Chapter 2 Basic Graph Concepts

2.1 Graphs

- Definition 2.1
 - Graph
 - Nodes vertices
 - Edges links
 - Directed graph
 - All edges are directed
 - Undirected graph
 - All edges are undirected

directed graph

undirected graph

- Definition 2.2
 - Path $A \mapsto B$
 - Sequence of nodes that connects A to B
 - Directed path
 - Path with directed edges
 - A is a ancestor of B, B is a descendant of A
 - $A \mapsto B$ and $B \not\mapsto A$

- Cycle
 - a directed path
 - starts and returns to the same node $a \rightarrow b \rightarrow \cdots \rightarrow z \rightarrow a$
- Loop
 - a path
 - containing more than two nodes
 - starts and returns to the same node
 - irrespective of edge direction

$$1 - 2 - 4 - 3 - 1$$

- Definition 2.4
 - Directed acyclic graph(DAG)
 - A directed graph
 - Without cycles

- Parents of a node
- Children of a node
- Family of a node
 - Itself and its parents
- Markov blanket of a node
 - Its parents, children and the parents of its children
 - Excluding itself

$$pa(x_4) = \{x_1, x_2, x_3\}$$

$$ch(x_4) = \{x_5, x_6\}$$
 Markov blanket of $x_4 = \{x_1, x_2, x_3, x_5, x_6, x_7\}$

- Neighbor
 - For an undirected graph
 - The neighbours of x, ne(x)
 - those nodes directly connected to x

$$ne(A) = ?$$

- Clique
 - Fully connected subset of nodes i.e.

All the members are neighbours of other member

- Maximal clique
 - There is no larger clique that contains the clique

Maximal cliques $\{A, B, C, D\}$, $\{B, C, E\}$ Cliques $\{A, B, C\}$, $\{A, C, D\}$ Not a clique $\{A, B, C, E\}$

- Definition 2.8
 - Connected graph
 - An undirected graph
 - There is a path between every pair of nodes i.e. there are no isolated islands

- Definition 2.9
 - Singly Connected Graph
 - There is only one path from any node to any other node
 - Multiply connected(roopy)
 - Not singly connected

Singly connected graph

Multiply connected graph

- Definition 2.10
 - Spanning Tree
 - A singly connected subset
 - Covers all nodes

2.2 Numerically Encoding Graphs

- 2.2.1 Edge list
 - Edge list
 - All node-node pairs

 $L = \{(1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (2,4), (4,2), (3,4), (4,3)\}$

• 2.2.2 Adjacency matrix

- Adjacency matrix A
 - $A_{ij} = 1$ if there is an edge from node i to node j

$$\mathbf{A} = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right)$$

$$\mathbf{T} = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

• 2.2.3 Clique matrix

- Clique matrix
 - A matrix of nodes maximal cliques relation
 - A graph has N nodes and K maximal cliques \rightarrow N \times K clique matrix

nodes =
$$\{1,2,3,4\}$$

max clique = $\{C_1, C_2\}$
 $C_1 = \{1,2,3\}, C_2 = \{2,3,4\}$
 $\mathbf{C} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$