ROTATION DRIFT BENCHMARK

Reference No / Version	RAL-SI-2020-B19-0838_4-V1.0
	For the latest versions of the benchmark, please refer to http://newdexterity.org/benchmarking/
Authors	Geng Gao ¹ , Gal Gorjup ¹ , Ruobing Yu ² , Patrick Jarvis ² , and Minas Liarokapis ¹
Institution	¹ University of Auckland, ² Humanoid Artificial Intelligence
Contact Information	ggao102@aucklanduni.ac.nz, ggor290@aucklanduni.ac.nz, ruobingy@aidatainnovations.com, patrickj@aidatainnovations.com, m.liarokapis@auckland.ac.nz
Adopted Protocol	Any protocol that involves periodic object rotation (RAL-SI-2020-P19-0838_2-V1.0, RAL-SI-2020-P19-0838_3-V1.0, RAL-SI-2020-P19-0838_4-V1.0).
	Assessment is based on the average quaternion between cycle endpoints \bar{q} obtained through the following steps. For each recorded periodic manipulation motion:
Scoring	 Isolate motion end points. Compute rotation differences between subsequent endpoints as a sequence of quaternions q_i. Compute the average quaternion q̄ as the eigenvector corresponding to the largest eigenvalue of matrix M = ∑_{i=1}ⁿ⁻¹ (q_{i+1} × inv(q_i)) (q_{i+1} × inv(q_i))^T, where q_i is the quaternion orientation for endpoint i. Compute the angular offset of the average quaternion: θ̄ = 2cos⁻¹(a), where a is the scalar part of the average quaternion q̄.
	The resulting angle corresponds to an average drift angle for a specific manipulation motion. If different objects are used, the steps are repeated for each instance.
Details of Setup	To assist with data processing and drift vector computation, code samples are provided.
	For each sensorized object and manipulation motion:
Results to Submit	 Sensorized object type, size, and surface. Sensorized object mass and center of mass (internal weight configuration). Assessed hand model, aperture and control details. Computed drift angle of the average rotation offset \(\tilde{\theta}\). Plots of recorded point clouds with highlighted end points. Comments on obtained results with respect to the hand model and control.