Statistical Learning and Machine Learning Lecture 23 - Neural Networks 1

October 13, 2021

Course overview and where do we stand

Linear and kernel methods

Linear Basis Function models:

- Useful analytical properties (convex optimization)
- Usually fast to compute
- Manual design of the basis functions

Kernel methods:

- Useful analytical properties (convex optimization)
- Efficient for large D and small N
- Inefficient (even intractable) for large N
- A-priori design of the kernel functions

Why Neural Networks?

Neural networks:

- Adaptive (parametric) basis functions
- Hierarchical data transformations
- Usually more compact (and efficient) than kernel methods of similar performance
- Non-convex optimization
- Neural networks comprising of many hidden layers (*Deep Learning*)
 have proven to be effective in many machine learning problems

The artificial neuron

The basic building block of a neural network is called *neuron*:

• It receives as input a vector, e.g. $x \in \mathbb{R}^D$ and applies the following transformation:

$$\alpha = \sum_{i=1}^{D} w_i x_i + w_0 = \mathbf{w}^T \mathbf{x} + w_0$$
 (1)

$$z = h(\alpha) \tag{2}$$

where:

- $\{w, w_0\}$ are the parameters of the neuron
- w is called weight and w_0 is called bias
- ullet α is known as the activation
- $h(\cdot)$ is a nonlinear activation function
- $h(\cdot)$ can take many forms, depending on the position of the neuron in the neural network and the problem at hand

A two-layer feed-forward neural network

$$y_k(x, w) = \sigma \left(\sum_{j=1}^{M} W_{kj}^{(2)} h \left(\sum_{i=1}^{D} W_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$
(3)

Multi-layer feed-forward neural network

Multi-layer feed-forward neural network

Activation functions

Name	Equation	Derivative
Identity	f(x) = x	f'(x) = 1
Logistic	$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
HyperbTan	$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan	$f(x) = \tanh^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
ReLU	$f(x) = \begin{cases} 0, & \text{if } x \le 0 \\ x, & \text{if } x > 0 \end{cases}$	$f(x) = \begin{cases} 0, & \text{if } x \le 0\\ 1, & \text{if } x > 0 \end{cases}$
Softmax	$f_i(\mathbf{x}) = \frac{e^{x_k}}{\sum_{l=1}^K e^{x_l}}, \ k = 1, \dots, K$	$\frac{\partial f_i(\mathbf{x})}{\partial x_j} = f_i(\mathbf{x})(\delta_{ij} - f_j(\mathbf{x}))$

Activation functions

A two-layer feed-forward neural network

If we 'absorb' the bias parameters in the corresponding weight vectors using additional dimensions (having a value equal to 1) on the input and hidden-layer output vectors:

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=0}^M W_{kj}^{(2)} h \left(\sum_{i=0}^D W_{ji}^{(1)} x_i \right) \right) = \sigma \left(W^{(2)T} \underbrace{h(W^{(1)T} \tilde{\mathbf{x}})}_{\tilde{\mathbf{z}}} \right)$$
(4)

where $\tilde{\mathbf{z}} \in \mathbb{R}^{M+1}$ and:

$$\begin{aligned} W^{(1)} &= & [w_1^{(1)}, \dots, w_M^{(1)}] \in \mathbb{R}^{(D+1) \times M} \\ W^{(2)} &= & [w_1^{(2)}, \dots, w_K^{(2)}] \in \mathbb{R}^{(M+1) \times K} \end{aligned}$$

Note that the activation functions are applied *element-wise* (on each dimension

Multilayer Perceptron

The above neural network is called *Multilayer Perceptron* (or MLP):

• an important property is that the activation functions of all neurons are differentiable w.r.t. their parameters

The use of nonlinear activation functions is crucial:

 If we use linear activation functions in the above two-layer neural network:

$$y_k(\mathbf{x}, \mathbf{w}) = \mathbf{W}^{(2)T} \mathbf{W}^{(1)T} \tilde{\mathbf{x}} = \mathbf{W}^T \tilde{\mathbf{x}}$$
 (5)

where $W = W^{(2)T}W^{(1)T} \in \mathbb{R}^{(D+1)\times K}$.

 Thus, any neural network with more than one layers and linear activation functions correspond to an one-layer neural network.

Skip connections

The connections in the network do not need to be restricted between neurons of successive layers (however they need to be feed-forward):

Universal approximators

The approximation properties of feed-forward networks have been widely studied:

- Neural networks are said to be universal approximators.
- A two-layer network with linear outputs can uniformly approximate any continuous function on a compact input domain to arbitrary accuracy provided the network has a sufficiently large number of hidden units
- This holds for a wide range of hidden unit activation functions (excluding polynomials)

Universal approximators

(left to right) $f(x) = x^2$, $f(x) = \sin(x)$, f(x) = |x| and f(x) = H(x) Red: approximation of f(x) using a two-layer network with 3 hidden neurons (tanh act. function - color lines) and linear output

Weight-space symmetries

Let us consider the above two-layer network (having *tanh* activation functions):

- If we use $\tilde{W}^{(1)} = -W^{(1)}$, then the output of the hidden layer is $\tilde{\zeta} = -\tilde{z}$ (because $tanh(-z_i) = -tanh(z_i)$)
- Using $\tilde{W}^{(2)} = -W^{(2)}$ leads to the same output as before.

There exist multiple combinations of different weight values which can give the same result!

Neural Network Training: Regression

Given a set of data points x_n , n = 1, ..., N, the corresponding target values t_n and including all the weights of the neural network in a parameter w:

• we assume that t follows a Gaussian distribution:

$$p(t|x, w) = \mathcal{N}(t|y(x, w), \beta^{-1})$$
(6)

where β is the precision (inverse variance) of the distribution.

• The likelihood function is (we use linear output neurons):

$$p(\mathsf{t}|\mathsf{X},\mathsf{w},\beta) = \prod_{n=1}^{N} p(t_n|\mathsf{x}_n,\mathsf{w},\beta) \tag{7}$$

• The error function is the negative log-likelihood (discarding the terms not depending on w and scaling factors):

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \left(y(x_n, w) - t_n \right)^2$$
 (8)

Neural Network Training: Regression

Minimizing E(w) will lead to w_{ML} :

- Due to the use of nonlinear activation functions for the hidden neurons, w_{ML} will be a local minimum of E(w) (non-convex optimization)
- Using w_{ML} we can optimize for β by minimizing the negative log-likelihood function:

$$\frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} \left(y(x_n, w_{ML}) - t_n \right)^2$$
 (9)

The optimizations w.r.t. w and β are performed by using an iterative optimization process.

Neural Network Training: Regression

When the targets are vectors t_n , n = 1, ..., N:

• We obtain w_{ML} by minimizing:

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \| y(x_n, w) - t_n \|^2$$
 (10)

• We use w_{ML} to optimize for β_{ML} :

$$\frac{1}{\beta_{ML}} = \frac{1}{NK} \| y(x_n, w_{ML}) - t_n \|^2$$
 (11)

Neural Network Training: Binary classification

Consider that the targets are $t_n \in \{0, 1\}$, where:

- $t_n = 1$ means that $\mathsf{x}_n \in \mathcal{C}_1$
- $t_n = 0$ means that $x_n \in C_2$

The neural network will have one output neuron with logistic sigmoid activation function:

$$y = \sigma(\alpha) = \frac{1}{1 + \exp(-\alpha)}$$
 (12)

ensuring that $0 \le y(x, w) \le 1$.

Neural Network Training: Binary classification

The conditional distribution of t w.r.t. \times and w is then a Bernoulli distribution:

$$p(t|x,w) = y(x,w)^{t} (1 - y(x,w))^{1-t}$$
(13)

The negative log-likelihood function becomes the *cross-entropy* error function:

$$E(w) = -\sum_{n=1}^{N} \left(t_n \ln y(x_n, w) + (1 - t_n) \ln(1 - y(x_n, w)) \right)$$
 (14)

Neural Network Training: Multi-class classification

The target vectors $t_n \in \mathbb{R}^K$ follow the 1-of-K coding scheme.

The error function is:

$$E(w) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_k(x_n, w)$$
 (15)

The output neuron activation function is the softmax function:

$$y_k(x, w) = \frac{\exp(\alpha_k(x, w))}{\sum_j \exp(\alpha_j(x, w))}$$
(16)

ensuring that $0 \le y_k(x, w) \le 1$ and $\sum_k y_k(x, w) = 1$.

Parameter optimization

Local minima correspond to $\nabla E(w) = 0$.

Parameter optimization

Process:

- Choose an initial set of parameter values w⁽⁰⁾
- Update the parameters until reaching a local minimum using:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{\tau} + \Delta \mathbf{w}^{(\tau)} \tag{17}$$

Several optimization techniques which use different choices for $\Delta w^{(\tau)}$:

- Local quadratic approximation
- Gradient descent optimization
- Error Backpropagation
- Recent schemes: RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam

Parameter optimization: Local quadratic approximation

Taylor expansion of E(w) around some point \hat{w} :

$$E(\mathbf{w}) \cong E(\hat{\mathbf{w}}) + (\mathbf{w} - \hat{\mathbf{w}})^T \mathbf{b} + \frac{1}{2} (\mathbf{w} - \hat{\mathbf{w}})^T \mathbf{H} (\mathbf{w} - \hat{\mathbf{w}}) + \text{higher order terms (18)}$$

where:

$$b \equiv \nabla E|_{w=\hat{w}}$$
 and $H = \nabla \nabla E$ (19)

Thus:

$$\nabla E \cong \mathbf{b} + \mathbf{H}(\mathbf{w} - \hat{\mathbf{w}}) \tag{20}$$

Parameter optimization: Gradient descent

Gradient descent updates w using:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{\tau} - \eta \nabla E(\mathbf{w}^{(\tau)}) \tag{21}$$

To find a sufficiently good minimum, it may be necessary to run a gradient-based algorithm multiple times, each time using a different randomly chosen starting point.

When

$$E(w) = \sum_{n=1}^{N} E_n(w)$$
 (22)

stochastic gradient descent (SGD) can be used:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{\tau} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$
 (23)

Mini-batch gradient descent uses small chunks (e.g. 64) data points for each update.