

¿De donde viene la palabra algoritmo?

La palabra "algoritmo" proviene del gran matemático árabe Mohamed Al Kho Warizmi.

Escribió entre los años 800 y 825 la obra "Quitab Al Jabr Al Mugabala" que incluía el sistema de numeración hindú y el concepto de cero, alcanzó gran reputación por el enunciado de las reglas paso a paso para sumar, restar, multiplicar y dividir números decimales. La traducción al latín del apellido "Al Kho Warizmi" en "algorismus derivó" posteriormente en algoritmo.

"Es sencillamente un conjunto de reglas para efectuar algún cálculo, bien sea a mano, o más frecuentemente en una máquina" (Brassard y Bratley 2000).

"Es un método para resolver problemas" (Joyanes 2003).

"...es una descripción de los pasos básicos a seguir para cumplir determinada tarea... para que una computadora realice una tarea es necesario definir un algoritmo" (Torrealba 2004)

LL El psiquiatra William Glasser (1925-2013) desarrolló una serie de experimentos para saber bajo qué técnicas se consolida mejor el aprendizaje de una determinada materia. La que mejor resultado dio fue tener que enseñar dicho contenido"

La pirámide de aprendizaje de William Glasser 10% de lo que leemos 20% de lo que oímos 30% de lo que vemos 50% de lo que vemos y oímos 70% de lo que discutimos 80% de lo que hacemos 95% de lo que enseñamos **@tamaller**

Lo bueno de programar

Elaborar programas para la resolución de problemas mediante ordenadores nos obliga a implementar algoritmos en un determinado lenguaje de programación, para darle órdenes al computador, que entienda y pueda cumplir; tal que es necesario definir instrucciones simples para ser ejecutadas por un ordenador.

El objetivo de programar es resolver un problema y hay que enseñarle al computador a hacerlo.

Lo difícil de programar

Aún con toda la información disponible y asequible sobre programar, resolver un problema usando un computador no será fácil si no se es capaz de analizar el problema y darle una solución sencilla que pueda describirse en lenguaje básico y lógico.

Todas sus rutas para resolver un problema deben tener rutas alternas. Para programar, se deben tener planes de reserva para los planes de reserva. Es importante cultivar la lógica mental para ser conscientes de estar diciendo lo correcto al usar los comandos predefinidos.

Programar no es sólo saber es saber resolver

Un ejercicio simple

En síntesis, un algoritmo es un conjunto de pasos precisos, definidos y finitos que conducen a la solución de un problema:

- → Una salida al cine.
- Hallar la pendiente de una recta

Tipos de algoritmos

- 1. Informal
- 2. Informal Estructurada
- 3. Pseudo-código
- 4. Diagrama de Flujo
- 5. Lenguaje de Programación

Características de un algoritmo

Datos númericos

estoEsUnNumero = 98.34

Datos caráteres

estoEsUnConjuntoDeLetras="Una_cadena"

Datos Booleanos

estoEsUnaBooleana = True

https://codecombat.com/

Niveles

Nivel 1	Calabozos de Kithgard	Comandos
Nivel 2	Gemas en lo profundo.	Orden en comandos
Nivel 3	Guardia de la sombra	Comandos para una meta
Nivel 4	Mina Enemiga	Comandos avanzados
Nivel 5	Nombres Verdaderos	Combinación de comandos
Nivel 6	Los comentarios de la celda	Organizar ideas
Nivel 7	Bibliotecario de Kithgard	Combinar comandos
Nivel 8	El prisionero	Estrategias

De la secuencia a...

Una estructura en algoritmia hace referencia a un grupo de líneas que tiene una finalidad o uso determinado dentro del flujo de solución de un problema.

Variables

Secuencias

Ciclos

Condicionales

Características SON estructuras secuenciales donde las instrucciones Tedrosouth of him do in the circulation of the circ de un algoritmo son estructuras selectivas donde las instrucciones. son estructures iterativas donde las instrucciones so signer or und society de in due de signer de la signer instrucciones se élecution de dribo nacio albaio representan earlier die due pueden ono oie cutatie e seguin el cutatificiento de una ver sedin a tipo de cic Seculencide condición.

Niveles

Nivel 9	Baile de Fuego	Ciclos
Nivel 10	Laberinto encantado	Ciclos y condición
Nivel 11	Descendiendo más allá	Comandos con ciclos
Nivel 12	La puerta del terror	Comandos con ciclos
Nivel 13	Hack and Dash	Estrategias con ciclos
Nivel 14	Las Alacenas de Kithgard	Estrategias con ciclos
Nivel 15	Enemigo Conocido	Variables
Nivel 16	Maestro de Nombres	Funciones con variables

Informal a codificado

Hallar el peso de un cuerpo.

Solución estructurada

- Obtenga la masa del cuerpo.
- 2. Determine el peso del cuerpo multiplicando la masa por el valor de la aceleración de la gravedad.
- Entregue el valor del peso calculado.

Solución codificada

Empieza Algoritmo "Peso de un cuerpo "

- 1. Muestre "Digite un valor (Kg)"
- 2. Leer masa
- 3. g = 9.8
- 4. peso = masa * g
- 5. Muestre "El peso del cuerpo es:" peso "Newtons "

Termina Algoritmo

Codificando

Cualquier lenguaje formal (textual o gráfico), exige tener algunas reglas mínimas de construcción:

- Símbolos (operaciones matemáticas, lógicas)
- Palabras (íconos) que representan acciones
- Reglas para construir instrucciones (sintaxis)

También poseen unas limitaciones:

Cuando se construye un algoritmo se deben conocer las limitaciones o capacidades de quién lo ejecuta.

Regla de oro: asumir las capacidades mínimas matemáticas y lógicas.

Regla práctica: asumir que capacidades más complejas pueden estar encapsuladas en algoritmos externos (rutinas).

Un buen pseudo-código

Estructurar para codificar

Entradas

- Identificar las entradas o valores que nos da el problema.
- 2. Asignar los nombres de las variables que contendrán estos valores.
- 3. Definir el tipo de dato que es cada variable.
- Determinar si estos valores van a ser leídos o definidos.

Salidas

- Identificar la salida (o salidas) que nos pide el problema.
- 2. Asignar los nombres de las variables que contendrán estos valores.
- 3. Definir el tipo de dato que es cada variable.

Estructurar para codificar

Procedimiento

- 1. Identificar las posibles soluciones del problema.
- Estructurar las soluciones informalmente.
- 3. Revisar cada solución estructurada, ¿es posible con las limitaciones de un equipo virtual? ¿Qué necesita saber el computador? ¿Cuál es la más compleja?
- 4. Replantear la solución según el paso anterior y volver al punto # 1.

Problemas

- 1. Un traductor de números (1 7) a días de la semana correspondiente.
- 2. Calcular el promedio de un conjunto de números ingresados.
- 3. Calcular las raíces de un polinomio de la forma ax²+bx+c.
- 4. Determinar si un número es par e impar

Créditos

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Unsplash</u>