Department of Computer Science and Engineering

Program: BE

	110814111.		50
Date	18 June 2024	Maximum Marks	90 min
Course Code	CD343AI	Duration	90 11111
4 th Sem	IV Semester	CIE-I	

Design and Analysis of Algorithms

(Common to AIML/CSE/CD/CY/ISE)

SI. No		M	L	CO	
Ja	Tool Supra	05	L1	CO2	
₹a	Summarise the framework for analysis of algorithms		L2	CO1	
1b	With suitable notations and graphs, explain the different	05	1.2	001	
/2a	asymptotic notations. Give two examples in each case. Design a recursive algorithm to find the sum of cubes of first 'n' natural numbers. Set up a recurrence, solve and determine the time complexity of the algorithm.	05 3-4	L2	con	
26	Write an algorithm to arrange the numbers in ascending order using Selection Sort. Evaluate the time complexity. Compare it with merge-sort algorithm.	05	L1	co	3
Æa	Sort the following functions in the increasing order of growth. n^3 , 2^n , $\log_5 n$, $3n$, $\log_2 n$, \sqrt{n} , $n \log n$ Indicate how much the functions value will change if its argument is increased four-fold.	05	L2	СО	2
3b	Write the pseudocode for merge sort and describe the process. Setup a recurrence and decide the time complexity.		L	2 C	01
4a	Apply Master's theorem to following recurrence and indicate the efficiency class. $i.T(n) = 2T\left(\frac{n}{2}\right) + n ii. T(n) = 8T\left(\frac{n}{2}\right) + 5n^2$		·	.3	001
1	Derive the worst-case efficiency class for the quick sort. Show	V			
46	the first split for the following array by considering the leftmost element as the pivot: 38, 81, 22, 48, 18, 50, 31, 58		6	L3	CO
5a	Mention the 3 variations of decrease-and-conquer and grant an example algorithm in each case.	re o	4	L1	CC
ъ.	i. Apply DFS algorithm by considering vertex '1' as the source and write the traversal sequence. Show the contents of stack during DFS and also draw the Differest.	he	06	L3	C

ASUS VivoBook

Course Outcomes

01	Apply kr	101	wledge of	comp	uting an	d ma	athematics t	to algorithm ar	nalysis
	Analyze	a	problem	and	identify	the	computing	requirements	appro

- O3 Apply mathematical foundations, algorithmic principles, and comp theory to the modeling, and evaluation of computer-based solutions demonstrates comprehension of the trade-offs involved in design choices.
- Investigate and apply optimal design, development principles, skills ar construction of software solutions of varying complexity.
- Demonstrate critical, innovative thinking, and display competence in and visual communication.
 - Exhibits positive group communication exchanges in order to accompgoal and engage in continuing professional development.

Blooms' taxonomy

)6

Date	July 2024	Duration	120 min
Course Code	Code CD343AI	CIE-II	
Sem	IV		
	Design and Analysis	of Algorithms	
	(Common to AIML/CS	SE/CD/CY/ISE)	

		M	L	C
Sl. No.	Questions	TAT		
	PART A		12	C
1.1	Is it possible to find transitive closure of a digraph using Depth First Search (DFS) or Breadth-first search (BFS)? Justify the answer	2	L3	
1.2	Given a text of length n=30 and a pattern of length m=4, how many shifts will the Horspool algorithm perform in the worst case?	2	L3	С
1.3	In a max heap containing n elements, the smallest element	2	L1	C
1.3	can be found in worst time		7.0	1
1.4	Why Floyd-Warshall Algorithm better for Dense Graphs and not for Sparse Graphs?	2	L3	100
1.5	List any four limitations of Distribution Counting Sort	2	L2	10
	PART B			-
1a	Apply DFS traversal to find the topological order of the graph shown in figure 1a from the vertex p (break the ties by the alphabetical order of the vertices)	06		_3
	Company 1			
1	Compare the brute force approach and Instance simplification variant of transform and conquer approach solve checking element uniqueness in an array.	to O	4	L

2a	Show the state of each pass and final array after applying comparison counting sort for the list: 94, 73, 26, 11, 05, 77, comparison counting sort for the list: 94, 74, 74, 74, 74, 74, 74, 74, 74, 74, 7	06	L2	CO ₂
2b	Write the pseudocode of warshall's algorithm is cubic.	04	L2	CO ₂
3a	Apply heapsort to arrange the list 8, 12, 15, 5, 1, 16, 111		L3	CO3
3b	Compute binomial coefficient of Cs using dynamic		L2	CO1
4	Apply floyd's algorithm to find all pairs shortest path for the digraph shown in with the weight matrix $ \begin{pmatrix} 0 & 2 & \infty & 1 & 8 \\ 6 & 0 & 3 & 2 & \infty \\ \infty & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 0 & 3 \\ 3 & \infty & \infty & \infty & 0 \end{pmatrix} $	10	. L3	3 CO3
5 6 F	Use input enhancement technique for the pattern RNARNAKARNA and apply Boyer Moore algorithm to find the occurrence of this pattern in the text RAVANAKARNA_RAMAYANA_EPIC_SEETHA NNARNARNARNAKARNA	e ct 10		r3 co

Course Outcomes

Cour	se outcomes
CO1	Apply knowledge of computing and mathematics to algorithm analysis and design
CO2	Analyze a problem and identify the computing requirements appropriate for a solution
CO3	Apply mathematical foundations, algorithmic principles, and computer science theory to the modeling, and evaluation of computer-based solutions in a way that demonstrates comprehension of the trade-offs involved in design choices.
CO4	construction of a first constr
CO5	Demonstrate critical, innovative thinking, and display competence in oral, written,
CO6	Exhibits positive group communication exchanges in order to accomplish a common goal and engage in continuing professional development.
Pl-	

Blooms' to-	8 Professio	200 11	
taxonomy		DIAM	T 505 [CO6]
L1 L2 L3	10	CO2 CO3 CO4	CO3 CO
1 6	4 1 5 01	60	-

Course Code	CD343AI	Duration	90 min		
4 th Sem	IV Semester	CIE-I			
I	Design and Analysis of	of Algorithms			
	(Common to AIML/CSE	E/CD/CY/ISE)			

Sl. No.	Imp	ions	M	L	(
1	Define spanning tree.				2	1	1
	Find the compression ratio for A = 8 = 40%, B = 2 = 10%, Compression ratio for B = 8 = 40%, B = 2 = 10%, Compression ratio for B = 8 = 40%, B = 2 = 10%, Compression ratio for B = 8 = 40%, B = 2 = 10%, Compression ratio for B = 8 = 40%, B = 2 = 10%, Compression ratio for B = 8 = 40%, B = 2 = 10%, Compression ratio for B = 8 = 40%, B = 2 = 10%, Compression ratio for B = 8 = 40%, B = 2 = 10%, Compression ratio for B = 8 = 40%, B = 2 = 10%, Compression ratio for B = 100%, Compr	C = 4 = 20%	D = 3 = 15%	%,_ = 3 = 15%	2	2	
1		A	0				
2		В	100				
		С	110				
		D	101				
			111		2	2	
3	Explain how Dijkrasta's algo	Explain how Dijkrasta's algorithm differ from Prim's algorithm					
4	Define a state-space tree in the context of the backtracking algorithm						1
5	What is NP hard problems?						

Sl. No.	Improvement Test Questions	M	L
	Apply 0/1 Knapsack, find the maximum profit for the given data C= 5 Wi 2 1 3 2 Pi 8 6 16 11	10	3
2	Apply Prim's algorithm to find the Minimum Spanning Tree (MST) for the given graph. Write the spanning tree after finding the MST	10	

		a 5	4	2	6 3 3)				
3	a Compare Backtrack	ing and Brancl	n & bot	ınd.				4	2	2
3		rite the decision tree for finding minimum of three numbers.					6	2	1	
	Consider an assignment such a way that the for assigning each p	e total cost of	the ass	signme	ent is n	assign ninimi	n people to n jobs in zed. The cost matrix			
		Job/Person	Job 1	Job 2	Job 3	Job 4			1	1
4		Person 1	9	2	7	8		10	3	3
		Person 2	6	4	3	7				1
		Person 3	5	8	1	8			1	1
		Person 4	7	6	9	4		1	1	
	(a) Calculate the low	er bound for t	this as	signm	ent pr	oblem	1.		1	\
	(b) Find the solution Briefly discuss P and	ND problems	used	in pro	hlem	colvin	σ		-	2
a									6	2
5 b	Define greedy techni	que, how it di	ffers f	rom d	ynami	c prog	gramming?		4	2

Course Outcomes

DAA-III DMSC-TIP Apply knowledge of computing and mathematics to algorithm analysis and design CO1 Analyze a problem and identify the computing requirements appropriate for a CO2 solution

Apply mathematical foundations, algorithmic principles, and computer science CO3 theory to the modeling, and evaluation of computer-based solutions in a way that demonstrates comprehension of the trade-offs involved in design choices.

CO4 Investigate and apply optimal design, development principles, skills and tools in the construction of software solutions of varying complexity.

Demonstrate critical, innovative thinking, and display competence in oral, written, CO₅ and visual communication.

Exhibits positive group communication exchanges in order to accomplish a CO6 common goal and engage in continuing professional development.

Blooms' taxonomy test