Protein mechanical unfolding: importance of non-native interactions

Maksim Kouza¹, Chin-Kun Hu^{2,3}, Hoang Zung⁴ and Mai Suan Li¹

¹Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

²Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

³Center for Nonlinear and Complex Systems and Department of Physics, Chung Yuan Christian University, Chungli 32023, Taiwan

⁴Computational Physics Lab, Vietnam National University

Ho Chi Minh city, 227 Nguyen Van Cu, Dist. 5, Vietnam

ABSTRACT

Mechanical unfolding of the fourth domain of Distyostelium discoideum filamin (DDFLN4) was studied by all-atom molecular dynamics simulations, using the GROMOS96 force field 43a1 and the SPC explicit water solvent. Our study reveals an important role of non-native interactions in the unfolding process. Namely, the existence of a peak centered at the end-to-end extension $\Delta R \sim 22$ nm in the force-extension curve, is associated with breaking of non-native hydrogen bonds. Such a peak has been observed in experiments but not in Go models, where non-native interactions are neglected. We predict that an additional peak occurs at $\Delta R \sim 2$ nm using not only GROMOS96 force field 43a1 but also Amber 94 and OPLS force fields. This result would stimulate further experimental studies on elastic properties of DDFLN4.