Accelerated Gradient Descent

Contents

- Gradient
- Gradient Descent
- Accelerated Gradient Descent
- Plot contour
- Reference

Gradient

Gradient descent method is based on gradient

$$\nabla f = \frac{\partial f}{\partial x_1} \mathbf{e}_1 + \dots + \frac{\partial f}{\partial x_n} \mathbf{e}_n$$

gradient always point to the asent direction

Gradient Descent

f is object function, and this is unconstrained

$$\min_x f$$

Accelerated Gradient Descent

for t = 1, 2, ...

$$x^{(t)} = y^{(t-1)} - alpha \nabla f(y^{t-1})$$

$$y^{(t)} = x^{(t)} + (t-1)/(t+2) * (x^{(t)} - x^{(t-1)})$$

$$f = (@(X) (exp(X(1,:)-1) + exp(1-X(2,:)) + (X(1,:) - X(2,:)).^2)); \\ %f = (@(X) (sin(0.5*X(1,:).^2 - 0.25 * X(2,:).^2 + 3) .* cos(2*X(1,:) + 1 - exp(X(2,:)))))$$

Plot contour

end

```
[X, Y] = meshgrid(-2:0.1:2);
XX = [reshape(X, 1, numel(X)); reshape(Y, 1, numel(Y))];
%surf(X, Y, reshape(f(XX), length(X), length(X)))
contour(X, Y, reshape(f(XX), length(X), length(X)), 50);
hold on;
 1.5
 0.5
  0
-0.5
-1.5
 -2
-2
                      -0.5
        -1.5
                                    0.5
                                                  1.5
plot gradient of function
for i=1:5:length(XX)
    tmp = XX(:,i);
    g = gradient_of_function(f, tmp);
```

plot([tmp(1),tmp(1)+g(1)*0.02],[tmp(1),tmp(2)+g(1)*0.02]);

quiver(tmp(1),tmp(2),g(1)*0.02,g(2)*0.02);

$$x0 = [-1; -1];$$

without wolfe step, fix step as alpha = 0.01, $x_k = x_{k-1} + alpha * (-\nabla f)$

 $x_gf =$

-0.0287

0.5194

 $v_gf =$

2.2750

 $h_gf =$

Columns 1 through 7

Columns 8	through 1	4					
	-0.9766		-0.9619		-0.9449	-0.9357	
-0.5966	-0.5550	-0.5161	-0.4796	-0.4454	-0.4131	-0.3826	
Columns 15	through	21					
-0.9261	-0.9161		-0.8952		-0.8732	-0.8619	
-0.3538	-0.3266	-0.3007	-0.2761	-0.2526	-0.2303	-0.2089	
Columns 22	through	28					
-0.8503	-0.8387		-0.8150		-0.7908	-0.7786	
-0.1885	-0.1689	-0.1501	-0.1320	-0.1147	-0.0980	-0.0818	
Columns 29	through 3	35					
-0.7664	-0.7541	-0.7418	-0.7294	-0.7170	-0.7047	-0.6923	
-0.0663	-0.0512	-0.0367	-0.0226	-0.0089	0.0044	0.0172	
Columns 36	through 4	42					
-0.6800	-0.6676		-0.6431		-0.6186	-0.6065	
0.0298	0.0420	0.0538	0.0654	0.0767	0.0877	0.0985	
Columns 43	through 4	49					
-0.5944	-0.5823		-0.5585		-0.5348	-0.5231	
0.1090	0.1193	0.1294	0.1393	0.1490	0.1585	0.1678	
Columns 50	through {	56					
-0.5115	-0.4999	-0.4884	-0.4770	-0.4657	-0.4544	-0.4433	
0.1770	0.1860	0.1949	0.2036	0.2121	0.2206	0.2289	
Columns 57	through (63					
-0.4322	-0.4212	-0.4103	-0.3995	-0.3887	-0.3781	-0.3675	
0.2370	0.2451	0.2531	0.2609	0.2686	0.2763	0.2838	
Columns 64	through '	70					
	-0.3466	-0.3363	-0.3261	-0.3160	-0.3059	-0.2960	
0.2912	0.2986	0.3058	0.3130	0.3201	0.3271	0.3341	

```
Columns 71 through 77
  -0.2861
        -0.2764 -0.2667 -0.2571 -0.2475 -0.2381 -0.2288
  0.3409
        Columns 78 through 84
        -0.2103 -0.2012 -0.1922
  -0.2195
                                -0.1833 -0.1745 -0.1657
  0.3870
        0.3933 0.3996
                       0.4058
                               0.4120 0.4181 0.4241
 Columns 85 through 91
  -0.1570 -0.1484 -0.1399
                       -0.1315
                              -0.1231
                                      -0.1148 -0.1066
        0.4361 0.4419
  0.4301
                       0.4478 0.4536
                                      0.4593 0.4650
 Columns 92 through 98
  -0.0985
        -0.0904
                -0.0825
                        -0.0746
                               -0.0668
                                      -0.0590
                                             -0.0513
                0.4818
  0.4706
        0.4762
                       Columns 99 through 101
  -0.0437
        -0.0362 -0.0287
  0.5089
        0.5142
               0.5194
x_af =
  0.7415
  1.1499
v_af =
  1.7998
```

 $h_af =$

Columns 1 through 7

Columns 8 through 14

-0.9604 -0.4333						
Columns 15	through	21				
	-0.6484 0.1548	-0.5877 0.2086	-0.5234 0.2587			
Columns 22	through	28				
-0.2430 0.4324			-0.0257 0.5481	0.0449 0.5861		
Columns 29	through	35				
0.2451 0.7016			0.4209 0.8208			
Columns 36	through	42				
0.6106 0.9809	0.6500 1.0197		0.7198 1.0941			
Columns 43	through	49				
0.8276 1.2234	0.8487 1.2505					
Columns 50	through	56				
0.9366 1.3618	0.9455 1.3718			0.9631 1.3884		
Columns 57	through	63				
0.9679 1.3878	0.9667 1.3845	0.9643 1.3798	0.9606 1.3740	0.9558 1.3672	0.9499 1.3595	0.9429 1.3510
Columns 64	through	70				
0.9350 1.3419	0.9263 1.3322		0.9069 1.3118			
Columns 71	through	77				
0.8630	0.8517	0.8404	0.8293	0.8185	0.8080	0.7979

1.2686	1.2578	1.2471	1.2366	1.2263	1.2163	1.2067	
Columns 78	through 8	4					
			0.7629 1.1725	0.7557 1.1653	0.7492 1.1587		
Columns 85	through 9	1					
0.7382 1.1474			0.7269 1.1356	0.7246 1.1330			
Columns 92	through 9	8					
	0.7216 1.1296		0.7237 1.1317	0.7256 1.1336			
Columns 99 through 101							
0.7339 1.1422	0.7375 1.1459						

${\rm find\ suitable\ step\ size}$

 $x_g =$

0.7960

1.2038

 $v_g =$

1.7974

 $h_g =$

Columns 1	through 7					
	-1.0271 0.4778					
Columns 8	through 12					
0.7925 1.2007	0.7963 1.2024	0.7956 1.2033	0.7959 1.2039			
x_a =						
0.7960 1.2038						
v_a =						
1.7974						
h_ax =						
Columns 1	through 7					
	-1.0169 -0.0764				1.0217 1.4183	
Columns 8	through 14					
	0.8435 1.2559			0.7738 1.1882		
1.3051		1.2170				
1.3051 Columns 15	1.2559	1.2170 1 0.7966	0.7966	0.7968	1.1842	1.1906 0.7968
1.3051 Columns 15 0.7879 1.1945	1.2559 5 through 2 0.7930	1.2170 1 0.7966 1.2037	0.7966	0.7968	0.7971	1.1906 0.7968

h_ay =

Columns 1	through 7				
	-1.0169 -0.0764				
Columns 8	through 14				
0.8679 1.2573	0.8031 1.2214		0.7662 1.1695	0.7829 1.1811	
Columns 15	through 2	1			
0.7936 1.1978	0.7972 1.2032		0.7966 1.2054	0.7973 1.2045	
Columns 22	2 through 2	5			
0.7964 1.2040	0.7961 1.2038	0.7959 1.2036			

Warning: Gradient must be provided for trust-region algorithm; using line-search algorithm instead.

Local minimum found.

Optimization completed because the size of the gradient is less than the default value of the function tolerance.

```
x_in = 0.7961 1.2039
```

v_in =

1.7974

plot descent steps

for i=2:length(h_gf)

```
tmp1 = h_gf(:,i-1);
   tmp2 = h_gf(:,i);
    quiver(tmp1(1),tmp1(2),tmp2(1)-tmp1(1),tmp2(2)-tmp1(2), 0, 'g','LineWidth',3)
end
for i=2:length(h_af)
    tmp1 = h_af(:,i-1);
    tmp2 = h_af(:,i);
    quiver(tmp1(1),tmp1(2),tmp2(1)-tmp1(1),tmp2(2)-tmp1(2), 0, 'b','LineWidth',3)
end
for i=2:length(h_g)
   tmp1 = h_g(:,i-1);
   tmp2 = h_g(:,i);
    quiver(tmp1(1),tmp1(2),tmp2(1)-tmp1(1),tmp2(2)-tmp1(2), 0, 'r','LineWidth',2)
end
for i=2:length(h_ax)
   tmp1 = h_ax(:,i-1);
    tmp2 = h_ax(:,i);
    quiver(tmp1(1),tmp1(2),tmp2(1)-tmp1(1),tmp2(2)-tmp1(2), 0, 'c','LineWidth',2)
end
for i=2:length(h_ay)
   tmp1 = h_ay(:,i-1);
   tmp2 = h_ay(:,i);
    quiver(tmp1(1),tmp1(2),tmp2(1)-tmp1(1),tmp2(2)-tmp1(2), 0, 'm','LineWidth',2)
end
```


Reference

 $1.\ \mathtt{http://stronglyconvex.com/blog/accelerated-gradient-descent.html}$