CAPITULO 2. MODELOS DE REDES

■ <u>EL MODELO OSI (Open System Interconnection)</u>:

- Creado en 1947 por la ISO.
- OSI es un estándar ISO que cubre todos los aspectos de las redes de comunicación.
- Un sistema abierto (Open System) es un modelo que permite que dos sistemas diferentes puedan comunicarse independientemente de la arquitectura subyacente.
- o El modelo OSI no es un protocolo.
- ISO es la organización, OSI es el modelo.
- Está compuesto por siete niveles ordenados y separados pero relacionados, cada uno de los cuales define un segmento del proceso necesario para mover la información a través de una red.

ARQUITECTURA POR NIVELES:

- Cada nivel define una familia de funciones distintas de las de los otros niveles.
- El modelo OSI permite una transparencia completa entre sistemas que de otra forma serían incompatibles.
- Dentro de una máquina cada nivel llama a los servicios del nivel que está justo por debajo.
- Entre máquinas el nivel x de una máquina se comunica con el nivel x de la otra.
- La comunicación se gobierna mediante protocolos.
- Los procesos de cada máquina que se pueden comunicar en un determinado nivel se llaman procesos paritarios.

O PROCESOS PARITARIOS:

- Cada nivel de la máquina emisora añade su propia información al mensaje recibido del nivel superior y pasa todo el paquete al nivel inferior.
- En el nivel 1 se convierte todo el paquete al formato en que se puede transferir hasta la máquina receptora.
- En la máquina receptora, el mensaje es extraído nivel por nivel, en los cuales cada proceso procesa y elimina los datos que son para él.

INTERFACES ENTRE NIVELES:

- Cada interfaz define que información y servicios debe proporcional un nivel al nivel superior.
- Proporcionan modularidad a la red.

ORGANIZACIÓN DE LOS NIVELES:

Los siete niveles pertenecen a tres grupos.

1. Físico 2. Enlace de datos 3. Red	Niveles de soporte de red	Aspectos físicos de la transmisión de los datos de un dispositivo a otro
4. Transporte	Nivel de transporte	Asegura la transmisión fiable de extremo a extremo

5. Sesión 6. Presentación 7. Aplicación	Servicios de soporte de usuario	Interoperabilidad entre sistemas software no relacionados
---	---------------------------------	---

- El proceso empieza en el nivel 7 y a continuación se mueve de nivel a nivel en orden secuencial descendiente.
- En los niveles 6 al 2 se añade una cabecera a la unidad de datos.
- En el nivel 2 se añade una cola.
- En el nivel 1 las unidades de datos formateadas se transforman en señales electromagnéticas y se transportan por el enlace físico.
- Alcanzado el destino, la señal pasa al nivel 1 y se transforma en bits.
- A medida que cada bloque de datos alcanza el nivel superior, las cabeceras y las colas en los niveles emisores se eliminan.

 <u>ENCAPSULADO</u>: La porción de datos de un paquete en el nivel N-1 transporta el paquete completo (datos, cabecera y cola) del nivel N.

■ NIVELES EN EL MODELO OSI

- Nivel físico:
 - Es el responsable del movimiento de bits individuales desde un nodo al siguiente.
 - Se le relaciona con:
 - <u>Características físicas de las interfaces y el medio</u>.
 - Representación de los bits: Definiendo el tipo de codificación para pasar de bits a señales.
 - Tasa de datos o transmisión:
 - Bits enviados por segundo (Bps).
 - Duración de un bit.
 - <u>Sincronización de los bits</u>: Emisor y receptor deben estar sincronizados a nivel de bit.
 - Configuración de la línea: Punto a punto, Multipunto,...
 - <u>Topología física</u>: Malla, estrella, bus, anillo,....
 - Modo de transmisión: Simples, semiduplex, full-duplex,...

O Nivel de enlace de datos:

- Es el responsable del movimiento de tramas desde un nodo al siguiente.
- Se le relaciona con:
 - Tramado: Divide el flujo de bits recibido del nivel de red en tramas.
 - <u>Direccionamiento físico</u>: En caso necesario, añade una cabecera a la trama con la dirección fuente y/o destino.
 - <u>Control de flujo</u>: Previene el desbordamiento del receptor por parte de un emisor con velocidades mayores.
 - Control de errores:
 - Detecta y retrasmite tramas defectuosas o perdidas.
 - Previene la duplicación de tramas.
 - o Esto se consigue añadiendo una cola al final de la tramas.
 - <u>Control de acceso</u>: Determina que dispositivo controla el enlace en caso de dos o más dispositivo conectados al mismo enlace.

O Nivel de red:

- Es el responsable de la entrega de paquetes individuales desde un host origen hasta un host destino.
- Se le relaciona con:
 - <u>Direccionamiento lógico</u>:
 - <u>Encaminamiento</u>: En una internet, los dispositivos de conexión (encaminadores o pasarelas) enrutan los paquetes hasta el destino final.

O Nivel de transporte:

- Es el responsable de la entrega de un mensaje desde un proceso a otro.
- Se le relaciona con:
 - <u>Direccionamiento en punto de servicio</u>: Se incluye en la cabecera la dirección de punto de servicio o dirección de puerto.
 - Segmentación y reensamblado:
 - Control de conexión:
 - Puede estar orientado a conexión o no.
 - No orientado a conexión trata cada segmento como paquete independiente y lo pasa al nivel de transporte de la máquina destino.
 - Orientado a conexión establece una conexión con el nivel de transporte del destino antes de enviar ningún paquete.
 - Transferidos todos los paquetes se corta la conexión.
 - Control de flujo: Se lleva a cabo de extremo a extremo.

• Control de errores: Se lleva a cabo de extremo a extremo.

o Nivel de sesión:

- Es el responsable del control de diálogo y de la sincronización.
- Se le relaciona con:
 - Control de diálogo: Permite el diálogo entre dos sistemas (dúplex).
 - <u>Sincronización</u>: Permite que un proceso añada checkpoints en un flujo de datos.

o Nivel de presentación:

- Es el responsable del transporte, compresión y cifrado.
- Se le relaciona con:
 - Traducción: Codificación y decodificación del flujo de bits.
 - Cifrado:
 - Compresión:

Nivel de aplicación:

- Es el responsable de ofrecer los servicios a los usuarios.
- Se le relaciona con:
 - Terminal virtual de red:
 - Transferencia, acceso y gestión de archivos (FTAM):
 - Servicios de correo:
 - Servicios de directorios:

■ FAMILIA DE PROTOCOLOS

- Se desarrolló antes que el modelo OSI.
- La equivalencia con el modelos OSI es:

NIVEL FÍSICO Y ENLACE A DATOS (host a red):

- TCP/IP no define ningún protocolo específico.
- Soporta todos los protocolos estándar y propietatios.
- Puede ser LAN o WAN.
- NIVEL DE RED (Internet):
 - IP (Protocolo de interconexión):
 - Es el mecanismo de transmisión utilizado por los protocolos TCP/IP.
 - No fiable y no orientado a conexión.
 - Servicio de mejor entrega posible, es decir, ni comprobación ni seguimiento de errores
 - Transporta los datos en paquetes (datagramas), cada uno de los cuales se transporta de forma independiente.
 - Los datagramas pueden viajar por diferentes rutas y pueden llegar fuera de secuencia o duplicados.
 - No sigue la pista de las rutas y no tiene forma de reordenar datagramas en destino.
 - A su vez soporta los protocolos ICMP, IGMP, ARP, RARP.
 - ARP (Protocolo de resolución de direcciones):
 - Se utiliza para asociar una dirección lógica a un dirección físca.
 - RARP (Protocolo de resolución de direcciones inverso):
 - Permite a un host descubrir una dirección de internet cuando sólo conoce su dirección física.
 - ICMP (Protocolo de mensajes de control en internet):
 - Mecanismo utilizado por los host y pasarelas para enviar notificación sobre problemas encontrados en datagramas de vuelta al emisor.
 - IGMP (Protocolo de mensajes de grupos de Internet):
 - Se utiliza para facilitar la transmisión simultánea de un mensaje a un grupo de receptores.

NIVEL DE TRANSPORTE

- UDP (Protocolo de datagramas de usuario):
 - Protocolo proceso a proceso.

- Añada sólo las direcciones de puertos.
- Control de errores por checksum.
- Información de la longitud de datos del nivel superior.

TCP (Protocolo de control de transmisión):

- Protocolo de flujos fiable orientado a conexión.
- Divide el flujo en unidades más pequeñas denominadas segmentos.
- Cada segmento incluye un número de secuencia.
- Los segmentos se transportan a través de datagramas IP.
- SCTP (Protocolo de transmisión de control de flujos):
 - Ofrece soporte para nuevas aplicaciones tales como la voz sobre Internet.
 - Combina lo mejor de UDP y TCP.

NIVEL DE APLICACIÓN

Es una combinación de los niveles de sesión, presentación y aplicación del modelo OSI.

DIRECCIONAMIENTO

DIRECCIONES FÍSCAS:

- Conocida como dirección de enlace.
- Es la dirección de un nodo tal y como viene definida por su LAN o WAN.
- Se incluye en la trama utilizada por el nivel de enlace a datos.
- Es la dirección de más bajos nivel.
- Tiene autoridad sobre la red (LAN o WAN).
- Tamaño:
 - Ethernet utiliza direcciones físicas estáticas de 6 bytes (NIC).
 - LocalTalk utiliza direcciones dinámicas de 1 byte.

DIRECCIONES LÓGICAS:

- Son necesarias para comunicaciones universales que son independientes de las redes físicas subyacentes.
- Una dirección lógica en Internet es actualmente una dirección de 32 bits que define de forma única a un host conectado a Internet.

DIRECCIONES DE PUERTOS:

- El objetivo es la comunicación entre procesos.
- A un proceso se le asigna un puerto.
- Un puerto tienes una dirección de 16 bits.
- Las direcciones físicas cambiarán de nodo a nodo, pero las direcciones lógicas de puerto normalmente permanecen sin cambios.

DIRECCIONES ESPECÍFICAS:

 Algunas aplicaciones tienen direcciones amigables para el usuario que se designan para esas direcciones específicas.