

Advanced Linear Algebra Cheat Sheet V2020.10.21 (Dr Yan Xu)

Vector Norm

$$o$$
 $extcolored p$ -norm: $\left\|\mathbf{x}
ight\|_p := \left(\sum_{i=1}^n \left|x_i
ight|^p
ight)^{1/p}$

$$ightharpoonup$$
 p=1 => **L**1 norm: $\|x\|_1 := \sum_{i=1}^n |x_i|$

$$\rightarrow$$
 $p=2 => L2 norm:$

$$\left\|oldsymbol{x}
ight\|_2 := \sqrt{x_1^2 + \cdots + x_n^2}$$

 $P->\infty => Infinity norm:$

$$\left\|\mathbf{x}
ight\|_{\infty}:=\max\left(\left|x_{1}
ight|,\ldots,\left|x_{n}
ight|
ight)$$

graphical illustrations of unit circles:

Eigen Decomposition

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}$$

where,

A: $n \times n$ matrix, with rank = n

 $Q: n \times n$ matrix whose ith column is the eigenvector of A **A:** diagonal matrix whose elements are the eigenvalues

- 1: Not all matrix (rank = n) could be eigen decomposed.
- 2: The product of the eigenvalues is equal to the determinant of A.
- 3: The sum of the eigenvalues is equal to the trace of A.
- 4: Not very popular in ML given it requires a *n x n* matrix.

Singular Value Decomposition

where,

S: $n \times n$ diagonal matrix, values as singular values of **X U:** columns are eigenvectors of **XX**^T (orthonormal vectors) **V:** columns are eigenvectors of X^TX (orthonormal vectors) r: rank(X), elements in S with column > r are 0

- L: Elements in **S** are also square roots of eigenvalues; when squared are proportional the amount of variance explained.
- 2: Given any matrix **X** (m * n), SVD always exist.
- 3: Uniqueness: **S**: Yes, **U** and **V**: not always

U and **V**: rotation; **S**: scaling and dimension change

Popular applications in ML:

- 1: Dimension Reduction (e.g. PCA)
- 2: Pseudoinverse of a matrix (in regression models)

Principal Components Analysis

→ Problem:

$$M: X = \mathbb{R}^D \to \mathbb{R}^k, \quad k \ll D,$$

- Motivation:
- min(projection-distance) or,

Cost Function:

$$J(W,Z) = \left\| X - ZW^T \right\|_F^2$$

where,

W is top K principal components (or dimensions) Z is the compressed (or low-dimensional) matrix WZ^T is the approximated original size matrix

Principal Components Analysis (continued)

 \rightarrow SVD(X): $\mathbf{X} = \mathbf{U} \mathbf{S} \mathbf{V}^T$ $N \times D$ $N \times D$ $D \times D$ $D \times D$

Rank k Approximation using SVD(X):

$$\underbrace{\mathbf{X}}_{N \times D} = \underbrace{\hat{\mathbf{U}}}_{N \times K} \underbrace{\hat{\mathbf{S}}}_{K \times K} \underbrace{\hat{\mathbf{V}}^T}_{K \times D}$$

Solution based on SVD:

$$W = \hat{V} \ and \ Z = \hat{U}\hat{S}$$

- → X needs to be normalized before PCA, so that features' variances equally measured.
- **Code Example**

Matrix Factorization

R' = P*Q

where, k is the number of latent factors.

1: if k = 1, equivalent to recommends the items with the most interactions without any personalization.

2: if k is large (~n), it encourages overfit. So, it is critical to add regularization terms to the objective function.

Popular applications in ML:

1: Recommendation Systems