Secure Key Management for Multi-Party Computation in MOZAIK

Enzo Marquet*, Jerico Moeyersons⁺, **Erik Pohle**[†], Michiel Van Kenhove⁺, Aysajan Abidin[†], Bruno Volckaert⁺

erik.pohle@esat.kuleuven.be

July 3, 2023

- * CiTiP, KU Leuven, Belgium
- ⁺ IDLab-imec, Ghent University, Belgium
- † imec-COSIC, KU Leuven, Belgium

2023 International Workshop on Privacy Engineering – IWPE'23

Introduction

MOZAIK

- Platform for secure data sharing and processing
- Focus on user-control, privacy and GDPR compliance
- Data provided by IoT/embedded devices

MOZAIK

- Platform for secure data sharing and processing
- Focus on user-control, privacy and GDPR compliance
- Data provided by IoT/embedded devices

Use case: Heartbeat anomaly detection

¹https://obelisk.ilabt.imec.be/catalog/home

Data is encrypted by IoT device

- Data is encrypted by IoT device
- 2 Data is stored in central database layer

- Data is encrypted by IoT device
- 2 Data is stored in central database layer

3 Data is fetched by MPC parties

- Data is encrypted by IoT device
- 2 Data is stored in central database layer

- 3 Data is fetched by MPC parties
- **4** MPC parties have secret share [k]

Secret Sharing

- Share $(x) \to [\![x]\!]_1, \dots, [\![x]\!]_n$
- Recon $(\{[\![x]\!]_j\}_{j\in A}) \to x$

set A access structure

Secret Sharing

- Share $(x) \to [\![x]\!]_1, \ldots, [\![x]\!]_n$
- Recon $(\{[x]_i\}_{i\in A}) \to x$

Examples (where $x \in \mathbb{F}$)

• Shamir: $[x]_i = p(i)$ with p(0) = x at least t + 1 shares are required to reconstruct

set A access structure finite field \mathbb{F} p polynomial of degree t

Secret Sharing

- Share $(x) \to [\![x]\!]_1, \ldots, [\![x]\!]_n$
- Recon $(\{[\![x]\!]_j\}_{j\in A}) \to x$

Examples (where $x \in \mathbb{F}$)

- Shamir: $[x]_i = p(i)$ with p(0) = x at least t + 1 shares are required to reconstruct
- Additive: $[\![x]\!]_1 + \cdots + [\![x]\!]_n = x$

set A access structure

finite field \mathbb{F}

p polynomial of degree t

Secret Sharing

- Share $(x) \to [\![x]\!]_1, \ldots, [\![x]\!]_n$
- Recon $(\{[x]_i\}_{i\in A}) \to x$

Examples (where $x \in \mathbb{F}$)

- Shamir: $[x]_i = p(i)$ with p(0) = x at least t + 1 shares are required to reconstruct
- Additive: $[\![x]\!]_1 + \cdots + [\![x]\!]_n = x$

set A access structure

finite field \mathbb{F}

p polynomial of degree t

Secure multi-party computation

- Each party P_i has private input x_i
- Public input z

Secret Sharing

- Share $(x) \to [\![x]\!]_1, \ldots, [\![x]\!]_n$
- Recon $(\{[x]_i\}_{i\in A}) \to x$

Examples (where $x \in \mathbb{F}$)

- Shamir: $[x]_i = p(i)$ with p(0) = x at least t + 1 shares are required to reconstruct
- Additive: $[x]_1 + \cdots + [x]_n = x$

set A access structure

finite field \mathbb{F}

p polynomial of degree t

Secure multi-party computation

- Each party P_i has private input x_i
- Public input z
- Compute function $y \leftarrow f(x_1, \dots, x_n, z)$ s.t. no party learns the other inputs
- ⇒ Distributed protocol

Obelisk

 C_d

Data is processed using MPC

Data is processed using MPC

• Data is processed using MPC

5 Data is processed using MPC

5 Data is processed using MPC

 \Rightarrow Central key: user's symmetric key k and shares $\lceil k \rceil$

Key Management and

Distribution of $[\![k]\!]$

Key Management and Distribution of $[\![k]\!]$

Goal

- Securely distribute $[\![k]\!]_i$ to MPC party P_i
- Securely recover the result r

Key Management and Distribution of $[\![k]\!]$

Goal

- Securely distribute $[\![k]\!]_i$ to MPC party P_i
- Securely recover the result r

Tools/Assumptions

- IoT device managed/controlled by user
- PKI: user & MPC parties have public keys

Key Management and Distribution of $[\![k]\!]$

Goal

- Securely distribute $[\![k]\!]_i$ to MPC party P_i
- Securely recover the result r

Tools/Assumptions

- IoT device managed/controlled by user
- PKI: user & MPC parties have public keys
- Adversary controls
 - Some users
 - The database
 - Up to t MPC parties

MPC/secret-sharing threshold t

Key Generation

MPC party P_i

IoT sensor

Key Generation

MPC party P_i

user *k*

Obelisk

MPC party P_i

IoT sensor

 k,d_1

 $c_1 \leftarrow \mathsf{AEAD}.\mathsf{Enc}_k(d_1)$

MPC party P_i

user *k*

Obelisk

 c_1

MPC party P_i

IoT sensor

 k, d_2

 $c_2 \leftarrow \mathsf{AEAD}.\mathsf{Enc}_k(d_2)$

MPC party P_i

ullet user selects n MPC parties and secret sharing scheme

user *k*

Obelisk

 $\mathsf{MPC} \; \mathsf{party} \; P_i \\ \mathsf{sk}_i, \mathsf{pk}_i$

IoT sensor

k

• user selects n MPC parties and secret sharing scheme

Obelisk

MPC party P_i sk_i, pk_i

IoT sensor

k

• user selects n MPC parties and secret sharing scheme

MPC party P_i sk_i, pk_i

- ullet user selects n MPC parties and secret sharing scheme
- defense in-depth: separate databases in secure containers

MPC party P_i sk_i, pk_i

Compute setup

- ullet user selects n MPC parties and secret sharing scheme
- defense in-depth: separate databases in secure containers

((•))

IoT sensor

k

 sk_i, pk_i

Keystore PK. $\operatorname{Enc}_{pk_i}(\llbracket k \rrbracket_i)$ PK. $\operatorname{Enc}_{upk}(\llbracket r \rrbracket_i)$

Secure

• User in control of k and choice of MPC parties

Secure

- User in control of k and choice of MPC parties
- \bullet Shares $[\![k]\!]$ and $[\![r]\!]$ end-to-end encrypted

Secure

- User in control of k and choice of MPC parties
- Shares $\llbracket k \rrbracket$ and $\llbracket r \rrbracket$ end-to-end encrypted
- ullet Keystore/database cannot reconstruct k or obtain d

Secure

- User in control of k and choice of MPC parties
- Shares $[\![k]\!]$ and $[\![r]\!]$ end-to-end encrypted
- Keystore/database cannot reconstruct k or obtain d
- Key-related data remains at third-parties only during use

Secure

- User in control of k and choice of MPC parties
- Shares $[\![k]\!]$ and $[\![r]\!]$ end-to-end encrypted
- Keystore/database cannot reconstruct k or obtain d
- Key-related data remains at third-parties only during use

Flexible

- Immediate data collection
- User can be offline during processing

Backup

Instantiations

AEAD

- IoT-friendly: Ascon, SKINNY, GIFT-COFB
- MPC-friendly: CTR-tHtMAC-MiMC
- Standards: AES-GCM(-SIV)

PK

• Any CCA-secure scheme, e.g., CRYSTALS-KYBER