Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering	V	
Subject Code & Name	ICS1512 & Machine Learning Algorithms Laboratory		
Academic year 2025-2026 (Odd)		Batch:2023-2028	Due date:

Experiment 3: Email Spam or Ham Classification using Naïve Bayes, KNN, and SVM

1. Aim

To classify emails as spam or ham using Naïve Bayes, K-Nearest Neighbors, and Support Vector Machine, and evaluate their performance with accuracy, precision, recall, F1-score, and cross-validation.

2. Libraries Used

- NumPy: For numerical operations and array handling.
 - np.mean(), np.std(), np.array()
- Pandas: For dataset loading, cleaning, and preprocessing.
 - pd.read_csv(), df.info(), df.describe(), df.isnull()
- Matplotlib & Seaborn: For visualization of class distribution, feature trends, and confusion matrices.
 - plt.plot(), plt.bar(), sns.heatmap()
- scikit-learn (sklearn): For implementing models and evaluation metrics.
 - naive_bayes.GaussianNB, naive_bayes.MultinomialNB, naive_bayes.BernoulliNB
 - neighbors.KNeighborsClassifier with kd_tree, ball_tree
 - svm.SVC with kernels (linear, polynomial, rbf, sigmoid)

 - accuracy_score(), precision_score(), recall_score(), f1_score()

2. Libraries Used

- NumPy: For numerical operations and array handling.
 - np.mean(), np.std(), np.array()
- Pandas: For dataset loading, cleaning, and preprocessing.
 - pd.read_csv(), df.info(), df.describe(), df.isnull()

- Matplotlib & Seaborn: For visualization of class distribution, feature trends, and confusion matrices.
 - plt.plot(), plt.bar(), sns.heatmap()
- scikit-learn (sklearn): For implementing models and evaluation metrics.
 - naive_bayes.GaussianNB, naive_bayes.MultinomialNB, naive_bayes.BernoulliNB
 - neighbors.KNeighborsClassifier with kd_tree, ball_tree
 - svm. SVC with kernels (linear, polynomial, rbf, sigmoid)

 - accuracy_score(), precision_score(), recall_score(), f1_score()

3. Python Implementation

```
[ ]: from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

1. Import Datasets

```
[]: import pandas as pd
     import numpy as np
     # --- Step 1: Load the Dataset ---
     file_path = '/content/drive/MyDrive/spambase/spambase_csv.csv' # Replace with your_
      →file path
     df = pd.read_csv(file_path)
     # --- Step 2: Initial Dataset Summary ---
     print(" Dataset Shape:", df.shape)
     print("\n First 5 Rows:\n", df.head())
     print("\n Summary Statistics:\n", df.describe(include='all'))
     print("\n Column Info:")
     df.info()
     # --- Step 3: Missing Value Analysis ---
     missing_counts = df.isnull().sum()
     print("\n Missing Values per Column:\n", missing_counts[missing_counts > 0])
     # --- Step 4: Imputation (Handling Missing Values) ---
     for col in df.columns:
         if df[col].isnull().sum() > 0:
             if df[col].dtype == 'object':
                 # Fill categorical columns with mode
```

```
mode_value = df[col].mode()[0]
             df[col].fillna(mode_value, inplace=True)
             print(f"Filled missing values in '{col}' with mode: {mode_value}")
        else:
             # Fill numeric columns with median
             median_value = df[col].median()
             df[col].fillna(median_value, inplace=True)
             print(f"Filled missing values in '{col}' with median: {median_value}")
# --- Step 5: Final Check ---
print("\n Missing Values After Imputation:\n", df.isnull().sum().sum())
# (Optional) Save cleaned dataset
# df.to_csv('/content/drive/MyDrive/cleaned_dataset.csv', index=False)
Dataset Shape: (4601, 58)
First 5 Rows:
    word_freq_make word_freq_address word_freq_all word_freq_3d \
0
             0.00
                                 0.64
                                                0.64
                                                                0.0
             0.21
                                 0.28
                                                0.50
                                                                0.0
1
2
             0.06
                                 0.00
                                                0.71
                                                                0.0
3
             0.00
                                 0.00
                                                0.00
                                                               0.0
4
             0.00
                                 0.00
                                                0.00
                                                               0.0
   word_freq_our word_freq_over word_freq_remove word_freq_internet \
0
            0.32
                            0.00
                                               0.00
                                                                    0.00
1
            0.14
                            0.28
                                               0.21
                                                                    0.07
2
            1.23
                            0.19
                                               0.19
                                                                    0.12
3
                            0.00
                                               0.31
                                                                    0.63
            0.63
4
                            0.00
                                               0.31
            0.63
                                                                    0.63
   word_freq_order
                    word_freq_mail . . .
                                           char_freq_%3B char_freq_%28 \
0
              0.00
                              0.00 . . .
                                                     0.00
                                                                   0.000
              0.00
                              0.94 ...
                                                     0.00
                                                                   0.132
1
2
              0.64
                              0.25 ...
                                                     0.01
                                                                   0.143
3
              0.31
                              0.63
                                                     0.00
                                                                   0.137
                                    . . .
4
              0.31
                                                     0.00
                              0.63
                                                                   0.135
   char_freq_%5B char_freq_%21 char_freq_%24 char_freq_%23 \
0
             0.0
                          0.778
                                          0.000
                                                         0.000
1
             0.0
                          0.372
                                          0.180
                                                         0.048
2
             0.0
                          0.276
                                          0.184
                                                         0.010
3
             0.0
                          0.137
                                          0.000
                                                         0.000
4
             0.0
                          0.135
                                          0.000
                                                         0.000
   capital_run_length_average capital_run_length_longest \
0
                        3.756
                                                        61
```

```
1
                          5.114
                                                          101
2
                          9.821
                                                          485
3
                          3.537
                                                           40
4
                          3.537
                                                           40
   capital_run_length_total
                               class
0
                          278
1
                         1028
                                   1
2
                        2259
                                   1
3
                          191
                                   1
4
                          191
                                   1
[5 rows x 58 columns]
 Summary Statistics:
        word_freq_make
                         word_freq_address
                                              word_freq_all
                                                              word_freq_3d \
count
          4601.000000
                               4601.000000
                                               4601.000000
                                                              4601.000000
              0.104553
                                  0.213015
                                                  0.280656
                                                                 0.065425
mean
                                  1.290575
                                                  0.504143
              0.305358
                                                                 1.395151
std
              0.000000
                                  0.000000
                                                  0.000000
                                                                 0.000000
min
25%
              0.000000
                                  0.000000
                                                  0.000000
                                                                 0.000000
50%
              0.000000
                                  0.000000
                                                  0.000000
                                                                 0.000000
75%
              0.000000
                                  0.000000
                                                  0.420000
                                                                 0.000000
              4.540000
                                 14.280000
                                                  5.100000
                                                                 42.810000
max
       word_freq_our
                       word_freq_over
                                         word_freq_remove
                                                            word_freq_internet
         4601.000000
                           4601.000000
                                              4601.000000
                                                                    4601.000000
count
mean
             0.312223
                              0.095901
                                                 0.114208
                                                                       0.105295
             0.672513
std
                              0.273824
                                                 0.391441
                                                                       0.401071
min
             0.000000
                              0.000000
                                                 0.000000
                                                                       0.000000
25%
                              0.000000
                                                 0.000000
                                                                       0.000000
             0.000000
50%
             0.000000
                              0.000000
                                                 0.000000
                                                                       0.000000
75%
             0.380000
                              0.000000
                                                 0.000000
                                                                       0.000000
            10.000000
                              5.880000
                                                 7.270000
                                                                      11.110000
max
       word_freq_order
                          word_freq_mail
                                                  char_freq_%3B
                                                                  char_freq_%28
            4601.000000
                             4601.000000
                                                    4601.000000
                                                                    4601.000000
count
               0.090067
                                0.239413
                                                       0.038575
                                                                        0.139030
mean
               0.278616
                                0.644755
                                                                        0.270355
std
                                                       0.243471
               0.000000
                                0.000000
                                                       0.000000
                                                                        0.000000
min
25%
               0.000000
                                0.000000
                                                       0.000000
                                                                        0.000000
               0.000000
                                0.000000
                                                                        0.065000
50%
                                                       0.000000
75%
               0.000000
                                0.160000
                                                       0.000000
                                                                        0.188000
               5.260000
max
                               18.180000
                                                       4.385000
                                                                        9.752000
       char_freq_%5B
                       char_freq_%21
                                        char_freq_%24
                                                        char_freq_%23
         4601.000000
                          4601.000000
                                          4601.000000
                                                          4601.000000
count
```

0.075811

0.044238

0.269071

0.016976

mean

std	0.109394	0.815672	0.245882	0.429342
min	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.315000	0.052000	0.000000
max	4.081000	32.478000	6.003000	19.829000

	capital_run_length_average	capital_run_length_longest	\
count	4601.000000	4601.000000	
mean	5.191515	52.172789	
std	31.729449	194.891310	
min	1.000000	1.000000	
25%	1.588000	6.000000	
50%	2.276000	15.000000	
75%	3.706000	43.000000	
max	1102.500000	9989.000000	

	<pre>capital_run_length_total</pre>	class
count	4601.000000	4601.000000
mean	283.289285	0.394045
std	606.347851	0.488698
min	1.000000	0.000000
25%	35.000000	0.000000
50%	95.000000	0.000000
75%	266.000000	1.000000
max	15841.000000	1.000000

[8 rows x 58 columns]

Column Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4601 entries, 0 to 4600
Data columns (total 58 columns):

#	Column	Non-Null Count	Dtype
0	word_freq_make	4601 non-null	float64
1	word_freq_address	4601 non-null	float64
2	word_freq_all	4601 non-null	float64
3	word_freq_3d	4601 non-null	float64
4	word_freq_our	4601 non-null	float64
5	word_freq_over	4601 non-null	float64
6	word_freq_remove	4601 non-null	float64
7	word_freq_internet	4601 non-null	float64
8	word_freq_order	4601 non-null	float64
9	word_freq_mail	4601 non-null	float64
10	word_freq_receive	4601 non-null	float64
11	word_freq_will	4601 non-null	float64
12	word_freq_people	4601 non-null	float64

13	word_freq_report	4601	non-null	float64
14	word_freq_addresses	4601	non-null	float64
15	word_freq_free	4601	non-null	float64
16	word_freq_business	4601	non-null	float64
17	word_freq_email	4601	non-null	float64
18	word_freq_you	4601	non-null	float64
19	word_freq_credit	4601	non-null	float64
20	word_freq_your	4601	non-null	float64
21	word_freq_font	4601	non-null	float64
22	word_freq_000	4601	non-null	float64
23	word_freq_money	4601	non-null	float64
24	word_freq_hp	4601	non-null	float64
25	word_freq_hpl	4601	non-null	float64
26	word_freq_george	4601	non-null	float64
27	word_freq_650	4601	non-null	float64
28	word_freq_lab	4601	non-null	float64
29	word_freq_labs	4601	non-null	float64
30	word_freq_telnet	4601	non-null	float64
31	word_freq_857	4601	non-null	float64
32	word_freq_data	4601	non-null	float64
33	word_freq_415	4601	non-null	float64
34	word_freq_85	4601	non-null	float64
35	word_freq_technology	4601	non-null	float64
36	word_freq_1999	4601	non-null	float64
37	word_freq_parts	4601	non-null	float64
38	word_freq_pm	4601	non-null	float64
39	word_freq_direct	4601	non-null	float64
40	word_freq_cs	4601	non-null	float64
41	word_freq_meeting	4601	non-null	float64
42	word_freq_original	4601	non-null	float64
43	word_freq_project	4601	non-null	float64
44	word_freq_re	4601	non-null	float64
45	word_freq_edu	4601	non-null	float64
46	word_freq_table	4601	non-null	float64
47	word_freq_conference	4601	non-null	float64
48	char_freq_%3B	4601	non-null	float64
49	char_freq_%28	4601	non-null	float64
50	char_freq_%5B	4601	non-null	float64
51	char_freq_%21	4601	non-null	float64
52	char_freq_%24	4601	non-null	float64
53	char_freq_%23	4601	non-null	float64
54	capital_run_length_average	4601	non-null	float64
55	capital_run_length_longest	4601	non-null	int64
56	capital_run_length_total	4601	non-null	int64
57	class	4601	non-null	int64
d+vn	ac. flast64(55) int64(3)			

dtypes: float64(55), int64(3)

memory usage: 2.0 MB

```
Missing Values per Column:
Series([], dtype: int64)

Missing Values After Imputation:
```

2. Handling Missing Values - Impute numerival columns with mean and categorical columns with mode

```
[]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.preprocessing import OneHotEncoder
     from sklearn.compose import ColumnTransformer
     from sklearn.pipeline import Pipeline
     # --- Step 1: Load Dataset ---
     file_path = '/content/drive/MyDrive/spambase/spambase_csv.csv'
     df = pd.read_csv(file_path)
     # --- Step 2: Impute Missing Values ---
     for col in df.columns:
         if df[col].isnull().sum() > 0:
             if df[col].dtype == 'object':
                 df[col].fillna(df[col].mode()[0], inplace=True)
             else:
                 df[col].fillna(df[col].median(), inplace=True)
     # --- Step 3: Identify Categorical Columns ---
     categorical_cols = df.select_dtypes(include='object').columns.tolist()
     # --- Step 4: Apply One-Hot Encoding using ColumnTransformer ---
     if categorical_cols:
         print("Encoding categorical columns:", categorical_cols)
         column_transformer = ColumnTransformer(
             transformers=[
                 ('cat', OneHotEncoder(drop='first', sparse_output=False),_
      →categorical_cols)
             ],
             remainder='passthrough' # Keep all other columns
         )
         transformed = column_transformer.fit_transform(df)
         feature_names = column_transformer.get_feature_names_out()
```

```
df = pd.DataFrame(transformed, columns=feature_names)
else:
    print("No categorical columns found.")
    df = df.copy()
# --- Step 5: Boxplot Analysis (3 per row) ---
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
num_plots = len(numeric_cols)
cols_per_row = 3
rows = (num_plots + cols_per_row - 1) // cols_per_row
plt.figure(figsize=(6 * cols_per_row, 5 * rows))
for i, col in enumerate(numeric_cols):
    plt.subplot(rows, cols_per_row, i + 1)
    sns.boxplot(x=df[col], color='skyblue')
    plt.title(f'Boxplot of {col}')
    plt.tight_layout()
plt.suptitle("Boxplot Analysis of Numerical Columns", fontsize=16, y=1.02)
plt.show()
```

No categorical columns found.

.....

3. Detecting Outliers and Capping them using IQR

```
[]: # Create a copy to apply capping
     capped_df = df.copy()
     print("\n Capping outliers using IQR method:")
     for col in numeric_cols:
         Q1 = df[col].quantile(0.25)
         Q3 = df[col].quantile(0.75)
         IQR = Q3 - Q1
         lower\_bound = Q1 - 1.5 * IQR
         upper_bound = Q3 + 1.5 * IQR
         outliers = df[(df[col] < lower_bound) | (df[col] > upper_bound)]
         if not outliers.empty:
             print(f"{col}: {len(outliers)} outliers capped")
             capped_df[col] = np.where(capped_df[col] < lower_bound, lower_bound,</pre>
                                 np.where(capped_df[col] > upper_bound, upper_bound,_
      →capped_df[col]))
         else:
             print(f"{col}: No outliers detected")
     import math
     df = capped_df.copy()
     def plot_boxplots_grid(df, columns, per_row=2):
         n = len(columns)
         rows = (n + per_row - 1) // per_row
         fig, axes = plt.subplots(rows, per_row, figsize=(6 * per_row, 4 * rows))
         # Flatten axes array in case of multiple rows
         axes = axes.flatten()
         for idx, col in enumerate(columns):
             data = df[col].dropna()
             Q1 = np.percentile(data, 25)
             Q3 = np.percentile(data, 75)
```

```
IQR = Q3 - Q1
        spread = data.max() - data.min()
        # Avoid completely flat plots by scaling y-limits
        padding = spread * 0.1 if spread > 0 else 1e-3
        y_min = data.min() - padding
        y_max = data.max() + padding
        ax = axes[idx]
        sns.boxplot(y=data, ax=ax)
        ax.set_ylim([y_min, y_max])
        ax.set_title(f'{col} (IQR: {IQR:.3f})')
        ax.grid(True)
    # Hide any unused subplots
    for i in range(n, len(axes)):
        axes[i].axis('off')
    plt.tight_layout()
    plt.show()
# Example usage:
numerical_columns = df.select_dtypes(include=['float64', 'int64']).columns
plot_boxplots_grid(df, numerical_columns)
```

Capping outliers using IOR method: word_freq_make: 1053 outliers capped word_freq_address: 898 outliers capped word_freq_all: 338 outliers capped word_freq_3d: 47 outliers capped word_freq_our: 501 outliers capped word_freq_over: 999 outliers capped word_freq_remove: 807 outliers capped word_freq_internet: 824 outliers capped word_freq_order: 773 outliers capped word_freq_mail: 852 outliers capped word_freq_receive: 709 outliers capped word_freq_will: 270 outliers capped word_freq_people: 852 outliers capped word_freq_report: 357 outliers capped word_freq_addresses: 336 outliers capped word_freq_free: 957 outliers capped word_freq_business: 963 outliers capped word_freq_email: 1038 outliers capped word_freq_you: 75 outliers capped word_freq_credit: 424 outliers capped word_freq_your: 229 outliers capped

word_freq_font: 117 outliers capped word_freq_000: 679 outliers capped word_freq_money: 735 outliers capped word_freq_hp: 1090 outliers capped word_freq_hpl: 811 outliers capped word_freq_george: 780 outliers capped word_freq_650: 463 outliers capped word_freq_lab: 372 outliers capped word_freq_labs: 469 outliers capped word_freq_telnet: 293 outliers capped word_freq_857: 205 outliers capped word_freq_data: 405 outliers capped word_freq_415: 215 outliers capped word_freq_85: 485 outliers capped word_freq_technology: 599 outliers capped word_freq_1999: 829 outliers capped word_freq_parts: 83 outliers capped word_freq_pm: 384 outliers capped word_freq_direct: 453 outliers capped word_freq_cs: 148 outliers capped word_freq_meeting: 341 outliers capped word_freq_original: 375 outliers capped word_freq_project: 327 outliers capped word_freq_re: 1001 outliers capped word_freq_edu: 517 outliers capped word_freq_table: 63 outliers capped word_freq_conference: 203 outliers capped char_freq_%3B: 790 outliers capped char_freq_%28: 296 outliers capped char_freq_%5B: 529 outliers capped char_freq_%21: 411 outliers capped char_freq_%24: 811 outliers capped char_freq_%23: 750 outliers capped capital_run_length_average: 363 outliers capped capital_run_length_longest: 463 outliers capped capital_run_length_total: 550 outliers capped class: No outliers detected

4. Normalisation

```
[ ]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from scipy.stats import zscore, normaltest
     from sklearn.preprocessing import MinMaxScaler
     # --- Step 1: Get Numerical Columns ---
     numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
     # --- Step 2: Create New DataFrame for Normalized Data ---
     normalized_df = df.copy()
     print("\n Normalizing Numerical Columns Based on Distribution and Outliers:\n")
     # --- Step 3: Normalize Each Column Based on Condition ---
     for col in numeric_cols:
         data = df[col]
         # Detect outliers using Z-score
         z_scores = zscore(data)
         outliers = np.where(np.abs(z_scores) > 3)[0]
         # Test for normal distribution
         stat, p_value = normaltest(data)
         if len(outliers) > 0 or p_value > 0.05:
             # Apply Z-score normalization
             normalized_df[col] = zscore(data)
             print(f"{col}: Outliers or normal distribution → Z-score normalization_
      →applied")
         else:
             # Apply Min-Max normalization
             scaler = MinMaxScaler()
             normalized_df[col] = scaler.fit_transform(data.values.reshape(-1, 1))
             print(f"{col}: No outliers and not Gaussian → Min-Max normalization applied")
     # --- Plot Histograms After Normalization (3 per row) ---
     cols_per_row = 3
     num_plots = len(numeric_cols)
```

```
rows = (num_plots + cols_per_row - 1) // cols_per_row

plt.figure(figsize=(6 * cols_per_row, 4.5 * rows))
for i, col in enumerate(numeric_cols):
    plt.subplot(rows, cols_per_row, i + 1)
    sns.histplot(normalized_df[col], bins=30, kde=True, color='skyblue')
    plt.title(f'Histogram: {col}')
    plt.xlabel(col)
    plt.ylabel('Frequency')
    plt.tight_layout()

plt.suptitle("Histograms of Normalized Numerical Columns", fontsize=16, y=1.02)
plt.show()
```

Normalizing Numerical Columns Based on Distribution and Outliers:

word_freq_make: No outliers and not Gaussian → Min-Max normalization applied word_freq_address: No outliers and not Gaussian → Min-Max normalization applied word_freq_all: No outliers and not Gaussian → Min-Max normalization applied word_freq_3d: No outliers and not Gaussian → Min-Max normalization applied word_freq_our: No outliers and not Gaussian → Min-Max normalization applied word_freq_over: No outliers and not Gaussian → Min-Max normalization applied word_freq_remove: No outliers and not Gaussian → Min-Max normalization applied word_freq_internet: No outliers and not Gaussian → Min-Max normalization applied word_freq_order: No outliers and not Gaussian → Min-Max normalization applied word_freq_mail: No outliers and not Gaussian → Min-Max normalization applied word_freq_receive: No outliers and not Gaussian → Min-Max normalization applied word_freq_will: No outliers and not Gaussian → Min-Max normalization applied word_freq_people: No outliers and not Gaussian → Min-Max normalization applied word_freq_report: No outliers and not Gaussian → Min-Max normalization applied word_freq_addresses: No outliers and not Gaussian → Min-Max normalization applied word_freq_free: No outliers and not Gaussian → Min-Max normalization applied word_freq_business: No outliers and not Gaussian → Min-Max normalization applied word_freq_email: No outliers and not Gaussian → Min-Max normalization applied word_freq_you: No outliers and not Gaussian → Min-Max normalization applied word_freq_credit: No outliers and not Gaussian → Min-Max normalization applied word_freq_your: No outliers and not Gaussian → Min-Max normalization applied word_freq_font: No outliers and not Gaussian → Min-Max normalization applied word_freg_000: No outliers and not Gaussian → Min-Max normalization applied word_freq_money: No outliers and not Gaussian → Min-Max normalization applied word_freq_hp: No outliers and not Gaussian → Min-Max normalization applied word_freq_hpl: No outliers and not Gaussian → Min-Max normalization applied word_freq_george: No outliers and not Gaussian → Min-Max normalization applied word_freq_650: No outliers and not Gaussian → Min-Max normalization applied word_freq_lab: No outliers and not Gaussian → Min-Max normalization applied word_freq_labs: No outliers and not Gaussian → Min-Max normalization applied

word_freq_telnet: No outliers and not Gaussian → Min-Max normalization applied word_freq_857: No outliers and not Gaussian → Min-Max normalization applied word_freq_data: No outliers and not Gaussian → Min-Max normalization applied word_freq_415: No outliers and not Gaussian → Min-Max normalization applied word_freq_85: No outliers and not Gaussian → Min-Max normalization applied word_freq_technology: No outliers and not Gaussian → Min-Max normalization applied

word_freq_1999: No outliers and not Gaussian → Min-Max normalization applied word_freq_parts: No outliers and not Gaussian → Min-Max normalization applied word_freq_pm: No outliers and not Gaussian → Min-Max normalization applied word_freq_direct: No outliers and not Gaussian → Min-Max normalization applied word_freq_meeting: No outliers and not Gaussian → Min-Max normalization applied word_freq_original: No outliers and not Gaussian → Min-Max normalization applied word_freq_project: No outliers and not Gaussian → Min-Max normalization applied word_freq_re: No outliers and not Gaussian → Min-Max normalization applied word_freq_edu: No outliers and not Gaussian → Min-Max normalization applied word_freq_table: No outliers and not Gaussian → Min-Max normalization applied word_freq_conference: No outliers and not Gaussian → Min-Max normalization applied word_freq_conference: No outliers and not Gaussian → Min-Max normalization applied

char_freq_%3B: No outliers and not Gaussian → Min-Max normalization applied char_freq_%28: No outliers and not Gaussian → Min-Max normalization applied char_freq_%5B: No outliers and not Gaussian → Min-Max normalization applied char_freq_%21: No outliers and not Gaussian → Min-Max normalization applied char_freq_%24: No outliers and not Gaussian → Min-Max normalization applied char_freq_%23: No outliers and not Gaussian → Min-Max normalization applied capital_run_length_average: No outliers and not Gaussian → Min-Max normalization applied

capital_run_length_longest: No outliers and not Gaussian \rightarrow Min-Max normalization applied

capital_run_length_total: No outliers and not Gaussian → Min-Max normalization applied

class: No outliers and not Gaussian → Min-Max normalization applied

5. Train, Test Split and Model building

```
[ ]: import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.model_selection import train_test_split
     from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB
     from sklearn.metrics import (
         accuracy_score, recall_score, f1_score, confusion_matrix,
         classification_report, matthews_corrcoef, roc_auc_score,
         roc_curve
     )
     # --- Step 1: Split dataset ---
     X = df.drop("class", axis=1) # features
     y = df["class"] # target
     X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.4,_
     →stratify=y, random_state=42)
     X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5,_
      →stratify=y_temp, random_state=42)
     # --- Step 2: Train Models ---
     models = {
         "MultinomialNB": MultinomialNB(),
         "BernoulliNB": BernoulliNB(),
         "GaussianNB": GaussianNB()
     }
     preds = \{\}
     probas = {}
     for name, model in models.items():
         model.fit(X_train, y_train)
         y_pred = model.predict(X_test)
         y_proba = model.predict_proba(X_test)[:, 1]
         preds[name] = y_pred
         probas[name] = y_proba
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.metrics import roc_curve, confusion_matrix
     # --- ROC Curve Plots in 1 row ---
```

```
fig, axs = plt.subplots(1, 3, figsize=(18, 5))
for i, name in enumerate(models):
    fpr, tpr, _ = roc_curve(y_test, probas[name])
    axs[i].plot(fpr, tpr, label=f'{name} (AUC = {roc_auc_score(y_test,__
 →probas[name]):.2f})')
    axs[i].plot([0, 1], [0, 1], 'k--')
    axs[i].set_title(f"ROC Curve - {name}")
    axs[i].set_xlabel("False Positive Rate")
    axs[i].set_ylabel("True Positive Rate")
    axs[i].legend()
    axs[i].grid()
plt.tight_layout()
plt.show()
# --- Residual Plots in 1 row ---
fig, axs = plt.subplots(1, 3, figsize=(18, 5))
for i, name in enumerate(models):
    residuals = y_test - preds[name]
    axs[i].scatter(range(len(residuals)), residuals, alpha=0.6)
    axs[i].axhline(0, color='red', linestyle='--')
    axs[i].set_title(f"Residual Plot - {name}")
    axs[i].set_xlabel("Sample Index")
    axs[i].set_ylabel("Residual (True - Pred)")
    axs[i].grid()
plt.tight_layout()
plt.show()
# --- Confusion Matrix Heatmaps in 1 row ---
fig, axs = plt.subplots(1, 3, figsize=(18, 5))
for i, (name, model) in enumerate(models.items()):
    cm = confusion_matrix(y_test, preds[name])
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False, ax=axs[i],
                xticklabels=model.classes_ if hasattr(model, "classes_") else None,
                yticklabels=model.classes_ if hasattr(model, "classes_") else None)
    axs[i].set_title(f"Confusion Matrix - {name}")
    axs[i].set_xlabel("Predicted")
    axs[i].set_ylabel("True")
plt.tight_layout()
plt.show()
```



```
[]: # --- Step 7: Coefficient Weights Plot (Naive Bayes only) ---
def plot_coefficients(model, model_name):
    if hasattr(model, 'coef_'):
        coef = model.coef_[0]
    else:
        coef = model.feature_log_prob_[1] # Class 1 (spam)
    plt.figure(figsize=(10, 4))
    plt.bar(range(len(coef)), coef)
    plt.title(f"{model_name} Feature Weights for Spam Class")
    plt.xlabel("Feature Index")
    plt.ylabel("Log Probability / Coeff")
    plt.tight_layout()
    plt.show()

plot_coefficients(models["MultinomialNB"], "MultinomialNB")
plot_coefficients(models["BernoulliNB"], "BernoulliNB")
```


Evaluation

```
f1 = f1_score(y_true, y_pred, average='weighted')
                      : {acc:.4f}")
    print(f" Accuracy
    print(f" Precision (Wgt) : {prec:.4f}")
    print(f" Recall (Wgt) : {rec:.4f}")
    print(f" F1 Score (Wgt) : {f1:.4f}")
   # Confusion matrix
    cm = confusion_matrix(y_true, y_pred)
    print("\n Confusion Matrix:")
    print(cm)
   # Classification report
    print("\n Classification Report:")
    print(classification_report(y_true, y_pred, zero_division=0))
    # ROC-AUC and Log Loss (only if probabilities are given)
    if y_proba is not None:
       try:
            # Handle both binary and multiclass cases
            if len(set(y_true)) == 2:
                auc_score = roc_auc_score(y_true, y_proba[:, 1])
            else:
               auc_score = roc_auc_score(y_true, y_proba, multi_class='ovr',_
 →average='weighted')
           11 = log_loss(y_true, y_proba)
            print(f"\n ROC-AUC Score : {auc_score:.4f}")
           print(f" Log Loss : {11:.4f}")
       except:
            print(" ROC-AUC/Log Loss not available for this output.")
    # Optional: Plot Confusion Matrix
    plt.figure(figsize=(6, 5))
   sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
    plt.title(f'{name} - Confusion Matrix')
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.tight_layout()
   plt.show()
# --- Step 8: Print evaluations ---
for name in models:
    evaluate_model(name, y_test, preds[name], probas[name])
```

```
Performance of MultinomialNB Model:
Accuracy : 0.7362
```

Precision (Wgt) : 0.7345 Recall (Wgt) : 0.7362 F1 Score (Wgt) : 0.7351

Confusion Matrix:

[[444 114] [129 234]]

Classification Report:

	precision	recall	f1-score	support
0	0.77	0.80	0.79	558
1	0.67	0.64	0.66	363
accuracy	,		0.74	921
macro avg	0.72	0.72	0.72	921
weighted avg	0.73	0.74	0.74	921

ROC-AUC/Log Loss not available for this output.

Performance of BernoulliNB Model:

Accuracy : 0.7970 Precision (Wgt) : 0.7999 Recall (Wgt) : 0.7970 F1 Score (Wgt) : 0.7979

Confusion Matrix:

[[453 105] [82 281]]

Classification Report:

	precision	recall	f1-score	support
0	0.85	0.81	0.83	558
1	0.73	0.77	0.75	363
accuracy			0.80	921
accuracy macro avg	0.79	0.79	0.79	921
weighted avg	0.80	0.80	0.80	921

ROC-AUC/Log Loss not available for this output.

Performance of GaussianNB Model:

Accuracy : 0.8686 Precision (Wgt) : 0.8729 Recall (Wgt) : 0.8686 F1 Score (Wgt) : 0.8695

Confusion Matrix:

[[480 78] [43 320]]

Classification Report:

support	f1-score	recall	precision	
558	0.89	0.86	0.92	0
363	0.84	0.88	0.80	1
921	0.87			accuracy
921	0.86	0.87	0.86	macro avg

weighted avg 0.87 0.87 0.87 921

ROC-AUC/Log Loss not available for this output.


```
[]: from sklearn.model_selection import cross_val_score
import numpy as np

# Define models
models = {
    "MultinomialNB": MultinomialNB(),
    "BernoulliNB": BernoulliNB(),
    "GaussianNB":GaussianNB()
}

# Perform 5-fold cross-validation
for name, model in models.items():
    print(f"\n=== 5-Fold Cross-Validation for {name} ===")
    scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
```

```
print("Accuracy scores for each fold:", scores)
print("Mean Accuracy:", np.mean(scores))
print("Standard Deviation:", np.std(scores))
```

```
=== 5-Fold Cross-Validation for MultinomialNB ===
Accuracy scores for each fold: [0.70792617 0.71521739 0.71630435 0.77282609 0.57826087]
Mean Accuracy: 0.6981069725723458
Standard Deviation: 0.06429053108970888

=== 5-Fold Cross-Validation for BernoulliNB ===
Accuracy scores for each fold: [0.81976113 0.82391304 0.83369565 0.85108696 0.74456522]
Mean Accuracy: 0.8146043997545203
Standard Deviation: 0.036644733973513026

=== 5-Fold Cross-Validation for GaussianNB ===
Accuracy scores for each fold: [0.87513572 0.88152174 0.88804348 0.90108696 0.7673913 ]
Mean Accuracy: 0.8626358400604259
Standard Deviation: 0.04839107821153015
```

KNN

```
[ ]: import time
     # 8. Evaluate specific k values with metrics + training time
     k_{values} = [1, 3, 5, 7]
     results = {}
     for k in k_values:
         print(f"\n[INFO] Evaluating KNN with k={k}")
         knn_model = KNeighborsClassifier(
             n_neighbors=k,
             weights=best_params.get('weights', 'uniform'),
             p=best_params.get('p', 2)
         )
         # Measure training time
         start_time = time.time()
         knn_model.fit(X_train, y_train)
         train_time = time.time() - start_time
         # Predictions
```

```
y_pred_k = knn_model.predict(X_test)
    # Metrics
    acc = accuracy_score(y_test, y_pred_k)
    prec = precision_score(y_test, y_pred_k, average='macro')
    rec = recall_score(y_test, y_pred_k, average='macro')
    f1 = f1_score(y_test, y_pred_k, average='macro')
    # Print metrics
    print(f"Accuracy: {acc:.4f}")
    print(f"Precision (macro): {prec:.4f}")
    print(f"Recall (macro): {rec:.4f}")
    print(f"F1 Score (macro): {f1:.4f}")
    print(f"Training Time: {train_time:.4f} seconds")
    # Save results
    results[k] = {
        "Accuracy": acc,
        "Precision_macro": prec,
        "Recall_macro": rec,
        "F1_macro": f1,
        "Train_Time_sec": train_time
    }
# 9. Summary Table
results_df = pd.DataFrame(results).T
print("\nKNN (specific k values) Performance Summary:\n", results_df)
```

```
[INFO] Evaluating KNN with k=1
Accuracy: 0.7926
Precision (macro): 0.7840
Recall (macro): 0.7783
F1 Score (macro): 0.7808
Training Time: 0.0097 seconds

[INFO] Evaluating KNN with k=3
Accuracy: 0.7872
Precision (macro): 0.7791
Recall (macro): 0.7705
F1 Score (macro): 0.7739
Training Time: 0.0039 seconds

[INFO] Evaluating KNN with k=5
Accuracy: 0.7861
Precision (macro): 0.7768
```

```
Recall (macro): 0.7725
    F1 Score (macro): 0.7744
    Training Time: 0.0044 seconds
    [INFO] Evaluating KNN with k=7
    Accuracy: 0.7807
    Precision (macro): 0.7722
    Recall (macro): 0.7632
    F1 Score (macro): 0.7668
    Training Time: 0.0036 seconds
    KNN (specific k values) Performance Summary:
       Accuracy Precision_macro Recall_macro F1_macro Train_Time_sec
    1 0.792617
                      0.784012
                                    0.778311 0.780781
                                                            0.009732
                                    0.770461 0.773935
    3 0.787188
                      0.779064
                                                            0.003870
    5 0.786102
                      0.776757
                                    0.772453 0.774372
                                                            0.004364
    7 0.780673
                      0.772231
                                   0.763159 0.766752
                                                            0.003601
[ ]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split, RandomizedSearchCV,_
     from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import (
        accuracy_score, precision_score, recall_score, f1_score, confusion_matrix,
        classification_report, matthews_corrcoef, roc_auc_score, roc_curve
    from scipy.stats import randint
    # -----
    # 1. Prepare data
    # -----
    X = df.drop("class", axis=1)
    y = df["class"]
    # Train/validation/test split
    X_train, X_temp, y_train, y_temp = train_test_split(
        X, y, test_size=0.4, stratify=y, random_state=42
    X_val, X_test, y_val, y_test = train_test_split(
        X_temp, y_temp, test_size=0.5, stratify=y_temp, random_state=42
    )
```

```
# 2. RandomizedSearchCV for best k
param_dist = {
    'n_neighbors': randint(1, 30),
    'weights': ['uniform', 'distance'],
   'p': [1, 2] # Manhattan (1) or Euclidean (2)
}
knn = KNeighborsClassifier()
random_search = RandomizedSearchCV(
    knn, param_distributions=param_dist, n_iter=20,
   cv=5, scoring='accuracy', random_state=42, n_jobs=-1
random_search.fit(X_train, y_train)
best_params = random_search.best_params_
print("Best Parameters from Random Search:", best_params)
# 3. Train final KNN model with best params
best_knn = KNeighborsClassifier(**best_params)
best_knn.fit(X_train, y_train)
# Predictions
y_pred = best_knn.predict(X_test)
y_proba = best_knn.predict_proba(X_test)[:, 1] if len(np.unique(y)) == 2 else None
# 4. Evaluation Metrics
print("\nClassification Report:\n", classification_report(y_test, y_pred))
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Precision (macro):", precision_score(y_test, y_pred, average='macro'))
print("Recall (macro):", recall_score(y_test, y_pred, average='macro'))
print("F1 Score (macro):", f1_score(y_test, y_pred, average='macro'))
print("Matthews Corrcoef:", matthews_corrcoef(y_test, y_pred))
if y_proba is not None:
    print("ROC AUC:", roc_auc_score(y_test, y_proba))
# -----
# 5. Confusion Matrix Heatmap
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 5))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
```

```
xticklabels=best_knn.classes_,
           yticklabels=best_knn.classes_)
plt.xlabel("Predicted")
plt.ylabel("True")
plt.title("Confusion Matrix - KNN")
plt.show()
# 6. ROC Curve (Binary Only)
# -----
if y_proba is not None:
   fpr, tpr, _ = roc_curve(y_test, y_proba)
   plt.figure(figsize=(6, 5))
   plt.plot(fpr, tpr, label=f"KNN (AUC = {roc_auc_score(y_test, y_proba):.2f})")
   plt.plot([0, 1], [0, 1], 'k--')
   plt.xlabel("False Positive Rate")
   plt.ylabel("True Positive Rate")
   plt.title("ROC Curve - KNN")
   plt.legend()
   plt.grid()
   plt.show()
# 7. Cross-Validation
# -----
cv_scores = cross_val_score(best_knn, X, y, cv=5, scoring='accuracy')
print("\nCross-Validation Accuracy Scores:", cv_scores)
print("Mean CV Accuracy:", np.mean(cv_scores))
```

Best Parameters from Random Search: {'n_neighbors': 11, 'p': 1, 'weights':
'distance'}

Classification Report:

	precision	recall	f1-score	support
0	0.85	0.90	0.88	558
1	0.83	0.76	0.80	363
accuracy			0.85	921
macro avg	0.84	0.83	0.84	921
weighted avg	0.85	0.85	0.84	921

Accuracy: 0.8458197611292074

Precision (macro): 0.8431896154436991 Recall (macro): 0.8308821351343345 F1 Score (macro): 0.8358478346002068 Matthews Corrcoef: 0.6739593836840387

ROC AUC: 0.9050746961304147

Cross-Validation Accuracy Scores: [0.7795874 0.81630435 0.8576087 0.85217391 0.7326087]

Mean CV Accuracy: 0.8076566114336968

```
weights=best_params.get("weights", "uniform"),
        p=best_params.get("p", 2),
        algorithm=algo
    )
    # Training time
    start_time = time.time()
    knn_model.fit(X_train, y_train)
    train_time = time.time() - start_time
    # Predictions
   y_pred_algo = knn_model.predict(X_test)
   # Metrics
   acc = accuracy_score(y_test, y_pred_algo)
    prec = precision_score(y_test, y_pred_algo, average="macro")
    rec = recall_score(y_test, y_pred_algo, average="macro")
    f1 = f1_score(y_test, y_pred_algo, average="macro")
    # Print
    print(f"Accuracy: {acc:.4f}")
    print(f"Precision (macro): {prec:.4f}")
    print(f"Recall (macro): {rec:.4f}")
    print(f"F1 Score (macro): {f1:.4f}")
    print(f"Training Time: {train_time:.4f} seconds")
    # Save results
    results[algo] = {
        "Accuracy": acc,
        "Precision_macro": prec,
        "Recall_macro": rec,
        "F1_macro": f1,
        "Train_Time_sec": train_time
    }
# Summary Table
results_df = pd.DataFrame(results).T
print("\nKNN Algorithm Comparison (KD-Tree vs Ball Tree):\n", results_df)
```

```
[INFO] Evaluating KNN with algorithm = kd_tree
Accuracy: 0.7861
Precision (macro): 0.7768
Recall (macro): 0.7725
F1 Score (macro): 0.7744
Training Time: 0.0355 seconds
```

```
[INFO] Evaluating KNN with algorithm = ball_tree
    Accuracy: 0.7861
    Precision (macro): 0.7768
    Recall (macro): 0.7725
    F1 Score (macro): 0.7744
    Training Time: 0.0269 seconds
    KNN Algorithm Comparison (KD-Tree vs Ball Tree):
                Accuracy Precision_macro Recall_macro F1_macro Train_Time_sec
                                             0.772453 0.774372
    kd_tree
               0.786102
                               0.776757
                                                                      0.035519
    ball_tree 0.786102
                                             0.772453 0.774372
                               0.776757
                                                                      0.026863
[ ]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.model_selection import train_test_split, RandomizedSearchCV,_
      →cross val score
     from sklearn.svm import SVC
     from sklearn.metrics import (
         accuracy_score, precision_score, recall_score, f1_score, confusion_matrix,
         classification_report, matthews_corrcoef, roc_auc_score, roc_curve
     from sklearn.preprocessing import StandardScaler
     from sklearn.pipeline import Pipeline
     from scipy.stats import uniform
     # 1. Prepare Data
     # -----
     X = df.drop("class", axis=1)
     y = df["class"]
     # Train/Validation/Test split
     X_train, X_temp, y_train, y_temp = train_test_split(
        X, y, test_size=0.4, stratify=y, random_state=42
     X_val, X_test, y_val, y_test = train_test_split(
        X_temp, y_temp, test_size=0.5, stratify=y_temp, random_state=42
     )
     # 2. RandomizedSearchCV for SVM (with scaling)
     svm_pipeline = Pipeline([
```

```
('scaler', StandardScaler()),
    ('svc', SVC()) # No probability=True here for speed
])
param_dist = {
    'svc__C': uniform(0.1, 5),
                                             # Regularization parameter
    'svc__kernel': ['linear', 'poly', 'rbf'], # Kept poly
    'svc__degree': [2, 3],
                                             # Reduced poly degrees
    'svc__gamma': ['scale', 'auto', 0.1, 1] # Kernel coefficient
}
random_search = RandomizedSearchCV(
   svm_pipeline, param_distributions=param_dist, n_iter=10, # fewer iterations
   cv=3, scoring='accuracy', random_state=42, n_jobs=-1 # fewer folds
)
print("[INFO] Starting RandomizedSearchCV...")
random_search.fit(X_train, y_train)
best_params = random_search.best_params_
print("[INFO] Best Parameters from Random Search:", best_params)
# 3. Train Final SVM Model with probability=True
# -----
final_svm_pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('svc', SVC(
       C=best_params['svc__C'],
       kernel=best_params['svc__kernel'],
       degree=best_params['svc__degree'],
       gamma=best_params['svc__gamma'],
       probability=True # Only here for ROC curve
   ))
1)
print("[INFO] Training final SVM model...")
final_svm_pipeline.fit(X_train, y_train)
# Predictions
y_pred = final_svm_pipeline.predict(X_test)
y_proba = final_svm_pipeline.predict_proba(X_test)[:, 1] if len(np.unique(y)) == 2_
 →else None
# 4. Evaluation Metrics
print("\nClassification Report:\n", classification_report(y_test, y_pred))
print("Accuracy:", accuracy_score(y_test, y_pred))
```

```
print("Precision (macro):", precision_score(y_test, y_pred, average='macro'))
print("Recall (macro):", recall_score(y_test, y_pred, average='macro'))
print("F1 Score (macro):", f1_score(y_test, y_pred, average='macro'))
print("Matthews Corrcoef:", matthews_corrcoef(y_test, y_pred))
if y_proba is not None:
    print("ROC AUC:", roc_auc_score(y_test, y_proba))
# 5. Confusion Matrix Heatmap
# -----
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 5))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
            xticklabels=final_svm_pipeline.named_steps['svc'].classes_,
            yticklabels=final_svm_pipeline.named_steps['svc'].classes_)
plt.xlabel("Predicted")
plt.ylabel("True")
plt.title("Confusion Matrix - SVM")
plt.show()
# 6. ROC Curve (Binary Only)
# -----
if y_proba is not None:
    fpr, tpr, _ = roc_curve(y_test, y_proba)
    plt.figure(figsize=(6, 5))
    plt.plot(fpr, tpr, label=f"SVM (AUC = {roc_auc_score(y_test, y_proba):.2f})")
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title("ROC Curve - SVM")
    plt.legend()
    plt.grid()
    plt.show()
# 7. Cross-Validation
# -----
print("[INFO] Performing cross-validation...")
cv_scores = cross_val_score(final_svm_pipeline, X, y, cv=5, scoring='accuracy')
print("\nCross-Validation Accuracy Scores:", cv_scores)
print("Mean CV Accuracy:", np.mean(cv_scores))
[INFO] Starting RandomizedSearchCV. . .
[INFO] Best Parameters from Random Search: {'svc__C':
np.float64(1.9727005942368125), 'svc__degree': 2, 'svc__gamma': 0.1,
'svc__kernel': 'rbf'}
```

[INFO] Training final SVM model...

Classification Report:

	precision	recall	f1-score	support
0	0.91	0.94	0.92	558
1	0.90	0.86	0.88	363
accuracy			0.91	921
macro avg	0.90	0.90	0.90	921
weighted avg	0.91	0.91	0.91	921

Accuracy: 0.9055374592833876

Precision (macro): 0.9042045740135712 Recall (macro): 0.8970126484789241 F1 Score (macro): 0.900252335064117 Matthews Corrcoef: 0.8011849435839974

ROC AUC: 0.9495295081805347

[INFO] Performing cross-validation. . .

Cross-Validation Accuracy Scores: [0.8946797 0.90108696 0.90869565 0.93043478 0.81195652]

Mean CV Accuracy: 0.889370721805221

```
# Different hyperparameter grids depending on kernel
param_grids = {
    'linear': {
        'svc__C': [0.1, 1, 10, 100]
    },
    'poly': {
        'svc__C': [0.1, 1, 10],
        'svc__degree': [2, 3, 4],
        'svc__gamma': ['scale', 'auto']
    },
    'rbf': {
        'svc__C': [0.1, 1, 10],
        'svc__gamma': ['scale', 'auto']
    },
    'sigmoid': {
        'svc__C': [0.1, 1, 10],
        'svc__gamma': ['scale', 'auto']
    }
}
# Loop over kernels
for kernel in kernels:
    print(f"\n[INFO] Evaluating kernel: {kernel}")
    # Pipeline
    pipeline = Pipeline([
        ('scaler', StandardScaler()),
        ('svc', SVC(kernel=kernel, probability=True))
    ])
    # GridSearchCV
    grid = GridSearchCV(
        pipeline,
        param_grid=param_grids[kernel],
        cv=5,
        scoring='accuracy',
        n_jobs=-1
    # Measure training time
   start_time = time.time()
    grid.fit(X_train, y_train)
    train_time = time.time() - start_time
```

```
# Predictions with best estimator
    best_model = grid.best_estimator_
   y_pred = best_model.predict(X_test)
    # Metrics
    acc = accuracy_score(y_test, y_pred)
    prec = precision_score(y_test, y_pred, average='macro')
    rec = recall_score(y_test, y_pred, average='macro')
    f1 = f1_score(y_test, y_pred, average='macro')
    print(f"Best Params: {grid.best_params_}")
    print(f"Accuracy: {acc:.4f}")
    print(f"Precision (macro): {prec:.4f}")
    print(f"Recall (macro): {rec:.4f}")
    print(f"F1 Score (macro): {f1:.4f}")
    print(f"Training Time: {train_time:.2f} seconds")
    # Save results
    results[kernel] = {
        "Best_Params": grid.best_params_,
        "Accuracy": acc,
        "Precision": prec,
        "Recall": rec,
        "F1_macro": f1,
        "Train_Time_sec": train_time
    }
# Summary Table
results_df = pd.DataFrame(results).T
print("\nKernel-wise Performance Summary:\n", results_df)
```

```
[INFO] Evaluating kernel: linear
Best Params: {'svc__C': 10}
Accuracy: 0.8936
Precision (macro): 0.8917
Recall (macro): 0.8843
F1 Score (macro): 0.8876
Training Time: 92.70 seconds

[INFO] Evaluating kernel: poly
Best Params: {'svc__C': 1, 'svc__degree': 3, 'svc__gamma': 'scale'}
Accuracy: 0.8914
Precision (macro): 0.8927
Recall (macro): 0.8786
F1 Score (macro): 0.8844
```

```
Training Time: 87.48 seconds
[INFO] Evaluating kernel: rbf
Best Params: {'svc__C': 1, 'svc__gamma': 'scale'}
Accuracy: 0.9023
Precision (macro): 0.9029
Recall (macro): 0.8914
F1 Score (macro): 0.8963
Training Time: 22.48 seconds
[INFO] Evaluating kernel: sigmoid
Best Params: {'svc__C': 1, 'svc__gamma': 'auto'}
Accuracy: 0.8893
Precision (macro): 0.8888
Recall (macro): 0.8778
F1 Score (macro): 0.8825
Training Time: 24.82 seconds
Kernel-wise Performance Summary:
                                               Best_Params Accuracy \
                                           {'svc__C': 10} 0.893594
linear
         {'svc__C': 1, 'svc__degree': 3, 'svc__gamma': . . . 0.891422
poly
                     {'svc__C': 1, 'svc__gamma': 'scale'}
rbf
                                                           0.90228
                      {'svc_C': 1, 'svc_gamma': 'auto'} 0.889251
sigmoid
                    Recall F1_macro Train_Time_sec
       Precision
         0.891682 0.884268 0.887581
                                          92.696532
linear
poly
         0.892708 0.878625
                            0.8844
                                          87.483815
rbf
         0.902865 0.891436
                                          22.484255
                            0.89631
```

Results Tables

sigmoid 0.888826 0.877796 0.882484

Metric	Gaussian NB	Multinomial NB	Bernoulli NB
Accuracy	0.8686	0.7362	0.7970
Precision	0.8729	0.7345	0.7999
Recall	0.8686	0.7362	0.7970
F1 Score	0.8695	0.7351	0.7979

24.823553

k	Accuracy	Precision	Recall	F1 Score
1	0.7926	0.7840	0.7783	0.7808
3	0.7872	0.7791	0.7705	0.7739
5	0.7861	0.7768	0.7725	0.7744
7	0.7807	0.7722	0.7632	0.7668

Metric	KDTree	BallTree
Accuracy	0.7861	0.7861
Precision	0.7768	0.7768
Recall	0.7725	0.7725
F1 Score	0.7744	0.7744
Training Time (s)	0.0355	0.0269

Kernel	Hyperparameters	Accuracy	F1 Score	Training Time (s)
Linear	C = 10	0.8936	0.8876	92.70
Polynomial	C = 1, degree = 3, gamma = scale	0.8914	0.8844	87.48
RBF	C = 1, $gamma = scale$	0.9023	0.8963	22.48
Sigmoid	$\mathrm{C}=1,\mathrm{gamma}=\mathrm{auto}$	0.8893	0.8825	24.82

Fold	Naïve Bayes Accuracy	KNN Accuracy	SVM Accuracy
Fold 1	0.7079	0.7796	0.8947
Fold 2	0.7152	0.8163	0.9011
Fold 3	0.7163	0.8576	0.9087
Fold 4	0.7728	0.8522	0.9304
Fold 5	0.5783	0.7326	0.8120
Average	0.6981	0.8077	0.8894

4. Observations

- Naïve Bayes: GaussianNB achieved the highest accuracy (86.8%) among NB variants, while MultinomialNB underperformed (73.6%). BernoulliNB gave moderate results (79.7%).
- KNN: Performance decreased slightly with increasing k. The best accuracy (79.3%) was observed at k = 1, but overall stability was seen around k = 3–5. KDTree and BallTree gave identical accuracies, with BallTree being faster.
- SVM: RBF kernel outperformed all others with accuracy 90.2% and F1 score 0.896. Linear and Polynomial kernels performed comparably (≈89%), while Sigmoid kernel was the weakest (88.9%). Cross-validation: SVM consistently achieved the best average accuracy (88.9%), followed by KNN (80.9%).
- Training time varied significantly: Linear/Polynomial kernels were computationally expensive (≈ 90 s), whereas RBF and Sigmoid were much faster ($\approx 20-25$ s).

5. Conclusion

From the experimental results, it can be concluded that:

- Naïve Bayes is lightweight but less accurate compared to KNN and SVM for spam classification.
- \bullet KNN showed decent performance but was sensitive to k and slower for larger datasets.
- SVM with RBF kernel provided the best trade-off between accuracy and computational efficiency, making it the most effective model for this task.

- Cross-validation confirmed that SVM consistently generalizes better across folds.
- Overall, SVM (RBF kernel) is recommended for robust spam vs ham classification in real-world scenarios.

6. Learning Outcomes

- 1. Understood the implementation of Naïve Bayes, KNN, and SVM for classification tasks.
- 2. Gained hands-on experience in evaluating models using accuracy, precision, recall, and F1-score.
- 3. Learned the impact of hyperparameters (k in KNN, kernels in SVM) on model performance.
- 4. Analyzed performance using K-Fold cross-validation for robust comparison.
- 5. Developed skills to interpret results through performance tables and confusion matrices.