6. prednáška ČÍSLICOVÉ POČÍTAČE

Jana Milanová

Fakulta riadenia a informatiky, Katedra technickej kybernetiky

SÉRIOVÝ PRENOS DÁT

- sériový prenos dát –prenos, kedy je šírka dátového toku 1 bit,
- moderný kvôli bezdrôtovému prenosu typický sériový prenos,
- hlavnou výhodou je technická nenáročnosť prenosovej cesty,
- môže byť použitý pre komunikáciu dvoch účastníkov (P2P Point to point) (napr. RS232), alebo pre komunikáciu väčšieho počtu účastníkov (RS485) CAN, ...),

Typy sériovej komunikácie Point-to-Point

- vysielač informácie Tx,
- □ prijímač informácie **Rx**,
- simplexná komunikacia prenos dát je možný iba jedným smerom,
- poloduplexná komunikacia
 dovoľuje obojsmerný prenos, avšak v jednom okamžiku môže byť komunikácia iba jednosmerná,
- duplexná komunikacia obojsmerná a dáta môžu byť prenášané súčasne obidvoma smermi,

Arbitráž prístupu na sériovú zbernicu

- pri prenose dát po sériovej zbernici na obr. každý modul pripojený na zbernicu je prijímač a zároveň potenciálny vysielač,
- v čase, ak modul nevysiela, je výstup vysielača vo vysokoimpedančnom stave,
- protokol musí byť navrhnutý tak, aby súčasne nevysielalo viac vysielačov; musí byť zabezpečená tzv. arbitráž prístupu na zbernicu, kde v prípade snahy viacerých vysielačov o vysielanie dát, zostane vysielať iba jeden,
- princíp arbitráže môže byť rôzny, od náhodného výberu až po prioritný,

Taktovanie sériového prenosu

- vysielač sériového prenosu vysiela dáta v pravidelných intervaloch,
- základným problémom taktovania sériového prenosu je, aby **prijímač čítal dátové bity v rovnakých okamihoch**, ako ich vysielač vysiela, prípadne iba s takou chybou v čase, ktorá nespôsobí ich chybnú interpretáciu,

Taktovanie sériového prenosu

- principiálne usporiadanie obvodov, ktoré sériovo prenášajú dátové slová šírky n + 1 bitov,
- na strane vysielača sa dáta synchrónne s taktovacím signálom CLK zapíšu do výstupného posuvného registra, z ktorého sú vysúvané na nábežnú hranu taktovacích impulzov,
- na strane prijímača sa tento sériový signál vsúva na závernú hranu do vstupného posuvného registra s paralelným výstupom; spolupracujúce obvody môžu potom v pravý čas (vždy po n + 1 impulzoch) prevziať dáta v paralelnej forme z výstupu d(n:0),
- v uvedenom príklade sa medzi vysielačom a prijímačom okrem sériových dát prenášal aj taktovací signál takýto sériový prenos nazývame **synchrónny**,

- synchrónny sériový prenos je logicky najjednoduchší a dovoľuje prenášať dáta s najmenšou "réžiou", pričom pod pojmom réžia rozumieme prenos bitov, ktoré nepredstavujú užitočnú informáciu (dáta), ale informáciu technologického charakteru, ktorá je potrebná pre správnu interpretáciu prenášaného signálu,
- synchrónny prenos, pri ktorom sa zvláštnym kanálom prenášajú aj taktovacie impulzy má tú nevýhodu, že okrem dátového kanálu je potrebné vybudovať aj kanál prenášajúci taktovaciu informáciu; preto sa takýto typ prenosu používa iba na krátke vzdialenosti, veľmi často iba vo vnútorných štruktúrach zariadenia,
- na prenos krátkych správ sa častejšie používa takzvaný asynchrónny sériový prenos dát, kde sa synchronizácia vysielača a prijímača deje vyslaním synchronizačnej udalosti na začiatku skupiny bitov,

KÓDOVANIE DÁT V SÉRIOVOM PRENOSE

- v snahe odstrániť potrebu zvláštneho prenosového kanálu pre taktovacie impulzy boli vytvorené niektoré spôsoby kódovania dát a taktovacieho signálu do jediného toku informácií,
- pre porovnanie vlastností jednotlivých metód kódovania bude užitočné, keď sa v zjednodušenej forme budeme venovať otázke vzťahu rýchlosti prenosu dát a šírky pásma prenosového kanálu,

Vzťah šírky pásma prenosového kanála a maximálnej rýchlosti prenosu

- principiálne platí, že rýchlosť prenosu je priamo úmerná šírke pásma prenosového kanálu, ktorá je ovplyvnená hlavne jeho hornou medznou frekvenciou,
- tok dát sériového prenosu sa prejavuje ako priebeh napätia v čase; ak vykonáme frekvenčnú analýzu tohto signálu, vieme zistiť najvyššiu významnú frekvenčnú zložku, potlačením ktorej by došlo k významnému skresleniu prenášaného signálu,
- zjednodušene je možné povedať, že horná medzná frekvencia prenosového kanálu, ktorá je potrebná na neskreslený prenos dát, závisí od najkratšieho času medzi dvomi zmenami, ktorý sa v toku dát vyskytuje,

Priebeh napätia v sériovom prenosovom Kanále

KAPACITA PRENOSOVÉHO KANÁLU

- perióda trvania jedného bitu a tiež naznačený najkratší impulz, charakterizovaný časom medzi dvoma zmenami a ich vzťah,
- ak je šírka pásma prenosového kanálu taká, že prenesie impulz dĺžky T_p, potom podľa toho, aký je vzťah medzi dĺžkou impulzu a dĺžkou trvania prenosu bitu, je možné vyjadriť využitie kapacity prenosového kanálu ako:

$$K = \frac{f_b}{f_{bM}},$$

pričom

$$f_b = 1/T_b = 1/(N * T_p)$$

a $f_{\rm bM}$ rýchlosť prenosu dát pri optimálnom využití prenosového kanálu, kedy N = 1; z čoho vyplýva

$$K = (1/(N * T_p))/(1/T_p) = 1/N$$

kde N je vzťah medzi trvaním prenosu jedného bitu a trvaním najkratšieho impulzu toku dát sériového prenosu $N=\frac{T_b}{T_p}$,

Príklady kódovania dát pri synchrónnom sériovom prenose dát

- kódy používané pri prenose sériových dát je možné rozdeliť na dve skupiny:
 - kódy typu **RZI**, označované aj prívlastkom "s návratom k nule (Return to Zero)" - stav prenosového kanálu počas trvania jedného bitu nadobudne hodnotu 1 aj hodnotu 0,
 - kódy typu NRZI, označované aj ako kódy "bez návratu k nule (Not Return to Zero)" – pri prenose dát niektorým z týchto kódov sa môže pri prenose vyskytnúť, že počas prenosu jedného bitu sa stav prenosovej linky nezmení,

Možnosti kódovania dát pri sériovom Prenose

štyri rôzne možnosti kódovania sériových dát pri synchrónnom prenose slabiky (byte) 0x97 tak, že sa prenáša najmenej významný bit ako prvý,

Synchrónny sériový prenos - dvojkanálový

- prvý spôsob je štandardný dvojkanálový prenos, kde sa dáta a taktovací signál prenáša kanálmi zvlášť,
- dátový kanál je prenášaný kódom typu NRZI a taktovací kódom RZI,
- prenos taktovacích impulzov kladie na šírku pásma väčšie nároky, pretože N = 2, zatiaľ čo pri prenose dát je N = 1,
- veľmi jednoduchá logika kódovania a dekódovania je v tomto prípade okrem potreby dvoch prenosových kanálov vykúpená aj zníženým využitím kapacity prenosového kanálu $K = \frac{1}{2}$,

RETURN-TO-ZERO

- druhý z kódov je kód typu RZI (u doc. Gubiša označený aj ako kód typu "Manchester") alebo slangovo aj "bitovo asynchrónny kód",
- dáta aj taktovacie informácie sa prenášajú cez spoločný kanál,
- taktovacie impulzy sú vyznačené závernými hranami signálu na začiatku prenosu každého bitu,
- dáta sú kódované tak, že ak sa má preniesť 0, potom 2/3 trvania bitu zostáva signál v nule a ak má byť kódovaná 1, potom zostáva signál v nule iba 1/3 trvania bitu; aby prijímač prečítal správnu hodnotu bitu, postačí, aby čítal v ½ trvania prenosu bitu,
- táto veľmi jednoduchá stratégia kódovania a teda i pomerne nenáročné technické vybavenie prenosu je vykúpené pomerne nízkym využitím prenosového kanálu K = 1/3,

NRZI - FM

- tretí z kódov je typu NRZI a označujeme ho ako Fázová Modulácia (FM),
- používa jediný prenosový kanál pre dáta a taktovanie,
- nula je kódovaná tak, že zmena stavu kanálu sa vyskytne na počiatku prenosu bitu a jednotka tak, že zmena sa uskutoční v času prenosu bitu,
- z týchto informácií je možné rekonštruovať tak dáta, ako i taktovacie impulzy aj keď technické vybavenie kódera a dekódera je zložitejšie ako v prípade prenosu kódom typu RZI v predošlom prípade,
- využitie kapacity prenosového kanálu je však K = 1/2, čo je priaznivejšie,

NRZI – MFM

- štvrtý z kódov ponúka ďaleko najlepšie využitie prenosového kanálu (K = 1), avšak za cenu pomerne zložitého technického vybavenia kódera a dekódera,
- známy pod označením "Modifikovaná Fázová Modulácia" (MFM),
- od FM sa líši iba tým, že ak nasleduje po bite s hodnotou 1 bit s hodnotou 0, neuskutoční sa ani na začiatku, ani v strede zmena v nulovom bite bezprostredne nasledujúcom po bite kódujúcom jednotku,
- pulz už nie je kratší ako dĺžka bitu,

Manchester kódovanie

- synchronizačné bity, aby sme vedeli:
 - koľko trvá bit,
 - kedy začínajú dáta,

- pri Manchester kódovaní:
 - zisťujeme nábežnú hranu v strede,
 - menšia šírka pásma, pulz ½ bitu,

- všetky prenosy, kde sú dáta kódované niektorým z kódov NRZI, potrebujú, aby bol prenos na začiatku synchronizovaný prenesením bloku dát so známym obsahom (napríklad blok nulových bitov známej dĺžky (takzvaný synchronizačný blok)),
- MFM ponúka ideálne využitie prenosového kanálu; ďalšie zvýšenie kapacity kanálu je možné už len pomocou kompresných metód, ktoré sú aplikované na oveľa väčší blok dát ako jeden bit,
- pri kompresii sa využíva nedokonalosť človeka zahodia sa tie časti, ktoré človek nie je schopný zachytiť kvalita sa zníži, ale človek to nepostrehne,

- komunikácia s diskovou pamäťou je synchrónna komunikácia,
- komunikácia s magnetickou páskou bola paralelná komunikácia – 9 hláv – 8 dáta + 1 hodiny,
- □ limitujúci faktor prenosu hovorí o ňom Shannon-Kotelnikov teorém,

- typický sled udalostí pri asynchrónnom sériovom prenose, historicky najstarší diaľkový prenos,
- prenosová linka má definovaný kľudový stav, v ktorom sa nachádza v čase, keď žiaden prenos neprebieha,
- vysielač a prijímač musia mať pred prenosom dohodnutú rýchlosť prenosu s presnosťou, ktorá závisí od množstva dát, ktoré po synchronizačnej udalosti prenáša,
- prenos začína synchronizačnou udalosťou, po synchronizačnej udalosti sa uskutočňuje prenos dát, potom nasleduje prípadná ochranná informácia dát a na konci úsek s vnúteným kľudovým stavom, ktorý prechádza po definovanom čase do prirodzeného kľudového stavu,
 - rozdiel medzi vnúteným a prirodzeným kľudovým stavom je ten, že na rozdiel od prirodzeného, počas vnúteného kľudového stavu nie je možné začať nový prenos,

- najčastejší typ asynchrónneho prenosu sa často v literatúre označuje ako RS232, aj keď toto označenie nie je presné, lebo tento typ prenosu sa používa aj inde ako v súvislosti s rozhraním definovaným normou ako RS232,
- kľudový stav prenosovej linky je log. 1; na začiatku prenosu sa vysiela štartovací bit s hodnotou log. 0 v trvaní tb, čo je dĺžkou trvania bitu; potom sa vysiela podľa dohody 5 až 8 dátových bitov (na obr. osem bitov (0x97)) počnúc najmenej významným bitom (LSB); potom podľa dohody môže nasledovať paritný bit na párnu, alebo nepárnu paritu (nepárna), po čom nasleduje podľa dohody 1 až 2 stop bitov, ktoré majú hodnotu log. 1 a plnia úlohu vnúteného kľudového stavu,
- □ každý bit trvá práve t_b,
- prijímač považuje za začiatok prenosu prvú závernú hranu (začiatok štart bitu), od toho okamžiku počká 1.5 * t_b, prečíta hodnotu LSB dát, a potom pravidelne každých t_b číta ďalšie bity, paritný bit a overí správnosť stop bitu; v prípade, ak nie je hodnota paritného bitu správna, hlási prijímač spolupracujúcemu zariadeniu chybu parity (parity error) a v prípade, ak nemá niektorý zo stop bitov správnu hodnotu, hlási tzv. chybu ohraničenia (framing error),

- ak by sme skúmali využitie kapacity kanálu z hľadiska prenosu jedného bitu a použili by sme metodiku, ktorú sme používali pri skúmaní vlastností synchrónneho prenosu, dospeli by sme k záveru, že K = 1; ak však uvážime, že k prenosu užitočnej informácie potrebujeme bez ochrany a s jedným stop bitom dva bity technologickej informácie (štart bit a stop bit), vychádza využitie kapacity kanálu na 8/10, t.j, 4/5, čo je pomer užitočných (dátových) bitov k celkovo preneseným bitom; tento pomer je najpriaznivejší; platí pri prenose 8 bitov bez ochrany s jedným stop bitom; každá odchýlka od týchto parametrov má za následok nižšie číslo,
- pri asynchrónnom prenose dát sa rýchlosť prenosu udáva v Baudoch (Bd) počet zmien za sekundu; vypočítame ho ako:

$$B = 1/t_b [Bd]$$

kde t_b je definované na obr. (slide 25),

- nasledujúce rýchlosti prenosu sú obvyklé: 300 Bd, 600 Bd, 1200 Bd, 2400 Bd, 4800 Bd, 9600 Bd, 19200 Bd, 115200 Bd, 1 MBd, 2 MBd, 4 MBd,
- vysielač i prijímač musí používať rovnakú rýchlosť prenosu; na presnosť taktovacích frekvencií sú v prípade asynchrónneho prenosu kladené zhruba o rád vyššie nároky ako pri synchrónnom prenose,

- pri asynchrónnom prenose sa taktovacie impulzy neprenášajú,
- parita kontrolný súčet, udáva či je počet jednotiek v slove párny alebo nepárny,
- párna parita log. 1, ak je počet jednotiek nepárny, 🔽
- nepárna parita log. 1, ak je počet jednotiek párny,
- s vysielaním nových dát nemôžeme pokračovať hneď po parite lebo ak vyjde parita nulová, nevie, kedy začal nový štart bit,
- □ stop bit býva zvyčajne 0,5 dĺžky bitu až 2x dĺžka bitu,
- 🗅 pre 8 bitové dáta+ 1 štart bit+ 1 parita + 1 stop bit = 11 bitov, 🛛 💭
 - 110 Bd počet zmien úrovne signálu za sekundu,
 - 80 b/s prenos dátových bitov,
- □ všetky UART majú tento mikroprotokol aj RS232,
- 🗆 110 Bd je zdedená rýchlosť z ďalekopisov, 🔽
- prenosy informácie sú možné:
 - diferenciálne rýchlejšie, menej citlivé na rušenie,
 - voči zemi,

Ďakujem za pozornosť.

Použité materiály:

Peter Gubiš – Číslicové počítače (podporné učebné texty) Ondrej Karpiš – Prednášky k predmetu Číslicové počítače