CSC242: Introduction to Assignment Project Exam Help Artificial/Lintelligence

WeChat: cstutorcs

Lecture 2.4

Please put away all electronic devices

Announcements

 Project 2 due Sunday 1159PM https://tutorcs.com

WeChat: cstutorcs

Unit 2 Exam: One week from Thursday
 (Fall Break next Mon/Tue)

Factored Representation

- Splits a state into variables (or attributes) that can have values Assignment Project Exam Help
- Factored states/cansba more or less similar (unlike atomicrstates)
- Can also represent uncertainty (don't know value of some attribute)

Constraint Satisfaction Problem (CSP)

- X: Set of variables $\{X_1, ..., X_n\}$
- D: Set of A dimains of $\{$ ct B $\{$ $\{$ $\}$ $\}$
 - Each D_i : https://tutorcs.com Set of values $\{v_1, ..., v_k\}$
- C: Set of constraints $\{C_1, ..., C_m\}$
- Solution: Assign to each X_i a value from D_i such that all the C_i are satisfied

Propositional Logic

- Programming language for knowledge
- Factored representation (Beglean CSP)
 - Propositionapsconnectives, sentences
- Possible worlds hatis hability, models
- Entailment: $\alpha \models \beta$
 - ullet Every model of lpha is a model of eta
 - Intractable! (co-NP-complete)

Propositional Theorem Proving

- Inference rules: Soundness, Completeness
- Proof: $\alpha \vdash \beta_{\text{Assignment Project Exam Help}}$
 - Searching far proofs is an alternative to enumerating models: "can be more efficient" (at least sometimes)
- Resolution: sound and complete inference rule
 - Works on clauses (CNF); requires refutation
- Forward and backward chaining

Forward Chaining

- Reasons forward from new facts
 - Data-drivenment Project Exam Help
- Done by humans tutos some extent
 - When to stop?
- For KBs using only definite clauses
 - · Sound, complete, linear time

AIMA 7.5.4

Backward Chaining

- Reasons backward from query
 - Goal-dizected Project Exam Help
- Useful for ahttwerting oppecific questions WeChat: cstutorcs
- For KBs using only definite clauses
 - · Sound, complete, linear time

AIMA 7.5.4

Propositional Inference

- Computing whether $\alpha \models \beta$
- Model Checking
 - Intractable (bign seet A INICCT 7.8) m Help
- Inference rules: Soundhess, Completeness
- Derivation: $\alpha \vdash \beta$ WeChat: cstutorcs
 - Searching for proofs is an alternative to enumerating models
 - May be faster in practice
- Resolution is a sound and complete-ish inference rule
 - Works on clauses (CNF), requires refutation proof

Assignment Project Exam Help

https://tutorcs.com

• Declarative: based on a truth relation between sentences and possible worlds

https://tutorcs.com

- Declarative: based on a truth relation between sentences and possible worlds
- Expressive: can represent partial information (registedistiunction, negation)

- Declarative: based on a truth relation between sentences and possible worlds
- Expressive: can:/represent partial information (vega::disjunction, negation)
- Compositional: the meaning of a sentence is a function of the meanings of its parts

- Model checking takes exponential time
 - Theoremsspraving, maxing, maxing

https://tutorcs.com

- Model checking takes exponential time
 - Theoremsspraxing, maxing, maxing
- Lacks the expressive power to describe concisely complex environments (many objects, relationships between them)

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$
 $B_{1,2} \Leftrightarrow (P_{1,3} \vee P_{2,2} \vee P_{1,1})$
 $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
 $B_{2,2} \Leftrightarrow (P_{2,1} \vee P_{3,2} \vee P_{2,3})$
https://tutorcs.com

WeChat: cstutorcs
 $B_{4,4} \Leftrightarrow (P_{3,4} \vee P_{4,3})$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$
 $B_{1,2} \Leftrightarrow (P_{1,3} \vee P_{2,2} \vee P_{1,1})$
 $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
 $B_{2,2} \Leftrightarrow (P_{2,1} \vee P_{3,2} \vee P_{2,3})$
https://tutorcs.com

WeChat: cstutorcs
 $B_{4,4} \Leftrightarrow (P_{3,4} \vee P_{4,3})$

"Rooms adjacent to pits are breezy"

- Rooms adjacent to pits are breezy
- Socrates is a person
 All people are mortal
- Anybody's grandmother is either their mother's or their father's mother

Logic 2.0

- Define a language based on propositional logic that will allow us to say all these things.com
- Define entailment (infollows from")
- Figure out how to compute what follows from our knowledge

- Rooms adjacent to pits are breezy
- Socrates is a person
 All people are mortal
- Anybody's grandmother is either their mother's or their father's mother

- Rooms adjacent to pits are breezy
- Socrates is a person
 All people are mortal
- Anybody's grandmother is either their mother's or their father's mother

- Rooms adjacent to pits are breezy
- Socrates is a person
 All people are mortal
- Anybody's grandmother is either their Assignment Project Exam Help
 mother's or their father's mother

- Rooms adjacent to pits are breezy
- Socrates is a person
 All people are mortal
- Anybody's grandmother is either their mother's or their father's mother

- Rooms adjacent to pits are breezy
- Socrates is a person
 All people are mortal
- Anybody's grandmother is either their Assignment Project Exam Help
 mother's or their father's mother

Ontology

ontology | än täləjē |

noun

1 the branch of metaphysics dealing with the nature of being.

Assignment Project Exam Help

2 a set of concepts and categories in a subject area or domain that shows their properties and the relations between them

ORIGIN early 18th cent.: from modern Latin *ontologia*, from Greek *on*, *ont-'being'* + -logy.

Ontology

- Objects: people, houses, numbers, theories, Socrates, colors, wars, ...
- Relations: Assignment Project Exam Help
 - Unary (Properfies): breezy, mortal, red, round, bogus, prime, WeChat: cstutorcs
 - n-ary: brother of, bigger than, inside, part of, has color, occurred after, owns, above, between
- Functions: "single-valued" relations: mother of, father of, best friend, one more than, ...

Ontologies (Factored Representations)

- Logic 1.0 (Propositional Logic)
 Assignment Project Exam Help
 - Identify Boolean features of the world

 WeChat: cstutores
- Logic 2.0:
 - Identify objects, relations, and functions in the world

Ontology (Domain of Discourse, Conceptualization)

- Objects: people, houses, numbers, theories, Socrates, colors, wars, ...
- Relations: Assignment Project Exam Help
 - Unary (Properfies): breezy, mortal, red, round, bogus, prime, WeChat: cstutores
 - n-ary: brother of, bigger than, inside, part of, has color, occurred after, owns, above, between
- Functions: "single-valued" relations: mother of, father of, best friend, one more than, ...

A Programming Language for Knowledge

- Syntax:
 - What counts as joi well informed statement informula insentence, or program WeChat: estutores
- Semantics:
 - What these statements, formulas, sentences, or programs mean

Propositional Logic: Proposition Symbols

- Symbols denoting propositions (things that can be true of false)
- $W_{1,1}$, $Raining_{ps}Hamgrapm$ Cranky, ...

denote |di^lnōt| WeChat: cstutorcs

verb [trans.]

be a sign of; indicate: this mark denotes purity and quality.

• (often **be denoted**) stand as a name or symbol for : the level of output per firm, denoted by X.

Constant Symbols

- Symbols denoting objects in the world
- Socrates, George, P.Snaopy, Help

https://tutorcs.com

denote |di^lnōt| WeChat: cstutorcs

verb [trans.]

be a sign of; indicate: this mark denotes purity and quality.

• (often **be denoted**) stand as a name or symbol for : the level of output per firm, denoted by X.

Relation (Predicate) Symbols

- Symbols denoting relations
- $Mortal(\cdot)$, Asimelly (ro) oct Bree ay (ro), $On(\cdot, \cdot)$, $Above(\cdot, \cdot)$, Equals (resconsist on $Above(\cdot, \cdot)$), Equals (resconsist on $Above(\cdot, \cdot)$), Equals (resconsist of $Above(\cdot, \cdot)$), Equals
- Arity: number of arguments

pred·i·cate noun | 'predəkət |

• Logic something that is affirmed or denied concerning an argument of a proposition.

From Latin praedicatum 'something declared'

Function Symbols

- Symbols denoting functions
 https://tutores.com
- $mother(\cdot)$, $father(\cdot)$, $oneMoreThan(\cdot)$, $hat(\cdot)$, $plus(\cdot,\cdot)$ a.k.a. " $\cdot+\cdot$ ", ...
- Arity: number of arguments

Symbols

Assignment Project Exam Help

- Constant symbolsio Socrates, George
- Relation symbols: $Mortal(\cdot)$, $On(\cdot, \cdot)$
- Function symbols: $mother(\cdot)$, $plus(\cdot, \cdot)$

Term

- A logical expression that denotes (refers to) an object Assignment Project Exam Help
- Constant symbol/works.com
- Function symbol and taple of terms of appropriate arity

Socrates

mother(George)

plus(1,2) a.k.a. "1+2"

mother(father(George))

Atomic Sentence

- States a fact
- Predicate (relation) symbol and tuple of terms of appropriate arity

WeChat: cstutorcs

Mortal(Socrates)

Atomic Sentence

- States a fact
- Predicate (relation) symbol and tuple of terms of appropriate arity

WeChat: cstutorcs

Mortal(Socrates)

On(A, B)

 $\overline{Brother(Richard,\ John)}$

Married(father(Richard), mother(John))

Connectives

- Connect sentences into larger sentences that can also be true or false Assignment Project Exam Help
- Conjunction (Wnd) at: Astutores
- Disjunction (or):
- Implication (if-then): ⇒
- Biconditional (iff): ⇔

Connectives

 $\neg On$ (Assignment Project Exam Help https://tutorcs.com King(Richard)cs/utoKing(John)

 $\neg King(Richard) \Rightarrow King(John)$

Logic 2.0 (Syntax)

- Constant symbols
- · Predicate (relation) symbols arity
- Function symbols was arity
- Terms
- Atomic sentences
- Complex sentences (using connectives)

Predicate Logic

- Constant symbols
- · Predicate (relation) symbols arity
- Function symbols was arity
- Terms
- Atomic sentences
- Complex sentences (using connectives)

First-Order Predicate Logic

- Constant symbols
- · Predicate (relation) symbols & arity
- Function symbol's warty
- Terms
- Atomic sentences
- Complex sentences (using connectives)

Propositional Logic Possible World

- Assignmentsignetrugeorxfalse to all the atomic propositionses.com
- A possible world satisfies a sentence if it makes the sentence true
 - "A model of the sentence"

Ontology (Domain of Discourse, Conceptualization)

- Objects: people, houses, numbers, theories, Socrates, colors, wars, ...
- Relations: Assignment Project Exam Help
 - Unary (Properfies): breezy, mortal, red, round, bogus, prime, WeChat: cstutorcs
 - n-ary: brother of, bigger than, inside, part of, has color, occurred after, owns, above, between
- Functions: "single-valued" relations: mother of, father of, best friend, one more than, ...

Interpretation

Socrates

 \sim On

houseOf

Interpretation

Language Interpretation I Elements Assignment Project Exam $\text{Objects: } \Omega_I$

Constant Symbols of WeChat: cstutores

$$I(\sigma) \in \Omega_I$$

Predicate Symbols π_n

$$I(\pi_n) \subseteq \Omega_I^n$$

Function Symbols ϕ_n

$$I(\phi_n):\Omega_I^n\to\Omega_I$$

Assignment Project Exam Help

- Objects: •, https://tutgrcs.com
- Relations: being on, being above, being clear, being on the table
- Functions: "the block on top of me"

Assignment Project Exam Help Constant Symbols: AtuBresConD, E

Predicate Symbols: Un (stutorcs), Above (+,+),

OnTable('), Clear(')

Function Symbols: Hat(•)

$$\Omega_I = \{$$
 \blacksquare , \blacksquare , \blacksquare , \blacksquare , \blacksquare , \blacksquare

$$I(A) = \blacksquare$$

$$I(B) = \blacksquare$$

$$I(C) = \blacksquare$$

$$I(D) = \blacksquare$$

$$Assignment Project Exam Help$$

$$I(E) = \blacksquare$$

$$https://tutores.com$$

$$I(On) = \{ \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle \}$$

$$I(Above) = \{ \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle \}$$

$$I(OnTable) = \{ \langle \blacksquare \rangle, \langle \blacksquare \rangle \}$$

$$I(Clear) = \{ \langle \blacksquare \rangle, \langle \blacksquare \rangle \}$$

$$I(Hat) = \{ \langle \blacksquare \rangle, \langle \blacksquare \rangle \}$$

$$\Omega_I = \{$$
 \blacksquare , \blacksquare , \blacksquare , \blacksquare , \blacksquare , \blacksquare
 $I(A) = \blacksquare$
 $I(B) = \blacksquare$
 $I(C) = \blacksquare$
 $I(D) = \blacksquare$
 $I(E) = \blacksquare$
 $I(E) = \blacksquare$
 $I(Dn) = \{ \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle \}$
 $I(Above) = \{ \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle, \langle \blacksquare, \blacksquare \rangle \}$
 $I(Clear) = \{ \langle \blacksquare \rangle, \langle \blacksquare \rangle \}$
 $I(Hat) = \{ \langle \blacksquare \rangle, \langle \blacksquare \rangle, \langle \blacksquare \rangle, \langle \blacksquare \rangle, \blacksquare \}$

Richard (1157-1199)

John (1166–1216)

Objects (Ω_I): Richard, John, left leg 1, left leg 2, the crown

Unary Relations (Properties):
being a person
being a crown
being a king

Binary Relations: two things being brothers one thing being on the head of another

Functions:
the left leg of something

$$egin{align*} &\Omega_I = \{ \ \mathbb{R}, \ \mathbb{J}, oldsymbol{eta}, \ oldsymbol{eta}, \ oldsymbol{eta}, \ oldsymbol{eta} \ I(ext{Richard}) = \mathbb{R} \ &I(ext{John}) = \mathbb{J} \ &I(ext{Person}) = \{ \ \langle \mathbb{R} \rangle, \ \langle \mathbb{J} \rangle \ \} \ &I(ext{King}) = \{ \ \langle \mathbb{J} \rangle \ \} \ &I(ext{Crown}) = \{ \ \langle oldsymbol{eta}, \ \langle oldsy$$

$$egin{align*} &\Omega_I = \{ \ \mathbb{R}, \ \mathbb{J}, oldsymbol{eta}, oldsymbol{ar{ar{V}}}, oldsymbol{ar{ar{V}}} \} \ &I(ext{Richard}) = oldsymbol{ar{ar{J}}} \ &I(ext{John}) = oldsymbol{ar{ar{W}}}, \langle oldsymbol{ar{J}}
angle \} \ &I(ext{Ring}) = \{ \langle oldsymbol{ar{W}}
angle, oldsymbol{ar{J}}
angle, oldsymbol{ar{W}}, oldsymbol{ar{J}} \} \} \ &I(ext{Crown}) = \{ \langle oldsymbol{ar{W}}, oldsymbol{ar{J}}
angle, oldsymbol{ar{W}}, oldsymbol{ar{J}} \rangle \} \ &I(ext{OnHead}) = \{ \langle oldsymbol{ar{W}}, oldsymbol{ar{J}}
angle, oldsymbol{ar{V}}, \ &\langle oldsymbol{ar{J}}
angle \rightarrow oldsymbol{ar{V}}, \ &\langle oldsymbol{ar{J}}
angle = oldsymbol{ar{V}}, \ &\langle oldsymbol{ar{J}}
angle \rightarrow oldsymbol{ar{V}}, \ &\langle oldsymbol{ar{J}}
angle = oldsymbol{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J}} \end{ar{J} \end{ar{J}} \end{ar{J} \end{a$$

$$egin{align*} &\Omega_I = \{ \ \mathbb{R}, \ \mathbb{J}, \ oldsymbol{eta}, \ oldsymbol{eta}, \ oldsymbol{eta}, \ oldsymbol{eta} \ &I(ext{Richard}) = oldsymbol{eta} \ &I(ext{John}) = oldsymbol{eta}, \ &I(ext{Person}) = oldsymbol{eta}, \ &I(ext{King}) = oldsymbol{eta}, \ &I(ext{King}) = oldsymbol{eta}, \ &I(ext{Singnment Project Exam Help}, \ &I(ext{Crown}) = oldsymbol{eta}, \ &I(ext{Lips://tutores.com}, \ &I(ext{Brother}) = oldsymbol{eta}, \ &I(ext{Singnment Project Exam Help}, \ &I(ext{Brother}) = oldsymbol{eta}, \ &I(ext{Singnment Project Exam Help}, \ &I(ext{Brother}) = oldsymbol{eta}, \ &I(ext{Singnment Project Exam Help}, \ &I(ext{Brother}) = oldsymbol{eta}, \ &I(ext{Singnment Project Exam Help}, \ &I(ext{Brother}) = oldsymbol{eta}, \ &I(ext{Singnment Project Exam Help}, \ &I(ext{Brother}) = oldsymbol{eta}, \ &I(ext{Singnment Project Exam Help}, \ &I(ext{Brother}) = oldsymbol{eta}, \ &I(ext{Singnment Project Exam Help}, \ &I(ext{Brother}) = oldsymbol{eta}, \ &I(ext{Singnment Project Exam Help}, \ &I(ext{Brother}) = oldsymbol{eta}, \ &I(ext{Brother}) = oldsy$$

First-Order Model (Possible World)

- Ontology (Domain of Discourse, Conceptualization)
 - Assignment Project Exam Help
 Objects, relations, and functions https://tutorcs.com
- Interpretation functions. Iteres
 - Constant symbols → Objects
 - ullet Predicate symbols o Relations (sets of tuples)
 - Function symbols → Functions (mappings)

AIMA p. 290

Satisfaction

- A model (possible world) <u>satisfies</u> a sentence if it makes the sentence true Assignment Project Exam Help
 - "A model afs:thersentence"

WeChat: cstutorcs

Terms

- \bullet Constant term c
 - $I(c) \in \Omega$ ssignment Project Exam Help
- Function term $f(t_1, ..., t_n)$ WeChat: cstutorcs
 - I(f) = some function F
 - $I(t_i)$ = some object $d_i \in \Omega_I$
 - $ullet I(f(t_1,\ ...,\ t_n)) = F(d_1,\ ...,\ d_n)$

Terms

- ullet Constant term c
 - $I(c) \in \Omega_{Assignment Project Exam Help}$
- Function term $f(t_1, ..., t_n)$ WeChat: cstutores
 - I(f) = some function F
 - $I(t_i)$ = some object $d_i \in \Omega_I$
 - $ullet \ I(f(t_1,\ ...,\ t_n)) = F(d_1,\ ...,\ d_n)$
 - "The interpretation fixes the referent (or denotation) of every term."

Atomic Sentences

- Atomic sentence $P(t_1, ..., t_n)$
 - I(P) = someone tation M Help
 - $I(t_i) = \frac{\text{https://tutorcs.com}}{\text{WeChat: cstutorcs}} \in \Omega_I$
 - $P(t_1, ..., t_n)$ is true iff $\langle d_1, ..., d_n \rangle \in \Phi$

Atomic Sentences

- Atomic sentence $P(t_1, ..., t_n)$
 - I(P) = somenetation M Help
 - $I(t_i)$ = some object $d_i \in \Omega_I$ WeChat: cstutores
 - $P(t_1, ..., t_n)$ is true iff $\langle d_1, ..., d_n \rangle \in \Phi$

"An atomic sentence is true in a given model if the relation referred to by the predicate symbol holds among the objects referred to by the arguments."

Complex Sentences

α	β	¬α Assignmen	αΛβ t Project Ex	α∨β am Help	α⇒β	α⇔β
F	F	https://	tutor E s.com		Т	T
F	Т	WeCh	at: cstutorcs	T	Т	F
T	F		F	T	F	F
T	T	F	T	T	T	T

Semantics of First-Order Logic

- Set of objects, with relations & functions
- Interpretation function xam Help
 - Constant symbols res. som bjects
 - Predicate symbols → relations (tuples)
 - ullet Function symbols o functions (mappings)
- An interpretation <u>satisfies</u> a sentence if it makes the sentence true

- Rooms adjacent to pits are breezy
- Socrates is a person
 All people are mortal
- Anybody's grandmother is either their mother's or their father's mother

WeChat: cstutorcs

- Rooms adjacent to pits are breezy
- Socrates is a person
 All people are mortal
- Anybody's grandmother is either their mother's or their father's mother

WeChat: cstutorcs Person(Socrates)

- Rooms adjacent to pits are breezy
- Socrates is a person
 All people are mortal
- Anybody's grandmother is either their mother's or their father's mother

WeChat: cstutorcs Person(Socrates)

True in I if $\langle I(Socrates) \rangle \in I(Person)$

- Rooms adjacent to pits are breezy
- Socrates is a person
 All people are mortal
- Anybody's grandmother is either their mother's or their father's mother

WeChat: cstutorcs

All people are mortal

Every object that is a person is also mortal Assignment Project Exam Help

https://tutorcs.com

For every object x, either is a person, then x is mortal

For every object $x: Person(x) \Rightarrow Mortal(x)$

Universal Quantification

- Syntax: $\forall x \varphi$
- Semantics x
 - Extended interpretation maps every wechat estutores variable to an object in the domain
 - $\forall x \, \phi$ is true if ϕ is true in <u>every</u> extended interpretation

$$\forall x \ King(x) \Rightarrow Person(x)$$

Assignment Project Exam Help

https://tutorcs.com

Objects (Ω_I): Richard, John, left leg 1, left leg 2, the crown $\forall x \ King(x) \Rightarrow Person(x)$

 $x \rightarrow Richard$

X Assignment Project Exam Help

 $x \rightarrow \text{Richardsoleft leg}$

 $x \to \text{John's left leg}$

 $x \rightarrow \text{the crown}$

$$\forall x \ King(x) \Rightarrow Person(x)$$

Richard is a king \Rightarrow Richard is a person

John is a king - sommisoic penson

https://tutorcs.com

Richard's left leg is a king Richard's left leg is a person

John's left leg is a king \Rightarrow John's left leg is a

person

the crown is a king \Rightarrow the crown is a person

Objects (Ω_I): Richard, John, left leg 1, left leg 2, the crown

$$\forall x \ King(x) \Rightarrow Person(x)$$

Richard is a king \Rightarrow Richard is a person

John is a king Assommisoian Bensom

True

https://tutorcs.com Richard's left leg is king \Richard's Richard's left leg is

a person

John's left leg is a king \Rightarrow John's left leg is a

person

the crown is a king \Rightarrow the crown is a person

 $\forall x \ King(x) \Rightarrow Person(x)$

Richard is a king \Rightarrow Richard is a person True John is a king = As John is occupenson True false https://tutorcs.com
Richard's left leg is king Richard's left leg is True a person false John's left leg is a king \Rightarrow John's left leg is a True person

the crown is a king \Rightarrow the crown is a person True

 $\forall x \ King(x) \Rightarrow Person(x)$ True!

Richard is a king \Rightarrow Richard is a person True

John is a king - strue True

false https://tutorcs.com
Richard's left leg is king Richard's left leg is True

a person false John's left leg is a king \Rightarrow John's left leg is a True

person

the crown is a king \Rightarrow the crown is a person

Universal Quantification

- Syntax: $\forall x \varphi$
- Semantics x
 - Extended interpretation maps every wechat estutores variable to an object in the domain
 - $\forall x \, \phi$ is true if ϕ is true in <u>every</u> extended interpretation

All people are mortal.

$$\forall x \ Person(x) \Rightarrow Mortal(x)$$

Rooms adjacent to pits are breezy. Assignment Project Exam Help

Anybody's grandmother is either their mother's or their father's mother

$$\forall x \forall y \ Grandmother(x,y) \Rightarrow$$

$$x = mother(mother(y)) \lor x = mother(father(y)))$$

 $\forall x \ King(x) \land Person(x)$

Assignment Project Exam Help

https://tutorcs.com

$\forall x \ King(x) \land Person(x)$

False!

Richard is a king A Richard is a person

False

John is a king Assignment Project Exam Help

True

Richard's left leg is a king A. Richard's left leg person

John's left leg is a king 1 John's left leg is a person

False

the crown is a king \wedge the crown is a person

False

Rule: $\forall x \ King(x) \Rightarrow Person(x)$

Probably false statement: Assignment Project Exam Help $\forall x \; King(w) \text{ or } \& conerson(x)$

Existential Quantification

- Syntax: $\exists x \varphi$
- Semantics x
 - Extended interpretation maps every variable to an object in the domain
 - $\exists x \ \phi$ is true if ϕ is true in <u>some</u> extended interpretation

John has a crown on his head.

 $\exists x \ Crown(x) \land OnHead(x, John)$

Assignment Project Exam Help

https://tutorcs.com

John has a crown on his head.

 $\exists x \ Crown(x) \land OnHead(x, John)$

 $x \xrightarrow{\text{Assignment Project Exam Help}}$

https://tutorcs.com

 $x \rightarrow \overline{\text{Wehn}}$: cstutorcs

 $x \rightarrow \text{Richard's left leg}$

x o John's left leg

 $x \rightarrow \text{the crown}$

John has a crown on his head.

 $\exists x \ Crown(x) \land OnHead(x, John)$

True!

x Assignment Project Exam Help

https://tutorcs.com

 $x \rightarrow \text{Vehan: cstutores}$

 $x \rightarrow Richard's left leg$

x o John's left leg

 $x \rightarrow \text{the crown}$

True

Existential Quantification

- Syntax: $\exists x \varphi$
- Semantics x
 - Extended interpretation maps every variable to an object in the domain
 - $\exists x \ \phi$ is true if ϕ is true in <u>some</u> extended interpretation

Nested Quantifiers

Everyone (every person) loves someone

 $\forall x \ Person(x) \Rightarrow \exists y \ Person(y) \land Loves(x,y)$

https://tutorcs.com

Nested Quantifiers

Everyone (every person) loves someone

 $\forall x \ Person(x) \Rightarrow \exists y \ Person(y) \land \ Loves(x,y)$ Assignment Project Exam Help

Someone 15:/1000 everyone

 $\exists x \; Person(x) \overset{\mathsf{WeChat: cstutorcs}}{\wedge} Person(y) \xrightarrow{} Loves(y,x)$

Nested Quantifiers

Everyone (every person) loves someone

$$\forall x \; Person(x) \Rightarrow \exists y \; Person(y) \land \; Loves(x,y)$$

Someone 15:/1000 everyone

$$\exists x \; Person(x) \overset{\mathsf{WeChat: cstutorcs}}{\wedge} \forall y \; Person(y) \Rightarrow Loves(y,x)$$

Someone loves everyone

$$\exists x \ Person(x) \land \forall y \ Person(y) \Rightarrow Loves(x,y)$$

$$\exists x \ \forall y \ Person(x) \land Person(y) \Rightarrow Loves(x,y)$$

First-Order Predicate Logic

- Syntax:
 - Constant, predicate, and function symbols
 - Terms, atomic sentences, connectives
 - Quantifiers and variables
 - WeChat: cstutoro
- Semantics:
 - Ontology of objects, relations, functions
 - First-order interpretation
 - Extended interpretation
 - Satisfaction (sentence true in a possible world)

Entailment

- α entails β : $\alpha \models \beta$
 - Every madelneft rajist elsa Helpmodel of β
 - Whenever α is true, so is β
 - β is true in every world consistent with α
 - $Models(\alpha) \subseteq Models(\beta)$
 - β logically follows from α

Model Checking

- Given knowledge α and query β
 - For every impossible imadely I
 - If α is satisfied by I WeChat: cstutores
 - ullet If eta is not satisfied by I
 - Conclude that $\alpha \not\models \beta$
 - Conclude that $\alpha \models \beta$

All Possible Models

- # of objects in the world from 1 to ∞
- Some constants refer to the same object
- Some objects upremots referred to by any constant ("unnamed") utorcs
- Relations and functions defined over sets of subsets of objects
- Variables range over all possible objects in extended interpretations

Assignment Project Exam Help

https://tutorcs.com

$$\Omega_I = \{ullet ullet_1\}$$
 R J $I(R) = ullet_1$ Assignment Project Exam Help $I(J) = ullet_1$ https://tutorcs.com $I(P) = \{ullet$ WeChat: cstutorcs

$$\Omega_I = \{ullet ullet_1\}$$
 $I(R) = ullet_1$
 $I(J) = ullet_1$
 $I(J) = ullet_1$
 $I(P) = \{ullet ullet_1, ullet_1\}$
Assignment Project Exam Help
 $I(I) = ullet_1$
 $I(I) =$

$$\Omega_I = \{ullet_1\}$$

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

1 interpretation of R and J 2 interpretations of P 2 possible interpretations

$$\Omega_I = \{ullet ullet_1, ullet_2 \}$$
 R J $I(R) = ullet_1$ Assignment Project Exam Help $I(J) = ullet_2$ https://tutorcs.com $I(P) = ullet_1$ WeChat: cstutorcs $ullet_2$

 2^2 =4 interpretations of R and J 2^{2^2} =16 interpretations of P 64 possible interpretations

$$\Omega_I = \{ullet ullet_1, ullet _2, ullet_3 \}$$
 R J $I(R) = ullet_1$ Assignment Project Exam Help $I(J) = ullet_2$ https://tutorcs.com $ullet_1$ $ullet_2$ $ullet_2$ $ullet_2$ WeChat: cstutorcs $ullet_1$ $ullet_2$ $ullet_2$

 3^2 =9 interpretations of R and J 2^{3^2} = 2^9 =512 interpretations of P 4608 possible interpretations

$$\Omega_I = \{ullet \bullet_1, ullet \bullet_2, ullet \bullet_3, ullet \bullet_4 \}$$
 R I $I(R) = ullet \bullet_1$ Assignment Project Exam Help $I(J) = ullet \bullet_2$ https://tutores.com \bullet_1 \bullet_2 \bullet_3 \bullet_4 \bullet_4

1,048,576 possible interpretations

Computing Entailment

- Number of possible models HUGE
 - Possiblysunhaundedexam Help

https://tutorcs.com

Computing Entailment

- Number of possible models HUGE
 - Possiblysunhoundedexam Help
- · Can't do models checking

Computing Entailment

- Number of possible models HUGE
 - Possibly sunhounded exam Help
- Can't do models: checking
- Look for inference rules, do theorem proving

Fornext time: Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

AIMA Ch 9