Bilhar N+1

Existem muitas variantes de jogos de bilhar. A UFFS (União Federal dos Fãs de Sinuca) resolveu desenvolver uma nova variante, denominada *N* + 1.

Essa variante consiste em, numa mesa de bilhar padrão, tacar a bola branca para acertá-la na bola mais próxima dela, dentre as *N* possíveis. O jogo é vencido pelo jogador que completar mais acertos após 50 jogadas.

Como a dificuldade do jogo está em descobrir qual das *N* bolas é a mais próxima da branca, sua tarefa é escrever um programa que ajude os juízes da partida.

Entrada

Existem vários casos de teste. A primeira linha contém um inteiro $\bf C$ que determina a quantidade de casos de teste que vem a seguir. Para cada caso de teste, a entrada começa com um inteiro $\bf N$ (1 \leq $\bf N$ \leq 50), que define o número de bolas disponíveis, além da branca. As próximas $\bf N$ + 1 linhas possuem dois inteiros, $\bf x$ e $\bf y$, separados por um espaço em branco, indicando a posição ($\bf x$, $\bf y$) das bolas no plano da mesa, uma bola por linha (0 < $\bf x$ < 1420 mm e 0 < $\bf y$ < 2840 mm). A primeira linha indica a posição da bola branca. As demais linhas indicam a posição das bolas 1, 2, 3, . . . , $\bf N$ -1, $\bf N$ nesta ordem.

Saída

Para cada caso de teste deve ser mostrada uma linha contendo apenas o número da bola que está mais próxima da branca. A margem de erro aceitável é de 0,01 mm. Havendo empate, deve-se mostrar aquela de menor número. Sempre finalize uma linha com o caractere nova linha (\n).

Exemplo de Entrada	Exemplo de Saída
3	1
1	2
30 60	2
900 1800	
2	
710 30	
710 2100	
710 1000	
3	
710 30	
710 2100	
510 1000	
910 1000	

Bactérias

Pietro Demazio é um terrorista italiano condenado que fugiu para o Brasil, onde conseguiu um disfarce trabalhando como programador de jogos. Em seu novo plano de destruição do planeta, Pietro desenvolveu um novo tipo de bactéria mortal, capaz de dizimar toda a população terrestre.

Durante 4 dias, Demazio criou colônias desses micro-organismos, mas ao fim do quarto dia, descobriu que o código genético das mesmas possuía um grave erro, que fazia com que as bactérias morressem depois de 4 dias de vida. Como a primeira colônia fora criada 3 dias atrás, ele rapidamente modificou o código genético delas (através de radiação), de modo que elas se reproduzissem todas os dias. Tal reprodução é assexuada, e é feita por bipartição (ou seja, uma bactéria gera exatamente outra bactéria por dia).

Assim, se Pietro criou 3 bactérias no dia 1, 4 no dia 2, 2 no dia 3 e 5 no dia 4, terá no total 14 bactérias ao final do quarto dia, quanto ele faz a mutação. Logo após tal mutação, elas se reproduzem, e aí teremos 28 bactérias. Como a primeira colônia (com 3 bactérias) morre ao final desse quarto dia, o número de bactérias no início do quinto dia é 25. Ao final do quinto dia, essas 25 se reproduzem, resultando em 50 bactérias. Mas como a segunda colônia (com 4 bactérias) morre ao final desse dia, no início do sexto dia tem-se 46 bactérias.

Demazio observa com atenção tal crescimento da população de bactérias, e já está planejando quando vai liberá-las para fazer o serviço. Para tal, ele precisa saber quantas bactérias existirão depois de um determinado número de dias. Ele pede a você que faça um programa que determine a quantidade de bactérias existentes depois de N dias, dadas as populações das 4 primeiras colônias.

Entrada

A entrada contém várias instâncias. Cada instância possui duas linhas. A primeira linha possui um inteiro N ($5 \le N \le 1.000.000.000$), representando o dia para o qual Pietro deseja saber a população de bactérias que ele terá. A segunda linha contém quatro inteiros a_1 , a_2 , a_3 , a_4 ($1 \le a_1$, a_2 , a_3 , $a_4 \le 1.000$), onde a_k representa a quantidade de bactérias criadas no dia k.

A entrada termina guando $\mathbf{N} = 0$.

Saída

Para cada instância na entrada, imprima uma linha contendo a quantidade de bactérias que Pietro terá no início do dia **N**. A resposta dada deve ser módulo 13371337.

Exemplo de Entrada	Exemplo de Saída
5 1 2 3 4 7 9 2 3 4 0	19 101

Fila do Banco

André, Bruno e Carlos são amigos a um bom tempo, e se tem uma coisa que eles sabem um sobre o outro é o quanto eles são pontuais. André é conhecido por ser sempre o último a chegar em um compromisso entre o três, e Carlos é sempre o primeiro. Bruno sempre chega antes de André, mas nunca antes de Carlos.

Chegou o fim do mês e os três precisam ir ao banco para pagar algumas contas. Contando com eles, há **N** pessoas na fila para usar o caixa. Sabendo o quanto eles são pontuais entre si, de quantas maneiras possíveis a fila do banco pode estar ordenada?

Lembre-se que as regras acima só se aplicam entre eles, por exemplo, Carlos sempre chega antes que Bruno e André, mas pode chegar depois de outras pessoas na fila. Duas ordenações de fila são consideradas diferentes se ao menos uma pessoa está em um lugar diferente nas duas ordenações.

Entrada

Haverá diversos casos de teste. Cada caso de teste inicia com um inteiro \mathbf{N} ($3 \le \mathbf{N} \le 10^5$), indicando o número de pessoas na fila, incluindo André, Bruno e Carlos.

O último caso de teste é indicado quando N = 0.

Saída

Para cada caso de teste imprima uma linha contendo um inteiro, representando o número de maneiras que a fila do banco pode estar ordenada. Como o resultado pode ser um valor muito alto, imprima o resultado com resto de divisão em 1000000009.

Exemplo de Entrada	Exemplo de Saída
3	1
4	4
5	20
10	604800
0	

Promoção

Dr Luis Cláudio, um sujeito antenado com as promoções oferecidas pelo supermercado VemQueTem, o qual fica próximo à sua residência, anda muito sorridente ultimamente. Descobriu-se que ele foi sorteado em uma promoção oferecida pelo supermercado. Nesta promoção, a pessoa poderia entrar no supermercado, sozinho, e levar todos os produtos que pudesse carregar. Porém, algumas regras foram estabelecidas.

- 1)Entrar sozinho
- 2) Apenas um produto de cada tipo pode ser levado
- 3)Uma lista L contendo os preços e pesos dos produtos deve ser seguida
- 4)Um peso P máximo foi estabelecido

Você foi contratado pelo vizinho curioso do Dr Luis Cláudio para descobrir qual o valor total em mercadorias que ele conseguiu levar para casa.

Entrada

A entrada consiste de **T** casos de testes. Cada caso de teste começa com um inteiro **N** ($1 \le N \le 100$) que indica o número de produtos da lista **L**. As **N** linhas seguintes são formadas por 2 inteiros **p** e **P**. O primeiro inteiro, **p** ($1 \le p \le 1000$), representa o preço do produto. O segundo inteiro **P**,($1 \le p \le 30$) representa o peso do produto. A próxima linha contém um inteiro **M**, que indica o peso máximo permitido. O fim da entrada é representado por um 0.

Saída

Para cada caso de teste imprima um inteiro que representa o total dos produtos que Dr Luis Cláudio conseguir levar para casa.

Exemplo de Entrada	Exemplo de Saída
4	94
72 17	72
44 23	
31 24	
22 2	
26	
3	
72 17	
44 23	
31 24	
25	
0	