Bayesian Classification

Bayesian Classification

- A statistical classifier: predicts class membership probabilities
- Foundation: Based on Bayes' Theorem
- Performance: A simple Bayesian classifier, naïve
 Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers

Bayes' Theorem: Basics

- Let **X** be a data sample ("evidence"), its class label is unknown
- Let H be a hypothesis that X belongs to class C
- Classification is to determine P(C|X), the probability that the hypothesis holds given the observed data sample X
- P(H|X) or P(C|X) is a posterior probability
- P(C) is a prior probability
 - the initial probability of C
 - e.g., X will buy computer, regardless of age, income, ...
- P(X): probability that sample data is observed
- P(X|C) (likelihood), the probability of observing the sample X, given that the hypothesis H holds

Bayes' Theorem

 Given training data X, posteriori probability of a hypothesis H, P(C|X), follows the Bayes theorem

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$

• Predicts X belongs to C_i iff the probability $P(C_i|X)$ is the highest among all the $P(C_k|X)$ for all the k classes

Towards Naïve Bayesian Classifier

- Let D be a training dataset
- Each tuple is represented as vector $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$
- Suppose there are m classes C₁, C₂, ..., C_m.
- Classification is to find the maximum P(C_i | X)
- This can be derived from Bayes' theorem (1<=i<=m)

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) \approx P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

Derivation of Naïve Bayes' Classifier

A simplified assumption: attributes are conditionally independent

 $P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$

- This greatly reduces the computation cost
- If A_k is categorical, $P(x_k|C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- If A_k is continuous-valued, $P(x_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ $g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

and $P(x_k | C_i)$ is

$$P(\mathbf{X}_k \mid C_i) = g(x_k, \mathcal{M}_{C_i}, S_{C_i})$$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_i|c_j) = \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{(A_i - \mu_j)^2}{2\sigma_j^2}}$$

- For (Income, Class=No):
 - If Class=No
 - sample mean = 110K
 - sample variance = 2975K

$$P(\mathbf{X}_k \mid C_i) = g(x_k, M_{C_i}, S_{C_i})$$

$$P(Income = 120|No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data sample

X = (age <=30,
income = medium,
student = yes
credit_rating = Fair)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$P(C_i|\mathbf{X}) \approx P(\mathbf{X}|C_i)P(C_i)$$

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

AVC Sets for the Training Dataset

Training Examples

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

AVC-set on *Age*

Age	Buy_Computer		
	yes	no	
<=30	2	3	
3140	4	0	
>40	3	2	

AVC-set on income

income	Buy_Computer		
	yes	no	
high	2	2	
medium	4	2	
low	3	1	

AVC-set on Student

AVC-set on credit_rating

student	Buy_Computer		0 114	Buy_	Computer
	yes	no	Credit rating	yes	no
yes	6	1	fair	6	2
no	3	4	excellent	3	3

$$P(C_i|\mathbf{X}) \approx P(\mathbf{X}|C_i)P(C_i)$$

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14= 0.357
- Compute P(X|C_i) for each class

Age	Buy_Computer	
	yes	no
<=30	2	3
3140	4	0
>40	3	2

X = (age <= 30, income = medium, student = yes, credit_rating = fair)

income	Buy_Computer		
	yes	no	
high	2	2	
medium	4	2	
low	3	1	

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

$$P(C_i|\mathbf{X}) \approx P(\mathbf{X}|C_i)P(C_i)$$

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14= 0.357
- Compute P(X|C_i) for each class

1 1 1/
P(age = "<=30" buys_computer = "yes") = 2/9 = 0.222
P(age = "<= 30" buys_computer = "no") = 3/5 = 0.6
P(income = "medium" buys_computer = "yes") = 4/9 = 0.444
P(income = "medium" buys_computer = "no") = 2/5 = 0.4
P(student = "yes" buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" buys_computer = "no") = 1/5 = 0.2
P(credit_rating = "fair" buys_computer = "yes") = 6/9 = 0.667
P(credit_rating = "fair" buys_computer = "no") = 2/5 = 0.4

student	Buy_Computer		
	yes	no	
yes	6	1	
no	3	4	

Cradit	Buy_Computer		
Credit rating	yes	no	
fair	6	2	
excellent	3	3	

X = (age <= 30, income = medium, student = yes, credit_rating = fair)

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

$$P(C_i|\mathbf{X}) \approx P(\mathbf{X}|C_i)P(C_i)$$

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14= 0.357
- Compute P(X|C_i) for each class

```
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222
P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

X = (age <= 30, income = medium, student = yes, credit_rating = fair)

```
P(X|C<sub>i</sub>): P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(X|C<sub>i</sub>)*P(C<sub>i</sub>): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028

P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007
```

Therefore, X belongs to class ("buys_computer = yes")

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

Exercise

 Consider the training dataset given in the table below, where A1, A2 and A3 are the input attributes and C is the class label. Use Naïve Bayes' to find the class for the object X = {1, 2, 2}.

Sample	Attribute A1	Attribute A2	Attribute A3	Class C
1	1	2	1	1
2	0	0	1	1
3	0	1	2	1
4	1	0	1	1
5	2	1	2	2
6	1	2	1	2
7	2	2	2	2

Avoiding the O-Probability Problem

Naïve Bayesian requires each conditional prob. be non-zero.
 Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose that a dataset with 1000 tuples. We have income=low (0), income= medium (990), and income = high (10),
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case
 Prob(income = low) = 1/1003
 Prob(income = medium) = 991/1003
 Prob(income = high) = 11/1003
 - The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayes' – Advantages and Disadvantages

Advantages:

- Easy to implement
- Very efficient
- Good results obtained in many applications
- Can easily handle missing data by omitting that probability in the calculations

Disadvantages

 Assumption: class conditional independence, therefore loss of accuracy when the assumption is seriously violated

Naïve Bayes in Scikit-Learn

- There are 3 classes that implement Naïve Bayes in the submodule sklearn.naive_bayes
 - GaussianNB
 - MultinomialNB
 - BernoulliNB
- Each assumes a different likelihood distribution of the attributes' values
- Which one to use depends on features' types: continuous, categorical, binary

Preparing the Dataset

```
# Load data
iris = datasets.load iris()
X = iris.data
y = iris.target
# Split the dataset:
from sklearn.model selection import
                                   train test split
X train, X test, y train, y test =
          \overline{\text{train test}} split(X, y, test size=0.25,
                             random sta\overline{t}e=1)
```

Create a Gaussian NB Model and Train It

• from sklearn.naive_bayes import GaussianNB

```
# Create Gaussian Naive Bayes object
classifer = GaussianNB()

# Train model
model = classifer.fit(X train, y train)
```

Test the Model

```
# Test the model
y pred = model.predict(X test)
from sklearn.metrics import accuracy score
accuracy score(y test, y pred)
#0.97
new sample = [[5, 4, 3, 2]] # Create new sample
model.predict(new sample) # Classify it
#array([1])
```

Using NB to Work with Categorical Data

- MultinomialNB is commonly used when working with categorical attributes
 - Ex: movie ratings ranging from 1 to 5
 - Ex: working with text data (e.g., documents of text)
 - Common approach: create a bag of words with a vector for each document containing counts of the appearance of the words in the vocabulary

Prepare the Dataset

```
# Load libraries
import numpy as np
from sklearn.naive bayes import MultinomialNB
from sklearn.feature extraction.text import CountVectorizer
# Create text
text_data = np.array(['I love Brazil. Brazil!', 'Brazil is best',
                     'Germany beats both'])
# Create bag of words
count = CountVectorizer()
bag of words = count.fit transform(text data)
```

CountVectorizor and BOW

```
# Show feature matrix
bag_of_words
Output: <3x7 sparse matrix of type '<class 'numpy.int64'>'
 with 8 stored elements in Compressed Sparse Row format>
bag of words.toarray()
    array([[0, 0, 0, 2, 0, 0, 1,],
          [0, 1, 0, 1, 0, 1, 0],
          [1, 0, 1, 0, 1, 0, 0]], dtype=int64)
# Show feature names
count.get_feature_names()
   ['beats', 'best', 'both', 'brazil', 'germany', 'is', 'love']
```

CountVectorizor and BOW (cont.)

 The feature matrix with the words as column names and each row is one observation

beats	best	both	brazil	germany	is	love
0	0	0	2	0	0	1
0	1	0	1	0	1	0
1	0	1	0	1	0	0

- The tuples: (['I love Brazil. Brazil! ', 'Brazil is best', 'Germany beats both'])
- count.get_feature_names()
 ['beats', 'best', 'both', 'brazil', 'germany', 'is', 'love']

Preparing the Dataset and Creating the Model

```
# Create text
text data = np.array(['I love Brazil. Brazil!', 'Brazil is best', 'Germany beats both'])
# Create bag of words
count = CountVectorizer()
bag of words = count.fit transform(text data)
# Create feature matrix
features = bag_of_words.toarray()
# Create target vector
target = np.array([0,0,1])
# Create multinomial naive Bayes object with prior probabilities of each class
classifier = MultinomialNB(class_prior=[0.25, 0.5])
# Train model
model = classifier.fit(features, target)
```

Using the Model

```
# Create new observation
new_observation = [[0, 0, 0, 1, 0, 1, 0]]
# Predict new observation's class
```

model.predict(new observation)

array([0])

BernoulliNB

- Works similar to MultinomialNB but use with binary data
- See example in the notebook

Distance-Based Classification Algorithms

Distance-Based Classification Algorithms

- Tuples in the same class are more similar to each other
- A similarity or distance measure is used to determine how similar tuples are
- The problem is how to define similarity measures

Distance Measures

- $x_i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $x_j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two pdimensional data objects
- Minkowski distance:

$$d(x_i, x_j) = \sqrt[q]{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q)}$$

where *q* is a positive integer

• If
$$q = 2$$
, d is Euclidean distance
$$d(x_i, x_j) = \sqrt{\sum_{k=1}^{p} (x_{ik} - x_{jk})^2}$$

• If q = 1, d is **Manhattan distance**

$$d(x_i, x_j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

Distance-Based Classification Algorithms

- Place items in class to which they are "closest"
- Must determine distance between an item and a class
- Classes represented by
 - Centroid: central value
 - Medoid: actual point near the centroid
 - Individual points
- Example: $C = \{1, 4, 9\}$
 - Centroid is _____
 - Medoid is

Simple Distance Based Classification Algorithm

- Decide on the representative for each class
- Decide on the similarity "or distance" measure to use
- To classify a new sample X, it will be compared to the representative of each class
 - Place X in the same class with the representative that is most similar "or closest" to it

K Nearest Neighbors Algorithm

- Requires three things
 - Set of stored objects
 - Distance measure to compute distance between objects
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown object:
 - Compute distance to the training objects
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown object (e.g., by taking majority vote)

Definition of Nearest Neighbors

K-nearest neighbors of an object x are data points that have the k smallest distance to x

K Nearest Neighbors Algorithm

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbors list
 - take the majority vote of class labels among the k-nearest neighbors (simple voting)
 - Weigh the vote according to distance (weighted voting)
 - weight factor, $w = 1/d^2$

Choosing the Value of K

- If k is too small, sensitive to noise points
- If *k* is too large, neighborhood may include points from other classes
 - k is usually chosen empirically by trying a range of values

Scaling Values

 Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes

Example:

- height of a person may vary from 1.5m to 1.8m
- weight of a person may vary from 90lb to 300lb
- income of a person may vary from \$10K to \$1M

Eager vs Lazy Learners

- KNN is a lazy learner
 - It does not build a model from the training data
 - Unlike eager learners such as decision tree induction and Naïve Bayes
 - Classifying unknown objects is relatively expensive

KNN Algorithm

```
Input:
       //Training data
    //Number of neighbors
       //Input tuple to classify
Output:
        //Class to which t is assigned
KNN Algorithm: //Algorithm to classify tuple using KNN
  N = \emptyset;
  //Find set of neighbors, N, for t
  foreach d in D do
     if |N| < k then
       N = N \cup d;
     else if \exists u in N such that distance(t, d) < distance(t, u)
        replace d by the neighbor in N with the largest distance to t
  c = class to which most u in N are classified
```

Source: Dunham, Data Mining – Introductory and Advanced Topics, Algorithm 4.2 page 92

Remarks

- If K = 1, nearest neighbor algorithm
- Choice of K is important for KNN
- [Dunham] As a rule of thumb,
 k ≤ √number of training samples; commercial algorithms often use a default value of 10.
- Researchers have shown that the classification accuracy of KNN can be as accurate as more elaborated methods
- KNN is slow at the classification time
- KNN does not produce an understandable model

KNN in Scikit-Learn

Load libraries from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn import datasets

```
# Load data
iris = datasets.load_iris()
X = iris.data
y = iris.target
```

KNN in Scikit-Learn (cont)

```
# Create standardizer
standardizer = StandardScaler()
# Standardize features
X std = standardizer.fit transform(X)
# Train a KNN classifier with 5 neighbors
knn = KNeighborsClassifier(n_neighbors=5, n_jobs=-1).fit(X_std, y)
# Create two observations
new observations = [[ 0.75, 0.75, 0.75, 0.75], [ 1, 1, 1, 1]]
# Predict the class of two observations
knn.predict(new observations)
array([1, 2])
```

KNeighborsClassifier Parameters

- Parameters we can set include:
 - n_neighbors: value of K (default is 5)
 - metric: 'minkowski' (the default) | 'euclidean' | 'manhattan'
 - p: integer, (default = 2) Power parameter for the
 Minkowski metric
 - weights: 'uniform' (the default) | 'distance'

Notebook name: KNN.ipynb