Prova di Comunicazioni Numeriche

04 Giugno 2019

Es. 1 - In un sacchetto ci sono tre dadi di cui due regolari ed uno truccato. Il dado truccato ha le seguenti probabilita' a priori: $P\{1\} = P\{2\} = 1/4$ e $P\{3\} = P\{4\} = P\{5\} = P\{6\} = 1/8$. Estraggo a caso due dadi dal sacchetto. Calcolare: a) la probabilita' che esca un "1" ed un 2"; calcolare inoltre b) la probabilita' di aver estratto il dado truccato avendo osservato l'uscita di un "1" e di un "3".

Es. 2 - In un sistema di comunicazione numerico in banda passante il segnale trasmesso è $s(t) = \sum_k x [k] p(t - kT) \cos(2\pi f_0 t + \varphi)$, con $f_0 \gg \frac{1}{T}$, dove i simboli x[k] appartengono all'alfabeto $A = \{-1, +3\}$ e hanno probabilita' a priori $P(-1) = \frac{1}{4}$ e $P(3) = \frac{3}{4}$, e $p(t) = \frac{4A}{T} sinc^2 \left(\frac{2t}{T}\right) - \frac{A}{T} sinc^2 \left(\frac{t}{T}\right)$. La risposta impulsiva del canale è $c(t) = \delta(t)$. Il canale introduce anche rumore w(t) Gaussiano additivo bianco in banda la cui densità spettrale di potenza è $S_W(f) = \frac{N_0}{2} \left[\text{rect} \left(\frac{f - f_0}{4/T} \right) + \text{rect} \left(\frac{f + f_0}{4/T} \right) \right]$. Il segnale ricevuto r(t) è in ingresso al ricevitore in Figura 1. Il filtro in ricezione è un passabasso ideale di banda 2/T. Il segnale in uscita al filtro in ricezione è campionato con passo di campionamento T e i campioni costituiscono l'ingresso del decisore che ha soglia di decisione pari a $\lambda = 0$. Determinare:

a) L'energia media per simbolo trasmesso, b) Verificare se è soddisfatta la condizione di Nyquist, c) Calcolare la potenza di rumore in uscita al filtro in ricezione P_{nu} , d) Calcolare la probabilità di errore sul bit, $P_E(b)$ e e) Determinare il valore di θ per cui la probabilità di errore e' minima.

Fig. 1