Combinatorics

Тімотну Мои

June 11, 2023

Contents

These are some notes about miscellaneous math and combinatorics topics for competitive programming.

§1 Binomial Coefficients

Binomial coefficients can be computed in O(1) with O(N) precomputation (need to use trick to compute inverse factorials quickly). If k is small, we can also compute $\binom{n}{k}$ in O(k).

•

$$\sum_{i=0}^{N} \binom{N}{i} = 2^{N}.$$

•

$$\sum_{i=0}^{N} \binom{N}{i} i = N \cdot 2^{N-1}$$

This can be seen combinatorially; this is the number of subsets where we pick a "leader" for each subset.

•

$$\sum_{i=0}^N \binom{N}{i}(i+1) = \sum_{i=0}^N \binom{N}{i}i + \sum_{i=0}^N \binom{N}{i} = N \cdot 2^{N-1} + 2 \cdot 2^{N-1} = (N+2)2^{N-1}.$$

Follows from the previous identity.

§2 Stirling Numbers

Stirling numbers of the second kind, denoted S(n, k) are the number of ways to partition [n] into k indistinguishable nonempty blocks. They obey the recurrence

$$S(n,k) = k \cdot S(n-1,k) + S(n-1,k-1),$$

with the base cases S(n,n)=1, S(n,0)=S(0,n)=0 for n>0. They can also be calculated explicitly in $O(k\log n)$ with the formula

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^n.$$