De los problemas 24 al 26 aplique el procedimiento descrito en el problema 23 para reducir la matriz dada mediante una transformación de semejanza a su forma canónica de Jordan.

24.
$$A = \begin{pmatrix} -4 & -3 & -1 \\ 11 & 9 & 3 \\ -29 & -25 & -8 \end{pmatrix}$$

25.
$$A = \begin{pmatrix} -35 & -8 & 36 \\ 0 & -4 & 0 \\ 28 & 8 & -28 \end{pmatrix}$$

26.
$$A = \begin{pmatrix} 22 & 12 & -14 \\ -24 & -16 & 24 \\ -2 & -4 & 10 \end{pmatrix}$$

27. Una matriz A de $n \times n$ es **nilpotente** si existe un entero k tal que $A^k = 0$. Si k es el entero más pequeño de este tipo, entonces k se denomina **indice de nilpotencia** de A. Demuestre que si k es el indice de nilpotencia de A y si $m \ge k$, entonces $A^m = 0$.

Matriz nilpotente e índice de nilpotencia

- *28. Sea N_k la matriz definida por la ecuación (8.6.1). Demuestre que N_k es nilpotente con índice de nilpotencia k.
 - **29.** Escriba todas las matrices de Jordan de 4×4 posibles.

De los problemas 30 al 37 está dado el polinomio característico de una matriz A. Escriba todas las posibles formas canónicas de Jordan de A.

30.
$$(\lambda + 3)^2 (\lambda + 1)$$

31.
$$(\lambda - 2)^2 (\lambda + 2)^2$$

32.
$$(\lambda - 3)^3 (\lambda + 4)$$

33.
$$(\lambda - 4)^3$$

34.
$$(\lambda - 4)^3 (\lambda + 3)^2$$

35.
$$(\lambda - e)^5$$

36.
$$(\lambda - 2)(\lambda + 2)^5$$

37.
$$(\lambda + 7)^5$$

38. Usando la forma canónica de Jordan, demuestre que para cualquier matriz A de $n \times n$, det $A = \lambda_1, \lambda_2, \ldots, \lambda_n$, donde $\lambda_1, \lambda_2, \ldots, \lambda_n$ son los valores característicos de A.

EJERCICIOS CON MATLAB 8.6

1. a) Sea $A = CJC^{-1}$, donde $C \vee J$ están dados en seguida.

$$J = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 2 & 2 & -1 \\ 1 & 3 & 5 & 3 \\ 2 & 4 & 3 & 0 \\ 1 & 3 & 3 & 6 \end{pmatrix}$$

- i) Verifique que las columnas 1 y 2 de C son los vectores característicos de A con valor característico $\lambda = 2$ (utilice la matriz A 2I).
- ii) Verifique que la columna 3 de C es un vector característico de A con valor característico $\mu = 3$ (use la matriz A 3I). Verifique que la columna 4 de C no es un vector característico de A con valor característico $\mu = 3$ pero que (A 3I) veces la columna 4 es un vector característico; es decir, verifique que $(A 3I)^2$ (columna 4) = 0. La columna 4 de C se denomina vector característico generalizado para A con valor característico $\mu = 3$.
- iii) Repita para otra matriz invertible C de 4×4 (use la misma J).
- iv) (*Lápiz y papel*) Explique por qué se puede decir que $\lambda=2$ es un valor característico de A con multiplicidad algebraica 2 y multiplicidad geométrica 2 y que $\mu=3$ es un valor característico de A con multiplicidad algebraica 2 y multiplicidad geométrica 1.