Chapter 3: Multiple Linear Regression

☐ Multiple Regression:

☐ Multiple Linear Regression models the linear relationship between single dependent variable and more than one independent variable.

P1

Υ	X ₁	X ₂
(price)	(area)	(bedrooms)
5.5	2.6	3
5.65	3	3
6.10	3.2	3
6.95	3.6	3
7.6	4	4

Flat	Υ	X ₁	X ₂	X_1X_1	X_2X_2	X_1X_2	X ₁ Y	X ₂ Y
0	(price)	(area)	(bedrooms)					
1	5.5	2.6	3					
2	5.65	3	3					
3	6.10	3.2	3					2
4	6.95	3.6	3					
5	7.6	4	4			and the same		
Σ								

$$\sum x_1^2 = \sum X_1 X_1 - \frac{(\sum X_1)(\sum X_1)}{N} = 1.17$$

$$\sum x_2^2 = \sum X_2 X_2 - \frac{(\sum X_2)(\sum X_2)}{N} = 0.8$$

$$\sum x_1 y = \sum X_1 Y - \frac{(\sum X_1)(\sum Y)}{N} = 1.88$$

$$\sum x_2 y = \sum X_2 Y - \frac{(\sum X_2)(\sum Y)}{N} = 1.24$$

$$\sum x_1 x_2 = \sum X_1 X_2 - \frac{(\sum X_1)(\sum X_2)}{N} = 0.72$$

$$b1 = (\sum x_2^2)(\sum x_1y) - (\sum x_1x_2)(\sum x_2y) / (\sum x_1^2)(\sum x_2^2) - (\sum x_1x_2)^2$$

$$b1 =$$

b2 =
$$(\sum x_1^2)(\sum x_2y) - (\sum x_1x_2)(\sum x_1y) / (\sum x_1^2)(\sum x_2^2) - (\sum x_1x_2)^2$$

$$b2 =$$

$$b_0 = \overline{Y} - b1\overline{X1} - b2\overline{X2}$$

$$Y = b_0 + b_1 X_1 + b_2 X_2$$

	Mul	tiple	Regr	essio	n:
_	IVIGI	LIPIC	INCSI	C3310	

☐ Multiple Linear Regression models the linear relationship between single dependent variable and more than one independent variable.

Υ	X_1	X ₂
(salary)	(exp)	(test)
25	1	8
17	3	4
42	4	6
50	5	9
45	7	5

Person	Y (salary)	X ₁	X ₂	X ₁ X ₁	X ₂ X ₂	X ₁ X ₂	X ₁ Y	X ₂ Y
1	25	(exp) 1	(test)					
2	17	3	4					
3	42	4	6					2
4	50	5	9					
5	45	7	5					
Σ					1/			

$$\sum x_1^2 = \sum X_1 X_1 - \frac{(\sum X_1)(\sum X_1)}{N} = 20$$

$$\sum x_2^2 = \sum X_2 X_2 - \frac{(\sum X_2)(\sum X_2)}{N} = 17.20$$

$$\sum x_1 y = \sum X_1 Y - \frac{(\sum X_1)(\sum Y)}{N} = 93$$

$$\sum x_2 y = \sum X_2 Y - \frac{(\sum X_2)(\sum Y)}{N} = 49.40$$

$$\sum x_1 x_2 = \sum X_1 X_2 - \frac{(\sum X_1)(\sum X_2)}{N} = -4.00$$

$$b1 = (\sum x_2^2)(\sum x_1y) - (\sum x_1x_2)(\sum x_2y) / (\sum x_1^2)(\sum x_2^2) - (\sum x_1x_2)^2$$

b2 =
$$(\sum x_1^2)(\sum x_2y) - (\sum x_1x_2)(\sum x_1y) / (\sum x_1^2)(\sum x_2^2) - (\sum x_1x_2)^2$$

$$b2 =$$

$$b_0 = \overline{Y} - b1\overline{X1} - b2\overline{X2}$$

$$Y = b_0 + b_1 X_1 + b_2 X_{2D}$$