

ISIS-1104-01 Matemática Estructural y Lógica Parcial $3\,$

Fecha: Mayo 8, 2014

- Esta prueba es INDIVIDUAL.
- Está permitido el uso de las hojas de fórmulas.
- Está prohibido el uso de cualquier otro material como cuadernos, libros o fotocopias.
- Está prohibido el uso de cualquier dispositivo electrónico.
- El intercambio de información relevante a esta prueba con otro estudiante está terminantemente prohibido.
- Cualquier irregularidad con respecto a estas reglas podría ser considerada fraude.
- Responda el examen en los espacios proporcionados. No se aceptarán hojas adicionales.
- No olvide marcar el examen antes de entregarlo.

IMPORTANTE: Soy consciente de que cualquier tipo de fraude en los exámenes es considerado como una falta grave en la Universidad. Al firmar y entregar este examen doy expreso testimonio de que este trabajo fue desarrollado de acuerdo con las normas establecidas. Del mismo modo, aseguro que no participé en ningún tipo de fraude.

Nombre	Carné
Firma	Fecha

NO ESCRIBIR NADA BAJO ESTA LÍNEA

1	20%	
2	20%	
3	20%	
4	20%	
5	20%	
Total	100%	

1. Teoría de Enteros

Ejercicio 1. Demuestre el siguiente enunciado: Si x, y, d, b, y m son enteros positivos tales que mcd(m, d) = 1 entonces

$$((d \cdot x \equiv_m b) \land (d \cdot y \equiv_m b)) \Rightarrow (x \equiv_m y)$$

	Expresión	Justificación
1	$d \cdot x \equiv_m b$	Hipótesis
	$d \cdot y \equiv_m b$	Hipótesis
		Teo A-3 Congruencias $(a \equiv_m b \Rightarrow b \equiv_m a)$ (2)
4	$d \cdot x \equiv_m d \cdot y$	Transitividad \equiv_m (2,3)
5	mcd(m,d) = 1	Hipótesis
6	$x \equiv_m y$	Teo B.2 Congruencias: $a \cdot x \equiv_m a \cdot y \wedge mcd(m, a) = 1 \Rightarrow x \equiv_m y(4, 5)$

Ejercicio 2. Demuestre el siguiente enunciado: Para k, a y b enteros, se tiene que $mcd(a,b) = mcd(b,a-k\cdot b)$

Sea C_1 el comjunto de los divisores de a y de b y C_2 el conjunto de divisores de b y de $a-k \cdot b$. Si $C_1 = C_2$, entonces $mcd(a,b) = mcd(b,a-k \cdot b)$. Basta entonces demostrar que para cualquier entero x:

$$(x|b) \wedge (x|a) \equiv (x|b) \wedge (x|a-k \cdot b)$$

para cualquier k.

Se demuestra en dos pasos:

$$(x|b) \wedge (x|a) \Rightarrow (x|b) \wedge (x|a-k \cdot b)$$

$$(x|b) \wedge (x|a - k \cdot b)) \Rightarrow (x|b) \wedge (x|a)$$

• Para el primero:

Vemos que $(a - k \cdot b)$ es una combinación lineal de a y b. Por lo tanto cualquier divisor de a y b también es divisor de $(a - k \cdot b)$.

■ Para el segundo;

Vemos que a es una combinación lineal $(s \cdot ((a-k \cdot b)) + t \cdot b)$ de $(a-k \cdot b)$ y b (tomando s=1 y t=(k+1).

Por lo tanto cualquier divisor de $(a - k \cdot b)$ y b también es divisor de $(a - k \cdot b)$ y b.

2. Inducción

Ejercicio 3. Basándose en la siguiente definición de Fibonacci:

```
■ F_0 = 0
```

•
$$F_1 = 1$$

•
$$F_{n+1} = F_n + F_{n-1}$$
, para $n \ge 1$

Demuestre que F_{3n} es par (es decir: $(2 \mid F_{3n}))$ para $n \geq 0$.

Ayuda: note que para usar inducción debe demostrar el caso $F_{3(k+1)}$ a partir del caso F_{3k}

Caso Base: n=0

$$= \frac{2|F_0}{2|0}$$

$$= \frac{2|0}{\text{true}} \langle \text{ Teo: } x|0 \rangle$$

Caso Inductivo H.I. $2|F_{3k}$

Demostrar: $2|F_{3(k+1)}|$

Reescribimos la hipótesis como: $F_{3k} = 2 \cdot \hat{s}$

Debemos entonces encontrar un entero, \hat{t} tal que $F_{3k+1} = 2 \cdot \hat{t}$

$$F_{3(k+1)} = \begin{cases} F_{3(k+1)} \\ F_{3k+3} \end{cases}$$

$$= \begin{cases} \text{Definición } \\ F_{3k+2} + F_{3k+1} \end{cases}$$

$$= \begin{cases} \text{Definición } \\ F_{3k+1} + F_{3k} + F_{3k+1} \end{cases}$$

$$= \begin{cases} \text{Aritmética } \\ 2 \cdot F_{3k+1} + F_{3k} \end{cases}$$

$$= \begin{cases} \text{Hipótesis de Inducción } \\ 2 \cdot F_{3k+1} + 2 \cdot \hat{s} \end{cases}$$

$$= \begin{cases} \text{Aritmética } \\ 2 \cdot (F_{3k+1} + \hat{s}) \end{cases}$$

Demostramos: $F_{3k+1}=2\cdot (F_{3k+1}+\hat{s})$ y $F_{3k+1}+\hat{s}$ es un entero. Por lo tanto, $2|F_{3k+1}$ **Ejercicio 4.** Demuestre (o argumente) por inducción fuerte que cualquier número entero positivo se puede expresar como suma de potencias (distintas) de dos. Por ejemplo:

- $1 = 2^0$
- $2 = 2^1$
- $3 = 2^1 + 2^0$
- $4 = 2^2$
- $5 = 2^2 + 2^0$ (Las potencias deben ser distintas. No valdría: $5 = 2^0 + 2^0 + 2^0 + 2^1$)
- $10 = 2^3 + 2^1$
- $11 = 2^3 + 2^1 + 2^0$
- $12 = 2^3 + 2^2$

Ayuda: Usen dos casos base: n=0 y n=1 y luego hagan la prueba inductiva para dos casos k par y k impar.

Reescribimos lo que queremos demostrar

Todo numero natural n lo podemos expresar como:

$$n = 2^{t_1} + 2^{t_2} + \ldots + 2^{t_m}$$

donde:

$$t_1 < t_2 < \ldots < t_m$$

Lo vamos a probar por inducción.

- Casos base
 - 0 es el primer número par: 0 y $0 = 2^0$
 - $\bullet \ 1$ es el primer número impar: 1 y $1=2^1$
- k+1 es impar.

En este caso k es par y se puede expresar como sumas de potencias de 2, entonces debemos mostrar que k+1 se puede expresar como potencias de 2.

$$k = 2^{t_1} + 2^{t_2} + \ldots + 2^{t_m}$$

con

$$t_1 < t_2 < \ldots < t_m$$

Como k es par, y sabemos que la única potencia impar es 2^0 sabemos que ningún $t_i = 0$, y que $t_1 > 0$. Entonces sumamos 2^0 a ambos lados y nos queda:

$$k + 2^0 = 2^0 + 2^{t_1} + 2^{t_2} + \ldots + 2^{t_m}$$

Como $2^0 = 1$:

$$k+1=2^0+2^{t_1}+2^{t_2}+\ldots+2^{t_m}$$

con

$$0 < t_1 < t_2 < \ldots < t_m$$

y tenemos que k+1 se puede expresar como una suma de potencias distintas de 2:

• k+1 es par.

Sea $k + 1 = 2 \cdot t$.

Como estamos usando inducción fuerte podemos usar números menores que $2 \cdot t$ y usar el hecho de que se pueden expresar como sumas de potencias de 2 para demostrar que $2 \cdot t$ se puede expresar como suma de potencias de dos distintas.

Como k+1>0, entonces t>0 y $2 \cdot t>t$

Vamos entonces a demostrar que si t se puede representar como una suma de potencias de 2 entonces $2 \cdot t$, se puede representar como suma de potencias de 2.

Hipótesis de inducción:

$$t = 2^{t_1} + 2^{t_2} + \ldots + 2^{t_m}$$

con

$$t_1 < t_2 < \ldots < t_m$$

$$\begin{array}{l} t = 2^{t_1} + 2^{t_2} + \ldots + 2^{t_m} \\ = & \langle \text{ multiplicamos por } 2 \rangle \\ 2 \cdot t = 2 \cdot 2^{t_1} + 2 \cdot 2^{t_2} + \ldots + 2 \cdot 2^{t_m} \\ = & \langle \text{ aritmética } \rangle \\ 2 \cdot t = 2^{t_1 + 1} + 2^{t_2 + 1} + \ldots + 2^{t_m + 1} \end{array}$$

Es claro que todas las potencias son distintas pues si

$$t_1 < t_2 < \ldots < t_m$$

entonces

$$t_1 + 1 < t_2 + 1 < \ldots < t_m + 1$$

Entonces suponiendo que teníamos una expresión para t, encontramos una para $2 \cdot t$. Probando así, que los números pares se pueden expresar como sumas de potencias de dos.

Ejercicio 5. Definimos recursivamente las secuencias la función: $mult_s : \mathbb{Z} \times Seq_{\mathbb{Z}} \to Seq_{\mathbb{Z}}$ para multiplicar una secuencia por un entero m, así:

Caso Base: la aplicación de la función a la secuencia vacía da como resultado la secuencia vacía:

$$mult_s(m, \epsilon) = \epsilon$$

Caso Recursivo: Si la secuencia es de la forma $n \triangleleft s$ y se multiplica por m, entonces el resultado es una secuencia con primer elemento $n \cdot m$ y resto de secuencia obenida multiplicando el resto (s) de la secuencia por m:

$$mult_s(m, n \triangleleft s) = (n \cdot m) \triangleleft mult_s(m, s)$$

Demuestre usando inducción estructural el siguiente enunciado:

$$max_s(mult_s(-1,s)) = -min_s(s)$$

```
Caso Base: s = \epsilon
max_s(\underbrace{mult_s(-1, \epsilon)}) = -min_s(\epsilon)
= \langle \text{Def. } mult_s \rangle
max_s(\epsilon) = -min_s(\epsilon)
= \langle \text{Def. } min_s \rangle
max_s(\epsilon) = -\infty
= \langle \text{Def. } max_s \rangle
true
```

Caso Inductivo H.I. $max_s(mult_s(-1, s)) = -min_s(s)$

Demostrar: $max_s(mult_s(-1, x \triangleleft s)) = -min_s(x \triangleleft s)$

```
 \begin{aligned} & \max_{s}(\underbrace{\operatorname{mult}_{s}(-1,x \triangleleft s)}) = -\min_{s}(x \triangleleft s) \\ &= & \langle \operatorname{Def.} \ \operatorname{mult}_{s} \rangle \\ & \max_{s}((\underbrace{-1 \cdot x}) \triangleleft \operatorname{mult}_{s}(-1,s)) = -\min_{s}(x \triangleleft s) \\ &= & \langle \operatorname{Aritm\acute{e}tica} \rangle \\ & \max_{s}((-x) \triangleleft \operatorname{mult}_{s}(-1,s)) = -\min_{s}(x \triangleleft s) \\ &= & \langle \operatorname{Def.} \ \operatorname{max}_{s} \rangle \\ & \max(-x, \underbrace{\operatorname{mult}_{s}(-1,s))}) = -\min_{s}(x \triangleleft s) \\ &= & \langle \operatorname{H.I.} \rangle \\ & \max(-x, -\min_{s}(s)) = -\min_{s}(x \triangleleft s) \\ &= & \langle \operatorname{Teorema:} \ \operatorname{max}(-a, -b) = -\min(a,b) \rangle \\ & -\min(x, \min_{s}(s)) = -\min_{s}(x \triangleleft s) \\ &= & \langle \operatorname{Aritm\acute{e}tica} \rangle \\ & \min(x, \min_{s}(s)) = \min_{s}(x \triangleleft s) \\ &= & \langle \operatorname{Def.} \ \operatorname{min}_{s} \rangle \\ & \operatorname{true} \end{aligned}
```