Kernelization

David Rosenberg

New York University

February 24, 2016

Generalizing from SVM

Soft-Margin SVM (no intercept)

The SVM objective function is

$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n (1 - y_i [w^T x_i])_+.$$

• We found that the minimizer $w^* \in \mathbb{R}^d$ has the form

$$w^* = \sum_{i=1}^n \alpha_i^* x_i.$$

• Representer Theorem \implies same result in a much broader context.

Introduce a Feature Map

- Input space: \mathfrak{X} (no assumptions).
- ullet Feature space: ${\mathcal H}$ (a Hilbert space, usually ${\mathbf R}^d$) .
- Feature map $\psi: \mathcal{X} \to \mathcal{H}$.
- Featurized SVM objective:

$$\min_{w \in \mathcal{H}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} (1 - y_i [\langle w, \psi(x_i) \rangle])_+.$$

- Now $||w||^2 = \langle w, w \rangle$, where $\langle \cdot, \cdot \rangle$ is inner product for \mathcal{H} .
- Note that minimizer $w^* \in \mathcal{H}$. What are predictions $x \mapsto ?$

Generalize

Featurized SVM objective:

$$\min_{w \in \mathcal{H}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} (1 - y_i [\langle w, \psi(x_i) \rangle])_+.$$

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

where

- $R: \mathbb{R}^{\geqslant 0} \to \mathbb{R}$ is nondecreasing (**Regularization term**)
- and $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary. (Loss term)

Generalized Objective Function

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

where

- $R: \mathbb{R}^{\geqslant 0} \to \mathbb{R}$ is nondecreasing (**Regularization term**), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (**Loss term**).
- Is ridge regression of this form? What is $R(\cdot)$?
- What if we penalize with $\lambda ||w||_2$ instead of $\lambda ||w||_2^2$?
- What if we use lasso regression?

The Representer Theorem

The Representer Theorem

Theorem (Representer Theorem)

Let

$$J(w) = R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

where

- $R: \mathbb{R}^{\geqslant 0} \to \mathbb{R}$ is nondecreasing (Regularization term), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

Then there is a minimizer of J(w) of the form

$$w^* = \sum_{i=1}^n \alpha_i \psi(x_i).$$

[If R is strictly increasing, then all minimizers have this form.]

The Representer Theorem (Proof)

- Let w* be a minimizer.
- 2 Let $M = \text{span}(\psi(x_1), ..., \psi(x_n))$. [the "span of the data"]
- **3** Let $w = \operatorname{Proj}_{M} w^{*}$. So $\exists \alpha$ s.t. $w = \sum_{i=1}^{n} \alpha_{i} \psi(x_{i})$.
- Then $w^{\perp} := w^* w$ is orthogonal to M.
- **5** Projections decrease norms: $||w|| \leq ||w^*||$.
- **o** Since R is nondecreasing, $R(||w||) \leq R(||w^*||)$.

- ① Therefore $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$ is also a minimizer.

Q.E.D.

Representer Theorem for Kernelization

Kernelized Predictions

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.
- How do we make predictions for a given $x \in \mathfrak{X}$?

$$f(x) = \langle w^*, \psi(x) \rangle = \left\langle \sum_{i=1}^n \alpha_i \psi(x_i), \psi(x) \right\rangle$$
$$= \sum_{i=1}^n \alpha_i \langle \psi(x_i), \psi(x) \rangle$$
$$= \sum_{i=1}^n \alpha_i k(x_i, x)$$

Kernelized Regularization

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.
- What does R(||w||) look like?

$$||w||^{2} = \langle w, w \rangle$$

$$= \left\langle \sum_{i=1}^{n} \alpha_{i} \psi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \psi(x_{j}) \right\rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle \psi(x_{i}), \psi(x_{j}) \rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} k(x_{i}, x_{j})$$

(You should recognize the last expression as a quadratic form.)

The Kernel Matrix (a.k.a. Gram Matrix)

Definition

The **kernel matrix** for a kernel k on a set $\{x_1, \ldots, x_n\}$ is

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

This matrix is also known as the Gram matrix.

Kernelized Regularization: Matrix Form

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.
- What does R(||w||) look like?

$$||w||^2 = \sum_{i,j=1}^n \alpha_i \alpha_j k(x_i, x_j)$$
$$= \alpha^T K \alpha$$

• So $R(\|w\|) = R\left(\sqrt{\alpha^T K \alpha}\right)$.

Kernelized Predictions

- $R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle)$ involves $f(x_i) = \langle w, \psi(x_i) \rangle$.
- Note that

$$K\alpha = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \\
= \begin{pmatrix} \alpha_1 k(x_1, x_1) + \cdots + \alpha_n k(x_1, x_n) \\ \vdots \\ \alpha_1 k(x_n, x_1) + \cdots + \alpha_n k(x_1, x_n) \end{pmatrix} \\
= \begin{pmatrix} f_{\alpha}(x_1) \\ \vdots \\ f_{\alpha}(x_n) \end{pmatrix}.$$

Kernelized Objective

Substituting

$$w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$$

into generalized objective, we get

$$\min_{\alpha \in \mathbf{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha).$$

- No direct access to $\psi(x_i)$.
- All references are via kernel matrix K.
- (Assumes R and L do not hide any references to $\psi(x_i)$.)
- This is the kernelized objective function.

Kernelized SVM

The SVM objective:

$$\min_{w \in \mathcal{H}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} (1 - y_i [\langle w, \psi(x_i) \rangle])_+.$$

Kernelizing yields

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \alpha^T K \alpha + \frac{c}{n} \sum_{i=1}^n (1 - y_i (K \alpha)_i)_+$$

Kernelized Ridge Regression

Ridge Regression:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda ||w||^2$$

Featurized Ridge Regression

$$\min_{w \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (\langle w, \psi(x_i) \rangle - y_i)^2 + \lambda ||w||^2$$

Kernelized Ridge Regression

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} ||K\alpha - y||^2 + \lambda \alpha^T K\alpha,$$

where
$$y = (y_1, \dots, y_n)^T$$
.

Kernel Examples

SVM Dual

Recall the SVM dual optimization problem

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Notice: x's only show up as inner products with other x's.
- Can replace $x_i^T x_i$ by an arbitrary kernel $k(x_j, x_i)$.
- What kernel are we currently using?

Linear Kernel

- Input space: $\mathfrak{X} = \mathbf{R}^d$
- Feature space: $\mathcal{H} = \mathbf{R}^d$, with standard inner product
- Feature map

$$\psi(x) = x$$
.

Kernel:

$$k(w,x) = w^T x$$

Quadratic Kernel in R²

- Input space: $\mathfrak{X} = \mathbb{R}^2$
- Feature space: $\mathcal{H} = \mathbf{R}^5$
- Feature map:

$$\psi: (x_1, x_2) \mapsto (x_1, x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

- Gives us ability to represent conic section boundaries.
- Define kernel as inner product in feature space:

$$k(w,x) = \langle \psi(w), \psi(x) \rangle$$

$$= w_1 x_1 + w_2 x_2 + w_1^2 x_1^2 + w_2^2 x_2^2 + 2w_1 w_2 x_1 x_2$$

$$= w_1 x_1 + w_2 x_2 + (w_1 x_1)^2 + (w_2 x_2)^2 + 2(w_1 x_1)(w_2 x_2)$$

$$= \langle w, x \rangle + \langle w, x \rangle^2$$

Quadratic Kernel in \mathbf{R}^d

- Input space $\mathfrak{X} = \mathbf{R}^d$
- Feature space: $\mathcal{H} = \mathbf{R}^D$, where $D = d + \binom{d}{2} \approx d^2/2$.
- Feature map:

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

Still have

$$k(w,x) = \langle \phi(w), \phi(x) \rangle$$

= $\langle x, y \rangle + \langle x, y \rangle^2$

- Computation for inner product with explicit mapping: $O(d^2)$
- Computation for implicit kernel calculation: O(d).

Polynomial Kernel in \mathbf{R}^d

- Input space $\mathfrak{X} = \mathbf{R}^d$
- Kernel function:

$$k(w,x) = (1 + \langle w, x \rangle)^M$$

- ullet Corresponds to a feature map with all terms up to degree M.
- For any M, computing the kernel has same computational cost
- Cost of explicit inner product computation grows rapidly in M.

Radial Basis Function (RBF) / Gaussian Kernel

• Input space $\mathfrak{X} = \mathbf{R}^d$

$$k(w,x) = \exp\left(-\frac{\|w-x\|^2}{2\sigma^2}\right),\,$$

where σ^2 is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why "radial"?
- Have we departed from our "inner product of feature vector" recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.

Prediction Functions with RBF Kernel

RBF Basis

- Input space X = R
- Output space: y = R
- RBF kernel $k(w,x) = \exp(-(w-x)^2)$.
- Suppose we have 6 training examples: $x_i \in \{-6, -4, -3, 0, 2, 4\}$.
- If representer theorem applies, then

$$f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x).$$

• f is a linear combination of 6 basis functions of form $k(x_i, \cdot)$:

RBF Predictions

Basis functions

Predictions of the form

- If we have a kernelized algorithm with RBF kernel, prediction functions $x \mapsto \langle w, \psi(x) \rangle$ will look this way.
 - whether we got w from SVM, ridge regression, etc...

When is k(x, w) a kernel function? (Mercer's Theorem)

When is k(x, w) a kernel function? (Mercer's Theorem)

How to Get Kernels?

- Explicitly construct $\psi(x): \mathcal{X} \to \mathbf{R}^d$ and define $k(x, w) = \psi(x)^T \psi(w)$.
- ② Directly define the kernel function k(x, w), and verify it corresponds to $\langle \psi(x), \psi(w) \rangle$ for some ψ .

There are many theorems to help us with the second approach

Positive Semidefinite Matrices

Definition

A real, symmetric matrix $M \in \mathbb{R}^{n \times n}$ is **positive semidefinite (psd)** if for any $x \in \mathbb{R}^n$,

$$x^T M x \geqslant 0.$$

Theorem

The following conditions are each necessary and sufficient for M to be positive semidefinite:

- M has a "square root", i.e. there exists R s.t. $M = R^T R$.
- All eigenvalues of M are greater than or equal to 0.

Positive Semidefinite Function

Definition

A symmetric kernel function $k: \mathcal{X} \times \mathcal{X} \to \mathbf{R}$ is **positive semidefinite (psd)** if for any finite set $\{x_1, \dots, x_n\} \in \mathcal{X}$, the kernel matrix on this set

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}$$

is a positive semidefinite matrix.

Mercer's Theorem

Theorem

A symmetric function k(w,x) can be expressed as an inner product

$$k(w,x) = \langle \psi(w), \psi(x) \rangle$$

for some ψ if and only if k(w,x) is **positive semidefinite**.

Proof.

[Sketch] Suppose k(w,x) is psd.

Let

Generating New Kernels from Old

Suppose k, k_1 , k_2 : $\mathfrak{X} \times \mathfrak{X} \to \mathbf{R}$ are psd kernels. Then so are the following:

$$k_{\text{new}}(w,x) = k_1(w,x) + k_2(w,x)$$

 $k_{\text{new}}(w,x) = \alpha k(w,x)$
 $k_{\text{new}}(w,x) = f(w)f(x)$ for any function $f(x)$
 $k_{\text{new}}(w,x) = k_1(w,x)k_2(w,x)$

are also A symmetric function k(w,x) can be expressed as an inner product

$$k(w,x) = \langle \phi(w), \phi(x) \rangle$$

for some ϕ if and only if k(w,x) is **positive semidefinite**.

• If we start with a psd kernel, can we generate more?