Heuristic Analysis

Results for the search problems:

Air Cargo Problem 1	breadth_first _search	breadth_first _tree_searc h	depth_first_ graph_searc h	depth_limite d_search	uniform_cos t_search	recursive n	greedy_best _first_graph _search with h_1	astar_searc h with h_1	astar_searc h with h_ignore_pr econditions	astar_searc h with h_pg_levels um
Expansions	43	1458	12	101	55	4229	7	55	41	11
Goal Tests	56	1459	13	271	57	4230	9	57	43	13
New Nodes	180	5960	48	414	224	17029	28	224	170	50
Plan length	6	6	12	50	6	6	6	6	6	6
Time elapsed in sec onds	0.0337	1.0688	0.0101	0.1073	0.0433	3.0741	0.0070	0.0437	0.0433	1.1338

Optimal Plan: For this problem the greedy_best_first_graph_search_with_h1 is most optimal as it expands very few nodes in comparison to rest and also takes very less time to execute, while also giving the best plan length.

Plan:

Load(C2 P2 JFK) Load(C1 P1 SFO)

Fly(P2 JFK SFO)

Unload(C2 P2 SFO)

Fly(P1 SFO JFK)

Unload(C1 P1 JFK)

Air Cargo Problem 2	breadth_first _search	depth_first_ graph_searc h	uniform_cos t_search	greedy_best _first_graph _search with h_1	astar_searc h with h_1	astar_searc h with h_ignore_pr econditions
Expansions	3343	582	4853	998	4853	1450
Goal Tests	4609	583	4855	1000	4855	1452
New Nodes	30509	5211	44041	8982	44041	13303
Plan length	9	575	9	21	9	9
Time elapsed in seconds	9.293419	4.03291	22.675072	3.153881	13.15169	4.833652

Optimal Plan: For this problem the depth_first_graph_search is most optimal as it expands very few nodes in comparison to rest and also takes lesser time to execute, while also giving the best plan length.

Plan:

Load(C2	P2	JFK)
Load(C1	P1	SFO)
Fly(P2 JFK	ORD)	
Load(C4	P2	ORD)
Fly(P1 SFO	ATL)	
Load(C3	P1	ATL)
Fly(P1 ATL	JFK)	
Unload(C1	P1	JFK)
Unload(C3	P1	JFK)
Fly(P2 ORD	SFO)	
Unload(C2	P2	SFO)
Unload(C4	P2	SFO)

Air Cargo Problem 3	breadth_first _search	depth_first_ graph_searc h	greedy_best _first_graph _search with h_1	astar_searc h with h_1	astar_searc h with h_ignore_pr econditions	astar_searc h with h_pg_levels um
Expansions	14663	627	5578		5040	
Goal Tests	18098	628	5580	T l	5042	Tl
New Nodes	129631	5176	49150	Took more than 10 mins	44944	Took more than 10 mins
Plan length	12	596	22	to execute	12	to execute
Time elapsed in seconds	50.320166	3.69332	18.04512		18.69254	

Optimal Plan: For this problem the greedy_best_first_graph_search with h_1 and astar_search with h_ignore_preconditions both seem optimal as they execute in reasonable amount of time while giving best plan length but expands large number of nodes.

Plan:

Load(C2	P2	JFK)
Fly(P2 JFK	ORD)	
Load(C4	P2	ORD)
Fly(P2 ORD	SFO)	
Unload(C4	P2	SFO)
Load(C1	P1	SFO)
Fly(P1 SFO	ATL)	
Load(C3	P1	ATL)
Fly(P1 ATL	JFK)	
Unload(C3	P1	JFK)
Unload(C2	P2	SFO)
Unload(C1	P1	JFK)

The depth_first_graph_search executes faster but the plan length is too large compared to rest.

We can observe here that breadth first runs successfully for all the problems and give optimal plan length. But the node expansion is very large in case of complex problems like problem 3. Problem 1 which is less complex the algorithm performs well. The A* search with h_ignore_preconditions performs

better for complex problem. In terms of time it is almost similar in these 3 problems but the nodes expansion and the goal test reduces considerably in complex cases. The A* search with h_ignore_preconditions out performs other algorithms in expansions, new nodes, and time elapsed,

As stated in section 2.3 Discrete Optimal Planning of 'Planning Algorithms' by Steven M. La Valle

"With nearly all optimization problems, there is the arbitrary, symmetric choice of whether to define a criterion to minimize or maximize. If the cost is a kind of energy or expense, then minimization seems sensible, as is typical in robotics and control theory. If the cost is a kind of reward, as in investment planning or in most AI books, then maximization is preferred."

If we take "Plan length" and "Time elapsed in seconds" as our cost, we should minimize both of these cost. Breadth First Search gives lowest cost in all cases but increases the "Time elapsed in seconds" in complex cases. The A* search with h_ignore_preconditions minimizes both these cost even for complex problem, hence we can consider it to be an optimal planning algorithm for the above cases.