<u>Matriz</u> = tabela organizada em linhas e colunas para relacionar dados numéricos.

Exemplo: Venda dos bolos de uma confeitaria no primeiro bimestre do ano.

Produto	Janeiro	Fevereiro
Bolo de chocolate	500	450
Bolo de morango	450	490

Essa tabela apresenta dados em duas linhas (tipos de bolo) e duas colunas (meses do ano) e, por isso, trata-se de uma matriz 2 x 2. Veja a representação a seguir:

$$A = \begin{bmatrix} 500 & 450 \\ 450 & 490 \end{bmatrix} ou \begin{pmatrix} 500 & 450 \\ 450 & 490 \end{pmatrix}$$

Tipos de Matrizes =

Matriz linha	Matriz de uma linha. Exemplo: Matriz linha 1 x 2. $A = \begin{bmatrix} 0 & 1 \end{bmatrix}$
Matriz coluna	Matriz de uma coluna. Exemplo: Matriz coluna 2 x 1. $B = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
Matriz nula	Matriz de elementos iguais a zero. Exemplo: Matriz nula 2 x 3. $C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Matriz quadrada	Matriz com igual número de linhas e colunas. Exemplo: Matriz quadrada 2 x 2. $D = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Matriz identidade

Os elementos da diagonal principal são iguais a 1 e os demais elementos são iguais a zero.

Exemplo: Matriz identidade 3 x 3.

Matriz oposta

É obtida com a troca de sinal dos elementos de uma matriz conhecida.

Exemplo: - A é a matriz oposta de A.

$$A = \begin{bmatrix} 1 & 3 & -2 & 0 \\ -3 & 4 & 0 & -1 \\ 5 & 1 & -4 & 2 \end{bmatrix} \qquad -A = \begin{bmatrix} -1 & -3 & 2 & 0 \\ 3 & -4 & 0 & 1 \\ -5 & -1 & 4 & -2 \end{bmatrix}$$

A soma de uma matriz com a sua matriz oposta resulta em uma matriz nula.

Matriz transposta

É obtida com a troca ordenada das linhas e colunas de uma matriz conhecida.

Exemplo: B^t é a matriz transposta de B.

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}_{3 \times 2} \qquad B^{t} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}_{2 \times 3}$$

Igualdade de Matrizes =

Matrizes que são do mesmo tipo e possuem elementos iguais.

Exemplo: Se a matriz A é igual a matriz B, então o elemento d corresponde ao elemento 4.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}_{2x2} \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & d \end{bmatrix}_{2x2}$$

Adição de Matrizes

Uma matriz é obtida pela soma dos elementos de matrizes do mesmo tipo.

Exemplo: A soma entre os elementos da matriz A e B produz uma matriz C.

$$\begin{bmatrix} 1 & 3 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 1+2 & 3+0 \\ (-1)+3 & 0+(-1) \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 2 & -1 \end{bmatrix}$$

Propriedades

- Comutativa: A + B = B + A
- Associativa: (A + B) + C = A + (B + C)
- Elemento oposto: A + (-A) = (-A) + A = 0
- Elemento neutro: A + 0 = 0 + A = A, se 0 for uma matriz nula de mesma ordem que A.

Subtração de Matrizes =

Uma matriz é obtida pela subtração dos elementos de matrizes de mesmo tipo.

Exemplo: A subtração entre elementos da matriz A e B produz uma matriz C.

$$\begin{bmatrix}
1 & 0 \\
2 & 3
\end{bmatrix} - \begin{bmatrix}
2 & 1 \\
0 & 4
\end{bmatrix}$$

$$A \qquad -B$$

$$\begin{bmatrix}
1 & 0 \\
2 & 3
\end{bmatrix} + \begin{bmatrix}
-2 & -1 \\
0 & -4
\end{bmatrix} = \begin{bmatrix}
1 + (-2) & 0 + (-1) \\
2 + 0 & 3 + (-4)
\end{bmatrix} = \begin{bmatrix}
-1 & -1 \\
2 & -1
\end{bmatrix}$$

Neste caso, realizamos a soma da matriz A com a matriz oposta de B, pois A - B = A + (-B).

Multiplicação de matriz por um número real

Obtém-se uma matriz onde cada elemento da matriz conhecida foi multiplicado pelo número real.

Exemplo:

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 1 \end{bmatrix}$$
$$2 \cdot A = \begin{bmatrix} 2.2 & 2.1 & 2.3 \\ 2.4 & 2.2 & 2.1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 6 \\ 8 & 4 & 2 \end{bmatrix}$$

Propriedades

Utilizando números reais, m e n, para multiplicar matrizes do mesmo tipo, A e B, temos as seguintes propriedades:

•
$$m.(n.A) = (m.n).A$$

•
$$m.(A + B) = m.A + m.B$$

•
$$(m + n) . A = m . A + n . A$$

<u>Multiplicação de Matriz por Matriz</u> =

A multiplicação de duas matrizes, A e B, só é possível se o número de colunas de A for igual ao número de linhas de B, ou seja, $A_{m \times p}$. $B_{p \times n} = C_{m \times n}$.

Exemplo: Multiplicação entre a matriz 3 x 2 e a matriz 2 x 3.

$$\begin{bmatrix} 2 & 1 \\ 0 & 3 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 3 & 4 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 2.0 + 1.2 & 2.3 + 1.1 & 2.4 + 1.3 \\ 0.0 + 3.2 & 0.3 + 3.1 & 0.4 + 3.3 \\ 1.0 + 1.2 & 1.3 + 1.1 & 1.4 + 1.3 \end{bmatrix} = \begin{bmatrix} 0 + 2 & 6 + 1 & 8 + 3 \\ 0 + 6 & 0 + 3 & 0 + 9 \\ 0 + 2 & 3 + 1 & 4 + 3 \end{bmatrix} = \begin{bmatrix} 2 & 7 & 11 \\ 6 & 3 & 9 \\ 2 & 4 & 7 \end{bmatrix}$$

Propriedades

- Associativa: A.(B.C) = (A.B).C
- Distributiva à direita: A.(B+C) = A.B+A.C
- Distributiva à esquerda: (B + C) . A = B . A + C . A
- Elemento neutro: $A \cdot I_n = I_n \cdot A = A$, onde I_n é a matriz identidade