Plastic deformation of a model glass induced by a local shear transformation

Nikolai V. Priezjev

Department of Mechanical and Materials Engineering

Wright State University

Movies, preprints @ http://www.wright.edu/~nikolai.priezjev/

APS March 3, 2015

N. V. Priezjev, "Plastic deformation of a model glass induced by a local shear transformation", *Physical Review E* **91**, 032412 (2015); "The effect of a reversible shear transformation on plastic deformation of an amorphous solid", *J. Phys.: Condens. Matter* **27**, 435002 (2015).

Time-dependent elastic response to a local shear transformation in 2D glass

Instantaneously strain circular inclusion into an ellipse (elementary plastic event in deformed glasses)

Long-time mean displacement field with quadrupolar symmetry

- 1. Long-time response averages out to continuum solution despite large fluctuations
- 2. A crossover from a propagative transmission in the case of weakly damped dynamics to a diffusive transmission for strong damping (large friction)

Details of molecular dynamics simulations and parameter values

Binary 3D Lennard-Jones Kob-Andersen mixture:

$$V_{LJ}(r) = 4\varepsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right]$$

Interaction parameters for $\alpha\beta = A$ and B particles:

$$\varepsilon_{AA} = 1.0, \, \varepsilon_{AB} = 1.5, \, \, \varepsilon_{BB} = 0.5, \, m_A = m_B, \, N_p = 10000$$

$$\sigma_{AA} = 1.0, \sigma_{AB} = 0.8, \ \sigma_{BB} = 0.88, \ \tau = \sigma_{AA} \sqrt{m_A/\varepsilon_{AA}}$$

Kob & Andersen, *Phys. Rev. E* **51**, 4626 (1995).

Monomer density: $\rho = \rho_A + \rho_B = 1.20 \, \sigma^{-3}$

Temperature: $T = 0.01 \ \epsilon/k_B \ll T_g = 0.45 \ \epsilon/k_B$

System dimensions: $20.27 \sigma \times 20.27 \sigma \times 20.27 \sigma$

Periodic boundary conditions $\Delta t_{MD} = 0.005 \, \tau$

Langevin dynamics
$$m\ddot{x}_i + m\Gamma\dot{x}_i = -\sum_{i\neq j} \frac{\partial V_{ij}}{\partial x_i} + f_i$$

Oscillatory shear strain: $\varepsilon(t) = \varepsilon_0 \sin(\pi t / \tau_i)$

Time scale of shear event: $|0 < t < \tau_i|$

$$0 < t < \tau_i$$

Plastic deformation after reversible shear event (averaged over 504 independent samples)

Friction coefficient Γ , duration of shear event τ_i

Snapshots of cage jump configurations for different strain amplitudes ε_o

With increasing strain amplitude ε_o , the number of cage jumps increases and they tend to aggregate into compact clusters.

Radial density profiles of cage jumps $\rho(r)$ for different strain amplitudes ε_o

The average density of cage jumps $\rho(r)$ becomes larger as the strain amplitude increases.

Radial density profiles of cage jumps $\rho(r)$ for different times of shear event τ_i

The density of cage jumps increases with increasing shear transformation time scale τ_i .

Radial density profiles of cage jumps $\rho(r)$ for different friction coefficients Γ

With decreasing friction coefficient, the density of cage jumps increases and it appears to saturate at small values of Γ .

Rescaled radial density profiles of cage jumps ρ for different τ_i and Γ

The density profiles can be made to collapse onto a master curve for different values of the friction coefficient Γ and the time scale of shear event τ_i .

Peak value of density profiles of cage jumps as a function of τ_i and Γ

Log-log contour plot of the maximum of density profiles of cage jumps.

Maximum of density profiles of cage jumps as a function of Γ/τ_i

For a given strain amplitude, the peak values of the cage density profiles collapse onto a master curve as a function of the ratio Γ/τ_i : constant to power-law decay with the slope -0.65.

Angular dependence of the density profiles of cage jumps

The angle is $\theta = 0^{\circ}$, 10° , 20° , 30° , 40° , 50° , 60° , 70° , 80° , 90° from top to bottom.

The probability distribution of cluster sizes of cage jumps

The strain amplitude is $\varepsilon_0 = 0.05$, 0.1, 0.15, 0.2, 0.3, and 0.4 from bottom to top.

Conclusions:

- Plastic deformation after <u>reversible local shear transformation</u> is studied using MD simulations of the binary 3D Lennard-Jones Kob-Andersen mixture.
- It was found that, in general, the density of irreversible cage jumps increases with increasing strain amplitude of the shear transformation.
- For a given strain amplitude ε_o , the density of cage jumps increases upon either increasing time scale of the shear event or decreasing friction coefficient.
- The peak values of the density profiles of cage jumps collapse onto master curves as a function of Γ/τ_i : crossover from constant to power-law decay $\rho_m \sim (\Gamma/\tau_i)^{-0.65}$.

$$ho_{\scriptscriptstyle m}
ightarrow rac{
ho_{\scriptscriptstyle m}}{arepsilon_{\scriptscriptstyle o}^{\scriptscriptstyle 5}}$$

N. V. Priezjev, "Plastic deformation of a model glass induced by a local shear transformation", *Physical Review E* **91**, 032412 (2015); "The effect of a reversible shear transformation on plastic deformation of an amorphous solid", *J. Phys.: Condens. Matter* **27**, 435002 (2015).

Numerical algorithm for detection of cage jumps

Numerical algorithm for detection of cage jumps:

Candelier, Dauchot, Biroli, *PRL* (2009).