lambda^* = \frac{2\lambda\mu}{\lambda+2\mu}$

27

generalized plane stress

 We can also write the equilibrium equations in terms of the averaged values

$$\begin{split} \frac{\partial \bar{\sigma_x}}{\partial x} + \frac{\partial \bar{\tau_{xy}}}{\partial x} + \bar{F}_x &= 0 \\ \frac{\partial \bar{\tau_{xy}}}{\partial x} + \frac{\partial \bar{\sigma_y}}{\partial y} + \bar{F}_y &= 0 \end{split}$$

• Or in terms of displacements

$$\begin{split} \mu \nabla^2 \bar{u} + (\lambda^* + \mu) \frac{\partial}{\partial x} \left(\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y} \right) + \bar{F}_x &= 0 \\ \mu \nabla^2 \bar{u} + (\lambda^* + \mu) \frac{\partial}{\partial y} \left(\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y} \right) + \bar{F}_y &= 0 \end{split}$$

29

compatibility

• The compatibility relations reduce to

$$\nabla^2(\bar{\sigma_x} + \bar{\sigma_y}) = -\frac{2(\lambda^* + \mu)}{\lambda^* + 2\mu} \left(\frac{\partial \bar{F}_x}{\partial x} + \frac{\partial \bar{F}_y}{\partial y} \right)$$

compatibility

• When we write the coefficient $\frac{2(\lambda^*+\mu)}{\lambda^*+2\mu}$ in terms of E and ν , we find

$$\frac{2(\lambda^* + \mu)}{\lambda^* + 2\mu} = 1 + \nu$$

- Which means this is an identical result to the simple plane stress derivation
- Thus the generalized plane stress method is not particularly useful

31

beam example

Figure 1: beam bending example