Université Paris Descartes / UFR de Mathématiques et Informatique L3 MI

Systèmes de Communication

Examen final (1h30) - 7 mai 2013

Documents, calculatrices et téléphones interdits

Il est attendu la plus grande rigueur dans la rédaction des réponses, qui devront être claires, courtes et précises à la fois. Les trois parties peuvent être abordées dans l'ordre qui vous conviendra, mais les réponses à chaque partie ne devront pas être dispersées dans la copie.

1 Questions de cours (10 points)

- a) Pour un code en bloc de matrice génératrice G, comment appelle-t-on la matrice H telle que $GH^T=0$? A quoi sert cette matrice?
- **b**) L'oreille humaine perçoit des sons entre 20 Hz et 22 kHz. Expliquez pourquoi, lorsqu'on veut une qualité hifi, les sons sont échantillonnés à 44,1 kHz.
- c) Un signal vocal s peut être découpé en tranches de 20 ms et représenté, sur chaque tranche, par un modèle dit auto-régressif d'ordre 10 :

$$s(n) = \sigma_e e(n) - \sum_{i=1}^{10} a_i s(n-i)$$

C'est-à-dire que chaque échantillon s(n) est une combinaison linéaire des précédents, plus un terme d'innovation $\sigma_e e(n)$, tel que la puissance de e vaut 1. Au lieu de transmettre les échantillons s(n) quantifiés, un codeur de parole peut donc transmettre, pour chaque tranche de 20 ms, les coefficients a_1 à a_{10} , σ_e et la suite des 160 échantillons e(n) (pour un échantillonnage à 8 kHz). Sur une liaison à débit réduit, pourquoi est-il plus intéressant de transmettre ces 171 valeurs que les 160 échantillons de s?

d) Que dit le critère de Nyquist sur la transmisson sur canal à bande passante limitée? Pour atteindre la limite exprimée par ce théorème, par quelle type d'impulsion faudrait-il remplacer la fonction porte dans l'expression d'un signal NRZ? Pourquoi n'est-ce pas possible en pratique et quel type d'impulsions utilise-t-on?

Dans ce dernier cas, la bande passante occupée par le signal de communication vaut $\frac{1+\alpha}{2T}$, avec α le facteur de retombée et T la durée symbole. Si le canal a une bande passante de 120 kHz et qu'on utilise des symboles 8-aires avec $\alpha=0.2$, quel est le débit binaire maximal ?

FIG. 1 – Densité spectrale de puissance d'un signal de communication NRZ M-aire à impulsions en cosinus surélevé de facteur de retombée α .

- e) Dans un réseau UMTS, en liaison descendante, on utilise :
 - des codes OVSF, parfaitement orthogonaux, comme codes de channelization, pour différencier les utilisateurs d'une même cellule;
 - des codes de Gold, imparfaitement orthogonaux, comme codes de scrambling, pour différencier les utilisateurs de cellules voisines.

Un utilisateur U_i reçoit un message binaire de sa station de base B. Le message binaire décodé est parasité par ceux de tous les utilisateurs U_j de cellules proches utilisant le même code de channelization. Lors de l'émission d'un symbole binaire $a_i=\pm 1$, le symbole reçu après démodulation, décodage selon le code de channelization et décodage selon le code de scrambling de U_i , est :

$$\tilde{a}_i = a_i + \sum_{j \neq i} a_j \frac{S^i . S^j}{S^i . S^i} \frac{U_i B}{U_j B}$$

où $a_j=\pm 1$ et S^k représente la séquence de Gold attribuée à l'utilisateur U_k comme code de scrambling. $S^i.S^j$ désigne le produit scalaire entre S^i et $S^j.U_kB$ désigne la distance entre l'utilisateur U_k et la borne B.

Expliquer précisément (en argumentant sur les valeurs de $S^i.S^j/S^i.S^i$ et U_iB/U_jB) pourquoi le terme d'interférence est négligeable.

- f) Quel est le rôle des 6 bits pilotes au milieu d'un slot en UMTS?
- g) Dans les systèmes de communications mobiles, le flux binaire issu du codage de source de la parole subit différents niveaux de codage de canal. Par exemple, le GSM ne code qu'une partie des bits (une à deux fois selon la classe), tandis que l'UMTS utilise 5 niveaux de codage. Expliquez ce choix de ne pas coder tous les bits et d'utiliser des niveaux de protection différents pour ceux qui sont codés. Expliquez à quoi sert l'entrelacement des bits qui suit le codage de canal.

2 Exercices

2.1 Transmission sur 3 porteuses orthogonales (7 points)

On considère une modulation de type OFDM (orthogonal frequency division multiplexing), sur 3 porteuses p_1 , p_2 et p_3 émises simultanément. Chaque symbole émis, de durée T, a pour expression :

$$S_{ijk}(t) = (a_i.p_1(t) + b_j.p_2(t) + c_k.p_3(t))h(t)$$

où:

$$-p_n(t) = \sqrt{\frac{2}{T}}\cos(2\pi f_n t) \quad \forall n = 1, 2, 3$$

- chaque porteuse subit une modulation binaire : i, j et $k \in \{0,1\}$, $a_0 = b_0 = c_0 = -A$ et $a_1 = b_1 = c_1 = A$, avec A un réel positif
- -h représente la fonction porte, qui vaut 1 entre 0 et T, et 0 en dehors de cet intervalle

Les fréquences porteuses sont espacées de $\Delta f = 1/T$: $f_2 = f_1 + \Delta f$ et $f_3 = f_2 + \Delta f$. Les trois porteuses sont dites orthogonales, c'est-à-dire que le produit scalaire de deux porteuses vaut :

$$\langle p_m | p_n \rangle = \int_0^T p_m(t) p_n(t) dt = \begin{cases} 1 & \text{si } m = n \\ 0 & \text{sinon.} \end{cases}$$

où $\delta_{m,n}$ est le symbole de Kronecker, qui vaut 1 si m=n ou 0 sinon.

a) Le schéma d'émission/réception est représenté sur la figure 2. On néglige pour l'instant le bruit du canal. Lors de l'émission d'un symbole S_{ijk} , quel traitement appliquer au symbole sur chaque voie de réception pour obtenir $z_a = a_i$ sur la 1ère voie de réception, $z_b = b_j$ sur la 2e et $z_c = c_k$ sur la 3e?

FIG. 2 – Schéma de transmission OFDM.

FIG. 3 – Constellation d'une modulation OFDM à 3 porteuses.

b) Cette modulation se représente par une constellation dans l'espace comme indiqué sur la figure 3, chaque symbole ayant pour coordonnées ses coefficients (a_i, b_j, c_k) .

En considérant un codage de Gray, indiquer sur chaque symbole de la modulation le mot binaire correspondant.

c) Lorsqu'on émet un symbole $S_{ijk}=(a_i,b_j,c_k)$ sur un canal bruité, on reçoit, après démodulation, un symbole

$$Z = \begin{pmatrix} z_a \\ z_b \\ z_c \end{pmatrix} = \begin{pmatrix} a_i + B_a \\ b_j + B_b \\ c_k + B_c \end{pmatrix}$$

où B_a , B_b et B_c sont des variables aléatoires gaussiennes centrées supposées **indépendantes**, de même variance σ^2 (donc de même densité de probabilité).

c1- La zone de décision associée à un symbole S_{ijk} est un huitième d'espace. Par exemple, la zone de décision de S_{111} est le huitième d'espace défini par $\{z_a>0, z_b>0, z_c>0\}$.

On note R_{ijk} l'événement correspondant à la détection du symbole S_{ijk} . Montrer que la probabilité de bonne détection lorsqu'on émet S_{111} , vaut :

$$P(R_{111}|S_{111}) = P(B_a > -A)^3$$

Vous justifierez soigneusement chaque étape de votre calcul.

c2- On peut montrer que $P(B_a>-A)=1-Q(A/\sigma)$, où Q désigne la fonction d'erreur complémentaire, définie par :

$$Q: x \to \frac{1}{\sqrt{2\pi}} \int_x^{\infty} e^{-z^2/2} dz$$

Si le canal n'est pas trop bruité, $Q(A/\sigma) \ll 1$. Montrer alors que la probabilité de fausse détection lors de l'émission de S_{111} peut être approchée par :

$$P(\overline{R_{111}}|S_{111}) \simeq 3Q(A/\sigma)$$

4

d) Quelle est l'occupation spectrale d'une modulation de porteuse binaire de durée symbole T utilisant comme modulant des impulsions en cosinus surélevé de facteur de retombée α ? (vous pouvez vous aider de la figure 1)

Quelle doit être l'écart minimal entre deux fréquences porteuses dans le cas d'un multiplex fréquentiel?

Concluez sur l'intérêt de l'OFDM par rapport au multiplexage fréquentiel classique.

2.2 Multiplexage (4 points)

Un émetteur hertzien doit multiplexer et transmettre les données de plusieurs utilisateurs avec une modulation d'amplitude à 2 états (MDA-2). Les impulsions du modulant étant en cosinus sur-élevé, l'occupation spectrale pour un débit D est $B=(1+\alpha)D$, où α est le facteur de retombée. La bande totale disponible est 8B, autour d'une fréquence f_0 .

- a) Deux utilisateurs ont un débit D, un a un débit 2D et un a un débit 4D. Dans le cas d'un multiplexage fréquentiel, indiquer, sur l'axe des fréquences positives, le partage de la bande de fréquence entre les 4 utilisateurs. (on ne demande pas de représenter le spectre)
- **b**) On adopte un multiplexage par code, avec des codes OVSF (voir figure 4).
 - Quels codes attribuer aux différents utilisateurs ? (justifier votre réponse).
 - Si l'utilisateur ayant un débit 2D souhaite transmettre le mot binaire [1; 1; -1; 1], quelle est la séquence de chips transmise?

FIG. 4 – Arbre de codes OVSF.