Clustering

Data Science with Python CS677

Farshid Alizadeh-Shabdiz, PhD, MBA Alizadeh@bu.edu Fall 2021

K-means Initialization

Problem: K-means is sensitive to initial points, and initial points can result to a sub-optimum solution.

Example:

K-Mean Initialization Solutions

- Random selection of initial points. In this case run the algorithm multiple times and select the best answer
- Question What is the best solution?
 It is the model with the lowest Mean Squared distance between data points and their centroids.
 This is called <u>"intertia"</u>
- A kmeans object has "inertia_"
 Kmeans_object.inertia_

Initialization Solution – K-means++

 K-means++ is a suggestion to smart initialization of Kmeans.

The idea is as follows

If a center point is C_i and distance between a point and its centroid is $D(x_i, C_i)$

- 1. Choose the first random point
- 2. Choose point x_i as the next centroid with probability

$$D(x_i, C_i) / \sum_{j=1}^{M} D(x_j, C_j)$$

3. Go to step 2 until K centroids have been selected

K-means++

- Adds extra computation
- But it reduces number of iterations dramatically
- Most of the time find optimum or very close to optimum solution

Note that K-means function in python uses this method by default.

Note "init" parameter in kmeans object instantiation chooses initialization method.

How to Set K?

- Looking at the "Inertia" for a range of K values and decide the elbow point
- Silhouette score,
 - Silhouette coefficient is $(b-a)/\max(b,a)$
 - a is the mean distance to the other instances in the same cluster
 - b is the mean distance to the nearest cluster instances
 - The mean silhouette coefficient over all the instances.
- Silhouette score varies between -1 and 1
 - +1 means good separation between clusters
 - 0 means cluster boundaries are fuzzy
 - -1 means clusters are merged to the same space
- Scikit learn function
 Silhouette_score(data, kmeans_obj.labels_)

K-means

- Fast
- Scalable
- But
 - Sometimes provide sub-optimum solutions
 - Need K!
 - K-means doesn't work well with clusters with different size and density
 - K-means doesn't behave well in non-spherical shapes
 - Scaling of variables of observations is suggested
 - Distance function is important

K-means example

Reference: Hands-on Machine learning with Sci_kit learn Keras & Tensorflow by A. Geron

Hierarchical Clustering Agglomerative and BIRCH

Hierarchical Clustering

 Attractive approach since no need to decide on K in advance.

Bottom-up or agglomerative Hierarchical

clustering

Example

Reference: Tibshirani and Hastie – Intro to statistical learning

BIRCH – Balanced Iterative Reducing and Clustering Using Hierarchies

BIRCH Main Purpose

- Create a tree in the memory, when the entire data set is big and cannot fit in memory
- The tree contains all the information that we need. Therefore, we don't need to go back to data again and again
- It is an incremental construct of the tree
- It scales linearly

BIRCH

 Incremental construct of CF (clustering features) tree, holding information for the rough hierarchical clustering & fine clustering later

phase 1: Scan the data one by one and build CF tree in-memory. Rough clustering.

Phase 2: Use any clustering algorithm to cluster the leaf nodes of the tree, merge clusters or remove outliers

Let us start with BIRCH Cluster Features (CF)

- Clustering features a summary of data to build the CF-tree, and also the final clustering
 - 1. N: number of points
 - 2. LS: Linear sum of N points: $\sum_{i=1}^{N} x_i$
 - 3. SS: Sum of square of N points: $\sum_{i=1}^{N} \overrightarrow{x_i}^2$

Note: CFs are 0th, 1st, and 2nd moments of a cluster

BIRCH – Measures of a Cluster

Centroid: middle of a cluster

$$C_k = \frac{\sum_{i=1}^N x_i}{N}$$

• Radius: average distance of members to centriod

$$\sqrt{\frac{\sum_{i=1}^{N}(x_i-C_k)^2}{N}}$$

Diameter: Average pairwise distance

$$\sqrt{\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (x_i - x_j)^2}{N(N-1)}}$$

Clustering Computations Based on CF

- Centroid: C = LS/N
- Radius R =

$$\sqrt{\frac{\sum_{i=1}^{N} (x_i - C_k)^2}{N}} = \sqrt{\frac{N.C^2 + SS - 2C.LS}{N}} = \sqrt{\frac{SS}{N} + \left(\frac{LS}{N}\right)^2}$$

> Diameter D =
$$\sqrt{\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (x_i - x_j)^2}{N(N-1)}} = \sqrt{\frac{2N.SS - 2LS^2}{N(N-1)}}$$

> CF merge = CF1 + CF2 = (N1+N2, LS1 + LS2, SS1+SS2) Note LS is a vector and SS is a scalar

Ref: Prof Han course in University of Illinois Urbana Champaign

BIRCH Hyperparameters

How To build a CF tree

Note: CFs are 0th, 1st, and 2nd moments of a cluster

- BRICH Important parameters
 - > T: Maximum diameter of a leaf node
 - > B: max number of branches
 - > L: Max length of leaf node
- > CF (non leaf node) = sum of CF of nodes below

How to Build a Cluster

Assume T=L=2, and B=3. Let us use Manhattan dis.

Data points

(3,4), (2,6), (4,5), (4,7), (8,4)

- 1. $(3,4) \rightarrow CF1(1,(3,4),25)$
- 2. $(2,6) \rightarrow (D \rightarrow T) = > CF2(1,(2,6),40)$
- 3. (4,5)->(D<T)=>merge with into CF1 => CF1(2,(7,9),66)
- 4. (4,7)->(D>T)->CF3(1,(4,7),55)
- 5. (8,4)->(D>T) & (B>3)=> two non-leaf nodes. One CF2&CF3 and one CF1&CF4(1,(8,4),80)

BIRCH

- Add new points to the tree incrementally, by adding the point to the closest leaf
- Update CF values
- Check two criterias
 - If (New Diameter > max_diameter) split the leaf and possibly parents
 - 2. If (# of leafs > max_children) split the parent

BIRCH Concerns

Pros:

- Efficient for clustering large data which doesn't fit in memory
- Different clustering algorithms can be used on the "tight" clusters on the leaf nodes
- Outlier removal which can be any algorithm or use leaf size as a criteria
- It grows linearly

Cons:

- Need numerical data
- Sensitive to insertion order of data points
 - Duplicates might end up in different clusters
 - Solution:
 - Randomized reading
 - Reading the data again with knowing centroids and make assignments based on distance to centroids
- Ceiling on number of leaf nodes is an artificial restriction
- Clusters are expected to be spherical because of D criteria

Probabilistic Hierarchical Clustering

Probabilistic Hierarchical Clustering

- Non-probabilistic hierarchical clustering /algorithmic clustering
 - Good distance measure is critical and hard to choose
 - Cannot handle missing attributes
 - Optimization goal is heuristic
 - Relies on local search
- Probabilistic approach
 - Generative model
 - Easy to generalize

Note: any model can be used as a base of the generative models

Gaussian Generative Model

• Probability of a point Xi generated by a Gaussian distribution $N(\mu, \sigma)$

$$P(x_i|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

Then for probability of a set of X is generated by the Gaussian model is product of probilities Goal: Finding Gaussian distributions, which maximizes probability

Probabilistic Clustering Algorithm

Goal: Finding Gaussian distributions, which the best explains the existing data set

 Criteria is maximizing aggregate probabilities that the data set is generate by a Gaussian distribution

$$Max [P(X|\mu,\sigma)]$$

And

$$P(X|\mu,\sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

• Therefore, if merge/split clusters if the result increase the probability of getting generated by a Gaussian model.

OPTICS

Optics: Ordering Points to Identify Clustering Structure

- Proposed by the same inventors of DBSCAN in 1999
- > DBSCAN:
 - Sensitive to parameter selection (eps, minPoints)
 - > One global eps doesn't work
- It is based on the following observation: high density clusters are contained by low density clusters
- > Idea is processing higher density clusters first

OPTICS

- Optics introduces two parameter
 - Core distance: is the smallest eps distance from a core point p to cover at least minPoints

$$core \ dis(p) = \begin{cases} Min(eps) \ cover \ minPoints \\ Not \ defined \ if \ p \ isn't \ core \end{cases}$$

Reachability distance:

 $Max[core\ dis(q), dis(p,q)]$

Ref: Effective Similarity Search on Voxelized CAD Object.by: P. Kroger, and Et. Al.

• The smaller reachability, the denser the cluster

OPTICS Algorithm

- Set eps (which can be set to a high number)
- Start with a random point, p (Set reachability of p to undefined).
- 3. Choose all neighbors within eps distance of *p*. If *p* is not a core object select next random point
- 4. If *p* is a core point, order points in ascending reachability order
- 5. Go to step 3 until all the data points are covered

- Initial eps and MinPoints identifies core points
- Core distance helps to choose high density points
- Ascending order helps to have a flat valley
- Reachability distance helps to have different eps

OPTICS

- Allows a range of eps to get explored
- Orders points to identify clusters
- Trying to produces an order of points based on density
 - In way It is a hierarchical clustering
- It can be used for interactive and automatic analysis of clusters
- It can use clusters with different size, shapes, and density
- Can be used to detect outliers
- It does have a good visualization by-product
- Complexity O(N logN)