

#### FIRST SEMESTER 2015-2016

### **Course Handout (Part II)**

Date: 03 Aug., 2015

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No : CHEM C311
Course Title : Chemical Kinetics

Instructor-in-charge & : S.C SIVASUBRAMANIAN

Instructor

# 1. Course Description:

Discussion of reaction rate theory, kinetics and mechanism of various types of reactions, effect of temperature on reaction rates, energy of activation, theories of reaction rates and photochemistry.

### 2. Scope and Objective of the course:

Chemical kinetics is concerned with the study of the dynamics of chemical reactions. The rawdata of chemical kinetics are the measurement of rates of reaction; the desired final product is the explanation of these rates in terms of complete reaction mechanisms. The objective of the present course is to introduce the foundation of the subject by studying series of reactions of increasing complexity and to show how experimentally measured parameters may be used to propose new models (mechanism) or verify existing models.

## 3. Text Book:

T1. Levine Ira N., *Physical Chemistry*, 6<sup>th</sup> ed., Tata McGraw-Hill, New Delhi, 2011.

# Reference Book :

**R1:** Peter Atkins and Julio de Paula, *Atkins' Physical Chemistry*, 9<sup>th</sup> Ed., Oxford University Press, Oxford, 2010.

**4. Course Plan**: [Topics in () correspond to computer applications; depending on time available a tutorial introduction followed by take home problems from these topics will be assigned for computer solving.]

| Lecture<br>No. | Topic                                                                   | Learning Objectives                                                                                                                                                                                                  | Ref. to Text<br>Book/Ref. book      |  |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|--|
| 1-3            | Rates of chemical reactions; Integrated rate laws; Finding of rate law. | Definition of rate, derivation of concentration time relationship for simple reactions, determination of rate law, half-life of reactions, reactions approaching equilibrium, Exptl. Procedures to obtain rate laws. | <b>T1</b> : 16.1 - 16.4 (16.7)      |  |  |  |  |  |  |
| 4-6            | Elementary reactions,<br>Mechanisms                                     | Elementary reactions, composite reactions, steady-state approximation, rate determining step, rate constants and equilibrium constants; rate laws for non-ideal systems.                                             | <b>T1</b> : 16.5 - 16.6, 16.9-16.10 |  |  |  |  |  |  |
| 7              | Temperature effects on rates                                            | Concept of activation energy                                                                                                                                                                                         | <b>T1</b> : 16.8                    |  |  |  |  |  |  |
| 8-9            | Unimolecular and Trimolecular reactions                                 | Lindemann-Hinshelwood mechanism                                                                                                                                                                                      | <b>T1</b> : 16.11 - 16.12           |  |  |  |  |  |  |





| 10-11 | Chain reactions                                     | Polymerization kinetics, free-radical polymerization reactions                                                                                                        | <b>T1</b> : 16.13                                  |  |
|-------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| 12-14 | Fast reactions and reactions in solutions           | Concepts of relaxation, diffusion controlled reactions                                                                                                                | <b>T1</b> : 16.14 - 16.15                          |  |
| 15-16 | Homogeneous catalysis                               | Enzyme catalysis, Michaelis-Menton equation                                                                                                                           | <b>T1</b> : 16.16 - 16.17                          |  |
| 17-18 | Adsorption of gases on solids                       | Extent of adsorption, Physisorption and chemisorptions, Adsorption isotherms                                                                                          | <b>T1</b> : 16.18                                  |  |
| 19-20 | Heterogeneous catalysis                             | Rates of surface processes                                                                                                                                            | <b>T1</b> : 16.19                                  |  |
| 21    | Theories of reaction rates                          | Collision Theory                                                                                                                                                      | <b>T1</b> : 22.1,                                  |  |
| 22-23 | u                                                   | Reaction trajectory; Molecular reaction Dynamics                                                                                                                      | <b>T1</b> : 22.2-22.3                              |  |
| 24-25 | u                                                   | Transition State Theory                                                                                                                                               | <b>T1:</b> 22.4, 22.6-22.7                         |  |
| 26    | Reactions in solution                               | Extending the gas phase theories to the solution phase                                                                                                                | <b>T1</b> : 22.8                                   |  |
| 27    | Weak forces                                         | Electric dipole moment, Polarization, Interaction between dipoles, Interaction between induced dipoles, Hydrogen bonding, Total attractive and repulsive interactions | <b>R1</b> :17.5 - 17.6<br><b>T1</b> : 13.14, 21.10 |  |
| 28-29 | Surface Chemistry                                   | Molecular interactions in gases, Liquid-vapour interface, surface films, Thermodynamics of surface layers                                                             | <b>T1</b> : 7.6 - 7.8 <b>R1</b> : 17.9 – 17.10     |  |
| 30-31 | Colloids, micelles, and reverse micellar structures | Classification, Preparation, Structure & stability of colloids, Micelle formation, Reverse micellar structures, bilayers, Determination of size & shape               | <b>R1</b> : 18.6 – 18.9 (b) <b>T1</b> : 7.9        |  |
| 32-35 | Statistical Mechanics                               | Partition function, thermodynamic information from canonical partition function.                                                                                      | <b>T1</b> : 21.2 – 21.4                            |  |
| 36-38 | и                                                   | Molecular partition function, equilibrium constants                                                                                                                   | <b>T1</b> : 21.6 – 21.8                            |  |
| 39-40 | Transport processes                                 | Kinetics, viscosity, diffusion, sedimentation, electrical conductivity of solids and electrolyte solutions                                                            | <b>T1</b> : 15.1 - 15.7                            |  |

### 5. Evaluation Scheme:

| Components    | Duration | Marks | Date & Time         | Venue     | Remarks   |
|---------------|----------|-------|---------------------|-----------|-----------|
| Mid-Sem-Test  | 1½ hrs   | 60    | 5/10 8:00 - 9:30 AM | To be     | -         |
| Tutorials     | 20 mts   | 60    | Continuous          | announced | @         |
| Comprehensive | 3 hrs.   | 80    | 1/12 FN             |           | Partly OB |
| Examination   |          |       |                     |           |           |

@ Tutorials: The tutorial hour will be used for a quick review of the highlights of the material covered in the lectures, clarification of doubts and problem solving. Further, a set of problems will be assigned periodically, of which the Instructor will specify one to be solved by the students in the tutorial hour of the following week. Students must bring the tutorial problem sheets to the subsequent tutorial session without fail; they should not write anything on those sheets except their name and Id no. Some problem sets may require usage of computer software during solving; evaluation of such problems will be done differently (by viva voce for







example). The second method of evaluation in tutorial will be of a short quiz based on the lectures covered recently. Totally there will be six such tutorial evaluations out of which the best five will be accounted. Each tutorial evaluation will be for 12 marks.

- **6. Chamber Consultation Hour:** Saturday 5<sup>th</sup> Hour (12-12:50pm) at 3165(CAHU).
- **7. Makeup Policy:** See Part I for details. However, it may be noted that there will be no make up for tutorials since the best five out of six evaluations are only taken into account.
- **8. Notices:** Notices, if any, concerning the course will be displayed on the notice board of Chemistry Department only.

Instructor-in-Charge (CHEM C311)



