LAB 6

To Simulate bankers algorithm for DeadLock Avoidance (Banker's Algorithm)

	26-7-23	4
-	Las 6	
#		
	Write a C program Deadlock avoidance	2
	#include <skliony< td=""><td></td></skliony<>	
	Findade Libring LY	
-	rord nan ()	
	1	
	int alloc [10][10], mx[10][10];	
	" at ara [10], work [10], total [10];	
	int inj, Kn, need [10][10];	
	int m; int count = 0, c=0;	
	Char finish (10);	
	penalt (" Entry the no of movement and every ")	-
	scan ("I d A.d", & n (5m);	
	for (i=D) i(=n; i++)	
	finish [i] in;	
	for (1=0) icn; 1+1)	ı
	or (1-0) (cn) (++1)	6
	Sear ("Id" Symax [I][])	
	phundy (Resource vector: ");	
	by (1=0; 1 < msi = 2)	
	for (i=0; 1 < m; i++) Scan (*1.d", = total (1))	
	Por(1=0) (< m; 1++)	
	aveil [i]=0;	
	for Circuita	
131 161	for (j=0; j <m 1)<="" ;="" and="" j++)="" td="" =""><td></td></m>	
	for (i=0; i <m; [:]<="" aust="" i+1)="" td=""><td></td></m;>	
	tor (j=0; j <m; [1]="awai([1])</td" j+1)="" work="" =""><td></td></m;>	
	for (j=0; j <m; (j="0;" [:)[j]="" [j+-="" [j]="" [j]-="" [j].="" alloc="" and="" book="" for="" j++)="" j++)<="" j<m;="" j<n;="" rock="" td="" total=""><td></td></m;>	
	for (j=0; j <n; itt)<="" td=""><td></td></n;>	
	for (j=0, j <m; j+1)<="" td=""><td></td></m;>	

Enter the no of process and oursewere: 43 Ewir the clasm mater Enter the allocation materix: of in ") thene 002 Resource vetor 1 9 3 6 All the resources can be allocated to process Available sussesses au : 6 2 3 Person 2 executed ? . Y All the ouspieres can be allocated to procen Available ousoures are: 3 4 Proces 3 executed ? : Y All the susoumer can be allocated to pursuen 4 Available ensource one 8 3.6 prous 4 executed? . . Y All the ensources can be allocated to precess IT Available ensures are 986 process 1 executed ? : y System is in safe made given state to safe state

OUTPUT: