TEMA: Capa de Acceso a red

CURSO: Redes y Comunicación de Datos I

Dr. Alex Coronado Navarro

Normas y comportamientos dentro de la sesión

✓ Levantar o pedir la palabra para participar

 ✓ Activar micrófono para participar y desactivar luego de concluir con la participación (para sesiones virtuales)

Respetar la opinión de sus compañeros

¿Qué tema tratamos la clase pasada?

Logro de aprendizaje

Al finalizar la sesión, el estudiante Conocer y configurar el direccionamiento IPv4 en dispositivos de red , a través de una simulación de una red.

Saberes previos

¿Qué es IPv4?

Network and Host Portions

 Una dirección IPv4 es una dirección jerárquica de 32 bits que se compone de una porción de red y una porción de host.

 Se utiliza una máscara de subred para determinar las porciones de red y host. La máscara de subred se compara con la dirección IPv4 bit por bit, de izquierda a

derecha

 El proceso utilizado para identificar las porciones de red y host se llama AND

IPv4 Address Structure The Prefix Length

- Una longitud de prefijo es un método menos engorroso que se utiliza para identificar una dirección de máscara de subred.
- La longitud del prefijo es el número de bits establecido en 1 en la máscara de subred.
- Está escrito en "notación de barra", por lo tanto, contamos el número de bits en la máscara de subred y añadimos con una barra.
- Por ejemplo; /24

Subnet Mask	32-bit Address	Prefix Length
255.0.0.0	11111111.00000000.00000000.00000000	/8
255.255.0.0	111111111111111110000000000000000000000	/16
255.255.255.0	11111111.1111111111111111100000000	/24
255.255.255.128	11111111.111111111111111111111111111111	/25
255.255.255.192	11111111.111111111111111111111111111111	/26
255.255.255.224	11111111.111111111111111111100000	/27
255.255.255.240	11111111.11111111111111111110000	/28
255.255.255.248	11111111.11111111.111111111000	/29
255.255.255.252	11111111.11111111.1111111100	/30

IPv4 Address Structure

Network, Host, and Broadcast Addres

Dentro de cada red hay tres tipos de direcciones IP

- Network address
- Host addresses
- Broadcast address

	Network Portion	Host Portion	Host Bits
Subnet mask 255.255.255. 0 or /24	255 255 255 11111111 11111111 11111111	0	
Network address 192.168.10.0 or /24	192 168 10 11000000 10100000 00001010	0	All 0s
First address	192 168 10	1	All 0s and a 1
192.168.10.1 or /24	11000000 10100000 00001010	00000001	
Last address	192 168 10	254	All 1s and a 0
192.168.10.254 or /24	11000000 10100000 00001010	11111110	
Broadcast address	192 168 10	255	All 1s
192.168.10.255 or /24	11000000 10100000 00001010	11111111	

IPv4 Unicast, Broadcast, and Multicast Unicast

- La transmisión unicast está enviando un paquete a una dirección IP de destino.
- Por ejemplo, la PC en 172.16.4.1 envía un paquete unicast a la impresora en 172.16.4.253

IPv4 Unicast, Broadcast, and Multicast Broadcast

- La transmisión broadcast está enviando un paquete a todas las demás direcciones IP de destino.
- Por ejemplo, la PC en 172.16.4.1 envía un paquete de broadcast (difusión) a todos los hosts IPv4

IPv4 Unicast, Broadcast, and Multicast Multicast

- La transmisión multicast está enviando un paquete a un grupo de direcciones de multicast.
- Por ejemplo, la PC en 172.16.4.1 envía un paquete multicast a la dirección del grupo multicast 224.10.10.5.

Types of IPv4 Addresses Public and Private IPv4 Addresses

- Como se define en RFC 1918, las direcciones IPv4 públicas se enrutan globalmente entre routers de proveedores de servicios de Internet (ISP)
- Las direcciones privadas son bloques comunes de direcciones utilizadas por la mayoría de las organizaciones para asignar direcciones IPv4 a hosts internos.
- Las direcciones IPv4 privadas no son únicas y pueden usarse internamente dentro de cualquier red.

•	Sin embargo, las direcciones privadas no
	son globalmente enrutables.

Network Address and Prefix	RFC 1918 Private Address Range
10.0.0.0/8	10.0.0.0 - 10.255.255.255
172.16.0.0/12	172.16.0.0 - 172.31.255.255
192.168.0.0/16	192.168.0.0 - 192.168.255.255

Types of IPv4 Addresses Routing to the Internet

- Network Address Translation (NAT) traduce las direcciones IPv4 privadas a direcciones
 IPv4 públicas
- NAT normalmente se habilita en el router perimetral que se conecta a Internet.
- Traduce la dirección privada interna a una dirección IP global pública.

Types of IPv4 Addresses Special Use IPv4 Addresses

Loopback addresses

- 127.0.0.0 /8 (127.0.0.1 to 127.255.255.254)
- Comunmente identificado solo como 127.0.0.1
- Se usa en un host para probar si TCP / IP está operativo

C:\Users\NetAcad> ping 127.0.0.1 Pinging 127.0.0.1 with 32 bytes of data: Reply from 127.0.0.1: bytes=32 time<1ms TTL=128 Reply from 127.0.0.1: bytes=32 time<1ms TTL=128</pre>

Link-Local addresses

- 169.254.0.0 /16 (169.254.0.1 to 169.254.255.254)
- Comunmente conocido como Automatic Private IP Addressing (APIPA) o Address self-assigned (direcciones autoasignadas).
- Usado por los clientes DHCP de Windows para autoconfigurarse cuando no hay servidores DHCP disponibles.

Types of IPv4 Addresses

Legacy Classful Addressing

RFC 790 (1981) direcciones IPv4 asignadas en clases

- Class A (0.0.0.0/8 to 127.0.0.0/8)
- Class B (128.0.0.0 /16 191.255.0.0 /16)
- Class C (192.0.0.0 /24 223.255.255.0 /24)
- Class D (224.0.0.0 to 239.0.0.0)
- Class E (240.0.0.0 255.0.0.0)

El direccionamiento con clase desperdició muchas direcciones IPv4.

 La asignación de direcciones con clase fue reemplazada por un direccionamiento sin clase que ignora las reglas de las clases (A, B, C).

Types of IPv4 Addresses Assignment of IP Addresses

- La Autoridad de Números Asignados de Internet (IANA) administra y asigna bloques de direcciones IPv4 e IPv6 a cinco Registros Regionales de Internet (RIR)
- Los RIR son responsables de asignar direcciones IP a los ISP que proporcionan bloques de direcciones IPv4 a ISP y organizaciones más pequeñas.

Network Segmentation

Problems with Large Broadcast Domains

- Un problema con un dominio de broadcast grande es que estos hosts pueden generar broadcast excesivas y afectar negativamente a la red.
- La solución es reducir el tamaño de la red para crear dominios de broadcast más pequeños en un proceso llamado subred.
- Dividiendo la dirección de red 172.16.0.0 / 16 en dos subredes de 200 usuarios cada una: 172.16.0.0 / 24 y 172.16.1.0 / 24.
- Los broadcast solo se propagan dentro de los dominios de broadcast más pequeños

Network Segmentation

Reasons for Segmenting Networks

- La división en subredes reduce el tráfico general de la red y mejora el rendimiento de la red.
- Se puede usar para implementar políticas de seguridad entre subredes.
- La división en subredes reduce la cantidad de dispositivos afectados por el tráfico de broadcast anormal.
- Las subredes se usan por una variedad de razones, que incluyen:

Subnet to Meet Requirements

Subnet Private versus Public IPv4 Address Space

Las redes empresariales tendrán una:

- Intranet: la red interna de una empresa que generalmente usa direcciones IPv4 privadas.
- DMZ A los servidores de Internet de las empresas. Los dispositivos en la DMZ usan direcciones IPv4 públicas.
- Una compañía podría usar el 10.0.0.0/8 y la subred en el límite de la red / 16 o / 24.
- Los equipos de la DMZ tendrían que configurarse con direcciones IP públicas.

Subnet to Meet Requirements Minimize Unused Host IPv4 Addresses and Maximize Subnets

Hay dos consideraciones al planificar subredes:

- El número de direcciones de host requeridas para cada red
- El número de subredes individuales necesarias

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn. n hhhhhhh 11111111.11111111.1111111. 1 0000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnn. nn hhhhhh 11111111.11111111.11111111. 11 000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnn.nnnnnnn. nnn hhhhh 11111111.111111111111111111111111	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnn.nnnnnnn. nnnn hhhh 11111111.11111111.11111111. 1111 0000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnn.nnnnnnn. nnnnn hhh 11111111.11111111.11111111. 11111 000	32	6
/30	255.255.255.252	nnnnnnn.nnnnnnnn.nnnnnnn. nnnnnn hh 11111111.11111111.11111111. 111111 00	64	2

IPv4 Address Conservation

Dada la topología, se requieren 7 subredes (es decir, cuatro LAN y tres enlaces WAN) y el mayor número de hosts se encuentra en el Edificio D con 28 hosts.

 La máscara A / 27 proporcionaría 8 subredes de 30 direcciones IP de host y, por lo tanto, admitiría esta topología

VLSM

IPv4 Address Conservation (Cont.)

Sin embargo, los enlaces WAN punto a punto solo requieren dos direcciones y, por lo tanto, desperdician 28 direcciones cada una para un total de 84 direcciones no utilizadas.

Host portion $2^5 - 2 = 30$ host IP addresses per subnet 30 - 2 = 28Each WAN subnet wastes 28 addresses $28 \times 3 = 84$ 84 addresses are unused

- La aplicación de un esquema de subredes tradicional a este escenario no es muy eficiente y es un desperdicio.
- VLSM fue desarrollado para evitar el desperdicio de direcciones al permitirnos subred a subred.

VLSM VLSM

- El lado izquierdo muestra el esquema de subred tradicional (es decir, la misma máscara de subred) mientras que el lado derecho ilustra cómo se puede usar VLSM para dividir en subredes una subred y dividir la última subred en ocho / 30 subredes.
- Cuando use VLSM, siempre comience por satisfacer los requisitos de host de la subred más grande y continúe dividiendo en subredes hasta que se cumplan los requisitos de host de la subred más pequeña.
- La topología resultante con VLSM aplicado

VLSM VLSM Topology Address Assignment

 Usando subredes VLSM, las redes LAN y entre routers pueden direccionarse sin desperdicio innecesario, como se muestra en el diagrama de topología lógica.

Simulación de una Red con direccionamiento IPv4

TAREA

Simulación en Packet Tracert.

Ingresar a la plataforma canvas y descargar:

√ 06 PRACTICA - Lab Direccionamiento IP

Conclusión

- ¿Qué aprendimos el día de hoy?
- ¿Qué les gustaría que se mejore de nuestras sesiones de clase?

Universidad Tecnológica del Perú