Queuing Theory in Network Congestion Control

CPE 553: Advanced Networking

Introduction

- TCP is the backbone of internet data transfer
- Congestion control in TCP is critical for maintaining stability and performance
- Understanding queue behavior helps analyze throughput, latency, and loss [1]
- Objective:
 - Use queueing theory to model and analyze TCP congestion control behavior
 - Use M/M/1 queue

Figure 1. TCP congestion control and queuing theory in the fivelayer internet stack

Background

TCP Congestion Control

- Ensures the sender does not overwhelm the network
- Operates through several distinct states
 - Slow Start: cwnd grows exponentially until loss or sthresh is reached
 - Congestion Avoidance: cwnd grows linearly, until three duplicate ACKs or loss
 - Fast Recovery: pulls back on cwnd and sthresh, returns to congestion avoidance [2]
- Multiple flavors: TCP Tahoe, Reno, CUBIC, ...

Figure 2. Simplified State Transition Diagram for TCP Congestion Control

BackgroundTCP Congestion Control

TCP Tahoe	TCP Reno	TCP CUBIC
 Upon packet loss: cwnd = 1 ssthresh = cwnd / 2 Enters slow start after loss No fast recover mechanism Lost packet immediately retransmitted 	 Adds fast recovery state On 3 duplicate ACKs Retransmit lost segment ssthresh = cwnd / 2 cwnd = ssthresh Performs better than Tahoe under light/moderate packet loss Struggles with multiple losses per window 	 Replaced AIMD with cubic growth function cwnd increases rapidly when far from previous max cwnd slows down near max value Better utilization of high-bandwidth, high-latency networks More aggressive than Reno
	[3]	[4,5]

Background

Queuing Theory - M/M/1

- M/M/1 queue is a single-server queuing model
- Memoryless inter-arrival time / Memoryless service time / 1 server [6]
 - Arrival rate (λ): customers arrive according to Poisson process with average rate λ

$$T_a \sim \lambda e^{-\lambda t}; \ \mathbb{E}[T_a] = \frac{1}{\lambda}$$

• Service rate (μ) : service times are exponential distributed with average rate μ

$$T_s \sim \mu e^{-\mu t}; \ \mathbb{E}[T_s] = \frac{1}{\mu}$$

- FCFS
- TCP reacts to this by reducing sending rate (cwnd); like controlling λ

Figure 3. M/M/1 Queuing Model

System Modeling

- Event-driven simulation
- Arrival generate based on λ , controlled by TCP sending logic
- Service time for each packet based on μ , FIFO discipline at queue
- Dropped packet invokes TCP congestion control logic
- Metrics tracked: throughput, avg. latency, drop rate

Figure 4. System Modeling Diagram

Experiment Design

Variables:

$$\lambda := Arrival rate \in [5,20]$$

$$\mu := Service rate = 10$$

$$K :=$$
Queue size $\in [1,10]$

$$\theta := Deadline \in [0.1, 10]$$

$$N := \text{Packets sent} \in [50,500]$$

- Sweep one variable, hold rest constant
- Measure: throughput, average delay, loss rate
- All runs performed with same random seed

ResultsCongestion Control Sample

Figure 5. Sample cwnd vs time plot for TCP Tahoe and Reno

Figure 6. Sample cwnd vs time plot for TCP Cubic

Results - \(\lambda\) Sweep

Table 1. Loss Rate with Varying Arrival Rate

Loss Rate (%)	5	10	15
None	0.20	11.0	30.4
Tahoe	7.40	7.60	9.4
Reno	11.2	15.4	15.8
Cubic	5.40	5.00	4.60

Table 2. Throughput with Varying Arrival Rate

Throughput (P/sec)	5	10	15
None	4.793	8.467	9.838
Tahoe	8.429	9.589	9.289
Reno	8.485	9.652	9.109
Cubic	7.649	8.791	9.417

Constants: $\mu = 10$, K = 5, $\theta = 1$

Results - 1 Sweep

Results - K Sweep

Table 1. Loss Rate with Varying Arrival Rate

Loss Rate (%)	1	5	10
None	60.0	30.4	24.8
Tahoe	49.8	9.40	6.00
Reno	84.4	15.8	5.80
Cubic	9.20	4.60	5.80

Table 2. Throughput with Varying Arrival Rate

Throughput (P/sec)	1	5	10
None	5.679	9.838	10.635
Tahoe	6.072	9.289	9.708
Reno	5.769	9.110	9.527
Cubic	5.882	9.417	8.694

Constants: $\mu = 10$, $\lambda = 15$, $\theta = 1$

Conclusion

- Queuing theory provides a powerful insight to understand the effects of TCP congestion control, especially through M/M/1 modeling
- TCP congestion control algorithms regulate arrival rate (λ) via cwnd, directly influencing queue dynamics (delay, throughput, and loss)
- Simulation results showed:
 - TCP Tahoe: conservative and avoids losses but may underutilize the network
 - TCP Reno: better throughput at the cost of higher loss under congestion
 - TCP CUBIC: most robust performance, maintaining low loss rates and high throughput even at high arrival rates and small buffer sizes.

Conclusion

- Future work:
 - Implement M/M/c modeling to simulate multi-server scenarios
 - Run true random runs, perform statistical analysis
 - Implement more TCP congestion control algorithms

References

- [1] J. F. Kurose and K. W. Ross, "TCP Congestion Control," in *Computer Networking; A Top Down Approach*, 8th ed. Boston, MA, USA: Pearson, 2021, pp. 263-279.
- [2] V. Jacobson, "Congestion Avoidance and Control," *Proc. 1988 ACM SIGCOMM Conference* (Stanford, CA, Aug. 1988), pp. 314–329.
- [3] M. Allman, V. Paxson, W. Stevens, "TCP Congestion Control," RFC 2581, Apr. 1999.
- [4] Sangtae Ha, Injong Rhee, and Lisong Xu, "CUBIC: A New TCP-Friendly High-Speed TCP Variant," ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64–74, July 2008.
- [5] I. Rhee, L. Xu, S. Ha, A. Zimmermann, "CUBIC for Fast Long-Distance Networks," RFC 8312, Feb. 2018.
- [6] L. Kleinrock, Queueing Systems, Volume 1: Theory, New York, NY, USA: Wiley-Interscience, 1975.

Questions?

Backup Slides

TCP CUBIC

Congestion window function of time, defined as

$$W(t) = C(t - K)^3 + W_{max}$$

- W_{max} := window size before last loss event
- C := constant that determines aggressiveness of growth
- $K := ext{time at which window size will reach } W_{max} ext{ again}$
- K is computed such that

$$K = \sqrt[3]{\frac{W_{max} \cdot \beta}{C}}$$

- β := multiplicative decrease factor
- For simulations: C = 0.4, $\beta = 0.2$

Constants: $\mu = 10$, K = 5, $\theta = 1$

Full Results - 1 Sweep

Experiment	TCP Variant	λ (Arrival Rate)	Loss Rate (%)	Throughput	Avg Latency
E1.1.N	None	5	0.20%	4.7926	0.1421
E1.2.N	None	10	11.00%	8.4666	0.2492
E1.3.N	None	15	30.40%	9.8380	0.3336
E1.1.T	Tahoe	5	7.40%	8.4287	0.3417
E1.2.T	Tahoe	10	7.60%	9.5885	0.3495
E1.3.T	Tahoe	15	9.40%	9.2887	0.4055
E1.1.R	Reno	5	11.20%	8.4846	0.3423
E1.2.R	Reno	10	15.40%	9.6523	0.3617
E1.3.R	Reno	15	15.80%	9.1096	0.4348
E1.1.C	Cubic	5	5.40%	7.6487	0.3084
E1.2.C	Cubic	10	5.00%	8.7910	0.3424
E1.3.C	Cubic	15	4.60%	9.4172	0.3381

Constants: $\mu = 10$, $\lambda = 15$, $\theta = 1$

Full Results - K Sweep

Experiment	TCP Variant	Queue Size	Loss Rate (%)	Throughput	Avg Latency
E2.1.N	None	1	60.00%	5.6789	0.1024
E2.2.N	None	5	30.40%	9.8380	0.3336
E2.3.N	None	10	24.80%	10.6345	0.5872
E2.1.T	Tahoe	1	49.80%	6.0719	0.0963
E2.2.T	Tahoe	5	9.40%	9.2887	0.4055
E2.3.T	Tahoe	10	6.00%	9.7079	0.5409
E2.1.R	Reno	1	84.40%	5.7688	0.0957
E2.2.R	Reno	5	15.80%	9.1096	0.4348
E2.3.R	Reno	10	5.80%	9.5269	0.6602
E2.1.C	Cubic	1	9.20%	5.8817	0.0986
E2.2.C	Cubic	5	4.60%	9.4172	0.3381
E2.3.C	Cubic	10	5.80%	8.6935	0.4583

Constants: $\mu = 10$, $\lambda = 12$, K = 5

Full Results - \(\theta\) Sweep

Experiment	TCP Variant	θ	Loss Rate (%)	Throughput	Avg Latency
E3.1.N	None	0.1	11.00%	8.4666	0.2492
E3.2.N	None	1	11.00%	8.4666	0.2492
E3.3.N	None	10	11.00%	8.4666	0.2492
E3.1.T	Tahoe	0.1	7.60%	9.5885	0.3495
E3.2.T	Tahoe	1	7.60%	9.5885	0.3495
E3.3.T	Tahoe	10	7.60%	9.5885	0.3495
E3.1.R	Reno	0.1	15.40%	9.6523	0.3617
E3.2.R	Reno	1	15.40%	9.6523	0.3617
E3.3.R	Reno	10	15.40%	9.6523	0.3617
E3.1.C	Cubic	0.1	5.00%	8.7910	0.3424
E3.2.C	Cubic	1	5.00%	8.7910	0.3424
E3.3.C	Cubic	10	5.00%	8.7910	0.3424

Constants: $\mu = 10$, $\lambda = 10$, $K = 5, \theta = 1$

Full Results - N Sweep

Experiment	TCP Variant	N	Loss Rate (%)	Throughput	Avg Latency
E4.1.N	None	50	6.00%	7.8196	0.2322
E4.2.N	None	300	14.67%	7.9411	0.3060
E4.3.N	None	1000	16.40%	8.1908	0.2975
E4.1.T	Tahoe	50	10.00%	7.3757	0.3213
E4.2.T	Tahoe	300	8.00%	8.8071	0.3743
E4.3.T	Tahoe	1000	7.60%	9.3578	0.3636
E4.1.R	Reno	50	10.00%	7.7302	0.3675
E4.2.R	Reno	300	12.33%	8.6186	0.4079
E4.3.R	Reno	1000	16.00%	9.3526	0.3862
E4.1.C	Cubic	50	4.00%	7.0840	0.2064
E4.2.C	Cubic	300	4.67%	8.2553	0.3378
E4.3.C	Cubic	1000	4.90%	8.8385	0.3412

Constants: $\mu = 10$, $\lambda = 15$, $K = 5, \theta = 1$

Full Results - $\theta \sim \text{Exp}(\theta)$

Experiment	TCP Variant	is_exp_drop	Loss Rate (%)	Throughput	Avg Latency
E5.1.N	None	TRUE	39.80%	8.7580	0.3085
E5.2.N	None	FALSE	30.40%	9.8380	0.3336
E5.1.T	Tahoe	TRUE	9.40%	9.2887	0.4055
E5.2.T	Tahoe	FALSE	9.40%	9.2887	0.4055
E5.1.R	Reno	TRUE	15.80%	9.1096	0.4348
E5.2.R	Reno	FALSE	15.80%	9.1096	0.4348
E5.1.C	Cubic	TRUE	4.60%	9.4172	0.3381
E5.2.C	Cubic	FALSE	4.60%	9.4172	0.3381