Semaine 17

Juien Gery

Exercice 16: (Centrale MP 2023)

Soit $\mathcal{E} = \{ A \in M_n(\mathbb{R}) \mid A \text{ symétrique positive de trace } 1 \}.$

- 1. Rappeler la définition d'un ensemble convexe et montrer que $\mathcal E$ est convexe.
- 2. Montrer que :

 $(A \in \mathcal{E} \text{ et } \operatorname{rg}(A) = 1) \iff (A \text{ est la matrice, dans une base orthonormée, d'une projection orthogon$

Correction

- 1. Trivial.
- 2. Sens direct : Si $A \in \mathcal{E}$ et rg A = 1, alors, d'après le théorème spectral, A est diagonalisable dans une base orthonormée. Il existe $P \in O_n(\mathbb{R})$ et $\Delta = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ tel que $A = P^T \Delta P$. Or, A est de rang 1, donc tous les λ_i sont nuls sauf un. De plus, $\operatorname{Tr} A = 1$, donc $\lambda_1 = 1$. Ce qui permet de conclure.

Réciproquement, soit p une projection orthogonale sur une droite Δ . Soit (e_1) une base orthonormée de Δ et (e_2, \ldots, e_n) une base orthonormée de Δ^{\perp} . Ainsi $\mathcal{B} = (e_1, \ldots, e_n)$ est une base orthonormée de E. D'après la formule de la projection orthogonale, pour tout $x \in E$, $p(x) = \langle x, e_1 \rangle e_1$. Ainsi, la matrice de p dans une telle base est de la forme diag $(1, 0, \ldots, 0)$, ce qui permet de conclure.

Exercice 18: (Centrale MP 2022)

On se place dans un espace préhilbertien $(E, \langle \cdot, \cdot \rangle)$. Pour x_1, \ldots, x_d vecteurs de E, on pose $G(x_1, \ldots, x_d) = (\langle x_i, x_j \rangle)_{1 \leq i,j \leq n}$ la matrice de Gram associée.

- 1. a) Justifier que $G(x_1, \ldots, x_d)$ est diagonalisable.
- b) Montrer que si (x_1, \ldots, x_d) est lié, alors $G(x_1, \ldots, x_d)$ n'est pas inversible.
- 2. Soit F un sous-espace vectoriel de E de dimension finie. On fixe (x_1, \ldots, x_d) une base de F. Après avoir justifier que $G(x_1, \ldots, x_d)$ est inversible, montrer que pour tout $x \in E$, $d(x,F)^2 = \frac{\det(G(x,x_1,\ldots,x_d))}{\det(G(x_1,\ldots,x_d))}$
- 3. On se place dans $E = C([0,1],\mathbb{R})$ munit du produit scalaire

$$(f,g) \mapsto \langle f,g \rangle = \int_0^1 f(t)g(t) dt$$

4 Pour $r \in \mathbb{R}_+^*$, on note $\phi_r : x \mapsto x^r$ définie et continue sur \mathbb{R}_+ . Soit r_1, \ldots, r_d des réels distincts strictement positifs, on note $F = Vect(\phi_{r_1}, \ldots, \phi_{r_d})$. Pour $r \in \mathbb{R}_+^*$ déterminer $d(\phi_r, F)$.

Correction

1.

- (a) C'est une matrice symétrique réelle, donc diagonalisable.
- (b) (x_1,\ldots,x_d) est une famille liée, donc il existe $\lambda_1,\ldots,\lambda_d\in\mathbb{R}$, non tous nuls, tels que $\sum_{i=1}^d\lambda_ix_i=0$. Ainsi, pour tout $j\in[1,n], \sum_{i=1}^d\lambda_i\langle x_i,x_j\rangle=0$. On pose $X=(\lambda_1,\ldots,\lambda_d)^T$. Par conséquent, GX=0. La matrice G n'est donc pas inversible.
- 2. Supposons que det G=0. Les vecteurs colonnes de la matrice G sont donc liés. Il existe $\lambda_1, \ldots, \lambda_d \in \mathbb{R}$, non tous nuls, tels que, pour tout $i \in [1, d]$,

$$\langle \lambda_1 x_1 + \dots + \lambda_d x_d, x_i \rangle = 0.$$

On obtient ainsi d relations. Multiplions la première par λ_1 , la deuxième par λ_2 , etc., et faisons la somme de ces relations. Par bilinéarité du produit scalaire, on trouve :

$$\langle \lambda_1 x_1 + \dots + \lambda_d x_d, \lambda_1 x_1 + \dots + \lambda_d x_d \rangle = \|\lambda_1 x_1 + \dots + \lambda_d x_d\|^2 = 0.$$

Donc $\lambda_1 x_1 + \cdots + \lambda_d x_d = 0$. La famille est liée. Ainsi, si (x_1, \dots, x_d) est une famille libre, alors la matrice est inversible.

3. Soit $x \in E$. On décompose x = u + v, avec $u \in F$ et $v \in F^{\perp}$. Ainsi, d(x, F) = ||v||, et

$$G(x, x_1, \dots, x_d) = \det \begin{pmatrix} ||u||^2 + ||v||^2 & \langle u, x_1 \rangle & \cdots & \langle u, x_d \rangle \\ \langle x_1, u \rangle + 0 & \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_d \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle x_d, u \rangle + 0 & \langle x_d, x_1 \rangle & \cdots & \langle x_d, x_d \rangle \end{pmatrix}$$

$$= 0 + \det \begin{pmatrix} ||v||^2 & \langle u, x_1 \rangle & \cdots & \langle u, x_d \rangle \\ 0 & \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_d \rangle \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \langle x_d, x_1 \rangle & \cdots & \langle x_d, x_d \rangle \end{pmatrix}$$

$$= ||v||^2 G(x_1, \dots, x_d)$$

3) C'est ultra chiant à faire. C'est un cas particulier du déterminant de Cauchy. Normalement, c'est

$$G(r, r_1, \dots, r_d) = \frac{V(r, r_1, \dots, r_d)V(r+1, r_1+1, \dots, r_d+1)}{\prod_i (r+r_i)^2 \prod_{i,j} (r_i+r_j)}$$
$$G(r_1, \dots, r_d) = \frac{V(r_1, \dots, r_d)V(r_1+1, \dots, r_d+1)}{\prod_{i,j} (r_i+r_j)}$$

Donc:

$$\frac{G(r, r_1, \dots, r_d)}{G(r_1, \dots, r_d)} = \frac{1}{\prod_i (r + r_i)^2} \frac{V(r, r_1, \dots, r_d)V(r + 1, r_1 + 1, \dots, r_d + 1)}{V(r_1, \dots, r_d)V(r_1 + 1, \dots, r_d + 1)}$$

$$= \frac{\prod_i (r_i - r) \prod_i (r_i - r)}{\prod_i (r_i - r)^2}$$

$$= 1$$

Exercice 17: (Mines MP 2023)

Soient $A \in S_n(\mathbb{R})$ et a < b des réels tels que $\forall X \in \mathbb{R}^n$, $a\|X\|^2 \le \langle X, AX \rangle \le b\|X\|^2$. Soit $P \in \mathbb{R}[X]$ tel que $\forall x \in [a, b], P(x) > 0$. Montrer que P(A) est symétrique définie positive.

Correction

Soit λ une valeur propre de A. Il existe $X \in E \setminus \{0\}$ tel que $AX = \lambda X$. Donc $\langle X, AX \rangle = \lambda \|X\|^2$. Par conséquent, $a \leq \lambda \leq b$.

D'après le théorème spectral, il existe $C \in O_n(\mathbb{R})$ et $\Delta = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ tel que $A = C^T \Delta C$. Ainsi, $P(A) = C^T P(\Delta) C$. Or $P(\Delta) = \operatorname{diag}(P(\lambda_1), \ldots, P(\lambda_n))$.

Comme $P(\lambda_i) > 0$ pour tout i, $P(\Delta)$ est une matrice symétrique définie positive, donc P(A) l'est aussi.

Exercice 19 (Mines PSI 2021)

Soient $A, B \in S_n(\mathbb{R})$ telles que $B = A^3 + A + I_n$. Montrer que $A \in \mathbb{R}[B]$.

Correction

On pose $Q(X) = X^3 + X + 1$. On montre que Q est injectif (donc bijectif). D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ et $\Delta = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ tel que $A = P^T \Delta P$. Ainsi, $Q(A) = P^T Q(\Delta) P = B$. Donc $PBP^T = \operatorname{diag}(\mu_1, \ldots, \mu_n) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. On cherche donc un polynôme P tel que $P(\mu_i) = \lambda_i$. Il faut donc que si $\mu_i = \mu_j$ alors $\lambda_i = \lambda_j$. C'est-à-dire que si $Q(\lambda_i) = Q(\lambda_j)$ alors $\lambda_i = \lambda_j$. Q est injectif, il vérifie cette propriété. Les polynômes interpolateurs de Lagrange nous donnent l'existence.

Exercice 20: (Centrale MP)

Soit n un entier naturel. On note $S_n(\mathbb{R}) \subset M_n(\mathbb{R})$ le sous-espace constitué des matrices symétriques. Soit $A \in M_n(\mathbb{R})$.

On pose $\varphi_A : \frac{S_n(\mathbb{R}) \to S_n(\mathbb{R})}{M \mapsto A^\top M A}$.

- (a) Justifier rapidement le fait que $S_n(\mathbb{R})$, muni de (A|B) = Tr(AB), est un espace euclidien.
- (b) Montrer que si A est diagonale, $det(\varphi_A) = det(A)^{n+1}$.
- (c) Montrer le même résultat si $A \in S_n(\mathbb{R})$.

- (d) Dans le cas général :
 - (i) Déterminer l'adjoint de φ_A .
 - (ii) Montrer que $(\det(\varphi_A))^2 = \det(\varphi_{AA^{\top}})$.
 - (iii) Calculer le déterminant de φ_A pour toute matrice $A \in M_n(\mathbb{R})$.

Correction

- (a) On passe.
- (b) On note $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Soient $1 \le i, j \le n$,

$$\varphi_A(E_{i,j}) = A^T E_{i,j} A = A E_{i,j} A = A E_{i,j} \sum_{k=1}^n \lambda_k E_{k,k}.$$

$$= A \sum_{k=1}^{n} \lambda_k \delta_{j,k} E_{i,k} = \sum_{k=1}^{n} \lambda_k E_{k,k} \lambda_j E_{i,j} = \lambda_j \lambda_i E_{i,j}.$$

Donc, soit $1 \le i \le j \le n$,

$$\varphi_A(E_{i,j} + E_{j,i}) = \varphi_A(E_{i,j}) + \varphi_A(E_{j,i}) = \lambda_i \lambda_j (E_{i,j} + E_{j,i}).$$

Ainsi, la base canonique de $S_n(\mathbb{R})$ est une base de vecteurs propres de φ_A :

$$\begin{pmatrix} \lambda_1^2 & & & & & & & & \\ & \lambda_2^2 & & & & & & & \\ & & \ddots & & & & & \\ & & \lambda_n^2 & & & & & \\ & & & \lambda_1 \lambda_2 & & & & \\ & & & & \lambda_1 \lambda_n & & & \\ & & & & & \lambda_2 \lambda_3 & & \\ & & & & & \lambda_{n-1} \lambda_n \end{pmatrix}$$

Ainsi, $\det \varphi_A = \lambda_1^{n+1} \cdots \lambda_n^{n+1} = (\det A)^{n+1}$.

(c) Si $A \in S_n(\mathbb{R})$, il existe $P \in O_n(\mathbb{R})$ et $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ tel que $A = P^T \Delta P$. Ainsi,

$$\det \varphi_A = \det \varphi_{P^T \Delta P} = (\det P^T \Delta P)^{n+1} = (\det \Delta)^{n+1} = (\det A)^{n+1}.$$

(i) Soit $M, N \in S_n(\mathbb{R})$, alors :

$$(\varphi_A(M)/N) = \operatorname{Tr}(A^T M A N) = \operatorname{Tr}(M A N A^T) = (M/\varphi_{A^T}(N)).$$

L'adjoint est donc φ_{A^T} .

(ii) Soit $M \in S_n(\mathbb{R})$, alors :

$$(\varphi_A \circ \varphi_{A^T})(M) = \varphi_A(AMA^T) = A^T AMA^T A = (A^T A)^T MA^T A = \varphi_{A^T A}(M).$$

Ainsi, $\det \varphi_{A^TA} = \det(\varphi_A \circ \varphi_{A^T}) = \det \varphi_A \det \varphi_{A^T} = (\det \varphi_A)^2$.

(iii) $A^T A \in S_n(\mathbb{R})$, donc d'après la question précédente :

$$\det \varphi_{A^T A} = (\det (A^T A))^{n+1} = (\det A)^{2(n+1)} = (\det \varphi_A)^2.$$

Donc det $\varphi_A = \pm (\det A)^{n+1}$. Il reste à montrer que c'est un plus.

On décompose $GL_n(\mathbb{R})$ en ses deux composantes connexes. On note $E^+ = \{M \in M_n(\mathbb{R}) \mid \det M > 0\}$ et $E^- = \{M \in M_n(\mathbb{R}) \mid \det M < 0\}$.

D'après la question (b), on a que :

$$\det \varphi_{I_n} = (\det I_n)^{n+1} \quad \text{et} \quad \det \varphi_{(-I_n)} = (\det (-I_n))^{n+1}.$$

Soit $M \in M_n(\mathbb{R})$.

Si det M > 0, alors $M \in E^+$. Il existe donc une application f continue de [0,1] dans E^+ telle que $f(0) = I_n$ et f(1) = M.

On suppose par l'absurde que $\det \varphi_M = -(\det M)^{n+1}$. En posant $g(x) = \det f(x)$ pour $x \in [0,1]$, g est continue avec g(0) > 0 et g(1) < 0. Donc il existe $x_0 \in [0,1]$ tel que $g(x_0) = 0$, c'est-à-dire $f(x_0) \notin GL_n(\mathbb{R})$, ce qui est absurde. Ainsi, $\det \varphi_M = (\det M)^{n+1}$. De même pour $M \in E^-$.

Exercice 21: (Mines-Ponts MP)

Soit n un entier naturel.

- (a) Montrer qu'il existe un unique polynôme $A \in R_n[X]$ tel que : $\forall P \in R_n[X], P(1) = \int_{-1}^1 \frac{A(t)P(t)}{\sqrt{1-t^2}} dt$.
- (b) Peut-on remplacer $R_n[X]$ par R[X]?

Correction

- (a) C'est le théorème de représentation des formes linéaires.
- (b) Non, ce n'est pas possible. On prend P(X) = A(X)(1-X).

Exercice 22 (Mines MP 2022)

Trouver une condition nécessaire et suffisante pour que A, dans $M_n(\mathbb{R})$, puisse s'écrire $A = S^2 + S + I_n$ avec S une matrice symétrique réelle. Puis, lorsque A vérifie cette condition, trouver une condition nécessaire et suffisante pour l'existence et l'unicité de S.

Correction

On pose $Q(X) = X^2 + X + 1 = \left(X + \frac{1}{2}\right)^2 + \frac{3}{4}$. On donne le tableau de variation de ce polynôme :

Tout d'abord, cherchons une condition nécessaire.

Soit $A \in M_n(\mathbb{R})$ tel qu'il existe S symétrique réelle tel que A = Q(S). Alors A est symétrique réelle. D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ et $\Delta =$ $\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$ tel que $S=P^T\Delta P$. Ainsi,

$$Q(S) = Q(P^T \Delta P) = P^T Q(\Delta)P = A.$$

Cela implique que

$$PAP^T = Q(\Delta) = \operatorname{diag}(Q(\lambda_1), \dots, Q(\lambda_n)).$$

Les valeurs propres de A sont exactement les $Q(\lambda_i)$. D'après le tableau de variation de Q, on a $\operatorname{sp}(A) \subset \left[\frac{3}{4}, +\infty\right[$.

Réciproquement, soit A une matrice symétrique réelle telle que $\operatorname{sp}(A) \subset \left[\frac{3}{4}, +\infty\right[$. D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ et $\Delta = \operatorname{diag}(\mu_1, \dots, \mu_n)$ tel que $A = P^T \Delta P$. D'après le tableau de variation de Q, il existe $\lambda_i \in \mathbb{R}$ tel que $Q(\lambda_i) = \mu_i$. On pose alors

$$B = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Ainsi, $Q(B) = \Delta$. On pose $S = P^T B P$, alors $S^T = S$, et Q(S) = A.

Conclusion : Une tel écriture est possible si et seulement si A est symétrique réelle et $\operatorname{sp}(A) \subset \left[\frac{3}{4}, +\infty\right[$.

Pour assurer l'unicité on veut un unique antécédent pour chaque valeur propre. Cela implique que les valeurs propres de S doivent appartenir à un intervalle où Q est injectif, soit $\left[-\frac{1}{2}, +\infty\right[$.

On prend donc S une matrice symétrique réelle telle que Q(S) = A et $\mathbf{sp}(S) \subset \left[-\frac{1}{2}, +\infty\right[$. Montrons que S est un polynôme en A.

D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ et $\Delta = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ tel que S = $P^T \Delta P$. Ainsi,

$$Q(S) = P^{T}Q(\Delta)P = A.$$

On pose $B = PAP^T = \operatorname{diag}(\mu_1, \dots, \mu_n)$. On cherche un polynôme P tel que $P(\mu_i) = \lambda_i$. Il faut donc que si $\mu_i = \mu_j$ alors $\lambda_i = \lambda_j$. C'est à dire que si $Q(\lambda_i) = Q(\lambda_j)$ alors $\lambda_i = \lambda_j$. Q restreint est injectif, il vérifie cette propriété. Les polynômes interpolateur de Lagrange nous donne l'existence.

Unicité:

Soient S_1 et S_2 deux matrices symétriques réelles telles que $Q(S_1) = Q(S_2) = A$ et $\operatorname{sp}(S_1), \operatorname{sp}(S_2) \subset \left|-\frac{1}{2}, +\infty\right|$. Alors S_1 et S_2 sont des polynômes en A donc commutent. Or

$$S_1$$
 et S_2 sont diagonalisable et commutent, elles sont donc diagonalisables dans une même base. Il existe donc $P \in GL_n(\mathbb{R})$ et $\Delta_1 = \begin{pmatrix} \mu_1 & (0) \\ \ddots & \\ (0) & \mu_n \end{pmatrix}$ et $\Delta_2 = \begin{pmatrix} \lambda_1 & (0) \\ \ddots & \\ (0) & \lambda_n \end{pmatrix}$ tel que $S_1 = P^T \Delta_1 P$ et $S_2 = P^T \Delta_2 P$. Ainsi, $0 = Q(S_1) - Q(S_2) = Q(P^T \Delta_1 P) - Q(P^T \Delta_2 P) = P^T (Q(\Delta_1) - Q(\Delta_2)) P$

Donc

$$\begin{pmatrix} Q(\mu_1) - Q(\lambda_1) = 0 & (0) \\ & \ddots & \\ (0) & Q(\mu_n) - Q(\lambda_n) = 0 \end{pmatrix}$$

Or Q est injectif donc $\lambda_i = \mu_i$ donc $\Delta_1 = \Delta_2$ donc $S_1 = S_2$. On a l'unicité.

Exercice 23: (X-ENS PSI 2021)

Soit $E=L^2([-1,1],\mathbb{R})$ muni du produit scalaire $\langle f,g\rangle=\int_{-1}^1 f(t)g(t)\,dt$ et de la norme associée.

On dit que la suite (f_n) converge **fortement** vers f si la suite $(||f_n-f||)$ converge vers 0. On dit que la suite (f_n) converge **faiblement** vers f si $\forall \varphi \in C^1([-1,1],\mathbb{R}), \langle f_n,\varphi \rangle \to \langle f,\varphi \rangle$.

- 1. Montrer que si (f_n) converge uniformément vers f, alors (f_n) converge fortement vers f. La réciproque est-elle vraie ?
- 2. Montrer que si (f_n) converge fortement vers f, alors (f_n) converge faiblement vers f.
- 3. Montrer que si (f_n) converge faiblement vers f de classe C^1 et si la suite $(||f_n||)$ converge vers ||f||, alors (f_n) converge fortement vers f.
- 4. Montrer que si (φ_n) est une suite de fonctions C^1 qui converge uniformément vers φ et si (φ'_n) converge aussi uniformément et si (f_n) est une suite bornée qui converge faiblement vers f, alors $\langle f_n, \varphi_n \rangle \to \langle f, \varphi \rangle$.
- 5. On pose $f_n: x \mapsto \sin(nx)$. Montrer que (f_n) converge faiblement vers la fonction nulle.

Correction

1. (f_n) converge uniformément vers f, ainsi,

$$||f_n - f||^2 = \int_{-1}^1 (f_n - f)^2(t) dt$$

$$\leq \int_{-1}^1 |f_n(t) - f(t)|^2 dt$$

$$\leq \int_{-1}^1 ||f_n - f||_{\infty}^2 dt$$

$$\leq 2||f_n - f||_{\infty}^2.$$

Réciproque fausse : il suffit de prendre (x^{2n}) , qui tend vers l'indicatrice de $\{-1,1\}$, laquelle n'est pas continue, donc ne converge pas uniformément, alors qu'elle converge fortement.

2. Soit $\varphi \in C^1([-1,1],\mathbb{R})$.

$$|\langle f_n, \varphi \rangle - \langle f, \varphi \rangle| = |\langle f_n - f, \varphi \rangle|$$

Cauchy-Schwarz $\leq ||f_n - f|| \, ||\varphi|| \longrightarrow 0$

3.

$$\int_{-1}^{1} (f_n(t) - f(t))^2 dt = \int_{-1}^{1} f_n^2(t) + f^2(t) - 2f_n(t)f(t) dt$$
$$= ||f_n||^2 + ||f||^2 - 2\langle f_n, f \rangle \longrightarrow 2||f||^2 - 2\langle f, f \rangle = 0.$$

4. Soit $n \in \mathbb{N}$. On pose $\epsilon_n = \varphi - \varphi_n$. Ainsi, ϵ_n est continue et (ϵ_n) converge uniformément vers la fonction nulle. Dès lors :

$$\langle f_n, \varphi_n \rangle = \int_{-1}^1 f_n(t) \varphi_n(t) dt = \int_{-1}^1 f_n(t) (\varphi(t) + \epsilon_n(t)) dt = \langle f_n, \varphi \rangle + \langle f_n, \epsilon_n \rangle$$

On pose $M = \sup\{||f_n||_{\infty} | n \in \mathbb{N}\}.$

$$|\langle f_n, \epsilon_n \rangle| \leq 2M ||\epsilon_n||_{\infty} \longrightarrow 0$$

En passant à la limite :

$$\langle f_n, \varphi_n \rangle = \langle f_n, \varphi \rangle + \langle f_n, \epsilon_n \rangle \longrightarrow \langle f, \varphi \rangle + 0.$$

5. C'est le lemme de Riemann-Lebesgue.

Exercice 24: (X-ENS PSI 2021)

Soit E euclidien de dimension n.

Soit $x_1, \ldots, x_k \in E$ tels que $\forall i \neq j, \langle x_i, x_j \rangle < 0$. Montrer que k ne peut pas être trop grand et trouver cette limite.

Correction

Voir l'exercice 51 du polycopié de Antoine, p. 323, algèbre.