第八章 图与网络分析

- > 网络的基本概念
- ▶最短路径问题
 - □ Dijkstra算法
 - □ 逐次逼近法
 - □ Floyd算法
- ▶网络最大流问题
- ▶网络最小费用流问题

图论起源

Euler 1736年: 柯尼斯堡七桥问题

图论发展

1859年,Hamilton"环球旅行"

TSP (Travel Salesman Problem)旅行商问题

1936年,O Konig 有限图与无限图理论

1976, 地图着色问题"四色猜想"

现代分支众多,如代数图论、拓扑图论等本课程主要讲"图优化理论"

图的定义

- ■图 = 端点 + 边 $G_{raph} = (V_{ertex}, E_{dge})$
 - ➢ 端点 V={v_i}
 - \triangleright 边 $E=\{e_i\}$

$$e_i = (v_{i1}, v_{i2})$$

■无向图

- V_5
- ■有向图,有向图的边也称为弧

邻接矩阵表示

■ 邻接矩阵:

$$a_{ij} = \begin{cases} 1 & (v_i, v_j) \in E \\ 0 & 其他 \end{cases}$$

$\lceil 0 \rceil$	1	1	0
0	0	1	1
0	1	0	1
1	0	0	0

网络(赋权图)

■网络:点或者边带权的图

权矩阵

■ 权矩阵:

$$a_{ij} = \begin{cases} w_{ij} \\ 0 \\ 0 \end{cases} \qquad (v_i, v_j) \in E$$

$$\begin{bmatrix} 0 & 1 & 6 & \infty \\ \infty & 0 & 2 & 4 \\ \infty & 3 & 0 & 5 \\ 7 & \infty & \infty & 0 \end{bmatrix}$$

链与道路

点、边交替序列,有 $e_{it} = (v_{it-1}, v_{it}) t=1,2,...,k$

- ■链: 无方向要求 {(1,2)(2,3)(3,1)(1,2)(2,4)}
 - 圖: $v_{i0} = v_{ik}$ {(1,2)(2,3)(3,1)}
- ■道路:方向一致{(1,2)(2,3)(3,4)}
 - ■回路: $v_{i0} = v_{ik} \{(1,2) (2,4) (4,1)\}$

连通图

- ■连通图:任意两点之间至少有1条链(道路)相连
 - ■分图:不连通图中的连通子图

树的定义

- ■树: 不含圈的连通无向图 T=(V, E)
 - ▶ 叶: 次为1
 - ▶ 分枝点: 次大于1
- ■次 deg(v)、d(v): 以v为端点的边数

树的性质

- 树T = (V, E), |V|=n, |E|=m, 则下列说法等价:
 - (1) T是一个树
 - (2) T无圈,且*m=n-*1
 - (3) T连通, 且*m=n-*1
 - (4) T无圈,但每加一个新边,可得唯一的圈
 - (5) T连通,但每舍去一条边即不连通
 - (6) T中任意两点,有唯一的链相连

$$\begin{array}{ccc} (1) & \Rightarrow & (2) & \Rightarrow & (3) \\ \uparrow & & & \downarrow \\ (6) & \Leftarrow & (5) & \Leftarrow & (4) \end{array}$$

生成子图

 \blacksquare 子图G' = (V', E')

$$V' \subseteq V$$
 $E' \subseteq E$ V' 的边仅与 E' 的点相关联

■ 生成子图G': V'= V

生成树(支撑树)

- ■生成树:连通图G的生成子图是1棵树(V'=V)
 - ▶ 树枝: 生成树中的边
 - > 弦: 不在生成树中的边

第八章 图与网络分析

- ▶网络的基本概念
- ▶最短路径问题
 - Dijkstra算法
 - □ 逐次逼近法
 - □ Floyd算法
- ▶网络最大流问题
- ▶网络最小费用流问题

最短路问题

求从1到8的最短路径

数学模型

$$\min z = \sum_{i=1}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} c_{ij} x_{ij} \qquad c_{ij} = \begin{cases} d_{ij} & (i,j) \in E\\ +\infty & (i,j) \notin E \end{cases}$$

S.t.
$$\sum_{\substack{k=1\\k\neq i}}^{n} x_{ki} = \sum_{\substack{j=1\\j\neq i}}^{n} x_{ij}$$
 $i = 2, \dots n$ 节点平衡条件

$$\sum_{j=2}^{n} x_{1j} = 1$$
 端点条件

$$x_{ij} = 1 \vec{\boxtimes} 0$$

动态规划的启示

- 1。搜索结果是一颗以起点为树根的生成树。问题:可以不是生成树吗?
- 2。最短路径的点必从已找到最短路径的节点展开(最优性原理),这种找到了最短路径的节点无需再寻找更优路径,可作永久标号(Permanent Label),称为P点,P值为起点到该P点的最短路径。
- 3。当前没有找到最短路径的节点需继续搜索,称为T点(tentative label),T值为当前已搜索路径的最短长度(定界),用于过滤未来试探中可能出现的更短路径。

问题: T点如何晋级为P点?

初始P点

P点集合: $X=\{1\}$, $P_1=0$;

T点集合: Y={2,3,...,8}, $T_i(0)=\infty$

Step1: T值更新

$$T_2 = min\{P_1 + l_{12}, T_2\} = 2$$

$$T_4 = min\{P_1 + l_{14}, T_2\} = 1$$

$$T_6 = min\{P_1 + l_{16}, T_2\} = 3$$

问题: 谁可作为新的P点?

Step1: P点搜索

Y={2,3,4,5,6,7,8} min {T_i}_{i∈Y} =min {2,∞,1,∞,3,∞,∞}=1; X={1,4}, P₄=1

Step2: T值更新

 $T_2 = min \{P_4 + l_{42}, T_2\} = min \{1+10, 2\} = 2$

 $T_7 = \min \{ P_4 + l_{47}, T_7 \} = \min \{ 1+2, \infty \} = 3$

Step2: P点搜索

Y={2,3,5,6,7,8} min {T_i}_{i∈Y}=min {2,∞,∞, 3,3, ∞}=2 X={1,2,4,}, P₂=2

Step3: T值更新

 $T_3 = \min \{P_2 + l_{23}, T_3\} = \min \{2 + 6, \infty\} = 8$

 $T_5 = \min \{P_2 + l_{25}, T_5\} = \min \{2+5, \infty\} = 7$

Step3: P点搜索

 $Y = \{3,5,6,7,8\}$

min $\{T_i\}_{i \in Y} = \min \{8,7,3,3,\infty\} = 3$

 $X=\{1,2,4,6,7\}, P_6=3, P_7=3$

Step4: T值更新

$$T_5 = \min \{P_7 + l_{73}, T_5\} = \min \{3+3, 7\} = 6$$

 $T_8 = \min \{P_7 + l_{73}, T_3\} = \min \{3+8, \infty\} = 11$

Step4: P点搜索

Y={3,5,8} min {T_i}_{i∈Y}=min {8,6, 10}=6 X={1,2,4,5,6,7}, P_5 =6

Step5: T值更新

 $T_3 = \min \{P_5 + l_{53}, T_5\} = \min \{6+3, 8\} = 8$ $T_8 = \min \{P_5 + l_{53}, T_8\} = \min \{6+4, 11\} = 10$

Step5: P点搜索

Y={3, 8} min {T_i}_{i∈Y} =min {8,10}=8 X={1,2,3,4,5,6,7}, P_3 =8

Step6: T值更新+P点搜索

 $T_8 = \min \{P_3 + l_{38}, T_8\} = \min \{8 + 6, 11\} = 10$

Dijkstra算法

- ■P点: 已确定最短路径的点,长度为 $P(v_i)$ 。
- ■T点: 未确定 $P(v_i)$ 的点,但已知当前步起点 v_i 到 v_i 距离的最小值,记为 $T^{(k)}(v_i)$ 。
- 1、设定初值

$$T^{(0)}(v_1) = 0$$

$$T^{(0)}(v_j) = \infty$$
 $j=2,3,...,n$

$$j=2,3,...,n$$

2、确定P点

$$P(v_i) = \min_j \{T^{(k)}(v_j)\}$$

3、更新T值

$$T^{(k+1)}(v_j) = \min_{i} \{ T^{(k)}(v_j), P(v_i) + l_{ij} \} \qquad l_{ij} = \begin{cases} d_{ij} & (i,j) \in E \\ +\infty & (i,j) \notin E \end{cases}$$

Dijkstra算法

问题1: Dijkstra算法最多需要迭代几步j结束?

问题2: Dijkstra算法是否可解决所有类型网络的最短路径问题?

Dijkstra算法的限制条件

性质: 若 $T^{(k)}(v_i)$ 为 $T^{(k)}(v_j)$ 最小值, 有 $T^{(k)}(v_i) = P(v_i)$ $P(v_i) = \min_{j} \{T^{(k)}(v_j)\}$

性质成立的条件是: 所有边的权值非负

第八章 图与网络分析

- ▶网络的基本概念
- ▶最短路径问题
 - □ Dijkstra算法
 - □ 逐次逼近法
 - □ Floyd算法
- ▶网络最大流问题
- ▶网络最小费用流问题

含负权值的最短路径

求从1到8的最短路径

迭代过程的物理解释

$$T^{(0)}(v_1) = 0$$
 $T^{(0)}(v_j) = \infty$ $j=2,3,...,n$

$$T^{(k+1)}(v_j) = \min_{i} \{ T^{(k)}(v_i) + l_{ij} \} \qquad l_{ij} = \begin{cases} d_{ij} & (i,j) \in E \\ +\infty & (i,j) \notin E \end{cases}$$

 $T^{(1)}(v_j)$: 起点直接到 v_i 的路径长度;

 $T^{(1)}(v_i)+l_{ij}$: 以 v_i 为中转点的起点到 v_j 路径的长度; $T^{(2)}(v_i)$: 从起点最多经过1个中转点到 v_j 路径的最短长度;

 $T^{(k)}(v_i)$: 从起点最多经过k-1个中间点到达 v_i 路径的最短 长度。

逐次逼近法

1、设定初值

$$T^{(0)}(v_1) = 0$$
 $T^{(0)}(v_j) = \infty$ $j=2,3,...,n$

2、更新T值

$$T^{(k+1)}(v_j) = \min_{i} \{ T^{(k)}(v_i) + l_{ij} \} \qquad l_{ij} = \begin{cases} d_{ij} & (i,j) \in E \\ +\infty & (i,j) \notin E \end{cases}$$

3、收敛条件

$$T^{(k+1)}(v_j) = T^{(k)}(v_j)$$
 $j=1,2,...,n$

空格为∞

$$T^{(k+1)}(v_j) = \min_{i} \{ T^{(k)}(v_i) + l_{ij} \}$$

节	l_{ij}								$\mathbf{T}(0)$	T (1)	$\mathbf{T}(2)$	T (3)	$\mathbf{T}(4)$
点	1	2	3	4	5	6	7	8	$T^{(0)}_{j}$	$\Gamma^{(1)}_{j}$	$T^{(2)}_{j}$	$T^{(3)}_{j}$	$T^{(4)}_{j}$
1	0	2_		1		3			0	0	0	0	0
2		0	6_		5					2	2	2	2
3			0					-6_			8	8	8
4		10		0			-2			1	1	1	1
5			9		0			4			7	2	2
6				5		0	4			3	3	3	3
7		7			3		0	8			-1	-1	-1
8								0				2	2

$$8 \leftarrow 3 \leftarrow 2 \leftarrow 1$$

问题

- 1、逐次逼近法是否一定收敛?
- 2、逐次逼近法最多需迭代几次?
- 3、逐次逼近法与动态规划的关系

第八章 图与网络分析

- ▶网络的基本概念
- ▶最短路径问题
 - □ Dijkstra算法
 - □ 逐次逼近法
 - **□** Floyd算法
- ▶网络最大流问题
- ▶网络最小费用流问题

任意两点最短距离问题

- ■目标: 求取网络中全部两点间的最短距离
- **□** 初始权矩阵: $D^{(0)} = (d_{ij}^{(0)})_{n \times n} = (l_{ij})_{n \times n}$ $l_{ij} = \begin{cases} d_{ij} & (i,j) \in E \\ +\infty & (i,j) \notin E \end{cases}$
- **旦** 迭代权矩阵: $D^{(k)}=(d_{ij}^{(k)})_{n\times n}$
- ▶ 思路1: 两点间用逐次逼近法求解

$$d_{ij}^{(k)} = \min_{l} \{d_{il}^{(k-1)} + l_{lj}\} \qquad l=1,2,...,n \qquad 1 \le k \le n$$

▶ 思路2: l_{ij}用上一步迭代结果替代

$$d_{ij}^{(k)} = \min_{l} \{d_{il}^{(k-1)} + d_{lj}^{(k-1)}\} \qquad l=1,2,...,n \qquad 1 \le k \le n$$

Floyd算法

权矩阵: $D^{(k)}=(d_{ij}^{(k)})_{n\times n}$

初值:
$$\mathbf{D}^{(0)} = (d_{ij}^{(0)})_{n \times n} = (l_{ij})_{n \times n}$$

$$l_{ij} = \begin{cases} d_{ij} & (i,j) \in E \\ +\infty & (i,j) \notin E \end{cases}$$

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} \qquad k=1,2,...,n$$

最多经过前k-1个节点的最短路径

问题:逐次逼近法可以这样处理吗?

最短路问题的应用

选址问题

设备更新问题:抽象路径长度,如成本

第八章 图与网络分析

- ▶网络的基本概念
- ▶最短路径问题
- ▶网络最大流问题
 - □ Ford-Fulkerson算法
 - □ 最大流-最小割定理
 - □ 最大匹配问题
- ▶网络最小费用流问题

最大流问题

最大流问题模型

■最大流问题: 求网络的最大可行流

$$\max f = \sum_{k} x_{kt} = \sum_{j} x_{sj}$$
 s起点/源source t终点/汇sink

$$0 \le x_{ij} \le u_{ij}$$
 $i,j=1,2,\ldots,n$

容量限制条件

uij为对应边的容量上限

Ford-Fulkerson算法

给出一个初始的可行流x_{ii}=0

不饱和边与可增广链

- 不饱和边:流量没有达到容量限制的边
- 可增广链: 从起点到终点方向一致的不饱和边构成的链。

正向饱和/不饱和边

- 正向边:与参考链方向一致的边。
- 1、如果x_{ii}=u_{ii}, 边从i到j的方向是饱和的;

$$u_{ij}=5$$
 (1, 2) 是饱和的 $x_{ij}=5$

2、如果x_{ii}<u_{ii}, 边从i到j的方向是不饱和的;

反向饱和/不饱和边

- 反向边:与参考链的方向相反的边。
- 3、如果x_{ij}=0,边从j到i的方向是饱和的;

$$u_{ij}=5$$
 (2, 1) 是饱和的 $x_{ij}=0$

4、如果x_{ii}>0,边从j到i的方向是不饱和的;

$$u_{ij}=5$$
 (2, 1) 是不饱和的 $x_{ij}=3$ 间隙为 $\Delta_{12}=x_{12}=3$

最大流性质

现象:若存在连接起点和终点的链的每一条边都是不饱和边,即存在可增广链,则可使总流量增加。

▶ 性质:两点间的可行流为最大流的充要条件是:网络不存在可增广链

找到所有的不饱和边,以及各边可以调整流量的方向

找到一条从1到7的可增广链

链的间隙为: $\Delta = \min\{8,3,1,8\}=1$

调整链的流量: $x_{ij}'=x_{ij}+\Delta$

调整流量, f=1。继续求出网络的不饱和边

求出一条从1到7的可增广链

 Δ =min {7,1,6,9}=1, 调整流量: 正向边: $x_{ij}'=x_{ij}+\Delta$, 反向边: $x_{ij}'=x_{ij}-\Delta$ f'=f+ Δ =2

调整流量,继续求出网络的不饱和边

求出一条从1到7的可增广链

 Δ =min {7,5,8}=5, 调整流量 $x_{ij}' = x_{ij} + 5$, f' = f + 5 = 2 + 5 = 7

调整流量,继续求出网络的不饱和边

求出一条从1到7的可增广链

 Δ =min {6,7,4,3}=3, 调整流量 x_{ij} '= x_{ij} +3, f'=f+3=7+3=10

调整流量,继续求出网络的不饱和边

求出一条从1到7的可增广链

 Δ =min {3,1,3,7}=1, 调整流量 $x_{ij}'=x_{ij}+1$, f'=f+1=10+1=11

调整流量,继续求出网络的不饱和边

已找不到一条从1到7的可增广链,从1开始可以 到达的节点为1,2,3

第八章 图与网络分析

- ▶网络的基本概念
- ▶最短路径问题
- ▶网络最大流问题
 - □ Ford-Fulkerson算法
 - □ 最大流-最小割定理
 - □ 最大匹配问题
- ▶网络最小费用流问题

最大流分析

割集容量

割集容量:对网络G=(V,E,U),E'为将起点 v_s 和终点 v_t 分离在S、T两部分的割集,则割集容量 U(E')为所有起点在S、终点在T的边的容量之和。

定理1:设f为网络G=(V,E,U)的任一可行流,E'为将起点 v_s 和终点 v_t 分离的割集,则有 $f \le U(E')$ 证明略。

最大流与最小割容量关系

最大流f=11,最小割集为(2,5)(2,4)(3,4)(3,5) 最小割容量 \mathbf{u}_{25} + \mathbf{u}_{34} + \mathbf{u}_{36} =6+4+1=11

最大流-最小割定理

定理2: 网络G中,从 v_s 到 v_t 的最大流等于分离 v_s 和 v_t 的最小割的容量

证明(构造法):设按前述方法找到最大流 f_m ,并根据 f_m 定义一个割集(S,T)。只需证明 f_m =U(S,T)。 S可如下定义:

 $v_s \in S$

对任意的 $v_i \in S$,若正向边 $x_{ij} < u_{ij}$ 或 反向边 $x_{ji} > 0$,则令 $v_j \in S$ 令T = V/S,可证 $v_t \in T$ (否则存在可增广链)

则对应于割集中的边 $(v_i,v_j) \in (S,T)$,有:

正向边时: $x_{ij} = \mathbf{u}_{ij}$ 反向边时: $x_{ij} = 0$

所以 $f_m = U(S,T)$

第八章 图与网络分析

- ▶网络的基本概念
- ▶最短路径问题
- ▶网络最大流问题
 - □ Ford-Fulkerson算法
 - □ 最大流-最小割定理
 - □ 最大匹配问题
- ▶网络最小费用流问题

例: 招聘问题

某单位需招收俄、英、目、德、法翻译各1人。现有5人应聘,其中乙懂俄文,甲、乙、丙懂英文,甲、丙、丁懂日文,戊懂德文和法文,请给出一招聘方案,使尽可能多的翻译任务可完成。

x1-x5: 甲乙丙丁戊

y1-y5: 俄英日德法

二部图

最大匹配

第八章 图与网络分析

- ▶网络的基本概念
- ▶最短路径问题
- ▶网络最大流问题
- ▶网络最小费用流问题

最小费用流问题

■ 最小费用流问题:在容量网络G=(V,E,U,C)中,设边 (v_i,v_j) 的容量为 u_{ij} ,单位流量的费用为 c_{ij} ,求一个可行流f,使 $f=f_g$ 时,总费用最小。

$$\min \sum_{(v_{i}, v_{j}) \in E} c_{ij} x_{ij}
\text{s.t.} \quad \sum_{k} x_{ki} = \sum_{j} x_{ij} v_{i} \in V \setminus \{v_{s}, v_{t}\}
\sum_{k} x_{kt} = \sum_{j} x_{sj} = f_{g}
0 \le x_{ij} \le u_{ij} i,j=1,2,...,n$$

例

已知 $(\mathbf{u}_{ij},\mathbf{c}_{ij})$,求 $f_g=10$ 的最小费用流

最小费用流问题解题思路

思路: 1。 先寻找一个初始最小费用可行流 $f_0 < f_g$

2。沿着可增广链增加 $f=f_0+\Delta$,使 $f\to f_g$

问题:如何保证 $f=f_0+\Delta$ 是最小费用流?

最小费用可增广链

■可增广链的费用:设μ为起点v_s到终点v_t的一条可增广链,其费用为z(μ)

$$z(\mu) = \sum_{\mu^{+}} c_{ij} - \sum_{\mu^{-}} c_{ij}$$

■最小费用可增广链:链的费用最小

定理3:设f为流量 f_0 的最小费用流, μ 为起点 v_s 到终点 v_t 的一条最小费用可增广链,设f少为经过 μ 调整流量 θ 后得到的新的可行流,则f一定是流量为 f_0 + θ 的最小费用流

对偶算法

对偶算法的思路:

- 1。以 f_0 =0为初始可行流
- 2。找到最小费用可增广链
- 3。作最大可行调整,使 f_0 + θ = f_g ,若不能达到,重复第2步

$$\theta = \min \left\{ \min_{\mu^{+}} (u_{ij} - x_{ij}), \min_{\mu^{-}} (x_{ij}), f_g - f_0 \right\}$$

最小费用可增广链的寻找

■长度网络L(f)

$$1 \circ (v_i, v_j) \in E$$

$$l_{ij} = \begin{cases} c_{ij} & x_{ij} < u_{ij} \\ +\infty & x_{ij} = u_{ij} \end{cases}$$

饱和边不可增加流量

2。 (v_i,v_j) ∈E,考虑反向边

$$l_{ji} = \begin{cases} -c_{ij} & x_{ij} > 0 \\ +\infty & x_{ij} = 0 \end{cases}$$
 饱和边不可增加流量

求f的最小费用可增广链⇔求L(f)中起点与终点间的最短路

 $\mu = s \rightarrow 2 \rightarrow 1 \rightarrow t \theta = min(8,5,7) = 5$ $f_1 = f_0 + 5 = 5$

$$f_3 = 10 = f_g$$

最小费用流