Домашнее задание 41. Ядерные реакции.

Nº 1

Запишите ядерную реакцию, происходящую при бомбардировке атомов бора $^{11}_{5} B \ \alpha$ -частицами и сопровождающуюся выбиванием нейтрона.

$$^{11}_{5}B + \, ^{4}_{2}He
ightarrow \, ^{14}_{7}X + \, ^{1}_{0}n$$

Посмотрев в таблицу Менделеева, определим, что $X\stackrel{\mathrm{def}}{=}$ «N»:

$$^{11}_{5}B+\,^4_{2}He
ightarrow\,^{14}_{7}N+\,^1_{0}n$$

№2

Период полураспада ^{238}U равен $4.5 \cdot 10^9$ лет. В урановой руде отношение числа атомов ^{238}U к числу атомов ^{206}Pb равно 2.8. Считая, что весь свинец образовался в результате распада урана, определите возраст руды.

Заметим, что при распаде из одного атома урана получается ровно один атом свинца.

 PAID PAILIER [править (править годы

 Page (или править (править годы)
 Выдежние и править (править годы
 Править (править годы
 Выдежние и править (править годы
 Править (править годы
 Выдежние и годы
 Править (править годы
 Выдежние и годы
 Править годы
 Выдежние и годы
 Править годы
 Выдежние и годы
 Править годы
 Править годы
 Выдежние и годы
 Править годы
 <th

Нуклид	Историческое обозначение	Историческое название	Вид распада	Период полураспада	Выделяемая энергия, МэВ	Продукт распада
238 _U	UI	Уран I	a	4,468-10 ⁹ лет	4,270	234 _{Th}
234 _{Th}	UX ₁	Уран X1	β-	24,10 cyr	0,273	234pam
234pan	UX ₂	Уран X2, бревий	β* 99,84 % изомерный переход 0,16 %	1,16 мин	2,271 0,074	²³⁴ U ²³⁴ Pa
234pa	UZ	Уран Z	β"	6,70 4	2,197	234 _U
234 _U	Ug	Уран II	α	245500 лет	4,859	²³⁰ Th
²³⁰ Th	lo lo	Ионий	α	75380 лет	4,770	226 _{Ra}
225Ra	Ra	Радий	α	1602 года	4,871	222 _{Rn}
222 _{Rn}	Rn (RaEm)	Радон (эманация радия)	α	3,8235 д	5,590	218p0
²¹⁸ P ₀	RaA	Радий А	α 99,98 % β" 0,02 %	3,10 мин	6,115 0,265	214Pb 218At
²¹⁸ At	RaAt	Астат	α 99,90 % β* 0,10 %	1,5 €	6,874 2,883	214Bi 218Rn
218 _{Rn}	AtEm	эманация астата	a	35 MC	7,263	214Po
214Pb	RaB	Радий В	β"	26,8 MHH	1,024	214BI
214BI	RaC	Радий С	β" 99,98 % α 0,02 %	19,9 мин	3,272 5,617	214PO 210YI
214P0	RaC'	Радий С'	а	0,1643 MC	7,883	210Pb
210TI	RaC"	Радий С"	β-	1,30 MKH	5,484	210pb
210Pb	RaD	Радий D	β-	22,3 года	0,064	210BI
210Bl	RaE	Радий Е	β- 99,99987 % α 0,00013 %	5,013 сут	1,426 5,982	210PO 200TI
210p0	RaF	Радий F, полоний	a	138,376 cyT	5,407	208Pb
208 _{TI}	RaE*	Радий Е"	β-	4,199 мин	1,533	208Pb
206Pb	RaG	Радий G, урановый свинец		стабильный		

Пусть сейчас есть m_1 грамм урана. Тогда $m_{Pb}=m_0-m_1=rac{m_1}{2.8}$,

$$m_0 = m_1 + (m_0 - m_1) = m_1 + \frac{m_1}{2.8} = \frac{14+5}{14}m_1 = \frac{19}{14}m_1$$
 (1)

$$m_1 = \frac{14}{19}m_0 \tag{2}$$

Причём часть (а также и масса) оставшегося урана изменяется со временем так:

$$p(t) = e^{-\gamma t}, \gamma = \frac{\ln 2}{T} \tag{3}$$

, где Т - период полураспада.

Эта зависимость следует из того, что это число экспоненциально понижается, причём при t=T оно должно быть $=rac{1}{2}$

Таким образом,

$$\frac{14}{19} = e^{-\ln 2 \cdot \frac{t}{T}} \tag{4}$$

$$\ln\frac{14}{19} = -\ln 2 \cdot \frac{t}{T} \tag{5}$$

$$t = -T \cdot \frac{\ln \frac{14}{19}}{\ln 2} = T \cdot \frac{\ln \frac{19}{14}}{\ln 2} \approx 0.44 \cdot T \approx 1.98$$
 млрд лет (6)

№3

В природном уране содержится 99.3% изотопа с массовым числом 238 и 0.7% изотопа с массовым числом 235. Период полураспада ^{238}U равен 4.5 млрд. лет, а период полураспада ^{235}U равен 700 млн. лет. Считая, что в момент зарождения Земли содержание обоих изотопов было одинаковым, оцените возраст Земли.

Пусть возраст Земли = t

За это время от 50% каждого осталось по 99.3% и 0.7%, то есть, если считать, что всего урана стало в k раз меньше, получим, что

$$p_1 = \frac{0.993}{k \cdot 0.5}, \ p_2 = \frac{0.07}{k \cdot 0.5} \tag{7}$$

Ηо

$$p_1 = e^{-\ln 2 \cdot \frac{t}{T_1}}, p_2 = e^{-\ln 2 \cdot \frac{t}{T_2}}$$
(8)

Тогда

$$\frac{p_1}{p_2} = \frac{0.993}{0.07} = e^{t \ln 2 \cdot \left(\frac{1}{T_2} - \frac{1}{T_1}\right)} \tag{9}$$

$$\ln \frac{0.993}{0.07} = t \cdot \ln 2 \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \tag{10}$$

Таким образом,

$$t = rac{\ln rac{0.993}{0.07}}{\ln 2 \left(rac{1}{T_2} - rac{1}{T_1}
ight)} pprox 3.171 imes 10^9 years$$
 (14)

Nº4

Вычислите энергию, освобождающуюся при осуществлении ядерной реакции:

$$^{27}_{13}Al + ^{4}_{2}He \rightarrow ^{30}_{15}P + ^{1}_{0}n$$
 (12)

Массы $_{13}^{27}Al$, $_{2}^{4}He$, $_{15}^{30}P$, $_{0}^{1}n$ равны 26,97441 а.е.м., 4,00151 а.е.м., 29,97008 а.е.м. и 1,00866 а.е.м. **соответственно**.

Посчитаем, какая масса теряется при прохождении реакции (расчёт ведётся в а.е.м.).

```
D:\Projects>python
Python 3.7.7 (tags/v3.7.7:d7c567b08f, Mar 10 2020, 09:44:33) [MSC v.1900 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> m_al = 26.97441

>>> m_he = 4.00151

>>> m_p = 29.97008

>>> m_p = 29.97008

>>> m_he + m_al

30.97592

>>> m_p + m_n

30.97874

>>> ___
```

Оказывается, масса продуктов превышает массу реагентов, то есть энергия в этой реакции поглощается, а не выделяется.

Тогда спишем это досадное недоразумение на опечатку и посчитаем, сколько энергии поглощается.

В реакции часть массы появляется за счёт поглощения энергии, а именно:

$$\Delta m \cdot c^2 = \Delta E \tag{13}$$

То есть

 $\Delta E pprox 4.21 imes 10^{-13} Joule$