A Pragmatic Introduction to Secure Multi-Party Computation: Errata

David Evans

University of Virginia evans@virginia.edu

Vladimir Kolesnikov

Georgia Institute of Technology kolesnikov@gatech.edu

Mike Rosulek

Oregon State University rosulekm@eecs.oregonstate.edu

Errata (in Reverse Chronological Order)

Last update: September 19, 2020

19 September 2020

Corrected statement about Turing-completeness of finite FHE (Section 1.1), noted by Florian Kerschbaum. It now reads, "To provide *fully homomorphic encryption* (FHE), it is necessary to support a universal set of operations (e.g., both addition and multiplication, along with constants 0 and 1) so that any finite function can be computed.".

8 September 2020

Fixed grammatical error in first sentence!

13 April 2020

Many corrections suggested by Weiran Liu and Shengchao Ding. The substantive ones are:

- Figure 2.3: The notation C should be replaced by C.
- Figure 3.1 relabeled as Table 3.1 (and references fixed).
- p. 41: "Generalization to more than two parties. ... where n players P_1, P_2, \ldots, P_n evaluate a boolean circuit F" should be C.
- p. 53: "by setting both subshares of the first wire to a random string $R_1 \in_R D$ " should be $R_1 \in_R \mathcal{D}_S$.
- p. 54, Section 3.6, last paragraph: "Then P₁ transfers to P₂ active wires on the input labels" should be "Then P₁ transfers to P₂ active labels on the input wires."
- p. 61, Section 3.8.1: Replaced Alice and Bob wit P₁ and P₂.
- Figure 4.1: In 3(a), the notation $p_a \oplus p_b$ should be $p_a^0 \oplus p_b^0$.
- Figure 4.1: The notation R (in 3(b)) should be replaced by Δ .

- p. 71: to obtain either c_0 (should be c^0) (false, when $b = b_0$ (should be b^0)) or $c^1 = c^0 \oplus \Delta$ (true, when $b^1 = b^0 \oplus \Delta$ (should be $b = b^1$)). Similar problem in the line before $(c_0 \oplus b_0$ should be $c^0 \oplus b^0$).
- p. 88, Figure 5.1, caption: A single array access requiring *n* (should be *N*) multiplexers.
- p. 90, above Other Oblivious Data Structures: the total circuit size for k operations is $O(k \log n)$ (should be $O(k \log N)$).
- p. 95, first paragraph: "...could be implemented with less than 0.0001 probability of overflow for $\delta = 32$ " should be "for a bucket size of 32".
- p. 99, first paragraph: The missing close parentheses should be after "function" earlier in this sentence, $y_p^x = P_p^{\alpha,\beta}(x)$ (party p's share output of the function), and $t_p^x = (x = \alpha)$ (a share of 1 if $x = \alpha$, otherwise a share of 0).
- Figure 6.1: should be Table 6.1.
- p. 109, first paragraph: "circuits agree, or by recovering P₂'s" should be P₁'s.
- p. 130: P_2 computes s_3 should be s_2 .
- p. 136, paragraph 2: $x_i =_{j \in \{1...i\}} x_i^j$ should be $j \in \{1...\sigma\}$.
- p. 136, last paragraph: "Then, instead of P₂ just sending the keys associated with its input, it sends the appropriate decommitments." should be P₁.

23 June 2019

- Footnote 1 on Page 34 (Patricia Thaine): "will reveal *x* to P₁" should be "will reveal *x* to P₂".
- Section 4.1.2 (p. 67, bottom) (Patricia Thaine): The share reconstruction description didn't include the semantic indexes. To clarify, it should be:

The share reconstruction procedure on input sh_{1i} , sh_2i , outputs $sh_{1i} \oplus sh_{2i} = s_i$.

• Section 6.2 (p. 109) (Patricia Thaine):

"It follows that the parties must always perform the second phase, even when P1 is honest."

should be

"It follows that the parties must always perform the second phase, even when P1 is caught cheating."

• Section 6.5.1 (p. 113-114) (Patricia Thaine): The given wording could be interpreted ambiguously,

"In other words, the ZK proof should prevent parties from running π honestly, but with different inputs in different rounds."

Replaced with:

"In other words, the ZK proof should prevent parties from running π with different inputs in different rounds."

10 July 2019

• Fixes to notation in Section 4.1 (the GESS construction) to avoid confusion in the Δ notation. (Shengchao Ding)

23 Aug 2019

- Section 4.1.3, p. 71, line 2-3 (Shengchao Ding): "when v_a is false, $v_c = v_b$ " should be "when v_a is true, $v_c = v_b$ "
- Section 4.2.2, several instances (Shengchao Ding): "CMBC-GC" should be "CBMC-GC"

2 October 2019

• Figure 3.4 (BMR Multi-Party GC Generation) (Kelong Cong): line 23 of the figure has $w_{c,1}^0$, but it should be $w_{c,1}^1$.