El eBook de Project Gutenberg: Calculus Made Easy, de Silvanus Thompson

Este eBook es para uso de cualquiera en los Estados Unidos y en la mayoría de las demás partes del mundo sin costo y con casi ninguna restricción. Puede copiarlo, regalarlo o reutilizarlo bajo los términos de la Licencia Project Gutenberg incluida con este eBook o en línea en www.gutenberg.org. Si no se encuentra en los Estados Unidos, tendrá que verificar las leyes del país donde se encuentre antes de usar este eBook.

Título: Calculus Made Easy

Siendo una introducción muy simple a esos bellos métodos que generalmente son llamados con los nombres aterradores de la Diferencia

Autor: Silvanus Thompson

Fecha de publicación: 9 de octubre de 2012 [eBook #33283]

Última actualización: 10 de agosto de 2025

Idioma: Inglés

Codificación de caracteres: UTF-8

*** INICIO DEL EBOOK DE PROJECT GUTENBERG CALCULUS MADE EASY ***

NOTA DEL TRANSCRIPTOR

Se han hecho cambios de presentación menores, y correcciones tipográficas y numéricas menores, sin comentarios. Todos los cambios textuales están detallados en el archivo fuente LATEX.

Este archivo PDF está optimizado para visualización en pantalla, pero puede recompilarse fácilmente para impresión. Consulte el preámbulo del archivo fuente IATEX para instrucciones.

CÁLCULO FÁCIL

MACMILLAN AND CO., LIMITED

 $\begin{array}{c} \text{LONDON: BOMBAY: CALCUTTA} \\ \\ \text{MELBOURNE} \end{array}$

THE MACMILLAN COMPANY

NEW YORK : BOSTON : CHICAGO DALLAS : SAN FRANCISCO

THE MACMILLAN CO. OF CANADA, LTD. ${\tt TORONTO}$

CÁLCULO FÁCIL:

SIENDO UNA INTRODUCCIÓN MUY SIMPLE A ESOS HERMOSOS MÉTODOS DE CÁLCULO QUE GENERALMENTE SE LLAMAN CON LOS NOMBRES TERRORÍFICOS DEL

CÁLCULO DIFERENCIAL

Y EL

CÁLCULO INTEGRAL.

BY

F. R. S.

SECOND EDITION, ENLARGED

MACMILLAN AND CO., LIMITED ST. MARTIN'S STREET, LONDON

COPYRIGHT.

First Edition 1910.
Reprinted 1911 (twice), 1912, 1913.
Second Edition 1914.

PREFACIO A LA SEGUNDA EDICIÓN.

El sorprendente éxito de esta obra ha llevado al autor a agregar un número considerable de ejemplos resueltos y ejercicios. También se ha aprovechado la oportunidad para ampliar ciertas partes donde la experiencia mostró que explicaciones adicionales serían útiles.

El autor reconoce con gratitud las muchas valiosas sugerencias y cartas recibidas de profesores, estudiantes y—críticos.

Octubre, 1914.

CONTENIDO.

GINA	r	CAPITULO
ix	Prólogo	
	En el que se cura al lector de su primer es-	I.
1	PANTO	
3	Sobre Diferentes Grados de Pequeñez	II.
9	Sobre Crecimientos Relativos	III.
17	Casos Más Simples	IV.
26	SIGUIENTE ETAPA. QUÉ HACER CON LAS CONSTANTES	V.
36	Sumas, Diferencias, Productos y Cocientes	VI.
50	Diferenciación Sucesiva	VII.
54	Cuando el Tiempo Varía	VIII.
69	Introduciendo un Truco Útil	IX.
78	Significado Geométrico de la Diferenciación	Χ.
94	Máximos y Mínimos	XI.
113	Curvatura de Curvas	XII.
122	Otros Trucos Útiles	XIII.
GINA	P	Capítulo

CÁLCULO	TO A COTT
CALCULU	FACIL

	•	٠	•
V	1	1]

XIV.	Sobre el verdadero Interés Compuesto y la Ley	
	DEL CRECIMIENTO ORGÁNICO	135
XV.	Cómo tratar con Senos y Cosenos	166
XVI.	DIFERENCIACIÓN PARCIAL	177
XVII.	Integración	185
XVIII.	Integrando como el Reverso de Diferenciar	194
XIX.	Sobre Encontrar Áreas por Integración	209
XX.	TRUCOS, TRAMPAS Y TRIUNFOS	229
XXI.	Encontrando algunas Soluciones	237
	Tabla de Formas Estándar	254
	Respuestas a los Ejercicios	257

PRÓLOGO.

TENIENDO en cuenta cuántos tontos saben calcular, es sorprendente que se considere una tarea difícil o tediosa para cualquier otro tonto aprender a dominar los mismos trucos.

Algunos trucos de cálculo son bastante fáciles. Otros son enormemente difíciles. Los tontos que escriben los libros de texto de matemáticas avanzadas, y en su mayoría son tontos inteligentes, rara vez se molestan en mostrarte lo fáciles que son los cálculos fáciles. Por el contrario, parecen desear impresionarte con su tremenda inteligencia abordándolos de la manera más difícil.

Siendo yo mismo un tipo notablemente estúpido, he tenido que desaprender las dificultades, y ahora ruego presentar a mis compañeros tontos las partes que no son difíciles. Domínalas a fondo y el resto vendrá por sí solo. Lo que un tonto puede hacer, otro también.

CAPÍTULO I.

EN EL QUE SE CURA AL LECTOR DE SU PRIMER ESPANTO.

La primera dificultad, que impide a la mayoría de los chicos de quinto curso incluso intentar aprender a calcular, puede abolirse de una vez por todas simplemente explicando cuál es el significado, en términos de sentido común, de los dos símbolos principales que se utilizan en el cálculo.

Estos temibles símbolos son:

(1) d que simplemente significa "una parte muy pequeña de."

Así dx significa una parte muy pequeña de x; o du significa una una parte muy pequeña de u. Los matemáticos ordinarios piensan que es más educado decir "diferencial de," en lugar de "una parte muy pequeña de." Como gustes. Pero encontrarás que estos pequeños pedazos (o elementos) pueden considerarse como indefinidamente pequeños.

(2) \int que es simplemente una S larga, y puede llamarse (si gustas) "la suma de."

Así $\int dx$ significa la suma de todos los pequeños pedazos de x; o $\int dt$ significa la suma de todos los pequeños pedazos de t. Los matemáticos ordinarios llaman a este símbolo "la integral de." Ahora

cualquier tonto puede ver que si x se considera como compuesta de muchos pequeños pedazos, cada uno de los cuales se llama dx, si los sumas todos juntos obtienes la suma de todas las dx's, (que es lo mismo que todo el x). La palabra "integral" simplemente significa "el todo." Si piensas en la duración del tiempo durante una hora, puedes (si gustas) pensar en ella como cortada en 3600 pequeños pedazos llamados segundos. El total de los 3600 pequeños pedazos sumados juntos hacen una hora.

Cuando veas una expresión que comience con este símbolo terrorífico, de ahora en adelante sabrás que está puesto allí simplemente para darte instrucciones de que ahora debes realizar la operación (si puedes) de sumar todos los pequeños pedazos que se indican por los símbolos que siguen.

Eso es todo.

CAPÍTULO II.

SOBRE DIFERENTES GRADOS DE PEQUEÑEZ.

ENCONTRAREMOS que en nuestros procesos de cálculo debemos tratar con pequeñas cantidades de varios grados de pequeñez.

También tendremos que aprender bajo qué circunstancias podemos considerar que las pequeñas cantidades son tan diminutas que podemos omitirlas de la consideración. Todo depende de la pequeñez relativa.

Antes de fijar cualquier regla, pensemos en algunos casos familiares. Hay 60 minutos en la hora, 24 horas en el día, 7 días en la semana. Por lo tanto hay 1440 minutos en el día y 10080 minutos en la semana.

Obviamente 1 minuto es una cantidad muy pequeña de tiempo comparada con una semana entera. De hecho, nuestros antepasados la consideraban pequeña comparada con una hora, y la llamaban "un minùte," significando una fracción diminuta—a saber, una sesentava parte—de una hora. Cuando llegaron a requerir subdivisiones aún más pequeñas del tiempo, dividieron cada minuto en 60 partes aún más pequeñas, que, en los días de la Reina Isabel, llamaron "segundos minùtes" (i.e. pequeñas cantidades del segundo orden de pequeñez). Hoy en día llamamos a estas pequeñas cantidades del segundo orden de pequeñez "segundos." Pero poca gente sabe por qué se llaman así.

Ahora, si un minuto es tan pequeño comparado con un día entero,

jcuánto más pequeño en comparación es un segundo!

De nuevo, piensa en un cuarto de penique comparado con una libra esterlina: apenas vale más de $\frac{1}{1000}$ parte. Un cuarto de penique más o menos es de muy poca importancia comparado con una libra esterlina: ciertamente puede considerarse como una cantidad *pequeña*. Pero compara un cuarto de penique con £1000: relativamente a esta suma mayor, el cuarto de penique no tiene más importancia que $\frac{1}{1000}$ de un cuarto de penique tendría para una libra esterlina. Incluso una libra esterlina de oro es relativamente una cantidad despreciable en la riqueza de un millonario.

Ahora, si fijamos cualquier fracción numérica como constituyendo la proporción que para cualquier propósito llamamos relativamente pequeña, podemos fácilmente establecer otras fracciones de un grado superior de pequeñez. Así, si, para el propósito del tiempo, $\frac{1}{60}$ se llama una fracción pequeña, entonces $\frac{1}{60}$ de $\frac{1}{60}$ (siendo una fracción pequeña de una fracción pequeña) puede considerarse como una cantidad pequeña del segundo orden de pequeñez.*

O, si para cualquier propósito fuéramos a tomar 1 por ciento $(i.e.\ \frac{1}{100})$ como una fracción pequeña, entonces 1 por ciento de 1 por ciento $(i.e.\ \frac{1}{10,000})$ sería una fracción pequeña del segundo orden de pequeñez; y $\frac{1}{1,000,000}$ sería una fracción pequeña del tercer orden de pequeñez, siendo 1 por ciento de 1 por ciento de 1 por ciento.

Por último, supongamos que para algún propósito muy preciso de-

*Los matemáticos hablan sobre el segundo orden de "magnitud" (i.e. grandeza) cuando realmente quieren decir segundo orden de $peque\~nez$. Esto es muy confuso para los principiantes.

beríamos considerar $\frac{1}{1,000,000}$ como "pequeño." Así, si un cronómetro de primera clase no debe perder o ganar más de medio minuto en un año, debe mantener el tiempo con una precisión de 1 parte en 1,051,200. Ahora, si para tal propósito, consideramos $\frac{1}{1,000,000}$ (o una millonésima) como una cantidad pequeña, entonces $\frac{1}{1,000,000}$ de $\frac{1}{1,000,000}$, es decir $\frac{1}{1,000,000,000,000}$ (o una billonésima) será una cantidad pequeña del segundo orden de pequeñez, y puede despreciarse por completo, en comparación.

Entonces vemos que cuanto más pequeña es una cantidad pequeña en sí misma, más despreciable se vuelve la cantidad pequeña correspondiente del segundo orden. Por lo tanto sabemos que en todos los casos estamos justificados en despreciar las cantidades pequeñas del segundo—o tercer (o superior)—órdenes, si solo tomamos la cantidad pequeña del primer orden suficientemente pequeña en sí misma.

Pero, debe recordarse, que las cantidades pequeñas si ocurren en nuestras expresiones como factores multiplicados por algún otro factor, pueden volverse importantes si el otro factor es en sí mismo grande. Incluso un cuarto de penique se vuelve importante si solo se multiplica por unos pocos cientos.

Ahora en el cálculo escribimos dx para un pequeño pedazo de x. Estas cosas como dx, y du, y dy, se llaman "diferenciales," la diferencial de x, o de u, o de y, según sea el caso. [Las lees como de-equis, o de-u, o de-i griega.] Si dx es un pequeño pedazo de x, y relativamente pequeño en sí mismo, no se sigue que cantidades como $x \cdot dx$, o $x^2 dx$, o $a^x dx$ sean despreciables. Pero $dx \times dx$ sería despreciable, siendo una cantidad pequeña del segundo orden.

Un ejemplo muy simple servirá como ilustración.

Pensemos en x como una cantidad que puede crecer por una pequeña cantidad para convertirse en x+dx, donde dx es el pequeño incremento añadido por el crecimiento. El cuadrado de esto es $x^2+2x\cdot dx+(dx)^2$. El segundo término no es despreciable porque es una cantidad de primer orden; mientras que el tercer término es del segundo orden de pequeñez, siendo un pedazo de un pedazo de x^2 . Así, si tomáramos dx signifique numéricamente, digamos, $\frac{1}{60}$ de x, entonces el segundo término sería $\frac{2}{60}$ de x^2 , mientras que el tercer término sería $\frac{1}{3600}$ de x^2 . Este último término es claramente menos importante que el segundo. Pero si vamos más lejos y tomamos dx para significar solo $\frac{1}{1000}$ de x, entonces el segundo término será $\frac{2}{1000}$ de x^2 , mientras que el tercer término será solo $\frac{1}{1,000,000}$ de x^2 .

Fig. 1.

Geométricamente esto puede representarse de la siguiente manera: Dibuje un cuadrado (Fig. 1) cuyo lado tomaremos para representar x. Ahora supongamos que el cuadrado crece agregando un poco dx a su tamaño en cada dirección. El cuadrado ampliado está compuesto del cuadrado original x^2 , los dos rectángulos en la parte superior y a la

derecha, cada uno de los cuales tiene un área $x \cdot dx$ (o juntos $2x \cdot dx$), y el pequeño cuadrado en la esquina superior derecha que es $(dx)^2$. En Fig. 2 hemos tomado dx como una fracción bastante grande de

Fig. 2. Fig. 3.

x—aproximadamente $\frac{1}{5}$. Pero supongamos que la hubiéramos tomado solo como $\frac{1}{100}$ —aproximadamente el grosor de una línea entintada dibujada con una pluma fina. Entonces el pequeño cuadrado de la esquina tendría un área de solo $\frac{1}{10,000}$ de x^2 , y sería prácticamente invisible. Claramente $(dx)^2$ es despreciable si solo consideramos que el incremento dx sea en sí mismo suficientemente pequeño.

Consideremos un símil.

Supongamos que un millonario fuera a decir a su secretario: la próxima semana te daré una pequeña fracción de cualquier dinero que me llegue. Supongamos que el secretario fuera a decir a su muchacho: te daré una pequeña fracción de lo que recibo. Supongamos que la fracción en cada caso sea $\frac{1}{100}$ parte. Ahora, si el Sr. Millonario reci-

biera durante la próxima semana £1000, el secretario recibiría £10 y el muchacho 2 chelines. Diez libras sería una cantidad pequeña comparada con £1000; pero dos chelines es una cantidad muy pequeña de hecho, de un orden muy secundario. Pero ¿cuál sería la desproporción si la fracción, en lugar de ser $\frac{1}{100}$, hubiera sido establecida en $\frac{1}{1000}$ parte? Entonces, mientras el Sr. Millonario obtuvo sus £1000, el Sr. Secretario obtendría solo £1, ¡y el muchacho menos de un cuarto de penique!

El ingenioso Deán Swift* una vez escribió:

"Así, los Nat'ralistas observan, una Pulga

"Tiene Pulgas menores que la devoran.

"Y estas tienen Pulgas menores que las muerdan,

"Y así prosiguen ad infinitum."

Un buey podría preocuparse por una pulga de tamaño ordinario una pequeña criatura del primer orden de pequeñez. Pero probablemente no se molestaría por la pulga de una pulga; siendo del segundo orden de pequeñez, sería despreciable. Incluso una gruesa de pulgas de pulgas no sería de mucha importancia para el buey.

^{*} On Poetry: a Rhapsody (p. 20), impreso en 1733—usualmente mal citado.

CAPÍTULO III.

SOBRE CRECIMIENTOS RELATIVOS.

A través de todo el cálculo estamos tratando con cantidades que están creciendo, y con tasas de crecimiento. Clasificamos todas las cantidades en dos clases: constantes y variables. Aquellas que consideramos de valor fijo, y llamamos constantes, generalmente las denotamos algebraicamente por letras del principio del alfabeto, tales como a, b, o c; mientras que aquellas que consideramos como capaces de crecer, o (como dicen los matemáticos) de "variar," las denotamos por letras del final del alfabeto, tales como x, y, z, u, v, w, o a veces t.

Además, usualmente estamos tratando con más de una variable a la vez, y pensando en la manera en que una variable depende de la otra: por ejemplo, pensamos en la manera en que la altura alcanzada por un proyectil depende del tiempo de alcanzar esa altura. O se nos pide considerar un rectángulo de área dada, e investigar cómo cualquier aumento en la longitud de él obligará a una disminución correspondiente en el ancho de él. O pensamos en la manera en que cualquier variación en la inclinación de una escalera causará que la altura que alcanza, varíe.

Supongamos que tenemos dos variables tales que dependen una de la otra. Una alteración en una traerá una alteración en la otra, debido a esta dependencia. Llamemos a una de las variables x, y a la otra que depende de ella y.

Supongamos que hacemos que x varíe, es decir, la alteramos o imaginamos que se altera, agregándole un poco que llamamos dx. Así estamos causando que x se convierta en x+dx. Entonces, porque x ha sido alterada, y también habrá cambiado, y se habrá convertido en y+dy. Aquí el poco dy puede ser en algunos casos positivo, en otros negativo; y no será (excepto por un milagro) del mismo tamaño que dx.

Tomemos dos ejemplos.

(1) Sean x e y respectivamente la base y la altura de un triángulo rectángulo (Fig. 4), del cual la pendiente del otro lado está fija en 30°.

Fig. 4.

Si suponemos que este triángulo se expande y aún mantiene sus ángulos iguales que al principio, entonces, cuando la base crece para convertirse en x+dx, la altura se convierte en y+dy. Aquí, aumentar x resulta en un aumento de y. El pequeño triángulo, cuya altura es dy, y cuya base es dx, es similar al triángulo original; y es obvio que el valor de la razón $\frac{dy}{dx}$ es el mismo que el de la razón $\frac{y}{x}$. Como el ángulo es 30° se

verá que aquí

$$\frac{dy}{dx} = \frac{1}{1.73}.$$

(2) Sea x representar, en Fig. 5, la distancia horizontal, desde una pared, del extremo inferior de una escalera, AB, de longitud fija; y sea

Fig. 5.

y la altura que alcanza en la pared. Ahora y claramente depende de x. Es fácil ver que, si tiramos del extremo inferior A un poco más lejos de la pared, el extremo superior B bajará un poco más. Expresemos esto en lenguaje científico. Si aumentamos x a x + dx, entonces y se convertirá en y - dy; es decir, cuando x recibe un incremento positivo el incremento que resulta en y es negativo.

Sí, ¿pero cuánto? Supongamos que la escalera era tan larga que cuando el extremo inferior A estaba a 19 pulgadas de la pared, el extremo superior B alcanzaba justamente 15 pies del suelo. Ahora, si fueras a tirar del extremo inferior 1 pulgada más, ¿cuánto bajaría el

extremo superior? Pongámoslo todo en pulgadas: x = 19 pulgadas, y = 180 pulgadas. Ahora el incremento de x que llamamos dx, es 1 pulgada: o x + dx = 20 pulgadas.

¿Cuánto disminuirá y? La nueva altura será y-dy. Si calculamos la altura por Euclides I. 47, entonces podremos encontrar cuánto será dy. La longitud de la escalera es

$$\sqrt{(180)^2 + (19)^2} = 181$$
 pulgadas.

Claramente entonces, la nueva altura, que es y-dy, será tal que

$$(y - dy)^2 = (181)^2 - (20)^2 = 32761 - 400 = 32361,$$

 $y - dy = \sqrt{32361} = 179.89$ pulgadas.

Ahora y es 180, así que dy es 180 – 179.89 = 0.11 pulgada.

Así vemos que hacer dx un aumento de 1 pulgada ha resultado en hacer dy una disminución de 0.11 pulgada.

Y la razón de dy a dx puede expresarse así:

$$\frac{dy}{dx} = -\frac{0.11}{1}.$$

También es fácil ver que (excepto en una posición particular) dy será de un tamaño diferente al de dx.

Ahora, a través de todo el cálculo diferencial estamos buscando, buscando, buscando una cosa curiosa, una mera razón, a saber, la proporción que dy tiene con dx cuando ambas son indefinidamente pequeñas.

Debe notarse aquí que solo podemos encontrar esta razón $\frac{dy}{dx}$ cuando y y x están relacionadas entre sí de alguna manera, de modo que siempre que x varíe y también varíe. Por ejemplo, en el primer ejemplo

recién tomado, si la base x del triángulo se hace más larga, la altura y del triángulo también se hace mayor, y en el segundo ejemplo, si la distancia x del pie de la escalera desde la pared se hace aumentar, la altura y alcanzada por la escalera disminuye de una manera correspondiente, lentamente al principio, pero más y más rápidamente a medida que x se hace mayor. En estos casos la relación entre x y y es perfectamente definida, puede expresarse matemáticamente, siendo $\frac{y}{x} = \tan 30^\circ$ y $x^2 + y^2 = l^2$ (donde l es la longitud de la escalera) respectivamente, y $\frac{dy}{dx}$ tiene el significado que encontramos en cada caso.

Si, mientras x es, como antes, la distancia del pie de la escalera desde la pared, y es, en lugar de la altura alcanzada, la longitud horizontal de la pared, o el número de ladrillos en ella, o el número de años desde que fue construida, cualquier cambio en x naturalmente no causaría ningún cambio en y; en este caso $\frac{dy}{dx}$ no tiene ningún significado, y no es posible encontrar una expresión para ello. Cuando usamos diferenciales dx, dy, dz, etc., se implica la existencia de algún tipo de relación entre x, y, z, etc., y esta relación se llama una "función" en x, y, z, etc.; las dos expresiones dadas arriba, por ejemplo, a saber $\frac{y}{x} = \tan 30^\circ$ y $x^2 + y^2 = l^2$, son funciones de x y y. Tales expresiones contienen implícitamente (es decir, contienen sin mostrarlo distintamente) los medios para expresar ya sea x en términos de y o y en términos de x, y por esta razón se llaman funciones implícitas en x y y; pueden ponerse respectivamente en las formas

$$y = x \tan 30^{\circ} \quad \text{o} \quad x = \frac{y}{\tan 30^{\circ}}$$

$$y = \sqrt{l^2 - x^2} \quad \text{o} \quad x = \sqrt{l^2 - y^2}.$$

Estas últimas expresiones establecen explícitamente (es decir, distintamente) el valor de x en términos de y, o de y en términos de x, y por esta razón se llaman funciones explícitas de x o y. Por ejemplo $x^2+3=2y-7$ es una función implícita en x y y; puede escribirse como $y=\frac{x^2+10}{2}$ (función explícita de x) o $x=\sqrt{2y-10}$ (función explícita de y). Vemos que una función explícita en x, y, z, etc., es simplemente algo cuyo valor cambia cuando x, y, z, etc., están cambiando, ya sea uno a la vez o varios juntos. Debido a esto, el valor de la función explícita se llama la variable dependiente, ya que depende de las valor de las otras cantidades variables en la función; estas otras variables se llaman las variables independientes porque su valor no está determinado por el valor asumido por la función. Por ejemplo, si $u=x^2\sin\theta$, x y θ son las variables independientes, y u es la variable dependiente.

A veces la relación exacta entre varias cantidades x, y, z no se conoce o no es conveniente establecerla; solo se sabe, o es conveniente establecer, que hay algún tipo de relación entre estas variables, de modo que uno no puede alterar ni x ni y ni z individualmente sin afectar las otras cantidades; la existencia de una función en x, y, z se indica entonces por la notación F(x, y, z) (función implícita) o por x = F(y, z), y = F(x, z) o z = F(x, y) (función explícita). A veces se usa la letra f o ϕ en lugar de F, de modo que y = F(x), y = f(x) y $y = \phi(x)$ todas significan lo mismo, a saber, que el valor de y depende del valor de x de alguna manera que no se especifica.

Llamamos a la razón $\frac{dy}{dx}$ "el coeficiente diferencial de y con respecto a x." Es un nombre científico solemne para esta cosa muy simple. Pero no vamos a asustarnos por nombres solemnes, cuando las cosas mismas

son tan fáciles. En lugar de asustarnos simplemente pronunciaremos una breve maldición sobre la estupidez de dar nombres largos y trabalenguas; y, habiendo aliviado nuestras mentes, seguiremos con la cosa simple misma, a saber la razón $\frac{dy}{dx}$.

En el álgebra ordinaria que aprendiste en la escuela, siempre estabas buscando alguna cantidad desconocida que llamabas x o y; o a veces había dos cantidades desconocidas que buscar simultáneamente. Ahora tienes que aprender a ir cazando de una manera nueva; siendo el zorro ahora ni x ni y. En lugar de esto tienes que cazar este curioso cachorro llamado $\frac{dy}{dx}$. El proceso de encontrar el valor de $\frac{dy}{dx}$ se llama "diferenciar." Pero, recuerda, lo que se quiere es el valor de esta razón cuando tanto dy como dx son ellas mismas indefinidamente pequeñas. El verdadero valor del coeficiente diferencial es aquel al que se aproxima en el caso límite cuando cada uno de ellos se considera como infinitesimalmente diminuto.

Aprendamos ahora cómo ir en busca de $\frac{dy}{dx}$.

NOTA AL CAPÍTULO III.

Cómo leer Diferenciales.

Nunca está bien caer en el error escolar de pensar que dx significa d por x, porque d no es un factor—significa "un elemento de" o "un poco de" lo que sigue. Uno lee dx así: "de-equis."

En caso de que el lector no tenga a nadie que lo guíe en tales asuntos, aquí puede decirse simplemente que uno lee coeficientes diferenciales de la siguiente manera. El coeficiente diferencial

$$\frac{dy}{dx}$$
 se lee "de-i-griega entre de-equis," o "de-i-griega sobre de-equis."

Así también
$$\frac{du}{dt} \text{ se lee "} de\text{-}u \text{ entre } de\text{-}te.$$
"

Los coeficientes diferenciales de segundo orden se encontrarán más adelante. Son como esto:

$$\frac{d^2y}{dx^2}$$
; que se lee "de-dos-i-griega sobre de-equis-al-cuadrado,"

y significa que la operación de diferenciar y con respecto a x ha sido (o tiene que ser) realizada dos veces.

Otra manera de indicar que una función ha sido diferenciada es poniendo un acento al símbolo de la función. Así si y = F(x), lo que significa que y es alguna función no especificada de x (véase p. 13), podemos escribir F'(x) en lugar de $\frac{d(F(x))}{dx}$. Similarmente, F''(x) significará que la función original F(x) ha sido diferenciada dos veces con respecto a x.

CAPÍTULO IV.

CASOS MÁS SIMPLES.

Ahora veamos cómo, partiendo de primeros principios, podemos diferenciar alguna expresión algebraica simple.

Case 1.

Comencemos con la expresión simple $y=x^2$. Ahora recuerda que la noción fundamental sobre el cálculo es la idea de *crecimiento*. Los matemáticos lo llaman *variación*. Ahora, como y y x^2 son iguales entre sí, está claro que si x crece, x^2 también crecerá. Y si x^2 crece, entonces y también crecerá. Lo que tenemos que averiguar es la proporción entre el crecimiento de y y el crecimiento de x. En otras palabras, nuestra tarea es encontrar la razón entre dy y dx, o, en resumen, encontrar el valor de $\frac{dy}{dx}$.

Que x, entonces, crezca un poquito más y se convierta en x + dx; similarmente, y crecerá un poco más y se convertirá en y+dy. Entonces, claramente, aún será cierto que la y aumentada será igual al cuadrado de la x aumentada. Escribiendo esto, tenemos:

$$y + dy = (x + dx)^2.$$

Haciendo el cuadrado obtenemos:

$$y + dy = x^2 + 2x \cdot dx + (dx)^2.$$

¿Qué significa $(dx)^2$? Recuerda que dx significaba un pedazo—un pequeño pedazo—de x. Entonces $(dx)^2$ significará un pequeño pedazo de un pequeño pedazo de x; es decir, como se explicó arriba (p. 4), es una cantidad pequeña del segundo orden de pequeñez. Por lo tanto puede descartarse como bastante despreciable en comparación con los otros términos. Dejándolo fuera, entonces tenemos:

$$y + dy = x^2 + 2x \cdot dx.$$

Ahora $y = x^2$; entonces restemos esto de la ecuación y nos queda

$$dy = 2x \cdot dx.$$

Dividiendo entre dx, obtenemos

$$\frac{dy}{dx} = 2x.$$

Ahora $esto^*$ es lo que nos propusimos encontrar. La razón del crecimiento de y al crecimiento de x es, en el caso que tenemos delante, 2x.

*N.B.—Esta razón $\frac{dy}{dx}$ es el resultado de diferenciar y con respecto a x. Diferenciar significa encontrar el coeficiente diferencial. Supongamos que tuviéramos alguna otra función de x, como, por ejemplo, $u=7x^2+3$. Entonces si nos dijeran que diferenciáramos esto con respecto a x, tendríamos que encontrar $\frac{du}{dx}$, o, lo que es lo mismo, $\frac{d(7x^2+3)}{dx}$. Por otro lado, podemos tener un caso en el que el tiempo

Ejemplo numérico.

Supongamos x=100 y $\therefore y=10,000$. Entonces dejemos que x crezca hasta que se convierta en 101 (es decir, sea dx=1). Entonces la y ampliada será $101 \times 101 = 10,201$. Pero si acordamos que podemos ignorar pequeñas cantidades del segundo orden, 1 puede rechazarse comparado con 10,000; así que podemos redondear la y ampliada a 10,200. y ha crecido de 10,000 a 10,200; la parte agregada es dy, que por lo tanto es 200.

 $\frac{dy}{dx} = \frac{200}{1} = 200$. Según el trabajo algebraico del párrafo anterior, encontramos $\frac{dy}{dx} = 2x$. Y así es; porque x = 100 y 2x = 200.

Pero, dirás, descuidamos una unidad completa.

Bien, prueba otra vez, haciendo dx un poco aún más pequeño.

Prueba $dx = \frac{1}{10}$. Entonces x + dx = 100.1, y

$$(x + dx)^2 = 100.1 \times 100.1 = 10,020.01.$$

Ahora la última cifra 1 es solo una millonésima parte del 10,000, y es completamente despreciable; así que podemos tomar 10,020 sin el pequeño decimal al final. Y esto hace dy = 20; y $\frac{dy}{dx} = \frac{20}{0.1} = 200$, que es aún lo mismo que 2x.

Case 2.

Trata de diferenciar $y = x^3$ de la misma manera.

Dejamos que y crezca a y + dy, mientras x crece a x + dx.

fuera la variable independiente (véase p. 14), tal como este: $y=b+\frac{1}{2}at^2$. Entonces, si nos dijeran que lo diferenciáramos, eso significa que debemos encontrar su coeficiente diferencial con respecto a t. De modo que entonces nuestro trabajo sería tratar de encontrar $\frac{dy}{dt}$, es decir, encontrar $\frac{d(b+\frac{1}{2}at^2)}{dt}$.

Entonces tenemos

$$y + dy = (x + dx)^3.$$

Haciendo el cubo obtenemos

$$y + dy = x^3 + 3x^2 \cdot dx + 3x(dx)^2 + (dx)^3.$$

Ahora sabemos que podemos despreciar pequeñas cantidades del segundo y tercer orden; ya que, cuando dy y dx se hacen ambas indefinidamente pequeñas, $(dx)^2$ y $(dx)^3$ se volverán indefinidamente más pequeñas por comparación. Así, considerándolas como despreciables, nos queda:

$$y + dy = x^3 + 3x^2 \cdot dx.$$

Pero $y = x^3$; y, restando esto, tenemos:

$$dy = 3x^2 \cdot dx,$$
$$\frac{dy}{dx} = 3x^2.$$

and

Case 3.

Trata de diferenciar $y = x^4$. Comenzando como antes dejando que tanto y como x crezcan un poco, tenemos:

$$y + dy = (x + dx)^4.$$

Desarrollando la elevación a la cuarta potencia, obtenemos

$$y + dy = x^4 + 4x^3 dx + 6x^2 (dx)^2 + 4x(dx)^3 + (dx)^4.$$

Entonces eliminando los términos que contienen todas las potencias superiores de dx, por ser despreciables en comparación, tenemos

$$y + dy = x^4 + 4x^3 dx.$$

Restando la $y = x^4$ original, nos queda

$$dy = 4x^3 dx,$$

and

$$\frac{dy}{dx} = 4x^3.$$

Ahora todos estos casos son bastante fáciles. Recopilemos los resultados para ver si podemos inferir alguna regla general. Pongámoslos en dos columnas, los valores de y en una y los valores correspondientes encontrados para $\frac{dy}{dx}$ en la otra: así

y	$\frac{dy}{dx}$
x^2	2x
x^3	$3x^2$
x^4	$4x^3$

Simplemente observa estos resultados: la operación de diferenciar parece haber tenido el efecto de disminuir la potencia de x en 1 (por ejemplo en el último caso reduciendo x^4 a x^3), y al mismo tiempo multiplicar por un número (el mismo número de hecho que originalmente aparecía como la potencia). Ahora, cuando hayas visto esto una vez, podrías fácilmente conjeturar cómo los otros resultarán. Esperarías que

diferenciando x^5 se obtuviera $5x^4$, o diferenciando x^6 se obtuviera $6x^5$. Si dudas, prueba uno de estos, y ve si la conjetura resulta correcta.

Prueba $y = x^5$.

Entonces
$$y + dy = (x + dx)^5$$

= $x^5 + 5x^4 dx + 10x^3 (dx)^2 + 10x^2 (dx)^3 + 5x(dx)^4 + (dx)^5$.

Despreciando todos los términos que contienen pequeñas cantidades de los órdenes superiores, nos queda

$$y+dy=x^5+5x^4\,dx,$$
y restando
$$y=x^5 \text{ nos deja}$$

$$dy=5x^4\,dx,$$
 de donde
$$\frac{dy}{dx}=5x^4, \text{ exactamente como supusimos.}$$

Siguiendo lógicamente nuestra observación, deberíamos concluir que si queremos tratar con cualquier potencia superior,—llamémosla n—podríamos abordarla de la misma manera.

Sea
$$y = x^n$$
,

entonces, deberíamos esperar encontrar que

$$\frac{dy}{dx} = nx^{(n-1)}.$$

Por ejemplo, sea n=8, entonces $y=x^8$; y diferenciándolo daría $\frac{dy}{dx}=8x^7$.

Y, de hecho, la regla de que diferenciar x^n da como resultado nx^{n-1} es verdadera para todos los casos donde n es un número entero y positivo. [Expandir $(x + dx)^n$ por el teorema binomial mostrará esto inmediatamente.] Pero la cuestión de si es verdadero para casos donde n tiene valores negativos o fraccionarios requiere ulterior consideración.

Caso de una potencia negativa.

Sea $y = x^{-2}$. Entonces procede como antes:

$$y + dy = (x + dx)^{-2}$$
$$= x^{-2} \left(1 + \frac{dx}{x} \right)^{-2}.$$

Expandiendo esto por el teorema binomial (véase p. 141), obtenemos

$$= x^{-2} \left[1 - \frac{2 dx}{x} + \frac{2(2+1)}{1 \times 2} \left(\frac{dx}{x} \right)^2 - \text{etc.} \right]$$
$$= x^{-2} - 2x^{-3} \cdot dx + 3x^{-4} (dx)^2 - 4x^{-5} (dx)^3 + \text{etc.}$$

Así, despreciando las pequeñas cantidades de órdenes superiores de pequeñez, tenemos:

$$y + dy = x^{-2} - 2x^{-3} \cdot dx.$$

Restando la $y=x^{-2}$ original, encontramos

$$dy = -2x^{-3}dx,$$
$$\frac{dy}{dx} = -2x^{-3}.$$

Y esto está aún de acuerdo con la regla inferida arriba.

Caso de una potencia fraccionaria.

Sea $y = x^{\frac{1}{2}}$. Entonces, como antes,

$$y + dy = (x + dx)^{\frac{1}{2}} = x^{\frac{1}{2}} \left(1 + \frac{dx}{x} \right)^{\frac{1}{2}}$$
$$= \sqrt{x} + \frac{1}{2} \frac{dx}{\sqrt{x}} - \frac{1}{8} \frac{(dx)^2}{x\sqrt{x}} + \text{términos con potencias}$$
superiores de dx .

Restando la $y=x^{\frac{1}{2}}$ original, y despreciando potencias superiores tenemos:

$$dy = \frac{1}{2} \frac{dx}{\sqrt{x}} = \frac{1}{2} x^{-\frac{1}{2}} \cdot dx,$$

y $\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$. De acuerdo con la regla general.

Resumen. Veamos hasta dónde hemos llegado. Hemos llegado a la siguiente regla: Para diferenciar x^n , multiplica por la potencia y reduce la potencia en uno, dándonos así nx^{n-1} como resultado.

Exercises I. (Véase p. 257 para las Respuestas.) Diferencia lo siguiente:

(1)
$$y = x^{13}$$

(2)
$$y = x^{-\frac{3}{2}}$$

(3)
$$y = x^{2a}$$

(4)
$$u = t^{2.4}$$

(5)
$$z = \sqrt[3]{u}$$

(6)
$$y = \sqrt[3]{x^{-5}}$$

(7)
$$u = \sqrt[5]{\frac{1}{x^8}}$$

$$(8) \ y = 2x^a$$

$$(9) \ y = \sqrt[q]{x^3}$$

$$(10) \ y = \sqrt[n]{\frac{1}{x^m}}$$

Ahora has aprendido cómo diferenciar potencias de x. ¡Qué fácil es!

CAPÍTULO V.

SIGUIENTE ETAPA. QUÉ HACER CON LAS CONSTANTES.

En nuestras ecuaciones hemos considerado que x crece, y como resultado de hacer que x crezca, y también cambió su valor y creció. Usualmente pensamos en x como una cantidad que podemos variar; y, considerando la variación de x como una especie de causa, consideramos la variación resultante de y como un efecto. En otras palabras, consideramos que el valor de y depende del de x. Tanto x como y son variables, pero x es aquella sobre la que operamos, y y es la "variable dependiente." En todo el capítulo precedente hemos estado tratando de encontrar reglas para la proporción que la variación dependiente en y guarda con la variación independientemente hecha en x.

Nuestro siguiente paso es averiguar qué efecto sobre el proceso de diferenciar es causado por la presencia de constantes, es decir, de números que no cambian cuando x o y cambian sus valores.

Constantes Sumadas.

Comencemos con algún caso simple de una constante sumada, así:

Sea $y = x^3 + 5.$

Justo como antes, supongamos que x crece a x + dx y y crece a y + dy.

Entonces:
$$y + dy = (x + dx)^3 + 5$$

= $x^3 + 3x^2 dx + 3x(dx)^2 + (dx)^3 + 5$.

Despreciando las pequeñas cantidades de órdenes superiores, esto se convierte en

$$y + dy = x^3 + 3x^2 \cdot dx + 5.$$

Resta la $y = x^3 + 5$ original, y nos queda:

$$dy = 3x^2 dx.$$
$$\frac{dy}{dx} = 3x^2.$$

Así que el 5 ha desaparecido completamente. No agregó nada al crecimiento de x, y no entra en el coeficiente diferencial. Si hubiéramos puesto 7, o 700, o cualquier otro número, en lugar de 5, habría desaparecido. Así que si tomamos la letra a, o b, o c para representar cualquier constante, simplemente desaparecerá cuando diferenciemos.

Si la constante adicional hubiera sido de valor negativo, tal como -5 o -b, igualmente habría desaparecido.

 $Constantes \ Multiplicadas.$

Toma como un experimento simple este caso:

Sea $y = 7x^2$.

Entonces al proceder como antes obtenemos:

$$y + dy = 7(x + dx)^{2}$$

$$= 7\{x^{2} + 2x \cdot dx + (dx)^{2}\}$$

$$= 7x^{2} + 14x \cdot dx + 7(dx)^{2}.$$

Entonces, restando la $y=7x^2$ original, y despreciando el último término, tenemos

$$dy = 14x \cdot dx.$$
$$\frac{dy}{dx} = 14x.$$

Ilustremos este ejemplo desarrollando las gráficas de las ecuaciones $y=7x^2$ y $\frac{dy}{dx}=14x$, asignando a x un conjunto de valores sucesivos, 0, 1, 2, 3, etc., y encontrando los valores correspondientes de y y de $\frac{dy}{dx}$. Estos valores los tabulamos como sigue:

x	0	1	2	3	4	5	-1	-2	-3
y	0	7	28	63	112	175	7	28	63
$\frac{dy}{dx}$	0	14	28	42	56	70	-14	-28	-42

Ahora grafica estos valores en alguna escala conveniente, y obtenemos las dos curvas, Figs. 6 y 6a.

Compara cuidadosamente las dos figuras, y verifica por inspección que la altura de la ordenada de la curva derivada, Fig. 6a, es proporcional a la *pendiente* de la curva original,* Fig. 6, en el valor correspondiente de x. A la izquierda del origen, donde la curva original tiene

^{*}Véase p. 79 acerca de las pendientes de las curvas.

pendiente negativa (es decir, hacia abajo de izquierda a derecha) las ordenadas correspondientes de la curva derivada son negativas.

Ahora si miramos hacia atrás en p. 18, veremos que simplemente diferenciar x^2 nos da 2x. Así que el coeficiente diferencial de $7x^2$ es justamente 7 veces tan grande como el de x^2 . Si hubiéramos tomado $8x^2$, el coeficiente diferencial habría resultado ocho veces tan grande como el de x^2 . Si ponemos $y = ax^2$, obtendremos

$$\frac{dy}{dx} = a \times 2x.$$

Si hubiéramos comenzado con $y = ax^n$, deberíamos haber tenido $\frac{dy}{dx} = a \times nx^{n-1}$. Así que cualquier mera multiplicación por una constante reaparece como una mera multiplicación cuando la cosa se diferencia. Y, lo que es verdadero acerca de la multiplicación es igualmente verdadero acerca de la división: porque si, en el ejemplo anterior,

hubiéramos tomado como constante $\frac{1}{7}$ en lugar de 7, deberíamos haber tenido la misma $\frac{1}{7}$ salir en el resultado después de la diferenciación.

Algunos Ejemplos Adicionales.

Los siguientes ejemplos adicionales, completamente desarrollados, te permitirán dominar completamente el proceso de diferenciación tal como se aplica a las expresiones algebraicas ordinarias, y te permitirán resolver por ti mismo los ejemplos dados al final de este capítulo.

(1) Diferencia
$$y = \frac{x^5}{7} - \frac{3}{5}$$
.

 $\frac{3}{5}$ es una constante sumada y desaparece (véase p. 26).

Podemos entonces escribir inmediatamente

$$\frac{dy}{dx} = \frac{1}{7} \times 5 \times x^{5-1},$$
$$\frac{dy}{dx} = \frac{5}{7}x^{4}.$$

or

(2) Diferencia $y = a\sqrt{x} - \frac{1}{2}\sqrt{a}$.

El término $\frac{1}{2}\sqrt{a}$ desaparece, siendo una constante sumada; y como $a\sqrt{x}$, en la forma de índice, se escribe $ax^{\frac{1}{2}}$, tenemos

$$\frac{dy}{dx} = a \times \frac{1}{2} \times x^{\frac{1}{2}-1} = \frac{a}{2} \times x^{-\frac{1}{2}},$$
$$\frac{dy}{dx} = \frac{a}{2\sqrt{x}}.$$

or

(3) Si $ay + bx = by - ax + (x + y)\sqrt{a^2 - b^2}$, encuentra el coeficiente diferencial de y con respecto a x.

Como regla, una expresión de este tipo necesitará un poco más de conocimiento del que hemos adquirido hasta ahora; sin embargo, siempre vale la pena intentar si la expresión puede ponerse en una forma más simple.

Primero debemos intentar llevarla a la forma y = alguna expresión que involucre solo x.

La expresión puede escribirse

$$(a-b)y + (a+b)x = (x+y)\sqrt{a^2 - b^2}.$$

Elevando al cuadrado, obtenemos

$$(a-b)^2y^2 + (a+b)^2x^2 + 2(a+b)(a-b)xy = (x^2 + y^2 + 2xy)(a^2 - b^2),$$

que se simplifica a

$$(a-b)^2y^2 + (a+b)^2x^2 = x^2(a^2 - b^2) + y^2(a^2 - b^2);$$
o
$$[(a-b)^2 - (a^2 - b^2)]y^2 = [(a^2 - b^2) - (a+b)^2]x^2,$$
es decir
$$2b(b-a)y^2 = -2b(b+a)x^2;$$

por lo tanto
$$y = \sqrt{\frac{a+b}{a-b}}x$$
 y $\frac{dy}{dx} = \sqrt{\frac{a+b}{a-b}}$.

(4) El volumen de un cilindro de radio r y altura h está dado por la fórmula $V = \pi r^2 h$. Encuentra la tasa de variación del volumen con el radio cuando r = 5.5 pulg. y h = 20 pulg. Si r = h, encuentra las dimensiones del cilindro de modo que un cambio de 1 pulg. en el radio cause un cambio de 400 pulg. cúb. en el volumen.

La tasa de variación de V con respecto a r es

$$\frac{dV}{dr} = 2\pi r h.$$

Si r=5.5 pulg. y h=20 pulg. esto se convierte en 690.8. Esto significa que un cambio de radio de 1 pulgada causará un cambio de volumen de 690.8 pulg. cúb. Esto puede ser fácilmente verificado, pues los volúmenes con r=5 y r=6 son 1570 pulg. cúb. y 2260.8 pulg. cúb. respectivamente, y 2260.8 -1570=690.8.

También, si

$$r = h$$
, $\frac{dV}{dr} = 2\pi r^2 = 400$ y $r = h = \sqrt{\frac{400}{2\pi}} = 7.98$ pulg.

(5) La lectura θ de un pirómetro de radiación de Féry está relacionada con la temperatura Centígrada t del cuerpo observado por la relación

$$\frac{\theta}{\theta_1} = \left(\frac{t}{t_1}\right)^4,$$

donde θ_1 es la lectura correspondiente a una temperatura conocida t_1 del cuerpo observado.

Compara la sensibilidad del pirómetro a temperaturas 800° C., 1000° C., 1200° C., dado que leyó 25 cuando la temperatura era 1000° C.

La sensibilidad es la tasa de variación de la lectura con la temperatura, es decir $\frac{d\theta}{dt}$. La fórmula puede escribirse

$$\theta = \frac{\theta_1}{t_1^4} t^4 = \frac{25t^4}{1000^4},$$

y tenemos

$$\frac{d\theta}{dt} = \frac{100t^3}{1000^4} = \frac{t^3}{10,000,000,000}.$$

Cuando $t=800,\,1000$ y 1200, obtenemos $\frac{d\theta}{dt}=0.0512,\,0.1$ y 0.1728 respectivamente.

La sensibilidad se duplica aproximadamente de 800° a 1000°, y se vuelve tres cuartos tan grande hasta los 1200°.

Exercises II. (Ver p. 257 para las Respuestas.)

Diferencia las siguientes:

(1)
$$y = ax^3 + 6$$
.

(2)
$$y = 13x^{\frac{3}{2}} - c$$
.

(3)
$$y = 12x^{\frac{1}{2}} + c^{\frac{1}{2}}$$
.

(4)
$$y = c^{\frac{1}{2}}x^{\frac{1}{2}}$$
.

$$(5) \ u = \frac{az^n - 1}{c}.$$

(6)
$$y = 1.18t^2 + 22.4$$
.

Inventa algunos otros ejemplos por ti mismo y prueba tu habilidad para diferenciarlos.

- (7) Si l_t y l_0 son las longitudes de una barra de hierro a las temperaturas t° C. y 0° C. respectivamente, entonces $l_t = l_0(1 + 0.000012t)$. Encuentra el cambio de longitud de la barra por grado centígrado.
- (8) Se ha encontrado que si c es la potencia en candelas de una lámpara eléctrica incandescente, y V es el voltaje, $c = aV^b$, donde a y b son constantes.

Encuentra la tasa de cambio de la potencia en candelas con el voltaje, y calcula el cambio de potencia en candelas por voltio a 80, 100 y 120 voltios en el caso de una lámpara para la cual $a = 0.5 \times 10^{-10}$ y b = 6.

(9) La frecuencia n de vibración de una cuerda de diámetro D, longitud L y gravedad específica σ , tensada con una fuerza T, está dada

por

$$n = \frac{1}{DL} \sqrt{\frac{gT}{\pi \sigma}}.$$

Encuentra la tasa de cambio de la frecuencia cuando D, L, σ y T son variados individualmente.

 $\left(10\right)$ La mayor presión externa P que un tubo puede soportar sin colapsar está dada por

$$P = \left(\frac{2E}{1 - \sigma^2}\right) \frac{t^3}{D^3},$$

donde E y σ son constantes, t es el espesor del tubo y D es su diámetro. (Esta fórmula asume que 4t es pequeño comparado con D.)

Compara la tasa a la cual P varía para un pequeño cambio de espesor y para un pequeño cambio de diámetro ocurriendo por separado.

- (11) Encuentra, desde primeros principios, la tasa a la cual las siguientes varían con respecto a un cambio en el radio:
 - (a) la circunferencia de un círculo de radio r;
 - (b) el área de un círculo de radio r;
 - (c) el área lateral de un cono de dimensión inclinada l;
 - (d) el volumen de un cono de radio r y altura h;
 - (e) el área de una esfera de radio r;
 - (f) el volumen de una esfera de radio r.
- (12) La longitud L de una barra de hierro a la temperatura T siendo dada por $L = l_t [1 + 0.000012(T t)]$, donde l_t es la longitud a la temperatura t, encuentra la tasa de variación del diámetro D de una

llanta de hierro adecuada para ser encogida sobre una rueda, cuando la temperatura ${\cal T}$ varía.

CAPÍTULO VI.

SUMAS, DIFERENCIAS, PRODUCTOS Y COCIENTES.

HEMOS aprendido cómo diferenciar funciones algebraicas simples tales como $x^2 + c$ o ax^4 , y ahora tenemos que considerar cómo abordar la suma de dos o más funciones.

Por ejemplo, sea

$$y = (x^2 + c) + (ax^4 + b);$$

¿cuál será su $\frac{dy}{dx}$? ¿Cómo procederemos con este nuevo trabajo?

La respuesta a esta pregunta es bastante simple: simplemente diferéncialas, una tras otra, así:

$$\frac{dy}{dx} = 2x + 4ax^3$$
. (Resp.)

Si tienes alguna duda de si esto es correcto, prueba un caso más general, trabajándolo desde primeros principios. Y esta es la manera.

Sea y=u+v, donde u es cualquier función de x, y v cualquier otra función de x. Entonces, permitiendo que x aumente a x+dx, y aumentará a y+dy; y u aumentará a u+du; y v a v+dv.

Y tendremos:

$$y + dy = u + du + v + dv.$$

Restando la y = u + v original, obtenemos

$$dy = du + dv,$$

y dividiendo por dx, obtenemos:

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}.$$

Esto justifica el procedimiento. Diferencias cada función por separado y sumas los resultados. Así que si ahora tomamos el ejemplo del párrafo anterior, y ponemos los valores de las dos funciones, tendremos, usando la notación mostrada (p. 16),

$$\frac{dy}{dx} = \frac{d(x^2 + c)}{dx} + \frac{d(ax^4 + b)}{dx}$$
$$= 2x + 4ax^3,$$

exactamente como antes.

Si hubiera tres funciones de x, que podemos llamar u, v y w, de modo que

entonces

$$y = u + v + w;$$

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx}.$$

En cuanto a la sustracci'on, se sigue inmediatamente; pues si la función v hubiera tenido ella misma un signo negativo, su coeficiente diferencial también sería negativo; así que al diferenciar

$$y = u - v,$$
 deberíamos obtener
$$\frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx}.$$

Pero cuando llegamos a tratar con *Productos*, la cosa no es tan simple.

Supón que nos pidieran diferenciar la expresión

$$y = (x^2 + c) \times (ax^4 + b),$$

¿qué debemos hacer? El resultado ciertamente no será $2x \times 4ax^3$; pues es fácil ver que ni $c \times ax^4$, ni $x^2 \times b$, habrían sido tomados en ese producto.

Ahora hay dos maneras en las que podemos proceder.

Primera manera. Hace la multiplicación primero, y, habiendo trabajado esto, luego diferencia.

Por consiguiente, multiplicamos juntos $x^2 + c$ y $ax^4 + b$.

Esto da $ax^6 + acx^4 + bx^2 + bc$.

Ahora diferencia, y obtenemos:

$$\frac{dy}{dx} = 6ax^5 + 4acx^3 + 2bx.$$

Segunda manera. Regresa a primeros principios, y considera la ecuación

$$y = u \times v;$$

donde u es una función de x, y v es cualquier otra función de x. Entonces, si x crece a ser x+dx; y y a y+dy; y u se convierte en u+du, y v se convierte en v+dv, tendremos:

$$y + dy = (u + du) \times (v + dv)$$
$$= u \cdot v + u \cdot dv + v \cdot du + du \cdot dv.$$

Ahora $du \cdot dv$ es una cantidad pequeña del segundo orden de pequeñez, y por lo tanto en el límite puede ser descartada, dejando

$$y + dy = u \cdot v + u \cdot dv + v \cdot du.$$

Entonces, restando la $y = u \cdot v$ original, nos queda

$$dy = u \cdot dv + v \cdot du;$$

y, dividiendo por dx, obtenemos el resultado:

$$\frac{dy}{dx} = u\,\frac{dv}{dx} + v\,\frac{du}{dx}.$$

Esto muestra que nuestras instrucciones serán las siguientes: Para diferenciar el producto de dos funciones, multiplica cada función por el coeficiente diferencial de la otra, y suma los dos productos así obtenidos.

Debes notar que este proceso equivale a lo siguiente: Trata u como constante mientras diferencias v; luego trata v como constante mientras diferencias u; y todo el coeficiente diferencial $\frac{dy}{dx}$ será la suma de estos dos tratamientos.

Ahora, habiendo encontrado esta regla, aplícala al ejemplo concreto que fue considerado arriba.

Queremos diferenciar el producto

$$(x^2 + c) \times (ax^4 + b).$$

Llama
$$(x^2 + c) = u$$
; y $(ax^4 + b) = v$.

Entonces, por la regla general recién establecida, podemos escribir:

$$\frac{dy}{dx} = (x^2 + c) \frac{d(ax^4 + b)}{dx} + (ax^4 + b) \frac{d(x^2 + c)}{dx}$$

$$= (x^2 + c) 4ax^3 + (ax^4 + b) 2x$$

$$= 4ax^5 + 4acx^3 + 2ax^5 + 2bx,$$

$$\frac{dy}{dx} = 6ax^5 + 4acx^3 + 2bx,$$

exactamente como antes.

Finalmente, tenemos que diferenciar cocientes.

Piensa en este ejemplo, $y = \frac{bx^5 + c}{x^2 + a}$. En tal caso no sirve de nada tratar de hacer la división de antemano, porque $x^2 + a$ no dividirá a $bx^5 + c$, ni tampoco tienen algún factor común. Así que no queda otra opción más que regresar a primeros principios, y encontrar una regla.

Así que pondremos
$$y = \frac{u}{v}$$
;

donde u y v son dos funciones diferentes de la variable independiente x. Entonces, cuando x se convierte en x + dx, y se convertirá en y + dy; y u se convertirá en u + du; y v se convertirá en v + dv. Así entonces

$$y + dy = \frac{u + du}{v + dv}.$$

Ahora realiza la división algebraica, así:

$$\underbrace{u + dv \quad u + du}_{v} \quad \underbrace{\frac{u \cdot dv}{v} - \frac{u \cdot dv}{v^{2}}}_{u + \frac{u \cdot dv}{v}}$$

$$\underbrace{\frac{du - \frac{u \cdot dv}{v}}{v}}_{du + \frac{du \cdot dv}{v}}$$

$$- \frac{u \cdot dv}{v} - \frac{du \cdot dv}{v}$$

$$- \frac{u \cdot dv \cdot dv}{v} - \frac{u \cdot dv \cdot dv}{v^{2}}$$

$$- \frac{du \cdot dv}{v} + \frac{u \cdot dv \cdot dv}{v^{2}}.$$

Como ambos residuos son cantidades pequeñas del segundo orden, pueden ser despreciados, y la división puede detenerse aquí, ya que cualquier residuo adicional sería de magnitudes aún menores.

Así que hemos obtenido:

$$y + dy = \frac{u}{v} + \frac{du}{v} - \frac{u \cdot dv}{v^2};$$

que puede escribirse

$$= \frac{u}{v} + \frac{v \cdot du - u \cdot dv}{v^2}.$$

Ahora resta la $y = \frac{u}{v}$ original, y nos queda:

$$dy = \frac{v \cdot du - u \cdot dv}{v^2};$$

$$\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}.$$

de donde

Esto nos da nuestras instrucciones sobre cómo diferenciar un cociente de dos funciones. Multiplica la función divisor por el coeficiente diferencial de la función dividendo; luego multiplica la función dividendo por el coeficiente diferencial de la función divisor; y resta. Finalmente divide por el cuadrado de la función divisor.

Regresando a nuestro ejemplo $y = \frac{bx^5 + c}{x^2 + a}$,

escribe
$$bx^5 + c = u;$$
$$x^2 + a = v.$$

Entonces

$$\frac{dy}{dx} = \frac{(x^2 + a)\frac{d(bx^5 + c)}{dx} - (bx^5 + c)\frac{d(x^2 + a)}{dx}}{(x^2 + a)^2}$$

$$= \frac{(x^2 + a)(5bx^4) - (bx^5 + c)(2x)}{(x^2 + a)^2},$$

$$\frac{dy}{dx} = \frac{3bx^6 + 5abx^4 - 2cx}{(x^2 + a)^2}. \quad (Respuesta.)$$

El desarrollo de cocientes es a menudo tedioso, pero no hay nada difícil al respecto.

Algunos ejemplos adicionales completamente desarrollados se dan a continuación.

(1) Diferencia
$$y = \frac{a}{b^2}x^3 - \frac{a^2}{b}x + \frac{a^2}{b^2}$$
.

Siendo una constante, $\frac{a^2}{h^2}$ se desvanece, y tenemos

$$\frac{dy}{dx} = \frac{a}{b^2} \times 3 \times x^{3-1} - \frac{a^2}{b} \times 1 \times x^{1-1}.$$

Pero $x^{1-1} = x^0 = 1$; así que obtenemos:

$$\frac{dy}{dx} = \frac{3a}{b^2}x^2 - \frac{a^2}{b}.$$

(2) Diferencia
$$y = 2a\sqrt{bx^3} - \frac{3b\sqrt[3]{a}}{x} - 2\sqrt{ab}$$
.

Poniendo x en la forma de índice, obtenemos

$$y = 2a\sqrt{b}x^{\frac{3}{2}} - 3b\sqrt[3]{a}x^{-1} - 2\sqrt{ab}.$$

Ahora

ο,

$$\frac{dy}{dx} = 2a\sqrt{b} \times \frac{3}{2} \times x^{\frac{3}{2}-1} - 3b\sqrt[3]{a} \times (-1) \times x^{-1-1};$$
$$\frac{dy}{dx} = 3a\sqrt{bx} + \frac{3b\sqrt[3]{a}}{x^2}.$$

(3) Diferencia
$$z = 1.8 \sqrt[3]{\frac{1}{\theta^2}} - \frac{4.4}{\sqrt[5]{\theta}} - 27^{\circ}$$
.

Esto puede escribirse: $z=1.8\,\dot{\theta}^{-\frac{2}{3}}-4.4\,\theta^{-\frac{1}{5}}-27^{\circ}.$

El 27° se desvanece, y tenemos

$$\frac{dz}{d\theta} = 1.8 \times -\frac{2}{3} \times \theta^{-\frac{2}{3}-1} - 4.4 \times \left(-\frac{1}{5}\right) \theta^{-\frac{1}{5}-1};$$
o,
$$\frac{dz}{d\theta} = -1.2 \theta^{-\frac{5}{3}} + 0.88 \theta^{-\frac{6}{5}};$$
o,
$$\frac{dz}{d\theta} = \frac{0.88}{\sqrt[5]{\theta^6}} - \frac{1.2}{\sqrt[3]{\theta^5}}.$$

(4) Diferencia $v = (3t^2 - 1.2t + 1)^3$.

Una manera directa de hacer esto se explicará más adelante (ver p. 69); pero aún así podemos manejarlo ahora sin ninguna dificultad.

Desarrollando el cubo, obtenemos

$$v = 27t^6 - 32.4t^5 + 39.96t^4 - 23.328t^3 + 13.32t^2 - 3.6t + 1$$

por tanto

$$\frac{dv}{dt} = 162t^5 - 162t^4 + 159.84t^3 - 69.984t^2 + 26.64t - 3.6.$$

(5) Diferencia $y = (2x - 3)(x + 1)^2$.

$$\frac{dy}{dx} = (2x - 3) \frac{d[(x+1)(x+1)]}{dx} + (x+1)^2 \frac{d(2x-3)}{dx}$$

$$= (2x - 3) \left[(x+1) \frac{d(x+1)}{dx} + (x+1) \frac{d(x+1)}{dx} \right]$$

$$+ (x+1)^2 \frac{d(2x-3)}{dx}$$

$$= 2(x+1) \left[(2x-3) + (x+1) \right] = 2(x+1)(3x-2);$$

o, más simplemente, multiplica y luego diferencia.

(6) Diferencia $y = 0.5x^3(x-3)$.

$$\frac{dy}{dx} = 0.5 \left[x^3 \frac{d(x-3)}{dx} + (x-3) \frac{d(x^3)}{dx} \right]$$
$$= 0.5 \left[x^3 + (x-3) \times 3x^2 \right] = 2x^3 - 4.5x^2.$$

Las mismas observaciones que para el ejemplo anterior.

(7) Diferencia
$$w = \left(\theta + \frac{1}{\theta}\right) \left(\sqrt{\theta} + \frac{1}{\sqrt{\theta}}\right)$$
.

Esto puede escribirse

$$w = (\theta + \theta^{-1})(\theta^{\frac{1}{2}} + \theta^{-\frac{1}{2}}).$$

$$\frac{dw}{d\theta} = (\theta + \theta^{-1})\frac{d(\theta^{\frac{1}{2}} + \theta^{-\frac{1}{2}})}{d\theta} + (\theta^{\frac{1}{2}} + \theta^{-\frac{1}{2}})\frac{d(\theta + \theta^{-1})}{d\theta}$$

$$= (\theta + \theta^{-1})(\frac{1}{2}\theta^{-\frac{1}{2}} - \frac{1}{2}\theta^{-\frac{3}{2}}) + (\theta^{\frac{1}{2}} + \theta^{-\frac{1}{2}})(1 - \theta^{-2})$$

$$= \frac{1}{2}(\theta^{\frac{1}{2}} + \theta^{-\frac{3}{2}} - \theta^{-\frac{1}{2}} - \theta^{-\frac{5}{2}}) + (\theta^{\frac{1}{2}} + \theta^{-\frac{1}{2}} - \theta^{-\frac{3}{2}} - \theta^{-\frac{5}{2}})$$

$$= \frac{3}{2}\left(\sqrt{\theta} - \frac{1}{\sqrt{\theta^5}}\right) + \frac{1}{2}\left(\frac{1}{\sqrt{\theta}} - \frac{1}{\sqrt{\theta^3}}\right).$$

Esto, nuevamente, podría obtenerse más simplemente multiplicando primero los dos factores, y diferenciando después. Esto no es, sin embargo, siempre posible; ve, por ejemplo, p. 174, ejemplo 8, en el cual la regla para diferenciar un producto debe ser usada.

(8) Diferencia
$$y = \frac{a}{1 + a\sqrt{x} + a^2x}$$
.

$$\frac{dy}{dx} = \frac{(1 + ax^{\frac{1}{2}} + a^2x) \times 0 - a\frac{d(1 + ax^{\frac{1}{2}} + a^2x)}{dx}}{(1 + a\sqrt{x} + a^2x)^2}$$
$$= -\frac{a(\frac{1}{2}ax^{-\frac{1}{2}} + a^2)}{(1 + ax^{\frac{1}{2}} + a^2x)^2}.$$

(9) Diferencia
$$y = \frac{x^2}{x^2 + 1}$$
.
$$\frac{dy}{dx} = \frac{(x^2 + 1) 2x - x^2 \times 2x}{(x^2 + 1)^2} = \frac{2x}{(x^2 + 1)^2}.$$

(10) Diferencia
$$y = \frac{a + \sqrt{x}}{a - \sqrt{x}}$$
.

En la forma indexada, $y = \frac{a + x^{\frac{1}{2}}}{a - x^{\frac{1}{2}}}$.

$$\frac{dy}{dx} = \frac{(a - x^{\frac{1}{2}})(\frac{1}{2}x^{-\frac{1}{2}}) - (a + x^{\frac{1}{2}})(-\frac{1}{2}x^{-\frac{1}{2}})}{(a - x^{\frac{1}{2}})^2} = \frac{a - x^{\frac{1}{2}} + a + x^{\frac{1}{2}}}{2(a - x^{\frac{1}{2}})^2 x^{\frac{1}{2}}};$$
por tanto
$$\frac{dy}{dx} = \frac{a}{(a - \sqrt{x})^2 \sqrt{x}}.$$

(11) Diferencia
$$\theta = \frac{1 - a\sqrt[3]{t^2}}{1 + a\sqrt[2]{t^3}}.$$
 Ahora
$$\theta = \frac{1 - at^{\frac{2}{3}}}{1 + at^{\frac{3}{2}}}.$$

$$\frac{d\theta}{dt} = \frac{(1+at^{\frac{3}{2}})(-\frac{2}{3}at^{-\frac{1}{3}}) - (1-at^{\frac{2}{3}}) \times \frac{3}{2}at^{\frac{1}{2}}}{(1+at^{\frac{3}{2}})^2}$$
$$= \frac{5a^2\sqrt[6]{t^7} - \frac{4a}{\sqrt[3]{t}} - 9a\sqrt[2]{t}}{6(1+a\sqrt[2]{t^3})^2}.$$

(12) Un depósito de sección transversal cuadrada tiene lados inclinados en un ángulo de 45° con la vertical. El lado del fondo es 200 pies. Encuentra una expresión para la cantidad que entra o sale cuando la profundidad del agua varía en 1 pie; de ahí encuentra, en galones, la cantidad retirada por hora cuando la profundidad se reduce de 14 a 10 pies en 24 horas.

El volumen de un tronco de pirámide de altura H, y de bases A y a, es $V = \frac{H}{3}(A + a + \sqrt{Aa})$. Es fácil ver que, siendo la pendiente 45°, si la profundidad es h, la longitud del lado de la superficie cuadrada del

agua es 200 + 2h pies, de modo que el volumen de agua es

$$\frac{h}{3}[200^2 + (200 + 2h)^2 + 200(200 + 2h)] = 40,000h + 400h^2 + \frac{4h^3}{3}.$$

 $\frac{dV}{dh} = 40,000 + 800h + 4h^2 = \text{ pies cúbicos por pie de variación de profundidad. El nivel medio de 14 a 10 pies es 12 pies, cuando <math>h = 12$, $\frac{dV}{dh} = 50,176 \text{ pies cúbicos.}$

Galones por hora correspondientes a un cambio de profundidad de 4 pie en 24 horas $=\frac{4\times50,176\times6.25}{24}=52,267$ galones.

(13) La presión absoluta, en atmósferas, P, del vapor saturado a la temperatura t° C. está dada por Dulong como siendo $P = \left(\frac{40+t}{140}\right)^{5}$ mientras t esté por encima de 80°. Encuentra la tasa de variación de la presión con la temperatura a 100° C.

Expande el numerador por el teorema binomial (ver p. 141).

$$P = \frac{1}{140^5} (40^5 + 5 \times 40^4 t + 10 \times 40^3 t^2 + 10 \times 40^2 t^3 + 5 \times 40 t^4 + t^5);$$

por tanto
$$\frac{dP}{dt} = \frac{1}{537,824 \times 10^5}$$
$$(5 \times 40^4 + 20 \times 40^3 t + 30 \times 40^2 t^2 + 20 \times 40 t^3 + 5 t^4),$$

cuando t=100 esto se convierte en 0.036 atmósfera por grado centígrado de cambio de temperatura.

Exercises III. (Ver las Respuestas en p. 258.)

(1) Diferencia

(a)
$$u = 1 + x + \frac{x^2}{1 \times 2} + \frac{x^3}{1 \times 2 \times 3} + \cdots$$

(b)
$$y = ax^2 + bx + c$$
. (c) $y = (x+a)^2$.

$$(d) y = (x+a)^3.$$

- (2) Si $w = at \frac{1}{2}bt^2$, encuentra $\frac{dw}{dt}$.
- (3) Encuentra el coeficiente diferencial de

$$y = (x + \sqrt{-1}) \times (x - \sqrt{-1}).$$

(4) Diferencia

$$y = (197x - 34x^2) \times (7 + 22x - 83x^3).$$

- (5) Si $x = (y+3) \times (y+5)$, encuentra $\frac{dx}{dy}$.
- (6) Diferencia $y = 1.3709x \times (112.6 + 45.202x^2)$.

Encuentra los coeficientes diferenciales de

(7)
$$y = \frac{2x+3}{3x+2}$$
. (8) $y = \frac{1+x+2x^2+3x^3}{1+x+2x^2}$.

(9)
$$y = \frac{ax+b}{cx+d}$$
. (10) $y = \frac{x^n+a}{x^{-n}+b}$.

(11) La temperatura t del filamento de una lámpara eléctrica incandescente está conectada con la corriente que pasa a través de la lámpara por la relación

$$C = a + bt + ct^2.$$

Encuentra una expresión que dé la variación de la corriente correspondiente a una variación de temperatura.

(12) Las siguientes fórmulas han sido propuestas para expresar la relación entre la resistencia eléctrica R de un alambre a la temperatura t° C., y la resistencia R_0 de ese mismo alambre a 0° centígrado, siendo a, b, c constantes.

$$R = R_0(1 + at + bt^2).$$

$$R = R_0(1 + at + b\sqrt{t}).$$

$$R = R_0(1 + at + bt^2)^{-1}.$$

Encuentra la tasa de variación de la resistencia con respecto a la temperatura como está dada por cada una de estas fórmulas.

(13) La fuerza electromotriz E de un cierto tipo de celda estándar se ha encontrado que varía con la temperatura t de acuerdo con la relación

$$E = 1.4340 [1 - 0.000814(t - 15) + 0.000007(t - 15)^{2}]$$
 voltios.

Encuentra el cambio de fuerza electromotriz por grado, a 15°, 20° y 25°.

(14) La fuerza electromotriz necesaria para mantener un arco eléctrico de longitud l con una corriente de intensidad i ha sido encontrada por la Sra. Ayrton como siendo

$$E = a + bl + \frac{c + kl}{i},$$

donde a, b, c, k son constantes.

Encuentra una expresión para la variación de la fuerza electromotriz (a) con respecto a la longitud del arco; (b) con respecto a la intensidad de la corriente.

CAPÍTULO VII.

DIFERENCIACIÓN SUCESIVA.

PROBEMOS el efecto de repetir varias veces la operación de diferenciar una función (ver p. 13). Comencemos con un caso concreto.

Sea $y = x^5$.

Primera diferenciación, $5x^4$.

Segunda diferenciación, $5 \times 4x^3 = 20x^3$.

Tercera diferenciación, $5 \times 4 \times 3x^2 = 60x^2$.

Cuarta diferenciación, $5 \times 4 \times 3 \times 2x = 120x$.

Quinta diferenciación, $5 \times 4 \times 3 \times 2 \times 1 = 120$.

Sexta diferenciación, = 0.

Hay una cierta notación, con la cual ya estamos familiarizados (ver p. 14), usada por algunos escritores, que es muy conveniente. Esta es emplear el símbolo general f(x) para cualquier función de x. Aquí el símbolo f() se lee como "función de," sin decir qué función particular se refiere. Así la declaración y = f(x) simplemente nos dice que y es una función de x, puede ser x^2 o ax^n , o $\cos x$ o cualquier otra función complicada de x.

El símbolo correspondiente para el coeficiente diferencial es f'(x), que es más simple de escribir que $\frac{dy}{dx}$. Esta se llama la "función derivada" de x.

Supón que diferenciamos otra vez, obtendremos la "segunda función derivada" o segundo coeficiente diferencial, que se denota por f''(x); y así sucesivamente.

Ahora generalicemos.

Sea
$$y = f(x) = x^n$$
.

Primera diferenciación,
$$f'(x) = nx^{n-1}$$
.

Segunda diferenciación,
$$f''(x) = n(n-1)x^{n-2}$$
.

Tercera diferenciación,
$$f'''(x) = n(n-1)(n-2)x^{n-3}$$
.

Cuarta diferenciación,
$$f''''(x) = n(n-1)(n-2)(n-3)x^{n-4}$$
.
etc., etc.

Pero esta no es la única manera de indicar diferenciaciones sucesivas. Pues,

si la función original es
$$y = f(x);$$
 diferenciando una vez da
$$\frac{dy}{dx} = f'(x);$$

diferenciando dos veces da
$$\frac{d\left(\frac{dy}{dx}\right)}{dx} = f''(x);$$

y esto se escribe más convenientemente como $\frac{d^2y}{(dx)^2}$, o más usualmente $\frac{d^2y}{dx^2}$. Similarmente, podemos escribir como el resultado de diferenciar tres veces, $\frac{d^3y}{dx^3}=f'''(x)$.

Examples.

Ahora probemos
$$y = f(x) = 7x^4 + 3.5x^3 - \frac{1}{2}x^2 + x - 2.$$

$$\frac{dy}{dx} = f'(x) = 28x^3 + 10.5x^2 - x + 1,$$

$$\frac{d^2y}{dx^2} = f''(x) = 84x^2 + 21x - 1,$$

$$\frac{d^3y}{dx^3} = f'''(x) = 168x + 21,$$

$$\frac{d^4y}{dx^4} = f''''(x) = 168,$$

$$\frac{d^5y}{dx^5} = f'''''(x) = 0.$$

De manera similar si $y = \phi(x) = 3x(x^2 - 4)$,

$$\phi'(x) = \frac{dy}{dx} = 3\left[x \times 2x + (x^2 - 4) \times 1\right] = 3(3x^2 - 4),$$

$$\phi''(x) = \frac{d^2y}{dx^2} = 3 \times 6x = 18x,$$

$$\phi'''(x) = \frac{d^3y}{dx^3} = 18,$$

$$\phi''''(x) = \frac{d^4y}{dx^4} = 0.$$

Exercises IV. (Ver page 258 para las Respuestas.) $dy d^2y$

Encontrar $\frac{dy}{dx}$ y $\frac{d^2y}{dx^2}$ para las siguientes expresiones:

(1)
$$y = 17x + 12x^2$$
. (2) $y = \frac{x^2 + a}{x + a}$.

(3)
$$y = 1 + \frac{x}{1} + \frac{x^2}{1 \times 2} + \frac{x^3}{1 \times 2 \times 3} + \frac{x^4}{1 \times 2 \times 3 \times 4}$$

(4) Encontrar las funciones derivadas 2da y 3ra en los Ejercicios III. (p. 47), No. 1 al No. 7, y en los Ejemplos dados (p. 43), No. 1 al No. 7.

CAPÍTULO VIII.

CUANDO EL TIEMPO VARÍA.

ALGUNOS de los problemas más importantes del cálculo son aquellos donde el tiempo es la variable independiente, y tenemos que pensar sobre los valores de alguna otra cantidad que varía cuando el tiempo varía. Algunas cosas crecen más grandes conforme pasa el tiempo; algunas otras cosas se vuelven más pequeñas. La distancia que un tren ha recorrido desde su lugar de partida continúa aumentando conforme el tiempo avanza. Los árboles crecen más altos conforme pasan los años. ¿Cuál está creciendo a mayor velocidad; una planta de 12 pulgadas de altura que en un mes se vuelve de 14 pulgadas de altura, o un árbol de 12 pies de altura que en un año se vuelve de 14 pies de altura?

En este capítulo vamos a hacer mucho uso de la palabra velocidad. Nada que ver con impuesto sobre los pobres, o tarifa del agua (excepto que aún aquí la palabra sugiere una proporción—una razón—tantos peniques por libra). Nada que ver incluso con tasa de natalidad o tasa de mortalidad, aunque estas palabras sugieren tantos nacimientos o muertes por mil de la población. Cuando un automóvil pasa velozmente junto a nosotros, decimos: ¡Qué velocidad tan terrible! Cuando un derrochador está despilfarrando su dinero, comentamos que ese joven está viviendo a una velocidad prodigiosa. ¿Qué queremos decir con ve-

locidad? En ambos casos estamos haciendo una comparación mental de algo que está ocurriendo, y la duración de tiempo que toma para que ocurra. Si el automóvil vuela junto a nosotros yendo a 10 yardas por segundo, un simple cálculo mental nos mostrará que esto es equivalente—mientras dure—a una velocidad de 600 yardas por minuto, o más de 20 millas por hora.

Ahora ¿en qué sentido es cierto que una velocidad de 10 yardas por segundo es la misma que 600 yardas por minuto? Diez yardas no es lo mismo que 600 yardas, ni un segundo es lo mismo que un minuto. Lo que queremos decir al afirmar que la *velocidad* es la misma, es esto: que la proporción que existe entre la distancia recorrida y el tiempo tomado para recorrerla, es la misma en ambos casos.

Tomemos otro ejemplo. Un hombre puede tener solo unas cuantas libras en su posesión, y aún así ser capaz de gastar dinero a la velocidad de millones al año—siempre que continúe gastando dinero a esa velocidad por solo unos pocos minutos. Supongamos que entregas un chelín sobre el mostrador para pagar algunas mercancías; y supongamos que la operación dura exactamente un segundo. Entonces, durante esa breve operación, estás separándote de tu dinero a la velocidad de 1 chelín por segundo, que es la misma velocidad que £3 por minuto, o £180 por hora, o £4320 por día, o £1,576,800 por año! Si tienes £10 en tu bolsillo, puedes continuar gastando dinero a la velocidad de un millón al año por exactamente $5\frac{1}{4}$ minutos.

Se dice que Sandy no había estado en Londres más de cinco minutos cuando "bang went saxpence." Si fuera a gastar dinero a esa velocidad todo el día, digamos por 12 horas, estaría gastando 6 chelines por hora,

o £3. 12s. por día, o £21. 12s. a la semana, sin contar el sabbath.

Ahora trata de poner algunas de estas ideas en notación diferencial. Sea y en este caso representar dinero, y sea t representar tiempo.

Si estás gastando dinero, y la cantidad que gastas en un tiempo corto dt se llama dy, la velocidad de gastarlo será $\frac{dy}{dt}$, o mejor dicho, debería escribirse con un signo menos, como $-\frac{dy}{dt}$, porque dy es un decremento, no un incremento. Pero el dinero no es un buen ejemplo para el cálculo, porque generalmente viene y se va a saltos, no por un flujo continuo—puedes ganar £200 al año, pero no sigue corriendo todo el día en una corriente delgada; viene solo semanalmente, o mensualmente, o trimestralmente, en bultos: y tu gasto también sale en pagos súbitos.

Una ilustración más apropiada de la idea de velocidad es proporcionada por la velocidad de un cuerpo en movimiento. Desde Londres (estación Euston) hasta Liverpool son 200 millas. Si un tren sale de Londres a las 7 en punto, y llega a Liverpool a las 11 en punto, sabes que, ya que ha viajado 200 millas en 4 horas, su velocidad promedio debe haber sido 50 millas por hora; porque $\frac{200}{4} = \frac{50}{1}$. Aquí realmente estás haciendo una comparación mental entre la distancia recorrida y el tiempo tomado para recorrer esa distancia. Estás dividiendo una por la otra. Si y es toda la distancia, y t todo el tiempo, claramente la velocidad promedio es $\frac{y}{t}$. Ahora la velocidad no fue realmente constante todo el camino: al arrancar, y durante la desaceleración al final del viaje, la velocidad fue menor. Probablemente en alguna parte, cuando bajaba una colina, la velocidad fue más de 60 millas por hora. Si, durante cualquier elemento particular de tiempo dt, el elemento correspondi-

ente de distancia recorrida fue dy, entonces en esa parte del viaje la velocidad fue $\frac{dy}{dt}$. La velocidad a la cual una cantidad (en la presente instancia, distancia) está cambiando en relación a la otra cantidad (en este caso, tiempo) se expresa apropiadamente, entonces, al establecer el coeficiente diferencial de una con respecto a la otra. Una velocidad, expresada científicamente, es la velocidad a la cual una distancia muy pequeña en cualquier dirección dada está siendo recorrida; y por lo tanto puede escribirse

 $v = \frac{dy}{dt}$.

Pero si la velocidad v no es uniforme, entonces debe estar ya sea aumentando o disminuyendo. La velocidad a la cual una velocidad está aumentando se llama la aceleración. Si un cuerpo en movimiento está, en cualquier instante particular, ganando una velocidad adicional dv en un elemento de tiempo dt, entonces la aceleración a en ese instante puede escribirse

 $a = \frac{dv}{dt};$

pero dv es en sí misma $d\left(\frac{dy}{dt}\right)$. Por lo tanto podemos poner

$$a = \frac{d\left(\frac{dy}{dt}\right)}{dt};$$

y esto usualmente se escribe $a = \frac{d^2y}{dt^2}$;

o la aceleración es el segundo coeficiente diferencial de la distancia, con respecto al tiempo. La aceleración se expresa como un cambio de velocidad en unidad de tiempo, por ejemplo, como tantos pies por segundo por segundo; la notación usada siendo pies \div segundo².

Cuando un tren de ferrocarril acaba de empezar a moverse, su velocidad v es pequeña; pero está ganando velocidad rápidamente—está siendo acelerado, o acelerado, por el esfuerzo de la máquina. Así que su $\frac{d^2y}{dt^2}$ es grande. Cuando ha alcanzado su velocidad máxima ya no está siendo acelerado, de modo que entonces $\frac{d^2y}{dt^2}$ ha caído a cero. Pero cuando se acerca a su lugar de parada su velocidad comienza a disminuir; puede, de hecho, disminuir muy rápidamente si se aplican los frenos, y durante este período de desaceleración o aflojamiento del paso, el valor de $\frac{dv}{dt}$, es decir, de $\frac{d^2y}{dt^2}$ será negativo.

Para acelerar una masa m se requiere la aplicación continua de fuerza. La fuerza necesaria para acelerar una masa es proporcional a la masa, y también es proporcional a la aceleración que se está impartiendo. Por lo tanto podemos escribir para la fuerza f, la expresión

o
$$f = ma;$$
 o
$$f = m\frac{dv}{dt};$$
 o
$$f = m\frac{d^2y}{dt^2}.$$

El producto de una masa por la velocidad a la cual está yendo se llama su momentum, y en símbolos es mv. Si diferenciamos el momentum con respecto al tiempo obtendremos $\frac{d(mv)}{dt}$ para la velocidad de cambio del momentum. Pero, ya que m es una cantidad constante, esto puede escribirse $m\frac{dv}{dt}$, que vemos arriba es lo mismo que f. Es decir, la fuerza puede expresarse ya sea como masa por aceleración, o como velocidad de cambio de momentum.

Nuevamente, si una fuerza se emplea para mover algo (contra una

contra-fuerza igual y opuesta), hace trabajo; y la cantidad de trabajo hecho se mide por el producto de la fuerza por la distancia (en su propia dirección) a través de la cual su punto de aplicación se mueve hacia adelante. Así que si una fuerza f se mueve hacia adelante a través de una longitud y, el trabajo hecho (que podemos llamar w) será

$$w = f \times y;$$

donde tomamos f como una fuerza constante. Si la fuerza varía en diferentes partes del rango y, entonces debemos encontrar una expresión para su valor de punto a punto. Si f es la fuerza a lo largo del pequeño elemento de longitud dy, la cantidad de trabajo hecho será $f \times dy$. Pero como dy es solo un elemento de longitud, solo un elemento de trabajo será hecho. Si escribimos w para trabajo, entonces un elemento de trabajo será dw; y tenemos

$$dw = f \times dy;$$

que puede escribirse

$$dw = ma \cdot dy;$$
o
$$dw = m\frac{d^2y}{dt^2} \cdot dy;$$
o
$$dw = m\frac{dv}{dt} \cdot dy.$$

Además, podemos trasponer la expresión y escribir

$$\frac{dw}{dy} = f.$$

Esto nos da aún una tercera definición de fuerza; que si se está usando para producir un desplazamiento en cualquier dirección, la fuerza (en esa dirección) es igual a la velocidad a la cual el trabajo está siendo hecho por unidad de longitud en esa dirección. En esta última oración la palabra velocidad claramente no se usa en su sentido temporal, sino en su significado como razón o proporción.

Sir Isaac Newton, quien fue (junto con Leibnitz) un inventor de los métodos del cálculo, consideraba todas las cantidades que estaban variando como fluyendo; y la razón que hoy en día llamamos el coeficiente diferencial él la consideraba como la velocidad de flujo, o la fluxión de la cantidad en cuestión. No usó la notación de dy y dx, y dt (esto se debió a Leibnitz), sino que tenía en su lugar una notación propia. Si y era una cantidad que variaba, o "fluía," entonces su símbolo para su velocidad de variación (o "fluxión") era \dot{y} . Si x era la variable, entonces su fluxión se llamaba \dot{x} . El punto sobre la letra indicaba que había sido diferenciada. Pero esta notación no nos dice cuál es la variable independiente con respecto a la cual la diferenciación ha sido efectuada. Cuando vemos $\frac{dy}{dt}$ sabemos que y debe ser diferenciada con respecto a t. Si vemos $\frac{dy}{dx}$ sabemos que y debe ser diferenciada con respecto a x. Pero si vemos meramente \dot{y} , no podemos decir sin mirar el contexto si esto debe significar $\frac{dy}{dx}$ o $\frac{dy}{dt}$ o $\frac{dy}{dz}$, o cuál es la otra variable. Así, por lo tanto, esta notación fluxional es menos informativa que la notación diferencial, y en consecuencia ha caído en gran medida en desuso. Pero su simplicidad le da una ventaja si solo acordamos usarla para aquellos casos exclusivamente donde el tiempo es la variable independiente. En ese caso \dot{y} significará $\frac{dy}{dt}$ y \dot{u} significará $\frac{du}{dt}$; y \ddot{x} significará $\frac{d^2x}{dt^2}$.

Adoptando esta notación fluxional podemos escribir las ecuaciones mecánicas consideradas en los párrafos anteriores, como sigue:

distancia	x,
velocidad	$v = \dot{x},$
aceleración	$a = \dot{v} = \ddot{x},$
fuerza	$f = m\dot{v} = m\ddot{x},$
trabajo	$w = x \times m\ddot{x}.$

Examples.

(1) Un cuerpo se mueve de tal manera que la distancia x (en pies), que viaja desde cierto punto O, está dada por la relación $x=0.2t^2+10.4$, donde t es el tiempo en segundos transcurrido desde cierto instante. Encontrar la velocidad y aceleración 5 segundos después de que el cuerpo comenzó a moverse, y también encontrar los valores correspondientes cuando la distancia recorrida es 100 pies. Encontrar también la velocidad promedio durante los primeros 10 segundos de su movimiento. (Suponer que las distancias y el movimiento hacia la derecha son positivos.)

Ahora
$$x=0.2t^2+10.4$$

$$v=\dot{x}=\frac{dx}{dt}=0.4t; \quad \text{y} \quad a=\ddot{x}=\frac{d^2x}{dt^2}=0.4=\text{constante}.$$

Cuando t = 0, x = 10.4 y v = 0. El cuerpo comenzó desde un punto 10.4 pies a la derecha del punto O; y el tiempo se contó desde el instante en que el cuerpo comenzó.

Cuando $t=5,\,v=0.4\times 5=2$ pies/seg.; a=0.4 pies/seg².

Cuando x = 100, $100 = 0.2t^2 + 10.4$, o $t^2 = 448$, y t = 21.17 seg.; $v = 0.4 \times 21.17 = 8.468$ pies/seg.

Cuando t = 10,

distancia recorrida = $0.2 \times 10^2 + 10.4 - 10.4 = 20$ pies.

Velocidad promedio =
$$\frac{20}{10}$$
 = 2 pies/seg.

(Es la misma velocidad que la velocidad en el medio del intervalo, t=5; porque, siendo la aceleración constante, la velocidad ha variado uniformemente desde cero cuando t=0 hasta 4 pies/seg. cuando t=10.)

(2) En el problema anterior supongamos

$$x = 0.2t^2 + 3t + 10.4.$$

 $v = \dot{x} = \frac{dx}{dt} = 0.4t + 3; \quad a = \ddot{x} = \frac{d^2x}{dt^2} = 0.4 = \text{constante}.$

Cuando $t=0,\ x=10.4\ {\rm y}\ v=3$ pies/seg, el tiempo se cuenta desde el instante en que el cuerpo pasó por un punto 10.4 pies del punto O, siendo su velocidad entonces ya 3 pies/seg. Para encontrar el tiempo transcurrido desde que comenzó a moverse, sea v=0; entonces $0.4t+3=0,\ t=-\frac{3}{.4}=-7.5$ seg. El cuerpo comenzó a moverse 7.5 seg. antes de que el tiempo comenzara a ser observado; 5 segundos después de esto da t=-2.5 y $v=0.4\times-2.5+3=2$ pies/seg.

Cuando x = 100 pies,

$$100 = 0.2t^2 + 3t + 10.4$$
; o $t^2 + 15t - 448 = 0$;

por lo tanto t = 14.95 seg., $v = 0.4 \times 14.95 + 3 = 8.98$ pies/seg.

Para encontrar la distancia recorrida durante los 10 primeros segundos del movimiento uno debe saber qué tan lejos estaba el cuerpo del punto O cuando comenzó.

Cuando t = -7.5,

$$x = 0.2 \times (-7.5)^2 - 3 \times 7.5 + 10.4 = -0.85$$
 pies,

es decir 0.85 pies a la izquierda del punto O.

Ahora, cuando t = 2.5,

$$x = 0.2 \times 2.5^2 + 3 \times 2.5 + 10.4 = 19.15.$$

Así, en 10 segundos, la distancia recorrida fue 19.15+0.85=20 pies, y

la velocidad promedio $=\frac{20}{10}=2$ pies/seg.

(3) Considerar un problema similar cuando la distancia está dada por $x = 0.2t^2 - 3t + 10.4$. Entonces v = 0.4t - 3, a = 0.4 = constante. Cuando t = 0, x = 10.4 como antes, y v = -3; de modo que el cuerpo se estaba moviendo en la dirección opuesta a su movimiento en los casos previos. Como la aceleración es positiva, sin embargo, vemos que esta velocidad disminuirá conforme pase el tiempo, hasta que se vuelva cero, cuando v = 0 o 0.4t - 3 = 0; o t = 7.5 seg. Después de esto, la velocidad se vuelve positiva; y 5 segundos después de que el cuerpo comenzó, t = 12.5, y

$$v = 0.4 \times 12.5 - 3 = 2 \text{ pies/seg.}$$

Cuando x = 100,

у

$$100 = 0.2t^2 - 3t + 10.4$$
, o $t^2 - 15t - 448 = 0$,

$$t = 29.95$$
; $v = 0.4 \times 29.95 - 3 = 8.98$ pies/seg.

Cuando v es cero, $x=0.2\times7.5^2-3\times7.5+10.4=-0.85$, informándonos que el cuerpo se mueve de vuelta a 0.85 pies más allá del punto O antes de detenerse. Diez segundos después

$$t = 17.5 \text{ y } x = 0.2 \times 17.5^2 - 3 \times 17.5 + 10.4 = 19.15.$$

La distancia recorrida = .85 + 19.15 = 20.0, y la velocidad promedio es nuevamente 2 pies/seg.

(4) Considerar aún otro problema del mismo tipo con $x = 0.2t^3 - 3t^2 + 10.4$; $v = 0.6t^2 - 6t$; a = 1.2t - 6. La aceleración ya no es constante.

Cuando t = 0, x = 10.4, v = 0, a = -6. El cuerpo está en reposo, pero listo para moverse con una aceleración negativa, es decir para ganar una velocidad hacia el punto O.

(5) Si tenemos $x = 0.2t^3 - 3t + 10.4$, entonces $v = 0.6t^2 - 3$, y a = 1.2t.

Cuando t = 0, x = 10.4; v = -3; a = 0.

El cuerpo se está moviendo hacia el punto O con una velocidad de 3 pies/seg., y justo en ese instante la velocidad es uniforme.

Vemos que las condiciones del movimiento siempre pueden determinarse inmediatamente de la ecuación tiempo-distancia y sus primera y segunda funciones derivadas. En los últimos dos casos la velocidad media durante los primeros 10 segundos y la velocidad 5 segundos después del inicio ya no serán iguales, porque la velocidad no está aumentando uniformemente, ya que la aceleración no es más constante.

(6) El ángulo θ (en radianes) girado por una rueda está dado por $\theta = 3+2t-0.1t^3$, donde t es el tiempo en segundos desde cierto instante; encontrar la velocidad angular ω y la aceleración angular α , (a) después

de 1 segundo; (b) después de que ha realizado una revolución. ¿En qué momento está en reposo, y cuántas revoluciones ha realizado hasta ese instante?

Escribiendo para la aceleración

$$\omega = \dot{\theta} = \frac{d\theta}{dt} = 2 - 0.3t^2, \quad \alpha = \ddot{\theta} = \frac{d^2\theta}{dt^2} = -0.6t.$$

Cuando $t=0,\,\theta=3;\,\omega=2$ rad./seg.; $\alpha=0.$

Cuando t=1,

$$\omega = 2 - 0.3 = 1.7 \text{ rad./seg.}; \quad \alpha = -0.6 \text{ rad./seg}^2.$$

Esto es una retardación; la rueda se está desacelerando.

Después de 1 revolución

$$\theta = 2\pi = 6.28; \quad 6.28 = 3 + 2t - 0.1t^3.$$

Graficando la gráfica, $\theta = 3 + 2t - 0.1t^3$, podemos obtener el valor o valores de t para los cuales $\theta = 6.28$; estos son 2.11 y 3.03 (hay un tercer valor negativo).

Cuando t = 2.11,

$$\theta = 6.28;$$
 $\omega = 2 - 1.34 = 0.66 \text{ rad./seg.};$ $\alpha = -1.27 \text{ rad./seg}^2.$

Cuando t = 3.03,

$$\theta = 6.28;$$
 $\omega = 2 - 2.754 = -0.754 \text{ rad./seg.};$ $\alpha = -1.82 \text{ rad./seg}^2.$

La velocidad está invertida. La rueda evidentemente está en reposo entre estos dos instantes; está en reposo cuando $\omega = 0$, es decir cuando $0 = 2 - 0.3t^3$, o cuando t = 2.58 seg., ha realizado

$$\frac{\theta}{2\pi} = \frac{3 + 2 \times 2.58 - 0.1 \times 2.58^3}{6.28} = 1.025$$
 revoluciones.

Exercises V. (Ver page 260 para las Respuestas.)

(1) Si
$$y = a + bt^2 + ct^4$$
; encontrar $\frac{dy}{dt}$ y $\frac{d^2y}{dt^2}$.

$$Resp. \frac{dy}{dt} = 2bt + 4ct^3; \quad \frac{d^2y}{dt^2} = 2b + 12ct^2.$$

- (2) Un cuerpo cayendo libremente en el espacio describe en t segundos un espacio s, en pies, expresado por la ecuación $s=16t^2$. Dibujar una curva mostrando la relación entre s y t. También determinar la velocidad del cuerpo en los siguientes tiempos desde que se deja caer: t=2 segundos; t=4.6 segundos; t=0.01 segundo.
 - (3) Si $x = at \frac{1}{2}gt^2$; encontrar \dot{x} y \ddot{x} .
 - (4) Si un cuerpo se mueve de acuerdo a la ley

$$s = 12 - 4.5t + 6.2t^2,$$

encontrar su velocidad cuando t = 4 segundos; s estando en pies.

(5) Encontrar la aceleración del cuerpo mencionado en el ejemplo precedente. ¿Es la aceleración la misma para todos los valores de t?

(6) El ángulo θ (en radianes) girado por una rueda giratoria está conectado con el tiempo t (en segundos) que ha transcurrido desde el inicio; por la ley

$$\theta = 2.1 - 3.2t + 4.8t^2.$$

Encontrar la velocidad angular (en radianes por segundo) de esa rueda cuando han transcurrido $1\frac{1}{2}$ segundos. Encontrar también su aceleración angular.

(7) Un deslizador se mueve de tal manera que, durante la primera parte de su movimiento, su distancia s en pulgadas desde su punto de partida está dada por la expresión

$$s = 6.8t^3 - 10.8t$$
; t estando en segundos.

Encontrar la expresión para la velocidad y la aceleración en cualquier momento; y de ahí encontrar la velocidad y la aceleración después de 3 segundos.

(8) El movimiento de un globo que se eleva es tal que su altura h, en millas, está dada en cualquier instante por la expresión $h = 0.5 + \frac{1}{10}\sqrt[3]{t-125}$; t estando en segundos.

Encontrar una expresión para la velocidad y la aceleración en cualquier momento. Dibujar curvas para mostrar la variación de altura, velocidad y aceleración durante los primeros diez minutos del ascenso.

(9) Una piedra se lanza hacia abajo al agua y su profundidad p en metros en cualquier instante t segundos después de alcanzar la superficie

del agua está dada por la expresión

$$p = \frac{4}{4+t^2} + 0.8t - 1.$$

Encontrar una expresión para la velocidad y la aceleración en cualquier momento. Encontrar la velocidad y aceleración después de 10 segundos.

(10) Un cuerpo se mueve de tal manera que los espacios descritos en el tiempo t desde el inicio están dados por $s = t^n$, donde n es una constante. Encontrar el valor de n cuando la velocidad se duplica del 5to al 10mo segundo; encontrarlo también cuando la velocidad es numéricamente igual a la aceleración al final del 10mo segundo.

CAPÍTULO IX.

INTRODUCIENDO UN TRUCO ÚTIL.

A VECES uno se encuentra en apuros al encontrar que la expresión a ser diferenciada es demasiado complicada para abordarla directamente.

Así, la ecuación

$$y = (x^2 + a^2)^{\frac{3}{2}}$$

es incómoda para un principiante.

Ahora el truco para vencer la dificultad es este: Escribir algún símbolo, como u, para la expresión $x^2 + a^2$; entonces la ecuación se vuelve

$$y = u^{\frac{3}{2}},$$

la cual puedes manejar fácilmente; porque

$$\frac{dy}{du} = \frac{3}{2}u^{\frac{1}{2}}.$$

Entonces aborda la expresión

$$u = x^2 + a^2.$$

y diferénciarla con respecto a x,

$$\frac{du}{dx} = 2x.$$

Entonces todo lo que queda es navegar en aguas tranquilas;

porque
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx};$$
es decir,
$$\frac{dy}{dx} = \frac{3}{2}u^{\frac{1}{2}} \times 2x$$

$$= \frac{3}{2}(x^2 + a^2)^{\frac{1}{2}} \times 2x$$

$$= 3x(x^2 + a^2)^{\frac{1}{2}};$$

y así el truco está hecho.

Con el tiempo, cuando hayas aprendido cómo lidiar con senos, y cosenos, y exponenciales, encontrarás este truco de utilidad creciente.

Examples.

Practiquemos este truco en unos cuantos ejemplos.

(1) Diferenciar $y = \sqrt{a+x}$.

Sea a + x = u.

$$\frac{du}{dx} = 1; \quad y = u^{\frac{1}{2}}; \quad \frac{dy}{du} = \frac{1}{2}u^{-\frac{1}{2}} = \frac{1}{2}(a+x)^{-\frac{1}{2}}.$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{1}{2\sqrt{a+x}}.$$

(2) Differenciar
$$y = \frac{1}{\sqrt{a+x^2}}$$
.

Sea $a + x^2 = u$.

$$\frac{du}{dx} = 2x; \quad y = u^{-\frac{1}{2}}; \quad \frac{dy}{du} = -\frac{1}{2}u^{-\frac{3}{2}}.$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = -\frac{x}{\sqrt{(a+x^2)^3}}.$$

(3) Diferenciar
$$y = \left(m - nx^{\frac{2}{3}} + \frac{p}{x^{\frac{4}{3}}}\right)^a$$
.
Sea $m - nx^{\frac{2}{3}} + px^{-\frac{4}{3}} = u$.

$$\frac{du}{dx} = -\frac{2}{3}nx^{-\frac{1}{3}} - \frac{4}{3}px^{-\frac{7}{3}};$$
$$y = u^{a}; \quad \frac{dy}{du} = au^{a-1}.$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = -a\left(m - nx^{\frac{2}{3}} + \frac{p}{x^{\frac{4}{3}}}\right)^{a-1} \left(\frac{2}{3}nx^{-\frac{1}{3}} + \frac{4}{3}px^{-\frac{7}{3}}\right).$$

(4) Diferenciar
$$y = \frac{1}{\sqrt{x^3 - a^2}}$$
.

Sea
$$u = x^3 - a^2$$
.

$$\frac{du}{dx} = 3x^2; \quad y = u^{-\frac{1}{2}}; \quad \frac{dy}{du} = -\frac{1}{2}(x^3 - a^2)^{-\frac{3}{2}}.$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = -\frac{3x^2}{2\sqrt{(x^3 - a^2)^3}}.$$

(5) Diferenciar
$$y = \sqrt{\frac{1-x}{1+x}}$$
.

Escribir esto como $y = \frac{(1-x)^{\frac{1}{2}}}{(1+x)^{\frac{1}{2}}}.$

$$\frac{dy}{dx} = \frac{(1+x)^{\frac{1}{2}} \frac{d(1-x)^{\frac{1}{2}}}{dx} - (1-x)^{\frac{1}{2}} \frac{d(1+x)^{\frac{1}{2}}}{dx}}{1+x}.$$

(También podemos escribir $y=(1-x)^{\frac{1}{2}}(1+x)^{-\frac{1}{2}}$ y diferenciar como un producto.)

Procediendo como en el ejemplo (1) arriba, obtenemos

$$\frac{d(1-x)^{\frac{1}{2}}}{dx} = -\frac{1}{2\sqrt{1-x}}; \quad y \quad \frac{d(1+x)^{\frac{1}{2}}}{dx} = \frac{1}{2\sqrt{1+x}}.$$

Por lo tanto

$$\frac{dy}{dx} = -\frac{(1+x)^{\frac{1}{2}}}{2(1+x)\sqrt{1-x}} - \frac{(1-x)^{\frac{1}{2}}}{2(1+x)\sqrt{1+x}}$$

$$= -\frac{1}{2\sqrt{1+x}\sqrt{1-x}} - \frac{\sqrt{1-x}}{2\sqrt{(1+x)^3}};$$

$$\frac{dy}{dx} = -\frac{1}{(1+x)\sqrt{1-x^2}}.$$

О

(6) Diferenciar
$$y = \sqrt{\frac{x^3}{1+x^2}}$$
.

Podemos escribir esto

$$y = x^{\frac{3}{2}}(1+x^2)^{-\frac{1}{2}};$$

$$\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}}(1+x^2)^{-\frac{1}{2}} + x^{\frac{3}{2}} \times \frac{d\left[(1+x^2)^{-\frac{1}{2}}\right]}{dx}.$$

Diferenciando $(1+x^2)^{-\frac{1}{2}}$, como se muestra en el ejemplo (2) arriba, obtenemos

$$\frac{d[(1+x^2)^{-\frac{1}{2}}]}{dx} = -\frac{x}{\sqrt{(1+x^2)^3}};$$

de modo que

$$\frac{dy}{dx} = \frac{3\sqrt{x}}{2\sqrt{1+x^2}} - \frac{\sqrt{x^5}}{\sqrt{(1+x^2)^3}} = \frac{\sqrt{x}(3+x^2)}{2\sqrt{(1+x^2)^3}}.$$

(7) Diferenciar $y = (x + \sqrt{x^2 + x + a})^3$.

Sea $x + \sqrt{x^2 + x + a} = u$.

$$\frac{du}{dx} = 1 + \frac{d[(x^2 + x + a)^{\frac{1}{2}}]}{dx}.$$

$$y = u^3; \quad y \quad \frac{dy}{du} = 3u^2 = 3(x + \sqrt{x^2 + x + a})^2.$$

Ahora sea
$$(x^2 + x + a)^{\frac{1}{2}} = v \text{ y } (x^2 + x + a) = w.$$

$$\frac{dw}{dx} = 2x + 1; \quad v = w^{\frac{1}{2}}; \quad \frac{dv}{dw} = \frac{1}{2}w^{-\frac{1}{2}}.$$

$$\frac{dv}{dx} = \frac{dv}{dw} \times \frac{dw}{dx} = \frac{1}{2}(x^2 + x + a)^{-\frac{1}{2}}(2x + 1).$$
Por lo tanto
$$\frac{du}{dx} = 1 + \frac{2x + 1}{2\sqrt{x^2 + x + a}},$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= 3\left(x + \sqrt{x^2 + x + a}\right)^2 \left(1 + \frac{2x + 1}{2\sqrt{x^2 + x + a}}\right).$$

(8) Diferencia
$$y = \sqrt{\frac{a^2 + x^2}{a^2 - x^2}} \sqrt[3]{\frac{a^2 - x^2}{a^2 + x^2}}$$
.

Obtenemos

$$y = \frac{(a^2 + x^2)^{\frac{1}{2}} (a^2 - x^2)^{\frac{1}{3}}}{(a^2 - x^2)^{\frac{1}{2}} (a^2 + x^2)^{\frac{1}{3}}} = (a^2 + x^2)^{\frac{1}{6}} (a^2 - x^2)^{-\frac{1}{6}}.$$
$$\frac{dy}{dx} = (a^2 + x^2)^{\frac{1}{6}} \frac{d[(a^2 - x^2)^{-\frac{1}{6}}]}{dx} + \frac{d[(a^2 + x^2)^{\frac{1}{6}}]}{(a^2 - x^2)^{\frac{1}{6}} dx}.$$

Sea
$$u = (a^2 - x^2)^{-\frac{1}{6}}$$
 y $v = (a^2 - x^2)$.

$$u = v^{-\frac{1}{6}}; \quad \frac{du}{dv} = -\frac{1}{6}v^{-\frac{7}{6}}; \quad \frac{dv}{dx} = -2x.$$

$$\frac{du}{dx} = \frac{du}{dv} \times \frac{dv}{dx} = \frac{1}{3}x(a^2 - x^2)^{-\frac{7}{6}}.$$

Sea
$$w = (a^2 + x^2)^{\frac{1}{6}}$$
 y $z = (a^2 + x^2)$.

$$w = z^{\frac{1}{6}};$$
 $\frac{dw}{dz} = \frac{1}{6}z^{-\frac{5}{6}};$ $\frac{dz}{dx} = 2x.$ $\frac{dw}{dx} = \frac{dw}{dz} \times \frac{dz}{dx} = \frac{1}{3}x(a^2 + x^2)^{-\frac{5}{6}}.$

Hence

O

$$\frac{dy}{dx} = (a^2 + x^2)^{\frac{1}{6}} \frac{x}{3(a^2 - x^2)^{\frac{7}{6}}} + \frac{x}{3(a^2 - x^2)^{\frac{1}{6}}(a^2 + x^2)^{\frac{5}{6}}};$$

$$\frac{dy}{dx} = \frac{x}{3} \left[\sqrt[6]{\frac{a^2 + x^2}{(a^2 - x^2)^7}} + \frac{1}{\sqrt[6]{(a^2 - x^2)(a^2 + x^2)^5}} \right].$$

(9) Diferencia y^n con respecto a y^5 .

$$\frac{d(y^n)}{d(y^5)} = \frac{ny^{n-1}}{5y^{5-1}} = \frac{n}{5}y^{n-5}.$$

(10) Encuentra el primer y segundo coeficientes diferenciales de $y = \frac{x}{b} \sqrt{(a-x)x}$.

$$\frac{dy}{dx} = \frac{x}{b} \frac{d\left\{ \left[(a-x)x \right]^{\frac{1}{2}} \right\}}{dx} + \frac{\sqrt{(a-x)x}}{b}.$$

Sea $\left[(a-x)x \right]^{\frac{1}{2}} = u$ y sea (a-x)x = w; entonces $u = w^{\frac{1}{2}}$.

$$\frac{du}{dw} = \frac{1}{2}w^{-\frac{1}{2}} = \frac{1}{2w^{\frac{1}{2}}} = \frac{1}{2\sqrt{(a-x)x}}.$$

$$\frac{dw}{dx} = a - 2x.$$

$$\frac{du}{dw} \times \frac{dw}{dx} = \frac{du}{dx} = \frac{a - 2x}{2\sqrt{(a - x)x}}.$$

Por tanto

$$\frac{dy}{dx} = \frac{x(a-2x)}{2b\sqrt{(a-x)x}} + \frac{\sqrt{(a-x)x}}{b} = \frac{x(3a-4x)}{2b\sqrt{(a-x)x}}.$$

Ahora

$$\frac{d^2y}{dx^2} = \frac{2b\sqrt{(a-x)x}(3a-8x) - \frac{(3ax-4x^2)b(a-2x)}{\sqrt{(a-x)x}}}{4b^2(a-x)x}$$
$$= \frac{3a^2 - 12ax + 8x^2}{4b(a-x)\sqrt{(a-x)x}}.$$

(Necesitaremos estos dos últimos coeficientes diferenciales más adelante. Ver Ej. X. No. 11.)

Exercises VI. (Ver page 260 para las Respuestas.)
Diferencia lo siguiente:

(1)
$$y = \sqrt{x^2 + 1}$$
. (2) $y = \sqrt{x^2 + a^2}$.

(3)
$$y = \frac{1}{\sqrt{a+x}}$$
. (4) $y = \frac{a}{\sqrt{a-x^2}}$.

(5)
$$y = \frac{\sqrt{x^2 - a^2}}{x^2}$$
. (6) $y = \frac{\sqrt[3]{x^4 + a}}{\sqrt[2]{x^3 + a}}$.

(7)
$$y = \frac{a^2 + x^2}{(a+x)^2}$$
.

(8) Diferencia y^5 con respecto a y^2 .

(9) Diferencia
$$y = \frac{\sqrt{1-\theta^2}}{1-\theta}$$
.

El proceso puede extenderse a tres o más coeficientes diferenciales, de modo que $\frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dv} \times \frac{dv}{dx}$.

Examples.

(1) Si
$$z = 3x^4$$
; $v = \frac{7}{z^2}$; $y = \sqrt{1+v}$, encuentra $\frac{dv}{dx}$.

Tenemos

$$\frac{dy}{dv} = \frac{1}{2\sqrt{1+v}}; \quad \frac{dv}{dz} = -\frac{14}{z^3}; \quad \frac{dz}{dx} = 12x^3.$$
$$\frac{dy}{dx} = -\frac{168x^3}{(2\sqrt{1+v})z^3} = -\frac{28}{3x^5\sqrt{9x^8+7}}.$$

(2) Si
$$t = \frac{1}{5\sqrt{\theta}}$$
; $x = t^3 + \frac{t}{2}$; $v = \frac{7x^2}{\sqrt[3]{x-1}}$, encuentra $\frac{dv}{d\theta}$.
$$\frac{dv}{dx} = \frac{7x(5x-6)}{3\sqrt[3]{(x-1)^4}}; \quad \frac{dx}{dt} = 3t^2 + \frac{1}{2}; \quad \frac{dt}{d\theta} = -\frac{1}{10\sqrt{\theta^3}}.$$
The tanto
$$\frac{dv}{d\theta} = -\frac{7x(5x-6)(3t^2 + \frac{1}{2})}{30\sqrt[3]{(x-1)^4}\sqrt{\theta^3}},$$

Por tanto

una expresión en la que x debe ser reemplazada por su valor, y t por

su valor en términos de
$$\theta$$
. (3) Si $\theta = \frac{3a^2x}{\sqrt{x^3}}$; $\omega = \frac{\sqrt{1-\theta^2}}{1+\theta}$; y $\phi = \sqrt{3} - \frac{1}{\omega\sqrt{2}}$, encuentra $\frac{d\phi}{dx}$.

Obtenemos

$$\theta = 3a^2x^{-\frac{1}{2}}; \quad \omega = \sqrt{\frac{1-\theta}{1+\theta}}; \quad y \quad \phi = \sqrt{3} - \frac{1}{\sqrt{2}}\omega^{-1}.$$

$$\frac{d\theta}{dx} = -\frac{3a^2}{2\sqrt{x^3}}; \quad \frac{d\omega}{d\theta} = -\frac{1}{(1+\theta)\sqrt{1-\theta^2}}$$

(ver ejemplo 5, p. 71); y

$$\frac{d\phi}{d\omega} = \frac{1}{\sqrt{2}\omega^2}.$$

De modo que $\frac{d\theta}{dx} = \frac{1}{\sqrt{2} \times \omega^2} \times \frac{1}{(1+\theta)\sqrt{1-\theta^2}} \times \frac{3a^2}{2\sqrt{x^3}}$.

Reemplaza ahora primero ω , luego θ por su valor.

Exercises VII. Ahora puedes intentar exitosamente lo siguiente. (Ver page 261 para las Respuestas.)

(1) Si
$$u = \frac{1}{2}x^3$$
; $v = 3(u + u^2)$; y $w = \frac{1}{v^2}$, encuentra $\frac{dw}{dx}$.

(2) Si
$$y = 3x^2 + \sqrt{2}$$
; $z = \sqrt{1+y}$; $y v = \frac{1}{\sqrt{3}+4z}$, encuentra $\frac{dv}{dx}$.

(3) Si
$$y = \frac{x^3}{\sqrt{3}}$$
; $z = (1+y)^2$; y $u = \frac{1}{\sqrt{1+z}}$, encuentra $\frac{du}{dx}$.

CAPÍTULO X.

SIGNIFICADO GEOMÉTRICO DE LA DIFERENCIACIÓN.

Es útil considerar qué significado geométrico se puede dar al coeficiente diferencial.

En primer lugar, cualquier función de x, tal, por ejemplo, como x^2 , o \sqrt{x} , o ax + b, puede graficarse como una curva; y hoy en día todo escolar está familiarizado con el proceso de trazado de curvas.

Sea PQR, en la Fig. 7, una porción de una curva trazada con respecto a los ejes de coordenadas OX y OY. Considera cualquier punto Q en esta curva, donde la abscisa del punto es x y su orde-

nada es y. Ahora observa cómo y cambia cuando x varía. hace aumentar por un pequeño incremento dx, hacia la derecha, se observará que y también (en esta curva particular) aumenta por un pequeño incremento dy (porque esta curva particular resulta ser una curva ascendente). Entonces la razón de dy a dx es una medida del grado en que la curva está inclinándose hacia arriba entre los dos puntos Q y T. De hecho, se puede ver en la figura que la curva entre Q y T tiene muchas pendientes diferentes, de modo que no podemos muy bien hablar de la pendiente de la curva entre Q y T. Si, sin embargo, Q y Testán tan cerca uno del otro que la pequeña porción QT de la curva es prácticamente recta, entonces es cierto decir que la razón $\frac{dy}{dx}$ es la pendiente de la curva a lo largo de QT. La línea recta QT prolongada a cualquier lado toca la curva a lo largo de la porción QT únicamente, y si esta porción es indefinidamente pequeña, la línea recta tocará la curva en prácticamente un punto únicamente, y será por tanto una tangente a la curva.

Esta tangente a la curva tiene evidentemente la misma pendiente que QT, de modo que $\frac{dy}{dx}$ es la pendiente de la tangente a la curva en el punto Q para el cual se encuentra el valor de $\frac{dy}{dx}$.

Hemos visto que la expresión corta "la pendiente de una curva" no tiene significado preciso, porque una curva tiene tantas pendientes—de hecho, cada pequeña porción de una curva tiene una pendiente diferente. "La pendiente de una curva en un punto" es, sin embargo, algo perfectamente definido; es la pendiente de una porción muy pequeña de la curva situada justo en ese punto; y hemos visto que esto es lo mismo que "la pendiente de la tangente a la curva en ese punto."

Observa que dx es un paso corto hacia la derecha, y dy el correspondiente paso corto hacia arriba. Estos pasos deben considerarse tan cortos como sea posible—de hecho indefinidamente cortos,—aunque en diagramas tenemos que representarlos por pedazos que no son infinitesimalmente pequeños, de otro modo no podrían ser vistos.

De aquí en adelante haremos uso considerable de esta circunstancia de que $\frac{dy}{dx}$ representa la pendiente de la curva en cualquier punto.

Fig. 8.

Si una curva se inclina hacia arriba a 45° en un punto particular, como en la Fig. 8, dy y dx serán iguales, y el valor de $\frac{dy}{dx} = 1$.

Si la curva se inclina hacia arriba más empinada que 45° (Fig. 9), $\frac{dy}{dx}$ será mayor que 1.

Si la curva se inclina hacia arriba muy suavemente, como en la Fig. 10, $\frac{dy}{dx}$ será una fracción menor que 1.

Para una línea horizontal, o un lugar horizontal en una curva, dy=0, y por tanto $\frac{dy}{dx}=0$.

Si una curva se inclina *hacia abajo*, como en la Fig. 11, dy será un paso hacia abajo, y debe por tanto ser considerado de valor negativo;

por tanto $\frac{dy}{dx}$ tendrá signo negativo también.

Si la "curva" resulta ser una línea recta, como la de la Fig. 12, el valor de $\frac{dy}{dx}$ será el mismo en todos los puntos a lo largo de ella. En otras palabras su *pendiente* es constante.

Si una curva es una que se vuelve más hacia arriba a medida que avanza hacia la derecha, los valores de $\frac{dy}{dx}$ se volverán cada vez mayores con la creciente empinadura, como en la Fig. 13.

Si una curva es una que se vuelve cada vez más plana a medida

que avanza, los valores de $\frac{dy}{dx}$ se volverán cada vez menores cuando se alcanza la parte más plana, como en la Fig. 14.

Si una curva primero desciende, y luego sube otra vez, como en la Fig. 15, presentando una concavidad hacia arriba, entonces claramente $\frac{dy}{dx}$ será primero negativo, con valores decrecientes a medida que la curva se aplana, luego será cero en el punto donde se alcanza el fondo del valle de la curva; y desde este punto en adelante $\frac{dy}{dx}$ tendrá valores positivos que siguen aumentando. En tal caso se dice que y pasa por un minimo. El valor mínimo de y no es necesariamente el valor más pequeño de y, es ese valor de y correspondiente al fondo del valle; por

ejemplo, en la Fig. 28 (p. 102), el valor de y correspondiente al fondo del valle es 1, mientras que y toma en otros lugares valores que son menores que éste. La característica de un mínimo es que y debe aumentar en ambos lados de él.

N.B.—Para el valor particular de x que hace que y sea un m'inimo, el valor de $\frac{dy}{dx}=0.$

Si una curva primero asciende y luego desciende, los valores de $\frac{dy}{dx}$ serán positivos al principio; luego cero, cuando se alcanza la cima; luego negativos, cuando la curva se inclina hacia abajo, como en la Fig. 16. En este caso se dice que y pasa por un $m\acute{a}ximo$, pero el valor máximo de y no es necesariamente el mayor valor de y. En la Fig. 28, el máximo de y es $2\frac{1}{3}$, pero esto de ninguna manera es el mayor valor que y puede tener en algún otro punto de la curva.

N.B.—Para el valor particular de x que hace que y sea un $m\acute{a}ximo,$ el valor de $\frac{dy}{dx}=0.$

Si una curva tiene la forma peculiar de la Fig. 17, los valores de $\frac{dy}{dx}$ siempre serán positivos; pero habrá un lugar particular donde la pen-

diente es menos empinada, donde el valor de $\frac{dy}{dx}$ será un mínimo; esto es, menor que en cualquier otra parte de la curva.

Si una curva tiene la forma de la Fig. 18, el valor de $\frac{dy}{dx}$ será negativo en la parte superior, y positivo en la parte inferior; mientras que en la nariz de la curva donde se vuelve realmente perpendicular, el valor de $\frac{dy}{dx}$ será infinitamente grande.

Fig. 18.

Ahora que entendemos que $\frac{dy}{dx}$ mide la empinadura de una curva en cualquier punto, volvamos a algunas de las ecuaciones que ya hemos

aprendido cómo diferenciar.

(1) Como el caso más simple toma esto:

$$y = x + b$$
.

Se traza en la Fig. 19, usando escalas iguales para x e y. Si ponemos x=0, entonces la ordenada correspondiente será y=b; esto es, la "curva" cruza el eje y a la altura b. Desde aquí asciende a 45°; pues

cualesquiera valores que demos a x hacia la derecha, tenemos una y igual para ascender. La línea tiene un gradiente de 1 en 1.

Ahora diferencia y = x + b, por las reglas que ya hemos aprendido (pp. 21 y 26 arriba), y obtenemos $\frac{dy}{dx} = 1$.

La pendiente de la línea es tal que por cada pequeño paso dx hacia la derecha, vamos un paso pequeño igual dy hacia arriba. Y esta pendiente es constante—siempre la misma pendiente.

(2) Toma otro caso:

$$y = ax + b.$$

Sabemos que esta curva, como la precedente, empezará desde una altura b en el eje y. Pero antes de dibujar la curva, encontremos su pendiente diferenciando; lo que da $\frac{dy}{dx}=a$. La pendiente será constante, en un ángulo, cuya tangente se llama aquí a. Asignemos a a algún valor numérico—digamos $\frac{1}{3}$. Entonces debemos darle tal pendiente que ascienda 1 en 3; o dx será 3 veces tan grande como dy; como se magnifica en la Fig. 21. Así, dibuja la línea en la Fig. 20 con esta pendiente.

(3) Ahora para un caso ligeramente más difícil.

Sea
$$y = ax^2 + b$$
.

Nuevamente la curva empezará en el eje y a una altura b sobre el origen.

Ahora diferencia. [Si has olvidado, regresa a la p. 26; o, mejor, no regreses, sino piensa la diferenciación.]

$$\frac{dy}{dx} = 2ax.$$

Esto muestra que la empinadura no será constante: aumenta a medida que x aumenta. En el punto de partida P, donde x = 0, la curva (Fig. 22) no tiene empinadura—esto es, está nivelada. A la izquierda del origen, donde x tiene valores negativos, $\frac{dy}{dx}$ también tendrá valores negativos, o descenderá de izquierda a derecha, como en la Figura.

Ilustremos esto elaborando un ejemplo particular. Tomando la ecuación

$$y = \frac{1}{4}x^2 + 3,$$

y diferenciándola, obtenemos

$$\frac{dy}{dx} = \frac{1}{2}x.$$

Ahora asigna unos pocos valores sucesivos, digamos de 0 a 5, a x; y calcula los valores correspondientes de y por la primera ecuación; y de $\frac{dy}{dx}$ de la segunda ecuación. Tabulando resultados, tenemos:

x	0	1	2	3	4	5
y	3	$3\frac{1}{4}$	4	$5\frac{1}{4}$	7	$9\frac{1}{4}$
$\frac{dy}{dx}$	0	$\frac{1}{2}$	1	$1\frac{1}{2}$	2	$2\frac{1}{2}$

Luego tráza las en dos curvas, las Figs. 23 y 24, en la Fig. 23 trazando los valores de y contra los de x y en la Fig. 24 los de $\frac{dy}{dx}$ contra los de x. Para cualquier valor asignado de x, la altura de la ordenada en la segunda curva es proporcional a la pendiente de la primera curva.

Si una curva llega a una cúspide súbita, como en la Fig. 25, la pendiente en ese punto cambia súbitamente de una pendiente hacia arriba

a una pendiente hacia abajo. En ese caso $\frac{dy}{dx}$ claramente experimentará un cambio abrupto de un valor positivo a un valor negativo.

Los siguientes ejemplos muestran aplicaciones adicionales de los principios recién explicados.

(4) Encuentra la pendiente de la tangente a la curva

$$y = \frac{1}{2x} + 3,$$

en el punto donde x = -1. Encuentra el ángulo que esta tangente hace con la curva $y = 2x^2 + 2$.

La pendiente de la tangente es la pendiente de la curva en el punto donde se tocan una a la otra (ver p. 79); esto es, es la $\frac{dy}{dx}$ de la curva para ese punto. Aquí $\frac{dy}{dx} = -\frac{1}{2x^2}$ y para x = -1, $\frac{dy}{dx} = -\frac{1}{2}$, que es la pendiente de la tangente y de la curva en ese punto. La tangente, siendo una línea recta, tiene por ecuación y = ax + b, y su pendiente es $\frac{dy}{dx} = a$, por tanto $a = -\frac{1}{2}$. También si x = -1, $y = \frac{1}{2(-1)} + 3 = 2\frac{1}{2}$; y como la tangente pasa por este punto, las coordenadas del punto deben satisfacer la ecuación de la tangente, a saber

$$y = -\frac{1}{2}x + b,$$

de modo que $2\frac{1}{2}=-\frac{1}{2}\times(-1)+b$ y b=2; la ecuación de la tangente es por tanto $y=-\frac{1}{2}x+2$.

Ahora, cuando dos curvas se encuentran, siendo la intersección un punto común a ambas curvas, sus coordenadas deben satisfacer la ecuación de cada una de las dos curvas; esto es, debe ser una solución del sistema de ecuaciones simultáneas formado acoplando juntas las ecuaciones de las curvas. Aquí las curvas se encuentran una a la otra en puntos dados por la solución de

$$\begin{cases} y = 2x^2 + 2, \\ y = -\frac{1}{2}x + 2 & \text{o} \quad 2x^2 + 2 = -\frac{1}{2}x + 2; \end{cases}$$

esto es,

$$x(2x + \frac{1}{2}) = 0.$$

Esta ecuación tiene por soluciones x=0 y $x=-\frac{1}{4}$. La pendiente de la curva $y=2x^2+2$ en cualquier punto es

$$\frac{dy}{dx} = 4x.$$

Para el punto donde x=0, esta pendiente es cero; la curva es horizontal. Para el punto donde

$$x = -\frac{1}{4}, \quad \frac{dy}{dx} = -1;$$

por tanto la curva en ese punto se inclina hacia abajo hacia la derecha en tal ángulo θ con la horizontal que tan $\theta = 1$; esto es, a 45° a la horizontal.

La pendiente de la línea recta es $-\frac{1}{2}$; esto es, se inclina hacia abajo a la derecha y hace con la horizontal un ángulo ϕ tal que $\tan \phi = \frac{1}{2}$; esto es, un ángulo de 26° 34′. Se sigue que en el primer punto la curva corta la línea recta en un ángulo de 26° 34′, mientras que en el segundo la corta en un ángulo de 45° - 26° 34′ = 18° 26′.

(5) Una línea recta debe ser dibujada, a través de un punto cuyas coordenadas son x = 2, y = -1, como tangente a la curva $y = x^2 - 5x + 6$. Encuentra las coordenadas del punto de contacto.

La pendiente de la tangente debe ser la misma que la $\frac{dy}{dx}$ de la curva; esto es, 2x - 5.

La ecuación de la línea recta es y=ax+b, y como es satisfecha para los valores $x=2,\ y=-1,$ entonces $-1=a\times 2+b;$ también, su $\frac{dy}{dx}=a=2x-5.$

La x y la y del punto de contacto deben también satisfacer tanto la ecuación de la tangente como la ecuación de la curva.

Tenemos entonces

$$\begin{cases} y = x^2 - 5x + 6, & \text{(i)} \\ y = ax + b, & \text{(ii)} \\ -1 = 2a + b, & \text{(iii)} \\ a = 2x - 5, & \text{(iv)} \end{cases}$$

$$y = ax + b, (ii)$$

$$-1 = 2a + b, (iii)$$

$$a = 2x - 5, (iv)$$

cuatro ecuaciones en a, b, x, y.

Las ecuaciones (i) y (ii) dan $x^2 - 5x + 6 = ax + b$.

Reemplazando a y b por su valor en esto, obtenemos

$$x^{2} - 5x + 6 = (2x - 5)x - 1 - 2(2x - 5),$$

que se simplifica a $x^2 - 4x + 3 = 0$, cuyas soluciones son: x = 3 y x = 1. Reemplazando en (i), obtenemos y = 0 e y = 2 respectivamente; los dos puntos de contacto son entonces x = 1, y = 2, y = 3, y = 0.

Nota.—En todos los ejercicios que tratan con curvas, los estudiantes encontrarán extremadamente instructivo verificar las deducciones obtenidas trazando realmente las curvas.

(Ver page 261 para las Respuestas.) Exercises VIII.

(1) Traza la curva $y = \frac{3}{4}x^2 - 5$, usando una escala de milímetros. Mide en puntos correspondientes a diferentes valores de x, el ángulo de su pendiente.

Encuentra, diferenciando la ecuación, la expresión para la pendiente; y ve, desde una Tabla de Tangentes Naturales, si esto concuerda con el ángulo medido.

(2) Encuentra cuál será la pendiente de la curva

$$y = 0.12x^3 - 2,$$

en el punto particular que tiene como abscisa x = 2.

- (3) Si y = (x a)(x b), muestra que en el punto particular de la curva donde $\frac{dy}{dx} = 0$, x tendrá el valor $\frac{1}{2}(a + b)$.
- (4) Encuentra la $\frac{dy}{dx}$ de la ecuación $y=x^3+3x$; y calcula los valores numéricos de $\frac{dy}{dx}$ para los puntos correspondientes a $x=0,\ x=\frac{1}{2},\ x=1,\ x=2.$
- (5) En la curva cuya ecuación es $x^2 + y^2 = 4$, encuentra los valores de x en aquellos puntos donde la pendiente = 1.
- (6) Encuentra la pendiente, en cualquier punto, de la curva cuya ecuación es $\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$; y da el valor numérico de la pendiente en el lugar donde x = 0, y en aquel donde x = 1.
- (7) La ecuación de una tangente a la curva $y = 5 2x + 0.5x^3$, siendo de la forma y = mx + n, donde m y n son constantes, encuentra el valor de m y n si el punto donde la tangente toca la curva tiene x = 2 por abscisa.
 - (8) ¿A qué ángulo se cortan las dos curvas

$$y = 3.5x^2 + 2$$
 y $y = x^2 - 5x + 9.5$

una a la otra?

- (9) Se dibujan tangentes a la curva $y = \pm \sqrt{25 x^2}$ en puntos para los cuales x = 3 y x = 4. Encuentra las coordenadas del punto de intersección de las tangentes y su inclinación mutua.
- (10) Una línea recta y = 2x b toca una curva $y = 3x^2 + 2$ en un punto. ¿Cuáles son las coordenadas del punto de contacto, y cuál es el valor de b?

CAPÍTULO XI.

MÁXIMOS Y MÍNIMOS.

UNO de los principales usos del proceso de diferenciación es encontrar bajo qué condiciones el valor de lo que se diferencia se vuelve un máximo, o un mínimo. Esto es a menudo extremadamente importante en cuestiones de ingeniería, donde es muy deseable saber qué condiciones harán que el costo de operación sea un mínimo, o harán que la eficiencia sea un máximo.

Ahora, para comenzar con un caso concreto, tomemos la ecuación

$$y = x^2 - 4x + 7.$$

Asignando un número de valores sucesivos a x, y encontrando los valores correspondientes de y, podemos ver fácilmente que la ecuación representa una curva con un mínimo.

x	0	1	2	3	4	5
y	7	4	3	4	7	12

Estos valores se trazan en la Fig. 26, que muestra que y tiene aparentemente un valor mínimo de 3, cuando x se hace igual a 2. Pero ¿estás seguro de que el mínimo ocurre en 2, y no en $2\frac{1}{4}$ o en $1\frac{3}{4}$?

Por supuesto sería posible con cualquier expresión algebraica elaborar muchos valores, y de esta manera llegar gradualmente al valor particular que puede ser un máximo o un mínimo.

Aquí hay otro ejemplo:

Sea
$$y = 3x - x^2.$$

Calcula algunos valores así:

x	-1	0	1	2	3	4	5
y	-4	0	2	2	0	-4	-10

Traza estos valores como en la Fig. 27.

Será evidente que habrá un máximo en algún lugar entre x=1 y x=2; y la cosa parece como si el valor máximo de y debería ser alrededor de $2\frac{1}{4}$. Prueba algunos valores intermedios. Si $x=1\frac{1}{4}$, y=2.187; si $x=1\frac{1}{2}$, y=2.25; si x=1.6, y=2.24. ¿Cómo podemos estar seguros de que 2.25 es el máximo real, o que ocurre exactamente cuando $x=1\frac{1}{2}$?

Ahora puede sonar como un truco asegurar que hay una manera por la cual uno puede llegar directamente a un valor máximo (o mínimo) sin hacer muchas pruebas o conjeturas preliminares. Y esa manera depende de la diferenciación. Vuelve a una página anterior (81) por las observaciones sobre las Figs. 14 y 15, y verás que siempre que una curva llegue a su máxima o a su mínima altura, en ese punto su $\frac{dy}{dx} = 0$. Ahora esto nos da la clave del truco que es wanted. Cuando se te presenta una ecuación, y quieres encontrar ese valor de x que hará que su y sea un mínimo (o un máximo), primero diferénciala, y habiendo hecho eso, escribe su $\frac{dy}{dx}$ como $igual\ a\ cero$, y luego resuelve para x. Pon este valor particular de x en la ecuación original, y entonces obtendrás el valor requerido de y. Este proceso comúnmente se llama "igualar a cero."

Para ver qué tan simplemente funciona, toma el ejemplo con el que este capítulo comienza, es decir

$$y = x^2 - 4x + 7$$
.

Diferenciando, obtenemos:

$$\frac{dy}{dx} = 2x - 4.$$

Ahora iguala esto a cero, así:

$$2x - 4 = 0$$
.

Resolviendo esta ecuación para x, obtenemos:

$$2x = 4$$
,

$$x = 2$$
.

Ahora, sabemos que el máximo (o mínimo) ocurrirá exactamente cuando x=2.

Poniendo el valor x=2 en la ecuación original, obtenemos

$$y = 2^{2} - (4 \times 2) + 7$$
$$= 4 - 8 + 7$$
$$= 3.$$

Ahora mira de vuelta a la Fig. 26, y verás que el mínimo ocurre cuando x=2, y que este mínimo de y=3.

Prueba el segundo ejemplo (Fig. 24), que es

$$y = 3x - x^2.$$

Diferenciando,

$$\frac{dy}{dx} = 3 - 2x.$$

Igualando a cero,

$$3 - 2x = 0,$$

de donde

$$x = 1\frac{1}{2};$$

y poniendo este valor de x en la ecuación original, encontramos:

$$y = 4\frac{1}{2} - (1\frac{1}{2} \times 1\frac{1}{2}),$$

$$y = 2\frac{1}{4}.$$

Esto nos da exactamente la información sobre la cual el método de probar muchos valores nos dejó inciertos.

Ahora, antes de continuar con más casos, tenemos dos observaciones que hacer. Cuando se te dice que iguales $\frac{dy}{dx}$ a cero, sientes al principio (eso es si tienes algo de ingenio propio) una especie de resentimiento, porque sabes que $\frac{dy}{dx}$ tiene todo tipo de valores diferentes en diferentes partes de la curva, dependiendo de si está inclinándose hacia arriba o hacia abajo. Entonces, cuando de repente se te dice que escribas

$$\frac{dy}{dx} = 0,$$

lo resientes, y te sientes inclinado a decir que no puede ser verdad. Ahora tendrás que entender la diferencia esencial entre "una ecuación," y "una ecuación de condición." Ordinariamente estás tratando con ecuaciones que son verdaderas en sí mismas, pero, en ocasiones, de las cuales las presentes son ejemplos, tienes que escribir ecuaciones que no son necesariamente verdaderas, pero son solo verdaderas si ciertas condiciones van a cumplirse; y las escribes para, al resolverlas, encontrar las condiciones que las hacen verdaderas. Ahora queremos encontrar el valor particular que tiene x cuando la curva no está inclinándose hacia arriba ni hacia abajo, es decir, en el lugar particular donde $\frac{dy}{dx} = 0$. Entonces, escribir $\frac{dy}{dx} = 0$ no significa que siempre sea = 0; sino que

lo escribes como una condición para ver cuánto saldrá x si $\frac{dy}{dx}$ va a ser cero.

La segunda observación es una que (si tienes algo de ingenio propio) probablemente ya habrás hecho: es decir, que este muy elogiado proceso de igualar a cero falla completamente en decirte si la x que encuentras de esa manera va a darte un valor $m\'{a}ximo$ de y o un valor $m\'{n}imo$ de y. Así es. No discrimina por sí mismo; encuentra para ti el valor correcto de x pero te deja encontrar por ti mismo si la y correspondiente es un m\'{a}ximo o un m\'{n}imo. Por supuesto, si has trazado la curva, ya sabes cuál será.

Por ejemplo, toma la ecuación:

$$y = 4x + \frac{1}{x}.$$

Sin detenerte a pensar a qué curva corresponde, diferénciala, e iguala a cero:

$$\frac{dy}{dx} = 4 - x^{-2} = 4 - \frac{1}{x^2} = 0;$$
$$x = \frac{1}{2};$$

de donde

y, insertando este valor,

$$y = 4$$

será ya sea un máximo o bien un mínimo. Pero ¿cuál? Más adelante se te dirá una manera, dependiendo de una segunda diferenciación, (ver Cap. XII., p. 113). Pero por ahora es suficiente si simplemente pruebas cualquier otro valor de x que difiera un poco del encontrado, y ves si

con este valor alterado el valor correspondiente de y es menor o mayor que el ya encontrado.

Prueba otro problema simple en máximos y mínimos. Supón que te pidieran dividir cualquier número en dos partes, tales que el producto fuera un máximo. ¿Cómo lo abordarías si no conocieras el truco de igualar a cero? Supongo que podrías resolverlo con la regla de prueba, prueba, prueba otra vez. Sea 60 el número. Puedes probar cortándolo en dos partes, y multiplicándolas juntas. Así, 50 por 10 es 500; 52 por 8 es 416; 40 por 20 es 800; 45 por 15 es 675; 30 por 30 es 900. Esto parece un máximo: prueba variándolo. 31 por 29 es 899, lo cual no es tan bueno; y 32 por 28 es 896, lo cual es peor. Entonces parece que el producto más grande se obtendrá dividiendo en dos mitades iguales.

Ahora ve qué te dice el cálculo. Sea el número a ser cortado en dos partes llamado n. Entonces si x es una parte, la otra será n-x, y el producto será x(n-x) o $nx-x^2$. Entonces escribimos $y=nx-x^2$. Ahora diferencia e iguala a cero;

$$\frac{dy}{dx} = n - 2x = 0$$
 Resolviendo para x , obtenemos
$$\frac{n}{2} = x.$$

Entonces ahora sabemos que cualquiera que sea el número n, debemos dividirlo en dos partes iguales si el producto de las partes va a ser un máximo; y el valor de ese producto máximo será siempre $= \frac{1}{4}n^2$.

Esta es una regla muy útil, y se aplica a cualquier número de factores, de modo que si m+n+p= un número constante, $m\times n\times p$ es un máximo cuando m=n=p.

Caso de Prueba.

Apliquemos de inmediato nuestro conocimiento a un caso que podamos probar.

Sea
$$y = x^2 - x;$$

y encontremos si esta función tiene un máximo o mínimo; y si es así, probemos si es un máximo o un mínimo.

Diferenciando, obtenemos

$$\frac{dy}{dx} = 2x - 1.$$

Igualando a cero, obtenemos

$$2x - 1 = 0,$$
 de donde
$$2x = 1,$$
 o
$$x = \frac{1}{2}.$$

Es decir, cuando x se hace $=\frac{1}{2}$, el valor correspondiente de y será ya sea un máximo o un mínimo. En consecuencia, poniendo $x=\frac{1}{2}$ en la ecuación original, obtenemos

$$y = (\frac{1}{2})^2 - \frac{1}{2},$$
 o
$$y = -\frac{1}{4}.$$

¿Es esto un máximo o un mínimo? Para probarlo, prueba poniendo x un poco más grande que $\frac{1}{2}$,—digamos haz x=0.6. Entonces

$$y = (0.6)^2 - 0.6 = 0.36 - 0.6 = -0.24$$

lo cual es más alto que -0.25; mostrando que y=-0.25 es un mínimo. Traza la curva por ti mismo, y verifica el cálculo. Ejemplos Adicionales.

Un ejemplo muy interesante es proporcionado por una curva que tiene tanto un máximo como un mínimo. Su ecuación es:

$$y = \frac{1}{3}x^3 - 2x^2 + 3x + 1.$$
 Ahora
$$\frac{dy}{dx} = x^2 - 4x + 3.$$

Fig. 28.

Igualando a cero, obtenemos la cuadrática,

$$x^2 - 4x + 3 = 0;$$

y resolviendo la cuadrática nos da dos raíces, a saber

$$\begin{cases} x = 3 \\ x = 1. \end{cases}$$

Ahora, cuando $x=3,\ y=1;\ y$ cuando $x=1,\ y=2\frac{1}{3}.$ La primera de estas es un mínimo, la segunda un máximo.

La curva misma puede ser trazada (como en la Fig. 28) a partir de los valores calculados, como abajo, de la ecuación original.

x	-1	0	1	2	3	4	5	6
y	$-4\frac{1}{3}$	1	$2\frac{1}{3}$	$1\frac{2}{3}$	1	$2\frac{1}{3}$	$7\frac{2}{3}$	19

Un ejercicio adicional en máximos y mínimos se proporciona con el siguiente ejemplo:

La ecuación de un círculo de radio r, teniendo su centro C en el punto cuyas coordenadas son $x=a,\,y=b$, como se representa en la Fig. 29, es:

$$(y-b)^2 + (x-a)^2 = r^2.$$

Esto puede transformarse en

$$y = \sqrt{r^2 - (x - a)^2} + b.$$

Ahora sabemos de antemano, por mera inspección de la figura, que cuando x = a, y estará ya sea en su valor máximo, b + r, o bien en su valor mínimo, b - r. Pero no aprovechemos este conocimiento; pongámonos a encontrar qué valor de x hará que y sea un máximo o un mínimo, por el proceso de diferenciar e igualar a cero.

$$\frac{dy}{dx} = \frac{1}{2} \frac{1}{\sqrt{r^2 - (x-a)^2}} \times (2a - 2x),$$

lo cual se reduce a

$$\frac{dy}{dx} = \frac{a-x}{\sqrt{r^2 - (x-a)^2}}.$$

Entonces la condición para que y sea máximo o mínimo es:

$$\frac{a - x}{\sqrt{r^2 - (x - a)^2}} = 0.$$

Ya que ningún valor de x hará que el denominador infinito, la única condición para dar cero es

$$x = a$$
.

Insertando este valor en la ecuación original para el círculo, encontramos

$$y = \sqrt{r^2} + b;$$

y como la raíz de r^2 es ya sea +r o -r, tenemos dos valores resultantes de y,

$$\begin{cases} y = b + r \\ y = b - r. \end{cases}$$

El primero de estos es el máximo, en la parte superior; el segundo el mínimo, en la parte inferior.

Si la curva es tal que no hay lugar que sea un máximo o mínimo, el proceso de igualar a cero dará un resultado imposible. Por ejemplo:

Sea
$$y = ax^3 + bx + c$$
.
Entonces $\frac{dy}{dx} = 3ax^2 + b$.

Igualando esto a cero, obtenemos $3ax^2 + b = 0$,

$$x^2 = \frac{-b}{3a}$$
, y $x = \sqrt{\frac{-b}{3a}}$, lo cual es imposible.

Por lo tanto y no tiene máximo ni mínimo.

Algunos ejemplos trabajados más te permitirán dominar completamente esta aplicación muy interesante y útil del cálculo.

(1) ¿Cuáles son los lados del rectángulo de área máxima inscrito en un círculo de radio R?

Si un lado se llama x,

el otro lado =
$$\sqrt{(\text{diagonal})^2 - x^2}$$
;

y como la diagonal del rectángulo es necesariamente un diámetro, el otro lado = $\sqrt{4R^2 - x^2}$.

Entonces, área del rectángulo $S = x\sqrt{4R^2 - x^2}$,

$$\frac{dS}{dx} = x \times \frac{d\left(\sqrt{4R^2 - x^2}\right)}{dx} + \sqrt{4R^2 - x^2} \times \frac{d(x)}{dx}.$$

Si has olvidado cómo diferenciar $\sqrt{4R^2-x^2}$, aquí hay una pista: escribe $4R^2-x^2=w$ y $y=\sqrt{w}$, y busca $\frac{dy}{dw}$ y $\frac{dw}{dx}$; pelea con ello, y solo si no puedes continuar refiere a la página 69.

Obtendrás

$$\frac{dS}{dx} = x \times -\frac{x}{\sqrt{4R^2 - x^2}} + \sqrt{4R^2 - x^2} = \frac{4R^2 - 2x^2}{\sqrt{4R^2 - x^2}}.$$

Para máximo o mínimo debemos tener

$$\frac{4R^2 - 2x^2}{\sqrt{4R^2 - x^2}} = 0;$$

es decir, $4R^2 - 2x^2 = 0$ y $x = R\sqrt{2}$.

El otro lado = $\sqrt{4R^2 - 2R^2} = R\sqrt{2}$; los dos lados son iguales; la figura es un cuadrado cuyo lado es igual a la diagonal del cuadrado construido sobre el radio. En este caso es, por supuesto, un máximo con el que estamos tratando.

(2) ¿Cuál es el radio de la abertura de un recipiente cónico cuyo lado inclinado tiene una longitud l cuando la capacidad del recipiente es mayor?

Si R es el radio y H la altura correspondiente, $H = \sqrt{l^2 - R^2}$.

Volumen
$$V = \pi R^2 \times \frac{H}{3} = \pi R^2 \times \frac{\sqrt{l^2 - R^2}}{3}$$
.

Procediendo como en el problema anterior, obtenemos

$$\begin{split} \frac{dV}{dR} &= \pi R^2 \times -\frac{R}{3\sqrt{l^2 - R^2}} + \frac{2\pi R}{3}\sqrt{l^2 - R^2} \\ &= \frac{2\pi R(l^2 - R^2) - \pi R^3}{3\sqrt{l^2 - R^2}} = 0 \end{split}$$

para máximo o mínimo.

O, $2\pi R(l^2-R^2)-\pi R^2=0$, y $R=l\sqrt{\frac{2}{3}}$, para un máximo, obviamente.

(3) Encuentra los máximos y mínimos de la función

$$y = \frac{x}{4-x} + \frac{4-x}{x}.$$

Obtenemos

$$\frac{dy}{dx} = \frac{(4-x) - (-x)}{(4-x)^2} + \frac{-x - (4-x)}{x^2} = 0$$

para máximo o mínimo; o

$$\frac{4}{(4-x)^2} - \frac{4}{x^2} = 0 \quad y \quad x = 2.$$

Hay solo un valor, por lo tanto solo un máximo o mínimo.

Para
$$x = 2$$
, $y = 2$,
para $x = 1.5$, $y = 2.27$,
para $x = 2.5$, $y = 2.27$;

es por lo tanto un mínimo. (Es instructivo trazar la gráfica de la función.)

(4) Encuentra los máximos y mínimos de la función $y = \sqrt{1+x} + \sqrt{1-x}$. (Se encontrará instructivo trazar la gráfica.)

Diferenciando da de inmediato (ver ejemplo No. 1, p. 70)

$$\frac{dy}{dx} = \frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1-x}} = 0$$

para máximo o mínimo.

Por lo tanto $\sqrt{1+x}=\sqrt{1-x}$ y x=0, la única solución

Para x = 0, y = 2.

Para $x=\pm 0.5,\,y=1.932,$ así que este es un máximo.

(5) Encuentra los máximos y mínimos de la función

$$y = \frac{x^2 - 5}{2x - 4}.$$

Tenemos

$$\frac{dy}{dx} = \frac{(2x-4) \times 2x - (x^2 - 5)2}{(2x-4)^2} = 0$$

para máximo o mínimo; o

$$\frac{2x^2 - 8x + 10}{(2x - 4)^2} = 0;$$

o $x^2 - 4x + 5 = 0$; que tiene por soluciones

$$x = \frac{5}{2} \pm \sqrt{-1}.$$

Siendo estas imaginarias, no hay valor real de x para el cual $\frac{dy}{dx} = 0$; por lo tanto no hay máximo ni mínimo.

(6) Encuentra los máximos y mínimos de la función

$$(y - x^2)^2 = x^5.$$

Esto puede escribirse $y = x^2 \pm x^{\frac{5}{2}}$.

$$\frac{dy}{dx} = 2x \pm \frac{5}{2}x^{\frac{3}{2}} = 0 \quad \text{para máximo o mínimo;}$$

es decir, $x(2\pm\frac{5}{2}x^{\frac{1}{2}})=0$, que se satisface para x=0, y para $2\pm\frac{5}{2}x^{\frac{1}{2}}=0$, es decir para $x=\frac{16}{25}$. Así que hay dos soluciones.

Tomando primero x = 0. Si x = -0.5, $y = 0.25 \pm \sqrt[2]{-(.5)^5}$, y si x = +0.5, $y = 0.25 \pm \sqrt[2]{(.5)^5}$. En un lado y es imaginaria; es decir, no hay valor de y que pueda ser representado por una gráfica; esta última

está por lo tanto completamente en el lado derecho del eje de y (ver Fig. 30).

Al trazar la gráfica se encontrará que la curva va al origen, como si hubiera un mínimo allí; pero en lugar de continuar más allá, como debería hacer para un mínimo, retrocede sus pasos (formando lo que se llama una "cúspide"). No hay mínimo, por lo tanto, aunque la condición para un mínimo se satisface, es decir $\frac{dy}{dx} = 0$. Es necesario por lo tanto siempre verificar tomando un valor en cada lado.

Ahora, si tomamos $x = \frac{16}{25} = 0.64$. Si x = 0.64, y = 0.7373 y y = 0.0819; si x = 0.6, y se vuelve 0.6389 y 0.0811; y si x = 0.7, y se vuelve 0.8996 y 0.0804.

Esto muestra que hay dos ramas de la curva; la superior no pasa por un máximo, pero la inferior sí.

(7) Un cilindro cuya altura es el doble del radio de la base está au-

mentando en volumen, de modo que todas sus partes mantienen siempre la misma proporción entre sí; es decir, en cualquier instante, el cilindro es similar al cilindro original. Cuando el radio de la base es r pies, el área superficial está aumentando a razón de 20 pulgadas cuadradas por segundo; ¿a qué velocidad está aumentando entonces su volumen?

El volumen cambia a razón de 10r pulgadas cúbicas.

Haz otros ejemplos por ti mismo. Hay pocos temas que ofrezcan tal riqueza de ejemplos interesantes.

Exercises IX. (Ver página 262 para Respuestas.)

- (1) ¿Qué valores de x harán que y sea un máximo y un mínimo, si $y = \frac{x^2}{x+1}$?
- (2) ¿Qué valor de x hará que y sea un máximo en la ecuación $y = \frac{x}{a^2 + x^2}$?
- (3) Una línea de longitud p va a ser cortada en 4 partes y armada como un rectángulo. Muestra que el área del rectángulo será un máximo si cada uno de sus lados es igual a $\frac{1}{4}p$.

- (4) Un trozo de cuerda de 30 pulgadas de largo tiene sus dos extremos unidos y se estira con 3 clavijas para formar un triángulo. ¿Cuál es el área triangular más grande que puede ser encerrada por la cuerda?
 - (5) Traza la curva correspondiente a la ecuación

$$y = \frac{10}{x} + \frac{10}{8 - x};$$

también encuentra $\frac{dy}{dx}$, y deduce el valor de x que hará que y sea un mínimo; y encuentra ese valor mínimo de y.

- (6) Si $y = x^5 5x$, encuentra qué valores de x harán que y sea un máximo o un mínimo.
- (7) ¿Cuál es el cuadrado más pequeño que puede ser inscrito en un cuadrado dado?
- (8) Inscribe en un cono dado, cuya altura es igual al radio de la base, un cilindro (a) cuyo volumen sea un máximo; (b) cuya área lateral sea un máximo; (c) cuya área total sea un máximo.
- (9) Inscribe en una esfera, un cilindro (a) cuyo volumen sea un máximo; (b) cuya área lateral sea un máximo; (c) cuya área total sea un máximo.
- (10) Un globo esférico está aumentando en volumen. Si, cuando su radio es r pies, su volumen está aumentando a razón de 4 pies cúbicos por segundo, ¿a qué velocidad está aumentando entonces su superficie?
- (11) Inscribe en una esfera dada un cono cuyo volumen sea un máximo.

- (12) La corriente C dada por una batería de N celdas voltaicas similares es $C=\frac{n\times E}{R+\frac{rn^2}{N}},$ donde $E,\,R,\,r,$ son constantes y n es el número
- de celdas acopladas en serie. Encuentra la proporción de n a N para la cual la corriente es mayor.

CAPÍTULO XII.

CURVATURA DE CURVAS.

VOLVIENDO al proceso de diferenciación sucesiva, puede preguntarse: ¿Por qué alguien querría diferenciar dos veces? Sabemos que cuando las cantidades variables son espacio y tiempo, al diferenciar dos veces obtenemos la aceleración de un cuerpo en movimiento, y que en la interpretación geométrica, aplicada a curvas, $\frac{dy}{dx}$ significa la pendiente de la curva. Pero ¿qué puede significar $\frac{d^2y}{dx^2}$ en este caso? Claramente significa la tasa (por unidad de longitud x) a la cual la pendiente está cambiando—en resumen, es una medida de la curvatura de la pendiente.

Supón una pendiente constante, como en la Fig. 31.

Aquí, $\frac{dy}{dx}$ es de valor constante.

Supón, sin embargo, un caso en el cual, como la Fig. 32, la pendiente misma se está volviendo mayor hacia arriba, entonces $\frac{d\left(\frac{dy}{dx}\right)}{dx}$, es decir, $\frac{d^2y}{dx^2}$, será positiva.

Si la pendiente se está volviendo menor mientras vas hacia la derecha (como en la Fig. 14, p. 83), o como en la Fig. 33, entonces, aun aunque la curva pueda estar subiendo, ya que el cambio es tal que disminuye su pendiente, su $\frac{d^2y}{dx^2}$ será negativa.

Ahora es tiempo de iniciarte en otro secreto—cómo saber si el resultado que obtienes al "igualar a cero" es un máximo o un mínimo. El truco es este: Después de que has diferenciado (para obtener la expresión que igualas a cero), entonces diferencias una segunda vez, y miras si el resultado de la segunda diferenciación es positivo o negativo. Si $\frac{d^2y}{dx^2}$ sale positivo, entonces sabes que el valor de y que obtuviste

era un minimo; pero si $\frac{d^2y}{dx^2}$ sale negativo, entonces el valor de y que

obtuviste debe ser un *máximo*. Esa es la regla.

La razón de ello debe ser bastante evidente. Piensa en cualquier curva que tenga un punto mínimo en ella (como la Fig. 15, p. 83), o como la Fig. 34, donde el punto de mínimo y está marcado M, y la curva es c'oncava hacia arriba. A la izquierda de M la pendiente es hacia abajo, es decir, negativa, y se está volviendo menos negativa. A la derecha de M la pendiente se ha vuelto hacia arriba, y se está volviendo

más y más hacia arriba. Claramente el cambio de pendiente mientras la curva pasa por M es tal que $\frac{d^2y}{dx^2}$ es positiva, pues su operación, cuando x aumenta hacia la derecha, es convertir una pendiente hacia abajo en una hacia arriba.

De manera similar, considera cualquier curva que tenga un punto máximo en ella (como la Fig. 16, p. 84), o como la Fig. 35, donde la curva es convexa, y el punto máximo está marcado M. En este caso, cuando la curva pasa por M de izquierda a derecha, su pendiente hacia arriba se convierte en una pendiente hacia abajo o negativa, de modo que en este caso la "pendiente de la pendiente" $\frac{d^2y}{dx^2}$ es negativa.

Regresa ahora a los ejemplos del último capítulo y verifica de esta manera las conclusiones a las que se llegó en cuanto a si en algún caso particular hay un máximo o un mínimo. Encontrarás a continuación algunos ejemplos resueltos.

(1) Encuentra el máximo o mínimo de

(a)
$$y = 4x^2 - 9x - 6;$$
 (b) $y = 6 + 9x - 4x^2;$

y determina si es un máximo o un mínimo en cada caso.

(a)
$$\frac{dy}{dx} = 8x - 9 = 0;$$
 $x = 1\frac{1}{8},$ y $y = -11.065.$ $\frac{d^2y}{dx^2} = 8;$ es +; por tanto es un mínimo.

(b)
$$\frac{dy}{dx} = 9 - 8x = 0;$$
 $x = 1\frac{1}{8};$ y $y = +11.065.$ $\frac{d^2y}{dx^2} = -8;$ es –; por tanto es un máximo.

(2) Encuentra los máximos y mínimos de la función $y = x^3 - 3x + 16$.

$$\frac{dy}{dx} = 3x^2 - 3 = 0;$$
 $x^2 = 1;$ $y = \pm 1.$ $\frac{d^2y}{dx^2} = 6x;$ para $x = 1;$ es +;

por tanto x = 1 corresponde a un mínimo y = 14. Para x = -1 es -; por tanto x = -1 corresponde a un máximo y = +18.

(3) Encuentra los máximos y mínimos de $y = \frac{x-1}{x^2+2}$.

$$\frac{dy}{dx} = \frac{(x^2+2)\times 1 - (x-1)\times 2x}{(x^2+2)^2} = \frac{2x-x^2+2}{(x^2+2)^2} = 0;$$

o $x^{2} - 2x - 2 = 0$, cuyas soluciones son x = +2.73 y x = -0.73.

$$\frac{d^2y}{dx^2} = -\frac{(x^2+2)^2 \times (2x-2) - (x^2-2x-2)(4x^3+8x)}{(x^2+2)^4}$$
$$= -\frac{2x^5 - 6x^4 - 8x^3 - 8x^2 - 24x + 8}{(x^2+2)^4}.$$

El denominador siempre es positivo, por lo que es suficiente determinar el signo del numerador.

Si ponemos x=2.73, el numerador es negativo; el máximo, y=0.183.

Si ponemos x = -0.73, el numerador es positivo; el mínimo, y = -0.683.

(4) El gasto C de manejar los productos de una cierta fábrica varía con la producción semanal P de acuerdo con la relación $C = aP + \frac{b}{c+P} + d$, donde a, b, c, d son constantes positivas. ¿Para qué producción será el gasto menor?

$$\frac{dC}{dP} = a - \frac{b}{(c+P)^2} = 0$$
 para máximo o mínimo;

por tanto
$$a = \frac{b}{(c+P)^2}$$
 y $P = \pm \sqrt{\frac{b}{a}} - c$.

Como la producción no puede ser negativa, $P = +\sqrt{\frac{b}{a}} - c$.

Ahora
$$\frac{d^2C}{dP^2} = +\frac{b(2c+2P)}{(c+P)^4},$$

que es positiva para todos los valores de P; por tanto $P=+\sqrt{\frac{b}{a}}-c$ corresponde a un mínimo.

(5) El costo total por hora C de iluminar un edificio con N lámparas de cierto tipo es

 $C = N\left(\frac{C_l}{t} + \frac{EPC_e}{1000}\right),\,$

donde E es la eficiencia comercial (watts por candela),

P es el poder en candelas de cada lámpara,

t es la vida promedio de cada lámpara en horas,

 $C_l = \cos$ to de renovación en peniques por hora de uso,

 $C_e = \cos$ to de energía por 1000 watts por hora.

Además, la relación que conecta la vida promedio de una lámpara con la eficiencia comercial a la que funciona es aproximadamente $t = mE^n$, donde m y n son constantes que dependen del tipo de lámpara.

Encuentra la eficiencia comercial para la cual el costo total de iluminación será menor.

Tenemos
$$C = N \left(\frac{C_l}{m} E^{-n} + \frac{PC_e}{1000} E \right),$$
$$\frac{dC}{dE} = \frac{PC_e}{1000} - \frac{nC_l}{m} E^{-(n+1)} = 0$$

para máximo o mínimo.

$$E^{n+1} = \frac{1000 \times nC_l}{mPC_e} \quad \text{y} \quad E = \sqrt[n+1]{\frac{1000 \times nC_l}{mPC_e}}.$$

Esto es claramente para mínimo, ya que

$$\frac{d^2C}{dE^2} = (n+1)\frac{nC_l}{m}E^{-(n+2)},$$

que es positiva para un valor positivo de E.

Para un tipo particular de lámparas de 16 candelas, $C_l = 17$ peniques, $C_e = 5$ peniques; y se encontró que m = 10 y n = 3.6.

$$E = \sqrt[4.6]{\frac{1000 \times 3.6 \times 17}{10 \times 16 \times 5}} = 2.6$$
 watts por candela.

 $Exercises\ X.$ (Se te aconseja graficar cualquier ejemplo numérico.) (Ver p. 263 para las Respuestas.)

(1) Encuentra los máximos y mínimos de

$$y = x^3 + x^2 - 10x + 8.$$

- (2) Dado $y = \frac{b}{a}x cx^2$, encuentra expresiones para $\frac{dy}{dx}$, y para $\frac{d^2y}{dx^2}$, también encuentra el valor de x que hace y un máximo o un mínimo, y muestra si es máximo o mínimo.
- (3) Encuentra cuántos máximos y cuántos mínimos hay en la curva, cuya ecuación es

$$y = 1 - \frac{x^2}{2} + \frac{x^4}{24};$$

y cuántos en aquella cuya ecuación es

$$y = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720}.$$

(4) Encuentra los máximos y mínimos de

$$y = 2x + 1 + \frac{5}{x^2}.$$

(5) Encuentra los máximos y mínimos de

$$y = \frac{3}{x^2 + x + 1}.$$

(6) Encuentra los máximos y mínimos de

$$y = \frac{5x}{2 + x^2}.$$

(7) Encuentra los máximos y mínimos de

$$y = \frac{3x}{x^2 - 3} + \frac{x}{2} + 5.$$

- (8) Divide un número N en dos partes de tal manera que tres veces el cuadrado de una parte más dos veces el cuadrado de la otra parte sea un mínimo.
- (9) La eficiencia u de un generador eléctrico a diferentes valores de salida x se expresa por la ecuación general:

$$u = \frac{x}{a + bx + cx^2};$$

donde a es una constante que depende principalmente de las pérdidas de energía en el hierro y c una constante que depende principalmente de la resistencia de las partes de cobre. Encuentra una expresión para ese valor de la salida en el cual la eficiencia será máxima.

(10) Supón que se sabe que el consumo de carbón por cierto vapor puede representarse por la fórmula $y = 0.3 + 0.001v^3$; donde y es el número de toneladas de carbón quemadas por hora y v es la velocidad expresada en millas náuticas por hora. El costo de salarios, interés sobre el capital y depreciación de ese barco son iguales en conjunto,

por hora, al costo de 1 tonelada de carbón. ¿Qué velocidad hará que el costo total de un viaje de 1000 millas náuticas sea mínimo? Y, si el carbón cuesta 10 chelines por tonelada, ¿a cuánto ascenderá ese costo mínimo del viaje?

(11) Encuentra los máximos y mínimos de

$$y = \pm \frac{x}{6} \sqrt{x(10 - x)}.$$

(12) Encuentra los máximos y mínimos de

$$y = 4x^3 - x^2 - 2x + 1.$$

CAPÍTULO XIII.

OTROS TRUCOS ÚTILES.

Fracciones Parciales.

Hemos visto que cuando diferenciamos una fracción tenemos que realizar una operación bastante complicada; y, si la fracción no es en sí misma simple, el resultado está obligado a ser una expresión complicada. Si pudiéramos dividir la fracción en dos o más fracciones más simples tales que su suma sea equivalente a la fracción original, entonces podríamos proceder diferenciando cada una de estas expresiones más simples. Y el resultado de diferenciar sería la suma de dos (o más) diferenciales, cada una de las cuales es relativamente simple; mientras que la expresión final, aunque por supuesto será la misma que la que podría obtenerse sin recurrir a este truco, se obtiene así con mucho menos esfuerzo y aparece en una forma simplificada.

Veamos cómo alcanzar este resultado. Intentemos primero el trabajo de sumar dos fracciones juntas para formar una fracción resultante. Tomemos, por ejemplo, las dos fracciones $\frac{1}{x+1}$ y $\frac{2}{x-1}$. Todo colegial puede sumarlas juntas y encontrar que su suma es $\frac{3x+1}{x^2-1}$. Y de la misma manera puede sumar tres o más fracciones. Ahora este proceso ciertamente puede ser revertido: es decir, que si esta última expresión

fuera dada, es cierto que de alguna manera puede ser dividida de vuelta en sus componentes originales o fracciones parciales. Solo que no sabemos en cada caso que se nos pueda presentar cómo podemos dividirla así. Para encontrar esto consideraremos un caso simple al principio. Pero es importante tener en mente que todo lo que sigue se aplica solo a lo que se llaman fracciones algebraicas "propias", significando fracciones como las de arriba, que tienen el numerador de $menor\ grado$ que el denominador; es decir, aquellas en las que el índice más alto de x es menor en el numerador que en el denominador. Si tenemos que lidiar con tal expresión como $\frac{x^2+2}{x^2-1}$, podemos simplificarla por división, ya que es equivalente a $1+\frac{3}{x^2-1}$; y $\frac{3}{x^2-1}$ es una fracción algebraica propia a la cual la operación de dividir en fracciones parciales puede ser aplicada, como se explica más adelante.

Caso I. Si realizamos muchas sumas de dos o más fracciones cuyos denominadores contienen solo términos en x, y ningún término en x^2 , x^3 , o cualquier otra potencia de x, siempre encontramos que el denominador de la fracción final resultante es el producto de los denominadores de las fracciones que fueron sumadas para formar el resultado. Se sigue que al factorizar el denominador de esta fracción final, podemos encontrar cada uno de los denominadores de las fracciones parciales que estamos buscando.

Supongamos que queremos regresar de $\frac{3x+1}{x^2-1}$ a los componentes que sabemos que son $\frac{1}{x+1}$ y $\frac{2}{x-1}$. Si no supiéramos cuáles son esos componentes, aún podemos preparar el camino escribiendo:

$$\frac{3x+1}{x^2-1} = \frac{3x+1}{(x+1)(x-1)} = \frac{1}{x+1} + \frac{1}{x-1},$$

dejando en blanco los lugares para los numeradores hasta que sepamos qué poner ahí. Siempre podemos asumir que el signo entre las fracciones parciales es $m\acute{a}s$, ya que, si es menos, simplemente encontraremos que el numerador correspondiente es negativo. Ahora, dado que las fracciones parciales son fracciones propias, los numeradores son meros números sin x en absoluto, y podemos llamarlos A, B, C... como queramos. Así, en este caso, tenemos:

$$\frac{3x+1}{x^2-1} = \frac{A}{x+1} + \frac{B}{x-1}.$$

Si ahora realizamos la suma de estas dos fracciones parciales, obtenemos $\frac{A(x-1)+B(x+1)}{(x+1)(x-1)}$; y esto debe ser igual a $\frac{3x+1}{(x+1)(x-1)}$. Y, como los denominadores en estas dos expresiones son los mismos, los numeradores deben ser iguales, dándonos:

$$3x + 1 = A(x - 1) + B(x + 1).$$

Ahora, esta es una ecuación con dos cantidades desconocidas, y parecería que necesitamos otra ecuación antes de poder resolverlas y encontrar A y B. Pero hay otra manera de salir de esta dificultad. La ecuación debe ser verdadera para todos los valores de x; por tanto debe ser verdadera para tales valores de x que harán que x-1 y x+1 se vuelvan cero, es decir para x=1 y para x=-1 respectivamente. Si hacemos x=1, obtenemos $4=(A\times 0)+(B\times 2)$, de modo que B=2; y si hacemos x=1, obtenemos x=

Como un ejemplo adicional, tomemos la fracción $\frac{4x^2 + 2x - 14}{x^3 + 3x^2 - x - 3}$. El denominador se vuelve cero cuando x se le da el valor 1; por tanto x - 1 es un factor de él, y obviamente entonces el otro factor será $x^2 + 4x + 3$; y esto puede descomponerse nuevamente en (x + 1)(x + 3). Así podemos escribir la fracción de este modo:

$$\frac{4x^2 + 2x - 14}{x^3 + 3x^2 - x - 3} = \frac{A}{x + 1} + \frac{B}{x - 1} + \frac{C}{x + 3},$$

haciendo tres factores parciales.

Procediendo como antes, encontramos

$$4x^{2} + 2x - 14 = A(x-1)(x+3) + B(x+1)(x+3) + C(x+1)(x-1).$$

Ahora, si hacemos x = 1, obtenemos:

$$-8 = (A \times 0) + B(2 \times 4) + (C \times 0);$$
 es decir, $B = -1$.

Si x = -1, obtenemos:

$$-12 = A(-2 \times 2) + (B \times 0) + (C \times 0);$$
 de donde $A = 3$.

Si x = -3, obtenemos:

$$16 = (A \times 0) + (B \times 0) + C(-2 \times -4);$$
 de donde $C = 2$.

Así que entonces las fracciones parciales son:

$$\frac{3}{x+1} - \frac{1}{x-1} + \frac{2}{x+3},$$

que es mucho más fácil de diferenciar con respecto a x que la expresión complicada de la cual se deriva.

Caso II. Si algunos de los factores del denominador contienen términos en x^2 , y no se ponen convenientemente en factores, entonces el numerador correspondiente puede contener un término en x, así como un número simple; y por tanto se vuelve necesario representar este numerador desconocido no por el símbolo A sino por Ax + B; el resto del cálculo se hace como antes.

Intentemos, por ejemplo
$$\frac{-x^2-3}{(x^2+1)(x+1)}$$
.
$$\frac{-x^2-3}{(x^2+1)(x+1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x+1};$$

$$-x^2-3 = (Ax+B)(x+1) + C(x^2+1).$$

Poniendo x = -1, obtenemos $-4 = C \times 2$; y C = -2;

por tanto
$$-x^2 - 3 = (Ax + B)(x + 1) - 2x^2 - 2;$$

y
$$x^2 - 1 = Ax(x + 1) + B(x + 1).$$

Poniendo x = 0, obtenemos -1 = B; por tanto

у

$$x^{2} - 1 = Ax(x+1) - x - 1;$$
 o $x^{2} + x = Ax(x+1);$
 $x + 1 = A(x+1),$

de modo que A = 1, y las fracciones parciales son:

$$\frac{x-1}{x^2+1} - \frac{2}{x+1}$$
.

Tomemos como otro ejemplo la fracción

$$\frac{x^3 - 2}{(x^2 + 1)(x^2 + 2)}.$$

Obtenemos

$$\frac{x^3 - 2}{(x^2 + 1)(x^2 + 2)} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{x^2 + 2}$$
$$= \frac{(Ax + B)(x^2 + 2) + (Cx + D)(x^2 + 1)}{(x^2 + 1)(x^2 + 2)}.$$

En este caso la determinación de A, B, C, D no es tan fácil. Será más simple proceder como sigue: Dado que la fracción dada y la fracción encontrada al sumar las fracciones parciales son iguales, y tienen denominadores idénticos, los numeradores también deben ser idénticamente los mismos. En tal caso, y para tales expresiones algebraicas como aquellas con las que estamos tratando aquí, los coeficientes de las mismas potencias de x son iguales y del mismo signo.

Por tanto, dado que

$$x^{3} - 2 = (Ax + B)(x^{2} + 2) + (Cx + D)(x^{2} + 1)$$
$$= (A + C)x^{3} + (B + D)x^{2} + (2A + C)x + 2B + D,$$

tenemos 1 = A + C; 0 = B + D (el coeficiente de x^2 en la expresión izquierda siendo cero); 0 = 2A + C; y - 2 = 2B + D. Aquí hay cuatro ecuaciones, de las cuales obtenemos fácilmente A = -1; B = -2; C = 2; D = 0; de modo que las fracciones parciales son $\frac{2(x+1)}{x^2+2} - \frac{x+2}{x^2+1}$. Este método siempre puede usarse; pero el método mostrado primero se encontrará que es el más rápido en el caso de factores solo en x.

Caso III. Cuando, entre los factores del denominador hay algunos que están elevados a alguna potencia, uno debe permitir la posible existencia de fracciones parciales que tengan como denominador las varias potencias de ese factor hasta la más alta. Por ejemplo, al dividir

la fracción $\frac{3x^2-2x+1}{(x+1)^2(x-2)}$ debemos permitir la posible existencia de un denominador x+1 así como $(x+1)^2$ y (x-2).

Puede pensarse, sin embargo, que, dado que el numerador de la fracción cuyo denominador es $(x+1)^2$ puede contener términos en x, debemos permitir esto al escribir Ax + B para su numerador, de modo que

$$\frac{3x^2 - 2x + 1}{(x+1)^2(x-2)} = \frac{Ax + B}{(x+1)^2} + \frac{C}{x+1} + \frac{D}{x-2}.$$

Si, sin embargo, intentamos encontrar A, B, C y D en este caso, fallamos, porque obtenemos cuatro incógnitas; y tenemos solo tres relaciones que las conectan, sin embargo

$$\frac{3x^2 - 2x + 1}{(x+1)^2(x-2)} = \frac{x-1}{(x+1)^2} + \frac{1}{x+1} + \frac{1}{x-2}.$$

Pero si escribimos

$$\frac{3x^2 - 2x + 1}{(x+1)^2(x-2)} = \frac{A}{(x+1)^2} + \frac{B}{x+1} + \frac{C}{x-2},$$

obtenemos

$$3x^{2} - 2x + 1 = A(x - 2) + B(x + 1)(x - 2) + C(x + 1)^{2},$$

lo cual da C=1 para x=2. Reemplazando C por su valor, transponiendo, reuniendo términos semejantes y dividiendo por x-2, obtenemos -2x=A+B(x+1), lo cual da A=-2 para x=-1. Reemplazando A por su valor, obtenemos

$$2x = -2 + B(x+1).$$

Por tanto B=2; de modo que las fracciones parciales son:

$$\frac{2}{x+1} - \frac{2}{(x+1)^2} + \frac{1}{x-2}$$

en lugar de $\frac{1}{x+1} + \frac{x-1}{(x+1)^2} + \frac{1}{x-2}$ declarado arriba como siendo las fracciones de las cuales se obtuvo $\frac{3x^2-2x+1}{(x+1)^2(x-2)}$. El misterio se aclara si observamos que $\frac{x-1}{(x+1)^2}$ puede ella misma dividirse en las dos fracciones $\frac{1}{x+1} - \frac{2}{(x+1)^2}$, de modo que las tres fracciones dadas son realmente equivalentes a

$$\frac{1}{x+1} + \frac{1}{x+1} - \frac{2}{(x+1)^2} + \frac{1}{x-2} = \frac{2}{x+1} - \frac{2}{(x+1)^2} + \frac{1}{x-2},$$

que son las fracciones parciales obtenidas.

Vemos que es suficiente permitir un término numérico en cada numerador, y que siempre obtenemos las fracciones parciales últimas.

Cuando hay una potencia de un factor de x^2 en el denominador, sin embargo, los numeradores correspondientes deben ser de la forma Ax + B; por ejemplo,

$$\frac{3x-1}{(2x^2-1)^2(x+1)} = \frac{Ax+B}{(2x^2-1)^2} + \frac{Cx+D}{2x^2-1} + \frac{E}{x+1},$$

lo cual da

$$3x - 1 = (Ax + B)(x + 1) + (Cx + D)(x + 1)(2x^{2} - 1) + E(2x^{2} - 1)^{2}.$$

Para x=-1, esto da E=-4. Reemplazando, transponiendo, recolectando términos semejantes, y dividiendo por x+1, obtenemos

$$16x^3 - 16x^2 + 3 = 2Cx^3 + 2Dx^2 + x(A - C) + (B - D).$$

Por tanto 2C=16 y C=8; 2D=-16 y D=-8; A-C=0 o A-8=0 y A=8, y finalmente, B-D=3 o B=-5. De modo que

obtenemos como las fracciones parciales:

$$\frac{(8x-5)}{(2x^2-1)^2} + \frac{8(x-1)}{2x^2-1} - \frac{4}{x+1}.$$

Es útil verificar los resultados obtenidos. La manera más simple es reemplazar x por un valor único, digamos +1, tanto en la expresión dada como en las fracciones obtenidas.

Siempre que el denominador contiene solo una potencia de un factor único, un método muy rápido es como sigue:

Tomando, por ejemplo, $\frac{4x+1}{(x+1)^3}$, sea x+1=z; entonces x=z-1. Reemplazando, obtenemos

$$\frac{4(z-1)+1}{z^3} = \frac{4z-3}{z^3} = \frac{4}{z^2} - \frac{3}{z^3}.$$

Las fracciones parciales son, por tanto,

$$\frac{4}{(x+1)^2} - \frac{3}{(x+1)^3}.$$

Aplicación a la diferenciación. Sea requerido diferenciar $y=\frac{5-4x}{6x^2+7x-3};$ tenemos

$$\frac{dy}{dx} = -\frac{(6x^2 + 7x - 3) \times 4 + (5 - 4x)(12x + 7)}{(6x^2 + 7x - 3)^2}$$
$$= \frac{24x^2 - 60x - 23}{(6x^2 + 7x - 3)^2}.$$

Si dividimos la expresión dada en

$$\frac{1}{3x-1} - \frac{2}{2x+3},$$

obtenemos, sin embargo,

$$\frac{dy}{dx} = -\frac{3}{(3x-1)^2} + \frac{4}{(2x+3)^2},$$

que es realmente el mismo resultado que el de arriba dividido en fracciones parciales. Pero la división, si se hace después de diferenciar, es más complicada, como se verá fácilmente. Cuando tratemos con la *integración* de tales expresiones, encontraremos que la división en fracciones parciales es un auxiliar precioso (ver p. 233).

Exercises XI. (Ver page 264 para las Respuestas.)

Dividir en fracciones:

$$(1) \ \frac{3x+5}{(x-3)(x+4)}.$$

(2)
$$\frac{3x-4}{(x-1)(x-2)}$$
.

(3)
$$\frac{3x+5}{x^2+x-12}$$
.

(4)
$$\frac{x+1}{x^2-7x+12}$$
.

(5)
$$\frac{x-8}{(2x+3)(3x-2)}$$
.

(6)
$$\frac{x^2 - 13x + 26}{(x-2)(x-3)(x-4)}.$$

(7)
$$\frac{x^2 - 3x + 1}{(x - 1)(x + 2)(x - 3)}.$$

(8)
$$\frac{5x^2 + 7x + 1}{(2x+1)(3x-2)(3x+1)}.$$

(9)
$$\frac{x^2}{x^3 - 1}$$
.

(10)
$$\frac{x^4+1}{x^3+1}$$
.

(11)
$$\frac{5x^2 + 6x + 4}{(x+1)(x^2 + x + 1)}.$$

(12)
$$\frac{x}{(x-1)(x-2)^2}$$
.

(13)
$$\frac{x}{(x^2-1)(x+1)}$$
.

(14)
$$\frac{x+3}{(x+2)^2(x-1)}$$
.

(15)
$$\frac{3x^2 + 2x + 1}{(x+2)(x^2 + x + 1)^2}.$$

$$(16) \ \frac{5x^2 + 8x - 12}{(x+4)^3}.$$

$$(17) \ \frac{7x^2 + 9x - 1}{(3x - 2)^4}.$$

(18)
$$\frac{x^2}{(x^3-8)(x-2)}$$
.

Diferencial de una Función Inversa.

Considera la función (ver p. 13) y = 3x; puede ser expresada en la forma $x = \frac{y}{3}$; esta última forma se llama la función inversa de la originalmente dada.

Si
$$y = 3x$$
, $\frac{dy}{dx} = 3$; si $x = \frac{y}{3}$, $\frac{dx}{dy} = \frac{1}{3}$, y vemos que
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \quad \text{o} \quad \frac{dy}{dx} \times \frac{dx}{dy} = 1.$$

Considera $y = 4x^2$, $\frac{dy}{dx} = 8x$; la función inversa es

$$x = \frac{y^{\frac{1}{2}}}{2}$$
, $y \frac{dx}{dy} = \frac{1}{4\sqrt{y}} = \frac{1}{4 \times 2x} = \frac{1}{8x}$.

Aquí otra vez

$$\frac{dy}{dx} \times \frac{dx}{dy} = 1.$$

Se puede demostrar que para todas las funciones que pueden ponerse en la forma inversa, uno siempre puede escribir

$$\frac{dy}{dx} \times \frac{dx}{dy} = 1$$
 o $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$.

Se sigue que, dada una función, si es más fácil diferenciar la función inversa, esto puede hacerse, y el recíproco del coeficiente diferencial de la función inversa da el coeficiente diferencial de la función dada misma.

Como un ejemplo, supongamos que deseamos diferenciar $y = \sqrt[2]{\frac{3}{x}-1}$. Hemos visto una manera de hacer esto, escribiendo $u = \frac{3}{x}-1$, y encontrando $\frac{dy}{du}$ y $\frac{du}{dx}$. Esto da

$$\frac{dy}{dx} = -\frac{3}{2x^2\sqrt{\frac{3}{x} - 1}}.$$

Si hubiéramos olvidado cómo proceder por este método, o quisiéramos verificar nuestro resultado por alguna otra manera de obtener el coeficiente diferencial, o por cualquier otra razón no pudiéramos usar el método ordinario, podemos proceder como sigue: La función inversa es $x = \frac{3}{1+u^2}$.

 $\frac{1+y^2}{dy} = -\frac{3\times 2y}{(1+y^2)^2} = -\frac{6y}{(1+y^2)^2};$

por tanto

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = -\frac{(1+y^2)^2}{6y} = -\frac{\left(1+\frac{3}{x}-1\right)^2}{6\times\sqrt[2]{\frac{3}{x}-1}} = -\frac{3}{2x^2\sqrt{\frac{3}{x}-1}}.$$

Tomemos como otro ejemplo $y = \frac{1}{\sqrt[3]{\theta + 5}}$.

La función inversa es $\theta = \frac{1}{y^3} - 5$ o $\theta = y^{-3} - 5$, y

$$\frac{d\theta}{dy} = -3y^{-4} = -3\sqrt[3]{(\theta+5)^4}.$$

Se sigue que $\frac{dy}{dx} = -\frac{1}{3\sqrt{(\theta+5)^4}}$, como podría haberse encontrado de otra manera.

Encontraremos que este truco es muy útil más adelante; mientras tanto se te aconseja familiarizarte con él verificando por sus medios los resultados obtenidos en Ejercicios I. (p. 24), Nos. 5, 6, 7; Ejemplos (p. 70), Nos. 1, 2, 4; y Ejercicios VI. (p. 75), Nos. 1, 2, 3 y 4.

Sin duda te darás cuenta de este capítulo y del anterior, que en muchos aspectos el cálculo es un arte más que una ciencia: un arte que solo se puede adquirir, como todos los demás artes, mediante la práctica. Por lo tanto debes trabajar muchos ejemplos, y plantearte otros ejemplos, para ver si puedes resolverlos, hasta que los diversos artificios se vuelvan familiares por el uso.

CAPÍTULO XIV.

SOBRE EL VERDADERO INTERÉS COMPUESTO Y LA LEY DEL CRECIMIENTO ORGÁNICO.

SEA una cantidad que crece de tal manera que el incremento de su crecimiento, durante un tiempo dado, siempre sea proporcional a su propia magnitud. Esto se asemeja al proceso de calcular interés sobre el dinero a una tasa fija; pues mientras mayor sea el capital, mayor será la cantidad de interés sobre él en un tiempo dado.

Ahora debemos distinguir claramente entre dos casos, en nuestro cálculo, según se haga el cálculo por lo que los libros de aritmética llaman "interés simple," o por lo que llaman "interés compuesto." Pues en el primer caso el capital permanece fijo, mientras que en el último el interés se añade al capital, que por lo tanto aumenta por adiciones sucesivas.

(1) A interés simple. Considera un caso concreto. Sea el capital al inicio de £100, y sea la tasa de interés de 10 por ciento por año. Entonces el incremento para el propietario del capital será de £10 cada año. Que continúe cobrando su interés cada año, y lo atesore guardándolo en una media, o encerrándolo en su caja fuerte. Entonces, si él continúa por 10 años, al final de ese tiempo habrá recibido 10 in-

crementos de £10 cada uno, o £100, haciendo, con los £100 originales, un total de £200 en total. Su propiedad se habrá duplicado en 10 años. Si la tasa de interés hubiera sido 5 por ciento, él habría tenido que atesorar por 20 años para duplicar su propiedad. Si hubiera sido solo 2 por ciento, habría tenido que atesorar por 50 años. Es fácil ver que si el valor del interés anual es $\frac{1}{n}$ del capital, él debe continuar atesorando por n años para duplicar su propiedad.

O, si y es el capital original, y el interés anual es $\frac{y}{n}$, entonces, al final de n años, su propiedad será

$$y + n\frac{y}{n} = 2y.$$

(2) A interés compuesto. Como antes, sea el propietario que comience con un capital de £100, ganando interés a la tasa de 10 por ciento por año; pero, en lugar de atesorar el interés, que se añada al capital cada año, de modo que el capital crezca año tras año. Entonces, al final de un año, el capital habrá crecido a £110; y en el segundo año (aún al 10%) esto ganará £11 de interés. Comenzará el tercer año con £121, y el interés sobre eso será £12. 2s.; de modo que comienza el cuarto año con £133. 2s., y así sucesivamente. Es fácil calcularlo, y encontrar que al final de los diez años el capital total habrá crecido a £259. 7s. 6d. De hecho, vemos que al final de cada año, cada libra habrá ganado $\frac{1}{10}$ de una libra, y por lo tanto, si esto siempre se añade, cada año multiplica el capital por $\frac{11}{10}$; y si continúa por diez años (lo que multiplicará por este factor diez veces) multiplicará el capital original por 2.59374. Pongamos esto en símbolos. Pon y_0 para el capital original; $\frac{1}{n}$ para la fracción añadida en cada una de las n operaciones; e y_n para el valor del capital al final de la $n^{\text{\'esima}}$ operación. Entonces

$$y_n = y_0 \left(1 + \frac{1}{n} \right)^n.$$

Pero este modo de calcular interés compuesto una vez al año, realmente no es del todo justo; pues incluso durante el primer año las £100 deberían haber estado creciendo. Al final de medio año deberían haber sido al menos £105, y ciertamente habría sido más justo si el interés para la segunda mitad del año hubiera sido calculado sobre £105. Esto sería equivalente a llamarlo 5% por medio año; con 20 operaciones, por lo tanto, en cada una de las cuales el capital se multiplica por $\frac{21}{20}$. Si se calcula de esta manera, al final de diez años el capital habría crecido a £265. 6s. 7d.; pues

$$(1 + \frac{1}{20})^{20} = 2.653.$$

Pero, aun así, el proceso todavía no es del todo justo; pues, al final del primer mes, habrá algo de interés ganado; y un cálculo semestral asume que el capital permanece estacionario por seis meses a la vez. Supongamos que dividimos el año en 10 partes, y calculamos un interés de uno-por-ciento para cada décima del año. Ahora tenemos 100 operaciones que duran los diez años; o

$$y_n = £100 \left(1 + \frac{1}{100}\right)^{100};$$

lo que resulta en £270. 9s. $7\frac{1}{2}d$.

Incluso esto no es final. Sean los diez años divididos en 1000 períodos, cada uno de $\frac{1}{100}$ de un año; siendo el interés de $\frac{1}{10}$ por ciento para cada período tal; entonces

$$y_n = £100 \left(1 + \frac{1}{1000}\right)^{1000};$$

lo que resulta en £271. 13s. 10d.

Ve aún más minuciosamente, y divide los diez años en 10,000 partes, cada una $\frac{1}{1000}$ de un año, con interés al $\frac{1}{100}$ de 1 por ciento. Entonces

$$y_n = £100 \left(1 + \frac{1}{10,000}\right)^{10,000};$$

lo que asciende a £271. 16s. $3\frac{1}{2}d$.

Finalmente, se verá que lo que estamos tratando de encontrar es en realidad el valor último de la expresión $\left(1+\frac{1}{n}\right)^n$, que, como vemos, es mayor que 2; y que, mientras tomamos n más y más grande, crece más cerca y más cerca de un valor límite particular. Sin importar qué tan grande hagas n, el valor de esta expresión crece más y más cerca de la cifra

un número que nunca debe ser olvidado.

Tomemos ilustraciones geométricas de estas cosas. En la Fig. 36, OP representa el valor original. OT es todo el tiempo durante el cual el valor está creciendo. Está dividido en 10 períodos, en cada uno de los cuales hay un paso hacia arriba igual. Aquí $\frac{dy}{dx}$ es una constante; y si cada paso hacia arriba es $\frac{1}{10}$ del OP original, entonces, por 10 tales pasos, la altura se duplica. Si hubiéramos tomado 20 pasos, cada uno de la mitad de la altura mostrada, al final la altura aún sería exactamente duplicada. O n tales pasos, cada uno de $\frac{1}{n}$ de la altura original OP, serían suficientes para duplicar la altura. Este es el caso del interés simple. Aquí está 1 creciendo hasta convertirse en 2.

En la Fig. 37, tenemos la ilustración correspondiente de la progresión geométrica. Cada una de las ordenadas sucesivas debe ser $1+\frac{1}{n}$,

esto es, $\frac{n+1}{n}$ veces tan alta como su predecesora. Los pasos hacia arriba no son iguales, porque cada paso hacia arriba es ahora $\frac{1}{n}$ de la ordenada en esa parte de la curva. Si hubiéramos tenido literalmente 10 pasos, con $\left(1+\frac{1}{10}\right)$ como el factor multiplicador, el total final sería $\left(1+\frac{1}{10}\right)^{10}$ o 2.594 veces el 1 original. Pero si solo tomamos n suficientemente grande (y el correspondiente $\frac{1}{n}$ suficientemente pequeño), entonces el valor final $\left(1+\frac{1}{n}\right)^n$ al cual la unidad crecerá será 2.71828.

Epsilon. A este número misterioso 2.7182818 etc., los matemáticos han asignado como símbolo la letra griega ϵ (pronunciada epsilon). Todos los escolares saben que la letra griega π (llamada pi) representa 3.141592 etc.; pero ¿cuántos de ellos saben que epsilon significa 2.71828? ¡Sin embargo es un número aún más importante que π !

¿Qué es, entonces, epsilon?

Supongamos que fuéramos a dejar que 1 crezca a interés simple hasta convertirse en 2; entonces, si a la misma tasa nominal de interés, y por el mismo tiempo, fuéramos a dejar que 1 crezca a verdadero interés compuesto, en lugar de simple, crecería al valor *epsilon*.

Este proceso de crecer proporcionalmente, en cada instante, a la magnitud en ese instante, algunas personas lo llaman una tasa logarítmica de crecimiento. La tasa unitaria logarítmica de crecimiento es esa tasa que en tiempo unitario hará que 1 crezca a 2.718281. También podría ser llamada la tasa orgánica de crecimiento: porque es característica del crecimiento orgánico (en ciertas circunstancias) que el incremento del organismo en un tiempo dado sea proporcional a la magnitud del organismo mismo.

Si tomamos 100 por ciento como la unidad de tasa, y cualquier período fijo como la unidad de tiempo, entonces el resultado de dejar que 1 crezca aritméticamente a tasa unitaria, por tiempo unitario, será 2, mientras que el resultado de dejar que 1 crezca logarítmicamente a tasa unitaria, por el mismo tiempo, será 2.71828....

Un poco más sobre Epsilon. Hemos visto que requerimos saber qué valor alcanza la expresión $\left(1+\frac{1}{n}\right)^n$, cuando n se vuelve indefinidamente grande. Aritméticamente, aquí están tabulados muchos valores

(que cualquiera puede calcular con la ayuda de una tabla ordinaria de logaritmos) obtenidos asumiendo n=2; n=5; n=10; y así sucesivamente, hasta n=10,000.

$$(1 + \frac{1}{2})^2 = 2.25.$$

$$(1 + \frac{1}{5})^5 = 2.488.$$

$$(1 + \frac{1}{10})^{10} = 2.594.$$

$$(1 + \frac{1}{20})^{20} = 2.653.$$

$$(1 + \frac{1}{100})^{100} = 2.705.$$

$$(1 + \frac{1}{1000})^{1000} = 2.7169.$$

$$(1 + \frac{1}{10000})^{10,000} = 2.7181.$$

Sin embargo, vale la pena encontrar otra manera de calcular esta cifra inmensamente importante.

Por consiguiente, nos aprovecharemos del teorema binomial, y expandiremos la expresión $\left(1+\frac{1}{n}\right)^n$ de esa manera bien conocida.

El teorema binomial da la regla de que

$$(a+b)^n = a^n + n\frac{a^{n-1}b}{1!} + n(n-1)\frac{a^{n-2}b^2}{2!} + n(n-1)(n-2)\frac{a^{n-3}b^3}{3!} + \text{etc.}$$

Poniendo a = 1 y $b = \frac{1}{n}$, obtenemos

$$\left(1 + \frac{1}{n}\right)^n = 1 + 1 + \frac{1}{2!} \left(\frac{n-1}{n}\right) + \frac{1}{3!} \frac{(n-1)(n-2)}{n^2} + \frac{1}{4!} \frac{(n-1)(n-2)(n-3)}{n^3} + \text{etc.}$$

Ahora, si suponemos que n se vuelve indefinidamente grande, digamos un billón, o un billón de billones, entonces n-1, n-2, y n-3, etc., serán todos sensiblemente iguales a n; y entonces la serie se convierte en

$$\epsilon = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \text{etc.}...$$

Tomando esta serie rápidamente convergente a tantos términos como queramos, podemos calcular la suma hasta cualquier punto deseado de precisión. Aquí está el cálculo para diez términos:

.000000
0.500000
0.166667
0.041667
0.008333
0.001389
0.000198
0.000025
0.000002
2.718281

 ϵ es inconmensurable con 1, y se asemeja a π al ser un decimal interminable no recurrente.

La Serie Exponencial. Tendremos necesidad de aún otra serie.

Hagamos, nuevamente usando el teorema binomial, expandir la expresión $\left(1+\frac{1}{n}\right)^{nx}$, que es la misma que ϵ^x cuando hacemos n in-

definidamente grande.

$$\epsilon^{x} = 1^{nx} + nx \frac{1^{nx-1} \left(\frac{1}{n}\right)}{1!} + nx(nx-1) \frac{1^{nx-2} \left(\frac{1}{n}\right)^{2}}{2!} + nx(nx-1)(nx-2) \frac{1^{nx-3} \left(\frac{1}{n}\right)^{3}}{3!} + \text{etc.}$$

$$= 1 + x + \frac{1}{2!} \cdot \frac{n^{2}x^{2} - nx}{n^{2}} + \frac{1}{3!} \cdot \frac{n^{3}x^{3} - 3n^{2}x^{2} + 2nx}{n^{3}} + \text{etc.}$$

$$= 1 + x + \frac{x^{2} - \frac{x}{n}}{2!} + \frac{x^{3} - \frac{3x^{2}}{n} + \frac{2x}{n^{2}}}{3!} + \text{etc.}$$

Pero, cuando n se hace indefinidamente grande, esto se simplifica a lo siguiente:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \text{etc.}\dots$$

Esta serie se llama la serie exponencial.

La gran razón por la cual ϵ se considera de importancia es que ϵ^x posee una propiedad, no poseída por ninguna otra función de x, que cuando la diferencias su valor permanece sin cambios; o, en otras palabras, su coeficiente diferencial es el mismo que sí misma. Esto puede verse instantáneamente diferenciándola con respecto a x, así:

$$\frac{d(e^x)}{dx} = 0 + 1 + \frac{2x}{1 \cdot 2} + \frac{3x^2}{1 \cdot 2 \cdot 3} + \frac{4x^3}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{5x^4}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} + \text{etc.}$$
o
$$= 1 + x + \frac{x^2}{1 \cdot 2} + \frac{x^3}{1 \cdot 2 \cdot 3} + \frac{x^4}{1 \cdot 2 \cdot 3 \cdot 4} + \text{etc.},$$

que es exactamente la misma que la serie original.

Ahora podríamos haber trabajado de la otra manera, y dicho: ¡Vamos!; encontremos una función de x, tal que su coeficiente diferencial sea el mismo que sí misma. O, ¿hay alguna expresión, que involucre solo potencias de x, que no cambie por diferenciación? En consecuencia; asumamos como expresión general que

$$y = A + Bx + Cx^2 + Dx^3 + Ex^4 + \text{etc.},$$

(en la cual los coeficientes A, B, C, etc. tendrán que ser determinados), y diferenciémosla.

$$\frac{dy}{dx} = B + 2Cx + 3Dx^2 + 4Ex^3 + \text{etc.}$$

Ahora, si esta nueva expresión va a ser realmente la misma que aquella de la cual fue derivada, es claro que A debe = B; que $C = \frac{B}{2}$

$$\frac{A}{1\cdot 2}$$
; que $D = \frac{C}{3} = \frac{A}{1\cdot 2\cdot 3}$; que $E = \frac{D}{4} = \frac{A}{1\cdot 2\cdot 3\cdot 4}$, etc.

La ley de cambio es por lo tanto que

$$y = A\left(1 + \frac{x}{1} + \frac{x^2}{1 \cdot 2} + \frac{x^3}{1 \cdot 2 \cdot 3} + \frac{x^4}{1 \cdot 2 \cdot 3 \cdot 4} + \text{etc.}\right).$$

Si, ahora, tomamos A = 1 para mayor simplicidad, tenemos

$$y = 1 + \frac{x}{1} + \frac{x^2}{1 \cdot 2} + \frac{x^3}{1 \cdot 2 \cdot 3} + \frac{x^4}{1 \cdot 2 \cdot 3 \cdot 4} + \text{etc.}$$

Diferenciándola cualquier número de veces dará siempre la misma serie de nuevo.

Si, ahora, tomamos el caso particular de A=1, y evaluamos la

serie, obtendremos simplemente

cuando
$$x = 1$$
, $y = 2.718281$ etc.; esto es, $y = \epsilon$;
cuando $x = 2$, $y = (2.718281$ etc.)²; esto es, $y = \epsilon^2$;
cuando $x = 3$, $y = (2.718281$ etc.)³; esto es, $y = \epsilon^3$;

y por lo tanto

cuando
$$x = x$$
, $y = (2.718281 \text{ etc.})^x$; esto es, $y = \epsilon^x$,

demostrando así finalmente que

$$e^x = 1 + \frac{x}{1} + \frac{x^2}{1 \cdot 2} + \frac{x^3}{1 \cdot 2 \cdot 3} + \frac{x^4}{1 \cdot 2 \cdot 3 \cdot 4} + \text{etc.}$$

[NOTA.—Cómo leer exponenciales. Para beneficio de aquellos que no tienen un tutor a mano, puede ser útil aclarar que ϵ^x se lee como "épsilon elevado a la potencia equis;" o algunas personas lo leen "exponencial equis." Así, ϵ^{pt} se lee "épsilon elevado a la potencia pe-te" o "exponencial pe te." Tomemos algunas expresiones similares:—Así, ϵ^{-2} se lee "épsilon elevado a la potencia menos dos" o "exponencial menos dos." ϵ^{-ax} se lee "épsilon elevado a la menos a-equis" o "exponencial menos a-equis"]

Por supuesto se sigue que e^y permanece sin cambios si se diferencia con respecto a y. También e^{ax} , que es igual a $(e^a)^x$, cuando se diferencia con respecto a x, será ae^{ax} , porque a es una constante.

Logaritmos Naturales o Napieranos.

Otra razón por la cual ϵ es importante es porque fue hecho por Napier, el inventor de los logaritmos, la base de su sistema. Si y es el

valor de e^x , entonces x es el logaritmo, en base e, de y. O, si

$$y = \epsilon^x,$$
$$x = \log_{\epsilon} y.$$

entonces

Las dos curvas graficadas en las Figs. 38 y 39 representan estas ecuaciones.

Los puntos calculados son:

Para la Fig. 38	x	0	0.5	1	1.5	2
Tara la Fig. 50	y	1	1.65	2.71	4.50	7.39
Para la Fig. 39	y	1	2	3	4	8
Tara ia Fig. 59	x	0	0.69	1.10	1.39	2.08

Se verá que, aunque los cálculos producen puntos diferentes para graficar, sin embargo el resultado es idéntico. Las dos ecuaciones realmente significan lo mismo.

Como muchas personas que usan logaritmos ordinarios, que se calculan en base 10 en lugar de base ϵ , no están familiarizados con los logaritmos "naturales", puede valer la pena decir una palabra sobre ellos. La regla ordinaria de que sumar logaritmos da el logaritmo del producto aún se mantiene; o

$$\log_{\epsilon} a + \log_{\epsilon} b = \log_{\epsilon} ab.$$

También la regla de las potencias se mantiene;

$$n \times \log_{\epsilon} a = \log_{\epsilon} a^n$$
.

Pero como 10 ya no es la base, uno no puede multiplicar por 100 o 1000 simplemente añadiendo 2 o 3 al índice. Uno puede cambiar el logaritmo natural al logaritmo ordinario simplemente multiplicándolo por 0.4343; o

$$\log_{10} x = 0.4343 \times \log_{e} x$$

y conversamente, $\log_{\epsilon} x = 2.3026 \times \log_{10} x$.

Ecuaciones Exponenciales y Logarítmicas.

Ahora tratemos de diferenciar ciertas expresiones que contienen logaritmos o exponenciales.

Toma la ecuación:

$$y = \log_{\epsilon} x$$
.

Primero transforma esto en

$$\epsilon^y = x$$
.

Una Tabla Útil de "Logaritmos Napieranos" (También llamados Logaritmos Naturales o Logaritmos Hiperbólicos)

Número	\log_{ϵ}	Número	\log_{ϵ}
1	0.0000	6	1.7918
1.1	0.0953	7	1.9459
1.2	0.1823	8	2.0794
1.5	0.4055	9	2.1972
1.7	0.5306	10	2.3026
2.0	0.6931	20	2.9957
2.2	0.7885	50	3.9120
2.5	0.9163	100	4.6052
2.7	0.9933	200	5.2983
2.8	1.0296	500	6.2146
3.0	1.0986	1,000	6.9078
3.5	1.2528	2,000	7.6009
4.0	1.3863	5,000	8.5172
4.5	1.5041	10,000	9.2103
5.0	1.6094	20,000	9.9035

de donde, dado que el diferencial de ϵ^y con respecto a y es la función original sin cambios (ver p. 143),

$$\frac{dx}{dy} = \epsilon^y,$$

y, volviendo de la función inversa a la función original,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\epsilon^y} = \frac{1}{x}.$$

Ahora este es un resultado muy curioso. Puede ser escrito

$$\frac{d(\log_{\epsilon} x)}{dx} = x^{-1}.$$

Nota que x^{-1} es un resultado que nunca podríamos haber obtenido por la regla para diferenciar potencias. Esa regla (page 24) es multiplicar por la potencia, y reducir la potencia en 1. Así, diferenciar x^3 nos dio $3x^2$; y diferenciar x^2 nos dio $2x^1$. Pero diferenciar x^0 no nos da x^{-1} o $0 \times x^{-1}$, porque x^0 es en sí mismo = 1, y es una constante. Tendremos que volver a este hecho curioso de que diferenciar $\log_{\epsilon} x$ nos da $\frac{1}{x}$ cuando lleguemos al capítulo sobre integración.

Ahora, trata de diferenciar

$$y = \log_{\epsilon}(x+a),$$

 $\epsilon^y = x + a.$

esto es

tenemos $\frac{d(x+a)}{du} = \epsilon^y$, ya que el diferencial de ϵ^y permanece ϵ^y .

Esto da
$$\frac{dx}{dy} = \epsilon^y = x + a;$$

por lo tanto, volviendo a la función original (ver p. 132), obtenemos

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{x+a}.$$

Siguiente intenta $y = \log_{10} x$.

$$y = \log_{10} x$$

Primero cambia a logaritmos naturales multiplicando por el módulo 0.4343. Esto nos da

de donde

$$y = 0.4343 \log_{\epsilon} x;$$
$$\frac{dy}{dx} = \frac{0.4343}{x}.$$

Lo siguiente no es tan simple. Intenta esto:

$$y = a^x$$
.

Tomando el logaritmo de ambos lados, obtenemos

O

$$\log_{\epsilon} y = x \log_{\epsilon} a,$$

$$x = \frac{\log_{\epsilon} y}{\log_{\epsilon} a} = \frac{1}{\log_{\epsilon} a} \times \log_{\epsilon} y.$$

Ya que $\frac{1}{\log_{e} a}$ es una constante, obtenemos

$$\frac{dx}{dy} = \frac{1}{\log_{\epsilon} a} \times \frac{1}{y} = \frac{1}{a^x \times \log_{\epsilon} a};$$

por lo tanto, volviendo a la función original.

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = a^x \times \log_{\epsilon} a.$$

Vemos que, ya que

$$\frac{dx}{dy} \times \frac{dy}{dx} = 1$$
 y $\frac{dx}{dy} = \frac{1}{y} \times \frac{1}{\log_{\epsilon} a}$, $\frac{1}{y} \times \frac{dy}{dx} = \log_{\epsilon} a$.

Encontraremos que siempre que tengamos una expresión como $\log_{\epsilon} y =$ una función de x, siempre tenemos $\frac{1}{y} \frac{dy}{dx} =$ el coeficiente diferencial de la función de x, de modo que podríamos haber escrito de inmediato, de $\log_{\epsilon} y = x \log_{\epsilon} a$,

$$\frac{1}{y}\frac{dy}{dx} = \log_{\epsilon} a$$
 y $\frac{dy}{dx} = a^x \log_{\epsilon} a$.

Intentemos ahora más ejemplos.

Examples.

(1)
$$y = e^{-ax}$$
. Sea $-ax = z$; entonces $y = e^z$.

$$\frac{dy}{dx} = \epsilon^z;$$
 $\frac{dz}{dx} = -a;$ por lo tanto $\frac{dy}{dx} = -a\epsilon^{-ax}.$

O así:

$$\log_{\epsilon} y = -ax;$$
 $\frac{1}{y} \frac{dy}{dx} = -a;$ $\frac{dy}{dx} = -ay = -a\epsilon^{-ax}.$

(2)
$$y = e^{\frac{x^2}{3}}$$
. Sea $\frac{x^2}{3} = z$; entonces $y = e^z$.

$$\frac{dy}{dz} = \epsilon^z; \quad \frac{dz}{dx} = \frac{2x}{3}; \quad \frac{dy}{dx} = \frac{2x}{3} \epsilon^{\frac{x^2}{3}}.$$

O así:

$$\log_{\epsilon} y = \frac{x^2}{3}; \quad \frac{1}{y} \frac{dy}{dx} = \frac{2x}{3}; \quad \frac{dy}{dx} = \frac{2x}{3} e^{\frac{x^2}{3}}.$$

$$(3) y = \epsilon^{\frac{2x}{x+1}}.$$

$$\log_{\epsilon} y = \frac{2x}{x+1}, \quad \frac{1}{y} \frac{dy}{dx} = \frac{2(x+1) - 2x}{(x+1)^2};$$
$$\frac{dy}{dx} = \frac{2}{(x+1)^2} \epsilon^{\frac{2x}{x+1}}.$$

por lo tanto

Verifica escribiendo
$$\frac{2x}{x+1} = z$$
.

(4)
$$y = e^{\sqrt{x^2 + a}}$$
. $\log_e y = (x^2 + a)^{\frac{1}{2}}$.

$$\frac{1}{y}\frac{dy}{dx} = \frac{x}{(x^2+a)^{\frac{1}{2}}}$$
 y $\frac{dy}{dx} = \frac{x \times \epsilon^{\sqrt{x^2+a}}}{(x^2+a)^{\frac{1}{2}}}$.

Pues si $(x^2 + a)^{\frac{1}{2}} = u$ y $x^2 + a = v$, $u = v^{\frac{1}{2}}$,

$$\frac{du}{dv} = \frac{1}{2v^{\frac{1}{2}}}; \quad \frac{dv}{dx} = 2x; \quad \frac{du}{dx} = \frac{x}{(x^2 + a)^{\frac{1}{2}}}.$$

Verifica escribiendo $\sqrt{x^2 + a} = z$.

(5)
$$y = \log(a + x^3)$$
. Sea $(a + x^3) = z$; entonces $y = \log_{\epsilon} z$.

$$\frac{dy}{dz} = \frac{1}{z};$$
 $\frac{dz}{dx} = 3x^2;$ por lo tanto $\frac{dy}{dx} = \frac{3x^2}{a+x^3}.$

(6)
$$y = \log_{\epsilon} \{3x^2 + \sqrt{a+x^2}\}$$
. Sea $3x^2 + \sqrt{a+x^2} = z$; entonces $y = \log_{\epsilon} z$.

$$\frac{dy}{dz} = \frac{1}{z}; \quad \frac{dz}{dx} = 6x + \frac{x}{\sqrt{x^2 + a}};$$

$$\frac{dy}{dx} = \frac{6x + \frac{x}{\sqrt{x^2 + a}}}{3x^2 + \sqrt{a + x^2}} = \frac{x(1 + 6\sqrt{x^2 + a})}{(3x^2 + \sqrt{x^2 + a})\sqrt{x^2 + a}}.$$

(7)
$$y = (x+3)^2 \sqrt{x-2}$$
.

$$\log_{\epsilon} y = 2\log_{\epsilon}(x+3) + \frac{1}{2}\log_{\epsilon}(x-2).$$

$$\frac{1}{y} \frac{dy}{dx} = \frac{2}{(x+3)} + \frac{1}{2(x-2)};$$

$$\frac{dy}{dx} = (x+3)^2 \sqrt{x-2} \left\{ \frac{2}{x+3} + \frac{1}{2(x-2)} \right\}.$$
(8) $y = (x^2+3)^3 (x^3-2)^{\frac{2}{3}}.$

$$\log_{\epsilon} y = 3\log_{\epsilon}(x^2+3) + \frac{2}{2}\log_{\epsilon}(x^3-2);$$

Pues si $y = \log_{\epsilon}(x^2 + 3)$, sea $x^2 + 3 = z$ y $u = \log_{\epsilon} z$.

$$\frac{du}{dz} = \frac{1}{z}; \quad \frac{dz}{dx} = 2x; \quad \frac{du}{dx} = \frac{2x}{x^2 + 3}.$$

 $\frac{1}{y}\frac{dy}{dx} = 3\frac{2x}{(x^2+3)} + \frac{2}{3}\frac{3x^2}{x^3-2} = \frac{6x}{x^2+3} + \frac{2x^2}{x^3-2}$

Similarmente, si
$$v = \log_{\epsilon}(x^3 - 2)$$
, $\frac{dv}{dx} = \frac{3x^2}{x^3 - 2}$ y

$$\frac{dy}{dx} = (x^2 + 3)^3 (x^3 - 2)^{\frac{2}{3}} \left\{ \frac{6x}{x^2 + 3} + \frac{2x^2}{x^3 - 2} \right\}.$$

(9)
$$y = \frac{\sqrt[2]{x^2 + a}}{\sqrt[3]{x^3 - a}}$$
.

$$\log_{\epsilon} y = \frac{1}{2} \log_{\epsilon} (x^{2} + a) - \frac{1}{3} \log_{\epsilon} (x^{3} - a).$$

$$\frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \frac{2x}{x^{2} + a} - \frac{1}{3} \frac{3x^{2}}{x^{3} - a} = \frac{x}{x^{2} + a} - \frac{x^{2}}{x^{3} - a}$$

$$\frac{dy}{dx} = \frac{\sqrt[3]{x^{2} + a}}{\sqrt[3]{x^{3} - a}} \left\{ \frac{x}{x^{2} + a} - \frac{x^{2}}{x^{3} - a} \right\}.$$

and

$$\frac{dy}{dx} = \frac{\log_{\epsilon} x \times 0 - 1 \times \frac{1}{x}}{\log_{\epsilon}^{2} x} = -\frac{1}{x \log_{\epsilon}^{2} x}.$$
(11) $y = \sqrt[3]{\log_{\epsilon} x} = (\log_{\epsilon} x)^{\frac{1}{3}}$. Sea $z = \log_{\epsilon} x$; $y = z^{\frac{1}{3}}$.
$$\frac{dy}{dz} = \frac{1}{3} z^{-\frac{2}{3}}; \quad \frac{dz}{dx} = \frac{1}{x}; \quad \frac{dy}{dx} = \frac{1}{3x \sqrt[3]{\log_{\epsilon}^{2} x}}.$$
(12) $y = \left(\frac{1}{a^{x}}\right)^{ax}$.
$$\log_{\epsilon} y = ax(\log_{\epsilon} 1 - \log_{\epsilon} a^{x}) = -ax \log_{\epsilon} a^{x}.$$

$$\frac{1}{y} \frac{dy}{dx} = -ax \times a^{x} \log_{\epsilon} a - a \log_{\epsilon} a^{x}.$$

$$\frac{dy}{dx} = -\left(\frac{1}{a^{x}}\right)^{ax} (x \times a^{x+1} \log_{\epsilon} a + a \log_{\epsilon} a^{x}).$$

Intenta ahora los siguientes ejercicios.

Exercises XII. (Ver página 265 para Respuestas.)

- (1) Diferencia $y = b(\epsilon^{ax} \epsilon^{-ax})$.
- (2) Encuentra el coeficiente diferencial con respecto a t de la expresión $u=at^2+2\log_{\epsilon}t$.
 - (3) Si $y = n^t$, encuentra $\frac{d(\log_{\epsilon} y)}{dt}$.
 - (4) Demuestra que si $y = \frac{1}{b} \cdot \frac{a^{bx}}{\log_{\epsilon} a}, \quad \frac{dy}{dx} = a^{bx}.$
 - (5) Si $w = pv^n$, encuentra $\frac{dw}{dv}$.

Diferencia

У

(6)
$$y = \log_{\epsilon} x^n$$
. (7) $y = 3e^{-\frac{x}{x-1}}$.

(8)
$$y = (3x^2 + 1)e^{-5x}$$
. (9) $y = \log_{\epsilon}(x^a + a)$.

(10)
$$y = (3x^2 - 1)(\sqrt{x} + 1)$$
.

(11)
$$y = \frac{\log_{\epsilon}(x+3)}{x+3}$$
. (12) $y = a^x \times x^a$.

(13) Fue demostrado por Lord Kelvin que la velocidad de señalización a través de un cable submarino depende del valor de la razón del diámetro externo del núcleo al diámetro del alambre de cobre incluido. Si esta razón se llama y, entonces el número de señales s que pueden ser enviadas por minuto puede expresarse por la fórmula

$$s = ay^2 \log_{\epsilon} \frac{1}{y};$$

donde a es una constante que depende de la longitud y de la calidad de los materiales. Demuestra que si estos están dados, s será un máximo si $y = 1 \div \sqrt{\epsilon}$.

(14) Encuentra el máximo o mínimo de

$$y = x^3 - \log_{\epsilon} x.$$

- (15) Diferencia $y = \log_{\epsilon}(ax\epsilon^x)$.
- (16) Diferencia $y = (\log_{\epsilon} ax)^3$.

La Curva Logarítmica.

Regresemos a la curva que tiene sus ordenadas sucesivas en progresión geométrica, tal como la representada por la ecuación $y = bp^x$.

Podemos ver, poniendo x = 0, que b es la altura inicial de y.

Entonces cuando

$$x=1,\quad y=bp; \qquad x=2,\quad y=bp^2; \qquad x=3,\quad y=bp^3, \quad {\rm etc.}$$

También, vemos que p es el valor numérico de la razón entre la altura de cualquier ordenada y la de la anterior inmediata. En la Fig. 40, hemos tomado p como $\frac{6}{5}$; cada ordenada siendo $\frac{6}{5}$ veces tan alta como la precedente.

Si dos ordenadas sucesivas están relacionadas así en una razón constante, sus logaritmos tendrán una diferencia constante; de modo que, si trazáramos una nueva curva, Fig. 41, con valores de $\log_{\epsilon} y$ como ordenadas, sería una línea recta ascendiendo por pasos iguales. De hecho,

se sigue de la ecuación, que

$$\log_{\epsilon} y = \log_{\epsilon} b + x \cdot \log_{\epsilon} p,$$

de donde

$$\log_{\epsilon} y - \log_{\epsilon} b = x \cdot \log_{\epsilon} p.$$

Ahora, ya que $\log_{\epsilon} p$ es un mero número, y puede ser escrito como $\log_{\epsilon} p = a, \text{ se sigue que}$

$$\log_{\epsilon} \frac{y}{b} = ax,$$

y la ecuación toma la nueva forma

$$y = b\epsilon^{ax}$$
.

La Curva de Decaimiento.

Si tomáramos p como una fracción propia (menor que la unidad), la curva obviamente tendería a descender, como en la Fig. 42, donde cada ordenada sucesiva es $\frac{3}{4}$ de la altura de la precedente.

La ecuación sigue siendo

$$y = bp^x;$$

pero ya que p es menor que uno, $\log_{\epsilon} p$ será una cantidad negativa, y puede escribirse -a; de modo que $p=\epsilon^{-a}$, y ahora nuestra ecuación para la curva toma la forma

$$y = b\epsilon^{-ax}.$$

La importancia de esta expresión es que, en el caso donde la variable independiente es *tiempo*, la ecuación representa el curso de una gran

cantidad de procesos físicos en los cuales algo está gradualmente extinguiéndose. Así, el enfriamiento de un cuerpo caliente está representado (en la célebre "ley de enfriamiento" de Newton) por la ecuación

$$\theta_t = \theta_0 \epsilon^{-at}$$
;

donde θ_0 es el exceso original de temperatura de un cuerpo caliente sobre la de sus alrededores, θ_t el exceso de temperatura al final del tiempo t, y a es una constante—a saber, la constante de decremento, dependiendo de la cantidad de superficie expuesta por el cuerpo, y de sus coeficientes de conductividad y emisividad, etc.

Una fórmula similar,

$$Q_t = Q_0 \epsilon^{-at},$$

se usa para expresar la carga de un cuerpo electrificado, originalmente teniendo una carga Q_0 , que se está filtrando con una constante de decremento a; esta constante depende en este caso de la capacidad del cuerpo y de la resistencia del camino de filtración.

Las oscilaciones dadas a un resorte flexible se extinguen después de un tiempo; y la extinción de la amplitud del movimiento puede expresarse de manera similar.

De hecho e^{-at} sirve como un factor de extinción para todos esos fenómenos en los cuales la tasa de disminución es proporcional a la magnitud de lo que está disminuyendo; o donde, en nuestros símbolos usuales, $\frac{dy}{dt}$ es proporcional en todo momento al valor que y tiene en ese momento. Pues solo tenemos que inspeccionar la curva, Fig. 42 arriba, para ver que, en toda parte de ella, la pendiente $\frac{dy}{dx}$ es proporcional a la altura y; la curva volviéndose más plana conforme y se hace menor. En símbolos, así

$$y = b\epsilon^{-ax}$$
 o
$$\log_{\epsilon} y = \log_{\epsilon} b - ax \log_{\epsilon} \epsilon = \log_{\epsilon} b - ax,$$
 y, diferenciando,
$$\frac{1}{y} \frac{dy}{dx} = -a;$$
 por tanto
$$\frac{dy}{dx} = b\epsilon^{-ax} \times (-a) = -ay;$$

o, en palabras, la pendiente de la curva es hacia abajo, y proporcional a y y a la constante a.

Habríamos obtenido el mismo resultado si hubiéramos tomado la ecuación en la forma

$$y = bp^{x};$$
 pues entonces
$$\frac{dy}{dx} = bp^{x} \times \log_{\epsilon} p.$$
 Pero
$$\log_{\epsilon} p = -a;$$
 dándonos
$$\frac{dy}{dx} = y \times (-a) = -ay,$$

como antes.

La Constante de Tiempo. En la expresión para el "factor de extinción" ϵ^{-at} , la cantidad a es el recíproco de otra cantidad conocida como "la constante de tiempo," que podemos denotar por el símbolo T. Entonces el factor de extinción será escrito $\epsilon^{-\frac{t}{T}}$; y se verá, haciendo t=T que el significado de T (o de $\frac{1}{a}$) es que esta es la longitud de tiempo que toma para que la cantidad original (llamada θ_0 o Q_0 en las instancias precedentes) se extinga $\frac{1}{\epsilon}$ ava parte—esto es hasta 0.3678—de su valor original.

Los valores de ϵ^x y ϵ^{-x} se requieren continuamente en diferentes ramas de la física, y como están dados en muy pocos conjuntos de tablas matemáticas, algunos de los valores están tabulados en la p. 161 para conveniencia.

Como un ejemplo del uso de esta tabla, supón que hay un cuerpo caliente enfriándose, y que al principio del experimento (i.e. cuando t=0) está 72° más caliente que los objetos circundantes, y si la constante de tiempo de su enfriamiento es 20 minutos (esto es, si toma 20 minutos para que su exceso de temperatura caiga a $\frac{1}{\epsilon}$ parte de 72°), entonces podemos calcular a qué habrá caído en cualquier tiempo dado t. Por ejemplo, sea t igual a 60 minutos. Entonces $\frac{t}{T}=60 \div 20=3$, y tendremos que encontrar el valor de ϵ^{-3} , y entonces multiplicar los 72° originales por this. The table shows that ϵ^{-3} is 0.0498. So that al final de 60 minutos el exceso de temperatura habrá caído a 72° × 0.0498 = 3.586°.

	1		
x	ϵ^x	ϵ^{-x}	$1 - \epsilon^{-x}$
0.00	1.0000	1.0000	0.0000
0.10	1.1052	0.9048	0.0952
0.20	1.2214	0.8187	0.1813
0.50	1.6487	0.6065	0.3935
0.75	2.1170	0.4724	0.5276
0.90	2.4596	0.4066	0.5934
1.00	2.7183	0.3679	0.6321
1.10	3.0042	0.3329	0.6671
1.20	3.3201	0.3012	0.6988
1.25	3.4903	0.2865	0.7135
1.50	4.4817	0.2231	0.7769
1.75	5.755	0.1738	0.8262
2.00	7.389	0.1353	0.8647
2.50	12.182	0.0821	0.9179
3.00	20.086	0.0498	0.9502
3.50	33.115	0.0302	0.9698
4.00	54.598	0.0183	0.9817
4.50	90.017	0.0111	0.9889
5.00	148.41	0.0067	0.9933
5.50	244.69	0.0041	0.9959
6.00	403.43	0.00248	0.99752
7.50	1808.04	0.00055	0.99947
10.00	22026.5	0.000045	0.999955

Ejemplos Adicionales.

(1) La fuerza de una corriente eléctrica en un conductor en un tiempo t seg. después de la aplicación de la fuerza electromotriz que la produce está dada por la expresión $C = \frac{E}{R} \left\{ 1 - \epsilon^{-\frac{Rt}{L}} \right\}$.

La constante de tiempo es $\frac{L}{R}$.

Si $E=10,\,R=1,\,L=0.01$; entonces cuando t es muy grande el término $\epsilon^{-\frac{Rt}{L}}$ se vuelve 1, y $C=\frac{E}{R}=10$; también

$$\frac{L}{R} = T = 0.01.$$

Su valor en cualquier momento puede escribirse:

$$C = 10 - 10e^{-\frac{t}{0.01}},$$

la constante de tiempo siendo 0.01. Esto significa que toma 0.01 seg. para que el término variable caiga por $\frac{1}{\epsilon}=0.3678$ de su valor inicial $10\epsilon^{-\frac{0}{0.01}}=10$.

Para encontrar el valor de la corriente cuando t=0.001 seg., digamos, $\frac{t}{T}=0.1,\,\epsilon^{-0.1}=0.9048$ (de la tabla).

Se sigue que, después de 0.001 seg., el término variable es $0.9048 \times 10 = 9.048$, y la corriente actual es 10 - 9.048 = 0.952.

Similarmente, al final de 0.1 seg.,

$$\frac{t}{T} = 10; \quad \epsilon^{-10} = 0.000045;$$

el término variable es $10 \times 0.000045 = 0.00045$, la corriente siendo 9.9995.

(2) La intensidad I de un haz de luz que ha pasado a través de un espesor l cm. de algún medio transparente es $I = I_0 e^{-Kl}$, donde I_0 es la intensidad inicial del haz y K es una "constante de absorción."

Esta constante se encuentra usualmente por experimentos. Si se encuentra, por ejemplo, que un haz de luz tiene su intensidad disminuida en 18% al pasar a través de 10 cms. de cierto medio transparente, esto significa que $82 = 100 \times \epsilon^{-K \times 10}$ o $\epsilon^{-10K} = 0.82$, y de la tabla uno ve que 10K = 0.20 muy aproximadamente; por tanto K = 0.02.

Para encontrar el espesor que reducirá la intensidad a la mitad de su valor, uno debe encontrar el valor de l que satisface la igualdad $50 = 100 \times \epsilon^{-0.02l}$, o $0.5 = \epsilon^{-0.02l}$. Se encuentra poniendo esta ecuación en su forma logarítmica, a saber,

$$\log 0.5 = -0.02 \times l \times \log \epsilon,$$

que da

$$l = \frac{-0.3010}{-0.02 \times 0.4343} = 34.7$$
 centímetros aproximadamente.

(3) La cantidad Q de una sustancia radio-activa que aún no ha sufrido transformación se sabe que está relacionada con la cantidad inicial Q_0 de la sustancia por la relación $Q = Q_0 e^{-\lambda t}$, donde λ es una constante y t el tiempo en segundos transcurrido desde que comenzó la transformación.

Para "Radio A," si el tiempo se expresa en segundos, el experimento muestra que $\lambda=3.85\times10^{-3}$. Encuentra el tiempo requerido para transformar la mitad de la sustancia. (Este tiempo se llama la "vida media" de la sustancia.)

Tenemos $0.5 = e^{-0.00385t}$.

$$\log 0.5 = -0.00385t \times \log \epsilon;$$

t=3 minutos muy aproximadamente.

Exercises XIII. (Ver página 265 para Respuestas.)

- (1) Dibuja la curva $y = be^{-\frac{t}{T}}$; donde b = 12, T = 8, y t toma varios valores de 0 a 20.
- (2) Si un cuerpo caliente se enfría de modo que en 24 minutos su exceso de temperatura ha caído a la mitad de la cantidad inicial, deduce la constante de tiempo, y encuentra cuánto tomará en enfriarse al 1 por ciento. del original exceso.
 - (3) Grafica la curva $y = 100(1 \epsilon^{-2t})$.
 - (4) Las siguientes ecuaciones dan curvas muy similares:

(i)
$$y = \frac{ax}{x+b}$$
;
(ii) $y = a(1 - e^{-\frac{x}{b}})$;
(iii) $y = \frac{a}{90^{\circ}} \arctan\left(\frac{x}{b}\right)$.

Dibuja las tres curvas, tomando a=100 milímetros; b=30 milímetros.

(5) Encuentra el coeficiente diferencial de y con respecto a x, si

(a)
$$y = x^x$$
; (b) $y = (e^x)^x$; (c) $y = e^{x^x}$.

(6) Para "Torio A," el valor de λ es 5; encuentra la "vida media," esto es, el tiempo tomado por la transformación de una cantidad Q de "Torio A" igual a la mitad de la cantidad inicial Q_0 en la expresión

$$Q = Q_0 \epsilon^{-\lambda t};$$

t siendo en segundos.

- (7) Un condensador de capacidad $K = 4 \times 10^{-6}$, cargado a un potencial $V_0 = 20$, se está descargando a través de una resistencia de 10,000 ohmios. Encuentra el potencial V después de (a) 0.1 segundo; (b) 0.01 segundo; asumiendo que la caída de potencial sigue la regla $V = V_0 e^{-\frac{t}{KR}}$.
- (8) La carga Q de una esfera metálica aislada electrificada se reduce de 20 a 16 unidades en 10 minutos. Encuentra el coeficiente μ de filtración, si $Q = Q_0 \times \epsilon^{-\mu t}$; Q_0 siendo la carga inicial y t siendo en segundos. Por tanto encuentra el tiempo tomado por la mitad de la carga para filtrarse.
- (9) La amortiguación en una línea telefónica puede determinarse de la relación $i = i_0 e^{-\beta l}$, donde i es la fuerza, después de t segundos, de una corriente telefónica de fuerza inicial i_0 ; l es la longitud de la línea en kilómetros, y β es una constante. Para el cable submarino Franco-Inglés puesto en 1910, $\beta = 0.0114$. Encuentra la amortiguación al final del cable (40 kilómetros), y la longitud a lo largo de la cual i es aún 8% de la corriente original (valor límite de muy buena audición).
- (10) La presión p de la atmósfera a una altitud h kilómetros está dada por $p = p_0 e^{-kh}$; p_0 siendo la presión al nivel del mar (760 milímetros).

Las presiones a 10, 20 y 50 kilómetros siendo 199.2, 42.2, 0.32 respectivamente, encuentra k en cada caso. Usando el valor medio de k, encuentra el error porcentual en cada caso.

- (11) Encuentra el mínimo o máximo de $y = x^x$.
- (12) Encuentra el mínimo o máximo de $y = x^{\frac{1}{x}}$.
- (13) Encuentra el mínimo o máximo de $y = xa^{\frac{1}{x}}$.

CAPÍTULO XV.

CÓMO TRATAR CON SENOS Y COSENOS.

Siendo usual las letras griegas para denotar ángulos, tomaremos como la letra usual para cualquier ángulo variable la letra θ ("theta"). Consideremos la función

$$y = \sin \theta$$
.

Fig. 43.

Lo que tenemos que investigar es el valor de $\frac{d(\sin \theta)}{d\theta}$; o, en otras palabras, si el ángulo θ varía, tenemos que encontrar la relación entre el incremento del seno y el incremento del ángulo, siendo ambos incrementos indefinidamente pequeños en sí mismos. Examina la Fig. 43,

donde, si el radio del círculo es unitario, la altura de y es el seno, y θ es el ángulo. Ahora, si θ se supone que aumenta por la adición a él del pequeño ángulo $d\theta$ —un elemento de ángulo—la altura de y, el seno, será aumentada por un pequeño elemento dy. La nueva altura y+dy será el seno del nuevo ángulo $\theta+d\theta$, o, estableciéndolo como una ecuación,

$$y + dy = \sin(\theta + d\theta);$$

y sustraer de esta la primera ecuación da

$$dy = \sin(\theta + d\theta) - \sin\theta.$$

La cantidad en el lado derecho es la diferencia entre dos senos, y los libros de trigonometría nos dicen cómo calcular esto. Pues nos dicen que si M y N son dos ángulos diferentes,

$$\sin M - \sin N = 2\cos\frac{M+N}{2} \cdot \sin\frac{M-N}{2}.$$

Si, entonces, ponemos $M=\theta+d\theta$ para un ángulo, y $N=\theta$ para el otro, podemos escribir

$$dy = 2\cos\frac{\theta + d\theta + \theta}{2} \cdot \sin\frac{\theta + d\theta - \theta}{2},$$
o,
$$dy = 2\cos(\theta + \frac{1}{2}d\theta) \cdot \sin\frac{1}{2}d\theta.$$

Pero si consideramos $d\theta$ como indefinidamente pequeño, entonces en el límite podemos despreciar $\frac{1}{2}d\theta$ en comparación con θ , y también podemos tomar sin $\frac{1}{2}d\theta$ como siendo lo mismo que $\frac{1}{2}d\theta$. La ecuación

entonces se convierte:

$$dy = 2\cos\theta \times \frac{1}{2}d\theta;$$
$$dy = \cos\theta \cdot d\theta,$$
$$\frac{dy}{d\theta} = \cos\theta.$$

y, finalmente,

Las curvas acompañantes, Figs. 44 y 45, muestran, graficadas a escala, los valores de $y = \sin \theta$, y $\frac{dy}{d\theta} = \cos \theta$, para los valores correspondientes de θ .

Fig. 44.

Toma después el coseno.

Sea $y = \cos \theta$.

Ahora $\cos \theta = \sin \left(\frac{\pi}{2} - \theta \right)$.

Fig. 45.

Por tanto

$$dy = d\left(\sin\left(\frac{\pi}{2} - \theta\right)\right) = \cos\left(\frac{\pi}{2} - \theta\right) \times d(-\theta),$$
$$= \cos\left(\frac{\pi}{2} - \theta\right) \times (-d\theta),$$
$$\frac{dy}{d\theta} = -\cos\left(\frac{\pi}{2} - \theta\right).$$

Y se sigue que

$$\frac{dy}{d\theta} = -\sin\theta.$$

Por último, toma la tangente.

Sea
$$y = \tan \theta,$$

$$dy = \tan(\theta + d\theta) - \tan \theta.$$

Expandiendo, como se muestra en libros de trigonometría,

de donde

$$\tan(\theta + d\theta) = \frac{\tan \theta + \tan d\theta}{1 - \tan \theta \cdot \tan d\theta};$$

$$dy = \frac{\tan \theta + \tan d\theta}{1 - \tan \theta \cdot \tan d\theta} - \tan \theta$$

$$= \frac{(1 + \tan^2 \theta) \tan d\theta}{1 - \tan \theta \cdot \tan d\theta}.$$

Ahora recuerda que si $d\theta$ se disminuye indefinidamente, el valor de $\tan d\theta$ se vuelve idéntico con $d\theta$, y $\tan \theta \cdot d\theta$ es despreciablemente pequeño comparado con 1, de modo que la expresión se reduce a

$$dy = \frac{(1 + \tan^2 \theta) d\theta}{1},$$
 de modo que
$$\frac{dy}{d\theta} = 1 + \tan^2 \theta,$$
 o
$$\frac{dy}{d\theta} = \sec^2 \theta.$$

Recopilando estos resultados, tenemos:

y	$\frac{dy}{d\theta}$
$\sin \theta$	$\cos \theta$
$\cos \theta$	$-\sin\theta$
$\tan \theta$	$\sec^2 \theta$

A veces, en cuestiones mecánicas y físicas, como, por ejemplo, en movimiento armónico simple y en movimientos ondulatorios, tenemos que tratar con ángulos que aumentan en proporción al tiempo. Así, si T sea el tiempo de un período completo, o movimiento alrededor del

círculo, entonces, ya que el ángulo alrededor del círculo es 2π radianes, o 360° , la cantidad de ángulo movida a través en tiempo t, será

$$\theta = 2\pi \frac{t}{T}$$
, en radianes,
 $\theta = 360 \frac{t}{T}$, en grados.

Si la frecuencia, o número de períodos por segundo, se denota por n, entonces $n=\frac{1}{T}$, y entonces podemos escribir:

$$\theta = 2\pi nt$$
.

Entonces tendremos

O

$$y = \sin 2\pi nt.$$

Si, ahora, deseamos saber cómo varía el seno con respecto al tiempo, debemos diferenciar con respecto, no a θ , sino a t. Para esto debemos recurrir al artificio explicado en el Capítulo IX., p. 69, y poner

$$\frac{dy}{dt} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dt}.$$

Ahora $\frac{d\theta}{dt}$ obviamente será $2\pi n$; de modo que

$$\frac{dy}{dt} = \cos \theta \times 2\pi n$$
$$= 2\pi n \cdot \cos 2\pi nt.$$

Similarmente, se sigue que

$$\frac{d(\cos 2\pi nt)}{dt} = -2\pi n \cdot \sin 2\pi nt.$$

Segundo Coeficiente Diferencial del Seno o Coseno.

Hemos visto que cuando $\sin \theta$ se diferencia con respecto a θ se convierte en $\cos \theta$; y que cuando $\cos \theta$ se diferencia con respecto a θ se convierte en $-\sin \theta$; o, en símbolos,

$$\frac{d^2(\sin\theta)}{d\theta^2} = -\sin\theta.$$

Así que tenemos este resultado curioso de que hemos encontrado una función tal que si la diferenciamos dos veces, obtenemos la misma cosa de la cual comenzamos, pero con el signo cambiado de + a -.

La misma cosa es cierta para el coseno; pues diferenciando $\cos \theta$ nos da $-\sin \theta$, y diferenciando $-\sin \theta$ nos da $-\cos \theta$; o así:

$$\frac{d^2(\cos\theta)}{d\theta^2} = -\cos\theta.$$

Los senos y cosenos son las únicas funciones de las cuales el segundo coeficiente diferencial es igual (y de signo opuesto a) la función original.

Examples.

Con lo que hemos aprendido hasta ahora podemos ahora diferenciar expresiones de naturaleza más compleja.

(1) $y = \arcsin x$.

Si y es el arco cuyo seno es x, entonces $x = \sin y$.

$$\frac{dx}{dy} = \cos y.$$

Pasando ahora de la función inversa a la original, obtenemos

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos y}.$$

$$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2};$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}},$$

por tanto

Ahora

un resultado bastante inesperado.

(2)
$$y = \cos^3 \theta$$
.

Esto es lo mismo que $y = (\cos \theta)^3$.

Sea $\cos \theta = v$; entonces $y = v^3$; $\frac{dy}{dv} = 3v^2$.

$$\frac{dv}{d\theta} = -\sin\theta.$$

$$\frac{dy}{d\theta} = \frac{dy}{dv} \times \frac{dv}{d\theta} = -3\cos^2\theta\sin\theta.$$

$$(3) y = \sin(x+a).$$

Sea x + a = v; entonces $y = \sin v$.

$$\frac{dy}{dv} = \cos v;$$
 $\frac{dv}{dx} = 1$ y $\frac{dy}{dx} = \cos(x+a).$

(4) $y = \log_{\epsilon} \sin \theta$.

Sea $\sin \theta = v$; $y = \log_{\epsilon} v$.

$$\frac{dy}{dv} = \frac{1}{v}; \quad \frac{dv}{d\theta} = \cos \theta;$$
$$\frac{dy}{d\theta} = \frac{1}{\sin \theta} \times \cos \theta = \cot \theta.$$

(5)
$$y = \cot \theta = \frac{\cos \theta}{\sin \theta}$$
.

$$\frac{dy}{d\theta} = \frac{-\sin^2 \theta - \cos^2 \theta}{\sin^2 \theta}$$

$$= -(1 + \cot^2 \theta) = -\csc^2 \theta.$$

(6)
$$y = \tan 3\theta$$
.

Let
$$3\theta = v$$
; $y = \tan v$; $\frac{dy}{dv} = \sec^2 v$.
 $\frac{dv}{d\theta} = 3$; $\frac{dy}{d\theta} = 3\sec^2 3\theta$.

(7)
$$y = \sqrt{1 + 3\tan^2\theta}$$
; $y = (1 + 3\tan^2\theta)^{\frac{1}{2}}$.

Sea $3 \tan^2 \theta = v$.

$$y = (1+v)^{\frac{1}{2}}; \quad \frac{dy}{dv} = \frac{1}{2\sqrt{1+v}} \text{ (ver p. 70)};$$
$$\frac{dv}{d\theta} = 6\tan\theta\sec^2\theta$$

(pues, si $\tan \theta = u$,

$$v = 3u^{2}; \quad \frac{dv}{du} = 6u; \quad \frac{du}{d\theta} = \sec^{2}\theta;$$
por tanto
$$\frac{dv}{d\theta} = 6(\tan\theta \sec^{2}\theta)$$
por tanto
$$\frac{dy}{d\theta} = \frac{6\tan\theta \sec^{2}\theta}{2\sqrt{1 + 3\tan^{2}\theta}}.$$

 $(8) y = \sin x \cos x.$

$$\frac{dy}{dx} = \sin x(-\sin x) + \cos x \times \cos x$$
$$= \cos^2 x - \sin^2 x.$$

Exercises XIV. (Ver página 266 para Respuestas.)

(1) Diferencia lo siguiente:

(i)
$$y = A \sin\left(\theta - \frac{\pi}{2}\right)$$
.

- (ii) $y = \sin^2 \theta$; $y = \sin 2\theta$.
- (iii) $y = \sin^3 \theta$; $y = \sin 3\theta$.
- (2) Encuentra el valor de θ para el cual $\sin \theta \times \cos \theta$ es máximo.
- (3) Diferencia $y = \frac{1}{2\pi} \cos 2\pi nt$.
- (4) Si $y = \sin a^x$, encuentra $\frac{dy}{dx}$.
- (5) Diferencia $y = \log_{\epsilon} \cos x$.
- (6) Diferencia $y = 18.2 \sin(x + 26^{\circ})$.
- (7) Grafica la curva $y=100\sin(\theta-15^\circ)$; y muestra que la pendiente de la curva en $\theta=75^\circ$ es la mitad de la pendiente máxima.
 - (8) Si $y = \sin \theta \cdot \sin 2\theta$, encuentra $\frac{dy}{d\theta}$.
- (9) Si $y = a \cdot \tan^m(\theta^n)$, encuentra el coeficiente diferencial de y con respecto a θ .
 - (10) Diferencia $y = e^x \sin^2 x$.
- (11) Diferencia las tres ecuaciones de los Ejercicios XIII. (p. 164), No. 4, y compara sus coeficientes diferenciales, en cuanto a si son iguales, o casi iguales, para valores muy pequeños de x, o para valores muy grandes de x, o para valores de x en la vecindad de x = 30.

(12) Diferencia lo siguiente:

(i)
$$y = \sec x$$
.

(ii)
$$y = \arccos x$$
.

(iii)
$$y = \arctan x$$
.

(iv)
$$y = \operatorname{arc} \sec x$$
.

(v)
$$y = \tan x \times \sqrt{3 \sec x}$$
.

(13) Diferencia
$$y = \sin(2\theta + 3)^{2.3}$$
.

(14) Diferencia
$$y = \theta^3 + 3\sin(\theta + 3) - 3^{\sin\theta} - 3^{\theta}$$
.

(15) Encuentra el máximo o mínimo de
$$y = \theta \cos \theta$$
.

CAPÍTULO XVI.

DIFERENCIACIÓN PARCIAL.

A VECES nos encontramos con cantidades que son funciones de más de una variable independiente. Así, podemos encontrar un caso donde y depende de otras dos cantidades variables, una de las cuales llamaremos u y la otra v. En símbolos

$$y = f(u, v).$$

Toma el caso concreto más simple.

Sea
$$y = u \times v$$
.

¿Qué hemos de hacer? Si fuéramos a tratar v como una constante, y diferenciar con respecto a u, deberíamos obtener

$$dy_v = v du;$$

o si tratamos u como una constante, y diferenciamos con respecto a v, deberíamos tener:

$$dy_u = u \, dv.$$

Las pequeñas letras aquí puestas como subíndices son para mostrar qué cantidad ha sido tomada como constante en la operación.

Otra manera de indicar que la diferenciación ha sido realizada solo parcialmente, esto es, ha sido realizada solo con respecto a una de las independientes variables, es escribir los coeficientes diferenciales con deltas griegas, como ∂ , en lugar de pequeñas d. De esta manera

$$\frac{\partial y}{\partial u} = v,$$
$$\frac{\partial y}{\partial v} = u.$$

Si ponemos estos valores para v y u respectivamente, tendremos

$$dy_v = \frac{\partial y}{\partial u} du,$$

$$dy_u = \frac{\partial y}{\partial v} dv,$$
que son diferenciales parciales.

Pero, si lo piensas, observarás que la variación total de y depende de ambas cosas al mismo tiempo. Esto es, si ambas están variando, la verdadera dy debería escribirse

$$dy = \frac{\partial y}{\partial u} du + \frac{\partial y}{\partial v} dv;$$

y esto se llama una diferencial total. En algunos libros se escribe $dy = \left(\frac{dy}{du}\right)du + \left(\frac{dy}{dv}\right)dv$.

Example (1). Encuentra los coeficientes diferenciales parciales de la expresión $w = 2ax^2 + 3bxy + 4cy^3$. Las respuestas son:

$$\begin{cases} \frac{\partial w}{\partial x} = 4ax + 3by. \\ \frac{\partial w}{\partial y} = 3bx + 12cy^2. \end{cases}$$

La primera se obtiene suponiendo y constante, la segunda se obtiene suponiendo x constante; entonces

$$dw = (4ax + 3by) dx + (3bx + 12cy^{2}) dy.$$

Example (2). Sea $z = x^y$. Entonces, tratando primero y y luego x como constante, obtenemos en la manera usual

$$\begin{cases} \frac{\partial z}{\partial x} = yx^{y-1}, \\ \frac{\partial z}{\partial y} = x^y \times \log_{\epsilon} x, \end{cases}$$

de modo que $dz = yx^{y-1} dx + x^y \log_{\epsilon} x dy$.

Example (3). Un cono teniendo altura h y radio de base r tiene volumen $V = \frac{1}{3}\pi r^2 h$. Si su altura permanece constante, mientras r cambia, la razón de cambio del volumen, con respecto al radio, es diferente de la razón de cambio del volumen con respecto a la altura que ocurriría si la altura fuera variada y el radio mantenido constante, pues

$$\frac{\partial V}{\partial r} = \frac{2\pi}{3}rh,$$

$$\frac{\partial V}{\partial h} = \frac{\pi}{3}r^2.$$

La variación cuando tanto el radio como la altura cambian está dada por $dV=\frac{2\pi}{3}rh\,dr+\frac{\pi}{3}r^2\,dh.$

Example (4). En el siguiente ejemplo F y f denotan dos funciones arbitrarias de cualquier forma. Por ejemplo, pueden ser funciones seno, o exponenciales, o simples funciones algebraicas de las

dos variables independientes, t y x. Entendiendo esto, tomemos la expresión

$$y = F(x + at) + f(x - at),$$
o,
$$y = F(w) + f(v);$$
donde
$$w = x + at, \quad y \quad v = x - at.$$
Entonces
$$\frac{\partial y}{\partial x} = \frac{\partial F(w)}{\partial w} \cdot \frac{\partial w}{\partial x} + \frac{\partial f(v)}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= F'(w) \cdot 1 + f'(v) \cdot 1$$

(donde la cifra 1 es simplemente el coeficiente de x en w y v);

y
$$\frac{\partial^2 y}{\partial x^2} = F''(w) + f''(v).$$
También
$$\frac{\partial y}{\partial t} = \frac{\partial F(w)}{\partial w} \cdot \frac{\partial w}{\partial t} + \frac{\partial f(v)}{\partial v} \cdot \frac{\partial v}{\partial t}$$

$$= F'(w) \cdot a - f'(v)a;$$
y
$$\frac{\partial^2 y}{\partial t^2} = F''(w)a^2 + f''(v)a^2;$$
de donde
$$\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}.$$

Esta ecuación diferencial es de inmensa importancia en física matemática.

Máximos y Mínimos de Funciones de dos Variables Independientes.

Example (5). Retomemos de nuevo el Ejercicio IX., p. 111, No. 4.

Sean x y y las longitudes de dos de las porciones de la cuerda. La tercera es 30-(x+y), y el área del triángulo es $A=\sqrt{s(s-x)(s-y)(s-30+4)}$ donde s es el semi-perímetro, 15, de modo que $A=\sqrt{15P}$, donde

$$P = (15 - x)(15 - y)(x + y - 15)$$

= $xy^2 + x^2y - 15x^2 - 15y^2 - 45xy + 450x + 450y - 3375$.

Claramente A es máximo cuando P es máximo.

$$dP = \frac{\partial P}{\partial x} dx + \frac{\partial P}{\partial y} dy.$$

Para un máximo (claramente no será un mínimo en este caso), uno debe tener simultáneamente

$$\frac{\partial P}{\partial x} = 0 \quad \text{y} \quad \frac{\partial P}{\partial y} = 0;$$

$$2xy - 30x + y^2 - 45y + 450 = 0,$$

$$2xy - 30y + x^2 - 45x + 450 = 0.$$

Una solución inmediata es x = y.

esto es,

Si ahora introducimos esta condición en el valor de P, encontramos

$$P = (15 - x)^{2}(2x - 15) = 2x^{3} - 75x^{2} + 900x - 3375.$$

Para máximo o mínimo, $\frac{dP}{dx} = 6x^2 - 150x + 900 = 0$, lo cual da x = 15 o x = 10.

Claramente x=15 da el área mínima; x=10 da el máximo, pues $\frac{d^2P}{dx^2}=12x-150$, que es +30 para x=15 y -30 para x=10.

Example (6). Encuentra las dimensiones de un vagón de carbón ferroviario ordinario con extremos rectangulares, tal que, para un volumen dado V el área de lados y piso juntos sea lo más pequeña posible.

El vagón es una caja rectangular abierta por arriba. Sea x la longitud y y el ancho; entonces la profundidad es $\frac{V}{xy}$. El área de superficie

es
$$S = xy + \frac{2V}{x} + \frac{2V}{y}$$
.

$$dS = \frac{\partial S}{\partial x} dx + \frac{\partial S}{\partial y} dy = \left(y - \frac{2V}{x^2}\right) dx + \left(x - \frac{2V}{y^2}\right) dy.$$

Para el mínimo (claramente no será un máximo aquí),

$$y - \frac{2V}{x^2} = 0$$
, $x - \frac{2V}{y^2} = 0$.

Aquí también, una solución inmediata es x=y, de modo que $S=x^2+\frac{4V}{x}, \quad \frac{dS}{dx}=2x-\frac{4V}{x^2}=0$ para el mínimo, y

$$x = \sqrt[3]{2V}.$$

Exercises XV. (Ver página 268 para Respuestas.)

- (1) Diferencia la expresión $\frac{x^3}{3} 2x^3y 2y^2x + \frac{y}{3}$ con respecto a x solamente, y con respecto a y solamente.
- (2) Encuentra los coeficientes diferenciales parciales con respecto a $x,\,y$ y z, de la expresión

$$x^2yz + xy^2z + xyz^2 + x^2y^2z^2$$
.

(3) Sea
$$r^2 = (x-a)^2 + (y-b)^2 + (z-c)^2$$
.

Encuentra el valor de $\frac{\partial r}{\partial x} + \frac{\partial r}{\partial y} + \frac{\partial r}{\partial z}$. También encuentra el valor de $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2}$.

- (4) Encuentra la diferencial total de $y = u^v$.
- (5) Encuentra la diferencial total de $y = u^3 \sin v$; de $y = (\sin x)^u$; y de $y = \frac{\log_{\epsilon} u}{v}$.
- (6) Verifica que la suma de tres cantidades x, y, z, cuyo producto es una constante k, es máximo cuando estas tres cantidades son iguales.
 - (7) Encuentra el máximo o mínimo de la función

$$u = x + 2xy + y.$$

- (8) Las regulaciones de la oficina postal establecen que ningún paquete debe ser de tal tamaño que su longitud más su circunferencia exceda 6 pies. ¿Cuál es el mayor volumen que puede enviarse por correo (a) en el caso de un paquete de sección transversal rectangular; (b) en el caso de un paquete de sección transversal circular.
- (9) Divide π en 3 partes tal que el producto continuo de sus senos pueda ser máximo o mínimo.
 - (10) Encuentra el máximo o mínimo de $u = \frac{e^{x+y}}{xy}$.
 - (11) Encuentra máximo y mínimo de

$$u = y + 2x - 2\log_{\epsilon} y - \log_{\epsilon} x.$$

(12) Un balde de teleférico de capacidad dada tiene la forma de un prisma triangular isósceles horizontal con el vértice por debajo, y la cara opuesta abierta. Encuentra sus dimensiones para que se use la menor cantidad de lámina de hierro en su construcción.

CAPÍTULO XVII.

INTEGRACIÓN.

EL gran secreto ya ha sido revelado que este símbolo misterioso \int , que después de todo es solo una S larga, simplemente significa "la suma de," o "la suma de todas las cantidades tales como." Por lo tanto se asemeja a ese otro símbolo \sum (la Sigma griega), que también es un signo de suma. Hay esta diferencia, sin embargo, en la práctica de los hombres matemáticos en cuanto al uso de estos signos, que mientras \sum generalmente se usa para indicar la suma de un número de cantidades finitas, el signo integral \int generalmente se usa para indicar la suma de un vasto número de pequeñas cantidades de magnitud indefinidamente diminuta, meros elementos de hecho, que van a formar el total requerido. Así $\int dy = y$, y $\int dx = x$.

Cualquiera puede entender cómo el total de cualquier cosa puede concebirse como formado por muchos pequeños pedazos; y cuanto más pequeños los pedazos, más de ellos habrá. Así, una línea de una pulgada de largo puede concebirse como formada por 10 piezas, cada una de $\frac{1}{10}$ de pulgada de largo; o de 100 partes, cada parte siendo $\frac{1}{100}$ de pulgada de largo; o de 1,000,000 partes, cada una de las cuales es $\frac{1}{1,000,000}$ de pulgada de largo; o, llevando el pensamiento a los límites de la concebibilidad, puede considerarse como formada por un número infinito de

elementos cada uno de los cuales es infinitesimalmente pequeño.

Sí, dirás, pero ¿cuál es el uso de pensar of anything that way? Why not think of it straight off, as a whole? The simple reason is that there are a vast number of cases in which one cannot calculate the bigness of the thing as a whole without reckoning up the sum of a lot of small parts. The process of "integrating" is to enable us to calculate totals that otherwise we should be unable to estimate directly.

Let us first take one or two simple cases to familiarize ourselves with this notion of summing up a lot of separate parts.

Consider the series:

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + etc.$$

Here each member of the series is formed by taking it half the value of the preceding. What is the value of the total if we could go on to an infinite number of terms? Every schoolboy knows that the answer is 2. Think of it, if you like, as a line. Begin with one inch; add a half

Fig. 46.

inch, add a quarter; add an eighth; and so on. If at any point of the operation we stop, there will still be a piece wanting to make up the whole 2 inches; and the piece wanting will always be the same size as the last piece added. Thus, if after having put together 1, $\frac{1}{2}$, and $\frac{1}{4}$, we stop, there will be $\frac{1}{4}$ wanting. If we go on till we have added $\frac{1}{64}$, there will still be $\frac{1}{64}$ wanting. The remainder needed will always be equal to

the last term added. By an infinite number of operations only should we reach the actual 2 inches. Practically we should reach it when we got to pieces so small that they could not be drawn—that would be after about 10 terms, for the eleventh term is $\frac{1}{1024}$. If we want to go so far that not even a Whitworth's measuring machine would detect it, we should merely have to go to about 20 terms. A microscope would not show even the 18th term! So the infinite number of operations is no such dreadful thing after all. The *integral* is simply the whole lot. But, as we shall see, there are cases in which the integral calculus enables us to get at the *exact* total that there would be as the result of an infinite number of operations. In such cases the integral calculus gives us a *rapid* and easy way of getting at a result that would otherwise require an interminable lot of elaborate working out. So we had best lose no time in learning *how to integrate*.

Slopes of Curves, and the Curves themselves.

Let us make a little preliminary enquiry about the slopes of curves. For we have seen that differentiating a curve means finding an expression for its slope (or for its slopes at different points). Can we perform the reverse process of reconstructing the whole curve if the slope (or slopes) are prescribed for us?

Go back to case (2) on p. 85. Here we have the simplest of curves, a sloping line with the equation

$$y = ax + b.$$

Fig. 47.

We know that here b represents the initial height of y when x = 0, and that a, which is the same as $\frac{dy}{dx}$, is the "slope" of the line. The line has a constant slope. All along it the elementary triangles $\frac{dy}{dx}$ have the same proportion between height and base. Suppose we were to take the dx's, and dy's of finite magnitude, so that $10 \ dx$'s made up one inch, then there would be ten little triangles like

Now, suppose that we were ordered to reconstruct the "curve," starting merely from the information that $\frac{dy}{dx} = a$. What could we do? Still taking the little d's as of finite size, we could draw 10 of them, all with the same slope, and then put them together, end to end, like this: And, as the slope is the same for all, they would join to make, as in Fig. 48, a sloping line sloping with the correct slope $\frac{dy}{dx} = a$. And whether we take the dy's and dx's as finite or infinitely small, as they

Fig. 48.

are all alike, clearly $\frac{y}{x} = a$, if we reckon y as the total of all the dy's, and x as the total of all the dx's. But whereabouts are we to put this sloping line? Are we to start at the origin O, or higher up? As the only information we have is as to the slope, we are without any instructions as to the particular height above O; in fact the initial height is undetermined. The slope will be the same, whatever the initial height. Let us therefore make a shot at what may be wanted, and start the sloping line at a height C above O. That is, we have the equation

$$y = ax + C$$
.

It becomes evident now that in this case the added constant means the particular value that y has when x = 0.

Now let us take a harder case, that of a line, the slope of which is

not constant, but turns up more and more. Let us assume that the upward slope gets greater and greater in proportion as x grows. In symbols this is:

$$\frac{dy}{dx} = ax.$$

Or, to give a concrete case, take $a = \frac{1}{5}$, so that

$$\frac{dy}{dx} = \frac{1}{5}x.$$

Then we had best begin by calculating a few of the values of the slope at different values of x, and also draw little diagrams of them.

When
$$x = 0$$
, $\frac{dy}{dx} = 0$, $x = 1$, $\frac{dy}{dx} = 0.2$, $x = 2$, $\frac{dy}{dx} = 0.4$, $x = 3$, $\frac{dy}{dx} = 0.6$, $x = 4$, $\frac{dy}{dx} = 0.8$, $x = 4$, $\frac{dy}{dx} = 0.8$, $x = 5$, $\frac{dy}{dx} = 1.0$.

Now try to put the pieces together, setting each so that the middle of its base is the proper distance to the right, and so that they fit together at the corners; thus (Fig. 49). The result is, of course, not a smooth curve: but it is an approximation to one. If we had taken

Fig. 49.

bits half as long, and twice as numerous, like Fig. 50, we should have a better approximation. But for a perfect curve we ought to take each dxand its corresponding dy infinitesimally small, and infinitely numerous.

Then, how much ought the value of any y to be? Clearly, at any point P of the curve, the value of y will be the sum of all the little dy's from 0 up to that level, that is to say, $\int dy = y$. And as each dy is equal to $\frac{1}{5}x \cdot dx$, it follows that the whole y will be equal to the sum of all such bits as $\frac{1}{5}x \cdot dx$, or, as we should write it, $\int \frac{1}{5}x \cdot dx$.

Now if x had been constant, $\int \frac{1}{5}x \cdot dx$ would have been the same as $\frac{1}{5}x \int dx$, or $\frac{1}{5}x^2$. But x began by being 0, and increases to the particular value of x at the point P, so that its average value from 0 to that point is $\frac{1}{2}x$. Hence $\int \frac{1}{5}x \, dx = \frac{1}{10}x^2$; or $y = \frac{1}{10}x^2$.

But, as in the previous case, this requires the addition of an undetermined constant C, because we have not been told at what height above the origin the curve will begin, when x = 0. So we write, as the equation of the curve drawn in Fig. 51,

$$y = \frac{1}{10}x^2 + C.$$

Exercises XVI. (See page 269 for Answers.)

- (1) Find the ultimate sum of $\frac{2}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{12} + \frac{1}{24} + \text{etc.}$
- (2) Show that the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \frac{1}{6} + \frac{1}{7}$ etc., is convergent, and find its sum to 8 terms.

(3) If
$$\log_{\epsilon}(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \text{etc.}$$
, find $\log_{\epsilon} 1.3$.

(4) Following a reasoning similar to that explained in this chapter, find y,

(a) if
$$\frac{dy}{dx} = \frac{1}{4}x$$
; (b) if $\frac{dy}{dx} = \cos x$.

(5) If $\frac{dy}{dx} = 2x + 3$, find y.

CAPÍTULO XVIII.

INTEGRANDO COMO EL REVERSO DE DIFERENCIAR.

DIFFERENTIATING is the process by which when y is given us (as a function of x), we can find $\frac{dy}{dx}$.

Like every other mathematical operation, the process of differentiation may be reversed; thus, if differentiating $y=x^4$ gives us $\frac{dy}{dx}=4x^3$; if one begins with $\frac{dy}{dx}=4x^3$ one would say that reversing the process would yield $y=x^4$. But here comes in a curious point. We should get $\frac{dy}{dx}=4x^3$ if we had begun with any of the following: x^4 , or x^4+a , or x^4+c , or x^4 with any added constant. So it is clear that in working backwards from $\frac{dy}{dx}$ to y, one must make provision for the possibility of there being an added constant, the value of which will be undetermined until ascertained in some other way. So, if differentiating x^n yields nx^{n-1} , going backwards from $\frac{dy}{dx}=nx^{n-1}$ will give us $y=x^n+C$; where C stands for the yet undetermined possible constant.

Clearly, in dealing with powers of x, the rule for working backwards will be: Increase the power by 1, then divide by that increased power, and add the undetermined constant.

So, in the case where

$$\frac{dy}{dx} = x^n,$$

working backwards, we get

$$y = \frac{1}{n+1}x^{n+1} + C.$$

If differentiating the equation $y = ax^n$ gives us

$$\frac{dy}{dx} = anx^{n-1},$$

it is a matter of common sense that beginning with

$$\frac{dy}{dx} = anx^{n-1},$$

and reversing the process, will give us

$$y = ax^n$$
.

So, when we are dealing with a multiplying constant, we must simply put the constant as a multiplier of the result of the integration.

Thus, if $\frac{dy}{dx} = 4x^2$, the reverse process gives us $y = \frac{4}{3}x^3$.

But this is incomplete. For we must remember that if we had started with

$$y = ax^n + C,$$

where C is any constant quantity whatever, we should equally have found

$$\frac{dy}{dx} = anx^{n-1}.$$

So, therefore, when we reverse the process we must always remember to add on this undetermined constant, even if we do not yet know what its value will be. This process, the reverse of differentiating, is called *integrating*; for it consists in finding the value of the whole quantity y when you are given only an expression for dy or for $\frac{dy}{dx}$. Hitherto we have as much as possible kept dy and dx together as a differential coefficient: henceforth we shall more often have to separate them.

If we begin with a simple case,

$$\frac{dy}{dx} = x^2.$$

We may write this, if we like, as

$$dy = x^2 dx.$$

Now this is a "differential equation" which informs us that an element of y is equal to the corresponding element of x multiplied by x^2 . Now, what we want is the integral; therefore, write down with the proper symbol the instructions to integrate both sides, thus:

$$\int dy = \int x^2 \, dx.$$

[Note as to reading integrals: the above would be read thus:

"Integral dee-wy equals integral eks-squared dee-eks."]

We haven't yet integrated: we have only written down instructions to integrate—if we can. Let us try. Plenty of other fools can do it—why not we also? The left-hand side is simplicity itself. The sum of all the bits of y is the same thing as y itself. So we may at once put:

$$y = \int x^2 \, dx.$$

But when we come to the right-hand side of the equation we must remember that what we have got to sum up together is not all the dx's, but all such terms as $x^2 dx$; and this will not be the same as $x^2 \int dx$, because x^2 is not a constant. For some of the dx's will be multiplied by big values of x^2 , and some will be multiplied by small values of x^2 , according to what x happens to be. So we must bethink ourselves as to what we know about this process of integration being the reverse of differentiation. Now, our rule for this reversed process—see p. 194 ante—when dealing with x^n is "increase the power by one, and divide by the same number as this increased power." That is to say, $x^2 dx$ will be changed* to $\frac{1}{3}x^3$. Put this into the equation; but don't forget to add the "constant of integration" C at the end. So we get:

$$y = \frac{1}{3}x^3 + C.$$

You have actually performed the integration. How easy! Let us try another simple case.

Let
$$\frac{dy}{dx} = ax^{12},$$

where a is any constant multiplier. Well, we found when differentiating (see p. 29) that any constant factor in the value of y reappeared

*You may ask, what has become of the little dx at the end? Well, remember that it was really part of the differential coefficient, and when changed over to the right-hand side, as in the $x^2 dx$, serves as a reminder that x is the independent variable with respect to which the operation is to be effected; and, as the result of the product being totalled up, the power of x has increased by *one*. You will soon become familiar with all this.

unchanged in the value of $\frac{dy}{dx}$. In the reversed process of integrating, it will therefore also reappear in the value of y. So we may go to work as before, thus

$$dy = ax^{12} \cdot dx,$$

$$\int dy = \int ax^{12} \cdot dx,$$

$$\int dy = a \int x^{12} dx,$$

$$y = a \times \frac{1}{13}x^{13} + C.$$

So that is done. How easy!

We begin to realize now that integrating is a process of finding our way back, as compared with differentiating. If ever, during differentiating, we have found any particular expression—in this example ax^{12} —we can find our way back to the y from which it was derived. The contrast between the two processes may be illustrated by the following remark due to a well-known teacher. If a stranger were set down in Trafalgar Square, and told to find his way to Euston Station, he might find the task hopeless. But if he had previously been personally conducted from Euston Station to Trafalgar Square, it would be comparatively easy to him to find his way back to Euston Station.

Integration of the Sum or Difference of two Functions.

Let
$$\frac{dy}{dx} = x^2 + x^3,$$
 then
$$dy = x^2 dx + x^3 dx.$$

There is no reason why we should not integrate each term separately: for, as may be seen on p. 36, we found that when we differentiated the sum of two separate functions, the differential coefficient was simply the sum of the two separate differentiations. So, when we work backwards, integrating, the integration will be simply the sum of the two separate integrations.

Our instructions will then be:

$$\int dy = \int (x^2 + x^3) dx$$

$$= \int x^2 dx + \int x^3 dx$$

$$y = \frac{1}{3}x^3 + \frac{1}{4}x^4 + C.$$

If either of the terms had been a negative quantity, the corresponding term in the integral would have also been negative. So that differences are as readily dealt with as sums.

How to deal with Constant Terms.

Suppose there is in the expression to be integrated a constant term—such as this:

$$\frac{dy}{dx} = x^n + b.$$

This is laughably easy. For you have only to remember that when you differentiated the expression y = ax, the result was $\frac{dy}{dx} = a$. Hence, when you work the other way and integrate, the constant reappears

multiplied by x. So we get

$$dy = x^{n} dx + b \cdot dx,$$

$$\int dy = \int x^{n} dx + \int b dx,$$

$$y = \frac{1}{n+1} x^{n+1} + bx + C.$$

Here are a lot of examples on which to try your newly acquired powers.

Examples.

(1) Given
$$\frac{dy}{dx} = 24x^{11}$$
. Find y . Ans. $y = 2x^{12} + C$.
(2) Find $\int (a+b)(x+1) dx$. It is $(a+b) \int (x+1) dx$
or $(a+b) \left[\int x dx + \int dx \right]$ or $(a+b) \left(\frac{x^2}{2} + x \right) + C$.
(3) Given $\frac{du}{dt} = gt^{\frac{1}{2}}$. Find u . Ans. $u = \frac{2}{3}gt^{\frac{3}{2}} + C$.
(4) $\frac{dy}{dx} = x^3 - x^2 + x$. Find y .

$$dy = (x^3 - x^2 + x) dx$$
 or $dy = x^3 dx - x^2 dx + x dx$; $y = \int x^3 dx - \int x^2 dx + \int x dx$;

and

$$y = \frac{1}{4}x^4 - \frac{1}{3}x^3 + \frac{1}{2}x^2 + C.$$

(5) Integrate $9.75x^{2.25} dx$. Ans. $y = 3x^{3.25} + C$.

All these are easy enough. Let us try another case.

Let

$$\frac{dy}{dx} = ax^{-1}.$$

Proceeding as before, we will write

$$dy = ax^{-1} \cdot dx$$
, $\int dy = a \int x^{-1} dx$.

Well, but what is the integral of $x^{-1} dx$?

If you look back amongst the results of differentiating x^2 and x^3 and x^n , etc., you will find we never got x^{-1} from any one of them as the value of $\frac{dy}{dx}$. We got $3x^2$ from x^3 ; we got 2x from x^2 ; we got 1 from x^1 (that is, from x itself); but we did not get x^{-1} from x^0 , for two very good reasons. First, x^0 is simply = 1, and is a constant, and could not have a differential coefficient. Secondly, even if it could be differentiated, its differential coefficient (got by slavishly following the usual rule) would be $0 \times x^{-1}$, and that multiplication by zero gives it zero value! Therefore when we now come to try to integrate $x^{-1} dx$, we see that it does not come in anywhere in the powers of x that are given by the rule:

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}.$$

It is an exceptional case.

Well; but try again. Look through all the various differentials obtained from various functions of x, and try to find amongst them x^{-1} . A sufficient search will show that we actually did get $\frac{dy}{dx} = x^{-1}$ as the result of differentiating the function $y = \log_{\epsilon} x$ (see p. 149).

Then, of course, since we know that differentiating $\log_{\epsilon} x$ gives us x^{-1} , we know that, by reversing the process, integrating $dy = x^{-1} dx$ will give us $y = \log_{\epsilon} x$. But we must not forget the constant factor a that was given, nor must we omit to add the undetermined constant of integration. This then gives us as the solution to the present problem,

$$y = a \log_{\epsilon} x + C.$$

N.B.—Here note this very remarkable fact, that we could not have integrated in the above case if we had not happened to know the corresponding differentiation. If no one had found out that differentiating $\log_{\epsilon} x$ gave x^{-1} , we should have been utterly stuck by the problem how to integrate $x^{-1} dx$. Indeed it should be frankly admitted that this is one of the curious features of the integral calculus:—that you can't integrate anything before the reverse process of differentiating something else has yielded that expression which you want to integrate. No one, even to-day, is able to find the general integral of the expression,

$$\frac{dy}{dx} = a^{-x^2},$$

because a^{-x^2} has never yet been found to result from differentiating anything else.

Another simple case.

Find
$$\int (x+1)(x+2) dx$$
.

On looking at the function to be integrated, you remark that it is the product of two different functions of x. You could, you think, integrate (x+1) dx by itself, or (x+2) dx by itself. Of course you could. But what to do with a product? None of the differentiations you have

learned have yielded you for the differential coefficient a product like this. Failing such, the simplest thing is to multiply up the two functions, and then integrate. This gives us

$$\int (x^2 + 3x + 2) \, dx.$$

And this is the same as

$$\int x^2 dx + \int 3x dx + \int 2 dx.$$

And performing the integrations, we get

$$\frac{1}{3}x^3 + \frac{3}{2}x^2 + 2x + C.$$

Some other Integrals.

Now that we know that integration is the reverse of differentiation, we may at once look up the differential coefficients we already know, and see from what functions they were derived. This gives us the following integrals ready made:

$$x^{-1} (p. 149); \int x^{-1} dx = \log_{\epsilon} x + C.$$

$$\frac{1}{x+a} (p. 150); \int \frac{1}{x+a} dx = \log_{\epsilon} (x+a) + C.$$

$$\epsilon^{x} (p. 143); \int \epsilon^{x} dx = \epsilon^{x} + C.$$

$$\epsilon^{-x} \int \epsilon^{-x} dx = -\epsilon^{-x} + C.$$

(for if
$$y = -\frac{1}{\epsilon^x}$$
, $\frac{dy}{dx} = -\frac{\epsilon^x \times 0 - 1 \times \epsilon^x}{\epsilon^{2x}} = \epsilon^{-x}$).

$$\sin x \quad \text{(p. 168)}; \qquad \int \sin x \, dx = -\cos x + C.$$

$$\cos x \quad \text{(p. 168)}; \qquad \int \cos x \, dx = \sin x + C.$$

Also we may deduce the following:

$$\log_{\epsilon} x; \qquad \int \log_{\epsilon} x \, dx = x(\log_{\epsilon} x - 1) + C$$

$$(\text{for if } y = x \log_{\epsilon} x - x, \quad \frac{dy}{dx} = \frac{x}{x} + \log_{\epsilon} x - 1 = \log_{\epsilon} x).$$

$$\log_{10} x; \qquad \int \log_{10} x \, dx = 0.4343x(\log_{\epsilon} x - 1) + C.$$

$$a^{x} \qquad (\text{p. 150}); \qquad \int a^{x} \, dx = \frac{a^{x}}{\log_{\epsilon} a} + C.$$

$$\cos ax; \qquad \int \cos ax \, dx = \frac{1}{a} \sin ax + C$$

(for if $y = \sin ax$, $\frac{dy}{dx} = a \cos ax$; hence to get $\cos ax$ one must differentiate $y = \frac{1}{a} \sin ax$).

$$\sin ax; \qquad \int \sin ax \, dx = -\frac{1}{a} \cos ax + C.$$

Try also $\cos^2 \theta$; a little dodge will simplify matters:

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1;$$
$$\cos^2 \theta = \frac{1}{2}(\cos 2\theta + 1),$$

hence

and

$$\int \cos^2 \theta \, d\theta = \frac{1}{2} \int (\cos 2\theta + 1) \, d\theta$$
$$= \frac{1}{2} \int \cos 2\theta \, d\theta + \frac{1}{2} \int d\theta.$$
$$= \frac{\sin 2\theta}{4} + \frac{\theta}{2} + C. \text{ (See also p. 230)}.$$

See also the Tabla de Formas Estándar on pp. 254–256. You should make such a table for yourself, putting in it only the general functions which you have successfully differentiated and integrated. See to it that it grows steadily!

On Double and Triple Integrals.

In many cases it is necessary to integrate some expression for two or more variables contained in it; and in that case the sign of integration appears more than once. Thus,

$$\iint f(x,y,)\,dx\,dy$$

means that some function of the variables x and y has to be integrated for each. It does not matter in which order they are done. Thus, take the function $x^2 + y^2$. Integrating it with respect to x gives us:

$$\int (x^2 + y^2) \, dx = \frac{1}{3}x^3 + xy^2.$$

Now, integrate this with respect to y:

$$\int (\frac{1}{3}x^3 + xy^2) \, dy = \frac{1}{3}x^3y + \frac{1}{3}xy^3,$$

to which of course a constant is to be added. If we had reversed the order of the operations, the result would have been the same.

In dealing with areas of surfaces and of solids, we have often to integrate both for length and breadth, and thus have integrals of the form

$$\iint u \cdot dx \, dy,$$

where u is some property that depends, at each point, on x and on y. This would then be called a *surface-integral*. It indicates that the value of all such elements as $u \cdot dx \cdot dy$ (that is to say, of the value of u over a little rectangle dx long and dy broad) has to be summed up over the whole length and whole breadth.

Similarly in the case of solids, where we deal with three dimensions. Consider any element of volume, the small cube whose dimensions are dx dy dz. If the figure of the solid be expressed by the function f(x, y, z), then the whole solid will have the *volume-integral*,

volume =
$$\iiint f(x, y, z) \cdot dx \cdot dy \cdot dz$$
.

Naturally, such integrations have to be taken between appropriate limits* in each dimension; and the integration cannot be performed unless one knows in what way the boundaries of the surface depend on x, y, and z. If the limits for x are from x_1 to x_2 , those for y from y_1 to y_2 , and those for z from z_1 to z_2 , then clearly we have

volume =
$$\int_{z_1}^{z_2} \int_{y_1}^{y_2} \int_{x_1}^{x_2} f(x, y, z) \cdot dx \cdot dy \cdot dz$$
.

^{*}See p. 211 for integration between limits.

There are of course plenty of complicated and difficult cases; but, in general, it is quite easy to see the significance of the symbols where they are intended to indicate that a certain integration has to be performed over a given surface, or throughout a given solid space.

Exercises XVII. (See p. 269 for the Answers.)

(1) Find
$$\int y \, dx$$
 when $y^2 = 4ax$.

(2) Find
$$\int \frac{3}{x^4} dx$$
.

(3) Find
$$\int \frac{1}{a} x^3 dx$$
.

(4) Find
$$\int (x^2 + a) dx$$
.

(5) Integrate
$$5x^{-\frac{7}{2}}$$
.

(6) Find
$$\int (4x^3 + 3x^2 + 2x + 1) dx$$
.

(7) If
$$\frac{dy}{dx} = \frac{ax}{2} + \frac{bx^2}{3} + \frac{cx^3}{4}$$
; find y.

(8) Find
$$\int \left(\frac{x^2+a}{x+a}\right) dx$$
.

(9) Find
$$\int (x+3)^3 dx$$
.

(10) Find
$$\int (x+2)(x-a) \, dx$$
.

(11) Find
$$\int (\sqrt{x} + \sqrt[3]{x}) 3a^2 dx$$
.

(12) Find
$$\int (\sin \theta - \frac{1}{2}) \frac{d\theta}{3}$$
.

(13) Find
$$\int \cos^2 a\theta \, d\theta$$
.

(14) Find
$$\int \sin^2 \theta \, d\theta$$
.

(15) Find
$$\int \sin^2 a\theta \, d\theta$$
.

(16) Find
$$\int e^{3x} dx$$
.

(17) Find
$$\int \frac{dx}{1+x}$$
.

(18) Find
$$\int \frac{dx}{1-x}$$
.

CAPÍTULO XIX.

SOBRE ENCONTRAR ÁREAS POR INTEGRACIÓN.

ONE use of the integral calculus is to enable us to ascertain the values of areas bounded by curves.

Let us try to get at the subject bit by bit.

Let AB (Fig. 52) be a curve, the equation to which is known. That is, y in this curve is some known function of x. Think of a piece of the curve from the point P to the point Q.

Let a perpendicular PM be dropped from P, and another QN from the point Q. Then call $OM = x_1$ and $ON = x_2$, and the ordinates $PM = y_1$ and $QN = y_2$. We have thus marked out the area PQNM that lies beneath the piece PQ. The problem is, how can we calculate the value of this area?

The secret of solving this problem is to conceive the area as being divided up into a lot of narrow strips, each of them being of the width dx. The smaller we take dx, the more of them there will be between x_1 and x_2 . Now, the whole area is clearly equal to the sum of the areas of all such strips. Our business will then be to discover an expression for the area of any one narrow strip, and to integrate it so as to add together all the strips. Now think of any one of the strips. will be like this: being bounded between two vertical sides, with a flat bottom dx, and with a slightly curved sloping top. Suppose we take its average height as being y; then, as its width is dx, its area will be y dx. And seeing that we may take the width as narrow as we please, if we only take it narrow enough its average height will be the same as the height at the middle of it. Now let us call the unknown value of the whole area S, meaning surface. The area of one strip will be simply a bit of the whole area, and may therefore be called dS. So we may write

area of 1 strip =
$$dS = y \cdot dx$$
.

If then we add up all the strips, we get

total area
$$S = \int dS = \int y \, dx$$
.

So then our finding S depends on whether we can integrate $y \cdot dx$ for the particular case, when we know what the value of y is as a function of x.

For instance, if you were told that for the particular curve in question $y = b + ax^2$, no doubt you could put that value into the expression and say: then I must find $\int (b + ax^2) dx$.

That is all very well; but a little thought will show you that something more must be done. Because the area we are trying to find is not the area under the whole length of the curve, but only the area limited on the left by PM, and on the right by QN, it follows that we must do something to define our area between those 'limits.'

This introduces us to a new notion, namely that of integrating between limits. We suppose x to vary, and for the present purpose we do not require any value of x below x_1 (that is OM), nor any value of xabove x_2 (that is ON). When an integral is to be thus defined between two limits, we call the lower of the two values the inferior limit, and the upper value the superior limit. Any integral so limited we designate as a definite integral, by way of distinguishing it from a general integral to which no limits are assigned.

In the symbols which give instructions to integrate, the limits are marked by putting them at the top and bottom respectively of the sign of integration. Thus the instruction

$$\int_{x=x_1}^{x=x_2} y \cdot dx$$

will be read: find the integral of $y \cdot dx$ between the inferior limit x_1 and the superior limit x_2 .

Sometimes the thing is written more simply

$$\int_{x_1}^{x_2} y \cdot dx.$$

Well, but *how* do you find an integral between limits, when you have got these instructions?

Look again at Fig. 52 (p. 209). Suppose we could find the area under the larger piece of curve from A to Q, that is from x = 0 to $x = x_2$, naming the area AQNO. Then, suppose we could find the area under the smaller piece from A to P, that is from x = 0 to $x = x_1$, namely the area APMO. If then we were to subtract the smaller area from the larger, we should have left as a remainder the area PQNM, which is what we want. Here we have the clue as to what to do; the definite integral between the two limits is the difference between the integral worked out for the superior limit and the integral worked out for the lower limit.

Let us then go ahead. First, find the general integral thus:

$$\int y \, dx$$
,

and, as $y = b + ax^2$ is the equation to the curve (Fig. 52),

$$\int (b + ax^2) \, dx$$

is the general integral which we must find.

Doing the integration in question by the rule (p. 198), we get

$$bx + \frac{a}{3}x^3 + C;$$

and this will be the whole area from 0 up to any value of x that we may assign.

Therefore, the larger area up to the superior limit x_2 will be

$$bx_2 + \frac{a}{3}x_2^3 + C;$$

and the smaller area up to the inferior limit x_1 will be

$$bx_1 + \frac{a}{3}x_1^3 + C.$$

Now, subtract the smaller from the larger, and we get for the area S the value,

area
$$S = b(x_2 - x_1) + \frac{a}{3}(x_2^3 - x_1^3).$$

This is the answer we wanted. Let us give some numerical values. Suppose b = 10, a = 0.06, and $x_2 = 8$ and $x_1 = 6$. Then the area S is equal to

$$10(8-6) + \frac{0.06}{3}(8^3 - 6^3)$$

$$= 20 + 0.02(512 - 216)$$

$$= 20 + 0.02 \times 296$$

$$= 20 + 5.92$$

$$= 25.92.$$

Let us here put down a symbolic way of stating what we have ascertained about limits:

$$\int_{x=x_1}^{x=x_2} y \, dx = y_2 - y_1,$$

where y_2 is the integrated value of y dx corresponding to x_2 , and y_1 that corresponding to x_1 .

All integration between limits requires the difference between two values to be thus found. Also note that, in making the subtraction the added constant C has disappeared.

Examples.

(1) To familiarize ourselves with the process, let us take a case of which we know the answer beforehand. Let us find the area of the triangle (Fig. 53), which has base x = 12 and height y = 4. We know beforehand, from obvious mensuration, that the answer will come 24.

Fig. 53.

Now, here we have as the "curve" a sloping line for which the equation is

$$y = \frac{x}{3}.$$

The area in question will be

$$\int_{x=0}^{x=12} y \cdot dx = \int_{x=0}^{x=12} \frac{x}{3} \cdot dx.$$

Integrating $\frac{x}{3} dx$ (p. 197), and putting down the value of the general integral in square brackets with the limits marked above and below, we

get

area =
$$\left[\frac{1}{3} \cdot \frac{1}{2}x^2\right]_{x=0}^{x=12} + C$$

= $\left[\frac{x^2}{6}\right]_{x=0}^{x=12} + C$
= $\left[\frac{12^2}{6}\right] - \left[\frac{0^2}{6}\right]$
= $\frac{144}{6} = 24$. Ans.

Let us satisfy ourselves about this rather surprising dodge of calculation, by testing it on a simple example. Get some squared paper, preferably some that is ruled in little squares of one-eighth inch or one-

Fig. 54.

tenth inch each way. On this squared paper plot out the graph of the equation,

$$y = \frac{x}{3}.$$

The values to be plotted will be:

x	0	3	6	9	12
y	0	1	2	3	4

The plot is given in Fig. 54.

Now reckon out the area beneath the curve by counting the little squares below the line, from x=0 as far as x=12 on the right. There are 18 whole squares and four triangles, each of which has an area equal to $1\frac{1}{2}$ squares; or, in total, 24 squares. Hence 24 is the numerical value of the integral of $\frac{x}{3} dx$ between the lower limit of x=0 and the higher limit of x=12.

As a further exercise, show that the value of the same integral between the limits of x=3 and x=15 is 36.

(2) Find the area, between limits $x = x_1$ and x = 0, of the curve $y = \frac{b}{x+a}$.

Area =
$$\int_{x=0}^{x=x_1} y \cdot dx = \int_{x=0}^{x=x_1} \frac{b}{x+a} dx$$

= $b \left[\log_{\epsilon}(x+a) \right]_{0}^{x_1} + C$
= $b \left[\log_{\epsilon}(x_1+a) - \log_{\epsilon}(0+a) \right]$

$$=b\log_{\epsilon}\frac{x_1+a}{a}$$
. Ans.

N.B.—Notice that in dealing with definite integrals the constant C always disappears by subtraction.

Let it be noted that this process of subtracting one part from a larger to find the difference is really a common practice. How do you find the area of a plane ring (Fig. 56), the outer radius of which is r_2

Fig. 56.

and the inner radius is r_1 ? You know from mensuration that the area of the outer circle is πr_2^2 ; then you find the area of the inner circle, πr_1^2 ; then you subtract the latter from the former, and find area of ring $= \pi(r_2^2 - r_1^2)$; which may be written

$$\pi(r_2+r_1)(r_2-r_1)$$

- = mean circumference of ring \times width of ring.
- (3) Here's another case—that of the die-away curve (p. 157). Find the area between x = 0 and x = a, of the curve (Fig. 57) whose equation is

$$y = b\epsilon^{-x}.$$
 Area = $b \int_{x=0}^{x=a} \epsilon^{-x} \cdot dx.$

The integration (p. 203) gives

$$= b \left[-\epsilon^{-x} \right]_0^a$$

$$= b \left[-\epsilon^{-a} - (-\epsilon^{-0}) \right]$$

$$= b(1 - \epsilon^{-a}).$$

(4) Another example is afforded by the adiabatic curve of a perfect gas, the equation to which is $pv^n = c$, where p stands for pressure, v for volume, and n is of the value 1.42 (Fig. 58).

Find the area under the curve (which is proportional to the work done in suddenly compressing the gas) from volume v_2 to volume v_1 .

Here we have

$$\operatorname{area} = \int_{v=v_1}^{v=v_2} cv^{-n} \cdot dv$$

$$= c \left[\frac{1}{1-n} v^{1-n} \right]_{v_1}^{v_2}$$

$$= c \frac{1}{1-n} (v_2^{1-n} - v_1^{1-n})$$

$$= \frac{-c}{0.42} \left(\frac{1}{v_2^{0.42}} - \frac{1}{v_1^{0.42}} \right).$$

An Exercise.

Prove the ordinary mensuration formula, that the area A of a circle whose radius is R, is equal to πR^2 .

Fig. 59.

Consider an elementary zone or annulus of the surface (Fig. 59), of breadth dr, situated at a distance r from the centre. We may consider the entire surface as consisting of such narrow zones, and the whole area A will simply be the integral of all such elementary zones from centre to margin, that is, integrated from r = 0 to r = R.

We have therefore to find an expression for the elementary area dA of the narrow zone. Think of it as a strip of breadth dr, and of a length that is the periphery of the circle of radius r, that is, a length of $2\pi r$. Then we have, as the area of the narrow zone,

$$dA = 2\pi r dr$$
.

Hence the area of the whole circle will be:

$$A = \int dA = \int_{r=0}^{r=R} 2\pi r \cdot dr = 2\pi \int_{r=0}^{r=R} r \cdot dr.$$

Now, the general integral of $r \cdot dr$ is $\frac{1}{2}r^2$. Therefore,

$$A = 2\pi \left[\frac{1}{2} r^2 \right]_{r=0}^{r=R};$$

$$A = 2\pi \left[\frac{1}{2} R^2 - \frac{1}{2} (0)^2 \right];$$

$$A = \pi R^2$$

whence

or

Another Exercise.

Let us find the mean ordinate of the positive part of the curve $y = x - x^2$, which is shown in Fig. 60. To find the mean ordinate, we

shall have to find the area of the piece OMN, and then divide it by the length of the base ON. But before we can find the area we must ascertain the length of the base, so as to know up to what limit we are to integrate. At N the ordinate y has zero value; therefore, we must look at the equation and see what value of x will make y = 0. Now, clearly, if x is 0, y will also be 0, the curve passing through the origin O; but also, if x = 1, y = 0; so that x = 1 gives us the position of the point N.

Then the area wanted is

$$= \int_{x=0}^{x=1} (x - x^2) dx$$
$$= \left[\frac{1}{2}x^2 - \frac{1}{3}x^3 \right]_0^1$$
$$= \left[\frac{1}{2} - \frac{1}{3} \right] - [0 - 0]$$
$$= \frac{1}{6}.$$

But the base length is 1.

Therefore, the average ordinate of the curve $=\frac{1}{6}$.

[N.B.—It will be a pretty and simple exercise in maxima and minima to find by differentiation what is the height of the maximum ordinate. It must be greater than the average.]

The mean ordinate of any curve, over a range from x = 0 to $x = x_1$, is given by the expression,

mean
$$y = \frac{1}{x_1} \int_{x=0}^{x=x_1} y \cdot dx$$
.

One can also find in the same way the surface area of a solid of revolution.

Example.

The curve $y = x^2 - 5$ is revolving about the axis of x. Find the area of the surface generated by the curve between x = 0 and x = 6.

A point on the curve, the ordinate of which is y, describes a circumference of length $2\pi y$, and a narrow belt of the surface, of width dx, corresponding to this point, has for area $2\pi y dx$. The total area is

$$2\pi \int_{x=0}^{x=6} y \, dx = 2\pi \int_{x=0}^{x=6} (x^2 - 5) \, dx = 2\pi \left[\frac{x^3}{3} - 5x \right]_0^6$$
$$= 6.28 \times 42 = 263.76.$$

Areas in Polar Coordinates.

When the equation of the boundary of an area is given as a function of the distance r of a point of it from a fixed point O (see Fig. 61) called the pole, and of the angle which r makes with the positive horizontal

Fig. 61.

direction OX, the process just explained can be applied just as easily, with a small modification. Instead of a strip of area, we consider a small triangle OAB, the angle at O being $d\theta$, and we find the sum of all the little triangles making up the required area.

The area of such a small triangle is approximately $\frac{AB}{2} \times r$ or $\frac{r d\theta}{2} \times r$; hence the portion of the area included between the curve and two positions of r corresponding to the angles θ_1 and θ_2 is given by

$$\frac{1}{2} \int_{\theta=\theta_1}^{\theta=\theta_2} r^2 \, d\theta.$$

Examples.

(1) Find the area of the sector of 1 radian in a circumference of radius a inches.

The polar equation of the circumference is evidently r = a. The area is

$$\frac{1}{2} \int_{\theta=\theta_1}^{\theta=\theta_2} a^2 \, d\theta = \frac{a^2}{2} \int_{\theta=0}^{\theta=1} d\theta = \frac{a^2}{2}.$$

(2) Find the area of the first quadrant of the curve (known as "Pascal's Snail"), the polar equation of which is $r = a(1 + \cos \theta)$.

Area =
$$\frac{1}{2} \int_{\theta=0}^{\theta=\frac{\pi}{2}} a^2 (1+\cos\theta)^2 d\theta$$

= $\frac{a^2}{2} \int_{\theta=0}^{\theta=\frac{\pi}{2}} (1+2\cos\theta+\cos^2\theta) d\theta$
= $\frac{a^2}{2} \left[\theta + 2\sin\theta + \frac{\theta}{2} + \frac{\sin 2\theta}{4} \right]_0^{\frac{\pi}{2}}$
= $\frac{a^2 (3\pi + 8)}{8}$.

Volumes by Integration.

What we have done with the area of a little strip of a surface, we can, of course, just as easily do with the volume of a little strip of a solid. We can add up all the little strips that make up the total solid, and find its volume, just as we have added up all the small little bits that made up an area to find the final area of the figure operated upon.

Examples.

(1) Find the volume of a sphere of radius r.

A thin spherical shell has for volume $4\pi x^2 dx$ (see Fig. 59, p. 219); summing up all the concentric shells which make up the sphere, we

have

volume sphere =
$$\int_{x=0}^{x=r} 4\pi x^2 dx = 4\pi \left[\frac{x^3}{3} \right]_0^r = \frac{4}{3}\pi r^3$$
.

We can also proceed as follows: a slice of the sphere, of thickness dx, has for volume $\pi y^2 dx$ (see Fig. 62). Also x and y are related by the expression

$$y^2 = r^2 - x^2.$$

Hence volume sphere =
$$2 \int_{x=0}^{x=r} \pi(r^2 - x^2) dx$$

= $2\pi \left[\int_{x=0}^{x=r} r^2 dx - \int_{x=0}^{x=r} x^2 dx \right]$
= $2\pi \left[r^2 x - \frac{x^3}{3} \right]_0^r = \frac{4\pi}{3} r^3$.

(2) Find the volume of the solid generated by the revolution of the curve $y^2 = 6x$ about the axis of x, between x = 0 and x = 4.

The volume of a strip of the solid is $\pi y^2 dx$.

Hence volume =
$$\int_{x=0}^{x=4} \pi y^2 dx = 6\pi \int_{x=0}^{x=4} x dx$$

= $6\pi \left[\frac{x^2}{2}\right]_0^4 = 48\pi = 150.8$.

On Quadratic Means.

In certain branches of physics, particularly in the study of alternating electric currents, it is necessary to be able to calculate the *quadratic mean* of a variable quantity. By "quadratic mean" is denoted the square root of the mean of the squares of all the values between the limits considered. Other names for the quadratic mean of any quantity are its "virtual" value, or its "R.M.S." (meaning root-mean-square) value. The French term is *valeur efficace*. If y is the function under consideration, and the quadratic mean is to be taken between the limits of x = 0 and x = l; then the quadratic mean is expressed as

$$\sqrt[2]{\frac{1}{l} \int_0^l y^2 \, dx}.$$

Examples.

(1) To find the quadratic mean of the function y = ax (Fig. 63).

Here the integral is $\int_0^l a^2 x^2 dx$, which is $\frac{1}{3}a^2 l^3$.

Dividing by l and taking the square root, we have

quadratic mean
$$=\frac{1}{\sqrt{3}}al$$
.

Here the arithmetical mean is $\frac{1}{2}al$; and the ratio of quadratic to arithmetical mean (this ratio is called the form-factor) is $\frac{2}{\sqrt{3}} = 1.155$.

(2) To find the quadratic mean of the function
$$y = x^a$$
. The integral is $\int_{x=0}^{x=l} x^{2a} dx$, that is $\frac{l^{2a+1}}{2a+1}$.

Hence

quadratic mean =
$$\sqrt[2]{\frac{l^{2a}}{2a+1}}$$
.

(3) To find the quadratic mean of the function
$$y = a^{\frac{x}{2}}$$
. The integral is $\int_{x=0}^{x=l} (a^{\frac{x}{2}})^2 dx$, that is $\int_{x=0}^{x=l} a^x dx$,

or

$$\left[\frac{a^x}{\log_{\epsilon} a}\right]_{x=0}^{x=l},$$

which is $\frac{a^l-1}{\log a}$.

Hence the quadratic mean is $\sqrt[2]{\frac{a^l-1}{l\log a}}$.

Exercises XVIII. (See p. 270 for Answers.)

(1) Find the area of the curve $y = x^2 + x - 5$ between x = 0 and x=6, and the mean ordinates between these limits.

- (2) Find the area of the parabola $y = 2a\sqrt{x}$ between x = 0 and x = a. Show that it is two-thirds of the rectangle of the limiting ordinate and of its abscissa.
- (3) Find the area of the positive portion of a sine curve and the mean ordinate.
- (4) Find the area of the positive portion of the curve $y = \sin^2 x$, and find the mean ordinate.
- (5) Find the area included between the two branches of the curve $y = x^2 \pm x^{\frac{5}{2}}$ from x = 0 to x = 1, also the area of the positive portion of the lower branch of the curve (see Fig. 30, p. 109).
 - (6) Find the volume of a cone of radius of base r, and of height h.
- (7) Find the area of the curve $y = x^3 \log_{\epsilon} x$ between x = 0 and x = 1.
- (8) Find the volume generated by the curve $y = \sqrt{1+x^2}$, as it revolves about the axis of x, between x = 0 and x = 4.
- (9) Find the volume generated by a sine curve revolving about the axis of x. Find also the area of its surface.
- (10) Find the area of the portion of the curve xy = a included between x = 1 and x = a. Find the mean ordinate between these limits.
- (11) Show that the quadratic mean of the function $y = \sin x$, between the limits of 0 and π radians, is $\frac{\sqrt{2}}{2}$. Find also the arithmetical mean of the same function between the same limits; and show that the form-factor is = 1.11.

- (12) Find the arithmetical and quadratic means of the function $x^2 + 3x + 2$, from x = 0 to x = 3.
- (13) Find the quadratic mean and the arithmetical mean of the function $y = A_1 \sin x + A_1 \sin 3x$.
- (14) A certain curve has the equation $y = 3.42e^{0.21x}$. Find the area included between the curve and the axis of x, from the ordinate at x = 2 to the ordinate at x = 8. Find also the height of the mean ordinate of the curve between these points.
- (15) Show that the radius of a circle, the area of which is twice the area of a polar diagram, is equal to the quadratic mean of all the values of r for that polar diagram.
- (16) Find the volume generated by the curve $y = \pm \frac{x}{6} \sqrt{x(10-x)}$ rotating about the axis of x.

CAPÍTULO XX.

TRUCOS, TRAMPAS Y TRIUNFOS.

Dodges. A great part of the labour of integrating things consists in licking them into some shape that can be integrated. The books—and by this is meant the serious books—on the Integral Calculus are full of plans and methods and dodges and artifices for this kind of work. The following are a few of them.

Integration by Parts. This name is given to a dodge, the formula for which is

$$\int u \, dx = ux - \int x \, du + C.$$

It is useful in some cases that you can't tackle directly, for it shows that if in any case $\int x \, du$ can be found, then $\int u \, dx$ can also be found. The formula can be deduced as follows. From p. 39, we have,

$$d(ux) = u \, dx + x \, du,$$

which may be written

$$u(dx) = d(ux) - x \, du,$$

which by direct integration gives the above expression.

Examples.

(1) Find $\int w \cdot \sin w \, dw$.

Write u = w, and for $\sin w \cdot dw$ write dx. We shall then have du = dw, while $\int \sin w \cdot dw = -\cos w = x$.

Putting these into the formula, we get

$$\int w \cdot \sin w \, dw = w(-\cos w) - \int -\cos w \, dw$$
$$= -w \cos w + \sin w + C.$$

(2) Find $\int x e^x dx$.

Write

$$u = x$$

$$e^x dx = dv$$
;

then

$$du = dx$$
,

$$v = \epsilon^x$$

and

$$\int xe^x dx = xe^x - \int e^x dx \quad \text{(by the formula)}$$
$$= xe^x - e^x = e^x(x-1) + C.$$

(3) Try $\int \cos^2 \theta \, d\theta$.

$$u = \cos \theta$$
.

$$\cos\theta \, d\theta = dv.$$

Hence

$$du = -\sin\theta \, d\theta,$$

$$v = \sin \theta$$
,

$$\int \cos^2 \theta \, d\theta = \cos \theta \sin \theta + \int \sin^2 \theta \, d\theta$$
$$= \frac{2 \cos \theta \sin \theta}{2} + \int (1 - \cos^2 \theta) \, d\theta$$
$$= \frac{\sin 2\theta}{2} + \int d\theta - \int \cos^2 \theta \, d\theta.$$

Hence
$$2 \int \cos^2 \theta \, d\theta = \frac{\sin 2\theta}{2} + \theta$$
 and
$$\int \cos^2 \theta \, d\theta = \frac{\sin 2\theta}{4} + \frac{\theta}{2} + C.$$

(4) Find
$$\int x^2 \sin x \, dx$$
.

Write
$$x^2 = u$$
, $\sin x \, dx = dv$;
then $du = 2x \, dx$, $v = -\cos x$,

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2 \int x \cos x \, dx.$$

Now find $\int x \cos x \, dx$, integrating by parts (as in Example 1 above):

$$\int x \cos x \, dx = x \sin x + \cos x + C.$$

Hence

$$\int x^{2} \sin x \, dx = -x^{2} \cos x + 2x \sin x + 2 \cos x + C'$$
$$= 2 \left[x \sin x + \cos x \left(1 - \frac{x^{2}}{2} \right) \right] + C'.$$

(5) Find
$$\int \sqrt{1-x^2} dx$$
.

Write
$$u = \sqrt{1 - x^2}, dx = dv;$$

then $du = -\frac{x dx}{\sqrt{1 - x^2}}$ (see Chap. IX., p. 69)

and x = v; so that

$$\int \sqrt{1 - x^2} \, dx = x\sqrt{1 - x^2} + \int \frac{x^2 \, dx}{\sqrt{1 - x^2}}.$$

Here we may use a little dodge, for we can write

$$\int \sqrt{1-x^2} \, dx = \int \frac{(1-x^2) \, dx}{\sqrt{1-x^2}} = \int \frac{dx}{\sqrt{1-x^2}} - \int \frac{x^2 \, dx}{\sqrt{1-x^2}}.$$

Adding these two last equations, we get rid of $\int \frac{x^2 dx}{\sqrt{1-x^2}}$, and we have

$$2\int \sqrt{1-x^2} \, dx = x\sqrt{1-x^2} + \int \frac{dx}{\sqrt{1-x^2}}.$$

Do you remember meeting $\frac{dx}{\sqrt{1-x^2}}$? it is got by differentiating $y = \arcsin x$ (see p. 172); hence its integral is $\arcsin x$, and so

$$\int \sqrt{1-x^2} \, dx = \frac{x\sqrt{1-x^2}}{2} + \frac{1}{2} \arcsin x + C.$$

You can try now some exercises by yourself; you will find some at the end of this chapter.

Substitution. This is the same dodge as explained in Chap. IX., p. 69. Let us illustrate its application to integration by a few examples. (1) $\int \sqrt{3+x} \, dx$.

Let
$$3 + x = u$$
, $dx = du$;
replace
$$\int u^{\frac{1}{2}} du = \frac{2}{3} u^{\frac{3}{2}} = \frac{2}{3} (3 + x)^{\frac{3}{2}}.$$

$$(2) \int \frac{dx}{\epsilon^x + \epsilon^{-x}}.$$

Let
$$e^x = u$$
, $\frac{du}{dx} = e^x$, and $dx = \frac{du}{e^x}$;
so that $\int \frac{dx}{e^x + e^{-x}} = \int \frac{du}{e^x(e^x + e^{-x})} = \int \frac{du}{u\left(u + \frac{1}{u}\right)} = \int \frac{du}{u^2 + 1}$.

 $\frac{du}{1+u^2}$ is the result of differentiating arc tan x.

Hence the integral is $\arctan \epsilon^x$.

(3)
$$\int \frac{dx}{x^2 + 2x + 3} = \int \frac{dx}{x^2 + 2x + 1 + 2} = \int \frac{dx}{(x+1)^2 + (\sqrt{2})^2}.$$

Let x+1=u, dx=du;

then the integral becomes $\int \frac{du}{u^2 + (\sqrt{2})^2}$; but $\frac{du}{u^2 + a^2}$ is the result of differentiating $u = \frac{1}{a} \arctan \frac{u}{a}$.

Hence one has finally $\frac{1}{\sqrt{2}} \arctan \frac{x+1}{\sqrt{2}}$ for the value of the given integral.

Formulæ of Reduction are special forms applicable chiefly to binomial and trigonometrical expressions that have to be integrated, and have to be reduced into some form of which the integral is known.

Rationalization, and Factorization of Denominator are dodges applicable in special cases, but they do not admit of any short or general explanation. Much practice is needed to become familiar with these preparatory processes.

The following example shows how the process of splitting into partial fractions, which we learned in Chap. XIII., p. 122, can be made use of in integration.

Take again $\int \frac{dx}{x^2 + 2x + 3}$; if we split $\frac{1}{x^2 + 2x + 3}$ into partial fractions, this becomes (see p. 235):

$$\frac{1}{2\sqrt{-2}} \left[\int \frac{dx}{x+1-\sqrt{-2}} - \int \frac{dx}{x+1+\sqrt{-2}} \right]$$
$$= \frac{1}{2\sqrt{-2}} \log_{\epsilon} \frac{x+1-\sqrt{-2}}{x+1+\sqrt{-2}}.$$

Notice that the same integral can be expressed sometimes in more than one way (which are equivalent to one another).

Pitfalls. A beginner is liable to overlook certain points that a practised hand would avoid; such as the use of factors that are equivalent to either zero or infinity, and the occurrence of indeterminate quantities such as $\frac{0}{0}$. There is no golden rule that will meet every possible case. Nothing but practice and intelligent care will avail. An example of a pitfall which had to be circumvented arose in Chap. XVIII., p. 194, when we came to the problem of integrating $x^{-1} dx$.

Triumphs. By triumphs must be understood the successes with which the calculus has been applied to the solution of problems otherwise intractable. Often in the consideration of physical relations one is able to build up an expression for the law governing the interaction of the parts or of the forces that govern them, such expression being naturally in the form of a differential equation, that is an equation containing differential coefficients with or without other algebraic quantities. And when such a differential equation has been found, one can get no further until it has been integrated. Generally it is much easier to state the appropriate differential equation than to solve it:—the real trouble begins then only when one wants to integrate, unless

indeed the equation is seen to possess some standard form of which the integral is known, and then the triumph is easy. The equation which results from integrating a differential equation is called* its "solution"; and it is quite astonishing how in many cases the solution looks as if it had no relation to the differential equation of which it is the integrated form. The solution often seems as different from the original expression as a butterfly does from the caterpillar that it was. Who would have supposed that such an innocent thing as

$$\frac{dy}{dx} = \frac{1}{a^2 - x^2}$$

could blossom out into

$$y = \frac{1}{2a} \log_{\epsilon} \frac{a+x}{a-x} + C?$$

yet the latter is the *solution* of the former.

As a last example, let us work out the above together.

By partial fractions,

$$\frac{1}{a^2 - x^2} = \frac{1}{2a(a+x)} + \frac{1}{2a(a-x)},$$

$$dy = \frac{dx}{2a(a+x)} + \frac{dx}{2a(a-x)},$$

$$y = \frac{1}{2a} \left(\int \frac{dx}{a+x} + \int \frac{dx}{a-x} \right)$$

*This means that the actual result of solving it is called its "solution." But many mathematicians would say, with Professor Forsyth, "every differential equation is considered as solved when the value of the dependent variable is expressed as a function of the independent variable by means either of known functions, or of integrals, whether the integrations in the latter can or cannot be expressed in terms of functions already known."

$$= \frac{1}{2a} \left(\log_{\epsilon}(a+x) - \log_{\epsilon}(a-x) \right)$$
$$= \frac{1}{2a} \log_{\epsilon} \frac{a+x}{a-x} + C.$$

Not a very difficult metamorphosis!

There are whole treatises, such as Boole's *Differential Equations*, devoted to the subject of thus finding the "solutions" for different original forms.

Exercises XIX. (See p. 271 for Answers.)

(1) Find
$$\int \sqrt{a^2 - x^2} dx$$
.

(2) Find
$$\int x \log_{\epsilon} x \, dx$$
.

(3) Find
$$\int x^a \log_{\epsilon} x \, dx$$
.

(4) Find
$$\int e^x \cos e^x dx$$
.

(5) Find
$$\int \frac{1}{x} \cos(\log_{\epsilon} x) dx$$
.

(6) Find
$$\int x^2 e^x dx$$
.

(7) Find
$$\int \frac{(\log_{\epsilon} x)^a}{x} dx$$
.

(8) Find
$$\int \frac{dx}{x \log_e x}$$
.

(9) Find
$$\int \frac{5x+1}{x^2+x-2} dx$$
.

(10) Find
$$\int \frac{(x^2-3) dx}{x^3-7x+6}$$
.

(11) Find
$$\int \frac{b dx}{x^2 - a^2}$$
.

(12) Find
$$\int \frac{4x \, dx}{x^4 - 1}$$
.

(13) Find
$$\int \frac{dx}{1-x^4}$$
.

(14) Find
$$\int \frac{dx}{x\sqrt{a-bx^2}}$$
.

CAPÍTULO XXI.

ENCONTRANDO ALGUNAS SOLUCIONES.

In this chapter we go to work finding solutions to some important differential equations, using for this purpose the processes shown in the preceding chapters.

The beginner, who now knows how easy most of those processes are in themselves, will here begin to realize that integration is an art. As in all arts, so in this, facility can be acquired only by diligent and regular practice. He who would attain that facility must work out examples, and more examples, and yet more examples, such as are found abundantly in all the regular treatises on the Calculus. Our purpose here must be to afford the briefest introduction to serious work.

Example 1. Find the solution of the differential equation

$$ay + b\frac{dy}{dx} = 0.$$

Transposing we have

$$b\frac{dy}{dx} = -ay.$$

Now the mere inspection of this relation tells us that we have got to do with a case in which $\frac{dy}{dx}$ is proportional to y. If we think of the curve which will represent y as a function of x, it will be such that its slope at any point will be proportional to the ordinate at that point, and will be a negative slope if y is positive. So obviously the curve will be a die-away curve (p. 157), and the solution will contain e^{-x} as a factor. But, without presuming on this bit of sagacity, let us go to work.

As both y and dy occur in the equation and on opposite sides, we can do nothing until we get both y and dy to one side, and dx to the other. To do this, we must split our usually inseparable companions dy and dx from one another.

$$\frac{dy}{y} = -\frac{a}{b} \, dx.$$

Having done the deed, we now can see that both sides have got into a shape that is integrable, because we recognize $\frac{dy}{y}$, or $\frac{1}{y}dy$, as a differential that we have met with (p. 147) when differentiating logarithms. So we may at once write down the instructions to integrate,

$$\int \frac{dy}{y} = \int -\frac{a}{b} \, dx;$$

and doing the two integrations, we have:

$$\log_{\epsilon} y = -\frac{a}{b}x + \log_{\epsilon} C,$$

where $\log_{\epsilon}C$ is the yet undetermined constant * of integration. Then,

*We may write down any form of constant as the "constant of integration," and the form $\log_{\epsilon} C$ is adopted here by preference, because the other terms in this line of equation are, or are treated as logarithms; and it saves complications afterward if the added constant be of the same kind.

delogarizing, we get:

$$y = C\epsilon^{-\frac{a}{b}x},$$

which is the solution required. Now, this solution looks quite unlike the original differential equation from which it was constructed: yet to an expert mathematician they both convey the same information as to the way in which y depends on x.

Now, as to the C, its meaning depends on the initial value of y. For if we put x = 0 in order to see what value y then has, we find that this makes $y = C\epsilon^{-0}$; and as $\epsilon^{-0} = 1$ we see that C is nothing else than the particular value* of y at starting. This we may call y_0 , and so write the solution as

$$y = y_0 e^{-\frac{a}{b}x}.$$

Example 2.

Let us take as an example to solve

$$ay + b\frac{dy}{dx} = g,$$

where g is a constant. Again, inspecting the equation will suggest, (1) that somehow or other e^x will come into the solution, and (2) that if at any part of the curve y becomes either a maximum or a minimum, so that $\frac{dy}{dx} = 0$, then y will have the value $= \frac{g}{a}$. But let us go to work as before, separating the differentials and trying to transform the thing

^{*}Compare what was said about the "constant of integration," with reference to Fig. 48 on p. 189, and Fig. 51 on p. 192.

into some integrable shape.

$$b\frac{dy}{dx} = g - ay;$$

$$\frac{dy}{dx} = \frac{a}{b} \left(\frac{g}{a} - y\right);$$

$$\frac{dy}{y - \frac{g}{a}} = -\frac{a}{b} dx.$$

Now we have done our best to get nothing but y and dy on one side, and nothing but dx on the other. But is the result on the left side integrable?

It is of the same form as the result on p. 149; so, writing the instructions to integrate, we have:

$$\int \frac{dy}{y - \frac{g}{a}} = -\int \frac{a}{b} \, dx;$$

and, doing the integration, and adding the appropriate constant,

$$\log_{\epsilon}\left(y-\frac{g}{a}\right)=-\frac{a}{b}x+\log_{\epsilon}C;$$
 whence
$$y-\frac{g}{a}=C\epsilon^{-\frac{a}{b}x};$$
 and finally,
$$y=\frac{g}{a}+C\epsilon^{-\frac{a}{b}x},$$

which is the solution.

If the condition is laid down that y = 0 when x = 0 we can find C; for then the exponential becomes = 1; and we have

$$0 = \frac{g}{a} + C,$$

$$C = -\frac{g}{a}.$$

or

Putting in this value, the solution becomes

$$y = \frac{g}{a}(1 - \epsilon^{-\frac{a}{b}x}).$$

But further, if x grows indefinitely, y will grow to a maximum; for when $x = \infty$, the exponential = 0, giving $y_{\text{max.}} = \frac{g}{a}$. Substituting this, we get finally

$$y = y_{\text{max.}}(1 - \epsilon^{-\frac{a}{b}x}).$$

This result is also of importance in physical science.

Example 3.

Let

$$ay + b\frac{dy}{dt} = g \cdot \sin 2\pi nt.$$

We shall find this much less tractable than the preceding. First divide through by b.

$$\frac{dy}{dt} + \frac{a}{b}y = \frac{g}{b}\sin 2\pi nt.$$

Now, as it stands, the left side is not integrable. But it can be made so by the artifice—and this is where skill and practice suggest a plan—of multiplying all the terms by $\epsilon^{\frac{a}{b}t}$, giving us:

$$\frac{dy}{dt}\epsilon^{\frac{a}{b}t} + \frac{a}{b}y\epsilon^{\frac{a}{b}t} = \frac{g}{b}\epsilon^{\frac{a}{b}t} \cdot \sin 2\pi nt,$$

which is the same as

$$\frac{dy}{dt}\epsilon^{\frac{a}{b}t} + y\frac{d(\epsilon^{\frac{a}{b}t})}{dt} = \frac{g}{b}\epsilon^{\frac{a}{b}t} \cdot \sin 2\pi nt;$$

and this being a perfect differential may be integrated thus:—since, if $u = y e^{\frac{a}{b}t}$, $\frac{du}{dt} = \frac{dy}{dt} e^{\frac{a}{b}t} + y \frac{d(e^{\frac{a}{b}t})}{dt}$,

$$y\epsilon^{\frac{a}{b}t} = \frac{g}{b} \int \epsilon^{\frac{a}{b}t} \cdot \sin 2\pi nt \cdot dt + C,$$

$$y = \frac{g}{b} \epsilon^{-\frac{a}{b}t} \int \epsilon^{\frac{a}{b}t} \cdot \sin 2\pi nt \cdot dt + C\epsilon^{-\frac{a}{b}t}.$$
[A]

or

The last term is obviously a term which will die out as t increases, and may be omitted. The trouble now comes in to find the integral that appears as a factor. To tackle this we resort to the device (see p. 229) of integration by parts, the general formula for which is $\int u dv = uv - \int v du$. For this purpose write

$$\begin{cases} u = \epsilon^{\frac{a}{b}t}; \\ dv = \sin 2\pi nt \cdot dt. \end{cases}$$

We shall then have

$$\begin{cases} du = \epsilon^{\frac{a}{b}t} \times \frac{a}{b} dt; \\ v = -\frac{1}{2\pi n} \cos 2\pi nt. \end{cases}$$

Inserting these, the integral in question becomes:

$$\int e^{\frac{a}{b}t} \cdot \sin 2\pi nt \cdot dt$$

$$= -\frac{1}{2\pi n} \cdot e^{\frac{a}{b}t} \cdot \cos 2\pi nt - \int -\frac{1}{2\pi n} \cos 2\pi nt \cdot e^{\frac{a}{b}t} \cdot \frac{a}{b} dt$$

$$= -\frac{1}{2\pi n} e^{\frac{a}{b}t} \cos 2\pi nt + \frac{a}{2\pi nb} \int e^{\frac{a}{b}t} \cdot \cos 2\pi nt \cdot dt.$$
 [B]

The last integral is still irreducible. To evade the difficulty, repeat the integration by parts of the left side, but treating it in the reverse way by writing:

$$\begin{cases} u = \sin 2\pi nt; \\ dv = e^{\frac{a}{b}t} \cdot dt; \end{cases}$$

$$\begin{cases} du = 2\pi n \cdot \cos 2\pi nt \cdot dt; \\ v = \frac{b}{a} e^{\frac{a}{b}t} \end{cases}$$

whence

Inserting these, we get

$$\int e^{\frac{a}{b}t} \cdot \sin 2\pi nt \cdot dt$$

$$= \frac{b}{a} \cdot e^{\frac{a}{b}t} \cdot \sin 2\pi nt - \frac{2\pi nb}{a} \int e^{\frac{a}{b}t} \cdot \cos 2\pi nt \cdot dt.$$
 [C]

Noting that the final intractable integral in [C] is the same as that in [B], we may eliminate it, by multiplying [B] by $\frac{2\pi nb}{a}$, and multiplying [C] by $\frac{a}{2\pi nb}$, and adding them.

The result, when cleared down, is:

$$\int e^{\frac{a}{b}t} \cdot \sin 2\pi nt \cdot dt = e^{\frac{a}{b}t} \left\{ \frac{ab \cdot \sin 2\pi nt - 2\pi nb^2 \cdot \cos 2\pi nt}{a^2 + 4\pi^2 n^2 b^2} \right\}$$
 [D]

Inserting this value in [A], we get

$$y = g \left\{ \frac{a \cdot \sin 2\pi nt - 2\pi nb \cdot \cos 2\pi nt}{a^2 + 4\pi^2 n^2 b^2} \right\}.$$

To simplify still further, let us imagine an angle ϕ such that $\tan \phi =$

$$\frac{2\pi nb}{a}.$$

Then
$$\sin \phi = \frac{2\pi nb}{\sqrt{a^2 + 4\pi^2 n^2 b^2}},$$
 and
$$\cos \phi = \frac{a}{\sqrt{a^2 + 4\pi^2 n^2 b^2}}.$$

Substituting these, we get:

$$y = g \frac{\cos \phi \cdot \sin 2\pi nt - \sin \phi \cdot \cos 2\pi nt}{\sqrt{a^2 + 4\pi^2 n^2 b^2}},$$

which may be written

$$y = g \frac{\sin(2\pi nt - \phi)}{\sqrt{a^2 + 4\pi^2 n^2 b^2}},$$

which is the solution desired.

This is indeed none other than the equation of an alternating electric current, where g represents the amplitude of the electromotive force, n the frequency, a the resistance, b the coefficient of self-induction of the circuit, and ϕ is an angle of lag.

Example 4.

Suppose that
$$M dx + N dy = 0$$
.

We could integrate this expression directly, if M were a function of x only, and N a function of y only; but, if both M and N are functions that depend on both x and y, how are we to integrate it? Is it itself an exact differential? That is: have M and N each been formed by

partial differentiation from some common function U, or not? If they have, then

$$\begin{cases} \frac{\partial U}{\partial x} = M, \\ \frac{\partial U}{\partial y} = N. \end{cases}$$

And if such a common function exists, then

$$\frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy$$

is an exact differential (compare p. 177).

Now the test of the matter is this. If the expression is an exact differential, it must be true that

$$\frac{dM}{dy} = \frac{dN}{dx};$$

$$\frac{d(dU)}{dx\,dy} = \frac{d(dU)}{dy\,dx},$$

for then

which is necessarily true.

Take as an illustration the equation

$$(1 + 3xy) \, dx + x^2 \, dy = 0.$$

Is this an exact differential or not? Apply the test.

$$\begin{cases} \frac{d(1+3xy)}{dy} = 3x, \\ \frac{d(x^2)}{dx} = 2x, \end{cases}$$

which do not agree. Therefore, it is not an exact differential, and the two functions 1 + 3xy and x^2 have not come from a common original function.

It is possible in such cases to discover, however, an integrating factor, that is to say, a factor such that if both are multiplied by this factor, the expression will become an exact differential. There is no one rule for discovering such an integrating factor; but experience will usually suggest one. In the present instance 2x will act as such. Multiplying by 2x, we get

$$(2x + 6x^2y) dx + 2x^3 dy = 0.$$

Now apply the test to this.

$$\begin{cases} \frac{d(2x + 6x^2y)}{dy} = 6x^2, \\ \frac{d(2x^3)}{dx} = 6x^2, \end{cases}$$

which agrees. Hence this is an exact differential, and may be integrated. Now, if $w = 2x^3y$,

$$dw = 6x^2y dx + 2x^3 dy.$$
 Hence
$$\int 6x^2y dx + \int 2x^3 dy = w = 2x^3y;$$
 so that we get
$$U = x^2 + 2x^3y + C.$$

Example 5. Let $\frac{d^2y}{dt^2} + n^2y = 0$.

In this case we have a differential equation of the second degree, in which y appears in the form of a second differential coefficient, as well as in person.

Transposing, we have $\frac{d^2y}{dt^2} = -n^2y$.

It appears from this that we have to do with a function such that its second differential coefficient is proportional to itself, but with reversed sign. In Chapter XV. we found that there was such a function—namely, the *sine* (or the *cosine* also) which possessed this property. So, without further ado, we may infer that the solution will be of the form $y = A\sin(pt + q)$. However, let us go to work.

Multiply both sides of the original equation by $2\frac{dy}{dt}$ and integrate, giving us $2\frac{d^2y}{dt^2}\frac{dy}{dt} + 2x^2y\frac{dy}{dt} = 0$, and, as

$$2\frac{d^2y}{dt^2}\frac{dy}{dt} = \frac{d\left(\frac{dy}{dt}\right)^2}{dt}, \quad \left(\frac{dy}{dt}\right)^2 + n^2(y^2 - C^2) = 0,$$

C being a constant. Then, taking the square roots,

$$\frac{dy}{dt} = -n\sqrt{y^2 - C^2}$$
 and $\frac{dy}{\sqrt{C^2 - y^2}} = n \cdot dt$.

But it can be shown that (see p. 172)

$$\frac{1}{\sqrt{C^2 - y^2}} = \frac{d(\arcsin\frac{y}{C})}{dy};$$

whence, passing from angles to sines,

$$\arcsin \frac{y}{C} = nt + C_1$$
 and $y = C\sin(nt + C_1)$,

where C_1 is a constant angle that comes in by integration.

Or, preferably, this may be written

 $y = A \sin nt + B \cos nt$, which is the solution.

Example 6.
$$\frac{d^2y}{dt^2} - n^2y = 0.$$

Here we have obviously to deal with a function y which is such that its second differential coefficient is proportional to itself. The only function we know that has this property is the exponential function (see p. 143), and we may be certain therefore that the solution of the equation will be of that form.

Proceeding as before, by multiplying through by $2\frac{dy}{dx}$, and integrating, we get $2\frac{d^2y}{dx^2}\frac{dy}{dx} - 2x^2y\frac{dy}{dx} = 0$,

and, as
$$2\frac{d^2y}{dx^2}\frac{dy}{dx} = \frac{d\left(\frac{dy}{dx}\right)^2}{dx}, \quad \left(\frac{dy}{dx}\right)^2 - n^2(y^2 + c^2) = 0,$$
 $\frac{dy}{dx} - n\sqrt{y^2 + c^2} = 0,$

where c is a constant, and $\frac{dy}{\sqrt{y^2+c^2}} = n dx$.

Now, if $w = \log_{\epsilon}(y + \sqrt{y^2 + c^2}) = \log_{\epsilon} u$,

$$\frac{dw}{du} = \frac{1}{u}, \quad \frac{du}{dy} = 1 + \frac{y}{\sqrt{y^2 + c^2}} = \frac{y + \sqrt{y^2 + c^2}}{\sqrt{y^2 + c^2}}$$
$$\frac{dw}{dy} = \frac{1}{\sqrt{y^2 + c^2}}.$$

and

Hence, integrating, this gives us

$$\log_{\epsilon}(y + \sqrt{y^2 + c^2}) = nx + \log_{\epsilon} C,$$

$$y + \sqrt{y^2 + c^2} = C\epsilon^{nx}.$$

$$(y + \sqrt{y^2 + c^2}) \times (-y + \sqrt{y^2 + c^2}) = c^2.$$
(1)

Now $(y + \sqrt{y^2 + c^2}) \times (-y + \sqrt{y^2 + c^2}) = c^2;$

whence $-y + \sqrt{y^2 + c^2} = \frac{c^2}{C} \epsilon^{-nx}.$ (2)

Subtracting (2) from (1) and dividing by 2, we then have

$$y = \frac{1}{2}C\epsilon^{nx} - \frac{1}{2}\frac{c^2}{C}\epsilon^{-nx},$$

which is more conveniently written

$$y = A\epsilon^{nx} + B\epsilon^{-nx}$$
.

Or, the solution, which at first sight does not look as if it had anything to do with the original equation, shows that y consists of two terms, one of which grows logarithmically as x increases, and of a second term which dies away as x increases.

Example 7.

Let
$$b\frac{d^2y}{dt^2} + a\frac{dy}{dt} + gy = 0.$$

Examination of this expression will show that, if b = 0, it has the form of Example 1, the solution of which was a negative exponential. On the other hand, if a = 0, its form becomes the same as that of Example 6, the solution of which is the sum of a positive and a negative exponential. It is therefore not very surprising to find that the solution of the present example is

$$y = (e^{-mt})(Ae^{nt} + Be^{-nt}),$$

$$m = \frac{a}{2b} \quad \text{and} \quad n = \sqrt{\frac{a^2}{4b^2} - \frac{g}{b}}.$$

The steps by which

where

The steps by which this solution is reached are not given here; they may be found in advanced treatises.

Example 8.

$$\frac{d^2y}{dt^2} = a^2 \frac{d^2y}{dx^2}.$$

It was seen (p. 179) that this equation was derived from the original

$$y = F(x + at) + f(x - at),$$

where F and f were any arbitrary functions of t.

Another way of dealing with it is to transform it by a change of variables into

$$\frac{d^2y}{du \cdot dv} = 0,$$

where u = x + at, and v = x - at, leading to the same general solution. If we consider a case in which F vanishes, then we have simply

$$y = f(x - at);$$

and this merely states that, at the time t = 0, y is a particular function of x, and may be looked upon as denoting that the curve of the relation of y to x has a particular shape. Then any change in the value of t is equivalent simply to an alteration in the origin from which x is reckoned. That is to say, it indicates that, the form of the function being conserved, it is propagated along the x direction with a uniform velocity a; so that whatever the value of the ordinate y at any particular time t_0 at any particular point x_0 , the same value of y will appear at the subsequent time t_1 at a point further along, the abscissa of which is $x_0 + a(t_1 - t_0)$. In this case the simplified equation represents the propagation of a wave (of any form) at a uniform speed along the x direction.

If the differential equation had been written

$$m\frac{d^2y}{dt^2} = k\,\frac{d^2y}{dx^2},$$

the solution would have been the same, but the velocity of propagation would have had the value

 $a = \sqrt{\frac{k}{m}}.$

You have now been personally conducted over the frontiers into the enchanted land. And in order that you may have a handy reference to the principal results, the author, in bidding you farewell, begs to present you with a passport in the shape of a convenient collection of standard forms (see pp. 254–256). In the middle column are set down a number of the functions which most commonly occur. The results of differentiating them are set down on the left; the results of integrating them are set down on the right. May you find them useful!

EPÍLOGO Y APÓLOGO.

PUEDE asumirse con confianza que cuando este tratado "Cálculo Fácil" caiga en las manos de los matemáticos profesionales, ellos (si no son demasiado perezosos) se levantarán como un solo hombre, y lo condenarán como siendo un libro completamente malo. De eso no puede haber, desde su punto de vista, ninguna posible manera de duda en absoluto. Comete varios errores muy graves y deplorables.

Primero, muestra cuán ridículamente fáciles son realmente la mayoría de las operaciones del cálculo.

Segundo, revela tantos secretos comerciales. Al mostrarte que lo que un tonto puede hacer, otros tontos también pueden hacer, te permite ver que estos presuntuosos matemáticos, que se enorgullecen de haber dominado un tema tan terriblemente difícil como el cálculo, no tienen una razón tan grande para estar engreídos. Les gusta que pienses cuán terriblemente difícil es, y no quieren que esa superstición sea rudamente disipada.

Tercero, entre las cosas terribles que dirán sobre "Tan Fácil" está esto: que hay un completo fracaso de parte del autor para demostrar con rigurosa y satisfactoria completitud la validez de varios métodos que él ha presentado de manera simple, jy incluso se ha atrevido a usar en la resolución de problemas! Pero why should he not? You don't

forbid the use of a watch to every person who does not know how to make one? You don't object to the musician playing on a violin that he has not himself constructed. You don't teach the rules of syntax to children until they have already become fluent in the *use* of speech. It would be equally absurd to require general rigid demonstrations to be expounded to beginners in the calculus.

One other thing will the professed mathematicians say about this thoroughly bad and vicious book: that the reason why it is so easy is because the author has left out all the things that are really difficult. And the ghastly fact about this accusation is that—it is true! That is, indeed, why the book has been written—written for the legion of innocents who have hitherto been deterred from acquiring the elements of the calculus by the stupid way in which its teaching is almost always presented. Any subject can be made repulsive by presenting it bristling with difficulties. The aim of this book is to enable beginners to learn its language, to acquire familiarity with its endearing simplicities, and to grasp its powerful methods of solving problems, without being compelled to toil through the intricate out-of-the-way (and mostly irrelevant) mathematical gymnastics so dear to the unpractical mathematician.

There are amongst young engineers a number on whose ears the adage that what one fool can do, another can, may fall with a familiar sound. They are earnestly requested not to give the author away, nor to tell the mathematicians what a fool he really is.

TABLA DE FORMAS ESTÁNDAR.

$\frac{dy}{dx}$	$\leftarrow y \rightarrow$	$\int ydx$
Algebraic.		
1	x	$\frac{1}{2}x^2 + C$
0	a	ax + C
1	$x \pm a$	$\frac{1}{2}x^2 \pm ax + C$
a	ax	$\frac{1}{2}ax^2 + C$
2x	x^2	$\frac{1}{3}x^3 + C$
nx^{n-1}	x^n	$\frac{1}{n+1}x^{n+1} + C$
$-x^{-2}$	x^{-1}	$\log_{\epsilon} x + C$
$\frac{du}{dx} \pm \frac{dv}{dx} \pm \frac{dw}{dx}$	$u \pm v \pm w$	$\int u dx \pm \int v dx \pm \int w dx$
$u\frac{dv}{dx} + v\frac{du}{dx}$	uv	No general form known
$\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\frac{u}{v}$	No general form known
$\frac{du}{dx}$	u	$ux - \int x du + C$

$\frac{dy}{dx}$	$\leftarrow y \rightarrow$	$\int y dx$	
Exponential and Logarithmic.			
ϵ^x	ϵ^x	$\epsilon^x + C$	
x^{-1}	$\log_{\epsilon} x$	$x(\log_{\epsilon} x - 1) + C$	
$0.4343 \times x^{-1}$	$\log_{10} x$	$0.4343x(\log_{\epsilon} x - 1) + C$	
$a^x \log_{\epsilon} a$	a^x	$\frac{a^x}{\log_{\epsilon} a} + C$	
Trigonometrical.			
$\cos x$	$\sin x$	$-\cos x + C$	
$-\sin x$	$\cos x$	$\sin x + C$	
$\sec^2 x$	$\tan x$	$-\log_{\epsilon}\cos x + C$	
Circular (Inverse).			
$\frac{1}{\sqrt{(1-x^2)}}$	$\arcsin x$	$x \cdot \arcsin x + \sqrt{1 - x^2} + C$	
$-\frac{1}{\sqrt{(1-x^2)}}$	$rc\cos x$	$x \cdot \arccos x - \sqrt{1 - x^2} + C$	
$\frac{1}{1+x^2}$	$\arctan x$	$x \cdot \arctan x - \frac{1}{2}\log_{\epsilon}(1+x^2) + C$	
Hyperbolic.			
$\cosh x$	$\sinh x$	$\cosh x + C$	
$\sinh x$	$\cosh x$	$\sinh x + C$	
$\operatorname{sech}^2 x$	$\tanh x$	$\log_{\epsilon} \cosh x + C$	

RESPUESTAS.

Exercises I. (p. 24.)

(1)
$$\frac{dy}{dx} = 13x^{12}$$
.

(2)
$$\frac{dy}{dx} = -\frac{3}{2}x^{-\frac{5}{2}}$$
. (3) $\frac{dy}{dx} = 2ax^{(2a-1)}$.

(3)
$$\frac{dy}{dx} = 2ax^{(2a-1)}$$
.

(4)
$$\frac{du}{dt} = 2.4t^{1.4}$$
.

(5)
$$\frac{dz}{dz} = \frac{1}{2}u^{-\frac{2}{3}}$$
.

(5)
$$\frac{dz}{du} = \frac{1}{3}u^{-\frac{2}{3}}$$
. (6) $\frac{dy}{dx} = -\frac{5}{3}x^{-\frac{8}{3}}$.

(7)
$$\frac{du}{dx} = -\frac{8}{5}x^{-\frac{13}{5}}$$
.

(8)
$$\frac{dy}{dx} = 2ax^{a-1}$$
.

(9)
$$\frac{dy}{dx} = \frac{3}{q} x^{\frac{3-q}{q}}$$
.

$$(10) \frac{dy}{dx} = -\frac{m}{n}x^{-\frac{m+n}{n}}.$$

Exercises II. (p. 33.)

(1)
$$\frac{dy}{dx} = 3ax^2$$
.

(1)
$$\frac{dy}{dx} = 3ax^2$$
. (2) $\frac{dy}{dx} = 13 \times \frac{3}{2}x^{\frac{1}{2}}$. (3) $\frac{dy}{dx} = 6x^{-\frac{1}{2}}$.

(3)
$$\frac{dy}{dx} = 6x^{-\frac{1}{2}}$$

(4)
$$\frac{dy}{dt} = \frac{1}{2}c^{\frac{1}{2}}x^{-\frac{1}{2}}$$
.

(4)
$$\frac{dy}{dx} = \frac{1}{2}c^{\frac{1}{2}}x^{-\frac{1}{2}}$$
. (5) $\frac{du}{dz} = \frac{an}{c}z^{n-1}$. (6) $\frac{dy}{dt} = 2.36t$.

(6)
$$\frac{dy}{dt} = 2.36t$$

(7)
$$\frac{dl_t}{dt} = 0.000012 \times l_0.$$

(8)
$$\frac{dC}{dV} = abV^{b-1}$$
, 0.98, 3.00 and 7.47 candle power per volt respectively.

(9)
$$\frac{dn}{dD} = -\frac{1}{LD^2} \sqrt{\frac{gT}{\pi\sigma}}, \quad \frac{dn}{dL} = -\frac{1}{DL^2} \sqrt{\frac{gT}{\pi\sigma}},$$

$$\frac{dn}{d\sigma} = -\frac{1}{2DL} \sqrt{\frac{gT}{\pi\sigma^3}}, \quad \frac{dn}{dT} = \frac{1}{2DL} \sqrt{\frac{g}{\pi\sigma T}}.$$

(10) Rate of change of
$$P$$
 when t varies P when P varies P varies P when P varies P varies

(11)
$$2\pi$$
, $2\pi r$, πl , $\frac{2}{3}\pi r h$, $8\pi r$, $4\pi r^2$. (12) $\frac{dD}{dT} = \frac{0.000012l_t}{\pi}$.

Exercises III. (p. 47.)

(1) (a)
$$1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots$$
 (b) $2ax + b$. (c) $2x + 2a$. (d) $3x^2 + 6ax + 3a^2$.

(2)
$$\frac{dw}{dt} = a - bt$$
. (3) $\frac{dy}{dx} = 2x$.

(4)
$$14110x^4 - 65404x^3 - 2244x^2 + 8192x + 1379$$
.

(5)
$$\frac{dx}{dy} = 2y + 8.$$
 (6) $185.9022654x^2 + 154.36334.$

(7)
$$\frac{-5}{(3x+2)^2}$$
. (8) $\frac{6x^4+6x^3+9x^2}{(1+x+2x^2)^2}$.

(9)
$$\frac{ad-bc}{(cx+d)^2}$$
. (10) $\frac{anx^{-n-1}+bnx^{n-1}+2nx^{-1}}{(x^{-n}+b)^2}$.

(11) b + 2ct.

(12)
$$R_0(a+2bt)$$
, $R_0\left(a+\frac{b}{2\sqrt{t}}\right)$, $-\frac{R_0(a+2bt)}{(1+at+bt^2)^2}$ or $\frac{R^2(a+2bt)}{R_0}$.

$$(13) \ \ 1.4340(0.000014t - 0.001024), \quad -0.00117, \quad -0.00107, \quad -0.00097.$$

(14)
$$\frac{dE}{dl} = b + \frac{k}{i}, \quad \frac{dE}{di} = -\frac{c+kl}{i^2}.$$

Exercises IV. (p. 52.)

(1)
$$17 + 24x$$
; 24. (2) $\frac{x^2 + 2ax - a}{(x+a)^2}$; $\frac{2a(a+1)}{(x+a)^3}$.

(3)
$$1+x+\frac{x^2}{1\times 2}+\frac{x^3}{1\times 2\times 3}$$
; $1+x+\frac{x^2}{1\times 2}$.

(4) (Exercises III.):

(1) (a)
$$\frac{d^2y}{dx^2} = \frac{d^3y}{dx^3} = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots$$

(b) $2a$, 0. (c) 2, 0. (d) $6x + 6a$, 6.

$$(2) -b, 0. (3) 2, 0.$$

 $(4) \ 56440x^3 - 196212x^2 - 4488x + 8192.$

$$169320x^2 - 392424x - 4488.$$

$$(5) 2, 0. (6) 371.80453x, 371.80453.$$

(7)
$$\frac{30}{(3x+2)^3}$$
, $-\frac{270}{(3x+2)^4}$.

(Examples, p. 43):

$$(1) \ \frac{6a}{b^2}x, \quad \frac{6a}{b^2}. \qquad (2) \ \frac{3a\sqrt{b}}{2\sqrt{x}} - \frac{6b\sqrt[3]{a}}{x^3}, \quad \frac{18b\sqrt[3]{a}}{x^4} - \frac{3a\sqrt{b}}{4\sqrt{x^3}}.$$

(3)
$$\frac{2}{\sqrt[3]{\theta^8}} - \frac{1.056}{\sqrt[5]{\theta^{11}}}, \quad \frac{2.3232}{\sqrt[5]{\theta^{16}}} - \frac{16}{3\sqrt[3]{\theta^{11}}}.$$

$$(4) 810t^4 - 648t^3 + 479.52t^2 - 139.968t + 26.64.$$

$$3240t^3 - 1944t^2 + 959.04t - 139.968.$$

(5)
$$12x + 2$$
, 12. (6) $6x^2 - 9x$, $12x - 9$.

(7)
$$\frac{3}{4} \left(\frac{1}{\sqrt{\theta}} + \frac{1}{\sqrt{\theta^5}} \right) + \frac{1}{4} \left(\frac{15}{\sqrt{\theta^7}} - \frac{1}{\sqrt{\theta^3}} \right).$$
 $\frac{3}{8} \left(\frac{1}{\sqrt{\theta^5}} - \frac{1}{\sqrt{\theta^3}} \right) - \frac{15}{8} \left(\frac{7}{\sqrt{\theta^9}} + \frac{1}{\sqrt{\theta^7}} \right).$

Exercises V. (p. 66.)

- (2) 64; 147.2; and 0.32 feet per second.
- (3) $x = a qt; \ddot{x} = -q.$ (4) 45.1 feet per second.
- (5) 12.4 feet per second per second. Yes.
- (6) Angular velocity = 11.2 radians per second; angular acceleration = 9.6 radians per second per second.
- (7) $v = 20.4t^2 10.8$. a = 40.8t. 172.8 in./sec., 122.4 in./sec².
- (8) $v = \frac{1}{30\sqrt[3]{(t-125)^2}}, \quad a = -\frac{1}{45\sqrt[3]{(t-125)^5}}.$
- (9) $v = 0.8 \frac{8t}{(4+t^2)^2}$, $a = \frac{24t^2 32}{(4+t^2)^3}$, 0.7926 and 0.00211.
- $(10) \ n=2, \, n=11.$

Exercises VI. (p. 75.)

(1)
$$\frac{x}{\sqrt{x^2+1}}$$
. (2) $\frac{x}{\sqrt{x^2+a^2}}$. (3) $-\frac{1}{2\sqrt{(a+x)^3}}$.

(4)
$$\frac{ax}{\sqrt{(a-x^2)^3}}$$
. (5) $\frac{2a^2-x^2}{x^3\sqrt{x^2-a^2}}$.

(6)
$$\frac{\frac{3}{2}x^2 \left[\frac{8}{9}x \left(x^3+a\right)-\left(x^4+a\right)\right]}{\left(x^4+a\right)^{\frac{2}{3}}\left(x^3+a\right)^{\frac{3}{2}}} \quad (7) \quad \frac{2a \left(x-a\right)}{(x+a)^3}.$$

(8)
$$\frac{5}{2}y^3$$
. (9) $\frac{1}{(1-\theta)\sqrt{1-\theta^2}}$.

Exercises VII. (p. 77.)

(1)
$$\frac{dw}{dx} = \frac{3x^2(3+3x^3)}{27(\frac{1}{2}x^3+\frac{1}{2}x^6)^3}.$$

(2)
$$\frac{dv}{dx} = -\frac{12x}{\sqrt{1+\sqrt{2}+3x^2}\left(\sqrt{3}+4\sqrt{1+\sqrt{2}+3x^2}\right)^2}.$$

(3)
$$\frac{du}{dx} = -\frac{x^2 \left(\sqrt{3} + x^3\right)}{\sqrt{\left[1 + \left(1 + \frac{x^3}{\sqrt{3}}\right)^2\right]^3}}$$

Exercises VIII. (p. 91.)

- (2) 1.44.
- (4) $\frac{dy}{dx} = 3x^2 + 3$; and the numerical values are: 3, $3\frac{3}{4}$, 6, and 15.
- $(5) \pm \sqrt{2}.$
- (6) $\frac{dy}{dx} = -\frac{4}{9}\frac{x}{y}$. Slope is zero where x = 0; and is $\mp \frac{1}{3\sqrt{2}}$ where x = 1.

- (7) m = 4, n = -3.
- (8) Intersections at x = 1, x = -3. Angles 153° 26′, 2° 28′.
- (9) Intersection at $x=3.57,\,y=3.50.$ Angle 16° 16′.
- (10) $x = \frac{1}{3}, y = 2\frac{1}{3}, b = -\frac{5}{3}$

Exercises IX. (p. 110.)

- (1) Min.: x = 0, y = 0; max.: x = -2, y = -4.
- (2) x = a. (4) $25\sqrt{3}$ square inches.
- (5) $\frac{dy}{dx} = -\frac{10}{x^2} + \frac{10}{(8-x)^2}$; x = 4; y = 5.
- (6) Max. for x = -1; min. for x = 1.
- (7) Join the middle points of the four sides.
- (8) $r = \frac{2}{3}R$, $r = \frac{R}{2}$, no max.
- (9) $r = R\sqrt{\frac{2}{3}}, r = \frac{R}{\sqrt{2}}, r = 0.8506R.$
- (10) At the rate of $\frac{8}{r}$ square feet per second.

(11)
$$r = \frac{R\sqrt{8}}{3}$$
. (12) $n = \sqrt{\frac{NR}{r}}$.

Exercises X. (p. 119.)

(1) Max.: x = -2.19, y = 24.19; min.:, x = 1.52, y = -1.38.

(2)
$$\frac{dy}{dx} = \frac{b}{a} - 2cx; \frac{d^2y}{dx^2} = -2c; x = \frac{b}{2ac}$$
 (a maximum).

- (3) (a) One maximum and two minima.(b) One maximum. (x = 0; other points unreal.)
- (4) Min.: x = 1.71, y = 6.14. (5) Max: x = -.5, y = 4.
- (6) Max.: x = 1.414, y = 1.7675. Min.: x = -1.414, y = 1.7675.
- (7) Max.: x = -3.565, y = 2.12. Min.: x = +3.565, y = 7.88.
- (8) 0.4N, 0.6N. (9) $x = \sqrt{\frac{a}{c}}.$
- (10) Speed 8.66 nautical miles per hour. Time taken 115.47 hours. Minimum cost £112. 12s.
- (11) Max. and min. for x = 7.5, $y = \pm 5.414$. (See example no. 10, p. 74.)
- (12) Min.: $x = \frac{1}{2}$, y = 0.25; max.: $x = -\frac{1}{3}$, y = 1.408.

Exercises XI. (p. 131.)

(1)
$$\frac{2}{x-3} + \frac{1}{x+4}$$
. (2) $\frac{1}{x-1} + \frac{2}{x-2}$. (3) $\frac{2}{x-3} + \frac{1}{x+4}$.

(4)
$$\frac{5}{x-4} - \frac{4}{x-3}$$
. (5) $\frac{19}{13(2x+3)} - \frac{22}{13(3x-2)}$.

(6)
$$\frac{2}{x-2} + \frac{4}{x-3} - \frac{5}{x-4}$$
.

(7)
$$\frac{1}{6(x-1)} + \frac{11}{15(x+2)} + \frac{1}{10(x-3)}$$
.

(8)
$$\frac{7}{9(3x+1)} + \frac{71}{63(3x-2)} - \frac{5}{7(2x+1)}$$
.

(9)
$$\frac{1}{3(x-1)} + \frac{2x+1}{3(x^2+x+1)}$$
. (10) $x + \frac{2}{3(x+1)} + \frac{1-2x}{3(x^2-x+1)}$.

(11)
$$\frac{3}{(x+1)} + \frac{2x+1}{x^2+x+1}$$
. (12) $\frac{1}{x-1} - \frac{1}{x-2} + \frac{2}{(x-2)^2}$.

(13)
$$\frac{1}{4(x-1)} - \frac{1}{4(x+1)} + \frac{1}{2(x+1)^2}$$
.

$$(14) \ \frac{4}{9(x-1)} - \frac{4}{9(x+2)} - \frac{1}{3(x+2)^2}.$$

(15)
$$\frac{1}{x+2} - \frac{x-1}{x^2+x+1} - \frac{1}{(x^2+x+1)^2}$$
.

(16)
$$\frac{5}{x+4} - \frac{32}{(x+4)^2} + \frac{36}{(x+4)^3}$$
.

(17)
$$\frac{7}{9(3x-2)^2} + \frac{55}{9(3x-2)^3} + \frac{73}{9(3x-2)^4}$$
.

(18)
$$\frac{1}{6(x-2)} + \frac{1}{3(x-2)^2} - \frac{x}{6(x^2+2x+4)}$$
.

Exercises XII. (p. 154.)

(1)
$$ab(\epsilon^{ax} + \epsilon^{-ax}).$$

(2)
$$2at + \frac{2}{t}$$
.

(3)
$$\log_{\epsilon} n$$
.

(5)
$$npv^{n-1}$$
.

(6)
$$\frac{n}{x}$$
.

(7)
$$\frac{3\epsilon^{-\frac{x}{x-1}}}{(x-1)^2}$$
.

(8)
$$6xe^{-5x} - 5(3x^2 + 1)e^{-5x}$$
.

$$(9) \frac{ax^{a-1}}{x^a \perp a}.$$

(10)
$$\left(\frac{6x}{3x^2-1} + \frac{1}{2(\sqrt{x}+x)}\right)(3x^2-1)(\sqrt{x}+1).$$

(11)
$$\frac{1 - \log_{\epsilon}(x+3)}{(x+3)^2}.$$

(12)
$$a^x (ax^{a-1} + x^a \log_{\epsilon} a)$$
.

(14) Min.:
$$y = 0.7$$
 for $x = 0.694$.

(15)
$$\frac{1+x}{x}$$
.

$$(16) \ \frac{3}{x} (\log_{\epsilon} ax)^2.$$

Exercises XIII. (p. 164.)

- (1) Let $\frac{t}{T} = x$ (: t = 8x), and use the Table on page 161.
- (2) T = 34.627; 159.46 minutes.
- (3) Take 2t = x; and use the Table on page 161.
- (5) (a) $x^x (1 + \log_{\epsilon} x)$; (b) $2x(\epsilon^x)^x$; (c) $\epsilon^{x^x} \times x^x (1 + \log_{\epsilon} x)$.

(6) 0.14 second.

(7) (a) 1.642; (b) 15.58.

- (8) $\mu = 0.00037, 31^{m\frac{1}{4}}$.
- (9) i is 63.4% of i_0 , 220 kilometres.
- $(10)\ \ 0.133,\ 0.145,\ 0.155,\ mean\ \ 0.144;\ -10.2\%,\ -0.9\%,\ +77.2\%.$
- (11) Min. for $x = \frac{1}{\epsilon}$.

(12) Max. for $x = \epsilon$.

(13) Min. for $x = \log_{\epsilon} a$.

Exercises XIV. (p. 175.)

(1) (i)
$$\frac{dy}{d\theta} = A\cos\left(\theta - \frac{\pi}{2}\right);$$

- (ii) $\frac{dy}{d\theta} = 2\sin\theta\cos\theta = \sin 2\theta$ and $\frac{dy}{d\theta} = 2\cos 2\theta$;
- (iii) $\frac{dy}{d\theta} = 3\sin^2\theta\cos\theta$ and $\frac{dy}{d\theta} = 3\cos3\theta$.
- (2) $\theta = 45^{\circ} \text{ or } \frac{\pi}{4} \text{ radians.}$
- (3) $\frac{dy}{dt} = -n\sin 2\pi nt$.

(4) $a^x \log_{\epsilon} a \cos a^x$.

(5) $\frac{\cos x}{\sin x} = \cot x$

(6) $18.2\cos(x+26^\circ)$.

- (7) The slope is $\frac{dy}{d\theta} = 100 \cos{(\theta 15^{\circ})}$, which is a maximum when $(\theta 15^{\circ}) = 0$, or $\theta = 15^{\circ}$; the value of the slope being then = 100. When $\theta = 75^{\circ}$ the slope is $100 \cos(75^{\circ} 15^{\circ}) = 100 \cos{60^{\circ}} = 100 \times \frac{1}{2} = 50$.
- (8) $\cos \theta \sin 2\theta + 2\cos 2\theta \sin \theta = 2\sin \theta \left(\cos^2 \theta + \cos 2\theta\right)$ = $2\sin \theta \left(3\cos^2 \theta - 1\right)$.
- (9) $amn\theta^{n-1} \tan^{m-1} (\theta^n) \sec^2 \theta^n$.
- (10) $e^x \left(\sin^2 x + \sin 2x\right)$; $e^x \left(\sin^2 x + 2\sin 2x + 2\cos 2x\right)$.

(11) (i)
$$\frac{dy}{dx} = \frac{ab}{(x+b)^2}$$
; (ii) $\frac{a}{b} e^{-\frac{x}{b}}$; (iii) $\frac{1}{90} \circ \times \frac{ab}{(b^2+x^2)}$.

(12) (i)
$$\frac{dy}{dx} = \sec x \tan x$$
;

(ii)
$$\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}};$$

(iii)
$$\frac{dy}{dx} = \frac{1}{1+x^2};$$

(iv)
$$\frac{dy}{dx} = \frac{1}{x\sqrt{x^2 - 1}};$$

$$\text{(v) } \frac{dy}{dx} = \frac{\sqrt{3\sec x} \left(3\sec^2 x - 1\right)}{2}.$$

(13)
$$\frac{dy}{d\theta} = 4.6 (2\theta + 3)^{1.3} \cos(2\theta + 3)^{2.3}$$
.

(14)
$$\frac{dy}{d\theta} = 3\theta^2 + 3\cos(\theta + 3) - \log_{\epsilon} 3\left(\cos\theta \times 3^{\sin\theta} + 3\theta\right).$$

(15)
$$\theta = \cot \theta$$
; $\theta = \pm 0.86$; is max. for $+\theta$, min. for $-\theta$.

Exercises XV. (p. 182.)

(1)
$$x^3 - 6x^2y - 2y^2$$
; $\frac{1}{3} - 2x^3 - 4xy$.

(2)
$$2xyz + y^2z + z^2y + 2xy^2z^2$$
;
 $2xyz + x^2z + xz^2 + 2x^2yz^2$;
 $2xyz + x^2y + xy^2 + 2x^2y^2z$.

(3)
$$\frac{1}{r}\{(x-a)+(y-b)+(z-c)\}=\frac{(x+y+z)-(a+b+c)}{r};\frac{3}{r}$$

- (4) $dy = vu^{v-1} du + u^v \log_{\epsilon} u dv.$
- (5) $dy = 3\sin vu^2 du + u^3 \cos v dv,$ $dy = u\sin x^{u-1} \cos x dx + (\sin x)^u \log_{\epsilon} \sin x du,$ $dy = \frac{1}{v} \frac{1}{u} du \log_{\epsilon} u \frac{1}{v^2} dv.$
- (7) Minimum for $x = y = -\frac{1}{2}$.
- (8) (a) Length 2 feet, width = depth = 1 foot, vol. = 2 cubic feet. (b) Radius = $\frac{2}{\pi}$ feet = 7.46 in., length = 2 feet, vol. = 2.54.
- (9) All three parts equal; the product is maximum.
- (10) Minimum for x = y = 1.
- (11) Min.: $x = \frac{1}{2}$ and y = 2.
- (12) Angle at apex = 90° ; equal sides = length = $\sqrt[3]{2V}$.

Exercises XVI. (p. 192.)

 $(1) 1\frac{1}{3}$.

(2) 0.6344.

(3) 0.2624.

(4) (a) $y = \frac{1}{9}x^2 + C$; (b) $y = \sin x + C$.

(5) $y = x^2 + 3x + C$.

Exercises XVII. (p. 207.)

(1)
$$\frac{4\sqrt{a}x^{\frac{3}{2}}}{2} + C$$
. (2) $-\frac{1}{x^3} + C$. (3) $\frac{x^4}{4a} + C$.

(2)
$$-\frac{1}{2} + C$$
.

(3)
$$\frac{x^4}{4a} + C$$

(4)
$$\frac{1}{3}x^3 + ax + C$$
.

$$(5) -2x^{-\frac{5}{2}} + C.$$

(6)
$$x^4 + x^3 + x^2 + x + C$$
.

(7)
$$\frac{ax^2}{4} + \frac{bx^3}{9} + \frac{cx^4}{16} + C$$
.

(8) $\frac{x^2+a}{x+a} = x-a+\frac{a^2+a}{x+a}$ by division. Therefore the answer is $\frac{x^2}{2} - ax + (a^2 + a)\log_{\epsilon}(x + a) + C$. (See pages 201 and 203.)

(9)
$$\frac{x^4}{4} + 3x^3 + \frac{27}{2}x^2 + 27x + C$$
. (10) $\frac{x^3}{3} + \frac{2-a}{2}x^2 - 2ax + C$.

$$(11) \ a^2(2x^{\frac{3}{2}} + \frac{9}{4}x^{\frac{4}{3}}) + C.$$

(12)
$$-\frac{1}{3}\cos\theta - \frac{1}{6}\theta + C$$
.

$$(13) \frac{\theta}{2} + \frac{\sin 2a\theta}{4a} + C.$$

$$(14) \frac{\theta}{2} - \frac{\sin 2\theta}{4} + C.$$

$$(15) \ \frac{\theta}{2} - \frac{\sin 2a\theta}{4a} + C.$$

$$(16) \frac{1}{3} e^{3x}$$
.

(17)
$$\log(1+x) + C$$
.

$$(18) -\log_{\epsilon}(1-x) + C.$$

Exercises XVIII. (p. 226.)

(1) Area = 60; mean ordinate = 10.

(2) Area =
$$\frac{2}{3}$$
 of $a \times 2a\sqrt{a}$.

(3) Area = 2; mean ordinate = $\frac{2}{\pi}$ = 0.637.

(4) Area = 1.57; mean ordinate = 0.5.

(5) 0.572, 0.0476.

(6) Volume = $\pi r^2 \frac{h}{3}$.

(7) 1.25.

(8) 79.4.

(9) Volume = 4.9348; area of surface = 12.57 (from 0 to π).

(10) $a \log_{\epsilon} a$, $\frac{a}{a-1} \log_{\epsilon} a$.

(12) Arithmetical mean = 9.5; quadratic mean = 10.85.

(13) Quadratic mean = $\frac{1}{\sqrt{2}}\sqrt{A_1^2 + A_3^2}$; arithmetical mean = 0.

The first involves a somewhat difficult integral, and may be stated thus: By definition the quadratic mean will be

$$\sqrt{\frac{1}{2\pi} \int_0^{2\pi} (A_1 \sin x + A_3 \sin 3x)^2 dx}.$$

Now the integration indicated by

$$\int (A_1^2 \sin^2 x + 2A_1 A_3 \sin x \sin 3x + A_3^2 \sin^2 3x) dx$$

is more readily obtained if for $\sin^2 x$ we write

$$\frac{1-\cos 2x}{2}.$$

For $2 \sin x \sin 3x$ we write $\cos 2x - \cos 4x$; and, for $\sin^2 3x$,

$$\frac{1-\cos 6x}{2}.$$

Making these substitutions, and integrating, we get (see p. 203)

$$\frac{A_1^2}{2} \left(x - \frac{\sin 2x}{2} \right) + A_1 A_3 \left(\frac{\sin 2x}{2} - \frac{\sin 4x}{4} \right) + \frac{A_3^2}{2} \left(x - \frac{\sin 6x}{6} \right).$$

At the lower limit the substitution of 0 for x causes all this to vanish, whilst at the upper limit the substitution of 2π for x gives $A_1^2\pi + A_3^2\pi$. And hence the answer follows.

- (14) Area is 62.6 square units. Mean ordinate is 10.42.
- (16) 436.3. (This solid is pear shaped.)

Exercises XIX. (p. 236.)

(1)
$$\frac{x\sqrt{a^2-x^2}}{2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a} + C$$
. (2) $\frac{x^2}{2}(\log_{\epsilon}x - \frac{1}{2}) + C$.

(3)
$$\frac{x^{a+1}}{a+1} \left(\log_{\epsilon} x - \frac{1}{a+1} \right) + C.$$
 (4) $\sin \epsilon^x + C.$

(5)
$$\sin(\log_{\epsilon} x) + C$$
.

(6)
$$e^x(x^2 - 2x + 2) + C$$
.

(7)
$$\frac{1}{a+1}(\log_{\epsilon} x)^{a+1} + C$$
.

(8)
$$\log_{\epsilon}(\log_{\epsilon} x) + C$$
.

(9)
$$2\log_{\epsilon}(x-1) + 3\log_{\epsilon}(x+2) + C$$
.

(10)
$$\frac{1}{2}\log_{\epsilon}(x-1) + \frac{1}{5}\log_{\epsilon}(x-2) + \frac{3}{10}\log_{\epsilon}(x+3) + C$$
.

(11)
$$\frac{b}{2a}\log_{\epsilon}\frac{x-a}{x+a} + C.$$
 (12) $\log_{\epsilon}\frac{x^2-1}{x^2+1} + C.$

(13)
$$\frac{1}{4}\log_{\epsilon}\frac{1+x}{1-x} + \frac{1}{2}\arctan x + C.$$

(14)
$$\frac{1}{\sqrt{a}}\log_{\epsilon}\frac{\sqrt{a}-\sqrt{a-bx^2}}{x\sqrt{a}}$$
. (Let $\frac{1}{x}=v$; then, in the result, let $\sqrt{v^2-\frac{b}{a}}=v-u$.)

You had better differentiate now the answer and work back to the given expression as a check.

Every earnest student is exhorted to manufacture more examples for himself at every stage, so as to test his powers. When integrating he can always test his answer by differentiating it, to see whether he gets back the expression from which he started.

There are lots of books which give examples for practice. It will suffice here to name two: R. G. Blaine's *The Calculus and its Applications*, and F. M. Saxelby's *A Course in Practical Mathematics*.

A SELECTION OF

MATHEMATICAL WORKS

- An Introduction to the Calculus. Based on Graphical Methods. By Prof. G. A. Gibson, M.A., LL.D. 3s. 6d.
- An Elementary Treatise on the Calculus. With Illustrations from Geometry, Mechanics, and Physics. By Prof. G. A. Gibson, M.A., LL.D. 7s. 6d.
- Differential Calculus for Beginners. By J. Edwards, M.A. 4s. 6d.
- Integral Calculus for Beginners. With an Introduction to the Study of Differential Equations. By JOSEPH EDWARDS, M.A. 4s. 6d.
- Calculus Made Easy. Being a very-simplest Introduction to those beautiful Methods of Reckoning which are generally called by the terrifying names of the Differential Calculus and the Integral Calculus. By F. R. S. 2s. net. New Edition, with many Examples.
- A First Course in the Differential and Integral Calculus. By Prof. W. F. Osgood, Ph.D. 8s. 6d. net.
- Practical Integration for the use of Engineers, etc. By A. S. Percival, M.A. 2s. 6d. net.
- Differential Calculus. With Applications and numerous Examples. An Elementary Treatise by JOSEPH EDWARDS, M.A. 14s.

CATALOGUE

- Differential and Integral Calculus for Technical Schools and Colleges. By P. A. Lambert, M.A. 7s. 6d.
- Differential and Integral Calculus. With Applications. By Sir A. G. Greenhill, F.R.S. 10s. 6d.
- A Treatise on the Integral Calculus and its Applications. By I. Todhunter, F.R.S. 10s. 6d. Key. By H. St. J. Hunter, M.A. 10s. 6d.
- A Treatise on the Differential Calculus and the Elements of the Integral Calculus. With numerous Examples. By I. Todhunter, F.R.S. 10s. 6d. Key. By H. St. J. Hunter, M.A. 10s. 6d.
- Ordinary Differential Equations. An Elementary Text-book. By James Morris Page, Ph.D. 6s. 6d.
- An Introduction to the Modern Theory of Equations. By Prof. F. Cajori, Ph.D. 7s. 6d. net.
- A Treatise on Differential Equations. By Andrew Russell Forsyth, Sc.D., LL.D. Fourth Edition. 14s. net.
- A Short Course on Differential Equations. By Prof. Don-ALD F. CAMPBELL, Ph.D. 4s. net.
- A Manual of Quaternions. By C. J. Joly, M.A., D.Sc., F.R.S. 10s. net.
- The Theory of Determinants in the Historical Order of Development. Vol. I. Part I. General Determinants, up to 1841. Part II. Special Determinants, up to 1841. 17s. net. Vol. II. The Period 1841 to 1860. 17s. net. By T. Muir, M.A., LL.D.,

CATALOGUE

F.R.S.

- An Introduction to the Theory of Infinite Series. By T. J. I'A Bromwich, M.A., F.R.S. 15s. net.
- Introduction to the Theory of Fourier's Series and Integrals, and the Mathematical Theory of the Conduction of Heat. By Prof. H. S. Carslaw, M.A., D.Sc., F.R.S.E. 14s. net.

LONDON: MACMILLAN AND CO., LTD.

NOTA DEL TRANSCRIPTOR

The diagrams have been re-created, using accompanying formulas or descriptions from the text where possible.

In Capítulo XIV, pages 136–163, numerical values of $\left(1 + \frac{1}{n}\right)^n$, e^x , and related quantities of British currency have been verified and rounded to the nearest digit.

On page 146 (page 146 in the original), the graphs of the natural logarithm and exponential functions, Figuras 38 and 39, have been interchanged to match the surrounding text.

The vertical dashed lines in the natural logarithm graph, Figura 39 (Figura 38 in the original), have been moved to match the data in the corresponding table.

On page 168 (page 167 in the original), the graphs of the sine and cosine functions, Figuras 44 and 45, have been interchanged to match the surrounding text.

*** END OF THE PROJECT GUTENBERG EBOOK CALCULUS MADE EASY ***

***** This file should be named 33283-pdf.pdf or 33283-pdf.zip *****
This and all associated files of various formats will be found in:
https://www.gutenberg.org/3/3/2/8/33283/

Updated editions will replace the previous one--the old editions will be renamed.

Creating the works from print editions not protected by U.S. copyright law means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg-tm electronic works to protect the PROJECT GUTENBERG-tm concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for an eBook, except by following the terms of the trademark license, including paying royalties for use of the Project Gutenberg trademark. If you do not charge anything for copies of this eBook, complying with the trademark license is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. Project Gutenberg eBooks may be modified and printed and given away--you may do practically ANYTHING in the United States with eBooks not protected by U.S. copyright law. Redistribution is subject to the trademark license, especially commercial redistribution.

START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE
PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg-tm mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase 'Project

Gutenberg'), you agree to comply with all the terms of the Full Project Gutenberg-tm License available with this file or online at www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg-tm electronic works

- 1.A. By reading or using any part of this Project Gutenberg-tm electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg-tm electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg-tm electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8.
- 1.B. 'Project Gutenberg' is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg-tm electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg-tm electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg-tm electronic works. See paragraph 1.E below.
- 1.C. The Project Gutenberg Literary Archive Foundation ('the Foundation' or PGLAF), owns a compilation copyright in the collection of Project Gutenberg-tm electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is unprotected by copyright law in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing,

displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg-tm mission of promoting free access to electronic works by freely sharing Project Gutenberg-tm works in compliance with the terms of this agreement for keeping the Project Gutenberg-tm name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg-tm License when you share it without charge with others.

- 1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg-tm work. The Foundation makes no representations concerning the copyright status of any work in any country other than the United States.
- 1.E. Unless you have removed all references to Project Gutenberg:
- 1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg-tm License must appear prominently whenever any copy of a Project Gutenberg-tm work (any work on which the phrase 'Project Gutenberg' appears, or with which the phrase 'Project Gutenberg' is associated) is accessed, displayed, performed, viewed, copied or distributed:

This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

- 1.E.2. If an individual Project Gutenberg-tm electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase 'Project Gutenberg' associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or 1.E.9.
- 1.E.3. If an individual Project Gutenberg-tm electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg-tm License for all works posted with the permission of the copyright holder found at the beginning of this work.
- 1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg-tm.
- 1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg-tm License.
- 1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg-tm work in a format other than 'Plain Vanilla ASCII' or other format used in the official version posted on the official Project Gutenberg-tm website

(www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original 'Plain Vanilla ASCII' or other form. Any alternate format must include the full Project Gutenberg-tm License as specified in paragraph 1.E.1.

- 1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg-tm works unless you comply with paragraph 1.E.8 or 1.E.9.
- 1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg-tm electronic works provided that:
- * You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg-tm works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg-tm trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, 'Information about donations to the Project Gutenberg Literary Archive Foundation.'
- * You provide a full refund of any money paid by a user who notifies you in writing (or by email) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg-tm License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg-tm works.
- * You provide, in accordance with paragraph 1.F.3, a full refund of

any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.

- * You comply with all other terms of this agreement for free distribution of Project Gutenberg-tm works.
- 1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg-tm trademark. Contact the Foundation as set forth in Section 3 below.

1.F.

- 1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg-tm collection. Despite these efforts, Project Gutenberg-tm electronic works, and the medium on which they may be stored, may contain 'Defects,' such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment.
- 1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES Except for the 'Right of Replacement or Refund' described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg-tm trademark, and any other party distributing a Project Gutenberg-tm electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE

TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.

- 1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
- 1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you--'AS-IS', WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
- 1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
- 1.F.6. INDEMNITY You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg-tm electronic works in accordance with this agreement, and any volunteers associated with the

production, promotion and distribution of Project Gutenberg-tm electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg-tm work, (b) alteration, modification, or additions or deletions to any Project Gutenberg-tm work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg-tm

Project Gutenberg-tm is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg-tm's goals and ensuring that the Project Gutenberg-tm collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg-tm and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non-profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation's EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by

U.S. federal laws and your state's laws.

The Foundation's business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation's website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg-tm depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many small donations (\$1 to \$5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate

Section 5. General Information About Project Gutenberg-tm electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg-tm concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg-tm eBooks with only a loose network of volunteer support.

Project Gutenberg-tm eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org

This website includes information about Project Gutenberg-tm, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.