Mechanical properties of solid polymers

Before we discuss the mechanical properties, let's understand polymers better!

- Define polymeric materials
- Find a few common examples of polymers.
- What are the types of bonds typically found in polymers?
- What are typical applications of polymers?

Introduction

Mechanical properties of polymers are a consequence of the <u>chemical composition</u> of the polymer and also of its <u>structure</u> at the molecular and supermolecular levels.

Chemical Composition

Polymerisation

Linear polymers consist of long molecular chains of covalently bonded atoms, each chain being a repetition of much smaller chemical units.

One of the simplest polymers is polyethylene, which is an addition polymer made by polymerising the monomer ethylene, $CH_2=CH_2$, to form the polymer.

Cross-Linking and Chain-Branching

Linear polymers can be joined by other chains at points along their length to make a cross-linked structure

Chemical cross-linking produces a thermosetting polymer, because the cross-linking agent is normally activated by heating, after which the material does not soften and melt when heated further.

Examples:

Bakelite and epoxy resins.

Small amount of cross-linking through sulfur bonds is needed to give natural rubber its characteristic feature of rapid recovery from a large extension.

Cross-linking of polymers

Very long molecules in linear polymers can entangle to form temporary physical cross-links

Average Molecular Mass and Molecular Mass Distribution

Each sample of a polymer contains molecular chains of varying lengths, that is of varying molecular mass

Number average \bar{M}_n weight average \bar{M}_w are defined as

$$\bar{M}_n = \frac{\sum N_i M_i}{\sum N_i} \quad \bar{M}_w = \frac{\sum (N_i M_i) M_i}{\sum N_i M_i},$$

where N_i is the number of molecules of molecular mass M_i , and denotes summation over all i molecular masses.

- Fundamental measurements of average molecular mass must be performed on solutions so dilute that intermolecular interactions can be ignored
- Two techniques commonly used are <u>osmotic pressure</u> for the number average and <u>light scattering</u> for the weight average.

Mechanical Properties of Polymers

- A polymer can show all the features of a glassy, brittle solid or an elastic rubber or a viscous liquid depending on the temperature and <u>time scale</u> of measurement.
- Polymers are usually described as <u>viscoelastic</u> materials.
- At low temperatures, or high frequencies of measurement (short time scale), a polymer may be glass-like with a Young's modulus of 1–10 **GPa** and will break (brittle fracture) or flow at strains greater than 5%.
- At high temperatures or low frequencies, the same polymer may be rubber-like with a modulus of 1–10 **MPa**, withstanding large extensions (~100%) without permanent deformation.
- At still higher temperatures, permanent deformation occurs under load, and the polymer behaves like a highly viscous liquid.

Let us now understand the concept of viscoelasticity!

What happens to polymers at higher temperatures

The beauty of polymers is that the whole range of phenomena of mechanical behaviour can be displayed by a single polymer as the temperature is changed.

Temperatures well <u>below</u> the glass transition (curve A),

- brittle fracture occurs,
- load rises to the breaking point linearly with increasing elongation,
- and rupture occurs at low strains (-10%)

Load–elongation curves for a polymer at four different temperatures.

Curve A, brittle fracture; curve B, ductile failure; curve C, cold drawing; curve D, rubber-like behaviour.

At high temperatures (curve D),

- the polymer is rubber-like and the load rises to the breaking point with a sigmoidal relationship to the elongation,
- and rupture occurs at very high strains (~30– 1000%).

In an intermediate temperature range below the glass transition (curve B),

 the load-deformation relationship resembles that of a ductile metal, showing a load maximum, i.e. a yield point before rupture occurs.

Load–elongation curves for a polymer at four different temperatures.

Curve A, brittle fracture; curve B, ductile failure; curve C, cold drawing; curve D, rubber-like behaviour. At slightly higher temperatures (curve C), still below the glass transition,

- the phenomenon of necking and cold drawing is observed.
- Here, the conventional load—elongation curve again shows a yield point and a subsequent decrease in conventional stress.
- However, with a further increase in the applied strain, the load falls to a constant level at which deformations of the order of 300–1000% are accomplished.
- At this stage, a neck has formed and the strain in the specimen is not uniform.

Load–elongation curves for a polymer at four different temperatures.

Curve A, brittle fracture; curve B, ductile failure; curve C, cold drawing; curve D, rubber-like behaviour.