# 22. Cauchyscher Integralsatz (Homologieversionen)

In diesem Paragraphen sei  $G \subseteq \mathbb{C}$  stets ein <u>Gebiet</u>.

## Definition

Sei  $\gamma$  ein geschlossener Weg in  $\mathbb{C}$ .

- (1)  $\operatorname{Int}(\gamma) := \{z \in \mathbb{C} \setminus \operatorname{Tr}(\gamma) : n(\gamma, z) \neq 0\}$  ("Inneres" von  $\gamma$ )  $\operatorname{Ext}(\gamma) := \{z \in \mathbb{C} \setminus \operatorname{Tr}(\gamma) : n(\gamma, z) = 0\}$  ("Äußeres" von  $\gamma$ )
- (2) Sei  $\operatorname{Tr}(\gamma) \subseteq G$ .  $\gamma$  heißt in G nullhomolog :  $\iff n(\gamma, z) = 0 \ \forall z \in \mathbb{C} \backslash G$  ( $\iff \operatorname{Int}(\gamma) \subseteq G$ )

# Beispiele:

- (i) Jeder geschlossene Weg in C ist in C nullhomolog.
- (ii)  $G := \mathbb{C} \setminus \{0\}, \ \gamma(t) = e^{it} \ (t \in [0, 2\pi]), \ n(\gamma, 0) = 1 \neq 0; \ \gamma \text{ ist in } G \text{ nicht nullhomolog.}$

#### Satz 22.1

Sei  $\gamma$  ein geschlossener Weg mit  $\text{Tr}(\gamma) \subseteq G$ .

- (1) Ist  $\gamma$  nullhomotop in  $G \Rightarrow \gamma$  ist nullhomolog in G.
- (2) Ist G einfach zusammenhängend, so ist  $\gamma$  in G nullhomolog.

## **Beweis**

(1) Sei  $z_0 \in \mathbb{C} \backslash G$ . Dann ist  $f(z) = \frac{1}{z - z_0}$  holomorph auf G.

$$\stackrel{21.2}{\Rightarrow} \int_{\gamma} f(z)dz = 0 \Rightarrow n(\gamma, z_0) = 0$$

(2) folgt aus (1)

#### Satz 22.2

Sei  $f\in H(G)$  und  $\gamma$  sei ein geschlossener Weg mit  $\mathrm{Tr}(\gamma)\subseteq G$ .  $\varphi:G\times G\to\mathbb{C}$  sei definiert durch:

$$\varphi(w,z) := \begin{cases} \frac{f(w) - f(z)}{w - z} &, w \neq z \\ f'(z) &, w = z \end{cases}$$

- (1)  $\varphi$  ist stetig.
- (2) Für  $z \in G$  (fest) hat  $w \mapsto \varphi(w,z)$  in z eine hebbare Singularität;  $w \mapsto \varphi(w,z)$  ist also holomorph auf G

Für  $w \in G$  (fest) hat  $z \mapsto \varphi(w, z)$  in w eine hebbare Singularität;  $z \mapsto \varphi(w, z)$  ist also holomorph auf G

(3)  $h(z) := \int_{\gamma} \varphi(w, z) dw$   $(z \in G)$ . Ist  $\gamma$  nullhomolog in G, so ist  $h \equiv 0$  auf G.

# **Beweis**

- (1) 11.9
- (2) 13.1
- (3) (A) Es ist  $h \in C(G)$ . Sei  $z_0 \in G$  und  $(z_n)$  eine Folge in G mit  $z_n \to z_0$ .  $g_n(w) := \varphi(w, z_n)$ ,  $g(w) := \varphi(w, z_0) \ (w \in G)$ . Sei  $\Gamma$  der stückweise glatte Ersatzweg für  $\gamma$  (wie in §20).

Übung:  $(g_n)$  konvergiert auf  $\Gamma$  gleichmäßig gegen g.

$$\stackrel{8.4}{\Rightarrow} \int_{\Gamma} g_n(w)dw \to \int_{\Gamma} g(w)dw = \int_{\Gamma} \varphi(w, z_0)dw = \int_{\gamma} \varphi(w, z_0)dw = h(z_0)$$

Also:  $h(z_n) \to h(z_0)$ 

(B) Es ist  $h \in H(G)$ . Sei  $\Delta \subseteq G$  ein Dreieck. Wegen 9.7 genügt es zu zeigen:  $\int_{\partial \Delta} h(z) dz = 0$ 9.1 und (2)  $\Rightarrow \int_{\partial \Delta} \varphi(w,z) dz = 0 \ \forall w \in G$ 

$$\Rightarrow \int_{\partial \Delta} h(z) dz = \int_{\partial \Delta} (\int_{\gamma} \varphi(w, z) dw) dz \stackrel{\text{Fubini}}{=} \int_{\gamma} (\underbrace{\int_{\partial \Delta} \varphi(w, z) dz}) dw = 0$$

(C) 
$$\mathbb{C} = \underbrace{\operatorname{Int}(\gamma)}_{\subseteq G} \cup \operatorname{Ext}(\gamma) \cup \underbrace{\operatorname{Tr}(\gamma)}_{\subseteq G} = G \cup \operatorname{Ext}(\gamma)$$
  
Sei  $z_0 \in \operatorname{Ext}(\gamma)$ . Sei  $C$  die Komponente von  $\mathbb{C} \setminus \operatorname{Tr}(\gamma)$ :  $z_0 \in C$ .
$$\stackrel{16.2}{\Rightarrow} n(\gamma, z) = n(\gamma, z_0) = 0 \ \forall z \in C$$

$$\stackrel{16.2}{\Rightarrow} n(\gamma, z) = n(\gamma, z_0) = 0 \ \forall z \in C$$

$$\Rightarrow n(\gamma, z) = n(\gamma, z_0) = 0 \ \forall z \in C$$

$$\Rightarrow C \subseteq \operatorname{Ext}(\gamma). \stackrel{16.1/2}{\Rightarrow} C \text{ ist offen.} \Rightarrow \exists \delta > 0 : U_{\delta}(z_0) \subseteq C \subseteq \operatorname{Ext}(\gamma).$$
Also ist  $\operatorname{Ext}(\gamma)$  offen. [Analog:  $\operatorname{Int}(\gamma)$  offen]

Also ist Ext(
$$\gamma$$
) offen. [Analog. Int( $\gamma$ ) offen]  $g(z) := \int_{\gamma} \frac{f(w)}{w-z} dw \ (z \notin \text{Tr}(\gamma)) \stackrel{9.5}{\Rightarrow} g \in H(\mathbb{C} \backslash \text{Tr}(\gamma)), \text{ insbesondere gilt } g \in H(\text{Ext}(\gamma)).$ 

Sei 
$$z \in G \cap \operatorname{Ext}(\gamma)$$
:  $h(z) = \int_{\gamma} \frac{f(w) - f(z)}{w - z} dw = \int_{\gamma} \frac{f(w)}{w - z} dw - f(z) \int_{\gamma} \frac{1}{w - z} dw = g(z) - f(z) 2\pi i$ 

$$\underbrace{n(\gamma,z)}_{=0} = g(z)$$
. Also:  $h = g$  auf  $G \cap \operatorname{Ext}(\gamma)$ . Dann ist

$$F(z) = \begin{cases} h(z) &, z \in G \\ g(z) &, z \in \operatorname{Ext}(\gamma) \end{cases}$$
 eine ganze Funktion.

Übung: 
$$\dot{F}(z) \to 0 \ (|z| \to \infty)$$
.  $10.2 \Rightarrow F \equiv 0 \Rightarrow h \equiv 0$ 

#### Satz 22.3 (Allgemeine Cauchysche Integralformel)

Sei  $\gamma$  ein geschlossener Weg mit  $\operatorname{Tr}(\gamma) \subseteq G$  und  $\gamma$  sei nullhomolog in G. Dann:

$$n(\gamma, z)f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw \ \forall f \in H(G) \ \forall z \in G \backslash \text{Tr}(\gamma)$$

Beweis Sei 
$$f \in H(G)$$
 und  $z \in G \backslash \text{Tr}(\gamma)$ .  $\stackrel{22.2(3)}{\Rightarrow} 0 = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w) - f(z)}{w - z} dw = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw - f(z) \underbrace{\frac{1}{2\pi i} \int_{\gamma} \frac{dw}{w - z}}_{=n(\gamma, z)} \blacksquare$ 

Satz 22.4 (CIS, Homolgieversion I)

Sei  $\gamma$  ein gechlossener Weg mit  $\operatorname{Tr}(\gamma) \subseteq G$ .

Dann:

$$\int\limits_{\gamma} f(z)dz = 0 \ \forall f \in H(G) \iff \gamma \text{ ist in } G \text{ nullhomolog}$$

**Beweis** 

Beweis

"
$$\Rightarrow$$
": Sei  $z_0 \in \mathbb{C} \setminus G$ ;  $f(z) := \frac{1}{2\pi i} \frac{1}{z - z_0} \Rightarrow f \in H(G) \stackrel{\text{Vor.}}{\Rightarrow} \int_{\underline{\gamma}} f(z) dz = 0$ 

"
 $\Leftarrow$ ": Sei  $f \in H(G)$  und  $z_0 \in G \setminus \text{Tr}(\gamma)$ ;  $g(z) = (z - z_0) f(z)$ ;  $g \in H(G)$ .

Wende 22.3 auf q an :

$$n(\gamma, z_0)\underbrace{g(z_0)}_{=0} = \frac{1}{2\pi i} \int_{\gamma} \underbrace{\frac{g(w)}{w - z_0}}_{=f(w)} dw \Rightarrow \int_{\gamma} f(w) dw = 0.$$

Satz 22.5

G ist einfach zusammenhängend  $\iff$  jeder geschlossene Weg  $\gamma$  mit  $\operatorname{Tr}(\gamma) \subseteq G$  ist in G nullhomolog.

## **Beweis**

 $"\Rightarrow"22.1(2)$ 

"  $\Leftarrow$ " Sei  $\gamma$  ein geschlossener Weg mit  $\mathrm{Tr}(\gamma) \subseteq G$  und  $f \in H(G)$ 

Vorraussetzungen  $\Rightarrow \gamma$  ist in G nullhomolg.  $22.4 \Rightarrow \int f(z)dz = 0$ .  $21.5 \Rightarrow G$  ist einfach zusammenhängend.

#### Definition

Seien  $\gamma_1$  und  $\gamma_2$  geschlossene Wege mit  $\text{Tr}(\gamma_1), \text{Tr}(\gamma_2) \subseteq G$ .  $\gamma_1, \gamma_2$  heißen in G homolog :  $\iff$  $n(\gamma_1, z) = n(\gamma_2, z) \ \forall z \in \mathbb{C} \backslash G.$ 

Satz 22.6 (CIS, Homologieversion II)

 $\gamma_1, \gamma_2$  seien wie in obiger Definition und in G homolog. Dann:

 $\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz \ \forall f \in H(G)$ 

# Beweis

```
Sei f \in H(G) und z_j := Anfangspunkt von \gamma_j (j = 1, 2).

\stackrel{3.4}{\Rightarrow} \exists \text{ Weg } \gamma : [0, 1] \to \mathbb{C} : \text{Tr}(\gamma) \subseteq G, \ \gamma(0) = z_1, \ \gamma(1) = z_2

\Gamma := \gamma_1 \oplus \gamma \oplus \gamma_2^- \oplus \gamma^-. \Gamma ist ein geschlossener Weg mit \text{Tr}(\gamma) \subseteq G

Sei z_0 \in \mathbb{C} \backslash G : n(\Gamma, z_0) = n(\gamma_1, z_0) + n(\gamma, z_0) - n(\gamma_2, z_0) - n(\gamma, z_0) = 0

D.h.: \Gamma ist in G nullhomolog. 22.4 \Rightarrow 0 = \int_{\Gamma} f(z) dz = \int_{\gamma_1} + \int_{\gamma} - \int_{\gamma_2} - \int_{\gamma} = \int_{\gamma_1} - \int_{\gamma_2} \int_{\gamma_2} dz = \int_{\gamma_1} dz = \int_{\gamma_2} dz = \int_{\gamma_1} dz = \int_{\gamma_2} dz = \int_{\gamma_1} dz = \int_{\gamma_2} d
```