

3 - Frameworks 1 - Intro & Techstack 4 - Implementation 2 - The Dataset 5 - Live Demo! Intro & Techstack The Dataset Frameworks Implementation Live Demo!

The Project

capital bikeshare

- **Objective**: build a predictive model that estimates the number of bike rentals within a specified hour-long timeframe for Washington D.C.'s *Capital Bikeshare*.
- **Dataset**: multivariate time series data with different variables one would expect to impact the demand for bike-share rentals, largely environmental and seasonal factors.
- **Timeframe**: January 1st 2011 to December 31st 2012, broken down by hour (each row represents an hour).

What is Bike-sharing Anyways?

- For a small fee, users rent a bike for a short period of time, usually less than 30 minutes.
- Typically these take the form of private initiatives, though at least some degree of collaboration with municipal authorities is common.

Fun fact: as of this past July, Google Maps has started incorporating bike share stations in its route planner!

Historical Context: Luud Schimmelpennik

• Witkar: limited scale but proof of concept despite very rudimentary technology and no political backing.

Historical Context: Luud Schimmelpennik

- Following his significant role in launching Copenhagen's first bikesharing system in the late 1990s, Schimmelpennik subsequently played a prominent role in the successful implementation of the first such systems in Vienna and Lyon.
- The Game Changer: Schimmelpennik then went on to lead the development of the Vélib bike-sharing system in Paris, which went live in 2007. This was an unprecedented success that catalysed a significant increase in the number of bike-sharing programs across the globe.

Fun fact: Vélib" is a portmanteau of the words vélo ("bicycle") and liberté ("freedom")!

Why were we interested in this project specifically?

- A few main factors:
 - ➤ The sharing economy
 - Nature of bike-sharing systems as it relates to data analysis
 - ➤ Innovative approaches to urban form & design

The Dataset – Basic Info & Statistics

Dataset statistics

Number of variables	17
Number of observations	17379
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
	$\overline{}$

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
0	1	2011-01-01	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0000	3	13	16
1	2	2011-01-01	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0000	8	32	40
2	3	2011-01-01	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0000	5	27	32
3	4	2011-01-01	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0000	3	10	13

Imputing NAs

Dataset statistics

Number of variables	17
Number of observations	17379
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%

Where are our NAs?

There they are...

11

Imputing NAs

Imputing NAs

12

Bike rentals are lowest in spring

Bike rentals are low at the beginning and end of the year

Demand is high during the morning and evening rush hours

The rush hour effect is only observed on weekdays

accurate models will most likely account for all these simple observations

Dropping Features & Normalization

normalization of continous variables:

- fixing incorrect normalizations of temp & hum
- normalization of cnt (not necessary)

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

18

Data Partitioning

Key considerations:

- Multivariate time series data
 - observations in the dataset are not independent
 - scikit-learn's train_test_split does not resemble a situation in a production environment (model on past data to predict the future)
- Our approach:
 - initial train test split based on time

19

20

Data Partitioning

Cross Validation

Two approaches pursued: TimeSeriesSplit and KFold

Frameworks

Rationale

Sktime & Darts¹: to function properly with multivariate time series data we would have needed to edit our dataset (e.g. through concatenation and/or column ensembling); doing so was not necessary with the frameworks we did select.

TensorFlow: challenging to work with and beyond the scope of what was needed for this project.

¹Differentiable Architecture Search.

21

Modelling Approach:

- Dropping unsupported datetime (→11 input features)
- Cross validation and hyperparameter tuning:
 - TimeSeriesSplit
 - Implemented through cascaded for loops
 - Criterion: mean of Pseudo-R² of different hyperparameter combinations across folds

Applied Hyperparameters:

> maximum depth of each tree in the forest

Depth = 1

Depth = 2

Depth = 3

n_estimators = 300

> total number of trees in the forest

Intro & Techstack Frameworks **Implementation** Live Demo! The Dataset

Applied Hyperparameters:

max_features = 10

number of features considered when looking for the best split

max_leaf_nodes = 80

➤ maximum number of leaf nodes in each tree → limit tree growth

Summary and Results

CV		-		40			L
CV	-A	P	μ	ľU	d	C	

TimeSeriesSplit

Parameters				
max_depth	11			
n_estimators	300			
max_features	10			
max_leaf_nodes	80			

R ²	Pseudo-R ²
0.8979	0.8609

25

MLP Intro and Initialization of MLPRegressor

Mulitlayer Perceptron:

- "feedforward neural network"
- ≥ 3 layers (input, hidden(s), output)

Setting up the Model:

- Dropping unsupported datetime
 (→11 input features)
- MLPRegressor optimizes the squaredloss
- Solver: LBFGS (does not use learning rate)
- GridSearchCV

26

Applied Hyperparameters

activation function:

• Logistic vs. **Tanh** vs. ReLU

alpha:

- Regularization/penalty term that combats overfitting by constraining the size of the weights
- Alpha
 ¬ ⇒ weights
 □ ⇒ overfitting □
- Alpha = 0.1

27

Hyperparameters Applied

hidden layer size:

- 1 hidden layer
- 10 neurons
- Outperformed networks with 2 hidden layers & less neurons

Summary and Results

CV-Approach

(Stratified)KFold

Parameters				
activation	tanh			
alpha	0.1			
hidden layers	1			
number of neurons	10			

R ²	Pseudo-R ²
0.888642	0.835639

29

Gradient boosting on decision trees

Advantages:

- 1. Categorical feature support
- 2. Fast prediction
- 3. Improved accuracy

30

Model Training

Step 1: Prepare the dataset

Step 2: Use GridSearch to identify the best parameters

Parameters					
Depth	[6, 8, 10]				
Learning rate	[0.01, 0.05, 0.1, 0.2, 0.3]				
Iterations	[200, 400, 600, 800, 1000]				

Catboost parameters:

Depth: 6

Learning rate: 0.01

Iterations: 1000

Model Training

Step 3: Fit the model to our training set

CatBoost Regressor				
Loss function	RMSE			
Depth	6			
Learning rate	0.01			
Iterations	1000			
Od_type	Iter			
Od_wait	10			

fit() - parameters					
cat_features	Category variables				
eval_set	X_test, Y_test				

Overfitting detected after 362 iterations!

Model Training

Step 4: Predict the Y_test with the model

Outcome:

R ²	Pseudo-R ²
0.9497	0.9155

Wrap-up

- Same software foundation is key for successful collaborative work
- Different approaches to the same problem
- Finding the needle in the haystack -> Learn by doing!
- Regression was the best method for us

