NATIONAL UNIVERSITY OF SINGAPORE

CS2100 – COMPUTER ORGANISATION

(Semester 2: AY2018/19)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your Student Number with <u>a pen</u> (to prevent accidental erasure) only on the **ANSWER BOOKLET**. Do not write your name.
- 2. This assessment paper consists of **SEVEN (7)** questions and comprises **EIGHTEEN (18)** printed pages.
- 3. This is a **CLOSED BOOK** assessment. One double-sided A4 reference sheet is allowed.
- 4. Calculators and computing devices such as laptops and PDAs are <u>not</u> allowed.
- 5. Answer all questions and write your answers in the **ANSWER BOOKLET** provided.
- 6. You may use pencil to write your answers.
- 7. Page 12 onwards contain the MIPS Reference Data Sheet and several blank tables for your rough works.
- 8. You are to <u>submit only the **ANSWER BOOKLET**</u> and no other document.

1. [12 marks]

Study the following MIPS code, which has one input \$50 and two outputs \$t0 and \$t1.

	addi	\$±0	Ŝzero	32 to 232 ab co
				32 +1 1 29
	addı	ŞtI,	Szero,	32 +1 + 32 0,500.
L:	beq	\$s0,	\$zero,	
	andi	\$t2,	\$s0 ,	0x0001 tak 50 8 0x0001 -> 1 4 C20 4 22 131.
	beq	\$t2,	\$zero,	E if t2 == 0, 8040 €
				-1 $t \mid \leftarrow t \mid -1 \ (t \mid) \rightarrow \text{ (sunfor for how Many } 1s.$
E:	addi	\$t0,	\$t0 ,	-1 E: €0 € 60-1 ({10) -> comber for how long the binary :
	srl	\$s0,	\$s0 ,	1 50 < 50 >>1
	j	L		goto L.
N:				u:

- (b) If the value of \$50 is 43 at the start of execution, what is the total number of times both beq instructions branch? That is, when both beq \$50, \$zero, N" branches to N and "beq \$t2, \$zero, E" branches to E. 642 (\$72 [2 marks]
- (c) Give a value of \$50 at the start such that the values of \$t0 and \$t1 at the end of the execution are both 0. $S0 = \frac{1}{1} \frac{1}{$

- (e) Write the relationship between \$t0 and \$s0 as well as between \$t1 and \$s0 in a single sentence each. Wis the most significant | bit position in 50. [2 marks]
- Our current MIPS instruction set does not have **load half-word** since **1hw** is a pseudo-instruction. **1hw** loads 16 bits from memory to the <u>lower half</u> of the register and sets the <u>upper half</u> of the register to all zeros. The pseudo-instruction **1hw \$t0**, **80**(**\$zero**) will be translated into actual MIPS instructions before being run. Write down the equivalent actual instructions to perform **load half-word** in the fewest number of MIPS instructions possible.

 [2 marks]

/2. [4 marks]

As the number -0.3_{10} cannot be represented precisely in binary, it also cannot be represented precisely in the IEEE 754 standard single precision floating point format. However, we can <u>approximate</u> the value by <u>truncating the bits</u> to the <u>nearest representation</u>.

Write the approximation of -0.3_{10} in IEEE 754 standard single precision floating point format. Give your answer in hexadecimal. [4 marks]

Sign = 1

expansit:
$$2^{127-2}$$
Page 2 of 18

 $\frac{13943216}{1994316}$
 $\frac{199111191}{1991}$
 $\frac{199111191}{1991}$
 $\frac{19911191}{1991}$
 $\frac{19911991}{1991}$
 $\frac{19911991}{1991}$
 $\frac{19911991}{1991}$

11 9001

3. **[14 marks]**

You are given the implementation of MIPS processor on the next page with partially incorrect modification to include the Jump instruction (j). Note that for the added multiplexer (the one with control signal **IsJump?**), if **IsJump?** is 0, the top input is chosen; otherwise the bottom input is chosen.

 γ (a) Describe what is wrong with the implementation in one sentence. [2 marks]

The 4 MSB of the 32 bit address is not the 4 MSB of PC+4, rather just 000002.

(b) Consider an instruction **0x0800C840** at address **0x2100FFFC**. What is the next value of PC when the instruction is executed using the incorrect processor above?

 $\frac{0000 \ 1000 \ 0000 \ 0000 \ 0000 \ 1100 \ 1000 \ 0100 \ 0000}{0000 \ 0000 \ 0011 \ 0010 \ 0001 \ 0000} \ 0000}$ [3 marks]

- (c) Since we are using the intermediate signal **ALUop**, we specify that the **ALUop** for j instruction is **11**. The rest of the **ALUop** does not change. Fill in the missing values in the control signal table in the answer booklet. [3 marks]
- (d) Modify the combinational circuit given in the answer booklet to include **ALUop1**, **ALUop0** and **IsJump?** control signals. [4 marks]
- (e) Given that there is no change to the ALU Control unit shown below for your convenience, what will be the value of **ALUcontrol** when the instruction **0x08000031** is executed? Give your answer in 4 bits binary.

Page **4** of **18**

4. [16 marks]

A sequential circuit goes through the following states, whose state values are shown in decimal:

The states are represented by 4-bit values *ABCD*. Implement the sequential circuit using a *D* flip-flop for *A*, *T* flip-flops for *B* and *C*, and a *JK* flip-flop for *D*.

- o a. Write out the **simplified SOP expressions** for all the flip-flop inputs. [10 marks]
- b. Implement your circuit according to your simplified SOP expressions obtained in part
 (a). Complete the given state diagram on the Answer Booklet, by indicating the next
 state for each of the five unused states.
- c. Is your circuit self-correcting? Why? (Answer without reason will not be given mark.)
 [1 mark]
 Yes. Any invalid state will leas to valid state of the a fait number of your

5. **[22 marks]**

For the parts below, you are to assume that <u>complemented literals are not available</u>. Note also that circuit that is correct but uses more logic gates than necessary will be given partial credit.

3 (a) The **8-bit count-1** device, whose block diagram is shown below, takes in an 8-bit input *ABCDEFGH* and outputs $F_3F_2F_1F_0$ which is the number of 1s in the input. For example, if *ABCDEFGH* = 11101101, then $F_3F_2F_1F_0$ = 0110 (six).

		Count-1		
Α	0			
В ——	1		F ₃	
c —	2			
D	3		F_2	
E	4		F_1	
F	5			
G	6		F_0	<u> </u>
Н	7			

How would you implement an **8-bit count-0** device to count the number of 0s in the input using the above 8-bit count-1 device and XOR gates? No other gates or devices besides the count-1 device and XOR gates are allowed. [3 marks]

- (b) Assuming that the 8-bit input *ABCDEFGH* is an unsigned binary number. Let P(A,B,C,D,E,F,G,H) be a Boolean function that returns 1 if *ABCDEFGH* contains an odd number of 1s and *ABCDEFGH* is an even number, or returns 0 otherwise. For example, the function *P* returns 1 for the following inputs: 01110000, 10111010, 00010000, but returns 0 for the following inputs: 00111001, 10100001, 11110000. If complete I and by Insulating Implement *P* using the **Count-1 device** as shown in part (a) above, with the <u>fewest number of additional logic gates</u>. [3 marks]
- (c) Assuming that the 8-bit input ABCDEFGH is an unsigned binary number. Let Q(A,B,C,D,E,F,G,H) be a Boolean function that returns 1 if ABCDEFGH is a multiple of 17 (eg: 0, 17, 34, 51, etc.), or returns 0 otherwise.

Given a **parallel adder**, a **magnitude comparator**, a **decoder**, an **encoder**, and a **demultiplexer**, implement *Q* using only <u>ONE</u> of these devices, <u>without any additional logic gates</u>. Your device should be the smallest possible (for example, if an 8-bit parallel adder is sufficient, you should not use a 16-bit parallel adder). [4 marks]

255

(continue...)

(A,B,C,D) using a single 4:1 multiplexer without any additional logic gates. [6 marks]

$$R(A,B,C,D) = \Sigma m(0, 2, 3, 4, 6, 7, 12, 14)$$

- (e) Study the following circuit which uses a half adder (HA), a 2×4 decoder with 1-enable 6 and active high outputs, three 4:1 multiplexers and three devices each with a 1-enable control (EN):
 - A (\times 2)-device: it takes in two inputs P and Q and produces 3-bit output with value (P+Q) \times 2.
 - A (+2)-device: it takes in two inputs P and Q and produces 3-bit output with value P+Q+2.
 - A (+3)-device: it takes in two inputs P and Q and produces 3-bit output with value P+Q+3.

For the three devices above, if a device is not enabled, its outputs are all zeroes.

Redesign the above circuit so that it can be implemented using the fewest logic gates. Write your expressions for X, Y and Z. You do not need to draw your circuit. [6 marks]

4)

12 111 [

6. [18 marks]

Given three integer arrays *A*, *B*, *C*, where arrays *B* and *C* each contains *n* elements and array *A* contains 2*n* elements, a MIPS code is written to update the elements in *A* with the elements in *B* and *C* as follows:

```
A[k] = A[k] + B[k/2] if k is even

A[k] = A[k] + C[(k-1)/2] if k is odd
```

For example, suppose $A = \{1, 2, 3, 4, ...\}$, $B = \{101, 102, ...\}$ and $C = \{201, 202, ...\}$, then the final values in A are $\{102, 203, 105, 206, ...\}$.

The MIPS code fragment is shown below.

```
$s0 = base address of array A
      # $s1 = base address of array B
      # $s2 = base address of array C
      \# $s3 = n, the number of elements in array B
      add $t0, $s0, $0
                           # Inst1, Address: 0x00FFFF18
      add $t1, $s1, $0
                            # Inst2
          $t2, $s2, $0
                             # Inst3
      add
                            # Inst4: $t3 = 2n
      add $t3, $s3, $s3
      add $t4, $0,
                     $0
                            # Inst5: $t4 = k (loop variable)
Loop: slt $t5, $t4, $t3
                            # Inst6: k < 2n?
     beq $t5, $0,
                            # Inst7
                     End
           $t6, 0($t0) \und A # Inst8
      lw
           $t7, 0($t1) lood B. # Inst9
      lw
      add $t6, $t6, $t7
                             # Inst10
           $t6, 0 ($t0) show A
                             # Inst11
      SW
           $t8, 4($t0) \odd A+4 # Inst12
      1w
           $t9, 0($t2) lood  # Inst13
      lw
      add
          $t8, $t8, $t9
                             # Inst14
           $t8, 4($t0) Store 144 # Inst15
      SW
      addi $t0, $t0, 8 A+8
                             # Inst16
     addi $t1, $t1, 4 ℃₩
                             # Inst17
      addi $t2, $t2, 4 (*4 # Inst18
      addi $t4, $t4, 2
                            # Inst19
           Loop
                             # Inst20
      j
End:
```

CS2100 8= 21414 = 2kg. 16 bytes = 4 For parts (a), (b), (c): Given a two-way set associative data cache with 64 words in total, and each block containing 4 words with each word being 4 bytes long. LRU (least recently used) algorithm is used for replacement. Each integer occupies one word. Assuming that the integer arrays B and C each contains 2^{10} elements. Arrays A, B and C 0.40 O:2 2:0 06:0 respectively. The data cache is involved when memory is accessed (that is, when lw and sw ipstructions are executed). a. How many bits are there in the set index field? In the byte offset field? [2 marks]

b. Which set is A[0] mapped to? Which set is B[60] mapped to? Which set is C[1032]mapped to? You may write your answer in decimal or binary. set 7

c. What is the cache hit rate for array A? For array B? For array C? Write your answer as a fraction. 3/4 - every 4th Will be miss. - every 8th will mice.

For parts (e), (f), (g): Given a direct-mapped instruction cache with 16 words in total and each block contains 4 instructions (words). The first instruction (add \$t0, \$s0, \$0) is at memory address 0x00FFFF18. Recall that the integer arrays B and C each contains oftet = g. 2¹⁰ elements. bloch (.

d. How many misses are there in the 1st iteration (Inst1 to Inst20 inclusive)?

How many misses are there in the 2^{nd} iteration (Inst6 to Inst20 inclusive)? [2 marks] 4

How many misses are there in the execution of the whole code? [3 marks]

7. [14 marks]

Refer to the same MIPS code in the previous question:

```
$s0 = base address of array A
        $s1 = base address of array B
       $s2 = base address of array C
      \# $s3 = n, the number of elements in array B
           $t0, $s0, $0
                               # Inst1, Address: 0x00FFFF18
      add
           $t1, $s1, $0
                               # Inst2
      add
      add
           $t2, $s2, $0
                               # Inst3
           $t3, $s3, $s3
      add
                               # Inst4: $t3 = 2n
                               \# Inst5: \$t4 = k (loop variable)
      add
           $t4, $0,
                      $0
              tlat beu.
           $t5, $t4, $t3 +1 # Inst6: k < 2n?
Loop: slt
                 $0,
                      End
                           +2# Inst7 +1
      beq
           $t6, 0($t0)
                                 Inst8 +\
      lw
           $t7, 0($t1)
      lw
                                 Inst9
                                              11
                           →2 # Inst10 +1
           $t6, $t6, $t7
      add
           $t6, 0($t0)
      sw
           $t8, (4 ($t0) m
                                Inst12
      ٦w
           $t9, 0($t2)
                               # Inst13
      lw
                            +2 # Inst14 +\
      add
           $t8, $t8, $t9
           $t8, (4($t0)
                            +2. # Inst15
                            ₩ Inst16
      addi $t0, $t0, 8
      addi $t1, $t1, 4
                               # Inst17
      addi $t2, $t2, 4
                               # Inst18
      addi $t4, $t4, 2
                               # Inst19
      j
           Loop
                               # Inst20
End:
```

bou: 5-1+ 19=23

We assume a 5-stage MIPS pipeline system, and the first instruction (add \$t0, \$s0, \$0) begins at cycle 1.

- a. The jump (j) instruction causes a control hazard. What is the minimum number of stall cycles that a jump instruction would incur and how can that be achieved? [2 marks]
- b. Assuming without forwarding and branch decision is made at MEM stage (stage 4). No branch prediction is made and no delayed branching is used. How many cycles does the code from instructions 1 through 19 (leaving out the jump instruction) take? You need to count until the last stage of instruction 19.
- c. Assuming with forwarding and early branching, that is, the branch decision is made at ID stage (stage 2). No branch prediction is made and no delayed branching is used. How many cycles does the code from instructions 1 through 19 (leaving out the jump instruction) take? You need to count until the last stage of instruction 19. [3 marks]

27

- d. Assuming with forwarding and early branching, that is, the branch decision is made at ID stage (stage 2). Branch prediction is used, where the branch is predicted not taken. How many cycles does the code from instructions 1 through 19 (leaving out the jump instruction) take? You need to count until the last stage of instruction 19.

 [3 marks]
- e. Assuming with forwarding, how would you rearrange the instructions to reduce the number of stall cycles, and how many stall cycles is reduced as a result of this? You do not need to rewrite the full code. Just describe the changes or show the portion that is changed. Your changes should be as minimal as possible.

 [3 marks]

ilo, ill gots other ils.

~~~ END OF PAPER ~~~

(The next few pages contain the MIPS Reference Data sheet, blank truth tables, K-maps and pipeline charts.)

Branch On Equal Branch On Not Equal Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	NIC add addiu addiu and andi beq bne j jal jr lbu lhu ll lui	T FOR-FOR-FOR-FOR-FOR-FOR-FOR-FOR-FOR-FOR-			OPCOD /FUNC (Hex) 0/20he 8hex 9hex 0/21he 0/24he chex 4hex 5hex 2hex 3hex 0/08he 24bex 30hex
NAME, MNEMOR Add Add Immediate Add Imm. Unsigned Add Unsigned And And Immediate Branch On Equal Branch On Not Equal Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	NIC add addiu addiu and andi beq bne j jal jr lbu lhu ll lui	FOR-MAT R I I R R I I I I I I I I I I I I I I	OPERATION (in Verilog) R[rd] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm R[rd] = R[rs] + R[rt] R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZeroExtImm if(R[rs] == R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt] = {24'b0,M[R[rs]	(1) (1,2) (2) (3) (4) (4) (5) (5) (5)	/ FUNC (Hex) 0 / 20he 8hex 9hex 0 / 21he 0 / 24he chex 4hex 5hex 2hex 3hex 0 / 08he 24bex
Add Add Immediate Add Imm. Unsigned Add Unsigned And And Immediate Branch On Equal Branch On Not Equal Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	addi addiu addiu andi andi beq bne j jal jr lbu lhu ll	R I I R R I I I I I I I I I I I I I I I	R[rd] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm R[rd] = R[rs] + R[rt] R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZeroExtImm if(R[rs] == R[rt]) PC=PC+4+BranchAddr if(R[rs] != R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31] = PC+8; PC=JumpAddr PC=R[rs] R[rt] = {24'b0,M[R[rs] + SignExtImm](7:0)} R[rt] = {16'b0,M[R[rs] + SignExtImm](15:0)} R[rt] = M[R[rs] + SignExtImm]	(1,2) (2) (3) (4) (4) (5) (5) (5)	0 / 20he 8hex 9hex 0 / 21he 0 / 24he chex 4hex 5hex 2hex 3hex 0 / 08he 24bex
Add Immediate Add Imm. Unsigned Add Unsigned And And Immediate Branch On Equal Branch On Not Equal Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	addi addiu addu and andi beq bne j jal jr lbu lhu ll	I	R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm R[rd] = R[rs] + R[rt] R[rd] = R[rs] & R[rt] R[rd] = R[rs] & ZeroExtImm if(R[rs] == R[rt]) PC=PC+4+BranchAddr if(R[rs] == R[rt]) PC=PC+4+BranchAddr rC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt] = {24'b0,M[R[rs] +SignExtImm](7:0)} R[rt] = {16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(1,2) (2) (3) (4) (4) (5) (5) (5)	8hex 9hex 0/21he 0/24he chex 4hex 5hex 2hex 3hex 0/08he 24bex
Add Imm. Unsigned Add Unsigned And And Immediate Branch On Equal Branch On Not Equal Jump Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	addiu addu and andi beq bne j jal jr lbu lhu ll	I R R I I J J R I I I I I I	R[rt] = R[rs] + SignExtImm R[rd] = R[rs] + R[rt] R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZeroExtImm if(R[rs] == R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(2) (3) (4) (5) (5) (5) (2)	9 _{hex} 0/21 _{he} 0/24 _{he} 0/24 _{he} c _{hex} 4 _{hex} 5 _{hex} 2 _{hex} 3 _{hex} 0/08 _{he} 24 _{bex}
Add Unsigned And And Immediate Branch On Equal Branch On Not Equal Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	addu and andi beq bne j jal jr lbu lhu ll	R R I I I J J R I I	R[rd] = R[rs] + R[rt] R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZeroExtImm if(R[rs]==R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(3) (4) (4) (5) (5) (5)	0 / 21 _{he} 0 / 24 _{he} chex 4 _{hex} 5 _{hex} 2 _{hex} 3 / 08 _{he} 24 _{bex} 25 _{hex}
And And Immediate Branch On Equal Branch On Not Equal Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	and andi beq bne j jal jr lbu lhu 11	R I I J J R I I I	R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZeroExtImm if(R[rs]==R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(4) (5) (5) (5) (2)	0 / 24 _{he} c _{hex} 4 _{hex} 5 _{hex} 2 _{hex} 3 _{hex} 0 / 08 _{he} 24 _{bex}
And Immediate Branch On Equal Branch On Not Equal Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	andi beq bne j jal jr lbu lhu ll	I I J R I I I I	R[rt] = R[rs] & ZeroExtImm if(R[rs]==R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(4) (5) (5) (5) (2)	c _{hex} 4 _{hex} 5 _{hex} 2 _{hex} 3 _{hex} 0 / 08 _{he} 24 _{hex}
Branch On Equal Branch On Not Equal Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	beq bne j jal jr lbu lhu llui	I I J R I I I I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(4) (5) (5) (5) (2)	4 _{hex} 5 _{hex} 2 _{hex} 3 _{hex} 0 / 08 _{he} 24 _{hex}
Branch On Not Equal Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	bne j jal jr lbu lhu ll	I J R I I	PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(4) (5) (5) (2)	5 _{hex} 2 _{hex} 3 _{hex} 0 / 08 _{he} 24 _{hex} 25 _{hex}
Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	j jal jr lbu lhu ll	J J R I I	PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(5) (5) (2)	2 _{hex} 3 _{hex} 0 / 08 _{he} 24 _{hex} 25 _{hex}
Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	jal jr lbu lhu ll	J R I I	R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(2) (2)	3 _{hex} 0 / 08 _{he} 24 _{hex} 25 _{hex}
Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked	jr lbu lhu ll lui	R I I	PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(2)	0 / 08 _{he} 24 _{hex} 25 _{hex}
Load Byte Unsigned Load Halfword Unsigned Load Linked	lbu lhu ll lui	I I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(2)	24 _{hex} 25 _{hex}
Load Halfword Unsigned Load Linked	lhu ll lui	I	+SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]	(2)	25 _{hex}
Unsigned Load Linked	ll lui	I	+SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm]		
	lui			(2,7)	30 _{hex}
Load Upper Imm.		I	$R[rt] = \{imm, 16'b0\}$		
	1				fhex
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23 _{hex}
Nor	nor	R	$R[rd] = \neg (R[rs] \mid R[rt])$		$0/27_{hc}$
Or	or	R	R[rd] = R[rs] R[rt]		0/25 _h
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d _{hex}
Set Less Than	slt	R	$R[rd] = (R[rs] \le R[rt]) ? 1 : 0$		0 / 2a _h
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	I	$R[rt] = (R[rs] \le SignExtImm)$? 1:0	(2,6)	b _{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0/2b_{hc}$
Shift Left Logical	s11	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _h
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _h
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{bex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}
	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{bex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0/22 _h
Subtract Unsigned	subu		R[rd] = R[rs] - R[rt]		0 / 23 _h
	(2) Sig (3) Zer (4) Bra (5) Jun (6) Ope	nExtli oExtl nchA npAdo crands	se overflow exception mm = { 16{immediate[15]}, imm mm = { 16{1b'0}, immediate } ddr = { 14{immediate[15]}, imme dr = { PC+4[31:28], address, 2'b sensidered unsigned numbers (vectors of the sensitive sets of the sensitive s	ediate, : 00 } s. 2's c	2'b0 }
BASIC INSTRUCTION	ON FO	RMA	TS		
R opcode	r	S	rt rd shamt	i	funct
I opcode	6 25	21	20 16 15 11 10	6.5	

ARITHMETIC CORE	INSTE	RU	CTION SET 2	OPCODE
	FO	D		/ FMT /FT / FUNCT
NAME, MNEMONIO				(Hex)
Branch On FP True be			if(FPcond)PC=PC+4+BranchAddr (4)	
Branch On FP False be			if(!FPcond)PC=PC+4+BranchAddr(4)	
Divide di	iv R		Lo=R[rs]/R[rt]: Hi=R[rs]%R[rt]	0///la
Divide Unsigned di	vu R	Ł	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single add	i.s Fl	R	F[fd] = F[fs] + F[ft]	11/10//0
FP Add Double	a.a F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + {F[ft],F[ft+1]}$	11/11//0
FP Compare Single ex	s* F	R	FPcond = (F[fs] op F[ft])?1:0	11/10//y
Double	.d* Fl	•	$FPcond = ({F[fs],F[fs+1]} op {F[ft],F[ft+1]})? 1:0$	11/11//y
			=, <, or <=) (y is 32, 3c, or 3c)	
	7.5 F	R	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide Double	r.d Fl	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / {F[ft],F[ft+1]}$	11/11//3
	l.s F	R	$F[fd] = F[fs] \cdot F[ft]$	11/10//2
FP Multiply Double mul	l.a F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
_	o.s F	R	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract Double sub	o.d F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$	11/11//1
	c1 I		F[rt]=M[R[rs]+SignExtImm] (2)	31///
Load FP Double	ci I	I	F[rt]=M[R[rs]+SignExtImm]; (2) F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi mf	hi R	t	R[rd] = Hi	0 ///10
Move From Lo mf	lo R	t	R[rd] = Lo	0 ///12
Move From Control mf	c0 R	t	R[rd] = CR[rs]	10 /0//0
	lt R		$\{Hi,Lo\} = R[rs] \cdot R[rt]$	0///18
Multiply Unsigned mul	Ltu R	t	$\{Hi,Lo\} = R[rs] \cdot R[rt]$ (6)	
	ca R	-	R[rd] = R[rt] >>> shamt	0///3
_	ci I		M[R[rs]+SignExtImm] = F[rt] (2)	
Store FP Double sd	ci I	ı	M[R[rs]+SignExtImm] = F[rt]; (2) M[R[rs]+SignExtImm+4] = F[rt+1]	3d///

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	IS II	10 6	5 0
FI	opcode	fmt	ft		immediate	2
	31 26	25 21	20 16	LS		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \leq R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	nove	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
NAME	NOWIDER	USE	A CALL?
Szero	0	The Constant Value 0	N.A.
Şat	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	Ño
Sgp	28	Global Pointer	Yes
Şsp	29	Stack Pointer	Yes
Sfp	30	Frame Pointer	Yes
Şra	31	Return Address	No

26 25 Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

address

Α	В	С	D	A ⁺	B ⁺	C ⁺	D ⁺			

DA

ТВ

TC

JD

KD

Cycle	1	2	3	4	5	6	7	8	9	1	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2	2	2	2	2	2 5	2	2 7	2	2 9	3
I1 add																														
I2																														
add																														1
I3																														
add																														
14																														
add																														
15																														
add																														
16																														
slt																														
17																														
beq																														
18																														
lw																														
19																														
lw																														
110																														
add																														Ll
l11																														
sw																														

Cycle															
I12 lw															
I13 lw															
I14 add															
I15 sw															
I16 addi															
I17 addi															
I18 addi															
I19 addi															

Cycle	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2	2	2 2	2	2 4	2 5	2	2 7	2 8	2	3
l1										U				7)	0	,	0)		3	0	,	U	,	0
add																														
12																														
add																														
13																														
add																														<u> </u>
14																														
add																														
I5 add																														
16																														
slt																														
17																														
beq																														
18																														
lw																														
19																														
lw																														
110																														
add																														<u> </u>
l11																														
SW																														
I12 lw																														
113																														
lw																														
114																														
add																														
l15																														
sw																														
I16]
addi																														
117																														
addi																														
I18																														
addi																														
I19																														
addi				<u> </u>		<u> </u>	<u> </u>	<u> </u>					<u> </u>						<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>						

(This page is intentionally left blank.)

(This page is intentionally left blank.)