AloT 데이터 시각화 및 대시보드 개발

Chapter 01 Pandas를 이용한 파이썬 데이터 분석 기초

Dataframe

- 엑셀의 스프레드시트처럼 행과 열로 구성된 단순한 테이블
- 엑셀 스프레드시트와 동일하게 가로줄을 row(행), 세로줄을 column(열)이라고 칭합니다. Pandas에서 행은 axis=0, 열은 axis=1과 동일하게 취급됨
- Bike_rentals 데이터셋은 날짜/시간, 계절, 공휴일 여부, 날씨 등과 같은 변수에 대해 자전거의 대여 횟수를 나타내는 데이터셋

Panda	s Series 및 Data	aframe:	소스코브	= cn1-	l.py		
import	pandas as pd						
import	numpy as np						
df = p	d_read_csv('./	datasets	s/bike	_rental	s/bike_	rentals.c	sv'
df.ilo	c[2, 3] = np.n	an # 결	측치를	임의로	만들기	위해 추기	ł
df_hea	d(10)						

indev	C	olumn			^{결축} 치 ↑							
index	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0	2011-01-01 00:00:00	1	0	0.0	1	9.84	14.395	81	0.0000	3	13	16
1	2011-01-01 01:00:00	1	0	0.0	1	9.02	13.635	80	0.0000	8	32	40
2	2011-01-01 02:00:00	1	0	NaN	1	9.02	13.635	80	0.0000	5	27	32
3	2011-01-01 03:00:00	1	0	0.0	1	9.84	14.395	75	0.0000	3	10	13
W 4	2011-01-01 04:00:00	1	0	0.0	1	9.84	14.395	75	0.0000	0	1	1
5	2011-01-01 05:00:00	1	0	0.0	2	9.84	12.880	75	6.0032	0	1	1
6	2011-01-01 06:00:00	1	0	0.0	1	9.02	13.635	80	0.0000	2	0	2
7	2011-01-01 07:00:00	1	0	0.0	1	8.20	12.880	86	0.0000	1	2	3
8	2011-01-01 08:00:00	1	0	0.0	1	9.84	14.395	75	0.0000	1	7	8
9	2011-01-01 09:00:00	1	0	0.0	1	13.12	17.425	76	0.0000	8	6	14

■ iloc

■ 리스트 인덱싱과 비슷한 개념으로 dataframe 행 혹은 열의 상대적 위치를 숫자로 지정

Dataframe의 열 및 행 선택 (ch1-2.py)

df = pd.read_csv('./datasets/bike_rentals/bike_rentals.csv')

df.iloc[2:5, 3:6]

	workingday	weather	temp
2	0	1	9.02
3	0	1	9.84
4	0	1	9.84

▲ 그림 2 iloc을 이용한 dataframe 행/열 선택

■ 행, 열의 이름을 사용하여 인덱싱 할 수 있음

Dataframe의 열 및 행 선택 (ch1-2.py)

df.loc[2:4, 'workingday':'temp']

■ loc[(원하는 조건)]

■ loc메서드의 인수로 조건문을 전달하게 되면 해당 조건에 대해 True에 해당하는 행이 선택되게 됨

Dataframe의 열 및 행 선택 (ch1-2.py) df.loc[df['season'] = 2]

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
1323	2011-04-01 00:00:00	2	0	1	3	10.66	12.880	100	11.0014	0	6	6
1324	2011-04-01 01:00:00	2	0	1	3	10.66	12.880	100	11.0014	0	4	4
1325	2011-04-01 02:00:00	2	0	1	3	10.66	12.880	93	12.9980	0	7	7
1326	2011-04-01 03:00:00	2	0	1	2	9.84	11.365	93	16.9979	0	4	
1327	2011-04-01 04:00:00	2	0	1	2	9.84	11.365	93	16.9979	0	3	
			250					***				
8146	2012-06-19 19:00:00	2	0	1	1	32.80	38.635	59	15.0013	82	432	514
8147	2012-06-19 20:00:00	2	0	1	1	32.80	37.880	55	16.9979	59	399	458
8148	2012-06-19 21:00:00	2	0	1	. 1	31.16	35.605	62	11.0014	37	239	276
8149	2012-06-19 22:00:00	2	0	1	1	29.52	34.850	79	6.0032	51	240	291
8150	2012-06-19 23:00:00	2	0	1	1	29.52	34.850	79	8.9981	23	102	125

- 선택하고자 하는 행과 열을 순서대로 쉼표(,)로 구분하면 됨
- not을 뜻하는 ~를 이용, != 연산자를 이용하는 경우가 더 편하지만 아래처럼 ~를 이용하는 코드도 보다 복잡한 쿼리문에서 유용

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
1323	2011-04-01 00:00:00	2	0	1	3	10.66	12.880	100	11.0014	0	6	6
1324	2011-04-01 01:00:00	2	0	1	3	10.66	12.880	100	11.0014	0	4	4
1325	2011-04-01 02:00:00	2	0	1	3	10.66	12.880	93	12.9980	0	7	7
1328	2011-04-01 05:00:00	2	0	1	3	9.84	11.365	93	15.0013	1	11	12
1329	2011-04-01 06:00:00	2	0	1	3	9.84	11.365	93	15.0013	2	26	28
		***	***	"		***	***				***	
10881	2012-12-19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	7	329	336
10882	2012-12-19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	10	231	241
10883	2012-12-19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	4	164	168
10884	2012-12-19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	12	117	129
10885	2012-12-19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	4	84	88

select_dtypes

■ select_dtypes 메서드를 이용하면 특정 데이터타입을 필터링할 수 있음

	season	holiday	workingday	weather	humidity	casual	registered	count
0	1	0	0	1	81	3	13	16
1	1	0	0	1	80	8	32	40
2	1	0	0	1	80	5	27	32
3	1	0	0	1	75	3	10	13
4	1	0	0	1	75	0	1	1
	***		419	***	***		***	
0881	4	0	1	1	50	7	329	336
0882	4	0	1	1	57	10	231	241
0883	4	0	1	1	61	4	164	168
0884	4	0	1	1	61	12	117	129
10885	4	0	1	1	66	4	84	88

▲ 그림 6 select_dtypes 메서드를 이용한 열 선택, include

select_dtyp	es을 이용한 열 선택 (ch1-3.py)	
df.select_d	types(exclude='int')	

	datetim	e temp	atemp	windspeed
0	2011-01-01 00:00-0	9.84	14.395	0.0000
1	2011-01-01 01:00:0	9.02	13.635	0.0000
2	2011-01-01 02:00:0	9.02	13.635	0.0000
3	2011-01-01 03:00:0	9.84	14.395	0.0000
4	2011-01-01 04:00:0	9.84	14.395	0.0000

0881	2012-12-19 19:00:0	0 15.58	19.695	26.0027
0882	2012-12-19 20:00:0	0 14.76	17.425	15.0013
10883	2012-12-19 21:00:0	0 13.94	15.910	15.0013
10884	2012-12-19 22:00:0	0 13.94	17.425	6.0032
10885	2012-12-19 23:00:0	0 13.12	16.665	8.9981

▲ 그림 7 select_dtype 메서드를 이용한 열 선택, exclude

filter 메서드를 이용한 행과 열 선택

교육 서비스

■ filter

- loc과 비슷한 방법으로 아래 인자들을 사용 할 수 있음
 - 행 혹은 열을 선택할 수 있는 items 인자
 - 행 또는 열 이름의 일부만 가지고 필터링 할 수 있는 like 인자
 - 정규표현식을 이용하여 행 또는 열을 필터링 할 수 있는 regex 인자

filter 메서드	를 0	용한	행과 열	선택 (ch1-	-4.py	1)				
df.filter	like	='00:	00:00',	axis	=0)						
	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
datetime											

2011-01-01 00:00:00 13 2011-01-02 00:00:00 2011-01-03 00:00:00 2011-01-05 00:00:00 90 2012-12-15 00:00:00 1 12:30 16:665 2012-12-16 00:00:00 2012-12-17 00:00:00 2012-12-18 00:00:00 2 18.04 21.970 35 41 2012-12-19 00:00:00 1 12.30 15.910 455 rows × 11 columns

▲ 그림 8 filter 메서드의 like 인자를 사용한 행 선택

filter 메서드를 이용한 행과 열 선택 (ch1-4.py) df.filter(items=['humidity', 'windspeed'])

filter 메서드를 이용한 행과 열 선택 (ch1-4.py)

df.filter(regex='in.s')

	windspeed	
datetime		
2011-01-01 00:00:00	0.0000	
2011-01-01 01:00:00	0.0000	
2011-01-01 02:00:00	0.0000	
2011-01-01 03:00:00	0.0000	
2011-01-01 04:00:00	0.0000	
2012-12-19 19:00:00	26.0027	
2012-12-19 20:00:00	15.0013	
2012-12-19 21:00:00	15.0013	
2012-12-19 22:00:00	6.0032	
2012-12-19 23:00:00	8.9981	

▲ 그림 9 filter 메서드를 이용한 정규표현식 필터링

rename

- {"변경 대상 인덱스나 열 이름": "변경하고자 하는 이름"}와 같이 사전 형태로 변경 대상과 변경 하고자 하는 이름을 전달하고,
- 인덱스를 변경하는 것이라면 axis=0, 열이름을 변경하는 것이라면 axis=1을 전달하면 됨

```
rename을 사용한 행, 열 이름 변경 (ch1-5.py)

df = pd.read_csv('./datasets/bike_rentals/bike_rentals.csv')

df.rename(
    {'registered':'registered_user',
    'casual':'unregistered_user'},
    axis=1
)
```

```
rename을 사용한 행, 열 이름 변경 (ch1-5.py)

df.rename(
    columns={'registered':'registered_user',
    'casual':'unregistered_user'}
)
```

	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	unregistered_user	registered_user	count
datetime											
2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000	3	13	16
2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000	8	32	40
2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000	5	27	32
2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000	3	10	13
2011-01-01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000	0	1	1
							***			***	
2012-12-19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	7	329	336
2012-12-19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	10	231	241
2012-12-19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	4	164	168
2012-12-19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	12	117	129
2012-12-19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	4	84	88

[▲] 그림 10 rename 메서드를 이용한 인덱스와 열 이름 변경

데이터 파악의 기본이 되는 info, describe, value_counts, unique 메서드

교육 서비스

■ info

describe

value_counts

unique

결측치를 처리하는 fillna, dropna 메서드

Non-Null Count Dtype

object

object

float64

525 non-null

315 non-null

525 non-null

결측치를 처리하는 fillna, dropna 메서드 (ch1-7.py)

df = pd.read_csv('./datasets/bookings/bookings.csv')

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 525 entries, 0 to 524
Data columns (total 5 columns):

2 Total_Review 325 non-null

dtypes: float64(1), object(4)
memory usage: 20.6+ KB

df_info()

4 Location

´ 교육 서비스

■ fillna

- 결측치를 특정 값으로 채움
- 해당 열의 평균값으로 결측치를 대체

```
결측치를 처리하는 fillna, dropna 메서드 (ch1-7.py)

df['Rating'] = df['Rating'],fillna(df['Rating'],mean())
```

- fillna 메서드의 method 인자에 ffill (front fill의 약자)을 전달하면 결측치 이전에 있던 값으로 결측치를 대체
- bfill은 back fill의 약어로, 결측치 이후에 나오는 값으로 이전 결측치를 대 체

결	측치를 처리하는	fillna, dropna 메서드 (ch1-7.py)
s.f	illna(method=	'ffill')
0	1.0	
1	1.0	
2	1.0	
3	2.0	
4	2.0	
5	3.0	
dty	pe: float64	

	측치를 처리하는 fillna, drop	ria ulivi= (crii-7,py
s.f	illna(method='bfill')	
0	1.0	
1	2.0	
2	2.0	
3	2.0	
4	3.0	
5	3.0	

결측치를 처리하는 fillna, dropna 메서드

교육 서비스

■ dropna

- dropna 메서드가 결측치가 포함된 모든 행을 삭제
- axis 인자에 1 혹은 "columns"을 전달하면 결측치가 포함된 모든 열을 삭제
- subset 인자를 사용하면 dropna 메서드를 적용할 레이블을 특정할 수 있음
- thresh 인자에 n을 전달하면 특정 행 (또는 열)을 삭제 할 때 각 행 (또는 열)을 기준으로 결측치가 아닌 값이 개 미만일 경우에만 해당 메서드를 적용
- how 인자에 'all'을 전달하면 특정 행 (또는 열)의 모든 값이 결측 치인 경우에만 삭제

결측	치를 처리하는 fill	na, dropna 메서드	E (ch1-7.py)
df =	pd_read_csv('	./datasets/booki	ings/bookings.csv')
df =	df_dropna()		
df,i	.nfo()		
<cla< td=""><td>ss 'pandas.cor</td><td>e.frame.DataFram</td><td>ne'></td></cla<>	ss 'pandas.cor	e.frame.DataFram	ne'>
Inde	ex: 307 entries	, 0 to 333	
Data	columns (tota	1 5 columns):	
#	Column	Non-Null Count	Dtype
0	Hotel_Name	307 non-null	object
1	Review	307 non-null	object
2	Total_Review	307 non-null	object
3	Rating	307 non-null	float64
4	Location	307 non-null	object
dtyp	oes: float64(1)	, object(4)	
memo	ory usage: 14.4	+ KB	

데이터의 분위수를 구하는 quantile 메서드

교육 서비스

quantile

- 연속형 수치 형태의 데이터에서 특정 분위수를 구할때 사용함
- Total Review 열은 특정 호텔에 대한 총 리뷰의 수인데, 해당 열의 데이터를 최소값 을 0, 최대값을 1로 하였을 때 quantile 메서드와 for 반복문을 통하여 0.2 단위로 각 분위수를 구하고, 그 값을 출력
- quantile 메서드에 전달되는 인자의 값이 커질수록 높은 분위수에 해당하며, 낮은 값일수록 낮은 분위수에 해당하는 값을 반환
- interpolation 인자는 분위수를 구할 때 특정 값 i와 j 사이에 구하고자 하는 분위수가 존재할 경우, 그 값을 어떻게 반환할 지를 결정하는 인자
- 해당 인자에 전달할 수 있는 값으로는 linear, lower, higher, nearest, midpoint가 있음

```
데이터의 분위수를 구하는 quantile 메서드 (ch1-8.py)

df = pd.read_csv('./datasets/bookings/bookings.csv')

df['Total_Review'] = df['Total_Review'].map(lambda x: str(x).replace('external','').strip())

df['Total_Review'] = df['Total_Review'].map(lambda x: str(x).replace('review','').strip())

df['Total_Review'] = df['Total_Review'].map(lambda x: str(x).replace(',',''))

df['Total_Review'] = df['Total_Review'].astype('float')
```

```
데이터의 분위수를 구하는 quantile 메서드 (ch1-8.py)

quantile = [0, 0.2, 0.4, 0.6, 0.8, 1]

for idx in quantile:
    q = df['Total_Review'].quantile(idx, interpolation='lower')
    print(f'quantile({idx}) is {q}')

quantile(0) is 1.0
quantile(0.2) is 227.0
quantile(0.4) is 657.0
quantile(0.6) is 1169.0
quantile(0.8) is 2620.0
quantile(1) is 16148.0
```

원하는 데이터만 필터링 하는 query 메서드

̄교육 서비스

query

- 필터링할 조건을 문자열 형태의 인자로 전달 → '(변수명) (등호나 부등호) (값)'
- 특정 수치형 변수 (열)의 대소비교나 부등식에 관한 〉, >=, <=, ==, !=를 사용할 수 있음
- 가독성이 좋고, 여러 가지 조건을 and나 or로 동시에 적용할 때에 더욱 깔끔하게 코드를 작성할 수 있음
- 문자열 내에서 변수명 앞에 @를 붙이면 외부 변수를 참조

I 원하는 데이터만 필터링 하는 query 메서드

교육 서비스

■ query(문자열 내 함수)

- contains 메서드는 각 데이터 내에서 contains 메서드에 전달한 문자열의 일부가 각 데이터 내에서의 위치와 상관없이 검색
- startswith메서드와 endswith 메서드는 각각 특정 문자열의 일부로 시작하거나 끝나는 경우만 필터링
- 특정 변수에서 리스트에 포함되어 있는 값들만 필터링 하는 isin

					', engine= <mark>'pyt</mark>	,	
	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
20	Adelie	Biscoe	37.8	18.3	174.0	3400.0	Female
21	Adelie	Biscoe	37.7	18.7	180.0	3600.0	Male
22	Adelie	Biscoe	35.9	19.2	189.0	3800.0	Female
23	Adelie	Biscoe	38.2	18.1	185.0	3950.0	Male
24	Adelie	Biscoe	38.8	17.2	180.0	3800.0	Male
	12			***	***		***
39	Gentoo	Biscoe	NaN	NaN	NaN	NaN	NaN
40	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	Female
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	Male
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	Female
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	Male

▲ 그림 16 penguins 데이터셋에서 query 메서드들 사용하여 island 열에 6e를 포함하는 행만 필터링

Q1				instrap"]				
	r_query	specie	25.151n(@T1	itering) ,	engine='pytho	on)		
	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male	
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female	
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female	
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female	
	-	-						
215	Chinstrap	Dream	55.8	19.8	207.0	4000.0	Male	
216	Chinstrap	Dream	43.5	18.1	202.0	3400.0	Female	
217	Chinstrap	Dream	49.6	18.2	193.0	3775.0	Male	
218	Chinstrap	Dream	50.8	19.0	210.0	4100.0	Male	
219	Chinstrap	Dream	50.2	18.7	198.0	3775.0	Female	

▲ 그림 18 penguins 데이터셋에서 query 메서드를 사용하여 species 열에서 Adelie와 Chinstrap을 포함하는 행만 필터링

교육 서비스

groupby

- 특정 변수의 그룹별 연산을 편리하게 할 수 있음
- 그룹별 데이터의 개수, 평균, 합계와 같은 통계적 값뿐만 아니라 임의로 정의된 함수에 대하여서도 그룹 연산을 수행할 수 있음
 - → 그룹별로 분리-연산-병합의 절차를 거쳐서 그룹별 연 산을 진행

그림 19 pandas groupby 메서드의 연산 process

교육 서비스

groupby

■ 예시 데이터셋(titanic 데이터셋) 타이타닉호 사건의 생존자 및 사망자 일부에 대한 좌석등급, 성별, 나이 등에 대한 데이터

Pandas ^o	꽃, 그룹별 연산을 위한 groupby 메서드 (ch1-10.py)
import se	eaborn as sns
df = sns.	<pre>load_dataset('titanic')</pre>
df.head()	

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	C	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	C	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	Tru

▲ 그림 20 titanic 데이터셋의 맨 앞 5개 행

■ 성별에 대한 생존율을 비교 묶을 변수명은 "sex"가 될 것이고, 해당 그룹에 대해 연 산할 항목은 "survived" 변수의 평균

교육 서비스

groupby

■ 성별 뿐만 아니라 좌석 등급도 동시에 그룹한 결과

- groupby를 통한 그룹 연 산에서 mean 메서드와 각 데이터의 크기(길이)를 구할 수 있는 count 메서드를 동시에 적용
 - → agg 메서드에 'mean'과 'count'를 리스트 형식으로 전달

▲ 그림 22 agg 메서드를 이용한 여러 통계치 그룹 연산. 열 별로 서로 다른 집계 함수 사용하기

̄교육 서비스

■ groupby

- agg 메서드를 이용한 연산 시 함께 사용할 수 있는 통계치는 'mean','count', 'size', 'median', 'std', 'min', 'max' 등이 있음
- 연산 대상이 되는 열 별로 연산에 사용하는 함수를 다르게 지정할 수 있음
- 연산을 적용할 열 명과 해당하는 집계함수명을 사전 형태로 전달

교육 서비스

groupby

- titanic 데이터셋의 승객 성별과 좌석 등급 그룹별별로 데이터의 제 3사분위수 (quantile 메서드에 0.75를 대입하여 적용한 값)와 제 1사분위수의 차에1.5배에 해당하는 값을 구하기
- Step 1 : 각 그룹별 dataframe을 받아서 원하는 값 을 실수 형태로 반환하는 사용자 정의 함수 get_IQR을 정의
- Step 2 : 정의한 get_IQR 함수 를 apply 메서드에 아래와 같이 전달

```
Pandas의 꽃, 그룹별 연산을 위한 groupby 메서드 (ch1-10.py)

def get_IQR(data):
    _3rd = data.quantile(.75)
    _1st = data.quantile(.25)
    return (np.abs(_3rd - _1st) * 1.5)

df.groupby(['sex','class'])['age'].apply(get_IQR)
```

sex	class	
female	First	31,5000
	Second	20,6250
	Third	23.4375
male	First	31,5000
	Second	20,6250
	Third	19,5000
Name: a	ge, dtype:	float64

̄교육 서비스

groupby

- penguins 데이터셋은 펭귄 부리의 길이, 깊이, 물갈퀴의 길이, 몸무게와 같은 수치형 변수들에 일부 결측치를 lamda 함수를 사용해 결측치 채우기
- Step 1 : 각 열들에 몇 개의 결측치가 있는지를 isna 메서드와 sum 메서드를 통해 살펴보기
- Step 2 : "sex" 열은 범주형 변수이므 로, 결측치에 평균값을 채울 수 없기 때문에 아래 예시에서는 "sex" 열의 결측치는 제외하고 나머지 수치형 열들 중 결측치를 가지는 열들에 대해서만 groupby 를 적용해 mean 값 확인
- Step 3 : apply 메서드와 lambda 함 수를 사용

교육 서비스

groupby

- Pandas groupby 메서드를 이용하여 그룹별 연산을 적용할 때 반드시 groupby 메서드를 적용하는 데이터셋 내에 열명을 전달해야 하는 것은 아님
 - → groupby 메서드를 적용하는 데 이터셋과 길이가 동일한 기준만 전달하면 됨
 - → 이 때 기준이란 Pandas series, list등이 해 당될 수 있음

```
Pandas의 꽃, 그룹별 연산을 위한 groupby 메서드 (ch1-10.py)

df.groupby('group')['value'].sum()

group
A 3
B 20
Name: value, dtype: int64
```

```
Pandas의 꽃, 그룹별 연산을 위한 groupby 메서드 (ch1-10.py)

df.groupby([0,0,1,1,1])['value'].sum()

0 2
1 21
Name: value, dtype: int64
```

Pandas의 꽃, 그룹별 연산을 위한 groupby 메서드 (ch1-10.py)
s = pd.Series([False, False, True, True, True])
df.groupby(s)['value'].sum()

■ 시계열 데이터

- 분석 대상 데이터가 시간에 따라 변화하는 특성을 가지고,
- 분석의 기준이 시간이 되는 경우를 넓은 의미에서 시계열 데이터라고 함
- 시계열 데이터는 시간 변수를 dataframe의 인덱스로 설정하면 데이터 분석에 이점이 많음
- 사용 데이터 셋 :

애플 사의 1980년부터 2020년까지의 주식 시가, 종가, 고가, 저가, 거래량 등 을 담고 있는 APPL price 데이터셋을 사용

▲ 그림 27 APPL price 데이터셋의 index를 Date 열로 지정한 결과

■ 시계열 데이터

- 분석 대상 데이터가 시간에 따라 변화하는 특성을 가지고,
- 분석의 기준이 시간이 되는 경우를 넓은 의미에서 시계열 데이터라고 함
- 시계열 데이터는 시간 변수를 dataframe의 인덱스로 설정하면 데이터 분석에 이점이 많음
- 사용 데이터 셋 :

애플 사의 1980년부터 2020년까지의 주식 시가, 종가, 고가, 저가, 거래량 등 을 담고 있는 APPL price 데이터셋을 사용

▲ 그림 27 APPL price 데이터셋의 index를 Date 열로 지정한 결과

■ 시계열 데이터

- 비록 12월 13일 에 대한 데이터가 없다고 하더라도
 - →1980년 12월 13일부터 12월 18일까지의 데이 터를 시간의 범위 형식으로 슬라이싱 할 수 있음

■ datetime 데이터 형식의 인덱스를 가지는 dataframe은 보다 상위 레 벨의 시간 단위로도 행을 필터링 할 수 있음

시계열 데이터 그루핑을 위한 resample 메서드

교육 서비스

■ resample

- 시계열 데이터를 resample 메서드를 사용하여 다른 시간 단위로 업샘플링 혹은 다운샘플링할 수 있음
- 기존 매 주식 거래일 단위로 나타나 있던 APPL price 데이터셋을 일주일 단위로, 각 데이터 값들은 해당 일주일의 평균을 통해 나타내 보도록 다운샘플링
 - → resample 메서드에 샘플링 구간을 전달하는 rule 인자 에 전달할 값은 7 days를 나타내는 "7d"

			/APPL_pri	and the second	rice csv')
df['Date	e'] = pd.t	o_datetim	e(df['Dat	e'])		
df = df	set_index	('Date')				
10	7 (1711)					
df.resan	ple('7d')	.mean()				
	Open	High	Low	Close	Adj Close	Volume
Date						
980-12-12	0.119643	0.119978	0.119420	0.119420	0.093209	182107520.0
980-12-19	0.135324	0.135882	0.135324	0.135324	0.105623	45236800.0
980-12-26	0.157366	0.157645	0.157087	0.157087	0.122610	63341600.0
981-01-02	0.144755	0.144978	0.144308	0.144308	0.112636	39612160.0
981-01-09	0.139509	0.139955	0.139174	0.139174	0.108628	19322240.0
022-05-20	138.701996	142.411996	136.613998	141.072000	141.072000	108473860.0

	그림 3	0 APPL	price	데이터셋을	일주일	단위로	다운샘플링	
--	------	--------	-------	-------	-----	-----	-------	--

2022-06-17 130.070007 133.080002 129.809998 131.559998 131.559998

Offset string	이미			
В	Business day			
W	주			
М	Month end			
MS	Month begin			
BMS	Business month begin			
ВМ	Business month end			
Q	Quarter end			
QS	Quarter begin			

시계열 데이터 그루핑을 위한 resample 메서드

교육 서비스

■ resample

- dataframe의 인덱스를 시간 범위의 오른쪽으로 설정하고 싶다면 resample 메서드의 label 인자에 "left"를 전달
- dataframe의 인덱스를 시간 범위의 오른쪽으로 설정하고 싶다면 resample 메서드의 label 인자에 "right"를 전달

	Open	High	Low	Close	Adj Close	Volume
Date						
1980-12-12	0.119643	0.119978	0.119420	0.119420	0.093209	182107520.0
980-12-19	0.135324	0.135882	0.135324	0.135324	0.105623	45236800.0
980-12-26	0.157366	0.157645	0.157087	0.157087	0.122610	63341600.0
981-01-02	0.144755	0.144978	0.144308	0.144308	0.112636	39612160.0
981-01-09	0.139509	0.139955	0.139174	0.139174	0.108628	19322240.0
			1.2			
022-05-20	138.701996	142.411996	136.613998	141.072000	141.072000	108473860.0
022-05-27	148.047501	150.837502	146.659996	149.600002	149.600002	85332900.0
022-06-03	146.788001	148.672000	144.690003	146.166003	146.166003	70260240.0
022-06-10	134.529999	135.915997	132.235999	133.451999	133.451999	99617240.0
022-06-17	130.070007	133.080002	129.809998	131.559998	131.559998	134118500.0

[▲] 그림 30 APPL_price 데이터셋을 일주일 단위로 다운샘플링

	Open	High	Low	Close	Adj Close	Volume
Date						
1980-12-19	0.119643	0.119978	0.119420	0.119420	0.093209	182107520.0
1980-12-26	0.135324	0.135882	0.135324	0.135324	0.105623	45236800.0
1981-01-02	0.157366	0.157645	0.157087	0.157087	0.122610	63341600.0
1981-01-09	0.144755	0.144978	0.144308	0.144308	0.112636	39612160.0
1981-01-16	0.139509	0.139955	0.139174	0.139174	0.108628	19322240.0
***	***	100				
2022-05-27	138.701996	142.411996	136.613998	141.072000	141.072000	108473860.0
2022-06-03	148.047501	150.837502	146.659996	149.600002	149.600002	85332900.0
2022-06-10	146.788001	148.672000	144.690003	146.166003	146.166003	70260240.0
2022-06-17	134.529999	135.915997	132.235999	133.451999	133.451999	99617240.0
2022-06-24	130.070007	133.080002	129.809998	131.559998	131.559998	134118500.0

▲ 그림 31 resample 메서드를 통해 시계열 데이터를 샘플링 한 후 index를 샘플링 범위의 오른쪽으로 설정

시계열 데이터 그루핑을 위한 resample 메서드

0pen

0.128348

0.119196

0.156250

0.142411

0.143415

High ...

0.128906 ...

0.119531 ...

0.143973 ...

0.156668 ...

0.142522 ...

2022-05-13 144.046002 145.402002 ... 142.108001 109648940.0

148.424999 150.410003 ... 148.535004 145.464002 147.229999 ... 144.516003 2022-06-10 132.488000 134.379999 ... 132.337998 108153360.0

Adj Close

0.100178 469033600.

교육 서비스

resample

- resample 메서드를 통해 샘플링 하고자 하는 시간 범위의 양 끝 중 어떤 쪽을 포함 할지를 지정할 수 있음
- resample 메서드의 closed 인자에 "left" 혹은 "right"를 전달할 수 있는데, 전달되는 쪽이 닫힌 구간 (값을 포함하는)이 됨
- closed 인자의 기본값은 "left"

```
print(df.resample('7d').mean())
print("=======")
print(df.resample( rule: '7d', closed='left').mean())
print("----")
print(df.resample( rule: '7d', closed='right').mean())
```

	0pen	High	 Adj Close	Volume
Date				
1980-12-12	0.119643	0.119978	0.093209	182107520.0
1980-12-19	0.135324	0.135882	0.105623	45236800.0
1980-12-26	0.157366	0.157645	0.122610	63341600.0
1981-01-02	0.144755	0.144978	0.112636	39612160.0
1981-01-09	0.139509	0.139955	0.108628	19322240.0
2022-05-20	138.701996	142.411996	141.072000	108473860.0
2022-05-27	148.047501	150.837502	149.600002	85332900.0
2022-06-03	146.788001	148.672000	146.166003	70260240.0
2022-06-10	134.529999	135.915997	133.451999	99617240.0
2022-06-17	130.070007	133.080002	 131.559998	134118500.0

[mean]

	0pen	High	Adj Close	Volume
Date				
1980-12-12	0.119643	0.119978	0.093209	182107520.0
1980-12-19	0.135324	0.135882	0.105623	45236800.0
1980-12-26	0.157366	0.157645	0.122610	63341600.0
1981-01-02	0.144755	0.144978	0.112636	39612160.0
1981-01-09	0.139509	0.139955	0.108628	19322240.0
2022-05-20	138.701996	142.411996	141.072000	108473860.0
2022-05-27	148.047501	150.837502	149.600002	85332900.0
2022-06-03	146.788001	148.672000	146.166003	70260240.0
2022-06-10	134.529999	135.915997	133.451999	99617240.0
2022-06-17	130.070007	133.080002	131.559998	134118500.0

[closed='right']

Date

1980-12-12

1980-12-19

1980-12-26

1981-01-02

[closed='left']

27 | hugh

Volume

46972800.0