Math 247 Midterm Cheatsheet

2019 Winter, Prof. Henry Shum David Duan

Euclidean Space

- 1. **Euclidean space:** \mathbb{R}^n with inner product and norm.
- 2. Inner product: $\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^{n} x_i y_i$, positive definite, symmetry, bilinearity.
- 3. **Euclidean norm:** $\|\vec{x}\| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$, positive definite, homogeneous, triangle inequality.
- 4. **CSI:** $\forall \vec{x}, \vec{y} \in \mathbb{R}^n : |\langle \vec{x}, \vec{y} \rangle| \leq ||\vec{x}|| ||\vec{y}||$; EQ holds when $\vec{y} = \lambda \vec{x}$ for $\lambda \in \mathbb{R}$.
- 5. **TI:** $\forall \vec{x}, \vec{y} \in \mathbb{R}^n : ||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||, ||\vec{x} \vec{y}|| \ge |||\vec{x}|| ||\vec{y}|||; \text{ EQ holds when } \vec{y} = \lambda \vec{x}, \ \lambda \in \mathbb{R}^+.$
- 6. Pythagorean Theorem: $\forall \vec{x}, \vec{y} \in \mathbb{R}^n : \langle \vec{x}, \vec{y} \rangle = 0 \implies \|\vec{x} + \vec{y}\| = \sqrt{\|\vec{x}\|^2 + \|\vec{y}\|^2}.$

Sequences

- 1. Limit of sequence: $\lim_{k\to\infty}\vec{x}_k=\vec{a}\iff \forall \varepsilon>0: \exists N\in\mathbb{N}: k\geq N \implies \|\vec{x}_k-\vec{a}\|<\varepsilon.$
- 2. Component convergence: $\lim_{k \to \infty} \vec{x}_k = \vec{a} \iff \forall 1 \le i \le n : \lim_{k \to \infty} \vec{x}_{k,i} = \vec{a}_i$.
- 3. Cauchy: $(\vec{x}_k)_{k=1}^{\infty}$ is Cauchy $\iff \forall \varepsilon > 0 : \exists N \in \mathbb{N} : k, l \geq N \implies \|\vec{x}_k \vec{x}_l\| < \varepsilon$.
- 4. Component Cauchy: $(\vec{x}_k)_{k=1}^{\infty}$ is Cauchy $\iff \forall 1 \leq i \leq n : (\vec{x}_{k,i})_{k=1}^{\infty}$ is Cauchy.
- 5. Complete: A set S is complete if every Cauchy sequence converges to a point in S.
- 6. \mathbb{R}^n Completeness: A sequence in \mathbb{R}^n is convergent iff it is Cauchy.

Bounded, Closed, Open

- 1. Bounded sequence: $\exists R \in \mathbb{R} : \forall k : ||\vec{x}_k|| < R$, bounded set: $\exists R \in \mathbb{R} : \forall \vec{x} \in X : ||\vec{x}|| < R$.
- 2. **BWT:** Every bounded sequence in \mathbb{R}^n has a convergent subsequence.
- 3. Closure of X, denoted \overline{X} , contains X together with all its limit points.
- 4. Closed: X is closed if it coincides with its closure: $X = \overline{X}$.
- 5. Open: X is open if it contains an open ball $B_r(\vec{a}) = \{\vec{x} \in \mathbb{R}^n : ||\vec{x} \vec{a}|| < r\}$ for all $\vec{a} \in X$.
- 6. Interior of X, denoted int(X), contains \vec{a} iff $B_r(\vec{a}) \subseteq S$ for some r > 0.
- 7. \overline{X} is the smallest closed superset of X; int(X) is the largest open subset of X.
- 8. Open intervals are open; closed intervals are closed; only \varnothing and \mathbb{R}^n are clopen.
- 9. Union of arbitrary open sets is open; intersection of finite open sets is open.
- 10. Union of finite closed sets is closed; intersection of arbitrary closed sets is closed.

Compact and Connected

- 1. Compact (Sequential): K is compact if every seq in K has a subseq converge to K.
- 2. **HBT:** Closed + Bounded \iff Compact.
- 3. Cover: $\{U_i : i \in I\}$ is a cover for $X \iff X \subseteq \bigcup_{i \in I} U_i$.
- 4. Finite subcover: $\{U_{i_k}: 1 \leq k \leq l\}$ is a finite subcover for $X \iff X \subseteq \bigcup_{k=1}^l U_{i_k}$.
- 5. Compact (Topology): X is compact if every open cover of X has a finite subcover.
- 6. Compact example: Cube is compact; a closed subset of a compact set is compact.
- 7. **Separation:** U, V open such that X if $X \cap U \neq \emptyset$, $X \cap V \neq \emptyset$, $X \subseteq U \cap V$, $X \cap U \cap V = \emptyset$.
- 8. Connect example: \mathbb{R}^n is connected; closed intervals are connected.

Limit of Functions

- 1. Accumulation point: $\vec{a} \in S^a \iff \exists (\vec{x}_k)_{k=1}^\infty \subseteq S \setminus \{\vec{a}\} \land \lim_{k \to \infty} \vec{x}_k = \vec{a}$.
- 2. Isolated point: $\vec{a} \in S$ is isolated $\iff \vec{a} \in S \setminus S^a$.
- 3. Limit: $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = \vec{v} \iff \forall \varepsilon > 0 : \exists \delta > 0 : 0 < ||\vec{x} a|| < \delta \implies ||f(\vec{x}) \vec{v}|| < \varepsilon$.
- $4. \ \mathbf{SCL:} \ \lim_{\vec{x} \to \vec{a}} f(\vec{x}) = \vec{b} \iff \forall (\vec{x}_k)_{k=1}^{\infty} \subseteq A \setminus \{\vec{a}\} \land \lim_{k \to \infty} \vec{x}_k = \vec{a} \implies \lim_{k \to \infty} f(\vec{x}_k) = \vec{b}.$
- 5. ST: $\forall \vec{x} \in A \setminus \{\vec{a}\}: f(\vec{x}) \leq g(\vec{x}) \leq h(\vec{x}) \wedge \lim_{\vec{x} \to \vec{a}} f(\vec{x}) = \lim_{\vec{x} \to \vec{a}} h(\vec{x}) = L \implies \lim_{\vec{x} \to \vec{a}} g(\vec{x}) = L.$

Continuity

- 1. Continuity: f continuous at $\vec{a} \iff \forall \varepsilon > 0 : \exists \delta > 0 : ||\vec{x} \vec{a}|| < \delta \implies ||f(\vec{x}) f(\vec{a})|| < \varepsilon$.
- 2. Continuity in domain: For $\vec{a} \in A \cap A^a$, f is continuous at \vec{a} iff $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = f(\vec{a})$.
- 3. SCC: f continuous at $\vec{a} \iff \forall (\vec{x}_k)_{k=1}^{\infty} \subseteq A \land \lim_{k \to \infty} = \vec{a} \implies \lim_{k \to \infty} f(\vec{x}_k) = f(\vec{a})$.
- 4. Component continuity: f is continuous at $\vec{a} \iff f_i$ is continuous at \vec{a} for all i.
- 5. Continuity example: Euclidean norm and polynomials are continuous.
- 6. Image & pre-image: $f(X) = \{\vec{y} \in \mathbb{R}^m : \exists \vec{x} \in X : f(\vec{x}) = \vec{y}\}, \ f^{-1}(Y) = \{\vec{x} \in A : f(\vec{x}) \in Y\}.$
- 7. $V \subseteq S$ is **open in** S if (1) $\exists U$ open and $V = U \cap S$ or (2) $\forall \vec{x} \in V : \exists B_r(\vec{x}) \cap S \subseteq V$.
- 8. f is continuous on $A \iff$ for all U open, $f^{-1}(U)$ is open in A.

EVT, IVT, Path-Connectedness

- 1. **EVT:** $K \neq \emptyset$ compact and f continuous $\implies \exists \vec{a}, \vec{b} \in K : \forall \vec{x} \in K : f(\vec{a}) \leq f(\vec{b}).$
- 2. **IVT:** $A \neq \emptyset$ connected and f continuous $\implies \forall y : f(\vec{a}) < y < f(\vec{b}) \Rightarrow \exists c \in A : f(c) = y.$
- 3. Path: $\varphi([0,1])$ is a path for $\vec{x}, \vec{y} \iff \varphi: [0,1] \to A, \varphi(0) = \vec{x}, \varphi(1) = \vec{y}, \varphi$ continuous.

- 4. Path-connected: there is a path between every distinct pair of points.
- 5. **Graph:** graph of $f:[a,b] \to \mathbb{R}$ is defined as $G = \{(x, f(x)) : x \in [a,b]\}.$
- 6. Function vs. Graph: $f:[a,b]\to\mathbb{R}$ is continuous iff the graph is path-connected in \mathbb{R}^2 .
- 7. The Topologist's Sine Curve is connected but not path-connected.
- 8. Given A, B non-empty and path-connected, $A \cap B \neq \emptyset \implies A \cup B$ path-connected.
- 9. An open and connected set is path-connected.

Convex Sets and Uniform Continuity

- 1. Convex: straight line between points inside the set: $\forall \vec{x}, \vec{y} \in X, \forall t \in [0,1] : \vec{x} + t(\vec{y} \vec{x}) \in X$.
- $2. \ \textbf{Uniform Continuity:} \ \forall \varepsilon > 0: \exists \delta > 0: \forall \vec{x}, \vec{y} \in A: \|\vec{x} \vec{y}\| < \delta \implies \|f(\vec{x}) f(\vec{y})\| < \varepsilon.$
- 3. Lipschitz: $\exists C \in \mathbb{R} : \forall \vec{x}, \vec{y} \in A : ||f(\vec{x}) f(\vec{y})|| < C||\vec{x} \vec{y}||$.
- 4. Caveat: Uniformly continuous f on compact K is NOT necessarily Lipschitz.
- 5. Matrix norm: $\forall \vec{x} \in \mathbb{R}^n : \forall A \in \mathbb{R}^{m \times n}, \exists M \in R : ||A\vec{x}|| \leq M \cdot ||\vec{x}||, \text{ where } M = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}.$

Application of Continuity

If f is continuous:

- 1. f preserves openness/closedsness: $f^{-1}(Y)$ is open/closed if Y is open/closed.
- 2. f preserves compactness: K is compact then f(K) is compact.
- 3. f preserves connectedness: $A \neq \emptyset$ is connected then f(A) is connected.
- 4. f preserves closed intervals: f maps closed intervals to closed intervals.
- 5. f preserves path-connectedness: $A \neq \emptyset$ path connected then f(A) is path-connected.
- 6. f boosts compactness: K is compact then f is uniformly continuous on K.

Derivatives and Differentiability: Formula

Let $A \subseteq \mathbb{R}^n$, $\vec{a} \in \operatorname{int}(A)$, $f: A \to \mathbb{R}^m$. Let $\{e_j: 1 \leq j \leq m\}$ be the standard basis on \mathbb{R}^m .

1. Directional derivative of f in the direction of \vec{u} at \vec{a} for some $||\vec{u}|| = 1$:

$$D_{ec{u}}f(ec{a}) := \lim_{h o 0}rac{f(ec{a}+hec{u})-f(ec{a})}{h}.$$

2. Partial derivative of f at \vec{a} :

$$rac{\partial f}{\partial x_j}(ec{a}) := D_{ec{e}_j}f(ec{a}) = \lim_{h o 0}rac{f(a_1,\ldots,a_j+h,\ldots,a_n)-f(a_1,\ldots,a_j,\ldots,a_n)}{h}.$$

3. f is **differentiable** at \vec{a} if there exists linear $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{ec{h}
ightarrowec{0}}rac{\|f(ec{a}+ec{h})-f(ec{a})-T(ec{h})\|}{\|ec{h}\|}=0.$$

We call T the derivative of f at \vec{a} .

- 4. Alternatively, f is **differentiable** at \vec{a} if there exists linear $T: \mathbb{R}^n \to \mathbb{R}^m$ and $r: A \to \mathbb{R}^m$ continuous at \vec{a} and $r(\vec{a}) = \vec{0}$, such that $f(\vec{x}) = f(\vec{a}) + T(\vec{x} \vec{a}) + r(\vec{x}) ||\vec{x} \vec{a}||$.
- 5. Jacobian matrix of f:

$$J = \left[egin{array}{ccc} rac{\partial f}{\partial x_1} & \cdots & rac{\partial f}{\partial x_n} \end{array}
ight] = \left[egin{array}{ccc} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{array}
ight] \implies J_{ij} = rac{\partial f_i}{\partial x_j}.$$

Derivatives and Differentiability: Results

Let $A \subseteq \mathbb{R}^n$, $\vec{a} \in \text{int}(A)$, $f: A \to \mathbb{R}^m$.

- 1. Derivative is unique.
- 2. Differentiability implies continuity.
- 3. $D_{\vec{u}}f(\vec{a})$ exists iff $D_{\vec{u}}f_i(\vec{a})$ exists for all i.
- 4. $\partial f/\partial x_j$ exists iff $\partial f_i/\partial x_j$ exists for all i.
- 5. f is differentiable at \vec{a} iff all components f_i are differentiable at \vec{a} .
- 6. If f is differentiable at \vec{a} , then all partials $\frac{\partial f_i}{\partial x_i}(\vec{a})$ exist.
- 7. If all partials exist on $B_r(\vec{a})$ and continuous at \vec{a} then f is differentiable at \vec{a} .