LP n°6 Titre : Cinématique relativiste

Présentée par : Vivien SCOTTEZ Rapport écrit par : Vincent LUSSET

Correcteur : E. ALLYS & R. MONIER Date : 06/11/2018

Bibliographie de la leçon :			
Titre	Auteurs	Éditeur	Année

Plan détaillé

Niveau choisi pour la leçon : L3

<u>Pré-requis</u>: - Mécanique classique

- Électromagnétisme

Plan détaillé:

Introduction

- ♦ Cinématique : mouvement des objets indépendamment des causes
- ♦ Relativiste : théorie de la Relativité restreinte d'Einstein (1905)

Théorie pas intuitive, car pas dans l'expérience de tous les jours → renommée mais aussi parfois mal comprise

I - De Galilée à Einstein

1) Contexte

Galilée : scientifique italien XVIème-XVIIème ; premier à mathématiser la physique

→ pour suivre le mouvement d'un objet, besoin de définir la notion de référentiel

Référentiel : solide de référence muni d'axes (repère) et d'une horloge

Autre apport important : Principe d'inertie : il existe une classe de référentiels particuliers, les référentiels galiléens, dans lesquels un corps isolé a un mouvement rectiligne uniforme

Enfin, principe de relativité galiléenne : « le mouvement est comme rien » (expérience de la calle du bateau, aucune expérience ne peut détecter le mouvement uniforme \rightarrow les lois de la Mécanique sont les mêmes dans tous les référentiels galiléens)

Exemple: deux référentiels R et R', R' allant à la vitesse u selon Ox confondu à Ox'; transformations des coordonnées dite transformation de galilée:

x' = x - ut

y' = y

z' = z

t' = t : hypothèse importante : le temps est temps absolu

En dérivant : v' = v - u : loi de composition des vitesses : on voit que les vitesses se composent en s'additionnant, et qu'elles sont toujours définies par rapport à un référentiel

Or dans la suite de la physique, Maxwell va développer l'électromagnétisme, qui va poser problème par rapport à ces lois

2) Incompatibilité avec l'électromagnétisme

Électromagnétisme : 4 équations de Maxwell et force de Lorentz

On peut en déduire l'équation de propagation des ondes EM, où intervient la vitesse c de propagation ; problème : elle n'est définie par rapport à aucun référentiel spécifique ; existe—til un référentiel absolu ?

Autre problème (transparent) : changement de référentiel en conservant la force de Lorentz → div(E') ≠ 0 : création de charges électriques juste en changeant de référentiel ?

Deux solutions : lacktriangle théorie correcte mais on ajoute du contenu physique ; ici l'éther, milieu physique porteur des ondes EM \rightarrow expérience de Michelson-Morley (transparent), pour mesurer la variation de vitesse de la lumière selon le mouvement relatif \rightarrow résultat négatif

=> modification de la théorie : approche d'Einstein

3) Les principes de la Relativité

- Les lois de la physique sont les mêmes dans tous les référentiels galiléens, y compris l'électromagnétisme
- La vitesse de la lumière est la même dans tous les référentiels

Conséquence immédiate (transparent) : rayon lumineux faisant un aller-retour entre deux miroirs (R') en translation rectiligne uniforme dans R

→ temps d'aller-retour mesuré dans les deux référentiels nécessairement différents : abandon de la notion de temps absolu

II - De l'espace et du temps à l'espace-temps

1) Notion d'évènement

Phénomène physique qui se produit à un endroit donné à un temps donné (exemple : émission d'un rayon lumineux, désintégration d'une particule, claquer les doigts) : E(t,x,y,z) ; pour traiter sur un pied d'égalité espace et temps : E(ct,x,y,z)

On peut repérer les évènements dans un diagramme d'espace-temps (x,ct) ; en cinématique, on s'intéresse à un déplacement dans l'espace-temps \rightarrow ligne continue dans le diagramme = ligne d'univers. Pour chaque évènement, on peut définir le cône de lumière, qui définit/limite le passé causal (contrairement à la physique classique où seul compte le temps) et le futur sur lequel on peut avoir un effet causal.

On peut maintenant chercher une relation similaire à la transformation de Galilée pour les coordonnées d'un évènement dans deux référentiels R et R'

2) Transformations de Lorentz

Assez long à démontrer, juste quelques principes (transparent) : on utilise essentiellement l'homogénéité de l'espace (transformation linéaire) et son isotropie, ainsi que la composition de deux transformations qui doit avoir la même forme, pour obtenir :

 $ct' = \gamma(ct-\beta x)$

 $x' = \gamma(x-\beta ct)$

avec $\gamma = 1/sqrt(1-u^2/c^2) > 1$

On voit tout de suite que si u << c, on retrouve les transformations de Galilée : la physique classique est ainsi un « cas particulier » de la Relativité à faibles vitesses (devant c)

3) Notion d'intervalle

Soient 2 évènements sur le cône de lumière E1 et E2.

On a alors : $c^2(t1^2-t2^2) = (x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2$ (Pythagore en suivant un rayon lumineux) On appelle l'intervalle $S^2 = (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2$: permet de définir une distance dans l'espace-temps

Propriété importante : c'est un invariant relativiste :

 $S'^2 = (c\Delta t')^2 - (\Delta x')^2 = \gamma^2(c\Delta t - \beta \Delta x)^2 - \gamma^2(\Delta x - \beta c\Delta t)^2$: si on développe/simplifie, on trouve $S'^2 = S^2$ On peut maintenant étudier les manifestations de cette théorie

III - Manifestations

1) Dilatation du temps

On part de $S^2 = S'^2$; on appelle temps propre le temps qu'une particule vit dans le référentiel R qui lui est attaché ; dans l'autre référentiel R ', on mesure : $(c\Delta t)^2 = (c\Delta t')^2 - (\Delta x')^2$

 \Leftrightarrow $(c\Delta t)^2 = (c\Delta t')^2 (1 - u^2/c^2) => \gamma \Delta t = \Delta t'$

Illustration : muons cosmiques, produits dans la haute atmosphère ; vu leur temps de vie $(\sim 2.10^{\circ}-6 \text{ s})$ et leur vitesse, ils devraient se désintégrer au bout de d = 600 m

Mais selon leur énergie (E = 1 GeV ou 10 GeV), on trouve γ = 10 ou γ = 100 => d = 6 km ou 60 km

2) Contraction des longueurs

On peut montrer qu'on a : L = LO/γ avec LO la longueur propre

3) Composition des vitesses

On a : $\Delta x'/\Delta t' = \gamma(c\Delta t - \beta \Delta x)/\gamma(\Delta x - \beta c\Delta t) \Leftrightarrow v' = (v - u)/(1 - uv/c^2)$: loi de composition relativiste des vitesses. On voit que la loi n'est plus seulement additivie ; et que si on a u << c, on retombe sur la loi des vitesses de la mécanique classique

Conclusion

On a vu les limites de la mécanique classique, notamment l'incompatibilité avec l'électromagnétisme ; pour dépasser ces limitations, ce qui l'a emporté est l'approche d'Einstein et le postulat de l'invariance de c. De là on en a déduit de nouveau outils.

Autres illustrations : dynamique relativiste, par exemple dans les accélérateurs de particules ; et même Relativité générale pour généraliser la notion de référentiel d'inertie

Questions posées par l'enseignant

- ♦ en physique classique, a-t-on besoin d'introduire des axes pour définir un référentiel ? Comment sont définis les axes ?
- ♦ toujours en physique classique, a-t-on besoin d'une horloge définie dans le référentiel, ou estelle définie en dehors du référentiel ?
- ♦ Peut-on choisir des référentiels de temps différents ?
- ♦ Pouvez-vous redonner la définition du Principe d'inertie ?
- ♦ Force de Lorentz généralisée, qu'est-ce ? Quelle différence avec la force de Lorentz ?
- ♦ Maxwell-Gauss non conservée : qu'est ce qui se passe en Relativité restreinte ? Pouvez-vous écrire Maxwell-Gauss et appliquer les transformations de Lorentz ?
- ♦ Expérience de Michelson-Morley : l'interféromètre existait-il avant ?
- ♦ Expérience de Michelson-Morley : besoin d'optique ondulatoire dans les prérequis
- ♦ En Relativité restreinte, les référentiels galiléens sont-ils définis de la même manière ? Ont-ils un autre nom ?
- ♦ Cône de lumière : comment distingue-t-on le passé et le futur ? Quelle hypothèse rajoute-t-on sur le temps, par rapport à une simple coordonnée ?
- ♦ Est-ce qu'un évènement avec un temps inférieur, mais ailleurs, en dehors du cône de lumière, peut être observé avec un temps supérieur ?
- ♦ Pouvez-vous donner un exemple d'évènement « ailleurs » ?
- ♦ Pouvez-vous justifier d'avoir montré la démonstration des transformations de Lorentz ? Quelles hypothèses sont mises en valeur ?
- ♦ La mécanique classique = cas particulier de la RR : plutôt un cas limite
- ♦ Parfois on définit –S au lieu de S, est-ce un problème ?
- ♦ Pour le cône de lumière, que donne $S^2 > 0$, $S^2 = 0$ et $S^2 < 0$
- ♦ Un évènement peut être de genre temps, espace, lumière ?
- ♦ Souvent on définit l'intervalle de manière infinitésimale ; peut-on avoir des problèmes quand on passe au macroscopique ? Prendre l'intégrale n'est pas égal à prendre la distance
- igoplus Pourquoi la masse du muon en MeV/c² et pas en g? Comment on passe de l'un à l'autre, alors qu'on n'a pas encore vu E = γ mc²
- ◆ La particule peut-elle aller plus vite que la lumière ?
- ♦ Y-a-t-il une grande différence entre v = 0,99c et v = 0,995c ? Pourquoi ?
- ♦ La dilatation du temps est-elle réciproque ?
- ♦ Comment mettre en place un protocole de mesure permettant de mesurer que l'horloge de l'autre va moins vite ?
- ♦ Contraction des longueurs : même chose, réciprocité ?
- ♦ Du coup, la longueur est-elle un concept bien définie ? Qu'est-ce-que c'est, la longueur propre ? Comment la mesurer ?
- ♦ Pouvez-vous réécrire l'équation de composition des vitesses
- ◆ Définition de u, v(R'/R) ?
- ♦ Expérience de Michelson : que mesure-t-on ? Comment peut-on conclure qu'on ne mesure rien, qu'est-ce que ça veut dire ?
- ♦ Choix de partir de rappels de la mécanique classique, laisse moins de temps pour parler des applications ; aurait-on pu faire différemment ?
- ♦ Les étudiants ont-ils déjà entendus parler de Relativité dans leurs cursus ?
- ◆ Autres applications qu'on pourrait citer ?
- ♦ Y-a-t-il d'autres façons d'introduire les transformations de Lorentz ?
- ♦ Comment fait-on pour acquérir la donnée des coordonnées (x,t) d'une particule au fur et à mesure de son mouvement ? Cela revient à : comment fait-on pour définir proprement un référentiel galiléen en Relativité restreinte ?

Commentaires donnés par l'enseignant

- Remarque : vous ne parlez pas d'observateur
- Composition des vitesses : l'écrire avec vecteurs

Commentaires de présentation générale :

- toujours indiquer les axes sur les graphes
- quand on choisit de travailler avec des scalaires à la place de vecteurs, le dire et le justifier
- attention à bien introduire et bien garder les mêmes lettres dans tous les calculs pour les grandeurs utilisées
- transparents au tableau : ne pas mettre trop d'information ; s'il faut plus de temps à le lire qu'à écouter sa présentation, il y a un problème. Si on fait le choix de parler de quelque chose, bien le faire en prenant le temps, sinon ne pas le mettre ; le compromis de mettre quand même quelque chose parce que c'est important mais de le traiter trop vite n'est pas bon
- bien réfléchir aux prérequis, ça permet parfois de ne pas détailler quelque chose (ex : interféromètre de Michelson)
- écrire une formule au tableau sans en commenter la physique est un manque ; il faut toujours discuter les équations
- toujours présenter les choses à un niveau inférieur à celui auquel on maîtrise les choses
- bien définir les grandeurs utilisées, ne pas hésiter à faire un grand schéma clair

Commentaires disciplinaire:

- à partir de la définition de l'intervalle, et des diagrammes d'espace-temps, il faut définir les intervalles de genre espace, temps et lumière
- on pourrait même prendre le temps pour décrire le mouvement des particules dans un diagramme d'espace-temps, qui illustre bien la cinématique
- a contrario, on peut sans doute zapper la démonstration de Lorentz
- pour les muons, plutôt parler de la vitesse que de l'énergie
- ds² se ramène au temps propre dans le référentiel de la particule
- écrire la définition d'un évènement, vu que c'est un nouveau concept par forcément trivial
- la notion de référentiel : on peut prendre un pavé/un structure simple avec des axes bien défini, le plus important étant qu'on doit pouvoir distinguer ses rotations ; pour faire des mesures de (x,t) on imagine tout un tas d'observateurs avec des horloges préalablement synchronisées qui dont les mesures à des instants/endroits fixés
- Maxwell-Gauss en Relativité restreinte : combinaison linéaire de Maxwell-Gauss et de Maxwell-Ampère, B et j apparaissent et se compensent

NB: références:

Gié BFR

Landau: très condensé

(cours de Jean-Michel Raymond sur internet)

Partie réservée au correcteur

Avis sur le plan présenté
Concepts clés de la leçon
Concepts secondaires mais intéressants
Expériences possibles (en particulier pour l'agrégation docteur)
Points délicats dans la leçon
Bibliographie conseillée