Cálculo de Programas Trabalho Prático MiEI+LCC — 2020/21

Departamento de Informática Universidade do Minho

Junho de 2021

Grupo nr.	80
a84628	Carlos Beiramar
a80931	Jorge Silva
a52846	Tiago Azevedo

1 Preâmbulo

Cálculo de Programas tem como objectivo principal ensinar a programação de computadores como uma disciplina científica. Para isso parte-se de um repertório de *combinadores* que formam uma álgebra da programação (conjunto de leis universais e seus corolários) e usam-se esses combinadores para construir programas *composicionalmente*, isto é, agregando programas já existentes.

Na sequência pedagógica dos planos de estudo dos dois cursos que têm esta disciplina, opta-se pela aplicação deste método à programação em Haskell (sem prejuízo da sua aplicação a outras linguagens funcionais). Assim, o presente trabalho prático coloca os alunos perante problemas concretos que deverão ser implementados em Haskell. Há ainda um outro objectivo: o de ensinar a documentar programas, a validá-los e a produzir textos técnico-científicos de qualidade.

2 Documentação

Para cumprir de forma integrada os objectivos enunciados acima vamos recorrer a uma técnica de programação dita "literária" [?], cujo princípio base é o seguinte:

Um programa e a sua documentação devem coincidir.

Por outras palavras, o código fonte e a documentação de um programa deverão estar no mesmo ficheiro. O ficheiro cp2021t.pdf que está a ler é já um exemplo de programação literária: foi gerado a partir do texto fonte cp2021t.lhs¹ que encontrará no material pedagógico desta disciplina descompactando o ficheiro cp2021t.zip e executando:

```
$ lhs2TeX cp2021t.lhs > cp2021t.tex
$ pdflatex cp2021t
```

em que <u>lhs2tex</u> é um pre-processador que faz "pretty printing" de código Haskell em <u>LATEX</u> e que deve desde já instalar executando

```
$ cabal install lhs2tex --lib
```

Por outro lado, o mesmo ficheiro cp2021t.lhs é executável e contém o "kit" básico, escrito em Haskell, para realizar o trabalho. Basta executar

```
$ ghci cp2021t.lhs
```

¹O suffixo 'lhs' quer dizer *literate Haskell*.

Abra o ficheiro cp2021t.1hs no seu editor de texto preferido e verifique que assim é: todo o texto que se encontra dentro do ambiente

```
\begin{code}
...
\end{code}
```

é seleccionado pelo GHCi para ser executado.

3 Como realizar o trabalho

Este trabalho teórico-prático deve ser realizado por grupos de 3 (ou 4) alunos. Os detalhes da avaliação (datas para submissão do relatório e sua defesa oral) são os que forem publicados na página da disciplina na *internet*.

Recomenda-se uma abordagem participativa dos membros do grupo de trabalho por forma a poderem responder às questões que serão colocadas na *defesa oral* do relatório.

Em que consiste, então, o *relatório* a que se refere o parágrafo anterior? É a edição do texto que está a ser lido, preenchendo o anexo D com as respostas. O relatório deverá conter ainda a identificação dos membros do grupo de trabalho, no local respectivo da folha de rosto.

Para gerar o PDF integral do relatório deve-se ainda correr os comando seguintes, que actualizam a bibliografia (com BibTeX) e o índice remissivo (com makeindex),

```
$ bibtex cp2021t.aux
$ makeindex cp2021t.idx
```

e recompilar o texto como acima se indicou. Dever-se-á ainda instalar o utilitário QuickCheck, que ajuda a validar programas em Haskell e a biblioteca Gloss para geração de gráficos 2D:

```
$ cabal install QuickCheck gloss --lib
```

Para testar uma propriedade QuickCheck prop, basta invocá-la com o comando:

```
> quickCheck prop
+++ OK, passed 100 tests.
```

Pode-se ainda controlar o número de casos de teste e sua complexidade, como o seguinte exemplo mostra:

```
> quickCheckWith stdArgs { maxSuccess = 200, maxSize = 10 } prop
+++ OK, passed 200 tests.
```

Qualquer programador tem, na vida real, de ler e analisar (muito!) código escrito por outros. No anexo C disponibiliza-se algum código Haskell relativo aos problemas que se seguem. Esse anexo deverá ser consultado e analisado à medida que isso for necessário.

3.1 Stack

O Stack é um programa útil para criar, gerir e manter projetos em Haskell. Um projeto criado com o Stack possui uma estrutura de pastas muito específica:

- Os módulos auxiliares encontram-se na pasta *src*.
- O módulos principal encontra-se na pasta app.
- A lista de depêndencias externas encontra-se no ficheiro package.yaml.

Pode aceder ao GHCi utilizando o comando:

```
stack ghci
```

Garanta que se encontra na pasta mais externa **do projeto**. A primeira vez que correr este comando as depêndencias externas serão instaladas automaticamente.

Para gerar o PDF, garanta que se encontra na diretoria *app*.

Os *tipos de dados algébricos* estudados ao longo desta disciplina oferecem uma grande capacidade expressiva ao programador. Graças à sua flexibilidade, torna-se trivial implementar DSLs e até mesmo linguagens de programação.

Paralelamente, um tópico bastante estudado no âmbito de Deep Learning é a derivação automática de expressões matemáticas, por exemplo, de derivadas. Duas técnicas que podem ser utilizadas para o cálculo de derivadas são:

- Symbolic differentiation
- Automatic differentiation

Symbolic differentiation consiste na aplicação sucessiva de transformações (leia-se: funções) que sejam congruentes com as regras de derivação. O resultado final será a expressão da derivada.

O leitor atento poderá notar um problema desta técnica: a expressão inicial pode crescer de forma descontrolada, levando a um cálculo pouco eficiente. *Automatic differentiation* tenta resolver este problema, calculando **o valor** da derivada da expressão em todos os passos. Para tal, é necessário calcular o valor da expressão **e** o valor da sua derivada.

Vamos de seguida definir uma linguagem de expressões matemáticas simples e implementar as duas técnicas de derivação automática. Para isso, seja dado o seguinte tipo de dados,

```
 \begin{aligned} \mathbf{data} \ & ExpAr \ a = X \\ & \mid N \ a \\ & \mid Bin \ BinOp \ (ExpAr \ a) \ (ExpAr \ a) \\ & \mid Un \ UnOp \ (ExpAr \ a) \\ & \mathbf{deriving} \ (Eq, Show) \end{aligned}
```

onde BinOp e UnOp representam operações binárias e unárias, respectivamente:

```
\begin{aligned} \mathbf{data} \; BinOp &= Sum \\ \mid Product \\ \mathbf{deriving} \; (Eq, Show) \\ \mathbf{data} \; UnOp &= Negate \\ \mid E \\ \mathbf{deriving} \; (Eq, Show) \end{aligned}
```

O construtor E simboliza o exponencial de base e.

Assim, cada expressão pode ser uma variável, um número, uma operação binária aplicada às devidas expressões, ou uma operação unária aplicada a uma expressão. Por exemplo,

```
Bin\ Sum\ X\ (N\ 10)
```

designa x + 10 na notação matemática habitual.

1. A definição das funções inExpAr e baseExpAr para este tipo é a seguinte:

```
\begin{split} in ExpAr &= [\underline{X}, num\_ops] \text{ where} \\ num\_ops &= [N, ops] \\ ops &= [bin, \widehat{Un}] \\ bin &(op, (a, b)) = Bin \ op \ a \ b \\ base ExpAr \ f \ g \ h \ j \ k \ l \ z = f + (g + (h \times (j \times k) + l \times z)) \end{split}
```

Defina as funções *outExpAr* e *recExpAr*, e teste as propriedades que se seguem.

Propriedade [QuickCheck] 1 inExpAr e outExpAr são testemunhas de um isomorfismo, isto é, inExpAr outExpAr = id e $outExpAr \cdot idExpAr = id$:

```
prop\_in\_out\_idExpAr :: (Eq\ a) \Rightarrow ExpAr\ a \rightarrow Bool

prop\_in\_out\_idExpAr = inExpAr \cdot outExpAr \equiv id

prop\_out\_in\_idExpAr :: (Eq\ a) \Rightarrow OutExpAr\ a \rightarrow Bool

prop\_out\_in\_idExpAr = outExpAr \cdot inExpAr \equiv id
```

2. Dada uma expressão aritmética e um escalar para substituir o X, a função

```
eval\_exp :: Floating \ a \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a
```

calcula o resultado da expressão. Na página 13 esta função está expressa como um catamorfismo. Defina o respectivo gene e, de seguida, teste as propriedades:

Propriedade [QuickCheck] 2 A função eval_exp respeita os elementos neutros das operações.

```
prop\_sum\_idr :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_sum\_idr \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} sum\_idr \ \mathbf{where}
   sum\_idr = eval\_exp \ a \ (Bin \ Sum \ exp \ (N \ 0))
prop\_sum\_idl :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_sum\_idl \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} sum\_idl \ \mathbf{where}
   sum\_idl = eval\_exp \ a \ (Bin \ Sum \ (N \ 0) \ exp)
prop\_product\_idr :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_product\_idr \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} prod\_idr \ \mathbf{where}
   prod\_idr = eval\_exp \ a \ (Bin \ Product \ exp \ (N \ 1))
prop\_product\_idl :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_product\_idl \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} prod\_idl \ \mathbf{where}
   prod\_idl = eval\_exp \ a \ (Bin \ Product \ (N \ 1) \ exp)
prop_{-e_{-}id} :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow Bool
prop_{-}e_{-}id \ a = eval_{-}exp \ a \ (Un \ E \ (N \ 1)) \equiv expd \ 1
prop\_negate\_id :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow Bool
prop\_negate\_id\ a = eval\_exp\ a\ (Un\ Negate\ (N\ 0)) \equiv 0
```

Propriedade [QuickCheck] 3 Negar duas vezes uma expressão tem o mesmo valor que não fazer nada.

```
prop\_double\_negate :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool

prop\_double\_negate \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} eval\_exp \ a \ (Un \ Negate \ exp))
```

3. É possível otimizar o cálculo do valor de uma expressão aritmética tirando proveito dos elementos absorventes de cada operação. Implemente os genes da função

```
optmize\_eval :: (Floating\ a, Eq\ a) \Rightarrow a \rightarrow (ExpAr\ a) \rightarrow a
```

que se encontra na página 13 expressa como um hilomorfismo² e teste as propriedades:

Propriedade [QuickCheck] 4 A função optimize_eval respeita a semântica da função eval.

```
prop\_optimize\_respects\_semantics :: (Floating\ a, Real\ a) \Rightarrow a \rightarrow ExpAr\ a \rightarrow Bool\ prop\_optimize\_respects\_semantics\ a\ exp\ =\ eval\_exp\ a\ exp\ \stackrel{?}{=}\ optmize\_eval\ a\ exp
```

- 4. Para calcular a derivada de uma expressão, é necessário aplicar transformações à expressão original que respeitem as regras das derivadas:³
 - Regra da soma:

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))$$

²Qual é a vantagem de implementar a função *optimize_eval* utilizando um hilomorfismo em vez de utilizar um catamorfismo com um gene "inteligente"?

³Apesar da adição e multiplicação gozarem da propriedade comutativa, há que ter em atenção a ordem das operações por causa dos testes.

• Regra do produto:

$$\frac{d}{dx}(f(x)g(x)) = f(x) \cdot \frac{d}{dx}(g(x)) + \frac{d}{dx}(f(x)) \cdot g(x)$$

Defina o gene do catamorfismo que ocorre na função

```
sd :: Floating \ a \Rightarrow ExpAr \ a \rightarrow ExpAr \ a
```

que, dada uma expressão aritmética, calcula a sua derivada. Testes a fazer, de seguida:

Propriedade [QuickCheck] 5 A função sd respeita as regras de derivação.

```
prop_const_rule :: (Real a, Floating a) \Rightarrow a \rightarrow Bool

prop_const_rule a = sd (N a) \equiv N 0

prop_var_rule :: Bool

prop_sum_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow ExpAr a \rightarrow Bool

prop_sum_rule exp1 exp2 = sd (Bin Sum exp1 exp2) \equiv sum_rule where

sum_rule = Bin Sum (sd exp1) (sd exp2)

prop_product_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow ExpAr a \rightarrow Bool

prop_product_rule exp1 exp2 = sd (Bin Product exp1 exp2) \equiv prod_rule where

prod_rule = Bin Sum (Bin Product exp1 (sd exp2)) (Bin Product (sd exp1) exp2)

prop_e_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow Bool

prop_e_rule exp = sd (Un E exp) \equiv Bin Product (Un E exp) (sd exp)

prop_negate_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow Bool

prop_negate_rule exp = sd (Un Negate exp) \equiv Un Negate (sd exp)
```

5. Como foi visto, *Symbolic differentiation* não é a técnica mais eficaz para o cálculo do valor da derivada de uma expressão. *Automatic differentiation* resolve este problema cálculando o valor da derivada em vez de manipular a expressão original.

Defina o gene do catamorfismo que ocorre na função

```
ad :: Floating \ a \Rightarrow a \rightarrow ExpAr \ a \rightarrow a
```

que, dada uma expressão aritmética e um ponto, calcula o valor da sua derivada nesse ponto, sem transformar manipular a expressão original. Testes a fazer, de seguida:

Propriedade [QuickCheck] 6 Calcular o valor da derivada num ponto r via ad é equivalente a calcular a derivada da expressão e avalia-la no ponto r.

```
prop\_congruent :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_congruent \ a \ exp = ad \ a \ exp \stackrel{?}{=} eval\_exp \ a \ (sd \ exp)
```

Problema 2

Nesta disciplina estudou-se como fazer programação dinâmica por cálculo, recorrendo à lei de recursividade mútua.⁴

Para o caso de funções sobre os números naturais (\mathbb{N}_0 , com functor F X=1+X) é fácil derivar-se da lei que foi estudada uma *regra de algibeira* que se pode ensinar a programadores que não tenham estudado Cálculo de Programas. Apresenta-se de seguida essa regra, tomando como exemplo o cálculo do ciclo-for que implementa a função de Fibonacci, recordar o sistema

$$fib \ 0 = 1$$

 $fib \ (n+1) = f \ n$

⁴Lei (3.94) em [?], página 98.

```
f 0 = 1
f (n+1) = fib n + f n
```

Obter-se-á de imediato

```
fib' = \pi_1 \cdot \text{for loop init where}

loop\ (fib, f) = (f, fib + f)

init = (1, 1)
```

usando as regras seguintes:

- O corpo do ciclo loop terá tantos argumentos quanto o número de funções mutuamente recursivas.
- Para as variáveis escolhem-se os próprios nomes das funções, pela ordem que se achar conveniente.⁵
- Para os resultados vão-se buscar as expressões respectivas, retirando a variável n.
- Em init coleccionam-se os resultados dos casos de base das funções, pela mesma ordem.

Mais um exemplo, envolvendo polinómios do segundo grau $ax^2 + bx + c$ em \mathbb{N}_0 . Seguindo o método estudado nas aulas⁶, de $f = ax^2 + bx + c$ derivam-se duas funções mutuamente recursivas:

```
f \ 0 = c

f \ (n+1) = f \ n + k \ n

k \ 0 = a + b

k \ (n+1) = k \ n + 2 \ a
```

Seguindo a regra acima, calcula-se de imediato a seguinte implementação, em Haskell:

```
f' a b c = \pi_1 \cdot \text{for loop init where}

loop (f, k) = (f + k, k + 2 * a)

init = (c, a + b)
```

O que se pede então, nesta pergunta? Dada a fórmula que dá o n-ésimo número de Catalan,

$$C_n = \frac{(2n)!}{(n+1)!(n!)} \tag{1}$$

derivar uma implementação de C_n que não calcule factoriais nenhuns. Isto é, derivar um ciclo-for

```
cat = \cdots for loop\ init\ \mathbf{where}\ \cdots
```

que implemente esta função.

Propriedade [QuickCheck] 7 A função proposta coincidem com a definição dada:

$$prop_cat = (\geqslant 0) \Rightarrow (catdef \equiv cat)$$

Sugestão: Começar por estudar muito bem o processo de cálculo dado no anexo B para o problema (semelhante) da função exponencial.

Problema 3

As curvas de Bézier, designação dada em honra ao engenheiro Pierre Bézier, são curvas ubíquas na área de computação gráfica, animação e modelação. Uma curva de Bézier é uma curva paramétrica, definida por um conjunto $\{P_0,...,P_N\}$ de pontos de controlo, onde N é a ordem da curva.

O algoritmo de *De Casteljau* é um método recursivo capaz de calcular curvas de Bézier num ponto. Apesar de ser mais lento do que outras abordagens, este algoritmo é numericamente mais estável, trocando velocidade por correção.

 $^{^5}$ Podem obviamente usar-se outros símbolos, mas numa primeira leitura dá jeito usarem-se tais nomes.

⁶Secção 3.17 de [?] e tópico Recursividade mútua nos vídeos das aulas teóricas.

Figura 1: Exemplos de curvas de Bézier retirados da Wikipedia.

De forma sucinta, o valor de uma curva de Bézier de um só ponto $\{P_0\}$ (ordem 0) é o próprio ponto P_0 . O valor de uma curva de Bézier de ordem N é calculado através da interpolação linear da curva de Bézier dos primeiros N-1 pontos e da curva de Bézier dos últimos N-1 pontos.

A interpolação linear entre 2 números, no intervalo [0, 1], é dada pela seguinte função:

```
\begin{array}{l} linear1d :: \mathbb{Q} \to \mathbb{Q} \to OverTime \ \mathbb{Q} \\ linear1d \ a \ b = formula \ a \ b \ \mathbf{where} \\ formula :: \mathbb{Q} \to \mathbb{Q} \to Float \to \mathbb{Q} \\ formula \ x \ y \ t = ((1.0 :: \mathbb{Q}) - (to_{\mathbb{Q}} \ t)) * x + (to_{\mathbb{Q}} \ t) * y \end{array}
```

A interpolação linear entre 2 pontos de dimensão N é calculada através da interpolação linear de cada dimensão.

O tipo de dados NPoint representa um ponto com N dimensões.

```
type NPoint = [\mathbb{Q}]
```

Por exemplo, um ponto de 2 dimensões e um ponto de 3 dimensões podem ser representados, respetivamente, por:

```
p2d = [1.2, 3.4]

p3d = [0.2, 10.3, 2.4]
```

O tipo de dados *OverTime a* representa um termo do tipo *a* num dado instante (dado por um *Float*).

```
type OverTime\ a = Float \rightarrow a
```

O anexo C tem definida a função

```
calcLine :: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint)
```

que calcula a interpolação linear entre 2 pontos, e a função

```
deCasteljau :: [\mathit{NPoint}] \rightarrow \mathit{OverTime}\ \mathit{NPoint}
```

que implementa o algoritmo respectivo.

1. Implemente *calcLine* como um catamorfismo de listas, testando a sua definição com a propriedade:

Propriedade [QuickCheck] 8 Definição alternativa.

```
prop\_calcLine\_def :: NPoint \rightarrow NPoint \rightarrow Float \rightarrow Bool

prop\_calcLine\_def \ p \ q \ d = calcLine \ p \ q \ d \equiv zipWithM \ linear1d \ p \ q \ d
```

2. Implemente a função de Casteljau como um hilomorfismo, testando agora a propriedade:

Propriedade [QuickCheck] 9 Curvas de Bézier são simétricas.

```
\begin{array}{l} prop\_bezier\_sym :: [[\mathbb{Q}]] \to Gen \ Bool \\ prop\_bezier\_sym \ l = all \ (<\Delta) \cdot calc\_difs \cdot bezs \ \langle \$ \rangle \ elements \ ps \ \mathbf{where} \\ calc\_difs = (\lambda(x,y) \to zipWith \ (\lambda w \ v \to \mathbf{if} \ w \geqslant v \ \mathbf{then} \ w - v \ \mathbf{else} \ v - w) \ x \ y) \\ bezs \ t = (deCasteljau \ l \ t, deCasteljau \ (reverse \ l) \ (from_{\mathbb{Q}} \ (1 - (to_{\mathbb{Q}} \ t)))) \\ \Delta = 1e-2 \end{array}
```

3. Corra a função runBezier e aprecie o seu trabalho⁷ clicando na janela que é aberta (que contém, a verde, um ponto inicila) com o botão esquerdo do rato para adicionar mais pontos. A tecla Delete apaga o ponto mais recente.

Problema 4

Seja dada a fórmula que calcula a média de uma lista não vazia x,

$$avg \ x = \frac{1}{k} \sum_{i=1}^{k} x_i \tag{2}$$

onde k = length x. Isto é, para sabermos a média de uma lista precisamos de dois catamorfismos: o que faz o somatório e o que calcula o comprimento a lista. Contudo, é facil de ver que

$$avg~[a]=a$$

$$avg(a:x)=\frac{1}{k+1}(a+\sum_{i=1}^k x_i)=\frac{a+k(avg~x)}{k+1}~\text{para}~k=length~x$$

Logo avg está em recursividade mútua com length e o par de funções pode ser expresso por um único catamorfismo, significando que a lista apenas é percorrida uma vez.

- 1. Recorra à lei de recursividade mútua para derivar a função $avg_aux = ([b, q])$ tal que $avg_aux = \langle avg, length \rangle$ em listas não vazias.
- 2. Generalize o raciocínio anterior para o cálculo da média de todos os elementos de uma LTree recorrendo a uma única travessia da árvore (i.e. catamorfismo).

Verifique as suas funções testando a propriedade seguinte:

Propriedade [QuickCheck] 10 A média de uma lista não vazia e de uma LTree com os mesmos elementos coincide, a menos de um erro de 0.1 milésimas:

```
prop\_avg = nonempty \Rightarrow diff \leq 0.000001 where diff\ l = avg\ l - (avgLTree \cdot genLTree)\ l genLTree = [(lsplit)] nonempty = (>[])
```

Problema 5

(NB: Esta questão é opcional e funciona como valorização apenas para os alunos que desejarem fazê-la.)

Existem muitas linguagens funcionais para além do Haskell, que é a linguagem usada neste trabalho prático. Uma delas é o F# da Microsoft. Na directoria fsharp encontram-se os módulos Cp, Nat e LTree codificados em F#. O que se pede é a biblioteca BTree escrita na mesma linguagem.

Modo de execução: o código que tiverem produzido nesta pergunta deve ser colocado entre o \begin{verbatim} e o \end{verbatim} da correspondente parte do anexo D. Para além disso, os grupos podem demonstrar o código na oral.

⁷A representação em Gloss é uma adaptação de um projeto de Harold Cooper.

Anexos

A Como exprimir cálculos e diagramas em LaTeX/lhs2tex

Como primeiro exemplo, estudar o texto fonte deste trabalho para obter o efeito:⁸

$$id = \langle f, g \rangle$$

$$\equiv \qquad \{ \text{ universal property } \}$$

$$\left\{ \begin{array}{l} \pi_1 \cdot id = f \\ \pi_2 \cdot id = g \end{array} \right.$$

$$\equiv \qquad \{ \text{ identity } \}$$

$$\left\{ \begin{array}{l} \pi_1 = f \\ \pi_2 = g \end{array} \right.$$

Os diagramas podem ser produzidos recorrendo à package LATEX xymatrix, por exemplo:

$$\begin{array}{c|c} \mathbb{N}_0 \longleftarrow & \text{in} & 1 + \mathbb{N}_0 \\ \mathbb{I}_g \mathbb{N} \downarrow & & \downarrow id + \mathbb{I}_g \mathbb{N} \\ B \longleftarrow & g & 1 + B \end{array}$$

B Programação dinâmica por recursividade múltipla

Neste anexo dão-se os detalhes da resolução do Exercício 3.30 dos apontamentos da disciplina⁹, onde se pretende implementar um ciclo que implemente o cálculo da aproximação até i=n da função exponencial $exp\ x=e^x$, via série de Taylor:

$$exp x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$
 (3)

Seja $e \ x \ n = \sum_{i=0}^n \frac{x^i}{i!}$ a função que dá essa aproximação. É fácil de ver que $e \ x \ 0 = 1$ e que $e \ x \ (n+1) = e \ x \ n + \frac{x^{n+1}}{(n+1)!}$. Se definirmos $h \ x \ n = \frac{x^{n+1}}{(n+1)!}$ teremos $e \ x \ e \ h \ x$ em recursividade mútua. Se repetirmos o processo para $h \ x \ n$ etc obteremos no total três funções nessa mesma situação:

$$e \ x \ 0 = 1$$
 $e \ x \ (n+1) = h \ x \ n + e \ x \ n$
 $h \ x \ 0 = x$
 $h \ x \ (n+1) = x \ / \ (s \ n) * h \ x \ n$
 $s \ 0 = 2$
 $s \ (n+1) = 1 + s \ n$

Segundo a regra de algibeira descrita na página 3.1 deste enunciado, ter-se-á, de imediato:

$$e'$$
 $x = prj$ · for loop init where
init = $(1, x, 2)$
loop $(e, h, s) = (h + e, x / s * h, 1 + s)$
 prj $(e, h, s) = e$

⁸Exemplos tirados de [?].

⁹Cf. [?], página 102.

C Código fornecido

Problema 1

```
expd :: Floating \ a \Rightarrow a \rightarrow a

expd = Prelude.exp

\mathbf{type} \ OutExpAr \ a = () + (a + ((BinOp, (ExpAr \ a, ExpAr \ a)) + (UnOp, ExpAr \ a)))
```

Problema 2

Definição da série de Catalan usando factoriais (4):

```
catdef \ n = (2 * n)! \div ((n + 1)! * n!)
```

Oráculo para inspecção dos primeiros 26 números de Catalan¹⁰:

```
\begin{array}{l} oracle = [\\ 1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,\\ 35357670,129644790,477638700,1767263190,6564120420,24466267020,\\ 91482563640,343059613650,1289904147324,4861946401452\\ ] \end{array}
```

Problema 3

Algoritmo:

```
\begin{array}{l} deCasteljau :: [\mathit{NPoint}] \rightarrow \mathit{OverTime} \ \mathit{NPoint} \\ deCasteljau \ [] = \mathit{nil} \\ deCasteljau \ [p] = \underline{p} \\ deCasteljau \ l = \lambda pt \rightarrow (\mathit{calcLine} \ (p \ pt) \ (q \ pt)) \ \mathit{pt} \ \mathbf{where} \\ p = deCasteljau \ (\mathit{init} \ l) \\ q = deCasteljau \ (\mathit{tail} \ l) \end{array}
```

Função auxiliar:

```
\begin{array}{l} calcLine :: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint) \\ calcLine\ [] = \underline{nil} \\ calcLine\ (p:x) = \overline{g}\ p\ (calcLine\ x)\ \mathbf{where} \\ g:: (\mathbb{Q}, NPoint \rightarrow OverTime\ NPoint) \rightarrow (NPoint \rightarrow OverTime\ NPoint) \\ g\ (d,f)\ l = \mathbf{case}\ l\ \mathbf{of} \\ [] \rightarrow nil \\ (x:xs) \rightarrow \lambda z \rightarrow concat\ \$\ (sequence A\ [singl\cdot linear1d\ d\ x,f\ xs])\ z \end{array}
```

2D:

```
\begin{array}{l} bezier2d :: [NPoint] \rightarrow OverTime \ (Float, Float) \\ bezier2d \ [] = \underline{(0,0)} \\ bezier2d \ l = \lambda z \rightarrow (from_{\mathbb{Q}} \times from_{\mathbb{Q}}) \cdot (\lambda[x,y] \rightarrow (x,y)) \ \$ \ ((deCasteljau \ l) \ z) \end{array}
```

Modelo:

```
 \begin{aligned} \mathbf{data} \ World &= World \ \{ \ points :: [ \ NPoint ] \\ , \ time :: Float \\ \} \\ initW :: World \\ initW &= World \ [] \ 0 \end{aligned}
```

¹⁰Fonte: Wikipedia.

```
tick :: Float \rightarrow World \rightarrow World
      tick \ dt \ world = world \ \{ \ time = (time \ world) + dt \}
      actions :: Event \rightarrow World \rightarrow World
      actions (EventKey (MouseButton LeftButton) Down \_ p) world =
         world \{ points = (points \ world) + [(\lambda(x, y) \rightarrow \mathsf{map} \ to_{\mathbb{Q}} \ [x, y]) \ p] \}
      actions (EventKey (SpecialKey KeyDelete) Down _ _) world =
         world \{ points = cond (\equiv []) id init (points world) \}
      actions \_world = world
      scaleTime :: World \rightarrow Float
      scaleTime\ w = (1 + cos\ (time\ w))/2
      bezier2dAtTime :: World \rightarrow (Float, Float)
      bezier2dAtTime\ w = (bezier2dAt\ w)\ (scaleTime\ w)
      bezier2dAt :: World \rightarrow OverTime (Float, Float)
      bezier2dAt \ w = bezier2d \ (points \ w)
      thicCirc :: Picture
      thicCirc = ThickCircle \ 4 \ 10
      ps :: [Float]
      ps = \mathsf{map}\ from_{\mathbb{Q}}\ ps'\ \mathbf{where}
         ps' :: [\mathbb{Q}]
         ps' = [0, 0.01..1] -- interval
Gloss:
      picture :: World \rightarrow Picture
      picture \ world = Pictures
         [animateBezier (scaleTime world) (points world)
         , Color\ white \cdot Line \cdot {\sf map}\ (bezier2dAt\ world)\ \$\ ps
         , Color blue · Pictures [Translate(from_{\mathbb{Q}} x)(from_{\mathbb{Q}} y) thicCirc | [x, y] \leftarrow points world]
         , Color green $ Translate cx cy thicCirc
          where
         (cx, cy) = bezier2dAtTime\ world
Animação:
      animateBezier :: Float \rightarrow [NPoint] \rightarrow Picture
      animateBezier \_[] = Blank
      animateBezier \ \_ \ [\_] = Blank
      animateBezier \ t \ l = Pictures
         [animateBezier\ t\ (init\ l)]
         , animateBezier t (tail l)
         , Color red \cdot Line \$ [a, b]
         , Color orange $ Translate ax ay thicCirc
         , Color orange $ Translate bx by thicCirc
         where
         a@(ax, ay) = bezier2d (init l) t
         b@(bx, by) = bezier2d (tail l) t
Propriedades e main:
      runBezier :: IO ()
      runBezier = play (InWindow "Bézier" (600,600) (0,0))
         black 50 initW picture actions tick
      runBezierSym :: IO ()
      runBezierSym = quickCheckWith (stdArgs \{ maxSize = 20, maxSuccess = 200 \}) prop\_bezier\_sym
   Compilação e execução dentro do interpretador:<sup>11</sup>
      main = runBezier
      run = do \{ system "ghc cp2021t"; system "./cp2021t" \}
```

¹¹Pode ser útil em testes envolvendo Gloss. Nesse caso, o teste em causa deve fazer parte de uma função *main*.

QuickCheck

Código para geração de testes:

```
instance Arbitrary\ UnOp\ where arbitrary\ =\ elements\ [Negate,E] instance Arbitrary\ BinOp\ where arbitrary\ =\ elements\ [Sum,Product] instance (Arbitrary\ a)\ \Rightarrow\ Arbitrary\ (ExpAr\ a)\ where arbitrary\ =\ do\ binop\ \leftarrow\ arbitrary\ unop\ \leftarrow\ arbitrary\ unop\ \leftarrow\ arbitrary\ exp1\ \leftarrow\ arbitrary\ exp1\ \leftarrow\ arbitrary\ exp2\ \leftarrow\ arbitrary\ a\ \rightarrow\ arbitrar
```

Outras funções auxiliares

Lógicas:

```
 \begin{aligned} &\inf \mathbf{xr} \ 0 \Rightarrow \\ &(\Rightarrow) :: (\mathit{Testable prop}) \Rightarrow (a \to \mathit{Bool}) \to (a \to \mathit{prop}) \to a \to \mathit{Property} \\ &p \Rightarrow f = \lambda a \to p \ a \Rightarrow f \ a \\ &\inf \mathbf{xr} \ 0 \Leftrightarrow \\ &(\Leftrightarrow) :: (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \to a \to \mathit{Property} \\ &p \Leftrightarrow f = \lambda a \to (p \ a \Rightarrow \mathit{property} \ (f \ a)) \ .\&\&. \ (f \ a \Rightarrow \mathit{property} \ (p \ a)) \\ &\inf \mathbf{xr} \ 4 \equiv \\ &(\equiv) :: \mathit{Eq} \ b \Rightarrow (a \to b) \to (a \to b) \to (a \to \mathit{Bool}) \\ &f \equiv g = \lambda a \to f \ a \equiv g \ a \\ &\inf \mathbf{xr} \ 4 \leqslant \\ &(\leqslant) :: \mathit{Ord} \ b \Rightarrow (a \to b) \to (a \to b) \to (a \to \mathit{Bool}) \\ &f \leqslant g = \lambda a \to f \ a \leqslant g \ a \\ &\inf \mathbf{xr} \ 4 \land \\ &(\land) :: (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \\ &f \land g = \lambda a \to ((f \ a) \land (g \ a)) \end{aligned}
```

D Soluções dos alunos

Os alunos devem colocar neste anexo as suas soluções para os exercícios propostos, de acordo com o "layout" que se fornece. Não podem ser alterados os nomes ou tipos das funções dadas, mas pode ser adicionado texto, disgramas e/ou outras funções auxiliares que sejam necessárias.

Valoriza-se a escrita de pouco código que corresponda a soluções simples e elegantes.

São dadas:

```
\begin{array}{l} \operatorname{cataExpAr} \ g = g \cdot \operatorname{recExpAr} \ (\operatorname{cataExpAr} \ g) \cdot \operatorname{outExpAr} \\ \operatorname{anaExpAr} \ g = \operatorname{inExpAr} \cdot \operatorname{recExpAr} \ (\operatorname{anaExpAr} \ g) \cdot g \\ \operatorname{hyloExpAr} \ h \ g = \operatorname{cataExpAr} \ h \cdot \operatorname{anaExpAr} \ g \\ \operatorname{eval\_exp} :: \operatorname{Floating} \ a \Rightarrow a \to (\operatorname{ExpAr} \ a) \to a \\ \operatorname{eval\_exp} \ a = \operatorname{cataExpAr} \ (g\_\operatorname{eval\_exp} \ a) \\ \operatorname{optmize\_eval} :: (\operatorname{Floating} \ a, \operatorname{Eq} \ a) \Rightarrow a \to (\operatorname{ExpAr} \ a) \to a \\ \operatorname{optmize\_eval} \ a = \operatorname{hyloExpAr} \ (\operatorname{gopt} \ a) \ \operatorname{clean} \\ \operatorname{sd} :: \operatorname{Floating} \ a \Rightarrow \operatorname{ExpAr} \ a \to \operatorname{ExpAr} \ a \\ \operatorname{sd} = \pi_2 \cdot \operatorname{cataExpAr} \ \operatorname{sd\_gen} \\ \operatorname{ad} :: \operatorname{Floating} \ a \Rightarrow a \to \operatorname{ExpAr} \ a \to a \\ \operatorname{ad} \ v = \pi_2 \cdot \operatorname{cataExpAr} \ (\operatorname{ad\_gen} \ v) \\ \end{array}
```

Irão ser apresentadas agoras as funções implementadas para a resolução do Problema 1.

1. A função *outExpAr* foi definida da seguinte forma:

```
 \begin{aligned} & outExpAr \ X = i_1 \ () \\ & outExpAr \ num\_ops = i_2 \ (outNumOps \ num\_ops) \\ & outNumOps \ (N \ v) = i_1 \ (v) \\ & outNumOps \ (ops) = i_2 \ (outOps \ ops) \\ & outOps \ (Bin \ op \ a \ b) = i_1 \ (outBinOps \ (Bin \ op \ a \ b)) \\ & outOps \ (Un \ op \ a) = i_2 \ (outUnOps \ (Un \ op \ a)) \\ & outBinOps \ (Bin \ op \ a \ b) = (op, (a, b)) \\ & outUnOps \ (Un \ op \ a) = (op, a) \end{aligned}
```

O objetivo desta expressão é "destruir" uma expressão do tipo ExpAr, ou seja, apresentando alguns exemplos para clarificar:

- **X** = Left()
- (N v) = Right(Left v)
- (Bin ops a b) = Right(Right(Left(ops,(a,b))))
- (Un ops a) = Right(Right(Right (ops,a)))
- 2. Seguidamente é apresentada a resolução para a função *recExpAr*. Nesta implementação seguiuse as instruções dadas pelo professor numa das FAQ's presentes da página pública da UC e implementeu-se a função *baseExpAr* da seguinte forma:

```
baseExpAr'\ g\ f = baseExpAr\ id\ g\ id\ f\ f\ id\ f
```

Assim, a função recExpArf segue o mesmo princípio que todas as estruturas leccionadas e, passase o id no primeiro argumento do baseExpAr e o f dado é passado como segundo argumento.

```
recExpAr f = baseExpAr' id f
```

3. De seguida implementeu-se a função *g_eval_exp* cujo objetivo é: Dada uma expressão aritmética e um escalar para substituir o X , esta função calcula o resultado da expressão.

```
g\_eval\_exp\ a = [left, right] where left = \underline{a} right = [left\_1, right\_1] where left\_1\ n = n right\_1 = [left\_2, right\_2] where left\_2\ (Sum, (exp1, exp2)) = exp1 + exp2 left\_2\ (Product, (exp1, exp2)) = exp1 * exp2 right\_2\ (Negate, exp1) = -exp1 right\_2\ (E, x) = Prelude.exp\ x
```

4. Na função seguinte, é pretendido otimizar o cálculo do valor de uma expressão aritmética tirando proveito dos elementos absorventes de cada operação.

```
-- divide  \begin{array}{l} \textit{clean (Bin Product} \ \_(N\ 0)) = \textit{outExpAr}\ (N\ 0) \\ \textit{clean (Bin Product}\ (N\ 0) \ \_) = \textit{outExpAr}\ (N\ 0) \\ \textit{clean (Bin Sum}\ a\ (N\ 0)) = \textit{outExpAr}\ a \\ \textit{clean (Bin Sum}\ (N\ 0)\ b) = \textit{outExpAr}\ b \\ \textit{clean exp} = \textit{outExpAr}\ exp \\ \textit{--} \ \text{conquer} \\ \textit{gopt } a = g\_\textit{eval\_exp}\ a \\ \end{array}
```

Sabe-se que um **hilomorfismo** é decomposto por um **catamorfismo** após um **anamorfismo**. Sendo assim, na função *clean* foram definidos os casos para os elementos absorventes na soma e no produto das expressões aritméticas. Nesta função foi usada também a função *outExpAr* para "destruir"a expressão passada como argumento. Por fim, após esta otimização, definiu-se a função *gopt* que irá receber um valor como argumento e irá calcular o valor da expressão devolvida pelo **anamorfismo**.

```
5. sd\_gen :: Floating \ a \Rightarrow
() + (a + ((BinOp, ((ExpAr \ a, ExpAr \ a), (ExpAr \ a, ExpAr \ a)))) + (UnOp, (ExpAr \ a, ExpAr \ a)))) \rightarrow (ExpAr \ a, ExpAr \ a)
sd\_gen = \bot
```

```
6. ad\_gen\ a\ exp = \bot
```

A fórmula dada para calcular o n-ésimo número de Catalan é

$$C_n = \frac{(2n)!}{(n+1)!(n!)} \tag{4}$$

ou seja, calcula os 3 factoriais diferentes, o que, por si só é um desperdício de processamento pois efetua cálculos repetidos.

Exemplo: Vejamos o exemplo para o número 5 de Catalan.

$$\frac{(2*5)!}{(5+1)!*5!} = \frac{(10*9*8*7*6*5*4*3*2*1)}{(6*5*4*3*2*1)*(5*4*3*2*1)} = \frac{(10*9*8*7*6*5!)}{(6*5!)*5!}$$
(5)

Como é possível verificar, o 5! é calculado 3 vezes separadas. Assim, com o intuito de tornar o cálculo mais eficiente, é possível cancelar algumas multiplicações com a divisão. Por exemplo, o (n+1)! do denominador pode ser retirado do 2n! do numerador e o resultado obtido seria:

$$\frac{(2n*2n-1*2n-2...2n-(n+2))}{n!} \tag{6}$$

Após isto, é possível verificar que o cálculo já se tornou mais eficiente

Tal como a sequência de *Fibonacci*, os números de *Catalan* satisfazem a "relação de recorrência", portanto podem ser definidos da seguinte forma:

$$c 0 = 1$$

$$c(n+1) = (2*(2n+1) / n+2)*cn$$

Isto é o ideal pois como se quer implementar um ciclo for que começa a partir de um valor inicial (init), o crescimento dos valores é facilmente calculado a cada iteração. Como se pretence usa a divisão inteira, decidiu-se utilizar 3 funções recursivas entre si.

Um contador: f n = n + 1

O Numerador: g(0) = 1; g(n+1) = 2 * (2 * x + 1) * n

O Denominador: h(0) = 1; h(n+1) = (n+2) * h(n)

A divisão foi deixada para último passado, para evitar os números não inteiros, tal como é pedido no enunciado. Assim sendo, o ciclo inicia com um tuplo **(1,1,0)** e cada iteração do **loop** aplica a função a cada componente (d,n,x) = ((x+2)*d, 2*(2*x+1)*n, 1+x). Após todas as iteração terminarem, a função **proj** faz a divisão do numerador pelo denominador e devolve o valor.

De seguida, é apresentado o código elaborado para a realização do exercício.

$$\begin{aligned} &loop\;(d,n,x) = ((x+2)*d,2*(2*x+1)*n,1+x)\\ &inic = (1,1,0)\\ &prj\;(a,b,c) = b \div a \end{aligned}$$

por forma a que

```
cat = prj \cdot \text{for } loop \ inic
```

seja a função pretendida. **NB**: usar divisão inteira. Apresentar de seguida a justificação da solução encontrada.

Problema 3

A função **calcLine** recorre à função **linear1d** para determinar a interpolação entre dois valores. Como o objetivo é determinar a interpolação de várias coordenadas, faz sentido que esta função percorra duas listas cada uma com o conjunto de coordenadas de cada ponto. Em **Haskell** a função teria que ter este comportamento:

```
 \begin{array}{l} calcLineHaskell \ [\ ] \ [\ ] \ \_ = [\ ] \\ calcLineHaskell \ (x:xs) \ [\ ] \ \_ = [\ ] \\ calcLineHaskell \ [\ ] \ (x:xs) \ \_ = [\ ] \\ calcLineHaskell \ (a:ax) \ (b:bx) \ d = linear1d \ a \ b \ d : calcLineHaskell \ ax \ bx \ d \end{array}
```

Esta função irá percorrer duas listas, componente a componente, calcula o **linear1d** com o par de componentes e devolve uma lista com os valores das interpolações. Caso alguma ou ambas as listas estiverem vazias, o cálculo termina.

Para se definir como catamorfismo, este tem que fazer **outList** recursivamente até ao caso de paragem, consumir a lista de acordo com o gene e relacionar com a lista seguinte. Foi definido o catamorfismo em *pointwise* da seguinte forma:

A implementação do algoritmo de **deCasteljau** como hilomorfismo divide-se em duas partes. Tal como foi definido, o **hilomorfismo** é um **anamorfismo** seguido de um **catamorfismo**.

No **anamorfismo** irá ser criada uma estrutura "virtual" intermédia que, posteriormente, irá ser consumido pelo **catamorfismo**. Neste caso, a estutura intermédia escolhida foi uma *Leaf Tree* pois o algoritmo original divide sucessivamente a lista de pontos em listas de de comprimentos iguais (**init** e **tail**) até chegar ao ponto individual. Ou seja, a cada **init** e **tail** de uma lista é feito um **Fork**. Atingindo a lista de valor individual(ponto), é criada a Leaf.

Nas aulas foi analizado o **mergeSort** que consideramos em certos padrões semelhante nesta parte do anamorfismo.

Sendo assim, foi definido que

1. **divide** - Separa a lista com **init** e **tail** sucessivamente e transforma essas separações em Forks até chegar às Leafs que serão os pontos individuais.

```
separador = \langle init, tail \rangle

divide [] = i_1 []

divide [x] = i_1 x

divide l = i_2 (separador l)
```

2. **conquer** - Nesta fase, ou seja no **catamorfismo**,o gene devolvia o valor da Leaf ou, quando era Fork fazia o cálculo dos dois pontos usando a *calcLine* acima definido.

```
\begin{array}{l} conquer = [g1,g2] \ \mathbf{where} \\ g1 \ x \ \_ = x \\ g2 \ (l,r) \ z = calcLine \ (l \ z) \ (r \ z) \ z \end{array}
```

Assim, obtém-se o seguinte código:

```
calcLine :: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint)
calcLine = cataList\ h\ \mathbf{where}
h = [g1, g2]
g1\ x = nil
g2\ (a,b)\ []\ z = b\ []\ z
```

```
g2\ (a,b)\ (x:xs)\ z = (linear1d\ a\ x\ z):b\ xs\ z deCasteljau::[NPoint] \to OverTime\ NPoint deCasteljau = hyloAlgForm\ alg\ coalg\ where coalg=divide alg=conquer hyloAlgForm=hyloLTree
```

Notas: Tal como indicado no enunciado, o algoritmo de **deCasteljau** não é mais eficiente pois efetua muitas interpolações entre pontos repetidos de forma a obter um valor mais exato. Como tal, o **quickCheck** com argumentos por defeito cria listas demasiado grandes para o computador processar em tempo útil. O tamanho do maxSize foi então reduzido para 20 ou 25. Sugere-se então que se altere nos argumentos do **quickCheck o maxSize para 20 ou 25**.

Problema 4

Neste problema é necessário implementar um catamorfismo que calculasse a média de uma lista de números. Deste modo, é necessário elaborar duas coisas, obter o valor so somatório de todos os elementos presentes na lista e descobrir qual é o tamanho dessa mesma lista. Só será necessário percorrer a lista uma única vez.

Este problema foi dividido em pequenos problemas, de seguida irão ser abordadas cada uma das funções criadas.

1. A função *opDivisao* irá receber um par, **(Double, Double)**, e irá retornar o valor da **divisão** entre os dois elementos do par.

$$opDivisao = \widehat{(/)}$$

2. A função *opSoma* irá receber um par, **(Double, Double)**, e irá retornar o valor da **soma** entre os dois elementos do par.

$$opSoma = \widehat{(+)}$$

3. A função *opMulti* irá receber um par, **(Double, Double)**, e irá retornar o valor da **multiplicação** entre os dois elementos do par.

$$opMulti = \widehat{(*)}$$

4. A função *opConvert* irá receber um par, (**Integer**, **Integer**), e irá converter esse par para (**Double**), **Double**), usando a função *realToFrac*.

```
opConvert = (realToFrac \times realToFrac)
```

- 5. A função *multi* irá receber um par, **(b, (g1, g2)**, e irá retornar um par **(x,y)** onde:
 - x = b
 - y = (g1 * g2, g2)

$$multi = (id \times \langle opMulti, \pi_2 \rangle)$$

- 6. A função somas irá receber um tuplo, (b,(g1,g2)), e irá retornar um par (x,y) onde:
 - x = opSoma(b,g1)
 - y = g2

$$somas = \langle opSoma \cdot \langle \pi_1, \pi_1 \cdot \pi_2 \rangle, \pi_2 \cdot \pi_2 \rangle$$

- 7. A função *incLen* irá receber um par, **(a,b)** e irá retornar um par **(x,y)** onde:
 - x = a• y = b + 1 $incLen = (id \times (1+))$
- 8. A função divisao irá receber (a,b) e irá retornar um par (x,y) onde:
 - x = opDivisao (a,b)
 y = b
 divisao = ⟨opDivisao, π₂⟩

Solução para listas não vazias:

```
avg = \pi_1 \cdot avg\_aux
```

Na implementação na função é possível verificar que, o catamorfismo faz **outList** até chegar à lista vazia (**g1**) e, nesse momento, "cria" o par **(0,0)** sendo (media, length). Para além disso, neste passo, os valores são convertidos para **Double** para depois ser possível fazer a divisão evitando assim os conflitos entre tipos quando são obtidos valores fracionários.

De seguida, a cada passo do gene (g2), o catamorfismo aplica uma composição de operações aritméticas.

```
avg\_aux = cataList \ g \ \mathbf{where}

g = [g1, g2] \ \mathbf{where}

g1 = opConvert \cdot \langle zero, zero \rangle

g2 = (divisao \cdot incLen \cdot somas \cdot multi)
```

Para generalizar esse cálculo para **LTree** foram feitas algumas alterações pois, não era possível seguir o raciocínio implementado anteriormente. Para tal, a árvore trabalhava com um triplo **(average,(sum,length))** que calculava a nova média a cada Fork que irá ser iterado.

No caso de paragem, ou seja, em cada Leaf transformava o valor do triplo indicado acima. E no Fork as médias anteriores eram descartadas, soma-se os somatórios, os lengths e calcula-se a nova média, tornando a criar um triplo para continuar a "subir"na árvore.

Solução para árvores de tipo LTree:

```
avgLTree = \pi_1 \cdot (|gene|) where gene = [g1, g2] where g1 = (opDivisao \times id) \cdot \langle id, id \rangle \cdot (realToFrac \times realToFrac) \cdot \langle id, one \rangle g2 = (opDivisao \times id) \cdot \langle id, id \rangle \cdot (opSoma \times opSoma) \cdot \langle \pi_1 \times \pi_1, \pi_2 \times \pi_2 \rangle \cdot (\pi_2 \times \pi_2)
```

Inserir em baixo o código F# desenvolvido, entre \begin{verbatim} e \end{verbatim}: