Basic Trigonometry

Understanding Triangles and Ratios

What is Trigonometry?

Trigonometry is the study of relationships between:

- Angles
- Side lengths of triangles

The word comes from Greek:

- *trigonon* = triangle
- *metron* = measure

The Right Triangle

Key components:

- Hypotenuse: longest side (opposite the right angle)
- **Opposite**: side opposite to the angle of interest
- Adjacent: side next to the angle of interest

The Three Basic Ratios

For angle θ (theta) in a right triangle:

SOH-CAH-TOA

- $\sin \theta = \text{Opposite} / \text{Hypotenuse}$
- $\cos \theta = Adjacent / Hypotenuse$
- $tan \theta = Opposite / Adjacent$

This mnemonic helps you remember!

Example: Finding sin, cos, tan

For angle A:

- $\sin A = 5/13 = 0.385$
- $\cos A = 12/13 = 0.923$
- tan A = 5/12 = 0.417

The Reciprocal Functions

Three additional ratios:

- $\csc \theta = 1/\sin \theta = \text{Hypotenuse} / \text{Opposite}$
- $\sec \theta = 1/\cos \theta = Hypotenuse / Adjacent$
- $\cot \theta = 1/\tan \theta = Adjacent / Opposite$

These are less commonly used but important!

Special Right Triangles: 45-45-90

In a 45-45-90 triangle:

- Legs are equal (ratio 1:1:√2)
- Hypotenuse = leg × √2
- $\sin 45^{\circ} = \cos 45^{\circ} = \sqrt{2/2} \approx 0.707$
- $tan 45^{\circ} = 1$

Special Right Triangles: 30-60-90

In a 30-60-90 triangle (ratio 1:√3:2):

- $\sin 30^\circ = 1/2$, $\cos 30^\circ = \sqrt{3}/2$, $\tan 30^\circ = 1/\sqrt{3}$
- $\sin 60^\circ = \sqrt{3/2}$, $\cos 60^\circ = 1/2$, $\tan 60^\circ = \sqrt{3}$

Finding Missing Sides

Given: angle and one side

Find: other sides

Example: If angle A = 30° and hypotenuse = 10

- opposite = $10 \times \sin 30^{\circ} = 10 \times 0.5 = 5$
- adjacent = $10 \times \cos 30^{\circ} = 10 \times 0.866 = 8.66$

Use the appropriate ratio based on what you know!

Finding Missing Angles

Given: two sides

Find: angle

Use inverse functions:

- $\theta = \sin^{-1}(\text{opposite/hypotenuse})$
- $\theta = \cos^{-1}(\text{adjacent/hypotenuse})$
- $\theta = \tan^{-1}(\text{opposite/adjacent})$

Example: If opposite = 3, adjacent = 4

• $\theta = \tan^{-1}(3/4) = 36.87^{\circ}$

The Pythagorean Theorem

In any right triangle:

$$a^2 + b^2 = c^2$$

where c is the hypotenuse

Example: If legs are 3 and 4:

- $3^2 + 4^2 = c^2$
- $9 + 16 = c^2$
- $c = \sqrt{25} = 5$

Trigonometric Identity #1

Pythagorean Identity:

$$\sin^2\theta + \cos^2\theta = 1$$

This is always true for any angle θ !

Derivation from Pythagorean theorem:

- opposite² + adjacent² = hypotenuse²
- Divide by hypotenuse²
- (opposite/hypotenuse)² + (adjacent/hypotenuse)² = 1
- $\sin^2\theta + \cos^2\theta = 1$

Complementary Angles

In a right triangle, the two acute angles add to 90°.

Key relationships:

- $\sin \theta = \cos(90^{\circ} \theta)$
- $\cos \theta = \sin(90^{\circ} \theta)$
- $\tan \theta = \cot(90^{\circ} \theta)$

Example: $\sin 30^{\circ} = \cos 60^{\circ}$

Real-World Applications

Trigonometry is used in:

- Architecture: calculating roof slopes
- Navigation: finding distances and bearings
- **Physics**: analyzing forces and motion
- **Engineering**: designing structures
- **Astronomy**: measuring distances to stars

Practice Problem

A ladder leans against a wall at a 70° angle with the ground. The ladder is 15 feet long.

Questions:

- 1. How high up the wall does it reach?
- 2. How far is the base from the wall?

Answers:

- 1. height = $15 \times \sin 70^{\circ} = 14.1$ feet
- 2. distance = $15 \times \cos 70^{\circ} = 5.1$ feet

Summary

Remember SOH-CAH-TOA:

- Sin = Opposite/Hypotenuse
- Cos = Adjacent/Hypotenuse
- Tan = Opposite/Adjacent

Key Tools:

- Pythagorean theorem: $a^2 + b^2 = c^2$
- Inverse functions for finding angles
- Special triangles: 30-60-90 and 45-45-90

Questions?

Thank you for your attention!

Keep practicing and trigonometry will become second nature.