BAB I

PENDAHULUAN

1.1 Latar Belakang

Reaksi kimia yang diterapkan dalam industri kimia dapat melibatkan bahan baku yang berbeda wujudnya, baik berupa padatan, gas, maupun cairan. Oleh karena itu, reaksi kimia dalam suatu industri dapat terjadi dalam fase tunggal (homogen) maupun fase ganda (heterogen), misalnya biner atau bahkan tersier (Coulson, 1996). Sebelum reaksi kimia berlangsung, salah satu atau lebih bahan baku (reaktan) akan berpindah dari aliran utamanya menuju ke lapisan antarfase/batas atau menuju aliran utama bahan baku yang lain yang berada di fase yang berbeda.

Absorpsi gas-cair merupakan proses heterogen yang melibatkan perpindahan komponen gas yang dapat larut menuju penyerap yang biasanya berupa cairan yang tidak mudah menguap (Franks, 1967). Reaksi kimia dalam proses absorpsi dapat terjadi di lapisan gas, lapisan antarfase, lapisan cairan, atau bahkan badan utama cairan, tergantung pada konsentrasi dan reaktivitas bahanbahan yang direaksikan. Untuk memfasilitasi berlangsungnya tahapan-tahapan proses tersebut, biasanya proses absorpsi dijalankan dalam reaktor tangki berpengaduk bersparger (penyembur aliran massa), kolom gelembung (bubble column), atau kolom yang berisi tumpukan partikel inert (packed bed column). Proses absorpsi gas-cair dapat diterapkan pada pemurnian gas sintesis yang masih bermanfaat dalam gas buang atau bahkan pada industri yang melibatkan pelarutan gas dalam cairan, seperti H₂SO₄, HCl, HNO₃, formadehid, dan lain-lain (Coulson, 1996). Absorpsi gas CO₂ dengan larutan hidroksid yang kuat merupakan proses absorpsi yang disertai dengan reaksi kimia order 2 antara CO₂ dan ion OH membentuk ion CO_3^{2-} dan H_2O . Sedangkan reaksi antara CO_2 dengan CO_3^{2-} membentuk ion HCO₃ biasanya diabaikan (Danckwerts 1970; Juvekar & Sharma, 1972). Namun, menurut Rehm et al. (1963) proses ini juga biasa dianggap mengikuti reaksi order 1 jika konsentrasi larutan NaOH cukup rendah (encer).

Perancangan reaktor kimia dilakukan berdasarkan pada permodelan hidrodinamika reaktor dan reaksi kimia yang terjadi di dalamnya. Suatu model matematika merupakan bentuk penyederhanaan dari proses sesungguhnya di dalam sebuah reaktor yang biasanya sangat rumit (Levenspiel, 1972). Reaksi kimia biasanya dikaji dalam suatu proses *batch* berskala laboratorium dengan

mempertimbangkan kebutuhan reaktan, kemudahan pengendalian reaksi, peralatan, kemudahan menjalankan reaksi dan analisis, serta ketelitian.

1.2 Perumusan Masalah

- Bagaimana pengaruh variabel terhadap jumlah CO₂ yang terserap pada berbagai waktu reaksi?
- Bagaimana pengaruh variabel terhadap nilai tetapan perpindahan massa CO₂ fase gas (k_{Ga})?
- 3. Bagaimana pengaruh variabel terhadap nilai tetapan perpindahan massa CO_2 fase cair (k_{La})?
- 4. Bagaimana pengaruh variabel terhadap nilai tetapan perpindahan massa total antara CO₂ dan H₂O (K_{og})?

1.3 Tujuan Percobaan

Setelah melakukan percobaan ini mahasiswa mampu menjelaskan mengenai beberapa hal berikut:

- Mahasiswa mampu mempersiapkan, mengoperasikan proses absorpsi dan menganalisis sampel dan mengolah data percobaan.
- Mampu menyiapkan dan mengoperasikan sistem absorpsi dan menganalisis sampel serta mengolah data percobaan.
- Pengaruh variabel terhadap jumlah CO₂ yang terserap pada berbagai waktu reaksi.
- 4. Pengaruh variabel terhadap nilai tetapan perpindahan massa CO_2 fase $gas(k_{Ga})$.
- Pengaruh variabel terhadap nilai tetapan perpindahan massa CO₂ fase cair(k_{La}).
- Pengaruh variabel terhadap nilai tetapan perpindahan massa total antara CO₂ dengan H₂O (K_{og}) dan membandingkannya dengan data tetapan reaksi di literatur.

1.4 Manfaat Percobaan

Mahasiswa dapat memahami reaksi yang terjadi pada reaktan yang berupa gas dan cair (heterogen) dan menerapkannya dalam penelitian perancangan reaktor dan alat proses yang terkait.

BAB II TINJAUAN PUSTAKA

2.1 Absorpsi

Absorpsi merupakan salah satu proses separasi dalam industri kimia dimana suatu campuran gas dikontakkan dengan suatu cairan penyerap sehingga satu atau lebih komponen gas tersebut larut dalam cairan. Absorpsi dapat terjadi melalui dua mekanisme, yaitu absorpsi fisik dan absorpsi kimia.

Absorpsi fisik merupakan suatu proses yang melibatkan peristiwa pelarutan gas dalam larutan penyerap, namun tidak disertai dengan reaksi kimia. Contoh proses ini adalah absorpsi gas H₂S dengan air, metanol, dan propilen karbonat. Penyerapan terjadi karena adanya interaksi fisik antara gas dengan cairan. Mekanisme proses absorpsi fisik dapat dijelaskan dengan beberapa model yaitu: teori dua lapisan (*two films theory*) oleh Whiteman (1923), teori penetrasi oleh Dankcwerts, dan teori permukaan terbaharui.

Absorpsi kimia merupakan suatu proses yang melibatkan peristiwa pelarutan gas dalam larutan penyerap yang disertai dengan reaksi kimia. Contoh peristiwa ini adalah absorpsi gas CO₂ dengan larutan MEA (Mono Etanol Amin), NaOH, K₂CO₃ (Kalium Karbonat) dan sebagainya. Aplikasi dari absorpsi kimia dapat dijumpai pada proses penyerapan gas CO₂ pada pabrik Amonia seperti yang terlihat pada Gambar 2.1.

Gambar 2.1 Proses absorpsi dan desorpsi CO₂ dengan pelarut MEA di pabrik
Amonia

Proses absorpsi dapat dilakukan dalam tangki berpengaduk yang dilengkapidengan sparger, kolom gelembung (bubble column), dengan kolom yang berisi packing yang inert (packed column), atau piringan (tray column). Pemilihan peralatan proses absorpsi biasanya didasarkan pada reaktivitas reaktan (gas dan cairan), korosifitas bahan yang diserap dan penyerap, suhu, tekanan, kapasitas, dan ekonomi.

2.2 Kolom Absorpsi

Kolom absorpsi adalah suatu kolom atau tabung tempat terjadinya proses absorpsi (penyerapan) dari zat yang dilewatkan di kolom/tabung tersebut. Secara umum ada empat jenis kolom absorpsi yaitu: menara sembur (*spray column*), menara gelembung (*bubble column*), menara *plate* (*tray column*), dan menara *packing* (*packed bed column*).

2.2.1 Menara Sembur (spray column)

Dalam menara *spray* fasa gas mengalir naik melalui sebuah ruang terbuka berukuran besar dan fasa cairnya dimasukkan dengan menggunakan *nozzle* atau dengan alat-alat penyemprot lainnya. Cairan yang diumpankan dalam wujud tetes tetes halus, jatuh dengan arus yang berlawanan arah dengan arus gas yang naik ke atas.

2.2.2 Menara Gelembung (bubble column)

Menara gelembung terdiri dari ruang-ruang terbuka berukuran besar yang dilalui oleh fasa cair yang mengalir kedalam ruang-ruang ini pula gas akan disebarkan ke dalam fasa cair dalam bentuk gelembung-gelembung halus. Gelembung-gelembung gas kecil akan memberikan luas kontak yang diinginkan, gelembung-gelembung yang naik menimbulkan aksi pencampuran di dalam fasa cair, sehingga mengurangi resistensi fasa cair tersebut terhadap transfer massa. Menara gelembung digunakan dengan sistem dimana fasa cair biasanya mengontrol laju transfer massa.

2.2.3 Menara Plate (tray column)

Menara *Plate* atau *tray column* adalah menara yang secara luas telah digunakan dalam industri. Menara ini terdiri dari beberapa tipe, yaitu: *Sieve Tray, Valve Tray*, dan *Bubble Cup Tray*.

2.2.4 Menara Packing (packed bed column)

Menara *packing* adalah menara yang diisi dengan bahan pengisi. Adapun fungsi bahan pengisi ialah untuk memperluas bidang kontak antara kedua fase. Di dalam menara ini, cairan akan mengalir ke bawah melalui permukaan bawah pengisi, sedangkan gas akan mengalir ke atas secara arus berlawanan, melalui ruang kosong yang ada diantara bahan pengisi.

2.3 Analisis Perpindahan Massa dan Reaksi dalam Proses Absorpsi Gas Oleh Cairan

Secara umum, proses absorpsi gas CO₂ ke dalam larutan NaOH yang disertai reaksi kimia berlangsung melalui empat tahap, yaitu perpindahan massa CO₂ melalui lapisan gas menuju lapisan antarfase gas-cairan, kesetimbangan antara CO₂ dalam fase gas dan dalam fase larutan, perpindahan massa CO₂ dari lapisan gas ke badan utama larutan NaOH, dan reaksi antara CO₂ terlarut dengangugus hidroksil (OH⁻). Skema proses tersebut dapat dilihat pada Gambar 2.2.

Gambar 2.2 Mekanisme absorpsi gas CO2 dalam larutan NaOH

Laju perpindahan massa CO₂ melalui lapisan gas:

$$R_a = k_{ga} (p_g - p_{ai})$$

$$\tag{2.1}$$

Kesetimbangan antara CO₂ dalam fase gas dan dalam fase larutan:

$$p_{ai} = H C_{Ai}$$
 (2.2)

pai = Tekanan parsial gas A di interface gas-cair (atm)

p_{ag} = Tekanan parsial gas A di fase gas (atm)

kga = Koefisien perpindahan masa di fase gas (mol/atm.menit)

H = tetapan kesetimbangan gas A (atm/L.mol)

 C_{Ai} = konsentrasi A di fase cair pada interfase gas-cair dengan H pada suhu 30°C = 2,88.10⁻⁵ g.mol/cm³. atm.

Laju perpindahan massa CO₂ dari lapisan gas ke badan utama larutan NaOH dan reaksi antara CO₂ terlarut dengan gugus hidroksil:

$$R_a = [A^*] a \sqrt{D_A k_A [OH-]}$$

Keadaan batas:

(a).
$$\frac{\sqrt{D_A.k_2.[OH^-]}}{k_L} >>> 1$$

(b).
$$\frac{\sqrt{D_A.k_2.[OH^-]}}{k_L} <<< \frac{[OH^-]}{z.A*} \sqrt{\frac{D_A}{D_B}}$$

dengan z adalah koefisien reaksi kimia antara CO₂ dan [OH-], yaitu = 2. Di fase cair, reaksi antara CO₂ dengan larutan NaOH terjadi melalui beberapa tahapan proses:

$$NaOH_{(aq)}$$
 $Na^+_{(aq)} + OH^-_{(aq)}$ (a)

$$CO_{2(g)}$$
 $CO_{2(aq)}$ (b)

$$CO_{2(aq)} + OH^{-}_{(1)}$$
 HCO₃-(c)

$$CO_3^{2-}(1) + 2Na^+(1)$$
 Na₂CO_{3(aq)} (e)

Langkah d dan e biasanya berlangsung dengan sangat cepat karena merupakan reaksi ionik, sehingga proses absorpsi biasanya dikendalikan oleh peristiwa pelarutan CO₂ ke dalam larutan NaOH terutama jika CO₂ diumpankan dalam bentuk campuran dengan gas lain atau dikendalikan bersama-sama dengan reaksi kimia pada langkah c (Juvekar & Sharma, 1973).

Eliminasi A* dari persamaan 1, 2, dan 3 menghasilkan :

$$R_{a} = \frac{a.H.pg.\sqrt{D_{A}.k_{2}[OH^{-}]}}{1 + \frac{a.H.\sqrt{D_{A}.k_{2}[OH^{-}]}}{k_{Ga}}}$$
(2.4)

 $\frac{\sqrt{D_A \cdot k_2 \cdot [OH^-]}}{k_L} \approx 1$ sehingga persamaan diatas Jika nilai k_L sangat besar, maka menjadi:

$$R_{a} = \frac{a.H.pg.\sqrt{D_{A}.k_{2}.[OH^{-}] + k_{L}^{2}}}{1 + \frac{a.H.\sqrt{D_{A}.k_{2}.[OH^{-}] + k_{L}^{2}}}{k_{Ga}}}$$
(2.5)

Jika keadaan batas (b) tidak dipenuhi, berarti terjadi pelucutan [OH-] dalam larutan. Hal ini berakibat:

larutan. Hal ini berakibat:
$$\frac{\sqrt{D_A \cdot k_2 \cdot [OH^-]}}{k_L} \approx \frac{[OH^-]}{z \cdot A*} \sqrt{\frac{D_A}{D_B}}$$
 (2.6)

Dengan demikian, maka laju absorpsi gas CO2 ke dalam larutan NaOH akan mengikuti persamaan:

$$R_{a} = \frac{a.H.pg.\phi k_{L}}{1 + \frac{a.H.\phi k_{L}}{k_{Ga}}}$$
 (2.7)

Dengan \(\phi \) adalah enhancement faktor yang merupakan rasio antara koefisien transfer massa CO₂ pada fase cair jika absorpsi disertai reaksi kimia dan tidak disertai reaksi kimia seperti dirumuskan oleh Juvekar dan Sharma (1973):

$$\Phi = \frac{\sqrt{D_A \cdot k_2 \cdot [OH^-]}}{k_L} \cdot \left[\frac{1 + \frac{[OH^-]D_B}{z \cdot A * D_A} \Phi}{\frac{[OH^-]D_B}{z \cdot A * D_A}} \right]^{\frac{1}{2}}$$
(2.8)

Nilai difusivitas efektif (DA) CO₂ dalam larutan NaOH pada suhu 30°C adalah 2,1 x 10⁻⁵ cm²/det (Juvekar & Sharma, 1973).

Nilai k_{Ga} dapat dihitung berdasarkan pada absorpsi fisik dengan meninjau perpindahan massa total CO_2 ke dalam larutan NaOH yang terjadi pada selang waktu tertentu di dalam alat absorpsi. Dalam bentuk bilangan tak berdimensi, k_{Ga} dapat dihitung menurut persamaan (Kumoro & Hadiyanto, 2000):

$$\frac{k_{Ga}dp^{2}}{D_{A}} = 4,007 \text{ x} \left(\frac{\rho_{CO_{2}}Q_{CO_{2}}}{\mu_{CO_{2}}a}\right)^{1,4003} \text{ x} \left(\frac{\mu_{CO_{2}}}{\rho_{CO_{2}}D_{A}}\right)^{\frac{1}{3}}$$
Dengan a = $\frac{6 - (1 - \epsilon)}{dp} \text{ dan } \epsilon = \frac{v_{void}}{v_{T}}$ (2.9)

Secara teoritik, nilai k_{Ga} harus memenuhi persamaan:

$$kGa = \frac{mol(Co_2, liq)}{A.Z.\epsilon P_{lm}} = \frac{mol(CO_3^{2-})}{A.Z.\epsilon P_{lm}}$$
(2.10)

Jika tekanan operasi cukup rendah, maka p_{lm} dapat didekati dengan

$$\Delta p = P_{in}-P_{out}$$

Sedangkan nilai k_{La} dapat dihitung secara empirik dengan persamaan (Zheng & Xu, 1992) :

$$\frac{\kappa_{La}.dp}{D_A} = 0.2558 \times \left(\frac{\rho_{NaOH}.Q_{NaOH}}{\mu.a}\right) \times \left(\frac{\mu}{\rho.D_A}\right)^{0.5}$$
(2.11)

Jika laju reaksi pembentukan Na_2CO_3 jauh lebih besar dibandingkan dengan laju difusi CO_2 ke dalam larutan NaOH, maka konsentrasi CO_2 pada batas film cairan dengan badan cairan adalah nol. Hal ini disebabkan oleh konsumsi CO_2 yang sangat cepat selama reaksi sepanjang film. Dengan demikian tebal film (δ) dapat ditentukan persamaan :

$$\delta = \frac{\frac{D_A(P_{in} - P_{out})}{mol(CO_3^2).R.T}}{Laboratory}$$
(2.12)

BAB III METODE PRAKTIKUM

3.1 Rancangan Percobaan

3.1.1 Penetapan Variabel

- A. Variabel tetap
- B. Variabel berubah

3.2 Bahan dan Alat yang Digunakan

- 1. Bahan yang digunakan
 - 1. Kristal natrium hidroksida (NaOH)
 - 2. Karbondioksida (CO₂) dalam fase cair yang disimpan di tabung bertekanan
 - 3. Udara
 - 4. Akuades (H₂O)
 - 5. Indikator phenolphthalein (PP) @3 tetes
- 2. Alat yang digunakan

Rangkaian alat praktikum absorpsi terlihat pada Gambar 3.2

Gambar 3.2 Rangkaian alat utama

3.3 Respon Uji Hasil CSS

Laboratory

Konsentrasi ion CO₃²⁻ dalam larutan sampel dan CO₂ yang terserap

3.4 Prosedur Praktikum

A. Persiapan alat

Pertama-tama kabel power pada sumber listrik ditancapkan dilanjutkan tombol ON/OFF diputar dan monitor alat akan menyala. Suplai air utama ke tangki bak dinyalakan dan biarkan tangki terisi. Memastikan saluran keluar air dari kolom dipasangkan ke pipa yang mengembalikan air ke tangki. Dengan *valve* aliran gas V1 dan V2 tertutup, pompa cairan dihidupkan. Lalu, aliran air melalui kolom pada *flowmeter* F1 disesuaikan

menggunakan katup V₁₀.kompresor dinyalakan dan *valve* V₂ disesuaikan untuk memberikan aliran udara. *Valve* pengatur tekanan pada silinder CO₂ dibuka, dan katup V₁ disesuaikan untuk memberi nilai pada pengukur aliran F₃. Setelah 5 menit stabil, sampel diambil dengan interval 2 menit selama 14 menit dari *valve inlet* dan *valve outlet*. Sampel diambil 25 ml pada waktu yang diketahui dalam setiap kasus. Analisis sampel sesuai prosedur.

B. Penentuan CO₂ terlarut

Sampel diambil masing-masing sebanyak 25 ml. Diteteskan 2-3 tetes indikator PP/MO, jika terbentuk warna merah dengan segera maka tidak ada CO₂ bebas. Dititrasikan sampel dengan larutan NaOH/HCl standar sesuai variabel sampai terbentuk warna merah muda yang tidak hilang 30 detik. Catat volume titran yang dibutuhkan.

Jumlah CO₂ yang terlarut dalam sampel air dihitung dari:

$$gmol/liter CO_2 = \frac{V titran X N titran}{volume sampel} = Cd$$

3.5 Lembar Pengamatan

3.5.1 Variabel Operasi

- a. Variabel tetap
- b. Variabel berubah

3.5.2 Data

Tabel 3.1 Data pada variabel 1

in (mL) Va out (mL)

Tabel 3.2 Data pada variabel 2

Waktu (menit)	Va in (mL)	Va out (mL)
rrocess	Labo	ratory

Tabel 3.3 Data pada variabel 3

Waktu (menit)	Va in (mL)	Va out (mL)
97% ST.		

DAFTAR PUSTAKA

- Coulson, J. M.. & Richardson. J. F. (1996). Chemical Engineering: Volume 1: Fluid flow heat transfer and mass transfer (5th ed.). London: Butterworth Heinemann, 32.
- Danckwerts, P. V. (1970). Gas Liquid Reactions (5th ed.). New York: McGraw-Hill Book Company. Inc, 45.
- Danckwerts, P. V.. & Kennedy. B. E. (1954). Kinetics of liquid-film process in gas absorption. Part I: Models of the absorption process. *Transaction of the Institution of Chemical Engineers*, 32, S49–S52.
- Franks, R. G. E. (1967). *Mathematical modeling in chemical engineering*. New York: John Wiley and Sons. Inc, 55.
- Juvekar, V. A. dan Sharma, M. (1972). Absorption of CO₂ in suspension of lime. Chemical Engineering Science, 28, 825–837.
- Kumoro, A. C. dan Hadiyanto. (2000). Absorpsi gas karbondioksid dengan larutan soda api dalam ungun tetap, *Forum Teknik*, 24(2). 186–195.
- Levenspiel, O. (1972). Chemical Reaction Engineering. Chemical Engineering Science (2nd ed., Vol. 19). New York: John Wiley and Sons. Inc, 44.
- Rehm, T. R., Moll, A. J. dan Babb, A. L. (1963). Unsteady state absorption of carbon dioxide by dilute sodium hydroxide solutions. *American Institute of Chemical Engineers Journal*, 9(5), 760–765.
- Zheng, Y. and Xu, X. (1992). Study on catalytic distillation processes. Part I. Mass transfer characteristics in catalyst bed within the column. *Transaction of the Institution of Chemical Engineers*, (Part A) 70. 459–464.

Process Laboratory