

"APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R001858220002-3

USTALOV, V., kapitan

To the sons about the feats of their fathers. Komm. Vooruzh. Sil
(MIRA 18:6)
46 no.8:64 Ap '65.

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R001858220002-3"

USTALOV, V.A.

137-58-4-676³

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 4, p 66 (USSR)

AUTHORS: Mironov, M.G., Yeliseyev, I.S., Mel'nikov, A.G..
Kroneberg, D.A., Sereda, B.K., Ustalov, V.A.

TITLE: Forty Years of Copper Industry in the Ural Region (Sorok let
mednoy promyshlennosti Urala)

PERIODICAL: Byul. tsvetn. metallurgii, 1957, Nr 19-20, pp 55-60

ABSTRACT: Bibliographic entry

1. Copper industry--USSR

Card 1/1

SOV/136-59-4-1/24

AUTHOR: Ustalov, V.A., (Deceased)

TITLE: Contributions of the Branch Institutes of Ural to the Development of Non-Ferrous Metallurgy (Vklad otrazlevykh institutov Urala v razvitiye tsvetnoy metallurgii)

PERIODICAL: Tsvetnyye metally, 1959, Nr 4, pp 1-4 (USSR)

ABSTRACT: This is a review of the 1958 activities of the Unipromed' and Uralmekhanobr design and scientific research institutes of the Sverdlovskiy sonarkhoz (Sverdlovsk Economic Council). These activities were concerned with non-ferrous metallurgy in some economic regions of Kazakhstan and Siberia as well as Ural. The Uralmekhanobr Institute, in collaboration with works personnel, effected improvements in ore beneficiation practice at the Krasnoural'skaya (Krasnoural'sk), Kirovgradskaya (Kirovgrad), Pyshminskaya (Pyshma), Sredne-Ural'sk, Karabashskaya (Karabash), Zolotushinskaya (Zolotukha) and Tuimskaya Beneficiation Works. New equipment such as the type UM-500 high productivity flotation machine was developed. The Unipromed' Institute has carried out research and design work for the Pyshma, Sredne-Ural'sk, Kirovgrad and Mednogorsk copper-smelting works. In

Card 1/2

SOV/136-59-4-1/24

Contributions of the Branch Institutes of Ural to the Development
of Non-Ferrous Metallurgy

collaboration with the Irkutskiy mashinostroitel'nyy
zavod (Irkutsk Machine Construction Works) a new type of
grab is being designed. Both the institutes have done
considerable work in the field of automation and
instrumentation.

Card 2/2

USTAMIRZAYEVA, A. I.

Dissertation: Grad Stud -- "The Process of Stretching in the Rear End of a
Single-Belt Drawing Apparatus." Cand Tech Sci, Moscow Textile Inst, 17 Jun 54.
Vechernaya Moskva, Moscow. 8 Jun 54.

SO: Sum 318, 23 Dec. 1954

USTANOV, Kh. U.

USER/Chemistry - Saccharides

Card 1/1 Pub. 147 - 5/27

Authors : Ustanov, Kh. U., and Kargin, V.A.

Title : Sorption of water on melted glucose and caramel mass

Periodical : Zhur. fiz. khim. 28/2, 224-228, Feb 1954

Abstract : The sorption and desorption of water by amorphous glucose and caramel mass was investigated at 25 and 50° C and compared with the sorption and desorption of cellulose. In contrast to cellulose the glassy sugars at low relative vapor pressures do not adsorb any water. Sorption begins at a specific much higher vapor-pressure after which it increases continuously and reaches values exceeding that of cellulose. The greater water sorption by cellulose is due to the sturdy chains of its macromolecules which prevent diffusion of the water. The mechanism of water sorption by glassy sugars is explained. Three USSR references (1937-1952). Tables; graphs.

Institution : Academy of Sciences Uzbek-SSR, Chemical Institute, Tashkent

Submitted : April 1, 1953

USTANOVSKAYA, L. T.

Forests and Forestry - Ukraine

Forests of Staro-Berdiansk., Priroda, 41, No. 1, 1952.

Monthly List of Russian Accessions, Library of Congress, May 1952. UNCLASSIFIED.

USTAR, Majda

Microbiological and patho-anatomical considerations on pulmonary
resection in tuberculosis. Tuberkuloza no.1:13-19 '62.

1. Bolnica za tuberkulozu i plucne bolesti Topolsica (upravnik: prim.
dr. I. Cestnik).
(PNEUMONECTOMY) (TUBERCULOSIS PULMONARY)

BENEDIK, M.; USTAR, M.

Surgical therapy of chronic empyema in pulmonary tuberculosis.
Tuberkuloza 16 no.3:263-265 My-Ag '64

l. Bolnica za tuberkulozu Topolsica; Institut za tuberkulozu Golnik;
Hirurska klinika Ljubljana.

USTAR, M.; BENEDIK, M.; CESTNIK, I.

Results of resection in the treatment of pulmonary tuberculosis.
(Analysis of 300 patients treated by pulmonary resection during
the period of 1956-1960). Tuberkuloza 16 no.1:11-21 Ja-F '64.

1. Bolnica za plucnu tuberkulozu Topolsica (Predstojnik: prim.
dr. I. Cestnik).

SEKULIC, Bozidar, Prim., dr.; USTAVDIC, Muhamed, dr.; NOVAKOVIC, Momcilo, dr.

Age factor in indications for tonsillectomy. Med. arh.,
Sarajevo 9 no.5:77-84 Sept-Oct 55.

1. (Rad Odelenja za bolesti uva. nosa i grla Gradske bolnice u
Beogradu. Sef: Prim. dr. Bozidar Sekulic).
(TONSILS, surg.
in child., indic. in relation to age factor. (Ser))
(AGING, pathol.
age factor in tonsillectomy in child. (Ser))

"APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R001858220002-3

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R001858220002-3"

"APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R001858220002-3

1.4288. and (CH₂CH₂CH₂CH₂)_n in 131-27. 5g

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R001858220002-3"

"APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R001858220002-3

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R001858220002-3"

U.S.T.A.Y.S.H.-H.I.Kou, B.F.

PHASE I: SURVEY EXPLOITATION

5(1)

507/2527

Zarubin, "Technological Encyclopedia", Vol. 2) - "For review prints".
Rubtsova, "Soviet Patents, No. 11 (Armenian Works), p. 11, 1970, "For review prints".
Kostylev, "Soviet Patents, No. 11 (Armenian Works), p. 11, 1970, "For review prints".
F.G. JAFAROV, M.S. KARIMOV, G.M. SARKISYAN, Candidate of Historical Sciences; Doctor of Historical Sciences; A.R.ZARUBIN, Candidate of Historical Sciences; Professor M.I. FARBBERG,
Doctor of Technical Sciences; Professor M.I. FARBBERG,
Doctor of Technical Sciences;

Phys. Sci.: Professor V.G. BASHABEKOV, Doctor of Chemical Sciences

Secretary-Scientist: B.P. Ustavchikov, Candidate of Chemical Sciences
Biology: M.I. and N.I. FARBBERG, Candidate of Chemical Sciences
Chemistry: M.I. and N.I. FARBBERG, Candidate of Chemical Sciences

This book is primarily intended for industrial chemists and technicians interested in the kinetics of chemical reactions and their related physical processes.

Contents: The twenty-two articles of this collection deal mainly with chemical physics and general science related to these processes, and with their physical, chemical equipment. No personalities are mentioned. References are given after each article.

TABLE OF CONTENTS:

CONTENTS

Furukawa, M.I. and K.J. Mochida, "Interaction of Isobutylene With Acrylonitrile and the Synthesis of Methyl Pentadiene on This Basis"	5
Bol'shakov, A.G. and M.I. FARBBERG, "Synthesis of Alkyl Esterols"	19
Bol'shakov, A.G. and M.I. FARBBERG, "Industrial Synthesis of Polyisobutylene"	33
Dzhurabekova, E.A., S.I. KERBER, V.G. VELIKHINA, and V.D. SHIBAEV, "Some Transformations of a Propylene-Diene" (Isobutylene)-Terpolymers", Report 1	47
Kostylev, I.L. Stratification Capacity as a Branch of Thermal Analysis	55
Kostylev, I.L. An Independent Method of Research 2-methoxyphthalene-	65
Vishnevskaya, I.L. Analytical Use of the Organic Reagent 2-methoxyphthalene-	75
Gurevich, B.P., B. A. VASIL'EV, and N.B. OZEROV, "The Oxidative Complex of Magnesium Bisphenol-A", Report 1	81
Bashabekov, V.G., and I.A. VASIL'EV, "The Energy of Final Decomposition Products of Hydrogenated Substances"	91
GENERAL SECTION: PROCESSES AND EQUIPMENT	
Zarubin, V.G. Effectiveness of Wetting Agent D8 for Recovering Lead Zinc Concentrations	103
Furukawa, P.J. Absorption of Wetting Agent D8 on Lead Oxide Under Static Conditions	113
Furukawa, P.J. and G.B. BORISOVA, Separation of Mixtures of Butyl-N-Menthane Sulfate and Lysine Carboxylic Acid	127
Sarkisyan, M.S. and P.P. CHETVERIKOV, Depolarization and Polarization of Friction Metals by Electrolytic Currents	137
Sarkisyan, M.S., and P.P. CHETVERIKOV, Dielectric Properties of Friction Metals	153
Pashchenko, A.B., and B.A. SOKOLOVSKY, "The Problem of the Distribution of Rubber in Different Parts of Tireable Tires"	171
Pashchenko, A.B., and B.A. SOKOLOVSKY, "The Influence of the Length and Structure of Synthetic Rubber on the Strength of Rubber with M (natural Rubber)"	193
Makarov, V.G., and V.G. VELIKHINA, "The Influence of Circumstances on the Strength of Rubber in the Case of Various Accelerators and in the Case of Various Acetates"	201
Bashabekov, V.G., and B.A. SOKOLOVSKY, "Synthetic Alkyl Phenol-aldehyde Resins as Rubber Strengtheners"	209

HISTORY OF CHEMISTRY

Bashabekov, V.G. Development of the Chemistry of Petroleum Compounds and Petroleum Pyrolysis	209
Bashabekov, V.G., and V.V. VORONOV, Yu.V. LOMAKOVICH, Research in Petroleum Pyrolysis	203

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R001858220002-3"

Ustavshchikov, B.F.

82147

SOV/81-59-6-20-03

Translation from: Referativnyy zhurnal, Khimiya, 1959, Nr 6, pp 384-385 (USSR)
S-3831AUTHORS: Farberov, M.I., Ustavshchikov, B.F., Kut'in, A.M., Vernova, T.P.,
Yarosh, Ye.V.TITLE: The Methods of Technical Synthesis and the Application of 2-Methyl-
5-Ethylpyridine and 2-Methyl-5-VinylpyridinePERIODICAL: Yaroslavsk. prom-st' (Sovnarkhoz Yaroslavsk. ekon. adm. r-na),
1958, Nr 3, pp 15 - 21ABSTRACT: In the condensation of 1 mole of paraldehyde and 4 moles of 40-60%
(better 50%) aqueous solution of NH₃ in the presence of a catalyst
(organic or inorganic salt) taken in the quantity of 1-2% based on
the weight of the paraldehyde (20-30 min, 260°C, pressure 80-100
atm) 99% pure 2-methyl-5-ethylpyridine¹(1) is obtained, yield 75-80%,
b. p. 176.7°C, n²⁰_D 1.4974, d₄²⁰ 0.9189; as impurities α- and β-
picoline, higher pyridines and resins are formed. The reaction proceeds
in the following order: 4CH₃CHO+NH₃ → N=C(CH₃)CH=CH(C₂H₅)=CH+4H₂O.
I, diluted by water steam in the molar ratio 1:12-1:20 is dehydrogenated
in the presence of industrial dehydrogenation catalysts²(K-10 and
K-12) consisting of Zn, Cr, Fe and Al oxides activated by K₂O for 2

Card 1/3

X

82147

SOV/B-59-6-20403

The Methods of Technical Synthesis and the Application of 2-Methyl-5-Ethylpyridine and 2-Methyl-5-Vinylpyridine

hours at 575-600°C and a volumetric rate of 500-600 ml per 1 l of catalyst in 1 hour, 97-99% pure 2-methyl-5-vinylpyridine (II) is obtained, yield 20-25% based on I having passed through, or 70-75% based on I decomposed, b. p. 75°C/15 mm, n_{20}^D 1.5454, d_{42}^{20} 0.9579. The content of II in the catalyzate is 23-27%, the yield of the catalyzate 89-91%. Pyridine, picelines, 2,5-dimethyl-, 3-ethyl- and 3-vinylpyridine are formed as impurities. II is very inclined to polymerization. S, $C_6H_2(OH)(NO_2)_3$, α -nitroso- β -naphthol and methol (sulfate salt of methylamino-nophenol) are used as stabilizers of II. In the process of II separation S is used as stabilizer and methol for storing (in concentrations of up to 0.001 weight %). In the case of oxidizing I by $KMnO_4$ or $Cu(NO_3)_2$, 2,5-pyridine-carboxylic acid (yield 60-70%, m. p. 236°C) is obtained which is converted to nicotinic acid by decarboxylizing with a yield of ~100% (m. p. 163°C). The dimethyl ester of 2,5-pyridine-dicarboxylic acid (m. p. 163°C) after reesterification by ethyleneglycol is condensed in the presence of $ZnCl_2$ into a high-polymeric resin. I with CH_2O forms 5-ethyl-2-vinyl- and 5-ethyl-2-(β -oxyethyl)-pyridine with a high yield. I is easily hydrogenated with a yield of ~100% by Na in butyl alcchcl,

Card 2/3

82147
SOV/81-59-6-20403

The Methods of Technical Synthesis and the Application of 2-Methyl-5-Ethylpyridine
and 2-Methyl-5-Vinylpyridine

and also catalytically (in the presence of Ni-catalysts) in 2-methyl-5-ethyl-
piperidine, b. p. 160-161°C, n^{20}_D 1.4530, d_{420} 0.8559. It is a monomer for
the industry of synthetic rubber, it can be used in the production of plastics
and synthetic fibers.

Ya. Danyushevskiy

Card 3/3

5(1, 3)

SOV/153-58-5-16/28

AUTHORS:

Farberov, M. I., Ustavshchikov, B. F., Kut'in, A. M.,
Vernova, T. P., Yarosh, Ye. V.

TITLE:

Technical Synthesis of 2-Methyl-5-Ethyl Pyridine and
2-Methyl-5-Vinyl-Pyridine, and Their Fields of Application
(Tekhnicheskiye santezy 2-metil-5-etylpiridina i 2-metil-5-
vinilpiridina i oblasti ikh primeneniya)

PERIODICAL:

Izvestiya vysshikh uchebnykh zavedeniy. Khimiya i khimicheskaya
tekhnika, 1958, Nr 5, pp 92-99 (USSR)

ABSTRACT:

The authors took the synthesis of 2-methyl-5-ethyl pyridine (MEP) from acetaldehyde and ammonia with a further dehydrogenation to 2-methyl-5-vinyl pyridine (MVP) as a basis for the working out of technical synthesis of these two substances. The papers recently published in patents (Refs 11-13) tend to show an intense elaboration of these reactions. There are, however, no publications on the first, and especially on the second stage of this process. The authors first clarified the most important rules governing the reaction between acetaldehyde and ammonia for the purpose of an industrial utilization.

1) Synthesis of 2-methyl-5-ethyl pyridine. Acetaldehyde is used as paraldehyde. This

Card 1/4

DOV/153-58-5-16/28

Technical Synthesis of 2-Methyl-5-Ethyl Pyridine and 2-Methyl-5-Vinyl Pyridine, and Their Fields of Application

offers much higher yields. Stoichiometric ratios (1.33 mol paraldehyde per 1 mol ammonia) could, however, not secure a sufficiently high MEP yield. The optimum ratio amounts to at least 4 mol ammonia per 1 mol paraldehyde. The presence of larger quantities of water has a favorable effect. The opinions on the formation mechanism of MEP in literature contradict each other (Ref 14). Up to 30 different salts, among them $ZnCl_2$, $FeCl_2$, $SbCl_3$, $CoCl_2$, $NiCl_2$, CH_3COONa , NH_4Cl , CH_3COONH_4 , NH_4F , $NH_4F \cdot HF$, KF , KHF_2 and others served as catalysts. A catalyst was selected which corresponds to the technical process. Its concentration usually amounts to 1-2% of the paraldehyde. The reaction takes also place without catalyst, however, with much smaller yields.

2) Dehydrogenation of 2-methyl-5-ethyl pyridine. Synthesis of 2-methyl-5-vinyl pyridine. The best industrial dehydrogenating catalysts served for dehydrogenation: K-10 and K-12, which consist of zinc oxide, chromium oxides, iron and aluminum oxides, activated with potassium oxide. The partial pressure is

Card 2/4

Technical Synthesis of 2-Methyl-5-Ethyl Pyridine and 2-Methyl-5-Vinyl Pyridine,
and Their Fields of Application

SOV/153-58-5-16/28

best decreased by dilution with steam. Figure 2 shows typical dehydrogenation curves of MEP (catalyst K-12 at 575°). Under optimum conditions the MVP yields per passed MEP amounted to 20-25%, and per decomposed MEP to 70-75%. 3) Isolation and stabilization of MVP, i.e. the separation of MEP from MVP is a difficult process as their boiling points are close to each other (176.7 and 187°). Furthermore MVP is easily polymerized. For this reason a high vacuum is required. Sulfur, picric acid, α -nitroso- β -naphthel and sulfurous methyl amino phenol (Figs 3,4) were the best stabilizers of some dozens investigated. 4) Equipment and apparatus for the MVP synthesis. Figure 5 shows a corresponding scheme. 5) The scheme (p 98) shows some more synthesis proceeding from MEP (Refs 15,16). 6) Finally, rubber and latex types on MVP basis are discussed. Some of them show better adhesion to cord from viscose and nylon, high elasticity, frost resistance, and resistance to wear and tear. Some branches of industry announce at present a high demand for those rubber types. There are 5 figures and 18 references, 6 of which are Soviet.

Card 3/4

Technical Synthesis of 2-Methyl-5-Ethyl Pyridine and 2-Methyl-5-Vinyl Pyridine,
and Their Fields of Application SOV/153-58-5-16/25

ASSOCIATION: Yaroslavskiy tekhnologicheskiy institut i pytnyy zavod Ministerstva
khimicheskoy promyshlennosti (Yaroslavl' Technological Institute and Test Plant of the Ministry of Chemical Industry)

SUBMITTED: December 28, 1957

Card 4/4

S/080/61/03⁴/003/011/017
A057/A129

AUTHORS: Farberov, M. I.; Kut'in, A. M., Ustavshchikov, B. F., Vernova,
T. P., Frolov, A. F.

TITLE: Investigation of the conditions for the synthesis of 2-methyl-
-5-vinylpyridine

PERIODICAL: Zhurnal prikladnoy khimii, v. 34, no. 3, 1961, 632 - 640

TEXT: Dehydrogenation of 2methyl-5-ethylpyridine (MEP) was investigated
in order to increase the yield of 2methyl-5-vinylpyridine (MVP). Conditions were
presented ensuring a 25 % yield of MVP in relation to the amount passed of MEP
and 70 - 73 % yield in relation to decomposed MEP. Steam effects partial hydro-
lysis of pyridine bases and is thus not a completely inert diluent in dehydrogen-
ation of MEP. Inhibitors for polymerization were investigated for the storage
of MVP and separation from dehydrogenation products. Improvement of this dehydro-
genation process is important for the manufacture of polymer materials. MVP is
especially significant in the production of special types of synthesized latex
and synthetic rubber according to R. Frank et al. (Ref. 1: Ind. Eng. Chem., 40,
879 (1948)), J. E. Pritchard and M. H. Opheim (Ref. 2: Ind. Eng. Chem., 46, 2242,

Card 1/9

S/080/61/034/003/011/017
A057/A129

Investigation of the conditions for

1954, 47, 863, 1955), H. E. Railsback and C. C. Biard (Ref. 3: Ind. Eng. Chem., 48, 1043, 1956), and V. L. Tsayilingol'd et al. (Ref. 4: Kauchuk i rezina, 9, 1958, 3, 1959, 9, 1959), or ion exchange resins in the manufacture of synthetic fibers. The raw material - MEP - is synthesized by Chichibabin's reaction between paraaldehyde and ammonia in liquid phase according to M. I. Faberov et al. (Ref. 5: Izv. Vuzov, Khim. i khim. tekhn., 5, 92, 1958) with a 70 - 73 % yield. The present experiments were carried out (in assistance of M. Yu. Tikhvinskaya and M. A. Loginova) by a method and with a laboratory assembly described in a prior paper (Ref. 11: ZhOKh, 30, 875, 1960). Vapor pressure and liquid - vapor equilibria in the system MEP - MVP was determined on an apparatus similar to Othmer's (Ref. 12: Ind. Eng. Chem., 45, 614, 1953) especially adapted for vacuum tests. Two catalysts were used: no. 1 based on ZnO and no. 2 on Fe₂O₃, containing 86 - 88 % of the basic component, some chromium oxides and small amounts of other components, which are not specified. Since considerable carbon deposition occurs during the dehydrogenation process, the catalyst had to be regenerated after 2 - 8 hours by passing an air-steam mixture at a maximum temperature of 650° - 700°C. Results of dehydrogenation experiments with steam as diluent in varying conditions are given in Table 1. It can be seen that the yield of MVP related to decomposition of MEP decreases with the contact time. This is apparently effected by

Card 2/9

S/080/61/034/003/01E/917
A057/A129

Investigation of the conditions for

side reactions and increasing carbon deposition. The latter depends on the type of catalyst and the degree of dilution by steam. Steam cannot be considered as inert diluent, since with increasing dilution by steam the yield of catalyzate and of MVP (based on decomposed MEP) decreases, in spite of the fact that the yield of MVP based on the amount of passed MEP increases (Figure 1). Also with increasing dilution by steam formation of gaseous products (CO_2 , H_2 , NH_3 etc) and the content of pyridines (α - and γ -picoline, 2,5-lutidine, 3-vinylpyridine) in the catalyzate increases. This can be explained by the reaction of pyridine bases with steam, resulting in a partial dealkylation of MEP and formation of pyridines, or total rupture of the pyridine ring with ammonia evolution. A similar reaction was observed by A. A. Baladin et al. (Ref. 8: DAN SSSR, 110, 79, 1956) on α -picoline. These side reactions of hydrolysis occur with different rates on various catalysts, thus influencing the selection of the latter. Results on dehydrogenation of MVP with other diluents are given in Table 3. The observed effect of benzene can be explained by the fact that no side reactions of hydrolysis occur. Although nitrogen does not show these side reactions, no desorption of pyridine bases from the catalyst is effected by nitrogen (contrary to benzene) resulting in thermal decomposition of these substances. Fractionation of the catalyzate at 20 torr demonstrated that the fraction boiling at 63 -

Card 3/9

Investigation of the conditions for

S/080/61/034/003/011/017
A057/A129

- 69°C. (20 torr) [Abstracter's note: Error in original paper - 200 torr instead of 20.] has an increased refraction index and contains considerable amounts of an unsaturated compound, apparently 3-vinylpyridine. Thus the following reaction and side products were obtained in dehydrogenation of MEP: (I) α -picoline, (II) 3-ethylpyridine, (III), 2,5-lutidine, (IV) 3-vinylpyridine, (V) 2-methyl-5-ethylpyridine, (VI) 2-methyl-5-vinylpyridine. The present authors consider (I), (II) and (III) as main cracking products of MEP (in presence of hydrogen), while (IV) is a cracking product of MVP. Different stabilizers for MVP were investigated (Figure 3) and it was observed that 0.1 % of sulfur is the optimum stabilizer in fractionation of MVP. For the storage of MVP an admixture of 0.001 % methanol is most efficient in stabilizing MVP for several weeks, or 0.01 % methanol for several months. Liquid-vapor equilibrium in the system MEP - MVP is shown in Figure 5. Corresponding experiments demonstrated that special conditions must be maintained if a 98 - 99 % concentration of MVP should be attained in fractionation. Thus in the system the maximum temperature should be 95°C (for highly concentrated MVP only 85°C), and highly effective inhibitors should be used. There are 6 figures, 4 tables and 12 references: 8 Soviet-bloc and 4 non-Soviet-bloc.

Card 4/9

S/080/61/034/003/011/017
A057/A129

Investigation of the conditions for

ASSOCIATIONS: Institut monomerov dlya SK (Institute of Monomers for Synthetic Rubber) and Yaroslavskiy tekhnologicheskiy institut (Yaroslavl' Technological Institute)

SUBMITTED: June 6, 1960.

Table 1: Dehydrogenation of MVP on the catalysts no. 1 and no. 2 using steam as diluent. Legend: (1) no. of the catalyst, (2) temperature($^{\circ}$ C), (3) nominal contact time, sec., (4) volume velocity of the MEP supply (in ml/ml catalyst per h), (5) molar ratio H₂O/ MEP, (6) yield of the catalyzate (weight %), (7) yield of MVP based on the MEP passed (mole %), (8) yield of MVP based on the MEP decomposed (mole %), (9) carbon deposit on the catalyst (mole %, based on the MEP passed).

Card 5/9

USTAVSHCHIKOV, B.F.; FARBEROV, M.I.; PODGORNOVA, V.A.

Industrial synthesis of methacrylic acid based on isobutylene.
Khim. i khim. tekhn. 1:79-89 '62. (MIRA 17:2)

1. Yaroslavskiy tekhnologicheskiy institut i Nauchno-issledovatel'skiy institut monomerov dlya sinteticheskogo kauchuka.

USTAVSHCHIKOV, B.F.; TITOVA, T.S.

Transformation of bivinyl adducts with furfural by the
Cannizzaro-Tishchenko reaction. Khim. i khim. tekhn. 1:109-
110 '62. (MIRA 17:2)

ACCESSION NR: AD6029922

S/3087/62/001/000/0079/00897

AUTHOR: Ustavshchikov, B. F.; Farberov, M. I.; Podgornova, V. A.

TITLE: Technical synthesis of methacrylic acid based on isobutylene

SOURCE: Yaroslavl'. Tekhnologicheskiy institut. Khimiya i khimicheskaya tekhnologiya, vol. 1 (8), 1962, 79-89

TOPIC TAGS: methacrylic acid, isobutylene, synthesis, monomer, nitrogen tetroxide, nitrosation, isobutyric acid

ABSTRACT: Methacrylic acid and its derivatives are one of the most important monomers for the production of synthetic materials. The requirements for methacrylic derivatives, in the Soviet Union alone, will increase ten fold within the next 20 years. Currently there is one method of obtaining methacrylic acid and methyl methacrylate based on the use of acetone and hydrogen cyanide as an initial raw material. The authors conducted a detailed study of the method for obtaining methacrylic acid from isobutylene and nitrogen tetroxide. The reaction was shown graphically along with the various effects of temperature and velocity on the yield. Diagrams of the equipment used were given. The conditions of the isobutylene reaction with nitrogen tetroxide produced α -oxybutyric acid with a 75-80% yield as a

Card 1/2

ACCESSION NR: AT4029922

basic product. A nitrosation reaction occurred rather than a nitration reaction. The fundamental intermediate product of the reaction, α -nitrate isobutyric acid was formed from the isonitroso compound-oxime of α -nitro isobutyric aldehyde. The catalyst and conditions were selected which permitted methacrylic acid to be obtained from α -oxyisobutyric acid with a yield approximating the quantitative. Orig. art. has: 6 figures.

ASSOCIATION: Yaroslavskiy tekhnologicheskiy institut i nauchno-issledovatel'skiy institut monomerov dlya SK (NIMK) (Yaroslavl technological institute and scientific research institute of monomers for SK (NIMK)).

SUBMITTED: 00

DATE ACQ: 29Apr64

ENCL: 00

SUB CODE: CH

NO REF Sov: 006

OTHER: 006

Card 2/2

Synthesis of methacrylic acid ...

S/204/62/002/004/015/019
E075/E436

NH₄OH to solutions of CaNO₃ and CaCl₂. It is dried at 110 to 120°C and activated and regenerated at 350 to 400°C in an air-steam mixture. The dehydration is achieved by passing 20 to 30% aqueous solution of α -oxyisobutyric acid over the catalyst at 250 to 300°C. The products contain 10 to 15% methacrylic acid. The yield increases with increasing temperature up to 250°C, which is the optimum temperature for the process. The optimum space velocity for α -oxyisobutyric acid is about 1.3 litres/litre of catalyst/hour. These conditions give 77.7% yield of methacrylic acid (based on the amount of α -oxyisobutyric acid passed). There are 4 figures.

ASSOCIATIONS: Yaroslavskiy tekhnologicheskiy institut
(Yaroslavl' Technological Institute)
Nauchno-issledovatel'skiy institut monomerov dlya SK
(Scientific Research Institute of Monomers for Synthetic Rubber)

Card 2/2

USTAVSHCHIKOV, B. F.; FARBEROV, M. I.; PODGORNOVA, V. A.

Synthesis of methacrylic acid based on isobutylene. Nefte-
khimia 2 no.4:592-599 Jl-Ag '62. (MIRA 15:10)

I. Yaroslavskiy tekhnologicheskiy institut i Nauchno-issledo-
vatelskiy institut monomerov dlya sinteticheskogo kauchuka.

(Methacrylic acid) (Propene)

FROLOV, A.F.; LOGINOV, M.A.; USTAVSHCHIKOV, B.F.

Separation of methacrylic acid - water mixtures. Neftekhimia
2 no.5:766-770 9-0 '62. (MIRA 16:1)

1. Yaroslavskiy tekhnologicheskiy Institut.
(Methacrylic acid)

USTAVSHCHIKOV, B.F.; PODFORNOVA, V.A.; DORMIDONTOVA, N.V.; FARBEROV, M.I.

Course of the reaction between simplest α -olefins and
liquid nitrogen tetroxide. Dokl. AN SSSR 157 no.1:143-146
(MIRA 17:8)
Jl '64

1. Yaroslavskiy tekhnologicheskiy institut. Predstavлено aka-
demikom M.I. Kabachnikom.

USTAVSHCHIKOV, B.F., kand. khim. nauk, dots., red.; ISTOMIN,
N.V., kand. fiz.-mat. nauk, dots., red.

[Authors' abstracts and theses of papers presented at
the 14th Scientific Conference of the Yaroslavl Tech-
nological Institute held in 1962] Avtoreferaty i tezisy
dokladov. IAroslavl', M-vo vysshego i srednego spetsial'-
nogo obrazovaniia RSFSR, 1962. 103 p. (MIRA 17:3)

1. Yaroslavl'. Tekhnologicheskiy institut. Nauchnaya kon-
ferentsiya. 14th, Yaroslavl', 1962.

BUBAKOVA, M.S.; USTAVSHCHIKOV, R.F.; TOR-YAN, Ya.I.

Polarographic study of the kinetics of hydrolysis of nitric acid esters. Part 1: Hydrolysis of isobutyric acid α -nitrates.
Kin. i kat. 5 no.3:552-555 My-Je '64.

(MIRA 17:11)

I. Yaroslavskiy tekhnologicheskiy institut i Naučno-issledovatel'skiy institut monomerov dlya sinteticheskogo kauchuka.

FROLOV, A.F.; LOGINOVА, M.A.; USTAVSECHIKOV, B.F.

Liquid - liquid equilibrium in the system acetic acid - nitric
acid - water - chloroform. Zhur. fiz. khim. 38 no.7:1837-1839
Jl '64. (MIRA 18:3)

1. Yaroslavskiy tekhnologicheskiy institut.

USTAVSHCHIKOV, B.F.; FARBEROV, M.I.; TITOVA, T.S.; DEGTYAREV, Ye.V.

Nicotinic acid. Metod. poluch. khim. reak. i prepar. no.11:
82-83 '64.
(MIRA 18:12)

1. Yaroslavskiy tekhnologicheskiy institut. Submitted April 1964.

FROLOV, A.F.; YAROVIKOVA, M.M.; USTAVSHCHIKOV, B.F.; NJKITINA, N.S.

Liquid-liquid equilibrium in the system methyl methacrylate -
methyl alcohol - water. Izv.vys.ucheb.zav., khim.i khim.tekn.
8 no.48570-573 '65. (MIRA 18:11)

1. Yaroslavskiy tekhnologicheskiy institut, kafedra tekhnologii
osnovnogo organicheskogo sintza i sinteticheskogo kauchuka.

L 13497-66	ENT(m)/EMP(j)	RM
ACC NR: AP6002074	SOURCE CODE: UR/0204/65/005/006/0873/0879	
AUTHOR: Ustavshchikov, B. F.; Podgurnova, V. A.; Domidontova, N. V.; Faberov, M. I.		
ORG: Yaroslav Institute of Technology (Yaroslavskiy tekhnologicheskiy institut)	11/15	
TITLE: Synthesis of methacrylic acid based on isobutylene. Reaction mechanism of isobutylene with N ₂ O ₄		
SOURCE: Neftekhimiya, v. 5, no. 6, 1965, 873-879		
TOPIC TAGS: chemical reaction, IR absorption, isobutylene, nitration, nitric oxide, IR spectrum, spectrophotometer, acrylic acid, organic nitroso compound, nitrate		
ABSTRACT: The mechanism of reaction of isobutylene with liquid N ₂ O ₄ was studied by examining the IR spectra of the reaction products. The ob- ject of this work was to examine the feasibility of synthesizing metha- crylic acid by reacting isobutylene with liquid N ₂ O ₄ . The IR absorption spectra were taken with IKS-14 spectrophotometer with a NaCl prism. The polarographic analyses of the reaction products were made with a VNR po- larograph made by Orion Company. The reaction was conducted at 0°C and at 20°C in dichloroethane solvent. The nitrosonitrate of isobutylene		
UDC: 547.391.3.05:547.313.4-125:546.174		
Card 1/3		

L 13497-66

ACC NR: AP6002074

was detected in the product only when the reaction was conducted at 0°C. It is claimed that this nitrosonitrate represents the primary reaction product. Reaction of isobutylene with liquid N₂O₄ is shown in fig. 1. The authors thank Ya. I. Tur'yan for valuable consultation and polarographic analysis of the reaction products. Orig. art. has: 5 figures, 1 table.

Card 2/3

L 13497-66

ACC NR: AP6002074

Reaction of isobutylene with liquid N_2O_4
 SUB CODE: 07 / SUBM DATE: 13Mar65 / ORIG REF: 008 / OTH REF: 006
 Card 3/3 *dk*

FROLOV, A.F.; LOGINOV, M.A.; USTAVSHCHIKOV, B.F.

Separation of mixtures of acetic and nitric acids, Zhur.prikl.khim.
38 no.6:1386-1389 Je '65. (MIRA 18:10)

1. Yaroslavskiy tekhnologicheskiy institut.

FARBEROV, M.I.; USTAVSHCHIKOV, B.F.; TITOVA, T.S.

Inocinchomeric acid. Metod. poluch. khim. reak. i prepar.
no.11:58-59 '64. (MIRA 18:12)

1. Yaroslavskiy tekhnologicheskiy institut. Submitted April
1964.

FARBEROV, M.I.; USTAVSHCHIKOV, B.F.; KUT'IN, A.M.; BARANOVA, T.I.

Isoquinchameronic acid. Metod. poluch. khim. reak. i prepar.
(MIRA 18:12)
no.11:60-62 '64.

1. Yaroslavskiy tekhnologicheskiy institut i Nauchno-issledovatel'-
skiy institut monomerov dlya sinteticheskogo kauchuka.

FARBEROV, M.I.; USTAVSHCHIKOV, B.F.; KUT'IN, A.M.; BUKHAREVA, V.A.

5-Ethyl-2-(β -hydroethyl)-pyridine. Metod. poluch. khim. reak.
1 prepar. no. 1:108-109. '64. (MIRA 18:12)

1. Yaroslavskiy tekhnologicheskiy institut i Nauchno-issledo-
vatel'skiy institut monomerov dlya sinteticheskogo kauchuka.

RUSAKOVA, M.S.; TUR'YAN, Ya.I.; USTAVSHCHIKOV, B.F.

Polarography of nitric acid esters. Mechanism of electroreduction.
Elektrokhimiia 1 no.7:854-857 Jl '65. (MIRA 18:10)

1. Yaroslavskiy tekhnologicheskiy institut i Yaroslavskiy
nauchno-issledovatel'skiy institut monomerov.

USTAVSHCHIKOV, B.F.; PODGORNOVA, V.A.; DORMIDONTOVA, N.V.; FARBEROV, M.I.

Synthesis of methacrylic acid based on isobutylene. Mechanism
of the reaction of isobutylene with N_2O_4 . Neftekhimiia 5 no.6:
873-879 N-D '65. (MIRA 19:2)

1. Yaroslavskiy tekhnologicheskiy institut. Submitted March 13,
1965.

AUTHORS: Kryukov, S. I., Kut'in, A. M., Levskaya, G. S., 153 -58-1-13/29
Tepenitsyna, Ye. P., Ustavshchikova, Z. F., Farberov, M. I.

TITLE: An Improved Method of the Synthesis of Triethyl-Aluminum
(Uluchshennyj sposob sinteza trietilalyuminiya)

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy,
Khimika i khimicheskaya tekhnologiya, 1958, Nr 1,
pp. 86-93 (USSR)

ABSTRACT: The authors give a survey on the publications of trialkyl-aluminum as specific catalyst, both alone, as well as with cocatalysts for olefinic polymerization (references 1 to 3), and they compare with each other the known methods of production of aluminum-organic compounds (references 4 to 6). The authors selected the method by Gross and Meviti (Mavity, ref. 5) as the most convenient one. A)- Production of ethylaluminum sesquichloride (mixture of ethylaluminum-dichloride and diethyl-aluminum-chloride). The first stage of the process according to reference 5 proved to be rather incomplete. It is difficult to be controlled, has a long period of induction and often leads to the complete destruction of the products, sometimes with explosion. The

Card 1/4

An Improved Method of the Synthesis of Triethyl-Aluminum 153-58-1-13/29

authors tried various initiators at atmospheric pressure (crystalline iodine, ethylaluminum-sesquichloride, ethylbromide and a mixture of these substances). Table 1 shows the influence of individual initiators on the period of reaction. Ethylbromide acted most efficiently. Table 2 shows the influence of the initial temperature with the supply of ethylchloride on the reaction-period. Optimum conditions for the carrying out of the process were selected from the obtained test results. Further tests were carried out on an enlarged plant (figure 1). The laboratory results were confirmed: It was possible to reduce the reaction-period to from 2 to 3 hours. B)- Reaction of symmetrization of ethylaluminum-sesquichloride. In order to obtain triethylaluminum, the above reaction must be carried out with the participation of metallic sodium. According to reference 5, various insufficiencies exercised a disturbing effect in this connection. The authors found the conditions for removing them: 1)- Sodium ought to be used in fine dispersion, the surplus of Na must not exceed 5 to 10% of the theoretically required quantity. 2) - Sesquichloride must be introduced in portions as a 20 to 30% solution in hydrocarbons. 3) - The temperature of reaction must not

Card 2/4

An Improved Method of the Synthesis of Triethyl-Aluminum 153-58-1-13/29

exceed 130° and an intense agitation should be guaranteed. The gasoline-fraction "galosha" (boiling above 100°) proved most effective among several tested solvents. The yield of triethylaluminum amounted to 70 to 76% of the charged sesquichloride under the selected optimal conditions. A certain quantity of partly oxidized triethylaluminum was proved in the produced triethylaluminum. The inactive part of the catalyst formed a mixture of all 3 possible ethoxy-compounds. An experimental part follows. C) - Production of aluminum sesquichloride. According to the method described here, a 99% yield of that theoretically possible was obtained. The two (paragraph A) components were present in the mixture in approximately equimolar quantities. D) - The reaction of symmetrization was carried out in a device shown in figure 3. A filter required for this purpose is shown in figure 4. There are 4 figures, 2 tables, and 12 references, 3 of which are Soviet.

ASSOCIATION: Yaroslavskiy tekhnologicheskiy institut i opytnyy zavod
Card 3/4 Ministerstva khimicheskoy promyshlennosti. Kafedra

An Improved Method of the Synthesis of Triethyl-Aluminum 153-58-1-13/29

tekhnologii osnovnogo organicheskogo sinteza i SK
(Yaroslavl' Technological Institute and
the Experimental Plant of the Ministry for Chemical Industry.
Chair for the Technology of General Organic Synthesis
and SK)

SUBMITTED: September 23, 1957

Card 4/4

S/081/E0/000/017/013/016
A006/A001

Translation from Referativnyy zhurnal Khimiya, 1960, No. 17, p. 372, # 70452

AUTHORS: Kryukov, S.I., Kut'yin, A.M., Levskaya, G.S., Tepenitsyna, Ye.P.,
Ustavshchikova, Z.F., Farberov, M.I.

TITLE: Technical Mode of Triethylaluminum Synthesis

PERIODICAL: Uch. zap. Yaroslavsk. tekhnol. in-ta, 1959, Vol. 3, pp. 5-17

TEXT: The authors developed a technical mode of preparing ethylaluminum-
sesquichloride (I) with a yield of about 100% on the basis of a method described
(Grasse, A.U., Mauity, J.M., Organ. Chem., 1940, No. 5, p. 196) which consists
in the interaction of C_2H_5Cl (II) and Al in the presence of 5-10% C_2H_5Br (III)
with relation to Al. I_2 , (I) and their mixtures were tested as initiators yielding
unsatisfactory results. It is assumed that the process is initiated by inter-
mediately forming ethylaluminumsesquibromide, in the case that III is used. I is
transformed into $(C_2H_5)_3Al$ (IV) by processing with dispersed Na metal in organic
solvents (benzene, rubber, refined kerosene, xylene, isooctane). Na is taken in
excess of 5-15%. I is introduced into the reaction by portions in the form of

Cart 1/2

Technical Note of Triethylaluminum Synthesis

S/081/60/000/017/013/016
A006/A001

20-30% solution in hydrocarbon, the yield of IV is 70-76% in relation to I, and 70% in relation to II or Al. All the experiments are carried out in dry N₂ atmosphere, free of O₂. Amounts of 40 g Al and 24 g III are heated, while stirring, to 50°C and 160 g (110%) II is added by portions of 10 ml; the reaction lasts 8 hours. I is obtained in the form of a colorless or slightly colored liquid, the yield is 99%, boiling temperature 117-122°C/50 mm. In 100 g of the solvent 29 g Na is heated at 100°C, into the hot dispersion 91.4 g I is added during 20 min in the form of a 30% solution in benzene-rubber (boiling temperature 100-115°C), mixed for 30 minutes at 105-110°C and filtrated; the precipitate is washed with 250 ml of solvent; IV is obtained in the form of a colorless liquid, self-sublimating in air, the yield is 32.5 g, the boiling temperature 100-107°C/10 mm, d 0.872. The authors present two tables and schematic diagrams of metallic apparatus and laboratory equipment including descriptions.

S. Davydova

Translator's note: This is the full translation of the original Russian abstract.

Card 2/2

BONDARENKO, A.V.; KUT'LI., . . ., USTAVSHCHIKOVA, Z.F.; FARBEROV, M.I.

Synthesis of tert-butylbenzoic acid. Izv.vys.ucheb.zav.;
khim.i khim.tekh. 4 no.3:47-485 '61. (NIRA 14:10)

1. Yaroslavskiy tekhnologicheskiy institut i nauchno-issledovatel'skiy institut sinteza monomerov dlya sinteticheskogo kauchuka,
kafedra tekhnologii osnovnogo organicheskogo sinteza i
sinteticheskogo kauchuka.

(Benzoic acid)

USTAVSHCHIKOVA, G.V.,
G. G. URAZOV, Tzvetnuiia Metal. 10, No. 6, 109-30,
(1935)

CP

PROPERTIES AND PROPERTIES MODELS

NO 210 010 140111

2

The ternary system $\text{CuCl-NH}_4\text{Cl-HCl-H}_2\text{O}$. I. S. Morozov and O. V. Il'yinskikhova. *Bull. Acad. sci. U.R.S.S., Classe sci. chim.* 1946, 451-6.—In the system $\text{NH}_4\text{Cl-HCl-H}_2\text{O}$ at 0-100° the solv. of NH_4Cl decreases as HCl is added. As the temp. increases, the solv. of HCl decreases and that of NH_4Cl rises. In a soln. satd. with HCl the solv. of NH_4Cl at 0° is 8%; at 25°, 4.34%; at 50°, 6.96%; at 70°, 11.69%; and at 100°, 21.84%. In the system $\text{CuCl-MCl-H}_2\text{O}$ at the same temps., the resp. solubilities of CuCl and HCl are 19.02, 34.7%; 21.0, 80; 20.0; 27.6; 29.12, 23.38; and 30.0, 19.27%. In the system $\text{CuCl-NH}_4\text{Cl-H}_2\text{O}$, the curves show the presence of $2\text{CuCl-NH}_4\text{Cl}$ at 25° and $\text{CuCl-NH}_4\text{Cl}$ at 50°. By 80° compl. formation has ceased. Isotherms are given for the system $\text{CuCl-NH}_4\text{Cl-HCl-H}_2\text{O}$ at 50, 80, and 100°. $\text{CuCl-NH}_4\text{Cl}$ is present only at 80°. With rise in temp., the HCl field increases and that of NH_4Cl decreases. At 100° the salting-out effect of HCl on NH_4Cl is very low.
H. M. Leicester

COMBINE ELEMENTS

OPEN

CLOSE

FROLOV, A.P.; LOGINOVA, M.A.; SHVETSOV, O.K.; USTAVTSCHIKOV, B.F.

Liquid-vapor equilibrium in the system methyl alcohol -
methyl methacrylate. Zhur. fiz. khim. 38 no. 5:1303-1304
My '64. (MIRA 18:12)

I. Yaroslavskiy tekhnologicheskiy institut. Submitted
June 7, 1963.

SHURENKO, V.A.; USTFLEMOV, V.N.

Devices for measuring the pressure exerted by the metal on the
rollers in rolling operations. Trudy Ural. politekh. inst.
no.106:137-144 '60. (MIRA 15:5)
(Rolling mills - Electronic equipment)
(Electronic measurements)

SALAEV, V. V.; VETENSEVA, S. P.

"On plankton in the floodplain bodies of water of the lower Ob' and
lower Irtush Rivers and some characteristics of its development.
(MIPA 18.1C)
Zool. zhur. 44 no.6:818-825 '65.

1. Gosudarstvennyy nauchno-issledovatel'skiy institut ozernogo i
rachnogo rybnogo khozyaystva, Leningrad.

UTEKHIN B. P. and BAEYEVA E. N.

Res. Inst. for Pig-husbandry, Poltava. * Method of investigation of intestinal digestion
in pigs FIZIOL. ZHURN. SSSR 1954, 40/2 (235-236) Illus. 2 (Russian text)

SO: Excerpta Medica Section II Vol 7 No 12

KARELIN, V. Ye.; PALATNIK, I. B.; USTIMOVICH, B. P.

"An investigation of heat and momentum transfer processes in a compressible
turbulent jet in a uniform flow."

report submitted for 2nd All-Union Conf on Heat & Mass Transfer, Minsk, b-12
May 64.

Power Inst, AS KazSSR.

USTENKO, A., inzhener-kapitan

A strong wind and the mooring of a helicopter. Vest. Vozd.
(MIRA 15:3)
Fl. no.12:61-63 D '61.
(Helicopters—Maintenance and repair)

ZAGORDAN, A., inzh.-podpolkovnik; USTENKO, A., inzh.-kapitan

To the pilot about the MI-4 helicopter. Av.i kosm. 46 no.7:
87-88 Jl '63. (MIRA 16:8)
(Helicopters)

USTENKO, A. A., Cand Tech Sci -- (diss) "Research into the mechanism of formation of fibers in the production of mineral and glass wool by draft method." Moscow, 1960. 17 pp; (Ministry of Higher and Secondary Specialist Education RSFSR, Moscow Order of Labor Red Banner Construction Engineering Inst im V. V. Kuybyshev); 200 copies; price not given; (KL, 22-60, 139)

USTENKO, A.A., kand.tekhn.nauk

Study of the fiber-forming mechanism in the production of mineral
and glass wool. Stroi.mat. 9 no.9:32-35 S '63. (MIRA 16:10)

BARBARINA, T.M.; BUBYR', N.F.; BUTT, L.E.; VEL'SOVSKIY, V.N.;
GORLOV, Yu.P.; GRIBANOVSKIY, V.G.; DROZDOV, I.Ya.;
YERESS, I.A.; ZEZIN, V.G.; KEVESH, P.D.; KOCHAROV, E.P.;
KOSYREVA, Z.S.; LEVIN, S.N.; MAKHNOVICH, A.T.; MERZLYAK,
A.N.; RODOV, E.S.; ROZHNOV, A.I.; SEREBRYANSKAYA, B.I.;
SUKHAREV, M.F.; USTENKO, A.A.; KHOMENKO, Z.S.; SHMIDT,
L.M.; ETIN, A.O.; YAKHONTOVA, N.Ye.; KITAYTSEV, Vladimir
Andreyevich, prof., doktor tekhn. nauk, red.; SKRAMTAYEV,
B.G., trav. red.; TROKHIMOVSKAYA, I.P., zam. trav. red.;
KRAVCHENKO, I.V., red.; KITAYGORODSKIY, I.I., red.;
KRZHEMINSKIY, S.A., red.; ROKHVARGER, Ye.L., red.; BALAT'YEV, P.K.
red.

[Manual on the manufacture of heat insulating and acous-
tical materials] Spravochnik po proizvodstvu teploizo-
liatsionnykh i akusticheskikh materialov. Moskva, Stroi-
izdat, 1964. 524 p. (MIRA 18:1)

USTENKO, A.S.

Lighten the load of trackwalkers. Put' i put. khcz. no. 8:43
Ag '58. (MIRA 11:8)

1. Zamestitel' nachal'nika distantsii puti, stantsiya Kurort
Borovoye Kazakhskoy dorogi.
(Railroads--Track)

USTENKO, F.
ZAYTSEV, A.; SIKUL'SKIY, I.; SKOBEL'KIN, I.; USTENKO, F.; YEGOROV, V.; ORLOV,
A.; SEMENOV, S.

Free the state Bank from nonbanking functions. Den. i kred. 16 no.1:
(MIRA 11:3)
51-55 Ja '58.
(Banks and banking)

PAVLOV, A.V.; USTENKO, O.P.

Heat balance and radiation regime in corn fields. Izv. AN
SSSR, Ser. geog. no.64/7-55 N-D '65. (MIRA 18:11)

PAVLOV, A.V.; USTENKO, G.P.

Some features of the formation of the potato harvest under
irrigation in the Southeast. Fiziol.rast. 7 no.1:100-103
'60. (MIRA 13:5)

1. Stalingrad Agricultural Institute.
(Volga-Don Canal region--Potato)

KARPENKO L.P.; PLYASKIN, Yu.A.; USTENKO, G.P.

Commercial use of sieve trays with baffle elements. Nefteper. i
neftekhim. no. 7:40-43 '64. (MIRA 17:11)

1. Omskiy neftepererabatyvayushchiy zavod.

SHUGAYLO, V.T.; USTENKO, N.P.

Sensitivity of dysentery bacteria to antibiotics; from data
of the Ternopol regional hospital from 1959 to 1961.
Antibiotiki 8 no.1:68-69 Ja'63. (MIRA 16:6)

1. Ternopol'skiy meditsinskiy institut i Oblastnaya sanitarno-epidemiologicheskaya stantsiya.
(SHIGELLA) (ANTIBIOTICS)
(BACTERIA—EFFECT OF DRUGS ON)

USTENKO, P.M.

Aspects of growing sugar beets. Sakh.prom. 31 no.3:48-51 Mr '57.
(MLRA 10:4)

1.Sumsko-Stepanovskiy sakharayy zavod.
(Sugar beets)

LAZAREV, A.I.; LAZAREVA, V.I.; ZAK, S.Sh.; USTENKO, T.M.

Determination of rhenium with α -furyldioxime after the separation
of molybdenum by the extraction with a chloroform solution of
nitron. Zav.lab. 28 no.11:1316-1319 '62. (MIRA 15:11)

1. TSelinogradskiy sel'skokhozyaystvennyy institut i Dzhezkazganskiy
gornometallurgicheskiy kombinat.
(Rhenium--Analysis) (Oximes)

USTENKO, V. L.

317 Bureniye Skunzhin, S Promyshlennoy Rabochei Tekhnicheskoy Vedomosti. Kuybyshev, Kn. Izd.,
1954. 44s. 20SM. (Opyt Perekovikov Proizvodstva). 1,000 Ekz. 65 K. -(54-54760) P
622.3 : 2:622.2/5

SO: Knizhnaya, Letopis, Vol. 1, 1955

15-57-3-3843

Translation from: Referativnyy zhurnal, Geologiya, 1957, Nr 3,
p 193 (USSR)

AUTHORS: Fingerit, M. A., Ustenko, V. L.

TITLE: The Principles of Rational Drilling Programs (Osnovy
ratsional'nykh rezhimov bureniya)

PERIODICAL: Normativno-issled. st. pri ob'yedinenii Kuybyshevneft'
Kuybyshev, 1956, 59 pp

ABSTRACT: Bibliographic entry

Card 1/1

GAZARYAN, Artem Grigor'yevich; USTENKO, V.L., red.; PETROPOL'SKAYA,
N.Ye., red.; DURASOVA, V.E., tekhn. red.

[Our experience in the use of hydrocyclone installations]
Nash opyt primeneniia gidrotsiklonnykh ustyanovok. Kuibyshev,
Kuibyshevskoe knizhnoe izd-vo, 1962. 22 p.
(MIRA 17:1)

DVORETSKIY, Arkadiy Sergeyevich; USTENKO, V.L., red.; PETROPOL'SKAYA,
N.Ye., red.; DURASOVA, V.M., tekhn. red.

[Rotary turbldrilling] Turbinno-rotarnoe burenie; iz opyta
raboty tresta "Pervomaiburneft." Kuibyshev, Kuibyshevskoe
knizhnoe izd-vo, 1962. 23 p. (MIRA 16:6)
(Oil well drilling) (Turbodrills)

SHTOF, M.D.; KHOMENKO, V.I.; USTREKOV, V.I.

Chromatographic analysis of low-boiling hydrocarbon oils. Khm.
i tekhn. topl. i masel 9 no. 7:65-67 '66. (MIDA 17:12)

1. Kuybyshevskiy nauchno-issledovatel'skiy institut naftyanoy
promyshlennosti.

USTENKO, V. S., YARNYKH, V. S.

Veterinary Medicine.

Treatment and prevention of pneumonia. Veterinariia 29 no. 5, 1952.

9. Monthly List of Russian Accessions, Library of Congress, August 1952 Unclassified.

US'ENKO, V.S.

"Kestyl'" an improved liquid sprayer. Veterinariia 30 no.2:49-51
F '53. (MLRA 6:2)

1. Vsesoyuznaya nauchno-issledovatel'skaya laboratoriya veteri-
narnoy sanitarii i dezinfektsii Ministerstva sel'skogo khozyay-
stva SSSR.

USTENKO, V.S., nauchny sotrudnik.

Disinfection of livestock buildings in Aujesky's disease. Veterinaria
32 no.7:82-83 Jl '55. (MIRA 8:9)
(DISINFECTION AND DISINFECTANTS) (PSEUDORABIES)

USTENKO, V.S., Cand Vet Sci -- (diss) "Disinfection of rooms and
tanning and fur stock Moscow, 1957, 16 pp
(Moscow Veterinary Academy) 140 copies (KL, 36-57, 106)

USTENKO, V.S., nauchnyy sotrudnik; SHAKHALIN, A.A., kand.tekhn.nauk

Disinfection of hides and skins which may be carrying Aujesky's
disease. Trudy VNIIVSM 11:363-375 '57, (MIRA 11:12)
(Pseudorabies) (Hides and skins--Disinfection)

POLYAKOV, A.A.; USTENKO, V.S.

Sprayers and their use. Trudy VNIIVSM 11:403-405 '57.
(MIRA 11:12)
(Spraying and dusting equipment)

USTENKO, V.S., nauchnyy sotrudnik.

Viability of Arjesky's disease virus. Veterinariia 34 no.3:74-75
Mr '57. (MIRA 10:4)
(Pseudorabies virus)

USTENKO, V.S., nauchnyy sotrudnik

Viability of the virus of Aujesky's disease outside of the
animal organism. Trudy VNIIVSE 13:49-59 '58. (MIRA 11:12)
(Pseudorabies)

"APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R001858220002-3

UZENKO, Yu. T.

✓ Separation of aluminum and nitrogen by the method of
exchange

2

5

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R001858220002-3"

USTENKO, Yu.I.; SURUNOVICH, V.I.

Amperometric determination of iron, copper, and zinc in aluminum
alloys by titration with 8-mercaptopquinoline. Zav. lab. 50 no.6:
(MIRA 17:8)
662-663 '64

1. Dnepropetrovskiy khimiko-tekhnologicheskiy institut imeni
F.E. Dzerzhinskogo.

USTIASHVILI, A.D., prof.; TUSHISHVILI, V.M.; BAKRADZE, G.A.

Obstetric vacuum extractor. Akush. i gin. no.1:70-72 '65.
(MIRA 18:10)

1. Kafedra akusharatva i ginekologii (zav.- prof. A.D.
Ustiashvili) pediatriceskogo i sanitarno-gigiyenicheskogo
fakul'teta Tbilinskogo meditsinskogo instituta.

USTIASHVILI, A. D.

22767 Ustiašvili, A. D. Problema Allergii I Ginekologii Trudy
(Tbilis. Gos. Med. II-T), T. 7, 1948 S. 124-55-Na Gruz. Yaz.
Rezume Na Rus. Yaz.

SO: Ietopis', No. 70, 1949

USTIASHVILI, Aleksey Dmitriyevich

[Blood transfusion and the Rhesus factor in obstetrics
and gynecology] [Perelivanie krovi i rezus-faktor v
akushersko-ginekologii. Tbilisi, Sabchota Sakartvelo]
1965. 135 p. [In Georgian] (MIRA 18:8)