$x = x[sort_index].reshape(n,1)$ y = y[sort_index].reshape(n,1) #design matrix $X = np.c_{np.ones((n,1)),x,x**2}$ eta = 0.01 $n_{iterations} = 1000$ #0LS part beta_ols = np.random.randn(3,1) for iteration in range(n_iterations): gradient = 2/n*X.T @ (X @ beta_ols-y) beta_ols -= eta*gradient model = X @ beta_ols # Plot the results plt.plot(x, model, label='Model prediction', color='red') plt.scatter(x, y, label='Data points') plt.xlabel('x') plt.ylabel('y') plt.title('Quadratic Model Fit using Gradient Descent with OLS') plt.legend() plt.show() print(f'OLS Method MSE: {mean_squared_error(y, model):.4f}') #Ridge part lmb = 0.1beta_ridge = np.random.randn(3,1) for iteration in range(n_iterations): gradient = 2/n*X.T @ (X @ beta_ridge-y) + 2*lmb*beta_ridge beta_ridge -= eta*gradient model = X @ beta_ridge # Plot the results plt.plot(x, model, label='Model prediction', color='red') plt.scatter(x, y, label='Data points') plt.xlabel('x') plt.ylabel('y') plt.title('Quadratic Model Fit using Gradient Descent with Ridge') plt.legend() plt.show() print(f'Ridge Method MSE: {mean_squared_error(y, model):.4f}') Quadratic Model Fit using Gradient Descent with OLS Model prediction 30 Data points 25 20 15 10 5 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 Х OLS Method MSE: 0.9509 Quadratic Model Fit using Gradient Descent with Ridge Model prediction 30 Data points 25 20 15 10 5 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Х Ridge Method MSE: 1.0627 Momentum and learning rate In [48]: # Define learning rates and momentum factors to try learning_rates = [0.001, 0.005, 0.01, 0.05, 0.1] momentums = [0, 0.5, 0.9, 0.95, 0.99]n iterations = 1000 lmb = 0.001# Function for gradient descent with momentum def gradient_descent_momentum(X, y, learning_rate, momentum, ridge=False, lmb=0.0): beta = np.random.randn(3, 1) velocity = np.zeros_like(beta) for iteration in range(n_iterations): gradient = 2 / n * X.T @ (X @ beta - y)if ridge: gradient += 2 * lmb * beta # Ridge penalty velocity = momentum * velocity + learning rate * gradient beta -= velocity return beta def mean_squared_error(y_true, y_pred): return np.mean((y_true - y_pred)**2) errors_ols = np.zeros((len(learning_rates), len(momentums))) errors_ridge = np.zeros((len(learning_rates), len(momentums))) # Loop over each learning rate and momentum combination for i, lr in enumerate(learning rates): for j, mom in enumerate(momentums): # 0LS beta_ols = gradient_descent_momentum(X, y, lr, mom) y_pred_ols = X @ beta_ols errors_ols[i, j] = mean_squared_error(y, y_pred_ols) # Ridge beta_ridge = gradient_descent_momentum(X, y, lr, mom, ridge=True, lmb=lmb) y_pred_ridge = X @ beta_ridge errors_ridge[i, j] = mean_squared_error(y, y_pred_ridge) # Create heatmaps plt.figure(figsize=(14, 6)) # OLS Heatmap plt.subplot(1, 2, 1)plt.contourf(momentums,learning_rates,errors_ols, cmap='viridis') plt.title('OLS: MSE vs Learning Rate and Momentum') plt.xlabel('Momentum') plt.ylabel('Learning Rate') plt.yscale('log') plt.colorbar() # Ridge Heatmap plt.subplot(1, 2, 2) plt.contourf(momentums, learning_rates, errors_ridge, cmap='magma') plt.title('Ridge: MSE vs Learning Rate and Momentum') plt.xlabel('Momentum') plt.ylabel('Learning Rate') plt.yscale('log') plt.colorbar() plt.tight_layout() plt.show() #print the best learning rate and momentum for OLS and Ridge print(f'Best learning rate and momentum for OLS: {learning_rates[np.unravel_index(np.argmin(errors_ print(f'Best learning rate and momentum for Ridge: {learning_rates[np.unravel_index(np.argmin(error #print the best MSE for OLS and Ridge print(f'Best MSE for OLS: {np.min(errors_ols)}') print(f'Best MSE for Ridge: {np.min(errors_ridge)}') OLS: MSE vs Learning Rate and Momentum Ridge: MSE vs Learning Rate and Momentum 10^{-1} 2.6 1.38 2.4 1.32 2.2 1.26 2.0 Learning Rate Learning 10⁻² 1.14 - 1.6 1.08 1.4 - 1.02 - 1.2 0.96 - 1.0 0.90 0.8 10^{-3} 0.8 0.8 Momentum Best learning rate and momentum for OLS: (0.1, 0.95) Best learning rate and momentum for Ridge: (0.05, 0) Best MSE for OLS: 0.9392652049741403 Best MSE for Ridge: 0.9393019911586125 Stochastic Gradient Decent In [49]: eta_values = [0.1, 0.01, 0.001] momentum_values = [0.5, 0.9, 0.99] $n_{iterations} = 1000$ $batch_size = 10$ n_batches = n // batch_size def sgd(X, y, beta, eta, momentum, lambda_ridge=0, ridge=False): velocity = np.zeros(beta.shape) for iteration in range(n_iterations): for i in range(n_batches): random_index = np.random.randint(n_batches) * batch_size Xi = X[random_index:random_index+batch_size] yi = y[random_index:random_index+batch_size] if ridge: gradient = 2 / batch_size * Xi.T @ (Xi @ beta - yi) + 2 * lambda_ridge * beta else: gradient = 2 / batch_size * Xi.T @ (Xi @ beta - yi) velocity = momentum * velocity - eta * gradient beta += velocity return beta def tune_sgd(X, y, ridge=False, lambda_ridge=0): best eta = None best_momentum = None best_error = float('inf') for eta in eta_values: for momentum in momentum values: beta_sgd = np.random.randn(3, 1) beta_sgd = sgd(X, y, beta_sgd, eta, momentum, lambda_ridge, ridge) model = X @ beta_sgd error = np.mean((model - y)**2)if error < best_error:</pre> best_error = error best_eta = eta best_momentum = momentum print(f"Best MSE: {best_error} with Learning rate: {best_eta} and Momentum: {best_momentum}") return best_eta, best_momentum, best_error # Perform tuning for OLS print("Tuning OLS") best_eta_ols, best_momentum_ols, best_error_ols = tune_sgd(X, y) print(f"Best learning rate and momentum for OLS: ({best_eta_ols}, {best_momentum_ols})") # Perform tuning for Ridge lambda ridge = 0.01print("Tuning Ridge") best_eta_ridge, best_momentum_ridge, best_error_ridge = tune_sgd(X, y, ridge=True, lambda_ridge=lam print(f"Best learning rate and momentum for Ridge: ({best_eta_ridge}, {best_momentum_ridge})") # Now plot the results beta_ols = np.random.randn(3, 1) beta_ols = sgd(X, y, beta_ols, best_eta_ols, best_momentum_ols) model_ols = X @ beta_ols plt.plot(x, model_ols, label='OLS SGD Model', color='red') plt.scatter(x, y, label='Data points') plt.xlabel('x') plt.ylabel('y') plt.title(f'Best OLS SGD Model with eta={best_eta_ols} and momentum={best_momentum_ols}') plt.show() beta_ridge = np.random.randn(3, 1) beta_ridge = sgd(X, y, beta_ridge, best_eta_ridge, best_momentum_ridge, lambda_ridge=lambda_ridge, model_ridge = X @ beta_ridge plt.plot(x, model_ridge, label='Ridge SGD Model', color='blue') plt.scatter(x, y, label='Data points') plt.xlabel('x') plt.ylabel('y') plt.title(f'Best Ridge SGD Model with eta={best_eta_ridge} and momentum={best_momentum_ridge}') plt.legend() plt.show() Tuning OLS /var/folders/xn/3d6pw84d5vx2yxxg15gtmrj40000gn/T/ipykernel_58161/3201831458.py:17: RuntimeWarning: overflow encountered in matmul gradient = 2 / batch_size * Xi.T @ (Xi @ beta - yi) /var/folders/xn/3d6pw84d5vx2yxxg15gtmrj40000gn/T/ipykernel_58161/3201831458.py:19: RuntimeWarning: invalid value encountered in subtract velocity = momentum * velocity - eta * gradient Best MSE: 0.9393824487002257 with Learning rate: 0.01 and Momentum: 0.5 Best learning rate and momentum for OLS: (0.01, 0.5) Tuning Ridge /var/folders/xn/3d6pw84d5vx2yxxg15gtmrj40000gn/T/ipykernel_58161/3201831458.py:15: RuntimeWarning: overflow encountered in matmul gradient = 2 / batch_size * Xi.T @ (Xi @ beta - yi) + 2 * lambda_ridge * beta Best MSE: 0.9414170866758738 with Learning rate: 0.001 and Momentum: 0.9 Best learning rate and momentum for Ridge: (0.001, 0.9) Best OLS SGD Model with eta=0.01 and momentum=0.5 OLS SGD Model 30 Data points 25 20 15 10 5 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Х Best Ridge SGD Model with eta=0.001 and momentum=0.9 Ridge SGD Model 30 Data points 25 20 15 10 5 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 Х Adagrad RMSprop and Adam In [50]: def adagrad(X, y, beta, eta, epsilon=1e-8, momentum=0, use_momentum=False): velocity = np.zeros(beta.shape) G = np.zeros(beta.shape) for i in range(n_iterations): for j in range(n_batches): random_index = np.random.randint(n_batches) * batch_size Xi = X[random_index:random_index + batch_size] yi = y[random_index:random_index + batch_size] gradient = 2 / batch_size * Xi.T @ (Xi @ beta - yi) G += gradient**2 adjusted_gradient = gradient / (np.sqrt(G) + epsilon) if use_momentum: velocity = momentum * velocity - eta * adjusted_gradient beta += velocity else: beta -= eta * adjusted_gradient return beta In [51]: def rmsprop(X, y, beta, eta, epsilon=1e-8, decay_rate=0.9, momentum=0, use_momentum=False): velocity = np.zeros(beta.shape) G = np.zeros(beta.shape) for i in range(n_iterations): for j in range(n_batches): random_index = np.random.randint(n_batches) * batch_size Xi = X[random_index:random_index + batch_size] yi = y[random_index:random_index + batch_size] gradient = 2 / batch_size * Xi.T @ (Xi @ beta - yi) G = decay_rate * G + (1 - decay_rate) * gradient**2 adjusted_gradient = gradient / (np.sqrt(G) + epsilon) if use_momentum: velocity = momentum * velocity - eta * adjusted_gradient beta += velocity else: beta -= eta * adjusted_gradient return beta In [52]: def adam(X, y, beta, eta, epsilon=1e-8, beta1=0.9, beta2=0.999): m = np.zeros(beta.shape) # First moment v = np.zeros(beta.shape) # Second moment t = 0for i in range(n_iterations): for j in range(n_batches): random_index = np.random.randint(n_batches) * batch_size Xi = X[random_index:random_index + batch_size] yi = y[random_index:random_index + batch_size] gradient = 2 / batch_size * Xi.T @ (Xi @ beta - yi) m = beta1 * m + (1 - beta1) * gradientv = beta2 * v + (1 - beta2) * gradient**2 $m_hat = m / (1 - beta1**t)$ $v_{hat} = v / (1 - beta2**t)$ beta == eta * m_hat / (np.sqrt(v_hat) + epsilon) return beta In [55]: def tune_with_adaptive_methods(X, y, method='adagrad', use_momentum=False, lambda_ridge=0, ridge=Fa best_eta = None best_error = np.inf print(f"Tuning {'Ridge' if ridge else 'OLS'} regression with {method}...\n") for eta in eta_values: beta = np.random.randn(3, 1) if method == 'adagrad': beta = adagrad(X, y, beta, eta, use_momentum=use_momentum) elif method == 'rmsprop': beta = rmsprop(X, y, beta, eta, use_momentum=use_momentum) elif method == 'adam': beta = adam(X, y, beta, eta)model = X @ beta error = np.mean((model - y)**2)print(f"Learning rate: {eta}, MSE: {error:.4f}") if error < best_error:</pre> best_error = error best_eta = eta print(f"Best MSE: {best_error:.4f} with Learning rate: {best_eta:.4f} for {method}") return best_eta, best_error In [56]: best_eta_adagrad, best_error_adagrad = tune_with_adaptive_methods(X, y, method='adagrad') best_eta_rmsprop, best_error_rmsprop = tune_with_adaptive_methods(X, y, method='rmsprop') best_eta_adam, best_error_adam = tune_with_adaptive_methods(X, y, method='adam') Tuning OLS regression with adagrad... Learning rate: 0.1, MSE: 0.9715 Learning rate: 0.01, MSE: 29.1522 Learning rate: 0.001, MSE: 229.3693 Best MSE: 0.9715 with Learning rate: 0.1000 for adagrad Tuning OLS regression with rmsprop...

Learning rate: 0.1, MSE: 0.9407 Learning rate: 0.01, MSE: 0.9406 Learning rate: 0.001, MSE: 1.1001

Tuning OLS regression with adam...

Learning rate: 0.1, MSE: 1.0783 Learning rate: 0.01, MSE: 0.9441 Learning rate: 0.001, MSE: 1.1148

Best MSE: 0.9406 with Learning rate: 0.0100 for rmsprop

Best MSE: 0.9441 with Learning rate: 0.0100 for adam

Exercises week 41

import matplotlib.pyplot as plt

x = 2 * np.random.rand(n, 1)

sort_index = np.argsort(x, axis=0)

Gradient decent

from sklearn.metrics import mean squared error, r2 score

y = 4 + 3 * x + 5 * x**2 + np.random.randn(n, 1)

In [46]: **import** numpy **as** np

n = 100

In [47]: #sort the data

