is all you need

- ¹ Motivation
- 2. Attention as context summary
- 3. How to calculate Attention?
- 4. Further map
- 5. Conclusion

¹ Motivation

- ^{2.} Attention as context summary
- 3. How to calculate Attention?
- 4 Further map
- 5. Conclusion

Motivation: review Markov property

- Markov Property: given the present, the future does not depend on the past.
- ? Is it sufficient in language modeling:

Motivation

Motivation: training

We have tried different methods to achieve it:

RNN (Recurrent NN)

✓ Long Dependency Xnot-Parallelizable at all

CNN (Convolutional NN)

- Parallelizable
- weak Long Dependency unless many layers

Motivation: training

So here is the question:

: Long Dependency(RNN) or Parallelizable(CNN)?

That is the question. Whether 'tis nobler in the mind to suffer......

: Stop, enough. Here is the **Transformer**. You have both now.

abstract the right part

Encoder(left) + Decoder(right)

Decoder Only(e.g. GPT-like)

Motivation

- ¹ Motivation
- ^{2.} Attention as context summary
- 3. How to calculate Attention?
- 4 Further map
- 5. Conclusion

Use ChatGPT to generate the example, it should looks like:

Easy

- Step 1: Understand what happened under the hood in Inference
 - Auto-regression: generate one token at a time.
 - Next token prediction: predict the next token based on all tokens before it.

Step 1: Understand what happened under the hood — in Inference

🤔 Step 2: So how should we achieve it? — in training

We train it to mimic that behavior:

- Train it to predict the next token, but only allow it to look back
- Calculate loss, back propagation, etc......

we call it "Causal" or "Masked"

we are all familiar with this, ignore

Step 1: Understand what happened under the hood — in Inference

Step 2: So how should we achieve it? — in Training

We train it to mimic that behavior:

• Train it to **predict the next token**, but only allow it to **look back**

we call it "Causal" or "Masked"

Use matrix to visualize it: "Easy peasy lemon squeezy"---training data, what we've already knew

```
"Easy" [Easy, ?, X],-----see: Easy----->peasy
"peasy" [Easy, peasy, ?, X],-----see: Easy, peasy---->lemon
"lemon" [Easy, peasy, lemon, ?],-----see: Easy, peasy, lemon---->squeezy
```


Step 1: Understand what happened under the hood — in Inference

```
Step 2: So how should we achieve it? — in Training
```

```
"Easy" [Easy, ?, X, ],-----see: Easy----->peasy

"peasy" [Easy, peasy, ?, X],-----see: Easy, peasy---->lemon

"lemon" [Easy, peasy, lemon, ?],-----see: Easy, peasy, lemon---->squeezy
```


Step 3: Task is how to better summarize history context?— in Training

: All tokens are equal, but...but some tokens are **more equal** than others. Yes, I'm saying **Attention** mechanism.-----like weighted sum

Inference defines the goal → Training mimics the goal → **Attention** as a context summary shows the way!!

- ¹ Motivation
- ^{2.} Attention as context summary
- 3. How to calculate Attention?
- 4 Further map
- 5. Conclusion

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$
weight

Every token has its own **q**, **k**, **v**:

or?" q: query-----> "What am I looking for?"

sk: key---->"A brief intro about me"

v: value---->"The real info of me"

	Easy	peasy	lemon	squeezy
q:	q_0	q_1	q_2	q_3
k:	k_0	k_1	k_2	k_3
v:	v_0	v_1	v_2	v_3

q*k: "How much does your info match my need?"

softmax(q_0*k_0, q_1*k_1, ..., q_n*k_n): attention weight

softmax(...)*v: context summary

Q, K, V are matrix of q, k, v, for calculation efficiency. And divided by sqrt(d_k) is for scaling, ensuring training stable.

Every token has its own **q**, **k**, **v**:

or: query-----> "What am I looking for?"

k: key----->"A brief intro about me"

v: value---->"The real info of me"

q*k: "How much does your info match my need?"

softmax(q_0*k_0, q_1*k_1, ..., q_n*k_n**)**: attention weight

softmax(...)*v: context summary

1**q*k**:

$\operatorname{Attention}(Q,K,V) =$	$\operatorname{softmax}(rac{QK^T}{\sqrt{d_k}})V$
	weight

	Easy	peasy	lemon	squeezy
q:	q_0	q_1	q_2	q_3
k:	k_0	k_1	k_2	k_3
V:	v_0	v_1	v_2	v_3

q \ k	Easy(k_0)	peasy(k_1)	lemon(k_2)	squeezy(k_3)
Easy(q_0)	q_0*k_0	×	×	×
peasy(q_1)	q_1*k_0	q_1*k_1	×	×
lemon(q_2)	q_2*k_0	q_2*k_1	q_2*k_2	×
squeezy(q_3)	q_3*k_0	q_3*k_1	q_2*k_2	q_3*k_3

Every token has its own q, k, v:

g: query-----> "What am I looking for?"

k: key---->"A brief intro about me"

v: value---->"The real info of me"

q*k: "How much does your info match my need?"

softmax(q_0*k_0, q_1*k_1, ..., q_n*k_n): attention weight

softmax(...)*v: context summary

softmax(q*k), it mig	ght be:		_		_
q \ k	Easy(k_0)	peasy(k_1)	lemon(k_2)	squeezy(k_3)	
Easy(q_0)	1.0	×	×	×	
peasy(q_1)	0.4	0.6	×	×	
lemon(q_2)	0.3	0.2	0.5	×	
squeezy(q_3)	0.2	0.1	0.3	0.4	

weight		

	Easy	peasy	lemon	squeezy
q:	q_0	q_1	q_2	q_3
k:	k_0	k_1	k_2	k_3
v:	v_0	v_1	v_2	v_3

Every token has its own **q**, **k**, **v**:

q: query-----> "What am I looking for?"

k: key-----> "A brief intro about me"

v: value-----> "The real info of me" **q*k**: "How much does your info match my need?" **softmax**(q_0*k_0, q_1*k_1, ..., q_n*k_n): attention weight

Easy lemon peasy squeezy q 3 q_0 q_1 q_2 k 0 k 1 k 2 k 3 v 2 v 3 v 0 v 1

3softmax(q*k)*v, it might be:

softmax(...)*v: context summary

q \ k	Easy(k_0)		peasy(k_1	l)	lemon(k_2	2)	squeezy(k_3)	
Easy(q_0)	1.0*v_0		×		×		×	
peasy(q_1)	0.4*v_0	+	0.6*v_1		×		×	
lemon(q_2)	0.3*v_0	+	0.2*v_1	+	0.5*v_2		×	
squeezy(q_3)	0.2*v_0	+	0.1*v_1	+	0.3*v_2	+	0.4*v_3	

 $Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$

3softmax(q*k)*v, it might be:

q \ k	Easy(k_0)		peasy(k_1)	lemon(k_2)	squeezy(k_3)
Easy(q_0)	1.0*v_0		X		×		×
peasy(q_1)	0.4*v_0	+	0.6*v_1		×		×
lemon(q_2)	0.3*v_0	+	0.2*v_1	+	0.5*v_2		×
squeezy(q_3)	0.2*v_0	+	0.1*v_1	+	0.3*v_2	+	0.4*v_3

What we just did:

What we just did:

Transformer(Attention)

To be continued...

Decoder Only(e.g. GPT-like)

- ¹ Motivation
- ^{2.} Attention as context summary
- 3. How to calculate Attention?
- 4. Further map
- 5. Conclusion

Further map

- Where does q, k, v come from ?
- Why we scale by sqrt(d_k) exactly ?
- 🙋 What is Multi-Head Attention <mark>?</mark>
- What are the rest of the Transformer?

Attention $(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Further map

Why we scale by sqrt(d_k) exactly ?
What is Multi-Head Attention ?
What are the rest of Transformer ?

: If you want it, you can have it !!

I left all the secrets of Attention..... in this following Map <a>:::

- **Deep Dive into LLMs like ChatGPT.** By Andrej Karpathy
- **Let's build GPT: from scratch, in code, spelled out.** By Andrej Karpathy
- **Attention Is All You Need**, Ashish Vaswani et al., 2017, v7

- ¹ Motivation
- ^{2.} Attention as context summary
- 3. How to calculate Attention?
- 4 Further map
- 5. Conclusion

Conclusion

Attention as Context Summary

is all you need

: It is only with the **Attention** that one can see rightly.

The End

Thank U