Devoir surveillé n°3

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Exercice 1.

On pose pour $z \in \mathbb{C}$, $f(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$.

- **1.** Pour quels nombres complexes z, f(z) est-il défini?
- **2.** Résoudre dans \mathbb{C} l'équation f(z) = 0.
- 3. Montrer que $\begin{cases} |\operatorname{Im}(z)| < \frac{\pi}{2} & \iff |\operatorname{Im}(z)| < \frac{\pi}{4}. \\ |f(z)| < 1 \end{cases}$
- **4.** On pose $\Delta = \left\{z \in \mathbb{C}, \; |\operatorname{Im}(z)| < \frac{\pi}{4} \right\}$ et $\mathcal{D} = \{z \in \mathbb{C}, \; |z| < 1\}$. Vérifier que $\operatorname{f}(\Delta) \subset \mathcal{D}$.
- **5.** Soit $Z \in \mathbb{C} \setminus \mathbb{R}_-$. Montrer que l'équation $e^z = Z$ d'inconnue z admet une unique solution telle que $\operatorname{Im}(z) \in]-\pi,\pi[$.
- **6.** Soit $u \in \mathcal{D}$. Montrer que $\frac{1+u}{1-u} \notin \mathbb{R}_-$.
- 7. Montrer que l'application f induit une bijection de Δ sur \mathcal{D} .

Exercice 2.

On pose $\mathcal{P}=\{z\in\mathbb{C},\ \mathrm{Im}(z)>0\}$ et $\mathcal{D}=\{z\in\mathbb{C},\ |z|<1\}$. On rappelle que $\mathbb{U}=\{z\in\mathbb{C},|z|=1\}$. Les trois questions sont complètement indépendantes.

- **1.** On définit l'application f: $\left\{ \begin{array}{ccc} \mathbb{C}\setminus\{-\mathfrak{i}\} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \frac{\mathfrak{i}z+1}{z+\mathfrak{i}} \end{array} \right. .$
 - **a.** L'application f est-elle injective ?
 - **b.** Montrer que $\text{Im}\,f=\mathbb{C}\setminus\{i\}$. L'application f est-elle surjective ?
 - **c.** Montrer que $f(\mathcal{P}) \subset \mathcal{D}$.
 - **d.** Montrer que f induit une bijection de \mathcal{P} sur \mathcal{D} .
 - e. Déterminer $f^{-1}(\mathbb{U})$.
- **2.** On définit l'application g: $\left\{ \begin{array}{ccc} \mathcal{P} & \longrightarrow & \mathcal{P} \\ z & \longmapsto & -\frac{1}{z} \end{array} \right. .$
 - **a.** Montrer que l'application g est bien définie, autrement dit que $g(z) \in \mathcal{P}$ pour tout $z \in \mathcal{P}$.
 - **b.** Montrer que g est bijective.
- $\textbf{3. Pour }\theta\in\mathbb{R} \text{, on d\'efinit l'application } A_{\theta} \colon \left\{ \begin{array}{ccc} \mathcal{P} & \longrightarrow & \mathcal{P} \\ z & \longmapsto & \frac{z\cos\theta-\sin\theta}{z\sin\theta+\cos\theta} \end{array} \right. .$
 - a. Soit $\theta \in \mathbb{R}$. Vérifier que l'application A_{θ} est bien définie, autrement dit que pour tout $z \in \mathcal{P}$, $A_{\theta}(z)$ est bien défini et $A_{\theta}(z) \in \mathcal{P}$.

- **b.** Que vaut A_0 ?
- **c.** Soit $(\theta, \varphi) \in \mathbb{R}^2$. Montrer que $A_{\theta} \circ A_{\varphi} = A_{\theta + \varphi}$.
- d. Soit $\theta \in \mathbb{R}.$ Montrer que A_{θ} est bijective et déterminer sa bijection réciproque.

EXERCICE 3.

Soit z un nombre complexe. On note A, B, C, D les points d'affixes respectifs $1, z, z^2, z^3$ dans un repère orthonormé du plan.

- **1.** Pour quelles valeurs de *z* les points A, B, C, D sont-il deux à deux distincts ? On suppose cette cette condition remplie dans la suite de l'énoncé.
- 2. Déterminer les valeurs de z tels que ABCD soit un parallélogramme. Préciser la nature de ce parallélogramme.
- **3.** Déterminer les valeurs de *z* tels que le triangle ABC soit rectangle isocèle en A.
- **4.** Déterminer les valeurs de z tels que ABD soit rectangle isocèle en A.

Exercice 4.

Soit $f: E \to F$ une application. Montrer que f est injective si et seulement si $f(A \cap B) = f(A) \cap f(B)$ pour tout couple $(A,B) \in \mathcal{P}(E)^2$.

EXERCICE 5.

EXO NUL Soit f une application de \mathbb{N} dans \mathbb{N} vérifiant f(1) = 1 et telle que

$$\forall (m,n) \in \mathbb{N}^2$$
, $f(m+f(n)) = f(f(m)) + f(n)$

On rappelle que Im $f = f(\mathbb{N})$ et on note \mathcal{F} l'ensemble des points fixes de f, c'est-à-dire

$$\mathcal{F} = \{\alpha \in \mathbb{N}, f(\alpha) = \alpha\}$$

- **1.** Montrer que f(0) = 0.
- **2.** En déduire que $f \circ f = f$.
- **3.** Montrer que Im $f = \mathcal{F}$.
- **4.** Montrer que pour tout $a \in \mathcal{F}$, $a + 1 \in \mathcal{F}$.
- **5.** En déduire que $\mathcal{F} = \mathbb{N}$ et en déduire f.