课程编号_____1800440001-70____

教师签名	批改日期

深圳大学实验报告

课程名称:		产物埋 实验	(1)					
实验名称:		<u> </u>	测量					
学 院:	计算	计算机与软件学院						
指导教师:		张旭琳						
报告人:_	郭昌华	<u></u>	且号:		1			
学号:	2022190025	实验地点	:	致原	娄 20 9)		
实验时间:	2024	年	4	_月_	19	日		
提交时间:	2024	年	4	月	26	日		

- 一、实验目的:
- 1.学习杨氏模量的测量方法
- 2.掌握不确定度的计算方法,包括直接测量量和间接测量量的计算

二、实验原理:

1.杨氏模量: 描述固体材料抵抗性形变能力的物理量

假设一根横截面积为S,长为L的材料,在大小为F的力的拉压下,伸缩短了 $\triangle L$ 则:

①应力:是 $\sigma = \frac{1}{S}$,物理意义:横截面积为 S 的物体受到外力 F 的作用并处于平衡状态时,物体内部单位面积上引起的内力;

②应变: 是 $\varepsilon = \frac{\Delta L}{L}$,物理意义: 单位长度上的伸长量,表征物体受外力作用时产生变化大小的物理量

在弹性限度内,应力和应变成正比,比例系数称为杨氏模量(用 E 来表示),即: $E\frac{\Delta L}{L} = \frac{F}{S}$

故杨氏模量的测量公式为: $E = \frac{FL}{S\Delta L}$

测量方法:

$$S = \frac{\pi d^2}{4} \qquad E = \frac{FL}{S\Delta L}$$

F: 可由实验中钢丝下面悬挂的砝码的重力给出

- L: 可由米尺测量
- d: 为细铁丝的直径,可用螺旋测微仪测量

 Δ L: 是一个微小长度变化量,本实验利用光杠杆的光学放大作用实现对金属丝微小伸长量 L 的间接测量

- 3.光杠杆的光学放大原理:
- 1) 尺读望远镜组:

测量时,望远镜水平地对准光杆杆镜架上的平面反射镜,经光杠杆平面镜反射的标尺虚像又成 实像于分划板上,从两条视距线上可读出标尺像上的读数

(2) 与杨氏模量相关的物理量可用待测金属丝在静态拉伸实验中测得,主要是是 \triangle L 的测量。在悬重的金属丝下端连着十字叉丝板和砝码盘,当盘中加上质量为 M 的砝码时,金属丝受力增加了 F=Mg,十字叉丝随着金属丝的伸长同样下降是 \triangle L,而叉丝板通过显微镜的物镜成像在最小分度为 0.05mm 的分划板上,再被目镜放大,所以能够用眼睛通过显微镜对 \triangle L 做直接测量(将微小的伸长量 \triangle L 放大为竖尺上的位移 I)

$$an heta = rac{\Delta L}{b}$$
 $an 2 heta = rac{\Delta L}{b}$ $an 2 heta = rac{l}{D}$ $an 3 heta = rac{l}{D} = eta$ 由上,可得杨氏模量的最终计算公式为: $extbf{E} = rac{8FLD}{\pi d^2 b l}$

三、实验仪器:

- 1. 杨氏模量测定仪:
- 2. 螺旋测微计(仪器误差: ±0.004mm)
- 3. 游标卡尺(仪器误差: ±0.02mm)
- 4. 米尺(仪器误差: ±1mm)
- 5. 砝码(仪器误差: ±1g)
- 6. 标尺(仪器误差: ±0.05mm)
- 7. 待测金属丝

四、实验内容与步骤:

- 1.调节仪器:调节光杠杆和望远镜
 - (1) 调整望远镜水平,光杠杆平面镜竖直
 - (2) 调整仪器架水平
 - (3) 打开激光,激光瞄准,使激光反射点打到标尺上
- (4) 关闭激光,旋动望远镜目镜,使十字叉清晰;再旋动聚焦手轮,直到看清竖直尺的像注:整个过程中,切勿直视激光

2.记录金属丝伸长变化

逐次加一个砝码,在望远镜中读对应标尺的位置,共7次;然后将所加砝码逐次去掉,并读取相应读数

加砝码	r_0	\mathbf{r}_1	r_2	r ₃	r ₄	r ₅	r ₆	\mathbf{r}_7
减砝码	r ₀	\mathbf{r}_1	\mathbf{r}_2	r ₃	r ₄	r ₅	r ₆	r ₇
平均值	r_0	r_1	r_2	- r ₃	- r ₄	r_5	r_6	r_7

用逐差法计算每减4个砝码,钢丝的伸长量

$1_1 = r_4 - r_0$	$l_2=r_5-r_1$	$l_3 = r_6 - r_2$	l ₄ =r ₇ -r ₃

	1	2	3	4	5
l_{i}					

测钢丝直径 d: 在钢丝上选不同部位及方向,用螺旋测微计测出其直径 d, 重复测量三次,取平均值

测量并计算 D: 从望远镜目镜中观察,记下分划板上的上下叉丝对应的刻度,根据望远镜放大原理,利用下丝读数之差,乘以视距常数 100,即是望远镜的标尺到平面镜的往返距离,即 2D 测量光杠杆常数 b: 取下光杠杆在展开的白纸上同时按下三个尖脚的位置,用直尺做出光杠杆后脚尖到两前脚尖连线的垂线,再用游标卡尺测出 b

实验注意事项:

- (1) 实验系统调好后,一旦开始测量,不得对仪器进行任何调整
- (2) 注意维护钢丝的平直状态, 在钢丝两端夹点外测量直径, 避免伸长部分扭折
- (3) 确保金属丝与载物台垂直,以减少金属丝的圆柱体与载物台之间的摩擦

五、数据记录表:

光杠杆与镜尺组的距离: $D = 186.9 \pm 0.1$ (cm)

光杠杆常数: b = _____75.38 __ ± ____0.02 ___ (mm) 卡尺的仪器误差: _____0.02mm

砝码质量: 1000g/个 砝码质量误差: 1g/个

标尺的仪器误差: ______0.5mm

表 1. 金属丝直径测定

次数	1	2	3	4	5	平均值
d	0.542	0.543	0.541	0.545	0.542	0.543

表 2. 金属丝长度变化记录

I	F (g)	$r_{i \text{ (cm)}}$	$r'_{i \text{ (cm)}}$
1	0	1.05	0.93
2	1000	0.45	-0.62
3	2000	-0.15	-1.63
4	3000	-1.42	-2.76
5	4000	-2.46	-3.92
6	5000	-3.81	-4.75
7	6000	-5.23	-5.55
8	7000	-6.18	NaN

六、数据处理:

数据记录表格计算结果:

表 1. 金属丝直径测定

螺旋测微计零点读数: 0.035mm 螺旋测微计的仪器误差: 0.004mm

次数	1	2	3	4	5	平均值
d	0.542	0.543	0.541	0.545	0.542	0.543
Δd	0.001	0.000	0.002	-0.002	0.001	NaN

$$\bar{d} = \frac{\sum_{i=1}^{5} d_i}{5} = 0.543, \ \Delta d_i = \bar{d} - d_i$$

表 2. 金属丝长度变化记录

I	F (g)	$r_{i \text{ (cm)}}$	$r'_{i \text{ (cm)}}$	$r_{_{ ext{Pl}_{j}}}$
1	0	1.05	0.93	0.99
2	1000	0.45	-0.62	-0.09
3	2000	-0.15	-1.63	-0.89
4	3000	-1.42	-2.76	-2.09
5	4000	-2.46	-3.92	-3.19
6	5000	-3.81	-4.75	-4.28
7	6000	-5.23	-5.55	-5.39
8	7000	-6.18	NaN	-6.18

$$\overline{r_i} = \frac{r_i + r_i'}{2}$$

逐差法计算每增加4个砝码钢丝伸长量:

	1	2	3	4	平均
l_i	-4.18	-4.20	-4.50	-4.09	-4.24

$$l_1 = r_5 - r_1$$
, $l_2 = r_6 - r_2$, $l_3 = r_7 - r_3$, $l_4 = r_8 - r_4$

1. 计算杨氏模量 E:

根据杨氏模量的计算公式,要计算杨氏模量:

$$E = \frac{8FLD}{\pi d^2 bl}$$

首先,我们把参与计算的各个量表示为 $N = \overline{N} \pm \Delta N$ 的形式,然后再计算杨氏模量 E,其中,F、L、D、b 均为单次测量,只有 B 类不确定度。 分别计算如下:

● 钢丝所受的拉力 F: 砝码质量 1000g, 仪器误差: ±1g。

因为此处使用逐差法计算的是每次增减 4 个砝码时钢丝的伸长量,所以计算钢丝所受拉力时要将砝码质量乘 4:

钢丝所受拉力为:

$$\bar{F} = mg = 4 \times 1kg \times \frac{9.8N}{kg} = 39.2N$$

不确定度:

$$\Delta F = \Delta F_B = \Delta_{\text{CWW}} \times \frac{1}{\sqrt{3}} = \Delta mg \times \frac{1}{\sqrt{3}} = 4 \times 1g \times 0.001 \times 9.8N/kg \times \frac{1}{\sqrt{3}} \approx 0.0226N$$

故:
$$F = \bar{F} \pm \Delta F = (39.2 \pm 0.0226)N$$

● **金属丝长度:** L=55.1cm, 钢卷尺仪器误差: ±0.1cm。

$$\Delta L = \Delta L_B = \Delta_{\chi \# \oplus \tilde{Z}} \times \frac{1}{\sqrt{3}} = 0.1cm \times \frac{1}{\sqrt{3}} \approx 0.0577cm$$

故: $L = \overline{L} \pm \Delta L = (55.1 \pm 0.0577)cm$

● **光杠杆与镜尺组距离:** D=186.9cm, 钢卷尺仪器误差: ±0.1cm。

$$\Delta D = \Delta D_B = \Delta_{\chi \# \notin \hat{Z}} \times \frac{1}{\sqrt{3}} = 0.1 cm \times \frac{1}{\sqrt{3}} \approx 0.0577 cm$$

故:
$$D = \overline{D} \pm \Delta D = (186.9 \pm 0.0577)cm$$

● **光杠杆常数:** b =75.38mm, 卡尺仪器误差: ±0.02mm

$$\Delta b = \Delta b_B = \Delta_{\ell \# \# \pm} \times \frac{1}{\sqrt{3}} = 0.02 mm \times \frac{1}{\sqrt{3}} \approx 0.0115 mm$$

故: $b = \bar{b} \pm \Delta b = (75.38 \pm 0.0115) mm$

- 金属丝直径的 5 次测量值 d: 螺旋测微仪仪器误差: ±0.004mm
- 1. 计算 A 类不确定度:

$$\Delta d_A = \sqrt{\frac{\sum_{i=1}^k (\overline{N} - N_i)^2}{k(k-1)}}$$

$$=\sqrt{\frac{(0.543-0.542)^2+(0.543-0.543)^2+(0.543-0.541)^2+(0.543-0.545)^2+(0.543-0.542)^2}{5\times 4}}$$

 $\approx 0.000678mm$

2. 计算 B 类不确定度:

$$\Delta d_B = \Delta_{\chi \not B \not E \not Z} \times \frac{1}{\sqrt{3}} = 0.030 mm \times \frac{1}{\sqrt{3}} \approx 0.0176 mm$$

$$\Delta d = \sqrt{\Delta d_A^2 + \Delta d_B^2} = \sqrt{0.000678^2 + 0.0176^2} \approx 0.0176mm$$

故:
$$d = \bar{d} \pm \Delta d = (0.543 \pm 0.0176)mm$$

- **金属丝的伸长量1**, 标尺仪器误差: ±0.5mm
- 1. 计算 A 类不确定度:

$$\Delta l_A = \sqrt{\frac{\sum_{i=1}^k (\overline{N} - N_i)^2}{k(k-1)}}$$

$$=\sqrt{\frac{(4.24-4.18)^2+(4.24-4.20)^2+(4.24-4.50)^2+(4.24-4.09)^2}{4\times3}}\approx 0.0893mm$$

2. 计算 B 类不确定度:

$$\Delta l_B = \Delta_{ij} \approx \frac{1}{\sqrt{3}} = 0.5mm \times \frac{1}{\sqrt{3}} \approx 0.2887mm$$

$$\Delta l = \sqrt{\Delta l_A^2 + \Delta l_B^2} = \sqrt{0.0893^2 + 0.2887^2} \approx 0.302mm$$

$$l = \bar{l} \pm \Delta l = (4.24 \pm 0.302)cm$$

所以

$$E = \frac{8 \times (4 \times 1 \times 9.8) N \times 0.551 m \times 1.869 m}{3.14 \times (0.000543 m)^2 \times 0.07538 m \times 0.0424 m} = 1.09 \times 10^{11} Pa$$

计算△E: 测量结果的相对不确定度:

$$\begin{split} \frac{\Delta E}{E} &= \sqrt{\left(\frac{\Delta F}{F}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{2\Delta d}{d}\right)^2 + \left(\frac{\Delta b}{b}\right)^2 + \left(\frac{\Delta l}{l}\right)^2} \\ &= \sqrt{\left(\frac{0.0226}{39.2}\right)^2 + \left(\frac{0.0577}{55.1}\right)^2 + \left(\frac{0.0577}{186.9}\right)^2 + \left(\frac{2\times0.0176}{0.543}\right)^2 + \left(\frac{0.0115}{75.38}\right)^2 + \left(\frac{0.302}{4.24}\right)^2} \\ &= 9.631\% \end{split}$$

$$\Delta E = E \times \frac{\Delta E}{E} = 1.05 \times 10^{10} Pa$$

● 最终结果:

杨氏模量: $E = E + \Delta E = (1.09 + 0.105) \times 10^{11} Pa$

相对不确定度: $\frac{\Delta E}{E} = 9.631\%$

七、实验结论:

在本次实验中,我们选用了一段规格为长度 55.1cm、直径 0.543mm 的金属丝作为研究对象。实验开始时,我们将试样稳固安装于测试平台上,精确测量其原始长度与直径,随后在试样上逐级施加多个不同质量的砝码,记录下每一级载荷下试样发生的伸长量。同时,我们通过测定光杠杆系数及平面镜至直尺间的间距,为后续数据处理提供必要参数。

经过计算,我们得到该金属丝的杨氏模量 $E = E + \Delta E = (1.09 + 0.105) \times 10^{11} Pa$,对应的不确定度为 $\frac{\Delta E}{E} = 9.631\%$ 。考虑到实验设备精度限制、试样材质特性差异等因素可能引入的误差,为提升实验结果的可靠性,建议采取重复实验并取均值的方法来优化测量结果。

八、思考题:

(1)用光杠杆测 ΔL 变成测量l等截,若把 $\beta=\frac{1}{\Delta L}$ 称为光杠杆的"放大率", $\beta=\frac{2D}{b}$,那么能不能通过增加D、减小b来提高 β ,这样做有没有好处?有没有限度?

答:提高光杠杆的放大率 β)确实增强了微小长度变化的测量灵敏度,但此方法存在局限性。 依据公式 $\frac{1}{D}\approx 2\theta$ (其中 (θ) 必须很小),以及望远镜分辨率的实际情况,增大的策略不能无限制实施。

(2) 各种不同长度用不同的仪器测量是如何考虑的? 为什么?

答:选取测量工具时,需确保其量程能覆盖被测物体的尺寸,并重视其精度,力求缩小测量偏差,以保证总测量误差维持在5%以内。

指导教师批阅意见:

成绩评定:

预习	操作及记录	数据处:	数据处理及思考题 (40 分)			
(20分)	(40分)	数据处理 20 分	结果与讨论 10分	思考题 10 分	报告整体 印 象	总分

原始数据记录表:

组号:	1	姓名:	郭昌华						
光杠	丝长度: L = 杆与镜尺组 杆常数: b=	的距离: D=	= <u>±</u>	(cı	7卷尺仪器误 m) F尺的仪器误				
砝码	砝码质量: 砝码质量误差:								
	标尺的仪器误差: 表 1. 金属丝直径测定								
螺旋	螺旋测微计零点读数:螺旋测微计的仪器误差:								
次数	1	2	3	4	5	平均值	修正值		
d									

 $d \pm \Delta d = \underline{\qquad} \pm \underline{\qquad} (mm)$

表 2. 金属丝长度变化记录

 Δd

I	F (g)	$r_{i \text{ (cm)}}$	$r'_{i \text{ (cm)}}$	$r_{_{ m Pb}}$
1				
2				
3				
4				
5				
6				
7				
8				

用逐差法计算每增加 4 个砝码钢丝伸长量:

 $l_1 = r_5 - r_1$, $l_2 = r_6 - r_2$, $l_3 = r_7 - r_3$, $l_4 = r_8 - r_4$

1	2	3	4	平均