FICHE 05-04: Sur les carrés de \mathbb{F}_p .

Yvann Le Fay

Août 2019

Enoncé

Dénombrer les carrés de \mathbb{F}_p puis démontrer que $\forall x \in \mathbb{F}_p^*$, x est un carré $\iff x^{\frac{p-1}{2}} = 1$.

Solution

Si p=2, alors l'énoncé est trivial, supposons dorénavant que $p\geq 3$.

L'ensemble des carrés de \mathbb{F}_p^* est l'image de \mathbb{F}_p^* par l'application $f:x\mapsto x^2$ qui est un morphisme. Ainsi,

on sait que im $f \equiv \mathbb{F}_p^*/\ker f$. Or $\ker f = \{-1,1\}$, ainsi, il y a exactement $\frac{p-1}{2}$ carrés dans \mathbb{F}_p^* . D'après le petit théorème de Fermat, tout élément x de \mathbb{F}_p^* est solution de $x^{p-1} - 1 = 0$. Or $x^{p-1} - 1 = 0$ $(x^{\frac{p-1}{2}}-1)(x^{\frac{p-1}{2}}+1)$. On vérifie bien que $\forall x \in \mathbb{F}_p^*$, $(x^2)^{\frac{p-1}{2}}=1$, et de plus, le premier membre de la factorisation égalisé à 0, a dans \mathbb{F}_p^* au plus $\frac{p-1}{2}$ solutions. Nécessairement, ce sont les carrés de \mathbb{F}_p^* . Or aucun de ces carrés n'est solution de l'équation du second membre de la factorisation. De plus nécessairement par le petit théorème de Fermat, $\forall x \in \mathbb{F}_p^*, x^{\frac{p-1}{2}} \in \{-1,1\}$. Ainsi, les non-carrés de \mathbb{F}_p^* sont exactement les solutions du second membre de la factorisation.

Ce qui permet de conclure, que x est un carré (ou non) dans \mathbb{F}_p^* est équivalent à $x^{\frac{p-1}{2}}=1$ (ou -1)

On peut montrer avec cela que $X^4 - 10X^2 + 1$ est réductible sur \mathbb{F}_p quel que soit p premier.

En effet, si 2 est un carré dans \mathbb{F}_p , disons $2 = a^2$ alors,

$$X^{4} - 10X^{2} + 1 = (X^{2} - 1)^{2} - 8X^{2} = (X^{2} - 1)^{2} - (2aX)^{2} = (X^{2} - 2aX - 1)(X^{2} + 2aX - 1)$$

Si 3 est un carré dans \mathbb{F}_p , disons $3 = b^2$ alors,

$$X^4 - 10X^2 + 1 = (X^2 + 1)^2 - 12X^2 = (X^2 + 1)^2 - (2bX)^2 = (X^2 - 2bX + 1)(X^2 + 2bX + 1)$$

Enfin si ni 2 ni 3 n'est un carré dans \mathbb{F}_p alors nécessairement, d'après ce que l'on a vu, 6 est un carré, écrivons $c^2 = 6$, alors

$$X^4 - 10X^2 + 1 = (X^2 - 5)^2 - 24 = (X^2 - 2c - 5)(X^2 + 2c - 5)$$