Eigenschaften

- [[Divide & Conquer]] Algorithmus
- \bullet in-place
- Verfahren
 - zerlege Feld in zwei Felder
 - * linke Feld mit Elementen \leq Elementen in rechtem Feld
 - Feld weiterzerlegen
 - * QuickSort rekursiv aufrufen

Partitioning

- Pivot-Element p
- sortiere Feld, sodass
 - links Zahlen $\leq p$
 - rechts Zahlen > p
 - Feld wird von beiden Seiten durchlaufen
 - * Elemente vertauschen, wenn Bedingung nicht erfüllt
 - treffen sich beide Indizes in der Mitte
 - * fertig

Speichere A so um, dass alle Elemente in A[0..k] kleiner-gleich den Elementen in A[k+1..n-1] sind

Laufzeit

$$T(n) = T(k) + T(n-k) + O(n)$$
linkes Teilfeld rechtes Teilfeld PARTITION

Bester Fall: balancierte Aufteilung $k=n/2 \Rightarrow T(n) = O(n*log n)$, S(n) = O(log n)

- Schlechtester Fall: A bereits sortiert! $k=1 \Rightarrow T(n) = O(n^2)$, S(n) = O(n)
- Mittlerer Fall
 T(n) = O(n log n)

- Vorteil gegenüber [[MergeSort]]
 - weniger Kopieren => schneller trotz schlechterer T(n)
 - besseres S(n)

Varianten

- Randomisierte Pivotauswahl
 - Wähle Pivotelement als $p \leftarrow A[random(l,r)]$
 - random(l,r) liefert zufällig eine Zahl in {l,...,r} aus einer Gleichverteilung
 - Dadurch wird die Laufzeit unabhängig von der Inputfolge.
 - Worst-case Laufzeit ist extrem unwahrscheinlich: $\frac{1}{n!}$
- Iterative Variante

Verwendet einen Stapel um Rekursion zu umgehen.

Hat worst-case Speicherbedarf von O(log n)