CAND	IDATE'S NAME
SIGNA	NTURE:
	UGANDA ADVANCED CERTIFICATE OF EDUCATION END OF TERM II EXAM, 2024 S5 CHEMISTRY PAPER TWO 2 HOURS 30 MINS
INSTR	UCTIONS:
-	Attempt any three questions in section A and any two questions in section B .
	SECTION A
1.	(a)(i) Describe how the molecular mass of a substance can be determined using the freezing point depression method. (6 marks)
molec	(ii) Explain why the method you have described above is not suitable for determining the ular mass of a polymer. (4 marks)
dio1(m	(b) Calculate the freezing point of a given soluting containing 4.2g of ethane -1, 2-nolecular mass 62) in 30g of water. (Kf of water is 18.6°C mol ⁻¹ per 100g). (4 marks)
	(c) The osmotic pressure of various concentrations of solute X in methyl benzene at 25°C

(c) The osmotic pressure of various concentrations of solute X in methyl benzene at 25°C are given in the table below.

Concentration (gdm ⁻³)	1.0	2.0	3.0	4.0	5.0
Osmotic pressure (Nm ⁻³)	23	37	53	75	92

- i) Plot a graph of osmotic pressure against concentration. (4 marks)
- ii) Use your graph to determine the molecular mass of X. (2 marks)
- 2. Complete the following equations and each case outline a mechanism for the reaction.

a)
$$CH_3CH = CH_2 \xrightarrow{H^+/H_2O}$$
 (4 marks) Warm

b)
$$CH_3CHCH_3$$
 Con. H_3PO_+ (4 marks)

c)
$$CH_3$$
 HBr (4 marks)

e)
$$CH_3$$
 $CH = CH_2$ HI (3 marks)

- 3. Beryllium and its compounds behave differently from the other elements.
- a) State the reasons for the anomalous behavior. (4 marks)
- b) Explain the reactions of Be, Mg, Ca and Sr with;
- i) Air (6 marks)
 ii) Water (6 marks)
 iii) Dilute hydrochloric acid (4 marks)
- 4. (a) Define the following terms;
 - i) Eutectic temperature (2 marks)ii) Eutectic mixture (2 marks)
- (b) The table below shows the melting points and compositions of various mixtures of cadmium and bismuth.

Percentage of cadmium	20	35	50	65	80	95
Melting point (°C)	226	190	156	184	242	300

Draw a labeled phase diagram for the cadmium-bismuth system. Use your graph to

- i) Determine the melting points of pure cadmium and pure bismuth. (2 marks)
- ii) Determine the composition and melting point of the eutectic mixture. (1 mark)
- iii) Describe what happens when a liquid mixture containing 90% bismuth at 350°C is gradually cooled. (4 marks)
- iv) Determine the mass of bismuth that crystalized when 20g of the mixture containing 25% cadmium was cooled from 300°C to 168°C. (4 marks)

SECTION B

- 5. (a) Describe the reaction of halogens with
- i) Water (5 marks)
- ii) Hot concentrated sodium hydroxide solution (7 marks)
 - (b) (i) Explain why hydrogen fluoride has a higher boiling point than hydrogen iodide. (3 marks)
 - (ii) Describe how aluminium can be purified from its ore. (5 marks)
- 6. (a) The solubility of lead (II) sulphate is 1.5 X 10-4mol-1 at 25°C.
- i) Write the equation for the solubility of lead (II) sulphate in water (2 marks)
- ii) Write an expression for the solubility product constant, Ksp, of lead (II) sulphate. (1 mark)
 - (b) Calculate the solubility product constant, Kspfor lead (II) sulphate at 25°C. *(4 marks)*
- (c)i) Sketch a graph that would be obtained if hydrochloric acid is titrated with ammonia solution. (3 marks)
 - (ii) Explain the shape of the graph in (c) above. (10 marks)
 - 7. (a) Write equations to show how the following syntheses can be carried out...

ii) CH_3CH_2OH to CH_2BrCH_2Br (4 marks)

(b) Complete the following equations and write the mechanism.

i)
$$CH_3CH = CH_2$$
 \xrightarrow{HBr} (4 marks)
$$CH_3OOCH_3$$

ii)
$$(CH_3)_2 CBrCH_3$$
 $CH_3 CH_2 OK/CH_3 CH_2 OH$ (4 marks)

Heat

iii)
$$CH_4 \xrightarrow{Cl_2} U. \ v \ light$$
 (4 marks)

- **8.** (a) 15dm³ of gaseous hydrocarbon X was exploded with 105dm³ of excess oxygen. The residue gas occupied 75dm³. On addition of concentrated potassium hydroxide, the volume reduced by 45dm³. Determine the molecular formula of X. (5 marks)
- (b) Describe the phase diagram of sulphur, and explain the position of the line in relation to melting point of sulphur. (8 marks)
- (c) 1.86g of compound X contains carbon, hydrogen and nitrogen only. On combustion, X liberated 5.28g of carbon dioxide gas and 224cm³ of nitrogen at s.t.p.
 - i) Determine the empirical formula of X. (3 marks)
 - ii) When vaporized, 0.2g of X occupied 81cm3 at 184.1°C 101325Pa, determine the molecular formula of X. (6 marks)

<u>END</u>