process and the same of the sa			
1		1	
Reg. No.			
	 	 1 1	1 1 1

B.Tech. / M.Tech (Integrated) DEGREE EXAMINATION, JANUARY 2023

First Semester

21MAB101T – CALCULUS AND LINEAR ALGEBRA

(For the candidates admitted from the academic year 2022-2023)

Note:

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

Part - B and Part - C should be answered in answer booklet. (ii)

Time: 3 Hours

Max. Marks: 75

Marks BL CO PO

1 1 1

1 1 2

$PART - A (20 \times 1 = 20Marks)$

Answer ALL Questions

1. The number of positive terms in the canonical form is called 1 1 1 1

(A) Signature

(B) Index

(C) Quadratic form

(D) Positive definite

2. Find the eigen values of A^2 if $A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix}$

(A) 1, 4, 25

(B) 2, 4, 20

(C) 4, 4, 25

(D) 1, 2, 25

3. If A is an orthogonal matrix then |A| is

(A) 0

(B) ± 1

(C) 1

(D) -1

4. Find the sum and product of the eigen values of the matrix

 $A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & 0 & 0 \\ 4 & 5 & 0 \end{pmatrix}$

(A) -1, -10

(B) 1, -10

(C) -1, 10

(D) 1, 10

5. If $z = 2x^2 + 3y^2 + 5xy$, then find $\frac{\partial z}{\partial x}$

2 2

1 1 2 2

(A) 4x + 5y(C) -4x + 6y

(B) 4x - 5y(D) 4x + 6y + 5xy

6. If f(x, y) is an implicit function, then $\frac{dy}{dx}$ is

7.	If $f(x, y) = x^2y + \sin y + e^x$, then fi		1		2	2
	(A) 2π	(B) $2\pi - e$				
	(C) $2\pi + e$	(D) 0				
8.	If u and v are functionally depender	nt, then their Jacobian value is	1	1	1	2
	(A) Zero	(B) Positive				
	(C) One	(D) Negative				
9.	Solution of $(D^2 + 4)y = 0$		1	2	. 3	3
	$(A) y = (Ax + B)e^{2x}$	(B) $y = A\cos\sqrt{2}x + B\sin\sqrt{2}x$				
	(C) $y = A\cos 2x + B\sin 2x$	(D) $y = Ae^{2x} + Be^{-2x}$				
		() y=ne () Be				
10.	The value of e^{ax}		1	1	3	
	The value of $\frac{e^{ax}}{D-a}$					
	(A) xe^{ax}	(B) e^{ax}				
	(C) $x^2 e^{ax}$	(B) e^{ax} (D) $\frac{x^2}{2}e^{ax}$				
		$\frac{\overline{2}}{2}e$				
11.	Solve $(D^2 + 5D + 4)y = 0$		1	2	3	:
	$(A) y = Ae^x + Be^{-4x}$	$(B) y = Ae^x + Be^{4x}$				
	(C) $y = Ae^{-x} + Be^{-4x}$	(D) $y = Ae^{-x} + Be^{4x}$				
	y 126 1 26	(-) $y = Ae + Be$				
12.	Find the Particular Integral of $(D^2 -$	$-4)y = \cos 2x$	1	2	3	2
	(A) $\frac{x}{8}\cos 2x$	(B) $\frac{1}{8}\sin 2x$				
	O	O				
	(C) $\frac{1}{8}\cos 2x$	(D) $-\frac{1}{8}\cos 2x$				
	0	8				
13.	The curvature of the straight line is		1	1	4	1
	(A) 1	(B) 2				
	(C) 0	(D) -1				

14. The envelope of the family of curves of the form $A\alpha^2 + B\alpha + C = 0$, where α is the parameter is

(B) $B^2 - 4AC = 0$ (D) $B^2 - AC = 0$

(A) $B^2 + AC = 0$ (C) $B^2 + 4AC = 0$

15. The radius of curvature in polar co-ordinates is

(A) $\rho = [r^2 + r'^2]^{3/2} / r^2 - rr'' + 2r'^2$

(B) $\rho = [r^2 - r'^2]^{3/2} / r^2 - rr'' + 2r'^2$

(C) $\rho = [r^2 - (r'')^2]^{3/2} / r^2 - rr'' + 2r'^2$

(D) $\rho = [r^2 + r^2]^{3/2} / r^2 + rr'' + 2r^2$

2

1

1

PART – B (5 × 8 = 40 Marks) Answer ALL Questions					BL	со	PO
	(A) Convergent(C) Conditionally convergent	, ,	Absolutely convergent Divergent				
20	$2^2 + 3^2 + 4^2 + \dots$		A11-4-In	1	2	5	2
	(A) 0 (C) 2	(B) (D)	$\frac{1}{2}$				
19.	The value of $\lim_{n\to\infty} (n)^{1/n}$ is equal to			1	2	5	2
	(A) Ratio test (C) Leibnitz test	(B)	Root test Raabe's test				
18.	The convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$ is te	sted b	у	1	2	5	2
	(A) $p = 1$ (C) $p = 0$	(B) (D)	p > 1 p < 1				
17.	The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if			1	1	5	1
	(A) $(x-\overline{x})^2 - (y+\overline{y})^2 = \rho^2$ (C) $(x+\overline{x})^2 + (y-\overline{y})^2 = \rho^2$	(B) (D)	$(x - \overline{x})^2 + (y - \overline{y})^2 = \rho^2$ $(x - \overline{x})^2 + (y + \overline{y})^2 = \rho^2$				
16.	The equation of circle of curvature $\overline{x}, \overline{y}$ and with radius of curvature \overline{x}	vatur	$e \rho$ is	1	I	4	1

Find the Eigen values and Eigen vectors of the matrix $\begin{pmatrix} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{pmatrix}$. 21. a.

(OR) Verify Cayley Hamilton theorem for the matrix $\begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. b.

22. a. Expand $e^x \cos y$ at $\left(1, \frac{\pi}{4}\right)$ as a Taylor series upto second degree terms.

(OR)

b. If
$$u = u(x, y)$$
 and $x = e^r \cos \theta$ and $y = e^r \sin \theta$ show that $\begin{bmatrix} \frac{\partial u}{\partial x} \end{bmatrix}^2 + \left(\frac{\partial u}{\partial y} \right)^2 = e^{-2r} \left[\left(\frac{\partial u}{\partial r} \right)^2 + \left(\frac{\partial u}{\partial \theta} \right)^2 \right].$

23. a. Solve
$$(D^2 + 2D + 1)y = e^{3x} + \sin 2x$$
.

b. Solve
$$(D^2 + 1)y = \tan x$$
 by the method of variation of parameters.

24. a. Find the radius of curvature of the curve
$$r = a(1 + \cos \theta)$$
 at the point $\theta = \frac{\pi}{2}$.

b. Find the evolute of the parabola
$$y^2 = 4ax$$
.

25. a. Test the convergence of the series
$$\sum_{n=1}^{\infty} \left(\sqrt{n^4 + 1} - \sqrt{n^4 - 1} \right)$$
.

b. Test the convergence of the series,
$$\frac{2}{3.4} + \frac{2.4}{3.5.6} + \frac{2.4.6}{3.5.7.8} + \frac{2.4.6.8}{3.5.7.9.10} + \dots \infty$$
.

- 26. Reduce the quadratic form $3x^2 2y^2 z^2 4xy + 8xz + 12yz$ to canonical form by an orthogonal transformation. Discuss the nature of the quadratic form and also find rank, index, and signature.
- 27. Find the dimensions of the rectangular box open at the top, of maximum 15 4 2 2 capacity whose surface area is 432 sq.cm.

* * * * *