

Enrolment No: EZZ (SE U082)

Name of Student: MAO HAV CAUPTA

Department/ School: SCSET

END-TERM EXAMINATION, ODD SEMESTER DECEMBER 2024

COURSE CODE: CSET 302

MAX. DURATION

2 HRS

COURSE NAME: Automata Theory and Computability PROGRAM: B.Tech

TOTAL MARKS

40

Mapping of Questions to Course and Program Outcomes						
Q.No.	A1	A2				B3
CO	2	1	A3	B1 2	B2 1	3
BTL	1-3	1,2	1,2	1-3	1, 2	1, 2
		3	2	4	2	3

GENERAL INSTRUCTIONS: -

- 1. Do not write anything on the question paper except name, enrolment number and department/school.
- 2. Carrying mobile phones, smartwatches and any other non-permissible materials in the examination hall is an act of UFM.

COURSE INSTRUCTIONS:

a) Attempt all question from each section.

SECTION A

[3Q X 5 Marks = 15 Marks]

- **A1)** Design a minimal DFA for language L = { $w \mid n_b \mid (w) \mod 5 < 2 \mid \text{over alphabet } \sum = \{a,b\}$. Where $n_b \mid (w) \mid$ represents number of b's in string "w". [5 Marks]
- A2) Construct the Context Free Grammar for the following language. Also check the ambiguity of the grammar. [5 Marks]
 - ı. $L = \{a^m b^n \mid m, n \ge 1 \text{ and } m \ne n \}$
 - $L = \{a^mb^nc^l | m,n \ge 1 \text{ and } m+n = \text{odd}\}$
- A3) Find out whether two different automatons shown in below figure are equivalent or not by detailing the steps used. [5 Marks]

SECTION B

[2Q X 10 Marks + 1Q X 5 Marks = 25 Marks]

- **B1)** Construct a TM for the language L = $\{a^nb^nc^n|n\geq 1\}$ over alphabet over $\Sigma=\{a,b,c\}$. [10 Marks] **B2)** What are the halting state for the above TM for the following inputs. Also show all the transitions used to check the halting state. [5 Marks]
 - I. abbcc
 - II. aabcc
- **B3)** Construct PDA that accepts the language $L=\{a^m \ b^n \ | \ m=n \ or \ 2m=n, n \ m\geq 1\}$ over $\sum=\{a,b\}$.

[10 Marks]

-ALL THE BEST-