Approximation Final Work

Eldad Kronfeld

Contents

1	Theoretical Question					
	1.1	background				
		Question				

1 Theoretical Question

1.1 Background

Definition 1. Let f be a continuous function on the interval [a,b], and let p be a polynomial approximation. An alternating set on f, p is defined to be a sequence of points $x_0, ..., x_{n-1}$ such that:

- $a \le x_0 < ... < x_{n-1} \le b$.
- $f(x_i) p(x_i) = (-1)^i E$ for i = 0, 1, ..., n-1.

where either E = ||f - p|| or E = -||f - p||. The number n is the length of the alternating set.

Theorem 1.1. Let $f \in C[a.b]$, and suppose that $p = p_n^*$ is the best approximation of f out of $P_n[x]$, that is

$$||f - p||_{\infty} \le ||f - q||_{\infty} \text{ for all } q \in P_n[x]$$

$$\tag{1}$$

Then, there is an alternating set for f - p consisting of at least n + 2 points.

1.2 Question

prove that the best approximation polynomial is unique using Theorem 1.1.

Proof. The theorem is trivial if f is polynomial of degree $\leq n$, so we assume that is not true. to show the uniqueness, suppose that both p_n, q_n are polynomials of best approximation, and we will show that they are equal. Note that $\frac{(p_n+q_n)}{2}$ is also a polynomial of best approximation because:

$$\left\| f - \frac{(p_n + q_n)}{2} \right\| = \left\| \frac{(f - p_n)}{2} \frac{(f - q_n)}{2} \right\| \le \frac{1}{2} \left\| f - p_n \right\| + \frac{1}{2} \left\| f - q_n \right\| = E$$