

OSPF

- Open Shortest Path First
- Link State Routing Protocol
- Version 2, RFC2328
- IP Packet Protocol 번호 89번 사용
- 안정되고다양한기능으로인해가장많이 사용되는 IGP

OSPF 장점과 단점

- 장점
 - □ 대규모의 안정된 네트워크를 운영할 수 있다.
 - □ 표준 라우팅 프로토콜
 - ▶ 융통성 있는 네트워크 설계 및 라우터 선택이 가능
- 단점
 - 설정이 비교적 까다롭다.
 - □ 라우팅 정보계산 및 유지를 위해 네트워크 자원이 많이 소요된다.

OSPF 라우팅 테이블 생성 유지 過程

- 1. Hello Packet을 주고 받아 네이버 및 Adjacent Neighbor 관계를 구성
 - Adjacent Neighbor: 라우팅 정보 교환하는 네이 버
- 2. Adjacent Neighbor와 라우팅 정보 교환
 - OSPF의 라우팅 정보 = LSA
 - Link State Database에 저장
- 3. LSA교환 후 SPF(Dijkstra)를 이용, 최적경로 계산하고 이를 라우팅 테이블에 저장
- 4. 주기적으로 Hello Packet 전송
- 5. 네트워크 상태 변화시 과정 반복

기본적 OSPF 설정

- ■설정
 - R(cfg)# router ospf x
 - Process ID: 1-65535
 - ▶ Process ID는 라우터별로 다른 값을 가져도 상관없다.
 - R(c-r)# router-id 1.1.1.1
 - 변동하지 않는 값을 라우터 ID로 지정하는 것이 중요
 - R(c-r)# network [Net] [WM]
 - 인터페이스의 IP 주소와 Wildcard Mask 'o.o.o.o'을 사용 하여 지엉
 - R(c-r)# neighbor 1.1.34.3
 - ▶ NBMA에서는 OSPF 네이버 지정해야 한다.

기본적 OSPF 설정

- Router-ID
 - □ Router-ID 명령으로 직접 지정
 - Loopback 주소 중 가장 큰 것
 - 동작중인 물리적 인터페이스 중 가장 높은 IP
- OSPF Router-ID는 라우터를 재부팅하거 나 Clear IP OSPF Process 명령어를 사용하 여 OSPF를 리셋하기 전에는 변경되지 않 는다.

OSPF Packet

- Type 1. Hello
 - □ 네이버 구성 및 유지
- Type 2. Database Description(DDP)
 - □ 데이터베이스 내용 요약(DDP)
- Type 3. Link State Request(LSR)
 - 데이터베이스 상세 내용 요청
- Type 4. Link State Update(LSU)
 - 데이터베이스 업데이트
- Type 5. Link State ACK(LS ACK)
 - ACK 전송

Type 1. Hello Packet

- OSPF 네이버를 형성하고 유지
 - Router-ID/Area-ID
 - □ 암호: 인증을 하는 경우
 - Hello 주기
 - Broadcast와 P2P 구간은 10초, NBMA는 30초
 - □ Stub Area Flag/Router 우선순위
 - □ Dead 주기
 - DR/BDR
 - 네이버 리스트

Type 2. DDP

- Database Description Packet
- OSPF 라우터의 Link State DB에 있는 LSA들을 요약한 정보를 알려준다.
 - LSA(Link State Advertisement)
 - OSPF의 네트워크 정보
 - Link State Database
 - OSPF는 자신이 만든 LSA 및 수신한 LSA를 저장
 - DBD Packet이라고도 불림
 - T 자신의 Link State DB에 있는 LSA 목록을 상대 라우터에 게 알려주기 위해 사용

Type 3. LSR

Link State Request

■ 상대 라우터가 보낸 DDP를 보고, 자신에 게 없는 LSA가 있으면, 상세한 LSA를 요청할 때 사용

Type 4. LSU

Link State Update

● 상대 라우터에게서 LSR을 받거나 네트워 크 상태가 변했을 경우 해당 라우팅 정보 를 전송할 때 사용

■ LSA를 실어 나를 때 사용하는 패킷

Type 5. LSAck

Link State Acknowledgement

■ OSPF Packet을 정상적으로 수신했음을 알려줄 때 사용

■ DDP, LSR 및 LSU 패킷을 수신하면 반드 시 LSAck 패킷을 사용하여 상대에게 정상 적으로 수신했음을 알려야 한다.

OSPF 動作方式

- OSPF 네이버
 - 물리적으로 직접 연결된 인터페이스를 통해 네이버 를 구성
 - OSPF는 Hello Packet에 포함된 네이버 리스트에 자신의 Router-ID가 포함되어 있으면 네이버로 간주
- DR과 BDR
 - Ethernet, NBMA 등의 Multi Access Network
 - DR(Designated Router): LSA 중계 역할
 - BDR(Backup DR): DR 장애시 대신 DR역할

DR/BDR選出基準

- DR 선출기준
 - □ 인터페이스의 OSPF Priority가 높은 라우터가 DR이 된다. 다음 순위가 BDR이 된다.
 - R(c-if)# ip ospf priority?
 - OSPF 우선순위가 모두 동일하면(기본값이 1), 라우터 ID
 가 높은 것이 DR, 그 다음이 BDR이 된다.
 - □ 한번 DR, BDR이 선출되면 더 높은 우선순위의 라우터가 추가되어도 라우터를 재부팅하거나, clear ip ospf process 명령어를 사용하기 전엔 DR, BDR를 다시 뽑지 않는다.
 - ▼ 단 DR, BDR의 OSPF 우선순위를 o으로 조정하면 다시 선출
 - <u>■ DR이 다운되면 BDR이 DR 되고, BDR</u> 새로 선출

DR & BDR

- DR는 Multi Access Network 당 하나씩 선 출된다. (Area당 하나가 아님)
- Partial Mesh Network
 - □ Spoke에 직접 연결된 Hub가 DR 되어야 한다.
- DROther 라우터끼리는 라우팅 정보를 교 환하지 않는다.
- Update Packet 목적지 주소
 - DROther: 224.0.0.6으로 전송
 - DR: 224.0.0.5로 전송

OSPF Adjacent Neighbor

- OSPF 라우팅 정보를 주고 받는 네이버
 - □ DR과 다른 라우터들
 - BDR과 다른 라우터들
 - Point to point Network로 연결된 라우터
 - □ Point to Multipoint Network로 연결된 라우터
 - Virtual Link로 연결된 두 라우터
- DROther 라우터간에는 Adjacent Neighbor 관계 를 구성하지 못한다.

OSPF Neighbor 狀態 變化 - 1

- Down 상태
 - Hello 패킷을 전송하지만 아직 Hello 패킷을 받지 못한 상태
- Attempt 상태
 - NBMA에만 적용. Neighbor 명령어를 사용하여 지정한 네이버
 에게서 헬로 패킷을 수신하지 못한 상태
- Init 상태
 - □ 네이버에게서 Hello Packet을 받았으나 상대 라우터는 아직 내 Hello Packet을 수신하지 못한 상태
- Two-Way 상태
 - 네이버와 쌍방향 통신이 이루어진 상태(Wait 시간만큼 대기)
 - DROther끼리는 라우팅 정보를 교환하지 않으므로, 네이버 상 태가 Two-Way 상태로 남아 있다.
 - Show IP OSPF Interface 명령으로 DR/BDR 선출 대기 시간 확인

OSPF Neighbor 狀態 變化

- Exstart 상태
 - Adjacent 네이버가 되는 첫 단계
 - Master 라우터와 Slave 라우터 선출
 - Router-ID가 높은 것이 Master가 된다.
- Exchange 상태
 - □ 각 라우터 자신의 Link State DB에 저장된 LSA의 Header 만을 DDP(DBD) 패킷에 담아 상대방에 전송
- Loading 상태
 - ▷ 상대로부터 DDP 수신이 끝난 후, LSR을 보내 특정 LSA의 상세 정보를 보내줄 것을 요청
- Full 상태
 - Adjacent 라우터들간에 라우팅 정보교환이 끝난 상태

SPF = Dijkstra Algorithm

- SPF
 - OSPF가 최적 경로 계산을 위해 사용하는 라우팅 알 고리즘
 - OSPF는 네이버 라우터와 LSA 교환을 끝낸 다음 5초를 기다린 후 라우팅 알고리즘 계산을 하고 그 결과를 라우팅 테이블에 기록

OSPF Metric

- Cost
 - OSPF의 Metric
 - □ 출발지부터 목적지까지의 각 인터페이스에서 기준 대역폭(Reference Bandwidth)을 실제 대역폭으로 나 눈 값의 합계
 - □ CISCO IOS의 OSPF 기준 대역폭 = 10^8
 - □ Cost 계산시 소수점 이하의 수는 버린다.
 - □ 그러나 전체 Cost 값이 1 미만이면 1로 계산

基準대역폭變更

- 명령어
 - R(c-r)# auto-cost reference-bandwidth?
 - - 기준 대역폭을 기본값인 10^8으로 하면 FastEthernet(1), GigabitEthernet(0.1), Loopback(0.0125) 등의 Cost가 모두 1이 기 때문
 - □ OSPF 기준 대역폭 변경시 필요 라우터에서만 설정
 - 라우터가 많지 않다면 OSPF가 동작하는 모든 라우 터에서 변경하는 것이 토폴로지 변화에 미리 대비하 는 결과

Interface Cost 變更

- 직접 OSPF Cost를 변경시킬 수도
 - R(c-if)# ip ospf cost?
 - CISCO 라우터와 코스트 계산이 다른 회사의 장비와 접속할 때 유용

OSPF Area

- OSPF는 네트워크를 복수개의 Area로 나누어 설정
 - □ 규모가 작은 네트워크에서는 하나의 Area만 사용
- □ 2개 이상의 Area로 구성할 때는 그 중 하나는 반드시 Area 번호를 o으로 설정해야 한다.

OSPF 라우터 種類

- Backbone Router
 - 백본에어리어에 소속된 라우터
- Internal Router
 - 하나의 에어리어에만 소속된 라우터
- Area Border Router(ABR)
 - □ 2개 이상의 에어리어에 소속된 에어리어 경계 라우터
- AS Boundary Router(ASBR)
 - OSPF 네트워크와 다른 라우팅 프로토콜이 설정된 네트워크를연결하는 AS 경계 라우터
 - 다른 라우팅 프로토콜을 OSPF로 재분배시키는 라우터

네트워크 타입별 OSPF 설정

- 4가지 네트워크 타입
 - Broadcast Network
 - P2P Network
 - P2Multipoint Network
 - Non-Broadcast Network
- OSPF는 네트워크 타입별
 - 네이버 자동지정 여부
 - DR 선출 여부
 - Hello/Dead 주기가 다르다.

네트워크 타입별 OSPF 동작 方式

네트워크 타임	네이버	DR	Hello/Dead 주기	기본 인터페이스
Broadcast	자동	선출	10/40	이더넷, 토큰링, FDDI
P ₂ P	자동	-	10/40	P2P Sub-If, HDLC, PPP
P ₂ MP	자동	-	30/120	없음
Non- Broadcast	지정	선출	30/120	Multipoint-subif, F/R, ATM, X.25

OSPF 네트워크 타입

■ 인터페이스 종류에 따라 자동으로 OSPF 네트워크 타입이 결정

- R(c-if)# ip ospf network [N-Type]
 - □ 기본적 네트워크 종류와 상관없이 변경 가능

OSPF원칙

- OSPF Adjacent Neighbor 구성 및 라우팅 정보교환원칙
 - 1. Hello/Dead 주기는 반드시 같아야 된다.
 - 다를 경우 IP OSPF Network 명령이나, IP OSPF Hello-Interval 명령을 사용하여 일치시켜야 한다.
 - 2. 네이버 간의 네트워크 타입이 모두 DR을 선출하거나 모두 DR을 선출하지 않아야 한다.
 - 3. 네트워크 타입이 서로 달라도 OSPF는 동작
 - ▶ 바람직한 것은 Sub-Interface를 조정하거나, IP OSPF Nework 명령을 사용하여 네이버끼리 OSPF 네트워크 타입을 일치시키는 것

1. Non-Broadcast Network

- 네이버를 지정해주어야 한다.
 - R(c-r)# neighbor w.x.y.z
- 모든 라우터와 직접 연결된 라우터가 DR로 동작할 수 있도록 해야 한다.
 - R(c-if)# ip ospf priority o
 - DR 이외의 라우터에서 설정 → DROther로 만듬
 - OSPF Area 번호는 32비트
 - ▶ 10진수를 사용해도 되고, IP주소 형식으로 표시 가능
 - Area o = Area o.o.o.o

2. Broadcast Network

- IP OSPF Network Broadcast 명령
 - Broadcast 네트워크로 변경할 수 있다.
 - R# show ip ospf interface so/o
 - 네트워크 타입 확인
- 네이버는 자동으로 설정
- Hello/Dead Timer 10/40조
- Ethernet S/W로 연결된 Broadcast Network 에서는 모든 라우터가 서로 연결되어 있으므로 어느 것이 DR이 되어도됨.
 - Partial Mesh에서는 모든 라우터와 직접 연결된 라우터가 DR로 동작할 수 있도록 조정

3. Point to Multipoint Network

- DR을 뽑지 않는다.
- 네이버도 자동으로 설정된다.
- IP OSPF Network Point-to-Multipoint 명령
 - □ 네트워크 타입을 P2MP로 바꿀 수 있다.

4. Point to Point Network

- DR를 뽑지 않는다.
- 네이버도 자동으로 설정된다.
- IP OSPF Network Point-to-Point 명령
 - □ P2P 네트워크 타입으로 변경할 수 있다.

Loopback Network

- Loopback Interface에 설정된 IP주소는 실제 서브넷 마스크 길이와 상관없이 OSPF 호스트 루트로 광고
 - R# show ip route
 - O 1.1.1.1/32
- 원래서브넷 마스크 길이를 가진 네트워 크로 광고하는 방법
 - R(cfg)# int loo
 - R(c-if)# ip ospf network point-to-point

Loopback Network

- OSPF는 ABR와 ASBR에서만 축약이 가능
 - R(c-r)# area x range [Net] [S-Mask]
- 재분배
 - Subnets 옵션을 사용해야 서브넷팅된 네트워 크도 재분배

OSPF경로

경로타입	코드	우선 순위	내용
Area 內 경로	0	1	동일 Area 소속 경로
Area 間 경로	OIA	2	다른 Area 소속 경로
Domain	O E1	3	변동코스트값-외부경로
외부경로	O N1	4	변동코스트값-NSSA외부
	O E2	5	고정코스트값-외부경로
	O N ₂	6	고정코스트값-NSSA 외부

LSAType

- 1Type: O (Router Link)
 - Intra Area DR, BDR 없는 구간
- 2Type: O (Net Link)
 - Intra Area DR, BDR 있는 구간
- 3Type: OIA (Summary Net)
 - Inter Area ASBR 無
- 4Type: OIA (Summary ASB)
 - Inter Area ASBR 有
- 5Type: OE2 (Type5-External)
 - External Metric 증가 안된다.
- R# show ip ospf database

OSPF 내부경로

- Intra-Area Route
 - 동일한 Area에 소속된 경로
 - Ο로 표시

OSPF Area 간 경로

- Inter-Area Route
 - □ 다른 Area에 소속된 경로
 - □ OIA로 표시

E1 외부 경로

- Type 1 External Route
 - □ 다른 OSPF 라우터가 수신할 때 Metric값이 누 적되는 경로
 - R(c-r)# redistribute connected subnets metrictype 1
- OSPF External Route
 - □ 다른 라우팅 프로토콜에서 OSPF로 재분배되는 네트워크
 - E1, E2, N1, N2

E2 외부경로

- Type 2 External Route
 - □ OSPF 도메인 내부에서 변화되지 않는 고정 값
 - □ 재분배시 기본 경로값이 E2
 - R(c-r)# redistribute connected subnets
- 외부네트워크와 연결되는 경로가 하나 뿐인 경우 E1 또는 E2경로 중 어떤 종류라도 상관이 없다.

LSA & Link State Database

Type	이름	생성 라우터	내용	확인 명령어	전송 범위
1	Router	모든 라우터	인터페이스 상태	router	Area
2	Network	DR	DR과 연결된 라우터 ID	network	Area
3	Summary	ABR	타 에어리어 네트워크	summary	Area
4	Summary	ABR	ASBR 라우터 ID	asbr-summary	Area
5	AS- External	ASBR	외부 네트워크	external	AS
7	AS- External	NSSA ASBR	NSSA 외부 네트워크	nssa-external	AS

LSA

- Link State Advertisement
 - □ Type 1 11: 11종류
 - □ Link State Database에 저장
 - □ LSA Type 6: MOSPF(멀티캐스트 프로토콜용)
- Link State Database의 LSA 내용 확인
 - R# show ip ospf database
- Link State DB는 Area별로 관리
 - 동일 Area 소속 내부 라우터의 Link State DB 는 모두 동일

Type 1 LSA

- Router-LSA
 - □ OSPF가 동작하는 모든 라우터가 생성
 - □ 동일 Area 내의 모든 라우터에게 전달
 - □ 직접 접속되어 있는 네트워크 번호, 종류, Metric 값 등의 정보를 네이버 라우터에 광고
- ■확인
 - R# show ip ospf database router 1.1.1.1
 - LS Type: Router Links
 - Link ID: DR의 인터페이스 주소
 - Link Data: DR과 연결되는 인터페이스 IP주소

Type 2 LSA

- Network-LSA
 - □ DR이 만든다.
 - □ 동일 Area 내의 모든 라우터에게 전달
 - □ Link State ID: DR의 인터페이스 주소
- ■확인
 - R# show ip ospf database network
 - LS Type: Net Links

Type 3 LSA

- Summary-LSA
 - □ ABR이 만든다.
 - □ 다른 Area에 소속된 네트워크를 현재의 Area에 소속된 라우터들에게 알리기 위해 사용
 - □ Link State ID: 다른 Area 소속된 네트워크 주소
- 확인
 - R# show ip ospf network summary
 - LS Type: Summary Links

Type 4 LSA

- Summary-LSA
 - □ ABR이 만든다.
 - □ 다른 Area에 소속된 ASBR의 라우터 ID와 그 ASBR까지의 Cost를 현재의 Area에 소속된 라 우터들에게 알리기 위해 사용
 - □ Link State ID: 다른 Area에 소속된 ASBR의 라 우터 ID
- 확인
 - R# show ip ospf database asbr-summary
 - LS Type: Summary Links

Type 5 LSA

- AS-External-LSA
 - □ ASBR이 만든다.
 - □ OSPF 도메인 외부 네트워크를 OSPF 도메인 내부의 라우터들에게 알리기 위해 사용
 - □ Link State ID: OSPF 도메인 외부 네트워크
- 확인
 - R# show ip ospf database external
 - Link Type: AS External Link

OSPF Stub Area

- OSPF 장점 중의 하나
 - □ Stub Area를 구성할 수 있다.
 - □ ABR이 내부 라우터에게 외부 경로에 대한 LSA를 차단하고 대신 Default Route를 전달
- 결과
 - □ 라우팅 테이블의 크기가 대폭 감소되어 네트 워크의 안정성이 향상되고, 라우팅 성능도 좋아지며, 장애처리가 쉬워진다.

OSPF Stub Area

종류	설정 명령어	차단경로
Stub Area	area n stub	E1, E2
Totally Stub Area	area n stub no-summary	E1, E2, IA
NSSA	area n nssa default-information-originate	E1, E2
NSSA Totally	area n nssa no-summary	E1, E2, IA

Stub Area 제약조건

- Backbone Area가 될 수 없다.
- Virtual Link 설정시 Transit Area가 될 수 없다.
- Area 내부에 ASBR을 둘 수 없다.
 - NSSA는 예외

Stub Area

■ Area 내부로 OSPF 도메인 외부 네트워크 를 모두 차단 (E1, E2)

■ 대신 Default Route를 만들어 전송

- ■설정
 - R(c-r)# area x stub
 - ▶ Area x에 소속된 모든 라우터

Totally Stub Area

■ OSPF 외부 도메인 네트워크(E1, E2) 뿐만 아니라 다른 Area에 소속된 경로(IA)도 차 단되는 Area

■설정

- R(c-r)# area x stub no-summary
 - ABR 라우터
- R(c-r)# area x stub
 - ▶ Area 내부 라우터

Totally Stub Area

■ ABR이 하나뿐인 Area는 Totally Stub Area 가 유리

- Default Route Cost 변경
 - R(c-r)# Area x default-cost [全入]

NSSA(Not-So-Stubby-Area)

■ Area 내부에 ASBR이 존재할 때는 Stub이 나 Totally Stub Area를 구성할 수 없다.

■설정

- R(c-r)# area x nssa default-informationoriginate
 - ABR Router
- R(c-r)# area x nssa

NSSA Area

- Type 7 LSA
 - NSSA 내부의 ASBR이 OSPF 외부 네트워크를 다른 라우터로 광고할 때
- ■확인
 - R# show ip ospf database nssa-external
- N₁/N₂ 경로는 NSSA Area를 벗어나면 E₁/E₂로 변경된다.

NSSA Totally Stub Area

- OSPF 외부 도메인 네트워크뿐만 아니라 다른 Area에 소속된 경로도 차단되는 Area
- Totally Stub Area와의 차이점
 - □ Area 내부에 ASBr이 존재할 수 있다.
- 설정
 - R(c-r)# area x nssa no-summary
 - ASBR Router
 - R(c-r)# area x nssa
 - 동일 Area Router

N₁/N₂ 경로 차단

- NSSA ABR이면서 ASBR
 - □ 불필요한 외부 AS정보를 내부로 광고
- 차단 방법
 - R(c-r)# area x nssa no-redistribution
 - NSSA Abr & ASBR Router

OSPF 네트워크 축약

- Stub Area들은 내부 라우터의 라우팅 테이블 크기를 대폭 감소하나, Backbone Area의 라우터의 라우팅 테이블 크기는 감소되지 않는다.
 - NSSA 내부 라우터들의 N1/N2 경로 수를 감소시 키지 않는다.
- ABR에서
 - 자신의 Area 소속된 네트워크를 축약하여 다른 Area로 전송시키려면
- ASBR에서
 - 외부 도메인에서 재분배된 네트워크를 축약

OSPF 네트워크 축약 효과

- 축약의 기대 효과
 - 안정된 네트워크 유지
 - □ 네트워크 성능 향상
- 설정 중
 - □ 외부 네트워크
 - Loopback Interface에서 ip ospf network point-to-point 명령어를 사용하지 않아도 24비트로 축약
 - Redistributed connected 명령어
 - Network 명령어를 사용하지 않은 모든 네트워크가OSPF 외부 네트워크로 재분배

ABR & ASBR에서의 축약

- ABR에서의 축약
 - R(c-r)# area x range [Net] [S-Mask]
- ASBR에서의 축약
 - R(c-r)# summary-address [Net] [S-Mask]

OSPF Default Route

- OSPF Default Route 생성
 - □ R(cfg)# ip route o.o.o.o o.o.o.o [IP 주소]
 - R(cfg)# router ospf 1
 - R(c-r)# default-information originate
- 항상 Default Route 광고하기
 - R(c-r)# default-information originate always
- Default Route의 속성 변경
 - R(c-r)# default-information originate metric x metric-type y

OSPF Network 보안

인증 범위	인증 방식	사용 명령어	
네이버 인증	Clear Text	interface xxx ip ospf authentication ip ospf authentication-key cisco	
	MD ₅	interface xxx ip ospf authentication message-digest ip ospf message-digest-key 1 md5 cisco	
Area 인증	Clear Text	router ospf 1 area x authentication interface xxx ip ospf authentication-key cisco	
	MD5	router ospf 1 area x authentication message-digest interface xxx ip ospf message-digest-key 1 md5 cisco	

OSPF Network 보안

■ OSPF는 네이버 인증 외에 특정 Area 전체 를 인증할 수 있다.

- 인증 타입
 - □ 타입 o: 인증을 하지 않는 것
 - □ 타입 1: 평문 인증
 - □ 타입 2: MD5 방식 인증

Area 인증

- OSPF Area 인증
 - 동일한 Area에 소속된 모든 라우터가 OSPF 패킷을 송수신할 때 인증을 하게 하는 것
 - □ 동일한 Area에 소속된 모든 라우터의 인증 방식 (MD5 또는 평문)은 동일해야 한다.
 - □ 인증키는 네이버간에만 일치하면 된다.
- 인증 설정후 확인
 - R# debug ip ospf adj

Area 인증 – MD5, 평문

- MD5 인증
 - R(c-r)# area x authentication message-digest
 - R(c-if)# ip ospf message-digest-key 1 md5cisco
- 평문 인증
 - R(c-r)# area x authentication
 - R(c-if)# ip ospf authentication-key cisco

네이버인증

- OSPF 네이버 인증
 - □ 인증 방식,인증키: 모두 해당 인터페이스에서 설 정
- 평문 인증
 - R(c-if)# ip ospf authentication
 - R(c-if)# ip ospf authentication-key cisco
- MD5 인증
 - R(c-if)# ip ospf authentication message-digest
 - R(c-if)# ip ospf message-digest-key 1 md5 cisco
- 확인: debug ip ospf packet

인증키 변경

- OSPF 인증키를 변경하면 일시적으로 네이 버 관계가 단절되어서 정상적 라우팅이 이뤄지지 않을 수 있다.
 - □ 인증키를 2개 정의
- 네이버 관계의 단절 없이 OSPF 인증를 변경하는 것은 MD5 인증방식을 사용할 때만 가능
- MD5 인증을 사용해도 라우터에 저장시 인 증키가 암호화되지 않는다.
 - R(cfg)# service password-encryption

OSPF Passive Interface

- OSPF 네이버가 없는 인터페이스에 대해 Passive-Interface 명령어 사용
 - □ 간단하면서도 강력한 OSPF 보안 대책
- ■설정
 - R(cfg)# router ospf 1
 - R(c-r)# passive-interface ethernet o

Virtual Link & Demand Circuit

- Virtual Link
 - 직접 Backbone Area와 연결되지 못한 Area
 - □ 원인
 - 네트워크 설정이 변경
 - 네트워크의 특정 링크가 다운된 경우
 - ▶ 2개의 회사가 합병되는 등
- Transit Area
 - Virtual Link가 통과하는 Area

Virtual Link 설정

- Virtual Link는 ABR간에 설정한다.
 - □ R(c-r)# area x(Transit Area) virtual-link [Router-ID(상대방)]
- ■확인
 - R# show ip ospf virtual-link
- Virtual Link는 Demand Circuit으로 동작
- 네이버 확인
 - R# show ip ospf neighbor

Virtual Link 인증

- Virtual Link 인증
 - R(c-r)# area o authentication message-digest
 - Area o 인증: Area o와 Area x ABR 라우터에서
 - R(c-r)# area x virtual-link [Router-ID] messagedigest-key 1 md5 암호
- Virtual Link 네이버 인증
 - Area o 인증과 무관하게 Virtual-Link만 인증 가능
 - R(c-r)# area x virtual-link [Router-ID] authentication
 - ╸R(c-r)# area x virtual-link [Router-ID] authentication-key 암호

Backbone Area가 분리된 경우

■ 분리된 양 Backbone Area의 ABR간에 Virtual Link를 설정하면 된다.

Backup Link를 위한 Virtual Link

- 대역폭 조정과 Virtual Link 설정
 - □ 주 링크와 백업 링크의 대역폭이 동일하면 Load Balancing이 일어난다.
 - 필요시 한 링크의 OSPF 코스트를 조정
 - R(c-if)# bandwidth 10000
 - R(c-r)# area x virtual-link w.x.y.z

잘못된 Mapping

- 잘못된 Mapping →Virtual Link 설정 메시지
 - Received Invalid Packet: Mismatch area ID ... must be virtual-link but not found ...
- 확인
 - R# show frame-relay map
 - 필요 이외의 활성화된 DLCI 모두와 IP Mapping
 - Broadcast, P2P, P2Mp: Hello Packet 전송시 Multicast 주소인 224.0.0.5 사용하는 경우
- 조치:설정 저장후 재부팅
- Hello Packet의 목적지 주소가 유니캐스트인 NBMA 네트워크에서는 문제가 발생하지 않는다.

OSPF Demand Circuit

LSA Refresh

□ Link State Database의 정확성을 유지하기 위해 3o분마다 기존에 광고했던 LSA 다시 전송

OSPF Demand Circuit

- P2P, P2MP 인터페이스에서 설정하면 주기적 Hello Packet 전송과 LSA Refresh가 일어나지 않는다. – 주로 사용
- □ Multi-Access 네트워크에서 설정하면 Hello Packet은 주기적 전송, LSA Refresh만 일어나 지 않는다.

OSPF Demand Circuit

■ ISDN, X.25와 같은 네트워크에서 트래픽이 없어도 계속 링크가 살아 있어 비용이 발생하는 것을 방지할 때 유용

- ■설정
 - R(c-r)# ip ospf demand-circuit

OSPF Timer

- Hello Interval
 - R(c-if)# ip ospf hello-interval x
 - Hello 주기 변경하면 Dead 주기(4배)도 변경
- Dead Interval
 - R(c-if)# ip ospf dead-interval y
 - Dead 주기 변경하면 Hello 주기는 자동변경안됨
- Retransmit Interval(재전송타이머)
 - R(c-if)# ip ospf retransmit-interval z
 - 기본 재전송 타이머 주기는 5초

OSPFThrottleTimer

- OSPF Throttle Timer
 - OSPF가 LSA를 수신한 다음 SPF 알고리즘을 계 산할 때까지의 시간
- 확인
 - R# show ip ospf
- 수정
 - R(c-r)# timers throttle spf 1 2000 10000
 - OSPF가 LSA 수신한 다음 SPF 알고리즘 계산을 시작할 때까지의 시간: 기본값 5초(5000 msec)
 - ▼ SPF 계산간 초기 지연시간 등: 기본값 10초(10000 msec)