Contents

- 7.1 Motivation
- 7.2 Insertion Sort
- 7.3 Quick Sort
- 7.4 How Fast Can We Sort?
- 7.5 Merge Sort
- 7.6 Heap Sort
- 7.7 Sorting on Several Keys
- 7.9 Summary of Internal Sorting

Sorting on Several Keys

- Sorting records with several keys K¹, K², ..., K^r
 - for every pair of records i and j, i < j and $(K_i^l, ..., K_i^r) \le (K_i^l, ..., K_i^r)$
 - \rightarrow A list of records R_1, \ldots, R_n , is said to be sorted with respect to the keys K^1, K^2, \ldots, K^r

Sorting on Several Keys

- Ex) Sorting a deck of cards
 - Sort on two keys, suit and face value

```
K^1 [Suit]: * < • < • < •
K^2 [Face value]: 2 < 3 < 4 < ... < 10 < J < Q < K < A
```

Thus, a sorted deck of cards has the ordering:

Sorting on Several Keys

- Two approaches

 - LSD (least significant digit first) sort→...

MSD first

- 1) MSD sort (K_1) e.g., 4 bins: $\clubsuit \blacklozenge \lor \spadesuit$

Result: $2 \clubsuit$, ..., $A \clubsuit$, ..., $2 \spadesuit$, ..., $A \spadesuit$

Figure 7.14: Arrangement of cards after first pass of an MSD sort

- · LSD first MSDYA & JOH
 - 1) LSD sort (K_2)

13 bins: 2, 3, 4, ..., 10, J, Q, K, A

- 2) MSD sort (K_1)
 - May not needed if we just classify these 13 piles into 4 separated piles
 - Simpler than the MSD one

Result: 2*, ..., A*, ... 2*, ..., A*

Figure 7.15: Arrangement of cards after first pass of LSD sort

LSD or MSD sorting

- Key+ रिमाण्ड अक्ष्मे
- can be used to sort even when the records have only one key
- Ex)

Sorting 10 numbers in the range [0,999];

{179, 208, 306, 93, 859, 984, 55, 9, 271, 33}

- Each decimal digit may be regarded as three subkeys (K^1, K^2, K^3)
- Use LSD or MSD sorting for three keys

Radix Sort

- Decompose the sort key into digits using a radix r
 - Ex) $\{179, 208, 306, 93, 859, 984, 55, 9, 271, 33\}$ $\Rightarrow r = 10$
 - \rightarrow Each key in the range 0 through r 1
- In a Radix-r Sort, # of bins required is r
- To sort $R_1, ..., R_n$
 - The record keys are decomposed using a radix of r
 - The records in each bin is linked together into a chain
 - front[i] and rear[i], $0 \le i \le r$
 - These chains will operate as queues

P 일의 자갯수부터 정털

• Ex 7.8) LSD radix sort

Figure 7.9: Radix sort example (continued on next page)

int radixSort(element a[], int link[], int d, int r, int n)
{/* sort a[1:n]) using a d-digit radix-r sort, digit(a[i],j,r)
returns the jth radix-r digit (from the left) of a[i]'s key
each digit is in the range is [0,r); sorting within a digit
is done using a bin sort */


```
int radixSort(element a[], int link[], int d, int r, int n) {
    int front[r], rear[r];
    int i, bin, current, first, last;
                                                                     [1] [2]
                                                                 [0]
    first = 1;
    for(i = 1; i < n; i++) link[i] = i+1;
    link[n] = 0;
    for(i=d-1; i \ge 0; i--)
        for(bin = 0; bin < r; bin++) front[bin] = 0;
        for(current = first; current; current = link[current])
        {/* put records into queues/bins */
                                                       Cullest = 2
            bin = digit(a[current], i, r); \P
            if(front[bin] == 0) front[bin] = current;
            else link[rear[bin]] = current;
            rear[bin] = current;
        /* find first nonempty queue/bin */
        for (bin= 0; !front[bin]; bin++);
        first= front[bin]; last= rear[bin];
       /* concatenate remaining queues */
        for(bin++; bin < r; bin++)
            if(front[bin]) { link[last]=front[bin]; last = rear[bin]; }
        link[last] = 0;
    return first;
```

$$d=3, r=10$$

[3] [4]

[1]					
3	1	4	5	0	link
9	271	859	179	59	a

[5] [6]

first 2

last= 5

```
1st pass:

271 \rightarrow 9 \rightarrow 859 \rightarrow 179 \rightarrow 59
```


Figure 7.9: Radix sort example (continued on next page)

```
int radixSort(element a[], int link[], int d, int r, int n) {
    int front[r], rear[r];
    int i, bin, current, first, last;
    first = 1;
    for(i = 1; i < n; i++) link[i] = i+1;
    link[n] = 0;
    for(i=d-1; i \ge 0; i--)
        for(bin = 0; bin < r; bin++) front[bin] = 0;
        for(current = first; current; current = link[current])
        {/* put records into queues/bins */
                                                      diet ati), 1, 10)
            bin = digit(a[current], i, r);
            if(front[bin] == 0) front[bin] = current;
            else link[rear[bin]] = current;
            rear[bin] = current;
        /* find first nonempty queue/bin */
        for (bin= 0; !front[bin]; bin++);
        first= front[bin]; last= rear[bin];
       /* concatenate remaining queues */
        for(bin++; bin < r; bin++)
            if(front[bin]) { link[last]=front[bin]; last = rear[bin]; }
        link[last] = 0;
    return first;
```

$$d=3, r=10$$

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
r								1		
f								/		

[1]

3	1	4	5	0	link
9	271	859	179	59	a

first = 2

$$271 \rightarrow 9 \rightarrow 859 \rightarrow 179 \rightarrow 59$$

2nd pass:

7.9 SUMMARY

- No one method is best under all circumstances
 - Some are good for small n, others for large n
- Insertion sort
 - Good when the list is partially ordered
 - Best sorting method for small n
- Merge sort some
 - Has the best worst case behavior
 - But requires more storage than heap sort
- Quick sort
 - Best average behavior
 - But worst case: $O(n^2)$

Method	Worst	Average
Insertion sort	n^2	n^2
Heap sort	$n\log n$	$n\log n$
Merge sort	$n\log n$	$n\log n$
Quick sort	n^2	$n\log n$

Figure 7.15: Comparison of sort methods

Figure 7.18: Plot of average times (milliseconds)

n	Insert	Неар	Merge	Quick
0	0.000	0.000	0.000	0.000
50	0.004	0.009	0.008	0.006
100	0.011	0.019	0.017	0.013
200	0.033	0.042	0.037	0.029
300	0.067	0.066	0.059	0.045
400	0.117	0.090	0.079	0.061
500	0.179	0.116	0.100	0.079
1000	0.662	0.245	0.213	0.169
2000	2.439	0.519	0.459	0.358
3000	5.390	0.809	0.721	0.560
4000	9.530	1.105	0.972	0.761
5000	15.935	1.410	1.271	0.970

Times are in milliseconds

Figure 7.16: Average times for sort methods

Contents

- 7.1 Motivation
- 7.2 Insertion Sort
- 7.3 Quick Sort
- 7.4 How Fast Can We Sort?
- 7.5 Merge Sort
- 7.6 Heap Sort
- 7.7 Sorting on Several Keys
- 7.9 Summary of Internal Sorting