NOIP 提高组模拟试题

选手须知

	返 7				
题目名称	小w 的质数 小w 的密室		小w 的佛光		
题目类型	传统型	传统型	传统型		
可执行文件名	prime	room	light		
输入文件名	prime.in	room.in	light.in		
输出文件名	prime.out	room.out	light.out		
每个测试点时限	则试点时限 1.0 秒 0.5 秒		2.0 秒		
内存限制	512MB	512MB	512MB		
测试点数目	20	20	20		
每个测试点分值	5	5	5		
对代码长度的限制	4KB	100KB	100KB		
提交的酒程序文件夕					

提交的源程序文件名

对于 C++语言	prime.cpp room.cpp		light.cpp
对于 C 语言	prime.c room.c		light.c
对于 Pascal 语言	prime.pas	room.pas	light.pas

编译选项

对于 C++语言	-02 -lm -02 -lm		-02 -1m
对于 C 语言	-02 -lm	-02 -lm	-02 - 1m
对于 Pascal 语言	-02	-02	-02

小W 的质数 (prime)

【题目背景】

小W 是一位热爱数学的男孩子, 在茫茫的数字中, 他对质数更有一种独特的情感。小W 认为, 质数是一切自然数起源的地方。

【题目描述】

在小w的认知里, 质数是除了本身和 1 以外, 没有其他因数的数字。

但由于小w对质数的热爱超乎寻常,所以小w同样喜欢那些虽然不是质数,但却是由两个质数相乘得来的数。

于是,我们定义,一个数是小w喜欢的数,当且仅当其是一个质数,或是两个质数的乘积。

而现在,小w 想要知道,在 L 到 R 之间,有多少数是他喜欢的数呢?

【输入格式】

从文件 prime.in 中读取数据。

第一行输入一个正整数 Q, 表示询问的组数。

接下来 Q 行,包含两个正整数 L 和 R,

保证 L≤R。 【输出格式】

输出 Q 行, 每行一个整数, 表示小w 喜欢的数的个数。

【样例 1 输入】

1

1 6

【样例 1 输出】

5

【样例 1 解释】

6 以内的质数有 2、3、5, 而 4 = 2 * 2,6 = 2 * 3, 因此, 2,3,4,5,6 都是小w 喜

欢的数,而1不

是。【样例 2】

见下发文件 prime2.in, prime2.ans

【样例 3】

见下发文件 prime3.in, prime3.ans

NOIP 提高组模拟试题

【数据范围及子任务】

测试点编号	L	R	Q
1		≤1000	
2			
3	≤1000		
4			
5			=1
6	≤100000	≤100000	
7			
8			
9	≤10 ⁷	≤10 ⁷	
10			
11			
12	≤1000	≤1000	
13			
14	≤100000	≤100000	≤100
15	4107	≤10 ⁷	
16	≤10 ⁷		
17			
18	≤100000	≤100000	
19			≤10⁵
20	≤10 ⁷	≤10 ⁷	

【题目背景】

小w 正困在一个密室里,他希望尽快逃出密室。

【题目描述】

密室中有 N 个房间,初始时,小W 在 1 号房间,而出口在 N 号房间。

密室的每一个房间中可能有着一些钥匙和一些传送门,一个传送门会**单向地**创造一条从房间 X 到房间 Y 的通道。另外,想要通过某个传送门,就必须具备一些种类的钥匙。幸运的是,钥匙在打开传送门的封印后,并不会消失。

然而,通过密室的传送门需要耗费大量的时间,因此,小w希望通过尽可能少的传送门到达出口,你能告诉小w这个数值吗?

另外,小w有可能不能逃出这个密室,如果是这样,请输出"No Solution"。

【输入格式】

从文件 room.in 中读取数据。

第一行三个整数 N、M、K,分别表示房间的数量、传送门的数量以及钥匙的种类数。

接下来 N 行,每行 K 个 0 或 1,若第 i 个数为 1,则表示该房间内有第 i 种钥匙,若第 i 个数为 0,则表示该房间内没有第 i 种钥匙。

接下来 M 行,每行先读入两个整数 X,Y,表示该传送门是建立在 X 号房间,通向 Y 号房间的,再读入 K 个 0 或 1,若第 1 个数为 1,则表示通过该传送门需

要i 种钥匙, 若第 i 个数为 0, 则表示通过该传送门不需要第 i 种钥匙。

【输出格式】

输出一行一个"No Solution",或一个整数,表示最少通过的传送门数。

【样例 1 输入】

3 3 2

1 0

0 1

0 0

1 3 1 1

1 2 1 0

2 3 1 1

【样例 1 输出】

【样例 2】

见下发文件 room2.in, room2.ans

【样例 3】

见下发文件 room3.in, room3.ans

【样例 4】 见下发文件 room4.in, room4.ans

NOIP 提高组模拟试题

【数据范围及子任务】

测试点编号	N	М	К
1			
2	≤5	≤10	
3			
4			
5	≤100	≤500	
6			=0
7			
8			
9	≤1000	≤5000	
10			
11			
12	≤5	≤10	_
13			=1
14	≤1000	≤5000	
15	≤5	≤10	
16			≤4
17	≤1000	≤5000	
18	≤5	≤10	
19	≤1000	≤5000	≤10
20	≤5000	≤6000	

小W 的佛光(light)

【题目背景】

小W 是远近闻名的学佛, 平日里最喜欢做的事就是蒸发学水。

【题目描述】

小W 所在的城市 X 城是一个含有 N 个节点的无向图,同时,由于 X 国是一个发展中国家,为了节约城市建设的经费,X 国首相在建造 X 城时只建造 N-1 条边,使得城市的各个地点能够相互到达。

小W 计划蒸发 Q 天的学水,每一天会有一名学水从 A 地走到 B 地,并在沿途各个地点留下一个水塘。此后,小W 会从 C 地走到 B 地,并用佛光蒸发沿途的水塘。由于 X 城是一个学佛横行的城市,学水留下的水塘即使没有被小W 蒸发,也会在第二天之前被其他学佛蒸发殆尽。

现在,小w 想要知道,他每一天能够蒸发多少水塘呢?

【输入格式】

从文件 light.in 中读取数据。

第一行三个整数 N、Q、NUM,分别表示 X 城地点的个数,小w 蒸发学水的天数,以及测试点编号。注意,测试点编号是为了让选手们更方便的获得部分分,你可能不需要用到这则信息,在下发的样例中,测试点编号的含义是该样例满足某一测试点限制。

接下来 N-1 行,每行两个整数 X、Y,表示 X 地与 Y 地之间有一条边。

接下来 Q 行,每行三个整数 A、B、C,表示一天中,有一名学水从 A 地走到 B 地,而小w 会从 C 地走到 B 地。

【输出格式】

输出 Q 行,每行一个整数,表示小w 能够蒸发的水塘数。

【样例 1 输入】

- 3 3 1
- 1 2
- 2 3
- 1 2 3
- 1 1 3
- 3 1 3

【样例 1 输出】

1

1

3

【样例 2】

见下发文件 light2.in, light2.ans

【样例 3】

见下发文件 light3.in, light3.ans

【样例 4】

见下发文件 light4.in, light4.ans

【数据范围及子任务】

特殊性质 1: 第 i 条边连接第 i 和第 i + 1 个地点。

特殊性质 2: A = C

特殊性质 2: A = 测试点编号	N	Q	特殊性质 1	特殊性质 2	
1		≤10	NO	NO	
2	≤10				
3					
4					
5					
6	≤1000	≤1000			
7					
8					
9	≤10 ⁵	≤30			
10					
11	≤10 ⁵	≤10 ⁵ ≤10 ⁵	YES	YES	
12				NO	
13					
14			NO	YES	
15					
16				NO	
17	≤2 * 10 ⁵			YES	
18				YES	NO
19		≤2 * 10 ⁵		YES	
20			NO	NO	