А.Ф.Филиппов

СБОРНИК ЗАДАЧ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ

А. Ф. Филиппов

СБОРНИК ЗАДАЧ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ

Научно-издательский центр «Регулярная и хаотическая динамика»

УДК 517.9 ББК 517.2 Ф 53

Филиппов А.Ф.

Сборник задач по дифференциальным уравнениям. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000, 176 стр.

Сборник содержит материалы для упражнений по курсу дифференциальных уравнений для университетов и технических вузов с повышенной математической программой.

В настоящее издание добавлены задачи, предлагавшиеся на письменных экзаменах на механико-математическом факультете МГУ.

ISBN 5-93972-008-0

ББК 517.2

© НИЦ «Регулярная и хаотическая динамика», 2000

СОДЕРЖАНИЕ

Пред	(исловие
$\S 1$.	Изоклины.
	Составление дифференциального уравнения
	семейства кривых 6
$\S 2$.	Уравнения с разделяющимися переменными 10
§ 3.	Геометрические и физические задачи 12
$\S 4$.	Однородные уравнения
$\S 5.$	Линейные уравнения первого порядка 20
$\S 6.$	Уравнения в полных дифференциалах. Интегриру-
	ющий множитель
§ 7.	Существование и единственность решения 29
§ 8 .	Уравнения, не разрешенные относительно произ-
•	водной
$\S 9.$	Разные уравнения первого порядка
§ 10.	Уравнения, допускающие понижение порядка 44
§ 11.	Линейные уравнения с постоянными коэффициен-
	тами
§ 12.	Линейные уравнения с переменными коэффициен-
	тами
§ 13.	Краевые задачи 71
§ 14.	Линейные системы с постоянными коэффициентами 74
$\S 15.$	Устойчивость
$\S 16.$	Особые точки
§ 17.	Фазовая плоскость
§ 18.	Зависимость решения от начальных условий и па-
	раметров. Приближенное решение дифференциаль-
	ных уравнений
§ 19.	Нелинейные системы
§ 20.	Уравнения в частных производных первого порядка 122
§ 21.	Существование и единственность решения 129

Содержание

$\S 22$.	Общая теория линейных уравнений и систем 13	3
§ 23.	Линейные уравнения и системы с постоянными ко-	
	эффициентами	37
§ 24.	Устойчивость	12
$\S 25.$	Фазовая плоскость	4
§ 26.	Дифференцирование решения по параметру и по	
	начальным условиям	8
§ 27.	Уравнения с частными производными первого по-	
	рядка	19
Отве	ты	i2
Отве	ты к добавлению	'1
Табл	ины показательной функции и логарифмов 17	'5

ПРЕДИСЛОВИЕ

Сборник содержит задачи по курсу обыкновенных дифференциальных уравнений в соответствии с программой, принятой на механико-математическом факультете МГУ. Часть задач взята из известных задачников Н. М. Гюнтера и Р. О. Кузьмина, Г. Н. Бермана, М. Л. Краснова и Г. И. Макаренко, учебников В. В. Степанова, Г. Филипса; большинство задач составлено заново. Более трудные задачи отмечены звездочкой.

В начале каждого параграфа изложены основные методы, необходимые для решения задач этого параграфа, или даны ссылки на учебники. В ряде случаев приведены подробные решения типовых задач.

В это издание включено «Добавление» (§§ 21–27), содержащее задачи, предлагавшиеся на письменных экзаменах и коллоквиумах на механико-математическом факультете МГУ в 1992–1996 годах. Задачи составлены преподавателями МГУ Ю. С. Ильяшенко, В. А. Кондратьевым, В. М. Миллионщиковым, Н. Х. Розовым, И. Н. Сергеевым, А. Ф. Филипповым.

В книге приняты условные обозначения учебников:

- [1] В.В.Степанов. Курс дифференциальных уравнений.
- [2] И.Г.Петровский. Лекции по теории обыкновенных дифференциальных уравнений.
- [3] Л. С. Понтрягин. Обыкновенные дифференциальные уравнения.
- [4] Л.Э.Эльсгольц. Дифференциальные уравнения и вариационное исчисление.
- [5] Б. П. Демидович. Лекции по математической теории устойчивости.

§ 1. ИЗОКЛИНЫ. СОСТАВЛЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ СЕМЕЙСТВА КРИВЫХ

1. Решение уравнения y'=f(x,y), проходящее через точку (x,y), должно иметь в этой точке производную y', равную f(x,y), т.е. оно должно касаться прямой, наклоненной под углом $\alpha=\arctan f(x,y)$ к оси Ox. Геометрическое место точек плоскости (x,y), в которых наклон касательных к решениям уравнения y'=f(x,y) один и тот же, называется изоклиной. Следовательно, уравнение изоклины имеет вид f(x,y)=k, где k — постоянная.

Чтобы приближенно построить решения уравнения y'=f(x,y), можно начертить достаточное число изоклин, а затем провести решения, т.е. кривые, которые в точках пересечения с изоклинами $f(x,y)=k_1, f(x,y)=k_2, \ldots$ имеют касательные с угловыми коэффициентами соответственно k_1, k_2, \ldots Пример применения этого метода см. [1], гл. I, \S 1, п. 3, или [4], гл. I, \S 1.

2. Чтобы построить дифференциальное уравнение, которому удовлетворяют кривые семейства

$$\varphi(x, y, C_1, \ldots, C_n) = 0, \tag{1}$$

надо продифференцировать равенство (1) n раз, считая y функцией от x, а затем из полученных уравнений и уравнения (1) исключить произвольные постоянные C_1, \ldots, C_n .

 Π р и м е р. Составить дифференциальное уравнение семейства кривых

$$C_1 x + (y - C_2)^2 = 0. (2)$$

Так как уравнение семейства содержит два параметра, дифференцируем его два раза, считая y=y(x):

$$C_1 + 2(y - C_2)y' = 0, (3)$$

$$2y'^{2} + 2(y - C_{2})y'' = 0. (4)$$

Исключаем C_1 . Из уравнения (3) имеем $C_1 = -2(y - C_2)y';$ подставляя это в (2), получим

$$-2xy'(y-C_2) + (y-C_2)^2 = 0. (5)$$

Исключаем C_2 . Из уравнения (4) имеем $y-C_2=-y'^2/y''$; подставляя это в (5), получим после упрощений дифференциальное уравнение

$$y' + 2xy'' = 0.$$

3. Линии, пересекающие все кривые данного семейства под одним и тем же углом φ , называются изогональными траекториями. Углы β и α наклона траектории и кривой к оси Ox связаны соотношением $\beta=\alpha\pm\varphi$. Пусть

$$y' = f(x, y) \tag{6}$$

— дифференциальное уравнение данного семейства кривых, а

$$y' = f_1(x, y) \tag{7}$$

— уравнение семейства изогональных траекторий. Тогда $\operatorname{tg} \alpha = f(x,y), \operatorname{tg} \beta = f_1(x,y).$ Следовательно, если уравнение (6) написано и угол φ известен, то легко найти $\operatorname{tg} \beta$ и затем написать дифференциальное уравнение траекторий (7).

Если уравнение данного семейства кривых написано в виде

$$F(x, y, y') = 0,$$
 (8)

то при составлении уравнения изогональных траекторий можно обойтись без разрешения уравнения (8) относительно y'. В этом случае в (8) надо заменить y' на $\operatorname{tg} \alpha = \operatorname{tg}(\beta \mp \varphi)$, где $\operatorname{tg} \beta = y'$ угловой коэффициент касательной к траектории.

Если же уравнение семейства кривых дано в виде $\varphi(x,y,C)=0$, то сначала нужно составить дифференциальное уравнение этого семейства и только после этого — дифференциальное уравнение траекторий.

В задачах 1—14 с помощью изоклин начертить (приближенно) решения данных уравнений.

1.
$$y' = y - x^2$$
. 2. $2(y + y') = x + 3$.

3.
$$y' = \frac{x^2 + y^2}{2} - 1$$
. **4.** $(y^2 + 1)y' = y - x$.

5.
$$yy' + x = 0$$
. **6.** $xy' = 2y$.

7.
$$xy' + y = 0$$
. 8. $y' + y = (x - y')^3$.

9.
$$y' = x - e^y$$
. **10.** $y(y' + x) = 1$.

11.
$$y' = \frac{y-3x}{x+3y}$$
. **12.** $y' = \frac{y}{x+y}$.

13.
$$x^2 + y^2y' = 1$$
. **14.** $(x^2 + y^2)y' = 4x$.

- **15.** Написать уравнение геометрического места точек (x, y), являющихся точками максимума или минимума решений уравнения y' = f(x, y). Как отличить точки максимума от точек минимума?
- **16.** Написать уравнение геометрического места точек перегиба графиков решений уравнений

a)
$$y' = y - x^2$$
;

б)
$$y' = x - e^y$$
;

B)
$$x^2 + y^2y' = 1$$
;

$$\Gamma) y' = f(x, y).$$

В задачах 17—29 составить дифференциальные уравнения данных семейств линий.

17.
$$y = e^{Cx}$$
.

18.
$$y = (x - C)^3$$
.

19.
$$y = Cx^3$$
.

20.
$$y = \sin(x + C)$$
.

21.
$$x^2 + Cy^2 = 2y$$
.

22.
$$y^2 + Cx = x^3$$
.

23.
$$y = C(x - C)^2$$
.

24.
$$Cy = \sin Cx$$
.

25.
$$y = ax^2 + be^x$$
.

26.
$$(x-a)^2 + by^2 = 1$$
.

27.
$$\ln y = ax + by$$
.

28.
$$y = ax^3 + bx^2 + cx$$
.

29.
$$x = ay^2 + by + c$$
.

- ${f 30.}$ Составить дифференциальное уравнение окружностей радиуса 1, центры которых лежат на прямой y=2x.
- **31.** Составить дифференциальное уравнение парабол с осью, параллельной Oy, и касающихся одновременно прямых y=0 и y=x.
- **32.** Составить дифференциальное уравнение окружностей, касающихся одновременно прямых y=0 и x=0 и расположенных в первой и третьей четвертях.
- **33.** Составить дифференциальное уравнение всех парабол с осью, параллельной Oy, и проходящих через начало координат.

34. Составить дифференциальное уравнение всех окружностей, касающихся оси абсцисс.

В задачах **35—36** найти системы дифференциальных уравнений, которым удовлетворяют линии данных семейств.

35.
$$ax + z = b$$
, $y^2 + z^2 = b^2$.

36.
$$x^2 + y^2 = z^2 - 2bz$$
, $y = ax + b$.

В задачах **37**—**50** составить дифференциальные уравнения 1 траекторий, пересекающих линии данного семейства под данным углом φ :

37.
$$y = Cx^4$$
, $\varphi = 90^\circ$.

38.
$$y^2 = x + C$$
, $\varphi = 90^{\circ}$.

39.
$$x^2 = y + Cx$$
, $\varphi = 90^{\circ}$.

40.
$$x^2 + y^2 = a^2$$
, $\varphi = 45^\circ$.

41.
$$y = kx$$
, $\varphi = 60^{\circ}$.

42.
$$3x^2 + y^2 = C$$
, $\varphi = 30^\circ$.

43.
$$y^2 = 2px$$
, $\varphi = 60^{\circ}$.

44.
$$r = a + \cos \theta$$
, $\varphi = 90^{\circ}$.

45.
$$r = a \cos^2 \theta$$
, $\varphi = 90^{\circ}$.

46.
$$r = a \sin \theta$$
, $\varphi = 45^{\circ}$.

47.
$$y = x \ln x + Cx$$
, $\varphi = \operatorname{arctg} 2$.

48.
$$x^2 + y^2 = 2ax$$
, $\varphi = 45^\circ$.

49.
$$x^2 + C^2 = 2Cy$$
, $\varphi = 90^\circ$.

50.
$$y = Cx + C^3$$
, $\varphi = 90^\circ$.

¹Уравнения, получаемые в задачах **37—50**, могут быть решены методами, излагаемыми в дальнейших параграфах.

§ 2. УРАВНЕНИЯ С РАЗДЕЛЯЮЩИМИСЯ ПЕРЕМЕННЫМИ

1. Уравнения с разделяющимися переменными могут быть записаны в виде

$$y' = f(x)g(y), \tag{1}$$

а также в виде

$$M(x)N(y) dx + P(x)Q(y) dy = 0.$$
(2)

Для решения такого уравнения надо обе его части умножить или разделить на такое выражение, чтобы в одну часть уравнения входило только x, в другую — только y, и затем проинтегрировать обе части.

При делении обеих частей уравнения на выражение, содержащее неизвестные x и y, могут быть потеряны решения, обращающие это выражение в нуль.

Пример. Решить уравнение

$$x^2y^2y' + 1 = y. (3)$$

Приводим уравнение к виду (2):

$$x^{2}y^{2}\frac{dy}{dx} = y - 1;$$
 $x^{2}y^{2}dy = (y - 1)dx.$

Делим обе части уравнения на $x^2(y-1)$:

$$\frac{y^2}{y-1} \, \mathrm{d}y = \frac{\mathrm{d}x}{x^2}.$$

Переменные разделены. Интегрируем обе части уравнения:

$$\int \frac{y^2}{y-1} \, \mathrm{d}y = \int \frac{\mathrm{d}x}{x^2}; \qquad \frac{y^2}{2} + y + \ln|y-1| = -\frac{1}{x} + C.$$

При делении на $x^2(y-1)$ могли быть потеряны решения x=0 и y-1=0, т. е. y=1. Очевидно, y=1 — решение уравнения (3), а x=0 — нет.

2. Уравнения вида y'=f(ax+by) приводятся к уравнениям с разделяющимися переменными заменой z=ax+by (или z=ax+by+c, где c любое).

В задачах **51—65** решить данные уравнения и для каждого из них построить несколько интегральных кривых. Найти

также решения, удовлетворяющие начальным условиям (в тех задачах, где указаны начальные условия).

51.
$$xy dx + (x+1) dy = 0$$
.

52.
$$\sqrt{y^2 + 1} \, dx = xy \, dy$$
.

53.
$$(x^2-1)y'+2xy^2=0$$
; $y(0)=1$.

54.
$$y' \operatorname{ctg} x + y = 2$$
; $y(x) \to -1$ при $x \to 0$.

55.
$$y' = 3\sqrt[3]{y^2}$$
; $y(2) = 0$.

56.
$$xy' + y = y^2$$
; $y(1) = 0.5$.

57.
$$2x^2yy' + y^2 = 2$$
. **58.** $y' - xy^2 = 2xy$.

59.
$$e^{-s} \left(1 + \frac{ds}{dt} \right) = 1.$$
 60. $z' = 10^{x+z}.$

61.
$$x \frac{dx}{dt} + t = 1$$
. **62.** $y' = \cos(y - x)$.

63.
$$y' - y = 2x - 3$$
.

64.
$$(x+2y)y'=1$$
; $y(0)=-1$.

65.
$$y' = \sqrt{4x + 2y - 1}$$
.

В задачах **66—67** найти решения уравнений, удовлетворяющие указанным условиям при $x \to +\infty$.

66.
$$x^2y' - \cos 2y = 1$$
; $y(+\infty) = 9\pi/4$.

67.
$$3y^2y' + 16x = 2xy^3$$
; $y(x)$ ограничено при $x \to +\infty$.

68. Найти ортогональные траектории к линиям следующих семейств: а) $y=Cx^2;$ б) $y=C\mathrm{e}^x;$ в) $Cx^2+y^2=1.$

В задачах **69*** и **70*** переменные разделяются, но получаемые интегралы не могут быть выражены через элементарные функции. Однако, исследовав их сходимость, можно дать ответ на поставленные вопросы.

- 69^* . Показать, что каждая интегральная кривая уравнения $y'=\sqrt[3]{rac{y^2+1}{x^4+1}}$ имеет две горизонтальные асимптоты.
- 70^* . Исследовать поведение интегральных кривых уравнения $y' = \sqrt{\frac{\ln(1+y)}{\sin x}}$ в окрестности начала координат. Показать, что из каждой точки границы первого координатного угла выходит одна интегральная кривая, проходящая внутри этого угла.

§ 3. ГЕОМЕТРИЧЕСКИЕ И ФИЗИЧЕСКИЕ ЗАЛАЧИ¹

- 1. Чтобы решить приведенные ниже геометрические задачи, надо построить чертеж, обозначить искомую кривую через y=y(x) (если задача решается в прямоугольных координатах) и выразить все упоминаемые в задаче величины через x,y и y'. Тогда данное в условии задачи соотношение превращается в дифференциальное уравнение, из которого можно найти искомую функцию y(x).
- 2. В физических задачах надо прежде всего решить, какую из величин взять за независимое переменное, а какую за искомую функцию. Затем надо выразить, на сколько изменится искомая функция y, когда независимое переменное x получит приращение Δx , т. е. выразить разность $y(x+\Delta x)-y(x)$ через величины, о которых говорится в задаче. Разделив эту разность на Δx и перейдя к пределу при $\Delta x \to 0$, получим дифференциальное уравнение, из которого можно найти искомую функцию. В большинстве задач содержатся условия, с помощью которых можно определить значения постоянных, входящих в общее решение дифференциального уравнения. Иногда дифференциальное уравнение можно составить более простым путем, воспользовавшись физическим смыслом производной (если независимое переменное время t, то $\frac{\mathrm{d}y}{\mathrm{d}t}$ есть скорость изменения величины y).

В некоторых задачах при составлении уравнения следует использовать физические законы, сформулированные в тексте перед задачей (или перед группой задач).

Пример. В сосуд, содержащий 10 л воды, непрерывно поступает со скоростью 2 л в минуту раствор, в каждом литре которого содержится 0,3 κz соли. Поступающий в сосуд раствор перемешивается с водой, и смесь вытекает из сосуда с той же скоростью. Сколько соли будет в сосуде через 5 минут?

Решение. Примем за независимое переменное время t, а за искомую функцию y(t) — количество соли в сосуде через t минут после начала опыта. Найдем, на сколько изменится количество соли за промежуток времени от момента t до момента $t+\Delta t$. В одну минуту поступает 2 Λ раствора, а в Δt минут — $2\Delta t$ литров; в этих

¹Все задачи этого параграфа сводятся к уравнениям с разделяющимися переменными. Задачи, приводящиеся к уравнениям других типов, можно найти в соответствующих параграфах. Необходимые для решения задач значения показательной функции и логарифмов можно брать из таблицы в конце задачника.

 $2\Delta t$ литрах содержится $0.3\cdot 2\Delta t=0.6\Delta t$ кг соли. С другой стороны, за время Δt из сосуда вытекает $2\Delta t$ литров раствора. В момент t во всем сосуде (10 л) содержится y(t) кг соли, следовательно, в $2\Delta t$ литрах вытекающего раствора содержалось бы $0.2\Delta t\cdot y(t)$ кг соли, если бы за время Δt содержание соли в сосуде не менялось. Но так как оно за это время меняется на величину, бесконечно малую при $\Delta t \to 0$, то в вытекающих $2\Delta t$ литрах содержится $0.2\Delta t(y(t)+\alpha)$ кг соли, где $\alpha \to 0$ при $\Delta t \to 0$.

Итак, в растворе, втекающем за промежуток времени $(t,\ t+\Delta t)$, содержится $0.6\Delta t$ кг соли, а в вытекающем — $0.2\Delta t\cdot (y(t)+\Delta t)$ кг. Приращение количества соли за это время $y(t+\Delta t)-y(t)$ равно разности найденных величин, т. е.

$$y(t + \Delta t) - y(t) = 0.6\Delta t - 0.2\Delta t \cdot (y(t) + \alpha).$$

Разделим на Δt и перейдем к пределу при $\Delta t \to 0$. В левой части получится производная y'(t), а в правой получим 0,6-0,2y(t), так как $\alpha \to 0$ при $\Delta t \to 0$.

Итак, имеем дифференциальное уравнение y'(t) = 0.6 - 0.2 y(t). Решая его, получим

$$y(t) = 3 - Ce^{-0.2t}. (1)$$

Так как при t=0 соли в сосуде не было, то y(0)=0. Полагая в (1) t=0, найдем $y(0)=3-C;\ 0=3-C;\ C=3$. Подставляя это значение C в (1), получим $y(t)=3-3\mathrm{e}^{-0.2t}$. При t=5 в сосуде будет

$$y(5) = 3 - 3e^{-0.2 \cdot 5} = 3 - 3e^{-1} \approx 1.9$$
 кг соли.

- **71.** Найти кривые, для которых площадь треугольника, образованного касательной, ординатой точки касания и осью абсцисс, есть величина постоянная, равная a^2 .
- **72.** Найти кривые, для которых сумма катетов треугольника, построенного как в предыдущей задаче, есть величина постоянная, равная b.
- 73. Найти кривые, обладающие следующим свойством: отрезок оси абсцисс, отсекаемый касательной и нормалью, проведенными из произвольной точки кривой, равен 2a.
- **74.** Найти кривые, у которых точка пересечения любой касательной с осью абсцисс имеет абсциссу, вдвое меньшую абсциссы точки касания.
- **75.** Найти кривые, обладающие следующим свойством: если через любую точку кривой провести прямые, параллель-

ные осям координат, до встречи с этими осями, то площадь полученного прямоугольника делится кривой в отношении 1:2.

76. Найти кривые, касательные к которым в любой точке образуют равные углы с полярным радиусом и полярной осью.

В задачах 77—79 считать, что втекающий газ (или жидкость) вследствие перемешивания распределяется по всему объему вместилища равномерно.

- 77. Сосуд объемом в 20 л содержит воздух (80% азота и 20% кислорода). В сосуд втекает 0,1 л азота в секунду, который непрерывно перемешивается, и вытекает такое же количество смеси. Через сколько времени в сосуде будет 99% азота?
- **78.** В баке находится 100 л раствора, содержащего 10 кг соли. В бак непрерывно подается вода (5 л в минуту), которая перемешивается с имеющимся раствором. Смесь вытекает с той же скоростью. Сколько соли в баке останется через час?
- **79.** В воздухе комнаты объемом $200~\text{M}^3$ содержится 0.15% углекислого газа (CO_2). Вентилятор подает в минуту $20~\text{M}^3$ воздуха, содержащего 0.04% CO_2 . Через какое время количество углекислого газа в воздухе комнаты уменьшится втрое?

В задачах **80—82** принять, что скорость остывания (или нагревания) тела пропорциональна разности температур тела и окружающей среды.

- **80.** Тело охладилось за 10~*мин* от 100° до 60° . Температура окружающего воздуха поддерживается равной 20° . Когда тело остынет до 25° ?
- 81. В сосуд, содержащий $1\ \kappa r$ воды при температуре 20° , опущен алюминиевый предмет с массой $0.5\ \kappa r$, удельной теплоемкостью 0.2 и температурой 75° . Через минуту вода нагрелась на 2° . Когда температура воды и предмета будет отличаться одна от другой на 1° ? Потерями тепла на нагревание сосуда и прочими пренебречь.
- **82.** Кусок металла с температурой a градусов помещен в печь, температура которой в течение часа равномерно повышается от a градусов до b градусов. При разности температур

печи и металла в T градусов металл нагревается со скоростью kT градусов в минуту. Найти температуру металла через час.

- 83. Лодка замедляет свое движение под действием сопротивления воды, которое пропорционально скорости лодки. Начальная скорость лодки 1,5 $\emph{m/cek}$, через 4 \emph{cek} скорость ее 1 $\emph{m/cek}$. Когда скорость уменьшится до 1 $\emph{cm/cek}$? Какой путь может пройти лодка до остановки?
- В задачах **84—86** использовать закон радиоактивного распада: количество радиоактивного вещества, распадающегося за единицу времени, пропорционально количеству этого вещества, имеющемуся в рассматриваемый момент.
- **84.** За 30 дней распалось 50% первоначального количества радиоактивного вещества. Через сколько времени останется 1% от первоначального количества?
- **85.** Согласно опытам, в течение года из каждого грамма радия распадается 0,44 мг. Через сколько лет распадется половина имеющегося количества радия?
- **86.** В исследованном куске горной породы содержится 100 мг урана и 14 мг уранового свинца. Известно, что уран распадается наполовину за $4.5\cdot 10^9$ лет и что при полном распаде 238 г урана образуется 206 г уранового свинца. Определить возраст горной породы. Считать, что в момент образования горная порода не содержала свинца, и пренебречь наличием промежуточных радиоактивных продуктов между ураном и свинцом (так как они распадаются намного быстрее урана).
- 87. Количество света, поглощаемое слоем воды малой толщины, пропорционально количеству падающего на него света и толщине слоя. Слой воды толщиной $35\ cm$ поглощает половину падающего на него света. Какую часть света поглотит слой толщиной в $2\ m$?

Для составления дифференциального уравнения в задачах 88-90 за неизвестную функцию удобнее взять скорость. Ускорение силы тяжести считать равным $10~\text{m/ce}\kappa^2$.

88. Парашютист прыгнул с высоты 1,5 κm , а раскрыл парашют на высоте 0,5 κm . Сколько времени он падал до раскрытия парашюта? Известно, что предельная скорость падения человека в воздухе нормальной плотности составляет

- 50 *м/сек*. Изменением плотности с высотой пренебречь. Сопротивление воздуха пропорционально квадрату скорости.
- **89.** Футбольный мяч весом $0,4~\kappa \Gamma$ брошен вверх со скоростью $20~m/ce\kappa$. Сопротивление воздуха пропорционально квадрату скорости и равно $0,48~\Gamma$ при скорости $1~m/ce\kappa$. Вычислить время подъема мяча и наибольшую высоту подъема. Как изменятся эти результаты, если пренебречь сопротивлением воздуха?
- **90.** Вычислить время падения мяча с высоты 16,3 *м* без начальной скорости с учетом сопротивления воздуха (см. задачу **89**). Найти скорость в конце падения.

В задачах **91—95** принять, что жидкость из сосуда вытекает со скоростью, равной $0.6\sqrt{2gh}$, где $g=10~\text{м/cek}^2$ — ускорение силы тяжести, h — высота уровня воды над отверстием.

- **91.** За какое время вытечет вся вода из цилиндрического бака диаметром 2R=1.8~ м и высотой H=2.45~ м через отверстие в дне диаметром 2r=6~ см? Ось цилиндра вертикальна.
- **92.** Решить предыдущую задачу в предположении, что ось цилиндра расположена горизонтально, а отверстие находится в самой нижней части цилиндра.
- **93.** Цилиндрический бак поставлен вертикально и имеет отверстие в дне. Половина воды из полного бака вытекает за 5 минут. За какое время вытечет вся вода?
- **94.** Воронка имеет форму конуса радиуса $R=6\,$ см и высоты $H=10\,$ см, обращенного вершиной вниз. За какое время вытечет вся вода из воронки через круглое отверстие диаметра $0.5\,$ см, сделанное в вершине конуса?
- **95.** В прямоугольный бак размером $60~cm \times 75~cm$ и высотой 80~cm поступает 1.8~n воды в секунду. В дне имеется отверстие площадью $2.5~cm^2$. За какое время наполнится бак? Сравнить результат с временем наполнения такого бака без отверстия в дне.
- **96.** Резиновый шнур длиной в 1 M под действием силы f $\kappa \Gamma$ удлиняется на kf метров. На сколько удлинится такой же шнур длины l и веса P под действием своего веса, если его подвесить за один конец?

- 97. Найти атмосферное давление на высоте h, если на поверхности земли давление равно 1 $\kappa\Gamma/c M^2$ и плотность воздуха $0,0012~e/c M^3$. Использовать закон Бойля—Мариотта, в силу которого плотность пропорциональна давлению (т. е. пренебречь изменением температуры воздуха с высотой).
- 98. Для остановки речных судов у пристани с них бросают канат, который наматывают на столб, стоящий на пристани. Какая сила будет тормозить судно, если канат делает три витка вокруг столба, коэффициент трения каната о столб равен 1/3, и рабочий на пристани тянет за свободный конец каната с силой $10~\kappa\Gamma$?
- 99. В закрытом помещении объемом v m^3 находится открытый сосуд с водой. Скорость испарения воды пропорциональна разности между количеством q_1 водяного пара, насыщающего 1 m^3 воздуха при данной температуре, и количеством q водяного пара, имеющемся в 1 m^3 воздуха в рассматриваемый момент (считаем, что температура воздуха и воды, а также величина площади, с которой происходит испарение, остаются неизменными). В начальный момент в сосуде было m_0 грамм воды, а в 1 m^3 воздуха q_0 грамм пара. Сколько воды останется в сосуде через промежуток времени t?
- ${f 100.}$ Масса ракеты с полным запасом топлива равна M, без топлива m, скорость истечения продуктов горения из ракеты равна c, начальная скорость ракеты равна нулю. Найти скорость ракеты после сгорания топлива, пренебрегая силой тяжести и сопротивлением воздуха (формула Циолковского).

§ 4. ОДНОРОДНЫЕ УРАВНЕНИЯ

1. Однородные уравнения могут быть записаны в виде $y'=f\left(\frac{y}{x}\right)$, а также в виде $M(x,\ y)\,\mathrm{d} x+N(x,\ y)\,\mathrm{d} y=0$, где $M(x,\ y)$ и $N(x,\ y)$ — однородные функции одной и той же степени 1. Чтобы решить однородное уравнение, можно сделать замену y=tx, после чего получается уравнение с разделяющимися переменными.

 Π р и м е р. Решить уравнение x dy = (x + y) dx.

 $^{^1}$ Функция $M(x,\ y)$ называется однородной функцией степени n, если для всех k>0 имеем $M(kx,\ ky)\equiv k^nM(x,\ y).$

Это уравнение — однородное. Полагаем y=tx. Тогда $\mathrm{d}y=x\,\mathrm{d}t+t\,\mathrm{d}x$. Подставляя в уравнение, получим

$$x(x dt + t dx) = (x + tx) dx; \quad x dt = dx.$$

Решаем полученное уравнение с разделяющимися переменными

$$dt = \frac{dx}{x}$$
; $t = \ln|x| + C$.

Возвращаясь к старому переменному y, получим $y=x(\ln|x|+C)$. Кроме того, имеется решение x=0, которое было потеряно при делении на x.

- 2. Уравнение вида $y'=f\left(\frac{a_1x+b_1y+c_1}{ax+by+c}\right)$ приводится к однородному с помощью переноса начала координат в точку пересечения прямых ax+by+c=0 и $a_1x+b_1y+c_1=0$. Если же эти прямые не пересекаются, то $a_1x+b_1y=k(ax+by)$; следовательно, уравнение имеет вид y'=F(ax+by) и приводится к уравнению с разделяющимися переменными заменой z=ax+by (или z=ax+by+c), см. § 2, п. 2.
- 3. Некоторые уравнения можно привести к однородным заменой $y=z^m$. Число m обычно заранее не известно. Чтобы его найти, надо в уравнении сделать замену $y=z^m$. Требуя, чтобы уравнение было однородным, найдем число m, если это возможно. Если же этого сделать нельзя, то уравнение не приводится к однородному этим способом.

П р и м е р. Дано уравнение $2x^4yy'+y^4=4x^6$. После замены $y=z^m$ уравнение примет вид $2mx^4z^{2m-1}z'+z^{4m}=4x^6$. Это уравнение будет однородным в том случае, когда степени всех его членов равны между собой, т. е. 4+(2m-1)=4m=6. Эти равенства удовлетворяются одновременно, если m=3/2. Следовательно, уравнение можно привести к однородному заменой $y=z^{3/2}$.

Решить уравнения **101—129**.

101.
$$(x + 2y) dx - x dy = 0.$$

102.
$$(x-y) dx + (x+y) dy = 0$$
.

103.
$$(y^2 - 2xy) dx + x^2 dy = 0.$$

104.
$$2x^3y' = y(2x^2 - y^2)$$
.

105.
$$y^2 + x^2y' = xyy'$$
.

106.
$$(x^2 + y^2)y' = 2xy$$
.

107.
$$xy' - y = x \operatorname{tg} \frac{y}{x}$$
.

108.
$$xy' = y - xe^{y/x}$$
.

109.
$$xy' - y = (x + y) \ln \frac{x+y}{x}$$
.

110.
$$xy' = y \cos \ln \frac{y}{x}$$
.

111.
$$(y + \sqrt{xy}) dx = x dy$$
.

112.
$$xy' = \sqrt{x^2 - y^2} + y$$
.

113.
$$(2x - 4y + 6) dx + (x + y - 3) dy = 0.$$

114.
$$(2x + y + 1) dx - (4x + 2y - 3) dy = 0.$$

115.
$$x - y - 1 + (y - x + 2)y' = 0$$
.

116.
$$(x+4y)y'=2x+3y-5$$
.

117.
$$(y+2) dx = (2x + y - 4) dy$$
.

118.
$$y' = 2\left(\frac{y+2}{x+y-1}\right)^2$$
.

119.
$$(y'+1) \ln \frac{y+x}{x+3} = \frac{y+x}{x+3}$$
.

120.
$$y' = \frac{y+2}{x+1} + \operatorname{tg} \frac{y-2x}{x+1}$$
.

121.
$$x^3(y'-x)=y^2$$
.

122.
$$2x^2y' = y^3 + xy$$
.

123.
$$2x dy + (x^2y^4 + 1)y dx = 0.$$

124.
$$y dx + x(2xy + 1) dy = 0$$
.

125.
$$2y' + x = 4\sqrt{y}$$
.

126.
$$y' = y^2 - \frac{2}{x^2}$$
.

127.
$$2xy' + y = y^2\sqrt{x - x^2y^2}$$
.

128.
$$\frac{2}{3}xyy' = \sqrt{x^6 - y^4} + y^2$$
.

129.
$$2y + (x^2y + 1)xy' = 0$$
.

130. Найти траектории, пересекающие кривые данного семейства под углом в 45° , причем этот угол от касательной

к кривой до касательной к траектории отсчитывается в отрицательном направлении.

a)
$$y = x \ln Cx$$
; 6) $(x - 3y)^4 = Cxy^6$.

- **131.** Найти кривую, у которой точка пересечения любой касательной с осью абсцисс одинаково удалена от точки касания и от начала координат.
- **132.** Найти кривую, у которой расстояние любой касательной от начала координат равно абсциссе точки касания.
- **133.** При каких α и β уравнение $y' = ax^{\alpha} + by^{\beta}$ приводится к однородному с помощью замены $y = z^m$?
- ${f 134^*}.$ Пусть k_0 корень уравнения f(k)=k. Показать, что:
- 1) если $f'(k_0) < 1$, то ни одно решение уравнения y' = f(y/x) не касается прямой $y = k_0 x$ в начале координат;
- 2) если $f'(k_0)>1,$ то этой прямой касается бесконечно много решений.
- **135.** Начертить приближенно интегральные кривые следующих уравнений (не решая уравнений):

У к а з а н и е. Тангенс угла между лучом y=kx и пересекающей его интегральной кривой уравнения y'=f(y/x) равен (f(k)-k)/(1+kf(k)) (почему?). Для приближенного построения интегральных кривых надо исследовать знак этой дроби в зависимости от k.

§ 5. ЛИНЕЙНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

1. Уравнение

$$y' + a(x)y = b(x) \tag{1}$$

называется линейным. Чтобы его решить, надо сначала решить уравнение

$$y' + a(x)y = 0 (2)$$

(это делается путем разделения переменных, см. $\S\,2)$ и в общем решении последнего заменить произвольную постоянную C на неизвестную функцию C(x). Затем выражение, полученное для y, подставить в уравнение (1) и найти функцию C(x).

2. Некоторые уравнения становятся линейными, если поменять местами искомую функцию и независимое переменное. Например, уравнение $y=(2x+y^3)y'$, в котором y является функцией от x, — нелинейное. Запишем его в дифференциалах: $y\,\mathrm{d}x-(2x+y^3)\,\mathrm{d}y=0$. Так как в это уравнение x и $\mathrm{d}x$ входят линейно, то уравнение будет линейным, если x считать искомой функцией, а y — независимым переменным. Это уравнение может быть записано в виде

$$\frac{\mathrm{d}x}{\mathrm{d}y} - \frac{2}{y}x = y^2$$

и решается аналогично уравнению (1).

3. Чтобы решить уравнение Бернулли, т. е. уравнение

$$y' + a(x)y = b(x)y^n, \quad (n \neq 1),$$

надо обе его части разделить на y^n и сделать замену $1/y^{n-1}=z$. После замены получается линейное уравнение, которое можно решить изложенным выше способом. (Пример см. в [1], гл. I, $\S\,4$, п. 2, пример 10.)

4. Уравнение Риккати, т. е. уравнение

$$y' + a(x)y + b(x)y^2 = c(x),$$

в общем случае не решается в квадратурах. Если же известно одно частное решение $y_1(x)$, то заменой $y=y_1(x)+z$ уравнение Риккати сводится к уравнению Бернулли и таким образом может быть решено в квадратурах.

Иногда частное решение удается подобрать, исходя из вида свободного члена уравнения (члена, не содержащего y). Например, для уравнения $y'+y^2=x^2-2x$ в левой части будут члены, подобные членам правой части, если взять y=ax+b. Подставляя в уравнение и приравнивая коэффициенты при подобных членах, найдем a и b (если частное решение указанного вида существует, что вовсе не всегда бывает). Другой пример: для уравнения $y'+2y^2=6/x^2$ те же рассуждения побуждают нас искать частное решение в виде y=a/x. Подставляя y=a/x в уравнение, найдем постоянную a.

Решить уравнения 136—160.

136.
$$xy' - 2y = 2x^4$$
.

137.
$$(2x+1)y'=4x+2y$$
.

138.
$$y' + y \operatorname{tg} x = \sec x$$
.

139.
$$(xy + e^x) dx - x dy = 0.$$

140.
$$x^2y' + xy + 1 = 0$$
.

141.
$$y = x(y' - x \cos x)$$
.

142.
$$2x(x^2+y) dx = dy$$
.

143.
$$(xy'-1)\ln x = 2y$$
.

144.
$$xy' + (x+1)y = 3x^2e^{-x}$$
.

145.
$$(x+y^2) dy = y dx$$
.

146.
$$(2e^y - x)y' = 1$$
.

147.
$$(\sin^2 y + x \operatorname{ctg} y)y' = 1$$
.

148.
$$(2x + y) dy = y dx + 4 \ln y dy$$
.

149.
$$y' = \frac{y}{3x-y^2}$$
.

150.
$$(1-2xy)y'=y(y-1)$$
.

151.
$$y' + 2y = y^2 e^x$$
.

152.
$$(x+1)(y'+y^2) = -y$$
.

153.
$$y' = y^4 \cos x + y \operatorname{tg} x$$
.

154.
$$xy^2y' = x^2 + y^3$$
.

155.
$$xy \, dy = (y^2 + x) \, dx$$
.

156.
$$xy' - 2x^2\sqrt{y} = 4y$$
.

157.
$$xy' + 2y + x^5y^3e^x = 0$$
.

158.
$$2y' - \frac{x}{y} = \frac{xy}{x^2 - 1}$$
.

159.
$$y'x^3 \sin y = xy' - 2y$$
.

160.
$$(2x^2y \ln y - x)y' = y$$
.

С помощью замены переменных или дифференцирования привести уравнения **161—166** к линейным и решить их.

161.
$$x dx = (x^2 - 2y + 1) dy$$
.

162.
$$(x+1)(yy'-1)=y^2$$
.

163.
$$x(e^y - y') = 2$$
.

164.
$$(x^2-1)y'\sin y + 2x\cos y = 2x-2x^3$$
.

165.
$$y(x) = \int_{0}^{x} y(t) dt + x + 1.$$

166.
$$\int_{0}^{x} (x-t)y(t) dt = 2x + \int_{0}^{x} y(t) dt.$$

В задачах **167—171**, найдя путем подбора частное решение, привести данные уравнения Риккати к уравнениям Бернулли и решить их.

167.
$$x^2y' + xy + x^2y^2 = 4$$
.

168.
$$3y' + y^2 + \frac{2}{x^2} = 0$$
.

169.
$$xy' - (2x+1)y + y^2 = -x^2$$
.

170.
$$y' - 2xy + y^2 = 5 - x^2$$
.

171.
$$y' + 2ye^x - y^2 = e^{2x} + e^x$$
.

- **172.** Найти траектории, ортогональные к линиям семейства $y^2 = C\mathrm{e}^x + x + 1.$
- **173.** Найти кривые, у которых площадь трапеции, ограниченной осями координат, касательной и ординатой точки касания, есть величина постоянная, равная $3a^2$.
- **174.** Найти кривые, у которых площадь треугольника, ограниченного касательной, осью абсцисс и отрезком от начала координат до точки касания, есть величина постоянная, равная a^2 .
- 175. В баке находится 100 Λ раствора, содержащего 10 κe соли. В бак втекает 5 Λ воды в минуту, а смесь с той же скоростью переливается в другой 100-литровый бак, первоначально наполненный чистой водой. Избыток жидкости из него выливается. Когда количество соли во втором баке будет наибольшим? Чему оно равно?
- **176.** За время Δt (где Δt очень мало и выражено в долях года) из каждого грамма радия распадается 0,00044 Δt грамма

и образуется $0,00043~\Delta t$ грамма радона. Из каждого грамма радона за время Δt распадается $70~\Delta t$ грамма. В начале опыта имелось некоторое количество x_0 чистого радия. Когда количество образовавшегося и еще не распавшегося радона будет наибольшим?

177. Даны два различных решения y_1 и y_2 линейного уравнения первого порядка. Выразить через них общее решение этого уравнения.

178. Найти то решение уравнения

$$y'\sin 2x = 2(y + \cos x),$$

которое остается ограниченным при $x \to \pi/2$.

179*. Пусть в уравнении xy'+ay=f(x) имеем a= = const $>0,\ f(x)\to b$ при $x\to 0$. Показать, что только одно решение уравнения остается ограниченным при $x\to 0$, и найти предел этого решения при $x\to 0$.

 $180^*.$ Пусть в уравнении предыдущей задачи a= = $\cos t < 0, \, f(x) \to b$ при $x \to 0.$ Показать, что все решения этого уравнения имеют один и тот же конечный предел при $x \to 0.$ Найти этот предел.

В задачах **181—183** искомое решение выражается через интеграл с бесконечным пределом.

 181^* . Показать, что уравнение $\frac{\mathrm{d}x}{\mathrm{d}t}+x=f(t)$, где $|f(t)|\leqslant M$ при $-\infty < t < +\infty$, имеет одно решение, ограниченное при $-\infty < t < +\infty$. Найти это решение. Показать, что найденное решение периодическое, если функция f(t) периодическая.

182*. Показать, что только одно решение уравнения $xy'-(2x^2+1)y=x^2$ стремится к конечному пределу при $x\to +\infty,$ и найти этот предел. Выразить это решение через интеграл.

183*. Найти периодическое решение уравнения

$$y' = 2y\cos^2 x - \sin x.$$

184*. Пусть в уравнении $\frac{\mathrm{d}x}{\mathrm{d}t}+a(t)x=f(t)$ $a(t)\geqslant c>0,$ $f(t)\to 0$ при $t\to +\infty.$ Доказать, что каждое решение этого уравнения стремится к нулю при $t\to +\infty.$

 185^* . Пусть в уравнении предыдущей задачи имеем $a(t)\geqslant c>0$ и пусть $x_0(t)$ — решение с начальным условием $x_0(0)=b$. Показать, что для любого $\varepsilon>0$ существует такое $\delta>0$, что если изменить функцию f(t) и число b меньше, чем на δ (т. е. заменить их на такую функцию $f_1(t)$ и число b_1 , что $|f_1(t)-f(t)|<\delta, |b_1-b|<\delta)$, то решение $x_0(t)$ изменится при $t\geqslant 0$ меньше, чем на ε . Это свойство решения называется устойчивостью по постоянно действующим возмущениям.

§ 6. УРАВНЕНИЯ В ПОЛНЫХ ДИФФЕРЕНЦИАЛАХ. ИНТЕГРИРУЮЩИЙ МНОЖИТЕЛЬ

1. Уравнение

$$M(x, y) dx + N(x, y) dy = 0$$

$$\tag{1}$$

называется уравнением в полных дифференциалах, если его левая часть является полным дифференциалом некоторой функции $F(x,\ y)$. Это имеет место, если $\frac{\partial M}{\partial y} \equiv \frac{\partial N}{\partial x}$. Чтобы решить уравнение (1), надо найти функцию $F(x,\ y)$, от которой полный дифференциал $\mathrm{d}F(x,\ y) = F_x'\,\mathrm{d}x + F_y'\,\mathrm{d}y$ равен левой части уравнения (1). Тогда общее решение уравнения (1) можно написать в виде $F(x,\ y) = C$, где C — произвольная постоянная.

Пример. Решить уравнение

$$(2x + 3x^2y) dx + (x^3 - 3y^2) dy = 0. (2)$$

Так как $\frac{\partial}{\partial y}(2x+3x^2y)=3x^2,\, \frac{\partial}{\partial x}(x^3-3y^2)=3x^2,$ то уравнение (2) является уравнением в полных дифференциалах. Найдем функцию F(x,y), полный дифференциал которой $\mathrm{d}F=F_x'\,\mathrm{d}x+F_y'\,\mathrm{d}y$ был бы равен левой части уравнения (2), т. е. такую функцию F, что

$$F'_x = 2x + 3x^2y, \quad F'_y = x^3 - 3y^2.$$
 (3)

Интегрируем по x первое из уравнений (3), считая y постоянным; при этом вместо постоянной интегрирования надо поставить $\varphi(y)$ — неизвестную функцию от y:

$$F = \int (2x + 3x^2y) \, dx = x^2 + x^3y + \varphi(y).$$

Подставляя это выражение для F во второе из уравнений (3), найдем $\varphi(y)$:

$$\left(x^2 + x^3y + \varphi(y)\right)_y' = x^3 - 3y^2; \ \varphi'(y) = -3y^2; \ \varphi(y) = -y^3 + {\rm const} \,.$$

Следовательно, можно взять $F(x, y) = x^2 + x^3y - y^3$, и общее решение уравнения (2) будет иметь вид

$$x^2 + x^3y - y^3 = C.$$

2. Интегрирующим множителем для уравнения

$$M(x, y) dx + N(x, y) dy = 0$$

$$(4)$$

называется такая функция $m(x, y) \not\equiv 0$, после умножения на которую уравнение (4) превращается в уравнение в полных дифференциалах. Если функции M и N в уравнении (4) имеют непрерывные частные производные и не обращаются в нуль одновременно, то интегрирующий множитель существует. Однако нет общего метода для его отыскания (когда общее решение уравнения (4) неизвестно).

В некоторых случаях интегрирующий множитель можно найти с помощью приемов, изложенных в [1], гл. II, \S 3, п. 3 или в [4], гл. 1, \S 5. Для решения некоторых уравнений можно применять метод выделения полных дифференциалов, используя известные формулы:

$$\begin{split} \mathrm{d}(xy) &= y\,\mathrm{d}x + x\,\mathrm{d}y, \qquad \mathrm{d}(y^2) = 2y\,\mathrm{d}y, \\ \mathrm{d}\left(\frac{x}{y}\right) &= \frac{y\,\mathrm{d}x - x\,\mathrm{d}y}{y^2}, \quad \mathrm{d}(\ln y) = \frac{\mathrm{d}y}{y}$$
ит. п.

Пример. Решить уравнение

$$y dx - (4x^2y + x) dy = 0.$$
 (5)

Сначала выделяем группу членов, представляющую собой полный дифференциал. Так как $y\,\mathrm{d}x-x\,\mathrm{d}y=-x^2\,\mathrm{d}(y/x)$, то, деля уравнение (5) на $-x^2$, имеем

$$d\left(\frac{y}{x}\right) + 4y dy = 0, \qquad d\left(\frac{y}{x}\right) + d(2y^2) = 0.$$

Это — уравнение в полных дифференциалах. Интегрируя непосредственно (приводить к виду (1) не нужно), получаем решение

$$\frac{y}{x} + 2y^2 = C.$$

Кроме того, при делении на $-x^2$ было потеряно решение x=0.

Замечание. Так как после деления уравнения (5) на $-x^2$, т. е. умножения на $-1/x^2$, получилось уравнение в полных дифференциалах, то интегрирующий множитель для уравнения (5) равен $-1/x^2$.

3. Если в уравнении (4) можно выделить полный дифференциал некоторой функции $\varphi(x,\ y)$, то иногда уравнение упрощается, если от переменных $(x,\ y)$ перейти к переменным $(x,\ z)$ или $(y,\ z)$, где $z=\varphi(x,\ y)$.

 Π р и м е р ы. 1) Решить уравнение $y \, dx - (x^3y + x) \, dy = 0$.

Выделив полный дифференциал как в предыдущем примере, получим

$$d\left(\frac{y}{x}\right) + xy\,dy = 0.$$

Перейдя к переменным z = y/x и y, получим уравнение

$$\mathrm{d}z + \frac{y^2}{z}\,\mathrm{d}y = 0,$$

которое легко решается.

2) Решить уравнение $(xy + y^4) dx + (x^2 - xy^3) dy = 0$.

Сгруппируем члены так, чтобы выделить полные дифференциалы

$$x(y dx + x dy) + y^{3}(y dx - x dy) = 0, \quad x d(xy) + y^{5} d\left(\frac{x}{y}\right) = 0.$$

Разделив на x и сделав замену $xy=u,\,x/y=v,\,$ получим уравнение $\mathrm{d}u+rac{u^2}{v^3}\,\mathrm{d}v=0,\,$ которое легко решается.

В задачах **186—194** проверить, что данные уравнения являются уравнениями в полных дифференциалах, и решить их.

186.
$$2xy dx + (x^2 - y^2) dy = 0$$
.

187.
$$(2 - 9xy^2)x dx + (4y^2 - 6x^3)y dy = 0.$$

188.
$$e^{-y} dx - (2y + xe^{-y}) dy = 0$$
.

189.
$$\frac{y}{x} dx + (y^3 + \ln x) dy = 0.$$

190.
$$\frac{3x^2+y^2}{y^2} dx - \frac{2x^3+5y}{y^3} dy = 0.$$

191.
$$2x\left(1+\sqrt{x^2-y}\right) dx - \sqrt{x^2-y} dy = 0.$$

192.
$$(1+y^2\sin 2x) dx - 2y\cos^2 x dy = 0.$$

193.
$$3x^2(1 + \ln y) dx = \left(2y - \frac{x^3}{y}\right) dy$$
.

194.
$$\left(\frac{x}{\sin y} + 2\right) dx + \frac{(x^2 + 1)\cos y}{\cos 2y - 1} dy = 0.$$

Решить уравнения **195—220**, найдя каким-либо способом интегрирующий множитель или сделав замену переменных.

195.
$$(x^2 + y^2 + x) dx + y dy = 0.$$

196.
$$(x^2 + y^2 + y) dx - x dy = 0.$$

197.
$$y dy = (x dy + y dx)\sqrt{1 + y^2}$$
.

198.
$$xy^2(xy'+y)=1$$
.

199.
$$y^2 dx - (xy + x^3) dy = 0$$
.

$$200. \left(y - \frac{1}{x}\right) dx + \frac{dy}{y} = 0.$$

201.
$$(x^2 + 3 \ln y)y \, dx = x \, dy$$
.

202.
$$y^2 dx + (xy + tg xy) dy = 0.$$

203.
$$y(x+y) dx + (xy+1) dy = 0$$
.

204.
$$y(y^2+1) dx + x(y^2-x+1) dy = 0$$
.

205.
$$(x^2 + 2x + y) dx = (x - 3x^2y) dy$$
.

206.
$$y dx - x dy = 2x^3 tg \frac{y}{x} dx$$
.

207.
$$y^2 dx + (e^x - y) dy = 0$$
.

208.
$$xy dx = (y^3 + x^2y + x^2) dy$$
.

209.
$$x^2y(y\,dx + x\,dy) = 2y\,dx + x\,dy$$
.

210.
$$(x^2 - y^2 + y) dx + x(2y - 1) dy = 0.$$

211.
$$(2x^2y^2 + y) dx + (x^3y - x) dy = 0.$$

212.
$$(2x^2y^3 - 1)y dx + (4x^2y^3 - 1)x dy = 0.$$

213.
$$y(x+y^2) dx + x^2(y-1) dy = 0.$$

214.
$$(x^2 - \sin^2 y) dx + x \sin 2y dy = 0.$$

215.
$$x(\ln y + 2 \ln x - 1) dy = 2y dx$$
.

216.
$$(x^2 + 1)(2x dx + \cos y dy) = 2x \sin y dx$$
.

217.
$$(2x^3y^2 - y) dx + (2x^2y^3 - x) dy = 0.$$

218.
$$x^2y^3 + y + (x^3y^2 - x)y' = 0$$
.

219.
$$(x^2 - y) dx + x(y + 1) dy = 0.$$

220.
$$y^2(y dx - 2x dy) = x^3(x dy - 2y dx).$$

§ 7. СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ РЕШЕНИЯ

1. Теорема существования и единственности решения уравнения

$$y' = f(x, y) \tag{1}$$

с начальным условием $y(x_0) = y_0$.

Пусть в замкнутой области R $(|x-x_0|\leqslant a,\ |y-y_0|\leqslant b)$ функции f и f_y' непрерывны f. Тогда на некотором отрезке f0 — f1 существует единственное решение уравнения f1, удовлетворяющее начальному условию f3.

При этом можно взять $d=\min\{a;\frac{b}{m}\}$, где a и b указаны выше, а m — любое такое, что $|f|\leqslant m$ в R.

Последовательные приближения, определяемые формулами

$$y_0(x) = y_0, \ \ y_k(x) = y_0 + \int_{x_0}^x f(s, \ y_{k-1}(s)) \, \mathrm{d}s, \ \ k = 1, 2, \ldots,$$

равномерно сходятся к решению на указанном отрезке.

Замечание. Для существования решения достаточно только непрерывности $f(x,\ y)$ в области R, но при этом решение может не быть единственным.

¹Требование непрерывности f'(y) можно заменить требованием ее ограниченности или условием Липшица: $|f(x,y_1)-f(x,y_2)|\leqslant k|y_1-y_2|,$ $k=\mathrm{const.}$

2. Система уравнений

$$\begin{cases} y_1' = f_1(x, y_1, \dots, y_n), \\ \dots \\ y_n' = f_n(x, y_1, \dots, y_n) \end{cases}$$
 (2)

в векторных обозначениях записывается так:

$$y' = f(x, y), \tag{3}$$

где $y=(y_1,\ \dots,\ y_n)$ и $f=(f_1,\ \dots,\ f_n)$ — векторы. Непрерывность вектор-функции f означает непрерывность всех функций $f_1,\ \dots,\ f_n,$ а вместо $\frac{\partial f}{\partial y}$ рассматривается матрица из частных производных $\frac{\partial f_i}{\partial y_k},\ i,\ k=1,\ \dots,n.$ Теорема существования и единственности решения и все

Теорема существования и единственности решения и все утверждения п. 1 остаются справедливыми и для системы, записанной в виде (3). При этом |y| означает длину вектора y: $|y| = \sqrt{y_1^2 + \ldots + y_n^2}$.

3. Теорема существования и единственности решения для уравнения *n*-го порядка

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}).$$
 (4)

Пусть в области D функция f и ее частные производные первого порядка по $y,\ y',\ \ldots,\ y^{(n-1)}$ непрерывны, и точка $(x_0,\ y_0,\ y_0',\ \ldots,\ y_0^{(n-1)})$ лежит внутри D. Тогда при начальных условиях

$$y(x_0) = y_0, \ y'(x_0) = y'_0, \ \ldots, \ y^{(n-1)}(x_0) = y_0^{(n-1)}$$

уравнение (4) имеет единственное решение.

Уравнение (4) можно свести к системе вида (2), если ввести новые неизвестные функции по формулам $y=y_1,\ y'=y_2,\ y''=y_3,\ \ldots,\ y^{(n-1)}=y_n.$ Тогда уравнение (4) сводится к системе

$$y_1' = y_2, y_2' = y_3, \ldots, y_{n-1}' = y_n, y_n' = f(x, y_1, \ldots, y_n),$$

которая является частным случаем системы (2) и к которой применимы все утверждения п. 2.

4. Продолжение решений. Во многих случаях решение уравнения (1) или системы (2) существует не только на отрезке, указанном в п. 1, но и на бо́льшем отрезке.

Если уравнение (1) или система (2) удовлетворяет условиям теоремы существования в замкнутой ограниченной области, то всякое решение можно продолжить до выхода на границу этой области.

Если правая часть уравнения (1) или системы (3) в области $\alpha < x < \beta,\, |y| < \infty \; (\alpha \; \text{и} \; \beta \; \text{могут быть конечными или бесконечными)}$ непрерывна и удовлетворяет неравенству

$$|f(x, y)| \leqslant a(x)|y| + b(x),$$

и функции a(x) и b(x) непрерывны, то всякое решение можно продолжить на весь интервал $\alpha < x < \beta$.

- **221.** Построить последовательные приближения y_0, y_1, y_2 к решению данного уравнения с данными начальными условиями:
 - a) $y' = x y^2$, y(0) = 0.
 - $\text{ 6) } y'=y^2+3x^2-1, \ \ y(1)=1.$
 - B) $y' = y + e^{y-1}, \ y(0) = 1.$
 - r) $y' = 1 + x \sin y$, $y(\pi) = 2\pi$.
- **222.** Построить по два последовательных приближения (не считая исходного) к решениям следующих уравнений и систем:
 - a) $y'=2x+z, \ z'=y; \ y(1)=1, \ z(1)=0.$
 - 6) $\frac{dx}{dt} = y$, $\frac{dy}{dt} = x^2$; x(0) = 1, y(0) = 2.
 - B) $y'' + {y'}^2 2y = 0;$ y(0) = 1, y'(0) = 0.
 - $\Gamma) \left. \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 3tx; \qquad x(1) = 2, \quad \left. \frac{\mathrm{d}x}{\mathrm{d}t} \right|_{t=1} = -1.$
- **223.** Указать какой-нибудь отрезок, на котором существует решение с данными начальными условиями:
 - a) $y' = x + y^3$, y(0) = 0.
 - 6) $y' = 2y^2 x$, y(1) = 1.
 - B) $\frac{dx}{dt} = t + e^x$, x(1) = 0.
 - r) $\frac{dx}{dt} = y^2$, $\frac{dy}{dt} = x^2$, x(0) = 1, y(0) = 2.

224*. Для уравнения $y' = x - y^2$ с начальным условием y(0) = 0 построить третье приближение к решению и оценить его ошибку при $0 \leqslant x \leqslant 0.5$.

Указание. Оценить остаток ряда, сходимость которого доказывается в теореме существования решения, см. [1], гл. II, § 1; $[2], \S 15.$

225. Пользуясь каким-либо достаточным условием единственности, выделить области на плоскости x, y, в которых через каждую точку проходит единственное решение уравнения

a)
$$y' = 2xy + y^2$$
,

a)
$$y' = 2xy + y^2$$
, 6) $y' = 2 + \sqrt[3]{y - 2x}$,

B)
$$(x-2)y' = \sqrt{y} - x$$
, $r) y' = 1 + tg y$,

$$\Gamma) y' = 1 + \operatorname{tg} y_{\cdot}$$

$$\mathbf{g}(y-x)y'=y\ln x,$$

д)
$$(y-x)y' = y \ln x$$
, e) $xy' = y + \sqrt{y^2 - x^2}$.

- **226.** При каких неотрицательных a нарушается единственность решений уравнения $y' = |y|^a$ и в каких точках?
- 227. С помощью необходимого и достаточного условия единственности для уравнений вида y' = f(y) (см. [1], гл. III, \S 4, п. 1, мелкий шрифт или [2], \S 4) исследовать написанные ниже уравнения. Выделив области, где f(y) сохраняет знак, приближенно изобразить на чертеже решения. Для уравнений д) и е) правые части при y=0 доопределяются по непрерывности.

a)
$$y' = \sqrt[3]{y^2}$$
,

6)
$$y' = y\sqrt[3]{y+1}$$
,

в)
$$y' = (y - 1)\sqrt{y^3}$$
, $r) y' = \arccos y$,

$$\Gamma$$
) $y' = \arccos y$

e)
$$y' = y \ln^2 y$$
.

228. При каких начальных условиях существует единственное решение следующих уравнений и систем?

a)
$$y'' = \operatorname{tg} y + \sqrt[3]{x}$$
,

a)
$$y'' = \operatorname{tg} y + \sqrt[3]{x}$$
, 6) $(x+1)y'' = y + \sqrt{y}$,

$$B) (x-y)y'y''' = \ln xy,$$

B)
$$(x-y)y'y''' = \ln xy$$
, $\Gamma y'' - yy''' = \sqrt[5]{y'-x}$,

д)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = y^2 + \sqrt[3]{t}, \ \frac{\mathrm{d}y}{\mathrm{d}t} = \sqrt[3]{x},$$

e)
$$\frac{dx}{dt} = y^3 + \ln(t+1), \ x \frac{dy}{dt} = \sqrt[3]{y-t}.$$

- 229. Могут ли графики двух решений данного уравнения на плоскости x, y пересекаться в некоторой точке (x_0, y_0)
 - а) для уравнения $y' = x + y^2$?
 - б) для уравнения $y'' = x + y^2$?
- 230. Могут ли графики двух решений данного уравнения на плоскости x, y касаться друг друга в некоторой точке (x_0, y_0)
 - а) для уравнения $y' = x + y^2$?
 - б) для уравнения $y'' = x + y^2$?
 - в) для уравнения $y''' = x + y^2$?
- **231.** Сколько существует решений уравнения $y^{(n)} = x + y^{(n)}$ $+y^2$, удовлетворяющих одновременно двум условиям: y(0) ==1, y'(0)=2? Рассмотреть отдельно случаи n=1, 2, 3.
- **232.** Сколько решений уравнения $y^{(n)} = f(x, y)$ (f и f'_{y} непрерывны на всей плоскости x, y) проходит через точ- $\ddot{\kappa}$ у (x_0, y_0) по заданному направлению, образующему угол α с осью Ox? Рассмотреть случаи n=1, n=2 и $n\geqslant 3.$
- **233.** При каких n уравнение $y^{(n)} = f(x, y)$ (f и f'_n непрерывны) может иметь среди своих решений две функции: $y_1 = x, y_2 = x + x^4$?
- **234.** При каких n уравнение $y^{(n)} = f(x, y, y', \ldots, y^{(n-1)})$ с непрерывно дифференцируемой функцией f может иметь среди своих решений две функции: $y_1 = x$, $y_2 = \sin x$?
- **235*.** Пусть f(x, y) непрерывна по x, y и при каждом x не возрастает при возрастании у. Доказать, что если два решения уравнения y' = f(x, y) удовлетворяют одному и тому же начальному условию $y(x_0) = y_0$, то они совпадают при $x \geqslant x_0$.
- 236. Сколько производных имеют решения следующих уравнений и систем в окрестности начала координат? (Теорему о гладкости решений см. [2], § 19 или [4], § 6, теорема 1.4.)
 - a) $y' = x + y^{7/3}$,
- $6) y' = x|x| y^2,$
- B) $y'' = |x^3| + y^{5/3}$, Γ) $y''' = y x\sqrt[3]{x}$,
- д) $\frac{\mathrm{d}x}{\mathrm{d}t} = t + y, \ \frac{\mathrm{d}y}{\mathrm{d}t} = x + t^2|t|,$
- e) $\frac{\mathrm{d}x}{\mathrm{d}t} = y^2 + \sqrt[3]{t^4}$, $\frac{\mathrm{d}y}{\mathrm{d}t} = \sqrt[3]{x}$.

- ${f 237^*}.$ При каких a каждое решение продолжается на бесконечный интервал $-\infty < x < +\infty$
 - а) для уравнения $y' = |y|^a$?
 - б) для уравнения $y' = (y^2 + e^x)^a$?
 - в) для уравнения $y' = |y|^{a-1} + \left| x \sqrt[3]{y} \right|^{2a}$?
 - г) для системы $y' = (y^2 + z^2 + 2)^{-a}, z' = y(1+z^2)^a$?
- ${f 238^*}.$ Для следующих уравнений доказать, что решение с произвольным начальным условием $y(x_0)=y_0$ существует при $x_0\leqslant x<+\infty$:
- **239*.** Пусть на всей плоскости x,y функции f(x,y) и $f'_y(x,y)$ непрерывны и $f'_y(x,y)\leqslant k(x)$, функция k(x) непрерывна. Доказать, что решение уравнения y'=f(x,y) с любым начальным условием $y(x_0)=y_0$ существует при $x_0\leqslant x<+\infty$.
- **240***. Дана система в векторной записи y' = f(x, y), удовлетворяющая условиям теоремы существования в окрестности каждой точки (x, y). Пусть в области |y| > b при всех x

$$y \cdot f(x, y) \leqslant k(x)|y|^2,$$

где $y\cdot f$ — скалярное произведение, а функция k(x) непрерывна. Доказать, что решение с любым начальным условием $y(x_0)=y_0$ существует при $x_0\leqslant x<+\infty$.

§ 8. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ

- 1. Уравнения вида $F(x,\,y,\,y')=0$ можно решать следующими методами.
- а) Разрешить уравнение относительно y', т. е. из уравнения F(x,y,y')=0 выразить y' через x и y. Получится одно или несколько уравнений вида y'=f(x,y). Каждое из них надо решить.
 - б) Метод введения параметра¹.

 $^{^13}$ десь излагается простейший вариант этого метода. Более общий вариант см. [1], гл. III, \S 3, п. 1.

Пусть уравнение F(x, y, y') = 0 можно разрешить относительно y, т. е. записать в виде y = f(x, y'). Введя параметр

$$p = \frac{\mathrm{d}y}{\mathrm{d}x} = y',\tag{1}$$

получим

$$y = f(x, p). (2)$$

Взяв полный дифференциал от обеих частей равенства (2) и заменив $\mathrm{d} y$ через $p\,\mathrm{d} x$ (в силу (1)), получим уравнение вида

$$M(x, p) dx + N(x, p) dp = 0.$$

Если решение этого уравнения найдено в виде $x=\varphi(p)$, то, воспользовавшись равенством (2), получим решение исходного уравнения в параметрической записи: $x=\varphi(p),\,y=f(\varphi(p),\,p).$

Уравнения вида x = f(y, y') решаются тем же методом.

Пример. Решить уравнение $y = x + y' - \ln y'$. Вводим параметр p = y':

$$y = x + p - \ln p. \tag{3}$$

Берем полный дифференциал от обеих частей равенства и заменяем $\mathrm{d} y$ на $p\,\mathrm{d} x$ в силу (1): $\mathrm{d} y=\mathrm{d} x+\mathrm{d} p-\frac{\mathrm{d} p}{p},\quad p\,\mathrm{d} x=\mathrm{d} x+\mathrm{d} p-\frac{\mathrm{d} p}{p}$. Решаем полученное уравнение. Переносим члены с $\mathrm{d} x$ влево, с $\mathrm{d} p$ — вправо:

$$(p-1) dx = \frac{p-1}{p} dp.$$
 (4)

а) Если $p \neq 1$, то сокращаем на p-1:

$$\mathrm{d}x = \frac{\mathrm{d}p}{p}, \ x = \ln p + C.$$

Подставляя это в (3), получаем решение в параметрической записи:

$$x = \ln p + C, \ y = p + C. \tag{5}$$

В данном случае можно исключить параметр p и получить решение в явном виде. Для этого из первого из уравнений (5) выражаем p через x, τ . е. $p=\mathrm{e}^{x-C}$. Подставляя это во второе уравнение, получаем искомое решение:

$$y = e^{x-C} + C. (6)$$

б) Рассмотрим случай, когда в (4) имеем p=1. Подставляя p=1 в (3), получаем еще решение

$$y = x + 1. (7)$$

(Было бы ошибкой в равенстве p=1 заменить p на y' и, проинтегрировав, получить y=x+C.)

2. Решение $y=\varphi(x)$ уравнения F(x,y,y')=0 называется *особым*, если через каждую его точку, кроме этого решения, проходит и другое решение, имеющее в этой точке ту же касательную, что и решение $y=\varphi(x)$, но не совпадающее с ним в сколь угодно малой окрестности этой точки 1 .

Если функция F(x,y,y') и производные $\frac{\partial F}{\partial y}$ и $\frac{\partial F}{\partial y'}$ непрерывны, то любое особое решение уравнения

$$F(x, y, y') = 0 \tag{8}$$

удовлетворяет также уравнению

$$\frac{\partial F(x, y, y')}{\partial y'} = 0. (9)$$

Поэтому, чтобы отыскать особые решения уравнения (3), надо исключить y' из уравнений (8) и (9). Полученное уравнение $\psi(x,y)=0$ называется уравнением $\partial ucкриминантной$ кривой. Для каждой ветви дискриминантной кривой надо проверить, является ли эта ветвь решением уравнения (8), и если является, то будет ли это решение особым, т. е. касаются ли его в каждой точке другие решения.

Пример. Найти особое решение уравнения

$$y = x + y' - \ln y'. \tag{10}$$

Дифференцируем обе части равенства по y':

$$0 = 1 - \frac{1}{y'}. (11)$$

Исключаем y' из уравнений (10) и (11). Из (11) имеем y'=1; подставляя это в (10), получаем уравнение дискриминантной кривой

$$y = x + 1. (12)$$

Проверим, будет ли кривая особым решением. Для этого сначала проверяем, является ли она решением уравнения (10). Подставляя (12) в (10), получаем тождество x+1=x+1. Значит, кривая (12) — решение.

 $^{^1}$ Это определение взято из [1]. Есть и другие определения, не равносильные этому.

Теперь проверим, является ли это решение особым, т. е. касаются ли его в каждой точке другие решения. В п. 1 было найдено, что другие решения выражаются формулой (6). Пишем условия касания кривых $y = y_1(x)$ и $y = y_2(x)$ в точке с абсциссой x_0 :

$$y_1(x_0) = y_2(x_0), \ y_1'(x_0) = y_2'(x_0).$$
 (13)

Для решений (6) и (12) эти условия принимают вид $e^{x_0-C}+C=$ $=x_0+1$, $e^{x_0-C}=1$. Из второго равенства имеем $C=x_0$; подставляя это в первое равенство, получаем $1 + x_0 = x_0 + 1$. Это равенство справедливо при всех x_0 . Значит, при каждом x_0 решение (12) в точке с абсциссой x_0 касается одной из кривых семейства (6), а именно той кривой, для которой $C = x_0$.

Итак, в каждой точке решение (12) касается другого решения (6), не совпадающего с ним. Значит, решение (12) — особое.

Если семейство решений записано в параметрическом виде, как в (5), то выполнение условий касания проверяется аналогично. При этом надо учесть, что y' = p.

3. Если семейство кривых $\Phi(x, y, C) = 0$, являющихся решениями уравнения F(x, y, y') = 0, имеет огибающую $y = \varphi(x)$, то эта огибающая является особым решением того же уравнения. Если функция Ф имеет непрерывные первые производные, то для отыскания огибающей надо исключить C из уравнений

$$\Phi(x, y, C) = 0, \qquad \frac{\partial \Phi(x, y, C)}{\partial C} = 0$$

и проверить, будет ли полученная кривая огибающей, т. е. касаются ли ее в каждой точке кривые семейства. Эту проверку можно провести изложенным в конце п. 2 методом, используя условия касания (13).

В задачах 241—250 найти все решения данных уравнений; выделить особые решения (если они есть); дать чертеж.

241.
$$y'^2 - y^2 = 0$$
. **242.** $8y'^3 = 27y$. **243.** $(y'+1)^3 = 27(x+y)^2$. **245.** $y^2(y'^2+1) = 1$. **245.** $y'^2 - 4y^3 = 0$. **246.** $y'^2 = 4y^3(1-y)$. **247.** $xy'^2 = y$. **245.** $yy'^3 + x = 1$. **249.** $y'^3 + y^2 = yy'(y'+1)$.

250.
$$4(1-y) = (3y-2)^2 y'^2$$
.

Уравнения **251—266** разрешить относительно y', после этого общее решение искать обычными методами (§§ 2,4,5,6). Найти также особые решения, если они есть.

251.
$$y'^2 + xy = y^2 + xy'$$
. **252.** $xy'(xy' + y) = 2y^2$.

253.
$$xy'^2 - 2yy' + x = 0$$
. **254.** $xy'^2 = y(2y' - 1)$.

255.
$$y'^2 + x = 2y$$
. **256.** $y'^3 + (x+2)e^y = 0$.

257.
$$y'^2 - 2xy' = 8x^2$$
. **258.** $(xy' + 3y)^2 = 7x$.

259.
$$y'^2 - 2yy' = y^2(e^x - 1)$$
.

260.
$$y'(2y-y')=y^2\sin^2 x$$
.

261.
$$y'^4 + y^2 = y^4$$
.

262.
$$x(y-xy')^2 = xy'^2 - 2yy'$$
.

263.
$$y(xy'-y)^2 = y - 2xy'$$
.

264.
$$yy'(yy'-2x)=x^2-2y^2$$
.

265.
$$y'^2 + 4xy' - y^2 - 2x^2y = x^4 - 4x^2$$
.

266.
$$y(y-2xy')^2=2y'$$
.

Уравнения **267—286** решить методом введения параметра.

267.
$$x = {y'}^3 + y'$$
. **268.** $x({y'}^2 - 1) = 2y'$.

269.
$$x = y'\sqrt{{y'}^2 + 1}$$
. **270.** $y'(x - \ln y') = 1$.

271.
$$y = {y'}^2 + 2{y'}^3$$
. **272.** $y = \ln(1 + {y'}^2)$.

273.
$$(y'+1)^3 = (y'-y)^2$$
. **274.** $y = (y'-1)e^{y'}$.

275.
$$y'^4 - y'^2 = y^2$$
. **276.** $y'^2 - y'^3 = y^2$.

277.
$$y'^4 = 2yy' + y^2$$
. **278.** $y'^2 - 2xy' = x^2 - 4y$.

279.
$$5y + {y'}^2 = x(x + y')$$
. **280.** $x^2{y'}^2 = xyy' + 1$.

281.
$$y'^3 + y^2 = xyy'$$
. **282.** $2xy' - y = y' \ln yy'$.

283.
$$y' = e^{xy'/y}$$
. **284.** $y = xy' - x^2y'^3$.

285.
$$y = 2xy' + y^2y'^3$$
. **286.** $y(y - 2xy')^3 = y'^2$.

Решить уравнения Лагранжа и Клеро (задачи 287—296).

287.
$$y = xy' - y'^2$$
. **288.** $y + xy' = 4\sqrt{y'}$.

289.
$$y = 2xy' - 4y'^3$$
. **290.** $y = xy' - (2 + y')$.

291.
$$y'^3 = 3(xy' - y)$$
. **292.** $y = xy'^2 - 2y'^3$.

293.
$$xy' - y = \ln y'$$
. **294.** $xy'(y' + 2) = y$.

295.
$$2y'^2(y - xy') = 1$$
. **296.** $2xy' - y = \ln y'$.

297. Найти особое решение дифференциального уравнения, если известно семейство решений этого уравнения:

a)
$$y = Cx^2 - C^2$$
.

6)
$$Cy = (x - C)^2$$
,

B)
$$y = C(x - C)^2$$
,

$$\Gamma) xy = Cy - C^2.$$

- **298.** Найти кривую, каждая касательная к которой образует с осями координат треугольник площади $2a^2$.
- **299.** Найти кривую, каждая касательная к которой отсекает на осях координат такие отрезки, что сумма величин, обратных квадратам длин этих отрезков, равна 1.
- **300.** Найти кривую, проходящую через начало координат и такую, что отрезок нормали к ней, отсеквемый сторонами первого координатного угла, имеет постоянную длину, равную 2.

§ 9. РАЗНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯЛКА¹

Решить уравнения **301—330** и построить графики их решений.

301.
$$xy' + x^2 + xy - y = 0$$
. **302.** $2xy' + y^2 = 1$.

303.
$$(2xy^2 - y) dx + x dy = 0$$
.

304.
$$(xy'+y)^2 = x^2y'$$
. **305.** $y-y'=y^2+xy'$.

306.
$$(x+2y^3)y'=y$$
. **307.** $y'^3-y'e^{2x}=0$.

 $^{^{1}}$ Все задачи $\S\,9$ решаются изложенными ранее методами.

308.
$$x^2y' = y(x+y)$$
.

309.
$$(1-x^2) dy + xy dx = 0.$$

310.
$$y'^2 + 2(x-1)y' - 2y = 0$$
.

311.
$$y + y' \ln^2 y = (x + 2 \ln y)y'$$
.

312.
$$x^2y' - 2xy = 3y$$
.

313.
$$x + yy' = y^2(1 + {y'}^2)$$
.

314.
$$y = (xy' + 2y)^2$$
.

315.
$$y' = \frac{1}{x - y^2}$$
.

316.
$$y'^3 + (3x - 6)y' = 3y$$
.

317.
$$x - \frac{y}{y'} = \frac{2}{y}$$
.

318.
$$2y'^3 - 3y'^2 + x = y$$
.

319.
$$(x+y)^2y'=1$$
.

320.
$$2x^3yy' + 3x^2y^2 + 7 = 0$$
.

$$\mathbf{321.} \ \frac{\mathrm{d}x}{x} = \left(\frac{1}{y} - 2x\right) \, \mathrm{d}y.$$

322.
$$xy' = e^y + 2y'$$
.

323.
$$2(x-y^2) dy = y dx$$
.

324.
$$x^2y'^2 + y^2 = 2x(2 - yy')$$
.

325.
$$dy + (xy - xy^3) dx = 0.$$

326.
$$2x^2y' = y^2(2xy' - y)$$
.

327.
$$\frac{y-xy'}{x+yy'}=2.$$

328.
$$x(x-1)y' + 2xy = 1$$
.

329.
$$xy(xy'-y)^2+2y'=0$$
.

330.
$$(1-x^2)y'-2xy^2=xy$$
.

Решить уравнения 331—420.

331.
$$y' + y = xy^3$$
.

332.
$$(xy^4 - x) dx + (y + xy) dy = 0.$$

333.
$$(\sin x + y) dy + (y \cos x - x^2) dx = 0.$$

334.
$$3y'^3 - xy' + 1 = 0$$
.

335.
$$yy' + y^2 \operatorname{ctg} x = \cos x$$
.

336.
$$(e^y + 2xy) dx + (e^y + x)x dy = 0.$$

337.
$$xy'^2 = y - y'$$
.

338.
$$x(x+1)(y'-1)=y$$
.

339.
$$y(y-xy')=\sqrt{x^4+y^4}$$

340.
$$xy' + y = \ln y'$$
.

341.
$$x^2(dy - dx) = (x + y)y dx$$
.

342.
$$y' + x\sqrt[3]{y} = 3y$$
.

343.
$$(x\cos y + \sin 2y)y' = 1$$
.

344.
$$y'^2 - yy' + e^x = 0$$
.

345.
$$y' = \frac{x}{y}e^{2x} + y$$
.

346.
$$(xy'-y)^3={y'}^3-1$$
.

347.
$$(4xy-3)y'+y^2=1$$
.

348.
$$y'\sqrt{x} = \sqrt{y-x} + \sqrt{x}$$
.

349.
$$xy' = 2\sqrt{y}\cos x - 2y$$
.

350.
$$3y'^4 = y' + y$$
.

351.
$$y^2(y - xy') = x^3y'$$
.

352.
$$y' = (4x + y - 3)^2$$
.

353.
$$(\cos x - x \sin x)y \, dx + (x \cos x - 2y) \, dy = 0.$$

354.
$$x^2y'^2 - 2xyy' = x^2 + 3y^2$$
.

355.
$$\frac{xy'}{y} + 2xy \ln x + 1 = 0.$$

356.
$$xy' = x\sqrt{y - x^2} + 2y$$
.

357.
$$(1-x^2y) dx + x^2(y-x) dy = 0.$$

358.
$$(2xe^y + y^4)y' = ye^y$$
.

359.
$$xy'(\ln y - \ln x) = y$$
.

360.
$$2y' = x + \ln y'$$
.

361.
$$(2x^2y - 3y^2)y' = 6x^2 - 2xy^2 + 1$$
.

362.
$$yy' = 4x + 3y - 2$$
.

363.
$$y^2y' + x^2\sin^3 x = y^3\operatorname{ctg} x$$
.

364.
$$2xy' - y = \sin y'$$
.

365.
$$(x^2y^2+1)y+(xy-1)^2xy'=0$$
.

366.
$$y \sin x + y' \cos x = 1$$
.

367.
$$x dy - y dx = x\sqrt{x^2 + y^2} dx$$
.

368.
$$y^2 + x^2 y'^5 = xy(y'^2 + y'^3)$$
.

369.
$$y' = \sqrt[3]{2x - y} + 2$$
.

370.
$$(x - y \cos \frac{y}{x}) dx + x \cos \frac{y}{x} dy = 0.$$

371.
$$2\left(x^2y + \sqrt{1 + x^4y^2}\right) dx + x^3 dy = 0.$$

372.
$$(y'-x\sqrt{y})(x^2-1)=xy$$
.

373.
$$y'^3 + (y'^2 - 2y')x = 3y' - y$$
.

374.
$$(2x+3y-1) dx + (4x+6y-5) dy = 0.$$

375.
$$(2xy^2 - y) dx + (y^2 + x + y) dy = 0.$$

376.
$$y = y'\sqrt{1 + {y'}^2}$$
.

377.
$$y^2 = (xyy' + 1) \ln x$$
.

378.
$$4y = x^2 + {y'}^2$$
.

379.
$$2x dy + y dx + xy^2(x dy + y dx) = 0.$$

380.
$$x dx + (x^2 \operatorname{ctg} y - 3 \cos y) dy = 0.$$

381.
$$x^2y'^2 - 2(xy-2)y' + y^2 = 0.$$

382.
$$xy' + 1 = e^{x-y}$$
.

383.
$$y' = tg(y - 2x)$$
.

384.
$$3x^2 - y = y'\sqrt{x^2 + 1}$$
.

385.
$$yy' + xy = x^3$$
.

386.
$$x(x-1)y' + y^3 = xy$$
.

387.
$$xy' = 2y + \sqrt{1 + {y'}^2}$$
.

388.
$$(2x + y + 5)y' = 3x + 6$$
.

389.
$$y' + \operatorname{tg} y = x \sec y$$
.

390.
$$y'^4 = 4y(xy'-2y)^2$$
.

391.
$$y' = \frac{y^2 - x}{2y(x+1)}$$
.

392.
$$xy' = x^2 e^{-y} + 2$$
.

393.
$$y' = 3x + \sqrt{y - x^2}$$
.

394.
$$x dy - 2y dx + xy^2 (2x dy + y dx) = 0.$$

395.
$$(x^3 - 2xy^2) dx + 3x^2y dy = x dy - y dx$$
.

396.
$$(yy')^3 = 27x(y^2 - 2x^2)$$
.

397.
$$y' - 8x\sqrt{y} = \frac{4xy}{x^2 - 1}$$
.

398.
$$[2x - \ln(y+1)] dx - \frac{x+y}{y+1} dy = 0.$$

399.
$$xy' = (x^2 + \operatorname{tg} y) \cos^2 y$$
.

400.
$$x^2(y-xy')=y{y'}^2$$
.

401.
$$y' = \frac{3x^2}{x^3 + y + 1}$$
.

402.
$$y' = \frac{(1+y)^2}{x(y+1)-x^2}$$
.

403.
$$(y - 2xy')^2 = 4yy'^3$$
.

404.
$$6x^5y\,\mathrm{d}x + (y^4\ln y - 3x^6)\,\mathrm{d}y = 0.$$

405.
$$y' = \frac{1}{2}\sqrt{x} + \sqrt[3]{y}$$
.

406.
$$2xy' + 1 = y + \frac{x^2}{y-1}$$
.

407.
$$yy' + x = \frac{1}{2} \left(\frac{x^2 + y^2}{x} \right)^2$$
.

408.
$$y' = \left(\frac{3x + y^3 - 1}{y}\right)^2$$
.

409.
$$(x\sqrt{y^2+1}+1)(y^2+1) dx = xy dy$$
.

410.
$$(x^2 + y^2 + 1)yy' + (x^2 + y^2 - 1)x = 0.$$

411.
$$y^2(x-1) dx = x(xy + x - 2y) dy$$
.

412.
$$(xy'-y)^2 = x^2y^2 - x^4$$
.

413.
$$xyy' - x^2\sqrt{y^2 + 1} = (x+1)(y^2 + 1).$$

414.
$$(x^2-1)y'+y^2-2xy+1=0$$
.

415.
$$y' \operatorname{tg} y + 4x^3 \cos y = 2x$$
.

416.
$$(xy'-y)^2 = {y'}^2 - \frac{2yy'}{x} + 1$$
.

417.
$$(x+y)(1-xy) dx + (x+2y) dy = 0.$$

418.
$$(3xy + x + y)y dx + (4xy + x + 2y)x dy = 0$$
.

419.
$$(x^2-1) dx + (x^2y^2 + x^3 + x) dy = 0.$$

420.
$$x(y'^2 + e^{2y}) = -2y'$$
.

§ 10. УРАВНЕНИЯ, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА

- 1. Если в уравнение не входит искомая функция y, т. е. оно имеет вид $F(x,y^{(k)},y^{(k+1)},\ldots,y^{(n)})=0$, то порядок уравнения можно понизить, взяв за новую неизвестную функцию низшую из производных, входящих в уравнение, т. е. сделав замену $y^{(k)}=z$.
- 2. Если в уравнение не входит независимое переменное x, т. е. уравнение имеет вид $F(y, y', y'', \ldots, y^{(n)}) = 0$, то порядок уравнения можно понизить, взяв за новое независимое переменное y, а за неизвестную функцию y' = p(y).

 Π ример. Решить уравнение $2yy'' = {y'}^2 + 1$.

В уравнение не входит x. Полагаем y' = p(y). Тогда

$$y'' = \frac{\mathrm{d}(y')}{\mathrm{d}x} = \frac{\mathrm{d}p(y)}{\mathrm{d}x} = \frac{\mathrm{d}p}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = p'p.$$

Подставляя y'=p и y''=pp' в уравнение, получим $2ypp'=p^2+1$. Порядок уравнения понижен. Решив полученное уравнение, найдем $p=\pm\sqrt{Cy-1}$. Следовательно, $y'=\pm\sqrt{Cy-1}$. Из этого уравнения получим $4(Cy-1)=C^2(x+C_2)$.

- 3. Если уравнение однородно относительно y и его производных, т. е. не меняется при одновременной замене $y,\,y',\,y'',\,\ldots$ на $ky,\,ky',\,ky'',\,\ldots$, то порядок уравнения понижается подстановкой y'=yz, где z— новая неизвестная функция.
- 4. Порядок уравнения понижается, если оно является однородным относительно x и y в обобщенном смысле, т. е. не меняется от замены x на kx, y на k^my (при этом y' заменяется на $k^{m-1}y'$, y'' на $k^{m-2}y''$ и т. д.). Чтобы узнать, будет ли уравнение однородным, и найти число m, надо приравнять друг другу показатели степеней, в которых число k будет входить в каждый член уравнения после указанной выше замены. Например, в первый член уравнения $2x^4y''-3y^2=x^4$ после этой замены число k будет входить в степени 4+(m-2), во второй в степени 2m, в третий в степени 4. Следовательно, m должно удовлетворять уравнениям

$$4 + (m-2) = 2m = 4.$$

Отсюда m=2. Если же полученные уравнения для m будут несовместными, то дифференциальное уравнение не является однородным в указанном смысле.

После того как число m найдено, надо сделать замену переменных $x=\mathrm{e}^t,\ y=z\mathrm{e}^{mt},$ где z=z(t) — новая неизвестная функция, а t — новое независимое переменное. Получим уравнение, в которое не входит независимое переменное t. Порядок такого уравнения понижается одним из ранее рассмотренных способов.

5. Порядок уравнения легко понижается, если удается преобразовать уравнение к такому виду, чтобы обе его части являлись полными производными по x от каких-нибудь функций. Например, пусть дано уравнение $yy''=y'^2$. Деля обе части на yy', получим $\frac{y''}{y'}=\frac{y'}{y};\ (\ln y')'=(\ln y)';\ \ln y'=\ln y+\ln C;\ y'=yC.$ Порядок уравнения понижен.

Решить уравнения 421-450.

421.
$$x^2y'' = y'^2$$
. **422.** $2xy'y'' = y'^2 - 1$.

423.
$$y^3y'' = 1$$
.
424. $y'^2 + 2yy'' = 0$.
425. $y'' = 2yy'$.
426. $yy'' + 1 = y'^2$.
427. $y''(e^x + 1) + y' = 0$.
428. $y''' = y''^2$.
429. $yy'' = y'^2 - y'^3$.
430. $y''' = 2(y'' - 1) \operatorname{ctg} x$.
431. $2yy'' = y^2 + y'^2$.
432. $y''^3 + xy'' = 2y'$.
435. $xy''' = y'' - xy''$.
436. $y''^2 = y'^2 + 1$.
437. $y'' = e^y$.
438. $y'' - xy''' + y'''^3 = 0$.
439. $2y'(y'' + 2) = xy''^2$.
440. $y^4 - y^3y'' = 1$.
441. $y'^2 = (3y - 2y')y''$.
442. $y''(2y' + x) = 1$.
443. $y''^2 - 2y'y''' + 1 = 0$.
444. $(1 - x^2)y'' + xy' = 2$.
445. $yy'' - 2yy' \ln y = y'^2$.
446. $(y' + 2y)y'' = y'^2$.
447. $xy'' = y' + x \sin \frac{y'}{x}$.
448. $y'''y'^2 = y''^3$.
449. $yy'' + y = y'^2$.

Решить уравнения **451—454**, воспользовавшись формулой, сводящей многократное интегрирование к однократному (см. [1], гл. IV, \S 2, п. 1).

450. $xy'' = y' + x(y'^2 + x^2)$.

451.
$$xy^{\text{IV}} = 1$$
. **452.** $xy'' = \sin x$. **453.** $y''' = 2xy''$. **454.** $xy^{\text{IV}} + y''' = e^x$.

Решить уравнения **455—462**, преобразовав их к такому виду, чтобы обе части уравнения являлись полными производными.

455.
$$yy''' + 3y'y'' = 0$$
. **456.** $y'y''' = 2y''^2$. **457.** $yy'' = y'(y' + 1)$. **458.** $5y'''^2 - 3y''y^{IV} = 0$. **459.** $yy'' + y'^2 = 1$. **460.** $y'' = xy' + y + 1$.

461.
$$xy'' = 2yy' - y'$$
. **462.** $xy'' - y' = x^2yy'$.

В задачах 463—480 понизить порядок данных уравнений, пользуясь их однородностью, и решить эти уравнения.

463.
$$xyy'' - xy'^2 = yy'$$
. **464.** $yy'' = y'^2 + 15y^2\sqrt{x}$.

465.
$$(x^2+1)(y'^2-yy'')=xyy'.$$

466.
$$xyy'' + xy'^2 = 2yy'$$
. **467.** $x^2yy'' = (y - xy')^2$.

468.
$$y'' + \frac{y'}{x} + \frac{y}{x^2} = \frac{y'^2}{y}$$
.

469.
$$y(xy'' + y') = xy'^2(1-x)$$
.

470.
$$x^2yy'' + y'^2 = 0$$
.

471.
$$x^2({y'}^2 - 2yy'') = y^2$$
.

472.
$$xyy'' = y'(y + y')$$
.

473.
$$4x^2y^3y'' = x^2 - y^4$$
.

474.
$$x^3y'' = (y - xy')(y - xy' - x)$$
.

475.
$$\frac{y^2}{x^2} + {y'}^2 = 3xy'' + \frac{2yy'}{x}$$
.

476.
$$y'' = \left(2xy - \frac{5}{x}\right)y' + 4y^2 - \frac{4y}{x^2}.$$

477.
$$x^2(2yy''-y'^2)=1-2xyy'.$$

478.
$$x^2(yy''-y'^2)+xyy'=(2xy'-3y)\sqrt{x^3}$$
.

479.
$$x^4(y'^2 - 2yy'') = 4x^3yy' + 1$$
.

480.
$$yy' + xyy'' - xy'^2 = x^3$$
.

В задачах **481—500**, понизив порядок данных уравнений, свести их к уравнениям первого порядка.

481.
$$y''(3+yy'^2)=y'^4$$
. **482.** $y''^2-y'y'''=\left(\frac{y'}{x}\right)^2$.

483.
$$yy' + 2x^2y'' = xy'^2$$
. **484.** $y'^2 + 2xyy'' = 0$.

485.
$$2xy^2(xy'' + y') + 1 = 0$$
.

486.
$$x(y'' + y'^2) = y'^2 + y'$$
.

487.
$$y^2(y'y'''-2y''^2)=y'^4$$
.

488.
$$y(2xy'' + y') = xy'^2 + 1$$
.

489.
$$y'' + 2yy'^2 = (2x + \frac{1}{x})y'$$
.

490.
$$y'y''' = y''^2 + y'^2y''$$
. **491.** $yy'' = y'^2 + 2xy^2$.

492.
$$y''^4 = y'^5 - yy'^3y''$$
. **493.** $2yy''' = y'$.

494.
$$y'''y'^2 = 1$$
. **495.** $y^2y''' = y'^3$.

496.
$$x^2yy'' + 1 = (1 - y)xy'$$
.

497.
$$yy'y''' + 2y'^2y'' = 3yy''^2$$
.

498.
$$(y'y''' - 3y''^2)y = y'^5$$
.

499.
$$y^2(y'y'''-2y''^2)=yy'^2y''+2y'^4$$
.

500.
$$x^2(y^2y''' - y'^3) = 2y^2y' - 3xyy'^2$$
.

В задачах **501—505** найти решения, удовлетворяющие заданным начальным условиям.

501.
$$yy'' = 2xy'^2$$
; $y(2) = 2$, $y'(2) = 0.5$.

502.
$$2y''' - 3y'^2 = 0$$
; $y(0) = -3$, $y'(0) = 1$, $y''(0) = -1$.

503.
$$x^2y'' - 3xy' = \frac{6y^2}{x^2} - 4y$$
; $y(1) = 1$, $y'(1) = 4$.

504.
$$y''' = 3yy'$$
; $y(0) = -2$, $y'(0) = 0$, $y''(0) = 4.5$.

505.
$$y'' \cos y + {y'}^2 \sin y = y'; \ y(-1) = \frac{\pi}{6}, \ y'(-1) = 2.$$

- **506.** Найти кривые, у которых в любой точке радиус кривизны вдвое больше отрезка нормали, заключенного между этой точкой кривой и осью абсцисс. Рассмотреть два случая: а) кривая обращена выпуклостью к оси абсцисс; б) вогнутостью к оси абсцисс.
- **507.** Найти кривые, у которых радиус кривизны обратно пропорционален косинусу угла между касательной и осью абсписс.
- **508.** Определить форму равновесия нерастяжимой нити с закрепленными концами, на которую действует нагрузка

так, что на каждую единицу длины горизонтальной проекции нагрузка одинакова (цепи цепного моста). Весом самой нити пренебречь.

- **509.** Найти форму равновесия однородной нерастяжимой нити (с закрепленными концами) под действием ее веса.
- ${f 510^*}.$ Доказать, что уравнение движения маятника $y''+\sin y=0$ имеет частное решение y(x), стремящееся к π при $x\to +\infty.$

§ 11. ЛИНЕЙНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

1. Чтобы решить линейное однородное уравнение с постоянными коэффициентами

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0,$$
 (1)

надо составить характеристическое уравнение

$$a_0 \lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n = 0$$
 (2)

и найти все его корни $\lambda_1, \ldots, \lambda_n$.

Общее решение уравнения (1) есть сумма, состоящая из слагаемых вида $C_i e^{\lambda_i x}$ для каждого простого корня λ_i уравнения (2) и слагаемых вила

$$(C_{m+1} + C_{m+2}x + C_{m+3}x^2 + \dots + C_{m+k}x^{k-1})e^{\lambda x}$$
 (3)

для каждого кратного корня λ уравнения (2), где k — кратность корня. Все C_i — произвольные постоянные. Коэффициенты уравнения (1) и корни λ здесь могут быть вещественными или комплексными.

Если же все коэффициенты уравнения (1) вещественные, то решение можно написать в вещественной форме и в случае комплексных корней λ . Для каждой пары комплексных сопряженных корней $\lambda=\alpha\pm\beta i$ в формулу общего решения включаются слагаемые

$$C_{m+1}e^{\alpha x}\cos\beta x + C_{m+2}e^{\alpha x}\sin\beta x,$$

если эти корни простые, и слагаемые

$$P_{k-1}(x)e^{\alpha x}\cos\beta x + Q_{k-1}(x)e^{\alpha x}\sin\beta x,$$

если каждый из корней $\alpha+\beta i$ и $\alpha-\beta i$ имеет кратность k. Здесь P_{k-1} и Q_{k-1} — многочлены степени k-1, аналогичные многочлену в (3), их коэффициенты — произвольные постоянные.

 Π ример. Решить уравнение $y^{
m V}-2y^{
m IV}-16y'+32y=0.$

Пишем характеристическое уравнение

$$\lambda^5 - 2\lambda^4 - 16\lambda + 32 = 0.$$

Разлагая левую часть на множители, находим корни:

$$(\lambda - 2)(\lambda^4 - 16) = 0, \quad (\lambda - 2)^2(\lambda + 2)(\lambda^2 + 4) = 0,$$

 $\lambda_1 = \lambda_2 = 2, \quad \lambda_3 = -2, \quad \lambda_4 = 2i, \quad \lambda_5 = -2i.$

По изложенным выше правилам пишем общее решение

$$y = (C_1 + C_2 x)e^{2x} + C_3 e^{-2x} + C_4 \cos 2x + C_5 \sin 2x$$

(степень многочлена $C_1 + C_2 x$ на 1 меньше кратности корня $\lambda = 2$).

2. Для линейных неоднородных уравнений с постоянными коэффициентами и с правой частью, состоящей из сумм и произведений функций $b_0 + b_1 x + \ldots + b_m x^m$, $e^{\alpha x}$, $\cos \beta x$, $\sin \beta x$, частное решение можно искать методом неопределенных коэффициентов.

Для уравнений с правой частью $P_m(x)\mathrm{e}^{\gamma x}$, где $P_m(x)=b_0+b_1x+\ldots+b_mx^m$, частное решение имеет вид

$$y_1 = x^s Q_m(x) e^{\gamma x}, \tag{4}$$

где $Q_m(x)$ — многочлен той же степени m. Число s=0, если γ — не корень характеристического уравнения (2), а если γ — корень, то s равно кратности этого корня. Чтобы найти коэффициенты многочлена $Q_m(x)$, надо решение (4) подставить в дифференциальное уравнение и приравнять коэффициенты при подобных членах в левой и правой частях уравнения.

Если в правую часть уравнения входят синус и косинус, то их можно выразить через показательную функцию по формулам Эйлера

$$\cos \beta x = \frac{e^{i\beta x} + e^{-i\beta x}}{2}, \quad \sin \beta x = \frac{e^{i\beta x} - e^{-i\beta x}}{2i}$$
 (5)

и свести задачу к уже рассмотренному случаю.

Если же коэффициенты левой части уравнения вещественны, то можно обойтись без перехода к комплексным функциям (5). Для уравнения с правой частью

$$e^{\alpha x}(P(x)\cos\beta x + Q(x)\sin\beta x)$$
 (6)