УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Андрија Д. Урошевић

ХОМОТОПНА ТЕОРИЈА ТИПОВА

мастер рад

Ментор:

др Сана Стојановић-Ђурћевић, доцент Универзитет у Београду, Математички факултет

Чланови комисије:

др Филип Марић, редовни професор Универзитет у Београду, Математички факултет

др Лаза Лазић, доцент Универзитет у Београду, Математички факултет

Датум одбране: 29. фебруар 2024.

Наслов мастер рада: Хомотопна теорија типова

Резиме: Homotopy Type Theory/Univalent Foundations (HoTT/UF) is a revolutionary approach to the foundation of mathematics. Although it's revolutionary, HoTT/UF is very slowly gaining popularity among a broader circle of mathematicians and computer scientists. One of the reasons is that during formalization one requires both theoretical knowledge and proof-assistance skills. Acquiring those prerequisites is partially based on one's background. Mathematicians lack functional programming skills, on the other hand, computer scientists lack theoretical knowledge. A few materials tackle both areas, but they are lacking interactability. This thesis proposes a material that formalizes one theoretical area of HoTT/UF in Agda and is doing so while interacting with the user input.

Кључне речи: хомотопна теорија типова, интерактивно доказивање, агда

Садржај

1	Увс	од	2
2	Инт	гуиционистичка теорија типова	4
	2.1	Правила закључивања	5
	2.2	Зависни типови	6
	2.3	Типови зависних функција	7
	2.4	Индуктивни типови	8
	2.5	Искази као типови	16
	2.6	Хијерархија универзума и универзум типови	17
	2.7	Типови идентитети	18
	2.8	Ekvivalentnosti	20
	2.9	Aksioma univalentnosti	20
3	Агд	ga e e e e e e e e e e e e e e e e e e e	21
4	4 Закључак		22

Глава 1

Увод

- Хомотопна теорија типова = интуиционистичка теорија типова + високи индуктивни типови + аксиома унивалентности.
- Пер Мартин-Луф теорија типова се заснива на интиуционистичком програму који је настао по Брауверу.
- Математичко резтоновање је људска активност и математика је језик у коме се математичке идеје преносе.
- Фундаментална људска активност.
- Конструктивна теорија је *доказно релеваншна*, тј. доказ је математички објекат као и сваки други.
- Тврђења можемо интерпретирати као типове, те ће доказ представљати $\bar{u}posepy~\bar{w}u\bar{u}a$, тј. конструисање терма одређеног типа. (Јако битна уврнута идеја)
- Запажање: Хомотопна тероја и теорија типова представљају исту ствар.
- Хомотопна теорија се бави непрекидним пресликавањима која су *хомо-шойна* између себе, тј. могу се "непрекидно деформисати" једна у друге.
- Тројство израчуњивости: Програмерска интерпретација, хомотопна интерпретација и логичка интерпретација.
- Типско расуђивање t: T читамо као t је терм типа T или терм t настањује T. У програмерској интерпретацији тип представља тип, док терм

неког типа представља израз тог типа. У хомотопној интерпретацији тип представља простор, док терм неког типа представља тачку у том простору.

- Пример јединичног типа 1: јединични (unit у програмерском смислу), јединствени (The у логичком смислу), и контрактибилни (у хомотопном смислу) тип.
- Интенционални и екстенционални типови? (нешто чуно, проучити)
- Раселов парадокс као мотивација за теорију типова.

Глава 2

Интуиционистичка теорија типова

Интуиционистичка теорија типова или Пер Мартин-Луф теорија типова је математичка теорија конструкција. Тип представља врсту конструкције. Елемент, терм или тачка представља резултат конструкције неког типа. Прецизније, елемент a типа A записујемо као a:A, и кажемо да елемент a настањује тип A. Битно је напоменути да терм не може да "живи самостално" тј. терм увек мора да настањује неки тип.

Конструкција типова се састоји из низа дедуктивних *фравила закључи-вања*. Правило закључивања записујемо као

$$\frac{\mathcal{H}_1 \qquad \mathcal{H}_2 \qquad \dots \qquad \mathcal{H}_n}{\mathcal{C}}$$

где расуђивања $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_n$ називамо \bar{u} ремисе или $xu\bar{u}o\bar{w}$ езе, а расуђивање \mathcal{C} називамо sakручак.

Дефиниција 2.0.1. Свако *расуђивање* је облика $\Gamma \vdash \mathcal{J}$, где је Γ *кон\overline{w}екс\overline{w} и \mathcal{J} \overline{w}еза расуђивања.*

Дефиниција 2.0.2. *Коншексш расуђивања* је коначна листа узајамно зависних променљивих декларисаних на следећи начин

$$x_1: A_1, x_2: A_2(x_1), \ldots, x_n: A_n(x_1, \ldots, x_{n-1}),$$

под условом да за свако $1 \leq k \leq n$ можемо да изведемо расуђивање

$$x_1: A_1, x_2: A_2(x_1), \dots, x_{k-1}: A_{k-1}(x_1, \dots, x_{k-2}) \vdash A_k(x_1, x_2, \dots, x_{k-1}).$$

Дефиниција 2.0.3. *Теза расуђивања* може имати четири врсте расуђивања и то су:

(i) A је $(go\delta po-\phi op \mu up a h)$ $\overline{u}u\overline{u}$ у контексту Γ

$$\Gamma \vdash A \text{ type}$$

(ii) A и B су расуђивачки једнаки \overline{w} и \overline{u} ови у контексту Γ

$$\Gamma \vdash A \equiv B \text{ type}$$

(iii) a је eлемен \overline{w} типа A у контексту Γ

$$\Gamma \vdash a : A$$

(iv) a и b су $pacy\hbar uвачки <math>jeghaku$ елемен $\overline{u}u$ типа A у контексту Γ

$$\Gamma \vdash a \equiv_A b : A$$

2.1 Правила закључивања

Интуиционистичка теорија типова, као и други математички формализми, захтева скуп правила закључивања на којима ће се формализам заснивати. Та правила називамо $c\overline{w}pyk\overline{w}ypha$ $\overline{w}paeuna$.

Пример структурних правила закључивања која описују да је расуђивачка једнакост релација еквиваленције:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \equiv A \text{ type}} \quad \frac{\Gamma \vdash A \equiv A' \text{ type}}{\Gamma \vdash A' \equiv A \text{ type}} \quad \frac{\Gamma \vdash A \equiv A' \text{ type}}{\Gamma \vdash A \equiv A'' \text{ type}} \quad \frac{\Gamma \vdash A \equiv A'' \text{ type}}{\Gamma \vdash A \equiv A'' \text{ type}}$$

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a \equiv_A a : A} \quad \frac{\Gamma \vdash a \equiv_A a' : A}{\Gamma \vdash a' \equiv_A a : A} \quad \frac{\Gamma \vdash a \equiv_A a' : A}{\Gamma \vdash a \equiv_A a'' : A}$$

Исцрпна листа структурних правила закључивања у интуиционистичкој теорији типова се може наћи у [rijke2022intro]. Da li sada ovo raspisivati?

2.2 Зависни типови

Из дефиниције контекста можемо видети да неки типови могу зависити од неких термова. На пример, тип $A_2(x_1)$ зависи од терма $x_1:A_1$, тј. за разне термове $x_1:A_1$ имамо разне типове $A_2(x_1)$. Ову идеју можемо уопштити помоћу следећих дефиниција:

Дефиниција 2.2.1. Нека је тип A у контексту Γ . Φ амилија типова над A у контексту Γ је тип B(x) у контексту $\Gamma, x : A$, тј.

$$\Gamma, x : A \vdash B(x)$$
 type.

Кажемо да је B фамилија типова над A у контексту Γ . Алтернативно, кажемо да је B(x) тип индексиран са x:A у контексту Γ .

Дефиниција 2.2.2. Нека је B фамилија типова над A у контексту Γ . Ceкција фамилије B над типом A у контексту Γ је елемент типа B(x) у контексту $\Gamma, x : A, \tau$ ј.

$$\Gamma, x : A \vdash b(x) : B(x).$$

Кажемо да је b секција фамилије B над A у контексту Γ . Алтернативно, кажемо да да је b(x) елемент типа B(x) индексиран са x:A у контексту $\Gamma, x:A$.

Дефиниција 2.2.3. Нека је B фамилија типова над A у контексту Γ , и нека је a:A. Кажемо да је B[a/x] влакно од B за параметар a, где B[a/x] представља замену свих појављивања x у B са a. Нит од B за параметар a крађе записујемо као B(a).

Дефиниција 2.2.4. Нека је b секција фамилије типова B над A у контексту Γ . Кажемо да је b[a/x] вреднос \overline{u} од b за параметар a, где b[a/x] представља замену свих појављивања x у b са a. Такође, вредност од b за параметар a крађе записујемо као b(a).

2.3 Типови зависних функција

У математици заснованој на теорији скупова функција $f:A\to B$ дефинисана је над одређеним доменом A и кодоменом B. У теорији типова то не мора да буде случај, тј. кодомен може зависити од елемента над којим се функција примељује. Прецизније, посматрајмо секцију b фамилије типова B над A у контексту Γ . Један начин је да b посматрамо као функцију mapstob(x). Тада b(x) настањује тип B(x) који зависи од x:A. Због тога за разне елементе x:A домена имамо разне кодомене, те има смисла говорити о типу abuchux byhkuja $\prod_{(x:A)} B(x)$.

Спецификација типа зависних функција $\prod_{(x:A)} B(x)$ је дата следећим правилима закључивања:

$$\begin{array}{c|c} & & & & \prod \text{-introl} \\ \hline \Gamma, x: A \vdash B(x) \text{ type} \\ \hline \Gamma \vdash \prod_{(x:A)} B(x) \text{ type} \end{array} \qquad \begin{array}{c} & & \prod \text{-introl} \\ \hline \Gamma, x: A \vdash b(x): B(x) \\ \hline \Gamma \vdash \lambda x. b(x): \prod_{(x:A)} B(x) \end{array} \qquad \begin{array}{c} & \prod \text{-elim} \\ \hline \Gamma \vdash f: \prod_{(x:A)} B(x) \\ \hline \Gamma, x: A \vdash f(x): B(x) \end{array}$$

$$\frac{[\prod\text{-comp}_1]}{\Gamma, x : A \vdash b(x) : B(x)} \qquad \frac{[\prod\text{-comp}_2]}{\Gamma \vdash f : \prod_{(x:A)} B(x)}$$
$$\frac{\Gamma \vdash (\lambda y. b(y))(x) \equiv b(x) : B(x)}{\Gamma \vdash \lambda x. f(x) \equiv f : \prod_{(x:A)} B(x)}$$

Специјалан случај типа зависних функција је тип (уобичајених) ϕy нкција $A \to B$. Уколико су типови A и B у контексту Γ , тј. тип B не зависи од елемената типа A, тада $\prod_{(x:A)} B$ представља тип (уобичајених) функција.

Дефиниција 2.3.1. Тип (уобичајених) *функција* $A \to B$ дефинишемо као:

$$A \to B := \prod_{(x:A)} B.$$

Ако је $f: A \to B$ функција, тада је A домен, а B кодомен функције f.

Дефиниција 2.3.2. За сваки тип A дефинишемо $\phi y + \kappa u u j y u g e + \overline{u} u \overline{w} e \overline{w} a i d_A : A \to A$ као $i d_A : \equiv \lambda x. x.$

Дефиниција 2.3.3. За свака три типа A, B, и C дефинишемо ком \bar{u} озицију сомр : $(B \to C) \to (A \to B) \to A \to C$ као сомр : $\equiv \lambda g.\lambda f.\lambda g(f(x))$.

Може се показати да је композиција асоцијативна, као и да је функција идентитета неутрал за композицију функција. Због сагласности типова имамо леви неутрал id_B и десни неутрал id_A .

2.4 Индуктивни типови

Поред типова зависних функција постоји и класа *индукшивних шийова*. Сваки индуктивни тип се дефинише помоћу следеће спецификације:

- (i) *Формирање* типа описује начин на који се дати тип формира.
- (ii) *Консшруисање* описује на који начин се уводе нови канонични термови датог типа.
- (iv) *Правила израчунавања* захтевају да се индуктивно дефинисана секција произвољне фамилије типова над датим типом слаже по конструкторима који уводе нове каноничне термове.

Обично се, поред ових спецификација, уводи и *фравило рекурзије* које је специјални случај правила индукције. Код правила рекурзије не конструишемо секцију произвољне фамилије типова над датим типом, већ само константну фамилију над датим типом.

У наставку су наведене спецификације за уобичајене индуктивне типове: тип природних бројева \mathbb{N} , празни тип \mathbb{O} , јединични тип $\mathbb{1}$, типови копроизвода A+B, тип зависних парова $\sum_{(x:A)} B(x)$, као и специјални случајеви ових типова. Поред њих, у засебном поглављу ће бити представљени типови идентитети $x=_A y$.

Тип природних бројева

Тип природних бројева $\mathbb N$ представља тип кога настањују природни бројеви $0_{\mathbb N}, 1_{\mathbb N}, 2_{\mathbb N}, \dots$ Прецизније, тип природних бројева $\mathbb N$ дефинишемо следећом спецификацијом:

$$\frac{\left[\mathbb{N}\text{-intr}\right]}{\mathbb{H} \ \text{N type}} \quad \frac{\left[\mathbb{N}\text{-intro}_{0_{\mathbb{N}}}\right]}{\mathbb{H} \ 0_{\mathbb{N}} : \mathbb{N}} \quad \frac{\left[\mathbb{N}\text{-intro}_{\text{succ}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{succ}_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}}$$

$$\frac{\left[\mathbb{N}\text{-indd}\right]}{\mathbb{H} \ \text{comp}_{0_{\mathbb{N}}}^{\text{ind}_{\mathbb{N}}}} \quad \frac{\left[\mathbb{N}\text{-comp}_{0_{\mathbb{N}}}^{\text{ind}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{succ}_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}}$$

$$\frac{\left[\mathbb{N}\text{-comp}_{0_{\mathbb{N}}}^{\text{ind}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{comp}_{\mathbb{N}}^{\text{ind}_{\mathbb{N}}}} \quad \frac{\left[\mathbb{N}\text{-comp}_{0_{\mathbb{N}}}^{\text{ind}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{comp}_{\mathbb{N}}^{\text{ind}_{\mathbb{N}}}} \quad \frac{\left[\mathbb{N}\text{-comp}_{0_{\mathbb{N}}}^{\text{ind}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{comp}_{\mathbb{N}}^{\text{ind}_{\mathbb{N}}}} \quad \frac{\left[\mathbb{N}\text{-comp}_{\mathbb{N}}^{\text{ind}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{comp}_{\mathbb{N}}^{\text{ind}_{\mathbb{N}}}} \quad \frac{\mathbb{H} \ \mathbb{H} \ \mathbb{H$$

По правилу N-form, тип природних бројева N може да се формира из празног контекста. Другим речима, постојање типа природних бројева N не зависи од постојања других типова. Даље, имамо два конструктора помоћу којих конструишемо све каноничке термове типа N. Први конструктор је константа $\mathbf{0}_{\mathbb{N}}:\mathbb{N}$ и он говори да је $\mathbf{0}_{\mathbb{N}}$ канонични терм типа N. Други конструктор је функција $\mathrm{succ}_{\mathbb{N}}:\mathbb{N}\to\mathbb{N}$ и она говори да ће $\mathrm{succ}_{\mathbb{N}}(n)$ бити канонични терм

типа $\mathbb N$ ако је $n:\mathbb N$ канонични терм. Због тога су $0_{\mathbb N}$, $\operatorname{succ}_{\mathbb N}(0_{\mathbb N})$, $\operatorname{succ}_{\mathbb N}(\operatorname{succ}_{\mathbb N}(0_{\mathbb N}))$, . . . канонични термови који настањују тип $\mathbb N$.

Правила формирања и конструкције нам говоре о томе под којим условима се може формирати тип, и како конструисати каноничне термове тог типа. Потребно је још дефинисати и начин на који се тип и елементи тог типа користе. Због тога се уводи индуктивно правило и правила израчунавања. Да би конструисали елемент $\operatorname{ind}_{\mathbb{N}}(p_{0_{\mathbb{N}}}, p_{\operatorname{succ}_{\mathbb{N}}}) : \prod_{(n:\mathbb{N})} P(n)$ потребно је конструисати елемент $p_{0_{\mathbb{N}}} : P(0_{\mathbb{N}})$ (база индукције) і $p_{\operatorname{succ}_{\mathbb{N}}} : \prod_{n:\mathbb{N}} P(n) \to P(\operatorname{succ}_{\mathbb{N}}(n))$ (индукшивни корак). Даље, за сваки од конструктора треба увести правило израчунавања у складу са зависном функцијом $\operatorname{ind}_{\mathbb{N}}(p_{0_{\mathbb{N}}}, p_{\operatorname{succ}_{\mathbb{N}}}) : \prod_{(n:\mathbb{N})} P(n)$. Због тога имамо два правила израчунавања \mathbb{N} -сотр $_{\mathbb{N}}$ і \mathbb{N} -сотр $_{\operatorname{succ}_{\mathbb{N}}}$.

Специјални случај индукције типа природних бројева је рекурзија типа природних бројева, у којој тип P не зависи од \mathbb{N} . Тада добијамо функцију $\operatorname{rec}_{\mathbb{N}}(a_{0_{\mathbb{N}}},a_{\operatorname{succ}_{\mathbb{N}}}):\mathbb{N}\to A,$ под условом да имамо елементе $a_{0_{\mathbb{N}}}:A$ и $a_{\operatorname{succ}_{\mathbb{N}}}:\mathbb{N}\to A\to A.$

Правило индукције, заједно са правилом рекурзије, омогућава дефинисање разних функција над природним бројевима. Да би дефинисали операцију сабирања природних бројева $+_{\mathbb{N}}: \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ можемо искористити правило рекурзије, тј. функцију $\operatorname{rec}_{\mathbb{N}}: A \to (\mathbb{N} \to A \to A) \to \mathbb{N} \to A$. За тип A узећемо \mathbb{N} . Због тога, сабирање природних бројева дефинишемо као:

$$m +_{\mathbb{N}} n :\equiv \operatorname{rec}_{\mathbb{N}}(m, \lambda n. \lambda r. \operatorname{succ}_{\mathbb{N}}(r), n).$$

Заиста, за овако дефинисану операцију сабирања важи:

$$\begin{split} m+_{\mathbb{N}}\mathbf{0}_{\mathbb{N}} &\equiv m; \\ m+_{\mathbb{N}}\operatorname{succ}_{\mathbb{N}}(n) &\equiv \operatorname{succ}_{\mathbb{N}}(m+_{\mathbb{N}}n). \end{split}$$

Слично, множење природних бројева $\times_{\mathbb{N}}:\mathbb{N}\to\mathbb{N}\to\mathbb{N}$ можемо дефинисати као

$$m \times_{\mathbb{N}} m :\equiv \operatorname{rec}_{\mathbb{N}}(\mathbf{0}_{\mathbb{N}}, \lambda n. \lambda r. m +_{\mathbb{N}} r, n).$$

Такође, за овако дефинисану операцију множења важи:

$$\begin{split} m \times_{\mathbb{N}} \mathbf{0}_{\mathbb{N}} &\equiv \mathbf{0}_{\mathbb{N}}; \\ m \times_{\mathbb{N}} \operatorname{succ}_{\mathbb{N}}(n) &\equiv (m +_{\mathbb{N}} (m \times_{N} n)). \end{split}$$

Можемо приметити шаблон између дефинисања операција преко рекурзивног правила и правила која захтевамо да важе по конструкторима. Наиме, уколико желимо да дефинишемо функцију $f: \mathbb{N} \to A$ за коју важи:

$$\begin{split} f(\mathbf{0}_{\mathbb{N}}) & \equiv \Phi_{\mathbf{0}_{\mathbb{N}}}; \\ f(\mathsf{succ}_{\mathbb{N}}(n)) & \equiv \Phi_{\mathsf{succ}_{\mathbb{N}}}, \end{split}$$

где је $\Phi_{0_{\mathbb{N}}}$ израз типа A, и $\Phi_{\mathsf{succ}_{\mathbb{N}}}$ израз типа A који може садржати n и f(n). Тада функцију $f:\mathbb{N}\to A$ дефинишемо као:

$$f :\equiv \operatorname{rec}_{\mathbb{N}}(\Phi_{0_{\mathbb{N}}}, \lambda n. \lambda r. \Phi'_{\operatorname{succ}_{\mathbb{N}}}),$$

где $\Phi'_{\mathsf{succ}_{\mathbb{N}}}$ добијемо из $\Phi_{\mathsf{succ}_{\mathbb{N}}}$ тако што сва појављивања f(n) заменимо са r. Овај поступак дефинисања можемо уопштити и на индуктивно правило, и тада се он назива $y\bar{u}$ аривање шаблона (енгл. pattern matching).

Празни тип

Празни тип \mathbb{O} је дегенерисани пример индуктивног типа кога не настањује ни један елемент. Прецизније, празни тип \mathbb{O} дефинишемо следећом спецификацијом.

$$[\mathbb{0}\text{-form}] \ \ \overline{\vdash \mathbb{0} \ \text{type}} \quad \ [\mathbb{0}\text{-ind}] \ \ \underline{\frac{\Gamma, 0 \vdash P(x) \ \text{type}}{\Gamma \vdash \text{ind}_{\mathbb{0}} : \prod_{(0)} P(x)}} \quad \ [\mathbb{0}\text{-rec}] \ \ \underline{\frac{\Gamma \vdash A \ \text{type}}{\Gamma \vdash \text{rec}_{\mathbb{0}} : \mathbb{0} \to A}}$$

Како празан тип \mathbb{O} не настањује ни један елемент, за њега не постоји ни један конструктор, и самим тим нема ни једно правило израчунавања. Може да се формира из празног контекста, а његово правило индукције тврди да за било коју фамилију типова P над \mathbb{O} постоји елемент $\operatorname{ind}_{\mathbb{O}}:\prod_{(x:\mathbb{O})}P(x)$. Чешће се користи правило рекурзије које тврди да уколико конструишемо елемент $x:\mathbb{O}$, онда можемо да конструишемо елемент $\operatorname{rec}_{\mathbb{O}}(x):A$ било ког типа A. Правило рекурзије за празни тип \mathbb{O} се обично назива и \overline{u} равило кон \overline{u} радикције или \overline{u} равило \overline{u} ро \overline{u} ивречнос \overline{u} и.

Дефиниција 2.4.1. За сваки тип A дефинишемо тип $ne\bar{\imath}auuje$ od A као $\neg A := A \to \mathbb{O}$. Поред тога, кажемо да је тип A $\bar{\imath}pasan$ ако његову негацију настањује неки елемент, тј. $empty(A) := A \to \mathbb{O}$.

Приметимо да је $gy\bar{u}$ ла не $\bar{\imath}$ ација од A дефинисана као $\neg\neg A:=(A\to \mathbb{O})\to \mathbb{O}$. Због тога, не мора да важи $\neg\neg A\to A$, те није могуће изводити доказе контрадикцијом.

Јединични тип

Јединични тип 1 је индуктивни тип кога настањује само елемент ★. Прецизније, јединични тип 1 дефинишемо следећом спецификацијом.

Јединични тип $\mathbb{1}$ може да се формира из празног контекста, а његово правило индукције тврди да за било коју фамилију типова P над $\mathbb{1}$ постоји елемент $\operatorname{ind}_{\mathbb{1}}(p_{\star}):\prod_{(x:\mathbb{1})}P(x)$ уколико постоји елемент $p_{\star}:P(\star)$. Како постоји само један конструктор $\star:\mathbb{1}$, имамо једно правило израчунавања које треба да се сложи са индуктивним правилом. Због тога, $\operatorname{ind}_{\mathbb{1}}(p_{\star},\star)\equiv p_{\star}:P(\star)$.

Специјални случај правила индукције типа 1 је правило рекурзије типа 1, које добијамо када фамилија типова P над 1 не зависи од x:1. Тада за сваки елемент a:A имамо функцију $\operatorname{rec}_1(a):1\to A$.

Дефиниција 2.4.2. За сваки тип A дефинишемо тип jeguhc швене функције од A као !1 $(A) := A \to 1$. Специјално, јединствена функција од 0, тј. $0 \to 1$, се назива вакумска функција.

У хомотопној теоријити типова за вакумску функцију важи да је јединствена.

Типови копроизвода

За типове A и B из контекста Γ можемо дефинисати тип копроизвода A+B кога ће настањивати елементи или из типа A (ако a:A, онда $\mathsf{inl}(a):A+B$) или из типа B (ако b:B, онда $\mathsf{inr}(b):A+B$).

Тип копроизвода A+B због своје природе има два конструктора inl : $A\to A+B$ і inr : $B\to A+B$. Правило индукције тврди да за било коју фамилију типова P над A+B постоји елемент $\operatorname{ind}_+(p_{\operatorname{inl}},p_{\operatorname{inr}}):\prod_{(z:A+B)}P(z)$ уколико постоје елементи $p_{\operatorname{inl}}:\prod_{(a:A)}P(\operatorname{inl}(a))$ и $p_{\operatorname{inr}}:\prod_{(b:B)}P(\operatorname{inr}(b))$. Како постоје два конструктора, имамо два правила израчунавања која треба да се сложе са правилом индукције. Због тога $\operatorname{ind}_+(p_{\operatorname{inl}},p_{\operatorname{inr}},\operatorname{inl}(a))\equiv p_{\operatorname{inl}}(a):P(\operatorname{inl}(a))$ и $\operatorname{ind}_+(p_{\operatorname{inl}},p_{\operatorname{inr}},\operatorname{inr}(b))\equiv p_{\operatorname{inr}}(b):P(\operatorname{inr}(b))$.

Специјални случај правила индукције типа A+B је правило рекурзије типа A+B, које добијамо када фамилија типова P над A+B не зависи од z:A+B. Тада за сваку функцију $f:A\to X$ и за сваку функцију $g:B\to X$ имамо функцију $\operatorname{rec}_+(f,g):A+B\to X$. Из правила индукције, за свако $f:A\to X$ и за свако $g:B\to Y$, имамо функцију $f+g:A+B\to X+Y$.

Специјални случај типа копроизвода је δy ловски $\bar{u}u\bar{u}$ 2:=1+1, чије једине елементе дефинишемо као true $:\equiv \operatorname{inl}(\star)$ и false $:\equiv \operatorname{inr}(\star)$. Из спецификације типа копроизвода можемо извући правило индукције и правило израчунавања, за буловски тип 2. Правило индукције 2-ind се назива и *if-then-else*.

$$\begin{array}{l} \Gamma, x: 2 \vdash P(x) \; \mathrm{type} \\ \Gamma \vdash p_{\mathsf{true}} : P(\mathsf{true}) \\ \hline \Gamma \vdash p_{\mathsf{false}} : P(\mathsf{false}) \\ \hline \Gamma \vdash \mathsf{ind}_2(p_{\mathsf{true}}, p_{\mathsf{false}}) : \prod_{(x:2)} P(x) \\ \hline \\ \Gamma, x: 2 \vdash P(x) \; \mathrm{type} \\ \hline \Gamma \vdash p_{\mathsf{true}} : P(\mathsf{true}) \\ \hline [2\text{-comp}] \quad \hline \Gamma \vdash p_{\mathsf{false}} : P(\mathsf{false}) \\ \hline \hline \Gamma \vdash \mathsf{ind}_2(p_{\mathsf{true}}, p_{\mathsf{false}}, \mathsf{true}) \equiv p_{\mathsf{true}} : P(\mathsf{true}) \\ \hline \Gamma \vdash \mathsf{ind}_2(p_{\mathsf{true}}, p_{\mathsf{false}}, \mathsf{false}) \equiv p_{\mathsf{false}} : P(\mathsf{true}) \\ \hline \end{array}$$

Типови зависних парова

Ако је B фамилија типова над A из контекста Γ , онда можемо формирати тип зависних парова $\sum_{(x:A)} B(x)$ кога ће настањивати $\bar{u}aposu\ (x,y(x))$, где је x:A и y(x):B(x). Прецизније, тип зависних парова $\sum_{(x:A)} B(x)$ дефинишемо следећом спецификацијом.

$$\begin{array}{ll} & \begin{array}{ll} [\sum\text{-form}] & [\sum\text{-intro}] \\ \hline \Gamma,x:A \vdash B(x) \text{ type} & \overline{\Gamma,x:A \vdash y(x):B(x)} \\ \hline \Gamma \vdash \sum_{(x:A)} B(x) \text{ type} & \overline{\Gamma,x:A \vdash y(x):B(x)} \\ \hline \end{array} \\ & \begin{array}{ll} \Gamma,(x,y):\sum_{(x:A)} B(x) \vdash P((x,y)) \text{ type} \\ \hline \end{array} \\ & \begin{array}{ll} \Gamma,(x,y):\sum_{(x:A)} B(x) \vdash P((x,y)) \text{ type} \\ \hline \Gamma \vdash f:\prod_{(x:A)}\prod_{(y:B(x))} P((x,y)) \\ \hline \Gamma \vdash \text{ind}_{\sum}(f):\prod_{(p:\sum_{(x:A)} B(x))} P(p) \end{array} \\ \\ & \begin{array}{ll} \Gamma,(x,y):\sum_{(x:A)} B(x) \vdash P((x,y)) \text{ type} \\ \hline \end{array} \\ & \begin{array}{ll} \Gamma,(x,y):\sum_{(x:A)} B(x) \vdash P((x,y)) \text{ type} \\ \hline \Gamma,(x,y):\sum_{(x:A)} D(x) \vdash \text{ind}_{\sum}(f,(x,y)) \equiv f(x,y):P((x,y)) \end{array} \\ \end{array} \\ & \begin{array}{ll} \Gamma,(x,y):\sum_{(x:A)} D(x) \vdash \text{ind}_{\sum}(f,(x,y)) \equiv f(x,y):P((x,y)) \end{array} \\ \end{array}$$

Тип зависних парова $\sum_{(x:A)} B(x)$ има један конструктор помоћу кога се могу формирати елементи који га настањују, и то једноставним упаривањем елемената x:A и y(x):B(x). Правило индукције тврди да за било коју фамилију типова P над $\sum_{(x:A)} B(x)$ постоји елемент $\operatorname{ind}_{\sum}(f):\prod_{p:\sum_{(x:A)} B(x)} P(p)$

уколико постоји елемент $f:\prod_{(x:A)}\prod_{(y:B(x))}P((x,y))$. Како постоји само један конструктор, имамо само једно правило израчунавања које треба да се сложи са правилом индукције. Због тога важи $\operatorname{ind}_{\Sigma}(f,(x,y)) \equiv f(x,y):P((x,y))$.

Правило индукције нам омогућава да дефинишемо функције у нставку.

Дефиниција 2.4.3. Нека је B фамилија типова над A. Тада елемент $\operatorname{pr}_1: \sum_{(x:A)} B(x) \to A \ \bar{u}$ ројекције на \bar{u} рви елемен \bar{u} дефинишемо као:

$$\mathsf{pr}_1((a,b)) :\equiv a, \tag{2.1}$$

а елемент $\operatorname{pr}_2:\prod_{p:\sum_{(x:A)}B(x)}B(\operatorname{pr}_1(p))$ \bar{u} ројекције на $gpy\bar{v}$ и елемен \bar{u} дефинишемо као:

$$\operatorname{pr}_2((a,b)) :\equiv b. \tag{2.2}$$

Ако претпоставимо да имамо елемент $f:\prod_{((x,y):\sum_{(x:A)}B(x))}P((x,y))$ тада конструишемо елемент типа $\prod_{(x:A)}\prod_{(y:B(x))}P((x,y))$ као $\lambda x.\lambda y.f((x,y))$. Ова конструкција се назива *каријевање*, и како је супротна правилу Σ -ind, правило Σ -ind често наивамо *одкаријевање* (енгл. *uncarry*).

Слика 2.1: Геометријска репрезентација типа зависних парова.

Специјални случај типа зависних парова је тип (независних) \bar{u} арова или (Декар \bar{w} ов) \bar{u} роизвод $A \times B$. Уколико су типови A и B у контексту Γ , тј. тип B не зависи од елемената типа A, тада $\sum_{(x:A)} B$ представља тип (независних) парова.

Дефиниција 2.4.4. Тип (независних) \bar{u} арова $A \times B$ дефинишемо као:

$$A \times B := \sum_{(x:A)} B.$$

Такође, \bar{u} ројекцију на \bar{u} рви елемен \bar{u} fst : $A \times B \to A$ и \bar{u} ројекцију на $gpy\bar{u}$ елемен \bar{u} snd : $A \times B \to B$ дефинишемо као:

$$\mathsf{fst}((a,b)) :\equiv a, \quad \mathsf{snd}((a,b)) :\equiv b.$$

Правило индукције и израчунавања за тип (независних) парова $A \times B$ директно добијамо из правила индукције и израчунавања за тип зависних парова $\sum_{(x:A)} B(x)$.

$$\begin{array}{c} \Gamma, (x,y) : A \times B \vdash P((x,y)) \text{ type} \\ [\times\text{-ind}] \quad \frac{\Gamma \vdash f : \prod_{(x:A)} \prod_{(y:B)} P((x,y))}{\Gamma \vdash \mathsf{ind}_{\times}(f) : \prod_{(p:A \times B)} P(p)} \end{array}$$

$$\begin{array}{l} \Gamma, (x,y) : A \times B \vdash P((x,y)) \text{ type} \\ [\times\text{-comp}] \quad \overline{\Gamma \vdash f : \prod_{(x:A)} \prod_{(y:B)} P((x,y))} \\ \hline \overline{\Gamma, (x,y) : A \times B \vdash \mathsf{ind}_{\times}(f,(x,y)) \equiv f(x,y) : P((x,y))} \end{array}$$

Слика 2.2: Геометријска репрезентација типа независних парова.

Тип независних парова можемо уопштити на тип k- \overline{w} орки $A_1 \times A_2 \times \cdots \times A_k$.

2.5 Искази као типови

Кари-Хавардова интерпретација неформално посматра исказе као типове, доказе као елементе типова, и предикате као фамилије типова. Да би по-казали да је исказ тачан у теорији типова треба конструисати елемент који настањује одговарајући тип. Прецизније, за дати исказ A (добро-формирани тип) уколико конструишемо елемент x:A (кога често називамо и $ceego\kappa$ за A) тада сматрамо да је исказ A тачан. Приметимо да исказ није тачан или

Искази	Типови
	0
Т	1
$A \vee B$	A + B
$A \wedge B$	$A \times B$
$A \implies B$	$A \to B$
$A \iff B$	$(A \to B) \times (B \to A)$
$\neg A$	$A \to \mathbb{O}$
$\forall x.P(x)$	$\prod_{(x:A)} P(x)$
$\exists x. P(x)$	$\sum_{(x:A)}^{\prime} P(x)$

Табела 2.1: Кари-Хавардова интерпретација

нетачан, већ да представља колекцију својих сведока који могу да потрврде његову истинитост. Због тога су и сами докази математички објекти. У табели 2.1 приказани су искази заједно са њиховом одговарајућом интерпретацијом у теорији типова.

Прокоментаришимо неке интерпретације из табеле 2.1. Да би показали да важи $A \implies B$ треба претпоставити да важи A и доказати да важи B. У теорији типова треба конструисати елемент типа $A \to B$, тј. треба конструисати елемент типа B који користи претпоставку дату постојањем елемент типа A. Слично, да би показали $\exists x.P(x)$ у теорији типова треба конструисати елемент типа $\sum_{(x:A)} P(x)$. У овом случају теорија типова нам даје и више од тога. Наиме, P је фамилија типова, што значи да P(x) не мора да буде типа 2, тј. P не мора да буде предикат. Поред тога, тип $\sum_{(x:A)} P(x)$ можемо схватити као тип свих елемената x:A za које P(x).

2.6 Хијерархија универзума и универзум типови

Универзум $\overline{w}u\overline{u}oвu$ се могу посматрати као типови које настањују други типови. Универзум тип $\mathcal U$ омогућава да се исказ "A type" запише формално као $A:\mathcal U$. Поред тога, омогућава да се фамилија типова B над типом A дефинише као функција $B:A\to\mathcal U$.

Желимо да типови који могу да се формирају из празног контекста настањују универзум \mathcal{U} (то су, на пример, \mathbb{O} , $\mathbb{1}$, и \mathbb{N}). Штавише, како универзум

 $\mathcal U$ настањују и други типови, желимо да универзум $\mathcal U$ буде затворен по свим конструкторима који користе типове универзума $\mathcal U$. На пример, ако $A:\mathcal U$ и $B:A\to\mathcal U$, онда $\prod_{(x:A)}B(x):\mathcal U$. Међутим, не сме дођи то тога да универзум настањује сам себе, тј. не сме да важи $\mathcal U:\mathcal U$. Другим речима, не смемо обезбедити услове настанка раселовог парадокса.

У многим случајевима довољно је постојање једног универзума \mathcal{U} , међутим, некада желимо да универзум настањује неки други универзум. Како би избегли Раселов парадокс захтевамо постојање xujepapxuje универзума

$$\mathcal{U}_0, \quad \mathcal{U}_1, \quad \mathcal{U}_2, \quad \dots$$
 (2.3)

за коју важе следећа правила:

$$[\mathcal{U}\text{-intro}] \quad \overline{\Gamma \vdash \mathcal{U}_i : \mathcal{U}_{i+1}} \qquad \qquad [\mathcal{U}\text{-cumul}] \quad \overline{\Gamma \vdash A : \mathcal{U}_i} \\ \overline{\Gamma \vdash A : \mathcal{U}_{i+1}}$$

Универзум \mathcal{U}_0 називамо базни универзум. Базни универзум настањују типови који могу да се формирају из празног контекста, као и сви типови чији конструктори користе типове који се већ налазе у базном универзуму. За универзум \mathcal{U}_i има смисла посматрати и \mathcal{U}_{i+1} кога називамо и универзум следбеник. Често није битно знати редни број универзума у хијерархији, те се следбеник универзума \mathcal{U} обележава са \mathcal{U}^+ . За два универзума \mathcal{U} и \mathcal{V} можемо дефинисати њихову најмању горњу границу $\mathcal{U} \sqcup \mathcal{V}$. На пример, за \mathcal{U}_0 і \mathcal{U}_1 , најмања горња граница $\mathcal{U}_0 \sqcup \mathcal{U}_1$ је \mathcal{U}_1 .

2.7 Типови идентитети

Шта значи да су елементи неког типа једнаки?

$$\frac{\Gamma \vdash A \text{ type} \quad \begin{array}{ccc} [\text{=-form}] & & \\ \Gamma \vdash x : A & \Gamma \vdash y : A \end{array}}{\Gamma \vdash x =_A y \text{ type}} \quad [\text{=-intro}] \quad \frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash x : A}{\Gamma \vdash \text{refl}_x : x =_A x}$$

Индукција путање

$$\begin{aligned} & \Gamma, x: A, y: A, p: x =_A y \vdash P(x,y,p) \text{ type} \\ & \underbrace{\Gamma \vdash f: \prod_{(x:A)} P(x,x, \mathsf{refl}_x)}_{\Gamma \vdash \mathsf{ind}_{=}: \prod_{(x,y:A)} \prod_{(p:x=Ay)} P(x,y,p)} \\ & \underbrace{\Gamma, x: A, y: A, p: x =_A y \vdash P(x,y,p)}_{\Gamma, x: A \vdash \mathsf{ind}_{=}(x,x, \mathsf{refl}_x)} \\ & \underbrace{\Gamma \vdash f: \prod_{(x:A)} P(x,x, \mathsf{refl}_x)}_{\Gamma, x: A \vdash \mathsf{ind}_{=}(x,x, \mathsf{refl}_x) \equiv f(x): P(x,x, \mathsf{refl}_x) \end{aligned}$$

Особине типова идентитета

Надовезивање, инверз, неутрал, асоцијативност.

Акције над путањама

Дефиниција 2.7.1. Нека су A и B типови, и нека је $f:A\to B$ функција у контексту Γ . Тада можемо конструисати функцију

$$\mathsf{ap}_f: \prod_{(x,y:A)} (x =_A y) \to (f(x) =_B f(y))$$

индукцијом путање $p: x =_A y$ као $\mathsf{ap}_f(\mathsf{refl}_x) = \mathsf{refl}_{f(x)}$. Функцију ap_f називамо акција над $\bar{u}y\bar{u}$ ањама функције $f: A \to B$.

Транспорт

Дефиниција 2.7.2. Нека је A тип и B фамилија типова над A у контексту Γ . Тада можемо конструисати функцију

$$\operatorname{tr}_B: \prod_{(x,y:A)} (x =_A y) \to B(x) \to B(y)$$

индукцијом путање $p: x =_A y$ као $\operatorname{tr}_B(\operatorname{refl}_x) :\equiv \operatorname{id}_{B(x)}$. Функцију tr_B називамо $\overline{w}panc\overline{u}op\overline{w}$ над B.

Друге врсте једнакости

Дефиниција 2.7.3. Посмашрачка једнакосш (енгл. observational equality) над природним бројевима \mathbb{N} се може дефинисати као бинарна релација $\mathsf{Eq}_{\mathbb{N}}: \mathbb{N} \to \mathbb{N} \to \mathcal{U}_0$ тако да задовољава следеће расуђивачке једнакости:

$$\begin{split} \mathsf{Eq}_{\mathbb{N}}(\mathbf{0}_{\mathbb{N}},\mathbf{0}_{\mathbb{N}}) &\equiv \mathbb{1} \\ \mathsf{Eq}_{\mathbb{N}}(\mathbf{0}_{\mathbb{N}},\mathsf{succ}_{\mathbb{N}}(m)) &\equiv \mathbb{0} \\ \mathsf{Eq}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(n),\mathbf{0}_{\mathbb{N}}) &\equiv \mathbb{0} \\ \mathsf{Eq}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(n),\mathsf{succ}_{\mathbb{N}}(m)) &\equiv \mathsf{Eq}_{\mathbb{N}}(n,m) \end{split}$$

2.8 Ekvivalentnosti

Functional extentionality

Ekvivalentnosti i univerzalna osobina

2.9 Aksioma univalentnosti

 ${\bf Neke\ posledice\ univalent nosti}$

Глава 3

Агда

Глава 4

Закључак

Биографија аутора

Вук Стефановић Караџић (*Тршић*, 26. окшобар/6. новембар 1787. — Беч, 7. фебруар 1864.) био је српски филолог, реформатор српског језика, сакупљач народних умотворина и писац првог речника српског језика. Вук је најзначајнија личност српске књижевности прве половине XIX века. Стекао је и неколико почасних доктората. Учествовао је у Првом српском устанку као писар и чиновник у Неготинској крајини, а након слома устанка преселио се у Беч, 1813. године. Ту је упознао Јернеја Копитара, цензора словенских књига, на чији је подстицај кренуо у прикупљање српских народних песама, реформу ћирилице и борбу за увођење народног језика у српску књижевност. Вуковим реформама у српски језик је уведен фонетски правопис, а српски језик је потиснуо славеносрпски језик који је у то време био језик образованих људи. Тако се као најважније године Вукове реформе истичу 1818., 1836., 1839., 1847. и 1852.