Universitatea Politehnica București Facultatea de Automatică și Calculatoare

Documentul de Proiectare a Soluției Aplicației Software - Software Design Document - COVID INFERENCE

Membrii echipei:

Îndrumător:

Cimbir Luciana 341C1

Badea Dan Gabriel 343C2

Manea Andrei 343C2

Monea Damian 343C2

Negru Mihai Vlad 343C2

Roșianu Sergiu Constantin 343C2

Laura Antonache

CUPRINS

1.	Sco	opul documentului	3
2.	Ob	oiective	3
3.	Со	nținutul documentului	3
4.	Mo	odelul datelor	3
4	1.1.	Structuri de date globale	3
4	1.2.	Structuri de date de legătura	3
4	1.3.	Structuri de date temporare	4
4	1.4.	Formatul fișierelor utilizate	4
5.	Mo	odelul arhitectural	4
į	5.1	Diagrama Arhitecturala	4
6.	Mo	odelul interfeței cu utilizatorul	5
7.	Ele	ementele de testare	5

1. Scopul documentului

Acest document are rolul de a descrie detaliat soluția proiectata pentru detectarea șansei de infectare cu COVID a pacienților folosind informațiile medicale primite de la aceștia.

Documentul oferă o imagine de ansamblu asupra structurii, componentelor sistemului software, legăturii intre componentele arhitecturale cât și a modului de utilizare al soft-ului.

2. Objective

- Vizualizarea evoluției proiectului de la faza de început până la faza finală.
- Evaluarea schimbării principiilor în funcție de problemele intervenite pe parcursul dezvoltării produsului.
- Analiza modelului arhitectural.
- Analiza performantelor.

3. Conținutul documentului

Documentul conține patru părți:

- Modelul datelor- cuprinde structurile de date folosite in implementare
- Modelul arhitectural si modelul componentelor cuprinde descrierea componentelor arhitecturale precum si întreaga arhitectura a sistemului
- Modelul interfața cu utilizatorul cuprinde descrierea interfeței cu utilizatorul
- Elemente de testare contine o serie de orientări de testare

4. Modelul datelor

4.1.Structuri de date globale

• **Simptom_dict**: dictionarul de simptome, folosit in parsarea datelor.

4.2. Structuri de date de legătura

- Se foloseste un fisier de configurare(**config.json**), care contine modul de rulare si path-ul catre dataset-ul de antrenare.
- Pentru citirea datelor din fisierul de intrare se foloseste un obiect de tip **DataFrame** (din biblioteca **Pandas**). Acesta este folosit in interiorul clientului si trimis mai departe catre server prin intermediul unui **JSON Array.**

4.3. Structuri de date temporare

• Aplicatia foloseste un dictionar in care pastreaza feature-urile, fiind util in antrenarea modelului.

4.4. Formatul fișierelor utilizate

- Aplicatia foloseste fisiere in format .py, ce implementeaza functionalitatile aplicatiei.
- Pentru fisierul de input se folosesc fisiere in format .xls.
- Aplicatia pastreaza un fisier cu date de configurare, in format .json.

5. Modelul arhitectural

Arhitectura sistemului nostru de inferenta este bazata pe indeplinirea a trei obiective: primul este de a parsa set-ul de date pentru obtinerea unor date mult mai "curate" si mai usor de utilizat si impartirea acestora in date de invatare si date de testare, al doilea este de a utiliza datele parsate pentru a putea antrena un algoritm ce ofera ca rezultat probabilitatea infectarii cu COVID si al treilea obiectiv este de a include functiile proiectului si in principal cea de inferenta intr-o componenta software de tip API.

Arhitectura folosita in aceasta aplicatie este una de tip back-end - api client. In cadrul acestei aplicatii componenta back-end returneaza pe baza unei retele neurale antrenate si a unui set de date trimis, probabilitatea de infectare cu COVID. Partea de client api ofera o interfata cu ajutorul careia utilizatorul poate printr-un set de date furnizat sa obtina probabilitatea de infectare.

5.1 Diagrama Arhitecturala

5.2 Descriere Componente

Aplicația constă din următoarele module interconectate:

Client

- Modulul Client API Trimite un json Array către modulul serverului
- Modulul REST API Interfața pentru comunicarea client-server
- **Modulul Logic** Este responsabil de coordonarea celorlalte module astfel încât rezultatele rulării lor să reflecte logica de baza a aplicației.

Server:

- Modulul REST API Interfața pentru comunicarea client-server
- **Modulul Procesare XML** Este responsabil de operațiile ce vizează direct fișierele XML, precum operații de validare, parsare, creare și editare de fișiere XML.
- **Modulul Logic** Este responsabil de coordonarea celorlalte module astfel încât rezultatele rulării lor să reflecte logica de baza a aplicației.
- **Modulul Inferenta** Primeste json Array-ul ce trebuie parcurs si returneaza inferenta sansei de infectare cu COVID
- Modulul Raportare Este responsabil cu exploatarea informațiilor primite în vederea generării de statistici, analize și predicții medicale. De asemenea trimite catre client json array-ul cu raspunsul.

6. Modelul interfeței cu utilizatorul

Modelul presupune un REST API Client Server prin care sunt publicate date in server, acesta se ocupa prin modulul de parsarea si antrenare a datelor care la final va transmite catre Client un JSON ARRAY cu predictiile oferite pentru toti pacientii primiti.

7. Elementele de testare

7.1 Componente Critice

Performanța modulului de Procesare XML are o influență decisivă asupra performanței globale a aplicației, alături de performanța API-ului utilizat. Astfel, viteza de procesare a documentelor XML și transmiterea datelor prin rețea între componente sunt principalele părți ce influențează performanța soluției noastre software.

7.2 Alternative

Se poate utiliza un parser implementat de catre un third-party care este specializat in documente medicale. În vederea scăderii timpilor de rețea, se pot utiliza algoritmi eficienți de comprimare a informațiilor transmise pe rețea.