TC4503BP/TC4503BF HEX NON-INVERTING 3-STATE BUFFER

TC4503BP/BF contains six circuits of non-inverting buffers having three state output.

Since DISABLE inputs to disable the outputs are provided separately, one common for four circuits and another common for other two circuits, this is suitable for controlling four bit data lines.

Large output current enables to directly control one TTL input.

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	v
Input Voltage	v_{IN}	V _{SS} -0.5 ∿ V _{DD} +0.5	v
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	v
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	- 40 ∿ 85	°c
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

CIRCUIT DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE

DISABLE INPUT	INPUT	OUTPUT
L	L	L
L	Н	Н
Н	*	HZ

* : Don't care

HZ: High Impedance

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v _{DD}	-	3	-	18	
Input Voltage	v _{in}		0	_	v_{DD}	l V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTERISTIC SYMBO		SYMBOT	TEST CONDITION	V _{DD} (v)	-40°C		25°C			85°C		UNITS
		STEDUL	TEST CONDITION.		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNITS
High-Lev Output V		v _{OH}	I _{OUT} < 1μA V _{IN} =V _{SS} , V _{DD}	5 10 15	4.95 9.95 14.95			5.00 10.00 15.00	-	4.95 9.95 14.95	- - -	
Low-Leve Output V		VOL	I _{OUT} <1μΑ V _{IN} =V _{SS} , V _{DD}	5 10 15	- - -	0.05 0.05 0.05	- - -	0.00	0.05 0.05 0.05	- - -	0.05 0.05 0.05	V V
Output H	igh	ІОН	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} , V _{DD}	5 5 10 15	-1.16 -5.7 -3 -8		-1.02 -4.8 -2.6 -6.8	-2.4 -10.0 -5.5 -20.0	-	-0.7 -3.4 -1.9 -4.9	- - - -	-
Output L	ow	I _{OL}	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} , V _{DD}	5 10 15	2.5 6.4 18.9	-	2.1 5.5 16.1	3.8 9.8 37.8	- - -	1.4 3.9 11.4	-	mA.
Input Hi Voltage	gh	v _{IH}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1μA	5 10 15	3.5 7.0 11.0	-	3.5 7.0 11.0	2.75 5.5 8.25	-	3.5 7.0 11.0	-	
Input Lo	w	v_{IL}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1μA	5 10 15	1 1 1	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	
3-State 'Output I	"L" Level	IIL	V _{IL} =0V	18	_	-0.1	-	-10 ⁻⁵	-0.1	-	-1.0	
	"H" Level	I _{DH}	V _{OUT} =18V	18	-	0.4	-	10-4	0.4	-	12	
	"L" Level	IDL	V _{OUT} =0V	18	-	-0.4	-	-10-4	-0.4	-	-12	μA
Quiescent Device Co	t	I _{DD}	V _{IN} =V _{DD} , V _{SS}	5 10 1 5		1.0 2.0 4.0	1 1 1	0.002 0.004 0.008	1.0 2.0 4.0	1 1 1	30 60 120	Z.

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	tTLH		5 10 15	- - -	30 20 15	90 45 35	
Output Transition Time (High to Low)	t _{THL}		5 10 15	- - -	25 13 10	70 40 25	
Propagation Delay Time (IN - OUT)	t _{pLH}		5 10 15	- - -	45 25 20	150 70 50	
Propagation Delay Time (IN - OUT)	t _{pHL}		5 10 15	- - -	43 23 18	110 50 35	ns
Three State Disable Time (DISABLE - OUT)	t _{pHZ}	$R_L=1k\Omega$	5 10 15	- - -	50 30 25	140 60 50	lis
Three State Disable Time (DISABLE - OUT)	t _{pLZ}	R_L =1 $k\Omega$	5 10 15	- - -	60 35 30	140 60 50	
Three State Disable Time (DISABLE - OUT)	t _p ZH	R_L =1 $k\Omega$	5 10 15	-	65 35 30	130 50 40	
Three State Disable Time (DISABLE - OUT)	t _{pZL}	R _L =1kΩ	5 10 15	- - -	70 35 30	130 50 40	
Input Capacitance	CIN				7.5	15	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.