HOMEWORK 5: COHEN-MACAULAY AND CHARACTERISTIC p > 0DUE: MONDAY, APRIL 23

1) Show that the ring $R = K[x, y, u, v]/\langle x, y \rangle \cap \langle u, v \rangle$ from class 18 is non-CM. In particular, show that $\dim(R) = 2$ (what are its prime ideals?) and that modding out by any NZD leaves a ring with only units and zero-divisors.

Solution: We note that the prime ideals of R are exactly the prime ideals of K[x,y,u,v] containing $\langle x,y\rangle\cap\langle u,v\rangle$. Therefore, we may conclude that the prime ideals are those either containing $\langle x,y\rangle$ or $\langle u,v\rangle$. Thus, a longest chain of primes is

$$\langle x, y \rangle \subseteq \langle x, y, u \rangle \subseteq \langle x, y, u, v \rangle$$

Therefore, $\dim(R) = 2$. It goes to prove the claim about depth. In the local case, everything outside of the maximal ideal $\langle x, y, u, v \rangle$ is inverted. Consider the NZD x - u. Modding out by x - u sets x = u. Then

$$R/\langle x - u \rangle = K[x, y, v]/\langle x, y \rangle \cap \langle x, v \rangle = K[y, v]/\langle yv \rangle$$

(all localized). Therefore, there are no non-unit NZD remaining. So depth = 1.

2) Show that $\operatorname{Tor}_{i}^{R}(M \oplus M', N) \cong \operatorname{Tor}_{i}^{R}(M, N) \oplus \operatorname{Tor}_{i}^{R}(M', N)$.

Solution: If we direct sum a free resolution of M with M', we get one for $M \oplus M'$. Tensoring by N commutes with the direct sum. Thus the two agree.

3) Compute $\operatorname{Tor}_i^R(M,M)$ where $R=\mathbb{Z}/6\mathbb{Z}$ and $M=\mathbb{Z}/3\mathbb{Z}$.

Solution: Consider the SES

$$0 \to 3\mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z} \to 0$$

Tensoring up by M, we get

 $0 = \operatorname{Tor}_1(R, M) \to \operatorname{Tor}_1(M, M) \to 3\mathbb{Z}/6\mathbb{Z} \otimes_R M \to \mathbb{Z}/6\mathbb{Z} \otimes_R M \to \mathbb{Z}/3\mathbb{Z} \otimes_R M \to 0$

The middle term is $R \otimes_R M \cong M$, which holds in general. Because $R/I \otimes_R R/J = R/(I+J)$ by homework 3, problem 3, we have that the last term is again M. Finally, $3\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$ as $\mathbb{Z}/6\mathbb{Z}$ -modules, so this is 0 by the previous argument. So we conclude the exact sequence for $i \geq 1$ we have $\operatorname{Tor}_i^R(M,M) = 0$ (by induction) and $\operatorname{Tor}_0^R(M,M) = \mathbb{Z}/3\mathbb{Z}$.

4) Prove the following Proposition from class:

Proposition 0.1. A ring R is equal characteristic 0 if and only if $\mathbb{Q} \subseteq R$. A ring is characteristic p > 0, where p is a prime number, if and only if $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \subseteq R$. All other rings are mixed characteristic, which holds if and only if $\operatorname{char}(R) \neq \operatorname{char}(R/\mathfrak{m})$ for some maximal ideal \mathfrak{m} .

Solution: If a ring is equal characteristic, then it contains a field. The smallest field containing \mathbb{Z} is \mathbb{Q} , therefore the first statement holds naturally.

For the second, we know $\mathbb{Z}/p\mathbb{Z} \to R: 1 \mapsto 1$ by definition. This is \mathbb{F}_p ! Therefore we are done.

For the third, if R is a ring not containing a field, then $\mathbb{Z} \to R$. For every p prime, we may consider its image in R. If $p \mapsto 0$, then $R \supseteq \mathbb{F}_p$ and we would contradict our assumption. On the other hand, if every p is a unit in R, then $R \supseteq \mathbb{Q}$ necessarily. Therefore, $\exists p$ prime such that $p \in R$ is not a unit nor 0. Therefore, we can take \mathfrak{m} containing p > 0 maximal. Therefore, $\mathbb{Z}/p\mathbb{Z} \subseteq R/\mathfrak{m}$ has characteristic p > 0. However, R is observed to be characteristic 0. This completes the proof.

5) Show that if $R \subseteq S$, M is an S-module, and $Hom_R(S,R) \cong S$ as S-modules, then the map given by composition is surjective:

$$\operatorname{Hom}_S(M,S) \times \operatorname{Hom}_R(S,R) \to \operatorname{Hom}_R(M,R)$$

Solution: Given $\varphi \in \operatorname{Hom}_R(M,R)$, it goes to find $\varphi' \in \operatorname{Hom}_S(M,S)$ and $\psi \in \operatorname{Hom}_R(S,R)$ with $\psi \circ \varphi' = \varphi$.

By Hom-Tensor Adjointness, we have that

$$Hom_R(M,R) \cong Hom_R(M \otimes_S S, R) \cong Hom_S(M, Hom_R(S,R)) \cong Hom_S(M,S)$$

Where the maps are given by

$$\xi \mapsto \psi(m \otimes s) = \xi(sm) \mapsto \xi(m)(s) = \psi(m \otimes s) \mapsto \varphi(m) = A(\xi(m))$$

where A is the isomorphism stated in the question. Therefore,

$$(\xi, A^{-1}(1)) \mapsto \varphi$$

Thus the stated map is a surjection.

6) Prove (or recall) the following proposition from class:

Proposition 0.2. If R is a ring of characteristic p > 0, then $F : R \to R$ is injective if and only if R is reduced (e.g. the nilradical $\mathbb{N} = 0$).

Solution: Suppose that F is injective. Then $0 \neq r \mapsto r^p \neq 0$. If $r \neq 0$ but $r^n = 0$ for some n > 1 minimal, we know that $(r^{n-1})^p = r^{p(n-1)} = r^n r^{(p-1)(n-1)} = 0$. This contradicts the assumption.

On the other hand, if $r^p = 0$ for some $r \neq 0$, $r \in \mathbb{N}$. This completes the proof.

7) Show that localization commutes with F_* . That is to say $F_*W^{-1}R \cong W^{-1}F_*R$.

Solution: I claim that the desired isomorphism is

$$F_*W^{-1}R \to W^{-1}F_*R : F_*(w,r) = F_*(w^p, w^{p-1}r) \mapsto (w, F_*w^{p-1}r)$$

For the inverse inclusion, we send (w, F_*r) to $F_*(w^p, r)$. These are mutually inverse functions, so this proves the desired statement.

8) Find an example of a field which is not F-finite.

Solution: $\mathbb{F}_p(x_1, x_2, \ldots)$ is such a field. Note that this follows from the previous statement. If $R = \mathbb{F}_p[x_1, \ldots]$ then this has a free basis $\{x_{i_1}^{a_1} \cdots x_{i_n}^{a_n} \mid i_j, n \in \mathbb{N}, \ a_i = 0, \ldots, p-1\}$. Therefore, $F_*R \cong R^{\mathbb{Z}}$. Therefore, localizing at $W = R \setminus \{0\}$, we get the field above.

9) Find an example of an F-finite field which isn't perfect.

Solution: Similar to the last problem, $F_*\mathbb{F}_p(x)$ is p-dimensional vector space over \mathbb{F}_p .

10) Let $R = \mathbb{F}_q[x_1, \dots, x_n]$ for some $q = p^e$. Show that F_*R is a free R-module and calculate its rank.

Solution: The basis consists of

$$\{F_* x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mid 0 \le \alpha_i < p\}$$

This is because if $f = \sum k_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, then

$$F_*f = \sum_{alpha} F_* k_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n}$$

$$= \sum_{0 \le \alpha_i < p} k_{\alpha}^{\frac{1}{p}} x_1^{\lfloor \frac{\alpha_1}{p} \rfloor} \cdots x_n^{\lfloor \frac{\alpha_1}{p} \rfloor} F_* x_1^{p\{\frac{\alpha_1}{p}\}} \cdots x_n^{p\{\frac{\alpha_1}{p}\}}$$

Where the braces indicate the fractional part.