Amendments to the Claims

1	1. (currently amended) A method for transmitting an input stream of
2	symbols in a multiple-input / multiple-output wireless communications
3	system including M subgroups of transmitting antennas, comprising:
4	selecting, according to channel conditions of the multiple-input /
5	multiple-output wireless communications system, L subgroups of the M
6	subgroups of antennas, where $L \le M$ and each of the L subgroups of
7	antennas includes a set of at least two antennas;
8	demultiplexing, the input stream into L substreams, there being one
9	substream for each one of the L selected subgroups of at least two antennas;
10	adaptively modulating and coding each of the L substreams to a
11	maximum data rate while achieving a predetermined performance on an
12	associated channel used to transmit the substream;
13	space-time transmit diversity encoding each of the L coded
14	substreams into a set of at least two output streams, there being one output
15	stream for each antenna in the set of at least two antennas of each one of the
16	L subgroups of antennas, wherein the selecting is performed before the
17	adaptively modulating and coding and the space-time transmit diversity
18	encoding; and
19	transmitting the set of at least two output streams using the ${\cal L}$
20	subgroups of at least two antennas.

2. (previously presented) The method of claim 1, further comprising: 2 feeding back, from a receiver, channel conditions; and 3 selecting a data rate according to the channel conditions. 3. (previously presented) The method of claim 2, in which the channel 2 conditions used to select the data rate measure a signal to interference plus 3 noise ratio of the output streams received in the receiver. 4. (original) The method of claim 1, in which the adaptive modulation and 1 2 coding depends on the number L of the substreams. 5. (original) The method of claim 1, in which L is zero to increase an overall 1 2 capacity of the system including a plurality of receivers. 1 6. (original) The method of claim 1, in which the adaptive modulating and 2 coding, further comprises: 3 coding each substream; interleaving each coded substream; and 4 5 symbol mapping each interleaved substream.

7. (original) The method of claim 1, further comprising:

1

2 demultiplexing each output stream into a plurality demultiplexed 3 output streams; 4 multiplying each of the plurality of demultiplexed output streams by 5 an orthogonal variable spreading factor; 6 adding the demultiplexed output streams, for each ouput stream, after 7 multiplication into a summed output stream corresponding to each output 8 stream; and 9 multiplying each summed output stream by a scrambling code. 1 8. (currently amended) A system for transmitting an input stream of symbols 2 in a multiple-input / multiple-output wireless communications system 3 including M subgroups of transmitting antennas, comprising: 4 a switch configured to select, according to channel conditions of the 5 multiple-input / multiple-output wireless communications system, L 6 subgroups of the M subgroups of antennas, where $L \le M$ and each of the L 7 subgroups of antennas includes a set of at least two antennas; 8 a demultiplexer configured to split the input stream into L substreams. 9 there being one substream for each one of the L subgroups of at least two 10 antennas; 11 means for adaptively modulating and coding each of the L substreams 12 to a maximum data rate while achieving a predetermine performance on an 13 associated channel used to transmit the substream, wherein the switch selects 14 before adaptively modulating and coding and space-time transmit diversity 15 encoding .: and

- 16 means for space-time transmit diversity encoding each of the L coded
- 17 substream into a set of at least output streams, there being one output stream
- 18 for each antenna in the set of at least two antennas of each one of the L
- 19 subgroups of antennas.
 - 1 9. (previously presented) The method of claim 1, wherein each input
- 2 substream includes pairs of symbols X_{i1} and X_{i2}, and wherein the space-time
- 3 transmit diversity encoding encodes each pair of symbols as two pairs of
- 4 symbols $\begin{bmatrix} X_{i2} & X_{i1} \\ -X_{i1}^* & X_{i2}^* \end{bmatrix},$
- 5 where * is a complex conjugate.
- 1 10. (previously presented) The method of claim 9, wherein each pair of
- 2 symbols X_{i1} and X_{i2} is transmitted by a first antenna of the set of at least two
- 3 antennas while each pair of symbols $-X_{i2}^*$ and X_{i1}^* is transmitted by a
- 4 second antenna of the set of at least two antennas.
- 1 11. (cancelled)
- 1-12. (previously presented) The method of claim 1, further comprising:
- 2 performing the adaptively modulating and coding and the space-time
- 3 transmit diversity encoding in parallel and independently for each
- 4 substream.
- 1 13. (previously presented) The method of claim 1, wherein the number of
- 2 selected antennas is at least 2L.

- 1 14. (previously presented) The method of claim 1, wherein performance
- 2 reaches a maximal system capacities.
- 1 15. (previously presented) The method of claim 7, wherein the orthogonal
- 2 variable spreading factors are the same for all output streams.
- 1 16. (previously presented) The method of claim 7, wherein the scrambling
- 2 codes are the same for all output streams.