Building Machine Learning Models in Spark 2

MACHINE LEARNING PACKAGES: SPARK.MLLIB VS. SPARK.ML

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Spark 1.x provided powerful support for ML in spark.mllib

Spark 2.x goes further with spark.ml

Faster execution

Ease of hyperparameter tuning

Both libraries offer powerful support

Prerequisites and Course Outline

Prerequisite Courses - Spark

Beginning Data Exploration and Analysis with Apache Spark

- Programming in Spark 1.x using Python

Getting Started with Spark 2

- Programming in Spark 2.x using Python

Prerequisite Courses - ML

How to Think About Machine Learning Algorithms

- Basic ML understanding and algorithms

Understanding Machine Learning with Python

- Basic ML in the Python language

Software and Skills

Be very comfortable programming in Python (Python 3)

Be comfortable working with Jupyter notebooks

Understand the basics of Spark and ML

Course Outline

ML libraries in Spark 1 vs Spark 2

- Basic Spark architecture
- Why 2 libraries, when to use one over the other?

Classification and regression models

- Decisions trees, random forest
- Linear regression, Lasso and Ridge regression

Clustering and dimensionality reduction

- k-means clustering, PCA

Recommendation systems

- Collaborative filtering using explicit and implicit ratings

RDDs and Spark 1.x

Why is this relevant in Spark 2?

RDDs are still the fundamental building blocks of Spark

Resilient Distributed Datasets

All operations in Spark are performed on in-memory objects

Resilient Distributed Datasets

An RDD is a collection of entities - rows, records

Characteristics of RDDs

Partitioned

Immutable

Resilient

Split across data nodes in a cluster

RDDs, once created, cannot be changed

Can be reconstructed even if a node crashes

Partitioned

RDDs represent data in-memory

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi
3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi
4 5	Indigo Air India	10:45 11:15	New Delhi Mumbai

Data is divided into partitions

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi
3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi
5	Indigo Air India	10:45 11:15	New Delhi Mumbai

Data is divided into partitions

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi

3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi

5	Air India	11:15	Mumbai
6	Vistara	12:00	New Delhi

Distributed to multiple machines, called nodes

1	Indigo	06:45	Bangalore
2	Jet Air	08:45	New Delhi

3	SpiceJet	09:15	Mumbai
4	Indigo	10:45	New Delhi

5	Air India	11:15	Mumbai
6	Vistara	12:00	New Delhi

Distributed to multiple machines, called nodes

Nodes process data in parallel

Immutable

An RDD cannot be mutated

Only two operations are permitted on an RDD

Only Two Types of Operations

Transformation

Action

Transform into another RDD

Request a result

Transformations are **executed** only when a result is requested

Lazy Evaluation

Spark keeps a record of the series of transformations requested by the user

Lazy Evaluation

It groups the transformations in an efficient way when an Action is requested

Resilient

RDDs can be reconstructed even if the node it lives on crashes

RDDs can be created in 2 ways

Reading a file

Transforming another RDD

Reading a file

Transforming another RDD

Every RDD keeps track of where it came from

It tracks every transformation which led to the current RDD

Characteristics of RDDs

Partitioned

Immutable

Resilient

Split across data nodes in a cluster

RDD once created cannot be changed

Can be reconstructed even if a node crashers

RDDs, DataFrames, Datasets

DataFrame: Data in Rows and Columns

DataFrame: Data in Rows and Columns

DATE	OPEN		PRICE
2016-12-01	772	• • •	779
2016-11-01	758	• • •	747
2006-01-01	302	• • •	309

Each column represents 1 variable (a list or vector)

From File to DataFrame

read

DATE	OPEN	•••	PRICE
2016-12- 01	772	• • •	779
2016-11- 01	758	• • •	747
2006-01 -01	302	• • •	309

File

DataFrame

RDDs to DataFrames

RDDs

Primary abstraction since initial versions

Immutable and distributed

Conceptually similar to a collection of records

No concept of columns

No optimized execution

Available in all languages

DataFrames

Added to Spark in 1.3

Also immutable and distributed

Conceptually equal to a table in an RDBMS

Named columns like Pandas or R

Leverage optimizers in recent versions

Available in all languages

Datasets to DataFrames

Datasets

Scala and Java*

Type safe OOP interface

*Datasets of the Row() object in Scala/ Java often called DataFrames

DataFrames

Python, R, Scala, Java

No type safety at compile time

Equivalent to Dataset<Row> in Java or Dataset[Row] in Scala

Starting Spark 2.0, APIs for Datasets and DataFrames have merged

DataFrames Built on Top of RDDs

Partitioned

Immutable

Resilient

Split across data nodes in a cluster

Once created, cannot be changed

Can be reconstructed even if a node crashes

Demo

Install standalone Spark on your local machine

Set up the PySpark REPL interface

Making the Choice Between spark.ml vs. spark.mllib

Changes Starting Spark 2.0

Easier

Unifying Datasets and DataFrames, SQL support...

Faster

Optimize like a compiler, not a DBMS

Performance Improvements

Comparison of time per row, on 1 billion records on single thread

Delegation	Consult 1 C	Consult O O	Cura a drug Falakay
Primitive	Spark 1.6	Spark 2.0	Speedup Factor
filter	15ns	1.1ns	13.6
sum w/o group	14ns	0.9ns	15.6
sum w/ group	79ns	10.7ns	7.4
hash join	115ns	4.Ons	28.8
sort (8-bit)	620ns	5.3ns	117.0
sort (64-bit)	620ns	40ns	15.5
sort-merge-join	750ns	700ns	1.1

Source: https://databricks.com/blog/2016/07/26/introducing-apache-spark-2-0.html

Ease of Use

Unified API for DataFrames spark.ml and ML pipelines
Advanced streaming

spark.mllib and spark.ml

spark.mllib

spark.ml

Older

Newer

RDDs

DataFrames (faster!)

For now, more functionality

Functionality catching up

ETL hard - no pipeline support

Support for ML pipelines

Hyperparameter tuning hard

Tools for hyperparameter tuning

spark.mllib and spark.ml

spark.mllib

To maintain backward compatibility with 1.x applications

To use features which are not available in the newer version

ETL is not important, do not need pipelines

spark.ml

Spark 2 is available and you want to take advantage of better performance

To use higher levels APIs and abstractions for faster development

ETL, chaining transformations significant

Both packages are currently useful - spark.mllib has more features

spark.ml - feature compatibility around the corner

spark.mllib will be deprecated in the future

Jockey or Basketball Player?

Jockeys

Tend to be light to meet horse carrying limits

Basketball Players

Tend to be tall, strong and heavy

Jockey or Basketball Player?

Intuitively know

- jockeys tend to be light...
- ...and not very tall
- basketball players tend to be tall
- ...and also quite heavy

Fit knowledge into rules

Each rule involves a threshold

Fit knowledge into rules

Each rule involves a threshold

Order of decision variables matters

Rules and order found using ML

"CART"

<u>Classification And</u> <u>Regression Tree</u>

Decision Trees for Classification

Decision Trees for Classification

To solve

- Traverse tree to find right node
- Return most frequent label of all training data points in that node

Decision Trees for Regression

Weight > 150 lbs Basketball Basketball Height >6' Basketball Jockey

Decision Trees for Regression

To solve

- Traverse tree to find right node
- Return average number of years of all training data points in that node

Muggsy Bogues

Shortest player ever in the NBA
5'3" and 135 lbs
Our tree would classify him as Jockey
No threshold is perfect!

Tree Construction

CART optimizes tree construction

Minimizes "impurity" of each node

Impurity ~ misclassified data points

Impurity

Impurity

7 jockeys, 3 basketball players from actual data

Two ways to measure impurity

- Gini impurity
- Entropy

Yield similar trees

Tree Construction

Height <=6' Basketball Jockey

Gini Impurity

CART seeks to minimize Gini impurity at each node

Gini impurity is found from rule violations in training data

Height >6' Basketball Gi = 0.095

Gini Impurity

In training data:

100 samples with height > 6'

- 95 basketball players
- 5 jockeys

$$G_i = 1 - (95\%)^2 - (5\%)^2 = 0.095$$

Height >6' Basketball Jockey Gi = 0.0 Completely pure

Gini Impurity

In training data:

100 samples with height <= 6'

- O basketball players
- 100 jockeys

$$G_i = 1 - (0\%)^2 - (100\%)^2 = 0$$

Gini Impurity

200 samples (sum of the leaf nodes)

- 95 basketball players
- 105 jockeys

$$G_i = 1 - (95/200)^2 - (105/200)^2$$

= 0.49875

Weight > 150 lbs Basketball Height >6' Basketball Jockey

Advantages of Decision Trees

"White Box" ML ~ leverage experts
Non-parametric

- Little hyperparameter tuning
- Little data prep

Weight > 150 lbs Basketball Height >6' =6' Basketball Jockey

Drawbacks of Decision Trees

Prone to overfitting

- Common risk with non-parametric

Unstable

- Small changes in data cause big changes in model

Demo

Implement classification using decision trees in spark.mllib

Data in the CSV as well as the LIBSVM format

<label> <index1>:<value1> <index2>:<value2>...

0 1:230 2:188 3:32 4:29.4

1 line per instance

Each line ends with '\n'

Sparse - missing attributes can be omitted

<a href="mailto: <index1>:<value1> <index2>:<value2>...

0 1:230 2:188 3:32 4:29.4

O = Jockey

<label> <index1>:<value1> <index2>:<value2>...

0 1:230 2:188 3:32 4:29.4

Index = 1 for attribute **Weight**

<label> <index1>:<value1> <index2>:<value2>...

0 1:230 2:188 3:32 4:29.4

Weight in lbs = 230

<label> <index1>:<value1> <index2>:<value2>...

0 1:230 2:188 3:32 4:29.4

Index = 2 for attribute **Height**

<label> <index1>:<value1> <index2>:<value2>...

0 1:230 2:188 3:32 4:29.4

Height in cm = 188

<label> <index1>:<value1> <index2>:<value2>...

0 1:230 2:188 3:32 4:29.4

Index = 3 for attribute **Age** Age in years = 32

<label> <index1>:<value1> <index2>:<value2>...

0 1:230 2:188 3:32 4:29.4

Index = 4 for attribute **BMI**BMI ratio = 29.4

<label> <index1>:<value1> <index2>:<value2>...

0 1:230 2:188 3:32 4:29.4

1 line per instance

Each line ends with '\n'

Sparse - missing attributes take value 0

Missing Attributes

<label> <index1>:<value1> <index2>:<value2>...

0 1:145 2:158 3:39

Value for index 4 is missing

No worries - can calculate from height and weight

Sparse - missing attributes can be omitted

Summary

Spark 1.x provided powerful support for ML in spark.mllib

Spark 2.0 goes further with spark.ml

Faster execution

Ease of hyperparameter tuning

ETL support with ML pipelines

spark.mllib currently has more features but will be deprecated in the future