#### **Abstract**

Six sorting algorithms were tested: Insertion Sort, Bubble Sort, Optimized Bubble Sort, Selection Sort, Merge Sort and Quicksort, to see whether experimental results matched the theoretical. In all cases, the theory did match the experimental results. Although for smaller number sets the time is less pronounced between them. Even for less time efficient algorithms, such as Bubble Sort, it finished within .07 seconds for lists less than 1000. This is expected, but demonstrates for smaller sized sets there is little practical difference between them unless absolute efficiency is necessary. For larger sets, Merge Sort is consistently among the fastest making it one of the best general algorithms for sorting, that was tested. Although, for already sorted lists Optimized Bubble Sort and Insertion Sort beat Merge Sort. For smaller lists, Insertion sort was consistently among the fastest and is the best in general for small lists.

# Algorithms on Sorted Lists

| Algos w/ sorted lists | 100 elements      | 1000 elements     | 10000 elements     |
|-----------------------|-------------------|-------------------|--------------------|
| Selection             | 0.000332117080688 | 0.035737752914428 | 3.225963115692138  |
|                       | 47656 seconds     | 71 seconds        | 7 seconds          |
| Insertion             | 1.668930053710937 | 0.000173330307006 | 0.001547336578369  |
|                       | 5e-05 seconds     | 83594 seconds     | 1406 seconds       |
| Bubble                | 0.000372171401977 | 0.038491725921630 | 4.075166463851929s |
|                       | 53906 seconds     | 86 seconds        | econds             |
| Optimized Bubble      | 9.059906005859375 | 0.000111818313598 | 0.000853300094604  |
|                       | e-06 seconds      | 63281 seconds     | 4922 seconds       |
| Quick                 | 0.000459432601928 | 0.047556877136230 | 5.024553775787353  |
|                       | 71094 seconds     | 47 seconds        | 5 seconds          |
| Merge                 | 0.000171422958374 | 0.001959085464477 | 0.025116920471191  |
|                       | 02344 seconds     | 539 seconds       | 406 seconds        |

## Time of Sorting Algorithms On Sorted Number Lists



For all of the algorithms tested, the experimental results matched what was expected from the theoretical. It was expected that Optimized Bubble Sort would be one of the fastest for sorting already sorted lists, since it specifically tests for sorted lists. An already sorted list is the best case for this algorithm with an efficiency of  $\Omega(n)$  which matches the results. It was significantly faster than any other algorithm tested for all list sizes.

Insertion Sort is similar to Optimized Bubble Sort, its best case is sorted lists and complexity is  $\Omega(n)$ . It also performed extremely well, finishing before Mergesort.

Quicksort is also an interesting case for sorted lists, which are it's worst case (O( $n^2$ )). It was expected to be inefficient but, it was not expected to be the slowest through every run, as

selection sort has a similar efficiency (O( $n^2$ )). This makes quicksort the worst to use for checking for sorted lists.

# Algorithms on Almost Sorted Lists

| Algos w/ sorted lists | 100 elements                      | 1000 elements     | 10000 elements     |
|-----------------------|-----------------------------------|-------------------|--------------------|
| Selection             | 0.000329256057739                 | 0.033197879791259 | 3.228452205657959  |
|                       | 2578 seconds                      | 766 seconds       | seconds            |
| Insertion             | 8.463859558105469<br>e-05 seconds |                   |                    |
| Bubble                | 0.000413417816162                 | 0.038491725921630 | 4.513240337371826s |
|                       | 1094 seconds                      | 86 seconds        | econds             |
| Optimized Bubble      | 0.000132799148559                 | 0.042923927307128 | 4.514485597610474  |
|                       | 5703 seconds                      | 906 seconds       | seconds            |
| Quick                 | 0.000397205352783                 | 0.008488893508911 | 0.086304664611816  |
|                       | 2031 seconds                      | 133 seconds       | 4 seconds          |
| Merge                 | 0.000197887420654                 | 0.002401828765869 | 0.028995752334594  |
|                       | 29688 seconds                     | 1406 seconds      | 727 seconds        |

#### Time of Sorting Algorithms On Almost Sorted Number Lists



For both almost sorted and random lists Mergesort was the best performing algorithm with Quicksort close behind it. This is expected as both have a similar efficiency ( $\Theta(n \log n)$ ) for both nearly sorted and random lists. Both Bubble and Optimized Bubble sorts finished last, with Bubble sort finishing very slightly before, both have a similar complexity of ( $\Theta(n^2)$ ).

For almost sorted lists, Insertion sort preformed much better than on random lists. With an average efficiency of  $n^2$  ( $\Theta(n^2)$ ) which matches the experimental results. Insertion sort finished sorting the 100 element list far before any others, but started to fall behind Quicksort and Mergesort at the 1000 element lists. Insertion sort is consistently one of the fastest for small lists, but is beat out by algorithms with slower growth (like Quicksort and Mergesort (( $\Theta(n \log n)$ ))) for larger lists (<10000).

# Algorithms on Random Number Lists

| Algos w/ sorted lists | 100               | 1000              | 10000             |
|-----------------------|-------------------|-------------------|-------------------|
| Selection             | 0.000307321548461 | 0.033943414688110 | 3.370923995971679 |
|                       | 91406 seconds     | 35 seconds        | 7 seconds         |
| Insertion             | 0.000326395034790 | 0.032087802886962 | 3.275688409805298 |
|                       | 03906 seconds     | 89 seconds        | seconds           |
| Bubble                | 0.000642061233520 | 0.069381713867187 | 7.236100673675537 |
|                       | 5078 seconds      | 5 seconds         | seconds           |
| Optimized Bubble      | 0.000649213790893 | 0.069781541824340 | 7.320969820022583 |
|                       | 5547 seconds      | 82 seconds        | seconds           |
| Quick                 | 0.000132083892822 | 0.002079963684082 | 0.025364637374877 |
|                       | 26562 seconds     | 0312 seconds      | 93 seconds        |
| Merge                 | 0.000195741653442 | 0.002307176589965 | 0.031631708145141 |
|                       | 3828 seconds      | 8203 seconds      | 6 seconds         |

## Time of Sorting Algorithms On Random Number Lists



The results for the random number lists are again exactly as predicted by theory. This should be the average case for each of the algorithms. Bubble, Optimized Bubble, Insertion and Selection sorts all have a  $\Theta(n^2)$  time complexity. Insertion and Selection sort finish significantly before the Bubble sorts for the 10000 element lists due to them being more efficient, as seen by their finish times for the 100 and 1000 element lists but are still increasing quadratically. The two fastest algorithms Merge sort and Quicksort both have  $\Theta(n \log n)$  time complexity and are the slowest growing functions of the six tested here and therefore finish well before any others.