Numerics / Math

A Gentle Introduction

Outline

- Divisibility
- Prime numbers
- GCD

Divisibility

 We can describe any number N as the product of the divisor d and the quotient q, plus a remainder r.

$$\circ$$
 N = q * d + r, 0 <= r < d

- Python syntax
 - \circ N % d == r
 - \circ N // d == q
 - divmod(N, d) == (q, r), divmod is a function that returns (q, r)

Divisibility

- If b % a == 0 then (b * c) % a == 0
- If b % a == 0 then (c * b) % (c * a) == 0
- If b % a == 0 and c % b == 0, then c % a == 0
- If b % a == 0 and c % a == 0, then (x*b + y*c) % a == 0

Prime numbers

What are prime numbers?

2, 3, 5, 7, 13

How to check if a number is prime?

How to check if a number is prime?

```
def isPrime(x: int) -> bool:
   d = 2
   while d * d \le x:
       if x % d == 0:
           return False
       d += 1
   return True
```


Fundamental Theorem of Arithmetic

Theorem 4.3.1 (Fundamental Theorem of Arithmetic). Every positive integer n can be written in a unique way as a product of primes:

$$n = p_1 \cdot p_2 \cdots p_j \qquad (p_1 \le p_2 \le \cdots \le p_j)$$

Concrete Example Prime Fact.

Prime factorization of 84:

• $2^2 \times 3 \times 7$

Prime factorization of 52:

How to approach?

Prime factorization

```
def trial division simple(n: int) -> list[int]:
   factorization: list[int] = []
  d = 2
  while d * d \le n:
       while n % d == 0:
           factorization.append(d)
           n //= d
       d += 1
  if n > 1:
       factorization.append(n)
   return factorization
```


How does prime factorization relate to divisibility?

 If b % a == 0, then prime factors of a is a subset of prime factors of b.

How does prime factorization relate to divisibility?

Example: 24 is divisible by 4 $4 = \frac{2 * 2}{2 * 2} * 2 * 3$

How to generate primes??

How to generate primes?

Sieve of Eratosthenes

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

Sieve of Eratosthenes Implementation

```
def prime sieve(n: int) -> list[bool]:
   is prime: list[bool] = [True for in range(n + 1)]
   is prime[0] = is prime[1] = False
  i = 2
  while i <= n:
       if is prime[i]:
           j = 2 * i
           while j \le n:
               is prime[j] = False
               j += i
       i += 1
```

return is prime

How to optimize Sieve of Eratosthenes?

Sieve of Eratosthenes

Optimizations

- Consider only proper multiples greater than square of the number
- Sieve till root
- Sieving by the odd numbers only

Sieve of Eratosthenes Optimized

```
def prime_sieve(n: int) -> list[bool]:
   is_prime: list[bool] = [True for _ in range(n + 1)]
   is_prime[0] = is_prime[1] = False
   i = 2
   while i * i \le n:
       if is_prime[i]:
           j = i * i
           while j \le n:
               is prime[j] = False
               j += i
       i += 1
```


Greatest Common Divisor (GCD)

 GCD of two numbers a and b is the greatest number that divides evenly into both a and b.

- Naive algorithm
- Euclidean algorithm (log(n))

Greatest Common Divisor (GCD)

How would you calculate gcd by hand?

In the prime factorisation method, each given number is written as the product of prime numbers and then find the product of the smallest power of each common prime factor.

This method is applicable only for positive numbers, i,e. Natural numbers.

Greatest Common Divisor (GCD)

Example: Find the Greatest common factor of 24, 30 and 36.

Solution: Prime factors of 24 is $2^3 \times 3$

Prime factors of $30 = 2 \times 3 \times 5$

Prime factors of $36 = 2^2 \times 3^2$

From the factorisation, we can see, only 2 x 3 are common prime factors.

Therefore, GCD (24, 30, 36) = $2 \times 3 = 6$

Exercise: Find the GCD of 32, 28

Greatest Common Divisor (GCD)

Greatest Common

Divisor (GCD)

Fast Algorithm

fun gcd(a, b):

if b == 0:

return a

return gcd(b, a % b)

Exercise: Find the GCD of 32, 28

Greatest Common Divisor (GCD) Fast Algorithm

Exercise

Complicated GCD
Count Primes
Divisibility by 2^n

"The enchanting charms of this sublime science reveal only to those who have the courage to go deeply into it."

~ Carl Friedrich Gauss

Resources for further reading

Math for CS, MIT CP-Algorithms

