Casă Automatizată

Realizator Proiect : Balazs Zsolt

Idee inițială

Proiectul are ca scop a realiza o casă automatizată/semi automatizata cu ajutorul unei placi de dezvoltare Raspberry Pi

Contact: zsolti35@yahoo.com

Componente folosite

Cost Materiale 469.05 ron

Placa:RASPBERRY PI 3 MODEL B+
Alimentare:AC-DC, 5.1V, 2.5A
Breadboard 830 puncte
Cablu convertor HDMI la VGA
Conector tata pentru Arduino 5.5x2.1
KIT Breadboard830 + 65xfire jumper
LED 3mm
Modul driver dual motor MX1508
Modul senzor lumina YQZBML
Motor DC 3V-6V cu reductor FSIGTI
Rezistor 1/4W 10K + 1K
Senzor picaturi de ploaie WLONGC_R
Senzor temperatura si umiditate digital DHT11
Stepper Motor pas cu pas 5V DC 28BYJ-48

Pentru pornirea sistemului avem nevoie de urmatoarele lucruri :

- 3 prize
- -Monitor
- -Tastatura
- -Maus
- -Sd card
- -Cabluri de conectare

Componente necesare pentru rulare

Prezentarea componentelor folosite

Breadboard 830 puncte

Modul sursa de alimentare 5v - 3.3v breadboard

Senzor temperatura si umiditate digital DHT11

Senzor picaturi de ploaie

Modul senzor lumina

Stepper Motor pas cu pas 5V DC 28BYJ-48 cu reductie + driver

Motor DC 3V-6V cu reductor 1:48

Modul driver dual motor MX1508

Cod Programarea Componentelor

Programarea păci de dezvoltatoare s-a realizat in 2 programe diferite si in 2 limbaje :

- -Programarea de baza s-a realizat in Thony in limbaj Python
- -Asamblarea fragmentelor de cod s-a realizat prin Scratch prin programare vizuala

Program suport

mindig

Programul Suport are rolul principal de a porni programele scrise in Python si a le rula si a prelua valori .

Descriere Program Suport

Anumite funcții sunt controlate in mod direct de programul suport

Părțile sunt scrise in Python si ele la rândul lor folosesc biblioteci prescrise

Părți de program import RPi.GPIO as GPIO

RpiMotorLib import RpiMotorLib

GpioPins = [26, 19, 13, 6]

mymotortest = RpiMotorLib.MXMot
or("MyMotorOne", "MX1508
")

Dcle.py

mymotortest.motor_run(GpioPins, 1.7, 1000, False, False, "half", 0.5)

GPIO.cleanup()

import RPi.GPIO as GPIO

RpiMotorLib import RpiMotorLib

GpioPins = [6, 13, 19, 26]

mymotortest = RpiMotorLib.MXMo
tor("MyMotorOne", "MX1508
")

DCUp.py

mymotortest.motor_run(GpioPins, 1.7, 1000, False, False, "half", 0.5)

GPIO.cleanup()

#GPIO16 from YQZBML import YQZBML

lumsen=0

YQZ = YQZBML(debug=True) #print(YQZ.lux())

lumsen=YQZ.lux()

lumsen.py

#GPIO12 from time import sleep from gpiozero import InputDevice ploaie=0 no_rain = InputDevice(12)

if not no_rain.is_active:
 #print("Ploua!")
 ploaie=no_rain
 sleep(1)

ploaiesen .py import RPi.GPIO as GPIO

RpiMotorLib import RpiMotorLib

GpioPins = [18, 23, 24, 25]

mymotortest =
RpiMotorLib.BYJMotor("MyMotorOne",
"28BYJ")

mymotortest.motor_run(GpioPins, 0.1, 140, False, False, "half", 0.5)

servoL.py

GPIO.cleanup()

import RPi.GPIO as GPIO

RpiMotorLib import RpiMotorLib

GpioPins = [25, 24, 23, 18]

mymotortest = RpiMotorLib.BYJMotor(
"MyMotorOne", "28BYJ")

mymotortest.motor_run(GpioPins, 0.1, 145, False, False, "half", 0.5)

GPIO.cleanup()

servoR.py

```
#GPIO17
import Adafruit DHT
from time import sleep
sensor=Adafruit DHT.DHT11
gpio=17
temp=Temp={0:0.1f}*C
humidity, temperature =
Adafruit_DHT.read_retry(sensor, gpio)
if humidity is not None and temperature
is not None:
 print('Temp={0:0.1f}*C Humidity={1:0.1f}
%'.format(temperature, humidity))
temp=Temp={0:0.1f}*C
else:
 print('Failed to get reading. Try again!')
sleep(10)
if humidity is not None and
temperature is not None:
 print('Temp={0:0.1f}*C Humidity={1:0.1f}
%'.format(temperature, humidity))
temp=Temp={0:0.1f}*C
```

print('Failed to get reading. Try again!')

temp.py

else:

Structura

Structura

Structura casei e alcătuit din păci OSB de 8mm geamul de sus e alcătuit din hârtie cartonata si pvc jaluzeaua e alcătuit din ata textil si hârtie cartonata + o greutate din fier.

Timp de raspuns scazut la schimbari

Puncte forte

Risc mic la supraincalzire De oare ce are mult loc lalnga circuite

Anumite fire nu sunt bine lipite

Puncte slabe

Anumite piese nu sunt propoltionale cu macheta casei

La geamul cu jaluzeaua e amplasat un senzor de lumina

La incideara geamurilor e pus un intrerupator care aprinde 4 leduri penrtu iluminat

Bibliografie

https://github.com/

https://www.youtube.com/watch?v=_feooH7e29s &list=PLzDyZ2lkYhgCOEfXmVRmjOHXOmfyE8L VN&index=2&ab_channel=Index.hu

https://ardushop.ro/ro/