## Homework Assignment 2

#### Chenglong Wang

#### 1 Kalman Filters

1. We can calculate  $P(\mathbf{X}_1)$  as follows:

$$P(\mathbf{X}_1) = \int_x \sum_{i=1}^k P(\mathbf{X}_1 | S_0 = i, X_0 = x) P(S_0 = i) P(X_0 = x) dx$$
$$= \sum_{i=1}^k P(S_0 = i) \int_x P(\mathbf{X}_1 | S_0 = i, X_0 = x) P(X_0 = x) dx$$

Note that in the last step formula,  $P(\mathbf{X}_1|S_0=i,X_0=x)$  and  $P(X_0=x)$  are both Gaussians, and their product is also Gaussian. Secondly, the integral of a Gaussian remains a Gaussian, so that  $P(\mathbf{X}_1)$  is a mixure of Gaussian with the proceeding sum over all switches.

2. First, we calculate  $P(\mathbf{X}_{t+1}|e_{1:t})$ :

$$P(\mathbf{X}_{t+1}|e_{1:t}) = \int_{x} \sum_{i} P(\mathbf{X}_{t+1}|X_{t} = x, S_{t} = i) P(X_{t} = x, S_{t} = i|e_{1:t}) dx$$

$$= \int_{x} \sum_{i} P(\mathbf{X}_{t+1}|X_{t} = x, S_{t} = i) P(X_{t} = x|S_{t} = i, e_{1:t}) P(S_{t} = i|e_{1:t}) dx$$

$$= \sum_{i} P(S_{t} = i|e_{1:t}) \int_{x} P(\mathbf{X}_{t+1}|X_{t} = x, S_{t} = i) P(X_{t} = x|S_{t} = i, e_{1:t}) dx$$

$$= \sum_{i} P(S_{t} = i|e_{1:t}) \int_{x} P(\mathbf{X}_{t+1}|X_{t} = x, S_{t} = i) P(X_{t} = x|e_{1:t}) dx$$

The last step is because  $\mathbf{X}_t$  does not depend on  $S_t$ . Since  $P(\mathbf{X}_t|e_{1:t})$  is m-mixture of Gaussian, and  $P(\mathbf{X}_{t+1}|X_t=x,S_t=i)$  is also Gaussian, their product followed by an integration is also an km-mixture, i.e.,  $P(\mathbf{X}_{t+1}|e_{1:t})$  is km-mixture of Gaussian.

Given  $P(\mathbf{X}_{t+1}|e_{1:t})$ , according to Beysian's lemma we have:

$$P(\mathbf{X}_{t+1}|e_{1:t+1}) = \alpha P(e_{t+1}|\mathbf{X}_{t+1})P(\mathbf{X}_{t+1}|e_{1:t})$$

so that  $P(\mathbf{X}_{t+1}|e_{1:t+1})$  is also an km-mixture of Gaussian.

3. From the last question we know that the km-mixture of Gaussian is weighted by  $P(S_t = i|e_{1:t})$ , i.e., the switch states given previous observations.

# 2 Graph and Independence Relations

1. Given  $Z_5 = 0$ , we have the following distribution table.

|           | $X_2 = 0$                       | $X_2 = 1$                 |
|-----------|---------------------------------|---------------------------|
| $X_3 = 0$ | $\frac{(1-q)^2}{q^2 + (1-q)^2}$ | 0                         |
| $X_3 = 1$ | 0                               | $\frac{q^2}{q^2+(1-q)^2}$ |

Given  $Z_5 = 1$ , we have the following distribution table.

|           | $X_2 = 0$ | $X_2 = 1$ |
|-----------|-----------|-----------|
| $X_3 = 0$ | 0         | 0.5       |
| $X_3 = 1$ | 0.5       | 0         |

2. The directed graph representation of the dependencies is show below.



Independence relations:

- $X_1, X_2$  are independent if  $Z_4$  is unknown.
- $X_2, X_3$  are independent if  $Z_5$  is unknown.
- $X_1, X_3$  are independent if (1)  $X_2$  is known, or (2)  $Z_4$  is unknown, or (3)  $Z_5$  is unknown.
- $Z_4, Z_5$  are independent if  $X_2$  is known.
- $Z_4, X_3$  are independent if (1)  $X_2$  is known or (2)  $Z_5$  is unknown.
- $Z_5, X_1$  are independent if (1)  $Z_4$  is unknown or (2)  $X_2$  is known.
- 3. The undirected graph representation of the relation is shown below.



4. If we want  $Z_5 \perp X_3$ , we need  $P(Z_5|X_3) = P(Z_5)$ , i.e., 0.5 = 2q(1-q), which requires q = 0.5. Similarly, when q = 0.5,  $Z_4 \perp X_1$ . This information does not show up in either diagram.

2

### 3 BN20 Networks

1. Given  $F_i$  and the subset of parents  $D_1, ..., D_l$ , their joint distribution is shown as follows:

$$\begin{split} P(F_i = f_i^0, D_1, ..., D_l) &= \sum_{D_{l+1}, ..., D_k} P(F_i = f_i^0, D_1, ..., D_l, D_{l+1}, ..., D_k) \\ &= \sum_{D_{l+1}, ..., D_k} P(F_i = f_i^0 | D_1, ..., D_k) P(D_1, ..., D_k) \\ &= \sum_{D_{l+1}, ..., D_k} \left[ (1 - \lambda_{i,0}) \prod_{j=1}^k (1 - \lambda_{i,j})^{d_j} \prod_{t=1}^k P(D_t) \right] \\ &= (1 - \lambda_{i,0}) \prod_{j=1}^l (1 - \lambda_{i,j})^{d_j} \sum_{D_{l+1}, ..., D_k} \prod_{t=l+1}^k (1 - \lambda_{i,t})^{d_t} P(D_t) \end{split}$$

Let  $A = \sum_{D_{l+1},\dots,D_k} \prod_{t=l+1}^k (1-\lambda_{i,t})^{d_t} P(D_t)$  and  $\lambda'_{i,0} = 1 - A(1-\lambda_{i,0})$ , we have the updated CPD as follows:

$$P(F_i = f_i^0 | D_1, ..., D_l) = (1 - \lambda'_{i,0}) \prod_{j=1}^l (1 - \lambda_{i,j})^{d_j}$$

$$= (1 - \lambda_{i,0}) \sum_{D_{l+1}, ..., D_k} \prod_{t=l+1}^k (1 - \lambda_{i,t})^{d_t} P(D_t) \prod_{j=1}^l (1 - \lambda_{i,j})^{d_j}$$

In this way, the joint distribution of  $F_i, D_1, ..., D_l$  is maintained.

2. The posterior probability can be different from the original one since some dependencies may be removed due to the deletion of some parents. For example, given a network with  $D_1, D_2, D_3$  and  $F_1, F_2$ , if  $D_1, D_2$  are parents of  $F_1$  and  $D_2, D_3$  are parents of  $F_2$ . If we remove the node  $D_2, D_1, D_3$  (or  $F_1, F_2$ ) become conditionally independence, which was not the case for the original one.

If no new conditional independence relations are introduced, the distribution remains exact.