Control Systems Engineering (EYAG-1005): **Unit 03**

Luis I. Reyes-Castro

Escuela Superior Politécnica del Litoral (ESPOL) Guayaquil - Ecuador

Semester: 2017-T1

Bode Plots

- **Bode Plots**
 - Introduction
 - Elementary Systems

- Bode Plots
 - Introduction
 - Elementary Systems

Consider a stable system with transfer function G(s).

- Suppose the input r(t) is a sinusoid with frequency ω and unit amplitude.
- Then the steady-state output $c_{ss}(t)$ must be a a sinusoid with the same frequency ω but with a particular amplitude M and phase ϕ which depend on the transfer function G(s) and on the input frequency ω .

- Given G(s) and a frequency ω we can evaluate the amplitude and phase of the steady-state output by computing the phasor $G(j\omega)$. In particular:
 - The phasor's magnitude yields the amplitude $M(\omega)$.
 - The phasor's angle with $+\mathbb{R}$ yields the phase $\phi(\omega)$.

■ We can also estimate $M(\omega)$ and $\phi(\omega)$ experimentally:

- Furthermore, notice that:
 - Amplitude $M(\omega)$ is always positive.
 - If $M(\omega) \in (0,1)$ we get attenuation.
 - If $M(\omega) = 1$ we get amplitude matching.
 - If $M(\omega) > 1$ we get amplification.
 - Phase $\phi(\omega)$ may be negative, zero or postive.
 - \blacksquare If $\phi(\omega)<0$ then the output lags the input.
 - If $\phi(\omega) = 0$ then the output matches the input.
 - If $\phi(\omega) > 0$ then the output leads the input.

Bode Plots show amplitude $M(\omega)$ and phase $\phi(\omega)$ as functions of frequency ω . More precisely, they consist of the following two plots.

- Magnitude Plot
 - Amplitude $M(\omega)$ versus frequency ω .
 - The x-axis is frequency ω in decades, i.e., $x = \log_{10}(\omega)$.
 - The y-axis is amplitude $M(\omega)$ in decibels, i.e., $y = 20 \cdot \log_{10}(M(\omega))$.
- Phase Plot
 - Phase $\phi(\omega)$ versus frequency ω .
 - The x-axis is frequency ω in decades, i.e., $x = \log_{10}(\omega)$.
 - The y-axis is phase in degrees, i.e., $y = \phi(\omega)$.

Notice that when sketching Bode Plots by hand, we usually don't draw exactly the functions $M(\omega)$ and $\phi(\omega)$ but instead sketch asymptotic approximations.

- **Bode Plots**
 - Introduction
 - Elementary Systems

Bode plot for a simple amplifier: G(s) = K

- Magnitude plot is constant at $y = 20 \cdot \log_{10}(K)$ decibels.
- Phase plot is constant at y = 0 degree.

Bode plot for an integrator: $G(s) = \frac{1}{s}$

 \blacksquare Phasor as a function of ω :

$$G(j\omega) = \frac{1}{j\omega} = -\frac{j}{\omega} \implies M(\omega) = \frac{1}{\omega} \& \phi(\omega) = -90^{\circ}$$

- Magnitude plot is $y = -20 \cdot \log_{10}(\omega)$ decibels, *i.e.*, it is a line with slope of -20 decibels per decade which hits zero decibels at $\omega = 1$ rad/s.
- Phase plot is constant at y = -90 degree.

Bode plot for a differentiator: G(s) = s

■ Phasor as a function of ω :

$$G(j\omega) = j\omega \implies M(\omega) = \omega \& \phi(\omega) = +90^{\circ}$$

- Magnitude plot is $y = +20 \cdot \log_{10}(\omega)$ decibels, *i.e.*, it is a line with slope of +20 decibels per decade which hits zero decibels at $\omega = 1$ rad/s.
- Phase plot is constant at y = +90 degree.

Bode plot for a single-pole system: $G(s) = \frac{a}{s+a}$

 \blacksquare Phasor as a function of ω :

$$G(j\omega) = \frac{a}{j\omega + a} \cdot \frac{(-j\omega + a)}{(-j\omega + a)} = \frac{a^2 - j\omega a}{\omega^2 + a^2}$$

■ Behavior at the break-away frequency, *i.e.*, $\omega = a$:

$$G(j\omega) = \frac{a^2 - ja^2}{2a^2} = \frac{1}{2} - j\left(\frac{1}{2}\right)$$

$$\implies M(\omega) = \frac{1}{\sqrt{2}} \& \phi(\omega) = -45^{\circ}$$

■ In addition, phase $\phi(\omega)$ decreases at -45° per decade on the range of frequencies from $\omega=0.1a$ to $\omega=10a$.

■ Behavior at low frequencies, *i.e.*, $\omega << a$:

$$G(j\omega) = \frac{a^2 - j\omega a}{\omega^2 + a^2} \cdot \frac{(1/a^2)}{(1/a^2)} = \frac{1 - j(\omega/a)}{(\omega/a)^2 + 1} \longrightarrow 1$$

- Magnitude plot is constant at y = 0 decibels.
- Phase plot is constant at y = 0 degree.
- Behavior at high frequencies, *i.e.*, $\omega >> a$:

$$G(j\omega) = \frac{a^2 - j\omega a}{\omega^2 + a^2} \cdot \frac{(1/\omega^2)}{(1/\omega^2)} = \frac{(a/\omega)^2 - j(1/\omega)}{1 + (a/\omega)^2} \longrightarrow -\frac{j}{\omega}$$

- Magnitude plot is $y = -20 \cdot \log_{10}(\omega)$ decibels, *i.e.*, it is a line with slope of -20 decibels per decade.
- Phase plot is constant at y = -90 degree.

Bode plot for a single-zero system: $G(s) = \frac{s+a}{a}$

■ Phasor as a function of ω :

$$G(j\omega) = \frac{j\omega + a}{a} = 1 + j\left(\frac{\omega}{a}\right)$$

■ Behavior at the break-away frequency, i.e., $\omega = a$:

$$G(j\omega) = 1 + j \implies M(\omega) = \sqrt{2} \& \phi(\omega) = -45^{\circ}$$

■ In addition, phase $\phi(\omega)$ increases at $+45^{\circ}$ per decade on the range of frequencies from $\omega=0.1a$ to $\omega=10a$.

■ Behavior at low frequencies, *i.e.*, $\omega << a$:

$$G(j\omega) = 1 + j\left(\frac{\omega}{a}\right) \longrightarrow 1$$

- Magnitude plot is constant at y = 0 decibels.
- Phase plot is constant at y = 0 degree.
- Behavior at high frequencies, *i.e.*, $\omega >> a$:

$$G(j\omega) = 1 + j\left(\frac{\omega}{a}\right) \longrightarrow j\omega$$

- Magnitude plot is $y = +20 \cdot \log_{10}(\omega)$ decibels, *i.e.*, it is a line with slope of +20 decibels per decade.
- Phase plot is constant at y = +90 degree.

Bode plot for a second-order underdamped system: $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

 \blacksquare Phasor as a function of ω :

$$G(j\omega) = \frac{\omega_n^2}{(\omega_n^2 - \omega^2) + 2\zeta\omega_n\omega_j} = \frac{\omega_n^2 \left[(\omega_n^2 - \omega^2) - 2\zeta\omega_n\omega_j \right]}{(\omega_n^2 - \omega^2)^2 + 4\zeta^2\omega_n^2\omega^2}$$

■ Behavior at the break-away frequency, i.e., $\omega = a$:

$$G(j\omega) = \cdots$$
 $\implies M(\omega) = ? \& \phi(\omega) = -90^{\circ}$

■ In addition, phase $\phi(\omega)$ decreases at -90° per decade on the range of frequencies from $\omega=0.1a$ to $\omega=10a$.

■ Behavior at low frequencies, i.e., $\omega << \omega_n$:

$$G(j\omega) = \cdots \longrightarrow 1$$

- Magnitude plot is constant at y = 0 decibels.
- Phase plot is constant at y = 0 degree.
- Behavior at high frequencies, *i.e.*, $\omega >> \omega_n$:

$$G(j\omega) = \cdots \longrightarrow -\frac{1}{\omega^2}$$

- Magnitude plot is $y = -40 \cdot \log_{10}(\omega)$ decibels, *i.e.*, it is a line with slope of -40 decibels per decade.
- Phase plot is constant at y = -180 degree.