

Programación Estadística con Python

Sesiones 4 y 5
Subsetting data & avoiding artifacts

Alberto Sanz, Ph.D

asanz@edem.es

MASTER EN DATA ANALYTICS PARA LA EMPRESA

Subsetting (I) Selecting cases


```
# Select a subsample from our data
# Select cases only from 2011
# Create a new dataframe containing observations from 2011
#Explore years
mytable = wbr.groupby(['yr']).size()
print(mytable)
#Excursus to Operators
# Subset year 0
wbr 2011 = wbr[wbr.yr == 0]
# Subset year 1
wbr 2012 = wbr[wbr.yr == 1]
```

Excursus: Basic operators in Python

Logic Operators

Arithmetic Operators

Operator	Description	Operator	Description
<	less than	+	addition
<=	less than or equal to	-	subtraction
>	greater than	*	multiplication
>=	greater than or equal to	/	division
==	exactly equal to	**	exponentiation
!=	not equal to	x % y	modulus (x mod y)
not x	Not x	x //y	integer division
x y	x OR y		
х & у	x AND y		

Subsetting (II) Selecting variables


```
# Select variables, by column name
#Define a list with the subset of variables I want to extract
#e.g. create a dataframe with the number of rentals (cnt) and the
temperatura only

my_vars=['temp_celsius','cnt']

#Extract those varibles and save them into wbr_minimal
wbr_minimal= wbr[my_vars]
wbr_minimal.shape
# OC OK
```

Subsetting (I) Selecting cases


```
# Select a subsample from our data
# Select cases only from 2011
# Create a new dataframe containing observations from 2011
#Explore years
mytable = wbr.groupby(['yr']).size()
print(mytable)
#Excursus to Operators
# Subset year 0
wbr 2011 = wbr[wbr.yr == 0]
# Subset year 1
wbr 2012 = wbr[wbr.yr == 1]
```

Exercise # 1a

- Make a histogram of the Bike rentals in Washington on the Winter of 2012
 - 1 Subset
 - 2 Describe
 - Graphically
 - Numerically

Exercise # 1b

- Make a histogram of the Bike rentals in Washington during the Winter AND the Fall
 - 1 Subset
 - 2 Describe
 - Graphically
 - Numerically

Export data from Python


```
#### Export data
# to CSV

wbr.to_csv('wbr_edem2019.csv', sep=';', decimal=',')

## CAUTION ## The parameters for sep and decimal will depend very much of
the language of your Operative System. A typical alternative to the
example avobe would be sep = ",", dec = "."
```


BREAK

Exercise #2

Exercise #2 (wbr_ue.csv)

Compute the average temperuture and the standard deviation in Washington

Avoiding artefacts (I): Detecting non valid codes


```
## ALWAYS PLOT YOUR DATA

plt.hist(wbr_ue.temp_celsius)
wbr_ue.temp_celsius.describe()[1]
#plt.boxplot(wbr_ue.temp_celsius)

Mean: 20.9

Histogram of temp_celsius

**Memory o
```


Alberto Sanz, Ph.D. asanz@edem.es

Avoiding artefacts (II):

Removing cases that have nan in any variable

```
# Remove cases with nan in any variable

# Create a new dataframe where the observations containing nan in any of the variables are removed

wbr_ue2 = wbr_ue.dropna()

print(wbr_ue.shape) (732,18)
print(wbr_ue2.shape) (724,18)
```

Summing UP (I)

- Introduced Python & Spyder environment.
- Introduced some popular Python libraries:

 - Pandas
 - Numpy
 - Matplot lib
- Introduced the notion of metrics:
 - Nominal, ordinal & Quantitative variables
- Description
 - Nominal variables:
 - Percentages & Bar plots
 - Quantitative variables:
 - Mean, standard deviation & Histograms

But over all....

Allways plot you data!!!!!

Summing UP (II)

- Detecting non valid values
- Replacing non valid values by nan
- Removing cases with nan

Statistical Programming with Python

Questions?

Statistical Programming with Python

Thank you!

Alberto Sanz asanz@edem.es