

GATE 2012

- 1. abaabaaabaa
- aaaabaaaa
- baaaaabaaaab
- 4. baaaaabaa

(A) 1, 2 and 3

- (B) 2, 3 and 4
- (C) 1, 2 and 4
- (D) 1, 3 and 4
- Q.2 A deterministic finite automation (DFA) D with alphabet $\Sigma = \{a, b\}$ is given below

Which of the following finite state machine is a valid minimal DFA which accepts the same language as D?

GATE 2011

- Q.3 Let w be any string of length n is {0,1}*. Let L be the set of all substrings of w. What is the minimum number of states in a non-deterministic finite automaton that accepts L?
 GATE 2010
 - (A)n-1

(B) N

(C)n+1

(D)2n-1

- Q.4 Which one of the following languages over the alphabet $\{0,1\}$ is described by the regular expression: (0+1)*0(0+1)*0(0+1)*? GATE 2009
 - (A) The set of all strings containing the substring 00.
 - (B) The set of all strings containing at most two 0's.
 - (C) The set of all strings containing at least two 0's.
 - (D) The set of all strings that begin and end with either 0 or 1.
- Q.5 Which of the following statements is false?

GATE 2008

- (A) Every NFA can be converted to an equivalent DFA
- (B) Every non-deterministic Turing machine can be converted to an equivalent deterministic Turing machine
- (C) Every regular language is also a context-free language
- (D) Every subset of a recursively enumerable set is recursive
- Q.6 Given below are two finite state automata (→indicates the start state and F indicates a final state)

Y:

7.7	a	b
→1	1	2
2(F)	2	1

Z :

	a	b
→1	2	2
2(F)	31	1

Which of the following represents the product automaton $Z \times Y$?

GATE 2008

	100	а	b
	\rightarrow P	S	R
(A)	Q	R	S
	R(F)	Q	P
	S	Q	P

	a	b
\rightarrow P	S	Q
Q	R	S
R(F)	Q	P
S	P	Q
	Q	→P S Q R

	a	b
\rightarrow P	Q	S
Q	R	S
R(F)	Q	P
S	Q	P
	R(F)	→P Q Q R R(F) Q

		a	b
-	→P	S	Q
(D)	Q	S	R
	R(F)	Q	P
	S	Q	P

	and the state of t		
	(A) Every subset of a regular set is regular.		
	(B) Every finite subset of a non-regular set is reg	ular.	
	(C) The union of two non-regular sets is not regu	dar.	
	(D) Infinite union of finite sets is regular.		
Q.9	A minimum state deterministic finite automaton	accepting the language	GATE 2007
	L={w w ε {0,1} *, number of 0s and 1s in w ar	e divisible by 3 and 5, res	spectively} has
	(A) 15 states (B) 11 states	(C) 10 states	(D) 9 states
Q.10	Which of the following languages is regular?		GATE 2007
	(A) $\{ww^R \mid w \in \{0,1\}^+\}$	(B) $\{ww^R x \mid x, w \in \{0, \}\}$	1}*}
	(C) $\{wxw^{R} \mid x, w \in \{0,1\}^{+}\}$	(D) $\{xww^R \mid x, w \in \{0, \}\}$	1}+}
Q.11	Consider the following finite state automaton		GATE 2007
		(g),	
		a) b	
	b b /	a	
	\S 96		
	(41)	(42) b	

Q.12 Consider the automata given in previous question. The minimum state automaton equivalent to the

(C) b*a(a+b)*

(C) 3

The language accepted by this automaton is given by the regular expression

(B) (a+b)*

(B) 2

above FSA has the following number of states

GATE 2007

(D) b*ab*ab*

(D) 4

GATE 2007

Which of the following is TRUE?

(A) b*ab*ab*ab*

(A) 1

Q.8

