Roll No.:

National Institute of Technology, Delhi

Name of the Examination: B.Tech

Mid Semester Examination (Spring, 2023)

Branch

: CSE

Semester

: 2nd

Title of the Course

: Applied Linear Algebra

Course Code : MALB 152

Time: 90 Minutes

Maximum Marks : 25

COURSE (DUTCOMES	COGNITIVE LEVELS
CO1	To understand the concept of matrix and will be able to apply this to find the inverse of the matrix and to solve the system of equations.	Understanding (Level II)
CO2	Gain a understanding of the concept of vector space, Linear transformation and will be able to apply this in solving various linear models	Applying (Level III)
CO3	To learn concept of eigen values and eigen vectors and use it to diagonalize the matrix.	Applying (Level III)
CO4	Gain a understanding of concept of Inner product space and its various applications.	Evaluating (Level V)

Course Outcomes (CO's)	CO1	CO2	CO3	CO4
Questions No.	1,2,3,6,7	4,5,8		

Answer the following questions.

Note: All sections are compulsory.

Section A

Section A contains 03 questions (Question Number 1 to 3) of 01 Mark each.

Q1 Find a matrix A such that W= Col A.

$$W = \left\{ \begin{bmatrix} 6a - b \\ a + b \\ -7a \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$

Q2. How many pivot columns must a 6×4 matrix have if its columns are linearly independent? Why?.

Q3. Find the area of the parallelogram whose vertices are (0,0), (5,2), (6,4), (11,6).

Section B.

Section B Contains 04 theoretical questions (Question no. 4-7) of 04 Marks each.

Q4. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation whose standard matrix is

$$A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Is the T one-one, on to or both.

Q5. Find a basis for the space spanned by the vectors
$$\begin{bmatrix} 1\\0\\-2\\3 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} 2\\-2\\-8\\0 \end{bmatrix}$, $\begin{bmatrix} 2\\-1\\10\\3 \end{bmatrix}$ and $\begin{bmatrix} 3\\-1\\-6\\9 \end{bmatrix}$.

Q6. Find the non singular matrices P and Q so that PAQ is in normal form where

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}. \text{ Also find the rank of A.}$$

Q7. Find the inverse of a matrix
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$
, if it exists.

Section C

Section C contains 01 theoretical question (Question No. 8) of 06 Marks.

Q 8. Find a basis and the dimension of Row space, Column space and null space of the matrix

$$\begin{bmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{bmatrix}$$

National Institute of Technology, Delhi Name of the Examination: Mid-Semester Examination (2023)

Branch: Computer Science Engineering
Title of the Course: System Programming

Time:1 Hour 30 mins

Semester: IInd

Course Code: CSLB 153 Maximum Marks: 25

Question Paper mapping with CO

Q.No.	1	2	3	4	5	6
Marks	6	4	4	4	4	3
CO	CO 2	CO 1	CO 1	CO 1	CO 2	CO 2

- Q: 1 Describe and explain the following:
 - a) data structures used for the pass 1 of an assembler.

3

b) Operation performed in pass 2 in Macro Processors

3

- Q: 2 Differentiate and explain with the examples of assembly language code.
 - a) Pseudo operations and machine operations
 - b) CLR instruction and CR instruction

2

Q: 3 Differentiate and explain with the examples of assembly language code.

a) INDEX EQU 5 and INDEX DC F'5'

2

b) movq with registers and memory

2

Q: 4 Discuss and justify the contents of the register 3 after each instruction in the following sequence? (assuming only the register 3 is involved in the execution of the program)

LA

3,=A(XYZ)

LR

3,3

L

3, =F'5'

LCR 3,3 LNR 3,3

4

- Q: 5 Discuss and illustrate mini flowcharts for the instructions
 - a) A (Add, RX form)

2

b) BXLE (Branch on Index Less Than or Equal, RS form)

2

Q: 6 Macro expansion and the subroutine calls are similar during the program execution. Explain what are the similarities and differences between them and how the stack frame handled during subroutine calls?

3

Course Matrix (CO-PO-PSO Mapping)

COs		POs														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO11	PO12	PSO1	PSO2		
CO1	2	2	2										2	1		
CO2	3	3	3										2	1		

- 1=Addressed to small extent
- 2= Addressed significantly
- 3= Addressed strongly (major part of course)

Roll No.:....

National Institute of Technology, Delhi Name of the Examination: MID Semester (Theory) Spring Examination (2023)

Branch: Computer Science and Engineering

Semester: B Tech (Ist year IInd Sem)

Title of the Course: Discrete Structure Course Code: CSLB 152

Maximum Marks: 25 Time: 1 Hour 30 Minutes

Q. No.	1	2	3	4	5
Marks	3	2	2	9	9
СО	2	2	2	2	2
PO	1	1	2	3	3

Note: All questions are compulsory.

Q1. Write the following compound propositions using logical <Marks 3> <CO2> connectives and propositional variables p, q and r if:

p: The user has entered valid password.

q: Access is granted.

r: The user has paid the subscription fee.

- 1. The user has paid the subscription fee but does not enter a valid password.
- 2. Access is granted whenever the user has paid the subscription fee and enters a valid password.
- 3. If the user has not entered a valid password but has paid the subscription fee then access is granted.

Q2. Find whether the given compound propositional statements are <Marks 2> <CO2> logically equivalent without using the truth table.

1.
$$(p \to r) \land (q \to r)$$
 and $(p \lor q) \to r$

2.
$$(p \rightarrow q) \rightarrow r$$
 and $p \rightarrow (q \rightarrow r)$

03. Express the statement: The collector has exactly one stamp issued by each African Country in the form of predicate statements.

<Marks 2> <CO2>

Q4. Prove that the argument form is valid for given premise using the <Marks 3 + 3 + 3 = 9 >rules of inferences.

<CO2>

A. Use rules of inferences.

Premise:

❖ Randy works hard.

If Randy works then he is a dull boy.

❖ If Randy is dull boy then he will not get the job.

Conclusion: Randy will not get job.

B. Use only Resolution-Refutation property.

Premise:

- It is not raining or Yvo has his umbrella.
- Yvo does not have his umbrella or he does not get wet.
- It is raining or Yvo does not get wet.

Conclusion: Yvo does not get wet.

C. Use rules of inferences by considering the arbitrary domain for all students.

Premise:

- Some Students enrolled in Discrete Mathematics left the campus for the weekend.
- ❖ All seniors left the campus for the weekend.

Conclusion: Some seniors enrolled in Discrete Mathematics

- Q5. Prove the following statements by properly stating the name of proving technique with translating these statements into predicate statements. < CO2>
 - A. There are infinitely many primes.
 - B. If 7|4a (7 divides 4a), then also 7|a.

Course Matrix (CO-PO-PSO Mapping)

Course	riaci i	ALCC	<u>, , , , , , , , , , , , , , , , , , , </u>	UOU IV	uppi	بهد								
COs		POs												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	3	-	-	2	-	1	1	2	2	1	2
CO2	3	3	2	3	-	3	1	1	2	3	3	3	3	3
CO3	1	3	2	_	2	1	-	-	1	-	1	1	3	1
C04	2	2	1	1	-	2	3	-	3	1	2	2	2	2

- 1=Addressed to small extent
- 2= Addressed significantly
- 3= Addressed strongly (major part of course)

National Institute of Technology, Delhi Name of the Examination: Mid-Semester Examination (2023)

Branch: Computer Science Engineering

Title of the Course: Data Structures

Time: 1.5 Hrs

Semester: IInd

Course Code: CSBB 151
Maximum Marks: 25

Question Paper mapping with CO

Q.No.	1	2	3	4	5	6
Marks	3	4	4	5	4	5
СО	CO 1	CO 1	CO 2	CO 1	CO 1	CO 2

- 1. a) Differentiate between types of data structures based on:
 - How the data structures are operated
 - How they are store in the memory

2

b) Define ADT. Mention the Features of ADT

1

- 2. a) Perform an operation to insert an element 35 at ith position in an array 6, 15, 24, 13, 7, 11, 19, 29, 13, 17, 23, 15
 - b) Now delete the element next to the inserted element.

2

2

3. Discuss the algorithm and dry run for binary search in the following array:

4

4. a) Explain the steps involved in insertion at a location into a Doubly linked list.

3

b) Briefly discuss the ways of implementing linked list?

2

5. a) Discuss how a doubly linked list can be represented as circular linked list?

2

- b) Illustrate with examples the advantages of Array over Linked List? 2
- 6. a) Define hashing and discuss the need for Hashing

2

b) Define collision in hashing.

- 1
- c) Explain the working of Double Hashing in case of collision

2

Course Matrix (CO-PO-PSO Mapping)

COs		POs													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO11	PO12	PSO1	PSO2	
	1	2	3	4	5	6	7	8	9	10					
CO1	3	3											3		
CO2	3	3	2										3		

- 1=Addressed to small extent
- 2= Addressed significantly
- 3= Addressed strongly (major part of course)

	_	_	 	 	 	
Roll No:						

NATIONAL INSTITUTE OF TECHNOLOGY DELHI

Department of Civil Engineering MID SEMESTER EXAMINATION

B. Tech (Ist Year): Semester-I (2023)

Course Name: Mathematics for Engineers - I

Instructor: Dr. Gyanendra Sheoran

Time: 1.5 hours

Course Code: MALB159 Course

Date: 11/05/2023 Max. Marks: 25

Instruction:

1. All questions are compulsory.

2. Assume any suitable data, if necessary.

3. [CO- Course Outcome: BL- Bloom's Level]

	PART-A	СО	BL	Marks
Q1. a)	Define skew-symmetric matrix.	1	I	1
b)	State two properties of eigen values.	1	II	1
c)	Find the matrix corresponding to the following Quadratic form: $8x^2 + y^2 + 6z^2$	1	Ш	1
<u>d)</u>	If $rank(A) = 2$ and $rank(B) = 3$, then find the $rank(AB)$.	l	IV	1
e)	A matrix has a value and a determinant cannot have a value. (True/ false; with reason)	1	V	1
f)	Two functions u and v are functionally dependent if their Jacobian is	2	I	1
g)	Discuss the continuity of the function $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq 0,0\\ 0, & (x,y) = 0,0 \end{cases}$	2	II	1
h)	Demonstrate $f(x) = 2\sin 3x + 3\cos 3x$ is maxima/minima/neither maxima nor minima at $x = 5\pi/6$.	2	III	1
i)	If $y = x^x$, what is dy/dx at $x=1$?	2	IV	1
j)	Evaluate $\lim_{\substack{x \to 1 \\ y \to 2}} \frac{2x^2y}{x^2 + y^2 + 1}$	2	V	l
	PART-B	CO	BL	Marks
Q2.	Evaluate the modal matrix P for $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ and hence diagonalize A^3 .	1	V	5
Q3. a)	Find the eigen values and eigen vectors of the matrix A and it's inverse where $A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$	1	IV	3
b)	If $x = e^x \sec\theta$, $y = e^x \tan\theta$; then evaluate $\frac{\partial(x,y)}{\partial(r,\theta)} \cdot \frac{\partial(r,\theta)}{\partial(x,y)}$	2	V	2
Q4. a)	Find three positive numbers whose sum is 100 and whose product is maximum.	2	IV	3
b)	Show that the rectangular solid of maximum volume that can be inscribed in a			