#### Note

There are no classes on campus on Monday, Jan. 15 (holiday). There are no PHYS 1200 classes on Tuesday, Jan. 16.

## Physics 1200 Lecture 02 Spring 2024

**Electric Fields** 

#### Review: Ideas from Class 01

• Coulomb's law (force of  $q_1$  acting on  $q_2$ ):

$$\vec{F}_{12} = k \frac{q_1 q_2}{r_{12}^2} \frac{\vec{r}_{12}}{r_{12}} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$
$$\vec{r}_{12} = \vec{r}_2 - \vec{r}_1$$

- ➤ Algorithmic, always works, easy to program.
- > Alternative intuitive method that works:

$$\left| \overrightarrow{F}_{12} \right| = k \frac{|q_1||q_2|}{r_{12}^2}$$
 , for magnitude,

then use like charges repel / unlike charges attract to get force vector direction.

- Can use one method to get solution, other to check result.
- Polarization of conductors
  - > Total charge does not change.
  - Charge does not cross insulators.
  - Charge can be sent to ground or drawn from ground.



#### The Electric Field

• Can rewrite Coulomb's law:  $\vec{F}_{1on2} = q_2 \vec{E}_1$ 

$$\vec{F}_{1on2} = q_2 \vec{E}_1$$

where 
$$\vec{E}_1 \equiv k \frac{q_1}{r_{12}^2} \frac{\vec{r}_{12}}{r_{12}} = k \frac{q_1}{r_{12}^2} \hat{r}_{12}$$

is the electric field of point charge  $q_1$  at the location of charge  $q_2$ .

- $\triangleright q_1$  is 'source' of the field. Position of  $q_2$  is 'target' or 'field' location.
- $\triangleright$  Distance vector  $\vec{r}_{12}$  always points from source to target. Same for  $\hat{r}_{12}$ .
- $\triangleright$  Sign (+, –) of  $q_1$  must be included in equation above.
  - Electric field vectors point radially outward for positive point charges, and radially inward for negative point charges.
- ightharpoonup Field  $\overrightarrow{E}_1$  from  $q_1$  is independent of whether a charge  $q_2$  (or any other charge) is at target location or not.
- $\triangleright$  Removes 'action-at-a-distance' in Coulomb's law:  $q_2$  responds to <u>local</u> value of  $\vec{E}_1$ .
- $\triangleright$  Changes in  $\overrightarrow{E}_1$  (e.g., due to change in position of  $q_1$ ) propagate outward along field at the speed of light (electromagnetic waves - later classes).

#### The Electric Field (2)

• For positive charges, expression

$$\vec{F}_{1on2} = q_2 \vec{E}_1$$

gives directions of  $\vec{F}_{1on2}$  and  $\vec{E}_1$  as being the same.

 $\therefore$  Can always find direction of  $\vec{E}$  by finding the direction electric force acting on a <u>positive 'test charge'</u> placed at that location:



Note: by definition, test charges  $q_0$  are always positive (+).

## The Electric Field (3)





#### The Electric Field (4)

• From

$$\vec{F}_{1on2} = q_2 \vec{E}_1 ,$$

follows that SI unit of electric field is a N/C. Another acceptable SI unit is a V/m, where 'V' = volt (SI unit of electric potential - discussed next week).

#### Visualizing the Electric Field

- Point charge q produces electric field at all points in space.
- Field produced by a positive point charge points away from charge.
- Tail of the vector is where the field has magnitude value *E*.
- Length of the vector arrow indicates strength of the field.
- Field strength magnitude decreases with greater distance.

$$\vec{E} = \frac{kq}{r^2} \frac{\vec{r}}{r} = \frac{kq}{r^2} \hat{r}$$



## Visualizing the Electric Field (2)

$$\vec{E} = \frac{kq}{r^2} \frac{\vec{r}}{r} = \frac{kq}{r^2} \hat{r}$$

- Point charge q produces an electric field at all points in space.
- Field produced by a negative point charge points toward charge.
- Tail of the vector is where the field has magnitude value *E*.
- Length of the vector arrow indicates strength of the field.
- Field strength magnitude decreases with greater distance.



#### Superposition: Total Field

 Net force vector acting on a charge is vector sum (superposition) of all the individual force vectors acting on the charge ⇒ net electric field is the vector sum (superposition) of the individual electric field vectors at any location:

$$\vec{F}_0 = \vec{F}_{10} + \vec{F}_{20} + \vec{F}_{30} + \vec{F}_{40} + \cdots$$

$$= q_0 \vec{E}_1 + q_0 \vec{E}_2 + q_0 \vec{E}_3 + q_0 \vec{E}_4 + \cdots = q_0 \vec{E}_{tot}$$

 $\vec{r}_i$  ( $i=1,2,3,\cdots,N$ ) is

$$\vec{F}_{tot} = q_0 \vec{E}_{tot} ,$$

$$\vec{E}_{tot} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \vec{E}_4 + \dots = \sum_{i=1}^{N} \vec{E}_i ,$$

$$\vec{E}_i = \frac{kq_i}{r_{i0}^2} \frac{\vec{r}_{i0}}{r_{i0}} = \frac{kq_i}{r_{i0}^2} \hat{r}_{i0} ,$$

$$\vec{r}_{i0} = \vec{r}_0 - \vec{r}_i = (x_0 - x_i)\hat{i} + (y_0 - y_i)\hat{j} + (z_0 - z_i)\hat{k} .$$

#### Question 2.1

 Two equal charges lie at two vertices of an equilateral triangle. The electric field at point P (the third vertex) points:

- A. Up the page.
- B. Down the page.
- C. To the right.
- D. To the left.
- E. Out of the page.
- F. Into the page.



#### **Electric Field Lines**

- Electric field lines show the direction of  $\overrightarrow{E}$  at any point.
- ullet Magnitude of  $\overrightarrow{m{E}}$  proportional to the density (spacing) of field lines.
- Electric field lines originate from positive charges and terminate on negative charges, unless they extend to infinity.





## Electric Field Lines (2)

The concept of field lines was introduced by Faraday to understand fields on a more intuitive, rather than mathematical, basis.



# Calculating the Electric Field for a Continuous Charge Distribution

• For a <u>continuous distribution of charge</u> (instead of discrete point charges), the summation to calculate the electric field at position  $\vec{r}_0 = x_0 \hat{\imath} + y_0 \hat{\jmath} + z_0 \hat{k}$ , instead becomes an <u>integration</u>, with

$$\vec{E}_{tot}(x_0, y_0, z_0) = \int \vec{dE}(x', y', z'),$$

$$\vec{dE}(x', y', z') = k \frac{dq'(x', y', z')}{r_0'^2} \frac{\vec{r}_0'}{r_0'},$$

$$\vec{r}_0' = \vec{r}_0 - \vec{r}' = (x_0 - x')\hat{\imath} + (y_0 - y')\hat{\jmath} + (z_0 - z')\hat{k},$$

where

$$\vec{r}' = x'\hat{\imath} + y'\hat{\jmath} + z'\hat{k}$$

is the location of a small (infinitesimal) amount of charge dq'.

## Calculating the Electric Field (2)

• The charge element dq' is usually calculated by using an appropriate "charge density":

| Name                   | Symbol | Meaning                       | SI Unit          |
|------------------------|--------|-------------------------------|------------------|
| Point Charge           | q      | Single point charge           | С                |
| Linear Charge Density  | λ      | dq/dx, charge per unit length | C/m              |
| Surface Charge Density | σ      | dq/dA, charge per unit area   | C/m <sup>2</sup> |
| Volume Charge Density  | ρ      | dq/dV, charge per unit volume | C/m³             |

For instance, if given a volume charge density,  $dq' = \rho \ dV' = \rho \ dx' dy' dz'$ , and inserting into the continuous electric field expression gives

$$\vec{E}(x,y,z) = k \iiint_{\text{charge}} \frac{\rho(x',y',z') \Big[ (x-x')\hat{i} + (y-y')\hat{j} + (z-z')\hat{k} \Big]}{\Big( (x-x')^2 + (y-y')^2 + (z-z')^2 \Big)^{3/2}} dx'dy'dz'$$

# Example: field at a point a distance D away from a line charge

- Choose a coordinate system.
  - > Exploit any symmetries that simplify calculation.
- Write down field due to a small charge element, then sum up (i.e., integrate)
  contributions from all elements.



Amount of charge in dx':  $dq' = \lambda dx'$ .

Field at x = -D due to dq' is:

$$\overrightarrow{dE} = k \frac{\lambda dx'}{(D+x')^2} \left( \frac{[D+x'][-\hat{\imath}]}{D+x'} \right) = -k \frac{\lambda dx'}{(D+x')^2} \hat{\imath}.$$

$$\therefore$$
 At  $x=-D$  , total field  $\overrightarrow{m{E}}=\int \overrightarrow{m{dE}}=-k\int_0^L rac{\lambda dx'}{(D+x')^2} \hat{m{\imath}}$ 

#### Question 2.2: Using Symmetry



The field along the axis of symmetry of a uniform circle (i.e., hoop) of positive charge looks like:



C) The field along the axis is zero everywhere.

## Electric field strength: Breakdown

- At sufficiently high electric fields, electrons in insulators can be pulled off the atoms they are associated with.
- In air, occurs at  $\sim 10^8$  N/C (or V/m).
- When this occurs, the electron that is freed accelerates in the field, bashing into nearby atoms and ionizing them, freeing more electrons.
   This is called 'dielectric breakdown'.

