OMRON

Application Library

OEN_BaseBlocks 5.00.11

Sysmac Function Block Library for General use

User's Manual

Contents

	duction	
Fun	ctions and FunctionBlocks	8
1.	Alarms	9
2.	GroupAlarms	13
3.	AnaScaling	15
4.	ASCIItoHEX	18
5.	BinSelect	20
6.	BitControl	22
7.	BitDataMonitor	23
8.	BOOL_To_UINT	25
9.	UINT_To_BOOL	26
10.	CountDownTimer	27
11.	CPU_System	28
12.	DateAndTime	
13.	DevicePort_Setup	
14.	DST_TimeChange	
	EC Control	
	EIP Control	
17.	FahrenheitToCelsius	
	FIFOStack	
19.	GroupTrigger	
20.	HasChanged	
21.	InchTomm	
22.	JoyStick_Control	
	Loop	
	LowPassFilter_IIR	
2 4 . 25.	MeanMaxMin	
26.	MovingHolidays	
20. 27.	NX_ECC_Status	
	NX_ECC_StatusNX RS1201	
	-	
29.	OS32C_DM	
30.	OunceToGrams	
31.	PRM21_Control	
	psiTobar	
		71
	PulseGenerator	
	PWM	
	RealTo	
	SCU_PortSetup	
	SD_Logging10Col	
	Sequencer	
	Stack_Integers	
	Stack_Reals	
	SummationCounter	
	SunsetAndSunrise	
	Swap4Bytes	
	Table_Logging10Col	
	Tank_Volume	
47.	TCP_Connect	98
48.	TCP_Messaging1	00
49.	TimeDateSwitch1	02
50.	TimeToTIME1	05

Tx16bitToWORD	107
Tx32bitToDWORD	109
Tx4bitTo4bit	111
Tx6bitTo6bit	113
Tx8bitToByte	116
TxDWORDTo32bit	120
TxWORDTo16bit	122
UINT_To_BOOL	124
USGallonsToLiters	125
ValueSelect	126
WordsToDINT	130
ZoneCheck	131
Template	. Error! Bookmark not defined.
	Tx16bitToWORD

Introduction

Thank you for using the Application Library: OEN_BaseBlocks

Use it when programming with the automation software Sysmac Studio.

This manual contains information that is necessary to use the Library with Sysmac Studio.

Hereinafter, the function blocks are described as FB, functions as FNs.

1.1. Notice

This manual describes the necessary information to use the Application Library. Refer also to the user's manuals for Application Library, the *Sysmac Studio Version1 Operation Manual* (Cat.No. W504)

Please read and understand this manual before using the Library. Keep this manual in a safe place where it will be available for reference during operation.

1.2. Terms and Conditions Agreement

1 NO WARRANTY

- 1) The functions and function block Library is distributed as a sample in the hope that it will be useful, but without any warranty. It is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the function block is with you. Should the function block prove defective, you assume the cost of all necessary servicing, repair or correction.
- 2) In no event unless required by applicable law the author will be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the function block (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the function block to operate with any other programs), even if the author has been advised of the possibility of such damages.

2 LIMITATION OF LIABILITY

- 1) OMRON SHALL HAVE NO LIABILITY FOR DEFECT OF THE SOFTWARE.
- 2) OMRON SHALL HAVE NO LIABILITY FOR SOFTWARE PARTS DEVELOPED BY THE USER OR ANY THIRD PARTY USING THE FUNCTION BLOCK DESCRIBED ON THIS MANUAL.

3 APPLICABLE CONDITIONS

USER SHALL NOT USE THE SOFTWARE FOR THE PURPOSE THAT IS NOT PROVIDED IN THE ATTACHED USER MANUAL.

4 CHANGE IN SPECIFICATION

The software specifications and accessories may be changed at any time based on improvements and other reasons.

5 ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

1.3. Safety Precautions

Definition of Precautionary Information

The following notation is used in this manual to provide precautions required to ensure safe usage of OEN BaseBlocks Library.

The safety precautions that are provided are extremely important to safety. Always read and heed the information provided in all safety precautions.

The following notation is used.

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. Additionally, there may be severe property damage.

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or property damage.

Precautions for Safe Use

Indicates precautions on what to do and what not to do to ensure safe usage of the product.

Precautions for Correct Use

Indicates precautions on what to do and what not to do to ensure proper operation and performance.

Additional Information

Additional information to read as required.

This information is provided to increase understanding or make operation easier.

The triangle symbol indicates precautions (including warnings). The specific operation is shown in the triangle and explained in text.

This example indicates a general precaution.

The filled circle symbol indicates operations that you must do. The specific operation is shown in the circle and explained in text.

This example shows a general precaution for something that you must do.

Warning list

WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. Additionally, there may be severe property damage.

Emergency stop circuits, interlock circuits, hardware limit and similar safety measures must be provided in external control circuits.

Using this FB in a device, confirm that the program and FB operate properly.

Caution list

Caution

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or property damage.

Confirming an operation of the control program, including this FB. Trial operation such as the concerned motor runs in low velocity is recommended.

Performing adjustment of the device controlled by the program with this FB, secure the safety of the machine.

Do not use this FB for the system with devices and versions not specified in this document. To use, contact your OMRON representative

If a Task Period Exceeded Error occurred by executing this FB, the CPU Unit shifts to an error state.

Make sure to set the execution task period to an appropriate value by referring to the execution time of this FB.

Do not delete the instances from the program with online editing during an execution

of this FB.

Program communication will stop in error.

Make sure to set the input parameters of this FB appropriately in accordance with the actual device.

Make settings as described in this manual.

Functions and FunctionBlocks

Applications

The **OEN_BaseBlocks** is a set of functions and function blocks for general use. If not notified, these function blocks are compatible with all Sysmac series PLCs.

Library Change Log

See more	See more details on each Function/FunctionBlock		
5.00.9			
5.00.10	DateAndTime		
5.00.11	CPU_System, ReadIPAddress, TCP_Connect		

1. Alarms

This is a function block that uses an Alarm array to keep track of the status of alarms. The same array is used to delay, limit values, acknowledge and disable. See more about this in the table below. The alarm array is easily connected to the alarm function in the NA. It can handle several hundred alarms in a loop.

Best practice is to define an array of FB instance and then loop the FB using FOR/NEXT.

1.1. FB Layout

1.2. Input Variables

Name	Data type	Description
Enable	BOOL	Enable functionblock
ACK_AII	BOOL	Acknowledge all active alarms. Set to TRUE to Autoacknowledge
Reset_All_Counters	BOOL	Reset all alarm counters
Username	STRING[16]	User that Acknowledged

1.3. In-Out Variables

Name	Data type	Valid	Description
		Range	
Alarm	OEN/nGeneral/sAlarms	ARRAY[*] OF	Alarm structure. Use an array here with
			size same as number of alarms

1.4. Output Variables

Name	Data Type	Description
Running	BOOL	Enable is TRUE

1.5. Table Settings

Settings for each alarm		
ShortName	Text to identify alarm	
Group	Group number (1-99) when using GroupAlarms Function	
HighHigh_Limit	HighHigh Analog Level.	
High_Limit	High Analog Level	
Low_Limit	Low Analog Level	
LowLow_Limit	LowLow Analog Level	
Delay	Delay before setting alarm	

1.6. Table Inputs

Activate these from your program - Numbers in () are bit positions in Status		
AnalogInput Analog value to observe (Use either Analog or Digital)		
DigitalInput (0)	Digital input to observe (Use either Analog or Digital)	
Disabled (15)	Alarm disabled/Not in use	
ACK	Ackowledge	
Reset_Counter	Reset of alarm counter	
ACK_Username	Name of user that ACKed	

1.7. Table Outputs

Status for each alarm - Numbers in () are bit positions		
ActiveNoACK (8)	Alarm is active and not ACKed from ACK (ON until ACK)	
NormalNoACK (10)	Signal is back to Normal but Alarm not ACKed	
ActiveAndACK (9)	Alarm is ACKed but still active	
DigitalAlarm (1)	The alarm is from a Digital Input	
GroupDigital_Alarm (12)	DigitalAlarm with OFF_ON Delayed Trigger for each alarm	
HighHigh_Alarm (4)	AnalogInput >= HighHigh Analog Level. Delayed.	
High_Alarm (5)	AnalogInput >= High Analog Level. Delayed.	
Low_Alarm (6)	AnalogInput <= Low Analog Level. Delayed.	
LowLow_Alarm (7)	AnalogInput <=LowLow Analog Level. Delayed	
Counter	Counting number of alarm occurences	
Alarm_TimeStamp	When alarm was set	
CriticalAlarm_TimeStamp	When HighHigh or LowLow was set	
ACK_TimeStamp	When ACKed	
Inactive_TimeStamp	When signal went back to Normal	
Status	Collection of alarm status signals. See bitno in () in this table	

1.8. Revisions

Revision	In Library	Correction
2.2.0	5.00.9	

1.9. Credits

	Name
Omron - Norway	Kjell Baardsgaard
' <u>-</u>	

1.10. Example

1.10.1. Digital Alarm

Rung#1 is the Alarm Settings for Alarm 1-4.

Rung#2-5 is the alarms that triggers DigitalInput in the Alarm table. Alternatively, the PTs could connect to AnalogInput and High/HighHigh be triggered from there. See 3.7.2.

1.10.2. Analog alarm

Settings for the analog alarm

```
1 Alarm[101].Delay:=T#5s;
2 Alarm[101].Limit.High:=5.0; //bar
3 Alarm[101].Limit.HighHigh:=8.0; //bar
4 Alarm[101].AnalogInput:=PT100;
```

This means that you do not have to make separate alarms for all 4 alarm levels such as in the example of digital alarms.

The green comment text on the alarms can be entered via Comment in the External Variable List Or by clicking under the output in ladder.

Alarm status is extracted from the Alarm Structure and directly in NA, or for display in Ladder.

In the NA, there will now only be a single variable on the variable list to deal with. Neat and simple.

1.10.3. Table view

1.10.4. How to use it in the NA

Here is an example of setup in the NA to show alarm texts, and to acknowledge the alarm in the PLC when the alarm is cleared on the screen:

The alarm table in this example is RO_Alarm.

2. GroupAlarms

This Function is used in combination with **OEN\General\Alarms**. In the Alarm table, specify the group to which group the alarm belongs to. One can have many alarms in each group. It is recommended to collect single alarms belonging to the same group in number order. The group number refers to Alarm[1] up to Alarm[99]. When using group alarms, Alarm[1-99] is therefore reserved. Alarms going into groups must have numbers from Alarm[101 ->]. Group alarms have their own GroupDigital_Alarm. It is activated by a single alarm in the group but has the property that it goes off for a period defined in Delay on the group alarm. In that way you get a group trigger for each new alarm in the group. See the graphic below in 2.9.

2.1. FN Layout

2.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function

2.3. In-Out Variables

Name	Data type	Valid Range	Description
Alarm	OEN/nGeneral/sAlarms	ARRAY[*] OF	Alarm Table used in FunctionBlock Alarms

2.4. Output Variables

Name	Data Type	Description
ENO	BOOL	TRUE if EN is TRUE

2.5. Table Settings

Settings for each alarm	
Group	Group number (1-99)
Delay	Delay before setting alarm or group alarm

2.6. Table Outputs

Status for each alarm - Num	nber in () is bit position
GroupDigital_Alarm (12)	DigitalAlarm with OFF_ON Delayed Trigger for each alarm

2.7. Revisions

Revision	In Library	Correction
2.1.0	5.00.9	

2.8. Credits

	Name
Omron - Norway	Kjell Baardsgaard

2.9. Example

Alarm[1] is a group alarm, and Alarm[101] and [102] are added to group 1.

Note the difference between group 1 Digital_Alarm and group 1 GroupDigital_Alarm.

3. AnaScaling

A function for scaling analog signals. It can be used for both inputs and outputs. You can choose whether to use AnalogData.In (REAL) or In_INT as well as AnalogData.Out(REAL), Out_INT or Out_REAL. You can also choose to use AnalogType that automatically detects the correct resolution for NX units, or manually enter the module's resolution with AnalogData.Out.Min/Max or AnalogData.In.Min/Max. With FilterFactor, you can smooth out the signal through an IIR Low Pass Filter. FilterFactor is in ms and relative to scan time.

3.1. FN Layout

3.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
AnalogType	OEN\eNX_Atype	Optional selection of NX-unit
In_INT	INTEGER	Optional input. If omitted, In_Real or Analogdata.In (REAL) has to be used
In_Real	REAL	Optional input. If omitted, In_INT or Analogdata.In (REAL) has to be used

AnalogData structure has more inputs. See 3.6

3.3. In-Out Variables

Name	Data type	Description
AnalogData	OEN\nGeneral\sAnalog	Analog signal data structure

3.4. Output Variables

Name	Data Type	Description
ENO	BOOL	EN is TRUE
Out_INT	INT	Scaled value
Out_percent1	REAL	Scaled value as 0-100%
Out_REAL	REAL	Scaled value

AnalogData structure has more outputs. See 3.7

3.5. Errors

ErrorID	Error Description	Correction

3.6. AnalogData structure inputs

Input	
AnalogData.In	Input (X) if In_INT and In_REAL are omitted
AnalogData.In_Min	Xmin if AnalogType is omitted
AnalogData.In_Max	Xmax if AnalogType is omitted
AnalogData.Out_Min	Ymin – Scaled value
AnalogData.Out_Max	Ymax – Scaled value
AnalogData.FilterConstant	LowPassFilter time (ms) based on CPU scantime
AnalogData.Limit	Variable for AlarmLimits used in other FB/FN
AnalogData.AvgSamples	Variable for MovingAverage Function if used
AnalogData.AvgIndex	Variable for MovingAverage Function if used
AnalogData.Extrapolate	Set TRUE to Extrapolate output. Else Out is set to min/max outside range.

3.7. AnalogData structure outputs

Input	
AnalogData.Out	Scaled value as REAL. Same as Out_REAL
AnalogData.Out_percent1	Scaled value as 0-100%
AnalogData.Out_percent2	Scaled value as -100 - 100%
AnalogData.ERR_BrokenWire	TRUE if Broken Wire output
AnalogData.ERR_InBelowMin	TRUE if Input value below Xmin and NOT Extrapolate
AnalogData.ERR_InAboveMax	TRUE if Input value above Xmax and NOT Extrapolate

3.8. Revisions

Revision	In Library	Correction
2.8.0	5.00.9	

3.9. Credits

	Name	
Omron - Norway	Kjell Baardsgaard	

3.10. Example

The **MovingAverage** Function can be found in the SysmacStudio Toolbox and can also be used to smooth out the signal. See Help or Manual.

4. ASCIItoHEX

A function that converts a text to a HEX string and ByteArray of ASCII codes. At the same time, you also get the number of HEX codes (bytes) in these two. This is not the same as the number of characters in the text, as many special characters provide multiple bytes. (See ASCI Tables on UTF8). Make sure that ByteArray is at least 256 bytes as ASCIIstring is defined to do so.

4.1. FN Layout

4.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
ASCIIString	STRING[256]	String of text to be converted

4.3. In-Out Variables

Name	Data type	Description
ByteArray	ARRAY[*] OF BYTE	Byte array to hold the HEX-codes

4.4. Output Variables

Name	Data Type	Description
ENO	BOOL	EN is TRUE
HEXString	STRING[256]	String of converted text as a HEX-string
NumOfBytes	UINT	Number of bytes in byte array and HEX-string

4.5. Revisions

Revision	In Library	Correction	
1.0.0	5.00.9		

4.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard

Number of characters are 8, but number of bytes are 14.

5. BinSelect

A function that sends the status of one of two inputs out onto the output using a third input. If Z=FALSE, the output is equal to X, if Z=TRUE, the output is equal to Y.

5.1. FN Layout

5.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Z	BOOL	If FALSE, status of X is output, else status of Y is output
Χ	BOOL	Signal selected by Z
Υ	BOOL	Signal selected by Z

5.3. Output Variables

Name	Data Type	Description
Return	BOOL	
XorY	BOOL	If Z=FALSE, status of X is output, else status of Y is output

5.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

5.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

5.6. Example

6. BitControl

A multifunction input with 3 outputs with different properties.

6.1. FB Layout

6.2. Input Variables

Name	Data type	Default	Description
Input	BOOL	FALSE	Input signal
ONDelay	TIME	T#0	Time from Input TRUE until Output TRUE
OFFDelay	TIME	T#0	Time from Input FALSE until Output FALSE

6.3. Output Variables

Name	Data Type	Description
Output	BOOL	Output with ONDelay and OFFDelay
Toggle	BOOL	Output that toggles TRUE/FALSE with ONDelay
OneShot	BOOL	Output with ONDelay when Input TRUE. Goes FALSE after OFFDelay independent of Input status.

6.4. Revisions

Revision	In Library	Correction
2.0.0	5.00.9	

6.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

6.6. Example

7. BitDataMonitor

A simple feature to collect bit in the program to get better overview.

7.1. FN Layout

7.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable output
Bit_0	BOOL	Bool variable status monitor
Bit_1	BOOL	Bool variable status monitor
Bit_1 Bit_2 Bit_3	BOOL	Bool variable status monitor
Bit_3	BOOL	Bool variable status monitor
Bit_4	BOOL	Bool variable status monitor
Bit_5	BOOL	Bool variable status monitor

7.3. Output Variables

Name	Data Type	Description
Return	BOOL	EN is TRUE

7.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

7.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

8. BOOL_To_UINT

Conversion of a bit to integer value 1 or 0.

8.1. FN Layout

8.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Bit	BOOL	

8.3. Output Variables

Name	Data Type	Description
ENO	BOOL	EN is TRUE
Return	UINT	0 if Bit is FALSE, 1 if Bit is TRUE

8.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

8.1. Credits

	Name
Omron - Norway	Kjell Baardsgaard
•	

8.2. Example

9. UINT_To_BOOL

Conversion of the integer value to a bit.

9.1. FN Layout

9.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Val	UINT	

9.3. Output Variables

Name	Data Type	Description
Return	BOOL	FALSE if Val is 0, TRUE if not

9.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

9.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

9.6. Example

10. CountDownTimer

A timer that counts down from a specific value as long as Enable is active. The value is retained in the event of a power failure.

TimeLeft is automatically reset when Enable goes on and TimeLeft=0.

10.1. FB Layout

10.2. Input Variables

Name	Data type	Valid Range	Default	Description
Enable	BOOL		FALSE	Enable function
TimerValue	TIME			Time to start from
Reset	BOOL			Set TimeLeft to TimerValue

10.3. Output Variables

Name	Data Type	Description
Q	BOOL	TimeLeft is 0
TimeLeft	TIME	Time before Q becomes TRUE

10.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

10.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

10.6. Example

11. CPU_System

A function block that displays system information. CPU_System collects everything in a data structure. *Applicable CPUs are NJ, NX1P2, NX102.

11.1. FB Layout

11.2. Input Variables

Name	Data type	Description
Enable	BOOL	Enable function

11.3. In-Out Variables

Name	Data type	Description
CPUSystem	OEN\nGeneral\sCPUSystem	Structure containing CPU system data

11.4. Output Variables

Name	Data Type	Description
Enabled	BOOL	Enable is TRUE
CPU_Clock	STRING[30]	CPU Clock
LowBattery	BOOL	Low Battery
PowerOnHours	UDINT	How many CPU run hours ever
HardwareRevision	STRING[2]	
UnitVersion	STRING[7]	
PowerOnCounter	UDINT	How many CPU power ON ever
SystemSWVersion	STRING[10]	Firmware version
IPAddress1	STRING[16]	IP Address of Port#1
IPAddress2	STRING[16]	IP Address of Port#2
TaskExecutionTime	TIME	CPU Cycle time
ModelName	OEN\nGeneral\eCPUModelName	Readable model name as eNum

11.5. Revisions

Revision	In Library	Correction
2.0.1	5.00.9	
3.0.0	5.00.11	Added reading IP address of Port#2

11.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard
Omron - France	Arnaud Croizit

11.7. Example

12. DateAndTime

This Function gives you a data structure that contains the current time and date from the System. In addition, both leap year, week number, day of the year and the number of seconds that have passed since January 1st 1970. (Nice to know).

12.1. FN Layout

12.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function

12.3. Output Variables

Name	Data Type	Description
Return	BOOL	EN=TRUE
CurrentTime	_sDT	Current time as a data structure. Updated once per cycle
LeapYear	BOOL	TRUE if Leap year
CurrentWeek	USINT	Current week
DayOfWeek	_eDAYOFWEEK	Current day of week as eNum
CurrentDay	UINT	Current Day
TotalSeconds	LINT	Seconds since 1.1.1970 00:00.00

12.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	
1.2.0	5.00.10	Fixed Current week according to ISO8601. Added DayOfWeek output.
1.3.0	5.00.10	Change system time reading from _CurrentTime (10Hz) to GetTime(each Cycle)

12.1. Credits

	Name
Omron - Norway	Kjell Baardsgaard

12.2. Example

Today uses a predefined data structure. We see that because it starts with _s.

13. DevicePort_Setup

DevicePort_Setup simplifies the setup of function blocks that use serial ports. Use *DisplayNodeLocationPort* in I/O Map to create a port ID. Remember to select protocol, baud, parity and stopbit for the actual port in the Port Setup screen.

13.1. FN Layout

13.2. Input Variables

	Name	Data type	Valid	Description
_	EN	BOOL	Range	Enable function
_	SerialBoardID	_sOPTBOARD_ID		Serial board ID created in I/O Map or
	NX_CIF_Unit_ID	_sNXUNIT_ID		NX Unit ID created in I/O Map
_	NX_CIF_Port	USINT	02	NX Unit Port Number

13.3. Output Variables

Name	Data Type	Description
Return	BOOL	EN=TRUE
DevicePort	_sDEVICE_PORT	DevicePort Setup Structure

13.4. Revisions

Revision	In Library	Correction
1.2.0	5.00.9	

13.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

13.6. Example

14. DST_TimeChange

A daylight saving time function block. Note that the input should be based on UTC, typically from an NTP Server

14.1. FB Layout

14.2. Input Variables

Name	Data type	Description
Enable	BOOL	Enable function
UTCDateAndTime	DATE_AND_TIME	UTC Current time and date
UTCZoneShift	TIME	Timezone offset for your location

14.3. Output Variables

Name	Data Type	Description
Enabled	BOOL	Enable=TRUE
DST_State	BOOL	TRUE if Summertime
LocalDateAndTime	DATE_AND_TIME	Local Date and Time

14.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

14.1. Credits

	Name
ATC- Barcelona	
	http://delphiforfun.org/programs/math_topics/dstcalc.htm

14.2. Example

15. EC_Control

With this function block, you can reset the EtherCAT network in case of errors, as well as disconnect nodes out and out of the loop.

The EtherCAT output is a data structure where you can read the status of up to 192 nodes.

15.1. FB Layout

15.2. Input Variables

Name	Data type	Description
Enable	BOOL	Enable function
AutoReset	BOOL	Activate AutoReset if you want to automatically reset errors on the
		network when slaves fall out and reconnect.
DisconnectSlave	UINT	Set DisconnectSlave to a node number and the node will be disconnected immediately. EtherCAT.CTRL.DisconnectSlave is automatically set to 0 when the slave is offline. Offline slaves can be disconnected from the network without giving an error message.
ReconnectSlave	UINT	Set ReconnectSlave to a node number and the node will be connected immediately. EtherCAT.CTRL.ReconnectSlave is automatically set to 0 when the slave is connected.
Reset	BOOL	With a pulse on Reset, you can manually reset errors if you do not want to use AutoReset.

15.3. In-Out Variables

Name	Data type	Description
EtherCAT	OEN\nECAT\sEC_Network	Structure to hold Network data

15.4. Output Variables

Name	Data Type	Description
Error	BOOL	EtherCAT Error, see ErrorLevel and ErrorCode
AutoresetCountOut	BOOL	AutoResetCountOut indicates that the selected number of resets has been achieved without the error being corrected. The reset interval is 1s.
Disconnected	UINT	Number of Nodes in StandBy.
Available	UINT	Number of Nodes Online+OnlineStandBy
ErrorLevel	UINT	0: No error, 2: Partial Fault, 3: Minor Fault
ErrorCode	DWORD	See GetECError Error Codes in Manual W503

15.5. Optional Settings

Name	Data type	Default	Description
<ethercat>.CTRL.AutoresetCount</ethercat>	UINT	#3	May be set to another value if one
			does not want to use 3.
<ethercat>.CTRL.AutoresetDelay</ethercat>		1s	May be set to another value if one
			does not want to use 1s.

15.6. Revisions

Revision	In Library	Correction
3.3.0	5.00.9	

15.7. Credits

	Name
Omron - Norway	Kjell Baardsgaard

15.8. Example

15.9. Structure

▼ EtherCAT		OEN\ECAT
▼ Status		OEN\ECAT
∨ System		OEN\ECAT
MasterDetection	Master detected an error in the slaves that it manages	BOOL
SlaveSummary	Error at a level below the function module	BOOL
MajorFault		BOOL
PartialFault		BOOL
MinorFault		BOOL
Observation		BOOL
▶ Port		OEN\ECAT
➤ Master		OEN\ECAT
➤ Slaves		OEN\ECAT
➤ Slave[1-192]		
➤ SlaveError[1-192]		
MACAdrErr	MACAddressError	BOOL
LanHwErr	HardwareError	BOOL
LinkOffErr	LinkOff	BOOL
NetCfgErr	Network Configuration Information Error	BOOL
NetCfgCmpErr	ConfigNotMatch	BOOL
NetTopologyErr	Network Configuration Error	BOOL
PDCommErr	DataCommError	BOOL
PDTimeOutErr	TimeOutError	BOOL
PDsendErr	CycleTimeOver	BOOL
SlavAdrDupErr	SlaveDuplication	BOOL
SlavInitErr	SlaveInitError	BOOL
SlavAppErr	SlaveAppError	BOOL
MsgErr	MessagingError	BOOL
SlavEmergErr	SlaveEmergency	BOOL
InDataInvalidErr	InDataInvalid	BOOL
► CMD		OEN\Gene
► CTRL		OEN\ECAT
► CTRLmon		OEN\ECAT

16. EIP_Control

This Function shows the status of the EIP communication in a data structure. Registered, Communicates, and NodesInError display the number of nodes defined, that communicate and that have error status. Applicable for NJ and NX1P2.

16.1. FN Layout

16.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function

16.3. Output Variables

Name	Data Type	Description
Return	BOOL	EN=TRUE
EthernetIP	OEN\nEIP\sEIP_Network	Structure containing status for all EIP Nodes
Error	WORD	Status of System variable _EIPErrSta
PortError	WORD	Status of System variable _EIP_PortErr. See Manual.
Registered	USINT	Number of Nodes registered
Communicates	USINT	Number of Nodes Communicating
NodesInError	USINT	Number of Nodes in Error

16.1. Optional Settings

Name	Data type	Default	Description
<ethernetip>.Cmd.Reset</ethernetip>	BOOL		Not in use

16.2. Revisions

Revision	In Library	Correction
2.0.0	5.00.9	

16.3. Credits

	Name
Omron - Norway	Kjell Baardsgaard

16.4. Example

16.5. Structure

17. FahrenheitToCelsius

Conversion of degrees Fahrenheit to Celsius.

17.1. FN Layout

17.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
F	REAL	Fahrenheit

17.3. Output Variables

Name	Data Type	Description
Return	BOOL	EN is TRUE
С	REAL	Celsius

17.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

17.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

18. FIFOStack

Simple data logging where the table "Stack" (Array[0..99] of REAL) stores the "Size" last "Value". This can be displayed as a floating curve in BrokenLineGraph in NA.

18.1. FB Layout

18.2. Input Variables

Name	Data type	Valid Range	Description
Execute	BOOL		Execute function block
Value	REAL		Value to add to Stack
Size	UINT	199	Stack Size
ClearStack	BOOL		Set all values in Stack to 0

18.3. In-Out Variables

Name	Data type	Description
Stack	ARRAY[099] OF REAL	Stack to hold logged data

18.4. Output Variables

1	Name	Data Type	Description
E	ENO	BOOL	

18.5. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

18.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard

18.7. Example

Global Variables 🗴			
Name	▲ Data Type	Initial Value AT	
VSDLoggPV	ARRAY[099] OF REAL		
VSDLoggSP	ARRAY[099] OF REAL		

Configure the Graph and create the variables in NA:

Global Variables 🗙			
Name	Data Type	Initial Value	I AT
RO_VSDLoggPV	Single(99)		RO.VSDLoggPV
RO_VSDLoggSP	Single(99)		RO.VSDLoggSP

Then we create a Data Group with two variables connected to these:

Finally, we create BrokenLineGraph by DataGroup:

V	Data	
	DataGroup	GraphData
	Offset	0
▶	Traces	2 +

19. GroupTrigger

A function block that looks at a change on 8 inputs.

19.1. FB Layout

19.2. Input Variables

Name	Data type	Description
Enable	BOOL	Enable function
Input0Input7	BOOL	8 inputs to detect signal change
DIFTime	TIME	Pulse length for DIFU and DIFD

19.3. Output Variables

Name	Data Type	Description
ENO	BOOL	Enable is TRUE
SignalsON	UINT	Number of inputs ON
SignalON	BOOL	TRUE if SignalsON>0
DIFU	BOOL	Pulse when an input goes ON
DIFD	BOOL	Pulse when an input goes OFF

19.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

19.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

20. HasChanged

A function block that gives a pulse if the value of the input changes. One can choose to use one of the three inputs or all.

20.1. FB Layout

20.2. Input Variables

Name	Data type	Description
Enable	BOOL	Enable function
Value_INT	INT	
Value_REAL	REAL	
Value_LREAL	LREAL	

20.3. Output Variables

Name	Data Type	Description
ValueChanged	BOOL	Pulse output if any input value changes

20.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

20.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

21. InchTomm

Conversion from Inch to mm

21.1. FN Layout

21.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Inch	REAL	Inches

21.3. Output Variables

Name	Data Type	Description
Return	BOOL	EN is TRUE
mm	REAL	Millimeters

21.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

21.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard
<u>'</u>	

22. JoyStick_Control

This function allows you to split an analog signal into two equal parts so you can drive up/down or back/forth.

22.1. FN Layout

22.2. Input Variables

Name	Data type	Description			
EN	BOOL	Enable function			
ZeroSpan	REAL	With ZeroSpan, add a percentage that corresponds to movement around the center of joystick that should output 0.			
Vertex50	REAL	With Vertex50, you can decide how much the output should give in % when Joystick has 50% power.			
Calibrate	BOOL	With Calibrate, you can learn joystick's zeropoint, maxpoint and minpoint.			

22.3. In-Out Variables

Name	Data type	Description				
JovStick	OEN\nGeneral\sJovstick	Structure that holds the data.				

22.4. Output Variables

Name	Data Type	Description		
ENO BOOL EN is TRUE				
OutputPos	REAL	Analog positive output (forward)		
OutputNeg	REAL	Analog negative output (reverse)		
Calibrates	BOOL	Calibrate is active		

22.5. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

22.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard

22.7. Example

HOW TO CALIBRATE

- 1) Put the Joystick in the center.
- 2) Activate Calibrate
- 3) Move joystick to Max
- 4) Move joystick to Min
- 5) Release Joystick
- 6) Turn off Calibrate

<u>lea</u>	Global Variables 🗙								
Г	Name	Data Type	ī	Initial Value	1	AT	1	Retain	Constant
	JoystickSpeed	OEN\General\sJoystick						$\overline{\mathbf{Y}}$	

Don't forget to Retain it.

22.8. Structure

•	sJoystick	STRUCT	NJ
	MinInput	REAL	
	MaxInput	REAL	
	MinOutput	REAL	
	ZeroX	REAL	
	MaxOutput	REAL	
	Input	REAL	
	OutputPos	REAL	
	OutputNeg	REAL	
	Vertex50	REAL	
	ZeroSpan	REAL	
	Calibrate	BOOL	
	Calibrates	BOOL	

23. Loop

A function that runs a value between MinValue and MaxValue for each scan EN is active.

23.1. FN Layout

23.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
MinValue	INT	Minimum loop value
MaxValue	INT	Maximum loop value

23.3. In-Out Variables

Name	Data type	Description
Value	INT	Variable that holds the loop value

23.4. Output Variables

Name	Data Type	Description
Return	BOOL	

23.5. Revisions

Revision	In Library	Correction
1.2.0	5.00.9	

23.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard

24. LowPassFilter_IIR

Low pass filter to smooth analog signals.

24.1. FN Layout

24.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Input	REAL	Input
Coefficient	REAL	Factor divided by Scantime. 0.0=Disable filter

24.3. In-Out Variables

Name	Data type	Description
Output	REAL	Filtered output

24.4. Output Variables

Name	Data Type	Description
Return	BOOL	EN is TRUE

24.5. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

24.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard
	Roger Eriksen

25. MeanMaxMin

A function block to find average, max value, min value, and standard deviation of the numbers in a FIFO table.

25.1. FB Layout

25.2. Input Variables

Name	Data type	Description
Trigger	BOOL	Add InputData into the DataTable
InputData	REAL	Value to be added to the table
Reset	BOOL	Clear the table
NumOfValues	UINT	Number of values to be a part of the calculation

25.3. In-Out Variables

Name	Data type	Description
DataTable	ARRAY[*] OF REAL	FIFO Table to hold the data

25.4. Output Variables

Name	Data Type	Description
ENO	BOOL	
Maximum	REAL	Largest value of the selected number of values
Mean	REAL	Average value of the selected number of values
Minimum	REAL	Lowest value of the selected number of values
StdDev	REAL	Standard deviation of the selected number of values.

25.5. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

25.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard
<u>'</u>	

26. MovingHolidays

With this feature, you can get the date of moving holidays like WORD or _sDT data type. Select the current year on Year. You can choose MMDD or DDMM format with the input DDMM. The MovingHolidaysDT variable contains all these days as a _sDT structure. It can be useful along with other function blocks.

26.1. FN Layout

26.2. Input Variables

Name	Data type	Valid Range	Default	Description
EN	BOOL		FALSE	Enable function
Year	UINT	1970-		Year to find moving holidays
DDMM	BOOL			FALSE=MMDD, TRUE=DDMM

26.3. Output Variables

Name	Data Type	Description
Return	BOOL	
MovingHolidaysDT	OEN\nGeneral\sMovingHolidaysDT	Moving holidays structure with dates
PalmSunday	WORD	Ex. April 10 as 0410 or 1004.
MaundyThursday	WORD	
GoodFriday	WORD	
EasterSunday	WORD	
EasterMonday	WORD	
AscensionDay	WORD	
WhitSunday	WORD	
WhitMonday	WORD	

26.4. Revisions

Revision	In Library	Correction
2.0.0	5.00.9	

26.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard
<u>'</u>	

27. NX_ECC_Status

A function block to get a better overview of status bit on an NX-ECC node. Everything is collected in the structure NX_Status for easier handling further.

27.1. FN Layout

27.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Sysmac_Error_Status	BYTE	I/O Map Variable
NX_Unit_Registration_Status	ARRAY[063] OF BOOL	I/O Map variable. Registration Status for Units on NX-ECC
NX_Unit_IOData_Active_Status	ARRAY[063] OF BOOL	I/O Map variable Active Status for Units on NX-ECC

27.3. Output Variables

Name	Data Type	Description
Return	BOOL	
NX_Status	OEN\nGeneral\sNX_Status	Structure containing Units Status
Observation	BOOL	Observation signal
Major_Fault	BOOL	ECC-Coupler Major Fault
Minor_Fault	BOOL	ECC-Coupler Minor Fault
Partial_Fault	BOOL	ECC-Coupler Partial Fault
NX_Unit_Registrations	USINT	Registered slaves
NX_Unit_IOData_Active	USINT	Active slaves

27.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

27.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

28. NX RS1201

Simplifies the use of the RS1201 NX module for weighing cells. Use the Loadcell structure for configuration and control.

28.1. FB Layout

28.2. Input Variables

Name	Data	Description
	type	
Unit_OK	BOOL	Activate input when NX-RS1201 is Ok
DetectionStatus	WORD	Variable from I/O Map
ExecutingStatus	WORD	Variable from I/O Map
Calib_Command_Response_SID	UINT	Variable from I/O Map
Calib_Command_Response	WORD	Variable from I/O Map
Gross_Weight_Value	REAL	Variable from I/O Map
Standard_Weight	REAL	A known load for calibration
Set_Standard_Weight	BOOL	Calibrate Step#1 Save the value for known load in Step#3
Set_Zero	BOOL	Calibrate Step#2 Set zeropoint for loadcell without any load
Set_Span	BOOL	Calibrate Step#3 Set span after putting the known load on the
		loadcell

28.3. In-Out Variables

Name	Data type	Description
Loadcell	OEN\nUnit\sRS1201	Structure to hold the data

28.4. Output Variables

Name	Data Type	Description
ENO	BOOL	Unit OK
Error_ID	WORD	Calibration Error
OperationCommand	WORD	Variable from I/O Map
Calib_Command_SID	UINT	Variable from I/O Map
Calib_Command	WORD	Variable from I/O Map
Calib_Data	REAL	Variable from I/O Map

Calibration_Done	BOOL	Calibration Done
Set_Weight_OK	BOOL	Step#1 Set Weight Done
Set_Zero_OK	BOOL	Step#2 Set Zero Done
Set_Span_OK	BOOL	Set#3 Set Span Done

28.5. Errors

ErrorID	Error Description	Correction

28.6. Revisions

Revision	In Library	Correction
2.2.0	5.00.9	

28.7. Credits

	Name
Omron - Norway	Kjell Baardsgaard
' <u> </u>	

28.8. Structure

29. OS32C_DM

Reading data from safety scanner OS32C-DM via EthernetIP.

29.1. FN Layout

29.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
OS32C_In_EIP	OEN\nEIP\sOS32C_In_EIP	EIP Network data from OS32C

29.3. In-Out Variables

Name	Data type	Description
OS32C_EIP		

29.4. Output Variables

Name	Data Type	Description
Return	BOOL	EN is TRUE
OS32C_Out_EIP	OEN\nEIP\sOS32C_Out_EIP	EIP Network data to OS32C

29.5. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

29.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard

30. OunceToGrams

Conversion of Ounce to Grams

30.1. FN Layout

30.2. Input Variables

Name	Data type	Description	
EN	BOOL	Enable function	
Oz	REAL		

30.3. Output Variables

Name	Data Type	Description	
Return	BOOL	EN is TRUE	
g	REAL		

30.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

30.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard
'-	

31. PRM21_Control

Control and monitoring of Profibus Master CJ1W-PRM21 in NJ. NX CPUs cannot be used.

31.1. FB Layout

31.2. Input Variables

Name	Data type	Description
Enable	BOOL	Enable function
Operate	BOOL	Profibus Operate Mode
Stop	BOOL	Profibus Stop Mode
ClearMode	BOOL	Profibus Clear Mode
Offline	BOOL	Profibus Offline
ActCycleTm	WORD	Variable from I/O Map
UnitSta	WORD	Variable from I/O Map
MstrSta	WORD	Variable from I/O Map
MstrErrSta	WORD	Variable from I/O Map
SlvSta	WORD	Variable from I/O Map
SlvDatXchg	ARRAY[1125] OF BOOL	Variable from I/O Map
SlvNewDiag	ARRAY[1125] OF BOOL	Variable from I/O Map

31.3. In-Out Variables

Name	Data type	Description		
PRM21	OEN\nUnit\sPRM21	Structure to hold the Profibus data		
SwCmd WORD		Variable from I/O Map		
GlobCtlCmd	WORD	Variable from I/O Map		

31.4. Output Variables

Name	Data Type	Description	
ENO	BOOL	EN is TRUE	
InOPERATE	BOOL	Profibus In OPERATE	
InSTOP	BOOL	Profibus In STOP	
InCLEAR	BOOL	Profibus In CLEAR	
InOFFLINE	BOOL	Profibus OFFLINE	
BusCycleTime	REAL	Profibus Cycle Time	
AllInDataExchange	BOOL	All slaves in Data Exchange	
Uniterror	BOOL	Unit Error	
MasterError	BOOL	Master Error	

31.5. Errors

ErrorID	Error Description	Correction		

31.6. Revisions

Revision	In Library	Correction
0.99.0	5.00.9	Beta version

31.7. Credits

	Name
Omron - Norway	Kjell Baardsgaard

31.8. Example

Start CxConfigurator FDT and add the master and slaves.

Station Address is the master's Profibus address. Feel free to use #1.

UnitNumber is the wheel at the front of the module and is the module's Rack address on the PLC. Select the communication type against the PLC with the "Configure" button.

"Test" that it works afterwards.

If the slaves are configured correctly, they will be autoaddressed in the master. Check this out under "Slave Area."

Press the "Save" button in the lower-right corner.

Use the Diagnostic tool and see that everything is running correctly.

When auto addressing, data enters the CIO3300- addresses and from the CIO3200- addresses. We need to catch this in NJ. Create variables that fit Default Setup this way:

	JU1_2IVDIagnCv3ta	BOOL		IODUS.//Idck#U/SIOI#U/SIVSId/SIVDIdyNcvSid
	J01_InputFromSlaves ARRAY[099] OF WORD		%3300	
J01_OutputToSlaves ARRAY[099] OF WORD			%3200	

These will contain data from/to the Profibus slaves.

The number of words you choose yourself, but CxConfigurator reserves only 100 addresses as default.

Autogenerate variables in IOMap in SysmacStudio.

Add these to the function block to collect all data in a data structure (PRM21) and to get a better overview. The PRM21 data structure is also a great way to get status data into a NA operator panel.

31.9. Structure

▼ Profibus0		OEN\Unit\sPRM21
∵ Cmd		OEN\Unit\PRM\sSwCmd
Operate		BOOL
Stop		BOOL
Clear		BOOL
Offline		BOOL
GlobalCtlTx		BOOL
Clear New Diag		BOOL
► MasterStatus		OEN\Unit\PRM\sMstrSta
▶ UnitStatus		OEN\Unit\PRM\sUnitSta
UnitError		BOOL
MasterError		BOOL
AllInDataExchange		BOOL
NewSlaveDiagsReceived		BOOL
BusCycleTime		REAL
▶ Slave[0-125]		
► GlobalControl		OEN\Unit\PRM\sGlobCtlCmd

32. psiTobar

Conversion of psi to bar.

32.1. FN Layout

32.2. Input Variables

Name	Data type	Description		
EN	BOOL	Enable function		
psi	REAL			

32.3. Output Variables

Name	Data Type	Description
ENO	BOOL	EN is TRUE
bar	REAL	

32.4. Errors

ErrorID	Error Description	Correction			

32.5. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

32.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard

33. PulseConverter

This block converts pulses to units/unit of time and total quantity. Typically used for flowmeter and energy measurement.

The total can be preset to a selected value and Batch can be reset. All data can be monitored in the Meter structure. Note the arrow on *PulseInput* indicating differential input.

33.1. FB Layout

33.2. Input Variables

Name	Data type	Description		
Enable	BOOL	Enable function		
PulseInput	BOOL	Pulses from metering instrument		
PulsesPrUnit	REAL	Number of pulses per unit. Ex. Pulses/liter		
PresetTotal	BOOL	Move PresetValue to UnitsTotal		
PresetValue	REAL	Value to be set in UnitsTotal using PresetTotal		
ResetBatch	BOOL	Set UnitsBatch to 0.		

33.3. In-Out Variables

Name Data type		Description			
Meter	OEN\nGeneral\sPulseMeter	Output variables as a structure. See 33.8			

33.4. Output Variables

Name	Data Type	Description	
ENO	BOOL	Enable is TRUE	
UnitsPrSec	REAL	Ex. Liters/second	
UnitsLastMin	REAL	Ex. Liters last minute	
UnitsPrHour	REAL	Ex. Liters/hour	
UnitsTotal	REAL	Ex. Total liters	
UnitsBatch	REAL	Ex. Total liters since last ResetBatch	

33.5. Revisions

Revision	In Library	Correction
1.6.0	5.00.9	

33.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard

33.7. Example

33.8. Structure

▼	sPulseMeter	STRUCT	NJ		
	UnitsTotal	REAL			Accumulated units
	UnitsBatch	REAL			Batch accumulator
	UnitsPrSecond	REAL			Units/s
	UnitsPrMinute	REAL			Units/min
	UnitsPrHour	REAL			Units/hour
	UnitsLastMinute	REAL			Units last minute (moving)
	PulsesPrUnit	REAL			Initial Setup. default=100.
	PulsesTotal	ULINT			Pulse counter
	PresetValue	REAL			Preset Accumulated Total Value
	PresetTotal	BOOL			Preset Total Trigger
	ResetBatch	BOOL			Reset Batch Trigger
	Pulse	BOOL			Input pulse

34. PulseGenerator

The output provides 50/50 pulses at a specified frequency. Please note that the PLC CycleTime will affect the accuracy of the frequency.

34.1. FB Layout

34.2. Input Variables

Name	Data type	Valid Range	Description
Enable	BOOL		Enable function
Hz	REAL		Frequency

34.3. Output Variables

Name	Data Type	Description
Pulse	BOOL	Pulses 50/50 Duty based on Frequency input

34.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

34.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

35. *PWM*

A function block for pulse width modulated output. Duty is set in % and determines how large part of CycleTime Output should be on. By setting CycleTime to low values, the output can be used for dimming light. A CycleTime approaching the PLC's CycleTime will result in poor resolution/inaccuracy.

35.1. FB Layout

35.2. Input Variables

Name	Data type	Valid Range	Description
Enable	BOOL		Enable function
Duty	REAL		% part of CycleTime to be on
CycleTime	TIME		Time between each rising edge of output

35.3. Output Variables

Name	Data Type	Description
Output	BOOL	Pulse output

35.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

10Hz with PLC CycleTime 4ms:

36. RealTo

Conversion from Real to 2 Words

36.1. FN Layout

36.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Input	REAL	

36.3. Output Variables

Name	Data Type	Description
Return	BOOL	
Words	ARRAY[01] OF WORDS	

36.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

36.1. Credits

	Name
Omron - Norway	Kjell Baardsgaard

37. SCU_PortSetup

A function block to simplify the setup of an SCU port. All 4 outputs on the block must be connected to the SCU module's variables in IOMap. NX CPUs cannot be used.

37.1. FB Layout

37.2. Input Variables

Name	Data type	Valid Range	Description
Execute	BOOL		Enable function
Baudrate	DINT	9600230400	
Format	STRING[4]	7E1,7E2, 8N1,8E1	

StartCode is Default.

EndCode is set to <CR><LF>.

37.3. Output Variables

Name	Data Type	Description
Done	BOOL	Setup done
PortCfg	WORD	Connect this to the I/O Map variable
BaudrateCfg	USINT	Connect this to the I/O Map variable
NopCfg	WORD	Connect this to the I/O Map variable
NopEndCodeCfg	USINT	Connect this to the I/O Map variable

37.4. Revisions

Revision	In Library	Correction
0.1.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

[00]	▼ CJ1W-SCU22 (Serial Communication Unit)				
	► Com_UnitSta	Serial Communication Unit	R	WORD	SCU0_Com_UnitSta
	▶ P1_PortCfg	Port1: Port Settings	RW	WORD	SCU0_P1_PortCfg
	P1_BaudrateCfg	Port1: Baud Rate	RW	USINT	SCU0_P1_BaudrateCfg
	▶ P1_SendDelayCfg	Port1: Send Delay Settings	RW	WORD	SCU0_P1_SendDelayCfg
	▶ P1_HlkCfg	Port1: Host-Linlk Protocol S	RW	WORD	SCU0_P1_HlkCfg
	▶ P1_PmrSgwTimeoutCfg	Port1: Serial Gateway Timed	RW	WORD	SCU0_P1_PmrSgwTimeoutCfg
	▶ P1_PmrTransCfg	Port1: Protocol macro Trans	RW	WORD	SCU0_P1_PmrTransCfg
	P1_PmrMaxDatSzCfg	Port1: Maximum Number o	RW	UINT	SCU0_P1_PmrMaxDatSzCfg
	► P1_NopCfg	Port1: No-Protocol Settings	RW	WORD	SCU0_P1_NopCfg
	P1_NopStartCodeCfg	Port1: No-protocol Start Co	RW	USINT	SCU0_P1_NopStartCodeCfg
	P1_NopEndCodeCfg	Port1: No-protocol End Cod	RW	USINT	SCU0_P1_NopEndCodeCfg

38. Read_IPAddress

Read IP address of local ethernet ports. First Execute reads Port#1 next execute reads Port#2.

38.1. FN Layout

38.2. Input Variables

Name	Data type	Valid Range	Default	Description
Execute	BOOL		FALSE	Execute function

38.3. Output Variables

Name	Data Type	Description
IPAddress1_string	STRING[16]	IP address of Ethernet Port#1
IPAddress1_num	ARRAY[03] OF UINT	IP address of Ethernet Port#1
IPAddress2_string	STRING[16]	IP address of Ethernet Port#2
IPAddress2_num	ARRAY[03] OF UINT	IP address of Ethernet Port#2

38.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	
2.0.0	5.00.11	Added reading of Port#2

	Name
Omron - Norway	Kjell Baardsgaard
Omron - France	Arnaud Croizit

39. SD_Logging10Col

This function block creates a file on SD Memory Card in the CPU. See also TableLogging10Col.

39.1. FB Layout

39.2. Input Variables

Name	Data type	Description
SaveToFile	BOOL	Save data. Use EDGE Trigger
DataArray	ARRAY[19,09] OF INT	DataTable that contains data to be saved
Column0	ARRAY[09] OF STRING[20]	String data to insert into first Column in each row
NumberOfRows	UINT	Number of rows from DataArray to save
Filename	STRING[256]	Filename for SD Memory Card

Number of saves to a MemoryCard is limited to 50k-100k saves. Do not save every cycle!

39.3. Output Variables

Name	Data Type	Description
Done	BOOL	Saving complete

39.4. Revisions

Revision	In Library	Correction
1.0.1	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

When SaveToFile, the file will appear in MEMCARD1 folder as Loggtest.csv

Open the file in Excel and you will see your data in Column B (0) through K.

40. Sequencer

A Function Block that can be used to run sequences.

40.1. FB Layout

40.2. Input Variables

Name	Data type	Default	Description
StepNext	BOOL		Pulse input to index to next Step
Reset	BOOL		Set StepActive to 0
Continuous	BOOL		If FALSE stop at StepNext=NumberOfsteps+1
			If TRUE return StepNext to 1 after reaching NumberOfSteps
NumberOfSteps	INT	0	Number of steps in the sequencer
TriggerDelay	TIME	T#0s	Delay Trigger after StepNext
TimeOutTime	TIME	T#0s	If >0 then StepNext if no StepNext input

40.3. Output Variables

Name	Data Type	Description
Trigger	BOOL	Pulse output when StepActive changes
StepActive	INT	Active Step number
TD_Timer	TIME	TriggerDelay elapsed time
TOT_Timer	TIME	TimeOutTime elapsed time

40.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard
<u> </u>	

41. Stack_Integers

A function block for storing, sorting, and filtering integer data.

41.1. FB Layout

41.2. Input Variables

1			
Name	Data type	Default	Description
Size	UINT		Stack Size
Enable	BOOL		Enable function
LIFO_FIFO	BOOL		If FALSE, last value added moved out using GetValue
Value	INT		Value to add to the end of the stored list of values
PutValue	BOOL		Trigger to add Value to the list
GetValue	BOOL		Move first or last value from list and output to Value_out
RemoveValue	BOOL		Remove values in the list equal to Value
SortLowToHigh	BOOL		Sort values in the list Lowest to Highest
SortHighToLow	BOOL		Sort values in the list Highest to Lowest
EmptyStack	BOOL		Set values in Stack and ValuesInStack to 0

41.3. In-Out Variables

Name	Data type	Description
Stack	ARRAY[*] OF INT	Array to hold values

41.4. Output Variables

Name	Data Type	Description
ENO	BOOL	
Value_Out	INT	Value moved from the list using GetValue
ValuesInStack	UINT	Number of values added to Stack

41.5. Revisions

Revision	In Library	Correction
1.1.1	5.00.9	

41.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard
<u> </u>	

42. Stack Reals

A function block for storing, sorting, and filtering real data.

42.1. FB Layout

42.2. Input Variables

Name	Data type	Description
Size	UINT	Stack Size
Enable	BOOL	Enable function
LIFO_FIFO	BOOL	If FALSE, last value added moved out using GetValue
Value	REAL	Value to add to the end of the stored list of values
PutValue	BOOL	Trigger to add Value to the list
GetValue	BOOL	Move first or last value from list and output to Value_out
RemoveValue	BOOL	Remove values in the list equal to Value
SortLowToHigh	BOOL	Sort values in the list Lowest to Highest
SortHighToLow	BOOL	Sort values in the list Highest to Lowest
EmptyStack	BOOL	Set values in Stack and ValuesInStack to 0

42.3. In-Out Variables

Name	Data type	Description
Stack	ARRAY[*] OF REAL	Array to hold values

42.4. Output Variables

Name	Data Type	Description	
ENO	BOOL		
Value_Out	REAL	Value moved from the list using GetValue	
ValuesInStack	UINT	Number of values added to Stack	

42.5. Revisions

Revision	In Library	Correction
1.0.1	5.00.9	

42.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard

43. SummationCounter

A function block that can be used for monitoring operating hours. The values are retained in the event of a power failure.

43.1. FB Layout

43.2. Input Variables

Name	Data type	Valid Range	Default	Description
Active	BOOL		FALSE	If TRUE then Count time
Reset	BOOL			Reset time

43.3. Output Variables

Name	Data Type	Description	
Running	BOOL	Active is TRUE	
Hours	UDINT	Total active hours	
Minutes	UINT		
Seconds	UINT		

43.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

43.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard
_	

44. SunsetAndSunrise

A function block that gives you the time of sunrise, sunset and when the sun is highest above the horizon.

44.1. FN Layout

44.2. Input Variables

Name	Data type	Valid Range	Description	
EN	BOOL		Enable function	
CurrentDay	UINT	1-366	Day of year to determine SunsetAndSunrise. You can use CurrentDay FB.	
Longitude	LREAL	-180,+180	Degrees, East=Negative	
Latitude	LREAL	-180,+180	Degrees, South=Negative	
UTC_Offset	INT	-12,+12	Local UTC offset. GMT=0.	

44.3. Output Variables

Name	Data Type	Description	
Return	BOOL		
Sunrise	TIME	Sunrise on location the day input	
Noon	TIME	Noon on location the day input	
Sunset	TIME	Sunset on location the day input	

44.4. Revisions

Revision	In Library	Correction
1.1.1	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard
	http://www.esrl.noaa.gov/gmd/grad/solcalc/solareqns.PDF

		\\OENKB\General\S	Sunset And Sunrise		
(357)	CurrentDay	CurrentDay	Sunrise	-Sunrise	(10h1m41)
	10.4150	Longitude	Noon	-Noon	(12h16m5)
	63.4309	Latitude	Sunset	Sunset	(14h32m5)
	1	UTC_Offset			

45. Swap4Bytes

An FB to swap bytes and words. This is useful for data communication where the bytes do not come in the desired order. This is relatively common for Profibus, CAN and Modbus.

45.1. FN Layout

45.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
FourBytes	ARRAY[03] OF BYTE	Four bytes to Swap or
TwoWords	ARRAY[01] OF WORD	Two words to Swap or
DoubleInt	DINT	Double Integer to Swap or
Float	REAL	Real to Swap
SwapType	OEN\eSwap	#Bytes switches 2 and 2 bytes. ABCD becomes BADC
		#Words replaces the first two bytes with the last two. ABCD
		becomes CDAB.
		#BytesAndWords does both. ABCD will be DCBA.

45.3. Output Variables

Name	Data Type	Description
Return	BOOL	
As4BYTEs	ARRAY[03] OF BYTE	Swap result as 4 Bytes
As2WORDs	ARRAY[01] OF WORD	Swap result as 2 Words
AsDINT	DINT	Swap result as Double Integer
AsREAL	REAL	Swap result as Real

45.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

• Do not use more than one input as the result are output in 4 different ways. Example is not 100% correct.

46. Table_Logging10Col

A function block that logs 10 columns into 10 rows. In combination with SDLgging10Col, you can save this as a csv file on a memory card in NJ/NX.

46.1. FN Layout

46.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Execute	BOOL	Add Column0 and data1Data9 to the DataArray
TimeStamp	_sDT	Time to add to the row when logging
RowNumber	INT	Chose rownumber in DataArray to store the data
Data1Data9	INT	Data to be inserted into the DataArray

46.3. In-Out Variables

Name	Data type	Description
Column0	ARRAY[09] OF STRING[20]	String data to insert into first Column in each row
DataArray	ARRAY[19,09] OF INT	DataTable that contains data to be saved

46.4. Output Variables

Name	Data Type	Description
Return	BOOL	

46.5. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

46.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard
<u> </u>	

47. Tank_Volume

Calculation of fluid volume in a vertical or horizontal tank based on level measurement.

47.1. FN Layout

47.2. Input Variables

Name	Data type	Valid Range	Description
EN	BOOL	Range	Enable function
Level	REAL		Liquid level (mm)
TankType	OEN\eTank	Horizontal_FlatEnds Horizontal_EllipsoidalEnds Horizontal_SphericalEnds Vertical_FlatEnds Vertical_EllipsoidalEnds Vertical_SphericalEnds	
CylinderLength	REAL		Length of cylindrical part (mm)
TotalLength	REAL		Total tank length (mm)
Diameter	REAL		Cylinder diameter (mm)

47.3. Output Variables

Name	Data Type	Description
Return	BOOL	
VolumeLiters	REAL	Liquid volume (liters)
VolumePercent	REAL	Liquid volume in % of full tank

47.4. Revisions

Revision	In Library	Correction
2.3.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

48. TCP Connect

A function block to simplify communication via SocketService. Open, Close, ClearBuf and GetTCPStatus are used in this, and the input Open can be used to open/close a Socket. E.g. ModbusTCP can then be run via the specified Socket. If you set LocalPort=0, it will find a free port automatically.

A socket is a kind of serial port. You open a socket and then you send and receive data on it. The CPU can have many sockets open on the same physical ethernet port, so this is much more rational than before, where one often had to have a serial port for each device to communicate with.

48.1. FB Layout

48.2. Input Variables

Name	Data type	Pata type Valid Description Range	
Open	BOOL		Enable function
EIP_EtnOnlineSta	BOOL		EIP port Status. Use System variable
IPAddress	STRING[200]		Example '192.168.250.3'
LocalPort	UINT		0=Auto Assignment
TargetPort	UINT		Remote TCP Target Port

48.3. Output Variables

Name	Data Type	Description	
Connected	BOOL	Successfully connected	
Socket	_sSocket	Socket status for monitoring purpose	
TCPState _eCONNECTION_STATE		Connection state as eNum	
SocketError	BOOL		
ErrorID WORD		Error Code	
ErrorlDtxt	STRING[100]	ErrorID as readable message	

48.4. Revisions

Revision	In Library	Correction	
2.1.0	5.00.9		
2.2.0	5.00.11	Counts 3 consecutive Port Errors before closing and reopening	

48.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

49. TCP_Messaging

An FB to send custom data over TCP.

49.1. FB Layout

49.2. Input Variables

Name	Data type	Description	
Enable	BOOL	Enable function	
Setup	OEN\nEth\sSetup	Konfigurering av kommunikasjon mot TCP Server.	
Trigger	BOOL	Trigger to send Message	
Message	STRING[256]	Message to be send	

49.3. Output Variables

Name	Data Type	Description
Done	BOOL	Message successfully send
Busy	BOOL	Connecting, Sending and waiting for reply
Error BOOL		Error connecting or sending
ErrorID WORD		Connecting or sending error code
ReplyAsBytes	ARRAY[0255] OF BYTE	Reply from connected device

49.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

50. TimeDateSwitch

A multichannel FB to start and stop events based on selected periods. Optional number of criteria and channels.

50.1. FB Layout

50.2. Input Variables

Name	Data type	Valid Range	Default	Description
Enable	BOOL		FALSE	Enable function

50.3. In-Out Variables

Name	Data type	Description
TimeDateArray	ARRAY[*] OF OEN\nGeneral\sTimeDateSwitch	Array containing start and stop times for
		Channel control
Channel	ARRAY[*] OF OEN\nGeneral\sTimeDateChannel	Channel with bools controlled by Start and
		Stop times. Several Start/Stop times can
		control the same channel.

50.4. Output Variables

Name	Data Type	Description	
ENO	BOOL	Enable is TRUE	

50.5. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

In TimeDateArray, enter the time for Start and Stop, which channel to control, and whether the channel should be controlled on or off during this time interval. The number of rows in this Array you decide for yourself. Start with row 0. Channel is also an Array of optional size. You shouldn't use Channel 0, it can easily become a mess.

The section can be fixed day of the year, from one day to another day, between two times, on selected weekdays etc.

The program is based on Start time from inclusive until End time inclusive.

The following table explains this by four examples.

The first row in this table is Start Time. The second row is Stop Time.

0

[3]

0

[0]								
Year	Month	Day	Hour	Min	Channel	Weekday	Channel	Description
							Off	•
0	5	17	0	0	1	0000000	TRUE	Channel 1
0	5	18	0	0				PowerOff=all day
[1]								
Year	Month	Day	Hour	Min	Channel	Weekday	Channel	Description
							Off	•
2020	7	1	0	0	2	000000	TRUE	Channel 2
						0		PowerOff=the whole holiday
2020	7	21	23	59				
[2]								
Year	Month	Day	Hour	Min	Channel	Weekday	Channel	Description
							Off	
0	0	0	08	0	3	1111100	False	Channel 3 PowerOn=on in

Year	Month	Day	Hour	Min	Channel	Weekday	Channel Off	Description
0	0	0	10	0	3	0000010	False	Channel 3
0	0	0	14	0				PowerOn=on Saturdays

May 17th as in example [0] you can put as a fixed code in the PLC. It will then apply to all years.

TimeDateArray[0].Start.Month:=5;

0

TimeDateArray[0].Start.day:=17;

TimeDateArray[0].End.Mnd:=5;

TimeDateArray[0].End.Day:=18;

TimeDateArray[0].Channel:=1;

TimeDateArray[0].ChannelOff:=TRUE;

Instead of 18 on End.Day, you can also put 17 on End.Day, 23 at the End. Hour and 59 at End.Min. Then the output will be active 1 min shorter time.

If we look at the holiday 2020 as another example, one would normally post your holiday via an HMI. The TimeDateArray variable must then be created as a GlobalVariable **Retain** and an Array of a certain size. The holiday is located here in example [1] above, which then corresponds to TimeDateArray[1]. Data Input fields must be created in HMI that connect to TimeDateArray[1]. Start. Year, TimeDateArray[1]. End. Year etc. Which channel to control with this criterion is selected in TimeDateArray[1]. Channel. For the holidays, we want to override all ON criteria and set TimeDateArray[1]. ChannelOff=TRUE, preferably

working hours

with a click box in HMI. Weekdays are immaterial during the holidays, but a click box linked to TimeDateArray[2]. Weekday[1] will correspond to Monday as shown in example [2].

In other words, each line in TimeDateArray controls channels. For example, these channels can be connected to light and/or heat in rooms.

Channel[3]. PowerOn is a BOOL that can control the light in the offices during working hours. Note that example [2] and example [3] control the same channel, but with different times and days.

Here's how we can make sure the light doesn't go on during Easter for the next few years:

51. TimeToTIME

Conversion of hours/minutes/seconds to Time or vice versa data type. Can be used to set the time of a Timer in the CPU from a field in an operator panel with data type UINT or REAL.

51.1. FN Layout

51.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
hours	UINT	Hours to be converted
minutes	UINT	Minutes to be converted
seconds	REAL	Seconds to be converted
TIME_To_hms	TIME	TIME to be extracted

51.3. Output Variables

Name	Data Type	Description			
ENO	BOOL	EN is TRUE			
Return	TIME	hours/minutes/seconds converted to TIME datatype			
h	UINT	Hours extracted from TIME_To_hms			
m	UINT	Minutes extracted from TIME_To_hms			
S	REAL	Seconds extracted from TIME_To_hms			
h_total	REAL	Time as a REAL value			

51.4. Revisions

Revision	In Library	Correction
2.1.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

52. Tx16bitToWORD

Collect 16 bit into 1 Word

52.1. FN Layout

52.2. Input Variables

Name	Data type	Valid Range	Description
EN	BOOL		Enable function
Bit_00Bit_15	BOOL		Bits to be collected into Output_Word

52.3. Output Variables

Name	Data Type	Description
Return	BOOL	
Output_Word	WORD	Collected bits

52.4. Revisions

Revision	In Library	Correction
1.0.1	5.00.9	

52.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

53. Tx32bitToDWORD

Collect 32 bit into a Double Word

53.1. FN Layout

53.2. Input Variables

Name	Data type	Description	
EN	BOOL	Enable function	
Bit_00Bit_32	BOOL	Bits to be collected into Output_DWord	

53.3. Output Variables

Name	Data Type	Description
Return	BOOL	
Output_DWord	DWORD	Collected bits

53.4. Revisions

Revision	In Library	Correction
1.0.1	5.00.9	

53.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

54. Tx4bitTo4bit

Map 4 inputs to 4 outputs. Useful when connecting I/O data to/from structured variables.

54.1. FN Layout

54.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Input_00	BOOL	Outputs status to Output_00
Input_01	BOOL	Outputs status to Output_01
Input_02	BOOL	Outputs status to Output_02
Input_03	BOOL	Outputs status to Output_03

54.3. Output Variables

Name	Data Type	Description
Return	BOOL	
Output_00Output_03	BOOL	Input status

54.1. Revisions

Revision	In Library	Correction
1.0.1	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

	\\OEN\Digital\Tx4 EN	bitTo4bit	
RESETCnt-	Input_00	Output_00	RESET
E002_Major_Fault-	Input_01	Output_01	— Major
E002_Minor_Fault—	Input_02	Output_02	— Minor
E002_Observation—o	Input_03	Output_03	— Observation

See above how you can Invert the signal on Input_03. Use RightClick.

55. Tx6bitTo6bit

Map 6 inputs to 6 outputs. Useful when connecting I/O data to/from structured variables.

55.1. FN Layout

55.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Input_00	BOOL	Outputs status to Output_00
Input_01	BOOL	Outputs status to Output_01
Input_02	BOOL	Outputs status to Output_02
Input_03	BOOL	Outputs status to Output_03
Input_04	BOOL	Outputs status to Output_04
Input 05	BOOL	Outputs status to Output 05

55.3. Output Variables

Name	Data Type	Description
Return	BOOL	
Output_00Output_05	BOOL	Input status

55.4. Revisions

Revision	In Library	Correction
1.0.1	5.00.9	

55.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

56. Tx8bitTo8bit

Map 8 inputs to 8 outputs. Useful when connecting I/O data to/from structured variables.

56.1. FN Layout

56.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Input_00	BOOL	Outputs status to Output_00
Input_01	BOOL	Outputs status to Output_01
Input_02	BOOL	Outputs status to Output_02
Input_03	BOOL	Outputs status to Output_03
Input_04	BOOL	Outputs status to Output_04
Input_05	BOOL	Outputs status to Output_05
Input_06	BOOL	Outputs status to Output_06
Input_07	BOOL	Outputs status to Output_07

56.3. Output Variables

Name	Data Type	Description
Return	BOOL	
Output_00Output_07	BOOL	Input status

56.4. Revisions

Revision	In Library	Correction
1.0.1	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

57. Tx8bitToByte

Collect 8 bit into a Byte

57.1. FN Layout

57.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Input_00	BOOL	Outputs status to bit0 in Byte
Input_01	BOOL	Outputs status to bit1 in Byte
Input_02	BOOL	Outputs status to bit2 in Byte
Input_03	BOOL	Outputs status to bit3 in Byte
Input_04	BOOL	Outputs status to bit4 in Byte
Input_05	BOOL	Outputs status to bit5 in Byte
Input_06	BOOL	Outputs status to bit6 in Byte
Input_07	BOOL	Outputs status to bit7 in Byte

57.3. Output Variables

Name	Data Type	Description
Return	BOOL	
Output_Byte	BOOL	Input status as a byte

57.4. Revisions

Revision	In Library	Correction
1.0.1	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

	\\OEN\Digital\Tx EN	8bitToByte	
Enter Variable	Bit_00	Output_Byte	ECT_N001_U005_DO
Enter Variable	Bit_01		
Enter Variable	Bit_02		
Enter Variable	Bit_03		
Enter Variable	Bit_04		
Enter Variable	Bit_05		
Enter Variable	Bit_06		
Enter Variable	Bit_07		

58. TxByteTo8bit

Distribute a byte into 8 bits. If using invert Mask, some or all bits can be inverted.

58.1. FN Layout

58.2. Input Variables

Name	Data type	Default	Description
EN	BOOL	FALSE	Enable function
Input_Byte	BYTE		Byte to distribute into 8 bits.
Invert_Mask	BYTE		Bits set TRUE in Byte Mask inverts corresponding output bit.

58.3. Output Variables

Name	Data Type	Description
Return	BOOL	
Bit_00Bit_07	BOOL	Distributed bits from Input_Byte

58.4. Revisions

Revision	In Library	Correction
2.0.1	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard
<u> </u>	

Byte Bit_00 Enter Variable	
Mask Bit_01 Enter Variable	
Bit_02 Enter Variable	
Bit_03 Enter Variable	
Bit_04 Enter Variable	
Bit_05	
Bit_06 — Enter Variable	
Bit_07 — Enter Variable	
_	Bit_02 — Enter Variable Bit_03 — Enter Variable Bit_04 — Enter Variable Bit_05 — Enter Variable Bit_06 — Enter Variable

59. TxDWORDTo32bit

Distribute a Dword into 32 bits. If using invert Mask, some or all bits can be inverted.

59.1. FN Layout

59.2. Input Variables

Name	Data type	Default	Description
EN	BOOL	FALSE	Enable function
Input_DWord	DWORD		DWord to distribute into 32 bit
Invert_Mask	DWORD		Mask to invert bit. Bits set TRUE in Mask inverts
			corresponding output bit.

59.3. Output Variables

Name	Data Type	Description
Return	BOOL	
Bit_00Bit_31	BOOL	Distributed bits from Input_DWord

59.4. Revisions

Revision	In Library	Correction
2.0.1	5.00.9	

59.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard
<u> </u>	

60. TxWORDTo16bit

Distribute a Word into 16 bits. If using invert Mask, some or all bits can be inverted.

60.1. FN Layout

60.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Input_Word	WORD	Word to distribute into 16 bit
Invert_Mask	WORD	Mask to invert bit. Bits set TRUE in Mask inverts corresponding output bit.

60.3. Output Variables

Name	Data Type	Description
Bit_00Bit_15	BOOL	Distributed bits from Input_Word

60.4. Revisions

Revision	In Library	Correction
2.0.1	5.00.9	

60.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

61. *UINT_To_BOOL*

Conversion of the integer value 1 or 0 to a bit.

61.1. FN Layout

61.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
Val	UINT	Value to set digital output

61.3. Output Variables

Name	Data Type	Description	
Return	BOOL	FALSE if Val=0 else TRUE	

61.4. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

61.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard
' <u> </u>	

62. USGallonsToLiters

Conversion of USGallons to Liters.

62.1. FN Layout

62.2. Input Variables

Name	Data type	Valid Range	Default	Description
EN	BOOL		FALSE	Enable function
Gallons	REAL			

62.3. Output Variables

Name	Data Type	Description
Return	BOOL	
Liters	REAL	

62.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

62.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard
\ <u></u>	

63. ValueSelect

A function where you can select one of 5 values. Select can be a number between 1 and 5, and the output will be set equal to the selected input.

63.1. FN Layout

63.2. Input Variables

Name	Data type	Valid Range	Default	Description
EN	BOOL		FALSE	Enable function
Select	UINT	05	0	
Value1Value5	REAL			Value to choose from with Select

63.3. Output Variables

Name	Data Type	Description	
ENO	BOOL	TRUE if EN=TRUE	
Return	REAL	Selected value	

63.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

64. WordsTo

Merge two WORD variables into a REAL, DINT, or BYTE array. The order of bytes in the BYTE array is determined by LSB_First (TRUE/FALSE).

64.1. FN Layout

64.2. Input Variables

Name	Data type	Description
EN	BOOL	Enable function
LowWord	WORD	Low Word to Merge
HighWord	WORD	HighWord to Merge
LSB_First	BOOL	Merger Order

64.3. Output Variables

Name	Data Type	Description	
Return	BOOL		
RealValue	REAL	2 words as REAL	
DINTValue	DINT	2 words as DINT	
Bytes	ARRAY[03] OF BYTE	2 words as bytes	

64.4. Revisions

Revision	In Library	Correction
2.1.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

65. WordsToDINT

Merge two WORD variables into a DINT.

65.1. FN Layout

65.2. Input Variables

Name	Data type	Description	
EN	BOOL	Enable function	
LowWord	WORD	Low word to Merge	
HighWord	WORD	High word to Merge	

65.3. Output Variables

Name	Data Type	Description	
Return	BOOL		
DINTValue	DINT	2 words as DINT	

65.4. Revisions

Revision	In Library	Correction
1.1.1	5.00.9	

65.5. Credits

	Name
Omron - Norway	Kjell Baardsgaard

66. ZoneCheck

A function that checks whether an analog value is within the Value+OffsetHigh and Value-OffsetLow interval. Deviation shows the discrepancy between Input and Value.

66.1. FN Layout

66.2. Input Variables

Name	Data type	Description	
EN	BOOL	Enable function	
Input	REAL	Value to monitor	
OffsetHigh	REAL	Offset above Value	
Value	REAL	Value to compare with	
OffsetLow	REAL	Offset below value	

66.3. Output Variables

Name	Data Type	Description	
Return	BOOL		
InputAbove	BOOL	Input is above (Value+OffsetHight)	
InputWithin	BOOL	Input is not above or below limits	
InputBelow	BOOL	Input is below (Value-OffsetLow)	
Deviation	REAL	Input-Value	

66.4. Revisions

Revision	In Library	Correction
1.1.0	5.00.9	

	Name
Omron - Norway	Kjell Baardsgaard

67. Template

text

67.1. FN Layout

67.2. Input Variables

Name	Data type	Valid Range	Default	Description
EN	BOOL		FALSE	Enable function

67.3. In-Out Variables

Name	Data type	Description

67.4. Output Variables

Name	Data Type	Description
	BOOL	

67.5. Revisions

Revision	In Library	Correction
1.0.0	5.00.9	

67.6. Credits

	Name
Omron - Norway	Kjell Baardsgaard