Réseaux

Protocole Internet : adressage IPv4 et routage

IUT-2 Département Informatique

4 mars 2024

Sommaire

Protocole Internet (IP): IPv4

Principe du routage IPv4 Glossaire39

Sommaire

Protocole Internet (IP): IPv4

Le Protocole Internet

L'adressage IPv4 Sous-réseau IPv4 Paquets IPv4

> Principe du routage IPv4 Glossaire39

Internet et son architecture TCP/IP

Internet : Interconnexion de réseaux « Inter Net » ou inter-réseau. L'architecture de l'Internet, appelée « Architecture TCP/IP », a pour objectif le déploiement d'applications sur un inter-réseau, indépendamment des technologies physiques de ces réseaux.

Les quatre niveaux de l'architecture TCP/IP

Application:

- applications standard : FTP, HTTP, SMTP, POP, IMAP, SSH, ...
- applications de service : DNS, DHCP, NFS, X11, SNMP
- applications spécifiques

Transport:

- Protocole User Datagram Protocol (UDP): service de transport minimal
- Protocole Transmission Control Protocol (TCP): transport + fiabilité des connexions

Réseau:

- Protocole IP: bâti sur un adressage logique des stations
 « l'adresse IP »
- Protocoles de service : ICMP (contrôle), ARP (adressage)

Interface (accès réseau) : assure l'accès aux différents réseaux physique (corresponds aux niveaux liaison et physique)

Identifiants dans l'architecture TCP/IP

Adresse physique du niveau interface (accès réseau) :

 dépend du réseau physique (ex. adresses Media Access Control (MAC) Ethernet ou Wi-Fi)

Adresse du niveau réseau :

- ► Adresse IP : adresse « logique », comprenant une partie identifiant le réseau et une partie identifiant la machine dans le réseau.
- Par exemple: 192.131.15.17
- Une (parfois plusieurs) adresse IP par interface

Identification des processus au niveau transport :

▶ adresse IP + numéro de port

Identification des utilisateurs/ressources dans les applications : adresse mail, URL | U

Le protocole IP

Fonction

Assurer l'acheminement des unités de données « paquets IP » ou « datagrammes IP » dans l'inter-réseau

- Service sans contrôle d'erreur ni contrôle de flux de bout en bout.
- Service de base de type Best Effort (BE) (Best Effort)
- Service de fragmentation de données si les réseaux traversés ont des Maximum Transfer Unit (MTU) de valeurs différentes.

Deux versions du protocole :

- ▶ IPv4 : adresse sur 32 bits [rfc, 1981]
- ▶ IPv6 : adresse sur 128 bits [Hinden et Deering, 1998]

Pourquoi un adressage IP?

But d'IP : Communication entre machines de Local Area Network (LAN)s différents.

Besoin d'abstraction :

- Myriade de protocoles de niveau 2 (Ethernet n'est pas le seul protocole utilisé).
- Les adresses MAC ne sont pas organisées par réseau (mais par constructeur).
- Les adresses MAC ne sont pas uniques.
- Les tables des commutateurs ont une capacité limitée.

La connexion entre LANs se fait via une machine connectée à plusieur LANs : le **routeur**.

Pourquoi un adressage IP?

But d'IP: Communication entre machines de LANs différents.

l'Adresse IP est globale inter-réseau (dans les faits, inter-nationale) :

- Adresse IP représente : l'@machine et l'@réseau
 - une partie identifiant le réseau (organisé hiérarchiquement facilitant le routage)
 - une partie identifiant la machine dans le réseau
- L'adresse IP est une adresse « logique » qui ne dépend pas du matériel (Carte Interface Réseau (CIR)).
 - → Elle peut être reconfigurée et une machine peut avoir plusieurs adresses IP.

Sommaire

Protocole Internet (IP): IPv4

Le Protocole Internet L'adressage IPv4 Sous-réseau IPv4 Paquets IPv4

> Principe du routage IPv4 Glossaire39

Principe de l'adressage IPv4

Adressage hiérarchique de base :

- lacktriangle Identification du réseau ightarrow poids forts (PF) de l'adresse IP
- ▶ Identification de chaque machine dans le réseau \rightarrow poids faibles (pf) de l'adresse IP

Réseau IP : défini par une suite d'adresses contiguës, donc avec la même valeur des bits de poids forts

Adresses d'un routeur

Le routeur a une adresse IP dans chacun des 2 réseaux, donc une avec le préfixe réseau X et une avec le préfixe réseau Y. Ses adresses IP sont par exemple X7 et Y6.

Analogie avec le numéro de sécurité sociale

d'après Service Public (DILA)

Adressage IP V4

Format d'adresse

suite de 32 = n + m bits

- n bits pour identifier le réseau
- m bits pour identifier la machine dans ce réseau.

Plage d'adresse

Un réseau IP, identifié par ses n bits de poids forts, possède 2^m valeurs qui définissent une « plage d'adresses », répartie en :

- ▶ Une adresse IP du réseau : les *m* bits sont tous à 0
- Les adresses des machines : au maximum $2^m 2$ machines
- ▶ Une adresse de diffusion : les *m* bits sont tous à 1

Masque de réseau

- permet de séparer la partie réseau de la partie machine par le calcul (ET bit-à-bit)
- Masque = tous les n bits sont à 1 et tous les m bits sont à 0

Exemple d'adressage dans un réseau IP

On souhaite créer un réseau de 11 stations :

- $ightharpoonup 2^4 = 16.4$ bits sont nécessaires pour adresser chaque station
- Nombre de bits de la partie réseau : 32 − 4 = 28 bits 11000000 100000011 00001111 0001
- Masque de ce réseau : 11111111 11111111 11111111 11110000

	Partie réseau	Partie machine
Adresse du réseau	11000000 10000011 00001111 0001	0000
Adresse station 1	11000000 10000011 00001111 0001	0001
Adresse station 2	11000000 10000011 00001111 0001	0010
Adresse station 11	11000000 10000011 00001111 0001	1011
Adresse non utilisée	11000000 10000011 00001111 0001	1101
Adresse de diffusion	11000000 10000011 00001111 0001	1111

Notations des adresses IP

Notation des adresses sous forme « décimale pointée » : les 32 bits sont découpés en 4 octets et chaque octet est codé en décimal. Par exemple :

11000000	10000011	00001111	00010001
192	131	15	17

Notation Classless Inter-Domain Routing (CIDR) 1:

- Définition : adresse IP / nombre de bits du préfixe réseau.
- Exemple : 192.18.131.0/24
 - 24 bits de préfixe réseau
 - ▶ Il reste 8 bits pour la partie adresse machine : $2^8 2 = 254$ machines
 - Adresse de diffusion dans ce réseau : 192.18.131.255

^{1.} La notation CIDR est équivalente à celle qui consiste à donner l'adresse du réseauce et la valeur du masque de ce réseau.

Réseaux privés : héritage de la classification historique

Classification historique: classe A (/8) classe B (/16) classe C (/24)

d'après https://en.wikibooks.org

Réseaux privés : 192.168.0.0/16, 172.16.0.0/12 et $10.0.0.0/8 \rightarrow$ ne sont pas routées sur Internet.

Loopback ²: 127.0.0.0/8

^{2.} peut se traduire par rebouclage ou "boucle arrière"

Adresse d'une machine Commande « ip addr »

Résultat (simplifié) de la commande ip addr :

```
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host
```

1: lo: <LOOPBACK, UP, LOWER_UP> mtu 65536 qdisc noqueue state....

- 2: enp0s25: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
 link/ether 28:80:23:0b:c8:33 brd ff:ff:ff:ff:ff
 inet 192.168.200.164/24 brd 192.168.200.255 scope global dynamic nop
 valid_lft 15587sec preferred_lft 15587sec
 inet6 fe80::1409:c25:6e2a:61d7/64 scope link noprefixroute

Adresse d'une machine Commande « ip addr »

Résultat (simplifié) de la commande ip addr :

Sommaire

Protocole Internet (IP): IPv4

L'adressage IPv4 Sous-réseau IPv4 Paquets IPv4

> Principe du routage IPv4 Glossaire39

Les limites d'IPV4

- ▶ Adressage sur 32 bits \rightarrow 2³² adresses disponibles (\approx 4 milliard).
- ▶ Attribution des « lots d'adresses » et des noms de domaines de plus haut niveau par l'Internet Corporation for Assigned Names and Numbers (ICANN) de droit privé. Délégation aux Registres Internet Régionaux (RIR) comme RIPE-NCC en Europe.
- ▶ Depuis février 2011, l'ICANN n'a plus de lots d'adresses disponibles...
- \rightarrow nécessité de passer à IPv6 (3,4 \times 10³⁸ adresses) : déploiement par les opérateurs, technologie des routeurs à faire évoluer.

Sous-réseau IPv4

- Possibilité de répartir les adresses d'un réseau IP ... pour créer de nouveaux réseaux IP... plus petits!
- Un sous-réseau IP est un réseau IP -> respect de la contiguïté des adresses allouées.
- Découpage en déplaçant « vers la droite » la limite de répartition partie réseau / partie machine.

Exemple:

- ► Réseau initial en /24 -> répartition : 24+8
- ▶ Pour faire 4 sous-réseaux, on prend les 2 bits de poids forts de la partie machine : 24+2=26, 8-2=6, 26+6=32.
- Les 4 valeurs différentes de ces 2 bits définissent 4 sous-réseaux
 - Sous-réseau 1 : 00 000000 à 00 111111
 - Sous-réseau 2 : 01 000000 à 01 111111
 - Sous-réseau 3 : 10 000000 à 10 111111
 - Sous-réseau 4 : 11 000000 à 11 111111

Tableau d'adresses de sous-réseaux

Comment faire 2 sous-réseaux à partir du réseau 192.18.131.0/24?

192.18.131.0/24	Dernier octet	Sous-réseau
192.18.131.0	0 000 0000	Sous-réseau 1 :
192.18.131.1	0 000 0001	- bit de poids fort du dernier octet : 0
192.18.131.2	0 000 0010	- adresses de : 192.18.131.0 à 192.18.131.127
		- sous-réseau d'adresse CIDR :
192.18.131.127	0 111 1111	192.18.131.0/25
192.18.131.128	1 000 0000	Sous-réseau 2
192.18.131.129	1 000 0001	- bit de poids fort du dernier octet : 1 - adresses de : 192.18.131.128 à
		192.18.131.255
		- sous-réseau d'adresse CIDR :
192.18.131.254	1 111 1110	192.18.131.128/25
192.18.131.255	1 111 1111	

Sommaire

Protocole Internet (IP): IPv4

L'adressage IPv4 Sous-réseau IPv4

Paquets IPv4

Principe du routage IPv4 Glossaire39

Adressage et encapsulation

Format des paquets IPv4

31 23		15		0
Version Header Lg	Type of Service	Total Length (bytes)		
Identification		Flags	Fragment Offset	
Time To Live	Protocol	Header Ckecksum		
IP Source Address				
IP Destination Address				
	Option	s —		

Champs de l'en-tête IPv4

- ► Version (4 bits) : valeur = 4.
- ► **Header Lg** (4 bits) : longueur de l'en-tête en mots de 32 bits.
- ▶ **Type of Service** ou champ DS (DiffServ) : LBE, BE, BBE, etc.
- ► TTL « Time To Live » (1 octet) : nombre maximum de routeurs que le paquet est autorisé à traverser, décrémenté par chaque routeur traversé.
- ▶ Protocol : identifiant du protocole en charge du champ Information (ce qu'il y a dans le paquet IP!) : ICMP = (01) 16, TCP = (06) 16, UDP = (17) 16 .
- ▶ **Source Address** : adresse IP de la station émettrice du paquet.
- Destination Address : adresse IP de la station réceptrice du paquet.
- ▶ Identification Flag et Fragment offset (32 bits) : champs utilisés pour fragmenter et réassembler les paquets

Fragmentation IP

tiré de Promethee Spathis

Sommaire

Protocole Internet (IP): IPv4

Principe du routage IPv4

Définition du routage

IP interaction avec les autres couches TCP/IP
Glossaire39

Définition du routage

Dans l'inter-réseau Internet, la sélection d'un chemin partant de la source vers la destination est appelée le **routage**.

Un chemin passe par 3 types de stations : la source, un nombre variable de routeurs (y compris 0) et la destination.

La fonction de routage démarre dès la source.

Routeur IP

Un **routeur IP** est un équipement connecté à plusieurs réseaux IP. Pour permettre l'acheminement des paquets d'un réseau à l'autre, il possède :

- une adresse logique (IP) dans chacun des réseaux auquel il est connecté.
- une adresse physique (MAC) dans chacun des réseaux auquel il est connecté.

Routage IP

Principe

lorsqu'un paquet IP arrive dans un routeur, celui-ci retransmet le paquet soit :

- directement à la station destinataire si celle-ci est connectée au routeur (elle est dans un même réseau);
- vers un autre routeur auquel il est directement connecté...le routage se fait « de proche en proche ».

Table de routage

La détermination de la route suivante se fait par une table de routage :

► Table de correspondance entre adresse de réseau destinataire et routeur suivant (avec interface d'envoi de la trame).

Toute station d'un réseau IP a une table de routage, en particulier la station source.

Table de routage

Obtenu avec la commande netstat -r ou ip route

Destination	Gateway	Genmask	Iface
192.168.10.0	0.0.0.0	255.255.255.0	eth0
192.166.60.0	0.0.0.0	255.255.255.0	eth1
0.0.0.0	192.168.10.35	0.0.0.0	eth0

Colonnes principales : **Destination**, **Gateway** (passerelle), **Genmask** (masque de réseau) et **Iface** (Interface CIR)

- ▶ Destination & Genmask (masque de réseau) : pour identifier le réseau auquel appartient la machine destinataire du paquet. Si Destination = 0.0.0.0 alors il s'agit de la route par défaut.
- Gateway & Iface: pour déterminer vers quelle direction et quelle trame envoyer: vers un routeur (Gateway) ou vers le destinataire final si Gateway est vide (noté 0.0.0.0 ou noté *)

Attention : la colonne destination indique des <u>réseaux de destination</u> (ensemble de machines) mais non des adresses de machines.

Sommaire

Protocole Internet (IP): IPv4

Principe du routage IPv4

Définition du routage

IP interaction avec les autres couches TCP/IP Glossaire39

ARP: Lien entre adresse IP et adresse MAC

Quand un paquet IP doit être acheminé d'une station vers une autre du même réseau physique : Comment déterminer l'adresse MAC du destinataire ?

 \rightarrow ARP permet d'associer une adresse MAC à l'adresse IP correspondant à la même CIR.

Protocole Address Resolution Protocol (ARP)

- émission d'une requête ARP en Broadcast demandant l'adresse MAC de la machine dont l'adresse IP est donnée en paramètre.
- 2 La réponse ARP est renvoyée par la station qui a cette adresse MAC.
- 3 Stockage de ce couple (@IP, @MAC) pour une durée limitée dans une table appelée « cache ARP ».
- 4 Accès au cache ARP par la commande : ip neigh (pour neigbour).

ICMP: contrôle IP

IP ne fait pas de contrôle d'erreur. Impossible de savoir s'il y a un problème de transmission.

 \rightarrow surcouche Internet Control Message Protocol (ICMP) dont les messages sont encapsulés dans les paquets IP.

Les paquets ICMP précisent par exemple les différents types de message de contrôle

- 0 Réponse d'écho
- 3 destinataire inaccessible des stations avec des CIR à la norme 802.11 permettant de se connecter à un réseau sans fil.
- 8 demande d'écho
- 11 Temps dépassé (le paquet a épuisé le TTL)

ICMP et utilitaires

ICMP est utilisé par des utilitaires pour tester le réseau.

Par exemple

- ▶ ping utilise les types Demande d'écho (8) et Réponse d'écho (0) pour
 - tester l'accessibilité d'une autre machine à travers un réseau IP.
 - mesurer le temps mis pour recevoir une réponse : Round-Trip Time (RTT) (temps aller-retour).
- ▶ traceroute peut déterminer par quels routeurs passe un paquet en utilisant des demandes d'écho (8) avec un TTL de plus en plus grand.

traceroute : exemple

Par quel chemin passe-t-on pour en arriver à Parcoursup?

\$traceroute www.parcoursup.fr

```
1 193.55.51.129 (193.55.51.129) 1.725 ms 1.827 ms 1.989 ms
2 193.55.51.1 (193.55.51.1) 4.946 ms 5.140 ms 5.376 ms
3 r-viallet1.grenet.fr (193.54.184.185) 1.257 ms 1.244 ms 1.231 ms
4 tigre1.grenet.fr (193.54.185.17) 11.684 ms 11.668 ms 11.649 ms
5 te1-4-grenoble-rtr-021.noc.renater.fr (193.51.181.94) 1.565 ms 1.545 ms 1.744 ms
6 te0-0-0-1-ren-nr-lyon2-rtr-091.noc.renater.fr (193.51.180.210) 8.504 ms ten0-0-0-12-r
7 xe-0-0-1-paris2-rtr-131.noc.renater.fr (193.51.180.54) 8.105 ms 9.294 ms xe0-1-9-par
8 xe-0-0-14-paris1-rtr-131.noc.renater.fr (193.51.177.150) 9.199 ms 8.550 ms xe-1-1-2-
9 * * *
10 hu0-4-0-0-ren-nr-paris1-rtr-091.noc.renater.fr (193.51.180.135) 9.677 ms 9.928 ms 9
11 * * *
```

traceroute to www.parcoursup.fr (194.167.72.228), 30 hops max, 60 byte packets

30 * * *

Glossaire I

ARP Address Resolution Protocol. 35

BE Best Effort, 7

CIDR Classless Inter-Domain Routing. 16 CIR Carte Interface Réseau. 9

ICANN Internet Corporation for Assigned Names and Numbers. 21 ICMP Internet Control Message Protocol. 36 LAN Local Area Network. 8

MAC Media Access Control. 6, 8 MTU Maximum Transfer Unit. 7

RIR Registres Internet Régionaux. 21 RTT Round-Trip Time. 37

TCP Transmission Control Protocol. 5

UDP User Datagram Protocol. 5

Références I

(1981).

Internet Protocol. RFC 791.

Hinden, B. et Deering, D. S. E. (1998).

Internet Protocol, Version 6 (IPv6) Specification. RFC 2460.

