## Вопрос по выбору

Пусть есть поршень, который находится в термостате с температурой  $T_0$  и с бесконечной теплоемкостью.

Поставим вопрос: **возможно ли построить тепловой двигатель**, **имея один источник** тепла?



Рис. 1. Поршень в термостате

Тогда на PV-диаграмме можно изобразить только изотерму. Если мы будем двигаться вдоль



**Рис. 2.** *PV*-диаграмма

по изотерме «вперед–назад», то полезная работа будет равна нулю, т.е. смысла в такой машине нет.

Что же можно сделать еще? Если наш поршень находится в адиабатической оболочке, то мы можем «бегать» по адиабате, для чего нужно совершать достаточно быстрые движения поршнем. В нашем же случае попытаемся построить такой процесс, который был бы чем-то средним между



**Рис. 3.** *PV*-диаграмма

изотермой и адиабатой. Тогда нужно двигать поршень не бесконечно медленно (т.е. «бегать» не по изотерме), а немного быстрее, но не так быстро, чтобы попасть на адиабату. Тогда будет существовать теплообмен между идеальным газом и термостатом. При этом, будем утверждать, что газ в каждый момент времени будет достаточно отрелаксированным.

Для того, чтобы построить такой процесс, найдем зависимость  $\Delta P = \Delta P(Q, \Delta V)$ .

Запишем первое начало термодинамики в приращениях:

$$C_V \Delta T = Q - P \Delta V, \tag{1}$$

где  $C_V$  — теплоемкость газа при постоянном объеме,  $\Delta T$  — малые изменения температуры,  $\Delta V$  — малые изменения объема, Q — тепло, P — давление газа.

Запишем уравнение состояния идеального газа для 1 моля в приращениях:

$$P\Delta V + V\Delta P = R\Delta T. \tag{2}$$

Решая систему из этих уравнений, получим:

$$\Delta P = \frac{R}{VC_V}Q - \frac{\gamma P}{V}\Delta V, \qquad (3)$$

где  $\gamma$  — показатель адиабаты.

Т.о. мы получили зависимость изменения давления идеального газа, который совершает работу  $P\Delta V$  и обменивается теплом Q с термостатом. Заметим, что при Q=0 получаем  $\Delta P_{\rm ag}=-\frac{\gamma P}{V}\,\Delta V$ — изменение давления в адиабатическом процессе. Тогда запишем уравнение (3) в кратком виде:

$$\Delta P = \frac{R}{VC_V}Q + \Delta P_{\text{ag}}.$$
 (4)

Построим PV-диаграммы (рис. 4).

Рассмотрим два случая:

I. 
$$Q > 0$$
, т.е.  $T_r < T_0$  (слева);

II. 
$$Q < 0$$
, T.E.  $T_r > T_0$  (справа).

На диаграммах пунктиром изображено семейство адиабат, изотерма с температурой  $T_0$ .

- I. 1) Рассмотрим расширение газа по адиабате  $(1 \to 2)$ . Q > 0,  $\Delta P_{\rm ag} < 0$ , отсюда в соответствии с формулой  $(4) |\Delta P| < |\Delta P_{\rm ag}|$ . Таким образом, мы будем наблюдать «загибание процесса»  $(1 \to 2'$  или  $1 \to 2'')$ .
  - 2) Рассмотрим сжатие газа по адиабате  $(1 \to 2)$ . Q > 0,  $\Delta P_{\rm ag} > 0$ , отсюда в соответствии с формулой  $(4) |\Delta P| > |\Delta P_{\rm ag}|$ . Таким образом, наклон графика процесса выглядит «круче», чем в адиабатическом процессе  $(1 \to 2'$  или  $1 \to 2''$ ).

Можно наблюдать, что добавка теплоты Q приближает процесс к изотерме  $T_0$ .

II. 1) Рассмотрим расширение газа по адиабате  $(1 \to 2)$ . Q < 0,  $\Delta P_{\rm ag} < 0$ , отсюда в соответствии с формулой  $(4) |\Delta P| > |\Delta P_{\rm ag}|$ . Таким образом, процесс «будет идти» стремительнее  $(1 \to 2')$ .



**Рис. 4.** *PV*-диаграмма

2) Рассмотрим сжатие газа по адиабате  $(1 \to 2)$ . Q < 0,  $\Delta P_{\rm ag} > 0$ , отсюда в соответствии с формулой  $(4) |\Delta P| < |\Delta P_{\rm ag}|$ . Таким образом, процесс «будет идти» менее «круто»  $(1 \to 2')$ .

В итоге получаем, что все процессы стремятся к изотерме  $T_0$ .

А теперь попробуем построить круговой процесс.



Рис. 5. Круговой процесс

Таким образом, *мы получили ход против часовой стрелки* (A < 0), причем этот *процесс необратим*. Обратного хода быть не может, т.к. есть теплообмен газа и резервуара.

Заметим, что чем медленнее будем двигаться, там «уже» будет картинка, т.е. мы приближаемся к изотерме. Чем быстрее будем двигаться, тем картинка «шире», т.е. процесс приближается к адиабатическому.

Мы получили утилизатор работы.

**Вывод:** имея один тепловой резервуар, нельзя построить тепловую машину, но можно построить утилизатор работы.

Отсюда легко получить неравенство Клаузиуса:

Пусть мы имеем один тепловой резервуар. Газ можно перевести из состояния 1 в состояние 2 двумя способами: обратимым и необратимым.



$$\delta Q^{\rm ho6} = dU + \delta A^{\rm ho6}$$
 
$$\delta Q^{\rm o6} = dU + \delta A^{\rm o6}$$

Из этого можно получить круговой процесс путем обращения обратимого процесса. Тогда:

$$\delta Q=\delta Q^{
m ho6}-\delta Q^{
m o6}=\delta A^{
m ho6}-\delta A^{
m o6}\leqslant 0$$
 — по доказанному 
$$\delta Q^{
m ho6}\leqslant\delta Q^{
m o6}=TdS$$
 
$$dS\geqslant \frac{\delta Q^{
m ho6}}{T}$$
 
$$0=\oint dS\geqslant \oint \frac{\delta Q^{
m ho6}}{T}$$

$$\boxed{\oint \frac{\delta Q^{\text{\tiny Ho6}}}{T} \leqslant 0} - \text{неравенство Клаузиуса.}$$

Отсюда следует, что в необратимых адиабатически—изолированных процессах энтропия не убывает — закон возрастания энтропии:

$$dS \geqslant \frac{\delta Q^{\text{Ho6}}}{T} = 0 \Rightarrow dS \geqslant 0.$$