

Introduction to Deep Learning (I2DL)

Exercise 8: Autoencoder

Today's Outline

- Exercise 07: Example Solutions
- Exercise 08
 - Batch Normalization & Dropout
 - Transfer Learning
 - Autoencoder

Exercise 7: Solutions

Leaderboard: Ex7

#	User	Score
1	u0139	78.71 CONVOLUTION
2	u1574	77.34
3	u0342	72.76
4	u0797	66.50
5	u1605	60.18
6	u0798	59.78
7	u0337	58.70
7	u0337 u1313	58.70 58.43
8	u1313	58.43
8	u1313 u1652	58.43 56.49
8 9 10	u1313 u1652 u0071	58.43 56.49 56.09

Solution 1: 60,18%

```
self.model = nn.Sequential(
    nn.Linear(self.hparams["input_size"], self.hparams["nn_hidden_Layer1"]),
    nn.ReLU(),
    nn.Linear(self.hparams["nn_hidden_Layer1"], self.hparams["num_classes"]),
    nn.ReLU()
    )
```

Manual Transforms:

- Gaussian filter
- Rotation
- etc

```
# Note: you can change the splits if you want :)
split = {
    'train': 0.9,
    'val': 0.05,
    'test': 0.05
}
split_values = [v for k,v in split.items()]
assert sum(split_values) == 1.0
```

```
hparams["loading_method"] = 'Memory'
hparams['num_workers'] = 1
hparams['input_size'] = 3 * 32 * 32
hparams['batch_size'] = 1000
hparams['learning_rate'] = 5e-5
hparams['weight_decay'] = 1e-3
hparams['nn_hidden_Layer1'] = 1500
hparams['num_classes'] = 10
```

Solution 2: 59,78%

```
self.model = nn.Sequential(
    nn.Linear(hparams["input_size"], hparams["hidden_size"][0]),
    nn.BatchNorm1d(hparams["hidden_size"][0]),
    nn.ReLU(),
    nn.Dropout(),
    nn.Linear(hparams["hidden_size"][0], hparams["hidden_size"][1]),
    nn.BatchNorm1d(hparams["hidden_size"][1]),
    nn.ReLU(),
    nn.Dropout(),
    nn.Dropout(),
    nn.Linear(hparams["hidden_size"][1], hparams["num_classes"])
)
```

```
my_transform = transforms.Compose([
    transforms.AutoAugment(transforms.AutoAugmentPolicy.CIFAR10),
    transforms.ToTensor(),
    transforms.Normalize(mean, std)])
```

```
# Note: you can change the splits if you want :)
split = {
    'train': 0.9,
    'val': 0.05,
    'test': 0.05
}
split_values = [v for k,v in split.items()]
assert sum(split_values) == 1.0
```

```
hparams = {
    "learning_rate": 0.3,
    "input_size": 3 * 32 * 32,
    "batch_size": 512,
    "hidden_size": [1332, 666],
    "num_classes": 10,
    "num_workers": 8,
    "loading_method": "Memory"
}
```

Solution 3: 58,43%

```
self.model = nn.Sequential(
    nn.Linear(self.hparams["input_size"], self.hparams["hidden_size"]),
    nn.ReLU(),
    nn.Linear(self.hparams["hidden_size"], self.hparams["hidden_size"]),
    nn.ReLU(),
    nn.Linear(self.hparams["hidden_size"], self.hparams["hidden_size"]),
    nn.ReLU(),
    nn.Linear(self.hparams["hidden_size"], self.hparams["num_classes"])
)
```

```
# Init weights with kaiming init
nn.init.kaiming_normal_(self.model[0].weight, nonlinearity='relu')
nn.init.kaiming_normal_(self.model[2].weight, nonlinearity='relu')
nn.init.kaiming_normal_(self.model[4].weight, nonlinearity='relu')
```

```
# Note: you can change the splits if you want :)
if 'split' not in self.opt.keys():
    split = {
        'train': 0.6,
        'val': 0.2,
        'test': 0.2
}
else:
    split = self.opt['split']

split_values = [v for k,v in split.items()]
assert sum(split_values) == 1.0
```

```
my_transform = transforms.Compose([
  transforms.ToTensor(),
  transforms.Normalize(mean, std),
  transforms.RandomHorizontalFlip(0.5),
  transforms.GaussianBlur(5, (0.01, 2))])
```

```
hparams = {
    # Model
    "input_size": 3 * 32 * 32,
    "num_classes": 10,
    "hidden_size": 320,
    # Dataloader
    "loading_method": 'Memory',
    "batch_size": 64,
    "num_workers": 2,
    "split": {
        'train': 0.8,
        'val': 0.1,
        'test': 0.1,
    },
    # Optimizer
    "learning_rate": 5e-04,
    "'Ir_decay": 0.5, # ReduceLROnPlateau with val_loss monitor
    "weight_decay": 1.15e-03, # L2 regularization
}
```

Summary

- Network: Linear + ReLU (Depth: 2-4)
- Initialization of Network Weights
- Optimizer: SGD or Adam, LR Scheduler
- Data Augmentation

Improve your training!

Batch Normalization

All we want is that our activations do not die out

Batch Normalization

Wish: Unit Gaussian activations

Mean of your mini-batch examples over feature k $\hat{\boldsymbol{x}}^{(k)} = \frac{\boldsymbol{x}^{(k)} - E\left[\boldsymbol{x}^{(k)}\right]}{\sqrt{Var[\boldsymbol{x}^{(k)}]}}$ Unit gaussian

Batch Normalization

1. Normalize

$$\hat{\boldsymbol{x}}^{(k)} = \frac{\boldsymbol{x}^{(k)} - E[\boldsymbol{x}^{(k)}]}{\sqrt{Var[\boldsymbol{x}^{(k)}]}}$$

• 2. Allow the network to change the range

The network can learn to undo the normalization

$$\gamma^{(k)} = \sqrt{Var[\mathbf{x}^{(k)}]}$$
$$\beta^{(k)} = E[\mathbf{x}^{(k)}]$$

Dropout

Using half the network = half capacity

12DL: Prof. Leal-Taixé

13

Transfer Learning: Example Scenario

- Need to build a Cat classifier
- Only have a few images ~10 000

Problem Statement:

- Training a Deep Neural Network needs a lot of data
- Collecting much data is expensive or just not possible

Idea:

- Some problems/ tasks are closely related
- Can we transfer knowledge from one task to another?
- Can we re-use (at least parts of) a pre-trained network for the new task?

Coloring Legend:

Untrained

Trained

Coloring Legend:

Trained

Coloring Legend:

Untrained

Trained

Coloring Legend:

Untrained

Trained

Coloring Legend:

Trained

Application: Autoencoder

Autoencoder

- Task
 - Reconstruct the input given a lower dimensional bottleneck
 - Loss: L1/L2 per pixel
- Actually need no labels!
- Without non-linearities: similar to PCA

Transfer Using an Autoencoder

• Step 1:

 Train an Autoencoder on a large (maybe unlabelled) dataset very similar to your target dataset

• Step 2:

 Take pre-trained Autoencoder and use it as the first part of a classification architecture for your target dataset

Exercise 8

Autoencoder

- Exercise Task:
 - 60 000 Images
 - Only 300 with labels

We get there...

No convolutions yet, but be prepared...

Next week will be the week.

But that means for now, we stick (one last time) with our linear layers.

Summary

- Monday 04.07.22: Watch Lecture 9
 - Convolutional Neural Networks
- Monday 04.07.22: Exercise 8 Submission
 - Autoencoder: 04.07.2022 23.59
- Tuesday 05.07: Tutorial Session (On-Site Q&A)
 - Exog: Facial Keypoint Detection

See you next week!