

Process for Operationalizing a Machine Learning Problem

1. Framing the problem

- What is the expectation of analyzing the data?
- Is there a question to be answered?
- Is it completely exploratory? (a lot of data and no questions)
- Is it a machine learning problem?
- A visualization or report may be all that is needed.

2. Setup the workspace

- Use an editor Jupyter
- Folder management
 - Root folder
 - data folder
 - images folder
 - docs folder
- Import and pip install libraries
 - o Numpy, Pandas, Scikit-learn, MatPlotLib, Seaborn, Statsmodels

3. Get the Data

- Import from:
 - o csv or xls/xlsx
 - o URL
 - o SQL
 - o Txt
 - o Other files/connections

4. Explore the Data

- Visualize the data
 - o histograms, bar charts, scatter plots, correlation matrix
- Group by
- Value counts
- Info()
- Head()
- Describe()

5. Cleanse the Data

- Cleaning NaN values
 - o fillna with value, median, mean, grouped mean
 - o Drop NaN

6. Transform the Data

- Standardize and normalize the data
- Create a pipeline

7. Split the Data

- Train test split
- Standardize X_train and X_test (separately)

8. Select the Model/Test

Supervised Learning

- Numerical target Regression
 - o Lasso
 - Ridge
 - o Backwards model building
- Categorical target Classification
- Probabilistic
 - o Logistic regression
 - o Naive Bayes
- Decision tree modeling
- Ensemble
 - Random forest

SVM

Unsupervised learning

- Clustering
 - o K-means
 - o Hierarchal
- Dimension Reduction
 - o PCA

9. Fine tune the Model

- K-folds
- For loop alpha scores
- Grid Search

10. Evaluate the Final Model

- Accuracy Scores (RMSE, etc.)
- Confusion matrix