Reinforcement Learning: scaling up

With many slides from Dan Klein and Pieter Abbeel and Stuart Russel

Review: "Active" Reinforcement Learning

Want: optimal policy

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You choose the actions now
- Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! take actions in the world and get rewards

Common Confusion

State need <u>not</u> be solely the <u>current</u> sensor readings

Markov Assumption

Value of state is independent of path taken to reach that state

Can have <u>memory</u> of the past

Can always create <u>Markovian</u> task by remembering <u>entire</u> past history

Need for Memory: Simple Example

"out of sight, but not out of mind"

New Algorithm: Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s,a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

— Incorporate new estimate in running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Q-Learning: Implementation Details

Remember, conceptually we are filling in a huge table

Tables are a very <u>verbose</u> representation of a function

Q-Learning: PseudoCode

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$
$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$$

initialize Q[S, A] arbitrarily observe current state s

repeat forever:

select and carry out an action a observe reward r and state s' $Q[s,a] \leftarrow Q[s,a] + \alpha (r + \gamma \max_{a'} Q[s',a'] - Q[s,a])$ $s \leftarrow s'$

https://github.com/aimacode/aima-python/blob/master/rl.py

Why does Q-Learning Work? Jude Shavlik, David Page, Wisconsin

- Intuition: Q-Learning performs iterative approximation
- Each round gets closer to "true" q-value
- If states visited infinitely often, will get infinitely close to true value

Q-Learning: Convergence Proof

- Applies to Q tables and deterministic, Markovian worlds. Initialize Q's 0 or random finite.
- Theorem: if every state-action pair visited infinitely often, $0 \le \gamma < 1$, and |rewards| $\le C$ (some constant), then

$$\lim_{t \to \infty} \hat{Q}_t(s, a) = Q_{actual}(s, a)$$

the approx. Q table
$$(Q)_{\Lambda}$$
 the true Q table (Q)

Q-Learning Convergence Proof (cont.)

- Consider the max error in the approx. Q-table at step t: $\Delta_t = \max |\hat{Q}_t(s, a) Q_{actual}(s, a)|$
- The max $Q_{actual}(s,a)$ is finite since $|r| \le C$, so max $|Q_{actual}| \le \sum_{i=0}^{\infty} \gamma^i C = \frac{C}{1-\gamma}$
- Since. $|\hat{Q}_0|$ finite, we have. Δ_0 finite, i.e. initial max error is finite

Q-Learning Convergence Proof (cont.)

Let s' be the state that results from doing action a in state s. Consider what happens when we visit s and do a at step t + 1:

$$\begin{vmatrix} \hat{Q}_{t+1}(s,a) - Q(s,a) \\ \end{pmatrix} = \begin{vmatrix} \left\{ R + \gamma \max_{a'} \hat{Q}_{t}(s',a') \right\} - \left\{ R + \gamma \max_{a''} Q(s',a'') \right\} \end{vmatrix}$$
Next state

Current state

By Q-learning rule (one step) By def'n of Q (notice best a in s' might be different)

Q-Learning Convergence Proof (cont.)

=
$$\gamma \mid \max_{a'} \hat{Q}_t(s', a') - \max_{a''} Q(s', a'') \mid$$

By algebra

$$\leq \gamma \max_{a'''} | \hat{Q}_t(s', a''') - Q(s', a''') |$$

Trickiest step, can prove by contradiction

Since
$$\left| \max_{a} f_1(a) - \max_{a'} f_2(a') \right| \le \max_{a} \left| f_1(a) - f_2(a) \right|$$

$$\leq \gamma \max_{s'',a'''} | \hat{Q}_t(s'', a''') - Q(s'', a''') |$$
Max at s' $\leq \max$ at any s

 $= \gamma \Delta_t$ Plugging in defn of Δ_t

Q-Learning Convergence Proof (cont.)

- Hence, every time, after t, we visit an $\langle s, a \rangle$, its Q value differs from the correct answer by no more than $\gamma \Delta_t$
- Let $T_o = t_o$ (i.e. the start) and T_N be the first time since T_{N-1} where <u>every</u> <s, a> visited at least once
- Call the time between T_{N-1} and T_N, a <u>complete interval</u>

Clearly $\Delta_{T_N} \leq \gamma \Delta_{T_{N-1}}$

Q-Learning Convergence Proof (concluded)

- That is, every <u>complete interval</u>, Δ_t is reduced by at least γ
- Since we assumed every <s, a> pair visited infinitely often, we will have an <u>infinite number of complete</u> <u>intervals</u>

Hence,
$$\lim_{t\to \mathbb{P}} \Delta_t = 0$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate
 small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Table-Based (Dictionary) Q-Learning

Remember, conceptually we are filling in a huge table

Tables are a very <u>verbose</u> representation of a function

Generalizing Across States

- Basic Q-Learning keeps a table of all qvalues
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

RL and Function Approximation

- Exact Q-learning <u>infeasible</u> for many real applications due to <u>curse of dimensionality</u>: |S*A| table too big.
- Function Approximation (FA) is a way to "lift the curse:"
 - complexity D of FA needed to capture regularity in environment may be << |S|.
 - no need to sweep thru entire state space: train on N
 "plausible" samples and then generalize to similar samples drawn from the same distribution.

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Estimating Values 1: Gradient Descent

- To find a (local) minimum of a real-valued function f(x):
 - assign an arbitrary value to x
 - repeat

$$x \leftarrow x - \eta \frac{df}{dx}$$

where η is the step size

To find a local minimum of real-valued function $f(x_1, \ldots, x_n)$:

- assign arbitrary values to x_1, \ldots, x_n
- repeat:

for each x_i

$$x_i \leftarrow x_i - \eta \frac{\partial f}{\partial x_i}$$

Estimating Values 1: Linear Regression

• A linear function of variables x_1, \ldots, x_n is of the form

$$f^{\overline{w}}(x_1,\ldots,x_n)=w_0+w_1x_1+\cdots+w_nx_n$$

$$\overline{w} = \langle w_0, w_1, \dots, w_n \rangle$$
 are weights. (Let $x_0 = 1$).

• Given a set E of examples. Example e has input $x_i = e_i$ for each i and observed value, o_e :

$$Error_{E}(\overline{w}) = \sum_{e \in E} (o_{e} - f^{\overline{w}}(e_{1}, \dots, e_{n}))^{2}$$

 Minimizing the error using gradient descent, each example should update w_i using:

$$w_i \leftarrow w_i - \eta \frac{\partial Error_E(\overline{w})}{\partial w_i}$$

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

Error

transition =
$$(s, a, r, s')$$

difference =
$$\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha$$
 [difference] Exact Q's

for w_i

Gradient
$$w_i \leftarrow w_i + \alpha$$
 [difference] $f_i(s, a)$ Approximate Q's

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: dislike all states with that state's features

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

 $f_{DOT}(s, NORTH) = 0.5$

$$f_{GST}(s, NORTH) = 1.0$$

$$Q(s',\cdot)=0$$

$$Q(s, NORTH) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$

difference
$$= -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

Linear Combination of Features (Proj 4)

Estimate Q(S,a) as weighted sum of features
 (e.g., for Pacman, can use exactly same features as
 in Proj 2):

```
Q(S,a) = a1*f1 + a2*f2 + .... + ak*fk

Q(S,b) = b1*f1 + b2*f2 + .... + bk*fk
```

- Use linear regression to estimate w's:
- For each update of Q(S,a):
 - Update a1...ak s.t. min(MSE)