VE311 Electronic Circuit Homework 3

Due: May 25th

Note:

52037091002

- 1) Please use A4 size paper or page.
- 2) Please clearly state out your final result for each question.
- 3) Please attach the screenshot of Pspice simulation result if necessary.

Question 1. Difference Amplifier

Find the values of V_O , V_+ , V_- , I_1 , I_2 , I_3 , and I_O for the difference amplifier shown below with $V_1 = 5V$, $V_2 = 3V$, $R_1 = 10k\Omega$, and $R_2 = 100k\Omega$.

Question 2. Input and Output Resistance

Assuming the op amp to be ideal, derive an expression for the closed-loop gain v_O/v_I of the circuit shown below.

Since
$$I_1 = \frac{V_1 - V_2}{10^4} = I_2 = \frac{V_2 - V_0}{10^5} = 2.73 \times 10^{-4} A$$

$$\Rightarrow V_0 = |V_- - |_0V_1 = -20V$$

Question 3. Instrumentation Amplifier

Consider the instrumentation amplifier shown below with a common-mode input voltage of +5V (dc) and a differential input signal of 10-mV-peak sine wave. Let $(2R_1)=1k\Omega$, $R_2=0.5M\Omega$, and $R_3=R_4=10k\Omega$. Find the voltage at every node (total 9 nodes) in the circuit. Also find the differential voltage gain A_d .

Question 4. Nonideal Amplifier Analysis

A noninverting amplifier is constructed with $R_1 = 1k\Omega$ and $R_2 = 39k\Omega$ using an operational amplifier with an open-loop gain of 80dB and an output resistance of 50Ω . Find the output resistance of the noninverting amplifier.

Question 3. Instrumentation Amplifier Consider the instrumentation amplifier shown below with a common-mode input voltage of +5V (dc) and a differential input signal of 10-mV-peak sine wave. Let $(2R_1)=1k\Omega$, $R_2 = 0.5M\Omega$, and $R_3 = R_4 = 10k\Omega$. Find the voltage at every node (total 9 nodes) in the circuit. Also find the differential voltage gain A_d . Assume VId = 20×10-3 K where k = sin (wt + p) VIz = 5+00 K Vz. = 5- 0.0 K ⇒ Vo2 = V12 + V1d - R2 = 5 + 0.0 | k+ 0.02k . 0.5 × 10 = 5+ 10.0 | k Vol = VI, - Vid Px = 5 - 0.0 | K - 0.5 x (06 = 5 - 100) K since V_ = V+ (= V) $\Rightarrow \frac{V_{0_1} - V_{-}}{P_{0_k}} = \frac{V_{-} - V_{0}}{P_{0_k}} \Leftrightarrow \frac{(s - |0.0| k) - V}{|0 \times |0^3|} = \frac{V - V_{0}}{|0 \times |0^3|}$ $\frac{0-V_{4}}{R_{4}} = \frac{V_{4}-V_{0_{2}}}{R_{2}} \Leftrightarrow \frac{0-V}{(0\times l_{0}^{2})} = \frac{V_{-}(5+|0.0|K)}{(0\times l_{0}^{2})}$ ⇒ V+ = V- = V = 2.5 + 5.005 K Vo = 2V - (5-10.01k) = 20.02k $\Rightarrow A_d = \frac{V_0}{V_1} = \frac{20.02 \, \text{k}}{20 \, \text{k} \, \text{k}} = |.00| \times |0^3| \approx |.10^3$ According to the slide, $A_1 = \frac{R_4}{R_3} \cdot \frac{R_2}{R_1} = 1 \cdot \frac{0.5 \times 10^3}{0.5 \times 10^3} = 1 \times 10^3$ > My answer is correct

Question 5. BJT

In the circuit shown below, measurement indicates V_B to be +1.0V and V_E to be +1.7V. What are α and β for this transistor? What voltage V_C do you expect at the collector?

Question 6. Saturation

For the circuit shown below, it is required to determine the value of the voltage V_{BB} that results in the transistor operating

- 1) in the active mode with $V_{CE} = 5V$
- 2) at the edge of saturation
- 3) deep in saturation with $\beta_{forced} = 10$

For simplicity, assume that V_{BE} remains constant at 0.7 V. The transistor β is specified to be 50.

Greation 5. BLT
In the current shown below, measurement indicates
$$V_1$$
 to be $+1.0V$ and V_2 to to $+1.0V$.

What are n and β for this transister? What voltage V_2 to by you expect at the collector?

 $V_2 = V_2$
 $V_3 = V_4$
 $V_4 = V_5$
 $V_4 = V_5$
 $V_5 = V_5$
 $V_6 = V_6$
 $V_8 = V_8$
 $V_$

Question 7. BJT at DC

We want to analyze the circuit shown below to determine the voltages at all nodes and the currents through all branches. Assume $\beta = 100$.

Question 8. Small Signal Analysis

Consider the following BJT amplifier, determine its small-signal, open-circuit voltage gain $A_v = \frac{v_o(t)}{v_i(t)}$. Hint: Try to follow the steps to solve this question

- 1) Complete a D.C. Analysis.
- 2) Calculate the small-signal circuit parameters for each BJT.
- 3) Carefully replace all BJTs with their small-signal circuit model.
- 4) Set all D.C. sources to zero.
- 5) Analyze small-signal circuit.

