Person GRA PORJECT

GROUP 174

ÜBERSICHT

O1 PROBLEMSTELLUNG

02 SIMULATIONSANSATZ

03 IMPLEMENTIERUNG

04 BEWERTUNG

PROBLEM-STELLUNG

Praktische Nutzung des TLBs

1-Beschleunigung von Speicherzugriffen (Caching)

2-Effizienzsteigerung in Mehrbenutzersystemen (Isolation und Sicherheit)

3-Verbesserte Systemleistung

PROBLEM-STELLUNG

TLB-Eigenschaften

Direct Mapped TLB

PROBLEM-STELLUNG

TLB-Eigenschaften

1-Beschleunigung von Speicherzugriffen

2-Effizienzsteigerung in Mehrbenutzersystemen

3-Verbesserte Systemleistung

SIMULATIONSANSATZ UND IMPLEMENTIERUNG

SIMULATIONS-ANSATZ

Wie wird das TLB-Verhalten nachgebildet?

- Nutzung maximaler Hardwarekomponenten

- Beginn mit einem Hardwaredesign (Logisim evolution) zur Minimierung der Softwareabstraktion

- Geringerer Einsatz von Datenstrukturen

SIMULATIONS-ANSATZ

Wie es auf reale Situationen anwendbar gemacht wird?

-Integration des virtuellen Speichers

-Virtuelle Lookup Table

-Kommunikation mit einem virtuellen Prozessor

-Abdeckung von Randfällen

IMPLEMENTIERUNG

Rahmenprogramm

-Benutzerfreundlichkeit

-Sinnvolle Rückmeldungen und Kommentare

VON DER HARDWARE ZU .HPP-MODULEN

TLB line

sc_vector<sc_signal<bool>> q_bar_signals
sc_vector<D_FLIP_FLOP> dflipflops
sc_signal<bool> tlb_line_clk
AND_GATE and_gate

Multiplexer

Comparator

Demultiplexer

TLB mit allen Verbindungen

Globale Konstanten

```
extern size_t misses;
extern size_t numRequests;
extern size_t cycle_counter;
extern int max_cycles;
extern int tlb_line_length;
extern unsigned tlbSize;
extern unsigned blocksize;
extern unsigned tlbsLatency;
extern unsigned memoryLatency;
extern unsigned v2bBlockOffset;
extern unsigned number_of_tagBits;
extern unsigned number_of_tlb_indexBits;
extern unsigned number_of_tlb_indexBits;
```

Namespaces :Namenskonflikte zu vermeiden und Code zu organisieren

Latenz Berechnung

Hit latency= TLB latency+ memory latency

Hit latency= TLB latency+ 2*memory latency

Miss penalty= memory latency

primitiv Gatteranzahl

DeMultiplexer= log_2(TLB_SIZE) + 2 * TLB_SIZE

D FlipFlop= (TLB_LINE_LENGTH * TLB_SIZE) * 4

Multiplexer= log_2(TLB_SIZE) + 64TLB_SIZE - 32

2nd MuxItiplexer= 97 gates

And Gate= 2

Not Gate = 1

Comparator = 63

Optimierungen

Page zu Page-Zuordnung:

Nutzung einer TLB-Entry für mehrere Adressen oder Adressgruppen.

Verwendung dynamischer Vektoren:

Erreichung der Flexibilität von Hardwarekomponenten.

Testing Units

KORREKTHEIT

das Speicherzugriffsverhalten einer Summe über einer verketteten Liste.

Ergebnisse von Banasthali University

KORREKTHEIT

DANKE FÜR IHRE AUFMERKSAMKEIT