Analiza wymagań I- "GdzieJestLek"

Jakub Skrajny, Dawid Herman, Maciej Wojtala, Mateusz Błajda 8 kwietnia 2020

1 Wprowadzenie

Dokument ma na celu przedstawić wymagania dotyczące działania aplikacji tworzonej w ramach projektu "GdzieJestLek". Wymagania dotyczą I fazy tworzenia projektu.

2 Słownik

- OBJKEY para złożona z wartości typu 'Nazwa' i typu 'Substancja czynna'.
- OBJ zbiór wierszy z bazy danych, których pola 'Nazwa' i 'Substancja czynna' tworzą identyczny OBJKEY.
- poprawne słowo ciąg znaków, których dziesiętny kod ASCII należy do przedziału [32-122] oraz nie należy do żadnego z następujących przedziałów [33-39], [59], [63-64], [91-96].

Uwagi:

Słowa 'rekord' oraz 'wiersz' są używane zamiennie. Niektóre definicje będą podawane na bieżąco.

3 Ogólny opis

3.1 Co w I fazie

Celem pierwszej fazy projektu "GdzieJestLek" jest stworzenie aplikacji webowej. Aplikacja będzie umożliwiała wyszukiwanie tekstu w bazie danych oraz wyświetlała wynik wyszukiwania.

3.2 Baza danych

Baza danych zostanie stworzona na podstawie dokumentu pt. 'załącznik do obwieszczenia' (później nazywany DOC). Obwieszczeniem, o którym mowa jest 'Obwieszczenie Ministra Zdrowia z dnia 18 lutego 2020 roku w sprawie wykazu refundowanych leków, środków spożywczych specjalnego przeznaczenia żywieniowego oraz wyrobów medycznych na 1 marca 2020 roku'. Wspomniany dokument zawiera informacje o lekach refundowaych, ich cenach, opakowaniach, substancjach czynnych, chorobach leczonych z ich pomocą itp..

3.3 Interfejs

Po włączeniu aplikacji, w przeglądarce pojawią się trzy elementy:

- pole do wpisywania tekstu (nazywane później 'IN')
- pole do wyświetlania wyniku (nazywane później 'OUT')
- przycisk (nazywane później 'SBT')

Jeżeli elementy, które powinny sie wyświetlić w OUT, nie będą się mieściły, to pod OUT pojawią się dwa nowe elementy.

- przycisk ze strzałką w prawo (nazywany później R)
- przycisk ze strzałką w lewo (nazywany później L)

3.4 Działanie aplikacji

Dwoma głównymi funkcjonalnościami, które zauważa użytkownik są wyszukiwanie oraz wyświetlanie. Po wciśnięciu SBT, zostanie podjęta próba wyszukania tekstu wpisanego do IN w bazie danych. Następnie po przetworzeniu danych, wynik zostanie wypisany do OUT. Jeżeli wynik wyszukiwania okaże się zbyt duży, to pojawią się R oraz L. Za pomocą nich będzie można zmienić zawartość OUT na dalsze/wcześniejsze części wyniku wyszukiwania.

4 Wymagania Funkcjonalne

4.1 Baza danych

Baza danych będzie zawierała jedną tabelę (Leki) o następujących kolumnach:

- Nazwa
- Substancja czynna
- Postać
- Dawka
- Zawartość opakowania
- Kod EAN lub inny kod odpowiadający kodowi EAN
- Poziom odpłatności
- Zakres wskazań objętych refundacją
- Wysokość dopłaty świadczeniobiorcy

Wartośći w komórkach będą odpowiadały informacjom zawartym w DOC. W bazie danych nie będą występowały polskie znaki diakrytczne. Zamiast litery 'a' należy używać 'a' itp.

Znaki ';', (procent) oraz (Mikro) zostaną zamienione odpowiednio na '', 'p', 'u'.

4.2 Wyszukiwanie

Wyszukiwanie rozpoczyna się po wciśnięciu przycisku SBT. Aplikacja wyszukuje tekst będący zawartością IN (później nazywany TEXT) w momencie kliknięcia. Aplikacja nie gwarantuje poprawnego wyszukania słowa innego niż 'poprawne słowo' (wyjaśnienie w słowniku).

Wynikiem wyszukiwania są wszystkie OBJ (wyjaśnienie w słowniku), które zawierają taką komórkę, że TEXT jest infiksem zawartości komórki.

4.3 Wyświetlanie

Po zakończeniu wyszukiwania, wynik wyświetli się w następujący sposób.

Rekordy znajdujące się w wyniku zostaną wyświetlane w postaci tabeli. Kolumny wyświetlonej tabeli będą identyczne jak te w bazie danych. Kolejność wyświetlanych wierszy będzie leksykograficznie rosnąca przy czym porządkować bedziemy po kolejnych wartościach kolumn od lewej do prawej.

Wyniki wyszukiwania będą stronicowane, aby przyspieszyć czas przedstawiania ich w przeglądarce. W pol OUT zmieści się maksymalnie 8 wierszy. Na kolejnych stronach, które będzie można przeglądać przy pomocy przycisków L i R, pokazywane będą grupy wierszy maksymalnego mieszczącego się rozmiaru. Grupy wierszy OBJ są całością, tzn. każda taka grupa znajduje się na jednej stronie. Stąd wyjątek: jeżeli OBJ zajmuje więcej niż maksymalna wielkość OUT, to i tak jest wyświetlany na jednej stronie, ale nic poza nim.

W ramach jednego OBJ będzie dokonane złączenie pewnych komórek w jedną. Efekt złączenia w aplikacji będzie taki sam jak efekt złączenia komórek w skutek następującego procesu:

- 1. Zaczynamy od kolumny nr 3,
bo wartości w kolumnach 1 oraz 2 są takie same dla każdego rekordu w
 OBJ
- 2. W aktualnej kolumnie łączymy komórki o tych samych wartościach, jeśli komórki z kolumny o numerze niższym o 1 już zostały połączone. Powtarzamy ten krok dla kolejnych kolumn.

5 Wymagania niefunkcjonalne

5.1 Środowisko pracy aplikacji

Aplikacja może działać poprawnie w dowolnej przeglądarce internetowej. Zapewniamy jej całkowicie poprawne działanie w następujących przeglądarkach:

- Google Chrome od wersji 29.0
- Internet Explorer od wersji 11.0
- Mozilla Firefoz od wersji 28.0
- Safari od wersji 9.0
- Opera od wersji 17.0

5.2 Ograniczenia prawne

Projekt nie zajmuje się kwestami prawnymi. W szczególności aplikacja w żaden sposób nie gwarantuje bezpieczeństwa wprowadzonych do niej danych medycznych.

5.3 Wydajność

Dołożone zostaną wszelkie starania, by szybkość reagowania aplikacji była zadowalająca dla każdego użytkownika. Nawet przy szesnastokrotnie większej bazie danych, zakładamy, że wyszukiwania i ładowania będą pomijalnie szybkie (czas trwania poniżej pół sekundy).