Vectors, Vector Calculus and Mechanics — Past Paper 2017

Christian Jones: University of Bath

April 2024

Contents

Introduction	1
Section A	1
Question 1	 1
Question 2	 2

Question 3	 	 	 	 	•	 •	-	3
Question 4	 	 	 	 		 •		3
Question 5	 	 	 	 	•	 -		4
Section B								5
Question 6	 	 	 	 	•	 •		5
Question 7	 	 	 	 	•	 -		7

Introduction

Here are the solutions to the past paper discussed in the revision session on XXth May 2024. This is designed as a guide to how much to write in the exam, and how you might want to style your solutions. To return to the homepage, click here.

Section A

Question 1

Question.

In the triangle OAB, we set $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point C is located at the midpoint of the side AB. The point D divides the side OB in the ratio 2:1, i.e. $OD = \frac{2}{3}OB$.

The lines AD and OC cross at X. Using vectors, show that $AX = \frac{3}{5}AD$ and find the ratio in which the point X divides OC.

Solution.

TBD

Question 2

Question.

Let $\mathbf{a} = \mathbf{i} + 3\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} - \mathbf{k}$.

- a) Find the lengths of a and b.
- b) Find the cosine of the acute angle between a and b.
- c) Find a unit vector $\hat{\mathbf{c}}$ which is orthogonal to both \mathbf{a} and \mathbf{b} , such that $\mathbf{a}, \mathbf{b}, \hat{\mathbf{c}}$ form a right-handed system.

Solution.

TBD

Question 3

Question.

State the expansion formula for the vector triple product $\, {f a} imes ({f b} imes {f c})$. Use it to prove that

$$(\mathbf{a} \times \mathbf{b}) \cdot \{(\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})\} = [\mathbf{a}, \mathbf{b}, \mathbf{c}]^2,$$

where [a, b, c] is the scalar triple product.

State, but do not prove, the results of vector algebra which you use.

Solution.

TBD

Question 4

Question.

a) Let T(x,y) be a differentiable function of x and y, and let (a,b) be a point on the xy-plane. Define the gradient vector $\nabla T(a,b)$, and prove that the rate of change of T(x,y)

at (a,b) in the direction of the unit vector \mathbf{u} is given by

$$D_{\mathbf{u}}T(a,b) = \mathbf{u} \cdot \nabla T(a,b).$$

b) Find the gradient vector of the function

$$T(x,y) = 3x^2 + 2y^2 + 6$$

at the point (2,1), and find the equation of the tangent plane to the 3D surface z=T(x,y) at the point (2,1,c) where c=T(2,1).

Solution.

TBD

Question 5

Question.

In planar polar coordinates $(r.\theta)$, the position vector of a particle at time t can be written as

$$\mathbf{x}(t) = r\cos(\theta)\mathbf{i} + r\sin(\theta)\mathbf{j}$$

where r, θ are functions of t.

a) Express the radial and angular unit vectors $\mathbf{e}_r, \mathbf{e}_\theta$ in terms of \mathbf{i}, \mathbf{j} . Derive expressions for $\dot{\mathbf{e}}_r$ and $\dot{\mathbf{e}}_\theta$, and hence show that

$$\dot{\mathbf{x}} = \dot{r}\mathbf{e}_r + r\dot{\theta}\mathbf{e}_\theta$$

and

$$\ddot{\mathbf{x}} = (\ddot{r} - r\dot{\theta}^2)\mathbf{e}_r + (2\dot{r}\dot{\theta} + r\ddot{\theta})\mathbf{e}_{\theta}.$$

b) Find the acceleration vector of a particle which travels in a circular orbit of radius a, at a constant angular speed ω .

Solution.

TBD

Section B

Question 6

Question.

a) Prove that the shortest distance from a point A with po-

sition vector \mathbf{a} , to the plane Π defined by $\mathbf{r} \cdot \mathbf{n} = d$ is

$$h = \frac{|d - \mathbf{a} \cdot \mathbf{n}|}{\|\mathbf{n}\|},$$

and find the position vector of the point on $\,\Pi\,$ which achieves this distance.

- b) Let ${\bf a},{\bf b},{\bf l},{\bf m}$ be given vectors, and let ${\bf r}={\bf a}+\lambda{\bf l}$ and ${\bf r}={\bf b}+\mu{\bf m}$ be two non-parallel and non-intersecting lines L_1 and L_2 respectively.
 - i) Find the vector equations of two parallel planes Π_1 and Π_2 , such that Π_1 contains L_1 and Π_2 contains L_2 .
 - ii) Find the distance between the two planes Π_1 and Π_2 .

Solution.

TBD

Question 7

Question.

a) By either finding the Complementary Function and Particular Integral, or using the Integrating Factor method, solve the vector differential equation

$$\ddot{\mathbf{x}} + k\dot{\mathbf{x}} = \mathbf{h}, \quad \mathbf{x}(0) = \mathbf{x}_0, \quad \dot{\mathbf{x}}(0) = \mathbf{0}$$

where k is a non-zero scalar and h is a constant vector. Show that the solution can be written as

$$\mathbf{x} = \mathbf{x}_0 + \frac{1}{k^2} \left(e^{-kt} + kt - 1 \right) \mathbf{h}.$$

- b) A food parcel of mass m is dropped from a helicopter hovering at a height D directly above a target on horizontal ground. There is a constant horizontal crosswind of velocity u, and the air resistance is proportional to the relative velocity of the parcel with respect to the wind, with coefficient μ . Derive the vector differential equation of motion of the parcel, and hence find its position vector $\mathbf{x}(t)$.
- c) How far away from the target will the food parcel land?

Solution.

TBD

Question 8

Question.

A particle of mass $\,m\,$ moves under the action of a central "planetary" force

$$\mathbf{F} = -\mu m \|\dot{\mathbf{x}}\|^2 \frac{\mathbf{x}}{r^2}$$

where $r = \|\mathbf{x}\|$ and $\mu > 0$ is a constant.

- a) Prove that the motion takes place in a plane.
- b) Using polar coordinates (r,θ) on the plane, show that the equations of motion are

$$r^2\dot{\theta} = h, \quad \ddot{r} + (\mu - 1)\frac{h^2}{r^3} + \mu\frac{\dot{r}^2}{r} = 0,$$

where h is a constant.

Note: You may use without proof the formulae for velocity and acceleration in polar coordinates, given in Question 5(a).

c) The particle is projected radially outwards from the surface of a "planet" of radius R, with initial speed v_0 . Show that h=0 in part (b).

Integrate the second equation of motion in part (b) to obtain

$$\ln(\dot{r}) = -\mu \ln(r) + c$$

where c is a constant of integration. Hence deduce that for all $v_0>0$ the particle will never fall back to the "planet".

Hint:
$$\frac{d}{dr}(\ln(r)) = \frac{1}{r}\frac{dr}{dt}$$
.

Solution.

TBD