CDFs and PDFs

 $\bullet \bullet \bullet$

30 January 2019 PLSC 309

Expected Value of a PMF

Expected value of a Discrete Random Variable

If X takes outcomes $x_1, ..., x_k$ with probabilities $P(X = x_1), ..., P(X = x_k)$, the expected value of X is the sum of each outcome multiplied by its corresponding probability:

$$E(X) = x_1 \times P(X = x_1) + \dots + x_k \times P(X = x_k)$$

$$= \sum_{i=1}^k x_i P(X = x_i)$$
(2.71)

The Greek letter μ may be used in place of the notation E(X).

Variance of a PMF

General variance formula

If X takes outcomes $x_1, ..., x_k$ with probabilities $P(X = x_1), ..., P(X = x_k)$ and expected value $\mu = E(X)$, then the variance of X, denoted by Var(X) or the symbol σ^2 , is

$$\sigma^{2} = (x_{1} - \mu)^{2} \times P(X = x_{1}) + \cdots$$

$$\cdots + (x_{k} - \mu)^{2} \times P(X = x_{k})$$

$$= \sum_{j=1}^{k} (x_{j} - \mu)^{2} P(X = x_{j})$$
(2.72)

The standard deviation of X, labeled σ , is the square root of the variance.

Example

X	P(X=x)
1	0.2
2	0.15
3	0.1
4	0.3
5	0.25

Example EV

$$\mu = 3.25$$

Example variance

Var(X) = 2.1875

- Probability is the chance of future events happening
 - o Or certain processes unfolding in a certain way
- When we think probabilistically, we are thinking infinitely
- We want to do this, because data analysis is about making an argument that your small slice of data says something about the vast quantity of potential data in the real-world

- Random variables are *predictable* in aggregate
- They are *uncertain*
- In other words, they vary (hence: variable)
- The mathematical function that describes this variability is a *probability* distribution
 - The probability distribution for discrete or ordinal data is called a *Probability Mass Function* (*PMF*)

Back to Sigma-notation

 Ω : 2-12 (x-axis)

 $F: \sum (x_i)/N$ P: PMF

PMF

- Each value of x, has a corresponding value f(x)
- f(x) is the chance that x happens
 - \circ f(2) = 3%
 - \circ f(7) = 17%
- Straight forward for small range of values
- What's f(x<7)?

PMF with a large range of values

Percentiles

Percentiles

Example: You are the fourth tallest person in a group of 20

80% of people are shorter than you:

That means you are at the 80th percentile.

If your height is 1.85m then "1.85m" is the 80th percentile height in that group.

Percentiles

- The 90th percentile is
 - \circ P(x=.9) or
 - o P(x=.89) or...
 - $\circ \quad P(x=.01)$

What do percentiles tell us?

Cumulative Distribution Function

- Instead of P(X=x) (PMF)
- CDF: P(X < x)
- In other words this is a graph where
 - X-axis is the range of possible values
 - Y-axis is the *percentile*
- Note that for a discrete variable, P(X < 2) = P(X=0) + P(X=1) + P(X=2)

CDFs

CDF properties

- CDF never decreases
 - P(X < 2) cannot be less than P(X < 1)
- As X approaches its minimum value, CDF approaches 0
- As X approaches its maximum value, CDF approaches 1

CDF Example

Number of seats R's gain in Senate	Probability
0	0.10
1	0.30
2	0.60

CDF Example

Number of seats R's gain in Senate	Probability
X < 0	0.10
X < 1	0.40
X < 2	1

CDF Example

$$f(x) = \begin{cases} 0.1 & 0 < x < 1 \\ 0.4 & 1 < x < 2 \\ 1 & 2 < x \end{cases}$$

P(X < x)

P(X < x)

What about continuous variables?

Probability Density Function (PDF)

• PDF is the same as PMF, but for continuous variables

PDF example

PDF example

But how can we calculate the PDF?

Back to functions

- A function has three parts:
 - o Input
 - Transformation
 - Output
- Example: f(x) = 2x

Input	Transformatio n	Output
2	2(2)	4
3	2(3)	6
4	2(4)	8

Single variable functions are lines

The function: y = 2x or f(x) = 2x is a *single-variable* function over a two dimensional space

Exponential functions curve lines

$$f(x) = x^2$$

$$f(x) = x^3$$

Multivariable functions are planes

$$f(X_1, X_2) = X_1 + X_2$$

- PMFs express the probability distribution for discrete and ordinal data
- PDFs express the *probability distribution* for continuous data
 - O X-axis: possible values of x
 - Y-axis: probability that x happens
- CDFs express the *cumulative probability distribution* for all types of data
 - X-axis: possible values of x
 - Y-axis: percentile