OR-lecture-11-In-class

b06303077 Yu-Jo Chiang

May 2020

1. Problem 2

- (a) This is true. When $C_t + H < C_{t-1}$, instead of producing/ordering a positive number of products in period t1, it is better to shift the production/ordering to period t. Each unit of shifting will save $C_t + H C_{t-1} > 0$ dollars. x^t will thus be greater than D_t .
- (b) This is not true. For example, consider the case with t = 3, t' = 1, $C_3 = 4$, $C_2 = 1$, and $C_1 = 10$. Though it is beneficial to shift the production/ordering in period 1 to period 3 (which will make $x^*3 > D_3$, it is even more beneficial to shift it to period 2.

2. Problem 3

(a) Formulate a dynamic program.

To formulate a dynamic program, we need to specify two things: the boundary condition (like the base case in mathematical induction) and the optimization problem in each period (like the inductive step in mathematical induction).

- i. The boundary condition: $V_0(y) = 0$ for all y.
- ii. The optimization problem: The value-to-go function is still the same. The demand fulfillment constraint $x_t \geq (D_t y)^+$ is still there. Moreover, to incorporate the space limitation, all we need to do is to add a constraint $y + x_t D_t \leq K$ for period t to ensure that we do not produce/order too many. The complete formulation is thus

$$\min_{\substack{x_t \\ s.t.}} V_t(y) = C_t x_t + H(y + x_t - D_t) + V_{t-1}(y + x_t - D_t)$$

$$s.t. \quad X_t \ge (D_t - y)^+$$

$$x_t \le K + D_t - y$$

(b) It is true. As there is no need to produce/order more than $\sum_{t=1}^{T} D_t$, there is no need to store more than that amount. The space is thus always enough, and the storage limitation may thus be ignored.

3. Problem 5

(a) To find $V_4(0)$, we need to compare all the options of x_4 , where the number of options depends on the upper bound of x_4 .

$$x_4 \le (\sum_{t=1}^4 D_t - y)^+ = D_{14}$$

- (b) We compare the options from 1 8, so the complexity is $O(D_{14}-1)$
- (c) The complexity of finding $V_4(y)$ for all reasonable values of y is

$$O[D_{14} + (D_{14} - 1) + (D_{14} - 2) + \dots + 0] = O[\sum_{k=0}^{D_{14}}] = O(D_{14}^2)$$

4. Problem 6

- (a) False , the complexity of solving the whole DP , should be $O(TD_{1,k}^2)$
- (b) True
- (c) True, while (b) provides a better upper bound.

5. Problem 7

- (a) This is true. When $q_t \geq 1$, we have rp as the expected revenue (where r is the probability of selling one product) and $(q_t y)c$ as the production/ordering cost. When $q_t = 0$, obviously we have no chance to sell anything, and ordering nothing incurs no cost.
- (b) This is true. When qt 1, with probability 1 r we sell nothing, and the ending inventory remains qt. The expected profit from period t 1 to period 1 is thus Vt1(qt). On the contrary, with probability r we sell one unit, the ending inventory becomes qt 1, and the future expected profit is $Vt1(qt\ 1)$.

When q0 = 0, the ending inventory will definitely be 0, and the future expected profit is Vt1(0) for sure.

(c) Derive $V_t(y)$ without using the u function and the expectation operator.

$$\pi t(qt, y) = rp(qty)c + Vt1(qt)(1r) + Vt1(qt1)r$$

$$V_t(y) = \begin{cases} \max_{q_t \ge y} \{\pi(q_t, y)\}, & \text{if } y \ge 1\\ \max\{V_{t-1}(0), \max_{q_t \ge t} \{\pi(q_t, y)\}\}, & \text{if } y = 0 \end{cases}$$
 (1)

(d) When we consider the probability distribution of D_t and express the problem explicitly in the previous part, everything may be implemented in a computer program.