

Multivariate identification

Andreas Jakobsson

Estimation

Estimation of the unknown parameters of a multivariate process works similar to the univariate case, but one has to take a bit more care with the dimensions.

The mean is estimated as

$$\hat{\mathbf{m}}_{\mathbf{y}} = \frac{1}{N} \sum_{t=1}^{N} \mathbf{y}$$

and the (biased) autocovariance function as

$$\hat{\mathbf{R}}_{\mathbf{y}}(k) = \frac{1}{N} \sum_{t=k+1}^{N} \Big(\mathbf{y}_{t} - \hat{\mathbf{m}}_{\mathbf{y}} \Big) \Big(\mathbf{y}_{t-k} - \hat{\mathbf{m}}_{\mathbf{y}} \Big)^{*}$$

yielding the ACF estimate

$$\hat{\rho}_{y}(k) = \hat{P}_{y}^{-1/2}\hat{R}_{y}(k)\hat{P}_{y}^{-1/2}$$

wher

$$\hat{\mathbf{P}}_{\mathbf{y}} = \begin{bmatrix} \hat{r}_{11}(0) & 0 & \dots & 0 \\ 0 & \hat{r}_{22}(0) & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \hat{r}_{mm}(0) \end{bmatrix}$$

Estimation

Example:

Consider the $m \times 1$ multivariate ARX(p) process

$$\mathbf{y}_t + \mathbf{A}_1 \mathbf{y}_{t-1} + \ldots + \mathbf{A}_p \mathbf{y}_{t-p} = \mathbf{B}_0 \mathbf{x}_t + \ldots + \mathbf{B}_r \mathbf{x}_{t-r} + \mathbf{e}_t$$

with \mathbf{x}_t being an s-dimensional, possibly stochastic, vector. Thus,

$$\mathbf{y}_t^* = -\sum_{k=1}^p \mathbf{y}_{t-k}^* \mathbf{A}_k^* + \sum_{k=0}^r \mathbf{x}_{t-k}^* \mathbf{B}_k^* + \mathbf{e}_t^* = \mathbf{X}_t^* \boldsymbol{\theta} + \mathbf{e}_t^*$$

where

$$\begin{aligned} \mathbf{X}_t^* &= \left[\begin{array}{ccccc} -\mathbf{y}_{t-1}^* & \dots & -\mathbf{y}_{t-p}^* & \mathbf{x}_{t-1}^* & \dots & \mathbf{x}_{t-r}^* \end{array} \right] \\ \boldsymbol{\theta} &= \left[\begin{array}{ccccc} \mathbf{A}_1 & \dots & \mathbf{A}_p & \mathbf{B}_0 & \dots & \mathbf{B}_r \end{array} \right] \end{aligned}$$

or, equivalently, assuming that $p \ge r$,

$$\mathbf{Y} = \left[\begin{array}{c} \mathbf{y}_{p+1}^* \\ \vdots \\ \mathbf{y}_N^* \end{array} \right] = \left[\begin{array}{c} \mathbf{X}_{p+1}^* \\ \vdots \\ \mathbf{X}_N^* \end{array} \right] \boldsymbol{\theta} + \left[\begin{array}{c} \mathbf{e}_{p+1}^* \\ \vdots \\ \mathbf{e}_N^* \end{array} \right] = \mathbf{X} \boldsymbol{\theta} + \mathbf{E}$$

which suggests the LS parameter estimate

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^*\mathbf{X})^{-1}\mathbf{X}^*\mathbf{Y}$$

Let $\phi = \text{vec} \{\theta\}$. Then, $V\{\hat{\phi}\} = \Sigma \otimes [\mathbf{X}^*\mathbf{X}]^{-1}$.

Estimation

The maximum likelihood (ML) estimate is formed as the parameters maximising the likelihood function given the observed data.

Restricting ourselves to the real-valued multivariate process

$$\mathbf{y}_t = \mathbf{X}\boldsymbol{\theta} + \mathbf{e}$$

for $t=1,\dots,N,$ where \mathbf{e}_t is a zero-mean multivariate Gaussian process with covariance matrix $\mathbf{\Sigma}.$ Let

$$\mathbf{Y} = [\mathbf{y}_1 \quad \dots \quad \mathbf{y}_N]$$

The

$$\begin{split} f(\mathbf{Y}) &= \prod_{t=1}^{N} \left[(2\pi)^m \det \left(\mathbf{\Sigma} \right) \right]^{-1/2} \exp \left\{ -\frac{1}{2} \left[\mathbf{y}_t - \mathbf{X} \boldsymbol{\theta} \right]^T \mathbf{\Sigma}^{-1} \left[\mathbf{y}_t - \mathbf{X} \boldsymbol{\theta} \right] \right\} \\ &= \left[(2\pi)^m \det \left(\mathbf{\Sigma} \right) \right]^{-N/2} \exp \left\{ -\frac{1}{2} \sum_{t=1}^{N} \left[\mathbf{y}_t - \mathbf{X} \boldsymbol{\theta} \right]^T \mathbf{\Sigma}^{-1} \left[\mathbf{y}_t - \mathbf{X} \boldsymbol{\theta} \right] \right\} \end{split}$$

The log likelihood is th

$$\ln f(\mathbf{Y}) = -\frac{N}{2} \ln \det \left(\mathbf{\Sigma} \right) - \frac{1}{2} \sum_{t=1}^{N} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right]^{T} \mathbf{\Sigma}^{-1} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right] + c$$

where c denotes a constant that does not depend on θ .

Estimation

Assuming first that Σ is known, the maximisation of

$$\ln f(\mathbf{Y}) = -\frac{N}{2} \ln \det (\mathbf{\Sigma}) - \frac{1}{2} \sum_{t=1}^{N} [\mathbf{y}_t - \mathbf{X}\boldsymbol{\theta}]^T \mathbf{\Sigma}^{-1} [\mathbf{y}_t - \mathbf{X}\boldsymbol{\theta}] + c$$

simplifies to

$$\begin{split} \hat{\boldsymbol{\theta}}_{ML} &= \underset{\boldsymbol{\theta}}{\arg \min} & \ln f(\mathbf{Y}) \\ &= \underset{\boldsymbol{\theta}}{\arg \min} & \frac{1}{2} \sum_{t=1}^{N} [\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta}]^{T} \, \boldsymbol{\Sigma}^{-1} [\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta}] \\ &= \underset{\boldsymbol{\theta}}{\arg \min} \left(\boldsymbol{\Sigma}^{-1} \dot{\mathbf{D}}_{\boldsymbol{\theta}} \right) \end{split}$$

wher

$$\hat{\mathbf{D}}_{\boldsymbol{\theta}} = \frac{1}{N} \sum_{t=1}^{N} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right] \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right]^{T}$$

is an estimate of Σ .

Estimation

In case Σ is unknown, the ML estimate is formed by maximising $f(\mathbf{Y})$ over both $\boldsymbol{\theta}$ and Σ , i.e.,

$$\begin{split} \left\{ \hat{\boldsymbol{\theta}}_{ML}, \hat{\boldsymbol{\Sigma}} \right\} &= \arg \min_{\boldsymbol{\theta}, \boldsymbol{\Sigma}} \left\{ N \ln \det \left(\boldsymbol{\Sigma} \right) + \sum_{t=1}^{N} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right]^{T} \boldsymbol{\Sigma}^{-1} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right] \right\} \\ &= \arg \min_{\boldsymbol{\theta}} \left\{ \ln \det \left(\hat{\mathbf{D}}_{\boldsymbol{\theta}} \right) \right\} \end{split}$$

where

$$\hat{\mathbf{D}}_{\theta} = \frac{1}{N} \sum_{t=1}^{N} [\mathbf{y}_{t} - \mathbf{X}\boldsymbol{\theta}] [\mathbf{y}_{t} - \mathbf{X}\boldsymbol{\theta}]^{T}$$

The resulting cost function is often multi-modal and requires an accurate initialisation.

Estimation

Model order selection:

$$\begin{split} Q^* &= N^2 \sum_{\ell=1}^K (N-\ell)^{-1} tr \left\{ \hat{\mathbf{R}}_e^T(\ell) \hat{\mathbf{R}}_e^{-1}(0) \hat{\mathbf{R}}_e^T(\ell) \hat{\mathbf{R}}_e^{-1}(0) \right\} \\ M_p &= -\left(N-p-mp-\frac{1}{2}\right) \ln \left[\frac{|\hat{\mathbf{\Sigma}}_p|}{|\hat{\mathbf{\Sigma}}_{p-1}|}\right] \\ AIC(p) &= N \ln \left[|\hat{\mathbf{\Sigma}}_p|\right] + 2pm^2 \\ BIC(p) &= N \ln \left[|\hat{\mathbf{\Sigma}}_p|\right] + pm^2 \ln N \\ FPE(p) &= \left[\frac{N+mp+1}{N-mp-1}\right]^m |\hat{\mathbf{\Sigma}}_p| \end{split}$$

where $Q^* \in \chi^2_{1-\alpha} \Big\{ m^2 (K-p-q) \Big\}$ (use lbpTest) and $M_p \in \chi^2_{1-\alpha}(m^2)$

Here, $\hat{\mathbf{\Sigma}}_p$ denotes the covariance matrix of the residual when using a model of order p, i.e.,

$$\hat{\boldsymbol{\Sigma}}_p = \frac{1}{N-p} \Big(\mathbf{Y} - \mathbf{X}_p^* \hat{\boldsymbol{\theta}}_p \Big)^* \Big(\mathbf{Y} - \mathbf{X}_p^* \hat{\boldsymbol{\theta}}_p \Big) = \frac{\mathbf{Y}^* \boldsymbol{\Pi}_{\mathbf{X}_p}^{\perp} \mathbf{Y}}{N-p}$$

Example

We consider a VAR(2), with

$$\mathbf{y}_t + \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} = \mathbf{e}_t$$

wher

$$\mathbf{A}_1 = \left[\begin{array}{cc} 0.5 & 0.4 \\ 0.1 & 0.8 \end{array} \right] \qquad \mathbf{A}_2 = \left[\begin{array}{cc} -0.2 & -0.1 \\ 0.3 & 0.6 \end{array} \right]$$

Example

	k = 1	= 1 $k = 2$ $k = 3$		k = 4
$\rho_{\mathbf{y}}(k)$	$\begin{bmatrix} -0.67 & -0.36 \\ 0.31 & -0.57 \end{bmatrix}$ $\begin{bmatrix} - & - \\ + & - \end{bmatrix}$	$\begin{bmatrix} 0.41 & 0.50 \\ -0.43 & -0.08 \end{bmatrix} \\ \begin{bmatrix} + & + \\ - & - \end{bmatrix}$	$\begin{bmatrix} -0.14 & -0.37 \\ 0.33 & 0.43 \end{bmatrix}$ $\begin{bmatrix} - & - \\ - & + \end{bmatrix}$	$\begin{bmatrix} 0.00 & 0.13 \\ -0.13 & -0.38 \end{bmatrix}$ $\begin{bmatrix} \cdot & + \\ - & - \end{bmatrix}$
$\phi_{k,k}$	$\begin{bmatrix} -0.67 & 0.31 \\ -0.36 & -0.57 \end{bmatrix}$ $\begin{bmatrix} - & + \end{bmatrix}$	$\begin{bmatrix} 0.16 & 0.10 \\ -0.11 & -0.52 \end{bmatrix}$ $\begin{bmatrix} + & + \end{bmatrix}$	$\begin{bmatrix} -0.01 & -0.04 \\ 0.05 & -0.04 \end{bmatrix}$	$\begin{bmatrix} 0.07 & -0.01 \\ -0.03 & 0.01 \end{bmatrix} \\ \begin{bmatrix} + & . \end{bmatrix}$

We consider a VAR(2), with

$$\mathbf{y}_t + \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} = \mathbf{e}_t$$

wher

$$\mathbf{A}_1 = \begin{bmatrix} 0.5 & 0.4 \\ 0.1 & 0.8 \end{bmatrix}$$
 $\mathbf{A}_2 = \begin{bmatrix} -0.2 & -0.1 \\ 0.3 & 0.6 \end{bmatrix}$

Our identification indicates that:

- The Box-Cox plot indicates that no transformation is required.
- $\bullet\,$ No detrending seems to be required.
- We estimate ACF and PACF to determine model structure; these suggest a VAR structure of order 2 (here, $2/\sqrt{N}\approx 0.063$).
- The multivariate Jarque-Bera test indicates that the ACF and PACF are normal distributed (use mjbtest).

Example

0	1	2	3	4	5
393	315	15	18	16	12
	1404	412	3.7	6.4	4.3
		21	27	30	34
		80	106	128	152
8.614	1.626	1.021	1.029	1.035	1.037
	1602 1622	1404 1602 352 1622 391	1404 412 1602 352 21 1622 391 80	1404 412 3.7 1602 352 21 27	393 315 15 18 16 1404 412 3.7 6.4 1602 352 21 27 30 1622 391 80 106 128

Here, the 95% quantile for Q^* is approximately 102, and for M_p about 9.5.

Note that the AIC, BIC, and FPE all have minimum for order 2.

Using LS (use 1sVAR), we estimate the unknown parameters

$$\mathbf{A}_1 = \begin{bmatrix} 0.52 & 0.36 \\ 0.07 & 0.28 \end{bmatrix}$$
 $\mathbf{A}_2 = \begin{bmatrix} -0.17 & -0.12 \\ 0.24 & 0.58 \end{bmatrix}$

Recall that the true parameters were

$$\mathbf{A}_1 = \begin{bmatrix} 0.5 & 0.4 \\ 0.1 & 0.8 \end{bmatrix}$$
 $\mathbf{A}_2 = \begin{bmatrix} -0.2 & -0.1 \\ 0.3 & 0.6 \end{bmatrix}$

Note that, even with 2×1000 samples, the estimates are still not all that good.

Minks and mustrats

Denote the musk rat and mink time series $y_{t,1}$ and $y_{t,2}$, respectively, and form

$$\mathbf{z}_{t} = \begin{bmatrix} \log y_{t,1} - \hat{m}_{\tilde{y}_{1}} \\ \log y_{t,2} - \hat{m}_{\tilde{y}_{2}} \end{bmatrix}$$

where $\hat{m}_{\tilde{y}_1}=10,79$ and $\hat{m}_{\tilde{y}_2}=13,12$ denote the estimated mean of the transformed muskrat and mink data sets, respectively.

Minks and mustrats

	k = 1	k = 2	k = 3	k = 4
$\rho_{y}(k)$	$\begin{bmatrix} 0.68 & 0.47 \\ -0.13 & 0.73 \end{bmatrix}$	$\begin{bmatrix} 0.29 & 0.38 \\ -0.27 & 0.37 \end{bmatrix}$	$\begin{bmatrix} -0.02 & 0.25 \\ -0.16 & 0.20 \end{bmatrix}$	$\begin{bmatrix} -0.25 & 0.08 \\ 0.03 & 0.13 \end{bmatrix}$
	[+ + - +]	[+ + - +]	[: :]	[: :]
$\phi_{k,k}$	0.68 -0.13 0.47 0.73	$\begin{bmatrix} -0.17 & -0.27 \\ 0.11 & -0.18 \end{bmatrix}$	$\begin{bmatrix} -0.24 & 0.10 \\ 0.08 & 0.15 \end{bmatrix}$	$\begin{bmatrix} -0.27 & -0.19 \\ 0.07 & -0.07 \end{bmatrix}$
	[+ . + +]	[· -]	[: :]	[- :]
			k = 7 k =	
	k = 5	k = 6	k = 7	k = 8
$\rho_{y}(k)$		$k = 6$ $\begin{bmatrix} -0.30 & -0.33 \\ 0.35 & 0.05 \end{bmatrix}$		
$\rho_{y}(k)$		[-0.30 -0.33] 0.35 0.05]		
	[-0.34 -0.11] [0.23 0.08] [+ .]	$\begin{bmatrix} -0.30 & -0.33 \\ 0.35 & 0.05 \end{bmatrix}$	[-0.12 -0.45] [0.41 0.11] [] [+ .]	[0.10 -0.47] (0.40 0.25] [· -] + ·]

Minks and mustrats

	k = 1	k = 2		k = 4	
$\rho_{y}(k)$	$\begin{bmatrix} 0.68 & 0.47 \\ -0.13 & 0.73 \end{bmatrix}$	$\begin{bmatrix} 0.29 & 0.38 \\ -0.27 & 0.37 \end{bmatrix}$	$\begin{bmatrix} -0.02 & 0.25 \\ -0.16 & 0.20 \end{bmatrix}$	$\begin{bmatrix} -0.25 & 0.08 \\ 0.03 & 0.13 \end{bmatrix}$	
	[+ + - +]	[+ + +]	[: :]	[: :]	
$\phi_{k,k}$	0.68 -0.13 0.47 0.73	$\begin{bmatrix} -0.17 & -0.27 \\ 0.11 & -0.18 \end{bmatrix}$	$\begin{bmatrix} -0.24 & 0.10 \\ 0.08 & 0.15 \end{bmatrix}$	$\begin{bmatrix} -0.27 & -0.19 \\ 0.07 & -0.07 \end{bmatrix}$	
	[+ · ·]	[· -]	[: :]	[- ·]	
	k = 5	k = 6 k = 7		k = 8	
$\rho_{y}(k)$	$\begin{bmatrix} -0.34 & -0.11 \\ 0.23 & 0.08 \end{bmatrix}$	$\begin{bmatrix} -0.30 & -0.33 \\ 0.35 & 0.05 \end{bmatrix}$	$\begin{bmatrix} -0.12 & -0.45 \\ 0.41 & 0.11 \end{bmatrix}$	$\begin{bmatrix} 0.10 & -0.47 \\ 0.40 & 0.25 \end{bmatrix}$	
	[+ · ·]	[+ .]	[· - + ·]	[· - + ·]	
$\phi_{k,k}$	$\begin{bmatrix} -0.21 & -0.12 \\ 0.00 & -0.22 \end{bmatrix}$	-0.18 -0.23 -0.20 -0.11	0.02 -0.15 -0.03 -0.09	[-0.02 -0.22] 0.04 0.11]	
	[: :]	[: :]	[: :]	[: :]	

p		0	1	2	3	4	5
Q^*	٠	41	24	29	20	18	16
M			122.0	12.6	8.5	8.7	5.3
AI		-189	-317	-324	-327	-330	-330
BI	.C	-181	-300	-299	-293	-288	-279
FF	PE (0.0506	0.0065	0.0057	0.0055	0.0052	0.0053

Here, the 95% quantile for Q^* is approximately 55.8, and for M_p about 9.5.