

Best Available Copy

PATENT
ATTORNEY DOCKET: 62785.000004

702

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:) Confirmation No. 7580
)
Richard William Falla LE PAGE et al.) Group Art Unit: 1645
)
Application Number: 09/769,744) Examiner: DEVI
)
Filed: January 26, 2001)
)
For: NUCLEIC ACIDS AND PROTEINS FROM STREPTOCOCCUS PNEUMONIAE

SUBMISSION OF CERTIFIED COPY OF FOREIGN PRIORITY DOCUMENT

MAIL STOP AMENDMENT

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

Applicants submit herewith a certified copy of the foreign priority document GB 9816336.3 as filed on 27 July 1998. No fee is believed due as a result of this submission. However, if a fee is due upon the filing of this document, please charge such fee to the undersigned's **Deposit Account No. 50-0206**.

Respectfully submitted,

By:
Laurence H. Posorske, Ph.D.
Registration No. 34,698

Christopher J. Nichols, Ph.D.
Registration No. 55,984

HUNTON & WILLIAMS LLP
Intellectual Property Department
1900 K Street, N.W., Suite 1200
Washington, DC 20006-1109
(202) 955-1500 (telephone)
(202) 778-2201 (facsimile)

LHP/CJN/cdh

THIS PAGE BLANK (USPTO)

Best Available Copy

INVESTOR IN PEOPLE

CERTIFIED COPY OF PRIORITY DOCUMENT

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

I also certify that the attached copy of the request for grant of a Patent (Form 1/77) bears an amendment, effected by this office, following a request by the applicant and agreed to by the Comptroller-General.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration, save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and accompanying documents shall be treated as references to the name with which it is so registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

Andrew Gersey
14 September 2005

THIS PAGE BLANK (USPTO)

Patents Form 1/77

Patents Act 1977
(Rule 16)

THE PATENT OFFICE

27 JUL 1998

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form.)

28JUL98 E378889-2 D00056
P01/7700 25.00 - 9816336.3

The Patent Office

Cardiff Road
Newport
Gwent NP9 1RH

1. Your reference

PWC/P21122GB

2. Patent application number
(The Patent Office will fill in this part)

27 JUL 1998

9816336.3

3. Full name, address and postcode of the or of each patent applicant (underline all surnames)

Microbial Techniques Limited
Cortecs (UK) Limited 20 Trumpington Street
The Old Blue School Cambridge
Lower Square
Isleworth CB2 1QA.
Middlesex TW7 6RL

CF 20/8/99

Patents ADP number (if you know it)

~~2275032001~~

06832471001

If the applicant is a corporate body, give the country/state of its incorporation

4. Title of the invention

PROTEINS

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)

KILBURN & STRODE
 20 RED LION STREET
 LONDON
 WC1R 4PJ

Patents ADP number (if you know it)

125001

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or each of these earlier applications and (if you know it) the or each application number

Country

Priority application number
(if you know it)Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application number

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

Yes

- a) any applicant named in part 3 is not an inventor, or
 - b) there is an inventor who is not named as an applicant, or
 - c) any named applicant is a corporate body.
- See note (d)

Patents Form**9.**

Enter number of sheets for any of the
following you are filing with this form.
Do not enter copies of the same document

Continuation sheets of this form

Description	:	59
Claim(s)	:	4
Abstract	:	
Drawing(s)	:	

10.

If you are so filing any of the following,
State how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right
to grant of a patent (Patents Form 7/77)Request for preliminary examination
and search (Patents Form 9/77)Request for substantive examination
(Patents form 10/77)Any other documents
(please specify)**11.***Kilburn & Strode*

I/We request the grant of a patent on the basis of this application.

Signature

Date

27th July 1998

12.Name and daytime telephone number of
person to contact in the United KingdomMr. Paul W. Chapman
Tel: 0171-539 4200**Warning**

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

PROTEINS

The present invention relates to proteins derived from *Streptococcus pneumoniae*, nucleic acid molecules encoding such proteins, the use of the nucleic acid and/or proteins as antigens/immunogens and in detection/diagnosis, as well as methods for screening the proteins/nucleic acid sequences as potential anti-microbial targets.

5 *Streptococcus pneumoniae*, commonly referred to as the pneumococcus, is an important pathogenic organism. The continuing significance of *Streptococcus pneumoniae* infections in relation to human disease in developing and developed countries has been authoritatively reviewed (Fiber, G.R., *Science*, **265**: 1385-1387 (1994)). That indicates that on a global scale this organism is believed to be the most common bacterial cause of acute respiratory infections, and is estimated to result in 1 million childhood deaths each year, mostly in developing countries (Stansfield, S.K., *Pediatr. Infect. Dis.*, **6**: 622 (1987)). In the USA it has been suggested (Breiman *et al*, 10 *Arch. Intern. Med.*, **150**: 1401 (1990)) that the pneumococcus is still the most common cause of bacterial pneumonia, and that disease rates are particularly high in young children, in the elderly, and in patients with predisposing conditions such as asplenia, heart, lung and kidney disease, diabetes, alcoholism, or with immunosuppressive disorders, especially AIDS. These groups are at higher risk of pneumococcal 15 septicaemia and hence meningitis and therefore have a greater risk of dying from pneumococcal infection. The pneumococcus is also the leading cause of otitis media and sinusitis, which remain prevalent infections in children in developed countries, and which incur substantial costs.

20 The need for effective preventative strategies against pneumococcal infection is highlighted by the recent emergence of penicillin-resistant pneumococci. It has been reported that 6.6% of pneumococcal isolates in 13 US hospitals in 12 states were found to be resistant to penicillin and some isolates were also resistant to other antibiotics including third generation cyclosporins (Schappert, S.M., *Vital and Health Statistics of 25 the Centres for Disease Control/National Centre for Health Statistics*, **214**:1 (1992)).

The rates of penicillin resistance can be higher (up to 20%) in some hospitals (Breiman *et al*, J. Am. Med. Assoc., 271: 1831 (1994)). Since the development of penicillin resistance among pneumococci is both recent and sudden, coming after decades during which penicillin remained an effective treatment, these findings are
5 regarded as alarming.

For the reasons given above, there are therefore compelling grounds for considering improvements in the means of preventing, controlling, diagnosing or treating pneumococcal diseases.

10 Various approaches have been taken in order to provide vaccines for the prevention of pneumococcal infections. Difficulties arise for instance in view of the variety of serotypes (at least 90) based on the structure of the polysaccharide capsule surrounding the organism. Vaccines against individual serotypes are not effective
15 against other serotypes and this means that vaccines must include polysaccharide antigens from a whole range of serotypes in order to be effective in a majority of cases. An additional problem arises because it has been found that the capsular polysaccharides (each of which determines the serotype and is the major protective antigen) when purified and used as a vaccine do not reliably induce protective
20 antibody responses in children under two years of age, the age group which suffers the highest incidence of invasive pneumococcal infection and meningitis.

A modification of the approach using capsule antigens relies on conjugating the polysaccharide to a protein in order to derive an enhanced immune response,
25 particularly by giving the response T-cell dependent character. This approach has been used in the development of a vaccine against *Haemophilus influenzae*, for instance. There are, however, issues of cost concerning both the multi-polysaccharide vaccines and those based on conjugates.

30 A third approach is to look for other antigenic components which offer the potential to

be vaccine candidates. This is the basis of the present invention. Using a specially developed bacterial expression system, we have been able to identify a group of protein antigens from pneumococcus which are associated with the bacterial envelope or which are secreted.

5

Thus, in a first aspect the present invention provides a *Streptococcus pneumoniae* protein or polypeptide having a sequence selected from those shown in table 1.

10 In a second aspect, the present invention provides a *Streptococcus pneumoniae* protein or polypeptide having a sequence selected from those shown in table 2.

A protein or polypeptide of the present invention may be provided in substantially pure form. For example, it may be provided in a form which is substantially free of other proteins.

15

As discussed herein, the proteins and polypeptides of the invention are useful as antigenic material. Such material can be "antigenic" and/or "immunogenic". Generally, "antigenic" is taken to mean that the protein or polypeptide is capable of being used to raise antibodies or indeed is capable of inducing an antibody response in a subject.

20

"Immunogenic" is taken to mean that the protein or polypeptide is capable of eliciting a protective immune response in a subject. Thus, in the latter case, the protein or polypeptide may be capable of not only generating an antibody response but, in addition, a non-antibody based immune response.

25

The skilled person will appreciate that homologues or derivatives of the proteins or polypeptides of the invention will also find use in the context of the present invention, ie as antigenic/immunogenic material. Thus, for instance proteins or polypeptides which include one or more additions, deletions, substitutions or the like are encompassed by the present invention. In addition, it may be possible to replace one amino acid with another of similar "type". For instance replacing one hydrophobic amino acid with another.

30

One can use a program such as the CLUSTAL program to compare amino acid sequences. This program compares amino acid sequences and finds the optimal alignment by inserting spaces in either sequence as appropriate. It is possible to calculate amino acid identity or similarity (identity plus conservation of amino acid type) for an optimal alignment. A program like BLASTx will align the longest stretch of similar sequences and assign a value to the fit. It is thus possible to obtain a comparison where several regions of similarity are found, each having a different score. Both types of identity analysis are contemplated in the present invention.

In the case of homologues and derivatives, the degree of identity with a protein or polypeptide as described herein is less important than that the homologue or derivative should retain the antigenicity or immunogenicity of the original protein or polypeptide. However, suitably, homologues or derivatives having at least 60% similarity (as discussed above) with the proteins or polypeptides described herein are provided. Preferably, homologues or derivatives having at least 70% similarity, more preferably at least 80% similarity are provided. Most preferably, homologues or derivatives having at least 90% or even 95% similarity are provided.

In an alternative approach, the homologues or derivatives could be fusion proteins, incorporating moieties which render purification easier, for example by effectively tagging the desired protein or polypeptide. It may be necessary to remove the "tag" or it may be the case that the fusion protein itself retains sufficient antigenicity to be useful.

In an additional aspect of the invention there are provided antigenic/immunogenic fragments of the proteins or polypeptides of the invention, or of homologues or derivatives thereof.

For fragments of the proteins or polypeptides described herein, or of homologues or derivatives thereof, the situation is slightly different. It is well known that is possible to screen an antigenic protein or polypeptide to identify epitopic regions, ie those regions

which are responsible for the protein or polypeptide's antigenicity or immunogenicity. Methods for carrying out such screening are well known in the art. Thus, the fragments of the present invention should include one or more such epitopic regions or be sufficiently similar to such regions to retain their antigenic/immunogenic properties.

5 Thus, for fragments according to the present invention the degree of identity is perhaps irrelevant, since they may be 100% identical to a particular part of a protein or polypeptide, homologue or derivative as described herein. The key issue, once again, is that the fragment retains the antigenic/immunogenic properties.

10 Thus, what is important for homologues, derivatives and fragments is that they possess at least a degree of the antigenicity/immunogenicity of the protein or polypeptide from which they are derived.

15 Gene cloning techniques may be used to provide a protein of the invention in substantially pure form. These techniques are disclosed, for example, in J. Sambrook *et al Molecular Cloning* 2nd Edition, Cold Spring Harbor Laboratory Press (1989). Thus, in a third aspect, the present invention provides a nucleic acid molecule comprising or consisting of a sequence which is:

20 (i) any of the DNA sequences set out in Table 1 or their RNA equivalents;

(ii) a sequence which is complementary to any of the sequences of (i);

25 (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii);

(iv) a sequence which has substantial identity with any of those of (i), (ii) and (iii);

- (v) a sequence which codes for a homologue, derivative or fragment of a protein as defined in Table 1.

5 In a fourth aspect the present invention provides a nucleic acid molecule comprising or consisting of a sequence which is:

- (i) any of the DNA sequences set out in Table 2 or their RNA equivalents;
- (ii) a sequence which is complementary to any of the sequences of (i);
- 10 (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii);
- (iv) a sequence which has substantial identity with any of those of (i), (ii) and
15 (iii); or
- (v) a sequence which codes for a homologue, derivative or fragment of a protein as defined in Table 2.

20 The nucleic acid molecules of the invention may include a plurality of such sequences, and/or fragments. The skilled person will appreciate that the present invention can include novel variants of those particular novel nucleic acid molecules which are exemplified herein. Such variants are encompassed by the present invention. These may occur in nature, for example because of strain variation. For example, additions,
25 substitutions and/or deletions are included. In addition, and particularly when utilising microbial expression systems, one may wish to engineer the nucleic acid sequence by making use of known preferred codon usage in the particular organism being used for expression. Thus, synthetic or non-naturally occurring variants are also included within the scope of the invention.

The term "RNA equivalent" when used above indicates that a given RNA molecule has a sequence which is complementary to that of a given DNA molecule (allowing for the fact that in RNA "U" replaces "T" in the genetic code).

5 When comparing nucleic acid sequences for the purposes of determining the degree of homology or identity one can use programs such as BESTFIT and GAP (both from the Wisconsin Genetics Computer Group (GCG) software package) BESTFIT, for example, compares two sequences and produces an optimal alignment of the most similar segments. GAP enables sequences to be aligned along their whole length and finds the
10 optimal alignment by inserting spaces in either sequence as appropriate. Suitably, in the context of the present invention when discussing identity of nucleic acid sequences, the comparison is made by alignment of the sequences along their whole length.

15 Preferably, sequences which have substantial identity have at least 50% sequence identity, desirably at least 75% sequence identity and more desirably at least 90 or at least 95% sequence identity with said sequences. In some cases the sequence identity may be 99% or above.

20 Desirably, the term "substantial identity" indicates that said sequence has a greater degree of identity with any of the sequences described herein than with prior art nucleic acid sequences.

25 It should however be noted that where a nucleic acid sequence of the present invention codes for at least part of a novel gene product the present invention includes within its scope all possible sequence coding for the gene product or for a novel part thereof.

The nucleic acid molecule may be in isolated or recombinant form. It may be incorporated into a vector and the vector may be incorporated into a host. Such vectors and suitable hosts form yet further aspects of the present invention.

Therefore, for example, by using probes based upon the nucleic acid sequences provided herein, genes in *Streptococcus pneumoniae* can be identified. They can then be excised using restriction enzymes and cloned into a vector. The vector can be introduced into a suitable host for expression.

5

Nucleic acid molecules of the present invention may be obtained from *S.pneumoniae* by the use of appropriate probes complementary to part of the sequences of the nucleic acid molecules. Restriction enzymes or sonication techniques can be used to obtain appropriately sized fragments for probing.

10

Alternatively PCR techniques may be used to amplify a desired nucleic acid sequence. Thus the sequence data provided herein can be used to design two primers for use in PCR so that a desired sequence, including whole genes or fragments thereof, can be targeted and then amplified to a high degree.

15

Typically primers will be at least 15-25 nucleotides long.

20

As a further alternative chemical synthesis may be used. This may be automated. Relatively short sequences may be chemically synthesised and ligated together to provide a longer sequence.

25

There is another group of proteins from *S.pneumoniae* which have been identified using the bacterial expression system described herein. These are known proteins from *S.pneumoniae*, which have not previously been identified as antigenic proteins. The amino acid sequences of this group of proteins, together with DNA sequences coding for them are shown in Table 3. These proteins, or homologues, derivatives and/or fragments thereof also find use as antigens/immunogens. Thus, in another aspect the present invention provides the use of a protein or polypeptide having a sequence selected from those shown in Tables 1-3, or homologues, derivatives and/or fragments thereof, as an immunogen/antigen.

30

In yet a further aspect the present invention provides an immunogenic/antigenic composition comprising one or more proteins or polypeptides selected from those whose sequences are shown in Tables 1-3, or homologues or derivatives thereof, and/or fragments of any of these. In preferred embodiments, the immunogenic/antigenic composition is a vaccine or is for use in a diagnostic assay.

In the case of vaccines suitable additional excipients, diluents, adjuvants or the like may be included. Numerous examples of these are well known in the art.

It is also possible to utilise the nucleic acid sequences shown in Tables 1-3 in the preparation of so-called DNA vaccines. Thus, the invention also provides a vaccine composition comprising one or more nucleic acid sequences as defined herein. DNA vaccines are described in the art (see for instance, Donnelly *et al*, *Ann. Rev. Immunol.*, 15:617-648 (1997)) and the skilled person can use such art described techniques to produce and use DNA vaccines according to the present invention.

As already discussed herein the proteins or polypeptides described herein, their homologues or derivatives, and/or fragments of any of these, can be used in methods of detecting/diagnosing *S.pneumoniae*. Such methods can be based on the detection of antibodies against such proteins which may be present in a subject. Therefore the present invention provides a method for the detection/diagnosis of *S.pneumoniae* which comprises the step of bringing into contact a sample to be tested with at least one protein, or homologue, derivative or fragment thereof, as described herein. Suitably, the sample is a biological sample, such as a tissue sample or a sample of blood or saliva obtained from a subject to be tested.

In an alternative approach, the proteins described herein, or homologues, derivatives and/or fragments thereof, can be used to raise antibodies, which in turn can be used to detect the antigens, and hence *S.pneumoniae*. Such antibodies form another aspect of

the invention. Antibodies within the scope of the present invention may be monoclonal or polyclonal.

5 Polyclonal antibodies can be raised by stimulating their production in a suitable animal host (e.g. a mouse, rat, guinea pig, rabbit, sheep, goat or monkey) when a protein as described herein, or a homologue, derivative or fragment thereof, is injected into the animal. If desired, an adjuvant may be administered together with the protein. Well-known adjuvants include Freund's adjuvant (complete and incomplete) and aluminium hydroxide. The antibodies can then be purified by virtue of their binding to a protein as
10 described herein.

Monoclonal antibodies can be produced from hybridomas. These can be formed by fusing myeloma cells and spleen cells which produce the desired antibody in order to form an immortal cell line. Thus the well-known Kohler & Milstein technique (*Nature* 15 256 (1975)) or subsequent variations upon this technique can be used.

Techniques for producing monoclonal and polyclonal antibodies that bind to a particular polypeptide/protein are now well developed in the art. They are discussed in standard immunology textbooks, for example in Roitt *et al*, *Immunology* second edition (1989),
20 Churchill Livingstone, London.

In addition to whole antibodies, the present invention includes derivatives thereof which are capable of binding to proteins etc as described herein. Thus the present invention includes antibody fragments and synthetic constructs. Examples of antibody fragments and synthetic constructs are given by Dougall *et al* in *Tibtech* 12 372-379 (September 25 1994).

Antibody fragments include, for example, Fab, F(ab')₂ and Fv fragments. Fab fragments (These are discussed in Roitt *et al* [*supra*]). Fv fragments can be modified to produce a synthetic construct known as a single chain Fv (scFv) molecule. This includes a peptide
30

linker covalently joining V_h and V_l regions, which contributes to the stability of the molecule. Other synthetic constructs that can be used include CDR peptides. These are synthetic peptides comprising antigen-binding determinants. Peptide mimetics may also be used. These molecules are usually conformationally restricted organic rings that mimic the structure of a CDR loop and that include antigen-interactive side chains.

Synthetic constructs include chimaeric molecules. Thus, for example, humanised (or primatised) antibodies or derivatives thereof are within the scope of the present invention. An example of a humanised antibody is an antibody having human framework regions, 10 but rodent hypervariable regions. Ways of producing chimaeric antibodies are discussed for example by Morrison *et al* in PNAS, **81**, 6851-6855 (1984) and by Takeda *et al* in Nature, **314**, 452-454 (1985).

Synthetic constructs also include molecules comprising an additional moiety that provides the molecule with some desirable property in addition to antigen binding. For example the moiety may be a label (e.g. a fluorescent or radioactive label). Alternatively, it may be a pharmaceutically active agent.

Antibodies, or derivatives thereof, find use in detection/diagnosis of *S.pneumoniae*. Thus, 20 in another aspect the present invention provides a method for the detection/diagnosis of *S.pneumoniae* which comprises the step of bringing into contact a sample to be tested and antibodies capable of binding to one or more proteins described herein, or to homologues, derivatives and/or fragments thereof.

In addition, so-called "Affibodies" may be utilised. These are binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain (Nord *et al.*,). Thus, Small protein domains, capable of specific binding to different target proteins can be selected using combinatorial approaches.

It will also be clear that the nucleic acid sequences described herein may be used to detect/diagnose *S.pneumoniae*. Thus, in yet a further aspect, the present invention provides a method for the detection/diagnosis of *S.pneumoniae* which comprises the step of bringing into contact a sample to be tested with at least one nucleic acid sequence as described herein. Suitably, the sample is a biological sample, such as a tissue sample or a sample of blood or saliva obtained from a subject to be tested. Such samples may be pre-treated before being used in the methods of the invention. Thus, for example, a sample may be treated to extract DNA. Then, DNA probes based on the nucleic acid sequences described herein (ie usually fragments of such sequences) may be used to detect nucleic acid from *S.pneumoniae*.

In additional aspects, the present invention provides:

- (a) a method of vaccinating a subject against *S.pneumoniae* which comprises the step of administering to a subject a protein or polypeptide of the invention, or a derivative, homologue or fragment thereof, or an immunogenic composition of the invention;
- (b) a method of vaccinating a subject against *S.pneumoniae* which comprises the step of administering to a subject a nucleic acid molecule as defined herein;
- (c) a method for the prophylaxis or treatment of *S.pneumoniae* infection which comprises the step of administering to a subject a protein or polypeptide of the invention, or a derivative, homologue or fragment thereof, or an immunogenic composition of the invention;
- (d) a method for the prophylaxis or treatment of *S.pneumoniae* infection which comprises the step of administering to a subject a nucleic acid molecule as defined herein;

- (e) a kit for use in detecting/diagnosing *S.pneumoniae* infection comprising one or more proteins or polypeptides of the invention, or homologues, derivatives or fragments thereof, or an antigenic composition of the invention; and
- 5 (f) a kit for use in detecting/diagnosing *S.pneumoniae* infection comprising one or more nucleic acid molecules as defined herein.

Given that we have identified a group of important proteins, such proteins are potential targets for anti-microbial therapy. It is necessary, however, to determine whether each
10 individual protein is essential for the organism's viability. Thus, the present invention also provides a method of determining whether a protein or polypeptide as described herein represents a potential anti-microbial target which comprises antagonising, inhibiting or otherwise interfering with the function or expression of said protein and determining whether *S.pneumoniae* is still viable.

15 A suitable method for inactivating the protein is to effect selected gene knockouts, ie prevent expression of the protein and determine whether this results in a lethal change. Suitable methods for carrying out such gene knockouts are described in Li *et al*,
P.N.A.S., **94**:13251-13256 (1997) and Kolkman *et al*, **178**:3736-3741 (1996).

20 In a final aspect the present invention provides the use of an agent capable of antagonising, inhibiting or otherwise interfering with the function or expression of a protein or polypeptide of the invention in the manufacture of a medicament for use in
25 the treatment or prophylaxis of *S.pneumoniae* infection.

As mentioned above, we have used a bacterial expression system as a means of identifying those proteins which are surface associated, secreted or exported and thus, would find use as antigens.

The information necessary for the secretion/export of proteins has been extensively studied in bacteria. In the majority of cases, protein export requires a signal peptide to be present at the N-terminus of the precursor protein so that it becomes directed to the translocation machinery on the cytoplasmic membrane. During or after translocation, the signal peptide is removed by a membrane associated signal peptidase. Ultimately the localization of the protein (i.e. whether it be secreted, an integral membrane protein or attached to the cell wall) is determined by sequences other than the leader peptide itself.

We are specifically interested in surface located or exported proteins as these are likely to be antigens for use in vaccines, as diagnostic reagents or as targets for therapy with novel chemical entities. We have therefore developed a screening vector-system in *Lactococcus lactis* that permits genes encoding exported proteins to be identified and isolated. We provide below a representative example showing how given novel surface associated proteins from *Streptococcus pneumoniae* have been identified and characterized. The screening vector incorporates the staphylococcal nuclease gene *nuc* lacking its own export signal as a secretion reporter. Staphylococcal nuclease is a naturally secreted heat-stable, monomeric enzyme which has been efficiently expressed and secreted in a range of Gram positive bacteria (Shortle, *Gene*, **22**:181-189 (1983); Kovacevic *et al.*, *J. Bacteriol.*, **162**:521-528 (1985); Miller *et al.*, *J. Bacteriol.*, **169**:3508-3514 (1987); Liebl *et al.*, *J. Bacteriol.*, **174**:1854-1861 (1992); Le Loir *et al.*, *J. Bacteriol.*, **176**:5135-5139 (1994); Poquet *et al.*, *J. Bacteriol.*, **180**:1904-1912 (1998)).

Recently, Poquet *et al.* ((1998), *supra*) have described a screening vector incorporating the *nuc* gene lacking its own signal leader as a reporter to identify exported proteins in Gram positive bacteria, and have applied it to *L. lactis*. This vector (pFUN) contains the pAMβ1 replicon which functions in a broad host range of Gram-positive bacteria in addition to the ColE1 replicon that promotes replication

in *Escherichia coli* and certain other Gram negative bacteria. Unique cloning sites present in the vector can be used to generate transcriptional and translational fusions between cloned genomic DNA fragments and the open reading frame of the truncated nuc gene devoid of its own signal secretion leader. The *nuc* gene makes an ideal reporter gene because the secretion of nuclease can readily be detected using a simple and sensitive plate test: Recombinant colonies secreting the nuclease develop a pink halo whereas control colonies remain white (Shortle, (1983), *supra*; Le Loir *et al.*, (1994), *supra*).

Thus, the invention will now be described with reference to the following representative example, which provides details of how the proteins, polypeptides and nucleic acid sequences described herein identified as antigenic targets.

We describe herein the construction of three reporter vectors and their use in *L. lactis* to identify and isolate genomic DNA fragments from *Streptococcus pneumoniae* encoding secreted or surface associated proteins.

EXAMPLE 1

20 (i) Construction of the pTREP1-nuc series of reporter vectors

(a) Construction of expression plasmid pTREP1

The pTREP1 plasmid is a high-copy number (40-80 per cell) theta-replicating gram positive plasmid, which is a derivative of the pTREX plasmid which is itself a derivative of the previously published pIL253 plasmid. pIL253 incorporates the broad Gram-positive host range replicon of pAMβ1 (Simon and Chopin, *Biochimie*, 70:559-567 (1988)) and is non-mobilisable by the *L. lactis* sex-factor. pIL253 also lacks the *tra* function which is necessary for transfer or efficient mobilisation by

conjugative parent plasmids exemplified by pIL501. The Enterococcal pAM β 1 replicon has previously been transferred to various species including *Streptococcus*, *Lactobacillus* and *Bacillus* species as well as *Clostridium acetobutylicum*, (Oultram and Klaenhammer, *FEMS Microbiological Letters*, 27:129-134 (1985); Gibson *et al.*, 5 {FULL REF NEEDED} 1979; LeBlanc *et al.*, *Proceedings of the National Academy of Science USA*, 75:3484-3487 (1978)) indicating the potential broad host range utility. The pTREP1 plasmid represents a constitutive transcription vector.

The pTREX vector was constructed as follows. An artificial DNA fragment 10 containing a putative RNA stabilising sequence, a translation initiation region (TIR), a multiple cloning site for insertion of the target genes and a transcription terminator was created by annealing 2 complementary oligonucleotides and extending with Tfl DNA polymerase. The sense and anti-sense oligonucleotides contained the recognition sites for NheI and BamHI at their 5' ends respectively to facilitate 15 cloning. This fragment was cloned between the XbaI and BamHI sites in pUC19NT7, a derivative of pUC19 which contains the T7 expression cassette from pLET1 (Wells *et al.*, *J. Appl. Bacteriol.*, 74:629-636 (1993)) cloned between the EcoRI and HindIII sites. The resulting construct was designated pUCLEX. The 20 complete expression cassette of pUCLEX was then removed by cutting with HindIII and blunting followed by cutting with EcoRI before cloning into EcoRI and SacI (blunted) sites of pIL253 to generate the vector pTREX (Wells and Schofield, *In Current advances in metabolism, genetics and applications-NATO ASI Series, H* 98:37-62 (1996)). The putative RNA stabilising sequence and TIR are derived from the *Escherichia coli* T7 bacteriophage sequence and modified at one nucleotide 25 position to enhance the complementarity of the Shine Dalgarno (SD) motif to the ribosomal 16s RNA of *Lactococcus lactis* (Schofield *et al.*: pers. coms: University of Cambridge Dept. Pathology.)

A *Lactococcus lactis* MG1363 chromosomal DNA fragment exhibiting promoter activity which was subsequently designated P7 was cloned between the EcoRI and BglII sites present in the expression cassette, creating pTREX7. This active promoter region had been previously isolated using the promoter probe vector pSB292 (Waterfield *et al.*, *Gene*, **165**:9-15 (1995)). The promoter fragment was amplified by PCR using the Vent DNA polymerase according to the manufacturer.

The pTREP1 vector was then constructed as follows. An artificial DNA fragment which included a transcription terminator, the forward pUC sequencing primer, a promoter multiple cloning site region and a universal translation stop sequence was created by annealing two overlapping partially complementary synthetic oligonucleotides together and extending with sequenase according to manufacturers instructions. The sense and anti-sense (pTREP_F and pTREP_R) oligonucleotides contained the recognition sites for EcoRV and BamHI at their 5' ends respectively to facilitate cloning into pTREX7. The transcription terminator was that of the *Bacillus penicillinase* gene, which has been shown to be effective in *Lactococcus* (Jos *et al.*, *Applied and Environmental Microbiology*, **50**:540-542 (1985)). This was considered necessary as expression of target genes in the pTREX vectors was observed to be leaky and is thought to be the result of cryptic promoter activity in the origin region (Schofield *et al.* pers. coms. University of Cambridge Dept. Pathology.). The forward pUC primer sequencing was included to enable direct sequencing of cloned DNA fragments. The translation stop sequence which encodes a stop codon in 3 different frames was included to prevent translational fusions between vector genes and cloned DNA fragments. The pTREX7 vector was first digested with EcoRI and blunted using the 5' - 3' polymerase activity of T4 DNA polymerase (NEB) according to manufacturer's instructions. The EcoRI digested and blunt ended pTREX7 vector was then digested with Bgl II thus removing the P7 promoter. The artificial DNA fragment derived from the annealed synthetic oligonucleotides was

then digested with EcoRV and Bam HI and cloned into the EcoRI(blunted)-Bgl II digested pTREX7 vector to generate pTREP. A *Lactococcus lactis* MG1363 chromosomal promoter designated P1 was then cloned between the EcoRI and BglII sites present in the pTREP expression cassette forming pTREP1. This promoter was 5 also isolated using the promoter probe vector pSB292 and characterised by Waterfield *et al.*, (1995), *supra*. The P1 promoter fragment was originally amplified by PCR using vent DNA polymerase according to manufacturers instructions and cloned into the pTREX as an EcoRI-BglII DNA fragment. The EcoRI-BglII P1 promoter containing fragment was removed from pTREX1 by restriction enzyme 10 digestion and used for cloning into pTREP (Schofield *et al.* pers. coms. University of Cambridge, Dept. Pathology.).

(b) **PCR amplification of the *S. aureus* nuc gene.**

15 The nucleotide sequence of the *S. aureus* nuc gene (EMBL database accession number V01281) was used to design synthetic oligonucleotide primers for PCR amplification. The primers were designed to amplify the mature form of the nuc gene designated nucA which is generated by proteolytic cleavage of the N-terminal 19 to 21 amino acids of the secreted propeptide designated Snase B (Shortle, (1983), 20 *supra*). Three sense primers (nucS1, nucS2 and nucS3, Appendix 1) were designed, each one having a blunt-ended restriction endonuclease cleavage site for EcoRV or SmaI in a different reading frame with respect to the nuc gene. Additionally BglII and BamHI were incorporated at the 5' ends of the sense and anti-sense primers respectively to facilitate cloning into BamHI and BglII cut pTREP1. The sequences 25 of all the primers are given in Appendix 1. Three nuc gene DNA fragments encoding the mature form of the nuclease gene (NucA) were amplified by PCR using each of the sense primers combined with the anti-sense primer described above. The nuc gene fragments were amplified by PCR using *S. aureus* genomic DNA template,

Vent DNA Polymerase (NEB) and the conditions recommended by the manufacturer.

An initial denaturation step at 93 °C for 2 min was followed by 30 cycles of denaturation at 93 °C for 45 sec, annealing at 50 °C for 45 seconds, and extension at 73 °C for 1 minute and then a final 5 min extension step at 73 °C. The PCR amplified products were purified using a Wizard clean up column (Promega) to remove unincorporated nucleotides and primers.

5 (c) Construction of the pTREP1-nuc vectors

10 The purified nuc gene fragments described in section b were digested with Bgl II and BamHI using standard conditions and ligated to BamHI and BglII cut and dephosphorylated pTREP1 to generate the pTREP1-nuc1, pTREP1-nuc2 and pTREP1-nuc3 series of reporter vectors. General molecular biology techniques were carried out using the reagents and buffer supplied by the manufacturer or using 15 standard conditions(Sambrook and Maniatis, (1989), *supra*). In each of the pTREP1-nuc vectors the expression cassette comprises a transcription terminator, lactococcal promoter P1, unique cloning sites (BglII, EcoRV or SmaI) followed by the mature form of the nuc gene and a second transcription terminator. Note that the sequences required for translation and secretion of the nuc gene were deliberately excluded in 20 this construction. Such elements can only be provided by appropriately digested foreign DNA fragments (representing the target bacterium) which can be cloned into the unique restriction sites present immediately upstream of the *nuc* gene.

In possessing a promoter, the pTREP1-nuc vectors differ from the pFUN vector described by Poquet *et al.* (1998), *supra*, which was used to identify *L. lactis* exported proteins by screening directly for Nuc activity directly in *L. lactis*. As the pFUN vector does not contain a promoter upstream of the *nuc* open reading frame the cloned genomic DNA fragment must also provide the signals for transcription in

addition to those elements required for translation initiation and secretion of Nuc. This limitation may prevent the isolation of genes that are distant from a promoter for example genes which are within polycistronic operons. Additionally there can be no guarantee that promoters derived from other species of bacteria will be recognised and functional in *L. lactis*. Certain promoters may be under stringent regulation in the natural host but not in *L. lactis*. In contrast, the presence of the P1 promoter in the pTREP1-nuc series of vectors ensures that promoterless DNA fragments (or DNA fragments containing promoter sequences not active in *L. lactis*) will still be transcribed.

10

(d) Screening for secreted proteins in *S. pneumoniae*

Genomic DNA isolated from *S. pneumoniae* was digested with the restriction enzyme Tru9I. This enzyme which recognises the sequence 5'- TTAA -3' was used because it cuts A/T rich genomes efficiently and can generate random genomic DNA fragments within the preferred size range (usually averaging 0.5 - 1.0 kb). This size range was preferred because there is an increased probability that the P1 promoter can be utilised to transcribe a novel gene sequence. However, the P1 promoter may not be necessary in all cases as it is possible that many Streptococcal promoters are recognised in *L. lactis*. DNA fragments of different size ranges were purified from partial Tru9I digests of *S. pneumoniae* genomic DNA. As the Tru 9I restriction enzyme generates staggered ends the DNA fragments had to be made blunt ended before ligation to the EcoRV or SmaI cut pTREP1-nuc vectors. This was achieved by the partial fill-in enzyme reaction using the 5'-3' polymerase activity of Klenow enzyme. Briefly Tru9I digested DNA was dissolved in a solution (usually between 10-20 µl in total) supplemented with T4 DNA ligase buffer (New England Biolabs; NEB) (1X) and 33 µM of each of the required dNTPs, in this case dATP and dTTP. Klenow enzyme was added (1 unit Klenow enzyme (NEB) per µg of

DNA) and the reaction incubated at 25°C for 15 minutes. The reaction was stopped by incubating the mix at 75°C for 20 minutes. EcoRV or SmaI digested pTREP-nuc plasmid DNA was then added (usually between 200-400 ng). The mix was then supplemented with 400 units of T4 DNA ligase (NEB) and T4 DNA ligase buffer (1X) and incubated overnight at 16°C. The ligation mix was precipitated directly in 100% Ethanol and 1/10 volume of 3M sodium acetate (pH 5.2) and used to transform *L. lactis* MG1363 (Gasson, 1983). Alternatively, the gene cloning site of the pTREP-nuc vectors also contains a BglII site which can be used to clone for example Sau3AI digested genomic DNA fragments.

10 *L. lactis* transformant colonies were grown on brain heart infusion agar and nuclease secreting (Nuc⁺) clones were detected by a toluidine blue-DNA-agar overlay (0.05 M Tris pH 9.0, 10 g of agar per litre, 10 g of NaCl per liter, 0.1 mM CaCl₂, 0.03 % wt/vol. salmon sperm DNA and 90 mg of Toluidine blue O dye) essentially as described by Shortle, 1983, *supra* and Le Loir *et al.*, 1994, *supra*). The plates were 15 then incubated at 37°C for up to 2 hours. Nuclease secreting clones develop an easily identifiable pink halo. Plasmid DNA was isolated from Nuc⁺ recombinant *L. lactis* clones and DNA inserts were sequenced on one strand using the NucSeq sequencing primer described in Appendix 1, which sequences directly through the DNA insert.

20 **Isolation of Genes Encoding Exported Proteins from
*S. pneumoniae***

A large number of gene sequences putatively encoding exported proteins in *S. pneumoniae* have been identified using the nuclease screening system. These have 25 now been further analysed to remove artefacts. The sequences identified using the screening system have been analysed using a number of parameters:

1. All putative surface proteins were analysed for leader/signal peptide sequences using the software programs Sequencher (Gene Codes Corporation) and DNA Strider (Marck, *Nucleic Acids Res.*, 16:1829-1836 (1988)). Bacterial signal peptide sequences share a common design. They are characterised by a short 5 positively charged N-terminus (N region) immediately preceding a stretch of hydrophobic residues (central portion-h region) followed by a more polar C-terminal portion which contains the cleavage site (c-region). Computer software is available which allows hydropathy profiling of putative proteins and which can readily identify the very distinctive hydrophobic portion (h-region) typical of leader peptide 10 sequences. In addition, the sequences were checked for the presence of or absence of a potential ribosomal binding site (Shine-Dalgarno motif) required for translation initiation of the putative nuc reporter fusion protein.

2. All putative surface protein sequences were also matched with all of the protein/DNA sequences using the publicly databases [OWL-proteins inclusive of 15 SwissProt and GenBank translations]. This allows us to identify sequences similar to known genes or homologues of genes for which some function has been ascribed. Hence it has been possible to predict a function for some of the genes identified using the LEEP system and to unequivocally establish that the system can be used to 20 identify and isolate gene sequences of surface associated proteins. We should also be able to confirm that these proteins are indeed surface related and not artifacts. The LEEP system has been used to identify novel gene targets for vaccine and therapy.

3. Some of the genes identified proteins did not possess a typical leader peptide sequence and did not show homology with any DNA/protein sequences in the database. Indeed these proteins may indicate the primary advantage of our 25 screening method, i.e. the isolation of atypical surface-related proteins, which may have been missed in all previously described screening protocols or approaches based on sequence homology searches.

In all cases, only partial gene sequences were initially obtained. Full length genes were obtained in all cases by reference to the TIGR *S.pneumoniae* database (www.tigr.org). Thus, by matching the originally obtained partial sequences with the database, we were able to identify the full length gene sequences. In this way, as described herein, three groups of genes were clearly identified, ie a group of genes encoding previously unidentified *S.pneumoniae* proteins, a second group exhibiting some homology with known proteins from a variety of sources and a third group which encoded known *S.pneumoniae* proteins, which were, however, not known as antigens.

Appendix I - Oligonucleotide primers

nucS1

Bgl II Eco RV

5' - cgagatctgatatctcacaaacagataacggcgtaaatag -3'

nucS2

Bgl II Sma I

5' - gaagatctccccggatcacaaacagataacggcgtaaatag -3'

10

nucS3

Bgl II Eco RV

5'- cgagatctgatatccatcacaacagataacggcgtaaatag -3'

15

nucR

Bam HI

5' - cggatcctatggacctgaatcagcggtgtc -3'

NucSeq

5'- ggatgc~~t~~ttgtttcagggtgtatc -3'

pTREPF

5' - catgatatcggtacctaagctatatcattgtccggcaatggtggtggcttttttgttttagcggataa
caatttcacac -3'

25

pTREPR

5'- gcggatccccgggcttaattaaacactagtcgaagatctcgcaattctccgtgtgaaatt
gttatccgcta -3'

30

pUCF

5' - cgccagggtttcccagtcacgac -3'

VR

5'- tcagggggcgaggacctatg -3'

35

V1

5' - tcgtatgttgtgtggaaatttg -3'

V2

5'- tccggctcgatgttgtgaaattg -3'

TABLE 1

ID4 1200 bp

5 ATGAGAAAATATGTGGTTGTAATCAAGGAAACCTATCTTCGACATGTCGAGTCATGGAGTTCTTCTTTATGGTGA
 TTTCGCCGTTCCCTCTTTAGGAATCTCTGTAGGAATTGGCATCTCCAAGGTTCTCTATGGCTAAAAATAATAAAA
 GTGGCAGTAGTGACAACAGTGCCATCTGTAGCAGAAGGACTGAAGAATGTAATGGTAACTTCGACTATAAA
 GACGAAGCAAGTGCCTAACAGCAATTAAAGAAGAAAAATTAAAGGTTATTGACCATTGATCAAGAAGATAGT
 GTTCTAAAGGCAGTTATCATGGCAAACATCGCTGAAAATGGAATTAAATTGAGGTTACAGGTACACTCAATG
 AACTGCAAACATCAGCTTAATCGTCAACTGCTCCTGTCTCAAGAGCAGGAAAACGCTTAGCGCAGACAATTCA
 ATTACAGAAAAGATTGATGAAGCAAGGAAAATAAAAGTTTCTCAAACAATTGCAAGCAGGTGCCTTAGGATT
 CTTCCTTATGATTCTGATTACCTATGCGGTGTAACAGCTCAGGAAGTGCAGGCTGAAAAGGCACCAAAATT
 10 ATGGAAGTCGTTCTTCTAGCATAAGGGCAAGTCACTATTCTATGCGGGATGATGGCTCTGTTCTAGTGTGTT
 AACGCATATTGGGATCTATGTTGAGGTGGCTGGCTGGCTTCTGCTCTTAAAGATTGCACTTCTGGCTCAGT
 15 CTGGTATTGGATCACCTGGGAGATGCTATCTCACTGAATACCTTGCTCTTATTGATCAGTCTTCTATGTAC
 GTAGTCCTGGCAGCCTCTAGGATCTATGGTTCTGCTCTGAGGACTCAGGGAAAGCCTGTCGCCTTGATGA
 TTTGATTATGGGTGGTTTTGGAGTGACAGCTCTAGGTGCAGCTGGTGACAATCTCCTTGAAGATTGGTTCT
 20 TATACTCCCTTATTGACCTCTTATGCCGTTCTGAACGATTAATGACTATGCGGGGGGAGCAGAAGCATGGA
 TTTCACTTGCTATTACAGTGATTTGCGGTGTTAGCAACAGGATTATCGGACGCATGTATGCTAGTCGTTCT
 CAAACGGATGATTAGGGATTGGAAAACCTTAAACGTCCTTATCTTAAAG
 MRNMWVVIKETYLRHVESWSFFFMVISPLFLGLVISVGIGHLQGSSMAKNKVAVVITVPSVAEGLKNVNGVNFDYKDE
 25 ASAKEAIKEEKLKGYLTDQEDSVLKAVYHGETSENGIKFETGTLNELQNLNRSTASLSQEKEKLAQTIQFTEKIDE
 AKENKKFIQTIAAGALGFFLYMILITYAGVTAQEVASEKGTKIMEVFSSIRASHFYARMMALFLVILTHIGIYVVG
 AAVLLFKDLPFLAQSGILDHLGDAISLNLLFILISLFMFYVLAFLGSMVSRPEDSGKALSPMLIMGGFFGVTLGAA
 GDNLLLKIGSYIPFISTFFMPFRINDYAGGAEAWISLAITVIFAVVATGFIGRMYASLVLTQDDLGWKTFRKRALSYKZ

ID5 1125 bp

30 CCTGGAAAGTCCTGAAAATTATGATAGAATGGTGAAGGAAAATTCAAGGAGAGTAGTAGTGACTCAAATGTT
 GAAAGTCCTCGTATCCATTGTAATCAGTCATACAATGAAGAAAATATCTGCCCTGGTCTAATTGAAGACTAA
 AAAATCAAACCTATCTAAAGAGGATATTGAAATTCTTAAATGCTATGTCACAGGGACACAGCTAT
 35 CATTCACTTAAAGGAGATACAGAGTTAACTCAATTAGATGTATAACATCTAAAGAAAATCAAGC
 TAGTGGTTTAACCTGGGAGTTAACATTCTGTAGGGACCTTATTAAAATTGATGCTCATTCAAAGTTACT
 GAGACTTTGTAATGAAACATTGTCATTATTCAACAAGGTGAATTGCTGTGGGGGCTAGACCGACGATTG
 TCGAAGGAAAAGGAAATGGGAGACCTGTCATCTGTTGAGGAAAATATGTTGGCAGTAGCATTGCCAATT
 ATCGAAATAGTCTGAGGGATAGATATGTTCTCTATTTCATGGAATGTATAACGAGAGGTTTCCAGAAGGT
 40 TGGTTTAGTAAATGAGCAACTTGGCGAAGTGAAGATAATGATAATTGATTAGAATTGAGAATATGGTTATAAA
 ATCCGCTATAGCCCAAGTATTCTATCAGTATATTGACCAACATTCAAGAAAATGCTGATCAAAGTATT
 CAAATGGTTGTGGATTGGCTTGACAAGTCATGTCAGTTAAGTGTGTTATCATTATTCACTATGTTCTGTTA
 TTTGTTTGTGATTGTGTTAGTCAGTATTGACATTGTCACATTGTTACTATGTTACTATTAGGTGCTTATT
 45 TTCTACTTTGTCATTACTCACTTGTGACTTTATTAAACATAAAAATGGTTCTAATTGATGCCCTTATT
 TTATTTCACCTCACTTGCTATTGGCTTGGGACATTGAGGTTAATTAGAGGATTAAATGGAAGAAGGAGT
 ACAAGAGAACATAATTATTGGATAAAATAAGCCAATAAAATGCTATAA
 PGKVLKIMIEWKEKFRVVVTQNVESLLSIVISAYNEEKYLPGLIEDLKNQTPKEDIEILFINAMSTDGTTAIQQFIK
 EDTEFNSIRLYNNPKKNQASGFNLGVKHSGVDLILKIDAHSKVTFVMNNVAIIQGEFVCGGPRPTIVEGKGKWAET
 LHLVEENMGSSIANRNSSEDRYVSSIFHGMYKREVFKVGLVNEQLGRTEDNDIHYRIREYGYKIRYSPSILSYQYIRP
 50 TFKKMLHQKYSNGLWIGLTSHVQFKCLSLFHYPCLFVLSLVSALLPITFVFTLLGAYFLLSLLTLLKHKNGF
 LVMPFILFSIHFAYGLGTIVGLRGFKWKKEYKRTIYLDKISQINQNMIZ

ID11 696 bp

55 ATCATGAAAGAACAAAATACGATAGAATCGATGTTTCAATTAGTTAAAGCTTGTGAAACGCAAGCTAATG
 ATTAAATAGTGGCACTTGTGACAGGTGCGGGGGCTTTGCAATAGCAGTTATTGTTAAAGCCAGAATATACGA
 GTACCACCGAATTACGTAGTGAATCGCAATCAAGGAGACAAGCCGGGGTGCACAAATCAGGATTGCAAGGCAG
 GAACCTTATCTGGTAAAGACTACCGTGAGATTATCCTTCGCAAGGATGTTGGAGGAAGTTGTTCTGATTGAA
 ACTAGATTGACGCCAAGGTTGGCTAATAAAATTAAAGTGACAGTACCACTGTTGAGAGAAGTACGTTGCTAATT
 TCAGTTAATGATCGAGITCCAGAAGAGGCAAGCCGTATCGCTAACTCTTGAGAGAAGTACGTTGCTCAA
 60 AAAATTACCTGTTGACGTCACACTGGAGGAGGCAAGGCCGGCATATCCCCGCTTGCACAAATAT
 TAAACGCAAAACACTAATTGGTTTTGGCAGGGGTGATTGAAACTAGTGTATAGTTCITCATCTTGAACTTTGG

ATACTCGTGTGAAACGTCCGGAAAGATATCGAAAATACATTGCAGATGACACTTTGGGAGTTGTGCCAAACTTGG
GTAAGTTGAAATAG

MMKEQNTIEIDVFQLVKSLWKRKLMILIVALVTGAGAFAYSTFIVKPEYSTRYVVNRNQGDKPGLTNQDLQAGTYL
VKDYREIILSQDVLEEVVSDLKLDDTPKGLANKIKVTVPDTRVISVNDRVEEASRIANSLREVAAQKIIISITRSDVTT
LEEARPAISPSSPKRNLIGFLAGVIGTSVIVLHLELLDTRVRPEDIENTLQMPLLGVVPNLGKLKZ

ID19 555 bp

10 ATGGTAAAAGTAGCAGTTATATTAGCTCAGGGCTTGAAGAAAATTGAAGCCTTGACAGTTGAGATGTCCTGCGTC
GAGCCAATATCACATGTGATATGGTTGGTTGAAGAGCAAGTAACGGGTCGATGCAATCCAAGTAAGAGCAG
ATCATGTCTTGATGGAGATTATCAGACTATGATATGATTTCTTCCTGGAGGTATGCCTGGTTCTGCACATTTA
CGTATAATCAGACCTGATTCAAGAATTGCAAAGCTTCGAGCAAGAAGGGAAAGAAACTAGCAGCCATTGTCG
GCACCAATTGCCCTCAATCAAGCAGAGATATTGAAAATAAGCATACTTGTATGACGGCGTTCAAGAGCAA
15 ATCCTGATGGTCACTACGTCAAGGAAACAGTAGTGGTAGATGGTCAAGTGCACACCAGTCGGGTCTCAACA
GCCCTGCTTGCCTACGGAGTTGGTAGGCAACTAGGAGGGACGCAGAGAGTTACGAACAGGAATGCTTAT
CGAGATGCTTGGTAAAATCAGTAA

20 MVKVAVILAQQFEEIEALTVVDVLRRANITCDMVGEEQVTGSHAIQVRADHVFDGDLSDYDMIVLPGGMPGSAHLR
DNQTLIQELQSFEQEGKKLAAICAAPIALNQAEILKNKRYTCYDGVQEILDGHYVKETVVVDGQLTTSRGPSATALAFA
YELVEQLGGDAESLRGMLYRDVFGKNQZ

ID27 306 bp

25 GTGGTAGGGATGGTAGAACCAACCTAGAAAGCCTTATAAAAGATCTTACAATCATGCTGACATGATTGAGT
GAAGATTAGTTGCTGCTCTCTAGAGACTACTAAAAACTGCCTACTACAAATGAGCAATTGCAAGGAGTCGTC
TCTCAGGCCTGGTCAATCGTAATTGCTCTAAATCCCAACATCCAGCACCTGAGTTGCTCAACTGGCTGCTT
TGTCAAAAGAGAAGAACGAAAGTACAGAGGAACACTGCACCTCTCGCCTATGATGAGGAACCTTTAAATGCT
TTGA

30 MVGMVEPNLESLIKDLYNHARHDLSEDLVAALETTKLPTTNEQLQAVRLSGLVNRELLNPKHAPELLNLARFK
REEAKYRGTATSALMYEELFKMLZ

ID29 945 bp

35 TTGTTCTTAAAAAGAACGAGAGGTAATCAGCATGCGTAAATGGACAAAAGGATTCTCATCTTGGGTGGTG
ACTACCGTTATCGGTTTATCCTGCTTTTGATGGTATCCAATCTGACGGGAATAAGACCTACTTCCATGTC
AGAACCTGCTATGATAGCCGTACGGAAAGCTAACCTTGGCAAGGAAGTCGAAAACCTAGAAATTACTCTCA
CCAACACACCGTCAACATCACAGACTCTTCGATGATCAAATCCACATTCTTACCATCTCTCTGCTCACC
40 ATGATCTTATCACAATCAGAACGATAGAAACTGAGTCACTGATAAGAAACTGCTGAAACTCCGTTCTC
TCTGGAATTGGGGATTCTCATATCGCAAGTAGCTACTCTAGTCGTTTGAGAAGTTATCTCCGACTAAC
AAAGGGAGAACTCTAAAGGGATCAACATCTCAGCAATCGCGGACAACCACCATCATAATGCTAGCCTTGAA
AATGCGACCCCAATACAAACAGCTATATCTCCGAATTGAAGGAAGTCGATACAAAACAGTAAACTCACACG
CCAATATGTTAATATCTTGTACAGCTTACAGATAGTCAGTAGCTCAAGGAAATCCTCCACGCTG
45 AAAATATCCAAGTCCATGGCAAGGTTGACTGCTTCAAGAACATGGTTATCTCAGAATCATCTCTGAC
GCCAACGAAATTACTGGACATCTCAAGAACATGGTTATCTCAGAATCATCTCTGAC
GAGGTACGGAAATTAGCAACCCCTAACAAACTGAAAGAACCGATGTCAAGGATCAACTCATTCGAGATCTGATG
ATAATATTGATCTAATATCACACCAAGCAGACGTTGA

50 MFLKKEREVISMRKWTKGFLIFGVTTVIGFILLFVGIQSDGIKSLLSMSKEPVYDSRTEKLTFGKEVENLEITLHQHTLT
TDSFDDQIHISYHPSLSAHDLITQNDRTLSLTDKLLSETPLSSGIGGILHIASSYSSRFEEVILRPLPKGRTLKGINISANR
GOTTINASLENATLNTNSYLRIEGSRIKNSKLTTPNIVNIFDTLTDSQLESTENHFHAENIQVHGKVELTAKDYLRIID
QKESQRINWDISSNYGSIFQFTREKPESRGTELSNPYKTEKTDVKDQLIARSDDNDLISTPSRRZ

ID30 879 bp

55 ATGAAACAAAGAATGGTTGAAGTAATGATTGTAAAGAACACAAGCAAGAACAGCTGAAGAGCAAGCTCAA
GAGGTTGCAGACAAGGCTGAAGAACAGATAGCGATCTCGATACACCAATTGAAAAGAAATACTEAGTTAGAGGAG
GAAGTCCCCTCAAGCTGAAGTCGAATTGGAAAGGCCAGCAAGAACAGAAAATTGAAGCTCTGAAAGACAGTGAAGC
GAGAACAGAAATTAGAACAAAGGCAAGCTAACATTCTACTGAAGAACAGGCCACTCTTCTAAAGAACAGAAA
60 AAGTCACATAGCTGAAGAGAGCAGAACAGCTCTCTCAGCAAAAAGCAACCACGAAAGAGCCACTCTTATCA
GTAATTCTTATGAAAGCTTATATCCCCGACCAAGCTCAAATCTAGGGATAATGGAAAGAGCAAGTGCCTG
ATTTCGGCTCTGGCTAGTGGAAAGCGATCAAATCTCTACAAGTAAGTGGAAACAAGTACACACACAGTTACAC
ACCCCTCTCTGCTATTCTGTTCTGATCTCTCTTCTTCTAGTATCTATCACATCAAACATGCTTACTATGG

ACATATAGCAAGCATTAAACAGTCGCTTCCCTGAGCAGCTAGCTCCTTAACCTTTCTATCATCTATCCTAG
 TAGCGACAACACTCTTCTCTTTCATCCCTTGGGTAGTTCTGAGACGATITATCCACCAGGAAAAGGA
 CTGGACGCTAGACAAGGTTCTCAACAATATACTGCAACTCTGGCAATCCAACTCTCCTACTGCTATTGCTAGTT
 TCTTGCCTTGTGATAGCCTACGATTACAGCCCCTTGTGTGA

5 MKQEWFESNDFVKTTSKNPKPEEQAEVADKAEEIADLDPIEKNTQLEEVPAEVELESQEEKIEAPEDSEARTEIE
 EKASNSTEEPDLSKETEKVTIAEESQEALPQQKATTKEPLLISLESPYIPDQAPKSRDKWKEQVLDFWSWLVEAIKS
 PTSKLETTSITHSYTAFLLLILFSASSFFSIYHIKHYGHIASINSRFPQLAPLTLFSIILVATTLFFFLLGSFVRRFIH
 QEKDWTLDKVLLQQYSQLAIPISSLLLVSLLSIIAYDLQPSCVZ

10 **ID105 990 bp**
 ATGCAACTCGCTTCTCGGTCTACTCATTGTCGCTGGTACAATTGTCCTAAAAAAGGAAAGAGAGGTAATCA
 GCATGCGTAAATGGACAAAAGGATTCTCATCTTGGTGGTACTACCGTTATCGGCTTATCCTGCTTTGTA
 GGTATCCAATCTGACGGGATTAAGAGCCTACTTCCATGTCACAGAACCTGCTATGATAGCCGTACGGAAAAG
 CTAACCTTGGCAAGGAAGTCGAAAACCTAGAAATTACTCTCCACCAACACGCTCACCATCACAGACTTTCG
 ATGATCAAATCCACATTCTTACCATCCATCTTCTGTCACCATGATCTTATCCAATCAGAACGATAGAAC
 TCTGAGCTCTACTGATAAGAAACTGCTGAAACTCCGTTCTCTCTGGAATTGGTGGGATTCTCATATCGAA
 GTAGCTACTCTAGCTGTTGAGAAGTATTCTCGACTACAAAAGGGAGAACTCTAAAGGGATCAACATCTC
 AGGCAATGGAAGGAAGTCGTATCAAAAACAGTAAACACTCACAACGCCAATATGTTAATATCTTGATACAGTCTT
 ACAGATAGTCAGCTAGAGTCACAGAGAATCACTCCACGCTGAAAATATCCAAGTCCATGGCAAGGTTGAAC
 ACTGCCAAAGATTATCTCAGAATCATCTAGACAGAAAGCCAACGAATTAACTGGGACATCTCAAGCAAC
 TATGGTCTATCTCCAATTCAACAGAGAAAAGCCTGAATCAAGAGGTACGGAAATTAAAGCAACCTTACAAA
 GAAAAAACCGATGTCAAGGATCAACTCATTGCGAGATCTGATGATAATTGATCTAATATCCACACCAAGCAGA
 CGTTGA

20 MQLASSVSYSLVWYNLFKKEREVISMRKWTKGLIFGVVTVIGFILLFGIQSDGIKSSLMSKEPVYDSRTEKLTFGK
 EVENLEITLHQHTLTITDSFDDQIHISYHPSLSAHDLITQNDRTLSLTDKLSSETPFLSSGIGGILHASSYSSRFEEVILR
 LPKGRTLKGINISANRGQTIIINASLENATLNTNSYILRIEGSRKNSKLTPNIVNIFDTVLTDQSLESTENHFHAENIQVH
 GKVELTAKDYLRILDQKESQRINWDISNSYGSIFQFTREKPESRGTELSPYKTEKTDVKDQLIARSDDNIDLSTSRRZ

25 **ID107 -78bp**

30 35 ATGATATGAAAATGAAGCAGGGAGGGAGCAGGGCGTGTGGGATGGAGAGTGGGGAGGGACGCTGCTATT
 AATC

40 MICKMKQGGSRACWGWRVGRCYFN

45 **ID109 714 bp**

45 CGATAAAGAGGCCCTGAGTAATCTAATTGAGATTGAAATGGAGAGATTATGGGCTTGATTGGTCATAATGG
 GGCTGAAAATCGACCACTATAAAATCCCTAGTCAGTATCATTCACCCAGCAGGGCGTATTGGTAGACGGT
 CAGGAGTTATCGGAAAATCGCTGGCTATTAAACGAAAGATTGGCTACGTAGCAGACTGCCGTACTTATTTAC
 GCTTAACGCCAATGAATTGGGATTGATCGCCTCATCTATGATCTGAGTAGCTGACTTGGAGGCTAGTCT
 AGCTAGGCTATTGAACGTTTTGATTGCTGAAAATCGCTACGGTACGTTGAGAAGTAACTCTTCTCACGGAATGCGTC
 AGAAAAGTCTTGTATCGGAGCAGCTCTGTGATCCCAGATATTGGGTTGGACGAACCCCTGACTGGTTGG
 50 TCCCCAGGTGCTTGTGATTGAAACAGATGATGAAGGAACATGCACAAAAGGGAGACAGTCTTGTGTTCAAC
 TCATGCTCTAGAGGTGGAGAGCAAGTCTGTGATCGGATTGCCATTGAAAGGGGATTGATTATTGTGGT
 AAGGTAGAGGACTTGAGGAAAGACCACCCAGACCAGTCTTGGAAAGTATCACCTAGTCTGCTGGTAGAAAA
 GAGGAGGTTGCGGATGCGTCAAGGTATTAA

55 DKEALSNLNQIENGIMGLIGHNGAGKSTTIKSLVSIISPSSGRILVDGQELSENRLAKRKIGYVADSPDLFLRLTANE
 WELIASSYDLSRSDEASLARLLNVDFEAENRYQVIETLSHMRQKVFIGALLSDPDIVWLDEPLTGLDPQAADF
 MMKEHAQKGKTVLFSTHVLEVAEQVCDRIAILKKHLYCGKVEDLRKDHPDQSLEIYLSLAGRKEEVADASQGHZ

60 **ID112 360 bp**

60 ATGGCTTGTTCAGAGAGAGGAGCAGTACGGAGACACCAATGGCAAGTCCAATAATGAGACCTATGATGGTT
 CCGACGATAGAGATTAAAGAGTGAATCCAGCACCACGCAAGAGTTGTCAGTTGCAAGTAAAGAATTAGCA
 ACTTGGCTAAAGAAACTACTGCTAGTCTCTCAGTTGTTAGCTTCGGCAGGTTGTTGATCATACGATCCAT

CAAGGCAACTGGTCATCTTTGAATGGTTCAATGCTGGCATTGATTGGCTAATACGATTGTCACTTACGAA
GCCCGATAGCGATAGCTGTATCTTCTCCCAGTTGAAACCAGGTTCTACTTGA

5 MALFSERGAVRKTPMASPIMRPMMVPTIEIKRVIPAPRKSCQFSERILATWLKKLLLSSVVVASAGCSLIIRSIKATWSS
FEMVSQLALIWLIRLSFLRSPIAIAVSSSPVLKPGSTZ

TABLE 2

ID2 840 bp

5 ATGGGAATTGCTCTAGAAAATGTGAATTACATATCAAGAAGGTACTCCCTAGCTTCAGCAGCTTGTGGATG
 TTTCTTGACGATTGAAGATGGCTTATACAGCTTAATTGGCACACAGGTAGTGGTAAATCAACTATTTACA
 ACTCTTAAATGGTTATTGGTGCCTAAGGAGTGTGGGTTTGTACCTTAATCACCTGACTCTAAA
 AATAAAAGATATTGCTCAAATTAGAAAACAGGTTGGCTGGTATTCAGTTGCTGAAATCAGATTGGAGAAA
 CGGTTTGAAGGACGTTGCTTGGACCGCAAATTGGAGTTCTGAAGAAGATGCTGTGAAGACTGCGCGTGA
 GAAACTGGCTCTGGTGGAAATTGATGAATCACTTTGATCGTAGTCCGTTGAGCTGTCAAGGGGGACAAAATGAGA
 10 CGTGTGCCATTGCAGGCATACTTGCCTGGAGCCAGCTATATTAGTCTTAGATGAGCCAACAGCTGGTCAAGATC
 CTCAGGGAGAAAAGAGTTGATGACCCCTGTCAAAACTCACCAGTCAGGGATGACCATGCTTGGTAAACGC
 ATTGATGGATGATGTTGCTGAATATGCAAGTCTATGTAATGAAAAGGGACGTTAGTAAAGGGGGCA
 15 AACCAAGTGTGCTTCAAGACGTTGTTTATGAGAAGATTCAGTTGGGAGTACCTAAAATTACGGCCTTGT
 TAAACGATTGGCTGATAGAGGCGTGTCAATTAAACGATTACCGATTAAGATAGAGGAGTTCAAGGAGTCGCTAAA
 TGGATAG

MGIALEVNFTYQEGTPLASAALSDVSLIEDGSYTALIGHTGSGKSTILQLLNGLLPSQGSVRVFDTLITSTSKNKDIR
 20 QIRKQVGLVFQFAENQIFEETVLKDVAFGPQNFGVSEEDAVKTAKEKLALVGIDESLFDRSPFELSGQMRRVIAIGILA
 MEPAILVLDEPTAGLDPLGRKELMTLFKKLHQSGMTIVLVTHLMDDVAEYANQVYMEKRLVKGGKPSDVFQDV
 FMEEVQLGVPKITAFCKRЛАDRGVFSKRLPKIEEFKESLNGZ

ID 3 6360 bp

25 TACCCGGTAGTCTAGCAGACACATCTAGCTCTGAAGATGCTTAAACATCTGTATAAAGAAAAAGTAGCAGAA
 AATAAAAGAGAAAACATGAAAATATCCATAGTGTCTGAAACTTCACAGGATTITAAGAGAAGAAAACAGCAGTC
 ATTAAGGAAAAGAGTTGTTAGTAAAATCTGTGATAGACAATAACACTAGCAATGAAGAAGCAAAAATCAA
 GAAGAAAATTCAAATAATCCAAAGGAGATTACGGACTCATTTGTGAATAAAACACAGAAAATCCAAAAAA
 GAAGATAAAGTTGTCTATATTGCTGAATTAAAGATAAAGAATCTGGAGAAAAGCAATCAAGGAACATATCCAGT
 30 CTTAAGAATACAAAAGTTTATATACTTGTAGATAATTAAACGGTAGTGCCTAGAGAAAACAACACTCCAGATAACT
 TGGACAAAATTAAACAAATAGAAGGTATTTCATCGGTTGAAGGGCACAAAAGTCCAACCCATGATGAATCATG
 CCAGAAAGGAAATTGGAGTTGAGGAAGCTATTGATACCTAAAGTCTATCAATGCTCCGTTGGAAAATTITGA
 TGTTAGAGGTATGGTCATTCAAAATATCGATACTGGAACAGATTTAGACATAAGGCTATGAGAATCGATGATGA
 35 TGCCAAAGCCTCAATGAGATTTAAAAGAACGACTAAAAGGCACTGATAAAAATTATTGGTTGAGTGAATAAAAT
 CCCATCGGTTCAATTATAATGGTGGCAAATCACTGTAGAAAATATGATGATGGAAGGGATTATTITGAC
 CCACATGGGATGCATATTGCAAGGATCTTGTGAAATGATACTGAAAGACATCAAAAACCTTAAACGGCATA
 GATGGAATTGCACTTAATGCAAAATTCTTACAAAATGTATTCTGACCGCAGGATCTGGTTTGCGGGTGTG
 AAACAATTTCATGCTATTGAGATTCTATCAAACACAAACGTTGATGTTCTGGTATCATCTGGTTTACAGG
 AACAGGTCTGTAGGTGAGAAATTGGCAAGCTATTGGGCTTAAAGAAAAGCAGGCATTCATGGTTGTCG
 40 TACGGGTAACATGCACTTCTTCATGGATTAGTAGCAAAATCTGATAATGACGACATCAAAACAGTTGAG
 ACTGGAAATGTAACAAAGCAACTGCAAGCATGAAGATGCGATAGCGGTGCTTCGTAAAAATCAAACAGTTGAG
 TTGATAAAGTTAACATAGGTGGAGAAAAGTTAAATACAGAAATATAGGGCCTTTTCGATAAGAGTAAATC
 ACAACAAATGAAGATGGAACAAAAGCTCTAGTAAATTAAAATTGTATATATAGGCAAGGGCAAGGACAGAT
 45 TTGATAGGTTGGATCTAGGGCAAATTGCACTGAGTGTAGAATTATAACAGGATTTAAAATGCTTAA
 AAAAGCTATGGATAAGGGTGCACGCGCATTATGGTTGAAATACTGTAATTACTACAATAGAGATAATTGGA
 CAGAGCTTCAGCTATGGGATATGAGGGATGAAGGGATGAAGGTACTAAAAGTCAGTGTTCATTCAGGAGATGATG
 GTGTAAGGCTATGGAACATGATTAATCTGATAAAAAGCTGAAGTCAAAAGAAATAAAAGAAGATTTAAAG
 50 ATAAATTGGAGCAATACTATCCAATTGATATGGAAGTTAAATCACAACAAACCGAATGTAGGTGACGAAAAG
 AGATTGACTTAAAGTTGACCTGACACAGACAAAGAACACTCTATAAAAGAAGATATCATGTTCCAGCAGGATCTA
 CATCTGGGGGCAAGAATAGATTACTTTAAACCCGATGTTTCAGCACCTGGTAAAAAATTAAATCCACGCT
 TAATGTTATAATGGCAAATCAACTTATGGTATATGTCAGGAACACTGATGGCAGCTTCATGTTCCAGCT
 ACTGTTTGATAGACGGAAATTAAAGGAAATGCTGAGAAGACCTGTATTGAAAATCTTAAGGGAGATGACAAA
 ATAGATCTTACAAGCTTCAAAATTGCCCCTACAAAATACTGCGCAGCTATGATGGATGCAACTCTTGGAAAAG
 55 AAAAAGCTAATCTTGCATCACCTAGACACAAGGGAGCAGGCCATTAAATGTCAGGAACTGTTGAGAAAATG
 AAGTTGAGCAACTTCAAAACACTGATTCTAAAGGTTGGTAAACTCATATGTTCCATTCTCTTAAGGAAAT
 AAAAGGTGATTTAAACTTACAATCAAGCTCACAATACATCAAACAGACCTTGACTTTAAAGTTCAGCA
 TCAGCGATAACTACAGATTCTCTAACTGACAGATTAAAGCTGATGAAACATATAAGATGAAAATCTCAGAT
 GGTAGCAATGTTCCAGAAATTCCACCCAGAAAAGTCAAAGGAGCAGGAAATATCACATTGAGCATGATCTT
 ACTATAGGCGCAATTCTAGCTTGTATTGAGTGTGGGTTATAATGTTGGAGAGGGCAAAACAAAATAATTG
 TAGAATCATTTATTCTTGTAGTCAGTGGAGGATGGCTTAATGGGATTGCTGGGATTGGAACCAACGAA
 AACCTTCTTGTGATGCTCTAAATGGGATTGCTGGGATTGGAACCAACGAAACATCTTGATAAATGGGCTTG
 GGAAGAAGGGTCAAATCAAAACACTGGGAGGTTATGATGATGTTGAGTAAACGAAAATCCAGGAACTTAAA
 TAAGGGATTGGAGAGAACATGGTATAGATAAATTAAATCCAGCAGGAGTTACAAAATAGAAAAGATAAAA
 TACAACATCCCTGGATCAAATCCAGAATTATTGCTTCATAACGAAGGGATCAACGCTCCATCATCAAGTGGT

TCTAAGATTGCTAACATTATCCTTAGATTCAAATGAAATCCTCAAGATGCTCAACTGAAAGAGGATAACAC
 CTTCTCCACTTGTATTAGAAGTGCAGAAGAAGGATTGATTCAATAGTAAATACAATAAGAGGGAGAAAATC
 AAAGAGACTTAAAGTCATTCGAGAGAACACTTATTAGAGGAATTAAATCTAAAAGCAATGATGCAAAGG
 5 GAATCAAATCATCTAAACTAAAGTTGGGTGACTTGAGTGGGATGACTCATCTATAATCCTAGAGTAGAG
 AAGAAAATGCACCAGAAAGTAAGGATAATCAAGATCCTGCTACTAAGATAAGAGGTCATTGAAACCGATTGCGG
 AAGGTCATATTCTATAAATTAAATAGATTAACATAAGATTACCCATGGCAGGTTCTATATTCTGTAAA
 10 AATTGATAACACCGCCCCCTAAGATTGTTGGTATTCAATCTGAAAGAAATTAAGTTGATTACAAAGGAT
 ACTTATCATAAGGTAAAAGATCAAGTATAAGAATGAAACGCTATTGCGAGAGATCAAAAGAACATCCTGAAAAA
 TTTGACGAGATTGCAACGAGTTGTTGATCTGGCCGCTTGTATAGAAGATGGAGAGGTTGAAAAAAAT
 15 CTTGAAGTAACCTACCGCAGGTGAGGGTCAGGAAGAAAATAGAAAATCTGATAAAAGACGAAATACCAATTATGAA
 ATTAAGGGTGGGGAGATTIAAGGGAAAATCATTGAAGTCATTGCAATTAGATGGTTCTAGCAATTICACAAAG
 ATTATAGAATTAAATITGTAATCAGGCTGATGAAAAGGGGATGATTCTTCTATTATCTAGTAGATCCTGATCAAG
 ATTATCTAAATATCAAACGCTTGGCAGATTGCAAGATCTAAATTAAAATTTAGGAAATGAAAGAGGTTGAAAAAAAT
 GTCTAAAAAAAGATACAACGGGGTAGAACATCATCATCAAGAAAATGAAAGAGTCTATTAAAGAAAATCTAGTT
 TTACTATTGATAGAAATATTICAACAATTAGAGACTTGAAGAAAATAAAGACTTAAAGAAAATCTCATTAAAAGAAAAT
 TAGAGAAGTTGATGATTTACAAGTGAAGAACTGGTAAGAGAATGGAGGAATACGATTAAATACGATGATAAAGG
 20 AAATAATAAGCCTACGATGGACTGATCTAGAATATGAAACTGAGAAAACCTGACGAAATCAAATCAAAT
 TTATGGTCTCTAAGTCCGCTAAAGATGGACACTTGAAGATTCTGAAAGAGATAAGTAATGTTCTAAAATGCC
 AAGGTATATTGGAAATAACTATAAATCTATAGAAATCAAACGACCAAGTATGATTCCACTCAAACGATG
 ACATTGATCTACGCTAATATTGATATTGTTGATGGATTAGCTTTGCAAGGAGATATGAGATTATTGTTAA
 AGATAATGATCAGAAAAAAGCTGAAATTAAATAGAATGCCGAAAATTAAGGAAACTAAATCAGAAATATCC
 CTATGTATCAAGTTATGGGAATGTCATAGAATTAGGGAGGAGATCTTCAAAAACAAACAGACAATTAAAC
 TAAAATGGAATCTGGTAAATCTATTCTGATTCTGAGAAACAAACAAATATCTGTTAAAGGATAATATCATTCTAAGA
 25 AAAGGCTATGCACTAAAAGTCACTTAACTGACTTAACTGAAATTCTGAGGATATGCTATAGCAGGATCTATAGC
 AAGGAAGATATGCAAAAATCAAACGGCAATCTTAATCTGAGGCTTCTGAGAAACAAACAAATTATGCTGAT
 AGTAAATGTTGAAGTGAAGAAGTACCAATCTGTTAAATGTCGCTTGGACGGCTTACATTAAAGGCTATAAGG
 ATCAAGTGTTCATTTAAATGAACGATAAAGGGAGCTATGATAAAAGACGAAATCTGACAGATCTTAAAG
 CTAACATTGTTATTGGTAAAGGATGATAAAGAACACTGGAGAGGATAAGTCAATGAGGCTATAAGG
 30 AAGATGGCTCCATGTTATTGATACCAACAGTAAACGTTCTAACCTTAAATCTGAGGAAATACTTAAAC
 ATCTAATAAAATTATGTCAGAACATGCAATTCTGAGGATTTATTAACCTGAGGAAATACTGAGGAAATGGAGTCTATAGC
 GAATTGAGACTTAATGAAATCGGTTGAGATAATTATTAACTACGGAGATTACATTGATAACACTAGAGATT
 TTAATTAAGCTGAATGTTAAAGACGGTGCACATCATGGACTGGGAATGAAAGACTATAAGCAAAACGGATTTC
 CAGATAAGGTAACAGATATGGATGAAATGTTATCTTCAACTGGCTATAGCAGGAAATGCTAAAGCAGTTGG
 35 AGTCCACTATCAGTTTTATATGATAATGTTAAACCCGAAGTAAACATTGATCTAAGGAAATACTGAGTATCGAA
 TATGCTGATGGAAAATCTGAGTCTTAAACATCAATGATAAAAGGAAATGCTAAAGGAAATACTGAGTATCGAA
 CAACATATTATATAAATGGAAAAGAATATACATCATTTAAATGATAATTAAACAAATATGACAAGACACTAAC
 ATTAAGATTGTTGAAAAGATTGCAAGAAATACAACCGTAAAAGGAAATGAGTTCAACGATAGTGTG
 GTAATGTAATGTTAAACCTCATAGGGTAACTGTGACCATCTAAATGGAAAAGGAAATGAGTTCAACGATAGTGTG
 40 GAAGAAGATTATTATTACCTGTTATAAGGGTAATTAGAAAAGGATACCAATTGATGGTTGGAAATTCTG
 GTTTCGAGGTTAAAAGACGCTGGCTATGTTATAATCTATCAAAGATACTTAAACCTGTTATAACCTGTTACAGAA
 AATAGAGGAGAAAAGGAGGAAGAAAATAACCTACTTTGATGATGTCAGGAAAGAGGCTTCAACAAATCTGATTCA
 ACCATAGTCATTAAATGAAAGTCACAGAAAAGAGGATTACAAAGAGAAGAGGCTTCAACAAATCTGATTCA
 CTAAGGATGTTACAGCTACAGTTCTGATAAAAACAAATCTAGTAGTAAATCAACTACTAACAAATCTGATTCA
 45 GCAAAACTGGAACAGCAAGCGGAGGCCAGACACTATTAGCTGCCGAATAATGTTATAGTAGGAATTCT
 TGGATTGAAGAAAAAAATCAAGATAA

YPVVLADTSSEDALNISDEKEVVAENKEKHNIHSAMETSDFKEKKTAVIKEKEVVKNPVIDNNNTSNEEAKIKEENSN
 KSQGDYTDVFVNKTENPKKEDKVYIAEFKDKESEGEKAIELSSLKNTKLYTYDRIIFNGSIAETPDNLDDKIKQIEGIS
 SVERAQKVQPMMNHARKEIGVEEADYLKSINAPFGKNFDGRGMVISNDTGTIDYRHKAMRIDDAAKSMRFKKEDLK
 50 GTDKNYLSDKIPHAFNYNGGKITVEKYDDGRDYFDPHMGHLAGILAGNDTEQDIKNFNGIDGIAPNAQIFSYKMS
 DAGSGFAGDETMFHAIEDSIKHNVDVSVSSGFTGLVGEKYWQAIRALRKAGIPMVVATGNYATATSASSSWDLVAN
 NHLKMTDTGNVTRTAAHEDAIAVASAKNQTVEFDKVNIGGESFKYRNIGAFFDKSKITTNEDGTKAPSKLKFYIGKG
 DQLIGLDRGKIAVMDRYTKDLNKAFKKAMDKGARAIMVVNTVNYYNRDNWTELPMGYEADEGTKSQVSISGD
 DGVKLWNMINPDKKTEVKRNNKEDFKDKEQYYPIDMESFSNSNKPNVGDEKEIDFKFAPDTDKELYKEDIVPAGSTS
 55 WGPRLDILKPKDVSAPGKNIKSTLNVINGKSTYGMSTSMATPIVAASTVLIRPKLKEMLERPVLKNLKGDDKIDLTSL
 TKIALQNTARPMMDATSWKEKSQYFASPRQQGAGLINVANALNEVYVATFKNTDSKGLVNSTYGSISLKEIKÖDKKYFTI
 KLIHTSNRPLTPKVSAAITDSLTDRLKLDETYKDEKSPDGKQIVPEIHPKVKGANITFEHDTFITGANSFDSLNAVIN
 VGEAKKNKNEVESFIHFESVEMEALNSSGKKINFPQLSMPMLMFAGNWNPHEILDKWAWEEGSRSKTLGGYDDD
 KPKIPGTLNKIGGEGHIDKFNPAVGIVQNRKDKNNTSLDQNPELFAFNNEGINAPSSGSKIANIYPLDSNGNPQDAQLER
 GLTPSPLVLSAEEGLISVNTKKEGENQRDLKVISREHFIRGILNSKSNDAKGIKSSKEKVWGLDKWDGLIYNPRGREEN
 60 APESKDNQDPATKIRGQFEPIAEGQYFYKFYRLKDYWPWQSYIPVKIDNTAPKIVSDFSNPEKIKLITKDTYHKVKD
 QYKNETLFARDQKEHPEKFDEIANEVWYAGAAATVNEDGEWEKNLEVITYAGEGQGRNRKLKDGDNTYEIKGAGDLRG
 KILEVIALDGSSNFTKIHRIKFANQADEKGMIISYLYDPDQDSSKYOKLGEAESKFKNLGNNGKEGSLKKDITGVHHHQ
 ENEESIKEKSSFTIDRNISTIRDENKLKLIKFFREVDDFTSETGKRMEYDYKDDKGHNAYDDGFDLEYETEKLD

EIKSKIYGVLSPSKDGHFEILGKISNVSKNAKVYYGNNYSIEIKATKYDFHSKTMTFDLYANINDIVDGLAFAGDMRLF
 VKNDQKKAEKIRMPPEKIETKSEYPYVSSYGNVIELGEGLSKNKPDLTKMESGKIYSDSEKQQYLLKDNILRKGY
 ALKVTTPNGKTDLEGNGVSKEDIAKIQKANPNLRALSETTIYADSRNVEDGRSTQSVLMSALDFNIYQVFTFK
 5 MNDKGEAIDKDGNLVTDSSKLVLFGKDDKEYTGEDKFVNVEAIKEDGSMLFIDTKPVNLSDMKNYFNPSSNKIYVRNP
 EFYLRGKISDKGGFNWELRVNESVVDNYLIYGLDHIDNTRDFNKLNVKDGDIWGMKDYKANGFPDKVTDMDGN
 VYLQTGSDLNNAKAVGVHYQFLYDNVKPEVNIDPKGNTSIEYADGKSVVFNIINDKRNNGFGEIQBHQIYINGKEYTSF
 NDIKQIIDKTLNIKIVVVKDFARNTTVKEFILNKTGEVSELKPHRTVTIQNCKEMSSTIVSEEDFILPVYKGELEKGYQFD
 GWEISGFEGKKDAGYVINLSKDTPIKPVFKKEEENKGTFDVSKKDDNPQVNHSQLNEHRKEDLQPEEHSQKSDS
 TKDVTATVLDKNNISSKSTNNPNKLPTGTASGAQTLLAAGIMFIVGIFLGLKKKNQDZ

10

ID6 597 bp

15

CTTGAATTAAATAAAAAACGTATGCGACTAAGCATTACTGATAAGCTTGTGATCCCAAAGATGTGCGTACGG
 CTATCGAAATTGCAACCTAGCGCCAAGGCCACAACAGCCAGCCTGGAAATTGTGGTGGTACGTGAGAAAA
 ATGCTGAACCTGGCAAAGTTAGCTTATGGTCCAATTGTAACAGGTATCATCAGCGCTGTAAACCATTGCCTTGT
 TACAGATACGACTTAGCCAACGTGCTGTAAGATTGCCGTGTTGGTGTGCTAATACATTCTGAAGAGCAA
 20 CTTCAATATTATGAAAATCTGCCAGCTGAGTTGCCGTGCTAAGTGAAGCAACAAGTCAGCGACTACCTAGCTC
 TCAATGCAGGTTGGTGGCATGAACTTGGTCTTGCAATTGACAGACAGAACAGGAATTGGTCTAACATTATTCTGG
 TTTTGACAAATCAAAGTTAATGAAGTTTGGAAATCGAACAGCCGTTCCGCCAGAACACTCTGATCACAGTGGGT
 TATACAGACGAAAATTGGAACCAAGCTACCGCTTGCAGTAGATGAAATCATCGAGAAAAGATAG

25

LELNKKRHATKHTDKLVDPKDVRTAJEIAATLAPSABNSQPWKFVVREKNAELAKLAYGSNFQVSSAPVTIALFTDT
 DLAKRARKIARVGGANNFSEEQLQYFMKNLPAEFARYSEQVSDYLALNAGLVAMNLVLTQGIGSNILGFDKSK
 VNEVLEIEDRFRPELLITVGYTDEKLEPSYRPLVDEIIEKRZ

25

ID7 1401 bp

30

ATGACAGCAATTGATTACAGCAGAAGTAGAAAAACGCAAAGAACCTCTGGCTGACTTGTAGCCTTTGG
 AAATCAATTCAAGACGTGATGACAGCAAGGCATGGCAGCCCACATCCATTGGGCTGGTCCAGTAAAGCCTTGG
 AGAAATTCCCTGAAATCAGCAGACCCGATGGCTACCCAACATAAGAATTGATAACTATGCAGGACATTGAGTT
 TGTTGATGGAGAAGAAGTCTCGGAATCTTGCCTATGGATGTGGTGCCTGCTGGTAGCGGGTGGGACACAGA
 CCCTACACACCAATCATCAAAGATGGTGCCTTATGCGCGGGGCTCGGACGATAAGGGCCTACAACAGC
 TTGTTACTATGGTTGAAAATCATCAAAGAATTGGTCTTCAACTTCTAAGAAAGTTCGCTTACATCGTTGAA
 GACGAAGAATCAGGCTGGGAGACATGGACTACTACTTGTAGCAGTAGGACTTGCACAAACAGATTTCGGTTTC
 35 TCACCAAGATGCTGAATTCCAATCATCAATGGTAAAAGAAATACCGGAAATACCTCCTTGCAGGAGAA
 AATACAGGTGTTGCCGTCTTACAGCTTACAGGTGTTACGTGAAAATATGGTACCAAGTACAGCAACAGCA
 GTCGTTCAAGTGAATTGGCTGACTTCAAGCTAACAGGTGAGCATTTGGTAAATCAGCCCACGGTCTATGCC
 TCAAGAGAAGCTGGCAATACAAGGTGAGCATTTGGCTTCTCCTCAGCCAGTTGGCTTGTGGTCCAGCCA
 40 ACCTACCTTGCAGGTTGCTGCTATGGTAAATCAGCCCACGGTCTATGCCCTGCTTACGGTAC
 TCAATGGCGCAACTTACCTTGCCTTCTCAGCCAGTTGGCTTGTGGTCCAGCCAAGACTACCTTGACAT
 CGCAGGTAATTCTCTGAACGATCATGAGGGTAAAATCTAAGATTGCTCATGTGGTGAAGAGATGGGTGC
 TCTTCTATGAATGCCCGCTTCCACTCTGATGAAACAAGTGTGATAATACCAATTGCCCTCAACATCCGCTAT
 45 CCAAAAGGAACAAGTCCAGAACAAATCAAGTCAATCCTGAAAATTGCTGCTTGTGGTCCAGCCAAGACTACCTTGAC
 ACGGTCACACGCTCACTATGTGCCAATGGAAATGCACTTGTGGTGGAAACCTTGTGCTGAGAACACGAG
 TGCTTAAAGGTGATGAAACAAGTCATCGGTGGTGAATATCTATGAAAACAAAC
 GCTATGTTCCAGACTCGATTGATACCATGCAACAGCAATGAAATTATGCCCTGGATGATCTTCCGAGCAG
 CAGCAATTATGCCGAAGCTATTACGAAATTGATCAAATAA

50

MTAIDFTAEEVKEKRKEDLLADLFSLEINSERDDSKADAQHPFGPGPVKALEKFLEIADRDGYPTKNVDNYAGHFEGDG
 EEVLGIFAHMDVVPAGSGWDTPYPTIKDGRLYARGASDDKGPTTACYYGLKIIKELGLPTSKKVRFIVGTDEESGWA
 DMDYYFEHVGLAKPDFGFSPPDAEFPINGEKGNTIEYLHFAGENTGVARLHSFTGGLRENMPESATAVVGSDLADLQ
 AKLDAFVAEKKLRLGELOEEAGKYKVTIIGKSAHAMPASGVNGATYALFLSQFGFAFPAKDYLIDIAGKILLNDHEGE
 NLKIAHVDEKMGAISMNAGVFHFDETSADNTIALNIRYKGTSPQEIKSILENLPVVSLSHEHHTPHVPMEDPLVQT
 LLN'YEKQTGFKGHEQVIGGGTFRLLERGVAYGAMFPDSIDTMHQANEFIALDDLFRAAIYAEAIYELIKZ

55

ID8 1617 bp

60

GTGTATACTATTAAATAAAATCAAATATAAAAAAATTAGTTATTAAACGATATTATTGTGCTGGTCAATTATGCT
 AATTATGCAAGCAATTAAATGCTCTGGTGTGAATGAATTGCGATGAATTAGAGCGGTTTTGAAATTG
 TCAATCTACCAAATGATTGCTGGTGGGATAATATTCTGACTGGTAGTAAAAATTATCAGGTGAAGTGA
 TCCAAGAGTTAACAGAGATTGCAAAATAGAGTTGCCACAGACATCTAACTCTACCTATCAAGAATTTCATAG
 TAAATCATCAGGAACATATCTTCTGGTCAAATAATGATGTICAGACTTAAATGATCAGGGTTAAACAAACT
 TTTTAGTAATAAAAGAATTCTGGTACTATATTGCAAGTTGTGACTCTTAATCACTATCATGGTATTGACTGT
 AGCCACCTTGTATTCAATGATTGCTACTTGTACCAAAATCTTGCATGAAAATGCGAGAAGTTAGTCTA
 AATITAACCAAAATGAAGCTTTTAAATCTAGTGAGACTATATTGAATGGATTGTGTTAGCGTCT

TGAATCTTTATATGTATTGCCATAAGAAAATTAAAGAAGCAGGAATTATTAAGATGGTTATACAAAGAAAGAC
 AACTGTAGAAACGTTAGCAGGCCTATTAGCTTCTCAATATTTTCAGATATCTCTCGTTTTTAACAG
 5 GCTATCTGCAATAAAAGGAATAGTAAAATTGGTACTATTGAAGCAATAGGAGCACTAACAGGTGTTATTTAC
 AGCGCTAGGTGAATTAGGAGGTCAATTATCCTTATTATTGGTACGAAGCCTATTTTAAATTGTATTCAATT
 ATCCAATTGAGTCAAATAAAATGAATGATATCGAACCAAATGAGGTGAATAGAGATTCCGTTATATGAAGCAA
 AAAATATTGCTATAAGTATGGAGATAAAGAAATTAAAAAACTTAAATTTTGTTTCAACGTAATGAAAAGTA
 10 TTTAATTITAGGTGAAAGTGGAAAGCGGGAAATCTACATTATAAAATTATTGAATGGCTTTGAGAGATTATAGT
 GGAGAATTGCGATTCTGCGGGATGATATAAAAAAAACCTCTATTAAATATGGTTTCAATGTTCTATATGTAG
 ATCAAAAAGCTTATTGTTGAAGGTACGATTAGAGATAATTATTGAGAAAATTATACTGATGAAGAAAT
 ACTACAGCTTGAAGCAAGTGGTTGAGTGTAAAAGATTCTCTAATAACATTTAGATTATTATGTTGGTAGT
 ATGGGAGGAACTACTGTAGGAGGGCAGAAACAAAAAAATTACTTAGCTAGAGGGCTAATTAGAAATAAGAAAATAG
 TATTAATTGACGAGGAAACTCTGCTATCGATAGGAGAACTCGTTAGCATTGACGTAAAGATATTAGATAGAGA
 GGATTGACTGTCATTATTGTTACCCATGCTCCGCATCCGAACTTAAACAATTACTAAGATATATCAATTTC
 15 CAAAGGATTTTATTAA

MYTIKSNKKFSLLTIFIVAGQLLIYAAATINALVNLNIELAMNLERFLKLSIYQMIWCGIIFLDWVVKNYQVEVIQEFNL
 EIRNRVATDISNSTYQEFHSKSSGTYLSWLNNDVQTLNDQAFKQLFLVIKGISGTIFAVVTLNHYHWSLTVATLFSLMIM
 20 LLVPKIFASKMREVSLNLTQNQEAFLKSSSETILNGFDVLASLNLLYVLPKKIKEAGILLKVMVQRKTTVETLAGAISFFLNI
 FFQISLVFLTGYLAIKGIVKIGTIEAIGALTGVIFTALGELGGQLSSIIGTKPFLKLYSINPIESNKMNDIEPNEVNRFDFPLYE
 AKNICYKYGDKEILKNLNFCFQRNEKYLILGESGSGKSTLLKLNGFLRDYSGELEFCGDDIKKTSYLNMVSNVLYVDQ
 KAYLFEGTIRDNLILLEENYTDEEILQSLEQVGLSVKDFPNNILYYVGDDGRLLSGGQKQKITLARGLIRNKKIVLIDEQT
 SAIDRRRTSLAIERKILDREDLTVIIVTHAPHPELKQYFTKIYQFPKDFIZ

ID9 705 bp

25 ATAACAGTTAACAGATTATGGACAAATAGCCGTTAGATATGACTGCAAGGCCTATTACAGGAATTAGCT
 GATAAAGATTGCTGATTGCTGATGGTGGAGCTGAAAACCTTCGAACCAACTCCCTTTGACTAATGAGCGAT
 CAAATATTGAAAAACAAGCCCTCCAAACGGCAGAAAACAAGAAAATAGCCCATTGCGAGCTAGTAAAG
 30 AAAGAGAAAATCTTCAATTGGACCAGGAACACATTAGAGTTTGCCTGAGTTGCCTATTGACAATATCCG
 CGCTGTAACCAACAGTCTACCTGTTCTGATTAAAGCAACGAAAATTAAACAGATTGATTAAATAGGTGGA
 ATTATCGCGATATTACAGGTGTTCTGTTGATCATTGACCTACAAAATCTCTAATCTCAATTCTAAAGC
 TTGTTAGCTGTAATGGTATTCAAACAGGAGCTCTAGCTACTTTAGCGAGGAAGAGGGAGAGGCTAACGCATC
 GCTTAAATAATTCTAATAAAAATTTACTCGCAGATCATAGCAAGTTCAATAAGTTGATTITATACCTTTA
 TAATGTATCAAATCTTGATACTATTGTTAGATTCTAAACTAAGTGAATCACTCTTTAAAGCTATCTAAACACA
 35 TAAAGTCATCAAGCCTAA

ITVKQIMDEIAVSMDTARRYLQELADKDLLIRVHGAEKLRNTSLLNERSNIEKOALQTAEKQELAHFAGSLVEERETI
 FIGPGTTLEFFARELPIDNIRVVTNSLPVFLILSERKLTDLILIGGNYRDTGAFVGTTLQNLNSLQFSKAFVSCNGIQNGA
 LATFSEEAGEAQRIALNNSNKYLADHSKFNKFDFYTFYNVSNLDTIVSDSKLSDSILFKLSKHIVKIPZ

ID10 483 bp

40 ATGACTGAGTTCTGTTAGATCTCTAGAACCCATTAAACTAGCTGTTGGACCTACTACTATCACTTGAAAC
 AGCTAGACAAAACAGATAAAAGACCAAGAGCTTAAACTGAAATTCAATCCATCTTATCGAACACAAGGGAAATT
 45 ATGCTTATCGCCGGGTTCATTTAGAACTAAGAAATCGTTATCTGTTAAATCATAAAAGAGTTCAAGGCTTGT
 GAAAGTACTCAATTACAAGCTAAATGCGAAAGAAACGAAATATTCTCTATAAAGGAGACGTGGTAAGAA
 GGCAGAGAATCTCATCAAGCCCAATTGAAGGCTCTAAAACAATGAAAAGTGTACACAGATGTGACTGAATT
 TGCCTTCCAGCAAGTACTCAAAGCTTACTTATCACCAAGTTAGATGGCTTAACAGCGAAATTATTGCTTTA
 ATCTTCTTGTGCGCTAATTAGAATAA

50 MTEFSDLLEAIKLARWTYYHLKQLDKDQELKTEIQSIEHKGNAYRRVHIELRNRYL VNHKRVQCLMKV
 LNLQAKMRKRYSSHKGDVGKAENLQAFEGSKTMCKYTDVTEFAIPASTQKLYLSPVLDGFNSEIIAPNLSCSPN
 LEZ

ID14 1266 bp

55 CCAGGATTTGCTACCGTTGCAAGTGGTGCCTTCTCTCTAAAGGAAAATGGAGGAAAATCAATCAATCAGCA
 CATTCAAGATCAAAGTGTCAAGGTATTGGTCAGGATGAAGATGAAAAAAATCGCTGCTGCAGCAGGGAAAT
 GACTTTAACCTTGTAACCAATGTGGATGATATTCTACGACCAAGGATATTACTATCGTAGTGGAAATTGATGGGGC
 60 GTATTGAGCTGCTAAACGTTTATCACTGTCGCTTGGAAAGCTGGAAAACAGGTGTTACTGCTAACAGGACCT
 TTAGCTGTCATGGCGAGAATTGCTAGAAAATCGCTCAAGCTAACAGGTAGCACTTACTACGAGCAGCAGT
 GCTGGTGGGAACTTCGAATTCTICGTACTTAGCAAAATTGCTGGCTTCTGATAAAATTACGCGCGTGCTTGAGTAG
 TCAACGGAACTTCCAACCTCATGGTACCAAGATGGAAAGAAGGGCTGGTCTACGATGATGCTCTGGCGAAG
 CACAACGTCAGGATTGCAAGAACAGCAGTACGAGCTAGATGGATTGATGCAAGCCTAACAGATGGTAA

5 TTTTGAGCCAATTGCTTGGCATGAAGATTGCCCTTGATGATGTAGGCCACAAGGGAATCCGAATATCACACC
 AGAAGACGTAGCTGTAGCTCAAGAGCTGGTACGTAGTGAATAATGGTTGGTCTATTGAGGAAACTTCTCAGGT
 ATTGCTGCAGAAGTAGCTCAACCTTCTACCTAAAGCGCACCCTACTGCTAGTGTGAATGGCTAATGAACGCTG
 TCTTGAGAACATCTATCGTATTGGTAGTCTATGACTACCGACCAGGTGCGGGTCAAAAACCAACTGCAACAAAG
 10 TGTTGAGCTGATATTGTCGATCGTGTGAGTCTATGACTACCGACCAGGTGCGGGTCAAAAACCAACTGCAACAAAG
 CGTGAAGTTGGCTTGGCAAATCCTGAAGATGTCAAAGAACACTACTATTCTCAATCTGGCTTAGACTCAAAG
 GTCAAGGTCTGAAGTTGGCTGAATCTCAATGCTCAAGATATTCCCTTAAGCAAATCCTCAAGATGGCAAAGA
 GGGTACAAGGCGCGTGTGTTATCATCACACACAAGATTAATAAGCCAGCTGAAAATGTCAGCTGAATT
 GAAGAAGGTTCAGAATTGACCTCTGAATACCTCAAGGTGCTAGGAGAATAA

10 PGFGTVASGVFPLLKENGKINQSAHSIDIKVAKVLVDEDEKNRLAAGNDNFVTNVDDILSDQDITIVELMGRIEP
 AKTFITRALEAGKHVVANKDLLAVHGAELLEIAQANKVALYYEAAVAGGIPILRTLANSLASDKITRVLGVVNNTSNF
 MVTKMVEEGWSYDDALAEAQRLGFAESDPNDVDGIDAAYKVMVLSQFAFGMKIAFFDVAHKGIRNITPEDVAVAQE
 15 LGYVVKLVGSIETSSGIAAEVPTFLPKAHLPLASVNGVMNAVFVESIGESMYYGPAGQKPTATSVVADIVRVRRL
 NDGTIGKDFNEYSRDLVLANPEDVKANYYFSILALDSKGQVLKLAEIFNAQDISFKQILQDGKEGDKARVVIITHINKA
 QLENVSAELKKVSEFDLNLNTFKVLGEZ

ID16 1725 bp

20 ATGAAACACCTATTATCTTACCTCAAACCCATCAAGGAATCAATTAGCCCCCTTGTCAAGCTGTTAGAAG
 CTGTTTTGAGCTCTTGGTCCATGGTATTGCTGGGATTGACCAATCTTACCTCAGGGAGATCAAGGTCT
 CTCGGATCAGATTGGCCTGCTCTTATCTTGCACTGAATTGGCCTTACTGGCTGATAGCTCAATTCTACTC
 AGCAAAGGCAGCTAGGTTCTGCTAAGGAATTGACAAACGATCTTACCTCGTATATTCTTCTTGCCCAAGGAC
 25 AGCAGAGACCGTCTGACAACCTCTAGTTGGTCACTCGCTTACCTACCAAGATTCAGACTGGTATCA
 ATCAATTCTGCTCTTACGCGCCATTATCGTTTGGTGCATTATGGCTTATCGAATCTCAGCT
 GAGTTGACTTTCTGGTCTTAGTCTTGGCCATTGACCATTTGACCTTGTGATTGAGGTTATCTGATTGGTCAATCC
 TTCTACAGTAGTCAGAAAGAAAACGGACCAACTGGTCAGGAAACGCGCCAGCAATTGCAAGGGATGCGGGT
 30 TTTCTACAGTAGTCAGAAAGAAAACGGACCAACTGGTCAGGAAACGCGCCAGCAATTGCAAGGGATGCGGGT
 GAAAAGACAGGTTCTGGTCTAGTTATTAAACACCTCTGACCTATCTGATTGCTAATGGAACTTCTCGTTATTAT
 CTGGCAAGGCTATATTCAATTCAAGGAGGAGTGTCAAGTCAGTCAGGTTGCTCTATTGCTCTTATCAATTACCTCTA
 CAGATTGGTGAATTGGTCAAGCTAGGATCTGACCTATCCATTCAAGAGTTAGAACAAAAGCAAGCTACCAAGAGATAAGG
 35 TCGAGGAAGTCTTGTGAGGCTCCAGAGGATATCCATTCAAGAGTTAGAACAAAAGCAAGCTACCAAGAGATAAGG
 TTTACAAGTCCAAGAATTGACCTTACCTATCCTGATGCCGCCAGCCTCTGTGAGGATACATTCCCTTGTGATAG
 ACTCAAGGACAATTCTAGGTATCATGGGGAAACTGGTCTGGTAATCAAGCTGGTCAACTCTTACTGGAC
 40 TTATCCAGTAGACAAGGGAAACATTGACCTTATCAAATGGACGTAGTCCCTTAATTGGAGCAGTGGCGGT
 CAAGAAGTATCTGACCAGGAACTCTGGCAGGCCCTGGAGATTGCGCAAGCTAAGGATTGTCAGTGAAGGAA
 GGACTCTTGATGCTCTAGTTGAGGCCAGGGGGGAAATTCTCAGGGAGACAAAAGATTGCTATCGCC
 CGAGCAGTCTGGCCAGGCGCTTCTCATCTAGATGATGCAACCTCGGACTGGGATACCATTACAGAGTCCA
 45 AGCTCTTGAAGCTATTAGAGAAAATTCCAAACACGAGCTTAATTGATCTCTAACGAACCTCAACTTACA
 GATGGCGGACCAGATTCTCTCTGGAAAAAGGTGAGTTGCTAGCTGGCAAGCAGCAACTTGATGAAATC
 CAGCCAAGTCTATTGTGAAATCAATGCATCCCAACATGGAAAGGAGGACTAG

50 MKHLLSYFPYIKEYSILAPLFKLLEAVFELLVPMVIAGIVDQSLPQGDQGHLMQIGLLIFAVIGVLVALIAQFYSAKAA
 VGSAKERLTDLYRHILSLPKDSRDLTTSSLVTRLTSPTYQIQTGINQFLRLFLRAPIVFGAIFMAYRISAELTFWFLVLV
 ALTTIVVGLSLRVNPFYSSLRKKTQLVQETRQLQGMVRIRAFGQEKRELQIFQTLNQVYARLQEKTGFWSLLTPLT
 YLIVNGTLLVIIWQGYISIQGGVLSQGALIALINYLLQILVELVKLAMLINSLNQSYISVKRIEEVFEAPEDIHSELEQKQA
 TRDKVLQVQELTFYPDAAQPSLRYISFDMTQGQILGIIGGTGSGKSSLVQLLLGLYPVDKGNIDLQNRSPLNLEQWR
 SWIAYVPQKVELFKGTIRSNTLGFNQEVSQELWQALEIAQAKDFVSEKEGLLDALVEAGGRNFSGGQKQLRSIARAV
 LRQAPFLIDDDATSALDTITESKLLKAIRENFPNTSLILISQRTSTLQMADQILLKEGELLAVGKHDDLMKSSQVYCEINA
 SQHGKEDZ

ID18 1224 bp

55 ATGAAACGTCTCTGACTCAAGAGTCGATTACAGTTGCTCTGCCAGTATTTTCTACTGGTCATCGGTGTGGT
 GGCTATCTATAGCGTTAGTCATGATTATCCCAATAATATTCTGCCATTAGGGCAGCAGGTGCGCTGGATT
 GCCTTGGGGCTTGTGATTTGGTTCTGGTCATGCTCTTAAACAGAATTCTTGGAGGTGACCCCTTCTATA
 TATTTTAGGCTTGGGACTTATGATCTTGGCATTGTATTATCAAGCTTGTGATCAACGGTGC
 AACTGGGTATCAATAAATGGAATTACCCATTCAACCGTCAGAATTATGAAGATATCCTATATCCTCATGTTGG
 60 CCTCTGTCATTGTCCAATTCAAAAGAAAACAATAGGAATGGAGACGCCAGGGTCCGCTGGACTTTGTTAATT
 CTGGATGATTCTCTTACCACTTCAGTCAGTCTAGTTCTTGGACTTCAAGTGACTTGGGGACGGCTTGGTTTG
 TAGCCATTCTCAGGAATCGTTTATTATCAGGGTTCTTGGAAAATTATTATCCAGTATTGACTGCTGTA
 ACAGGAGTGTGCTGGTTCTAGCTATCTTATTAGCAAGGACGGAGCTTCTCACCAGATTGGAAATGCCGA
 CCTACCAAAATTACGGATTITGGCTGGCTCAATCCCTTGAATTGCCAAACAAACGACTTACAGCAGGCTCA

AGGGCAGATTGCCATTGGGAGTGGTGGCTTATTGGTCAGGGATTTAATGCTTCGAATCTGCTTATCCCAGTTGA
 GAGTCAGATATGATTTACGGTTATTGCAGAACATTGGCTTATTGGCTCTGTCTGGTTATTGCCCTCATCT
 CATGTTGATTACCGTATGTTGAAGATTACTCTAAATCAAATAACCAGTTCTACACTTATATTCCACAGGTTGA
 TTATGATGTTGCTCTTCACATCTTGAGAATATCGGTGCTGACTGGACTACTTCCTTGACGGGGATTCCCTG
 CCTTCATTTCGCAAGGGGGATCAGCTATTACGTAATCTGATTGGTGTGGTTGCTTATCGATGAGTTACCA
 GACTAATCTAGCTGAAGAAAAGAGCGGAAAAGTCCCATTCAAACGGAAAAGGGTTGATTAAAACAAATTAAATA
 A

5 MKRSLLSRVDYSLLPVFFLLVIGVVAYIAVSHDYPNNILPILQQVAWIALGLVIGFVVMFLNTEFLWKVTPFLYILGL
 10 GLMLPIVFNPSLVLASTGAKNWVSINGITLFQPSEFMKISYIILMARVIVQFTKKHKEWRRTVPLDFLIFWMILFTIPVL
 VLLALQSDLGTALVFVIAFSGIVLLSGVSWKIIIPVFTAATGVAGFLAIFISKDGRAFLHQIGMPTYQINRILA
 WLNPFEF AQTTTYQQAQGQIAIGSGGLFGQGFNAASNLLIPVRESMDMIFTVIaedFGFIGSVLVIALYLMILYRMLKITLKSN
 NQFYTYI STGLIMMLFHIFENIGAVTGLLPTGIPLFISQGGSJAIISNLIGVGLLSMSYQTNLAEKSGKVPFKRKVV
 LQIKZ

15 ID22 987 bp

ATGGTGGCTAAGAAAAAAATCTTATTGGTCTTTCTTGGAGGTGGTCAGAGAACATTCTATCAA
 CCATTGTTCAAATCTGGATCCAGAAAAGTATGATATTGATATTCTGAAATGGAGCACCTTGACAAGGGATATG
 ATCTGTTCCAAGCATGTACGCATTAAAATCCCTCAAGATTATCGCCAACAGATGGTACGAGCTTTTG
 TGGAGAATGAGAATTATTTCCAAGACTGACTCGTGTGCTTGTAAAAGAGTATTGATGTTGAAGTTCTT
 TACCATATTGAACTTCAAGGACTGCTTGTCTAAAAGAGAATCACATAGAAGGCCAGTGGATGCTGCA
 ATACAATTGAGGGAAAGAACTCTTCAAGGAAGTTATCCAGATTATACCTCTAAATTACAGACAATCTAC
 ATTTAAAAAGACCAATTCTATCAAGGAAGTTATCCAGATTATACCTCTAAATTACAGACAATCTAC
 GATATGATTTCAGACTATTCTAGAAAATCTCAAGAGAACATCGATATCGAGATTGCTCCTCAAAGTATCTG
 TAC TATCGGACGGATTGAGGAAAATAAGGGTCTGACCGTGTAGTGAAGTGTACGATTATTACACCAAGAGGGAA
 AAACATATCATCTCTATTATCGGGGCTGGTGTATGGAAGAGGAACCTAAAGAGCTCAAAGAGTATGGGAT
 TGAGGACTATGTACATTCCCTGGTATCAAAAAAACTCTATCAGTATCTATCAGCAGAAAGTCTTTGTCTA
 TGCTAAACAAGAAGGTTCTGGAGTGTATGAGGCTTGTGACTGGGACTCCCTTATCTTACCGACGT
 TGGAGGGCTGAGGAATTATCCAAGAAGGAGGATTGGACAATATTGAGAGCAATCAAGAGGCA
 GCTCAGGCAGGCTTGTGACTGGGAGGCTAGCCAATTCAAGAAGTGTGATGAGGCTAGCCAATTCA
 ACAAAACAAATCGAACAAAGTAGAAAAACTATTAGAGGAGTAG

30 MVAKKILFFMWSFSLGGGAEKILSTIVSNLDPEKYDIDILEMEHFDKGYEVPKHVRLKSLQDYRQTRWLRAFLWRM
 RIYFPLRRLVKDDYDVEVSFTIMNPPLFSKRREVKKISWIHSIEELLKDSSKRESHRSQLDAANTIVGISKKTNSIK
 EVYPDYTSKLQTYNGYDFQTIKEQSKEIDIEIAPQSICHTIGRIEENKSDRVEVIRLLHQEGKNYHYFIGADMEEEL
 KKRVKEYGIEDYHFGLGYQKNPYQYLSQTKVLLSMSKQEGFPGVYVEALSLGLPFISTDVGGAELSQEGRFGQIESNQ
 EAAQAITNYMTSASNFVDDEASQFICQQFTIKQIEQVEKLLEEZ

40 ID23 1434 bp

ATGGAAACTGCATTAATTAGTGTGATTGTGCCAGTCTATAATGTGGCAGTACCTAGAACAAATCGATAGCTTCCA
 TICAGAACGAGCCTATCAAATCTGGAAATTATTCTTGTGATGATGGTCAACAGATGAAAGTGGTCGCTTGTG
 TGATTCAATCGCTGAACAAAGATGACAGGGTGTCACTGCTTCATAAAAAGAACGAAGGATTGTCGCAAGCACGAAA
 TGATGGGATGAAGCAGGCTACGGGGATTATCTGATTTTATTGACTCAGATGATTATCCATCCAGAACATGATT
 CAGAGCTTATATGAGCAATTAGTCAAGAAGATGCGGATGTTGAGCTGTGTCATGAATGTCTATGCTAATG
 ATGAAAGCCCACAGTCAGCCAATCAGGATGACTATTGTCGTGATTCTCAAACATTCTAAAGGAATACCTCAT
 AGGTGAAAAAAATACCTGGGACGATTGCAATAAGCTAACAGAGAACATGCAACTGCCCTATCCTTCTCTAA
 GGGGTTGATTACGAAGATGCCATTACCATTTGATTAACTCAAGTGGCCAAGAAGTATGTGTTAATCTAA
 CCCTATTATTACTATTCCATAGAGGGGATAGTATTACGACCAAAACCTATGCAAGAGAACAGGATTAGCCTATATTG
 50 ATATCTACCAAAAGTTTATGAAAGTTGTAAGGAACTATCCTGACTGAAAGAGGTCGTTTTTCAGATTGGC
 CTATGCCACTTCTTATCTGGATAAGATGTTGCTAGATGATCAGTATAAACAGTTGAGCTATTCTCAGATT
 ATCGTTTAAAGGCCATGCCATTGCTATTCTAGGAATCCAATTCTCGTAAGGGGAGAAGAATTAGTGTCTT
 GGGCTATTGATAAAATATTCTTATATGATTACTGAAAATATTGAAAATCTAAAGAACATTACATTAG

55 METALISIVPVNVYAQYLEKSIASIÖKOTYQNLEILVDDGATDESGRLCD SIAEQDDRVSVLHKKNEGLSQARNDGMK
 OAHDYLIIDSDDYHPEMIQSLEYQLVQEDADVSSCVMNVYANDESPQSANQDDYFVCDSQTFLKEYLIGEKPCTI
 CNKLIKRQIAATPSFPKGIIYEDAYYHFDLILKAKYYVNTPKYYYYFHRGDSITTKPVAEKDLAYIDIYQKFYNEVVKN
 YPDLKVEAFFRLAYAHFFILDKMLDDQYKQFEAYSQIHLFLKGHAFAISRNPIFRKGRRISALALFINISLYRFLLKNE
 KSKKLHZ

60

ID24/735bp

ATGAGAATCAAAGAGAAAACCAATAATATTAAATGGAGGAATAAAAATGTAAGTAAGCATTATGGTCATCAATC
 ATTCTCAAAGATATAAATTTCACCTAACAGGGTGAATTGTTGGCTAGCAGGGAGAAATGGAGTTGGTAAG
 AGTACGTTGATGAAAATTCTTGTTCAGAATAATCAACCGACTCAGGTATATTATAAGCAGTGATAATGGGG
 ATTAATCGAGAACAAAATTATTITATCTAAAACAGGTAGAGAATTAAAATATTGTCAAATTATATGG
 5 TGGTACTACAATCAAGAAAGATTAGATGTTGATCCAAGAGTTAGATTGACTCAGTCTATTAAATAAAAAGTA
 AAGACCTATTCTGGGTACAAAACAAAAATTAGCTTCTAACTCTCGTACGGAACCTGATATAATTGATTIT
 AGATGAACCGACTAATGGTTAGATATTGAATCATCACAAATAGTTAGCGGTTCTAAAAAAATTAGCTTACAT
 GAAAATGTGGAATTITAATATCGACTCATAAATTAGAACAGATTGAAGAAATTGTGAGAGAGTTCTTCTGG
 10 AGAACCGGCTTGTACATTCAAAAAGTAGGAAAAGATAGTCATAATTCTTGTGAGAGATAGCTTTCATCAGC
 TACAGATAGAGACATTTTCACTACCAAAACAAGAATTGGATATTGTTAG

MRIKEKTNNINGGIKNVSKHYGHISIILKDINFALNKGIEVGLAGRNGVKSTLMKILVQNNQPTSGNISSDNVGYLIEEP
 KFLSKTGLENLKYLNSLYGVVDYNQERFRCLIQEELDTQSINKVKTYSLTKQKLALLTLVTEPDILILDEPTNGLDIE
 SSQIVLAVLKKLALHENVGILISSHKLEDIEEICERVLFLENLTFQKVGDHSNFLFIAFSSATDRDIFITKQEFWDIVZ

ID25 1704bp

ATGACTGAATTAGATAAACGTACCGCAGTAGCATTATGACAGCATGGTAAATCACCTAACCGTGTATGCTTC
 GTGCAGCTGGTATGACAGATAAGGACTTGAACACATCGATTGTTGGAGTATTGACTTGGCGGAAATACAC
 20 CATGTAACATTCACTTGCATGATTGGGAAACTGGCTAAAGAAGGTGTCAAATCTGCAGGCCGCTTGGCTGTACA
 GTTGGACCCTTACCGTAGCGGACGGGATCGTATGGGAAACGCCGCTGTGATGCCCTCTCTAAACATCTGTGAC
 ATCATCGCGACTCCATCGAGCGCGCTATGAGTGGTACAACCGGGATGCCCTCGCGTATGGCTGTGACA
 AGAACATGCCGGATCTATGTTGCTATTGCTAATATGGATATTCCAGCTATTGCTCTATGGTGGAACTATTG
 ACCGGGAACTTGTGATGGTAAAGATATGACTTGGTTCTGCTTGAAGGTATGGAAAATGGAACCACGGTGA
 25 ATGACAGCTGAGGACGTAAACGCTTGAATGTAATGCCCTGCCCTGGCCCTGGTGGTGTGGTATGTAACTG
 CTAATACCATGGCAACTGCTATCGAAGTTCTAGGGATGAGTTGCCAGGGTATCCTCTCACCCAGCTGAATCAGC
 TGATAAGAAAGAAGATATCGAAGCAGCAGGACGTGCTGTTAAGATGTTGAACTTGGTCTCAAACCCATCAGA
 TATCTTGAECTGTGAAGCCTTGAAGATGCTACTGTAACGATGGCTCTGGTGGTCTACAAACGCCACTCTT
 CACTTGCTGCCATTGCCCATGCCAAATGTTGACTTGTCACTGGCTCTGGTGGTCTACAGATTCAAGAACGTGTG
 30 CTCACTTGGCCACTTGAACCATCTGGTCACTGGTCACTGGTCACTGGGACTCTCAACGATTCAAGAACGTGTG
 TATGAAGTATTGTGCAATGGTCTTCACTGGAGATCGCATCACATGACTGGTAAGACTGTAGCTGAAAAC
 TTGGCTGACTTGTGAGACTTGACTCCAGGCCAAAGTTATCATGCCACTGGAAAATCCAAAACGTGCGGATGGT
 CGCTTATCATCTGAACGGGAAACCTTGCTCCTGACGGTGAGTTGCCAAAGGTATGGTAAAGTGCCTGTC
 35 CGATGTAGTCGTTGCTGTTGACTCAGAAGAAGATGCCCTCTGGCTCTGGCTGAGATGAAATCGTGTG
 CGTTGGGCCAGCTAAGGTCTTGACTCAGAAGAAGATGCCCTCTGGCTGAGATGCTATCCTTCTCAATG
 CGATGTAGTCGTTGCTGTTGACTCAGAAGAAGATGCCCTCTGGCTGAGATGCTATCCTTCTCAATG
 TTGGTGGACATATCGCTCTGAACGCTCAGGATGGTGGACCAATTGCTATCTCGTACCCGCGATATGTTACGGT
 GACCAAGATACCAAGAAATTCTATGCCGTATCGAAGAAGAACTGAAAACGCAAGGCAGAAACACCTTG
 40 CCACCACTTACAGCCGGTGTCTCGTAAATATGCCACATCGTATCATCTGCTTACGCCGAGCCGTGACAG
 ACTTCTGGAATATGGACAAGTCAGGTAAAAATAA

MTELDRHRSSIYDSMVKSPNRAMLRATGMDKDFETSIVGVISTWAENTPCNIHLHDFGKLAKEGVKSAGAWPVQFG
 TITVADGAMGTPGMRFSLTSRDIADSIEAAMSHNVDAFVAIGGCDKNMPGSMIAIANMDIPAIYGGTIAPGNLDG
 45 KIDILVSVFEGIKWNHGDMDTAEDVKRLECNACPGPGCCGMYANTMATAIEVLGMSLPGSSHPAESADKKEDIEA
 AGRAVVKMLELGLKPSDILTREAFEDAITVTMALGGSTNATLHLLAIAHAANVDSLSEDFTIQERVPHLADLKPSQY
 VFQDLYEVGGVPAVMKYLLANGFLHGDRITCTGTVVAENLADFADLTPGQKVIMPLENPKRADGPLIILNGNLPDGA
 VAKVSGVKVRRHVGPAKFSEEDAIQAVLTDEIVDGVVVVRVGPKGPGPMPEMLSLSMIV/GKGQGDKVALLTD
 GRFSGGTYGLVVGHIAPEAQDGGPIAYLRTGDIVTDQDTKEISMAVSEEELKRKAETLPPLYSRGVLGKYAHIVSSA
 SRGAVTDFWNMDKSGKKZ

50

ID26 274bp

ATGTTATAATAAAATAAGAATTAAAGGAGAAATACAATATGTCATTGGAGGAGCATGGCCATATGC
 AAACGGGTTGTTACATATTGGTCACGCGCAGCGCTTTACCGGGGATATTGTCAGAAGACTATATCGTCAGAAG
 55 GGAGAGGAAGTTTATGTTCTGGAGTATTGTAATGGAAACCCCTATTCTATCAGAGCTAAAAAGAAAAT
 AAGTCTGTGAAAGAAATTGCTGATTITATCATAAGGAATTAAATCCA

60

CYNKNKEFKEKYNMSIFIGGAWPYANGSLHIGHAAALLPGDILARYYRQKGEELYVSGDCNGTPISIRAKKENKSVK
 ELADFYHKEFNP

ID28 1065bp

ATGACAACATTATTCAAAAATAAGAAGTAACAGAACCTGCTGCAGTCAGGTATGAAGGCCCTGTCCTG
 CTTATCTCGTCAAAAGTTGACACCGCATGTGGATGAAGTGGTACAGATGGCTGGGTGGTATTGTTGGTATCAA

1 ACATTAGAAGCTGTGGATGCACCGCGCTTGGCGCTCATATGGACGAAGTTGGTTATGGTCAGCGAA
 ATCAAGCCAGATGGTACCTTCCGTGTCAGAAATCGGTGGCTGGAACCCATGGTGGTTAGCAGCCAACGTTCA
 AACTCTTGACTCGTATGGTCACTGAAATTCTGTGATTTGATTCAGGTTCTGTCCTCCGCACTTGACTCGTGGAAAGGG
 GGGACCAACCATGCCAGCCATTGCCGATATCGTGTGTTTGCAGGTGGCAAGGCTGAGGGCAGAAAGTT
 5 GGCATCCCGTCTGGTATACCGATACCTGTCAGGATAGTCTGCAATTGACAGGCAATGAAAAAAATATCATCTCAA
 AAGCTTGGGATAACCGCTACGGTCTCATGGTACAGGAGCTAGCTGAAGCTTATCGGGTCAAAAACACTCGGCA
 ATGAACACTATCTGGGTTCAACGTCCAAGAAGAAGTGGTCTGCGCTCATACCTCTACAACCAAGTTGA
 CCCAGAAGTCTCCTCGCAGTTGATTGTCACCAGCAGGTGATGTCAGGTTGCAAGGCAAGATTGGAGATGG
 10 AACCTGATTCTGTTCTATGATCCAGGTCACTTGCTTCTCCAGGGATGAAGGAATTCTCTTGTACAACGGTCAA
 GAAGCTGGTATCAAGTACCAAACTACTGTGGTAAAGGCGAACAGATGCAGGTGAGCTCATCTGAAAATGGT
 GGTGCCCCATCAACAACTATCGGTCTGCGCTCGTATATCCATTCTACCAAAACCTCTATGCAATGGATGACT
 TCCTAGAAGCGCAAGCTTCTACAAGCCTGGTGAAGAAATTGGATGTTCAACGGTTGATTGATTAACATTA
 TTAA
 15 MTTLFSKIKEVTELAAVSGHEAPVRAYLREKLPHDEVVTDTGLGGIFGIKHSEAVDAPRVLVASHMDEVGFMVSEIKP
 DGTRVVEIGGWNPVVSSQRFKLLTRDGHEIPVISGSVPPHLTRKGPGPTMPAIADIVFDGGFADKAESFGIRPGDTI
 VPDSSAITANEKNIISKAWDNRYGVLMVSELAEALSGQKLGNEYLGSNVQEEVGLRGAHTSTTKFDPEVFLAVDCSP
 AGDVYGGQKGKIGDGTIRFYDPGHLLPGMKDFLLTTAEEAGIKYQYYCGKGGTDAGAAHLKNGGPSTTIVCARYI
 HSHQTLYAMDDFLEAQFLQALVKKLDRTVDLIKHZ
 20 **ID31 1182bp**
 ATGGAATTCTATGAAATCACTGAAAGGACTACTCTTATCATAGCTAGTTTATCTGACTCTTGACTTGGAT
 25 GAACACTTCTCCCATTCACTGATTCCAGGACTAGCTTAAACAAGCCTATCTGACTTTATCTCTAGCCACTCGTC
 TCCCACTACTAGAAAGCTGGTTACAGTTGGAGAAGGTCTACCCGTCACAAATTACAGCCTTCTCTCAAT
 CATCCTACTAACTCTTCAACTTATGTTGGGGCTCTCGCTTAGCTGTCAGTTGGCAATCTG
 CCATCTATATCTTGCAGCATCATCTTGTGCGCTTATTTAGGAAATACATGAAAGCTTGGCAGGGAT
 TCACCCGCTGGTTACCTAGCCTATTTAGGACTCTTACATGATAATGGGCAATCGTCTCTTACAT
 TTAATCTCTAAGTTTCTGTTGGTAGCTATGCCCTTTAGGTTACTAGCTGGTTTATATCATTTCTATATC
 30 AAAAGATTCTTCTCCCCTATCTAGGAAAATTACCCATCTCAAACGTTAAATCACGATACTAGAGAAATTCAAAT
 CCATCTTAGCAGACCTTCAACTATCAATCAGGACAATTGCTTCTAAAGATTCTTCAAGAAGGCTTGAAGT
 GCTCCGCATCCCTTTCTATCTCAGGAGGTCTGGTCAAACCTTTACTTACTGTTAAACTCAGGCGACCATAC
 CAAGAATATCTATGATAATCTCAAGCCGGCAGCAAAGTAAACCTAGACAGAGCTTACGGACACATGATCATAGA
 35 AGAAGGACGAAAATCAGGTTGGATTGCTGGAGGATTGGGATCACCCCTCATCTTACATCGTGAACAT
 CCTATTAGATAAAACAGGTTCACTTACTATAGCTTCCGGAGATGAAAATGCACTACCTAGATTACTCC
 GTAATGCTCAGAAAATCTAATTGAACTCCATCTAATGACAGTACGAAAGACGGCTATCTTAATTGAA
 ACAAAAAGAAGTGGCCGAACATGCAACCGTCTATATGTGGCTCTATTCTATGATGAAGGACTTGCCAAACA
 GATTAAGAAAACAAATCCAAAACAGAGCATATTAC
 40 MEFSMKSVKGLLFIAASFILTLLTWMNTSPQFMIPGLALTSLTFILATRLPLLESWFHSLEKVTVHKFTAFLSIILIFH
 NFSMGGLWGSRLAQQFGNLAIYIFASILYAYLGKYIQYEAWRWIHLRYVLYAYILGLFHTYMIMGNRLLTFNLLSFLVGS
 YAEGLLAGEYIIFLYQKISPYLGKITHLKRNLNDTREIQHLSRPFNYQSGQFAFLKIFQEGFESAPHFISGGHGQTLV
 PTVKTSGDHTKNIYDNLQAGSKVTLDRAYGHMIEEGRENQVWIAGGIGTPFISYIREHPILDQVHFYYSFRGDENAV
 YLDDLRLNYAQKNPNFELHLLIDSTKDGYLNFEQKEVPEHATVYMCGPISMKALAKQIKKQNPKTEHIY
 45 **ID32 900bp**
 ATGACTTTAAATCAGGCTTGTAGCCATTAGGACGTCCAATGTTGGAGTCAACCTTTAAATCACGTTAT
 GGGGAAAAGATTGCCATCATGAGTACAAGGGCAGACAACCGCAATAAAATCATGGGAAATTACACGACTGA
 50 TAAGGAGCAAATTGCTTATGACACACCAGGGATTACAAGCCTAAAACAGCTCTCGGAGATTCTGGTTGA
 GTCTGCTTACAGTACCTCTCGAAGTGGACACTGTTCTTTCATGGTCCGCTGTGATGAAGCGCGTGGTAAGGGG
 GACGATATGATATGAGCGCTCTAAGGCTGCAAGGTTCTGTGATTGGTTGTAATAAAATCGATAAGGTCC
 ATCCAGACCAAGCTCTGTCAGATGATGACTTCCGTAATCAAATGCACTTTAAGGAAATTCTCAGC
 CCTCTGAGGGAAATAACGGTCTGCTGCTAGTGGATAATTGAGTGGAAATCTGGATGAAGGTTCCAATATTCTCCG
 55 TCTGATCAAATCACAGACCCATCCAGAAACGTTCTGGTTCAAGAAATGGTCTCGGAGAAAAGTCTGGCACCTAACFC
 CTGAAGAGATGCCCATCTGTGAGGAGTGTGACTCTATGAAACGAGACGAGAGACAGACAAGGTTACAC
 TCGTGCACCATCAAGTCAGGAGCCGATAGCAAAAGGGATTATCATGGTAAAGGTGGCGCTATGCTTAAGA
 AAATGGTACGATGGCCGTCGTGATATGAACTCATGCTAGGAGAACAGGCTTCTAGAAAACCTGGTCAAGG
 TCAAGAAAACAGGCGATAAAAGCTAGATTGGCTGACTTGGCTATAATGAAAGAGAATCTAA
 60 MTEKSGFVAIILGRPNVGKSTFLNHVMQKIAIMSDEKAQITRKIMGIYITDKEQIVFIDTPGIHKPKTALGDFMVESAYS
 TLREVDTVLFMVPADEARKGDDMIERLKAAYPVILVVNKIDKVHPDQLLSQIDDFRNQMDFEKEIVPISALQGNVVS
 REVDSLSENEDEGQYFPSDQYDHPERFLVSEMVRKVLHLTREIPIHSVAVVVDMSKRDEETDKVHIRATIMVERDSQ
 KGIIIGGGAMLKKIGSMARRDIELMLGDKVFLETWVKVKKNRDKLADFGYNEREYZ

ID33 855bp

5 CTGCTTCTTGTACAGAAGGAGGACTTATGCCTGAATTACCTGAGGTTGAAACCGTTGTCGTGGCTAGAAA
 AATTGATTATAGGAAGAAGATTCAGTATAGAAATTGCTACCCCAAGATGATAAGACGGATTGGAAGAGT
 10 TTCAAAGGGAATTGCCTAGTCAGATTATCGAGTCATGGGACGTGTAAGGAAATTTGCTTCTGACAGA
 CAAGGTCTTGATTCCCATTGCGGATGGAGGGCAAGTATTACTATCCAGACCAAGGACCTGAACGCAAGCAT
 GCCCATTTCTTCATTGAAAGATGGTGGCACGCTGTTATGAGGATCTCGCAAGTTGGAACCATGGAAC
 TCTTGGTGCCTGACCTTATAGACGCTACTTTATCTAAAAAAATTAGGCTCTGAACCAAGCGAACAGACTTGA
 TTACAGGTCTTCATCTGCCATTGCCAAGTCAAAAGCCTATCAAATCCCCTCCTAGACCAAGACCTGGTA
 GCTGCTTGGCAATATCTATGTGGATGAGGTTCTGGCAGCTCAGGTTCATCCAGCTAGACCTCCCAGACTT
 TGACAGCAGAAGAAGCGACTGCCATTGACCAAGCATTGCTTTGGGCCAGGCTGTTGAAAAAGGGCT
 CCACCATCCGACTTATACCAATGCCATTGGGAAGATGGAAGCATGCAGGACTTCTCATCAGGCTATGATAAGAC
 TGGTCAAGAATGTGTACGCTGTGGTACCATCATTGAGAAAATTCAACTAGGCGGACGTGGAACCCACTTTGTCCA
 15 AACTGTCAAAGGAGGGACTGA
 MLLVFTEGGLMPPEVETVRGLEKLIIGKKISSIEIRYPKMIKTDLEEFQRELSQIESMGRRGKYLLFYLDKVLSHL
 RMEGKYFYYPDQGPERKHAHVFFHEDGGTLVYEDVRKFGTMELLVPDLDVYFISKKLGEPEPSEQDFDLQVFQSALA
 20 KSKKPIKSHLLDQTLVAGLNIYVDEVLWRAQVHPARPSQLTAAEATAIHDTIAVLGQAVEKGSTIRTYTNAGED
 GSMQDFHQVYDKTGQECVRCGIIEKIQLGGRGTHFCPNCQRDZ

ID34 633bp

25 TTGTCCAAACTGTCAAGGAGGAGCTGATGGGAAAAATCATCGGAATCACTGGGAAATTGCTCTGGTAAGTC
 ACTGTGACAATTTCTAAGACAGCAAGGCTTCAAGTAGTGGATGCCACGCAGTCGTCACCAACTACAGAAA
 CCTGGTGGTGTCTGTTGAGGCTAGTACAGCACTTGGCAAGAAATCATCTGAAACGGAGAACACTAAC
 GCCCTCTCTAGCTAGTCTCATCTTCAAATCTGTGAACGAGAATGGTCTAAGCAAATTCAAGGGGAGATTAT
 CCGTGAGGAACGGCTACTTGAGAGAACAGTTGGCTCAGACAGAAGAGATTTCTCATGGATATTCCCCCTACTT
 30 TTGAGCAGGACTACACCGATTGGCTGAGACTGGTGGCTATGTGGACGAGTGGCTCTGGCAGCCAGTGGCCTTAGAAAAAAAGA
 TAATGAAAAGGGACCAGTGTCCAAGATGAAGCTGAGTGGCTCTGGCAGCCAGTGGCCTTAGAAAAAAAGA
 AAGATTGGCAGCAGGTTCTGATAATAATGGCAATCAGAACAGCTTCTTAATCAAGTCATATCCTCTGAA
 GGGAGGTAGGCAAGATGACAGAGATTAA
 35 MSKLSKEGLMGKIIGITGGIASGKSTVTNFLRQQGFQVVADAVVHQLOKPGGRLFEALVQHFGQEIILENGELNRPLLA
 SLIFSNPDEREWSKQIYGEEIIRELATLREQLAQTEEIFFMDIPLLFEQDYSDWFAETWLVYVDRDAQVERLMKRDQLSK
 DEAESRLAAQWPLEKKKDLASQVLDNNGNQNQNLNVHILLEGRQDDRDZ

ID35 1269bp

40 TTGATAATAATGGCAATCAGAACAGCTTCTTAATCAAGTCATATCCTTGTAGGGAGGTAGGCAAGATGACA
 GAGATTAACGGAAAGATAATCTGCGCATGGCTGGAAAATCTAGGTGTAGGGAGTCAGCAAGTCGCTTCTGAGGCTTAGCAAT
 TACCTTATGCCCCTCTCGTGGAAAATCTAGGTGTAGGGAGTCAGCAAGTCGCTTCTGAGGCTTAGCAAT
 TTCTGCTCTGCTATTGGCGCGCCTTCTCTCTATTGGGTATTCTGCTGACAATACGGCCAAAACCCA
 TGATGATTGGCAGGTCTTGTCTATGACTATCACTATGGGAGGCTGGCCTTGTCCAAATATCTATTGGTTAAT
 45 CTTCTCTGTTACTAACGGTGATTTGAGGTTCTAATGCAACGGCACTGATAGCCAGTCAGGTTCCAA
 AGGAGAAAATCAGGCTCTGCCCTAGGTACTTTGCTCTACAGGCGTAGTGCAGGACTCTAAGTGGTCCCTTATTGG
 TGGCTTATCGAGAATTATTGGCATTGCTACAGTTCTACTGGTGTAGTTCTATTAGCTGCTTATT
 GACTATTGCTTATCAAGGAAAGATTTCAACCGTAGGCAAGAAAAGGCTATTCCAACAAAGGAATTATTAC
 50 TCGGTTAAATATCCCTATCTTGTCTCAATCTCTTAAACAGTTGTCTCATCCAATTTCAGCTCAATCGATTGG
 CCCTATTGGCTTTATGACCGACTAGGGAGACAGAGAAATCTCTTGTCTCTGGTTGATTGTCCA
 GTATGGGCTTTCCAGCATGATGAGTGCAGGAGTCATGGCAAGCTAGGTGACAAGGTGGCAATCATCGCTCTT
 GGTTGCGCCAGTTTATTAGTCATCATCTATCTCTGCTGCAATGCCCTAGCCCCCTCAACTAGGACTCT
 ATCGTTTCTCTTGGATTGGAAACGGTGCCTGATTCCGGGTTAATGCCCTACTCAGCAAATGACTCCAA
 AGCCGGCATTCGAGGGCTTGCCTCAATCAGGTATTCTTATCTGGAGGTGTGTTGCCCCATGGCAGGTT
 55 CTGCAGTAGCAGGTCAATTGGCAACCATGCTGTCTTATGCGACAAGCCTTGTGTTGCCCTTAGTTGTCTCTT
 AACCTGATTCAATTGCAACATTAAAGTAAAGGAATCTAG

60 MIIMALRTSFLKCISFLKEVGMTEINWKENLRIAWFGNLTGASISLVVPFMPIFVENLGVGSQVAFYAGLAISVSAIS
 AALFSPWIGILADKYGRKPMMirAGLAMTITMGLAFVNPYWLFLRLNGVFAGFVNPATALIASQVPKEKGSALG
 TLSTGVVAGT!TGPFIGGFIALElfGRTVFLVGSFLFLAA!!TICFIKEDFOPVAKEKAIPKELFTSVKYPYLLNLFLTS
 FVIQFSAQSIQGIPILALYVRDLGQTENLLFVSGLIVSSMGFSSMSAGVMGKLGDVKVNHRLLVVAQFYSVIIYLLCANAS
 SPLQLGLYRFLFGLGTGALIPGVNA!!SKMTPKAGISRVAFNQVTFYLGGVVGPMAVGQFGYHAVFYATSLCV
 AFSCLFNLIQFRLLKVKEIZ

ID36 131bp

ATGGCCCTACCAACTATTGCCATTGAGACGCCAATGTTGGAAATCAACCCATTAAATCGGATCGCTGGTG
 AGCGAACATCTCATTGAGAAGATGTCGAAGGAGTGACACGTGACCGTATTTATGCAACGGGTGAGTGGCTCAATC
 5 GTTCTTTAGCATGATTGATAACAGGAGGAATTGATGATGTCATGCCCTTCATGGAACAAATCAAGCACCGAC
 AGAAAATTGCCATGGAAGAACAGATGTTATCGTTTGTCTGGTAAGGAAGGAATTACTGATGCAAGCAGAC
 ATACGTAGCTGTAAGCTTATAAGACCCACAACCGATTACCTCGCAGTCACAAAGGTGGACAACCCCTGAGAT
 10 GAGAAATGATATATATGATTCTATGCTCTCGGTTGGGTGAACCATTGCTATCTCATCTGTCCATGGAATCGGT
 ACAGGGATGTCAGATGCGATCGTAGAAAATCTCCAAATGAATATGAGGAAGAAAATCCAGATGTCATTAAG
 TTAGCTGATGGCTCTAACGTTGGAAAATCAAGCTGATCAATGCTATCTGGAGAAGACCGTGTATTG
 15 CTAGCTCTGTTGCTGGAACAACCGTGTGATGCCATTGATACCCACTTACAGATAACAGATGGTCAAGAGATTACCAT
 GATTGATACGGCTGGTATGCGTAAGCTGTTGAAAGGTTATGAAAATACTGAGGAATACTCTGTTATGCGTGCCTAG
 CGTCTATTGACCGTTAGATGTTGATGGTCAATGCGGAAGAAGGCATTGCTGAGTACGACAAGCGTA
 TCGCAGGATTGCCATGAGCTGGTAAAGGGATGATTCTGTGGTCAACAAAGTGGGATACGCTGAAAAGATA
 ACCACACTATGAAAATGGGAGAAGAGATACCGTGGAGCAGTCCAAATCTGCCTTACGCACCGATTACTTGT
 20 ATCAGCTTAACCAAGCAACGTCCTCCAAACTCTCTGAGATGATTAAGCAAATCAGCGAAAGTCAAATACACG
 TATTCCATCAGCTGCTTGAACGATGTCATCATGGATGCCATTGCCATCAACCCAAACCGACAGACAAAGGAAA
 ACGTCTCAAGATTTCTATGCGACCCAAGTGGCAACCAAACCCACCAACCTTGTCACTTTGTCATGAAGAAGAA
 CTCATGCACTTTCTACCTGCTTCTGGAAAATCAAATCGCAAGGCCTTGTGAGGAACACCGATTCA
 25 TCTATCGCAAGAAAACGCAAATAA
 MALPTIAIVGRPNVGKSTLFNRIAGERISTVEDVEGVTRDRIYATGEWLNRSFSMIDTGGIDDVDAPFMEQIKHQAEIAME
 EADIVFVVSKEGITDADEYVARKLYKTHKPVILA
 30 VNKVDPNPEMRNDIYDFYALGLGEPLPISSVHIGTGVDVLDIAVE
 NLPEYEEENPDVIFKSLIGRPNVGKSSLINAILGEDRVIASPVAGTTRDAIDHTFTDTDGQEFTMIDTAGMRKSGKVE
 35 NTEKYSVMRAMRAIDRSVVLMVINAEGIREYDKRIAGFAHEAGKGMIVVNWKWDTLEKDHNMTKNWEEDIREQFQ
 YLPYAPIIFVSALTQRLHLPEMIKQISESQNTRIPSAVLNDVIMDAIAINPTPTDKGKRLKIFYATQVATKPPTFVIFVNE
 EELMHFSYLRLENQIRKA
 FEGTPHI
 LARKRKZ

ID37 714bp

30 ATGACAGAAACCATTAAATTGATGAAGGCTCATCTCAGTGCAGGTTAAAGAGCAAGAAATTCCCCAAGTA
 GACTTAAATGAGATTTCAGACAGCAGCCCAGATGGCATCATTTGAAAGAATTCCAATCCTACTCTGTGATTGTGG
 TAGAAGTCAGAGAAGAAAGATGCCATTGATGAATTGGTACCTCAAGAAGCCATTGCCAGTCTGCTGTTTCCCT
 TCTCTTGTGGAGATTGAGCAGAAAAGGGAGCCGACTTCATACCGACACCTTCAACCCCAAGGTGT
 35 GGAAGGTCTCTTGTGATTAGTCGGTCATGCGAGCTCTGCTGACAAAAGCCTTGTGGCAGCTGAAAGCTTGGGC
 TATGGTGGTGTGATTATCGGTTGGTGTGACATAAGCTGAAGAAGTGGCAGAGCTTTAACCTACCTGACTACA
 CCTATTCTGCTTGGTGTGACACTGGGTGTGCAATCAACATCATGATATGAAACCGAGACTGCCACTAGAGAA
 TGTGCTTGTGAGGAAGAATACCAAGAACAGTCAACTGAGGAATCCAAGCTTATGACCGTGTTCAGGCTGACTAT
 GCTGGGGCGCGTGCACCAAGCTGGAGTCAGCGCCTAGCAGAACAGTTGGTCAAGCTGAACCAAGCTCAACT
 40 AGAAAAAAATCTGAACAGAAGAAATTATTGTAG
 MTEETIKLMAHTSVRRFKEQEIPQVDLNEILTAQMSSWKNFQSYSVIVRSQEKKDATYYELVPQEAIRQSAVFLLFV
 GDLNRRAEKGARLHDTDFQPGVEGLLISSVDAALAGQNLAESLGYGVIIGLVRYKSEEVAFNLPDYTVSVFG
 45 MALGPVNQHDMKPRPLENVFEEEYEQSTEIQAYDRVQADYAGARATTSWSQRQAEQFGQAEPSTRKNLEQK
 KLLZ

ID38 729bp

50 ATGACAGAAATTAGACTAGAGCAGCTCAGTTATGCCATTGGTCAGGAAGGATTAGAGGATATCAACCTACAG
 GTGACTTCAGCGAAGTGGTTCCATCCTAGGCCAAGTGGTGGAAAGACCACCCCTCTTAAATCTAATCGCTG
 GGATTAGAGATTGAGCAGGGAGAATTGCTTGTGATGGTAAGAAAATCCAAGGGCGCGTGAAGITATATGTT
 GCACAAAGGATCTGCTTGGAGCACAAGACGGTCTGGAAATATCATTCTGCCCTCTGATTCAAAAGGTGGAT
 AAGGCAGAACGCTATTCCCGAGCGGATAAAATTCTTGCACCTCCAGCTGACAGCTGAAAGACAAAGTACCT
 CATGAACTTAGCGGTGGATGCCAGCGTGTAGCCTACTCEGGACCTACCTTGGCACAAGCTCTCTCT
 TAGATGAGGECATTAGGCCCTGGATGAGATGACAAGATGGAACCTACCGCTTGGTATCTGAGATGACAAGC
 AGCTGGACCTAACAAACCTGATCACCGCATAGTATTGAGGAGGCCCTCAATTCTCAGCAGCGTATGATCTT
 55 GAAAAATCGGCTGGCAGATTGTTGAGAAATTAAACTAGATTGGTGTGAAGATGAGGACAAGGAAGTCCAAA
 GATTGCCAACAGTCAAATTGGCGGAATTGGCTTAGATAAGTAG
 MTEIRLEHSVAYGQERILEDINLQVTSGEVVSILGPSVGKTLFNLIAGILEVQSGRIVLDGEENPKGRVSYMLQKDLL
 LEHKTVLGNHPLLIQKVDAEAISRADKILATEQOLTAVRDKYPHELSGGMRQRVALRTYLEFGHKLFLDEAFSALDE
 60 MTKMELHAWYLEIHKQLQETTIIHSIEEAALNLSDRYILKNRPGQIVSEIKLDWSEDEDKEVQKLA
 YKQQLAELGLDK

ID39 2433bp

ATGAACATTCAAAGCATTGAATGAATGTATCGAAAGTGCCTACATGGTTGCTGGACATTTGGAGCTCGTTATC
 TAGACTCGTGGCACTTGTGATTGCCATGCTAACAGTTAGTGTAGCAGGGCAACTTAAATGATTATCC
 5 GTATGAGATGGACCGTTAGAAGAGGGCTTGGACTGACTGAAACGGACTATAGCCAGGATGAAACCTTAC
 GGAATTGCCGTTCTCCGTGTTGCAGGTTCTTGTATGAAGCAGAGTATGTAGCGTCAGTGGCCATGCTAAG
 GTACTAGGGACAGAGCACGTCTCATGCGATTITGCATGATAGCAATGCCCTGGCACTCGTATCTGGACAGGG
 CTGGTTTCTTATGAAGACAAGAAAAGATCAGGTCAAGATTGCTGCTCTCGTCAAGAATTAGCTGACAGC
 10 CTGGACTCGTAAGATCTAAGGCTTACGCCAACGCCATCTACAGTAGCTGACAGCAGCAGGAAATTCTATGCCAA
 CTGGACTCGTAAGATCTAAGGCTTACGCCAACGCCATCTACAGTAGCTGACAGCAGCAGGAAATTCTATGCCAA
 TATGATGGGCATGCCGACACTCTAGGGTCTGGAGGATTACCGATGATTGACAGAGCAAGCGCCT
 15 GGCAGAAGTAAAGCAGTCATCGGTCGGAGGAAAATCTACGTATGATTCAAATCTTGAGCCAGAGACTAAG
 AACAAACCTGTCTGGTGGGGATGCTGGTCTGGAAAACAGCTCTGGCCTGGCTTGCCCAGCGTATTGCTA
 GTGGTGACGTGCTCGGAAATGGCTAAGATGCCGTGTTAGAACCTGATTGATGAATGTCGTTGCAAGGACAC
 GCTTCGTGGTACTTGAAGAACGATGAATAATATCATCAAGGATATTGAAGAAGATGGCAAGTCATCTCTT
 20 TATCGATGAACCTCACACCATCATGGTTCTGGTAGCGGGATTGATTCGACTCTGGATGCGGCAATACTTGAAA
 CCAGCCTTGGCGCTGGAACCTTGAGAACGGTTGCTGCAACTCAGAGAAGAATATCAAAACATATCGAAAAA
 GATCGGGACCTTCTCGTCTGGCTAAAGTGAACGATTGACGAGTGTGGCAGATAGTACTATTAC
 AAGGTTGAAGGCAGCTTATGAGAACACATCACCCTGTACAATACAGATGAAGCGGTTGAAACAGCGGTTAAGA
 TGCTCATCGTATTAAACAGTCGTCATTGCCAGACTCTGCTATCGATCTTGGATGAGGCGGAGCAACAGT
 25 GCAAAATAAGGAAAGCATGTAAGCAGACGATTGAGCTAGATTGAGTCAGCTGACAAGGCCATGATGGATGGAA
 GTGGAAACAGGCAGCCAGCTAATCGAAAAGAAGAGGAAGTACCTGCTACAAAGACTTGGTACAGACTCTGA
 TATTTGACCACCTTGAGTCGTTGTCAAGGAAATCCAGTTCAAAACTGACTCAAACGGATGCTAAGAAGTATT
 AATCTTGAAGCAGAACTCCATAAACGGTTATCGGTCAGATGAGCTTCAAGGCTTGTACAATAGCCGTGCCATT
 30 GCAACCAGTCAGGGATTGCACTGATAAGCTGGGATTGGCTTGTGAGGATTTGACAGCTTCAAGGCTTACAGGTGCTGGAA
 AACTGAATTAGCCAAGGGCTGGCAGAAGTCTTGTGAGCAGGATGACAGATAGCAAGGCAAGGTGATTTCAAAATAC
 TATATGGAGAAATTGCAAGCTAGTCGCTCTCAACGGAGCTCCAGGCTATGTTAGGATATGAAGAAGTGGGAG
 TTGACAGAGAAGGTTGCAATAAACCTTATCCGTTCTCTTGTGAGGTTAGAGAAGGCCACCCAGATATCT
 35 TTAATGTTCTTGCAAGGTTCTGGATGACGGTGTCTTGACAGATAGCAAGGCAAGGTGATTTCAAAATAC
 CATTATCATTATGACATCGAATCTAGGTGCACTGCCCTCTGATGATAAGACTGTTGTTGGGCTAAGGAT
 ATTGCTTGTGACCAAGGAAATATGAAAAAACGATGTTGAGAAGACTGTTGTTGGGCTAAGGATTTGCAAGGAAATT
 AACCGTATTGATGAGAAGGTCTCCATAGCCTATCTAGTGTATATGCAAGGAGTGGTGAAGATTATGGTCA
 40 AGCCTTGTGCAAGTTGACTGAAAGAACGGATTGACTGAAACATTACAAGCTCAGCTGAAACATTGTTAGCAA
 TCAAGGATATGACCCAGAGATGGGAGCTGCCACTTCCGAGAACCCCTGCAAACAGAAGTGGAGGACAAGTTGGC
 AGAACCTCTCAAGGGAGATTAGTGGCAGGCAGCACACTAAGATTGGTGTCAAAGCAGGCCAGTTAAAATT
 TGATATTGCTAA
 45 MNYSKALNECIESAYMVAHGFGARYLESWHILLIAMSNSYSVAGATLNDYPYEMDRLEEVALELTETDYSQDETFT
 LPFSRRLQVLFDEAEYVASVVAHVKLGTEHVLYAILHDSNALATRILERAGFSYEDKKDQVKIAIRRNLEERAGWTR
 EDLKALRQRHRTVADKQNSMANMMGMPQTPSGGLEDYTHDLTEQARSGKLEPVIGRDKEISRMQILSRKTNNPVLV
 GDAGVGKTLALGLAQRIASGDVPAEMAKMRVLELDLMNVVAGTRFRGDFEERMNNIJKDIEEDGQVILFIDELHTIM
 GSGSGIDSTJDAANILKPALARGTLRTVGATTQEEYQKHIEKDAALSRRFAKVYTIEPSVADSMILQGLKATYEHHRV
 QITDEAVETAVKMAHRYLTSRHPDSAIDLDEAAATVQNKAHKVAKDSDLSPADKALMDGKWKQAAQLIAEVEV
 PYYKDLVTESDILTLSRLSGIPVQKLQTDAKKYLNLAEELHKRVIGQDQAWSISRAIRRNQSGIRSHKRPISGMFLGP
 TVGVKTELAKALAELVLFDDESALIRFDMSYEYMEKAFAASRLNANGPPGVYVEEGGELTEKVRNPKPSVLLFDEVEKAHP
 DIFNVLQVLLDDGVLTDSKGRKVDFSNLIMTSNLGATALRDKTVFGAKDIRFDQENMEKRMFEELKKAYRPEFIN
 RIDEKVVVFHSLSSDHMQEVVKIMVKPLVASLTEKGIDLKQASALKLLANQGYDPEM GARPLRRTLQTEVEDKLAELL
 KGDLVAGSTLKIVKAGQLKFIAZ

ID40 1008bp

50 ATGAAGAAAACATGGAAAGTGTAAAAACGCTTGTAAACAGCTCTGTAGCTGTTGCTGGCCTGTGGTCAAG
 GAACGTCTCTAAAGACAACAAAGAGGCAGAACCTTAAAGAAGGGTACTTATCCTAGACTGGACACCAATACCA
 ACCACACAGGGCTTATGTTGCCAGGAAAAGGTTATTCAAAAGAAGCTGGAGGGATGTTGAATTGAAATTGC
 CACCAAGAAAAGTTCTCTGACTTGGTTATCAACGAAAGGCACCATTTGCACTGTATTGTTGAACACAATACATGCC
 TAAGAAATTGGAAAAGGAGCAGGAATCACTGCCCTTGCACTATTGTTGAACACAATACATCAGGAATCTC
 55 TCGTAAATCTGATAATGTAAGCAGTCAAAAGACTTGGTGGTAAGAAAATATGGACATGGAAATGACCCAACTGA
 ACTTGCTATGTTAAAACCTTGGTAACTCAAGGTGGAGACTTGGAGAAGGGTTGAAAGATACCAAAATAACGA
 CTCAAACCTCAATCACACCGGATTGCCAAAGGGCTTGTGATACTGCTTGGATTACTACGGTGGGATGGTATCCTT
 GCTAAATCTCAAGGTGAGATGCTAAGCTCTGACTTGAAGAAGACTATGTCAAGGAGTTGACTACTATTCAACAG
 TTATCATGCCAAACACGACTATCTGAAAGATAACAAAGAAGAAGCTGCCAAAGTCATCCAAGCCATCAAAAAAG
 GCTACCAATATGCCATGGAACATCCAGAAGAAGCTGCAGATATTCTCATCAAGAATGCACCTGAACTCAAGGAAA
 60 AACGTGACTTGTGATCGAATCTAAAAATACTGTCAAAAGAATACGCAAGCAGACAAGGAAAATGGTATCCTTAAAGAAGACTTGACAGACA
 TTGACGCAAGCTGCTGGAAATGCTTCTACAAATGGGATAAAGAAAATGGTATCCTTAAAGAAGACTTGACAGACA
 AAGGCTGACCAACGAATTGTGAAATAA

MKKTWKVFLTVTALVAVVLVACGQGTASKDNKEAEKKVDFILDWTPNTNHTGLYVAKEKGYFKEAGVDVDLKLP
 PEESSSDLVINGKAPFAVYFQDYMAMKLEKGAGITAVAAIVEHNTSGIISRKSNDNVSSPKLVGKKGWTWNDPTELAML
 KTLVESQGGDFEKVEKVPNNDNSNITPIANGVFTAIIYVGWDGILAKSQGVANFMYLKDYVKEFDYSPVIANND
 YLKDNEEARKVIQAIIKGQYAMEHPEEAADILIKNAPELKEKRDVFIESQKYLKEYASDKEKWGQFDAARWNASY
 5 KWDKENGILKEDETDKGFTNEFKZ

ID41 762bp

TTGATGAGAAAATTGAGAAGTATACTGAGACGACACATTAGTCATTGGCTTCTGGAGTATTGTCATCTGGC
 10 AGTAGCAGGTTCTTAAACTTCTCCCAAGTTATCCTGCCACACCTCTGAAATTCTCCAGCCCTTGTGCG
 GACAGAGAATTCTCTGGCACCATAGCTGGCGACCTTGAGAGTGGCTTACTGGGCTGATTGGAGTTTG
 TTGCGCTGTCTTATGGCTGTGCTCATGGATAGTTGACTTGGCTCAATGACCTGATTACCCATGATGGTGGTC
 15 CAGACCATTCCGACCATTGCCATAGCTCCTATCCTGGCTTGTGCTAGGTTATGGGATTGGCCAAGATTGCTT
 GATTATCTTAACGACAACCTTCCCACATCGTTAGTATTGGACGGTTAGGCATTGCGACAAGGATAATGCTG
 ACCTTGTGTTAGTCGATGGGGCAAGCCTGGCAATCTGCGATTAAACCTCCAGTTAGCCTGCCTTACT
 TTAGTGCAGGCTGAGGGTCAGTGTCTTACGCCATTATACAACCTGGTATCTGAGTGGTGGGAGGTTTG
 20 AGGCTTGGTGTATATGATTCACTGTTAGTATGATACCATGTTGCCATTATTCTGGTGT
 CGATTATCAGCTTGGTATGAAGCTGGTCGATATCAGTGAAGAAATATGTAATTAAATGAAACGTTGCG
 YVIKWRSZ

ID42 372bp

TTGATTTTAATCCTATTGCTGTATGATAAGGGAAAAGAAAGGGGACAGAGATATGGCTTTACCAATACCCACA
 25 TGCGATCTGCTAGTTTGGTATTGTTACAGCTTGCCTGATGACATCATTGACTTTGGTATATCATGACCAT
 TTCTAAAAAAATGTCCTTGAAATTGGAGAAGAACCTGAGTTCAATTGTTAATAACCAAGGAAAGATTACCTTC
 30 ACTTTCAAGTCAACACCTCCCTACAGCCATTGACTTAAACCATCCTTGCACCTCGTTATCCCCAAGA
 GTACTGGTTTAGACATGGACGGTAGAGAAACTATCCTCCAGAAGAAAATGACCTATTAA
 MIFNPICCMIREKKGRDRMAFTNTHMRSAFGIVSLPDDIIDSFWYIIDHFLKNVFELEEELEFQLNNQGKITHFSSQ
 35 HLPTAIDFDFNHPFDPRPPRVLVDMDGREILLPEENDLFZ

ID43 1569bp

ACAGCGGTGTCTTCTATTTAAGAAAAGTATAATCAATTGTTAAAATAGTAAAAAATTGGAGGTTCTG
 40 ATGAAATATTTGTCCTAATGAGGTATTCACTGTTAATTAAAGGTGGGACTTGTCTCGTACTATTGGCAA
 TTCAATTGGGAAGCCAAGGTATTGATGAAGTTGTTACTAGTTCTCACCAGTGGCTACAAAGAGTC
 TR-TAATGCAATTACTAATGATTCACTGTTAATTCAACACTGTTAATCAGAATCTGCTGTTGAAATGATTGCTCTA
 ATTGAAACCACTAATGGTTAGATAATTCTGTTAAGTGTAAATAGCATGAGCTCTAATGGTACTATTGTTCCAATTCA
 CAATTAGAACAGAACAGTTGAATTCACTGTTAACATCTACTAATGAAAATAAGAGTTAAGGAAGATGTTATA
 45 AGTGACAGAAATTCAAAAAGAATTGAAGATACTGCTTAAAGTGTAAAAGATTATGGTCAGTAGGTGATGGG
 ATTCAATGATGATGACAAGCAATTCAAGATGCAATAGATGCTGAGCTCAAGGGCTAGGTGGAGGAATGTATAT
 TTCTGAGGAACCTATTAGAAAAGAAATTGTTTTAAAAGTCATACACACTTAAAGTGAATGAGAAAG
 CTACAATTCTAAATGGTATAAATTAAAGATCACCCCTCATTGTTTATGACAGGTTATTACGGATGATGGT
 GCCAAGTAGAATGGGCCAACAGAAGATATTAGTTATTCTGGTGTACGATTGATATGAAACGGTGCTTGAAT
 50 GAAGAAGGAACCTAAAGCAAAATTACCACTTAAATTCTCAGGTGCTATTGTTAATTGGAAATTCAAATAAC
 GTAACTATAAAAATGTAACATTCAAGGATAGTTATCAAGGGCATGCTATTCAATTGAGGTGCAAAATGTAT
 TAGTTGATAATTCTGTTCTGGCAAGCCTACCCAAACGATGAAGGATGGCAAATCATAAAGTAAGGAGA
 GCATTCAAGATTGAACCAATTCACTGAAAAGGTTTCTTATGCCCTGATGATGATGGAAAAATCTGAAATGT
 GACTATTCAAAATTCTATTGGCAAAAGTGTATAATTCTGGGAAATTAGTAAACGCAATTGCAACACATCTCAA
 55 ACATTGTCGACACAGAACCCCTCTAATATTAAATTCAACATTCAATTGTTGATAACATGATGTTGAC
 GTTTACAGGATTCTGACTGTTATTAAATTGCTTATAGCTTAAACAAACACTAAAGCATTAGTAAATTAA
 TCGAGAAAAGGGGACGACCTATTGTTAAATTGCTTATAGCTTAAACAAACACTAAAGCATTAGTAAATTAA
 GGTGGTTATCGGGAAATTATTAAATTGCGCTTAAACAAAGCAGTACGAGTTGCAAAAGATAGTGC
 AGAATGTTAGGAAAAGTATCAGTATTACTGTAACAAAATGTAATTAAATAATTCTAAGGAAACAGAAACA
 ACCAAATATTGAAATTACGAGTTAGTGTAAATTAGTAGTCTCAGAGAAATGT
 60 ORCHSIYFKSNNQLLKIVKKLEVUMKYFVPNEVFSIRKLKVGTCSVLLAISILGSQGILSDEVVTSSSPMATEKSNAIN
 DLDSNPFTVNQNRSAMIASNSTNGLDNSLSVNSISSNGTIRSNSQLNRTESTVTSTNEKSYKEDVISDRIKKEFEDT
 ALSVKDYGAVGDGHDQRQAIQDAIDAAAQGLGGGNVYFPEGTYLVKEVFLKSHTHLELNEKATILNGINIKNHP5IVF
 MTGLFTDDGAQVEWGPTEDISGGTIDMNGALNEEGTKAKNLPLINSSGAFAGNSNNVTKNVTFKDSYQGHAIQIA

GSKNVLDNSRFLGQALPKTMKDGGIISKESIQIEPLTRKGFPYALNDDGKSENVTIQNSYFGKSDKSGELVTAIGTHY
QTLSTQNPSNIKIQNHHFDNMYYAGVRFTGFTDVLIKGNRFDKVKGESVHYRESGAALVNAYSYKNTKDLLDNKQ
VVLAENIFNIADPKTAIRVAKDAECLGKVSITVTKNVINNNSKETEQPNIELLRVSDNLVVSNS

5 ID44 324bp

GTGATGAAAGAAAACCTAGCTATTAAAAGGTGTTCTTGAAGGTTGTCCTGGATATGATTGGTCAAAAGAGCGGT
ATGGTTATGAGTTGGTTCAAGACTTTCGAGAGGGCTGGATTGATACTATCGTCCAGGAACATTTATCCTTGTG
10 CAAAAGTTAGAAAAAAATCAATGGATAAGAGCGACATGCCCGTCGCAGATGGTCCAGATCGGAAGTATT
TCATTAATGAAAGAAGGAGAACAGGGCTCTCAGTCTTGGCAACAATGGGACGATTGAGTCAAAAGTAGAA
GGGATTAAGAATGGGGTTAA

MMKETQLLKVLEGCVLDMIGQKERYGYELVQTLREAGFDTIVPGTIPLLQLEKNQWIRGDMRSPDPDRKYFSL
MKEGEERVSFWQQWDDLSQKVEGIKNGZ

15 ID45 816bp

ATGAAGAAAATGAAGTATTACGAAGAAAACAAGCGCTTGTACATGAGTTTCTGAGGAGAATCAAAAGTATT
GAGGAGTTGAGGGAAAGTTAATCTTGTGGATTCTCATGATGAAGACTATCTCAGAGAGCAGATCTATTGA
20 TGATGCTAGATTCTCAGAACGAGATGGCATGAGTGCAGAGGATTCTAGGTAAGAATCTAAAGGCT
TAATGAAAGAGATTCTCAAGGGAGCACCTCGCAGTTCTATCAAAGACTCCCTTGTGACGCCAATTCTTGCTCTGG
GGTATTACGTTATTACACTAAGTGATTCTAAAGGTCTCTTAAAGCTTCTAAGCTAACAGTCAATTGCTCACATT
25 GCAACTCTTATTCTGATTGGATTGGACTATGTTCTAGTTGTTAGGATATGAGAATGGCA
AAAATGAAAGATTGGCACTACATTGTTGTTGGACTATAGTTCTCTAGTTGTTAGGATATGAGAATGGCA
GCTTCATACAAGAAGGAGCCTTATATTCCGCTCCCTGGGATAGTTGCTGTCTTACGATTTCGCTAGTTATC
GGTATTGGAAATTGAAAGAAGCGGTCTTCGTCAGTATGATTATGCCATCTGTGGTGGTTCT
GCTCCGTTATTATGAGTGGATGGAAATTCAAATGTTTCTTACAAAGTTATTCTTAGCTGTCTCTTATTG
GAATCTTGTCTTGTGGTTAAGAAGATAAAATGGAGTGAAGTATAG

30 MKKMKYEEETSALLHEFSEENQYFEELWESFNLAGFLYDEDYLREQIYLMMLDFSEAERDGMSAEDYLGKNPKIM
KEILKGAPRSSIKESSLTPIVLAVLRYYQLLSDFSKGPLLTvnLLTFLGQLLIFLIGFLVATILRRSLVQDSPKMKIGTYI
VVGTVLVLVLYVGMSFIQEGAFYIPAPWDLSVFTISLVIWIWNWKEAVFRPFVSMIAHLVVGSLLRYEWMGISN
VFLTKVPIPLAVLFIGIFVLFRGFKKIKWSEVZ

35 ID46 348bp

CTGTTTTTATTATACCAATGAAAATCAAAGAGCAAACCTAGGAAGCTAGCCGCAGGTTGCTCAAAACACTGTT
TTGAGGTTGAGACGAAACTGACGAAGTCAGCTCAAAACATGTTTGTAGGTTGAGATGAAACTGACGAAGTC
40 GCTCAAAACACTGTTGAGGTTGAGATGAAACTGACGAAGTCAGCTCAAAACACTGTTGAGGTTGAGATG
AACTGACGAAGTCAGCTCAAAACATGTTTGTAGGTTGAGATGAAACTGACGAAGTCAGTAACCACATACGG
TAGGGCGACGCTGACGTGGTTGAAGAGATTTCGAAGAGTAA
MFFYLYSMKIKEQTRKLAAGCSKHCFEVVDETDEVSSKHVFVVDETDEVSSKHCFEVVDETDEVSSKHCFEVVDETD
EVSSKHVFVVDETDEVSNTYGRATLTWFEEIFEYZ

45 ID47 1260bp

ATGCAGAATCTGAAATTGCTTTTACATCTATCATGGCTACAAGATGCGTTCTTGCTTACTATGATTGGGATTAT
TATCGGTGTTTACATCGATGTTGATTATGGCTTGGGTGATTCCCTATCTCGTCAAGTCATAAAAGATATGACTA
50 AATCTCAGAAAAAATATTAGCGTCTTTCTCCTAAAAAAAGTAAAGACGGGTCTTACTCAGAAACAATCAGC
TTTACGGTTCTGGAAAGGAAGAGGAAGTCTCTGTTGAACCGCCAACCGCAAGAACATCTGGTCCAAGAGGC
AGCTAAACTGAAGGGAGTGGATAGTTACTATGTAACCAATTCAACGAATGCCATTGACCTATCAAGATAAAA
GGTTGAGAATGCTAATTGACAGGTGGAAACAGAACATTACATGGACGCTGTTAAGAATGAAATTATTGCAAGGTG
TAGTCTGAGAGAGCAAGATTCAAAGAGTTGCAAGTGTCAATTGCTAGATGAGGAATTGTCCTAGTTTATTT
55 GAATCTCCTCAAGAGCTATTAAACAGGTTGAGAATGCAATTGATTAGTTACCGGGTCAATTGGGTTTATAC
GTCCGGAGGCTAAAAGTCAAAAAATATATGGGTTGGCTTGCCTTACTACCAATATCTCCCTGCTGCGAA
TTTAATGTAAGATGAAATAGCTAATATTGCTTTCGAGTGAATGATACCAGTTAACCCCAACTCTGGTCCAGAA
CTGGCACGAAAATGACAGAGCTGAGGCTTACAACAGGGAGAATACCAAGGTGGCAGATGAGTCCGTTGTATT
60 GCAGAAAATCAACAATCGTTAGTTATGACGACGATTATTAGTTCCATCGCAGGGATTCTCTCTTGTGGAG
GAACCTGGTCAATGACATCATGCTGGTTGGCTGACAGAGCGCACTCGTGAAGATTGGCTTGTCAAGGGTTTGGG
TGCAACACGTGCCAATATTAAATTCACTGTTGATTGAATCCATGATTTGACCTTGTAGGTGGCTTAAATTGGCT
TGACAATTGCAAGTGGTTAACCTGCTTAGCAGGTTGTTACTGCAAGGTITAATAGAAGGTATAGAAGTTGGAGT
ATCAATCCCAAGTCGCCCTATTAGTCTTGTCAAGTTICGCTAGTGTGGTATGATTGATTGGAGTCTTGTGCAACACA
AGGCATCGAAACTTGATCCAATTGAAGCCCTCGTTATGAATGA

5 MQNLKFAFSSIMAHKMRSLLTMIIGVSSVVIMALGDSLSRQVNKDMTKSQKNISVFFSPKKSKDGSFTQKQSAFTVS
GKEEVPEPPKPQESWVQEAALKGVDSYYVTNSTNAILTYQDKKVENANLTGGNRTYMDAVKNEIIAGRSLSREQDF
KEFASVILLDEELSISLFLFESPQEAINKVEVNGFSYRIVGVTSPAKRSKIYGFGLPITTNSLAANFNVDEIANIVFRVN
DTSLTPLGPTELARKMTLAGLQQGEYQVADESUVFAEIQQSFMSMTIISIAGISLFVGGTGVNMILVSVTERTREIG
LRKALGATRANILIQFLIESMILTLLGLIGLTIASGLTALAGLLQGLIEGIEVGVSIPVALFSLAVSASVGMIFGVLPANK
ASKLDPIEALRYEZ

ID48 705bp

10 CTGATGAAGCAACTAATTAGTCTAAAAAATCTTCAGAACGTTACCGTAATGGTGACCAAGAACGTGCAGGTTCTCA
AAAATATCAATCTAGAAGTGAATGAGGGTGAATTGAGCCATCATGGGACCACATGGGTCTGGTAAGTCACTCT
GATGAATACGATTGGCATGTGGATAACCCAACCAGTGGGAATATTATCTCTGGTAAGGTCAAGAACAGTGGCTGGCT
TGGTGAAAAACAATCAGTAAAGGTCGTAACCAAACAAATCGTTTGTCTTCAGCAGTCTTCTATCGAAG
15 CTCATGCTCTGCAAATAGAATTGCCCTGATTACGCAGGAGTTCTGCTTCAAAACGTCGCAAGTGGCTG
AGGAATATTAGACAAGGTTGAATTGACAGAACGTTACCTTACCTCAGAATTATCTGGTGGTCAAAGCA
ACGTGTAGCCATTGCGCGCTTGGTAAACAATCCTCTATTATCTAGCGGATGAACCGACAGGAGCCTGGAT
20 ACCAAAACAGGTAACCAAATTATGCAATTATTGGTTGATTGAATAAAAGAAGGAAAACATTATCGTAACG
CATGAGCCTGAGATTGCTGCCATTGCCAACGTCAGATTGCTATTGGGATGGGTCAATTGCTGACAGTGC
AGTTAGGAAAAGGAGGAAAACAA

MMKQLISLKNIFRSYRNGDQELQVLKNINLEVNEGEFVAIMPSSGKSTLMNTIGMLDPTSGEYYLEGQEAVGLGEK
PLAKVRNQQIGFVFQQFFLLSKLNALQNVELPLIYAGVSSSKRRKLAEEYLDKVELTERSHHLPSELSGGQKQRVAIARA
LVNNPSIIADEPTGALDTKTGNQIMQLLVDLNKEGKTIIMVTHEPEIAAYAKRQIVRDGVISSDSAQLGKEENZ

ID49 1200bp

25 ATGAAGAAAAAGAATGGTAAAGCTAAAAGTGGCAACTGTATGCAGCAATCGGTGCTGCGAGGTAGTTGATTG
GGTCTGGGGGATTTACTCTTAGACAACCTCTCAGACTGCTCTAAAGATGAGCCTACTCATCTTGTGTTG
30 CCAAGGAGGAAGCGTGGCCTCTCTGTTTATGTCAGGGACAGTAACAGCAAAAATGAACAATATGTTATTG
TGATGCTAGTAAGGGTGTATTAGATAATCCTGTTCTGTTGGCGATAAGGTCAAGCGAAGGGCAGGCTTAGTC
AAAGTACAGTAGTTACAGAACGCGCAGGGCCCTATGATTCACTAGTCGAGCAGTAGCTAGGGCAGATCGTCATAC
AATGAACTCAATCAAGCACAAATGAAGCCGCTTCAGCTCCGGCTCCACAGTACAGCGCCAGTAGGAGGAGAA
GATGCAACGGTGCAAAGGCCAACCTCAGTGGCTGGAAATTCTGTTCTATTGACGCTCAATTGGGTGATGCC
35 GTGATGCGCGTGCAGATGCTGCGGCAATTAGCAAGGCTCAAAGTCATTGGATGCAACAATGTTCTAGTA
CCCTAGAGGGAAACTGTGTCAGTAATAGCAATGTTCTAAATCTCAACAGGGCGAGTCAGTTATGGTTC
ATATTGTCAGCAATGAAAATTACAAGTCAGGGAGAATTGTCAGTACAATCTAGCCAACCTTCTGAGGTCA
AGAAGTAAGCTTACTCTAAAGTGTATCTGTATAAAAATGGACTGGGAAATTAAAGCTATACTTCTGACTATCCT
40 AAAACAATGGTGAAGCAGCTAGTCCAGCAGCCGGAATAACAGGTCTAAATACCCCTTACTATTGATGTG
ACAGGCGAGGGTGGTATTGAAACAAAGGTTTCTGTCACATTGAGGTTAAAAGCAAAACTAAGGCTATCTTGTG
TTCCTGTTAGCAGTCTAGTAATGGATGATGTTAAATTATGTCGGATTGTCAGTAAACAAAGGCTAAAGG
AAAGTGGAGGTTCAATTGGGAAATGCTGACCGAGAAAATCAAGAAAATCACTTCTGTTTAACGAACGGTGTCAAGG
TCATCAGTAATCCAACATCTCCATTGGAAGAAGGAAAAGAGGTGAAGGCTGATGAAGCAACTAATTAG
45 MKKKNGKAKKWQLYAAIGAASVVLGAGGILLFRQPSQALKDEPTHLVVAKERVASSVLLSGTVTAKNEQYVYFD
ASKGDLDEILVSVGDVKSEGQALVKYSSSEAQAAYDSASRAVARADRHNELNQARNEAASAPAPQLPAPVGEDATV
QSPTPVAGNSVASIDAQLGDARDARADAAAQLSKAQSQLDATTVLSTLEGTVVEVNSNVSKSPTGASQVMVHVSNN
LQVKGELSEYNLANL'SVGQEVSETSKVYPDKWTGKLSYISDYPKNNGEAASPAAGNNTGSKYPTIDTVGEVSDLKQ
GFSVNIIEVKSXTKAILVPVSSLVMDDSKNYVWIVDEQQKAKKVEVSLGNADAENQEITSGLTNGAKVISNPTSLEEGKE
50 VKADEATNZ

ID50-759bp

55 ATGTCACGTAACCATTTATCGCTGTAACGTGGAAAATGAACAAAAATCGAGAACAGGTAAGCACTCTGTTGAA
GGAGTTGCATCAAAACTCTCCTCATCAGATCTTGTGAAAGCAGGTATCGCTGCTCCAGCTTGTGATTTGACAACTG
TCTGCTGTTGAAAGGCTCAAACCTTAAAGTGTGCTCTAAACTGCTACTTTGAAATGCAAGGTGCTTICAG
TGGTGAAGACTAGCCCACAAGTTGAAAGAAATCGGFACTGACTACGTTGTTATCGTCACTCAGAACGCCGTGAC
TACTTTCATGAAACTGATGAAGATAACAAAAGCAAAAGCAACTCTTGCAGAACGCTATGCTTCAACATC
TGTGTTGGTGAATCACTTGAACACTTACGAAGCTGGTAAACTGCTGAATTGCTAGGTGCTCAAGTATCTGTC
60 TGCGCTGGATTTGACTGCTGAACAAAGTTGCTGCTCAGTTATGCTTATGAGCCAATCTGGGCTATCGGTACTGGTAA
ATCAGGTTACAAGACGATGCACAAAATGGTAAAGTTGCTGAGGTGTTAGCTGCTGACTTGGTCAAGGAA
GTCGCAGACAAAAGTTGCTGTTCAATCGGTTCTGTTAAACCTGAAATGTTGCTTCAACATGGCTTGGCCAG
ACGTTGACGGTGCCTTGTAGGTGGTGCCTGACTTGAAGCTGAAAGCTTGTGCTTGTGACTTGTAAATA

5 MSRKPFIAGNWKMKNPPEAKFVEAVASKLPSLDLVEAGIAAPALDLTTVLAVALAKGSNLKVAACQNCYFENAGAFTG
ETSPQLKEIGTDYVVIGHSERDYFHETDEDINKKAIFANGMLPIICCGESLEYEAGKAAEFVGAQVSAALAGLTA
EQVAASVIAYEPIWAIGTGSASQDDAQMKCKVRDVVAADFGQEADKVRVQYGGSVKPENVASYMACPDVDGAL
VGGASLEAESFLALLDFVKZ

ID51 1473bp

10 TTGAAAACAAAAATTGGATTAGCAAGTATCTGTTACTAGGCTGGCAACTAGTCATGTCGCTGCAAATGAAACTG
AAGTAGCAAAAACCTCGCAGGATAAACGACAGCTCAAGTAGTCAGAGCAAATCAGTCTCTAATAAAACGC
AAACGAGCGCAGAAGTACAGACTAACTGCTGCCACTGGGATGGGATTATTATGTAAGGATGATGGTCTA
AAGCTCAAAGTGAATGGATTITGACAACACTATAAGGCTGGTTATATTAATTCAAGATGGTCAACTCGCA
GAATGAATGGCATGGAAATTACTACCTGAAATCAGGTGGATATGGCCAAAACGAGTGGATCTATGACAGTAA
TTACAAGAGTTGGTTATCTCAAGTCAGATGGGCTTATGTCATCAAGAAAGCAATTGCAAGTGGAAATAAGTGG
15 TACTACTTCAAGAAGTGGGTTACATGGCTAAAAGCCAATGGCAAGGATTATCTGATGGTCAAGGAGCT
ATGATGCAAATGAATGGCTCATGATCCAGCCTATTCTGTTATCTAAACCGATGGAACCTATGCTA
ACCAAGAGTGGCAAAAGTGGCGCAATGGTACTATTCAAGAAGTGGGCTATATGGCTCGGAATGAGTGGC
AAGGCAACTACTATTGACTGGAAAGTGGTCCATGGCACTGACGAAGTGATTATGGATGGTACTCGTATATCTT
TGCGGCCTGGTGAGCTCAAAGAAAAAGATTGAATGTCGGCTGGGTCACAGAGATGGAAGCGCTATT
20 CTTAATAATAGAGAAGAACAGTGGGACCGAACATGCTAAGAAAGTCATTGATATTAGTGAGCACAATGGTCA
TATCAATGATTGGAAAAGGTTATTGATGAGAACGAGTGGATGGTGTATTGCTAGGTTATAGCGGTAAG
GAAGACAAGGAATTGGCGCATAACATTAAAGGAGTTAACCGCTGGGAAATTCTTATGGTGTATCTCTACCT
ATGCTGAAAATGAGACCGTGTGAGAGTGGCTAACAGGACCTTAAGGAACTTATAAAGAAATACAATATGAACCT
25 GTCTTACCCCTATCTATTATGATGTTGAGAATTGGAATATGAAATAAGAGCAAGAGAGCTCAAGTGATACAGG
CACTGGGTTAAATCATCAACAAGTACATGGACACGATGAAGCAGGGGGTTATCAAATGTATGCTATAG
CTATGTTAGTTATTACAGACGCGTTAAACACCCAGATATTAAACATGAACTGGTAGCGGCCTATACG
AATGTTAGAATGGAAAACCTCATTATTCAGGAAAAAAGGTTGCAATATACTCTCTGAATACATGAAA
GGAATCCAAGGGCGCGTAGATGTCAGCGTTGGTATTAA

30 MKTKIGLASICLLGLATSHVAANETEVAKTSQDTTASSSEQNQNSNKQTSAEVQTNAAHWDGDYYVKDDGSKAQ
SEWFNDNYKKAWFYINSDGRYSQNEWHGNYYLKSGGYMAQNEWIYDSNYKSWFYLKSDGAYAHQEWQLIGNKWWY
FKKGWYMAKSQWQGSYFLNGQGAMMQUEWLYDPAYSAYFYLKSDGTYANQEWQKVGGKWYFKKWGYMARNE
WQGNYLTGSGAMATDEVIMDGTRYIFAASGELKEKKDLNVGVWHRDGKRYFFNNREEQVGTEHAKKVIDISEHNGR
35 INDWKVKVIDENEVDGVIVRLGYSKEDKELAHNIKELNRGLIPYGVLYTYAENETDAESDAKQTIELIKKYNMNLSPYI
YYDVENWEYVNKSKRAPSDTGTWVKIINKYMDTMKQAGYQNVVYVSYRSLLQTRLKHPDILKHVNWVAAYTNALE
WENPHYSGKGWQYTSSEYMKGIQGRVDVSVWYZ

ID52 774bp

40 ATGAAAAAAATTGCCAACCTTATCTGGACTGGCTTCTGGCTCTACCTGCCTATCTTACTTGATTGGCTA
TGCTTAAATGCTGGTGAATGATGAATAGCTTACAGGTTAGCTGGACTCACTTGAAACCATGTTGGAGAT
GGGAGACTCATGCTGATTTGGCTCAGACATTCTTCTGGCTTCTACAGCTTGATGCGACCATATTACGGGA
CTTTGGTGCCTTACATCTACCGTCTGTAAGAAATACCAAGAACGCTTCTACACTCAATAATATCCTCAT
GGTTGCCTGACGTTATGGTGTAGCTCTTACCCAACCTCAAGTTTCACTTGCTTGA
45 CCGTTCTATCTAGTCACGTGGCTTCTCCATTCTCATCGTGTCTTGATGGTCTTGCTGACTCAAGGAATGAAT
GGCAGACATGATTGATGCGGCTATGACTTGGAGCTAGTCATTCAGATGTTCAAGGAATCATGCTTCTTGA
TGACTCCGTCTATCATTAAGGTTATTGATGGCTTACCTATTGTTAGATGACTTGGCTGACTCAAGGAATGAAT
ACAGGAAATGGCTTCAACCTATCAGTCAGAGATTACTCTCGTGTGCAAGGGGATTCTTAGAAATCAATG
50 CCCTGTCTGCTAGTCCTTCTTTAGTATTACCTAGTTGTTAGGTTATTACTCTCGTGTGAGAAGGAGGAG
CAAGCATGA

MKKFANLYLGLVFLVLYLPIFYLIGYAFNAGDDMNSFTGFSWTHFETMFDGRLMLILAQTFFLAFLSALIAUTIGTGA
IYIYQSRKKYQEAFSLNNILMVAAPDMIGASFLILFTQLKFSLGFLTVLSSHVAFSIPIVVLVPLRKEMNGDMIHAAY
55 DLGASFQFMFKEIMLPYLTSPSIITGYFMAFTYSIDDFAVTFVTGNGFSTLSVEIYSRARKGISLEINALSALVFLFSIILVV
GYYFISREKEEQAZ

ID59 1071bp

60 ATGAAAAAAATCTATTCAATTAGCAGGAATTGCAAGCGATTATCCTTGCTTGTGGGAAATTGCGACTCATTTAG
ATACTAAAATCAATAGTCGACATAGTCAAAAATTGGTTATCTATAACTGGGAGACTATATGATCCTGAACCTT
GACTCAGTTACAGAAAGAACAGGAATTCAAGTTAGTACGAGACTTTGACTCCAAACGAAGCCATGTACACTAA
GATAAAAGCAGGGTGGAACGACCTACGATATTGCCATTCAAGTGAATACATCAAAAGATGAAGGAGCAAGA
CCTCTTGGTTCCGCTTCAATTCAAAATTGAAGGAATGAAAATATGGACCAAGAATTCTCAACCAGTCCTT
GACCCAGGTAATAATTCTCATCCCTACTTCTGGGAAACCTAGGAATTGCTACAACGAAACCATGGTAGATG

AAGCGCCTGAGCATTGGGATGACCTTGGAAAGCCGGAGTATAAGAATTCTATCATGCTCTTGATGGGCCGTGA
 5 GGTGCTGGGACTAGGACTCAATTCCCTCGGCTACAGCCTCACTCCAAGGATCTGCAGCAGTTGAAGAGACAGT
 GGATAAGCTCTACAAACTGACTCCAATATCAAGGCTATCGTTCGGACGAGATGAAGGGCTATGATTAGAA
 TAATGTTCAATCGGCGTACCTTCTGGTAAGGCCAGCAAATGTTAGAAAAAAATGAAAATCTACGTTATGTG
 GTACCGACAGAGGCCAGCAATCTTGGTTGACAATATGGTCACTCCAAAACAGTTAAAACCAAACACTCAGCC
 TATGCTTATCAACTTATGTTGAAACCTGAAAATGCTCCAAAATGCGGAGTATGTCGGCTATTCAACACCAA
 ACCTACCAGCGAAGGAATTGCTCCAGAGGAACAAAGGAAGATAAGGCCCTATCCCGATGTTGAAACCATGA
 AACACCTAGAAGTTATGAGAAATTGACCATAATGGACAGGGAAATATAGCGACCTCTCCTACAGTTAAAA
 10 TGTATCGGAAGTAG

10 MKKIYSFLAGIAAIILVLWGIATHLDSKINSRDSQKLVIYNWGDYIDPELLTQFTEETGIQVQYETFDSNEAMYTKIKQGG
 TTYDIAIPSEYMINKMKDEDLLVPLDYSKIEGIENIGPEFLNQSDFPGNKSIPYFWGLGIVYNETMVDEAPEHWDDLW
 KPEYKNSIMLFDGAREVGLGLNLSGYSLNSKDLQQLEETVDKLYKLTPNIKAIVADEMKGYMIQNNVAIGVTFSGEAS
 15 QMLEKNENLRYVVPTEASNLWFDNMVPKTVKNQNSAYAFINFMLKPENALQNAEYVGYSTPNLPAKELLPEETKED
 KAFYPDVETMKHLEVYKEFDHKWTGKYSSDLFLQFKMYRKZ

ID61 1851bp

20 ATGAATAAAAACTAACAGATTATGTGATTGATCTGGTGGAAATTAAATAAACAAACAAAAGCAGGTTTCTGG
 GGAATATTGATATTTCAGTATGGTGGTTCCATCATTGATCTTATTTATTTATGGCTGATTAATCCAGC
 ACCTGTTGACTACATTCTACAGCAGTTGGCCTTCCCTGTTCTACATTGATGGTGTGATTGGTTTGGGGTTGAACG
 CGACATTAGCTGTTACAGCAAGATTACGGATTCTGTTATGGTGTGACTGCTAGCAGTGTCTGTC
 ATATAGTATCTGTTATGCTTCTGCACACTCTCCATCCGTTCATCATTCTCTTATCTTGTGAGTACCTCTT
 GATTATTGCGCACGGATTACTTGGCAGTTAATCTACAGCAGCAGGAAAGGTAGTGGTGTGAGAACACCGT
 25 CGGACCTCTGATTGGTGGCGGTGATGGTGGGGCTCTTATGGATAGTACCAACATCCAACCAACAGTGAATTAG
 AACTGGTCGGTATTTGGATAAGGATTCTAAGAAAAAGGTCAAAAACCTGGTGTATTCCCTGTTGGGCTCTA
 TGACAATCTGCTGAATTAGCCAAACGCCATCAATCGAGCGTGTATCGTGCATGGCTGCTGGATCCGTCA
 GAATATGAGCGTATCTGAGATGTGTAATAACGCTGGTGTAAATGCTTACAGATGCTTAAGGTTGAAACTGTTG
 30 TTCAGGGCCTCACCAGCAGGACTGGCTCCAAAAAAATTGATATTACGGACCTTGGTGTGAGGAATCCG
 TCTGACGATCGCGTCTGGTGCAGAACACTGACAGGTAAAGACCATCTTAGTCACAGGAGCTGGAGGTTCAATCG
 TTCTGAAATCTGCTCAAGTTAGTCCTCAATCTGAACGCATTGTCTGCTCGGTATGGGAAACACTCAATC
 TACCTGTTATCATGAATTGATTCGAAGTCCAGGGATTGATTATGTACCTGTTGATTGCGGACATTCAAGACT
 ATGATGTTGTCAGCTTGTGAGCAGTACAAACCTGCTATTGTTATCATGCGCAGCCCACAAGCATGTTCC
 35 TATGATGGAGCGCAATCCAAAAGAACGCTTCAAAACAAATATCCGTGAACTTACATGTTGTAAGGCTGTTGA
 TGAAGCTAAAGTGTCTAAGATGGTTATGTTGACAGATAAGGAGCTCAATCCACAAATGTTATGGGAGCAAC
 CAAGCCGCTGGGGAGTTGATTGCACTGGCTTAAACACAGTAGCCAACTCAACCTACTGTGCACTGGTTGG
 AATGTTCTGGTAGCCGGTAGTGTCACTTCAAGGATTCCAGAAAGCTAGCCGCTGGTATCCATGCTGGTGTATGC
 CAAAGATGGGAAGTCTTATCCTGATATGGCAAACCAAGTCAAGATTATGACTTGGCCAGAAGATGGTGT
 40 CTAAGTGGCAACACTGAAAGTGAATTCAATCGTTGAGGTTGAAGTGGAAATCCGCCCCAGTGAACAACTCTACCAAGAA
 CTCTGGTATCAACCGAACCTGTTGATAATCAAGTTATGGATAAGATTCTGGTGTGAAAGGTTAATGTCATGCC
 AGAATCCATCAATCAAAAGATTGGAGAGITCCGCACTCTCAGTGGAGATGAAGTGAAGCAAGCTTATCTGCTT
 GCTAATCAAACAAACCCACATTGAATAA

45 MNKKLTDYVIDLVEILNKQQKQVFWGIFDIFSMVVSIIVSYIILYGLINPAPVDYIIFTSLAFLYQLMIGFWGLNASIRY
 SKITDFMKIFFGVTVASSVLSYSICYAFLPLFSIRFLFILLFILLPRITWQLIYSRRKKGSMDGEHRRFLIGADGGALF
 MDSYQHPTSELELVGILDKDSKKKGQKLGGIPVLGSYDNLPELAKRHQIERVIVAIPSLLDPSEYERILQMCNKLGVKCYK
 MPKVETVVQGLHQAGTGFQKIDITDILGRQOEIRLDESRLGAELTGTILVTGAGGSIGEICRQVSFRNPERIVLLGHGEN
 SIYLVYHELRKFQGIDYVVPVIADIQDYDRLLQVFEQYKPAIVYHAHHKHPVPMERNPKAEFKNNIRGTYNVAKAVDE
 50 AKVSKVMISTDKAVNPPNVGMATKRVAEILIVTGFNQRSQSTYCAVRFGNVLGSRGSVIPFQIAEGGPVTVTDFR
 MTRYFMTIPEASRLVHAGAYAKDGEVFLDMGKPVKJYIDLAKMVLLSGHTESEIPIVEVGIRPGEKLYEELLVSTELV
 DNQVMDKIFVGKVNMPLESINQKIGEFTLSGDELKQAIIFANQTTTHEZ

ID101 1338bp

55 ATGATTGAACCTTATCATAGTACAGTCAAGAACAGTCAGAGATTACATGAAAGCTAGTCGCTACTGGCTTCTC
 AACCTGGAGTGGTCACTGATGCGAGATGGTTCTCCGTATGGTGTGCTTCTCTTACCTATTATCTAGGTAC
 GAGGATGGAAAACCTCTTATTTAATCAAGTTCGGTTCAGATTGGAAATTAGGAGATAATCAGTCTG
 CTGGTATTGAAGATGTGACGCCAGGAGAGGGCTGTCATTCTATTGCTGATGGAATGCCAGGCTGCTGGTAAACA
 60 GGTAGACTGCAAAGACCTAGAACGGAGTACGGTACGGTACAGTCAACATGCTTGGAGGTGTTCTGCTAC
 AACGGACTTATAGCGAGATAGCGAGGCCGATTATGACAGTTACCAAGATGTCAAATGGTCAACAAAGTTTACTGGA
 AACCCATGTGACGGGTGATATCTTATGACTTTCAGTCCAGGTCAGTCCATGCGTTACTTGCACAAATAAGTTGAAATT
 ATCACCTCTTGTCAAGATTGGAAATAGATACCAAGTCAGCTTATCTTAAATACTCTAGCAGACTCTTGTG
 TTGCTTCCATCATCCAGATAATCTGGCTGGATGTCCTGGTATGGCAAGGAACCTCTATGCTGCACTCCAGGT

AATATGCACTTGTATTTGGAAAGTGATAATGTGCGTACTAAGAAGATCATCATTCAAATAAGGCACCTATGAGC
 GCGCTT TAGAGTTAAC TGACGAGAAATACCATGATCAGTTGTGCACTTGGGTTATCATTACCA GTCAAACGTGA
 TAATTTCTAAGACGAGATGCCCTAATCTTGACCAATT CAGATCAGATTGAGCAAGTAGAAGCAATCGCAGGAGC
 5 CTTGCTGTAGTCACTTCCGTATTGACAGCGGTGACAGAGATGCTTCTAAGCTCTAGACATGCTTGTATCCTA
 ATGTGGCCCTTACCGAACGCTAGCCACAGAAGATT CAGGAGCTGTATCAACTGTGCGATATTACTTGATAT
 AAACACAGTAATGAGTTGCTACAGGCAGTGCGTCAGGCCCTTGAGCACAAATCTCTGATTCTGGCTTAAATCAG
 10 ACGGTGCACAATAGACTTATATCGCTCCAGACCATCTATTGAAAGTAGTGAAGTTGCTGCTTGGTTGAGACCA
 TTAAATTGGCCCTTCAGATGTTGATCAAATGCGTCAGGCACATTGCAAAACAGGCCAACATGCAAATTATGTTGA
 CTTGGTGAGATATCAGGAAACCAGTCAAACACTGTTTAGGAGGCTAA
 15 MIELYDYSQS ESRDLHESL VATGLSQLGVVIDADGFLPDGLLSPFTYLYEDGKPLYFNQPVSDFWEILGDNQSACIE
 DVTQERAVIHYADGMQARLVKQVDWKDLEGRVRQVDHYNRFGACFATTYSADSEPIMTVYQDVNGQQVLLENHVT
 GDILLTPGQSMRYFANKVEFITFFLQLDIEITSQLIFNTLATPFLVSHHPDKSGSDVLWVQEPLYDAIPGNMQLILESD
 NVRTKKIIIPNKA TYERA LE LTDEKYHDQFVHLGHYQFKRDNFLRRDALILTNSDQIEQVEAIAGALPDVTFRIA AVTE
 MSSKLDMCLCPNVALYQNAPQKIQELYQLSDIYLDINHSNELLQAVRQAFEHNLLILGFNFNQTVHNRLYIA PDHLFESS
 EVAALVETIKLALS DQMRQALGKQGQHANYV DVLVRYQETMQTVLGZ

ID102 1512bp

20 ATGACAATT TACAATATAAATTAGGAATTGGTTGGCTAGTAGCGGTGTTGAATACGCTCAAGCCTATCGTGCTG
 GTGTTTTT CGGAAATTAAATCTGTCTCTAAGTTTATCTTACAGATATGATT TAGCCATAATATT CAGCACTTA
 ACAGCCAATATTGGTTTGATGATAATCAGGTTATCTGGCTTATAATCATTACAGATATCAAATTGCA CCTA
 CTAGCGT GACAGTGGATGATGCTTGCTTACTTTGGTGGTGAAGAAAGTCACAGAGAAAAAAATGGCAAGGTTT
 25 TACGTGTTATTCTTTGACCAAGATAAGTTGTAACCTGTTATTGGTGTATGAGAACAGGACTTGGTCAACAT
 GCCGAGTATGTTTAAAGGGAAACCTGATTCGGAAGGATTACTTTCTTACCGCTTATTGAGTAGCAGTATTGTC
 TCCCAGGACAATGTTGAGCTTACCAACGA ACTTTTATAATGAAGACGGGACTCCAGTCTATGATATCTG
 ATGAATCAAGGGAAAGGAAGAAGTTTCAATTCAAGGATAAGGATTCTATGGAAAGCAAGCTTTTGCGTGCCT
 TTATGAAATCTTGATTTGAATAAGCTGATTGGTCACTCGAGGAGACAGGTATTGGACAGGTGTTGTT
 TGAGGAAGCACAGCACATCTAGCGGTAGTTGTCATCGGAGCATTAGT GAAAATGCTACAAATGAGGA
 30 CTATCCTTGGAAATAACTATTATGACTATCAGTTACCAATGAGCATAAGGTTGACTCTTATCGTGCTACTG
 ATAGACAAATGAAGTTCTACAAGGCAATTGCCAAATATACTCAGCATCAGCCAAGGATTGTTACCTCTG
 AGGCAGTATTGATTCCCTGACAGATTCAAGTCAAGGGCGAACCATTTCAATTGATTACGGCTTACGTCTGCC
 AAAGAAAAGCACATTGATTGGCTTGAAAGCTGTGATTGAAGCTCATAGGAGTTACCGGAACTAACCTTIG
 35 ATCTATGGTAGTGGTGGAGAAGATTCTCTGCTTAGAGAAATTGCAAAATCATCAGGAGGACTATATCCAAC
 TCAAGGGCATCGGAACTTTCGCAGATTAGCCAGTATGAGGCTACTTAACGGCTTCTACAGCGAAGGATT
 TGGTCTGACCTTGATGGAAGCTATTGTTGTCAGGCTCTACCTCTAATTGGTTGATGTGCTTATGGTAATCAGACCT
 TTATAGAGGATGGGCAAATGGTATTGATTTGATCCAAGTTCACTGACCATGTTAGAACAGCAAATCAAGCAAGCTA
 TGCCGCTAAGATTGTCATTGATCAAGAAAATCGTTGAAAGCTATGCGTGCCTATTCTACCAAATTGCAAGAA
 GGCTTCTGACCAAGAAAATTAGAAAAGTGGAAAGAAAACAGTAGAGGAGGTGCTCCATGATTGA

40 MTIYNINLGIGWASSGvEY AQAYRAGvFRKLNLSSKFIFTDMILADNIQhLTANIGFDDNQVIWLynHFTDJKIAP1SVT
 VDDVLAYFGGEESHREKNGKVLRFVFFFQDKFVTCYLVDENKDLVQHAEYVFKGMLRKDYFSYTRYCSEYFAPKD
 VAVLYQRTFYNE DGT P VYDILMNQGKEEVYHF KDKIFYGKQAFVRAFMKS LNLKNSD L VILDRETGIGQV FEEAQTA
 HLA VVVHAESENATNEDYIILWNN YDYQFTNADKVDFIVSTD RQNEVLQEQFAKYTQHQP KIVTIPVG SIDS LTD
 45 SQGRKPFSLITASRLAKEKHIDWLVKAVIEAHKELPELTFDIYGS GGEDSLLREIIANHQAEDYIQLKGHAELS QIYSQYE
 VYLTASTSEGFLTLMEAIGSGLPLIGFDV PYGNQTFIEDQNGYLIPSSDHVEDQIKQAYAAKICQLYQENR LEAMRA
 YSYQIAEGFLTKEILEWKKTVEEVLDZ

50

ID103 2292bp

55 ATGTCCTCTCTTCCGGATCAAGAATTAGTAGCTAAACAGTAGAGTT CGCAGCGTCTTCCGAGGGAGAAAGTC
 TAGACGATAATTGGTTGAAGCTTTGCTGTGGTGC GTGAGCAGATAAGCGAATTAGGGATGTTCTTATG
 TGTTCAAGTCACTGGAGCTATTGTCATGCACTATGAAATGTTGCTGAGATGAATACGGGGAGGTAAGACCTT
 GACAGCTACCATGCCCTGTCTATTGCAACGCTTTCAAGGAGAAGGAGTGTGACTCTTAATGAGTATT
 TCAAAGCGT GATGCCGAGGAATGGTCAAGTTATCGTTCTAGGATTGACCATGGTGTACCATTAACGGAAAG
 60 ATCCAAGAAGGAGATGAAAGCTTATCTATGCTTCCGGATATCATCTACACAAACCAATAGTA
 ATTAGGTTTGATTATCTAAATGATAACCTAGCCTCGAATGAAGAAGGTAAGTTTACGA CGGTAACTATG
 GATTATTGATGAAATTGATGATACTTGCTTGATAGTGCAACAAACTCCTCTGATATTGCGGGTTCTCCTCGTGTG
 AGTCTAATTACTATGCGATCATTGATACACTTGTAAACAACTTGCAAGGAGAGGATTATATCTTAAAGAGGA
 GAAAGAGGAGGTTGGCTCACTACTAAGGGGCCAACGCTGAGAATTCTAGGGATTGATAATTATACAA

GGAAGAGCATCGTCTTGCTCGTATTTGGTTATGCATTGAGCTCATAAGCTCTTAAGATAAGGAC
 TATATCATTCGTGAAATGAGATGGTACTGGTGTATAAGGAACAGGGCGTCAATGGAAATGACTAAACTCAA
 GGAGGTCTCATCAGGCTATTGAAGCCAAGGAACATGTCAATTATCTCTGAGACGCGGGCTATGGCCTCGATC
 ACCTATCAGAGTCTTTAAGATGTTAATAAGATATCTGTGACAGGGACAGGTAAGGTGCGGAAAAGAG
 5 TTATGAAACTTACAATATGTCAGTACGCACTTAAACCAATCGTCCGAGACAACGGATTGACTATCCAGATA
 ATCTATATATCCTTACCTGAAAAAAGTGTATGCATCCTGGAGTACATCAAGCAATACCCTGTAAGGAAATCC
 TTACTCGTTTGTAGGGCTCAGTTGAAATGTCCTACTCTGCTCTTGTGTTCTGTAAGGGATTGCCATA
 ATGCTCTAAATGCTAATAATGCCGCGGTGAGGCTCAGATTATCTCGAGTCAGGTCAAGTGGGGCTGTGACAG
 10 TGGCTACCTCTATGGCAGGACGTGGTACGGATATCAAGCTGGTAAAGGAGTCGAGAGCTGGGGCTTGTGATTG
 TTATTGGGACTGAGCGGATGGAAGTCAGCGGATCGAACCTACAAATTCTGCGCCGTTCTGGTCGTGAGGAGATC
 CTGGTATGAGTAAATTGTTGTATCCTTAGAGGATGATGTTATCAAGAAATTGGTCCATCTGGGTGCAAAAAAA
 GTACAAAGACTATCAGGCTCAAGATATGACTCAACCGGAAGTATTGAAAGGTCGAAATACCGGAAACTAGTCGA
 15 AAAGGCTCAGCATGCCAGTGTAGTGTGACGGTCAAGCTGTCAGACTCTGGAGTATGCTGAAAGTATGAA
 TATACAACGGGATATAGCTATAAGAGAGAAATCGTCTAATAGTGTGACTTAGAGGATGTTGTG
 GATATCATTGAGAGATATACAGAAGAGGTAGCGGCTGATCACTATGCTAGTCGTGAAATTATTGTTCACTTATTG
 TGACCAATATTAGTTTGTAAAGAGGTTCCAGATTATAGATGTAAGTGCAGTCAGTTGACTT
 TATGAAGCAGGTGATTGATAAAGAAACTTCTGAAAAGAAAATTACTAATCACACAGTATATGAACAGTT
 20 TTACGACTTTACTGCTTAAAGCATTGATGACAACACTGGTAGAGCAGTAGACTATCTACACAGCTATCCATGG
 CTATCGGTGTCATCTGCTAGTCAGAAAATCCAATCGTAGAGTACTATCAAGAACGCTACGCCGGGCTTGAAG
 CTATGAAAGAACAGATTGACATGCCGATATGGTGCATACTCTGTATGGGGCTGGTTGAGGTCACTCCAAAAGGTG
 AAATCGTGACTIONTCCATAA

MSSLDQELVAKTVEFRQLSEGESLDDILVEAFAVVREADKRILGMFPYDVQVMGAIVMHYGNVAEMNTGEKTLT
 25 ATMPVYLNAFSGEVGMVTPNEYLSRDAEMGQVYRFLGLTIVPFTEDPKKEMKAEEKKLIYASDIIYTTNSNLGFD
 YLNDNLASNEEGKFRLPFNYVIIDEIDDILDSAQTPLIAGSPRVQSNNYAIIDLVTTLVEGEDYIPKEEKEEVWLTTKG
 AKSAENFLGIDNLYKEEHASFARHLVYAIRAHKLFTKDLYIRGNEMVLVDKGTRLMEMTKLQGGHLHQAEAKEHV
 KLSPETRAMASITYQSLFKMFNKISGMGTGKVAKEFIEYTNMSVVRPTNRPRQRIDYPDNLYITLPEKVYASLEYIKQ
 YHAKGNPLLVFVGSEMSQLYSSLLFREGIAHNVLNANNAAREAQIISESQMGAVTVATSMAGRGTDLKGKV
 30 GGLIVIGTERMESQRIDLQIRGRSGRGDPGMSKFFVSLEDDVVKFGPSVHKYKDYQVQDMTQPEVLKGRKYRKL
 VEKAQHASDSAQRSARRQLEYAESMNIQRDIVYKERNRLIDGSRDLEDVVVDIERYTEEVAADHYASRELLHFIVTN
 ISFHVKEVPDYDVTDKAVRSFMKQVIDKELSEKELLNQHDLYEQFLRLSLLKAIDNWVEQVDYLQQLSMAIGGS
 ASQKNPIVEYYQEAYAGFEAMKEQIHADMVRNLLMGLVEVTPKGEIVTHFPZ

ID104 879bp
 35 ATGAAACAAGAATGGTTGAAAGTAATGATTTGAAAAACAACAAGCAAGAACAGCTGAAGAGCAAGCTAA
 GAGGTTGCAGACAAGGCTGAAGAAAGGATACCCGATCTCGATACACCAATTGAAAAAAACTCAGTTAGAGGAG
 GAAGTCTCTCAAGCTGAAGTCGAATTGAAAGCCAGCAAGAAGAGAAAATTGAAGCTCTGAAAGACAGTGAAGC
 40 GAGAACAGAAATAGAAGAAAGAAGGATCTAATTCTACTGAAGAAGAGCCAGCCTTCTAAAGAAACAGAAA
 AAGTCACTATAGCTGAAGAGAGCCAAGAAGCTCTCTCAGCAGAACACCAACGAAAGAGCCACTCTTATCA
 GTAAATCTTCTAGAAACTCTTATATCCCCGACCAAGCTCAAATCTAGGATAAATGAAAGAGCAAGTCTG
 ATTCTTCTGCTAGTGGAAAGCGATGAAATCTCTACAGTAAGTGGAAACAGTATCACACACAGCTACAC
 AGCCTTCTCTGCTATCTGCTATCTCTCTCTGAGCTAGCTCTTAACTCTTCTATCATCTCTATCTCTAG
 45 ACATATAGCAAGCATTAACAGTCGCTCCCTGAGCAGCTAGCTCTTAACTCTTCTATCATCTCTATCTCTAG
 TAGCGACAACACTCTCTCTCTGATTCCTCTGGTAGTTCTGAGCAGATTATCCACCCAGGAAAGAGA
 CTGGACGCTAGACAAGGTTCTCAACAATATAGCTCAACTCTGGCAATTCAAATCTCTACTGCTATTGCTAGTT
 TCTCTGCTTCTCTGATAGCCTACGATTACAGGCCCTCTGCTG
 MKQEWFESNDVFKTTSKNKPEEQAEVADKAERIPDLDPIEKNTQLEEVSQAEVELESQEEKIEAPEDSEARTEIE
 50 EKKASNSTEEDPSLKEKEVTLAEESQEALPQQKATTKEPLIJKSLESPIYIPDQAPKSRDKWKEQVLDFWSWLV
 PFSKLETSITHSYTAFLLLIFSASSFFSIYHKHAYYGHIASINSRFPEQLAPLTLFSIISLVALTLLFFSFLLG
 SFVRRFIHQEKDWLTDKVQQYSQLAIPISSLLLVSLLSLLAIDYDLPQSCVZ

ID106 327bp
 55 ATGTAATTCACACATCTCTGCTTGATTGAAATTCACATCTGGCTGACTGGAGCAGGGTGATTCCTATGGTT
 TGAGATTAGCCAAACCTTAAGCTGATGCTAAATATCAAAAGAAATCCACACTCTATCCCATTGCAAAAAAAATTGGAA
 GGCAATAGCTTCTGACAACCTATTCTAGAGAGTTCGAAGGCTGGATGCCAAAATACTACTCTTCTGAGAAAAGGTG
 GTATAGAGCAGCTTGACCCCTAAAGATGAATGGGCACTCTATACAGACACCCTCAATGGCATCATAGAAGGGA
 60 GTATCCGGATGACAAGAAGTGA
 MYPPPTSSALIEFLILAVLEQGDSYGYEISOTIKLIANKESTLYPTLKLEGNSPFTYSREFQGRMRKYYSLTNGGIEQLLT
 LKDEWALYTDTINGEHSIRHDKNZ

ID108 954bp

ATGGATTTGAAAAAAATTGAACAAGCTTATATCTATTTACTAGAGAATGTCCAAGTCATCCAAAGTGATTGGCGA
 5 CCAACTTTATGACGCCCTGGTGGAGCAAATAGCATCTATCTGGATGGTGAAGACTGAGCTAAACCAGGTCAAAG
 ACAACAATCAGGCCCTTAAGCGTTAGCACTACGCAAAGAAGAATGGCTCAAGACCTACCAGTTCTTGTGATGA
 AGGCTGGGCAAACAGAACCCCTGCAGGCCAATCACCGATTACCCGATGCTATTGCTTGTGCTTTGGTGTITAT
 TGTTGAAGAGTTAAGAGGGAGGAAATTACTATCCTCGAAATGGGTTCTGGATGGGAATTCTAGGGCCTATT
 10 TTCTGACCTCGCTTACTAAAAGGTGGATTACTTGGGAATGGAAGTGGATGATTGCTGATTGATCTGGCAGCTA
 GCATGGCAGATGTAATTGTTGCAGGCTGGCTTGTCCAAGGAGATGCCGTCGCCAACAAATGCTCAAAGAAA
 GCGATGGTGTGTCATCAGTGACTTGCTGCGCTTATCTGATGATGCCGTCGCCATCAAGTGCTTC
 TAGCCAAGAACATACTTACGCCCATCACTTGCTCATGGAACAAGGGCTTAAGTACCTCAAGTCAGACGGATACGC
 TATTTCTAGCTCCGAGTGTATTGTTGACCAGTCCCTAAAGTGAATTGTTAAAAGAATGGCTAAAGAAGAGGCG
 AGTCTGGTTGCTATGATTAGTCTGCTGAAAATCTCTTGTAAATGCCAACAACTAAGACTATTTTATCTTACA
 15 GAAGAAAAATGAAATAGCAGTAGAGCCTTTGTATCCACTGCTAGTTGCAAGATGCAAGTGTTTAATGAAA
 TTAAAGAAAATTCAAAATGGACTCAAGGTACTGAAATATAA
 MDFEKIEQAYIYLLENVQVIQSDLATNFYDALVEQNSIYLDGETELNVKDNNQALKRLALRKEEWLKYQFLLMKAG
 QTEPLQANHQFTPDAIALLLVFIVEELFKEEEITILEMGSGMILGAIFLTSLKVDYLGMEVDDLLIDLAASMADVIGL
 20 QAGFVQGDAVRPQMLKESDVVISDLPVGYYPDDAVASRHQVASSQEHTYAHHLLMEQGLKYLSDGYAIFLAPS DLLT
 SPQSDLLEKWLKEEASLVAMISLPENLFANAKQSKTIFLQKKNEIAVEPFVYPLASLQDASVLMFKKENFQKWTQGTEI
 Z

ID110 1902bp

25 ATGATTATTTACAAGCTAATAAAATTGAACGTTCTTGCAGGAGAGGTTCTTCGATAATATCAACCTGCAGG
 TTGATGAACGAGATCGGATTGCTCTTGGGAAAATGGTCAGGTAAAGCTACTCTTGAAGAGATTAGTTGG
 AGAAGAGGAGCCAACTAGCGGAGAAATCAATAAGAAAAAGATATTCTCTGTCTTACCTACGCCAACAGATAGCCG
 TTTGAGCTGAAAATACATCTACGATGAAATGCTCATGTTAAATGATTGGCTGGACAGGAGAGACAACTG
 CGTCAGATGGAGCTGGAGATGGTGGAAAAGTCTGGTGGAGGATTGGATAACTGATGTCAGATTATGACCGCTTA
 30 TCTGAGAATTTCGCAAGCAGCTGGCTTACCTATGAAGCTGATATTGAGCAGATTGAATGGATTCAAGTTG
 ACGAGTCTATGTGGCAGATGAAAATTGCTGAGCTTCTGGTGGCTAAATACTCGTTGGCACTGCCAAATGCT
 CCTTGAAAAGCCAATCTCTGGCTTGGACGAGCCAACCAACACTGGATATTGAAACCCTGCCCTGGCTAGAG
 AATTACTTGTAAACTATAGCGGTGCCCTCATTATCGTCAGGCCACGCCATTATTCTGGCAAGGGTGGCAGAA
 TTACGCTAGATTGACCAAGCATTCTGGCTCGCATGTCAGGGAAATTACTCTCGTTGGCAATTGAAGGAGCA
 35 AAAGCTAGTACTGAGGCAAAACTATGAAAAGCAACAGAAGGAAATCGCTGCTCTGGAGACTTGTCAATCG
 CAATCTAGTCTGCTTCAACGACTAACAGTCTGCAATCTCGCCGTAACAACTAGAAAAATGGAGCTGGTGG
 CAAGCCTGAAGCTGGCAAGAACAGGCCAACATGACCTTCCAGTCTGAAAAAACGTCGGCAATGTTGTTGAC
 TGTGAAAATGCACTGCTGGCTATGACGGGAAAGTCTGTCACAACCTATCAACCTAGATCTCGTAAGATGAAT
 40 GCTGTCGCTATGTTGGCCAATGGTATCGGCAAGTCACCTTATCAAGTCTATTGGAACAGATTCTTAT
 CAAGGGAGAAAAGCGCTTGGCGTAATGTTGAGGTTACTATGACCAAACCCAAAGCAAGCTGACACCAAG
 TAATACGGI'GCI'GGAIC'IC'GGAATGATCTCAACTGACACCAAGAAGT'GAAAT'CGCAACC'GCTTGGAGC
 CTTCCTTCTCAGGAGATGTTAAAATGCTGGCATGCTATCTGGTGGCGAAAAGCTGCTTGTGTT
 45 GCTAAATTGCTATGGAAAACAATAACTTTGATTCTGGATGAGCCGACCAACCACTGGATATTGATAGTAAGG
 AAGTGCTAGAAAATGCTTGTGATGACTTTGATGGAACCTGCTGTTGCTAGTCATGATGTTACTTATCAATCGT
 GTGGCAACTCATGTTGGATTGCTGAGAAATGGTCAACTCTACCTGGAGATTGACTACTATGTTGAGA
 AGAAAGCAACAGCAGAAAATGAGTCAGACTGAGGAAGCTCAACTGACAAAGCAAGTCCAGTC
 AATGACTATCAGGCCAGAAAGAAAGTCAAAGAAGTCTGCAAACACTCATGCGACAATCGAAAGTCTAGAAGCT
 50 GAAATTGAAAGAGCTAGAAAAGTCAAAGCCAAGCCATTCTGAACAAATGTTGAAACAAACGATGCCGACAAC
 ATGGAATTACAGGCTGAGCTGGACAAAATGCCATCGTCAGGAAGAGCTATGCTGAGTGGGAAGAATTATCA
 GAGCAGGTGAA

55 MIILQANKIERSFAGEVLFDNINLQVDERDRIALVGKNGAGKSTLLKILVGEETSGEINKKDISLSYLAQDSRFESENT
 IYDEMLHVFNDLRRTERQLRQMELEMGEKGEDLDKLMSDYDRLSENFRQAGGFTYEADIRAIJNGFKFDESMWQMK
 IAELSGGQNTRALAKMILEKPNLLVLDPETNHLDIETIAWLENLYNSGALIVSHDRYFLDKVATITLDLTKHSLDR
 YVGNYSRFVELKEQKLVEAKNYEQQKEIAALEDFVNRLNVRASITTKRAQSRRKQLEKMERLDKPEAGKKAANMTF
 QSEKTSGNVLTVENAAVGYDGEVLSQPINLDLRKMNAVAIVGFNGIKSTFIKSIVDQIPFKGEKRGFGANVEVGYDQ
 TQSKLTPSNTVLDLWDFKLTPEVEIRNRLGAFLFSGDDVKK7/GMLSGGEKARLLLAKLSMENNFLIDEPTNHLD
 60 LDSKEVLENALIDFDGTLLFVSHDRYFINRVATHVLESENGSTLYLGEDYDYYVEKKATAEMSQTTEASTSNQAKEASP
 VNDYQAQKESQKEVRKLMRQIESLEAEIEELESQSQAISEQMLETDADKLMELQAELDKISHRQEAMLEWEELSEQV
 Z

ID111 1179bp

ATGAATCGCTATGCAGTCAGTTGATTAGCCGTGGGCATCAATAAAAATGGAAATATGCTCTATGATTATGGAA
 ATAGTGTCTGGTTGGCTTCTATGGGACTATAGGACAGACAGTTTAGGAATGTATCAGATTCTGAGCTCGTCAC
 ATCTATTCTCGTCAATCCCTTGGCGGAGTTATTCAGACCGTTCTCGTCGTAAGATTAAATGACGGCAGATC
 TTGTTTGTGGGATTCTTGTCTGGCTATTCATAAGGAATGATAGCTGGATGATTGGCCTTGATTGTTGCT
 5 AACATTGTGCAAGGCTATTGCTTGCCTTCTGCCACAGCCAATAAAGCTATCATATACTGAAGTGGTGGAGAAAG
 ATGAGATTGTGATCTATAATTCTCGCTTAGAGCTGGTTGCAAGGTTGAGCTACTGCTAGACTCGTCACTTCTC
 CTTCTTACAGTTGCAAGTCTCCATATGACGCTACTGCTAGACTCGTCACTTCTCATTGCTTGTCTAGT
 GGCTTCTTCAAAGAGGAAGCAAAAGTCAAGAGAAAAAGGTTTACTGGAGAGATATTITGTAGATAT
 CAAGGATGGGTACACTATCTGGCATCAGCAAGAAATTCTCCTTGTCTGGTAGCTCCAGCGTAAATTCT
 10 TTTTGCAGCTTGAATTCTACTTCCCTTTCGAATCAGCTTACGGGTCAAAGGAGGCATGCAAGTATTGAT
 ACTATGGGGCTATTGGTTCATCATGGGCTCTCTAGCTAGTAAAAGCTAATTTATAATCTTGT
 TTTACTGGCTTGCACAGGTGTCGGAGTTTATGATGGGATTAACCTCAACTTTCTTCTGGAAATT
 TAGTTTGTGAATTGTTATGACGATTAAATTACTTACAGTATTCTATTATGCTTATTGCAAAAGGATTATGACAGTCTT
 CTTGGAAGAGTACTGAGTAACTTACCAATTTCACCTAGTATTCTATTATGCTTATTGCAAAAGGATTATGACAGTCTT
 15 GCCAAGTGTCCATCTTATCTTCTGATTATTGGACTTGGAGTTGAGCCTTATTTCTTAGCTCTCGGATATG
 TTCGAACACTATTGAAAATTGATATAA

MNRYAVQLISRGAINKMGNMLYDYGNSVWLASMGTIGQTVLGMYQISELVTSLVNPFGGVISDRFSRRKILMTADLV
 CGILCLAISFIRNDNSWMIGALIVANIVQIAAFASRTANKAIIDEIVYNSRLELVQVVGSSPVLSFLVLQFASL
 20 HMTLLLDSTLFIAFVFLVAFLPKEEAKVQEKKRAFTGRDIFVDIKDGLHYIWHQEIFFLLVASSVNFFFIAFEFLPSN
 QLYGSEGAYASILTMAIGSIIGALLASKIKANIYNLLILLALTGVGVFMMLPLPTFLSFGNLVCELFMTIFNIHFFTQV
 QTKEVESEFLGRVLSTIFTLAILFMPIAKGFMVLPVSHLYSFLIIGLVVALYFLALGYVRTHFEKLIZ

ID113 2466bp
 25 ATGCAAATCAATTAAATGAATTAAAACGAAAAATGCTGGATTTCAGCAAAACAAAAAATAAAAATCA
 GCTAGACCTGCAAGAAAGGCTCAAGTACCAAAACCTAAACCTAGATAAGTCAGCCATTTCAGCTATT
 TACTGAGTATAAAAGCTTATTAACTTACTCTTGTACTCGTTCTAGGAGGAATGGTGAATCAGGTCAAGGAC
 TTGGGATACGGAGTGGCTTATTGACAAGGTTGGGTGCTCAGACAGAAGAATTGGTGAATCAGGTCAAGGAC
 ATCTCTTCTATTAGAGATTACCTATTGGACGGGACGGTATTGCTTCCATAGAGAGTATTGTTGCGCACTTC
 TATCTCATCTGAGCAAATTGCGAAAATCTGAAGAAGGCTATATTGCAAGAGAAGATGAACACTTAAAGAAC
 TAAGGGTGTAGTACCCAAAGGCGGTGATTGTCGACCTTGGGAAATTGTTAGGTTGGGTTCTCTAGTGGGGT
 TCAACCTTGACCCAGCAACTAATTAAACAGCAGGTGGTGGGATGCCGACCTTGGCTGTAAGGCGGAGAG
 ATTGTGGATGCTCTGCTTGGAAACGCCATGAAATAAGGAGATGAGATTAAAGCTTACAGCCTATCTCAATGTGGCTCCCT
 TTGGCCGAAATAAAAGGACAGAATATTGCAAGGGCTCGGAAGCAGCTGAGGGAAATTTCGGTGTAGATGCCA
 GTCACTTGTACTGTTCTCAAGCAGCATTTAGCAGGACTTCCACAGAGTCCCATTACTACTCTCCTTATGAAAA
 TACTGGGAGGTGAAGAGTGTGAAGACCTAGAAATTGGCTTAAAGACGGGCTAAGGCAATTCTTACAGTATGTA
 TCGTACAGGTGCAATTAGCAAAGACAGTATTCTAGTACAAGGATTGACCCTAAACAGGACTTTTACCATCG
 40 GGCACGGTACAGGAATTACGAGACTATTACACTTACAATTGCAAGGACTTGGCAGAAGCTCAAGAAGCTATGAGTGTAC
 ATCTAGCTCAGAGAGACAATGTCTCGCTAAGGAGTTGAAATTAGGACTACTACCATACATCAGAAAATTCTGCCATC
 CAGCCAAGGAAATTGAAATGGTGTATTAGGACTTCTAGGAGATGGACAGGTGCTGAGAGTAGGAAATGCTTGTGGATAA
 GTGCGGTTGTTGCTATTCTAGGCTTGTAGGTTGCTTAATTCAAGAAAATCAAATAATGCCATTGATACC
 CAAACAGGTGCTTCTACTACCAAGCCCTTGTGGCTACGGTATTGCTATTGACCAGGGCTTGTGGAAAGTG
 45 AAAAGATTCTATCTAACTATCCAACAAAGTTGCTAATGGCAATTGGCTTACGGTATTGCTAATGCAAGGGAAACAGG
 AATGATGACCTTGGGAGAAGCTCTGAACATTCTGGAAATTCCCTGCTTACTGGACCTATCGTATGCTCCGTGAA
 AAGGGTGTGATGTCAGGGTTATGGAAAAGATGGCTTACGGAGATTCTGAGTGTGGTATTGAGATCAGGATAACCGGTT
 ATGGGTGGTGTATTGAAAGTCACAGTTGGCCACATACCAATGGCTTACGGTATTGCTATTGACCCTAGCTAATAATGGAGTT
 ATCAGAAGCATGTATTCAAAGATGGAGCAGCAGATGTTGAGTGTGTATTGAGATCAGGATAACCGGTT
 50 AAGTCATTGTCACGTAGACGAGCTTGTAGGTTATTCTAAATACCTAAATTACATGGCTTACGGTATTGAGGTT
 CTTCAAGTCTAACCTGACTCTTAAATCTACTCTGGCTAATGCAAGATTGGATTGGGAGACTGGTACAACCAAC
 CAAAGCAGAAAATATGTGGCTCATGCTTGGACACCTAGATAACCTAGGTGGCTTGGCATGATGATAATC
 ATTCAATTGTCACGTAGACGAGCTTGTAGGTTATTCTAAATACCTAAATTACATGGCTTACGGTATTGAGGTT
 55 TICCCCAAGCATGGGGAAACGGCGCTTGTAGGTTATTCTAAATACCTAAATTACATGGCTTACGGTATTGAGGTT
 GGTCAATTAAAGCAGAGAAGGTTCTGTTGAAGGAAAGAAGTAGAGGTCACAGGTTGCTACTGGGATTAACAGAATGCTT
 GCTAATAAGTCAGGAGGGCAGGGACAGGTTATTCTAAATACCTAAATTACATGGCTTACGGTATTGAGGTT
 GGTCTAGTATTGTGGGGAGTCTACCAACTCCATCCAGGTCAGGAGTCAAGTAGTACTGCTAGGATAGCAGTAA
 CTCAAGTACTACAGCACCTCTTCTCAAGGGGAGACCTAA

60 MONQNEELKRKMILEFFQQKQKNNKSARPGKKGSSTKKSJLDKSAJFPAILSIKALENLLEVLFGLCGMLGAGIALGY
 GVALFDKVRVPQTBEELVNQVKDISSIEITYSDGTVIASIESDELTSISSEQISENLKKAIAATEDEHFKEHKGVVPKA
 VIRA
 TLGFVGLGSSGGSTLTQOLIKQQVGDAPTLARKAAEIVDALALERAMNKDELTIPYLNVAPFGRNNKGONIAGAR
 QAEGLIFGVDAQLTVPOAAFLAGLIPQSPTYSPYENTGELKSDDELEIGLRRAKAVLYSMYRTGALSKEYSQYKD
 YD
 LKQDFLPSGTVGISRDYLYFTLAEAQERMYDYLQAQRDNWSAKELKNEATQKEYRDLAAKEIENGYKITTTIDQKIH

SAMQSAVADYGYLLDDGTGRVEGVNVLMNDNQTGAILGFVGGRNYQENQNNHAFDTKRSPTTKPLLAYGIAIDQGL
 MGSETILSNYPTNFANGNPIMYANSKGTMMLGEALNYSWNIPAYWTYRMLREKGVDVKGYMEKMGYEIPEYGIES
 LPMGGGIEVTVAQHTNGYQTLANNGVYHQKHVISKEADGRVVYEYQDKPVQVYSKATATIMQGLREVLSRVTTT
 5 FKSNLTSNPTLANADWIGKTGTTNQDENMWLMLSTPRLTGGWIGHDDNHSRRAGYSNNSYMAHLVNQAIQQAS
 PSIWGNERFALDPSVVKSEVLKSTGQKPEKVSVEGKEVEVTGSTVTSYWANKSGPATSYRFAIGGSADYQNAWSSIV
 GSLPTPSSSSSSSSSDSSNSSTRPSSSRARRZ

ID114 1974bp

10 ATGAAAAAAATTITATGTAAGTCCAATTITCCTATTCTAGTAGGATTGATTGCGTTGGAGTCCTATCCACTTTCAT
 TATTTTGTTAATAATAATCTGTGACGGTTTAATTGTTCTTTGTTAGGAGGCTATGTTTTTATTAAGAA
 ACTGAGAGTCATTATAACAGGAGTGTAGAACAGATACTGTAACACCAGCGGAAGAAAGTTGAC
 AGCTCTATGGAACAGATGCCGTAGGTGTTATGAAATTGAAATTCTCTGGAGAGGTTGAGTTGTTAATCCC
 TAGTGTGAATTGATTGACCAAGGAAGATGGTATTGTTAGAAGCTGTTCAATGGATGCTTCCGGTTGTTG
 15 TAGGAATCCGTCTACTTATGCAAGCTGGTGGAGAACAGCTAACAGATGAATTGGTAACAAGTAGACCACTGATTGGGATTGTCT
 TATTTGTAGATGTATCCAGGGAAACAGCTAACAGATGAATTGGTAACAAGTAGACCACTGATTGGGATTGTCT
 CTGGGATAATTATGATGATTGGAGGATGAAACTCTGAGTCAGATATTAGTCAAATCAATAGTTGAGCTAA
 TTTTATATCAGATTGTTCAAGAAAACACATGATGTTCTCGTCGGTAAGTATGGATGATTATCTATTACTG
 20 ACTACACGGTCTTGGGGTTGATGAAATGATAAATTCTGTTATTGATGCTTCAGAGAAGAGTCGAAACAGAG
 ACAGTTGCCCTTGACCTTAAGTATGGGATTCTTATGGCATGGAACATCATGATGAGATAGGGAAAGTTGCTTG
 CTCATTGAACTTGGCTGAAGTACGGTGGCGACCAGGGTGTGTTAGGAAAACAGCAGAAACGAAAATCCA
 GTTATTGTTGGTGGTGGTCTGCTGCTCAATCACAGCTACACGGACTGTCAGCGCGCTATGACAGCTATT
 CAGATAAGATCGGAGTGTAGATCAGGTTTGTAGTCGGTACAAAAATTAGACATGGATGCTTGGGCTCTGC
 TGAGGATGAGCTGAGTTGTCAGGTTAGCAGGTTAGTCAGTTCCAGAATTCTAAGAAAATCG
 25 GATATTGAAACGAGCTGTTCTTATCATAGAAAAGAAGGAGTACGAAGTTGTTGCTGTTAGGATGCAATGGG
 ATGGTGACCAATCGTCTTGTGATTCTGTAGACCATTCAAAGACAGCTTAACATTATCAAAGAATTITATG
 ATTATTAACCAAACCATGTTATTGACCACCATAGAAGGGATCAGGATTTCAGGTTAGCAGGTTATTACTTA
 TATCAGAAAGTGGTCAAGTAGTGCAGTGAGTTGTAACCGAATTGATGTTGATGTTGACTAAATTACCTCGCGAGTA
 30 TTGAGTCGTATGCAAGCAAGTGTCTGATGGCTGTTGATGTTGACTAAATTGCTATCCAGGAAATCGCTCGA
 AGTCGGACATTGATGTTGCTAGCTATCTCAGAACCGCGGAAGTGTAGTATTGCTATCCAGGAAATCGCTCGA
 CAGATTGAAAGAATATCGTGGCTAATGAACTTACAGTTGTTAGTAAGGAGCAGATGCCATGTTAGCAGG
 AGAGGCTAAGGACATGAATGCTATGATAACAGTTGTTAGTAAGGAGCAGATGCCATGTTAGCAGG
 TATTGAAGCGAGTTGTTCTGCAAGAATACACAAGGATTATCTCAGCTCGAAGTCGTAGTAAACTG
 35 AATGTACAACGGATTATGAAAGAGTTAGGCCTGGAGGCCACTTAAATTGGCAGCAGCTCAAATTAAAGATG
 ACCTGTCAGAAGCAGGTGAAAACGTACAGAAATTGATTAAATGAAAGGAAAAGGAGAAAGAAGAATG
 A

MKKFYVSPFPILVGLIAFGVLSTFIIFVNNNLLTVLFLFVGGYVFLFKKLRVHYTRSDVEQIQYVNHQAESLTALLEQ
 MPVGVMKLNLSGEVEWFNPVAYELLTKEGDFTLEAVQTIKAVGNPSTYAKLGEKRYAVHMDASSGVLYFVDVSR
 40 EQAITDELVTSRPVIGIVSVNDLREFETSESDISQINSFVANFISEFSEKHMMSRRVSMDRFLYFTDVTLEGMLNDK
 FSVIDAFREESKQRQLPLTSMGFSYGDGNHDEIGKVALLNLNEVRGQDVVKVENDETKNPVYFGGSAASIKRER
 TRTRAMMTAISDKIRSVQDFVVGHKNLDMDALGSAVGMQLFASNVIENSALYDEEQMSPDIERAVSFIEKEGVTKL
 LSVKDAMGMVTNRSSLILVHDHSKTAUTLSKEFYDLFTQTIVDHRRDQDFPDNAVITYIESGASSASELVTELIQFQNSK
 KNRLSRMQASVLMAGMMLDKNFTSRVTSRTFDVASYLRTGSDSIAIQEIAATDFEEYREVNELIIQGRKLGSDVIAE
 AKDMKCYDTVVISKAADAMLAMSGIEASFVLAKNTQGFISISARSRSKLNVQRIMEELGGGHFNAAAQIKDVTLS
 GEKLTEIVLNEMKEKEEZ

ID115 663bp

50 ATGAAGTCCTGTTATGCGGAGACTATGAAGACTGTTAACCTTCTAGTCCTACTCTGAGGAATGATG
 ACTCTTGTCTTGTGACTGTGATTCTACTTTGAAAGAATTGGGAAGAGAACTGTCAAATTGATGAAAAC
 AGAGTTGTCACAAAGTCAAGATTGCAACTTGGTAAAGAGGGAGTTGAAGTCAGTCAGAGCGATT
 ACTTACAATCAAGCTATGAGGATTTCAGTCGGTATAAGTTGATGGAGACTCCTGTTAAGAAAAGTTTCG
 CTTCAATTGAGGATTCACTGAGGTTGGAGGGCTGGTAGAGGCAGTAGGCTTGGATATCTGGATTATTAGAGAAA
 TGCTAATAGAGGATTCACTGAGGTTGGAGGGCTGGTAGAGGCAGTAGGCTTGGATATCTGGATTATTAGAGAAA
 AGAGAAGAGAGAGCCAGTCTCTAAAATGTTGAGGGCTGGTAGAGGCAGTAGGCTTGGATATCTGGATTATTAGAGAAA
 GAGTCACTATTCTAAAATCTACTTATAGATGATATCTATACTACAGGAGCAACTATAATCGTGTAAAGAA
 ACTGTTGGAAGAAGCTGGTCAAGGATGTTAAACATTCCCTGTTAGATGAA

60 MECLICGQTMKJVLTFSSLLRNDDSCI.CEDCDSTFERIGEENCPNCMKTELSTKCQDCOLWCKEVSHRAIFTY
 NQAMKDPFSRYKFDGDFLLRKVFASFLSEELKKYKEYQFVVIPLSPDRYANRGFNQVEGLYEAAGFEYLDJ LEKREER
 ASSSKNRSERLGTelpffiksgvtipkkillidiyttgatinrvkki.leeagakdvtfslvrz

ID116 1299bp

ATGAAAGTAAATTAGATTATCGGTGTTTATTACTGAGAATGAATTAACAGAAGAACGTCAAGTGGCGG
 AGAAACTTCCAGCAATGAGAAAGGAGAAGGGAAACTTCTGTCAACGCTGTAATAGTAATTCTAGAAGAAT
 5 GGTATTGCCATCGGTGTTACTATTGTCAGAGTGTGATGAAGCAGTCAGAAGTGATCAAACCTTATA
 CTATTTCCGAGGAGGATTCCAAGCAAGATGTTCTCAATGGCGCCGAAATTAAACTCCTTTCAAGAGAAG
 GTGTCAGAGGGATTGCTTCAGTAGACAAGCAGGAAACCTTACATGCCGTTACAGGGCTGAGTGTGTTGGCTAG
 ACAGAAATGATTATCAAGTAGTGGCTAAAGTGATCAATGCCGTTGAGTGTGTTGGCTAGTCCTCGCATAG
 ATGTTGTTGGAGCTGTACAAGCCTGCAACAGGATTCTTCTGCGGGATAGCTTGCATATGGAGAATCGGA
 10 ACCTTATTCGAAACCAACTAGTTGCAACAACCCATCAGTTATTGAAGTTTATCAAGTGGATTTGCTGA
 TAGTGGATGAAGTAGATGTTCTATGTTGATAATCCCAGTCTTACACGCTGTCAGAATAGTGAAAGGA
 GAATGGATTGAGAATCTTTAACAGCGACTTCGACCAATGAGTTAGATAAAAAGGCTGTTAGGAGAACTAA
 AAGACTGAATTACCGAGACGGTTCATGGAATCCGTTGATTATTCCAAAACCAATTGGTTATCGGATTTAAT
 15 CGCTACTTAGACAAGAATCGTTGTCACCAAGCTAAAGTCTATATTGAGAAGCAGAGAAGACAGCTTACCG
 TTACTCATTTGCTCAGAAATTAAAGAAGGGAGCAGTTAGCAGAAATCTACAGGAGCAATTCCAATGAG
 AAAATTGGCTTGTATCTGTAACAGAGGATGCTTACCTCCCTGTGTTGAGTGTAGAGGCAAC
 ATACTTACAGTACGACAATCTGGAGCGCGAGTTACCTCCCTGTGTTGAGTGTAGAGGCAAC
 ATCGTTTGTACCAAGTCTAGTTGATTCAAGTAGGGGAGCTGGAGCAAGCATGGATAGACCGACAGGAG
 ATTTGCTTCTCATGATGGGTTAAATGTTCAATCAAGAAGGCATAAGGAATTCAAGATGATGAATAAGGA
 20 GGCTGGTCTATGA

MKVNLGYLGRFLTENELTEERQLAEKLPAMRKEKGKLFQRCNSTILEEWYLPIGAYYCERECLLMKRVRSQDQLYYF
 POEDFPKQDVLKWRGQLTPFQEKVSEGLLQVVDKQKPTLVHATGAKTEMIVQVVAKVINAGGAVALSPRIDVCLE
 LYKRLQDFSCGIALLHGESEPYFRTPLVVATTHQLKFYQAFDLLIVDEVDAFPYVDNPMLYHAVKNSVKENGLRIFL
 25 TATSTNELDKKVRLGELKRLNLPFRFHGNPLIUPKPIWLSDFNRYLDKNRSLPKLKSIEKQRKTAYPLLIFASEIKKGEQL
 AEILQEFPNEKIGFVSSVTEDRLEQVQAFLRDGELETILISTILERGVTFPCVDVFVVEANHRLFTKSSLIQIGGRVGRSMID
 RTPGDLFFFHDGLNASIKKAIKEIQMMNKEAGLZ

ID117 870bp

30 ATGCAAATTCAAAAAAGTTAAGGGCAGTCTCCCTATGCAAGCTGTATCTAGGGCAACGCCGATTGCAAT
 CTAGATGATATGACTTTCTGCTATCCAGACCTGAAAGAAGTGGACTGGATTGCTGAGGATACGCCAATA
 CAGGGCTTTGCTCAAGCATTTGACATTCCACCAAGCAGATCAGTTCTGAGCACAATGCCAAGGAAAAAAAT
 TCCTGATTGATTGGTTCTGAAAGCAGGGAAAGTATTGCTCAGGTCTCTGATGCCGTTGCTAGCATTCA
 GACCTGGTCATGATTTAGTTAAGGAGCTATTGAGGAAGAAATTGCAAGTGTGACAGTCCAGGTGCTCTGCAG
 35 GAATTCTGCTTGTGATTGCCAGTGGTTAGGCCACAGCCACATATCTTACGGTTTACCGAGAAAATCAGG
 TCAGCAGAACGAAATTGGTTGAAAGATTCTGAAACACAGATTATGAAATCACCTCATCGTGT
 GCAGACACGGTGGAAATATGTTAGAAGTCTACGGTACCGCTCCGTGTCTGGTCAGGGAAATTGACCAAAATCT
 ATGAAGAATACCAACGAGGTACTATCTGAGTTATTAGAAAGCATTGCTGAAACGCCACTCAAGGGCGAATGTC
 TTCTCATGTTGAGGGTGCAGTCAGGTGTGGAGGAAAGGACGAGGAAGACTTGTGAGAAATTCAACCC
 40 GCATCCAGCAAGGTGTGAAGAAAACCAAGCTATCAAGGAAGTCGCTAAGATTACCAAGTGGAAATAAAAGTCAGC
 TCTACGCTGCTTACCAAGCACTGGGAAGAAAACAAATAA
 MQIQKSFKGQSPYGKLYLWATPIGNLDDMTFRAIQLKEVDWIAAEDTRNTGLLKHFDISTKQISFHEHNAKEKIPDLI
 GFLKAGQSIAQVSDAGPSISDPGHDLVKAIAEEEEEAVVTVPGASAGISALIASGLAPQPHIFYGFLPRKSGQQKQFFGLKK
 45 DYPETQFYEPHRVADTLLENMILEVYGDRSVVLVRELTKIYEYQRGTISELLESIAETLKGECLLIVEGASQGVEEKDE
 EDLFVEIQTRIQQGVKKNQAIKEVAKIYQWNKSQLYAYHDWEEKQZ

ID118 345bp

50 ATGATAAAAGAAAGGAAAGGGCTTTATGGACAACAAAGAATTATITGACGCGCTGGATGATTCTTCCAACAA
 TTATTGGTAACCTTAGCCGATGTGAAAGCCATCAAGAAAATCTCAAGAGCCTGGTAGAGGAAAATACAGCTCT
 CGCTTGGAAAATAGTAAGTTGCGAGAACGCTTGGGAGGGTGGAGCAGATGCTCTGTCAAGGCCAAGCATGTT
 CGCGAAAAGTCTCGCTGTTACCGTGTGGATTCTACGTATGTAATGATTATGGACAACGTCGAGGAGCAG
 AGCAAGAATGTATGTTGTGACGAGTTGTAATACAGGGAGTAA
 55 MIKKGKGFMDKKEFLDALDDFSQQLEVTLADVEAIKKNLKSLMEENTARLENSKIRERLGVEADAPVKAHVRES
 VRIIYRDGFHVNCDFYQQRREQDEECMFCDLLYREZ

ID119 639bp

60 ATGCAAAAGGATTTAGTCTCTTGTGAGGGACCAGAGGGAGCAGGCAAGAGGAGCTGTTTAGAGGCTCTGCTAC
 CAATTCTAGAGGAAAAGGAGTAGAGGTTGACGACCCGTTGAAACCTGGCGGAGTGTGATGGGGAGAAGATTC
 GGGAGTGTGATTGGATCCAAGTCATACTCAGATGGATGCTAAGAGCTACTTCTATATTGCCAGTCGAG
 ACAGCATGGTGGAAAAAGTTCTCCAGCCCTGAAGGTTGGCAAGTGGTATCATGGATCGTTTATCGATAGT

TCTGTTGCCATCAGGGATTGGTCGGCTTAGATATTGAAGCCATTGACTGGCTCAATCAGTTGCGACAGATG
 5 GCCTCAAACCGATTGACACTCTATTGACATCGAGGTGGAAGAAGGGCTGGCTCGTATTGCTGCTAATAGTGA
 CCGCAGGGTAATCGTTGGAGTTGAAGGGTGGACTTCGATAAAAAGTTGCTAAGGCTACCTTCTCTCTG
 GATAAAGAGGGAAATCGATTGCTAAGATTGATGCTAGTCCTGGAGCAAGTTGAGAAACTACCAAGGCT
 GTCTTGTGACGGAATGGCTGGCCAATGA

MSKGFLSLEGPEGAGKTSVLEALLPILEEKGVETLREPVGVLIGEKIREVILDPSHTQMDAKTELLYIASRRQHLVE
 KVLPALEAGKLVIMDRFIDSSVAQGFGRGLDIEADWLNFATDGLKPDLTYFDIEVEGLARIAANEDREVNRLDLE
 GLDLHKKVRQGYLSLLDEGNRIVKIDASLPLEQVVETTKAVLFDMGLAKZ

10

ID120 408bp

15

ATGGTAGAACAAAGAAAATCAATTACCATGAAAGATGTTGCTTAGAAGCAGGAGTTAGTGTGGAACACTGTTCA
 CGTGTAAATTAAAGAAAAGGCATTAAGAAGTAACCTTGAAAAAGTGGAACAGCGATTAAACATTGTAAT
 TACATTCCAGATTACTACGCTAGAGGAATGAAAAAAATCGAACAGAACGATTGCAATCATTGACCAAGTATC
 TGCGATCCCTCTTTCAAGAATTGCTATGCGATGTGGAAAAATGAAGTCTATAAGAGAAATAACAAATTACTCTTAT
 GTTCTATCAATGGTACAATAGAGCAAGACTATCTGGAGATGTTGCGTCATAATAAGTTGATGGAGTGGTTG
 CATTACCTATAGGCCAATGAACATTACTTGACGTCAGGAATTCCCTTGTAGTATTGACCCACATACTCAGAG
 ATTGCCATTCTGTGTTCA

20

MVEQRKSITMKDVALEAGVSVGTVSERVINKEKGKEVTLKXVEQAIKTLNYIPDYYARGMKNRTETIAIVPSIWHPPFS
 EFAMHVENEVYKRNNKLLLCSINGTNREQDYLEMLRHNVGDVVAITYRPIEHYLTSGIPFVSIIDRTYSEIAIPCVS

25

ID121 285bp
 ATGAATATATTAGAACAAAGAATGTTAGTTAGATAAAACAGAGATGCATAGGCATTGAAAGTTATGGGATTG
 TTTGCTGGGTATCGGAGCCATGGTAGGGACAGGGCTTTACAATCACAGGACTGCGAGCTGCAACACTGCTGG
 CCCAGCCCTAGTGAATTCAATCGTTATTCTGCCTTGTGGATTATCAGCCCCTTTGCAGAATTGCGCT
 CGCGAGTACCCGCTACAGGAGGTGCCTATAGTTACCTCTATGCTATCTTAGGAGAATTCCCTGCCTGGTTGGCTGG
 TTGGTTAACCATGATGGAGTTCATGACAGCCATATCAGGCGTAGCTGGTTGGCAGCTTATTAA

30

MNIFRTKNVSLDKTEMHRHLKLWDLILLGIGAMVTGVFTITGTAATLAGPALVISIVISALCVGLSALFFAEFASRVP
 ATGGAYSYLYAILGEFPWAFLAGWLTMMEFMTAISGVASGWAAYF

35

ID124 1311bp

40

ATGAAATCAAGAGTAAAGGAAACGAGTATGGATAAAATGTGGTTCAAGGTGGCGATAATCGTCTGGTAGGAAGC
 GTGACGATCGAGGGAGCAAAATGCACTTACCCCTGTTGGCAGCGACTATTCTAGCAAGTGAAGGAAAGACC
 GTCTTGCGAGATGTTCCGATTGTCGGATGCTTATTATGAATCAGGTAGTTGGTGGTTGAATGCCAAGGTTGA
 CTTTGATGAGGAAGCTCATCTGTCAGGTGGATGCTACTGGCAGACACTGAGGAAGGCCCTTACAAGTATGTC
 AGCAAGATGCGCCCTCATCGTTGATTAGGGCAATCTTGCCTGCTGATGCCAAGGTATCCATGCG
 AGTGGTTGTCAGATTGGTAGCCGTCTATTGATCTTCATTGAAAGGTCTGGAGCCTTGGGGTTAAGGATTAGTCA
 GACAGCTGGTTACATCGAAGCCAAGGGCAGAACGCTTGCATGGTCTCATATCTATATGGACTTCCAAGTGTGGT
 GCAACCGCAAGAACTTGTATGGCAGCGACTCTGGCTGATGGGGTGACAGTGTGATTGAGAATGTCGCGTGAGCCT
 GAGATTGTTGACTTAGCCATTCTCTTAATGAAATGGAGCCAAGGTCAAAGGTCTGGTACAGAGACTATAACC
 ATTACTGGTTGAGAAACTTCATGGTACGACTCACAATGTTAGTCCAAGACCGTATGAAAGCAGGAACCTTATGG
 TAGCTGCTGCCATGACTGGTGTATGTCATTGAGACGCTGTCGGAGCACACCGTCCCTGATGGCAA
 GTTACTTGAATGGGTGTTGAAGTAATTGAAAGAAGACGAAGGAATTCTGTTCTCAACTAGAAAATCTAAA
 AGCTGTTCATGTAAAACCTTGCCTCCACCCAGGATTCCACAGATATGCAAGCTTCAATTACAGCCTTGTGACA
 GTTGCACAAAGCGAACATCAACCATGGTGACAGCTTGCAGAAATCTGTTCCAACCTAGAAGAGATGCGCCGA
 TGGGCTTGCATTCTGAGATTATCCGTGATACAGCTGTATTGTTGGACAGGGTGTAGCACAGGGAGAAACTGTGGTGGTAA
 TTCAACTGACCTTCGTGCCAGTGGCGCTTGTATTGACAGGTTGGTAGCACAGGGAGAAACTGTGGTGGTAA
 TTGGTTACITGGATAGAGGTTACTACCGTTCCATGAGAAGTTGGCGCAGCTAGGTGCTAAGATTGAGGATTG
 AGGCAAGTGTAGAAGATGAATAA

55

MKSRYKETSMOKIVVQGGDNRLVGSVTIEGAKNAVLPLLAATILASEGKTVLQNVPLSDVFIMNQVVGGLNAKVDFD
 EFAHI.VKVDATGDITEEAPYKVYSKMRASIVVLGPILARVGHAKVSMPPGJTGSRPIDLHLKGLEAMGVKISQTAGYIE
 AKAERLHGAIYMDFPSVGATQNLMMAATLADGVTVIENAAREPEIVLIAPIANEMGAKVKGA^GTETITITGVEKLHG
 TTHNVVQDRIEAGTFMVAAAMTGGDVLRDAVWEHNRPLIAKLLEMGVIEVEEDEGIRVRSQLENLKAVHVKTLPNG
 F^TDMOAQFTALMTVAKGESTMVETVTERFQHLEEMRRMGLHSEIIRDTARI^GGQPLQGAEVLSID.RASAALILT
 LVAQGETVVGKLVHLDRGYYGFHEKLAQLGAKIQRIEASDEEZ

ID125 1101bp

ATGTTATTAGCGTCAACAGTAGCCTTGTCAATTGCCAGTATTGCAACTCAAGCAGAAGAAGTCTTGACTG
 CACGTAGTGGAGCAAATCCAAAAGCATTGACTAAAACGACAACAAAACAAGTTACCGTACAGTATGGTG
 ATACTTGAGCACCATTCAGAAGCCTGGGTAGATGTACAGTGCCTGCAATCTGAACAAATCACTAATAT
 GGACTTGATTICCCAGAAACTGTTTGACAACGACTGTCAATGAAGAAGAAGTAACAGAAGTGAATCCA
 5 AACACCTCAAGCAGACTCTAGTGAAGAAGTACAACACTGCGACAGCAGATTGACCACATACTCAAGTGACCGTTGA
 TGATCAAACAGTTCAGGTTGCAGACCTTCTCAACCAATTGCGAGAAGTTACAAAGACAGTGTGTTCTGAAGAA
 GTGGCACCACATCTACGGGCACTCTGTCAGGAGGAGCAAACGAGCAGAACACAAAGCCCTCAAGCTGCATCAGCAGTGGAAAGCAC
 10 CCTCAGGAAACGACTCCAGCTGAGAAGCAGGAAACACAAACAGCCCTCAAGCTGCATCAGCAGTGGAAAGCAC
 TACAACAAGTCAGAAGCAGAAAGTACATCAAATGGAGCTACAGCAGCAGTTCTACTTATCAACCAGA
 AGAAAGAAGAAAGTAAATTCAACAACCTACAGGCTCCAGCTGCCCGATTATGCTGACTTGAGCTAGCAAAATC
 15 TGAAATGCAGGTCTCAACCACAAACAGCTGCCTTAAGAAGAAATTGCTAATCTGTTGGCATTACATCCTT
 AGTGGTTATCGTCCAGGAGACAGTGGAGATCACGGAAAGGTTGGCTATGACTTATGGTACCCAGAAGCTTCA
 GAATTAGGGATAAGATTGCGGAATATGCTATTCAAATATGGCCAGCCTAGTTACATCATCTGAAA
 CAACGTTCTATGCTCATTGATAGCAAATATGGCCAGCTAACACTTGGAACCCAAATGCCAGACCGTGGTAGTG
 TGACAGAAAATCACTATGATCACGTTCACGTTCAATGAATGGATAA

MLLASTVALSFAPVLATQAEELVLTARSVEQIQNDLTKDNKTSYTVQYQDLSLSTIAEALGVDTVLANLNKITNMDL
 IFPETVLTIVNEAEEVTEVEIQTPOADSSEEVTTATADLTNQVTDDQTVQVADLSQPIAEVTKTVIASEEVAPSTGTS
 20 APPEEQTTETTRPVAEEAPQEITPAEKQETQTPQAASAVEATTISSEAKEVASSNGATAAVSTYQPEETKVISTTYEAPA
 APDYAGLAVAKSENAGLQPQTAFKKLLTCLALHPLVVIVQETVEITEKVWLSTLWYQNVNZGIRLRNMLFKIWP
 VALVTSSGNNSMLHSIANMGQLTLGTQCQTVVVZQKITMITFTFQZMD

25

ID126 1281bp

TTGTTAAAGAAAAATAAAAGACATTCTAATATTGCAATTGCCAGCTATGGGTGAAAACCTTTGAGATGCTAATGG
 30 GAATGGTGAGCAGTTATTGGTGTCAATTAGGATTGATAGCTATTCAAGGGTTCTAGTAGCTGGTAATATTAT
 CACCATTTATCAGCGATTTCATGCTCTGGAGCTGTATTCCAGTGTATTCAAAAGCATAGGGCAGAAA
 GACAGTCGAAGTTGGCTATCATGTACTGAGGCGTTGAAGATTACCTTACTTAAAGTTCTTTAGGATTTT
 GTCCATCTCGCTGGAAAGAGATGATAGGACTTTGGGAGCGGAGAGGATGTAGCTGAGAGTGGTGGACTGTA
 TCTATCTTGTAGGCGGATCGATTGTTCTTAAAGTTAACTGACTAGTCTAGGAGCTTGTGATTGTGCAACGCATA
 35 ATCCACGTCTGCCCTCTATGTTAGTTTATCCAATGCCCTGAATTTCTTCAAGTCTAGTATTTGTIC
 TGGATATGGGATAGCTGGTGTGGCTTGGGAGCAATTGTGCTCTGTTGGTCTGTGATTGTGGTCACA
 ATTAAAATCGCTTATGGGAGCCAACCTTGTGTTAGATAAGGAACCTGTTGACCTGGCTTACAGCAGCTGGA
 GAGCGACTTATGATGAGGGCTGGAGATGTAGTGTCAATTGCCCTGCTTATGCTGCTGCTGGCTCGTACGGCAACGGTCATGCT
 40 GGAATGCAATCGGAGAAGTCTGACCCAGTTAACTATATGCCCTGCTTGGCTCGTACGGCAACGGTCATGCT
 GTTGGCCGAGCAGTGGAGAGGATGATTGGAAAAGAGTGTGCTAGTTGAGTAAACAAACCTTGGCTTCTGCT
 TTCTCATGTTGCCCTGCTTGTAGTATATGTTGGGTGACCTAACTCATCTCTATAAGACTGATTCTCT
 AGCGGTGGAGGCTAGTGTCTAGTGCACACTGTTTCACTATTGGGACCCCTATGACGACAGGAACAGTCATCTAT
 ACGGCACTGGCAGGGATTAGGAATGACGCCCTCCCTTATGCCACAAGTATAGGAATGTGGTGTATCCGC
 ATTGGGACAGGATATCTGTTGGGATTGTGCTGTTGGGCTTGCCTGGTATTGGCAGGGCTCTTGGATA
 45 ATGGTTTCTGGTTATTCTACGCCATCTGTTACAGCGCTATATGAGCTTGAAGGATAG
 LFKKNKDILNIALPAMGENFLQMLGMVDSYLV AHLGLIAISGVSVAGNIITIYQAFIALGAIISSVISKSIGQKDQS
 YHTEALKITLLSFLLGFLSIFAGKEMIGLUGTERDVAESGGLYSLVGGSVLGLMTSLGALIRATHNPRPLYVS
 SNALNLFSSLAIHVLDMGIAGVAWGTIVSRLVGLVILWSQLKLPYGKPTGLDKELLTLALPAAGERLMMRAGDV
 LVVSGTCAVAGNAIGEVLTQFNMPAEGVATATVILLARAGEDDWKRVASLSKQFWLSLFLMLPLSFSIYVLGV
 LTHLYTDSLAVEAISVLTLSLLGTPMTTGTVIYTAVWQGLGNARLPYATSIGMWCIIGTGYLMGIVLGWGLPG
 AGSLLDNGFRWLFLRYRQYMSLKGZ

ID127 894bp

55 GTGGGAAGAATTATCAGAGCAGGTGAAAGATGGAAACATCTTGAATCTATCTGCAATTGCAACAAGTGG
 AATTATCTTAAAGGAAGCAGCAGCGAACGCAATTGCTCTCTCTAGTTATCTGCTTTGAGCTGGGGAGGTG
 ACCTGGGACTCTCCGTTTGTGATAACATCATGTAAGAACATGAAATCGAAAATTCTATGGATAAGGCAAG
 GAATTCTATAATCATGAACATGTTCTATGATGGCACAGATTATCCACTTACTTCAAAAGCATATTGCAAGGT
 TTGAAAAGCTCAAGAGAACAACTTGAAGAGTCTAAGAGTTCGACGACTCCCCCTTATTTGAGCTGAACTGGA
 60 TTTGCTACAAGGTCTGATTGTCAAAGAGATGCGAGTTATGATATGAAGCAGGATGTTGGTAAGGCTAGCAGA
 TTATCTCTTCAAAACAGAAGAATGGACCATGATGAGTTGAGTTCTTCTGGTAACCTCTATAGTTCTACGATGTA
 GACTATGTCATCGGATTGGTAGAGAAGTTATGGAGAGGGAGGAATTCTACCAAGAGATTAGTCGCCATAAGAGA
 TTAGTGTGATTGGCCCTCAATTGTTACCGACATTGTTAGAGCATTCTTCTTCTTATATAATGCCAACTATTGTA

GGCTTATAACAGAGAAGATTATTGACAAAGGTATTAAGCTTATGAGCGTAATGTTTCCATTATTTAAAAGGTTT
GCCTTATATCAAAAGGACAGTGTAAGAAGGCTGTAAGCAGATGCAAGAGGCCATGCATATTTGATGTGTTA
GGTCTTCCAGAGCAAGTAGCCTATTATCAGGAACACTACGAAAAATTGTCAAAAGTTAA

5 VGRIIIRAGVKMELGKVFRFRSGNSLKEAAGESCSTSSQLSRFELGESDLAVSRFFEILDNIHVTIENFMDKARNFHN
HEHVSMMAQIPILYSNDIAGFQKLQREQLEKSKSSTPLYFELNWILLQGLICQRDASYDMKQDDLGKVADYLFKTEE
WTMYELILFGNLYSFYDVYVTRIGREVMEREEFYQEISRHKRVLILALNCYQHCLEHSSFYNANYFEAYTEKIIDKGI
KLYERNVFHYLKGFALYQKGQCKEGCKQMQEAMHIFDVGLPEQVAYYQEHYEKFKSZ

TABLE 3**ID1 1068bp**

5 ATGTCTAACATCAAACATGTCCTGGAGGACATCATGGGAGAGCGTTGGTCGTAECTCAAGTACATTATTCAAGGA
AAGACCGGGCTTGCAGATATTCGTATGGGTTAAGGCCGTTAGCAGCCTGACTCGGGAAACATCATGGGAAATTCCACCCACA
TAGCAATACTTTGACAAGAGCTACCGTAAGTCGCCAAGTCAGTCGGGAAACATCATGGGAAATTCCACCCACA
CGGGGATTCTCTATCTATGATGCCATGGTICGTATGTCACAGAACTGGAAAATCGTGAGATTCTAGTGAAATG
CACGTAACAGGTTCTGGACGGAGATCCTCGGGCTATGCGTTACTGAGGGACGTTGCTGAAATTG
10 CAGGCTACCTCTTCAGGATATCGAGAAAAGACAGTCTTGCATGAACTTACGATACGGAGAAAAGAAC
CAACGGCTTGCAGCAGCCTTCCAACCTCTGGTCAATGGTCAGTGGGATTTCGGCTGGTATGCCACAGA
CATTCTCCCCATAATTAGCTGAGGTCAAGATGCTGCAGTTACATGATTGACCACCCAACGCAAAAGATTGAT
AAACTCATGGAATTCTTGCTGGACCAGACTTCCACAGGGCTATTATCAGGGTGTGATGAAATCAAGAAA
GCTTATGAGACTGGGAAAGGGCGCGTGGTGTGTTCAAGACTGAAAATTGAAAAGCTAAAAGGTGGAAGGAA
CAAATGTTATTATTGAGATTCTTATGAAATCAATAAGGCCAATCTAGTCAGAAAATCGATGATGTTGTTA
ATAACAAGGTAGCTGGGATTGCTGAGGTCTGATGAGTCAGCTGATGGTCTCGTATCGTATCGAACTTAA
GAAAGACGCTAAACTGAGCTTCTCAACTACTTTAAGTACACCGACCTACAAATCAACTACAACCTTAAT
ATGGTGGCATTGACAATTTCACACCTCGTCAGGTTGGATTGTTCCAATCTGTCTAGCTATATCGTCACCGTCG
20 AGAAGTGA
25 MSNIQNMSLEDIMGERFGRYSKYIIQDRALPDIRDGLKPVQRRLYSMNKDSNTFDKSYRKSASKVGNIMGNFPHGDSS
IYDAMVRMSQNWKNREILVEMHGNNSMDGPAAAMRYTEARLSEIAGYLLQDIEKKTVFAWNFDDEKEPTVLP
AFPNLLVNGSTGISAGYATDIPPHNLAEVIDAAYMIDHPTAKIDKLMFLPGPDFPTGAIQGRDEIKKAYETGKGRVV
VRSKTEIEKLKGKQEIQVIIIEPYEINKANLVKKIDDVRVNNKVAGIAEVRDSDRGLRIAIELKDDANTELVNYLFKY
TDLQINYNFNMVAIDNFTPRQVGLFQSCLASLTVEKZ

ID12 684bp

30 ATGCCGACATTAGAAAATAGCACAACAAACTGGAGTTCAATTAGAAGGCAGAAGAATTACATGCCCTGTG
ACAATATACAGTTGAGCGGAGATAAACTAAAAGTAATTCCTTACTCTGTTAACCTGGGAAAGGAAAACA
ACTACTTCCATAAAATAGCATGGCTTGCCTGAGGTATAAAACTCTTGTGATGGCGATACTCGAA
ATTCACTGTTAGGATTAAATCTGTGAAAAAAATTACAGGGCTAACAGAAATTCTGACAGCTGA
TTATCTACGGTTATGTGATACAAATATTGAAAATTATTGTTAGTTCAATCGGATCTGTATCACCAAACCC
35 CAGCCTGTTACAAAGTAAAATTAAATGATATGATTGAAACATTGCTAACATTTGATTATATCATTATTGAT
ACACCGCCTATTGAAATTGTTATTGATGCGGCAATTACTCAAAGTGTGATGCGTCCATCTGGTAACAGCAA
CAGGTGAGGCGAATAAACGTTGATATCCAAAAGCGAACACAATTAAAACACAGGGAAACTGTTCTAGGA
40 GTTGTGTTAAATAATTGATATCTGGTTAACAGTATGGAGTTACGGTTCTATGGAAATTATGGTAAAAAA
AA

MPTLEIAQK~~KLEFIKKAEFFYYNALCTNIQLSGDKLKVISYTSVPGEVKTTISINIAWSFARAGYKTLIDGDTRNSVML~~
GVFKSREKITGLTEFLSGTADLSHGLCDTN~~IENLFVVQSGSVSPNPTALLOQSKNFNDMIETLRKYFDYIIDTPPIGIVIDAA~~
~~III~~TQKCDASILVTATGEANKRD~~I~~QKAKQQLKQTGKFLGVVLNKLDISVN~~KYGVYGSYGN~~Y~~GKZ~~

ID13 1182bp

45 ATGGAGGCAAATATGAAACATCTA~~AAA~~ACATTTACAAAATGGTTCAATTATTAGTCGTTATCGTCATTAGCT
TTTTAGTGGAGCCTGGTAGTTTCAATAACTCAACTA~~AA~~ACTCAAAAGTAGTGTAAACAACACTCTAACACAA
TAGTACTATTACACAAACTGCCATAAGAACGAAAATTCAACACAGGCTGTTAACAAAGTAAAGATGCTG
TGTTC~~T~~TTATTACTTATTGCCAACAGACAAAATGCTGTTAGGTTCTGAATATGATGACTACTGACACAGATTCTAG
CGAATCTCTAGTGAAGGACTGGAGTTATTAAAAGAATGATAAAAGCTTACATCGTCACCAACAATCAC
50 GTTATTAAATGCCAACAAAGTAGATATTGCTGCTGAAATCTCTTCAGAAAAGTGAACACAGTAGCTGAGTTGGTGAATTCTA
GACACTTCTCTGATATTGCTGCTGAAATCTCTTCAGAAAAGTGAACACAGTAGCTGAGTTGGTGAATTCTA
GTAAGTAAACTGTTAGGAGAAACTGCTATTGCCATGGTAGCCGTTAGGTTCTGAATATGCAAAACTGTCACTCA
AGGTATGTTATCCAGTCTCAATAGAAATGTTCTAAATCTGAAGATGGACAAGCTTACAAAAGCCATE
CAAACGTGAACTGCTATTACCCAGTAACCTGGGGCCACTGATCAATATTCAACGGCAGGTTATCGGAATT
CCTCAAGTAAAATTGCTACAAATGGAGGAACATCTGTTAGAAGGTC~~TTGG~~GAATTCGTC~~AA~~ATGCTGTTAT
60 CAAATTTATTGAA~~ACAGT~~AGAAAAACGGAAAGTGA~~CCG~~GTCCAGCTTGGGAATTCGTC~~AA~~ATGCTGTTAT
TAATGTTAGTACAAGCGACATGAGAAGACTCAATATTGCAAGTAATTGTTACATCTGGTGAATTGTTGTTGCTGCTG
CAAAGTAATATGCCCTGCCATGGTCACTTGA~~AAA~~ATGCTGTAATTACAAAAGTAGATGACAAGAGATTGCT
TCATCAAGCTTACAAAGTGTCTTACACCATCTATCGGAGACACCATTAAAGATAAGTACTATCGTAAGG
GGAAAAGAAGAAA~~ACTAC~~CTCTATCAAAC~~AA~~AGTTCAGGTGATTAGAATCTAA
MEANMKHLKTFYKKWFQQLVVIVISFFSGALGSFSITQLTQKSSVNNNNNNSTITQAYKNENSTQAVNKVD~~A~~VVS
ITYSANRQNSVFGNDDTDSDQRISSEGVYKKNDKEAYIVTNH~~H~~INGASKVDIRLSDGT~~K~~V~~P~~GEVGADTFSDIAVV

KISSEKVTVAEFGDSSKLTVGETAIAIGSPLGSEYANTVTQGIVSSLNRNVSLKSEDGQAISTKAIQTDATAPGNSSGGPLI
NIQQVIGITSSKIATNGGTVEGLGFAIPANDAINIEQLEKNGKVTRPALGIQMVNLSNVSTSDIRRLNIPSNTSGVIVR
SVQSNMPANGHLEKYDVITVKVDDKEIASSTDLQSALYNHSIGDTIKITYRNKGKEETTSIKLNKSSGDLESZ

5 ID15 939bp

ATGGCAGAAATTATCTAGCAGGTGGTTGTTTGGGCCAGAGGAATATTTCAACGCATTCTGGAGTGCTAG
AAACAGTGTGGCTACCTAAATGGTCAGTCAGAACGACCAATTACAGCTCAAGGAAACAGACCATGAG
AAACGGTCCAAGTGATTACGATGAGAAGGAAGTGACTCAGAGAGATTTACTTTATTATTCGAGTATCGA
TCCTCTATCTATCAATACAACAAGGAATGACCCTGGCTGCAATATCGAAGTGGGATTTATTATCAGGATGAAGCA
GATTGCCAGCTATCTACAGTGGTCAGGACAGGAACCGATCTGGTCAGAAGATTGAGTAGAAGTGGAG
CAATTACGCCACTACATTCTGGCTGAAGACTACACCAAGACTATCTCAGGAAGAACCTCAGGTTACTGTCATA
TCGATGTGACCGATGCTGATAAGCATTGATTGATGCAGCAAACATGAAAAGCCTAGTCAAGAGGTGTGAAGG
CCAGTCTATCTGAAGAGTCTATGTGTCACACAAGAAGCTGCTACAGAGGCTCATTACCAATGCCTATGACCA
AACCTTGAGAGGGGATTATGTAGATATTACGACAGGTGAGCCACTTTTCCAAGGATAAGTTGCTTC
GGTTGTTGGCCAAGTTAGCGTCCGATTCCAAGAGTGTGATTCAATTACAAGGATCTGAGCCATGGAA
TGAGCGAATTGAAGTTCGTTCTGTCAGGCACTGCTACTGGTCATGTTCACAGATGGACCGCGGGAGTT
AGCGGCCCTCCGTTACTGTATCAATTCTGCTCTTACGCTTGTGCCAGGATGAGATGAAAAAGCAGGATAT
GGCTATCTATTGCTTACTTAAACAAATAA

20 MAEIYLAGGFWGLEYFSRISGVLETSGVYANGQVETNYQLLKETDHAETVQVIYDEKEVSLREILLYYFRVIDPLSI
NQGNDRGRQYRTGIYYQDEADLPAYTVVQEQRMLGRKIAVEVEQLRHYIADYHQDYLRKNPSGYCHIDVTD
DKPLIDAANYEKPSQEVLKASLSEESYRVTQEAATEAPFTNAYDQTFFEEGIYVDITGEPLFFAKDKFASCGWPSRPI
SKELIHYYKDLSHGMERIEVRSRSGSAHLGHVFTDPRELGLLRYCINSASLRFVAKDEMEKAGYGYLLPYLNKZ

25 ID17 870bp

ATGAAGATTATTGTACCTGCAACCAAGTGCAATATCGGGCCAGGTTTACTCGGTGGGTAGCTGTAACCAAGT
ATCTTCAAATTGAGGTCTCGCAAGAACGAGATGAGTGGCTGATTGAAACACAGATTGCAATGGATTCCACATG
ACGAGCGTAATCTTGTCTAAATCGCTTGCCTGAAATTGAGCTCAGACTGCAACCAAGACGCTTGAAGGAT
TGATGTCCCTTGGCGCGCGTTGGTTCTTCAGCTCGTTATCGTGGATTGAACTAGCAACCAACTG
GGTCAACTCAACTTATCAGACCATGAAAAATTGAGCTTGTGACCAAGATTGAAGGGCATCCTGACAATGTGGCT
CCAGCATTATGGTAACTCGTTATGCAAGTTCTGTTGAAGGGCAAGTCTCTGCTATCGTAGCAGACTTCCAG
AGTGTGATTCTAGCTTACATTCAAACATGAATTACGTAACCGTACTCGCAGCCGTAGTGTCTGCCTAAAGGATT
GTCTTATAAGGAAGCTGCTGCAAGTTCTATGCCAATGTAGCGTTGCTGCCCTGGTCAAGGAGACATGGT
ACCGCTGGCAAGCAATCGAGGGAGACCTTCCATGAGCGCTATCGTCAAGGACTGGTAAGAGAATTGGCATG
ATTAAGCAAGTGAACAAAGAAAATGGGCCATGCAACCTACCTTCTGGTCTGGCCAGCAGTTATGGTCTG
GCTTCTCATGACAAGATGCCAACATAAGGAGAATTGAGAACCTTCAAGGAAACTGCAACCTTCAAAGGAAACTGCATGACTTG
AGAGTTGATACCAAGGTGTCGTTAGAAGCAAAATAA

40 MKIIVPATSANIGPGFDSSVGAVTKYLQIEVCEERDEWLEHIQKWIPIHDERNLLKIALQIVPDLQPRRLKMTSDVPLA
RGLGSSSSVIVAGIELANQLQLNLSDHEKLQLATKIEGHPDNVAPAIYGNLVIASSVEQVSAIVADFPECDFLAYIPNY
ELRTRDSRSVPKKLSYKEAVAASSIANVAVAALLAGDMVTAGQAIEGDLFHERYRQDLDVREFAMIKQVTENGAYAT
YLSGAGPTVMVLASHDKMPTIKAELEKQPFKGKLHDLRVDTQGVRVEAKZ

45

ID20 564bp

ATGAAATATCACGATTACATCTGGGATTAGGTGGAACTTACTGGATAATTATGAAACTTCAACAGCTGCATTG
TTGAAACATTGGCACTGTATGGTATCACACAAGACCATGACAGTGTCTATCAAGCTTAAAGGTTCTACTCCTT
TGCATTGAGACATTGCTCCAAATTAGAGAATTAGAAAAGTACAAGGAAATGAAGCCAGAGAGCTG
ACACCCGATTATTTGAAGGAATTCTGACTTATGGAAAGACATTCAAAATCAAGTGGCCGTCAATTGGTCT
ACACCCGATTATTTGAAGGAATTCTGACTTATGGAAAGACATTCAAAATCAAGTGGCCGTCAATTGGTCT
CTCATGCAATGATCAGGTTTGGAAATTAGAAAACCTCTATAGCAGCTTATTACAGAAGTGGTACTTC
TAGCTCAGGTTTAAGGAAAGCCAATCCGAATCCATGCTTATTAAAGAGAAAAGTACAGATTAGCTCTGGT
CTTGTCTTGTGATCGGCCGATTGATATCGAAGCAGGTCAAGCTGCAGGACTGATACCCACTTGTCTTACAGTA
TCGTGAATTAAAGACAAGTATTAGACATATAA

55

MKYHDYIWBLGGTLLDNYETSTAATFETLALYGITQDHDSVYQALKVSTPFAIETFAPNLENFLCKENARELEHPI
LFEGVSDLLEDISNQGGRHFLVSHRNDQVLEILEKTSIAAYTEVVTSSSGFKRKPNPESMLYREKYQISSGLVIGDRPID
IEAGQAAGLDTHLFTSIVNLRQVL DIZ

60

ID21 1875bp
ATGACAGAAGAAATCAAAATCTGCAGGCACAGGATTATGATGCCAGTCAAATTCAAGTTAGAGGGCTTAGAG
GCTGTTCTGATCGCTCCAAGGGATGTACATTGGATCAACCTCAAAAGAAGGTCTCACCATCTAGCTGGAAATIG

TTGATAACTCAATTGACGAGGCCTGGCAGGATTGCCAGCCATATTCAAGTTTATTGAGCCAGATGATTCGAT
 TACTGTTGTGGATGATGGCGTGGTATCCCAGTCGATATTCAAGGAAAAACAGGCCGCTCTGCTGTTGAGACCGTC
 TTACAGTCCTCACGCTGGAGAAAGTTCGGCGGTGGATACAAGGTTCTAGGTGGTCTTCACGGGGTGGGGT
 CGTCAGTAGTTAATGCCCTTCACTCAATTAGACGTTCATGTTCAAAAATGGTAAGATTCACTTACAGAAGATA
 CCGCGTGGTATGTTGTCGAGATCTGAAATAGTGGAGATACGGATAAAACAGGAACAACGTGTCACCTCACA
 CCGGACCCAAAAATCTTCACTGAAACAACAATCTTCAAGGTTGATAAATTAACGGGATTCAGAGTGGCT
 TTCTAAATGCCGCTCTCAAAATTCACTTACAGAAGGACAAACAGGATGTAATCTTGTACACCAATCTACAGAC
 AGGTGGGATTGCTAGTTACGTTGAATATACAGAAGGACAAACAGGATGTAATCTTGTACACCAATCTACAGAC
 GGTGAGATGGATGATATACAGTTGAGGTAGCCATGCACTGACACAACGGTTACCATGAAAATGTCATGAGTTTC
 10 GCCAATAATATTCAACCATGAAAGTGGAACACATGAACAAGGTTCCGTACAGCCTTGACACGTGTTATCAAC
 GATTATGCTCGTAAAATAAGTTACTGAAAGACAATGAAGATAATTAAACAGGGGAAGATGTTGCGAAGGCTTA
 ACTGAGTTATCTCAGTTAACACCCAAATCCACAGTTGAAAGGACAAACAGGACAAATTGGGAAATAGCAGAA
 GTGGTCAAGATTACCAATGCCCTCTCAGTGAAGCTTCTCGGATTTCTCATGGAAAATCCACAGATTGCCAAAC
 GTATCGTAGAAAAAGGAATTGGCTGCCAAGGCTGGCTGCCAAGGGTGGCTGAAGTACACCGTAAACAGTAAAAA
 15 AATCTGGTTGGAAATTCCAAACCTTCCAGGGAAACTAGCAGACTGTTCTCTAATAACCCCTGCTGAAACAGAACT
 CTTCATCGTCAAGGAGACTCAGCTGGTGGATCAGCCAAATCTGGTGTGAAACCGTGGTCTACGGCTATCCTCCA
 ATTGCGGTAAAGATTGAAACGTTGAAAAGCAAGTATGGATAAGATTCTAGCCAAACGAAGAAAATCGTAGTCTT
 TCACAGCCATGGAACAGGATTGGCGCAGAATTGATGTTGAAAGCCGTTACCAAAAACCTGTTGATGAC
 20 CGATGCCGATGTCGATGGAGCCCACATTCTGACCCCTTCTTAACTTGTGATTTATGAAACCAATCCTA
 GAAGCTGGTTATGTTTATGCCCCAACCAACCTATGTTGTCAGGTTGGGAAGCGAGATAAGAATATTC
 AGCCGGGTGCAAGAACAAACTCCAAGAAGCTTGTAGCCGTTATAGTGAAGGGTGTACCAAACCGACTA
 TTCAGCTTATAAGGGCTAGGTGAAATGGACGATCATCAGTGTGGAAAACCATGGATCCGAACATCGCT
 TGATGGCTAGAGTTCTGTAGATGATGTCAGAAGCAGATAAAATCTTGTATGTTGA
 25 MTEEIKNLQAQDYDASQIQVLEGLEAVRMRPGMYIGSTSKEGLHHLVWEIVDNSIDEALAGFASHIQVFIEPDDSIIVVD
 DGRGPVDIQEKTGRPAVETVFTVLHAGGKFGGGYKVSGGLHVGSSVNLSTQLDVHVHKNGKIHYQEYRRGHV
 VADLEVGDTDKTGTGTVHFTPDPKIFTETTIFDFDKLNKRQLEFLNRLQISITDKRQGLEQTKHLYEGGLASYVEYI
 NENKDVIIDPTYTDGEMDDITVEAMQYTTGYHENVMFSANNIHTHEQGFRRTALTRVINDYARKNKLKDNE
 30 EDNLTGEDVREGLTAVISVKHPNPQFEGQTKLGNSEVVKTNRLFSEAFSDFLMENPQIAKRIVEKGILAAKARVAAK
 RAREVTRKKSGLSINLPKGKADCSNNPAETELFIVEGDSAGGSAKSGRNREFQAILPRKGILNVEKASMDKILANEEIR
 SLFTAMGTGFAEFDVSKARYQKLVLMTDADVDGAHIRTLLTLIYRMPKPILEAGYYVIAQPPIYGVKVGSEIKEYIQP
 GADQEIKLQEALARYSEGRTKPTIQRYKGLGEMDDHQLWETMDPEHRLMARVSDDVQKQIKSLICZ

ID54 1446bp

35 ATAGTAGACGTTAAAAAAATCACGTTCACAGAAAGTGAAGCGAAGTGTAAATATAGTTGCTGACTATTATT
 TATTGTTAGTTGTTTTTATTGTTCTTAATCTTAAAGTACAATATCCTGCTTTAGATATCTTAAATCTAGGGTAA
 CTGCGTTAGTCTACTAGTGCCTGGTAGGGCTACTCTGATTATCTATAAAAAGCTGAAAAGTTACTATT
 CTGTTGGTGTCTCTATCCTGTCAGCTCTGTGCTCTTGCAGTACAGCAGTTGTTGACTGACCAATCGTT
 40 AAATGCGACTCTAATTACTCAGAACATTCAATCAGTGTGCTGTTAGCAGATGTGAGATCGAAAATGTTACG
 CAACTGACGAGTGTGACAGCACCGACTGGAGTAATAAGAAAATCTCAGAAATACTAGCTGATATCAAGTCA
 ACTCAGAAATCAGGTTGACGGTCAACCAGAGTCTGGCTTACTTGGCAGCTTACAAGAGTTGATGTCAGGGAGA
 CTAAGGCCATGCTCTAAATAGTGTCTTGGAAAACATCATCGAGTCAGAGTATCCAGACTACGCATCGAAGATAA
 AAAAGATTTACTAAGGGATTCACTAAAAGTAGAAGCTCTAAAGACGCTAAAGAGTCAGTCTTCAATATCTA
 45 TGTAGTGGATTGACACCTATGGCTCTATTAGTTCGGTGTGCGATCAGATGTCAACATCTGTGACTGTCAAT
 CGAGATACCAAGAAAATCTCTTGACCACAACGCCACGTGATGCCATGTACCAATCGCAGATGGTGGAAATAAT
 CAAAAGATAATTGACTCATCGGGCATTTATGGAGTTGATTGTCATTACACCTTAAAGAAAATCTATGGAG
 TGATATCAATTACTATGCGATTGAACTTCACCTGTTGAAATGATTGATTTGGGGTGGAAATTGATGTT
 TATAATGATCAAGAATTACTGCCCCATCGAATGGAAAGTATTACCCCTGAGGCAATGTCATCTTGATTCTAGAAC
 50 AGGCTCTCGGTTCTCTGAGCGCTACTCCTCTAGCAGATGGCAGTCAGGCCGGCGCAGTCAGAAAAGG
 TGATTGTCGCTATCTCTCAAAATTACGTCACCGAACGTGCTGAAAATTACTACGATCATTAAATAGCTTCA
 AGATTCTATCCAACAAATATGCCACTTGAGACCATGATAAAATTGGCAATGCTCAGTTAGAAAAGTGGAGGGAA
 TTATAAAGTAAATTCTCAAGATTAAAAGGGACAGGTGGATGGATCTTGTCTTATGCAATGCCAGACAGTAAAC
 CTCATGTGATGGAAAATAGATGATGATGAGTTAGCTGTAAGTAAAGCAGCTATACAGGATGTGATGGAGGGTAGA
 55 TGA
 MSRRFKKSRSQVKRSVNVLELTIYLVCFLFLFKYNILAFRFLNLYVLTALVLEVALVGLLIIYKKAEKFTIFLVEFSI
 LVSSVSLFAVQQFVGLTNRLNATSNYSEYSISVAVLADSEJENVTQLTSVAPTSFENENIQKLLADIKSSQNPELTVNOS
 SSYLAAYKSLIAGETKAIVLNSVFENIISEYSPDYASKIKIYTGKFTKKVEAPKTSKSQSFNIYVSGIDTYGPISSVSRSDVN
 60 ILMTVNRDTKILLTTTPRDAYVPIADGGNNQKDKLTHAGIYGVDSIHLNLYGVLDINYYVRLNFFSELKIJDLGGI
 DVYNDQEETAHNGKYYPAGNVHLDSEQAIIGFVRERYSLADGDRDRGRHQQKVIVAHQKLTSTEVEKNYSTIINSQ
 DSQTNMPLMELMINLVNAOLESGGNYKVNSQDLKGTGRMDLPSYAMPDSNLYVMEIDDSSLAVYKAAIQDVMEGRZ

ID55 732bp

ATGATAGACATCCATTGCATATCGTTTGATGTAGATGACGGTCCCAGTCAGAGAGGAAAGCAAGGCTCTCT
 5 TGGCAGAACCTACAGACAGGGGGTGCAGAACCATTTCTACCGTGGAAATAGCTAAGGAAGTGGCGAGTGACTTGGTATTGC
 GGAAGAGAAAGATAGCAGAAAACCTTCTACAGCTGGATAAGCTGGAAAAAGCGGATTCCGACCCCTCAATGA
 TTACGGGGCTGAAATTATTACACACCAGATGTTCTGGATAAGCTGGAAAAAGCGGATTCCGACCCCTCAATGA
 TAGTCGTTATGCCITGATAGAGTTAGTATGAACACTCCTATCGCGATATTCTAGCGCCTTGAGCAAGACCTG
 ATGTTGGAAATTACTCCAGTCATTCCCCACATTGAGCGCTATGATGCTCTGAAAATAATGAAAAACGCGTTCGAG
 10 AACTGATCGATATGGCTGTTACCGCAAGTAATAGTTCACATGTCCTCAACACCAAAACTTTGGCGAACGTTA
 TAAATTATGAAAAAAAGAGCTAGTATTTAGAGCAGGATTGGTCATTGCAAGTGATATGACAAT
 CTAGACGGTAGACCTCCATATGCCAGAACATGACCTGTTACCCAAAATACGGAGAACGAGGCTCAG
 GAACCTTTATAGACAATCCTCGAAAAATTGATGCAACTAATTAG

15 MEDIHSIVFDVDDGPKSREESKALLAESYRQGVRTIVSTSHRKGMFETPEEKIAENFLQVREIAKEVASDLVIAYGAEI
 YYTPDVLDKLEKKRIPTLNDSRYALIEFSMNTPYRDIHSALSKILMLGITPVIAHIERYDALENNEKRVRELIDMGCYTQV
 NSSHVLKPILFGERYKFMKKRAQYFLEQDLVHVIASDMHNLDGRPHMAEAYDLVTQKYGEAKAQELFIDNPRKIVM
 DQLIZ

ID58 3990bp

20 TTGATTTATATAATCGCTATCAATATAACAATGCAATCAGGAGGTTTGCAATGAAACATGAAAAACAAACAGCGTT
 TTCTATTGCTAAATACGCTGTAGGAGCAGCTCTGTTCTAAATTGGATTGCTTCCAGCAGACTGTTGCAGC
 CGATGGAGTTACTCTACTACAGAAAACCCAGACCATCCATACGGTTCTGATTCCCTCAATCATCGAA
 AATCGGACTGAGGAAACACCTAAAGCAGTCTCAACCAGAAGCTCAAACAGAAAACCTCCAGCT
 25 ACTGATAAGGTAGCTAGTCTCCAAAACAGAAGAAAACACAAGAGGAAGTTAGTCAACTCCTAGTGTATAAA
 GCAGAAGTGGTAACCTCTGCTGAAAAAGAAAACGCTAATAAAAAGGAGAAGAAGCTAGCCCTAAAAA
 GGAAGAAGCGAAAGAGGTTGATTCTAAAGAGTCAAATACAGACAAGACTGACAAGGATAAAACCAGCTAAAAG
 ATGAAGCGAAAGCAGAGGCTGACAAACCGGAAACAGAGGAGGAAAGGAACGTCAGTGCACACTGAAATGAAAAA
 CTAGCGAAAAGAAAATTGTTCTATTGATGCTGGACGTAATATTCTCAGGAAACAGCTCAAGGAAATCATCG
 30 ATAAAGCGAAACATATTGCTACACTGATTTACACCTATTAGTCGGAAATGATGGACTCCGTTTATGTTGAGC
 TATGAGCATCACGCTAACGGCAAGACCTATGCGATGTCAACCGGCCATTGAAAAGGTACAAATGA
 TTATTACAACGATCCAACCGCAATCACTTAAACAGAAAGTCAAATGACAGATCTGATTAACATGCAAAGATAA
 AGGTATCGGCTCATTGACAGTAAATAGTCTGGACACATGGATGCGATTCTCAATGCCATGAAAGAATTGGG
 AATCCAAAACCTAATTAGCTATTGGAGAAAATCAGCCGTACTGTCGATTTGACAACGAACAAGCTGTC
 35 GTTTTACAAAAGCCATTGACAAGTATGCTGTTATTGCGAAAAGACTGAAATCTCAACATCGGACTCTG
 ATGAATATGCCATGTCGACAGTGTCAAAGGTTGGAGTGTCTCAAGCTGATAAAACTATCCAAAAGCAAG
 GCTACCTGTTAAAGGCTATGAAAATTATTGCTTACGCCATGACTCGCTGTATTGAAAATCGCACGGCT
 CAAACCAATTGCTTTAACGACGGTACTACAATAGCGACACAAGCTTGGTAGTTTACAAAGACATCATC
 40 GTTCTATGTTGACTGGTGGAGGCTACGATGTCGCTCTCTAAACTACTAGCTGAAAAGGTACCCAAA
 TCCTTAATACCAATGATGCTTGGTACTACGTTCTGGACGAAACGCTGATGGCCAAGGCTGGTACAATCTGATCA
 GGGGCTCAATGGTATTAAAACACCCAATCACTCTGTAACCAAAACAGAAGGAGCTGATACTCCAACTCATCGG
 TGGTATGGTAGCTGCTGGCTGACACTCCATGTCAGCTTACCGCTCTCAAAACTCATGCGTCT
 45 TTGCAAAATGCCAACCGTGAATACTCGCAGCTGATTATGAAATCTGCAAGAGCAACACTTAAACGAGGTACCCAAA
 GACCTGAAACCGTATACTGCAAGAACAGCTCACGGCGTAAAAGAAGCTGAAAAGACTTACTCGCTCTCGATAGC
 AACCTTAGCCGTGCCAACAAAGATACGATTGATCAAGCATTGCTAAACTTCAAGAAAAGTGTCAACAACTGACC
 CTCACGCCCTGAAGCTAAAAAGAAGAAGCTAACGTGAGGTTGAAAAGACTTGCACAAAGGTAATCTCA
 ATCGATGCTGGACGAAACTTACTCTGAACACAGCTCAAACGCTAGACAGGCCAGTGAGGCTGGATAT
 TCTGATGTCATCTCTCTAGGAAATGACGGACTTCGCTTCTACTCGATGATATGACCATTACTGCCAACGGAA
 50 AAACCTATGCTAGTGTACGTTAAAAGCTTATGCAAGGAAACTAAAGCTTACTACGACGATGCCAACAGCTA
 CTGCACTAACACAGGAGAAGTAAACAGCTAATTGATGAAATACGCTAAACTCTAACAGGACATCGGTCTCATCCAGCTA
 TTAACAGTCCAGGTACATGGATGCTATGCTGGTGGCATGGAAAATTAGGTATTAACCTCTCAAGGCCACTT
 TGATAAAAGTTCAAAAACAATGAGCTTGGAGAAAAGCAAGAAGCGATGAACCTTGTAAAAGCCCTCATGGTAA
 55 ATACATGGACTTCTGCAAGTAAAAGAATTCTCAACTTGGTACTGACGAATACGCCAACGATGCGACTAGT
 GCCCAAGGCTGGTACTACCTCAAGTGTATCAACTCTATGGCAATTGCCAACACCCCTCGCAGCTA
 TGGCCAAGGAAAGAGGGCTTCAACCAATGGCTTCAACCGATGGCTTCTACTATGAAAGACAAGGAGCTGTTGAGT
 TTGACAAAGGATGCTTGTAAAGGCTGGGGATAAACCTCCATCACCTCAATACCTAG
 AAGCAAGGCTATAAAATTCTGAAATACCAACGGTACTGGTACTACATTCTGGTCAAAAGCAGAAGATGGTGG
 60 TGGTTCTCAAGAACAGCTATTGAGAAATACTGGAAAACACCATTCATCAACTAGCTTCTACCGTAAATATCCTGAA
 GTAGATCTTCAACAGCTGGAAACTATGCTTCACTGTCAGTGGCAGATAGACCAAGCGCTGAATACAAGGAAGAGGAA
 ATCTTGTAACTCATGACTGCCTTGCAAGACCACAACAAAGACTACTTCTGCTAATTATAATGCTCTCCGCGAAG
 ATTAGCTAAATTCCATCAACCTCAACCGTAATAAACAGCTGAGGCTTGACACGCCCTGAGCAGCTAAACAG
 CTCTAAATTACAACCTCAACCGTAATAAACAGCTGAGGCTTGACACGCCCTGAGCAGCTAAACAG
 AGGCCTCAACCGAGCTGTAACCTCATTCAGGAAGCCTAGATGAAAATGAAAGTGGCTGCCAATGTTGAAACAGACC
 AGAACCTCATCACAAGAACTGAAGAAATTCCATTGAGATTATCAAGAAAGAAATCTAACCTCCAGGCCGTCA

GGAAAATATTACACAGCAGGAGTCAAAGGTGAACGAACCTCATTACATCTCTGTAECTCACTGAAAATGGAAAAAC
 AACAGAAACAGTCCTTGATGCCAGGTAAACCAAGAAGTTATAAACCAAGTGGTGAAGTTGGCGCTCTGTAAC
 TCACAAGGGTGTGAAAGTGGTCTTGCACCAACTACTGAGGTTAAACCTAGACTGGATATCCAAGAAGAAGAAAAT
 TCCATTACACAGTGACTTGTGAAAATCCACTCTTACTCAAAGGAAAACACAAGTCACTACTAAGGGCGTCAAT
 5 GGACATCGTAGCACTTCACTCTGTGAGCACCTCTGCCGATGGTAAGGAAGTGAACACTTGTAAATAGTGTGCG
 TAGCACAGGAAGCCGTTACTCAAATAGTCGAAGTCCGAACATGGTAACACATGTAGGCGATGAAAACGCGACAAG
 CGCCTATTGCTGAAGAAAAACCAAACAGAATCCCAAGCCACCAGCTCCATCAACTGCTCTGCTGAGGAAA
 GCAAAGTTCTCCTCAAGATCCAGCCTGTGTTAAGAGAAAAACTTCCCTGAAACAGGAACTCACGATTCTG
 10 CAGGACTAGTAGTCGAGGACTCATGCCAACACTAGCAGCTATGGACTCACTAAAAGAAAAGAAGACTAA
 MIYIIAINITMQSGGFAMKHEKQQRFSIRKYAVGAASVLIGFAFQAQTVAADGVPTTENQPTIHTVSDSPQSSENRTEE
 TPKAVLQPEAPKTVEETPATDKVASLPKTEEKPKQEEVSSTPSDKAEVVTPSAEKETANKKAEAPKKEEAKEVDSKE
 SNTDKTDKDKPAKKDEAKAEADKPATEAGKERAATVNNEKLAKKKIVSIDAGRKYFSPQLKEIIDAKHYGYTDLHLL
 15 VGNGLRFMLDDMSITANGTYASDDVKRAIEKGTDNYNDPNGNHLTESQMTDLINYAKDKGIGLIPTVNSPGHMD
 AILNAMKELGIQNPNFSYFGKKSARTVLDNEQAVAFTKALIDKYAAYFAKTEIFNGLDEYANDATDAKGWSVLQA
 DKYYPNEGYPVKGYEKFAYANDLARIVKSHGLKPMFDGYYNSDTSFGSFKDIVSMWTGGWGGYDVASSKLLA
 EKGHQILNTNDAWYYVLGRNADGQGWYLDQGLNGIKNTPITSVPKTEGADIPPIGMVAAWADTPSARYSPSLFKL
 MRHFANANAEEYPAADYESAEQALNEVPKDLNRYTAESVTAVKEAEKAIRSLDSNLRAQQDTIDQAIKLQETVNNLT
 20 LTPEAQKEEEAKREVEKLAKNKVISIDAGRKYFTLNQLKRIVDKASELGYSVDVHLLGNDGLRFLDDMTITANGKTYA
 SDDVKKAIIEGTKAYYDPNGTALTQAEVTELIEYAKSKDIGINPAINSPGHMDAMLVAMEKLGKNPQAHFDKVSKT
 MDLKNEEAMNFVKALIGKYMDFLAGTKIFNFGTDEYANDATSAQGWYYLWKWYQLYGKFAEYANTLAAMAKERGL
 QPMAFNDGFYEDKDDVQFDKDVLSYWSKGWYGYNLASPQYLASKGYKFLNTNGDWYILGQKPEDGGFLKKAI
 ENTGKTPFNQLASTKYPEVDLPTVGSMSIADRSPEAYKEEIEFELMTAFADHNKDYFRANYNALREELAKIPTNLEG
 25 YSKESLEALDAAKTALNYLNRNKQAEELDTLVANLKAALQGLKPAVTHSGSLDENEAANVETRPELITRTEIIPFEVI
 KKENVLPNLPAGQENIIATGVKGERTHYISVLTENGTTETVLDSSQVTKEVINQVVEVGAPVTHKGDESGLAPTTEVKPR
 DIQEEEIPFTTVTCENPLLKGKTQVITKGVNGHRNSFVSTSADGKEVKTIVNSVVAQEAVTQIVEVGMVTHVGDE
 NGQAAIAEKKPLIPSQAPSTAPAEKSVLPQDPAPVVTEKKLPETGTHDSLGLVAGLMSTLAAYGLTKRKEDZ

ID122 825bp

30 ATGAACAAAAAAACAAGACAGACACTAATCGGACTGCTAGTGTATTGCTTGTACAGGGAGCTATTATATCA
 AGCAGATGCCGTCGGCACCTAATAGTCCAAAACCAATCTAGTCAGAAAAAAACAAGCGTCTGAAGCTCTAGTC
 AAGCATTGGCAGAGAGTGTCTTAACAGACGCAGTCAGAGTCAGCAATAAAGGGAGTCTGGAGTGAATGGCTCAG
 GTGCTTTATCGTCATGGTAATAAAACAAATCTAGATGCCAAGCTAGTCAGTAAGCCCTACCGCTGACAATAAAAC
 35 AAAGACAGTGGCAAGGAAACTGTCTCAACCTCTGGACTCCTCCAGGTTGGCATCAGGTCAAGAATCTAAAGGGCTCT
 TCGTAAGAAACTGGGAATGGTTCAACTCTGGACTCCTCCAGGTTGGCATCAGGTCAAGAATCTAAAGGGCTCT
 TATACCCATCGACTCGATAGAGGTCAATTGTTAGGCTATGCCCTAATCGGTGGTTGGATGGTTGATGCCCTCAA
 CAAGCAATCTAAAACATTGCTGTCAGACAGCCTGGCAAATCAGGCACAAGCGAGTATTCGACTGGCTAAA
 40 ACTACTATGAAAGCAAGGTGCGTAAAGCCTTGGACCAAAACAAGCGTGTCCGTTACCGTGTAAACCCTTACTACG
 CTCAAACGAGGATTTAGTCCCTCAGCTCACAGATTGAAGCCAAGTCTCGGATGGAGAATTGGAAATTCAATGT
 TCTAGTCCCAATGTTAAAAGGGACTCAACTGGATTACGAACTGGAGAAGTAACTGTAACTCACTA
 MNKKTRQTLIGLLVLLLSTGSYYIKQMPSÄPNSPKTNLSQQKQASEÄPSQALEÄSVLTDÄVKSQIKGSLEWÑGSGAFIV
 45 NGKTNLDAKVSSKPYADNKTKTGKETVPTVANALLSKATRQYKRNKETGNGSTWTPPGWHQVKNLKGSYTHAV
 DRGHILLGYALIGGLDGFDASTSNPKNIAVQTAWANQQAQEYSTGQNYYESKVRKAIDQNKRVRYRVTLYYASNEDLV
 PSASQIEAKSSDGELEFNVLVPNVQKGLQDRTGEVTQZ

ID123 225bp

50 GTGCTAACGATTAGCGGATTGAGGCAACTGATGAAGATGAATAAGAAATCAAGCTACGTAGTCAGGGTTACTT
 TTAGTCATCATAGTACTGATTAGTACTCTGGCTCTAGGAATGGTTATGGTAGGTATGGAATCTGGGCA
 AGGGTCAAGATCCATGGCTATCCTGCTCCAGCAAAATGGCAGGAATTGATTCATAAAATTACAGGAATTAG
 VLRFSGERQVMKMNKKSSYVVKRLLVHVILGTLAEGIGEMVGYGLGKGQDPWAISPAKWQELIHKFTGNZ
 55

CLAIMS:

1. A *Streptococcus pneumoniae* protein or polypeptide having a sequence selected from those shown in table 1.
- 5 2. A *Streptococcus pneumoniae* protein or polypeptide having a sequence selected from those shown in table 2.
3. A protein or polypeptide as claimed in claim 1 or claim 2 provided in
10 substantially pure form.
4. A protein or polypeptide which is substantially identical to one defined in any one of claims 1 to 3.
- 15 5. A homologue or derivative of a protein or polypeptide as defined in any one of claims 1 to 4.
6. An antigenic and/or immunogenic fragment of a protein or polypeptide as defined in Tables 1-3.
- 20 7. A nucleic acid molecule comprising or consisting of a sequence which is:
 - (i) any of the DNA sequences set out in Table 1 or their RNA equivalents;
 - 25 (ii) a sequence which is complementary to any of the sequences of (i);
 - (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii);

- (iv) a sequence which is substantially identical with any of those of (i), (ii) and (iii);
- 5 (v) a sequence which codes for a homologue, derivative or fragment of a protein as defined in Table 1.
8. A nucleic acid molecule comprising or consisting of a sequence which is:
- 10 (i) any of the DNA sequences set out in Table 2 or their RNA equivalents;
- (ii) a sequence which is complementary to any of the sequences of (i);
- (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii);
- 15 (iv) a sequence which is substantially identical with any of those of (i), (ii) and (iii);
- (v) a sequence which codes for a homologue, derivative or fragment of a protein as defined in Table 2;
- 20 9. The use of a protein or polypeptide having a sequence selected from those shown in Tables 1-3, or homologues, derivatives and/or fragments thereof, as an immunogen and/or antigen.
- 25 10. An immunogenic and/or antigenic composition comprising one or more proteins or polypeptides selected from those whose sequences are shown in Tables 1-3, or homologues or derivatives thereof, and/or fragments of any of these.
- 30 11. An immunogenic and/or antigenic composition as claimed in claim 10 which is

a vaccine or is for use in a diagnostic assay.

12. A vaccine as claimed in claim 11 which comprises one or more additional components selected from excipients, diluents, adjuvants or the like.

5

13. A vaccine composition comprising one or more nucleic acid sequences as defined in Tables 1-3.

14. A method for the detection/diagnosis of *S.pneumoniae* which comprises the 10 step of bringing into contact a sample to be tested with at least one protein or polypeptide as defined in Tables 1-3, or homologue, derivative or fragment thereof.

15. An antibody capable of binding to a protein or polypeptide as defined in Tables 1-3, or for a homologue, derivative or fragment thereof.

15

16. An antibody as defined in claim 15 which is a monoclonal antibody.

17. A method for the detection/diagnosis of *S.pneumoniae* which comprises the step 20 of bringing into contact a sample to be tested and at least one antibody as defined in claim 15 or claim 16.

18. A method for the detection/diagnosis of *S.pneumoniae* which comprises the step of bringing into contact a sample to be tested with at least one nucleic acid sequence as defined in claim 7 or claim 8.

25

19. A method of determining whether a protein or polypeptide as defined in Tables 1-3 represents a potential anti-microbial target which comprises inactivating said protein or polypeptide and determining whether *S.pneumoniae* is still viable.

30

20. The use of an agent capable of antagonising, inhibiting or otherwise interfering

with the function or expression of a protein or polypeptide as defined in Tables 1-3 in the manufacture of a medicament for use in the treatment or prophylaxis of *S.pneumoniae* infection

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)