Contents

1	同态	正合序列 (exact sequence)	2
	1.1	正规子群与商群	2
	1.2	短正合序列	2
	1.3	长正合序列与链复型	3
	1.4	链复型与上同调	4

1 同态正合序列 (exact sequence)

1.1 正规子群与商群

首先我们回顾正规子群的定义。设 H 是 G 的子群,则若对任何的 $g \in G$ 都有 $gHg^{-1} = H$,则 H 称为 G 的正规子群。正规子群的定义立刻导致两个推论,即

- (a) 左右陪集相同, qH = Hq, 因此左右陪集空间是一样的, 并定义为商空间 G/H;
- (b) 相应的商空间 G/H 可以从 G 继承群乘法结构,并构成商群。

其中,我们注意到两个近乎平凡的论断,第一是"H 是 G 的子集",第二是"G/H 的元素 [gH] 都对应一个 G 中 H 的陪集 gH"。我们可以把这两个论断表达为,存在一个单射 (injection),称为"映入映射" (inclusion map) $\iota: H \to G$,以及满射 (surjection),称为"投影映射" (projection) $\pi: G \to G/H$,使得 $\pi(gH) = [gH]$ (其中 ι 和 π 分别是"inclusion"和"projection"的希腊首字母)。那么根据同态核与 G/H 的定义,我们有

$$Im \iota = \ker \pi , \qquad (1.1)$$

因为 ${\rm Im}\iota=H\subset G$ 正是被视为 G/H 中的单位元,或者等价地说,整个 ${\rm Im}\iota$ 被 π 映射为单位元。

1.2 短正合序列

上面这些论断以及关系式 (1.1) 可以被重新组合为"短正合序列" $(short\ exact\ sequence,\ 有时"正合"也翻译为"恰当")的概念。$

考虑四个收尾相接的同态映射,

$$\{e\} \xrightarrow{\varphi_0} G_1 \xrightarrow{\varphi_1} G_2 \xrightarrow{\varphi_2} G_3 \xrightarrow{\varphi_3} \{e\} ,$$
 (1.2)

该序列是"正合的"说的是该序列每两个相邻映射都满足

$$Im\varphi_i = \ker \varphi_{i+1} \ . \tag{1.3}$$

干是:

(a) 序列的左段 $\{e\} \xrightarrow{\varphi_0} G_1 \xrightarrow{\varphi_1} G_2$ 的正合性等价于 $e = \operatorname{Im} \varphi_0 = \ker \varphi_1$,即 φ_2 为单射;

- (b) 序列的右段 $G_2 \xrightarrow{\varphi_2} G_3 \xrightarrow{\varphi_3} \{e\}$ 的正合性等价于 $\operatorname{Im} \varphi_2 = \ker \varphi_3 = G_3$,即 φ_3 为满射;
- (c) 最后在中间的关系 ${\rm Im}\varphi_1=\ker\varphi_2$ 正好可以写成 (1.1),如果我们记单射 $\iota\equiv\varphi_1$ 以及满射 $\pi\equiv\varphi_2$ 。

有鉴于此,一般的短正合序列往往简单写成

$$0 \to G_1 \xrightarrow{\iota} G_2 \xrightarrow{\pi} G_3 \to 0 . \tag{1.4}$$

写成这样的时候,我们已经清楚了左右段的正合性要求 ι 和 π 分别是单射和满射,最后我们只要记住还有中间段的正合性要求即可: $\mathrm{Im}\iota=\ker\pi$ 。由于 π 是同态,因此 $\ker\pi$ 必然是 G_2 的正规子群,从而 $G_1=\mathrm{Im}\iota$ 也是 G_2 的正规子群。因此 G_2/G_1 是商群,而由同态核定理有

$$G_3 = G_2 / \ker \pi = G_2 / \operatorname{Im} \iota = G_2 / G_1$$
 (1.5)

总结起来就是:

$$G_1 \triangleleft G_2$$
, and $G_3 = G_2/G_1 \Leftrightarrow 0 \rightarrow G_1 \stackrel{\iota}{\hookrightarrow} G_2 \stackrel{\pi}{\longrightarrow} G_3 \rightarrow 0$. (1.6)

注意到,当 G_3 (或 G_1) 是平凡群的时候,短正合序列进一步退化成

$$0 \to G_1 \xrightarrow{\varphi} G_2 \to 0 \ . \tag{1.7}$$

则序列的左段和右段的恰当性分别要求同态 φ 是单射以及满射,因此 φ 必然是同构,而满足这个退化正合序列的群 G_1 与 G_2 必然同构。

下面是一些常见的短正合序列有

$$0 \to 2\mathbb{Z} \stackrel{\iota}{\hookrightarrow} \mathbb{Z} \to \mathbb{Z}_2 \to 0 , \qquad (1.8)$$

$$0 \to \mathbb{Z} \stackrel{\iota}{\hookrightarrow} \mathbb{R} \xrightarrow{\exp(2\pi i x)} U(1) \to 0 , \qquad (1.9)$$

也自然有 $\mathbb{Z}/(2\mathbb{Z}) = \mathbb{Z}_2$, $\mathbb{R}/\mathbb{Z} = U(1)$ 。

1.3 长正合序列与链复型

有短正合序列,便有长正合序列。一个长正合序列 E 即一系列首尾相接的同态映射

$$E: \qquad 0 \to G_1 \xrightarrow{\varphi_1} G_2 \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_n} G_{n+1} \to 0 , \qquad (1.10)$$

并要求所有相邻的映射满足 ${\rm Im} \varphi_i = \ker \varphi_{i+1}$ 。 当然, φ_1 和 φ_n 已经自动被要求分别是单射和满射了。

一个常见的长正合序列是商空间的同伦群正合序列。考虑一个李群 G,以及 $H \leq G$ 是 G 的子群; 比如 G = SU(2),H = U(1) 等。则 H 对 G 的作用是"自由"(即没有不动点)的。因此我们考虑商空间 G/H。一般而言,除非 H 是一个正规子群,商空间 G/H 只是一个光滑流形而不是一个群。于是我们有映射序列 $H \stackrel{\iota}{\to} G \stackrel{\pi}{\to} G/H$ 。那么,三个空间的各阶同伦群形成同伦正合序列

$$\dots \pi_{k+1}(G/H) \to \pi_k(H) \to \pi_k(G) \to \pi_k(G/H) \to \pi_{k-1}(H) \to \dots \to \pi_0(G/H) \to 0. \tag{1.11}$$

以 G=SU(2),H=U(1) 为例。我们知道 (将会知道) 有拓扑同胚 $SU(2)=S^3$, $SU(2)/U(1)=S^2$,即我们实际上在考虑 Hopf 主纤维丛 $S^1 \stackrel{\iota}{\hookrightarrow} SU(2) \stackrel{\pi}{\to} S^2$ 。我们有一小段同态正合序列

$$\pi_3(U(1)) \to \pi_3(SU(2)) \to \pi_3(SU(2)/U(1)) \to \pi_2(U(1))$$
 (1.12)

注意到 $\pi_{n\geq 2}(U(1))=0$ (当然有 $\pi_1(U(1))=\mathbb{Z}$), 因此这个正合序列退化为

$$0 \to \pi_3(SU(2)) \to \pi_3(SU(2)/U(1)) \to 0$$
 (1.13)

于是有群同构 $\pi_3(S^3)=\pi_3(S^2)$,而我们又有 $\pi_3(SU(2))=\mathbb{Z}$,于是这个同构告诉我们 $\pi_3(S^2)=\mathbb{Z}$ 。 这是高阶同伦群的非标准结果,相比 $\pi_n(S^n)=\mathbb{Z}$ 是非常不直观的,但我们能够通过同伦正合序列来计算。

1.4 链复型与上同调

正合序列 E 里面对相邻同态的要求使得它们的复合满足 nilpotency 条件,即

$$\varphi_{i+1}\varphi_i(g \in G_i) = e \in G_{i+2} . \tag{1.14}$$

因此正合序列是非常特殊的"链复型"。

所谓链复型,即是即一个满足 $\varphi_{i+1}\varphi_i(g)=e$ 的同态序列。一般来说, $\varphi_{i+1}\varphi_i(g)=e$ 表明 $\mathrm{Im}\varphi_i\subset\ker\varphi_{i+1}$,即 $\mathrm{Im}\varphi_i$ 是 $\ker\varphi_{i+1}$ 的子群,而且是 $\ker\varphi_{i+1}$ 的正规子群。因此一般链复型与正合序列是不同的,其差别可以用"上同调群" $H^i(E)\equiv\ker\varphi_i/\mathrm{Im}\varphi_{i-1}$ 来刻画:当所有的 $H^i(E)=\{e\}$,则链复型是正合序列,否则就不是正合序列。

在数学物理中,最出名的链复型莫过于 de Rham 链复型。它是一个由 m 维流形 M 的各阶光滑微分形式空间作为 G_i 的同态序列,

$$0 \to \Omega^0(M) \xrightarrow{d} \Omega^1(M) \xrightarrow{d} \dots \xrightarrow{d} \Omega^m(M) \to 0.$$
 (1.15)

其中 $\Omega^k(M) = \{\frac{1}{m!}\omega_{\mu_1\dots\mu_k}dx^{\mu_1}\wedge\dots dx^{\mu_k}\}$ 标记全体 M 上的 k 阶微分形式,是以光滑微分形式加法为群乘法所构成的无穷维交换群。同态 d 为标准的外微分算符,

$$d\Omega = \frac{1}{m!} \partial_{\mu} \omega_{\mu_1 \dots \mu_k} dx^{\mu} \wedge dx^{\mu_1} \wedge \dots \wedge dx^{\mu_k}$$
(1.16)

它把一个 k 阶微分形式映射为 k+1 阶微分形式,并明显满足同态的要求,即微分形式的加法在映射下得到保持。最重要的是,利用"求导顺序"可以交换这一事实,可以轻易证明 $d^2=0$,即这个同态序列满足链复型的定义。于是,一个"恰当形式" $\omega^{(k)}=d\lambda^{(k-1)}$ 必然是"闭形式",即 $d\omega^{(k)}=0$;但是反过来则不一定。

相应的,这个链复型与正合序列的差距可以用"上同调群"来刻画

$$H^{k}(M) \equiv \frac{\ker d : \Omega^{k}(M) \to \Omega^{k+1}(M)}{\operatorname{Im} d : \Omega^{k-1}(M) \to \Omega^{k}(M)} . \tag{1.17}$$

更直观来说, $\Omega^k(M)$ 中的全体闭形式可以建立等价关系 $\omega^{(k)}\sim\omega^{(k)}+d\lambda^{(k-1)}$,然后 $H^k(M)$ 恰为全体不等价的闭合形式构成的集合;这个集合 $H^k(M)$ 从 $\Omega^k(M)$ 继承了加法,因此也构成一个交换群。这个交换群有两点重要性质:

- (a) 其维度是有限的;这与 $\dim \Omega^k(M) = \infty$ 形成鲜明对比
- (b) $H^k(M)$ 是 M 的同伦不变量。因此,也是拓扑不变量。

最后,链复型的 E 的"欧拉示性数" $\chi(E)$ 可以表达为 $\sum_i (-1)^i \dim H^i(E)$ 。对于 de Rham 复型, $\chi(E)$ 也是一个拓扑不变量。