Name:	Roll no

CSL 7030: Algorithms for Big Data Quiz 2

Date: 10/02/2025 Time: 15 minutes

Instructions: Question 1: 4 points, Question 2: 6 points.

For the MCQ: if there are $1 \le i \le 4$ correct options, then each correct option **correct option** will give you 4/i points.

Failing to select a correct option, or selecting an incorrect option does not have a penalty.

Correct option without explanation or with wrong explanation gives -1 point.

1. We know that A has size 200. Obviously if A is sorted then it looks like a bunch of 0's followed by a bunch of 1's.

In particular, this means that the 10th 1 from the left must come after the 10th 0 from the right. So, option (b) is correct.

However, it can happen that $\ell_1 > r_0$, but A is not sorted. So, (a) is not correct.

Now suppose A is $\frac{1}{10}$ -far from being sorted, which means that we need to modify at least 20 positions to convert A to a sorted array.

In this case, we proved a lemma in the class that $\ell_1 < r_0$. Hence (c) is correct.

If $\ell_1 < r_0$, then there is an inversion between at least $10 = \frac{1}{20} \cdot 200$ 0's and the same number of 1's. Hence, to get to a sorted array, we need to change at least 10 0's to 1's or vice versa. Hence, A is $\frac{1}{20}$ -far from being sorted. Hence (d) is correct.

Correct options: b, c, d.

2. \mathcal{A}_{new} simply repeats \mathcal{A} say t times **independently**. If \mathcal{A} always says "sorted", then \mathcal{A}_{new} says "sorted". Otherwise if at least one execution of \mathcal{A} says "not sorted", then \mathcal{A}_{new} says "not sorted.

Each execution of \mathcal{A} has time/query complexity $O(\log n)$, therefore the query complexity of \mathcal{A}_{new} is $O(t \log n)$.

If the array is sorted, then each execution of A says "sorted".

Therefore, $\Pr(\mathcal{A}_{\text{new}} \text{says sorted when array is sorted}) = 1 \ge 1 - \delta$, since $0 < \delta < 1$.

 $\Pr(\mathcal{A}_{\text{new}} \text{ says "sorted" when array is } \epsilon\text{-far from being sorted})$

- = Pr(All t independent executions of \mathcal{A} say "sorted" when array is ϵ -far from being sorted)
- = $\prod_{i=1}^{t} \Pr(i\text{th execution of } \mathcal{A} \text{ says "sorted" when array is } \epsilon\text{-far from being sorted})$

$$\leq \prod_{i=1}^{t} (1 - \epsilon) = (1 - \epsilon)^{t}$$

$$\leq e^{-\epsilon t}$$

(Since $1 + x \le e^x$ for all x)

We want this probability to be at most δ . Therefore, $e^{-\epsilon t} \leq \delta$, which means that $-\epsilon t \leq \ln \delta$, or $t \geq \frac{1}{\epsilon} \ln \frac{1}{\delta}$. Therefore, we can set $t = \lceil \frac{1}{\epsilon} \ln \frac{1}{\delta} \rceil$. Therefore, overall time complexity of \mathcal{A}_{new} is $O(\frac{1}{\epsilon} \log \frac{1}{\delta} \log n)$.