

				Sub	ject	Co	de: I	CS	5402	•
Roll No:										1

BTECH (SEM IV) THEORY EXAMINATION 2021-22 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

Q.no	Questions	Marks	CO
(a)	Define Alphabet and String in Automata Theory.	2	2
(b)	Give the definition of Deterministic Finite Automaton (DFA).	2	1
(c)	Explain in brief about the Kleen's Theorem.	2	2
(d)	Define Context Free Grammar (CFG).	2	1
(e)	Write the Context Free Grammar (CFG) for regular expression (0+1)*	2	3
(f)	What are Right Linear grammar and Left Linear grammars?	2	3
(g)	Discuss briefly about the Push Down Automata (PDA).	2	4
(h)	What do you mean by Two stack Pushdown Automata?	2	4
(i)	What do you mean by basic Turing Machine Model?	2	5
(j)	What do you understand by the Halting Problem?	2	5

SECTION B

2. Attempt any *three* of the following:

10x3 = 30

Printed Page: 1 of 2

Q.no	Questions	Marks	CO
(a)	Explain in detail about the Turing Church's Thesis and Recursively	10	5
	Enumerable languages.		
(b)	Prove that the Compliment, Homomorphism, Inverse Homomorphism,	10	2
	and Closure of a Regular Language is also Regular.		
(c)	Give the Complete description about the Chomsky Hierarchy.	10	3
(d)	Convert the grammar $S \rightarrow aAA$, $A \rightarrow a aS bS$ to a PDA that accepts	10	4
57 68	the same language by Empty stack.		
(e)	Grammar G is given with the production S->aSS A->b. Compute the	10	1
20	string w= aababbb with the Left most and Right most derivation Tree.		

SECTION C

3. Attempt any *one* part of the following:

-	\mathbf{n}				
	()	T	_	10	
	.,		_		

4	Q.no	Questions	Marks	CO
4	(a)	Write short notes on following.	10	5
		i) Turing Machine as Computer of Integer Functions		
	1	ii) Universal Turing machine		
	(b)	Explain in detail about the Pumping Lemma and application of	10	2
-		Pumping Lemma for Regular Languages.		

4. Attempt any *one* part of the following:

\mathbf{x}	10

Q.no	Questions	Marks	CO
(a)	Construct a Non Deterministic Finite Automation (NFA) for the	10	1
	language L which accepts all the strings in which the third symbol		
	from right end is always 'a' over $\Sigma = \{a, b\}$.		
(b)	Explain in detail about the Myhill-Nerode theorem using suitable	10	3
	example.		

Roll No: Subject Code: KCS402

BTECH (SEM IV) THEORY EXAMINATION 2021-22 THEORY OF AUTOMATA AND FORMAL LANGUAGES

5. Attempt any *one* part of the following:

10 1	40	
10x1	= 10	
IUAI	-10	

Printed Page: 2 of 2

Q.no	Questions	Marks	CO
(a)	Prove that the following Language $L = \{a^nb^n: n \ge 0\}$ is not a regular	10	4
	language.	A A	
(b)	Design a Turing Machine for the language L. Where, $L=\{a^nb^nc^n n\geq 1\}$	10	5

6. Attempt any *one* part of the following:

10 1		1 0
10x1	=	10
IUAI	-	LV

Attem	upt any <i>one</i> part of the following:	10x1 = 10	
Q.no	Questions	Marks	CO
(a)	Prove that the Compliment, Homomorphism, Closure and Inverse	10	2
	Homomorphism of a Regular language is also Regular.		
(b)	Minimize the given DFA shown below (Figure A).	10	1
			2

Figure A

7. Attempt any *one* part of the following:

10

11000111	pruny one pure or the ronowing.		
Q.no	Questions	Marks	CO
(a)	Explain in detail about the following.	10	4
	i) Closure properties of Regular Languages		
	ii) Decidability- Decision properties of Regular Languages		
(b)	Check whether the grammar is ambiguous or not.	10	3
	$R \rightarrow R + R / RR / R^* / a / b / c$. Obtain the string $w = a + b^*c$		