

Towards Fast Rates for Federated and Multi-Task Reinforcement Learning

Feng Zhu, Robert W. Heath Jr., and Aritra Mitra

Motivation

- For contemporary RL applications with
 massive state and action spaces, algorithm
 training requires lots of data samples.
- Data samples typically come from different environments.

Question. Can we use data collected from diverse environments to speed up the training process?

Goals.

- 1. To learn a policy that can perform well in all environments.
- To demonstrate collaborative *speedup* in the final result, i.e., multiple agents do help expedite the learning.

Problem Formulation

- Consider a setting with *N* agents, each agent
 i interacting with a distinct environment.
- Environment of agent i characterized by $MDP \mathcal{M}_i = (S, \mathcal{A}, R_i, \mathcal{P}, \gamma).$
- Agents' environments differ in reward functions (goals).
- Behavior of agent is captured by *policy* $\pi: \mathcal{S} \to \Delta(\mathcal{A}).$
- Local loss function of agent *i*:

$$J_i(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_i^{(t)} \left| s_i^{(0)} \sim \rho, \pi \right| \right]$$

- **Policy Gradient (PG):** Parameterize the policy to obtain π_{θ} , and directly optimize θ to minimize the loss function $J_i(\theta) \coloneqq J_i(\pi_{\theta})$.
- Heterogeneous Federated RL:

$$\min_{\theta \in \mathbb{R}^d} J(\theta) \coloneqq \frac{1}{N} \sum_{i=1}^N J_i(\theta)$$

• Agent *i* only has access to **noisy** and **truncated** gradient $\widehat{\nabla}_K J_i(\cdot)$

Algorithm: Fast-FedPG

• Communication constraint: Server broadcasts $\bar{\theta}^{(t)}$ at round t, agents initialize and perform H local PG steps.

- Client-drift effect: Since each agent
 updates towards its own local optimum, a
 heterogeneity bias will occur that
 impedes convergence.
- Intuition of Fast-FedPG: Ideally, the update equation would be

$$\bar{\theta}^{(t+1)} = \bar{\theta}^{(t)} - \eta \frac{1}{N} \sum_{i=1}^{N} \widehat{\nabla}_{K} J_{i}(\bar{\theta}^{(t)})$$

• Idea: Use the **memory** of the global policy gradient $\widehat{\nabla}_K J(\bar{\theta}^{(t)})$ to add the correction term $\widehat{\nabla}_K J(\bar{\theta}^{(t)}) - \widehat{\nabla}_K J_i(\bar{\theta}^{(t)})$ to each local update:

$$\theta_{i,\ell+1}^{(t)} = \theta_{i,\ell}^{(t)} - \eta \left(\widehat{\nabla}_K J_i \left(\theta_{i,\ell}^{(t)} \right) + \widehat{\nabla}_K J \left(\bar{\theta}^{(t)} \right) - \widehat{\nabla}_K J_i \left(\bar{\theta}^{(t)} \right) \right)$$

Main Results

Key Assumptions:

- The value function J_i for each agent $i \in [N]$ is L-smooth.
- The variance of the noisy truncated gradient $\widehat{\nabla}_K J_i(\cdot)$ is bounded by σ^2 .
- The truncation error is at most $D\gamma^K$.

Main Challenges in Analysis:

- Effect of reward-heterogeneity. Agents tend to drift towards their own locally optimal parameters.
- Effect of non-convexity. The value function J'_is are non-convex, precluding the use of standard convex optimization tools.
- Effect of noise and truncation. Agents can only access noisy and biased gradients $\widehat{\nabla}_K J_i(\cdot)$.

Theorem 1. Under a suitable choice of step-size, Fast-FedPG guarantees

$$\mathbb{E}[J(\bar{\theta}^{(T)}) - J(\theta^*)] \le \tilde{\mathcal{O}}\left(\frac{1}{NHT}\right)$$
of agents

Main Takeaways:

- Our final result exhibits *N*-fold speedup and no heterogeneity bias is present.
- Theorem 1 bridges the gap in the literature, where no previous work has shown finite-time analysis with linear speedup and no heterogeneity bias.
- Key helper result: Average of gradients
 from different MDPs is the gradient
 of the average MDP to allow us to use
 the gradient-domination condition that
 ensures fast rates.

Theorem 2. Under a suitable choice of stepsize, Fast-FedPG guarantees (without the gradient-domination condition):

$$\mathbb{E}\left[J(\bar{\theta}^{(T)}) - J(\theta^*)\right] \le \tilde{\mathcal{O}}\left(\frac{1}{\sqrt{NHT}}\right)$$

Main Takeaways:

Without the gradient domination condition,
 our result still achieves a √N-fold
 speedup with no heterogeneity bias.

Future work:

- Study the problem of learning personalized policies in the context of multitask/federated RL.
- Explore clustering for multi-task RL.