Math 415 - Lecture 17 Linear Transformations

Monday October 5th 2015

Math 415 - Lecture 17 Linear Transformations

Monday October 5th 2015

Textbook reading: Chapter 2.6

Textbook reading: Chapter 2.6

Suggested practice exercises: same as lecture 16

Review

ullet A map T:V o W between vector spaces is **linear** if

- A map $T: V \to W$ between vector spaces is **linear** if
 - T(x + y) = T(x) + T(y).

- ullet A map T:V o W between vector spaces is **linear** if
 - $\bullet \ T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y}).$
 - $T(c\mathbf{x}) = cT(\mathbf{x})$.

- ullet A map T:V o W between vector spaces is **linear** if
 - T(x + y) = T(x) + T(y).
 - $T(c\mathbf{x}) = cT(\mathbf{x})$.
- If $x_1, ..., x_n$ is a basis for V, then T is determined by the values $T(x_1), ..., T(x_n)$:

$$T(\mathbf{v}) = T(c_1\mathbf{x}_1 + \cdots + c_n\mathbf{x}_n) = c_1T(\mathbf{x}_1) + \cdots + c_nT(\mathbf{x}_n).$$

- ullet A map T:V o W between vector spaces is **linear** if
 - T(x + y) = T(x) + T(y).
 - $T(c\mathbf{x}) = cT(\mathbf{x})$.
- If $x_1, ..., x_n$ is a basis for V, then T is determined by the values $T(x_1), ..., T(x_n)$:

$$T(\mathbf{v}) = T(c_1\mathbf{x_1} + \cdots + c_n\mathbf{x_n}) = c_1T(\mathbf{x_1}) + \cdots + c_nT(\mathbf{x_n}).$$

• Let A be an $m \times n$ matrix.

- ullet A map T:V o W between vector spaces is **linear** if
 - T(x + y) = T(x) + T(y).
 - $T(c\mathbf{x}) = cT(\mathbf{x})$.
- If $x_1, ..., x_n$ is a basis for V, then T is determined by the values $T(x_1), ..., T(x_n)$:

$$T(\mathbf{v}) = T(c_1\mathbf{x_1} + \cdots + c_n\mathbf{x_n}) = c_1T(\mathbf{x_1}) + \cdots + c_nT(\mathbf{x_n}).$$

- Let A be an $m \times n$ matrix.
 - $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is linear.

- ullet A map T:V o W between vector spaces is **linear** if
 - T(x + y) = T(x) + T(y).
 - $T(c\mathbf{x}) = cT(\mathbf{x})$.
- If $x_1, ..., x_n$ is a basis for V, then T is determined by the values $T(x_1), ..., T(x_n)$:

$$T(\mathbf{v}) = T(c_1\mathbf{x_1} + \cdots + c_n\mathbf{x_n}) = c_1T(\mathbf{x_1}) + \cdots + c_nT(\mathbf{x_n}).$$

- Let A be an $m \times n$ matrix.
 - $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is linear.
 - Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is of the form $T(\mathbf{x}) = A\mathbf{x}$.

- ullet A map T:V o W between vector spaces is **linear** if
 - T(x + y) = T(x) + T(y).
 - $T(c\mathbf{x}) = cT(\mathbf{x}).$
- If $x_1, ..., x_n$ is a basis for V, then T is determined by the values $T(x_1), ..., T(x_n)$:

$$T(\mathbf{v}) = T(c_1\mathbf{x_1} + \cdots + c_n\mathbf{x_n}) = c_1T(\mathbf{x_1}) + \cdots + c_nT(\mathbf{x_n}).$$

- Let A be an $m \times n$ matrix.
 - $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is linear.
 - Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is of the form $T(\mathbf{x}) = A\mathbf{x}$.
- $T: \mathbb{P}_n \to \mathbb{P}_{n-1}$ defined by T(p(t)) = p'(t) is linear.

- ullet A map T:V o W between vector spaces is **linear** if
 - T(x + y) = T(x) + T(y).
 - $T(c\mathbf{x}) = cT(\mathbf{x})$.
- If $x_1, ..., x_n$ is a basis for V, then T is determined by the values $T(x_1), ..., T(x_n)$:

$$T(\mathbf{v}) = T(c_1\mathbf{x_1} + \cdots + c_n\mathbf{x_n}) = c_1T(\mathbf{x_1}) + \cdots + c_nT(\mathbf{x_n}).$$

- Let A be an $m \times n$ matrix.
 - $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is linear.
 - Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is of the form $T(\mathbf{x}) = A\mathbf{x}$.
- $T: \mathbb{P}_n \to \mathbb{P}_{n-1}$ defined by T(p(t)) = p'(t) is linear. What is its "matrix"?

- ullet A map T:V o W between vector spaces is **linear** if
 - T(x + y) = T(x) + T(y).
 - $T(c\mathbf{x}) = cT(\mathbf{x})$.
- If $x_1, ..., x_n$ is a basis for V, then T is determined by the values $T(x_1), ..., T(x_n)$:

$$T(\mathbf{v}) = T(c_1\mathbf{x_1} + \cdots + c_n\mathbf{x_n}) = c_1T(\mathbf{x_1}) + \cdots + c_nT(\mathbf{x_n}).$$

- Let A be an $m \times n$ matrix.
 - $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is linear.
 - Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is of the form $T(\mathbf{x}) = A\mathbf{x}$.
- $T: \mathbb{P}_n \to \mathbb{P}_{n-1}$ defined by T(p(t)) = p'(t) is linear. What is its "matrix"?

Nonstandard Bases

Theorem (Linear Transformation is Matrix Multiplication)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let $\mathcal{B} := (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a basis of \mathbb{R}^n and let $\mathcal{C} := (\mathbf{w}_1, \dots, \mathbf{w}_m)$ be a basis of \mathbb{R}^m . Then there is a matrix B such that

$$T(\mathbf{x})_{\mathcal{C}} = B\mathbf{x}_{\mathcal{B}}, \quad \text{for all } \mathbf{x} \in \mathbb{R}^n.$$

Theorem (Linear Transformation is Matrix Multiplication)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let $\mathcal{B} := (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a basis of \mathbb{R}^n and let $\mathcal{C} := (\mathbf{w}_1, \dots, \mathbf{w}_m)$ be a basis of \mathbb{R}^m . Then there is a matrix B such that

$$T(\mathbf{x})_{\mathcal{C}} = B\mathbf{x}_{\mathcal{B}}, \quad \text{for all } \mathbf{x} \in \mathbb{R}^n.$$

Theorem (Linear Transformation is Matrix Multiplication)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let $\mathcal{B} := (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a basis of \mathbb{R}^n and let $\mathcal{C} := (\mathbf{w}_1, \dots, \mathbf{w}_m)$ be a basis of \mathbb{R}^m . Then there is a matrix B such that

$$T(\mathbf{x})_{\mathcal{C}} = B\mathbf{x}_{\mathcal{B}}, \text{ for all } \mathbf{x} \in \mathbb{R}^n.$$

Explicitly,

$$B = \begin{bmatrix} T(\mathbf{v}_1)_{\mathcal{C}} & \dots & T(\mathbf{v}_n)_{\mathcal{C}}. \end{bmatrix},$$

Let
$$T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3a+1b \\ 1a+3b \end{bmatrix}$$
. Then the matrix of T is $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

Let
$$T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3a+1b \\ 1a+3b \end{bmatrix}$$
. Then the matrix of T is $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

Let
$$T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3a+1b \\ 1a+3b \end{bmatrix}$$
. Then the matrix of T is $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

But let us use, instead of the standard basis, another basis adapted to T. Put

$$\mathbf{b_1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \mathbf{b_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Let $T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3a+1b \\ 1a+3b \end{bmatrix}$. Then the matrix of T is $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

But let us use, instead of the standard basis, another basis adapted to T. Put

$$\mathbf{b_1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \mathbf{b_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

What is the coordinate matrix for T with respect to $\mathcal{B} = (\mathbf{b_1}, \mathbf{b_2})$?

What do we want?

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis B) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis B) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis B) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}}=Bx_{\mathcal{B}}.$$

$$T(\mathbf{b_1}) =$$

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis \mathcal{B}) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

$$T(\mathbf{b_1}) = T \begin{bmatrix} 1 \\ -1 \end{bmatrix} =$$

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis \mathcal{B}) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

$$T(\mathbf{b_1}) = T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} =$$

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis \mathcal{B}) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

$$T(\mathbf{b_1}) = T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2\mathbf{b_1},$$

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis \mathcal{B}) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

$$T(\mathbf{b_1}) = T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2\mathbf{b_1},$$

$$T(\mathbf{b_2}) = T \begin{bmatrix} 1 \\ 1 \end{bmatrix} =$$

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis \mathcal{B}) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

$$T(\mathbf{b_1}) = T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2\mathbf{b_1},$$

$$T(\mathbf{b_2}) = T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} =$$

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis \mathcal{B}) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

$$T(\mathbf{b_1}) = T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2\mathbf{b_1},$$

$$T(\mathbf{b_2}) = T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} =$$

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis \mathcal{B}) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

$$T(\mathbf{b_1}) = T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2\mathbf{b_1},$$

$$T(\mathbf{b_2}) = T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4\mathbf{b_2}$$

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis \mathcal{B}) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

This matrix B has columns $T(\mathbf{b_1})_{\mathcal{B}}$ and $T(\mathbf{b_2})_{\mathcal{B}}$. So let us calculate

$$T(\mathbf{b_1}) = T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2\mathbf{b_1},$$

$$T(\mathbf{b_2}) = T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4\mathbf{b_2}$$

This means that the coordinate matrix with respect to ${\cal B}$ is simply

Solution

What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis \mathcal{B}) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

This matrix B has columns $T(\mathbf{b_1})_{\mathcal{B}}$ and $T(\mathbf{b_2})_{\mathcal{B}}$. So let us calculate

$$T(\mathbf{b_1}) = T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2\mathbf{b_1},$$

$$T(\mathbf{b_2}) = T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4\mathbf{b_2}$$

This means that the coordinate matrix with respect to ${\cal B}$ is simply

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

The linear transformation T is geometrically clear in the \mathcal{B} basis: T is just stretching vectors by a factor 2 along $\mathbf{b_1}$ and by a factor 4 along $\mathbf{b_2}$.

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

The linear transformation T is geometrically clear in the \mathcal{B} basis: T is just stretching vectors by a factor 2 along $\mathbf{b_1}$ and by a factor 4 along $\mathbf{b_2}$. So using the standard basis T is an obscure operation on vectors, but using the basis \mathcal{B} it becomes clear. You can say that \mathcal{B} is a basis adapted to T.

Matrices for... Polynomials?

Example

Consider the map $T: P_2 \rightarrow P_1$ given by

$$T(p(t)) = \frac{d}{dt}p(t).$$

Describe T by a matrix.

Example

Consider the map $T: P_2 \rightarrow P_1$ given by

$$T(p(t)) = \frac{d}{dt}p(t).$$

Describe T by a matrix.

Solution

Example

Consider the map $T: P_2 \rightarrow P_1$ given by

$$T(p(t)) = \frac{d}{dt}p(t).$$

Describe T by a matrix.

Solution

Wait, what?! We can't multiply a polynomial by a matrix!

Example

Consider the map $T: P_2 \rightarrow P_1$ given by

$$T(p(t)) = \frac{d}{dt}p(t).$$

Describe T by a matrix.

Solution

Wait, what?! We can't multiply a polynomial by a matrix! Use coordinate vectors instead.

$$T(2+3t+4t^2) = 3+8t$$

$$T(2+3t+4t^2) = 3+8t$$

$$D\begin{bmatrix}2\\3\\4\end{bmatrix} = \begin{bmatrix}3\\8\end{bmatrix}$$

$$T(2+3t+4t^2) = 3+8t$$

$$D\begin{bmatrix}2\\3\\4\end{bmatrix} = \begin{bmatrix}3\\8\end{bmatrix}$$

$$T(t^2) = 2t$$

$$T(2+3t+4t^2) = 3+8t$$

$$D\begin{bmatrix}2\\3\\4\end{bmatrix} = \begin{bmatrix}3\\8\end{bmatrix}$$

$$T(t^2) = 2t$$

$$D\begin{bmatrix}0\\0\\1\end{bmatrix} = \begin{bmatrix}0\\2\end{bmatrix}$$

$$T(2+3t+4t^2) = 3+8t$$

$$D\begin{bmatrix}2\\3\\4\end{bmatrix} = \begin{bmatrix}3\\8\end{bmatrix}$$

$$T(t^2) = 2t$$

$$D\begin{bmatrix}0\\0\\1\end{bmatrix} = \begin{bmatrix}0\\2\end{bmatrix}$$

Formally,

$$D\cdot (f_{\mathcal{A}})=T(f)_{\mathcal{B}}$$

$$D\begin{bmatrix}0\\0\\1\end{bmatrix}=\begin{bmatrix}0\\2\end{bmatrix}$$

$$D\begin{bmatrix}0\\0\\1\end{bmatrix} = \begin{bmatrix}0\\2\end{bmatrix}$$

The third column of D is $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$.

$$D\begin{bmatrix}0\\0\\1\end{bmatrix}=\begin{bmatrix}0\\2\end{bmatrix}$$

$$D\begin{bmatrix}0\\0\\1\end{bmatrix} = \begin{bmatrix}0\\2\end{bmatrix}$$

$$T(1) = 0 \implies D \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$D\begin{bmatrix}0\\0\\1\end{bmatrix}=\begin{bmatrix}0\\2\end{bmatrix}$$

$$T(1) = 0 \implies$$

$$D\begin{bmatrix}0\\1\\0\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix},$$

$$D\begin{bmatrix}0\\0\\1\end{bmatrix} = \begin{bmatrix}0\\2\end{bmatrix}$$

$$T(1) = 0 \implies$$

$$D\begin{bmatrix}0\\0\\1\end{bmatrix}=\begin{bmatrix}0\\2\end{bmatrix}.$$

$$D\begin{bmatrix}0\\0\\1\end{bmatrix} = \begin{bmatrix}0\\2\end{bmatrix}$$

$$T(1) = 0 \implies D \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$T(t) = 1 \implies D \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$T(t^2) = 2t \implies D \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

Hence
$$D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

Hence
$$D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.
Check Take $f(t) = 2 - t + 3t^2$.

Hence
$$D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

Check Take $f(t) = 2 - t + 3t^2$. Then the coordinate vector for f(t) is

$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.$$

Hence
$$D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

Check Take $f(t) = 2 - t + 3t^2$. Then the coordinate vector for f(t) is

$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.$$

Then

$$D\begin{bmatrix}2\\-1\\3\end{bmatrix} = \begin{bmatrix}0 & 1 & 0\\0 & 0 & 2\end{bmatrix}\begin{bmatrix}2\\-1\\3\end{bmatrix} = \begin{bmatrix}-1\\6\end{bmatrix}.$$

Hence
$$D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

Check Take $f(t) = 2 - t + 3t^2$. Then the coordinate vector for f(t) is

$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.$$

Then

$$D\begin{bmatrix}2\\-1\\3\end{bmatrix} = \begin{bmatrix}0 & 1 & 0\\0 & 0 & 2\end{bmatrix}\begin{bmatrix}2\\-1\\3\end{bmatrix} = \begin{bmatrix}-1\\6\end{bmatrix}.$$

On the other hand T(f(t)) = f'(t) = -1 + 6t, with coordinate vector $\begin{bmatrix} -1 \\ 6 \end{bmatrix}$.

Matrices for Linear Transformations

Let's organize this.

Let's organize this. Let $T:V\to W$ be a linear transformation, $\mathcal{A}=\{\mathbf{x_1},\ldots,\mathbf{x_n}\}$ be an *input basis* for V, and $\mathcal{B}=\{\mathbf{y_1},\ldots,\mathbf{y_m}\}$ an *output basis* for W.

Let's organize this. Let $T:V\to W$ be a linear transformation, $\mathcal{A}=\{\mathbf{x_1},\ldots,\mathbf{x_n}\}$ be an *input basis* for V, and $\mathcal{B}=\{\mathbf{y_1},\ldots,\mathbf{y_m}\}$ an *output basis* for W. Each vector in V has a coordinate vector in \mathbb{R}^n , each vector in W has a coordinate vector in \mathbb{R}^m . T now corresponds to a matrix from \mathbb{R}^n to \mathbb{R}^m .

Let's organize this. Let $T:V\to W$ be a linear transformation, $\mathcal{A}=\{\mathbf{x_1},\ldots,\mathbf{x_n}\}$ be an *input basis* for V, and $\mathcal{B}=\{\mathbf{y_1},\ldots,\mathbf{y_m}\}$ an *output basis* for W. Each vector in V has a coordinate vector in \mathbb{R}^n , each vector in W has a coordinate vector in \mathbb{R}^m . T now corresponds to a matrix from \mathbb{R}^n to \mathbb{R}^m .

Let's organize this. Let $T:V\to W$ be a linear transformation, $\mathcal{A}=\{\mathbf{x_1},\ldots,\mathbf{x_n}\}$ be an *input basis* for V, and $\mathcal{B}=\{\mathbf{y_1},\ldots,\mathbf{y_m}\}$ an *output basis* for W. Each vector in V has a coordinate vector in \mathbb{R}^n , each vector in W has a coordinate vector in \mathbb{R}^m . T now corresponds to a matrix from \mathbb{R}^n to \mathbb{R}^m .

In the last example this was

$$T(2+3t+4t^{2}) = 3+8t$$

$$A\begin{bmatrix} 2\\3\\4 \end{bmatrix} = \begin{bmatrix} 3\\8 \end{bmatrix}$$

Definition

Let $\mathcal{A} = \{\mathbf{x_1}, \dots, \mathbf{x_n}\}$ be a basis for V, and $\mathcal{B} = \{\mathbf{y_1}, \dots, \mathbf{y_m}\}$ a basis for W.

The matrix $T_{\mathcal{BA}}$ representing T with respect to these bases

Definition

Let $\mathcal{A} = \{\mathbf{x_1}, \dots, \mathbf{x_n}\}$ be a basis for V, and $\mathcal{B} = \{\mathbf{y_1}, \dots, \mathbf{y_m}\}$ a basis for W.

The matrix $T_{\mathcal{BA}}$ representing T with respect to these bases • has n columns (one for each of the x_i),

Definition

Let $\mathcal{A} = \{\mathbf{x_1}, \dots, \mathbf{x_n}\}$ be a basis for V, and $\mathcal{B} = \{\mathbf{y_1}, \dots, \mathbf{y_m}\}$ a basis for W.

The matrix $T_{\mathcal{BA}}$ representing T with respect to these bases

- has n columns (one for each of the x_j),
- the *j*-th column is the coordinate vector of $T(\mathbf{x_j})$ in the basis \mathcal{B} .

Definition

Let $\mathcal{A} = \{\mathbf{x_1}, \dots, \mathbf{x_n}\}$ be a basis for V, and $\mathcal{B} = \{\mathbf{y_1}, \dots, \mathbf{y_m}\}$ a basis for W.

The matrix $T_{\mathcal{BA}}$ representing T with respect to these bases

- has n columns (one for each of the x_j),
- the *j*-th column is the coordinate vector of $T(\mathbf{x_j})$ in the basis \mathcal{B} .

$$T_{\mathcal{B}\mathcal{A}} = \begin{bmatrix} T(\mathbf{x_1})_{\mathcal{B}} & T(\mathbf{x_2})_{\mathcal{B}} & \dots & T(\mathbf{x_n})_{\mathcal{B}} \end{bmatrix}$$

Give the matrix for $T: P_2 \rightarrow P_1$ given by

$$T(p(t)) = \frac{d}{dt}p(t).$$

in the bases $A = (1, t, t^2)$ and B = (1, t).

Give the matrix for $T: P_2 \rightarrow P_1$ given by

$$T(p(t)) = \frac{d}{dt}p(t).$$

in the bases $A = (1, t, t^2)$ and B = (1, t).

$$T_{\mathcal{B}\mathcal{A}} = egin{bmatrix} T(1)_{\mathcal{B}} & T(t)_{\mathcal{B}} & T(t^2)_{\mathcal{B}} \end{bmatrix} = egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 2 \end{bmatrix}$$

Recall the map T given by $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}$. (It reflects every vector in

$$\mathbb{R}^2$$
 across the line $y = x$.)

Recall the map T given by $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}$. (It reflects every vector in

 \mathbb{R}^2 across the line y = x.)

(a) Which matrix A represents T with respect to the standard bases?

Recall the map T given by $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}$. (It reflects every vector in

 \mathbb{R}^2 across the line y = x.)

- (a) Which matrix A represents T with respect to the standard bases?
- (b) Which matrix B represents T with respect to the basis $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}$?

(a)
$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$$
.

(a)
$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$$
. So $A = \begin{bmatrix}0 & *\\1 & *\end{bmatrix}$.

(a)
$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
. So $A = \begin{bmatrix} 0 & * \\ 1 & * \end{bmatrix}$. $T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

(a)
$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
. So $A = \begin{bmatrix} 0 & * \\ 1 & * \end{bmatrix}$. $T \begin{pmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. So $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

(a)
$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$$
. So $A = \begin{bmatrix}0 & *\\1 & *\end{bmatrix}$. $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix}$. So $A = \begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}$.

(b)
$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix} = 1\begin{bmatrix}1\\1\end{bmatrix} + 0\begin{bmatrix}-1\\1\end{bmatrix}$$
.

(a)
$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
. So $A = \begin{bmatrix} 0 & * \\ 1 & * \end{bmatrix}$. $T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. So $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

(b)
$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix} = 1\begin{bmatrix}1\\1\end{bmatrix} + 0\begin{bmatrix}-1\\1\end{bmatrix}$$
. So $B = \begin{bmatrix}1 & *\\0 & *\end{bmatrix}$.

(a)
$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
. So $A = \begin{bmatrix} 0 & * \\ 1 & * \end{bmatrix}$. $T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. So $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

(b)
$$T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
. So $B = \begin{bmatrix} 1 & * \\ 0 & * \end{bmatrix}$. $T \begin{pmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

(a)
$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$$
. So $A = \begin{bmatrix}0 & *\\1 & *\end{bmatrix}$. $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix}$. So $A = \begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}$.

(b)
$$T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
. So $B = \begin{bmatrix} 1 & * \\ 0 & * \end{bmatrix}$. $T \begin{pmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. So $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

(a)
$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$$
. So $A = \begin{bmatrix}0 & *\\1 & *\end{bmatrix}$. $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix}$. So $A = \begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}$.

(b)
$$T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
. So $B = \begin{bmatrix} 1 & * \\ 0 & * \end{bmatrix}$. $T \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. So $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

Draw a picture!

Representing Linear Maps by Matrices

Remark

If a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ is represented by the matrix A with respect to the standard bases, then $T(\mathbf{x}) = A\mathbf{x}$.

Representing Linear Maps by Matrices

Remark

If a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ is represented by the matrix A with respect to the standard bases, then $T(\mathbf{x}) = A\mathbf{x}$.

Representing Linear Maps by Matrices

Remark

If a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ is represented by the matrix A with respect to the standard bases, then $T(\mathbf{x}) = A\mathbf{x}$.

Matrix multiplication corresponds to function composition! That is, if T_1 , T_2 are represented by A_1 , A_2 , then $T_1(T_2(\mathbf{x})) = (A_1A_2)\mathbf{x}$.

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear map such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}4\\0\\7\end{bmatrix}.$$

What is the matrix B representing T with respect to the following bases?

$$\mathbf{x_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{x_2} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \text{ for } \mathbb{R}^2,$$
 $\mathbf{y_2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{y_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{y_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ for } \mathbb{R}^3.$

$$T(x_1) =$$

$$T(\mathbf{x_1}) = T\left(\begin{bmatrix}1\\1\end{bmatrix}\right)$$

$$T(\mathbf{x_1}) = T\left(egin{bmatrix} 1 \\ 1 \end{bmatrix}
ight) = T\left(egin{bmatrix} 1 \\ 0 \end{bmatrix}
ight) + T\left(egin{bmatrix} 0 \\ 1 \end{bmatrix}
ight)$$

$$T(\mathbf{x_1}) = T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$$
$$= \begin{bmatrix}1\\2\\3\end{bmatrix} + \begin{bmatrix}4\\0\\7\end{bmatrix} = \begin{bmatrix}5\\2\\10\end{bmatrix}$$

$$T(\mathbf{x_1}) = T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$$

$$= \begin{bmatrix}1\\2\\3\end{bmatrix} + \begin{bmatrix}4\\0\\7\end{bmatrix} = \begin{bmatrix}5\\2\\10\end{bmatrix}$$

$$= 5\begin{bmatrix}1\\1\\1\end{bmatrix} - 3\begin{bmatrix}0\\1\\0\end{bmatrix} + 5\begin{bmatrix}0\\0\\1\end{bmatrix}$$

$$T(\mathbf{x_1}) = T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$$

$$= \begin{bmatrix}1\\2\\3\end{bmatrix} + \begin{bmatrix}4\\0\\7\end{bmatrix} = \begin{bmatrix}5\\2\\10\end{bmatrix}$$

$$= 5\begin{bmatrix}1\\1\\1\end{bmatrix} - 3\begin{bmatrix}0\\1\\0\end{bmatrix} + 5\begin{bmatrix}0\\0\\1\end{bmatrix}$$

$$\implies B = \begin{bmatrix}5\\3*\\5*$$

$$T(x_2) =$$

$$T(\mathbf{x_2}) = T\left(\begin{bmatrix} -1\\2\end{bmatrix}\right)$$

$$T(\mathbf{x_2}) = T\left(\begin{bmatrix} -1\\2 \end{bmatrix}\right) = -T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) + 2T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)$$

$$T(\mathbf{x_2}) = T\left(\begin{bmatrix} -1\\2 \end{bmatrix}\right) = -T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) + 2T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)$$
$$= -\begin{bmatrix} 1\\2\\3 \end{bmatrix} + 2\begin{bmatrix} 4\\0\\7 \end{bmatrix} = \begin{bmatrix} 7\\-2\\11 \end{bmatrix}$$

$$T(\mathbf{x_2}) = T\left(\begin{bmatrix} -1\\2 \end{bmatrix}\right) = -T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) + 2T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)$$
$$= -\begin{bmatrix} 1\\2\\3 \end{bmatrix} + 2\begin{bmatrix} 4\\0\\7 \end{bmatrix} = \begin{bmatrix} 7\\-2\\11 \end{bmatrix}$$
$$= 7\begin{bmatrix} 1\\1\\1 \end{bmatrix} - 9\begin{bmatrix} 0\\1\\0 \end{bmatrix} + 4\begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

$$T(\mathbf{x_2}) = T\left(\begin{bmatrix} -1\\2 \end{bmatrix}\right) = -T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) + 2T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)$$

$$= -\begin{bmatrix} 1\\2\\3 \end{bmatrix} + 2\begin{bmatrix} 4\\0\\7 \end{bmatrix} = \begin{bmatrix} 7\\-2\\11 \end{bmatrix}$$

$$= 7\begin{bmatrix} 1\\1\\1 \end{bmatrix} - 9\begin{bmatrix} 0\\1\\0 \end{bmatrix} + 4\begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

$$\implies B = \begin{bmatrix} 5&7\\-3&-9\\5&4 \end{bmatrix}$$

Remark

A matrix representing T encodes in column j the coefficients of $T(\mathbf{x_i})$ expressed as a linear combination of $\mathbf{y_1}, \dots, \mathbf{y_m}$.

Recap

What is the Point? Why write $T: V \to W$ as a matrix?

What is the Point? Why write $T: V \to W$ as a matrix?

• Replace obscure computations in *V* and *W* by transparent computations with matrices.

What is the Point? Why write $T: V \to W$ as a matrix?

- Replace obscure computations in V and W by transparent computations with matrices.
- Even if $T: \mathbb{R}^n \to \mathbb{R}^m$ (already have standard coordinates), T may be simpler in a different coordinate system.

Summary: Given \mathbf{v} in V, want to calculate $T(\mathbf{v})$ in W.

• We know \mathbf{v} if we know the coordinate vector $\mathbf{v}_{\mathcal{A}}$.

- We know \mathbf{v} if we know the coordinate vector $\mathbf{v}_{\mathcal{A}}$.
- We know $T(\mathbf{v})$ if we know the coordinate vector $T(\mathbf{v})_{\mathcal{B}}$.

- We know \mathbf{v} if we know the coordinate vector $\mathbf{v}_{\mathcal{A}}$.
- We know $T(\mathbf{v})$ if we know the coordinate vector $T(\mathbf{v})_{\mathcal{B}}$.
- So we know T if we know the matrix $T_{\mathcal{BA}}$:

$$T(\mathbf{v})_{\mathcal{B}} = T_{\mathcal{B}\mathcal{A}}\mathbf{v}_{\mathcal{A}}.$$

- We know \mathbf{v} if we know the coordinate vector $\mathbf{v}_{\mathcal{A}}$.
- We know $T(\mathbf{v})$ if we know the coordinate vector $T(\mathbf{v})_{\mathcal{B}}$.
- So we know T if we know the matrix $T_{\mathcal{BA}}$:

$$T(\mathbf{v})_{\mathcal{B}} = T_{\mathcal{B}\mathcal{A}}\mathbf{v}_{\mathcal{A}}.$$

The output coordinate vector equals the matrix for T times the input coordinate vector.

Example

Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let T be the linear map such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}4\\0\\7\end{bmatrix}.$$

Example

Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let T be the linear map such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}4\\0\\7\end{bmatrix}.$$

What is the matrix A representing T with respect to the standard bases? Use that to calculate $T\begin{bmatrix} 2\\3 \end{bmatrix}$.

Example

Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let T be the linear map such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}4\\0\\7\end{bmatrix}.$$

What is the matrix A representing T with respect to the standard bases? Use that to calculate $T\begin{bmatrix} 2\\3 \end{bmatrix}$.

Solution

The standard bases are

$$\mathbf{x_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{x_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{y_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{y_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{y_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$T(x_1) =$$

$$T(\mathbf{x_1}) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} =$$

$$T(\mathbf{x_1}) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$T(\mathbf{x_1}) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$= 1\mathbf{y_1} + 2\mathbf{y_2} + 3\mathbf{y_3}$$

$$T(x_2) =$$

$$T(\mathbf{x_1}) = \begin{bmatrix} 1\\2\\3 \end{bmatrix} = 1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + 2 \begin{bmatrix} 0\\1\\0 \end{bmatrix} + 3 \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
$$= 1\mathbf{y_1} + 2\mathbf{y_2} + 3\mathbf{y_3}$$
$$T(\mathbf{x_2}) = \begin{bmatrix} 4\\0\\7 \end{bmatrix} =$$

$$T(\mathbf{x_1}) = \begin{bmatrix} 1\\2\\3 \end{bmatrix} = 1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + 2 \begin{bmatrix} 0\\1\\0 \end{bmatrix} + 3 \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
$$= 1\mathbf{y_1} + 2\mathbf{y_2} + 3\mathbf{y_3}$$
$$T(\mathbf{x_2}) = \begin{bmatrix} 4\\0\\7 \end{bmatrix} = 4\mathbf{y_1} + 0\mathbf{y_2} + 7\mathbf{y_3}$$

So
$$T\begin{bmatrix}2\\3\end{bmatrix} = A\begin{bmatrix}2\\3\end{bmatrix} =$$

So $T\begin{bmatrix} 2\\3 \end{bmatrix} = A\begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 14\\4\\27 \end{bmatrix}$

$$T(\mathbf{x_1}) = \begin{bmatrix} 1\\2\\3 \end{bmatrix} = 1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + 2 \begin{bmatrix} 0\\1\\0 \end{bmatrix} + 3 \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
$$= 1\mathbf{y_1} + 2\mathbf{y_2} + 3\mathbf{y_3}$$
$$T(\mathbf{x_2}) = \begin{bmatrix} 4\\0\\7 \end{bmatrix} = 4\mathbf{y_1} + 0\mathbf{y_2} + 7\mathbf{y_3}$$
$$\implies A = \begin{bmatrix} 1&4\\2&0\\3&7 \end{bmatrix}$$

Additional Problems

• Suppose $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 2 & 4 & 7 & 8 & 1 \end{bmatrix}$. Find the dimensions and a basis for all four fundamental subspaces of A.

- Suppose $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 2 & 4 & 7 & 8 & 1 \end{bmatrix}$. Find the dimensions and a basis for all four fundamental subspaces of A.
- Suppose A is 5×5 and v is a vector in \mathbb{R}^5 which is not a linear combination of the columns of A. What can you say about the number of solutions to $A\mathbf{x} = \mathbf{0}$?

- Suppose $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 2 & 4 & 7 & 8 & 1 \end{bmatrix}$. Find the dimensions and a basis for all four fundamental subspaces of A.
- Suppose A is 5×5 and v is a vector in \mathbb{R}^5 which is not a linear combination of the columns of A. What can you say about the number of solutions to $A\mathbf{x} = \mathbf{0}$?
- Let T be the linear map such that

$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\\4\end{bmatrix}, \quad T\left(\begin{bmatrix}-1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-2\\0\end{bmatrix}.$$

What is
$$T\left(\begin{bmatrix}0\\4\end{bmatrix}\right)$$
?