K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Oscillator Circuits

16th July, 2020 Numericals

Numerical 1: In a colpitt's Oscillator, amplifier components are $R_1 = 100k$, $R_2 = 18k$, $R_C = 12k$, $R_E = 1k$, $C_{C1} = 1\mu F$, $C_E = 150\mu F$, $C_{C2} = 1\mu F$, $V_{CC} = 10V$. Select the LC tank circuit such that frequency of oscillations is close to 90kHz.

BJT transistor: 2N2222

Also comment on the phase shift offered by LC Tank circuit.

Figure 1: Circuit 1

Solution:

Frequency of oscillations for a Colpitt's Oscillator is given as:

$$f_o = \frac{1}{2\pi\sqrt{C_{eq}L_3}}$$

Where,
$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

Let
$$L_3 = 1mH$$

Since we want the frequency of oscillations to be close to 90kHz

$$f_o \approx 90kHz$$

$$\therefore 90\times 10^3 = \frac{1}{2\pi\sqrt{10^{-3}\times C_{eq}}}$$

$$\therefore 10^{-3} \times C_{eq} = \frac{1}{(90 \times 10^3 \times 2\pi)^2}$$

$$\therefore C_{eq} = \frac{10^3}{(90 \times 10^3 \times 2\pi)} = 3.127 \text{nF}$$

Let
$$C_1 = C_2$$

$$\therefore C_1 = C_2 = 2 \times 3.127 nF = \mathbf{6.254nF}$$

Figure 2: Colpitt's Oscillator

Frequency of oscillations = 90kHz

∴ Time period of oscillations =
$$\frac{1}{f_o} = \frac{1}{90 \times 10^3} = 11.11 \mu sec$$

Feedback fraction (K) =
$$\frac{V_f}{V_o} = \frac{IX_{C2}}{IX_{C1}} = \frac{C_1}{C_2} = \frac{6.254 \times 10^{-9}}{6.254 \times 10^{-9}} = 1$$

Feedback fraction = 1

Phase shift provided by common emitter amplifier is 180° Phase shift provided by the LC tank circuit is 180° So the total phase shift of the entire circuit is 360° (or 0°) Thus, the total phase shift = 360° (or 0°)

SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:

Figure 3: Circuit Schematic

Figure 4: Output voltage waveform

Figure 5: Phase shift between output voltage and feedback voltage

Comparison between Theoretical and Simulated values:-

Parameters	Theoretical	Simulated
Frequency of oscillations (f_o)	90kHz	89.8176kHz
Time period of oscillations	$11.11\mu sec$	$11.13\mu sec$
Amplitude of oscillations		6.6783V
Feedback signal V_f amplitude	-> /	6.21274V
Feedback fraction	1	0.93
Phase shift offered by tank circuit	180°	180°

Table 1: Numerical 1

Numerical 2: In a colpitt's Oscillator, amplifier components are $R_1 = 100k$, $R_2 = 18k$, $R_C = 12k$, $R_E = 1k$, $C_{C1} = 1\mu F$, $C_E = 150\mu F$, $C_{C2} = 1\mu F$, $V_{CC} = 10V$. Select the LC tank circuit such that frequency of oscillations is close to 550kHz.

BJT transistor: 2N2222

Also comment on the phase shift offered by LC Tank circuit.

Figure 6: Circuit 2

Solution:

Frequency of oscillations for a Colpitt's Oscillator is given as:

$$f_o = \frac{1}{2\pi\sqrt{C_{eq}L_3}}$$

Where,
$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

Let
$$L_3 = 1\mu H$$

Since we want the frequency of oscillations to be close to 90kHz

 $f_o \approx 550kHz$

$$\therefore 550 \times 10^3 = \frac{1}{2\pi\sqrt{10^{-6} \times C_{eq}}}$$

$$\therefore 10^{-6} \times C_{eq} = \frac{1}{(550 \times 10^3 \times 2\pi)^2}$$

$$\therefore C_{eq} = \frac{10^6}{(90 \times 10^3 \times 2\pi)} = 83.73 \text{nF}$$

Let
$$C_1 = C_2$$

$$\therefore C_1 = C_2 = 2 \times 83.73nF =$$
167.47nF

Figure 7: Colpitt's Oscillator

Frequency of oscillations = 550kHz

∴ Time period of oscillations =
$$\frac{1}{f_o} = \frac{1}{550 \times 10^3} = 1.818 \mu \text{sec}$$

Feedback fraction (K) =
$$\frac{V_f}{V_o} = \frac{IX_{C2}}{IX_{C1}} = \frac{C_1}{C_2} = \frac{167.47 \times 10^{-9}}{167.47 \times 10^{-9}} = \mathbf{1}$$

Feedback fraction = 1

Phase shift provided by common emitter amplifier is 180°

Phase shift provided by the LC tank circuit is 180°

So the total phase shift of the entire circuit is 360°(or 0°)

Thus, the total phase shift = 360° (or 0°)

SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:

Figure 8: Circuit Schematic

Figure 9: Output voltage waveform

Figure 10: Phase shift between output voltage and feedback voltage

Comparison between Theoretical and Simulated values:-

Parameters	Theoretical	Simulated
Frequency of oscillations (f_o)	$550 \mathrm{kHz}$	546.779kHz
Time period of oscillations	$1.818\mu sec$	$1.828 \mu sec$
Amplitude of oscillations		3.5644V
Feedback signal V_f amplitude	-> \	3.5730V
Feedback fraction	1	1
Phase shift offered by tank circuit	180°	180°

Table 2: Numerical 2
