From ML-A to ML-B

Margin-based Linear Classification

Kernels – Linear Classification of non-linearly transformed data

Nirupam Gupta (With minor revision by Yevgeny Seldin)

Recall: Linear Classifier

 $S=\{(\boldsymbol{x}_1,y_1),\ldots,(\boldsymbol{x}_N,y_N)\}$, $\boldsymbol{x}_i\in\mathbb{R}^d$, $y_i\in\{-1,1\}$ is linearly separable if there exists a hyperplane (\boldsymbol{w},b) such that for all $i=1,\ldots,N$

$$y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) > 0$$

which implies

$$y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \geq \gamma$$

for some $\gamma > 0$.

Inherent Degrees of Freedom

- (cw, cb) yields the same separating hyperplane for any c > 0
- "Small" tilts of the hyperplane yield identical labeling (identical empirical error)

How to Determine the Hyperplane?

Support Vector Machine (SVM): Maximizing the margin

Linear SVM

Given linearly separable training data $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_N, y_N)\}$, we get rid of the inherent degree of freedom in

$$\begin{aligned} & \mathsf{maximize}_{\boldsymbol{w},b} \quad \rho = \gamma/\|\boldsymbol{w}\| \\ & \mathsf{subject to} \quad y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \geq \gamma \;\;, \;\; i = 1, \dots, N \end{aligned}$$

by fixing $\gamma=1$ (alternatively $\|{\boldsymbol w}\|=1$)

And then maximize the margin 1/||w||

We will learn about how to solve the above problem.

Non-Linear Classifiers (Introduction to Kernels)

Not linearly separable

Linearly separable!

Non-Linear Classifiers (Introduction to Kernels)

Idea: make learning easier by changing representation

 \mathcal{X} : input space $\to \mathcal{Z}$: feature space

 $\Phi \colon \mathcal{X} \to \mathcal{Z}$ (feature map)

and do the classification / regression in ${\mathcal Z}$