Advanced Machine Learning

Gaussian Processes: Distribution on Functions

Learning goals

- How to model distributions over discrete functions
- The role of the covariance function

For simplicity, let us consider functions with finite domains first.

Let $\mathcal{X} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\}$ be a finite set of elements and \mathcal{H} the set of all functions from $\mathcal{X} \to \mathbb{R}$.

Remark: \mathcal{X} does not mean the training data here but means the "real" domain of the functions.

Since the domain of any $f(.) \in \mathcal{H}$ has only n elements, we can represent the function f(.) compactly as a n-dimensional vector

$$\mathbf{f} = \left[f\left(\mathbf{x}^{(1)}\right), \dots, f\left(\mathbf{x}^{(n)}\right) \right].$$

DISTRIBUTIONS ON DISCRETE FUNCTIONS

One natural way to specify a probability function on a discrete function $f \in \mathcal{H}$ is to use the vector representation

$$\mathbf{f} = \left[f\left(\mathbf{x}^{(1)}\right), f\left(\mathbf{x}^{(2)}\right), \dots, f\left(\mathbf{x}^{(n)}\right) \right]$$

of the function.

Let us see *f* as a *n*-dimensional random variable. We will further assume the following normal distribution:

$$extbf{\emph{f}} \sim \mathcal{N}\left(extbf{\emph{m}}, extbf{\emph{K}}
ight).$$

Note: For now, we set m = 0 and take the covariance matrix K as given. We will see later how they are chosen / estimated.

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a two-dimensional normal variable.

$$\mathbf{f} = [f(1), f(2)] \sim \mathcal{N}(\mathbf{m}, \mathbf{K})$$

In this example,
$$m = (0,0)$$
 and $K = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$.

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a two-dimensional normal variable.

$$\mathbf{f} = [f(1), f(2)] \sim \mathcal{N}(\mathbf{m}, \mathbf{K})$$

In this example, m = (0,0) and $K = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$.

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a two-dimensional normal variable.

$$extbf{\emph{f}} = [extit{\emph{f}}(1), extit{\emph{f}}(2)] \sim \mathcal{N}(extit{\emph{m}}, extit{\emph{K}})$$

In this example, m = (0,0) and $K = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$.

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a five-dimensional normal variable.

$$extbf{\emph{f}} = [f(1), f(2), f(3), f(4), f(5)] \sim \mathcal{N}(extbf{\emph{m}}, extbf{\emph{K}})$$

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a five-dimensional normal variable.

$$extbf{\emph{f}} = [f(1), f(2), f(3), f(4), f(5)] \sim \mathcal{N}(extbf{\emph{m}}, extbf{\emph{K}})$$

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a five-dimensional normal variable.

$$\mathbf{f} = [f(1), f(2), f(3), f(4), f(5)] \sim \mathcal{N}(\mathbf{m}, \mathbf{K})$$

ROLE OF THE COVARIANCE FUNCTION

• "Meaningful" functions (on a numeric space \mathcal{X}) may be characterized by a spatial property:

If two points $\mathbf{x}^{(i)}$, $\mathbf{x}^{(j)}$ are close in \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)})$, $f(\mathbf{x}^{(j)})$ should be close in \mathcal{Y} -space.

In other words: If they are close in \mathcal{X} -space, their functions values should be **correlated**!

We can enforce that by choosing a covariance function with

$$K_{ij}$$
 high, if $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$ close.

ROLE OF THE COVARIANCE FUNCTION / 2

Covariance controls the "shape" of the drawn function. Consider cases of varying correlation structure

a) uncorrelated: K = I.

Points are uncorrelated. We sample white noise.

ROLE OF THE COVARIANCE FUNCTION

b) Correlation almost 1:
$$\mathbf{K} = \begin{pmatrix} 1 & 0.99 & \dots & 0.99 \\ 0.99 & 1 & \dots & 0.99 \\ 0.99 & 0.99 & \ddots & 0.99 \\ 0.99 & \dots & 0.99 & 1 \end{pmatrix}$$
.

Points are highly correlated. Functions become very smooth and flat.

ROLE OF THE COVARIANCE FUNCTION / 2

• We can compute the entries of the covariance matrix by a function that is based on the distance between $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$, for example:

c) Spatial correlation:
$$K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{1}{2}\left|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right|^2\right)$$

× × ×

Function exhibit interesting, variable shape.

NB: $k(\cdot, \cdot)$ is called **covar. function** or **kernel**, we will study it more later.