La présentation et la rédaction interviennent pour une part importante dans la notation.

Exercice I

Les questions sont totalement indépendantes.

1) Définitions et propriétés basiques :

Soit $f: \mathcal{D}$ réunion d'intervalles non réduits à un point $\to \mathbb{R}$ et $a \in \mathcal{D}$.

On considère les 3 propositions :

- 1) f est continue en a 2) f est dérivable en a 3) C_f admet une tangente non verticale en A(a, f(a))
 - a) Donner les définitions de 1) et 2).
 - b) Ecrire l'implication classique entre les propositions 1) et 2) et justifier que la réciproque est fausse.
 - c) Quel lien (implication, équivalence?) y-a-t-il entre 3) et l'une des 2 précédentes propositions?

Donner la pente de la tangente ainsi qu'une équation de celle-ci.

2) Continuité : retraiter l'exercice de cours prouvant qu'une fonction polynôme P de degré impair admet au moins une racine réelle.

3) Notion de dérivée :

Prouver que pour tout $n \in \mathbb{N}^*$ on a : $\lim_{x \to 0} x^n \sin \frac{1}{x} = 0$

(on se réfèrera 2 fois à ce résultat dans la suite **sans** être obligé de le **redémontrer** à chaque fois). Prouver que
$$f: x \mapsto \begin{cases} x^2 \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
 est
$$\begin{cases} \text{continue en 0} \\ \text{dérivable sur } \mathbb{R}^* & \text{et donner } f' \\ \text{dérivable aussi en 0 et préciser } f'(0). \end{cases}$$

4) Théorème de Rolle ; des accroissements finis ; quelques applications.

- a) (Re) justifier la proposition suivante : entre 2 zéros d'une fonction dérivable sur un intervalle, il y a au moins un zéro de sa dérivée.
 - b) Enoncer et démontrer le théorème des accroissement finis (avec un dessin l'illustrant).

c) Applications:

Soit $f: x \mapsto x^{\alpha}$ avec $0 < \alpha < 1$ et $n \in \mathbb{N}^*$.

Appliquer le théorème des accroissements finis à f sur [n, n+1], en justifiant.

En déduire :
$$\frac{\alpha}{(n+1)^{1-\alpha}} < (n+1)^{\alpha} - n^{\alpha} < \frac{\alpha}{(n)^{1-\alpha}}$$
.

d) Donner la **définition** de ce qu'est une fonction k-lipschitzienne sur $\mathcal{D} \subset \mathbb{R} \quad (k \in \mathbb{R}_+)$.

Enoncer le corollaire du T.A.F. donnant une condition suffisante classique pour qu'une fonction f:I intervalle de $\mathbb{R}\to\mathbb{R}$ **dérivable** soit k-lipschitzienne.

En déduire rapidement que sin ; arctan ; Argsh sont 1-lipschitziennes.

Exercice II

Soit
$$f: x \to \left(1 + \frac{1}{x}\right)^x = e^{u(x)}$$
 avec $u(x) = x \ln\left(1 + \frac{1}{x}\right)$

- 1) Donner l'ensemble de définition \mathcal{D}_u de u et \mathcal{D}_f de f.
- 2) Préciser l'ensemble de continuité et de dérivabilité de f.

Prouver que : $(\forall x \in \mathcal{D}_f)$ $\operatorname{sgn}(f'(x)) = \operatorname{sgn}(u'(x))$.

Etudier à son tour u' puis obtenir le signe de u' et en déduire finalement f' > 0 sur \mathcal{D}_f .

- 3) Etudier les limites de u aux 4 bornes de l'ensemble de définition.
- 4) Prouver que f est prolongeable par continuité en 0 et étudier la dérivabilité de celui-ci .
- 5) Donner le tableau de variation de f, ainsi que sa représentation graphique.

Exercice III

Ce dernier exercice consiste à choisir l'une des 2 questions suivantes, de nature bien différente, toutes 2 très courtes :

- 1) Prouver : $(\forall n \in \mathbb{N})(\forall x \in \mathbb{R}^+)$ $(1+x)^n \geqslant 1+nx$ (penser à utiliser le binôme de Newton).
- 2) Prouver que la condition suffisante, rappelée dans la dernière question du I), pour qu'une fonction soit k-lipschitzienne est en fait également nécessaire.