CHAPTER 3 PERIODIC TABLE

Periodic Table

3.1: Classification of Elements

3.2: Periodicity

Who invented Periodic Table?

The scientists involved are: Antoine Lavoisier, Johann W. Dobereiner, John Newlands, Lothar Meyer, Dimitri Mendeleev and H.J. G. Moseley.

Lothar Meyer - properties of element were in complied a periodic table of 56 elements based on regular repeating pattern of physical properties.

Dimitri Mendeleev - published the first version of the periodic table in 1869. Arranged elements according to increasing atomic masses.

Henry Moseley - Rearrange the elements in the periodic table by their atomic numbers.

THE MODERN PERIODIC TABLE

Period, Group & Block (s,p,d,f)

- The element in periodic table are arranged in order of increasing proton number.
- The position of elements can be determined by using electronic configuration.

1 H																	2 He
3 Li	4 Be											5 B	C e	7 N	8	9 F	10 Ne
11 Na	12 Mg											13 AI	14 Si	15 P	16 S	17 CI	18 A r
19	20	21	22	23	24	25	²⁶	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K r
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	r	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	M t	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Period, Group & Block (s,p,d,f)

- A vertical column of elements is called a group.
- A horizontal row of elements is known as a period.

Group

 Elements in the same group have the same number of valence electrons, thus same chemical properties.

Group 1 -2

group no = number of valence electron

Group 13-18

group no = number of valence electron + 10

Group 3-12

group no = number of valence electron of $ns^2 (n-1)d^1$ to $ns^2 (n-1)d^{10}$

Group

Group

Block

- Elements in the periodic table can be classified into four blocks according to their valence electronic configuration.
- These blocks are block s & p (main block), d and f.

b	block s																	
	1 H														blo	ock	p	He
	3 Li	4 Be											5 B	e C	7 N	8 O	9 F	10 Ne
	11 Na	12 Mg					blo	ck a					13 Al	14 Si	15 P	16 S	17 CI	18 A r
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
	55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89-103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 FI	115 Uup	116 Lv	117 Uus	118 Uuo

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Block

 The periodic table is divided into blocks according to their valence electronic configuration.

		Block	
	S	p	d
Group	1 & 2	13 –18	3 – 12
Valence electronic configuration	ns ¹ to ns ²	ns ² np ¹ to ns ² np ⁶	ns^2 (n-1) d^1 to ns^2 (n-1) d^{10}

23.5.2022

s-block

Group no = number of valence electron

Example 1: The elements in Group 1

elements	electronic configuration	valence electronic configuration	valence electrons
₃ Li	1s ² 2s ¹	$2s^1$	1
₁₁ Na	1s ² 2s ² 2p ⁶ 3s ¹	3s ¹	1
₁₉ K	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹	4s ¹	1

^{*}Note: valence electrons are electron in the outer shell

s-block

Group no = number of valence electron

Example 2: The elements in Group 2

elements	electronic configuration	valence electronic	valence electrons
		configuration	
₄ Be	1s ² 2s ²	2s ²	2
₁₂ Mg	1s ² 2s ² 2p ⁶ 3s ²	3s ²	2
₂₀ Ca	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	4s ²	2

p-block

Group no = number of valence electron + 10

Example 3: The elements in Group 13

elements	electronic configuration	valence electronic configuration	valence electrons
₅ B	1s ² 2s ² 2p ¹	2s ² 2p ¹	3
₁₃ Al	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	3s ² 3p ¹	3
₃₁ Ga	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ¹	4s ² 4p ¹	3

p-block

Group no = number of valence electron + 10

Example 4: The elements in Group 17

element	electronic configuration	valence electronic configuration	valence electrons
₉ F	1s ² 2s ² 2p ⁵	2s ² 2p ⁵	7
₁₇ Cl	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	$3s^2 3p^5$	7
₃₅ Br	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁵	4s ² 4p ⁵	7

d-block

Group no = number of valence electron of ns^2 (n-1) d^1 to ns^2 (n-1) d^{10}

Example 5:

elements	electronic configuration	valence electronic configuration	valence valents electrons	ogou?
₂₁ Sc	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹	4s ² 3d ¹	3	3
₂₃ V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	4s ² 3d ³	5	5
₃₀ Zn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰	4s ² 3d ¹⁰	12	12

d-block

Group no = number of valence electron of ns^2 (n-1) d^1 to ns^2 (n-1) d^{10}

Example 6:

$$_{39}$$
Y: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^1$

```
valence electrons = 3
valence electronic configuration = 5s^2 4d^1
group = 3
```

Period

- All of the elements in a period have the same number of highest principle quantum number, n.
- Are numbered from 1 to 7.

Example:

elements	electronic configuration	higher n	period
₃ Li	1s ² 2s ¹	2	2
₁₈ Ar	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	3	3
₁₉ K	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹	4	4
₂₁ Sc	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹	4	4

^{*} elements of the same period have the same number of electron shells

The position of metals, metalloids & non-metals

CHAPTER 3.2: OVERWEW

PERIODICITY

Periodicity is the periodic trend in properties of elements.

Atomic radii

Radius, r = half of the distance between the nuclei of two adjacent identical atoms.

The atomic radius of an element is determined by two factors

Effective nuclear charge, Z_{eff}

Shielding/Screening effect

Effective Nuclear Charge, Z_{eff}

is the net positive charge experienced by valence electrons.

$$Z_{\rm eff} = Z - \sigma$$

Z = number of proton

σ = number of electrons filled at the inner shell

- ✓ When effective nuclear charge, Z_{eff} increases, the nucleus attraction towards electrons become stronger.
- ✓ The nucleus pulls the outer electrons closer.
- ✓ The atomic radius becomes smaller.

Effective Nuclear Charge, Zeff

Example:

₁₇Cl :1s² 2s² 2p⁶ 3s² 3p⁵

$$Z_{eff}$$
: 17-10 = +7

The atomic radius of CI is smaller because the nucleus pulls the outer electrons closer with a charge of +7

₁₂Mg:1s² 2s² 2p⁶ 3s²

$$Z_{\text{eff}}$$
: 12-10 = +2

The atomic radius of Mg is bigger than CI because the nucleus can only pull the outer electrons closer with a charge of +2

e: outer electrons

e: inner electrons

Effective Nuclear Charge, Z_{eff}

How to calculate the effective nuclear charge, Z_{eff} ?

Example:

Elements	F (Fluorine)	Al (Aluminium)	K (Potassium)	
Electronic configuration	1s ² 2s ² 2p ⁵	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹	
Proton number, Z	9	13	19	
Number of electrons at the inner orbital, σ	2	10	18	
Z _{eff}	+7	+3	+1	

26.6.2022

Shielding Effect

- Also known as the screening effect.
- Is caused by the mutual repulsion between electrons of inner shell and the electrons occupying valence shell.
- It also occurs between electrons in the same shell but is less effective compared to that of electrons in the different shells.

35

ANSWER:

EXPLANATION

$$_{19}K = [Ar] _{4s^1}$$

$$_{20}$$
Ca = [Ar] $_{4}$ s²

$$_{31}Ga = [Ar] 3d^{10} 4s^2 4p^1$$

Elements are of the same period. Across the period from K to Ga, proton no. increase, Z_{eff} increase, hence atomic size is reduced.

(b) Rb > Br > Kr

$$_{35}Br = [Ar] 3d^{10} 4s^2 4p^5$$

$$_{36}$$
Kr = [Ar] $3d^{10} 4s^2 4p^6$

$$_{37}Rb = [Kr] 5s^1$$

Br & Kr are element of the same period. Br has less proton no. than Kr, \therefore Br has lower Z_{eff} compared to Kr. Hence, larger in size.

Rb has a higher energy level (period 5). Inner shell increase, : shielding effect increase. Atomic size bigger.

Shielding Effect

- Inner electron shield outer electron more effectively
- Outer electron felt less attraction from nucleus

Down group 1,

✓ No. of inner shells increases

Li 1s² 2s¹

√ shielding effect increase

Na 1s² 2s² 2p⁶ 3s¹

✓ Weaker attractive force between proton in the nucleus and the valence ê

K 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹

- ✓ Valence ê are loosely held
 - √ Size of atoms increase

Rb 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹

ANALOGY:

Atomic Size is like the Spots on a Giraffe's Neck

The increasing atomic size as you go down a group in the periodic table is similar to the pattern of increasing size shown by the spots on a giraffe's neck as you go from its head down to the body.

Across a period:

- proton number increases
- effective nuclear charge, Z_{eff} increases
- attraction between valence electrons and nucleus stronger
- atomic size smaller

Down a group:

- no of shell, *n* increase
- shielding effect increases
- attraction between valence electrons and nucleus weaker.
- atomic size increases

atomic radius decreases							→
H							• He
Li	Be	● B	C	N N	0	• F	• Ne
Na	Mg	Al	Si	P	S	CI	O Ar
K	Ca	Ga	Ge	As	• Se	• Br	• Kr
	0	0	0		0	0	•
Rb	Sr	In	Sn	Sb	Те	1	Xe
Cs	Ва	TI	Pb	Bi	Po	At	Rn

atomic radius increases

Across The First Row of Transition Elements

Atomic Radius/Radii of Transition Elements

- The atomic sizes do not change significantly across the period.
- This is because the electrons are added to the inner d-orbitals.
- The 3d electrons shield the outer 4s electrons from the attractive force of the nucleus
- Thus, the increase of nuclear charge (no. of proton) is cancelled by the increase of shielding effect (caused by additional inner electrons)
- Therefore, the size remains relatively constant.

Comparison Atomic Radii & Its Ionic Radii

Observe the graphs ...

Comparison Atomic Radii & Its Cation

Example...

Comparison Atomic Radii & Its Cation

- Cation is formed when an atom loses its valence electron.
- Neutral atom (Na) & cation (Na+) have same no. of proton, but Na+ ion contains less electrons/no of shell than its neutral atom.
- Therefore, for Na⁺ ion the attractive forces between nucleus and remaining electrons is greater than in the neutral atom.
- Thus, the size of cation is smaller than its neutral atom.

Comparison Atomic Radii & Its Anion

Example...

Comparison Atomic Radii & Its Anion

```
CI <sub>17</sub>CI : 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>5</sup> CI <sub>17</sub>CI : 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup>
```

- Anion is formed when an atom accept electron.
- Neutral atom (CI) & anion (CI) have same no. of proton, but CI ion contains more electrons than its neutral atom.
- Therefore, for Cl⁻ ion the mutual repulsion between the electrons increases.
- The repulsion caused the electron cloud spread out and the outer orbital expand.
- Thus, the size of anion is larger than its neutral atom.

Comparison Atomic Radii & Its Ionic Radii

cations (+ve ions)	anions (-ve ions)
formed when a neutral atom loses electron(s)	formed when a neutral atom gains electron(s)
less electrons repulsion: ~ electrons are removed from the valence shell	greater electrons repulsion: ~ electrons are added to the valence shell
remaining electrons are pulled closer to the nucleus	electrons are spread out
stronger attraction between nucleus & electrons	weaker attraction between nucleus & electrons
electron cloud shrink	electron cloud expand
size cation < neutral atom	size anion > neutral atom

Visualising Concept

Which of these spheres represent F, which represent Br, and which represent Br ?

Isoelectronic

Isoelectronic species is a group of atoms or ions having the same electronic configuration.

Example...

lons	Electronic Configuration
Na+	1s ² 2s ² 2p ⁶
Mg ²⁺	1s ² 2s ² 2p ⁶
Al ³⁺	1s ² 2s ² 2p ⁶
N ³⁻	1s ² 2s ² 2p ⁶
O ²⁻	1s ² 2s ² 2p ⁶
F-	1s ² 2s ² 2p ⁶

Na+, Mg^{2+,} Al³⁺ and N³⁻, O^{2-,} and F⁻ are isoelectronic ions with the electronic configuration as 1s² 2s² 2p⁶

WHY?

Isoelectronic

Within isoelectronic series,

>The more positive the charge, the smaller the species.

>The more negative the charge, the larger the species.

Reason.....

Isoelectronic

lons	Electronic Configuration	Proton number	Z _{eff}
Al ³⁺	1s ² 2s ² 2p ⁶	13	+11
Mg ²⁺	$1s^2 2s^2 2p^6$	12	+10
Na ⁺	$1s^2 2s^2 2p^6$	11	+9
F-	$1s^2 2s^2 2p^6$	9	+7
O ²⁻	1s ² 2s ² 2p ⁶	8	+6
N ³⁻	$1s^2 2s^2 2p^6$	7	+5

- ✓ When proton number increase, the effective nuclear charge also increase.
- ✓ The attraction between nucleus and remaining electron stronger.
- ✓ Thus, the ionic radii decrease.

Therefore the ionic radius $N^{3-} > O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$

for isoelectronic species radii decrease from:

- Li⁺ to B³⁺
- N³⁻ to F⁻
- Na⁺ to Al³⁺
- P³⁻ to Cl⁻

BECAUSE

proton number increases

effective nuclear charge increases

Nucleus electron attraction stronger

Across the period 2,

16.0

- ionic radii of cations decrease from Li⁺ to B³⁺
- ionic radii of anions decrease from N³⁻ to F⁻
- But the ionic radii increase drastically from B³⁺ to N³⁻

- 1. Ionic radii decrease from Li⁺ to B³⁺ because number of electrons is the same (isoelectronic species).
- the effective nuclear charge increases,
- the greater attraction between nucleus and the outer electrons,
- the size decreases.

$$Li^{+} > Be^{2+} > B^{3+}$$

- 2. There is a large increase in ionic radii from B³⁺ to N³⁻ ion:
- N³⁻ has more shells (the higher value of n) and weaker attraction between nucleus and the outer electrons.
- thus, size of N³⁻ increases.

$$N^{3-} > B^{3+}$$

- 3. Ionic radii decrease from N³⁻ to F⁻ because number of electrons is the same, 10 electrons (isoelectronic species).
- the effective nuclear charge increases,
- the greater attraction between nucleus and the outer electrons,
- the size decreases.

$$N^{3-} > O^{2-} > F^{-}$$

Application of Lithium-Ion Batteries

Advantage:

- Rechargable
- light weight

Lithium-Ion Batteries & Ionic Size

PARTS OF A LITHIUM-ION BATTERY

Li+ ions are smaller than most other cations (allows them to migrate more readily than other ions can)

The ability of ion to move through a solid increase as the ion decreases and as the charge of the ions decreases.

61

lons	Electronic Configuration	Num of é	Z _{eff}	lonic Radii (pm)
₁₁ Na+	1s ² 2s ² 2p ⁶	10	11 - 2 = +9	95
₁₂ Mg ²⁺	$1s^2 2s^2 2p^6$	10	12 - 2 = +10	65
₁₃ Al ³⁺	$1s^2 2s^2 2p^6$	10	13 - 2 = +11	50
₁₄ Si ⁴⁺	$1s^2 2s^2 2p^6$	10	14 - 2 = +12	41)
₁₅ P ³⁻	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	18	15 - 10 = +5	212
₁₆ S ²⁻	$1s^2 2s^2 2p^6 3s^2 3p^6$	18	16 - 10 = +6	184
₁₇ Cl ⁻	$1s^2 2s^2 2p^6 3s^2 3p^6$	18	17 - 10 = +7	181

Across the period 3,

- ionic radii of cations decrease from Na⁺ to Si⁴⁺
- ionic radii of anions decrease from P³⁻ to Cl⁻
- But the ionic radii increase drastically from Si⁴⁺ to P³⁻

- 1. Ionic radii decrease from Na⁺ to Si⁴⁺ because number of electrons is the same (isoelectronic species).
- the effective nuclear charge increases,
- the greater attraction between nucleus and the outer electrons,
- the size decreases.

$$Na^+ > Mg^{2+} > Al^{3+} > Si^{4+}$$

- 2. There is a large increase in ionic radii from Si⁴⁺ to P³⁻ ion:
- P³⁻ has more shells (the higher value of n) and weaker attraction between nucleus and the outer electrons.
- thus, size of P³-increases.

$$P^{3-} > Si^{4+}$$

- 3. Ionic radii decrease from P³⁻ to Cl⁻ because number of electrons is the same, 18 electrons (isoelectronic species).
- the effective nuclear charge increases,
- the greater attraction between nucleus and the outer electrons,
- the size decreases. $P^{3-} > S^{2-} > CI^{-}$

Ionisation energy is the minimum energy required to remove

an electron from a gaseous atom or ion in its ground state.

- √ The First Ionisation Energy
- Is the minimum energy (in kJ/mol) required to remove an electron from a gaseous atom in its ground state.

Example:

$$Mg_{(g)} \rightarrow Mg^{+}_{(g)} + e^{-}$$

 $\Delta H_1 = +736 \text{ kJ/mol}$

- ✓ The Second Ionisation Energy
- Is the minimum energy required to remove an electron from positive gaseous ion in its ground state

Example:

$$Mg^{+}_{(g)} \rightarrow Mg^{2+}_{(g)} + e^{-} \qquad \Delta H_2 = +1450 \text{ kJ/mol}$$

electron released

Factors Affecting the Ionization Energy, IE

Atomic radius

- ✓ atomic radius increases,
- ✓ Ionization Energy decreases

Effective nuclear charge, Z_{eff}

- ✓ effective nuclear charge increases, the attraction between valence electrons and the nucleus becomes stronger
- √ Ionization Energy increases

Shielding effect

- ✓ shielding effect increases, the attraction between valence electrons and the nucleus becomes weaker
- ✓ Ionization Energy decreases

Across a period:

- proton number increases
- effective nuclear charge, Z_{eff} increases
- attraction between valence electrons and nucleus become stronger
- ionisation energy increases

Down a group:

- no of shell, *n* increases
- shielding effect increases.
- attraction between valence electrons and nucleus become weaker.
- ionisation energy decreases 73 26.6.2022

Example 1

Arrange the followings increasing order of ionization energy.

₄Be, ₁₂Mg and ₂₀Ca

Element	Electronic Configuration	Valence electronic configuration	Group	
Be	1s ² 2s ²	2s ²	2	The
Mg	$1s^2 2s^2 2p^6 3s^2$	3s ²	2 -	belong to
Ca	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	3s ²	2	elements belong to the same group

Answer:

Increasing order of IE: Ca < Mg < Be

- -The first ionization energy decreases on going down a group as the atomic radius increase in the order Be < Mg < Ca.
- -Shielding effect increases, the attraction between valence electrons and the nucleus becomes weaker.

74

Anomalous Cases for the First Ionisation Energy Across Period 2 and 3

Anomalous Cases for the 1st IE Across Period 2

 The increase of IE in proton number is not uniform.

- i. Group 2 and 13: Be and B
- ii. Group 15 and 16: N and O 1000

Anomalous Cases for Be and B (Period 2)

✓ Between Be (Group 2) and B (Group 13),

Electronic configuration: Be: 1s2 2s2

B : $1s^2 2s^2 2p^1$

- 2p orbital of B is well shielded by the inner and the 2s electron.
- attraction between the nucleus and 2p electron is weak.
- less energy is needed to remove the electron in 2p orbital.
- √ Therefore, ionization energy of Be > B.

Anomalous Cases for N and O (Period 2)

✓ Between N (Group 15) and O (Group 16),

Electronic configuration:

N: 1s² 2s² 2p³ (half-filled 2p orbital)

O: 1s² 2s² 2p⁴ (partially-filled 2p orbital)

- Half filled 2p orbital of N is more stable than partially filled orbital of O
- More energy is needed to remove the electrons at the more stable orbital
- √ Therefore, ionization energy of N > O

Anomalous Cases for the 1st IE Across Period 3

- The increase of IE in proton number is not uniform.
- In Period 3, there are 2 cases:
 - i. Group 2 and 13: Mg and Al
 - ii. Group 15 and 16: P and S

Anomalous Cases for Mg and Al (Period 3)

✓ Between Mg (Group 2) and Al (Group 13),

Electronic configuration: Mg: 1s² 2s² 2p⁶ 3s²

Al : $1s^2 2s^2 2p^6 3s^2 3p^1$

- 3p orbital of AI is well shielded by the inner and the 3s electrons
- attraction between the nucleus and 3p electron is weak.
- less energy is needed to remove the electron in 3p orbital.
- ✓ Therefore, ionization energy of Mg > Al.

Anomalous Cases for P and S (Period 3)

✓ Between P (Group 15) and S (Group 16),
Electronic configuration:

P: $1s^2 2s^2 2p^6 3s^2 3p^3$ (half-filled 3p orbital)

S: 1s² 2s² 2p⁶ 3s² 3p⁴ (partially-filled 3p orbital)

- Half filled 3p orbital of P is more stable than partially filled 3p orbital of S
- More energy is needed to remove the electrons at the more stable orbital
- ✓ Therefore, ionization energy of P > S.

Successive ionisation energies (IE₁, IE₂, and so on) of a given element increase because each electron is pulled away from an ion with a progressively higher positive charge

Silberberg, Pg.331

$$IE_1 < IE_2 < IE_3 < IE_4 < IE_5 \dots$$

	first	second	third	fourth	fifth	sixth	seventh
Li	520	7297	11810	-	-	-	-
Ве	900	1757	14840	21000	-	-	-
В	800	2430	3659	25020	32810	-	-

Example of Be atom

$$Be(g) \rightarrow Be^+(g) + e^- | E_1 = 900 \text{ kJ/mol}$$

1ste- removed from 2s 1s2 2s2 1s2 2s1

$$Be^{+}(g) \rightarrow Be^{2+}(g) + e^{-} IE_{2} = 1757 \text{ kJ/mol}$$

2nde⁻ removed from 2s 1s² 2s¹ 1s²

$$Be^{2+}(g) \rightarrow Be^{3+}(g) + e^{-}$$
 $IE_3 = 14840 \text{ kJ/mol}$

3rd e⁻ removed from 1s 1s² 1s

$$Be^{3+}(g) \rightarrow Be^{4+}(g) + e^{-}$$
 $IE_4 = 21000 \text{ kJ/mol}$

4th e-removed from 1s 1s1

Deduce the Electronic
Configuration of an Element
and its Position in the
Periodic Table Based on
Successive Ionisation
Energy Data

From the data of successive ionisation energy, we can deduce:

✓ Group number of the element

✓ Electronic configuration

By analysing the data of successive ionisation energy,

enable to figure out the position of element in the Periodic Table by looking for the highest ratio @ sudden increase.

Element	Electronic configuration	First	Second	Third	Fourth	Fifth
Li	1 <i>s</i> ² 2 <i>s</i> ¹	520	7297	11810	-	-
Ве	1 <i>s</i> ² 2 <i>s</i> ²	900	1760	14850	21910	-
В	1s ² 2s ² 2p ¹	800	2430	3659	25020	32810

A very **large increase in IE** indicates the removal of a particular electron involves an electron from an inner shell, which has a stable noble gas electron configuration.

Example : Be (Z = 4) :1s 2 2s 2

Element	Electronic configuration	First	Second	Third	Fourth	Sixth	Seven
Li	1s ² 2s ¹	520	7297	11810	-	-	-
Ве	1s ² 2s ²	900	1760	14850	21910	-	-
В	1s ² 2s ² 2p ¹	800	2430	3659	25020	32810	-

For Li: IE₂ to IE₁ have the highest ratio @ sudden increase is between IE₁ to IE₂ because the second electron is removed from 1s orbital (inner shell).

For **Be**: IE₃ to IE₂ have the highest ratio @ sudden increase is between IE₂ to IE₃ because the third electron is removed from 1s orbital (inner shell).

For **B**: IE₄ to IE₃ have the highest ratio @ sudden increase is between IE₃ to IE₄ because the fourth electron is removed from 1s orbital (inner shell).

- Therefore, we can determine the electronic configuration of the valence electron for an element using following methods:
 - Method 1: By determining the IE ratios.
 - Method 2: By determining the differences in IE.

Based on the information given below, determine the group of the element. Explain.

Element	Electronic configuration	First IE 1	Second IE 2	Third IE 3	Fourth IE 4		
Be	1s ² 2s ²	900	1760	14850	21910	-	1

Method 1:-

By determining the IE ratios:

$$\begin{array}{rcl}
\underline{\text{IE2}} &=& 1760 & = 1.96 \\
\underline{\text{IE1}} & & 900 & \\
\underline{\text{IE3}} &=& 14850 & = \textbf{8.44} \\
\underline{\text{IE2}} & & 1760 & \\
\underline{\text{IE4}} &=& 21910 & = 1.48 \\
\underline{\text{IE3}} & & 14850 & \\
\end{array}$$

- The first and second electron are removed from the same energy subshell (2s).
- The third electron is removed from an inner shell that is 1s, hence it requires a higher IE3 (8.44 times) than IE2.
- Since IE3 / IE2 have the highest ratio, 2 valence electrons are present.
- Electronic configuration: ns²
- This element is in Group 2

Method 2:-

By determining the differences in IE:

 $IE2 - IE1 = 860 \text{ kJ mol}^{-1}$

 $IE3 - IE2 = 13090 \text{ kJ mol}^{-1}$

 $IE4 - IE3 = 7060 \text{ kJ mol}^{-1}$

- The first and second electron are removed from the same energy subshell (2s).
- The third electron is removed from an inner shell that is 1s, hence it requires a higher IE3 than IE2 (a difference of 13090 kJ mol-1).
- Since IE3 IE2 have the highest difference, 2 valence electrons are present.
- Electronic configuration: ns²
- This element is in Group 2

786 kJ/mol

IE₁: 1st e⁻ removed from **3***p* subshell

1580 kJ/mol

IE₂: 2nd e⁻ removed from **3p** subshell

3230 kJ/mol

IE₃: 3rd e⁻ removed from **3s** subshell

4360 kJ/mol

IE₄: 4th e⁻ removed from **3**s subshell

Highest ratio (IE5/IE4 = 3.7)/ sudden increase

16100 kJ/mol

IE₅: 5th e⁻ removed from **2***p* subshell, **inner** shell

- ➤ IE₅ to IE₄ have the highest ratio (3.7) @ drastic increase in ionisation energy from IE₄ to IE₅
- ➤ The 5th electron is removed from the inner shell which has a stable noble gas electron configuration and closer to nucleus.
- Much greater energy needed to remove the electron
- ➤ Valence electrons = 4 Group = 14
- \triangleright Valence electron configuration = $3s^23p^2$

Example 1:

Table shows all four successive ionisation energies of X. Deduce the valence electrons, group no. & valence electronic configuration from the data of successive ionisation energies

IE 1		2	3	4	
kJ mol ⁻¹	899	1757	14845	21000	

ANSWER:

$$\frac{|E_2|}{|E_1|} = \frac{1757}{899} = 1.95$$
 $\frac{|E_4|}{|E_3|} = \frac{21000}{14845} = 1.41$
 $\frac{|E_3|}{|E_2|} = \frac{14845}{1757} = 8.45$

Example 1:

ANSWER:

- ➤ IE₃ to IE₂ have the highest ratio (8.45) @ drastic increase in ionisation energy from IE₂ to IE₃
- The 3rd electron is removed from the inner shell which has a stable noble gas electron configuration and closer to nucleus.
- Much greater energy needed to remove the electron
- > Valence electrons = 2 Group = 2
- > Valence electron configuration = *ns*²

Example 2:

Five successive ionization energies (kJ mol⁻¹) for atom M is shown below. Determine valence electrons, group no. & valence electronic configuration from the data of successive ionisation energies

IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	
800	1580	3230	4360	16000	

Determine:

- (i) electronic configuration of the valence electron for M.
- (ii) group number of M in the periodic table.

$$\frac{|E_2|}{|E_1|} = \frac{1580}{800} = 1.98$$

$$\frac{|E_4|}{|E_3|} = \frac{4360}{3230} = 1.35$$

$$\frac{|E_3|}{|E_2|} = \frac{3230}{1580} = 2.04$$

$$\frac{|E_5|}{|E_4|} = \frac{16000}{4360} = 3.67$$

Example 2:

Five successive ionization energies (kJ mol⁻¹) for atom M is shown below. Determine valence electrons, group no. & valence electronic configuration from the data of successive ionisation energies

IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	
800	1580	3230	4360	16000	

- Ratio $\overline{\mathsf{IE}}_{4}^{5}$ is the highest,
- there are 4 valence electrons,
- The fifth electron is removed from an inner shell.
- (i) Electronic configuration of valence electron for M is ns² np²
- (ii) M is in Group 14 at the periodic table

Example 3:

Deduce the group number of the element with the following ionisation energies (in kJ/mol) and write its valence electronic configuration.

IE₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆
1012	1903	2910	4956	6278	22,230

Example 3:

Deduce the valence electrons, group no. & valence electronic configuration from the successive ionisation energies graph

- From the plot of successive IE, there is a sudden increase from IE₃ to IE₄.
- It means that more energy is required to remove the fourth electron.
- Since the fourth electron is difficult to be removed, the fourth electron is removed from an inner shell.
- Thus, there are 3 valence electrons
- Therefore, valence electronic configuration is ns² np¹ and located in Group 13

Keep In Mind

The successive ionisation energies for an element is **only applicable** for main group elements

(block s & block p).

Electronegativity

DEFINITION

Electronegativity is a relative tendency of an atom to attract electrons to itself when chemically combined with another atom.

H: H

 H_2

Non polar covalent bond

H:F

HF

Polar covalent bond

Decreasing electronegativity

Common Element Electronegativities

Increasing electronegativity

Electronegativity

Down a group

- no of shell, *n* increases
- shielding effect increases
- attraction between valence electrons and nucleus weaker
- atomic size increases
- ability of an atom to attract the shared electrons decreases
- electronegativitydecreases

Across a period

- proton number increases
- effective nuclear charge, Z_{eff} increases
- attraction between valence electrons and nucleus stronger
- atomic size decreases
- ability of an atom to attract the shared electrons increases
- electronegativityincreases

Oxides of Element Period 3

Element	Na ₂ O	MgO	Al_2O_3	SiO ₂	P ₄ O ₁₀	SO ₃	Cl ₂ O ₇
type of oxide	basic		amphoteric	acidic			
Type of compound	ionio		C		mole	ecular	

Elements react with oxygen to produce oxides

For elements in period 3:

$$\checkmark$$
 4Na(s) + O₂(g) −→ 2Na₂O(s)

$$\checkmark$$
 2Mg(s) + O₂(g) −→ 2MgO(s)

$$\checkmark$$
 4Al(s) + 3O₂(g) \longrightarrow 2Al₂O₃(s)

✓
$$Si(s) + O_2(g)$$
 $\longrightarrow SiO_2(s)$

$$\checkmark$$
 S(s) + O₂(g) \longrightarrow SO₂(g)

$$\checkmark$$
 2SO₂(g) + O₂(g) −→ 2SO₃(g)

$$✓$$
 2Cl₂(g) + 7O₂(g) -→ 2Cl₂O₇(l)

Basic Oxide

- ✓ Forms when Na or Mg reacts with oxygen.
- ✓ An ionic compounds.
- √ Na₂O react with water to form base NaOH

$$Na_2O(s) + H_2O(I) \rightarrow 2NaOH(aq)$$

✓ MgO is insoluble in water, however, it does react with acids to produce salt and water.

$$MgO(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + H_2O(I)$$

Amphoteric Oxide

- ✓ Amphoteric : act as acid and base .
- ✓ Forms when AI reacts with oxygen.
- ✓ An ionic compounds.
- ✓ Al_2O_3 acts as acid:

$$Al_2O_3(\mathbf{s}) + 2NaOH(\mathbf{aq}) + 3H_2O(\mathbf{I}) \rightarrow 2NaAl(OH)_4(\mathbf{aq})$$

✓ Al_2O_3 acts as base :

$$Al_2O_3(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2O(1)$$

Acidic Oxide

- ✓ Forms when Si react with oxygen.
- ✓ An ionic compounds.
- ✓ SiO₂ is insoluble in water, however, it does react with bases to produce salt and water

 $SiO_2(s) + 2NaOH(aq) \rightarrow Na_2SiO_3(aq) + H_2O(I)$

Acidic Oxide

- ✓ Forms when P, S and CI react with oxygen.
- ✓ A covalent compounds.
- ✓ Oxides react with water to produce acidic solution.

$$SO_3(\mathbf{g}) + H_2O(\mathbf{I}) \rightarrow H_2SO_4(\mathbf{aq})$$

$$P_4O_{10}(s) + 6H_2O(I) \rightarrow 4H_3PO_4(aq)$$

$$Cl_2O_7(I) + H_2O(I) \rightarrow 2HClO_4(aq)$$

	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₆ or P ₄ O ₁₀	SO ₂ or SO ₃	Cl ₂ O ₇
adding H ₂ O	soluble	insoluble	insoluble	insoluble	soluble	soluble	soluble
adding HCl	soluble	soluble	soluble	insoluble	insoluble	insoluble	insoluble
adding NaOH	insoluble	insoluble	soluble	soluble	soluble	soluble	soluble
Character of oxides	basic	basic	amphoteric	acidic	acidic	acidic	acidic

Failure is success if we learn from it. ~ Malcolm Forbes

By:

SAMUEL RAJ