Title: MUCLEIC ACID AMPLIFICATION First tor: Mark G. ERLANDER et al App. No.: 10/062,857 - Filed: 10/25/01

Docket No. 485772002900

Title: MUCLEIC ACID AMPLIFICATION First Later: Mark G. ERLANDER et al Application No.: 10/062,857 - Filed: 10/25/01 Docket No. 485772002900

Sheet 2 of 8

Title: NUCLEIC ACID AMPLIFICATION Mark G. ERLANDER et al Application No.: 10/062,857 - Filed: 10/25/01 Docket No. 485772002900

Sheet 3 of 8

Title: NUCLEIC ACID AMPLIFICATION Fix entor: Mark G. ERLANDER et al Ap___ation No.: 10/002,02 Docket No. 485772002900 tion No.: 10/062,857 - Filed: 10/25/01

Sheet 4 of 8

	71	12 Will Knason, will rilliel, ias arone
_	13	with RNaseH, with Primer, Sequonase alone
_	14	with RNaseH, with Primer, Sequenase alone
_	15	with RNascH, with Primer, regular Klenow alone
·	16	with RNaseH, with Primer, regular Klenow alone
T	11	with RNasoH, with Primer, regular Klenow and Tag
1	18	with RhaseH, with Primer, regular Klenow and Taq
т-	19	with RNaseH, with Primer, Reverse Transcriptase alone
T	2	with RNaseH, with Primer, Reverse Transcriptase alone
_	24	endogenous priming with DNA Pol1, Ligase and RNaseH
1	a	endogenous priming with DNA Pol1, Ligase and RNaseH
1		

with RNaseH, with Primer, Exo-Klenow and Tag with RNaseH, with Primer, Exo-Klenow and Tag

with RNaseH, with Primer, Exo-Klenow alone with RNaseH, with Primer, Exo-Klenow alone Title: NUCLEIC ACID AMPLIFICATION Fine entor: Mark G. ERLANDER et al Application No.: 10/062,857 - Filed: 10/25/01 Docket No. 485772002900

Sheet 5 of 8

Figure 2B:Yiel	fields From Exogenous Priming of 2nd Strand Synthesis Using Different Enzymes	g Different Enzymes
SAMPLES	Condition Tested	ug of amplified RNA
-	no RNaseH, no Primer, Exo-Klenow and Taq	3.6
2		3.4
3	no RNaseH, with Primer, Exo-Klenow and Taq	15.5
4		19.2
2	with RNaseH, no Primer, Exo-Klenow and Tag	3.4
9		3.0
7	with RNaseH, with Primer, Exo-Klenow and Tag	16.9
8		17.5
6	with RNaseH, with Primer, Exo-Klenow alone	18.7
10		16.8
11	with RNaseH, with Primer, Tag alone	2.8
12		3.6
13	with RNaseH, with Primer, Sequenase alone	9.0
14		10.4
15	with RNaseH, with Primer, regular Klenow alone	16.0
16		15.2
17	with RNaseH, with Primer, regular Klenow and Taq	13.7
18		15.2
19 1	with RNaseH, with Primer, Reverse Transcriptase alone	7.2
20		6.5
21 Eberwine1	endogenous priming method with DNA Pol1, Ligase and RNaseH	10.2
22 Eberwine2		11.7

Title: NUCLEIC ACID AMPLIFICATION entor: Mark G. ERLANDER et al tion No.: 10/062,857 - Filed: 10/25/01 Ap. Aion No.: 10/002,03 Docket No. 485772002900

Sheet 6 of 8

	Times of Commarison of Vields and Fold Amplification	nolifcation		
	rigule to: Colling and all grants			
SAMPLES	Condition Tested	ave (ug)	fold diff vs GH	est. fold amp*
Γ				474
-	no RNaseH, no Primer, Exo-Klenow and Taq	3.5	0.3	
2				BEE
	no RNaseH, with Primer, Exo-Klenow and Taq	17.3	1.0	8
			C	150
5	with RNaseH, no Primer, Exo-Klenow and Taq	3.2	0.3	2
9		1		288
7	with RNaseH, with Primer, Exo-Klenow and Tag	7.71	0.	8
8				288
6	with RNaseH, with Primer, Exo-Klenow alone	17.7	1.0	00
10		,		161
11	with RNaseH, with Primer, Taq alone	3.2	0.3	
12				
13	with RNaseH, with Primer, Sequenase alone	9.7	0.0	400
14				ļ
15	with RNaseH, with Primer, regular Klenow alone	15.6	1.4	0//
16			,	707
17	with RNaseH, with Primer, regular Klenow and Tag	14.4	5.	
18				240
19	with RNaseH, with Primer, Reverse Transcriptase alone	0.0	0.0	9
20				
21 Eberwine1	endogenous priming method with DNA Pol1, Ligase and RNaseH	11.0	1.0	040
22 Fherwine2				

where 0.020 μg is an estimate based on the assumption that 2% of 1 μg *fold-amplification calculated as follows: (final μg yield)/(0.020 μg) of total RNA (the amount of starting material) is poly(A) RNA

Title: NUCLEIC ACID AMPLIFICATION First In Pr.: Mark G. ERLANDER et al Applica. No.: 10/062,857 - Filed: 10/25/01

Docket No. 485772002900

Sheet 7 of 8

Figure 3A:

Title: NUCLEIC ACID AMPLIFICATION ventor: Mark G. ERLANDER et al

Ap. Lation No.: 10/062,857 - Filed: 10/25/01 Docket No. 485772002900

Sheet 8 of 8

Total RNA			conc (ng/ml)	yield
10 ng	-	Eberwine method	1860	101.0
10 ng	2	Eberwine method	1800	97.4
2 ng	3	Eberwine method	448	26.9
2 ng	4	Eberwine method	439	26.3
10 ng	5	exo-klenow + taq with t7a1	946	46.2
10 ng	9	exo-klenow + taq with t7a1	945	46.1
2 ng	7	exo-klenow + taq with t7a1	518	20.5
2 ng	8	exo-klenow + tag with t7a1	464	17.2
10 ng	6	exo-klenow + taq with t7a1dt	1700	91.4
10 ng	10	exo-klenow + taq with t7a1dt	1825	6.86
2 ng	11	exo-klenow + taq with t7a1dt	2400	144.0
2 ng	12	exo-klenow + taq with t7a1dt	648	38.9
10 ng	13	regular klenow + taq with t7a1	780	36.2
10 ng	14	regular klenow + taq with t7a1	808	37.9
2 ng	15	regular klenow + taq with t7a1	313	8.2
2 ng	16	regular klenow + taq with t7a1	298	7.3
	•			