Point Avancement

3 septembre 2024

Present: Joel

Courbe évolution couche convective

```
Théorie : h(t) = \sqrt{(c \frac{\alpha g}{N^2} Qt)}  - Turner 19 - Van Roeck - Souza 202 - Cushman 2
```

```
- Turner 1965 (théorique): c = 2
- Van Roeckel 2018 (théorique): c = 2.8
- Souza 2020(empirique) : c = 3
- Cushman 2021 (théorique) : c = 6
```

C = 4

Evolution de la stratification

Hypothese: la méthode de construction de la stratification change les conditions de son maintien

- Temperature cuve, air...
- Convection dans la partie supérieur

Comment vérifier cela?

Mesure de temperature

On observe la couche instable en début de vidéo

Arrivé du front de la couche Convective

Diagramme de Hovmöller pour une position fixe x (milieu de la tranche) Sur toute la hauteur de la tranche

Diagramme de Hovmöller pour une

hauteur fixe y = 10cm

Wbar/y=10 cm /EXP27

0.90

Taille panaches

Resultat attendu:

- Homogénéité verticale des panaches

A verifier:

- Loi élargissement des panache selon MTT

Taille panaches

Diagramme de Hovmöller pour une hauteur fixe y = 15cm Sur toute la largeur de la tranche verticale laser

f= 0

f= 0.2

Taille panaches

Diagramme de Hovmöller pour une position fixe x (milieu de la tranche) Sur toute la hauteur de la tranche verticale laser

Avec rotation les panaches semblent moins énergétiques

Turbulence des panaches

Avec rotation les panaches sont moins énergétiques

Flux Turbulent: -> fluctuation: 3s

Flux Turbulent: -> fluctuation: 3s

Valeur moyenne en temps :

- EXP28 : -1.23e-06,

- EXP22_1: 2.37e-06

Mauvaise définition de la turbulence ?

Onde internes

