CLASSIFICATION IN DEPOSIT ACCOUNTS

Marc Sandoval, Yahui Peng, Sabrina Fautheree STA 6933 Advanced Topics in Statistical Learning Department of Management Science and Statistics UTSA May 2, 2022

Agenda

- Business Problem
- Data Understanding
- Proposed Modeling Approaches

Business Problem

Business Problem: after an investigation, a bank has determined their decline in revenues is due to their existing customers not subscribing to long term deposits. The bank wants to focus their attention on customers that have a higher propensity to obtain these accounts

Business Objective:

Predict which banking customers that are likely to obtain long-term deposit accounts based on customer information and demographics

*https://www.kaggle.com/datasets/rashmiranu/banking-dataset-classification

Data Understanding

Number of Observations: 32,950

Number of Predictors: 15

Binary Response Variable

Response	Data Type	Description
у	binary	has the client subscribed a term deposit? ('yes','no')

Predictor	Data Type	Description	Missing Values
age	numeric	age of person	no
job	nominal	type of job	yes
marital	nominal	marital status	yes
education	nominal	level	yes
default	nominal	has credit in default?	yes
housing	nominal	has housing loan?	yes
loan	nominal	has personal loan?	yes
contact	nominal	contact communication type	no
dayofweek	nominal	last contact day of the week	no
duration	numeric	last contact duration, in seconds .	no
campaign	numeric	number of contacts performed during this campaign and for this client	no
pdays	numeric	number of days that passed by after the client was last contacted from a previous campaign (999 means client was not previously contacted)	no
previous	numeric	number of contacts performed before this campaign and for this client	no
poutcome	nominal	outcome of the previous marketing campaign	no

Pairwise Scatterplots, Correlation and Histograms

31724 out of 32950 obs have a *pdays* value of 999 (client was not previously contacted) Encode *pdays* value 999 to -1 for better visualization purpose.

Boxplots and Summary Statistics

age	duration	campaign	pdays	previous
Min. :17.00	Min. : 0.0	Min. : 1.000	Min. :-1.0000	Min. :0.0000
1st Qu.:32.00	1st Qu.: 103.0	1st Qu.: 1.000	1st Qu.:-1.0000	1st Qu.:0.0000
Median :38.00	Median : 180.0	Median : 2.000	Median :-1.0000	Median :0.0000
Mean :40.01	Mean : 258.1	Mean : 2.561	Mean :-0.7397	Mean :0.1747
3rd Qu.:47.00	3rd Qu.: 319.0	3rd Qu.: 3.000	3rd Qu.:-1.0000	3rd Qu.:0.0000
Max. :98.00	Max. :4918.0	Max. :56.000	Max. :27.0000	Max. :7.0000

Missing Patterns

Data Imputation

Predictor	% Missing
job	0.8%
marital	0.2%
education	4.24%
default	21.06%
housing	2.42%
loan	2.42%

Skewness Resolving for Training Data

Encode pdays of 999 to NA for preprocessing purposes.

age duration campaign pdays previous 0.5661764 1.1564039 5.1403350 1.0219250 1.2362670

Outliers Resolving for Training Data

After Capping Low and High Outliers with 5% and 95% Quantile Values, Respectively

Near-zero Variance Features

```
> names(data_train)[nearZeroVar(data_train)]
[1] "default"   "job3"   "job4"   "job6"   "job7"   "job9"
[7] "job11"   "education2" "education5" "month3"   "month9"   "month10"
[13] "month12"
```

Imbalanced Data

We observe that our response variable is imbalanced, which may cause poor performance in the minority class:

Class	Count	%
Y=0	29,238	0.887
Y=1	3,712	0.113

Apply a "Synthetic Minority Oversampling Technique" (SMOTE) to balance the data in the training partition. The algorithm duplicates records in the minority class using KNN:

Class	Count	%
Y=0	23,391	0.568
Y=1	17,820	0.432

Proposed Modeling Approaches

- ➤ We will focus on tree-based approaches
 - Nonparametric methods for classification would be appropriate for our data set, since it consists of categorical data
 - Interpretable methods are appropriate for our business problem: provide our client with demographics they can focus on
 - Models with better predictive power, such as neural nets, might be computationally expensive given the size of our data set
- ➤ **Methods**: random forest, bagging, boosting, and XGBoost. Explore other ensemble approaches if time allows

Questions?