Algorithms Test 1 Review

Benjamin Boudra

February 19, 2016

Contents

I	EX																					I
		Prompt																				1
	1.2	Answer	 	• • •	 	• •	 		• •	• •		• •	• •	 			 	 	 •	• •		1
2	EX 2	2																				1
	2.1	Prompt	 		 		 							 			 	 	 			1
	2.2	Answer	 		 		 							 			 	 	 			1
3	EX 3	2																				1
J		Prompt	 		 		 							 			 	 	 			1
		Answer																				2
																						_
4	EX 4																					3
		Prompt Answer																				3
	4.2	Allswei	 	• • •	 • •	• •	 • •	• •	• • •	• • •		• •	• •	 • •	• •	• •	 • •	 	 •	• •	• •	3
5	EX S																					3
		Prompt																				3
	5.2	Answer	 		 		 		• •			• • •		 			 	 	 •			3
6	EX 6	6																				3
		Prompt	 		 		 							 			 	 	 			3
		Answer																				3
_	EV.	-																				•
1	EX 7	7 Prompt																				3
		Answer																				3
		11101101	 		 •		 •				• •			 			 •	 	 •			Ü
	•	3 7 1																				
I	\mathbf{E}	ΧI																				
1	1 1	Prompt																				
		-																				
1.	2 A	Answer																				
2	E	V a																				
_	E.	ΛΖ																				
2.	1 1	Prompt																				
		-																				
2.	2 A	Answer																				
3	F	Х3																				
J	IL).	ΛJ																				
3.	1 J	Prompt																				

Use the technique of bounding definite integrals to find the $\boldsymbol{\Theta}$ category for the function.

$$A(n) = log_2(1) + log_2(2) + log_2(3) + \dots + log_2(n-1) + log_2(n)$$
 (1)

Actually, you should use the integral bound technique for one equality, and use trivial analysis for the other.

3.2 Answer

To begin, we must draw a graph of the function and the integral:

Following from the facts that:

- 1. The integral is the area under the function $log_2(x)$ from 1 to n.
- 2. If we chose to view the integral as the summation of all of its length one segments from 1 to *n* plus the integral of whatever is left over (if n is not an integer value), the resulting integral's value will be unaffected.
- 3. The value of each integral segment is greater than the value of its corresponding series segment because:
 - (a) the value of the function and the series are equal at integer values
 - (b) the value of the function increases between integers and the value of the series does not.

 $\int_1^n log_2(x)$ is greater than $\sum_{i=1}^n log_2(i)$ for any n greater than 1. Thus, to find the upper bound or O of $\sum_{i=1}^n log_2(i)$ we merely need to find the integral of $\int_1^n log_2(x)$

So now I will calculate $\int_1^n log_2(x)$

1. Recognize that to take the integral of a logarithm, we will have to perform integration by parts. so we must chose u and dv values.

$$u = log_2(x)$$
 $du = 1/x ln(2)$ $dv = 1$ $v = x$ (2)

2. solve for the indefinite integral

- 4 EX 4
- 4.1 Prompt
- 4.2 Answer
- 5 EX 5
- 5.1 Prompt
- 5.2 Answer
- 6 EX 6
- 6.1 Prompt
- 6.2 Answer
- 7 EX 7
- 7.1 Prompt
- 7.2 Answer